Obliczenia naukowe Sprawozdanie z listy 2

Wrocław, 11 listopada 2017

1.1 Opis problemu

W zadaniu należy powtórzyć funkcje zadania piątego z listy pierwszej zmieniając dane początkowe. Zmiany danych są następujące: usunięcie "9" z najmniej znaczącej pozycji w x_4 i "7" również z najmniej znaczącej pozycji w x_5 .

1.2 Rozwiązanie

Program został przerobiony wyłącznie w myśl polecenia, tz. usunięto "9" z najmniej znaczącej pozycji w x₄ i "7" również z najmniej znaczącej pozycji w x₅.

1.3 Wyniki programu i wnioski

podpunkt	Lista1	lista2					
1)	-0.4999443	-0.4999443					
2)	-0.4543457	-0.4543457					
3)	-0.5	-0.5					
Float64							
1)	1.0251881368296672e-10	-0.004296342739891585					
2)	-1.5643308870494366e-10	-0.004296342998713953					
3)	0.0	-0.004296342842280865					

W prezentowanych przykładach widać, że ta stosunkowo niewielka zmiana wartości nie ma wpływu na wartości wyników w arytmetyce Float32 (należy podkreślić, że zachodzi to dla tego przykładu i nie jest zasadą). Oczywiste jest to, że dla arytmetyki Float64, ta zmiana ma znaczny wpływ na wyniki.

2.1 Opis problemu

Należy przedstawić w dwóch dowolnych programach wykres funkcji $f(x) = e^x \ln(1 + e^{-x})$ i policzyć granicę tej funkcji przy x dążącym do nieskończoności. Następnie podsumować wykresy w stosunku do obliczonej granicy.

2.2 Rozwiązanie

Funkcję obliczono w pythonie3 z użyciem biblioteki matplotlib i używając wolframalpha.com. Poniżej zamieszczone są wykresy z tych programów.

2.3 Wyniki programu i wnioski

Poniżej zamieszczone są wykresy z tych programów.

Wykres w pythonie z użyciem matplotlib.

Wykres w wolframalpha.

Oba programy prezentują złe rozwiązanie, granica tej funkcji jest w nieskończoności. Problemem jest redukcja cyfr znaczących.

3.1 Opis problemu

W zadaniu jest układ równań liniowych Ax = b. Należy wygenerować macierz A poprzez dwie funkcje: hilb() i matcond(n, c). Przedstawiony wyżej układ równań należy rozwiązać dla obu macierzy dwoma algorytmami: eliminacją Gaussa oraz $x = A^{-1}b$. Dla macierzy Hilberta, n m mieć rosnący stopień n > 1 (w zadaniu przyjęto od 1 do 15) oraz dla macierzy losowej n, n = 5, 10, 20 z rosnącym wskaźnikiem uwarunkowania c = 1, 10, 10 3, 10 7, 10 12, 10 16. Porównać obliczony x z rozwiązaniem dokładnym x = (1, ..., 1) T.

3.2 Rozwiązanie

Do rozwiązania tego zadania zostały użyte funcje hilb() i matcond(n, c), zamieszczone za stronie wraz z listą zadań.

3.3 Wyniki programu i wnioski

Macierz Hilberta

Stopień	Rząd	w. uwarunkowania	Eliminacja Gaussa "błąd bezwzględny"	Odwrotność A "błąd bezwzględny"
1	1	1.0	0.0	0.0
2	2	19.28147006790397	2.220446049250313e-16	6.661338147750939e- 16
3	3	524.0567775860644	1.1102230246251565e-15	0.0
4	4	15513.73873892924	1.1102230246251565e-15	0.0
5	5	476607.25024259434	4.440892098500626e-16	4.016342813883966e- 12
6	6	1.4951058642254665e7	2.544631172440859e-13	1.8973445037318015e- 10
7	7	4.75367356583129e8	2.298605750183924e-12	5.170100347839934e-9
8	8	1.5257575538060041e10	2.112532371256748e-12	4.138747469184523e-7
9	9	4.931537564468762e11	1.8340884366807586e-12	1.005013033417157e-5
10	10	1.6024416992541715e13	1.1781772890628872e-8	0.00017264384044013 426
11	11	5.222677939280335e14	4.155021615659393e-8	0.009112364668335537
12	11	1.7514731907091464e16	0.03094489608581652	0.2801969035608227
13	12	3.344143497338461e18	0.02190479180603866	16.457408959685306
14	12	6.200786263161444e17	2.865535904720249	27.609156963699608
15	12	3.674392953467974e17	14.72487684915972	24.506955071038927

Macierz losowa

Stopień	Rząd	С	Eliminacja Gaussa "błąd bezwzględny"	Odwrotność A "błąd bezwzględny"
5	5	1	4.440892098500626e-16	4.440892098500626e-16
5	5	10	8.881784197001252e-16	4.440892098500626e-16
5	5	10 ³	2.3092638912203256e-14	2.220446049250313e-14
5	5	10 ⁷	4.203219994280971e-10	4.165001676881275e-10
5	5	1012	8.204702309244638e-5	7.591609475321448e-5
5	4	10^{16}	0.34235728600055637	0.5032578976016011
10	10	1	4.440892098500626e-16	4.440892098500626e-16
10	10	10	8.881784197001252e-16	1.3322676295501878e-15
10	10	10 ³	4.218847493575595e-14	5.906386491005833e-14
10	10	10 ⁷	3.277111915167552e-10	3.1349189910656605e-10
10	10	1012	1.982191089089369e-5	2.1110530656454074e-5
10	9	10^{16}	0.34978208867433436	0.5493423428592741
20	20	1	8.881784197001252e-16	8.881784197001252e-16
20	20	10	8.881784197001252e-16	8.881784197001252e-16
20	20	10 ³	1.7763568394002505e-15	8.881784197001252e-16
20	20	10 ⁷	1.4523937608146298e-9	1.429278917441934e-9
20	20	10 ¹²	0.00019167401832032027	0.0001825401942197047
20	19	10 ¹⁶	0.10116602692566268	0.009885163201089675

W przypadku macierzy Hilberta widać, że wraz ze wzrostem stopnia rośnie wskaźnik uwarunkowania. Błąd w macierzy losowej zależy od wskaźnika uwarunkowania.

4.1 Opis problemu

W zadaniu należy znaleźć pierwiastki wielomianu Wilkinsona i je sprawdzić. Następnie należy powtórzyć eksperyment ze zmienionymi współczynnikami.

4.2 Rozwiązanie

Do rozwiązania tego zadania użyto funkcji zawartych w pakiecie "Polynomials".

4.3 Wyniki programu i wnioski

	ZERO P(X)	$ P(z_k) $	$ p(z_k) $	$ z_k-k $
1	0.99999999999654 - 0.0im	3584.0	634368.0	3.4638958368304884e- 14
2	2.0000000000486127 - 0.0im	304128.0	7.37869763020125e19	4.8612669445446954e- 11
3	3.0000000433202807 - 0.0im	3.0859776e7	3.320414101082221e20	4.332028069597982e-8
4	3.9999886843607984 - 0.0im	1.42082048e9	8.854353660946042e20	1.1315639201647798e-5
5	5.000753016608298 - 0.0im	2.3614518784e10	1.8455774495969302e21	0.0007530166082982959
6	5.979628980120191 - 0.0im	2.17234925056e11	3.284469129068717e21	0.020371019879808827
7	7.171865642912604 - 0.39750901823459195im	2.084863262462552 7e12	5.886152623156008e21	0.4330718402200633
8	7.171865642912604 + 0.39750901823459195im	2.084863262462552 7e12	5.886152623156008e21	0.9185967194402466
9	8.660877547789783 - 1.493662006771456im	2.490465177209304 e13	1.1121220596009957e22	1.5316756275613987
10	8.660877547789783 + 1.493662006771456im	2.490465177209304 e13	1.1121220596009957e22	2.0060596034230986
11	10.600498912135265 - 2.5798564233514103im	3.508338830399805 6e14	2.1827116333363318e22	2.610605348250217
12	10.600498912135265 + 2.5798564233514103im	3.508338830399805 6e14	2.1827116333363318e22	2.9350063816015983
13	13.118130949165623 - 3.3539086930512845im	4.744585384679126 e15	4.25231891024091e22	3.3559884449258384
14	13.118130949165623 + 3.3539086930512845im	4.744585384679126 e15	4.25231891024091e22	3.4679095351730993
15	16.03729626427378 - 3.3452957838069977im	4.233679258731804 e16	7.62673366086237e22	3.502425933696988
16	16.03729626427378 + 3.3452957838069977im	4.233679258731804 e16	7.62673366086237e22	3.345503682928126
17	18.684757661955764 - 2.276332882742326im	1.643812318220367 7e17	1.1653598491747047e23	2.831978067106566
18	18.684757661955764 + 2.276332882742326im	1.643812318220367 7e17	1.1653598491747047e23	2.37709580132167

19	20.236387659523327 - 0.6666508737066669im	2.427546693812665 3e17	1.4555938335886878e23	1.4046628891073591
20	20.236387659523327 + 0.6666508737066669im	2.427546693812665 3e17	1.4555938335886878e23	0.7073206578269708

Tabla poniżej przedstawia wyniki wielomianu P(x) po zmianie współczynnika.

	ZERO P(X)	P(ZK) POLYVAL
1	0.99999999999972 - 0.0im	2560.0
2	2.000000000026372 - 0.0im	159744.0
3	3.000000048335173 - 0.0im	3.4476032e7
4	3.999988417791086 - 0.0im	1.454652928e9
5	5.000758195970539 - 0.0im	2.3779106816e10
6	5.979598056551436 - 0.0im	2.1761599744e11
7	7.172219089474538 - 0.3973224904603209im	2.085575818924717e12
8	7.172219089474538 + 0.3973224904603209im	2.085575818924717e12
9	8.662465519873168 - 1.4936152522028203im	2.4928242224795723e13
10	8.662465519873168 + 1.4936152522028203im	2.4928242224795723e13
11	10.606662828183918 - 2.5828405072296126im	3.53022441033119e14
12	10.606662828183918 + 2.5828405072296126im	3.53022441033119e14
13	13.150359124711105 - 3.3696914706386583im	4.890486851343519e15
14	13.150359124711105 + 3.3696914706386583im	4.890486851343519e15
15	16.201200977934306 - 3.3581589825552562im	4.7281140656315704e16
16	16.201200977934306 + 3.3581589825552562im	4.7281140656315704e16
17	18.18996550876618 - 0.0im	1.028806776915538e17
18	19.235516090856304 - 2.068534468138748im	2.0655746024408458e17
19	19.235516090856304 + 2.068534468138748im	2.0655746024408458e17
20	20.77284262981625 - 0.0im	2.5909450988774707e17

Współczynnik uwarunkowania zadania jest duży, żadne z wyników nie są dokładne.

5.1 Opis problemu

W zadaniu rozważane jest równanie rekurencyjne: p_{n+1} = p_n + rp_n (1- p_n), dla n = 0, 1, ...

5.2 Rozwiązanie

Rozwiązanie opiera się o wywoływanie funkcji w sposób rekurencyjny.

5.3 Wyniki programu i wnioski

	FLOAT32	FLOAT32 Z	FLOAT64	FLOAT64 Z
		MODYFIKACJA		MODYFIKACJA
1	0.0397	0.0397	0.0397	0.0397
2	0.15407173	0.15407173	0.15407173000000002	0.15407173000000002
3	0.5450726	0.5450726	0.5450726260444213	0.5450726260444213
4	1.2889781	1.2889781	1.2889780011888006	1.2889780011888006
5	0.1715188	0.1715188	0.17151914210917552	0.17151914210917552
6	0.5978191	0.5978191	0.5978201201070994	0.5978201201070994
7	1.3191134	1.3191134	1.3191137924137974	1.3191137924137974
8	0.056273222	0.056273222	0.056271577646256565	0.056271577646256565
9	0.21559286	0.21559286	0.21558683923263022	0.21558683923263022
10	0.7229306	0.722	0.722914301179573	0.722
38	0.81736827	1.2292118	1.3326056469620293	0.05704534228698055
39	1.2652004	0.3839622	0.0029091569028512065	0.2184188559180059
40	0.25860548	1.093568	0.011611238029748606	0.7305550338104317

Przy każdym kolejnym wywołaniu rekurencyjnym powiększa się różnica między wersją bez i z modyfikacją.

6.1 Opis problemu

W zadaniu należy rozwiązać równanie rekurencyjne $x_{n+1}:=x^2_n+c$ dla n=0,1,...,

6.2 Rozwiązanie

Użyto zgodnie z poleceniem wywołań rekurencyjnych.

6.3 Wyniki programu i wnioski

	1	2	3	4	5	6	7
1	-1.0	2.0	1.9999999999996	0.0	0.0	-0.4375	-0.9375
2	-1.0	2.0	1.999999999998401	-	-	-0.80859375	-0.12109375
				1.0	1.0		
3	-1.0	2.0	1.999999999993605	0.0	0.0	-0.3461761474609375	-0.9853363037109375
4	-1.0	2.0	1.99999999997442	-	-	-0.8801620749291033	-0.029112368589267135
				1.0	1.0		
5	-1.0	2.0	1.9999999999897682	0.0	0.0	-0.2253147218564956	-0.9991524699951226
6	-1.0	2.0	1.9999999999590727	-	-	-0.9492332761147301	-0.0016943417026455965
				1.0	1.0		
7	-1.0	2.0	1.999999999836291	0.0	0.0	-0.0989561875164966	-0.9999971292061947
8	-1.0	2.0	1.9999999993451638	-	-	-0.9902076729521999	-0.741579369278327e-6
				1.0	1.0		
9	-1.0	2.0	1.9999999973806553	0.0	0.0	-0.01948876442658909	-0.999999999670343
10	-1.0	2.0	1.999999989522621	-	-	-0.999620188061125	-6.593148249578462e-11
				1.0	1.0		
11	-1.0	2.0	1.9999999580904841	0.0	0.0	-0.0007594796206411569	-1.0
12	-1.0	2.0	1.9999998323619383	-	-	-0.9999994231907058	0.0
				1.0	1.0		
13	-1.0	2.0	1.9999993294477814	0.0	0.0	-1.1536182557003727e-6	-1.0

14	-1.0	2.0	1.9999973177915749	-	-	-0.999999999986692	0.0
				1.0	1.0		
15	-1.0	2.0	1.9999892711734937	0.0	0.0	-2.6616486792363503e- 12	-1.0
38	-1.0	2.0	1.8145742550678174	-	-	-1.0	0.0
				1.0	1.0		
39	-1.0	2.0	1.2926797271549244	0.0	0.0	0.0	-1.0
40	-1.0	2.0	-	-	-	-1.0	0.0
			0.3289791230026702	1.0	1.0		

^{*} dane wejściowe dane:

1.
$$c = -2$$
, $x_0 = 1$

2.
$$c = -2$$
, $x_0 = 2$

4.
$$c = -1$$
, $x_0 = 1$

5.
$$c = -1$$
, $x_0 = -1$

6.
$$c = -1$$
, $x_0 = 0.75$

7.
$$c = -1$$
, $x_0 = 0.25$

Można zauważyć, że dla niektórych danych wejściowych program działa poprawnie (1, 2, 4, 5). Jednak nie jest to satysfakcjonujące. Ostatnie dwa przykłady pokazują, że kolejne operacje prowadzą do utraty jakiejkolwiek precyzji.