Programme de colle n°12

Primitives, intégrales et équations différentielles

- 1) Définition et formules pour les primitives usuelles.
- 2) Primitives de $x \mapsto e^{ax} \cos bx$ et $x \mapsto \frac{1}{ax^2 + bx + c}$.
- 3) Calcul d'intégrales : intégration par parties, changement de variable (de classe \mathcal{C}^1).
- 4) Équation différentielle du premier ordre :
 - (a) résolution de l'équation homogène,
 - (b) méthode de la variation de la constante,
 - (c) second membre particulier : polynôme, $A\cos(\theta x) + B\sin(\theta x)$, e^{kx} .
 - (d) Principe de superposition.
- 5) Équation différentielle du second ordre à coefficient constant :
 - (a) résolution de l'équation homogène (distinguer les cas solutions réelles/complexes),
 - (b) second membre particulier : polynôme, $A\cos(\theta x) + B\sin(\theta x)$, e^{kx} .

Ensembles, applications et arithmétique

- 1) Appartenance, inclusion, $\mathcal{P}(E)$.
- 2) Intersection, union, produit cartésien.
- 3) Applications injectives, surjectives, bijectives.

Questions de cours

- 1) Déterminer une primitive de $\arccos x$.
- 2) Calculer l'intégrale suivante : $I = \int_0^1 te^t dt$.
- 3) Calculer $I = \int_1^e \frac{\ln t}{t + t (\ln t)^2} \, dt$ en posant : $x = \ln t$.
- 4) Résoudre : $ty' y = t^2 \cos t$
- 5) Résoudre : $y'' + y' + y = \cos 2t$.
- 6) Déterminer si $f: \mathbb{C} \to \mathbb{C}$ telle que $f(z) = z^2 + z + 1$ est injective, surjective, bijective. Justifier.