Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

Институт Радиотехники и электроники им. В.А. Котельникова

Кафедра Электроники и наноэлектроники

КУРСОВАЯ РАБОТА

по дисциплине «Полупроводниковые приемники излучения»

Тема: Моделирование ФР на основе РвЅе

Студент		
гр. ЭР-05м-23		Беговаткин А.А.
Руководитель,	(подпись)	
к.т.н., доцент		Мирошников Б.Н.
	(полнись)	

ЗАДАНИЕ

Этап I (Расчет темновых характеристик ФР)

- 1. Выбрать и обосновать свой выбор толщины ФР и время жизни основных носителей;
- 2. Рассчитать темновое сопротивление Φ P, построить BAX в диапазоне напряжений от -10B до +10B;
- 3. Построить распределение потока энергии и потока фотонов АЧТ при заданной температуре;

Этап II (Расчет световых характеристик ФР)

- 1. Построить зависимости коэффициента поглощения от энергии и длины волны падающего излучения.
- 2. Определить границы длин волн, в которых преобладает равномерное и неравномерное поглощение;
- 3. Рассчитать среднюю скорость генерации носителей для различного типа поглощения;
- 4. Рассчитать и построить зависимости эффективного времени жизни (для двух типов поглощения) от скорости поверхностной рекомбинации;
- 5. Рассчитать сопротивление ФР при наличии падающего излучения, рассчитать во сколько раз оно отличается от темнового;
 - 6. Рассчитать и построить световую ВАХ ФР;
 - 7. Рассчитать интегральную чувствительность.

Этап III (Расчет спектральных характеристик ФР)

1. Рассчитать и построить спектральные зависимости концентрации носителей зарядов от падающего излучения;

- 2. Рассчитать и построить зависимости фототока от падающего излучения;
- 3. Рассчитать и построить зависимость токовой чувствительности от падающего излучения;
- 4. Приняв, ГРШ как основной шум, рассчитать интегральную обнаружительную способность.

Исходные данные:

- Материал PbSe
- Температура фоторезистора − 300 K;
- Толщину ФР выбрать самостоятельно, опираясь на литературные данные и/или пояснить заданную величину в письменном виде;
- Время жизни носителей заряда τ выбирается как среднее характерное для данного материала;
 - Эффективная площадь А=1х1 см2;
- Скорость поверхностной рекомбинации на освещаемой и тыльной поверхности s=1,10s,1010 см/с;
- Спектральное распределение излучения источника считать близким к излучению АЧТ, температура АЧТ 700 К.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
1. РАСЧЕТ ТЕМНОВЫХ ХАРАКТЕРИСТИК ФР 7
1.1 Выбор толщины ФР и времени жизни ОНЗ7
1.2 Расчет темнового сопротивления ФР
1.3 Темновая ВАХ ФР
1.4 Распределение потока энергии и потока фотонов АЧТ 8
2. РАСЧЕТ СВЕТОВЫХ ХАРАКТЕРИСТИК ФР10
2.1 Зависимости КФ поглощения
2.2 Равномерное поглощение
2.2.1. Средняя скорость генерации НЗ
2.2.2. Зависимость эффективного времени жизни от скорости
поверхностной рекомбинации
2.3 Неравномерное поглощение
2.3.1 Средняя скорость генерации Н3
2.3.2. Зависимость эффективного времени жизни от скорости
поверхностной рекомбинации
2.4 Сопротивление ФР при наличии падающего излучения15
2.5 Световая ВАХ ФР
3. РАСЧЕТ СПЕКТРАЛЬНЫХ ХАРАКТЕРИСТИК ФР 17
3.1 Спектральные зависимости концентрации НЗ от падающего
излучения
3.2 Зависимости фототока от падающего излучения17
3.3 Зависимость токовой чувствительности от падающего излучения
3.4 Обнаружительная способность

ЗАКЛЮЧЕНИЕ	21
СПИСОК ЛИТЕРАТУРЫ	22

ВВЕДЕНИЕ

Фотоприемники — полупроводниковые приборы, регистрирующие оптическое излучение и преобразующие оптический сигнал на входе в электрический сигнал на выходе фотоприемника. Поскольку основная задача фотоприемников — регистрация, то существует набор статических характеристик, которыми описываются основные характеристики фотоприемника.

В первом пункте данной курсовой будет произведен расчет темнового сопротивления и построен темновой ВАХ. А также построены графики для распределения потока энергий и фотонов АЧТ.

Второй пункт посвящен расчет световых характеристик таких как коэффициент поглощения, световое сопротивление, интегральной чувствительности. Так же рассматриваются два типа поглощения.

В заключительном пункте построены спектральные характеристики: концентрация сгенерированных носителей заряда, спектр тока, спектральная чувствительность и обворожительная способность.

1. РАСЧЕТ ТЕМНОВЫХ ХАРАКТЕРИСТИК ФР

1.1Выбор толщины ФР и времени жизни ОНЗ

Значение толщины выбиралась из соображений уменьшения темнового тока так как он определяет уровень собственных шумов, а следовательно, его пороговый поток и обнаружительную способность. Так же значение толщины должно соответствовать типовым значениям для материала. Так как в данной работе рассматривался поликристаллический селенид свинца то толщина была принят как 5мкм. Значение времени жизни бралось из справочных материалов, и оно составило $5*10^{-6}$ мкс.

1.2Расчет темнового сопротивления ФР

Темновое сопротивление $R_{\rm T}$ — сопротивление фоторезистора в отсутствие падающего на него излучения в диапазоне его спектральной чувствительности. Так как в данной курсовой работе рассматривается собственный полупроводник то его удельная проводимость может быть рассчитана по формуле 1.

$$\sigma = q n_i (\mu_n + \mu_p) \tag{1}$$

Зная удельное сопротивление и геометрические размеры полупроводника можно вычислить значение сопротивления по формуле 2.

$$R = \frac{1}{\sigma} * \frac{a}{d * b} \tag{2}$$

Подставив имеющиеся данные значение темнового сопротивления составило 6.2 МОм.

1.3 Темновая ВАХ ФР

Зная темновое сопротивление можно с помощью закона построить вольтамперную характеристику фоторезистора. Данная характеристика изображена на рисунке 1.1.

Рисунок 1.1 - Темновая ВАХ ФР

1.4 Распределение потока энергии и потока фотонов АЧТ

Энергия электромагнитного поля в единице объема, излучаемая АЧТ, определяется следующим образом:

$$\Phi(\lambda, T) = 2\pi * \frac{h * c^2}{\lambda^5} * \frac{1}{\exp\left(\frac{hc}{\lambda * kT}\right) - 1}$$
(3)

Распределение потока энергий представлено на рисунке 1.2.

Рисунок 1.2 - Распределение потока энергии

Для фотонных приемников, т.е. приемников, у которых электрический сигнал на выходе пропорционален числу поглощенных квантов света, рассматривают спектральную плотность потока фотонов:

$$N_{\phi}(\lambda, T) = 2\pi * \frac{c}{\lambda^4} * \frac{1}{\exp\left(\frac{hc}{\lambda * kT}\right) - 1}$$
(4)

Распределение потока фотонов представлено на рисунке 1.3.

Рисунок 1.3 - Распределение потока фотонов

Полное число квантов излучения [квант \cdot см $-2\cdot$ с-1] определяется соотношением: N=1.52*10¹¹*T³. При заданной температуре АЧТ один квадратный сантиметр поверхности излучает $5.2\cdot10^{19}$ квант/см $2\cdot$ с.

2. РАСЧЕТ СВЕТОВЫХ ХАРАКТЕРИСТИК ФР

2.1 Зависимости КФ поглощения

Коэффициент поглощения — безразмерная физическая величина, характеризующая способность тела поглощать падающее на него излучение. Его зависимость от энергии представлена в формуле 5.

$$\alpha(h\nu) = \begin{cases} 0, & h\nu < Eg \\ A * (h\nu - Eg)^{0.5}, & h\nu \ge Eg \end{cases}$$
 (5)

где

$$A = \frac{(q^2 * (2m_n)^{\frac{3}{2}})}{(n * c * h^2 * m_n * \varepsilon_0)}$$
 (6)

С помощью формулы 5 построен график квадратичной зависимости коэффициента поглощения от энергии. Данный график изображен на рисунке 2.1.

Рисунок 2.1 - Зависимость коэффициента поглощения от энергии падающего излучения

Зная, что частоту можно выразить как отношение скорости света к длине волны, можно построить зависимость коэффициента поглощения от длины волны. Зависимость квадрата коэффициента поглощения от длины волны представлена, на рисунке 2.2.

Рисунок 2.2 - Зависимость КФ поглощения от длины волны падающего излучения

Из данного графика можно определить граничное значение длины волны, при котором будет наблюдаться фотоэффект. Значение этой длины волны составило 4.4 мкм.

2.2 Равномерное поглощение

Значение $\alpha_{\rm kp}$ при котором происходит равномерное поглощение определяется как 1/d, где d толщина полупроводниковой пластины, и составляет 20000 см⁻¹. Длина волны, при которой наблюдается данное значение составляет 4 мкм. Из этого следует что равномерное поглощение происходит в диапазоне от 4 до 4.4 мкм.

2.2.1. Средняя скорость генерации НЗ

При равномерном поглощении скорость генерации вычисляется по формуле 7.

$$G(\lambda) = \eta(\lambda) * \alpha(\lambda) * N_{\phi}(\lambda) * S \tag{7}$$

где η - квантовый выход или число электронно-дырочных пар, образуемых одним квантом света (его значение равно 1), S — площадь освещаемой поверхности. График зависимости скорости генерации от длины волны для равномерного поглощения представлен на рисунке 2.3.

Рисунок 2.3 - Скорость генерации НЗ при равномерном поглощении 2.2.2. Зависимость эффективного времени жизни от скорости поверхностной рекомбинации

Эффективное время жизни вычисляется п формуле 8.

$$\tau_{9\phi\phi p} = \tau_p * \left[1 - \frac{(2 * s * sh(d/(2L_p)/d))}{(D_p/L_p) * sh(s/2L_p) + s * ch(d/2L_p)} \right]$$
(8)

где Dp - коэффициент диффузии

$$Dp = \frac{k_b * T}{q} * \mu p \tag{9}$$

Lp – диффузионная длина

$$L = \sqrt{D * \tau} \tag{10}$$

На рисунке 2.4 представлена зависимость времени жизни о скорости поверхностной рекомбинации для равномерного поглощения.

Рисунок 2.4 - Зависимость времени жизни от скорости поверхностной рекомбинации при равномерном поглощении

2.3 Неравномерное поглощение

2.3.1 Средняя скорость генерации НЗ

Объемная скорость генерации носителей на расстоянии *x* от освещаемой поверхности с учетом закона Бугера-Ламберта (11) записывается в виде

$$G = \eta(\lambda) * \alpha(\lambda) * N_{\phi}(\lambda) * exp(\alpha(\lambda) * x) * S$$
 (11)

График зависимости скорости генерации от длины волны для неравномерного поглощения представлен на рисунке 2.5.

Рисунок 2.5 - Скорость генерации НЗ при неравномерном поглощении

2.3.2. Зависимость эффективного времени жизни от скорости поверхностной рекомбинации

Эффективное время жизни при неравномерном поглощении вычисляется п формуле 12.

$$\tau_{9\phi\phi p} = \frac{\tau_p * L_p}{\alpha(\lambda)} * \frac{\tau_p * s * \left[ch(d/L_p) - 1 \right] + L_p * sh(d/L_p)}{\left(L_p^2 + \tau_p^2 * s_p^2 \right) * sh(d/L_p) + 2L_p * s * \tau_p * ch(d/L_p)}$$
(12)

Рисунок 2.6 - Зависимость времени жизни от скорости поверхностной рекомбинации при равномерном поглощении

2.4 Сопротивление ФР при наличии падающего излучения

При генерации в однородном полупроводнике, электронно-дырочных пар при его освещении в полосе собственного поглощения происходит изменение концентрации носителей заряда. В том случае, если изменение концентрации носителей сопоставимо с их начальной концентрацией, то суммарная концентрация основных носителей возрастает, а следовательно, возрастает и величина удельной проводимости. В том случае, если увеличение концентрации основных носителей существенно больше, чем стационарная концентрация, то суммарная проводимость будет определяться только фотопроводимостью. С помощью формулы 13 можно вычислить количество сгенерированных носителей заряда.

$$\Delta p_{\Phi} = G * \tau_{\ni \Phi \Phi} \tag{13}$$

Используя формулы 1 и 2 можно вычислить световое сопротивление. Значение сопротивления составило 5МОм, что в 1.25 раз меньше чем темновое.

2.5 Световая ВАХ ФР

Используя закон ома можно построить световую ВАХ, изображенную на рисунке 2.7.

Рисунок 2.7 - Световая ВАХ ФР

2.6 Интегральная чувствительность

Выделяют интегральную чувствительность (S_i) $\Phi\Pi$, т.е. чувствительность к немонохроматическому излучению заданного спектрального состава, формула 14, и монохроматическую чувствительность, т.е. чувствительность к монохроматическому излучению.

$$S_i = \int_0^\infty \frac{q}{h*c} * \alpha(\lambda) * \eta(\lambda) * \lambda * \left[\frac{\tau * \mu_p * (1 + \mu_n/\mu_p) * L_p}{L_p + s * \tau} \right] * \frac{U*d}{l^2}$$
(14)

Подставив значения в формулу, интегральная чувствительность составила $8.7*10^{-9}$ A/Bт.

3. РАСЧЕТ СПЕКТРАЛЬНЫХ ХАРАКТЕРИСТИК ФР

3.1 Спектральные зависимости концентрации H3 от падающего излучения

Формула для зависимости концентрации от длины волны:

$$\Delta p_{\phi}(\lambda) = G(\lambda) * \tau_{\vartheta \phi \phi}(\lambda) \tag{15}$$

Зависимость концентрации сгенерированных носителей зарядов от длины волны представлена на рисунке 3.1.

Рисунок 3.1 - Зависимость концентрации НЗ от падающего излучения

3.2 Зависимости фототока от падающего излучения Формула для зависимости тока от длины волны:

$$I(\lambda) = U * q * \Delta p_{\phi}(\lambda) * (\mu_n + \mu_p) * \frac{d * b}{a}$$
(15)

Рисунок 3.2 - Зависимость фототока от падающего излучения

3.3 Зависимость токовой чувствительности от падающего излучения Формула для зависимости чувствительности от длины волны:

$$S_I(\lambda) = \frac{I_{\text{CBET}}(\lambda)}{\Phi(\lambda, T)} \tag{16}$$

Рисунок 3.3 - Зависимость токовой чувствительности от падающего излучения

Как можно заметить из графика границы чувствительности лежат в пределах 0.1 до 4.9 мкм.

3.4 Обнаружительная способность

Для ИК систем важнейшим параметром, определяющим выбор $\Phi\Pi$, является удельная обнаружительная способность фотоприемника D^* (Bt^{-1} $\Gamma u^{1/2}$ см), рассчитываемая по формуле:

$$D^*(U) = \frac{S_I(U)}{I_{III}(U)} * \sqrt{S * \Delta f}$$
 (17)

где U_{III} (I_{III})- среднеквадратическое значение напряжения (тока) шума, $A_{9\varphi\varphi}$ — эффективная площадь $\Phi\Pi$, f — эквивалентная полоса пропускания усилительного устройства.

Шумом принято называть самопроизвольные флуктуации напряжения или тока на выходных клеммах прибора. Флуктуационные явления (шум) в полупроводниковых приборах обусловлены случайным характером происходящих в них физических процессов, имеющих различные постоянные времени. Генерационно-рекомбинационный шум наблюдается у полупроводниковых приемников и вызывается случайным характером генерации носителей тока, а также случайным характером рекомбинации этих носителей. Генерационно-рекомбинационный шум зависит от концентрации и времени жизни носителей и повышается при увеличении напряжения питания Uп. Ток шума вычисляется по формуле:

$$P_{I_{\text{III}}} = \frac{4 * I_d^2 * (b_{\mu} + 1)^2}{(b_{\mu} n_0 + p_0)} * \frac{n * p}{n + p} * \frac{\tau}{1 + \omega^2 \tau^2}$$
(18)

С помощью формулы 17 можно построить зависимость обнаружительной способности от напряжения. Данная зависимость представлена на рисунке 3.4.

Рисунок 3.4 - Обнаружительная способность

ЗАКЛЮЧЕНИЕ

В первой главе были выбраны значения толщины и времени жизни для данного материала. Произведен расчет темнового сопротивления и построен темновой ВАХ. А также построены графики для распределения потока энергий и фотонов АЧТ.

Во второй главе были построены графики для коэффициента поглощения. Определены границы для равномерного поглощения. Построены зависимости скорости генерации и времени жизни. А также определено световое сопротивление и построен световой ВАХ.

В заключительной главе построены спектральные характеристики: концентрация сгенерированных носителей заряда, спектр тока, спектральная чувствительность и обворожительная способность.

СПИСОК ЛИТЕРАТУРЫ

- 1. Мирошникова И.Н. Описание лабораторных работ по дисциплине оптоэлектроника
- 2. Гуртов В. А. Г957 Оптоэлектроника и волоконная оптика / В. А. Гуртов; ПетрГУ. Петрозаводск: Изд во ПетрГУ, 2005. 100 с
- 3. Ишанин Г. Г., Челибанов В. П.Приемники оптического излучения: Учебник/Под ред. профессора В. В. Коротаева. СПб.: Издательство «Лань», 2014 304 с:
- 4. Шалимова К. В. Физика полупроводников: Учебник. 4 е изд., стер. СПб.: Издательство «Лань», 2010 400 с.: