Modelagem Conceitual

Crícia Felício

Modelo de dados

- Abstração do mundo real
 - Conjunto de informações que serão armazenadas e manipuladas pelo sistema.
- Descrição formal da estrutura de um banco de dados

- É a técnica mais conhecida para modelagem de dados
- Tem como objetivo auxiliar na especificação geral do sistema
- * O modelo de dados é representado graficamente através de um *Diagrama de Entidade-Relacionamento (DER)*.
- Principais conceitos do Modelo ER são:
 - * Entidades
 - * Atributos
 - * Relacionamentos

 Notação Peter Chen: Criada por Peter Chen em 1976, para representar o DER

- Notação Peter Chen
 - Variação da primeira notação

Notação IDEF1X (dependente do SGBD)

 Notação James Martin ou pé de galinha (dependente do SGBD)

Criando o Diagrama Entidade-Relacionamento

- * O que são entidades?
 - * Entidade: É um conjunto de objetos do mundo real sobre os quais se deseja manter informações no banco de dados
 - * Exemplos:
 - * Existência Física: Pessoa, Carro, Livro
 - * Existência Abstrata: Departamento, Projeto, Curso
 - * Possuem propriedades específicas
 - * Atributos e relacionamentos

Entidades

- * Exemplos de Entidades por Sistemas:
 - * Sistema Bancário
 - * Cliente
 - * Conta Corrente
 - * Conta Poupança
 - * Agência
 - * Sistema de Controle de Produção de Industria
 - * Produto
 - * Empregado
 - * Departamento

Atributos

* Atributos

- * Representam as informações relacionadas as entidades
- * Exemplo: Para entidade Livro, identificamos os seguintes atributos:
 - * ISBN;
 - * Titulo;
 - * Editora;
 - * Edição, etc.

Atributos

- Tipos de atributos:
 - * Atributo Simples
 - * Composto por uma única informação
 - * Exemplo: Valor do produto
 - * Atributo Composto
 - * Subdividido em atributos mais básicos
 - * Exemplo: Endereco, pode ser subdividido em rua, número, complemento, bairro, cidade, estado, CEP
 - * Atributo Chave
 - * Possui um valor distinto para cada instância da entidade
 - * Exemplo: CPF, em uma entidade Pessoa

Atributos

- * Atributo Univalorado
 - Possui um único valor para o atributo em cada instância da entidade
 - * Exemplo: Cada empregado possui um único valor de salário
- * Atributo Multivalorado
 - * Possui vários valores para cada instância de uma entidade
 - * Exemplo: Um empregado pode possuir mais de um número de telefone
- * Atributo Derivado
 - * É calculado a partir de outros atributos
 - * Exemplo: A idade de um empregado pode ser obtida a partir data atual subtraida do atributo data de nascimento

Exemplo

- * Seja um sistema para uma companhia de seguros de automóveis com as características descritas a seguir. Para esse sistema, identifique as entidades que compõem o sistema, bem como seus atributos.
 - * A companhia armazena informações referentes a um conjunto de clientes, onde cada cliente possui um certo número de carros. Os dados do cliente são nome, RG, CPF, endereço e telefone. Do carro deve-se armazenar a placa, código Renavan, fabricante, modelo, e ano. Associado a cada carro há um histórico de ocorrências. Um carro pode possuir várias ocorrências ou nenhuma. Cada ocorrência deve ter uma data, local e descrição.

Relacionamento

Na notação de Peter Chen é representado por um losângulo

Relacionamentos

- * É uma associação entre entidades
- * Faz a ligação das entidades relacionadas

Relacionamentos

Exemplo de Relacionamentos

Relacionamentos com atributos

Relacionamento com atributos

Exercício

 De acordo com o exercício proposto anteriormente, identifique os relacionamentos entre as entidades :

Cardinalidade no Relacionamento

- * Cardinalidade de Relacionamentos
 - * É a especificação de quantas ocorrências de uma entidade podem estar associadas a uma determinada ocorrência de outra entidade.
- * Pode ser expressa de 2 maneiras:
 - * Utilizando somente a cardinalidade máxima
 - * Razão das cardinalidades
 - * Utilizando a cardinalidade máxima e mínima

Razão das Cardinalidades

- Relacionamento Um para Um 1:1
 - Uma ocorrência de A está associada a no máximo uma ocorrência de B, e uma ocorrência em B está associada a no máximo uma ocorrência em A.

Exemplo de Instâncias

Razão das Cardinalidades

- Relacionamento Um para Muitos 1:N
 - * Uma ocorrência de A está associada a várias ocorrências de B, porém uma ocorrência de B deve estar associada a no <u>máximo uma</u> ocorrência em A.

Exemplo de Instâncias

Razão das Cardinalidades

- * Relacionamento Muitos para Muitos M:N ou N:N
 - * Uma ocorrência de A está associada a qualquer número de ocorrências de B, e uma ocorrência em B está associada a qualquer número de ocorrências em A

Exemplo de Instâncias

Cardinalidade máxima e mínima

- * Cardinalidade Mínima:
 - número mínimo de ocorrências de uma entidade A com relação a uma outra entidade B
- * Representação:
 - * (cardinalidade mínima, cardinalidade máxima)
 - * Cardinalidades Possíveis: (1,1); (1,N); (0,1);(0,N);(N,N)
 - * Cardinalidade mínima = 1 (relacionamento obrigatório)
 - * Cardinalidade mínima = o (relacionamento opcional)

Cardinalidade Mínima e Máxima

Exemplo de Relacionamento Obrigatório:

Exemplo de Relacionamento Opcional:

Cardinalidade dos atributos

Cardinalidade mínima

- 1: atributo obrigatório
- 0: atributo opcional

Cardinalidade máxima

- 1: atributo monovalorado
- N: atributo multivalorado

Exercício

* Especificar as cardinalidades mínimas e máximas dos relacionamentos propostos para o exercício de modelagem do sistema de uma companhia de seguros de automóveis.

Tipos de Relacionamentos

- * Unário
 - * Relacionamento entre ocorrências da mesma entidade

Exemplo de Instâncias

Tipos de Relacionamentos

- Relacionamento Binário: Relacionamento entre duas entidades

Relacionamento entre entidades

Relacionamento Binário: Relacionamento entre duas entidades

Atributo Identificador

- Cada entidade deve ter um identificador
 - -Permite diferenciar um registro de outro
 - -Identificador = Atributo Chave
 - -Exemplo: CPF, identifica unicamente um cidadão brasileiro
 - -Representação no modelo

- Entidade Fraca: entidade sem chave
 - A existência da entidade Fraca esta vinculada a existência de uma entidade forte
 - A entidade é identificada por algum atributo da entidade + algum relacionamento
- Entidade Forte: entidade com chave
 - A entidade é identificada por atributos da própria entidade
 - Exemplo: A entidade dependente é uma entidade fraca.
 Chave=CPF + numero
 - A entidade empregado é uma entidade forte

Relacionamento com atributo

Ferramenta de Modelagem

* BrModelo

- Criação de Diagramas Entidade Relacionamento
- http://www.sis4.com/brModelo/download .aspx

Exercício

* Considerando um sistema acadêmico contendo os dados de exemplo representados pelas tabelas no próximo slide, defina as entidades principais que farão parte do modelo de representação dos dados.

Curso

Cod_curso	Nome	Sigla
1	Sistemas para Internet	TSPI
2	Licenciatura em Computação	LCOMP

Aluno

Mat	Nome	Entrada	Cod_curso
1001	Paulo Silva	2016_1	1
1002	Carla Marins	2016_1	1
1003	Marcos Ferreira	2017_1	2

Disciplina

Cod_disc	Nome	Sigla	Carga_hor
1	Lógica	Log	105
2	Algoritmos	Alg	80
3	Banco de Dados 1	BD1	75
4	Programação Orientada a Objetos	POO	120

Professor

Cod_prof	Nome
1	Clarimundo
2	Mateus
3	Crícia

Turma

Cod_turma	Ano	Sem
44	2016	1
46	2016	1
47	2016	2
48	2017	1

Alocação

Markettik Marki 🖈 Milleren		
Cod_turma	Cod_disc	Cod_prof
44	1	1
46	3	2
46	2	1
47	3	3
48	4	1

Historico

Cod_turma	Mat	Cod_disc	Media
44	1001	1	6,0
46	1001	2	5,5
47	1001	3	7,0

Pré_req

Cod_disc	Cod_disc_req
2	1
4	2

Exercício - Resposta

Notação Peter Chen - Resumo

Notação Peter Chen

Notação James Martin

Um ou mais

Zero ou mais

Zero ou um

Um e apenas um

James Martin Pé de galinha

