DS 1 Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

	Navigation spatiale de la sonde Rosetta		
1	$\vec{F} = -G \frac{M_S m}{r^2} \vec{e_r}$ avec $\vec{e_r}$ le vecteur unitaire dans la direction et le	1	
	sens du centre du Soleil vers le centre de l'objet de masse m .		
2	Une force est conservative si l'on peut écrire son travail élémentaire comme : $\delta W = -\mathrm{d}E_p$ où E_p est l'énergie potentielle dont dérive la force conservative. On a $\delta W = \vec{F}.\vec{dl} = -G\frac{M_Sm}{r^2}\mathrm{d}r$ soit $\delta W = -\mathrm{d}\left(-G\frac{M_Sm}{r}\right) = -\mathrm{d}E_p$. On a bien une force conservative	1	
	d'énergie potentielle $E_p=-G\frac{M_Sm}{r}$ avec le choix d'une énergie potentielle nulle à l'infini.		
3	La force de gravitation est une force centrale (de direction \vec{e}_r). Le moment cinétique $\vec{L} = \overrightarrow{OM} \wedge \vec{p}$ est un vecteur constant au cours du mouvement, ce qui impose que le mouvement de l'astre est plan. En effet d'après le théorème du moment cinétique $\frac{d\vec{L}}{dt} = \overrightarrow{OM} \wedge \vec{F} = \vec{0}$	1	
4	Le mouvement de la Terre est circulaire donc $\overrightarrow{OM} = r\vec{e}_r$ avec r constant donc $\vec{v} = r\dot{\theta}\vec{e}_{\theta}$ donc $\vec{a} = -r\dot{\theta}^2\vec{e}_r + r\ddot{\theta}\vec{e}_{\theta}$, or d'après la 2nd loi de Newton, $m\vec{a} = \vec{F}$ donc $-mr\dot{\theta}^2 = -G\frac{M_Sm}{r^2}$ et $r\ddot{\theta} = 0$. $\ddot{\theta} = 0 \Rightarrow \dot{\theta} = \text{cte}$ d'où la rotation uniforme, $-mr\dot{\theta}^2 = -G\frac{M_Sm}{r^2} \Rightarrow v = r\dot{\theta} = \sqrt{\frac{GM_S}{r}} = 30 \text{ km.s}^{-1}$.	1	

5	Au point commun aux deux ellipses : orbite circulaire et orbite de transfert, on a après impulsion l'énergie mécanique $E_m = \frac{1}{2}m\left(v_1 + \Delta v_1\right)^2 - G\frac{M_Sm}{R_1}$ et l'énergie mécanique sur l'ellipse de demi-grand axe $a = \frac{R_1 + R_2}{2}$ est $E_m = -\frac{GM_Sm}{R_1 + R_2}$. Donc $-\frac{GM_Sm}{R_1 + R_2} = \frac{1}{2}m\left(v_1 + \Delta v_1\right)^2 - G\frac{M_Sm}{R_1}$ d'où après calculs $\Delta v_1 = \frac{1}{2}m\left(v_1 + \Delta v_1\right)^2 - \frac{1}{2}m\left(v_1$	1	
	$-\frac{GM_Sm}{R_1 + R_2} = \frac{1}{2}m(v_1 + \Delta v_1)^2 - G\frac{M_Sm}{R_1} \text{ d'où après calculs } \Delta v_1 = \sqrt{\frac{GM_S}{R_1}} \left(\sqrt{\frac{2R_2}{R_1 + R_2}} - 1\right)$		
6	D'après l'énoncé on a $R_1=1$ ua et $a=\frac{R_1+R_2}{2}=3,5$	1	
	ua donc $R_2 = 2a - R_1 = 6$ ua et en utilisant $\Delta v_1 = \sqrt{\frac{GM_S}{R_1}} \left(\sqrt{\frac{2R_2}{R_1 + R_2}} - 1 \right)$ on obtient $\Delta v_1 = 9 \text{ km.s}^{-1}$		
7	On écrit la conservation de l'énergie mécanique entre la sonde arrivant de l'infini et s'éloignant à l'infini E_m (avant) = E_m (après)	1	
0	$\frac{\text{donc } \frac{1}{2}mV_1^2 + 0 = \frac{1}{2}mV_2^2 + 0 \text{ d'où } V_1 = V_2}{V_1^2 + V_2^2 + V_2^2 + V_2^2 + V_2^2 + V_2^2 + V_2^2}$	1	
8	$ \vec{v_1} = \vec{V_1} + \vec{v_T} = \vec{V}\vec{e_x} + v_T\vec{e_y} \text{ donc } v_1 = \vec{v_1} = V\vec{e_x} + v_T\vec{e_y} = \sqrt{V^2 + v_T^2}, \text{ d'autre part } \vec{v_2} = \vec{V_2} + \vec{v_T} = V_2\cos\theta\vec{e_x} + v_T\vec{e_y} $	1	
	$V_2 \sin \theta \vec{e}_y + v_T \vec{e}_y$ donc $v_2 = \sqrt{(V \cos \theta)^2 + (V \sin \theta + v_T)^2}$. On calcule donc $\Delta v = v_2 - v_1$ qui donne après calculs $\Delta v = v_2 - v_1$		
	$\sqrt{V^2 + v_T} \left(\sqrt{1 + 2\frac{2Vv_T}{V^2 + v_T^2}} \sin \theta - 1 \right) = 3 \text{ km.s}^{-1}$		
9	L'assistance gravitationnelle permet donc d'augmenter la vitesse	1	
	de la sonde sans avoir à utiliser de carburant. En contre-partie, il faut synchroniser la trajectoire de la sonde avec celles des planètes		
	qui seront utilisées, ce qui augmente la durée du voyage vers la		
	comète		
	Premiers instruments électroniques		
10	Les deux fréquences sont supérieures à 20 kHz et ne font donc pas partie du domaine audible.	1	
11	Les signaux s'écrivent $s_1(t) = S_{1m}\sin(2\pi f_1 t)$ et $s_2(t) = S_{2m}\sin(2\pi f_2 t)$ d'où $s(t) = ks_1(t)s_2(t)$	1	
	$\frac{k\hat{S}_{1m}S_{2m}}{2}\left(\cos(2\pi(f_1-f_2)t)+\cos(2\pi f_2(f_1+f_2))\right)$ Le spectre en		
	sortie contient deux composantes de fréquences $f_1 - f_2 = 440$ Hz (audible) et $f_1 + f_2 = 160,440$ kHz (inaudible).		
	, · · · / · · · · · · · · · · · · · · ·		

12	Le filtre sert à éliminer la composante haute fréquence de $s(t)$, il	1	
12	faut donc utiliser un filtre passe-bas.	1	
13	Pour la bobine $u_{L_0} = jL_0\omega i$ et pour le condensateur $i = jC_0\omega u_{C_0}$	1	
14	loi des mailles donne $u_{L_0} + u_{C_0} = 0$, or $u_{L_0} = jL_0\omega i$ et $i = 0$	1	
	$jC_0\omega u_{C_0}$ d'où $u_{L_0}=(jL_0\omega)\times(jC_0\omega)u_{C_0}$ donc $-L_0C_0\omega^2 u_{C_0}+$		
	$u_{C_0} = 0 \text{ donc } L_0 C_0 \frac{\mathrm{d}^2 u_{C_0}}{\mathrm{d}t^2} + u_{C_0} = 0$		
15	$u_C = A\cos(\omega_0 t + \phi)$ avec $\omega_0 = \frac{1}{\omega_0 t}$ et A et ϕ deux constantes	1	
10	$u_{C_0} = A\cos(\omega_0 t + \phi)$ avec $\omega_0 = \frac{1}{\sqrt{L_0 C_0}}$ et A et ϕ deux constantes.	1	
16	$f_2 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi\sqrt{L_0 C_0}}$	1	
17	Pour deux condensateurs montés en parallèle on a $C_{eq} = C_0 + C_{h1}$	1	
-,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	
	donc $f_1 = \frac{1}{2\pi\sqrt{L_0C_{eq}}} = \frac{1}{2\pi\sqrt{L_0(C_0 + C_{h1})}}$		
18	Le spectre du signal de sortie $u(t)$ est constitué de deux harmo-	1	
	niques aux fréquences $f_2 - f_1 = \frac{1}{2\pi\sqrt{L_0C_0}} - \frac{1}{2\pi\sqrt{L_0(C_0 + C_{h1})}}$		
	et $f_2 + f_1 = \frac{1}{2\pi\sqrt{L_0C_0}} + \frac{1}{2\pi\sqrt{L_0(C_0 + C_{b1})}}$. Le filtre appliqué		
	· · · · · · · · · · · · · · · · · · ·		
	en sortie du multiplieur doit permettre de laisser passer toutes les fréquences audibles. On doit donc choisir une fréquence de cou-		
	pure supérieure à 20 kHz, tout en restant inférieure à la fréquence		
	$f_1 + f_2 \sim 160 \text{ kHz}.$		
19	On reconnait un pont diviseur de tension $H = \frac{1/(jC\omega)}{R+1/(jC\omega)} =$	1	
	$\frac{1}{1+jRC\omega}$. C'est un filtre passe-bas. La pulsation de coupure à		
	-3 dB est donnée par $ H = \frac{1}{\sqrt{2}}$ soit $\frac{1}{\sqrt{1 + (RC\omega_c)^2}} = \frac{1}{\sqrt{2}}$ d'où		
	Y • • • • • • • • • • • • • • • • • • •		
	$\frac{\omega_c - \overline{RC}}{RC} \stackrel{\text{done } f_c - \overline{2\pi RC}}{1}$		
20	$\omega_c = \frac{1}{RC} \text{ donc } f_c = \frac{1}{2\pi RC}$ $\text{pour } f_c = 60 \text{ kHz, on a } R = \frac{1}{2\pi C f_c} \simeq 260 \Omega$	1	
21	$m\vec{a} = -kz\vec{e}_z - h\vec{v} + \vec{F}_L$ donc en projetant sur \vec{e}_z on obtient $m\ddot{z} = -kz - h\dot{z} - 2\pi Niab_0$	1	
22	circuit avec une maille comportant un générateur s , un générateur	1	
	e, une résistance R et une bobine L		
23	On écrit l'équation mécanique $m\ddot{z}=-kz-h\dot{z}-2\pi Niab_0$	1	
	qui donne en notation complexe pour la vitesse $mj\omega v + hv + k$		
	$\frac{k}{i\omega}v = -2\pi Niab_0$. De même pour l'équation électrique $s(t) =$		
	$-2\pi Na\frac{dz}{dt}b_0 + Ri + L\frac{di}{dt} \text{ devient } s = -2\pi Nab_0 v + (R + jL\omega)i$		
	donc $s = -2\pi Nab_0v - \frac{R+jL\omega}{2\pi Nab_0}(mj\omega v + hv + \frac{k}{j\omega}v)$. D'où $A = -\frac{k}{j\omega}v$		
	$B = 2\pi Nab_0$ et $C = R + jL\omega \simeq R$ $j\omega$		
	$D = 2\pi i \pi \omega 0$ or $C = i \epsilon + j E \omega = i \epsilon$		

24	Le bout poplour est un filtre passe bande d'andre 2	1	
	Le haut-parleur est un filtre passe-bande d'ordre 2.	_	
25	H_0 est le gain à résonance $H(f_0) = H_0$, Q est le facteur de qualité	1	
	$Q = \frac{f_0}{\Delta f}$, f_0 est la fréquence de résonance $ H $ est maximale en		
	$f = f_0. \ H_0 = \frac{-A}{B^2 + Ch}, \ f_0 = \sqrt{\frac{k}{m}}, \ \text{et} \ Q = \frac{C\sqrt{km}}{B^2 + Ch}$		
26	à -3dB on a $ H(f_c) = \frac{ H_0 }{\sqrt{2}}$ donc $\frac{ H_0 }{\sqrt{2}} = \frac{ H_0 }{\sqrt{2}}$	1	
	$\sqrt{1+Q^2\left(\frac{f_c}{f_0}-\frac{f_0}{f_c}\right)^2} \qquad \qquad \sqrt{2}$		
	donc $Q^2 \left(\frac{f_c}{f_0} - \frac{f_0}{f_c}\right)^2 = 1$ donc on résout les polynômes du		
	2nd degré et on élimine les solutions négatives pour avoir f_c =		
	$\int f_0\left(\sqrt{1+\frac{1}{4Q^2}}\pm\frac{1}{2Q}\right), \text{ donc } \Delta f = f_0\left(\frac{1}{2Q}-\left(-\frac{1}{2Q}\right)\right) = \frac{f_0}{Q}$		
27	la figure c	1	
28	En dehors de la bande passante Δf les sons graves sont déformés,	1	
	le haut-parleur dérive les signaux, et les sons aigus sont aussi		
	déformés, le haut-parleur intègre les signaux.		
29	Avec un filtre passe-bas d'ordre 1 de fréquence de coupure de 20	1	
	Hz, sont comportement intégrateur pour les sons graves corrigera		
	le comportement dérivateur du haut-parleur.		