NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics

AY2021, Semester 1 MA1508E Linear Algebra for Engineering Tutorial 6

Solutions

- 1. For each of the following sets of vectors S,
 - (i) Determine if S is linearly independent.
 - (ii) If S is linearly dependent, express one of the vectors in S as a linear combination of the others.

(a)
$$S = \left\{ \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 6 \\ 6 \end{pmatrix} \right\}.$$

S is linearly dependent since it contains 4 vectors from \mathbb{R}^3 .

$$\begin{pmatrix} 2 & 0 & 2 & 3 \\ -1 & 3 & 4 & 6 \\ 0 & 2 & 3 & 6 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{9}{2} \\ 0 & 1 & 0 & \frac{15}{2} \\ 0 & 0 & 1 & -3 \end{pmatrix}.$$

So

$$\begin{pmatrix} 3 \\ 6 \\ 6 \end{pmatrix} = \frac{9}{2} \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} + \frac{15}{2} \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}.$$

(b)
$$S = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix} \right\}.$$

S is linearly independent since S has only two vectors which are not multiples of each other.

(c)
$$S = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}.$$

Any set containing the zero vector is linearly dependent.

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}.$$

(d)
$$S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \right\}.$$
Solving $a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + c \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$

$$\begin{pmatrix} 1 & 0 & 1 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 1 & -1 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix}.$$

So
$$a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + c \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 has only the trivial solution and S is a linearly independent set.

2. For each of the following subspaces V, write down a basis for V.

This means that the fourth vector is redundant. It is easy to see that the first three vectors are linearly independent. So

$$\left\{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} \right\}$$

is a basis for V.

(b)
$$V = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\}.$$

Since the set contains 4 vectors in \mathbb{R}^3 , it cannot be linearly independent. One can check that $\left\{\begin{pmatrix}1\\0\\-1\end{pmatrix},\begin{pmatrix}-1\\2\\3\end{pmatrix},\begin{pmatrix}0\\3\\0\end{pmatrix}\right\}$ is linearly independent. Hence it is a basis for $V=\mathbb{R}^3$.

(c) V is the solution space of the following homogeneous linear system

$$\begin{cases}
a_1 + a_3 + a_4 - a_5 = 0 \\
a_2 + a_3 + 2a_4 + a_5 = 0 \\
a_1 + a_2 + 2a_3 + a_4 - 2a_5 = 0
\end{cases}$$

Solving the homogeneous system:

$$\left(\begin{array}{ccc|cccc}
1 & 0 & 1 & 1 & -1 & 0 \\
0 & 1 & 1 & 2 & 1 & 0 \\
1 & 1 & 2 & 1 & -2 & 0
\end{array}\right) \longrightarrow \left(\begin{array}{cccccccccc}
1 & 0 & 1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)$$

So the solution set is

$$\left\{ \begin{array}{c} s \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{array} \right\} + t \begin{pmatrix} 2 \\ 1 \\ 0 \\ -1 \\ 1 \end{pmatrix} \mid s, t \in \mathbb{R} \right\}.$$

It is easy to see that $\left\{ \begin{pmatrix} -1\\-1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\1\\0\\-1\\1 \end{pmatrix} \right\}$ is linearly independent, and is thus a

basis for V.

3. Let
$$\mathbf{v}_1 = \begin{pmatrix} 3 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$, $\mathbf{v}_4 = \begin{pmatrix} 4 \\ 3 \\ 2 \\ 2 \end{pmatrix}$ and $\mathbf{u} = \begin{pmatrix} 4 \\ 4 \\ 3 \\ 2 \end{pmatrix}$.

(a) Express \mathbf{u} as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ in two distinct ways.

Solving
$$a \begin{pmatrix} 3 \\ 1 \\ 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix} + c \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} + d \begin{pmatrix} 4 \\ 3 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 3 \\ 2 \end{pmatrix},$$

$$\begin{pmatrix} 3 & 1 & 1 & 4 & | & 4 \\ 1 & 2 & 1 & 3 & | & 4 \\ 1 & 1 & 0 & 2 & | & 3 \\ 1 & 1 & 1 & 2 & | & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & | & 1 \\ 0 & 1 & 0 & 1 & | & 2 \\ 0 & 0 & 1 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

This means that $\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ -1 \\ 0 \\ 1 \end{pmatrix}$ for any $s \in \mathbb{R}$. In other words,

$$\begin{pmatrix} 4 \\ 4 \\ 3 \\ 2 \end{pmatrix} = (1-s) \begin{pmatrix} 3 \\ 1 \\ 1 \\ 1 \end{pmatrix} + (2-s) \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} + s \begin{pmatrix} 4 \\ 3 \\ 2 \\ 2 \end{pmatrix}, \text{ for any } s \in \mathbb{R}.$$

So we may choose s = 0 and s = 1.

(b) Is it possible to express ${\bf u}$ as a linear combination of ${\bf v}_1, {\bf v}_2, {\bf v}_3$ in two distinct ways?

It is not possible. Solving
$$a \begin{pmatrix} 3 \\ 1 \\ 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix} + c \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 3 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 1 & 1 & | & 4 \\ 1 & 2 & 1 & | & 4 \\ 1 & 1 & 0 & | & 3 \\ 1 & 1 & 1 & | & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

The solution is unique. It corresponds to the choice of s = 0 in (a).

This question demonstrates that a vector $\mathbf{u} \in \text{span}\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ has a unique linear combination expression if and only if the set $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ is linearly independent.

4. (a) For what values of a will $\mathbf{u}_1 = \begin{pmatrix} a \\ 1 \\ -1 \end{pmatrix}$, $\mathbf{u}_2 = \begin{pmatrix} -1 \\ a \\ 1 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} 1 \\ -1 \\ a \end{pmatrix}$ form a basis for \mathbb{R}^3 ?

(b)
$$\begin{pmatrix} a & -1 & 1 & 0 \\ 1 & a & -1 & 0 \\ -1 & 1 & a & 0 \end{pmatrix} R_1 \leftrightarrow R_2 \begin{pmatrix} 1 & a & -1 & 0 \\ a & -1 & 1 & 0 \\ -1 & 1 & a & 0 \end{pmatrix} R_2 - aR_1 \xrightarrow{\longrightarrow} R_3 + R_1$$

$$\begin{pmatrix} 1 & a & -1 & 0 \\ 0 & -1 - a^2 & 1 + a & 0 \\ 0 & 1 + a & a - 1 & 0 \end{pmatrix} \xrightarrow{-R_2} \begin{pmatrix} 1 & a & -1 & 0 \\ 0 & 1 + a^2 & -1 - a & 0 \\ 0 & 1 + a & a - 1 & 0 \end{pmatrix} \xrightarrow{\longrightarrow} R_3 - \frac{1 + a}{1 + a^2} R_2 \xrightarrow{\longrightarrow}$$

$$\begin{pmatrix} 1 & a & -1 & 0 \\ 0 & 1 + a^2 & -1 - a & 0 \\ 0 & 0 & \frac{a(a^2 + 3)}{1 + a^2} & 0 \end{pmatrix}$$

So $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ will form a basis for \mathbb{R}^3 if and only if $a \neq 0$.

(c) For what values of a will the determinant of $\begin{pmatrix} a & -1 & 1 \\ 1 & a & -1 \\ -1 & 1 & a \end{pmatrix}$ be nonzero?

The determinant is $a(a^2 + 3)$, which is 0 if and only if a = 0.

- (d) Base on your results in (a) and (b), make a conjecture. A set of n vectors $\{\mathbf{u}_1, ..., \mathbf{u}_n\}$ is a basis for \mathbb{R}^n if any only if the determinant of the matrix $A = (\mathbf{u}_1 \cdots \mathbf{u}_n)$ is nonzero.
- 5. For each of the following cases, find the coordinate vector of \mathbf{v} relative to the basis $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$.

(a)
$$\mathbf{v} = \begin{pmatrix} 1 \\ -2 \\ 6 \end{pmatrix}$$
, $\mathbf{u}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{u}_2 = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$.
$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 2 & 0 & -2 \\ 1 & 2 & 3 & 6 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -\frac{3}{2} \\ 0 & 0 & 1 & \frac{8}{3} \end{pmatrix}$$

So
$$(\mathbf{v})_{S} = \frac{1}{6} \begin{pmatrix} 6 \\ -9 \\ 16 \end{pmatrix}$$
.
(b) $\mathbf{v} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $\mathbf{u}_{1} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, $\mathbf{u}_{2} = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$, $\mathbf{u}_{3} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}$.

$$\begin{pmatrix} 1 & -1 & 1 & 0 \\ 1 & 1 & 3 & 0 \\ 2 & -2 & 3 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
So $(\mathbf{v})_{S} = \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix}$.

Supplementary Problems

6. In computers, information is stored and processed in the form of strings of binary digits, 0 and 1. For this exercise, we will work in the "world" of binary digits

$$\mathbb{B} = \{0, 1\}.$$

Addition in \mathbb{B} works just as it does in \mathbb{R} , save for one special rule:

$$1 + 1 = 0$$
.

We can similarly perform scalar multiplication in \mathbb{B} —however, note that in our "binary world", we only have two possible scalars: 0 and 1 (as opposed to any real number).

Remark. The special rule for binary addition is equivalent to performing our standard operations **modulo 2**. That is, in our "binary world," we evaluate a sum according to its remainder when divided by 2: if the remainder is 0 (i.e., when a number is even), then it corresponds to the binary digit 0, and if the remainder is 1 (i.e., when a number is odd), then it corresponds to the binary digit 1.

(a) Using the rules on the basic operations in \mathbb{B} , complete the addition and multiplication tables below.

+	0	1	×	0	1
0			0		
1			1		
_+	0	1	×	0	1
0	0	1	0	0	0

(b) Recall that we created the Euclidean space \mathbb{R}^n by taking the set of all *n*-vectors with real components (i.e., with components in \mathbb{R}). We can create the set \mathbb{B}^n in a similar fashion, by taking the set of all *n*-vectors whose components are binary digits, 0 or 1. Observe, then, that the basic properties of addition and scalar multiplication in \mathbb{R}^n directly apply to \mathbb{B}^n , as long as we remember that 1+1=0 and the only scalars we are allowed to multiply by are 0 and 1.

i. Consider the Euclidean 3-space \mathbb{R}^3 , which has infinitely many vectors. How many vectors does \mathbb{B}^3 have?

We can list out the vectors in \mathbb{B}^3 , noting that the elements of each vector can only either be a 0 or a 1.

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

We find that \mathbb{B}^3 only contains eight vectors.

ii. A *byte*—the fundamental unit of data used by many computers—is a string of 8 binary digits. Observe that we can treat each byte as a vector in \mathbb{B}^8 . How many distinct bytes exist; that is, how many vectors are there in \mathbb{B}^8 ? How does this compare to Euclidean 8-space \mathbb{R}^8 ?

For an arbitrary string of 8 binary digits, we have two choices for each of the vector's entries: either 0 or 1. There are thus a total of $2^8 = 256$ different ways we can create a byte, and the set \mathbb{B}^8 contains 256 vectors, as opposed to the infinitely many vectors in \mathbb{R}^8 .

iii. The Euclidean n-space \mathbb{R}^n has infinitely many vectors. More generally, how many vectors are there in \mathbb{B}^n ?

The set \mathbb{B}^n has 2^n vectors.

For the purposes of this exercise, you may assume that \mathbb{B}^n has all the properties of a subspace—that is, \mathbb{B}^n is closed under addition and scalar multiplication. (Try to prove this yourself!)

- (c) To get a sense of how vectors work in \mathbb{B}^n , we take a simple example. Let's begin by working in \mathbb{B}^3 —the set of all 3-vectors whose components are binary digits.
 - i. Let $S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$ be the set of standard unit vectors in \mathbb{R}^3 .

Show that S forms a basis for \mathbb{B}^3 .

To show that S is a basis for \mathbb{B}^3 , we need to show that span $(S) = \mathbb{B}^3$ and that S is linearly independent. To show that S spans \mathbb{B}^3 , consider the vector equation

$$c_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 where $x, y, z \in \mathbb{B}$.

Simplifying the left-hand side of the equation, we have

$$(c_1, c_2, c_3) = (x, y, z)$$
.

Note that we are taking the scalars c_1, c_2, c_3 from $\mathbb{B} = \{0, 1\}$ as well; thus, S spans \mathbb{B} . In the case when x = y = z = 0, we require that $c_1 = c_2 = c_3 = 0$. Thus, S must be linearly independent as well.

ii. Show that the set $T = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$ forms a basis for \mathbb{R}^3 . Does

T form a basis for \mathbb{B}^3 ?

Observe that T is a set of 3 vectors in \mathbb{R}^3 . Thus, to show that T is basis for \mathbb{R}^3 , it suffices to show that either span $(T) = \mathbb{R}^3$ or T is linearly independent. We show that T is linearly independent: consider the vector equation

$$c_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \mathbf{0}.$$

We can row-reduce the corresponding augmented matrix uxing MATLAB:

In particular, we find that

$$\left(\begin{array}{ccc|c} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

Thus, the vector equation has only the trivial solution, and T is a linearly independent set of 3 vectors in \mathbb{R}^3 .

Now, we consider T as a subset of \mathbb{B}^3 : observe that

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

In particular, the third vector in T is a linear combination of the first two. Thus, T is linearly dependent in \mathbb{B}^3 and is hence not a basis for \mathbb{B}^3 .

- (d) The *Hamming matrix* with n rows, \mathbf{H}_n , is formed by collecting all the nonzero vectors in \mathbb{B}^n as columns of a matrix.
 - i. How many columns does \mathbf{H}_n have? \mathbb{B}^n has 2^n vectors, including the zero vector. Thus, \mathbf{H}_n has 2^n-1 columns.
 - ii. Suppose we write \mathbf{H}_3 as

$$H_3 = \left(\begin{array}{ccccccc} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{array} \right).$$

Show that the solution set S of $\mathbf{H}_3 \mathbf{x} = \mathbf{0}$ is a subspace of \mathbb{B}^7 by expressing it as a linear span $S = \text{span } \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$, where $\mathbf{v}_i \in \mathbb{B}^7$ for $i = 1, \dots, k$. Hence, find a basis for S.

Observe that \mathbf{H}_3 is already in reduced row-echelon form. We assign arbitrary parameters to $x_4 = q, x_5 = r, x_6 = s, x_7 = t$ for $q, r, s, t \in \mathbb{B}$. Then,

the solution set $H_3x = 0$ is

$$\left\{ \left. \left\{ \begin{array}{c} -1 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{array} \right\} + r \left(\begin{array}{c} 0 \\ -1 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0 \end{array} \right) + s \left(\begin{array}{c} -1 \\ 0 \\ -1 \\ 0 \\ 0 \\ 1 \\ 0 \end{array} \right) + t \left(\begin{array}{c} -1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} \right) \right| q, r, s, t \in \mathbb{R} \right\}.$$

By the addition rule 1 + 1 = 0, we have 1 = -1. Hence,

$$S = \operatorname{span} \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \boldsymbol{v}_4 \} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

We can observe that the set $\{v_1, v_2, v_3, v_4\}$ is linearly independent: for each v_i , there is a 1 in the (i+3)-th entry, whereas the other vectors contain a 0 in that same entry. Thus, $\{v_1, v_2, v_3, v_4\}$ forms a basis for S.

- (e) Create the matrix M by taking the vectors v_1, \ldots, v_k as its columns.
 - i. What is the size of M? M is the 7×4 matrix given by

$$\boldsymbol{M} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

ii. For an arbitrary vector $\boldsymbol{x} \in \mathbb{B}^4$, what can you say about $\boldsymbol{H}_3(\boldsymbol{M}\boldsymbol{x})$? Hint: MATLAB can take a number x and calculate its value modulo 2. To do this, we may simply key in

$$\gg mod(x,2)$$

What might happen if we replace the number x with an entire matrix? Since matrix multiplication is associative, $\mathbf{H}_3(\mathbf{M}\mathbf{x}) = (\mathbf{H}_3\mathbf{M})\mathbf{x}$. We may use MATLAB to calculate the matrix product $\mathbf{H}_3\mathbf{M}$, modulo 2:

We find that the matrix product $\mathbf{H}_3\mathbf{M}$ is simply the 3×4 zero matrix, which implies that for all $\mathbf{x} \in \mathbb{B}^4$,

$$H_3(Mx) = (H_3M)x = 0x = 0.$$

In next week's tutorial, we will see how working with binary vectors can help us detect—and potentially, correct—errors in information transmitted between computers.

- 7. Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis for a vector space V. Let \mathbf{u} be a vector in V and let c be a scalar. Prove the following:
 - (a) $(\mathbf{u} + \mathbf{v})_S = (\mathbf{u})_S + (\mathbf{v})_S$.

We first write \mathbf{u} and \mathbf{v} in terms of the basis vectors, say

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$$
 and $\mathbf{v} = d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2 + \ldots + d_n \mathbf{v}_n$.

Then

$$\mathbf{u} + \mathbf{v} = (c_1 + d_1)\mathbf{v}_1 + (c_2 + d_2)\mathbf{v}_2 + \ldots + (c_n + d_n)\mathbf{v}_n$$

which implies

$$(\mathbf{u} + \mathbf{v})_S = \begin{pmatrix} c_1 + d_1 \\ c_2 + d_2 \\ \vdots \\ c_n + d_n \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} + \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix} = (\mathbf{u})_S + (\mathbf{v})_S.$$

(b) $(c\mathbf{u})_S = c(\mathbf{u})_S$. Similarly,

$$c\mathbf{u} = (cc_1)\mathbf{v}_1 + (cc_2)\mathbf{v}_2 + \ldots + (cc_n)\mathbf{v}_n \Rightarrow (c\mathbf{u})_S = \begin{pmatrix} cc_1 \\ cc_2 \\ \vdots \\ cc_n \end{pmatrix} = c \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = c (\mathbf{u})_S.$$

Suppose $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ are vectors in V. Note that for each $i = 1, 2, \dots, k$, $(\mathbf{u}_i)_S$ is a vector in \mathbb{R}^n . By induction and using (a) and (b), it follows that if $c_1, c_2, \dots, c_k \in \mathbb{R}$, then

$$(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \ldots + c_k\mathbf{u}_k)_S = c_1(\mathbf{u}_1)_S + c_2(\mathbf{u}_2)_S + \ldots + c_k(\mathbf{u}_k)_S.$$

Prove the following:

(c) $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is linearly independent in V if and only if $\{(\mathbf{u}_1)_S, (\mathbf{u}_2)_S, \dots, (\mathbf{u}_k)_S\}$ is linearly independent in \mathbb{R}^n .

Assume that $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is linearly independent in V. Consider the equation $c_1(\mathbf{u}_1)_S + \dots + c_k(\mathbf{u}_k)_S = \mathbf{0}$ which is a vector equation in \mathbb{R}^n . By part (c), the equation above can be rewritten as $(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k)_S = \mathbf{0}$. So the coordinates of $c_1\mathbf{u}_1 + \dots + c_k\mathbf{u}_k$ with respect to the basis S are all zero, that is, $c_1\mathbf{u}_1 + \dots + c_k\mathbf{u}_k = 0\mathbf{v}_1 + 0\mathbf{v}_2 + \dots + 0\mathbf{v}_n = \mathbf{0}$. As $\{\mathbf{u}_1, \dots \mathbf{u}_k\}$ is linearly independent, the equation above implies $c_1 = c_2 = \dots = c_k = 0$, so $\{(\mathbf{u}_1)_S, \dots, (\mathbf{u}_k)_S\}$ is linearly independent.

Conversely, assume $\{(\mathbf{u}_1)_S, \dots, (\mathbf{u}_k)_S\}$ is a linearly independent set in \mathbb{R}^n . Consider the equation

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \ldots + c_k\mathbf{u}_k = \mathbf{0}$$

which implies

$$(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \ldots + c_k\mathbf{u}_k)_S = (\mathbf{0})_S = \mathbf{0},$$

Using the result in part (c), we have

$$c_1 (\mathbf{u}_1)_S + \ldots + c_k (\mathbf{u}_k)_S = \mathbf{0}$$

and this implies that $c_1 = c_2 = \ldots = c_k = 0$ since $\{(\mathbf{u}_1)_S, \ldots, (\mathbf{u}_k)_S\}$ is linearly independent. Thus we have shown that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a linearly independent set in V.