- Recap: Xavier/MSRA init are not directly applicable for multi-branch nets
- Optimizing multi-branch ConvNets largely benefits from BN
 - including all Inceptions and ResNets

- Recap: Normalizing image input (LeCun et al 1998 "Efficient Backprop")
- Xavier/MSRA init: Analytic normalizing each layer
- BN: data-driven normalizing each layer, for each mini-batch
 - Greatly accelerate training
 - Less sensitive to initialization
 - Improve regularization

$$\Rightarrow \text{ layer } \Rightarrow x \Rightarrow \hat{x} = \frac{x - \mu}{\sigma} \Rightarrow y = \gamma \hat{x} + \beta$$

- μ : mean of x in mini-batch
- σ : std of x in mini-batch
- γ: scale
- β : shift

- μ , σ : functions of x, analogous to responses
- γ , β : parameters to be learned, analogous to weights

$$\Rightarrow \text{ layer } \Rightarrow x \Rightarrow \hat{x} = \frac{x - \mu}{\sigma} \Rightarrow y = \gamma \hat{x} + \beta$$

2 modes of BN:

- Train mode:
 - μ , σ are functions of a batch of x
- Test mode:
 - μ , σ are pre-computed* on training set

Caution: make sure your BN usage is correct! (this causes many of my bugs in my research experience!)

*: by running average, or post-processing after training

Figure credit: Ioffe & Szegedy

Ioffe & Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift". ICML 2015.