Signal Theory in practise

$$f(t) = A \cdot \Pi\left(\frac{t}{2 \cdot t_0}\right) \cdot \cos\left(\frac{2\pi}{t_0} \cdot t\right) \qquad F(\jmath \omega) = A \cdot t_0 \cdot [Sa\left(\omega \cdot t_0 + 2\pi\right) - Sa\left(\omega \cdot t_0 - 2\pi\right)]$$

Tomasz Grajek, Krzysztof Wegner

POZNAN UNIVERSITY OF TECHNOLOGY Faculty of Computing and Telecommunications Institute of Multimedia Telecommunications

pl. M. Skłodowskiej-Curie 5 60-965 Poznań

www.et.put.poznan.pl www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 All right reserved ISBN 978-83-939620-3-7 Printed in Poland

Fundamental concepts and measures

- 1.1 Basic signal metrics
- 1.1.1 Mean value of a signal
- 1.1.2 Energy of a signal
- 1.1.3 Power and effective value of a signal

Analysis of periodic signals using orthogonal series

- 2.1 Trigonometric Fourier series
- 2.2 Complex exponential Fourier series
- 2.3 Computing the power of a signal the Parseval's theorem

Analysis of non-periodic signals. Fourier Transformation and Transform

- 3.1 Calculation of Fourier Transform by definition
- 3.2 Exploiting properties of the Fourier transformation
- 3.3 Calculating energy of the signal from its Fourier transform. The Parseval's theorem

Processing of signals by linear and time invariant (LTI) systems

4.1 Linear convolution

4.2 Filters

Task 1.

Calculate the impulse response h(t) of an LTI system for input u(t) and output y(t) signals given below. Exploit transforms: $\Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right)$ and $\Lambda(t) \xrightarrow{\mathcal{F}} Sa^2\left(\frac{\omega}{2}\right)$.

We know that for the LTI systems: $Y(\jmath\omega) = U(\jmath\omega) \cdot H(\jmath\omega)$ and $h(t) \xrightarrow{\mathcal{F}} H(\jmath\omega)$. So, $h(t) = \mathcal{F}^{-1}\{H(\jmath\omega)\}$ and $H(\jmath\omega) = \frac{Y(\jmath\omega)}{U(\jmath\omega)}$.

In order to derive frequency response $H(j\omega)$, the Fourier transforms of the u(t) and y(t) signals have to be computed:

$$u(t) = A \cdot \Pi\left(\frac{t + \frac{t_0}{2}}{t_0}\right) \qquad \qquad y(t) = A \cdot t_0 \cdot \Lambda\left(\frac{t}{t_0}\right)$$

$$u(t) \xrightarrow{\mathcal{F}} U(\jmath\omega) \qquad \qquad y(t) \xrightarrow{\mathcal{F}} Y(\jmath\omega)$$

$$\Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right) \qquad \qquad \Lambda(t) \xrightarrow{\mathcal{F}} Sa^2\left(\frac{\omega}{2}\right)$$

$$\Pi\left(\frac{1}{t_0} \cdot t\right) \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \qquad \qquad \Lambda\left(\frac{1}{t_0} \cdot t\right) \xrightarrow{\mathcal{F}} t_0 \cdot Sa^2\left(\frac{\omega \cdot t_0}{2}\right)$$

$$\Pi\left(\frac{t+\frac{t_0}{2}}{t_0}\right) \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot e^{\jmath \cdot \omega \cdot \frac{t_0}{2}} \qquad A \cdot t_0 \cdot \Lambda\left(\frac{t}{t_0}\right) \xrightarrow{\mathcal{F}} A \cdot t_0^2 \cdot Sa^2\left(\frac{\omega \cdot t_0}{2}\right) \\ A \cdot \Pi\left(\frac{t+\frac{t_0}{2}}{t_0}\right) \xrightarrow{\mathcal{F}} A \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot e^{\jmath \cdot \omega \cdot \frac{t_0}{2}}$$

Now, frequency response $H(j\omega)$ can be derived:

$$\begin{split} H(\jmath\omega) &= \frac{Y(\jmath\omega)}{U(\jmath\omega)} = \\ &= \frac{A \cdot t_0^2 \cdot Sa^2\left(\frac{\omega \cdot t_0}{2}\right)}{A \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot e^{\jmath \cdot \omega \cdot \frac{t_0}{2}}} = \\ &= t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}} \end{split}$$

Finally, the impulse response h(t) can be calculated:

$$h(t) \xrightarrow{\mathcal{F}} H(\jmath\omega)$$

$$? \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}}$$

$$\Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right)$$

$$\Pi\left(\frac{1}{t_0} \cdot t\right) \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right)$$

$$\Pi\left(\frac{t - \frac{t_0}{2}}{t_0}\right) \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}}$$

6

The impulse response of the system is equal to $h(t) = \Pi\left(\frac{t - \frac{t_0}{2}}{t_0}\right)$.

