ALGEBRA II

NOMBRE Y APELLIDO:

CONDICIÓN (libre o regular):

CARRERA:

Justificar todas las respuestas.

PARTE PRÁCTICA

- Ejercicio 1. (a) Hallar una matriz 4×4 , A, con det(A) = 24 y tal que sus autovectores formen una base $de \mathbb{R}^4$.
 - (b) Encontrar todos los números complejos z que satisfacen

$$z^5 = -i - 1.$$

(c) Encontrar para qué valores de a y b el siguiente sistema homogéneo tiene infinitas soluciones.

$$by + az = 0$$

$$x + ay = 0$$

$$x + y + z = 0.$$

Ejercicio 2. Sean

$$V = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z = 0 \text{ y } z + w = 0\}, \quad W = <(1, 0, 1, 0), (0, 0, 1, 1), (0, 1, 1, 1) > 0\}$$

- (a) Demostrar qua V es un subespaçio vectorial de \mathbb{R}^4 .
- (b) Dar una base B de $V \cap W$.
- (c) Completar B a una base de \mathbb{R}^4 .

Ejercicio 3. Sea $S: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal tal que:

$$S(e_1) = (1,3,2), S(e_2) = (2,2,0) y S(e_1 + e_3) = (2,6,4),$$

donde $\{e_1, e_2, e_3\}$ es la base canónica de \mathbb{R}^3 .

- (a) Describir el conjunto de vectores que pertenecen a Im(S).
- (b) Dar una base de Im(S) y determinar su dimensión.
- (c) Calcular la dimensión de Nu(S).
- (d) Determinar si 0 es un autovalor de S^{17} .
- (e) Calcular $[S]_{\mathcal{B}}^{\mathcal{B}}$, para la base ordenada $\mathcal{B} = \{e_3, 2e_2, e_1\}$.
- Ejercicio 4. Determine si las siguientes afirmaciones son verdaderas o falsas justificando claramente todas sus respuestas.
 - (a) Si S y T son transformaciones lineales tales que $T: \mathbb{R}^2 \to \mathbb{R}^3$ y $S: \mathbb{R}^3 \to \mathbb{R}^2$ entonces 0 es un autovalor de $T \circ S$.
 - (b) Sea \mathcal{P}^n el espacio vectorial de los polinomios de grado menor que n. Existe una transformación lineal $T:\mathcal{P}^3\to\mathcal{P}^2$ tal que

$$T(1+x) = x$$
, $T(1+x^2) = 1$ y $T(x-x^2) = x$.

- (c) Si A y B son matrices $n \times n$ tales que $\det AB = 1$ entonces $B = A^{-1}$.
- (d) Sea V un espacio vectorial de dimensión n. Entonces V es isomorfo a su dual.