## به نام زیبایی تمرینات سری هشتم سیگنال ها و سیستم ها

سوال ۱)

یک سیگنال پیوسته ی x(t) با تبدیل فوریه ی  $X(j\omega)$  از داخل سیستم نمونه برداری ضربه ای با دوره ی نمونه برداری T عبور می کند و سیگنال زیر را به دست می دهد:

$$x_p(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t - nT)$$

که  $T=1\circ^{-6}$  یا  $(X(j\omega))$  یا x(t) ملبق که x(t) یا روی x(t) ملبق که تمونه برداری نایکوییست می توان سیگنال x(t) را از روی x(t) به طور کامل بازیابی کرد.

$$X(j\omega)=\circ$$
 ,  $|\omega|>\Delta\circ\circ\circ\pi$  (الف  $X(j\omega)=\circ$  ,  $|\omega|>\Delta\circ\circ\circ\pi$  (ب  $X(j\omega)=\circ$  ,  $|\omega|>\Delta\circ\circ\circ\pi$  (ب  $\Re\{X(j\omega)\}=\circ$  ,  $|\omega|>\Delta\circ\circ\circ\pi$  (ب  $X(j\omega)=\circ$  ,  $\omega>\Delta\circ\circ\circ\pi$  است و  $x(t)$  (ت  $X(j\omega)=\circ$  ,  $\omega<-\Delta\circ\circ\circ\pi$  است و  $x(t)$  (ت  $X(j\omega)=\circ$  ,  $x(t)=\circ$  ,  $x(t)=\circ$  )  $x(t)=\circ$  (ث  $x(t)=\circ$  )  $x(t)=\circ$  ,  $x(t)=\circ$  )  $x(t)=\circ$  (ث  $x(t)=\circ$  )  $x(t)=\circ$  ,  $x(t)=\circ$  )  $x($ 

سوال ۲)

فرض کنید دو سیگنال  $s_1(t)$  و  $s_2(t)$  ، زمان پیوسته، باند محدود و دارای تبدیل فوریههای زیر باشند:





. سیگنال  $y(t)=s_1(t)e^{j\mathsf{T}\pi(\mathsf{T}R)t}+s_\mathsf{T}(t)e^{j\mathsf{T}\pi(\mathsf{T}R)t}$  را در نظر بگیرید

الف) تبدیل فوریه ی y(t) را رسم کنید.

ب حداقل نرخ نمونه برداری را برای بر آوردن شرط نایکوییست در مورد سیگنال y(t) به دست آورده و نشان دهید اگر سیگنال  $\hat{y}[n] = y\left(\frac{n}{R}\right)$  را بسازیم، و نشان دهید اگر سیگنال y(t) را با نرخ  $z_1$  نمونه برداری کنیم و سیگنال  $z_2$  را بسازیم، و نشان دهید اگر سیگنال  $z_3$  را به گونه ای که نمی توان از روی  $z_3$  (aliasing) رخ می دهد؛ به گونه ای که نمی توان از روی  $z_3$  را رسم کنید. را بازسازی کرد. برای این کار، تبدیل فوریه ی  $z_3$  را رسم کنید.

پ) اگر فرض کنیم نرخ نمونه برداری به جای R، برابر TR است، تبدیل فوریه ی  $y\left(\frac{n}{\mathsf{r}R}\right)$  را رسم کنید.

ت) نشان دهید اگر سیگنال  $z(t)=s_1(t)e^{j\tau\pi({}^{\epsilon}R)t}+s_{\tau}(t)e^{j\tau\pi({}^{\epsilon}R)t}$  نمونه برداری (تا نرخ  $z(t)=s_1(t)e^{j\tau\pi({}^{\epsilon}R)t}+s_{\tau}(t)e^{j\tau\pi({}^{\epsilon}R)t}$  نمونه برداری کنیم و سیگنال  $z(t)=z(t)=z(t)e^{j\tau\pi({}^{\epsilon}R)t}+s_{\tau}(t)e^{j\tau\pi({}^{\epsilon}R)t}$  نمونه برداری کنیم و سیگنال  $z(t)=z(t)=z(t)e^{j\tau\pi({}^{\epsilon}R)t}+s_{\tau}(t)e^{j\tau\pi({}^{\epsilon}R)t}+s_{\tau}(t)e^{j\tau\pi({}^{\epsilon}R)t}$ 

$$\hat{z}[n] = \hat{y}[n]$$

بنابراین حتی با بر آوردن نرخ نایکوییست، الزاما نمی توان سیگنال زمان پیوسته را بازسازی کرد.

**سوال ۳)** (امتیازی)

سیگنال باند مُحدود x(t) با تبدیل فوریه ی  $X(j\omega)$  مفروض است؛ به گونه ای که

$$X(j\omega) = \circ \quad , \quad |\omega| > R$$

این سیگنال با نرخ نمونه برداری  $\hat{x}[n]$  که  $R_s > 7$ ، نمونه برداری می شود و سیگنال  $\hat{x}[n]$  را می سازد؛ می سازد؛ می شود و سیگنال از  $\hat{x}[n]$  به عبارت دیگر:

$$\hat{x}[n] = x\left(\frac{n}{R_s}\right)$$

رابطهی بین انرژی این دو سیگنال، یعنی

$$E_{1} = \sum_{n=-\infty}^{\infty} |x[n]|^{r}$$

5

$$E_{\mathsf{T}} = \int_{-\infty}^{\infty} |x(t)|^{\mathsf{T}} dt$$

را بیابید.

**سوال ۴)** (امتيازي)

اگر  $g[n]=x[n]\sum_{k=-\infty}^\infty \delta[n-\mathfrak{k}]$  و  $\phi_\circ<\mathfrak{r}\pi$  که  $x[n]=\cos\frac{\pi}{\mathfrak{k}}n+\phi_\circ$  چه شرط اگر  $\phi_\circ<\mathfrak{r}\pi$  داشته باشیم تا

$$g[n] * \left(\frac{\sin\frac{\pi}{\epsilon}n}{\frac{\pi}{\epsilon}n}\right) = x[n]$$

?