シャッフル証明と Bulletproofs R1CS

手法 · 脆弱性 · 実装理由

1 シャッフル証明のやり方

役割	操作フロー	使う情報 / 生成物
証明者	1. コミットし $P(X) = \prod_i (x_i - X)$ 構成 2. コミット列をハッシュし乱数 z を取得 3. 乗算ゲート鎖で $P(z) \cdot Q(z)$ を評価し「差=0」制約を作成	入力リスト $\{x_i\}$ 、Pedersen基 底、ハッシュ関数
検証者	 コミットを読み取り 同じハッシュで 同一の z を再計算 同じ制約を再構成し証明を検証 	公開コミット、ハッシュ関数

キー: 乱数 z はコミット確定後に決まり、Prover は後出しで値を操作できない

具体例(体 \mathbb{F}_7 、長さk=2)

- 1. 入力 {2,5}, 出力 {5,2}
- 2. 多項式

$$P(X) = (2 - X)(5 - X),$$

 $Q(X) = (5 - X)(2 - X)$

- 3. ハッシュ \rightarrow 乱数 z=3
- 4. 評価

$$P(3)=(-1)\cdot 2\equiv 5,$$
 $Q(3)=2\cdot (-1)\equiv 5$ → 等しいもし出力を $\{5,6\}$ に改変すると $Q'(3)=2\cdot (-1)\cdot 3\equiv 1\neq 5$ で失敗

誤判定確率 $\leq k/q = 2/7$ (Schwartz–Zippelの補題)

2 総和・総積テストの脆弱性と理由

衝突(すり抜け)例

テスト	集合 A	集合 B	両者の値
総和	{1, 4, 5}	{2, 3, 5}	10
総積	{2, 2, 3}	{1, 1, 12}	12

- 総和 $e_1 = \sum x_i$ 、総積 $e_k = \prod x_i$ は **係数の一部** に過ぎず、攻撃者は同じ値になる異集合を容易に作れる
- よって最悪ケースの誤判定確率=100%(攻撃者が仕様を知っていれば必ず通過)

比較:誤判定確率

方法	最悪誤判定確率	攻撃者の後出し改変
総和のみ	1	可能
総積のみ	1	可能
乱数 z 評価	k/q	不可(コミット後に z 決定)

3 なぜ掛け算チェーン?

— R1CS との親和性

R1CS 任意の算術回路を「乗算ゲート+線形制約」のみで表現する汎用フォーマット について

1. R1CS 基本形

$$(\mathbf{a} \cdot \mathbf{s}) \times (\mathbf{b} \cdot \mathbf{s}) = (\mathbf{c} \cdot \mathbf{s})$$

→ "乗算ゲート + 線形制約" のみで表現

2. 多項式評価と一致

連鎖 $(x_1-z) o (x_2-z) o\dots$ は 各段が 1 乗算ゲート 追加変換不要でそのまま 制約化できる

補足系

Rank-1 Constraint System (R1CS)

任意の算術回路を「乗算ゲート+線形制約」のみで表現する汎用フォーマットについて

背景

Bulletproofsを使いたい

- →R1CSを使う※
- →シャッフル証明をするには掛け算がいい
- $ightarrow P(X) = \prod_i (x_i X)$ でのシャッフル証明をする

回路ごとに「信頼できる複数当事者による鍵生成(Trusted Setup)」が必須だったのがいらない 乗算ゲート列を内積引数により一括処理できる