

## planetmath.org

Math for the people, by the people.

## proof of fundamental theorem of algebra

 ${\bf Canonical\ name} \quad {\bf ProofOfFundamental TheoremOfAlgebra}$ 

Date of creation 2013-03-22 13:09:39 Last modified on 2013-03-22 13:09:39

Owner scanez (1021) Last modified by scanez (1021)

Numerical id 5

Author scanez (1021)

Entry type Proof Classification msc 30

Classification msc 30A99 Classification msc 12D99 If  $f(x) \in \mathbb{C}[x]$  let a be a root of f(x) in some extension of  $\mathbb{C}$ . Let K be a Galois closure of  $\mathbb{C}(a)$  over  $\mathbb{R}$  and set  $G = \operatorname{Gal}(K/\mathbb{R})$ . Let H be a Sylow 2-subgroup of G and let  $L = K^H$  (the fixed field of H in K). By the Fundamental Theorem of Galois Theory we have  $[L : \mathbb{R}] = [G : H]$ , an odd number. We may write  $L = \mathbb{R}(b)$  for some  $b \in L$ , so the minimal polynomial  $m_{b,\mathbb{R}}(x)$  is irreducible over  $\mathbb{R}$  and of odd degree. That degree must be 1, and hence  $L = \mathbb{R}$ , which means that G = H, a 2-group. Thus  $G_1 = \operatorname{Gal}(K/\mathbb{C})$  is also a 2-group. If  $G_1 \neq 1$  choose  $G_2 \leq G_1$  such that  $[G_1 : G_2] = 2$ , and set  $M = K^{G_2}$ , so that  $[M : \mathbb{C}] = [G_1 : G_2] = 2$ . But any polynomial of degree 2 over  $\mathbb{C}$  has roots in  $\mathbb{C}$  by the quadratic formula, so such a field M cannot exist. This contradiction shows that  $G_1 = 1$ . Hence  $K = \mathbb{C}$  and  $a \in \mathbb{C}$ , completing the proof.