Revisão do conteúdo

Prof. Dr. Vinícius Wasques

Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro

8 de junho de 2020

Grandezas

• Escalares: caracterizadas por números (e a unidade correspondente)

Exemplo: 2 m, 10 cm, 50 l.

 Vetoriais: caracterizadas por direção, sentido e intensidade (módulo)

Exemplo: Força e velocidade.

Princípio da Casa dos Pombos (PCP)

Vamos adotar o seguinte ponto de vista: duas flechas de mesmo comprimento, mesma direção (isto é, paralelas) e mesmo sentido (Figura 1-1 (b)) caracterizam a *mesma* grandeza vetorial.

Noção de vetores

Definição. Um segmento orientado é um par ordenado (A,B) de pontos no espaço. A é a origem e B é a extremidade do segmento orientado (A,B). Um segmento orientado do tipo (A,A) é chamado de segmento orientado nulo.

Observe que se $A \neq B$, então (A,B) é diferente de (B,A).

Observações importantes

- Os segmentos orientados (A,B) e (C,D) são de mesmo comprimento se os segmentos geométricos AB e CD têm comprimentos iguais;
- Se os segmentos orientados (A,B) e (C,D) não são nulos, então têm mesma direção se os segmentos geométricos AB e CD são paralelos.

• Se os segmentos orientados (A,B) e (C,D) são paralelos e os segmentos AB e CD tem intersecção vazia, então (A,B) e (C,D) têm o mesmo sentido.

Figura 1-2

Segmentos orientados de sentido contrário

Relação de equipolência

Dois segmentos orientados (A,B) e (C,D) são chamados de equipolentes se tiverem mesma direção, sentido e comprimento.

Notação: $(A, B) \sim (C, D)$

Relação de equivalência

A relação de equivalência é estabelecida por três propriedades:

(Reflexiva)
$$(A,B) \sim (A,B)$$

(Simétrica) Se $(A,B) \sim (C,D)$, então $(C,D) \sim (A,B)$
(Transitiva) Se $(A,B) \sim (C,D)$ e $(C,D) \sim (E,F)$, então $(A,B) \sim (E,F)$

Relação de equivalência

A relação de equivalência é estabelecida por três propriedades:

(Reflexiva)
$$(A, B) \sim (A, B)$$

(Simétrica) Se
$$(A, B) \sim (C, D)$$
, então $(C, D) \sim (A, B)$

(Transitiva) Se
$$(A, B) \sim (C, D)$$
 e $(C, D) \sim (E, F)$, então $(A, B) \sim (E, F)$

Mostre que a relação de equipolência é uma relação de equivalência

Classe de equipolência

Dado o segmento orientado (A,B), a classe de equipolência de (A,B) é o conjunto de todos os segmentos orientados equipolentes a (A,B).

O segmento orientado (A,B) é chamado de representante da classe.

Notação: [(A,B)]

Vetor

Um vetor é uma classe de equipolência de segmentos orientados.

Se (A,B) é um segmento orientado, o vetor que tem (A,B) como representante será indicado por \overrightarrow{AB} .

Para nos referirmos a um vetor qualquer, usaremos notações como $\vec{u}, \vec{v}, \vec{x}, \vec{y}...$

Dizer que os segmentos orientados (A,B) e (C,D) são equipolentes é o mesmo que dizer que os vetores \overrightarrow{AB} e \overrightarrow{CD} são iguais.

De um modo informal, dizemos que um vetor é uma flecha que pode ser colocada em qualquer posição do espaço, desde que preserve seu comprimento, direção e sentido.

- Vetor nulo: tem como representante um segmento orientado nulo. **Notação:** $\vec{0}$.
- Vetor oposto: Se (A,B) é um representante do vetor \vec{u} , então o vetor oposto de \vec{u} é denotado por $-\vec{u}$ e tem como representante o segmento orientado (B,A).

$$-\overrightarrow{AB} = \overrightarrow{BA}$$

- Vetores são paralelos se seus respectivos representantes também são paralelos;
- Vetores têm o mesmo sentido se seus respectivos representantes também têm o mesmo sentido;
- Vetores têm sentido contrário se um de seus respectivos representantes têm sentidos contrários;
- O vetor nulo é paralelo a todos os vetores, por definição.

Norma

A norma de um vetor \vec{u} é definido pelo comprimento de qualquer um de seus representantes.

Notação: $||\vec{u}||$.

Um vetor é chamado de unitário se $||\vec{u}|| = 1$.

Referências

BOULOS, P., CAMARGO, I. Introdução à Geometria Analítica no Espaço, Editora Makron Books, 1997.

CALLIOLI, C.A.; DOMINGUES, H.H. e COSTA, R.C.F. Álgebra Linear, 5a. edição. São Paulo

BOLDRINI, J.L.; COSTA, S.I.R.; FIGUEIREDO, V.L.; WETZLER, H.G. Álgebra Linear, 2a. edição. São Paulo: Harper & How do Brasil, 1980.

STEINBRUCH, A., WINTERLE, P. Geometria Analítica. Makron Books, 1987.

Contato

Prof. Dr. Vinícius Wasques

email: viniciuswasques@gmail.com

Departamento de Matemática

site: https://viniciuswasques.github.io/home/

