§ 2.2 The Limit of a Function

Symbols $\lim_{x \to a} f(x) = L$

words "the limit of f(x), as x approaches a, is L"

meaning The output of f(x) can be forced arbitrarily close to L by picking x's sufficiently close to a.

as x gets close to a, f(x) gets close to L

Picture

Alternatively: lim f(x)=M

x > a+

lim f(x) = L

right hand limit

left hand limit

- · How else can a limit fail to exist? approach infinity, Kody stuff vertical asymptotic.
- · Does the y-value at x=a affect whether the on y=f(x)

 limit exists? (No)

LECTURE NOTES: §2.2

1. The function g(x) is graphed below. Use the graph to fill in the blanks.

(a)
$$\lim_{x \to 4^-} f(x) =$$

(b)
$$\lim_{x \to 4^+} f(x) =$$

(c)
$$\lim_{x\to 4} f(x) =$$
DNE

(d)
$$f(4) = 10$$

(e) $\lim_{x\to 6^-} f(x) =$ ______

(f)
$$\lim_{x \to 6^+} f(x) = \underline{-4}$$

(g)
$$\lim_{x\to 6} f(x) =$$
DNE

(i)
$$\lim_{x \to 8} f(x) = -4$$

(j)
$$f(8) = -4$$

2. The function g(x) is graphed below. Use the graph to fill in the blanks.

Write the equation of any vertical asymptotes:

(a)
$$\lim_{x \to 4^{-}} f(x) =$$

(b)
$$\lim_{x \to 4^+} f(x) =$$

(c)
$$\lim_{x\to 4} f(x) =$$
DNE

(d)
$$f(4) =$$
DNF

(e)
$$\lim_{x \to 8} f(x) =$$

X=4

3. Evaluate the limits below by graphing $f(x) = \begin{cases} x+1 & x<0 \\ x-1 & 0 \leq x < 2 \\ 1+\sqrt{x-2} & 2 < x \end{cases}$

the limit on right are different

(b) $\lim_{x \to 2} f(x) = 1$

 $\lim_{X \to 2^+} f(x) = | = \lim_{X \to 2^+} f(x).$

- (c) For which values a does $\lim_{x\to a} f(x)$ exist? All real numbers except x=0.
- 4. Use a calculator and a table of values to determine the limit: $\lim x \to 0^+ \left(\frac{1}{x} \ln(x)\right)$.

X	0.0001	0.001	0.01	0.1	1
$y = \frac{1}{x} - \ln(x)$	10,004.2	1006.9	104.6	12.3	1
	' y→2				

5. Sketch the graph of an example of a function f that satisfies all of the given conditions.

(b)
$$\lim_{x \to 3^{-}} f(\mathbf{x}) = -2$$

(c)
$$\lim_{x \to 3^+} f(x) = 4$$

(d)
$$f(0) = 2$$

(e)
$$f(3) = 1$$

$$(f) \lim_{x \to -1^+} f(x) = \infty$$

