Algorithmic interpretations of fractal dimension

Anastasios Sidiropoulos (The Ohio State University) Vijay Sridhar (The Ohio State University)

The curse of dimensionality

▶ Geometric problems become harder when dimension increases.

The curse of dimensionality

- ▶ Geometric problems become harder when dimension increases.
- ▶ Several notions of dimension in computational geometry:
 - Euclidean dimension
 - Doubling dimension
 - Rate of growth
 - Highway dimension

How does fractal dimension affect algorithmic complexity?

Fractals

Fractal dimension

Several notions of fractal dimension:

- ► Hausdorff dimension
- Minkowski dimension
- Box-counting dimension
- **.** . . .

Example: Koch curve

 $\begin{array}{l} \text{length} = \infty \\ \text{area} = 0 \end{array}$

Fractal dimension and volume

Fractal dimension δ :

Scaling by a factor of r>0 increases the total "volume" by a factor of roughly r^{δ} .

Fractal dimension and volume

Fractal dimension δ :

Scaling by a factor of r>0 increases the total "volume" by a factor of roughly r^{δ} .

Example: Sierpinski carpet

Scaling by a factor of 3 increases the volume by a factor of $8\,$

$$\delta = \log_3 8$$

Hausdorff dimension

Let $X \subseteq \mathbb{R}^d$.

 δ -dimensional Hausdorff content:

$$C_H^\delta(X) = \inf \left\{ \sum_{i \in I} r_i^\delta : \exists \text{ countable cover of } S \text{ with radii } r_i \right\}$$

Hausdorff dimension:

$$\dim_{\mathsf{H}}(X) = \inf\{\delta \geq 0 : C_{\mathsf{H}}^{\delta}(X) = 0\}$$

What about discrete sets?

- ▶ Most definitions of fractal dimension are *meaningless* for countable sets.
- ► E.g.

$$\dim_{\mathsf{H}}(\mathbb{Q}\times\mathbb{Q})=0$$

and for all $X \subset \mathbb{R}^2$, $Y \subset \mathbb{Q}^2$,

$$\dim_{\mathsf{H}}(X \cup Y) = \dim_{\mathsf{H}}(X)$$

A definition for discrete spaces

Let $M=(X,\rho)$ be a metric space, |X|=n. We define $\dim_{\mathbf{f}}(X)=\delta$ if δ is the infimum number s.t. for all $\varepsilon>0,\ R\geq 2\varepsilon$, for all $x\in\mathbb{R}^2$, for all ε -nets N of X

$$|\mathsf{Ball}(x,R) \cap N| = O((R/\varepsilon)^{\delta})$$

A definition for discrete spaces

Let $M=(X,\rho)$ be a metric space, |X|=n. We define $\dim_{\mathbf{f}}(X)=\delta$ if δ is the infimum number s.t. for all $\varepsilon>0$, $R\geq 2\varepsilon$, for all $x\in\mathbb{R}^2$, for all ε -nets N of X

$$|\mathsf{Ball}(x,R) \cap N| = O((R/\varepsilon)^{\delta})$$

 ε -net: maximal $N \subseteq X$ s.t. for all $x \neq y \in N$, $\rho(x,y) > \varepsilon$.

Examples

▶ For any $X \subset \mathbb{R}^d$, $\dim_f(X) \leq d$.

Examples

- ▶ For any $X \subset \mathbb{R}^d$, $\dim_f(X) \leq d$.
- $\dim_{\mathsf{f}}(\{1,\ldots,n^{1/d}\}^d)=d.$

Examples

- ▶ For any $X \subset \mathbb{R}^d$, $\dim_f(X) \leq d$.
- $ightharpoonup \dim_{\mathbf{f}}(\{1,\ldots,n^{1/d}\}^d)=d.$
- Discrete Sierpinski carpet:

Relation to other notions of dimension

Similar to Minkowski / box-counting dimension.

$$\dim_{\mathsf{b}}(X) = \lim_{\varepsilon \to 0} \log(I_{\varepsilon}(X)) / \log(1/\varepsilon)$$

Used in numerical estimations of fractal dimension. Equivalent for "nice" sets.

Relation to other notions of dimension

Similar to Minkowski / box-counting dimension.

$$\dim_{\mathsf{b}}(X) = \lim_{\varepsilon \to 0} \log(I_{\varepsilon}(X)) / \log(1/\varepsilon)$$

Used in numerical estimations of fractal dimension. Equivalent for "nice" sets.

▶ **Doubling dimension:** $\dim_{\mathsf{d}}(M) = 2^k$, if any ball of radius R can be covered by k balls of radius R/2. **Fact:**

$$\dim_{\mathsf{d}}(M) = \Theta(\dim_{\mathsf{f}}(M)).$$

Relation to other notions of dimension

Similar to Minkowski / box-counting dimension.

$$\dim_{\mathsf{b}}(X) = \lim_{\varepsilon \to 0} \log(\mathit{I}_{\varepsilon}(X))/\log(1/\varepsilon)$$

Used in numerical estimations of fractal dimension. Equivalent for "nice" sets.

▶ **Doubling dimension:** $\dim_{\mathsf{d}}(M) = 2^k$, if any ball of radius R can be covered by k balls of radius R/2. **Fact:**

$$\dim_{\mathsf{d}}(M) = \Theta(\dim_{\mathsf{f}}(M)).$$

▶ Fractal dimension in percolation theory: Percolation in $\{1, \ldots, n^{1/d}\}^d$. Largest connected component has size $O(n^\delta)$.

Given set X of n points in \mathbb{R}^d , find minimum length tour visiting all points in X.

Given set X of n points in \mathbb{R}^d , find minimum length tour visiting all points in X.

State of the art:

► General metric spaces: $2^{O(n)}n^{O(1)}$ time

- ▶ General metric spaces: $2^{O(n)}n^{O(1)}$ time
- $ightharpoonup \mathbb{R}^2$: $2^{O(\sqrt{n})} n^{O(1)}$ time ("square-root" phenomenon)

- ▶ General metric spaces: $2^{O(n)}n^{O(1)}$ time
- $ightharpoonup \mathbb{R}^2$: $2^{O(\sqrt{n})} n^{O(1)}$ time ("square-root" phenomenon)
- $ightharpoonup \mathbb{R}^d$: $2^{O(n^{1-1/d})} n^{O(1)}$ time [Smith and Wormald '98]

- ▶ General metric spaces: $2^{O(n)}n^{O(1)}$ time
- $ightharpoonup \mathbb{R}^2$: $2^{O(\sqrt{n})} n^{O(1)}$ time ("square-root" phenomenon)
- $ightharpoonup \mathbb{R}^d$: $2^{O(n^{1-1/d})} n^{O(1)}$ time [Smith and Wormald '98]
- ▶ \mathbb{R}^d : there is no algorithm with running time $2^{O(n^{1-1/d-\varepsilon})}$, assuming ETH [Marx and S. 2014].

State of the art:

- ▶ General metric spaces: $2^{O(n)}n^{O(1)}$ time
- $ightharpoonup \mathbb{R}^2$: $2^{O(\sqrt{n})} n^{O(1)}$ time ("square-root" phenomenon)
- $ightharpoonup \mathbb{R}^d$: $2^{O(n^{1-1/d})} n^{O(1)}$ time [Smith and Wormald '98]
- ▶ \mathbb{R}^d : there is no algorithm with running time $2^{O(n^{1-1/d-\varepsilon})}$, assuming ETH [Marx and S. 2014].
- ► $X \subset \mathbb{R}^{O(1)}$, $\dim_{\mathsf{f}}(X) = \delta > 1$: $2^{O(n^{1-1/\delta} \log n)} n^{O(1)}$ time [S. and Sridhar 2016]

Faster algorithms when $\delta < d$

Why does fractal dimension matter?

NP-hardness of TSP in \mathbb{R}^2 [Papadimitriou '77]

Hard instances have $\dim_f = 2$.

The Smith-Wormald approach

Lemma (Smith and Wormald '98)

There exists an optimal tour W and some axis-parallel rectangle balanced separator that crosses at most $O(\sqrt{n})$ edges in W.

The Smith-Wormald approach

Lemma (Smith and Wormald '98)

There exists an optimal tour W and some axis-parallel rectangle balanced separator that crosses at most $O(\sqrt{n})$ edges in W.

The Smith-Wormald approach

Lemma (Smith and Wormald '98)

There exists an optimal tour W and some axis-parallel rectangle balanced separator that crosses at most $O(\sqrt{n})$ edges in W.

 $\dim_{\mathsf{f}}(X) = \delta > 1 \Rightarrow \mathsf{sphere} \; \mathsf{separator} \; \mathsf{of} \; \mathsf{size} \; O(n^{1-1/\delta}).$

k-Independent Set of Unit Balls

k-Independent Set of Unit Balls

State of the art:

▶ In \mathbb{R}^d : $n^{O(k^{1-1/d})}$ time [Alber, Fiala 2002], [Marx, S. 2014]

k-Independent Set of Unit Balls

- ▶ In \mathbb{R}^d : $n^{O(k^{1-1/d})}$ time [Alber, Fiala 2002], [Marx, S. 2014]
- No $f(k)n^{o(k^{1-1/d})}$ time algorithm exists, assuming ETH [Marx, S. 2014]

k-Independent Set of Unit Balls

- ▶ In \mathbb{R}^d : $n^{O(k^{1-1/d})}$ time [Alber, Fiala 2002], [Marx, S. 2014]
- No $f(k)n^{o(k^{1-1/d})}$ time algorithm exists, assuming ETH [Marx, S. 2014]
- ▶ In $\mathbb{R}^{O(1)}$ if the set of centers has fractal dimension δ [S., Sridhar 2016]:
 - $\delta > 1$: $n^{O(k^{1-1/\delta}) + \log n}$ time
 - ▶ $\delta < 1$: $n^{O(\log n)}$ time

► $(1+d/\ell)$ -approximation in time $\ell^{2d} n^{O((\ell\sqrt{d})^d)}$ [Hochbaum & Maass '85]

R-Cover

- ► $(1 + d/\ell)$ -approximation in time $\ell^{2d} n^{O((\ell \sqrt{d})^d)}$ [Hochbaum & Maass '85]
- $(1 + d/\ell)$ -approximation in time $\ell^{d+\delta} n^{O((\ell\sqrt{d})^{\delta})}$ [S. & Sridhar 2016]

R-Cover

- $(1+d/\ell)$ -approximation in time $\ell^{2d} n^{O((\ell\sqrt{d})^d)}$ [Hochbaum & Maass '85]
- $(1 + d/\ell)$ -approximation in time $\ell^{d+\delta} n^{O((\ell\sqrt{d})^{\delta})}$ [S. & Sridhar 2016]
- Similar result for R-Packing

Metric space (X, ρ) A c-spanner is a graph G = (X, E) s.t. for all $x, y \in X$ $\rho(x, y) \leq d_G(x, y) \leq c \cdot \rho(x, y)$

Metric space (X, ρ) A *c*-spanner is a graph G = (X, E) s.t. for all $x, y \in X$ $\rho(x, y) \le d_G(x, y) \le c \cdot \rho(x, y)$

Any set of n points in \mathbb{R}^d admits a $(1 + \varepsilon)$ -spanner of size $n(1/\varepsilon)^{O(d)}$ [Salowe '95], [Vaidya '91]

Metric space (X, ρ) A *c*-spanner is a graph G = (X, E) s.t. for all $x, y \in X$ $\rho(x, y) \le d_G(x, y) \le c \cdot \rho(x, y)$

- Any set of n points in \mathbb{R}^d admits a $(1 + \varepsilon)$ -spanner of size $n(1/\varepsilon)^{O(d)}$ [Salowe '95], [Vaidya '91]
- ▶ For set of fractal dimension δ : $(1 + \varepsilon)$ -spanner of size $n(1/\varepsilon)^{O(d)}$ and [S. & Sridhar 2016]
 - $\delta > 1$: treewidth = $O(n^{1-1/\delta} \log n)$
 - $\delta = 1$: treewidth = $O(\log^2 n)$
 - $\delta < 1$: treewidth = $O(\log n)$

Metric space (X, ρ) A *c*-spanner is a graph G = (X, E) s.t. for all $x, y \in X$ $\rho(x, y) \le d_G(x, y) \le c \cdot \rho(x, y)$

- Any set of n points in \mathbb{R}^d admits a $(1 + \varepsilon)$ -spanner of size $n(1/\varepsilon)^{O(d)}$ [Salowe '95], [Vaidya '91]
- ▶ For set of fractal dimension δ : $(1 + \varepsilon)$ -spanner of size $n(1/\varepsilon)^{O(d)}$ and [S. & Sridhar 2016]
 - $\delta > 1$: treewidth = $O(n^{1-1/\delta} \log n)$
 - $\delta = 1$: treewidth = $O(\log^2 n)$
 - $\delta < 1$: treewidth = $O(\log n)$

Grid minors vs. integer lattices.

► First step towards understanding complexity of problems as a function of fractal dimension

- ► First step towards understanding complexity of problems as a function of fractal dimension
- ▶ Main theme: Faster algorithms when

fractal dimension < ambient dimension

- First step towards understanding complexity of problems as a function of fractal dimension
- ▶ Main theme: Faster algorithms when

fractal dimension < ambient dimension

Many of these results are nearly-tight, assuming ETH [S. 2016]

- First step towards understanding complexity of problems as a function of fractal dimension
- Main theme: Faster algorithms when

fractal dimension < ambient dimension

- ▶ Many of these results are nearly-tight, assuming ETH [S. 2016]
- Many other problems to explore

- First step towards understanding complexity of problems as a function of fractal dimension
- Main theme: Faster algorithms when

fractal dimension < ambient dimension

- ▶ Many of these results are nearly-tight, assuming ETH [S. 2016]
- Many other problems to explore
- ▶ What about fractal sets in higher dimensions (e.g. \mathbb{R}^n)?