3、加速度合成定理应用

加速度合成定理应用

例1

已知:如图所示平面机构中,铰接在曲柄端A的滑块,可在丁字形杆的铅直槽DE内滑动。设曲柄以角速度 ω 作匀速转动,OA=r。

求: 丁字形杆的加速度 a_{DE} 。

解:

动点: 滑块A 动系: DE杆

绝对运动:圆周运动(O点)

相对运动: 直线运动 (DE)

牵连运动: 平移

$$ec{a}_{\mathrm{a}} = ec{a}_{\mathrm{e}} + ec{a}_{\mathrm{r}}$$

大小 $r\omega^2$? ?
方向 $\sqrt{}\sqrt{}$

$$a_{\rm e} = a_{\rm a} \cos \varphi = r\omega^2 \cos \varphi$$

$$a_{DE} = a_{\rm e} = r\omega^2 \cos \varphi$$

1列2

已知:如图所示平面机构中,曲柄OA=r,以匀角速度 ω_O 转动。套筒A沿BC杆滑动。BC=DE,且BD=CE=l。

求:图示位置时,杆BD的角速度和角加速度。

解: 1. 动点: 滑块A 动系: BC杆

绝对运动:圆周运动(O点)

相对运动: 直线运动 (BC)

牵连运动: 平移

2.速度

$$ec{v}_{
m a} = ec{v}_{
m e} + ec{v}_{
m r}$$
 大小 $r\omega_{
m o}$? ? 方向 $\sqrt{}$ $\sqrt{}$

$$v_{\rm r} = v_{\rm e} = v_{\rm a} = r\omega_{\rm O}$$

$$\omega_{BD} = \frac{v_{\rm e}}{BD} = \frac{r\omega_O}{l}$$

3. 加速度

$$\vec{a}_{a} = \vec{a}_{e}^{t} + \vec{a}_{e}^{n} + \vec{a}_{r}$$
大小 $r\omega_{o}^{2}$? $l\omega_{BD}^{2}$?

$$a_{\rm a} \sin 30^{\circ} = a_{\rm e}^{\rm t} \cos 30^{\circ} - a_{\rm e}^{\rm n} \sin 30^{\circ}$$

$$a_{\rm e}^{\rm t} = \frac{(a_{\rm a} + a_{\rm e}^{\rm n})\sin 30^{\circ}}{\cos 30^{\circ}} = \frac{\sqrt{3}\omega_{\rm o}^{2}r(l+r)}{3l}$$

$$\alpha_{BD} = \frac{a_{\rm e}^{\rm t}}{BD} = \frac{\sqrt{3}\omega_{O}^2 r(l+r)}{3l^2}$$

例3

已知: 刨床的急回机构如图所示。曲柄OA的一端A与滑块用铰链连接。当曲柄OA以匀角速度 ω 绕固定轴O转动时,滑块在摇杆 O_1B 上滑动,并带动杆 O_1B 绕定轴 O_1 摆动。设曲柄长为OA=r,两轴间距离 $OO_1=l$ 。

求:摇杆 O_1B 在如图所示位置时的角加速度。

点的加速度合成定理

解: 1. 动点: 滑块A 动系: O₁B杆

绝对运动: 圆周运动

相对运动: 直线运动(沿 O_1B)

牵连运动: 定轴转动 (绕 O_1 轴)

2.速度
$$\vec{v}_a = \vec{v}_e + \vec{v}_r$$
 大小 $r\omega$? ?

$$\omega_1 = \frac{v_e}{O_1 A} = \frac{v_e}{\sqrt{l^2 + r^2}} = \frac{r^2 \omega}{l^2 + r^2}$$

3. 加速度

$$\vec{a}_{a}^{n} = \vec{a}_{e}^{t} + \vec{a}_{e}^{n} + \vec{a}_{r} + \vec{a}_{C}$$
大小 $\omega^{2}r$? $\omega_{1}^{2} \cdot O_{1}A$? $2\omega_{1}v_{r}$
方向 \checkmark \checkmark \checkmark

沿X轴投影

$$-a_{ax'}^{n} = a_{e}^{t} - a_{C}$$

$$a_{\rm e}^{\rm t} = -a_{ax'}^{\rm n} + a_{\rm C} = 2\omega_{\rm l}v_{\rm r} - \omega^2 r \cos \mathbf{\phi}$$

$$\alpha_{1} = \frac{a_{e}^{t}}{O_{1}A} = \frac{\omega^{2}}{\sqrt{l^{2} + r^{2}}} \left(-\frac{rl(l^{2} - r^{2})}{\left(l^{2} + r^{2}\right)^{3/2}} \right) = -\frac{rl(l^{2} - r^{2})}{\left(l^{2} + r^{2}\right)^{2}} \omega^{2}$$

1列4

已知:如图所示凸轮机构中,凸轮以匀角速度 ω 绕水平O轴转动,带动直杆AB沿铅直线上、下运动,且O,A,B 共线。 凸轮上与点A接触的为A′,图示瞬时凸轮上点 A′曲率半径为 ρ_A ,点A′的法线与OA夹角为 θ ,OA=l。

求:该瞬时AB的速度及加速度。

解: 1. 动点(AB杆上A点) 动系: 凸轮O

绝对运动: 直线运动 (AB)

相对运动: 曲线运动(凸轮外边缘)

牵连运动: 定轴转动(O轴)

$$egin{aligned} egin{aligned} ar{v}_{
m a} &= ar{v}_{
m e} + ar{v}_{
m r} \ & ext{大小} &? & \omega l &? \ & ext{方向} & \sqrt{} & \sqrt{} & \sqrt{} \end{aligned}$$

$$v_{a} = v_{e} \tan \theta = \omega l \tan \theta$$
 $v_{r} = \frac{v_{e}}{\cos \theta} = \frac{\omega l}{\cos \theta}$

3.加速度
$$\vec{a}_{a} = \vec{a}_{e} + \vec{a}_{r}^{t} + \vec{a}_{r}^{n} + \vec{a}_{C}$$
 大小 ? $\omega^{2}l$? v_{r}^{2}/ρ_{A} 2 ωv_{r} 方向 \checkmark \checkmark \checkmark

沿
$$\eta$$
轴投影 $a_{\rm a}\cos\theta = -a_{\rm e}\cos\theta - a_{\rm r}^{\rm n} + a_{\rm C}$

$$a_{\rm a} = -\omega^2 l \left(1 + \frac{l}{\rho_{\rm A}\cos^3\theta} - \frac{2}{\cos^2\theta}\right)$$

例5

已知:圆盘半径R=50mm,以匀角速度 ω_1 绕水平轴CD转动。同时框架和CD轴一起以匀角速度 ω_2 绕通过圆盘中心O的铅直轴AB转动,如图所示。如

 ω_1 =5rad/s, ω_2 =3rad/s.

求:圆盘上1和2两点的绝对加速度。

解:

1. 动点: 圆盘上点1(或2) 动系: 框架CAD

绝对运动: 未知

相对运动:圆周运动 (O点)

牵连运动: 定轴转动 (AB轴)

2.加速度

1点:
$$\vec{a}_a = \vec{a}_e + \vec{a}_r + \vec{a}_C$$

大小 ? $R\omega_2^2$ $R\omega_1^2$ 0

方向 ? √ √

$$a_a = a_e + a_r = 1700 \text{ mm/s}^2$$

2点:
$$\vec{a}_a = \vec{a}_e + \vec{a}_r + \vec{a}_C$$

大小 ? $0 R\omega_1^2 2\omega_e v_r = 1953 \text{mm/s}^2$

方向 ? √ √ √

$$a_a = \sqrt{a_r^2 + a_0^2} = R\sqrt{\omega_1^2 + \omega_2^2}$$

$$\theta = \arctan \frac{a_C}{a_r} = 50^{\circ}12'$$