Hadia Fakhar

ADD: Pleasanton, CA P: (209) 740-2350 LinkedIn E: hadiafakhar02@gmail.com

Product Design | Procurement | Mechanical Testing | Capacity Planning | Six sigma foundations | Statistical Analysis Process Improvement | Production Process | Process Control | Root Cause Analysis | Project Management

Material / Process / Quality / Manufacturing Engineering

Education:

California State University East Bay, Hayward, CA: Master of Science in Engineering Management | GPA: 3.59

May

Institute of space technology University (IST), Pakistan: Bachelor in Material Science & Engineering | GPA: 3.21 2021

Aug

Certifications:

Project Management Simplified Certification - National Association of State Boards of Accountancy (NASBA)

March

Work Experience

Materials Science Engineer | National Center of Physics, Pakistan

Jan 2021 - Mar 2022

- Partnered with the National Center of Physics for my Bachelor Thesis Project, successfully fabricating a prototype of Nb2O5/ITO electrochromic films for smart window applications.
- Utilized UV-Vis spectroscopy to measure transmittance, achieving 91% in the visible range for as-deposited films and increasing to 93% with
- Employed XRD, UV-Vis spectroscopy, RBS, and surface resistivity measurements for thorough characterization of the coatings.
- Analyzed and interpreted XRD reports on daily basis, contributing to the understanding of material structures and properties of various metals, polymers, and composites.
- Worked closely with multidisciplinary teams in conducting various materials testing procedures, including ultrasonic testing, hardness testing, and tensile strength testing, enhancing the reliability and performance of materials.
- Prepared detailed reports on experimental procedures, findings, and recommendations, facilitating knowledge transfer and future research efforts.

Material Failure Analyst Assistant | Failure Analysis Center IST

Mar 2020 - Dec 2021

- Assisted faculty in the examination and testing of metal parts and components to determine the root causes of failures using advanced material analysis techniques.
- Worked closely with faculty, PhD/MS scholars, and industry partners to provide material-related solutions and advisory services.
- Conducted various material testing procedures, and metallographic analysis, contributing to comprehensive failure reports.
- Prepared detailed reports on failure analysis findings, recommendations for corrective actions, and guidelines for avoiding similar failures in the future.

General Fabrication Intern | Precision Engineering Services, Pakistan 2019

May 2019 - Aug

- Spearheaded design engineering analysis efforts, conducting comprehensive root cause analyses and implementing effective corrective actions, thereby significantly enhancing product reliability, and ensuring heightened customer satisfaction.
- Utilized problem-solving methodologies like 8D & RCA to address and resolve defects, leading to a 15% reduction in defective products and improved overall quality and efficiency.
- Oversaw manufacturing processes, identifying, and executing opportunities for continuous improvement, which contributed to a 10% increase in operational efficiency and supported business growth initiatives.

Leadership Experience

SCAA Peer Leader | Student center of Academic Achievement, Hayward, CA 2024

Aug 2023 - May

- Led marketing outreach initiatives, successfully increasing student awareness and utilization of SCAA services by 30-40%.
- Safeguarded confidential student data, ensuring full compliance with university policies and regulations.
- Utilized Excel and university's website Bay Advisor for streamlined appointment scheduling.
- Engaged and communicated with groups of students, effectively explaining SCAA services and resources, and encouraging their active participation.

Projects

Integrating AI powered chatbot with predictive inventory management and demand forecasting 2024

Jan 2024-May

Developed and integrated an Al-powered chatbot with predictive inventory management and demand forecasting capabilities, leveraging Python, MySQL libraries, and a regression linear model for accurate future sales prediction, thus optimizing inventory management processes and enhancing operational efficiency.

Fabrication of Nb2O5/ITO electrochromic films for smart window application (Thesis Project) Institute of space technology, Pakistan

Successfully employed e-beam deposition to coat a 200nm thick Nb2O5 layer on glass and utilized XRD characterization method, Rutherford and UV-Vis spectroscopy to achieve optimal results.

Skills

MS PowerPoint, Advanced MS Excel, MS Project, SharePoint, CATIA, Minitab, MATLAB, Engineering Design, Power Tool handling, Simulations,

Python, SQL, Pro Model Simulation, QM forecasting, Manufacturing Techniques, Lean Six Sigma Tools: FMEA, VSM, Lean Push/Pull method, Pareto Charts, 5S, DMAIC, Root Cause Analysis, Failure Model and Effects Analysis (FMEA), CAD/CAM, Statistical Analysis, Supply Chain Management, Project Management, Quality Assurance, Supply Chain Management (Production Planning, Inventory Control, Packaging, logistics, financial planning/forecasting/asset management, Using ERP systems.), Cost & Risk Assessment.