Classification:

- -Form of Data analysis that extracts models describing important data classes
- -Data analysis task where a model classifier is construct is constructed to predict class

Prediction:

- -Data analysis model
- -To predict or fill missing data or values
- -Prediction model predict function value than class

Training Data (Train Model) Applications of Classification

- -Credit approval
- -Target marketing
- -Medical Diagnosis
- -Fraud detection

Classification:

Supervised Classification:

- -Class label provided
- -New data is classified based on training set

Unsupervised Learning:

- -Classes labels are unknown in learning phase
- -Clustering example

Supervised Learning examples

- -SVM
- -Logistic Regression
- -Naïve Bayes

Unsupervised learning examples

- -SVD (Single value decomposition)
- -PCA (Principal component Analysis)

Classification steps:

*Model Construction:

-Set of predetermined classes

Model Usage:

- -For classifying future or unknown objects
- -Each tuple/sample is assumed to belong to a predefined class.
- -The set of tuples used for model construction is training set .
- -Model is represented as classification rules, decision trees, or mathematical formula.

Accuracy Measure

- -Known label of test sample is compared with the result from model.
- -Test set independent to training set .
- -If accuracy is acceptable then use model for unknown class.

Classification: Steps

Data preparation:

- -Data cleaning.
- -Preprocess data in order to reduce noise and handle missing values
- -Smoothing.
- -Data Filling.

Classification: Issues

Relevance Analysis

- -Presence of irrelevant data should be removed
- -Correlation analysis to find relevance in data such as Chi Square etc.

Data Transformation

- -Normalization:
- -Same scale,

Generalization

-Uses of concept hierarchies

Data Reduction

- -Binning
- -Histogram analysis
- -Clustering

Data Mining.

Comparing Classification Methods

How to compare classification/prediction methods?

- -Accuracy
- -Speed
- -Robustness
- -Scalability
- -Interpretability

Accuracy

- -Ability of classifier to predict class label correctly
- -How well a given predictor can guess the value of predicted for a new data
- -Take algorithm with best accuracy

Speed

- -Robustness (have ability to work with noisy data).
- -It refers to the ability of classifier or predictor to make correct predictions from given noisy data

Scalability

-Ability to construct the classifier or predictor efficiently; given large amount of data

Interpretability

-It refers to what extent the classifier or predictor understands

Decision Tree induction:

Decision Tree

- -A decision tree is a structure that includes a
- -Root node
- -Branches
- -Leaf Node
- -Each internal node denotes a test on an attribute
- -Each branch denotes outcome of a test
- -And each leaf node holds class label
- -The topmost node is root node

Example of Decision

Decision Tree Induction

Decision Tree Induction

-Learning of decision trees from class labeled training tuples

Tree structure:

Each branch represents outcome of the test and the leaf node holds a class label.

Decision Tree Induction

Decision Tree Induction Algorithm

- -Construct tree in a top-down recursive divide and conquer manner
- -Training examples are at the root at first
- -Partition examples recursively based on selected attributes
- -Select attributes on the basis of heuristic or statistical measure

Stopping condition

- -All samples for a given node belong to the same class
- -No remaining attributes for further partitioning
- -No samples left

DTI Algorithm

DTI Algorithm

- -Generating a decision tree from training tuples of data partitioning D
- -Algorithm: Generate_decision_tree (Name of Algo)
- -Input:
- -Data partition, D, Which is a set of training tuples and their associated class labels
- -Atrribute_list, the set of candidate attributes.
- -Attribute selection method, procedure to determine the splitting criterion that best partitions that the data tuples into individual classes

Tree pruning

-In machine learning and data mining, pruning is a technique associated with decision trees. Pruning reduces the size of decision trees by removing parts of the tree that do not provide power to classify instances.

Overfitting and Tree pruning

- -Overfitting occurs when many branches reflect anomalies due to noise or outliers
- -Pruning methods address this problem of overfitting the data.

Approaches

- -Prepruning: Halt tree construction early
- -Do not split a node if this would result in the goodness measure falling below a threshold
- -Difficult to choose an appropriate threshold

Postpruning

Remove branches from a "fully grown" tree

Entropy:

- -In information theory Entropy is measure of uncertainty associated with random variable
- -Average amount of information needed to identify the class label of a tuple
- -Definition:

Lets assume a discrete random variable Y with m number of values $Y = \{y1, y2, y3 \dots, ym\}$

$$H(Y) = -\sum_{i=1}^{m} p_i \log(p_i)$$
, where $p_i = P(Y = y_i)$

Where H is the entropy of Y.

Entropy

- -The result of entropy can be interpreted as
- -High Entropy => High Uncertainty
- -Lower Entropy => Lower Uncertainty
- -Conditional Entropy

$$H(Y|X) = \sum_{x} p(x)H(Y|X = x)$$

Attribute selection measure

Attribute selection measure

- -A heuristic for selecting and splitting criterion that "best" separates a given partition, D, of class labeled training tuples into individual classes.
- -Information Gain
- -Gain Ratio
- -Gini Index

Information Gain:

Information with the highest gain is selected

Let pi be the probability that an arbitrary tuple in D belongs to class Ci, Estimated by |Ci, d|/|D|

Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Information needed (after using A to split D into v Partitions) to classify D:

Here A is one column and D is total

$$Info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$$

With respect to one column

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	p _i	n _i	I(p _i , n _i)	
<=30	2	3	0.971	
3140	4	0	0	
>40	3	2	0.971	

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$
 $Gain(income) = 0.029$ $Gain(student) = 0.151$ $+\frac{5}{14}I(3,2) = 0.694$ $Gain(credit_rating) = 0.048$

Gain Ratio:

C4.5 (a successor of ID3) overcomes the problems (normalization to informationgain)

$$SplitInfo_{A}(D) = -\sum_{j=1}^{r} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|})$$
Gain Ratio(A) = Gain(A)/SplitInfo(A)

$$SplitInfo_{income}(D) = -\frac{4}{14} \times \log_2(\frac{4}{14}) - \frac{6}{14} \times \log_2(\frac{6}{14}) - \frac{4}{14} \times \log_2(\frac{4}{14}) = 1.557$$

gain_ratio(income) = 0.029/1.557 = 0.019

The attribute with the maximum gain ratio is selected as the splitting attribute

Gini Index

If a data set D contains examples from n classes, gini index , gini(D) is defined as

gini
$$(D) = 1 - \sum_{j=1}^{n} p^{2}_{j}$$

Where pj is the relative frequency of class j in D. If a data set D is split on A into two subsets D1 and D2, the gini index gini(D) is defined

$$gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$$

Reduction in Impurity

$$\Delta gini(A) = gini(D) - gini_A(D)$$

Total gini index – gini index of column

The attribute provides the smallest gini split (D) (or the largest reduction in impurity) is chosen to split the node

D has 9 tuples in buys_computer = "yes" and 5 in "no"

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

Suppose the attribute income partitions D into 10 in D1: {low, medium} and 4 in D2

$$gini_{income \in \{low, medium\}}(D) = \left(\frac{10}{14}\right)Gini(D_1) + \left(\frac{4}{14}\right)Gini(D_2)$$

$$= \frac{10}{14} \left(1 - \left(\frac{7}{10} \right)^2 - \left(\frac{3}{10} \right)^2 \right) + \frac{4}{14} \left(1 - \left(\frac{2}{4} \right)^2 - \left(\frac{2}{4} \right)^2 \right)$$

$$= 0.443$$

$$= Gini_{income} \in \{high\}(D).$$

Gini_{low,high} is 0.458; Gini_{medium,high} is 0.450.

ASM Comparison:

Attribute selection measure comparison

- *Information Gain
- -Biased towards multivalued attributes
- -Gender and ages
- -It will prefer multivalued attribute age

Gain Ratio

-Tend to prefer unbalanced splits in which one partition is much smaller than the other

Gini Index

- -Biased to Multivalued attributes
- -Has difficulty when number of classes is large
- -Works best when result is equal sized partitions

Advantages of DTI

- -Relatively faster learning
- -Convertible simple and easy to understand classification rules
- -Can use SQL gueries to access databases
- -Comparable classifications accuracy with other methods

Rule based Classification

-Rules are a good way of representing information or bits or knowledge -If else rules

IF THEN Rules for classification

-Rule based classifiers are classifiers where the learned model is represented as a set of IF-THEN rules.

Assessment of rule is done using two parameters Coverage: n_{covers} = # of tuples covered by R. coverage(R) = n_{covers}/|D| Accuracy: n_{correct} = # of tuples correctly classified by R accuracy(R) = ncorrect / ncovers D is training dataset

CHP:LAST (Artificial Neural Networks)

Basic Structure of ANNs:

- -The idea of ANNs is based on the belief that working of human brain by making the right connections,
- -can be imitated using silicon and wires as living neurons and dendrites
- -The human brain is composed of 86 billion nerve cells called neurons
- -hey are connected to other thousand cells by Axons
- -Stimuli from external environment or inputs from sensory organs are accepted by dendrites.
- -These inputs create electric impulses, which quickly travel through the neural network

A neuron can then send the message to other neuron to handle the issue or does not send it forward.

Biological Neural Networks

• Two interconnected brain cells (neurons)

ANNS:

- -ANNs are composed of multiple nodes
- -which imitate biological neurons of human brain
- -The neurons are connected by links and they interact with each other
- -The nodes can take input data and perform simple operations on the data
- -The result of these operations is passed to other neurons
- -The output at each node is called its activation or node value
- -Each link is associated with weight
- -ANNs are capable of learning, which takes place by altering weight values

Types of Artificial Neural Networks

There are two Artificial Neural Network topologies

FeedForward and Feedback

FeedForward ANN:

- -In this ANN, the information flow is unidirectional
- -A unit sends information to other unit from which it does not receive any information
- -There are no feedback loops
- -hey are used in pattern generation/recognition/classification
- -They have fixed inputs and outputs.

FeedBack ANN Here, feedback loops are allowed . # 3 PIC

Working of ANNs

In the topology diagrams shown, each arrow represents a connection between two neurons and indicates the pathway for the flow of information

Each connection has a weight, an integer number that controls the signal between the two neurons

If the network generates a "good or desired" output, there is no need to adjust the weights

However, if the network generates a "poor or undesired" output or an error, then the system alters the weights in order to improve subsequent results.

Genetic Algorithms

- A genetic algorithm is a search heuristic that is inspired by Charles Darwin's theory of natural evolution
- -This algorithm reflects the process of natural selection where the fittest Individuals are selected for reproduction in order to produce offspring of the next generation

Genetic Algorithms

Notion of Natural Selection

- -The process of natural selection starts with the selection of fittest individuals from a population
- -They produce offspring which inherit the characteristics of the parents and will be added to the next generation
- -If parents have better fitness, their offspring will be better than parents and have a better chance at surviving
- -This process keeps on iterating and at the end, a generation with the fittest individuals will be found.
- -This notion can be applied for a search problem
- -We consider a set of solutions for a problem and select the set of best ones out of them.
- -Five phases are considered in a genetic algorithm.
- -Initial population
- -Fitness function
- -Selection
- -Crossover
- -Mutation

Initial Population

- -The process begins with a set of individuals which is called a Population.
- -Each individual is a solution to the problem you want to solve.
- -An individual is characterized by a set of parameters (variables) known as Genes
- -Genes are joined into a string to form a Chromosome (solution).
- -In a genetic algorithm, the set of genes of an individual is represented using a string, in terms of an alphabet
- -Usually, binary values are used (string of 1s and 0s)
- -We say that we encode the genes in a chromosome.

Fitness Function

- -The fitness function determines how fit an individual is (the ability of an individual to compete with other individuals)
- -It gives a fitness score to each individual
- -The probability that an individual will be selected for reproduction is based on its fitness score

Selection

- -The idea of selection phase is to select the fittest individuals and let them pass their genes to the next generation
- -Two pairs of individuals (parents) are selected based on their fitness scores
- -Individuals with high fitness have more chance to be selected for reproduction

Crossover:

- -Crossover is the most significant phase in a genetic algorithm.
- -For each pair of parents to be mated, a crossover point is chosen at random from within the genes
- -For example, consider the crossover point to be 3 as shown below.

Offspring are created by exchanging the genes of parents among themselves until the crossover point is reached

The new offspring are added to the population

Mutation

- -In certain new offspring formed, some of their genes can be subjected to a mutation with a low random probability
- -This implies that some of the bits in the bit string can be flipped

Association rules

- -Association Rule is one of the very important concepts of machine learning being used in market basket analysis
- -Market Basket Analysis is the study of customer transaction databases to determine dependencies between the various items they purchase at different times
- -Association rule learning is a rule-based machine learning method for discovering interesting relations between variables in large databases.
- -It identifies frequent if-then associations called association rules which consists of an antecedent (if) and a consequent (then).
- -For example: "If tea and milk, then sugar" ("If tea and milk are purchased, then sugar would also be bought by the customer")
- Antecedent: Tea and Milk
- Consequent: Sugar.
- -There are three common metrics to measure association
- -Support
- -Confidence
- -Lift

Support: is an indication of how frequently the items appear in the data. Mathematically, support is the fraction of the total number of transactions in which the item set occurs.

$$Support(\{X\} \rightarrow \{Y\}) = \frac{Transactions\ containing\ both\ X\ and\ Y}{Total\ number\ of\ transactions}$$

Confidence: indicates the number of times the if-then statements are found true. Confidence is the conditional probability of occurrence of consequent given the antecedent.

$$Confidence(\{X\} \rightarrow \{Y\}) = \frac{Transactions\ containing\ both\ X\ and\ Y}{Transactions\ containing\ X}$$

Lift :can be used to compare confidence with expected confidence. This says how likely item Y is purchased when item X is purchased, while controlling for how popular item Y is. Mathematically,

$$Lift(\{X\} \rightarrow \{Y\}) = \frac{(Transactions\ containing\ both\ X\ and\ Y)/(Transactions\ containing\ X)}{Fraction\ of\ transactions\ containing\ Y}$$