

01-08-2019

FIRST SEMESTER 2019-2020

Course Handout Part II

In addition to Part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : BITS F463

Course Title : Cryptography
Instructor-in-Charge : Dr. Odelu Vanga

Scope and Objectives of the Course:

Cryptography is a field of computer science and mathematics that focusses on techniques for secure communication between two parties, while a third-party is present. Goal of this course is to learn the cryptographic constructions and analysis, and apply this knowledge to the real-world applications.

The objectives of the course are:

- To understand the fundamentals of cryptography and its applications.
- To acquire knowledge on symmetric-key ciphers used to achieve data confidentiality.
- To gain knowledge on asymmetric-key ciphers and applications to various key management techniques.
- To understand hash functions and digital signatures used to provide integrity, authentication, and non-repudiation.
- To understand how to design and implement security protocols in the real-world applications.

Textbooks:

• T1: Cryptography: Theory and Practice, Douglas Stinson, Chapman and Hall/CRC, 3rd Edition, 2006.

Reference books:

- R1: Cryptography and Network Security: Principles and Practice, William Stallings, 6th Edition, Pearson Education, 2014
- R2: Applied Cryptography, Bruce Schneier, Wiley Student Edition, Second Edition, Singapore, 2010
- R3: Handbook of Applied Cryptography: Alfred Menezes, Paul van Oorschot, and ScoF Vanstone, CRC Press, NY, 2001.
- R4: Cryptography and Network Security, Behrouz A. Forouzan, McGraw-Hill, 2007
- R5: Lecture Notes on Cryptography, Goldwasser Shafi and Mihir Bellare, 1996.

Online Study Material:

Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book
1-2	To get introduced to cryptography and its applications	Introduction to Secure CommunicationPrimary Goals of CryptographySecurity Mechanisms	T1 Chapter 1 R1 Chapter 1
3-10	To understand the basic cryptographic techniques and their analysis	Classical encryption techniquesStream Ciphers	T1 Chapter 1 R1 Chapter 2
11-13	To understand main elements of Shannon's approaches to cryptography and use of information theory in cryptography	 Short note on Probability Theory Perfect Secrecy Entropy 	T1 Chapter 2
14-15	To learn	Pseudorandom Bit GeneratorBlum-Blum-Shub Generator	T1 Chapter 8
16-18	pseudorandom sequences & modern	Feistel CipherData Encryption Standard (DES)	T1 Chapter 3 R1 Chapter 3
19-22	symmetric-key ciphers	Finite FieldsAdvanced Encryption Standard (AES)	T1 Chapter 5 R1 Chapter 4 & 5
23-27	To learn number	 Prime Numbers, Fermat and Euler's Theorems Euclidean Algorithm Chinese Remainder Theorem Primality Testing: Miller-Rabin & AKS-Algorithm 	T1 Chapter 5 R1 Chapter 8
28-31	theory concepts and applications to	RSA CryptosystemInteger Factorization	T1 Chapter 5 R1 Chapter 9
32-33	asymmetric-key ciphers	ElGamal CryptosystemDiscrete Logarithm Problem	T1 Chapter 6
34-38		 Elliptic Curves Over Finite Fields Elliptic Curve Cryptography (ECC) Diffie-Hellman Problems 	T1 Chapter 6 R1 Chapter 10
39-42	To learn digital signatures, hash functions, and their applications to information security	 Hash Functions Digital Signature Algorithm ElGamal Digital Signature ECC-based Digital Signature 	T1 Chapter 7 R1 Chapter 12 & 13

Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid-Sem Exam	90 min	35%	4/10, 9.00 10.30 AM	Closed Book
Term Project (Implementation of one research paper from IEEE/ACM)		20%		Open Book
Comprehensive Exam	3 hrs	45%	11/12 FN	Closed Book

Note: Class Test schedule will be announced at most four days before the test.

Chamber Consultation Hour: To be announced in the class.

Notices: The notices for this course would be put up in the CSIS N/B and/or CMS.

Make-up Policy: No makeup exam allowed without prior permission. For the *Term Project* there is no

makeup.

Academic Honesty

Integrity Policy:

and Academic honesty and integrity are to be maintained by all the students

throughout the semester, and any type of academic dishonesty is not

acceptable.

INSTRUCTOR-IN-CHARGE

