AL-TR-1992-0004

ARMSTRONG

LABORATORY

AD-A248 644

SOURCE EMISSION TESTING OF THE MUNITIONS DEACTIVATION FURNACE, KADENA AIR BASE, OKINAWA, JAPAN

Paul T. Scott, Captain, USAF

OCCUPATIONAL AND ENVIRONMENTAL HEALTH DIRECTORATE Brooks Air Force Base, TX 78235-5000

March 1992

Final Technical Report for Period 24-31 September 1991

Approved for public release; distribution is unlimited.

92 4 13 022

92-09434

AIR FORCE SYSTEMS COMMAND

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

Government agencies and their contractors registered with Defense Technical Information Center (DTIC) should direct requests for copies to: DTIC, Cameron Station, Alexandria VA 22304-6145.

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161

PAUL T. SCOTT, Capt, USAF Chief, Air Quality Function

Paul TSat

EDWARD F. MAHER, Col, USAF, BSC Chief, Bioenvironmental Engineering Division

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704-0188

15. NUMBER OF PAGES

Public reporting burden for this collection of information is estimated to average 1 hour per response including the time for reviewing instructions source, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services. Directorate for information Department and Reports. 1215 Jefferson Davis Highway, Suite 1204, Affington, VA, 22202-4302, and to the Office of Management and Budget. Papermork Reduction Project (0704, 0788). Washington, DC, 20503

	2. REPORT DATE March 1992	Final 24 -	ID DATES COVERED
4. TITLE AND SUBTITLE	Haren 1992	Fillal 24	5. FUNDING NUMBERS
	-C -1 - 16 14 !	D	3. FORDING NOWINGERS
Source Emission Testing Furnace, Kadena Air Base		Deactivation	
ruinace, Rauena Ali nase	e, Okiliawa, Japan		1
5. AUTHOR(S)			1
Paul T. Scott			
7. PERFORMING ORGANIZATION NAME	(6) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
. PERFORMING ORGANIZATION NAME	(3) AND ADDRESS(ES)		REPORT NUMBER
Armstrong Laboratory			AT TD 1002 0004
Occupational and Environ		rectorate	AL-TR-1992-0004
Brooks Air Force Base,	TX 78235-5000		
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(E	:S)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES	<u></u>		
			Last DISTRIBUTION CODS
12a. DISTRIBUTION / AVAILABILITY STA	TEMENT		12b. DISTRIBUTION CODE
			1
	44 . 49 . 4		
Approved for public rela	ease; distribution	is unlimited.	
Approved for public rel	ease; distribution	n is unlimited.	
Approved for public rel	ease; distribution	n is unlimited.	
Approved for public relations and approv	ease; distribution	n is unlimited.	
			as conducted on the
13. ABSTRACT (Maximum 200 words) Source emission testing munitions deactivation	for total lead ar	nd particulates w	ions Squadron area of
13. ABSTRACT (Maximum 200 words) Source emission testing munitions deactivation Kadena Air Base, Okinawa	for total lead ar furnace located in a, Japan. Test re	nd particulates w n the 400th Munit esults indicate t	ions Squadron area of hat if most state or EPA
Source emission testing munitions deactivation Kadena Air Base, Okinaw standards were to apply	for total lead an furnace located in a, Japan. Test re , the munitions in	nd particulates w n the 400th Munit esults indicate t ncinerator would	ions Squadron area of hat if most state or EPA exceed these standards.
Source emission testing munitions deactivation Kadena Air Base, Okinaw standards were to apply Total lead is also high	for total lead ar furnace located in a, Japan. Test re , the munitions in , but there are no	nd particulates w n the 400th Munit esults indicate t ncinerator would o appropriate sta	ions Squadron area of hat if most state or EPA exceed these standards. ndards in which to
Source emission testing munitions deactivation Kadena Air Base, Okinaw standards were to apply	for total lead ar furnace located in a, Japan. Test re , the munitions in , but there are no	nd particulates w n the 400th Munit esults indicate t ncinerator would o appropriate sta	ions Squadron area of hat if most state or EPA exceed these standards. ndards in which to
Source emission testing munitions deactivation Kadena Air Base, Okinaw standards were to apply Total lead is also high	for total lead ar furnace located in a, Japan. Test re , the munitions in , but there are no	nd particulates w n the 400th Munit esults indicate t ncinerator would o appropriate sta	ions Squadron area of hat if most state or EPA exceed these standards. ndards in which to
13. ABSTRACT (Maximum 200 words) Source emission testing munitions deactivation Kadena Air Base, Okinawa standards were to apply Total lead is also high	for total lead ar furnace located in a, Japan. Test re , the munitions in , but there are no	nd particulates w n the 400th Munit esults indicate t ncinerator would o appropriate sta	ions Squadron area of hat if most state or EPA exceed these standards. ndards in which to
13. ABSTRACT (Maximum 200 words) Source emission testing munitions deactivation Kadena Air Base, Okinawa standards were to apply Total lead is also high	for total lead ar furnace located in a, Japan. Test re , the munitions in , but there are no	nd particulates w n the 400th Munit esults indicate t ncinerator would o appropriate sta	ions Squadron area of hat if most state or EPA exceed these standards. ndards in which to
13. ABSTRACT (Maximum 200 words) Source emission testing munitions deactivation Kadena Air Base, Okinawa standards were to apply Total lead is also high	for total lead ar furnace located in a, Japan. Test re , the munitions in , but there are no	nd particulates w n the 400th Munit esults indicate t ncinerator would o appropriate sta	ions Squadron area of hat if most state or EPA exceed these standards. ndards in which to
13. ABSTRACT (Maximum 200 words) Source emission testing munitions deactivation Kadena Air Base, Okinawa standards were to apply Total lead is also high	for total lead ar furnace located in a, Japan. Test re , the munitions in , but there are no	nd particulates w n the 400th Munit esults indicate t ncinerator would o appropriate sta	ions Squadron area of hat if most state or EPA exceed these standards. ndards in which to
Source emission testing munitions deactivation Kadena Air Base, Okinaw standards were to apply Total lead is also high	for total lead ar furnace located in a, Japan. Test re , the munitions in , but there are no	nd particulates w n the 400th Munit esults indicate t ncinerator would o appropriate sta	ions Squadron area of hat if most state or EPA exceed these standards. ndards in which to
13. ABSTRACT (Maximum 200 words) Source emission testing munitions deactivation Kadena Air Base, Okinawa standards were to apply Total lead is also high	for total lead ar furnace located in a, Japan. Test re , the munitions in , but there are no	nd particulates w n the 400th Munit esults indicate t ncinerator would o appropriate sta	ions Squadron area of hat if most state or EPA exceed these standards. ndards in which to

50 Source Emission Testing Kadena Okinawa Lead 16. PRICE CODE Particulates SECURITY CLASSIFICATION OF THIS PAGE 20. LIMITATION OF ABSTRACT 17. SECURITY CLASSIFICATION SECURITY CLASSIFICATION OF ABSTRACT OF REPORT Unclassified <u>Unclassified</u> Unclassified

14 SUBJECT TERMS

TABLE OF CONTENTS

		Page
INTRODU	CTION	1
Site Appl	Descriptionicable Standards and Guidelines	1
METHODS	AND MATERIALS	4
RESULTS	AND DISCUSSION	4
	d Resultsysis Results	
CONCLUS	IONS AND RECOMMENDATIONS	6
REFEREN	CES	6
APPENDI	XES:	
A B C D	Personnel Field Data Calibration Data Laboratory Report	13
	List of Figures	
Fig. No.		Page
1	View of 400th MMS Munitions Deactivation Furnace	1
2	View of Conveyer into Incinerator	2
3	View of 400th MMS Incinerator Stack	3
	List of Tables	
Table No.		Page
1	Field Data Summary	• • • 5
2	Analysis Summary	• • • 6

SOURCE EMISSION TESTING OF THE MUNITIONS DEACTIVATION FURNACE KADENA AB, OKINAVA, JAPAN

INTRODUCTION

On 24-31 Sep 91, source emission testing for lead and particulate emissions was conducted on the munitions deactivation facility located in the 400th Munitions Maintenance Squadron (MMS) area of Kadena AB. Testing was performed by the Air Quality Function of Armstrong Laboratory. This survey was requested by the Chief, Bioenvironmental Engineering Services, 313th Medical Group (313 Med Gp/SGPB) to gather data necessary to satisfy an Environmental Compliance Assessment and Management Plan (ECAMP) deficiency. Personnel involved with on-site testing are listed in Appendix A.

Site Description

The deactivation furnace is a rotating kiln equipped with a small secondary burner/chamber at one end of the kiln (Fig. 1).

Figure 1. View of 400th MMS munitions deactivation furnace.

The incinerator is equipped with a continuous-feed conveyer which enters the incinerator just below the stack (Fig. 2). Emissions exit via a stack which extends through the roof and to 20.9 ft (6.38 m) above the ground (Fig. 3). Small arms ammunition, that is excess, no longer used, or out of date, is disposed of on a regular basis. Three different types of ammunition were used for the emission test which comprised 3 test runs: 20 mm high-explosive incendiary, 20 mm target tracer, and 7.62 mm and 5.56 mm ball cartridges.

Figure 2. View of conveyer into incinerator.

Applicable Standards and Guidelines

There are no particulate or lead standards for this facility; however, in order to establish a baseline, particulate emission results are compared with Environmental Protection Agency (EPA) new source performance standard (NSPS) for incinerators which is 0.08 grains/dry standard ft (gr/dscf) (1). Emission standards in other states for existing facilities range from a high of 0.10 gr/dscf (229.22 mg/m) in Alaska to a low of 0.04 gr/dscf (91.69 mg/m) in New York (2). A comparable source standard for lead does not exist; however, the time weighted average-permissible exposure limit (TWA-PEL) for lead, which is 0.15 mg/m, can be used to determine the relative risk with the appropriate dispersion model.

Figure 3. View of 400th MMS incinerator stack.

į	NTIS GRA&L	U.
	DTIC TAB	
	Unannounced	
	Justification	
-		
	By	
	Distribution/	
	I DICE Y CORP. WANT	

Special

METHODS AND MATERIALS

EPA Methods 1 through 5 and 12 were used for the sampling and analysis during this project.

Two sampling ports were installed at right angles in the stack. Ports were approximately 4 duct-diameters downstream and 3 duct-diameters upstream from any flow disturbance.

The inside stack diameter at the sampling port location is 23.5 in. (59.7 cm). Based on the duct-diameter, port location and type of sampling required (particulate), a total of 24 traverse points were determined for source emission evaluation.

Samples were collected using the sampling train of EPA Method 5. The train consisted of a button-hook probe nozzle, heated probe with stainless steel liner, a paper filter in a glass filter holder, impingers and pumping and metering device. Flue gas velocity pressure was measured at the nozzle tip using a Type-S pitot tube connected to a 10-in. inclined-vertical manometer. Type K thermocouples were used to measure flue gas as well as sampling train temperatures.

Prior to sampling, cyclonic flow was determined by using the Type S pitot tube and measuring the stack gas rotational angle at each traverse point. Flow conditions were considered acceptable since the arithmetic average of the rotational angles was less than 20° . A preliminary velocity pressure traverse was also accomplished at this time.

The total time for sampling run 1 was 60 min with sampling time for each traverse point at 2.5 min. Runs 2 and 3 had sampling times of 72 min with 3 min, respectively, for each sampling point.

A grab sample for Orsat analysis (measures oxygen and carbon dioxide for stack gas molecular weight determination) was taken during each sample run (1). Collected emission data and Orsat analysis data are in Appendix B. Calibration data are contained in Appendix C (3).

The emission calculations in Appendix B are made using "Source Testing Calculation and Check Programs for Hewlett-Packard 41 Calculators" developed by the EPA's Office of Air Quality Planning and Standards (4).

RESULTS AND DISCUSSION

Field Results

All 3 sampling runs were accomplished on 27 Sep 91. A summary of the field data from Appendix C is presented in Table 1.

The sampling time was modified after run 1 to draw a larger sample volume. A sample volume greater than 30 dscf is desirable and usually required for NSPS testing.

TABLE 1. FIELD DATA SUMMARY

Run #	Sampling Time (min.)	Meter Volume (dscf [*])	Stack Flow Rate (dscfm)	Isokinetics %	02/002	Particulate Mass (mg)
1	60	28.708	1,041	101.5	13.3/5.6	2,170.3
2	72	35.900	1,130	97.6	13.9/5.2	958.5
3	72	40.042	1,290	95.3	13.2/5.7	1,346.0

dscf is defined as dry standard cubic feet (1).
dscfm is defined as dry standard cubic feet per minute (1).

Isokinetics, which is the measure of the ratio sampling rate to the stack flow rate, is nominal for each run (3). The larger departure from 100% in runs two and three are not significant, and can be attributed to the increasing stack and ambient temperature as well as the rising atmospheric pressure associated with the departing typhoon Miriella.

Oxygen is slightly higher than required for excess air and may indicate too much ventilation or incomplete combustion.

A complete evaluation of the incinerator could not be accomplished without incinerator schematics and specifications; however, additional emission data (i.e., stack temperatures) from Appendix B with visual observations suggest that emissions are not adequately combusted.

Probe washes, impinger solutions, and blanks (7 samples) were left at Det 3, Armstrong Laboratory on 27 Sep 91. Samples were subsequently shipped to Armstrong Laboratory, Brooks AFB. Samples were received on 24 Oct 91 with the sample blank missing and the run 1 probe wash sample broken.

After gravimetric analysis to determine particulate concentrations, the samples were submitted for lead analysis to the Armstrong Laboratory, Occupational and Environmental Health Directorate, Analytical Services Division.

Analysis Results

All analyses were completed on 5 Dec 91. A summary of the laboratory results is presented in Table 2. The laboratory report is in Appendix D.

Particulate concentrations far exceed the allowable emissions of most states and those of the EPA's NSPS standard. Lead emissions are also high, but without an emission standard for comparison, the data cannot be adequately assessed. However, the data could be used within a dispersion model to determine ambient lead concentrations as well as deposition and accumulations in the surrounding area.

- 3. Quality Assurance Handbook for Air Pollution Measurement Systems Volume III, Stationary Source Specific Methods, U.S. Environmental Protection Agency, EPA-600/4-77-027-b, Research Triangle Park, North Carolina, December 1984.
- 4. Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators. U.S. Environmental Protection Agency, EPA-304/1-85-018, Research Triangle Park, North Carolina, May 1987.

TABLE 2. ANALYSIS SUMMARY

Run	Partic Emiss	ions .		ad sions
#	gr/dscf	mg/m ³	gr/dscf	mg/m ³
1*	1.167	2,670	0.0013	2.977
2	0.412	942.9	0.0013	2.931
3	0.519	1,187	0.0008	1.764
Average	0.700	1,600	0.0011	2.557

^{*} The particulate emissions of run one have been corrected for the damaged sample. The lead emissions have not been corrected.

CONCLUSIONS AND RECOMMENDATIONS

The test results show the munitions incinerator at Kadena AB is not in compliance with the EPA or many states' particulate emission standards. Though there are no lead standards for incinerators, it is expected that new EPA regulations, as well as state regulatory agencies, will soon address incinerator lead emissions. In addition, the data in this report could be used in conjunction with other sampling which was performed concurrently and/or used in a dispersion model to give a more viable result.

Stack temperatures, oxygen values, and visual observations indicate incomplete combustion. Several alternatives exist to reduce these emissions. A secondary burner located at the base of the stack providing a chamber temperature between 1600-1800 °F would ensure more complete combustion. In addition, this approach would affect the excass air since more oxygen would be used for combustion, producing more carbon diexide. It is questionable how much this modification would reduce emissions and whether the refractory could withstand these kinds of temperatures. Control equipment such as a wet scrubber is more expensive, but is guaranteed to reduce particulate emissions; a new incinerator is even more expensive, but may be more cost effective in the long term.

REFERENCES

- 1. "Standards of Performance for New Stationary Sources," Title 40, Part 60, Code of Federal Regulations, July 1, 1987.
- 2. "Alaska Air Quality Control Regulations," Title 18, Chapter 50, Alaska Administrative Code, June 2, 1988.

APPENDIX A

PERSONNEL

PERSONNEL

Armstrong Laboratory Stack Pack

Capt Paul T. Scott, Project Officer Maj Ramon Cintron-Ocasio AL/OEBQ Brooks AFB TX 78235-5000

Phone: DSN 240-3305

Commercial (512) 536-3305

Det 3, Armstrong Laboratory Personnel

Lt Col Elliot Ng TSgt Russell B. Kolbe Det 3, Armstrong Laboratory APO Scn Francisco 96239-5000

Phone: DSN 315-634-1769

APPENDIX B

FIELD DATA

	·	······	· · · · · · · · · · · · · · · · · · ·
	PREL	IMINARY SURVEY DATA (Stack Geometry)	
BASE KACENA A	Ph)	Munitions Incine	ntor
DATE 27 Sept SOURCE TYPE AND MA	3/	Munitions Inciner MPLING TEAM May Cintron / Cay	at Scott
SOURCE TYPE AND MA INCINERATOR SOURCE NUMBER	KE	() () () () () () () () ()	
SOURCE NUMBER	INS	23.5"	inches
RELATED CAPACITY		TYPEF	
DISTANCE FROM OUTS	DE OF NIPPLE TO INSID	E DIAMETER	. Inches
NUMBER OF TRAVERS	ES NU	MBER OF POINTS/TRAVERSE /2	
	LOCA"	TION OF SAMPLING POINTS A	LONG TRAVERSE
POINT	PERCENT OF DIAMETER	DISTANCE FROM INSIDE WALL (Inches)	TOTAL DISTANCE FROM OUTSIDE OF NIPPLE TO SAMPLING POINT (Inches)
1			4. 3
2			5 3
3		•	6.5
4			7 9
5			9. 6
6			12.1
7			18.9
<u> </u>			ત્રો 4
9			2 5. /
10			24.5
11			25.7
/z			26.7*

4			
		/EY DATA SHEET No. 2 'emperature Traverse)	
BASE KAJENA AFB BOILER NUMBER		DATE 27 Sept 91	
BOILER NUMBER Munitions Incinera	tor		
INSIDE STACK DIAMETER 235" STATION PRESSURE			Inches
STATION PRESSURE 29. 956 STACK STATIC PRESSURE			In Hg
- (0.07)			Ir H20
SAMPLING TEAM Major Control	/Copt Scott		
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	₹ √vp	STACK TEMPERATURE (OF
,	0.015	0.	175
2	0 02	0.	202
3	002	0.	366
4	0025	O ²	434
5	0 0 3	0.	455
6	0 03	0.	461
7 (Static Fresus)	0.04	0.	472
8	0.035	o·	469
9	0 035	0'	467
10	0.04	0'	465
	0 03	0.	463
12	0 03	0°	454
Moistur = 5%	Moleula	weift wet = 29.63	
(O, = 12%	"	" Ory = 30.24	
0, = 8%		FPS = 12	
Cp = 0.84	Avery	Temp = 107 °F	
Nozzle = 0 5741 (cal		y = 1,263	
	AP =		
OFILE FORM	AVERAGE		

	All JLI	UTION PARTICUI	LATE ANA	LYTICA	DATA	
BASE	AFB	28 Sont	7/		RUN NUMBER	
BUILDING NUMBER			SOURCE NU	MBER	Incinera	ty,
1.		PARTIC	JLATES			
	ITEM	FINAL W		INIT	IAL WEIGHT (₫m)	WEIGHT PARTICLES
FILTER NUMBER		1.46	96		1569	1.1727
ACETONE WASHING Hall Filter)	SS (Probe, Front	A B	rober v	~ 5h	ignost -	A500 de
BACK HALF (If nee	1000 de 1000 de					
		Tatal Wa	ight of Particu	ilates Cell	oc to d	11962
II.		WAT	ER			
	ITEM	FINAL WE		INIT	IAL WEIGHT (gm)	WEIGHT WATER (gm)
IMPINGER 1 (H20)		128.5)	10	<i>O</i>	285
IMPINGER 2 (H20)		107 0	,	1.5	` <i>U</i>	7
IMPINGER 3 (Dry)	-	. 5				. 5
IMPINGER 4 (SIIIca (2+1)	2099	7	10	S	99
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Tetal Wei	ight of Water C	Callected		45.9 - em
III.	ANALYSIS 1	GASES ANALYSIS 2	(Diy) ANAL		ANALYSIS	AVERAGE
VOL % CO2	5.6	5.6	57.			5.6
VOL % 02	13, 4	13.2	13	4		13.3
VOL % CO						
VOL 3 N ₂						
		Vol 5 N2 = (100% - 5 C	02 - % 02 - %	(CO)		

TE SAMPLING DATA SHEET	SCHEMATIC OF STACK CROSS SECTION EQUATIONS \triangle/I_o : \bigcirc	P.A 2. Im. Vo			fire he had VACUALLE 15 F31 PROBE LENGTH	Post chart = another the last		1,107 cheil - 10 100 (for cheil) CP 0.84	1, h, t clast = (fold-frail DAY GAS FRACTION (Fd)	STACK TEMP VELOCITY ORIFICE GAS GAS METER TEMP SAMPLETIL	$(oF) \qquad (\eta F) \qquad (Vp) \qquad (V)$	240 0015 0.17 401.465 87 87 246	2 0.015 0.71 3-47 94 90 148	295 00.015 072 430 96 90 249	374 0.015 0.64 97 91 249	0 446 002 016 36 37	(3) (0.0) (1,0) (3)	538 00) 1.10 97 91 252	160 8000 ch	538 0025 092 98 92 252	540 0.025 0.91 98 92 252	530 0.025 0.92 416.986 99 92 25.2				
	SCHEMATIC OF STACK ([c.					-	STATIC STACK TEN	(°F)	240		1	4		L		C.7. 0.3			6.0 530				1
	RUN NUMBER A-1 DATE	29 Sept 91	Munton Incorretor	BASE Kalin AFK	io j	Ø. METER BOX NUMBER	3551		Co	TRAVERSE SAMPLING		7.7	2)	7	-	7, 7		\$ 2.5	9 7.5	10, 2.5		1,5				DEHI FORM 19

				PART	ICULATE SA	PARTICULATE SAMPLING DATA SHEET	SHEET					
RUN NUMBER		SCHEMA	SCHEMATIC OF STA	ACK CROSS SECTION	ECTION	EQUATIONS				AMBIENT TEMP	TTEMP	
DATE			(OR = OF + 460	0					40
100 800	16 11					L	۲			STATIO	STATION PRESS	
PLANT		8		-		H = 5130	5130-Fd-Cp-A	Ts. Vp		HEATER	HEATER BOX TEMP	in Hg
0040)=			J	7					ų o
Kadina	" AFF		٧							PROBE	PROBE HEATER SETTING	
SAMPLE BOX NUMBER	UMBER		<u>.</u>	k						PROBE	PROBE LENGTH	
METER BOX NUMBER	IMBER			، ۶ ٔ						NOZZLE AREA	E AREA (A)	u ₁
Qw/Qm	/ (7	:. k-						රි		sq ft
										}		
රි)		-					DRY GA	DRY GAS FRACTION (Fd)	
TRAVERSE	SAMPLING	STATIC	STACK TEMP	TEMP	VELOCITY	ORIFICE	GAS	GAS	GAS METER TEMP	J dw	SAMPLE	o so Night
POINT	TIME (min)	PRESSURE (in H20)	(oF)	(Ts) (°R)	HEAD (Vp)	DIFF.	SAMPLE	Z (AVG (Tm)	Duo	BOX	OUTLET
1	7 %	4.0	108		0.01	0 5 5	736.017	94	(K)	(OF)	(OF)	(0F)
2	7 5	5.0	310		0 015	070		97		200	25.2	7 4
,	3.5	0 7	325		. 20 3	0.95		86		94	252	5.7
4	~ ~	6.0	410		002	083		36		93	252	56
	4:2	0 0	482		20.0	0.78		79		24	250	5C
100	٠ ر	5 7	33		6.00	0.7)		56		24	255	58
8	7 7	6:0	25)		0.00	0.72		00/		25,0	253	28
9	2.5		(X		20.0	0.73		101		200	25.7	5.5
0/	2.5	9.0	252		003	101		103		26	よって	000
\\\;\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ا المناط	8-5	249		0.0>		- 1	hoj		9.7	255	09
2		0)	2.3		0.00	073	431.788	20)		86	256	09
									à	+		
						48.0				\dagger		
			104				(20.36)					
					1-		1		†			
					15/5		1 400/	2	+			
					`							
1 E									1			
OEHL FORM	81 8									1		

	Al. OL	LUTIO	DN PARTICUI	LATE ANA	LYTIC/		
KADENA AF	B, OK	DATE 28	Segt.			RUN NUMBER	
L	Incinerator	,		SOURCE NU	IMBER		
l			PARTIC	JLATES			
	ITEM		FINAL W (£m,		INII	TAL WEIGHT	WEIGHT PARTICLES (क्वा)
FILTER NUMBER			Ø,66	,52	, 2	937	ė.3715
ACETONE WASHINGS Hall Filler)	i (Probe, Front		105.8	373	105	.6039	0,2334
BACK HALF (II needs	•d)		163.8	1432	103	,4896	·0.3536
			Total We	ight of Partic	ulates Coli	ected	Ø.9585
11.			WAT	ER			
1	TEM		FINAL WE		INIT	IAL WEIGHT	WEIGHT WATER (gm)
IMPINGER 1 (H20)			121		/	00	21
IMPINGER 2 (H20)			114		/ 0	00	14
IMPINGER 3 (Dry)	R 4 (SIIIce Gel) 2.0 2.17.8 Total Weight of Water Callected		20				
IMPINGER 4 (SIIIca Od	ni)		217.8		<u>ر</u>	07	178
			Total Wei	ight of Water	Collected		548 em
III.			GASES	(Dry)			 r
ITEM	ANALYSIS 1		ANALYSIS 2	ANAL	YSIS 3	ANALYSIS 4	 AVERAGE
vol % co ₂	5 2		52	5	٤		<i>5</i> 2
VOL % 0 ₂	138	,	14.0	14	0		139
VOL % CO			!				
VOL % N ₂							
		Vol %	N ₂ = (100% - % C	02.%02.	% CO)		

				PART	ICULATE SAM	PARTICULATE SAMPLING DATA SHEET	SHEET					
RUN NUMBER		SCHEMA	SCHEMATIC OF STACK CROSS SECTION	CK CROSS S	ECTION	EQUATIONS				AMBIENT TEMP	TEMP	
A -2						037 : 30 - 40						er o
DATE	7						٢		•	STATION PRESS	V PRESS	
PLANT PLANT	/5/	T				H = 5130.	5130.Fd.Cp.A 2	Ta Vp	_	HEATER	HEATER BOX TEMP	in Hg
							7) i				90
BASE										PROBE !	PROBE HEATER SETTING	97
SAMPLE BOX NUMBER	JWBER								, <u> </u>	PROBE LENGTH	ENGTH	
METER BOX NUMBER	WBER	T							L	NOZZLE	NOZZLE AREA (A)	LT.
Qw/Qm		T								ථ		n ps
°C										DRY GAS	DRY GAS FRACTION (Fd)	6
TRAVERSE	SAMPLING	STATIC	STACK	TEMP	VELOCITY	ORIFICE	GAS	GAS	GAS METER TEMP	ą.	SAMPLE	IMPINGER
POINT	TIME (min)	PRESSURE (in H20)	(°F) }	(Ts) (oR)	WEAD (Vp) (g/)	PRESS.	VOLUME (QL ft)	IN (OF)	7. (1.a) (1.a) (1.a)	OUT (OF)	TEMP (0F)	OUTLET TEMP (OF)
	30	3 5	280		,02	1,00	456. 359	1,05		10%	278	6.3
2	0 ;	4.0	400		220,	1.08		107		103	249	58
^	10	40	377		20:	0.81		109		103	451	28
7	30	٦	460		.02	0.81		103	1	701	1351	09
7	7	- 1.	3,25		20.	6.73		110		10%	757	00
20	0 7	0 7	260		200	0.73		///	1	105	132	10
,	- 1	١.	582	1	20,	0.77		,,,	1	307	289	29
2	3.0	1.	282	**************************************	20,	071			*	200	25.2	67
01	10	0 %	265		-02	0.72		11.1	/ //	-	349	64
"		4.0	5.74		,02	22.0		111	///	201	250	99
1.5	3.0	4.0	565		.02	0.73	473.886	7777		100	757	62
			11011			101			301			
		Latt	1									
						F	7					
					18515	· [,			-		
)		1.38.5					
							۱/۵۱۶					
1										-		
OEHL FORM	8 18		 									

				PART	PARTICULATE SAMPLING DATA SHEET	MPLING DAT	A SHEET					
HUN NUMBER	2	SCHEMA	SCHEMATIC OF STACK CROSS SECTION 	CK CROSS 3	ECTION	EQUATIONS OR = OF +460	20 Stb = 1921	1581		AMBIENT TEMP	TEMP	G.O.
DATE 28 Se	16 /1					5130	Fd Co.A] 2	; E		STATION PRESS	JO.O	In He
PLANT			1 1			<u>.</u>	•	Ts. Vp		HEATER	HEATER BOX TEMP	
BASE				\						PROBE	PROBE HEATER SETTING	ri Fi
SAMPLE BOX NUMBER	ОМВЕ В		J.C							PROBE LENGTH	ENGTH	
METER BOX NUMBER	MBER		-		J					NOZZLE	NOZZLE AREA (A)	ıı
Qw/Qm				′)					ර්	0 5	sq ft
ပိ										DRY GAS	O.5 4 DRY GAS FRACTION (Fd)	
TRAVERSE	SAMPLING	STATIC	STACK	TEMP	VELOCITY	ORIFICE	GAS	GAS	GAS METER TEMP	d A	SAMPLE	MPINGER
POINT NUMBER	TIME (min)	PRESSURE (in H20)	(°F)	(Ts) (ok)	HEAD (Vp)	PRESS.	SAMPLE VOLUME (Q1 fl)	IN (OF)	AVG (TM) (PR)	OUT	BOX TEMP	OUTLET
	3.0	20	365		0.03	1.53	435.137	/0/		1001	27.70	20
2	٦	2.0	309		003	1. 44		102		001	245	70
7	ı	20	314	1	000	0.96		104		001	650	70
7	- 1	7 5	327		003	1.41		100	7	007	253	70
در	0 1	7.6	250	1	200	7,7		107	1	101	252	70
7	0.0	30	\$2.5	\ \	40.0	1.45		107	1	9 3	727	200
\$	30	3 5	580		70.0	(4.7		101		╁╴	256	20
- 4	200	40	5.28	7		145		301		/0/	251	70
9)		7.5	57.5	7		7.0 %		101	1		757	70
11	1 1		135	1	0 025	1.03	451.159	301	7	10/	25.2	200
							77.7					
										+		
										+-		
										+		
1										\dagger	+	
OEHL TORM	rs 18											

	Al. Di	LLUTIO	N PARTICUI	LATE ANA	LYTIC/	DATA		7
BASE		DATE				RUN NUMBER		7
BUILDING NUMBER		L		SOURCE NU	MBER	3		
1.			PARTICL	JLATES				1
	ITEM		FINAL W		TINI	IAL WEIGHT (4m)	WEIGHT PARTICLES	
FILTER NUMBER			,939	8		2909	Ø. U89	
ACETONE WASHING Hall Filler)	GS (Probe, Front		99.861	68	99.	4264	Ø. 4494 Ø. 2567	
BACK HALF (If nee	od•d)		94.78	46		.5239	Ø.2567	.679
			Tatal We	ight of Partic	ulates Coll	ected	1,346¢ em	
11.		—т	WAT					-
	ITEM		FINAL WE		INIT	IAL WEIGHT (gm)	WEIGHT WATER	
IMPINGER 1 (H20)			142			00	42	
IMPINGER 2 (H20)			105		10	00	5	
IMPINGER 3 (Dry)			10			_	1	
IMPINGER 4 (SIIIca Oal)			2128		20	O	128	
	, a			ight of Water	Collected		60 8 gm	
III. ITEM ANALYSIS		,	GASES (D ₂₇) ANALYSIS ANA		LYSIS ANALYSIS		AVERAGE	ĺ
VOL % CO2	VOL % CO2 5.6		58		7.8		5.7	
VOL % 02	13.2	,	J 2	13	2		13. 2	
VOL % CO								
VOL % N2								
		Vol % N	l ₂ = (100% - % C	02.%02.	5 CO)			

3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	PARTICULATE SAMPLING DATA SHEET	SCHEMATIC OF STACK CROSS SECTION OR = OF +460 STATIN PASSS JO IN HR PROBE LENGTH OF PROBE LENGTH OR OP STATING OF PROBE LENGTH OF PROBE LENGTH OF STATING OF STATIN	STATIC STALLY TEMP VELOC.TV ORIFICE GAS METER TEMP SAMPLE INPINIGER SAMPLE INPINIGER SAMPLE INPINIGER OUTLET OUT
		SCHEMATIC OF STACK	(eF) (CF) (CF) (CF) (CF) (CF) (CF) (CF) (C

				PAR	TICULATE SA	PARTICULATE SAMPLING DATA SHEET	SHEET				
œ		SCHER	SCHEMATIC OF STA	ACK CROSS SECTION	SECTION	EQUATIONS			AMBIE	AMBIENT TEMP	
8-3	ــــــــــــــــــــــــــــــــــــــ									, (
DATE						"R = "F + 460	_		-	7-8	4o
25 5	15 tro					L	г		<u>.</u>	ON PRESS	
)[H = 5130.	5130-Fd-Cp-A 2	Tm V			in Hg
				,		_	•		HEAT	HEATER BOX TEMP	
BASE			\	(!	ı				Ro
		T).1 Ø ←						PROB	PROBE HEATER SETTING	
SAMPLE BOX NUMBER	JABER		1	_							
			Γ	7					PROB	PROBE LENGTH	
METER BOX NUMBER	MBER]4					1,02	NO.221 E ADEA (A)	u1
									270	LE AKEA (A)	,
m¢/w¢									ర్		sq ft
ပိ		1									
									סאץ פ	DRY GAS FRACTION (Fd)	6
TRAVERSE	SAMPLING	STATIC		STACK TEMP	VELOCITY	ORIFICE	GAS	GAS MET	GAS METER TEMP	SAMPLE	MPINGER
NUMBER	(min)	PRESSURE (in H20)	(oF)	(Ts)	(V) (Vp)	PRESS.	SAMPLE	2	AVG OUT (Tm)	BOX	OUTLET
	10	6.0	174		7.00	(a)	I١	(OF) (O	-+	(oF)	(oF)
7	3.0	6.5	354		0.025	70.7	47) 1610	017	100	748	2 2
,	30	7.5	420		0.03	1.28			/ 27/	2/10	2.5
,	> C	2.5	786		005	1.19		7/2	107	250	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Y	7.0	13.0	536		0.04	15.1		111	107	345	7.
ý	2.0		591	_	400	1.43) 711	107	247	5.4
,	2	0 9/	588	1	0.04	797		/ ///	107	057	25
2	2.7	10:3	727	1	0.04)	1.60		/ / / / / /	107	640	56
61	2,5	2:77	2 (1)	1	0 0 7)	1.60),,,	107	250	5.2
-	37	14.5	4/17	7	200	777		///	107	725	57
11	٥.٠	0 41	737		0.00	1,5 2		0//	1000	250	
					,2:	(7,7)	517 529	0//	701	858	5.5
		A.	46484			15:31	7,7,7,7	1/0	09		
			3					1			
						119	<i>.</i>				
					//	1,9.5					
					2/0		Vo.				
				7	75,		7,57				
								-			
OEHL FORM	81										

XPOM -W	ETS 5"	XPOM *	METH 5	RUN HUMBER	METL S
RUN HUNSEP THEEE		TWO -		koa ntace* ONS	
	१ ५१	HETER BOX VO	5 (#)	METER BOX YO	FU
METER BOY Y7 .9938	PUS	.9939	ያ የታ	.9970	bii:
DELTA H1 1.9340	pyrr	DELTA איז 1.9340	RU".	DELTA H: 1.9340	pgy
BAR PRESS ?	pys	BAR PRESS 1 29,9003	բ լյ.,	849 79939 7 29,9009	PUS
29,9098 METER VOL ?		METER WOL "	-	METER VOL 7	
43.2800 MIP TEMP F?	P ^{rit} is	78.5766 MTR TEMP F2	P_1,	30.3200 MTR TE≪9 F1	F.1.
109.0000	Pú	105.0000 % OTHER GAS	\mathbf{p}_{ij}^{ij}	96.0000 % CTHER GAS	£ij.
STATIC HOW IN 1 0700	P!";	PENOVED BEFORE		PEMOVEL BEFORE	
STACH TEMP. 494.0000	Pu-	DRY GAS METER ?	Pija,	IPY GOS METER ?	F
.,	FØ"	STATIC HOH IN 7 0700	P *#)	STATII HOH IN 1 0700	P'I'' _i
ML. WATER 1 60,9000	D (11)	STACK TEMP.		STACK TEMP.	
	ı	494,0000 ML. WATER	δiħ.	461,0000 Mu. 44752	F.15
% 0021 5,7900	Della	54,8999	\$ *	45,4000	71.
% OWYGEY?	P.M.	% 1921 5,3001	F", 1	4.0023	
13.2000 % CO 7	PU	1. ON YOU'		5.5090 : 01.465:0	? '.
	₽l ₂ -1	13.9000 % CO 2	bil.i	13,7000 % CI 1	Pilit
MWd =25,44		MOL WI OTHERN	F.''3		¢, i
MW WET=28.68		NOL W. C'MER	Figs	MOL KT OTHERS	2 (0).
SQRT PSTE n		MMM =29,39		州以 也 =29,47	
5.679a TIME MIN 7	bi.,	MW WET=39.63		MW WET=29.67	
72.0000 NOZZLE DIA ?	RUF	SOFT PSTS 1		SOFT PSTS 2	
.5886	Bii!.	4.9357 TIME MIN 3	pps,	4,4869	bûr.
STE DIA INCH 2 23.5000	PUP	72.0000	Put	TIME MIK 7 60.0000	P UN
and the second	bii"	HODDLE DIA 1 .5000	Piyt.	NOCCLE DIA 1	
• VOL MTP STD = 40.	943	STR DIA INCH?		.5000 C HOPL PIG NTS	₩.jii
97) PRES AES = 29 VOL HOH GAS = 2,5		23.5000	S E4	27,5099	\$i.ri
YOU HOW GAS = 2.50 % MOISTURE = 6.67 MOL DRY GAS = 0.9 % MITFOGEN = 81.16 MOL WT DRY = 29.44 NOL WT WET = 29.63 YELOCITY FFS = 17. STACK AREA = 7.01 3TACK AREA = 7.01 3TACK BSCF* = 1.30 % STACK DSCF* = 1.30 % STACK DSCF* = 1.30	33 3 4 3 .83	* VOL MIR SID = 35.6 SIF PRES ABS = 29. VOL HOH GAS = 3.56 : MOISTUPE = 6.70 MOL DRY GAS = 0.93 : NITPOGEM = 88.96 MOL MI DRY = 29.39 MOL WI WET = 29.63 VELOCITY FRS = 12. SIGON AREA = 3.61 61ACH ACRM = 2.196 * SIGON BSCRM = 1.13	93 3 13 13	* VOL NTF STD = 25.7 STK FFEE AES = 29. VOL HOM GAE = 2.16 . MOISTURE = 7.00 MOL DRY GAE = 0.93 . NITFOGEN = 20.43 MOL NT DRY = 29.43 MOL NT WET = 03.63 VELOTITY FFE = 10.4 STACH AFEC = 3.01 STACH AFEC = 1.044 . ISPANSTIC = 1.044	93 8

XROM *MASSELO*

XPOM "MASSFLO"

	XRUM "MH55FLU"	THE STATE OF THE S
XROM "MASSFLO" RUN NUMBER	RUN NUMBEP THO	RUN NUMBER THPEE
ONE	RUN	RUN
RUN VOL MTR STD ? 28.70300 RUN STACK DSCFM ? 1.041.00000 RUN FRONT 1/2 MG ? 2.170.30000 RUN BACK 1/2 MG ?	VOL MTR STD ? 35.90000 PUN STACK DSCFM ? 1/130.00000 PUN FRONT 1/2 MG ? 958.50000 RUN BACK 1/2 MG ?	VOL MTR STD ? 40.04200 RUN STACK DSCFM ? 1.290.00000 RUN FRONT 1/2 MG ? 1.346.00000 RUN BACK 1/2 MG ? RUN
F GR/DSCF = 1.16665 F MG/MMM = 2.669.70789 F LB/HR = 10.40988 F KG/HR = 4.72192	F GR/DSCF = 0.41202 F MG/MMM = 942.85429 F LB/HR = 3.99075 F KG/4P = 1.81020	F GR/DSCF = 0.51875 F MG/MMM = 1.187.06968 F LB/HR = 5.73584 F KG/HR = 2.68179

XROM *MASSFLOT

XROM *MASSFLO*

XROM *MASSFLO*

RUN NUMBER One PB	: Ruk	RUN NUMBER THO PB	RUN	RUN NUMBER THREE PS	RUS
VOL MTR STD ?	RUK PUK RUK RUK	VOL MTR STD ? 35.90000 STACK DSCFM ? 1.130.00000 FRONT 1'2 MG ? 2.98000 BACK 1/2 MG ?	RUN RUN RUN RUN	VOL MTR STD 2 40.04200 STACK DSCFM 2 1/290.00000 FRONT 1/2 MG ? 2.00000 BACY 1/2 MG ?	RUN EUS RUS RUN
F GR/DSCF = 0.00136 F MG/MMM = 2.37587 F LB/HR = 0.01161 F KG/HR = 0.00527	}	F GR/DSCF = 0.00128 F MG/MHM = 2.93136 F LB/HF = 0.01241 F KG/4P = 0.00567		F GR/DSCF = 0.00077 F MG/MMM = 1.76395 F LB/HF = 0.00353 F KG/HF = 0.00387	

APPENDIX C
CALIBRATION DATA

Date	<u> </u>	i Calib	rated by _		
Nozzle identification number	D ₁ , mm (in.)	Tozzle Diam D2; mm (in.)	neter ^a D ₃ , mm (in.)	ΔD, b mm (in.)	D _{avg}
	0.\$00	0.500	0.500	0	
			-		

where:

^aD_{1,2,3,} = three different nozzles diameters, mm (in.); each diameter must be within (0.025 mm) 0.001 in.

ΔD = maximum difference between any two diameters, mm (in.), $\Delta D \le (0.10 \text{ mm}) 0.004 \text{ in}.$

= average of D_1 , D_2 , and D_3 .

Quality Assurance Handbook M5-2.6

$$\left(\pi\left(\frac{0.6}{12}\right)^2 * 12\right) \times 60 \times 205 = 3.53 \text{ et/....}$$

METER BOX CALIBRATION DATA AND CALCULATION FORM

(English units)

Priving Stanland calibrated 197 mg 90

Date 13 Aug 90 | Vac = 5.0 | Meter box number Nutech 2

Barometric pressure, P_b = 30.12 in. Hg Calibrated by Scott 9 Vaughn

•		Gas v	olume	Ţ	emperati	ure				7
1	Orifice manometer setting	Wet test meter (V _w),	Dry gas meter (V _d),	Wet test meter (t _w),	Dry Inlet (t _{d.}),	Outlet (t _d),	er Avg" (t _d),	Time (Θ),	v	ΔН@,
	(ΔΗ), in. H ₂ 0	ft ³	ft ³	°F	°F	°F	°F	min	Yi	in. H ₂ 0
_	0.5	5	4.984	79 85 542.0	77 88 5435	76 81535,5	541.0	13.1	1,0001	Ø867 1.948
	1.0	5	5.006	85 82 543.5	88 895485	63	544.85	9.2	0.9987	1.932
	1.5	10	10,080	2542.0	89 945015	845125	547.0	15.0	0.9976	
	2.0	10	10.225	器 542.5	94 97555.5	84545	550,75	13.1	0.9871	1.932
	3.0	10	10.175	83 543 ¢	97 60585	88547	57.75	10.7	0.9932	1.928
ube 14	4.0	10	10.280	83 5430	100500	89549	54.5	9.2	0.9838	1.8947
•								Avg	0.993	1.924

 $\Delta H@_{i} = \frac{0.0317 \Delta H}{P_{b}(t_{d} + 460)} \left[\frac{(t_{w} + 460) \Theta}{V_{..}} \right]$ ΔH, in. 1,0 (5×30.12×541) 0.0368 0.5 18-1/(30.1568) 542.0 0.0737 1.0 0.110 1.5 0.147 2.0 3.0 0.221 4.0 0.294

Quality Assurance Handbook M4-2.3A (front side)

1-01

If there is only one thermometer on the dry gas meter, record the temperature under t_d.

METER BOX CALIBRATION DATA AND CALCULATION FORM

(English units)

Meter box number Barometric pressure, Pb = 19,370 in. Hg Calibrated by Christian Gas volume Temperature Wet test Orifice Dry gas Wet test Dry gas meter manometer meter meter meter Inlet Outlet Avg Time $(t_d), \mid (\theta),$ setting (V_w), (V_A) , $(t_{d_i}), (t_{d_0}),$ (t_i), Yi in. H₂0 (ΔH) , ft^3 ft^3 in. H,0 ٥F ٥F ٥F ٥F min 69 70 69.5 70.5 12.642 0.5 5 70 69.5 4. 451 7.71.5 1.823 1.011 76 74.5 70.5 72.25 9.084 1.0 5 4. 914 1020 1.886 76 79 71 1.5 10 9.754 7271 15. 254 71 75 1.629 1.934

Date == 3 D24 9/

VAL

4.8

4.8

4.8

4.9

5.1

7.0

2.0 11 89.5 10 71 78 9.825 83.75 13.19 1037 71 74 75.5 3.0 10 9.867 2 86.5 81 19.750 1025 1.950 71

41 4.0 10 4.79 4, 93.5 ,280.5 9.251 87 71 1.042 1.905

Avg 1.027 1.908

ΔH, in. H ₂ O	<u>ΔΗ</u> 13.6	$Y_{i} = \frac{V_{w} P_{b}(t_{d} + 460)}{V_{d}(P_{b} + \frac{\Delta H}{13.6}) (t_{w} + 460)}$	$\Delta H@_{i} = \frac{0.0317 \ \Delta H}{P_{b} (t_{d} + 460)} \left[\frac{(t_{w} + 460) \ \Theta}{V_{w}} \right]^{2}$
0.5	0.0368	(5)(29370)(70.5+460) 84.951)(29.370+256)(69.5+460)	0.0317(.5) [(69.5+460)(12642] ² 29.370(70.57460)
1.0	0.0737	(5)(29 370)(72.25+460) (4.964)(79.370+456)	(3.43.17(1.6)) [(76.3 1460X 9.059)] ²
1.5	0.110	(10)(29.370)(757460)	0,0317 (1.5)
2.0	0.147	(10)(79.370)(83.75+460) (9.325)(29.370+336)(71+460)	0.0317 (2.0) 5(717460) (13,19) 72 29.376(83,75+460) 10
3.0	0.221	(10)(29.370)(8/+460) (9.847)(29.370+266.X7)+460)	0.0317(3.0) (71+460)(11.750)] ²
4.0	0.294	(10)(29.370)(87 1460)	0.0317(4,C) [(7)+460)(9 251)] ² 29.370(87+460)

^a If there is only one thermometer on the dry gas meter, record the temperature under t_d.

APPENDIX D

LABORATORY REPORT

REPORT OF ANALYSIS

BASE SAMPLE NO: GN910025

OEHL SAMPLE NO: 91061451

SAMPLE TYPE:

NON-POTABLE WATER

SITE IDENTIFIER: FAMU227

DATE RECEIVED: 911126

DATE COLLECTED: 910928

DATE REPORTED:

911211

DATE REPRINTED: 920102

SAMPLE SUBMITTED BY: 18 MEDICAL GROUP/SGPB

RESULTS

Test

Results

<u>Units</u>

Lead

9669

ug/L

Analyzed by: Land

Aaron L. Forrest, Sgt, USAF

Occupational Analysis Technician

Reviewed by:

G. Cornell Long

Chief, Metals Analysis Function

TO:

37

AL/OEBE

BRUUKS AFR TV 79735_6000

REPORT OF ANALYSIS

BASE SAMPLE NO: GN910026

DEHL SAMPLE NO: 91061452

SAMPLE TYPE:

NON-POTABLE WATER

SITE IDENTIFIER: FAMU227

DATE RECEIVED: 911126

DATE COLLECTED: 910928

DATE REPORTED: 911211

DATE REPRINTED: 920102

SAMPLE SUBMITTED BY: 18 MEDICAL GROUP/SGPB

RESULTS

Test

Results

<u>Units</u>

Lead

2879

ug/L

Aaron L. Forrest, Sgt, USAF

Occupational Analysis Technician

Reviewed by:

G. Cornell Long

38

Chief, Metals Analysis Function

TO:

AL/OEBE BROOKS AFB TX 78235-5000

REPORT OF ANALYSIS

BASE SAMPLE NO: GN910027

OEHL SAMPLE NO: 91061453

SAMPLE TYPE:

NON-POTABLE WATER

SITE IDENTIFIER: FAMU227

DATE RECEIVED: 911126

DATE COLLECTED: 910928

DATE REPORTED:

911211

DATE REPRINTED: 920102

SAMPLE SUBMITTED BY: 18 MEDICAL GROUP/SGPB

RESULTS

<u>Test</u>

Results

Units

Lead

1661

ug/L

Aaron L. Forrest, Sgt, USAF Occupational Analysis Technician

Reviewed by:

G. Cornell Lona

Chief, Metals Analysis Function

TO:

39

AL/DEBE

1

REPORT OF ANALYSIS

BASE SAMPLE NO: GN910028

OEHL SAMPLE NO: 91061454

SAMPLE TYPE: NON-POTABLE WATER

SITE IDENTIFIER: FAMU227

DATE RECEIVED: 911126

DATE COLLECTED: 910928

DATE REPORTED: 911211

DATE REPRINTED: 920102

SAMPLE SUBMITTED BY: 18 MEDICAL GROUP/SGPB

RESULTS

Test

Results

Units

Lead

9059

uq/L

Analyzed by: Land form

Aaron L. Forrest, Sgt, USAF

Occupational Analysis Technician

Reviewed by:

G. Cornell Long

Chief, Metals Analysis Function

TO:

40

AL/OEBE

REPORT OF ANALYSIS

BASE SAMPLE NO: GN910029

DEHL SAMPLE NO: 91061455

SAMPLE TYPE:

NON-POTABLE WATER

SITE IDENTIFIER: FAMU227

DATE RECEIVED: 911126

DATE COLLECTED: 910928

DATE REPORTED: 911211

DATE REF

DATE REPRINTED: 920102

SAMPLE SUBMITTED BY: 18 MEDICAL GROUP/SGPB

RESULTS

Test Results Units

Lead 6995

ug/L

Analyzed by: Laml

Aaron L. Forrest, Sgt, USAF

Occupational Analysis Technician

Reviewed by:

G. Cornell Long

Chief, Metals Analysis Function

TO:

AL/OEBE BROOKS AFB TX 78235-5000