

Teoria de Linguagens e Compiladores Máquinas e Geração de Código

Luiz Eduardo da Silva

Universidade Federal de Alfenas

Agenda

- 1 Máquinas Virtuais
- 2 Tradução Dirigida por Sintaxe

Agenda

- 1 Máquinas Virtuais
 - Características da MVS
 - Instruções da MVS
- 2 Tradução Dirigida por Sintaxe

Máquina Virtual

O objetivo principal do compilador para uma linguagem de programação é construir uma ferramenta de tradução que transforme os códigos numa linguagem de alto nível para instruções numa linguagem de máquina para, assim, possibilitar a sua execução.

- A arquitetura de uma máquina real é complexa, o que torna essa tarefa trabalhosa.
- Para simplificar, definiremos uma máquina virtual mais simples (MVS), mais conveniente para um compilador didático.

Características da MVS

- A Máquina Virtual Simples (MVS) é uma máquina baseada na Máquina de Execução Pascal (MEPA), proposta por Tomás Kowaltowski.
- A memória da MVS é composta de duas regiões:
 - A região de programa P que conterá as instruções do programa em MVS que a máquina está executando.
 - 2 A região de pilha de dados M que conterá os valores manipulados pelas instruções MVS.

Ambiente de Execução real

Ambiente de Execução MVS

Região de Programa (P) Região de Dados (Pilha M)

Características da MVS

As regiões de memória P e M funcionam como vetores com índices numerados de zero até uma tamanho máximo. Além disso, MVS tem três registradores. São eles:

- O registrador i contém o endereço da próxima instrução a ser executada, P[i]. Esse registrador é incrementado automaticamente após a execução de cada instrução. Exceto para as instruções de desvio, que alteram de forma absoluta o valor de i.
- 2 O registrador s indicará o elemento no topo da pilha de dados, M[s].
- 3 O registrador de base d que contém o endereço de base no qual a variável está inserida. Esse único registrador é suficiente para generalizar a forma de endereçamento das variáveis locais e globais no programa. Usaremos endereçamento indireto para variáveis locais e globais.

Instruções MVS

#	Instrução	Micro-código
1	CRCT k	$s \leftarrow s + 1$
		$M[s] \leftarrow k$
2	CRVG n	$s \leftarrow s + 1$
		$M[s] \leftarrow M[n]$
3	ARZG n	$M[n] \leftarrow M[s]$
		$s \leftarrow s - 1$
4	SOMA	$M[s-1] \leftarrow M[s-1] + M[s]$
		$s \leftarrow s - 1$
5	SUBT	$M[s-1] \leftarrow M[s-1] - M[s]$
		$s \leftarrow s - 1$
6	MULT	$M[s-1] \leftarrow M[s-1] * M[s]$
		$s \leftarrow s - 1$
7	DIVI	$M[s-1] \leftarrow M[s-1]/M[s]$
		$s \leftarrow s - 1$
8	CMMA	$\boxed{\underline{SE}\ M[s-1] > M[s]\ \underline{ENTAO}\ M[s-1] \leftarrow 1\ \underline{SENAO}\ M[s-1] \leftarrow 0;}$
		$s \leftarrow s - 1$
9	CMME	$\boxed{\underline{SE}\ M[s-1] < M[s]\ \underline{ENTAO}\ M[s-1] \leftarrow 1\ \underline{SENAO}\ M[s-1] \leftarrow 0}$
		$s \leftarrow s - 1$
10	CMIG	$\boxed{\underline{SE}\ M[s-1] = M[s]\ \underline{ENTAO}\ M[s-1] \leftarrow 1\ \underline{SENAO}\ M[s-1] \leftarrow 0}$
		$s \leftarrow s - 1$

Instruções MVS

#	Instrução	Micro-código
11	DISJ	$\underline{SE}\ M[s-1]\ \underline{ou}\ M[s]\ \underline{ENTAO}\ M[s-1] \leftarrow 1\ \underline{SENAO}\ M[s-1] \leftarrow 0$
		$s \leftarrow s - 1$
12	CONJ	$\underline{SE}\ M[s-1]\ \underline{e}\ M[s]\ \underline{ENTAO}\ M[s-1] \leftarrow 1\ \underline{SENAO}\ M[s-1] \leftarrow 0$
		$s \leftarrow s - 1$
13	NEGA	$M[s] \leftarrow 1 - M[s]$
14	DSVS p	$i \leftarrow p$
15	DSVF p	$\underline{SE}\ M[s] = 0\ \underline{ENTAO}\ i \leftarrow p\ \underline{SENAO}\ i \leftarrow i + 1$
		$s \leftarrow s - 1$
16	LEIA	$s \leftarrow s + 1$
		$"M[s] \leftarrow Entrada"$
17	ESCR	"Escreve $M[s]$ "
		$s \leftarrow s - 1$
18	NADA	"Não faz nada"
19	INPP	$s \leftarrow -1$
		$i \leftarrow 1$
		$D \leftarrow 0$;
20	FIMP	"Finaliza a execução"
21	AMEM n	$s \leftarrow s + n$

Tradução de Expressões

- Como a máquina MVS é baseada em pilha, as expressões em notação infixa (com o operação entre os operandos) da linguagem fonte devem ser traduzidas para uma sequência de instruções em NPR (Notação Polonesa Reversa, na qual a operação é colocada após os seus operandos).
- Considere a expressão B * (A + 30) A e suponha que os endereços atribuídos pelo compilador as variáveis A e B são 1 e 3, respectivamente. Considere ainda que o valor da variável A é 10 e que o valor da variável B é 20. A tradução é:
- 1 CRVG 3
- 2 CRVG 1
- 3 CRCT 30
- 4 SOMA
- 5 MULT
- 6 CRVG 1
- 7 SUBT

Execução da Expressão

Tradução da Atribuição

Instrução	Micro-código
ARZG n	$M[n] \leftarrow M[s]$
	$s \leftarrow s - 1$

■ Considere o comando de atribuição A ← A + B, onde os endereços das variáveis A e B são 10 e 12 respectivamente. A tradução MVS para essa atribuição é:

- 1 CRVG 10
- 2 CRVG 12
- 3 SOMA
- 4 ARZG 10

Tradução da Repetição e Seleção

Instrução	Micro-código
DSVS p	i ← p
DSVF p	$\underline{SE}\ M[s] = 0\ \underline{ENTAO}\ i \leftarrow p\ \underline{SENAO}\ i \leftarrow i+1$
	$s \leftarrow s - 1$
NADA	"Não faz nada"

se E então C1 senao C2 fimse

enquanto E faca C fimenquanto

Tradução da Seleção

A tradução MVS é:

1	CRCT 1
2	ARZG 0
3	CRVG 0
4	DSVF L1
5	CRCT 0
6	ARZG 0
7	DSVS L2
8	L1 NADA
9	CRCT 1
10	ARZG 0
11	L2 NADA

Tradução da Repetição

A tradução MVS é:

Tradução de Leitura e Escrita

Instrução	Micro-código
LEIA	$s \leftarrow s + 1$
	$"M[s] \leftarrow Entrada"$
ESCR	"Escreve M[s]"
	$s \leftarrow s - 1$

1	leia A
2	leia B
3	escreva A + B

A tradução MVS é:

1	LEIA
2	ARZG 0
3	LEIA
4	ARZG 1
5	CRVG 0
6	CRVG 1
7	SOMA
8	ESCR

Tradução de Programa

Para tradução de um programa em linguagem Simples completo usaremos as seguintes instruções MVS:

Instrução	Micro-código
INPP	$s \leftarrow -1$
	$i \leftarrow 1$
	$d \leftarrow 0$
FIMP	"Finaliza a execução"
AMEM n	$s \leftarrow s + n$

Onde:

- INPP instrução MVS que serve para colocar a máquina de execução numa configuração inicial;
- FIMP instrução que finaliza a execução de um programa.
- AMEM instrução que aloca memória para as variáveis globais do programa.

Exemplo de tradução


```
1
      programa repete
 2
        inteiro i i
 3
      inicio
 4
        i <- 1
        enquanto i < 10 faca
 5
 6
          i <- 1
 7
          enquanto j < 10 faca
             escreva i + j
 8
 9
             i < -i + 1
10
           fimenguanto
11
           i < -i + 1
12
        fimenquanto
13
      fimprograma
```

```
INPP
 234567
            AMEM 2
            CRCT 1
            ARZG 0
        L1 NADA
            CRVG 0
            CRCT 10
 8
            CMME
 9
            DSVF L2
10
            CRCT 1
11
            ARZG 1
12
        L3 NADA
13
14
            CRVG 1
            CRCT 10
15
16
            CMME
            DSVF L4
17
            CRVG 0
18
19
20
21
22
23
24
25
26
27
28
29
30
31
            CRVG 1
            SOMA
            ESCR
            CRVG 1
            CRCT 1
            SOMA
            ARZG 1
            DSVS 1.3
        L4 NADA
            CRVG 0
            CRCT 1
            SOMA
            ARZG 0
            DSVS L1
32
        L2 NADA
33
            FIMP
```

Agenda

- 1 Máquinas Virtuais
- 2 Tradução Dirigida por Sintaxe
 - Introdução
 - Geração de código

Introdução

- Podemos associar atributos aos símbolos da gramática (terminais e não terminais) para tradução.
- Nas definições dirigidas por sintaxe, estendemos as regras acrescentando ações semânticas que podem ser usados para especificar os valores dos atributos dos símbolos.
- Por exemplo(1):

Regra de Produção	Regra Semântica
$E \rightarrow E_1 + T$	E.code = E1.code T.code '+'

- Essa produção tem dois não-terminais E e T (usamos E e E₁ para distinguir o símbolo E do lado esquerdo e direito da regra).
- Todos os símbolos tem o atributo *code* do tipo cadeia. E a ação semântica que é executada na aplicação da regra produz a tradução pós-fixada da expressão (|| representa a concatenação de cadeias).

Introdução

Podemos associar fragmentos de código como ação semântica nos esquemas de tradução dirigida por sintaxe como por exemplo (2):

- Por convenção os esquemas de tradução são delimitados por chaves.
- As definições dirigidas por sintaxe (exemplo 1) são mais legíveis.
- Os esquemas de tradução dirigidas por sintaxe (exemplo 2) são mais úteis para implementação.
- A abordagem mais geral da tradução dirigida por sintaxe consiste em construir a árvore de derivação, e então calcular os valores dos atributos dos nós da árvore (símbolos da gramática) durante a sua visitação.

Definição Dirigida por Sintaxe

- Uma definição dirigida por sintaxe é uma GLC acrescida de atributos e regras semânticas.
- Se X é um símbolo e a um dos seus atributos, usamos a notação X.a.
- Os atributos podem ser herdados ou sintetizados.
 - O atributo de um símbolo é sintetizado se o seu valor é definido a partir dos valores dos símbolos abaixo dele na árvore.
 - O atributo de um símbolo é herdado se o seu valor é definido a partir de valores de símbolos acima dele na árvore.

Uma definição dirigida por sintaxe para uma calculadora simples:

Regra Semântica
L.val = E.val
$E.val = E_1.val + E_2.val$
$E.val = E_1.val * E_2.val$
E.val = num.lexval

Tradução Dirigida por Sintaxe

A tradução dirigida por sintaxe para uma calculadora simples:

Regra de Produção	Regra Semântica
L o En	$\{ printf("%d", E.val); \}$
$E ightarrow E_1 + E_2$	$\{E.val = E_1.val + E_2.val;\}$
$E o E_1 * E_2$	$\{E.val = E_1.val * E_2.val;\}$
$E ightarrow \mathit{num}$	$\{E.val = num.lexval;\}$

Geração de código MVS (calculadora)


```
cmd:
    expr
   VAR ATRIBUI expr
      { printf("\tARZG\t%d\n",$1);}
expr :
   NUM
      { printf("\tCRCT\t%d\n",$1); }
   VAR
      { printf("\tCRVG\t%d\n",$1);}
    expr MAIS expr
      { printf("\tSOMA\n");}
    expr MENOS expr
      { printf("\tSUBT\n");}
    expr BARRA expr
      { printf("\tDIVI\n");}
    expr VEZES expr
      {printf("\tMULT\n");}
    ABRE expr FECHA
```


Geração de código

