Feuille d'exercice n° 12 : Suites

Exercice 1 () – Méfiez-vous des faux amis –

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles. Parmi les affirmations suivantes, dites lesquelles sont vraies (on les démontrera alors) et lesquelles sont fausses (on donnera un contre-exemple).

- 1) Si (u_n) converge, alors $(u_{n+1} u_n)$ converge vers 0.
- 2) Si $(u_{n+1} u_n)$ converge vers 0, alors (u_n) converge.
- 3) Si (u_n) converge et pour tout n $u_n \neq 0$, alors $\left(\frac{u_{n+1}}{u_n}\right)$ converge vers 1.
- **4)** Si, pour tout $n \in \mathbb{N}$, $u_n \neq 0$ et si $\left(\frac{u_{n+1}}{u_n}\right)$ converge vers 1, alors (u_n) converge.
- **5)** Si, pour tout $n \in \mathbb{N}$, $u_n \neq 0$ et si $\left(\frac{u_{n+1}}{u_n}\right)$ converge vers 1/2, alors (u_n) converge.
- **6)** Si (u_n) converge vers 0 et si (v_n) diverge, alors à partir d'un certain rang $|u_n| \leq |v_n|$.
- 7) Si (u_n) est une suite de réels strictement positifs qui converge vers 0, alors elle est décroissante à partir d'un certain rang.
- 8) Si une suite positive est non majorée, elle tend vers $+\infty$.
- **9)** (u_n) converge si et seulement si $(|u_n|)$ converge.
- **10)** Si $(|u_n|)$ tend vers $+\infty$, alors (u_n) tend vers $+\infty$ ou $-\infty$.
- 11) Si (u_n) n'est pas majorée, elle admet une sous-suite strictement croissante qui tend vers $+\infty$.
- 12) Si (u_n) est monotone et admet une sous-suite convergente, alors (u_n) est convergente.
- 13) Si une suite d'entiers converge, elle est stationnaire.
- 14) Si une suite a un nombre fini de valeurs, elle converge si et seulement si elle est stationnaire.
- **15)** Si $(u_n + v_n)$ est convergente, (u_n) et (v_n) convergent.
- **16)** Si (u_n) converge et (v_n) diverge, $(u_n + v_n)$ diverge.
- 17) Si $(u_n v_n)$ est convergente, (u_n) et (v_n) convergent.
- **18)** Si (u_n) converge, $(|u_n|)$ également.

Exercice 2 Étudier la suite de terme général $u_n = \frac{a^n - b^n}{a^n + b^n}$, a et b étant donnés dans \mathbb{R}_+^* .

Exercice 3 (Lemme de Césaro –

Soit (u_n) une suite réelle. On pose, pour tout $n \in \mathbb{N}^*$, $v_n = \frac{u_0 + \dots + u_{n-1}}{n} = \frac{1}{n} \sum_{k=0}^{n-1} u_k$.

- 1) Montrer que si $u_n \xrightarrow[n \to +\infty]{} 0$, alors $v_n \xrightarrow[n \to +\infty]{} 0$.
- 2) Soit $\ell \in \overline{\mathbb{R}}$, montrer que si $u_n \xrightarrow[n \to +\infty]{} \ell$, alors $v_n \xrightarrow[n \to +\infty]{} \ell$.
- 3) Donner un exemple où (v_n) converge mais (u_n) diverge.

Exercice 4 (\bigcirc) Soit $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$ et $\ell\in\overline{\mathbb{R}}$

- 1) On suppose que $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \ell$. Montrer que
 - **a)** si $\ell < 1$, alors $u_n \xrightarrow[n \to +\infty]{} 0$;
 - **b)** si $\ell > 1$, alors $u_n \xrightarrow[n \to +\infty]{} +\infty$.
- 2) On suppose que $\sqrt[n]{u_n} \xrightarrow[n \to +\infty]{} \ell$. Montrer que
 - **a)** si $\ell < 1$, alors $u_n \xrightarrow[n \to +\infty]{} 0$;
 - **b)** si $\ell > 1$, alors $u_n \xrightarrow[n \to +\infty]{} + \infty$.
- **3)** Soit $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$. Montrer que si $\frac{u_{n+1}}{u_n}\xrightarrow[n\to+\infty]{}\ell$, alors $\sqrt[n]{u_n}\xrightarrow[n\to+\infty]{}\ell$. Indication : utiliser le lemme de Césard
- 4) Chercher les limites des suites de termes généraux suivants.

$$\mathbf{a)} \ u_n = \sqrt[n]{\binom{2n}{n}}$$

$$\mathbf{b)} \ v_n = \frac{n}{\sqrt[n]{n!}}$$

c)
$$w_n = \frac{1}{n^2} \sqrt[n]{\frac{(3n)!}{n!}}$$

Exercice 5 (\bigcirc) – Divergence de ($e^{in\theta}$) –

Soit $\theta \in \mathbb{R}$. Montrer que si $\theta \not\equiv 0$ $[\pi]$, les suites $(\cos(n\theta))$ et $(\sin(n\theta))$ sont toutes les deux divergentes. Indication: On pourra montrer que si l'une converge, alors l'autre aussi, puis obtenir une contradiction.

Exercice 6 () Étudier la convergence des suites de termes généraux suivants et calculer la limite, le cas échéant.

1)
$$a_n = \sqrt{n^2 + n + 1} - \sqrt{n}$$

4)
$$d_n = \left\lfloor 1 + \frac{(-1)^n}{n} \right\rfloor$$
 7) $g_n = \frac{n^3 + 2^n}{3^n}$
5) $e_n = \frac{n}{2} \sin \frac{n\pi}{2}$ 8) $h_n = n - \sqrt{n^2 - n^2}$
6) $f_n = \sqrt[n]{3 - \sin n^2}$ 9) $i_n = 3n \sin \left(\frac{4\pi}{n}\right)$

7)
$$g_n = \frac{n^3 + 2^n}{3^n}$$

2)
$$b_n = \frac{n\sin(n)}{n^2 + 1}$$

$$5) e_n = \frac{n}{2} \sin \frac{n\pi}{2}$$

8)
$$h_n = n - \sqrt{n^2 - n}$$

3)
$$c_n = \frac{1}{n} + (-1)^n$$

6)
$$f_n = \sqrt[n]{3 - \sin n^2}$$

$$9) \ i_n = 3n \sin\left(\frac{4\pi}{n}\right)$$

Exercice 7 ($^{\circ}$) Soit (u_n) une suite complexe telle que (u_{2n}) , (u_{2n+1}) et (u_{3n}) convergent. Montrer que (u_n) converge.

Exercice 8 Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles telles que

$$u_n \xrightarrow[n \to +\infty]{} +\infty$$
, $v_n \xrightarrow[n \to +\infty]{} +\infty$ et $u_{n+1} - u_n \xrightarrow[n \to +\infty]{} 0$.

- 1) Soit $\varepsilon > 0$ et $n_0 \in \mathbb{N}$ tels que, pour tout $n \ge n_0$, $|u_{n+1} u_n| \le \varepsilon$. Montrer que, pour tout $a \ge u_{n_0}$, il existe $n \ge n_0$ tel que $|u_n - a| \le \varepsilon$.
- 2) En déduire que $\{u_n v_p \mid n, p \in \mathbb{N}\}$ est dense dans \mathbb{R} .
- 3) Montrer que l'ensemble $\{\cos(\ln n) \mid n \in \mathbb{N} \}$ est dense dans [-1,1].

On donne $u_0 \in \mathbb{R}$ et l'on pose, quand c'est possible, $u_{n+1} = \frac{1 + u_n}{1 - u_n}$. Exercice 9

- 1) Pour quelles valeurs de u_0 définit-on ainsi une suite (u_n) ?
- 2) Montrer qu'alors la suite (u_n) est périodique.

Exercice 10 () Étudier la suite (u_n) définie par $u_0 \in \mathbb{R}$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n^2 + 1$.

2

Exercise 11 Soit $u_0 = -1$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{3 + 2u_n}{2 + u_n}$.

- 1) Montrer que la suite (u_n) est bien définie.
- 2) Résoudre l'équation f(x) = x où $f: x \to \frac{3+2x}{2+x}$. On notera α et β ses racines, avec $\beta < \alpha$.
- 3) On définit, pour tout $n \in \mathbb{N}$, $v_n = \frac{u_n \alpha}{u_n \beta}$. Montrer que la suite (v_n) est une suite géométrique. En déduire l'expression de u_n en fonction de n.
- 4) La suite (u_n) possède-t-elle une limite?
- 5) Retrouver tout ceci par les méthodes standard.

Exercice 12 Soient $(x_n), (y_n) \in \mathbb{R}^{\mathbb{N}}$ telles que, pour tout $n \in \mathbb{N}$, $x_{n+1} = \frac{x_n - y_n}{2}$ et $y_{n+1} = \frac{x_n + y_n}{2}$. En introduisant la suite complexe de terme général $z_n = x_n + iy_n$, montrer que les suites (x_n) et (y_n) convergent et déterminer leurs limites.

Exercice 13 () Étudier la suite $(z_n) \in \mathbb{C}^{\mathbb{N}}$ vérifiant $|z_0| \leqslant 1$ et, pour tout $n \in \mathbb{N}$, $z_{n+1} = \frac{z_n}{2 - z_n}$.

Exercice 14 (**N**) Soit, pour tout $n \in \mathbb{N}^*$, $u_n = \frac{1}{n}$ et $v_n = \frac{1}{n^2}$.

- 1) Montrer que $\forall n \in \mathbb{N} \setminus \{0,1\}, \ v_n < u_{n-1} u_n$.
- 2) En déduire que la suite de terme général $S_n = \sum_{i=1}^n v_i$ converge et majorer sa limite.

Exercice 15 (%) — Critère spécial des séries alternées ou critère de Leibniz —

Soit (u_n) une suite de réels décroissante et de limite nulle. Pour tout $n \in \mathbb{N}$, on pose $S_n = \sum_{k=0}^{\infty} (-1)^k u_k$. Montrer que les suites extraites (S_{2n}) et (S_{2n+1}) sont adjacentes et en déduire que (S_n) converge.

Exercice 16 (N) Soit la suite (H_n) de terme général $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ et soit, pour tout $n \in \mathbb{N}^*$, $v_n = H_n - \ln(n)$ et $w_n = H_n - \ln(n+1)$.

- 1) Montrer que les suites (v_n) et (w_n) sont adjacentes (leur limite commune s'appelle la constante d'Euler, notée γ).
- 2) En déduire la nature de la suite (H_n) .

