Paradigm Shift in Natural Language Processing

原文

范式

解决一类NLP任务的通用的框架

NLP七大范式

Figure 1: Illustration of the seven mainstream paradigms in NLP.

	图示		ENC	CLS/DEC	适用任务	备注
Class	Label Classifier Tencoder Text (a) Class	$\mathcal{Y} = \mathrm{CLS}(\mathrm{ENC}(\mathcal{X}))$	CNN/RN N/Transf ormer	(avg/max /attentio n) pooling + MLP	情感分析、主题 分类、垃 圾邮件检 测	
Matching	Label Classifier Encoder Text A Text B (b) Matching	$\mathcal{Y} = \mathrm{CLS}(\mathrm{ENC}(\mathcal{X}_a, \mathcal{X}_b))$ Enc = enc2(enc1(x1), enc1(x2))	对两个文 本分开或 联合编码	捕获文本 对的关 系,并预 测	NLI, 句子 相似度	
SeqLab(S equence labeling)	L _A L _B L _C † † † Decoder † t † Encoder † † † A B C (c) SeqLab	$y_1,,y_n=\mathrm{DEC}(\mathrm{ENC}(x_1,,x_n))$	RNN/Tra nsformer	CRF	NER, POS- Tagging	
MRC (machine reading compreh ension)	Start End 1 1 Decoder Encoder Context Question (d) MRC	$y_k,,y_{k+l} = ext{DEC}(ext{ENC}({\mathcal{X}}_c,{\mathcal{X}}_q))$	CNN/RN N/Transf ormer	start/end position predictio n	MRC	根据 question ,从 context中 抽取出连 续的 spans.
Seq2Seq	Encoder Docoder A B C St D E	$y_1,,y_m=\mathrm{DEC}(\mathrm{ENC}(x_1,,x_n))$	CNN/RN N/Transf ormer	CNN/RN N/Transf ormer	机器翻译,对话	
Seq2ASe q (sequenc e-to- action- sequence)	Classifier ALX Assume Froder Text (f) Seq2ASeq	$\mathcal{A} = \mathrm{CLS}(\mathrm{ENC}(x), \mathcal{C})$	CNN/RN N/Transf ormer	基于输入 文本和当 前栈的状 态预测 action	Depende ncy parsing	CLS除了 有 encoder 的输出, 还要维护 一个栈的 状态

(M)LM	B	$\mathrm{LM}: x_k = \mathrm{DEC}(x_1,,x_{k-1})$	CNN/RN N/Transf ormer	分类器或 自回归 decoder	LM/MLM	
		$ ext{MLM}: ar{x} = ext{DEC}(ext{ENC}(ilde{x}))$				

组合范式

有的复杂任务可以通过多个范式的组合来解决

e.g. HotPotQA: matching + MRC

matching找到相关的document

MRC从document中抽取出answer

范式迁移

e.g.有的任务之前用Class解决,但也可以转化为(M)LM来解决

文本分类

范式	图示		备注	论文	
Seq2Se	8 → h	C) Libel_Teenager	多标签分类任务中,Class	SGM: sequence generation model	

NLI 自然语言推断任务,即给出一对句子, 判断两个句子是entailement/contradiction/neutral.

范式	图示	备注	论文
Class	BERT BERT BERT BUILDING		
Seq2Se q	Quantities of the control of the con	Hypothesic Product and geography Premise. Conceptually cream are what make cream sufferming work. Interface, pounds, or contradiction? 把所有任务都形式化为QA的形式,context, question,answer	The Natural Language Decathlon: Multitask Learning as Question Answering
(M)LM	MNLI The MNLI dataset (Williams et al., 2018) consists of text pairs $\mathbf{x} = (a, b)$. The task is to find out whether a implies b (0), a and b contradict each other (1) or neither (2). We define $P_1(\mathbf{x}) = \text{"a"? } \ \dots, \text{"b"} P_2(\mathbf{x}) = a? \ \dots, b$		Exploiting cloze-questions for few- shot text classification and natural language inference.

and consider two different verbalizers v_1 and v_2 : $v_1(0) = \text{Wrong} \ \ v_1(1) = \text{Right} \ \ v_1(2) = \text{Maybe}$ $v_2(0) = \text{No} \qquad v_2(1) = \text{Yes} \qquad v_2(2) = \text{Maybe}$	

NER

传统方法

SeqLab(flat NER)

Class(nested NER) 抽出所有的span,然后预测每个span属于什么实体

Seq2ASeq(discontinuous NER)

范式	图示	备注	论文
Class(fla t & nested)	Biaffine Classifier BiLSTM BERT, fastText & Char Embeddings Figure 1: The network architectures of our system. Matrix ($ \times \times c \rangle$ Labeling: The 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Biaffine: https://zhuanlan.zhihu.com/p/369851456	Named Entity Recognition as Dependency Parsing
MRC(flat & Nested)	Entity Natural Language Question Location Find locations in the text, including non- geographical locations, mountain ranges and bodies of water. Facility Find facilities in the text, including buildings, airports, highways and bridges. Organization Find organizations in the text, including companies, agencies and institutions. Table 1: Examples for transforming different entity cat- egories to question queries.		A unified MRC framework for named entity recognition
Seq2Se q(All)	S1: Barack Obama was born in the US Person (a) Sequence labelling for flat NER The Lincoln Memorial S2: The Lincoln Memorial Location (b) Span-based classification for nested NER Actions: our our SHIFT SHIFT LETH-REDUCE COMPLITE _ S3: have much muscle pain and fatigue Disorder (c) Transition-based method for discontinuous NER S1: Barack Obama < Person > US < Location> S2: The Lincoln Memorial < Location	BART+pointer network	A unified generative framework for various NER subtasks.

ABSA

任务定义:

Figure 1: Illustration of seven ABSA subtasks.

范式迁移:

传统方法

SeqLab(AE, OE, AOE)

Class(ALSC)

范式	图示	备注	论文
Matchin g(ALSC)	X: LOC1 is often considered the coolest area of London. Aspect: Safety QA-M What do you think of the safety of LOC1? [X] NLI-M LOC1- safety. [X] QA-B The polarity of the aspect safety of LOC1 is positive. [X] NLI-B LOC1- safety - positive. [X]		Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence
MRC(All)	Original training example: • input text: The ambience was nice, but service was not so great. • amotations: (ambience, nice, positivel), (service, no so great, negative) Converted training example 1: • query-1: Find the aspect terms in the text. • answer-1: ambience, service • query-2: Find the sentiment polarity and opinion terms for ambience in the text. • answer-2: (nice, positive) Figure 3: Dataset conversion.		A joint training dual-mrc framework for aspect based sentiment analysis.
Seq2Se q(All)	Token: The (wine list) is interesting and has good values, but the bervice is idreadful realized between 1 2 3 4 5 6 7 8 9 10 11 12 10 14	BART + pointer network	A Unified Generative Framework for Aspect-Based Sentiment

	Subtask Target Sequence AE 1, 2, 12, 12, √8> OE 4, 4, 7, 8, 14, 14, √8> LSC 12, 12, POS, √8> LSC 12, 12, 19, 5, √8> AOE 12, 2, 14, 14, √8> ESC 12, 12, 14, 14, √8> Pair 1, 2, 9, 5, 12, 12, NEG, √8> Pair 1, 2, 4, 4, 1, 2, 7, 8, 12, 12, 14, 14, √8> Triplet 1, 2, 4, 4, POS, 1, 2, 7, 8, POS, 12, 12, 14, 14, POS, √8>	Analysis
(M)LM	The owners are great fun and the beer selection is worth staying for. Consistency prompt The owners are great fun? [MASK]. Polarity prompt This is [MASK].	SentiPrompt: Sentiment Knowledge Enhanced Prompt- Tuning for Aspect-Based Sentiment Analysis

关系抽取

任务定义: 包括两部分,entity extraction, relation classification

SeqLab(entity extraction)

Class(relation classification)

范式迁移

范式	图示	论文
Seq2Seq	Extracted triples (*Cepind.Subn.Kharours, *Carnon.Subn.Kharours) Predicted relation Relation Prediction Prediction Prediction Prediction Prediction Relation Prediction Prediction Prediction Prediction Relation Prediction Prediction Prediction Prediction Attention Vector c, and a subness of the subness of	Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism
MRC	Q1 Person: who is mentioned in the text? A: e_1 Q2 Company: which companies did e_1 work for? A: e_2 what was e_1 's position in e_2 ? A: e_3 Q4 Time: During which period did e_1 work for e_2 as e_3 A: e_4	Entity-Relation Extraction as Multi-turn Question Answering
(M)LM	$T_{f_{e_s}}(x)=$ " x the <code>[MASK]</code> e_s ", $\mathcal{V}_{f_{e_s}}=\{$ "person", "organization", $\ldots\}.$	PTR: Prompt Tuning with Rules for Text Classification
	$T_{f_{e_s,e_o}}(x)=\ ``x\ e_s\ [ext{MASK}]\ e_o", \ \mathcal{V}_{f_{e_s,e_o}}=\{ ext{``s parent was", ``was born in", }\ldots\}.$	

文本摘要

Extractive text summarization: 从文本中抽取一部分作为摘要(SeqLab)

Abstractive text summarization: 根据文本自动生成(Seq2Seq)

范式迁移趋势

https://txsun1997.github.io/nlp-paradigm-shift/sankey.html

传统: Class, SeqLab, Seq2ASeq

通用: Matching, MRC, Seq2Seq, (M)LM