

TEOREMAS DEL VALOR MEDIO

Ing. Civil Adolfo Vignoli – 2023 -

Máximos y mínimos

Definición

Punto interior de un conjunto

Sean $A \subseteq \mathbb{R}$; $c \in \mathbb{R}$.

c es punto interior de A si $\exists V_{\delta^{(c)}}/V_{\delta^{(c)}} \subseteq A$.

Sea A = (1, 5]. Indique si los números 1, 2, 5 y 8 son

puntos interiores de A.

Máximos y mínimos

Definiciones: Extremos absolutos de una función en un conjunto

Sean $f: D_f \to \mathbb{R}$; $A \subseteq D_f$, $c \in A$.

f(c) es máximo absoluto de f en A si $f(x) \le f(c)$ $\forall x \in A$.

 $f_{(c)}$ es mínimo absoluto de f en A si $f_{(x)} \ge f_{(c)}$ $\forall x \in A$.

 $f_{(c)}$ es extremo absoluto de f en A si $f_{(c)}$ es máximo o mínimo

absoluto de f en A.

Máximos y mínimos

Definiciones: Extremos relativos de una función en un conjunto

Sea $f: D_f \to \mathbb{R}$; $A \subseteq D_f$, c punto interior de A. $f(c) \downarrow f(c) \downarrow f(c)$

$$f_{(c)}$$
 es máx. relativo de f en A si $\exists V_{\delta^{(c)}}/f_{(x)} \leq f_{(c)} \ \forall x \in (V_{\delta^{(c)}} \cap A)$.

$$f_{(c)}$$
 es mín. relativo de f en A si $\exists V_{\delta^{(c)}}/f_{(x)} \geq f_{(c)} \ \forall x \in (V_{\delta^{(c)}} \cap A)$.

 $f_{(c)}$ es extremo relativo de f en A si $f_{(c)}$ es máximo o mínimo relativo

de f en A.

Extremos relativos o locales

- •*f*(*b*)
- •*f*(*c*)
- •*f*(*d*)

Extremos absolutos

- •*f*(*a*)
- •*f*(*d*)

Teorema de Rolle

Sea f continua en [a,b], derivable en (a,b) y $f_{(a)}=f_{(b)}$.

Entonces $\exists c \in (a,b)/f'_{(c)} = 0$.

Aplique el teorema de Rolle a la función

$$f(x) = sen(x)$$
 en el intervalo $[0, \pi]$. Grafique.

- 1. f es derivable en \mathbb{R} , por lo que es continua en $[0, \pi]$ y
 - derivable en $(0, \pi)$.
 - $f(0) = f(\pi) = 0$. Se cumplen las hipótesis.
- 2. $f'_{(x)} = cos(x)$;

$$f'_{(c)} = cos(c) = 0 \implies c = arc cos(0) = \frac{\pi}{2}$$

$$c = \frac{\pi}{2} \in (0, \pi).$$

Demostración

- 1. Si $f(x) = k \ \forall x \in [a, b]$; entonces $f'(x) = 0 \ \forall x \in (a, b)$.
- 2. Si $\exists x_1 \in (a,b)/f(x_1) > f(a)$, entonces por el teorema de Bolzano Weierstrass $\exists c \in (a,b)/f(c) \geq f(x) \ \forall x \in [a,b]$.

$$f'_{+}(c) = \lim_{0^{+}} \frac{f(c+h) - f(c)}{h} \le 0$$
pues $f(c+h) - f(c) \le 0$ y $h > 0$.
$$f'_{-}(c) = \lim_{0^{-}} \frac{f(c+h) - f(c)}{h} \ge 0$$
pues $f(c+h) - f(c) \le 0$ y $h < 0$.

Por hipótesis: $\exists f'(c)$, por lo que $f'_{-}(c) = f'_{+}(c) = f'(c) = 0$

3. Si $\exists x_2 \in (a,b)/f(x_2) < f(a)$ entonces, por el teorema de Bolzano – Weierstrass, $\exists c \in (a,b)/f(c) \le f(x) \ \forall x \in [a,b]$.

$$f'_{+}(c) = \lim_{0^{+}} \frac{f(c+h) - f(c)}{h} \ge 0,$$
pues $f(c+h) - f(c) \ge 0$ y $h > 0$.
$$f'_{-}(c) = \lim_{0^{-}} \frac{f(c+h) - f(c)}{h} \le 0,$$

$$f(a) = \lim_{0^{-}} \frac{x_{2} - c}{h} x_{2}$$
pues $f(c+h) - f(c) \ge 0$ y $h < 0$.
$$f(x_{2}) = 0$$
Por hipótesis: $\exists f'(c)$
por lo que $f'_{-}(c) = f'_{+}(c) = f'(c) = 0$.

Teorema del valor medio

o de Lagrange

Sea f continua en [a, b]

y derivable en (a, b).

Entonces $\exists c \in (a,b)$ /

$$f'_{(c)} = \frac{f_{(b)} - f_{(a)}}{b - a}$$

Aplique el teorema del valor medio a la función

$$f(x) = \cos(x)$$
 en el intervalo $[0, \pi/2]$. Grafique.

1) f es derivable en \mathbb{R} , por lo que es continua en $[0, \pi/2]$ y

derivable en $(0,\pi/2)$. Se cumplen las hipótesis.

2)
$$f'_{(x)} = -sen(x)$$
; $\frac{f_{(b)} - f_{(a)}}{b - a} = \frac{f_{(\pi/2)} - f_{(0)}}{\pi/2 - 0} = \frac{0 - 1}{\pi/2} = -\frac{2}{\pi}$

$$f'_{(c)} = -sen(c) = -\frac{2}{\pi}; sen(c) = \frac{2}{\pi} \implies c = arc sen(\frac{2}{\pi}) = 0.69$$

$$c = 0.69 \in (0, \pi/2).$$

Demostración

Sea
$$h(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$
 una función auxiliar.

h es continua en [a,b], derivable en (a,b) porque es una suma de funciones continuas y h(a) = h(b). Por tanto, se cumplen para la función h las hipótesis del teorema de Rolle.

Entonces $\exists c \in (a,b)/h'(c) = 0$

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a};$$
 si $x = c$: $h'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0;$

por lo que
$$f'(c) = \frac{f(b)-f(a)}{b-a}$$

Teorema

Sea f derivable en un intervalo abierto J.

Si
$$f'_{(x)} = 0 \quad \forall x \in J$$
, entonces $f_{(x)} = k \ \forall x \in J$; $k \in \mathbb{R}$.

Demostración

Sean $x_1, x_2 \in J$.

Por hipótesis f es derivable en J, en consecuencia f es continua en $[x_1, x_2]$ y es derivable en (x_1, x_2) . Se cumplen las hipótesis del teorema del valor medio.

Entonces
$$\exists c \in (x_1, x_2) / f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Por hipótesis f'(c) = 0, lo que implica que $f(x_2) - f(x_1) = 0$.

Es decir, $f(x_1) = f(x_2) \ \forall \ x_1, x_2 \in J$; por lo que $f(x) = k \ \forall \ x \in J$.

Teorema

Sean f, g derivables en un intervalo abierto J.

$$\operatorname{Si} f'(x) = g'(x) \ \forall x \in J$$
, entonces $f(x) = g(x) + k \ \forall x \in J; k \in \mathbb{R}$.

Demostración

Sea h = f - g una función auxiliar.

$$h' = f' - g' = 0 \ \forall x \in J$$
 pues por hipótesis $f' = g' \ \forall x \in J$.

Por el teorema anterior,

si
$$h' = 0 \quad \forall x \in J$$
 entonces $h = k \quad \forall x \in J$, siendo $k \in \mathbb{R}$.

Por lo que

$$k = f - g$$
 y
 $f = g + k$ $\forall x \in J$.

Teorema del valor medio generalizado o de Cauchy

Sean f, g continuas en [a,b], derivables en (a,b) y

$$g'(x) \neq 0 \ \forall x \in (a,b).$$

Entonces
$$\exists c \in (a,b) / \frac{f'(c)}{g'(c)} = \frac{f(b)-f(a)}{g(b)-g(a)}$$
.

Observación

Sean f, g continuas en [a, b], derivables en (a, b)

y $g'(x) \neq 0 \ \forall x \in (a, b)$. Entonces, por el teorema de Cauchy,

$$\exists c \in (a,b) / \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)} (1)$$

Si g(x) = x, se tiene que g'(x) = 1, g(a) = a, g(b) = b.

Reemplazando estas expresiones en (1): $f'(c) = \frac{f(b)-f(a)}{b-a}$ (2)

Si se cumple la hipótesis del teorema de Rolle: f(a) = f(b), la expresión (2) resulta: f'(c) = 0 (3).

(2) Es la expresión del teorema del valor medio y (3) la de Rolle.

Teorema: Regla de L'Hopital

Sean f, g derivables en (a, b) excepto posiblemente en

un punto
$$c \in (a, b)/\lim_c f(x) = 0$$
 y $\lim_c g(x) = 0$; además sea

$$g'(x) \neq 0 \ \forall x \in (a,b) \land x \neq c.$$

Entonces, si
$$\lim_{c} \frac{f'(x)}{g'(x)} = L$$
 (finito o infinito), se tiene que $\lim_{c} \frac{f(x)}{g(x)} = L$.

Sea $\lim_{x \to \infty} \frac{\sin x}{x}$; forma indeterminada del tipo 0/0.

Las funciones f(x) = sen x y g(x) = x son derivables en $V_{\delta^{(0)}}$ y $g'(x) \neq 0 \ \forall x \in \mathbb{R}$, por lo que se cumplen las hipótesis de la Regla de L'Hopital.

$$\lim_{0} \frac{f'(x)}{g'(x)} = \lim_{0} \frac{\cos x}{1} = 1; \text{ por lo que } \lim_{0} \frac{f(x)}{g(x)} = \lim_{0} \frac{\sin x}{x} = 1$$

Demostración

Dado que $\lim_{c} \frac{f(x)}{g(x)}$ es independiente de la existencia

y del valor de $\frac{f(c)}{g(c)}$, suponemos f(c) = 0 y g(c) = 0.

Con esta suposición y la hipótesis $\lim_{c} f(x) = 0$ y $\lim_{c} g(x) = 0$; resulta que f y g son continuas en x = c.

Consideremos el intervalo (a, c) y sea $x_1 \in (a, c)$.

Tenemos que f, g son continuas en $[x_1, c]$, derivables en (x_1, c) y $g'(x) \neq 0 \ \forall x \in (x_1, c)$; con lo que se cumplen las hipótesis del teorema de Cauchy.

Entonces
$$\exists c_1 \in (x_1, c) / \frac{f'(c_1)}{g'(c_1)} = \frac{f(c) - f(x_1)}{g(c) - g(x_1)} = \frac{f(x_1)}{g(x_1)}$$

Si x_1 tiende a c se tiene que c_1 tiende a c, por lo que en el cálculo de límites se puede cambiar el nombre de la variable independiente sin cambiar el límite, de modo que nos queda

$$\lim_{c^{-}} \frac{f'(x)}{g'(x)} = \lim_{c^{-}} \frac{f(x)}{g(x)}$$

Si consideramos el intervalo (c, b) y $x_2 \in (c, b)$, se tiene

$$\lim_{c^+} \frac{f'(x)}{g'(x)} = \lim_{c^+} \frac{f(x)}{g(x)}$$

Continúa

De modo que

si
$$\lim_{c} \frac{f'(x)}{g'(x)} = L$$
, resulta que $\lim_{c^{-}} \frac{f'(x)}{g'(x)} = \lim_{c^{+}} \frac{f'(x)}{g'(x)} = L$

y por las expresiones de la filmina 44:

$$\lim_{c^{-}} \frac{f(x)}{g(x)} = \lim_{c^{+}} \frac{f(x)}{g(x)} = \lim_{c} \frac{f(x)}{g(x)} = L$$

Nota La Regla de l'Hopital es válida en los siguientes casos:

•
$$\lim_{c} \frac{f(x)}{g(x)}$$
 cuando $\begin{cases} \lim_{c} f(x) = 0 \\ \lim_{c} g(x) = 0 \end{cases}$ o cuando $\begin{cases} \lim_{c} f(x) = \pm \infty \\ \lim_{c} g(x) = \pm \infty \end{cases}$

• $\lim_{c} \frac{f(x)}{g(x)}$ cuando $\begin{cases} \lim_{c} f(x) = 0 \\ \lim_{c} g(x) = 0 \end{cases}$ o cuando $\begin{cases} \lim_{c} f(x) = \pm \infty \\ \lim_{c} g(x) = \pm \infty \end{cases}$

• $\lim_{c} \frac{f(x)}{g(x)}$ cuando $\begin{cases} \lim_{c} f(x) = 0 \\ \lim_{c} g(x) = 0 \end{cases}$ o cuando $\begin{cases} \lim_{c} f(x) = \pm \infty \\ \lim_{c} g(x) = \pm \infty \end{cases}$

• $\lim_{c} \frac{f(x)}{g(x)}$ cuando $\begin{cases} \lim_{c} f(x) = 0 \\ \lim_{c} g(x) = 0 \end{cases}$ o cuando $\begin{cases} \lim_{c} f(x) = \pm \infty \\ \lim_{c} g(x) = \pm \infty \end{cases}$

• $\lim_{c} \frac{f(x)}{g(x)}$ cuando $\begin{cases} \lim_{c} f(x) = 0 \\ \lim_{c} f(x) = 0 \end{cases}$ o cuando $\begin{cases} \lim_{c} f(x) = \pm \infty \\ \lim_{c} f(x) = \pm \infty \end{cases}$
• $\lim_{c} f(x) = 0$ o cuando $\begin{cases} \lim_{c} f(x) = \pm \infty \\ \lim_{c} f(x) = \pm \infty \end{cases}$

Formas indeterminadas

Sea
$$\lim_{x_0} \frac{f(x)}{g(x)}$$
.

• Si
$$\lim_{x_0} f(x) = 0$$
 y $\lim_{x_0} g(x) = 0$

se tiene una forma indeterminada del tipo $\frac{0}{0}$.

• Si
$$\lim_{x_0} f(x) = \infty$$
 y $\lim_{x_0} g(x) = \infty$

se tiene una forma indeterminada del tipo $\frac{\infty}{\infty}$.

1. $\lim_{1} \frac{x^2-1}{2x-2}$ forma indeterminada del tipo $\frac{0}{0}$.

$$\lim_{1} \frac{f'(x)}{g'(x)} = \lim_{1} \frac{2x}{2} = 1$$

 $2.\lim_{\infty} \frac{3x^2-1}{2x^2}$ forma indeterminada del tipo $\frac{\infty}{\infty}$.

$$\lim_{\infty} \frac{f'(x)}{g'(x)} = \lim_{\infty} \frac{6x}{4x} = \frac{3}{2}$$

Formas indeterminadas:

- $\frac{0}{0}$
- $\frac{\infty}{\infty}$
- 0. ∞
- $\infty \infty$
- 1[∞]
- 00
- \bullet ∞^0

Se aplica la R. de L`H

Se transforman en formas indeterminadas $\frac{0}{0}$ o $\frac{\infty}{\infty}$ y luego se aplica

la R. de L'H

• 0, ∞

$$\lim_{x_0} f.g = \lim_{x_0} \frac{g}{\frac{1}{f}} \text{ forma indeterminada del tipo } \frac{0}{0} \text{ o } \frac{\infty}{\infty}.$$

• ∞ - ∞

$$\begin{split} &\lim_{x_0} f - g = \lim_{x_0} fg \frac{(f-g)}{fg} = \lim_{x_0} fg \left(\frac{1}{g} - \frac{1}{f}\right) = \\ &= \lim_{x_0} \frac{\left(\frac{1}{g} - \frac{1}{f}\right)}{\frac{1}{fg}} \qquad \text{forma indeterminada del tipo } \frac{0}{0}. \end{split}$$

• $1^{\infty}, 0^{0}, \infty^{0}$

$$\lim_{x_0} f^g = \lim_{x_0} e^{\ln f^g} = e^{\lim_{x_0} \ln f^g}$$

$$\lim_{x_0} \ln f^g = \lim_{x_0} g \ln f =$$

$$=\lim_{x_0} \frac{\ln f}{\frac{1}{g}}$$
 forma indeterminada del tipo $\frac{0}{0}$.

3. $\lim_{0^+} x \ln x$ forma indeterminada del tipo $0.\infty$.

$$\lim_{0^+} \frac{\ln x}{\frac{1}{x}}$$
 forma indeterminada del tipo $\frac{\infty}{\infty}$.

$$\lim_{0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}} = \lim_{0^{+}} -x = 0$$

4. $\lim_{1^+} \frac{1}{\ln x} - \frac{1}{x-1}$ forma indeterminada del tipo $\infty - \infty$.

$$\lim_{1^{+}} \frac{(x-1) - \ln x}{(x-1) \ln x}$$
 forma indeterminada del tipo $\frac{0}{0}$.

$$\lim_{1^{+}} \frac{1 - \frac{1}{x}}{\ln x + \frac{x - 1}{x}} = \lim_{1^{+}} \frac{x - 1}{x \ln x + (x - 1)} = \lim_{1^{+}} \frac{1}{\ln x + \frac{x}{x} + 1} = \frac{1}{2}$$

5. $\lim_{x \to 0} (1+x)^{\frac{1}{x}}$ forma indeterminada del tipo 1^{∞} .

 $\lim_{x \to 0} \frac{1}{x} \ln(1+x)$ forma indeterminada del tipo ∞ . 0.

$$\lim_{0} \frac{\ln(1+x)}{x} = \lim_{0} \frac{\frac{1}{1+x}}{1} = 1$$

$$\lim_{0} (1+x)^{\frac{1}{x}} = e^{1} = e$$