Presentado por: Miguel Fernando Becerra Código: 2201888

Karen Sarat Anaya Verdugo 2200813

Taller tensores

Sección 3.3.5

Punto 2

Inciso a.

Jección 3,3,5

2. Encuentre:

a. La parte simétrico
$$S_{j}^{+}$$
 y antisimétrico A_{j}^{+} del tensor

 R_{j}^{+} :

 $R_{j}^{+} = \begin{pmatrix} \frac{1}{2} & \frac{3}{3} & \frac{3}{2} \\ \frac{2}{2} & \frac{3}{2} & \frac{3}{2} \\ \frac{2}{2} & \frac{3}{2} & \frac{3}{2} \end{pmatrix}$

Porte simétrico

 $S_{j}^{+} = \frac{1}{2} \begin{pmatrix} R_{j}^{+} + R_{j}^{+} \end{pmatrix}$
 $S_{j}^{+} = \frac{1}{2} \begin{pmatrix} R_{j}^{+} - R_{j}^{+} \end{pmatrix}$
 $S_{j}^{+} = \frac{1}{2} \begin{pmatrix} R_{j}^{+} - R_{j}^{+} \end{pmatrix}$

Porte antisimétricol

 $A_{j}^{+} = \frac{1}{2} \begin{pmatrix} R_{j}^{+} - R_{j}^{+} \end{pmatrix}$
 $A_{j}^{+} = \frac{1}$

$$T_{i} = \begin{pmatrix} 1/3 \\ 2/3 \\ 1 \end{pmatrix} \qquad g^{ij} = g_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R_{\nu_j} = \begin{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{3} & \frac{3}{2} \\ \frac{2}{3} & \frac{5}{2} & \frac{3}{4} \\ \frac{3}{2} & \frac{4}{3} & \frac{9}{2} \end{pmatrix}$$

o
$$R^{ki} = g^{ik} R^{i}$$

Al exponduto.

 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = g^{ij} R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = g^{ij} R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i} = g^{ij} R^{i}$
 $R^{ii} = g^{ij} R^{i} = g^{ij} R^{i}$
 $R^{ii} = g^{ij} R^{i}$

Inciso c & d

()	A	- i	= (0 -	-172	600	_		1	3							
	j. 5 6	×7	1	2	0	0	1/2		21	3	-						
			1	7	1/2	0			7								
	A J	i =	-	4/3		=	Iv	13									
				2/3													
d	Ai	70.	Ţ	=) × !	13	1 ×										
				=	M	T			M:	1/2		+	M	3 7	3		
				=	(-H)	1	3)	+	(-	13)	1-3	3)	+			7)
				=	U 9 1												

• Inciso e

2)	0	(C.	-	-	2	2	Q	MM		4		R	0 1-7			2 8	1	15/2									
											11		R	3	3	1	5	53										
											-		12		5/-		9	2	1	-		500	1	0 2 0	1			
													29	12		-2	1/2		3 7 202	12	-		-		5			
	1							1)			63			S	3	Tu		-	-	[i	5	4.00					
						,	-			2		21		1	13	-	2/2	,	17		-2	2	2		23	12		9/2
												18	1	1	61:	3	, 93	3/	3	, -	12			R	1	1	3	
	. (R.	-	2	85	P	1	1)	Ti	T			5	,	i	T		-		M	6.0	T	i					
											A		5-	13	,	38	/3	,	-12	7		2						
-		-										K	- !	40														

Punto 8

Inciso a & b

8.
$$9' = x + y$$
; $9' = x - y$; $9' = 2z$

9. $9' = (1, 1, 0)$ $9' = (1, 1, 0)$ $9' = (0, 0, 2)$

Compruebe que el sistemo es ortogonal.

9. $9' = (1x1) + (1x1) + (0x2)$

= $0 + 0 + 0 = 0$

1. $9' = (1x0) + (1x0) + (0x2)$

= $0 + 0 + 0 = 0$

Como los productal ponto entre los 3 Vectores es 0, conformo un sistema de coordenacial ortogonales.

6. Encuentre los vectores base para este sistema de coordenacias.

 $X = \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times$

Inciso c

d. Encuentre las expresiones en el sistema (9, 92, 93) Para los vectores. A=25 , B=++25 , C=++7+3k $\begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 2 & 2 & 7 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 8 \\ -2 & -1 & -6 \\ 6 & 0 & 6 \end{pmatrix}$ Matriz De transformación e. Encoentre en el sistema (9', 92, 93) las expresiones para la siguientes relaciones vectoriales. $A \times B = \begin{pmatrix} 2 \\ +2 \\ 0 \end{pmatrix} \times \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$ $A \cdot C = \begin{pmatrix} 2 \\ -2 \end{pmatrix} \begin{pmatrix} 8 \\ -6 \end{pmatrix} = (16) + (12) + (0) = 28$ $(A \times B) \cdot C = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 8 \\ -6 \\ 6 \end{pmatrix} = 0 + 0 + 24 = 24$ d'Qué se puede decir si se compara esas expresiones en ambos sistemos de coordenados? Si se compara con coordenadas cartesianas el resultado será diferente debido a las bases usadas para el calculo.

• Inciso f

	900 49	75	11/27			
	3 42		2/3			
	1 10 113					
	1 -2 0 213					
	0 0 2] [1]					
	Exi ixi					
7 -						
	1.12					
	1-1/3					

Sección 3.4.3

Punto 6

Inciso a & b

• Inciso c

E) FAIL DAFIX +	DVFXM = 0	VXE = 08
- EMVER DY FOR =0		96
evendo peza	Earch = Evore	
O = EOVAR DVFAR =	= EVOR DVEWBK BR	
- FW = EWX BX	= Exas Evas 2v Bx	
	= 25 × 2 × 8 ×	
	= 2 2x Bx	
	= 2(7.8) = 0	