

Regression

WEEK 4

Outline

Bias - variance tradeoff

Regression with regularization

Advanced technique in regression

Bias-Variance Tradeoff

Bias-Variance Tradeoff (details)

```
MSE = E[(f(x) - \hat{y})^2]
     = E[(+1x)-E(\hat{y})+E(\hat{y})-\hat{y})^2]
     = E[ (fx)-E[ŷ] + E[ŷ]-ŷ) (fx)-E[ŷ]+E[ŷ]-ŷ)]
     = E[f(x)2-f(x) E[ŷ] +f(x) E[ŷ] -f(x)ŷ
          -EL9] f(x) + E[9] 2 - EL9] 2 + E[9] 9
          + EL9] +(x) - EL9] + EL9] + EL9] 9
          - ŷf(x) + ŷ[[ŷ] -ŷ[[ŷ] + ŷ²]
```

```
= E[\hat{y}^2 - 2E[\hat{y}]\hat{y} + E[\hat{y}]^2] + E[E[\hat{y}]^2 - 2E[\hat{y}]f(x) + f(x)^2]
 +E[f(x) E[ŷ] -f(x)ŷ -E[ŷ]²+E[ŷ]ŷ
      tE[9] f(x) - E[9] - 9f(x) + 9E[9] ]
= E[(\hat{g}-E[\hat{g}])^2] --- varience
 + E[(E[9]-f(x))2] -... bias
 + f(x) E[ŷ] - f(x) E[ŷ] - E[ŷ] + E[ŷ] E[ŷ]
  + E[7] f(x) - E[9] f(x) + E[9] E[9]
= varience + bias
```

Bias-Variance Tradeoff (details)

$$f(x) \rightarrow f(x) + \varepsilon$$

$$E[(E[\widehat{y}] - f(x) - \varepsilon)^{2}]$$

$$= E[(E[\widehat{y}] - f(x))^{2} - 2 \cdot \varepsilon \cdot (E[\widehat{y}] - f(x)) + \varepsilon^{2}]$$

$$= E[(E[\widehat{y}] - f(x))^{2}] + 0 + E[\varepsilon^{2}]$$

Under & Over fitting

Under fit = high bias

Over fit = high variance

Address over fitting:

- 1) Reduce number of features
- 2) Regularization

Linear regression (analytical solution)

Linear regression (analytical solution)

$$[(xw'y=\omega'X'y=\Box y'x\omega=\Box y'x\omega=\zeta y'x\omega=\zeta y'x\omega=\zeta y'x\omega=\zeta x'x\omega=\zeta x'x\omega=\zeta$$

Linear regression (derivative only)

error =
$$\sum_{j} (y_{j} - \sum_{i} X_{ij} W_{i})^{2}$$
 $j: all features$
 $j: all features$
 $j: all points$.
 $j: all points$.

11/1/2016

Linear regression (possible problem)

11/1/2016

Linear regression (overfitting)

11/1/2016

Linear regression (why need regularization)

	rss	intercept	coef_x_1	coef_x_2	coef_x_3	coef_x_4	coef_x_5	coef_x_6	coef_x_7	coef_x_8	coef_x_9	coef_x_10	coef_x_11	c
model_pow_1	3.3	2	-0.62	NaN	NaN	N								
model_pow_2	3.3	1.9	-0.58	-0.006	NaN	NaN	N							
model_pow_3	1.1	-1.1	3	-1.3	0.14	NaN	NaN	N						
model_pow_4	1.1	-0.27	1.7	-0.53	-0.036	0.014	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Ī
model_pow_5	1	3	-5.1	4.7	-1.9	0.33	-0.021	NaN	NaN	NaN	NaN	NaN	NaN	N
model_pow_6	0.99	-2.8	9.5	-9.7	5.2	-1.6	0.23	-0.014	NaN	NaN	NaN	NaN	NaN	Ī
model_pow_7	0.93	19	-56	69	-45	17	-3.5	0.4	-0.019	NaN	NaN	NaN	NaN	N
model_pow_8	0.92	43	-1.4e+02	1.8e+02	-1.3e+02	58	-15	2.4	-0.21	0.0077	NaN	NaN	NaN	<u></u>
model_pow_9	0.87	1.7e+02	-6.1e+02	9.6e+02	-8.5e+02	4.6e+02	-1.6e+02	37	-5.2	0.42	-0.015	NaN	NaN	Ī
model_pow_10	0.87	1.4e+02	-4.9e+02	7.3e+02	-6e+02	2.9e+02	-87	15	-0.81	-0.14	0.026	-0.0013	NaN	<u></u>
model_pow_11	0.87	-75	5.1e+02	-1.3e+03	1.9e+03	-1.6e+03	9.1e+02	-3.5e+02	91	-16	1.8	-0.12	0.0034	<u></u>
model_pow_12	0.87	-3.4e+02	1.9e+03	-4.4e+03	6e+03	-5.2e+03	3.1e+03	-1.3e+03	3.8e+02	-80	12	-1.1	0.062	-1
model_pow_13	0.86	3.2e+03	-1.8e+04	4.5e+04	-6.7e+04	6.6e+04	-4.6e+04	2.3e+04	-8.5e+03	2.3e+03	-4.5e+02	62	-5.7	0
model_pow_14	0.79	2.4e+04	-1.4e+05	3.8e+05	-6.1e+05	6.6e+05	-5e+05	2.8e+05	-1.2e+05	3.7e+04	-8.5e+03	1.5e+03	-1.8e+02	1
model_pow_15	0.7	-3.6e+04	2.4e+05	-7.5e+05	1.4e+06	-1.7e+06	1.5e+06	-1e+06	5e+05	-1.9e+05	5.4e+04	-1.2e+04	1.9e+03	-:

Regression with regularization

Extend the cost function from regular RSS to RSS + extra terms

$$\hat{y}(w,x) = w_0 + w_1 x_1 + \dots + w_p x_p$$

$$\min_{w} ||Xw - y||_2^2$$

Total cost =

measure of fit + measure of magnitude of coefficients

Ridge regression

Introduce square of coefficient into the equation

$$\min_{w} ||Xw - y||_2^2 + \alpha ||w||_2^2$$

Lasso regression

Introduce square of coefficient into the equation

$$\min_{w} \frac{1}{2n_{samples}} ||Xw - y||_2^2 + \alpha ||w||_1$$

Total cost =
$$measure of fit + \lambda measure of magnitude$$
 of coefficients $RSS(\mathbf{w})$ $||\mathbf{w}||_1 = |w_0| + ... + |w_D|$

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_1$$

tuning parameter = balance of fit and sparsity

Why zero for Lasso?

Think in the following geometry.

Regularization term on Ridge is an eclipse; on lasso is a prismatic

Fig. 1. Two-dimensional contour plots (level 1) (\cdots , shape of the ridge penalty; \cdots , contour of the lasso penalty; \cdots , contour of the elastic net penalty with α = 0.5): we see that singularities at the vertices and the edges are strictly convex; the strength of convexity varies with α

Elastic net

How it is different from Lasso and Ridge

Gradient Descendent

Coordinated Descendent

- Choose an initial parameter vector x.
- Until convergence is reached, or for some fixed number of iterations:
 - Choose an index *i* from 1 to *n*.
 - Choose a step size α .
 - Update x_i to $x_i \alpha \frac{\partial F}{\partial x_i}(\mathbf{x})$.

Stochastic Gradient Descendent

Random sample consensus (RANSAC)

```
iterations = 0
bestfit = nul
besterr = something really large
while iterations < k {</pre>
    maybeinliers = n randomly selected values from data
    maybemodel = model parameters fitted to maybeinliers
    alsoinliers = empty set
    for every point in data not in maybeinliers {
        if point fits maybemodel with an error smaller than t
             add point to also inliers
    if the number of elements in also inliers is > d {
        % this implies that we may have found a good model
        % now test how good it is
        bettermodel = model parameters fitted to all points in maybeinliers and alsoinliers
        thiserr = a measure of how well model fits these points
        if thiserr < besterr {</pre>
            bestfit = bettermodel
            besterr = thiserr
    increment iterations
return bestfit
```

