Package 'neutroSurvey'

June 23, 2025

Julie 23, 2023
Type Package
Title Neutrosophic Survey Data Analysis
Version 0.1.0
Maintainer Pankaj Das <pankaj.iasri@gmail.com></pankaj.iasri@gmail.com>
Description Apply neutrosophic regression type estimator and performs neutrosophic interval analysis including metric calculations for survey data.
License GPL-3
Encoding UTF-8
Depends R (>= $3.5.0$)
Imports moments, stats
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
RoxygenNote 7.3.2
NeedsCompilation no
Author Neha Purwar [aut], Kaustav Aditya [aut], Pankaj Das [aut, cre] (ORCID: https://orcid.org/0000-0003-1672-2502), Bharti Bharti [aut]
Repository CRAN
Date/Publication 2025-06-23 11:00:02 UTC
Contents calculate_all_mse_neutrosophic
compute_all_metrics
format_mse_results
get_user_inputs
Index

```
calculate_all_mse_neutrosophic

Calculate All MSE Neutrosophic
```

Description

Computes various Mean Squared Error (MSE) estimates for neutrosophic interval data using different adjustment methods.

Usage

```
calculate_all_mse_neutrosophic(
  theta_L,
  theta_U,
 Y_L,
  Y_U,
 X_L,
 X_U,
 Cx_L,
 Cx_U,
 Cy_L,
 Cy_U,
  rho_L,
  rho_U,
 B_L,
 B_U
)
```

Arguments

theta_L	Lower theta value $(1/n_L - 1/N_L)$
theta_U	Upper theta value (1/n_U - 1/N_U)
Y_L	Lower study mean
Y_U	Upper study mean
X_L	Lower auxiliary mean
X_U	Upper auxiliary mean
Cx_L	Lower auxiliary CV
Cx_U	Upper auxiliary CV
Cy_L	Lower study CV
Cy_U	Upper study CV
rho_L	Lower correlation
rho_U	Upper correlation
B_L	Lower kurtosis
B_U	Upper kurtosis

calculate_pre 3

Value

A list containing five types of MSE estimates:

- MSE Standard MSE estimates (Lower, Upper)
- MSE1 Ratio-adjusted MSE estimates
- MSE2 Kurtosis-adjusted MSE estimates
- MSE_exp Exponential MSE estimates
- MSE_r Regression MSE estimates

Author(s)

Neha Purwar, Kaustav Aditya, Pankaj Das and Bharti

Examples

```
# First compute metrics from data
data(japan_neutro)
metrics <- compute_all_metrics(japan_neutro)</pre>
# Define population parameters (non-interactive example)
inputs \leftarrow list(theta_L = 0.01, theta_U = 0.02)
# Calculate all MSE types
mse_results <- calculate_all_mse_neutrosophic(</pre>
 inputs$theta_L, inputs$theta_U,
 metrics$mean_interval_Y[1], metrics$mean_interval_Y[2],
 metrics$mean_interval_X[1], metrics$mean_interval_X[2],
 metrics$cv_interval_X[1], metrics$cv_interval_X[2],
 metrics$cv_interval_Y[1], metrics$cv_interval_Y[2],
 metrics$correlation_results[1], metrics$correlation_results[2],
 metrics$kurtosis_interval_X[1], metrics$kurtosis_interval_X[2]
)
# Print results
print(mse_results)
```

calculate_pre

Calculate Percentage Relative Efficiency (PRE)

Description

Computes the Percentage Relative Efficiency (PRE) of different MSE estimators relative to the regression estimator MSE. PRE values greater than 100 indicate better efficiency than the regression estimator, while values less than 100 indicate worse efficiency.

Usage

```
calculate_pre(result_all_mse)
```

Arguments

result_all_mse A list containing MSE results from calculate_all_mse_neutrosophic

Value

A list containing PRE values for each estimator type:

- PRE t0 PRE for standard MSE estimator
- PRE_t1 PRE for ratio-adjusted MSE estimator
- PRE_t2 PRE for kurtosis-adjusted MSE estimator
- PRE_exp PRE for exponential MSE estimator
- PRE_r Reference value (100) for regression estimator

See Also

calculate_all_mse_neutrosophic for generating the input MSE values

Examples

```
data(japan_neutro)
metrics <- compute_all_metrics(japan_neutro)
mse_results <- calculate_all_mse_neutrosophic(
    0.01, 0.02,
    metrics$mean_interval_Y[1], metrics$mean_interval_Y[2],
    metrics$mean_interval_X[1], metrics$mean_interval_X[2],
    metrics$cv_interval_X[1], metrics$cv_interval_X[2],
    metrics$cv_interval_Y[1], metrics$cv_interval_Y[2],
    metrics$correlation_results[1], metrics$correlation_results[2],
    metrics$kurtosis_interval_X[1], metrics$kurtosis_interval_X[2]
)
pre_results <- calculate_pre(mse_results)
print(pre_results)</pre>
```

compute_all_metrics

Compute Neutrosophic Interval Metrics

Description

Calculates various metrics for neutrosophic interval data including means, standard deviations, CVs, kurtosis, and correlations between interval-valued variables.

Usage

```
compute_all_metrics(data)
```

Arguments

data

A data frame containing columns 'Auxili_min', 'Auxili_max', 'Study_min', and 'Study_max'

format_mse_results 5

Value

A list containing all calculated metrics with components:

- mean_interval_X Mean interval for auxiliary variable (min, max)
- subtracted_intervals_X Data frame of subtracted intervals for auxiliary
- sd_interval_X Standard deviations for auxiliary (min, max)
- cv_interval_X Coefficients of variation for auxiliary (min, max)
- kurtosis_interval_X Kurtosis values for auxiliary (min, max)
- mean_interval_Y Mean interval for study variable (min, max)
- subtracted_intervals_Y Data frame of subtracted intervals for study
- sd_interval_Y Standard deviations for study (min, max)
- cv_interval_Y Coefficients of variation for study (min, max)
- correlation_results Correlation between intervals (rho_L, rho_U)

Author(s)

Neha Purwar, Kaustav Aditya, Pankaj Das and Bharti

Examples

```
data(japan_neutro)
metrics <- compute_all_metrics(japan_neutro)

# View mean intervals
cat("Auxiliary Mean Interval:", metrics$mean_interval_X, "\n")
cat("Study Mean Interval:", metrics$mean_interval_Y, "\n")

# View correlation results
cat("Correlation between intervals (rho_L, rho_U):",
    metrics$correlation_results, "\n")</pre>
```

format_mse_results

Format MSE Results for Neutrosophic Survey Data Analysis

Description

Formats the output of calculate_all_mse_neutrosophic into a human-readable string that clearly displays all five types of MSE estimates with their interval values.

Usage

```
format_mse_results(mse_results)
```

Arguments

mse_results A list containing MSE results from calculate_all_mse_neutrosophic

get_user_inputs

Details

The function takes the MSE results list and formats it to show:

- Standard MSE estimates
- · Ratio-adjusted MSE estimates
- Kurtosis-adjusted MSE estimates
- Exponential MSE estimates
- Regression MSE estimates

Value

A formatted character string ready for printing, showing all MSE types with their lower and upper bounds

See Also

calculate_all_mse_neutrosophic for generating the input for this function

Examples

```
# First calculate MSE results
data(japan_neutro)
metrics <- compute_all_metrics(japan_neutro)
mse <- calculate_all_mse_neutrosophic(
    0.01,    0.02,
    metrics$mean_interval_Y[1],    metrics$mean_interval_Y[2],
    metrics$mean_interval_X[1],    metrics$mean_interval_X[2],
    metrics$cv_interval_X[1],    metrics$cv_interval_X[2],
    metrics$cv_interval_Y[1],    metrics$cv_interval_Y[2],
    metrics$correlation_results[1],    metrics$correlation_results[2],
    metrics$kurtosis_interval_X[1],    metrics$kurtosis_interval_X[2]
)</pre>
# Format and print results
cat(format_mse_results(mse))
```

get_user_inputs

Get User Inputs for Population and Sample Sizes

Description

Interactively prompts user for population and sample sizes and calculates theta values (1/n - 1/N) used in MSE calculations.

Usage

```
get_user_inputs()
```

japan_neutro 7

Value

A list containing:

- theta_L Lower theta value
- theta_U Upper theta value

Author(s)

Neha Purwar, Kaustav Aditya, Pankaj Das and Bharti

Examples

```
if(interactive()){
# Interactive example (run in console)
inputs <- get_user_inputs()

# The function will prompt:
# Enter value for population size_L: 1000
# Enter value for population size_U: 2000
# Enter value for sample_size_L: 100
# Enter value for sample_size_U: 200
}</pre>
```

japan_neutro

Japan Neutrosophic Interval Dataset

Description

A dataset containing interval-valued measurements from Japan, suitable for neutrosophic statistical analysis. The data includes both auxiliary and study variables with their minimum and maximum bounds.

Usage

```
data(japan_neutro)
```

Format

A data frame with 31 observations and 4 variables:

Auxili_min Numeric vector representing the lower bounds of the auxiliary variable

Auxili_max Numeric vector representing the upper bounds of the auxiliary variable

Country Non-numeric vector representing country names

Sex Non-numeric vector representing sex of participant i.e. male or female

Study_min Numeric vector representing the lower bounds of the study variable

Study_max Numeric vector representing the upper bounds of the study variable

Year Numeric vector representing year on which the data is collected

japan_neutro

Examples

```
# Load the dataset
data(japan_neutro)

# View the first few rows
head(japan_neutro)

# Calculate basic metrics
metrics <- compute_all_metrics(japan_neutro)
print(metrics$mean_interval_X)  # Mean of auxiliary variable
print(metrics$mean_interval_Y)  # Mean of study variable</pre>
```

Index