Siddhant Agarwal

Fourth Year BTech + MTech (Dual) Student, Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur, INDIA Email-id: **agarwalsiddhant10@gmail.com**Mobile No.: **+91-8100199177**Github Profile: **agarwalsiddhant10**

EDUCATION

Examination	University/Institute	Year	CPI/%
BTech + MTech (Dual) in Computer Science	IIT Kharagpur	2017-2022	9.91/10.0
Class XII CBSE	Birla High School, Kolkata	2017,	95.8/100
Class X CBSE	Birla High School, Kolkata	2015,	10.0/10.0

FIELDS OF INTEREST

Reinforcement learning, Robotics, Computer Vision, Adversarial Attacks, Explainable AI

INTERNSHIPS

• LocusLab, Carnegie Mellon University

May 2020 - Current

Advisor: Prof Zico Kolter

Research Areas: Adversarial Attacks, Random Smoothing, Data Poisoning, Feature Visualization

- o Created visualizations to accentuate class labels by extracting class specific visually compelling features from a pretrained classifier.
- Used **PGD under L2 norm** to modify the images to minimize noise and to ensure that only the most important features are obtained.
- Utilised **randomized smoothing** to perpetually align the gradients to the visual features rather than adversarial noise. Additionally integrated **deep dream** and **Tikhonov Regularization** to further enhance features.
- o Trained poisoned classifiers using several techniques including HTBD attacks. Detected the poisoned classifiers in the trojai dataset.

• INKLab, University of Southern California

April 2020 - Current

Advisor: Prof Xiang Ren

Research Areas: Visual Commonsense Reasoning, Knowledge Graphs, Graph Neural Networks, Visual Question Answering, Visual Linguistic Encoding

- Worked on VCR dataset which is a VQA dataset where common sense inferences have to be drawn from images to answer the questions.
- Incorporated additional commonsense knowledge in the form of knowledge graphs to improve the capacity to deduce inferences.
- Used scene graphs for better visual understanding and grounding of the visual objects and actions to the knowledge graph.
- These graphs were processed using Graph Relation Networks and Language Conditioned Graph Networks respectively.

PUBLICATIONS

- Traffic Sign Classification using Hybrid HOG-SURF Features and Convolutional Neural Networks, International Conference on Pattern Recognition Applications and Methods 2019, Prague, Czech Republic.
- Real-time Lane Detection, Fitting and Navigation for Unstructured Environments, International Conference on Image, Video Processing and Artificial Intelligence 2019, Shanghai, China.

RESEARCH EXPERIENCE AND PROJECTS

Autonomous Ground Vehicles Research Group

March 2018- current

Software Team Member

Advidor: Prof. Debashish Chakraborty

Objectives: To develop novel solutions for a level 3 autonomous vehicle. Following projects were undertaken.

Traffic Sign Detection

May 2019

Research Areas: Computer Vision, Deep Learning

- o Solved the sparse availability of datasets on Indian Traffic Signs using a two stage detection-classification system.
- Used an object tracker to increase the speed to above 50 FPS on a low end system. Also predicted the distance of the sign from the vehicle.

Frenet Optimal Trajectory Planner

December 2018 - current

Research Areas: Planning, Controls, Reinforcement Learning

- o Implemented a local planner that uses the Frenet-Seret Frame to minimise jerk and time taken to converge to the global path.
- Efficient for urban and highway maneuvers. Integrated an RL agent to reduce the sampling inefficiency and improve exploration.
- o Successfully tested on an Ackermann-drive vehicles on the gazebo and Carla simulators as well as on a real vehicle.

Dynamic motion planning system using Reinforcement Learning

May 2019 - December 2019

Research Areas: Reinforcement Learning, Planning, Controls

- Developed **motion planning system that works on top of a robot controller**, making it very adaptable to different systems.
- o Agent generates waypoints simply using the 2D obstacle map, current vehicle location and velocity and the final goal.

Lane SegmentationMay 2019 - December 2019

Research Areas: Computer Vision, Deep Learning

- o Performed Lane Segmentation, which creates a binary segmentation map for the presence of lane markers in a city landscape.
- o Implemented Dataset Augmentation using **Domain Adaptation** with **GANs** to generalise in different environmental conditions.
- o Implemented Embedding-Loss GAN and self-attention Context Aggregation Networks for generating the segmentation maps.

• Explainable AI May 2019 - Current

Advisor: Prof Abir Das

Research Areas: Explainable AI, Reinforcement Learning, Computer Vision, Deep Learning

- o Generated Explanations (or saliency maps) that identify the most important regions in an image as with respect to a classifier.
- o An RL agent intelligently searches for these important patches which are linearly combined to get the final Saliency Maps.
- \circ Improvement over **RISE** that uses large number of random masks (\sim 5000) but this uses only (\sim 100) intelligently sampled masks.

COURSE PROJECTS

Just Another Rather Very Intelligent Chatbot

March 2019

Software Engineering Project Research areas and tools: Deep Learning, Language models, Android Development, DBMS

- A chatbot application that can detects and analyses the emotions of the user and generates appropriate replies.
- Used naive Bayes classifier and LSTM based sentiment analysis for emotion classification and seq2seq models for text generation.

COMPETITIONS

• Intelligent Ground Vehicles Competition, Michigan Oakland University, Michigan Runners Up

2018 and 2019

- o Developed an **autonomous ground vehicle for a constraint environment**. Were the first team to qualify for the final round.
- Worked on local planners (TEB Planner and DWA Planner), Lane Detection algorithms, Curve Fitting (RANSAC and MLESAC), Navigation and Obstacle Avoidance algorithms (using classical computer vision techniques).

• PAN IIT Hackathon IIT Delhi

2019

- Was a part of the Junior-Most team to qualify for the Final Round. Developed a software tool using AI to solve a socio-economic problem.
- The tool predicts the crop to be sown in a region based on previous climate history and economics. Performed time series modeling using LSTMs to produce the results.

RELEVANT COURSES

University

Machine Learning, Deep Learning, Algorithms and Data Structures*, Operating Systems*, Computer Networks*, Software Engineering*, Probability and Statistics, Compilers*, Computer Organisation and Architecture*

(* denotes courses with lab components)

Open CourseWork

Machine Learning, Stanford University Convolutional Neural Networks, Stanford University, Introduction to Reinforcement Learning, DeepMind, Deep Reinforcement Learning, UC Berekeley

TECHNICAL SKILLS

- Languages Python, C, C++, java
- Relevant libraries and Frameworks pytorch, Tensorflow, ScikitLearn, opency, ROS, OpenAI-gym, git, Carla, gazebo
- Operating systems Windows, Linux/Unix

ACHIEVEMENTS

KVPY Fellowship Award

• Among the top 3 students the entire 2017 batch in the institute.

 Class of 1970 Alumni (US) Association Prize for best student in order of merit among third year B.Tech.(Hons.)/B.Arch.(Hons.) courses securing highest CGPA

2019

• IIT Kharagpur Alumni (California Chapter) Award for being the best student in order of merit among third year B.Tech.(Hons.)/B.Arch.(Hons.) courses securing highest CGPA

20192018

• Student Par Excellence Award by Computer Science & Engineering Dept

2019

Selected for the prestigious IUSSTF - Viterbi Program

2017

• Qualifying for the National Round of World Robot Olympiad

2016