In this project I implemented 3 different ways of solving linear equations: Gaussian Elimination, Jacobi Iterative Method, and Gauss-Seidel Method. I ran the tests for $n = \{10,20,40,50,100,200,500\}$ and took the average run time for ten thousand random matrices. Below are the results.

n	(Gaussian	Jacobi	Gauss-Seidel
	10	3063.89972	8019.93038	9328.59474
	20	7172.26805	21861.67594	25868.97236
	40	26712.70062	77435.70178	93973.41363
	50	42461.74884	119474.74282	144263.64639
-	100	201246.43857	484839.1391	580660.53565
2	200	1111049.36627	1926952.94486	2283161.98282

Fig 1. Raw data from experiment

Fig 2. Graphed values of Fig 1

As you can see the Gaussian method is much more efficient, than the two iterative methods. While similar the Jacobi version is slightly faster, however I believe this is just because the code is more efficient. Normally Gauss-Seidel find the solution in fewer iterations, so if the matrices were solvable (see below) then I would expect it to operate faster.

Some issues I found: generating random matrices doesn't not often generate diagonally dominant matrices, which is a requirement for solving with either iterative method, so the time is essentially the time it takes to do 50 iterations.