Project Report: Correlation Analysis between Vehicle sales and Co₂ Emission in USA from 1985 untill 2015

Introduction

This project helps to investigate between Number of vehicles sold in USA from 1982 to 2015 and the increase in carbon level emission due to it in the environment. The emission of Co2 impact various factors like greenhouse effect, trapping more heat in the Earth's atmosphere, leading to global temperature rise which can lead to severe weather events such as hurricanes, droughts, heatwaves, and heavy rainfall. This report will help you to analyse how the sales of vehicles leads to the increase in carbon emissions.

Methods

Data Source

- 1. Vehicle Sales data of USA: The data is taken from Kaggle, this dataset is a open source MIT licensed. The link for dataset is Vehicle sales data.
- Co2 Emission data of USA: The data is taken from kaggle, this dataset is a open source dataset. The link for dataset is Co 2 emission

Data Pipeline

The data pipeline has the following components:

Extraction

The data extraction process involves of extracting data from kaggle. The python code is used to download the data from the kaggle. Here the extracted data is preprocessed and stored into a sqlite database in form of tables.

Transformation

The data transformation process includes of following steps:

- 1. Filtering out necessary columns: The Vehicle sales data consisted of various other columns. Hence the unnecessary columns where filtered out from the dataset.
- 2. Checking the datatypes: Checking datatypes of columns before storing them it finally into database is the most essential as it may cause errors during the interpretations with data.
- 3. Renaming columns: The columns are renamed such that they are more interpretable.

4. Handling Missing values: The missing values can effect the quality of data and make it unusable. Hence, to ensure the usability of data the missing and null values were dropped.

All of the above transformation steps ensure that the data is clean and ready for analysis.

Results and Limitations

Limitations:

16 2001

17 2002

6468

9715

- 1. Since the carbon emission data is for the entire country we can't do the analysis for different states in the country.
- 2. Since the Co_2 is not only emitted with the use of vehicles but also from the other things like factories and other different development ongoing projects.

Vehicle Data Analysis

```
In [15]:
          import sqlite3
          import matplotlib.pyplot as plt
          import pandas as pd
          import numpy as np
          import seaborn as sns
          conn = sqlite3.connect("..\\data\\data.sqlite")
In [16]:
          vehicle_data = pd.read_sql_query("SELECT * FROM Vehicle_sales_data", conn)
In [17]:
          vehicle_data
In [18]:
Out[18]:
              Year Number of Vehicles sold
           0 1985
                                     10
           1 1986
                                     11
                                     8
           2 1987
           3 1988
                                     11
           4 1989
                                     20
           5 1990
                                     49
           6 1991
                                     67
           7 1992
                                    132
           8 1993
                                    205
           9 1994
                                    392
          10 1995
                                    711
          11 1996
                                    851
          12 1997
                                   1546
          13 1998
                                   2149
          14 1999
                                   3363
          15 2000
                                   5227
```

18	2003	13281
19	2004	17342
20	2005	21394
21	2006	26913
22	2007	30845
23	2008	31502
24	2009	20594
25	2010	26485
26	2011	48548
27	2012	102315
28	2013	98168
29	2014	81070
30	2015	9437

```
In [27]: plt.figure()
   plt.bar( vehicle_data['Year'], vehicle_data['Number of Vehicles sold'])
   plt.xticks(vehicle_data['Year'], rotation=90)
   plt.xlabel('Year')
   plt.ylabel('Number of Vehicles sold')
   plt.title('Number of Vehicles sold each year')
```

Out[27]: Text(0.5, 1.0, 'Number of Vehicles sold each year')

Observation

From this graph we can conclude that in year 2012 the number of vehicle sold were more. We can also observe that the trend increased from year 1995 and went up till 2008 and then had an down trend till 2010 and rise up with a increasing trend untill 2012

Co_2 Emission analysis

In [20]: co2_data = pd.read_sql_query("SELECT * FROM co2_emission", conn)

In [21]: co2_data

Out[21]:

	Year	Co2_emission
C	1985	1367.400
1	L 1986	1357.485
2	1987	1426.752
3	3 1988	1491.808
4	1 1989	1518.843
Ę	1990	1547.564
6	1991	1548.180
7	7 1992	1569.565
8	3 1993	1632.519
ę	1994	1638.781
10	1995	1660.743
11	L 1996	1752.410
12	1997	1797.044
13	3 1998	1828.183
14	1 1999	1836.415
15	2000	1927.377
16	2001	1869.828
17	7 2002	1889.879
18	3 2003	1930.972
19	2004	1943.069
20	2005	1983.828
21	L 2006	1953.697
22	2 2007	1987.287
23	2008	1959.386
24	1 2009	1740.875
25	2010	1827.619
26	2011	1722.709
	7 2012	1511.238
		1571.350
27	3 2013	1571.350 1569.136
	177 188 199 200 217 222 233 244 288	 17 2002 18 2003 19 2004 20 2005 21 2006 22 2007 23 2008 24 2009 25 2010

```
In [26]: plt.figure()
   plt.bar(co2_data['Year'],co2_data['Co2_emission'])
   plt.xticks(co2_data['Year'],rotation=90)
   plt.tight_layout()
   plt.xlabel('Year')
   plt.ylabel('Co_2 emission in Kilo tonnes')
   plt.title('Co_2 emission in each Year')
```

Out[26]: Text(0.5, 1.0, 'Co_2 emission in each Year')

Correlation Analysis

```
In [23]: merged_data = pd.merge(vehicle_data, co2_data, on='Year')
In [24]: correlation_matrix = merged_data.corr(numeric_only=True)
In [25]: plt.figure(figsize=(10, 8))
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
    plt.title('Correlation Matrix')
    plt.show()
```


Observation

Based on the above observations we can state that the C0_2 emission is not only dependent on sales of vehicles but there are also other unknown factors which also lead to the increase or decrease in the carbon emission.

In []: