Sparsity and patch for image restoration UE COMPIM: Flipped classroom

Achraf JENZRI, Selman SEZGIN, Mohamed Nassim LAADHAR and Hamdi SGHIR

March 2023

Table of Contents

Introduction

Background on Sparse Coding

The T3SC architecture

Model adaptations

Experiments

Conclusion

Hyperspectral Image (HSI)

Figure: Hyperspectral Image (HSI)

Hyperspectral Image (HSI) Denoising

Figure: Example of HSI Denoising

Related Work on Hyperspectral Image Denoising

- ► Learning-free and low-rank approaches
- ► Sparse coding models
- Deep learning
- Hybrid approaches

Table of Contents

Introduction

Background on Sparse Coding

The T3SC architecture

Model adaptations

Experiments

Conclusion

Sparse Coding

Sparse coding is a technique used in signal processing and machine learning for **representing data efficiently using a small number of non-zero coefficients**. The aim is to find a set of basis vectors ϕ_i such that we can represent an input vector X as a linear combination of these basis vectors:

$$X = \sum_{i=1}^{k} a_i \phi_i$$

Sparsity

Sparsity indicates that **most of the signal's coefficients are zero or close to zero** and it is a desirable property of the sparse coding representation because :

- it allows a more efficient and effective representation of the input data.
- it requires only a small number of non-zero coefficients to accurately represent the underlying signal, compared to a dense representation that requires many non-zero coefficients.
- it improves the accuracy and quality of the denoising process

Denoising Based on Spectral Dictionary Learning and Sparse Coding

Figure: Image Denoising with Spectral Dictionary Learning and Sparse Coding

Image denoising with dictionary learning

Figure: Sparce Approximation

Image denoising with dictionary learning

Let us consider y as noisy image in $R^{c \times h \times w}$ with c channels and two spatial dimensions. We denote by $y_1,...,y_n$ the n overlapping patches from y of size $c \times s \times s$, which we represent as vectors in R^m with $m = cs^2$. Assuming that a dictionary $D = [d_1,...,d_p] \in R^{m \times p}$, each patch y_i is processed by computing a sparse approximation:

$$\min_{\alpha_i} \frac{1}{2} \|y_i - D\alpha_i\|^2 + \lambda \|\alpha_i\|_1$$

- $ightharpoonup \alpha_i$: Sparse Code
- **Each** patch y_i admits a "clean" estimate $D\alpha_i$.
- ▶ ||.||₁ I₁-norm; induce sparsity in the problem solution (I₀-penalty, which counts the number of non-zero elements)
- \triangleright λ controls the amount of the regularization

Example of Image denoising with dictionary learning: PCA

- The learned dictionary is typically constructed using the top principal components of the input image data
- Norm 0 : the number of non-zero coefficient Exact sparsity in the solution
 BUT NP-hard problem
- Norm 1: sum of the absolute values of the coefficients Sparse solution
 BUT sometimes not exact sparsity in the solution (high dimension)
- Norm 2: penalizes the sum of the squared coefficients
 Smooth and continuous solution, less overfitting and algorithm stability
 BUT not effective for promoting sparsity

ISTA is a proximal **gradient descent** method for solving the Lasso problem in Eq.(1) which consists of the following iterations:

$$\alpha_i^{(t+1)} = S_{\lambda}[\alpha_i^{(t)} + \mu D^T(y_i - D * \alpha_i^{(t)})]$$

- o $\mu > 0$: step-size (Learning rate)
- o $S_{\lambda}[u] = sign(u) max(|u| \lambda, 0)$: the soft-thresholding operator
- T iterations
- o α_i : Sparse code

► ISTA : Iterative algorithm, consisting of a sequence of linear transformations followed by a thresholding. But slow to converge and may require many iterations

$$\alpha_i^{(t+1)} = S_{\lambda}[\alpha_i^{(t)} + \mu D^T(y_i - D * \alpha_i^{(t)})]$$

- ▶ LISTA : a set of linear transformations and a learned thresholding, which is optimized to minimize loss function \mathcal{L}_{θ} that measures the quality of the recovered signal.
- Incorporates learning into the algorithm to improve **speed** convergence and no need to compute $\nabla_{\theta} \mathcal{L}_{\theta}$.

The LISTA algorithm is used to **train dictionaries** for supervised learning tasks, which considers the following iterations:

$$\alpha_i^{(t+1)} = S_{\lambda}[\alpha_i^{(t)} + C^{T}(y_i - D * \alpha_i^{(t)})]$$

- o C Matrix of the same size as D
 - → Improves the results quality, Faster Convergence
 - \rightarrow If C = μD , We recover ISTA
- o Clean Estimate : $W\alpha_i^{(T)}$; W \neq D to correct the potential bias due to I_1 -minimization
- o T: the number of LISTA steps

- ► The reason for allowing a different dictionary W than D is to correct the potential bias due to I1-minimization.
- Finally, the denoised image \hat{x} is reconstructed by averaging the patch estimates:

$$\hat{x} = \frac{1}{m} \sum_{i=1}^{n} R_i W \alpha_i^{(T)}$$

* R_i : a linear operator that places the patch x_i at position i in the image

- ► The LISTA point of view enables us to learn the model parameters C, D, W in a supervised fashion.
- ► A typical loss, which we optimize by stochastic gradient descent, is then:

$$\min_{C,D,W,\lambda} \mathbb{E}[\|\mathbf{\hat{x}}(\mathbf{y}) - \mathbf{x}\|^2]$$

* Where (x, y) is a pair of clean/noisy images

Table of Contents

Introduction

Background on Sparse Coding

The T3SC architecture

Model adaptations

Experiments

Conclusion

Architecture overview

Figure: A trainable sparse coding model (T3SC)

The low-rank assumption

▶ Every element of dictionary $\mathbf{D} = [d_1, \dots, d_p] \in \mathbb{R}^{cs^2 \times p}$ can be factorized in the following way:

$$d_j = vec (U_j \times V_j)$$

with $U_j \in \mathbb{R}^{s^2 \times r}$ (spatial term) and $V_j \in \mathbb{R}^{r \times c}$ (spectral term).

- Without this decomposition, cs^2p parameters; with this decomposition: only $(s^2 + c)rp$ parameters.
- Less trainable parameters, faster learning step.

Multilayer extension

- ► First layer tuned to a specific sensor because of parameter *c*. But the second layer is generic.
- ► The T3SC model can be written as

$$\hat{\mathbf{x}}(\mathbf{y}) = \Psi^{dec} \circ \Psi^{enc}(\mathbf{y})$$

where \mathbf{y} noisy image and $\hat{\mathbf{x}}(\mathbf{y})$ its denoised version.

▶ This model can be generalized to several layers:

$$\hat{\textbf{x}}(\textbf{y}) = \Psi_1^{\textit{dec}} \circ \dots \circ \Psi_L^{\textit{dec}} \circ \Psi_L^{\textit{enc}} \circ \dots \circ \Psi_1^{\textit{enc}}(\textbf{y})$$

Table of Contents

Introduction

Background on Sparse Coding

The T3SC architecture

Model adaptations

Experiments

Conclusion

convolutional sparsity coding

$$\min_{\{\boldsymbol{\alpha}_i \in \mathbb{R}^p\}_{i=1,\dots,n}} \frac{1}{2} \left\| \mathbf{y} - \frac{1}{m} \sum_{i=1}^n \mathbf{R}_i \mathbf{D} \boldsymbol{\alpha}_i \right\|^2 + \lambda \sum_{i=1}^n \|\boldsymbol{\alpha}_i\|_1.$$

Figure: The Lasso Problem of a CSC model

Noise Adaptive Sparse Coding

The knowledge encapsulation is clear when it comes to knowing the noise applied in each band of an image .

$$\min_{\boldsymbol{\alpha}_i \in \mathbb{R}^p} \frac{1}{2} \|\mathbf{y}_i - \mathbf{D}\boldsymbol{\alpha}_i\|^2 + \lambda \|\boldsymbol{\alpha}_i\|_1, \tag{1}$$

Figure: The Lasso Problem seen from a maximization a posteriori

$$\min_{\{\boldsymbol{\alpha}_i \in \mathbb{R}^p\}_{i=1,\dots,n}} \frac{1}{2} \left\| \mathbf{y} - \frac{1}{m} \sum_{i=1}^n \mathbf{R}_i \mathbf{D} \boldsymbol{\alpha}_i \right\|^2 + \lambda \sum_{i=1}^n \|\boldsymbol{\alpha}_i\|_1.$$
 (6)

Figure: The Lasso Problem of a CSC model

Here, the noise is i.i.d

Noise Adaptive Sparse Coding

If the noise is different from one band to another, we can adjust that by applying a normalization term β_i on each extracted band

$$\min_{\boldsymbol{\alpha}_i \in \mathbb{R}^p} \frac{1}{2} \sum_{j=1}^c \beta_j \|\mathbf{M}_j (\mathbf{y}_i - \mathbf{D} \boldsymbol{\alpha}_i)\|^2 + \lambda \|\boldsymbol{\alpha}_i\|_1,$$

Figure: noise adaptation

Figure: ground truth image

RGB representation has three bands of a signe image

Figure: RGB image

predicting pixel values given their context

Figure: blind-spot denoising

Hyperspectral imaging has quite large number of channels

Figure: Hyperspectral image

Blind-Band denoising

Blind-Band denoising

Blind-Band denoising

Blind-Band denoising

$$\min_{\mathbf{C},\mathbf{D},\mathbf{W},\lambda} \mathbb{E}_{\mathbf{x},\mathbf{y},S} \left[\sum_{j
otin S} \| \mathbf{M}_j (\hat{\mathbf{x}}_S(\mathbf{y}) - \mathbf{y}) \|^2
ight]$$

Figure: blind-spot denoising

Table of Contents

Introduction

Background on Sparse Coding

The T3SC architecture

Model adaptations

Experiments

Conclusion

Models used for testing

We choose to compare the presented approach of **T3SC** to :

▶ Traditional methods : BM3D BM4D GLF LLRT MG-Meet

▶ Deep Learning Methods : SMDS-Net QRNN3D

Datasets

We evaluate our approach on two datasets with significantly different properties :

- ► ICVL:consists of 204 images of size 1392 × 1300 with 31 bands (100 images for training, 50 for testing).
- ► Washington DC Mall: consists of a high-quality image of size 1280 × 307 with 191 bands.
 - o **2 sub images for training** of size 600×307 and 480×307 respectively.
 - o **One sub-image** of size 200×200 for testing.

Implementation procedure

Figure: Training procedure for ICVL dataset

Implementation procedure

- ▶ **Normalization**: Before denoising, HSI images are normalized to [0, 1] using global min-max normalization.
- ► Training & Evaluating the models: We evaluate our model against different types of synthetic noise:
 - o Gaussian noise with known variance σ^2 .
 - o Gaussian noise with unknown band-dependent variance.
 - o Noise with spectrally correlated variance.
 - o Stripes noise: from 33% of the bands, around 10-15% of their columns are affected by a value uniformly sampled in the interval [-0.25, 0.25] which is added to them.

Metrics:

- o Mean Peak Signal-to-Noise Ratio (MPSNR).
- o Mean Structural Similarity Index Measurement (MSSIM).

Quantitative results on synthetic noise

σ	Metrics	Noisy	BM3D	BM4D	GLF	LLRT	NGMeet	SMDS	QRNN3D	T3SC	T3SC-SSL
5	MPSNR	34.47	46.17	48.85	51.25	51.86	52.74	50.91	48.80	52.62	51.42
	MSSIM	0.7618	0.9843	0.9916	0.9949	0.9951	0.9960	0.9944	0.9918	0.9959	0.9952
25	MPSNR	21.44	37.86	39.89	43.16	43.43	44.74	42.83	44.20	45.38	44.73
	MSSIM	0.1548	0.9269	0.9510	0.9695	0.9746	0.9796	0.9700	0.9782	0.9825	0.9805
50	MPSNR	16.03	34.22	34.22	39.26	39.69	41.08	39.25	41.67	42.16	41.62
	MSSIM	0.0502	0.8654	0.8654	0.9197	0.9504	0.9602	0.9382	0.9655	0.9677	0.9646
100	MPSNR	10.85	30.43	32.47	34.79	36.39	37.55	35.64	37.19	38.99	38.50
	MSSIM	0.0144	0.7557	0.8155	0.7982	0.9182	0.9311	0.8815	0.9140	0.9439	0.9394
[0-15]	MPSNR	33.89	45.81	45.35	50.57	48.50	41.67	48.23	52.07	53.31	51.26
	MSSIM	0.6386	0.9767	0.9735	0.9948	0.9899	0.9078	0.9900	0.9957	0.9967	0.9955
[0-55]	MPSNR	23.36	39.06	38.43	44.22	41.13	32.94	41.76	47.13	48.64	46.82
	MSSIM	0.2601	0.9231	0.9074	0.9818	0.9580	0.7565	0.9620	0.9884	0.9911	0.9882
[0-95]	MPSNR	19.06	36.17	35.55	41.43	38.44	29.40	38.94	43.98	46.30	44.75
[0-93]	MSSIM	0.1614	0.8760	0.8540	0.9674	0.9354	0.6609	0.9357	0.9753	0.9859	0.9822
Corr.	MPSNR	28.85	42.73	42.13	47.05	45.76	38.06	45.98	48.90	49.89	48.78
	MSSIM	0.4740	0.9599	0.9070	0.9881	0.9824	0.8536	0.9835	0.9911	0.9923	0.9911
Strip.	MPSNR	21.20	34.88	37.70	42.06	39.38	39.78	41.98	44.60	44.74	43.80
	MSSIM	0.1508	0.8641	0.9198	0.9628	0.9258	0.9333	0.9655	0.9806	0.9805	0.9773

Figure: Denoising performance on ICVL with various types of noise patterns.

Quantitative results on synthetic noise

Figure: Denoising results with Gaussian noise $\sigma=25$ on ICVL with bands 9, 15, 28.

Quantitative results on synthetic noise

	BM3D	BM4D	GLF	LLRT	NGMeet	SMDS	QRNN3D	T3SC	T3SC-SSL
Inference time (s)	1677	2382	5565	24384	2686	74.3	3.6	<u>5.8</u>	54.2

Figure: Inference time per image on ICVL with $\sigma=50$

Results on real noise

Figure: Visual result on a real HSI denoising experiment on Urban dataset with bands 1, 108, 208.

Table of Contents

Introduction

Background on Sparse Coding

The T3SC architecture

Model adaptations

Experiments

Conclusion

Conclusion

- ➤ This supervised solution had achieved the goals of the state of the art.
- Limitation of the self-supervised method under more complex noise.
- ► The HSI is used in several applications: agriculture, natural disaster management planning, astronomy, archaeology, medicine the petroleum industry and military applications for surveillance.