STAT 5010: Advanced Statistical Inference

Lecturer: Tony Sit

Lecture 9

Scribe: Qinghua (Devon) Ding and Dongrong Li

1 Minimax Estimators and Worst-Case Optimality

Given $X \sim P_{\theta}$, where $\theta \in \Omega$, and a loss function $L(\theta, d)$, we want to minimize the maximum risk: $\sup_{\theta \in \Omega} R(\theta, \delta)$, this minimizer is known as a minimax estimator.

Recall the definition of Bayes risk under an arbitrary prior distribution Λ :

$$r_{\Lambda} = \inf_{\delta} r(\Lambda, \delta) = \inf_{\delta} \int_{\theta \in \Omega} R(\theta, \delta) d\Lambda(\theta)$$

Definition 1. A prior distribution is said to be a least favorable prior if $r_{\Lambda} \geq r_{\Lambda'}$, for any other prior distribution Λ' .

Following the definition is the theorem:

Theorem 2 (TPE 5.1.4). *Suppose* δ_{Λ} *is Bayes for* Λ *with*

$$r_{\Lambda} = \sup_{\theta} R(\theta, \delta_{\Lambda})$$

i.e. the Bayes risk of δ_{Λ} is the maximum risk of δ_{Λ} , then:

- (i) δ_{Λ} is minimax,
- (ii) Λ is a least favorable prior,
- (iii) If δ_{Λ} is the unique Bayes estimator for Λ almost surely, for all P_{θ} , then it is a unique minimax estimator:

Proof. (i) Let δ be any other estimator, then we have that:

$$\sup_{\theta \in \Omega} R(\theta, \delta) \geq \int R(\theta, \delta) d\Lambda(\theta) \stackrel{(*)}{\geq} \int R(\theta, \delta) d\Lambda(\theta)$$

This implies that δ_{Λ} is minimax.

- (ii) If $\delta\Lambda$ is the unique Bayes estimator, then the inequality above (*) is strict for $\delta \neq \delta_{\Lambda}$, which implies that δ_{Λ} is the unique minimax.
- (iii) Let Λ' be any other prior distribution, then

$$r_{\Lambda'} \le \inf_{\delta} \int R(\theta, \delta) d\Lambda'(\theta) \le \int R(\theta, \delta_{\Lambda}) d\Lambda'(\theta)$$

$$\le \sup_{\delta} R(\theta, \delta_{\Lambda}) = r_{\Lambda}$$

Since the worst case risk of δ_{Λ} is its Bayes risk over Λ , we know that Λ is a least favorable prior distribution.

An implication is that we can find a minimax estimator by finding a Bayes estimator with Bayes risk equals its maximum risk, which gives the following corollary:

Corollary 3 (TPE 5.1.5). *If a Bayes estimator of* δ_{Λ} *has constant risk, i.e.* $R(\theta, \delta_{\Lambda}) = R(\theta', \delta_{\Lambda})$ *for any* $\theta, \theta' \in \Omega$, then δ_{Λ} is minimax.

An implication of this corollary is that, if a Bayes estimator has constant risk, it is minimax too. We may find a prior support set ω such that $\Lambda(\omega) = 1$ and for which $R(\theta, \delta_{\Lambda})$ is maximum for any $\theta \in \Omega$.

Corollary 4 (TPE 5.1.6). Define $\omega_{\Lambda} = \{\theta : R(\theta, \delta_{\Lambda}) = \sup_{\theta'} R(\theta', \delta_{\Lambda}) \}$. A Bayesian estimator δ_{Λ} is minimax if $\Lambda(\omega_{\Lambda}) = 1$.

Example 1. Suppose $X \sim Binomial(n, \theta)$ for some $\theta \in (0, 1)$ and we adopt the squared loss function, is $\frac{x}{2}$ minimax?

Notice that the corresponding risk is $R(\theta, \frac{x}{n}) = \frac{\theta(1-\theta)}{n}$. Observe that the risk has a unique maximum at $\theta = \frac{1}{2}$. The worst risk is:

$$\sup_{\theta \in \Omega} R(\theta, \frac{x}{n}) = R(\frac{1}{2}, \frac{1}{2}) = \frac{1}{4n}$$

In this case, [TPE 5.1.6] is not helpful because if $\Lambda(\{\frac{1}{2}\}) = 1$, then $\delta_{\Lambda}(X) = \frac{1}{2} \neq \frac{x}{n}$.

However, [TPE 5.1.5] can be helpful instead. To find a minimax estimator, we will need to search for a prior such that the Bayes estimator has constant risk.

Recall that if the prior is $Beta(\alpha, \beta)$ *, the Bayes estimator under the squared loss is:*

$$\delta_{\alpha,\beta}(X) = \frac{x+\alpha}{n+\alpha+\beta}$$

for any α, β .

$$R(\theta, \delta_{\alpha, \beta}) = \mathbb{E}_{\theta} \left(\left\{ \frac{x + \alpha}{n + \alpha + \beta} - \theta \right\}^{2} \right)$$

$$= \frac{1}{(n + \alpha + \beta)^{2}} \mathbb{E}_{\theta} \left(\left\{ x - n\theta - \alpha(\theta - 1) - \theta\beta \right\}^{2} \right)$$

$$= \frac{1}{(n + \alpha + \beta)^{2}} \left[n\theta(1 - \theta + \left\{ \alpha(\theta - 1) + \theta\beta \right\}^{2}) \right]$$

To eliminate the θ dependence in $R(\theta, \delta_{\alpha, \beta})$, we need to set the coefficients of θ^2 and θ be zero, that is:

$$-n + (\alpha + \beta)^2 = 0$$

$$n - 2\alpha(\alpha + \beta) = 0,$$

which solves $\alpha=\beta=\frac{\sqrt{n}}{2}$. The Bayes estimator $\delta_{\frac{\sqrt{n}}{2},\frac{\sqrt{n}}{2}}(X)=\frac{X+\sqrt{n}/2}{n+\sqrt{n}}$ is minimax (TPE 5.1.4) with constant risk of $\frac{1}{4(\sqrt{n}+1)^2}$, we can conclude that $\frac{X}{n}$ is not minimax.

2 Generalization of Minimax-Bayes Theorems

We remark that minimax estimators may not be Bayes estimators. This is illustrated in the following example.

Example 2 (minimax for normal with unknown mean θ). Let $X_1, X_2, ..., X_n \stackrel{iid}{\sim} \mathcal{N}(\theta, \sigma^2)$ with σ^2 unknown. Our goal is to estimate θ under the squared loss function. Our candidate is \overline{X} , which has constant risk $R(\theta, \overline{X}) = \mathbb{E}_{\theta}[(\overline{X} - \theta)^2] = \frac{\sigma^2}{n}$. This suggests that \overline{X} can be a minimax estimator (TPE 5.1.4 and 5.1.5). However, \overline{X} is not Bayes for any prior (Example 5, Lecture 8 and TPE 4.2.3).

We also recall TPE 4.2.3 here.

Theorem 5 (TPE 4.2.3). Unbiased estimators are Bayes only in the degenerate case of zero risk, i.e.,

$$\mathbb{E}_{\Theta,X}\left[\left\{\delta(X) - g(\Theta)\right\}^2\right] = 0.$$

Thus we cannot yet conclude that \overline{X} is minimax. We now consider the family of estimators with the form $\delta_{\omega,\mu_0}(X)=\omega\overline{X}+(1-\omega)\mu_0$, where $\omega\in(0,1)$ and $\mu_0\in\mathbb{R}$. However, the worst case risk for this family of estimators is infinite.

$$\sup_{\theta} \mathbb{E}_{\theta} \left[(\theta - \delta_{\omega, \mu_0}(X))^2 \right] = \sup_{\theta} \mathbb{E}_{\theta} \left[(\theta - \omega \overline{X} - (1 - \omega)\mu_0)^2 \right]$$

$$= \sup_{\theta} \mathbb{E}_{\theta} \left[(\omega(\overline{X} - \theta) + (1 - \omega)(\mu_0 - \theta))^2 \right]$$

$$= \sup_{\theta} \omega^2 \operatorname{Var} \left(\overline{X} \right) + (1 - \omega)^2 (\mu_0 - \theta)^2$$

$$= \sup_{\theta} \frac{\omega^2 \sigma^2}{n} + (1 - \omega)^2 (\mu_0 - \theta)^2$$

$$= +\infty$$

These estimators have much poorer worst-case risk than \overline{X} , hence they are certainly not minimax. To prove that \overline{X} is indeed a minimax estimator, we need to generalize the previous definitions and theorems in the following way.

Definition 6 (Least Favourable Sequence of Priors). Let $\{\Lambda_m\}$ be a sequence of priors with minimal average risk

$$r_{\Lambda_m} = \inf_{\delta} \int_{\Omega} R(\theta, \delta) \, \mathrm{d}\Lambda_m(\theta).$$

Then $\{\Lambda_m\}$ is a least favourable sequence of priors if there is a real number r such that $r_{\Lambda_m} \to r < \infty$ and $r \ge r_{\Lambda'}$ for any prior Λ' .

Theorem 7 (TPE 5.1.12). Suppose there is a real number r such that $\{\Lambda_m\}$ is a sequence of priors with $r_{\Lambda_m} \to r < \infty$. Let δ be any estimator such that $\sup_{\theta} R(\theta, \delta) = r$. Then we have

- (i) δ is minimax;
- (ii) $\{\Lambda_m\}$ is least-favourable.

Proof. (i) Let δ' be any other estimator. Then for any m, we have

$$\sup_{\theta} R(\theta, \delta') \ge \int_{\Omega} R(\theta, \delta') \, \mathrm{d}\Lambda_m(\theta) \ge r_{\Lambda_m}.$$

Then sending $m \to \infty$ yields

$$\sup_{\theta} R(\theta, \delta') \ge r = \sup_{\theta} R(\theta, \delta),$$

which implies that δ is minimax.

(ii) Let Λ' be any prior, then

$$r_{\Lambda'} = \int_{\Omega} R(\theta, \delta_{\Lambda'}) \, d\Lambda'(\theta) \le \int_{\Omega} R(\theta, \delta) \, d\Lambda'(\theta) \le \sup_{\theta} R(\theta, \delta) = r,$$

which means that $\{\Lambda_m\}$ is least favourable.

Remark.

- 1. Unlike Theorem 5.1.4 (TPE), this theorem does not guarantee the uniqueness of the minimax estimator even if the Bayes estimators δ_{Λ_m} 's are unique. The problem arises from the step that we send m to the limit.
- 2. This theorem allows us to consider a much wider class of estimators, instead of limiting our attentions to Bayes estimators only. Specifically, we may also consider the estimators that comes from a sequence of priors.

Example 3 (cont'd). If we manage to find a sequence of priors $\{\Lambda_m\}$ such that $r_{\Lambda_m} \to \frac{\sigma^2}{n} = r$, then we can obtain a minimax estimator for θ . Let consider the sequence of priors $\Lambda_m \sim \mathcal{N}(0, m^2)$ (Λ_m will tend to the uniform prior over \mathbb{R} which is improper with $\pi(\theta) = 1$ for any $\theta \in \mathbb{R}$). This will yield the following posterior distribution.

$$f(\theta|x_1, ..., x_n) \propto \pi(\theta) \cdot f(x_1, ..., x_n|\theta)$$

$$\propto \exp\left(-\frac{\theta^2}{2m^2} - \frac{\sum_{i=1}^n (x_i - \theta)^2}{2\sigma^2}\right)$$

$$\propto \exp\left(-\frac{1}{2}\left(\frac{1}{m^2} + \frac{n}{\sigma^2}\right)\theta^2 + \frac{n\overline{x}}{\sigma^2} \cdot \theta\right)$$

$$\sim \mathcal{N}\left(\frac{\frac{n\overline{x}}{\sigma^2}}{\frac{1}{m^2} + \frac{n}{\sigma^2}}, \frac{1}{\frac{1}{m^2} + \frac{n}{\sigma^2}}\right)$$

Note that the posterior variance does not depend on $(X_1,...,X_m)$, hence

$$r_{\Lambda_m} = \frac{1}{\frac{1}{m^2} + \frac{n}{\sigma^2}} \to \frac{\sigma^2}{n} = \sup_{\theta} R(\theta, \overline{X}).$$

It now follows from Theorem 5.1.12 (TPE) that \overline{X} is minimal and $\{\Lambda_m\}$ is least favourable.

We remind that the choice of loss function will also influence the corresponding minimax estimators. Specially, we consider the following example.

Example 4 (weighted squared loss). Let $X \sim \text{Binomial}(n,\theta)$ with the loss function $L(\theta,d) = \frac{(d-\theta)^2}{\theta(1-\theta)}$. We may view this loss function as the weighted squared loss function with weights $w(\theta) = \frac{1}{\theta(1-\theta)}$.

Note that for any θ , $R(\theta, X/n) = \frac{1}{n}$, which is constant in θ . This suggests that X/n can be minimax. But be reminded that we cannot directly apply TPE 4.2.3 because L is not the vanilla squared loss function.

Consider the prior $\Theta \sim \Lambda_{\alpha,\beta} = \text{Beta}(\alpha,\beta)$, for some $\alpha,\beta > 0$. By results in Lecture 8, we have $\Theta|X \sim \text{Beta}(X + \alpha, n - X + \beta)$ and we can find the Bayes estimator as

$$\delta_{\Lambda}(X) = \frac{\mathbb{E}_{\Theta|X} \left(\frac{1}{1-\Theta} \middle| X \right)}{\mathbb{E}_{\Theta|X} \left(\frac{1}{\Theta(1-\Theta)} \middle| X \right)}$$

Suppose we have observed X=x with $\alpha+x>1$ and $n+\beta+x>1$, then the resulting Bayes estimator is

$$\delta_{\alpha,\beta}(x) = \frac{\alpha + x - 1}{\alpha + \beta + n - 2}.$$

In particular, when $\alpha = \beta = 1$, we have $\delta_{1,1}(x) = x/n$ minimizes posterior risk under prior $\Lambda_{1,1}$ after observing 0 < x < n.

When $x \in \{0, n\}$, then the posterior risk under the prior $\Lambda_{1,1}$ after observing X = x and deciding $\delta(x) = d$ is

$$\int_0^1 \frac{(d-\theta)^2}{\theta(1-\theta)} \cdot \frac{\Gamma(n+2)}{\Gamma(x+1)\Gamma(n-x+1)} \cdot \theta^x (1-\theta)^{n-x} d\theta,$$

which for x=0 reduces to $\int_0^1 \frac{(n+1)(1-\theta)^{n-1}(d-\theta)^2}{\theta} d\theta$. Note this converges only when $\delta(0)=0$. Similarly, one can deduce that $\delta(n)=1$.

Now we may conlcude that X/n minimizes the posterior risk under prior distribution $\Lambda_{1,1}$ for any outcome X. Hence X/n is indeed minimax under such weighted squared loss function.

3 Next Lecture

- 1. Admissibility of minimax estimators;
- 2. Hypothesis testing (NP lemma/UMP).