Fine-Grained Entity Typing with Knowledge Attention

1. Introduction

命名实体识别作为NLP的基本任务和基础工作,其对很多的后继工作和应用中,如知识图谱构建、智能问答、阅读理解、舆情分析均有重要的影响。命名实体识别(ET)为文本挖掘掘和信息抽取技术的重要组成部分,其主要目标是对于给定文本,从中识别出相关命名实体(一般包括:人名、组织机构名、地名、时间、日期、货币、百分比或某些专有名词等)。该问题其本质为序列标记问题即标记(分类)序列中的实体对象或确定实体边界,早期的处理方式一般包括字典切分(如正向\反向最大匹配、最短路径等)、基于统计的方法(如HMM、最大熵、CRF等)以及两种方法的结合(专有领域以及工业界的实体抽取一般采用字典加统计的方法)。在深度学习崛起后,基于深度网的方法也迅速被运用到ET任务中并获得了较大的精度提升(DL的方法需要不断地调优才能获得较好的效果,而传统的方法其baseline就比较好,因此在实际的应用中我们也需要将字典和DNN结合),2015年Lample利用LSTM+CRF取得了当时最好的结果。2016年,2017年随着attention方法的提出又不断有学者将其引入至FET(Fine-grained entity typing)任务。Peng,2016年针对汉语语种提出分词与实体识别联合模型,Cao,2018年基于对抗训练利用分词数据(该数据集,如微博和MSRA,相比命名实体数据集较大)辅助实体识别任务,同时建模学习词与词之间的依赖关系以调高预测准确度。此外,在EMNLP17上Mayhew基于词典实现了跨语言的命名实体识别。

FET与一般ET不同的是其面向的领域更加垂直细分,其识别的对象更加具体多样,且一般具有层次结构 (ACE (Automatic Context Extraction,自动内容抽取会议)将实体分为7大类,45小类,CMU开发的NELL系统中有几百个人工预先定义好的实体类别,Freebase中的实体类别达到上干种,而且是动态增加的),因此对于各个专有领域FET更能满足实际需求且有更大的应用价值。2015年,Dong et al首次根据word embedding特征实现ET,Xin于2018年提出结合KBs external information的Attention FET并取得了一定的精度提升。

有关命名实体识别的详细介绍可以参考我的这篇笔记: NLP中的序列标注问题(隐马尔可夫HMM与条件随机场CRF)。

2. Knowldege Attention FET

与之前的细粒度实体识别深度网不同的是,本文作者通过引入Knowledge Bases external information得到Entity Embedding,并将其作为query与上下文feature进行Attention得到context and mention representation,最后进行Softmax完成序列标记,其网络结构如下:

图1. ET with Knowledge Atttention

如上图所示,首先对于输入序列进行Word Embedding处理(论文中作者使用Pennington, Socher, and Manning, 2014 pre-trained word embedding)然后对上下文context进行Bi-LSTM编码为\$I_i,r_i\$。(有关LSTM和Attention的介绍可以参看我的这篇笔记从RNN、LSTM到Encoder-Decoder框架、注意力机制、Transformer)同时对entity mentation 的word embedding进行简单平均得到entity mentation representation,如下:

 $\ m=\frac{1}{n_m}\sum_{i=1}^{n_m} m_i \tan\{1\}$

上式中,\$n_m\$即为entity mention的长度(其为分词结果,由于其长度一般只为1或2故可以进行简单的平均处理),\$m_i\$即为word embedding。

利用Attention机制对LSTM输出进行编码为context feature,如下:

 $$$ c=\frac{i=1}^L(a_i^l\searrow \operatorname{trink}_{i=1}^L(a_i^l\searrow \operatorname{trink}_{i=1}^L(a_i^l\searrow \operatorname{trink}_{i=1}^L(a_i^l\searrow \operatorname{trink}_{i=1}^L(a_i^l\searrow \operatorname{trink}_{i=1}^L(a_i^l\bigtriangleup \operatorname{trink}_{i=1}^L(a_i^l+a_i^r)) } $$ (sum_{i=1}^La_i^l+a_i^r)^L(a_i^l+a_i^$

上式中\$\begin{bmatrix}\overrightarrow{h_i^I}\\overleftarrow{h_i^I}\\end{bmatrix}\$和 \$\begin{bmatrix}\overleftarrow{h_i^r}\\overrightarrow{h_i^r}\\end{bmatrix}\$即为Bi-LSTM输出结果,\$a_i^I\$和\$a_i^r\$即为Attention输出。其一般有三种计算方式:

• Semantic Attention(SA)即只根据LSTM输出计算:

 $\ a_i^{SA}=\simeq(W_{S1}\tanh(W_{S2}\setminus \mathbf{S})\$

• Mention Attention(MA)即将entity mention与bi-LSTM结合:

- Knowledge Attentation(KA)即利用外部知识库 (KRL method TransE) 丰富语义信息,确定entity \$m\$的 embedding \$e\$计算Attention:
- $\ a_i^{KA}=f(eW_{KA}\setminus begin\{bmatrix}\setminus h_i\}\setminus (h_i)\ \$

有关知识图谱的详细介绍可以参考我的这篇笔记Knowledge Graph(知识图谱)。

论文中主要采用第三种即KA进行命名实体识别。此外对于Supervised learning,在训练过程中由于其命名 实体已知故其在KB中的表示\$e\$已知。然而在testing时我们无法直接得到\$e\$,因此文中作者提出了reconstruct entity embedding的方法:

 $\$ \hat e=tanh(W\begin{bmatrix}m\c_I\c_r\end{bmatrix})\tag{6} \$\$

可以看出,这里使用\${m,c_l,c_r}\$,即context、entity mention构建entity embedding。同时我们构建损失函数:

 $S J_{KB}(\theta) = -\sum_{e} A_{E}(\theta)$

上式中,\$e\$为KB的实体表示,而\$\hat e\$即为学习的实体表示,通过训练最小化\$J\$即可以得到entity embedding。在测试时即可利用式(6)构建的\$\hat e\$计算attention。然而,在一些情况下外部知识库中可能缺少实体准确表示,这将导致\$J\$的值较大(即KD的entity embedding与学习所得的entity embedding差异较大),此时若仍旧使用\$e\$进行训练将造成较大误差,因此文中采用了如下策略:

- 1. 对entity mention和KBs entity进行匹配(字符串相似度),构建基于KBs的候选实体集;
- 2. 计算L2 distance \$d\$,并设置阈值\$\alpha\$,若\$d\$超过阈值则直接采用学习所得的\$\hat e\$,反之则使用\$e\$。

文中实验表示对于阈值的设置对最后结果的提升十分关键,如下:

从上图可以看出\$\alpha\$的调整对Correct和Erroneous的影响较大,即其间存在trade-off,(Correct表示\$d<\alpha\$,Erroneous表示\$d\geq \alpha\$)这也可以很好理解即当\$\alpha\$增加时,学习所得的\$\hat e\$与 KBs中的\$e\$很接近,因此其能很好的表示entity mention,而对于外部知识库中不存在或差异较大的entity,由于其习得的\$\hat e\$也不能很好的表示entity mention,故其准确率较低(想要对于Erroneous这部分entity也取得较好的MicroF1仍需借助较为完善的知识图谱或者在knowledge inference技术上取得较大突破)。

将式(5)计算所得\$a\$代入至式(2)中求得基于attention的context表示,并将其与entity mention representation\$m\$进行拼接,得到特征向量\$x\$,如下:

\$\$ x=\begin{bmatrix}m\c\end{bmatrix} \$\$

最后使用多层感知机(MLP)输出各个实体类别概率:

 $\ y=\simeq(W_{y1}\tanh(W_{y2}x))\tag{8}$

上式中, \$W_{y1},W_{y2}\$即为MLP参数, \$y\$包含各个实体类别概率。网络的目标函数为:

\$\$ J(\theta)=-\sum_{i,j}y^{(j)}_i log y_i^{(j)}+(1-y^{(j)}_i)log(1-y_i^{(j)})\tag{9} \$\$

上式中,\$y^*\$即为ground truth type,这里我们使用交叉熵作为loss function,同时将式(7)作为单独 一项加入其中。

Dateset Metrics	WIKI-AUTO							WIKI-MAN						
	Strict	Macro			Micro			Strict	Macro			Micro		
		Pre	Rec	F1	Pre	Rec	F1	Acc	Pre	Rec	F1	Pre	Rec	F1
AFET	20.32	67.00	45.82	54.75	69.29	42.40	52.61	18.00	64.50	50.00	56.33	64.29	50.43	56.52
KB-ONLY	35.12	69.65	71.35	70.49	54.85	74.99	63.36	17.00	55.50	72.83	63.00	27.81	74.57	40.52
HNM	34.88	68.09	61.03	64.37	72.80	64,48	68.39	15.00	61.80	68.00	64.75	62.35	68.53	65.30
SA	42.77	75.33	69.69	72.40	77.35	72.63	74.91	18.00	66.67	73.67	69.44	65.54	75.43	70.14
MA	41.58	73.64	71.71	72.66	75.94	75.52	75.72	26.00	65.13	78.50	71.19	64.09	82.33	72.08
KA	45.49	74.82	72.46	73.62	76.96	75.49	76.22	23.00	64.69	78.92	71.10	63.25	82.68	71.67
KA+D	47.20	75.72	74.03	74.87	77.96	77.87	77.92	34.00	68.41	82.83	74.94	66.12	87.50	75.32

图3. results

从以上实验结果可以看出

- 对比一般的Attention mechanism融合KBs的mention entity embedding的结果要更优。
- 通过\$\alpha\$调整的attention其结果最优。

这也从侧面反映融入外部信息或先验知识对NLP个任务结果的提升均有帮助,这已被word embedding、Bert、ELMo、GPT以及各类预训练策略充分证明,且外部信息越丰富、质量越高其结果的提升将越大。

虽然新的网络和方法层出不穷,但是命名实体尤其是中文命名实体识别任务仍存在较大的问题,即未登录词问题和歧义问题,同时开放域的ET也需要更多的探究,此外上述模型的测试结果均是在给定数据集上进行的,而在实际的情况中该性能将大大折扣。

3. Reference

[1] Xin, Ji, et al. "Improving neural fine-grained entity typing with knowledge attention." Thirty-Second AAAI Conference on Artificial Intelligence. 2018.