Fitting time series models

ARIMA MODELS IN PYTHON

James Fulton

Climate informatics researcher

Creating a model

```
from statsmodels.tsa.arima_model import ARMA
```

```
model = ARMA(timeseries, order=(p,q))
```


Creating AR and MA models

```
ar_model = ARMA(timeseries, order=(p,0))
ma_model = ARMA(timeseries, order=(0,q))
```


Fitting the model and fit summary

```
model = ARMA(timeseries, order=(2,1))
results = model.fit()

print(results.summary())
```


Fit summary

		ARMA	Model Resul	_ts		
Dep. Variable	:	========	y No. <u>Ob</u>	servations:		1000
Model:		ARMA(2,	1) Log Li	lkelihood		148.580
Method:		css-II	nle S.D. c	of innovatio	ns	0.208
Date:	Th	u, 25 Apr 20	19 AIC			-287.159
Time:		22:57:	:00 BIC			-262.621
Sample:			0 HQIC			-277.833
========	=======	========		:=======	=======	=======
	coef	std err	z	P> z	[0.025	0.975]
const	-0.0017	0.012	-0.147	0.883	-0.025	0.021
ar.L1.y	0.5253	0.054	9.807	0.000	0.420	0.630
ar.L2.y	-0.2909	0.042	-6.850	0.000	-0.374	-0.208
ma.L1.y	0.3679	0.052	7.100	0.000	0.266	0.469
			Roots			
	Real	Ima	aginary	Modul	us	Frequency
AR.1	0.9029	 -1	 L.6194j	1.85	 41	-0.1690
AR.2	0.9029	+1	l.6194j	1.85	41	0.1690
MA.1	-2.7184	+6	0.0000j	2.71	84	0.5000

Fit summary

	ARMA Mode	el Results	
Dep. Variable:	у	No. Observations:	1000
Model:	ARMA(2, 1)	Log Likelihood	148.580
Method:	css-mle	S.D. of innovations	0.208
Date:	Thu, 25 Apr 2019	AIC	-287.159
Time:	22:57:00	BIC	-262.621
Sample:	0	HQIC	-277.833

Fit summary

=======	========	=======	=======	=======	========	=======
	coef	std err	Z	P> z	[0.025	0.975]
const	-0.0017	0.012	-0.147	0.883	-0.025	0.021
ar.L1.y	0.5253	0.054	9.807	0.000	0.420	0.630
ar.L2.y	-0.2909	0.042	-6.850	0.000	-0.374	-0.208
ma.L1.y	0.3679	0.052	7.100	0.000	0.266	0.469

Introduction to ARMAX models

- Exogenous ARMA
- Use external variables as well as time series
- ARMAX = ARMA + linear regression

ARMAX equation

ARMA(1,1) model:

$$y_t = a_1 y_{t-1} + m_1 \epsilon_{t-1} + \epsilon_t$$

ARMAX(1,1) model:

$$y_t = x_1 z_t + a_1 y_{t-1} + m_1 \epsilon_{t-1} + \epsilon_t$$

ARMAX example

ARMAX example

Fitting ARMAX

```
# Instantiate the model
model = ARMA(df['productivity'], order=(2,1), exog=df['hours_sleep'])
# Fit the model
results = model.fit()
```

ARMAX summary

coef std err z P> z [0.025 0.97] const -0.1936 0.092 -2.098 0.041 -0.375 -0.0 x1 0.1131 0.013 8.602 0.000 0.087 0.3 ar.L1.y 0.1917 0.252 0.760 0.450 -0.302 0.6	=======
x1 0.1131 0.013 8.602 0.000 0.087 0.1	
	const
ar.L1.y 0.1917 0.252 0.760 0.450 -0.302 0.6	x1
	ar.L1.y
ar.L2.y -0.3740 0.121 -3.079 0.003 -0.612 -0.1	ar.L2.y
ma.L1.y -0.0740 0.259 -0.286 0.776 -0.581 0.4	ma.L1.y

Let's practice!

ARIMA MODELS IN PYTHON

Forecasting ARIMA MODELS IN PYTHON

James Fulton
Climate informatics researcher

Predicting the next value

Take an AR(1) model

$$y_t = a_1 y_{t-1} + \epsilon_t$$

Predict next value

$$y_t = 0.6 \times 10 + \epsilon_t$$

$$y_t = 6.0 + \epsilon_t$$

Uncertainty on prediction

$$5.0 < y_t < 7.0$$

One-step-ahead predictions

Statsmodels SARIMAX class

```
from statsmodels.tsa.statespace.sarimax import SARIMAX

# Just an ARMA(p,q) model
model = SARIMAX(df, order=(p,0,q))
```


Statsmodels SARIMAX class

```
from statsmodels.tsa.statespace.sarimax import SARIMAX

# An ARMA(p,q) + constant model
model = SARIMAX(df, order=(p,0,q), trend='c')
```

Making one-step-ahead predictions

```
# Make predictions for last 25 values
results = model.fit()
# Make in-sample prediction
forecast = results.get_prediction(start=-25)
```


Making one-step-ahead predictions

```
# Make predictions for last 25 values
results = model.fit()
# Make in-sample prediction
forecast = results.get_prediction(start=-25)
# forecast mean
mean_forecast = forecast.predicted_mean
```

Predicted mean is a pandas series

```
      2013-10-28
      1.519368

      2013-10-29
      1.351082

      2013-10-30
      1.218016
```

Confidence intervals

```
# Get confidence intervals of forecasts
confidence_intervals = forecast.conf_int()
```

Confidence interval method returns pandas DataFrame

	lower y	upper y
2013-09-28	-4.720471	-0.815384
2013-09-29	-5.069875	0.112505
2013-09-30	-5.232837	0.766300
2013-10-01	-5.305814	1.282935
2013-10-02	-5.326956	1.703974

Plotting predictions

```
plt.figure()
# Plot prediction
plt.plot(dates,
         mean_forecast.values,
         color='red',
         label='forecast')
# Shade uncertainty area
plt.fill_between(dates, lower_limits, upper_limits, color='pink')
plt.show()
```

Plotting predictions

Dynamic predictions

Making dynamic predictions

```
results = model.fit()
forecast = results.get_prediction(start=-25, dynamic=True)

# forecast mean
mean_forecast = forecast.predicted_mean

# Get confidence intervals of forecasts
confidence_intervals = forecast.conf_int()
```

Forecasting out of sample

```
forecast = results.get_forecast(steps=20)

# forecast mean
mean_forecast = forecast.predicted_mean

# Get confidence intervals of forecasts
confidence_intervals = forecast.conf_int()
```


Forecasting out of sample

forecast = results.get_forecast(steps=20)

Let's practice!

ARIMA MODELS IN PYTHON

Introduction to ARIMA models

ARIMA MODELS IN PYTHON

James Fulton

Climate informatics researcher

Non-stationary time series recap

Non-stationary time series recap

Forecast of differenced time series

Reconstructing original time series after differencing

```
diff_forecast = results.get_forecast(steps=10).predicted_mean
  from numpy import cumsum
mean_forecast = cumsum(diff_forecast)
```


Reconstructing original time series after differencing

```
diff_forecast = results.get_forecast(steps=10).predicted_mean
    from numpy import cumsum
mean_forecast = cumsum(diff_forecast) + df.iloc[-1,0]
```

Reconstructing original time series after differencing

The ARIMA model

- Take the difference
- Fit ARMA model
- Integrate forecast

Can we avoid doing so much work?

Yes!

ARIMA - Autoregressive Integrated Moving Average

Using the ARIMA model

```
from statsmodels.tsa.statespace.sarimax import SARIMAX
model = SARIMAX(df, order =(p,d,q))
```

- p number of autoregressive lags
- d order of differencing
- q number of moving average lags

$$\mathsf{ARIMA}(p,0,q) = \mathsf{ARMA}(p,q)$$

Using the ARIMA model

```
# Create model
model = SARIMAX(df, order=(2,1,1))
# Fit model
model.fit()
# Make forecast
mean_forecast = results.get_forecast(steps=10).predicted_mean
```


Using the ARIMA model

```
# Make forecast
mean_forecast = results.get_forecast(steps=steps).predicted_mean
```


Picking the difference order

```
adf = adfuller(df.iloc[:,0])
print('ADF Statistic:', adf[0])
print('p-value:', adf[1])

ADF Statistic: -2.674
p-value: 0.0784

adf = adfuller(df.diff().dropna().iloc[:,0])
print('ADF Statistic:', adf[0])
print('p-value:', adf[1])
```

```
ADF Statistic: -4.978
p-value: 2.44e-05
```


Picking the difference order

model = SARIMAX(df, order=(p,1,q))

Let's practice!

ARIMA MODELS IN PYTHON

