expectation of jorthehmal YW & (w) = Eq[hp(z,x,W)] p(zn, x, xn, w) x p(w) tp(xilzin)p(zi) Inp(Zn, tn, W) & Inplw) + & Inp(xn/Zn, W) + some constant ~ Implw) + Ey [[Xi - WZi] (Xi - WZi)) d Inplu) + 201 = Eq [x, 7x; -2x, 1 WZ; + W] = 200 [~ Inplu) + IT Eq x Tx:) + Eq [Zn TW WZn] - LEq [x, TWZ,] ~ Inplu) + to Z x to I - 2 X to WM* + Eq[ZnTWTN Zn] = E(20N) + tare(NNOV(20)) ~ = + tale(UTW) + 1 = = [M*N] (N*W) + tale (NTW 2*) - 2x, Tw. m* MStep √ f(w) = - λW + 1/252 € W (M*M* + €*)] = 200 € X. TM* - NN + W & (" " " + E") = = = = X X T MT Wt= - x01+ T (N+2+2*)

EM algorithm

1) Initialize W with discours

2) For iteration t,

a) calculate Eq. [2], which is WTXaM

3) calculate Wt = XXiM*

-102+ \frac{1}{2}(M^2+\frac{1}{2})

3) once yet here this,

calculate In Pt (Xt. XN, W) from Inp(Xi7 Xn, W, Zn) with conveges of some Mills of the sufficient to sufficiently small.