

§19.1 磁场和磁介质之间的相互作用

§ 19.2 原子的磁矩

§ 19.3 磁介质的磁化

§ 19.4 磁化电流

§ 19.5 有磁介质时磁场的规律

§ 19.6 磁场的界面关系

§ 19.7 铁磁性材料

2

§ 19.1 磁场和磁介质之间的相互作用

磁介质

在磁场中受磁场的影响,同时影响磁场的物质。

磁介质 ←→ 磁场

磁介质对磁场的影响

 $B = \mu_r B_0$

.

磁介质的种类

$\mu_r < 1$

•一般抗磁性 $\mu_r \approx 1$ 如: Cu, Ag, Cl₂, H₂...

ullet 完全抗磁性 $\mu_r=0$ 超导体处于超导态

迈斯纳效应

 $\mu_r > 1$

・順磁性 μ_r ≈ 1 如: Mn, Al, O₂, N₂...

•反铁磁性 $\mu_r \approx 1$ 如: FeO, CoO, MnO...

●铁磁性 U_>>1 如: Fe, Co, Ni...

•亚铁磁性 $\mu_r>>1$ 如: ${\rm Fe_3O_4,Mn_3O_4}$ 等铁氧体

表一 几种磁介质的相对磁化率 $\chi_m = \mu_r - 1$

磁介质种类		相对磁导率
	铋(239K)	-1.7×10 ⁻⁴
抗磁性	汞(239K)	-2.9 ×10 ⁻⁵
$\mu_{\rm c} < 1$	铜(293K)	-1.0 ×10 ⁻⁵
''	氢(气体)	-4.0×10 ⁻⁵
	氧(液体, 90K)	7.7×10 ⁻³
顺磁性	氧(气体, 293K)	3.4×10 ⁻³
$\mu_{r} > 1$	铝(293K)	1.7×10 ⁻⁵
Pr -	铂(293K)	2.6×10 ⁻⁴
	纯铁	5000(与H有关)
铁磁性	硅钢	700(与H有关)
$\mu_r >> 1$	坡莫合金	1×10⁵(与H有关)

磁场对磁介质的影响

Al $\mu_r > 1 \longrightarrow \vec{F}$

演示 顺抗铁磁性介质在非均匀磁场中的行为、 磁矩鼹鼠洞中穿行实验(趣味实验)。

§ 19.2 原子的磁矩

粒子(电子,质子,中子)磁矩

单电子的轨道磁矩

轨道磁矩
$$m_L = IS = I\pi r^2 = rev/2$$

电子轨道运动的角动量 $L=m_{
ho}\upsilon r$

电子轨道磁矩与轨道角动量的关系 $\vec{m}_L = -rac{e}{2m} \vec{L}$

$$\vec{m}_L = -\frac{e}{2m_e}\vec{L}$$

 $-\frac{e}{2m}$ 旋磁比 负值 与电子的负电荷有关

量子力学中, 轨道角动量是量子化的, 任何一个方向的投影也是量子化的

$$L_{r} = n\hbar \quad n = 0, 1, 2, 3....$$

轨道磁矩也是量子化的

$$\begin{split} m_{Iz} &= -\frac{e}{2m_e} L_z = -\frac{e}{2m_e} \times n\hbar = -n \frac{e\hbar}{2m_e} \\ n &= 1 \ m_{Lz} = -\frac{e\hbar}{2m_e} = -9.27 \times 10^{-24} (A \cdot m^2) \end{split}$$

单电子的自旋磁矩

电子自旋磁矩和自旋角动量的关系

$$\vec{m}_s = -\frac{e}{m_e} \vec{S}$$

$$-\frac{e}{m_e}$$
 旋磁比 负值

电子自旋角动量及其投影都是量子化的

$$egin{align} L_z &= \pm rac{\hbar}{2} \ \left| m_{sz}
ight| = \left| -rac{e}{m_e} L_z
ight| = rac{e}{m_e} imes rac{\hbar}{2} = 9.27 imes 10^{-24} (A \cdot m^2) \$$
这一磁矩,称为玻尔磁子

12

原子中电子的总磁矩

$$\vec{m}_e = -g \frac{e}{2m_e} \vec{J}_e$$

 $ec{m{J}}_e$ 总角动量 $ec{m{m}}_e$ 总磁矩

g 朗德 g 因子 取决于电子的状态

原子核的磁矩

质子轨道磁矩 $\vec{m}_{Lp} = \frac{e}{2m_p} \vec{L}_p$ m_p 质子质量

中子无轨道磁矩

质子自旋磁矩
$$\vec{m}_{Sp} = g \frac{e}{2m_p} \vec{S}_p$$
 $g = 5.5857$

中子自旗磁矩
$$\vec{m}_{Sn} = g \frac{e^{-1}}{2m_p} \vec{S}_n$$
 $g = -3.8261$

原子核的总磁矩
$$\vec{m}_I = g \frac{e}{2m_p} \vec{J}_I$$

 $ec{m{J}}_{_{I}}$ 为核的总角动量 $ec{m}_{_{I}}$ 为核的磁矩

g 核的朗德因子,由核决定

核磁矩远小于电子磁矩

11

2

抗磁质的分子固有磁矩为0

$$\vec{B}_0 = 0$$

 $\vec{m} = 0 \vec{M} = 0 \qquad \Delta \vec{m} / / - \vec{B}_0 \vec{M} \neq 0$

不显磁性

显示抗磁性

10

磁介质的磁化

- ●顺磁性物质分子的固有磁矩在磁场中的定向排 列或抗磁性物质分子在磁场中产生了感生磁矩
- ●在磁场的作用下,产生宏观的磁化强度

实验表明,在一般的实验条件下,

各向同性的顺磁性和抗磁性物质 $\vec{M}=rac{\mu_{r}-1}{\mu_{0}\mu_{r}}\vec{B}$ 的磁化强度和外磁场成正比

每个分子的平均有效磁矩 \bar{m}_i 分子数浓度 n

 $\vec{M} = n\vec{m}_f$ { $\vec{m}_d \notin \vec{M} > 0$ $\vec{m}_f > 0$ 抗磁性 $\vec{M} < 0$ $\vec{m}_f < 0$

20

§ 19.4 磁化电流 均匀磁介质的磁化 $\vec{m}_f = iS\vec{e}_n$ m_{f} S 有效面积 顺磁性 $\vec{M} > 0, \vec{m}_f > 0$ 21

不均匀介质的磁化

如果介质不是均匀各向同性的,则磁化就可能不均匀, 在介质内部的分子环流不能互相抵消,介质内部也可能 出现磁化电流

磁介质磁化后,在磁介质体内 和表面上都可出现磁化电流。

23

5、磁致伸缩 外场 B₀ 改变,磁化强度M 的大小和方向改变,会导致晶格间距改变,从而改变铁磁体的长度和体积 长度相对改变约10⁵量级 某些材料在低温下可达10⁻¹ 磁致伸缩有一定固有频率,当外磁场变化频率和固有频率一致时,发生共振 可用于制作激振器、超声波发生器等。

二、自发磁化与磁畴

只有量子力学才能准确理解物质的磁性

铁磁性物质具有固有磁矩,其中超主要作用的
是电子的自旋磁矩。各电子的自旋磁矩å交换
耦合作用使方向一致,从而形成自发磁化

磁矩平行排列,能量低 交換能

