Zhengdong Zhang

Email: zhengz@uoregon.edu Course: MATH 649 - Abstract Algebra

Instructor: Professor Sasha Polishchuk

Homework - Week 4

ID: 952091294

Term: Spring 2025

Due Date: 30^{th} April , 2025

Problem 12.16

Let char $k \neq 2$ and $f \in \mathbb{k}[x]$ be a cubic whose discriminant has a square root in \mathbb{k} , then f is either irreducible or splits in \mathbb{k} .

Solution: Let \mathbb{K} be the splitting field of f over \mathbb{k} . First we suppose f has multiple roots. Then the discriminant $\Delta(f) = 0$ has a square root in \mathbb{k} . If f has only one root α , then f is irreducible when $\alpha \notin \mathbb{k}$ and f splits in \mathbb{k} when $\alpha \in \mathbb{k}$. If α as a root of f has multiplicity 2, let β be another root of f, f(x) can be written as

$$f(x) = (x - \alpha)^2 (x - \beta)$$

when $\beta \in \mathbb{k}$, we know that $(x - \alpha)^2 = x^2 - 2\alpha x + \alpha^2 \in \mathbb{k}[x]$. Note that 2 is invertible in \mathbb{k} , so this implies $\alpha \in \mathbb{k}$. Thus, f splits in \mathbb{k} . When $\alpha \in \mathbb{k}$, it is easy to see that $\beta \in \mathbb{k}$ and f again splits in \mathbb{k} . If neither α nor β is in \mathbb{k} , then f is irreducible over \mathbb{k} .

Now suppose f does not have multiple roots. By Theorem 12.1.2, the Galois group $G = \operatorname{Gal}(\mathbb{K}/\mathbb{k}) \leq A_3 \cong C_3$. We know that C_3 is simple and only have two subgroups: $\{e\}$ or C_3 . When $G = \{e\}$, this means $\mathbb{K} = \mathbb{k}$, so f splits in \mathbb{k} . When $G = C_3$, this means the action of G on the roots of f is transitive, thus f is irreducible.

Problem 12.4.9

Let \mathbb{K}/\mathbb{k} be a finite Galois extension and $\alpha \in \mathbb{K}$. Consider the \mathbb{k} -linear operator $A_{\alpha} : x \mapsto \alpha x$ on the \mathbb{k} -vector space \mathbb{K} . Then det $A_{\alpha} = N_{\mathbb{K}/\mathbb{k}}(\alpha)$ and tr $A_{\alpha} = T_{\mathbb{K}/\mathbb{k}}(\alpha)$.

Solution: Let $p(x) \in \mathbb{k}[x]$ be the minimal polynomial of α over \mathbb{k} and $\deg p = d$. p(x) has d roots $\alpha_1, \alpha_2, \ldots, \alpha_d$ where $\alpha = \alpha_1$. Suppose $[\mathbb{K} : \mathbb{k}] = n$ and $r := \frac{n}{d}$. We prove $\det A_{\alpha}$ and $N_{\mathbb{K}/\mathbb{k}}(\alpha)$ are both equal to $(\alpha_1 \alpha_2 \cdots \alpha_d)^r$, and both tr A_{α} and $T_{\mathbb{K}/\mathbb{k}}(\alpha)$ are equal to $r(\alpha_1 + \cdots + \alpha_d)$.

(1) In this part we prove that

$$\det A_{\alpha} = (\alpha_1 \cdots \alpha_d)^r,$$

$$\operatorname{tr} A_{\alpha} = r(\alpha_1 + \cdots + \alpha_d).$$

Let $\mathbb{k}(\alpha)$ be the splitting field of p. Suppose

$$p(x) = (x - \alpha_1) \cdots (x - \alpha_d) = x^d + a_{d-1}x^{d-1} + \cdots + a_0$$

 $\mathbb{k}(\alpha)$ as a \mathbb{k} -vector space has a basis $\{1, \alpha, \alpha^2, \dots, \alpha^{d-1}\}$. The multiplication of α in $\mathbb{k}(\alpha)$ can be written as a matrix

$$B = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{d-1} \end{pmatrix}$$

The determinant of this matrix B is $(-1)^{d-1} \cdot (-a_0) = (-1)^d a_0$ and the trace of this matrix B is $-a_{d-1}$. Note that in p(x), we have

$$(x - \alpha_1) \cdots (x - \alpha_d) = x^d + a_{d-1}x^{d-1} + \cdots + a_0$$

By comparing coefficients, we notice that

$$(-1)^d(\alpha_1 \cdots \alpha_d) = a_0,$$

$$-(\alpha_1 + \cdots + \alpha_d) = a_{d-1}$$

This proves that $\det B = \alpha_1 \cdots \alpha_d$ and $\operatorname{tr} B = \alpha_1 + \cdots + \alpha_d$. Now consider the extension $\mathbb{K}/\mathbb{k}(\alpha)/\mathbb{k}$, we have

$$[\mathbb{K} : \mathbb{k}(\alpha)] = \frac{[\mathbb{K} : \mathbb{k}]}{[\mathbb{k}(\alpha) : \mathbb{k}]} = \frac{n}{d} = r.$$

Choose $\{\beta_1, \ldots, \beta_r\}$ as a $\mathbb{k}(\alpha)$ -basis of \mathbb{K} . Then

$$\beta_1, \alpha\beta_1, \dots, \alpha^{d-1}\beta_1,$$

 $\beta_2, \alpha\beta_2, \dots, \alpha^{d-1}\beta_2,$
 \dots
 $\beta_r, \alpha\beta_r, \dots, \alpha^{d-1}\beta_r.$

is a k-basis for K. Note that multiplicating by α only sends a base vector to linear combinations of the basis in the same row. So the matrix A_{α} is a block matrix with r block each equal to B. Thus,

$$\det A_{\alpha} = (\det B)^r = (\alpha_1 \cdots \alpha_d)^r,$$

$$\operatorname{tr} A_{\alpha} = r(\operatorname{tr} B) = r(\alpha_1 + \cdots + \alpha_d).$$

(2) In this part we prove that

$$N_{\mathbb{K}/\mathbb{k}}(\alpha) = (\alpha_1 \cdots \alpha_d)^r,$$

$$T_{\mathbb{K}/\mathbb{k}}(\alpha) = r(\alpha_1 + \cdots + \alpha_d).$$

We know that α is a root of the polynomial $p(x) \in \mathbb{k}[x]$, for any $\sigma \in G = \operatorname{Gal}(\mathbb{K}/\mathbb{k})$, σ fixes p, so $\sigma(\alpha) = \alpha_i$ for some $1 \leq i \leq d$. \mathbb{K}/\mathbb{k} is a Galois extension, so there exists $\sigma_i \in G$ such that $\sigma_i(\alpha) = \alpha_i$ for all $1 \leq i \leq d$. Let $G_\alpha = \operatorname{Gal}(\mathbb{K}/\mathbb{k}(\alpha))$. We have proved in Exercise 11.6.2 that $\bigcup_{i=1}^d (\sigma_i G_\alpha)$ is a coset partition of G with respect to the subgroup G_α . Each coset has r elements and for any $\tau \in \sigma_i G_\alpha$, $\tau(\alpha) = \alpha_i$. Therefore, we have

$$N_{\mathbb{K}/\mathbb{k}}(\alpha) = \prod_{\sigma \in G} \sigma(\alpha) = (\prod_{i=1}^{d} \sigma_i(\alpha))^r = (\alpha_1 \cdots \alpha_d)^r,$$

$$T_{\mathbb{K}/\mathbb{k}}(\alpha) = \sum_{\sigma \in G} \sigma(\alpha) = r(\sum_{i=1}^{d} \sigma_i(\alpha)) = r(\alpha + \cdots + \alpha_d).$$

Problem 12.4.11

Let $a, b \in \mathbb{Q}$.

- (a) $a^2 + b^2 = 1$ is equivalent to $N_{\mathbb{Q}(i)/\mathbb{Q}}(a+ib) = 1$.
- (b) Use Hilbert's Theorem 90 to prove that the rational solutions of $a^2 + b^2 = 1$ are of the form $a = (s^2 t^2)/(s^2 + t^2)$ and $b = 2st/(s^2 + t^2)$ for $s, t \in \mathbb{Q}$.

Solution:

(a) We have proved in Exercise 12.4.9 that $N_{\mathbb{Q}(i)/\mathbb{Q}}(a+ib) = \det A_{a+ib}$ where A_{a+ib} is the matrix given by the multiplication $x \mapsto (a+ib)x$ for all $x \in \mathbb{Q}(i)$. Choose $\{1,i\}$ as a \mathbb{Q} -basis for $\mathbb{Q}(i)$ and the matrix A_{a+ib} can be written as

$$A_{a+ib} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

By direct calculation, we know that

$$N_{\mathbb{O}(i)/\mathbb{O}}(a+ib) = \det A_{a+ib} = a^2 + b^2.$$

Therefore, $a^2 + b^2 = 1$ is equivalent to $N_{\mathbb{Q}(i)/\mathbb{Q}}(a+ib) = 1$.

(b) From (a), we know that $a^2 + b^2 = 1$ has rational solutions if and only if $N_{\mathbb{Q}(i)/\mathbb{Q}}(a+ib) = 1$. We know that $\mathbb{Q}(i)/\mathbb{Q}$ is a quadratic extension so the Galois group $\operatorname{Gal}(\mathbb{Q}(i)/\mathbb{Q}) = C^2$ generated by sending i to -i. Choose $\{1, i\}$ as a \mathbb{Q} -basis for $\mathbb{Q}(i)$. By Hilbert's Theorem 90, there exists $s + it \in \mathbb{Q}(i)$ for some $t, s \in \mathbb{Q}$ and $s^2 + t^2 \neq 0$ such that

$$\frac{s+it}{s-it} = a+ib.$$

This is equivalent to

$$\frac{(s^2 - t^2 + i(2st))}{s^2 + t^2} = a + ib.$$

By comparing coefficients we know that a, b must have the form

$$a = \frac{s^2 - t^2}{s^2 + t^2},$$

$$b = \frac{2st}{s^2 + t^2}.$$

Problem 13.2.9

True or false? Let \mathbb{K}/\mathbb{F}_q be a finite extension, and \mathbb{L} , \mathbb{M} be two intermediate subfields. Then either $\mathbb{L} \subseteq \mathbb{M}$ or $\mathbb{M} \subseteq \mathbb{L}$.

Solution: This is true. Suppose $q = p^d$ for some prime p. Then the field extension \mathbb{K}/\mathbb{F}_q must be $\mathbb{K} \cong \mathbb{F}_{p^n}$ for some n satisfying d|n by Corollary 13.2.8. We know the Galois group $Gal(\mathbb{K}/\mathbb{F}_q)$ is

3

isomorphic to the cyclic group $C_{n/d}$. By Galois correspondence, \mathbb{M}^* and \mathbb{L}^* are subgroups of $C_{n/d}$. We know in cyclic groups, either $\mathbb{M}^* \subseteq \mathbb{L}^*$ or $\mathbb{L}^* \subseteq \mathbb{M}^*$. This implies $\mathbb{L} \subseteq \mathbb{M}$ or $\mathbb{L} \subseteq \mathbb{M}$.

Problem 13.2.12

Let p be a prime. Then there are exactly $(q^p - q)/p$ monic irreducible polynomials of degree p in $\mathbb{F}_q[x]$ (q is not necessarily a power of p).

Solution: Let \mathbb{K} be a degree p extension of \mathbb{F}_q . Then \mathbb{K} is a p dimensional \mathbb{F}_q -vector space, thus having q^p elements. By Theorem 13.2.3, \mathbb{K} is the splitting field of the polynomial $x^{q^p} - x$. The field \mathbb{K} has exactly q^p elements, so $x^{q^p} - x$ has q^p different roots in \mathbb{K} . Let $f \in \mathbb{F}_q[x]$ be a degree p irreducible polynomial. If α is a root of f, then $\mathbb{F}_q(\alpha)/\mathbb{F}_q$ is a degree p extension and thus, $\mathbb{F}_q(\alpha) \cong \mathbb{K}$ as a finite field extension. This means α is also a root of the polynomial $x^{q^p} - x$. Since every finite field is separable, every irreducible polynomial f contributes f different roots for the polynomial f f and f divides f is a prime number, only 1 and f divides f is a prime number of degree f irreducible polynomial or coming from a degree 1 irreducible polynomial. We have f elements in f is equal to f

Problem 13.2.13

What is $\sum_{A} A^{100}$, where the sum is over all 17×17 matrices A over \mathbb{F}_{17} ?

Solution: We know that \mathbb{F}_{17}^{\times} is a multiplicative group generated by a where $a^{16}=1$. We first prove a claim.

<u>Claim:</u> The sum over all elements $x \in \mathbb{F}_{17}$ is $\sum_{x \in \mathbb{F}_{17}} x^{100} = 0$.

<u>Proof:</u> Write $S = \sum_{x \in \mathbb{F}_{17}} x^{100}$. Consider $a^{100}S$. Note that a acting by multiplication on the field

$$\mathbb{F}_{17} = \left\{0, 1, a, a^2, \dots, a^{16}\right\}$$

is just a permutation of these elements. So we have

$$a^{100}S = a^{100} \sum_{x \in \mathbb{F}_{17}} x^{100} = \sum_{x \in \mathbb{F}_{17}} (ax)^{100} = \sum_{x \in \mathbb{F}_{17}} x^{100} = S.$$

This implies $(a^{100} - 1)S = 0$ in the field \mathbb{F}_{17} . Since $16 \nmid 100$, $a^{100} - 1 \neq 0$. This implies S = 0. Now consider a^{100} acts on a matrix $A \in M_{17}(\mathbb{F}_{17})$ by multiplication on each entry. We have

$$a^{100} \sum_{A} A^{100} = \sum_{A} (aA)^{100}.$$

We claim the following map

$$m_a: M_{17}(\mathbb{F}_{17}) \to M_{17}(\mathbb{F}_{17}),$$

 $A \mapsto aA$

is a bijection. Indeed, since a is multiplicatively invertible in \mathbb{F}_{17} , multiplying by $\frac{1}{a}=a^{15}$ is the inverse map. So m_a is both injective and surjective. By the same argument as in the claim on each entry, we have $\sum_A A^{100}=0$.