

PATENT
ATTORNEY DOCKET NO. 053785-5126

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)
Ku-Hyun PARK, et al.)
Application No.: 10/607,044) Group Art Unit: Unassigned
Filed: June 27, 2003) Examiner: Unassigned

For: OPTICALLY COMPENSATED BIREFRINGENCE MODE LIQUID CRYSTAL
DISPLAY DEVICE AND METHOD OF FABRICATING THE SAME

Commissioner for Patents
Arlington, VA 22202

Sir:

SUBMISSION OF PRIORITY DOCUMENT

Under the provisions of 35 U.S.C. § 119, Applicants hereby claim the benefit of the filing date of Korean Application No. 2002-0087544, filed December 30, 2002 for the above-identified United States Patent Application.

In support of Applicants' claim for priority, filed herewith is one certified copy of the
above.

Respectfully submitted

MORGAN, LEWIS & BOCKIUS LLP

By

Robert J. Goodell, Reg. No. 41,040

Dated: August 7, 2003

MORGAN, LEWIS & BOCKIUS LLP
1111 Pennsylvania Avenue, NW
Washington, D.C. 20004
202-739-3000

대한민국 특허청
KOREAN INTELLECTUAL
PROPERTY OFFICE

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto
is a true copy from the records of the Korean Intellectual
Property Office.

출원번호 : 10-2002-0087544
Application Number

출원년월일 : 2002년 12월 30일
Date of Application DEC 30, 2002

출원인 : 엘지.필립스 엘시디 주식회사
Applicant(s) LG.PHILIPS LCD CO., LTD.

2003 년 06 월 12 일

특허청
COMMISSIONER

【서지사항】

【서류명】	특허출원서
【권리구분】	특허
【수신처】	특허청장
【참조번호】	0082
【제출일자】	2002.12.30
【발명의 명칭】	오.씨.비 모드 액정표시장치
【발명의 영문명칭】	Optically Compensated Bend Mode Liquid Crystal Display Device
【출원인】	
【명칭】	엘지 .필립스엘시디(주)
【출원인코드】	1-1998-101865-5
【대리인】	
【성명】	정원기
【대리인코드】	9-1998-000534-2
【포괄위임등록번호】	1999-001832-7
【발명자】	
【성명의 국문표기】	박구현
【성명의 영문표기】	PARK,KU HYUN
【주민등록번호】	740725-1228511
【우편번호】	431-081
【주소】	경기도 안양시 동안구 호계1동 945-34번지 14/2
【국적】	KR
【발명자】	
【성명의 국문표기】	최상호
【성명의 영문표기】	CHOI,SANG HO
【주민등록번호】	720704-1109715
【우편번호】	431-080
【주소】	경기도 안양시 동안구 호계동 (주)LG Phillips LCD 안양연구소
【국적】	KR
【취지】	특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대리인 기 (인) 정원

1020020087544

출력 일자: 2003/6/13

【수수료】

【기본출원료】	20	면	29,000	원
【가산출원료】	3	면	3,000	원
【우선권주장료】	0	건	0	원
【심사청구료】	0	항	0	원
【합계】	32,000			원
【첨부서류】	1. 요약서·명세서(도면)_1통			

【요약서】

【요약】

본 발명에서는, 전압 무인가시에 스플레이(splay) 구조를 갖고, 전이전압(reset voltage) 인가시에 벤드(bend) 구조 액정층을 가지는 OCB(Optically Compensate Bend) 모드 액정표시장치에 있어서, 서로 대향되게 배치되며, 서로 동일한 방향으로 배향처리된 제 1, 2 기판과; 상기 제 1, 2 기판 사이에 개재된 액정층과; 상기 제 1, 2 기판의 양 바깥면에 각각 위치하는 제 1, 2 보상필름과; 상기 보상필름의 양 바깥면에 각각 위치하는 제 1, 2 편광판을 포함하며, 상기 OCB 셀은 하기 식

$$<\text{스플레이 상태}> 1.35 < R(V=0) / \lambda < 1.75 \quad \text{--- (I)}$$

(R(Retardation) : 위상차값, V(Voltage) : 전압)

$$<\text{벤드 상태}> 0.5 < R(V = \text{화이트(white)}) / \lambda < 0.7 \quad \text{--- (IIa)}$$

(V = 화이트 ; 화이트 화면을 구현하기 위한 전압의 세기)

$$0.1 < R(V = \text{블랙(black)}) / \lambda < 0.15 \quad \text{--- (IIb)}$$

(V = 블랙 ; 블랙 화면을 구현하기 위한 전압의 세기)

을 만족하는 것을 특징으로 하는 OCB 모드 액정표시장치를 제공한다.

【대표도】

도 4

【명세서】**【발명의 명칭】**

오. 씨. 비 모드 액정표시장치{Optically Compensated Bend Mode Liquid Crystal Display Device}

【도면의 간단한 설명】

도 1은 일반적인 OCB 모드 액정표시장치에 대한 개략적인 도면.

도 2는 일반적인 OCB 모드 액정표시장치의 구동 원리를 설명하기 위한 도면.

도 3a, 3b는 액정의 굴절률 이방성(Δn_{LC})값과 색좌표(CIE 1931 좌표계) 특성 간의 상관관계를 나타낸 도면.

도 4는 OCB 모드 액정셀의 위상차 특성 및 투과도 특성을 전압의 세기에 따라 나타낸 그래프에 대한 도면.

도 5는 OCB 모드 액정표시장치에 적용되는 보상필름의 적층 구조에 대한 도면.

【발명의 상세한 설명】**【발명의 목적】****【발명이 속하는 기술분야 및 그 분야의 종래기술】**

<6> 본 발명은 액정표시장치에 관한 것이며, 특히 OCB(Optically Compensated Bend) 모드 액정표시장치에 관한 것이다.

<7> 최근에 액정표시장치는 소비전력이 낮고, 휴대성이 양호한 기술집약적이며 부가가치가 높은 차세대 첨단 디스플레이(display)소자로 각광받고 있다.

<8> 이러한 액정표시장치중에서도, 각 화소(pixel)별로 전압의 온/오프를 조절할 수 있는 스위칭 소자가 구비된 액티브 매트릭스형 액정표시장치(이하, 액정표시장치로 약칭함)가 해상도 및 동영상 구현능력이 뛰어나 가장 주목받고 있다.

<9> 이를 위하여, 본 발명에서는 액정셀에 인가되는 전압크기를 조절하여, 액정셀의 광학적 성질을 변화시켜 상을 나타내는 전기광학 효과를 이용하고자 한다.

<10> 좀 더 상세히 설명하면, 전술한 전기광학 효과는 크게 전류효과형, 전계효과형, 열효과형으로 나눌 수 있고, 여기서 전계효과형은 TN(Twisted Nematic)효과, GH(Guest-Host)효과, ECB(Electrically Controlled Birefringence)와 상전이(Phase Change)효과를 들 수 있다.

<11> 여기에서, ECB모드는 서로 직교하는 2매의 편광판 사이에 일정하게 배향처리된 액정셀을 배치하여 전압인가 유무에 따라 액정셀의 복굴절 효과로 인한 빛의 투과변화가 일어나도록 하는 방식이다.

<12> 상기한 ECB모드의 한 방식인, OCB(Optically Compensated Birefringence) 모드 액정표시장치는 양 배향막의 중간에서는 거의 90도를 이루게 되며 기판에 가까워지면서 점차 각도가 줄어드는 대칭적인 벤드 구조로 되어 있어 고속응답이 가능한 액정표시장치이다.

<13> 도 1은 일반적인 OCB 모드 액정표시장치에 대한 개략적인 도면으로서, 보상필름이 구비된 구조를 일 예로 하여 도시하였다.

<14> 도시한 바와 같이, 서로 대향되며 배치되며, 서로 동일한 방향으로 배향처리된 제 1, 2 기판(10, 30)과, 제 1, 2 기판(10, 30) 사이에 개재된 벤드 구조의 액정총(40)을 포함한 벤드셀(50)이 구비되어 있다.

<15> 상기 벤드셀(50)은, 전압무인가시에는 스플레이(splay) 구조를 가지고, 전이전압(reset voltage) 인가시에 벤드 구조를 가지므로, 온/오프 전압 인가시에 재배열하는데 걸리는 시간, 즉 응답시간이 대략 5 m/sec 이내로 아주 빠른 특성을 가진다.

<16> 이러한 벤드셀(50)은 기본적으로 광시야각 구현을 위해 리타더(retarder)가 포함된 WV 필름(wideview film)을 사용해야만 원하는 화질을 구현할 수 있다.

<17> 이에 따라, 상기 제 1 기판(10)의 바깥면에는 제 1 보상필름(12 ; compensated film) 및 제 1 편광판(14)이 차례대로 배치되어 있고, 제 2 기판(30)의 바깥면에는 상기 제 1 보상필름(12)의 광축과 직교되는 광축을 가지는 제 2 보상필름(32) 및 상기 제 1 편광판(14)의 투과축과 직교되는 투과축을 가지는 제 2 편광판(34)이 각각 구비되어 있다.

<18> 도면에서와 같이, 통상적으로 상기 제 1, 2 보상필름(12, 32)은 도면에서와 같이 기판(제 1, 2 기판(10, 30))과 근접한 위치에서부터, 음(-)의 굴절률 이방성(Δn)을 가지는 디스코틱 필름(12a, 32a ; discotic film) 및 이축성 필름(12b, 32b ; biaxial film)이 차례대로 적층된 구조의 WV 필름(wideview film)으로 이루어진다.

<19> 상기 이축성 필름(12b, 32b)은 3차원적인 복굴절 특성이 $ny > nx > nz$ 인 것을 특징으로 한다.

<20> 이러한 OCB 모드 액정표시장치의 제작시에는, 휘도, 시야각, 구동전압, 응답시간 등의 여러가지 특성을 고려하여 패널을 제작하게 되는데, 이때 벤드셀과 보상필름의 정확한 설계가 중요하다.

<21> 즉, 액정의 여러 물성 파라미터(parameter)와 보상필름의 설계치는 OCB 모드 제품의 성능을 결정짓는 중요한 요소이다.

【발명이 이루고자 하는 기술적 과제】

<22> 본 발명에서는, 고속 응답 및 광시야각 특성이 가능한 OCB모드 액정표시장치의 제작을 위해 필요한 벤드셀과 보상필름의 각종 설계 파라미터 및 룰(rule)을 제시하고자 한다.

【발명의 구성 및 작용】

<23> 상기 목적을 달성하기 위하여, 본 발명에서는 전압 무인가시에 스플레이(splay) 구조를 갖고, 전이전압(reset voltage) 인가시에 벤드(bend) 구조 액정층을 가지는 OCB(Optically Compensated Bend) 모드 액정표시장치에 있어서, 서로 대향되게 배치되며, 서로 동일한 방향으로 배향처리된 제 1, 2 기판과; 상기 제 1, 2 기판 사이에 개재된 액정층과; 상기 제 1, 2 기판의 양 바깥면에 각각 위치하는 제 1, 2 보상필름과; 상기 보상필름의 양 바깥면에 각각 위치하는 제 1, 2 편광판을 포함하며, 상기 OCB 셀은 하기 식

<24> <스플레이 상태>

<25> $1.35 < R(V=0) / \lambda < 1.75$ ----- (I)

<26> (R (Retardation) : 위상차값, V (Voltage) : 전압)

<27> <밴드 상태>

<28> $0.5 < R(V = \text{화이트(white)}) / \lambda < 0.7$ ----- (IIa)

<29> ($V = \text{화이트} ; \text{화이트 화면을 구현하기 위한 전압의 세기}$)

<30> $0.1 < R(V = \text{블랙(black)}) / \lambda < 0.15$

<31> ----- (IIb)

<32> ($V = \text{블랙} ; \text{블랙 화면을 구현하기 위한 전압의 세기}$)

<33> 을 만족하는 것을 특징으로 하는 OCB 모드 액정표시장치를 제공한다.

<34> 상기 벤드 구조에서의 벤드탄성계수(K_{33})값과 유전율 이방성($\triangle \epsilon$)값은 하기 식 (III)

<35> $0.85 < K_{33}/\triangle \epsilon < 1.5$ ----- (III)

<36> 을 만족하는 것을 특징으로 한다.

<37> 상기 액정층 내 액정 분자에 대한 액정상전이온도(T_{ni} ; Temperature 네마틱 (nematic) \rightarrow 등방성(isotropic)) 범위는 하기 식(IV)

<38> $90^{\circ}\text{C} < T_{ni} < 130^{\circ}\text{C}$ ----- (IV)

<39> 을 만족하는 것을 특징으로 한다.

<40> 그리고, 상기 액정층 내 액정은 하기 식(V)의 굴절률 이방성($\triangle n$) 범위

<41> $1.2 < \triangle n_{LC}(400 \text{ nm}/550 \text{ nm}) < 1.3$ ----- (V)

<42> 를 만족하는 것을 특징으로 한다.

<43> 상기 보상필름은 디스코틱 필름(discotic film)을 포함하고, 상기 디스코틱 필름의
파장분산 특성은, 하기 식(VI)

<44> $1.2 < (\Delta n_{\text{디스코틱}} (400 \text{ nm} / 550 \text{ nm})) < 1.3$ ----- (VI)

<45> $(\Delta n_{\text{디스코틱}} ; \text{디스코틱 액정의 굴절률 이방성})$

<46> 을 만족하는 것을 특징으로 한다.

<47> 상기 보상필름은 디스코틱 필름(discotic film), 이방성 필름(biaxial film)으로
구성되는 WV 필름(wideview film)과, 상기 편광판의 바깥면에 위치하는 또 하나의 이방
성 필름인 TAC(tri-acetate cellulose)를 추가로 포함하며, 상기 디스코틱 필름 및 TAC
는 하기 식(VII) 및 식(VIII)

<48> $2.8 \leq R_{th}/Re \leq 3.2$ ----- (VII)

<49> $(R_{th} : x, y\text{면 상에 위상차} (= \{nz - (nx + ny)/2\}d), Re : x, y\text{면 상에 위치하는 위상
차와 수직인 위상차} (= (nx - ny)d))$

<50> <이방성 필름(TAC)>

<51> $4.8 \leq R_{th}/Re \leq 5.2$ ----- (VIII)

<52> 을 만족하는 것을 특징으로 한다.

<53> 이하, 본 발명에 따른 바람직한 실시예를 도면을 참조하여 상세히 설명한다.

<54> -- 제 1 실시예 --

<55> 본 실시예에서는, 저전압 구동, 광시야각 특성, 신뢰성 향상을 위한 액정 파라미터
에 대한 것이다.

<56> 도 2는 일반적인 OCB 모드 액정표시장치의 구동 원리를 설명하기 위한 도면으로서, 전압 무인가시에는 스플레이(splay) 구조를 갖고, 전이 전압 인가시에 벤드 구조를 가지며, 온/오프(on/off) 전압 인가시에는 벤드 구조 상태에서 액정 문자가 수직 배열을하게 되므로, 기존의 TN(twisted nematic) 구조보다 액정 응답 속도가 빨라지게 된다.

<57> 하기 표 1은 벤드탄성계수(K_{33})과 노멀리화이트 모드(normally white mode)에서 블랙 화면을 구현하기 위한 전압의 세기(이하, 블랙 전압으로 약칭함)의 상관관계에 대해서 나타내었고, 표 2는 유전율 이방성과 블랙 전압의 상관 관계에 대해서 나타내었다.

<58> 【표 1】

벤드탄성계수(K_{33})	블랙(BLACK) 전압
9.0	5.6V
9.9	5.9V
10.8	6.1V

<59> 【표 2】

유전율 이방성($\Delta\epsilon$)	블랙 전압
11.9	5.3V
10.6	5.9V
8.6	6.8V

<60> 이와 같이, 액정의 파라미터에서 벤드탄성계수(K_{33}) 값은 작을수록, 유전율 이방성($\Delta \epsilon$)값은 클수록 저전압 구동 및 벤드 상태 안정화에 유리하며, 바람직하게는 하기 식(1)을 만족하는 것이다.

<61> $0.85 < K_{33}/\Delta \epsilon < 1.5$ ----- (1)

<62> 별도의 데이터를 통해 제시한다. (추가자료 받을 예정)

<63> -- 제 2 실시예 --

<64> 본 실시예는, 주변 온도 및 별도의 광원인 백라이트(back light)에 의한 열안정성을 높이기 위한 OCB 모드 액정셀의 액정상전이 온도(T_{ni} ; Temperature 네마틱(nematic) → 등방성(isotropic)) 범위에 대한 것이다.

<65> 통상적으로, 백라이트에 대한 열온도는 40° 이고, 주변 온도 조건은 환경 조건 또는 계절 조건에 의한 영향을 의미하며, OCB 모드와 같이 액정의 복굴절 특성을 이용하는 모드에서는, 온도에 따른 액정의 굴절률 이방성(Δn) 변화에 민감하므로, 일반적인 TN 모드 액정표시장치에 비해 액정상전이 온도가 높을 수록 OCB 모드 특성을 향상시킬 수 있다. (하기 표 3, 4 참조)

<66> 【표 3】

<TN용 액정 (굴절률 이방성 $\Delta 0.08$)>

온도	샘플 1 액정($T_{ni} : 103^{\circ}\text{C}$)	샘플 2 액정($T_{ni} : 96^{\circ}\text{C}$)	샘플 3 액정($T_{ni} : 83^{\circ}\text{C}$)	샘플 4 액정($T_{ni} : 75^{\circ}\text{C}$)
0	1.0486	1.0546	.	.
20	1.0000	1.0000	1.0000	1.0000
40	0.9527	0.9516	0.9222	0.9027
60	0.8879	0.8722	0.7901	0.7668

<67> 【표 4】

<OCB용 액정 (굴절률 이방성 ≈ 0.16)>

온도	샘플 1 액정(T_{ni} : 87 °C)	샘플 2 액정(T_{ni} : 82 °C)	샘플 3 액정(T_{ni} : 79 °C)	샘플 4 액정(T_{ni} : 81 °C)	샘플 5 액정(T_{ni} : 117 °C)
0	1.0703	1.0736	1.0700	1.0713	1.0510
20	1.0000	1.0000	1.0000	1.0000	1.0000
40	0.9103	0.9085	0.9101	0.9027	0.9414
60	0.7951	0.7747	0.7753	0.7648	0.8716

<68> 바람직하게는,

<69> $90 \text{ }^{\circ}\text{C} < T_{ni} < 130 \text{ }^{\circ}\text{C}$ ----- (2)

<70> 상기 (2)식의 선택범위를 만족하는 것이다.

<71> -- 제 3 실시예 --

<72> 본 실시예는, 블루 쉬프트(blue shift) 최소화, 콘트라스트비(contrast ratio)의 향상을 위한 OCB 모드 액정 파라미터를 제안하는 실시예이다.

<73> 도 3a, 3b는 액정의 굴절률 이방성(Δn_{LC})값과 색좌표(CIE 1931 좌표계) 특성 간의 상관관계를 나타낸 도면으로서, 특히, 중심파장(550 nm) 기준 청색 파장(400 nm)에서의 액정의 굴절률 이방성(Δn_{LC})의 비율값은, 도 3a는 $\Delta n_{LC}(400 \text{ nm}/550 \text{ nm}) = 1.551$ 이고, 도 3b는 $\Delta n_{LC}(400 \text{ nm}/550 \text{ nm}) = 1.273$ 에서의 색좌표 특성을 나타낸 것으로, 도 3a의 경우 블루 쉬프트 현상이 매우 심각하게 나타남을 알 수 있다.<74> 이를 개선하기 위하여, 본 발명에서는 OCB 모드 액정표시장치용 보상필름의 Δn_{LC} (400 nm/550 nm)의 값을 기준으로 하여, 하기 식(3)과 같은 OCB 모드 액정 파라미터를 제안한다.

<75> $1.2 < \Delta n_{LC}(400 \text{ nm}/550 \text{ nm}) < 1.3$ ----- (3)

<76> -- 제 4 실시예 --

<77> 본 실시예는, 휘도, 시야각, 색특성, 구동전압을 고려한 벤드셀의 유효 위상차(Δn_{eff})값 설계치에 대한 실시예이다.

<78> 도 4는 일반적인 벤드셀의 위상차 특성 및 투과도 특성을 전압의 세기에 따라 나타낸 그래프에 대한 도면으로서, 노멀리화이트 모드를 일 예로 하여 도시한 것으로, 벤드셀에 보상필름을 적용하지 않으면 실질적으로 이용할 수 있는 전압 영역에서 완전한 블랙화면을 구현할 수 없음을 알 수 있다. 특히, 블랙상태는 액정과 보상필름의 위상차값이 전체파장에서 정확히 일치할 때 최저 투과도가 얻어지며, 불일치시에는 콘트라스트비저하와 컬러 쉬프트(color shift)가 유발된다.

<79> 바람직하게는, 위상차값의 범위에 대한 하기 식(4, 5-1, 5-2)을 만족하는 것이 바람직하다.

<80> <스플레이 상태>

<81> $1.35 < R(V=0) / \lambda < 1.75$ ----- (4)

<82> (R (Retardation) ; 위상차값)

<83> <벤드 상태>

<84> $0.5 < R(\text{화이트 화면 구현을 위한 전압 세기에서의 위상차값}) / \lambda < 0.7$
 ----- (5-1)

<86> $0.1 < R(\text{블랙 화면 구현을 위한 전압 세기에서의 위상차값}) / \lambda < 0.15$

<87> ----- (5-2)

<88> -- 제 5 실시예 --

<89> 본 실시예는, 보상필름으로써 디스코틱 필름과 이축성 필름을 포함하는 구조에 있어서, 각각의 보상필름의 위상차 비에 대한 범위를 제시하는 실시예이다.

<90> 도 5는 일반적인 OCB 모드 액정표시장치에 적용되는 보상필름의 적층 구조에 대한 도면으로서, 상기 도 1과 중복되는 부분에 대한 설명은 생략하고, 통상적으로 OCB 모드 용 보상필름(150)은 디스코틱 액정(152), 이축성 필름(154)이 차례대로 적층된 구조의 WV 필름(150a)과, WV 필름(150a)의 외부면에 위치하는 편광판(170)의 바깥면에 위치하는 또 하나의 이축성 필름인 TAC(150b ; tri-acetate cellulose)로 구성될 수 있다.

<91> 상기 디스코틱 필름(152)과 이방성 필름인 TAC(150b)의 위상차 간의 비율의 바람직 한 선택범위는,

<92> < 디스코틱 필름>

<93> $2.8 \leq Rth/Re \leq 3.2$ ----- (6)

<94> (Rth : x, y면 상에 위상차($= \{nz - (nx+ny)/2\}d$), Re : x, y면 상에 위치하는 위상 차와 수직인 위상차($= (nx-ny)d$))

<95> <이방성 필름(TAC)>

<96> $4.8 \leq Rth/Re \leq 5.2$ ----- (7)

<97> -- 제 6 실시예 --

<98> 본 실시예에서는, 보상필름 내 디스코틱 필름의 파장 분산 특성을 액정층 내 액정 분자의 파장 분산 특성과 유사하게 구성함으로써 보상 효과를 높이기 위한 실시예로서, 바람직하게는 하기 식(8)과 같은 범위를 가지는 디스코틱 필름을 이용하는 것이 바람직 하다.

<99> $1.2 < \text{디스코틱 액정의 굴절률 이방성} (\Delta n_{\text{디스코틱}}) (400 \text{ nm}/550 \text{ nm}) < 1.3$
<100> ----- (8)

【발명의 효과】

<101> 이상과 같이, 본 발명에 따른 벤드셀과 보상필름의 각종 설계 파라미터 및 를 조건 을 만족하는 OCB 모드 액정표시장치에 의하면, 고속응답, 광시야각, 고휘도, 저전압구동 등 고성능 제품을 제공할 수 있다.

【특허청구범위】

【청구항 1】

전압 무인가시에 스플레이(splay) 구조를 갖고, 전이전압(reset voltage) 인가시에 벤드(bend) 구조 액정층을 가지는 OCB(Optically Compensated Bend) 모드 액정표시장치에 있어서,

서로 대향되게 배치되며, 서로 동일한 방향으로 배향처리된 제 1, 2 기판과;

상기 제 1, 2 기판 사이에 개재된 액정층과;

상기 제 1, 2 기판의 양 바깥면에 각각 위치하는 제 1, 2 보상필름과;

상기 보상필름의 양 바깥면에 각각 위치하는 제 1, 2 편광판

을 포함하며, 상기 OCB 셀은 하기 식

<스플레이 상태>

$$1.35 < R(V=0) / \lambda < 1.75 \quad \text{----- (I)}$$

(R(Retardation) : 위상차값, V(Voltage) : 전압)

<벤드 상태>

$$0.5 < R(V = \text{화이트(white)}) / \lambda < 0.7 \quad \text{----- (IIa)}$$

(V = 화이트 ; 화이트 화면을 구현하기 위한 전압의 세기)

$$0.1 < R(V = \text{블랙(black)}) / \lambda < 0.15$$

----- (IIb)

(V = 블랙 ; 블랙 화면을 구현하기 위한 전압의 세기)

을 만족하는 것을 특징으로 하는 OCB 모드 액정표시장치.

【청구항 2】

제 1 항에 있어서,

상기 벤드 구조에서의 벤드탄성계수(K_{33})값과 유전율 이방성($\triangle \epsilon$)값은 하기 식

(III)

$$0.85 < K_{33}/\triangle \epsilon < 1.5 \quad \text{----- (III)}$$

을 만족하는 것을 특징으로 하는 OCB 모드 액정표시장치.

【청구항 3】

제 1 항에 있어서,

상기 액정층 내 액정 분자에 대한 액정상전이온도(T_{ni} ; Temperature 네마틱

(nematic) \rightarrow 등방성(isotropic)) 범위는 하기 식(IV)

$$90 \text{ } ^\circ\text{C} < T_{ni} < 130 \text{ } ^\circ\text{C} \quad \text{----- (IV)}$$

을 만족하는 것을 특징으로 하는 OCB 모드 액정표시장치.

【청구항 4】

제 1 항에 있어서,

상기 액정층 내 액정은 하기 식(V)의 굴절률 이방성($\triangle n$) 범위

$$1.2 < \Delta n_{LC}(400 \text{ nm}/550 \text{ nm}) < 1.3 \quad \text{----- (V)}$$

를 만족하는 것을 특징으로 하는 OCB 모드 액정표시장치.

【청구항 5】

제 1 항에 있어서,

상기 보상필름은 디스코틱 필름(discotic film)을 포함하고, 상기 디스코틱 필름의 파장분산 특성은, 하기 식(VI)

$$1.2 < (\Delta n_{\text{디스코틱}}(400 \text{ nm}/550 \text{ nm}) < 1.3 \quad \text{----- (VI)}$$

($\Delta n_{\text{디스코틱}}$; 디스코틱 액정의 굴절률 이방성)

을 만족하는 OCB 모드 액정표시장치.

【청구항 6】

제 1 항에 있어서,

상기 보상필름은 디스코틱 필름(discotic film), 이방성 필름(biaxial film)으로 구성되는 WV 필름(wideview film)과, 상기 편광판의 바깥면에 위치하는 또 하나의 이방성 필름인 TAC(tri-acetate cellulose)를 추가로 포함하며, 상기 디스코틱 필름 및 TAC는 하기 식(VII) 및 식(VIII)

$$2.8 \leq R_{th}/R_e \leq 3.2 \quad \text{----- (VII)}$$

(R_{th} : x, y 면 상에 위상차($= \{nz - (nx+ny)/2\}d$), R_e : x, y면 상에 위치하는 위상차와 수직인 위상차($= (nx-ny)d$))

1020020087544

출력 일자: 2003/6/13

<이 방성 필름(TAC)>

4.8 ≤ Rth/Re ≤ 5.2 ----- (VIII)

을 만족하는 OCB 모드 액정표시장치.

【도면】

【도 1】

【도 2】

【도 3a】

【도 3b】

【도 4】

1020020087544

출력 일자: 2003/6/13

【도 5】

