MATEMATIČKI FAKULTET, UNIVERZITET U BEOGRADU

OPERACIONA ISTRAŽIVANJA

vežbe -

MARIJA IVANOVIĆ

Beograd, 2014.

Linearno programiranje - uvod

Linearno programiranje (LP) predstavlja jednu vrstu matematičkog programiranja. Najčešće se koristi za rešavanje matematičkih modela koji odgovaraju maksimizaciji profita, odnosno minimizaciju troškova, pri određenim uslovima.

Matematički model treba da sadrži

- Linearnu funkciju cilja
- Linearna ograničenja
- Dopustiv skup rešenja

Linearni program se može zapisati u kanonskom obliku na sledeći način:

$$max \quad c^T x$$

pri ograničenjima $Ax \le b$, $x \ge 0$

gde su

- x vektor promenljivih (koje treba odrediti)
- b, c koeficijenti (poznati)
- A matrica (poznata)

STANDARDNA FORMA

Standardna forma je najjednostavnija oblik linearnog programiranja. Za n=3 sastoji se iz

- Linearne funkcije koju je potrebno maksimizovati:

$$f(x_1, x_2, x_3) = c_1 x_1 + c_2 x_2 + c_3 x_3$$

Ograničenja

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \le b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 \le b_3$$

Ne-negativnih promenljiva

$$x_1 \ge 0$$

$$x_2 \ge 0$$

$$x_3 \ge 0$$

Problem se, takođe, može zapisati matrično:

$$\max\{c^Tx\mid Ax\leq b\ , x\geq 0\,\}$$

Marija se bavi grnčarstvom i pravi šolje i tanjire. Da bi se napravila šolja, potrebno je 6 minuta, dok je za tanjir potrebno 3 minuta. Pri pravljenju šolje potroši se 75 gr, dok se za tanjir potroši 100 gr gline. Ukoliko ima 20 sati na raspolaganju za izradu svih proizvoda i 250 kg gline a zarada koju ostvari iznosi 2 eura po svakoj šolji i 1.5 eura po tanjiru, koliko šolja i tanjira treba da napravi kako bi ostvarila maksimalnu zaradu?

REŠENJE:

Marija će napraviti x šolja i y tanjira.

Funkcija cilja:

- zarada iznosi 2eur/šolja, zarada za x šolja biće (2 eur/šolja)*(x šolja).
- zarada iznosi 1.5eur/tanjir, odnosno zarada od svih tanjira biće (1.5 eur/ tanjir)*(y tanjira).
 - Ukupna zarada iznosi:

$$f(x,y) = 2x + 1.5y$$
 (eur)

Ograničenje vremena:

- vreme potrebno da se napravi jedna šolja iznosi 6min. Dakle, da bi napravili x šolja potrošiće 6x minuta.
- slično, za y šolja koristiće 3y minuta.
 - o Ukupno vreme pravljenja proizvoda iznosi 20h, pa tako:

$$6x + 3y \le 1200$$

Ograničenje materijala

- Materijal za jednu šolju iznosi 75 gr => x šolja = 75x gr materijala
- Materijal za jedan tanjir iznosi 100 gr => y tanjira = 100y gr materijala
 - Ukupno, potrošen materijal iznosi

$$75x + 100y \le 25000$$

Nenegativne promenljive

- Broj šolja i tanjira je najmanje 0, $x \ge 0$, $y \ge 0$ (ne može se napraviti negativan broj šolja ili tanjira !!!!)

Konačno, dobijamo model:

$$Max f(x,y) = 2x + 1.5y$$

Pri ograničenjima:
$$6x + 3y \le 1200$$

$$75x + 100y \le 25000$$

$$x \ge 0$$
, $y \ge 0$

^{*}Dakle, optimalno rešenje, dobijeno cplex-om: x = 120, y = 160, f(x, y) = 480.

Marijin deda ima 320 hektara njive i želi da posadi pšenicu na tom prostoru. Sadnja pšenice bi koštala 50 eura po svakom zasađenom hektaru i donela bi 100 bušela (27,2 kg) po aru. Jedan bušel donosi zaradu od 6 eura. Marija je svom dedi predložila da umesto pšenice zasadi soju, čija sadnja iznosi 100 eura po hektaru i prinos od 100 bušela po hektaru i, pri tom, jedan bušel soje donosi zaradu od 9 eura. Ukoliko Marijin deda ima na raspolaganju 20,000 eura za sadnju da li deda da ostane pri svojoj odluci i sadi samo pšenicu, ili da posluša Mariju i posadi samo soju ili da posadi i jedno drugo i u kojoj razmeri? Pretpostavimo da skladište može da primi najviše 19,200 bušela robe.

REŠENJE:

Marijin deda želi da posadi x hektara pšenice i y hektara soje.

Funkcija cilja:

- Zarada od x hektara pšenice iznosi 100(bušel/ha)*6(eur/bušel)*x,
- dok su troškovi sadnje 50(eur/ha)*x,
 - O Ukupna zarada za pšenicu iznosi f(x) = (100 * 6 50)x = 550x (eur)
- Zarada od v hektara soje iznosi 100(bušel/ha)*9(eur/bušel)*v,
- dok su troškovi sadnje 100(eur/ha)*y,
 - O Ukupna zarada za soju iznosi f(y) = (100 * 9 100)y = 800y (eur)
 - Ukupan prinos iznosi:

$$f(x,y) = 550x + 800y$$
 (eur)

Ograničenje početnog kapitala, njive i skladišta:

- Deda raspolaže sa 20,000 eura početnog kapitala

$$50x + 100y \le 20,000$$

- Deda raspolaže sa njivom od 320 ha

$$x + y \le 320$$

Na raspolaganju je skadište koje može da primi najviše 19,200 bušela robe

$$100x + 100y \le 19,200$$

Ograničenje po pitanju količine koja će se saditi:

Naravno da očekujemo da je

$$x \ge 0$$
, $y \ge 0$

Konačno, model

Max
$$f(x,y) = 550x + 800y$$
 (eur)

Pri ograničenjima: $50x + 100y \le 20000$

$$x + y \le 320$$
$$100x + 100y \le 19200$$

$$x \ge 0$$
, $y \ge 0$

^{*}Optimalno rešenje, dobijeno cplex-om: : x = 0 , y = 192 , f(x,y) = 153,600

Marijina firma želi da investira novac i tom prilikom predloženo joj je 5 različitih investicionih scenarija. Protok novca (cash outflows) i trenutna vrednost akcija dati su u tabeli. Ove godine planirano je da se uloži najviše 40 mil eur, dok će se naredne godine, u iste akcije, uložiti najviše 20 mil eur. Nije obavezno da se uloži u čitav projekat, odnosno možemo kupiti samo deo neke investicije. Npr, ako u investiciju pod rednim brojem 4 uložimo samo $\frac{1}{4}$ investicije, potrebno je da ove godine platimo $\frac{1}{4}(5) = \frac{1}{25}$ i $\frac{1}{4}(1) = 0.25$, a zarada iznosi $\frac{1}{4}(14) = 3.5$. Naš cilj je da pomognemo Mariji oko izbora investicija tako da, nakon dve godine, profit bude maksimalan.

Napomena: Nemoguće je kupiti akciju samo za II godinu. Akcije se kupuju u paketu za I i II godinu. Može se uložiti u više različitih investicija ili se više puta kupiti ista investicija.

	Investicija 1	Investicija 2	Investicija 3	Investicija 4	Investicija 5
I godina	11	53	5	5	29
II godina	3	6	5	1	34
Totalni profit	13	16	16	14	39

REŠENJE

Možemo uložiti novac u 5 različitih investicija. Moguće je investirati u čitavu investiciju ili samo njen deo.

- Neka x_i predstavlja koliko investiramo u investiciju i. U datom primeru je $x_4 = 1/4$.
- Hajde da u prvu investiciju uložimo x_1 čime, na kraju, profit od te investicije iznosi $13x_1$, u drugu x_2 što nam donosi profit od $16x_2$ i tako redom. Naš zadatak je da odredimo nepoznate x_i koje će nam omogućiti da $13x_1 + 16x_2 + 16x_3 + 14x_4 + 39x_5$ bude maksimalno.
- Naravno, postoje ograničenja za x_i obzirom da na raspolaganju imamo određenu svotu novca. Pa tako, u prvoj godini, kupovina x_1 dela prve investicije košta $11x_1$, kupovina druge investicije košta $53x_2$, treće $5x_3$, itd. Ukupno, možemo platiti najviše 40 mil, što znači da $11x_1 + 53x_2 + 5x_3 + 5x_4 + 29x_5$ ne sme biti veće od 40 mil. Na isti način, naredne godine ugovorene investicije koštaće $3x_1 + 6x_2 + 5x_3 + x_4 + 34x_5$ što ne sme biti veće od 20mil (iznos kojim raspolažemo tokom druge godine).

Možemo da formiramo LP problem.

Funkcija cilja je

$$\max f(x_1, x_2, x_3, x_4, x_5) \tag{1}$$

gde je $f(x_1, x_2, x_3, x_4, x_5) = 13x_1 + 16x_2 + 16x_3 + 14x_4 + 39x_5$

Ograničenja:

$$11x_1 + 53x_2 + 5x_3 + 5x_4 + 29x_5 \le 40$$

$$3x_1 + 6x_2 + 5x_3 + x_4 + 34x_5 \le 20$$
(2)

Zašto " ≤ " a ne "=" u drugoj i trećoj nejednakosti? Zato što možemo uložiti manje novca od onog koji nam je na raspolaganju i opet ostvariti maksimalnu zaradu. Bitno je da ne uložimo više nego što imamo.

Ostaju ograničenja u vezi nepoznatih.

Jasno je da $x_i \ge 0$, i = 1,...,5 tj. ne možemo kupiti –deo investicije. Da li se može investirati u istu investiciju dva puta? Na primer, da li mogu investirati u investiciju 3 ili 4 dva ili više puta? Ukoliko može, onda je dozvoljeno $x_i \ge 1$, odnosno ako se može investirati u deo investicije, a najviše u celu, tada imamo ograničenje $x_i \le 1$.

Dakle, ograničenje može biti ili $x_i \ge 0$ ili $0 \le x_i \le 1$.

*Optimalna vrednost: 118. Rešenje x₃= 3, x₄= 5, ostali x_i su jednaki nuli.

Pretpostavimo da se otvara nova Pošta u komšiluku i da zapošljava radnike. Broj radnika, potrebnih dnevno, dat je tabelom. Pored stalno zaposlenih, pošta može da zaposli radnike i po ugovoru o delu. Stalno zaposleni radnik radi 5 vezanih dana i posle toga ima pauzu od 2 dana. Svaki radni dan stalno zaposlenog radnika plaća se 80 eura, dok se svaki radni dan vikendom plaća 100 eura. Zaposleni po ugovoru o delu dobijaju 95 eur bez obzira da li rade radnim danom ili vikendom.

- A) Napraviti LP model koji će direktoru pošte omogućiti da minimizuje platu za svoje zaposlene a ipak ispuni zahteve o broju zaposlenih.
- B) Pretpostavimo da je najmanje 60% stalno zaposlenih slobodno petkom.

Dan	Ponedeljak	Utorak	Sreda	Četvrtak	Petak	Subota	Nedelja
Br.radnika	17	13	15	18	14	16	11

REŠENJE:

Obeležimo sa

- x₁ broj stalno zaposlenih koji rade od ponedeljka do petka i imaju slobodan vikend
- x₂ broj stalno zaposlenih koji rade od utorka do subote i imaju slobodnu nedelju i ponedeljak
- x₃ broj stalno zaposlenih koji rade od srede do nedelje i imaju slobodan ponedeljak i utorak
- x₄ broj stalno zaposlenih koji rade od četvrtka do ponedeljka, imaju slobodan utorak i sredu
- x₅ broj stalno zaposlenih koji rade od petka do utorka, imaju slobodnu sredu i četvrtak
- x₆ broj stalno zaposlenih koji rade od subote do srede, imaju slobodan četvrtak i petak
- x₇ broj stalno zaposlenih koji rade od nedelje do četvrtka i imaju slobodan petak i subotu.
- y₁ broj part-time zaposlenih koji će pomagati u ponedeljak
- y₂ broj part-time zaposlenih koji će pomagati u utorak
- y₃ broj part-time zaposlenih koji će pomagati u sredu,
-,
- y₇ broj part-time zaposlenih koji će pomagati u nedelju

Ponedeljkom pošta potražuje 17 radnika, dakle:

$$x_1 + x_4 + x_5 + x_6 + x_7 + y_1 = 17 (1)$$

Utorkom, postoji potreba za 13 radnika: $x_1 + x_2 + x_5 + x_6 + x_7 + y_2 = 13$ (2)

Sredom:
$$x_1 + x_2 + x_3 + x_6 + x_7 + y_3 = 15$$
 (3)

Četvrtkom
$$x_1 + x_2 + x_3 + x_4 + x_7 + y_4 = 18$$
 (4)

Petkom:
$$x_1 + x_2 + x_3 + x_4 + x_5 + y_5 = 14$$
 (5)

Subotom:
$$x_2 + x_3 + x_4 + x_5 + x_6 + x_7 = 16$$
 (6)

Nedeljom:
$$x_3 + x_4 + x_5 + x_6 + x_7 + y_7 = 11$$
 (7)

Jednačine (1)-(7) predstavljaju ograničenja.

Dodaćemo i ograničenje $x_i \ge 0, y_i \ge 0, i = 1,...,7, j = 1,...,7.$

Ostaje funkcija cilja (cost function):

Kolika je plata zaposlenih iz grupe koja radi ponedeljak-petak?

Radni dan iznosi 80 eura, dakle ukupna zarada je 80*5=400 eura.

Kolika je plata zaposlenih iz grupe koja radi utorak-subota?

Oni imaju jedan vikend koji se plaća 100 eura, stoga ukupna zarada iznosi 80*4+100=420 eura

Zaposleni iz grupe sreda-nedelja: 3 radna dana + 2 vikenda: 80*3+100*2 = 440 eura

Istu platu imaju i zaposleni iz grupa

četvrtak - ponedeljak, petak - utorak, subota - sreda

Grupa zaposlenih nedelja - četvrtak takođe prima platu od 420 eura.

Dakle, poštu stalno zaposleni "koštaju"

$$400x_1 + 420(x_2 + x_7) + 440(x_3 + x_4 + x_5 + x_6)$$

Part-time zaposleni imaju fiksnu naknadu, u iznosu od 100 eura po danu. Ova vrsta zaposlenih, poštu "košta"

$$100(y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7)$$

Konačno, LP problem:

min
$$f(x_1, x_2, x_3, x_4, x_5, x_6, x_7, y_1, y_2, y_3, y_4, y_5, y_6, y_7) = 400x_1 + 420(x_2 + x_7) + 440(x_3 + x_4 + x_5 + x_6) + 100(y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7)$$

Pri uslovima:

$$x_1 + x_4 + x_5 + x_6 + x_7 + y_1 = 17 (1)$$

$$x_1 + x_2 + x_5 + x_6 + x_7 + y_2 = 13 (2)$$

$$x_1 + x_2 + x_3 + x_6 + x_7 + y_3 = 15 (3)$$

$$x_1 + x_2 + x_3 + x_4 + x_7 + y_4 = 18 (4)$$

$$x_1 + x_2 + x_3 + x_4 + x_5 + y_5 = 14 (5)$$

$$x_2 + x_3 + x_4 + x_5 + x_6 + x_7 = 16 (6)$$

$$x_3 + x_4 + x_5 + x_6 + x_7 + y_7 = 11 (7)$$

Ograničenja

$$x_i \ge 0, y_i \ge 0, i = 1,...,7, j = 1,...,7.$$

Deo pod B:

Ukupan broj stalno zaposlenih je $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$

Ukupan broj zaposlenih kojima je petak slobodan je $x_6 + x_7$

Uslov je da najmanje 60% zaposlenih treba da je slobodno petkom. To znači da je

$$\frac{60}{100}(x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7) \le x_6 + x_7 \quad (8)$$

REŠENJE SA ČASA:

$$\operatorname{Min} f(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = 9880 - 75x_1 - 55(x_2 + x_7) - 35(x_3 + x_4 + x_5 + x_6)$$

Pri uslovima:

$$x_1 + x_4 + x_5 + x_6 + x_7 \le 17 \tag{1}$$

$$x_1 + x_2 + x_5 + x_6 + x_7 \le 13 \tag{2}$$

$$x_1 + x_2 + x_3 + x_6 + x_7 \le 15 \tag{3}$$

$$x_1 + x_2 + x_3 + x_4 + x_7 \le 18 \tag{4}$$

$$x_1 + x_2 + x_3 + x_4 + x_5 \le 14 \tag{5}$$

$$x_2 + x_3 + x_4 + x_5 + x_6 \le 16 \tag{6}$$

$$x_3 + x_4 + x_5 + x_6 + x_7 \le 11 \tag{7}$$

Ograničenja

$$x_i \ge 0$$
, i=1,...,7

Naftna kompanija se bavi distribucijom 3 različita tipa nafte (naf1, naf2 i naf3). Sva tri tipa nafte se prave pomoću tri različita tipa sirove nafte (sn1, sn2, sn3). Cena nafte i cena sirove nafte po 1 barelu (1barel =119,2l), dati su tabelom.

NAFTA	1 barel	SIROVA NAFTA	1 barel	
Naf1	70	Sn1	45	
Naf2	60	Sn2	35	
Naf3	50	Sn3	25	

Naftna kompanija može da dopremi najviše po 5.000 barela od svake vrste sirove nafte dnevno. Tipovi nafte koja se proizvodi se međusobno razlikuju po nivou oktana i sumpora. Sirova nafta koja se koristi u proizvodnji naf1 mora da ima najmanje nivo oktana 10 a najviše 1% sumpora. Nafta tipa naf2 sadrži nivo oktana od najmanje 8 a najviše 2% sumpora. Nafta tipa naf3 treba da sadrži najmanje oktana nivoa 6 i najviše 1% sumpora. Nivo oktana i sumpora su dati u tabeli 2.

SIROVA NAFTA	NIVO OKTANA	NIVO SUMPORA
sn1	12	0,5
sn2	6	2
sn3	8	3

Proizvodnja po jednom barelu sirove nafte košta 4 eur i kompanija ima kapacitete da dnevno može proizvesti najviše 14,000 barela nafte. Obaveza kompanije je da svojim kupcima dnevno obezbedi najmanje 3 000, 2 000 i 3 000 barela nafte (naf1, naf2 i naf3, tim redom) dnevno.

Napraviti model tako da kompanija maksimizuje svoj profit.

Ukoliko kompanija angažuje marketinšku kompaniju, očekuje se da će se za svaki uložen evro na reklamiranje određenog tipa nafte, povećati potreba za 10 barela.

REŠENJE

Neka je x_{ij} količina sirove nafte j korišćene u proizvodnji nafte i, odnosno

 x_{11} - količina sirove nafte 1 korišćene u proizvodnji nafte 1,

 x_{12} - količina sirove nafte 2 korišćene u proizvodnji nafte 1

 x_{13} - količina sirove nafte 3 korišćene u proizvodnji nafte1.

Čime dobijamo ukupnu količinu gasa 1: $x_{11} + x_{12} + x_{13}$. Slično pišemo i za ostale tipove gasa.

"Naftna kompanija može da dopremi najviše po 5000 barela od svake vrste sirove nafte dnevno.":

$$x_{11}+x_{21}+x_{31} \leq 5000 \quad (x_{11},x_{21},\ x_{31}-\text{količina sirove nafte tipa 1 korišćene u proizvodnji gasa 1, 2 i 3)}$$

$$x_{12} + x_{22} + x_{32} \le 5000$$
 (x_{12}, x_{22}, x_{32} – količina sirove nafte tipa 2 korišćene u proizvodnji gasa 1, 2 i 3)

$$x_{13} + x_{23} + x_{33} \le 5000$$
 (x_{13}, x_{23}, x_{33} – količina sirove nafte tipa 3 korišćene u proizvodnji gasa 1, 2 i 3)

"Sirova nafta koja se koristi u proizvodnji naf1 mora da ima najmanje nivo oktana 10 a najviše 1% sumpora":

$$\frac{0.5}{100}x_{11} + \frac{2}{100}x_{12} + \frac{3}{100}x_{13} \le \frac{1}{100}(x_{11} + x_{12} + x_{13})$$

$$12x_{11} + 6x_{12} + 8x_{13} \ge 10(x_{11} + x_{12} + x_{13})$$

 $12x_{11}+6x_{12}+8x_{13}\geq 10(x_{11}+x_{12}+x_{13})$ "Nafta tipa naf2 sadrži nivo oktana od najmanje 8 a najviše 2% sumpora."

$$\frac{0.5}{100}x_{21} + \frac{2}{100}x_{22} + \frac{3}{100}x_{23} \le \frac{2}{100}(x_{21} + x_{22} + x_{23})$$

$$12x_{21} + 6x_{22} + 8x_{23} \ge 8(x_{21} + x_{22} + x_{23})$$

"Nafta tipa naf3 treba da sadrži najmanje oktan nivoa 6 i najviše 1% sumpora."

$$\frac{0.5}{100}x_{31} + \frac{2}{100}x_{32} + \frac{3}{100}x_{33} \le \frac{1}{100}(x_{31} + x_{32} + x_{33})$$

$$12x_{31} + 6x_{32} + 8x_{33} \ge 6(x_{31} + x_{32} + x_{33})$$

"kompanija ima kapacitete da dnevno može proizvesti najviše 14,000 barela nafte za prodaju"

$$\sum_{i,j=1}^{3} x_{ij} \le 14,000$$

"Obaveza kompanije je da svojim kupcima dnevno obezbedi najmanje 3 000, 2 000 i 3 000 barela nafte (naf1, naf2 i naf3, tim redom) dnevno"

$$x_{11} + x_{12} + x_{13} \ge 3,000$$

$$x_{21} + x_{22} + x_{23} \ge 2,000$$

$$x_{31} + x_{32} + x_{33} \ge 3,000$$

Ograničenja su, kao i do sada,

$$x_{ij} \ge 0$$
, $i, j = 1,...,3$.

Ostalo je da se odredi funkcija cilja:

Dakle, kupujemo sirovu naftu, po ceni datoj u tabeli, transformišemo je po ceni od 4 eura po barelu i prodamo po ceni iz tabele:

Količina nafta tipa1 koju ćemo proizvesti iznosi: $gas_1 = x_{11} + x_{12} + x_{13}$. Prilikom prodaje, za gas tipa1 zaradićemo $70(x_{11} + x_{12} + x_{13})$ eur. Da bi nabavili potrebne sastojke za proizvodnju gas_1 potrebno je uložiti $(45x_{11} + 35x_{12} + 25x_{13})$ eur. Troškovi obrade gas_1 iznose 4^* gas_1 . Dakle, gas tipa 1 donosi zaradu od

Suma1 =
$$(70 - 4)(x_{11} + x_{12} + x_{13}) - (45x_{11} + 35x_{12} + 25x_{13})$$

Ponavljamo postupak za gas tipa 2 i gas tipa 3:

Suma2=
$$(60-4)(x_{21}+x_{22}+x_{23})-(45x_{21}+35x_{22}+25x_{23})$$

Suma3=
$$(50-4)(x_{31}+x_{32}+x_{33})-(45x_{31} \mp 35x_{32}+25x_{33}).$$

Funkcija cilja:

Max Suma1 + Suma2 + Suma3

Konačno, LP problem (sređen):

Max
$$f(X) = 21x_{11} + 31x_{12} + 41x_{13} + 11x_{21} + 21x_{22} + 31x_{23} + x_{31} + 11x_{32} + 21x_{33}$$

Pri ograničenjima

$$x_{11} + x_{21} + x_{31} \le 5000 \tag{1}$$

$$x_{12} + x_{22} + x_{32} \le 5000 \tag{2}$$

$$x_{13} + x_{23} + x_{33} \le 5000 \tag{3}$$

$$-0.005x_{11} + 0.01x_{12} + 0.02x_{13} \le 0 (4)$$

$$2x_{11} - 4x_{12} - 2x_{13} \ge 0 (5)$$

$$-0.015x_{21} + 0.01x_{23} \le 0 (6)$$

$$4x_{21} - 2x_{22} \ge 0 \tag{7}$$

$$-0.005x_{31} + 0.01x_{32} + 0.02x_{33} \le 0 (8)$$

$$6x_{31} + 2x_{33} \ge 0 \tag{9}$$

$$\sum_{i,j=1}^{3} x_{ij} \le 14000 \tag{10}$$

$$x_{11} + x_{12} + x_{13} \ge 3000 \tag{11}$$

$$x_{21} + x_{22} + x_{23} \ge 2000 \tag{12}$$

$$x_{31} + x_{32} + x_{33} \ge 3000 \tag{13}$$

Nenegativne promenljive

$$x_{i,i} \ge 0$$
, i,j=1,...,3.

Cplex rešenje:

Objective value 185 500

$$x_{11}$$
= 2000 x_{12} = 1000 x_{13} =0 x_{21} = 1000 x_{22} = 2000 x_{23} =1500 x_{31} = 2000 x_{32} = 1000 x_{33} =0

PRIMER 6 (Problem dijete)

Marija je odlučila da koriguje ishranu i u tu svrhu je zanima koliko para treba da potroši kako bi kupila hranu čija je ukupna energetska vrednost 2,000 kcal a koja sadrži 55g proteina odnosno 800mg kalcijuma neophodnih za dnevno funkcionisanje. Marija se odlučuje da kupi 6 različitih proivoda koji, po njoj, sadrže neophodne sastojke a može ih sebi priuštiti. Sledi tabela sa nutritivnim svojstvima hrane:

hrana	veličina porcije	energija (kcal)	proteini (g)	kalcijum (mg)	cena po porciji
ovseni obrok	28 g	110	4	2	30 din
piletina	100 g	205	32	12	240 din
jaja	2 kom, klasa s	160	13	285	130 din
mleko	237 cc	160	8	22	90 din
pita sa višnjama	170 g	420	4	22	200 din
svinjetina sa povrćem	260 g	260	14	80	190 din

Marija je odlučila da napravi plan ishrane, odnosno broj porcija po danu:

	broj porcija po danu
ovseni obrok	4
piletina	3
jaja	2
mleko	8
pita sa višnjama	2
svinjetina sa povrćem	2

Rešenje:

pri ograničenju:

Kako bi napravila najekonomičniji meni, Marija je odlučila da sa x_1 obeleži broj porcija ovsenog obroka, sa x_2 broj porcija piletine i tako redom. Njena ideja je da odredi vrednosti $x_1, x_2, ..., x_6$ tako da uneta hrana sadrži minimalne zahteve po pitanju energije, proteina, kalcijuma i da je, naravno, što ekonomičnija.

Problem dijete može se napisati na sledeći način:

$$\min \ 30x_1 + 240x_2 + 130x_3 + 90x_4 + 200x_5 + 190x_6$$

$$0 \le x_1 \le 4$$

$$0 \le x_2 \le 3$$

$$0 \le x_3 \le 2$$

$$0 \le x_4 \le 8$$

$$0 \le x_5 \le 2$$

$$0 \le x_6 \le 2$$

$$110x_1 + 205x_2 + 160x_3 + 160x_4 + 420x_5 + 260x_6 \ge 2000$$

$$4x_1 + 32x_2 + 13x_3 + 8x_4 + 4x_5 + 14x_6 \ge 55$$

$$2x_1 + 12x_2 + 54x_3 + 285x_4 + 22x_5 + 80x_6 \ge 800$$

PRIMER 7 (Problem transporta)

Potrebno je pokupiti proizvode iz m fabrika tako da se iz prve fabrike uzima a_1 kilograma proizvoda, iz druge fabrike a_2 kilograma proizvoda, iz treće fabrike a_3 kilograma i tako redom. Roba se dalje prosleđuje u n prodavnica, tako što prva prodavnica potražuje b_1 kilogram, druga prodavnica b_2 kilograma, ..., n-ta prodavnica b_n kilograma proizvoda. Očekuje se da je količina robe koja se preuzima iz fabrika jednaka onoj količini robe koja se dalje prosleđuje prodavnicama, tj. $\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$. Cena transporta robe iz fabrike i ka prodavnici j iznosi c_{ij} . Ako pretpostavimo da se prevoz robe vrši pomoću dovoljno velikog kamiona, potrebno je odrediti količinu robe x_{ij} koja se iz fabrike i šalje u prodavnicu j tako da ukupna cena transporta bude minimalna.

Rešenje

pri ogrančenjima

$$\min \quad \sum_{i,j} c_{ij} x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} = a_i, i = 1, 2, ..., m$$

$$\sum_{i=1}^{m} x_{ij} = b_j, j = 1, 2, ..., n$$

$$x_{ij} \ge 0, \forall i, j$$

ZADACI ZA SAMOSTALNI RAD:

ZADATAK 1

Marijin komšija preprodaje računare i računarsku opremu. Očekuje isporuku računara i štampača. Pri tom, raučunari su spakovani tako da njihova kutija zauzima 360 kubnih decimetara prostora, dok se štampači pakuju u kutijama koje zauzimaju 240 kubnih decimetara prostora. Komšija se trudi da mesečno proda najmanje 30 računara i da taj broj bude bar za 50% veći od broja prodatih štampača. Računari koštaju 200eur po nabavnoj ceni, a prodaju se po ceni od 400eur, dok štampači koštaju u nabavci 60eur i prodaju se za 140eur. Magacin kojim komšija raspolaže ima svega 30,000 kubnih decimetara prostora i mesečno može da nabavi robu u iznosu od najviše 14,000 eur. Koliko računara a koliko štampača komšija treba da proda kako bi se maksimalno obogatio?

ZADATAK 2

Marijin brat radi u fabrici za proizvodnju X i Y proizvoda pomoću dve mašine (A i B). Za izradu proizvoda X potrebno je 50 min obrade na mašini A i 30 min obrade na mašini B. Proizvod Y se 24 min obrađuje na mašini A i 33 minuta na mašini B. Na početku ove nedelje napravljeno je 30 proizvoda X i 90 proizvoda Y. Mašina A je na raspolaganju samo 40 sati dok je mašina B na raspolaganju tek 35 sati. Direktor očekuje da se do kraja nedelje napravi najmanje 75 X i 95 Y proizvoda. Politika firme je da broj proizvoda bude maksimalan. Formulisati problem odlučivanja koliko od svakog proizvoda treba napraviti u tekućoj nedelji kao linearni problem.

Sistemi linearnih jednačina

Kao što smo primetili, problem linearnog programiranja se, za početak, svodi na formiranje sistema linearnih jednačina koje treba rešiti. Pod rešavanjem sistema podrazumevamo nalaženje skupa svih rešenja. Slede metode za rešavanje sistema.

Furije – Mockinova metoda eliminacije

Ideja metode je eliminacija nepoznatih. Proizvoljno izaberemo promenljivu koju želimo da eliminišemo. Odvojimo jednačine u kojima je koeficijent uz našu promenljivu $< 0, = 0 \text{ i} > 0 \dots$ (objasniti na času)

PRIMER 8

Metodom eliminacije odrediti skup rešenja problema:

REŠENJE

Hajde da funkciju cilja uvrstimo u ograničenja. Time dobijamo da je $f \le 2x + 3y$. Zašto je ovde nejednakost? Zato što se traži maksimu funkcije f, ne možemo imati više od 2x + 3y.

Eliminisaćemo x iz sistema:

$$-x - \frac{3}{2}y + \frac{1}{2}f \le 0$$

$$x - 2y \le 4$$

$$x + \frac{1}{2}y \le 9$$

$$y \le 10$$

$$y \ge 0$$

$$-x \le 0$$

Odnosno (I+II, I+III, II+VI, III+VI):

$$-\frac{3}{2}y + \frac{1}{2}f \le 4 + 2y \rightarrow y \ge \frac{f - 8}{7}$$

$$-\frac{3}{2}y + \frac{1}{2}f \le 9 - \frac{1}{2}y \rightarrow y \ge -9 + \frac{f}{2}$$

$$0 \le 4 + 2y \rightarrow y \ge -2$$

$$0 \le 9 - \frac{1}{2}y \rightarrow y \le 18$$

$$y \le 10$$

$$y \ge 0$$

Dakle, dobijamo da je $y \ge -2$ a, kako je $y \ge 0$ sledi da je $y \ge 0$. Sa druge strane imamo da je $y \le 18$ l $y \le 10$ čiji presek iznosi $y \le 10$. Dalje, dobijamo novi sistem

$$y \ge \frac{f-8}{7}$$
$$y \ge -9 + \frac{f}{2},$$
$$y \le 10, y \ge 0.$$

Hajde sada da eliminišemo y:

$$\frac{f-8}{7} \le 10 \quad \to \quad f \le 78$$
$$-9 + \frac{f}{2} \le 10 \quad \to \quad f \le 38$$
$$0 \le 10$$

Kako je $f \le 38$, sledi da je to i optimalna vrednost našeg problema.

PRIMER 9

Metodom eliminacije odrediti skup rešenja problema:

REŠENJE

Posmatramo odgovarajući sistem, i rešavamo po y:

$$f \le 5x + y \rightarrow y \ge -5x + f$$

$$2x + y \ge 5 \rightarrow y \ge -2x + 5$$

$$y \ge 1$$

$$2x + 3y \le 6 \rightarrow y \le -\frac{2}{3}x + 2$$

$$y \ge 0$$

Nema potrebe da pišemo $y \ge 0$ kada već imamo ograničenje $y \ge 1$. Posmatramo nejednakosti I i IV, II i IV, III i IV:

$$-5x + f \le -\frac{2}{3}x + 2 \rightarrow x \ge \frac{3}{17}f - 2$$

$$-2x + 5 \le -\frac{2}{3}x + 2 \rightarrow \frac{4}{3}x \ge 3 \rightarrow x \ge \frac{9}{4}$$

$$1 \le -\frac{2}{3}x + 2 \rightarrow x \le \frac{3}{2}$$

Dobili smo ograničenja za x. Ostaje nam da ogradimo f:

$$\frac{17}{3}x + \frac{34}{6} \ge f \rightarrow \frac{17}{3}\frac{9}{4} + \frac{34}{6} = \frac{51}{4} + \frac{17}{3} = 18,42 \ge f$$

Primeniti metodom eliminacije kako bi se odredio skup rešenja sistema:

$$x \ge 0$$

$$x + 2y \le 6$$

$$x + y \ge 2$$

$$x - y \ge 3$$

$$y \ge 0$$

$$-2x - y \le f$$

REŠENJE

Rešavamo problem u odnosu na promenljivu x:

$$x \ge 0$$

$$x \le 6 - 2y$$

$$x \ge 2 - y$$

$$x \ge 3 + y$$

$$y \ge 0$$

$$x \ge -\frac{1}{2}f - \frac{1}{2}y$$

Uporedimo nejednačine (I i II, II i III, II i IV, II i VI):

$$0 \le 6 - 2y$$

$$2 - y \le 6 - 2y$$

$$3 + y \le 6 - 2y$$

$$y \ge 0$$

$$-\frac{1}{2}f - \frac{1}{2}y \le 6 - 2y$$

Konačno, dobijamo:

$$y \le 3$$

$$y \le 4$$

$$y \le 3$$

$$y \ge 0$$

 $f \ge 3y - 12$ iz poslednje nejednačine sledi da je najmanje f = -12.

Primeniti metodom eliminacije kako bi se odredio skup rešenja sistema:

$$2x - 5y + 4z \le 10$$

$$3x - 6y + 3z \le 9$$

$$5x + 10y - z \le 15$$

$$-x + 5y - 2z \le -7$$

$$-3x + 2y + 6z \le 12$$

REŠENJE

Rešavamo problem u odnosu na promenljivu x:

$$x \le 5 + \frac{5}{2}y - 2z$$

$$x \le 3 + 2y - z$$

$$x \le 3 - 2y + \frac{1}{5}z$$

$$x \ge 7 + 5y - 2z$$

$$x \ge -4 + \frac{2}{3}y + 2z$$

Dalje, rešavamo u odnosu na promenljivu y

$$7 + 5y - 2z \le 5 + \frac{5}{2}y - 2z$$

$$7 + 5y - 2z \le 3 + 2y - z$$

$$7 + 5y - 2z \le 3 - 2y + \frac{1}{5}z$$

$$-4 + \frac{2}{3}y + 2z \le 5 + \frac{5}{2}y - 2z$$

$$-4 + \frac{2}{3}y + 2z \le 3 + 2y - z$$

$$-4 + \frac{2}{3}y + 2z \le 3 - 2y + \frac{1}{5}z$$

$$y \le -\frac{4}{5}$$

$$y \le -\frac{4}{3} + \frac{1}{3}z$$

$$y \le -\frac{4}{7} + \frac{11}{35}z$$

$$y \ge -\frac{54}{11}$$

$$y \ge \frac{9}{4}z - \frac{21}{4}$$

$$y \le \frac{21}{8} - \frac{27}{40}z$$

Sledi dalje,

$$\begin{aligned} &-\frac{4}{3} + \frac{1}{3}z \ge -\frac{54}{11} \text{ odnosno, } z \ge -\frac{118}{11} \\ &-\frac{4}{7} + \frac{11}{35}z \ge -\frac{54}{11} \text{ odnosno, } z \ge -1062.72 \\ &\frac{9}{4}z - \frac{21}{4} \le -\frac{4}{5} \text{ odnosno } z \le \frac{89}{45} (=1.978) \\ &\frac{21}{8} - \frac{27}{40}z \le -\frac{4}{5} \text{ odnosno } z \ge 5.074 \end{aligned}$$

PRIMER 12

Primeniti metodu eliminacije na primer br 4.

Rešavanje LP problema grafičkom metodom

PRIMER 13

Fabrika za proizvodnju stakala, Staklo CO, bavi se izradom prozora i balkon vrata. Fabrika se sastoji iz tri proizvodna dela: dela za aluminijumske ramove (Sektor C1), dela za drvene ramove (Sektor C2) i trećeg dela u kome se obrađuje staklo (Sektor C3). Kako je zarada počela da opada, direktor fabrike je odlučio da više ne proizvodi neisplative proizvode i da uvede dva nova proizvoda za koja misli da će mu doneti veću zaradu:

Prozor A: prozori veličine 4x4 m sa aluminijumskim ramom

Prozor B: prozori dimenzija 2x3 m sa sa duplim staklom i drvenim ramom

Prozor A bi se proizvodio u sektorima C1 i C3, dok bi se prozor B proizvodio u sektorima C2 i C3. Tim za marketing se potrudio oko predstavljanja novih proizvoda i zaključio da bi fabrika mogla da proda sve što proizvede koliko god da proizvede. Međutim, kako oba proizvoda koriste sektor C2, postavlja se pitanje organizacije tog sektora u smislu, koliko prozora A, odnosno koliko prozora B treba proizvesti kako bi se ta proizvodnja najviše isplatila?

Prilikom rešavanja samog problema treba imati u obzir sledeće podatke:

- cena proizvoda A, B
- vreme potrebno da se naprave delovi proizvoda u svakom sektoru

Kako se prozori A i B prave u serijama od nekoliko komada (neka standardna količina unapred definisana), uzećemo da je x_1 broj serija prozora A napravljenih tokom jedne sedmice, odnosno neka x_2 predstavlja broj serija prozora B napravljenih tokom iste te sedmice. Neka je cena prozora A 3,000 eur dok je cena prozora B 5,000 eur. Cilj fabrike je maksimizacija zarade, dakle

$$\max 3x_1 + 5x_2$$

U tabeli je dato vreme potrebno da se naprave serije prozora A i B u odgovarajućim sektorima. Na primer, vreme potrebno da se napravi serija prozora A u sektoru C1 iznosi 1h nedeljno, dok je maksimalno raspoloživo vreme sektora C1 4h nedeljno ($x_1 \le 4$). Raspoloživo vreme po sektorima, kao i vreme izrade određenih proizvoda, definisano je u tabeli.

Sektori	vreme potrebno za izradu	raspoloživ broj sati za	
Serion	Prozor A	Prozor B	prozivodnju, nedeljno
C1	1	0	4
C2	0	2	12
C3	3	2	18
Cena po seriji	3,000 eur	5,000 eur	

Dakle, imamo da je $2x_2 \le 12$, odnosno $3x_1 + 2x_2 \le 18$. Konačno, količina proizvoda je nenegativna veličina pa važi $x_1 \ge 0, x_2 \ge 0$.

Traženi model je

$$\max 3x_1 + 5x_2$$

pri ograničenjima

$$x_1 \le 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1 \ge 0, x_2 \ge 0$$

Ok, dobrili smo model. A rešenje?

Problemi sa dve promenljive lako se mogu rešiti grafičkom metodom. Neka je dat koordinatni sistem x_1Ox_2 . Na osnovu ograničenja, vidimo da nam je potreban samo I kvadrant. Na slici je dopustiv skup osenčen:

Rešenje problema nalazi se u dopustivom skupu (granice skupa su uključene). Kako se određuje vrednost funkije cilja? Neka je $Z=3x_1+5x_2$. Potrebno je maksimizirati vrednost Z. To se može učiniti "metodom pokušaja".

Na primer, uzmimo da je $Z = 10 = 3x_1 + 5x_2$

Potrebno je proveriti da li postoji tačka (x_1,x_2) koja zadovoljava ovu relaciju a nalazi se unutar dopustivog skupa. Povlačenjem prave $10=3x_1+5x_2$ primetimo da postoji nekoliko tačaka koje zadovoljavaju datu relaciju (slika) ali isto tako vidimo da Z može imati i veću vrednost, npr 20. Ponovo vidimo da postoji niz tačaka koje zadovoljavaju relaciju $20=3x_1+5x_2$ i da bi nova prava bila paralelna prethodnoj. Kako bi im i svaka druga prava konstruisana na opisan način bila paralelna i kako se vrednost funkcije cilja povećava srazmerno povećanju vrednosti x_2 : $x_2=-\frac{3}{5}x_1+\frac{1}{5}Z$ sa slike vidimo da je maksimalna vrednost koju

 x_2 može imati je 6 za $0 \le x_1 \le 2$. Maksimalna vrednost koju promenljiva Z može imati se dobija i za maksimalnu vrednost x_1 , odakle sledi da je maxZ = 36

Dakle, fabrika će najviše zaraditi ukoliko bude proizvodila 2 serije prozora A, odnosno 6 serija prozora B nedeljno ($x_1 = 2, x_2 = 6$) i pri tom će zarađivati 36,000 eur.

Da li je moguće organizovati proizvodnju tako da ukupna zarada iznosi 50,000? Ako je planirana zarada 18,000 eur, organizovati proizvodnju?

PRIMER 14

$$\max \ 3x_1 + 7x_2$$
 pri ograničenjima
$$2x_1 + 5x_2 \leq 10$$

$$7x_1 + 2x_2 \leq 14$$

$$x_1, x_2 \geq 0$$

REŠENJE:

Nacrtamo grafike ograničenja i osenčimo prostor na kome je funkcija definisana a zatim nacrtamo i samu funkciju (slika niže).

Optimalno rešenje se dostiže u tački preseka pravih $2x_1 + 5x_2 = 10$ i $7x_1 + 2x_2 = 14$, odnosno u tački $\left(\frac{50}{31}, \frac{42}{31}\right)$ i iznosi $\frac{444}{31}$.

PRIMER 15

Sledeće LP probleme rešiti grafičkom metodom

a) min
$$(3x_1-2x_2)$$

pri ograničenjima
$$2x_1-x_2 \geq 1$$
$$-x_1+x_2 \geq 0$$
$$x_1,x_2 \geq 0$$

b)
$$\min x_1 - x_2$$
 pri ograničenjima
$$x_1 + 2x_2 \le 6$$

$$-2x_1 + x_2 \ge -1$$

$$x_1 - x_2 \ge 3$$

$$x_1 \ge 0$$

Rešiti i zadatke 1 i 2 grafičkom metodom.

Dualnost u linearnom programiranju

Posmatramo problem linearnog programiranja u simetričnom obliku:

Neka je A matrica dimenzije $m \times n$ sa kolonama $K_1, K_2, ..., K_n$ i neka je rang A = m.

Problem (1) se naziva PRIMALNI PROBLEM i njemu odgovara DUALNI PROBLEM oblika:

$$\max \quad b^T y$$

ograničenja $A^T y \le c$ (1')

Dualni problem možemo da transformišemo uvođenjem izjednačavajućih promenljivih:

Teorema (Slaba dualnost):

Za bilo koje dopustive tačke $(x_1, x_2, ..., x_n)$ i $(y_1, y_2, ..., y_m)$ problema (P) odnosno problema (D) važi:

$$c_1x_1 + \cdots + c_nx_n \ge y_1b_1 + \ldots + y_mb_m$$

Teorema (Jaka dualnost):

Ako jedan od problema (P) i (D) ima optimalno rešenje onda i drugi ima optimalno rešenje. Pri tom, za njihova optimalna rešenja važi:

$$c_1 x_1 + \cdots + c_n x_n = y_1 b_1 + \ldots + y_m b_m$$

Stavovi dualnosti:

- dual duala je primal.
- ako je optimalni rešenje primala X^* , odnosno duala Y^* , tada važi: $C \cdot X^* = A \cdot Y^*$.
- ako primal (dual) ima konačno optimalno rešenje, tada i dual (primal) ima konačno optimalno rešenje.
- ako primal (dual) nema ograničeno optimalno rešenje, onda i dual (primal) nema moguće rešenje.

Neophodni uslovi optimalnosti:

Dopustiva tačka (p,q) problema P je njegovo *optimalno rešenje* akko postoji tačka (u,v) dopustiva za D takva da su zadovoljeni uslovi komplementarnosti:

$$u(A_{11}p + A_{12}q - b_1) = 0$$

$$(uA_{11} + vA_{21} - c_1)p = 0$$

Dopustiva tačka (u, v) problema D je njegovo optimalno rešenje akko postoji tačka (p, q) dopustiva za P takva da su zadovoljeni uslovi komplementarnosti.

Odrediti dualni problem sledećeg problema:

$$\min F(X) = 25x_1 + 50x_2$$

$$\frac{\frac{3}{4}x_1 + \frac{1}{4}x_2}{\frac{1}{4}x_2} \ge 100$$
 pri ograničenjima
$$\frac{\frac{1}{2}x + 1 + \frac{1}{2}x_2}{\frac{1}{4}x_1 + \frac{3}{4}x_2} \ge 100$$

Rešenje

Primalni model linearnog programiranja može se matrično prikazati kao

funkcija cilja:
$$F(X) = C \cdot X$$
, $C = \begin{bmatrix} 25 & 50 \end{bmatrix}$, $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

pri ograničenjima:
$$A \cdot X = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \ge \begin{bmatrix} 100 \\ 150 \\ 100 \end{bmatrix}$$

Dualni problem u matričnom obliku:

$$\Phi(Y) = B^T \cdot Y \text{ tj.} \quad \begin{bmatrix} 100 & 150 & 100 \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

gde je skup ograničenja
$$A^T \cdot Y \leq C^T$$
, tj. $\begin{bmatrix} \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{3}{4} \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \leq \begin{bmatrix} 25 \\ 50 \end{bmatrix}$

Primarni problem P

pri ograničenjima

$$\min \ x_1 - x_2$$

$$x_1 - x_2 - x_3 = 1$$

$$-x_1 + x_2 - x_4 = 1$$
$$x_i \ge 0$$

REŠENJE:

Jednačine iz ograničenja zapisaćemo preko nejednakosti:

$$x_1 - x_2 - x_3 \le 1$$

$$-x_1 + x_2 + x_3 \le -1$$

$$-x_1 + x_2 - x_4 \le 1$$

$$x_1 - x_2 + x_4 \le -1$$

$$b^T = \begin{bmatrix} 1, -1, 1 - 1 \end{bmatrix} \rightarrow b = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$

$$c^{T} = \begin{bmatrix} 1, -1 \end{bmatrix} \rightarrow c = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & -1 & 0 \\ -1 & 1 & 1 & 0 \\ -1 & 1 & 0 & -1 \\ 1 & -1 & 0 & 1 \end{bmatrix} \rightarrow A^{T} = \begin{bmatrix} 1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

Dualni problem je oblika

$$\begin{aligned} \max(y_1 - y_2 + y_3 - y_4) \\ y_1 - y_2 - y_3 + y_4 &\geq 1 \\ -y_1 + y_2 + y_3 - y_4 &\geq -1 \\ -y_1 + y_2 &\geq 0 \\ -y_3 + y_4 &\geq 0 \\ y_i &\geq 0 \end{aligned}$$

Možemo da uvedemo smenu: $y_1-y_2=z_1,\,y_3-y_4=z_2$

Tada, dualni problem se može zapisati kao:

$$\max z_1 + z_2$$

$$z_1 - z_2 \ge 1$$

$$-z_1 + z_2 \ge -1$$

$$-z_1 \ge 0$$

$$-z_2 \ge 0$$

tj. ograničenja su $z_1 + z_2 = 1, z_1 \le 0, z_2 \le 0.$

Naći dual duala i pokazati da je on primalni problem !!!!

Primarni problem

$$\min (10x_1 + 5x_2 + 4x_3)$$
(P)
$$3x_1 + 2x_2 - 3x_3 \ge 3$$

$$4x_1 + 2x_3 \ge 10$$

$$x_i \ge 0$$

Dualni problem

$$\max (3y_1 + 10y_2)$$

$$3y_1 + 4y_2 \le 10$$

$$2y_1 \le 5$$

$$-3y_1 + 2y_2 \le 4$$

$$y_i \ge 0$$

PRIMER 19

Primarni problem

$$(P) \begin{array}{c} \max \left(12x_{1}-2x_{2}-x_{4}\right) \\ 4x_{1}+7x_{2}-4x_{3}-2x_{4} \leq 3 \\ -8x_{1}+2x_{2}-x_{3}+3x_{4} \leq 9 \\ -3x_{1}+5x_{2}+2x_{3}+x_{4} \leq 7 \\ x_{i} \geq 0 \end{array}$$

Dualni problem

$$\min \left(3y_1 + 9y_2 + 7y_3\right)$$

$$4y_1 - 8y_2 - 3y_3 \ge 0$$
(D)
$$7y_1 + 2y_2 + 5y_3 \ge 12$$

$$-4y_1 - y_2 + 2y_3 \ge -2$$

$$-2y_1 + 3y_2 + y_3 \ge -1$$

$$y_i \ge 0$$

PRIMER 20

Rešiti sledeće LP probleme

a)
$$\min(-x_1 - x_2 + x_3)$$
$$x_1 + x_2 + x_3 + x_4 = 4$$
$$x_1 - 3x_2 + x_3 - x_4 \le -2$$
$$x_2, x_3 \ge 0$$

$$\max (x_2 - x_3)$$

$$x_1 + x_2 + x_3 + x_4 = 2$$

$$x_1 \leq 5$$

$$x_1 - 3x_2 + x_3 - x_4 = 2$$

$$x_1, x_2, x_3, x_4 \geq 0$$

PRIMER 21

- a) Naći dualne probleme problemima iz zadataka 14 kao i duale njihovih duala.
- b) Naći dual za primer br 3 a zatim ga rešiti nekom metodom.

PRIMER 22

Rešiti problem P

pri ograničenjima

min
$$2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5$$

 $2x_1 + x_2 + 2x_3 + x_4 + 3x_5 > 4$

$$2x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4$$

$$2x_1 - 2x_2 + 3x_3 + x_4 + x_5 \ge 3$$

$$x_i \ge 0$$

rešavajući njegov dual grafičkim putem.

Da li je $x_1 = 360$, $x_2 = 150$, $x_3 = 0$ optimalno rešenje problema

$$\max x_1 + x_2 + x_3$$

pri ograničenjima

$$2x_1 + 5x_2 + 3x_3 \le 2100$$

$$5x_1 + 2x_2 + 4x_3 \le 2100$$

$$6x_2 + 2x_3 \le 900$$

$$3x_2 + 4x_3 \le 900$$

$$x_3 \le 75$$

Rešenje

Dualni problem početnog problema je oblika

$$\min 2100y_1 + 2100y_2 + 900y_3 + 900y_4 + 75y_5$$

pri ograničenjima

$$2y_1 + 5y_2 \ge 1$$

$$5y_1 + 2y_2 + 6y_3 + 3y_4 \ge 1$$

$$3y_1 + 4y_2 + 2y_3 + 4y_3 + 1y_5 \ge 1$$

$$y_i \ge 0, i = 1,...,4$$

Pokušajmo da nađemo dopustivu tačku (y_1, y_2, y_3, y_4) duala koja sa (x_1, x_2, x_3) zadovoljava uslove komplementarnnosti:

$$(2x_1 + 5x_2 + 3x_3 - 2100)y_1 = 0$$

$$(5x_1 + 2x_2 + 4x_3 - 2100)y_2 = 0$$

$$(6x_2 + 2x_3 - 900)y_3 = 0$$

$$(3x_2 + 4x_3 - 900)y_4 = 0$$

$$(x_3 - 75)y_5 = 0$$

$$(2y_1 + 5y_2 - 1)x_1 = 0$$

$$(5y_1 + 2y_2 + 6y_3 + 3y_4 - 1)x_2 = 0$$

$$(3y_1 + 4y_2 + 2y_3 + 4y_3 + 1y_4 - 1)x_3 = 0$$

Druga, treća i osma jednakost su zadovoljene. Rešavamo preostali sistem.

Iz prve, četvrte i pete jednakosti sledi da je $y_1=0,y_3=0,y_5=0$. Na osnovu šeste jednačine dobija se da je $y_2=\frac{1}{5}$, odnosno na osnovu sedme $y_4=\frac{1}{5}$.

Kako je $\left(0, \frac{1}{\epsilon}, 0, \frac{1}{\epsilon}, 0\right)$ dopustivo rešenje problema D sledi da je (360, 150, 0) optimalno rešenje problema P.

Simpleks metoda

Prvi je predložio Dantzig 1947.god.

Ideja simplex metode za rešavanje problema linearnog programiranja je u pretraživanju mogućih rešenja. Polazi se od jednog takvog rešenja i formira se niz sve boljih bazisno mogućih rešenja.

Simplex metoda ima više verzija, prvo ćemo koristiti tablični zapis simplex metode.

Rešavamo problem:

$$\min c^T x$$
$$Ax = b$$
$$x \ge 0$$

uz pretpostavku da je rangA = m, tj sistem Ax = b je saglasan i ne sadrži suvišne jednačine.

Algoritam simplex metode

Korak0: Formirati simplex tablicu za zadati problem (LP tablicu).

Korak1: Postaviti brojač na nulu (k=0)

Proveriti da li je $c_i^k \ge 0$ za svako j, ako jeste preći na Korak6.

Korak2: Ako je za svako j $c_j^k < 0$ proveriti da li je i $a_{ij}^k \le 0$.

Ako jeste preći na Korak7.

Korak3: Naći $r = \{1, ..., n\}$ za koje je $c_r^k < 0$. (r- pivotni, s-stožerni element)

Najčešće se uzima $c_r^k = mi \, n\{c_a^k \mid a = 1,...,n, \ x = (x_1,...,x_n)\}$

Naći $s = \{1, ..., m\}$ takvo da je

 $\frac{b_s^k}{a_{sr}^k} = \min\left\{\frac{b_i^k}{a_{ir}^k} \mid a_{ir}^k \ge 0\right\}$ i preći na Korak4

Korak4: Elementarnim transformacijama napraviti (k + 1)-vu simplex tablicu, odnosno podeliti s-tu vrstu

sa a_{sr}^k ($a_{sr}^{k+1}=1$) a ostalim vrstama dodati s-tu vrstu pomnoženu odgovarajućim koeficijentima

tako da se dobije da je $a_{ir}^{k+1}=0$, $i\neq s$, $c_r^{k+1}=0$. Preći na Korak5.

Korak5: Zameniti k sa k+1 i preći na Korak1.

Korak6: Bazično rešenje koje odgovara *k*-toj tablici je optimalno.

Vrednost funkcije je z_0^k . STOP

Korak7: Funkcije cilja je neograničena odozdo. STOP.

LP tablica je dimenzije (n+1)x(m+1)

Z	C1	c2	 •	cn
b1	A11	a12	 	a1n
b2	A21	a22		a2n
bm	am1	am2	 	amn

- rangA = m: postoji m linearno nezavisnih kolona matrice. Svaki skup m linearno nezavisnih kolona se naziva bazom matrice A.
 - Matrica A se sastoji iz n kolona K_i , $A = [K_1 \ K_2 \ ... \ K_n]$.

Neka su $A_B = \{K_{j1}, ..., K_{jm}\}$ kolone koje čine bazu matrice, skup $B = \{j_1, ..., j_m\}$ predstavlja indekse kolona koje čine bazu.

- Promenljive se nazivaju <u>bazičnim promenljivim</u> a ostale <u>nebazičnim u odnosu na bazu B</u>.
 <u>Bazično rešenje</u> se dobija kada se nebazične promenljive izjednače sa nulom i sistem *Ax=b* reši po bazičnim promenljivim.
- Polazni sistem možemo da zapišemo na sledeći način:

$$A_{\rm B} x_{\rm B} + A_{\rm N} x_{\rm N} = b$$

gde su sa $x_{\!\scriptscriptstyle B}$ označene bazične promenljive, a sa $x_{\!\scriptscriptstyle N}$ nebazične promenljive.

Pomnožimo celu formulu sa A_B^{-1} , dobićemo da je

$$x_B + A_B^{-1} A_N x_N = A_B^{-1} b$$

Ako izjednačimo nebazične promenljive sa nulom, polazni problem se svodi na problem

$$x_B^* = A_B^{-1}b, x_N^* = 0.$$

$$\min f(x), f(x) = -x_1 - 2x_2$$

$$-x_1 + x_2 \le 1$$

$$x_1 + x_2 \le 3$$

$$x_1, x_2 \ge 0$$

Rešenje:

Prvo uvodimo izjednačavajuće promenljive i svodimo problem na kanonski oblik uvođenjem veštačkih promenljivih:

$$minf(x), f(x) = -x_1 - 2x_2$$
$$-x_1 + x_2 + x_3 = 1$$
$$x_1 + x_2 + x_4 = 3$$
$$x_i \ge 0, i = 1,2,3,4$$

Odgovarajuća LP tablica je

	funkcija cilja	originalne promenljive		veštačke promenljive		
		x_1	x_2	x_3	x_4	
Γ	0	-1	-2	0	0	
Γ	1	-1	1	1	0	
Γ	3	1	1	0	1	

Iz uslova $r_2 = -2 < 0$ sledi da druga kolona može da uđe u bazu..

Budući da je 1/1 < 3/1 sledi da bazu napušta 4.kolona.

Pivotiramo oko elemenata $a_{12}=1$ čime dobijamo novu simpleks tablicu:

funkcija cilja	originalne promenljive		veštačke promenljive		
Turikcija ciija	x_1	x_2	x_3	x_4	
2	-3	0	2	0	
1	-1	1	1	0	
2	2	0	-1	1	

Kako je dalje $r_1 = -3 < 0$, pivotiranjem oko $a_{21} = 2$ dobijamo:

funkcija cilja	originalne p	oromenljive	veštačke promenljive		
Turikcija ciija	x_1	x_2	x_3	x_4	
5	0	0	1/2	3/2	
2	0	1	1/2	1/2	
1	1	0	-1/2	1/2	

Optimalno rešenje je (1,2,0,0) a optimalna vrednost -5.

$$\max f(x), f(x) = 3x_1 + x_2 + 3x_3$$
$$2x_1 + x_2 + x_3 \le 2$$
$$x_1 + 2x_2 + 3x_3 \le 5$$
$$2x_1 + 2x_2 + x_3 \le 6$$
$$x_1, x_2, x_3 \ge 0$$

Rešenje:

Prvo uvodimo izjednačavajuće nenegativne veštačke promenljive x_4 , x_5 , x_6 , a zatim transformišemo funkciju cilja na problem minimizacije

$$\min f(x), f(x) = -3x_1 - x_2 - 3x_3$$

$$2x_1 + x_2 + x_3 + x_4 = 2$$

$$x_1 + 2x_2 + 3x_3 + x_5 = 5$$

$$2x_1 + 2x_2 + x_3 + x_6 = 6$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Formiramo LP tablicu:

fja cilja	originalne promenljive			Ve	eštačke promenljiv	⁄e
	x_1 x_2 x_3			x_4	x_5	x_6
0	-3	-1	-3	0	0	0
2	2	1	1	1	0	0
5	1	2	3	0	1	0
6	2	2	1	0	0	1

Bazu čine veštačke promenljive (za sada).

Primetimo da u funkciji cilja imamo negativnih vrednosti ($\{-3,-1,-3\}$), tražimo pivot u npr. prvoj koloni. Pivot se traži iz relacije $\min\left\{\frac{b_1}{a_{11}},\frac{b_2}{a_{21}},\frac{b_3}{a_{31}}\right\} = \left\{\frac{2}{1},\frac{5}{1},\frac{6}{2}\right\} = 2$. Pivot je a_{11} . Prvo ograničenje delimo sa a_{11} . Tako korigovano prvo ograničenje množimo sa 3 i dodajemo funkciji cilja, oduzimamo od drugog ograničenja, odnosno množimo sa (-2) i dodajemo trećem ograničenju. Na ovaj način promenljiva x_1 ulazi u bazu.

fja cilja	or	originalne promenljive			veštačke promenljive			
	x_1	x_2	x_3	x_4	x_5	x_6		
3	0	1/2	-3/2	3/2	0	0		
1	1	1/2	1/2	1/2	0	0		
4	0	3/2	5/2	-1/2	1	0		
4	0	1	0	-1	0	1		

Sada se je samo c_3 negativno. Biramo pivot u koloni koja odgovara promenljivoj x_3 koja ulazi u bazu. Pivot je 5/2.

fja cilja	or	originalne promenljive			veštačke promenljive			
	x_1	x_2	x_3	x_4	x_5	x_6		
27/5	0	14/10	0	6/5	3/5	0		
1/5	1	1/5	0	3/5	0	0		
8/5	0	3/5	1	-1/5	2/5	0		
4	0	1	0	-1	0	1		

Konačno, promenljive x_1 i x_3 su u bazi, njihove vrednosti su $x_1 = 1/5$, $x_3 = 8/5$, dok promenljiva x_2 nije u bazi i njena vrednost je zbog toga $x_2 = 0$. Veštačka promenljiva x_6 je takođe u bazi i ima vrednost 4 i ona ne utiče na vrednost funkcije cilja koja iznosi -27/5.

$$\max z, z = x_1 - x_2 + x_3 - 3x_4 + x_5 - x_6 + 3x_7$$

$$3x_3 + 2x_4 + x_5 + x_6 = 6$$

$$x_2 + 2x_3 - x_4 = 10$$

$$x_1 - x_6 = 0$$

$$x_3 + x_6 + x_7 = 6$$

$$x_i \ge 0, i = 1, ..., 7$$

Rešenje:

Tražimo minimum funkcije $w=-z=-x_1+x_2-x_3+3x_4-x_5+x_6-3x_7$ pri datim ograničenjima. Formiramo LP tablicu

funkcija cilja		originalne promenljive						
	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
0	-1	1	-1	3	-1	1	3	
6	0	0	3	2	1	1	0	
10	0	1	2	-1	0	0	0	
0	1	0	0	0	0	-1	0	
6	0	0	1	0	0	1	1	

Želimo da eliminišemo negativne vrednosti u "nultom" redu tablice.

Primetimo da tablica ima bazne kolone (I, II, IV i VII). Prvu vrstu pomnožimo sa 1 i dodamo je nultoj vrsti (dobijamo $c_5^0=0$). Isti postupak ponovimo sa trećom vrstom (dobićemo da je $c_1^0=0$). Drugu vrstu pomnožimo sa -1 i dodamo nultoj vrsti (rezultat je $c_2^0=0$), dok četvrtu vrstu množimo sa -3 ($c_7^0=0$). Kao rezultat dobijamo novu tablicu:

funkcija cilja		originalne promenljive							
	x_1	x_2	x_3	x_4	x_5	x_6	x_7		
-22	0	0	-3	6	0	-2	0		
6	0	0	3	2	1	1	0		
10	0	1	2	-1	0	0	0		
0	1	0	0	0	0	-1	0		
6	0	0	1	0	0	1	1		

Bazično rešenje koje odgovara ovoj tablici je (0,10,0,0,6,0,6). Ovo rešenje nije optimalno (imamo negativnih vrednosti u nultoj vrsti). Primenjujemo korak4 iz algoritma za s=1 i r=3 i dobijamo drugu simplex tablicu.

funkcija cilja		originalne promenljive							
	x_1	x_2	x_3	x_4	x_5	x_6	x_7		
-16	0	0	0	8	1	-1	0		
2	0	0	1	2/3	1/3	1/3	0		
6	0	1	0	-7/2	-2/3	-2/3	0		
0	1	0	0	0	0	-1	0		
4	0	0	0	-2/3	-1/3	2/3	1		

Bazično rešenje koje odgovara ovoj tablici je (0,6,2,0,0,0,4). Rešenje nije optimalno, primenom koraka 4 za $s=4,\ r=6$ dobijamo treću simplex tablicu

funkcija cilja		originalne promenljive							
	x_1	x_2	x_3	x_4	x_5	x_6	x_7		
-10	0	0	0	7	1/2	0	3/2		
0	0	0	1	1	1/2	0	-1/2		
10	0	1	0	-3	-1	0	1		
6	1	0	0	-1	-1/2	0	3/2		
6	0	0	0	-1	-1/2	1	3/2		

Bazično rešenje koje odgovara ovoj tablici je (6,10,0,0,6,0). Ovo rešenje je optimalno, optimalna vrednost funkcije w je 10. Sledi da maksimalna vrednost funkcije z je -10.

PRIMER 27

Fabrika proizvodi 3 vrste paketa: A, B i C. Model A zahteva 8č obrade, 5č lakiranja i 6č sušenja. Model B zahteva 6č obrade, 4č lakiranja i 2č sušenja. Model C zahteva 5č obrade, 2č lakiranja i 4č sušenja. Stolar ima na raspolaganju ukupno 96č za obradu, 44č za lakiranje i 58č za sušenje. Zarada po jedinici modela A, B i C je 380eur, 260eur i 220 eur.

Kojom će se kombinacijom proizvodnje postići maksimalna dobit?

Formirati matematički model i rešiti problem.

Rešenje:

Matematički model za dati problem je sledećeg oblika:

$$\max 380x_1 + 260x_2 + 220x_3$$

$$8x_1 + 6x_2 + 5x_3 \le 96$$

$$5x_1 + 4x_2 + 2x_3 \le 44$$

$$6x_1 + 2x_2 + 4x_3 \le 58$$

$$x_i \ge 0, \forall i = 1,2,3$$

Odgovarajuća LP tablica je:

funkcija cilja	originalne promenljive			veštačke promenljive			
	x_1	x_2	x_3	x_4	x_5	x_6	
	-380	-260	-220	0	0	0	
96	8	6	5	1	0	0	
44	5	4	2	0	1	0	
58	6	2	4	0	0	1	

Biramo
$$c_1^0 = -380 < 0$$
, dalje dobijamo $\frac{b_s}{a_{rs}} = \min\left\{\frac{96}{8}, \frac{44}{5}, \frac{58}{6}\right\} = 8.8 \ (s=2).$

Uzimamo da je pivot a_{21} i elementarnim transformacijama anuliramo sve vrednosti u prvoj koloni. Nova tablica, k=1

funkcija cilja	originalne promenljive			veštačke promenljive		
	x_1	x_2	x_3	x_4	x_5	x_6
3344	0	44	-68	0	76	0
25.6	0	-0.4	1.8	1	-0.2	0
8.8	1	0.8	0.4	0	0.2	0
5.2	0	-2.8	1.6	0	-1.2	1

Imamo da je
$$c_3^1 = -68 < 0$$
, $\frac{b_s}{a_{rs}} = \min\left\{\frac{25.6}{1.8}, \frac{8.8}{0.4}, \frac{5.2}{1.6}\right\} = 3.25$ ($s = 3$), pivot je a_{33} $k = 2$

funkcija cilja	originalne promenljive			veštačke promenljive		
	x_1	x_2	x_3	x_4	x_5	x_6
3565	0	-75	0	0	25	42.5
19.75	0	2.75	0	1	1.15	-1.125
7.5	1	1.5	0	0	-0.06	-0.25
3.25	0	-1.75	1	0	-0.75	0.625

k = 3

funkcija cilja	originalne promenljive			veštačke promenljive		
	x_1	x_2	x_3	x_4	x_5	x_6
3940	50	0	0	0	22	30
6	-1.8333	0	0	1	1.26	-0.6667
5	0.6667	1	0	0	-0.04	-0.1667
12	1.1667	0	1	0	-0.82	0.3333

Dakle, rešenje problema je (A, B, C) = (0,5,12), očekivana zarada iznosi 3940eur.

PRIMER 28

Rešiti sledeći problem simpleks metodom:

 $\max 4x_1 + 6x_2$

pri ograničenju

$$-x_1 + x_2 \le 11$$

$$x_1 + x_2 \le 27$$

$$2x_1 + 5x_2 \le 90$$

$$x_1, x_2 \ge 0$$

Rešenje

Uvodimo izravnajuće promenljive $s_1, s_2, s_3 \ge 0$

$$-x_1 + x_2 + s_1 = 11$$

$$x_1 + x_2 + s_2 = 27$$

$$2x_1 + 5x_2 + s_3 = 90$$

I posmatramo problem minimizacije $-4x_1 - 6x_2$

funkcija cilja	originalne	veštačke promenljive			
b	x_1	x_2	s_1	s_2	s_3
0	-4	-6	0	0	0
11	-1	1	1	0	0
27	1	1	0	1	0
90	2	5	0	0	1

Vidimo da bazu problema čine veštačke promenljive. Uz promenljivu x_2 u funkciji cilja nalazi se najmanja negativna vrednost. Tražimo pivot u koloni koja odgovara toj promenljivoj. Pivot se bira iz uslova $\min\left\{\frac{11}{1},\frac{27}{1},\frac{90}{5}\right\}=11$. Dakle, pivot je a_{12} . x_2 ulazi u bazu, promenljiva s_1 izlazi iz baze. Nakon pivotiranja dobijamo tablicu

funkcija cilja	originalne p	veštačke promenljive			
b	x_1	x_2	s_1	s_2	s_3
66	-10	0	6	0	0
11	-1	1	1	0	0
16	2	0	-1	1	0
35	7	0	-5	0	1

Sada je u funkciji cilja uz promenljivu x_1 negativna vrednost. Ona ulazi u bazu. Pivot je $\min\left\{\frac{16}{2}, \frac{35}{7}\right\} = \{8, 5\} = 5$ a_{21} , dakle s_2 izlazi iz baze. Nova tablica je

funkcija cilja	originalne	veštačke promenljive			
b	x_1 x_2		s_1	s_2	s_3
116	0	0	-8/7	0	10/7
16	0	1	2/7	0	1/7
6	0	0	3/7	1	-2/7
5	1	0	-5/7	0	1/7

Simpleks metod nije završen. Uz s_1 se u funkciji cilja nalazi negativna vrednost. Analogno prethodnom postupku, s_1 ulazi u bazu.

funkcija cilja	originalne	veštačke promenljive			
b	x_1 x_2		s_1	s_2	s_3
132	0	0	0	8/3	2/3
12	0	1	0	-2/3	1/3
14	0	0	1	7/3	-2/3
15	1	0	0	5/3	-1/3

Rešenje problema je $x_1 = 15, x_2 = 12, s_1 = 14, s_2 = 0, s_3 = 0.$ Funkcija cilja ima vrednost 132.

PRIMER 29

Rešiti sledeći problem simpleks metodom:

$$\max 2x_1 + 3x_2$$
p.o.
$$4x_1 + 5x_2 \le 16$$

$$-2x_1 + 3x_2 \le 3$$

$$x_1, x_2 \ge 0$$

Hint: Uvesti izjednačavajuće promenljive. Optimalno rešenje je (3/2,2) a vrednost funkcije iznosi 9.

PRIMER 30

Rešiti sledeći problem simpleks metodom:

$$\max \ 3x_1 + 2x_2$$

$$p.o. \quad x_1 - x_2 \le 3$$

$$-x_1 + 2x_2 \le 8$$

$$x_1 \le 4$$

$$x_1 + 2x_2 \le 12$$

$$x_1, x_2 \ge 0$$

Optimalno rešenje je (4,4) a vrednost funkcije iznosi 20.

Rešiti sledeći problem simpleks metodom:

$$\max 2x_1 - x_2 + 2x_3$$

pri ograničenju

$$2x_1 + x_2 \le 10$$

$$x_1 + 2x_2 - 2x_3 \le 20$$

$$x_2 + 2x_3 \le 5$$

$$x_1, x_2, x_3 \ge 0$$

Rešenje je $(x_1, x_2, x_3, s_1, s_2, s_3) = (5,0,\frac{5}{2},0,20,0)$. Funkcija cilja ima vrednost 15.

PRIMER 32

Rešiti sledeći problem simpleks metodom:

pri ograničenju

$$\max 3x_1 + 2x_2 + x_3$$

$$4x_1 + x_2 + x_3 = 30$$

$$2x_1 + 3x_2 + x_3 \le 60$$

$$x_1 + 2x_2 + 3x_3 \le 40$$

$$x_1,x_2,x_3\geq 0$$

Rešenje je $(x_1, x_2, x_3, s_1, s_2, s_3) = (3,18,0,0,1)$. Funkcija cilja ima vrednost 30.

PRIMER 33

Rešiti sledeći problem simpleks metodom:

$$\max 2x_1 + x_2 + x_3$$

$$p.o. \quad 2x_1 + x_2 + x_3 \le 20$$

$$6x_1 + 3x_2 + 2x_3 \le 50$$

$$2x_1 + x_2 + 2x_3 \le 12$$

$$x_1, x_2, x_3 \ge 0$$

Optimalno rešenje je (5,0,3) a vrednost funkcije iznosi 20.

PRIMER 34

Rešiti primere 4 i 5 simplex metodom.

Dualna simplex metoda

Dat je problem linearnog programiranja:

$$\min c^T x$$

$$Ax = b$$

$$x \ge 0$$

Kome odgovara LP tablica

-Z	c1	c2	 	cn
b1	a11	a12	 	a1n
b2	a21	a22		a2n
bm	Am1	am2	 	amn

Tablicu nazivamo dualnom simplex tablicom ako ona među kolonama 1,...,n sadrži m različitih bazičnih kolona i važi . Ukoliko je ispunjeno $c_1 \geq 0,...,c_n \geq 0$ i $b_1 \geq 0,...,b_n \geq 0$ onda je dualana simplex tablica istovremeno i simplex tablica pa ja odgovarajuće dopustivo rešenje takođe optimalno.

Algoritam dualne simplex metode

Korak0: Staviti da je k=0. K-ta iteracija se dobija na sledeći način.

Korak1: Ispitati da li je $b_i^k \ge 0$, i = 1, ..., m. Ako jeste preći na korak6.

Korak2: Za svako i za koje je $b_j^k < 0$ ispitati da li je $a_{ij} \ge 0$ za sve j = 1,...n.

Ako takvo b_i^k postoji preći na korak 7.

Korak3: Odrediti $s \in \{1,...,m\}$ za koje je $b_s^{\ k} < 0$. Naći $r \in \{1,...,n\}$ takvo da je

$$\frac{c_r^k}{a_{sr}^k} = \max \left\{ \frac{c_j^k}{a_{sj}^k} \mid a_{sj}^k < 0 \right\}$$

Korak4: Dobiti (k+1)-vu dualnu simplex tablicu sledećim elem. transformacijama k-te dualne simplex tablice:

Podeliti s-tu vrstu sa $a_{sr}^{\ k}$. Ostalim vrstama, uključujći i prvu, dodati s-tu vrstu pomnoženu odgovarajućim koeficijentima tako da se dobije $a_{ir}^{\ k+1}=0$ za $i\neq s$ i $c_r^{\ k+1}=0$.

Korak5: Zameniti k sa k+1 i preći na korak1.

Korak6: Dobijena dualna simplex tablica je ujedno i simplex tablica.

Bazično rešenje koje joj odgovara je optimalno, vrednost funkcije cilja je $z_0^{\ k}$. STOP.

Korak7: Skup dopustivih rešenja posmatranog problema je prazan. STOP.

$$\min f(x), f(x) = 9x_1 + x_2 + x_3$$
 pri ograničenjima
$$3x_1 - x_2 + 2x_3 \ge -1$$

$$4x_1 + 2x_2 - x_3 \ge 5$$

$$x_i \ge 0, \forall i = 1,2,3$$

Rešenje:

Uvodimo izjednačavajuće promenljive i svodimo problem na kanonski oblik. Dobijamo problem:

$$\min f(x), f(x) = 9x_1 + x_2 + x_3$$
 pri ograničenjima
$$-3x_1 \mp x_2 - 2x_3 + x_4 = 1$$

$$-4x_1 - 2x_2 + x_3 + x_5 = -5$$

$$x_i \ge 0, \forall i = 1,2,3,4,5$$

Novom problemu odgovara dualna simplex tablica

funkcija cilja	originalne promenljive					
	x_1 x_2 x_3 x_4 x_5					
0	9	1	1	0	0	
1	-3	1	-2	1	0	
-5	-4	-2	1	0	1	

Primenimo algoritam za dualni simplex:

funkcija cilja	originalne promenljive							
	x_1	x_1 x_2 x_3 x_4 x_5						
-5/2	7	0	3/2	0	1/2			
-3/2	-5	0	-3/2	1	1/2			
5/2	2	1	-1/2	0	-1/2			

Dobijena tablica nije simplex tablica. Nastavljamo sa primenom algoritma:

funkcija cilja	originalne promenljive						
	x_1 x_2 x_3 x_4 x_5						
-4	2	0	0	1	0		
1	10/3	0	1	-2/3	-1/3		
3	11/3	1	0	-1/3	-2/3		

Dobijena tablica jeste simplex tablica. Bazično dopustivo rešenje koje joj odgovara je (0,3,1,0,0) a optimalna vrednost funkcije z je 4.

Reštiti dualnom simplex metodom

$$\min x_1 + x_2 + x_3$$
 pri ograničenjima
$$x_1 - x_2 - 4x_3 \leq 1$$

$$-x_1 + x_2 + 2x_3 \leq 3$$

$$x_1 - 3x_2 + x_3 \leq 0$$

$$x_1, x_2, x_3 \geq 0$$

PRIMER 37

Dva tipa proizvoda, A i B, mogu se izrađivati na dva tipa mašina, P i Q. Mašina P može da proizvede 4 jedinice proizvoda A i 3 jedinice proizvoda B na sat. Mašina Q može da proizvede 1 jedinicu proizvoda A i 4 jedinice proizvoda B na sat. Troškovi eksploatacije mašine P su 17, a mašine Q 14 novčanih jedinica na sat. Preduzeću je neophodno najmanje 7 jedinica proizvoda A i 15 jedinica proizvoda B. Koliko sati rada svake mašine je neophodno da bi zahtevi preduzeća bili zadovoljeni i da bi troškovi eksploatacije bili minimalni?

Rešenje:

Promenljive x_1 i x_2 predstavljaju brojeve sati rada mašina P i Q respektivno. Matematički model problema:

$$\min f(x), f(x) = 17x_1 + 14x_2$$
 pri ograničenjima
$$4x_1 + x_2 \ge 7$$

$$3x_1 + 4x_2 \ge 15$$

$$x_1, x_2 \ge 0$$

PRIMER 38

Proizvodno preduzeće raspolaže sa 3 vrste sirovina: od prve ima 120, od druge 80 i od treće 240 jedinica. Sirovine se koriste za izradu 5 vrsta proizvoda. Pri izradi jedinice prvog proizvoda potroše se jedna jedinica prve, dve jedinice druge i četiri jedinice treće sirovine. Pri izradi jedinice drugog proizvoda potroše se pet jedinica druge i jedna jedinica treće sirovine. Pri izradi jedinice trećeg proizvoda potroše se četiri jedinice prve, dve jedinice druge i pet jedinica treće sirovine. Pri izradi jedinice četvrtog proizvoda potroše se dve jedinice prve i jedna jedinica druge sirovine. Pri izradi jedinice petog proizvoda potroše se četiri jedinice prve i četiri jedinice treće sirovine. Jedinicu prvog proizvoda preduzeće prodaje po 20, drugog po 10, trećeg po 40, četvrtog po 20 i petog po 15 novčanih jedinica. Kako preduzeće treba planirati proizvodnju da bi od prodaje imalo najveći prihod?

Dvofazna modifikacija simplex metode

Dat je problem linearnog programiranja:

$$\min c^{T} x$$

$$Ax = b$$

$$x > 0$$
(1)

Ako je poznata jedna dopustiva baza, problem se svodi na kanonski oblik i odgovara simpleks metodi koju smo ranije radili. Cilj ovog postupka je da pomoću simplex metode rešimo problem koji nema poznatu bazu.

Pretpostavimo da je $b \ge 0$ (ako nije pomnožimo sve jednačine sa -1). Uočavamo pomoćni problem linearnog programiranja:

$$\min e^{T} w$$

$$Ax + w = b$$

$$x \ge 0, w \ge 0$$
(2)

gde je $e = (1, ..., 1) \in \mathbb{R}^m$, $w \in \mathbb{R}^m$ (w je vektor veštačkih promenljivih).

Skup dopustivih rešenja problema (2) je neprazan, i funkcija cilja je ograničena nulom odozdo.

Algoritam modifikacije dvofazne simplex metode

I Faza

Za problem (1) formiramo problem (2) kome se pridružuje LP tablica.

LP-tablica se svodi na simplex tablicu eleminacijom nula iz nulte vrste a zatim se prelazi na algoritam za rešavanje simplex metode.

Kako je funkcija cilja ograničena odozdo razlikujemo dva slučaja:

- 1. Optimalna vrednost je veća od nule. Tada problem (1) nema dopustivih rešenja i postupak se završava.
- 2. Optimalna vrednost je jednaka nuli (sledi da su u optimalnom bazičnom dopustivom rešenju sve veštačke promenljive jednake nuli). Prelazi se na II fazu.

II Faza

Korak1:

Iz poslednje simplex tablice dobijene u I fazi uklanjaju se sve veštačke promenljive, a nulta vrsta se zamenjuje vrstom [0|c1 ... cn 0 ...0] koja ima n+k+1 element, pri čemu je k broj bazičnih promenljivih. Dobijena LP tablica se svodi na simplex tablicu eliminacijom onih $c_i \neq 0$ koji odgovaraju bazičnim promenljivim.

Korak2:

Ukoliko je k=0 ići na korak3.

U suprotnom u simplex tablici postoje bazične kolone koje odgovaraju veštačkim promenljivim. Uočimo jednu od njih, koja npr. odgovara veštačkoj promenljivoj w_s . Neka ta kolona sadrži jedinicu u vrsti v. Razlikujemo dva slučaja:

- 1. Svi elementi vrste v osim bazične su jednaki nuli. Tada se vrsta v i kolona koja odgovara promenljivoj w_s izostavljaju iz simpex tablice
- 2. Neka je osim bazične jedinice na primer r-ti element vrste v različit od nule. Tada je i $r \neq 0$ jer je w_s na nivou nula, i tada r-ta kolona odgovara veštačkoj promenljivoj jer su izostavljene sve kolone koje odgovaraju nebazičnim promenljivim. Pomoću stožerne transformacije, sa stožernim elementom u preseku vrste v i kolone r, učiniti r-tu kolonu bazičnom. Zatim, izostaviti kolonu koja odgovara promenljivoj w_s jer se radi o nebazičnoj koloni koja odgovara veštačkoj promenljivoj. Zameniti k sa k+t1 preći na korak 2.

Korak3:

Dobijena simplex tablica sadrži samo kolone koje odgovaraju promenljivim iz problema (1). Primeniti algoritam za simplex kanonsku metodu.

PRIMER 39

Rešiti sledeći problem korišćenjem Simpleks metode:

$$\min z, z = 2x_1 + 1x_2 + 2x_3 + x_4 + 4x_5$$

$$4x_1 + 2x_2 + 13x_3 + 3x_4 + x_5 = 17$$

$$x_1 + x_2 + 5x_3 + x_4 + x_5 = 7$$

Rešenje:

- proverimo da li su sve vrednosti vektora b ne-negativne. Ukoliko za neko b_i važi $b_i < 0$ čitavu jednačinu množimo sa -1.
- Faza I
 - o dodajemo veštačke promenljive $x_6 \ge 0, x_7 \ge 0$ kako bi u ograničenjima imali jediničnu podmatricu:

$$\max w, w = x_6 + x_7$$

$$4x_1 + 2x_2 + 13x_3 + 3x_4 + x_5 + x_6 = 17$$

$$x_1 + x_2 + 5x_3 + x_4 + x_5 + x_7 = 7$$

Budući da je potrebno da sistem bude u kanonskoj formi na početku, od funkcije cilja oduzimamo drugu i treću jednačinu. Postupci minimiziranja funckije w slični su kao kod određivanja minimuma funkcije z.

bazne pr.	fja cilja		originalne promenljive				veštačke p		
	-w	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
-w	1	-5	-3	-18	-4	-2			-24
x_6		4	2	13	3	1	1	0	17
x_7		1	1	5	1	1	0	1	7

Iteracija 1 (faza I)

Odredimo pivot tablice (kolona x_3 , I ograničenje) i podelimo drugu vrstu sa 13, a zatim elementarnim transformacijama eliminišemo sve vrednosti kolone x_3 . Ovakvim postupkom dobijamo novu bazu koju čine x_3 i x_7 . Ovakvim postupkom vrednost funkcije se povećava sa -24 na 6/13.

bazne pr.	fja cilja		originalne promenljive				veštačke p		
	-w	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
-w	1	7/13	-3/13	0	2/13	-8/13	18/13	0	-6/13
x_3		4/13	2/13	1	3/13	1/13	1/13	0	17/13
x_7		-7/13	3/13	0	-2/13	8/13	-5/13	1	6/13

Iteracija 2 (faza I)

Za pivot uzimamo vrednost 8/13. Elementarnim transformacijama eliminišemo sve vrednosti kolone x_5 . Opisanim postupkom dobijamo da je vrednost funkcije w jednaka nuli. Ovu vrednost funkcije dobijamo za $x_3 = 5/4$ i $x_5 = 3/4$. Eliminišemo funkciju cilja w i unosimo vrednosti početne funckije cilja. Prelazimo na fazu II.

bazne pr.	fja cilja		originalne promenljive					veštačke promenljive		
	-w	x_1	x_2	x_3	x_4	x_5	x_6	x_7		
-w	1						1	1	0	
<i>x</i> ₃		3/8	1/8	1	1/4	0	1/8	-1/8	5/4	
<i>x</i> ₅		-7/8	3/8	0	-1/4	1	-5/8	13/8	3/4	

bazne pr.	fja cilja		originalne promenljive					veštačke promenljive		
	-z	x_1	x_1 x_2 x_3 x_4 x_5					x_7		
-z	1	2	1	2	1	4	0	0	0	
x_3		3/8	1/8	1	1/4	0	1/8	-1/8	5/4	
x_5		-7/8	3/8	0	-1/4	1	-5/8	13/8	3/4	

Iteracija 2 (faza II)

Eliminišemo vrednosti koje se nalaze u funkciji cilja uz bazne promenljive. Dakle, oduzimamo prvo ograničenje pomnoženo sa 2 i drugo ograničenje pomnoženo sa 4 od funkcije cilja.

bazne pr.	fja cilja		originalne promenljive					veštačke promenljive		
	-w	x_1	x_2	x_3	x_4	x_5	x_6	x_7		
-w	1	19/4	-3/4		3/2		9/4	-25/4	-11/2	
x_3		3/8	1/8	1	1/4	0	1/8	-1/8	5/4	
x_5		-7/8	3/8	0	-1/4	1	-5/8	13/8	3/4	

Iteracija 3 (faza II)

Novi pivot se bira tako da se nalazi u koloni u kojoj c_i ima najveću negativnu vrednost, a u koloni koja zadovoljva relaciju $\min\left\{\frac{\frac{5}{4}}{\frac{1}{8}},\frac{\frac{3}{4}}{\frac{3}{8}}\right\}$. Dakle pivot ima vrednost 3/8 (kolona x_2 , drugo ograničenje) .

bazne pr.	fja cilja		originalne promenljive					veštačke promenljive		
	-w	x_1	x_1 x_2 x_3 x_4 x_5					x_7		
-w	1	3			1	2	1	19/2	-4	
x_3		2/3	0	1	1/3	-1/3	1/3	-2/3	1	
x_5		-7/3	1	0	-2/3	8/3	-5/3	13/3	2	

Dakle, funkcija cilja ima vrednost 4 koju dostiže za $x_2 = 2$ i $x_3 = 1$ dok su ostale promenljive jednake nuli.

PROBLEM 40

Rešiti sledeći problem Simpleks metodom

$$z = 10x_1 + 10x_2 + 20x_3 + 30x_4$$
$$x_1 + x_3 + x_4 = 1$$
$$x_2 + x_3 + x_4 = 2$$
$$3x_1 + 2x_2 + 2x_3 + x_4 = 7$$

min
$$f(x)$$
, $f(x) = 2x_1 + 3x_3 + x_4$

$$-x_2 - x_3 + x_4 = 3$$

$$p.o.$$

$$2x_1 + 2x_3 + 4x_4 = 12$$

$$x_1 + x_2 + 2x_3 + x_4 = 3$$

$$x_i \ge 0 \quad i = 1, 2, 3, 4$$

Rešenje:

Problem nije u kanonskom obliku, zato primenjujemo fazu I: rešavamo pomoćni (pridruženi) problem, *min* w

$$\min w(x), \quad w(x) = x_5 + x_6 + x_7$$

$$-x_2 - x_3 + x_4 + x_5 = 3$$

$$2x_1 + 2x_3 + 4x_4 + x_6 = 12$$

$$x_1 + x_2 + 2x_3 + x_4 + x_7 = 3$$

$$x_i \geq 0 \quad i = 1, ..., 7$$

Problemu min w odgovara LP tablica:

funkcija cilja		originalne promenljive				veštačke promenljive			
-w	x_1	x_2	x_3	x_5	x_6	x_7			
0	0	0	0	0	1	1	1		
3	0	-1	-1	1	1	0	0		
12	2	0	2	4	0	1	0		
3	1	1	2	1	0	0	1		

Faza1:

Želimo da eliminišemo jedinice koje se nalaze u funkciji cilja:

I, II I III vrstu pomnožimo sa -1 i dodamo funkciji cilja. Ovim postupkom dobijamo novu tablicu na koju primenjujemo simpleks algoritam.

primerijajemo simple	no algoritarii.							
k = 0	funkcija cilja	0	riginalne p	oromenljiv	е	veštačke promenljive		
	-w	x_1	x_2	x_3	χ_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇
	0	0	0	0	0	1	1	1
	3	0	-1	-1	1	1	0	0
	12	2	0	2	4	0	1	0
k = 1	3	1	1	2	1	0	0	1
s = 3								
r = 4	-18	-3	0	-3	-6	0	0	0
	3	0	-1	-1	1	1	0	0
	12	2	0	2	4	0	1	0
	3	1	1	2	1	0	0	1

0	3	6	9	0	0	0	6
0	-1	-2	-3	0	1	0	-1
0	-2	-4	-6	0	0	1	-4
3	1	1	2	1	0	0	1

U funkciji cilja više nemamo negativnih vrednosti, dakle (0,0,0,3,0,0,0) je optimalno rešenje. Optimalna vrednost funkcije w je nula pa prelazimo na drugu fazu.

Il Faza
Poslednja kolona iz tablice je nebazična, odgovara veštačkoj promenljivoj i zato je uklanjamo (korak1).

funkcija cilja		originalne p		veštačke p	romenljive	
-w	x_1	x_2	x_5	x_6		
0	2	0	3	1	0	0
0	-1	-2	-3	0	1	0
0	-2	-4	-6	0	0	1
3	1	1	2	1	0	0

U funkciji cilja uz baznu promenljivu x_4 se nalazi 1 koju hoćemo da eliminišemo.

funkcija cilja		originalne p		veštačke p	romenljive	
-w	x_1	x_2	<i>x</i> ₅	<i>x</i> ₆		
-3	1	-1	1	0	0	0
0	-1	-2	-3	0	1	0
0	-2	-4	-6	0	0	1
3	1	1	2	1	0	0

Eliminišemo zatim, promenljivu x_5 koja je veštačka i umesto nje prvu kolonu učinimo bazičnom (korak3, slučaj2). Dobijamo novu tablicu/

Promenljiva x_5 je veštačka a svi preostali elementi druge vrste su jednaki nuli, izostavljamo zato II vrstu i kolonu koja odgovara toj promenljivoj (x_5), dakle brišemo V kolonu (korak3, slučaj1). Dobijena simplex tablica je:

funkcija cilja		originalne p		veštačke p	romenljive	
-w	x_1	x_2	x_5	x_6		
-3	0	-3	-2	0	1	0
0	1	2	3	0	-1	0
0	0	0	0	0	-2	1
3	0	-1	-1	1	1	0

funkcija cilja		veštačke promenljive				
-w	x_1	x_1 x_2 x_3 x_4				
-3	0	-3	-2	0	0	
0	1	2	3	0	0	
0	0	0	0	0	1	
3	0	-1	-1	1	0	
	-	ı	I		-	

-3	0	-3	-2	0
0	1	2	3	0
3	0	-1	-1	1

Kako su eleminisane sve veštačke promenljive možemo preći na korak 4. Dobijamo simplex tablicu:

funkcija cilja	originalne promenljive							
-w	x_1	x_1 x_2 x_3 x_4						
-3	3/2	0	5/2	0				
0	1/2	1	3/2	0				
3	1/2	0	1/2	1				

Bazično rešenje koje odgovara ovoj tablici je (0,0,0,3) i ono je optimalno. Optimalna vrednost funkcije z je 3.

Napomena: U pretposlednjoj i poslednjoj simplex tablici odgovara isto bazično rešenje pa samim tim i ista funkcija cilja. Ovo je posledica degenerisanosti, tj. prisustvo nula u poslednjoj koloni.

Rešiti dvofaznom modifikacijom simpleks metode sledeće probleme linearnog programiranja a) b)

$$\min 2x_1 - 3x_2
2x_1 - x_2 - x_3 \ge 3
x_1 - x_2 + x_3 \ge 2
x_i \ge 0$$

c)

$$min - x_1 + 2x_2$$

$$5x_1 - 2x_2 \le 3$$

$$x_1 + x_2 \ge 1$$

$$-3x_1 + x_2 \le 3$$

$$-3x_1 - 3x_2 \le 2$$

$$x_1, x_2 \ge 0$$

$$\max 5x_1 - x_2 + x_3 - 10x_4 + 7x_5$$

$$3x_1 - x_2 - x_3 = 4$$

$$x_1 - x_2 + x_3 + x_4 = 1$$

$$2x_1 + x_2 + 2x_3 + x_5 = 7$$

$$x_i \ge .0$$

PRIMER 43

Rešiti simplex metodom, dualnom simplex metodom ili dvofaznom modifikacijom simplex metode sledeće probleme

a)
$$\max 2x_1 - x_2$$

 $0 \le x_1 + x_2 \le 6$
 $2 \le -x_1 + 2x_2 \le 10$
 $x_1 - x_2 \le 0$
 $-2 \le x_1$
 $1 \le x_2 \le 5$

c)
$$\max -x_1 + x_2$$

 $-x_1 + x_2 \le 5$
 $x_1 - 2x_2 \le 9$
 $0 \le x_1 \le 6$
 $0 \le x_2 \le 8$

b)
$$\max -x_1 + 2x_2 + x_3$$

$$x_1 + x_3 > -1$$

$$x_2 \le 4$$

$$x_2 - 3 \ge -4$$

$$-x_1 + x_2 - x_3 \le 5$$

$$x_i \ge 0 \quad \text{dualni problem (0,4,8)}$$

LP problem sa parametrom

PRIMER 44

Pretpostavimo da imamo neku kompaniju koja bavi prozivodnjom stolica i stolova. Neka je broj proizvedenih stolica označen sa x_1 , odnosno broj proizvedenih stolova označen veličinom x_2 i neka je funkcija cilja, npr. $\max \ 45 \ x_1 + \ 80 \ x_2$ (svaka stolica donosi zaradu u iznosu od 45 eur dok svaki sto donosi zaradu od 80 eur). Interesuje nas da li bi kupcima mogli da omogućimo neki popust i u kom iznosu. Kako će se zarada menjati, ako bi se cene proizvoda uvećale/umanjile za neku vrednost λ .

Razmatraćemo nekoliko slučajeva:

- 1. $\max (45 + \lambda)x_1 + (80 + \lambda)x_2$
- 2. $\max (45 + \lambda)x_1 + (80 \lambda)x_2$ (na času)
- 3. max $(45 + \lambda)x_1 + (80 + 2\lambda)x_2$ (na času)

Pri ograničenjima

$$5x_1 + 20x_2 \le 400$$
$$10x_1 + 15x_2 \le 450$$
$$x_i \ge 0$$

Originalni problem, tj. problem za $\lambda=0$ ima optimalno rešenje $x_1=24, x_2=14$ i iznosi $z_0=2,200$ eur. Sada nas interesuje vrednost profit kompanije u zavisnosti od toga da li se λ povećava ili smanjuje. Problem rešavamo Simpleks metodom.

Neka je $\lambda > 80$. Formiramo LP tablicu:

funkcija cilja	originalne promenljive		veštačke promenljive		
b	x_1	x_2	s_1	s_2	
0	$-45 - \lambda$	$-80 - \lambda$	0	0	
400	5	20	1	0	
450	10	15	0	1	

U koloni koja odgovara funkciji cilja nemamo negativnih vrednosti, stoga je traženo rešenje $x_1=0, x_2=0, z=0$. Uzmimo sada da je $\lambda \leq 80$. Kolona koja odgovara promenljivoj x_2 ima negativno c, tj. kolona uz promenljivu x_2 ulazi u bazu, s_1 izlazi iz baze (min $\left\{\frac{400}{20}, \frac{450}{15}\right\} = \min\{20,30\}$).

funkcija cilja	originalne promenljive		veštačke promenljive		
b	x_1	x_2	s_1	s_2	
$1600 + 20\lambda$	$-25-\frac{3}{4}\lambda$	0	$4+\frac{\lambda}{20}$	0	
20	1/4	1	1/20	0	
150	25/4	0	-15/20	1	

Ako je $\lambda > -\frac{100}{3}$ sledi da je $c_1 < 0$, promenljiva x_1 ulazi u bazu, dok s_2 izlazi iz baze (min $\left\{\frac{20}{\frac{1}{4}}, \frac{150}{\frac{25}{4}}\right\} = 24$)

funkcija cilja	originalne pr	omenljive	veštačke promenljive	
b	x_1	x_2	s_1	s_2
$2200 + 38\lambda$	0	0	$1-\frac{\lambda}{25}$	$4+\frac{3}{25}\lambda$
14	0	1	2/25	-1/25
24	1	0	-3/25	4/25

Ako je $\lambda \le 25$ dobija se da je $x_1=14, x_2=24$, $z=2200+38\lambda$. Odnosno $z_1=3,150$ za $\lambda=25$. Neka je $\lambda < -\frac{100}{3}$. Razlikujemo slučajeve:

- a) $\lambda \leq -80 \rightarrow \text{re}$ šenje problema je $x_1 = 0, x_2 = 0.$
- b) $-80 < \lambda < -45 \rightarrow x_1 = 0, x_2 = 20, z = 1600 + 20\lambda$
- c) $-45 \le \lambda \le -\frac{100}{3} \to x_1 = 0, x_2 = 20$

Rešiti sledeći problem

pri ograničenjima

$$\min x_1 + x_2 - \lambda x_3 + 2\lambda x_4$$

$$x_1 + x_3 + 2x_4 = 2$$

$$2x_1 + x_2 + 3x_4 = 5$$

 $x_i \ge 0, i = 1,2,3,4.$

Za sve vrednosti parametra λ .

Rešenje:

funkcija cilja	originalne promenljive				
b	x_1	x_2	x_3	x_4	
0	1	1	$-\lambda$	2λ	
2	1	0	1	2	
5	2	1	0	3	

Neka je $\lambda \geq 0$, promenljive x_2 i x_3 čine bazu. Funkciji cilja dodajemo prvo ograničenje pomnoženo sa λ i oduzimamo drugo ograničenje

funkcija cilja	originalne promenljive					
b	x_1 x_2 x_3 x_4					
$-5 + 2\lambda$	$-1 + \lambda$	0	0	$4\lambda - 3$		
2	1	0	1	2		
5	2	1	0	3		

(slučaj 1) $0 \le \lambda < \frac{3}{4}$

Promenljiva x_4 ulazi u bazu, $\min\left\{\frac{2}{2},\frac{5}{3}\right\}=1$, x_3 izlazi iz baze.

funkcija cilja	originalne promenljive					
b	x_1	x_1 x_2 x_3 x				
$-2-2\lambda$	$\frac{1}{2} - \lambda$	0	$-2\lambda + \frac{3}{2}$	0		
1	1/2	0	1/2	1		
2	1/2	1	-3/2	0		

(slučaj 1.1) $0 \le \lambda < \frac{1}{2}$ dobija se rešenje $x_1 = 0$, $x_2 = 2$, $x_3 = 0$ i $x_4 = 1$, funkcija cilja ima vrednost $-2 - 2\lambda$ (slučaj 1.2) $\frac{1}{2} \le \lambda < \frac{3}{4}$ dobija se da x_1 ulazi u bazu, x_4 izlazi iz baze.

funkcija cilja	originalne promenljive				
b	$x_1 \mid x_2 \mid x_3 \mid x_4$				
-3	0	0	$-\lambda + 1$	0	
2	1	0	1	2	
1	0	1	-2	-1	

Rešenje polaznog problema $x_1=2, x_2=1, x_3=0, x_4=0$, gde je vrednost fje cilja -3. (slučaj 2) $\frac{3}{4} \le \lambda \le 1$ sledi da x_1 ulazi u bazu.

funkcija cilja	originalne promenljive					
b	x_1 x_2 x_3 x_4					
-3	0	0	$1 - \lambda$	$2\lambda - 1$		
2	1	0	1	2		
1	0	1	-2	-1		

Rešenje je $x_1 = 2, x_2 = 1, x_3 = 0, x_4 = 0$. Funkcija cilja ima vrednost -3.

(slučaj 3) $\lambda \ge 1$, tada je rešenje problema $x_1 = 0$, $x_2 = 5$, $x_3 = 2$, $x_4 = 0$. Funkcija cilja uzima vrednost $-5 + 2\lambda$. Neka je $\lambda < 0$, tada promenljiva x_4 ulazi u bazu, x_3 izlazi iz baze:

funkcija cilja	originalne promenljive				
b	x_1 x_2 x_3 x_4				
$-2-2\lambda$	$1-\lambda$	1	-2λ	0	
1	1/2	0	1/2	1	
2	1/2	1	-3/2	0	

Rešenje problema je sada $x_1=0, x_2=2, x_3=0, x_4=1$. Funkcija cilja ima vrednost -2λ . Konačno, možemo da sumiramo sve rezultate:

$$\begin{split} 1 &\leq \lambda \leq +\infty \ \to x_1 = 0, x_2 = 5, x_3 = 2, x_4 = 0, z_0 = 5 - 2\lambda \\ \frac{1}{2} &\leq \lambda \leq 1 \ \to x_1 = 2, x_2 = 1, x_3 = 0, x_4 = 0, z_0 = 3 \\ -\infty &\leq \lambda \leq \frac{1}{2} \to x_1 = 0, x_2 = 2, x_3 = 0, x_4 1, z_0 = 2 + 2\lambda \end{split}$$

PRIMER 46

Rešiti sledeći problem

pri ograničenjima

$$\max x_1 + \lambda x_2$$

$$x_1 + 3x_2 \le 3$$

 $2x_1 - 3x_2 \le 3$
 $x_i \ge 0, i = 1,2.$

Za sve vrednosti parametra λ .

Rešiti sledeći problem

pri ograničenjima

$$\min \lambda x - y$$

$$3x - y \ge 5$$

$$2x + y \le 3$$

$$-\infty < \delta \le \lambda \le \theta < +\infty$$

Rešenje.

Primetimo da promenljive x i y nisu nenegativne. Uvodimo smenu $x=x_1-x_2,\ x_1,x_2\geq 0$ i $y=y_1-y_2,\ y_1,y_2\geq 0$. Takođe uvodimo izravnajuće promenljive u_1 i u_2 . Početni problem postaje

min
$$\lambda(x_1 - x_2) - (y_1 - y_2) + wv$$

 $3(x_1 - x_2) - (y_1 - y_2) - u_1 + v = 5$
 $2(x_1 - x_2) + (y_1 - y_2) + u_2 = 3$

Promenljiva v dodata je obzirom da nismo imali jediničnu podbazu. Formiramo LP tablicu.

funkcija cilja	originalne promenljive				veštačke promenljive		
b	x_1 x_2 y_1 y_2			u_1	u_2	v	
0	λ	$-\lambda$	-1	1	0	0	w
5	3	-3	-1	1	-1	0	1
3	2	-1	1	-1	0	1	0

funkcija cilja	originalne promenljive				veštačke promenljive		
b	x_1	x_2	y_1	u_1	u_2	v	
-5w	$\lambda - 3w$	$\lambda - 3w$ $-\lambda + 3w$ $-1 + w$ $1 - w$				0	0
5	3	-3	-1	-1	0	1	
3	2	-2	1	-1	0	1	0

Neka je $\lambda - 3w < 0$. Tražimo pivot u koloni koja odgovara promenljivoj x_1

funkcija cilja			originalne prome	veš	tačke promenlj	ive	
b	x_1	x_2			u_1	u_2	v
$-\frac{3}{2}\lambda - \frac{1}{2}w$	0	0	$-\frac{1}{2}\lambda + \frac{5}{2}w - 1$	$\boxed{\frac{1}{2}\lambda - \frac{5}{2}w + 1}$	w	$-\frac{1}{2}\lambda + \frac{3}{2}w$	0
1/2	0	0	-5/2	5/2	-1	-3/2	1
3/2	1	-1	1/2	-1/2	0	1/2	0

funkcija cilja	originalne promenljive			veštačke promenljive			
b	x_1	x_2	y_1	y_2	u_1	u_2	v
$-\frac{1}{5}-\frac{8}{5}\lambda$	0	0	0	0	$\frac{2}{5} + \frac{1}{5}\lambda$	$\frac{3}{5} + \frac{\lambda}{5}$	$-\frac{2}{5} - \frac{\lambda}{2} + \frac{5}{2}w$
1/5	0	0	-1	1	-2/5	-3/5	2/5
8/5	1	-1	0	0	-1/5	1/5	1/5

Kako se vrednost w nalazi samo uz kolonu koja odgovara promenljivoj v koja je z to nebazna, eliminisaćemo tu kolonu. Za $\lambda \geq -2$ dobijamo prvo rešenje: $x_1 = \frac{8}{5}$, $x_2 = 0$, $y_1 = 0$, $y_2 = \frac{1}{5}$, $u_1 = 0$, $u_2 = 0$. Funkcija ima vrednost $z = \frac{1}{5} + \frac{8}{5}\lambda$. Tražimo rešenje za $\lambda < -2$.

Za $-3 < \lambda < -2$ nema dopustivog rešenja obzirom da su u koloni koja odgovara u_1 sve vrednosti negativne. Za, $\lambda \le -3$ sledeći vektor koji ulazi u bazu je u_2 dok x_1 izlazi iz baze:

funkcija cilja	originalne promenljive				veštačke promenljive		
b	x_1	x_1 x_2 y_1 y_2				u_2	
-5	$-3 + \lambda$	$3 - \lambda$	0	0	1	0	
5	3	-3	-1	1	-1	0	
8	5	-5	0	0	-1	1	

Za $\lambda=-3$ funkcija ima rešenje -5 koje dostiže za $x_1=0, x_2=0, y_1=0, y_2=5, u_1=0, u_2=8.$ Za $\lambda<-3$

funkcija cilja	originalne promenljive			nljive	veštačke promenljive		
b	x_1	x_2	y_1	y_2	u_1	u_2	
$-\frac{1}{5}-\frac{8}{5}\lambda$	0	0	0	0	$\frac{2}{5} + \frac{1}{5}\lambda$	$\frac{3}{5} + \frac{1}{5}\lambda$	
1/5	0	0	-1	1	-2/5	-3/5	
8/5	1	-1	0	0	-1/5	1/5	

Rešenje problem je sada $x_1 = \frac{8}{5}$, $x_2 = 0$, $y_1 = 0$, $y_2 = \frac{1}{5}$, $u_1 = 0$, $u_2 = 0$. Funkcija ima vrednost $z = \frac{1}{5} + \frac{8}{5}\lambda$

PRIMER 48

Rešiti sledeći problem

$$\max 45x_1 + 80x_2$$

pri ograničenjima

$$5x_1 + 20x_2 \le 400 + \theta$$
$$10x_1 + 15x_2 \le 450 + 5\theta$$
$$x_i \ge 0, i = 1,2$$

za sve vrednosti parametra θ .

Rešenje.

Na primer, vlasnika fabrike koja se bavi proizvodnjom stolica i stolova zanima kako se menja raspored proizvodnje i kako se menja zarada ako se broj radnih sati poveća ili smanji Formiramo LP tablicu.

funkcija cilja	originalne	oromenljive	veštačke promenljive		
b	x_1	x_2	u_1	u_2	
0	-45	-80	0	0	
$400 + \theta$	5	20	1	0	
$450 + 5\theta$	10	15	0	1	

Neka je $\theta \geq -90$. Promenljiva x_2 ulazi u bazu u_2 izlazi iz baze, $\min\left\{\frac{400+\theta}{20}, \frac{450+5\theta}{15}\right\} = \frac{450+5\theta}{15}$ za $-90 \leq \theta \leq -\frac{600}{17}$.

funkcija cilja	originalne pro	menljive	veštačke promenljive		
b	x_1	x_2	u_1	u_2	
$2400 + \frac{80}{3}\theta$	25/3	0	0	16/3	
$-200 - \frac{17}{3}\theta$	-25/3	0	1	4/3	
$30 + \frac{1}{3}\theta$	2/3	1	0	1/15	

Rešenje je $-2400+\frac{80}{3}\theta$ i dostiže se za $x_1=0, x_2=30+\frac{\theta}{3}, u_1=-200-\frac{17}{3}\theta, u_2=0.$ Neka je sada $\theta>-\frac{600}{17}.$ Promenljiva x_2 izlazi iz baze, ali u bazu ulazi u_1 :

funkcija cilja	originalne pro	menljive	veštačke promenljive		
b	x_1	x_2	u_1	u_2	
$1600 + 4\theta$	-25	0	4	0	
$20 + \frac{1}{20}\theta$	1/4	1	1/20	0	
$150 + \frac{17}{4}\theta$	25/4	0	-3/4	1	

Za $\theta \leq \frac{350}{3}$ sledi da x_1 ulazi u bazu i da u_2 izlazi iz baze.

funkcija cilja	originalne	oromenljive	veštačke promenljive		
b	x_1	x_2	u_1	u_2	
$2200 + \frac{14}{25}\theta$	0	0	1	4	
$14-\frac{3}{25}\theta$	0	1	1/50	-1/25	
$24 + \frac{17}{25}\theta$	1	0	-3/25	4/25	

Dobijamo da je rešenje problema $2200+\frac{14}{25}\theta$ i da se dostiže za $x_1=24+\frac{17}{25}\theta$, $x_2=14-\frac{3}{25}\theta$, $u_1=0$, $u_2=0$. Odnosno, za $\theta>\frac{350}{3}$ dobijamo da x_1 ulazi u bazu ali da u_1 izlazi iz nje.

funkcija cilja	originalne	e promenljive	veštačke promenljive		
b	x_1	x_2	u_1	u_2	
$4100 + 9\theta$	0	100	9	0	
$100 + \frac{1}{5}\theta$	1	4	1/5	0	
$475 + 3\theta$	0	0	-2	1	

Rešenje problema je $4100 + 9\theta$ i dostiže se za $x_1 = 100 + \frac{1}{5}\theta$, $x_2 = 0$, $u_1 = 0$, $u_2 = 475 + 3\theta$.

Rešiti sledeći problem

pri ograničenjima

$$\min x_1 + x_2 + 2x_3 + x_4$$

 $x_1 - 2x_2 - x_4 = 2 - \theta$

$$x_2 - x_3 + x_4 = -1 + \theta$$

 $x_i \ge 0, i = 1,2$

za sve vrednosti parametra θ .

Rešenje.

Potrebno je proveriti da li je $2-\theta \ge 0, -1+\theta \ge 0$. Kako ovo važi za $1 \le \theta \le 2$ prvo ćemo rešenje tražiti na tom segmentu. Formiramo LP tablicu

funkcija cilja	originalne promenljive					
b	x_1	x_2	x_3	x_4		
0	1	1	2	1		
$2-\theta$	1	-2	0	-1		
$-1 + \theta$	0	1	-1	1		

Treba korigovati funkciju cilja obzirom da nad baznim promenljivim imamo nenula vrednosti. Bazu čine vektori x_1 i x_2 .

funkcija cilja	originalne promenljive			
b	x_1	x_2	x_3	x_4
$\theta - 1$	0	0	5	1
$2-\theta$	1	0	-2	-1
$-1 + \theta$	0	1	-1	1

Za $\theta \in [1,2]$ optimalno rešenje ima vrednost $\theta - 1$ koje se dostiže za $x_1 = 2 - \theta$, $x_2 = -1 + \theta$, $x_3 = 0$, $x_4 = 0$. Neka je, sada $\theta > 2$ koristimo dualnu Simpleks metodu

funkcija cilja	originalne promenljive			
b	x_1	x_2	x_3	x_4
-1	0	0	5	1
$2-\theta$	1	0	-2	-1
$-1 + \theta$	0	1	-1	1

funkcija cilja	originalne promenljive			
b	x_1	x_2	x_3	x_4
$1-\theta$	1	0	3	0
$-2 + \theta$	-1	0	2	1
1	1	1	-3	0

Rešenje je $x_1=0, x_2=1, x_3=0, x_4=-2+\theta. z=1-\theta$

l konačno, neka je $\theta < 1$

funkcija cilja	originalne promenljive			
b	x_1	x_2	x_3	x_4
0	1	1	2	1
$2-\theta$	1	-2	0	-1
$-1 + \theta$	0	1	-1	1

funkcija cilja	originalne promenljive			
b	x_1	x_2	x_3	x_4
$-2+2\theta$	1	3	0	3
$-6+5\theta$	0	5	0	6
$4-3\theta$	1	-2	0	-3
$1-\theta$	0	-1	1	-1

Odgovarajuće rešenje je $x_1 = 4 - 3\theta$, $x_2 = 0$, $x_3 = 1 - \theta$, $x_4 = 0$.

ZADACIZA VEZBU

ZADATAK 1

Rešiti sledeći problem minimizacije

$$\min (3 - \lambda)x_1 - (2 + \lambda)x_2$$

pri ograničenjima

$$2x_1 + 5x_2 \le 10$$

$$6x_1 + x_2 \le 12$$

$$x_1 - x_2 \le 1$$

$$x_i \ge 0, i = 1,2$$

ZADATAK 2

Rešiti sledeći problem minimizacije

min
$$2\lambda x_1 + (1 - \lambda)x_2 - 3x_3 + \lambda x_4 + 2x_5 - 3\lambda x_6$$

pri ograničenjima

$$x_1 + 3x_2 - x_3 + 2x_5 = 7$$

$$-2x_2 + 4x_3 + x_4 = 12$$

$$-4x_2 + 3x_3 + 8x_5 + x_6 = 10$$

$$x_i > 0 \ i = 1.2$$

 $x_i \geq 0, i = 1, 2, \dots, 6$ Rešenje tražiti na segmentima $-\infty \leq \lambda \leq -\frac{1}{10'}, -\frac{1}{10} \leq \lambda \leq -\frac{1}{27'}, -\frac{1}{27} \leq \lambda \leq 2, 2 \leq \lambda \leq \infty.$

ZADATAK 3

Rešiti sledeći problem minimizacije

$$\min 2x_4 + 8x_5$$

pri ograničenjima

$$x_1 + 3x_4 - x_5 = 3 - \theta$$

$$x_2 - 4x_4 + 2x_5 = 1 + 2\theta$$

$$x_3 - x_4 + 3x_5 = -1 + \theta$$

$$x_i \ge 0 \ \forall i$$

Optimalno rešenje tražiti na segmentima $0 \le \theta \le 1, 1 \le \theta \le 3, 3 \le \theta \le 4$.