

PRACA DYPLOMOWA MAGISTERSKA

ANALIZA EFEKTYWNOŚCI WSPÓŁCZYNNIKÓW PRZYŚPIESZENIA W METODACH PSO

Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej

Promotor: dr inż. Bożena Borowska

Dyplomant: Paweł Ciupka

Nr albumu: 234048

Kierunek: Informatyka Stosowana

Specjalność: Data Science

Łódź, 2021

Spis treści

St	reszo	czenie		3
\mathbf{A}	bstra	ıct		4
W	ykaz	skróte	ów	5
1	Wst	tęp		6
	1.1	Cel i z	zakres pracy	7
	1.2	Układ	l pracy	7
2	Opt	ymaliz	zacja za pomocą algorytmu PSO	8
	2.1	Działa	anie algorytmu	9
	2.2	Współ	łczynniki prędkości cząsteczki	12
		2.2.1	Współczynnik inercji	13
		2.2.2	Współczynnik kognitywny i socjalny	15
		2.2.3	Propozycja współczynnika kognitywnego oraz socjalnego	17
	2.3	Mody	fikacje algorytmu PSO	18
		2.3.1	Topologia pierścienia (PSO-RT)	19
		2.3.2	Topologia gwiazdy (PSO-ST)	19
		2.3.3	Sąsiedztwo przestrzenne ze zmiennym progiem (PSO-SNVT) $$.	20
		2.3.4	Selekcja (PSO-SEL)	21
3	Pro	jekt a	plikacji badawczej	22
	3.1	Język	programowania i biblioteki użyte do realizacji projektu	22
	3.2	Strukt	tura i funkcjonalności projektu	24

4	Bad	Badania		
	4.1	Kryteria porównawcze i użyte miary	28	
	4.2	Funkcje celu	31	
	4.3	Charakterystyka przeprowadzanych badań	32	
5	Wyniki			
	5.1	Badania efektywności współczynników przyspieszenia w metodzie PSO	34	
	5.2	Badania efektywności współczynników przyspieszenia w metodzie PSO-		
		ST	40	
	5.3	Badania efektywności współczynników przyspieszenia w metodzie PSO-		
		RT	45	
	5.4	Badania efektywności współczynników przyspieszenia w metodzie PSO-		
		SNVT	49	
	5.5	Badania efektywności współczynników przyspieszenia w metodzie PSO-		
		SEL	53	
	5.6	Badania uśrednionych wyników współczynników dla poszczególnych		
		metod PSO	58	
	5.7	Badania poszczególnych miar dla wyników współczynników	65	
	5.8	Badania wydajności współczynników dla poszczególnych metod PSO	66	
	5.9	Badania przebiegu funkcji dla współczynników przyśpieszenia PSO-		
		CTIAC	68	
6	Pod	sumowanie	72	
Bi	bliog	grafia	74	
Sr	Spis rysunków			
r	J		-	
$\mathbf{S}_{\mathbf{I}}$	Spis tabel 7			

Streszczenie

Celem niniejszej pracy magisterskiej była analiza i ocena efektywności różnych współczynników przyśpieszenia stosowanych w metodach optymalizacji za pomocą roju cząsteczek (PSO). W ramach pracy została zaproponowana autorska grupa współczynników prędkości oparta na rozwiązaniu, które zakłada zmianę wartości współczynników w czasie. Rozszerzono ją o chwilowe i cykliczne wybijanie cząsteczek z ich aktualnych położeń w początkowej oraz końcowej fazie przebiegu algorytmu. Celem tej modyfikacji było zminimalizowanie efektu przedwczesnej konwergencji.

Stworzona została konsolowa aplikacja badawcza, służąca do przeprowadzenia badań jakości współczynników oraz wygenerowania wyników. W celu dostarczenia jak największej liczby rezultatów wykorzystano osiem wzorcowych funkcji testowych, pięć metod PSO oraz sześć grup współczynników. Wykonano ponad dwieście eksperymentów, by pokazać najszersze spektrum jakości zaproponowanych współczynników.

Słowa kluczowe: optymalizacja rojem cząsteczek, PSO, efektywność, współczynniki, prędkość

Abstract

The purpose of this master thesis was to analyze and evaluate the effectiveness of various acceleration coefficients used in particle swarm optimization (PSO) methods. An original group of speed coefficients has been proposed, based on a solution that assumes a change in the coefficient values over time. It was extended by the momentary and cyclical knocking out of particles from their current positions in the initial and final stages of the algorithm run. The purpose of this modification is to minimize the effect of premature convergence.

A console research application was created to conduct research on the quality of coefficients and to generate results. To provide as many results as possible, eight model test functions, five PSO methods, and six groups of coefficients were used. More than two hundred experiments were carried out to show the broadest spectrum of the quality of the proposed coefficients.

Keywords: particle swarm optimization, PSO, efficiency, coefficients, velocity

Wykaz skrótów

PSO Particle Swarm Opimization

PSO-CTIAC Particle Swarm Opimization - Cyclically and Temporarily Increasing Acceleration Coefficients

PSO-RANDIW Particle Swarm Opimization - Random Inertia Weight Factor

PSO-RT Particle Swarm Opimization - Ring Topology Modification

PSO-SEL Particle Swarm Opimization - Selection Modification

PSO-SNVT Particle Swarm Opimization - Spatial Neighborhood with a Variable Threshold Modification

PSO-ST Particle Swarm Opimization - Stat Topology Modification

PSO-TVAC Particle Swarm Opimization - Time-Varying Acceleration Coefficients

PSO-TVIW Particle Swarm Opimization - Time-Varying Inertia Weight Factor

Rozdział 1

Wstęp

Każdy cel można osiągnąć na wiele sposobów. Odwiecznym pytaniem jest, który z nich będzie najlepszy. Proces, który się tym zajmuje to optymalizacja. Rozwiązuje ona problemy optymalizacyjne, poprzez dążenie do uzyskania najlepszego rezultatu w określonym zakresie argumentów. Poszukiwana może być najmniejsza, jak i największa wartość zadanej funkcji. W świecie rzeczywistym funkcje są najczęściej wielowymiarowe i posiadają kilka lub kilkanaście zmiennych.

Szeroko stosowanymi sposobami rozwiązywania problemów optymalizacyjnych są algorytmy genetyczne, zaczerpnięte z biologii. Metody te, skupiają się na ciągłym doskonaleniu. Ich działanie przypomina proces ewolucji biologicznej, ponieważ wszystkie informacje genetyczne są przekazywane z pokolenia na pokolenie. Proces rozwiązywania problemów optymalizacyjnych opiera się na przeistaczaniu pierwotnej populacji osobników tak, by każda kolejna była lepiej rozwinięta i nieustannie dążyła w kierunku globalnego minimum lub maksimum.

Algorytmy metaheurystyczne posiadają ogólne zasady działania i nie gwarantują znalezienia najlepszego rozwiązania, ale umożliwiają uzyskanie rezultatu zbliżonego do wyniku optymalnego. Taką metodą, która również należy do algorytmów ewolucyjnych jest metoda optymalizacji rojem cząsteczek - PSO (Particle Swarm Optimization).

Algorytm PSO powstał w latach dziewięćdziesiątych XX wieku i od tamtej pory zyskuje na popularności. Zaletą jest jego prostota, możliwość wprowadzania dowolnych modyfikacji oraz szerokie zastosowanie. Schemat jego działania został zaczerpnięty z poszukującego pożywienia stada ptaków, który musi ocenić jakość miejsca,

w którym chce wylądować. Każdy osobnik jest reprezentowany przez cząsteczkę, która zapamiętuje aktualną prędkość oraz wartość aktualnego oraz najlepszego rozwiązania wraz z jego pozycją. Ideą algorytmu PSO jest iteracyjne przeszukiwanie przestrzeni poszukiwań przy pomocy roju cząsteczek oraz wzajemna współpraca, która ma zwiększyć szansę na znalezienie rozwiązania zadanego problemu optymalizacyjnego.

1.1 Cel i zakres pracy

Celem niniejszej pracy magisterskiej jest analiza i ocena efektywności różnych współczynników przyśpieszenia stosowanych w metodach optymalizacji rojem cząsteczek (PSO).

Zakres pracy magisterskiej obejmuje opisanie genezy powstania i sposobu działania klasycznej metody PSO oraz jej modyfikacji. Omówienie znaczenia współczynników przyśpieszenia algorytmu oraz przedstawienie wariantów znanych z literatury. Opracowanie własnej grupy współczynników na podstawie PSO-TVAC. Zaimplementowanie aplikacji umożliwiającej wykonanie badań wraz z uwzględnieniem wszystkich opisanych modyfikacji oraz współczynników algorytmu PSO. Przeprowadzenie badań, porównanie oraz omówienie otrzymanych wyników.

1.2 Układ pracy

Praca składa się z sześciu rozdziałów. W rozdziale pierwszym zamieszczono wstęp oraz cel i zakres pracy. Rozdział drugi poniższej pracy magisterskiej zawiera informacje o klasycznej metodzie PSO, jej modyfikacjach oraz o rodzajach i znaczeniu współczynników przyśpieszenia algorytmu. W trzecim rozdziale opisano zaimplementowaną aplikację badawczą wraz z technicznymi informacjami o jej budowie, strukturze, funkcjonalnościach oraz bibliotekach wykorzystanych do jej stworzenia. Czwarty rozdział przedstawia sposób oceniania testowanych algorytmów, użyte miary jakości, badane funkcje oraz opis przeprowadzonych badań. Piąty najobszerniejszy rozdział jest kontynuacją rozdziału czwartego. Zawiera wyniki przedstawione w formie tabel i wykresów wraz z analizą poszczególnych eksperymentów. Ostatni rozdział prezentuje wnioski oraz podsumowanie przeprowadzonych badań.

Rozdział 2

Optymalizacja za pomocą algorytmu PSO

Metoda optymalizacji za pomocą roju cząstek (PSO) to metaheurystyczny algorytm optymalizacyjny, który zyskał na znaczeniu w ciągu ostatnich dwóch dekad. Powodem tego jest łatwość jego zastosowania w złożonych i wielowymiarowych problemach, których nie można rozwiązać za pomocą tradycyjnych algorytmów deterministycznych. Metoda ta została zaproponowana i opisana w 1995 roku przez inżyniera elektryka Russella Eberharta i psychologa społecznego Jamesa Kennedy'ego w dwóch pracach [1] [2]. Metoda PSO ma swoje podstawy w zachowaniach i relacjach społecznych zaobserwowanych w symulacji uproszczonego modelu stada ptaków, który to poszukuje pożywienia na pewnym rozległym obszarze. Efektywność takiego rozwiązania opiera się na zapamiętywaniu informacji i doświadczeń przez ptaki oraz na ich późniejszej wymianie w obrębie całego stada. Dzięki temu pojedyncze osobniki potrafią znaleźć pożywienie na kompletnie obcym im obszarze.

Obecnie metoda PSO jest jednym z najbardziej znanych i szeroko stosowanych algorytmów ewolucyjnych i technik metaheurystycznych. Zawdzięcza to swojej prostocie, łatwej implementacji oraz możliwości wykorzystania jej w wielu problemach. Metoda nie jest idealna, co udowodniły przeprowadzone badania, które wykryły szereg problemów. Mowa tu w szczególności o zjawisku przedwczesnej konwergencji, niskiej wydajności w niektórych przypadkach oraz o trudnościach związanych z doborem odpowiednich parametrów wejściowych.

2.1 Działanie algorytmu

Genezą algorytmu PSO jest stado ptaków, które w pewnym obszarze zajmuje się poszukiwaniem pożywienia. Celem przelatującego nad miejscem stada jest znalezienie punktu do lądowania. Zadanie jest na tyle złożone, że ptaki muszą uwzględnić dostęp do pożywienia dla wszystkich osobników oraz kwestię zminimalizowania ryzyka wystąpienia zagrażających im drapieżników. Dopiero, gdy te kryteria zostaną spełnione i zostanie znalezione najlepsze miejsce, stado może jednocześnie wylądować.

W przytoczonej sytuacji, stado znajdzie najlepszą pozycję tylko wtedy, gdy wszystkie ptaki należące do niego będą wymieniać się pozyskanymi informacjami. W przeciwnym razie, osobniki polegałyby jedynie na swojej wiedzy i lądowałyby w różnym miejscu i czasie, co by znacznie zmniejszyło szansę na znalezienie bezpiecznego i obfitego w pożywienie miejsca. W stadzie panuje konkurencja, ponieważ każdemu osobnikowi zależy na znalezieniu najlepszej pozycji, a jednocześnie ptaki są świadome tego, że działając wspólnie, zrobią to szybciej i lepiej. W ten sposób każdy osobnik posiadając własną wiedzę oraz doświadczenie całego stada, a w dodatku potrafiąc korzystać z niej w zrównoważonych proporcjach, pomyślnie wykona zadanie.

Opisany problem poszukiwania pożywienia stanowi problem optymalizacji. Stado musi określić najlepszy punkt, na przykład szerokość i długość geograficzną, aby zmaksymalizować szanse przetrwania innych członków stada. W tym celu każdy ptak leci w tym samym czasie, szukając i oceniając różne punkty przy użyciu kilku kryteriów. To zainspirowało Kennediego i Ebraharta do stworzenia algorytmu PSO, który mógł symulować procesy zachodzące w stadzie.

Celem zadania optymalizacyjnego jest wyznaczenie zmiennej reprezentowanej przez wektor $X = [x_1, x_2, x_3...x_n]$ który, w zależności od proponowanej funkcji optymalizacyjnej f(X), minimalizuje ją lub maksymalizuje. X to n wymiarowy wektor określający pozycję, gdzie n reprezentuje liczbę zmiennych zawartych w danym problemie optymalizacyjnym. Funkcja f(X) określana jest mianem funkcji dopasowania lub celu. W problemie poszukiwania pożywienia przez stado ptaków, wektor X posiada dwa wymiary - długość i szerokość geograficzną, które oznaczają punkt lądowania stada, natomiast funkcja f(X) służy do oszacowania jakości pozycji. War-

tość funkcji celu przekłada się bezpośrednio na to, jak dobre jest miejsce lądowania wybrane przez ptaka i zależy od wielu czynników, takich jak dostęp do wystarczającej ilości pożywienia czy szansa na przeżycie osobników.

Przekładając stado ptaków szukające pożywienia na metodę PSO, stado ptaków określane jest jako rój cząsteczek P. Każda z nich posiada swój wektor pozycji $\vec{X}_i^t = (x_{i1}, x_{i2}, x_{i3} \dots x_{in})^T$ oraz wektor prędkości $\vec{V}_i^t = (v_{i1}, v_{i2}, v_{i3} \dots v_{in})^T$, gdzie t określa numer iteracji, a i jest numerem cząsteczki. Aktualizacja pozycji cząsteczki wyrażona jest wzorem:

$$\vec{X_i^{t+1}} = \vec{X_i^t} + \vec{V_i^{t+1}} \tag{2.1}$$

gdzie $i=1,2,3,\ldots,P$ jest numerem cząsteczki. Wektor prędkości cząsteczki $V_i^{\vec{t}+1}$ jest obliczany dla każdego wymiaru na nowo w każdej iteracji korzystając ze wzoru:

$$V_i^{\vec{t}+1} = w \cdot \vec{V_i^t} + c_1 \times \vec{r_1^t} \times (\vec{pbest_i} - \vec{X_i^t}) + c_2 \times \vec{r_2^t} \times (\vec{gbest} - \vec{X_i^t})$$
(2.2)

gdzie $pb\vec{est}_i$ jest wektorem pozycji, w której dana cząsteczka osiągnęła najlepszą wartość funkcji celu, a $gb\vec{est}$ jest wektorem pozycji dla najlepszej wartości funkcji osiągniętej przez cały rój. w jest współczynnikiem inercji, a c_1 i c_2 są dodatnimi wartościami, odpowiednio określanymi jako współczynnik kognitywny oraz socjalny. Parametry $\vec{r_1}$ oraz $\vec{r_2}$ są losowymi wektorami w przestrzeni zmiennych niezależnych, składającymi się z liczb z przedziału [0,1] generowanymi na nowo w każdej iteracji.

Pierwszym krokiem jest wczytanie parametrów wejściowych, w skład których wchodzi liczba wymiarów n, liczba cząsteczek w roju P, liczba iteracji T oraz wartości współczynników przyśpieszenia w, c_1 , c_2 obecnych we wzorze na prędkość (2.2). Następnie przeprowadzana jest inicjalizacja roju, czyli wygenerowanie losowych wektorów pozycji \vec{X} i prędkości \vec{V} dla wszystkich cząsteczek. Kolejne kroki wykonywane będą do momentu spełnienia kryterium stopu, czyli do osiągnięcia określonej liczby iteracji lub znalezienia rozwiązania zadanej funkcji celu. Kluczową czynnością jest ewaluacja funkcji optymalizacyjnej, w celu sprawdzenia, czy nowo znalezione rozwiązanie cząsteczki jest lepsze niż jej dotychczasowe najlepsze prywatne rozwiązanie $p \vec{b} \vec{e} \vec{s} t$ lub dotychczas znalezione najlepsze globalne rozwiązanie roju $p \vec{b} \vec{e} \vec{s} t$. Jeśli nowe rozwiązanie jest lepsze to wektory $p \vec{b} \vec{e} \vec{s} t$ lub $p \vec{b} \vec{e} \vec{s} t$, są aktualizowane o nowy wektor pozycji cząsteczki \vec{X} . Ostatnim krokiem jest aktualizacja wektora prędkości \vec{V} i pozycji \vec{X} wszystkich cząsteczek, odpowiednio wzorami (2.2) oraz (2.1).

Schemat blokowy algorytmu PSO został przedstawiony na Rysunku 2.1.

Rysunek 2.1: Schemat blokowy algorytmu PSO

Przedwczesna konwergencja, to proces szybkiego zbiegania cząsteczek do lokalnych minimów, z których nie mogą się wydostać. Zjawisko to jest największym problemem algorytmu PSO. Podczas doboru parametrów należy osiągnąć kompromis pomiędzy eksploracją a eksploatacją [3]. Eksploracja to umiejętność przeszukiwania rozległych regionów w przestrzeni problemu w celu znalezienia optimum globalnego.

Eksploatacja to umiejętność skupienia poszukiwań wokół jednego sprecyzowanego położenia, które cząsteczka uzna za obiecujące.

Algorytm PSO pozwala szybko i skutecznie rozwiązywać zadane problemy optymalizacyjne. Wykorzystanie losowości w obliczaniu nowej pozycji cząsteczek roju zapewnia wierne odzwierciedlenie rzeczywistego ruchu ptaków w stadzie. Istotny jest więc prawidłowy dobór współczynników przyśpieszenia tak, by metoda była wystarczająco wydajna, a rój nie ulegał zjawisku przedwczesnej konwergencji.

2.2 Współczynniki prędkości cząsteczki

Wzór na nową prędkość cząsteczki (2.2) składa się z trzech części. Uogólniając, pierwsza określa poziom wpływu poprzedniej prędkości, druga dotyczy poprzednich doświadczeń cząsteczki, a trzecia wskazuje jaki wpływ ma wiedza zgromadzona przez rój. Wszystkie części posiadają własne współczynniki, które zostały opisane poniżej. Ich wartości mogą być reprezentowane jako stałe, funkcje liniowe lub nieliniowe.

Schemat poruszania się cząsteczki w dwóch kolejnych iteracjach został przedstawiony na rysunkach 2.2 i 2.3. Iteracja zerowa to inicjalizacja roju, czyli wygenerowanie losowego wektora pozycji oraz wektora prędkości cząsteczki.

Rysunek 2.2: Wpływ składowych wektora prędkości w iteracji numer 1 dla problemu dwuwymiarowego

Rysunek 2.3: Wpływ składowych wektora prędkości w iteracji numer 2 dla problemu dwuwymiarowego

Kluczowym elementem na każdym z przedstawionych rysunków jest powstały równoległobok, który utworzony jest przez wektor określający poziom ważności poprzednich doświadczeń cząsteczki oraz wektor przyciągania cząsteczki do najlepszej znalezionej pozycji. Określa on możliwy do osiągnięcia zakres wektora nowej prędkości cząsteczki. Kolorem niebieskim został oznaczony przykładowy wynikowy wektor prędkości dla obu iteracji. Znaczny wpływ ma tutaj również wektor $w \cdot \vec{V_1^0}$, który ustala początkowy wierzchołek równoległoboku.

2.2.1 Współczynnik inercji

Pierwszy człon równania prędkości (2.2) jest iloczynem współczynnika inercji w i wektora poprzedniej prędkości cząstki $\vec{V_i}^t$ i określa jej wpływ na nową wartość. Modulowanie wartością współczynnika pozwala na ustawienie priorytetu zachowania cząsteczki. Wysokie wartości powodują zwiększenie globalnej eksploracji, natomiast niskie wartości sprzyjają lokalnym poszukiwaniom. Tylko ostrożny dobór wartości pozwoli osiągnąć równowagę miedzy eksploracją a eksploatacją.

Wartość współczynnika inercji $w \geq 1$ oznacza, że prędkość roju wzrasta z czasem. Konsekwencją gwałtownie rosnącej prędkości roju jest brak możliwości zmiany

kierunku cząsteczki, tak by mogła się cofnąć w kierunku lepszych obszarów. Dzieje się tak, aż do momentu całkowitego rozproszenia roju na całej przestrzeni poszukiwań. Natomiast wartość w < 1 zmniejsza przyśpieszenie roju, aż do momenty, gdy prędkość cząsteczki będzie manipulowana tylko i wyłącznie przez współczynniki c_1 oraz c_2 . Konsekwencją tego jest intensyfikacja nagłej zmiany kierunku poruszania się cząsteczek, co wpływa na zmniejszenie zdolności eksploracji roju. Zastosowanie dynamicznych wartości współczynnika inercji, opierających się na numerze iteracji, pozwala osiągnąć kompromis pomiędzy eksploracją, a eksploatacją oraz finalnie lepsze wyniki algorytmu PSO.

Według badań Yuhui Shi i R. Eberhart z 1998 roku, optymalne stałe wartości dla współczynnika inercji w mieszczą się w przedziale 0.9 < w < 1.2 [4]. Eksperymenty zostały przeprowadzone dla funkcji celu Schaffer f6, dla 4000 iteracji, 20 cząsteczek oraz 2 wymiarów. Potwierdzono, że mniejsze wartości współczynnika skupiają cząsteczki na lokalnych poszukiwaniach, natomiast większe, na globalnej eksploracji. Zauważono korelacje pomiędzy jakością początkowych położeń cząsteczek, wartościami współczynnika w oraz wynikami algorytmu PSO. Mianowicie, jeśli początkowe położenia cząsteczek będą wystarczająco dobre, to uzyskane wyniki będą lepsze dla mniejszych wartości. Zastosowanie większych wartości spowoduje natychmiastowe oddalenie się cząsteczek od dobrych obszarów i rozproszenie ich po całej przestrzeni poszukiwań. Wartości w > 1.2 powodują znaczne zwiększenie prędkości cząsteczek, a w wyniku tego niedokładne przeszukiwania zwiększające liczbę potrzebnych iteracji oraz obniżające szansę na znalezienie rozwiązania. Najlepsze wyniki uzyskano wykorzystując liniowo malejące wartości od 1.4 do 0, które początkowo zapewniają wysoką eksplorację, która płynnie przechodzi w eksploatacje.

Wydajniejszym rozwiązaniem okazało się wykorzystanie dynamicznego współczynnika. Yuhui Shi i R. Eberhart w 1999 roku zaproponowali liniowo zmieniający się w czasie współczynnik inercji w [5], który przedstawia się wzorem:

$$w = (w_1 - w_2) \cdot \frac{T - t}{T} + w_2 \tag{2.3}$$

gdzie w_1 i w_2 są odpowiednio wartością początkową i końcową współczynnika inercji, T jest liczbą wszystkich iteracji, a t jest numerem aktualnej iteracji. Przeprowadzono szereg eksperymentów dla 20, 40, 80, 160 liczby cząsteczek, 10, 20, 30 wymiarów, 1000, 1500, 2000 iteracji oraz czterech funkcji celu: Sphere, Rastrigrin, Rosenbrock,

Griewank. Zaobserwowano, że optymalne rozwiązania uzyskiwane są dla wartości początkowej równej $w_1 = 0.9$ oraz końcowej równej $w_2 = 0.4$. Taka modyfikacja klasycznego podejścia, zapoczątkowała rozwój dynamicznych współczynników. W dalszej części pracy ta wersja PSO jest określana jako metoda zmiennego w czasie współczynnika inercji (PSO-TVIW).

Kolejne badania przeprowadzone przez Yuhui Shi i R. Eberhart dowiodły, że metoda PSO-TVIW jest mało efektywna dla rzeczywistych problemów, które należą do nieliniowych systemów dynamicznych. W 2001 roku zaproponowali nową koncepcję, która polega na wykorzystaniu losowego współczynnika inercji [6] [7] wyrażonego wzorem:

$$w = 0.5 + \frac{rand(\cdot)}{2} \tag{2.4}$$

gdzie $rand(\cdot)$ jest liczbą losową o rozkładzie jednostajnym z przedziału [0, 1]. Wynikiem jest liczba losowa z przedziału [0.5, 1], którego średnia wartość wynosi 0.75. Modyfikacja ta została zainspirowana koncepcją przedstawioną przez M. Clerc [8], w której współczynnik inercji przyjmuje stałą wartość 0.729, a oba współczynniki przyspieszenia wynoszą 1.494. Wersja ta przyjmuje losowy współczynnik inercji (2.4) oraz stałe wartości współczynnika kognitywnego i socjalnego równe 1.494. W dalszej części pracy określana jest jako PSO-RANDIW.

2.2.2 Współczynnik kognitywny i socjalny

Drugim członem równania prędkości (2.2) jest różnica między wektorem najlepszej pozycji cząsteczki $\vec{pbest_i}$ i wektorem jej aktualnej pozycji $\vec{X_i^t}$. Współczynnik kognitywny c_1 jest parametrem indywidualnego poznania i określa poziom wpływu wcześniejszych doświadczeń cząsteczki na jej nową prędkość. Parametr losowy $\vec{r_1}$ przyjmuje wartości z zakresu [0, 1] i redukuje występowanie zjawiska przedwczesnej zbieżności.

Trzeci człon wzoru na prędkość (2.2) dotyczy poziomu dzielenia się informacją o najlepszym położeniu w roju, niezależnie od tego, która cząsteczka go znalazła. Wyrażony jest jako iloczyn współczynnika socjalnego c_2 , określającego znaczenie globalnego uczenia się, współczynnika losowości $\vec{r_2}$ pełniącego taką samą funkcję co $\vec{r_1}$ oraz różnicy wektora najlepszej pozycji roju $gb\vec{e}st$ i wektora aktualnej pozycji cząsteczki $\vec{X_i}^t$.

Wartości współczynników $c_1 \geq 1$ oraz $c_2 \geq 1$, powodują zwiększenie znaczenia odpowiednio części indywidualnej oraz socjalnej. Wykorzystanie wartości $c_1 < 1$ oraz $c_2 < 1$ powoduje odwrotny efekt, czyli zredukowanie wpływu wybranego członu na nową prędkość. W przypadku specyficznych implementacji, możliwe jest ustawienie $c_1 = 0$ lub $c_2 = 0$, w wyniku czego cząsteczki będą polegać wyłącznie na indywidualnej wiedzy lub wyłącznie na wiedzy roju o najlepszym znalezionym położeniu. Problemy multimodalne osiągają lepsze wyniki dla współczynników $c_1 > c_2$, natomiast problemy unimodalne dla $c_1 < c_2$.

W badaniach przeprowadzonych w 2003 roku przez Ioan Cristian Trelea zostały zaproponowane nowe wartości wagi inercji w, współczynnika kognitywnego c_1 oraz socjalnego c_2 , które wynosiły odpowiednio 0.6, 1.7 oraz 1.7 [3]. Eksperymenty przeprowadzono dla 10000 iteracji oraz trzech zestawów liczby cząsteczek: 15, 30, 60. Wykorzystano pięć funkcji celu: Sphere, Rosenbrock, Rastrigin, Griewank, Schaffer f6. Wszystkie posiadały 30 wymiarów, z wyjątkiem dwuwymiarowej funkcji Schaffer f6. Uzyskane wyniki zostały porównane z tymi otrzymanymi przez M. Clerc w 1999 roku, który zaproponował współczynniki o wartościach 0.729 oraz 1.494 [8]. Współczynniki o wartościach 0.6 oraz 1.7 potrzebowały mniejszej liczby iteracji by znaleźć rozwiązanie, ale ryzyko przedwczesnej zbieżności do punktów nieoptymalnych było wyższe niż dla współczynników 0.729 oraz 1.494. Świadczy to o małej stabilności rozwiązania.

Wydajniejszym rozwiązaniem okazało się wykorzystanie, jak w przypadku współczynnika inercji, zmieniającej się w czasie wartości współczynnika kognitywnego c_1 oraz socjalnego c_2 . Jako główne założenie przyjęto wzmocnienie globalnego przeszukiwania we wczesnej fazie oraz zintensyfikowanie zbiegania do globalnego rozwiązania na końcu. Wysoka wartość współczynnika kognitywnego c_1 i niska wartość współczynnika socjalnego c_2 na początku, powoduje poruszanie się cząsteczek po całej przestrzeni poszukiwania, zamiast skupiania się w jednym miejscu. Odwrócenie wartości, przyjęcie niskiego współczynnika kognitywnego c_1 oraz wysokiej wartości współczynnika socjalnego c_2 w końcowej fazie, powoduje poruszanie się cząsteczek w kierunku globalnego optimum. W dalszej części ta metoda będzie określana jako PSO-TVAC [7]. Poniżej przedstawiono wzory reprezentujące oba współczynniki:

$$c_1 = (c_{1f} - c_{1i}) \cdot \frac{t}{T} + c_{1i} \tag{2.5}$$

$$c_2 = (c_{2f} - c_{2i}) \cdot \frac{t}{T} + c_{2i} \tag{2.6}$$

gdzie c_{1i} i c_{2i} są początkowymi, c_{1f} i c_{2f} są końcowymi wartościami, T jest liczbą wszystkich iteracji, a t jest numerem aktualnej iteracji. W 2004 roku przeprowadzone zostały badania, w celu znalezienia najbardziej optymalnych wartości. W tym celu przetestowano pięć funkcji: Sphere, Rosenbrock, Rastrigrin, Griewank, Schaffer f6. Parametry wejściowe ustawiono na 40 cząsteczek, 30 wymiarów oraz 2000 iteracji. Najlepsze rozwiązania osiągnięto przy zmianie wartości współczynnika kognitywnego z 2.5 na 0.5 i współczynnika socjalnego z 0.5 na 2.5 w całym zakresie poszukiwań.

2.2.3 Propozycja współczynnika kognitywnego oraz socjalnego

Autor pracy zaproponował nowy sposób obliczania współczynnika kognitywnego oraz socjalnego, który bazuje na rozwiązaniu PSO-TVAC [7]. Dodane zostały modyfikacje, których celem jest cykliczne wybijanie cząsteczek z ich aktualnych położeń w początkowej oraz końcowej fazie przebiegu algorytmu. Polega to na kilkukrotnym, znacznym zwiększeniu wartości współczynników w określonej liczbie następujących po sobie iteracji.

We wstępnej fazie działania PSO modyfikowana jest wartość współczynnika kognitywnego c_1 , by wzmocnić eksplorację i zmusić cząsteczkę do pokonania dłuższej drogi. Powodem takiego działania jest zaobserwowana tendencja do przedwczesnej zbieżności w punktach odległych od poszukiwanego. Chwilowe zwiększenie wartości współczynnika powoduje oddalenie się cząsteczki od ostatniego położenia oraz ekspansję nowych miejsc.

Analogicznie do współczynnika kognitywnego c_1 , wartość współczynnika socjalnego c_2 znacznie wzrasta w końcowym etapie, w celu zwiększenia eksploatacji. Intensyfikuje to ruch cząsteczek w kierunku globalnego rozwiązania. Jest to szczególnie istotne, dla cząstek zablokowanych w minimach lokalnych.

Metoda bazuje na współczynnikach określonych wzorami (2.3), (2.5) i (2.6), które wykorzystywane są przez prawie cały przebieg algorytmu. Przyjęto w nich zmieniające się wartości współczynnika inercji z 0.9 na 0.4, współczynnika kognitywnego z 2.5 na 0.5 i współczynnika socjalnego z 0.5 na 2.5. Wyjątkiem są iteracje, które

spełniają warunki odpowiednio dla współczynnika kognitywnego c_1 (2.7) oraz socjalnego c_2 (2.8). Dla tych iteracji, współczynnik przyjmuje wysoką, stałą wartość Z. Wizualizację schematu działania współczynników przedstawiono na Rysunku 2.4. Matematyczna reprezentacja wygląda następująco:

$$t < \frac{T}{c_{1d}}, \quad t \mod \frac{T}{c_{1i}} > 0, \quad t \mod \frac{T}{c_{1i}} < c_{1m}$$
 (2.7)

$$t < T - \frac{T}{c_{2d}}$$
, $t \mod \frac{T}{c_{2i}} > 0$, $t \mod \frac{T}{c_{2i}} < c_{2m}$ (2.8)

gdzie T jest liczbą wszystkich iteracji, t jest numerem aktualnej iteracji, c_{1d} oraz c_{2d} dzielą liczbę wszystkich iteracji, tworząc początkowy i końcowy zakres, c_{1i} oraz c_{2i} określają częstotliwość, a c_{1m} oraz c_{2m} liczbę iteracji, w których współczynniki będą przyjmować wartość Z. Przeprowadzono szereg testów, które pozwoliły określić optymalne wartości parametrów: Z=3, $c_{1d}=4$, $c_{2d}=2$, $c_{1i}=40$, $c_{2i}=35$, $c_{1m}=4$, $c_{2m}=6$. W dalszej części ta metoda będzie określana jako PSO-CTIAC.

Rysunek 2.4: Schemat działania zaproponowanego współczynnika kognitywnego i socjalnego

2.3 Modyfikacje algorytmu PSO

Algorytm PSO posiada szereg problemów. Największe z nich to przedwczesna zbieżność oraz problemy związane z wydajnością. W przeciągu ostatnich dwóch dekad pojawiło się wiele wariantów, ulepszeń oraz rozszerzeń klasycznej wersji algorytmu. Wiele z tych podejść prowadziły do takich samych wyników, ale udało się opracować takie, które przynosiły lepsze rezultaty. Niektóre metody znajdą lepsze rozwiązanie w trudniejszych, multimodalnych problemach, a pozostałe będą wydajniejsze w badaniach prostszych, unimodalnych problemów. W ramach pracy, prze-

analizowano trzy typy modyfikacji. Pierwsza z nich to modyfikacja wzoru prędkości (2.2), która zakłada zmianę sposobu obliczania poszczególnych współczynników. Kolejna dotyczy topologi roju cząsteczek i określa zbiór sąsiadujących cząsteczek, z którymi może być inicjowana wymiana informacji. Ostatnia polega na zmianie przebiegu działania algorytmu.

2.3.1 Topologia pierścienia (PSO-RT)

Modyfikacja, polegająca na uwzględnieniu sąsiadów cząsteczki na podstawie pozycji w roju. Każda cząsteczka ma dwóch sąsiadów, w ten sposób sieć połączeń tworzy pierścień, co przedstawia Rysunek 2.5. Zakładając, że numerem cząsteczki w roju jest i, to jej sąsiadami będą cząsteczki z indeksami i-1 oraz i+1. Wymiana informacji jest stosunkowo powolna, ale gdy jedna z cząsteczek znajdzie optymalną lokalizację, informacja ta rozprzestrzeni się powoli na całą populację [9].

Rysunek 2.5: Schemat wymiany wiedzy pomiędzy cząsteczkami w modyfikacji algorytmu PSO - topologia pierścienia

2.3.2 Topologia gwiazdy (PSO-ST)

Modyfikacja, w której nie istnieją bezpośrednie połączenia pomiędzy cząsteczkami. Istnieje jedna cząsteczka w roju, zwana cząsteczką centralną, z którą łączą się pozostałe, tak jak przedstawiono na Rysunku 2.6. Wszystkie cząsteczki, oprócz centralnej, są od siebie niezależne, a każda informacja musi przejść przez cząsteczkę centralną [9].

Rysunek 2.6: Schemat wymiany wiedzy pomiędzy cząsteczkami w modyfikacji algorytmu PSO - topologia gwiazdy

2.3.3 Sąsiedztwo przestrzenne ze zmiennym progiem (PSO-SNVT)

W tej modyfikacji, sąsiedztwo cząsteczki jest obliczane dynamicznie. Za sąsiadów uznaje się cząsteczki, które są położone wystarczająco blisko, co zostało oznaczone na Rysunku 2.7. Aby oszacować bliskość cząsteczek a i b należy rozpocząć od obliczenia odległości euklidesowej pomiędzy nimi:

$$d(a,b) = |\vec{X}_a - \vec{X}_b| \tag{2.9}$$

gdzie $\vec{X_a}$ i $\vec{X_b}$ są wektorami położenia cząsteczek. Następnie obliczoną odległość podstawiamy do wzoru:

$$\delta = \frac{d(a,b)}{d_{max}} \tag{2.10}$$

gdzie d_{max} to największa odległość między dwoma cząsteczkami w roju. Uzyskana wartość oceny bliskości należy do przedziału [0,1]. Za sąsiadów należy uznać tylko te cząsteczki, których wartość δ jest mniejsza od zadanej stałej wartości progowej ϵ z przedziału [0,1]. Możliwe jest wykorzystanie zmiennej wartości progowej ϵ , która zależy od numeru iteracji:

$$\epsilon(t) = \frac{3t + 0.6T}{T} \tag{2.11}$$

gdzie t jest numerem iteracji, a T jest liczbą wszystkich iteracji. Sąsiedztwo przestrzenne ze zmiennym progiem jest dość kosztowne obliczeniowo, jednak lepiej przeszukuje przestrzeń poszukiwań.

Rysunek 2.7: Schemat wymiany wiedzy pomiędzy cząsteczkami w modyfikacji algorytmu PSO - sąsiedztwo przestrzenne ze zmiennym progiem

2.3.4 Selekcja (PSO-SEL)

Modyfikacja, która polega na selekcji turniejowej. Po kolei, dla każdej cząsteczki w roju, porównywana jest jej wartość funkcji celu z wartościami funkcji celu losowo wybranych k cząsteczek. Jeżeli wartość wybranej cząsteczki jest większa, to zostaje jej przyznany jeden punkt. Kolejnym krokiem jest posortowanie cząsteczek według liczby zdobytych punktów oraz wybór lepszej połowy roju, czyli tej która zdobyła większą liczbę punktów. Dalej położenia cząsteczek z lepszej połowy są kopiowane odpowiednio na miejsce położeń cząsteczek gorszej połowy. Istotne jest, by kopiowane były tylko i wyłącznie położenia. Po zakończeniu selekcji, następuje aktualizacja prędkości wszystkich cząsteczek.

Rozdział 3

Projekt aplikacji badawczej

Na potrzeby niniejszej pracy stworzona została aplikacja umożliwiająca przeprowadzenie badań, ocenę oraz graficzną prezentację wyników jakości algorytmów w różnych konfiguracjach. Ze względu na wymagania projektu, zdecydowano się na aplikację konsolową, której specyfika ogranicza się do pobierania danych wejściowych, uruchamiania określonego algorytmu, generowania i prezentacji uzyskanych wyników. Autor pracy zaimplementował klasyczny algorytm PSO, wraz ze wszystkimi modyfikacjami omówionymi w poprzednim rozdziale. Proponowane rozwiązanie umożliwia łatwą modyfikację logiki algorytmów, dowolność w tworzeniu współczynników przyśpieszenia, nieograniczony wybór funkcji celu, możliwość implementacji dowolnych miar jakości oraz manipulowanie sposobami prezentacji wyników.

3.1 Język programowania i biblioteki użyte do realizacji projektu

Do implementacji aplikacji wykorzystano popularny, wysokopoziomowy język programowania Python [10]. Ma on szerokie zastosowanie w problemach matematycznych. Jest wykorzystywany przez duże korporacje, co gwarantuje stabilność i dobre wsparcie. Największą zaletą jest dostęp do ogromnej kolekcji zewnętrznych bibliotek i modułów, które dostarczają wiele przydatnych funkcji. Poniżej przedstawiono i krótko scharakteryzowano wykorzystane biblioteki.

Biblioteka Math jest standardową biblioteką języka programowania Python [11]. Dostarcza najbardziej podstawowych i użytecznych operacji matematycznych. Więk-

szość dostępnych funkcji jest opakowaniem tych, dostępnych w standardzie C. W zaimplementowanej aplikacji wykorzystano między innymi takie komponenty jak pierwiastkowanie, potęgowanie, wartość bezwzględna, funkcja cosinus, liczba wykładnicza czy stałą matematyczną π .

Kolejna biblioteka jest NumPy, która dostarcza podstawowy pakiet do obliczeń naukowych w Pythonie [12]. Rdzeniem biblioteki jest obiekt ndarray, który hermetyzuje n-wymiarowe tablice jednorodnych typów danych, z wieloma operacjami wykonywanymi wewnątrz kodu rozszerzenia, zapewniając wysoką wydajność. Tablice NumPy wyróżniaja się od standardowych sekwencji jezyka Python tym, że maja ustalony rozmiar podczas tworzenia, a każda zmiana rozmiaru powoduje utworzenie nowej tablicy i usuniecie istniejacej. Dodatkowo wszystkie elementy w obiekcie ndarray musza być tego samego typu, co pozwala pozbyć się wielu niuansów podczas przetwarzania danych. Największą zaletą NumPy, jest prosty dostęp do zaawansowanych operacji matematycznych oraz wysoka wydajność dla dużej ilości danych. Została ona osiągnięta dzięki wykorzystaniu wektoryzacji i zrezygnowaniu z pętli oraz indeksowania w kodzie. Wszystkie te operacje są wykonywane w zoptymalizowanym, prekompilowanym kodzie C. Zaletami takiego rozwiązania jest mniejsza liczba linii kodu oraz wysoka przejrzystość, która przypomina standardową notację matematyczną. W aplikacji wykorzystano takie funkcje tablicowe jak pierwiastkowanie, potegowanie, odejmowanie, średnia wartość, mediana i odchylenie standardowe.

Narzędziem wykorzystanym do wizualizacji danych jest biblioteka Matplotlib [13], która w połączeniu ze zbiorem funkcji pyplot, umożliwia korzystanie z rozszerzenia na wzór środowiska Matlab. Udostępnia szerokie możliwości rysowania wykresów. Począwszy od prostych wykresów liniowych i słupkowych, poprzez proste wykresy trójwymiarowe i rysowanie obrazów, kończąc na zaawansowanych, interaktywnych wykresach trójwymiarowych. W aplikacji wykorzystanie Matplotlib zostało ograniczone do generowania wykresów liniowych, przedstawiających przebieg algorytmów w kolejnych iteracjach dla zaimplementowanych funkcji.

Ostatnią wykorzystaną biblioteką jest Pandas [14]. Zbudowana jest na bazie biblioteki NumPy [12], w związku z czym jest często używana razem z nią. Zapewnia rozbudowane funkcje do efektywnej i elastycznej analizy danych, pozwala na wydajną manipulację danymi oraz prace z plikami. W aplikacji połączono biblioteki

Pandas oraz NumPy, w celu zebrania i wygenerowania plików Excelowych, zawierających wyniki przeprowadzonych badań. Pozwala to na wygodną analizę danych.

Wspólnie wszystkie te biblioteki dostarczają kompletny zestaw narzędzi, który pozwala na implementację wydajnej oraz modularnej aplikacji badawczej. Wysoka popularność tych narzędzi zapewnia poprawność, długotrwałe wsparcie oraz przede wszystkim znacznie minimalizuje ryzyko wystąpienia logicznych błędów, które mogłyby negatywnie wpłynąć na uzyskane wyniki testowanych algorytmów.

3.2 Struktura i funkcjonalności projektu

Projekt został stworzony zgodnie z zasadami obiektowego paradygmatu programowania. Składniki aplikacji zostały podzielone na klasy, realizujące określone grupy funkcjonalności. Dodatkowo, zostały stworzone procedury pomocnicze, realizujące zadania niezwiązane z żadnym składnikiem aplikacji. Całość została zaprezentowana na Rysunku 3.1 w postaci diagramu klas.

Podstawowym elementem algorytmu PSO oraz wszystkich modyfikacji jest cząsteczka, reprezentowana przez klasę PsoParticle. Przechowuje niezbędne informacje: aktualną i najlepszą znalezioną pozycję wraz z wartościami funkcji celu w tych położeniach oraz aktualną prędkość. Udostępnia metody pozwalające na ewaluację nowej wartości funkcji celu, obliczenie i aktualizację prędkości, korzystając z zaimportowanych współczynników przyśpieszenia, oraz pozycji. Obiekty klasy PsoParticle są tworzone oraz dodawane do listy reprezentującej rój podczas inicjalizacji klas dziedziczących po PsoParent.

Klasa Function reprezentuje funkcje celu i zawiera w sobie wszystkie informacje niezbędne do przeprowadzenia badań: wartość i położenie optimum globalnego, liczbę wymiarów i wzór funkcji. Jej obiekty tworzone są w klasie Main i przekazywane dalej do klas Evaluator oraz PsoParent. Pierwsza odczytuje jej właściwości w celu sprawdzania kryterium stopu. Druga korzysta ze wzoru funkcji do obliczania nowych wartości cząsteczek.

Klasą bazową dla wszystkich modyfikacji opisanych w niniejszej pracy jest Pso-Parent. Zawiera ona wszystkie niezbędne właściwości oraz metody, które są udostępniane i wykorzystywane przez klasy dziedziczące. Dodatkowo implementuje przebieg klasycznego algorytmu PSO, w związku z czym klasy pochodne wymagają implementacji tylko tych składników, które różnią się od klasycznego podejścia. Klasa PsoParent realizuje szereg funkcji takich jak inicjalizacja roju, przebieg algorytmu dla pojedynczej iteracji oraz delegacja zaktualizowania prędkości i pozycji do wszystkich cząsteczek.

Istnieje pięć klas dziedziczących po klasie bazowej PsoParent. Wszystkie reprezentują modyfikacje klasycznego algorytmu PSO, z wyjątkiem klasy Pso, która wykorzystuje logikę obecną w klasie bazowej. Modyfikacje topologii pierścienia i gwiazdy są prezentowane odpowiednio przez klasy PsoRingTplgy oraz PsoStarTplgy. Pierwsza posiada właściwość, określającą liczbę sąsiadów, natomiast druga przechowuje pozycje czasteczki, bedacej globalnym sasiadem. Obie uwzględniają zmieniona topologie wymiany wiedzy w metodzie, która odpowiada za delegacje aktualizacji prędkości oraz pozycji cząsteczki. Dodatkowo klasa PsoStarTplgy podczas inicjalizacji roju losuje pozycję globalnego sąsiada. Mutacja sąsiedztwa przestrzennego ze zmiennym progiem jest zawarta w klasie PsoSpatialNeigh. Klasa ta posiada informację o maksymalnej liczbie iteracji i implementuje nową logikę metody, która deleguje aktualizację prędkości oraz pozycji do cząsteczek. Dodane zostały metody, wymagane do obliczenia odległości pomiędzy dwiema cząsteczkami (2.9), największej odległości pomiędzy dowolnymi cząsteczkami, wartości oceny bliskości (2.10) oraz zmiennej wartości progowej (2.11). Ostatnią modyfikacją jest selekcja, reprezentowana przez klase PsoSelection. Zawiera liczbe czasteczek turniejowych, modyfikuje przebieg algorytmu dla pojedynczej iteracji oraz implementuje dwie nowe metody odpowiedzialne za proces selekcji turniejowej.

Głównym i początkowym miejscem działania aplikacji jest klasa Main. Składa wszystkie komponenty aplikacji w całość, umożliwiając prosty wybór testowanych funkcji celu oraz algorytmów. Przy użyciu funkcji pomocniczych pobiera parametry konfiguracyjne z wsadowego pliku w formacie JSON. Na ich podstawie tworzone są obiekty wybranych algorytmów oraz funkcji, które są przekazywane do tworzonego obiektu klasy Evaluator.

Rysunek 3.1: Diagram klas zaimplementowanej aplikacji badawczej

Klasa Evaluator odpowiedzialna jest za przeprowadzanie badań oraz zbieranie wszystkich niezbędnych miar jakości dla wybranego algorytmu oraz funkcji celu. Aplikacja umożliwia uruchomienie testu dowolną liczbę razy. Podczas każdego uruchomienia zbierane są najlepsze znalezione wartości funkcji celu dla kolejnych iteracji, które są następnie uśredniane i wyświetlane za pomocą funkcji pomocniczych w postaci wykresów liniowych. Obliczone miary jakości są na bieżąco wyświetlane w trakcie działania aplikacji, a po zakończeniu działania są eksportowane do pliku Excelowego, który umożliwia wygodną analizę uzyskanych danych.

Zaimplementowana struktura projektu zapewnia wysoką modularność, umożliwiając wykorzystanie tych samych fragmentów kodu w wielu miejscach. Takie podejście pozwala w łatwy sposób wprowadzić dowolną modyfikację, która będzie automatycznie uwzględniona w każdym miejscu. Aplikacja realizuje wszystkie funkcje, potrzebne do przeprowadzenia kompletnych testów.

Rozdział 4

Badania

Algorytm PSO jest obiektem badań od ponad dwóch dekad. Testowane są zarówno nowe modyfikacje logiki algorytmu jak i współczynniki przyśpieszenia. Celem wszystkich eksperymentów jest zwiększenie wydajności metody oraz jakości otrzymywanych wyników. Największym zagrożeniem dla rezultatów jest konwergencja, czyli przedwczesna zbieżność cząsteczek do lokalnych minimów.

Wyzwaniem podjętym przez autora pracy jest stworzenie własnego zestawu współczynników przyśpieszenia, który zapobiegnie przedwczesnej zbieżności oraz zwiększy skuteczność algorytmu. W celu analizy jakości otrzymanych wyników, przeprowadzono badania klasycznej metody PSO wraz z opisanymi wcześniej modyfikacjami. Porównane zostały grupy współczynników znane z literatury z tymi, zaproponowanymi przez autora. Wykorzystanie typowych problemów optymalizacyjnych oraz miar jakości pozwoliło jednoznacznie określić, które zestawy współczynników osiągają lepsze wyniki.

4.1 Kryteria porównawcze i użyte miary

Ocena jakości otrzymanych wyników oparta jest na określonych kryteriach porównawczych. Zbudowana aplikacja zbiera i magazynuje wartości wielu różnych zmiennych, które pozwalają na przetestowanie algorytmów i współczynników przyśpieszenia pod wieloma względami. Zaimplementowano siedem miar jakości oraz stworzono generator wykresów iteracyjnych przebiegów funkcji.

Podstawową miarą jakości jest **skuteczność** Ef, która określa jaki procent

wszystkich uruchomionych przebiegów algorytmu została zakończona powodzeniem, czyli takich gdzie, znaleziono rozwiązanie zadanej funkcji celu.

Kolejna miara to **średnia liczba iteracji** wymaganych do znalezienia rozwiązania funkcji celu, oznaczana dalej jako Avg-iters. Brane są pod uwagę tylko pomyślnie zakończone przebiegi. Wartość tej miary przekłada się pośrednio na ocenę wydajności metody.

Następną oceną jest średnia wartość najlepszych rozwiązań Avg - best, która w połączeniu ze skutecznością pozwala spojrzeć całościowo na serię przeprowadzonych badań i określić ich stabilność. Wyniki średniej wartości najlepszych rozwiązań, zbliżonych do wartości rozwiązania zadanej funkcji celu, oraz wysoka wartość skuteczności oznaczają, że modyfikacja osiąga dobre i powtarzalne wyniki. Natomiast wysoka wartość skuteczności oraz wartości średniej odbiegające od wartości rozwiązań funkcji celu stanowią o niestabilności rozwiązania. Dzieje się tak, ponieważ pierwsza część przebiegów kończy się pomyślnie, a druga ulega procesowi przedwczesnej zbieżności w punktach odległych od poszukiwanego.

Wartość **najlepszego rozwiązania** Best, może być wykorzystywana w sytuacjach, gdy wartość skuteczności jest równa 0. Jej celem jest sprawdzenie, jak dana modyfikacja zbliżyła się do rozwiązania zadanego problemu. W rzeczywistych przypadkach, kiedy rozwiązanie zadanej funkcji celu nie jest znane, wartość najlepszego rozwiązania jest wartością w najlepszym znalezionym położeniu.

Kolejną miarą jest **odchylenie standardowe** Std, które jest często stosowanym pojęciem statystycznym. Określa stopień rozrzucenia cząsteczek wokół średniej wartości najlepszych rozwiązań. Niska wartość odchylenia standardowego oraz zbliżona do rozwiązania wartość średniej oznacza, że cząsteczki, które nie znalazły rozwiązania, znajdują się blisko niego. Wysokie odchylenie przy podobnej wartości średniej najlepszych rozwiązań znaczy, że niektóre cząsteczki znajdują się daleko od rozwiązania i prawdopodobnie uległy przedwczesnej zbieżności.

Mediana, oznaczana jako *Med*, jest wartością środkową najlepszego znalezionego rozwiązania ze wszystkich powtórzonych przebiegów algorytmu. Największą jej zaletą jest odporność na elementy odstające, które znajdują się na końcach listy i których wartości znacznie odbiegają od średniej, pogarszając odwzorowanie wyników.

Ostatnią miarą jakości jest **średni czas działania algorytmu** Avg-time, który przekłada się bezpośrednio na ocenę wydajności metody. Jest on bardziej miarodajny niż wartość średniej liczby iteracji wymaganych do znalezienia rozwiązania, ponieważ iteracja w zależności od testowanej modyfikacji, może zająć różną ilość czasu.

Wizualnym kryterium porównawczym jest wykres przedstawiający średnie najlepsze przystosowanie w kolejnych iteracjach algorytmu. Przykład został zaprezentowany na Rysunku 4.1.

Rysunek 4.1: Przykładowy wykres przebiegu najlepszego znalezionego rozwiązania

Celem wykorzystania wykresu jest możliwość prześledzenia zachowania algorytmu oraz sprawdzenie, czy cząsteczki uległy przedwczesnej zbieżności, a jeśli tak, to w którym momencie. Kolejną informacją, jaką nam dostarcza, jest to w jakich zakresach iteracji metoda wykazywała największą skuteczność, a w których najlepsze rozwiązanie się nie zmieniało. Przebieg uśrednionego najlepszego rozwiązania jest szczególnie istotny, jeśli wykorzystywane są dynamiczne współczynniki przyśpieszenia, ponieważ pozwala on dostosować rodzaj funkcji oraz wartości graniczne do badanego problemu.

4.2 Funkcje celu

Algorytm PSO został wykorzystany do optymalizacji ośmiu, powszechnie stosowanych w badaniach, wzorcowych funkcji celu [3] [5]. Ważnym czynnikiem wyboru była cecha wielowymiarowości funkcji, tak by mogła symulować realne problemy. W tabeli 4.1 zostały przedstawione i scharakteryzowane badane funkcje celu. Dodatkowo w tabeli 4.2 pokazano odpowiadające im reprezentacje graficzne.

Tabela 4.1: Charakterystyka badanych funkcji celu

Funkcja	Wzór	Wymiary n	Zakres $[x_{min}, x_{max}]$	Wartość $f(x^n)$
Sphere	$\sum_{i=1}^{n} x_i^2$	20, 30	[-100, 100]	0
F2	$\sum_{i=1}^{n} (x_i - i)^2$	20, 30	[-100, 100]	0
Rosenbrock	$\sum_{i=1}^{n-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$	20, 30	[-2.048, 2.048]	0
Griewank	$\frac{1}{4000}\sum_{i=1}^{n}x_i^2 - \prod_{i=1}^{n}\cos(\frac{x_i}{\sqrt{i}}) + 1$	20, 30	[-600, 600]	0
Rastrigin	$\sum_{i=1}^{n} (x_i^2 - 10\cos(2\pi x_i) + 10)$	20, 30	[-5.12, 5.12]	0
Ackley	$-20exp(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}}) - exp(\frac{1}{n}\sum_{i=1}^{n}cos(2\pi x_{i})) + 20 + e$	20, 30	[-32, 32]	0
Schwefel	$\sum_{i=1}^{n} x_i ^2 + \prod_{i=1}^{n} x_i $	20, 30	[-10, 10]	0
Zakharov	$-\sum_{i=1}^{n} x_i + \left(\sum_{i=1}^{n} \frac{i}{2} x_i\right)^2 + \left(\sum_{i=1}^{n} \frac{i}{2} x_i\right)^4$	20, 30	[-10. 10]	0

Tabela 4.2: Wykresy testowanych funkcji celu

4.3 Charakterystyka przeprowadzanych badań

W niniejszej pracy przeprowadzono szereg badań, mających na celu analizę efektywności współczynników przyśpieszenia w metodach PSO. Testom zostały poddane

grupy współczynników zaprezentowane w tabeli 4.3. Zbadano jakość wyników dla klasycznej metody PSO oraz wszystkich omówionych modyfikacji. Eksperymentom poddane zostały funkcje przedstawione w tabeli 4.1.

Tabela 4.3: Testowane grupy współczynników przyśpieszenia

Oznaczenie	Współczynnik inercji \boldsymbol{w}	Współczynnik kognitywny c_1	Współczynnik socjalny c_2
Set 1	0.6	1.7	1.7
Set 2	0.729	1.494	1.494
Set 3	(PSO-TVIW) z 0.9 na 0.4	(PSO-TVAC) z 2.75 na 0.5	(PSO-TVAC) z 0.5 na 2.75
Set 4	(PSO-TVIW) z 0.9 na 0.4	(PSO-TVAC) z 2.5 na 0.5	(PSO-TVAC) z $0.5~\mathrm{na}~2.5$
Set 5	(PSO-RANDIW)	1.494	1.494
Set 6	(PSO-TVIW) z 0.9 na 0.4	(PSO-CTIAC)	(PSO-CTIAC)

Wszystkie grupy współczynników zostały przetestowane z wykorzystaniem trzech zestawów parametrów wejściowych zaprezentowanych w tabeli 4.4. Zawierają one właściwości funkcji oraz metod PSO.

Tabela 4.4: Zestawy parametrów wejściowych przeprowadzanych badań

Zestaw	Liczba wymiarów	Liczba cząsteczek	Liczba iteracji	Liczba cząsteczek turniejowych
1	20	20	3000	5
2	20	30	3000	10
3	30	50	3000	20

Badania zostały uporządkowane i podzielone na grupy. Każda z nich testuje współczynniki w różny sposób, tak by wyniki były zróżnicowane i dostarczały jak najwięcej wniosków.

Rozdział 5

Wyniki

W niniejszym rozdziałe przedstawiono oraz przeanalizowano wyniki przeprowadzonych badań. Rezultaty testów zostały zaprezentowane w postaci tabel oraz wykresów w celu lepszej wizualizacji danych. Każdy podrozdział zawiera charakterystykę eksperymentu, wyniki pochodzące z aplikacji badawczej oraz dyskusję.

5.1 Badania efektywności współczynników przyspieszenia w metodzie PSO

Badania wpływu współczynników przyśpieszenia na działanie metody PSO obejmują wszystkie grupy współczynników wymienione w tabeli 4.3 oraz parametry wejściowe zawarte w tabeli 4.4. Wyniki przedstawiono w tabelach 5.1, 5.2, 5.3.

W przypadku zastosowania pierwszego zestawu parametrów wejściowych, najwyższą skuteczność Ef metody PSO odnotowano przy zastosowaniu współczynników przyśpieszenia z grupy Set 5. Metoda uzyskała najwyższe wyniki w 50% badań. Wyższą skuteczność Ef, algorytm PSO osiągnął tylko w przypadku funkcji Griewank z grupą współczynników Set 2 i funkcji F2 z grupą Set 3. Zastosowanie współczynników z grupy Set 6 pozwoliło uzyskać niższy współczynnik skuteczności Ef niż w przypadku zastosowania współczynników z grupy Set 5, Set 2 i Set 3 (z wyjątkiem funkcji Rosenbrock i Griewank), ale wyższy niż w przypadku współczynników z grupy Set 1 algorytm był nieskuteczny. Najlepsze wartości średniej liczby iteracji Avg-iters były bardzo zróżnicowane. W przypadku współczynników z grupy Set 6 nie udało się uzyskać

najmniejszej liczby iteracji dla żadnej z funkcji. Najniższe średnie wartości najlepszych rozwiązań Avg - best otrzymano dla współczynników z grupy Set 4 (w 50% testach). Niskie wartości Avg - best uzyskano również dla współczynników z grupy Set 3 i Set 6. Niemniej jednak różnice pomiędzy najniższymi wartościami Avg-best, a wartościami uzyskanymi przy zastosowaniu współczynników z grupy Set 3 i Set 6 wahają się od 2% do 40%. Dla badanych funkcji najniższe wartości najlepszego rozwiązania Best zostały osiągnięte w 75% przez współczynniki z grupy Set 5. Set 6 w każdym badaniu uzyskał wyniki plasujące go na drugim lub trzecim miejscu. Set 6 odniósł najlepsze (najniższe) odchylenie standardowe Std dla funkcji Rastrigin, Ackley oraz Schwefel. Dla pozostałych przypadków, Std było niewiele gorsze (wyższe) od najlepszych rozwiązań. Świadczy to o niewielkim rozrzuceniu cząsteczek w przestrzeni poszukiwań. Wyniki uzyskane przy zastosowaniu współczynników z grupy Set 6 sa znacznie niższe od wyników współczynników z grupy Set 4. Powodem może być cykliczne zwiększanie wartości współczynnika socjalnego c_2 w końcowej fazie przebiegu, które skupiają cząsteczki wokół najlepszego rozwiązania. Wartości mediany Med przy zastosowaniu współczynników z grupy Set 6 były bardzo zbliżone do zestawów osiągających najniższe wartości.

Zastosowanie drugiego zestawu parametrów wejściowych spowodowało znaczną poprawę działania algorytmu PSO ze współczynnikami z grupy Set 6. Najwyższą skuteczność Ef osiągnięto w przypadku 50% testów. Dla pozostałych różnica pomiędzy najlepszymi zestawami wynosi maksymalnie 15 punktów procentowych. Set 6 uzyskał najmniejszą średnią liczbę iteracji Avg-iters dla funkcji Schwefel. Dla pozostałych funkcji różnica do najlepszego rozwiązania jest znacząca, natomiast w porównaniu do pozostałych zestawów, te dysproporcje nie są tak duże. Pomimo wysokiej zbieżności do globalnego minimum, Set 6 wymaga większej liczby iteracji. Najlepsze wartości Avg-best należą w 63% do Set 6, co świadczy o stabilności rozwiązania. Dla każdej testowanej funkcji najlepsze rozwiązanie Best zostało znalezione przez Set 4, ale różnice względem Set 6 są znikome. Najniższe wartości odchylenia standardowego Std osiągnięto w 50% badanych funkcji przez Set 3. Drugie miejsce należy do Set 6. Najlepsze wartości Med zostały osiągnięte przez Set 3 oraz Set 5. Set 6 osiągnął podobne wartości mediany Med do najlepszych zestawów, z wyjątkiem funkcji Zakharov oraz Rastrigin.

Dla trzeciego zestawu parametrów wejściowych, w 38% badanych funkcji, najwyższą skuteczność Ef osiągnięto przy zastosowaniu współczynników z grupy Set 3. Set 6 uzyskał 100% skuteczności Ef (w każdym przebiegu) dla funkcji Griewank. W pozostałych przypadkach rezultaty były gorsze o średnio 28 punktów procentowych. Wartość Avg - iters różni się od najlepszych zestawów o od 18 do 179 iteracji i generalnie względem najlepszych, Set 6 okazał się mało wydajny. Najniższe wartości Avg - best osiągnęły Set 4 oraz Set 6. Oba zestawy uzyskały najmniejsze wartości dla 5 funkcji testowych. Oznacza to, że pomimo niskiej zbieżności oraz dużej liczby wymaganych iteracji, Set 6 osiąga powtarzalne wyniki, które dla połowy eksperymentów sa zbliżone do optymalnych rozwiązań. Set 6 znalazł najlepsze Best tylko dla funkcji Schwefel. W pozostałych, wartość Best była zbliżona do najlepszych zestawów. Rozwiązaniem, które pomogłoby w polepszeniu wyników dla Set 6, mogłoby być zmniejszenie liczby iteracji oraz zwiększenie wartości Z dla współczynnika socjalnego c_2 we wzorze (2.8). Ponownie wartość odchylenia Std osiągnięta przez Set 6 była niższa w porównaniu do pozostałych zestawów. Potwierdza to skuteczne skupianie cząsteczek na końcu działania algorytmu. Set 6 uzyskał najniższe wartości $Med \le 63\%$ testach.

Set 6 uzyskał najwyższą skuteczność Ef w 25% przeprowadzonych testów osiągając drugie miejsce. Wartość Avg-iters była znacznie wyższa dla Set 6 w porównaniu do pozostałych grup współczynników. Natomiast wartość miary Avg-best była najlepsza w prawie 50% eksperymentów ustępując tylko Set 4, który osiągnął najlepszy wynik w 54% testów. Dowodzi to, że pomimo niskiej wydajności, algorytm uzyskuje korzystne i powtarzalne wyniki, a dodatkowo osiąga wysoką zbieżność do globalnego minimum. Set 6 razem z set 3 osiągają najniższe wartości Std. Pomimo lepszej wartości Avg-best uzyskanej przez Set 4, w Set 6 pozostałe cząsteczki skupione są bliżej siebie. Pozwala to stwierdzić, że współczynnik socjalny w Set 6 skuteczniej skupił cząsteczki wokół najlepszego znalezionego rozwiązania. Set 6 w 50% eksperymentach osiągnął najlepsze wartości mediany Med ustępując tylko Set 4, który uzyskał najniższe wartości Med w 67% badań.

Tabela 5.1: Wyniki badań współczynników dla metody PSO oraz pierwszego zestawu parametrów wejściowych

Funkcia	Ef						Avg-iters					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	ı	9,0	0,75	0,35	0,85	0,55	,	792,333	659,133	581,857	616,412	768,364
F2	,	7,0	0,45	0,35	0,55	0,4	,	785,357	586,889	591	590,636	758,125
Rosenbrock	0,25	0,55	0,25	0,5	2,0	0,55	92,6	302,091	169	176	245,643	188,455
Griewank		0,5	0,85	2,0	0,55	2,0		319,9	369,353	453,857	327	363,071
Rastrigin												,
Ackley			,	,	,		,		,			,
Schwefel		0,1	0,1	0,1	0,25	0,25		739,5	574,5	470,5	652,8	822,4
Zakharov		,	,	,	0,25	1		,		,	1061,4	,
Funkcja	Avg-best						Best					
_	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	4571,94	4000	0	0,013	1500	0,153	1,187	0	0	0	0	0
F2	6187,496	2201,65	0,015	0,01	3675,95	0,013	1,896	0	0	0	0	0
Rosenbrock	560,898	378,733	256,412	351,148	225,07	288,311	29,136	28,292	29,384	27,919	26,609	27,562
Griewank	33,211	22,917	0,108	0,116	27,259	0,152	1,046	0,088	0,095	0,094	0,085	0,089
Rastrigin	119,486	119,704	83,268	73,158	113,268	74,897	64,845	75,617	54,723	35,819	61,687	39,798
Ackley	15,593	12,012	4,078	4,007	12,456	4,438	6,953	2,579	1,155	1,646	2,579	1,841
Schwefel	317,326	200	67,972	76,308	185	30,019	29,063	0	0	0	0	0
Zakharov	424,076	244,034	130,681	91,193	195,144	115,924	119,715	0,03	0,12	0,013	0,001	0,026
Funkcja	Std						Med					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	5903,685	4898,979	0,001	0,03	3570,714	0,647	153,883	0	0	0	0	0
F2	6022,548	3403,737	0,035	0,025	4150,151	0,033	6972,388	0	0	0	0	0
Rosenbrock	643,72	485,819	313,538	464,869	408,109	424,837	154,676	29,76	100,714	50,871	29,629	29,987
Griewank	42,649	38,865	0,029	0,051	50,333	0,121	2,438	0,116	0,1	0,099	0,1	0,099
Rastrigin	30,838	33,412	19,86	23,07	20,454	18,964	122,086	124,938	80,167	73,13	112,501	74,166
Ackley	4,048	5,894	2,409	3,055	5,682	1,897	17,19	14,289	3,54	3,125	15,474	3,992
Schwefel	189,78	118,322	96,142	112,947	131,434	55,678	301,224	200	0,008	0,004	200	0,001
Zakharov	967 113	260 27	146 475	110 040	1	11	1	000	000	1	0	1

Tabela 5.2: Wyniki badań współczynników dla metody PSO oraz drugiego zestawu parametrów wejściowych

Funkcia	Ef						Avg-iters					
5	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	,	8,0	1	86,0	6,0	1	,	411,375	466,75	465,551	399,944	465,9
F2	,	0,75	1	86,0	8,0	1	,	406,133	516,85	460,633	381	451,1
Rosenbrock	6,0	0,7	0,65	0,58	9,0	8,0	86,333	218,429	153,154	141	274,583	135,75
Griewank	0,5	0,65	1	88,0	9,0	6,0	223,5	276,385	318,8	322,545	268,833	346,889
Rastrigin	,	,	,	0,02	,	,	,	,	,	208	,	,
Ackley	,	,	,	0,04	0,1	,	,	,	,	513	576,5	,
Schwefel	,	0,15	9,0	0,58	0,05	2,0	,	716,333	468	454,483	601	451,429
Zakharov		0,2	0,35	0,2	0,2	0,2		1331	540,714	9,869	739,5	545,5
Funkcia	Avg-best						Best					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	2001,445	2000	0	0	1000	0	0,005	0	0	0	0	0
F2	3527,438	2600,7	0	0	1424,05	0	0,026	0	0	0	0	0
Rosenbrock	286,845	204,649	192,25	257,103	256,162	167,923	26,336	28,122	28,426	26,235	27,479	28,271
Griewank	32,505	9,225	0,097	0,102	22,682	0,107	0,095	0,082	0,087	0,078	0,087	960,0
Rastrigin	114,244	111,492	73,403	69,546	111,332	78,125	51,744	65,667	32,834	29,901	71,708	40,793
Ackley	13,156	9,291	2,921	2,754	6,145	2,614	4,609	1,424	1,424	0	0	0,001
Schwefel	236,563	178,345	50	22.8	240	40	0,004	0	0	0	0	0
Zakharov	229,078	228,52	71,097	104,087	190,913	113,782	57,833	0,001	0,001	0,001	0,001	0,001
Funkcja	Std						Med					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	3999,391	4000	0	0	3000	0	0,232	0	0	0	0	0
F2	4516,196	4721,061	0	0	2871,191	0	9,845	0	0	0	0	0
Rosenbrock	472,821	299,973	285,194	405,809	535,715	284,181	63,772	29,529	29,784	29,72	29,716	29,636
Griewank	51,402	27,081	0,003	0,026	39,061	0,023	0,578	860,0	860,0	860,0	0,1	660,0
Rastrigin	26,797	34,034	25,372	21,104	16,654	19,806	118,549	108,521	78,104	67,692	108,486	76,647
Ackley	5,352	909,9	1,241	2,207	5,811	1,4	16,145	609,9	2,516	2,384	3,884	2,697
Schwefel	211,314	146,921	74,162	85,68	128,062	66,332	200,019	100	0	0	250	0
Zakharov	181,46	212,163	127,844	157,606	161,568	157,509	181,154	202,045	0,076	2,762	201,788	50,205

Tabela 5.3: Wyniki badań współczynników dla metody PSO oraz trzeciego zestawu parametrów wejściowych

Funkcia	ā)					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	,	9,0	0,733	0,933	0,667	0,733	,	892	655,636	678,714	601,8	680,636
F2	1	0,2	0,933	9,0	0,467	0,533	,	848,667	679,071	803,667	654	672,375
Rosenbrock	1	0,2	9,0	0,533	0,4	0,267	,	173,667	274	270,75	482,5	310
Girewank	1	0,533	0,933	0,867	0,267	1	,	369,375	400,714	391	413,25	407,267
Rastrigin	1											
Ackley	1											,
Schwefel	1	0,067	0,4	0,133		0,5		705	656,667	544	,	723,667
Zakharov		0,067			0,133			1562			1656	
Funkcja	Avg-best						Best					
_	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	7385,444	4666,667	0	0	3333,333	0	1,378	0	0	0	0	0
F2	10053,435	7164,6	0,001	0,001	3892	0,001	0,646	0	0	0	0	0
Rosenbrock	721,782	779,483	355,989	238,319	846,756	538,385	30,67	29,745	29,896	29,284	29,628	29,765
Girewank	55,916	42,252	0,1	0,113	54,434	860,0	1,017	0,086	0,086	0,093	0,087	0,089
Rastrigin	187,837	156,137	107,488	111,288	163,045	104,978	116,611	73,627	56,713	53,728	86,632	57,708
Ackley	16,106	12,552	4,291	3,452	11,855	3,522	8,087	2,496	1,155	1,779	1,502	1,34
Schwefel	411,212	333,333	93,333	33,334	380	66,684	4,916	0	0	0	200	0
Zakharov	465,39	269,895	169,546	97,301	559,689	75,558	227,633	0,001	0,037	0,015	0,001	0,081
Funkcja	Std						Med					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	6810,298	6182,412	0,001	0	4714,045	0,001	10002,46	0	0	0	0	0
F2	7709,409	4787,455	0,002	0,003	3954,767	0,002	7610,124	6724	0	0	5476	0
Rosenbrock	615,194	727,703	484,093	341,702	765,123	635,71	892,482	538,703	28,682	29,968	1037,506	93,147
Girewank	43,142	64,759	0,012	0,042	54,942	0,003	91,001	0,1	0,099	0,1	90,014	0,098
Rastrigin	34,352	48,378	27,543	33,748	40,804	34,042	190,251	157,345	105,536	108,521	156,421	99,567
Ackley	3,175	5,162	2,975	1,216	6,285	1,608	17,414	14,902	3,404	3,223	14,888	3,159
Schwefel	219,315	202,21	156,915	47,142	164,114	59,634	423,674	300	0	0	400	100
Zabbaron	200	7	100	000								

5.2 Badania efektywności współczynników przyspieszenia w metodzie PSO-ST

Badania wpływu współczynników przyśpieszenia na działanie metody PSO-ST obejmują wszystkie grupy współczynników wymienione w tabeli 4.3 oraz parametry wejściowe zawarte w tabeli 4.4. Wyniki przedstawiono w tabelach 5.4, 5.5, 5.6.

Wykorzystanie pierwszego zestawu parametrów wejściowych pozwoliło algorytmowi PSO-ST korzystającego ze współczynników z grupy Set 6 uzyskać rozwiązania jedynie dla funkcji Rosenbrock. Osiągnięte wyniki należały do najgorszych. Najlepsze rezultaty osiągnął Set 3, który znalazł globalne minimum 4 funkcji i prawie dla każdej z nich skuteczność Ef była najwyższa. Najlepsze wartości Avg-iters były bardzo zróżnicowane. Set 6 nie osiągnął najlepszej wartości Avg - best w żadnym eksperymencie, natomiast dla wszystkich funkcji z wyjątkiem Sphere oraz Zakharov, wyniki były zbliżone do najlepszych grup współczynników. Wartość najlepszych rozwiązań Best oznacza, że algorytm PSO-ST ze współczynnikami z grupy Set 6 znalazł rozwiązanie funkcji Sphere, F2 oraz Schwefel. Natomiast nie udało się im przekroczyć zadanej dokładności funkcji, co spowodowało uzyskanie zerowych wartości Ef. Wysoka wartość odchylenia standardowego Std dla Set 6 świadczy o wysokim rozrzuceniu cząsteczek w przestrzeni poszukiwań. W badaniach funkcji Rastrigin i Ackley, Set 6 uzyskał najkorzystniejszą wartość Med. Dla pozostałych przypadków wartości są nawet 3 razy większe. Oznacza to słabą koncentrację wyników wokół optymalnych rozwiązań.

Dla drugiego zestawu paramentów wejściowych najwyższą skuteczność Ef algorytm osiągnął dla grupy współczynników Set 3 i Set 2. Set 6 znalazł rozwiązania funkcji F2, Griewank i Rosenbrock, ale w dwóch pierwszych przypadkach były znacznie gorsze od pozostałych. Dla funkcji Griewank, globalne minimum zostało znalezione najszybciej. Dla pozostałych funkcji średnia liczba iteracji Avg-iters, po której algorytm znalazł minimum była wyższa o od 4% do nawet 260%. Set 6 zdobył najmniejszą wartość Avg-best dla funkcji F2 oraz Griewank. W pozostałych przypadkach najlepiej poradził sobie Set 3. Najlepsze rozwiązania (Best) algorytm osiągał najczęściej ze współczynnikami z grupy Set 3 (w przypadku 88% testów). Wartości Best uzyskane przez Set 6 były większe o maksymalnie 3.505 od

wspomnianych wartości osiągniętych przez Set 3. Dla Set 6 wartości są skupione najbliżej średniej w 38% eksperymentów. Jednak uzyskane wartości Med są dalekie od poszukiwanego rozwiązania.

Zastosowanie trzeciego zestawu parametrów wejściowych spowodowało odnalezienie rozwiązania tylko funkcji Rosenbrock. Uzyskany wynik jest gorszy od najlepszego rezultatu o jedyne 13 punktów procentowych. Wartość Avg - iters jest
ponad 3 razy większa niż ta dla Set 2. Set 6 otrzymał średnio o 62% gorsze wyniki
od najlepszych współczynników. Mimo to udało się uzyskać najmniejsze wartości Avg - best dla funkcji Zakharov. Najniższe wartości Best osiąga algorytm wykorzystujący Set 3, który prowadzi w 75% testach. Set 6 nie uzyskał żadnej optymalnej
wartości Best. W badaniach funkcji Zakharov, Set 6 uzyskał najlepsze wartości Stdoraz Med. Oznacza to koncentrację cząsteczek wokół zadowalających rozwiązań. W
pozostałych przypadkach wyniki są najczęściej dalekie od poszukiwanych.

Algorytm wykorzystujący współczynniki z grupy Set 6 znalazł rozwiązania tylko w 4 przeprowadzonych eksperymentach i jest lepszy jedynie od Set 1. Uzyskana skuteczność Ef była gorsza średnio aż o 200% od najlepszych zestawów. Tak jak podczas testów klasycznej metody PSO, algorytm PSO-ST osiągnął wysokie wartości Avg-iters. Wartość Avg-best jest najniższa tylko w 13% badaniach. Współczynniki osiągają niską skuteczność i małą wydajność. Mimo to są lepsze, niż stałe wartości. Dodatkowo wartości odchylenia Std oraz mediany Med były wysokie. Świadczy to o niskim skupieniu roju, wokół korzystnych rozwiązań.

Autorski zestaw współczynników uzyskał gorsze rezultaty w porównaniu do pozostałych grup. Wykorzystanie modyfikacji PSO-ST nie zwiększa jakości wyników względem klasycznego podejścia dla żadnego zestawu parametrów wejściowych. Algorytm nie znajduje rozwiązania funkcji, potrzebuje dużej liczby iteracji, średnia wartość znalezionego rozwiązania odbiega od prawidłowego. Także cykliczne zwiększanie wartości współczynnika socjalnego c_2 w końcowej fazie przebiegu nie powoduje poprawy koncentracji cząsteczek wokół rozwiązania.

Tabela 5.4: Wyniki badań współczynników dla metody PSO-ST oraz pierwszego zestawu parametrów wejściowych

Funkcia	Ef						Avg-iters					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere		0,15	0,25				,	2931,333	2801,4			
F2	,	0,15	0,1	,	0,1	,	,	2531	2817	,	2884,5	,
Rosenbrock	,	0,35	0,45	0,2	0,45	0,5	,	1398,714	1211	803,5	1183,556	1257,75
Griewank	,	0,2	,	,	0,1	,	,	2260,75	,	,	2550,5	,
Rastrigin		1		,	,		,		,	,	,	,
Ackley	,	,	,	,	,	,	,	,	,	,	,	,
Schwefel	,	,	0,05	,		,	,	,	2927	,	,	,
Zakharov			1	1	1	1	1	1	1	1		1
Funkcia	Avg-best						Best					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	4212,706	1003,666	3,355	110,997	1501,996	86,589	0,296	0	0	0,038	0	0
F2	4850,813	3121,818	9,544	58,314	4499,121	110,595	20,627	0	0	0,004	0	0
Rosenbrock	666,525	457,761	314,156	180,771	495,154	185,529	40,283	29,307	29,342	29,243	27,371	29,339
Griewank	33,526	17,408	5,206	3,604	36,756	4,065	1,023	0,082	0,101	0,172	0,099	0,376
Rastrigin	144,191	122,435	86,221	85,675	109,912	88,631	73,162	58,702	47,803	42,071	59,741	55,832
Ackley	18,264	16,849	10,994	12,169	15,555	11,495	14,823	8,258	5,473	4,816	988,9	8,011
Schwefel	281,767	231,931	50,16	62,616	202,002	55,28	0,637	100	0	0	0	0
Zakharov	331,192	231,334	79,52	197,487	518,328	125,693	119,514	4,663	0,05	9,424	0,329	2,449
Funkcja	Std						Med					
_	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	4838,367	2998,817	10,477	275,062	4769,072	148,639	514,121	0,003	0,134	8,107	0,207	25,676
F2	5755,432	4376,79	21,827	100,763	4705,462	221,294	844,122	0,006	0,907	2,214	3530,076	12,798
Rosenbrock	635,639	626,224	587,613	244,865	610,787	495,779	231,338	76,72	45,634	74,205	57,896	73,542
Griewank	39,177	32,444	19,63	6,109	52,741	11,311	8,581	0,736	0,628	1,314	0,655	1,246
Rastrigin	35,873	35,832	28,094	24,418	30,15	25,613	141,206	123,047	92,086	89,194	113,958	82,818
Ackley	1,455	2,761	3,017	4,061	3,68	2,791	18,781	17,704	11,3	12,32	16,668	10,619
Schwefel	177,345	158,167	102,393	77,562	135,922	84,752	289,879	200	0,013	6,742	200	1,442
Zakharov	184,627	202,328	116,326	296,961	427,544	280,082	255,678	202,902	12,305	106,513	304,36	57,802

Tabela 5.5: Wyniki badań współczynników dla metody PSO-ST oraz drugiego zestawu parametrów wejściowych

Funkcia	ם						Avg-iters					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	,	0,45	0,55	0,04	0,2		,	2506	2564,636	2582	2526,75	
F2	,	0,5	0,45	90,0	0,15	0,1	,	2456	2520,778	2628,667	2149	2242
Rosenbrock	0,45	0,45	0,65	0,38	0,45	9,0	718,222	1169,444	1153,769	737,105	1182	1869,333
Griewank	1	0,4	0,1	0,04	0,2	0,1		1985,625	2463	2056	2146,75	1782
Rastrigin		1					1					
Ackley												
Schwefel		0,2	0,25		0,05		1	2571	2669,6		2214	
Zakharov												
Funkcja	Avg-best						Best					
_	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	4599,675	2000,094	5,644	288,547	1502,713	33,398	0,041	0	0	0	0	0,004
F2	5540,623	3583,756	3,097	17,72	1897,192	1,409	0,703	0	0	0	0	0
Rosenbrock	254,438	294,113	186,256	267,011	409,218	263,195	27,201	28,548	26,79	27,519	27,735	28,77
Griewank	45,56	9,331	2,446	1,226	23,072	1,124	0,405	0,059	0,068	0,071	0,095	0,094
Rastrigin	133,055	110,996	73,907	78,776	106,514	78,784	71,649	52,733	42,36	44,333	75,688	45,965
Ackley	17,119	15,29	8,624	9,944	13,221	10,256	12,289	6,851	2,32	3,034	3,027	5,65
Schwefel	308,132	150	60,024	70,338	240	71,182	100,001	0	0	0	0	0
Zakharov	256,417	300,051	47,224	70,202	377,962	889,09	12,056	0,271	0,006	0,172	0,044	2,687
Funkcja	Std						Med					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	5885,077	3999,953	20,614	1438,171	3569,593	93,014	224,132	0	0	1,828	0,002	0,186
F2	5801,89	5170,761	7,64	39,737	3308,369	3,052	4947,588	0	0	1,189	0,007	0,217
Rosenbrock	444,799	386,807	363,271	392,7	670,749	458,125	51,546	98,937	29,828	71,598	68,042	29,942
Griewank	61,758	26,995	5,333	1,397	38,926	1,397	6,192	0,112	0,558	0,803	0,581	0,447
Rastrigin	35,884	33,768	18,232	21,67	23,353	23,268	131,941	113,652	74,16	78,24	104,576	81,416
Ackley	2,275	4,002	3,522	3,552	5,267	3,631	17,712	16,788	8,491	10,142	14,659	9,328
Schwefel	173,929	165,831	102,013	120,24	208,327	109,376	300	100	0	0,313	200	0,126
Zakharov	181.07	255 614	81 754	115 707	717	100	100 670	007	000	0 110	170 00	777

Tabela 5.6: Wyniki badań współczynników dla metody PSO-ST oraz trzeciego zestawu parametrów wejściowych

Funkcia	Ef						Avg-iters					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	1		0,067	1	1	1		1	2884	1		1
F.2 Posonbrock		- 0.067	, 0	- 0 067	- 0 133	- 0 087		, L	9987 888	- 2062	1160	- 0467
Griewank		0.067	, ,	,00,0	0.067	00,0		2705	000,1044	4000	2082	000
Bastriein		50,			5			,				
Ackley				,	,		,					,
Schwefel	1				,	,		,		,		1
Zakharov			1					1	1		1	
Funkcia	Avg-best						Best					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	10587,076	4737,114	76,695	142,115	3342,56	220,493	5,712	0,021	0	0,893	0,013	0,194
F2	13050,73	5619,68	394,75	100,176	5749,643	184,454	133,067	0,026	0,001	1,77	0,172	0,072
Rosenbrock	1133,705	726,561	614,942	304,228	580,161	493,394	128,438	28,985	28,507	29,077	29,79	29,557
Griewank	63,247	55,203	1,419	3,193	38,624	1,902	1,194	0,095	0,116	0,901	0,099	0,616
Rastrigin	197,55	175,996	126,119	127,455	164,4	141,362	126,36	119,435	67,274	60,907	101,488	85,178
Ackley	18,81	16,648	11,504	13,314	14,384	12,917	16,26	12,294	4,383	8,906	7,734	9,323
Schwefel	497,735	328,761	70,365	55,844	340,046	105,78	106,588	0,001	0	0,092	0,001	0,052
Zakharov	695,39	385,448	183,377	255,596	427,858	104,571	76,175	84,049	4,689	21,011	30,637	11,406
Funkcja	Std						Med					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	8993,422	6133,206	144,111	201,48	5960,216	390,084	10345,9	189,654	5,677	37,45	7,314	52,02
F2	10844,54	4806,06	1249,521	140,06	6649,136	327,121	11306,71	5625,246	0,198	30,793	4902,512	11,339
Rosenbrock	886,249	604,816	766,464	468,77	585,087	622,688	894,009	963,343	172,609	98,631	254,654	159,967
Griewank	66,681	71,72	1,311	2,312	43,383	1,667	11,415	8,087	1,092	2,245	7,729	1,161
Rastrigin	35,654	39,917	27,763	30,016	36,899	35,089	204,144	182,295	132,33	127,156	156,405	132,95
Ackley	1,146	1,902	3,58	2,285	3,927	2,333	19,179	16,713	12,15	14,158	15,359	12,528
Schwefel	195,153	208,137	67,266	60,01	252,428	126,732	500,044	400	100	24,721	300	99,465
Zakharov	558,69	554,644	211,352	515,516	532,247	90,692	486,476	129,185	116,866	96,465	230,968	59,384

5.3 Badania efektywności współczynników przyspieszenia w metodzie PSO-RT

Badania wpływu współczynników przyśpieszenia na działanie metody PSO-RT obejmują wszystkie grupy współczynników wymienione w tabeli 4.3 oraz parametry wejściowe zawarte w tabeli 4.4. Wyniki przedstawiono w tabelach 5.7, 5.8, 5.9.

Pierwszy zestaw parametrów wejściowych spowodował osiągnięcie 0% skuteczności we wszystkich przeprowadzonych badaniach. Uzyskane wartości Best znacznie różnią się od najlepszych rozwiązań. Najmniejsze wartości Avg-best algorytm uzyskał przy zastosowaniu współczynników z grupy Set 3 oraz Set 4. Wyniki najbliższe rozwiązaniom uzyskały w 38% Set 4, a w 25% Set 3 i Set 2. Set 6 zdobył wartości Std oraz Med odległe od rezultatów najlepszych grup współczynników.

Wykorzystanie drugiego zestawu parametrów wejściowych również nie dało ani jednego rozwiązania. Mimo to wartości Avg-best były lepsze o około 10% względem pierwszego zestawu parametrów. Set 6 osiągnął najlepsze rezultaty dla 50% testów. Znalezione wartości Best były bliższe szukanym niż dla zestawu pierwszego. Najwięcej optymalnych wyników uzyskały Set 1, 2 i 6. Najmniejsze wartości Std zostały osiągnięte przez Set 6 w 25% testach, natomiast w pozostałych wartości różnią się od najlepszych o około 37%. Set 6 zdobył niższą wartość Med dla funkcji Rosenbrock. W pozostałych badaniach (75%) najbardziej optymalny okazał się Set 4.

Zerową skuteczność osiągnął również trzeci zestaw parametrów wejściowych. Uzyskane wartości Best są dużo gorsze w porównaniu do pozostałych zestawów. Algorytm nie zbliżył się w żadnym badaniu do rozwiązania. Pomimo to przy zastosowaniu współczynników z grupy Set 6 zdobył najlepsze wartości Avg-best i Best dla odpowiednio 38% i 50% funkcji testowych. Wartość Std dla Set 6 była zbliżona do optymalnych zestawów, ale w żadnym eksperymencie nie była najmniejsza. Mimo to, Set 6 oraz Set 4 uzyskały najlepsze wartości Med w 38% testów.

Należy stwierdzić, że metoda PSO-RT była nieskuteczna dla wszystkich możliwych testów. W porównaniu do pozostałych grup współczynników, Set 6 osiągnął najlepsze wartości Avg-best i Best dla odpowiednio 30% i 25% badań. Dla porównania te same najlepsze wartości miar zdobył odpowiednio Set 4 (42%) i Set 1 (33%).

Tabela 5.7: Wyniki badań współczynników dla metody PSO-RT oraz pierwszego zestawu parametrów wejściowych

Funkcia	ā											
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	,	,	,			,						,
F2				1		,	,	1	,			
Rosenbrock	,			1	,	,	1	1	1		,	,
Griewank	,			1	,	,	1	1	,	,	,	,
Rastrigin	,	,	,	ı	,	,	,	1	,	,	,	,
Ackley	,			ı		,	,	1			,	
Schwefel	,			1	,	,	1	1	,	,	,	,
Zakharov		1			1				1	1		1
Funkcja	Avg-best						Best					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	28461,1	30923,93	18859,47	20450,89	32495,42	19870,41	10045,34	18877,11	13176,91	14516,9	18801,56	11612,37
F2	24670,04	32150,94	21960,95	20424,58	33674,17	21961,43	8,521	22938,44	11904,79	13189,53	22375,42	11991,41
Rosenbrock	3526,861	3325,027	3303,083	3501,935	3756,832	3394,812	1615,068	1294,139	1692,97	2037,908	2576,801	1560,072
Griewank	223,392	311,409	174,814	182,404	274,916	175,911	105,155	187,808	102,746	124,439	157,762	110,557
Rastrigin	246,511	250,588	224,048	213,597	250,431	225,247	194,942	208,668	208,376	171,197	195,168	173,319
Ackley	19,886	19,722	19,04	18,834	19,746	19,06	19,326	17,858	18,224	17,694	19,008	18,289
Schwefel	1229,746	1809,83	1060,92	1016,435	1812,945	1237,221	488,819	262,165	152,143	174,435	1147,949	232,393
Zakharov	697,5	625,494	429,717	478,2	649,296	495,835	372,545	300,091	228,012	194,756	381,004	297,881
Funkcja	Std						Med					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	7140,829	5997,661	3666,252	2930,756	6037,009	4098,867	29869,3	31570,46	18212,38	20513,93	34524,24	20331,02
F2	10274,28	5256,393	4533,398	4261,934	5415,271	4268,563	26658,01	32891,06	21657,33	20389,23	33057,87	23221,96
Rosenbrock	764,098	979,473	912,028	641,303	705,294	856,558	3715,085	3406,968	3237,929	3530,979	3885,292	3464,705
Griewank	59,266	56,865	34,987	22,499	53,21	32,756	209,529	318,168	182,367	184,072	285,024	173,534
Rastrigin	24,903	21,786	9,071	22,348	20,973	18,206	251,072	256,248	222,481	213,192	248,457	227,336
Ackley	0,189	0,574	0,433	0,449	0,324	0,413	19,962	19,962	19,13	18,888	19,961	19,072
Schwefel	351,91	356,882	681,381	677,1	220,285	676,421	1259,814	1900	891,799	1055,151	1900	1640,635
Zakharov	179,815	183,469	145,542	148,8	241,449	163,129	691,972	609,2	403,607	465,309	587,082	434,55

Tabela 5.8: Wyniki badań współczynników dla metody PSO-RT oraz drugiego zestawu parametrów wejściowych

Funkcia												
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere		ı	ı		,	,	,	1				ı
F2	1	1		1	,	1	1		1	1	,	,
Rosenbrock		1			,	1	1		,		,	,
Griewank	1	1		1		1	1			1		
Rastrigin	1	1		1		1	1			1		
Ackley	1	1		1		1			1	1		
Schwefel	1	1		1		1				1		,
Zakharov	,	,	,	,	,	,	,	,	,	,	,	,
Funkcja	Avg-best						Best					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	18876,229	28805,514	17647,95	19172,91	30686,22	17511,741	0,42	17972,61	11597,28	12882,44	17700,47	11245,9
F2	22800,557	32063,508	20912,89	19112,31	30089,51	18835,695	6732,554	17131,98	15248,41	11702,32	16759,15	9133,549
Rosenbrock	3214,142	3104,636	3239,944	2850,694	3100,892	2644,141	75,899	1128,28	2047,586	1500,592	1716,853	2008,92
Griewank	203,058	268,182	186,172	159,743	277,509	165,571	1,147	155,512	133,558	93,963	213,348	142,033
Rastrigin	244,348	246,399	218,495	211,582	243,246	226,872	192,897	214,664	192,688	178,288	213,491	191,692
Ackley	19,844	19,775	18,798	18,685	19,769	18,598	19,501	18,709	17,229	17,103	18,873	16,837
Schwefel	1100,112	1690,064	1051,728	866,991	1612,439	869,121	244,988	667,212	248,244	117,838	232,557	196,229
Zakharov	604,406	549,391	470,153	437,007	555,665	489,552	370,936	332,438	289,299	147,867	310,778	317,428
Funkcja	Std						Med					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	10444,88	5045,652	3077,3	3051,377	6966,221	3691,402	22406,67	30528,91	17462,91	19273,71	30375,25	18350,28
F2	8171	5242,897	3065,66	3001,496	6255,699	4557,678	23741,31	31996,85	21619,71	18757,25	30961,57	19008,64
Rosenbrock	1108,877	1128,202	767,425	666,268	796,31	358,823	3410,511	3282,817	3098,323	2749,998	3127,82	2622,028
Griewank	87,706	57,07	28,386	33,233	41,126	15,972	206,867	276,599	192,959	155,471	277,913	164,343
Rastrigin	23,109	16,795	16,192	16,804	17,055	19,303	244,358	249,506	219,288	209,772	245,139	226,467
Ackley	0,168	0,297	0,445	0,646	0,298	0,755	19,96	19,887	18,815	18,772	19,91	19,006
Schwefel	431,03	417,669	591,727	610,199	555,473	569,593	1291,168	1900	1029,098	588,36	1900	628,072
Zakharov	171,535	175,406	117,237	115,373	86.586	97.044	564.037	497.744	459.084	442.53	553.593	519.156

Tabela 5.9: Wyniki badań współczynników dla metody PSO-RT oraz trzeciego zestawu parametrów wejściowych

Funkcia	Ef						0					
3	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere											-	
F2	1		1	1	1	1	1			,		
Rosenbrock			,	,	,		1	,	,	,	,	,
Griewank	1	1	1	1	ı	1	1				,	
Rastrigin		,	,	1			1	,	,		,	,
Ackley		1	1		,	1	1	,	,	,	,	,
Schwefel		,	,	1			1	,	,		,	,
Zakharov	,	1	,					,	1			,
Funkcia	Avg-best						Best					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	44755,086	50852,497	31782,7	30838	50399,12	29536,112	14450,37	34843,89	28822,53	22801,9	36751,98	22013,51
F2	37975,313	53198,834	35200,32	36265,03	59571,85	35856,631	8521,305	40228,11	29057,81	27639,17	49139,44	28616,07
Rosenbrock	6120,087	5909,813	5595,35	5476,807	5927,487	5061,587	4051,639	4083,615	3652,712	4192,338	4128,026	3197,066
Griewank	375,337	468,582	266,667	265,225	430,753	278,964	170,929	402,352	236,758	205,786	240,7	202,86
Rastrigin	389,523	386,49	338,796	342,369	398,648	345,561	344,368	331,87	309,735	293,04	356,595	289,815
Ackley	19,925	19,916	19,051	19,03	19,962	19,019	19,457	19,432	18,189	18,638	19,945	18,175
Schwefel	1909,105	546275243,3	2375,191	2187,294	$^{2,05\mathrm{E}+08}$	2137,83	776,851	2900	350,35	748,92	2900	310,058
Zakharov	887,029	931,526	746,435	628,552	995,605	715,656	501,714	659,014	331,944	319,505	740,968	471,726
Funkcja	Std						Med					
,	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	12121,66	5982,728	2603,318	4426,382	7081,988	3568,037	45169,12	53216,68	30591,3	30665,38	50242,44	30363,81
F2	11381	7371,736	4659,109	4587,977	5227,481	4882,619	41769,36	52392,64	35306,08	36932,14	59124,88	33727,6
Rosenbrock	1223,607	990,662	887,611	849,81	855,539	983,358	5889,644	5841,381	5688,663	5311,913	5933,137	4950,816
Griewank	126,174	48,317	28,762	33,737	908'62	33,318	366,778	460,65	253,691	268,907	458,981	281,314
Rastrigin	20,77	22,979	20,125	23,208	19,737	26,025	394,354	383,953	334,865	348,405	400,618	349,74
Ackley	0,126	0,137	0,359	0,312	0,005	0,384	19,963	19,963	19,124	18,934	19,963	19,117
Schwefel	420,905	$^{9,64\mathrm{E}+08}$	569,229	418,228	$^{4,94\mathrm{E}+08}$	675,635	2055,035	1129523	2500	2300	60876016	2300,05
Zakharov	202,009	210,742	296,318	160,84	262,684	173,698	912,2	886,15	687,993	623,074	872,079	694,462

5.4 Badania efektywności współczynników przyspieszenia w metodzie PSO-SNVT

Badania wpływu współczynników przyśpieszenia na działanie metody PSO-SNVT obejmują wszystkie grupy współczynników wymienione w tabeli 4.3 oraz parametry wejściowe zawarte w tabeli 4.4. Wyniki przedstawiono w tabelach 5.10, 5.11, 5.12.

Wszystkie zestawy parametrów wejściowych zawiodły w poszukiwaniach rozwiązania. W każdym badaniu skuteczność algorytmu Ef była równa 0%. Algorytm przy zastosowaniu współczynników z grupy Set 1 uzyskał najlepsze wartości Best w 67% wszystkich eksperymentów. W pozostałych przypadkach, najbardziej optymalne wartości Best osiągały naprzemiennie Set 3, Set 4 oraz Set 6. Najmniejsze wartości Avg-best w większości przypadków zostały zdobyte przez algorytm korzystający z Set 1. Set 6 osiągał lepsze rezultaty w testach funkcji Ackley dla pierwszego i drugiego zestawu parametrów wejściowych oraz funkcji F2 dla trzeciego zestawu. Podobne wyniki uzyskano w przypadku miary Med - Set 1 otrzymał najlepsze wartości w większości badań. Stałe wartości współczynników (Set 1 i Set 2) osiągnęły wysokie wartości Std. Set 1 uzyskał najmniejsze wartości tylko w 3 eksperymentach. W pozostałych prowadziły Set 3, 4, 5 oraz 6. Oznacza to, że pomimo korzystnych wartości Avg-best i Best, cząsteczki w algorytmie PSO-SNVT (ze stałymi wartościami współczynników) są mocno rozrzucone w przestrzeni poszukiwań. Znacznie bardziej niż w przypadku dynamicznych współczynników.

Mimo zdominowania wyników przez Set 1, Set 6 osiągał najlepsze wyniki dla pojedynczych miar i funkcji. Wśród pozostałych współczynników, jako jedyny osiągał najmniejsze wartości Avg - best dla pierwszego i drugiego zestawu parametrów wejściowych. Dodatkowo dla tych samych zestawów parametrów, Set 6 uzyskał najbardziej optymalne wartości Best dla funkcji Ackley.

Tabela 5.10: Wyniki badań współczynników dla metody PSO-SNVT oraz pierwszego zestawu parametrów wejściowych

Funkcia	Ef					_	Avg-iters					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere										-		-
F2	1	,	1	,	,	,	1	,	,	,	,	,
Rosenbrock	1	,	1	,	,	,	1	,	,	,	,	,
Griewank	1		1				1					
Rastrigin	1	,	1				1					
Ackley	1	1	1	1	1	,	1	1	1		1	,
Schwefel	1		1				1					
Zakharov												
Funkcia	Avg-best						Best					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	21654,13	30374,36	28648,96	27180	34169,27	27572,77	10003,73	18793,94	18790,04	12526,64	24914,84	10068,54
F2	22836,81	32549,97	30984,75	26819,53	33194,44	25576,24	7744,007	12934,93	19195,11	6724,102	17431,63	7164,265
Rosenbrock	3308,908	4011,991	4250,478	3844,746	3842,248	4146,907	1707,676	2133,767	1877,882	1899,341	2536,594	1945,372
Griewank	201,053	292,573	243,621	205,488	299,395	232,756	101,015	148,676	155,206	63,289	231,362	71,992
Rastrigin	220,622	243,451	262,932	258,61	253,107	256,54	137,253	214,629	234,332	236,546	219,22	207,425
Ackley	19,801	19,877	19,809	19,901	19,837	19,8	19,152	19,232	18,845	19,587	18,971	19,226
Schwefel	596,076	922,241	925,531	895,275	853,169	679,22	85,5	434,64	427,591	485,726	501,486	301,241
Zakharov	501,108	552,242	619,793	557,218	597,451	598,617	43,361	371,418	451,018	369,245	308,86	400,281
Funkcja	Std						Med					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	8054,328	7420,692	5602,843	6783,305	6149,449	7540,776	21019,48	29824,27	28421,95	26905,76	35880,58	28686,69
F2	8955,367	6909,815	6782,416	8993,809	7238,17	7789,3	24460,32	33907,35	31169,56	28924,35	33594,15	25182,75
Rosenbrock	1176,155	938,98	1054,608	884,909	906,307	978,867	3474,09	4056,668	4287,235	4002,26	3824,612	4182,351
Griewank	61,665	67,992	48,344	87,755	50,575	76,821	204,222	303,952	244,49	183,638	299,579	218,326
Rastrigin	37,203	14,463	13,352	13,768	17,1	22,741	232,898	245,714	267,993	258,885	253,853	261,572
Ackley	0,217	0,173	0,26	0,084	0,237	0,198	19,898	19,952	19,93	19,933	19,956	19,898
Schwefel	274,874	314,786	249,242	223,564	215,489	306,152	577,476	929,576	916,541	909,328	894,71	696,123
Zakharov	165,796	105,798	110,954	135,304	152,717	100,69	493,544	539,346	611,912	529,922	624,38	589,624

Tabela 5.11: Wyniki badań współczynników dla metody PSO-SNVT oraz drugiego zestawu parametrów wejściowych

Funkcia	EF					_	0					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	,	,	,	,	,	,	,	,	,	,		,
F2		1	,	,	,	1	,	,	1	,	,	,
Rosenbrock	1	,	,	,	,	ı	,	,	,	,	,	,
Griewank		ı		,	,	1	,	,	ı	,	,	,
Rastrigin	1	1				1		,	1			
Ackley	1	1				1		,	1			
Schwefel		1	1		1	1		1	1	1		
Zakharov				1		,						1
Funkcja	Avg-best						Best					
,	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	19018,288	31160,105	25490,88	22835,37	31916,61	21787,294	7619,985	18112,5	5385,617	9101,954	23172,73	6381,583
F2	18053,326	29094,59	29595,95	24476,46	29566,74	27143,172	3608,052	18361,32	18475,06	11656,14	13531,16	19764,01
Rosenbrock	2879,004	3708,589	3616,445	3808,678	3824,765	3420,01	1382,775	2566,323	2218,017	2162,12	1866,701	2023,239
Griewank	154,761	280,34	234,199	225,006	274,854	209,063	80,454	190,494	102,519	84,925	186,201	141,797
Rastrigin	212,882	249,926	254,251	253,416	232,138	262,614	124,468	215,228	216,973	210,341	177,358	219,642
Ackley	19,829	19,878	19,81	19,806	19,887	19,719	19,55	19,436	18,843	18,965	19,045	18,441
Schwefel	463,534	838,956	742,359	700,428	847,965	716,156	100,001	360,105	587,849	266,187	225,179	502,236
Zakharov	471,168	580,055	578,747	524,589	517,108	593,976	203,838	385,869	272,242	303,68	337,923	473,363
Funkcja	Std						Med					
_	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	7464,731	6008,655	8093,651	6048,631	4330,368	5451,403	19085,86	31883,88	25410,26	23268,27	32161,7	23423,39
F2	7687,588	7030,61	5771,062	6744,671	7035,956	4463,689	17873,14	28649,33	29318,21	24521,76	31588,07	28105,56
Rosenbrock	697,664	787,618	935,381	891,672	838,095	62,622	2967,686	3585,708	3569,336	3686,109	3836,156	3308,794
Griewank	62,793	51,85	67,465	64,956	46,795	38,231	146,76	281,285	232,99	226,266	282,294	207,762
Rastrigin	36,253	18,261	18,197	17,28	20,63	20,709	215,938	253,132	255,559	256,919	236,224	266,626
Ackley	0,121	0,166	0,281	0,188	0,198	0,434	19,868	19,95	19,932	19,876	19,948	19,901
Schwefel	229,977	293,885	126,129	231,048	266,014	171,473	426,972	914,532	736,866	687,727	868,85	734,119
Zakharov	140,052	117,632	84,942	105,891	82.712	107.61	506.544	542,804	593.958	533 58	510 01	597.316

Tabela 5.12: Wyniki badań współczynników dla metody PSO-SNVT oraz trzeciego zestawu parametrów wejściowych

Funkcia	Ef						Avg-iters					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere		,		,							,	
F2	1	1	,	,	,			,	1		,	,
Rosenbrock	1	1	,	,	,			,	1		,	,
Griewank	1	1	,	,		1	1		1		,	
Rastrigin	1	1		1	1	,	1	1	1	1	1	
Ackley	1	1	,	,		,	,	,	,	,	,	,
Schwefel		1		,		,	,		,	,	,	
Zakharov	1	1	1	1	1	1		1	1	1		1
Funkcja	Avg-best						Best					
_	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	42429,694	48808,544	47977,93	44763,07	50892,47	46028,486	24831,78	28744,27	29380,45	33445,6	39937,45	34435,47
F2	46427,344	53478,198	53856,27	41240,44	51868,73	41082,459	23712,94	36920,5	38210,45	16373,29	37030,42	30774,23
Rosenbrock	5092,914	6726,136	6355,085	6320,411	6096,355	6543,194	3717,769	5274,468	3617,894	3886,614	4847,155	4591,256
Griewank	370,131	477,101	448,966	392,453	455,327	425,271	179,335	382,683	267,312	224,502	355,484	290,252
Rastrigin	364,128	374,472	405,263	410,267	382,76	404,302	243,464	289,544	388,308	376,491	356,147	374,813
Ackley	19,933	19,93	19,841	19,882	19,887	19,854	19,887	19,708	19,086	19,658	19,592	19,286
Schwefel	849,649	1530,289	1375,006	1201,475	1707,848	1291,199	332,611	797,082	892,991	481,169	1182,964	802,38
Zakharov	852,362	847,917	866,517	798,713	883,467	823,668	508,184	550,494	722,725	570,154	664,608	587,045
Funkcja	Std						Med					
_	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	9596,245	9434,268	7328,001	7430,549	7612,912	6274,051	44021,46	49440,23	48031,38	42897,19	50076	46879,12
F2	8649,595	10769,74	7849,832	12798,95	6717,62	6022,27	46991,71	51657,5	54760,89	43409,3	52507,35	41048,82
Rosenbrock	998,711	948,981	1418,322	1199,24	952,984	1163,285	4910,322	6647,382	6531,453	5994,908	6156,324	6954,672
Griewank	87,759	47,286	72,772	74,38	63,558	71,277	380,607	487,132	459,073	409,981	471,397	436,222
Rastrigin	39,125	29,245	14,671	15,532	13,029	15,503	367,972	377,825	404,311	413,76	386,383	405,925
Ackley	0,023	0,069	0,228	0,084	0,117	0,188	19,94	19,957	19,949	19,914	19,951	19,938
Schwefel	306,561	479,672	235,601	387,179	249,749	285,273	859,943	1510,02	1438,699	1273,074	1767,982	1266,329
Zakharov	190,45	154,286	73,392	124,908	126,968	109,381	874,506	856,408	870,469	807,358	852,624	860,625

5.5 Badania efektywności współczynników przyspieszenia w metodzie PSO-SEL

Badania wpływu współczynników przyśpieszenia na działanie metody PSO-SEL obejmują wszystkie grupy współczynników wymienione w tabeli 4.3 oraz parametry wejściowe zawarte w tabeli 4.4. Wyniki przedstawiono w tabelach 5.13, 5.14, 5.15.

W żadnym wykonanym eksperymencie nie zostało znalezione optymalne rozwiązanie. Wszystkie zestawy parametrów wejściowych uzyskały skuteczność Ef równą 0%. Wszystkie wartości Best były dalekie od faktycznych rozwiązań funkcji. Wykorzystanie pierwszego zestawu parametrów pozwoliło Set 6 osiągnąć korzystniejsze wartości Best w porównaniu do pozostałych grup współczynników w 75% testów. Set 6 i Set 4 osiągnęły najmniejsze wartości Avg-best, które były średnio 3 razy większe od znalezionych najlepszych rozwiązań Best. Z kolei wartości Std były zróżnicowane dla wszystkich grup współczynników oprócz Set 1. Najkorzystniejsze wartości Med uzyskały Set 4 (50% badań) oraz Set 6 (38%).

W drugim zestawie parametrów wejściowych, algorytm korzystając z Set 6 osiągnął najlepsze wartości Avg - best w 75% badań. Mimo to znalezione wartości Best nie były optymalne i stanowiły tylko 38% testów. Najkorzystniejsze wartości zostały otrzymane używając Set 4. Różnica pomiędzy Set 6, a Set 4 wynosiła od 13% do 67%. Set 6 uzyskał najbardziej optymalne wartości Std i Med odpowiednio w 38% oraz 88%. Wyniki świadczą o powtarzalności wyników oraz wysokim skupieniu cząsteczek wokół korzystnych rozwiązań.

Algorytm z trzecim zestawem parametrów wejściowych otrzymał najlepsze wartości Best korzystając z Set 4 oraz Set 6, osiągając najlepsze rezultaty odpowiednio w 50% i 38% testów. Najmniejsze wartości Avg - best zostały rozłożone pomiędzy Set 3, Set 4 oraz Set 6. Różnice pomiędzy Set 6, a pozostałymi, nie włączając funkcji Zakharov, która osiągnęła bardzo złe wyniki, wahają się o około 2%. Najlepsze wartości odchylenia Std były bardzo zróżnicowane, pomiędzy Set 2, 3, 4 oraz 6. W 50% testach Set 6 osiągnął najmniejsze wartości Med. Różnice pomiędzy najlepszymi rezultatami są małe.

Pomimo skuteczności Ef na poziomie 0% dla wszystkich przeprowadzonych badań, wyniki dla Set 6 były dużo lepsze względem pozostałych współczynników. Naj-

mniejsze wartości Bestora
zAvg-bestzostały osiągnięte w odpowiednio 50% i 55% eksperymentów. Uzyskane wartości
 Medi Stdpotwierdzają wysoki poziom koncentracji cząsteczek.

Tabela 5.13: Wyniki badań współczynników dla metody PSO-SEL oraz pierwszego zestawu parametrów wejściowych

Funkcia												
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	,	,	,	,	ı	,	,	,	-	-	-	1
F2		1	1	1	,	1		,	1	,		,
Rosenbrock		1	1	1	,	1		,	1	,		,
Griewank				1					1			
Rastrigin					,			,		,		
Ackley				1					1			
Schwefel	,	,	,	1		,	,		1	1		,
Zakharov		1	1		,		,				,	,
Funkcja	Avg-best						Best					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	34041,02	27880,66	26745,07	24909,48	28792,64	24307,48	23321,58	17723,12	13413,838	11513,35	20797,96	8945,868
F2	34590,68	30496,85	27291,26	21621,38	28170,39	18490,32	15586,83	20151,48	18118,341	5554,871	14534,63	4188,249
Rosenbrock	2920,26	2668,106	2630,807	1618,126	2909,989	2065,483	1301,604	1476,065	853,415	621,722	897,412	370,501
Griewank	298,51	300,287	243,243	190,594	252,501	209,077	223,49	167,213	146,345	102,623	119,958	76,283
Rastrigin	249,901	253,421	233,79	194,74	245,654	197,883	168,214	192,074	199,955	132,543	215,791	151,825
Ackley	19,355	19,763	19,344	17,78	19,646	17,136	17,577	18,846	17,387	15,886	18,436	9,423
Schwefel	1399515	5819302	401522,9	1070,825	5489093	100104,7	384,925	1364,893	227,456	191,319	140,535	211,022
Zakharov	638,18	629,963	757,872	593,999	809,714	411,052	240,61	165,524	282,916	194,614	353,782	159,582
Funkcja	Std						Med					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	6088,119	4796,116	4844,986	5625,334	5829,062	5581,49	34589,28	28500,52	25907,8	26611,1	27617,04	25453,63
F2	8313,388	6306,119	4555,978	6042,736	7351,137	8064,179	35878,54	30197,61	27683,69	21486,54	28480,91	19964,71
Rosenbrock	743,216	709,183	878,162	730,282	797,645	1024,751	2982,786	2678,628	2507,447	1470,768	3074,667	2402,12
Griewank	41,781	65,414	36,877	50,548	54,585	63,503	311,96	294,074	242,634	205,176	252,95	214,936
Rastrigin	34,213	21,996	21,057	38,336	18,995	23,934	256,494	258,275	235,98	181,186	248,508	191,18
Ackley	0,78	0,444	0,695	1,228	0,462	3,047	19,51	19,961	19,568	17,678	19,961	18,107
Schwefel	5700910	11451571	976889,6	1720,903	16539533	431640,5	10026,55	344705	33998,79	419,064	39717,08	482,035
Zakharov	395 345	202 641	401.742	310 319	200 200	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	000 100	007 020	0	000	000	1

Tabela 5.14: Wyniki badań współczynników dla metody PSO-SEL oraz drugiego zestawu parametrów wejściowych

Funkcia	Ef						Avg-iters					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere					,		,	,		,		
F2	1	,		1		1	,	,				
Rosenbrock	1	,	1				,			1		
Griewank	1	1	,	,	,	ı	,	,	,		,	,
Rastrigin		1	1		,	1		,	,	,	1	,
Ackley	1	,	1	1	,	1	,	,	,	,	,	,
Schwefel	1	,	1					,		1		
Zakharov							1	1		1		1
Funkcja	Avg-best						Best					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	31384,503	26610,38	24833,79	21978,14	26515,06	23572,514	24352,32	17594,71	19467,93	8356,798	20006,04	12767,77
F2	29537,591	27011,639	27061,92	21219,71	27257,3	20108,873	17392,2	17474,98	20664,48	7703,472	19171,93	7595,36
Rosenbrock	2823,187	2431,914	2328,879	1623,141	2589,45	813,112	1082,801	1718,808	834,867	332,564	1157,717	306,269
Griewank	264,115	255,332	236,436	207,703	238,05	208,798	210,614	194,197	186,38	67,72	189,781	113,6
Rastrigin	237,208	245,223	227,432	192,748	240,732	180,904	177,804	178,822	191,355	122,97	201,176	138,954
Ackley	18,453	19,499	18,782	17,74	19,699	15,257	10,874	18,286	16,682	12,412	19,063	11,117
Schwefel	241739,613	571332,089	57734,54	15876,93	1322260	2661,284	233,922	201,849	610,827	159,842	149,281	197,176
Zakharov	626,732	684,496	660,914	587,007	666,82	320,915	388,461	454,131	213,751	223,385	338,027	80,145
Funkcja	Std						Med					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	5543,474	4374,353	3059,631	5705,872	5361,873	5221,333	29614,47	27949,23	25526,8	23294,85	25487,09	24188,33
F2	6144,323	5103,142	3765,256	7859,988	4882,787	6387,4	28761,32	26434,1	27260,65	22242,15	27217,95	21506,57
Rosenbrock	762,369	545,233	805,57	881,292	807,996	418,345	2862,279	2296,216	2230,047	1303,122	2618,275	665,646
Griewank	33,077	34,867	30,766	54,623	34,185	51,476	267,81	258,828	233,476	221,913	236,022	216,298
Rastrigin	31,6	24,39	18,424	37,845	23,566	26,47	247,002	246,455	225,984	189,718	242,681	178,134
Ackley	1,881	0,565	1,001	1,399	0,305	3,189	18,95	19,619	18,874	17,897	19,774	15,243
Schwefel	460159,1	1545064	78325,89	78839,7	4588207	3968,298	12742,43	49717,9	22807,64	457,612	67269,06	391,216
Zakharov	231,711	174,436	426,817	362,812	251,651	161,087	587,584	603,043	505,038	457,108	579,726	342,808

Tabela 5.15: Wyniki badań współczynników dla metody PSO-SEL oraz trzeciego zestawu parametrów wejściowych

Funkcia.	1						0					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere		,	,	,	,	,	,		,		,	,
F2	1	,	,	1	,	1	,	,	,	ı	,	,
Rosenbrock	1	1	1	1	,	1		,	ı	,	,	,
Griewank	1	1	1	1		1			1	1		
Rastrigin	1			1	1	1	1	1		1		
Ackley	1	1	1	1		1			1			
Schwefel						1	1					
Zakharov		1	,	,	,	,	,	,	,	,	,	,
Funkcja	Avg-best						Best					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	49793,477	45549,968	41324,15	38683,27	45261,75	40192,216	34891,32	34900,18	30374,77	23979,84	32967,33	34018,03
F2	50276,436	44499,274	41802,89	42225,69	47257,85	42447,73	37627,46	35453,81	30375,07	26306,75	38569,1	8104,768
Rosenbrock	5690,89	5038,177	4585,815	4189,295	4784,23	3625,63	3592,319	2741,985	3255,489	2029,764	2972,085	875,857
Griewank	461,859	392,043	358,464	362,613	408,565	362,578	359,899	310,182	272,539	290,585	303,075	299,531
Rastrigin	402,711	386,422	365,518	331,456	368,724	335,185	362,605	295,627	331,179	226,669	335,327	269,156
Ackley	19,654	19,986	19,464	18,594	19,863	18,475	19,337	19,486	18,317	17,447	19,364	14,77
Schwefel	2286912414	222404486,1	$^{1,96\mathrm{E}+08}$	33329349	$^{3,57\mathrm{E}+08}$	378848597	648,649	469,431	336,151	223,565	63716,09	250,084
Zakharov	840,023	1064,071	1069,917	782,675	1184,827	670,992	522,498	691,231	579,385	342,227	733,072	394,299
Funkcja	Std						Med					
_	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Sphere	7096,302	6305,34	4131,547	5772,868	5297,683	3993,772	48537,96	47167,5	42437,71	40979,01	46566,85	40069,72
F2	8830,57	5016,752	5277,219	6506,068	6006,506	9917,48	50310,24	45832,37	42256,45	42937,35	46713,23	43487,13
Rosenbrock	1067,005	1258,094	712,586	1152,467	1101,596	1392,118	5817,146	4955,671	4656,601	4205,596	4628,288	3948,797
Griewank	57,994	40,863	40,589	28,19	62,845	35,322	463,828	386,136	349,773	370,686	408,326	354,767
Rastrigin	21,402	35,338	17,602	38,791	21,559	30,899	401,566	397,272	368,262	349,812	370,337	346,003
Ackley	0,237	0,203	0,464	0,677	0,169	1,121	19,58	19,974	19,573	18,458	19,955	18,59
Schwefel	$^{5,1\mathrm{E}+09}$	$^{5,23\mathrm{E}+08}$	$^{2,9\mathrm{E}+08}$	77512510	8,11E+08	$^{9,86\mathrm{E}+08}$	97553796	36685355	20513777	6943,806	6411308	76630,47
Zakharov	170,003	453,056	475,978	255,986	434.912	187.928	873.325	962,933	933.041	798 441	1040 79	000 000

5.6 Badania uśrednionych wyników współczynników dla poszczególnych metod PSO

Przeprowadzono badania wszystkich grup współczynników przyśpieszenia (tabela 4.3) dla omówionych metod PSO oraz trzech zestawów parametrów wejściowych (tabela 4.4). Wyniki zawierają uśrednione wartości uzyskanych miar dla funkcji testowych. Rezultaty zostały przedstawione w tabelach 5.16, 5.17, 5.18.

Rozwiązania funkcji testowych, dla wszystkich zestawów parametrów wejściowych zostały znalezione tylko przez algorytm PSO oraz PSO-ST. Dla pierwszego zestawu, w obu badaniach najlepszą skuteczność Ef uzyskał algorytm PSO korzystając z Set 5. Wartości osiągnięte przez Set 6 były gorsze średnio o 3%. Różnica wartości Avq-iters pomiędzy wynikiem Set 6, a najlepszym zestawem współczynników w metodzie PSO wynosi aż 600%, natomiast w PSO-ST jedynie 57%. Najmniejsze wartości Avg-best osiągnęły algorytmy PSO-RT oraz PSO-ST wykorzystujące współczynniki z grupy Set 3. Wahania wartości Avg-best uzyskanymi przez Set 6, a najbardziej optymalnymi zestawami współczynników wynoszą 83%. Powodem dużej różnicy jest wartość miary dla metody PSO-SEL. Nie uwzględniając jej, ta różnica wynosi zaledwie 14%. Set 6 uzyskał najlepsze wartości Best dla metody PSO-SEL. Porównując ja z pozostałymi metodami, te odstępstwa wynosza od 2% do 102%. Najmniejsze wartości odchylenia Std uzyskały Set 3 i Set 4. Set 6 osiągnął podobne wyniki dla wszystkich metod oprócz PSO-SEL, dla której wartość Std jest 30 razy większa niż dla Set 4. Set 6 zdobył najlepsze wartości Med dla PSO-SEL, natomiast reszta rezultatów odstępuje średnio o 37%.

Wykorzystanie drugiego zestawu parametrów wejściowych pozwoliło osiągnąć najmniejsze wartości Ef przez algorytmy, korzystające z Set 6, Set 3 oraz Set 1. W metodzie PSO, Set 3 i Set 6 uzyskał skuteczność Ef na poziomie 77%, natomiast w PSO-ST był to Set 1 z rezultatem 45%. Najlepsze wartości Avg-iters dla obu algorytmów uzyskał Set 1, a dodatkowo wyniki były znacznie lepsze od pozostałych zestawów. Ponownie najbardziej optymalne wartości Avg-best otrzymano przy zastosowaniu współczynników z grupy Set 6, Set 3 i Set 1. Różnice w wartościach dla Set 6 wynosiły od 3% do 32%. Set 6 nie osiągnął najlepszej wartości Best dla żadnej metody, a jego wyniki były gorsze o 78%. Mimo wysokiej wartości najlep-

szego znalezionego rozwiązania Best, Set 6 uzyskuje powtarzalne wartości, o czym świadczą korzystne wartości Avg-best. Wysoki poziom koncentracji cząsteczek potwierdzają miary Std oraz Med, które były najbardziej optymalne dla 40% metod. W pozostałych przypadkach miary były gorsze o odpowiednio 17% i 38%.

Algorytmy dla trzeciego zestawu parametrów wejściowych uzyskały najlepsze wartości Ef dla Set 3. Rezultaty Set 6 był gorsze o około 12 punktów procentowych. Różnica wartości Avg-iters dla Set 6 oraz współczynników, które osiągnęły najmniejsze wartości, wyniosła 423 iteracje. 80% najbardziej optymalnych wartości Avg-best zostało osiągniętych przez Set 4. Set 6 zdobył lepsze rezultaty dla metody PSO-RT. Set 6 znalazł najlepsze wartości Best w metodzie PSO-SEL. Dla pozostałych algorytmów, wartości były gorze o 40%. Najmniejsza wartość odchylenia standardowego Std została znaleziona przez Set 6, Set 3 oraz Set 4. Set 4 osiągnął najbardziej optymalne wartości Med dla 60% metod.

Set 6 osiągnął najwyższą skuteczność Ef dla drugiego zestawu parametrów wejściowych. Podobnie jak wartość Avg-iters dla metody PSO. Modyfikacja PSO-ST uzyskała najmniejszą liczbę iteracji dla pierwszego zestawu, ale wartość Ef w tym przypadku była gorsza o 35%. Drugi zestaw zdobył najlepsze wartości Avg-best, które różniły się od pozostałych o odpowiednio 56% i 50% (nie licząc metody PSO-SEL, która osiągnęła niekorzystne wyniki). Pierwszy zestaw parametrów wejściowych uzyskał najlepsze wartości Best dla metod PSO-SNVT i PSO-SEL, natomiast drugi zestaw dla pozostałych. Najmniejsze wartości Std oraz Med we wszystkich metodach zdobył drugi zestaw parametrów wejściowych.

Trzeci zestaw parametrów wejściowych osiągnął najgorsze wyniki. Set 6 odszukiwał najlepsze rozwiązania korzystając z drugiego zestawu parametrów. Wyniki pokazują, że metoda PSO-ST była skuteczniejsza, a PSO-SNVT i PSO-SEL odnalazły najlepsze rozwiązania dla pierwszego zestawu parametrów. Prawdopodobnie znalezienie kompromisu pomiędzy tymi zestawami pozwoli uzyskać lepsze wyniki. Generalnie drugi zestaw okazał się być najbardziej optymalny spośród wszystkich testowanych, pod niemalże każdym względem.

Tabela 5.16: Uśrednione wyniki badań współczynników dla wszystkich metody PSO oraz pierwszego zestawu parametrów wejściowych

Metoda	E						Avg-iters					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
PSO	0,03	0,31	0,48	0,40	0,53	0,49	95,6	587,84	471,78	454,64	582,32	580,08
PSO-RT	1	1	ı	1	1	1	1	1	1	1	1	ı
PSO-ST	1	0,11	0,21	0,20	0,22	0,20	1	2280,45	2439,10	803,50	2206,19	1257,75
PSO-SNVT	ı	1	ı	ı	1	1	1	ı	1	1	1	ı
PSO-SEL	1	1		1	ı	1	1	1	1	1	1	ı
Metoda	Avg-best						Best					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
PSO	1528,72	897,38	67,82	74,49	741,77	64,24	31,73	13,33	10,68	8,19	11,37	8,66
PSO-RT	7384,38	8677,12	5754,01	5785,86	9116,72	5922,49	1606,21	5510,78	3435,52	3803,36	5706,83	3249,54
PSO-ST	1317,37	650,4	68,69	88,95	922,73	83,48	33,8	25,13	10,35	10,72	11,80	12,00
PSO-SNVT	6167,31	8620,84	8244,48	7472,60	9153,61	7385,36	2480,21	4381,4	5143,75	2790,56	5770,37	2522,29
PSO-SEL	184034,14	735193,92	57430,54	6277,12	693786,66	18225,39	5155,6	5157,4	4157,46	2290,87	4634,81	1764,09
 Metoda	Std						Med					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
PSO	1638,05	1156,8	72,31	90,01	1066,12	82,11	1008,43	71,15	36,34	16,75	64,52	26,59
PSO-RT	2349,41	1606,64	1247,89	1088,15	1586,73	1264,36	7834,34	8871,51	5603,38	5796,34	9313,49	6189,10
PSO-ST	1458,49	1054,17	111,17	128,73	1341,92	158,78	287,96	77,64	20,38	37,58	527,98	33,24
PSO-SNVT	2340,7	1971,59	1732,75	2140,31	1841,26	2101,94	6310, 24	8732,1	8242,45	7716,76	9423,98	7479,67
PSO-SEL	714557,1	1432959,15	123453,63	1814,96	2069236,30	55821,73	10583,72	50913,81	11406,93	6361,75	12521,44	6137,24
												ı

Tabela 5.17: Uśrednione wyniki badań współczynników dla wszystkich metody PSO oraz drugiego zestawu parametrów wejściowych

Metoda	E.						Avg-iters					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
PSO	0,25	0,54	0,77	0,53	0,46	0,77	154,92	559,94	410,71	407,35	463,05	399,43
PSO-RT	1	1	1	ı	1	1	1	ı	1	1	1	1
PSO-ST	0,45	0,40	0,40	0,13	0,21	0,27	718,22	2137,61	2274,36	2000,94	2043,70	1964,44
PSO-SNVT	1	1	1	ı	1	1	1	ı	1	1	1	1
PSO-SEL	1	1	1	1		1	1	1	1	1	1	1
Metoda	Avg-best						Best					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
PSO	805,16	82,789	48,72	61,45	406,41	50,32	17,58	11,91	7,85	7,03	12,41	8,65
PSO-RT	5882,84	8343,43	5468,27	5353,74	8323,16	5095,16	954,79	4702,67	3721,79	3330,05	4645,69	2906,57
PSO-ST	1394,38	807,95	48,40	100,47	571,24	65,00	28,04	11,06	8,94	9,39	13,32	10,40
PSO-SNVT	5159,10	8241,55	7566,58	6605,47	8400,01	6769,00	1642,39	5026,41	3409,64	2975,54	4939,54	3690,54
PSO-SEL	38328,93	78573,82	14137,84	7712,89	172473,40	5985,21	5481,12	4729,47	5273,28	2122,40	5154,13	2651,30
$\ _{ m Metoda}\ $	Std						Med					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
PSO	1183,09	1180,98	64,23	83,68	844,76	66,16	73,79	55,85	13,82	12,83	74,25	19,91
PSO-RT	2554,79	1510,50	958,05	936,92	1839,85	1163,82	6485,61	8594,04	5512,52	5274,48	8432,65	5192,25
PSO-ST	1573,34	1255,47	75,30	266,66	1034,93	96,00	733,72	66,70	14,66	22,98	70,14	18,04
PSO-SNVT	2039,90	1788,58	1887,14	1763,04	1577,60	1379,17	5155,35	8266,33	7517,14	6650,06	8689,14	7082,93
PSO-SEL	59113.45	194415.16	10804.17	11717.94	574946 17	2029 70	9387 73	13440 67	9851 06	6093 05	15458 82	5038 03

Tabela 5.18: Uśrednione wyniki badań współczynników dla wszystkich metody PSO oraz trzeciego zestawu parametrów wejściowych

Metoda	Ef						Avg-iters					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
PSO	-	0,28	0,72	0,61	0,39	0,55	1	737,78	533,22	537,63	761,51	558,79
PSO-RT	1				1	1		1	,	1	,	1
PSO-ST	1	0,02	0,13	0,07	0,10	0,02		1746,50	2570,67	2962,00	2071,00	2567,00
PSO-SNVT	1			1	1	1		ı	ı	1	ı	1
PSO-SEL	1	1	1	1	1	1	1	1	1	1	1	ı
Metoda	Avg-best						Best					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
PSO	2412,14	1678,11	91,34	60,48	1155,14	98,65	48,87	13,24	10,99	10,61	39,73	11,12
PSO-RT	11553,93	68298376,37	9540,56	9502,79	25627778,95	9243,92	3604,58	10433,54	7847,50	7027,41	11784,71	6889,91
PSO-ST	3280,53	1505,68	184,90	125,24	1332,21	158,11	74,22	30,74	13,12	15,44	21,24	17,05
PSO-SNVT	12050,77	14032,82	13913,11	11893,34	14038,36	12077,30	6693,25	9122,34	9187,40	6922,18	10549,23	8984,72
PSO-SEL	285877487,36	27812679,50	24519688,39	4176992,80	44575712,71	47367031,26	9753,01	9360,24	8192,86	6677,11	17451,93	5528,31
Metoda	Std						Med					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
PSO	1955,17	1526,06	116,58	68,23	1265,75	101,17	2456,80	1004,44	29,98	30,26	946,97	49,54
PSO-RT	3187,03	120447296,05	1133,10	1312,56	61788281,83	1292,88	12072,06	155340,54	9422,71	9558,59	7624133,53	9085,86
PSO-ST	2697,69	1552,55	308,92	177,56	1757,92	199,55	2970,98	939,32	67,62	53,95	734,37	66,10
PSO-SNVT	2483,56	2732,94	2124,10	2753,85	1967,12	1742,65	12303,31	13874,56	14064,53	11903,19	14029,75	12233,96
PSO-SEL	637930516,56	65412955,46	36291322,31	9690783,12	101437201,92	123285283,46	12207527,42	4598134,56	2575599,85	12075,39	813881,99	20686,84

Uśrednione wyniki badań grup współczynników dla wszystkich metod PSO oraz zestawów parametrów wejściowych zostały przedstawione w tabeli 5.19. Set 6 odszukał rozwiązanie średnio o 42% rzadziej niż najlepsze współczynniki z grupy Set 1 oraz 3. Najmniejsze wartości Avg - iters zostały osiągnięte przez Set 1 dla metod PSO oraz PSO-ST. Set 6 potrzebował średnio o 800 iteracji więcej niż Set 1. Wartości Avg - best były bardzo zróżnicowane. Wykluczając PSO-SEL, które osiągnęło niekorzystne wartości, Set 6 zdobył najlepszy wynik dla metody PSO-RT, a w porównaniu do najmniejszych wartości Avg - best, pozostałe metody otrzymały wyniki gorsze o 7%. Najbardziej optymalne wartości Best zdobyły Set 1, 3, 4 oraz 6. Set 6 w każdym przypadku zajmował drugie lub trzecie miejsce, a najlepsze wartości Best uzyskał dla PSO-SEL. Metody PSO-ST oraz PSO-SNVT korzystając z Set 6 otrzymały najmniejsze wartości odchylenia Std. Natomiast wartości Med były najbardziej optymalne dla metody PSO-RT.

Najlepsze wartości miar osiągały algorytmy przy zastosowaniu współczynników z grupy Set 4. Metoda PSO odnajduje rozwiązania najbliższe poszukiwanym. Cechuje się powtarzalnością wyników oraz wysokim skupieniem cząsteczek wokół znalezionego rozwiązania. Set 1 w 40% modyfikacji zdobywa rozwiązanie w najmniejszej liczbie iteracji. Dodatkowo są one najlepsze w metodach PSO-RT oraz PSO-SNVT. Set 6 odróżnia się wysokim skupieniem cząsteczek wokół rozwiązania. Zdobywa najmniejsze wartości Avq - best dla PSO-RT oraz Best dla PSO-SEL.

Tabela 5.19: Uśrednione wyniki badań współczynników dla wszystkich metod PSO oraz wszystkich zestawów parametrów wejściowych

Metoda	Ef						Avg-iters					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
PSO	0,14	0,38	99,0	0,51	0,46	09,0	125,26	628,52	471,90	466,54	602,29	512,77
PSO-RT	•		1	1				1			1	1
PSO-ST	0,45	0,19	0,25	0,13	0,18	0,18	718,22	2054,85	2428,04	1922,15	2106,96	1929,73
PSO-SNVT		1		1								1
PSO-SEL	1	1	1	1	1	1	1	1	1	ı	1	1
Metoda	Avg-best						Best					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
PSO	1582,007	1081,090	69,293	65,473	767,773	71,070	32,727	12,827	9,840	8,610	21,170	9,477
PSO-RT	8273,717	$2,\!28\mathrm{E}\!+\!07$	6920,947	6880,797	$8,\!55E\!+\!06$	6753,857	2055,193	6882,330	5001,603	4720,273	7379,077	4348,673
PSO-ST	1997,427	988,010	101,063	104,887	942,060	102,197	45,353	22,310	10,803	11,850	15,453	13,150
PSO-SNVT	7792,393	10298,403	9908,057	8657,137	10530,660	8743,887	3605,283	6176,717	5913,597	4229,427	7086,380	5065,850
PSO-SEL	$^{9,54\mathrm{E}+07}$	$^{9,54\mathrm{E}+06}$	$8,\!20\mathrm{E}\!+\!06$	$1,\!40\mathrm{E}\!+\!06$	1,51E+07	$^{1,58\mathrm{E}+07}$	6796,577	6415,703	5874,533	3696,793	9080,290	3314,567
Metoda	Std						Med.					
	Set1	Set 2	Set 3	Set 4	Set 5	Set 6	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
PSO	1592,103	1287,947	84,373	80,640	1058,877	83,147	1179,673	377,147	26,713	19,947	361,913	32,013
PSO-RT	2697,077	$4,\!02\mathrm{E}\!+\!07$	1113,013	1112,543	$2,06\mathrm{E}{+07}$	1240,353	8797,337	57602,030	6846,203	6876,470	$2,\!55E\!+\!06$	6822,403
PSO-ST	1909,840	1287,397	165,130	190,983	1378,257	151,443	1330,887	361,220	34,220	38,170	444,163	39,127
PSO-SNVT	2288,053	2164,370	1914,663	2219,067	1795,327	1741,253	7922,967	10290,997	9941,373	8756,670	10714,290	8932,187
PSO-SEL	$2{,}13\mathrm{E}{+}08$	$2{,}23E{+}07$	$1,\!21\mathrm{E}{+}07$	$^{3,23\mathrm{E}+06}$	3,47E+07	$4{,}11E{+}07$	$4,\!08E\!+\!06$	$1,55\mathrm{E}{+}06$	$8,\!66E\!+\!05$	$8{,}15\mathrm{E}{+}03$	$2,\!81E+05$	1,09E+04

5.7 Badania poszczególnych miar dla wyników współczynników

Przeprowadzono badania poszczególnych miar jakości dla wszystkich grup współczynników przyśpieszenia (tabela 4.3). Zebrane wyniki zostały uśrednione i przedstawione w tabeli 5.20, 5.21. Wartości Avg-best, Med, Std dla Set 2 i 5 ustawiono na 0, ze względu na ich bardzo duże wartości, które deformowały wykresy.

Największą skuteczność Ef, wynoszącą 45% uzyskał Set 3. Set 6 był gorszy o 6 punktów procentowych. Odwrotne rezultaty osiągnięto dla Avg-iters. Set 6 potrzebował prawie 250 iteracji (16%) mniej niż Set 3. Pomimo tego, że w Set 6 wykorzystano zbliżone wartości początkowe i końcowe we wzorach (2.5) (2.6), to dzięki modyfikacji PSO-CTIAC wyniki są bardziej powtarzalne. Set 6 uzyskał najlepszą wartość Avg-best, a wartość Best była większa od tej osiągniętej przez Set 1 o niecałe 2%. Najmniejszą wartość Std zdobył Set 2, a Set 6 uzyskał wartość większą o 32%. Wartość Med dla Set 6 była gorsza od najlepszej grupy współczynników jedynie o 0.8%. Pomimo dużego rozrzucenia cząsteczek wokół średniego rozwiązania, jej wartość środkowa na tle pozostałych współczynników jest korzystna.

Set 6 odnalazł rozwiązanie zadanych funkcji testowych 15% rzadziej niż Set 3, który zdobył największą skuteczność Ef. Mimo to korzystne wartości Avg-best oraz Best na tle pozostałych współczynników, potwierdzają powtarzalność osiąganych rezultatów, które są zbliżone do prawidłowych rozwiązań funkcji testowych. Cząsteczki dla Set 6 są, w porównaniu do reszty grup współczynników, dosyć mocno rozrzucone wokół średniej. Natomiast wartość Med osiągnięta przez Set 6 była bardzo zbliżona do najlepszej wartości, osiągniętej przez Set 4.

Tabela 5.20: Uśrednione wyniki badań współczynników dla wszystkich metod PSO

Miara jakości	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Ef	0,30	0,29	0,45	0,32	0,32	0,39
Avg-iters	421,740	1341,687	1449,973	1194,343	1354,628	1221,248
Avg-best	4911,386	5696041,619	4249,840	3927,073	2140161,693	3917,753
Best	2507,027	3901,977	3362,075	2533,391	4716,474	2550,343
Std	1960,112	1310,987	2265,585	1913,783	1517,855	1922,434

Tabela 5.20: Uśrednione wyniki badań współczynników dla wszystkich metod PSO

Miara jakości	Set1	Set 2	Set 3	Set 4	Set 5	Set 6
Med.	4807,716	17157,848	4212,128	3922,814	639703,398	3956,433

Tabela 5.21: Wartości miar dla poszczególnych grup współczynników

5.8 Badania wydajności współczynników dla poszczególnych metod PSO

Przeprowadzone badania pozwoliły na zbadanie wydajności wszystkich grup współczynników (tabela 4.3) dla poszczególnych metod PSO oraz funkcji testowych

(tabela 4.1). Wyniki zostały przedstawione w tabelach 5.22, 5.23.

Najkrótszy czas wykonania dla metody PSO osiągnął Set 3, natomiast dla pozostałych - Set 5. Set 6 uzyskał wyniki gorsze średnio o 14%. Dla funkcji Sphere, F2, Rosenbrock i Griewank Set 6 osiągał, zaraz po Set 2, najgorsze wyniki. Dla pozostałych, czas wykonania był na drugim miejscu, zaraz po Set 5 i trwał dłużej średnio o 1.966 sekundy.

Tabela 5.22: Uśrednione wyniki czasów wykonania wszystkich metod PSO dla poszczególnych grup współczynników w sekundach [s]

Metoda	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6
PSO	3,500	3,150	2,325	2,608	2,596	2,778
PSO-RT	4,046	4,336	4,139	4,111	3,888	4,312
PSO-ST	3,682	4,093	4,006	3,689	2,810	3,076
PSO-SNVT	84,882	98,086	91,247	94,320	69,920	85,021
PSO-SEL	5,852	6,571	6,432	5,711	4,391	4,795
	20,393	23,247	21,630	22,088	16,721	19,996

Tabela 5.23: Uśrednione wyniki czasów wykonania pogrupowanych w zależności od funkcji testowych metod PSO, dla poszczególnych grup współczynników w sekundach [s]

Funkcja	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6
SPHERE	20,993	21,211	20,589	20,732	19,153	21,082
F2	20,802	22,507	21,178	21,041	18,158	22,364
ROSENBROCK	18,000	23,173	21,167	21,762	16,666	22,675
GRIEWANK	20,437	23,374	20,826	21,986	16,253	22,409
RASTRIGIN	20,927	23,690	22,137	22,910	15,973	20,812
ACKLEY	20,780	23,598	21,569	22,959	15,876	18,329
SCHWEFEL	21,278	23,951	22,565	23,307	15,877	16,125
ZAKHAROV	19,922	24,473	23,005	22,001	15,811	16,176

5.9 Badania przebiegu funkcji dla współczynników przyśpieszenia PSO-CTIAC

Przeprowadzono badania wszystkich grup współczynników przyśpieszenia (tabela 4.3), które pozwoliły na wygenerowanie wykresów przebiegów algorytmów PSO. W tym podrozdziale zostały zaprezentowane wyniki eksperymentów dla drugiego zestawu parametrów wejściowych, ponieważ osiągały one najlepsze wartości miar jakości. Set 6 został porównany ze współczynnikami, które osiągały najwyższą skuteczność. Wykresy poszczególnych funkcji testowych, oprócz Schwefel oraz Zakharov, został zaprezentowane na rysunkach 5.1, 5.2, 5.3, 5.4, 5.5 oraz 5.6.

Wartości w przebiegach metod PSO oraz PSO-ST dla funkcji Sphere (rysunek 5.1) i Set 6 maleją w iteracjach 0 - 500 mniej gwałtownie niż w Set 3. PSO-SNVT do 1000 iteracji oraz po 1750 iteracji, posiada 2 gwałtowne spadki wartości, których nie zauważono dla Set 3. Bardzo ważną cechą metody PSO-SEL dla Set6, jest widoczny spadek wartości po 2750 iteracjach.

Rysunek 5.1: Przebieg funkcji Sphere odpowiednio dla Set6i Set3

Przebiegi metody F2 (rysunek 5.2) również wskazują na wolniejszą zbieżność w pierwszej części działania algorytmów PSO, PSO-ST i PSO-SN. W PSO-SEL ponownie zauważono zbieżność do lepszych rozwiązań po 2500 iteracji.

Rysunek 5.2: Przebieg funkcji F2 odpowiednio dla Set 6 i Set 3

Wykorzystanie Set 6 spowodowało zmniejszenie zbieżności. Metoda PSO-ST nie znalazła rozwiązania funkcji Rosenbrock (rysunek 5.3). Po 2400 iteracji zaobserwowano wybicie cząsteczek ze znalezionych lokalnych minimów i chwilowe zmniejszenie wartości.

Rysunek 5.3: Przebieg funkcji Rosenbrock odpowiednio dla Set 6 i Set 3

Dla funkcji Griewank (rysunek 5.4) nie zauważono poprawy wyników. Algorytm PSO-ST zbiegał dużo wolniej dla Set 6.

Rysunek 5.4: Przebieg funkcji Griewank odpowiednio dla Set 6 i Set 3

Na wykresach funkcji Rastrigin (rysunek 5.5) dopatrzono się wyraźnych oraz cyklicznych spadków wartości dla metody PSO-SEL i Set 6. Algorytm wykorzystujący współczynniki z grupy Set 4 również zbiega wraz z kolejnymi iteracjami, ale nie tak gwałtownie i skutecznie. Metoda PSO-ST dla Set 6, w przeciwieństwie do Set 4, znalazła optymalne rozwiązanie.

Rysunek 5.5: Przebieg funkcji Rastrigin odpowiednio dla Set 6 i Set 4

Przebiegi wartości w funkcji Ackley (rysunek 5.6) są bardzo zbliżone do siebie. Wyjątkiem jest PSO-SEL, w której można zaobserwować wysoką zbieżność w początkowym i końcowym etapie działania algorytmu. W środkowej części, wartości niemalże się nie zmieniają.

Rysunek 5.6: Przebieg funkcji Ackley odpowiednio dla Set 6 i Set 3

Wykresy funkcji potwierdzają skuteczność działania Set 6. Szczególną metodą jest PSO-SEL, w której zaobserwowano wyraźne spadki wartości rozwiązania w początkowym i końcowym etapie działania algorytmu. Dodatkowo dla metod PSO oraz PSO-ST zauważono, że zbiegają wolniej w początkowym etapie działania algorytmów. Cykliczne zwiększanie wartości współczynników przynosi najlepsze efekty w końcowej fazie działania metody PSO.

Rozdział 6

Podsumowanie

Możliwości wykorzystania metody optymalizacji za pomocą roju cząsteczek (PSO) są ogromne. Największymi jej atutami są prostota i łatwość modyfikacji, co wpływa na rosnącą popularność. Algorytm jest często wykorzystywany w złożonych i wielowymiarowych problemach, których nie można rozwiązać za pomocą tradycyjnych technik deterministycznych.

Celem niniejszej pracy magisterskiej była analiza i ocena efektywności różnych współczynników przyspieszenia stosowanych w metodach PSO. Utworzono także autorską grupę współczynników PSO-CTIAC, która została porównana ze współczynnikami, pochodzącymi z literatury reprezentowanymi jako stałe wartości, funkcje liniowe i nieliniowe.

Do przeprowadzenia eksperymentów wykorzystano osiem wzorcowych funkcji testowych, takich jak: funkcja Ackley, Rosenbrock czy Griewank. W dostarczeniu największej liczby rezultatów, które pomogły w ocenie badanych współczynników, posłużono się czterema modyfikacjami PSO zaczerpniętymi z literatury.

W ramach części praktycznej zaimplementowano aplikację badawczą, która umożliwiła przeprowadzenie eksperymentów z użyciem omówionych grup współczynników, metod PSO oraz funkcji. Założeniami, które przyświecały autorowi, było opracowanie modularnego rozwiązania, pozwalającego na konstruowanie dowolnych współczynników i testowanie ich dla dowolnych algorytmów. Wykorzystano popularne miary jakości, które zapewniły rzetelną ewaluację otrzymanych rezultatów. Udostępniono dodatkowe funkcjonalności służące do eksportu uzyskanych wyników do plików w formacie Excel oraz generowania wykresów przebiegów poszczególnych funkcji dla

wszystkich metod PSO.

Przeprowadzone zostały eksperymenty badające efektywność współczynników przyspieszenia dla każdej omówionej metody PSO z osobna oraz trzech zestawów parametrów wejściowych. W kolejnym kroku, wyniki zostały uśrednione i najpierw pogrupowane w zależności od wykorzystanego algorytmu, a następnie tylko od poszczególnych grup współczynników. Wykonane zostały również badania przebiegów funkcji testowych dla PSO-CTIAC oraz sprawdzono wydajność współczynników w zależności od metody oraz funkcji.

Zaproponowane przez autora współczynniki PSO-CTIAC, reprezentowane przez Set 6, osiągały mniejszą skuteczność od najlepszej grupy o średnio 15%. Pomimo to, najbardziej optymalne rozwiązania oraz ich średnia były na bardzo wysokim poziomie, co świadczy o dobrej jakości oraz powtarzalności otrzymywanych rezultatów. Cząsteczki były dosyć mocno rozrzucone wokół średniej, a mimo to PSO-CTIAC osiągał optymalną wartość środkową. Wykresy przebiegów funkcji potwierdzają istotną cechę zwiększenia zbieżności w końcowym etapie działania algorytmu. Wydajność autorskiego zestawu współczynników nie wyróżniała się na tle pozostałych rozwiązań.

Bibliografia

- [1] R. Eberhart i J. Kennedy. "A new optimizer using particle swarm theory". W: MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. 1995, s. 39–43. DOI: 10.1109/MHS.1995.494215.
- [2] J. Kennedy i R. Eberhart. "Particle swarm optimization". W: Proceedings of ICNN'95 - International Conference on Neural Networks. T. 4. 1995, 1942– 1948 vol.4. DOI: 10.1109/ICNN.1995.488968.
- [3] Ioan Trelea. "Trelea, I.C.: The Particle Swarm Optimization Algorithm: convergence analysis and parameter selection. Information Processing Letters 85, 317-325". W: Information Processing Letters 85 (mar. 2003), s. 317-325. DOI: 10.1016/S0020-0190(02)00447-7.
- [4] Yuhui Shi i B.Gireesha Obaiahnahatti. "A Modified Particle Swarm Optimizer". W: t. 6. Czer. 1998, s. 69–73. ISBN: 0-7803-4869-9. DOI: 10.1109/ICEC. 1998.699146.
- [5] Yuhui Shi i B.Gireesha Obaiahnahatti. "Empirical Study of Particle Swarm Optimization". W: t. 3. Lut. 1999, 1950 Vol. 3. ISBN: 0-7803-5536-9. DOI: 10. 1109/CEC.1999.785511.
- [6] Eberhart i Yuhui Shi. "Particle swarm optimization: Development, applications and resources". W: t. 1. Lut. 2001, 81–86 vol. 1. ISBN: 0-7803-6657-3. DOI: 10.1109/CEC.2001.934374.
- [7] Asanga Ratnaweera, Saman Halgamuge i Harry Watson. "Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients". W: *Evolutionary Computation, IEEE Transactions on* 8 (lip. 2004), s. 240–255. DOI: 10.1109/TEVC.2004.826071.

- [8] M. Clerc. "The swarm and the queen: towards a deterministic and adaptive particle swarm optimization". W: *ICEC* (1999).
- [9] Qingjian Ni i Jianming Deng. "A New Logistic Dynamic Particle Swarm Optimization Algorithm Based on Random Topology". W: The Scientific World Journal 2013 (maj 2013), s. 409167. DOI: 10.1155/2013/409167.
- [10] Python Software Foundation. *Python*. URL: https://www.python.org/. (ostatni dostęp: 06.08.2021).
- [11] Python Software Foundation. math Mathematical functions. URL: https://docs.python.org/3/library/math.html. (ostatni dostęp: 07.08.2021).
- [12] NumPy Steering Council. NumPy. URL: https://numpy.org/. (ostatni dostęp: 07.08.2021).
- [13] J. D. Hunter. "Matplotlib: A 2D graphics environment". W: Computing in Science & Engineering 9.3 (2007), s. 90–95. DOI: 10.1109/MCSE.2007.55.
- [14] The pandas development team. pandas Python Data Analysis Library. URL: https://pandas.pydata.org/. (ostatni dostęp: 07.08.2021).

Spis rysunków

2.1	Schemat blokowy algorytmu PSO	11
2.2	Wpływ składowych wektora prędkości w iteracji numer 1 dla pro-	
	blemu dwuwymiarowego	12
2.3	Wpływ składowych wektora prędkości w iteracji numer 2 dla pro-	
	blemu dwuwymiarowego	13
2.4	Schemat działania zaproponowanego współczynnika kognitywnego i	
	socjalnego	18
2.5	Schemat wymiany wiedzy pomiędzy cząsteczkami w modyfikacji al-	
	gorytmu PSO - topologia pierścienia	19
2.6	Schemat wymiany wiedzy pomiędzy cząsteczkami w modyfikacji al-	
	gorytmu PSO - topologia gwiazdy	20
2.7	Schemat wymiany wiedzy pomiędzy cząsteczkami w modyfikacji al-	
	gorytmu PSO - sąsiedztwo przestrzenne ze zmiennym progiem	21
3.1	Diagram klas zaimplementowanej aplikacji badawczej	26
4.1	Przykładowy wykres przebiegu najlepszego znalezionego rozwiązania .	30
5.1	Przebieg funkcji Sphere odpowiednio dla Set 6 i Set 3	68
5.2	Przebieg funkcji F2 odpowiednio dla Set 6 i Set 3	69
5.3	Przebieg funkcji Rosenbrock odpowiednio dla Set 6 i Set 3	69
5.4	Przebieg funkcji Griewank odpowiednio dla Set 6 i Set 3	70
5.5	Przebieg funkcji Rastrigin odpowiednio dla Set 6 i Set 4	70
5.6	Przebieg funkcji Acklev odpowiednio dla Set 6 i Set 3	71

Spis tabel

4.1	Charakterystyka badanych funkcji celu	31
4.2	Wykresy testowanych funkcji celu	31
4.3	Testowane grupy współczynników przyśpieszenia	33
4.4	Zestawy parametrów wejściowych przeprowadzanych badań	33
5.1	Wyniki badań współczynników dla metody PSO oraz pierwszego ze-	
	stawu parametrów wejściowych	37
5.2	Wyniki badań współczynników dla metody PSO oraz drugiego ze-	
	stawu parametrów wejściowych	38
5.3	Wyniki badań współczynników dla metody PSO oraz trzeciego ze-	
	stawu parametrów wejściowych	39
5.4	Wyniki badań współczynników dla metody PSO-ST oraz pierwszego	
	zestawu parametrów wejściowych	42
5.5	Wyniki badań współczynników dla metody PSO-ST oraz drugiego	
	zestawu parametrów wejściowych	43
5.6	Wyniki badań współczynników dla metody PSO-ST oraz trzeciego	
	zestawu parametrów wejściowych	44
5.7	Wyniki badań współczynników dla metody PSO-RT oraz pierwszego	
	zestawu parametrów wejściowych	46
5.8	Wyniki badań współczynników dla metody PSO-RT oraz drugiego	
	zestawu parametrów wejściowych	47
5.9	Wyniki badań współczynników dla metody PSO-RT oraz trzeciego	
	zestawu parametrów wejściowych	48
5.10	Wyniki badań współczynników dla metody PSO-SNVT oraz pierw-	
	szego zestawu parametrów wejściowych	50

5.11	Wyniki badań współczynników dla metody PSO-SNVT oraz drugiego	
	zestawu parametrów wejściowych	51
5.12	Wyniki badań współczynników dla metody PSO-SNVT oraz trzeciego	
	zestawu parametrów wejściowych	52
5.13	Wyniki badań współczynników dla metody PSO-SEL oraz pierwszego	
	zestawu parametrów wejściowych	55
5.14	Wyniki badań współczynników dla metody PSO-SEL oraz drugiego	
	zestawu parametrów wejściowych	56
5.15	Wyniki badań współczynników dla metody PSO-SEL oraz trzeciego	
	zestawu parametrów wejściowych	57
5.16	Uśrednione wyniki badań współczynników dla wszystkich metody	
	PSO oraz pierwszego zestawu parametrów wejściowych	60
5.17	Uśrednione wyniki badań współczynników dla wszystkich metody	
	PSO oraz drugiego zestawu parametrów wejściowych	61
5.18	Uśrednione wyniki badań współczynników dla wszystkich metody	
	PSO oraz trzeciego zestawu parametrów wejściowych	62
5.19	Uśrednione wyniki badań współczynników dla wszystkich metod PSO	
	oraz wszystkich zestawów parametrów wejściowych	64
5.20	Uśrednione wyniki badań współczynników dla wszystkich metod PSO	65
5.20	Uśrednione wyniki badań współczynników dla wszystkich metod PSO	66
5.21	Wartości miar dla poszczególnych grup współczynników	66
5.22	Uśrednione wyniki czasów wykonania wszystkich metod PSO dla po-	
	szczególnych grup współczynników w sekundach [s] $\ \ldots \ \ldots \ \ldots$	67
5.23	Uśrednione wyniki czasów wykonania pogrupowanych w zależności od	
	funkcji testowych metod PSO, dla poszczególnych grup współczynni-	
	ków w sekundach [s]	67