

第8章 压缩和存储

8.1 Hadoop 源码编译支持 Snappy 压缩

8.1.1 资源准备

1) CentOS 联网

配置 CentOS 能连接外网。Linux 虚拟机 ping www.baidu.com 是畅通的

注意:采用 root 角色编译,减少文件夹权限出现问题

- 2) jar 包准备(hadoop 源码、JDK8 、maven、protobuf)
 - (1) hadoop-2.7.2-src.tar.gz
 - (2) jdk-8u144-linux-x64.tar.gz
 - (3) snappy-1.1.3.tar.gz
 - (4) apache-maven-3.0.5-bin.tar.gz
 - (5) protobuf-2.5.0.tar.gz

8.1.2 jar 包安装

- 0) 注意: 所有操作必须在 root 用户下完成
- 1) JDK 解压、配置环境变量 JAVA_HOME 和 PATH,验证 java-version(如下都需要验证是否配置成功)

[root@hadoop101 software] # tar -zxf jdk-8u144-linux-x64.tar.gz -C /opt/module/

[root@hadoop101 software]# vi /etc/profile

#JAVA_HOME

export JAVA_HOME=/opt/module/jdk1.8.0_144

export PATH=\$PATH:\$JAVA_HOME/bin

[root@hadoop101 software]#source/etc/profile

验证命令: java -version

2) Maven 解压、配置 MAVEN_HOME 和 PATH。

[root@hadoop101 software]# tar -zxvf apache-maven-3.0.5-bin.tar.gz -C /opt/module/

[root@hadoop101 apache-maven-3.0.5]# vi /etc/profile

#MAVEN_HOME

export MAVEN_HOME=/opt/module/apache-maven-3.0.5

export PATH=\$PATH:\$MAVEN_HOME/bin

[root@hadoop101 software]#source/etc/profile

验证命令: mvn -version

8.1.3 编译源码

1) 准备编译环境

[root@hadoop101 software]# yum install svn
[root@hadoop101 software]# yum install autoconf automake libtool cmake
[root@hadoop101 software]# yum install ncurses-devel
[root@hadoop101 software]# yum install openssl-devel

[root@hadoop101 software]# yum install gcc*

2) 编译安装 snappy

[root@hadoop101 software]# tar -zxvf snappy-1.1.3.tar.gz -C /opt/module/
[root@hadoop101 module]# cd snappy-1.1.3/
[root@hadoop101 snappy-1.1.3]# ./configure
[root@hadoop101 snappy-1.1.3]# make
[root@hadoop101 snappy-1.1.3]# make install
查看 snappy 库文件
[root@hadoop101 snappy-1.1.3]# ls -lh /usr/local/lib |grep snappy

3)编译安装 protobuf

[root@hadoop101 software]# tar -zxvf protobuf-2.5.0.tar.gz -C /opt/module/
[root@hadoop101 module]# cd protobuf-2.5.0/
[root@hadoop101 protobuf-2.5.0]# ./configure
[root@hadoop101 protobuf-2.5.0]# make
[root@hadoop101 protobuf-2.5.0]# make install
查看 protobuf 版本以测试是否安装成功
[root@hadoop101 protobuf-2.5.0]# protoc --version

4) 编译 hadoop native

[root@hadoop101 software]# tar -zxvf hadoop-2.7.2-src.tar.gz
[root@hadoop101 software]# cd hadoop-2.7.2-src/
[root@hadoop101 software]# mvn clean package -DskipTests -Pdist,native -Dtar
-Dsnappy.lib=/usr/local/lib -Dbundle.snappy

执行成功后,/opt/software/hadoop-2.7.2-src/hadoop-dist/target/hadoop-2.7.2.tar.gz 即为新生成的支持 snappy 压缩的二进制安装包。

8.2 Hadoop 压缩配置

8.2.1 MR 支持的压缩编码

压缩格式	工具	算法	文件扩展名	是否可切分
DEFAULT	无	DEFAULT	.deflate	否
Gzip	gzip	DEFAULT	.gz	否
bzip2	bzip2	bzip2	.bz2	是
LZO	lzop	LZO	.lzo	是
Snappy	无	Snappy	.snappy	否

为了支持多种压缩/解压缩算法,Hadoop 引入了编码/解码器,如下表所示

压缩格式	对应的编码/解码器	
DEFLATE	org.apache.hadoop.io.compress.DefaultCodec	
gzip	org.apache.hadoop.io.compress.GzipCodec	
bzip2	org.apache.hadoop.io.compress.BZip2Codec	
LZO	com.hadoop.compression.lzo.LzopCodec	
Snappy	org.apache.hadoop.io.compress.SnappyCodec	

压缩性能的比较

压缩算法	原始文件大小	压缩文件大小	压缩速度	解压速度
gzip	8.3GB	1.8GB	17.5MB/s	58MB/s
bzip2	8.3GB	1.1GB	2.4MB/s	9.5MB/s
LZO	8.3GB	2.9GB	49.3MB/s	74.6MB/s

http://google.github.io/snappy/

On a single core of a Core i7 processor in 64-bit mode, Snappy compresses at about 250 MB/sec or more and decompresses at about 500 MB/sec or more.

8.2.2 压缩参数配置

要在 Hadoop 中启用压缩,可以配置如下参数(mapred-site.xml 文件中):

io.compression.codecs	org.apache.hadoop.io.compress.Defa	输入压缩	Hadoo
(在 core-site.xml 中配置)	ultCodec,		p 使用
	org.apache.hadoop.io.compress.Gzip		文件扩
	Codec,		展名判
	org.apache.hadoop.io.compress.BZip		断是否
	2Codec,		支持某
	org.apache.hadoop.io.compress.Lz4C		种编解
	odec		码器
mapreduce.map.output.comp	false	mapper 输	这个参
ress		出	数设为
			true 启
			用压缩
mapreduce.map.output.comp	org.apache.hadoop.io.compress.Defa	mapper 输	使用
ress.codec	ultCodec	出	LZO、
Tessicodec		ш	LZ4 或
			snappy
			编解码
			器在此
			阶段压
			缩数据
mapreduce.output.fileoutputf	false	reducer 输	这个参
	laisc	出 出	数设为
ormat.compress		Ш	数以为 true 启
1	1 1 1 .	1 #A	用压缩
mapreduce.output.fileoutputf	org.apache.hadoop.io.compress.	reducer 输	使用标
ormat.compress.codec	DefaultCodec	出	准工具
			或者编
			解码
			器,如
			gzip 和
			bzip2
mapreduce.output.fileoutputf	RECORD	reducer 输	Sequen
ormat.compress.type		出	ceFile
			输出使
			用的压
			缩类
			型:
			NONE
			和
			BLOC
			K
			IZ.

8.3 开启 Map 输出阶段压缩

开启 map 输出阶段压缩可以减少 job 中 map 和 Reduce task 间数据传输量。具体配置如下: **案例实操:**

1) 开启 hive 中间传输数据压缩功能

hive (default)>set hive.exec.compress.intermediate=true;

2) 开启 mapreduce 中 map 输出压缩功能

hive (default)>set mapreduce.map.output.compress=true;

3) 设置 mapreduce 中 map 输出数据的压缩方式

hive (default)>set mapreduce.map.output.compress.codec= org.apache.hadoop.io.compress.SnappyCodec;

4) 执行查询语句

hive (default)> select count(ename) name from emp;

8.4 开启 Reduce 输出阶段压缩

当 Hive 将输出写入到表中时,输出内容同样可以进行压缩。属性 hive.exec.compress.output 控制着这个功能。用户可能需要保持默认设置文件中的默认值 false,这样默认的输出就是非压缩的纯文本文件了。用户可以通过在查询语句或执行脚本中设置这个值为 true,来开启输出结果压缩功能。

案例实操:

1) 开启 hive 最终输出数据压缩功能

hive (default)>set hive.exec.compress.output=true;

2) 开启 mapreduce 最终输出数据压缩

hive (default)>set mapreduce.output.fileoutputformat.compress=true;

3) 设置 mapreduce 最终数据输出压缩方式

hive (default)> set mapreduce.output.fileoutputformat.compress.codec

org. a pache. hadoop. io. compress. Snappy Codec;

4) 设置 mapreduce 最终数据输出压缩为块压缩

hive (default)> set mapreduce.output.fileoutputformat.compress.type=BLOCK;

5) 测试一下输出结果是否是压缩文件

hive (default)> insert overwrite local directory '/opt/module/datas/distribute-result' select * from emp distribute by deptno sort by empno desc;

更多 Java -大数据 -前端 -python 人工智能资料下载,可百度访问: 尚硅谷官网

8.5 文件存储格式

Hive 支持的存储数的格式主要有: TEXTFILE、SEQUENCEFILE、ORC、PARQUET。

8.5.1 列式存储和行式存储

上图左边为逻辑表,右边第一个为行式存储,第二个为列式存储。

行存储的特点: 查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段 找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时 行存储查询的速度更快。

列存储的特点: 因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算法。

TEXTFILE 和 SEQUENCEFILE 的存储格式都是基于行存储的;

ORC 和 PAROUET 是基于列式存储的。

8.5.2 TextFile 格式

默认格式,数据不做压缩,磁盘开销大,数据解析开销大。可结合 Gzip、Bzip2 使用,但使用 Gzip 这种方式,hive 不会对数据进行切分,从而无法对数据进行并行操作。

8.5.3 Orc 格式

Orc (Optimized Row Columnar)是 Hive 0.11 版里引入的新的存储格式。

可以看到每个 Orc 文件由 1 个或多个 stripe 组成,每个 stripe250MB 大小,这个 Stripe 实际相当于 RowGroup 概念,不过大小由 4MB->250MB,这样应该能提升顺序读的吞吐率。每个 Stripe 里有三部分组成,分别是 Index Data,Row Data,Stripe Footer:

- 1) Index Data: 一个轻量级的 index,默认是每隔 1W 行做一个索引。这里做的索引应该只是记录某行的各字段在 Row Data 中的 offset。
- 2) Row Data: 存的是具体的数据,先取部分行,然后对这些行按列进行存储。对每个列进行了编码,分成多个 Stream 来存储。
 - 3) Stripe Footer: 存的是各个 Stream 的类型,长度等信息。

每个文件有一个 File Footer,这里面存的是每个 Stripe 的行数,每个 Column 的数据类型信息等;每个文件的尾部是一个 PostScript,这里面记录了整个文件的压缩类型以及 FileFooter 的长度信息等。在读取文件时,会 seek 到文件尾部读 PostScript,从里面解析到 File Footer 长度,再读 FileFooter,从里面解析到各个 Stripe 信息,再读各个 Stripe,即从后往前读。

8.5.4 Parquet 格式

Parquet 是面向分析型业务的列式存储格式,由 Twitter 和 Cloudera 合作开发,2015 年 5 月从 Apache 的孵化器里毕业成为 Apache 顶级项目。

Parquet 文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的数据和元数据,因此 Parquet 格式文件是自解析的。

通常情况下,在存储 Parquet 数据的时候会按照 Block 大小设置行组的大小,由于一般情况下每一个 Mapper 任务处理数据的最小单位是一个 Block,这样可以把每一个行组由一个 Mapper 任务处理,增大任务执行并行度。Parquet 文件的格式如下图所示。

上图展示了一个 Parquet 文件的内容,一个文件中可以存储多个行组,文件的首位都是该文件的 Magic Code,用于校验它是否是一个 Parquet 文件,Footer length 记录了文件元数据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行组的元数据信息和该文件存储数据的 Schema 信息。除了文件中每一个行组的元数据,每一页的开始都会存储该页的元数据,在 Parquet 中,有三种类型的页:数据页、字典页和索引页。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列块中最多包含一个字典页,索引页用来存储当前行组下该列的索引,目前 Parquet 中还不支持索引页。

更多 Java -大数据 -前端 -python 人工智能资料下载,可百度访问: 尚硅谷官网

8.5.5 主流文件存储格式对比实验

从存储文件的压缩比和查询速度两个角度对比。

存储文件的压缩比测试:

0) 测试数据

log.data

1) TextFile

(1) 创建表,存储数据格式为 TEXTFILE

```
create table log_text (
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\t'
stored as textfile;
```

(2) 向表中加载数据

hive (default)> load data local inpath '/opt/module/datas/log.data' into table log_text;

(3) 查看表中数据大小

```
hive (default)> dfs -du -h /user/hive/warehouse/log_text;
```

18.1 M /user/hive/warehouse/log_text/log.data

2) ORC

(1) 创建表,存储数据格式为 ORC

```
create table log_orc(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\t'
```


stored as orc;

(2) 向表中加载数据

hive (default)> insert into table log_orc select * from log_text ;

(3) 查看表中数据大小

hive (default)> dfs -du -h /user/hive/warehouse/log_orc/;

2.8 M /user/hive/warehouse/log_orc/000000_0

3) Parquet

(1) 创建表,存储数据格式为 parquet

```
create table log_parquet(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\t'
stored as parquet;
```

(2) 向表中加载数据

hive (default)> insert into table log_parquet select * from log_text;

(3) 查看表中数据大小

hive (default)> dfs -du -h /user/hive/warehouse/log_parquet/;

13.1 M /user/hive/warehouse/log_parquet/000000_0

存储文件的压缩比总结:

ORC > Parquet > textFile

存储文件的查询速度测试:

1) TextFile

```
hive (default)> select count(*) from log_text;
```

_c0

100000

Time taken: 21.54 seconds, Fetched: 1 row(s)

Time taken: 21.08 seconds, Fetched: 1 row(s)

2) ORC

```
hive (default)> select count(*) from log_orc;
_c0
100000
Time taken: 20.867 seconds, Fetched: 1 row(s)
Time taken: 22.667 seconds, Fetched: 1 row(s)
3) Parquet
hive (default)> select count(*) from log_parquet;
_c0
100000
Time taken: 22.922 seconds, Fetched: 1 row(s)
Time taken: 21.074 seconds, Fetched: 1 row(s)
存储文件的查询速度总结: 查询速度相近。
```

8.6 存储和压缩结合

8.6.1 修改 Hadoop 集群具有 Snappy 压缩方式

1) 查看 hadoop checknative 命令使用

[atguigu@hadoop104 hadoop-2.7.2]\$ hadoop

checknative [-a|-h] check native hadoop and compression libraries availability

2) 查看 hadoop 支持的压缩方式

[atguigu@hadoop104 hadoop-2.7.2]\$ hadoop checknative

17/12/24 20:32:52 WARN bzip2.Bzip2Factory: Failed to load/initialize native-bzip2 library system-native, will use pure-Java version

17/12/24 20:32:52 INFO zlib.ZlibFactory: Successfully loaded & initialized native-zlib library

Native library checking:

hadoop: true /opt/module/hadoop-2.7.2/lib/native/libhadoop.so

zlib: true /lib64/libz.so.1

snappy: false

lz4: true revision:99

bzip2: false

- 3) 将编译好的支持 Snappy 压缩的 hadoop-2.7.2.tar.gz 包导入到 hadoop102 的/opt/software 中
- 4) 解压 hadoop-2.7.2.tar.gz 到当前路径

[atguigu@hadoop102 software]\$ tar -zxvf hadoop-2.7.2.tar.gz

5) 进入到/opt/software/hadoop-2.7.2/lib/native 路径可以看到支持 Snappy 压缩的动态链接库

[atguigu@hadoop102 native]\$ pwd

/opt/software/hadoop-2.7.2/lib/native

[atguigu@hadoop102 native]\$ ll

-rw-r--r-. 1 atguigu atguigu 472950 9 月 1 10:19 libsnappy.a -rwxr-xr-x. 1 atguigu atguigu 955 9 月 1 10:19 libsnappy.la

lrwxrwxrwx. 1 atguigu atguigu 18 12 月 24 20:39 libsnappy.so -> libsnappy.so.1.3.0 lrwxrwxrwx. 1 atguigu atguigu 18 12 月 24 20:39 libsnappy.so.1 -> libsnappy.so.1.3.0

-rwxr-xr-x. 1 atguigu atguigu 228177 9 月 1 10:19 libsnappy.so.1.3.0

6) 拷 贝 /opt/software/hadoop-2.7.2/lib/native 里 面 的 所 有 内 容 到 开 发 集 群 的 /opt/module/hadoop-2.7.2/lib/native 路径上

[atguigu@hadoop102 native]\$ cp ../native/*/opt/module/hadoop-2.7.2/lib/native/

7) 分发集群

[atguigu@hadoop102 lib]\$ xsync native/

8) 再次查看 hadoop 支持的压缩类型

[atguigu@hadoop102 hadoop-2.7.2]\$ hadoop checknative

17/12/24 20:45:02 WARN bzip2.Bzip2Factory: Failed to load/initialize native-bzip2 library system-native, will use pure-Java version

17/12/24 20:45:02 INFO zlib.ZlibFactory: Successfully loaded & initialized native-zlib library

Native library checking:

hadoop: true/opt/module/hadoop-2.7.2/lib/native/libhadoop.so

zlib: true /lib64/libz.so.1

snappy: true /opt/module/hadoop-2.7.2/lib/native/libsnappy.so.1

lz4: true revision:99

bzip2: false

9) 重新启动 hadoop 集群和 hive

8.6.2 测试存储和压缩

官网: https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

ORC 存储方式的压缩:

Key	Default	Notes
orc.compress	ZLIB	high level compression (one of NONE,
		ZLIB, SNAPPY)

orc.compress.size	262,144	number of bytes in each compression
		chunk
orc.stripe.size	67,108,864	number of bytes in each stripe
orc.row.index.stride	10,000	number of rows between index entries
		(must be >= 1000)
orc.create.index	true	whether to create row indexes
orc.bloom.filter.columns	""	comma separated list of column names for
		which bloom filter should be created
orc.bloom.filter.fpp	0.05	false positive probability for bloom filter
		(must >0.0 and <1.0)

1) 创建一个非压缩的的 ORC 存储方式

(1) 建表语句

```
create table log_orc_none(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\t'
stored as orc tblproperties ("orc.compress"="NONE");
```

(2) 插入数据

```
hive (default)> insert into table log_orc_none select * from log_text;
```

(3) 查看插入后数据

```
hive (default)> dfs -du -h /user/hive/warehouse/log_orc_none/;
```

7.7 M /user/hive/warehouse/log_orc_none/000000_0

2) 创建一个 SNAPPY 压缩的 ORC 存储方式

(1) 建表语句

```
create table log_orc_snappy(
track_time string,
url string,
session_id string,
```



```
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\t'
stored as orc tblproperties ("orc.compress"="SNAPPY");
```

(2) 插入数据

```
hive (default)> insert into table log_orc_snappy select * from log_text;
```

(3) 查看插入后数据

```
hive (default)> dfs -du -h /user/hive/warehouse/log_orc_snappy/;
```

- 3.8 M /user/hive/warehouse/log_orc_snappy/000000_0
- 3)上一节中默认创建的 ORC 存储方式,导入数据后的大小为
 - 2.8 M /user/hive/warehouse/log_orc/000000_0

比 Snappy 压缩的还小。原因是 orc 存储文件默认采用 ZLIB 压缩。比 snappy 压缩的小。

4) 存储方式和压缩总结:

在实际的项目开发当中,hive 表的数据存储格式一般选择: orc 或 parquet。压缩方式一般选择 snappy,lzo。