TD de Logique, feuille 6

Les exercices marqués d'une flèche sont à chercher en priorité. Je recommande d'y réfléchir à l'avance. Ceux qu'on aura pu corriger en TD sont à connaître. Les corrections seront concentrées sur ceux-là, mais vous pouvez toujours me demander des précisions concernant les autres exercices. Les questions ou exercices marqués d'une étoile sont plus difficiles.

\longrightarrow Exercice 1 (Groupes abéliens ordonnés divisibles non nuls) :

Un groupe ordonné est un groupe muni d'un ordre total tel que pour tous x, y, z, x < y implique $x \cdot z < y \cdot z$ et $z \cdot x < z \cdot y$. Un groupe G est dit divisible si pour tout $x \in G$ et $n \in \mathbb{N}^*$, il existe y tel que $y^n = x$. Soit $\mathcal{L} = \{0, +, -, <\}$ où - est une fonction unaire.

- 1. Montrer qu'on peut axiomatiser la théorie des groupes abéliens divisibles ordonnés non nuls dans le langage \mathcal{L} , on la notera T.
- 2. Montrer que si (G, +, <) est un groupe abélien ordonné, il est sans torsion, i.e. $n \cdot x = 0$ implique n = 0 ou x = 0, pour $n \in \mathbb{N}$ et $x \in G$.
- 3. Montrer que tout groupe abélien divisible sans torsion peut être muni d'une unique structure de Q-espace vectoriel pour la même addition.
- 4. Soit A un sous-groupe de G où G est un groupe abélien ordonné divisible. On appelle clôture divisible de A, notée Div(A), l'ensemble $\{y \in G : \exists n \in \mathbb{N} \setminus \{0\}, n \cdot y \in A\}$.
 - a) Montrer que Div(A) est un groupe divisible.
 - b) Soit H un autre groupe abélien ordonné divisible et $f: A \to H$ un \mathcal{L} -plongement, montrer que f s'étend uniquement à Div(A) en tant que plongement de groupe ordonné.
- 5. Soit $G \models T$. Montrer que l'ordre sur G est dense sans extrémités.
- 6. Montrer que T élimine les quantificateurs, puis que T est complète.
- 7. Montrer que tout sous-ensemble définissable de $G \models T$ est une union finie d'intervalles.
- 8. (*) Comme la théorie T est complète, on peut noter $S_n(T) := S_n^G(\emptyset)$, pour un/tout $G \models T$, pour tout $n \geqslant 1$. Montrer que $|S_2(T)| \geqslant 2^{\mathbb{N}}$. En déduire que T a au moins $2^{\mathbb{N}}$ modèles dénombrables à isomorphisme près.

Exercice 2 (Union de chaîne de Tarski):

Soit $(S_i)_{i\in\mathbb{N}}$ une suite de \mathcal{L} -structures, et $(f_i:S_i\to S_{i+1})$ une suite de plongements. Pour tous $k\geqslant i$, on identifiera au besoin S_i à son image dans S_k .

- 1. Montrer qu'on peut faire de $S := \bigcup_{i \in \mathbb{N}} S_i$ une \mathcal{L} -structure, de sorte que les inclusions $S_i \subseteq S$ sont des plongements $g_i : S_i \to S$ tels que $g_{i+1} \circ f_i = g_i$, pour tout i.
- 2. On suppose que les f_i sont élémentaires. Montrer que les g_i sont élémentaires. On pourra effectuer une induction sur les formules, pour tous les $i \in \mathbb{N}$ simultanément.
- 3. Généraliser les questions précédentes en remplaçant l'indexation (\mathbb{N} , <) par un ordre (I, <) filtrant, i.e. où, pour tous $i, j \in I$, il existe $k \in I$ tel que $k \ge i$ et $k \ge j$.

¹Il s'agit uniquement d'alléger les notations ; il est possible de tout formuler en termes de plongements de structures, sans parler d'inclusions.

Exercice 3 (Ordres discrets):

Dans cet exercice, il s'agit d'étudier la théorie de $(\mathbb{Z},<)$.

- 1. Soit $\mathcal{L} = \{<\}$. Montrer que la \mathcal{L} -théorie de $(\mathbb{Z}, <)$ n'élimine pas les quantificateurs.
- 2. Soit $\mathcal{L}^* = \mathcal{L} \cup \{s\}$. Axiomatiser la théorie T^* des ordres totaux discrets² sans extrémités dans lesquels s est interprété par la fonction successeur.
- 3. Montrer que T^* élimine les quantificateurs, dans le langage \mathcal{L}^* .
- 4. Montrer que T^* est complète, en déduire que la \mathcal{L} -théorie T des ordres totaux discrets sans extrémités est complète.

Définition

- Soit T une théorie dans un langage \mathcal{L} . On appelle théorie modèle compagne de T une théorie T' qui vérifie :
 - (a) Tout modèle de T se plonge dans un modèle de T';
 - (b) Tout modèle de T' se plonge dans un modèle de T;
 - (c) T' est modèle-complète, i.e. si \mathcal{M} et \mathcal{N} sont deux modèles de T' tels que $\mathcal{M} \leq \mathcal{N}$, alors $\mathcal{M} \leq \mathcal{N}$.
- Soient $\mathcal{M} \leq \mathcal{N}$ deux \mathcal{L} -structures; on dit que \mathcal{M} est existentiellement close dans \mathcal{N} , et on note $\mathcal{M} \leq_1 \mathcal{N}$, si pour toute formule existentielle $\varphi(x)$ et pour tout n-uplet $\overline{a} \in \mathcal{M}$, on a

$$\mathcal{M} \vDash \varphi(\overline{a}) \Leftrightarrow \mathcal{N} \vDash \varphi(\overline{a})$$

Une \mathcal{L} -structure \mathcal{M} , modèle d'une théorie T, est dite existentiellement close si pour tout $\mathcal{N} \models T$, $\mathcal{M} \leqslant \mathcal{N} \Rightarrow \mathcal{M} \leqslant_1 \mathcal{N}$.

Exercice 4 (Théorie modèle compagne):

- 1. Déterminer une théorie modèle compagne de la théorie des ordres totaux, et une théorie modèle compagne de la théorie des corps. Une théorie modèle compagne est-elle toujours complète?
- 2. Montrer qu'une théorie T admet au plus une théorie modèle compagne.

Indication : On pourra utiliser les unions de chaînes de Tarski de sous-structures élémentaires.

3. On dit qu'une \mathcal{L} -théorie T est inductive si toute union de chaîne (ie toute colimite filtrante) de \mathcal{L} structures modèles de T est encore un modèle de T. Le but de cette question est de montrer le théorème
suivant :

Théorème Soit T une théorie inductive. Alors T admet une théorie modèle compagne si et seulement si les modèles de T existentiellement clos forment une classe élémentaire.

On rappelle qu'une classe \mathcal{C} de \mathcal{L} -structures est élémentaire, ou axiomatisable, s'il existe une théorie T' telle que \mathcal{C} est la classe des modèles de T'.

- a) Soit \mathcal{M} un modèle d'une théorie modèle complète. Soit \mathbb{S} une sous-structure de \mathcal{M} . Montrer que \mathbb{S} est une sous-structure élémentaire de \mathcal{M} si et seulement si \mathbb{S} est existentiellement close dans \mathcal{M} .
- b) Soient $\mathcal{M}_1 \leq \mathcal{M}_2 \leq \mathcal{M}_3$ tel que \mathcal{M}_1 est existentiellement close dans \mathcal{M}_3 . Montrer que \mathcal{M}_1 est existentiellement close dans \mathcal{M}_2 .
- c) Montrer le théorème.

 $^{^2}$ Un ordre total est dit discret si tout élément a un prédécesseur et un successeur.