1. IDENTIFICACION

Materia: ESTRUCTURA Y PROPIEDADES FISICAS

DE MATERIALES

Códigos: SIRE: 6062 EIQ: IQ-ET35

Prelación: IQ-5027, IQ-5017

Ubicación:ElectivaTPLU:3-1-0-3Condición:Electiva

Departamento: Química Industrial y Aplicada

2. **JUSTIFICACION**

Este curso complementa la formación del Ingeniero Químico en el área de Química Inorgánica.

3. REQUERIMIENTOS

Conocimientos de Química General, Cálculo y Física.

4. OBJETIVOS

GENERALES

El principal objetivo del curso es mejorar la formación del estudiante en el área de la Química Inorgánica.

ESPECIFICOS

El curso está especialmente diseñado para tratar de crear un criterio químico en el estudiante, de manera de reunir y racionalizar una serie de informaciones que se reciben a través de la carrera, muchas veces en forma operativa, que le permita conocer las sustancias que intervienen en un proceso, anticipar propiedades fisicoquímicas (disociación, azerotropía, desproporción, etc.) y por ende métodos de cálculo o en forma cualitativa lo que puede suceder en el proceso.

5. CONTENIDO PROGRAMATICO

CAPITULO 1. NUCLEO ATOMICO

Nucleones, isótopos. Estabilidad y Estructura. Partículas elementales.

CAPITULO 2. ESTRUCTURA ATOMICA

Mecánica cuántica y orbitales. Interacciones electrónicas, principio de Exclusión de Pauli y Sistema Periódico. Propiedades periódicas.

CAPITULO 3. CRISTALES IONICOS

Estructuras cristalinas. Los radios iónicos. Densidad de carga y polarización de los iones. Fuerzas en cristales. Ciclos de Born-Haber. Consecuencias, calores de formación, puntos de fusión y ebullición.

CAPITULO 4. EXTENSION AL ENLACE COVALENTE

Orbitales enlazantes y antienlazantes. Moléculas homo y heteroatómicas, relación con las espectroscopías. Hibridaciones, simetría y consecuencias, momentos dipolares. Los líquidos covalentes y sus propiedades como solventes. Teoría de soluciones. Enlaces múltiples de localización y colorantes.

CAPITULO 5. COMPLEJOS

Definición y estructura. Nomenclatura. Enlace y teoría del campo ligando. Estabilidad y espectros UV y visibles. Los complejos en la industria química de pigmentos, en la catálisis homogénea y en la galvanoplastia.

CAPITULO 6. CRISTALES METALICOS

Bandas y enlaces, aleaciones y compuestos intersticiales.

CAPITULO 7. CRISTALES COVALENTES E INTERMEDIOS

Macromoléculas y silicatos.

CAPITULO 8. SOLUCIONES DE ELECTROLITOS

Naturaleza de las soluciones electrolíticas. Equilibrio iónico y actividades en soluciones concentradas. Propiedades termodinámicas. Hidratación y entropía de hidratación. Teoría general de ácidos bases, generalización a todo solvente.

CAPITULO 9. LA QUIMICA EN LOS SOLVENTES NO ACUOSOS

Soluciones en general. Potenciales Redox en ellos. Aplicaciones.

CAPITULO 10. EL FOTON EN QUIMICA

Fotólisis y fotografía.

6. METODOLOGIA.

Las clases son teórico-prácticas de forma de facilitar el sistema enseñanzaaprendizaje. La teoría y su aplicación se explican en forma intercalada. Se emplea como elemento de apoyo la proyección de transparencias y diapositivas.

7. RECURSOS.

Tiza, pizarrón, transparencias, diapositivas, biblioteca.

8. **EVALUACION**

- Cuatro (4) exámenes parciales que conforman el 100%
- Examen final y de reparación.

9. BIBLIOGRAFIA.

Hawey and Porter. "Introduction to Physical Inorganic Chemistry".

Castellan. "Fisicoquímica".

Keteela. "Chemical Constitution".

Gould. "Inorganic Reaction and Structure".

10. VIGENCIA

Desde: Semestre B-2001.