Single-Data Rate SDRAM Project (Part No. MT48LC2M32B2)

Document Ver. 1 04/02/2021

Table of Contents

Objective	1
Components/Tools	1
SDRAM Chip	
Memory Organization	
Pinout	
Mode Register	
Commands	
Timings	5
System	7
Description	7
Pin Mapping	
Timing	
Code	
Command MCU's Code	
Data MCU's Code	
Design Errors	
Miscellaneous	20
Links	
References	

Objective

Set up a system to write and read data from a single address on the SDRAM chip.

Components/Tools

- SDR SDRAM chip (part no. MT48LC2M32B2)
- 86-pin TSOP socket
- 2 8-bit MCUs (part no. PIC18F45K50)
- Power supply
- Function generator

SDRAM Chip

Memory Organization

64 Mbit total memory

- 4 banks, 16 Mbit each
 - 2¹¹ rows * 2⁸ columns * 32 bits
 - Address bits specify location at which operations take place, specific to the command issued (see A[10:0] in "Pinout" sub-section).

<u>Pinout</u>

Only included pinout description that is relevant to the current system's setup.

-						`
Ы	• ₁	VDD		Vss	86	Ь
	2	DQ0		DQ15	85	
\exists	3	VDDQ		VssQ	84	
	4	DQ1		DQ14	83	
	5	DQ2		DQ13	82	
\Box	6	VssQ		VDDQ	81	田
	7	DQ3		DQ12	80	
	8	DQ4		DQ11	79	
	9	VDDQ		VssQ	78	\Box
	10	DQ5		DQ10	77	
	11	DQ6		DQ9	76	
Ш	12	VssQ		VDDQ	75	Ш
	13	DQ7		DQ8	74	
田	14	NC		NC	73	Ш
Щ	15	VDD		Vss	72	Ш
田	16	DQM0		DQM1	71	Ш
田	17	WE#		NU	70	Ш
田	18	CAS#		NC	69	Ш
田	19	RAS#		CLK	68	Ш
田	20	CS#		CKE	67	Ш
田	21	NC		A9	66	
田	22	BA0		A8	65	ш
Щ	23	BA1		A7	64	
	24	A10		A6	63	
	25	A0		A5	62	
	26	A1		Α4	61	
	27	A2		A3	60	\Box
Щ	28	DQM2		DQM3		Ш
Щ	29	VDD		Vss	58	\Box
Щ	30	NC		NC	57	Ш
	31	DQ16		DQ31	56	
Щ	32	VssQ		VDDQ	55	\Box
	33	DQ17		DQ30		\blacksquare
	34	DQ18		DQ29	53	
	35	VDDQ		VssQ	52	
	36	DQ19		DQ28	51	
\equiv	37	DQ20		DQ27	50	园
\neg	38	VssQ		VDDQ	49	
	39	DQ21		DQ26	48	
	40 41	DQ22 VDDQ		DQ25 VssO	47 46	畾
	41	DQ23		DQ24	45	
	43	VDD		Vs <u>s</u>	45	
Щ	43	VUU				厂
			igura 2			

Figure 2: TSOP Pinout

Pin	Туре	Description
CLK	Input	Supplied clock signal. All SDRAM input is sampled on the rising edge.
CKE	Input	Clock enable; HIGH = enable CLK, LOW = disable CLK.
CS#	Input	Chip select; LOW = select SDRAM, HIGH = deselect SDRAM. All commands ignored when deselected.
CAS#, RAS#, WE#	Input	Command inputs (along with CS#) that determine the command being issued to the SDRAM.
DQM[3:0]	Input	DQ mask. Each DQM bit corresponds to 8 bits on DQ:
		$DQM[3] \rightarrow DQ[31:24], DQM[2] \rightarrow DQ[23:16],$
		$DQM[1] \rightarrow DQ[15:8], DQM[0] \rightarrow DQ[7:0].$
		HIGH = high-Z, LOW = valid I/O (see Figure 3)
BA[1:0]	Input	Bank address; SDRAM has 4 banks. Defines which bank to issue command to. Also used for LMR command (see Figure 4).
A[10:0]	Input	Address bits. During ACTIVE command, A[10:0] = row address. During READ/WRITE command, A[7:0] = column address and A[10] enables (HIGH) or disables (LOW) auto-precharge. Also used for LMR command (see Figure 4).
DQ[31:0]	I/O	Data I/O to/from SDRAM.
V _{DDQ}	Supply	DQ power.
Vssq	Supply	DQ ground.
V _{DD}	Supply	SDRAM power.
Vss	Supply	SDRAM ground.
NC	-	Not connected.
NU	-	Not used.

DQM to DQ Relation

Mode Register

The mode register defines the operation of the SDRAM chip which involves the writeburst mode, the CAS latency (number of clock cycles between a READ and the data being output on DQ), the burst type, and the burst length.

The mode register is programmed with the LOAD MODE REGISTER (LMR) command and it must be done when all banks are idle (done with PRECHARGE command).

LMR command uses BA[1:0] as the most significant 2 bits and A[10:0] as the least significant 11 bits for the mode register.

Figure 4: Mode Register

Commands

Command Name	CS#	RAS#	CAS#	WE#	DQM	BA[1:0]	A[10:0]	DQ
COMMAND INHIBIT	H/1	Х	Х	Х	X	X	X	Х
NO OPERATION	L/0	H/1	H/1	H/1	Х	Х	X	Х
ACTIVE	L/0	L/0	H/1	H/1	X	Bank	Row	Х
READ	L/0	H/1	L/0	H/1	L/H / 0/1	Bank	Column	Output
WRITE	L/0	H/1	L/0	L/0	L/H / 0/1	Bank	Column	Input
BURST TERMINATE	L/0	H/1	H/1	L/0	X	Х	X	Х
PRECHARGE	L/0	L/0	H/1	L/0	X	Х	All/Single	Х
REFRESH	L/0	L/0	L/0	H/1	X	Х	X	Х
LOAD MODE REGISTER	L/0	L/0	L/0	L/0	X	MR[12:11]	MR[10:0]	Х
READ/WRITE Enable	Х	Х	Х	Х	L/0	Х	Х	Valid
READ/WRITE Inhibit	Х	Х	Х	Х	H / 1	X	X	High-Z

Notes:

PRECHARGE

If A[10] = 1, precharge all banks (deactivate all rows).

If A[10] = 0, precharge bank determined by BA[1:0] (deactivate all rows in that specific bank).

REFRESH

If CKE = 1, REFRESH is AUTO REFRESH command and must be explicitly issued.

If CKE = 0, REFRESH is SELF REFRESH command and the SDRAM refreshes itself.

Timings

CAS Latency, CL

CAS – Column Address Strobe (deprecated term)

It is the number of clock cycles between sending a column address to the SDRAM and the data being available on DQ. (1, 2)

Can be set to 1, 2, or 3 clock cycles by programming the mode register.

Mode Register Delay, tmrd

Delay between programming the mode register and issuing another command.

Row Active Time, tras

The minimum number of clock cycles required between ACTIVE and issuing PRECHARGE. In SDRAM modules, this is t_{RCD} + CL. This is the time needed to internally refresh the row and overlaps with t_{RCD} . (1)

Row Cycle Time, t_{RC}

The minimum time in cycles it takes a row to complete a full cycle, which is $t_{RC} = t_{RAS} + t_{RP}$. If this is set too short it can cause corruption of data and if it is too high, it will cause a loss in performance, but increase stability. ⁽³⁾

Row Address to Column Address Delay, trcd

The minimum number of clock cycles required between opening a row of memory (ACTIVE) and accessing columns within it (READ/WRITE). The time to read the first bit of memory from a DRAM without an active row is t_{RCD} + CL. (1)

Row Refresh Cycle Timing, trec

Determines the number of cycles to refresh a row on a memory bank. If this is set too short, it can cause corruption of data and if it is too high, it will cause a loss in performance, but increased stability. (3)

Row Precharge Time, t_{RP}

The minimum number of clock cycles required between issuing PRECHARGE and opening the next row. $^{(1)}$

Timings according to the datasheet:

Parameter		143 MHz		167 MHz		167 MHz		183 MHz		200 MHz	
		Min.	Max.								
ACTIVE to PRECHARGE	t _{RAS}	42	120k	42	120k	42	120k	38.7	120k	38.7	120k
Mode Register Delay	tmrd	14	-	12	-	12	-	11	-	10	1
ACTIVE to ACTIVE	t _{RC}	70	-	60	-	60	-	55	-	55	-
ACTIVE to READ/WRITE Delay	tRCD	20	-	18	ı	18	-	16.5	-	15	-
AUTO REFRESH Period	trfc	70	-	60	ı	60	ı	60	-	60	1
PRECHARGE Period	t _{RP}	20	-	18	-	18	-	16.5	-	15	-

ns

System

Description

This system uses two MCUs: one for issuing commands to the SDRAM chip and to handle timing ("Command MCU"), and one to connect to the SDRAM's DQ I/O bus ("Data MCU"). A function generator is used as the SDRAM's clock signal. A power supply at 3.3 V is used to power the whole system.

Pin Mapping

The PIC18F45K50 has 5 8-bit ports: PORTA through PORTE.

PORTA, PORTB, and PORTD each have all their 8 bits available for general-purpose use.

PORTC has 5 bits and PORTE has 3 bits available for general-purpose use.

To lessen the wires in the design, only 4 pins of DQ are being used.

Figure 5: System Diagram

Command MCU	Data MCU	SDRAM
PORTA —		→ A[10:3]
PORTB[3:0] -		{CS#, RAS#, CAS#, WE#}
PORTC[7]		→ CKE
PORTD[7:6]-		→{Vdd, Vddq}
PORTE[0]—	→PORTA[0]	
	PORTB[3:0]	DQ[3:0]
		$V_{DD} \rightarrow DQM[3:1]$
		$GND \rightarrow DQM[0]$
		GND → BA[1:0]
		GND → A[2:0]

See page 11 and 17 for the pin mapping code.

Timing

The PIC18F45K50 MCUs are using their 16 MHz internal oscillator.

The MCU's smallest instruction (16 bits) uses 4 cycles, so 1 instruction cycle = 4 clock cycles, meaning 4 M instruction cycles per second.

Setting up one of the 8-bit ports in the MCU (loading and outputting a value) requires two instruction cycles.

This is important for constructing the code because of the SDRAM's timing constraints; the SDRAM expects cycles of NOPs the cycle immediately after issuing some commands.

The commands the system is currently using that have timing constraints are PRECHARGE, AUTO REFRESH, LOAD MODE REGISTER, ACTIVE, READ, and WRITE.

Constraint	Requirement	Commands
tmrd	2 cycles	LOAD MODE REGISTER
trcd	3 cycles	ACTIVE
trfc	2 cycles	AUTO REFRESH
t _{RP}	3 cycles	PRECHARGE, READ/WRITE (when auto PRECHARGE is enabled)

For example, if I issue a PRECHARGE command, the SDRAM needs the next 3 cycles to be NOP commands before issuing the next command. As mentioned before, setting up a port, specifically PORTB which is being used for issuing commands, takes 2 cycles. Because of that, the NOP command cannot be issued the cycle immediately after issuing a PRECHARGE which will cause unwanted behavior from the SDRAM.

To try and solve this problem, the clock signal used for the SDRAM is 400 kHz, which is a tenth of the MCUs' instruction cycles per second, meaning there is a buffer time between the SDRAM clock's rising edge in which the command MCU can set up its ports and fulfill the SDRAM's timing constraints (see Figure 6).

I haven't done an exact timing analysis, but I think the 10 MCU buffer cycles between each SDRAM cycle should be sufficient.

Also, the SDRAM requires a REFRESH every 15.625 µs to maintain data integrity.

Figure 6: MCU to SDRAM Clock Signal Visual

<u>Code</u>

[Code documentation omitted]

Design Errors

- The current system ties DQM[3:1] high and DQM[0] low. I've observed that V_{DD} stays high due to this, regardless of the output from the Command MCU's POWER port.
- The GO button works on the first iteration. Pressing STOP and GO usually
 produces incorrect results. The design needs to be disconnected from power
 before pressing GO again which will produce consistent, correct results.
- Supplying power to the design with my demo board produced random, incorrect results when reading back data from the SDRAM. Switching over to a standalone power supply fixed this and gave consistent, correct data; the data that was written was the same data that was read.
- The DQ signals read from the SDRAM are weak and jittery, probably because of the low clock frequency / low refresh rate.

Miscellaneous

References

- 1.) Memory Timings Wikipedia https://en.wikipedia.org/wiki/Memory_timings#:~:text=The%20timing%20of%20modern%20synchronous,%2D8%2D8%2D24.
- 2.) What Is CAS Latency in RAM? CL Timings Explained Tom's Hardware https://www.tomshardware.com/reviews/cas-latency-ram-cl-timings-glossary-definition,6011.html
- 3.) Memory Timings Explained TechPowerUp
 https://www.techpowerup.com/articles/overclocking/AMD/memory/131/2