1. Triangular triangularization

 $|\Delta A| \leq 3n\epsilon |L||U|. \ [\mathbf{Find\ proof}]. \ \tilde{L}\tilde{U} = A + \Delta A, \frac{\|\Delta A\|}{\|L\|\|U\|} = O(\epsilon). \ [\mathbf{Find\ proof}].$

1.1. With pivoting. $L_{i,j} \leq 1$; ||L|| = O(1); let Growth Factor $\rho = \frac{\max |U_{i,j}|}{\max |A_{i,j}|}$; $||U|| = \rho ||A||$; so $\tilde{L}\tilde{U} = A + \Delta A$, $\frac{||\Delta A||}{||A||} = O(\rho\epsilon)$. Maximal instability: $\rho = 2^{m-1}$.

2. Computer Architecture

If M = num bits in mantissa, E = num bits in exp. Stores $\pm (1+f/2^M)2^{e-2^{E-1}+1}$. $\epsilon_M = 2^{-M-1} = 2^{-53}$.

Single prec: $1 \pm \text{bit}$, M=23 bits, E=8 bits. Double prec: M=52 bits, E=11 bits.

3. Eigenvalue algs

- 3.1. Power iteration for $A^T = A$. The series $v^{(i)} = \frac{A^i x}{\|A^i x\|}$ and $l^{(i)} = r(v^{(i)})$ converge to eigenpair corresponding to largest ew l_1, q_1 : as $x = \sum a_i q_i$. So, Applying A repeatedly takes x to dominant ev.
- 3.1.1. Convergence. Linear convergence of ev. $||v^{(i)} \pm q_1|| = O(|\frac{l_2}{l_1}|^i)$, $||l^{(i)} \pm l_1|| = ||v^{(i)} \pm q_1||^2$.
- 3.2. **Inverse iteration.** ev of A and $(A pI)^{-1}$ same, ew l_i shifted and inverted to get ew $(l_i p)^{-1}$. If p near l_j , using power iteration on $(A pI)^{-1}$ gives fast convergence

Good for finding ev if ew already known.

- 3.2.1. Convergence. Linear convergence of ev. $\|v^{(i)} \pm q_j\| = O(|\frac{p-l_j}{p-l_k}|^i), \|l^{(i)} \pm l_1\| = \|v^{(i)} \pm q_j\|^2.$
- 3.2.2. Alg. Solve $(A pI)w = v^{(k-1)}$; normalize to get $v^{(k)}$.
- 3.3. Rayleigh quotient iteration. Inverse iteration, where $l^{(i)} = R(v^{(i)})$ used as p (ew estimate).
- 3.3.1. Convergence. Cubic convergence of ev and ew. If $||v^{(k)} q_j|| \le eps$ when $|l^{(k)} l_j| \le O(\epsilon^2)$. So $||v^{(k+1)} q_j|| = O(|l^{(k)} l_j| ||v^{(k)} q_j||) = O(||v^{(k)} (\pm q_j)||^3)$. $|l^{(k+1)} (l_j)| = O(||v^{(k+1)} q_j||^2) = O(|l^{(k)} (\pm q_j)|^3)$.

Gain 3 digits of accuracy in each iteration.

- 3.4. Simultaneous iteration for $A = A^T$. Aka Block power itern. $\langle v_i \rangle$ linearly independent; their matrix $V^{(0)}$. $\langle q_i \rangle$ orth ev of A; cols of \tilde{Q} .
- 3.5. Convergence. If $|l_1| > ... > |l_n| \ge |l_{n+1}|$..., Orth basis of $\langle A^k v_1^{(0)}, ... A^k v_n^{(0)} \rangle$ converges to $\langle q_1, ... q_n \rangle$: take $v_i = \sum_j a_j q_j$, do power iteration.
- 3.5.1. Alg. Take some $Q^0 = I$ or other orth cols, get $Z = AQ^{(k-1)}$; get $Q^{(k)}R^{(k)} = Z$. Defn: $A^{(k)} = (Q^{(k)})^T AQ^{(k)}$, $R'^{(k)} = \prod R^{(k)}$. $A^k = Q^{(k)}R'^{(k)}$: By induction: $A^k = AQ^{(k-1)}R'^{(k-1)} = Q^{(k)}R'^{(k)}$.

3.6. **QR** algorithm or iteration. Not QR factorization. Get $Q^{(k)}R^{(k)} = A^{(k-1)}$; $A^{(k)} = R^{(k)}Q^{(k)} = (Q^{(k)})^T A^{(k-1)}Q^{(k)}$: Similarity transformation. Works for all A with distinct $|l_i|$; easy analysis for $A = A^T$. Defn: $R'^{(k)} = \prod R^{(k)}$, $Q'^{(k)} = \prod_k Q^{(k)}$: same as $Q^{(k)}$ in Simult item alg.

3.7. Convergence for $A = A^T$. Same as Simultaneous iteration starting with I.

A^k = $Q^{(k)}R'^{(k)}$: So, finds orth bases for A^k . $A^{(k)} = (Q'^{(k)})^T A Q'^{(k)}$; $A^{(k)}_{i,i}$ are $R(Q'^{(k)}_i)$; as $Q'^{(k)}_i$ converges, $A^{(k)}_{i,i} \to l_i$, off diagonal entries tend to 0; so approaches Schur factorization.

Linear convergence rate: $\max_{j} \frac{l_{j+1}}{l_{i}}$.

4. Hermitian matrix

Aka Self Adjoint Operator. Symmetric matrix: $A = A^T$ generalizes to Hermitian matrix $A = A^*$; analogous to $R \subseteq C$. Skew symmetric matrix: $A = -A^T$, generalizes to skew Hermitian.

Any B = $\frac{B+B^*}{2} + \frac{B-B^*}{2}$: Hermitian + Skew Hermitian.

- 4.0.1. Positive definite matrix (pd) properties. $x^*Ax \in R$; $x^*Ax > 0$. So, $A^* = A$. Eigenvalues l > 0: $lx^*x = x^*Ax > 0$. If $A = A^*$, all eigenvalues l > 0, A is +ve definite.
- 4.1. Cholesky factorization. $A = R^*R$. As $A = LDU^* = UDL^*$, $L = U^*$. So, $A = LDL^* = LD^{1/2}D^{1/2}L^* = R^*R$; $d_{j,j} > 0$ as $a_{j,j} > 0$; $r_{j,j} = \sqrt{d_{j,j}} > 0$ chosen. By SVD, $||R||^2 = ||A||$.
- 4.1.1. Symmetric Elimination Algorithm. Do Gaussian elimination + extra column ops to maintain symmetry at each step.

$$A = \begin{pmatrix} a_{1,1} & A_{2,1}^* \\ A_{2,1} & A_{2,2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{A_{2,1}}{a_{1,1}} & I \end{pmatrix} \begin{pmatrix} a_{1,1} & 0 \\ 0 & A_{2,2} - \frac{A_{2,1}A_{2,1}^*}{a_{1,1}} \end{pmatrix} \begin{pmatrix} 1 & \frac{A_{2,1}}{a_{1,1}} \\ 0 & I \end{pmatrix} = LDL^*. \text{ Get } R^*R$$
 by doing $LD^{1/2}$ at each step.

So, every Hermitian PDM has R^*R factorization. It is also unique: $r_{j,j}$ $\sqrt{d_{j,j}} > 0$ fixed by defn; it in turn fixes rest of R.

4.1.2. Code and Opcount. R=A; Repeat: do symmetric elimination on submatrix $R_{i+1,i+1}$; do $R_i^*/\sqrt{r_{i,i}}$. Only Upper part of R stored.

Opcount:
$$\sum_{k=1}^{m} \sum_{j=k+1}^{m} 2(m-j) \approx \frac{m^3}{3}$$
 flops.

4.1.3. Stability. By SVD: $||R||_2 = ||R^*||_2 = ||A||_2$; so $||R|| \le \sqrt{m} ||A||$ [Check]. So, R never grows large. So, backward stable : get $\hat{R} * \hat{R}$ for perturbed A. Forward error in R large; but R and R^* diabolically correlated.