COMS 4771 Machine Learning Problem Set #1

Jun Hu - jh3846@columbia.edu Discussants:

July 12, 2017

Problem 1

(a) First of all, to numerically summarize, execute:

```
library (ISLR)
summary (Weekly)
```

```
Year
                                       Lag2
                                                                             Lag4
                    Lag1
                                                          Lag3
       :1990
                     :-18.1950
                                      :-18.1950
                                                            :-18.1950
                                                                             :-18.1950
Min.
                                                     Min.
1st Qu.:1995
               1st Qu.: -1.1540
                                  1st Qu.: -1.1540
                                                     1st Qu.: -1.1580
                                                                        1st Qu.: -1.1580
Median:2000
               Median: 0.2410
                                  Median: 0.2410
                                                     Median : 0.2410
                                                                        Median: 0.2380
Mean
       :2000
                      : 0.1506
                                         : 0.1511
                                                                               : 0.1458
               Mean
                                  Mean
                                                     Mean
                                                            : 0.1472
                                                                        Mean
               3rd Qu.:
                                  3rd Qu.:
3rd Qu.:2005
                        1.4050
                                           1.4090
                                                     3rd Qu.: 1.4090
                                                                        3rd Qu.: 1.4090
                                                            : 12.0260
Max.
       :2010
               Max.
                      : 12.0260
                                  Max.
                                         : 12.0260
                                                     Max.
                                                                        Max.
                                                                               : 12.0260
     Lag5
                       Volume
                                         Today
                                                        Direction
Min.
       :-18.1950
                   Min.
                          :0.08747
                                     Min.
                                            :-18.1950
                                                        Down: 484
1st Qu.: -1.1660
                   1st Qu.:0.33202
                                     1st Qu.: -1.1540
                                                        Up :605
Median: 0.2340
                   Median :1.00268
                                     Median: 0.2410
      : 0.1399
                          :1.57462
                                               0.1499
Mean
                   Mean
                                     Mean
                   3rd Qu.:2.05373
                                     3rd Qu.:
3rd Qu.: 1.4050
                                               1.4050
      : 12.0260
                          :9.32821
                                            : 12.0260
                   Max.
                                     Max.
```

To graphically summarize, execute:

```
pairs (Weekly)
```


To observe all pairwise correlations, execute:

```
1 \cos (\text{Weekly}[, -9])
```

```
Year
                                                                                                      Lag1
                                                                                                                                                    Lag2
                                                                                                                                                                                                 Lag3
                                                                                                                                                                                                                                                   Lag4
                                                                                                                                                                                                                                                                                                    Lag5
                                                                                                                                                                                                                                                                                                                                           Volume
Year
                              1.00000000 - 0.032289274 - 0.03339001 - 0.03000649 - 0.031127923 - 0.030519101
                                                                                                                                                                                                                                                                                                                         0.84194162
Lag1
                          -0.03339001 \ -0.074853051 \ \ 1.00000000 \ -0.07572091 \ \ \ 0.058381535 \ -0.072499482 \ -0.08551314
Lag2
Lag3
                          -0.03000649 \quad 0.058635682 \quad -0.07572091 \quad 1.00000000 \quad -0.075395865 \quad 0.060657175 \quad -0.06928771 \quad 
                          -0.03112792 \ -0.071273876 \ \ 0.05838153 \ -0.07539587 \ \ 1.000000000 \ -0.075675027 \ -0.06107462
Lag4
                          -0.03051910 \ -0.008183096 \ -0.07249948 \ \ 0.06065717 \ -0.075675027 \ \ 1.000000000 \ -0.05851741
Lag5
Volume 0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617 -0.058517414 1.00000000
                         -0.03245989 \ -0.075031842 \ \ 0.05916672 \ -0.07124364 \ -0.007825873 \ \ \ 0.011012698 \ -0.03307778
                                                     Today
                          -0.032459894
Year
Lag1
                          -0.075031842
Lag2
                             0.059166717
Lag3
                          -0.071243639
Lag4
                          -0.007825873
Lag5
                              0.011012698
Volume -0.033077783
Today
                              1.000000000
```

We found that there exists a higher correlation of 0.84 between Year and Volume, while

others are pretty low. Also from the plot we can recognize there is an increasingly correlated pattern between Year and Volume.

(b) Execute:

```
glm. fit = glm(Direction~., data=Weekly[, c(2:7, 9)], family=binomial)
summary (glm. fit)
Call:
glm(formula = Direction ~ ., family = binomial, data = Weekly[,
   c(2:7, 9)])
Deviance Residuals:
   Min
            1Q
                 Median
                              3Q
                                      Max
-1.6949 -1.2565 0.9913 1.0849
                                   1.4579
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.26686 0.08593 3.106 0.0019 **
           -0.04127
Lag1
                      0.02641 -1.563 0.1181
Lag2
           0.05844 0.02686 2.175 0.0296 *
           -0.01606 0.02666 -0.602 0.5469
Lag3
           -0.02779
-0.01447
Lag4
                      0.02646 -1.050 0.2937
Lag5
                      0.02638 -0.549 0.5833
           -0.02274 0.03690 -0.616 0.5377
Volume
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1496.2 on 1088 degrees of freedom
Residual deviance: 1486.4 on 1082 degrees of freedom
AIC: 1500.4
Number of Fisher Scoring iterations: 4
```

From the summary, it seems Lag2 has statistical significance.

(c) Execute:

```
glm.probs = predict(glm.fit , type = "response")
glm.pred = ifelse(glm.probs > 0.5, "Up", "Down")
table(glm.pred, Weekly$Direction)
```

```
glm.pred Down Up
Down 54 48
Up 430 557
```

The correct prediction is: accuracy = $\frac{54+557}{54+430+48+557} = 56.11\%$ So the incorrect prediction is: error rate = 1-56.11% = 43.89% These numbers tell us the overall accuracy and error of predictions.

The correct market "Down" rate: is: $\text{recall} = \frac{54}{54+430} = 11.16\%$ So the incorrect market "Down" rate is: miss = 1 - 11.16% = 88.84%The correct market "Up" rate is: $\text{specificity} = \frac{557}{48+557} = 92.07\%$ So the incorrect market "Up" rate is: miss = 1 - 92.07% = 7.93%These numbers tell us when the market goes up, the model can predict correct

These numbers tell us when the market goes up, the model can predict correctly in a very high rate, but quite the contrary when the market goes down.

(d) Execute:

```
attach(Weekly)
train = (Year < 2009)
Weekly.test = Weekly[!train,]
glm.fit = glm(Direction~Lag2, data=Weekly, family=binomial, subset=train)
glm.probs = predict(glm.fit, Weekly.test, type="response")
glm.pred = ifelse(glm.probs > 0.5, "Up", "Down")
Direction.test = Direction[!train]
table(glm.pred, Direction.test)
```

```
Direction.test
glm.pred Down Up
Down 9 5
Up 34 56
```

The overall correct prediction can be simply calculated by executing:

```
mean(glm.pred=Direction.test)
```

[1] 0.625

So the overall accuracy = 62.5%.

(e) Execute:

```
library (MASS)
lda.fit = lda(Direction~Lag2, data=Weekly, subset=train)
lda.pred = predict(lda.fit, Weekly.test)
table(lda.pred$class, Direction.test)
```

```
Direction.test
Down Up
Down 9 5
Up 34 56
```

To get overall correct prediction, execute:

```
mean(lda.pred$class=Direction.test)
```

[1] 0.625

The accuracy = 62.5%

(f) Execute(fix result using 'set.seed(23)'):

```
library(class)
train.X = as.matrix(Lag2[train])
test.X = as.matrix(Lag2[!train])
Direction.train = Direction[train]
set.seed(23)
knn.pred = knn(train.X, test.X, Direction.train, k=1)
table(knn.pred, Direction.test)
```

```
Direction.test
knn.pred Down Up
Down 21 29
Up 22 32
```

To get overall correct prediction, execute:

```
mean(knn.pred=Direction.test)
```

[1] 0.5096154

The accuracy = 50.96%

- (g) The logistic regression model and linear discriminant analysis model appear to provide the best results of the data.
- (h) By using the same train and test sets as above, we can change the predictors and k values to optimize the correct predictions as below:

1. logistic regression

Change predictors to $Lag2 + (Lag1)^2$ – execute the code:

```
Direction.test
glm.pred Down Up
Down 8 2
Up 35 59
```

To calculate the current correct prediction:

```
mean(glm.pred=Direction.test)
```

[1] 0.6442308

Accuracy = 64.42%

2. linear discriminant analysis

Change predictors to $Lag2 + (Lag1)^2$ – execute the code:

```
lda.fit = lda(Direction~Lag2+I(Lag1^2), data=Weekly, subset=train)
lda.pred = predict(lda.fit, Weekly.test)
table(lda.pred$class, Direction.test)
```

```
Direction.test
Down Up
Down 8 2
Up 35 59
```

To calculate the current correct prediction:

```
mean(lda.pred$class=Direction.test)
```

[1] 0.6442308

Accuracy = 64.42%

3. KNN

Test k from 1 to 300 (fix results by using 'set.seed(23)'):

```
k_increasement = data.frame(k=1:300, accuracy=NA)
for (i in 1:300){
    set.seed(23)
    knn.pred = knn(train.X, test.X, Direction.train, k=i)
    table(knn.pred, Direction.test)
    k_increasement$accuracy[i] = mean(knn.pred==Direction.test)
}
```

To calculate the current correct prediction and display as a plot, finally identify the value of k that obtain the best accuracy:

```
plot(x=k_increasement$k, y=k_increasement$accuracy, type='l', xlab="k", ylab="accuracy", ylim=c(0.45, 0.7), lwd=3, col='red')
identify(x=k_increasement$k, y=k_increasement$accuracy, plot=T)
```


The best correct prediction is at k=154, and the this correct prediction can be retrieved as:

k_increasement [154,]

k accuracy 154 154 0.6442308

Accuracy = 64.42%

$$\mathbb{E}[X] = \int xp(x)dx$$

$$= \iint xp(x,y)dxdy$$

$$= \iint x (p(x \mid y)p(y)) dxdy$$

$$= \int \left(\int x[p(x \mid y)dx\right) p(y)dy$$

$$= \int (\mathbb{E}_x[x \mid y]) p(y)dy$$

$$= \mathbb{E}_y[\mathbb{E}_x[x \mid y]]$$

$$\operatorname{var} = \mathbb{E}[x^2] - \mathbb{E}[x]^2$$

$$= \mathbb{E}_y[\mathbb{E}_x[x^2 \mid y]] - (\mathbb{E}_y[\mathbb{E}_x[x \mid y]])^2$$

$$= \mathbb{E}_y[\mathbb{E}_x[x^2 \mid y] - \mathbb{E}_x[x \mid y]^2] + \mathbb{E}_y[\mathbb{E}_x[x \mid y]^2] - (\mathbb{E}_y[\mathbb{E}_x[x \mid y]])^2$$

$$= \mathbb{E}_y[\operatorname{var}[x \mid y]] + \operatorname{var}_y[\mathbb{E}_x[x \mid y]]$$

Because y = x + z, and x and y having Gaussian distributions, which means we have the distributions as below:

$$p(x) = \mathcal{N}(x \mid \mu_x, \Sigma_x) \tag{1}$$

$$p(y \mid x) = \mathcal{N}(y \mid \mu_z + x, \Sigma_z) \tag{2}$$

Compare (1) and (2) to (2.99) and (2.100), we can have:

$$\mu = \nu_x, \Lambda^{-1} = \Sigma_x, A = 1, b = \mu_z, L^{-1} = \Sigma_z$$
 (3)

Because of (2.109) and (2.110), we can have:

$$p(y \mid x) = \mathcal{N}(\mathbb{E}[y], \text{cov}[y]) \tag{4}$$

$$= \mathcal{N}(A\mu + b, L^{-1} + A\Lambda^{-1}A^T) \tag{5}$$

Use (3) in (5), we can find the marginal distribution p(y):

$$p(y) = \mathcal{N}(y \mid \mu_x + \mu_z, \Sigma_x + \Sigma_z)$$

The data are linearly separable and the decision boundary is 0, which means separate these two classes by the hyperplane with corresponding $\sigma = 0.5$, that is $w^T \phi = 0$, which implies w goes to infinite. And logistic sigmoid becomes infinite steep. Or we see any other logistic function which decreases less sharply would give a lower maximum likelihood. However, whenever a posterior probability reaches 1, any function which passes through the data points would give the same likelihood. As there is no closed-form for the maximum likelihood, when we trying to estimate the optimal w, there will be infinite magnitude.

Since this is a binary classification problem, generally for data point $\{x_i, t_i\}$, if $t_i = 1$ for p, then $t_i = 0$ for 1 - p, then we can have the likelihood (6) and its "log" form (7):

$$\prod_{i=1}^{N} p(x_i)^{t_i} (1 - p(x_i)^{1-t_i}$$

$$\sum_{i=1}^{N} t_i \log p(x_i) + (1 - t_i) \log(1 - p(x_i))$$
(7)

$$\sum_{i=1}^{N} t_i \log p(x_i) + (1 - t_i) \log(1 - p(x_i))$$
(7)

In this specified problem, having instead a value π_n representing the probability that $t_n = 1$, which means t_i is substituted by π_i . Moreover, given the probability model $p(1 \mid \phi)$, we can have that $p(x_i)$ is given by $p(t_i = 1 \mid \phi(x_i))$. That is:

$$t_i \longrightarrow \pi_i$$
 (8)

$$p(x_i) \longrightarrow p(t_i = 1 \mid \phi(x_i))$$
 (9)

Use (8) and (9) in (7), we can have the log likelihood for this specified data:

$$\sum_{i=1}^{N} \pi_i \log p(t_i = 1 \mid \phi(x_i)) + (1 - \pi_i) \log(1 - p(t_i = 1 \mid \phi(x_i)))$$