

PCTORGANIZACION MUNDIAL DE LA PROPIEDAD INTELECTUAL
Oficina InternacionalSOLICITUD INTERNACIONAL PUBLICADA EN VIRTUD DEL TRATADO DE COOPERACION
EN MATERIA DE PATENTES (PCT)

(51) Clasificación Internacional de Patentes ⁷ : C07D 233/64, 233/68, A61K 31/4164	A1	(11) Número de publicación internacional: WO 00/23426 (43) Fecha de publicación internacional: 27 de Abril de 2000 (27.04.00)
---	----	--

(21) Solicitud internacional: PCT/ES99/00327	(81) Estados designados: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, Patente AR IPO (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Patente euroasiática (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Patente europea (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), Patente OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) Fecha de la presentación internacional: 15 de Octubre de 1999 (15.10.99)	
(30) Datos relativos a la prioridad: P 9802222 16 de Octubre de 1998 (16.10.98) ES	
(71) Solicitante (<i>para todos los Estados designados salvo US</i>): J. URIACH & CIA, S.A. [ES/ES]; Decano Bahí, 59-67, E-08026 Barcelona (ES).	
(72) Inventores; e	Publicada
(75) Inventores/solicitantes (<i>sólo US</i>): ALMANSA, Carmen [ES/ES]; Calle Independencia, 333, E-08026 Barcelona (ES). GONZALEZ, Concepción [ES/ES]; Sant Joan Bosco, 56, E-08830 Sant Boi de Llobregat (ES). TORRES, M^a Carmen [ES/ES]; Ponent, 160, E-08912 Badalona (ES).	<i>Con informe de búsqueda internacional.</i>
(74) Mandatario: ISERN JARA, Jaime; Avenida Diagonal, 463 bis 2º, E-08036 Barcelona (ES).	

(54) Title: NOVEL IMIDAZOLES WITH ANTI-INFLAMMATORY ACTIVITY

(54) Título: NUEVOS IMIDAZOLES CON ACTIVIDAD ANTIINFLAMATORIA

(57) Abstract

Compounds of formula (I) wherein one of X or Y is N and the other is C; R₁ is hydrogen, methyl, halogen, cyano, nitro, -CHO, -COCH₃ or -COOR₄; R₂ is optionally substituted aryl or heteroaryl; R₃ is C₁₋₈alkyl, C₁₋₈haloalkyl group or R₄R₆; R₄ is hydrogen, C₁₋₈alkyl or aryl C₀₋₈alkyl; R₆ is hydrogen, C₁₋₈alkyl, arylC₁₋₈alkyl, -COR₈ or -OOR₈; R₈ is C₁₋₈alkyl or C₁₋₈haloalkyl; aryl is in the preceding definitions phenyl or naphtyl; heteroaryl is in the preceding definitions pyridyle, pyrazine, pyrimidine or pyridazine which may optionally be fused to a benzene ring. These compounds are useful as inhibitors of cyclo-oxygenase-2.

(57) Resumen

Compuestos de fórmula (I) donde: uno de X o Y representa N y el otro representa C; R₁ representa hidrógeno, metilo, halógeno, ciano, nitró, -CHO, -COCH₃ o -COOR₄; R₂ representa arilo o heteroarilo opcionalmente sustituido; R₃ representa un grupo C₁₋₈alquilo, C₁₋₈haloalquilo o -NR₄R₆; R₄ representa hidrógeno, C₁₋₈alquilo o arilC₀₋₈alquilo; R₆ representa hidrógeno, C₁₋₈alquilo, arylC₁₋₈alquilo, -COR₈ o -COOR₈; R₈ representa C₁₋₈alquilo o C₁₋₈haloalquilo; arilo en las definiciones anteriores representa fenil o naftil; y heteroarilo en las definiciones anteriores representa piridina, pirazina, pirimidina o piridazina, que pueden estar opcionalmente fusionadas a un anillo de benceno. Estos compuestos son útiles como inhibidores de la ciclooxygenasa-2.

UNICAMENTE PARA INFORMACION

Códigos utilizados para identificar a los Estados parte en el PCT en las páginas de portada de los folletos en los cuales se publican las solicitudes internacionales en el marco del PCT.

AL	Albania	ES	España	LS	Lesotho	SI	Eslovenia
AM	Armenia	FI	Finlandia	LT	Lituania	SK	Eslovaquia
AT	Austria	FR	Francia	LU	Luxemburgo	SN	Senegal
AU	Australia	GA	Gabón	LV	Letonia	SZ	Swazilandia
AZ	Azerbaiyán	GB	Reino Unido	MC	Mónaco	TD	Chad
BA	Bosnia y Herzegovina	GE	Georgia	MD	República de Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tayikistán
BE	Bélgica	GN	Guinea	MK	Ex República Yugoslava de Macedonia	TM	Turkmenistán
BF	Burkina Faso	GR	Grecia	ML	Malí	TR	Turquía
BG	Bulgaria	HU	Hungría	MN	Mongolia	TT	Trinidad y Tabago
BJ	Benín	IE	Irlanda	MR	Mauritania	UA	Ucrania
BR	Brasil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarús	IS	Islandia	MX	México	US	Estados Unidos de América
CA	Canadá	IT	Italia	NE	Níger	UZ	Uzbekistán
CF	República Centroafricana	JP	Japón	NL	Paises Bajos	VN	Viet Nam
CG	Congo	KR	Kenya	NO	Noruega	YU	Yugoslavia
CH	Suiza	KG	Kirguistán	NZ	Nueva Zelanda	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	República Popular Democrática de Corea	PL	Polonia		
CM	Camerún	KR	República de Corea	PT	Portugal		
CN	China	KZ	Kazakstán	RO	Rumania		
CU	Cuba	LC	Santa Lucía	RU	Federación de Rusia		
CZ	República Checa	LJ	Liechtenstein	SD	Sudán		
DE	Alemania	LK	Sri Lanka	SE	Suecia		
DK	Dinamarca	LR	Liberia	SG	Singapur		
EE	Estonia						

Nuevos imidazoles con actividad antiinflamatoria.**Sector de la técnica al que se refiere la invención.**

La presente invención se refiere a una nueva serie de imidazoles con actividad antiinflamatoria, así como a un procedimiento para su preparación, a las composiciones farmacéuticas que contienen estos compuestos y a su uso en medicina.

Estado de la técnica relativo a la invención.

En muchos procesos inflamatorios, tanto agudos como crónicos, intervienen sustancias derivadas del metabolismo del ácido araquidónico.

Estas forman una gran familia de compuestos de naturaleza lipídica que son el resultado de la acción de una serie de enzimas que forman lo que se denomina la cascada del ácido araquidónico. La más importante desde el punto de vista de uso terapéutico es la prostaglandina G/H sintasa (PGHS), también llamada ciclooxigenasa (COX), que cataliza la formación de sustancias vasoactivas e inflamatorias como las prostaglandinas (PGE_2 , PGD_2 , PGF_2), prostaciclina (PGI_2) y el tromboxano A₂ (TXA₂).

La inhibición de la ciclooxigenasa (COX) es el mecanismo de acción responsable del efecto de la gran mayoría de fármacos antiinflamatorios que están en el mercado (antiinflamatorios no esteroideos, AINEs). Dicha inhibición reduce también los niveles de prostaglandinas a nivel gástrico, lo cual, teniendo en cuenta el papel protector de la mucosa gástrica que desempeñan dichas moléculas, ha sido correlacionado con los comúnmente descritos efectos gástricos de los AINEs.

A principios de los años 90 fueron descritas dos isoformas de la ciclooxigenasa, la COX-1 y la COX-2. La COX-1 es la isoforma constitutiva, presente en gran número de tejidos, pero preferentemente en el estómago, riñón y plaquetas. Su inhibición es responsable de los efectos gástricos y renales de los AINEs. Por otra parte, la COX-2 es una isoforma inducible, que se expresa como consecuencia de un estímulo inflamatorio o mitógeno en una gran variedad de tejidos como macrófagos, condrocitos, fibroblastos y células endoteliales.

El descubrimiento de la isoenzima inducible de la PGHS (PGHS₂ ó COX-2)

ha permitido la síntesis de inhibidores selectivos de la COX-2 que presumiblemente mejoran la tolerabilidad gástrica de estos fármacos, ya que al inhibir en menor medida la forma constitutiva presente en el estómago, reducen la potencia ulcerogénica (uno de los efectos secundarios más característicos de los inhibidores no selectivos). La presente invención describe nuevos inhibidores de la ciclooxygenasa con selectividad por la forma 2 (COX-2).

Explicación de la invención.

Son objeto de la presente invención los nuevos compuestos de fórmula general I:

10

donde:

uno de X ó Y representa N y el otro representa C;

15 R₁ representa hidrógeno, metilo, halógeno, ciano, nitro, -CHO, -COCH₃ ó -COOR₄;

R₂ representa arilo o heteroarilo opcionalmente sustituido por uno o más grupos elegidos independientemente de entre halógeno, C₁₋₈ alquilo, C₁₋₈ haloalquilo, R₄OC₀₋₈ alquilo, R₄SC₀₋₈ alquilo, ciano, nitro, -NR₄R₆, -NR₄SO₂R₅,

20 -SOR₅, -SO₂R₅, -SO₂NR₄R₆, ó -CONR₄R₆;

R₃ representa un grupo C₁₋₈ alquilo, C₁₋₈ haloalquilo ó -NR₄R₆;

R₄ representa hidrógeno, C₁₋₈ alquilo, o arilC₀₋₈ alquilo (donde el grupo arilo puede estar opcionalmente sustituido por uno o más grupos elegidos de entre C₁₋₈ alquilo, halógeno, C₁₋₈ haloalquilo, ciano, nitro, R₇OC₀₋₈ alquilo, R₇SC₀₋₈ alquilo, -NR₇R₈, -NR₇COR₅, -COR₇ ó -COOR₇);

R₅ representa C₁₋₈ alquilo ó C₁₋₈ haloalquilo;

R₆ representa hidrógeno, C₁₋₈ alquilo, arilC₁₋₈ alquilo (donde el grupo arilo puede estar opcionalmente sustituido por uno o más grupos legidos de entre C₁₋₈ alquilo, halogénico, C₁₋₈ haloalquilo, ciano, nitro, R₇OC₀₋₈ alquilo, R₇SC₀₋₈ alquilo, -NR₇R₈, -NR₇COR₅, -COR₇ ó -COOR₇), -COR₈ ó -COOR₈;

5 R₇ representa hidrógeno, C₁₋₈ alquilo o bencilo;

R₈ representa C₁₋₈ alquilo ó C₁₋₈ haloalquilo;

arilo en las definiciones anteriores representa fenilo o naftilo; y heteroarilo en las definiciones anteriores representa piridina, pirazina, pirimidina ó piridazina, que pueden estar opcionalmente fusionadas a un anillo

10 de benceno.

Se incluyen también en la presente invención las sales de adición de los compuestos de la invención así como sus solvatos y sus prodrogas. Se entiende por prodroga cualquier precursor de un compuesto de fórmula I que es capaz de romperse y liberar el compuesto de fórmula I *in vivo*.

15 Algunos compuestos de fórmula I pueden poseer centros quirales, los cuales pueden dar lugar a diversos estereoisómeros. Son objeto de la presente invención cada uno de los estereoisómeros individuales así como sus mezclas. Asimismo, algunos de los compuestos de la presente invención pueden presentar isomería cis/trans. Son objeto de la presente invención cada uno de los isómeros geométricos así como sus mezclas.

Son también objeto de la presente invención las composiciones farmacéuticas que comprenden una cantidad efectiva de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo mezclado con uno o más excipientes farmacéuticamente aceptables.

25 Es también objeto de la presente invención el uso de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para la manufactura de un medicamento para el tratamiento o prevención de enfermedades mediadas por la ciclooxigenasa, especialmente la ciclooxigenasa-2.

30 Es también objeto de la presente invención el uso de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para la manufactura de un medicamento para el tratamiento de la inflamación,

dolor y/o fiebre.

Es también objeto de la presente invención el uso de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para la manufactura de un medicamento para inhibir la contracción de la 5 musculatura lisa inducida por prostanoïdes.

Es también objeto de la presente invención el uso de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para la manufactura de un medicamento para el tratamiento o prevención de la dismenorrea, parto prematuro, asma y bronquitis.

10 Es también objeto de la presente invención el uso de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para la manufactura de un medicamento para el tratamiento o prevención del cáncer, preferiblemente de cánceres gastrointestinales, y más preferiblemente del cáncer de colon.

15 Es también objeto de la presente invención el uso de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para la manufactura de un medicamento para el tratamiento o prevención de infartos cerebrales, epilepsia, y enfermedades neurodegenerativas como la enfermedad de Alzheimer y la demencia.

20 Es también objeto de la presente invención el uso de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para el tratamiento o prevención de enfermedades mediadas por la ciclooxigenasa, especialmente la ciclooxigenasa-2.

25 Es también objeto de la presente invención el uso de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para el tratamiento de la inflamación, dolor y/o fiebre.

Es también objeto de la presente invención el uso de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para inhibir la contracción de la musculatura lisa inducida por prostanoïdes.

30 Es también objeto de la presente invención el uso de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para el tratamiento o prevención de la dismenorrea, parto prematuro, asma y

bronquitis.

Es también objeto de la presente invención el uso de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para el tratamiento o prevención del cáncer, preferiblemente de cánceres 5 gastrointestinales, y más preferiblemente del cáncer de colon.

Es también objeto de la presente invención el uso de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para el tratamiento o prevención de infartos cerebrales, epilepsia, y enfermedades neurodegenerativas como la enfermedad de Alzheimer y la 10 demencia.

Es también objeto de la presente invención un método para el tratamiento o prevención de enfermedades mediadas por la ciclooxygenasa, especialmente la ciclooxygenasa-2, en un mamífero necesitado del mismo, especialmente un ser humano, que comprende administrar a dicho mamífero 15 una cantidad terapéuticamente efectiva de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo.

Es también objeto de la presente invención un método para el tratamiento de la inflamación, dolor y/o fiebre en un mamífero necesitado del mismo, especialmente un ser humano, que comprende administrar a dicho mamífero 20 una cantidad terapéuticamente efectiva de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo.

Es también objeto de la presente invención un método para inhibir la contracción de la musculatura lisa inducida por prostanoïdes en un mamífero necesitado del mismo, especialmente un ser humano, que comprende administrar a dicho mamífero 25 una cantidad terapéuticamente efectiva de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo.

Es también objeto de la presente invención un método para el tratamiento o prevención de la dismenorrea, parto prematuro, asma y bronquitis 30 en un mamífero necesitado del mismo, especialmente un ser humano, que comprende administrar a dicho mamífero una cantidad terapéuticamente efectiva de un compuesto de fórmula I o una sal, solvato o prodroga

farmacéuticamente aceptable del mismo.

Es también objeto de la presente invención un método para el tratamiento o prevención del cáncer, preferiblemente de cánceres gastrointestinales, y más preferiblemente del cáncer de colon en un mamífero necesitado del mismo, especialmente un ser humano, que comprende administrar a dicho mamífero una cantidad terapéuticamente efectiva de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo.

Es también objeto de la presente invención un método para el tratamiento o prevención de infartos cerebrales, epilepsia, y enfermedades neurodegenerativas como la enfermedad de Alzheimer y la demencia en un mamífero necesitado del mismo, especialmente un ser humano, que comprende administrar a dicho mamífero una cantidad terapéuticamente efectiva de un compuesto de fórmula I o una sal, solvato o prodroga farmacéuticamente aceptable del mismo.

Otro objeto de la presente invención es proporcionar un procedimiento para la preparación de los compuestos de fórmula I, caracterizado porque comprende:

(a) cuando en un compuesto de fórmula I R₁ representa hidrógeno o metilo,
20 hacer reaccionar una imina de fórmula II

donde X, Y, R₂ y R₃ tienen el significado descrito anteriormente, con un isocianuro de fórmula III

donde R_1 representa hidrógeno o metilo y L representa un buen grupo saliente;

ó

(b) cuando en un compuesto de fórmula I R_3 representa C_{1-8} alquilo o C_{1-8} haloalquilo, oxidar un tioéter de fórmula VIII,

donde R_3 representa C_{1-8} alquilo o C_{1-8} haloalquilo y X , Y , R_1 y R_2 tienen el significado descrito anteriormente, con un agente oxidante adecuado; ó

(c) cuando en un compuesto de fórmula I R_3 representa un grupo $-NH_2$, hacer reaccionar un compuesto de fórmula IX

15

donde X , Y , R_1 y R_2 tienen el significado descrito anteriormente, con ácido hidroxilamino-O-sulfónico; ó

(d) cuando en un compuesto de fórmula I R₃ representa un grupo -NR₄R₆, hacer reaccionar un compuesto de fórmula XI

5

donde X, Y, R₁ y R₂ tienen el significado descrito anteriormente, con una amina de fórmula HNR₄R₆; ó

- (e) cuando en un compuesto de fórmula I R₁ representa halógeno y X representa N, hacer reaccionar un compuesto de fórmula I donde R₁ representa hidrógeno con un agente halogenante adecuado;
- (f) cuando en un compuesto de fórmula I R₁ representa halógeno y Y representa N, hacer reaccionar un compuesto de fórmula I donde R₁ representa hidrógeno con una base fuerte y un agente halogenante adecuado;
- (g) transformar, en una o varias etapas, un compuesto de fórmula I en otro compuesto de fórmula I; y
- (h) si se desea, después de las etapas anteriores, hacer reaccionar un compuesto de fórmula I con un ácido para dar la correspondiente sal de adición.

En las definiciones anteriores, el término C₁₋₈ alquilo, como grupo o parte de un grupo, significa un grupo alquilo lineal o ramificado que contiene de 1 a 8 átomos de carbono. Ejemplos incluyen entre otros los grupos metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, tert-butilo, pentilo, isopentilo, neopentilo, hexilo, heptilo y octilo. Un grupo C₀₋₈ alquilo significa que adicionalmente el grupo alquilo puede estar ausente (es decir, que está presente un nlace covalente).

Un radical halógeno o su abreviatura halo significa fluoro, cloro, bromo o

iodo.

Un grupo C₁₋₈ haloalquilo significa un grupo resultante de la sustitución de uno o más átomos de hidrógeno de un grupo C₁₋₈ alquilo por uno o más átomos de halógeno (es decir, fluoro, cloro, bromo o iodo), que pueden ser iguales o diferentes. Ejemplos incluyen trifluorometilo, fluorometilo, 1-cloroetilo, 5
2-cloroetilo, 1-fluoroetilo, 2-fluoroetilo, 2-bromoetilo, 2-idoetilo, pentafluoroetilo, 3-fluoropropilo, 3-cloropropilo, 2,2,3,3-tetrafluoropropilo, 2,2,3,3,3-pentafluoropropilo, heptafluoropropilo, 4-fluorobutilo, nonafluorobutilo, 5
5-fluoropentilo, 6-fluorohexilo, 7-fluorheptilo y 8-fluoroctilo.

10 Un grupo arilC₁₋₈ alquilo significa un grupo resultante de la sustitución de un átomo de hidrógeno de un grupo C₁₋₈ alquilo por un grupo arilo como los definidos anteriormente, es decir fenilo o naftilo, que pueden estar opcionalmente sustituidos según se ha descrito anteriormente. Ejemplos incluyen entre otros los grupos bencilo, 1-feniletilo, 2-feniletilo, 3-fenilpropilo, 2-15 fenilpropilo, 1-fenilpropilo, 4-fenilbutilo, 3-fenilbutilo, 2-fenilbutilo, 1-fenilbutilo, 5-fenilpentilo, 6-fenilhexilo, 7-fenilheptilo y 8-feniloctilo, donde el grupo fenilo puede estar opcionalmente sustituido. Un grupo arilC₀₋₈ alquilo significa que incluye adicionalmente un grupo arilo cuando el grupo alquilo está ausente (es decir, cuando es C₀ alquilo).

20 En la definición de R₂ el término arilo significa fenilo o naftilo. El término heteroarilo en la definición de R₂ significa un anillo de piridina, pirazina, pirimidina ó piridazina, que pueden estar opcionalmente fusionados a un anillo de benceno, dando lugar así a un anillo de quinolina, isoquinolina, quinoxalina, quinazolina, ftalazina, o cinolina. El grupo heteroarilo puede hallarse unido al 25 resto de la molécula de fórmula I a través de cualquier átomo de carbono en cualquiera de los anillos (en el caso de que contenga un anillo de benceno fusionado).

Como ya se ha mencionado anteriormente, el grupo arilo o heteroarilo representado por R₂ puede estar opcionalmente sustituido por uno o más, preferiblemente de uno a tres, grupos elegidos independientemente de entre halógeno, C₁₋₈ alquilo, C₁₋₈ haloalquilo, R₄OC₀₋₈ alquilo, R₄SC₀₋₈ alquilo, ciano, nitro, -NR₄R₆, -NR₄SO₂R₅, -SOR₅, -SO₂R₅, -SO₂NR₄R₆ ó -CONR₄R₆. El

o los sustituyentes, cuando haya más de uno, pueden hallarse en cualquier posición disponible del grupo arilo o heteroarilo.

Aunque la presente invención incluye todos los compuestos arriba mencionados, son preferidos aquellos compuestos de fórmula I donde independientemente o en cualquier combinación compatible:

5 R_1 representa halógeno, más preferiblemente cloro; y/o
 R_2 representa fenilo o piridina opcionalmente sustituido por uno o más grupos elegidos independientemente de entre halógeno, C₁₋₈ alquilo, C₁₋₈ haloalquilo, R₄OC₀₋₈ alquilo, R₄SC₀₋₈ alquilo, ciano, nitro, -NR₄R₆, -NR₄SO₂R₅,
10 -SOR₅, -SO₂R₅, -SO₂NR₄R₆, ó -CONR₄R₆; y/o

R_3 representa metilo o -NH₂; y/o

 X representa N.

Así, una clase preferida de compuestos de la presente invención son aquellos compuestos de fórmula I donde R_3 representa metilo o -NH₂.

15 Una clase más preferida de compuestos de la presente invención son aquellos compuestos de fórmula I donde R_3 representa metilo o -NH₂, y R_1 representa halógeno.

Una clase aún más preferida de compuestos de la presente invención son aquellos compuestos de fórmula I donde R_3 representa metilo o -NH₂, y R_1 representa cloro.

Una clase especialmente preferida de compuestos de la presente invención son aquellos compuestos de fórmula I donde R_3 representa metilo o -NH₂, R_1 representa cloro y X representa N.

25 Otra clase especialmente preferida de compuestos de la presente invención son aquellos compuestos de fórmula I donde R_3 representa metilo o -NH₂, R_1 representa cloro, X representa N, y R_2 representa fenilo o piridina opcionalmente sustituido por uno o más grupos elegidos independientemente de entre halógeno, C₁₋₈ alquilo, C₁₋₈ haloalquilo, R₄OC₀₋₈ alquilo, R₄SC₀₋₈ alquilo, ciano, nitro, -NR₄R₆, -NR₄SO₂R₅, -SOR₅, -SO₂R₅, -SO₂NR₄R₆, ó -CONR₄R₆.

Los compuestos de la presente invención contienen uno o más nitrógenos básicos y por tanto pueden formar sales con ácidos orgánicos e

inorgánicos, que forman también parte de la presente invención. No hay limitación en la naturaleza de dichas sales, en el supuesto de que cuando se usen con fines terapéuticos sean farmacéuticamente aceptables. Ejemplos de dichas sales incluyen sales con ácidos inorgánicos como ácido clorhídrico, 5 ácido bromhídrico, ácido iodhídrico, ácido nítrico, ácido perclórico, ácido sulfúrico o ácido fosfórico; y sales con ácidos orgánicos, como ácido metansulfónico, ácido trifluorometansulfónico, ácido etansulfónico, ácido bencensulfónico, ácido *p*-toluensulfónico, ácido fumárico, ácido oxálico, ácido acético ó ácido maleico, entre otros. Las sales se pueden preparar por 10 tratamiento del compuesto de fórmula I con una cantidad suficiente del ácido deseado para dar la sal de una forma convencional. Los compuestos de fórmula I y sus sales difieren en ciertas propiedades físicas, como la solubilidad, pero son equivalentes a efectos de la invención.

Algunos compuestos de la presente invención pueden existir en forma 15 solvatada, incluyendo formas hidratadas. En general las formas solvatadas, con disolventes farmacéuticamente aceptables como el agua, etanol y similares, son equivalentes a la forma no solvatada a efectos de la invención.

Algunos compuestos de la presente invención pueden existir en forma de varios diastereoisómeros y/o varios isómeros ópticos. Los 20 diastereoisómeros pueden separarse mediante técnicas convencionales como la cromatografía o la cristalización fraccionada. Los isómeros ópticos pueden ser resueltos mediante el uso de técnicas convencionales de resolución óptica, para dar los isómeros ópticamente puros. Esta resolución puede realizarse sobre los intermedios de síntesis que sean quirales o bien sobre los productos 25 de fórmula general I. Los isómeros ópticamente puros también pueden ser obtenidos individualmente empleando síntesis enantioespecíficas. La presente invención cubre tanto los isómeros individuales como las mezclas (por ejemplo mezclas racémicas), tanto si se obtienen por síntesis como mezclándolos físicamente.

Asimismo, algunos de los compuestos de la presente invención pueden 30 presentar isomería cis/trans. La presente invención incluye cada uno de los isómeros geométricos así como sus mezclas.

Es también un objeto de la presente invención proporcionar un procedimiento para la preparación de los compuestos de fórmula I. Como se rá evidente para un experto en la materia, el método preciso utilizado para la preparación de un compuesto dado puede variar en función de su estructura química. Asimismo, en la mayoría de los procedimientos que se detallan a continuación puede ser necesario o conveniente proteger los grupos reactivos o lábiles mediante grupos protectores convencionales. Tanto la naturaleza de dichos grupos protectores como los procedimientos para su introducción y eliminación son bien conocidos y forman parte del estado de la técnica (véase por ejemplo Greene T.W., "Protective Groups in Organic Synthesis", John Wiley & Sons, New York, 1981).

Los compuestos de fórmula I donde R₁ representa hidrógeno o metilo se obtienen en general mediante reacción de una imina de fórmula II con un isocianuro de fórmula III, según se muestra en el siguiente esquema:

15

donde R₁ representa hidrógeno o metilo, X, Y, R₂ y R₃ tienen el significado anteriormente descrito, y L representa un buen grupo saliente como un grupo tosilo o 1H-benzotriazol-1-ilo.

Esta reacción se lleva a cabo en presencia de una base como K_2CO_3 en el seno de un disolvente adecuado como mezclas metanol-dimetoxietano, y calentando, preferiblemente a refl ujo.

Las iminas de fórmula II se pueden preparar por condensación de un aldehido de fórmula $R_2\text{-CHO}$ (IV) con una amina de fórmula $R_3\text{SO}_2\text{-C}_6\text{H}_4\text{-NH}_2$

(V) cuando X es N o bien por condensación de un aldehido de fórmula $R_3SO_2-C_6H_4-CHO$ (VI) con una amina de fórmula R_2-NH_2 (VII) cuando Y es N, calentando a r flujo en el seno de un disolvente adecuado como benceno o tolueno en un Dean Stark.

5 Los isocianuros de fórmula III son comerciales como el tosilmetilisocianuro y el 1H-benzotriazol-1-ilmetilisocianuro o bien se pueden preparar por alquilación de éstos con ioduro de metilo usando el método descrito en la bibliografía (A.M. van Leusen y cols., *Tetrahedron Lett.* 1975, 3487-88).

10 Un compuesto de fórmula I donde R_3 representa C₁₋₈ alquilo o C₁₋₈ haloalquilo se puede preparar también a partir del correspondiente tioéter de fórmula VIII

15 donde R_3 representa C₁₋₈ alquilo o C₁₋₈ haloalquilo y X, Y, R₁ y R₂ tienen el significado descrito anteriormente, por oxidación con un agente oxidante adecuado como el ácido *m*-cloroperbenzoico, el monoperoxiftalato de magnesio o el Oxone® en el seno de un disolvente adecuado como un hidrocarburo halogenado, por ejemplo diclorometano.

20 Un compuesto de fórmula I donde R_3 representa un grupo -NH₂ se puede preparar también a partir del correspondiente sulfinato de sodio de fórmula IX,

donde X, Y, R₁ y R₂ tienen el significado descrito anteriormente, mediante reacción con el ácido hidroxilamino-O-sulfónico en el seno de un disolvente adecuado como el agua o mezclas agua/tetrahidrofuran.

Los compuestos de fórmula IX se preparan a partir del correspondiente metilsulfóxido X, es decir un compuesto análogo a IX pero con un grupo -SOCH₃ en lugar de -SO₂Na, mediante un proceso que implica tratamiento con anhídrido acético para dar el correspondiente acetoximetiltio derivado (-SCH₂OAc), que se oxida con un agente oxidante adecuado como el monoperoxiftalato de magnesio para dar el derivado -SO₂CH₂OAc, el cual se transforma en un sulfinato de sodio de fórmula IX mediante tratamiento con una base, por ejemplo hidróxido sódico.

Un compuesto de fórmula I donde R₃ representa un grupo -NR₄R₆ se puede preparar también a partir de un clorosulfonil derivado de fórmula XI

donde X, Y, R₁ y R₂ tienen el significado descrito anteriormente, mediante reacción con una amina de fórmula HNR₄R₆ (XII). Los compuestos de fórmula XI se pueden preparar a partir de un sulfinato de sodio de fórmula IX mediante

cloración con cloruro de tionilo. Alternativamente, se puede preparar un compuesto de fórmula XI a partir de un compuesto de fórmula XIII

5

donde X, Y, R₁ y R₂ tienen el significado descrito anteriormente, mediante tratamiento con un ácido halosulfónico, por ejemplo ácido clorosulfónico.

Los compuestos VIII, X y XIII se pueden preparar siguiendo el mismo método general descrito arriba para preparar compuestos de fórmula I pero partiendo de compuestos II que contengan un grupo -SR₃, -SOCH₃ ó -H, respectivamente, en lugar de -SO₂R₃. Los derivados X también se pueden preparar a partir de un compuesto de fórmula VIII donde R₃ = CH₃ por oxidación con un agente oxidante adecuado.

Algunos compuestos de fórmula I pueden obtenerse también por interconversión a partir de otro compuesto de fórmula I, en una o varias etapas, utilizando reacciones habituales en química orgánica.

Así, por ejemplo, puede transformarse un sustituyente R₁ en otro grupo R₁, generando de este modo nuevos compuestos de fórmula I.

Muchos de los compuestos de fórmula I donde R₁ es distinto de hidrógeno se pueden preparar a partir del correspondiente compuesto I donde R₁ representa hidrógeno mediante reacciones convencionales, ampliamente utilizadas en química orgánica. Los compuestos de fórmula I donde R₁ es halógeno se pueden preparar a partir del correspondiente compuesto I donde R₁ representa hidrógeno mediante tratamiento con un agente halogenante adecuado como una N-halosuccinimida ó Br₂ cuando X=N, y mediante tratamiento con una base fuerte como butil litio para generar un anión y

posterior reacción con un agente halogenante adecuado como una N-halosuccinimida cuando Y = N. Otros ejemplos de transformaciones incluyen: el tratamiento de un compuesto de fórmula I donde Y=N con una base fuerte como butil litio para generar un anión preferentemente en posición 2 del imidazol, y 5 posterior reacción con un reactivo electrófilo tal como un agente alquilante adecuado, por ejemplo ioduro de metilo, un agente acilante adecuado (para dar un compuesto I donde R₁ = -COCH₃), tosilclanuro (para dar un compuesto I donde R₁ = ciano) o dimetilformamida (para dar un compuesto I donde R₁ = CHO); la acilación por tratamiento con un cloruro de acetilo en presencia de una 10 base como trietilamina para dar un compuesto I donde R₁ = -COCH₃; la nitración mediante tratamiento con un reactivo de nitración adecuado como HNO₃/H₂SO₄; la transformación en un grupo -CHO ó -COOR₄ mediante tratamiento con formaldehido para dar el derivado hidroximetilado (-CH₂OH) y posterior oxidación de éste para dar un aldehido o un éster.

15 Otras transformaciones entre sustituyentes R₁ incluyen: la transformación de un halógeno en una variedad de sustituyentes por tratamiento con una base como butil litio para dar un anión que reaccionará con reactivos electrófilos adecuados como los descritos anteriormente; la transformación de un átomo de halógeno, por ejemplo cloro, en un átomo de hidrógeno por hidrogenación en presencia de un catalizador como Pd/C en el seno de un disolvente adecuado como un alcohol; la hidrólisis de un grupo éster en las condiciones habituales, por ejemplo por tratamiento con una base, para dar un grupo carboxi, el cual puede eliminarse por descarboxilación mediante tratamiento con un ácido como H₂SO₄ a reflujo; la transformación de 20 un grupo -CHO en un grupo ciano por tratamiento con ácido hidroxilamino-O-sulfónico a reflujo.

Asimismo, pueden prepararse nuevos compuestos de fórmula I mediante transformaciones entre los sustituyentes del grupo R₂. Como ejemplos de estas transformaciones podemos citar las siguientes: la reducción 30 de un grupo nitro para dar un grupo amino, por ejemplo por hidrogenación en presencia de un catalizador adecuado como Pd/C o bien por tratamiento con un agente reductor adecuado como SnCl₂; la reacción de un grupo amino con un

haluro de sulfonilo (HalSO_2R_5) para dar la correspondiente sulfonamida ($-\text{NR}_4\text{SO}_2\text{R}_5$); la acilación de un grupo amino mediante tratamiento con un reactivo acilante adecuado como un haluro de ácido o un anhídrido; la alquilación de grupo amino por tratamiento por ejemplo con un agente alquilante adecuado; la aminación reductiva de un grupo amino con una cetona para dar un grupo alquil- o dialquilamino; la hidrogenolisis de una mono- o di-bencilamina por hidrogenación en presencia de un catalizador adecuado como Pd/C, para dar la correspondiente amina; la transformación de un átomo de hidrógeno en un haluro de sulfonilo, por ejemplo cloruro de sulfonilo ($-\text{SO}_2\text{Cl}$), por tratamiento con un ácido halosulfónico, por ejemplo ácido clorosulfónico, y posterior reacción del grupo halosulfonilo resultante con una amina (NHR_4R_6) para dar la correspondiente sulfonamida ($-\text{SO}_2\text{NR}_4\text{R}_6$); la transformación de un grupo amino en un haluro de sulfonilo ($-\text{SO}_2\text{Hal}$), por tratamiento con SO_2 en presencia de CuCl_2 , el cual se transforma en una sulfonamida ($-\text{SO}_2\text{NR}_4\text{R}_6$) por tratamiento con la correspondiente amina NHR_4R_6 ; la oxidación de un grupo tioéter con un agente oxidante adecuado para dar un grupo $-\text{SOR}_5$ ó $-\text{SO}_2\text{R}_5$.

Este tipo de reacciones están ampliamente descritas en la literatura y se llevan a cabo en las condiciones standard utilizadas en química orgánica para este tipo de transformaciones. Algunas se hallan ilustradas en los ejemplos.

Todas estas reacciones de interconversión entre sustituyentes pueden realizarse tanto sobre los compuestos finales como sobre cualquiera de sus intermedios de síntesis.

Los aldehidos de fórmula IV y VI y las aminas de fórmula V, VII y XII son comerciales, están ampliamente descritos en la literatura o se pueden preparar por métodos análogos a los descritos a partir de productos de partida comerciales. Por ejemplo, se puede preparar un aldehido de fórmula IV o VI a partir del correspondiente ácido carboxílico en una secuencia que comprende la transformación en un éster, por ejemplo de etilo, en las condiciones habituales de formación de ésteres, posterior reducción d l éster al alcohol con un agente reductor de ésteres adecuado tal como el hidruro de aluminio y litio, y finalmente oxidación del alcohol al aldehido con un ag nte oxidante adecuado

tal como el dimetilsulfóxido/cloruro de oxalilo.

Las sales de los compuestos de fórmula I pueden prepararse mediante métodos convencionales por tratamiento por ejemplo con un ácido como ácido clorhídrico, ácido sulfúrico, ácido nítrico, ácido oxálico o ácido metansulfónico.

Como se ha mencionado anteriormente, los compuestos de la presente invención actúan inhibiendo el enzima ciclooxygenasa-2 (COX-2). Por ello, son útiles para el tratamiento o prevención de la inflamación, dolor y/o fiebre asociados a un amplio espectro de enfermedades o patologías, que incluyen entre otras: fiebre reumática; síntomas asociados a la gripe u otras infecciones víricas; resfriado común; dolores lumbares y cervicales; dismenorrea; dolor de cabeza; dolor de muelas; miositis; neuralgia; sinovitis; bursitis; artritis, incluyendo artritis reumatoidea y artritis juvenil; enfermedades degenerativas de las articulaciones, incluyendo osteoartritis; gota y espondilitis anquilosante; lupus eritematoso; tendinitis; esguinces, torceduras y otras lesiones similares, como las producidas durante la práctica deportiva; dolor derivado de intervenciones quirúrgicas o dentales; y dolor asociado a cáncer. También son útiles en el tratamiento de enfermedades inflamatorias de la piel, incluyendo psoriasis, eczema, quemaduras y dermatitis.

Los compuestos de la presente invención pueden ser útiles también en el tratamiento de otras patologías mediadas por la COX-2. Por ejemplo, los compuestos de fórmula I pueden inhibir la proliferación celular y pueden ser útiles por tanto en el tratamiento o prevención del cáncer, especialmente de los cánceres que produzcan prostaglandinas o que expresen ciclooxygenasa. Los compuestos de la invención son útiles para el tratamiento por ejemplo del cáncer de hígado, vejiga, páncreas, ovario, próstata, cuello del útero, pulmón, mama y de la piel, y muy especialmente cánceres gastrointestinales como el cáncer de colon.

Los compuestos de la presente invención también pueden inhibir la contracción de la musculatura lisa inducida por prostanoides y así pueden ser útiles en el tratamiento de la dismenorrea, parto prematuro, asma y bronquitis. Otras aplicaciones de los compuestos de fórmula I incluyen el tratamiento o prevención de infartos cerebrales, epilepsia, y enfermedades

neurodegenerativas, como la enfermedad de Alzheimer y la demencia.

Asimismo, los compuestos de la presente invención pueden utilizarse para tratar la inflamación en enfermedades como enfermedades vasculares, migraña, periarteritis nudosa, tiroiditis, anemia aplásica, enfermedad de 5 Hodgkin, esclerodermia, diabetes de tipo I, miastenia gravis, sarcoidosis, síndrome nefrótico, síndrome de Behçet, polimiositis, hipersensibilidad, conjuntivitis, gingivitis e isquemia miocárdica.

Debido a su selectividad por la ciclooxygenasa-2, los compuestos de la 10 presente invención son útiles como alternativa a los antiinflamatorios no esteroideos (AINEs), especialmente en aquellos casos en que los AINEs puedan estar contraindicados.

De acuerdo con la actividad de los productos aquí descritos, la presente invención se refiere también a composiciones que contienen un compuesto de la presente invención, junto con un excipiente u otros agentes auxiliares en 15 caso necesario. Los compuestos de la presente invención pueden ser administrados en forma de cualquier formulación farmacéutica, la naturaleza de la cual, como es bien sabido, dependerá de la vía de administración y de la naturaleza de la patología a tratar.

De acuerdo con la presente invención, las composiciones sólidas para 20 la administración oral incluyen comprimidos, polvos para suspensiones extemporáneas, granulados y cápsulas. En los comprimidos, el principio activo se mezcla al menos con un diluyente inerte tal como lactosa, almidón, manitol, celulosa microcristalina o fosfato cálcico; con un agente aglutinante como por ejemplo almidón, gelatina, celulosa microcristalina o polivinilpirrolidona; y con 25 un agente lubricante, como por ejemplo estearato magnésico, ácido esteárico o talco. Los comprimidos pueden ser recubiertos mediante técnicas conocidas con el objeto de retrasar su desintegración y absorción en el tracto gastrointestinal y así conseguir una acción sostenida durante un mayor período de tiempo. Recubrimientos gástricos o entéricos pueden ser realizados con 30 azúcar, gelatina, hidroxipropilcelulosa, resinas acrílicas, etc. Comprimidos de liberación sostenida podrían también ser obtenidos utilizando un excipiente que produzca osmosis regresiva, tal como sucede con los polímeros del ácido

galacturónico. Pueden también presentarse preparados para uso oral como cápsulas duras de material absorbible, como por ejemplo de gelatina, en las que el principio activo se mezcla con un diluyente sólido inerte y agentes lubricantes, o materiales pastosos, como glicéridos saturados etoxilados, que 5 podrían también presentar liberación controlada. También es posible la realización de cápsulas de gelatina blanda, en las que el principio activo se mezcla con agua o con medio oleoso, por ejemplo aceite de coco, parafina líquida, o aceite de oliva.

Se pueden obtener polvos y granulados para la preparación de 10 suspensiones mediante la adición de agua, mezclando el principio activo con agentes dispersantes o humectantes; suspensantes, como la carboximetilcelulosa sódica, metilcelulosa, hidroxipropilmelcelulosa, alginato sódico, polivinilpirrolidina, goma tragacanto, goma xantan, goma arábica, y uno o más conservantes, como el *p*-hidroxibenzoato de metilo o de propilo. También 15 pueden añadirse otros excipientes, por ejemplo edulcorantes, aromatizantes y colorantes.

Como formas líquidas para la administración oral se pueden incluir emulsiones, soluciones, suspensiones, jarabes y elixires que contienen diluyentes inertes comúnmente utilizados, tales como agua destilada, etanol, 20 sorbitol, glicerol o propilenglicoles. Dichas composiciones pueden también contener coadyuvantes como agentes humectantes, suspensantes, edulcorantes, aromatizantes, conservantes y reguladores de pH.

Preparaciones inyectables, de acuerdo con la presente invención, para la administración parenteral, comprenden soluciones estériles acuosas o no 25 acuosas, suspensiones o emulsiones, en un solvente o diluyente no tóxico adecuado. Ejemplos de solventes acuosos o medios suspensantes son el agua destilada para inyección, la solución Ringer y la solución isotónica de cloruro sódico. Como solventes no acuosos o medios suspensantes se pueden utilizar el propilenglicol, polietilenglicol, aceites vegetales como el 30 aceite de oliva, o alcoholes como el etanol. Estas composiciones pueden también contener coadyuvantes, como humectantes, conservantes, emulsionantes y dispersantes. Podrían ser sterilizadas por cualquiera de los

métodos conocidos o preparadas como composiciones sólidas stériles que
 s rán disueltas en agua o cualquier otro m dio inyectable estéril
 inmediatamente antes de su uso. También es posible partir de mat rias
 primas estériles y mantenerlas en estas condiciones durante todo el proceso
 5 de fabricación.

Las dosis y el régimen de dosis dependerán de la naturaleza y gravedad
 de la enfermedad a tratar, de la edad y peso corporal del paciente, así como de
 la vía de administración. En general, la dosis diaria para un adulto estará entre
 10 1 y 1000 mg al día, que puede administrarse dividida en una o varias tomas. Sin
 embargo, en casos especiales pueden ser necesarias dosis fuera de estos
 márgenes. Un experto en la materia podrá fácilmente determinar la dosis
 adecuada para cada situación.

A continuación se citan algunos ejemplos de formulaciones
 representativas para comprimidos, cápsulas y preparaciones inyectables.
 15 Pueden ser preparados mediante procedimientos convencionales y son útiles
 para inhibir la ciclooxygenasa-2.

Comprimidos

Compuesto de fórmula I	100	mg
20 Fosfato cálcico dibásico	125	mg
Almidón glicolato sódico	10	mg
Talco	12.5	mg
Estearato magnésico	2.5	mg
<hr/>		
25	250.0	mg

Cápsulas de gelatina dura

Compuesto de fórmula I	100	mg
Lactosa	197	mg
30 Estearato magnésico	3	mg
<hr/>		
	300	mg

Inyectabl

Compuesto de fórmula I	100	mg
Alcohol bencílico	0.05	mL
5 Propilénglicol	1	mL
Aqua c.s.p.	5	mL

La actividad de los compuestos de la presente invención se puede determinar utilizando los siguientes tests:

10

Inhibición de la actividad ciclooxygenasa-1 (COX-1) y ciclooxygenasa-2 (COX-2) en sangre humana

Se utiliza sangre humana heparinizada procedente de voluntarios sanos que no hayan consumido antiinflamatorios no esteroideos (AINEs) una semana 15 antes, ni alcohol ni xantinas 24 h antes de la extracción. La sangre se separa en dos grupos; uno de ellos se utilizará para determinar la actividad COX-1 y el otro para la COX-2. En cada caso el protocolo a seguir será diferente.

Para la COX-1 se utilizan tubos de 12 mL. En cada uno de ellos se pipetean 5 µL del compuesto a ensayar (solución en DMSO; por duplicado) más 20 dos tubos para los blancos y dos para los controles en los que se pipetean 5 µL de DMSO. A continuación, se añade a cada tubo 1 mL de sangre y se agitan. Los tubos se ponen en un baño termostatizado a 37 °C durante 5 h. A continuación, se añade a cada tubo, excepto a los blancos, 5 µL de ionóforo A23187 5 mM y se incuban 30 min más a 37 °C. Transcurrido este tiempo, se 25 coloca los tubos en hielo y se les añade 100 µL de una solución 100 mM de EGTA para parar la reacción. A cada uno se le añade 2.5 mL de metanol para alcanzar una concentración final del 70%. Los tubos se agitan y se congelan a -70 °C hasta su uso. Para determinar la actividad COX-1 se miden los niveles de tromboxano B₂ en las muestras. La sangre se descongela y se centrifuga a 30 2000 g durante 10 min a 4 °C. Del sobrenadante se toma 1 mL que se evapora en nitrógeno hasta su completa sequedad. El precipitado resultante se

redisuelven en 1 mL de suero fisiológico y los niveles de tromboxano B₂ en estas muestras se determinan mediante un kit (Kit Thromboxane B₂, Biotrak EIA system RPN220 Amershan), siguiendo las instrucciones del fabricante.

Para la COX-2 se preparan tubos de 3 mL por duplicado con 5 µL del compuesto a ensayar (solución en DMSO) y 5 µL de vehículo en el caso de los blancos y de los controles. En cada uno de ellos se pipetean además 5 µL de una solución en DMSO de concentración 2 mg/mL de aspirina (para inhibir la actividad COX-1). En todos los tubos excepto en los blancos se pipetean 5 µL de LPS (para inducir la actividad COX-2). Por último, se añade a cada tubo 1 mL de la sangre heparinizada, se agitan y se colocan en un baño termostatizado a 37 °C durante 24 h. A continuación, se centrifugan a 2000 g durante 10 min a 4 °C, se recoge el plasma resultante y se congela a -70 °C hasta su uso. Para determinar la actividad COX-2 se miden los niveles de prostaglandina E₂ en las muestras. Se descongela el plasma congelado a -70°C y se determina los niveles de prostaglandina E₂ en estas muestras mediante un kit (Kit Prostaglandin E₂, Biotrak EIA system RPN222 Amershan), siguiendo las instrucciones del fabricante.

Los resultados obtenidos con compuestos representativos de la presente invención se muestran en la siguiente tabla, donde se recoge el % de inhibición de la actividad COX-1 y COX-2 a una concentración 10 o 1 µM de compuesto ensayado, según se indica.

	Compuesto (nº ejemplo)	% inhibición		
		COX-1 (10 µM)	COX-2 (10 µM)	COX-2 (1 µM)
	3	8.3	86.5	-
	4	37.8	100	89
	4(1)	34	100	-
30	4(3)	47.9	96	82.6
	4(8)	47.5	100	75.1

		24	
	4(11)	39.7	100
	4(16)	42.5	100
	4(17)	22.7	86.3
	4(22)	72.1	100
5	5	33.8	100
	7	60.1	100
	10	52.7	100
	12	70.6	100
	13(3)	71.3	100
10	13(4)	-	100

Los resultados de la tabla anterior muestran que los compuestos de fórmula I son inhibidores de la COX-2 potentes y selectivos.

Los siguientes ejemplos ilustran, pero no limitan, el ámbito de la 15 presente invención. Las siguientes abreviaturas se han utilizado en los ejemplos:

- AcoEt: acetato de etilo
- Ac₂O: anhídrido acético
- AcONa: acetato sódico
- 20 BuLi: butil litio
- DME: dimetoxietano
- DMSO: dimetilsulfóxido
- EtOH: etanol
- Et₂O: éter dietílico
- 25 MeOH: metanol
- NEt₃: trietilamina
- THF: tetrahidrofurano

Ejemplo de referencia 1

4-Metilsulf nilbenzaldehid

En un matraz se introducen 5 g (33 mmol) de 4-metiltobenzaldehido y se disuelven en 132 mL de CH₂Cl₂. Se enfria a 0 °C y se añaden 20.61 g (66 mmol)

de ácido *m*-cloroperbenzoico. La mezcla se agita durante 3 h a temperatura ambiente y se vierte sobre CHCl₃. Se lava con solución saturada de NaHCO₃, se seca sobre MgSO₄ y se elimina el disolvente, obteniéndose un crudo que se cromatografía sobre sílica-gel, usando como eluyente mezclas de AcOEt-hexano de polaridad creciente. Se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (3.96 g, 65 %).

P. f.: 157-159 °C; ¹H-RMN (300 MHz, CDCl₃ δ TMS): 3.10 (s, 3 H), 8.09 (m, 4 H), 10.14 (s, 1 H).

Ejemplo de referencia 2

10

4-Metilsulfonilanilina

En un matraz se introducen 67 mg de Na₂WO₄, 8 gotas de ácido acético y 19 mL de H₂O y se calienta a 65 °C. Se añaden 19 mL (153 mmol) de 4-metiltioanilina y después, gota a gota, 34.5 mL (337 mmol) de H₂O₂. Se agita a 65 °C durante 1.5 h y una vez frío se añaden 800 mL de HCl 1N y 500 mL de CHCl₃. Se separan las fases y la acuosa se lava con más CHCl₃. La fase acuosa se basifica con NaOH 25% y se extrae con CHCl₃. La fase orgánica se lava con solución saturada de NaCl y se seca sobre MgSO₄. Se elimina el disolvente, obteniéndose el producto en forma de un sólido blanco (19.80 g, 75 %).

20 P. f.: 134 °C; ¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.97 (s, 3 H), 4.04 (s, 2 H), 6.66 (d, J = 9 Hz, 2 H), 7.56 (d, J = 9 Hz, 2 H).

Ejemplo de referencia 3

4-Metilsulfinilanilina

Siguiendo un procedimiento análogo al descrito en el ejemplo de referencia 1, pero partiendo de 4-metiltioanilina y utilizando 1 equivalente de ácido *m*-cloroperbenzoico, se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (rto: 80 %).

¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.68 (s, 3 H), 4.02 (s, 2 H), 6.75 (d, J = 8.7 Hz, 2 H), 7.45 (d, J = 8.7 Hz, 2 H).

30

Ejemplo de referencia 4

1-(4-Fluorfenil)-5-(4-metilsulfanilfenil)imidazol

a) N-(4-Metilsulfanilbenziliden)-4-fluoroanilina

Una mezcla de 10.0 g (90 mmol) de 4-fluoroanilina, 16.5 g (90 mmol) de 4-metiltiobenzaldehido y 500 mL de benceno se calienta a reflujo en un D an-Stark durante 2 días. Se elimina el disolvente y el crudo obtenido se utiliza directamente en la siguiente reacción.

Una muestra se recristaliza de Et₂O para dar el compuesto analíticamente puro.

P. f.: 93 °C; ¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.54 (s, 3 H), 7.07 (m, 2 H), 7.20 (m, 2 H), 7.31 (d, J = 9 Hz, 2 H), 7.79 (d, J = 9 Hz, 2 H), 8.38 (s, 1 H).

10 b) Compuesto titular

En un matraz se introducen 6 g (24.5 mmol) del crudo anterior, 3.87 g (24.5 mmol) de benzotriazolilmethylisocianuro y 98 mL de DMSO y se añaden 5.49 g (49 mmol) de tert-butóxido potásico. Se calienta a 75 °C y una vez frío se añade Et₂O y se lava con H₂O. La fase orgánica se seca sobre MgSO₄ y se elimina el disolvente, obteniéndose un crudo que se cromatografía sobre sílica-gel, usando como eluyente mezclas de AcOEt-hexano de polaridad creciente. Se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (4.06 g, 58 %).

P. f.: 96-99 °C; ¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.46 (s, 3 H), 7.0-7.3 (m, 9 H), 7.67 (s, 1 H); Anal (C₁₆H₁₃FN₂S·0.5H₂O) C, H, N, S.

Ejemplo de referencia 5

1-Fenil-5-(4-metilsulfanilfenil)imidazol

Siguiendo un procedimiento análogo al descrito en el ejemplo de referencia 4, pero utilizando anilina en lugar de 4-fluoroanilina, se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (rto: 56 %).

¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.46 (s, 3 H), 7.04 (d, J = 8.5 Hz, 2 H), 7.12 (d, J = 8.5 Hz, 2 H), 7.19 (m, 2 H), 7.25 (s, 1 H), 7.41 (m, 3 H), 7.69 (s, 1 H).

Ejemplo de referencia 6

1-(4-Metifenil)-5-(4-metilsulfanilfenil)imidazol

Siguiendo un procedimiento análogo al descrito en el ejemplo de referencia 4, pero utilizando 4-metilanilina en lugar de 4-fluoroanilina, se

obtiene el compuesto titular del ejemplo en forma de un sólido blanco (rto: 61 %).

¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.39 (s, 3 H), 2.46 (s, 3 H), 7.06 (m, 6 H), 7.18 (m, 3 H), 7.65 (s, 1 H).

5

Ejemplo de referencia 7

2-Cloro-1-(4-fluorofenil)-5-(4-metilsulfanilfenil)imidazol

En un matraz se introducen 0.35 mL (2.5 mmol) de diisopropilamina y 8.5 mL de THF y se enfria a -20 °C. Se añaden 1.57 mL (2.5 mmol) de BuLi 1.6 M en hexano y tras agitar durante 10 min, se adicionan 0.56 g (2 mmol) del compuesto obtenido en el ejemplo de referencia 4 en 14 mL de THF. Se agita durante 30 min y se añaden 0.78 g (5.8 mmol) de N-clorosuccinimida en 8 mL de THF. Se agita durante 30 min a -20 °C y durante 1.5 h a temperatura ambiente. Se elimina el disolvente y el residuo se disuelve en una mezcla AcOEt-H₂O. Se separan las fases y la acuosa se extrae con AcOEt. La fase orgánica se seca sobre MgSO₄ y se elimina el disolvente, obteniéndose un crudo que se cromatografía sobre sílica-gel, usando como eluyente mezclas de AcOEt-hexano de polaridad creciente. Se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (0.23 g, 37 %).

¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.43 (s, 3 H), 6.9-7.2 (m, 8 H), 7.67 (s, 1 H).

20

Ejemplo de referencia 8

1-(4-Fluorofenil)-2-metil-5-(4-metilsulfanilfenil)imidazol

Siguiendo un procedimiento análogo al descrito en el ejemplo de referencia 7, pero utilizando ioduro de metilo en lugar de N-clorosuccinimida, se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (rto: 30 %).

¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.29 (s, 3 H), 2.43 (s, 3 H), 6.94 (d, J = 8.2 Hz, 2 H), 7.03 (d, J = 8.2 Hz, 2 H), 7.13 (m, 5 H).

Ejemplo de referencia 9

1-(4-Fluorofenil)-2-hidroximetil-5-(4-metilsulfonilfenil)imidazol

Una mezcla de 2.0 g (6.3 mmol) del compuesto obtenido en el ejemplo 2 y 10 mL de CH₂O 40 % en H₂O se calienta a 130 °C durante 72 h. Se elimina el disolvente y el residuo se disuelve en una mezcla AcOEt-H₂O. Se separan las

fases y la acuosa se extrae con AcOEt. La fase orgánica se seca sobre MgSO₄ y se elimina el disolvente, obtiéndose un crudo que se somete a cromatografía sobre sílica-gel, usando como eluyente mezclas de AcOEt-hexano de polaridad creciente. Se obtiene el compuesto titular del ejemplo en forma de un sólido 5 blanco (0.94 g, 43 %).

P. f.: 211-212 °C; ¹H-RMN (300 MHz, CDCl₃ + CD₃OD δ TMS): 3.07 (s, 3 H), 3.8 (s, 1 H + H₂O), 4.45 (s, 2 H), 7.2 (m, 7 H), 7.80 (d, J = 8.2 Hz, 2 H); Anal (C₁₇H₁₅FN₂O₃S) C, H, N, S.

Ejemplo de referencia 10

10 **2-Bromo-1-(4-fluorofenil)-5-(4-metilsulfanilfenil)imidazol**

Siguiendo un procedimiento análogo al descrito en el ejemplo de referencia 7, pero utilizando N-bromosuccinimida en lugar de N-clorosuccinimida, se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (rto: 40 %).

15 ¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.43 (s, 3 H), 6.9-7.2 (m, 9 H).

Ejemplo de referencia 11

2-Cloro-1-fenil-5-(4-metilsulfanilfenil)imidazol

Siguiendo un procedimiento análogo al descrito en el ejemplo de referencia 7, pero partiendo del producto obtenido en el ejemplo de referencia 5, 20 se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (rto: 56 %).

¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.43 (s, 3 H), 6.96 (d, J = 8.5 Hz, 2 H), 7.08 (d, J = 8.5 Hz, 2 H), 7.16 (s, 1 H), 7.22 (m, 2 H), 7.41 (m, 3 H).

Ejemplo de referencia 12

25 **2-Cloro-1-(4-metilfenil)-5-(4-metilsulfanilfenil)imidazol**

Siguiendo un procedimiento análogo al descrito en el ejemplo de referencia 7, pero partiendo del producto obtenido en el ejemplo de referencia 6, se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (rto: 61 %).

30 ¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.41 (s, 3 H), 2.44 (s, 3 H), 7.0-7.2 (m, 9 H).

Ejemplo de referencia 13

3-Fluoro-4-metilbenzoato de etilo**a) 3-Fluoro-4-metilbenzoato de etilo**

Una mezcla de 1 g (6.5 mmol) de ácido 3-fluoro-4-metilbenzoico y 4 mL de SOCl_2 se calienta a refluo bajo atmósfera de argón durante 2 h. Se elimina el disolvente y el residuo se trata con una mezcla de 0.64 mL de NEt_3 y 20 mL de EtOH durante 1 h a temperatura ambiente. Se elimina el disolvente y el residuo se reparte entre CH_2Cl_2 y H_2O . Se separan las fases y la acuosa se extrae con CH_2Cl_2 . Las fases orgánicas juntas se secan y se obtiene un residuo aceitoso que se utiliza en la siguiente etapa (100%).

10 $^1\text{H-RMN}$ (300 MHz, $\text{CDCl}_3 \delta$ TMS): 1.38 (t, $J = 7$ Hz, 3 H), 2.32 (s, 3 H), 4.37 (q, $J = 7$ Hz, 2 H), 7.25 (m, 1 H), 7.62 (d, $J_{\text{HF}} = 9.4$ Hz, 1 H), 7.71 (d, $J = 7.7$ Hz, 1 H).

b) 3-Fluoro-4-metilfenilmetanol

Sobre una mezcla de 0.176 g (4.6 mmol) de LiAlH_4 y 14 mL de Et_2O se añaden, a 0 °C y bajo atmósfera de argón, 0.5 g (4.6 mmol) del producto anterior disueltos en 28 mL de Et_2O y se agita a temperatura ambiente durante 2 h. Se añade sucesivamente 0.28 mL de H_2O , 0.6 mL de THF, 0.29 mL de NaOH al 15 %, 0.8 mL de H_2O y Na_2SO_4 . Tras agitar 10 min se filtra lavando con Et_2O y se concentra, obteniéndose 0.3 g de un crudo que se utiliza directamente en la siguiente etapa (93%).

20 $^1\text{H-RMN}$ (300 MHz, $\text{CDCl}_3 \delta$ TMS): 2.1 (s ancho, 1 H), 2.26 (s, 3 H), 4.62 (s, 2 H), 7.0 (m, 3 H).

c) Compuesto titular

Sobre una mezcla de 0.21 mL (2.3 mmol) de cloruro de oxalilo y 3 mL de CH_2Cl_2 se añaden, a -78 °C y bajo atmósfera de argón, una mezcla de 0.36 mL (4.7 mmol) de DMSO y 0.7 mL de CH_2Cl_2 y se agita durante 5 min. Se adiciona, gota a gota, una mezcla de 0.3 g (2.1 mmol) del producto anterior en 0.6 mL de una mezcla 1:1 de DMSO: CH_2Cl_2 . Se agita 30 min a -78 °C y se añaden 2.6 mL (19 mmol) de NEt_3 . Se agita durante 10 min a -78 °C y se deja llegar a temperatura ambiente. Se vierte sobre CH_2Cl_2 y H_2O y se separan las fases. La acuosa se extrae con CH_2Cl_2 y las fases orgánicas juntas se secan, obteniéndose el producto en forma de un aceite (0.30 g, 100%).

¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.66 (s, 3 H), 7.29 (m, 1H), 7.44 (d, J_{H-F} = 9.4 Hz, 1 H), 7.51 (d, J = 7.7 Hz, 1 H), 9.87 (s, 1 H).

El método que se describe en el ejemplo de referencia 13 es de aplicación general y se puede utilizar para preparar aquellos aldehidos necesarios para la preparación de los compuestos de fórmula I que no son comerciales. Los siguientes aldehidos se prepararon de forma análoga al ejemplo de referencia 13, pero partiendo de un ácido carboxílico adecuado.

13(1) 6-Metilpiridil-3-carboxaldehido

10 ¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.66 (s, 3 H), 7.32 (d, J = 8 Hz, 1 H), 8.06 (d, J = 8 Hz, 1 H), 8.95 (s, 1 H), 10.06 (s, 1 H).

13(2) 6-Cloropiridil-3-carboxaldehido

¹H-RMN (300 MHz, CDCl₃ δ TMS): 7.51 (d, J = 8 Hz, 1 H), 8.14 (d, J = 8 Hz, 1 H), 8.87 (s, 1 H), 10.10 (s, 1 H).

13(3) 2,6-Dicloropiridil-3-carboxaldehido

¹H-RMN (300 MHz, CDCl₃ δ TMS): 7.43 (d, J = 8 Hz, 1 H), 8.18 (d, J = 8 Hz, 1 H), 10.35 (s, 1 H).

13(4) 5,6-Dicloropiridil-3-carboxaldehido

¹H-RMN (300 MHz, CDCl₃ δ TMS): 8.21 (d, J = 1 Hz, 1 H), 8.74 (d, J = 1 Hz, 1 H), 10.05 (s, 1 H).

13(5) 3-Metoxi-4-metilbenzaldehido

¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.29(s, 3 H), 3.89(s, 3 H), 7.3 (m, 3H), 9.92 (s, 1H).

13(6) 4-Cloro-3-metilbenzaldehido

25 ¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.44 (s, 3 H), 7.50 (m, 1 H), 7.66 (m, 1 H), 7.74 (m, 1 H), 9.95 (s, 1 H).

13(7) 4-Etilsulfanilbenzaldehido

¹H-RMN (300 MHz, CDCl₃ δ TMS): 1.39 (t, J = 7.5 Hz, 3 H), 3.05 (q, J = 7.5 Hz, 2 H), 7.34 (d, J = 8.5 Hz, 2 H), 7.75 (d, J = 8.5 Hz, 2 H), 9.91 (s, 1 H).

5-(4-Fluorofenil)-1-(4-metilsulfonifenoil)imidazol**a) N-(4-Fluorobenzilideno)-4-metilsulfonanilina**

Una mezcla de 19.60 g (115 mmol) de 4-metilsulfonanilina, 12.19 mL (115 mmol) de 4-fluorobenzaldehido y 590 mL de tolueno se calienta a refluo en un Dean-Stark durante 2 días. Se elimina el disolvente y el crudo obtenido se utiliza directamente en la siguiente reacción:

Una muestra se recristaliza de Et₂O para dar el compuesto analíticamente puro.

P. f.: 142 °C; ¹H-RMN (300 MHz, CDCl₃ δ TMS): 3.08 (s, 3 H), 7.20 (m, 2 H), 7.30

(m, 2 H), 7.98 (m, 4 H), 8.38 (s, 1 H).

b) Compuesto titular

Una mezcla de 31.8 g (115 mmol) de N-(4-fluorobenzilideno)-4-metilsulfonanilina (obtenida en el apartado anterior), 33.4 g (172 mmol) de tosilmetilisocianuro, 31.7 g (229 mmol) de K₂CO₃, 795 mL de MeOH y 340 mL de DME se calienta a refluo durante 2 h. Se elimina el disolvente y el residuo se redissuelve en una mezcla CH₂Cl₂/NaCl sat y se separan las fases. La acuosa se extrae con CH₂Cl₂ y las fases orgánicas juntas se secan sobre MgSO₄ y se concentran. Se obtiene un crudo que se lava con Et₂O varias veces para dar 29.0 g de un sólido cremoso. Finalmente se recristaliza con AcOEt/hexano (120/25 mL). Se obtienen 27.2 g del producto en forma de un sólido cremoso (75 %).

P. f.: 151-155 °C; ¹H-RMN (300 MHz, CDCl₃ δ TMS): 3.10 (s, 3 H), 7.05 (m, 2 H),

7.13 (m, 2 H), 7.26 (s, 1 H), 7.36 (d, J = 9 Hz, 2 H), 7.75 (s, 1 H), 7.99 (d, J = 9 Hz,

2 H); Anal (C₁₆H₁₃FN₂O₂S) C, H, N, S.

Los siguientes compuestos se prepararon de forma análoga al ejemplo 1, pero partiendo de un aldehido adecuado:

1(1) 5-(4-Metifenil)-1-(4-metilsulfonifenil)imidazol (rto: 81 %).

P. f.: 156 °C; ¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.35 (s, 3 H), 3.10 (s, 3 H), 7.01

(d, J = 8 Hz, 2 H), 7.11 (d, J = 8 Hz, 2 H), 7.26 (s, 1 H), 7.37 (d, J = 8.6 Hz, 2 H),

7.74 (s, 1 H), 7.97 (d, J = 8.6 Hz, 2 H); Anal (C₁₇H₁₆N₂O₂S) C, H, N, S.

1(2) 5-(2,4-Difluorofenil)-1-(4-metilsulfonifenil)imidazol (rto: 77 %).

P. f.: 119 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.09 (s, 3 H), 7.25 (m, 3 H), 7.30 (s, 1 H), 7.33 (d, J = 8.6 Hz, 2 H), 7.81 (s, 1 H), 7.98 (d, J = 8.6 Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{12}\text{F}_2\text{N}_2\text{O}_2\text{S}$) C, H, N, S.

1(3) 5-Fenil-1-(4-metilsulfonilfenil)imidazol (rto: 74%).

5 P. f.: 164 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.09 (s, 3 H), 7.29 (m, 6 H), 7.37 (d, J = 8.6 Hz, 2 H), 7.75 (s, 1 H), 7.97 (d, J = 8.6 Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{14}\text{N}_2\text{O}_2\text{S} \cdot 0.5\text{H}_2\text{O}$) C, H, N, S.

1(4) 5-(3,4-Diclorofenil)-1-(4-metilsulfonilfenil)imidazol (rto: 81%).

10 P. f.: 176 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.11 (s, 3 H), 6.86 (d, J = 8.3 Hz, 1 H), 7.33 (m, 3 H), 7.39 (d, J = 8.6 Hz, 2 H), 7.77 (s, 1 H), 8.03 (d, J = 8.6 Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{12}\text{Cl}_2\text{N}_2\text{O}_2\text{S}$) C, H, N, S.

1(5) 1-(4-Metilsulfonilfenil)-5-(4-metoxifenil)imidazol (rto: 57 %).

15 P. f.: 185-187 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.09 (s, 3 H), 3.81 (s, 3 H), 6.84 (d, J = 8.8 Hz, 2 H), 7.06 (d, J = 8.8 Hz, 2 H), 7.21 (s, 1 H), 7.37 (d, J = 8.6 Hz, 2 H), 7.72 (s, 1 H), 7.97 (d, J = 8.6 Hz, 2 H); Anal ($\text{C}_{17}\text{H}_{16}\text{N}_2\text{O}_3\text{S}$) C, H, N, S.

1(6) 5-(3-Fluoro-4-metoxifenil)-1-(4-metilsulfonilfenil)imidazol (rto: 79 %).

20 P. f.: 166 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.10 (s, 3 H), 3.89 (s, 3 H), 6.82 (m, 3 H), 7.23 (s, 1 H), 7.37 (d, J = 8.5 Hz, 2 H), 7.73 (s, 1 H), 7.99 (d, J = 8.5 Hz, 2 H); Anal ($\text{C}_{17}\text{H}_{15}\text{FN}_2\text{O}_3\text{S} \cdot 0.5\text{H}_2\text{O}$) C, H, N, S.

20 1(7) 5-(3-Fluorofenil)-1-(4-metilsulfonilfenil)imidazol (rto: 81 %).

^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.11 (s, 3 H), 6.87 (m, 2 H), 7.02 (m, 1 H), 7.24 (m, 1 H), 7.32 (s, 1 H), 7.39 (d, J = 8.5 Hz, 2 H), 7.76 (s, 1 H), 8.01 (d, J = 8.5 Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{13}\text{FN}_2\text{O}_2\text{S}$) C, H, N, S.

1(8) 5-(3-Fluoro-4-metilfenil)-1-(4-metilsulfonilfenil)imidazol (rto: 51 %).

25 P. f.: 147 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 2.27 (s, 3 H), 3.11 (s, 3 H), 6.76 (m, 2 H), 7.11 (m, 1 H), 7.24 (m, 1 H), 7.38 (d, J = 8.5 Hz, 2 H), 7.74 (s, 1 H), 8.05 (d, J = 8.5 Hz, 2 H); Anal ($\text{C}_{17}\text{H}_{15}\text{FN}_2\text{O}_2\text{S}$) C, H, N, S.

1(9) 5-(2-Fluorofenil)-1-(4-metilsulfonilfenil)imidazol (rto: 78 %).

30 P. f.: 188-189 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.11 (s, 3 H), 7.00 (t, J = 9 Hz, 1 H), 7.17 (m, 1 H), 7.32 (m, 5 H), 7.81 (s, 1 H), 7.95 (d, J = 8.6 Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{13}\text{FN}_2\text{O}_2\text{S} \cdot 0.25\text{H}_2\text{O}$) C, H, N, S.

1(10) 1-(4-Metil sulfonilfenil)-5-(4-trifluorometoxifenil)imidazol (rto: 75 %).

P. f.: 141-142 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.11 (s, 3 H), 7.16 (s, 4 H), 7.30 (s, 1 H), 7.38 (d, $J = 8.5$ Hz, 2 H), 7.76 (s, 1 H), 8.01 (d, $J = 8.5$ Hz, 2 H); Anal ($\text{C}_{17}\text{H}_{13}\text{F}_3\text{N}_2\text{O}_3\text{S}$) C, H, N, S.

5 1(11) 5-(6-Metil-3-piridil)-1-(4-metilsulfonilfenil)imidazol (rto: 73 %).

P. f.: 188-193 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 2.55 (s, 3 H), 3.10 (s, 3 H), 7.11 (d, $J = 8$ Hz, 1 H), 7.29 (d, $J = 8$ Hz, 1 H), 7.32 (s, 1 H), 7.38 (d, $J = 8.7$ Hz, 2 H), 7.78 (s, 1 H), 8.00 (d, $J = 8.7$ Hz, 2 H), 8.32 (s, 1 H); Anal ($\text{C}_{16}\text{H}_{15}\text{N}_3\text{O}_2\text{S} \cdot 0.25\text{H}_2\text{O}$) C, H, N, S.

10 1(12) 5-(2-Fluoro-4-metoxifenil)-1-(4-metilsulfonilfenil)imidazol (rto: 62 %).

P. f.: 183-184 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.08 (s, 3 H), 3.81 (s, 3 H), 6.58 (dd, $J_{\text{HF}} = 11.7$ Hz, $J = 2.5$ Hz, 1 H), 6.72 (dd, $J = 8.5$ Hz, $J = 2.5$ Hz, 1 H), 7.15 (t, $J = 8.5$ Hz, 1 H), 7.25 (s, 1 H), 7.35 (d, $J = 8.8$ Hz, 2 H), 7.78 (s, 1 H), 7.95 (d, $J = 8.8$ Hz, 2 H); Anal ($\text{C}_{17}\text{H}_{15}\text{FN}_2\text{O}_3\text{S} \cdot 0.25\text{H}_2\text{O}$) C, H, N, S.

15 1(13) 5-(3-Cloro-4-metilfenil)-1-(4-metilsulfonilfenil)imidazol (rto: 74 %).

P. f.: 173-174 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 2.33 (s, 3 H), 3.10 (s, 3 H), 6.77 (m, 1 H), 7.09 (m, 1 H), 7.24 (m, 2 H), 7.39 (d, $J = 8.5$ Hz, 2 H), 7.74 (s, 1 H), 8.01 (d, $J = 8.5$ Hz, 2 H); Anal ($\text{C}_{17}\text{H}_{15}\text{ClN}_2\text{O}_2\text{S} \cdot 0.25\text{H}_2\text{O}$) C, H, N, S.

1(14) 5-(4-Metil-3-metoxifenil)-1-(4-metilsulfonilfenil)imidazol (rto: 54 %).

20 P. f.: 174-175 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 2.24 (s, 3 H), 3.14 (s, 3 H), 3.70 (s, 3 H), 6.60 (m, 2 H), 7.09 (m, 1 H), 7.32 (m, 1 H), 7.43 (d, $J = 8.5$ Hz, 2 H), 7.79 (s, 1 H), 8.03 (d, $J = 8.5$ Hz, 2 H); Anal ($\text{C}_{18}\text{H}_{18}\text{N}_2\text{O}_3\text{S} \cdot 0.5\text{H}_2\text{O}$) C, H, N, S.

1(15) 5-(4-Clorofenil)-1-(4-metilsulfonilfenil)imidazol (rto: 88 %).

P. f.: 192-193 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.11 (s, 3 H), 7.05 (d, $J = 8.5$ Hz, 2 H), 7.26 (m, 3 H), 7.38 (d, $J = 8.5$ Hz, 2 H), 7.76 (s, 1 H), 8.00 (d, $J = 8.5$ Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{13}\text{ClN}_2\text{O}_2\text{S} \cdot 0.75\text{H}_2\text{O}$) C, H, N, S.

1(16) 5-(6-Cloro-3-piridil)-1-(4-metilsulfonilfenil)imidazol (rto: 69 %).

P. f.: 191-192 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.11 (s, 3 H), 7.3 (m, 5 H), 7.80 (s, 1 H), 8.03 (d, $J = 8.5$ Hz, 2 H), 8.21 (m, 1 H); Anal ($\text{C}_{15}\text{H}_{12}\text{ClN}_2\text{O}_2\text{S} \cdot 0.5\text{H}_2\text{O}$) C, H, N, S.

1(17) 5-(2,6-Dicloro-3-piridil)-1-(4-metilsulfonilfenil)imidazol (rto: 30 %, se obtiene junto al producto 1(18) al hacer la reacción partiendo del 2,6-dicloropiridil-3-carboxaldehido).

5 ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.08 (s, 3 H), 7.3 (m, 4 H), 7.58 (d, $J = 8.5$ Hz, 1 H), 7.87 (s, 1 H), 8.03 (d, $J = 8.5$ Hz, 2 H); Anal ($\text{C}_{15}\text{H}_{11}\text{Cl}_2\text{N}_3\text{O}_2\text{S}$) C, H, N, S.

1(18) 5-(2-Cloro-6-metoxi-3-piridil)-1-(4-metilsulfonilfenil)imidazol (rto: 30%).

10 P. f.: 192-198 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.11 (s, 3 H), 3.95 (s, 3 H), 7.3 (m, 4 H), 7.40 (d, $J = 8.5$ Hz, 1 H), 7.72 (s, 1 H), 8.03 (d, $J = 8.5$ Hz, 2 H).

1(19) 5-(5,6-Dicloro-3-piridil)-1-(4-metilsulfonilfenil)imidazol (rto: 52 %).

15 P. f.: 192-198 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.11 (s, 3 H), 7.3 (m, 3 H), 7.60 (m, 1 H), 7.81 (s, 1 H), 8.00 (m, 1 H), 8.03 (d, $J = 8.5$ Hz, 2 H); Anal ($\text{C}_{15}\text{H}_{11}\text{Cl}_2\text{N}_3\text{O}_2\text{S}$) C, H, N, S.

1(20) 1-(4-Metilsulfonilfenil)-5-(4-propoxifenil)imidazol (rto: 60 %).

20 P. f.: 167-169 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 1.04 (t, $J = 7.5$ Hz, 3 H), 1.79 (q, $J = 7.5$ Hz, 2 H), 3.10 (s, 3 H), 3.90 (t, $J = 7.5$ Hz, 2 H), 6.82 (d, $J = 8.5$ Hz, 2 H), 7.02 (d, $J = 8.5$ Hz, 2 H), 7.21 (s, 1 H), 7.36 (d, $J = 8.5$ Hz, 2 H), 7.73 (s, 1 H), 7.95 (d, $J = 8.5$ Hz, 2 H); Anal ($\text{C}_{19}\text{H}_{20}\text{N}_2\text{O}_3\text{S} \cdot 0.5\text{H}_2\text{O}$) C, H, N, S.

1(21) 5-(3,5-Dietoxifenil)-1-(4-metilsulfonilfenil)imidazol (rto: 60%).

25 P. f.: 100-101 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 1.30 (t, $J = 7.5$ Hz, 6 H), 3.08 (s, 3 H), 3.89 (q, $J = 7.5$ Hz, 4 H), 6.23 (m, 2 H), 6.39 (m, 1 H), 7.26 (s, 1 H), 7.39 (d, $J = 8.5$ Hz, 2 H), 7.73 (s, 1 H), 7.99 (d, $J = 8.5$ Hz, 2 H); Anal ($\text{C}_{20}\text{H}_{22}\text{N}_2\text{O}_4\text{S} \cdot 0.75\text{H}_2\text{O}$) C, H, N, S.

1(22) 5-(4-Etoxifenil)-1-(4-metilsulfonilfenil)imidazol (rto: 58%).

30 P. f.: 165 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 1.41 (t, $J = 7.5$ Hz, 3 H), 3.09 (s, 3 H), 4.0 (q, $J = 7.5$ Hz, 2 H), 6.82 (d, $J = 8.5$ Hz, 2 H), 7.02 (d, $J = 8.5$ Hz, 2 H), 7.21 (s, 1 H), 7.32 (d, $J = 8.5$ Hz, 2 H), 7.72 (s, 1 H), 7.95 (d, $J = 8.5$ Hz, 2 H); Anal ($\text{C}_{18}\text{H}_{18}\text{N}_2\text{O}_3\text{S} \cdot 0.25\text{H}_2\text{O}$) C, H, N, S.

1(23) 1-(4-Metilsulfonilfenil)-5-(4-nitrofenil)imidazol (rto: 84 %).

35 P. f.: 190-194 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.09 (s, 3 H), 7.31 (d, $J = 8.5$ Hz, 2 H), 7.44 (d, $J = 8.5$ Hz, 2 H), 7.52 (s, 1 H), 7.87 (s, 1 H), 8.10 (d, $J = 8.5$ Hz, 2 H), 8.23 (d, $J = 8.5$ Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{13}\text{N}_3\text{O}_4\text{S} \cdot 0.25\text{H}_2\text{O}$) C, H, N, S.

1(24) 5-(4-Metilsulfanilfenil)-1-(4-metilsulfonilfenil)imidazol (rto: 89 %).

P. f.: 153-155 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 2.47 (s, 3 H), 3.09 (s, 3 H), 7.02 (d, J = 8.8 Hz, 2 H), 7.15 (d, J = 8.8 Hz, 2 H), 7.26 (s, 1 H), 7.37 (d, J = 8.6 Hz, 2 H), 7.74 (s, 1 H), 7.98 (d, J = 8.6 Hz, 2 H); Anal ($\text{C}_{17}\text{H}_{16}\text{N}_2\text{O}_2\text{S}_2\cdot 0.5\text{H}_2\text{O}$) C, H, N,

5 S.

1(25) 5-(4-Etilsulfanilfenil)-1-(4-metilsulfonilfenil)imidazol (rto: 57 %).

P. f.: 181-185 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 1.32 (t, J = 7.5 Hz, 3 H), 2.95 (q, J = 7.5 Hz, 2 H), 3.11 (s, 3 H), 7.02 (d, J = 8.5 Hz, 2 H), 7.24 (m, 3 H), 7.38 (d, J = 8.5 Hz, 2 H), 7.76 (m, 1 H), 8.00 (d, J = 8.5 Hz, 2 H); Anal ($\text{C}_{18}\text{H}_{18}\text{N}_2\text{O}_2\text{S}_2$) C, H,

10 N, S.

1(26) 5-(4-Dimetilaminofenil)-1-(4-metilsulfonilfenil)imidazol (rto: 50 %).

^1H -RMN (300 MHz, CDCl_3 δ TMS): 2.96 (s, 6 H), 3.09 (s, 3 H), 6.61 (d, J = 8.8 Hz, 2 H), 6.97 (d, J = 8.8 Hz, 2 H), 7.17 (s, 1 H), 7.39 (d, J = 8.6 Hz, 2 H), 7.71 (s, 1 H), 7.95 (d, J = 8.6 Hz, 2 H).

15

Ejemplo 2**1-(4-Fluorofenil)-5-(4-metilsulfonilfenil)imidazol**

Siguiendo un procedimiento análogo al descrito en el ejemplo 1, pero partiendo del compuesto obtenido en el ejemplo de referencia 1 y de 4-fluoroanilina, se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (rto: 70 %).

P. f.: 133-134 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.05 (s, 3 H), 7.20 (m, 4 H), 7.31 (d, J = 9 Hz, 2 H), 7.41 (s, 1 H), 7.73 (s, 1 H), 7.83 (d, J = 9 Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{13}\text{FN}_2\text{O}_2\text{S}$) C, H, N, S.

Ejemplo 3

25

5-(4-Fluorofenil)-4-metil-1-(4-metilsulfonilfenil)imidazol

Siguiendo un procedimiento análogo al descrito en el ejemplo 1, pero utilizando α -tosiletilisocianuro en lugar de tosilmetilisocianuro, se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (rto: 45 %).

P. f.: 143-143 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 2.31 (s, 3 H), 3.08 (s, 3 H),

30 7.05 (m, 4 H), 7.27 (d, J = 9 Hz, 2 H), 7.71 (s, 1 H), 7.93 (d, J = 9 Hz, 2 H); Anal ($\text{C}_{17}\text{H}_{15}\text{FN}_2\text{O}_2\text{S}\cdot 0.25\text{H}_2\text{O}$) C, H, N, S.

Ejemplo 4**4-Cloro-5-(4-fluorofenil)-1-(4-metilsulfoniffenil)imidazol I**

Una mezcla de 27.2 g (86 mmol) de 5-(4-fluorofenil)-1-(4-metilsulfoniffenil)imidazol (obtenido en el ejemplo 1), 12.05 g (90 mmol) de N-clorosuccinimida y 81 mL de CHCl_3 se calienta a reflujo durante 18 h. Se elimina el disolvente y el residuo se redissuelve en CH_2Cl_2 y se lava con HCl 1 N y a continuación con NaOH 1 N y NaCl saturada. La fase orgánica se seca sobre MgSO_4 y se concentra. Se obtiene un crudo que se lava con Et_2O varias veces para dar 26.2 g de un sólido cremoso, que se cromatografía sobre sílica-gel, usando como eluyente mezclas de AcOEt-hexano de polaridad creciente. Se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (24.0 g, 80 %).

P. f.: 167 °C; $^1\text{H-RMN}$ (300 MHz, CDCl_3 δ TMS): 3.13 (s, 3 H), 7.12 (m, 2 H), 7.20 (m, 2 H), 7.32 (d, J = 9 Hz, 2 H), 7.71 (s, 1 H), 8.02 (d, J = 9 Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{12}\text{ClFN}_2\text{O}_2\text{S}$) C, H, N, S.

Los siguientes compuestos se prepararon de forma análoga al ejemplo 4, pero partiendo del correspondiente imidazol:

20 **4(1) 4-Cloro-5-(4-metilfenil)-1-(4-metilsulfoniffenil)imidazol (rto: 90%).**

A partir del ejemplo 1(1).

P. f.: 182 °C; $^1\text{H-RMN}$ (300 MHz, CDCl_3 δ TMS): 2.36 (s, 3 H), 3.08 (s, 3 H), 7.07 (d, J = 8.1 Hz, 2 H), 7.16 (d, J = 8.1 Hz, 2 H), 7.32 (d, J = 8.6 Hz, 2 H), 7.65 (s, 1 H), 7.96 (d, J = 8.6 Hz, 2 H); Anal ($\text{C}_{17}\text{H}_{15}\text{ClN}_2\text{O}_2\text{S} \cdot 0.25\text{H}_2\text{O}$) C, H, N, S.

25 **4(2) 4-Cloro-5-(2,4-difluorofenil)-1-(4-metilsulfoniffenil)imidazol (rto: 45%).**

A partir del ejemplo 1(2).

P. f.: 183-184 °C; $^1\text{H-RMN}$ (300 MHz, CDCl_3 δ TMS): 3.08 (s, 3 H), 6.79 (m, 1 H), 7.00 (m, 1 H), 7.31 (d, J = 8.4 Hz, 2 H), 7.40 (m, 1 H), 7.72 (s, 1 H), 7.97 (d, J = 8.4 Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{11}\text{ClF}_2\text{N}_2\text{O}_2\text{S}$) C, H, N, S.

30 **4(3) 4-Cloro-5-(4-fluorofenil)-1-(4-metilsulfoniffenil)imidazol I (rto: 51%).**

A partir del ejemplo 1(3).

P. f.: 145-146 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.08 (s, 3 H), 7.1-7.4 (m, 7 H), 7.66 (s, 1 H), 7.95 (d, J = 8.6 Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{13}\text{ClN}_2\text{O}_2\text{S.0.25H}_2\text{O}$) C, H, N, S.

4(4) 4-Cloro-5-(3,4-diclorofenil)-1-(4-metilsulfonilfenil)imidazol (rto: 74%).

5 A partir del ejemplo 1(4).

P. f.: 156-157 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.10 (s, 3 H), 6.95 (d, J = 8.3 Hz, 1 H), 7.34 (d, J = 8.4 Hz, 2 H), 7.37 (m, 2 H), 7.68 (s, 1 H), 8.02 (d, J = 8.4 Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{11}\text{Cl}_3\text{N}_2\text{O}_2\text{S}$) C, H, N, S.

4(5) 4-Cloro-1-(4-metilsulfonilfenil)-5-(4-metoxifenil)imidazol (rto: 63%).

10 A partir del ejemplo 1(5).

P. f.: 205 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.08 (s, 3 H), 3.82 (s, 3 H), 6.88 (d, J = 8.7 Hz, 2 H), 7.12 (d, J = 8.7 Hz, 2 H), 7.31 (d, J = 8.5 Hz, 2 H), 7.64 (s, 1 H), 7.96 (d, J = 8.5 Hz, 2 H); Anal ($\text{C}_{17}\text{H}_{15}\text{ClN}_2\text{O}_3\text{S.0.5H}_2\text{O}$) C, H, N, S.

4(6) 4-Cloro-5-(3-fluoro-4-metoxifenil)-1-(4-metilsulfonilfenil)imidazol (rto: 73 %).

15 A partir del ejemplo 1(6).

P. f.: 196 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.09 (s, 3 H), 3.91 (s, 3 H), 6.92 (m, 3 H), 7.33 (d, J = 9 Hz, 2 H), 7.64 (s, 1 H), 7.99 (d, J = 9 Hz, 2 H); Anal ($\text{C}_{17}\text{H}_{14}\text{ClFN}_2\text{O}_3\text{S}$) C, H, N, S.

20 **4(7) 4-Cloro-5-(3-fluorofenil)-1-(4-metilsulfonilfenil)imidazol (rto: 62 %).**

A partir del ejemplo 1(7).

P. f.: 167-179 °C; ^1H -RMN (300 MHz, $\text{CDCl}_3 + \text{CD}_3\text{OD}$ δ TMS): 3.07 (s, 3 H), 6.92 (m, 2 H), 7.06 (m, 1 H), 7.29 (m, 1 H), 7.40 (d, J = 8.6 Hz, 2 H), 7.97 (d, J = 8.6 Hz, 2 H), 8.36 (s, 1 H); Anal ($\text{C}_{16}\text{H}_{12}\text{ClFN}_2\text{O}_2\text{S.HCl}$) C, H, N, S.

25 **4(8) 4-Cloro-5-(3-fluoro-4-metilfenil)-1-(4-metilsulfonilfenil)imidazol (rto: 48%).**

A partir del ejemplo 1(8).

P. f.: 176 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 2.30 (s, 3 H), 3.10 (s, 3 H), 6.84 (d, J = 7.7 Hz, 1 H), 6.93 (d, J = 9.7 Hz, 1 H), 7.19 (t, J = 7.7 Hz, 1 H), 7.57 (d, J = 7.8 Hz, 2 H), 8.02 (d, J = 7.8 Hz, 2 H), 9.26 (s, 1 H); Anal ($\text{C}_{17}\text{H}_{14}\text{ClFN}_2\text{O}_2\text{S.HCl}$) C, H, N, S.

30 H, N, S.

4(9) 4-Cloro-5-(2-fluorofenil)-1-(4-metilsulfonilfenil)imidazol (rto: 65 %).

A partir del ejemplo 1(9).

P. f.: 177-178 °C; ^1H -RMN (300 MHz, $\text{CDCl}_3 + \text{CD}_3\text{OD} \delta$ TMS): 3.12 (s, 3 H), 7.07 (m, 1 H), 7.29 (m, 1 H), 7.42 (m, 2 H), 7.45 (d, $J = 8.6$ Hz, 2 H), 7.99 (d, $J = 8.6$ Hz, 2 H), 8.55 (s, 1 H); Anal ($\text{C}_{16}\text{H}_{12}\text{ClF}_2\text{O}_2\text{S} \cdot \text{HCl} \cdot 0.5\text{H}_2\text{O}$) C, H, N, S.

5 **4(10) 4-Cloro-1-(4-metilsulfonilfenil)-5-(4-trifluorometoxifenil)imidazol** (rto: 73%).

A partir del ejemplo 1(10).

P. f.: 136-138 °C; ^1H -RMN (300 MHz, $\text{CDCl}_3 \delta$ TMS): 3.10 (s, 3 H), 7.26 (m, 4 H), 7.54 (d, $J = 8$ Hz, 2 H), 8.02 (d, $J = 8$ Hz, 2 H), 8.98 (s, 1 H); Anal ($\text{C}_{17}\text{H}_{12}\text{ClF}_3\text{N}_2\text{O}_3\text{S} \cdot \text{HCl}$) C, H, N, S.

10 **4(11) 4-Cloro-5-(6-metil-3-piridil)-1-(4-metilsulfonilfenil)imidazol** (rto: 63 %).

A partir del ejemplo 1(11).

^1H -RMN (300 MHz, $\text{CDCl}_3 + \text{CD}_3\text{OD} \delta$ TMS): 2.87 (s, 3 H), 3.13 (s, 3 H), 7.47 (d, $J = 8.5$ Hz, 2 H), 7.73 (d, $J = 8.3$ Hz, 1 H), 7.94 (s, 1 H), 8.04 (d, $J = 8.5$ Hz, 2 H), 8.08 (d, $J = 8.3$ Hz, 1 H), 8.56 (s, 1 H); Anal ($\text{C}_{16}\text{H}_{14}\text{ClN}_3\text{O}_2\text{S} \cdot 2\text{HCl} \cdot 0.5\text{H}_2\text{O}$) C, H, N, S.

15 **4(12) 4-Cloro-5-(2-fluoro-4-metoxifenil)-1-(4-metilsulfonilfenil)imidazol** (rto: 61 %).

A partir del ejemplo 1(12).

20 P. f.: 176-198 °C; ^1H -RMN (300 MHz, $\text{CDCl}_3 \delta$ TMS): 3.09 (s, 3 H), 3.83 (s, 3 H), 6.58 (d, $J_{\text{HF}} = 11.6$ Hz, 1 H), 6.79 (d, $J = 8.5$ Hz, 1 H), 7.30 (m, 1 H), 7.54 (m, 2 H), 8.00 (d, $J = 8$ Hz, 2 H), 9.21 (s, 1 H); Anal ($\text{C}_{17}\text{H}_{14}\text{ClF}_2\text{N}_2\text{O}_3\text{S} \cdot \text{HCl} \cdot 0.25\text{H}_2\text{O}$) C, H, N, S.

4(13) 4-Cloro-5-(3-cloro-4-metilfenil)-1-(4-metilsulfonilfenil)imidazol (rto: 76 %).

25 A partir del ejemplo 1(13).

P. f.: 181-182 °C; ^1H -RMN (300 MHz, $\text{CDCl}_3 \delta$ TMS): 2.35 (s, 3 H), 3.11 (s, 3 H), 6.90 (m, 1 H), 7.17 (m, 1 H), 7.31 (m, 1 H), 7.50 (d, $J = 8.5$ Hz, 2 H), 8.01 (d, $J = 8.5$ Hz, 2 H), 8.90 (s, 1 H); Anal ($\text{C}_{17}\text{H}_{14}\text{Cl}_2\text{N}_2\text{O}_2\text{S} \cdot \text{HCl}$) C, H, N, S.

4(14) 4-Cloro-5-(4-metil-3-metoxifenil)-1-(4-metilsulfonilfenil)imidazol (rto: 71 %).

30 A partir del ejemplo 1(14).

P. f.: 178 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 2.22 (s, 3 H), 3.14 (s, 3 H), 3.78 (s, 3 H), 6.64 (m, 2 H), 7.09 (m, 1 H), 7.58 (m, 2 H), 8.03 (d, $J = 8.5$ Hz, 2 H), 9.31 (s, 1 H); Anal ($\text{C}_{18}\text{H}_{17}\text{ClN}_2\text{O}_3\text{S} \cdot \text{HCl}$) C, H, N, S.

4(15) 4-Cloro-5-(4-clorofenil)-1-(4-metilsulfonilfenil)imidazol (rto: 55 %).

5 A partir del ejemplo 1(15).

P. f.: 222-223 °C; ^1H -RMN (300 MHz, $\text{CDCl}_3 + \text{CD}_3\text{OD}$ δ TMS): 3.13 (s, 3 H), 7.16 (d, $J = 8.3$ Hz, 2 H), 7.38 (m, 4 H), 8.01 (m, 3 H); Anal ($\text{C}_{16}\text{H}_{12}\text{Cl}_2\text{N}_2\text{O}_2\text{S} \cdot \text{HCl} \cdot 0.25\text{H}_2\text{O}$) C, H, N, S.

4(16) 4-Cloro-5-(6-cloro-3-piridil)-1-(4-metilsulfonilfenil)imidazol (rto: 45 %).

10 A partir del ejemplo 1(16).

P. f.: 223 °C; ^1H -RMN (300 MHz, $\text{CDCl}_3 + \text{CD}_3\text{OD}$ δ TMS): 3.07 (s, 3 H), 7.3 (m, 3 H), 7.51 (m, 1 H), 7.97 (m, 3 H), 8.17 (m, 1 H); Anal ($\text{C}_{15}\text{H}_{11}\text{Cl}_2\text{N}_3\text{O}_2\text{S} \cdot 2\text{HCl}$) C, H, N, S.

4(17) 4-Cloro-5-(2,6-dicloro-3-piridil)-1-(4-metilsulfonilfenil)imidazol

15 A partir del ejemplo 1(17).

P. f.: 253 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.10 (s, 3 H), 7.26 (d, $J = 8.5$ Hz, 2 H), 7.40 (d, $J = 8.5$ Hz, 1 H), 7.70 (d, $J = 8.5$ Hz, 1 H), 7.77 (s, 1 H), 7.99 (d, $J = 8.5$ Hz, 2 H); Anal ($\text{C}_{15}\text{H}_{10}\text{Cl}_3\text{N}_3\text{O}_2\text{S} \cdot 0.5\text{H}_2\text{O}$) C, H, N, S.

4(18) 4-Cloro-5-(2-cloro-6-metoxi-3-piridil)-1-(4-metilsulfonilfenil)imidazol

20 A partir del ejemplo 1(18).

^1H -RMN (300 MHz, $\text{CDCl}_3 + \text{CD}_3\text{OD}$ δ TMS): 3.06 (s, 3 H), 3.91 (s, 3 H), 6.73 (d, $J = 8$ Hz, 1 H), 7.35 (m, 2 H), 7.52 (d, $J = 8$ Hz, 1 H), 7.94 (m, 3 H); Anal ($\text{C}_{16}\text{H}_{13}\text{Cl}_2\text{N}_3\text{O}_3\text{S} \cdot \text{HCl}$) C, H, N, S.

4(19) 4-Cloro-5-(5,6-dicloro-3-piridil)-1-(4-metilsulfonilfenil)imidazol (rto: 50 %).

25 A partir del ejemplo 1(19).

P. f.: 223-230 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.12 (s, 3 H), 7.37 (d, $J = 8.4$ Hz, 2 H), 7.72 (s, 1 H), 7.76 (s, 1 H), 8.02 (s, 1 H), 8.07 (d, $J = 8.4$ Hz, 2 H); Anal ($\text{C}_{15}\text{H}_{10}\text{Cl}_3\text{N}_3\text{O}_2\text{S} \cdot 0.5\text{H}_2\text{O}$) C, H, N, S.

4(20) 4-Cloro-1-(4-metilsulfonilfenil)-5-(4-prop xifenil)imidazol (rto: 60 %).

30 A partir del ejemplo 1(20).

P. f.: 161-163 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 1.04 (t, $J = 7.5$ Hz, 3 H), 1.79 (q, $J = 7.5$ Hz, 2 H), 3.10 (s, 3 H), 3.92 (t, $J = 7.5$ Hz, 2 H), 6.88 (d, $J = 8.5$ Hz, 2 H), 7.10 (d, $J = 8.5$ Hz, 2 H), 7.60 (d, $J = 8.5$ Hz, 2 H), 8.00 (d, $J = 8.5$ Hz, 2 H), 9.58 (s, 1 H); Anal ($\text{C}_{19}\text{H}_{19}\text{ClN}_2\text{O}_3\text{S} \cdot \text{HCl} \cdot 0.5\text{H}_2\text{O}$) C, H, N, S.

5 **4(21) 4-Cloro-5-(3,5-dietoxifenil)-1-(4-metilsulfonilfenil)imidazol (rto: 60%).**

A partir del ejemplo 1(21).

P. f.: 227-231 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 1.38 (t, $J = 7.5$ Hz, 3 H), 1.42 (t, $J = 7.5$ Hz, 3 H), 3.08 (s, 3 H), 3.94 (q, $J = 7.5$ Hz, 2 H), 4.03 (q, $J = 7.5$ Hz, 2 H), 6.50 (m, 1 H), 6.56 (m, 1 H), 7.52 (s, 1 H), 7.66 (d, $J = 8.5$ Hz, 2 H), 8.00 (d, $J = 8.5$ Hz, 2 H), 10.08 (s, 1 H); Anal ($\text{C}_{20}\text{H}_{21}\text{ClN}_2\text{O}_4\text{S} \cdot \text{HCl}$) C, H, N, S.

10 **4(22) 4-Cloro-5-(4-etoxifenil)-1-(4-metilsulfonilfenil)imidazol (rto: 65%).**

A partir del ejemplo 1(22).

P. f.: 207 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 1.41 (t, $J = 7.5$ Hz, 3 H), 3.13 (s, 3 H), 4.08 (q, $J = 7.5$ Hz, 2 H), 6.90 (d, $J = 8.5$ Hz, 2 H), 7.12 (d, $J = 8.5$ Hz, 2 H), 7.50 (d, $J = 8.5$ Hz, 2 H), 8.02 (d, $J = 8.5$ Hz, 2 H), 9.12 (s, 1 H); Anal ($\text{C}_{18}\text{H}_{17}\text{ClN}_2\text{O}_3\text{S} \cdot \text{HCl}$) C, H, N, S.

15 **4(23) 4-Cloro-1-(4-metilsulfonilfenil)-5-(4-nitrofenil)imidazol (rto: 56 %).**

A partir del ejemplo 1(23).

P. f.: 211-217 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.09 (s, 3 H), 7.34 (d, $J = 8.5$ Hz, 2 H), 7.39 (d, $J = 8.5$ Hz, 2 H), 7.72 (s, 1 H), 8.02 (d, $J = 8.5$ Hz, 2 H), 8.20 (d, $J = 8.5$ Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{12}\text{ClN}_3\text{O}_4\text{S}$) C, H, N, S.

20 **4(24) 4-Cloro-5-(4-metilsulfanilfenil)-1-(4-metilsulfonilfenil)imidazol (rto: 18 %).**

A partir del ejemplo 1(24).

P. f.: 216-220 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 2.50 (s, 3 H), 3.10 (s, 3 H), 7.11 (d, $J = 8.8$ Hz, 2 H), 7.21 (d, $J = 8.8$ Hz, 2 H), 7.35 (d, $J = 8.6$ Hz, 2 H), 7.66 (s, 1 H), 7.99 (d, $J = 8.6$ Hz, 2 H); Anal ($\text{C}_{17}\text{H}_{15}\text{ClN}_2\text{O}_2\text{S}_2$) C, H, N, S.

25 **4(25) 4-Cloro-5-(4-etilsulfanilfenil)-1-(4-metilsulfonilfenil)imidazol (rto: 21 %).**

A partir del ejemplo 1(25).

P. f.: 181-185 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 1.35 (t, $J = 7.5$ Hz, 3 H), 2.99 (q, $J = 7.5$ Hz, 2 H), 3.10 (s, 3 H), 7.09 (d, $J = 8.5$ Hz, 2 H), 7.24 (d, $J = 8.5$ Hz, 2 H),

7.32 (d, J = 8.5 Hz, 2 H), 7.66 (m, 1 H), 8.00 (d, J = 8.5 Hz, 2 H); Anal (C₁₈H₁₇ClN₂O₂S₂) C, H, N, S.

4(26) 4-Cl r -5-(6- toxi-3-piridil)-1-(4-metilsulf nilf nil)imidazol (rto: 50 %).

A partir del ejemplo 16.

5 P. f.: 186-188 °C; ¹H-RMN (300 MHz, CDCl₃ δ TMS): 1.25 (t, J = 7.5 Hz, 3 H), 3.11 (s, 3 H), 4.38 (q, J = 7.5 Hz, 2 H), 6.73 (d, J = 8.5 Hz, 1 H), 7.38 (m, 3 H), 7.69 (m, 1 H), 8.02 (m, 3 H); Anal (C₁₇H₁₆ClN₃O₃S) C, H, N, S.

Ejemplo 5

4-Bromo-5-(4-fluorofenil)-1-(4-metilsulfonilfenil)imidazol

10 Sobre una solución de 0.21 g (0.66 mmol) del compuesto obtenido en el ejemplo 1 en 16 mL de CHCl₃ se añade gota a gota una solución de 0.051 mL (1 mmol) de Br₂ en 16 mL de CHCl₃ y se agita durante 15 min. Se obtiene una suspensión que se disuelve añadiendo CHCl₃ y se lava con NaOH 1N y H₂O. Se seca sobre MgSO₄ y se elimina el disolvente, obteniéndose un crudo que se 15 cromatografía sobre sílica-gel, usando como eluyente mezclas de AcOEt-hexano de polaridad creciente. Se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (0.11 g, 41 %).

P. f.: 148 °C; ¹H-RMN (300 MHz, CDCl₃ δ TMS): 3.08 (s, 3 H), 7.06 (m, 2 H), 7.20 (m, 2 H), 7.30 (d, J = 9 Hz, 2 H), 7.71 (s, 1 H), 8.97 (d, J = 9 Hz, 2 H); Anal (C₁₆H₁₂BrFN₂O₂S) C, H, N, S.

Ejemplo 6

1-(4-Fluorofenil)-2-metil-5-(4-metilsulfonilfenil)imidazol

Siguiendo un procedimiento análogo al descrito en el ejemplo de referencia 1, pero partiendo del compuesto obtenido en el ejemplo de referencia 8, se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (rto: 80 %).

P. f.: 160-162 °C; ¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.32 (s, 3 H), 3.03 (s, 3 H), 7.1 (m, 6 H), 7.31 (s, 1 H), 7.76 (d, J = 8.5 Hz, 2 H); Anal (C₁₇H₁₅FN₂O₂S.0.5H₂O) C, H, N, S.

2-Cloro-1-(4-fluor fenil)-5-(4-metilsulfonilf nil)imidazol

Siguiendo un procedimiento análogo al descrito en el ejemplo de referencia 1, pero partiendo del compuesto obtenido en el ejemplo de referencia 7, se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (rto: 80 %).

5 P. f.: 218-220 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.04 (s, 3 H), 7.1 (m, 6 H),
7.32 (s, 1 H), 7.82 (d, J = 8.5 Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{12}\text{Cl}_2\text{FN}_2\text{O}_2\text{S} \cdot 0.25\text{H}_2\text{O}$) C, H, N, S.

Ejemplo 8

1-(4-Fluorofenil)-5-(4-metilsulfonilfenil)imidazol-2-carboxaldehido (8a) y 1-(4-fluorofenil)-5-(4-metilsulfonilfenil)imidazol-2-carboxilato de metilo (8b)

10 Una mezcla de 0.2 g (0.6 mmol) del compuesto obtenido en el ejemplo de referencia 9, 1.26 g (14.5 mmol) de MnO_2 , 0.100 g de tamiz molecular de 3 Å, 6.5 mL de MeOH y 4 mL de THF se agita a temperatura ambiente durante 24 h. La suspensión obtenida se filtra sobre celite, lavándose con abundante THF caliente. Se elimina el disolvente y el crudo obtenido se cromatografía sobre sílica-gel, usando como eluyente mezclas de AcOEt-hexano de polaridad creciente. Se obtienen:

15 8a: (0.073 g, 36 %); P. f.: 198 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.05 (s, 3 H), 7.1 (m, 6 H), 7.62 (s, 1 H), 7.85 (d, J = 8.5 Hz, 2 H), 9.84 (s, 1 H); Anal ($\text{C}_{17}\text{H}_{13}\text{FN}_2\text{O}_3\text{S} \cdot 0.5\text{H}_2\text{O}$) C, H, N, S.

20 8b: (0.061 g, 28 %); P. f.: 192-194 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.03 (s, 3 H), 3.87 (s, 3 H), 7.1 (m, 6 H), 7.50 (s, 1 H), 7.87 (d, J = 8.5 Hz, 2 H); Anal ($\text{C}_{18}\text{H}_{15}\text{FN}_2\text{O}_4\text{S} \cdot 1.25\text{H}_2\text{O}$) C, H, N, S.

Ejemplo 9

2-Bromo-1-(4-fluorofenil)-5-(4-metilsulfonilfenil)imidazol

25 Siguiendo un procedimiento análogo al descrito en el ejemplo de referencia 1, pero partiendo del compuesto obtenido en el ejemplo de referencia 10, se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (rto: 80 %).

P. f.: 207-208 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 3.05 (s, 3 H), 7.1 (m, 6 H),
30 7.37 (s, 1 H), 7.80 (d, J = 8.5 Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{12}\text{BrFN}_2\text{O}_2\text{S}$) C, H, N, S.

Ejmpl 10

1-(4-Fluorofenil)-5-(4-metilsulfoniffenil)imidazol-2-carbónitrilo

Una mezcla de 0.24 g (0.7 mmol) del compuesto obtenido en el ejemplo 8a, 0.155 g (1.4 mmol) de ácido hidroxilamino-O-sulfónico, 3 mL de piridina y 30 mL de EtOH se agita a reflujo durante 18 h. La mezcla se vierte sobre CHCl₃ y se lava con solución saturada de NaHCO₃. Se seca sobre MgSO₄ y se elimina el disolvente, obteniéndose un crudo que se cromatografía sobre sílica-gel, usando como eluyente mezclas de AcOEt-hexano de polaridad creciente. Se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (0.090 g, 37 %).

10 P. f.: 192 °C; ¹H-RMN (300 MHz, CDCl₃ + CD₃OD δ TMS): 2.99 (s, 3 H), 7.1 (m, 6 H), 7.39 (s, 1 H), 7.75 (d, J = 8.5 Hz, 2 H); Anal (C₁₇H₁₂FN₃O₂S.0.25H₂O) C, H, N, S.

Ejemplo 11

2-Cloro-1-fenil-5-(4-metilsulfoniffenil)imidazol

15 Siguiendo un procedimiento análogo al descrito en el ejemplo de referencia 1, pero partiendo del compuesto obtenido en el ejemplo de referencia 11, se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (rto: 49 %).

P. f.: 185-193 °C; ¹H-RMN (300 MHz, CDCl₃ δ TMS): 3.01 (s, 3 H), 7.22 (m, 5 H), 20 7.50 (m, 3 H), 7.77 (d, J = 8.5 Hz, 2 H); Anal (C₁₆H₁₃ClN₂O₂S.0.75H₂O) C, H, N, S.

Ejemplo 12

2-Cloro-1-(4-metilfenil)-5-(4-metilsulfoniffenil)imidazol

Siguiendo un procedimiento análogo al descrito en el ejemplo de referencia 1, pero partiendo del compuesto obtenido en el ejemplo de referencia 12, se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (rto: 60 %).

P. f.: 156-160 °C; ¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.39 (s, 3 H), 3.02 (s, 3 H), 7.05 (d, J = 8.5 Hz, 2 H), 7.3 (m, 5 H), 8.05 (d, J = 8.5 Hz, 2 H); Anal (C₁₇H₁₅ClN₂O₂S.0.25H₂O) C, H, N, S.

4-[4-Cloro-5-(4-fluorofenil)imidazol-1-il]bencenosulfonamida

a) N-(4-Fluorobenziliden)-4-metilsulfinilanilina

Una mezcla de 3.0 g (19 mmol) de 4-metilsulfinilanilina (obtenida en el ejemplo de referencia 3), 2 mL (19 mmol) de 4-fluorobenzaldehido y 80 mL de benceno se calienta a reflujo en un Dean-Stark durante 2 días. Se elimina el disolvente y el crudo obtenido se utiliza directamente en la siguiente reacción.

5 $^1\text{H-RMN}$ (300 MHz, CDCl_3 δ TMS): 2.75 (s, 3 H), 7.18 (m, 2 H), 7.32 (m, 2 H), 7.68 (d, $J = 8.5$ Hz, 2 H), 7.91 (m, 2 H), 8.41 (s, 1 H).

b) 5-(4-Fluorofenil)-1-(4-metilsulfinilfenil)imidazol

Una mezcla del crudo anterior, 5.65 g (29 mmol) de tosilmetilisocianuro, 10 5.33 g (39 mmol) de K_2CO_3 , 134 mL de MeOH y 58 mL de DME se calienta a reflujo durante 2 h. Se elimina el disolvente y el residuo se redissuelve en una mezcla $\text{CH}_2\text{Cl}_2/\text{NaCl}$ sat y se separan las fases. La acuosa se extrae con CH_2Cl_2 y las fases orgánicas juntas se secan sobre MgSO_4 y se concentran. Se obtiene un crudo que se lava con Et_2O varias veces para dar 3.5 g del producto 15 en forma de un sólido cremoso (60 %).

10 $^1\text{H-RMN}$ (300 MHz, CDCl_3 δ TMS): 2.77 (s, 3 H), 6.99 (m, 2 H), 7.10 (m, 2 H), 7.25 (s, 1 H), 7.33 (d, $J = 8.5$ Hz, 2 H), 7.69 (d, $J = 8.5$ Hz, 2 H), 7.73 (s, 1 H).

c) 1-[4-(Acetoximetilsulfanil)fenil]-5-(4-fluorofenil)imidazol

En un matraz provisto de corriente de nitrógeno se introducen 1.60 g (5.3 mmol) del producto anterior, 16 mL de Ac_2O y 1.6 g (20 mmol) de AcONa y se calienta a reflujo durante 8 h. Se elimina el disolvente y el crudo se cromatografía sobre SiO_2 usando como eluyente mezclas de AcOEt/hexano de polaridad creciente, obteniéndose 1.6 g del producto en forma de un sólido espumoso (84%).

25 $^1\text{H-RMN}$ (300 MHz, CDCl_3 δ TMS): 2.11 (s, 3 H), 5.44 (s, 2 H), 6.99 (m, 2 H), 7.10 (m, 2 H), 7.14 (s, 1 H), 7.25 (d, $J = 8.5$ Hz, 2 H), 7.47 (d, $J = 8.5$ Hz, 2 H), 7.72 (s, 1 H).

d) 1-[4-(Acetoximetilsulfanil)fenil]-4-cloro-5-(4-fluorofenil)imidazol

Siguiendo un procedimiento análogo al descrito en el ejemplo 4, pero 30 partiendo del producto obtenido en el apartado c, se obtiene el compuesto deseado (0.9 g, 51 %).

¹H-RMN (300 MHz, CDCl₃ δ TMS): 2.11 (s, 3 H), 5.43 (s, 2 H), 7.05 (m, 4 H), 7.19 (m, 2 H), 7.44 (d, J = 8.6 Hz, 2 H), 7.59 (s, 1 H).

e) [4-Cl ro-5-(4-flu rofenil)imidaz l-1-il]bencen sulfinato d odi

En un matraz se introduce el crudo anterior, 8 mL de CH₂Cl₂ y 4 mL de MeOH y se enfria a 0 °C. Se añaden 1.5 g (2.6 mmol) de monoperoxiftalato de magnesio hexahidratado y se agita durante una noche a temperatura ambiente. Se añaden 12 mL de NaHCO₃ 5 % y la mezcla se extrae con CH₂Cl₂. Se elimina el disolvente y el residuo se disuelve en una mezcla de 8 mL de THF y 4 mL de MeOH y se enfria a 0 °C. Se añaden 2.56 mL de NaOH 1 N y se agita durante 1 h a temperatura ambiente. Se concentra, eliminando el H₂O mediante destilación azeotrópica con mezclas de EtOH/tolueno y el residuo se seca al vacío. Se obtienen 0.90 g del crudo que se utiliza directamente en la siguiente etapa.

¹H-RMN (300 MHz, CDCl₃ + CD₃OD δ TMS): 6.99 (m, 2 H), 7.18 (m, 4 H), 7.63 (s, 1 H), 7.68 (d, J = 8.2 Hz, 2 H).

f) Compuesto titular

En un matraz se introduce el crudo anterior, 13 mL de H₂O, 0.21 g (2.7 mmol) de AcONa y 0.30 g (2.7 mmol) del ácido hidroxilamino-O-sulfónico y se agita durante una noche a temperatura ambiente. Se filtra la suspensión obtenida y el sólido se lava con AcOEt y H₂O. Se separan las fases y la acuosa se extrae con AcOEt. Las fases orgánicas juntas se concentran y el residuo se cromatografía sobre SiO₂ usando como eluyente mezclas de hexano-AcOEt de polaridad creciente. Se obtienen 0.420 g del producto en forma de un sólido amarillo (rto: 48 %).

P. f.: 223 °C; ¹H-RMN (300 MHz, CDCl₃ δ TMS): 4.84 (s, 2 H), 7.05 (m, 2 H), 7.18 (m, 2 H), 7.26 (d, J = 8.7 Hz, 2 H), 7.65 (s, 1 H), 7.96 (d, J = 8.7 Hz, 2 H); Anal (C₁₅H₁₁CIFN₃O₂S.0.25H₂O) C, H, N, S.

Los siguientes compuestos se prepararon de forma análoga al ejemplo 30 13, pero partiendo del correspondiente aldehido:

13(1) 4-(4-Clorofenil)-5-fenylimidazol-1-il)bencenosulfonamida

P. f.: 235 °C; ^1H -RMN (300 MHz, $\text{CDCl}_3 + \text{CD}_3\text{OD} \delta \text{TMS}$) 4.16 (s, 2 H), 7.0-7.3 (m, 7 H), 7.70 (s, 1 H), 7.89 (d, $J = 8.7$ Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{12}\text{ClN}_3\text{O}_2\text{S} \cdot 0.25\text{H}_2\text{O}$) C, H, N, S.

5 13(2) 4-[4-Cloro-5-(3,4-diclorofenil)imidazol-1-il]bencenosulfonamida

P. f.: 251 °C; ^1H -RMN (300 MHz, $\text{CDCl}_3 + \text{CD}_3\text{OD} \delta \text{TMS}$): 3.83 (s, 2 H), 6.91 (d, $J = 8.2$ Hz, 1 H), 7.22 (d, $J = 8.7$ Hz, 2 H), 7.33 (m, 1 H), 7.37 (s, 1 H), 7.69 (s, 1 H), 7.93 (d, $J = 8.7$ Hz, 2 H); Anal ($\text{C}_{15}\text{H}_{10}\text{Cl}_3\text{N}_3\text{O}_2\text{S}$) C, H, N, S.

13(3) 4-[4-Cloro-5-(4-metilfenil)imidazol-1-il]bencenosulfonamida

10 P. f.: 255 °C; ^1H -RMN (300 MHz, $\text{CDCl}_3 + \text{CD}_3\text{OD} \delta \text{TMS}$): 2.29 (s, 3 H), 3.82 (s, 2 H), 7.05 (cuarteto AB, $\Delta v = 0.068$, $J = 8.1$ Hz, 4 H), 7.21 (d, $J = 8.6$ Hz, 2 H), 7.64 (s, 1 H), 7.87 (d, $J = 8.6$ Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{14}\text{ClN}_3\text{O}_2\text{S} \cdot 0.25\text{H}_2\text{O}$) C, H, N, S.

13(4) 4-[4-Cloro-5-(4-etoxifenil)imidazol-1-il]bencenosulfonamida

15 P. f.: 265 °C; ^1H -RMN (300 MHz, $\text{CDCl}_3 + \text{CD}_3\text{OD} \delta \text{TMS}$): 1.36 (t, $J = 7.5$ Hz, 3 H), 3.99 (q, $J = 7.5$ Hz, 2 H), 4.24 (s, 2 H), 6.81 (d, $J = 8.5$ Hz, 2 H), 7.05 (d, $J = 8.5$ Hz, 2 H), 7.23 (d, $J = 8.5$ Hz, 2 H), 7.67 (s, 1 H), 7.88 (d, $J = 8.5$ Hz, 2 H); Anal ($\text{C}_{17}\text{H}_{16}\text{ClN}_3\text{O}_3\text{S} \cdot 0.25\text{H}_2\text{O}$) C, H, N, S.

13(5) 4-[4-Cloro-5-(3-fluoro-4-metoxifenil)imidazol-1-il]bencenosulfonamida

20 P. f.: 211 °C; ^1H -RMN (300 MHz, $\text{CDCl}_3 + \text{CD}_3\text{OD} \delta \text{TMS}$): 3.84 (s, 3 H), 3.85 (s, 2 H), 6.89 (m, 3 H), 7.25 (d, $J = 8.5$ Hz, 2 H), 7.62 (s, 1 H), 7.94 (d, $J = 8$ Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{13}\text{ClFN}_3\text{O}_3\text{S}$) C, H, N, S.

13(6) 4-[4-Cloro-5-(6-cloro-3-piridil)imidazol-1-il]bencenosulfonamida

P. f.: 276-277 °C; ^1H -RMN (300 MHz, $\text{DMSO} \delta \text{TMS}$): 7.3-8.2 (m, 8 H); Anal ($\text{C}_{14}\text{H}_{10}\text{Cl}_2\text{FN}_4\text{O}_2\text{S}$) C, H, N, S.

25

Ejemplo 14**4-[5-(4-Fluorofenil)imidazol-1-il]bencenosulfonamida**

Siguiendo un procedimiento análogo al descrito en el ejemplo 1, pero utilizando 4-aminobencenosulfonamida en lugar de 4-metilsulfonilanilina, se obtiene el compuesto titular del ejemplo en forma de un sólido blanco (rto: 20 %).

P. f.: 196-197 °C; ^1H -RMN (300 MHz, $\text{CDCl}_3 + \text{CD}_3\text{OD} \delta$ TMS): 4.0 (s, 2 H + H_2O), 7.01 (m, 2 H), 7.11 (m, 2 H), 7.22 (s, 1 H), 7.30 (d, $J = 8.6$ Hz, 2 H), 7.77 (s, 1 H), 7.96 (d, $J = 8.6$ Hz, 2 H); Anal ($\text{C}_{15}\text{H}_{12}\text{FN}_3\text{O}_2\text{S.0.5H}_2\text{O}$) C, H, N, S.

Ejemplo 15

5-(4-Aminofenil)-4-cloro-1-(4-metilsulfonilfenil)imidazol

Una mezcla de 1.14 g (3 mmol) del producto obtenido en el ejemplo 4(23), 2.88 g (15 mmol) de SnCl_2 y 21 mL de EtOH se calienta a reflujo durante 1.5 h. Se elimina el disolvente y el residuo se basifica con NaOH al 25 % y se extrae con CHCl_3 . La fase orgánica se seca sobre MgSO_4 y se concentra. El residuo se cromatografía sobre SiO_2 usando como eluyente mezclas de hexano-AcOEt de polaridad creciente. Se obtienen 0.855 g del producto en forma de un sólido amarillo (rto: 81 %).

P. f.: 170 °C; ^1H -RMN (300 MHz, $\text{CDCl}_3 + \text{CD}_3\text{OD} \delta$ TMS): 3.08 (s, 3 H), 4.0 (s, 2 H + H_2O), 6.60 (d, $J = 8.5$ Hz, 2 H), 6.90 (d, $J = 8.5$ Hz, 2 H), 7.35 (d, $J = 8.5$ Hz, 2 H), 7.66 (s, 1 H), 7.93 (d, $J = 8.5$ Hz, 2 H); Anal ($\text{C}_{16}\text{H}_{14}\text{ClN}_3\text{O}_2\text{S.H}_2\text{O}$) C, H, N, S.

Ejemplo 16

5-(6-Etocio-3-piridil)-1-(4-metilsulfonilfenil)imidazol

Una mezcla de 0.20 g (0.6 mmol) del producto obtenido en el ejemplo 1(16), 0.007 g de 18-corona-6, 0.079 g (1.2 mmol) de KOH, 0.1 mL de EtOH y 10 mL de tolueno se calienta a reflujo en un Dean Stark durante 12 h. La mezcla se vierte sobre hielo y se separan las fases. La acuosa se extrae con AcOEt y las fases orgánicas se secan sobre MgSO_4 y se concentran. El residuo se cromatografía sobre SiO_2 usando como eluyente mezclas de hexano-AcOEt de polaridad creciente. Se obtienen 0.20 g del producto en forma de un sólido amarillo (rto: 100 %).

P. f.: 167-169 °C; ^1H -RMN (300 MHz, $\text{CDCl}_3 \delta$ TMS): 1.40 (t, $J = 7.5$ Hz, 3 H), 3.10 (s, 3 H), 4.35 (q, $J = 7.5$ Hz, 2 H), 6.65 (d, $J = 8.5$ Hz, 1 H), 7.30 (m, 2 H), 7.38 (d, $J = 8.5$ Hz, 2 H), 7.79 (m, 1 H), 8.02 (m, 3 H); Anal ($\text{C}_{17}\text{H}_{17}\text{N}_3\text{O}_3\text{S.0.5H}_2\text{O}$) C, H, N, S.

Ejemplo 17

30 4-Cl ro-5-(4-dimetilamin fenil)-1-(4-metilsulfonilfenil)imidazol (17a), 5-(3-cl ro-4-dimetilamin fenil)-1-(4-metilsulfonilfenil)imidazol (17b),

4-clor-5-(3-cloro-4-dimetilaminofenil)-1-(4-metilsulfonifil)imidazol (17c)

Siguiendo un procedimiento análogo al descrito en el ejemplo 4, pero partiendo del producto obtenido en el ejemplo 1(26), se obtienen los tres compuestos siguientes, que se aíslan mediante cromatografía sobre sílica-gel,

5 usando como eluyente mezclas de hexano-AcOEt de polaridad creciente.

17a: rto 10 %: ^1H -RMN (300 MHz, CDCl_3 δ TMS): 2.85 (s, 6 H), 3.09 (s, 3 H), 6.65 (d, J = 8.8 Hz, 2 H), 7.02 (d, J = 8.8 Hz, 2 H), 7.35 (d, J = 8.6 Hz, 2 H), 7.64 (s, 1 H), 7.95 (d, J = 8.6 Hz, 2 H). Anal ($\text{C}_{18}\text{H}_{18}\text{ClN}_3\text{O}_2\text{S}$) C, H, N, S.

17b: rto 40 %: P.f.: 171-172 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 2.82 (s, 6 H), 3.09 (s, 3 H), 6.9 (m, 2 H), 7.2 (m, 2 H), 7.38 (d, J = 8.6 Hz, 2 H), 7.73 (s, 1 H), 8.00 (d, J = 8.6 Hz, 2 H). Anal ($\text{C}_{18}\text{H}_{18}\text{ClN}_3\text{O}_2\text{S}$) C, H, N, S.

17c: rto 10 %: P.f.: 169 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 2.85 (s, 6 H), 3.09 (s, 3 H), 6.9 (m, 2 H), 7.2 (m, 1 H), 7.35 (d, J = 8.6 Hz, 2 H), 7.64 (s, 1 H), 8.00 (d, J = 8.6 Hz, 2 H). Anal ($\text{C}_{18}\text{H}_{17}\text{Cl}_2\text{N}_3\text{O}_2\text{S}$) C, H, N, S.

15 **Ejemplo 18**

5-(4-Acetilaminofenil)-4-cloro-1-(4-metilsulfonifil)imidazol

Una mezcla de 0.15 g (0.4 mmol) del producto obtenido en el ejemplo 15 y 0.15 mL de Ac_2O se calienta a reflujo durante 4 h. Se elimina el disolvente y el residuo se cromatografía sobre SiO_2 usando como eluyente mezclas de hexano-AcOEt de polaridad creciente. Se obtienen 0.028 g del producto en forma de un sólido amarillo (rto: 18 %).

P. f.: 238-241 °C; ^1H -RMN (300 MHz, CDCl_3 δ TMS): 2.31 (s, 3 H), 3.11 (s, 3 H), 5.32 (s, 1 H), 7.14 (d, J = 8.5 Hz, 2 H), 7.32 (d, J = 8.5 Hz, 2 H), 7.37 (d, J = 8.5 Hz, 2 H), 7.70 (s, 1 H), 8.02 (d, J = 8.5 Hz, 2 H); Anal ($\text{C}_{18}\text{H}_{16}\text{ClN}_3\text{O}_3\text{S} \cdot 0.5\text{H}_2\text{O}$) C, H, N,

25 S.

Ejemplo 19

5-(4-Etilsulfonifil)-1-(4-metilsulfonifil)imidazol

Siguiendo un procedimiento análogo al descrito en el ejemplo de referencia 1, pero partiendo del producto obtenido en el ejemplo 1(25) y utilizando 1 equivalente de ácido *m*-cloroperbenzoico, se obtiene el compuesto titular del ejemplo en forma de un sólido amarillo (rto: 80 %).

¹H-RMN (300 MHz, CDCl₃ δ TMS): 1.25 (t, J = 7.5 Hz, 3 H), 2.85 (m, 2 H), 3.12 (s, 3 H), 7.26 (d, J = 8.5 Hz, 2 H), 7.38 (d, J = 8.5 Hz, 2 H), 7.56 (d, J = 8.5 Hz, 2 H), 7.80 (s, 1 H), 8.00 (d, J = 8.5 Hz, 2 H).

Ejemplo 20

5

5-(4-Etilsulfonilfenil)-1-(4-metilsulfonilfenil)imidazol

Siguiendo un procedimiento análogo al descrito en el ejemplo de referencia 1, pero partiendo del producto obtenido en el ejemplo 1(25), se obtiene el compuesto titular del ejemplo en forma de un sólido amarillo (rto: 79 %).

10 ¹H-RMN (300 MHz, CDCl₃ δ TMS): 1.30 (t, J = 7.5 Hz, 3 H), 3.15 (m, 5 H), 7.26 (d, J = 8.5 Hz, 2 H), 7.35 (m, 4 H), 7.84 (m, 3 H), 8.04 (d, J = 8.5 Hz, 2 H).

REMINDICACIONES

1.- Un compuesto de fórmula general I:

5

donde:

uno de X ó Y representa N y el otro representa C;

R₁ representa hidrógeno, metilo, halógeno, ciano, nitro, -CHO, -COCH₃ ó -COOR₄;

10 R₂ representa arilo o heteroarilo opcionalmente sustituido por uno o más grupos elegidos independientemente de entre halógeno, C₁₋₈ alquilo, C₁₋₈ haloalquilo, R₄OC₀₋₈ alquilo, R₄SC₀₋₈ alquilo, ciano, nitro, -NR₄R₆, -NR₄SO₂R₅, -SOR₅, -SO₂R₅, -SO₂NR₄R₆, ó -CONR₄R₆;

R₃ representa un grupo C₁₋₈ alquilo, C₁₋₈ haloalquilo ó -NR₄R₆;

15 R₄ representa hidrógeno, C₁₋₈ alquilo, o arilC₀₋₈ alquilo (donde el grupo arilo puede estar opcionalmente sustituido por uno o más grupos elegidos de entre C₁₋₈ alquilo, halógeno, C₁₋₈ haloalquilo, ciano, nitro, R₇OC₀₋₈ alquilo, R₇SC₀₋₈ alquilo, -NR₇R₈, -NR₇COR₅, -COR₇ ó -COOR₇);

R₅ representa C₁₋₈ alquilo ó C₁₋₈ haloalquilo;

20 R₆ representa hidrógeno, C₁₋₈ alquilo, arilC₁₋₈ alquilo (donde el grupo arilo puede estar opcionalmente sustituido por uno o más grupos elegidos de entre C₁₋₈ alquilo, halógeno, C₁₋₈ haloalquilo, ciano, nitro, R₇OC₀₋₈ alquilo, R₇SC₀₋₈ alquilo, -NR₇R₈, -NR₇COR₅, -COR₇ ó -COOR₇), -COR₈ ó -COOR₈;

R₇ representa hidrógeno, C₁₋₈ alquilo o bencílo;

25 R₈ representa C₁₋₈ alquilo ó C₁₋₈ haloalquilo;

arilo en las definiciones anteriores representa fenilo o naftilo; y

heteroarilo en las definiciones anteriores representa piridina, pirazina, pirimidina ó piridazina, que pueden estar opcionalmente fusionadas a un anillo de benceno.

y sus sales, solvatos y prodrogas.

- 5 2.- Un compuesto según la reivindicación 1 en donde R₁ representa halógeno.
- 3.- Un compuesto según la reivindicación 2 en donde R₁ representa cloro.
- 4.- Un compuesto según la reivindicación 1 en donde R₂ representa fenilo o piridina opcionalmente sustituido por uno o más grupos elegidos independientemente de entre halógeno, C₁₋₈ alquilo, C₁₋₈ haloalquilo, R₄OC₀₋₈ alquilo, R₄SC₀₋₈ alquilo, ciano, nitro, -NR₄R₆, -NR₄SO₂R₅, -SOR₅, -SO₂R₅, -SO₂NR₄R₆, ó -CONR₄R₆.
- 10 5.- Un compuesto según la reivindicación 1 en donde R₃ representa metilo o -NH₂.
- 6.- Un compuesto según la reivindicación 1 en donde X representa N.
- 15 7.- Un compuesto según la reivindicación 5 en donde R₁ representa halógeno.
- 8.- Un compuesto según la reivindicación 5 en donde R₁ representa cloro.
- 9.- Un compuesto según la reivindicación 7 ó 8 en donde X representa N.
- 10.- Un compuesto según la reivindicación 9 en donde R₂ representa fenilo o piridina opcionalmente sustituido por uno o más grupos elegidos independientemente de entre halógeno, C₁₋₈ alquilo, C₁₋₈ haloalquilo, R₄OC₀₋₈ alquilo, R₄SC₀₋₈ alquilo, ciano, nitro, -NR₄R₆, -NR₄SO₂R₅, -SOR₅, -SO₂R₅, -SO₂NR₄R₆, ó -CONR₄R₆.
- 20 11.- Un compuesto según la reivindicación 1 seleccionado de entre:
5-(4-fluorofenil)-1-(4-metilsulfonilfenil)imidazol;
25 5-(4-metilfenil)-1-(4-metilsulfonilfenil)imidazol;
5-(2,4-difluorofenil)-1-(4-metilsulfonilfenil)imidazol;
5-fenil-1-(4-metilsulfonilfenil)imidazol;
30 5-(3,4-diclorofenil)-1-(4-metilsulfonilfenil)imidazol;;
1-(4-metilsulfonilfenil)-5-(4-metoxifenil)imidazol;
5-(3-fluoro-4-metoxifenil)-1-(4-metilsulfonilfenil)imidazol;
5-(3-fluorofenil)-1-(4-metilsulfonilfenil)imidazol;

5-(3-fluoro-4-m tilfenil)-1-(4-metilsulfonilfenil)imidazol;
5-(2-fluorofenil)-1-(4-metilsulfonilfenil)imidazol;
1-(4-metilsulfonilfenil)-5-(4-trifluorometoxifenil)imidazol;
5-(6-metil-3-piridil)-1-(4-metilsulfonilfenil)imidazol;

5 5-(2-fluoro-4-metoxifenil)-1-(4-metilsulfonilfenil)imidazol;
5-(3-cloro-4-metilfenil)-1-(4-metilsulfonilfenil)imidazol;
5-(4-metil-3-metoxifenil)-1-(4-metilsulfonilfenil)imidazol;
5-(4-clorofenil)-1-(4-metilsulfonilfenil)imidazol;
5-(6-cloro-3-piridil)-1-(4-metilsulfonilfenil)imidazol;

10 5-(2,6-dicloro-3-piridil)-1-(4-metilsulfonilfenil)imidazol;
5-(2-cloro-6-metoxi-3-piridil)-1-(4-metilsulfonilfenil)imidazol;
5-(5,6-dicloro-3-piridil)-1-(4-metilsulfonilfenil)imidazol;
1-(4-metilsulfonilfenil)-5-(4-propoxifenil)imidazol;
5-(3,5-dietoxifenil)-1-(4-metilsulfonilfenil)imidazol;

15 5-(4-etoxifenil)-1-(4-metilsulfonilfenil)imidazol;
1-(4-metilsulfonilfenil)-5-(4-nitrofenil)imidazol;
5-(4-metilsulfanilfenil)-1-(4-metilsulfonilfenil)imidazol;
5-(4-etilsulfanilfenil)-1-(4-metilsulfonilfenil)imidazol;
5-(4-dimetilaminofenil)-1-(4-metilsulfonilfenil)imidazol;

20 1-(4-fluorofenil)-5-(4-metilsulfonilfenil)imidazol;
5-(4-fluorofenil)-4-metil-1-(4-metilsulfonilfenil)imidazol;
4-cloro-5-(4-fluorofenil)-1-(4-metilsulfonilfenil)imidazol;
4-cloro-5-(4-metilfenil)-1-(4-metilsulfonilfenil)imidazol;
4-cloro-5-(2,4-difluorofenil)-1-(4-metilsulfonilfenil)imidazol;

25 4-cloro-5-fenil-1-(4-metilsulfonilfenil)imidazol;
4-cloro-5-(3,4-diclorofenil)-1-(4-metilsulfonilfenil)imidazol;
4-cloro-1-(4-metilsulfonilfenil)-5-(4-metoxifenil)imidazol;
4-cloro-5-(3-fluoro-4-metoxifenil)-1-(4-metilsulfonilfenil)imidazol;
4-cloro-5-(3-fluorofenil)-1-(4-metilsulfonilfenil)imidazol;

30 4-cloro-5-(3-fluoro-4-metilfenil)-1-(4-metilsulfonilfenil)imidazol;
4-cloro-5-(2-fluorofenil)-1-(4-metilsulfonilfenil)imidazol;
4-cloro-1-(4-metilsulfonilfenil)-5-(4-trifluorometoxifenil)imidazol;

4-cloro-5-(6-metil-3-piridil)-1-(4-metilsulfonilfenil)imidazol;
4-cloro-5-(2-fluoro-4-metoxifenil)-1-(4-metilsulfonilfenil)imidazol;
4-cloro-5-(3-cloro-4-metilfenil)-1-(4-metilsulfonilfenil)imidazol;
4-cloro-5-(4-metil-3-metoxifenil)-1-(4-metilsulfonilfenil)imidazol;
5 4-cloro-5-(4-clorofenil)-1-(4-metilsulfonilfenil)imidazol;
4-cloro-5-(6-cloro-3-piridil)-1-(4-metilsulfonilfenil)imidazol;
4-cloro-5-(2,6-dicloro-3-piridil)-1-(4-metilsulfonilfenil)imidazol;
4-cloro-5-(2-cloro-6-metoxi-3-piridil)-1-(4-metilsulfonilfenil)imidazol;
4-cloro-5-(5,6-dicloro-3-piridil)-1-(4-metilsulfonilfenil)imidazol;
10 4-cloro-1-(4-metilsulfonilfenil)-5-(4-propoxifenil)imidazol;
4-cloro-5-(3,5-dietoxifenil)-1-(4-metilsulfonilfenil)imidazol;
4-cloro-5-(4-etoxifenil)-1-(4-metilsulfonilfenil)imidazol;
4-cloro-1-(4-metilsulfonilfenil)-5-(4-nitrofenil)imidazol;
4-cloro-5-(4-metilsulfanilfenil)-1-(4-metilsulfonilfenil)imidazol;
15 4-cloro-5-(4-etilsulfanilfenil)-1-(4-metilsulfonilfenil)imidazol;
4-cloro-5-(6-etoxi-3-piridil)-1-(4-metilsulfonilfenil)imidazol;
4-bromo-5-(4-fluorofenil)-1-(4-metilsulfonilfenil)imidazol;
1-(4-fluorofenil)-2-metil-5-(4-metilsulfonilfenil)imidazol;
2-cloro-1-(4-fluorofenil)-5-(4-metilsulfonilfenil)imidazol;
20 1-(4-fluorofenil)-5-(4-metilsulfonilfenil)imidazol-2-carboxaldehido;
1-(4-fluorofenil)-5-(4-metilsulfonilfenil)imidazol-2-carboxilato de metilo;
2-bromo-1-(4-fluorofenil)-5-(4-metilsulfonilfenil)imidazol;
1-(4-fluorofenil)-5-(4-metilsulfonilfenil)imidazol-2-carbonitrilo;
2-cloro-1-fenil-5-(4-metilsulfonilfenil)imidazol;
25 2-cloro-1-(4-metilfenil)-5-(4-metilsulfonilfenil)imidazol;
4-[4-cloro-5-(4-fluorofenil)imidazol-1-il]bencenosulfonamida;
4-(4-cloro-5-fenilimidazol-1-il)bencenosulfonamida;
4-[4-cloro-5-(3,4-diclorofenil)imidazol-1-il]bencenosulfonamida;
4-[4-cloro-5-(4-metilfenil)imidazol-1-il]bencenosulfonamida;
30 4-[4-cloro-5-(4-etoxyfenil)imidazol-1-il]bencenosulfonamida;
4-[4-cloro-5-(3-fluoro-4-metoxifenil)imidazol-1-il]bencenosulfonamida;
4-[4-cloro-5-(6-cloro-3-piridil)imidazol-1-il]bencenosulfonamida;

4-[5-(4-fluorofenil)imidazol-1-il]bencenosulfonamida;

5-(4-aminofenil)-4-cloro-1-(4-metilsulfonifenil)imidazol;

5-(6-ethoxi-3-piridil)-1-(4-metilsulfonifenil)imidazol;

4-cloro-5-(4-dimetilaminofenil)-1-(4-metilsulfonifenil)imidazol;

5 5-(3-cloro-4-dimetilaminofenil)-1-(4-metilsulfonifenil)imidazol;

4-cloro-5-(3-cloro-4-dimetilaminofenil)-1-(4-metilsulfonifenil)imidazol;

5-(4-acetilaminofenil)-4-cloro-1-(4-metilsulfonifenil)imidazol;

5-(4-ethylsulfonifenil)-1-(4-metilsulfonifenil)imidazol;

5-(4-ethylsulfonifenil)-1-(4-metilsulfonifenil)imidazol;

10 o una sal, solvato o prodroga del mismo.

12.- Procedimiento para preparar un compuesto de fórmula I según la reivindicación 1 **caracterizado porque comprende:**

(a) cuando en un compuesto de fórmula I R₁ representa hidrógeno o metilo, hacer reaccionar una imina de fórmula II

15

donde X, Y, R₂ y R₃ tienen el significado descrito en la reivindicación 1, con un isocianuro de fórmula III

III

20 donde R₁ representa hidrógeno o metilo y L representa un buen grupo saliente;

ó

(b) cuando en un compuesto de fórmula I R₃ representa C₁₋₈ alquilo o C₁₋₈

haloalquilo, oxidar un tioéter de fórmula VIII,

5 donde R_3 representa C_{1-8} alquilo o C_{1-8} haloalquilo y X , Y , R_1 y R_2 tienen el significado descrito en la reivindicación 1, con un agente oxidante adecuado; ó
 (c) cuando en un compuesto de fórmula I R_3 representa un grupo $-NH_2$, hacer reaccionar un compuesto de fórmula IX

10

donde X , Y , R_1 y R_2 tienen el significado descrito en la reivindicación 1, con ácido hidroxilamino-O-sulfónico; ó

(d) cuando en un compuesto de fórmula I R_3 representa un grupo $-NR_4R_6$,
 15 hacer reaccionar un compuesto de fórmula XI

donde X, Y, R₁ y R₂ tienen el significado descrito en la reivindicación 1, con una amina de fórmula HNR₄R₆; ó

5 (e) cuando en un compuesto de fórmula I R₁ representa halógeno y X representa N, hacer reaccionar un compuesto de fórmula I donde R₁ representa hidrógeno con un agente halogenante adecuado;

10 (f) cuando en un compuesto de fórmula I R₁ representa halógeno y Y representa N, hacer reaccionar un compuesto de fórmula I donde R₁ representa hidrógeno con una base fuerte y un agente halogenante adecuado;

(g) transformar, en una o varias etapas, un compuesto de fórmula I en otro compuesto de fórmula I; y

(h) si se desea, después de las etapas anteriores, hacer reaccionar un compuesto de fórmula I con un ácido para dar la correspondiente sal de adición.

13.- Una composición farmacéutica que comprende una cantidad efectiva de un compuesto de fórmula I según la reivindicación 1 o una sal, solvato o prodroga farmacéuticamente aceptable del mismo mezclado con uno o más excipientes farmacéuticamente aceptables.

20 14.- El uso de un compuesto de fórmula I según la reivindicación 1 o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para la manufactura de un medicamento para el tratamiento o prevención de enfermedades mediadas por la ciclooxigenasa.

25 15.- El uso de un compuesto de fórmula I según la reivindicación 1 o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para la manufactura de un medicamento para el tratamiento o prevención de enfermedades mediadas por la ciclooxigenasa-2.

16.- El uso de un compuesto de fórmula I según la reivindicación 1 o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para la manufactura de un medicamento para el tratamiento de la inflamación, dolor y/o fiebre.

5 17.- El uso de un compuesto de fórmula I según la reivindicación 1 o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para la manufactura de un medicamento para inhibir la contracción de la musculatura lisa inducida por prostanoides.

18.- El uso de un compuesto de fórmula I según la reivindicación 1 o una sal, 10 solvato o prodroga farmacéuticamente aceptable del mismo para la manufactura de un medicamento para el tratamiento o prevención de la dismenorrea, parto prematuro, asma y bronquitis.

19.- El uso de un compuesto de fórmula I según la reivindicación 1 o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para la 15 manufactura de un medicamento para el tratamiento o prevención del cáncer.

20.- Uso según la reivindicación 19 donde el cáncer es un cáncer gastrointestinal.

21.- Uso según la reivindicación 20 donde el cáncer gastrointestinal es cáncer de colon.

20 22.- El uso de un compuesto de fórmula I según la reivindicación 1 o una sal, solvato o prodroga farmacéuticamente aceptable del mismo para la manufactura de un medicamento para el tratamiento o prevención de infartos cerebrales, epilepsia, y enfermedades neurodegenerativas como la enfermedad de Alzheimer y la demencia.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/ES 99/00327

A. CLASSIFICATION OF SUBJECT MATTER⁶:

IPC7 C07D 233/64, 233/68, A61K 31/4164

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7 C07D, A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CIBEPAT, STN

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 9603387 A (G.D. SEARLE & CO) 08 February 1996 (08.02.96), the whole document	1-12
A	WO 9603388 A (G.D. SEARLE & CO) 08 February 1996 (08.02.96), the whole document	1-12
A	US 3901908 A (FITZI et al) 26 August 1975 (26.08.75), the whole document	1-12
A	EP 74130 A (ZAMBON, S.P.C.) 16 March 1983 (16.03.83), the whole document	1-12
A	KHANNA, I.K. et al. 1, 2 diarylimidazoles as potent, cyclooxygenase -2-selective, and orally active antiinflammatory agents. J. Med. Chem. 1997, Vol. 40, pages 1634-1647, the whole document	1-12

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
21 January 2000 (21.01.00)

Date of mailing of the international search report
02 February 2000 (02.02.00)

Name and mailing address of the ISA/
S.P.T.O.
Facsimile No.

Authorized officer
Telephone No.

INTERNATIONAL SEARCH REPORT
Information on patent family members

International Application No

PCT/ES 99/00327

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9603387 A	08.02.1996	AU 32716/95A1 CA 2195846 AA EP 772601 A1 US 5620999 A	22.02.1996 08.02.1996 14.05.1997 15.04.1997
WO 9603388 A	08.02.1996	AU 32025/95A1 CA 2195845 AA EP 772600 A1 JP 10503211 T2 US 5616601 A	22.02.1996 08.02.1996 14.05.1997 24.03.1998 01.04.1997
US 3901908 A	26.08.1975	US 3784691 A	16.06.1974
EP 74130 A	16.03.1983	AT 56707 E AU 86605/82 A1 CA 1186315 A1 DE 3280245 CO DK 3418/82 A ES 515895 A1 ES 8403463 A1 GR 76883 A IT 8123270 A0 JP 58049369 A2 PT 75338 A US 4560696 A ZA 8205428 A	15.10.1990 03.02.1983 30.04.1985 25.10.1990 01.02.1983 01.04.1984 16.06.1984 04.09.1984 31.07.1981 23.03.1983 01.08.1982 24.12.1985 31.08.1983

INFORME DE BÚSQUEDA INTERNACIONAL

Solicitud internacional nº
PCT/ ES 99/00327

A. CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD

CIP⁷ C07D 233/64, 233/68, A61K 31/4164

De acuerdo con la Clasificación Internacional de Patentes (CIP) o según la clasificación nacional y la CIP.

B. SECTORES COMPRENDIDOS POR LA BÚSQUEDA

Documentación mínima consultada (sistema de clasificación, seguido de los símbolos de clasificación)

CIP⁷ C07D, A61K

Otra documentación consultada, además de la documentación mínima, en la medida en que tales documentos formen parte de los sectores comprendidos por la búsqueda

Bases de datos electrónicas consultadas durante la búsqueda internacional (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)

CIBEPAT, STN

C. DOCUMENTOS CONSIDERADOS RELEVANTES

Categoría*	Documentos citados, con indicación, si procede, de las partes relevantes	Relevante para las reivindicaciones nº
A	WO 9603387 A (G.D. SEARLE & CO) 08.02.1996, todo el documento	1-12
A	WO 9603388 A (G.D. SEARLE & CO) 08.02.1996, todo el documento	1-12
A	US 3901908 A (FITZI et al) 26.08.1975, todo el documento	1-12
A	EP 74130 A (ZAMBON, S.P.C.) 16.03.1983, todo el documento	1-12
A	KHANNA, I.K. et al. 1,2 diarylimidazoles as potent, cyclooxygenase -2- selective, and orally active antiinflammatory agents. J. Med. Chem. 1997, Vol. 40, páginas 1634-1647, todo el documento	1-12

En la continuación del recuadro C se relacionan otros documentos Los documentos de familia de patentes se indican en el anexo

• Categorías especiales de documentos citados:	
“A” documento que define el estado general de la técnica no considerado como particularmente relevante.	“T” documento ulterior publicado con posterioridad a la fecha de presentación internacional o de prioridad que no pertenece al estado de la técnica pertinente pero que se cita por permitir la comprensión del principio o teoría que constituye la base de la invención.
“E” solicitud de patente o patente anterior pero publicada en la fecha de presentación internacional o en fecha posterior.	“X” documento particularmente relevante; la invención reivindicada no puede considerarse nueva o que implique una actividad inventiva por referencia al documento aisladamente considerado.
“L” documento que puede plantear dudas sobre una reivindicación de prioridad o que se cita para determinar la fecha de publicación de otra cita o por una razón especial (como la indicada).	“Y” documento particularmente relevante; la invención reivindicada no puede considerarse que implique una actividad inventiva cuando el documento se asocia a otro u otros documentos de la misma naturaleza, cuya combinación resulta evidente para un experto en la materia.
“O” documento que se refiere a una divulgación oral, a una utilización, a una exposición o a cualquier otro medio.	“&” documento que forma parte de la misma familia de patentes.
“P” documento publicado antes de la fecha de presentación internacional pero con posterioridad a la fecha de prioridad reivindicada.	

Fecha en que se ha concluido efectivamente la búsqueda internacional. 21 Enero 2000 (21.01.2000)	Fecha de expedición del informe de búsqueda internacional 12 FEB 2000 02.02.00
Nombre y dirección postal de la Administración encargada de la búsqueda internacional O.E.P.M. C/I Panamá 1, 28071 Madrid, España. nº de fax +34 91 3495304	Funcionario autorizado HORTENSIA AYLAGAS nº de teléfono + 34 91 3495475

INFORME DE BÚSQUEDA INTERNACIONAL
Información relativa a miembros de familias de patentes

Solicitud internacional nº

PCT/ ES 99/00327

Documento de patente citado en el informe de búsqueda	Fecha de publicación	Miembro(s) de la familia de patentes	Fecha de publicación
WO 9603387 A	08.02.1996	AU 32716/95A1 CA 2195846 AA EP 772601 A1 US 5620999 A	22.02.1996 08.02.1996 14.05.1997 15.04.1997
WO 9603388 A	08.02.1996	AU 32025/95A1 CA 2195845 AA EP 772600 A1 JP 10503211 T2 US 5616601 A	22.02.1996 08.02.1996 14.05.1997 24.03.1998 01.04.1997
US 3901908 A	26.08.1975	US 3784691 A	16.06.1974
EP 74130 A	16.03.1983	AT 56707 E AU 86605/82 A1 CA 1186315 A1 DE 3280245 CO DK 3418/82 A ES 515895 A1 ES 8403463 A1 GR 76883 A IT 8123270 A0 JP 58049369 A2 PT 75338 A US 4560696 A ZA 8205428 A	15.10.1990 03.02.1983 30.04.1985 25.10.1990 01.02.1983 01.04.1984 16.06.1984 04.09.1984 31.07.1981 23.03.1983 01.08.1982 24.12.1985 31.08.1983