P124

zhx

竞赛时间: ????年??月??日??:??-??:??

题目名称		•	***	
名称	yi.cpp	two.cpp	iii.cpp	quatre.cpp
输入	不开文件	不开文件	不开文件	不开文件
输出	不开文件	不开文件	不开文件	不开文件
每个测试点时限	1s	1s	1s	1s
内存限制	256MB	256MB	256MB	256MB
测试点数目	10	20	25	10
每个测试点分值	10	5	4	10
是否有部分分	无	无	无	无
题目类型	传统	传统	传统	传统

注意事项(请务必仔细阅读):

【问题描述】

你是能看到第一题的 friends 呢。

——hja

天将降大任于斯人也, 必先放其鸽子, 使之咸鱼。

现在有一种加密算法,这种算法是要求你用一个k位的数对一个字符串s进行加密。加密的算法是我们将这个字符串写下来,然后将这个k位的数不断反复写下,然后将对应位相加得到我们的加密串。举个栗子,假设我们用123对 abcdz进行加密的话,我们首先将它们按照上述的方法写下来:

abcdz 12312

那么我们将对应位加起来,比如a+1=b,z+2=b,就可以得到加密之后的串为:

bdfeb

给定字符串和这个数, 求加密后的串。

【输入格式】

第一行两个整数1.k,代表字符串的长度和数的位数。

第二行一个长度为l的字符串,代表需要被加密的字符串。

第三行一个有k位的数,代表加密所需要用到的数。

【输出格式】

一行一个字符串,代表加密后的结果

【样例输入】

5 3

abcdz

123

【样例输出】

bdfeb

【数据范围与规定】

对于100%的数据, $1 \le l \le 100,1 \le k \le 8$,字符串中只会有小写字母,加密用到的数中只会出现0 - 9中的字符。

【问题描述】

你是能看到第二题的 friends 呢。

——laekov

咸乃吾辈之本性,鸽乃吾辈之光荣。

我们都知道,判断一个数是不是完全平方数实在是太难了,所以为了简化问题,我们希望从1-N中找一些数,使得这些数乘起来是一个完全平方数。但是求这些数是哪些数还是太难了,所以我们求这个完全平方数最大可能是多少。

【输入格式】

第一行一个数字N。

【输出格式】

一行一个整数代表答案对108 + 7取模之后的答案。

【样例输入】

7

【样例输出】

144

【数据规模与约定】

对于20%的数据, $1 \le N \le 100$ 。

对于50%的数据, $1 \le N \le 5000$ 。

对于70%的数据, $1 \le N \le 10^5$ 。

对于100%的数据, $1 \le N \le 5 \times 10^6$ 。

【问题描述】

你是能看到第三题的 friends 呢。

——aoao

人固有一鸽, 或咸鱼翻身, 或咕咕咕咕。

N个城市,每个城市有一匹马。第i座城市的马最多走 E_i 的距离,它的速度是 S_i 。第i座城市到第j座城市直接道路的长度为 D_{ij} ,若 D_{ij} = -1则代表路不存在。Q次询问,第k次询问询问从 U_k 出发到 V_k 最少需要多少的时间。由于人没有腿不能走路,所以人必须骑马,人每到一个城市可以换上那个城市的马继续前进。如果在道路中间马走的距离用光了则会 GG,骑着的马走到新的城市其能够走的距离不会回复,每次询问一定存在至少一组解。

【输入格式】

第一行两个整数N,Q。 接下来N行每行两个整数表示 E_i,S_i 。 接下来N行每行N个整数表示 D_{ij} 。 接下来Q行每行两个整数表示 U_k,V_k 。

【输出格式】

输出共Q行每行Q个整数表示答案。

【样例输入1】

- 3 1
- 2 3
- 2 4
- 4 4
- -1 1 -1
- -1 -1 1
- -1 -1 -1
- 1 3

【样例输出1】

0.583333

【样例输入2】

4 1

13 10 1 1000 10 8 5 5 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 10 -1 -1 -1 -1 1 4

【样例输出2】

1.200000

【样例输入3】

【样例输出3】

- 0.510000
- 8.010000
- 8.000000

【数据规模与约定】

对于100%的数据, $1 \le N, M \le 100, 1 \le E_i \le 10^9, 1 \le S_i \le 1000, -1 \le D_{ij} \le 10^9, D_{ii} = -1, D_{ij} \ne 0, U_K \ne V_k$ 。数据是从300组数据中随机了25组,大部分数据保证 $N \le 10$ 。

【问题描述】

你是能看到第四题的 friends 呢。

——rivenhe

人非圣咸,孰能无鸽。

给你N个数 α_1 , α_2 ,…, α_n ,我们希望知道有多少个(L,R)满足 $1 \le L < R \le N$,且 α_1 , α_2 ,…, α_L , α_R ,…, α_N 的逆序对个数不超过k。

【输入格式】

第一行两个整数N,k。接下来一行N个整数代表序列。

【输出格式】

一行一个整数代表答案。

【样例输入1】

3 1

1 3 2

【样例输出1】

3

【样例输入2】

5 2

1 3 2 1 7

【样例输出2】

6

【数据范围与规定】

对于30%的数据, $1 \le N \le 10^3$ 。

对于另外20%的数据,k=0。

对于100%的数据, $1 \le N \le 10^5$, $1 \le z_i \le 10^9$, $k \le 10^{18}$ 。