Exercise 8, November 10, 2011, Solutions

1. For an optimal noncausal IIR-filter, the Wiener-Hopf equations can be written as

$$h(k) * r_x(k) = r_{dx}(k).$$

The z-transform of this yields

$$H(z) = \frac{P_{dx}(z)}{P_x(z)}$$

The desired signal d(n) is uncorrelated with v(n). Consequently, $r_x(k) = r_d(k) + r_v(k)$ and $r_{dx}(k) = r_d(k)$. Then

$$r_x(k) = 2 \cdot ((0.8)^{|k|} + (0.5)^{|k|})$$

 $r_{dx}(k) = 2 \cdot (0.8)^{|k|}.$

Compute $P_x(z)$ by z-transforming $r_x(k)$:

$$P_x(z) = \sum_k r_x(k)z^{-k} = 2\sum_k (0.8)^{|k|} z^{-k} + 2\sum_k (0.5)^{|k|} z^{-k}.$$

Here we can apply the general result

$$\sum_{k=-\infty}^{\infty} a^{|k|} z^{-k} = 1 + \sum_{k=1}^{\infty} (a/z)^k + \sum_{k=1}^{\infty} (az)^k$$
$$= 1 + \frac{a/z}{1 - a/z} + \frac{az}{1 - az}$$
$$= \frac{1 - a^2}{(1 - az^{-1})(1 - az)}.$$

Inserting this results in

$$P_x(z) = \frac{2(1 - (0.8)^2)}{(1 - 0.8z^{-1})(1 - 0.8z)} + \frac{2(1 - (0.5)^2)}{(1 - 0.5z^{-1})(1 - 0.5z)}.$$

Similarly

$$P_{dx}(z) = 2\sum_{k} (0.8)^{|k|} z^{-k} = \frac{2(1 - (0.8)^2)}{(1 - 0.8z^{-1})(1 - 0.8z)}.$$

Then

$$H(z) = \frac{P_{dx}(z)}{P_x(z)} = \frac{0.72}{(1 - 0.8z^{-1})(1 - 0.8z)} \left(\frac{0.72}{(1 - 0.8z^{-1})(1 - 0.8z)} + \frac{1.5}{(1 - 0.5z^{-1})(1 - 0.5z)}\right)^{-1}$$

$$= \frac{0.72(1 - 0.5z^{-1})(1 - 0.5z)}{0.72(1 - 0.5z^{-1})(1 - 0.5z) + 1.5(1 - 0.8z^{-1})(1 - 0.8z)}$$

$$= \frac{0.72(1 - 0.5z^{-1})(1 - 0.5z)}{3.36 - 1.56z^{-1} - 1.56z}$$

Factorizing the denominator this expression attains the form

$$H(z) = \frac{0.72(1 - 0.5z^{-1})(1 - 0.5z)}{2.30(1 - 0.68z^{-1})(1 - 0.68z)}$$

2. (a) The general form of the Wiener-Hopf equations in the case of a FIR filter are

$$\mathbf{R}_x \mathbf{w} = \mathbf{r}_{dx}.$$

In the lectures the case of one-step-ahead prediction d(n) = x(n+1) was discussed, and in that case we had the result

$$r_{dx}(k) = r_x(k+1).$$

Because now d(n) = x(n+m), we have

$$r_{dx}(k) = E[d(n)x^*(n-k)] = E[x(n+m)x^*(n-k)] = r_x(k+m)$$

With this result, the WH-equations can be written as

$$\mathbf{R}_x \mathbf{w} = \mathbf{r}_x(m),$$

where
$$\mathbf{r}_x(m) = [r_x(m), r_x(m+1), \dots, r_x(m+p-1)]^T$$
.

(b) The prediction error is $e(n) = d(n) - \hat{d}(n) = x(n+m) - \sum_{k=0}^{p-1} w(k)x(n-k)$. Applying the principle of orthogonality results in

$$E(|e(n)|^{2}) = E\left(e(n)\left[x(n+m) - \sum_{k=0}^{p-1} w(n)x(n-k)\right]^{*}\right)$$

$$= E(e(n)x^{*}(n+m))$$

$$= E\left(\left[x(n+m) - \sum_{k=0}^{p-1} w(k)x(n-k)\right]x^{*}(n+m)\right)$$

$$= r_{x}(0) - \sum_{k=0}^{p-1} w(k)r_{x}^{*}(k+m)$$

$$= r_{x}(0) - \mathbf{r}_{x}(m)^{H}\mathbf{w}$$

As $\mathbf{w} = \mathbf{R}_x^{-1} \mathbf{r}_x(m)$, we get

$$E(|e(n)|^2) = r_x(0) - \mathbf{r}_x(m)^H \mathbf{R}_x^{-1} \mathbf{r}_x(m)$$

Here only the vector $\mathbf{r}_x(m) = [r_x(m), r_x(m+1), \dots, r_x(m+p-1)]^T$ depends on the value of m. Evaluation of the prediction error for a set of different m is therefore relatively lightweight computationally, as it is enough to invert \mathbf{R}_x only once.

3. The WH-solution is generally

$$H(z) = \frac{P_{dx}(z)}{P_{x}(z)}.$$

The power spectrum of the observed signal x(n) = g(n) * d(n) + v(n) is the sum of power spectrum of the signal g(n) * d(n) and power spectrum of the noise because the noise does not correlate with g(n) * d(n). So we have

$$P_x(z) = G(z)G^*(1/z^*)P_d(z) + P_v(z)$$

G(z) can be computed by z-transforming $g(n) = (0.9)^n u(n)$:

$$G(z) = \sum_{k=-\infty}^{\infty} g(k)z^{-k} = \sum_{k=0}^{\infty} (0.9)^k z^{-k} = \frac{1}{1 - 0.9z^{-1}}$$

(the sum of a geometric series). Correspondingly $G^*(1/z^*)=1/(1-0.9z)$. $P_v=1$ as the noise is white. P_d is found by z-transforming $r_d(k)=2*(0.5)^{|k|}$. From the solution of problem 1 we have $\sum_{k=-\infty}^{\infty}a^{|k|}z^{-k}=(1-a^2)/[(1-az^{-1})(1-az)]$, so that

$$P_d(z) = \frac{2(1 - 0.25)}{(1 - 0.5z^{-1})(1 - 0.5z)}.$$

Finally, we need P_{dx} . Because of the uncorrelatedness of the noise, $P_{dx} = P_{dy}$ with y(n) = g(n) * d(n). According to the given hint, the cross-correlation between the input and output of a filter is given by the convolution of the impulse response of the filter and the autocorrelation of the input. Now we identify d as the input, g as the impulse response and u as the output, resulting in

$$r_{ud}(k) = q(k) * r_d(k).$$

In order to arrive at the cross power spectrum P_{dy} through z-transform we would need the cross-correlation r_{dy} . It is obtained from r_{yd} by taking the complex conjugate and changing the sign of the lag index, that is

$$r_{du}(k) = r_{ud}^*(-k) = g^*(-k) * r_d(k)$$

(by using $r_d^*(-k) = r_d(k)$). z-transforming this (recalling that $g^*(k)$ becomes $G^*(z^*)$ and thus $g^*(-k)$ becomes $G^*(1/z^*)$) results in the power spectrum

$$P_{dx} = P_{dy} = G^*(1/z^*)P_d(z)$$

This yields the result

$$H(z) = \frac{G^*(1/z^*)P_d(z)}{G(z)G^*(1/z^*)P_d(z) + P_v(z)}$$

$$= \frac{\frac{1}{1-0.9z} \cdot \frac{1.5}{(1-0.5z^{-1})(1-0.5z)}}{\frac{1}{1-0.9z^{-1}} \cdot \frac{1}{1-0.9z} \cdot \frac{1.5}{(1-0.5z^{-1})(1-0.5z)} + 1}$$

$$= \frac{1.5(1-0.9z^{-1})}{1.5 + (1-0.9z^{-1})(1-0.9z)(1-0.5z^{-1})(1-0.5z)}$$

$$= \frac{1.5(1-0.9z^{-1})}{4.6625 + 0.45z^{-2} + 0.45z^{2} - 2.03z^{-1} - 2.03z}$$

$$= 0.402 \frac{1-0.9z^{-1}}{(1-az^{-1})(1-a^*z^{-1})(1-az)(1-a^*z)}$$

where $a \approx 0.243 + 0.248j$ is one root of the denominator (as the coefficients are real, a^* is also a root, and because of the $z \leftrightarrow z^{-1}$ symmetry, also 1/a and $1/a^*$ are roots).

4. (a) The trivial solution

$$\hat{d}(n) = 0 \cdot x(n) + 0 \cdot x(n-1) = 0$$

gives the required accuracy, as

$$E[|d(n) - \hat{d}(n)|^2] = E[|d(n)|^2] = Var(d(n)) = 1.$$

The large variance of the noise v(n) does not affect the measure of accuracy, as it is determined by the difference to the "noiseless" target process d(n)

(b) The optimal coefficients w(n) are determined by the Winer-Hopf equations

$$\sum_{l=0}^{1} w(l)r_x(k-l) = r_{dx}(k), \quad k = 0, 1.$$

here $r_x(k) = \mathrm{E}[x(n)x^*(n-k)]$ is the autocorrelation of the observed signal, and $r_{dx}(k) = \mathrm{E}[d(n)x^*(n-k)]$ the cross-correlation between the target and observed signals. In matrix form, the equations are

$$\mathbf{R}_x \mathbf{w} = \mathbf{r}_{dx}$$

where

$$\mathbf{R}_x = \left[\begin{array}{cc} r_x(0) & r_x^*(1) \\ r_x(1) & r_x(0) \end{array} \right]$$

and $\mathbf{r}_{dx} = [r_{dx}(0) \ r_{dx}(1)]^T$.

The required correlations are found by noting that the noise v(n) is uncorrelated with the target signal d(n), so

$$r_x = r_d + r_v$$

and

$$r_{dx} = r_d$$
.

Using the given information that d(0) = Var(d(n)) = 1 and d(1) = 0

$$\mathbf{R}_x = \mathbf{I} + 100\mathbf{I} = 101\mathbf{I}$$

and

$$\mathbf{r}_x = [r_d(0) \ r_d(1)]^T = [1 \ 0]^T.$$

From the WH-equations we then get that

$$\mathbf{w} = \mathbf{R}_x^{-1} \mathbf{r}_{dx} = \frac{1}{101} \mathbf{r}_{dx} = [1/101 \ 0]^T$$

so w(0) = 1/101 and w(1) = 0.

The MSE is

$$E[|d(n) - \hat{d}(n)|^2] = r_d(0) - \mathbf{r}_{dx}^H \mathbf{R}_x^{-1} \mathbf{r}_{dx} = 1 - \frac{1}{101} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}^T = 100/101 < 1.$$

(c) If no filter is used, i.e., $\hat{d}(n) = x(n)$, the MSE is

$$E[|d(n) - x(n)|^2] = E[|d(n) - d(n) - v(n)|^2] = r_v(0) = 100.$$

5.

$$r_d(k) = 0.375(-0.2)^{|k|},$$

 $x(n) = d(n) + v(n).$

d(n) and v(n) are uncorrelated. In addition, the noise was specified as white:

$$r_v(k) = \begin{cases} 1, & k = 0 \\ 0, & \text{otherwise} \end{cases}$$

Hence

$$r_x(k) = E[x(k)x(0)] = E\{[d(k) + v(k)][d(0) + v(0)]\}$$

= $E[d(k)d(0)] + E[v(k)v(0)]$
= $r_d(k) + r_v(k)$,

$$r_{dx}(k) = E[d(k)x(0)] = E\{d(k)[d(0) + v(0)]\}$$

= $E[d(k)d(0)]$
= $r_d(k)$.

(a) From the WH-equations $\mathbf{w} = \mathbf{R}_x^{-1} \mathbf{r}_{dx}$, where

$$\mathbf{R}_{x} = \begin{bmatrix} 1.375 & -0.075 \\ -0.075 & 1.375 \end{bmatrix}, \quad \mathbf{r}_{dx} = \begin{bmatrix} 0.375 \\ -0.075 \end{bmatrix},$$
$$\Rightarrow \mathbf{w} = \begin{bmatrix} 0.2706 \\ -0.0398 \end{bmatrix}.$$

So the optimal filter for the target signal is $\hat{d}(n) = 0.2706x(n) - 0.0398x(n-1)$.

(b) The MSE is given by

$$\varepsilon_{\min} = r_d(0) - \mathbf{r}_{dx}^H \mathbf{w} = 0.2706$$

(c) With no filtering, $\hat{d}(n) = x(n) = d(n) + v(n)$. Then the MSE is

$$E(|e(n)|^2) = E(|d(n) - \hat{d}(n)|^2) = E(|d(n) - d(n) - v(n)|^2) = r_v(0) = \sigma_v^2 = 1$$

This is considerably larger than for the optimally filtered case.