

Medidas de dispersão, forma e associação

Prof. Walmes M. Zeviani

Departamento de Estatística Universidade Federal do Paraná

Conteúdo

Medidas de dispersão

Medidas de forma

Expressam:

- → O domínio observado da variável
- → O grau de dispersão ao redor do centro.
- → O distanciamento médio dos valores.

São elas:

- → Amplitude total.
- → Variância.
- → Desvio-padrão.
- → Desvio absoluto médio e mediano.
- → Coeficiente de variação.

Expressam:

- → Aspectos da forma.
- → Assimetria.
- → Curtose.

São elas:

- → Coeficiente de assimetria.
- → Coeficiente de curtose.

Figura 1. Medidas de dispersão e forma usadas em análise descritiva de dados.

A importância de quantificar a dispersão

- ► O resumo de variável observada apenas por uma medida de posição, ignora a informação sobre a sua variabilidade
- Não é seguro analisar um conjunto de dados somente pelo emprego de medidas de tendência central.
- ▶ Por isso, precisamos de medidas que caracterizem a dispersão ou variabilidade dos dados em relação a um valor central.

Figura 2. Histogramas exibindo a profundidade das covas para transplante de mudas antes e após ser dado treinamento sobre cultivo.

Amplitude total

▶ A **amplitude** é a diferença entre o maior e o menor valor da variável:

$$A = \max(y) - \min(y) = y_{(n)} - y_{(1)}.$$

- \blacktriangleright A notação $y_{(k)}$ refere-se a **estatística de ordem**, ou seja a observação que está na k-ésima posição na amostra com valores ordenados de forma crescente.
- A amplitude está expressa na mesma unidade de medida da variável.
- ▶ **Apenas** usar máximo e mínimo torna **sensível** a valores extremos.
 - ► Melhor medida de variabilidade: considerar todos os dados disponíveis
 - Desvio de cada valor em relação à uma medida de posição central (média ou mediana).

Desvio médio e mediano

Desvio absoluto médio da mediana (desvio da mediana)

▶ Usa a **mediana** como medida de posição central. É definido por

desvio mediano =
$$\frac{1}{n} \sum_{i=1}^{n} abs(y_i - md)$$
,

em que abs(.) é a função que retorna o valor absoluto ou módulo. Assim, abs(y) é o mesmo que |y|.

Desvio absoluto médio da média (desvio da média)

Usa a média como medida de posição central. É defido por

desvio médio =
$$\frac{1}{n} \sum_{i=1}^{n} abs(y_i - \overline{y}).$$

A variância

- ▶ Uma alternativa melhor é usar a soma dos quadrados dos desvios, que dá origem à variância de um conjunto de dados.
- ► A variância é definida por

$$s^{2} = Var(y) = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}$$
$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} y_{i}^{2} - \frac{(\sum_{i=1}^{n} y_{i})^{2}}{n} \right)$$

- ► A unidade de medida do valor da variância é a unidade de medida da variável ao quadrado. Ou seja, se a variável y é a altura em cm dos estudantes, então a variância será cm².
- A segunda expressão é considerada mais eficiente em termos de operações algébricas. Ela não requer calcular a média.

Variância amostral e variância populacional

- \triangleright A explicação para o denominador n-1 será dada na parte de estimação. A variância calculada assim é chamada de **variância amostral** (s^2).
- ▶ A variância quando usa apenas n no demominador é chamada de **variância populacional** (σ^2) e é aplicada quando se observam todos os elementos da população.
- ► Sempre considere o cálculo da variância amostral a menos que seja expressamente dito para calcular a variância populacional.
- É fácil converter de um para o outro, pois

$$s^2 = \sigma^2 \left(\frac{n}{n-1} \right).$$

Importante: A variância é sempre positiva.

O cálculo da variância

Considere os seguintes valores

e calcule a variância amostral sabendo que $\overline{u} = 11.65$.

Aplicando a fórmula, obtém-se

$$s^{2} = \frac{1}{19} \left[(4 - 11.65)^{2} + (7 - 11.65)^{2} + \dots + (24 - 11.65)^{2} \right]$$

$$= \frac{1}{19} \left[58.5225 + 21.6225 + \dots + 152.5225 \right]$$

$$= 18.34.$$

O desvio-padrão

▶ Para ter uma medida de dispersão com a mesma unidade de medida dos dados originais, definiu-se o desvio-padrão como

$$s=\sqrt{s^2}.$$

A Lei de Chebyshev

- ▶ A Lei Chebyshev estabelece a **proporção mínima dos valores** contidos em **intervalos** simétricos em relação à média.
- ► Tais resultados valem seja qual for a forma da distribuição.
- ▶ **Pelo menos** 3/4 (75%) dos valores estão no intervalo $(\overline{y} 2s, \overline{y} + 2s)$.
- ▶ **Pelo menos** 8/9 (89%) dos valores estão no intervalo $(\overline{y} 3s, \overline{y} + 3s)$.
- ▶ Formula geral: **pelos menos** $(1 1/k^2)$ dos dados estará no intervalo $(\overline{y} ks, \overline{y} + ks)$.

O coeficiente de variação

- ▶ O coeficiente de variação é uma medida de variabilidade relativa à média.
- ▶ É definido pelo quociente do desvio-padrão pela média, ou seja,

$$CV = 100 \cdot \frac{s}{\overline{y}}.$$

▶ É uma medida adimensional, e geralmente apresentada na forma de porcentagem, como indica a expressão.

Cálculo do desvio-padrão e coeficiente de variação

O desvio-padrão para os dados já apresentados em slides anteriores é

$$s = \sqrt{18.34} = 4.283.$$

O coeficiente de variação é

$$CV = 100 \cdot \frac{4.283}{11.65} = 36.765\%.$$

Quando usar cada medida de dispersão

► Amplitude:

- ► Fácil de calcular.
- ► Influenciado por valores extremos.

► Desvios absolutos:

- ► São medidas robustas, ou seja, mais resilientes a *out-liers*.
- Dá ideia do tamanho médio dos desvios.

▶ Variância ou desvio-padrão:

- Influenciados por valores extremos.
- ► Ainda assim, a Lei de Chebyshev é útil para determinar proporções dentro de intervalos simétricos.
- ▶ Têm boas propriedades e significado que serão vistas na parte de Estimação e Inferência.

Coeficiente de variação.

Comparar a variabilidade de variáveis de diferentes naturezas.

Medidas de dispersão para variáveis qualitativas

- Existem várias métricas ou índices para representar a dispersão em variáveis qualitativas.
- Os índices são funções das frequências das classes.
- ► A entropia (de Shannon) é definida por

$$H = \sum_{i=1}^{k} p_i \log(1/p_i) = \sum_{i=1}^{k} p_i (-\log p_i) = -\sum_{i=1}^{k} p_i \log(p_i),$$

em que $p_i = f_r$ é a frequência relativa da classe i (i = 1, ..., k).

- Quanto mais próximo H estiver de 0, mais concentrada é a distribuição de frequências.
- ▶ Para mais sobre o assunto, procure sobre **indices de diversidade**.
- ► São usados em ecologia para caracterizar a biodiversidade.

Medidas de forma

- Servem para descrever características adicionais da distribuição.
 - ► Coeficiente de **assimetria**.
 - Coeficiente de curtose.
- ► Calculados com a variável **padronizada** pela média e desvio-padrão

$$z = \frac{y_i - \overline{y}}{s}$$
, que resulta em $\overline{z} = 0$ e $s_z = 1$.

▶ São baseados em **momentos** de ordem k superior a 2

$$m_k = \frac{1}{n} \sum_{i=1}^n \left(\frac{y_i - \overline{y}}{s} \right)^k.$$

Coeficiente de assimetria

- ► Indica um 3º aspecto da forma da distribuição: a assimetria.
- ▶ É a média do cubo dos desvios, ou seja

$$b_1 = \frac{1}{n} \sum_{i=1}^n \left(\frac{y_i - \overline{y}}{s} \right)^3.$$

Assimetria **à esquerda** guando $b_1 < 0$ e assimetria **à direita** quando $b_1 > 0$.

Figura 3. Histogramas com distribuições de diferentes assimetrias indicando o valor do coeficiente de assimetria.

Coeficiente de curtose

- ► Indica um 4º aspecto da forma da distribuição: a curtose.
- ► É definido por

$$b_2 = \frac{1}{n} \sum_{i=1}^n \left(\frac{y_i - \overline{y}}{s} \right)^4 - 3,$$

em que a subtração por 3 serve para usar a distribuição normal como referência.

▶ Platicúrtica guando $b_2 < 0$. **mesocúrtica** quando $b_2 = 0$ e **leptocúrtica** guando $b_2 > 0$.

Figura 4. Histogramas com distribuições de diferentes curtoses indicando o valor do coeficiente de curtose comparada com a distribuição normal representada pela linha contínua.

Exemplos de grau de correlação

- É usado para determinar se existe relação linear entre v.a. quantitativas.
- ▶ A correlação r assume valores entre −1 e 1.
 - ightharpoonup Quando r > 0, então existe uma associação (linear) **positiva**.
 - ightharpoonup Quando r < 0, então existe uma associação (linear) **negativa**.
 - Quando r = 0, então **não existe** uma associação (linear).

Figura 5. Correlação entre duas variáveis quantitativas.

Covariância e correlação

▶ A **covariância** amostral entre duas variáveis Y₁ e Y₂ é

$$Cov(y_1, y_2) = \frac{1}{n-1} \sum_{i=1}^{n} (y_{1i} - \overline{y}_1) \cdot (y_{2i} - \overline{y}_2).$$

► A **correlação** amostral entre duas variáveis Y₁ e Y₂ é

$$r = \frac{\sum_{i=1}^{n} (y_{1i} - \overline{y}_1) \cdot (y_{2i} - \overline{y}_2)}{\sqrt{\sum_{i=1}^{n} (y_{1i} - \overline{y}_1)^2} \cdot \sqrt{\sum_{i=1}^{n} (y_{2i} - \overline{y}_2)^2}} = \frac{\text{Cov}(y_1, y_2)}{\sqrt{V(y_1) \cdot V(y_2)}}.$$

Interpretação gráfica

O coeficiente de correlação é

$$r = \frac{\sum_{i=1}^{n} (y_{1i} - \overline{y}_1) \cdot (y_{2i} - \overline{y}_2)}{\sqrt{\sum_{i=1}^{n} (y_{1i} - \overline{y}_1)^2} \cdot \sqrt{\sum_{i=1}^{n} (y_{2i} - \overline{y}_2)^2}}$$

Figura 6. A interpretação do coeficiente de correlação de Pearson.

Exemplo: comprimento radicular e produtividade

Tabela 1. Valores de produtividade e comprimento de raízes de plantas de milho.

Comp.	Prod.	Comp.	Prod.	Comp.	Prod.
2.85	0.74	3.08	0.84	2.12	0.65
3.13	0.93	3.85	0.86	3.13	0.88
3.86	0.91	2.05	0.72	3.55	0.79
2.40	0.76	2.81	0.83	2.88	0.82
2.74	0.72	2.83	0.70	3.49	0.92
3.25	0.92	2.58	0.67	3.39	0.91

$$Cov(y_1, y_2) = 0.0369, \quad s_1^2 = 0.2731, \quad s_2^2 = 0.0087.$$

Figura 7. Diagrama de dispersão entre comprimento de raízes (y_1) e produção (y_2) .

Solução

A correlação é obtida por

$$r = \frac{0.0369}{\sqrt{0.2731 \cdot 0.0087}} = 0.7555,$$

que indica uma **associação positiva** entre as variáveis.

Outros tipos de correlação

- ► A correlação de Pearson descreve o grau de associação linear entre variáveis.
- Associações diferentes da linear são descritas impropriamente pelo coeficiente de correlação de Pearson.
- ► Existem outros tipos de correlação.
 - Correlação de Spearman.
 - ► Correlação de Kendall.
- ► Teste de hipótese para a correlação será visto na parte de Inferência Estatística

Figura 8. Tipos de associação não lineares entre variáveis.

Mais medidas de associação

Tipo das variáveis e medida de associação

- 1. Numérica × numérica → Coeficiente de correlação de Pearson.
- 2. Numérica × ordinal → Coeficiente de correlação de Kendall.
- 3. Numérica × nominal → Coeficiente de correlação ponto-bisserial.
- 4. Ordinal × ordinal → Coeficiente de correlação de Kendall.
- 5. Ordinal × nominal → Coeficiente de correlação rank-bisserial.
- 6. Nominal \times nominal \rightarrow Coeficiente ϕ .

https://journals.sagepub.com/doi/pdf/10.1177/8756479308317006

Considerações finais

Revisão

Medidas de dispersão

Expressam:

- → O domínio observado da variável
- → O grau de dispersão ao redor do centro.
- → O distanciamento médio dos valores.

São elas:

- → Amplitude total.
- → Variância.
- → Desvio-padrão.
- → Desvio absoluto médio e mediano
- → Coeficiente de variação.

Medidas de forma

Expressam:

- → Aspectos da forma.
- → Assimetria.
- → Curtose.

São elas:

- → Coeficiente de assimetria.
- → Coeficiente de curtose.

Figura 9. Medidas de dispersão e forma usadas em análise descritiva de dados.