How Formal Logic Can Fail to be Useful for Modelling or Designing MAS

Bruce Edmonds (2002)

Paper presented by Beerend Lauwers

October 1, 2012

Outline

Introduction

Motivation Some History

Problems with generalization

Generalization of logics High-level theories

Problems with the type of logics

What logics are suitable?
The audience
Arguments for formalism

How to go forward?

Bruce Edmond's motivation

- ▶ Formal systems are only a tool, not the content
- Choosing the wrong system introduces biases
- New formal systems should prove themselves!

Some History

- ▶ 1962: Whitehead and Russell prove that set theory can be formalised with first-order predicate logic
- Many different logics emerge, with two camps:
 - Philosophical approach
 - Concentration on axioms of the logic
 - Proof theory and formal semantic "more of an afterthought"
 - ▶ Intuitionistic logic, Free logic, Relevance logic, Modal logic
 - Pragmatic approach
 - Extensions of first-order predicate logic
 - Practically-oriented: Semantics checkable, easy to model, inference, do computation with?
 - SDML as an example
- First approach appears more popular and AI and MAS
- Logics are compared and discussed based only on a small set of properties
- ► Edmonds argues against this approach: not useful for understanding or building MAS!

Generalization of logics

- General theories appear to be preferred
- ▶ Three common ways to generalize (and their costs!):
- Abstract away from details, only look at broad domain truths (post-hoc abstraction)
 - Loss of information by ignoring particular cases!
 - ▶ Information may be crucial to your research goal!
- Determine structure beforehand, ignore contradicting cases (a priori abstraction)
 - Loss of relevance!
 - May exclude what you're researching!
- 3. Allow for adaptation to particular cases (adaptive generality)
 - Computationally expensive: may be unrealistic!
- ▶ Philosophical approach tends to generalize fruitlessly

Edmond's arguments against needless generalization

- Increased generality isn't a necessity
- ▶ Thinking up new logics is usually a better idea
- ▶ OTOH, choosing an incorrect specific formal system biases development of one's theory!
- Conclusion: Comparing systems by their level of expressivity is a weak justification
 - ▶ The generalized version also supports it
 - ► Easy to go wrong with it
- But of course, we still need these formal systems!

High-level theories

- ▶ Highly generalized logics aren't the way to go
 - ► Too general to be useful
 - ► Too complex to be insightful
- ▶ Any such proposed 'high-level' theories should be scrutinized
- ▶ Intermediate levels of abstraction work very well, too
- Established theories and methods are still up in the air
- Some papers seem to think otherwise, assuming their foundations to be established and proven

What logics are suited for MAS?

- ▶ In the past:
 - Non-temporal
 - Example: BDI logic's temporal element is implicit
 - Using a single state (timewise) is bound to lead to problems
 - Context-independent
 - Reasoning about norms, goals, etc. requires knowledge of contexts
 - Propositional
 - Most proposed logics do not support numbers
 - Gödel's incompleteness theorem is the culprit here
 - But we can never prove all of a MAS' properties anyway!
 - Lack of formal semantics
 - Philosophical approach emphasises 'meaning'
 - Surely formal semantics are important, then?
- Abstracting away from time, context and numbers to get a general theory?
 - Onus is upon the authors that it is valuable
- ▶ Better would be to use:
 - Temporal
 - Contextual
 - Predicate
- ► More complex, but MAS aren't simple systems!

The audience

- ▶ People first want to know if a work is worth learning: communication is paramount!
- ▶ Formal logic is claimed to aid communication
- It may be precise, but aiding in communication?
 - Logics require some knowledge to understand
- Most people are used to this kind of approach, aiding acceptance of papers
- Some of the papers were simply unproved ideas and intuitions
- Papers that do not show the usefulness of a formalism prevent the audience from evaluating it properly
- Using a formal system to model a realistic MAS will prove more valuable than intuition-based papers

Arguments for formalism

- ▶ Edmonds doesn't want to inhibit experimentation with new logics
- ▶ But the relevance of new formal systems has to be demonstrated
- ► Some papers don't solve particular problems but also refrain from formal theorems and proofs unacceptable!
- ▶ Cheap computational power allows for quicker experimentation

How to go forward?

More pragmatic approach:

- Begin with less abstract models, chain models of different levels of abstraction together
- Sceptical view at unproved abstract theories
- Similarly for papers based on intuition and nothing else
- Papers suggesting formal systems for MAS should provide a demo MAS

A 'shortcut' to a powerful high-level theory (to bypass the empirical work required) may be nice, but is unrealistic and doesn't provide the necessary chain of abstractions to guide further search.