Introduction to NLP

Dr. Demetrios Glinos

CAP6640 – Computer Understanding of Natural Language

Spring 2018

Today

- Course logistics
- What is natural language processing?
- What can natural language processing do?
- What this course will cover
- Action items for this week

Course Home Page

Course Schedule

Weeks/Dates	Topics Covered	References/Assignments
Week 1 1/8 - 1/12	Course Introduction Basic Text Processing	J&M Ch. 1, 2 Engagement assignment due Friday (or when join class)
Week 2 1/15 - 1/19	Minimum Edit Distance Language Modeling	J&M Ch. 3, 4
Week 3 1/22 - 1/26	Text Classification and Naive Bayes Sentiment Analysis	KM Ch. 5
Week 4 1/29 - 2/2	Hidden Markov Models and POS Tagging Maximum Entropy Classifiers	J&M Ch. 5, 6 Program 1 due Sunday 2/4
Week 5 2/5 - 2/9	Information Extraction and NER Relation Extraction	J&M Ch. 22
Week 6 2/12 - 2/16	Neural Network Basics Deep Neural Networks	GBC Ch. 6
Week 7 2/19 - 2/23	Statistical Natural Language Parsing Dependency Parsing	J&M Ch. 12, 14 Project Proposal Due in Class 2/22 Program 2 due Sunday 2/25
Week 8 2/26 - 3/2	Information Retrieval Ranked Information Retrieval	J&M Ch. 22

Week 9 3/5 - 3/9	Tuesday: Spelling Correction Thursday: Midterm Exam	J&M Ch. 4 Mid-Term Exam on Thursday
Week 10 3/12 - 3/16	SPRING BREAK	Program 3 due Sunday 3/18
Week 11 3/19 - 3/23	Vector Semantics Dense Vectors	J&M Ch. 20 (Withdrawal deadline Monday 3/21)
Week 12 3/26 - 3/30	Question Answering Summarization	J&M Ch. 23 Project Report Due Sunday 4/1
Week 13 4/2 - 4/6	Project Presentations	
Week 14 4/9 - 4/13	Project Presentations	
Week 15 4/16 - 4/20	Project Presentations	
Week 16 4/23 - 4/27	No classes this week	

J&M: Jurafsky & Martin

KM: Kevin Murphy

GBC: Goodfellow, Bengio & Courville

Recommended Textbooks

Speech and Language Processing (2nd Ed.), Daniel Jurafsky and James H. Martin, Pearson, 2009

ISBN-13: 978-0131873216

• **ISBN-10**: 0131873210

- The primary reference for this course
- Draft sections from upcoming 3rd edition may be found at

https://web.stanford.edu/~jurafsky/slp3/

Recommended Textbooks

Machine Learning: A Probabilistic Perspective, Kevin Murphy, The MIT Press, 2012

• **ISBN-13:** 978-0262018029

ISBN-10: 0262018020

 Contains a comprehensive review of probability theory, regression models, and other relevant topics

Recommended Textbooks

Deep Learning, Ian Goodfellow, Yoshua Bengio, and Aaron Courville, The MIT Press, 2016

• **ISBN-13:** 978-0262035613

ISBN-10: 0262035618

 Good reference for deep learning concepts

Recommended Resource

- Natural Language Toolkit (NLTK)
 - www.nltk.org
 - suite of libraries and programs for symbolic and statistical NLP
 - written in Python
 - includes Gutenberg, Brown, WordNet, and CONLL2000 corpora
 - useful companion text:
 - Natural Language
 Processing with Python, S.
 Bird, E. Klein, and E. Loper,
 O'Reilly, 2009
 - www.nltk.org/book

Additional Resources

- Stanford Core NLP software
 - https://stanfordnlp.github.io/CoreNLP/
- Python for scientific computing
 - http://cs231n.github.io/python-numpy-tutorial/
- Linear algebra review
 - http://cs229.stanford.edu/section/cs229-linalg.pdf
- Probability theory review
 - Chapter 2 of Kevin Murphy text, plus many others

Grading Policy

(45%) Programming assignments

(20%) Midterm Exam

(20%) Project Report

(10%) Project Presentation

(5%) Class Participation

Letter Grade	Range
А	90 and above
В	80 to 89
С	70 to 79
D	60 to 69
F	below 60

Notes:

- each category will use 100-point scale
- compute weighted sum
- add 1 point for engagement assignment
- round to nearest integer
- convert to letter grade, per chart above
- plus/minus grading will not be used

Program Assignments and Midterm

- Programming Assignments (45%)
 - Three programming assignments, 15% each
 - Programs must be done individually, not in groups
 - Must be written in C, C++, Java, or Python
 - must be able to run on instructor's machine
 - macOS 10.13.2 (High Sierra),
 - Java 1.8.0_152,
 - Python 3.6.2,
 - gcc/g++4.2.1
 - must not require installation of additional software
 - Include instructions for running the program in source file header
 - Submit on Webcourses
- Midterm Exam (20%)
 - On Thursday, 3/8/18 (right before Spring break)

Term Project and Participation

- Term Project (30%)
 - In lieu of final exam
 - Topic must be related to NLP
 - Research must involve development of a program (any language)
 - Teams of 2-3 students
 - Project Proposal due 2/22
 - Project Report due 4/1
 - academic paper format: introduction, related work, problem formulation, experimental results, conclusion, and references
 - Presentations during last 3 weeks of class
 - slides due on date of presentation
- Class Participation (5%)
 - Will review presentations of other teams
 - Review forms will be provided

Late Submissions

- Late submission policy
 - Late up to 24 hours: 50% deduction
 - More than 24 hours: 0 credit
- Policy applies to
 - Program assignments
 - Project report
 - Project presentation slides

Academic Integrity

- You are expected to adhere to the highest standards of academic honesty and integrity
- Academic misconduct by students in any form, including cheating and plagiarism,
 will not be tolerated
- Refer to the Syllabus and UCF's Golden Rule for details

Today

- Course logistics
- What is natural language processing?
- What can natural language processing do?
- What this course will cover
- Action items for this week

What is NLP?

- natural language
 - any language used for everyday communications by humans
 - constantly evolving
 - typically with complex features, nuances, and ambiguities

- natural language processing (NLP)
 - any computer processing of natural language
 - applications that require knowledge of natural language in some manner

Today

- Course logistics
- What is natural language processing?
- What can natural language processing do?
- What this course will cover
- Action items for this week

Question Answering

- IBM's Watson system won "Jeopardy" against human opponents (2011)
- Game situation
 - contestants are given the "answer" and must determine the appropriate question
 - example answer:

William Wilkinson's "An Account of the Principalities of Wallachia and Moldovia" inpired this author's most famous novel

Note:

- the novel in question is "Dracula"
- both human contestants also got the correct answer

correct question: "Who was Bram Stoker?"

Information Extraction

- Herein of extracting structured information from free text
- Example: extracting calendar events from emails

Event: CS-CORC meeting

Date: Nov. 16, 2017

Start: 12:00 pm

End: 12:30 pm (default)

Location: HEC-438

Information Extraction & Sentiment Analysis

Herein of categorizing extracted information according to sentiment

Size and weight:

nice and compact to carry!

since the camera is small and light, ...

the camera feels flimsy, is plastic and very light in weight, ...

Machine Translation

- Herein of translating from one natural language to another
- Fully automatic systems

Systems may also have humans in the loop

Language Technologies

mostly solved

making good progress

still really hard

Machine translation (MT)
Time flies ➡ 時光飛逝

Question answering (QA)

Q: How effective is ibuprofen in reducing fever in patients with acute febrile illness?

Ambiguity makes NLP hard

- News story headlines
 - Hospitals Are Sued by 7 Foot Doctors
 - Enraged Cow Injures Farmer With Ax
 - Dealers Will Hear Car Talk at Noon
 - Miners Refuse to Work After Death
 - Drunk Gets Nine Months in Violin Case
 - Iraqi Head Seeks Arms
 - Kids Make Nutritious Snacks
 - Hershey Bars Protest

Q: What makes these headlines funny?

(source: http://www.fun-with-words.com/ambiguous_headlines.html)

Why else is natural language understanding difficult?

non-standard English

U kno u inspired me thru this whole process. How to be strong! I thank u bro. And bringgg it home for the LAND. I seee u 3

segmentation issues

the New York-New Haven Railroad the New York-New Haven Railroad

idioms

dark horse get cold feet lose face throw in the towel

neologisms

unfriend retweet bromance

world knowledge

Mary and Sue are sisters Mary and Sue are mothers

tricky entity names

Where is A Bug's Life playing ... Let It Be was recorded a mutation on the for gene ...

Note: this is not an exclusive list

Making progress on the problem

- The task is difficult!
- Tools we need
 - Knowledge about language
 - Knowledge about the world
 - Mechanisms for combining knowledge sources
- How we generally do this
 - Probabilistic models built from language data
 - P("maison" → "house") = high
 - P("L'avocat général" → "the general avocado") = low
- Fortunately, rough text features can often do half the job

Today

- Course logistics
- What is natural language processing?
- What can natural language processing do?
- What this course will cover
- Action items for this week

What this course will cover

- Text processing basics
- Text classification and naive Bayes classification
- Logistic regression
- Sequence labeling (POS tagging and NER)
- Hidden Markov models
- Neural networks and backpropagation
- Constituency and dependency parsing
- Question answering
- Summarization
- Advanced topics: recurrent and convolutional networks, deep learning

Skills you will need

- Simple linear algebra (vectors, matrices)
- Basic probability theory
- Good programmiing skills

Today

- Course logistics
- What is natural language processing?
- What can natural language processing do?
- What this course will cover
- Action items for this week

Action Items for this week

- Engagement assignment
 - due 1/12 at 11:59 pm, or as soon as join class
- Make sure you have a solid software development environment
- Consider installing
 - Python and NLTK (highly recommended)
 - use online NLTK book as tutorial
 - Keras open source Python neural network library
 - needs TensorFlow, CNTK, or Theano