$K_0^*(1950)$

$$I(J^P) = \frac{1}{2}(0^+)$$

OMITTED FROM SUMMARY TABLE

Seen in partial-wave analysis of the $K^-\pi^+$ system. Needs confirmation.

$K_0^*(1950)$ MASS

VALUE (MeV)	DOCUMENT ID	TECN	CHG	COMMENT	
$1945 \pm 10 \pm 20$	¹ ASTON 8	88 LASS	0	11 $K^- p \rightarrow K^- \pi^+ n$	
 • • We do not use the following data for averages, fits, limits, etc. • • 					
1917 ± 12	² ZHOU	06 RVUE		$Kp \rightarrow K^-\pi^+ n$	
1820 ± 40	³ ANISOVICH	97c RVUE		$11 K^- p \rightarrow K^- \pi^+ n$	
1					

 $^{^{1}\}mathrm{We}$ take the central value of the two solutions and the larger error given.

K₀*(1950) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
201± 34±79	⁴ ASTON	88	LASS	0	11 $K^-p \rightarrow K^-\pi^+n$
• • • We do not use the following data for averages, fits, limits, etc. • •					
145± 38 250±100	⁵ ZHOU ⁶ ANISOVICH		RVUE		$Kp \rightarrow K^-\pi^+ n$ 11 $K^-p \rightarrow K^-\pi^+ n$
250 ± 100	ANISOVICII	310	IVVOL		II $K P \rightarrow K R R$

 $^{^{4}\,\}mathrm{We}$ take the central value of the two solutions and the larger error given.

K*(1950) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$K\pi$	(52±14) %

K_0^* (1950) BRANCHING RATIOS

Created: 5/30/2017 17:21

²S-matrix pole. Using ASTON 88 and assuming $K_0^*(800)$, $K_0^*(1430)$.

³T-matrix pole. Reanalysis of ASTON 88 data.

⁵ S-matrix pole. Using ASTON 88 and assuming $K_0^*(800)$, $K_0^*(1430)$.

⁶T-matrix pole. Reanalysis of ASTON 88 data.

K_0^* (1950) REFERENCES

ZHOU 06 NP A775 212 Z.Y. Zhou, H.Q. Zheng ANISOVICH 97C PL B413 137 A.V. Anisovich, A.V. Sarantsev

ASTON 88 NP B296 493 D. Aston et al. (SLAC, NAGO, CINC, INUS)

Created: 5/30/2017 17:21