FINAL REVIEW

Guide - Dr. M. Jaya Bharata Reddy

- Angad Bajwa (107118014)
- Mandar Burande (107118056)
- Aditya Pethkar (107118072)
- Priyansh Joshi (107118076)

OI TITLE

06 RESULTS

OBJECTIVES

CONCLUSION

O3 EXISTING METHODOLOGIES

REFERENCES

COMPONENTS

METHODOLOGIES

TITLE

Cyber Attack Detection in Power System SCADA networks using Machine Learning Techniques

OBJECTIVES OF THE WORK

01

To monitor and analyze real-time data flow in SCADA networks

02

To detect and thwart various incoming cyber attacks such as man-in-the-middle and remote tripping commands, etc.

03

To put forth inferences to assist in implementing further solutions

EXISTING METHODOLOGIES

Fault classification using machine learning techniques -

- Classifier models used to segregate fault and non-fault data as well as types of fault exist.
- Data from power system simulation is collected and and labelled.
- Data is fed into machine learning models like K-Means Clustering.
- This allows the model to classify and predict the fault and/or type of fault occurring.

Cyber attacks on SCADA networks -

- Existing research deals with cyber threats and attacks on SCADA networks, Modbus protocol, etc
- Cyber attacks are simulated on targeted network topologies.
- Vulnerabilities are exposed and reported.
- Solutions are proposed to counter the vulnerabilities.

SINGLE LINE DIAGRAM

Single Line Diagram of the IEEE Standard 9-Bus System

Parameters	Ratings
Generator 1	776.5 MVA, 24 KV,50 Hz
Generator 2	1200 MVA, 26 KV, 50 Hz
Generator 3	960 MVA, 26 KV, 50 Hz
Line A	150 Km
Line B	120 Km
Line C	120 Km
Line D	140 Km
Line E	110 Km
Line F	110 Km

SCADA ARCHITECTURE

SCADA Architecture

METHODOLOGY-I

Fault Location	LG	LLG	LL	LLL	LLLG
а	20-130,40-110,60-90	20-130,40-110,60-90	20-130,40-110,60-90	20-130,40-110,60-90	20-130,40-110,60-90
	(in Km)				
b	20-100,40-80,60-60	20-100,40-80,60-60	20-100,40-80,60-60	20-100,40-80,60-60	20-100,40-80,60-60
	(in Km)				
С	20-100,40-80,60-60	20-100,40-80,60-60	20-100,40-80,60-60	20-100,40-80,60-60	20-100,40-80,60-60
	(in Km)				
d	20-120,40-100,60-80	20-120,40-100,60-80	20-120,40-100,60-80	20-120,40-100,60-80	20-120,40-100,60-80
	(in Km)				
е	20-90,40-70,60-50	20-90,40-70,60-50	20-90,40-70,60-50	20-90,40-70,60-50	20-90,40-70,60-50
	(in Km)				
f	20-90,40-70,60-50	20-90,40-70,60-50	20-90,40-70,60-50	20-90,40-70,60-50	20-90,40-70,60-50
	(in Km)				

METHODOLOGY-II

\Box

Power Quality Disturbance Events Generation (Natural and Cyber)

Feature Extraction

ML Training

Classification of events

METHODOLOGY-III

$$Accuracy = \frac{TN + TP}{TN + FP + TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1\ score\ = 2*\frac{Precision*Recall}{Precision+Recall}$$

METHODOLOGY-IV

RESULTS-I

Line Containing LLL Fault (Line 4-6, B)

Line Without Fault (Line 5-4, A)

RESULTS-II

1	E	F	G	H	1	J	K	L	M	N
1	V_magA	V_magB	V_magC	I_angleA	I_angleB	I_angleC	I_magA	I_magB	I_magC	Condition
2	0	0	0	0	0	0	0	0	0	0
3	339129.1274	339174.2646	339120.4549	42.32377724	-77.67682107	162.3177591	673.3249848	673.4025995	673.357707	0
4	339109.0626	339109.2964	339109.6045	42.31852025	-77.6811343	162.3179937	673.3296228	673.3391181	673.3378873	0
5	339109.3018	339109.0065	339109.3242	42.31833781	-77.68144481	162.3182603	673.330996	673.333528	673.3344754	0
6	339109.3693	339109.3052	339109.3813	42.31822754	-77.68168937	162.3182982	673.3319044	673.3315148	673.3325562	0
7	339109.3945	339109.42	339109.4322	42.31819114	-77.68181242	162.3182564	673.332436	673.331532	673.3319488	0
8	339109.4008	339109.4389	339109.4463	42.31818592	-77.68185389	162.3182292	673.3326731	673.3318221	673.3318434	0
9	339109.4029	339109.4316	339109.444	42.31818894	-77.68185876	162.3182216	673.3327207	673.33196	673.3318559	0
10	339109.4057	339109.4264	339109.4398	42.31819329	-77.68185197	162.3182219	673.3326857	673.3319965	673.3318815	0
11	339109.4089	339109.4255	339109.4373	42.31819777	-77.68184263	162.3182235	673.3326272	673.3320104	673.3319086	0
12	339109.4118	339109.4261	339109.4359	42.31820214	-77.68183327	162.3182247	673.3325673	673.3320273	673.3319379	0
13	339109.4144	339109.4268	339109.4349	42.31820621	-77.68182452	162.3182256	673.3325123	673.3320471	673.3319679	0
14	339109.4165	339109.4273	339109.434	42.31820985	-77.68181661	162.3182263	673.3324633	673.3320659	673.3319963	0
15	339109.4183	339109.4276	339109.4333	42.31821303	-77.68180963	162.3182271	673.3324204	673.3320822	673.3320217	C
16	339109.4198	339109.4279	339109.4326	42.31821577	-77.68180357	162.3182277	673.3323833	673.332096	673.3320438	C
17	339109.4211	339109.4281	339109.432	42.31821811	-77.68179836	162.3182283	673.3323515	673.3321078	673.332063	C
18	339109.4222	339109.4283	339109.4316	42.31822012	-77.6817939	162.3182288	673.3323243	673.3321179	673.3320794	C
19	339109.4232	339109.4284	339109.4312	42.31822182	-77.68179009	162.3182292	673.332301	673.3321264	673.3320934	0
20	339109.424	339109.4286	339109.4308	42.31822328	-77.68178685	162.3182295	673.3322813	673.3321337	673.3321054	0
21	339109.4247	339109.4287	339109.4305	42.31822452	-77.68178408	162.3182298	673.3322644	673.3321399	673.3321157	0
22	339109.4253	339109.4288	339109.4303	42.31822557	-77.68178172	162.3182301	673.33225	673.3321452	673.3321244	C
23	339109.4258	339109.4289	339109.4301	42.31822647	-77.68177972	162.3182303	673.3322378	673.3321498	673.3321318	0
24	339109.4262	339109.429	339109.4299	42.31822723	-77.68177801	162.3182305	673.3322274	673.3321536	673.3321382	0
25	339109.4266	339109.429	339109.4297	42.31822788	-77.68177655	162.3182307	673.3322186	673.3321569	673.3321436	0
26	339109.4269	339109.4291	339109.4296	42.31822844	-77.68177531	162.3182308	673.3322111	673.3321597	673.3321482	C
27	339109.4271	339109.4291	339109.4295	42.31822891	-77.68177426	162.3182309	673.3322047	673.332162	673.3321521	C
28	173866.5744	345305.6814	282939.1511	-26.09966641	-73.93301491	171.2511233	2165.008953	807.4377816	568.3175833	1
29	165256.8021	342706.8161	283007.2674	-27.27530904	-72.89221831	169.9198067	2040.051416	799.993996	558.4583754	1
821	339110.3205	339110.3213	162173.9982	42.31885301	-77.68114691	162.3188531	1571.915109	4126.549346	3546.617807	2
822	339110.3205	339110.3213	339110.3207	42.31885302	-77.68114689	162.3188531	673.3298191	673.3298246	673.3298238	2

Features -

- Phase A Voltage magnitude
- Phase A Voltage Angle
- Phase B Voltage magnitude
- Phase B Voltage Angle
- Phase C Voltage magnitude
- Phase C Voltage Angle
- Phase A Current magnitude
- Phase A Current Angle
- Phase B Current magnitude
- Phase B Current Angle
- Phase C Current magnitude
- Phase C Current Angle

Conditions -

- Natural Operation (0)
- Fault (1)
- Cyber Attack (2)

RESULTS-III

Cyber Attack Architecture

```
Decoded Data
V_75_angleA
                 39.98264694213867
V_75_angleB
                 -80.01714324951172
V 75 angleC
                 159.98382568359375
V 75 magA
                 328342.40625
V 75 magB
                 328336.90625
V 75 magC
                 328340.09375
I 75 angleA
                 37.61441421508789
I_75_angleB
                 96.51009368896484
I_75_angleC
                 160.12152099609375
I_75_magA
                 8.639863047221752e-09
I_75_magB
                 3.810341375753978e-09
I 75 magC
```

Data decoded from Modbus Payload format

RESULTS-IV

K-Means

Fault Line	Accuracy	Precision	Recall	F1 Score
a	86.9	82	88	87
b	87.5	83	87	89
С	86.5	84	86	85
d	86.9	83	87	86
e	87.3	87	88	85
f	87.2	89	82	85

Decision Tree Classifier

Fault Line	Accuracy	Precision	Recall	F1 Score
a	95.1	95	96	94
b	95.6	96	95	95
c	96.3	96	97	94
d	95.8	96	95	92
e	95.3	96	94	95
f	95.9	94	96	95

Random Forest

Fault Line	Accuracy	Precision	Recall	F1 Score
a	96.1	96	93	95
b	96.6	98	94	96
С	97.3	98	96	96
d	96.8	95	95	95
e	96.3	96	94	94
f	96.9	97	96	95

CONCLUSIONS - I

- Simulated multiple types of power system faults natural as well as cyber-attacks,
- Collected relevant data from the generated data samples and
- Analysed them using multiple machine learning techniques.
- Industry-standard tools like MATLAB, Simulink, Linux, Ettercap, Wireshark, Jupyter Notebooks, sklearn, pandas, numpy and more were used during this project. This further elevates the relevance of the work done.
- Based on the observed results, inferences were gleaned and suggestions to counter as well as thwart the problems were proposed.

CONCLUSIONS - II

- Devised and proposed a methodology to simulate and investigate the occurrence as well as the impact of the different obstacles and sabotages on the system.
- One such method is to add synchronised identification fields and hash functions to the Modbus Protocol.
- This allows the protocol to be more secure and also enables authentication.
- Combined with a well-trained machine learning model, the system will become robust and capable of detecting and thwarting cyber-attacks

REFERENCES

- 1. **O. A. Alimi, K. Ouahada, and A. M. Abu-Mahfouz** (2020) A Review of Machine Learning Approaches to Power System Security and Stability. *IEEE Access, vol. 8, pp. 113512-113531, 2020*
- 2. **Lemay, Antoine, and José M. Fernandez** (2016) Providing SCADA Network Data Sets for Intrusion Detection Research.

 CSET @ USENIX Security Symposium.
- 3. R. C. Borges Hink, J. M. Beaver, M. A. Buckner, T. Morris, U. Adhikari and S. Pan (2014) Machine learning for power system disturbance and cyber-attack discrimination. 7th International Symposium on Resilient Control Systems (ISRCS)
- 4. W. Rahman, M. Ali, A. Ullah, H. Rahman, M. Iqbal, H. Ahmad, A. Zeb, Z. Ali, M. Shahzad, and B. Taj (2012) Advancement in Wide Area Monitoring Protection and Control Using PMU's Model in MATLAB/SIMULINK. Smart Grid and Renewable Energy, Vol. 3 No. 4

THANK YOU!