TRABAJO ENCARGADO DE TEORIA

Realizar el "análisis estadístico" para al menos UN (01) método diferente (**DCA, DBCA, Y/O arreglo factorial**) aplicados a un artículo científico o en su tesis de pregrado o maestría*, que haya <u>sido publicado preferentemente en Q1 o Q2; y que haya sido publico después del 01.01.2021.</u>

El trabajo deberá seguir la estructura de un "informe científico":

- Caratula,
- Introducción (incluye los objetivos)
- Marco teórico (lo más sucinto posible)
- Metodología (análisis de los supuestos estadísticos, modelo estadístico aplicado, etc.)
- Resultados y Discusiones (haciendo énfasis en el análisis de los datos)
- Conclusiones
- Bibliografía
- Anexos (lista de las tablas estadísticas utilizadas en el trabajo)

FECHA MÁXIMA DE ENTREGA: 01/10/2024, hasta las 10 a.m. en la plataforma Moodle del curso.

Ejemplo:

Tabla 1: Datos a analizar

Diagras	Tı	TOTAL		
Bloques	TM	UVVS	IJ	IOIAL
	2.8667	2.8965	3.0877	8.8509
Cp	2.9822	2.9535	3.2688	9.2045
-	2.7512	2.8395	2.9066	8.4973
	7.4333	7.1822	7.9497	22.5652
Ki	7.5410	7.2263	8.1382	22.9055
	7.3256	7.1381	7.7612	22.2249
	12.9333	12.5928	13.8274	39.3535
Rz	13.0488	12.6422	14.0468	39.7378
	12.8178	12.5434	13.6080	38.9692
Total	69.6999	68.0145	74.5944	212.3088

3.1. ANOVA

3.1.1. Formulación de la hipótesis para el tratamiento (método de análisis)

Ho: El resultado del índice de peróxidos es igual para todos los métodos de análisis.

Ha: El resultado del índice de peróxidos no es igual en al menos uno de los métodos de análisis.

3.1.2. Formulación de la hipótesis para el bloque (tipo de aceite)

Ho: El resultado del índice de peróxido es igual en todos los tipos de aceites.

Ha: El resultado del índice de peróxidos no es igual en al menos uno de los tipos de aceite.

3.1.3. Cálculos

$$N = r * b * t = 3 * 3 * 3 = 27$$

$$t = 3$$

$$b = 3$$

Donde:

r: Repeticiones

t: Tratamientos

b: Bloques

a. Hallando el término de corrección (TC)

$$TC = \frac{\left(\sum_{i=1}^{i=3} \sum_{j=1}^{j=9} x_{ij}\right)^2}{N}$$

$$TC = \frac{(2.8667 + 2.8965 + \dots + 12.5434 + 13.6080)^2}{27} = \frac{(212.3088)^2}{27} = \mathbf{1669.45}$$

b. Hallando la suma de cuadrados totales (SCTo)

$$SCTo = \sum_{i=1}^{i=3} \sum_{j=1}^{j=9} x_{ij}^2 - TC$$

$$SCTo = 2.8667^2 + 2.8965^2 + \dots + 12.5434^2 + 13.6080^2 - 1669.45$$

c. Hallando la suma de cuadrados del tratamiento (SCTr)

$$SCTr = \frac{\sum_{i=1}^{t=3} Y_i^2}{b * r} - TC$$

$$SCTr = \frac{69.6999^2 + 68.0145^2 + 74.5944^2}{9} - 1669.45 = \frac{15048.37}{9} - 1699.45$$

SCTr = 2.59

 $SCTr = \frac{\sum_{j=1}^{r.b=9} Y_j^2}{t} - TC$

d. Hallando la suma de cuadrados del bloque (SCBq)

$$SCBq = \frac{8.8509^2 + 9.2045^2 + \dots + 39.7378^2 + 38.9692^2}{3} - 1669.45$$

$$SCBq = \frac{6409.45}{3} - 1699.45 = 467.03$$

e. Hallando la suma de cuadrados del Error (SCEr)

$$SCEr = SCTo - SCTr - SCBq$$

 $SCEr = 470.54 - 2.59 - 467.03 = 0.92$

$$Fc_{Bq} = \frac{233.52}{0.04} = 5838$$

k. Resultados e interpretación del ANOVA

Tabla 2: ANOVA

F.V	GL	SC	CM	Fc	F5%
Método	2	2.59	1.30	32.5	3.44
Aceite	2	467.03	233.52	5838	3.44
Error	22	0.92	0.04		
Total	26	470.54			

3.2.2. Prueba de Tukey para el bloque

 $\textbf{Ho:} \ Rz\text{=}Ki; \ RZ\text{=}Cp; \ Ki\text{=}Cp$

 $extbf{Ha:} Rz \neq Ki; RZ \neq Cp; Ki \neq Cp$

$$DMS = q_{\alpha(k,Gl_{Er})} * \sqrt{\frac{CME}{b}}$$

 $q_{\alpha(3,22)}=3.55$ (de tabla de distribución Tukey)

$$DMS = 3.55 * \sqrt{\frac{0.04}{3}}$$

Anexo 3. Tabla de distribución de Fisher

	Grados de libertad del numerador												
	1	2	3	4	5	6	7	8	9	10	12		
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	243.91		
2	18.513	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.385	19.396	19.413		
3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123	8.7855	8.7446		
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	5.9988	5.9644	5.9117		
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725	4.7351	4.6777		
6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990	4.0600	3.9999		
7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767	3,6365	3.5747		
8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881	3.3472	3.2839		
9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789	3.1373	3.0729		
10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.0204	2.9782	2.9130		

Anexo 4: Cuantiles de la distribución Tukey

							n							
$\alpha = 0.05$	2	3	4	5	6	7	8	9	10	11	12	13	14	15
m														
2	6.08	8.33	9.80	10.88	11.73	12.43	13.03	13.54	13.99	14.40	14.76	15.09	15.39	15.67
3	4.50	5.91	6.82	7.50	8.04	8.48	8.85	9.18	9.46	9.72	9.95	10.15	10.35	10.52
4	3.93	5.04	5.76	6.29	6.71	7.05	7.35	7.60	7.83	8.03	8.21	8.37	8.52	8.66
5	3.64	4.60	5.22	5.67	6.03	6.33	6.58	6.80	6.99	7.17	7.32	7.47	7.60	7.72
6	3.46	4.34	4.90	5.30	5.63	5.90	6.12	6.32	6.49	6.65	6.79	6.92	7.03	7.14
7	3.34	4.16	4.68	5.06	5.36	5.61	5.82	6.00	6.16	6.30	6.43	6.55	6.66	6.76
8	3.26	4.04	4.53	4.89	5.17	5.40	5.60	5.77	5.92	6.05	6.18	6.29	6.39	6.48
9	3.20	3.95	4.41	4.76	5.02	5.24	5.43	5.59	5.74	5.87	5.98	6.09	6.19	6.28
10	3.15	3.88	4.33	4.65	4.91	5.12	5.30	5.46	5.60	5.72	5.83	5.93	6.03	6.11