Notes on discrete groups and Furstenberg boundaries

kamojiro @kamojiro24e

2018年9月8日

目次

Gを	(可算) 離散群とする.	
4	C*-単純性	4
3	$\partial_F G = \partial_H G$	4
2	G-境界	2
1	Introduction	1

1 Introduction

この記事は [KK17] と [[BKKO17] を元に書いています.詳しく知りたい場合は,これらの論文を参照してください.近年, C^* -単純性について大きな進展がありました.本ノートは Kalantar-Kennedy [KK17] に興味を持ってもらうことを目的に書きます.それについて解説をするために,まず群 C^* -環についての復習から始めます.

定義 1.1. λ を G の左正則表現とする. つまり,

$$G \ni g \mapsto \lambda_g [= \delta_h \mapsto \delta_{gh}] \in B(l^2(G))$$

G の既約群 C^* -環 $C^*_r(G)$ を $\overline{\operatorname{span}}\{\lambda_g\}$ で定める. $C^*_r(G)$ 上の標準的なトレースを $au=\langle\,\cdot\,\delta_e,\delta_e\,
angle$ で定める.

次にメインテーマである C^* -単純性と,それと深い関わりのある UTP(この略称が一般的か知らない) の定義をします.

定義 1.2. G が C^* -単純性を持つとは , G の既約群 C^* -環 $C^*_r(G)$ が単純 , すなわち非自明な両側閉イデアルを持たないということである .

G が $uniaue\ trace\ property(UTP)$ を持つとは,既約群 C^* -環 $C^*_r(G)$ が標準的なトレースを除いでトレースを持たないということである.ここでいうトレース au とは, $C^*_r(G)$ 上の非負線形汎関数で,ノルム 1 であり,各 $a,b\in C^*_r(G)$ に対し,au(ab)= au(ba) を満たすもののことである.

 C^* -単純性や UTP に関する初めての結果は Powers [Pow75] によるもので,この証明は以後, C^* -単純性や UTP を証明するための標準的な方法になりました.

定理 ${f 1.1}$ $([{
m Pow75}])$. 任意の $a\in C^*_r(\mathbb{F}_2)$ と任意の arepsilon>0 に対し , ある自然数 N と $g_1,\ldots,g_n\in G$ が存在して ,

$$\|\tau(a)1 - \frac{1}{N} \sum_{i=1}^{N} \lambda_g a \lambda_g^*\| < \varepsilon.$$

特に , \mathbb{F}_2 は C^* -単純性と UTP を持つ . ただし , \mathbb{F}_2 はランク 2 の自由群である .

この定理に出てくる不等式を含む条件を Powers' averaging property といい, これと類似の方法により, 様々な結果が示された.自由積とか融合積とか HNN 拡大とか, (あとでかく) 全く異なる方法を導いたのが Kalantar と Kennedy であり, Furstenberg 境界を用いた手法です.本ノートの目標は次の定理を理解することです.

定理 $\mathbf{1.2}~(\mathrm{[KK17]})$. G を離散群とする . $\partial_F G$ を G の Furstenberg 境界とする . このとき , 次は同値である .

- 1. G は C*-単純性を持つ.
- 2. 半直積 C^* -環 $C(\partial_F G) \rtimes_r G$ が単純.
- 3. ある G-境界 B が存在して,半直積 C^* -環 $C(B) \rtimes_r G$ が単純.
- 4.~G の $\partial_F G$ への作用は (topologically) free である.
- 5. ある G-境界 B が存在して , G の B への作用が topologically free である .

ここで,4 つ目の条件の topologically に括弧がついているのは,実際はあってもなくてもいい条件であるため.

定理 1.3 ([BKKO17]). 次は同値である.

- 1. G は Furstenberg 境界に free に作用する
- 2. ある G-境界 B が存在して , G は B に topologically free に作用する .

以上のことから, C^* -単純性を示したいときには,topologically free に作用する G-境界を構成すれば良いことが分かる.例えば,Bass-Serre tree の境界とか。

2 G-境界

定義 ${\bf 2.1.}~G$ を群とし,X を G が作用するコンパクトハウスドルフ空間とする.X が非自明な G-不変閉部分集合を持たないとき,G-作用は minimal という.各 X 上の確率測度 μ に対して,G-軌道の閉包 $\overline{G \cdot \mu}$ がディラック測度を持つとき,G-作用は $strongly\ proximal$ という.

注 2.0.1. まとめると,次のように言い換えられる.

X が G - 境界 ⇔任意の X 上の確率測度 μ に対し, $\overline{G\cdot\mu}\supset X(=\{\delta_x\}_{x\in X})$ ⇔任意の X 上の確率測度 μ と $x\in X$ に対し,ある $g_i\in G$ が存在して,任意の $f\in C(X)$ に対し, $g_i.\mu(f)=\mu(g_i^{-1}.f)\to f(x)$.

ただし, $g.f(x) := f(g^{-1}.x)$ である.

例のために, free と topologically free の定義についてまとめておきます.

定義 2.2. G を群とし, X を G が作用する位相空間とする. e を G の単位元とする.

- 作用が free $\stackrel{def}{\Leftrightarrow}$ 任意の $x \in X$ と $g \in G \setminus \{e\}$ に対し, $g.x \neq x$.
- ullet 作用が $topologically\ free \stackrel{def}{\Leftrightarrow}$ 任意の x に対し, $\{g\in G|\$ ある x の近傍 U があって $g|_U=\mathrm{id}_U\}=\{e\}$.

注 2.0.2. free \Rightarrow topologically free.

例 1 (\mathbb{F}_2) . 自由群 \mathbb{F}_2 について , \mathbb{F}_2 -境界を作る . まず , \mathbb{F}_2 のケーリーグラフを考える . 頂点の集合を V(T) ,

辺の集合を E(T) で表し,次のように定める.a,b を \mathbb{F}_2 の生成元とし, $S=\{a,a^{-1},b,b^{-1}\}$ とおく.

$$V(T) := \{\mathbb{F}_2$$
の既約な語全体 $\} = \{e, a, a^{-1}, b, b^{-1}, a^2, ab, ab^{-1}, \cdots\},$

$$E(T) := \{(x,y) \in V(T) \times V(T) |$$
ある S の元 z が存在して $,xz = y \}.$

既約とは aa^{-1} のように打ち消し合うところがないという意味です.だいたい次の図のような感じです.真ん中が単位元 e です.詳しくは wikipedia を見てください.ちなみに,木 T には最短の道の長さを距離とする離

散位相が入ります.次に,この木Tの境界 ∂T を次のように,無限に続く既約な"語"の全体として定義する.

木 T も境界 ∂T も右に語が続いているので, \mathbb{F}_2 が左から作用することができます.例えば, $aaa \cdots \in \partial T$ (図 1)に $b \in \mathbb{F}_2$ を作用させると, $baaa \cdots \in \partial T$ (図 2)に移る.また, ∂T には $\{U(v)\}_{v \in V(T)}$ を開基とする位相が入ります.ただし,各頂点 $v \in V(T)$ に対し,

$$U(v) := \{vx_1x_2x_3 \cdots | x_i \in S,$$
 既約 \}

と定めます.この位相により, ∂T は完全不連結コンパクトハウスドルフ空間になります.ちなみに,この開基はコンパクト開集合です.

命題 ${f 2.1.}$ ∂T は ${\Bbb F}_2$ -境界であり , ${\Bbb F}_2$ は ∂T に topologically free に作用する .

Proof. まず, \mathbb{F}_2 -境界であることを示す.

1つ目に,minimal を示す.任意に $x=x_1x_2x_3\cdots,y=y_1y_2y_3\cdots\in\partial T$ をとる. $x_k=(y_1y_2\cdots y_k)(x_1x_2\cdots x_k)^{-1}x$ と定めると,y に収束する.次に示す.開集合 $U\ni y$ を任意にとる.ある $n\in\mathbb{N}$ があって, $U(y_1y_2\cdots y_n)\subset U$ となるものがある. $k\le n$ に対して, $x_k\in U(y_1y_2\cdots y_n)\subset U$.

2 つ目に ,strongly proximal を示す.任意に $\mu \in \mathcal{P}(\partial T)$ をとる.まず ,ある T の頂点の列 $y_k = x_1x_2\cdots x_k$ $(x_i \in S)$ で $\mu(U(y_k)) \to 0$ であるものが存在する.これは, $\mu(X) = \mu(U(a) \cup U(a^{-1}) \cup U(b) \cup U(b^{-1})) = \mu(U(a)) + \mu(U(a^{-1})) + \mu(U(b)) + \mu(U(b^{-1}))$ みたいな性質を用いて,区間縮小法と同様にして,実現できる. $y^{-1} = x_1^{-1}x_2^{-1} \cdots \in \partial T$ とし, $g_i = x_1^{-1}x_2^{-1} \cdots x_i^{-1}x_i^{-1} \cdots x_2^{-1}x_1^{-1}$ とする. $\varepsilon > 0$ と $f \in C(\partial T)$ をとる. $\{U(y_k^{-1})\}$ が y^{-1} の基本近傍系をなすことから,ある $l_0 \in \mathbb{N}$ があって, $|f(y^{-1}) - f(x)| < \varepsilon$ $(x \in U(y_{l_0}^{-1}))$ となる.また, y_k の選び方から,ある $l_1 \in \mathbb{N}$ があって, $\mu(U(y_{l_1})) < \min(\varepsilon, \varepsilon/\|f\|_{sup})$.

よって,任意の $i \geq \max(l_0, l_1)$ に対して,

$$|f(y^{-1}) - g_{i} \cdot \mu(f)| \leq |f(y^{-1}) - \int_{U(y_{l_{1}})^{c}} f(g_{i} \cdot x) d\mu(x)| + \left| \int_{U(y_{l_{1}})} f(g_{i} \cdot x) d\mu(x) \right|$$

$$\leq |f(y^{-1}) - \int_{U(y_{l_{1}})^{c}} f(y^{-1}) d\mu| + \left| \int_{U(y_{l_{1}})^{c}} |f(y^{-1}) - f(g_{i} \cdot x)| d\mu| + \frac{\varepsilon}{\|f\|_{sup}} \cdot \|f\|_{sup}$$

$$\leq |f(y^{-1})| \mu(U(y_{l_{1}})) + \varepsilon \mu(\partial T) + \varepsilon$$

$$\leq 3\varepsilon.$$

次に,topologically free を示す. $x=x_1x_2x_3\cdots\in\partial T$ をとる.ある $e\neq g\in G$ と x のある頂点 $v\in U(v)$ が存在して, $g|_{U(v)}=\mathrm{id}_{U(v)}$. しかし,g が固定する ∂T の元は $ggg\cdots$ と $g^{-1}g^{-1}\cdots$ のみなので,矛盾する.よって,topologically free である.この議論により,free でないことも分かる.

定理 ${\bf 2.1}~([{
m Fur}73])$.離散群 G に対して,普遍 G-境界が存在する.つまり,任意の G-境界は普遍 G-境界からの G-同変連続写像の像である.

定義 2.3. 上の定理にある普遍 G-境界を Furstenberg 境界といい , $\partial_F G$ とかく .

3 $\partial_F G = \partial_H G$

定理を述べるためにいくつか定義をする.

定義 3.1. C^* -環の単位的自己共役閉部分空間を operator system といい,G 作用を持つ operator system を G-operator system ひ自己同型写像は order isomorphism とする.

 $\mathcal{S}\mathcal{T}$ を $operator\ system\ とし, <math>\varphi: \mathcal{S} \to \mathcal{T}$ を \mathbb{C} -線形写像とする. φ が任意の $n \in \mathbb{N}$ に対して, $\varphi \otimes \mathrm{id}_{M_n(\mathbb{C})}$ が $positive\$ であるとき, $completely\ positive\$ という.特に, φ が単位元を保つなら,u.c.p.($unital\ completely\ positive$) とかく.さらに,G-同変なら,G-u.c.p. とかく.

次の定理が C*-単純性の証明において,重要な役割を果たす.

定理 3.1. $\partial_F G = \partial_H G$.

ただし, d_HG は Hamana 境界である.

これを使うことで,次に呪文を唱えることができるようになる. $\mathcal S$ を operator system とし, $\mathcal T$ をその operator subsystem とする.

G-injectivity 任意の G-u.c.p. 写像 $\varphi: \mathcal{T} \to C(\partial_F G)$ は \mathcal{S} 上の G-u.c.p. 写像に拡張される .

G-essentiality 全ての G-u.c.p. 写像 $\varphi: C(\partial_F G) \to S$ は等長である .

G-rigidity $C(\partial_F G)$ から自分自身への G-u.c.p. 写像は $\mathrm{id}_{C(\partial_F G)}$ のみである .

注 3.1.1. *-準同型は completely positive である.

4 C*-単純性

この章では C^* -単純性の証明を行う.準備として,いくつかの定理を述べる.詳細は [BO08] などを参照すると良い.

定理 **4.1** (Arveson's extension theorem). A を単位的 C^* -環とし, $S \subset A$ を operator subsystem とする.このとき,任意の u.c.p. 写像 $\varphi: S \to B(H)$ は A 上の u.c.p. 写像に拡張される.ただし,B(H) は Hilbert 空

間 H 上の有界線形作用素全体とする.

定理 4.2. A,B を C^* -環とし, $\varphi:A\to B$ を u.c.p. 写像とする.このとき, $a\in A$ が $\varphi(a^*a)=\varphi(a)^*\varphi(a), \varphi(aa^*)=\varphi(a)\varphi(a)^*$ を満たすとき,任意の $b\in A$ に対して, $\varphi(ab)=\varphi(a)\varphi(b), \varphi(ba)=\varphi(b)\varphi(a)$ が成立する.

定義 4.1. $\{a \in A | \varphi(a^*a) = \varphi(a)^*\varphi(a), \varphi(aa^*) = \varphi(a)\varphi(a)^*\}$ を φ の multiplicative domain という.

定義 **4.2.** A を G- C^* -環とする.このとき, G-u.c.p. 写像 E: $A imes_r G o A$ で,

$$E(\sum_{g \in G \ fin.} a_g \lambda_g) = a_e$$

であり, $E|_A=\mathrm{id}_A$ となるものが唯一つ存在する.これを $canonical\ conditional\ expectation\ という.$

注 **4.2.1.** canonical conditional expectation は忠実 (i.e. $E(a^*a) = 0 \Rightarrow a = 0$) である.

定理 ${f 4.3}$ ([KK17]). G を離散群とする . $\partial_F G$ を G の Furstenberg 境界とする . このとき , 次は同値である .

- 1. G は C*-単純性を持つ.
- 2. 半直積 C^* -環 $C(\partial_F G) \rtimes_r G$ が単純.
- $\it 3$. ある $\it G$ -境界 $\it B$ が存在して,半直積 $\it C^*$ -環 $\it C(B)$ $\it imes_r \it G$ が単純.
- 4.~G の $\partial_F G$ への作用は (topologically) free である.
- 5. ある G-境界 B が存在して , G の B への作用が topologically free である .
- $4. \Rightarrow 1.$ の証明のみ行う.この証明は [BKKO17] を元にしている.

Proof.~I を $C^*_r(G)$ の 0 でない両側閉イデアルとする . $\pi:C^*_r(G)\to B(H)$ を商写像 $C^*_r(G)\to C^*_r(G)/I$ と $C^*_r(G)/I$ の universal representation の合成とする .

 π が単射であることを示す ($\Rightarrow I \subset \ker(\pi) = 0 \Rightarrow I = 0$).

Arveson's extension theorem より,ある u.c.p. 写像 $\varphi: C(\partial_F G) \rtimes_r G \to B(H)$ で $\varphi|_{C^*_r(G)} = \pi$ となるものが存在する. φ が忠実であることを示せば良い $(\because a \in \ker(\pi) \Rightarrow a^*a \in \ker(\pi) \subset \ker \varphi \Rightarrow a = 0)$.ここで, π は *-準同型なので, $C^*_r(G)$ は φ の multiplicative domain に含まれる.特に, $a \in C(\partial_F G) \rtimes_r G$ と $g \in G$ に対して,

$$\varphi(\lambda_q a \lambda_q^*) = \varphi(\lambda_q) \varphi(a) \varphi(\lambda_q^*) = \pi(\lambda_q) \varphi(a) \pi(\lambda_q^*) = \operatorname{Ad}(\pi(\lambda_q)) \varphi(a)$$

となる.つまり, ϕ は G-同変になる.これで呪文を唱えることが可能になった.

G-rigidity より, $\varphi|_{C(\partial_F G)}$ は等長である.よって,逆写像 $(\varphi|_{C(\partial_F G)})^{-1}: \varphi(C(\partial_F G)) \to C(\partial_F G)$ が定義でき,これは G-u.c.p. 写像になる.G-injectivity より,G-u.c.p. 写像 $\tau: \operatorname{Im}(\varphi) \to C(\partial_F G)$ で $\tau|_{\varphi(C(\partial_F G))} = (\varphi|_{C(\partial_F G)})^{-1}$ となるものが存在する.

$$C(\partial_F G) \rtimes G \xrightarrow{\varphi} \operatorname{Im}(\varphi) \subset B(H)$$

$$\downarrow^{\psi} \qquad \qquad \cup$$

$$C(\partial_F G) \xleftarrow{(\varphi|_{C(\partial_T G)})^{-1}} \varphi(C(\partial_F G))$$

 $\psi:= au\circ \varphi:C(\partial_FG)
times G o C(\partial_FG)$ と定めると,これは G-u.c.p. 写像の合成であるため,G-u.c.p. 写像である. ψ が canonical conditional expectation E と一致することを示す.これが分かると,canonical conditional expectation は忠実なので, φ も忠実なことが示される.G-rigidity より, $\psi|_{C(\partial_FG)}:C(\partial_FG) o C(\partial_FG)$ は $\mathrm{id}_{C(\partial_FG)}$ である.特に, $C(\partial_FG)$ は ψ の multiplicative domain である.最後に, $e\neq s\in G$

に対し, $\psi(\lambda_s)=0$ を示せば,canonical conditinal expectation との一致が示される. $e\neq s\in G$ をとる. $f\in C(\partial_F G)$ に対し,

$$\psi(\lambda_g)f = \psi(\lambda_g)\psi(f) = \psi(\lambda_gf) = \psi(\lambda_gf\lambda_g^*\lambda_g) = \psi(g.f\lambda_g) = g.f\psi(\lambda_g).$$

特に , G は free に $\partial_F G$ に作用するので , $x \in X$ に対して , $g.x \neq x$ となる . よって , ある $f \in C(\partial_F G)$ が存在して , $f(x) \neq f(g.x)$ となる . よって , $\psi(\lambda_g)(f(x) - f(g.x)) = 0$ となり , $\psi(\lambda_g) = 0$ が導かれる .

参考文献

- [BKKO17] Emmanuel Breuillard, Mehrdad Kalantar, Matthew Kennedy, and Narutaka Ozawa. C*-simplicity and the unique trace property for discrete groups. *Publications mathématiques de l'IHÉS*, 126(1):35–71, 2017.
- [BO08] Nathanial Patrick Brown and Narutaka Ozawa. C*-algebras and finite-dimensional approximations, volume 88. American Mathematical Soc., 2008.
- [Fur73] Harry Furstenberg. Boundary theory and stochastic processes on homogeneous spaces. *Harmonic analysis on homogeneous spaces*, 26:193–229, 1973.
- [KK17] Mehrdad Kalantar and Matthew Kennedy. Boundaries of reduced c*-algebras of discrete groups. Journal für die reine und angewandte Mathematik (Crelles Journal), 2017(727):247–267, 2017.
- [Pow75] R Powers. Simplicity of the c*-algebra associated with the free group on two generators, duke math.. 49 (1975), 151–156. CrossRef MathSciNet Google Scholar, 1975.