Predicción de Accidentes Cerebrovasculares Usando Perceptron Multicapa

Integrantes:

Diego Antonio Rosario Palomino Katherine Coralie Figueroa Avalos Xiomara Mayela Siche Eusebio

Índice

- 1. INTRODUCCIÓN
- 2. OBJETIVOS
- 3. CONJUNTO DE DATOS
- 4. PREPROCESAMIENTO
- 5. METODOLOGÍA
- 6. RESULTADOS
- 7. INTERPRETABILIDAD
- 8. DISCUSIÓN
- 9. CONCLUSIONES Y RECOMENDACIONES

1. Introducción

¿Qué es un ACV?

- También conocido como "stroke".
- Ocurre cuando se interrumpe el flujo de sangre al cerebro.
- Puede causar discapacidad severa o muerte.

Motivación del proyecto

- El ACV es una de las principales causas de muerte a nivel mundial.
- La detección temprana es clave para prevenirlo.
- Los métodos actuales suelen depender de especialistas y análisis tardíos.
- El Machine Learning puede aportar una herramienta preventiva accesible.

2. OBJETIVOS

OBJETIVOS		
GENERAL	Desarrollar un sistema de Machine Learning para la predicción interpretable de accidentes cerebrovasculares (ACV).	
ESPECÍFICOS	 Preprocesar y analizar el dataset de ACV, abordando el desbalance de clases. Entrenar y evaluar modelos de clasificación robustos para la predicción de ACV. Implementar un análisis de interpretabilidad del modelo para explicar las predicciones. 	

3. CONJUNTO DE DATOS

- Fuente: Stroke Prediction Dataset –
 Kaggle con un tamaño de 316.97 kB
- Registros: 5,110 pacientes adultos.
- Atributos: 12 columnas, incluyendo datos clínicos, demográficos y estilo de vida.
- Total de registros: 5110
- Casos positivos (ACV = 1): 249
 (aproximadamente 4.87% del total)
- Casos negativos (ACV = 0): 4861 (aproximadamente 95.1%)

Variable	Tipo	Descripción / Observaciones	
id	Numérica	Identificador único del pa- ciente. No aporta valor predic- tivo.	
gender	Categórica	Género del paciente (Male, Female, Other). Un valor atípico ('Other').	
age	Numérica	Edad del paciente. Varía entre 0.08 y 82 años.	
hypertension	Binaria	Indica presencia de hipertensión. Desbalanceada.	
heart_disease	Binaria	Indica enfermedad cardíaca, También desbalanceada.	
ever_married	Categórica	Si el paciente ha estado casado. Valores: Yes / No.	
work_type	Categórica	Tipo de ocupación: Private, Govt_job, Self-employed, etc.	
Residence_type	Categórica	Zona de residencia: Urbano o Rural. Casi balanceado.	
avg_glucose_level	Numérica	Nivel promedio de glucosa. Con presencia de outliers.	
bmi	Numérica	Índice de masa corporal. Con- tiene valores faltantes (N/A).	
stroke	Binaria	Variable objetivo. Muy desbal- anceada (5% positivos).	

4. METODOLOGÍA

Se utilizó un Perceptrón Multicapa (MLP) con dos capas ocultas:

- Capas ocultas: 64 y 32 neuronas
- Activación: ReLU en capas ocultas, Sigmoide en la capa de salida

Entrenamiento con función de pérdida:

• Binary Crossentropy (adecuada para clasificación binaria)

Regularización empleada:

- Activation Dropout y Excitation Dropout
- Objetivo: evitar sobreajuste y promover rutas de decisión más distribuidas

```
# activation_dropout.py
       import torch
       import torch.nn as nn
   v class ActivationDropout(nn.Module):
          def __init__(self, base_retain_prob=0.5):
               super().__init__()
              self.P = base_retain_prob
9
10
          def set_retain_prob(self, new_P):
11
              self.P = new_P
12
13 🗸
          def forward(self, x):
14
              if not self.training:
15
                   return x
16
17
              shape = x.shape
18
              x_{flat} = x.view(x.size(0), -1)
19
20
              act_sum = x_flat.sum(dim=1, keepdim=True) + 1e-8
              p_act = x_flat / act_sum
21
22
23
              N = x_flat.size(1)
24
              numerator = self.P
25
              denominator = ((1 - self.P) * (N - 1)) * p_act + self.P
              retain_prob = numerator / (denominator + 1e-6)
26
27
              mask = torch.bernoulli(retain_prob).to(x.device)
28
              x_dropped = x_flat * mask / retain_prob.clamp(min=1e-6)
29
30
31
              return x_dropped.view(shape)
```


JUSTIFICACIÓN DEL MODELO

¿Por qué usar MLP?

- Capaz de capturar relaciones no lineales entre variables clínicas
- Fácil de combinar con técnicas modernas de regularización
- Flexible y expresivo para datos tabulares

Desafíos enfrentados

- Desbalance severo en los datos (solo 5% positivos)
- Rápido sobreajuste sin regularización
- La codificación rígida de datos limitó el impacto del dropout

Integrated Gradients Attributions

True Label: rubber eraser

Click to select a different image:

Top 5 Predicted Output Classes

1ht. The predicted logits of the network on the original image. The network correctly classifies all images with

5. Resultados

Métricas del conjunto de prueba:

• **Accuracy:** 95.11% (engañosa por desbalance)

• **Recall:** 0% (no detectó casos positivos)

• **F1-score**: 0

El modelo **falló en todos los positivos (25 casos)** → Todos fueron falsos negativos

Conclusión clave:

El modelo predijo bien la clase negativa, pero **ignoró la positiva**. Esto lo hace **inútil clínicamente sin ajustes**.

Clase real \ Predicción	Negativo (0)	Positivo (1)
Negativo (0)	486	0
Positivo (1)	25	0

Fig. 13: Relación entre el valor de entrada y su atribución con IG en funciones no lineales

Interpretabilidad del Modelo

- -Se utilizó Integrated Gradients para entender la lógica del MLP
- -Variables más influyentes: edad, glucosa, presión arterial
- -Aplicar dropout **no cambió significativamente** las rutas internas del modelo

Conclusión:

La regularización no modificó la forma en que el modelo asigna importancia a las variables → efecto limitado.

Fig. 10: Importancia media por variable según Integrated Gradients

6. DISCUSIÓN

Observaciones principales:

- Se usó Integrated Gradients para interpretar cómo el modelo (MLP) toma decisiones.
- Activation Dropout no generó cambios significativos en las variables más relevantes (edad, glucosa, presión arterial).
- La lógica interna del modelo se mantuvo prácticamente igual con o sin dropout.

Posibles razones:

- La codificación de variables pudo haber limitado el efecto de la regularización.
- La arquitectura del modelo y los hiper parámetros quizás no fueron óptimos.
- La estructura del dataset (datos desbalanceados) pudo restringir el beneficio esperado de la técnica.

Reflexión:

 Es crucial ajustar tanto el preprocesamiento de datos como los hiper parámetros a evaluar técnicas avanzadas de regularización.

1;2;3

7. CONCLUSIONES

Hallazgos clave:

- Activation Dropout no mostró una ventaja clara sobre el entrenamiento estándar en este caso.
- La lógica del modelo, evaluada con atribuciones, se mantuvo estable al aplicar dropout.
- No se redistribuyó la importancia de variables ni se observó mayor generalización.

Conclusión general:

 Aunque Activation Dropout es útil en otros contextos, su impacto aquí fue limitado, posiblemente por decisiones metodológicas (codificación, arquitectura, dataset).

8. Trabajo Futuro

- **Probar diferentes tasas de dropout**: 0.1, 0.3, 0.5, y observar impacto.
- Cambiar codificación de variables categóricas a embeddings para permitir mayor flexibilidad al modelo.
- Varía el random seed y partición de datos para descartar que los resultados sean producto del azar.
- Comparar interpretaciones con SHAP o LIME, para verificar si otras herramientas revelan diferencias más evidentes entre modelos.

Stroke Prediction Form

Age: 67
Avg Glucose Level: 228.69
BMI: 36.6
Gender: Male V
Hypertension (0 or 1): 0
Heart Disease (0 or 1): 1
Ever Married: Yes V
Work Type: Private
Residence Type: Urban V
Smoking Status: formerly smoked ✓
Predict

Prediction: **Stroke** Probability: 0.7621

Gracias

