Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)

RNNs excel at analyzing sequential patterns

Text

Speech

Audio

Video

Physical processes

Anything embedded in time (almost everything)

What's for dinner?

Thinking of it in a non-sequential way.

pizza day of the week sushi month of the year waffles late meeting

What's for dinner?

But there probably is a sequential aspect to it.

Architecture

predictions for yesterday

prediction for today

dinner yesterday

prediction Architecture new information

prediction Unrolling the past

Unrolled predictions

Another example: Write a children's book

Training data:

Doug saw Jane.

Jane saw Spot.

Spot saw Doug.

...

Your dictionary is small: {Doug, Jane, Spot, saw, .}

However, based on training corpus, after one of the names the next "word" is highly likely to be "saw" or "."

recurrent neural network

Hyperbolic tangent (tanh) activation function

No matter what you start with, the answer stays between -1 and 1.

recurrent neural network

Mistakes a simple RNN can make

Our predicted story:

Doug saw Doug.

Jane saw Spot saw Doug saw ...

Spot. Doug. Jane.

We need to remember farther back in time, maybe make some things off-limits. Enter the LSTM. recurrent neural network (vanilla)

Plus junction: element-by-element addition

Times junction: element-by-element multiplication

Gating

Logistic (sigmoid) activation function

No matter what you start with, the answer stays between 0 and 1.

long short-term memory

Jane saw Spot. Doug ...

Traditional LSTM with forget gates.^{[2][3]}

Initial values: $c_0=0$ and $h_0=0$. The operator \circ denotes the Hadamard product (entry-wise product).

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

Variables

- x_t: input vector
- h_t: output vector
- c_t: cell state vector
- W, U and b: parameter matrices and vector
- f_t , i_t and o_t : gate vectors
 - f_t : Forget gate vector. Weight of remembering old information.
 - i_t : Input gate vector. Weight of acquiring new information.
 - o_t: Output gate vector. Output candidate.

Activation functions

- σ_q : The original is a sigmoid function.
- σ_c : The original is a hyperbolic tangent.
- σ_c . The original is a hyperbolic tangent, but the peephole LSTM paper suggests $\sigma_h(x)=x$. [18][19]

source: Wikipedia

Resources

Brandon Rohrer's blog on RNNs and LSTMs

Chris Olah's tutorial

Andrej Karpathy's

Blog post

RNN code

Stanford CS231n lecture

The <u>DeepLearning 4J</u> tutorial has some helpful discussion and a longer list of good resources.

How Neural Networks Work [video]

Credits (all images CC0)

Pizza image

Sushi image

Waffles image

Appendix

A vector is a list of values

A vector is a list of values

High 67 temperature 67 Low 43 temperature "High is 67 F. 43 Low is 43 F. Wind is 13 mph. Wind speed .25 inches of rain. 13 13 Relative humidity is 83%." .25 Precipitation .25 .83 Humidity .83

Weather vector

A vector is a list of values

