Analysis of Algorithm Continue

Computing the Complexity Function of an Algorithm

- We do not need to count all basic operations performed by the algorithm
- For example, if a loop executes *N* times and each loop iteration executes a constant number of basic operations, the entire loop executes *N* basic operations
- ► For most algorithms, we can pick one type of basic operation and count just that to determine the complexity of the algorithm.

Selecting the Basic Operations to Count

► For most algorithms we can count just one or two types of basic operations.

- Select operations that are germane to the problem: for example, sorting and searching algorithms should count comparisons between array entries.
- Select at least one operation in every loop.

Analysis of Bubble Sort

```
To sort an array A[0..N-1]:
for (int last = N - 1; last >= 1; last --)
  // Move the largest entry in A[0...last] to A[1]ast]
  for (int index = 0; index \leq last-1; index++)
       //swap adjacent elements if necessary
        if (A[index] > A[index+1])
            int temp = A[index];
            A[index] = A[index+1];
            A[index + 1] = temp;
```

Bubble Sort (One Pass)

Bubble sort uses an index to keep track of which pair of adjacent elements should be swapped during a sweep through A[0..last].

```
// index = 0, Compare A[0], A[1]
// index = 1, Compare A[1], A[2], swap
15 20 35 10 25
// index = 2, Compare A[2], A[3], swap
15 20 10 35 25
// index = 3, Compare A[3], A[4], swap
15 20 10 25 35
// Largest is at A[4]
```

4 Comparisons and 3 swaps for 1 pass

Analysis of Bubble Sort with 3 printlns

```
for (lastPos = array.length - 1; lastPos >= 0; lastPos--)
        for (index = 0; index <= lastPos - 1; index++)
          // Compare an element with its neighbor.
          System.out.println("Before comparing");
          if (array[index] > array[index+1])
            // Swap the two elements.
            System.out.println("Swapping");
            temp = array[index];
            array[index] = array[index + 1];
            array[index + 1] = temp;
        System.out.println("---
```

3 printlns's Result

```
-- jGRASP exec: java ObjectBubbleSortTest
Original order:
15 35 20 10 25
Before comparing
Before comparing
                            4 compares
Swapping
Before comparing
Swapping
Before comparing
Swapping
Before comparing
                           3 compares
Before comparing
Swapping
Before comparing
Before comparing
                           2 compares
Swapping
Before comparing
                           1 compare
Before comparing
Sorted order:
10 15 20 25 35
 ----jGRASP: operation complete.
```

Bubble Sort's Analysis

Let the number of comparisons for bubble sort, C, is given by:

$$C = (n-1) + (n-2) + \dots + 2 + 1$$
 (1)
Ex: $C = 4 + 3 + 2 + 1$

Writing the terms in reverse order, we also have

$$C(n) = 1 + 2 + \dots + (n-2) + (n-1)$$
 (2)

Adding the 2 equations (1) and (2):

$$2C(n) = (n + n + n + n + + n)$$

$$C(n) = n(n-1)/2$$
 (3) (NOTE that there are (n-1) terms dividing by 2)

$$C(n) = n^2/2 - n/2$$

$$C(n) = O(n^2/2)$$
 -- Term $n^2/2$ dominated $n/2$ when n get large

$$C(n) = O(n^2) - Constant \frac{1}{2}$$
 absorbed into the Big O

Analysis of Insertion Sort

Insertion Sort

- Note that for any array A[0..N-1], the portion A[0..0] consisting of the single entry A[0] is already sorted.
- Insertion Sort works by extending the length of the sorted portion one step at a time:
 - ► A[0] is sorted
 - ► A[0..1] is sorted
 - ► A[0..2] is sorted
 - \blacktriangle A[0..3] is sorted, and so on, until A[0..N-1] is sorted.

Insertion Sort

The strategy for Insertion Sort:

```
//A[0..0] is sorted
for (index = 1; index <= N -1; index ++)
{
    // A[0..index-1] is sorted
    insert A[index] at the right place in A[0..index]
    // Now A[0..index] is sorted
}
// Now A[0..N -1] is sorted, so entire array is sorted</pre>
```

How Insertion Sort Works

```
index = 1, Insert A[1] = 10 into A[0..1];
15 10 55 35 30 20
10 15 55 35 30 20
10 15 55 35 30 20
                   index = 2, Insert A[2] = 55 into A[0...2]:
10 15 55 35 30 20
10 15 55 35 30 20
                    index = 3, Insert A[3] = 35 into A[0...3]:
10 15 35 55 30 20
10 15 35 55 30 20
                    index = 4, Insert A[4] = 30 into A[0..4]:
10 15 30 35 55 20
                    index = 5, Insert A[5] = 20 into A[0...5]:
10 15 30 35 55 20
10 15 20 30 35 55
10 15 20 30 35 55 Array is now sorted
```

The portion of A[0..last] already examined The entry to be inserted is in bright blue.

A Closer Look at the Logic of the Insertion Step

```
A[0..4] is already sorted, insert A[5] into A[0..5]:

10 15 30 35 55 20 index = 5, Insert A[5] = 20 into A[0..5]
```

unsortedValue = 20, will scan for the right place to put it.

Use a variable scan to find the place where A[scan-1] is less or equal to unsortedValue:

Insertion Sort: insert A[index] at the right place in A[0..index]

```
//A[0..index-1] is already sorted
int unSortedValue = A[index];
scan = index;
while (scan > 0 && A[scan-1] > unSortedValue)
    A[scan] = A[scan-1];
    scan --;
// Drop in the unsorted value
A[scan] = unSortedValue;
```

Insertion Sort

```
//A[0...0] is sorted
    for (index = 1; index \leq N -1; index ++)
                                                    outer
                                                    loop
         // A[0..index-1] is sorted
         // insert A[index] at the right place in A[0..inde
         int unSortedValue = A[index]; 
                                             outer
         scan = index;
                                             times
        while (scan > 0 && A[scan-1] > unSortedValue)
inner
            A[scan] = A[scan-1];
loop
            scan --;
                                      inner
                                      times
        // Drop in the unsorted value
        A[scan] = unSortedValue;
        // Now A[0..index] is sorted
    // Now A[0..N -1] is sorted, so entire array is so
```

Insertion Sort: Number of Comparisons

# of Sorted	Best case	Worst case
Elements		
0	0	0
1	1	1
2	1	2
n-1	1	n-1
_	n-1	n(n-1)/2

Remark: we only count comparisons of elements in the array.

Recursive Binary Search

- The logic of binary search has a natural recursive implementation:
- ▶ If lower > upper, then return -1 (base case).
- Compare X to A[middle], where middle is the midpoint between lower and upper:

```
middle = (lower + upper)/2
```

- If X == A[middle], return middle (we found it!)
- ▶ If X < A[middle], then continue search in A[lower..middle-1]
- If X > A[middle], then continue search in A[middle+1..upper]

Analysis Of Recursive Binary Sear

Without loss of generality, assume n, the problem size, is a multiple of 2, i.e., $n = 2^k$

Expanding:

$$T(1) = a \qquad (1)$$

$$T(n) = T(n / 2) + b \qquad (2)$$
And we know $T(n / 2) = T(n/4) + b$

$$= [T(n / 2^2) + b] + b = T(n / 2^2) + 2b \qquad by substituting $T(n/2)$ in (2)
$$= [T(n / 2^3) + b] + 2b = T(n / 2^3) + 3b \qquad by substituting $T(n/2)$ in (2)
$$=$$

$$= T(n / 2^k) + kb$$$$$$

The base case is reached when $n / 2^k = 1 \implies n = 2^k \implies k = \log_2 n$, we then

have:

$$T(n) = T(1) + b \log_2 n$$
$$= a + b \log_2 n$$

Therefore, Recursive Binary Search is O(log n)

In Summary: Recurrence Relations to Remember

- Recognizing Common Recurrences
- Below are some algorithms and recurrence relation encountered
- Solve once, re-use in new contexts

Recurrence	Algorithm	Big-O Solution
T(n) = T(n/2) + O(1)	Binary Search	O(log n)
T(n) = T(n-1) + O(1)	Sequential Search	O(n)
T(n) = 2 T(n/2) + O(1)	tree traversal	O(n)
T(n) = T(n-1) + O(n)	Selection Sort (other n ² sorts)	O(n ²)

Orders of common functions

Notation	Name	Example
O(1)	constant	Determining if a number is even or odd; using a constant-size lookup table or hash table
$O(\log n)$	logarithmic	Finding an item in a sorted array with a binary search or a balanced search tree as well as all operations in a Binomial heap.
$O(n^c), \ 0 < c < 1$	fractional power	Searching in a kd-tree
O(n)	linear	Finding an item in an unsorted list or a malformed tree (worst case) or in an unsorted array; Adding two n-bit integers.
$O(n \log n) = O(\log n!)$	linearithmic, loglinear, or quasilinear	Performing a Fast Fourier transform; heapsort, quicksort (best and average case), or merge sort
$O(n^2)$	quadratic	Multiplying two <i>n</i> -digit numbers by a simple algorithm; bubble sort (worst case or naive implementation), shell sort, quicksort (worst case), selection sort or insertion sort
$O(n^c), c > 1$	polynomial or algebraic	Tree-adjoining grammar parsing; maximum matching for bipartite graphs
$L_n[\alpha, c], \ 0 < \alpha < 1 = e^{(c+o(1))(\ln n)^{\alpha}(\ln \ln n)^{1-\alpha}}$	L-notation or sub-exponential	Factoring a number using the quadratic sieve or number field sieve
$O(c^n), c > 1$	exponential	Finding the (exact) solution to the traveling salesman problem using dynamic programming; determining if two logical statements are equivalent using brute-force search
O(n!)	factorial	Solving the traveling salesman problem via brute-force search; finding the determinant with expansion by minors.

Classes of functions that are commonly encountered when analyzing the running time of an algorithm. In each case, c is a constant and n increases without bound. The slower-growing functions are generally listed first. (Source: http://en.wikipedia.org/wiki/Big_O_notation)