MA3202

Algebra II

Spring 2022

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

1 Rings 1 1.1 Basic definitions 1
1 Rings
1.1 Basic definitions
Definition 1.1. A ring is a set R equipped with two binary operations, namely addition and multiplication, such that
1. $(R,+)$ is an abelian group.
 (a) a + b ∈ R for all a, b ∈ R. (b) (a + b) + c = a + (b + c) for all a, b, c ∈ R. (c) a + b = b + a for all a, b ∈ R. (d) There exists 0 ∈ R such that a + 0 = a for all a ∈ R. (e) For each a ∈ R, there exists -a ∈ R such that a + (-a) = 0.
2. (R,\cdot) is a semi-group.
(a) $a \cdot b \in R$ for all $a, b \in R$. (b) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in R$.
3. Multiplication distributes over addition.
(a) $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in R$. (b) $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ for all $a, b, c \in R$.
Remark. The following properties follow immediately,
 0 ⋅ a = 0 for all a ∈ R. (-a) ⋅ b = -(a ⋅ b) = a ⋅ (-b) for all a, b ∈ R. (na) ⋅ b = n(a ⋅ b) = a ⋅ (nb) for all a, b ∈ R.

MA3202: Algebra II 1 RINGS

Example. The integers \mathbb{Z} form a ring, under the usual addition and multiplication.

Example. All fields, for instance the rational numbers \mathbb{Q} or the real numbers \mathbb{R} , are rings.

Example. The integers modulo n, namely $\mathbb{Z}/n\mathbb{Z}$, form a ring.

Example. If R is a ring, then the algebra of polynomials R[X] with coefficients from R form a ring.

Example. If R is a ring, then the $n \times n$ matrices $M_n(R)$ with entries from R form a ring.

Definition 1.2. If R is a ring and (R, \cdot) is a monoid i.e. has an identity, then this identity is unique and called the unity of the ring R. Such a ring R is called a unit ring.

Example. The even integers $2\mathbb{Z}$ form a ring, but do not contain the identity.

Definition 1.3. If R is a ring and (R, \cdot) is commutative, then R is called a commutative ring.

Definition 1.4. Let R be a unit ring. An element $a \in R$ is called a unit if there exists $b \in R$ such that $a \cdot b = 1 = b \cdot a$. This $b \in R$ is unique, and denoted by a^{-1} .

Example. The units in \mathbb{Z} are $\{1, -1\}$.

Definition 1.5. Let R be a ring, and let $S \subseteq R$. We say S is a subring of R if the structure $(S, +, \cdot)$ is a ring, with addition and multiplication inherited from R.

Example. The rings $n\mathbb{Z}$ for $n \in \mathbb{N}$ are all subrings of \mathbb{Z} .