CS 335: Introduction to Large Language Models *Habib University*

Activity Sheet 03

Na	me: ID:	
Que	estion 01: Neural Network	
Cor	Consider the following single layer neural network:	
i. ii.	The network consists of 2 input neurons, 2 hidden neurons, and 1 output neuron. The inputs x_1 and x_2 are $x_1=0.5, \ x_2=0.7$	
iii.	The weight matrix \mathbf{W}_1 (2 × 2) between the input layer and the hidden layer is: $ \binom{0.1 - 0.4}{0.6 - 0.9} $	
iv. v.	The activation function for the hidden layer is the ReLU function. The weight matrix \mathbf{W}_2 (1 × 2) between the hidden layer and the output neuron is: $(0.4 -0.6)$	
vi.	The final output y is computed as a weighted sum of the hidden layer activations (output of the hidden layer). No activation function is applied at the output layer.	
	(a) Draw the network architecture with 2 input neurons, 2 hidden neurons, and 1 output neuron. Label the layers and connections, including weights ${\bf W}_1$ and ${\bf W}_2$.	
	(b) Given the inputs to the neural network, perform a forward pass to compute the final output y .	

CS 335: Introduction to Large Language Models *Habib University*

Question 02: Next word prediction

A neural language model was given the following context to predict the next word:

"Habib University is"

The tokens in the sequence are represented as vectors:

$$x_1 = embedding("Habib"), x_2 = embedding("University"), x_3 = embedding("is")$$

Assume these embeddings are column vectors in \mathbb{R}^3 :

$$x_1 = \begin{pmatrix} 3.0 \\ -6.5 \\ 0.2 \end{pmatrix}, \quad x_2 = \begin{pmatrix} -2.0 \\ 4.0 \\ 0.1 \end{pmatrix}, \quad x_3 = \begin{pmatrix} 0.0 \\ 3.0 \\ 0.1 \end{pmatrix}$$

(a) Compose these embeddings into a single vector by computing the sum to represent the sequence "Habib University is".

(b) Given a vocabulary of three words: "brilliant," "amazing," and "incredible," and the weight matrix **W**, determine which word the model predicts next. The weight matrix **W** is as follows:

$$\begin{pmatrix} 2.0 & 0.5 & 0.1 \\ 0.3 & 1.5 & 0.2 \\ 0.4 & 0.2 & 1.8 \end{pmatrix}$$