Pre-History: Keynes et. al.

History: Carnapian Confirmati

Modern Bayesian Confirmation

References

History: Carnapian Confirmation Modern Bayesian Confirmation

●○○○○○

- The modern Bayesian conception of confirmation uses *probabilistic relevance* as its main conceptual tool.
- Keynes [31], and his teacher W.E. Johnson [28], were early
 proponents of the logical and epistemic importance of
 probabilistic relevance. But, they *mainly* talked about *high*conditional probability (more on that key ambiguity below).
- Nicod [35], taking Keynes as his point of departure, offered an instantial theory based explicitly on probabilistic relevance. "Positive instances raise the probability of laws."
- Later, Hempel [24] moved away from Nicodian *probabilistic relevance* instantial confirmation theory, in favor of an account based on *deductive* relations. This was a set-back!
- Largely because of (*a*) the early focus on high conditional probability, and (*b*) Hempel's deductive set-back, probabilistic relevance approaches took time to catch-on.
- Further complications were raised by Carnap [3], who will be the main histroical protagonist of today's lecture.

Branden Fitelson

A Historical Introduction to Bayesian Confirmation Theory

fitelson.org

In the first edition of LFP, Carnap [3] undertakes a precise probabilistic explication of the concept of confirmation.
 This is where modern confirmation theory was born (in sin).

 Carnap was interested not only in the qualitative

- Carnap was interested not only in the qualitative confirmation relation. He also wanted explications of comparative and quantitative confirmation concepts.
 - **Qualitative**. *E* inductively supports *H*.
 - Comparative. E supports H more strongly than E' supports H'.
 - **Quantitative**. *E* inductively supports *H* to degree *r*.
- Carnap begins by clarifying the *explicandum* (the confirmation concept) in various ways, including:
 Qualitative. (*) E gives some (positive) evidence for H.
- Note two things. First, (*) sounds *epistemic* (not *logical*).
 Second, (*) sounds like it involves (positive) *relevance*.
- Strangely, Carnap proceeds (in LFP₁) to offer a *logical* account of confirmation that does *not* involve relevance.
- These were the two original sins of Bayesian confirmation...

Branden Fitelson

A Historical Introduction to Bayesian Confirmation Theory

fitelson.org

re-History: Keynes et. a

History: Carnapian Confirmation

Modern Bayesian Confirmation

Reference

• In the 1st ed. of LFP, Carnap characterizes "the degree to which E confirms H" as $\mathfrak{c}(H,E) = \Pr(H \mid E)$, which leads to:

Quantitative. $Pr(H \mid E) = r$.

Comparative. $Pr(H \mid E) > Pr(H' \mid E')$.

Qualitative. $Pr(H \mid E) > t$ (typically, with "threshold" $t > \frac{1}{2}$).

- Doesn't sound like (\star) . More on this dissonance below.
- Like Hempel, Carnap wanted a *logical* explication of confirmation (as a relation between sentences in \mathcal{L} s).
- For Carnap, this meant that the probability functions used in confirmation theory must *themselves* be "logical".
- This leads naturally to the Carnapian project of providing a "logical explication" of conditional probability $Pr(\cdot | \cdot)$ itself.
- Here, Carnap (like Nicod) was influenced by Keynes [31], who believed there were "partial entailments". I'm skeptical (as are most modern Bayesians). See my [18] for discussion.
- Hempel's theory of confirmation satisfies the following:

(SCC) If E confirms H, then E confirms all consequences of H.

Pre-History: Keynes et. a

History: Carnapian Confirmation

Modern Bayesian Confirmatio

References

 In LFP₁, Carnap describes a counterexample to Hempel's (SCC), which presupposes a more (*)-like qualitative conception of confirmation. There, he presupposes:

Qualitative. *E* confirms *H* iff Pr(H | E) > Pr(H).

- This *probabilistic relevance* conception *violates* (SCC), whereas the previous Pr-threshold conception *implies* (SCC).
- Popper [36] notes this tension in LFP. Largely in response to Popper, Carnap wrote a second edition of LFP [4], which includes a preface acknowledging an "ambiguity" in LFP₁:
 - **Firmness**. The degree to which E confirms f H:

$$\mathfrak{c}_f(H,E) = \Pr(H \mid E).$$

• **Increase in Firmness**. The degree to which E confirms $_i$ H:

$$c_i(H, E) = f[Pr(H \mid E), Pr(H)]$$

f measures "the degree to which *E increases* the Pr of *H*."

• The 1st ed. of LFP was mainly about firmness, and the 2nd edition only adds the preface, which says very little about c_i . Specifically, no function f is rigorously defended there.

Pre-History: Keynes et. al.

History: Carnapian Confirmation

Iodern Bayesian Confirmation

References

• \mathfrak{c}_i is more similar to (*) than \mathfrak{c}_f is. To see this, note that we can have $\Pr(H \mid E) > r$ even if E lowers the probability of H.

• Example: Let *H* be the hypothesis that John does *not* have HIV, and let *E* be a *positive* test result for HIV from a highly reliable test. Plausibly, in such cases, we could have both:

- $Pr(H \mid E) > t$, for just about any threshold value t, but
- $Pr(H \mid E) < Pr(H)$, since *E lowers* the probability of *H*.
- So, if we adopt Carnap's c_f -explication, then we must say that E confirms H in such cases. But, in (*)-terms, this implies E provides some *positive evidential support for H!*
- I take it we don't want to say *that*. Intuitively, what we want to say here is that, while *H* is (still) *highly probable given E*, (nonetheless) *E* provides (strong!) evidence *against H*.
- Rather than ambiguity, I'd say this reflects confusion about the nature of the concept (*) Carnap was trying to explicate.
- Carnap [4] concedes that c_i is "more interesting" than c_f .
- Contemporary Bayesians would agree with this. They've since embraced a probabilistic relevance conception [38].

Branden Fitelson

A Historical Introduction to Bayesian Confirmation Theory

fitelson.org

re-History: Keynes et. al

History: Carnapian Confirmation

Modern Bayesian Confirmation

Referen

- *Many* candidate functions f satisfy the *relevance* constraint: (\mathcal{R}) f[Pr($H \mid E$), Pr(H)] ≥ 0 iff Pr($H \mid E$) \geq Pr(H)
- I'll say much more about the plethora of Pr-relevance measures, below. But, for now, back to *Carnapian* c_i .
- From an inductive-logical point of view, confirmation measures should *quantitatively generalize* entailment:
 (D) Provided that both E and H are contingent claims
 - $c_i(H, E)$ should be *maximal* if $E \models H$, and *minimal* if $E \models \sim H$. [Note: $Pr(H \mid E)$ satisfies this, but not \mathcal{R} .]
- Kemeny & Oppenheim [30] used this consideration (and others) to argue that the best explication of $c_i(H, E)$ is:

$$F(H,E) = \frac{\Pr(E \mid H) - \Pr(E \mid \sim H)}{\Pr(E \mid H) + \Pr(E \mid \sim H)}$$

- F can be expressed as a function f of $Pr(H \mid E)$ and Pr(H), and it satisfies \mathcal{R} , \mathcal{D} , and various other IL desiderata.
- One can use F to define **comparative** [F(H, E) > F(H', E')] and **qualitative** [F(H, E) > 0] confirmation_i concepts.

re-History: Keynes et. al. **History: Carnapian Confirmation** Modern Bayesian Confirmation References

(EQC) If E confirms H, then E confirms anything equivalent to H.

(EC) If E entails H, then E confirms H.

(CC) If E confirms both H and H', then H and H' are consistent.

(M) If E confirms H, then any E' stronger than E confirms H.

(SCC) If E confirms H, then E confirms any H' weaker than H.

(CCC) If E confirms H, then E confirms any H' stronger than H.

	EQC	EC	CC	M	SCC	CCC
Firmness	YES	YES ³	YES ⁴	No	YES	No
Increase in Firmness	YES	YES ⁵	No	No	No	No

• Four counterexamples for increase in firmness:

(CC) $E = \text{card is black}, H = \text{card is } A \spadesuit, H' = \text{card is } J \clubsuit$.

(M) E = card is black, $H = \text{card is } A \spadesuit$, $E' = \text{card is } J \clubsuit$.

(SCC) E = card is black, H = card is $A \spadesuit$, and H' = card is *some* ace.

(CCC) $E = \text{card is } A \spadesuit$, $H = \text{card is } some \text{ ace, and } H' = \text{card is } A \spadesuit$.

³Provided that $Pr(E) \neq 0$.

⁴Provided that the "threshold" value $t > \frac{1}{2}$.

⁵Provided that $Pr(H) \in (0,1)$, and $Pr(E) \in (0,1)$.

Branden Fitelson A Historical Introduction to Bayesian Confirmation Theory

fitelson.org

Pre-History: Keynes et. a

Branden Fitelson

History: Carnapian Confirma

Modern Bayesian Confirmation

References

- Bayesianism assumes that the *epistemic* degrees of belief (that is, the *credences*) of rational agents are *probabilities*.
- Let Pr(H) be the degree of belief that a rational agent a assigns to H at some time t (call this a's "prior" for H).
- Let $Pr(H \mid E)$ be the degree of belief that a would assign to H (just after t) were a to learn E at t (a's "posterior" for H).
- Toy Example: Let H be the proposition that a card sampled from some deck is a \spadesuit , and E assert that the card is black.
- Making the standard assumptions about sampling from 52-card decks, $Pr(H) = \frac{1}{4}$ and $Pr(H \mid E) = \frac{1}{2}$. So, (learning that) E (or supposing that E) raises the probability of H.
- Following Popper [36], Bayesians define confirmation in a way that is *formally* very similar to Carnap's c_i -explication.
- For Bayesians, E confirms H for an agent a at a time t iff $Pr(H \mid E) > Pr(H)$, where Pr captures a's credences at t.
- While this is *formally* very similar to Carnap's c_i , it uses credences as opposed to "logical" probabilities [38], [18].

Pre-History: Keynes et. al.

History: Carnapian Confirmati

Modern Bayesian Confirmation

eferences

• There are *many logically equivalent* (but *syntactically* distinct) ways of saving *E* confirms *H*, in the Bayesian sense.

- Here are the three most common ways:
 - *E* confirms *H* iff $Pr(H \mid E) > Pr(H)$. $\left[\frac{1}{2} > \frac{1}{4}\right]$
 - E confirms H iff $Pr(E \mid H) > Pr(E \mid \sim H)$. $[1 > \frac{1}{3}]$
 - *E* confirms *H* iff $Pr(H \mid E) > Pr(H \mid \sim E)$. $[\frac{1}{2} > 0]$
- By taking differences or ratios of the left/right sides of such inequalities, various confirmation *measures* c(H, E) emerge.
- A plethora of such confirmation measures have been used in the literature of Bayesian confirmation theory. See my thesis [12] for a survey. Here are the four most popular c's:
 - $d(H, E) \stackrel{\text{def}}{=} \Pr(H \mid E) \Pr(H)$
 - $r(H,E) \stackrel{\text{def}}{=} \log \left[\frac{\Pr(H \mid E)}{\Pr(H)} \right] \stackrel{=}{=} \frac{\Pr(H \mid E) \Pr(H)}{\Pr(H \mid E) + \Pr(H)}$
 - $\bullet \ l(H,E) \stackrel{\text{\tiny def}}{=} \log \left[\frac{\Pr(E \mid H)}{\Pr(E \mid \sim H)} \right] \doteq \frac{\Pr(E \mid H) \Pr(E \mid \sim H)}{\Pr(E \mid H) + \Pr(E \mid \sim H)} = F(H,E)$
 - $s(H, E) \stackrel{\text{def}}{=} \Pr(H \mid E) \Pr(H \mid \sim E)$

Branden Fitelson

A Historical Introduction to Bayesian Confirmation Theory

fitelson.org

re-History: Keynes et. a

History: Carnapian Confirmation

Modern Bayesian Confirmation

Referenc

- Here is an incomplete list of examples of the problem of measure-sensitivity. I'm happy to discuss any of these.
 - Hempel's Ravens Paradox [22], [17]
 - Goodman's "Grue" Paradox [8], [39], [20]
 - The Tacking Problem [37], [7], [14], [21]
 - The Confirmational Value of Evidential Variety [25], [13], [1]
 - The Old Evidence Problem [5], [29], [9], [15]
 - The Likelihood Principle/Law [33], [19], [40]
 - The Monty Hall Problem [2]
 - The Virtue of Unification [34], [32]
 - Earman's Old Evidence Critique of Bayesianism [7], [16]
 - Gillies's Popper-Miller *Critique* of Bayesianism [23]
- See [11] and [12] for further examples and discussion.
- We need some *normative principles* to narrow the field ...

- Question: do these (and other) measures disagree only *conventionally*, or do they disagree in substantive ways?
- Note: mere *numerical* differences between measures are not important, since they need not affect *ordinal* judgments of what is more/less well confirmed than what (by what).
- If two measures c_1 and c_2 agree on *all comparisons*, then we say that c_1 and c_2 are *ordinally equivalent* ($c_1 \doteq c_2$). That is:

$$c_1 \doteq c_2 \stackrel{\text{def}}{=} c_1(H, E) \geq c_1(H', E') \text{ iff } c_2(H, E) \geq c_2(H', E')$$

- Fact. *No two* of $\{d, r, l, s\}$ are ordinally equivalent.
- OK, but do they disagree on *important* applications or in *important* cases? Unfortunately, they disagree *radically*.
- Fact. Almost every argument/application of Bayesian confirmation in the literature is valid for *only some* choices of d, r, l, s. I call this *the problem of measure sensitivity*.
- Note: things only get worse if you consider still other relevance measures (and there are many others out there).

Branden Fitelson

A Historical Introduction to Bayesian Confirmation Theory

fitelson.org

Pre-History: Keynes et.

Branden Fitelson

History: Carnapian Confirmation

Modern Bayesian Confirmation ○○○○●○○ References

 Consider the following two propositions concerning a card c, drawn at random from a standard deck of playing cards:

E: *c* is the ace of spades. *H*: *c* is *some* spade.

- I take it as intuitively clear and uncontroversial that:
 - The degree to which E confirms $H \neq$ the degree to which H confirms E, since $E \models H$, but $H \not\models E$. $[\mathfrak{c}(H, E) \neq \mathfrak{c}(E, H)]$
 - The degree to which E confirms $H \neq$ the degree to which $\sim E$ disconfirms H, since $E \models H$, $\sim E \not\models \sim H$. $[\mathfrak{c}(H, E) \neq -\mathfrak{c}(H, \sim E)]$
- Therefore, no adequate measure of confirmation \mathfrak{c} should be such that either $\mathfrak{c}(H,E) = \mathfrak{c}(E,H)$ or $\mathfrak{c}(H,E) = -\mathfrak{c}(H,\sim E)$ for all E and H and for all probability functions Pr. I'll call these two symmetry desiderata S_1 and S_2 , respectively.
- Note: for all H, E, and for all Pr, r(H, E) = r(E, H) and $s(H, E) = -s(H, \sim E)$. That is, r violates S_1 and s violates S_2 .
- *Both d* and l satisfy these *S*-desiderata. This narrows the field to d and l [10]. We can narrow the field further still ...

- If we think of inductive logic as a *quantitative generalization* of deductive logic, then the following *logical* desideratum seems natural (it's also implicit in the previous example):
 - (†) **Quantitative Rendition**. c(H, E) should be *maximal* when $E \models H$ and c(H, E) should be *minimal* when $E \models \sim H$.
 - (†) **Comparative Rendition**. If $E \models H$ but $E' \not\models H'$, then the following inequality should hold: $\mathfrak{c}(H,E) \geq \mathfrak{c}(H',E')$.
- The measure d violates these desiderata. For, when $E \models H$: $d(H, E) = \Pr(H \mid E) \Pr(H) = 1 \Pr(H) = \Pr(\sim H)$
- So, if the prior probability of H is sufficiently high, then (according to d) E will confirm H very weakly, even if $E \models H$.
- From an inductive-logical point of view, this is absurd, since the logical strength of a valid argument should not depend on how probable its conclusion is (or on its truth-value).
- Indeed, of all the Bayesian measures of confirmation that have been used in the literature (*so far* [6]!), only l (or its ordinal equivalents) satisfy our three desiderata: S_1 , S_2 , (†).

Branden Fitelson

A Historical Introduction to Bayesian Confirmation Theory

fitelson.org

ory: Keynes et. al. History: Carnapian Confirmation Modern Bayesian Confirmation References

- L. Bovens and S. Hartmann, Bayesian networks and the problem of unreliable instruments, Philosophy of Science, 2002.
- [2] D. Bradley and B. Fitelson, Monty hall, doomsday, and confirmation, Analysis, 2003.URL: http://fitelson.org/monty.pdf.
- [3] R. Carnap, Logical foundations of probability, University of Chicago, 1950.
- [4] ______, Logical foundations of probability (2nd ed), University of Chicago, 1962.
- [5] D. Christensen, Measuring confirmation, Journal of Philosophy, 1999.
- [6] V. Crupi and K. Tentori and M. Gonzalez, On Bayesian theories of evidential support: Normative and descriptive considerations, manuscript, 2006.
- [7] J. Earman, Bayes or bust?, MIT, 1992.
- [8] E. Eells, Rational decision and causality, Cambridge, 1982.
- [9] E. Eells and B. Fitelson, Measuring confirmation and evidence, Journal of Philosophy, 2001. URL: http://fitelson.org/dccfin.pdf.
- [10] _____, Symmetries and asymmetries in evidential support, Philosophical Studies, 2002. URL: http://fitelson.org/symmetry.pdf.
- [11] B. Fitelson, *The plurality of Bayesian measures of confirmation and the problem of measure sensitivity*, Philosophy of Science, 1999. URL: http://fitelson.org/psa.pdf.
- [12] _____, Studies in Bayesian confirmation theory, Ph.D. thesis, University of Wisconsin-Madison, 2001. URL: http://fitelson.org/thesis.pdf.
- [13] _____, A Bayesian account of independent evidence with applications, Philosophy of Science, 2001. URL: http://fitelson.org/psa2.pdf.
- [14] ______, Putting the irrelevance back into the problem of irrelevant conjunction, Philosophy of Science, 2002. URL: http://fitelson.org/ic.pdf.
- [15] _____, Review of [29], Mind, 2003. URL: http://fitelson.org/joyce.pdf.
- [16] _____, Earman on Old Evidence and Measures of Confirmation, 2004. URL: http://fitelson.org/oe.pdf.

- Seven properties of $\mathfrak{c}(H,E)$, for contingent H,E,H',E',X:
- (1) If $E \models H$ and $E \not\models H'$, then $\mathfrak{c}(H, E) \ge \mathfrak{c}(H', E)$. [19]
- (2) If $Pr(E \mid H) > Pr(E \mid H')$, then c(H, E) > c(H', E). [19]
- (3) If $Pr(H \mid E) > Pr(H \mid E')$, then c(H, E) > c(H, E'). [17]
- (4) c(H, E) = c(E, H). [10]
- (5) $c(H, E) = -c(H, \sim E)$. [10]
- (6) $c(H, E) = -c(\sim H, E)$. [10]
- (7) If H = E, then c(H, E) > c(H & X, E), for any X. [14]

	Does Measure have property?								
Relevance Measure	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
d(H,E)	No	No	YES	No	No	YES	YES		
r(H,E)	No	YES	YES	YES	No	No	No		
l(H,E)	YES	No	YES	No	No	YES	YES		
s(H,E)	No	No	No	No	YES	YES	YES		

Branden Fitelson

Branden Fitelson

A Historical Introduction to Bayesian Confirmation Theory

fitelson.org

Pre-History: Keynes et. al.

History: Carnapian Confirma

Modern Bayesian Confirmation

References

- [17] _____, The paradox of confirmation, Philosophy Compass (B. Weatherson and C. Callender, eds.),
 Blacwkell (online publication), 2005. URL: http://fitelson.org/ravens.htm.
 - [18] _____, Confirmation Theory As a Branch of Inductive Logic: Some Historical and Philosophical Reflections, APA Eastern lecture, 2005. URL: http://fitelson.org/apa2005_script.pdf.
 - [19] ______, Likelihoodism, Bayesianism, and relational confirmation, forthcoming in Synthese, 2006.
 URL: http://fitelson.org/synthese.pdf.
 - [20] _____, Goodman's 'New Riddle', 2006. URL: http://fitelson.org/grue.pdf.
 - [21] B. Fitelson and J. Hawthorne, Re-solving irrelevant conjunction with probabilistic independence, Philosophy of Science, 2005. URL: http://fitelson.org/ic2.pdf.
 - [22] _____, How Bayesian confirmation theory handles the paradox of the ravens, forthcoming in Probability in Science, 2006. URL: http://fitelson.org/ravens.pdf.
 - [23] D. Gillies, *In defense of the Popper-Miller argument*, Philosophy of Science, 1986.
 - 24] C. Hempel, Studies in the logic of confirmation, Mind, 1945.
 - [25] P. Horwich, *Probability and evidence*, Cambridge, 1982.
 - [26] C. Howson and P. Urbach, Scientific reasoning: The Bayesian approach, Open Court, 1993.
 - [27] R. Jeffrey, *Probability and the art of judgment*, Cambridge, 1992.
 - [28] W.E. Johnson, *Logic*, Cambridge University Press, 1921.
 - [29] J. Joyce, The foundations of causal decision theory, Cambridge, 1999.
 - [30] J. Kemeny and P. Oppenheim, Degrees of factual support, Philosophy of Science, 1952.
 - [31] J. Keynes, A treatise on probability, Macmillan, London, 1921.
 - [32] Lange. M, Bayesianism and unification: A reply to W. Myrvold, Philosophy of Science, 2003.
 - [33] P. Milne, $\log[p(h/eb)/p(h/b)]$ is the one true measure of confirmation, Philosophy of Sci., 1996.
 - [34] W. Myrvold, A Bayesian account of the virtue of unification, Philosophy of Science, 2003.
 - [35] J. Nicod, The Logical Problem of Induction, (1923) in Geometry and induction, University of California Press, Berkeley, California, 1970.
 - [36] K. Popper, Degree of confirmation, British Journal of Philosophy of Science, 1954.
 - [37] R. Rosenkrantz, Bayesian confirmation: Paradise regained, British Journal of Phil. of Sci., 1994.
 - [38] W. Salmon, *Confirmation and relevance*, in Induction, Probability, and Confirmation: Minnesota Studies in the Philosophy of Science, vol. 6., Maxwell and Anderson *eds.*, 1975.
 - [39] E. Sober, No model, no inference: A bayesian primer on the grue problem, in Grue! The New Riddle of Induction (D. Stalker, ed.), Open Court, 1994.
 - [40] D. Steel, A Bayesian way to make stopping rules matter, Erkenntnis, 2003.