

#### Knowledge-Based Systems

# Description Logic Reasoning - Why and how did that happen

Jeff Z. Pan

http://homepages.abdn.ac.uk/jeff.z.pan/pages/



### **Assessments**





- 25% Continuous Assessment
  - Demonstrate practical skills related to ontology and rule, including building a reasoner

#### The TrOWL Award

- for the best reasoner among the assessment submissions
- to be announced at the revision lecture



## Roadmap



- Foundation
  - KR, ontology and rule; set theory
- Knowledge capture
- Knowledge representation
  - Ontology: Semantic Web standards RDF and OWL, Description Logics
  - Rule: Jess
- Knowledge reasoning
  - Ontology: formal semantics, tableaux algorithm
  - Rule: forward chaining, backward chaining
- Knowledge reuse and evaluation
- Meeting the real world
  - Jess and Java, Efficiency, Invited talk



### **Database and RDF**

 An RDF statement is a data unit with global and linkable IDs for data and schema

| Student ID | Name | take-course |
|------------|------|-------------|
| p001       | John | cs3019      |
| p002       | Tom  | cs3023      |

- [csd:p001 rdf:type csd:Student .]
- [csd:p002 rdf:type csd:Student .]
- [csd:p001 csd:name "John" .]
- [csd:p002 csd:name "Tom" .]
- [csd:p001 csd:take-course csd:cs3019 .]
- [csd:p002 csd:take-course csd:cs3023 .]



### **Schema and Data**

- Schema:
  - [csd:UndgStudent rdfs:subClassOf csd:Student .]
  - [csd:take-course rdfs:range csd:Course .]
- Data:

| Student ID | Name | take-course |
|------------|------|-------------|
| p001       | John | cs3019      |
| p002       | Tom  | cs3023      |

- [csd:p001 rdf:type csd:Student .]
- [csd:p002 rdf:type csd:Student .]
- [csd:p001 csd:name "John" .]
- [csd:p002 csd:name "Tom" .]
- [csd:p001 csd:take-course csd:cs3019 .]
- [csd:p002 csd:take-course csd:cs3023 .]



#### **DL Exercise**



- Q: Write down the following OWL axioms in DL syntax
- ObjectProperty (eats domain (Animal) range (LivingThing))
- ObjectProperty (owns domain (Person) range (intersectionOf (LivingThing complementOf (Person))))



# Interpretations of Class Descriptions

Given an interpretation, we can compute the semantic counterparts of class descriptions

$$\exists r. C = \{ \mathbf{x} \mid \exists \mathbf{y}. \ (\mathbf{x}, \mathbf{y}) \in r^{I} \land \mathbf{y} \in C^{I} \}$$
$$\forall r. C = \{ \mathbf{x} \mid \forall \mathbf{y}. \ (\mathbf{x}, \mathbf{y}) \in r^{I} \rightarrow \mathbf{y} \in C^{I} \}$$





## Standards DL Reasoning Services

"Easier" reasoning services



- whether O is consistent
- whether a given class is satisfiable
- "Harder" reasoning services
  - whether O entails a class inclusion axiom
  - whether O entails an individual axiom



## **Class Instance Checking**



- Reducing Class Instance Checking to Ontology Consistency Checking
  - If O entails C(x), then in every interpretation I of O, we have x<sup>I</sup> is in C<sup>I</sup>
  - It means OU {¬C(x)} is inconsistent



## **Example**

- If an ontology O entails Male (nicolas)
  - then in every interpretation I of O
  - we have nicolas¹ ∈ Male¹
- · Now if we extend O to O' with a new axiom
  - ¬Male(nicolas) (\*)
- How to construct an interpretation I' for O'?
  - as all interpretations of O' should satisfy O
  - we could start from interpretations of O
- It is easy to see that I' does not exist
  - If I' does not satisfy O, then it does not satisfy O' either
  - If I' satisfies O, then it does not satisfy ¬Male(nicolas)





### **Lecture Outline**

- Motivation
- Introduction to tableaux algorithms
- Some detailed discussions on tableaux algorithms
- Practical



[Section: 9.3.2.1]



## **Motivations: Reasoning**



- How to perform DL reasoning based on formal semantics
  - Tableaux algorithm
- Most existing OWL DL reasoners implement tableaux algorithm



### **Lecture Outline**

- Motivation
- Introduction to tableaux algorithms
  - The big picture
- Some detailed discussions on tableaux algorithms
- Practical



## **Tableaux Algorithm**



- The first sound and complete algorithm for expressive DLs
  - Ontology Consistency Checking
  - Class Satisfiability Checking
- Basic idea: Build an interpretation
  - A tableau is a representative of an interpretation
  - We can construct an interpretation based on a tableau



## **Key Steps**



- Initialise the tableau with individual axioms.
  - the initial tableau might not satisfy all the axioms
- 2. Repair the initial tableau by applying expansion rules
  - so as to add new information into the tableau
  - this might require backtracking
- If the tableau satisfy all the axioms, returns Consistent
- 4. If every possible attempt repair results in some contradiction, returns Inconsistent
  - Contradiction: {A, ¬A} ⊆ L(x) or {⊥} ⊆ L(x) (⊥ is bottom, interpreted as **empty set**)



# Tableau Initialisation for Ontology Consistency Checking



- For checking if an given ontology O is consistent
  - for every individual axiom o:C, construct a root x-o of a tableau, and set L(x-o)={C}
  - for every individual axiom <01,02>:R, construct an edge (x-o1,x-o2) between two roots x-o1 and x-o2 and set L(x-o1,x-o2)={R}.



## **Expansion Rule for Simple Axioms**



- Simple axioms
  - A ⊆ C where A is a named class
  - No cycles involve A
    - × such as A ⊑∃R.A
- Expansion rule for simple axioms
  - If A is in L(x) and A ⊆ C is in O
  - Then add C into L(x)



- Check if the following ontology is consistent

  - Confucian □Chinese

  - Bill: Confucian



5. Initialise the tableau: L(x-Bill)={Confucian} (from 4)



- Check if the following ontology is consistent

  - Bill: Confucian
  - Initialise the tableau: L(x-Bill)={Confucian}



6. Expand L(x-Bill): L(x-Bill)={Confucian, Chinese, English (from 2,3)



- Check if the following ontology is consistent
  - English □¬Chinese
  - Confucian ☐ Chinese

  - Bill: Confucian 4.
  - Initialise the tableau: L(x-Bill)={Confucian}
  - Expend L(x-Bill): L(x-Bill)={Confucian, Chinese, English} 6.



7. Expand L(x-Bill): L(x-Bill)={Confucian, Chinese, English, ¬Chinese) (from 1)



- Check if the following ontology is consistent

  - Confucian Chinese
  - Confucian English
  - Bill: Confucian
  - Initialise the tableau: L(x-Bill)={Confucian}
  - Expend L(x-Bill): L(x-Bill)={Confucian, Chinese, English} 6.



L(x-Bill)={Confucian, Chinese, English, ¬Chinese}

- 7. Expand L(x-Bill): L(x-Bill)={Confucian, Chinese, English, ¬Chinese x-Bill can be Chinese and ¬Chinese at the same time
- hence, the initial assumption that there exist an interpretation for O is incorrect; i.e., O is inconsistent

**Knowledge-Based Systems** Jeff Z. Pan



### **Lecture Outline**

- Motivation
- Introduction to tableaux algorithms
- Some detailed discussions on tableaux algorithms
- Practical



## **Tableaux Algorithm**



- The first sound and complete algorithm for expressive DLs
  - Ontology Consistency Checking
  - Class Satisfiability Checking
- Basic idea: Build an interpretation
  - A tableau is a representative of an interpretation
  - We can construct an interpretation based on a tableau



# Tableau Initialisation for Class Satisfiability Checking



A tableau is a representative of an interpretation

- For checking if C is satisfiable
  - Construct the root x0 of a tableau, and
  - set  $L(x0)=\{C\}$
  - C is the input class description
  - x0 is an instance of all classes in L(x0)



# Tableau Initialisation for Class Satisfiability Checking



- What does it mean
  - It means we assume that there exists some object x0 as an instance of C
  - If applying expansion rules (see later slides) always leads to some contradiction
    - Contradiction:  $\{A, :A\} \subseteq L(x)$  or  $\{\bot\} \subseteq L(x)$  ( $\bot$  is bottom, interpreted as **empty set**)
  - Then our assumption is incorrect --- so C cannot have any instances, i.e. C is unsatisfiable
  - Otherwise, C is satisfiable





- Given the following ontology, check if Confucian is satisfiable
  - Chinese 
     □ Person
  - 2. English 

    □ Person
  - 3. Confucian 

    □ Chinese
  - 4. Confucian ⊑English



5. Initialise the tableau: L(x0)={Confucian}





- Given the following ontology, check if Confucian is satisfiable
  - Chinese 
     □ Person
  - 2. English 

    □ Person
  - 3. Confucian ☐ Chinese
  - 4. Confucian 

    English
  - 5. Initialise the tableau:  $L(x0)=\{Confucian\}$



6. Expand L(x0): L(x0)={Confucian, **Chinese**} (from 3)





- Given the following ontology, check if Confucian is satisfiable
  - Chinese 

    Person
  - 2. English ☐ Person
  - 3. Confucian ☐ Chinese
  - 4. Confucian English
  - 5. Initialise the tableau:  $L(x0)=\{Confucian\}$
  - 6. Expend L(x0): L(x0)={Confucian, Chinese}



7. Expand L(x0): L(x0)={Confucian, Chinese, English} (from 4)





- Given the following ontology, check if Confucian is satisfiable
  - Chinese □Person
  - English ☐Person
  - 3. Confucian 

    □Chinese

  - 5. Initialise the tableau:  $L(x0)=\{Confucian\}$
  - 6. Expand L(x0): L(x0)={Confucian, Chinese}
  - 7. Expand L(x0): L(x0)={Confucian, Chinese, **English**}



x0 L (x0)={Confucian, Chinese, English, **Person**}

8. Expand L(x0): L(x0)={Confucian, Chinese, English, **Person**} (from 1,2)



# Example: From Tableaux to **Interpretations**

x0 L(x0)={Confucian, Chinese, English, Person}

- According to the above tableau, we can construct the following interpretation
  - $\checkmark$   $\Delta^{I} = \{x0\}$
  - Confucian $^{I}=\{x0\}$ , Chinese $^{I}=\{x0\}$ , English $^{I}=\{x0\}$ , Person $^{I}=\{x0\}$
- So Confucian is satisfiable (because there is an interpretation, the above one, in which it is not an empty set)





## **Class Instance Checking**

#### Question: Is the following ontology O consistent?



- Class (OldLady partial restriction (hasPet allValuesFrom (Cat)))
- Individual (Minnie type (OldLady)
   value (hasPet Tom))
   Individual (Tom type (complementOf (Cat))



## **Summary**

- Tableaux algorithm
  - constructing a representative of an interpretation



 Class satisfiability checking and ontology consistency checking are fundamental reasoning problems



