Digital Signal Analysis (CS7.303)

Spring 2022, IIIT Hyderabad 12 Jan, Wednesday (Lecture 3)

Taught by Prof. Anil Kumar Vuppala

Fourier Series and Transform

Fourier Transform

Properties of FT (contd.)

Convolution is a mathematical operator on two functions, that produces a third function which expresses how one affects the shape of the other. It is defined as

$$(f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau = \int_{-\infty}^{\infty} f(t-\tau)g(\tau)d\tau.$$

The convolution property of the Fourier transform states that if

$$x(t) \to X(\omega)$$

 $h(t) \to H(\omega)$,

then

$$x(t) * h(t) \rightarrow X(\omega) \cdot H(\omega)$$

 $x(t) \cdot h(t) \rightarrow X(\omega) * H(\omega)$

This can be easily proved:

$$\begin{split} F\left[f_1(t)*f_2(t)\right] &= \int_{-\infty}^{\infty} \left[f_1(t)*f_2(t)\right] e^{-j\omega t} dt \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_1(\tau) f_2(t-\tau) e^{-j\omega t} d\tau dt \\ &= \int_{-\infty}^{\infty} f_1(\tau) \left[\int_{-\infty}^{\infty} f_2(t-\tau) e^{-j\omega t} dt\right] d\tau \\ &= \int_{-\infty}^{\infty} f_1(\tau) F_2(\omega) e^{-j\omega \tau} d\tau \\ &= F_1(\omega) F_2(\omega). \end{split}$$

Discrete-Time Fourier Transform

As the Fourier transform takes as input and gives as output continuous real-valued functions, it is not possible for computers to compute it exactly. The discrete-time fourier transform overcomes this difficulty by simply taking the value of the input x(t) at discrete values n:

$$X\left(e^{j\omega}\right) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

x(n) is defined as $x(t) \cdot \delta(t)$, where $\delta(t)$ is the *impulse train* (its value is zero everywhere except at discrete inputs separated by T_s , where it is infinite). Writing the input as $X\left(e^{j\omega}\right)$ makes it periodic (introducing discretisation in one domain introduces periodicity in the other).

More Details.

Say we have a continuous function m(t) and an impulse train $\delta(t)$, with an infinite value at inputs separated by T_s . Note that the integral across each spike is 1.

We can find the Fourier series of $\delta(t)$:

$$\delta(t) = \frac{1}{T_s} \left[1 + \sum_{n=1}^{\infty} 2 \cos(n \omega_0 t) \right]. \label{eq:delta_total}$$

Now, we multiply m(t) with $\delta(t)$ to sample it:

$$g(t) = \frac{1}{T_s} \left[m(t) + 2\cos(\omega_0 t) m(t) + 2\cos(2\omega_0 t) m(t) + \cdots \right]. \label{eq:gt}$$

We can express this in complex form

$$g(t) = \frac{1}{T_s} \left[m(t) + e^{-j\omega_0 t} m(t) + e^{j\omega_0 t} m(t) + e^{-2j\omega_0 t} m(t) + e^{2j\omega_0 t} m(t) + \cdots \right],$$

which makes it easy to calculate the Fourier transform:

$$G(\omega) = \frac{1}{T_{\rm s}} \left[M(\omega) + M(\omega + \omega_0) + M(\omega - \omega_0) + M(\omega + 2\omega_0) + M(\omega - 2\omega_0) + \cdots \right]$$

If $M(\omega)$ has some cutoff frequency f_m (i.e. for values $> f_m$ or $< -f_m$, it is zero), then $G(\omega)$ will have a number of possibly overlapping regions. This intereference is called aliasing.

The Nyquist Sampling Theorem tells us the minimum sampling rate $f_s = \frac{1}{T_s}$ to avoid aliasing:

$$f_s \geq 2f_m$$

The discrete-time Fourier transform can be inverted:

$$x(n) = \frac{1}{2\pi} \int_T X\left(e^{j\omega}\right) e^{j\omega n} d\omega.$$

Discrete Fourier Transform

The DTFT, however, outputs a continuous real-valued function, like the FT. The discrete Fourier transform samples the output function as well, at discrete values k, in order to avoid this.

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-\frac{2\pi j n k}{N}}, k \in \{0, \dots, N-1\}.$$

This is called the N-point DFT. Here, we require x(t) to be periodic with period N; thus we take $x_p(n)$, a periodic version of x(t).