3)
$$S_n = 1 - \frac{1}{(n+1)^2}$$
, $S = 1$; 4) $S_n = \frac{1}{8} \left(1 - \frac{1}{(2n+1)^2} \right)$, $S = \frac{1}{8}$;

5)
$$S_n = \sqrt{\frac{n}{n+1}}, S = 1;$$

6)
$$S_n = 1 - \sqrt{2} + \frac{1}{\sqrt{n+1} + \sqrt{n+2}}, S = 1 - \sqrt{2}.$$

6. 1)
$$S_n = \ln \frac{n+1}{2n}$$
, $S = -\ln 2$; 2) $S_n = \ln \frac{n+2}{3n}$, $S = -\ln 3$;

3)
$$S_n = \ln \frac{2(n^2 + n + 1)}{3n(n+1)}$$
, $S = \ln \frac{2}{3}$; 4) $S_n = \ln \frac{2n+1}{n+1}$, $S = \ln 2$;

5)
$$S_n = \frac{1}{2} \left(\sin 2 - \sin \left(\frac{1}{2^{n-1}} \right) \right), \ S = \frac{1}{2} \sin 2;$$

6)
$$S_n = \frac{1}{2} \left(\cos \frac{\alpha}{2^n} - \cos \alpha \right), \ S = \sin^2 \left(\frac{\alpha}{2} \right);$$

7)
$$S_n = 1 - \frac{1}{(n+2)!}$$
, $S = 1$; 8) $S_n = \arctan \frac{n}{n+1}$, $S = \frac{\pi}{4}$.

- **8.** 1) 5/36; 2) -1/36; 3) 1/90; 4) 31/18.

9. 1)
$$(-1+i)/4$$
; 2) $(1+2i)/5$; 3) $1+i/2$; 4) $-1+i$.
10. 1) $\frac{a(\cos\alpha-a)}{1-2a\cos\alpha+a^2}$; 2) $\frac{a\sin\alpha}{1-2a\cos\alpha+a^2}$.

19. 1) Расходится; 2) может как сходиться, так и расходиться.

§ 14. Ряды с неотрицательными членами

СПРАВОЧНЫЕ СВЕДЕНИЯ

1. Критерий сходимости ряда с неотрицательными члена-

ми. Ряд $\sum a_n$ с неотрицательными членами $(a_n\geqslant 0,\; n\in {\it N})$ сходится тогда и только тогда, когда последовательность его частичных сумм ограничена сверху, т. е существует число M>0 такое, что для каждого $n \in \mathbb{N}$ выполняется неравенство

$$\sum_{k=1}^{n} a_k \leqslant M.$$

2. Признак сравнения. Если существует номер n_0 такой, что для всех $n\geqslant n_0$ выполняются неравенства

$$0 \leqslant a_n \leqslant b_n$$

то из сходимости ряда $\sum_{i=1}^{\infty}b_{n}$ следует сходимость ряда $\sum_{i=1}^{\infty}a_{n}$ а из расходимости ряда $\sum_{n=1}^{\infty} a_n$ следует расходимость ряда $\sum_{n=1}^{\infty} b_n$.

Если $a_n\geqslant 0,\ b_n>0$ для всех $n\geqslant n_0$ и существует конечный и отличный от нуля предел

 $\lim_{n\to\infty}\,\frac{a_n}{b_n}\,,$

то ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ сходятся или расходятся одновременно.

В частности, если $a_n\geqslant 0,\ b_n>0$ при $n\geqslant n_0$ и

$$a_n \sim b_n$$
 при $n \to \infty$,

то ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ либо оба еходятся, либо оба расходятся.

- **3.** Интегральный признак сходимости ряда. Если функция f(x) неотрицательна и убывает на промежутке $[1, +\infty)$, то ряд $\sum_{n=1}^{\infty} f(n)$ и интеграл $\int\limits_{1}^{+\infty} f(x)\,dx$ сходятся или расходятся одновременно.
- **4. Метод выделения главной части.** При исследовании сходимости ряда $\sum_{n=1}^{\infty} a_n$ с неотрицательными членами иногда удается получить с помощью формулы Тейлора асимптотическую формулу вида

$$a_n \sim c/n^{\alpha} \quad (n \to \infty, \ c > 0).$$

В этом случае ряд $\sum_{n=1}^{\infty} a_n$ сходится при $\alpha>1$ и расходится при $\alpha\leqslant 1.$

5. Признаки Даламбера и Коши.

Признак Даламбера. Если для ряда

$$\sum_{n=1}^{\infty} a_n, \quad a_n > 0 \quad (n \in \mathbf{N}),$$

существует такое число $q,\ 0 < q < 1,$ и такой номер $n_0,$ что для всех $n \geqslant n_0$ выполняется неравенство

$$a_{n+1}/a_n \leqslant q$$
,

то этот ряд сходится; если же для всех $n\geqslant n_0$ имеет место неравенство

$$a_{n+1}/a_n \geqslant 1$$
,

то ряд расходится.

На практике удобно пользоваться признаком Даламбера в предельной форме: если $a_n>0$ $(n\in {\it N})$ и существует

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lambda,$$

то при $\lambda < 1$ ряд $\sum_{n=1}^{\infty} a_n$ сходится, а при $\lambda > 1$ расходится.

При $\lambda=1$ ряд может как сходиться, так и расходиться. Например, для рядов $\sum_{n=1}^{\infty}\frac{1}{n}$ и $\sum_{n=1}^{\infty}\frac{1}{n^2}$ число λ равно 1, однако первый из этих рядов расходится, а второй сходится.

Признак Коши. Если для ряда

$$\sum_{n=1}^{\infty} a_n, \quad a_n \geqslant 0 \quad (n \in N),$$

существует такое число $q,\ 0\leqslant q<1,$ и такой номер $n_0,$ что для всех $n\geqslant n_0$ выполняется неравенство

$$\sqrt[n]{a_n} \leqslant q$$
,

то этот ряд сходится; если же для всех $n\geqslant n_0$ имеет место неравенство

$$\sqrt[n]{a_n} \geqslant 1$$
,

то ряд расходится.

На практике обычно применяют признак Коши в предельной форме: если $a_n\geqslant 0 \ (n\in {\it N})$ и существует

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lambda,$$

то при $\lambda < 1$ ряд сходится, а при $\lambda > 1$ расходится.

При $\lambda=1$ ряд может как сходиться, так и расходиться.

6. Признаки Раабе и Гаусса.

Признак Раабе. Если $a_n>0$ $(n\in N)$ и существует

$$\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = q,$$

то при q>1 ряд $\sum_{n=1}^{\infty}a_n$ сходится, а при q<1 расходится.

Признак Гаусса. Если $a_n > 0 \ (n \in N)$ и

$$\frac{a_n}{a_{n+1}} = \alpha + \frac{\beta}{n} + \frac{\gamma_n}{n^{1+\delta}},$$

где $|\gamma_n| < c, \ \delta > 0$, то:

- а) при $\alpha>1$ ряд $\displaystyle\sum_{n=1}^{\infty}a_n$ сходится, а при $\alpha<1$ расходится;
- б) при $\alpha=1$ этот ряд сходится в случае, когда $\beta>1,$ и расходится в случае, когда $\beta\leqslant 1.$