Discrete Mathematics Lecture 4

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Summary of Lecture 3

Floor: $[\alpha]$ is the largest integer $\leq \alpha //a = bq + r; q = [a/b]$ Residue Class: $[a]_n = a + n\mathbb{Z} = \{a + nx : x \in \mathbb{Z}\}$

- $[a]_n \cap [b]_n = \emptyset \text{ or } [a]_n = [b]_n$
- $[a]_n = [b]_n \text{ iff } a \equiv b \pmod{n}$

The Set $\mathbb{Z}_n = \{[0]_n, [1]_n, ..., [n-1]_n\}$

- $[a]_n + [b]_n = [a+b]_n$; $[a]_n [b]_n = [a-b]_n$; $[a]_n \cdot [b]_n = [a \cdot b]_n$
- $[s]_n \in \mathbb{Z}_n$ is called an **inverse** of $[a]_n$ if $[a]_n[s]_n = [1]_n$
 - $[a]_n \in \mathbb{Z}_n$ has an inverse iff gcd(a, n) = 1

The Set $\mathbb{Z}_n^* = \{[a]_n \in \mathbb{Z}_n : \gcd(a, n) = 1\}$

- Euler's Phi Function: $\phi(n) = |\mathbb{Z}_n^*|, \forall n \in \mathbb{Z}^+$
- $n = p_1^{e_1} \cdots p_r^{e_r} \Rightarrow \phi(n) = n(1 p_1^{-1}) \cdots (1 p_r^{-1})$

Euler's Theorem Let $n \ge 1$ and $\alpha \in \mathbb{Z}_n^*$. Then $\alpha^{\phi(n)} = 1$.

• **Fermat's Little Theorem**: If p is a prime, then $\alpha^p = \alpha$, $\forall \alpha \in \mathbb{Z}_p$.

Cryptography

• **Confidentiality**: The property that sensitive information is not disclosed to unauthorized individuals, entities, or processes. --FIPS 140-2

Public-Key Encryption

- m, c, pk, sk: plaintext (message), ciphertext, public key, private key
- M, C: plaintext space, ciphertext space マ文字句
- $\Pi = (\mathbf{Gen}, \mathbf{Enc}, \mathbf{Dec}) + \mathcal{M}, |\mathcal{M}| > 1$
 - Correctness: Dec(sk, Enc(pk, m)) = m for any pk, sk, m
 - **Security**: if *sk* is not known, it's difficult to learn *m* from *pk*, *c*

RSA

A method for obtaining digital signatures and public-key cryptosystem

- Ronald Rivest, Adi Shamir and Leonard Adleman (1977)-MIT
- Scientific Contributions: Turing Award (2002)
 - Public-Key Encryption: the first construction
 - Digital Signature: the first construction

Shamir

Adleman

Plain RSA

CONSTRUCTION: $\Pi = (Gen, Enc, Dec) + \mathcal{M}$, the message space

is
$$\mathcal{M} = \{m: m \in \{1, 2, \dots, N\}, \gcd(m, N) = 1\}$$

- $(pk, sk) \leftarrow \text{Gen}(1^n)$ $\text{choose two } n\text{-bit primes } p \neq q;$ $N = pq; \ \phi(N) = (p-1)(q-1)$ $\text{Id}_{\phi(N)} = ([e]_{\phi(N)})^{-1}$ $\text{If } t \in \mathbb{Z} \text{ s.t. } ed = 1 + t \cdot \phi(N)$

 - $[e]_{\phi(N)} \leftarrow \mathbb{Z}_{\phi(N)}^*$

$$\exists d \exists t \ [d]_{\phi(N)} = \left([e]_{\phi(N)} \right)^{-1} \quad \forall f \ [d]_{\varphi(N)} = \left([c]_N \right)^d \\ = \left([m^e]_N \right)^d$$

$$= \left([m^e]_N \right)^d$$

- output pk = (N, e) and sk = (N, d)
- $c \leftarrow \mathbf{Enc}(pk, m)$:
 - output $c = m^e \mod N$
 - $0 \le c < N$
- $m \leftarrow \mathbf{Dec}(sk, c)$:
 - output $m = c^d \mod N$
 - 0 < m < N

•
$$[d]_{\phi(N)} = ([e]_{\phi(N)})^{-1}$$

•
$$\exists t \in \mathbb{Z} \text{ s.t. } ed = 1 + t \cdot \phi(N)$$

$$= \prod_{e=0}^{\bullet} [c^a]_N = ([c]_N)^a$$
$$= ([m^e]_N)^d$$

$$= \left(([m]_N)^e \right)^d$$

$$=([m]_N)^{ed}$$

$$=([m]_N)^{1+t\phi(N)}$$

$$= [m]_N \cdot ([m]_N)^{\phi(N)t}$$

$$= [m]_N \cdot [1]_N \checkmark$$

$$= [m]_N$$

$$m = c^d \mod N$$

Plain RSA

EXAMPLE: this is a toy example; all numbers are very small

•
$$(pk, sk) \leftarrow \mathbf{Gen}(1^n)$$

•
$$p = 7, q = 13,$$

•
$$N = 91, \phi(N) = 72$$

•
$$[e]_{72} = [5]_{72}$$
 et \hat{V}_{ex}

•
$$N = 91, \phi(N) = 72$$
 • $[2^{145}]_{91} = [?]_{91}$
• $[e]_{72} = [5]_{72}$ • \mathcal{N}_{eco} • $([2]_{91})^{145} = [?]_{91}$
• $[d]_{72} = [29]_{72}$ [e] \mathcal{N}_{eco} • $[2]_{91}$ • $[2]_{91}$ ∈ \mathbb{Z}_{91}^*

•
$$pk = (91, 5); sk = (91, 29)$$
 • $([2]_{91})^{\phi(91)} = [1]_{91}$

•
$$c \leftarrow \mathbf{Enc}(pk, m)$$
:

•
$$m = 2$$

•
$$c = (2^5 \mod 91) = 32$$

•
$$m \leftarrow \mathbf{Dec}(sk, c)$$
:

•
$$c = 32$$

•
$$m = (32^{29} \mod 91) = 2$$

•
$$32^{29} = (2^5)^{29} = 2^{145}$$

•
$$2^{145} \equiv ? \pmod{91}$$

•
$$[2^{145}]_{91} = [?]_{91}$$

•
$$([2]_{91})^{145} = [?]_{91}$$

•
$$[2]_{91} \in \mathbb{Z}_{91}^*$$

•
$$([2]_{91})^{\phi(91)} = [1]_{91}$$

•
$$([2]_{91})^{145} = ([2]_{91})^{72} ([2]_{91})^{72} [2]_{91}$$

= $[1]_{91} [1]_{91} [2]_{91}$
= $[2]_{91}$

Security

Security: If *sk* is not known, it's difficult to learn *m* from *pk*, *c*

• At least, it should be difficult to learn d from pk

Plain RSA and Integer Factoring (given N, find p, q):

- "Factoring is easy" ⇒ "Plain RSA is not secure"
 - $N \to (p,q) \to \phi(N) \to d$: computable with EEA
- "Plain RSA is secure" ⇒ "Factoring is hard"
- "Factoring is hard"

 "Plain RSA is secure"
- It is likely that "Factoring is hard"⇒ "Plain RSA is secure"
 - The best known method of computing *d* is via factoring *N*

How Large is the *N* in practice?

- |N| = 2048 is recommended from present to 2030
- |N| = 3072 is recommended after 2030

RSA

EXAMPLE: A sample execution of the RSA public-key encryption.

- p = 1797693134862315907729305190789024733617976978942306572734300811577326758055009631327084 7732240753602112011387987139335765878976881441662249284743063947412437776789342486548527630 2219601246094119453082952085005768838150682342462881473913110540827237163350510684586298239 947245938479716304835356329624225795083
- $\begin{array}{l} \bullet \quad q = & 1797693134862315907729305190789024733617976978942306572734300811577326758055009631327084\\ 7732240753602112011387987139335765878976881441662249284743063947412437776789342486548527630\\ 2219601246094119453082952085005768838150682342462881473913110540827237163350510684586298239\\ 947245938479716304835356329624227077847 \end{array}$
- N = 3231700607131100730071487668866995196044410266971548403213034542752465513886789089319720 1411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750 1977503896521067960576383840675682767922186426197561618380943384761704705816458520363050428 8757589154106580860755239912393121219074286119866604856013109808143051877484634725921533261 1759149330725252437276424147817808729273755165527379964561074264587032664709511346018327798 3737152901481295041417951323149293889926882474402327275395755146886332824477192285306647065 20939357878528540284184156513405575872085703420500969966917951381310826301
- $\phi(N) = 3231700607131100730071487668866995196044410266971548403213034542752465513886789089319$ 7201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091 7501977503896521067960576383840675682767922186426197561618380943384761704705816458520363050 4288757589154106580860755239912393121219038332257169358537858523704327271382812275186342687 1297212289168409787085665422221552391774628940093485139736801331477871715085171882512773342 1035124363418993739683549454013443767845534857552519938213736713446770956061463545436049017 58694718276224054213583162787340809095977593826461068360296205292132857953372

RSA

EXAMPLE: A sample execution of the RSA public-key encryption.

- e = 15
- d = 4308934142841467640095316891822660261392547022628731204284046057003287351849052119092960 1882030551284918290614562530692658826078867321228126784203181931044160841169823067994789000 2636671862028090614101845120900910357229581901596748824507924513015606274421944693817400571 8343452205475441147673653216524161625384443009559144717144698272436361843749700248456916172 9616385557879716114220562962069855699505253457980186315735108637162286780229176683697789471 3499151225324986244732605351258357127379810070026584284982284595694608081951393914732023449 2629103496540561811088371645441212797012510194809114706160705617714393783
- m = 1060492175475872144576165469414485300895277760828043761504547236562152874067991556927005 1503191522500036448557172487959011926112038398359402756573149541644330968641767630622070720 6300611302597838253559482233713309491580368127421870570456049345468117909489758782001441890 4834424987320032029927723446568903940998962231923268398424184371118321200199145779352875281 2978134072787404790207031482099444968252108690296363773578594703102617386738297675080295774 0914472401975212215460354590300865381144285160786447331806555401091337782416072602736553356 61777894173665137928787960365220712025120785257907244561721692764755210375
- $\begin{array}{l} \bullet \quad c = & 1052638995813896291959559409341115889309974350846590234712847813990877461431177809735479\\ & 5345791726768384252751637693995592403757856185437083738829836072472243389583367910268799453\\ & 3780394197213455665495167301873084368644600883966117266700507232420801391760803347202941953\\ & 0404891500380565634181654830724988604902791048824931866006271433570305757657601698851348414\\ & 8308512574950252535463185824865665499749033598201370342142901944632549253564037639312442875\\ & 0397358269093293568406659937836951014476104859227269159699679685846612404304259821941895044\\ & 00469889762574275824269475495394920107921066723277769226199475558068627049 \end{array}$

Implementation Issues

CONSTRUCTION: $\Pi = (Gen, Enc, Dec) + \mathcal{M}$, the message space

is $\mathcal{M} = \{m: m \in [N], \gcd(m, N) = 1\}$

- $(pk, sk) \leftarrow \mathbf{Gen}(1^n)$
 - choose two *n*-bit primes $p \neq q$
 - N = pq; $\phi(N) = (p-1)(q-1)$
 - $[e]_{\phi(N)} \leftarrow \mathbb{Z}_{\phi(N)}^*$
 - $[d]_{\phi(N)} = ([e]_{\phi(N)})^{-1}$ $0 \le e, d < \phi(N)$
 - output pk = (N, e) and sk = (N, d)
- $c \leftarrow \mathbf{Enc}(pk, m)$:
 - output $c = m^e \mod N$
 - $0 \le c < N$
- $m \leftarrow \mathbf{Dec}(sk, c)$:
 - output $m = c^d \mod N$
 - $0 \le m < N$

Questions

- Choose p, q efficiently?
 - Prime number generation
- Compute *d* efficiently?
 - Square-and-multiply
- Compute c/m efficiently?
 - Square-and-multiply

Addition

Bit Length of Integer:
$$\ell(a) = \begin{cases} \lfloor \log_2(|a|) \rfloor + 1 & a \neq 0 \\ 1 & a = 0 \end{cases}$$

Binary Representation: a 0-1 sequence

•
$$a = (a_{k-1} \dots a_1 a_0)_2 \Leftrightarrow a = a_{k-1} 2^{k-1} + \dots + a_1 \cdot 2^1 + a_0 \cdot 2^0$$

Algorithm for Addition:

- Input: $a = (a_{k-1} \cdots a_1 a_0)_2$, $b = (b_{k-1} \cdots b_1 b_0)_2$
- **Output**: $c = a + b = (c_k c_{k-1} \cdots c_1 c_0)_2$
 - $carry \leftarrow 0$
 - for $i \leftarrow 0$ to k 1 do
 - $t \leftarrow a_i + b_i + carry;$
 - set c_i and carry such that $t = 2 \cdot carry + c_i$
 - $c_k \leftarrow carry$
- Complexity: O(k) bit operations

Subtraction

Algorithm for Subtraction:

- Input: $a = (a_{k-1} \cdots a_1 a_0)_2$, $b = (b_{k-1} \cdots b_1 b_0)_2$, $a \ge b$
- Output: $c = a b = (c_{k-1} \cdots c_1 c_0)_2$
 - $carry \leftarrow 0$
 - for $i \leftarrow 0$ to k 1 do
 - $t \leftarrow a_i b_i + carry$;
 - set c_i and carry such that $t = 2 \cdot carry + c_i$
- Complexity: O(k) bit operations

Multiplication

Algorithm for Multiplication:

- Input: $a = (a_{k-1} \cdots a_0)_2$, $b = (b_{k-1} \cdots b_0)_2$
- **Output**: $c = ab = (c_{2k-1} \cdots c_0)_2$
 - $c \leftarrow 0$; $x \leftarrow a$
 - for $i \leftarrow 0$ to k 1 do
 - if $b_i = 1$, then $c \leftarrow c + x$;
 - $x \leftarrow x + x$;
- **Complexity**: $O(k^2)$ bit operations

Division

Algorithm for Division:

- **Input**: $a = (a_{k-1} \cdots a_0)_2$, $b = (b_{l-1} \cdots b_0)_2$, $a \ge b$, $a_{k-1} = b_{l-1} = 1$
- **Output**: $q = (q_{k-l} \cdots q_0)_2$ and $r = (r_{l-1} \cdots r_0)_2$ s.t. $a = bq + r, 0 \le r < b$
 - $(r_k r_{k-1} \cdots r_0)_2 \leftarrow (0 a_{k-1} \cdots a_0)_2$
 - for $i \leftarrow k l$ down to o do
 - $q_i \leftarrow 2r_{i+l} + r_{i+l-1}$;
 - If $q_i \geq 2$, then $q_i \leftarrow 1$;
 - $(r_{i+l}\cdots r_i)_2 \leftarrow (r_{i+l}\cdots r_i)_2 q_i\cdot b;$
 - while $r_{i+1} < 0$ do
 - $(r_{i+1}\cdots r_i)_2 \leftarrow (r_{i+1}\cdots r_i)_2 + b;$
 - $q_i \leftarrow q_i 1$;
 - output $q = (q_{k-l} \cdots q_0)_2$ and $r = (r_{l-1} \cdots r_0);$
- Complexity: $O((k-l+1) \cdot l)$ bit operations

Arithmetic Modulo n

THEOREM: Let $a, b \in \{0, 1, ..., n - 1\}$. Then

- $(a \pm b) \mod n$ can be computed in $O(\ell(n))$ bit operations
 - $\ell(a), \ell(b) \le \ell(n)$
 - $a \pm b$ are computable in $O(\ell(n))$ bit operations
 - $0 \le |a+b|, |a-b| < 2n$
 - $(a \pm b) \mod n$ are computable in $O((\ell(2n) \ell(n) + 1)\ell(n)) = O(\ell(n))$ bit operations
- (ab) mod n can be computed in $O(\ell(n)^2)$ bit operations
 - $\ell(a), \ell(b) \le \ell(n)$
 - *ab* is computable in $O(\ell(n)^2)$ bit operations
 - $0 \le |ab| < n^2$
 - (ab) mod n is computable in $O((\ell(n^2) \ell(n) + 1)\ell(n)) = O(\ell(n)^2)$ bit operations.

Arithmetic Modulo *n*

Modulo exponentiation: For $0 \le a < n, e \in \mathbb{N}$, $a^e \mod n = ?$

Complexity? How to compute efficiently?

EXAMPLE: modulo exponentiation

- m = 1437339113920498981637906207424471163445460406448981415203760376263650078098 99615665793895112104794373551079787727363529151277801402630305742433442340983358 787394193855033926469913603762712163723160462115649025
- $e = 46310011625494823943446873944318243690297367227688331207962573871391818800156 \\ 61440418125399478543429257625536255388418199849246329730346646442802201832756472 \\ 3810228367576715525319623371983456905064392494176785$
- N = 2452466449002782119765176635730880184670267876783327597434144517150616008300 38587216952208399332071549103626827191679864079776723243005600592035631246561218 465817904100131859299619933817012149335034875870551067
- $\phi(N) = 2452466449002782119765176635730880184670267876783327597434144517150616008$ 30038587216952208399332071549102628322861627039184220494270313938703906283392288 487724394251766892786817697178343799758481228648091667216
- $m^e \mod N = ?$

Square-and-Multiply

ALGORITHM: compute $a^e \mod n$ in polynomial time

- Input: $a \in \{0,1,\dots,n-1\}$; $e = (e_{k-1} \cdots e_0)_2$ $//k = \ell(e)$
 - $e = e_{k-1} \cdot 2^{k-1} + \dots + e_1 \cdot 2^1 + e_0 \cdot 2^0$
- Output: $a^e \mod n$
 - **Square**: this step requires O(k) multiplications modulo n
 - $x_0 = a$
 - $x_1 = (x_0^2 \mod n) = (a^2 \mod n)$
 - $x_2 = (x_1^2 \mod n) = (a^{2^2} \mod n)$
 - ...
 - $x_{k-1} = (x_{k-2}^2 \mod n) = (a^{2^{k-1}} \mod n)$
 - **Multiply**: this step requires O(k) multiplications modulo n
 - $(a^e \mod n) = (x_0^{e_0} \cdot x_1^{e_1} \cdots x_{k-1}^{e_{k-1}} \mod n)$
- Complexity: O(k) multiplications modulo n

Square-and-Multiply

EXAMPLE: Compute 2^{123} mod 35 using square-and-multiply.

- **Input**: a = 2; n = 35; $e = 123 = (1 1 1 1 0 1 1)_2$; k = 7
- **Square:** k-1 multiplications modulo n will be done
 - $x_0 = a = 2$;
 - $x_1 = x_0^2 \mod n = 4$
 - $x_2 = x_1^2 \mod n = 16$
 - $x_3 = x_2^2 \mod n = 11$
 - $x_4 = x_3^2 \mod n = 16$
 - $x_5 = x_4^2 \mod n = 11$
 - $x_6 = x_5^2 \mod n = 16$
- Multiply: at most k-1 multiplications modulo n will be done
 - $a^e = x_0 x_1 x_3 x_4 x_5 x_6 = 2 \times 4 \times 11 \times 16 \times 11 \times 16 \equiv 8 \pmod{35}$
 - $(2^{123} \mod 35) = 8$

Euclidean Algorithm (EA)

ALGORITHM: compute gcd(a, b)

- **Input**: $a, b \ (a \ge b > 0)$
- Output: $d = \gcd(a, b)$

•
$$r_0 = a; r_1 = b;$$

•
$$r_0 = r_1 q_1 + r_2 \ (0 < r_2 < r_1)$$

- •
- $r_{i-1} = r_i q_i + r_{i+1} \quad (0 < r_{i+1} < r_i)$
- •
- $r_{k-2} = r_{k-1}q_{k-1} + r_k (0 < r_k < r_{k-1})$
- $r_{k-1} = r_k q_k$
- output r_k

a = 12345, b = 123				
i	r_i	q_i		
0	12345			
1	123	100		
2	45	2		
3	33	1		
4	12	2		
5	9	1		
6	3	3		
7	0			

Correctness: $d = \gcd(r_0, r_1) = \dots = \gcd(r_{k-1}, r_k) = r_k$

Extended Euclidean Algorithm (EEA)

ALGORITHM: compute $d = \gcd(a, b)$, s, t such that as + bt = d

- **Input**: $a, b \ (a \ge b > 0)$
- Output: $d = \gcd(a, b)$, integers s, t such that d = as + bt

•
$$r_0 = a; r_1 = b; \binom{s_0}{t_0} = \binom{1}{0}; \binom{s_1}{t_1} = \binom{0}{1};$$

•
$$r_0 = r_1 q_1 + r_2$$
 $(0 < r_2 < r_1);$ $\binom{S_2}{t_2} = \binom{S_0}{t_0} - q_1 \binom{S_1}{t_1}$

•

•
$$r_{i-1} = r_i q_i + r_{i+1}$$
 $(0 < r_{i+1} < r_i); \binom{s_{i+1}}{t_{i+1}} = \binom{s_{i-1}}{t_{i-1}} - q_i \binom{s_i}{t_i}$

•

•
$$r_{k-2} = r_{k-1}q_{k-1} + r_k (0 < r_k < r_{k-1}); {S_k \choose t_k} = {S_{k-2} \choose t_{k-2}} - q_{k-1} {S_{k-1} \choose t_{k-1}}$$

- $r_{k-1} = r_k q_k$
- output r_k , s_k , t_k

EEA

Correctness: We have that $r_i = as_i + bt_i$ for i = 0,1,2,...,k

•
$$r_0 = a = (a, b) {s_0 \choose t_0}; r_1 = b = (a, b) {s_1 \choose t_1};$$

•
$$r_2 = r_0 - q_1 r_1 = (a, b) {s_0 \choose t_0} - q_1 \cdot (a, b) {s_1 \choose t_1} = (a, b) {s_2 \choose t_2};$$

•

•
$$r_k = r_{k-2} - q_{k-1}r_{k-1} = (a,b) {s_{k-2} \choose t_{k-2}} - q_{k-1} \cdot (a,b) {s_{k-1} \choose t_{k-1}} = (a,b) {s_k \choose t_k}$$

EXAMPLE: Execution of the EEA on input a = 12345, b = 123

i	r_i	q_i	s_i	t_i
0	12345		1	0
1	123	100	0	1
2	45	2	1	-100
3	33	1	-2	201
4	12	2	3	-301
5	9	1	-8	803
6	3	3	11	-1104
7	0			

Complexity

THEOREM: Let $\alpha = \frac{1}{2}(1 + \sqrt{5})$. Then $k \le \ln b / \ln \alpha + 1$ in EA.

- k = 1: $k \le \ln b / \ln \alpha + 1$
- k > 1: we show that $r_{k-i} \ge \alpha^i$ for i = 0, 1, ..., k-1
 - $i = 0: r_k \ge 1 = \alpha^0$
 - $i = 1: r_{k-1} > r_k \Rightarrow r_{k-1} \ge r_k + 1 \ge 2 \ge \alpha^1$
 - Suppose that $r_{k-i} \ge \alpha^i$ for $i \le j$

•
$$r_{k-(j+1)} = r_{k-j}q_{k-j} + r_{k-(j-1)}$$

 $\geq \alpha^{j} + \alpha^{j-1}$
 $= \alpha^{j-1}(\alpha + 1)$
 $= \alpha^{j+1}$

• $b = r_1 \ge \alpha^{k-1} \Rightarrow k \le \ln b / \ln \alpha + 1$

Complexity of EA and EEA: $O(\ell(a)\ell(b))$ bit operations

Prime Number Theorem

DEFINITION: For $x \in \mathbb{R}^+$, $\pi(x) = \sum_{p \le x} 1$: # of primes $\le x$

THEOREM:
$$\lim_{x\to\infty} \pi(x)/(x/\ln x) = 1$$

- Conjectured by Legendre and Gauss
- Chebyshev: if the limit exists, then it is equal to 1
- Rosser and Schoenfeld:
 - $\pi(x) > \frac{x}{\ln x} (1 + \frac{1}{2 \ln x}) \text{ when } x \ge 59$
 - $\pi(x) < \frac{x}{\ln x} (1 + \frac{3}{2 \ln x}) \text{ when } x > 1$

NOTATION: \mathbb{P} - the set of all primes; $\mathbb{P}_n = \{p \in \mathbb{P}: 2^{n-1} \le p < 2^n\}$.

THEOREM:
$$|\mathbb{P}_n| \ge \frac{2^n}{n \ln 2} \left(\frac{1}{2} + O\left(\frac{1}{n} \right) \right)$$
 when $n \to \infty$.

Number of *n*-bit Primes

EXAMPLE: The number of *n*-bit primes for $n \in \{10, ..., 25\}$.

n	$ \mathbb{P}_n $	$2^{n-1}/n\ln 2$	n	$ \mathbb{P}_n $	$2^{n-1}/n\ln 2$
10	75	73.8	18	10749	10505.4
11	137	134.3	19	20390	19904.9
12	255	246.2	20	38635	37819.4
13	464	454.6	21	73586	72036.9
14	872	844.2	22	140336	137525.0
15	1612	1575.8	23	268216	263091.4
16	3030	2954.6	24	513708	504258.5
17	5709	5561.7	25	985818	968176.3

Prime Number Generation

Basic Idea: randomly choose *n*-bit integers until a prime found.

- The number of n-bit integers is 2^{n-1}
- $|\mathbb{P}_n| \ge \frac{2^n}{n \ln 2} \left(\frac{1}{2} + O\left(\frac{1}{n}\right)\right)$ when $n \to \infty$
- The probability that a prime is chosen in every trial is equal to

$$\alpha_n = \frac{1}{n \ln 2} \left(1 + O\left(\frac{1}{n}\right) \right), n \to \infty$$

- In $\alpha_n^{-1} = \frac{n \ln 2}{1 + o(\frac{1}{n})} \le 2n \ln 2$ trials, we get a prime.
- **Efficient Algorithms:** An algorithm is considered as efficient if its (expected) running time is a polynomial in the bit length of its input. //a.k.a. (expected) polynomial-time algorithm
- **EXAMPLE**: Choosing an *n*-bit prime can be done efficiently.
 - The expected # of trials is $\leq 2n \ln 2$, a polynomial in n (input length)
 - Determine if an n-bit integer is prime can be done efficiently