HDD:

Festplatte

- magnetisches Speichermedium
- Daten auf rotierenden Scheiben

"hand disk drive"
HDD

"hard disk" HD

Größen

- Zollangabe & & Scheibe

Scheiben

- auch Platten, engl. "Platter"
- aus Aluminium > Legierug / Glas
 Magnesium
- = Datenschicht ams Eisenoxid/Kobalt
- Schuteschicht ams Kohlenstoff

Perpendicular Recording.

"Longitudinal Recording"

Festplattengeometrie

- Seiten
- Spuren / Tracks
- Zylinder !
- Block (4096 Byte) !
- Seltor !

=> Koordinatensystem

Lese-/Schreibkopf

Lese-/Schreibkopf

= Elaktromagnet

Eisenhern Spule

- Lesen

- Erkennen von magn. Änderngen

= Umpoler von Bits

Abb.37: Aufzeichnungsarten

Weiterhin vorhanden sind:

- Controller -> organisiert Lese- und Schreibvorgänge
- Cache (2 64 MB) -> Zwischenspeicherung von Daten -> Erhöhung Datenrate

155 + OdH

HDD-Schnittstelle:

Bezeichnungen der Laufwerke	Netto-Bitrate in Gbit/s
Serial ATA 1,5 Gbit/s	1,2
Serial ATA 3,0 Gbit/s, Rev. 2.x	2,4
Serial ATA 6,0 Gbit/s, Rev. 3.x	4,8
Serial ATA Express 8,0 Gbit/s, Rev. 3.2 (PCle 3); 16,0 Gbit/s Rev. 3.2 (PCle 4)	7,88 bzw. 15,76
SAS 1 3 Gbit/s; SAS 2 6 Gbit/s	2,4; 4,8
SAS 3 12 Gbit/s; SAS 4 24 Gbit/s	9,6; 12,8

Tabelle 5: HDD-Schnittstelle

-> SAS = Serial Attached SCSI (Small Computer System Interface), kurz SAS, ist eine Massenspeicher-Schnittstelle, die SCSI-Kommandos über eine serielle Schnittstelle transportiert, die mit SATA Ähnlichkeiten hat

Hinweis allgemein: PCle-Lanes lassen sich bündeln. Mit SATA Express sind zwei bis zu vier (über M.2-Schnittstelle) Lanes möglich; PCle-Karten nutzen hingegen bis zu 16 Lanes -> viel höhere Datenrate.

SSD:

=> viel schnellere Zugriffszeiten sowie Datenraten als bei HDD!

Flash-Speicher

Flash - EEPROM

1

blockweises Löschen

55

Kamerablitz

"electrically erasable programmable read only memory"

- nicht flüchdig

- elektrisch löschbar

Floating - Gate Transistor

"single-level-cell"

- speichert 1 Bit

"multi-level-cells"
- speichert 2/3/4 Bits
=> mehr Ladungs zustände
des Floating-Gates

1 Speicherdichte 1 Geschwindigkeit

=> Ladungszustände über R_{DS} ausgewertet

MAND-Flash

- -> blockweises Schreiben
- -> Geschwindigkeif & -> Speicherdichte T

Haltborkeit/ .. endurance"

- · Abnutzung der Flash-Zellen

 Grund: -> Degenerieren der

 Isolatorsticht des

 Floating-Gates

 · SSD Löschvargänge: 3,000 100,000
 - => Abnutzung tritt nur beim Schreiben (damit verbundenes Löschen) und nicht beim Lesen auf! => Endurance: SLC > MLC

Wear-Leveling

- · gleichnäßiges Verteilen der Duten
- · Umsortieren häufig genutater Daten
- · Zusammenfassen von Zugriffen

S. M. A.R.T.

- · Austauschen von kaputten Zellen
- · 10% d. SSD = Reserve

^{=&}gt; Wear-Leveling steigert endurance!

retention

- · Zeit bis Datenverlust
- · Verlieren d. Floating-Gate Ladung
- · SSD: 10 Jahre

Controller

- -> Wear-Leveling
- -> S.M. A.R.T.
- · Verteilen
- · Speichern
- · Finden
- · Lesen

der Daten

Ziel: => Minimieren der Zugniffe

+ Cache

78 Chips "> TREBITATION

SATAGG = SATA3

=> 6 GBi+1s

