

VARIETY OF TASKS

VARIETY OF TASKS

PERIODIC TASKS

Predictable and repetitive, computationally simplified. It has various variables, applicable to all of the instances.

APERIODIC TASKS

Arrival times unknown, execution times might be unknown. It has similar variables to periodic, inapplicable to each instance.

ONE MORE TASK TYPE TO MENTION...

SPORADIC TASKS

Essentially the worst case scenario of an aperiodic task: high frequency, highest priority with a known deadline.

DEFINITION OF SPORADIC SERVER

WORKING PRINCIPLE

Creates high-priority servicing approach, which replenishes after each aperiodic task.

WORKING PRINCIPLE

VARIABLES

CONCLUDING THE SPORADIC SERVER

SUMMARISING

ADVANTAGES

- Easy to manage aperiodic and periodic tasks
- Very convenient priority implementation, working for both variations of tasks
- Unique and very useful way of replenishing the server capacity
- Fairly good performance according to some studies

DISADVANTAGES

- This approach violates a basic rule of top priority periodic tasks can not be interrupted, where in high priority Sporadic Server implementation any periodic task is interrupted. Further mentioned in the documentation
- Can get complex in bigger applications, since the whole Sporadic Server capacity has to be tracked, so all of the aperiodic tasks have to be calculated sequentially

REFERENCES

- 1. G. C. Buttazzo, Hard real-time computing systems: predictable scheduling algorithms and applications Springer Science & Business Media, 2011, vol. 24.
- 2. G. C. Buttazzo, "Rate monotonic vs. edf: Judgment day," Real-Time Systems, vol. 29, no. 1, pp. 5–26, 2005.

THANK YOU!