

		1 . 1	
		$\lim_{x\to\infty}P(x)=\frac{A_2}{B_2}$	
		x 400 bz	
) I	dia C. Ca lau		
6 C	in Chesse asymptotic		
	6 Vseful	for extrapolation	
0 P	adé Approximation		
	1 plant matter		
	Chose P(x) 9	.t. Taylor expension mate	ches a function
	,	7	
Q Q	10 1000	Aeronin ator	No poles) See Numerool Reupis,
	o/con. very porces	(1)	Recipis
	La Bangcentric Inte	erpolation (fix coeffs s.t.	No poly)
	4		
Multi-dinersional			
(nterpolation))		
(1000)			
		,	
Vi con (1)	function at regular ed grid points		
	1 1	7	rregular Grid
5 poe	ed gard points		J
			Tac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Co		Tesselating data (see NE)
Y Y	Co	~ SUCCESSIVELY	1 0 2
	A gila	ipply 1-d	(x •)
		(aternolation	Radial Basis function
	/ ×	/ Notes parts	
			C . S . d(2 2)
	Detals: N.R.		t(x) ~ (W. 4(x-xi)
			, J , See
		l / Vei	ghas of Charles NR
			$f_{(x)} \simeq \sum_{i} W_{i} \phi(\vec{x} - \vec{x}_{i})$ See Basis functions V_{i} R.