## Projekt 4 Algorytmy Ewolucyjne

Autor: Bartłomiej Boczek

#### 1. Cel projektu

Znajdź rozwiązanie problemu wektorowego dla funkcji N.1 Schaffer'a w postaci frontu Pareto:

$$\min \begin{bmatrix} x^2 \\ (x-2)^2 \end{bmatrix} \qquad -5 < x < 5$$

# 2. Porównanie metod GA multi-objective, optymalizacji wielostartowej z agregacją oraz algorytmem punku idealnego

Wartości punktów zdominowanych dla odpowiednich metod, posortowane rosnąco:

Eksperyment 1

| GA multi-objective |                    | Multistart         |        |                    | Punkt idealny      |        |                    |                    |
|--------------------|--------------------|--------------------|--------|--------------------|--------------------|--------|--------------------|--------------------|
| Х                  | f <sub>1</sub> (x) | f <sub>2</sub> (x) | х      | f <sub>1</sub> (x) | f <sub>2</sub> (x) | х      | f <sub>1</sub> (x) | f <sub>2</sub> (x) |
| 0.0001             | 0.0000             | 3.9998             | 0.5983 | 0.3580             | 1.9646             | 0.0005 | 0.0000             | 3.9979             |
| 0.0611             | 0.0037             | 3.7594             | 0.6903 | 0.4765             | 1.7154             | 0.4000 | 0.1600             | 2.5600             |
| 0.1378             | 0.0190             | 3.4679             | 0.7376 | 0.5441             | 1.5936             | 0.5350 | 0.2862             | 2.1463             |
| 0.2450             | 0.0600             | 3.0800             | 0.7633 | 0.5827             | 1.5293             | 0.6329 | 0.4005             | 1.8691             |
| 0.2970             | 0.0882             | 2.9001             | 0.8509 | 0.7240             | 1.3204             | 0.7136 | 0.5092             | 1.6549             |
| 0.4858             | 0.2360             | 2.2929             | 0.8910 | 0.7939             | 1.2299             | 0.7846 | 0.6155             | 1.4773             |
| 0.5864             | 0.3439             | 1.9983             | 0.9026 | 0.8146             | 1.2044             | 0.8496 | 0.7218             | 1.3234             |
| 0.7256             | 0.5264             | 1.6242             | 0.9070 | 0.8227             | 1.1946             | 0.9111 | 0.8300             | 1.1858             |
| 0.8020             | 0.6432             | 1.4352             | 0.9091 | 0.8264             | 1.1901             | 0.9706 | 0.9420             | 1.0597             |
| 0.8955             | 0.8020             | 1.2199             | 0.9242 | 0.8541             | 1.1574             | 1.0294 | 1.0597             | 0.9420             |
| 0.9687             | 0.9383             | 1.0637             | 0.9418 | 0.8869             | 1.1199             | 1.0889 | 1.1858             | 0.8300             |
| 1.0666             | 1.1375             | 0.8713             | 0.9853 | 0.9707             | 1.0297             | 1.1504 | 1.3234             | 0.7218             |
| 1.0670             | 1.1384             | 0.8706             | 1.1332 | 1.2840             | 0.7514             | 1.2154 | 1.4773             | 0.6155             |
| 1.1810             | 1.3948             | 0.6708             | 1.3120 | 1.7213             | 0.4734             | 1.2864 | 1.6549             | 0.5092             |

| 1.2565 | 1.5789 | 0.5527 | 1.3463 | 1.8125 | 0.4273 | 1.3671 | 1.8691 | 0.4005 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1.4626 | 2.1391 | 0.2888 | 1.4295 | 2.0434 | 0.3255 | 1.4650 | 2.1463 | 0.2862 |
| 2.0000 | 4.0001 | 0.0000 | 1.4607 | 2.1337 | 0.2908 | 1.6000 | 2.5600 | 0.1600 |
| 2.0000 | 4.0001 | 0.0000 | 1.7823 | 3.1766 | 0.0474 | 1.9989 | 3.9955 | 0.0000 |

## Wykresy:

### Eksperyment 1:







Eskperyment 2

| GA multi-objective | Multistart | Punkt idealny |
|--------------------|------------|---------------|

| Х      | f <sub>1</sub> (x) | f <sub>2</sub> (x) | х      | f <sub>1</sub> (x) | f <sub>2</sub> (x) | х      | f <sub>1</sub> (x) | f <sub>2</sub> (x) |
|--------|--------------------|--------------------|--------|--------------------|--------------------|--------|--------------------|--------------------|
| 0.0000 | 0.0000             | 4.0001             | 0.3537 | 0.1251             | 2.7104             | 0.0005 | 0.0000             | 3.9979             |
| 0.0000 | 0.0000             | 4.0001             | 0.4304 | 0.1852             | 2.4638             | 0.4000 | 0.1600             | 2.5600             |
| 0.3811 | 0.1453             | 2.6207             | 0.6454 | 0.4165             | 1.8351             | 0.5350 | 0.2862             | 2.1463             |
| 0.5307 | 0.2816             | 2.1590             | 0.7446 | 0.5544             | 1.5761             | 0.6329 | 0.4005             | 1.8691             |
| 0.5540 | 0.3069             | 2.0909             | 0.7950 | 0.6321             | 1.4519             | 0.7136 | 0.5092             | 1.6549             |
| 0.6537 | 0.4274             | 1.8125             | 0.8320 | 0.6922             | 1.3642             | 0.7846 | 0.6155             | 1.4773             |
| 0.7518 | 0.5652             | 1.5579             | 0.8656 | 0.7492             | 1.2869             | 0.8496 | 0.7218             | 1.3234             |
| 0.8147 | 0.6637             | 1.4050             | 0.8726 | 0.7615             | 1.2710             | 0.9111 | 0.8300             | 1.1858             |
| 0.9037 | 0.8167             | 1.2018             | 0.9002 | 0.8103             | 1.2096             | 0.9706 | 0.9420             | 1.0597             |
| 1.2496 | 1.5616             | 0.5630             | 0.9012 | 0.8121             | 1.2074             | 1.0294 | 1.0597             | 0.9420             |
| 1.3401 | 1.7959             | 0.4355             | 0.9140 | 0.8353             | 1.1795             | 1.0889 | 1.1858             | 0.8300             |
| 1.3730 | 1.8853             | 0.3931             | 0.9829 | 0.9662             | 1.0344             | 1.1504 | 1.3234             | 0.7218             |
| 1.5133 | 2.2899             | 0.2369             | 0.9896 | 0.9794             | 1.0208             | 1.2154 | 1.4773             | 0.6155             |
| 1.6423 | 2.6973             | 0.1279             | 1.0822 | 1.1712             | 0.8423             | 1.2864 | 1.6549             | 0.5092             |
| 1.7601 | 3.0981             | 0.0575             | 1.0889 | 1.1856             | 0.8302             | 1.3671 | 1.8691             | 0.4005             |
| 1.8750 | 3.5158             | 0.0156             | 1.1328 | 1.2833             | 0.7520             | 1.4650 | 2.1463             | 0.2862             |
| 2.0000 | 4.0001             | 0.0000             | 1.3284 | 1.7647             | 0.4510             | 1.6000 | 2.5600             | 0.1600             |
| 2.0000 | 4.0001             | 0.0000             | 1.5967 | 2.5493             | 0.1627             | 1.9989 | 3.9955             | 0.0000             |

#### Wykresy:

#### Eksperyment 2







#### 3. Wnioski:

Jak widać po powyższych eksperymentach metoda GA multi-objective zwraca wyniki najbardziej nieregularnie rozłożone na froncie Pareto. Metoda Multistart zwraca bardziej regularnie rozłożone wyniki, natomiast metoda punktu idealnego zwraca wyniki rozłożone równomiernie.

Wynika to z zastosowania agregacji, a dokładniej sposobu doboru wag funkcji agregującej. W przypadku metody punktu idealnego wagi te są dobierane równomiernie, natomiast w metodzie multistart są losowane z rozkładem równomiernym. Dlatego też w przypadku wykonania dużej ilości iteracji algorytmów otrzymalibyśmy bardzo zbliżone rezultaty w tych dwóch metodach. GA multi objective używa algorytmu genetycznego do optymalizacji, dlatego jego wyniki są bardziej nieregularne.