

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA
ESCUELA DE CIENCIAS EXACTAS Y NATURALES
DEPARTAMENTO DE MATEMÁTICA

Licenciatura en Computación Métodos Numéricos - 2016

Sabrina Roscani - Juan Manuel Rabacedas - Melani Barrios

Primer Parcial - EXAMEN PRACTICO ENTREGA MIERCOLES 19/10, 8 hs aula 25

Nombre:	Legajo:

Entregar por escrito el siguiente ejercicio:

- 1. Analice si las siguientes afirmaciones son verdaderas o falsas justificando su respuesta:
 - (a) Sean $\{a_n\}$, $\{b_n\}$ y $\{c_n\}$ tres sucesiones de números reales. Si $a_n \to 0$, $b_n = O(a_n)$ y $c_n = O(a_n)$, entonces $b_n c_n = o(a_n)$.
 - (b) $\cos x 1 + \frac{x^2}{2} = O(x^4)$ cuando $x \longrightarrow 0$.
 - (c) Las siguientes series tiene el mismo carácter (ambas convergentes o ambas divergentes):

I)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4n + 3}$$
 II) $\sum_{n=1}^{\infty} \frac{4 + 3^n}{2^n}$

.

Los siguientes ejercicios deben entregarse en papel y se deben enviar los archivos correspondientes (asunto: PARCIAL 1 - Apellido y Nombre) a los correos siguientes correos: jmr@fceia.unr.edu.ar y melani@fceia.unr.edu.ar.

Se pide además pegar como comentario en el código del programa la salida obtenida después de ejecutar el código.

- 2. El desarrollo de Taylor de la función e^x proporciona una forma muy inestable de calcular este valor cuando x es negativo. Realizar un programa en Scilab que estime e^{-12} evaluando el desarrollo de Taylor hasta grado n de la función e^x en x=-12, para n=1,...,100. y devuelva un vector con los errores absolutos cometidos tomando como valor exacto al número 0,000006144212353328210. Inidicar cuáles son, a su criterio, las principales causas de error. Realizar otra estimación de e^{-12} con algún otro método que evite los problemas del método anterior.
- 3. Se quiere resolver la ecuación $x^3 ln(1+2x) = 0$
 - (a) Compruebe mediante un gráfico que esta ecuación tiene exactamente una solución en el intervalo [1, 2]
 - (b) Proponga un método iterativo de punto fijo (diferente de Newton) que converja a la solución de la ecuación en el intervalo [1, 2]. Justifique la convergencia del método.
 - (c) Usando Scilab y partiendo de $x_0 = 1$, realizar una tabla que muestre el número de iteraciones que se necesitarán para alcanzar una precisión de 10^{-j} , j = 4, ..., 20, utilizando el método iterativo propuesto.