

BNF

 Exemplo de uma gramática livre de contexto em notação BNF (Backus-Naur Form) para definir parte da sintaxe de uma LP

```
\rightarrow (declarações); (lista-de-cmds).
(programa)
⟨lista-de-cmds⟩ → ⟨comando⟩; ⟨lista-de-cmds⟩
                        \rightarrow (cmd-enquanto)
(comando)
                                   (cmd-se)
                                   │ ⟨cmd-atribuição⟩
(cmd-enquanto)
                        → enquanto (exp-lógica)
                              faça (lista-de-cmds) fimenquanto
                   → se ⟨exp-lógica⟩ então
(cmd-se)
                              (lista-de-cmds) (senaoses) (senao) fimse
(senaoses)
                        → senão se (exp-lógica) então
                              (lista-de-cmds) (senaoses)
                                   lλ
```

Do lado esquerdo da regra possui apenas uma variável, do lado direito qualquer combinação de variáveis e terminais

Gramática Livre de Contexto

• **Definição:** Uma gramática livre de contexto (GLC) é uma gramática (V, Σ ,R,P), em que cada regra tem a forma X \rightarrow w, onde X \in V e w \in (V \cup Σ)*

Repare que uma **Gramática Regular** é um caso especial de **Gramática Livre de Contexto**

Exemplo: a linguagem n\u00e3o regular \u00e4oⁿ1ⁿ | n ∈ N\u00e4 \u00e9 gerada pela GLC
 G = (\u00e4P\u00e4, \u00e4o, 1\u00e4, R, P), onde R consta das duas regras

$$P \rightarrow oP1 \mid \lambda$$

– As palavras são geradas por n (n ≥ 0) aplicações da regra P → oP1, seguida de uma aplicação de P → λ

$$P \stackrel{n}{\Rightarrow} 0^{n}P1^{n} \Rightarrow 0^{n}1^{n}$$

Mais Exemplos

• $L = \{ w \in \{0,1\}^* \mid w = w^R \}$

$$G = (\{P\}, \{0,1\}, R, P), onde R consta das 5 regras$$

$$P \rightarrow 0P0 \mid 1P1 \mid 0 \mid 1 \mid \lambda$$

L = { w ∈ {0,1}* | o número de os é igual ao número de 1s em w }

 $G = (\{P\}, \{0,1\}, R, P), onde R consta das 3 regras$

$$P \rightarrow 0P1P \mid 1P0P \mid \lambda$$

Ainda Outro Exemplo

• Seja a GLC ({E, T, F}, {t, +, *, (,)}, R, E), para expressões aritméticas, onde R consta das regras

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid t$

- E → E + T | T: uma expressão artimética (E) é formada por um ou mais termos T's somados
- T → T * F | F: um termo (T) é formado por um ou mais fatores
 F's multiplicados
- F → (E) | t: um fator é um terminal t ou, recursivamente, uma expressão artimética entre parênteses

Linguagem Livre de Contexto

Definição: Uma linguagem é dita ser uma linguagem livre do contexto se existe uma gramática livre do contexto que a gera

Livre

de Contexto

Por que a linguagem é chamada de livre de contexto?

Linguagem Livre de Contexto

Por que essas gramáticas são chamadas de **'livres de contexto'**?

Porque todas as regras contêm apenas um símbolo no lado esquerdo -- e sempre que virmos esse símbolo enquanto fazemos uma derivação, estamos livres para substituí-lo com o que está no lado direito. Ou seja, o 'contexto' no qual ocorre um símbolo no lado esquerdo de uma regra não é importante -- podemos sempre usar a regra para reescrever enquanto fazemos uma derivação.

Árvore de Derivações

- Uma árvore de derivação (AD) captura a essência de uma derivação, a história da obtenção de uma forma sentencial (que não depende da ordem de aplicação das regras)
- Definição: Seja uma GLC G = (V, Σ, R, P). Uma árvore de derivação (AD) é construída recursivamente como se segue
 - a) Uma árvore com apenas o vértice de rótulo P é uma AD
 - b) Se X ∈ V é rótulo de uma folha f de uma AD, então
 - i) se $X \rightarrow \lambda \in R$, então a árvore obtida acrescentando-se mais um vértice v com rótulo λ e uma aresta $\{f, v\}$ é uma AD
 - ii) se $X \rightarrow x_1 x_2 \dots x_n \in R$, onde $x_1, x_2, \dots, x_n \in (V \cup \Sigma)$, então a árvore obtida acrescentando-se mais n vértices v_1, v_2, \dots, v_n com rótulos x_1, x_2, \dots, x_n , nessa ordem, e n arestas $\{f, v_1\}, \{f, v_2\}, \dots, \{f, v_n\}, \text{ é uma AD}$

Considere a gramática a seguir

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid t$$

A AD para t * (t + t) pode ser construída passo a passo

Qual é a próxima regra aplicável?

Considere a gramática a seguir

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid t$$

• A AD para t * (t + t) pode ser construída passo a passo

Derivações:

$$E \Rightarrow T$$
 (regra $E \rightarrow T$)
 $\Rightarrow T * F$ (regra $T \rightarrow T * F$)

Qual regra se deve derivar agora?

Considere a gramática a seguir

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid t$$

• A AD para t * (t + t) pode ser construída passo a passo

Algumas regras podem ser alternadas na derivação e ainda sim gerar a mesma AD

Exemplo

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid t$$

A árvore de derivação completa para t * (t + t)

Derivações:

A árvore de derivação completa para t * (t + t)

Observações

- Número de passos da derivação é o número de vértices internos
- A estrutura da AD é normalmente utilizada para associar significado
- Mais de uma AD para w ⇒ mais de um significado para w

Pode existir mais de uma derivação para uma palavra **w** de uma gramática **G**?

Ambiguidade

- Definição: Uma GLC é dita ambígua quando existe mais de uma AD para alguma sentença que ela gera
- Exemplo: uma GLC G = ({E}, {t, +, *, (,)}, R, E) de expressões aritméticas ambíguas, onde R consta das regras

Existe mais de uma derivação para a sentença **t+t*t**?

Demonstrando a Ambiguidade

- A ambiguidade pode ser demostrada gerando duas árvores de derivação para uma sentença da linguagem para a gramática
- Exemplo: sentença t+t*t para a gramática do exemplo anterior

Significado: t + (t * t)

Significado: (t + t) * t

Cuidado: a ambiguidade é da gramática e não da linguagem que ela gera

Dois Tipos de Derivações

 Derivação mais à esquerda: Uma derivação é dita mais à esquerda (DME) se em cada passo é expandida a variável mais à esquerda (pode-se usar o símbolo ⇒_F)

 Derivação mais à direita: Uma derivação é dita mais à direta (DMD) se em cada passo é expandida a variável mais à direita (pode-se usar o símbolo ⇒_D)

Existe uma única DME e uma única DMD correspondentes a uma AD

Ambiguidades DME/DMD

- Como existe uma única DME e uma única DMD correspondentes a uma AD, pode-se dizer que
 - uma GLC é ambígua se, e somente se, existe mais de uma
 DME para alguma sentença que ela gera
 - uma GLC é ambígua se, e somente se, existe mais de uma
 DMD para alguma sentença que ela gera

 Para a mesma gramática de expressões aritméticas, pode-se mostrar usando somente DMD que a gramática é ambígua

Linguagens Inerentemente Ambíguas

 Existem linguagens livres do contexto (LLC's) para as quais existem apenas gramáticas ambíguas, essas são chamadas de linguagens inerentemente ambíguas

• Exemplo: $L = \{ a^m b^n c^k \mid m = n \text{ ou } n = k \}$

Pode-se mostrar que qualquer GLC que gere tal linguagem terá mais de uma AD para **a**ⁿ**b**ⁿ**c**ⁿ

Conclusão

- A detecção e remoção de ambiguidade é muito importante
 - Ex.: gramática para geração de um compilador para uma LP

Cuidado: o problema de determinar se uma GLC é ambígua é **indecidível**

 Uma linguagem pode ser gerada por inúmeras gramáticas, mas algumas gramáticas podem ser mais adequadas que outras dependendo do contexto

Existem técnicas para manipulação de GLC's que não alteram a linguagem gerada

Manipulação de Gramáticas

 Uma gramática pode ser manipulada, sem alterar a linguagem que ela gere

Eliminando variáveis inúteis

– Eliminando regras λ

Eliminando regras unitárias

Variáveis Inúteis

• **Definição:** Seja uma GLC G = (V, Σ , R, P). Uma variável X \in V é dita ser uma variável **útil** se, e somente se, existem u,v \in (V \cup Σ)* e w \in Σ * tais que

$$P \stackrel{*}{\Rightarrow} uXv \stackrel{*}{\Rightarrow} w$$

• Exemplo: GLC G = (V, Σ, R, P) , com as seguintes regras R

$$P \rightarrow AB \mid a$$

$$B \rightarrow B \mid b$$

$$C \rightarrow c$$

Existem variáveis inúteis nessa gramática?

• Seja a GLC G = (V, Σ, R, P) , onde R é formado pelas regras

$$P \rightarrow AB \mid a$$

$$B \rightarrow B \mid b$$

$$C \rightarrow c$$

- As seguintes variáveis são inúteis
 - C: não existem u e v tais que P ⇒ uCv
 - **A:** não existe $w \in \Sigma^*$ tal que $A \stackrel{*}{\Rightarrow} w$
 - **B:** $P \Rightarrow uBv$ apenas para $u = A e v = \lambda$, e não existe $w \in \Sigma^*$ tal que $AB \stackrel{*}{\Rightarrow} w$
- Gramática equivalente sem símbolos inúteis

$$P \rightarrow a$$

Eliminação de Variáveis Inúteis

- Definição: Seja uma GLC G tal que L(G) ≠ Ø. Existe uma GLC, equivalente a G, sem variáveis inúteis
- Seja G = (V, Σ , R, P) tal que L(G) $\neq \emptyset$. Uma GLC G'' equivalente a G, sem variáveis inúteis, pode ser construída em dois passos
 - a) Obter G' = (V', Σ , R', P), em que
 - $V' = \{ X \in V \mid X \Rightarrow_G^* w \text{ para algum } w \in \Sigma^* \}$
 - R' = { r ∈ R | r não contém símbolos de V V' }
 - b) Obter G" = (V", Σ , R", P), em que
 - V" = $\{ X \in V' \mid P \Rightarrow_{G'}^* uXv \text{ para algum } u, v \in (V' \cup \Sigma)^* \}$
 - R" = { r ∈ R' | r não contém símbolos de V' V" }

Algoritmo: parte (a)

• Algoritmo para determinar varíaveis que produzem sentenças: $\{ X \in V \mid X \Rightarrow \overset{*}{w} \text{ para algum } w \in \Sigma^* \}$

```
Entrada: GLC G = (V, \Sigma, R, P)

Saída: I<sub>1</sub> = { X ∈ V | X ⇒ w para algum w ∈ \Sigma* }

I<sub>1</sub> ← Ø

repita

N ← { X ∉ I<sub>1</sub> | X → z ∈ R e z ∈ (I<sub>1</sub> ∪ \Sigma)* }

I<sub>1</sub> ← I<sub>1</sub> ∪ N

até N = Ø

retorne I<sub>1</sub>
```

Algoritmo: parte (b)

 Algoritmo para determinar variáveis alcançáveis a partir de P: { X ∈ V | P ⇒ uX^{*} para algum u, v ∈ (V ∪ Σ)^{*} }

```
Entrada: GLC G = (V, \Sigma, R, P)

Saída: I_2 = \{X \in V \mid P \Rightarrow uXv \text{ para algum } u, v \in (V \cup \Sigma)^* \}

I_2 \leftarrow \emptyset

N \leftarrow \{P\}

repita

I_2 \leftarrow I_2 \cup N

N \leftarrow \{Y \notin I_2 \mid X \rightarrow uYv \text{ para algum } X \in N \text{ e } u, v \in (V \cup \Sigma)^* \}

até N = \emptyset

retorne I_2
```

• Seja a gramática G = ({A, B, C, D, E, F}, {0, 1}, R, A}), onde R contém as regras:

$$A \rightarrow ABC \mid AEF \mid BD$$

 $B \rightarrow Bo \mid o$
 $C \rightarrow oC \mid EB$
 $D \rightarrow 1D \mid 1$
 $E \rightarrow BE$
 $F \rightarrow 1F1 \mid 1$

Aplicando o algoritmo (a)

$$V' = \{ B, D, F, A \}$$

$$A \rightarrow BD$$

 $B \rightarrow Bo \mid 0$
 $D \rightarrow 1D \mid 1$
 $F \rightarrow 1F1 \mid 1$

Aplicando o algoritmo (b)

$$A \rightarrow BD$$

 $B \rightarrow Bo \mid 0$
 $D \rightarrow 1D \mid 1$

Eliminação de uma Regra

- Uma regra da forma X → w, onde X não é a variável de partida, pode ser eliminada simulando sua aplicação em todos os contextos possíveis: para cada ocorrência de X do lado direito de uma regra, substitui-se por w
- **Teorema:** Seja uma GLC $G = (V, \Sigma, R, P)$. Seja $X \rightarrow w \in R, X \neq P$. Seja a GLC $G' = (V, \Sigma, R', P)$, onde R' é obtido assim
 - a) para cada regra de R em que X não ocorre do lado direito, exceto X → w, coloque-a em R'
 - b) para cada regra de R da forma Y \rightarrow $x_1X_1x_2X_2...X_nx_{n+1}$, com pelo menos uma ocorrência de X do lado direito, com n \geq 1 e $x_i \in [(V \{X\}) \cup \Sigma]^*$, coloque em R' todas as regras da forma Y \rightarrow $x_1Y_1x_2Y_2...Y_nx_{n+1}$, sendo que cada Y_j pode ser X ou w, com exceção da regra X \rightarrow w

Algoritmo

Algoritmo para eliminação de uma regra

```
Entrada: (1) uma GLC G = (V, \Sigma, R, P), e

(2) uma regra X \to w \in R, X \neq P.

Saída: uma GLC G' equivalente a G, sem a regra X \to w.

R' \leftarrow \emptyset;

para cada regra Y \to z \in R faça

para cada forma de escrever z como x_1Xx_2 \dots Xx_{n+1} faça

R' \leftarrow R' \cup \{Y \to x_1wx_2 \dots wx_{n+1}\}

fimpara;

fimpara;

fimpara;

retorne G' = (V, \Sigma, R' - \{X \to w\}, P).
```

 Seja a gramática G = ({P, A, B}, {a, b, c}, R, P}), onde R contém as regras

$$P \rightarrow ABA$$

 $A \rightarrow aA \mid a$
 $B \rightarrow bBc \mid \lambda$

Como é a derivação de **aa** em G?

• A GLC G' = ({P, A, B}, {a, b, c}, R, P}), equivalente a G, pode ser obtida eliminando-se a regra A → a

$$P \rightarrow ABA \mid ABa \mid aBA \mid aBa$$

$$A \rightarrow aA \mid aa$$

$$B \to bBc \mid \lambda$$

Como é a derivação de **aa** em G'?

Variável Anulável

- Definição: uma variável X é anulável em uma GLC G se, e somente se, X ⇒_G λ
- Algoritmo para determinar variáveis anuláveis

```
Entrada: GLC G = (V, \Sigma, R, P)

Saída: A = { X \in V \mid X \Rightarrow \lambda^* }

A \leftarrow \emptyset

repita

N \leftarrow \{ Y \notin A \mid Y \rightarrow z \in R \ e \ z \in A^* \}

A \leftarrow A \cup N

até N = \emptyset

retorne A
```

Eliminação de Regras λ

- Seja G = (V, Σ, R, P) . Seja G' = (V, Σ, R', P) em que R' é obtido assim
 - a) para cada regra de R cujo lado direito não contém variável anulável, exceto regra λ, coloque-a em R'
 - b) para cada regra de R da forma Y \rightarrow $x_1X_1x_2X_2...X_nx_{n+1}$, sendo cada X_i uma variável anulável, com $n \ge 1$ e cada x_i sem variáveis anuláveis, coloque em R' todas as regras da forma Y \rightarrow $x_1Y_1x_2Y_2...Y_nx_{n+1}$, em que cada Y_j pode ser X_j ou λ , com exceção da regra λ
 - c) Se P for anulável, coloque P $\rightarrow \lambda$ em R'

L(G) = L(G') e sua única regra $\lambda \in P \rightarrow \lambda$ (se houver)

Algoritmo

Algoritmo para eliminação de regras λ

```
Entrada: uma GLC G = (V, \Sigma, R, P);

Saída: uma GLC G' equivalente a G, sem regras \lambda, exceto P \to \lambda.

\mathcal{A} \leftarrow variáveis anuláveis de G;

R' \leftarrow \emptyset;

para cada regra X \to w \in R faça

para cada forma de escrever w como x_1Y_1x_2 \dots Y_nx_{n+1}, com Y_1 \dots Y_n \in \mathcal{A} faça

R' \leftarrow R' \cup \{X \to x_1x_2 \dots x_{n+1}\}

fimpara;

fimpara;

retorne G' = (V, \Sigma, R' - \{X \to \lambda \mid X \neq P\}, P).
```

• Seja a gramática G = ({P, A, B, C}, {a, b, c}, R, P}), onde R contém as regras

$$P \rightarrow APB \mid C$$

 $A \rightarrow AaaA \mid \lambda$
 $B \rightarrow BBb \mid C$
 $C \rightarrow cC \mid \lambda$

Obtendo o conjunto de variáveis anuláveis

$$\mathcal{A} = \{A, C, P, B\}$$

Eliminando as variáveis anuláveis

$$P \rightarrow APB \mid AP \mid AB \mid PB \mid A \mid B \mid C \mid \lambda$$

 $A \rightarrow AaaA \mid aaA \mid Aaa \mid aa$
 $B \rightarrow BBb \mid Bb \mid b \mid C$
 $C \rightarrow cC \mid c$

A regra P → P foi descartada por motivos óbvios

Variáveis Encadeadas

- Definição: Seja uma gramática G = (V, Σ, R, P). Diz-se que uma variável Z ∈ V é encadeada a uma variável X ∈ V se Z = X ou se existe uma sequência de regras X→Y₁, Y₁→Y₂, ..., Yn→Z em R, n ≥ o; quando n = o, tem-se apenas a regra X→ Z. Ao conjunto de todas as variáveis encadeadas a X é dado o nome de enc(X).
- Uma GLC equivalente a G = (V, Σ , R, P), sem regras unitárias, é G' = (V, Σ , R', P), em que

 $R' = \{ X \rightarrow w \mid \text{existe } Y \in \text{enc}(X) \text{ tal que } Y \rightarrow w \in R \text{ e } w \notin V \}$

Algoritmo

Algoritmo para obter as variáveis encadeadas de uma variável

```
Entrada: (1) GLC G = (V, \Sigma, R, P)
             (2) variável X ∈ V
Saída: enc(X)
     U \leftarrow \emptyset
     N \leftarrow \{X\}
     repita
           U \leftarrow U \cup N
            N \leftarrow \{ Y \notin U \mid Z \rightarrow Y \in R \text{ para algum } Z \in N \}
      até N = Ø
      retorne U
```

Relembrando a GLC para expressões aritméticas

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid t$$

- Os conjuntos enc(X) para cada variável X ∈ V

Eliminando as regras unitárias

$$E \rightarrow E + T \mid T * F \mid (E) \mid t$$

$$T \rightarrow T * F \mid (E) \mid t$$

$$F \rightarrow (E) \mid t$$

Interação entre os Métodos de Eliminação

- Ao se aplicar vários tipos de eliminações em sequência, alguns tipos de regras já eliminados podem reaparecer
- Exemplos
 - a) Ao se eliminar regras λ podem aparecer regras unitárias **Ex.:** GLC com regras $A \rightarrow BC e B \rightarrow \lambda$
 - b) Ao se eliminar regras unitárias podem aparecer regras λ **Ex.:** GLC com P $\rightarrow \lambda$ (P: símbolo de partida) e a regra A \rightarrow P
 - c) Ao se eliminar regras λ podem aparecer variáveis inúteis **Ex.:** o do item (a), caso $B \rightarrow \lambda$ seja a única regra de B
 - d) Ao se eliminar regras unitárias podem aparecer var. inúteis
 Ex.: GLC que contém A → B e B não aparece do lado direito de nenhuma outra regra (B torna-se inútil)

Ao se eliminar variáveis inúteis, não podem aparecer novas regras

Consistência das Eliminações

- A seguinte sequência de eliminações para uma GLC
 G = (V, Σ, R, P) garante sua consistência
 - 1) Adicionar a regra $P' \rightarrow P$ se P for recursivo
 - 2) Eliminar regras λ
 - 3) Eliminar regras unitárias
 - 4) Eliminar variáveis inúteis
- Essa sequência produz uma GLC equivalente cujas regras são da seguinte forma

$$P \rightarrow \lambda$$
 se $\lambda \in L(G)$
 $X \rightarrow a$ para $a \in \Sigma$
 $X \rightarrow w$ para $|w| \ge 2$