Assignment 1

- 1. \mathcal{C}^A : The objects are things of the form $f: A \to Z$
 - Morphisms between objects are things like $\sigma \in \operatorname{Hom}_{\mathcal{C}}(Z_1, Z_2)$ that make

commute.

– Let two morphisms $\varphi \in \text{Hom}(Z_1, Z_2)$ and $\psi \in \text{Hom}(Z_2, Z_3)$ be given. Then we have

and we know that the left triangle and the right triangle commute. But then $f_3 = \psi \circ f_2$, and $f_2 = \varphi \circ f_1$, so $f_3 = \psi \circ \varphi \circ f_1$, which is precisely what we wanted.

– The identity is the identity on Z inherited from C, namely the morphism $\mathrm{id}_Z \in \mathrm{Hom}_{\mathcal{C}}(Z,Z)$ such that

commutes. Notice that the identity here obeys the comp. rule on both sides. Namely, the diagrams

$$Z \xrightarrow{\operatorname{id}_{Z}} Z \xrightarrow{\psi} G F \xrightarrow{f} Z \xrightarrow{\operatorname{id}_{Z}} Z$$

Both commute and then also $id_Z \circ \varphi = \varphi$ and $\psi \circ id_Z = \psi$.

 $C_{A,B}$: – The Objects are things that look like

– Morphisms between objects are maps $\sigma \in \operatorname{Hom}_{\mathcal{C}}(Z_1, Z_2)$ such that the diagram

commutes. Notice that the terminal objects in this category are precisely products.

– We check now composition. Let $\varphi \in \text{Hom}(F,G), \psi \in \text{Hom}(G,H)$ be given. Then we have:

But we know that the upper part of the diagram commutes since φ is a morphism, and likewise for the bottom part of the diagram with ψ . We want to show that the diagram

$$A
\downarrow^{f_A} \qquad F
\downarrow^{\psi \circ \varphi} \qquad B
\downarrow^{h_B} \qquad B$$

commutes, but this is immediate since we know that $f_A = g_A \circ \varphi$, but also $g_A = h_A \circ \psi$, so $f_A = h_A \circ \psi \circ \varphi$, which is what we wanted to show. (Technically this is only half, but the B side follows identically).

– The identity morphism is obviously just the identity inherited from C, namely, it is $\mathrm{id}_Z \in \mathrm{Hom}_{\mathcal{C}}(Z,Z)$, the morphism which causes the diagram

$$A \xrightarrow{z_A} Z \xrightarrow{z_B} B$$

$$Z \xrightarrow{z_B} B$$

to commute.

2. Proof. Suppose that we have $F, G \in \text{Obj}(\mathcal{C})$ that are both final objects in \mathcal{C} . Then, since F, G are final, then there exists unique morphisms $f \in \text{Hom}_{\mathcal{C}}(F, G)$, $g \in \text{Hom}_{\mathcal{C}}(G, F)$, and our goal is to show that the diagram

commutes and namely that f undoes g, and visa-versa.

In order to see this, recall that there must exist identity morphisms on F and G, so then the diagram

$$F \xrightarrow{f} G$$

$$\downarrow^{g} \downarrow^{\mathrm{id}_{G}}$$

$$F \xrightarrow{f} G$$

must commute with $g \circ f = \mathrm{id}_F$ and $f \circ g = \mathrm{id}_G$, so f and g are inverses, and so F and G are isomorphic.

3. The property aught to be that, for $A, B, C, Z \in \text{Obj}(\mathcal{C})$, $A \times B \times C$ is terminal, and has projections into A, B, and C such that for any $z_A : Z \to A$, $z_B : Z \to B$, $z_c : Z \to C$, there exists a unique φ such that the zs factor through φ . In other words, there exists a unique φ such that the diagram

commutes.

Then we realize that $(A \times B) \times C$ has this property, and notice that the argument for $A \times (B \times C)$ will follow identically.

Proof. Notice that we have that

$$(A \times B) \xleftarrow{z_{A,B}} (A \times B) \times C \xrightarrow{\pi_C} C$$

From the universal property of the product on $(A \times B)$ and C. But then also we can extend this diagram by noticing that $(A \times B)$ can be further expanded on as

So notice that we get that the projections which allow us to factor through φ are $\pi_A \circ \pi_{A,B}$, $\pi_B \circ \pi_{A,B}$, and π_C . Then this diagram commutes and haas the universal property of the triple product that I have asserted.

4. For each of p = 5, 7, 17:

 $p = 5 : (\mathbb{Z}/5\mathbb{Z})^* \cong \mathbb{Z}/4\mathbb{Z}$, so 2 generates the group

 $p = 7 : (\mathbb{Z}/7\mathbb{Z})^* \cong \mathbb{Z}/6\mathbb{Z}$, so 3 generates the group

 $p = 17 : (\mathbb{Z}/17\mathbb{Z})^* \cong \mathbb{Z}/16\mathbb{Z}$, so 3 generates the group

5. Recall that the universal property of the free group tells us that for any group G and map $f: A \to G$, there exists a unique φ to make

So in particular, consider any group for which f can be made an injection. Aut(A) will do¹. Then if f is an injection, then $\varphi \circ j$ must also be an injection, and thus j is an injection.

6. Let arrows denote a subset (subgroup) relation. Then

¹A note to Flame: we initially posited that \mathbb{R} would work

o is a nice cube showing all inclusions. Now we move on to show that all these inclusions are subgroups... well, here we go I guess. We'll start at the bottom left corner, show that we have that $\forall a, b \in H$, $ab^{-1} \in H$. Then, since $GL_n(\mathbb{C})$ is a group, we'll get subgroup relations.

- $SO_n(\mathbb{R})$: $\forall Q, R \in SO_n(\mathbb{R})$, notice that $QR^{-1} = QR^T$, but also $QR^T*(QR^T)^T = QR^TRQ^T = I$, and also $det(QR^T) = 1$ by the multiplicative property of the determinant, so $QR^T \in SO_n(\mathbb{R})$.
 - $O_n(\mathbb{R})$: Follows directly from above.
- $SU_n(\mathbb{C})$: Replace the transposes above with the Hermitian adjoint and the proof is identical
 - $U_n(\mathbb{C})$: Follows directly from above.
- $\mathrm{SL}_n(\mathbb{R})$: Follows directly from the multiplicative property of the determinant, and the fact that $\det(A^{-1}) = \det(A)^{-1}$, so $\forall Q, R \in \mathrm{SL}_n(\mathbb{R})$, QR^{-1} has determinant 1, since Q and R^{-1} each have determinant 1.
- $\mathrm{SL}_n(\mathbb{C})$: Follows identically to above.
- $\mathrm{GL}_n(\mathbb{R})$: replace "has determinant 1" in the $\mathrm{SL}_n(\mathbb{R})$ argument with "has nonzero determinant" and you're done.
 - 7. Proof. Let $h \in [G, G]$ be given. Then $\forall g \in G, g^{-1}hg = h(h^{-1}g^{-1}hg) = h[h, g] \in [G, G],$ so $[G, G] \leq G$.

Now we show that G/[G,G] is abelian. Let $g[G,G]\in G/[G,G]$ and $h[G,G]\in G/[G,G]$ be given. Then

$$gh[G,G] = gh[h,g][G,G] = ghh^{-1}g^{-1}hg[G,G] = hg[G,G]$$

so G/[G,G] is commutative.

8. Proof. I appeal to Sylow's first theorem. Since n is odd, the multiplicity of 2 in the order of the group is 1, so there exists a Sylow 2-subgroup of G, and thus an element of order 2. Now suppose for the sake of contradiction that there exists more than 1 element of order 2. Then the subgroup generated by these two elements is the Vierergruppe, which has order 4, but $4 \nmid 2n$, since n is odd, so Lagrange tells us that there can't be more than one element of order 2.

Notice also that D_6 is a group with multiplicity 2*3 without

- 9. We first show G° is a group:
 - (Associative): Inherited from G
 - (Identity): Identities are two-sided anyway in groups, so the identity from G works.
 - (Inverses): Again, inverses are two-sided, so inverses in G° are the same as inverses in G
 - *Proof.* First notice that id is bijective regardless of our assumption.

 (\Leftarrow) Suppose that G is commutative. Then

$$id(g \circ h) = g \circ h$$

$$= h \times g$$

$$= id(h) \times id(g)$$

$$= id(g) \times id(h).$$

 \triangle

so id is a homomorphism, and thus an isomorphism.

 (\Rightarrow) Suppose now that id is an isomorphism. Then in particular

$$id(g \circ h) = id(g) \times id(h)$$

$$= g \times h$$

$$= id(h \circ g)$$

$$= h \times g$$

so we have commutativity.

• *Proof.* We give the isomorphism explicitly. Take $\iota: G^{\circ} \to G$ be the map that takes $g \longmapsto g^{-1}$. Now in the language of group actions, ι is a permutation, and thus a bijection.

Now we check that this is actually a homomorphism:

$$\iota(g \circ h) = (g \circ h)^{-1}$$

$$= h^{-1} \circ g^{-1}$$

$$= g^{-1} \times h^{-1}$$

$$= \iota(g) \times \iota(h)$$

So we have an isomorphism.

• If we have an action G acting on X on the right via (\cdot) , then define $g \cdot x := x \cdot g^{-1}$. Notice that this works because $g \cdot (h \cdot x) = g \cdot (x \cdot h^{-1}) = (x \cdot h^{-1}) \cdot g^{-1}$. But since we already know that the right action is compatible, we get that this equals $(x \cdot h^{-1}g^{-1}) = (x \cdot (gh)^{-1}) = gh \cdot x$.