A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 5EF

Bookmark

Show all steps: ON

Problem

Let G be a group; let H and K be subgroups of G, with H a normal subgroup of G. Prove the following:

The function f(k) = Hk is a homomorphism from K onto HK/H, and its kernel is HK

Step-by-step solution

Step 1 of 4

Suppose that *G* is any group and let *H*, *K* are the subgroups of *G*, with *H* a normal subgroup of *G*.

Consider a mapping $f: K \to HK/H$ defined by

$$f(k) = Hk$$
, for all $x \in K$.

Objective is to prove that function f is a homomorphism from K onto HK/H with kernel H.

Consider the following result: the set HK will form the subgroup of G if and only if HK = KH.

Comment

Step 2 of 4

First prove that f is a homomorphism from K onto HK/H.

Let $x, y \in K$. Then

$$f(xy) = Hxy$$
$$= Hx \cdot Hy$$
$$= f(x) \cdot f(y)$$

This holds for all $x, y \in K$. Therefore, f is a homomorphism.

Next, let $Hx \in HK/H$. It implies that $x \in HK$. Or for some $h \in H$ and $k \in K$, x = hk.

Since HK = KH, there exists $h' \in H$ and $k' \in K$ such that

hk = k'h'

