Esame di Ingegneria del software, 18 febbraio 2021 prova a distanza

Scrivere le risposte (a, b, c oppure V, F) nelle rispettive caselle del file di testo allegato al messaggio inviato dal docente. I candidati devono consegnare entro 45 minuti dall'inizio della prova, inviando al docente il file di testo delle risposte, usando la funzione "rispondi" del cliente di posta elettronica. Chi si ritira dalla prova lo deve comunicare al docente per posta elettronica.

$\mathbf{A1}$	Tablelter ha operazioni che	
(a)	restituiscono oggetti di tipo Player .	\boxtimes
(b)	restituiscono oggetti di tipo Team .	
(c)	restituiscono oggetti di tipo Table .	
$\mathbf{A2}$	Interface	
(a)	usa puntatori a Tablelter .	
(b)	usa puntatori a Team .	\boxtimes
(c)	usa puntatori a Table .	
$\mathbf{A3}$	Queue	
(a)	realizza Queuelter.	
(b)	usa Team .	
(c)	realizza Team .	\boxtimes
$\mathbf{A4}$	Interface	
(a)	usa puntatori a Tablelter .	
(b)	usa puntatori a Iterator .	\boxtimes
(c)	usa puntatori a Queuelter .	
A5	$get_iterator()$	
(a)	deve essere implementata da Table .	\boxtimes
(b)	deve essere implementata da Iterator .	
(c)	può essere implementata da Team .	

		\mathbf{V}	\mathbf{F}
B1	Clock può invocare Display::reset().		\boxtimes
$\mathbf{B2}$	Display può invocare Counter::increment().		\boxtimes
$\mathbf{B3}$	Display può invocare Counter::get_min().	\boxtimes	
B4	Counter eredita da Display.		\boxtimes
$\mathbf{B5}$	Display è una classe attiva.	\boxtimes	

C1(a) Graphic dipende da PS_chunk. \boxtimes (b) **PS_chunk** implementa *Graphic*. (c) *Graphic* implementa **PS_chunk**. C2(a) una **Icon** può contenere dei **Diagram**. (b) un **Diagram** può contenere delle **Icon**. \boxtimes (c) una **lcon** può contenere dei **PS_chunk**. C3(a) un **Diagram** può contenere dei **PS_chunk**. (b) un **PSstmt** fa parte di un **PS_chunk**. \boxtimes (c) un **Diagram** può contenere dei **PSstmt**. C4(a) tutte le **Icon** sono *Graphic*. \boxtimes (b) tutti i **Diagram** sono **Icon**. (c) tutti i *Graphic* sono **Icon**. C5(a) generate() ha un argomento di tipo **PS_chunk**. (b) generate() ha un argomento di tipo *Graphic*. (c) generate() restituisce un oggetto di tipo **PS_chunk**. \boxtimes

		\mathbf{V}	${f F}$
D1	Ogni Aeroporto è servito da piú di una Compagnia .		\boxtimes
D2	Ogni Compagnia è una PosizioneGeografica.		\boxtimes
D3	Ogni Aeroporto è servito da almeno una Compagnia .	\boxtimes	
D4	Ogni Aeroporto ha un Indirizzo .		\boxtimes
D5	L'indirizzo di ogni Viaggiatore comprende una località.	\boxtimes	

${f E1}$	HashTable	
(a)	richiede HTKey .	\boxtimes
(b)	offre HTKey.	
(c)	implementa HTKey.	
$\dot{\mathbf{E}}\dot{2}$	KeyString	
(a)	dipende da HTKey .	
(b)	appartiene a HTKey.	
(c)	realizza HTKey.	\boxtimes
$\dot{\mathbf{E}3}$	HashTable	
(a)	può usare chiavi di altro tipo.	\boxtimes
(b)	può usare chiavi di qualsiasi tipo.	
(c)	può usare solo chiavi di tipo KeyString .	
$\dot{\mathbf{E}4}$	Object	
(a)	deriva da HashTable .	
(b)	appartiene a HashTable .	\boxtimes
(c)	implementa HashTable.	
$\dot{\mathbf{E5}}$	put()	
(a)	è astratta.	
(b)	è protetta.	
(c)	è polimorfica	\boxtimes

Rispondere alle seguenti domande.

		\mathbf{V}	${f F}$
$\mathbf{F1}$	Tutte le formule vere sono valide.		\boxtimes
$\mathbf{F2}$	Un assioma è una formula che deve essere dimostrata con una regola d'inferenza.		\boxtimes
$\mathbf{F3}$	In un sistema formale corretto, tutte le formule dimostrabili sono valide.	\boxtimes	
$\mathbf{F4}$	Tutte le formule ben formate sono valide.		\boxtimes
$\mathbf{F5}$	Il calcolo dei sequenti è un sistema formale.	\boxtimes	