Problema 783.-

Si D es el punto medio del lado BC de un triángulo ABC y las tangentes a B, C de la circunferencia circunscrita se cortan en A', los ángulos BAA' y CAD son iguales.

Wolstenholme, J. (1867): A Book of Mathematical Problems on Subjects Included in the Cambridge Course (p. 6)

Solución de Florentino Damián Aranda Ballesteros, profesor de Matemáticas del IES Blas Infante de Córdoba.

Construimos la circunferencia de centro el punto A' y radio R = A'C = A'B. Esta circunferencia interceptará a la prolongación de los lados AC y AB en los puntos B' y C', respectivamente. Queda claro que esta recta B'C' es una antiparalela del lado BC respecto del ángulo A.

Sólo bastará probar, para nuestro propósito que B' y C' son puntos diametralmente opuestos.

Y esto es cierto sin más que observar que la suma de ángulos

ya que:

$$\not\preceq B'A'C = \pi - 2 \not\preceq B; \quad \not\preceq CA'B = \pi - 2 \not\preceq A; \quad \not\preceq BA'C' = \pi - 2 \not\preceq C.$$

En definitiva, los triángulos ABC y AB'C', son semejantes, al tener los mismos ángulos.

Si ahora consideramos los triángulos $ACD\ y\ AC'A'$, tenemos que ambos tienen un ángulo igual $\measuredangle C= \measuredangle C'\ y$ que además se cumple que $\frac{AC}{CD} = \frac{AC'}{C'A'}$.

Por tanto, ambos triángulos serán semejantes y entonces se verificará la igualdad entre los ángulos

 $\angle BAA' = \angle C'AA' = \angle CAD,$ cqd.

