Децентрализованная система по решению задачи маршрутизации на основе мультиагентного подхода.

Смирнов Ю.К.

Санкт-Петербургский Государственный Университет

группа 21.М07-мм Научный руководитель: д.ф.-м.н., профессор Граничин О.Н.

Виды задачи VRP

- Задача маршрутизации транспортных средств средств с ограниченной вместимостью (Capacitated Vehicle Routing Problems, CVRP)
- Задача по маршрутизации транспортных средств с установленными временными окнами (Vehicle Routing Problems with Time Windows, VRPTW)
- Задача по маршрутизации транспортных средств с нескольками депо, (Multiple Depot Vehicle Routing Problems, MDVRP)
- Задача по маршрутизации транспортных средств с возможностью доставки грузов в течение длительного периода времени. (Periodic Vehicle Routing Problem, PVRP)

Цель магистерской диссертации

Целью дипломной работы является разработка децентрализованной системы, решающей задачу маршрутизации для транспортных средств с ограниченной грузоподъемностью на основе мультиагентного подхода.

Задачи магистерской диссертации работы

Для достижения поставленной цели необходимо решить следующие задачи:

- Изучить предметную область и обосновать актуальность темы.
- Провести обзор существующих алгоритмов, позволяющих решить задачи маршрутизации транспортных средств с ограниченной грузоподъемностью.
- Разработать эффективный метод решения задачи маршрутизации транспортных средств с ограниченной грузоподъемностью на основе мультагентного подхода.
- Реализовать систему на основе предложенного метода.
- Апробировать разработанную систему.

Математическая модель задачи CVRP

Математическая модель задачи CVRP

Целочисленная модель линейного программирования задачи CVRP может быть представлена как минимизация целевой функции:

$$\sum_{r=1}^{p} \sum_{i=0}^{n} \sum_{j=0, i \neq j}^{n} C_{ij} X_{r_{ij}}$$
 (1)

Здесь:

 C_{ij} - это стоимость перемещения связана с каждой дугой (i,j) $X_{r_{ij}}$ - это бинарная переменная, определяющая перемещение транспортного средства $r \in \{1,2,\ldots,p\}$ по дуге (i,j)

Математическая модель задачи CVRP

С учетом условий:

$$\sum_{r=1}^{p} \sum_{i=0, i \neq j}^{n} X_{r_{ij}} = 1, \forall j \in \{1, ..., n\}$$
 (2)

$$\sum_{j=0}^{n} X_{r_0 j} = 1, \forall j \in \{1, ..., p\}$$
(3)

$$\sum_{i=0,i\neq j}^{n} X_{rj} = \sum_{i=0,i\neq j}^{n} X_{r_{ji}}, \forall r \in \{1,...,p\}, j \in \{0,...,n\}$$
(4)

$$\sum_{i=0}^{n} \sum_{j=0, i \neq j}^{n} d_j X_{r_{ij}} \le Q, \forall r \in \{1, ..., p\}$$
 (5)

$$\sum_{i=0}^{n} \sum_{j=0, i \neq i}^{n} d_{j} X_{r_{ij}} \subseteq |S| - 1, \forall S \subseteq |1, ..., n|, i \neq j$$
(6)

Алгоритмы решения

- 1. Точные алгоритмы
 - Метод ветвей и границ
- 2. Эвристические алгоритмы
 - Жадный алгоритм
 - Генетический алгоритм
- 3. Мета-эвристические алгоритмы
 - Поиск с запретами
 - Управляемый глобальный поиск
 - Управляемый локальный поиск

Реализация метода "Жадный алгоритм"

VRP solution for 30 customers with Cost: 793.0

Реализация метода "Локальный Поиск"

VRP solution for 30 customers with Cost: 644.0

Реализация метода "Глобальный поиск"

VRP solution for 30 customers with Cost: 761.0

Реализация метода "Tabu search"

VRP solution for 30 customers with Cost: 637.0

Сравнение рассмотренных алгоритмов

Заказь	ı Жадный алгоритм		Алгоритм локального		Алгоритм глобального		Табу-алгоритм	
	алторитм							
			поиска		поиска			
Кол-	Время	Растояние	Время	Растояние	Время	Растояние	Время	Растояние
во								
10	259	0.021	230	0.022	240	0.020	230	0.022
50	953	0.041	784	0.032	915	0.031	756	0.036
100	1576	0.041	1325	0.069	1380	0.057	1280	0.110
250	2826	0.053	2621	0.099	2790	0.087	4178	0.120
500	4574	0.153	4403	0.325	4506	0.320	4178	0.450
1000	7998	0.125	7752	0.982	7952	0.982	7588	1.250

Структура мультиагентной системы

Взаимодействие агентов

Взаимодействие агентов

```
public Vector<ACLMessage> prepareCfps(ACLMessage init) {
       init = new ACLMessage(ACLMessage.CFP);
       Vector<ACLMessage> messages = mew Vector<ACLMessage>();
        AID[] agents = helper.searchOF(getAgent(), "Carrier");
       System.out.println("Фасилитатором были найдены агенты с функцией «Перевозчик»:");
        for (AID agent : agents) (
                System.out.println(agent.getName());
                init.addReceiver(new AID((String) agent.getLocalName(), AID.ISLOCALNAME));
        System.out.println();
        if (agents.length == 0) (
                System.out.println("Arentw, cootsetctsymmae twny, не найдены. Прекращение:" + getAgent().getAID().getHame());
                init.setProtocol(FIPANames.InteractionProtocol.FIPA_ITERATED_CONTRACT_NET);
                init.setReplyDyOate(new Date(System.currentTimeMillis() + 18888));
                init.setContent(jobTitle - "|" + payment);
                messages.addElement(init);
        return messages:
```

Архитектура прототипа системы


```
&НаСервере
□ Процедура ПоказатьТочкиНаСервере ()
      //1. Устанавливаем соединение с сервисом для авторизации на Yandex
      Coeпинение = Получить HTTP Coeпинение ("geocode-maps.vandex.ru");
      //2. Формируем запрос на отображение
     МакетКарты = РеквизитформывЗначение ("Объект") .ПолучитьМакет ("Макет");
      Карта=МакетКарты.ПолучитьТекст();
      НовыйТекстМакета = Карта:
      Пля Каждого СтрТЗ из ТаблицаЗначений Шикл
          SanpocHTTP = Сформировать HTTPSanpocПоКонтрАгенту (СтрТЗ. Адрес);
          Ответ = Соединение.Получить (ЗапросНТТР);
          Если Ответ, КолСостояния = 200 Топла
              Чтение = Новый ЧтениеJSON:
              Чтение. Установить Строку (Ответ, Получить ТелоКак Строку ());
              Панные = Прочитать JSON (Чтение, Истина):
              Response = [AHHMe["response"];
              ObjectCollection = Response["GeoObjectCollection"]["featureMember"];
              // Первый элемент массива
                                                             // Точка на карте
              GeoObject = ObjectCollection[0]["GeoObject"]; Point = GeoObject["Point"];
              // Координаты по X и У
              Koopдинаты = Point["pos"];// позиция координаты
              ПозПробел = СтрНайти (Координаты, " ");
              Если ПозПробел > 0 Тогла
                  Широта = Лев (Координаты, ПозПробел-1);
                  Долгота = Сред (Координаты, ПозПробел+1);
                  defaultTeкcтMakeтaКaрты = НовыйТекстMakeтa;
                  СтрТЭ.Широта =Широта;
                  СтрТЗ. Полгота =Полгота:
                  TexctJavaScipt = "var myPlacemark"+
                  CTpT3. НомерСтроки+ " = new ymaps. Placemark([" + Долгота + "," + Широта +"], {}, {preset: 'islands#blueIcon'});
                  | mvMap.geoObjects.add(mvPlacemark"+CTpT3.HomepCTpoku+");
                  I//[ШаблонПобавленияНовойМетки]//";
                  Новый Текст Макета = Стр Заменить (default Текст Макета Карты, "// [Паблон Побавления Новой Метки] // ". Текст Java Scipt):
              КонепЕсли:
          КонепЕсли:
      КонецЦикла:
      Карта =НовыйТекстМакета;
КонецПроцелуры
```

```
# $0бласть Вспомогательные функции

# функция Получить HTTPCоединение (АдресСоединения)

SSL = Новый зашиденное Соединение (АдресСоединения, ), , , SSL);

Cоединение = Новый HTTPCоединение (АдресСоединения, , , , , SSL);

Bозврат Соединение;

Конецфункции

# функция Сформировать HTTPS апросПоКонтрАтенту (АдресКонтрАтента)

AруКеу = "cc5004c0-8b2b-4734-91ec-99005c6a807a";

TexcTS апросВТТР = АдресКонтрАтента;

SampocHTTP = Новый HTTPS апрос;

SampocHTTP . ЗапросВти. Вставить ("Contetent-Type", "application/json");

SampocHTTP . АдресРесурса = "1.x?format=json&geocode="+ AppecKontpAtenta+ "&apikey="+ApyKey;

Bозврат ЗапросНТТР;

Конецфункции

# Конецфункции

# Конецфункции
```


Заключение

- Проведен обзор и сравнительный анализ подходов к созданию децентрализованной системы на основе математических уравнений, нейронных сетей, машинного обучения, мультиагентных технологий
- Проведен обзор и сравнительный анализ классических, эврических и мета-эвристических алгоритмов, позволяющих решить задачи маршрутизации транспортных средств с ограниченной грузоподъемностью. Выполнена их программная реализация с визуализацией решений
- Предложен эффективный метод, использующий алгоритм Tabu-Search и мультиагентный подход для решения задачи маршрутизации транспортных средств с ограниченной грузоподъемностью.
- Разработан прототип системы на основе предложенного метода, оформленный в виде расширения конфигурации для систем 1С ERP и УПП

Проведена апробация прототипа на реальных данных сам в эмперации.