Técnica Map-Reduce

Agradecimientos

Este curso es una versión libre del curso on-line Introducción a la Ciencia de Datos (Bill Howe, Univ. de Washington) https://www.coursera.org/course/datasci

Escalabilidad de Datos

Operar con un volumen arbitrariamente grande de datos.

- En el pasado esta noción se restringía a operar con un volumen que superara el tamaño de la memoria (RAM)
 - La información se trae de disco y se procesa en porciones de tamaño más reducido
 - Las bases de datos convencionales resuelven este problema
- ► A partir del 2000 la alta disponibilidad de los servicios en Internet requiere otra solución
 - La latencia de los discos tiene tiempos de respuesta inaceptables
 - La información tiene que estar disponible en la memoria principal
 - Solución: clusters de muchas máquinas baratas trabajando cooperativamente en un mismo problema

Escalabilidad del Procesamiento de Datos

Otro aspecto importante es la complejidad de los algoritmos que procesan los datos

- ► En el pasado los algoritmos de complejidad polinomial *N*^m eran considerados aceptables
 - ▶ A medida que *m* crece, el impacto en un gran volumen de datos convierte al algoritmo en inaceptable
- ▶ En un cluster de k máquinas, la complejidad decrece N^m/k , esta solución es aceptable
- ► En la actualidad algunas aplicaciones requieren que su complejidad sea N * log(N)
 - ▶ Aplicaciones de procesamiento de streaming de datos
 - Es el tiempo mínimo para hacer una sóla pasada y guardar cada dato en un árbol

Procesamiento Distribuido en un Cluster

Histograma de Palabras

Fase de Map

Fase de Reduce

- Map-Reduce es un modelo de programación de alto nivel para procesamiento paralelo de grandes volúmenes de datos
- Hay que programar exclusivamente las fases de map() y de reduce()
- ► El modelo se ocupa de la distribución, la tolerancia a fallos, etc.
- Artículo de Google de 2004
- Implementación más popular es Hadoop (Apache)

Map-Reduce está compuesto por estas fases:

- 1. En cada nodo la función *mapper* se encarga de transformar los items en un conjunto de pares clave-valor
- 2. Se agrupan los pares clave-valor que tienen la misma clave
- 3. La función *reducer* procesa los valores asociados a cada clave y genera un output

```
map(String input key, String input value):
 // input_key: document name
 // input value: document contents
                                                ("history", 1)
 for each word w in input_value:
    EmitIntermediate(w, 1);
                        history (1,1,1,...)
reduce(String intermediate_key, Iterator intermediate_values):
 // intermediate key: word
 // intermediate values: ????
 int result = 0:
 for each v in intermediate_values:
    result += v;
 EmitFinal(intermediate key, result);
                   (history, 25)
                                                    slide source: Google, Inc.
```

Documentos Grandes

Si eventualmente un documento fuese lo suficientemente grande como para no poder ser procesado por una sóla computadora en el cluster, el filesystem subyacente lo parte para que sea procesado por varias computadoras.

Ejemplo Palabras por Tamaño (Map)

En este ejemplo el objetivo es contar la cantidad de palabras cuya longitud es chica, mediana o grande.

Ejemplo Palabras por Tamaño (Reduce)

Ejemplo Indice Invertido

Input:

tweet1, ("I love pancakes for breakfast") / tweet2, ("I dislike pancakes")

tweet3, ("What should I eat for breakfast?")

tweet4, ("I love to eat")

(pancake, 1)
(pancakes, tweet1)
(love, tweet1)

Desired output:

"pancakes", (tweet1, tweet2)

"breakfast", (tweet1, tweet3)

"eat", (tweet3, tweet4)

"love", (tweet1, tweet4)

• • •

11 pancakes", [tweet] tweet2]

Employee

Name	SSN	
Sue	99999999	
Tony	77777777	

Assigned Departments

EmpSSN	DepName	
999999999	Accounts	
77777777	Sales	
77777777	Marketing	

Emplyee ⋈ Assigned Departments

Name	SSN	EmpSSN	DepName
Sue	99999999	999999999	Accounts
Tony	77777777	777777777	Sales
Tony	77777777	77777777	Marketing

Notar que la operación join es binaria y Map-Reduce es unaria

Employee		Key idea: Lump all the tuples together into one dataset
Name	SSN	
Sue	99999999	
Tony	77777777	Employee, Sue, 999999999
Assigned Departments		Employee, Tony, 777777777 Department, 999999999, Accounts
EmpSSN	DepName	Department, 777777777, Sales Department, 777777777, Marketing
99999999	Accounts	1
77777777	Sales]
77777777	Marketing	What is this for?

Fase de Map

```
Employee, Sue, 999999999
Employee, Tony, 777777777
Department, 99999999, Accounts
Department, 777777777, Sales
Department, 77777777, Marketing
              key=99999999, value=(Employee, Sue, 999999999)
              key=77777777, value=(Employee, Tony, 77777777)
              key=99999999, value=(Department, 99999999, Accounts)
              key=77777777, value=(Department, 777777777, Sales)
              key=77777777, value=(Department, 77777777, Marketing)
                why do we use this as the key?
```

Fase de Reduce

Ejemplo Contar Amigos en una Red Social

Input Desired Output Jim, Sue Sue, Jim Lin, 2 Lin, Joe Joe, Lin Joe, Lin Jim, Kai Kai, Jim Jim, Lin Lin, Jim Desired Output REDUCE Kai, 3 Lin, 2 Sue, 1 REDUCE Kai, 1 Joe, 1			
Sue, Jim Lin, 2 Lin, Joe Sue, 1 Joe, Lin REDUCE Kai, 1 Jim, Kai Joe, 1 Kai, Jim Jim, Lin	Input		Desired Output
	Sue, Jim Lin, Joe Joe, Lin Jim, Kai Kai, Jim Jim, Lin	REDUCE	Lin, 2 Sue, 1 Kai, 1

Ejemplo Contar Amigos en una Red Social

Ejemplo Multiplicar Matrices

Ejemplo Multiplicar Matrices

4/25/13

```
( i.
C = A X B
A has dimensions L.M.
B has dimensions M,N
  In the map phase:
    for each element (i,j) of A, emit ((i,k), A[i,j]) for k in 1..N
    for each element (j,k) of B, emit ((i,k), B[j,k]) for i in 1..L
  In the reduce phase, emit
    - \text{key} = (i,k)
    – value = Sum<sub>i</sub> (A[i,j] * B[j,k])
```

Cluster

- Muchas computadoras comunes en red procesando cooperativamente
- Paralelismo masivo: cientos o miles de computadoras
- Es muy alta la probabilidad de que haya fallas de hardware durante el procesamiento

File System Distribuido

- Concebido para procesamiento de grandes archivos (TBs, PBs)
- ► Cada archivo está particionado en bloques de 64MB
- Cada bloque está replicado por lo menos 3 veces en distintos racks (tolerancia a fallos)
- Implementaciones
 - ▶ Google GFS
 - Hadoop HDFS

- ► Es un framework liviano
- ► Garantiza el procesamiento paralelo
- Tolerante a fallos