

Mobile Computing

Lecture 5: Wireless LAN

Slides Credits

Computer Networking: A Top Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

KUROSE ROSS

Ch. 6: Wireless and Mobile Networks

Background:

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)!
- # wireless Internet-connected devices equals # wireline Internet-connected devices
 - laptops, Internet-enabled phones promise anytime untethered Internet access
- two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

Characteristics of selected wireless links

ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless network taxonomy

	single hop	multiple hops
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: <i>mesh net</i>
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET, VANET

Wireless Link Characteristics (1)

important differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

Wireless Link Characteristics (2)

- * SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")

SNR versus BER tradeoffs

- given physical layer: increase power -> increase SNR->decrease BER
- given SNR: choose physical layer that meets BER requirement, giving highest thruput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

----- QAM256 (8 Mbps)

- - QAM16 (4 Mbps)

BPSK (1 Mbps)

Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B, A hear each other
- B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:

- B, A hear each other
- * B, C hear each other
- A, C can not hear each other interfering at B

Code Division Multiple Access (CDMA)

- unique "code" assigned to each user; i.e., code set partitioning
 - all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
 - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
- encoded signal = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence

CDMA encode/decode

CDMA: two-sender interference

IEEE 802.11 Wireless LAN

802.11b

- *2.4-2.485 GHz unlicensed spectrum
- up to 11 Mbps
- *direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code

802.11a

- 5.1-5.8 GHz range
- up to 54 Mbps

802.11g

- 2.4-2.485 GHz range
- up to 54 Mbps

802.11n: multiple antennae

- 2.4-5 GHz range
- up to 200 Mbps

- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

802.11 LAN architecture

- wireless host communicates with base station
 - base station = access point(AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802.11: Channels, association

- * 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- * host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication [Chapter 8]
 - will typically run DHCP to get IP address in AP's subnet

802.11: passive/active scanning

passive scanning:

- (1) beacon frames sent from APs
- (2) association Request frame sent: H1 to selected AP
- (3) association Response frame sent from selected AP to H1

active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

IEEE 802.11: multiple access

- * avoid collisions: 2+ nodes transmitting at same time
- * 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- * 802.11: *no* collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

- 1 if sense channel idle for **DIFS** then transmit entire frame (no CD)
- 2 if sense channel busy then start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat 2

802.11 receiver

if frame received OK
 return ACK after SIFS (ACK needed due to hidden terminal problem)

Avoiding collisions (more)

idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- * BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

