Decision Theory

Performance Evaluation -> Application

Accuracy (performance metrics)

Deciding how to operate our algorithms in practice

Computational efficiency

(after we've evaluated generalization performance)

Interpretability

Kyle Bradbury Lecture 8

Time to make a decision...

Exercise inspired by Mausam, University of Washington, CSE573

Good market

Poor market

	Buy Apple
Action	Buy Google
	Buy bonds

performance Payoff	performance Payoff	
-1,000	1,700	-10% to +17% return
-2,000	2,100	-20% to +21% return
500	500	Guaranteed 5% return
		I

How to invest \$10,000?

Kyle Bradbury Lecture 8

Maximax

Optimism

	State of	Criterion	
	Poor market performance Payoff	Good market performance Payoff	Maximum payoff for an action
Buy Apple	-1,000	1,700	1,700
Buy Google	-2,000	2,100	2,100
Buy bonds	500	500	500

Select the maximum of the maximum payoff

← Maximax

Maximin

Pessimism

	State of Nature		Criterion
	Poor market performance Payoff	Good market performance Payoff	Minimum payoff for an action
Buy Apple	-1,000	1,700	-1,000
Buy Google	-2,000	2,100	-2,000
Buy bonds	500	500	500

Select the maximum of the minimum payoffs

← Maximin

Minimax

Select the minimum maximum regret

Criterion

1,600

Maximum Poor market performance Good market performance regret for an action **Payoff** Regret **Payoff** Regret

500

1,600

Buy Apple 1,500 1,700 400 1,500 -1,000 Buy Google 2,500 2,100 -2,000 2,500 Buy bonds

Minimax

Which decision would I regret least?

500

Regret = Opportunity Loss Difference between a decision made and an optimal decision

Next: factor in probabilities of different outcomes

Expected Payoff: Equal likelihood

	State of Nature Criterion		
	Poor market performance Payoff	Good market performance Payoff	Expected reward/ payoff
Buy Apple	-1,000	1,700	350
Buy Google	-2,000	2,100	50
Buy bonds	500	500	500
tate			

Select the highest average payoff ASSUMING all states are of equal probability

Maximum
Expected
Reward

State Probability:

0.5

0.5

Kyle Bradbury Lecture 8

Expected Payoff

	State of	Nature	Criterion
	Poor market performance Payoff	Good market performance Payoff	Expected reward/ payoff
Buy Apple	-1,000	1,700	890
Buy Google	-2,000	2,100	870
Buy bonds	500	500	500

Select the highest average payoff assuming state probabilities from prior knowledge

Maximum
Expected
Reward

State Probability:

0.3

0.7

Decision making design pattern

1. Define a measure of risk or reward

2. Select the action that optimizes that metric

Notation

State of Nature (s)

Buy Apple $a = a_0$

Buy Google $a = a_1$

Buy bonds $a = a_2$

Poor market
performance
$s = s_0$
$(a_0 s_0)$

Excellent market performance $s = s_1$

$$\begin{array}{c|cccc}
s = s_0 & s = s_1 \\
\hline
\lambda(a_0|s_0) & \lambda(a_0|s_1) & 1,700 \\
\hline
\lambda(a_1|s_0) & \lambda(a_1|s_1) & 2,100 \\
\hline
\lambda(a_2|s_0) & \lambda(a_2|s_1) & 500
\end{array}$$

Expected Reward

 $EV(a_i)$

$$(0.3)(-1000) + (0.7)(1700)$$

= **890**

$$(0.3)(-2000) + (0.7)(2100)$$

= **870**

$$(0.3)(500) + (0.7)(500)$$

= **500**

State Probability:

$$P(s_0) = 0.3$$

$$P(s_1) = 0.7$$

Risk = expected loss (cost)

$$\lambda(a_i|s_j) \triangleq$$

Loss incurred by choosing action *i* and the state of nature being state *j*

$$R(a_i) = \sum_{j=1}^{N_S} \lambda(a_i|s_j) P(s_j)$$

Goal:

Select action i for which $R(a_i)$ is minimum

Payoff

Loss

(here we define loss in terms of opportunity cost)

State of Nature

State of Nature

	Poor market performance	Good market performance
Buy Apple	-1,000	1,700
Buy Google	-2,000	2,100
Buy bonds	500	500

	Poor market performance	Good market performance
Buy Apple	1,500	400
Buy Google	2,500	0
Buy bonds	0	1,600

Investments: loss

State of Nature (s)

Buy Apple $a = a_0$

Buy Google $a = a_1$

Buy bonds
$$a = a_2$$

Poor market performance $s = s_0$	Excellent market performance $s = s_1$	
$\lambda(a_0 s_0)$ $1,500$	$\lambda (a_0 s_1)$ 400	
$\lambda (a_1 s_0)$ 2,500	$\lambda (a_1 s_1)$	
$\lambda (a_2 s_0)$	$\lambda (a_2 s_1)$ 1,600	

Risk (Expected Loss) $R(a_i)$

(0.3)(1500) + (0.7)(400)= **730**

(0.3)(2500) + (0.7)(0)= **750**

(0.3)(0) + (0.7)(1600)= **1220**

State Probability:

$$P(s_0) = 0.3$$

$$P(s_1) = 0.7$$

We can use risk to choose where to operate along an ROC curve

Where to operate along ROC?

$$\lambda_{ij} = \lambda(a_i|s_j)$$

Loss from classifying as class *i* when state of nature is class *j*

NOTE: Actions, a_i , are choices of points to operate at along the ROC curve (threshold values of the confidence score)

Assume our classification problem is landmine detection

False positive

Class 0

Class 1

Estimate

 A false positive wastes some time and resources, but a false negative may cost a life

Where to operate along ROC?

Action: select operating point	Probability of false positive	Probability of false negative	Risk
i	P_{FP}	$(1-P_{TP})$	$R(a_i)$
1	0	1	100

State of Nature

Class 0

Class 0

Class 1

Class 1

$\lambda_{00}=0$	$\lambda_{01} = 100$
$\lambda_{10} = 1$	$\lambda_{11}=0$

$R(a_i) = \sum_{j=1}^{N_S} \lambda(a_i|s_j) P(s_j)$

 $R(a_i) = \lambda_{10} P_{FP}(i) + \lambda_{01} (1 - P_{TP}(i))$

Prob of false positive

Prob of false negative

Where to operate along ROC?

Action: select operating point	Probability of false positive	Probability of false negative	Risk
i	P_{FP}	$(1-P_{TP})$	$R(a_i)$
1	0	1	100
2	0	0.33	33
3	0.5	0.33	33.5
4	0.5	0	0.5
5	1	0	1

Class 0

Class 0

Class 1

Class 1

 $\lambda_{11} = 0$

 $R(a_i) = \sum_{i} \lambda(a_i|s_j)P(s_j)$

 $R(a_i) = \lambda_{10} P_{FP}(i) + \lambda_{01} (1 - P_{TP}(i))$

Prob of false positive

Prob of missed detection

Let's generalize this to any binary classifier

This is how to pick what decision threshold to use for a binary classifier

State of Nature

Class 0

 $s = s_0$

Class 1

$$s = s_1$$

Estimate

Class 0 $a = a_0$

Class 1 $a = a_1$

$\lambda(a_0 s_0)$	$\lambda (a_0 s_1)$
λ_{00}	λ_{01}
$\lambda \left(a_1 s_0 \right)$	$\lambda \left(a_1 s_1 \right)$
λ_{10}	λ_{11}

 λ_{ij} = Loss when you classify as class i when state of nature is class j

NOTE: Actions, a_i , are **predictions** (estimate of what class a sample belongs to)

R = risk

$$R(a_0|\mathbf{x}) = \lambda_{00}P(s_0|\mathbf{x}) + \lambda_{01}P(s_1|\mathbf{x})$$

$$R(a_1|\mathbf{x}) = \lambda_{10}P(s_0|\mathbf{x}) + \lambda_{11}P(s_1|\mathbf{x})$$

Probability from classifier $P(s_i|x) = \frac{P(x|s_i)P(s_i)}{P(x)}$

1

Define the risk associated with each of the two actions

2

Create a decision rule based on the data

3

Express this rule in terms of the output from the classifier

$$R(a_0|\mathbf{x}) = \lambda_{00}P(s_0|\mathbf{x}) + \lambda_{01}P(s_1|\mathbf{x})$$

$$R(a_1|\mathbf{x}) = \lambda_{10}P(s_0|\mathbf{x}) + \lambda_{11}P(s_1|\mathbf{x})$$

If
$$R(a_0|\mathbf{x}) > R(a_1|\mathbf{x})$$
 then a_1 (decide class 1)

Else then a_0 (decide class 0)

We choose the rule to **minimize the risk**

$$\lambda_{00}P(s_0|\mathbf{x}) + \lambda_{01}P(s_1|\mathbf{x}) > \lambda_{10}P(s_0|\mathbf{x}) + \lambda_{11}P(s_1|\mathbf{x})$$
 then a_1

$$\frac{P(s_1|x)}{P(s_0|x)} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}} \quad \text{then} \quad a_1 \quad \text{This can be applied any time we have an estimate of } P(s_i|x)$$

Recall Bayes' Rule

Note: The **evidence** ensures the posterior sums to 1 across s_i

Posterior

Answers the question: after seeing the data – which class is it most likely to belong to? Summing this across classes equals 1.

Likelihood

Answers the question: if I knew which class a sample belongs to, how are the data distributed?

Prior

 $P(s_i)$

0.4

Answers the question: what do anticipate is the balance between my classes?

 S_1

 S_i

23

 S_0

Discriminative models estimate this

Likelihood ratio

Use Bayes rule to express this as a function of likelihoods

$$\frac{P(s_1|\mathbf{x})}{P(s_0|\mathbf{x})} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}}$$

$$P(s_i|\mathbf{x}) = \frac{P(\mathbf{x}|s_i)P(s_i)}{P(\mathbf{x})}$$

$$\frac{P(\mathbf{x}|s_1)P(s_1)}{P(\mathbf{x}|s_0)P(s_0)} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}}$$

then a_1 (decide class 1)

Can easily factor in prior knowledge about the classes

The decision rule can be expressed as a

likelihood ratio

Note that this doesn't rely on posterior probabilities

$$\frac{P(\mathbf{x}|s_1)}{P(\mathbf{x}|s_0)} > \left(\frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}}\right) \frac{P(s_0)}{P(s_1)}$$

then a_1 (decide class 1)

This can be readily applied to generative models

else a_0 (decide class 0)

Takeaways

To make a decision:

- 1. Define a measure of risk or reward
- 2. Select the action that optimizes that metric

Decision theory guides us in how to operate supervised learning algorithms in practice

Decision theory systematically incorporates the relative importance of different error types