2b.

3. Suppose the $Y \sim N_3(\mu, \Sigma)$,, where

$$\mu = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$
 and $\Sigma = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.

Find the joint distribution of $Z_1 = Y_1 + Y_2 + Y_3$ and $Z_2 = Y_1 - Y_2$.

Solution. Notice $Z = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = CY$. By theorem 2.2, $Z \sim N_2(C\mu + d, C\Sigma C')$. And notice $C\mu = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$ and

$$C\Sigma C' = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 4 & 2 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 10 & 0 \\ 0 & 3 \end{bmatrix}.$$

1

6. If Y_1, Y_2 are random variables such that $Y_1 + Y_2$ and $Y_1 - Y_2$ are independent N(0, 1) random variables, show that Y_1 and Y_2 have a bivariate normal distribution and find its mean and variance.

Solution. Let $X=X_1,X_2$ where $X_1=Y_1+Y_2$ and $X_2=Y_1-Y_2$. This means that $Y_1=X_1-Y_2$, and $Y_2=Y_1-X_2$. Thus $Y_1=.5X_1+.5X_2$ and $Y_2=.5X_1-.5X_2$. Thus by theorem 2.2,

$$Y \sim N_2(C\mu, C\Sigma C')$$
 with $C = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}$

And

$$C\mu = C * [0,0]'$$

and

$$C\Sigma C' = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}$$
$$= \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}$$
$$= \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}$$

9. Let $X_1, ..., X_3$ be iid N(0, 1). Let Y = AX where

$$A = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \end{bmatrix}$$

Show the Y_i s are iid standard normal.

Solution.

By theorem 2.2 , ${\cal E}[Y]=0$ and the variance of Y is

$$AA' = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \end{bmatrix}'$$

$$= \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Exercises 2c, 3.

Let $Y \sim N_3(\mu, \Sigma)$ with

$$\Sigma = \begin{bmatrix} 1 & \rho & 0 \\ \rho & 1 & \rho \\ 0 & \rho & 1 \end{bmatrix}$$

For what value of ρ is $Y_1 + Y_2 + Y_3$ and $Y_1 - Y_2 - Y_3$ independent?

Solution. By theorem 2.2, X = CY. Variance of X is,

$$\begin{aligned} \operatorname{Var}[X] &= CYC'] \\ &= \begin{bmatrix} 2+4\rho & -1-2\rho \\ -1-2\rho & 3 \end{bmatrix} \end{aligned}$$

Thus, X is independent iff $\rho = 1/2$.

2d, **3.** If $Y \sim N_2(0, I_2)$ find the values of a, b such that

$$a(Y_1 - Y_2)^2 + b(Y_1 + Y_2)^2 \sim \chi^2$$

Solution. Using theorem 2.7, we need to express this problem as Y'AY for an idempotent A. First notice that $(Y_1 - Y_2)^2 + (Y_1 + Y_2)^2 = X'X$ if $X = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} Y = BY$. Thus if we let $A = \begin{bmatrix} a & b \end{bmatrix}$, then $A'X'X = a(Y_1 - Y_2)^2 + b(Y_1 + Y_2)^2$. A quick calculation of the matrices yields,

$$a(Y_1 - Y_2)^2 + b(Y_1 + Y_2)^2 = Y' \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} Y$$
$$= Y' \begin{bmatrix} a+b & -a+b \\ -a+b & a+b \end{bmatrix} Y$$

We have represented the problem with a symmetric matrix A. We now just need to find the values of $a, b \ni A^2 = A$. Setting $A^2 = A$, we get

$$A^{2} = \begin{bmatrix} 2a^{2} + 2b^{2} & -2a^{2} + 2b^{2} \\ -2a^{2} + 2b^{2} & 2a^{2} + 2b^{2} \end{bmatrix}$$

And this equals A if and only if

$$2a^{2} + 2b^{2} = a + b$$
 and
$$-2a^{2} + 2b^{2} = -a + b$$
$$2a^{2} = a + b - 2b^{2}$$

$$-a - b + 2b^{2} + 2b^{2} = -a + b$$
$$4b^{2} - 2b = 0$$
$$2a^{2} - a = \frac{1}{2} - 2 \cdot \frac{1}{4}$$

$$2b(b - 1) = 0$$
$$a(2a - 1) = 0$$

$$b = \frac{1}{2}$$

Warren Keil

2d 4. Suppose that $Y \sim N_3(0, I_n)$. Show that

$$\frac{1}{3}[(Y_1 - Y_2)^2 + (Y_2 - Y_3)^2 + (Y_3 - 1)^2]$$

has a χ_2^2 distribution.

Solution. First notice that we can write $\frac{1}{3}[(Y_1-Y_2)^2+(Y_2-Y_3)^2+(Y_3-1)^2]$ as

$$\frac{1}{3}[(Y_1 - Y_2)^2 + (Y_2 - Y_3)^2 + (Y_3 - 1)^2] = Y' \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix} Y$$

Thus, by theorem 2.8, if we show that 2 of the eigenvalues of A are 1 and one is zero, then we are done. Using mathematica, we find,

Eigenvalues
$$[\{2/3, -(1/3), -(1/3)\}, \{-(1/3), 2/3, -(1/3)\}, \{-(1/3), -(1/3), 2/3\}\}]$$

 $\{1, 1, 0\}$

Thus,

Eigenvalues
$$\begin{bmatrix} \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix} = [1, 1, 0]$$

Chapter 2 Miscellaneous Exercise 3. If $Y_1, ..., Y_n$ is random sample from $N(\mu, \sigma^2)$, prove \bar{Y} is independent of $\sum_{i=1}^{n-1} (Y_i - Y_{i+1})^2$.

Solution. Notice that $\bar{Y} = n^{-1} \mathbf{1}_n' Y$ and $\sum_{i=1}^{n-1} (Y_i - Y_{i+1})^2 = (AY)'(AY)$ where

$$A = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 1 & -1 \\ 0 & \cdots & \cdots & \cdots & 1 \end{bmatrix}$$

So let $U = n^{-1}1'_n Y$ and V = AY Then

$$\begin{split} Cov[U,V] &= Cov[n^{-1}1'_nY,AY] \\ &= n^{-1}1'_nCov[Y,Y]A' \\ \\ &= \sigma^2 \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ -1 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & -1 & 1 & 0 \\ 0 & \cdots & \cdots & -1 & 1 \end{bmatrix} \\ &= \sigma^2 \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix} \\ &= \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix} \end{split}$$

Thus U, V are independent.

NOTE: I did not see in the theorem where this connects to showing that \bar{Y} is independent from (AY)'(AY). I think this is the case but have not made the connection yet.

Chapter 2 Miscellaneous Exercise 8 Let $Y \sim N_n(0, I_n)$, let A, B be symmetric idempotent matrices with AB = BA = 0. Show that Y'AY, Y'BY and $Y'(I_n - A - B)Y$ have independent chi-square distributions.

Solution. By theorem 2.7, we get that each of these quadratic forms will have a χ^2 distribution. We only have to show independence. Thus, if we let U = AY, V = BY, and $W = (I_n - A - B)Y$, then

$$Cov(U, V) = Cov(AY, BY)$$
 $Cov(U, W) = Cov[AY, (I_n - A - B)Y]$ $Cov(V, W) = Cov[BY, (I_n - A - B)Y]$
 $= A \operatorname{Var}[Y]B'$ $= A \operatorname{Var}[Y](I_n - A - B)'$ $= B \operatorname{Var}[Y](I_n - A_B)'$
 $= AI_nB'$ $= AI_n(I'_n - A' - B')$ $= BI_n(I'_n - A' - B')$
 $= AB$ $= AI_n - A^2 - AB$ $= BI_n - BA - B^2$
 $= AI_nB'$ $= AI_nB'$ $= BI_nBA - B$
 $= AI_nB'$ $= BI_nBA - B$
 $= BI_nBA - B$
 $= BI_nBA - B$

8