Classification and Regression Learning for Life

Decision Trees can be used for both

(1	X2	Y
0.268	0.266	Bad
0.219	0.372	Bad
0.517	0.573	Bad
0.269	0.908	Good
0.181	0.202	Bad
0.519	0.898	Good
0.563	0.945	Bad
0 129	0.661	Rad

Classification

- Spam / not Spam
- Admit to ICU /not
- Lend money / deny
- Intrusion detections

	X1	X2	Y
	0.268	0.266	64.41
	0.219	0.372	28.08
	0.517	0.573	95.76
	0.269	0.908	15.84
	0.181	0.202	41.83
	0.519	0.898	25.20
	0.563	0.945	9.44
	n 170	0.661	87 77
100			

Regression

- Predict stock returns
- Pricing a house or a car
- Weather predictions (temp, rain fall etc)
- Economic growth predictions
- Predicting sports scores

GreatlearningVisualizing Classification as a Tree 1.0 0.8 X 0.2 0.0 0.8 1.0 0.6 0.4 0.0 0.2 X1

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited

Metrics

greatlearning

Learning for Life

- Algorithms for constructing decision trees usually work topdown, by choosing a variable at each step that best splits the set of items.
- Different algorithms use different metrics for measuring "best"
- These metrics measure how similar a region or a node is.
 They are said to measure the impurity of a region.
- Larger these impurity metrics the larger the "dissimilarity" of a nodes/regions data.
- Examples: Gini impurity, Entropy, Variance

Gini impurity

greatlearning

Learning for Life

- Used by the CART
- Is a measure of how often a randomly chosen element from the set would be incorrectly labeled if it was randomly labeled according to the distribution of labels in the subset.
- Can be computed by summing the probability of an item with label i being chosen (p_i) , times the probability of a mistake $(1 p_i)$ in categorizing that item.
- Simplifying gives, the Gini impurity of a set:

greatlearning Learning for Life

greatlearning Learning for Life **CART:** An Example Occupati Age Target Cust ID Gender on M Sal 22 1 1 22 Sal 0 2 M Self-Emp 23 M 1 3 23 0 Self-Emp M 4 = 1-(0.1)2- (0.6)2 Self-Emp 24 5 M 1 M Self-Emp 24 0 6 7 F Sal 25 1 0 Sal 25 8 F 0 26 9 F Sal Self-Emp 26 0 10 F

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use of distribution prohibited

greatlearning Learning for Life

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited