Math 2210Q (Roby) Practice Midterm #2 Solutions Fall 2016

SHOW ALL YOUR WORK! Make sure you give reasons to support your answers. If you have any questions, do not hesitate to ask! For this exam **no calculators are to be used.**

- 1. Let A be the matrix $A = \begin{bmatrix} 1 & 1 & 0 & -2 \\ 2 & -2 & 1 & 1 \\ 1 & 0 & -2 & -1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$
 - (a) Compute det A. The answer is 6. This may be computed in a couple of ways: (1) by doing row reductions to transform A to triangular form, keeping track of any moves that modify the determinant or (2) expanding by cofactors (minors) along a suitable row or column.
 - (b) Compute $\det(A^{-1})$ without computing A^{-1} . Since $\det(A^{-1}) = 1/(\det A)$, the answer is 1/6.
 - (c) Use Cramer's Rule to find x_4 so that $A \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 0 \\ 0 \end{bmatrix}$.

To apply Cramer's rule, for x_4 , we replace the fourth column of A with the output vector, take the determinant, and divide that by the determinant of the original matrix (computed above to be 6). Therefore,

$$x_4 = \frac{1}{6} \begin{vmatrix} 1 & 1 & 0 & 2 \\ 2 & -2 & 1 & 2 \\ 1 & 0 & -2 & 0 \\ 1 & 0 & 1 & 0 \end{vmatrix}$$

$$= \frac{1}{6} \left((-1) \begin{vmatrix} 1 & 0 & 2 \\ -2 & 1 & 2 \\ 0 & -2 & 0 \end{vmatrix} + (-1) \begin{vmatrix} 1 & 1 & 2 \\ 2 & -2 & 2 \\ 1 & 0 & 0 \end{vmatrix} \right) = \frac{1}{6} (-12 - 6) = -3$$

2. Find the volume of the parallelepiped determined by the vectors $\begin{bmatrix} 3 \\ 6 \\ 7 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 4 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$.

Take the absolute value of the determinant of the matrix of column vectors to get:

$$\begin{vmatrix} 3 & 0 & 2 \\ 6 & 4 & 3 \\ 7 & 1 & 4 \end{vmatrix} = |-5| = 5.$$

- 3. Let $A = \begin{bmatrix} 1 & 2 & 1 & 0 & -1 \\ -1 & -2 & 0 & 1 & 3 \\ 2 & 4 & 4 & 2 & 2 \end{bmatrix}$. Find bases for Col A and Nul A. What should the sum of the dimensions of these two subspaces be? Does your answer check?
 - By row reduction we see that $A \sim \begin{bmatrix} 1 & 2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ has pivots in columns 1 and
 - 3, so we use those columns of A as a basis for $\operatorname{Col} A$. For $\operatorname{Nul} A$, we parameterize the solutions in terms of the free variables to get the basis shown below.

$$\operatorname{Col} A = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} \right\} \text{ , and } \operatorname{Nul} A = \operatorname{Span} \left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -2 \\ 0 \\ 1 \end{bmatrix} \right\}$$

- 4. Define a transformation $T: \mathbb{P}_3 \to \mathbb{R}^2$ by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(2) \end{bmatrix}$.
 - (a) Show that T is a linear transformation. Let $\mathbf{p}, \mathbf{q} \in \mathbb{P}_3$. Then

$$T(\mathbf{p} + \mathbf{q}) = \begin{bmatrix} (\mathbf{p} + \mathbf{q})(0) \\ (\mathbf{p} + \mathbf{q})(2) \end{bmatrix} = \begin{bmatrix} \mathbf{p}(0) + \mathbf{q}(0) \\ \mathbf{p}(2) + \mathbf{q}(2) \end{bmatrix} = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(2) \end{bmatrix} + \begin{bmatrix} \mathbf{q}(0) \\ \mathbf{q}(2) \end{bmatrix} = T(\mathbf{p}) + T(\mathbf{q}).$$

- Similarly, one shows that $T(c\mathbf{p}) = cT(\mathbf{p})$ for any $c \in \mathbb{R}$.
- (b) Describe the kernel and range of this linear transformation. By def. ker T is the set of polys that map to $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, i.e., $\{\mathbf{p} \in \mathbb{P}_3 : \mathbf{p}(0) = \mathbf{p}(2) = 0\}$,

while range T is all of \mathbb{R}^2 , since for any $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2$, we can always find a polynomial \mathbf{p} with $\mathbf{p}(0) = a$ and $\mathbf{p} = b$ (e.g., by Lagrange interpolation, or less fancily by noting that matrix below has two pivot columns, so the dimension of range $T = \dim \operatorname{Col} A = 2$).

- (c) Write the matrix A of this linear transformation in terms of the standard bases for \mathbb{P}_3 and \mathbb{R}_2 .
- (d) Compute a basis for $\operatorname{Nul} A$.
- (e) Compute a basis for $\operatorname{Col} A$. $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 4 & 8 \end{bmatrix}$, which is already almost in

RREF. So we get bases Nul
$$A = \operatorname{Span} \left\{ \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -4 \\ 0 \\ 1 \end{bmatrix} \right\}$$
, and $\operatorname{Col} A = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \end{bmatrix} \right\}$.

5. Find the dimensions of Nul A and Col A for the matrix $A = \begin{bmatrix} 1 & 3 & -4 & 2 & -1 & 6 \\ 0 & 0 & 1 & -3 & 7 & 0 \\ 0 & 0 & 0 & 1 & 4 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

We have dim Col $A = \operatorname{rk} A = \#\operatorname{pivot} \operatorname{cols} = 3$, and dim Nul $A = \#\operatorname{free} \operatorname{vars} = 6 - 3 = 3$, by the rank-nullity theorem.

6. If A is a 4×3 matrix, what is the largest possible dimension of the row space of A? What is the smallest possible dimension? What if A is 3×4 matrix? Explain!

Since Row A is spanned by 4 vectors in \mathbb{R}^3 , it has dimension at most 3, and $A = \begin{bmatrix} I_3 \\ 0 \end{bmatrix}$, shows that dimension is achievable. The smallest possible dimension is 0, achieved by A = 0. Similar reasoning shows the same bounds for a 3 × 4 matrix.

- 7. Prove or Disprove and Salvage if possible:
 - (a) If A is a 2×2 matrix with a zero determinant, then one column of A is multiple of the other. T
 - (b) If λ is an eigenvalue of an $n \times n$ matrix M, then λ^2 is an eigenvalue of M^2 . T
 - (c) If A and B are $n \times n$ matrices with det A = 2 and det B = 3, then $\det(A + B) = 5$.
 - (d) Let A and B be $n \times n$ matrices. If B is obtained from A by adding to one row of A a linear combination of other rows of A, then det $B = \det A$. T
 - (e) $\det A^T = -\det A$. F
- 8. Decide whether each statement below is True of False. Justify your answer.
 - (a) The number of pivot columns of a matrix equals the dimension of its column space. T
 - (b) Any plane in \mathbb{R}^3 is a two-dimensional subspace of \mathbb{R}^3 .
 - (c) The dimension of the vector space \mathbb{P}^4 is 4. F
 - (d) If dim V = n and S is a linearly independent set in V, then S is a basis for V.
 - (e) If there exists a linearly dependent set $\{v_1, \ldots, v_p\}$ that spans V, then dim $V \leq p$.
 - (f) The eigenvectors of any $n \times n$ matrix are linearly independent in \mathbb{R}^n .
- 9. Prove or Disprove and Salvage if possible:
 - (a) The null space of an $m \times n$ matrix is in \mathbb{R}^m F
 - (b) The range of a linear transformation is a vector subpace of the codomain. T
 - (c) Let A and B be $n \times n$ matrices. If B is obtained from A by adding to one row of A a linear combination of other rows of A, then det $B = \det A$. T

- (d) The row space of A^T is the same as the column space of A. T
- 10. Let $S = \{1 t^2, t t^2, 2 2t + t^2\}.$
 - (a) Is S linearly independent in \mathbb{P}_2 ? Explain!
 - (b) Is S a basis for \mathbb{P}_2 ? Explain!
 - (c) Express $\mathbf{p}(t) = 3 + t 6t^2$ as a linear combination of elements of \mathcal{S} .
 - (d) Is the expression unique? Explain!

The standard isomorphism $\mathbb{P}_2 \to \mathbb{R}^3$ given by $1 \mapsto \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $t \mapsto \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $t^2 \mapsto \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ takes the polynomials in S to the columns of the matrix

$$C = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ -1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & -1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

which is invertible. So the columns of C form a basis for \mathbb{R}^3 , which means the original set S is a basis for \mathbb{P}_2 (b). In particular, this means that there is a unique way of writing any polynomial as a linear combination of the basis elements (d). The usual

techniques for solving
$$C\mathbf{x} = \begin{bmatrix} 3 \\ 1 \\ -6 \end{bmatrix}$$
 give $\mathbf{x} = \begin{bmatrix} 7 \\ -3 \\ -2 \end{bmatrix}$, so

$$\mathbf{p}(t) = 3 + t - 6t^2 = 7(1 - t^2) - 3(t - t^2) - 2(2 - 2t + t^2).$$

as one can easily check.

- 11. Suppose a nonhomogeneous system of six linear equations in eight unknowns has a solution with two free variables. Is it possible to change some constants on the equations' right sides to make the new system inconsistent? Explain! No. This system is equivalent to $A\mathbf{x} = b$, where dim Nul $A = 2 \implies \dim \operatorname{Col} A = 8 2 = 6 \implies \mathbf{x} \mapsto A\mathbf{x}$ is *onto* \mathbb{R}^6 ; hence, every right hand side is obtainable.
- 12. Go back over your old homework and quizzes to review and make sure you understand any problem on which you lost points. Check!