Creating an Evolution Simulator for Protein Low Complexity Regions and Attempting to Utilize it for an Approximate Bayesian Computation

Alexander Turco

December 5, 2022

Overview

Background Information				
Simulating LCR Evolution				
Applications to ABC-MCMC				
Conclusions				
Future Work				

What are Low Complexity Regions?

Saccharomyces cerevisiae SRP40 Protein LCRs

>CAA82171.1(298-316) complexity=2.18 (15/1.90/2.20) tpassnestpsasssssan

LCRs Present in Unique Ways

Homorepeats

Consecutive iterations of a single residue

Direpeats

Consecutive iterations of two ordered, different residues

Imperfect Repeats

Regions in which the repeat units are not the same

LCRs are Hypermutable

mam domain	Size (bp)	Amino Acid Substitutions	Amino Acid/ Total Substitutions
Unique	933	26	0.15
Repetitive	810	47	0.42

¹Newfeld, Smoller, and Yedvobnick, 1991

Proposed Mechanisms of LCR Evolution

1. Polymerase Slippage/Slipped Strand Mispairing

Synthesized DNA CAT CAT CAT

Polymerase Slips Forward

Polymerase Slips Backwards

²Levinson and Gutman, 1987; Sehn, 2015

Proposed Mechanisms of LCR Evolution

2. Unequal Recombination

³Mirkin, 2007

Why Care about LCRs and their Evolution?

Huntington's Disease

Genetic Recombination

Neisseria meningitidis

What we Did in this Study

 Random Protein Sequence GGAGGGAQ mutation rate = 0.14 indel rate = 0.14

- Random Protein Sequence GGAGGGAQ mutation rate = 0.14 indel rate = 0.14
- ② Assign Exponential Deviates mutation deviates = (0.83, 1.82, 2.35, 0.54, 0.98, 0.76, 1.53, 2.34) indel deviates = (0.21, 1.21, 1.49, 0.86, 0.97, 1.13, 0.53, 0.35) exp (β) , where β = mutation rate exp (β) , where β = length of repeat * indel rate

- Random Protein Sequence GGAGGGAQ mutation rate = 0.14 indel rate = 0.14
- ② Assign Exponential Deviates mutation deviates = (0.83, 1.82, 2.35, 0.54, 0.98, 0.76, 1.53, 2.34) indel deviates = (0.21, 1.21, 1.49, 0.86, 0.97, 1.13, 0.53, 0.35) exp (β) , where β = mutation rate exp (β) , where β = length of repeat * indel rate
- Point Mutation, Insertion, or Deletion
 Lowest value deviate = Residue that mutates fastest

- Random Protein Sequence GGAGGGAQ mutation rate = 0.14 indel rate = 0.14
- ② Assign Exponential Deviates mutation deviates = (0.83, 1.82, 2.35, 0.54, 0.98, 0.76, 1.53, 2.34) indel deviates = (0.21, 1.21, 1.49, 0.86, 0.97, 1.13, 0.53, 0.35) exp (β) , where β = mutation rate exp (β) , where β = length of repeat * indel rate
- Oint Mutation, Insertion, or Deletion Lowest value deviate = Residue that mutates fastest
- Upon point mutation, insertion, or deletion, scan the sequence again to see if the landscape of the sequence was affected, assign new deviates to affected amino acids only.

Bayesian Statistics Overview

Bayesian Statistics: Model-based statistical inference

$$p(D|\theta) \tag{1}$$

Likelihood

Bayesian Statistics Overview

Bayesian Statistics: Model-based statistical inference

$$p(D|\theta) \tag{1}$$

Likelihood

$$p(\theta|D) \tag{2}$$

Posterior

Why use an ABC-MCMC

► The increasing complexity and magnitude of available data can make the likelihood difficult to calculate

$$p(D|\theta)$$

Why use an ABC-MCMC

Calculation of the likelihood is replaced with a simulation step

MCMC for ABC

- $\bullet \ \ \, \text{Propose a move from } \theta \text{ to } \theta' \text{ according to a transition kernel } q(\theta,\theta').$
- ② Generate simulated dataset D' using θ' and calculate S'.
- **3** If $\rho(S',S) \leq \epsilon$ continue to 4, otherwise remain at θ and go to 1.
- Calculate

$$\alpha(\theta, \theta') = min(1, \frac{\pi(\theta')q(\theta', \theta)}{\pi(\theta)q(\theta, \theta')})$$

- **5** Accept θ' with probability α , otherwise stay at θ .
- Return to 1.

⁴Marjoram et al., 2003

MCMC for ABC: Modified Algorithm

- \bullet Propose a move from θ to θ' according to the normal distribution N(0.0,1.0)
- ② Create and mutate a random protein sequence using θ' to generate the simulated Dataset D' do this 1000 times per newly proposed parameter value.
- ullet Calculate summary statistics for simulated dataset D' (average of all 1000 vectors of summary statistics)
- If $d(S',S) < previous_distance$, go to next step, otherwise employ a one-sample t-test to assess the probability of accepting a larger distance. If the newly proposed distance is close to the previous distance, there is a higher chance we accept the value, otherwise we reject.
- lacktriangle Accept θ'
- Return to step 1

Future Work

- Graphical representations of simulation iteration versus parameter values
- Implementation of weighted summary statistics in distance calculation
- ► Adjustment of values such as mean and standard deviation of the proposal distribution

Acknowledgements

- Dr. Brian Golding
- Sam Long
- Zachery Dickson
- ▶ Johanna Enright