마이크로프로세서응용 (Interrupt)

2023. 2학기

Kookmin Univ. EMCO Lab.

Contents

- 1. PIT
- 2. PWM Interrupt
- 3. Interrupt Priority
- 4. 예제

Interrupt

- INTERRUPT → 어떤 조건하에서 조건을 만족하면 Flag를 띄어 사건을 처리 (PIT, PWM INTERRUPT, ADC INTERRUPT 등) → (AN)

- PIT = 일정 주기를 가지고 실행되는 Interrupt ㅋ) 스타스에 (Mobile)

- Reriodic Interrupt Timer

- 설정 주기 마다 발생

- 최대 4개의 Timer 설정 가능

- 각각의 Timer 마다 주기 설정 가능

=) 22 styrist (lake wing

Figure 31-1. PIT block dlagram

1. PIT Interrupt

PIT Enable Resister Setting > Min 2 20 122 38

- MDIS Bit 설정

PIT.PITMCR.B.MDIS

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	MDIS	FRZ
w															MDIS	nz
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
														•		•

Figure 36-2 PIT Module Control Registers (PITMCR)

Table 36-3. PITMCR Field Descriptions

Field	Description
MDIS	Module Disable. This is used to disable the module clock. This bit should be enabled before any other setup is done.
	0 Clock for PIT Timers is enabled (default) 1 Clock for PIT Timers is disabled
FRZ	Freeze. Allows the timers to be stopped when the device enters debug mode. 0 = Timers continue to run in debug mode. 1 = Timers are stopped in debug mode.

1. PIT Interrupt

PIT Period Resister Setting

Figure 36-3. Timer Load Value Register (LDVAL)

Table 36-4. LDVAL Field Descriptions

Field	Description
TSVn	Time Start Value Bits. These bits set the timer start value. The timer will count down until it reaches 0, then it will generate an interrupt and load this register value again. Writing a new value to this register will not restart the timer, instead the value will be loaded once the timer expires. To abort the current cycle and start a timer period with the new value, the timer must be disabled and enabled again (see Figure 36-8).

Description

- Resister에 설정 된 Value 에서 시스템 Clock 의 주기로 0까지 Count down이후 Interrupt 발생 후 다시 원래 Value로 돌아가서 반복. /

- PIT Period Resister Setting

수식으로 표현
$$PIT \ Period = \frac{1}{\underbrace{SystemClock}} * \underline{LDVAL \ Resister \ Value} \longrightarrow \% 게 ^{-2} 성 게 ^{-1} 나$$

Example)

System Clock = 64Mhz

PIT.CH[0].LDVAL.R = 6400; //
$$\frac{1}{\underline{SystemClock}} * 6400 = \underline{100us}$$

PIT.CH[1].LDVAL.R = 32000; // $\frac{1}{\underline{SystemClock}} * 32000 = \underline{500us}$

PIT.CH[2].LDVAL.R = 64000; // $\frac{1}{\underline{SystemClock}} * 64000 = \underline{1ms}$

Interrupt

- PIT 각<mark>각의 (Timer Enable)</mark> 및 Start Resister Setting

Figure 36-5. Timer Control Register (TCTRL)

Table 36-6. TCTRL Field Descriptions

Field	Description					
TIE	Timer Interrupt Enable Bit. 0 Interrupt requests from Timer x are disabled 1 Interrupt will be requested whenever TIF is set When an interrupt is pending (TIF set), enabling the interrupt will immediately cause an interrupt event. To avoid this, the associated TIF flag must be cleared first.					
TEN	Timer Enable Bit. 0 Timer will be disabled 1 Timer will be active					

Description
- TIE BIT 각각의 Timer의 Interrupt enable - TEN BIT 각각의 Timer의 Interrupt Start

Example)

```
0,1번 Timer의 Interrupt Enable 및 Start Setting
Resister Setting 1
 PIT.CH[0].TCTRL.B.TIE = 0x1; /* Timer 0 Interrupt : Enabled
 PIT.CH[1].TCTRL.B.TIE = 0x1; /* Timer 1 Interrupt : Enabled
 PIT.CH[0].TCTRL.B.TEN = 0x1; /*Start Timer 0 is : Enabled
 PIT.CH[1].TCTRL.B.TEN = 0x1; /*Start Timer 1 is : Enabled
  perister bitim seeing ox. and or 1
Resister Setting 2
 PIT.CH[0].TCTRL.R = 0x3; /* Timer 0 Interrupt Enabled & Start
 PIT.CH[1].TCTRL.R = 0x3; /* Timer 01Interrupt Enabled & Start
 Resiltan 3et/ Selling
```


Interrupt

기본 초기화 설정

```
- PIT ChO이 100ms마다 한번씩 발생하도록 설정
   void init_PIT(void)
       PIT.PITMCR.R = 0x00000001; // Enable PIT and Config Stop in debug mode.
       PIT.CH[0].LDVAL.R = 0 \times 0061a800; / \le 6400000 //Timeout = (6.4 \text{M}) \times 1 \text{sec} / 64 \text{M} = 100 \text{ms}
       PIT.CH[0].TCTRL.R = 0x000000003; // Enable PIT0 interrupt & start PIT counting
<mark>Int</mark>errupt 함수
    vuint32 t Pit0cnt=0;
    void PIT0ISR(void)
              In Interpret service routhe
         Pit0cnt++:
         PIT.CH[0].TFLG.B.TIF = 1;  // Clear PITO flag
     }
                                                Interrupt Smish
Interrupt 함수 실행 설정(main 함수 안)
       init ADC1():
       init PIT();
       INTC InstallINTCInterruptHandler(PITOISR (59)6) 👆 p13에 설명
                                         Intampellandlen
                                                               printey level
       SIU.PCR[48].R=0x0100;
```


Interrupt

1<mark>00</mark>ms마다 수행 확인

Figure 25-3. Center Aligned Example

- PWM Center Aligned 방식이기 때문에 VAL0 에서 Interrupt를 띄우면 항상 PWM HIGH CENTER 에서 발생

PWM Interrupt Register Setting

- PWM HIGH CENTER

Figure 25-47. Interrupt Enable Register (INTEN)

CMPIE — Compare Interrupt Enables

These bits enable the CMPF flags to cause a compare interrupt request to the CPU. Bits [5:0] of this field correspond to VAL5, VAL4, VAL3, VAL2, VAL1, and VAL0, respectively.

1 = The corresponding CMPF bit will cause an interrupt request.
0 = The corresponding CMPF bit will not cause an interrupt request.

Example)

FLEXPWM_0.SUB[0].INTEN.R = 0x0000; //Value 0에서 Interrupt 발생 HIGH CENTER FLEXPWM_0.SUB[0].INTEN.R = 0x0001; // Value 1)에서 Interrupt 발생 ŁOW CENTER

FlexPWM 0

Interrupt Priority(우선순위)

INTC_InstallINTCInterruptHandler 사용 하여 우선순위 설정

<mark>IN</mark>TERRUPT VECTOR TABLE 사용

(L	4//w/~					
the	Number		1			
[59	0x03B0	16	PITimer Channel 0	PIT	PIT
	60	0x03C0	16	PITimer Channel 1	PIT	PIT
P	61	0x03D0	16	PITimer Channel 2	PIT	PIT
Ì	62	0x03E0	16	ADC_EOC	ADC_0	ADC_0

	,		179	0x0B30	16	RF0	FlexPWM 0
\\\	26 1000 1000	(m	180	0x0B40	16	COF0	FlexPWM_)
	1		181	0x0B50	16	CAF0	FlexPWM_0
			182	0x0B60	16	RF1	FlexPWM_0
			183	0x0B70	16	COF1	FlexPWM_0
			184	0x0B80	16	CAF1	FlexPWM_0

185

0x0B90

16

RF2

INTC_InstallINTCInterruptHandler Setting

<mark>- IN</mark>TC_InstallINTCInterruptHandler(함수이름, 벡터넘버, 우선순위)

Example)

INTC_InstallINTCInterruptHandler(INT_PIT_1ms,61,6); 3 ないましまいます。 INTC_InstallINTCInterruptHandler(INT_PIT_5ms,127,6); 2 ないというできない INTC_InstallINTCInterruptHandler(INT_U_CENTER,180,10); ① ようとうにいる まょう

- 인터럽트 대기와 실행 동시에 여러 인터럽트가 요청되었을 때는, 큰 숫자의 벡터 값의 인터럽트가 높은 우선순위를 가짐

높은 우선순위의 인터럽트가 발생하면, 현재 인터럽트 서비스 루틴을 중단하고, 새로운 인터럽트 서비스 루틴을 실행

- 위 Handler에서는 INT_U_CENTER 우선순위를 가짐

4. 예제

Interrupt

예제1) 1초 마다 LED를 깜박이시오.

예제2) 2초마다 LED를 오른쪽으로 SHIFT 시키시오.

