class09

Jacob Gil

```
candy_file <- "candy-data.csv"

candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

```
chocolate fruity caramel peanutyalmondy nougat crispedricewafer
100 Grand
                      1
                              0
                                       1
3 Musketeers
                      1
                              0
                                       0
                                                       0
                                                                                 0
                                                               1
One dime
                      0
                              0
                                       0
                                                       0
                                                               0
                                                                                 0
                      0
                              0
                                       0
                                                       0
                                                               0
                                                                                 0
One quarter
                      0
                              1
                                       0
                                                       0
                                                               0
                                                                                 0
Air Heads
Almond Joy
                      1
                              0
                                       0
                                                       1
                                                               0
                                                                                 0
              hard bar pluribus sugarpercent pricepercent winpercent
100 Grand
                     1
                               0
                                         0.732
                                                       0.860
                                                                66.97173
3 Musketeers
                 0
                     1
                               0
                                         0.604
                                                       0.511
                                                                67.60294
```

One dime 0 0 0 0.011 0.116 32.26109 0 0 0 0.511 One quarter 0.011 46.11650 Air Heads 0 0 0.906 0.511 52.34146 0 0.767 Almond Joy 1 0.465 50.34755

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

Q2. How many fruity candy types are in the dataset?

```
sum(candy$fruity)
```

```
[1] 38
  candy["Twix", ]$winpercent
[1] 81.64291
Q3. What is your favorite candy in the dataset and what is it's winpercent value?
  candy["100 Grand", ]$winpercent
[1] 66.97173
Q4. What is the winpercent value for "Kit Kat"?
  candy["Kit Kat", ]$winpercent
[1] 76.7686
Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?
  candy["Tootsie Roll Snack Bars", ]$winpercent
[1] 49.6535
  library("skimr")
```

skim(candy)

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	atmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset? The win percent row is on a different scale (0-100)

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}? 1 means the candy has chocolate, 0 means the candy does not

Q8. Plot a histogram of winpercent values

hist(candy\$winpercent)

Histogram of candy\$winpercent

Q9. Is the distribution of winpercent values symmetrical? no, it is right skewed

Q10. Is the center of the distribution above or below 50%? The center of distribution is below 50% because the tallest bar is below 50 for these bins

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
mean(candy$winpercent[as.logical(candy$chocolate)])
```

[1] 60.92153

mean(candy\$winpercent[as.logical(candy\$fruity)])

[1] 44.11974

chocolate is ranked higher

Q12. Is this difference statistically significant?

t.test(candy\$winpercent[as.logical(candy\$chocolate)],candy\$winpercent[as.logical(candy\$fru

Welch Two Sample t-test

data: candy\$winpercent[as.logical(candy\$chocolate)] and candy\$winpercent[as.logical(candy\$f:
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 11.44563 22.15795
sample estimates:
mean of x mean of y
 60.92153 44.11974

a p-value of 2.871e-08 indicates that the difference is statistically significant

Q13. What are the five least liked candy types in this set?

head(candy[order(candy\$winpercent),], n=5)

		chocolate	fruity	cara	nel j	${\tt peanutyalm}$	nondy	nougat		
Nik L Nip		0	1		0		0	0		
Boston Baked	Beans	0	0		0		1	0		
Chiclets		0	1		0		0	0		
Super Bubble		0	1		0		0	0		
Jawbusters		0	1		0		0	0		
		crispedrio	cewafer	hard	bar	pluribus	sugar	percent	pricepercent	
Nik L Nip			0	0	0	1		0.197	0.976	
Boston Baked	Beans		0	0	0	1		0.313	0.511	
Chiclets			0	0	0	1		0.046	0.325	
Super Bubble			0	0	0	0		0.162	0.116	
Jawbusters			0	1	0	1		0.093	0.511	
		winpercent	t							
Nik L Nip		22.44534	1							
Boston Baked	Beans	23.41782	2							
Chiclets		24.52499	9							
Super Bubble		27.30386	3							
Jawbusters		28.12744	1							

Nik L Nip, Boston Baked Beans, Chiclets, Super Bubble, Jawbusters

Q14. What are the top 5 all time favorite candy types out of this set?

head(candy[order(candy\$winpercent,decreasing = TRUE),], n=5)

	chocolate	fruity	caran	nel j	peanutyaln	nondy	nougat
Reese's Peanut Butter cu	p 1	0		0		1	0
Reese's Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
	crispedri	cewafer	hard	bar	pluribus	sugai	percent
Reese's Peanut Butter cu	p	0	0	0	0		0.720
Reese's Miniatures		0	0	0	0		0.034
Twix		1	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Snickers		0	0	1	0		0.546
	priceperce	ent winp	percer	ıt			
Reese's Peanut Butter cu	0.0	651 84	1.1802	29			
Reese's Miniatures	0.2	279 81	1.8662	26			
Twix	0.9	906 81	1.6429	91			
Kit Kat	0.	511 76	5.7686	60			
Snickers	0.6	351 76	6.6737	78			

Reese's Peanut Butter Cup, Reese's Miniatures, Twix, Kit Kat, Snickers Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col()
```



```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy),winpercent)) +
   geom_col(fill=my_cols)
```


- Q17. What is the worst ranked chocolate candy? sixlets
- Q18. What is the best ranked fruity candy? starburst

```
library(ggrepel)

# How about a plot of price vs win
ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
   geom_text_repel(col=my_cols, size=3.3, max.overlaps = 52)
```


Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck? Reese's miniatures

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

In order of least to most popular: Nik L Nip, Ring Pop, Nestle Smarties, Hershey's Milk Chocolate, Hersheys's Krackel

Q21. Make a barplot again with geom_col() this time using pricepercent and then improve this step by step, first ordering the x-axis by value and finally making a so called "dot chat" or "lollipop" chart by swapping geom_col() for geom_point() + geom_segment().

```
ggplot(candy) +
  aes(pricepercent, reorder(rownames(candy), pricepercent)) +
  geom_col()
```


library(corrplot)

corrplot 0.92 loaded

cij <- cor(candy)
corrplot(cij)</pre>

Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)? chocolate and fruity

Q23. Similarly, what two variables are most positively correlated? chocolate and winpercent

```
pca <- prcomp(candy, scale = TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC4
                          PC1
                                 PC2
                                        PC3
                                                       PC5
                                                               PC6
                                                                        PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion
                       0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                   PC9
                                          PC10
                                                  PC11
                                                          PC12
Standard deviation
                       0.74530 0.67824 0.62349 0.43974 0.39760
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

```
plot(pca$x[,1:2])
```


plot(pca\$x[,1:2], col=my_cols, pch=16)


```
library(ggrepel)

p + geom_text_repel(size=3.3, col=my_cols, max.overlaps = 42) +
    theme(legend.position = "none") +
    labs(title="Halloween Candy PCA Space",
        subtitle="Colored by type: chocolate bar (dark brown), chocolate other (light brown caption="Data from 538")
```

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

```
{r} # library(plotly) #
```

{r} # ggplotly(p) #

```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you? Fruity, hard and pluribus are all strong positives in PC1. this means that they are not correlated to the variables with negative values. This is exemplefied by chocolate and fruity. There are few candies that have both.