Hadamard's factorization theorem for entire (integral) functions of order 1

Prerequisites.

- 1. Theorem A (existence of the logarithm) Let f be a nowhere vanishing holomorphic function in a simply connected region Ω . Then it is possible to define a holomorphic function $g: \Omega \to \mathbb{C}$ such that $e^{g(z)} = f(z)$. In other words, it is possible to determine a single valued branch of $\log(f(z))$. In the particular case of $\Omega = D_1(0)$ and f(z) = 1 z we can define g(z) as $\log(1-z) = -\sum_{n=1}^{\infty} \frac{z^n}{n}$.
- 2. Theorem B (mean value theorem for harmonic functions) Let g be a holomorphic function in the disk $D_R(z_0)$. Then

$$\Re g(z_0) = \frac{1}{2\pi} \int_0^{2\pi} \Re g(z_0 + re^{i\theta}) d\theta \quad \forall \ 0 < r < R.$$

- 3. Theorem C (sufficient condition for the convergence of an infinite product) Let $(F_n)_{n\in\mathbb{N}}$ be a sequence of holomorphic functions on the open set Ω . Suppose that there exists a sequence $(c_n)_{n\in\mathbb{N}}$ of nonnegative numbers such that $|1-F_n(s)| \leq c_n$ for all $s \in \Omega$ and $n \in \mathbb{N}$. If $\sum_n c_n < +\infty$ then
 - (a) $\prod_n F_n(s)$ converges uniformly to a holomorphic function F in Ω ;
 - (b) F vanishes at z_0 if and only if at least one factor F_n vanishes at z_0 .

Exercises

- 1. Determine the Hadamard factorization of
 - (a) $\cos \pi z$;
 - (b) $e^z 1$.
- 2. Show that for |z| < 1 we have

$$\prod_{n=0}^{\infty} (1+z^{2^n}) = \sum_{n=0}^{\infty} z^n.$$

- 3. Determine a sequence of complex numbers $(a_n)_{n\in\mathbb{N}}$ such that $\prod_n (1+a_n)$ converges but $\sum_n a_n$ diverges.
- 4. Determine a sequence of complex numbers $(a_n)_{n\in\mathbb{N}}$ such that $\sum_n a_n$ converges but $\prod_n (1+a_n)$ diverges.
- 5. Let f be an (integral) entire function of finite order. Deduce from the characterization of nowhere vanishing functions that if f misses two distinct values then f is constant (the conclusion of the theorem remains valid under the hypothesis that f is an entire function).