What is claimed is:

transfer from the data source.

2

1	1. A method of transmitting data over a source synchronous communications
2	interface, the method comprising:
3	(a) receiving a source synchronous data strobe signal driven by a data
4	source during a data transfer from the data source; and
5	(b) disabling a data latch from latching data received from the data source
6	whenever the data source is not driving the source synchronous data strobe signal.
1	2. The method of claim 1, wherein disabling the data latch comprises gating the
2	source synchronous data strobe signal.
1	3. The method of claim 2, wherein gating the source synchronous data strobe
2	signal comprises applying a gate signal to the data latch that enables latching by the data
3	latch only when the gate signal is asserted, wherein the gate signal is asserted proximate a
4	start of a data transfer from the data source, and deasserted proximate an end of the data
5	transfer from the data source.
1	4. The method of claim 3, wherein applying the gate signal comprises asserting
2	the gate signal responsive to a synchronous enable signal that is asserted proximate the
3	start of the data transfer from the data source.
1	5. The method of claim 4, wherein applying the gate signal further comprises
2	deasserting the gate signal responsive to a synchronous postamble signal that is asserted
3	proximate the end of the data transfer from the data source.
1	6. The method of claim 1, further comprising locally tracking progress of the data

1	7. The method of claim 6, wherein locally tracking the progress of the data
2	transfer includes counting cycles of the source synchronous data strobe signal to track
3	data transfer cycles during a data transfer from the data source.
1	8. The method of claim 7, wherein locally tracking the progress of the data
2	transfer further includes indicating whenever the number of data transfer cycles is
3	equivalent to a burst length for the data transfer.
1	9. The method of claim 1, wherein the data source comprises a synchronous
2	dynamic random access memory (SDRAM), and wherein the source synchronous
3	communications interface comprises an SDRAM memory interface.
1	10. The method of claim 9, wherein the data source comprises a double data rate
2	(DDR) SDRAM, and wherein the source synchronous communications interface
3	comprises a DDR SDRAM memory interface.
1	11. The method of claim 1, wherein gating the source synchronous data strobe
2	signal comprises:
3	(a) incrementing a counter and outputting a burst length signal that
4	indicates whether the counter stores a value equivalent to a predetermined burst
5	length;
6	(b) performing a logical AND operation on the burst length signal and a
7	synchronous postamble signal and outputting therefrom a first output signal,
8	wherein the synchronous postamble signal is asserted proximate the end of a data
9	transfer from the data source;
10	(c) performing a logical OR operation on the first output signal and a
11	synchronous enable signal and outputting therefrom a gate signal, wherein the
12	synchronous enable signal is asserted during the data transfer from the data

source; and

13

1	(d) performing a logical AND operation on the gate signal and the source
2	synchronous data strobe signal and outputting therefrom a gated source
3	synchronous data strobe signal that is coupled to the data latch.
1	12. The method of claim 11, wherein incrementing the counter is performed in
2	response to a logically-inverted gated source synchronous data strobe signal, and wherein
3	the method further comprises logically-inverting the burst length signal prior to
4	performing the logical AND operation.
1	13. The method of claim 1, wherein disabling the data latch comprises controlling
2	a select input on a multiplexer coupled to an input of the data latch to select a first input
3	among first and second inputs for the multiplexer, wherein the first input of the
4	multiplexer is coupled to an output of the data latch, and the second input of the
5	multiplexer is coupled to receive the data from the data source.
1	14. The method of claim 1, wherein the source synchronous data strobe signal
2	comprises a DQS signal from a synchronous dynamic random access memory (SDRAM)

during a transfer of read data from the SDRAM.

3

1	15. A method of transferring read data from a synchronous dynamic random
2	access memory (SDRAM) over a source synchronous communications interface, the
3	method comprising:
4	(a) receiving a source synchronous DQS signal driven by the SDRAM
5	during a data transfer of read data from the SDRAM; and
6	(b) selectively disabling a data latch from latching data received from the
7	SDRAM source whenever the SDRAM is not driving the DQS signal.