Análisis Nodal

Método probabilístico para cálculo de IOR

Well Performance

WellFlo – Análisis

Pozo y Tipo de Flujo

Correlación de Flujo

Parámetros de Fluido

WellFlo - Análisis

Datos de Yacimiento por Capa

Desviación del Pozo (Direccional)

Permeabilidades Relativas

Esquemático del Pozo

Metodología Anterior

- La predicción de producción se hacía a partir simulación numérica
- EL IOR se ajustaba a partir de "Wellflo"
- IOR P90, P50 y P10, se determinaba usando "Crystal Ball" a partir de 500 a 1000 estimaciones (sensibilidades) en wellflo.
 - ✓ Las sensibilidades se realizaban cambiando solo dos parámetros a la vez
 - ✓ La distribución de los datos no siempre es "Lognormal", generalmente es Triangular.

Preguntas:

- Como se puede optimizar el proceso de Iteración para el calculo de IOR
- Como minimizar el número de corridas en Wellflo

<u>Solución</u>

Utilización del *Diseño Experimental – DE* Para incorporar el Riesgo y la Incertidumbre.

- ✓ DE es una Técnica Estadística que permite identificar, alterar y cuantificar las variables que afectan el comportamiento de un sistema
- ✓ En un DE se manipulan de manera controlada una o más variables asociadas a un sistema con el propósito de medir el impacto en la respuesta del mismo.
- ✓ Para nuestro caso se utilizo el DE de dos Niveles que usa nomenclatura (+) y (-) para los valores máximos y mínimos
- ✓ Los modelos disponibles son: Full Factorial, Fractional Factorial y Plackett-Burman
- ✓ Plackett-Burman es muy eficiente y usado cuando se tiene un gran número de incertidumbres
- ✓ Combinación de parámetros(-1, 0, 1) son recomendados para cada corrida.

Visual Basic MACRO-Wellflo

1. Identificación y definición de parámetros a incluir en la evaluación (Permeabilidad, porosidad, espesor neto, skin, presión, BSW, GOR, otros

Plackett-Burman Design for well	Pla	ckett-	Burman	Design	forv	well
---------------------------------	-----	--------	--------	--------	------	------

WELL NAME

<u>Variable</u> <u>Number</u>	<u>Units</u>	Variable Name	Minimum (-1)	Maximum (1)
			-1	1
Reservoir I	Paramenters	Layer 1		
X1	psi	Press	5650	5750
X2	Md	K	1.2	2.0
X3	stb/MMscf	WGR	1.00	1.80
X4	stb/MMscf	CGR	110	130
X5	dimensionless	Skin	2.5	15

Visual Basic MACRO-Wellflo

2. Efectuar las corridas en "Wellflo" dependiendo del numero de variables y acorde a la matriz del modelo "Placket-Burman"

Plackett-Burman Design for wel	PΙ	acke	tt-Bu	rman	Desig	n for	well
--------------------------------	----	------	-------	------	-------	-------	------

WELL NAME

<u>Variable</u> <u>Number</u>	<u>Units</u>	Variable Name	Minimum (-1)	Maximum (1)
			-1	1
Reservoir I	Paramenters	Layer 1		
X1	psi	Press	5650	5750
X2	Md	K	1.2	2.0
Х3	stb/MMscf	WGR	1.00	1.80
X4	stb/MMscf	CGR	110	130
X5	dimensionless	Skin	2.5	15

Linear	Proxy	Equation
--------	-------	----------

$Y = \alpha 0$	+ a1X1	+ a2X2	+	+ anXn
1 – uu	T UINI	T UZNZ	T	T UIIAII

	Press	K	WGR	CGR	Skin				
	X1	X2	Х3	X4	X5	Y (IOR)		Gas	Water
1	1	1	1	1	1	3628	1	38.880	51
2	-1	1	-1	-1	1	3537	2	39.450	46
3	-1	-1	1	-1	-1	3782	3	41.590	56
4	1	-1	-1	1	-1	3931	4	41.090	47
5	1	1	-1	-1	1	3589	5	39.900	46
6	-1	1	1	-1	-1	4381	6	46.810	66
7	-1	-1	1	1	-1	3844	7	40.450	54
8	-1	-1	-1	1	1	3250	8	36.130	43

Number of Variables Number of Runs

If variables up to 3 4

If variables up to 7 8

If variables up to 11 12

If variables up to 15 16

Visual Basic MACRO-Wellflo

2. Efectuar las corridas en "Wellflo" dependiendo del numero de variables y acorde a la matriz del modelo "Placket-Burman"

Plackett-l	Burman Design fo	rwell	WELL NAME				. D																
<u>Variable</u> Number	<u>Units</u>	Variable Name	Minimum (-1)	Maximum (1)		Linea:					+ anX	'n											
			-1	1		Press	KH	CGR	WGR	Skin	Press	KH	CGR	WGR	Skin	Co	rey Exp	onets	;	Size			
Reservoir	Paramenters	Layer 1				X1	X2	ХЗ	Х4	X5	Х6	X7	Х8	Х9	X10	X11	X12	X13	X14	X15	Y (IOR)	Gas	Water
X1	psi	Press	3000	3500	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	560 1	5.293	15
X2	mD-ft	KH	3500	12000	2	-1	1	-1	-1	1	1	1	1	-1	1	-1	1	-1	-1	1	386 2	7.725	22
Х3	scf/stb	CGR	50	100	3	-1	-1	1	-1	-1	1	1	1	1	-1	1	-1	1	-1	-1	482 3	9.635	0
X4	%	WGR	0	5	4	1	-1	-1	1	-1	-1	1	1	1	1	-1	1	-1	1	-1	1189 4	10.427	0
X5	dimensionless	Skin	5	20	5	1	1	-1	-1	1	-1	-1	1	1	1	1	-1	1	-1	1	806 5	16.117	53
					6	-1	1	1	-1	-1	1	-1	-1	1	1	1	1	-1	1	-1	1295 6	21.484	0
Reservoir	Paramenters	Layer 2			7	-1	-1	1	1	-1	-1	1	-1	-1	1	1	1	1	-1	1	1762 7	24.608	70
X6	psi	Press	3000	3400	8	-1	-1	-1	1	1	-1	-1	1	-1	-1	1	1	1	1	-1	2191 8	18.699	5
X7	mD-ft	KH	2400	10000	9	-1	-1	-1	-1	1	1	-1	-1	1	-1	-1	1	1	1	1	601 9	6.122	25
X8	scf/stb	CGR	40	120	10	1	-1	-1	-1	-1	1	1	-1	-1	1	-1	-1	1	1	1	692 10	10.949	10
X9	%	WGR	0	5	11	-1	1	-1	-1	-1	-1	1	1	-1	-1	1	-1	-1	1	1	1267 11	23.420	7
X10	dimensionless	Skin	5	20	12	1	-1	1	-1	-1	-1	-1	1	1	-1	-1	1	-1	-1	1	1102 12	22.049	28
					13	-1	1	-1	1	-1	-1	-1	-1	1	1	-1	-1	1	-1	-1	1775 13	21.465	0
Well Para	meters				14	1	-1	1	-1	1	-1	-1	-1	-1	1	1	-1	-1	1	-1	1495 14	21.577	31
X11	dimensionless	Corey Gas/Water - Oil/Water (n)	3	5	15	1	1	-1	1	-1	1	-1	-1	-1	-1	1	1	-1	-1	1	1948 15	22.148	27
X12	dimensionless	Corey Gas/Oil exponet (n)	3	5	16	-1	1	1	-1	1	-1	1	-1	-1	-1	-1	1	1	-1	-1	1684 16	33.674	28
X13	dimensionless	Corey Gas/Oil - Oil/Water (m)	3	5																			
X14	dimensionless	Corey Gas/Water exponet (m)	3	5																			

Completion Size

X15

3.966

Visual Basic MACRO-Wellflo

3. Definición de la distribución estadística de cada parámetro en "Crystal Ball" (Lognormal, normal, beta, triangular, etc) fijando los valores mínimos y máximos de cada variable

		Variable		
Variable Name	Minimum	Maximum	Value	Distribution
Press	5650	5750	5700	Normal
К	1.2	2.0	1.6	Lognormal
WGR	1	1.8	1.40	Normal
CGR	110	130	120	Normal
Skin	2.5	15	7.8	Normal

Visual Basic MACRO-Wellflo

4. Generación de valores Usando Crystal Ball

OIL	
Forecast: IO	R
Percentile	Forecast values
10%	3430
20%	3496
30%	3547
40%	3592
50%	3632
60%	3674
70%	3719
80%	3773
90%	3829

GAS	
Forecast: Ga	as
Percentile	Forecast values
10%	39.19
20%	39.86
30%	40.37
40%	40.73
50 %	41.13
60%	41.50
70%	41.87
80%	42.32
90%	42.97

WAIER	
Forecast: W	ater
Percentile	Forecast value
10%	48
20%	50
30%	50
40%	51
50%	52
60%	53
70%	53
80%	54
90%	55

Modelo de Diseño Experimental

