SEQUENTIAL CIRCUITS

Introduction

Sequential circuits is one of the four major topics of digital design:

- Fundamental digital design skills
- Combinational circuits
- Sequential circuits
- Computer organization

Sequential Logic vs Combinational Logic

Sequential Circuits as a Finite State Machine

Current State

Stored in the memory elements. Finite number of states.

Next State

Function of the current state and current inputs.

Output

Function of the current state and current inputs.

Example- Binary Lock

Unlocks on 3 bit input being 010, otherwise

Moore and Mealy Machines

 Moore Machine: Output depends only on state transition. Eg: Previous combination lock was a Moore machine.

 Mealy Machine: Output depends not only on state transition but also on the input

Asynchronous vs Synchronous Sequential Circuits

- Clock
 Usually a square wave with a fixed frequency.
- Asynchronous Sequential Circuits
 The output state changes directly in response to changes in the inputs.
- Synchronous Sequential Circuits
 The output state change is constrained to respond to changes in input only at specific time specified by an external clock signal

Basic Memory Elements

Store 1 bit of information. Bistable Multivibrator.

Simplest Sequential Circuit

Problem: Oscillating Output

Add another invertor: Stable Circuit

Problem: Unredictable State, no inputs

Asynchronous Memory Element/LATCH

Add Inputs

Rearranging: SR Latch or Direct coupled RS Flip flop.

S	R	Q	Q
0	0	latch	latch
0	1	0	1
1	0	1	0
1	1	0	0

SR Flip Flop

С	s	R	Q	Q
٦	0	0	latch	latch
٦	0	1	0	1
7	1	0	1	0
7	1	1	?	?
х	0	0	latch	latch
х	0	1	latch	latch
х	1	0	latch	latch
х	1	1	latch	latch

Synchronous Memory Element Flip Flop (4 Types)

S	R	Q _{t+1}	Q ' _{t+1}	Function
0	0	Qt	Q' _t	No Change
0	1	0	1	Reset to 0
1	0	1	0	Set to 1
1	1	?	?	Indeterminate/Forbidden

D	Q _{t+1}	Q ' _{t+1}	Function
0	0	1	Reset to 0
1	1	0	Set to 1

State Output Eqn:

$$Q_{t+1} = D$$

J	K	Q _{t+1}	Q ' _{t+1}	Function
0	0	Qt	Q ['] t	No Change
0	1	0	1	Reset to 0
1	0	1	0	Set to 1
1	1	Q ['] t	Qt	Toggle

State Output Eqn:

$$Q_{t+1} = Q_t'J + Q_tK'$$

T	Q _{t+1}	Q ' _{t+1}	Function
0	Qt	Q ['] t	No Change
1	Q't	Qt	Toggle

State Output Eqn:

$$Q_{t+1} = Q_t T + Q_t' T'$$

Which Flip Flop to Choose

- The choice of flip-flop type can affect the complexity of the combinational logic in the resulting sequential circuit.
- The most versatile is the JK, since it can be easily converted into the other two.
- Any one can be converted into one of the other types, but some of these conversions take more logic than others.
- The JK and T flip-flops are most suitable for counters, since they
 have complementing capability needed in counters. Hence they
 result in less logic than the other types.
- D flip-flops are the ones found in almost all PLDs. If your design is targeted for a PLD, you are usually stuck with D flip-flops.

Timing Considerations

- Propagation Delay: Although ideally a gate should respond instantaneously to the input, in real situations all devices have some delay associated with signal propagation from input to output called the propagation delay.
- <u>Setup time</u>: Is the minimum duration that the data must be stable at the input before the clock edge
- <u>Hold time</u>: Is the minimum duration that the data must remain stable on the input after the clock edge

Race Around Condition & Solutions

- Short clock pulse: Let the output react just once.
 Pulse frequency < Propagation delay
- Master-Slave flip-flop

Edge-triggered Flip Flops

Much more complicated in circuitry. But devoid of the problems of previous two approaches

Direct Inputs/ Asynchronous Inputs

Excitation Inputs

SR Flip Flop

Current State Q _t	Next State Q_{t+1}	Excitation Inputs		Explanation
		S	R	
0	0	0	Χ	Either no change SR=00 or reset, SR=01
0	1	1	0	Set
1	0	0	1	Reset
1	1	Χ	0	Either set-SR=10 or no change- SR=00

D Flip Flop

D	Q_{t+1}	Q ' _{t+1}	Function
0	0	1	Reset to 0
1	1	0	Set to 1

• JK Flip Flop

Current State Q _t	Next State Q _{t+1}	Excitation Inputs		Explanation
		J	K	
0	0	0	Χ	Either no change JK=00 or reset, JK=01
0	1	1	Χ	Either Toggle- JK=11 or Set- JK=10
1	0	Χ	1	Either Toggle- JK=11 or Reset- JK=01
1	1	Χ	0	Either set-JK=10 or no change- JK=00

T Flip Flop

Current State Q _t	Next State Q _{t+1}	Excitation Input T	Explanation
0	0	0	
0	1	1	If there is change, $T=1$, if no change, $T=0$
1	0	1	
1	1	0	

Circuit Analysis

Sequential circuit analysis is useful when

You need to determine the functionality of an existing sequential circuit

 You want to make changes to an existing sequential circuit, and need to verify the new behaviour

Steps in Analysis

- Excitation equations: Boolean equations that describe the input to the flip-flops.
- Next state equations: Use the excitation equations and the flip-flop characteristic equations to compute the next state of each flip-flop.
- Output equations
- State table
- State diagram

Excitation Inputs

S	R	Q_{t+1}	Q ' _{t+1}	Function
0	0	Q_t	Q _t	No Change
0	1	0	1	Reset to 0
1	0	1	0	Set to 1
1	1	?	?	Indeterminate/Forbidden

Current State Q _t	Next State Q _{t+1}	Excitation Inputs		Explanation
		S	R	
0	0	0	X	Either no change SR=00 or reset, SR=01
0	1	1	0	Set
1	0	0	1	Reset
1	1	Χ	0	Either set-SR=10 or no change- SR=00

Analysis Example

Step 1: Develop excitation eqns

$$D_0 = Q_0 \text{ XOR C}$$

 $D_1 = C'Q_1 + Q_0CQ_1' + CQ_1Q_0'$

Step 2: The characteristic equation for a D flip-flop is: $Q_{next} = D$ So, the next state equations are:

$$Q_{0next} = Q_0 XOR C$$

 $Q_{1next} = C'Q_1 + Q_0CQ_1' + CQ_1Q_0'$

Step 3: Output Equation $Y = Q_0Q_1$

Analysis Example Ctd...

Step 3: State Table

Present State	Next State (Outputs	
$Q_1 Q_0$	C=0	C=1	Y
0 0	0 0	0 1	0
0 1	0 1	10	0
1 0	10	11	0
1 1	11	0 0	1

Step5: State Diagram

Conclusion:

- This circuit is a forward counter, with no state change when input C=0, and proceeding to next count on input c=1.
- The output Y is the carry output, which can be used to cascade with another unit
- Note: We can see that this is an example of a Mealy Machine

CIRCUIT SYNTHESIS

Examples of Sequential Circuits

- Sequence generator. Eg: Up down counter
- Pattern Recognizer/ Sequence detector
 - 1. Even Parity Checker
 - 2. Sequence Detector for 1011
 - 3. Mod 3 detector
- Sequence Transformer
- Other Complex Examples:
 - Vending machine
 - Machine accepts tokens of Rs 5. Coffee is for Rs 10.
 - May add more complexity by accepting different coin combinations, multiple output options, return of change etc.
 - Robotic Ant in a maze FSM
 - Traffic Lights Controller

Circuit Design/Synthesis Example

Problem Statement: 1011 Sequence Detector

Step 1: State Diagram: Moore Model

A: Start Afresh B: First 1 Seen C: 10 Seen D: 101 Seen

E: 1011 Seen, Sequence Detected

Using Mealy Model

Continuing with Moore Model... Step 2: State Diagram

Present State			External	Next State				Output	
			Input					Signal	
	\mathbf{X}_{t}	\mathbf{Y}_{t}	\mathbf{Z}_{t}	I		X _{t+1}	Y _{t+1}	Z_{t+1}	S
Α	0	0	0	0	Α	0	0	0	0
В	0	0	1	0	С	0	1	0	0
С	0	1	0	0	Α	0	0	0	0
D	0	1	1	0	С	0	1	0	0
E	1	0	0	0	С	0	1	0	0
Α	0	0	0	1	В	0	0	1	0
В	0	0	1	1	В	0	0	1	0
С	0	1	0	1	D	0	1	1	0
D	0	1	1	1	E	1	0	0	0
E	1	0	0	1	В	0	0	1	1

Step 3: Excitation Table

I	Present State			Next State			Output Signal	Excitation Inputs		
	X _t	Y _t	Z _t	X _{t+1}	Y _{t+1}	Z _{t+1}	S	T _x	T _y	T _z
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	1	1	0	1	0	0	0	1	1
0	1	0	0	0	1	0	0	1	0	0
1	0	0	0	0	0	1	0	0	0	1
1	0	0	1	0	0	1	0	0	0	0
1	0	1	0	0	1	1	0	0	1	1
1	0	1	1	1	0	0	0	1	0	1
1	1	0	0	0	0	1	1	1	0	1

Minimization and Input and Output Eqns.

Flip Flop Input and Circuit Output as a function of current state and External Input

- Output Equation: S= X_t· Y_t'· Z_t' (Directly From Table)
- Input Equations: Using Simplification by K-map

Circuit Diagram

Two Basic Categories of sequential circuits- Registers and Counters

- Registers
 - > Parallel In Parallel Out

> Serial In Serial Out

> Serial In Parallel Out

> Parallel In Serial Out

Shift Right Register

All in one- Bidirectional Shift Register with parallel load

Counters- Asynchronous/ Ripple Counter

Clock applied only to first stage, successive flip flops are clocked using outputs of previous stages

Synchronous Counter Count enable To next stage CP

Mod Counter

BCD Counter from 4 bit synchronous counter

Ring Counter

(a) Ringcounter (initial value = 1000)

(b) Counter and decoder

Ring Counters

- A straight ring counter or Overbeck counter:
 - -Counts N time signals using N Flip Flops.
 - Circulates single bit around ring of SISO flip flops.
- Switch Tail Counter/ Twisted ring counter/ Johnson counter/ Möbius Counter (or Moebius):
 - Counts 2N states using N flip flops.
 - Connects the complement of the output of the last shift register to the input of the first register and hence circulates a stream of ones followed by zeroes around the ring.

Teaching Tools

Circuit Level

- Hardware within an Electronics Laboratory
- WinLogiLab

Higher Level

- Lc3 Simulator
- CPUSim