The SPICE Toolkit

What Can One Do With SPICE?

Navigation and Ancillary Information Facility

Compute many kinds of observation geometry parameters at selected times

Examples

- Positions and velocities of planets, satellites, comets, asteroids and spacecraft
- Size, shape and orientation of planets, satellites, comets and asteroids
- Orientation of a spacecraft and its various moving structures
- Instrument field-of-view location on a planet's surface or atmosphere

- How was Pluto orientated at your day of birth?
- How to convert between SolO's SC clock and UT?
- How to rotate between different coordinate systems?

SPICE data

Data sets are stored in **kernels**:

- SPK: SC and planet ephemeris
- FK: Reference frame specification
- SCLK: SC clock correlation data
- LSK: Leapseconds

• ...

```
Geocentric Solar Ecliptic (GSE) Frame
    Definition of the Geocentric Solar Ecliptic frame:
              All vectors are geometric: no aberration corrections are
              used.
              The position of the sun relative to the earth is the primary
              vector: the X axis points from the earth to the sun.
              The northern surface normal to the mean ecliptic of date is the
              secondary vector: the Z axis is the component of this vector
              orthogonal to the X axis.
              The Y axis is Z cross X, completing the right-handed
              reference frame.
\begindata
        FRAME GSE
                                     = 1803311
        FRAME 1803311 NAME
                                     = 'GSE'
       FRAME 1803311 CLASS
       FRAME 1803311 CLASS ID
                                       1803311
       FRAME 1803311 CENTER
                                     = 399
        FRAME 1803311 RELATIVE
                                     = 'J2000'
        FRAME 1803311 DEF STYLE
                                     = 'PARAMETERIZED'
        FRAME 1803311 FAMILY
                                     = 'TWO-VECTOR'
       FRAME 1803311 PRI AXIS
                                     = 'X'
        FRAME 1803311 PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
        FRAME 1803311 PRI OBSERVER
                                     = 'EARTH'
        FRAME 1803311 PRI TARGET
                                     = 'SUN'
       FRAME 1803311 PRI ABCORR
                                     = 'NONE'
       FRAME 1803311 SEC AXIS
                                     = 'Z'
       FRAME 1803311 SEC VECTOR DEF = 'CONSTANT'
        FRAME_1803311_SEC_FRAME
                                     = 'ECLIPDATE'
        FRAME 1803311 SEC SPEC
                                     = 'RECTANGULAR'
        FRAME 1803311 SEC VECTOR
                                     = (0, 0, 1)
```

How to use SPICE

NASA NAIF C, FORTRAN, MATLAB, ... Andrew Annex Python

Johan v. Forstner Python

ET SPICE available in the ET GitLab:

https://gitlab.physik.uni-kiel.de/ET/et_spice

Installation via pip:

pip3 install git+https://gitlab.physik.uni-kiel.de/ET/et_spice.git

- → automatically loads kernels
- → downloads latest kernels
- → works with datetime datetime
- → less cryptic syntax
- → extensible with SpiceyPy functions

Functions

- position()
- sclk_to_datetime()
- datetime to sclk()
- · inclination()

- leapseconds
- reference frames
- Sun, planets, Pluto, moons
- Lagrange points
- MSL
- STEREO
- PSP
- SolO*
- SOHO
- Ulysses
- Helios
- MAVEN
- BepiColombo
- LRO

Code example

```
import datetime
from etspice import *

# STEREO Kernel "heliospheric... .tf"
HCI = ReferenceFrame([kernels.heliospheric_frames],'HCI')
# DIY kernels:
my_kernel = kernels.LocalKernel('Ulysses/Trajectory/SPICE/data/test_tf.tf')
my_kernel.load()

date = datetime.datetime(1992,2,18,9,30)

pos = ULYSSES.position(time = date, relative_to = SUN, reference_frame = HCI)

from spiceypy import spkezr, datetime2et
[x, y, z, vx, vy, vz] = spkezr('ULYSSES', datetime2et(date), 'HCI', 'None', 'SUN')[0]

print(f"\nPosition of Ulysses @ {date}:\n", pos)
```

```
In [7]: %run Ulysses/Trajectory/SPICE/spice_minimal_example.py
Position of Ulysses @ 1992-02-18 09:30:00:
  [ 1.06407939e+08   7.95783856e+08 -9.31722588e+07]
Velocity of Ulysses @ 1992-02-18 09:30:00:
  [-0.9815017498929168, -0.9585219125953374, -8.271585085037566]
```

print(f"\nVelocity of Ulysses @ {date}:\n", [vx, vy, vz])

Kiel University Christian-Albrechts-Universität zu Kiel

+ View the NASA Portal

Home

Announcements

About SPICE

About NAIF

For New Projects

For the Public

Data

Toolkit

Utilities

WebGeocalc

Cosmographia

Documentation

Tutorials

Lessons

Training

Bugs

Useful Links

Rules

Giving Credit

Feedback

SPICE Tutorials

Updated December 11, 2019

This is a collection of tutorials, in chart style using PDF format, covering most aspects of **using** SPICE kernel files and allied Toolkit software to compute observation geometry parameters. There is also limited discussion about **making** SPK and CK kernels. Included in this collection is a working programming example, provided in each supported language.

At the bottom of the list is a link to a zip file containing the entire tutorial collection in PDF format.

File Name	Topic
01 welcome to tutorials	About this set of tutorials
02 motivation	Why SPICE was conceived
03 spice overview	An overview of the entire SPICE system
04 concepts	Some discussion on concepts of space geometry and time
05 conventions	Summary of many conventions and the lingo used within SPICE
06 naif ids	A discourse on the numeric IDs used throughout SPICE
07_installing_toolkit	General instructions for obtaining and installing a SPICE Toolkit package
	An aversion of the various kinds and contents of the CRICE

Kiel University Christian-Albrechts-Universität zu Kiel