	J. Pardon I, Orbifolds (and their fundamental classes)
	An orbifold is a "space" which is locally modeled on RT/G for some finite
	group GPR.
	A (smooth) in fold is a top. space M which is !
	(2) Hausdorff (3) 2nd contrible + paracompact
	(2) wally homeomorphic to R"
	(3) A collection of maps
	(3) A collection of maps (2) A collection of maps (3) A collection of maps (4) A collection of maps (4) A collection of maps (5) A collection of maps (6) A collection of maps (7) A collection of maps (8) A collection of maps (9) A collection o
	u/ smooth tensities maps, which is maximal
	(3) A subsheef & "Com (M) = C(M) which is locally isomorphic to] "impping out
	(IR, Com(IR)))
	Orbifolds as be defed by a mapping in popely, cut not by a mapping out property.
	(contrast of the deliniof the topological quotest R"/G).
	$\mathbb{R}^n \longrightarrow \chi$
	R"/G topologically
	R"/G topologically
	Mais meson thy dating orbible is subtle is that
	(R" (9) is not a set but rather a grouped for an orbible (Q
	(orbifolds for a 2-relegay restert of an ordinary relegan).
	3 - 7/1
Recall:	A grouped is a category is which all morphisms are sumpliens.
	A grouped so a category is which all morphisms are sumophous. Ex: G group my groupoid BG m/ syngle object # and
	Aut (*) = G_
	Every grapad is just aguillent L II BG a.
	RML: An equivalence of categores is F: & -> D s.t.
	(1) & (a, b) -> D(F(a), F(b)) injected on 110. chiss
	Ø Y deD, J c∈ & s.t. F(c) =d . sr. oj. on .so. clerks

	Why are spaces (9 for which $C^{\infty}(U, 0)$ are gro-poids useful?
	Moduli space M_g satisfies a universal property: $ \{ \mathcal{U} \longrightarrow \mathcal{M}_g \} = \{ \{ \{ \{ \{ \{ \{ \{ \{ \{ \{ \{ \{ \{ \{ \{ \{ \{$
	(of iso-closses) RIFS, regarded as a set, does not satisfy descent.
-	But, it does satisfy descept when regarded as a groupoid.
	Oble and More are smooth manifolds, and:
	(D) s,t: More -> Ob & are smooth and proper étaile (cours sports fruit des ce (More (s,t)) Ob e rob e is proper?) (2) oth Composition is smooth. proper = anglosue of Handault-ness.
	Pet: An orbifold is proper Etde groupoid,
	Warnings A map of orbifold () -> () is not simply a "smooth fundor of
	proper étile grapoids.! [insted, deste in ters et conospondences: In aluch OxO proper étéle grape d'elle aluch OxO projects to O agran apunalence.)
	Ex! Let O be an orbifold/manifeld. A proper of the graphed proceeds to cake obtained by: Take 606 & to be any manifold
	(3) Mor 8 = Oh 8 × Ob 8.
	(9
	leg., YU; } coe of M
	ex: $\mathbb{R}^2/\mathbb{E}_3$ can be proved ss: $\sim 06e = 11 \text{ U; ast.}$ Ob $e = 12 \text{ U; ast.}$ Here $e = 11 \text{ U; au.}$
	Mor $\mathcal{L} = \mathbb{R}^2$ $\mathbb{L} \mathbb{R}^2$ $\mathbb{L} \mathbb{R}^2$ $\mathbb{L} \mathbb{R}^2$ $\mathbb{L} \mathbb{R}^2$
	T }

To any orbible (9, one can associate this natural topological spaces:
(1) The coarse space?
101:=068/s(n)~t(n) Yme Har 8
e proper => 10/15 Handorff (Blockly hones, to 187/6).
(worms: convey is false)
1 The dessitying space:
BO := geometric reclizertion of here of E
Ther's a reduct up BO -> 10, and the fiber over p6 (0) is BGp there
change of be hope equiv-
Ther's a ratural map BO -> 10, and the fiber over polol is BGp where
Example: G OM, C9 = M/G, Gp is the isotopy grap at p.
[M/G] = topological quotient, and
B(M/G) = homotopy quotient (MXEG)/G
Rock: Best not to restrict to "effective orbifold" (i.e., locally modeled on IR / G when GC> Diff(R"))
b/c M _{1,1} and M aren't effective
2,0
Rnb. Yoneda Bays that
Man (Manop, Set) & him satisfies descent/is a sheaf.
$M \longrightarrow C^{\infty}(-, M) = h_{M}$
In fact, we have another fully furthful embedding
Orb Fun (Man, Groupoids) (this is not Yireda lenna, b/c nut whing at Fun (10, Gp)
$h_{\mathcal{G}} := C^{\infty}(-, 0)$ Fin((0) , (4))
Ethis functor has so a stade (analogue of being a sheaf so mappings on be deshood bully)

One can use this as a definition of an orbifold. Fundamental class of an orbible: have $BO \longrightarrow |O|$. In rational homology: H*(BU; Q) = H*(101;Q) is an isomorphism b/c Hx (BG; Q) = Hx(pt; Q) requed ever for Z/2 coeffe! (1.9.3 5' mod reflection) Suppose O is locally metable To locally modeled on 12% where G coks by westathe preservey -_) => upt an onestation also shoot on 10). Claim: U - HBM (U; Q) nodino (for upo U = 101 Pf: the pant is just that have M-V:

H3M (UNV) > H2 (UNV) > H3 (U) & Ha (V) & C & C & given opt set only finished may change the set only finished may change the set only finished may change the set only finished the set of the set 10 ble (> H3M (UnV)

RT/6; (RT) = Z

hut.t)

RED. H3M (IRT) = 0 which is a (Work-din u. Locally we set [IR" (a) = 1/161 Has[R"]. => sheet puperty gives [0] = H, (10); a) (sheetly speaks, if cools. in the overtation sheet Question: What about lifting [0] to generalized homology throng? (good reason & case and G-equi-spect).

stille cohoratory theory

For any manifold M, have [M] & Tot (M-TM) => got a fund class in E-hamily for any E provided we specify an iso. TIMA E = E over M. · whit about or biples?