Grothendieck's Galois Theory

Gabriele Rastello

October 6, 2020

1 Group actions and adjoints

Definition 1.1. In a category \mathscr{C} an arrow $f \colon X \to Y$ is a **strict epimorphism** if it is the joint coequalizer of all the arrows it coequalizes. This means that any arrow $g \colon X \to Z$ such that $g \circ x = g \circ y$ for any $x, y \colon C \to X$ such that $f \circ x = f \circ y$ there exists a unique arrow $h \colon Y \to Z$ such that $h \circ f = g$. Refer to Figure 1.1.

Figure 1.1

Remark 1.2. Strict epimorphisms are coequalizers, thus epimorphisms (as the name implies).

Remark 1.3. If an arrow is both a stric epimorphism and a monomorphism then it is an epimorphism.

Definition 1.4. Let H be a group, A an object of $\mathscr C$ and $G = \operatorname{Aut}(A)$ the group of automorphisms of A in $\mathscr C$ i.e. the group whose underlying set is the set of isomorphisms of type $A \to A$ of $\mathscr C$ and whose operation is composition in $\mathscr C$. An **action** of H on A is a group homomorphism $H \to G$.

Notation 1.5. Given an action of a group H on an object A of \mathscr{C} we denote, with a slight abuse of notation, the automorphism of A associated to $h \in H$ by the same symbol h.

Definition 1.6. If H acts on A as defined in 1.4 we define the quotient of A by H in $\mathscr C$ to be an element A/H of $\mathscr C$ equipped with an arrow $g \colon A \to A/H$ such that:

- (1) for all $h \in H$ $q \circ h = q$ holds,
- (2) for any $x: A \to X$ such that $x \circ h = x$ for all $h \in H$ there exists a unique arrow $\varphi: A/H \to X$ such that $x = \varphi \circ q$.

See also Figure 1.2.

Remark 1.7. Quotients are defined by a universal property, thus are unique up to unique isomorphism and we can speak of "the" quotient of *A* by *H* instead of "a" quotient of *A* by *H*.

Notation 1.8. Sometimes we use the sentence "the quotient of A by H" to refer to the object A/H, some others to the arrow $q: A \to A/H$; the context should be enough to differentiate between the two cases.

Figure 1.2

Remark 1.9. Consider a quotient $q: A \to A/H$; by condition (1) above $q \circ h = q = q \circ 1_A$ so q coequalizes all the pairs $(h, 1_A)$, for $h \in H$. If another arrow $x: A \to X$ coequalizes all the pairs that q does then this arrow is such that $x \circ h = x \circ 1_A = x$ for all $h \in H$ and thus, by condition (2), we have a unique factorization $x = \varphi \circ q$. This proves that all quotients are strict epimorphisms.

Remark 1.10. Let G be a group, **GSet** the category of G-sets and G-invariant maps and A an object of **GSet**. In this category Definition 1.6 yelds the familiar notion of the set of all orbits of an action: A/G is the set of orbits of A.

Remark 1.11. Consider again **GSet**. The underlying set of G (that we also denote as G) is a G-set with the action given by left multiplication in G; we call this the **canonical action** of G on itself. Let $\varphi: G \to E$ be a G-invariant map; it is easy to see that such a φ , by virtue of being G-invariant, is determined uniquely by the value $\varphi(e)$, where e is the neutral element of G.

Let now E be a transitive G-set i.e. a set upon which the action of G is transitive i.e. such that $E/G = \{*\}$. Fix an $x \in E$ and let φ_x be the G-invarian map defined by $\varphi_x(e) = x$; we argue that $\varphi_x \colon G \to E$ makes E into a quotient of G by the subgroup

$$H = Fix(x) = \{g \in G \colon gx = x\}.$$

Indeed by using the definition of H and the fact that φ is G-invariant we have

$$(\varphi \circ h)(e) = \varphi(h(e)) = h(\varphi(e)) = h(x) = x.$$

for all $h \in H$. Moreover let $g: G \to F$ satisfy (1) of Definition 1.6; as we discussed above g is entirely determined by the image of e so we obtain (2) defining an arrow $f: E \to F$ by f(x) = g(e). The situation is depicted in Figure 1.3.

Trivially *G* is a transitive G-set and for any $g \in G$ G/Fix(g) is transitive as well so we have that an object $E \in \mathbf{GSet}$ is transitive if and only if it is isomorphic to G/H where H = Fix(x) for (any) $x \in E$.

Figure 1.3

For the rest of the section fix a category \mathscr{C} , an object $A \in \mathscr{C}$ and let $G = \operatorname{Aut}(A)$.

Proposition 1.12. Consider a subgroup $H \leq G$ and an object $X \in \mathcal{C}$. H acts on the hom-set [A, X] as follows¹:

$$H \times [A, X] \longrightarrow [A, X]$$

 $(h, x) \longmapsto h \cdot x = x \circ h.$

Remark 1.13. Assume that the action $G \times [A, X] \to [A, X]$ is transitive and let **GSet**^t be the category of transitive G-sets (a subcategory of Gset). Then we have a functor

$$\begin{array}{ccc} [A,-]_G \colon \ \mathscr{C} & \longrightarrow & \mathbf{GSet}^t \\ & X & & [A,X]_G \\ & & \downarrow_f & \longmapsto & \downarrow_{f_*} \\ & Y & & [A,Y]_G \end{array}$$

where we indicate with $[A, X]_G$ the hom-set [A, X] upon which G acts as described in Proposition 1.12 and f_* is post-composition with f. It is easy to check that f_* is indeed G-invariant.

¹Since an action as of Definition 1.4 is a map that sends elements of a group to arrows it is, in this case, equivalent to give the definition of an action by uncurrying.