CONSTRUCT SEQUENCE

BINZHEN WU

- . How to construct a sequence in A that converges to a limit point x of A? see HW3#3 part of (\leftarrow) way1: $x_1 \in B(x,r), x_2 \in B(x,r/2), ..., x_k = B(x,1/2^k)$. way2: $x_k \in B(x,1/k)$.
- . How to construct a sequence in A that converges converge to SupA=x? Let $x_n \in (x-1/k,x]$.
- . How to construct a subsequence that converges to the limsup of the sequence? suppose $a = limsupx_k$, and assume $a < \infty$. We want to find a subsequence $\{x_{n_k}\}$ that converges to a.

Define $a_k = \sup\{x_k, x_{k+1}, ...\}$, so $a_{n_k} = \sup\{x_{n_k}, x_{(n_k)+1}...\}$. Now, pick, $x_{n_1} = x_1$, pick $x_{n_2}s.t. \mid x_{n_2} - a_{n_1} \mid < \frac{1}{2}$, pick $x_{n_3}s.t. \mid x_{n_3} - a_{n_2} \mid < \frac{1}{2^2}$, ... pick

We know $\{a_n\}$ converge to a, then $\{a_{n_k}\}$ also converge to a. So for any $\epsilon, \exists N_1$, s.t. for any $n_k > N_1$, we have $\mid a_{n_k} - a \mid < \epsilon/2$. we also know, that $\exists N_2$, s.t. for any $n_{k+1} > N_2$, we have $\mid x_{n_{(k+1)}} - a_{n_k} \mid < \epsilon/2$. Choose $N = Max(N_1, N_2)$, we will get $\mid x_{n_{(k+1)}} - a \mid < \mid x_{n_{(k+1)}} - a_{n_k} \mid + \mid a_{n_k} - a \mid < \epsilon$ for all $n_{k+1} > N_2$. Therefore x_{n_k} converges to a.

 $7439 \ \, {\it Social Science Building} \\ E-mail \ \, address: \ \, {\it binzhenwu@wisc.edu} \\$

 $x_{n_{(k+1)}} s.t. \mid x_{n_{(k+1)}} - a_{n_k} \mid < \frac{1}{2^k}, \dots$