

10/580712

- 1 -

1AP20 Rec'd PCT/PTO 25 MAY 2006

SEQUENCE LISTING

<110> INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE (INRA)
GRAPPIN, Philippe
OGE, Laurent
BOVE, Jerome

<120> Use of L-isoaspartyl methyl transferase as longevity marker in seeds

<130> MJPBv539/118

<150> FR 0313858
<151> 2003-11-26

<160> 17

<170> PatentIn version 3.1

<210> 1
<211> 13
<212> PRT
<213> Artificial sequence

<220>
<223> Plant L-isoaspartyl methyltransferase consensus sequence

<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> X= E, V or S

<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> X= A or E

<220>
<221> MISC_FEATURE
<222> (13)..(13)
<223> X= R, G or Q

<400> 1
Arg Tyr Val Pro Leu Thr Ser Arg Xaa Xaa Gln Leu Xaa
1 5 10

<210> 2
<211> 16
<212> PRT
<213> Artificial sequence

<220>
<223> Plant L-isoaspartyl methyltransferase consensus sequence

<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> X= D or E

<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> X= Q or K

<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> X= V or I

<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> X= N or S

<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> X= S, E or A

<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> X= IS, VS, VT, TS or a peptide bond

<220>
<221> MISC_FEATURE
<222> (15)..(15)
<223> X= I or V

<220>
<221> MISC_FEATURE
<222> (16)..(16)
<223> X= K, Q or R

<400> 2
Gln Xaa Leu Xaa Val Xaa Asp Lys Xaa Xaa Asp Gly Ser Xaa Xaa Xaa
1 5 10 15

<210> 3
<211> 17
<212> PRT
<213> Arabidopsis thaliana

<400> 3
Gln Asp Leu Gln Val Val Asp Lys Asn Ser Asp Gly Ser Val Ser Ile
1 5 10 15

Lys

<210> 4
<211> 15
<212> PRT
<213> Arabidopsis thaliana

<400> 4
Gln Glu Leu Lys Val Ile Asp Lys Asn Glu Asp Gly Ser Ile Lys
1 5 10 15

<210> 5
<211> 13
<212> PRT
<213> Arabidopsis thaliana

<400> 5
Arg Tyr Val Pro Leu Thr Ser Arg Glu Ala Gln Leu Arg
1 5 10

<210> 6
<211> 13
<212> PRT
<213> Arabidopsis thaliana

<400> 6
Arg Tyr Val Pro Leu Thr Ser Arg Val Glu Gln Leu Gly
1 5 10

<210> 7
<211> 13
<212> PRT
<213> Arabidopsis thaliana

<400> 7
Arg Tyr Val Pro Leu Thr Ser Arg Ser Ala Gln Leu Gln
1 5 10

<210> 8
<211> 17
<212> PRT
<213> Arabidopsis thaliana

<400> 8
Gln Asp Leu Gln Val Ile Asp Lys Ser Ala Asp Gly Ser Thr Ser Val
1 5 10 15

Arg

<210> 9
<211> 17
<212> PRT
<213> Arabidopsis thaliana

<400> 9
Gln Glu Leu Gln Val Val Asp Lys Asn Ala Asp Gly Ser Val Thr Val
1 5 10 15

Gln

<210> 10
<211> 8
<212> PRT

<213> Arabidopsis thaliana

<400> 10
Arg Tyr Val Pro Leu Thr Ser Arg
1 5

<210> 11
<211> 12
<212> PRT
<213> Arabidopsis thaliana

<400> 11
Arg Tyr Val Pro Leu Thr Ser Arg Glu Ala Gln Leu
1 5 10

<210> 12
<211> 15
<212> PRT
<213> Arabidopsis thaliana

<400> 12
Arg Tyr Val Pro Leu Thr Ser Arg Glu Ala Gln Leu Arg Gly Asp
1 5 10 15

<210> 13
<211> 23
<212> DNA
<213> Arabidopsis thaliana

<400> 13
gctatggagg ctgtggatag agg

23

<210> 14
<211> 21
<212> DNA
<213> Arabidopsis thaliana

<400> 14
tcagccccct ctcagctgcg c

21

<210> 15
<211> 21
<212> DNA
<213> Arabidopsis thaliana

<400> 15
ggaccgggta cttaactgct t

21

<210> 16
<211> 24
<212> DNA
<213> Arabidopsis thaliana

<400> 16
ttggcggcac ccttagctgg atca

24

<210> 17
<211> 25
<212> DNA
<213> *Arabidopsis thaliana*
<400> 17
atgccccagg acatcggtat ttcat