I hereby certify that this paper is being deposited with the United States Postal Service as Express Mail in an envelope addressed to: Asst. Comm. for Patents, Washington, D.C. 20231, on this date.

03/31/99 Date

Express Mail Label No.: EM045520173US

SPECIFICATION

TO ALL WHOM IT MAY CONCERN:

BE IT KNOWN THAT WE, Seiji Tanuma, a citizen of Japan residing at Kawasaki-shi, Kanagawa, Japan, Yohei Nakanishi, a citizen of Japan residing at Kawasaki-shi, Kanagawa, Japan and Takatoshi Mayama, a citizen of Japan residing at Kawasaki-shi, Kanagawa, Japan have invented certain new and useful improvements in

LIQUID CRYSTAL DISPLAY DEVICE OPERATING IN A VERTICALLY ALIGNED MODE OF LIQUID CRYSTAL MOLECULES

of which the following is a specification : -

1 TITLE OF THE INVENTION

10

15

20

25

30

35

LIQUID CRYSTAL DISPLAY DEVICE OPERATING IN A VERTICALLY ALIGNED MODE OF LIQUID CRYSTAL MOLECULES

5 BACKGROUND OF THE INVENTION

The present invention generally relates to liquid crystal display devices and more particularly to a high-contrast liquid crystal display device characterized by a fast response speed and a low electric power consumption.

FIG.1 shows the construction of a conventional liquid crystal display device of the so-called TN-mode.

Referring to FIG.1, the conventional liquid crystal display device includes a glass substrate 2a carrying thereon a number of active devices including pixel electrodes 6 and cooperating bus lines 5, wherein the glass substrate 2a faces a glass substrate 2b carrying thereon an opposing electrode 3, with a liquid crystal layer 1 interposed between the glass substrate 2a and the glass substrate 2b. It should be noted that the glass substrate 2a further carries a molecular alignment film 4 so as to cover the foregoing active devices, while the glass substrate 2b carries another molecular alignment film 5 so as to cover the opposing electrode 3.

In the conventional structure of FIG.1, a liquid crystal called TN (twist-nematic) type is used commonly for the liquid crystal layer 1. In such a conventional, TN-mode liquid crystal display device using a TN-type liquid crystal, the liquid crystal molecules are aligned generally parallel to the plane of the substrates in the non-activated state thereof in which no drive voltage is applied to the liquid crystal layer. In the non-activated state, the liquid crystal molecules are further twisted between the substrate 2a and the substrate 2b with a twist angle

10

15

30

35

of 90°. When a drive voltage is applied to the liquid orystal lay r 1, on the other hand, the liquid crystal molecules are aligned generally perpendicular to the plane of the substrates 2a and 2b.

Such a TN-mode liquid crystal display device is used commonly in various information processing apparatuses. Further, low-cost fabrication process of such a TN-mode liquid crystal display device is well established by now.

On the other hand, a TN-mode liquid crystal display device generally has a drawback in that the contrast ratio of represented images changes substantially depending on the viewing angle. While there are various attempts to improve the viewing angle characteristic of TN-mode liquid crystal display devices, it has been still difficult to realize a viewing characteristic comparable to that of a CRT display device.

On the other hand, there is another type of
liquid crystal display device in which the liquid
crystal molecules are aligned generally
perpendicularly to the plane of the glass substrate.
In such vertically aligned liquid crystal display
devices, the liquid crystal molecules are aligned
generally perpendicular to the plane of the glass
substrates in the non-activated state.

FIGS.2A and 2B show the construction of one type of such a vertically aligned liquid crystal display device.

Referring to FIG.2A showing a pixel of such a vertically aligned liquid crystal display device in the non-activated state thereof, the liquid crystal display device includes a first glass substrate 10 carrying thereon a pair of electrodes 11a and 11b and a second glass substrate 12 facing the first glass substrate 10, and a liquid crystal layer 14 is sandwiched between the glass substrate 10 and the

10

15

20

25

30

35

glass substrate 12. In the non-activated state of the liquid crystal display device, it should be noted that no drive voltage is applied across the electrodes 11a and 11b.

The liquid crystal layer 14 includes liquid crystal molecules 16, wherein the liquid crystal molecules 16 are aligned generally perpendicularly to the plane of the substrate 10 in the non-activated state of the liquid crystal display device represented in FIG.2A. It should be noted that the surface of the substrate 10 on which the electrodes 11a and 11b are provided is covered by a molecular alignment film not Similarly, the surface of the substrate illustrated. 12 facing the liquid crystal layer 14 is covered by a molecular alignment film not illustrated. Further, a pair of polarizers not illustrated are disposed at respective outer-sides of the glass substrate 10 and the glass substrate 12.

In the activated state represented in FIG.2B in which a drive voltage is applied across the electrodes 11a and 11b, on the other hand, the liquid crystal molecules 16 are aligned in the direction of the electric filed inside the liquid crystal layer 14. Thereby, the pixel represented in FIG.2B is divided into a first region at a first side of a line A-A' and a second region at a second, opposite side of the line A-A', wherein it can be seen that the liquid crystal molecules 16 are tilted in respective, mutually opposite directions in the first region and in the second region. As a result of such a subdivision of the pixel, the liquid crystal display device provides an excellent viewing angle characteristic.

On the other hand, the vertically aligned liquid crystal display device of FIG.2 has a drawback in that it requires a drive voltage of at least 5 V. In order to reduce the power consumption of the liquid crystal display device, it is desired to reduce the

1 drive voltage.

In a liquid crystal display device, the drive voltage is generally reduced by increasing the retardation value Δn 'd, wherein Δn represents the birefringence and d represents the cell thickness. On the other hand, there has been little information about the optimum value for the birefringence Δn or for the cell thickness d in this type of the vertically aligned liquid crystal display devices.

Further, this type of vertically aligned liquid crystal display devices have conventionally suffered from the problem of poor response speed. This drawback becomes particularly conspicuous when performing a motion picture representation.

15

20

10

5

SUMMARY OF THE INVENTION

Accordingly, it is a general object of the present invention to provide a novel and useful liquid crystal display device wherein the foregoing problems are eliminated.

Another object of the present invention is to provide a liquid crystal display device, comprising:

- a first substrate;
- 25 a second substrate facing said first substrate;
 - a liquid crystal layer interposed between said first and second substrates; and
- a group of electrodes disposed on said first

 30 substrate so as to create an electric field in said
 liquid crystal layer generally parallel to said first
 substrate in an activated state in which a drive
 voltage is applied to said group of electrodes;

said liquid crystal molecules aligning

35 generally perpendicularly to a plane of said first
substrate in a non-activated state in which said drive
voltage is not applied to said group of electrodes,

10

15

20

30

35

said liquid crystal molecules aligning generally parallel to said plane of said first substrate in said activated state;

said liquid crystal molecules having a pretilt angle of less than 90° in at least one of a part of said liquid crystal layer corresponding to a pixel and said electrode on said first substrate.

According to the present invention, the response speed of the liquid crystal display device is improved by locally setting the pre-tilt angle of the liquid crystal molecules to be less than 90°. Thereby, such pre-tilted liquid crystal molecules act as a nuclei when a drive electric field is applied to the liquid crystal layer, and the tilting of the liquid crystal molecules propagates rapidly throughout the liquid crystal layer, starting from such a site of the pre-tilted molecules. Associated with this, the drive voltage of the liquid crystal display device is reduced, and hence the electric power consumption.

Other objects and further features of the present invention will become apparent from the following detailed description when read in conjunction with the attached drawings.

25 BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 is a diagram showing the construction of a conventional TN-mode liquid crystal display device:

FIGS.2A and 2B are diagrams showing the construction of a conventional vertically aligned liquid crystal display device respectively in a non-activated state and in an activated state thereof;

FIG.3 is a diagram showing the principle of the liquid crystal display panel of the present invention;

FIG.4 is another diagram showing the principle of the liquid crystal display panel of the

pres nt invention;

5

10

30

35

4

FIG.5 is a diagram showing the construction of a liquid crystal display device according to a first embodiment of the present invention;

FIG.6 is a diagram showing the construction of a liquid crystal display device according to a second embodiment of the present invention;

FIG.7 is a diagram showing the construction of a liquid crystal display device according to a third embodiment of the present invention;

FIG.8 is a diagram showing the construction of a liquid crystal display device according to a fourth embodiment of the present invention; and

FIG.9 is a diagram showing the construction of a liquid crystal display device according to a fifth embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [PRINCIPLE]

20 First, the principle of the present invention will be explained with reference to FIG.3 and FIG.4, wherein those parts corresponding to the parts described previously are designated by the same reference numerals and the description thereof will be omitted.

Referring to FIG.3, the electrodes 11a and 11b are formed on the first substrate 10, and the first substrate 10 and the second substrate 12 sandwich therebetween a liquid crystal layer 18. As represented in FIG.3, the liquid crystal layer 18 contains liquid crystal molecules 18a, wherein each of the liquid crystal molecules 18a is provided with a pre-tilt angle 20 with respect to the substrate 12 and hence the substrate 10.

According to a first aspect of the present invention, the liquid crystal molecules are easily tilted in the pre-tilt direction when the drive

15

25

30

35

voltage is applied across the electrodes 11a and 11b and the liquid crystal display device is activated. Associated therewith, the response speed of representation of the liquid crystal display device is improved. Further, the drive voltage is reduced substantially and hence the electric power consumption.

FIG.4 shows irradiation of the molecular alignment film 4 covering the surface of the glass substrate 10 with a ultraviolet beam 7 according to a second aspect of the present invention.

As a result of exposure of the molecular alignment film to an ultraviolet radiation, the desired pre-tilt angle is provided to the liquid crystal molecules. Further, such an exposure of the molecular alignment film to the ultraviolet radiation 7 causes a decrease in the specific resistance of the liquid crystal layer 18, and the electric charges on the substrate surface are quickly dissipated.

Thereby, the liquid crystal display device becomes substantially free from sticking of images and the quality of image representation is improved.

Further, there is a third aspect of the present invention in which the desired decrease of the drive voltage and electric power consumption is achieved by choosing the liquid crystal constituting the liquid crystal layer 18 or by setting the thickness d of the liquid crystal layer 18 such that the retardation value Δn is increased as much as possible.

[FIRST EMBODIMENT]

FIG.5 shows a liquid crystal display device 30 according to a first embodiment of the present invention in a cross-sectional view.

Referring to FIG.5, the liquid crystal display device 30 includes a first glass substrate 32

carrying thereon electrodes 34 and 36, wherein it 1 should be noted that the electrodes 34 and 36 carry thereon organic projections 38 and 39 respectively. Further, the first glass substrate 32 is covered by a molecular alignment film 42 such that the molecular 5 alignment film 42 covers the electrodes 34 and 36 and further the projections 38 and 39. Further, another molecular alignment film 44 covers the surface of a second glass substrate 33. The first glass substrate 32 and the second glass substrate 33 are disposed such 10 that a liquid crystal layer 50 is sandwiched Thereby, the molecular alignment films therebetween. 42 and 44 restrict the direction of the liquid crystal molecules in the liquid crystal layer 50 such that the liquid crystal molecules are aligned generally 15 perpendicularly to the plane of the substrate 32 or 33 in the non-activated state of the liquid crystal display device 30. In other words, the molecular alignment films 42 and 44 are vertically aligning molecular alignment films. 20

The liquid crystal display device 30 of FIG.5 is fabricated according to the process as follows.

First, the electrodes 34 and 36 are formed on the first glass substrate 31 by a patterning process of a conductor layer such that each of the electrodes 34 and 36 has a width W of 5 μm and such that the electrodes 34 and 36 are separated from each other by a mutual separation L of about 12 μm .

Next, the projections 38 and 39 are formed respectively on the electrodes 34 and 36 in the form of a resist pattern having a height h of about 1.5 µm. After applying a thermal curing process to the resist pattern thus formed at the temperature of about 120°C for about 30 minutes, each of the projections 38 and 39 undergoes a reflowing, and the resist projections 38 and 39 are transformed to have a bell-shaped form.

25

30

Next, the vertically aligning molecular alignment film 42 is formed on the glass substrate 32 so as to cover the electrodes 34 and 36. Similarly, the vertically aligning molecular alignment film 44 is formed on the inner surface of the glass substrate 33. The substrates 32 and 33 are then assembled such that the molecular alignment films 42 and 44 face with each other with a separation d of about 9 µm.

Further, polarizers 46 and 48 are disposed on respective outer surfaces of the first glass substrate 32 and the second glass substrate 33 such that the optical absorption axis of the polarizer 46 cross perpendicularly the optical absorption axis of the polarizer 48. Further, the liquid crystal layer 50 is confined into the gap thus formed between the substrate 32 and the substrate 33.

As represented in FIG.5, the liquid crystal molecules in the liquid crystal layer 50 are aligned vertically to the plane of the substrate 32 or 33 in the non-activated state of the liquid crystal display device 30, except for those liquid crystal molecules adjacent to the foregoing bell-shaped projections 38 and 39.

In view of the nature of the vertically aligning molecular alignment film 42, it should be noted that the liquid crystal molecules maintain a generally vertical relationship with respect to the molecular alignment film 42, including the liquid crystal molecules 50a and 50b that are located adjacent to the projection 38 or the projection 39. Thereby, the liquid crystal molecule 50a or 50b form an oblique, pre-tilt angle 51 with respect to the substrate 32, wherein it should be noted that the direction of the pre-tilt angle 51 is identical with the general direction of tilting of the liquid crystal molecules when a drive voltage is applied across the electrodes 34 and 36. Thus, when a drive voltage is

15

20

25

30

35

applied across the electrodes 34 and 36, the liquid crystal molecules in the liquid crystal lay r 50 is influenced by the pre-tilt direction of the liquid crystal molecules 50a and 50b and undergo a tilting in the same direction as the pre-tilt direction of the liquid crystal molecules 50a and 50b. Such a tilting of the liquid crystal molecules propagates to other liquid crystal molecules in the liquid crystal layer 50 rapidly.

Thus, the liquid crystal molecules 50a and 50b determine the tilting direction of the liquid crystal molecules in the liquid crystal layer 50 when a drive voltage is applied to the electrodes 34 and 36. Thereby, the time needed for the entire liquid crystal molecules in the liquid crystal layer 50 to undergo the tilting is substantially reduced.

In the event the pre-tilted liquid crystal molecules 50a or 50b were not present, on the other hand, it would take a longer time until the entire liquid crystal molecules undergo tilting as represented in the state of FIG.2A because of the lack of the factor that determines the initial direction of the tilting. Associated with this, the drive voltage necessary for driving the liquid crystal display device 30 would increase. Thereby, the electric power necessary for driving the liquid crystal display device 30 would increase also.

As noted above, the pre-tilting of the liquid crystal molecules 50a and 50b effectively reduces the time and magnitude of the electric field necessary for causing the tilting of the entire liquid crystal molecules in the liquid crystal layer 50.

Table 1 below compares the performance of the liquid crystal display device 30 with the performance of a conventional vertically aligned liquid crystal display device in which no such a projection is provided, wherein it should be noted that Table 1 compares the saturation voltage and response time needed for the liquid crystal display device to reach a predetermined transmittance.

TABLE 1

5

30

35

	saturation voltage	response time [ms]
conventional	5.0 V	25/38
lst embodiment	4.3 V	23/37

Table 1 clearly indicates the decrease of

the saturation voltage in the present embodiment in
which the projections 38 and 39 are formed over the
conventional device. This means that the voltage
needed for driving the liquid crystal display device
30 is reduced over the conventional device. Further,
the response time is improved over the conventional
device. It should be noted that a saturation voltage
is a voltage needed for a liquid crystal display
device to achieve a predetermined transmittance.

25 [SECOND EMBODIMENT]

Next, a liquid crystal display device 31 according to a second embodiment of the present invention will be described with reference to FIG.6, wherein those parts corresponding to the parts described previously are designated by the same reference numerals and the description thereof will be omitted.

Referring to FIG.6, it can be seen that the liquid crystal display device 31 has a construction similar to that of the liquid crystal display device 30 of the previous embodiment, except that there is formed a projection 41 also on the second glass

JE.

embodiment in comparison with the performance of the conventional vertically aligned liquid crystal display device noted in Table 1.

TABLE 2

5

15

20

25

30

35

	saturation voltage	response time [ms] on/off
conventional	5.0 V	25/38
2nd embodiment	3.8 V	20/36

As is expected, the liquid crystal display device 31 of the present embodiment shows a reduced saturation voltage and increased response speed over the conventional vertically aligned liquid crystal display device having no such projections. The result of TABLE 2 further indicates that the addition of the projection 41 in addition to the projections 38 and 39 further improves the performance of the liquid crystal display device.

[THIRD EMBODIMENT]

FIG.7 shows the construction of a liquid crystal display device 60 according to a third embodiment of the present invention.

Referring to FIG.7, the liquid crystal display device 60 includes a first glass substrate 62 carrying thereon electrodes 64 and 66, wherein the electrodes 64 and 66 carry thereon projections 68 and 69 respectively. Further, the first glass substrate 62 is covered by a molecular alignment film 72 wherein the molecular alignment film 72 is formed so as to cover the electrodes 64 and 66.

Further, the liquid crystal display device 60 includes a second glass substrate 63 carrying

thereon a projection 71, wherein the second glass 1 substrate 63 including the projection 71 is covered by a molecular alignment film 74. The first and second substrates 62 and 63 are disposed so as to sandwich a liquid crystal layer and are disposed so as to sandwich a liquid crystal layer 5 To therebetween, and polarizers 78 and 77 are disposed at respectiveen, and polarizers

The lymin outer sides of the substrates 62 and 63. FIG. 7 is fabricated as follows. 10 On the first, the electrodes of and on are formed and the nrnientine formed and the nrnientine formed and form First, the electrodes 64 and 66 are formed on the conductive layer, and the projections 68 and 69 are for a parternance of a second conductive layer. tormed tespectively on the electrodes of and by are to read the projections of and by are to read the tespectively on the electrodes of and by are to read the tespections of and by are to read the tespections of and by are to read the tespections of an and by are to read the tespections of an an area of the read to read the tespections of an area of the read to read the read the read to read the read the read to read the read the read to read the read to read the read form of a resist pattern. Further, the projection 71 is form or a resist pattern.
is formed on the substrate 63 also in the form of a resist Pattern. projections 68 and 69 or the projection 71 are then The resist patterns thus formed for the Projections of and by or the projection of a thermal curing process together with nattanne the Substrate 62 or 63, Wherein the resist patterns 20 undergo a reflowing during such a thermal curing who such a thermal curing the such a such a thermal curing the such a suc process, and the projections 68 and 69 and the process, and the projections of and bell shaped form. After the formation of the projections 68 and 69 as mentioned above the surface of the 25 substrate 62 Carrying the projections 68 and 69 is covered by the molecular alignment film 72. Similarly, the molecular alignment film 72.

The nrotecular alignment film 72.

The nrotecular alignment film 72. the projection 71 is covered by the molecular alignment film 74. The substrates 62 and 63 thus 30 prepared are assembled to form a liquid crystal cell and the lidnid Crhstal laker 10 is coutined petween brebared are assembled to torm a ridnin crhstar cer. the space formed between the substrates 62 and 63. Ctystal display device thus fabricated is subjected to 35 an ultraviolet exposure process similar to that of an ultraviolet exposure contracted as another exposure of the factor of the f FIG. 4. wherein the molecular alignment films 72 and 74

are exposed to a ultraviolet radiation before the More in detail, Substrates 62 and 63 are assembled. process is and next from a search of the direction and the process 1s conquerted twice, INISE IRON a INISE opposite direction a second, opposite direction a second, opposite direction and next from a second opposite direction. direction and next from a second, opposite direction the projection of the projection and next from a second, opposite direction and next from a second, opposite direction of the projection and next from a second, opposite direction of the projection and next from a second, opposite direction of the projection and next from a second, opposite direction of the projection and next from a second, opposite direction of the projection and next from a second, opposite direction of the projection of while protecting the right-side part of the projection of the liquid crystal cell by a mask (not shown)

71 of the liquid ownsering arrange and while arrange arrange arrange and while arrange arrang 71 of the liquid crystal cell by a mask (not shown)

71 of the first exposure process and while the liquid arrange of the protection of the first exposure process are the laft-side part of the protection of the laft-side part of the laft-side during the first exposure process and while protecting the first exposure process and while protection 71 of the liquid the left-side part of the projection of enough and the left-side part of mack (not enough) and the left-side part of the protection of the left-side part of the leftthe left-side part of the projection 71 of the liquid the crystal cell by another mask (not shown) during the crystal certains 1 By applying a ultraviolet radiation to the By applying a ultraviolet radiation to the films 72 and 74 as noted above, molecular alignment films 2 and 74 as noted above, molecular alignment rilms // and // as noted above,
the liquid crystal molecules in the liquid crystal
the liquid crystal molecules in the liquid crystal 5 the liquid crystal molecules in the liquid crystal the the liquid crystal molecules in angle4 76, wherein the liquid crystal molecules in angle4 76, where the layer are not in a continuous in the liquid crystal molecules in the liquid crystal molecules in the liquid crystal the liquid crystal the liquid crystal molecules in the liquid cryst second exposure process. layer /v are clived with a thic such that the foregoing exposure process is optimized such that the LULEYULING EXPUSURE PROCESS IS OPCIMIZED SUCH THE Same liquid crystal molecules are thited in the same 70a the liquid crystal molecule the liquid crystal molecule the liquid crystal molecule the liquid crystal molecules are the liquid crystal molecules 20 or fuc adjacent to the projection 71 and guch that the left-gide part of the projection 71 and in the same liquid crystal molecules are tilted in the same liquid crystal molecules are tilted in the same 70b tilting direction of the liquid crystal molecule tilting direction of the liquid crystal molecule are tilting direction of the liquid crystal molecule are tilting direction of the liquid crystal molecules are tilted in the same 70b talting direction of the projections 69 or 71 in the or 700 adjacent to the projections 71 manner. 15 Thereby, the right-side part or the projection it. Inerepy, the liquid crystal molecules in the liquid crystal liquid crystal molecules are the projection of the project right-side part of the projection 71. the left-side park of the projection restriction of the projection restriction of the projection restriction restr ou at the same tilt angle and main main generally have while the same tilt and an incident and a same tilt and generally have the same tilt angle 76 in a first molecules while the liquid crystal molecules while the hardention of the arrival direction, while the arrival arrival tilting direction are the arrival the right end of the arrival TILTING GIRECTION, While the projection 71 generally at the right-side part of the projection with and at the right-side part and in the owner the projection the projection that the right and a the projection the owner that the projection the projection that the projection the projection that the projection that the projection the projection that the projection th 20 at the right-side part or the opposite tilting have the same tilt angle in the opposite. By conducting the ultraviolet exposure the angle about 1.5 J/cm renresented in process with a dose of about 1.5 As as renresented in process with a dose of about 1.5 As as renresented in the suit of process with a dose or about 1.3 J/cm with the angle in of the ultraviolet beam set to 45° as represented in of the ultraviolet are and the set to 45°. 25 of the ultraviolet beam set to 45° as represented in the tilt of about 89° is realized for the tilt right an angle of about 89° is realized. rive an angle of appoint by is realized for the angle of the liquid crystal molecules. angle to or the highest are thus tilted generally molecules are thus tilted generally liquid crystal molecules are thus tilted generally direction. 30 35 115

No.

uniformly in the respective tilting directions
throughout the right-side part or left-side part of
the projection 71 in the liquid crystal layer 70, the
tendency of the liquid crystal molecules to cause a
tilting upon application of a driving electric field
to the liquid crystal layer 70 is enhanced further.

Table 3 below represents the saturation voltage and response time for the liquid crystal display device 60 of the present embodiment.

10

TABLE 3

	saturation voltage	response time [ms] on/off
conventional 3rd embodiment	5.0 V	25/38
	4.1 V	22/37

20 As can be seen in Table 3, the liquid crystal display device 60 of the present embodiment has the saturation voltage and response time improved substantially over the conventional vertically aligned liquid crystal display device.

In the present embodiment, there is a further advantageous feature, associated with the ultraviolet exposure process, in that such an ultraviolet radiation reduces the resistance of the liquid crystal layer 70. More specifically, such a ultraviolet radiation effectively eliminates the electric charges accumulated between the liquid crystal layer 70 and the molecular alignment film 72 or 74 and the quality of image representation is improved.

35

30

25

[FOURTH EMBODIMENT]

Next, a liquid crystal display device 80

W. Carlot

10

15

20

25

30

35

according to a fourth embodiment of the present invention will be described with reference to FIG.8.

Referring to FIG.8, the liquid crystal display device 80 includes a first glass substrate 82 carrying thereon electrodes 84 and 86, wherein the surface of the glass substrate 82 carrying the electrodes 84 and 86 is covered by a molecular alignment film 91 including the electrodes 84 and 86. Further, the liquid crystal display device 80 includes a second glass substrate 83 covered by another molecular alignment film 92.

The glass substrate 82 and the glass substrate 83 are assembled such that the surface of the substrate 82 carrying the molecular alignment film 91 faces the surface of the substrate 83 carrying the molecular alignment film 92, and a liquid crystal layer 88 is confined in the space formed between the glass substrates 82 and 83 thus assembled. Further, there are provided polarizers 93 and 94 at respective outer-sides of the glass substrates 82 and 83.

In the present embodiment, the formation of projections used in the previous embodiments is eliminated by selecting the material of the liquid crystal layer 88. Further, the present embodiment eliminates the process of ultraviolet radiation. More specifically, the liquid crystal display device 80 of the present embodiment achieves the desired decrease of driving voltage and power consumption by optimizing the material of the liquid crystal layer 88 and the cell structure of the device 80 such that the retardation value Λn^*d is maximized.

The simplest answer to increase the retardation value Λn^*d would be to increase the cell thickness d as large as possible. However, such an increase in the cell thickness d tends to invite a deterioration in the response speed. In order to increase the retardation value Λn^*d while

10

15

35

simultaneously suppressing the increase of the cell thickness d, therefore, it is necessary to choose a liquid crystal material having a large birefringence An for the liquid crystal layer 88.

The requirement for the birefringence $\triangle n$ of the liquid crystal layer 88 is as follows.

In view of the maximum allowable value of the cell thickness d, which is determined from the desired response speed of the liquid crystal display device 80, the liquid crystal layer 88 is required to have a birefringence Δn of larger than about 0.15. On the other hand, in view of the practical lower limit value of the cell thickness d of about 3 μm , which lower limit value being determined by the fabrication technology used for mass producing the liquid crystal display device 80, the liquid crystal layer 88 is required to have a birefringence Δn of smaller than 0.25.

Thus, the liquid crystal material forming

the liquid crystal layer 88 should have a

birefringence An satisfying the relationship (1)

$$0.15 < \Lambda n^* d < 0.25$$
. (1)

25 The relationship (1) is satisfied by using a liquid crystal containing a tolan-family component. Generally, a tolan-family liquid crystal has a low resistance and is advantageous for dissipating static electric charges. Thereby, a high-quality image 30 representation free from sticking of the images is achieved easily.

In the liquid crystal display device 80 of the present embodiment, a liquid crystal having a birefringence Δn of 0.202 (Δn = 0.202) is used in combination with a cell thickness d of 3.5 μm (d = 3.5 μm), wherein the liquid crystal has a dielectric anisotropy ΔE of 5.8 (ΔE = 5.8). In the liquid

25

30

35

1 crystal device 80, each of the electrodes 84 and 86 has a width W of 5 μm, wherein the electrodes 84 and 86 are separated from each other by a distance L of 12 μm. As noted already, the liquid crystal display device 80 includes no projections. Further, there is no exposure process to ultraviolet radiation in the fabrication process of the liquid crystal display device 80.

Table 4 below compares the performance of the liquid crystal display device 80 thus formed with the conventional vertically aligned liquid crystal display device.

TABLE 4

	saturation voltage	response time [ms] on/off
conventional	5.0 V	25/38
4th embodiment	5.1 V	15/20

Referring to Table 4, it can be seen that the response time is reduced substantially over any of the conventional device or the device of first through third embodiments, wherein the result of Table 4 indicates that the use of the liquid crystal having a large birefringence larger than in any of the foregoing first through third embodiments improves the voltage response characteristic with regard to the tilting of the liquid crystal molecules.

[FIFTH EMBODIMENT]

FIG.9 shows the construction of a liquid crystal display device 100 according to a fifth embodiment of the present invention, wherein the liquid crystal display device 100 has a construction

温料[2]

similar to that of the liquid crystal display device
80 of the previous embodiment except that projections
96 and 98 are respectively provided on the electrodes
84 and 86. In FIG.9, those parts corresponding to the
parts described previously are designated by the same
reference numerals and the description thereof will be
omitted.

Table 5 below represents the saturation voltage and response time for the liquid crystal display device 100 of the present embodiment in comparison with the conventional vertically aligned liquid crystal display device.

TABLE 5

15

20

25

30

35

10

	saturation voltage	response time [ms]	
		on/off	
conventional	5.0 V	25/38	
5th embodiment	4.3 V	9/15	

Referring to Table 5, it can be seen that both the saturation voltage and response time are improved substantially over the conventional device. Particularly, the improvement of response time is remarkable. The result of Table 5 indicates that the combination of the construction of the embodiment of FIG.8 with the feature of the projections in the first embodiment is highly effective for reducing the electric power consumption of the liquid crystal display device.

Further, the present invention is not limited to the embodiments described heretofore, but various variations and modifications may be made without departing from the scope of the present invention.