1 Subset Property

Please show that the following assertions are equivalent.

- 1. $A \subset B$
- 2. $A \cap B = A$
- 3. $A \cup B = B$

Hint: It suffices to show $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i)$.

Solution:

• (i) \Rightarrow (ii) $A \cap B \subset A$ (No need for assumptions.)

$$x \in A \cap B$$
$$\Rightarrow x \in A \land x \in B$$
$$\Rightarrow x \in A$$

 $A \subset A \cap B$

$$A \subset B$$

$$\Rightarrow x \in A \Rightarrow x \in B$$

$$\Rightarrow x \in A \Rightarrow x \in A \land x \in B$$

$$\Rightarrow A \subset A \cap B$$

• (ii) \Rightarrow (iii) $B \subset A \cup B$ (Again, no need for assumptions.)

$$x \in B$$

$$\Rightarrow x \in A \lor x \in B$$

$$\Rightarrow x \in A \cup B$$

 $A \cup B \subset B$

$$x \in A \cup B$$

 $\Rightarrow x \in A \lor x \in B$
 $\Rightarrow (x \in A \land x \in B) \lor x \in B$ (since by ii): $A \subset A \cap B$)
 $\Rightarrow x \in (A \cap B) \cup B$
 $\Rightarrow x \in B$

• (iii) \Rightarrow (i)

$$x \in A$$

 $\Rightarrow x \in A \lor x \in B$
 $\Rightarrow x \in A \cup B$
 $\Rightarrow x \in B$, (since by iii): $A \cup B \subset B$)