

The Scalasca Performance Analysis Toolset

Markus Geimer Jülich Supercomputing Centre m.geimer@fz-juelich.de April 3, 2013

"A picture is worth 1000 words..."

"But what about 1000's of pictures?"

Automatic trace analysis

- Idea
 - Automatic search for patterns of inefficient behavior
 - Classification of behavior & quantification of significance

- Advantages
 - Guaranteed to cover the entire event trace
 - Quicker than manual/visual trace analysis
 - Helps to identify hot-spots for in-depth manual analysis
 - Complements the functionality of other tools

Number of Cores share for TOP 500 November 2012

NCore	Count	Share	∑Rmax	Share	∑NCore
1025-2048	1	0.2%	122 TF	0.1%	1,280
2049-4096	2	0.4%	155 TF	0.1%	7,104
4097-8192	81	16.2%	8,579 TF	5.3%	551,624
8193-16384	206	41.2%	24,543 TF	15.1%	2,617,986
> 16384	210	42.0%	128,574 TF	79.4%	11,707,806
Total	500	100%	161,973 TF	100%	14,885,800

Average system size: 29,772 cores
Median system size: 15,360 cores

Higher degrees of parallelism (II)

- Also new demands on scalability of software tools
 - Familiar tools cease to work in a satisfactory manner for large processor/core counts
- Optimization of applications more difficult
 - Increasing machine complexity
 - Every doubling of scale reveals a new bottleneck
- Need for scalable performance tools
 - Efficient to meet performance expectations
 - Effective to use so that programmer productivity is maximized

The Scalasca project

- Project started in 2006
 - Follow-up to pioneering KOJAK project (started 1998)
 - Automatic pattern-based trace analysis
 - Initial funding by Helmholtz Initiative & Networking Fund
 - Many follow-up projects
- Objective:
 - Development of a scalable performance analysis toolset
 - Specifically targeting large-scale parallel applications
 - such as those running on IBM Blue Gene or Cray XT with 10,000s or 100,000s of processes
- Now joint project of
 - Jülich Supercomputing Centre
 - German Research School for Simulation Sciences

The Scalasca toolset

Scalasca 1.4.3

- Custom instrumentation & measurement system
- Scalasca trace analysis components based on custom trace format EPILOG
- Analysis report explorer & algebra utilities CUBE v3
- New BSD license

Scalasca 2.0_β

- Community instrumentation & measurement system Score-P
- Scalasca trace analysis components based on community trace format OTF2
- Analysis report explorer & algebra utilities CUBE v4
- New BSD license

http://www.scalasca.org

Scalasca features

- Open source
- Portable
 - Blue Gene/Q, Blue Gene/P, IBM SP & blade clusters, SGI Altix,
 Solaris & Linux clusters
 - Scalasca 1.4.3 only: Cray XT, NEC SX, K Computer, Fujitsu FX10
- Supports parallel programming paradigms & languages
 - MPI, OpenMP & hybrid MPI+OpenMP
 - Fortran, C, C++
- Scalable trace analysis
 - Automatic wait-state search
 - Parallel replay exploits memory & processors to deliver scalability

Scalasca workflow

Example: MPI patterns

Example: Late Sender

Sender:

Triggered by send event
Determine enter event
Send both events to receiver

Receiver:

Triggered by receive event
Determine enter event
Receive remote events
Detect *Late Sender* situation
Calculate & store waiting time

CESM Sea Ice Module – Late Sender Analysis

Scalasca trace analysis sweep3D@294,912 BG/P

- 10 min sweep3D runtime
- 11 sec analysis
- 4 min trace data write/read (576 files)
- 7.6 TB buffered trace data
- 510 billion events

B. J. N. Wylie, M. Geimer, B. Mohr, D. Böhme, Z.Szebenyi, F. Wolf: Large-scale performance analysis of Sweep3D with the Scalasca toolset. Parallel Processing Letters, 20(4):397-414, 2010.

Scalasca trace analysis bt-mz@1,048,704 BG/Q

Execution imbalance "z_solve"

Scalasca trace analysis bt-mz@1,048,704 BG/Q

Wait at implicit barrier "z solve"

Research: Root Cause Analysis

Root-cause analysis

- Wait states typically caused by load or communication imbalances earlier in the program
- Waiting time can also propagate (e.g., indirect waiting time)
- Goal: Enhance performance analysis to find the root cause of wait states

Approach

- Distinguish between direct and indirect waiting time
- Identify call path/process combinations delaying other processes and causing first order waiting time
- Identify original delay

CESM Sea Ice Module – Direct Wait Time

CESM Sea Ice Module – Indirect Wait Time

CESM Sea Ice Module – Delay Costs

Acknowledgements

Scalasca team (JSC)

Peter

Markus Geimer

Jie Jiang

Schlütter

Michael Knobloch

Alexandre

Strube

Daniel Lorenz

Bernd Mohr

Philippen

Christian Rössel

Alexandru Marc-André Calotoiu Hermanns

Lücke

Monika

Saviankou

Anke

Visser

Brian

Wylie

Ilja Zhukov

Mao

Böhme

(GRS)

Shah

Sergei

Shudler

Felix Wolf

Sponsors

Thank you!

http://www.scalasca.org