

Гипотезы решения задачи

Доработать уже имеющееся решение

- Подбор гиперпараметров
- Добавить нейронную сеть обученную на нашем наборе данных для получения признаков объектов с кадра и передачи их в трекер (опционально)

Разработать свое решение на основе базового

- Найти и протестировать несколько трекеров в базовом виде
- Провести их улучшение (подбор гиперпараметров)
- Выбрать лучший из них для добавления в базовое решения вместо имеющегося трекера
- Добавить нейронную сеть обученную на нашем наборе данных для получения признаков объектов с кадра и передачи их в трекер (опционально)

Рассмотренные трекеры

BoT-SORT (дефолтный трекер в решении от Ultralytics)

BoT-SORT с подбором гиперпараметров

Deep SORT с подбором гиперпараметров (имеет множество примеров использования вместе с YOLO)

SMILEtrack (на основе данных из статьи хорошо себя показывает по метрике MOTA)

SORT

Полученные метрики

Model	Recall	Precision	MOTA*	МОТР	Mean time (ms)	STD
Deep SORT (hyp)	0.9976	0.9602	0.9319	0.3209	50.1668	36.0887
SMILE track	0.9246	1.0000	0.9197	0.0995	199.0989	61.4269
YOLO (hyp)	0.9270	1.0000	0.9173	0.0914	113.0440	19.9262
SORT track	0.9148	1.0000	0.9148	0.1812	55.1008	60.3222
YOLO (base)	0.9270	0.9922	0.9124	0.0929	146.1709	287.5833

*(сортировка по МОТА)

Выбранный трекер - SMILE track

<u>Положительные моменты</u>

- Почти все объекты находятся сразу и выделяются рамкой
- Объекты сразу выделяются рамкой по размеру, у DeepSort рамка в некоторых случаях сначала была гораздо больше, чем сам объект и только на середине кадра рамка находила оптимальный размер
- Уверенность отслеживания объектов высокая

Отрицательные моменты:

- Периодические пропажи рамок объектов
- Рамка иногда захватывала объект не полностью
- Объект не находился и не трекался до самого конца кадра, только под самый конец объект находился и выделился в рамку
- Периодически мелкие объекты не обнаруживаются, и не выделяются рамкой
- Редко происходило выделение одного объекта несколькими рамками

MOTA

MOTP

0.9197

0.0995

Гиперпараметры (на основе BoT-SORT в Ultralitics):

- track_high_thresh: 0.5 # порог для первой ассоциации
- track_low_thresh: 0.1 # порог для второй ассоциации
- new_track_thresh: 0.6 # порог для инициализации нового трека, если обнаружение не соответствует ни одному треку
- track_buffer: 30 # буфер для расчета времени удаления треков
- match_thresh: 0.8 # порог для сопоставления треков
- fuse_score: True # следует ли объединять оценки уверенности с расстояниями iou перед сопоставлением
- proximity_thresh: 0 # определение порога близости между объектами

Ролики-примеры работы SMILE track

Небольшое моргание трека

Небольшое моргание рамки

Работа трекера при большом количестве мусора

Пролетающий объект

Смазанное видео, определение рамки на пустом месте

Смазанное видео, не видит 1 объект

Рекомендации

Модернизировать конвейерную ленту, выбрать ребристую, чтобы уменьшить "катание" мусора по ленте.

Попробовать изменить скорость движения ленты - возможно, незначительное замедление ленты даст лучшую скорость в сортировке мусора и снизит количество мусора, который повторно закидывается на ленту.

Улучшить освещение в зоне камеры, возможно, добавить боковой свет - а вдруг это повлияет на качество детекции объектов.

Провести обучение детектора на большем датасете.

Авторы работы

Алексей Новиков

Дмитрий Павлов-Теремок

Мария Филонова

Александр Бежанов

Ксения Генчель