Boolean Logic and Sets - Detailed Notes

Author: Shekh Mostofa Abedin

1. Boolean Logic

Basic Operations

- AND (∧):
 - True if both operands are true.
 - o Example: 1 ∧ 1 = 1, 1 ∧ 0 = 0
- OR (V):
 - True if at least one operand is true.
 - Example: 1 \(\text{0} = 1, 0 \(\text{V} \(\text{0} = 0 \)
- NOT (¬):
 - Inverts the value.
 - o Example: ¬1 = 0, ¬0 = 1
- XOR (⊕):
 - True if the operands are different.
 - Example: $1 \oplus 0 = 1, 1 \oplus 1 = 0$
- IF-THEN (⇒):
 - Also known as implication. $p \Rightarrow q$ is false only when p is true and q is false. In all other cases, it is
 - Example: If p = 1 (True) and q = 0 (False), then $p \Rightarrow q = 0$ (False).
 - If p = 0, the result is always True, regardless of q.
- IF AND ONLY IF (⇔):
 - Also known as biconditional. p

 q is true if both p and q are either true or false. It is false if
 one is true and the other is false.
 - Example: If p = 1 and q = 1, then $p \Leftrightarrow q = 1$. If p = 1 and q = 0, then $p \Leftrightarrow q = 0$.

Truth Tables

• A truth table lists all possible values of a Boolean expression.

Truth Tables for Basic Logical Operators

1. AND (∧)

р	q	p∧q		
Т	Т	T F		
Т	F			
F	Т	F		
F	F	F		

2. OR (∨)

р	q	p∨q		
T	Т	Т		
T	F	Т		
F	Т	Т		
	Е	Е		

3. XOR (⊕)

	р	q	p⊕ q
	T	Т	F
	T	F	Т
•	F	Т	Т
•	F	F	F

4. NOT (¬)

5. IF-THEN (⇒)

р	q	p ⇒ q			
Т	T	T			
Т	F	F			
F	T	Т			
F	F	Т			

6. IF AND ONLY IF (⇔)

Р	q	p ⇔ d	
Т	Т	Т	
Т	F	F	
F	Т	F	

р	q	$p \Leftrightarrow q$
F	F	Т

Example:

The expression we are evaluating is a combination of all the basic operators: $(p \land q) \lor (\neg p \oplus r) \Rightarrow (p \Leftrightarrow q)$

р	q	r	¬р	p∧q	¬p ⊕ r	$(p \land q) \lor (\neg p \oplus r)$	$p \Leftrightarrow q$	$(p \land q) \lor (\neg p \oplus r) \Rightarrow (p \Leftrightarrow q)$
0	0	0	1	0	1	1	1	1
0	0	1	1	0	0	0	1	1
0	1	0	1	0	1	1	0	0
0	1	1	1	0	0	0	0	1
1	0	0	0	0	0	0	0	1
1	0	1	0	0	1	1	0	0
1	1	0	0	1	0	1	1	1
1	1	1	0	1	1	1	1	1

Bitwise Operations

• AND, OR, XOR, NOT can also be applied to binary numbers bit by bit.

```
AND Example: 1101 \( \times \) 1011 = 1001
OR Example: 1101 \( \times \) 1011 = 1111
XOR Example: 1101 \( \phi \) 1011 = 0110
NOT Example: \( \times \) 1101 = 0010
```

• Shifts:

• **Left Shift (<<)**: Shifts bits to the left, filling with zeros on the right.

```
■ Example: 1011 << 2 = 101100
```

• **Right Shift (>>)**: Shifts bits to the right, discarding bits on the right.

```
■ Example: 1101 >> 2 = 0011
```

Logical Implications

- Implication (⇒):
 - $\circ p \Rightarrow q$ is false only when p is true and q is false.
 - Example: If p = 1 and q = 0, then $p \Rightarrow q$ is false.

2. Sets

Overview

Set Operations

- **Union** (∪): The set containing all elements from both sets.
 - Example: $A \cup B$ where $A = \{1, 2\}$ and $B = \{2, 3\}$ results in $\{1, 2, 3\}$.
- Intersection (n): The set containing only elements that are in both sets.
 - \circ Example: A \cap B where A = {1, 2} and B = {2, 3} results in {2}.
- Relative Complement (A B): The set of elements in A that are not in B.
 - Example: A B where A = $\{1, 2, 3\}$ and B = $\{2, 4\}$ results in $\{1, 3\}$.
- Complement (A'): The set of elements not in A relative to the universal set U.
 - Example: If $U = \{1, 2, 3, 4, 5\}$ and $A = \{1, 2\}$, then $A' = \{3, 4, 5\}$.

Set Builder Notation

Set Builder Notation

- Describes a set by stating the properties that its members must satisfy.
 - **Example**: $A = \{ x \mid x \in \mathbb{N}, x < 5 \}$ defines the set of natural numbers less than 5, i.e., $\{1, 2, 3, 4\}$.

Different Possible Conditions in Set Builder Notation:

- Condition on Membership in a Set:
 - $\circ x \in \mathbb{N}$: (x) is a natural number.
 - $\circ x \in Z$: (x) is an integer.
 - $\circ x \in \mathbb{Q}$: (x) is a rational number.
- Conditions Based on Inequalities:
 - o x < 10: (x) is less than 10.
 - \circ x \geq 0: (x) is greater than or equal to 0.
 - \circ 3 \leq x < 15: (x) is between 3 and 15 (inclusive of 3, but less than 15).
- Conditions Based on Modular Arithmetic:
 - \circ x mod 2 = 0: (x) is even.
 - \circ x mod 3 = 1: When divided by 3, (x) leaves a remainder of 1.
- Conditions Based on Divisibility:
 - \circ x \ mod \ 5 = 0: (x) is divisible by 5.
 - \circ x \ mod \ 4 \neq 0: (x) is not divisible by 4.

Example Combining Multiple Conditions:

- Example: $A = \{ x \mid x \in \mathbb{N}, x < 10, x \mod 2 == 0 \}$
 - Explanation:
 - (x) is a natural number.
 - (x) is less than 10.
 - (x) is even (i.e., (x) is divisible by 2).

- **Result**: (A = {2, 4, 6, 8}).
- **Example**: $B = \{ y \mid y \in Z, y > -5, y \mod 3 = 1 \}$
 - Explanation:
 - (y) is an integer.
 - (y) is greater than -5.
 - (y) leaves a remainder of 1 when divided by 3.
 - **Result**: (B = {-4, -1, 2, 5, 8, \dots}) (continuing with values greater than -5 that satisfy the conditions).

Venn Diagrams

- Visual Representation: Venn diagrams are often used to represent sets and their relationships.
 - **Union**: Area covered by both circles.
 - **Intersection**: Overlapping area of circles.
 - **Complement**: Area outside the circle of the set being considered.

Key Points to Remember

- No duplicates in a set.
- Order of elements in a set does not matter.
- Set operations are foundational in mathematics and computer science.