

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Master Regenerative Energien Regenerative Wärmetechnik

3. Absorptions - Wärmepumpen und -Kältemaschinen

Kompressionswärmepumpe/ Kältemaschine

Kompressionsmaschinen

Anforderungen an Arbeitsmittelgemische für Absorptionskreisprozesse

Hoher Siedepunktsabstand zwischen Arbeitsmittel und Lösungsmittel Vollständige Mischbarkeit im ganzen Konzentrationsbereich

	Wasser	Ammoniak
	als Arbeitsmittel	als Arbeitsmittel
	ungiftig, umweltverträglich	giftig
Temperaturbereich	über 0 °C	bis −70 °C
Druckbereich	8- 50 mbar (Klimakälte)	0.3 - 30 bar
	bis 2 bar (Wärmepumpen)	
Verdampfungs-	$\Delta^{LV} h_{10^{\circ}C} = 2480 \text{ kJ/kg}$	$\Delta^{LV} h_{10^{\circ}\text{C}} = 1230 \text{ kJ/kg}$
enthalpie	_	
mögliche	LiBr,	H_2O ,
Lösungsmittel	NaOH, CaCl ₂ , H ₂ SO ₄ , Ca(NO ₃) ₂	Wasser-Salz-Mischungen

Darüber hinaus sind zahlreiche andere Arbeitsmittelgemische untersucht worden

- organische Arbeitsmittel:
 - Methanol $\Delta^{LV} h_{10^{\circ}\text{C}} = 1100 \text{ KJ/kg}$
 - ◆ Triflourethanol (TFE) $\triangle^{LV} h_{10^{\circ}\text{C}} = 380 \text{ KJ/kg}$
- mit Lösungsmittel:

Tetraethylanglycoldimethylether (E181), N-Methylpyrrolidon Probleme bei organischen Arbeitsmitteln bereitet insbesondere die Zersetzlichkeit bei hohen Temperaturen.

in jüngster Zeit wurden auch Ionische Flüssigkeiten (flüssige Salze) als Arbeitsmittel untersucht, hier zeichnen sich hohe Viskositäten der Stoffe als besonderes Problem ab

Dampfdruckkurven reiner Stoffe

 Der Dampfdruck ist nichtlinear mit der Temperatur verknüpft (gekrümmte Kurven im p,T-

Phasendiagramm für reine Stoffe

 Bei der Darstellung Ig p über 1/T-Diagramm ergeben sich näherungsweise Geraden

$$\lg p = A - \frac{B}{T}$$

Dampfdruckdiagramm für Arbeitsmittelgemische

Schematische Darstellung und Zustandspunkte Absorptionswärmepumpe (AWP)

Darstellung im Igp,1/T-Diagramm

Temperatur- und Druckniveaus im Absorptionsprozess

Abkühlung bei gleitender Kondensation bei konstanter Temperatur

Vereinfachung: Unterscheidung zwischen 3 (mittleren) Temperaturnivaus $T_0 T_M^{10} T_H$

Vorteile: Höchstes Strahlungsangebot gleichzeitig mit höchstem Kältebedarf Vermeidung hoher Stillstandstemperaturen für Solarkollektoren Vermeidung mittäglicher Stromspitzen Verlängerte Nutzungsdauer für Abwärme aus KWK-Prozessen

Wärmeverhältnisse Wärmepumpe/Kältemaschine

KM: T_0 = Kältetemp.

WP: $T_0 = T_U$

KM: $T_M = T_U$

WP: $T_M = T_{Nutz}$

KM:

 T_H = Antriebstemp.

WP:

$$\varepsilon_{AKM} = \frac{N}{A} = \frac{\dot{Q}_{Verd}}{\dot{Q}_{Des}}$$

$$\mathcal{E}_{AKMtheor} \approx 1$$

$$\varepsilon_{WP} = \frac{N}{A} = \frac{\dot{Q}_{Abs} + \dot{Q}_{Kond}}{\dot{Q}_{Des}}$$

 $\mathcal{E}_{AWPtheor} \approx 2$

AKM – Gesamtbilanz Energie und Exergie

Gesamtenergiebilanz:

$$\dot{Q}_{Des} + \dot{Q}_{Verd} + (P_p) = \dot{Q}_{Abs} + \dot{Q}_{Kond}$$

vereinfachte Gesamtexergiebilanz : $reversibel (\Delta \dot{E}_v = 0)$:

$$\frac{T_H - T_U}{T_H} \dot{Q}_{Des} + \frac{T_0 - T_U}{T_0} \dot{Q}_{Verd} = \frac{T_M - T_U}{T_M} (\dot{Q}_{Abs} + \dot{Q}_{Kond}) + \Delta \dot{E}_v$$

Vereinfachte Schreibweise mit Carnot-Faktoren $\tau_i = \frac{T_i - T_U}{T}$

$$au_{H} \dot{Q}_{Des} + au_{0} \dot{Q}_{Verd} = au_{M} (\dot{Q}_{Abs} + \dot{Q}_{Kond}) + \Delta \dot{E}_{v}$$

Reversibles Wärmeverhältnis (Kältezahl) AKM $\Delta \dot{E}_{\nu} = 0$

$$egin{aligned} egin{aligned} egin{aligned} oldsymbol{\dot{Q}}_{ extsf{Nerd}} \ oldsymbol{\dot{Q}}_{ extsf{Des}} \end{aligned}$$

$$\tau_{\scriptscriptstyle M}=0$$
 wegen $T_{\scriptscriptstyle M}=T_{\scriptscriptstyle U}$

$$\varepsilon_{AKM,C} = \frac{\tau_H}{-\tau_0}$$

$$\varepsilon_{AKM,C} = \eta_C \ \varepsilon_C$$
 C – Carnot η - Wirkung

- η Wirkungsgrad des arbeitsleistenden (Rechts-)Prozesses
- ε Leistungszahl des arbeitsverbrauchenden (Links-)Prozesses

Absorptionskältemaschine als Kombination aus rechtsläufigem und linksläufigem Carnot-Prozess

Äußerer Prozess

(Temperaturen von Wärmequellen/Senken)

$$\Delta T_R$$
 Temperaturdifferenz im arbeitsleistenden (Rechts-)Prozess

 ΔT_L Temperaturdifferenz im arbeitsverbrauchenden (Links)-Prozess

$$arepsilon_{\mathsf{AKM},\mathsf{C}} = \eta_{\mathsf{C}} \ arepsilon_{\mathsf{C}}$$

$$\eta_{\rm C} = \frac{T_{\rm H} - T_{\rm U}}{T_{\rm H}} = \frac{\Delta T_{\rm R}}{T_{\rm H}}$$

$$\varepsilon_{C} = \frac{T_{0}}{T_{U} - T_{0}} = \frac{T_{0}}{\Delta T_{L}}$$

$$arepsilon_{AKM,C} = rac{\Delta T_R}{T_H} rac{T_0}{\Delta T_L} = \eta_C \ arepsilon_C$$

Unter Berücksichtigung der Energiebilanz $\mathcal{E}_{AKMtheor} \approx 1$ wird deutlich, dass die drei Temperaturniveaus nicht unabhängig voneinander sein können

Berücksichtigung minimaler Temperaturdifferenzen für die Wärmeübertragung am Beispiel der Carnot-Kältemaschine

Äußerer Prozess

(Temperaturen von Wärmequellen/Senken)

$$\Delta T_R = T_H - T_U$$
 Rechts-Prozess

$$\Delta T_L = T_M - T_0$$
 Links-Prozess

Innerer Prozess (i)

(Temperaturen des Arbeitsmittels, Berücksichtigung von minimalen Temperaturdifferenzen für die Wärmeübertragung △T_{WÜ})

$$\Delta T_{Ri} < \Delta T_{R}$$

$$T \uparrow \qquad \Delta T_{Li} > \Delta T_{L}$$

$$T_{5} = T_{H} - \Delta T_{W\ddot{U}}$$

$$T_{9} = T_{M} + \Delta T_{W\ddot{U}}$$

$$T_{2} = T_{M} + \Delta T_{W\ddot{U}}$$

$$T_{1} = T_{0} - \Delta T_{W\ddot{U}}$$

$$S$$

$$\mathcal{E}_{AKM,Ci} << \mathcal{E}_{AKM,C}$$

Temperaturdifferenzen für WÜ vermindern die Antriebstemperaturdifferenz im Rechtsprozess und vergrößern die zu überwindende Temperaturdifferenz im Linksprozess

 $\Delta T_{W\ddot{U}}$ - wichtige Einflussgröße auf das Wärmeverhältnis

Kältemaschine

 H_2O – LiBr Absorptionskältemaschine, soll Kaltwasserstrom von Rücklauf t_R = 12 °C auf Vorlauf t_V = 8 °C abkühlen.

Wärmequelle: Heißwasser mit $t_H = 90$ °C, Kühlwassereintritt $t_{KE} = 30$ °C,

Absorber und Kondensator parallel durchströmt.

 $\Delta T_{minW\ddot{U}} = 5 \text{ K in allen Wärmeübertragern}$

Keine Lösungskonzentration größer als 65 Ma% LiBr

(Kristallisationsgefahr)

=35 massen% H2O

Bestimmen Sie Druckniveaus und Lösungskonzentrationen

Kaltwasser von Rücklauf t_R = 12 °C auf Vorlauf t_V = 8 °C Wärmequelle: Heißwasser mit t_{Hmin} = 90 °C, Kühlwassereintritt $t_{KE} = 30$ °C, Absorber und Kondensator parallel

 $\Delta T_{minW\ddot{U}} = 5 \text{ K in allen Wärmeübertragern}$

Theoretische Grenztemperaturen einstufiger NH₃-Wasser AKM

2.2.3 Absorptionswärmepumpe - Massenbilanz

Massenanteil Arbeitsmittel:

$$\xi = \xi_{AM} = \frac{m_{AM}}{m_{ges}}$$
 $\xi_{RL} > \xi_{AL}$

21

(Gesamt-) Massenbilanz Absorber bzw. Desorber:

$$\dot{m}_{AL} + \dot{m}_D = \dot{m}_{RL}$$

Massenbilanz Wasser:

$$\xi_{AL}\dot{m}_{AL} + \xi_D\dot{m}_D = \xi_{RL}\dot{m}_{RL}$$

$$\xi_{AL}(\dot{m}_{RL} - \dot{m}_D) + \xi_D \dot{m}_D = \xi_{RL} \dot{m}_{RL}$$

spezifischer Lösungsumlauf:

$$f = \frac{\dot{m}_{RL}}{\dot{m}_{D}} = \frac{\xi_{D} - \xi_{AL}}{\xi_{RL} - \xi_{AL}} \qquad \xrightarrow{\xi_{D}=1} \qquad f = \frac{1 - \xi_{AL}}{\Delta \xi}$$

 $\Delta \xi$ - Entgasungsbreite

$$\dot{m}_{AL} = \dot{m}_{RL} - \dot{m}_{D}$$
 : m_{D}

$$\frac{\dot{m}_{AL}}{\dot{m}_{D}} = f - 1$$

Absorptionskreisprozess AKP (AKM oder AWP)

qDES + f*h4,2 = (f-1)*h5+h8

 $\dot{Q}DES/\dot{m}D = qDES = (f-1)*h5+h8 - f*,h$

Energiebilanz AKP - Absorber

Energiebilanz Absorber:

$$h_{7=5}\dot{m}_{AL} + h_1\dot{m}_D = h_2\dot{m}_{RL} + \dot{Q}_{Abs}$$

 $\dot{Q}_{Abs} = h_7\dot{m}_{AL} + h_1\dot{m}_D - h_2\dot{m}_{RL}$

$$q_{Abs} = \frac{\dot{Q}_{Abs}}{\dot{m}_D} = h_7(f-1) + h_1 - h_2f$$

$$q_{Abs} = h_1 - h_7 + f(h_7 - h_2)$$

Lösungsmittelpumpe:

$$dh = \int v d\rho = w_t$$
 $v = const$ $h_3 = h_2 + \frac{1}{\rho_{RL}} \Delta \rho$
 $w_t << \Delta^{LV} h$ $h_3 \approx h_2$

Energiebilanz AKP - Desorber

Energiebilanz Desorber:

$$h_{4=3}\dot{m}_{RL} + \dot{Q}_{Des} = h_5\dot{m}_{AL} + h_8\dot{m}_D$$
 $\dot{Q}_{Des} = h_5\dot{m}_{AL} + h_8\dot{m}_D - h_{4=3}\dot{m}_{RL}$
 $q_{Des} = \frac{\dot{Q}_{Des}}{\dot{m}_D} = h_8 - h_5 + f(h_5 - h_4)$

LM - Drossel:
$$dh = 0$$
 $h_7 = h_5$

Energiebilanz AKP (3)

Kondensator:

$$h_8 \dot{m}_D = \dot{Q}_{Kond} + h_9 \dot{m}_{K=D}$$

$$\dot{Q}_{Kond} = \dot{m}_D (h_8 - h_9) / 4 = (h_8 - h_9)$$

AM - Drossel :
$$dh = 0$$

$$h_0 = h_{10}$$

Verdampfer:

$$h_{10}\dot{m}_D + \dot{Q}_{Verd} = h_1\dot{m}_D$$

$$\dot{Q}_{Verd}=\dot{m}_D(h_1-h_{10})$$

$$=(h_1-h_{10})$$

$$=(h_1-h_{10$$

Wärmeverhältnis:

$$\mathcal{E}_{\mathit{AWP}} = \frac{\mathit{Nutzen}}{\mathit{Aufwand}} = \frac{\dot{Q}_{\mathit{Kond}} + \dot{Q}_{\mathit{Abs}}}{\dot{Q}_{\mathit{Des}}} \leq 2$$

$$\mathcal{E}_{AKM} = \frac{Nutzen}{Aufwand} = \frac{\dot{Q}_{Verd}}{\dot{Q}_{Des}} \le 1$$
 25

h,ξ-Diagramm Wasser-LiBr

h,ξ-Diagramm Wasser-LiBr

h,ξ-Diagramm Wasser-LiBr AKM-Aufgabe

h,ξ-Diagramm Wasser-LiBr AWP-Aufgabe

h,ξ-Diagramm Wasser-LiBr mit Enthalpie Wasserdampf

Reference states: Pure water: h_{H,O} = 08118 J/kg at thips point ρ₁ = 000611657 bar, λ₁ = 0.01 °C on saturated liquid links.

Saturated liquid mixture with β_{1,O} = 0.5 kg/kg: h_{0.5} = -20.9415 J/kg at t = 0.°C.

Eine Absorptionskältemaschine, die mit dem Arbeitsmittelgemisch $H_2O-LiBr$ arbeitet, soll den Kaltwasserstrom einer Klimaanlage von der Rücklauftemperatur $t_R=12\,^{\circ}C$ auf die Vorlauftemperatur $t_V=8\,^{\circ}C$ abkühlen. Die Kälteleistung betrage $\dot{Q}_0=100$ kW. Als Wärmequelle steht Heißwasser mit $t=90\,^{\circ}C$ zur Verfügung, die Kühlwassertemperatur beträgt $t_K=30\,^{\circ}C$, die minimalen Temperaturdifferenzen in allen Wärmeübertragern sollen mit $\Delta T=5$ K berücksichtigt werden. Um Kristallisationsgefahr zu vermeiden soll im Prozess keine Lösungskonzentration größer als 65 Ma% LiBr auftreten.

Bestimmen Sie Druckniveaus und Lösungskonzentrationen für einen geeigneten Prozess.

ts = 85° () = 37,7 PH = 0,05 () h 5 = 214,5

500

Eine Absorptionswärmepumpe, die mit dem Arbeitsmittelgemisch $H_2O-LiBr$ arbeitet, soll den Heizwasserstrom einer Heizungsanlage von der Rücklauftemperatur $t_R=30\,^{\circ}C$ auf die Vorlauftemperatur $t_V=60\,^{\circ}C$ erwärmen. Um Kristallisationsgefahr zu vermeiden soll im Prozess keine Lösungskonzentration größer als 60 Ma% LiBr auftreten. Als Wärmequelle steht Abluft zur Verfügung, die auf 15 °C abgekühlt werden kann. Die minimalen Temperaturdifferenzen in allen Wärmeübertragern sollen mit $\Delta T=5$ K berücksichtigt werden.

Bestimmen Sie Druckniveaus und Lösungskonzentrationen für einen geeigneten Prozess.

Wie hoch ist der Lösungsumlauf und welche Temperatur muss für die Desorberheizung mindestens erreicht werden?

Bestimmen Sie anhand des h,ξ-Diagramms das Wärmeverhältnis der Absorptionswärmepumpe

AWP mit regenerativem LM-WÜ

Veränderte Bilanz durch regenerativen LM-WÜ

$$h_6 = h[(T_2 + \Delta T_{W\ddot{U}}); \xi_{AL}]$$

$$h_4 = h_3 + \frac{f-1}{f}(h_5 - h_6)$$

$$q_{Abs} = h_7(f-1) + h_1 - h_2f$$

$$q_{Des} = h_8 - h_5 + f(h_5 - h_4)$$

$$h_{7=6} < h_{7=5} \quad q_{Abs} \downarrow$$

$$h_4 > h_3$$
 $q_{Des} \downarrow$

 q_{Kond} , q_{Verd} unverändert

$$\begin{split} \varepsilon_{AWP} &= \frac{\dot{Q}_{Kond} + \dot{Q}_{Abs}}{\dot{Q}_{Des}} \downarrow \qquad \varepsilon_{AWP} \uparrow \\ \varepsilon_{AKM} &= \frac{\dot{Q}_{Verd}}{\dot{Q}_{Des}} \downarrow \qquad \varepsilon_{AKM} \uparrow \end{split}$$

Weitere Verbesserungsmöglichkeiten

Regenerativer Arbeitsmittelwärmeübertrager

Reg. Wärmeübertrager Dampf-Lösung

$$q_{ab,D}=q_{zu,RL}$$

$$1c_{pD}(T_8-T_{8'})=1c_{pRL}(T_3-T_{4''})$$

$$c_{pD}< c_{pRL}$$
 $\Delta T_{\min W\ddot{U}}$ am "kalten" Ende

$$t_{8'} \geq t_{Kond}$$

Verluste im reg.Lösungs-WÜ werden verringert

Wärmequellen

Rückkühlwerke

Ventilator

Abluft

Tropfenabscheider

Düsensystem

Aufgabe
heißes Kühlwasser
(System-Rücklauf)

Füllkörper

Frischluftzufuhr
kaltes Kühlwasser
(System-Vorlauf)

Saugbelüfteter, offener Nasskühlturm Kühlwasser wird über Füllkörper verrieselt Trockener, zwangsbelüfteter Rückkühler

Geringe Rückkühltemperaturen, große Wärmeübertragerflächen

Druckbelüfteter, geschlossener Nasskühlturm Sekundärkühlwasser kühlt Rohre oder Lamellenpaket geringere Kühltemperaturen als im offenen ҚТ

N: Wasserverbrauch, Wasseraufbereitung notwendig zusätzliche Druckverluste

Adiabate Verdunstungskühlung Befeuchten von feuchter Luft mit flüssigem Wasser

$$X_1 \dot{m}_{tL1} + \Delta \dot{m}_W = X_2 \dot{m}_{tL2}$$

$$\Delta m_W = m_{tL}(X_A - X_E)$$

$$h_1 \dot{m}_{tL1} + h_W \Delta \dot{m}_W = h_2 \dot{m}_{tL2}$$

$$h_W = \frac{\dot{m}_{tL}}{\Delta \dot{m}_W} (h_2 - h_1)$$

$$h_W = \frac{\Delta h}{\Delta X}$$
 = Anstieg im h, x -Diagramm

Kühlgrenztemperatur bei befeuchten mitflüssigem Wasser (h_W= 0) Schnittpunkt der Isenthalpen mit Sättigungslinie

M.Kaelke, C. Keil, C. Kren, C. Schweigler

Querschnittsauswertung "Solarunterstützte Klimatisierungsanlagen in Deutschland (QASUK)

Hybridkühlturm

Anpassung an Aussentemperaturen, sparsamer Wasserverbrauch keine Schwadenbildung am Austritt

KÜHLEN UND KLIMATISIEREN MIT WÄRME

FIZ Karlsruhe 2009

Abb. 27: Kennlinienfeld einer Adsorptionskältemaschine Mycom ADR bei unterschiedlichen Betriebsbedingungen

Absorptionskühler – kleine Leistung (10 – 50 kW)

Climawell

Tabelle 1: Vergleich von marktverfügbaren Sorptionskältemaschinen kleiner Leistung

Firma	Yazaki	EAW	Sonnenklima	Rotortica	Climatewell	SolarNext	SorTech	SJTU
Produktname	WFC-SC5 / chillii*WFC18	Wegracal SE15	suninverse 10	Solar 045	Climatewell 10	chillii® PSC10	ACS 08/ chillii® STC8	SWAC-10
Technologie	Absorption	Absorption	Absorption	Absorption	Absorption	Absorption	Adsorption	Adsorption
Arbeitsstoff paar	H₂O/ LiBr	H₂O/ LiBr	H₂O/LiBr	H ₂ O/ LiBr	H₂O/LiC1	NH ₃ /H ₂ O	H₂O/Silica gel	H ₂ O/Silica gel
Kälteleistung [kW]	17,5	15	10	4,5	10	10	7,5	10
Heizwasser-Temperatur [°C]	88 / 83	90/80	75/65	90 / 85	83/-	85 / 78	75/67	85 / 79
Kühlwasser-Temperatur [°C]	31/35	30/35	27/35	30 / 35	30/-	24/29	27/32	30 / 36
Kaltwasser-Temperatur [°C]	12,5/7	17-Nov	18/15	13-Okt	-/15	12-Jun	18/15	15-Okt
СОР	0,7	0,71	0,77	0,67	0,68	0,63	0,53	0,39
Abmessungen (BxTxH) [m x m x m]	0,60 x 0,80 x 1,94	1,75 x 0,76 x 1,75	1,13 x 0,80 x 1,96	1,09 x 0,76 x 1,15	1,20 x 0,80 x 1,60	0,80 x 0,60 x 2,20	0,79 x 1,06 x 0,94	1,80 x 1,20 x 1,40
Gewicht [kg]	420	660	550	290	875	350	260	1.600
Elektrische Leistungs- aufnahme [W]	72	300	120	1.200 (inkl. Ventilator)	170	300	57	200

Tabelle 2.1: Übersicht über solarthermisch beheizbare Sorptionskälte anlagen

Technologie	Absorptionskäite LiBr/Wasser	Absorptionskälte Wasser/Ammoniak	Adsorptionskälte Silicagel/Wasser
Kältemittel	H₂O	NHs	H ₂ O
Sorptionsmittel	LIBr	H ₂ O	Silicagel
Kälteträger	Wasser	Wasser-Glykol	Wasser
Bauart	Single-Effect (SE)	Single-Effect (SE)	Single-Effect (SE)
Kältetemperaturbereich	5 bis 20°C	-60 bis +20 °C	5 b/s 20 °C
Helztemperaturbereich	80 bis 140 °C	100 bis 140 °C	55 bis 100 °C
Kältelelstungsbereich	35 b/a 5,000 kW	80 bis 1,000 kW	50 bis 450 kW
Leisturigszahlen	0,6 bis 0,75	0,6 bis 0,7	0,4 bis 0,65

Solares Kühlen, Bine 46

Tabelle 2.2: Absorptionskälte anlagen Wasser/Lithiumbromid

Hersteller	Vertrieb in Deutschland durch:	Bauart / Antrieb	Kälteleistung	Тур	
Carrier	Carrier GmbH & Co.KG	SE, Heizwasser SE, Heizwasser, Dampf	158 bis 1.288 kW 330 bis 4.900 kW	RCH 18JB, JH	
Broad	Gesellschaft für GasKlima mbH	SE, Heizwasser, Dampf, oder Abwärme	105 bis 5.500 kW	IFA-BD	
EAW	EAW Energieanlagenbau GmbH	SE, Heizwasser	50 bis 200 kW	WEGRACAL	
Thermax	Axima Refrigeration Gmb H	SE, Heizwasser SE, Heizwasser	35 bis 280 kW 350 bis 850 kW	Cagenie LT Prachill LT	
Trane	Trane Klima- und Kätte- technisches Büro GmbH	SE, Heizwasser, Dampf	400 bis 1,830 kW	ABSC	
Yazaki	York International GmbH & Co. KG	SE, Heizwasser	35 kW	WFC10	
Yazaki	Maya S.p.A.	SE, Heizwasser	115 kW	WFC30R	
Yark	York International GmbH & Co. KG	SE, Heizwasser, Dampf	200 bis 4.850 kW	YIA	

Hersteller	Vertrieb in Deutschland durch:	Bauart / Antrieb	Kälteleistung	Тур
Colibri	Calibri B.V.	SE, Heizwasser, Dampf, oder direktgefeuert	100 bis 800 kW	ARP-S
Mattes	Mattes AG Absorptionskälte	SE, Heizwasser, Dampf, oder direktgefeuert	80 bis 1,000 kW	AK

Tabelle 2.4: Adsorptionskälteanlagen Wasser/Silicage/

Hersteller	Vertrieb in Deutschland durch:	Bauart / Antrieb	Kälteleistung	Тур
Mayekawa	Albring Industrie vertretung GmbH	SE, Heizwasser	70 bis 352 kW	Mycom ADR
Nishiyada	GBU Gesellschaft für Bodenanalytik und Umweittechnik mbH	SE, Heizwasser	50 bis 430 kW	NAK

M.Kaelke, C. Keil, C. Kren, C. Schweigler

Querschnittsauswertung "Solarunterstützte Klimatisierungsanlagen in Deutschland (QASUK)

Nr. 88 12/03