VAST

James T. Thorson

```
library(tinyVAST)
library(fmesher)
set.seed(101)
```

tinyVAST is an R package for fitting vector autoregressive spatio-temporal (VAST) models. We here explore the capacity to specify the vector-autoregressive spatio-temporal component.

Spatio-temporal autoregressive model

We first explore the ability to specify a first-order autoregressive spatio-temporal process:

```
# Simulate settings
theta_xy = 0.4
n_x = n_y = 10
n_t = 15
rho = 0.8
spatial_sd = 0.5
# Simulate GMRFs
R_s = \exp(-\text{theta}_xy * abs(outer(1:n_x, 1:n_y, FUN="-")))
V_ss = spatial_sd^2*kronecker(R_s, R_s)
d = mvtnorm::rmvnorm(n_t, sigma=V_ss)
# Project through time and add mean
for( t in seq_len(n_t) ){
 if(t>1) d[t,] = rho*d[t-1,] + d[t,]
}
\#d = d + 0.5
# Shape into longform data-frame and add error
Data = data.frame( expand.grid(time=1:n_t, x=1:n_x, y=1:n_y), "var"="logn", z=exp(as.vector(d)))
Data$n = tweedie::rtweedie( n=nrow(Data), mu=Data$z, phi=0.5, power=1.5)
mean(Data$n==0)
#> [1] 0.046
# make mesh
mesh = fm_mesh_2d(Data[,c('x','y')])
# fit model
mytinyVAST = fit( dsem = "logn -> logn, 1, rho",
           data = Data,
           formula = n ~ 0 + factor(time),
```

```
spatial_graph = mesh,
          family = list( "obs"=tweedie() ),
          control = tinyVASTcontrol(quiet=TRUE, trace=0) )
mytinyVAST
#> $call
\# fit(data = Data, formula = n \sim 0 + factor(time), dsem = "logn -> logn, 1, rho",
      family = list(obs = tweedie()), spatial\_graph = mesh, control = tinyVASTcontrol(quiet = TRUE,
          trace = 0))
#>
#>
#> $opt
#> $opt$par
                  alpha_j
                            alpha\_j
                                        alpha\_j
                                                    alpha\_j
                                                               alpha_j
                                                                             alpha_j
#> -0.08323603 -0.13549103 -0.10579217 -0.14499111 -0.37823867 -0.21633304 -0.41489958 -0.67168422 -0.4
      alpha_j
               beta\_z
                             beta_z log_sigma log_sigma
                                                              log_kappa
#> 0.30040122 0.81229113 0.40988915 -0.64868475 0.04394543 0.07228543
#>
#> $opt$objective
#> [1] 1717.689
#>
#> $opt$convergence
#> [1] 0
#> $opt$iterations
#> [1] 77
#>
#> $opt$evaluations
#> function gradient
#>
      107
                 77
#>
#> $opt$message
#> [1] "relative convergence (4)"
#>
#> $sdrep
#> sdreport(.) result
#>
              Estimate Std. Error
#> alpha_j -0.08323603 0.15196456
#> alpha_j -0.13549103 0.18670340
#> alpha_j -0.10579217 0.20529851
#> alpha_j -0.14499111 0.21780791
#> alpha_j -0.37823867 0.22691800
#> alpha_j -0.21633304 0.23026450
#> alpha_j -0.41489958 0.23456777
#> alpha_j
            -0.67168422 0.23833635
#> alpha_j
            -0.49463135 0.23869331
#> alpha_j -0.13968722 0.23733095
#> alpha_j
           0.14836185 0.23640201
#> alpha_j -0.21516692 0.23873590
#> alpha_j -0.20120062 0.23979214
#> alpha_j 0.16887043 0.23708655
#> alpha_j 0.30040122 0.23660035
#> beta_z 0.81229113 0.03708631
#> beta_z 0.40988915 0.03291043
```

```
#> log_sigma -0.64868475 0.05422114

#> log_sigma 0.04394543 0.07275797

#> log_kappa 0.07228543 0.10755269

#> Maximum gradient component: 0.006334975

#> $run_time

#> Time difference of 21.21378 secs
```

The estimated values for beta_z then correspond to the simulated value for rho and spatial_sd.

We can compare the true densities:

with the estimated densities:

where a scatterplot shows that they are highly correlated:

```
plot( x=Data$z, y=Data$z_hat )
```


We can then calculate the area-weighted total abundance and compare it with its true value:

```
# Predicted sample-weighted total
(Est = sapply( seq_len(n_t),
   FUN=\(t) integrate_output(mytinyVAST, newdata=subset(Data,time==t)) ))
#>
                                         [,2]
                                                    [,3]
                                                               [,4]
                                                                         [,5]
                                                                                     [,6]
                                                                                               [,7]
                             [,1]
                        97.164903
                                   96.643634
                                               98.362457 101.517620 84.760587 97.538111 77.520820 59.56
#> Estimate
#> Std. Error
                         7.194683
                                    7.216494
                                               7.309312
                                                          7.572241 6.643419
                                                                                7.406226 6.207919
#> Est. (bias.correct) 102.324275 102.850496 105.043003 108.373177 90.604659 104.258111 83.102278 64.06
#> Std. (bias.correct)
                               NA
                                          NA
                                                      NA
                                                                 NA
                                                                           NA
                                                                                                 NA
#>
                           [,15]
#> Estimate
                       187.86973
#> Std. Error
                        12.88189
#> Est. (bias.correct) 200.54754
#> Std. (bias.correct)
# True (latent) sample-weighted total
```

```
(True = tapply( Data$z, INDEX=Data$time, FUN=sum ))
                             3 4 5
                                                                                                10
#> 99.21643 100.10603 101.66846 109.52622 85.76973 100.97116 80.99847 68.60738 85.39974 119.62380
Index = data.frame( time=seq_len(n_t), t(Est), True )
Index$low = Index[,'Est...bias.correct.'] - 1.96*Index[,'Std..Error']
Index$high = Index[,'Est...bias.correct.'] + 1.96*Index[,'Std..Error']
library(ggplot2)
ggplot(Index, aes(time, Estimate)) +
 geom_ribbon(aes(ymin = low,
                 ymax = high),
                                # shadowing cnf intervals
             fill = "lightgrey") +
 geom_line( color = "black",
           linewidth = 1) +
  geom_point( aes(time, True), color = "red" )
```


Next, we compare this against the current version of VAST

```
t_i = Data[,'time'],
                 b_i = Data[,'n'],
                 a_i = rep(1, nrow(Data)),
                 observations_LL = cbind(Lat=Data[,'y'],Lon=Data[,'x']),
                grid_dim_km = c(100,100),
                newtonsteps = 0,
                loopnum = 1,
                control = list(eval.max=100, iter.max=100, trace=0) )
#> Warning: The `returnclass` argument of `ne_download()` sp as of rnaturalearth 1.0.0.
#> i Please use `sf` objects with {rnaturalearth}, support for Spatial objects (sp) will be removed in
#> i The deprecated feature was likely used in the FishStatsUtils package.
#> Please report the issue to the authors.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
#> Warning in FishStatsUtils:::inla.barrier.fem.copy(mesh = anisotropic_mesh, : Please install the `INL
#> which contains an implementation that runs faster!
                Component_1 Component_2
#> Omega
                         -1
#> Epsilon
                         -1
                                     -2
#> Beta
                        -2
                                     -2
#> Epsilon_time
                                     -3
#> Eta1 Eta2
#>
   -1 -1
      Coefficient_name Number_of_coefficients
#>
                                               Type
#> 1
             beta1 ft
                                           1 Fixed
#> 2
             beta2\_ft
                                          15 Fixed
#> 3
      Epsilon\_rho2\_f
                                           1 Fixed
#> 4
                                            1 Fixed
         L_epsilon2_z
#> 5
             logkappa2
                                            1 Fixed
#> 6
                                            1 Fixed
             logSigmaM
#> 7 Epsiloninput2_sff
                                         2040 Random
           2105.7266: 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
#>
    0:
           1993.4850: 0.248169 -0.00621313 -0.00940275 -0.00474146 -0.00488678 -0.0304006 -0.0100244 -
#>
    1:
           1815.3664: -0.625674 -0.0250910 -0.0263651 -0.0154445 -0.0135640 -0.0640075 -0.0194314 -0.0
#>
    2:
#>
           1787.0493: -0.401654 0.00970346 -0.0193647 -0.00730560 -0.00492316 -0.0744611 -0.00503150 -
     3:
#>
    4:
           1777.8725: -0.446246 0.0170642 -0.0177169 -0.00500788 -0.00228127 -0.0780425 -0.000709483 -
#>
           1769.4163: -0.519117 0.0790811 0.00101357 0.0150763 0.0200457 -0.0994408 0.0309285 -0.06803
    5:
#>
           1760.3172: -0.511935 0.157190 0.0320130 0.0398107 0.0442341 -0.117800 0.0594775 -0.0745811
           1750.8485: -0.566256 0.242491 0.0751094 0.0723315 0.0724627 -0.130056 0.0861515 -0.0818699
#>
    7:
#>
           1747.1048: -0.570896 0.297687 0.124667 0.106758 0.0886785 -0.116014 0.0852856 -0.0872344 -0
    8:
           1744.9699: -0.509053 0.311068 0.139401 0.117785 0.0947485 -0.112493 0.0849978 -0.0893639 -0
#>
    9:
#> 10:
           1743.1222: -0.512816 0.321511 0.166698 0.139649 0.108323 -0.104951 0.0823444 -0.0952418 -0.
#> 11:
           1742.7069: -0.578092 0.317902 0.191272 0.161171 0.123579 -0.0949179 0.0755250 -0.102868 -0.
           1741.4359: -0.553625 0.350576 0.228002 0.198994 0.151349 -0.0855427 0.0768123 -0.112226 -0.
#> 12:
#> 13:
           1741.3951: -0.549230 0.354115 0.230379 0.201585 0.153643 -0.0848625 0.0779499 -0.112529 -0.
           1741.3352: -0.551012 0.357402 0.232642 0.204355 0.156205 -0.0837881 0.0792783 -0.112707 -0.
#> 14:
#> 15:
           1741.2774: -0.550206 0.360788 0.235473 0.207574 0.159120 -0.0822459 0.0806568 -0.112809 -0.
#> 16:
           1741.2267: -0.551500 0.363838 0.238499 0.210823 0.161987 -0.0806066 0.0819352 -0.112867 -0.
           1741.1721: -0.550622 0.366481 0.241688 0.214111 0.164885 -0.0786655 0.0831737 -0.112753 -0.
#> 17:
#> 18:
           1741.1236: -0.551920 0.368996 0.244873 0.217411 0.167764 -0.0767614 0.0844078 -0.112601 -0.
           1741.0724: -0.551195 0.371249 0.248032 0.220698 0.170664 -0.0746785 0.0856768 -0.112263 -0.
#> 19:
#> 20:
           1741.0260: -0.552449 0.373520 0.251087 0.223967 0.173556 -0.0726804 0.0870056 -0.111886 -0.
           1740.9777: -0.551772 0.375592 0.254042 0.227169 0.176446 -0.0705493 0.0884075 -0.111306 -0.
```

```
22:
                                   1740.9333: -0.552979 0.377691 0.256908 0.230329 0.179311 -0.0684846 0.0898717 -0.110681 -0.
           23:
                                   1740.8874\colon -0.552354\ 0.379597\ 0.259661\ 0.233382\ 0.182143\ -0.0663000\ 0.0914165\ -0.109843\ -0.0663000\ 0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.0914165\ -0.091465\ -0.091465\ -0.091465\ -0.09140
#>
                                   1740.8448: -0.553529 0.381533 0.262347 0.236393 0.184943 -0.0641761 0.0930184 -0.108966 -0.
#>
           24:
                                   1740.8009: -0.552945 0.383290 0.264911 0.239281 0.187690 -0.0619540 0.0947033 -0.107879 -0.
#>
           25:
                                   1740.7599: -0.554087 0.385088 0.267422 0.242138 0.190408 -0.0597943 0.0964357 -0.106769 -0.
#>
           26:
#>
           27:
                                   1740.7179: -0.553533 0.386717 0.269810 0.244868 0.193066 -0.0575534 0.0982451 -0.105458 -0.
#>
           28:
                                   1740.6785: -0.554646 0.388394 0.272165 0.247582 0.195703 -0.0553732 0.100088 -0.104144 -0.3
                                   1740.6381: -0.554116 0.389913 0.274398 0.250169 0.198274 -0.0531233 0.101999 -0.102642 -0.3
#>
           29:
                                   1740.5999: -0.555202 0.391487 0.276618 0.252755 0.200835 -0.0509313 0.103932 -0.101154 -0.3
#>
           30:
                                   1740.5609: -0.554691 0.392909 0.278720 0.255217 0.203329 -0.0486780 0.105925 -0.0994921 -0.
#>
           31:
#>
           32:
                                   1740.5240: -0.555753 0.394396 0.280824 0.257695 0.205823 -0.0464791 0.107931 -0.0978588 -0.
#>
           33:
                                   1740.4863: -0.555260 0.395736 0.282815 0.260052 0.208250 -0.0442245 0.109991 -0.0960631 -0.
#>
                                   1740.4504: -0.556300 0.397148 0.284822 0.262437 0.210687 -0.0420205 0.112057 -0.0943084 -0.
           34:
                                   1740.4138\colon -0.555822\ 0.398418\ 0.286719\ 0.264704\ 0.213058\ -0.0397646\ 0.114172\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0924001\ -0.0
#>
           35:
                                   1740.3790: -0.556842 \ 0.399766 \ 0.288644 \ 0.267012 \ 0.215447 \ -0.0375560 \ 0.116289 \ -0.0905430 \ -0.086649 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905430 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.09054000 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.0905400 \ -0.09054000 \ -0.09054000 \ -0.0905400 \ -0.0905400 \ -
#>
           36:
#>
                                  1740.3433: -0.556378 0.400974 0.290460 0.269203 0.217770 -0.0352983 0.118450 -0.0885390 -0.
                                   1740.3094: -0.557382 0.402268 0.292316 0.271446 0.220119 -0.0330849 0.120611 -0.0865946 -0.
#>
           38:
#>
           39:
                                   1740.2747: -0.556930 \ 0.403424 \ 0.294064 \ 0.273572 \ 0.222402 \ -0.0308244 \ 0.122813 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.0845081 \ -0.
                                   1740.2416: -0.557918 \ 0.404671 \ 0.295860 \ 0.275760 \ 0.224718 \ -0.0286058 \ 0.125012 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.0824886 \ -0.08248886 \ -0.08248886 \ -0.08248886 \ -0.08248886 \ -0.08248886 \ -0.08248886 \ -0.082488888 \ -0.08248888 \ -0.082488888 \ -0.082488888 \ -0.082488888 \ -0.082488888 \ -0.082488888 \ -0.082488888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.082488888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.082488888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.08248888 \ -0.082488888 \ -0.082488888 \ -0.08248888 \ -0.082488888 \ -0.082488888 \ -0.08248888 \ -0.08248888 \ -0.0824888888
#>
           40:
#>
                                  1740.2077: -0.557478 0.405780 0.297549 0.277831 0.226967 -0.0263417 0.127249 -0.0803302 -0.
           41:
                                  1740.1754: -0.558453 0.406989 0.299295 0.279972 0.229255 -0.0241174 0.129481 -0.0782454 -0.
#>
           42:
#>
           43:
                                  1740.1423: -0.558024 0.408057 0.300933 0.281996 0.231475 -0.0218490 0.131750 -0.0760237 -0.
#>
                                  1740.1107: -0.558986 0.409232 0.302637 0.284098 0.233741 -0.0196188 0.134013 -0.0738817 -0.
           44:
#>
                                  1739.1745: -0.567381 0.435950 0.399872 0.419534 0.401618 0.196149 0.349401 0.173937 -0.0615
           45:
                                   1738.8279: -0.596524 0.471652 0.397182 0.441269 0.441486 0.225559 0.413372 0.232199 0.00229
#>
           46:
#>
           47:
                                   1738.5935: -0.588631 0.486598 0.424664 0.445106 0.443186 0.233576 0.433439 0.257339 -0.0001
#>
           48:
                                  1738.5330: -0.588773 0.482571 0.456978 0.479450 0.446830 0.251282 0.408587 0.228845 -0.0112
#>
           49:
                                   1738.4986: -0.586549 0.503767 0.458645 0.501052 0.483951 0.237362 0.397869 0.199913 -0.0305
#>
           50:
                                   1738.4741: -0.588433 0.526758 0.465209 0.502090 0.498809 0.229918 0.397908 0.194546 -0.0755
#>
           51:
                                   1738.4317: -0.595944 0.528783 0.468489 0.500110 0.482969 0.237850 0.406101 0.192359 -0.0929
                                   1738.3873: -0.593420 0.521139 0.470568 0.496121 0.466359 0.237208 0.408074 0.179406 -0.0851
#>
           52:
                                   1738.3670: -0.593640 0.520784 0.470148 0.495289 0.468669 0.236030 0.403759 0.182930 -0.0831
#>
           53:
#>
                                   1738.3647: -0.592189 0.520681 0.470006 0.495198 0.469040 0.235710 0.402975 0.183604 -0.0827
           54:
                                   1738.3536: -0.592538 0.519602 0.469976 0.494577 0.469653 0.234602 0.401502 0.185091 -0.0809
#>
           55:
#>
                                   1738.3495: -0.591602 0.518839 0.469263 0.494263 0.469916 0.233437 0.400140 0.186819 -0.0789
           56:
                                   1738.3457: -0.591405 0.518700 0.468028 0.494016 0.469236 0.232796 0.400074 0.188030 -0.0771
#>
           57:
#>
           58:
                                   1738.3431: -0.590947 0.518128 0.467835 0.492128 0.469429 0.233065 0.400265 0.189199 -0.0761
#>
           59:
                                   1738.3414: -0.590732 0.516841 0.466226 0.493451 0.469814 0.232361 0.398789 0.191112 -0.0739
                                   1738.3404: -0.590639 0.517947 0.466264 0.493252 0.469227 0.230588 0.400163 0.190894 -0.0716
#>
           60:
#>
           61:
                                   1738.3396: -0.590399 0.518399 0.467536 0.490949 0.469168 0.231677 0.399523 0.192403 -0.0718
                                   1738.3393: -0.590041 0.518003 0.467475 0.490879 0.468970 0.232448 0.398910 0.193122 -0.0722
#>
           62:
                                   1738.3384: -0.589853 0.516711 0.466863 0.491482 0.469107 0.232961 0.398825 0.192952 -0.0726
#>
           63:
                                   1738.3381: -0.589898 0.516290 0.465766 0.491697 0.470084 0.231935 0.398781 0.192302 -0.0719
#>
           64:
           65:
                                   1738.3378: -0.590047 0.517086 0.465802 0.491283 0.469494 0.231363 0.397506 0.193365 -0.0711
#>
#>
           66:
                                   1738.3377: -0.589550 0.516628 0.465973 0.491706 0.468490 0.230889 0.397833 0.193791 -0.0706
#>
           67:
                                   1738.3376: -0.589612 0.515421 0.465693 0.491652 0.468542 0.231085 0.398274 0.193531 -0.0711
                                   1738.3374: -0.589379 0.515397 0.465269 0.491285 0.468871 0.231574 0.398032 0.193246 -0.0715
#>
           68:
#>
            69:
                                   1738.3374: -0.589387 0.516151 0.465173 0.490950 0.468610 0.231381 0.397811 0.193109 -0.0708
#>
           70:
                                   1738.3373: -0.589579 0.515992 0.465411 0.490953 0.468609 0.230659 0.397439 0.193530 -0.0708
           71:
                                  1738.3373: -0.589571 0.515993 0.465395 0.490960 0.468613 0.230653 0.397427 0.193531 -0.0708
#>
                                  1738.3373: -0.589531 0.515994 0.465366 0.490973 0.468620 0.230644 0.397406 0.193533 -0.0707
           72:
#>
#>
           73:
                                   1738.3373: -0.589531 0.515991 0.465339 0.490982 0.468627 0.230636 0.397387 0.193533 -0.0707
                                   1738.3373: -0.589505 0.515976 0.465305 0.490981 0.468633 0.230638 0.397365 0.193528 -0.0707
           74:
```

```
1738.3373: -0.589501 0.515963 0.465270 0.490982 0.468639 0.230634 0.397341 0.193523 -0.0707
   76:
            1738.3373: -0.589476 0.515942 0.465232 0.490970 0.468644 0.230632 0.397311 0.193511 -0.0707
#>
   77:
            1738.3373: -0.589470 0.515924 0.465196 0.490962 0.468644 0.230618 0.397280 0.193502 -0.0707
#>
           1738.3373: -0.589450 0.515903 0.465165 0.490947 0.468632 0.230592 0.397249 0.193491 -0.0707
   78:
#>
           1738.3373: -0.589448 0.515887 0.465135 0.490939 0.468618 0.230562 0.397221 0.193484 -0.0707
#>
#>
   80:
           1738.3373: -0.589432 0.515873 0.465106 0.490918 0.468596 0.230532 0.397195 0.193472 -0.0707
#>
   81:
           1738.3373: -0.589431 0.515857 0.465076 0.490910 0.468581 0.230503 0.397167 0.193468 -0.0707
           1738.3373: -0.589416 0.515833 0.465055 0.490892 0.468558 0.230471 0.397140 0.193461 -0.0707
   82:
#>
           1738.3373: -0.589414 0.515832 0.465019 0.490888 0.468554 0.230450 0.397115 0.193455 -0.0706
#>
  83:
           1738.3373: -0.589401 0.515828 0.464989 0.490864 0.468537 0.230431 0.397087 0.193438 -0.0706
#>
   84:
           1738.3373: -0.589401 0.515803 0.464977 0.490865 0.468524 0.230402 0.397068 0.193441 -0.0706
#>
   85:
#>
  86:
           1738.3373: -0.589387 0.515777 0.464969 0.490856 0.468503 0.230363 0.397056 0.193445 -0.0706
#> 87:
           1738.3373: -0.589385 0.515781 0.464934 0.490839 0.468490 0.230348 0.397029 0.193431 -0.0706
           1738.3373: -0.589374 0.515769 0.464908 0.490825 0.468485 0.230335 0.396999 0.193416 -0.0706
#>
   88:
   89:
           1738.3373: -0.589373 0.515738 0.464904 0.490800 0.468466 0.230302 0.396980 0.193406 -0.0706
#>
#>
           1738.3373: -0.589346 0.515737 0.464863 0.490812 0.468459 0.230282 0.396958 0.193412 -0.0706
#> 91:
           1738.3373: -0.589355 0.515745 0.464814 0.490819 0.468427 0.230274 0.396935 0.193411 -0.0706
   92:
           1738.3373: -0.589353 0.515721 0.464819 0.490766 0.468436 0.230252 0.396916 0.193382 -0.0706
           1738.3373: -0.589346 0.515700 0.464810 0.490745 0.468409 0.230219 0.396887 0.193371 -0.0706
#> 93:
#> 94:
           1738.3373: -0.589337 0.515689 0.464780 0.490748 0.468364 0.230185 0.396866 0.193376 -0.0706
           1738.3373: -0.589338 0.515677 0.464768 0.490731 0.468346 0.230141 0.396879 0.193382 -0.0706
#> 95:
#> 96:
           1738.3373: -0.589341 0.515672 0.464734 0.490714 0.468326 0.230152 0.396840 0.193351 -0.0706
#> 97:
           1738.3373: -0.589333 0.515663 0.464710 0.490699 0.468307 0.230136 0.396799 0.193330 -0.0706
           1738.3373: -0.589319 0.515645 0.464699 0.490673 0.468292 0.230092 0.396783 0.193323 -0.0706
#> 98:
#> 99:
           1738.3373: -0.589319 0.515623 0.464680 0.490645 0.468260 0.230067 0.396786 0.193314 -0.0706
           1738.3373: -0.589335 0.515616 0.464667 0.490640 0.468249 0.230043 0.396745 0.193293 -0.0706
#> 100:
           1738.3373: -0.589315 0.515603 0.464638 0.490619 0.468221 0.230020 0.396728 0.193274 -0.0707
#> 101:
#> 102:
           1738.3373: -0.589305 0.515592 0.464605 0.490574 0.468212 0.230019 0.396733 0.193271 -0.0706
           1738.3373: -0.589304 0.515589 0.464616 0.490574 0.468193 0.229976 0.396692 0.193245 -0.0706
#> 103:
           1738.3373: -0.589304 0.515559 0.464589 0.490557 0.468168 0.229960 0.396668 0.193243 -0.0707
#> 104:
           1738.3373: -0.589302 0.515566 0.464581 0.490553 0.468152 0.229949 0.396668 0.193226 -0.0707
#> 105:
           1738.3373: -0.589302 0.515566 0.464581 0.490553 0.468152 0.229949 0.396668 0.193226 -0.0707
#> 106:
mvVAST
#> fit_model(.) result
#> $par
#>
                                      beta2_ft
        beta1_ft
                        beta2_ft
                                                     beta2_ft
                                                                     beta2_ft
                                                                                    beta2_ft
#>
      -0.58930073
                      0.51556566
                                     0.46458140
                                                    0.49054922
                                                                   0.46815477
                                                                                  0.22995173
#>
        beta2 ft
                      beta2\_ft
                                     beta2 ft
                                                    beta2\_ft
                                                                   beta2\_ft
                                                                                L epsilon2 z
                                     0.42839452
                                                    0.79998255
#>
       0.77135923
                      0.40831816
                                                                   0.91170571
                                                                                  0.49266124
#>
#> $objective
#> [1] 1738.337
#>
#> $iterations
#> [1] 6
#>
#> $evaluations
#> function gradient
#>
       12
#> $time_for_MLE
#> Time difference of 1.115946 secs
```

beta

0.3966

logka

-4.3006

```
#> $max_gradient
#> [1] 0.0005701444
#> $Convergence_check
#> [1] "The model is likely not converged"
#> $number_of_coefficients
  Total Fixed Random
#>
    2060
             20
                 2040
#> $AIC
#> [1] 3516.675
#>
#> $diagnostics
#>
               Param starting_value
                                        Lower
                                                      MLE
                                                              Upper final_gradient
#> 1
            beta1\_ft
                       -0.58930212
                                         -Inf -0.58930073
                                                                Inf -2.542160e-04
                                                                     7.802298e-06
#> 2
            beta2_ft
                        0.51556575
                                         -Inf 0.51556566
                                                                Inf
                                                                Inf -1.581373e-05
#> 3
            beta2\_ft
                        0.46458086
                                         -Inf 0.46458140
                       0.49055256
                                         -Inf 0.49054922
                                                                Inf 2.253090e-04
#> 4
            beta2_ft
                                         -Inf 0.46815477
#> 5
            beta2_ft
                        0.46815191
                                                                Inf -2.143175e-04
                        0.22994939
#> 6
            beta2_ft
                                         -Inf 0.22995173
                                                                Inf -1.957531e-04
#> 7
            beta2\_ft
                        0.39666758
                                         -Inf 0.39666652
                                                                Inf
                                                                      7.238230e-05
#> 8
                        0.19322638
                                         -Inf 0.19322492
                                                                     1.270660e-04
            beta2_ft
                                                                Inf
#> 9
                       -0.07072351
                                         -Inf -0.07072447
            beta2_ft
                                                                Inf
                                                                     8.178894e-05
#> 10
            beta2_ft
                        0.11680232
                                         -Inf 0.11680344
                                                                Inf -9.221727e-05
#> 11
                       0.47100947
                                         -Inf 0.47101097
                                                                Inf -1.199564e-04
           beta2_ft
                                                                Inf 3.451023e-05
#> 12
           beta2_ft
                        0.77135987
                                         -Inf 0.77135923
                                         -Inf 0.40831816
#> 13
                        0.40831868
            beta2_ft
                                                                Inf
                                                                     3.772265e-05
#> 14
            beta2_ft
                        0.42839440
                                         -Inf 0.42839452
                                                                Inf -2.666228e-05
#> 15
            beta2_ft
                        0.79997988
                                         -Inf 0.79998255
                                                                Inf -1.683173e-04
#> 16
            beta2_ft
                        0.91170844
                                         -Inf 0.91170571
                                                                Inf
                                                                     1.977504e-04
#> 17
       L_epsilon2_z
                         0.49266062
                                         -Inf 0.49266124
                                                                Inf
                                                                     -3.371048e-04
                        -4.30062170 -6.214608 -4.30062277 -3.565449
#> 18
          logkappa2
                                                                     1.075603e-04
#> 19 Epsilon_rho2_f
                        0.85035618 -0.990000 0.85035927 0.990000 -5.701444e-04
                                         -Inf 0.10422305 10.000000
#> 20
           logSigmaM
                        0.10422369
                                                                     8.758814e-05
#>
#> $SD
#> sdreport(.) result
                     Estimate Std. Error
                  -0.58930073 0.05080467
#> beta1 ft
#> beta2_ft
                   0.51556566 0.14414517
#> beta2_ft
                   0.46458140 0.17371753
#> beta2 ft
                   0.49054922 0.19200615
#> beta2 ft
                   0.46815477 0.20433941
#> beta2_ft
                   0.22995173 0.21476798
#> beta2_ft
                   0.39666652 0.21934844
#> beta2_ft
                   0.19322492 0.22481460
#> beta2_ft
                  -0.07072447 0.22973074
#> beta2_ft
                   0.11680344 0.23059098
                   0.47101097 0.22964742
#> beta2_ft
#> beta2_ft
                   0.77135923 0.22895294
#> beta2_ft
                   0.40831816 0.23199190
                   0.42839452 0.23305156
#> beta2_ft
```

Or with sdmTMB

```
library(sdmTMB)
mesh = make_mesh(Data, c("x","y"), n_knots=n_x*n_y)

start_time = Sys.time()
mysdmTMB = sdmTMB(
  formula = n ~ 0 + factor(time),
   data = Data,
   mesh = mesh,
   spatial = "off",
   spatiotemporal = "ar1",
   time = "time",
   family = tweedie()
)
sdmTMBtime = Sys.time() - start_time
```

The models all have similar runtimes

	run times (sec.)
tinyVAST	21.2
VAST	23.3
sdmTMB	20.5

Delta models

We can also fit these data using a delta model

```
# fit model
mydelta = fit( data = Data,
```

```
formula = n \sim 1,
              delta_formula = ~ 0 + factor(time),
              delta_dsem = "logn -> logn, 1, rho",
              family = list( "obs"=independent_delta() ),
              spatial_graph = mesh,
              control = tinyVASTcontrol(quiet=TRUE, trace=0) )
mydelta
#> $call
\# fit(data = Data, formula = n \sim 1, delta_formula = \sim 0 + factor(time),
      delta_dsem = "logn -> logn, 1, rho", family = list(obs = independent_delta()),
      spatial_graph = mesh, control = tinyVASTcontrol(quiet = TRUE,
#>
#>
          trace = 0))
#>
#> $opt
#> $opt$par
        alpha_j
                    alpha2_j
                                  alpha2_j
                                               alpha2_j
                                                              alpha2_j
                                                                           alpha2_j
#> 3.032022e+00 4.467177e-01 4.113254e-01 5.053690e-01 3.694708e-01 7.254509e-02 3.336953e-01 1
       alpha2_j
                  alpha2_j
                                alpha2_j alpha2_j
                                                              beta2 z
                                                                       beta2 z
                                                                                     log_sigma
#> 5.325019e-01 2.865528e-01 7.913769e-01 9.836626e-01 1.012746e+00 8.306752e-07 2.565052e-01
#>
#> $opt$objective
#> [1] 2069.593
#>
#> $opt$convergence
#> [1] 0
#> $opt$iterations
#> [1] 88
#>
#> $opt$evaluations
#> function gradient
#>
      137
                89
#> $opt$message
#> [1] "relative convergence (4)"
#>
#>
#> $sdrep
#> sdreport(.) result
#> Warning in sqrt(diag(object$cov.fixed)): NaNs produced
                 Estimate Std. Error
#> alpha_j 3.032022e+00 0.12325402
#> alpha2_j 4.467177e-01 0.13555038
#> alpha2_j 4.113254e-01 0.13488713
#> alpha2_j 5.053690e-01 0.13488702
#> alpha2_j 3.694708e-01 0.13423421
#> alpha2_j 7.254509e-02 0.13423422
#> alpha2_j 3.336953e-01 0.13488712
#> alpha2_j 1.252914e-01 0.13622434
#> alpha2_j -1.360709e-01 0.13555039
#> alpha2_j 2.348312e-01 0.14050758
#> alpha2_j 4.421359e-01 0.13690899
#> alpha2_j 7.414033e-01 0.13555050
```

 $alpha2_j$

Bivariate spatio-temporal autoregressive model

We next highlight how to specify a bivariate spatio-temporal model with a cross-laggged (vector autoregressive) interaction.

```
# Simulate settings
theta_xy = 0.2
n_x = n_y = 10
n_t = 20
B = rbind(c(0.5, -0.25),
           c(-0.1, 0.50))
# Simulate GMRFs
R = \exp(-\text{theta}_xy * \text{abs}(\text{outer}(1:n_x, 1:n_y, FUN="-")))
d1 = mvtnorm::rmvnorm(n_t, sigma=0.2*kronecker(R,R))
d2 = mvtnorm::rmvnorm(n_t, sigma=0.2*kronecker(R,R) )
d = abind::abind( d1, d2, along=3 )
# Project through time and add mean
for( t in seq_len(n_t) ){
  if(t>1) d[t,,] = t(B%*%t(d[t-1,,])) + d[t,,]
}
# Shape into longform data-frame and add error
Data = data.frame( expand.grid(time=1:n_t, x=1:n_x, y=1:n_y, "var"=c("d1","d2")), z=exp(as.vector(d)))
Data$n = tweedie::rtweedie( n=nrow(Data), mu=Data$z, phi=0.5, power=1.5)
# make mesh
mesh = fm_mesh_2d( Data[,c('x','y')] )
# Define DSEM
dsem = "
 d1 -> d1, 1, b11
  d2 \rightarrow d2, 1, b22
 d2 -> d1, 1, b21
 d1 -> d2, 1, b12
 d1 <-> d1, 0, var1
 d2 <-> d2, 0, var1
```

```
# fit model
out = fit( dsem = dsem,
         data = Data,
         formula = n \sim 0 + var,
         spatial_graph = mesh,
         family = list( "obs"=tweedie() ),
         control = tinyVASTcontrol(quiet=TRUE, trace=0) )
out
#> $call
\# fit(data = Data, formula = n \sim 0 + var, dsem = dsem, family = list(obs = tweedie()),
      spatial_graph = mesh, control = tinyVASTcontrol(quiet = TRUE,
#>
         trace = 0))
#>
#> $opt
#> $opt$par
      alpha_j
                 alpha\_j \qquad beta\_z \qquad beta\_z
                                                    beta\_z beta\_z
                                                                           beta\_z
#> $opt$objective
#> [1] 4365.006
#>
#> $opt$convergence
#> [1] 0
#> $opt$iterations
#> [1] 52
#>
#> $opt$evaluations
#> function gradient
#>
       66
              53
#> $opt$message
#> [1] "relative convergence (4)"
#>
#>
#> $sdrep
#> sdreport(.) result
              Estimate Std. Error
#> alpha_j -0.090128407 0.09771149
#> alpha_j -0.002000396 0.09611298
#> beta_z -0.200418878 0.08304602
#> beta_z -0.117205373 0.07264403
         0.294319080 0.01800602
#> beta_z
#> log_sigma -0.646266087 0.02660900
#> log_sigma  0.012846251  0.04964136
#> log_kappa -0.669057066 0.09746707
#> Maximum gradient component: 0.004503716
#> $run_time
```

log_si

#> Time difference of 2.192311 mins

The values for beta_z again correspond to the specified value for interaction-matrix B

We can again calculate the area-weighted total abundance and compare it with its true value:

```
# Predicted sample-weighted total
Est1 = sapply( seq_len(n_t), FUN=\(t) integrate_output(out, newdata=subset(Data,time==t & var=="d1")) )
Est2 = sapply( seq_len(n_t), FUN=\(t) integrate_output(out, newdata=subset(Data,time==t & var=="d2")) )
# True (latent) sample-weighted total
True = tapply( Data$z, INDEX=list("time"=Data$time,"var"=Data$var), FUN=sum )
Index = data.frame( expand.grid(dimnames(True)), "True"=as.vector(True) )
Index = data.frame( Index, rbind(t(Est1), t(Est2)) )
Index$low = Index[,'Est...bias.correct.'] - 1.96*Index[,'Std..Error']
Index$high = Index[,'Est...bias.correct.'] + 1.96*Index[,'Std..Error']
library(ggplot2)
ggplot(Index, aes( time, Estimate )) +
  facet_grid( rows=vars(var), scales="free" ) +
  geom_segment(aes(y = low,
                  yend = high,
                  x = time,
                  xend = time) ) +
  geom_point( aes(x=time, y=Estimate), color = "black") +
  geom_point( aes(x=time, y=True), color = "red" )
```

