< VOLTAR

Processos

Apresentar a definição e as partes que compõem um processo na visão de um Sistema Operacional.

NESTE TÓPICO

- > Introdução
- > Estrutura do processo
- > Referências

Marcar tópico

Introdução

Ao longo do tempo, acompanhando os computadores, os sistemas operacionais evoluíram também. Desde o surgimento da informática, a evolução é constante, pois sempre surgem novos softwares e hardwares, mais potentes e mais adaptados às necessidades dos seres humanos (mais "userfriends").

Essa evolução tem um preço: problemas de gerenciamento generalizado (o SO gerencia todos os softwares e hardware). Os softwares estão cada vez mais complexos, pois antes era apenas "uma rotina" a ser gerenciada, com a evolução passaram a ser várias e executadas ao mesmo tempo, simultaneamente.

Para que o SO garanta a integridade e confiabilidade de cada tarefa solicitada pelo usuário, ele (SO) a trata como um "Processo", alocando recursos e registradores específicos para cada tarefa. Este tópico visa demonstrar como isso é feito.

Estrutura do processo

Em um primeiro momento, processo pode ser definido como um "programa em execução". Em função da evolução, atualmente seu conceito e responsabilidade é bem maior. Pode ser definido como sendo "toda a

estrutura necessária para que um programa seja executado (alocação de processador, memória e dispositivos de E/S)".

Segundo Machado, processo pode ser definido como um "conjunto necessário de informações para que o sistema operacional implemente a concorrência de programas".

No sistema multiusuário, cada usuário tem seu programa associado a um processo. O usuário tem a impressão de possuir todos os recursos exclusivamente para ele, mas todos os recursos estão sendo compartilhados, inclusive a CPU - Central Processing Unit (Unidade Central de Processamento). Ocorre que o processador executa o programa de um usuário durante um intervalo de tempo e, no instante seguinte, estará processando outro programa. Se houver falta de recursos, o sistema operacional poderá impedir a execução, com sucesso, de um programa.

Um processo é formado por três partes: contexto de hardware, contexto de software e espaço de endereçamento.

Contexto de Hardware

Esse contexto armazena o conteúdo dos registradores gerais da CPU - Central Processing Unit (Unidade Central de Processamento), além dos registradores de uso específico, como program counter, stack pointer e registrador de status.

O contexto de hardware é fundamental para a implementação dos sistemas multiprogramáveis, pois, como já discutimos anteriormente, há várias tarefas, mas são executadas simultaneamente, e não ao mesmo tempo. Para que isso seja possível, o sistema operacional trabalha com interrupções junto aos registradores. Vamos exemplificar: o usuário está conectado na internet e ouvindo musica. A sensação é de que ambas as tarefas estão sendo executadas no mesmo instante. O sistema operacional aloca processador apenas para uma, no momento, e reveza essa alocação entre as tarefas. Ao interromper a internet, o sistema operacional salva o registrador, aloca para o outro recurso, no caso, a música, posteriormente retorna a conexão da internet, restaura o registrador e continua a execução de onde houve a interrupção.

Contexto de Hardware num Processo.

Fonte: MACHADO, F. B.; MAIA, L. P. Arquitetura de Sistemas Operacionais. 2. ed. LTC, 2002.

Contexto de Software

Nesse contexto são especificados limites e características dos recursos que podem ser alocados pelo processo (processador, memória, dispositivos de E/S). Muitas dessas características são determinadas no momento da criação do processo, enquanto outras podem ser alteradas durante sua existência.

É composto por três grupos de informações:

- Identificação;
- Quotas;
- Privilégios.

<u>Identificação</u>: ao ser criado, o processo recebe duas identificações: PID (Process Identification), representado por um número. É por meio dele que o sistema operacional faz o gerenciamento; há também o UID (User Identification), que permite implementar o modelo de segurança, em que apenas os objetos que possuem a mesma UID do usuário podem ser acessados.

<u>Quotas</u>: refere-se aos limites de recursos a serem atribuídos para a tarefa. Caso não seja suficiente, o processo pode ser executado lentamente, ser interrompido ou não ser executado. Alguns exemplos de quota:

• Número máximo de arquivos abertos simultaneamente;

 Tamanho máximo de memória principal e secundária que o processo pode alocar;

- Número máximo de operações de E/S pendentes;
- Número máximo de processos, subprocessos e threads que podem ser criados.

<u>Privilégios</u>: define ações que um processo pode fazer em relação a ele mesmo, aos demais processos e ao sistema operacional.

Espaço de Endereçamento

Ele pertence à área de memória do processo em que instruções e dados do programa são armazenados para execução. Cada processo possui seu próprio espaço de endereçamento, que deve ser devidamente protegido do acesso dos demais processos.

Bloco de Controle do Processo (Process Control Block - PCB)

O processo é implementado pelo SO por meio de uma estrutura chamada PCB - Process Control Block (Bloco de Controle de Processos). A partir do PCB o SO mantém todas as informações sobre os processos em execução, ou seja, sobre o contexto de hardware, o contexto de software e o espaço de endereçamento de cada processo.

Os PCBs de todos os processos ativos residem na memória principal, em uma área exclusiva do sistema operacional. O tamanho dessa área geralmente é limitado por um parâmetro do sistema operacional que permite especificar o número máximo de processos que podem ser suportados simultaneamente pelo sistema.

PCB - Process Control Block: Bloco de Controle de Processo.

Fonte: MACHADO, F. B.; MAIA, L. P. Arquitetura de Sistemas Operacionais. 2. ed. LTC, 2002.

Estados dos Processos

No sistema multiprogramável, um processo não deve alocar exclusivamente a CPU, pois existe o compartilhamento no uso do processador e demais recursos computacionais. Por esse motivo, os processos alteram-se em diferentes "estados" ao longo do seu processamento, em consequência de eventos gerados pelo sistema operacional ou pelo próprio processo.

Um processo em execução pode passar pelos seguintes estados:

- Novo: ao ser criado;
- Pronto: o processo encontra-se no estado de pronto quando aguarda para ser executado. O sistema operacional é quem determina a ordem e os critérios para que o processo saia do estado de pronto de acordo com o algoritmo de escalonamento;
- Em execução: quando o processo está fazendo uso do processador. Os processos se revezam na utilização do processador seguindo uma política de escalonamento determinado pelo sistema operacional;
- Em espera: quando o processo aguarda por algum evento externo ou por algum recurso computacional de entrada ou saída para seguir com o seu processamento. Por exemplo, pressionamento de uma tecla, ou o clique em um botão;
- Encerrado: quando o processo é finalizado e destruído pelo sistema operacional.

Mudanças de estado do processo

Todo processo muda de estado durante sua execuçao e seu ciclo de vida (desde quando é criado até não ser mais processado) em razão de dois tipos de eventos:

- Criados por ele próprio: eventos voluntários como, por exemplo, a leitura de arquivos para entrada de informações e gravação de informações em arquivos de saída;
- Criados pelo SO: eventos involuntários como uma chamada para execução, previamente escalonada no SO (chamada automática), exemplo: quando você liga seu computador, vários processos entram em execução automáticamente (confira isso acessando a aba "Processos" do "Gerenciador de Tarefas").

As mudanças de estado que podem acontecer com um processo são:

 Pronto → Execução: após a criação de um processo, o sistema operacional coloca em uma lista de processos no estado de pronto, em que aguarda para ser executado. Como já citado anteriormente, cada sistema operacional tem seus próprios critérios;

- Execução → Espera: um processo em execução passa para o estado de espera por eventos gerados pelo próprio processo (eventos voluntários), como uma operação de E/S, ou por eventos externos (eventos gerados pelo sistema operacional);
- Espera → Pronto: um processo passa no estado de espera para o estado de pronto. A solicitação é atendida ou o recurso que aguarda é concedido. Para sair do estado de espera e passar para o estado de execução, ele obrigatoriamente vai para o estado de pronto, pois o sistema operacional só seleciona processos para execução dos que estiverem no estado de pronto;
- Execução → Pronto: um processo em execução passa para o estado de pronto por eventos externos, como por exemplo, se o tempo estimado para execução do processo expirar. Se isso ocorrer, o processo volta para a fila de pronto, em que irá esperar por uma nova oportunidade para continuar seu processamento.

Criação e eliminação de processos

Os processos são criados e eliminados por diversas razões. A criação ocorre a partir do momento em que o sistema operacional adiciona um novo PCB (Bloco de Controle de Processos) à sua estrutura e atribui um espaço de endereçamento na memória para uso. Após a criação do PCB, o SO já detecta a existência do processo, sendo assim é possível gerenciar e associar programas ao seu contexto para serem executados.

Para eliminar o processo, todos os recursos associados a ele deverão ser retirados e o PCB deletado pelo sistema operacional.

Mudanças de Estados de um Processo.

Fonte: MACHADO, F. B.; MAIA, L. P. Arquitetura de Sistemas Operacionais. 2. ed. LTC, 2002.

Chegamos ao final deste tópico, esperamos que você tenha conseguido entender esse importante assunto "Os Processos".

Caso haja alguma dúvida, leve-a ao professor, não a guarde para você, ok?

Vamos em frente, pois a TI não para!

Bom estudo!

Quiz

Exercício

Processos

INICIAR >

Quiz

Exercício Final

Processos

INICIAR >

Referências

TANENBAUM, A. S.. Sistemas Operacionais Modernos. 2. ed. São Paulo: Pearson / Prentice Hall, 2005.

MACHADO, F. B.; MAIA, L. P. Arquitetura de Sistemas Operacionais. 2. ed. LTC, 2002.

DEITEL, H. M.; DEITEL, P.J.; CHOFFNES, D.R. Sistemas Operacionais. 3. ed. Pearson Prentice Hall, 2005.

Avalie este tópico

ANTERIOR

Arquitetura e Estrutura de Sistemas

Operacionals

(https://www.uninove.br/conheca-

a-

uninove/biblioteca/sobre-

a-

biblioteca/apresentacao/)

Portal Uninove

(http://www.uninove.br)

Mapa do Site

