Case study 1: developing a two-compartment PK model through RsNLME

Introduction

- R is one of the most widely used softwares among pharmacometricians to perform data manipulation/visualization and statistical analysis.
- ■RsNLME provides a R interface to the Phoenix NLME engine to enable users to
- Define PK/PD models via R objects (package **RsNlme**).
- Use the "Initial Estimates" shiny app to visually determine a set of reasonable initial values for fixed effects (package **RsNlme**).
- Perform estimation and simulation in a R environment with the capability of parallelizing the runs using Multicore, MPI and Grids (SGE/Torque/LSF) in-house or hosted on AWS (package **Certara.NLME8**).
- Access the xpose graphics library for PK/PD models by creating compatible database from NLME results (package **Xpose.Nlme**).

Objectives

- Visually inspect the data and create the base model.
- Identify covariates through the stepwise covariate search.
- ■Bootstrapping analysis for the model selected by the covariate search procedure.

Note: R script and input dataset for this example can be found in C:\Program Files\R\R-n.n.n\library\RsNlme\

Construct the base model

Load the Input Dataset and Visually Inspect the Data

```
# load the input data set
dt_InputDataSet = fread("16subjects.csv")
```


Define the Base Model

```
# define the basic PK model (a two-compartment model with IV bolus)
model = pkmodel(numComp = 2, modelName = "TwCpt_IVBolus_FOCE-ELS")

# reset residual error model (default: additive model with SD = 1)
```

residualEffect(model, "C") = c(errorType = Multiplicative, SD = "0.16")

Map Model Variables to Input Dataset Columns

```
# initialize model mapping and automatically mapping some of the model
  variables to the data columns
initColMapping(model) = dt_InputDataSet

# manually set up the mapping for the rest of variables
modelColumnMapping(model) = c(id = "Subject", CObs = "Conc", A1 = "Amount")
```

Use the Initial Estimates Shiny App, estimates UI, to Visually Determine a Set of Reasonable Initial Values for Fixed Effects

invoke the Initial Estimates shiny app
estimatesUI(model, unique(dt_InputDataSet\$Subject), host)

•••

accept initial estimates picked from the shiny app

Fit the Base Model with Initial Estimates Picked from Shiny App

CWRES vs. IVAR | TwCpt_IVBolus_FOCE-ELS Ofr: -632.795

Identify covariates through the covariate search

Add Covariates to the Base Model

Run the Stepwise Covariate Search

Load and View Results

load and view the model selected by the stepwise covariate search
stepwiseLines = readLines("Stepwise.txt")

BootStrapping analysis for the selected model

Reset the Covariates to the List Suggested by the Covariate Search

```
# return a new model with all covariate effects cleared
selectedCovarModel = resetCovariateEffects(covarModel)

# enable the covariates selected by the covariate search
covariateEffect(selectedCovarModel, "sex", "Cl") = EnableEffect
covariateEffect(selectedCovarModel, "age", "V") = EnableEffect
# update the PML statements
selectedCovarModel = generatePMLModel(selectedCovarModel)
```

Run the Bootstrap

Run the bootstrapping for the model selected during the covariate search
job = bootstrap(host, engineParams, bootSetup, bootModel)

Load and View Results

load and view the estimation results for all boostrap runs
dt_out = fread("out.csv")

Conclusions

- RsNLME provides R command line access to the Phoenix NLME engine allowing pharmacometricians with little or no knowledge of Phoenix NLME to format and visualize data, build and analyze models, and post-process results.
- Resulted also provides greater flexibility for advanced Phoenix NLME users to work seamlessly with other R packages within the R environment.