

Topologie

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice 1 **

Montrer que la boule unité d'un espace vectoriel normé est un convexe de cet espace.

Correction ▼ [005839]

Exercice 2 *** I

- 1. Inégalités de HÖLDER et de MINKOWSKI. Soit $(p,q) \in]0, +\infty[^2$ tel que $\frac{1}{p} + \frac{1}{q} = 1$.
 - (a) Montrer que pour $(x,y) \in [0,+\infty[^2,xy \leqslant \frac{x^p}{p} + \frac{x^q}{q}]$.
 - (b) En déduire que $\forall ((a_1,...,a_n),(b_1,...,b_n)) \in (\mathbb{R}^n)^2, |\sum_{k=1}^n a_k b_k| \leq (\sum_{k=1}^n |a_k|^p)^{1/p} (\sum_{k=1}^n |b_k|^q)^{1/q}.$
 - (c) En déduire que $\forall ((a_1,...,a_n),(b_1,...,b_n)) \in (\mathbb{R}^n)^2$, $(\sum_{k=1}^n |a_k + b_k|^p)^{1/p} \leqslant (\sum_{k=1}^n |a_k|^p)^{1/p} + (\sum_{k=1}^n |b_k|^p)^{1/p}$.
- 2. Soit α un réel strictement positif. Pour $x = (x_1, ..., x_n) \in \mathbb{R}^n$, on définit $N_{\alpha}(x) = (\sum_{k=1}^n |x_k|^{\alpha})^{1/\alpha}$.
 - (a) Montrer que $\forall \alpha \ge 1$, N_{α} est une norme sur \mathbb{R}^n .
 - (b) Dessiner les « boules unités » de \mathbb{R}^2 dans le cas où $\alpha \in \left\{ \frac{2}{3}, 1, \frac{3}{2}, 2, +\infty \right\}$.
 - (c) Montrer que, pour $x = (x_k)_{1 \le k \le n}$ fixé, $\lim_{\alpha \to +\infty} N_{\alpha}(x) = \text{Max}\{|x_k|, 1 \le k \le n\} = N_{\infty}(x)$.
 - (d) Montrer que si $0 < \alpha < 1$, N_{α} n'est pas une norme sur \mathbb{R}^n (si $n \ge 2$).

Correction ▼ [005840]

Exercice 3 ** I

Soit $E = C^2([0,1],\mathbb{R})$. Pour f élément de E, on pose $N(f) = \int_0^1 |f(t)| \, dt$, $N'(f) = |f(0)| + \int_0^1 |f'(t)| \, dt$ et $N''(f) = |f(0)| + |f'(0)| + \int_0^1 |f''(t)| \, dt$. Montrer que N, N' et N'' sont des normes et les comparer.

Exercice 4 *** I Topologie dans $\mathcal{M}_n(\mathbb{K})$

- 1. Montrer que $GL_n(\mathbb{R})$ est un ouvert de $\mathscr{M}_n(\mathbb{R})$, dense dans $\mathscr{M}_n(\mathbb{R})$.
- 2. Montrer que $\mathcal{M}_n(\mathbb{R}) \setminus GL_n(\mathbb{R})$ est fermé mais non compact (pour $n \ge 2$).
- 3. Montrer que $O_n(\mathbb{R})$ est compact. $O_n(\mathbb{R})$ est-il convexe?
- 4. Montrer que $S_n(\mathbb{R})$ est fermé.
- 5. Soit $p \in [0, n]$. Montrer que l'ensemble des matrices de rang inférieur ou égal à p est un fermé de $\mathcal{M}_n(\mathbb{R})$.
- 6. Montrer que l'ensemble des matrices diagonalisables dans $\mathcal{M}_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$. Peut-on remplacer $\mathcal{M}_n(\mathbb{C})$ par $\mathcal{M}_n(\mathbb{R})$?
- 7. Propriétés topologiques de l'ensemble des triplets de réels (a,b,c) tels que la forme quadratique $(x,y) \mapsto ax^2 + 2bxy + cy^2$ soit définie positive ?
- 8. Montrer que l'ensemble des matrices stochastiques (matrices $(a_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathscr{M}_n(\mathbb{R})$ telles que $\forall (i,j) \in [\![1,n]\!]^2$, $a_{i,j} \geqslant 0$ et $\forall i \in [\![1,n]\!]$, $\sum_{j=1}^n a_{i,j} = 1$) est un compact convexe de $\mathscr{M}_n(\mathbb{R})$.
- 9. Montrer que l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{R})$ est connexe par arcs.

Correction ▼ [005842]

Exercice 5 **

Montrer qu'entre deux réels distincts, il existe un rationnel (ou encore montrer que \mathbb{Q} est dense dans \mathbb{R}).

Correction ▼ [005843]

Exercice 6 **

Soient A et B des parties d'un espace vectoriel normé E. Montrer que

1.
$$\overline{(\overline{A})} = \overline{A}$$
 et $\overset{\circ}{A} = \overset{\circ}{A}$.

2.
$$A \subset B \Rightarrow \overline{A} \subset \overline{B} \text{ et} A \subset B \Rightarrow \overset{\circ}{A} \subset \overset{\circ}{B}$$
.

3.
$$\overline{A \cup B} = \overline{A} \cup \overline{B} \text{ et } A \cap B = \overset{\circ}{A} \cap \overset{\circ}{B}.$$

4.
$$\overline{A \cap B} \subset \overline{A} \cap \overline{B}$$
 et $A \overset{\circ}{\cup} B \subset \overset{\circ}{A} \cup \overset{\circ}{B}$. Trouver un exemple où l'inclusion est stricte.

5.
$$A \stackrel{\circ}{\backslash} B = \stackrel{\circ}{A} \backslash \overline{B}$$
.

$$\overset{\circ}{\circ} \quad \overset{\circ}{\sim} \quad \overset{\circ}{\overline{\circ}} \quad \overset{\circ}{\overline{A}} = \overset{\circ}{A}.$$

Correction ▼ [005844]

Exercice 7 **

Trouver une partie A de \mathbb{R} telle que les sept ensembles A, \overline{A} , \overline{A} , \overline{A} , \overline{A} , \overline{A} et \overline{A} soient deux à deux distincts.

Correction ▼ [005845]

Exercice 8 **

Soit E le \mathbb{R} -espace vectoriel des fonctions continues sur [0,1] à valeurs dans \mathbb{R} . On munit E de $\|\cdot\|_{\infty}$.

D est la partie de E constituée des applications dérivables et P est la partie de E constituée des fonctions polynomiales. Déterminer l'intérieur de D et l'intérieur de P.

Correction ▼ [005846]

Exercice 9 ** I Distance d'un point à une partie

Soit *A* une partie non vide d'un espace vectoriel normé (E, || ||).

Pour $x \in E$, on pose $d_A(x) = d(x,A)$ où $d(x,A) = \text{Inf}\{||x - a||, a \in A\}$.

- 1. Justifier l'existence de $d_A(x)$ pour chaque x de E.
- 2. (a) Montrer que si A est fermée, $\forall x \in E, d_A(x) = 0 \Leftrightarrow x \in A$.
 - (b) Montrer que si A est fermée et E est de dimension finie, $\forall x \in E, \exists a \in A / d_A(x) = ||x a||$.
- 3. Si A est quelconque, comparer $d_A(x)$ et $d_{\overline{A}}(x)$.
- 4. Montrer d_A est continue sur E.
- 5. A chaque partie fermée non vide A, on associe l'application d_A définie ci-dessus. Montrer que l'application $A \mapsto d_A$ est injective.
- 6. Dans l'espace des applications continues sur [0,1] à valeurs dans \mathbb{R} muni de la norme de la convergence uniforme, on considère $A = \left\{ f \in E / f(0) = 0 \text{ et } \int_0^1 f(t) \, dt \geqslant 1 \right\}$. Calculer $d_A(0)$.

Correction ▼ [005847]

Exercice 10 **

1. Soient (E, N_E) et (F, N_F) deux espaces vectoriels normés. Soient f et g deux applications continues sur E à valeurs dans F. Soit D une partie de E dense dans E. Montrer que si $f_{/D} = g_{/D}$ alors f = g.

2. Déterminer tous les morphismes continus de $(\mathbb{R}, +)$ dans lui-même.

Correction ▼ [005848]

Exercice 11 ***

Soit *u* une suite bornée d'un espace vectoriel normé de dimension finie ayant une unique valeur d'adhérence. Montrer que la suite *u* converge.

Correction ▼ [005849]

Exercice 12 ***

Calculer
$$\inf_{\alpha \in]0,\pi[} \left\{ \sup_{n \in \mathbb{Z}} |\sin(n\alpha)| \right\}.$$

Correction ▼ [005850]

Exercice 13 *** I

Soit $f: \mathbb{R} \to \mathbb{R}$ une application uniformément continue sur \mathbb{R} . Montrer qu'il existe deux réels a et b tels que $\forall x \in \mathbb{R}, |f(x)| \leq a|x| + b$.

Correction ▼ [005851]

Exercice 14 *** I

Donner un développement à la précision $\frac{1}{n^2}$ de la *n*-ième racine positive x_n de l'équation $\tan x = x$.

Correction ▼ [005852]

Exercice 15 *** I

Soit z un nombre complexe. Déterminer $\lim_{n\to+\infty} (1+\frac{z}{n})^n$.

Correction ▼ [005853]

Correction de l'exercice 1 A

Cas de la boule fermée. Soit $B = \{u \in E / ||u|| \le 1\}$. Soient $(x, y) \in B^2$ et $\lambda \in [0, 1]$.

$$\|\lambda x + (1 - \lambda)y\| \leqslant \lambda \|x\| + (1 - \lambda)\|y\| \leqslant \lambda + 1 - \lambda = 1.$$

Ainsi, $\forall (x,y) \in B^2$, $\forall \lambda \in [0,1]$, $\lambda x + (1-\lambda)y \in B$ et donc B est convexe.

Cas de la boule ouverte. Soit $B = \{u \in E / ||u|| < 1\}$. Soient $(x, y) \in B^2$ et $\lambda \in [0, 1]$.

Puisque $0 \le \lambda \le 1$ et $0 \le ||x|| < 1$, on en déduit que $\lambda ||x|| < 1$. Comme $(1 - \lambda)||y|| \le 1$ (et même < 1) et donc

$$\|\lambda x + (1 - \lambda)y\| \le \lambda \|x\| + (1 - \lambda)\|y\| < 1.$$

La boule unité fermée (ou ouverte) de l'espace vectoriel normé (E, || ||) est un convexe de l'espace vectoriel E.

Correction de l'exercice 2

- 1. Puisque p>0 et q>0, $1=\frac{1}{p}+\frac{1}{q}>\frac{1}{p}$ et donc p>1. De même, q>1. D'autre part, $q=\frac{p}{p-1}$.
 - (a) L'inégalité est immédiate quand y = 0. Soit y > 0 fixé.

Pour $x \ge 0$, on pose $f(x) = \frac{x^p}{p} + \frac{y^q}{q} - xy$. Puisque p > 1, la fonction f est dérivable sur $[0, +\infty[$ et $\forall x \ge 0, f'(x) = x^{p-1} - y$. f admet donc un minimum en $x_0 = y^{1/(p-1)}$ égal à

$$f\left(y^{1/(p-1)}\right) = \frac{y^{p(p-1)}}{p} + \frac{y^{p/(p-1)}}{q} - y^{1/(p-1)}y = y^{p/(p-1)}\left(\frac{1}{p} + \frac{1}{q} - 1\right) = 0.$$

Finalement, f est positive sur $[0, +\infty]$ et donc

$$\forall x \geqslant 0, \forall y \geqslant 0, xy \leqslant \frac{x^p}{p} + \frac{y^q}{q}.$$

(b) Posons $A = \sum_{k=1}^{n} |a_k|^p$ et $B = \sum_{k=1}^{n} |b_k|^q$.

Si A (ou B) est nul, tous les a_k (ou tous les b_k) sont nuls et l'inégalité est vraie.

On suppose dorénavant que A > 0 et B > 0. D'après la question a),

$$\sum_{k=1}^{n} \frac{|a_k|}{A^{1/p}} \times \frac{|b_k|}{B^{1/q}} \leqslant \sum_{k=1}^{n} \left(\frac{|a_k|^p}{pA} + \frac{|b_k|^q}{qB} \right) = \frac{1}{pA} \sum_{k=1}^{n} |a_k|^p + \frac{1}{qB} \sum_{k=1}^{n} |b_k|^q = \frac{1}{pA} \times A + \frac{1}{qB} \times B = \frac{1}{p} + \frac{1}{q} = 1,$$

et donc $\sum_{k=1}^{n} |a_k| |b_k| \le A^{1/p} B^{1/q} = (\sum_{k=1}^{n} |a_k|^p)^{1/p} (\sum_{k=1}^{n} |b_k|^q)^{1/q}$. Comme $|\sum_{k=1}^{n} a_k b_k| \le \sum_{k=1}^{n} |a_k| |b_k|$, on a montré que

$$\forall ((a_k)_{1 \leqslant k \leqslant n}, (b_k)_{1 \leqslant k \leqslant n}) \in (\mathbb{R}^n)^2, \sum_{k=1}^n |a_k b_k| \leqslant (\sum_{k=1}^n |a_k|^p)^{1/p} (\sum_{k=1}^n |b_k|^q)^{1/q}$$
 (Inégalité de HÖLDER).

Remarque. Quand p=q=2, on a bien $\frac{1}{p}+\frac{1}{q}=1$ et l'inégalité de HÖLDER s'écrit

$$\sum_{k=1}^{n} |a_k b_k| \leq \left(\sum_{k=1}^{n} |a_k|^2\right)^{1/2} \left(\sum_{k=1}^{n} |b_k|^2\right)^{1/2}$$
 (inégalité de CAUCHY-SCHWARZ).

(c) Soit $((a_k)_{1 \le k \le n}, (b_k)_{1 \le k \le n}) \in (\mathbb{R}^n)^2$. D'après l'inégalité de HÖLDER, on a

$$\sum_{k=1}^{n} (|a_{k}| + |b_{k}|)^{p} = \sum_{k=1}^{n} |a_{k}| (|a_{k}| + |b_{k}|)^{p-1} + \sum_{k=1}^{n} |b_{k}| (|a_{k}| + |b_{k}|)^{p-1}$$

$$\Leftrightarrow \left(\sum_{k=1}^{n} |a_{k}|^{p}\right)^{1/p} \left(\sum_{k=1}^{n} (|a_{k}| + |b_{k}|)^{(p-1)q}\right)^{1/q} \left(\sum_{k=1}^{n} |b_{k}|^{p}\right)^{1/p} \left(\sum_{k=1}^{n} (|a_{k}| + |b_{k}|)^{(p-1)q}\right)^{1/q}$$

$$= \left(\left(\sum_{k=1}^{n} |a_{k}|^{p}\right)^{1/p} + \left(\sum_{k=1}^{n} |b_{k}|^{p}\right)^{1/p}\right) \left(\sum_{k=1}^{n} (|a_{k}| + |b_{k}|)^{p}\right)^{1-\frac{1}{p}}.$$

Si $\sum_{k=1}^{n}(|a_k|+|b_k|)^p=0$, tous les a_k et les b_k sont nuls et l'inégalité est claire. Sinon $\sum_{k=1}^{n}(|a_k|+|b_k|)^p>0$ et après simplification des deux membres de l'inégalité précédente par le réel strictement positif $\sum k=1^n(|a_k|+|b_k|)^p$, on obtient $(\sum_{k=1}^n|a_k+b_k|^p)^{1/p}\leqslant (\sum_{k=1}^n|a_k|^p)^{1/p}+(\sum_{k=1}^n|b_k|^p)^{1/p}$

$$\forall ((a_k)_{1 \leqslant k \leqslant n}, (b_k)_{1 \leqslant k \leqslant n}) \in (\mathbb{R}^n)^2, (\sum_{k=1}^n |a_k + b_k|^p)^{1/p} \leqslant (\sum_{k=1}^n |a_k|^p)^{1/p} + (\sum_{k=1}^n |b_k|^p)^{1/p}$$
 (Inégalité de MINKO

- 2. (a) On sait déjà que N_1 est une norme sur \mathbb{R}^n . Soit $\alpha > 1$.
 - (1) N_{α} est bien une application de \mathbb{R}^n dans \mathbb{R}^+ .
 - (2) Soit $x = (x_k)_{1 \le k \le n} \in \mathbb{R}^n$. $N_{\alpha}(x) = 0 \Rightarrow \forall k \in [1, n], |x_k| = 0 \Rightarrow x = 0$.
 - (3) Soient $\lambda \in \mathbb{R}$ et $x = (x_k)_{1 \leqslant k \leqslant n} \in \mathbb{R}^n$. $N_{\alpha}(\lambda x) = (\sum_{k=1}^n |\lambda x_k|^{\alpha})^{1/\alpha} = (|\lambda|^{\alpha})^{1/\alpha} N_{\alpha}(x) = |\lambda| N_{\alpha}(x)$.
 - (4) L'inégalité triangulaire est l'inégalité de MINKOWSKI.

$$\forall \alpha \in \mathbb{R}^n$$
, N_{α} est une norme sur \mathbb{R}^n .

(b) Quelques « boules unités » dans \mathbb{R}^2 .

Remarque. Toute boule unité est symétrique par rapport à O puisque $\forall x \in E, N(x) = N(-x)$ et donc

$$\forall x \in E, N(x) \leq 1 \Leftrightarrow N(-x) \leq 1.$$

(c) Soient $\alpha > 0$ et $x \in E$. On a

$$N_{\infty}(x) \leqslant N_{\alpha}(x) \leqslant n^{1/\alpha} N_{\infty}(x),$$

et le théorème des gendarmes fournit $\lim_{\alpha \to +\infty} N_{\alpha}(x) = N_{\infty}(x)$.

$$\forall x \in E, \lim_{\alpha \to +\infty} N_{\alpha}(x) = N_{\infty}(x).$$

(d) Soient $\alpha \in]0,1[$ puis $B = \{x \in \mathbb{R}^n / N_\alpha(x) \le 1\}$. Les vecteurs $x = (1,0,0,\ldots,0)$ et $y = (0,1,0,\ldots,0)$ sont des éléments de B. Le milieu du segment [xy] est $z = \frac{1}{2}(1,1,0,\ldots,0)$.

$$N_{\alpha}(z) = \frac{1}{2}(1^{\alpha} + 1^{\alpha})^{1/\alpha} = 2^{\frac{1}{\alpha} - 1} > 1 \text{ car } \frac{1}{\alpha} - 1 > 0$$

et donc $z \notin B$. Ainsi, B n'est pas convexe et donc N_{α} n'est pas une norme d'après l'exercice 1. On peut remarquer que pour n = 1, les N_{α} coïncident toutes avec la valeur absolue.

Correction de l'exercice 3 A

- Il est connu que N est une norme sur E.
- Montrons que N' est une norme sur E.
- (1) N' est une application de E dans \mathbb{R}^+ car pour f dans E, f' est continue sur le segment [0, 1] et donc f' est intégrable

sur le segment [0,1].

(2) Soit $f \in E$. Si N'(f) = 0 alors f(0) = 0 et f' = 0 (fonction continue positive d'intégrale nulle). Par suite, f'

polynôme de degré inférieur ou égal à 0 tel que f(0) = 0 et on en déduit que f = 0.

(3)
$$\forall f \in E, \forall \lambda \in \mathbb{R}, N'(\lambda f) = |\lambda f(0)| + \int_0^1 |\lambda f'(t)| dt = |\lambda| \left(|f(0)| + \int_0^1 |f'(t)| dt \right) = |\lambda| N'(f).$$

(4) Soit $(f,g) \in E^2$.

$$N'(f+g) \le |f(0)| + |g(0)| + \int_0^1 |f'(t)| dt + \int_0^1 |g'(t)| dt = N'(f) + N'(g).$$

Donc N' est une norme sur E.

• Montrons que N'' est une norme sur E. On note que $\forall f \in E, N''(f) = |f(0)| + N'(f')$ et tout est immédiat.

$$N, N'$$
 et N'' sont des normes sur E .

• Soit $f \in E$ et $t \in [0,1]$. Puisque la fonction f' est continue sur [0,1]

$$|f(t)| = |f(0) + \int_0^t f'(u) \ du| \le |f(0)| + \int_0^t |f'(u)| du \le |f(0)| + \int_0^1 |f'(u)| \ du = N'(f),$$

et donc $N(f) = \int_0^1 |f(t)| dt \le \int_0^1 N'(f) dt = N'(f)$.

Ensuite en appliquant le résultat précédent à f', on obtient

$$N'(f) = |f(0)| + N(f') \leqslant |f(0)| + N'(f') = N''(f).$$

Finalement

$$\forall f \in E, N(f) \leqslant N'(f) \leqslant N''(f).$$

Pour $n \in \mathbb{N}$ et $t \in [0,1]$, on pose $f_n(t) = t^n$. $N(f_n) = \int_0^1 t^n \ dt = \frac{1}{n+1}$ et donc la suite $(f_n)_{n \in \mathbb{N}}$ tend vers 0 dans l'espace vectoriel normé (E,N).

Par contre, pour $n \geqslant 1$, $N'(f_n) = n \int_0^1 t^{n-1} dt = 1$ et la suite $(f_n)_{n \in \mathbb{N}}$ ne tend pas vers 0 dans l'espace vectoriel normé (E, N'). On en déduit que

les normes N et N' ne sont pas des normes équivalentes.

De même en utilisant $f_n(t) = \frac{t^n}{n}$, on montre que les normes N' et N'' ne sont pas équivalentes.

Correction de l'exercice 4 A

1. Soit $d: \mathscr{M}_n(\mathbb{R}) \to \mathbb{R}$. On sait que l'application d est continue sur $\mathscr{M}_n(\mathbb{R})$ (muni de n'im- $M \mapsto \det(M)$

porte quelle norme) et que \mathbb{R}^* est un ouvert de \mathbb{R} en tant que réunion de deux intervalles ouverts.

Par suite, $GL_n(\mathbb{R}) = d^{-1}(\mathbb{R}^*)$ est un ouvert de $\mathcal{M}_n(\mathbb{R})$ en tant qu'image réciproque d'un ouvert par une application continue.

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Le polynômedet(A-xI) n'a qu'un nombre fini de racines (éventuellement nul) donc pour p entier naturel supérieur ou égal à un certain p_0 , det $\left(A-\frac{1}{p}I\right)\neq 0$. La suite $\left(A-\frac{1}{p}I\right)_{p\geqslant p_0}$ est une suite d'éléments de $GL_n(\mathbb{R})$ convergente de limite A. Ceci montre que l'adhérence de $GL_n(\mathbb{R})$ est $\mathcal{M}_n(\mathbb{R})$ ou encore $GL_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$.

$$GL_n(\mathbb{R})$$
 est un ouvert de $\mathscr{M}_n(\mathbb{R})$, dense dans $\mathscr{M}_n(\mathbb{R})$.

2. $\mathcal{M}_n(\mathbb{R}) \setminus GL_n(\mathbb{R})$ est fermé en tant que complémentaire d'un ouvert.

Soit $n \ge 2$. Les matrices $A_p = pE_{1,1}$, $p \in \mathbb{N}$, sont non inversibles et la suite $(A_p)_{p \in \mathbb{N}}$ est non bornée. Par suite $Mn(R) \setminus GLn(R)$ est non borné et donc non compact.

$$\forall n \geqslant 2, M_n(\mathbb{R}) \setminus GL_n(\mathbb{R})$$
 est fermé mais non compact.

3. • Montrons que $O_n(\mathbb{R})$ est fermé. Posons $g: \mathcal{M}_n(\mathbb{R}) \to (\mathcal{M}_n(\mathbb{R}))^2$, $h: (\mathcal{M}_n(\mathbb{R}))^2 \to \mathcal{M}_n(\mathbb{R})$ puis $M \mapsto (M, {}^tM) = (M, N) \mapsto MN$

$$f: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(R)$$

$$M \mapsto M^t M$$

g est continue sur $\mathcal{M}_n(\mathbb{R})$ car linéaire sur un espace de dimension finie. h est continue sur $(M_n(\mathbb{R}))^2$ car bilinéaire sur un espace de dimension finie. On en déduit que $f = h \circ g$ est continue sur $\mathcal{M}_n(\mathbb{R})$.

Enfin $O_n(\mathbb{R}) = f^{-1}(I_n)$ est fermé en tant qu'image réciproque d'un fermé par une application continue.

• Montrons que $O_n(\mathbb{R})$ est borné. $\forall A \in O_n(\mathbb{R}), \forall (i,j) \in [\![1,n]\!]^2, |a_{i,j}| \leq 1$ et donc $\forall A \in O_n(\mathbb{R}), |\![A]\!]_{\infty} \leq 1$. D'après le théorème de BOREL-Lebesgue, puisque $O_n(\mathbb{R})$ est un fermé borné de l'espace de dimension finie $\mathscr{M}_n(\mathbb{R}), O_n(\mathbb{R})$ est un compact de $\mathscr{M}_n(\mathbb{R})$.

 $O_n(\mathbb{R})$ n'est pas convexe. En effet, les deux matrices I_n et $-I_n$ sont orthogonales mais le milieu du segment joignant ces deux matrices est 0 qui n'est pas une matrice orthogonale.

$$O_n(\mathbb{R})$$
 est compact mais non convexe.

4. $S_n(\mathbb{R})$ est un sous espace vectoriel de l'espace de dimension finie $\mathcal{M}_n(\mathbb{R})$ et est donc un fermé de $\mathcal{M}_n(\mathbb{R})$.

$$S_n(\mathbb{R})$$
 est fermé.

5. Soit $A \in \mathcal{M}_n(\mathbb{R})$ et p un élément fixé de [1, n-1] (le résultat est clair si p=0 ou p=n).

A est de rang inférieur ou égal à p si et seulement si tous ses mineurs de format p+1 sont nuls (hors programme).

Soient I et J deux sous-ensembles donnés de $[\![1,n]\!]$ de cardinal p+1 et $A_{I,J}$ la matrice extraite de A de format p+1 dont les numéros de lignes sont dans I et les numéros de colonnes sont dans J.

Pour I et J donnés, l'application $A \mapsto A_{I,J}$ est continue car linéaire de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_{p+1}(\mathbb{R})$. Par suite, l'application

 $f_{I,J}:A\mapsto \det(A_{I,J})$ est continue sur $\mathscr{M}_n(\mathbb{R})$. L'ensemble des matrices A telles que $\det(A_{I,J})=0$ est donc un fermé de $\mathscr{M}_n(\mathbb{R})$ (image réciproque du fermé $\{0\}$ de \mathbb{R} par l'application continue $f_{I,J}$) et l'ensemble des matrices de rang inférieur ou égal à p est un fermé de $\mathscr{M}_n(\mathbb{R})$ en tant qu'intersection de fermés.

6. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Posons $\operatorname{Sp}(A) = (\lambda_i)_{1 \leqslant i \leqslant n}$. On sait que toute matrice est triangulable dans \mathbb{C} et donc il existe $P \in GL_n(\mathbb{C})$ et $T \in \mathcal{T}_n(\mathbb{C})$ avec $\forall i \in [1, n]$, $t_{i,i} = \lambda_i$ telle que $A = PTP^{-1}$.

On munit dorénavant $\mathcal{M}_n(\mathbb{C})$ d'une norme multiplicative notée $\| \|$. Puisque toutes les normes sont équivalentes en dimension finie, il existe un réel strictement positif K telle que pour toute matrice M, $\|M\| \leq K\|M\|_{\infty}$.

Soit $\varepsilon > 0$. Il existe un n-uplet de réels $(\lambda_1, ..., \lambda_n)$ tels que $\forall k \in \llbracket 1, n \rrbracket$, $0 \leqslant \varepsilon_k < \frac{\varepsilon}{K \lVert P \rVert \lVert P^{-1} \rVert}$ et les $\lambda_k + \varepsilon_k$ sont deux à deux distincts. (On prend $\varepsilon_1 = 0$ puis ε_2 dans $\left[0, \frac{\varepsilon}{K \lVert P \rVert \lVert P^{-1} \rVert}\right[$ tel que $\lambda_2 + \varepsilon_2 \neq \lambda_1 + \varepsilon_1$ ce qui est possible puisque $\left[0, \frac{\varepsilon}{K \lVert P \rVert \lVert P^{-1} \rVert}\right[$ est infini puis ε_3 dans $\left[0, \frac{\varepsilon}{K \lVert P \rVert \lVert P^{-1} \rVert}\right[$ tel que $\lambda_3 + \varepsilon_3$ soit différent de $\lambda_1 + \varepsilon_1$ et $\lambda_2 + \varepsilon_2$ ce qui est possible puisque $\left[0, \frac{\varepsilon}{K \lVert P \rVert \lVert P^{-1} \rVert}\right[$ est infini ...)

On pose $D = \operatorname{diag}(\lambda_i)_{1 \le i \le n}$ puis T' = T + D et enfin $A' = PT'P^{-1}$. Tout d'abord les valeurs propres de A' sont deux à deux distinctes (ce sont les $\lambda_i + \varepsilon_i$, $1 \le i \le n$) et donc A' est diagonalisable. Ensuite

$$||A'-A|| = ||PDP^{-1}|| \le ||P|| ||D|| ||P^{-1}|| \le K ||P|| ||P^{-1}|| ||D||_{\infty} < \varepsilon.$$

En résumé, $\forall A \in \mathcal{M}_n(\mathbb{C}), \forall \varepsilon > 0, \exists A' \in \mathcal{M}_n(\mathbb{C}) / \|A' - A\| < \varepsilon$ et A' diagonalisable. On a montré que

L'ensemble des matrices complexes diagonalisables dans $\mathbb C$ est dense dans $\mathscr M_n(\mathbb C)$.

On ne peut remplacer $\mathcal{M}_n(\mathbb{C})$ par $\mathcal{M}_n(\mathbb{R})$.

Soient
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 et $E = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathscr{M}_2(\mathbb{R})$.

$$\chi_{A+E} = \left| \begin{array}{cc} a - X & c - 1 \\ b + 1 & d - X \end{array} \right| = X^2 - (a + d)X + (ad - bc) + (b - c) + 1.$$

Le discriminant de χ_{A+E} est $\Delta = (a+d)^2 - 4(ad-bc) - 4(b-c) - 4$. Supposons de plus que $||E||_{\infty} \leqslant \frac{1}{4}$. Alors

$$\Delta = (a+d)^2 - 4(ad-bc) - 4(b-c) - 4 \leqslant \frac{1}{4} + 4\left(\frac{1}{16} + \frac{1}{16}\right) + 4\left(\frac{1}{4} + \frac{1}{4}\right) - 4 = -\frac{5}{4} < 0.$$

Par suite, aucune des matrices A + E avec $||E||_{\infty} \leq \frac{1}{4}$ n'a de valeurs propres réelles et donc aucun donc diagonalisable dans \mathbb{R} . On a montré que l'ensemble des matrices réelles diagonalisables dans \mathbb{R} n'est pas dense dans $\mathcal{M}_n(\mathbb{R})$.

7. La matrice de la forme quadratique $Q:(x,y)\mapsto ax^2+2bxy+cy^2$ dans la base canonique est $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$.

Les valeurs propres de cette matrice sont strictement positives si et seulement si a+c>0 et $ac-b^2>0$. L'application $(a,b,c)\mapsto a+c$ est continue sur \mathbb{R}^3 car linéaire sur \mathbb{R}^3 qui est de dimension finie et l'application $(a,b,c)\mapsto ac-b^2$ est continue sur \mathbb{R}^3 en tant que polynôme.

L'ensemble des triplets considéré est l'intersection des images réciproques par ces applications de l'ouvert $]0,+\infty[$ de \mathbb{R} et est donc un ouvert de \mathbb{R}^3 .

- 8. Notons \mathcal{S} l'ensemble des matrices stochastiques.
 - Vérifions que $\mathscr S$ est borné. Soit $A=(a_{i,j})_{1\leqslant i,j\leqslant n}\in \mathscr S$. $\forall (i,j)\in \llbracket 1,n\rrbracket^2, 0\leqslant a_{i,j}\leqslant 1$ et donc $\|A\|_{\infty}\leqslant 1$. Ainsi, $\forall A/in\mathscr S$, $\|A\|_{\infty}\leqslant 1$ et donc $\mathscr S$ est borné.
 - Vérifions que \mathscr{S} est fermé.

Soit $(i,j) \in [\![1,n]\!]^2$. L' application $f_{i,j}: A \mapsto a_{i,j}$ est continue sur $\mathscr{M}_n(\mathbb{R})$ à valeurs dans \mathbb{R} car linéaire sur $\mathscr{M}_n(\mathbb{R})$ qui est de dimension finie. $[0,+\infty[$ est un fermé de \mathbb{R} car son complémentaire $]-\infty,0[$ est un ouvert de \mathbb{R} . Par suite, $\{A=(a_{k,l})_{1\leqslant k,l\leqslant n}/a_{i,j}\geqslant 0\}=f_{i,j}^{-1}([0,+\infty[)$ est un fermé de $\mathscr{M}_n(\mathbb{R})$ en tant qu'image réciproque d'un fermé par une application continue.

Soit $i \in [\![1,n]\!]$. L' application $g_i : A \mapsto \sum_{j=1}^n a_{i,j}$ est continue sur $\mathcal{M}_n(\mathbb{R})$ à valeurs dans \mathbb{R} car linéaire sur $\mathcal{M}_n(\mathbb{R})$ qui est de dimension finie. Le singleton $\{1\}$ est un fermé de \mathbb{R} . Par suite, $\{A = (a_{k,l})_{1 \leqslant k,l \leqslant n} / \sum_{j=1}^n a_{i,j} = 1\} = g_i^{-1}(\{1\})$ est un fermé de $\mathcal{M}_n(\mathbb{R})$ en tant qu'image réciproque d'un fermé par une application continue. \mathscr{S} est donc un fermé de $\mathcal{M}_n(\mathbb{R})$ en tant qu'intersection de fermé de $\mathcal{M}_n(\mathbb{R})$.

En résumé, $\mathscr S$ est un fermé borné de l'espace $\mathscr M_n(\mathbb R)$ qui est de dimension finie et donc $\mathscr S$ est un compact de $\mathscr M_n(\mathbb R)$ d'après le théorème de BOREL-LEBESGUE.

• Vérifions que $\mathscr S$ est convexe. Soient $(A,B) \in (\mathscr S)^2$ et $\lambda \in [0,1]$. D'une part, $\forall (i,j) \in [\![1,n]\!]^2$, $(1-\lambda)a_{i,j} + \lambda b_{i,j} \geqslant 0$ et d'autre part, pour $i \in [\![1,n]\!]$

$$\sum_{j=1}^{n} ((1-\lambda)a_{i,j} + \lambda b_{i,j}) = (1-\lambda)\sum_{j=1}^{n} a_{i,j} + \lambda \sum_{j=1}^{n} b_{i,j} = (1-\lambda) + \lambda = 1,$$

ce qui montre que $(1-\lambda)A + \lambda B \in \mathcal{S}$. On a montré que $\forall (A,B) \in \mathcal{S}^2, \forall \lambda \in [0,1], (1-\lambda)A + \lambda B \in \mathcal{S}$ et donc \mathscr{S} est convexe.

l'ensemble des matrices stochastiques est un compact convexe de $\mathcal{M}_n(\mathbb{R})$.

9. Soient A et B deux matrices réelles diagonalisables. Soient $\gamma_1:[0,1] \to \mathcal{M}_n(\mathbb{R})$ $t \mapsto (1-t).A + t.0 = (1-t)A$

Soient
$$A$$
 et B deux matrices réelles diagonalisables. Soient $\gamma_1: [0,1] \to t \mapsto (1-t).A$ et
$$\gamma_2: [0,1] \to \mathscr{M}_n(\mathbb{R}) \text{ . Soit enfin } \gamma: [0,1] \to \mathscr{M}_n(\mathbb{R})$$

$$t \mapsto tB$$

$$t \mapsto \begin{cases} \gamma_1(2t) \text{ si } t \in [0,\frac{1}{2}] \\ \gamma_2(2t-1) \text{ si } t \in [\frac{1}{2},1] \end{cases}$$
 γ_1 est un chemin continu joignant la matrice A à la matrice nulle et γ_2 est un chemin

 γ_1 est un chemin continu joignant la matrice A à la matrice nulle et γ_2 est un chemin continu joignant la matrice nulle à la matrice B. Donc γ est un chemin continu joignant la matrice A à la matrice B. De plus, pour tout réel $t \in [0,1]$, la matrice $\gamma_1(t) = (1-t)A$ est diagonalisable (par exemple, si A = $P \operatorname{diag}(\lambda_i)_{1 \le i \le n} P^{-1}$ alors $(1-t)A = P \operatorname{diag}((1-t)\lambda_i)_{1 \le i \le n} P^{-1})$ et de même, pour tout réel $t \in [0,1]$, la matrice $\gamma_2(t) = tB$ est diagonalisable. Finalement γ est un chemin continu joignant les deux matrices Aet B diagonalisables dans \mathbb{R} , contenu dans l'ensemble des matrices diagonalisables dans \mathbb{R} . On a montré que

l'ensemble des matrices diagonalisables dans \mathbb{R} est connexe par arcs.

Correction de l'exercice 5

1ère solution. • Montrons qu'entre deux réels distincts, il existe un rationnel.

Soient x et y deux réels tels que x < y. Soient d = y - x puis n un entier naturel non nul tel que $\frac{1}{n} < d$ (par exemple, $n = E\left(\frac{1}{d}\right) + 1$). Soient enfin k = E(nx) et $r = \frac{k+1}{n}$. r est un rationnel et de plus

$$x = \frac{nx}{n} < \frac{k+1}{n} = r \leqslant \frac{nx+1}{n} = x + \frac{1}{n} < x + d = x + y - x = y.$$

En résumé, $\forall (x,y) \in \mathbb{R}^2$, $(x < y \Rightarrow \exists r \in \mathbb{Q} / x < r < y)$. Ceci montre que \mathbb{Q} est dense dans \mathbb{R} .

2ème solution. On sait que tout réel est limite d'une suite de décimaux et en particulier tout réel est limite d'une suite de rationnels. Donc \mathbb{Q} est dense dans \mathbb{R} .

Correction de l'exercice 6

- 1. Soit A une partie de E. \overline{A} est fermé et donc $\overline{(\overline{A})} = \overline{A}$. $\overset{\circ}{A}$ est ouvert et donc $\overset{\circ}{A} = \overset{\circ}{A}$.
- 2. Soient A et B deux parties de E telles que $A \subset B$.
 - Pour tout $x \in E$, $x \in \overline{A} \Rightarrow \forall V \in \mathcal{V}(x)$, $V \cap A \neq \emptyset \Rightarrow \forall V \in \mathcal{V}(x)$, $V \cap B \neq \emptyset \Rightarrow x \in \overline{B}$. Donc $\overline{A} \subset \overline{B}$.
 - Pour tout $x \in E$, $x \in \overset{\circ}{A} \Rightarrow A \in \mathscr{V}(x) \Rightarrow B \in \mathscr{V}(x) \Rightarrow x \in \overset{\circ}{B}$. Donc $\overset{\circ}{A} \subset \overset{\circ}{B}$.
- 3. Soient A et B deux parties de E.

 $\overline{A} \cup \overline{B}$ est une partie fermée de E contenant $A \cup B$. Donc $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$ (puisque $\overline{A \cup B}$ est le plus petit fermé de E au sens de l'inclusion contenant $A \cup B$).

Réciproquement, $A \subset A \cup B$ et $B \subset A \cup B \Rightarrow \overline{A} \subset \overline{A \cup B}$ et $\overline{B} \subset \overline{A \cup B} \Rightarrow \overline{A} \cup \overline{B} \subset \overline{A \cup B}$.

Finalement $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

 $\overset{\circ}{A} \cap \overset{\circ}{B}$ est un ouvert contenu dans $A \cap B$ et donc $\overset{\circ}{A} \cap \overset{\circ}{B} \subset A \overset{\circ}{\cap} B$.

Réciproquement, $A \cap B \subset A$ et $A \cap B \subset B \Rightarrow A \cap B \subset A$ et $A \cap B \subset B \Rightarrow A \cap B \subset A$.

Finalement, $A \cap B = \overset{\circ}{A} \cap \overset{\circ}{B}$.

4. $\overline{A} \cap \overline{B}$ est un fermé contenant $A \cap B$ et donc $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.

On n'a pas nécessairement l'égalité. Si A = [0,1[et B =]1,2], $A \cap B = \emptyset$ puis $\overline{A \cap B} = \emptyset$ mais $\overline{A} \cap \overline{B} = [0,1] \cap [1,2] = \{1\} \neq \emptyset$.

 $\overset{\circ}{A} \cup \overset{\circ}{B}$ est un ouvert contenu dans $A \cup B$ et donc $\overset{\circ}{A} \cup \overset{\circ}{B} \subset A \overset{\circ}{\cup} B$.

On n'a pas nécessairement l'égalité. Si A = [0,1] et B = [1,2], $A \cup B = [0,2]$ puis $A \overset{\circ}{\cup} B =]0,2[$ mais $\overset{\circ}{A} \cup \overset{\circ}{B} =]0,1[\cup]1,2[\ne]0,2[$.

5. Soient *A* et *B* deux parties de *E*. Soit $x \in E$.

$$x \in A \ B \Leftrightarrow A \setminus B \in \mathcal{V}(x) \Leftrightarrow \exists \mathcal{B} \text{ boule ouverte de centre } x \text{ telle que } \mathcal{B} \subset A \setminus B$$

$$\Leftrightarrow \exists \mathcal{B} \text{ boule ouverte de centre } x \text{ telle que } \mathcal{B} \subset A \text{ et } \mathcal{B} \subset B \Leftrightarrow A \in \mathcal{V}(x) \text{ et } {}^{c}B \in \mathcal{V}(x)$$

$$\Leftrightarrow x \in A \text{ et } x \in ({}^{c}B) \Leftrightarrow x \in A \text{ et } x \in {}^{c}(\overline{B}) \Leftrightarrow x \in A \cap {}^{c}(\overline{B}) \Leftrightarrow x \in A \setminus \overline{B}.$$

Donc
$$A \stackrel{\circ}{\setminus} B = \stackrel{\circ}{A} \setminus \overline{B}$$
.

6. Soit
$$\underline{\underline{A}}$$
 une partie de E . $\overset{\circ}{A} \subset \overset{\overline{\bigcirc}}{A} \Rightarrow \overset{\overline{\bigcirc}}{A} \subset \overset{\overline{\bigcirc}}{A} = \overset{\overline{\bigcirc}}{A}$. D'autre part $\overset{\circ}{A} \subset \overset{\circ}{A} \Rightarrow \overset{\circ}{A} = \overset{\circ}{A} \subset \overset{\overline{\bigcirc}}{A} \Rightarrow \overset{\overline{\bigcirc}}{A} \subset \overset{\overline{\bigcirc}}{A}$. Finalement,

$$\stackrel{\circ}{A} = \stackrel{\circ}{A}.$$

$$\overset{\circ}{A}\subset\overset{\circ}{A}\Rightarrow\overset{\circ}{A}=\overset{\circ}{A}\subset\overset{\circ}{A}. \text{ D'autre part }\overset{\circ}{A}\subset\overline{A}\Rightarrow\overset{\overline{\Box}}{A}\subset\overline{\overline{A}}=\overline{A}\Rightarrow\overset{\circ}{\overline{A}}\subset\overset{\circ}{\overline{A}}. \text{ Finalement, }\overset{\circ}{\overline{A}}=\overset{\circ}{\overline{A}}.$$

Correction de l'exercice 7

L'exercice 6 montre que l'on ne peut pas faire mieux.

Soit $A = ([0,1[\cup]1,2]) \cup \{3\} \cup (\mathbb{Q} \cap [4,5]).$

- $\bullet \overset{\circ}{\underline{A}} =]0,1[\cup]1,2[.$
- $\bullet \overset{\stackrel{\frown}{A}}{\underset{\circ}{A}} = [0,2].$
- ullet $\overset{\circ}{A}$ =]0,2[.
- $\bullet \overline{A} = [0,2]] \cup \{3\} \cup [4,5]$
- $\bullet \stackrel{\circ}{\overline{A}} =]0,2[\cup]4,5[.$
- $\overline{A} = [0,2] \cup [4,5]$.

Les 7 ensembles considérés sont deux à deux distincts.

Correction de l'exercice 8 ▲

Soit $f \in E$. Pour $n \in \mathbb{N}^*$, soit g_n l'application définie par $\forall x \in [0,1]$, $g_n(x) = f(x) + \frac{1}{n} |x - \frac{1}{2}|$. Chaque fonction g_n est continue sur [0,1] mais non dérivable en $\frac{1}{2}$ ou encore $\forall n \in \mathbb{N}^*$, $g_n \in E \setminus D$. De plus, $\forall n \in \mathbb{N}^* ||f - g_n||_{\infty} = \frac{1}{2n}$. On en déduit que la suite $(g_n)_{n\geqslant 1}$ tend vers f dans l'espace vectoriel normé $(E, || \cdot ||_{\infty})$. f est donc limite d'une suite d'éléments de cD et donc est dans l'adhérence de cD . Ceci montre que $^c\overline{D} = E$ ou encore $^c(D) = E$ ou enfin $D = \emptyset$.

Enfin, puisque $P \subset D$, on a aussi $\stackrel{\circ}{P} = \varnothing$.

Correction de l'exercice 9 A

1. Soit $x \in E$. $\{||x-a||, a \in A\}$ est une partie non vide et minorée (par 0) de \mathbb{R} . $\{||x-a||, a \in A\}$ admet donc une borne inférieure dans \mathbb{R} . On en déduit l'existence de $d_A(x)$.

- 2. (a) Soit A une partie fermée et non vide de E. Soit $x \in E$.
 - Supposons que $x \in A$. Alors $0 \le f(x) = \inf\{||x a||, a \in A\} \le ||x x|| = 0$ et donc $d_A(x) = 0$.
 - Supposons que $d_A(x) = 0$. Par définition d'une borne inférieure, $\forall \varepsilon > 0 \ \exists a_{\varepsilon} \in A / \ \|x a_{\varepsilon}\| < \varepsilon$. Soit V un voisinage de x. V contient une boule ouverte de centre x et de rayon $\varepsilon > 0$ puis d'après ce qui précède, V contient un élément de A. Finalement, $\forall V \in \mathscr{V}(x), V \cap A \neq \emptyset$ et donc $x \in \overline{A} = A$.

Si
$$A$$
 est fermée, $\forall x \in E$, $(d_A(x) = 0 \Leftrightarrow x \in A)$.

(b) Posons $d = d_A(x)$. Pour chaque entier naturel n, il existe $a_n \in A$ tel que $d \le \|x - a_n\| \le d + \frac{1}{n}$. La suite $(a_n)_{n \in \mathbb{N}}$ est bornée. En effet, $\forall n \in \mathbb{N}^* \ \|a_n\| \le \|a_n - x\| + \|x\| \le d + \frac{1}{n} + \|x\| \le d + \|x\| + 1$. Puisque E est de dimension finie, d'après le théorème de BOLZANO-WEIERSTRASS, on peut extraire de la suite $(a_n)_{n \ge 1}$ une suite $(a_{\varphi(n)})_{n \ge 1}$ convergeant vers un certain élément a de E. Ensuite, puisque A est fermée, on en déduit que $a \in A$. Puis, comme

$$\forall n \in \mathbb{N}^*, d \leqslant ||x - a_{\varphi(n)}|| \leqslant d + \frac{1}{\varphi(n)},$$

et puisque $\varphi(n)$ tend vers l'infini quand n tend vers $+\infty$, on obtient quand n tend vers l'infini, $d=\lim_{n\to +\infty}\|x-a_{\varphi(n)}\|$. Maintenant on sait que l'application $y\mapsto \|y\|$ est continue sur l'espace normé $(E,\|\ \|)$ et donc

$$\lim_{n \to +\infty} ||x - a_{\varphi(n)}|| = ||x - \lim_{n \to +\infty} a_{\varphi(n)}|| = ||x - a||.$$

On a montré qu'il existe $a \in A$ tel que $d_A(x) = ||x - a||$.

3. Soit $x \in E$.

Puisque $A \subset \overline{A}$, $d_{\overline{A}}(x)$ est un minorant de $\{\|x - a\|, a \in A\}$. Comme $d_A(x)$ est le plus grand des minorants de $\{\|x - a\|, a \in A\}$, on a donc $d_{\overline{A}}(x) \leq d_A(x)$.

Soit alors $\varepsilon > 0$. Il existe $y \in \overline{A}$ tel que $||x - y|| < d(x, \overline{A}) + \frac{\varepsilon}{2}$ et puis il existe $a \in A$ tel que $||y - a|| < \frac{\varepsilon}{2}$. On en déduit que

$$d_A(x) \leqslant \|x-a\| \leqslant \|x-y\| + \|y-a\| < d_{\overline{A}}(x) + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = d_{\overline{A}}(x) + \varepsilon.$$

Ainsi, $\forall \varepsilon > 0$, $d_A(x) < d_{\overline{A}}(x) + \varepsilon$. Quand ε tend vers 0, on obtient $d_A(x) \leq d_{\overline{A}}(x)$.

Finalement

$$\forall x \in E, d_A(x) = d_{\overline{A}}(x).$$

4. Montrons que l'application d_A est Lipschitzienne. Soit $(x,y) \in E^2$

Soit $a \in A$. $d_A(x) \le ||x-a|| \le ||x-y|| + ||y-a||$. Donc, $\forall a \in A$, $d_A(x) - ||x-y|| \le ||y-a||$ ou encore $d_A(x) - ||x-y||$ est un minorant de $\{||y-a||, a \in A\}$. Puisque $d_A(y)$ est le plus grand des minorants de $\{||y-a||, a \in A\}$, on a donc $d_A(x) - ||x-y|| \le d_A(y)$.

En résumé, $\forall (x,y) \in E^2$, $d_A(x) - d_A(y) \le ||x - y||$. En échangeant les rôles de x et y, on obtient $\forall (x,y) \in E^2$, $d_A(y) - d_A(x) \le ||x - y||$ et finalement

$$\forall (x,y) \in E^2, |d_A(x) - d_A(y)| \leq ||x - y||.$$

Ainsi l'application $d_A: (E, \| \|) \to (\mathbb{R}, | \|)$ est 1-Lipschitzienne et en particulier d_A est continue $x \mapsto d_A(x)$

sur l'espace vectoriel normé (E, || ||).

5. Soient A et B deux parties fermées et non vides de E telles que $d_A = d_B$.

Soit $a \in A$. $d_B(a) = d_A(a) = 0$ (d'après 2)) et donc $a \in B$ (d'après 2)). Ainsi $A \subset B$ puis, par symétrie des rôles, $B \subset A$ et finalement A = B.

6. (A n'est pas un sous espace vectoriel de E.)

Soit $f \in A$. $1 \leqslant \int_0^1 f(t) dt \leqslant \int_0^1 |f(t)| dt \leqslant ||f||_{\infty}$. Ainsi, $\forall f \in A$, $||f||_{\infty} \geqslant 1$ et donc $d_A(0) \geqslant 1$.

Pour
$$n \in \mathbb{N}^*$$
 et $x \in [0,1]$, on pose $f_n(x) = \begin{cases} (n+1)x \text{ si } x \in \left[0,\frac{1}{n}\right] \\ 1 + \frac{1}{n}x \in \left[\frac{1}{n},1\right] \end{cases}$.

Pour chaque entier naturel non nul n, la fonction f_n est continue sur [0,1] et

$$\int_0^1 f_n(x) \, dx = \frac{1}{2n} \left(1 + \frac{1}{n} \right) + \left(1 - \frac{1}{n} \right) \left(1 + \frac{1}{n} \right) = 1 + \frac{1}{2n} - \frac{1}{2n^2} \geqslant 1.$$

Donc, la suite $(f_n)_{n\geqslant 1}$ est une suite d'éléments de A. On en déduit que $\forall n\in\mathbb{N}^*, d_A(0)\leqslant \|f_n\|_{\infty}=1+\frac{1}{n}$. En résumé, $\forall n \in \mathbb{N}^*$, $1 \leq d_A(0) \leq 1 + \frac{1}{n}$ et finalement

$$d_A(0)=1.$$

Remarque. A est fermée mais la distance à A n'est malgré tout pas atteinte. En effet

- Soit $(f_n)_{n\in\mathbb{N}}$ est une suite d'éléments de A convergeant dans l'espace vectoriel normé $(E, \| \|_{\infty})$ vers un certain élément f de E. La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur [0,1] et donc d'une part, $f(0) = \lim_{n \to +\infty} f_n(0) = 0$ et d'autre part $\int_0^1 f(x) dx = \int_0^1 \lim_{n \to +\infty} f_n(x) dx = \lim_{n \to +\infty} \int_0^1 f_n(x) dx \ge 0$ 1. Donc $f \in A$ et on a montré que A est fermée.
- Supposons qu'il existe $f \in A$ telle que $||f||_{\infty} = 1$. Alors l'encadrement $1 \leqslant \int_0^1 f(x) \ dx \leqslant ||f||_{\infty} = 1$ fournit $\int_0^1 f(x) dx = ||f||_{\infty} = 1$ puis $\int_0^1 (||f||_{\infty} - f(x)) dx = 0$ et donc $||f||_{\infty} - f = 0$ (fonction continue positive d'intégrale nulle) ou encore f=1 ce qui contredit f(0)=0. On ne peut donc pas trouver $f\in A$ tel que $d_A(0) = d(0, f)$.

Correction de l'exercice 10 ▲

1. Soit $x \in E$. Puisque D est dense dans E, il existe une suite $(d_n)_{n \in \mathbb{N}}$ d'éléments de D convergeant vers x et puisque f et g sont continues et coincident sur D et donc en x

$$f(x) = f\left(\lim_{n \to +\infty} d_n\right) = \lim_{n \to +\infty} f(d_n) = \lim_{n \to +\infty} g(d_n) = g\left(\lim_{n \to +\infty} d_n\right) = g(x).$$

On a montré que f = g.

- 2. Soit $f \in \mathbb{R}^{\mathbb{R}}$. On suppose que $\forall (x,y) \in \mathbb{R}^2$ f(x+y) = f(x) + f(y). Soit a = f(1).
 - x = y = 0 fournit $f(0) = 0 = a \times 0$.
 - Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$. f(nx) = f(x + ... + x) = f(x) + ... + f(x) = nf(x). Ceci reste vrai pour n = 0.
 - En particulier x = 1 fournit pour tout entier naturel non nul n, f(n) = nf(1) = an puis $x = \frac{1}{n}$ fournit $nf\left(\frac{1}{n}\right) = f(1) = a$ et donc $f\left(\frac{1}{n}\right) = \frac{a}{n}$.
 - Ensuite, $\forall (p,q) \in (\mathbb{N} \times \mathbb{N}^*)^2$, $f\left(\frac{p}{q}\right) = pf\left(\frac{1}{q}\right) = a\frac{p}{q}$.

 - Soit $x \in \mathbb{R}$. L'égalité f(x) + f(-x) = f(0) = 0 fournit f(-x) = -f(x). En particulier, $\forall (p,q) \in (\mathbb{N}^*)^2$, $f\left(-\frac{p}{q}\right) = -f\left(\frac{p}{q}\right) = -a\frac{p}{q}$.

En résumé, si f est morphisme du groupe $(\mathbb{R}, +)$ dans lui-même, $\forall r \in \mathbb{Q}, f(r) = ar$ où a = f(1).

Si de plus f est continue sur \mathbb{R} , les deux applications $f: x \mapsto f(x)$ et $g: x \mapsto ax$ sont continues sur \mathbb{R} et coïncident sur \mathbb{Q} qui est dense dans \mathbb{R} . D'après le 1), f = g ou encore $\forall x \in \mathbb{R}$, f(x) = ax où a = f(1).

Réciproquement, toute application linéaire $x \mapsto ax$ est en particulier un morphisme du groupe $(\mathbb{R},+)$ dans lui-même, continu sur \mathbb{R} .

Correction de l'exercice 11 ▲

Soit $u=(u_n)_{n\in\mathbb{N}}$ une suite bornée de l'espace normé $(E,\|\ \|)$ ayant une unique valeur d'adhérence que l'on note ℓ . Montrons que la suite u converge vers ℓ .

Supposons par l'absurde que la suite u ne converge pas vers ℓ . Donc

$$\exists \varepsilon > 0 / \forall n_0 \in \mathbb{N}, \exists n \geqslant n_0 / ||u_n - \ell|| \geqslant \varepsilon \quad (*).$$

 ε est ainsi dorénavant fixé.

En appliquant (*) à $n_0 = 0$, il existe un rang $\varphi(0) \geqslant n_0 = 0$ tel que $||u_{\varphi(0)} - \ell|| \geqslant \varepsilon$.

Puis en prenant $n_0 = \varphi(0) + 1$, il existe un rang $\varphi(1) > \varphi(0)$ tel que $||u_{\varphi(1)} - \ell|| \ge \varepsilon$... et on construit ainsi par récurrence une suite extraite $(u_{\varphi(n)})_{n\in\mathbb{N}}$ telle que $\forall n\in\mathbb{N}, \|u_{\varphi(n)}-\ell\| \geqslant \varepsilon$.

Maintenant, la suite u est bornée et il en est de même de la suite $(u_{\varphi(n)})$. Puisque E est de dimension finie, le théorème de Bolzano-Weierstrass permet d'affirmer qu'il existe une suite $(u_{\psi(n)})_{n\in\mathbb{N}}$ extraite de $(u_{\varphi(n)})$ et donc de u convergeant vers un certain $\ell' \in E$. ℓ' est donc une valeur d'adhérence de la suite u. Mais quand n tend vers $+\infty$ dans l'inégalité $\|u_{\psi(n)}-\ell\|\geqslant \varepsilon$, on obtient $\|\ell'-\ell\|\geqslant \varepsilon$ et donc $\ell\neq \ell'$. Ceci constitue une contradiction et donc u converge vers ℓ .

Correction de l'exercice 12 A

Pour $\alpha \in]0, \pi[$, posons $f(\alpha) = \operatorname{Sup}|\sin(n\alpha)| = \operatorname{Sup}|\sin(n\alpha)|$.

- Tout d'abord $\forall \alpha \in]0, \pi[, \forall n \in \mathbb{N}, |\sin(n(\pi \alpha))| = |\sin(n\alpha)| \text{ et donc } \forall \alpha \in]0, \pi[, f(\pi \alpha) = f(\alpha).$ On en déduit que $\inf_{\alpha\in]0,\pi[}f(\alpha)=\inf_{\alpha\in\left]0,\frac{\pi}{2}\right]}f(\alpha).$
- Ensuite, si $\alpha \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right]$, $f(\alpha) \geqslant \sin(\alpha) \geqslant \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} = f\left(\frac{\pi}{3}\right)$. Par suite $\inf_{\alpha \in \left]0, \frac{\pi}{2}\right]} f(\alpha) = \inf_{\alpha \in \left]0, \frac{\pi}{3}\right]} f(\alpha)$.
- Soit alors $\alpha \in \left]0, \frac{\pi}{3}\right]$. Montrons qu'il existe un entier naturel non nul n_0 tel que $n_0\alpha \in \left[\frac{\pi}{3}, \frac{2\pi}{3}\right]$. Il existe un unique entier naturel n_1 tel que $n_1 \alpha \leqslant \frac{\pi}{3} < (n_1 + 1)\alpha$ à savoir $n_1 = E\left(\frac{\pi}{3\alpha}\right)$. Mais alors, $\frac{\pi}{3} < (n_1 + 1)\alpha = n\alpha + \alpha \leqslant \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$ et l'entier $n_0 = n_1 + 1$ convient.

Ceci montre que $f(\alpha) \geqslant \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} = f(\frac{\pi}{3})$.

Finalement
$$\forall \alpha \in]0, \pi[, f(\alpha) \geqslant f\left(\frac{\pi}{3}\right) \text{ et donc } \inf_{\alpha \in]0, \pi[} \left\{ \sup_{n \in \mathbb{Z}} |\sin(n\alpha)| \right\} = \min_{\alpha \in]0, \pi[} \left\{ \sup_{n \in \mathbb{Z}} |\sin(n\alpha)| \right\} = f\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}.$$

$$\inf_{\alpha \in]0,\pi[} \left\{ \sup_{n \in \mathbb{Z}} |\sin(n\alpha)| \right\} = \frac{\sqrt{3}}{2}.$$

Correction de l'exercice 13 A

Soit f une application uniformément continue sur \mathbb{R} . $\exists \alpha > 0 / \forall (x,y) \in \mathbb{R}^2$, $(|x-y| \le \alpha \Rightarrow |f(x) - f(y)| \le 1)$. Soit $x \in \mathbb{R}^+$ (le travail est analogue si $x \in \mathbb{R}^-$).

Pour $n \in \mathbb{N}$

$$|x - n\alpha| \le \alpha \Leftrightarrow -\alpha \le x - n\alpha \le \alpha \Leftrightarrow \frac{x}{\alpha} - 1 \le n \le \frac{x}{\alpha} + 1 \Leftarrow n = E\left(\frac{x}{\alpha}\right).$$

On pose $n_0 = E\left(\frac{x}{\alpha}\right)$.

$$|f(x)| \leq |f(x) - f(x - \alpha)| + |f(x - \alpha) - f(x - 2\alpha)| + \dots + |f(x - (n_0 - 1)\alpha) - f(x - n_0\alpha)| + |f(x - n_0\alpha) - f(0)| + |f(0)|$$

$$\leq n_0 + 1 + |f(0)| (\operatorname{car}|x - n_0\alpha - 0| \leq \alpha)$$

$$\leq \frac{x}{\alpha} + 2 + |f(0)|.$$

Ainsi, $\forall x \in \mathbb{R}^+$, $|f(x)| \leq \frac{x}{\alpha} + 2 + |f(0)|$. Par symétrie des calculs, $\forall x \in \mathbb{R}^-$, $|f(x)| \leq \frac{-x}{\alpha} + 2 + |f(0)|$ et donc $\forall x \in \mathbb{R}, |f(x)| \leq \frac{|x|}{\alpha} + 2 + |f(0)|.$

$$f$$
 uniformément continue sur $\mathbb{R} \Rightarrow \exists (a,b) \in \mathbb{R}^2 / \forall x \in \mathbb{R}, \ |f(x) \leqslant a|x| + b.$

Correction de l'exercice 14 A

Posons $I_0 = \left[0, \frac{\pi}{2}\right[$ puis pour $n \in \mathbb{N}^*$, $I_n = \left]-\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi\right[$ et enfin $D = \bigcup_{n \in \mathbb{N}} I_n$.

Pour $x \in D$, posons $f(x) = \tan x - x$. La fonction f est dérivable sur D et pour $x \in D$, $f'(x) = \tan^2 x$. La fonction f est ainsi strictement croissante sur chaque I_n et s'annule donc au plus une fois dans chaque I_n . f(0) = 0 et donc f s'annule exactement une fois dans I_0 en $x_0 = 0$.

Pour $n \in \mathbb{N}^*$, f est continue sur I_n et de plus $f\left(\left(-\frac{\pi}{2} + n\pi\right)^+\right) \times f\left(\left(\frac{\pi}{2} + n\pi\right)^-\right) = -\infty \times +\infty < 0$. D'après le théorème des valeurs intermédiaires, f s'annule au moins une fois dans I_n et donc exactement une fois dans I_n . L'équation $\tan x = x$ admet donc dans chaque intervalle I_n , $n \in \mathbb{N}$, une et une seule solution notée x_n . De plus, $\forall n \geqslant 1, f(n\pi) = -n\pi < 0 \text{ et donc } x_n \in]n\pi, \frac{\pi}{2} + n\pi[.$

Pour $n \geqslant 1$, $n\pi < x_n < \frac{\pi}{2} + n\pi$ et donc $\lim_{n \to +\infty} x_n = +\infty$ puis $x_n \sim n\pi$ et même

$$x_n = n\pi + O(1).$$

Ensuite, puisque $x_n - n\pi \in \left]0, \frac{\pi}{2}\right[$ et que $x_n = \tan(x_n) = \tan(x_n - n\pi), x_n - n\pi = \operatorname{Arctan}(x_n) \underset{n \to +\infty}{\longrightarrow} \frac{\pi}{2}$. Donc

$$x_n = n\pi + \frac{\pi}{2} + o(1).$$

Posons $y_n = x_n - n\pi - \frac{\pi}{2}$. Alors d'après ce qui précède, $y_n \in \left] - \frac{\pi}{2}, 0\right[$ et $y_n = 0$ (1). De plus, l'égalité $\tan(x_n) = 0$ x_n fournit $\tan(n\pi + \frac{\pi}{2} + y_n) = n\pi + \frac{\pi}{2} + y_n$ ou encore

$$n\pi + \frac{\pi}{2} + y_n = -\cot(y_n).$$

Puisque $y_n = o(1)$, on obtient $n \sim -\frac{1}{y_n}$ ou encore $y_n = -\frac{1}{n\pi} + o(\frac{1}{n})$. Donc

$$x_n \underset{n \to +\infty}{=} n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + o\left(\frac{1}{n}\right).$$

Posons $z_n = y_n + \frac{1}{n\pi} = x_n - n\pi - \frac{\pi}{2} + \frac{1}{n\pi}$. D'après ce qui précède, $\tan\left(-\frac{1}{n\pi} + z_n\right) = -\frac{1}{n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + z_n}$ et aussi $z_n = o\left(\frac{1}{n}\right)$. On en déduit que

$$z_n = \frac{1}{n\pi} - \operatorname{Arctan}\left(\frac{1}{n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + z_n}\right) \underset{n \to +\infty}{=} \frac{1}{n\pi} - \operatorname{Arctan}\left(\frac{1}{n\pi} - \frac{1}{2\pi n^2} + o\left(\frac{1}{n^2}\right)\right) \underset{n \to +\infty}{=} \frac{1}{2\pi n^2} + o\left(\frac{1}{n^2}\right).$$

Finalement

$$x_n = n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + \frac{1}{2\pi n^2} + o\left(\frac{1}{n^2}\right).$$

Correction de l'exercice 15 ▲

1ère solution. Soit $z \in \mathbb{C}$. Posons z = x + iy où $(x,y) \in \mathbb{R}^2$ et $1 + \frac{r}{n} = r_n e^{i\theta}$ où $r_n \geqslant 0$ et $\theta_n \in]-\pi,\pi]$ de sorte que

$$\left(1+\frac{z}{n}\right)^n=r_n^n\,e^{in\theta_n}.$$

Puisque $1 + \frac{z}{n}$ tend vers 1 quand n tend vers $+\infty$, pour n assez grand on a $r_n > 0$ et $\theta_n \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$. Mais alors pour n assez grand

$$r_n = \sqrt{\left(1 + \frac{x}{n}\right)^2 + \left(\frac{y}{n}\right)^2}$$
 et $\theta_n = \operatorname{Arctan}\left(\frac{\frac{y}{n}}{1 + \frac{x}{n}}\right)$.

Maintenant, $r_n^n = \exp\left(\frac{n}{2}\ln\left(\left(1+\frac{x}{n}\right)^2+\left(\frac{y}{n}\right)^2\right)\right) = \exp\left(\frac{n}{2}\ln\left(1+\frac{2x}{n}+o\left(\frac{1}{n}\right)\right)\right) = \exp(x+o(1))$ et donc r_n^n tend vers e^x quand n tend vers $+\infty$.

 r_n^n tend vers e^x quand n tend vers $+\infty$. Ensuite $n\theta_n = n \operatorname{Arctan}\left(\frac{\frac{y}{n}}{1+\frac{x}{n}}\right) = n \operatorname{Arctan}\left(\frac{y}{n} + o\left(\frac{1}{n}\right)\right) = y + o(1)$ et donc $n\theta_n$ tend vers y quand n tend vers y.

Finalement, $\left(1+\frac{z}{n}\right)^n = r_n^n e^{in\theta_n}$ tend vers $e^x \times e^{iy} = e^z$.

$$\forall z \in \mathbb{C}, \lim_{n \to +\infty} \left(1 + \frac{z}{n}\right)^n = e^z.$$

2ème solution. Le résultat est connu quand z est réel. Soit $z \in \mathbb{C}$. Soit $n \in \mathbb{N}^*$.

$$\left|\sum_{k=0}^n \frac{z^k}{k!} - \left(1 + \frac{z}{n}\right)^n\right| = \left|\sum_{k=0}^n \left(\frac{1}{k!} - \frac{C_n^k}{n^k}\right) z^k\right| \leqslant \sum_{k=0}^n \left|\frac{1}{k!} - \frac{C_n^k}{n^k}\right| |z|^k.$$

Maintenant,
$$\forall k \in [0, n]$$
, $\frac{1}{k!} - \frac{C_n^k}{n^k} = \frac{1}{k!} \left(1 - \underbrace{\underbrace{n \times (n-1) \times \ldots \times (n-k+1)}_{k}}_{k} \right) \geqslant 0$. Donc,

$$\sum_{k=0}^{n} \left| \frac{1}{k!} - \frac{C_n^k}{n^k} \right| |z|^k = \sum_{k=0}^{n} \frac{|z|^k}{k!} - \left(1 + \frac{|z|^n}{n} \right)^n \underset{n \to +\infty}{\to} e^{|z|} - e^{|z|} = 0.$$

On en déduit que $\sum_{k=0}^{n} \frac{z^k}{k!} - \left(1 + \frac{z}{n}\right)^n$ tend vers 0 quand n tend vers $+\infty$ et puisque $\sum_{k=0}^{n} \frac{z^k}{k!}$ tend vers e^z quand n tend vers $+\infty$, il en est de même de $\left(1 + \frac{z}{n}\right)^n$.