Missing Data Basics Stats Camp 2018: Missing Data Analysis

Kyle M. Lang

Department of Methodology & Statistics Tilburg University

19-21 October 2018

Introduction

- 1. What's your name?
- 2. Where are you from/where do you work?
- 3. What type of research do you do?
- 4. What type of missing data problems do you encounter in your research?
- 5. What statistical software do you use/do you have programming experience?
- 6. What's your math background?

Outline

- Missing Data Descriptives
- Ad Hoc Missing Data Treatments

A Little Notation

 $Y := An N \times P$ Matrix of Arbitrary Data

 $Y_{mis} :=$ The *missing* part of Y

 $Y_{obs} :=$ The *observed* part of Y

 $R := An N \times P$ pattern matrix encoding nonresponse

What are Missing Data?

Missing data are empty cells in a dataset where there should be observed values.

 The missing cells correspond to true population values, but we haven't observed those values.

What are Missing Data?

Missing data are empty cells in a dataset where there should be observed values.

 The missing cells correspond to true population values, but we haven't observed those values.

Not every empty cell is a missing datum.

- Quality-of-life ratings for dead patients in a mortality study
- Firm profitability after the company goes out of business
- Self-reported severity of menstrual cramping for men
- Empty blocks of data following "gateway" items

Missing Data Descriptives

Missing Data Pattern

The spatial arrangement of missing cells on a data set.

Comes in three flavors:

- Univariate
 - Missing data occur on only one variable
- Monotone
 - The proportion of complete elements, in both rows and columns, decreases when traversing the data set.
 - The observed cells can be arranged into a "staircase" pattern.
- Arbitrary
 - Missing values are "randomly" scattered throughout the data set.

Example Missing Data Patterns

				_				
	Χ	Y	Z	_		X	Y	Z
1	х	у	Z		1	х	у	Z
2	X	у	Z		2	X	у	Z
3	X	у	Z		3	X	у	Z
4	X	у	Z		4	X	у	
5	X	у	Z		5	X	у	
6	X		Z		6	X	у	
7	X		Z		7	X		
8	X		Z		8	X		
9	X		Z		9	X		
10	X		Z		10			
				-				

Χ Х Х Ζ Х Х Х Z Х Z Z Х Z Х 10 Х

Univariate Pattern

Monotone Pattern

Arbitrary Pattern

8 of 43

Nonresponse Rates

Percent/Proportion Missing

- · The proportion of cells containing missing data
- · Good early screening measure
- Should be computed for each variable, not for the entire dataset

ATTRITION RATE

 The proportion of participants that drop-out of a study at each measurement occasion

PERCENT/PROPORTION OF COMPLETE CASES

- The proportion of observations with no missing data
- Often reported but nearly useless quantity

Nonresponse Rates

COVARIANCE COVERAGE

- The proportion of cases available to estimate a given pairwise relationship (e.g., a covariance between two variables)
- Very important to have adequate coverage of the parameters you want to estimate

Fraction of Missing Information

- Associated with an estimated parameter, not with an incomplete variable
- Like an R² for the missing data
- Most important diagnostic value for missing data problems
- Can only be computed after treating the missing data

Covariance Coverage Examples

- What is the coverage for cov(X, Y)?
- What is the coverage for cov(W, Y)?
- What about cov(X, Z)?

	W	X	Y	Z
1	W	х	у	
2	W	X	У	
3	W	X	у	
4	W	X	у	
5	W	X	у	
6	W		у	Z
7	W		у	Z
8	W		у	Z
9	W		у	Z
10	W	•	У	Z

Nonresponse Rate Examples

- What is the percent missing at Time 2?
- What is the attrition rate at Time 3?

	T1	T2	Т3	T4
1	x1	x2	х3	x4
2	x1	x2	x 3	x4
3	x1	x2	x 3	x4
4	x1	x2	x 3	
5	x1	x2	x 3	
6	x1	x2		
7	x1	x2		
8	x1			
9	x1			
10	x1			•

Missing Data Mechanisms

Missing Data Mechanisms

MCAR:

$$P(R|Y_{mis}, Y_{obs}) = P(R)$$

MAR:

$$P(R|Y_{mis}, Y_{obs}) = P(R|Y_{obs})$$

MNAR:

$$P(R|Y_{mis}, Y_{obs}) \neq P(R|Y_{obs})$$

Simulate Some Toy Data

15 of 43

```
nObs <- 5000 # Sample Size
pm <- 0.3 # Proportion Missing
sigma \leftarrow matrix(c(1.0, 0.5, 0.0,
                  0.5, 1.0, 0.3,
                  0.0, 0.3, 1.0),
                ncol = 3)
simDat < -as.data.frame(rmvnorm(nObs, c(0, 0, 0), sigma))
colnames(simDat) <- c("y", "x", "z")</pre>
x <- simDat$x
v <- simDat$v
z <- simDat$z
cor(y, x) # Check correlation between X and Y
## [1] 0.5031885
```

MCAR Example

```
## Simulate MCAR Missingness:
rVec1 <- as.logical(rbinom(nObs, size = 1, prob = pm))
mean(rVec1) # Check the PM
## [1] 0.3032
v2 <- v
y2[rVec1] <- NA
cor(y2, x, use = "pairwise") # Look at correlation
## [1] 0.5009842
```

MCAR Example

MAR Example

```
## Simulate MAR Missingness:
rVec2 < -pnorm(x, mean = mean(x), sd = sd(x)) < pm
mean (rVec2)
## [1] 0.3016
v3 <- v
y3[rVec2] <- NA
cor(y3, x, use = "pairwise") # Not looking so good :(
## [1] 0.3846974
```

MAR Example

MNAR Example

```
## Simulate MNAR Missingness:
rVec3 \leftarrow pnorm(y, mean = mean(y), sd = sd(y)) < pm
mean (rVec3)
## [1] 0.3054
v4 <- v
v4[rVec3] \leftarrow NA
cor(y4, x, use = "pairwise") # Hmm...looks pretty bad.
## [1] 0.3865642
```

MNAR Example

In our previous MAR example, ignoring the predictor of missingness actually produces *Indirect MNAR*.

In our previous MAR example, ignoring the predictor of missingness actually produces *Indirect MNAR*.

QUESTION: What happens if we ignore the predictor of missingness, but that predictor is independent of our study variables?

In our previous MAR example, ignoring the predictor of missingness actually produces *Indirect MNAR*.

QUESTION: What happens if we ignore the predictor of missingness, but that predictor is independent of our study variables?

Answer: We get back to MCAR:)

The missing data mechanisms are not simply characteristics of an incomplete dataset.

• The analysis must also be accounted for.

Missing Data Treatments

Listwise Deletion (Complete Case Analysis)

- Use only complete observations for the analysis
 - Very wasteful (can throw out lots of useful data)
 - Loss of statistical power

Pairwise Deletion (Available Case Analysis)

- Use only complete pairs of observations for analysis
 - Different samples sizes for different parameter estimates
 - Can cause computational issues

(Unconditional) Mean Substitution

- Replace Y_{mis} with \overline{Y}_{obs}
 - Negatively biases regression slopes and correlations
 - Attenuates measures of linear association

(Unconditional) Mean Substitution

- Replace Y_{mis} with \overline{Y}_{obs}
 - Negatively biases regression slopes and correlations
 - Attenuates measures of linear association

(Unconditional) Mean Substitution

- Replace Y_{mis} with \overline{Y}_{obs}
 - Negatively biases regression slopes and correlations
 - Attenuates measures of linear association

Deterministic Regression Imputation (Conditional Mean Substitution)

- Replace Y_{mis} with \widehat{Y}_{mis} from some regression equation
 - Positively biases regression slopes and correlations
 - Inflates measures of linear association

Deterministic Regression Imputation (Conditional Mean Substitution)

- Replace Y_{mis} with \widehat{Y}_{mis} from some regression equation
 - Positively biases regression slopes and correlations
 - Inflates measures of linear association

General Issues with Deletion-Based Methods

- Biased parameter estimates unless data are MCAR
- Generalizability issues

General Issues with Simple Single Imputation Methods

- Biased parameter estimates even when data are MCAR
- Attenuates variability in any treated variables

Averaging Available Items (Person-Mean Imputation)

- Compute aggregate scores using only available values
 - Missing data must be MCAR
 - Each item must contributes equally to the aggregate score

Last Observation Carried Forward (LOCF)

- Replace post-dropout values with the most recent observed value
 - Assume that dropouts would maintain their last known values
 - Attenuates estimates of growth/development

OK Methods (These work in some situations)

Stochastic Regression Imputation

- Fill Y_{mis} with \widehat{Y}_{mis} plus some random noise.
 - Produces unbiased parameter estimates and predictions
 - Computationally efficient
 - Attenuates standard errors
 - Makes CIs and prediction intervals too narrow

OK Methods (These work in some situations)

Nonresponse Weighting

- Weight the observed cases to correct for nonresponse bias
 - Popular in survey research and official statistics
 - Only worth considering with *Unit Nonresponse*
 - Doesn't make any sense with Item Nonresponse

Multiple Imputation (MI)

- Replace the missing values with *M* plausible estimates
 - Essentially, a repeated application of stochastic regression imputation (with a particular type of regression model)
 - Produces unbiased parameter estimates and predictions
 - Produces "correct" standard errors, Cls, and prediction intervals
 - Very, very flexible
 - Computationally expensive

What happens when we apply MI to our previous MAR example?

The MI-based parameter estimate looks good.

 MI produces unbiased estimates of the parameter when data are MAR.

What about applying MI to our MNAR example?

The MI-based parameter estimate is still biased.

 MI cannot correct bias in parameter estimates when data are MNAR.

Bayesian Modeling

- Treat missing values as just another parameter to be estimated
 - Models can be directly estimated in the presence of missing data
 - · Essentially, runs MI behind-the-scenes during model estimation
 - The predictors of nonresponse must be included in the model, somehow
 - Computationally expensive

Full Information Maximum Likelihood (FIML)

- Adjust the objective function to only consider the observed parts of the data
 - Models are directly estimated in the presence of missing data
 - The predictors of nonresponse must be included in the model, somehow
 - Unless you write your own optimization program, FIML is only available for certain types of models
 - In linear regression models, FIML cannot treat missing data on predictors (if the predictors are taken as fixed)