Diseño y Análisis de Algoritmos

TEMA 1. EFICIENCIA ALGORÍTMICA

Comparación de algoritmos

- •Un problema se puede resolver con varios algoritmos ¿Cómo seleccionar el mejor?
- Eficiencia. Medida de los recursos que emplea un algoritmo en su ejecución
- Recursos **computacionales**: tiempo (*ejecución*), espacio (memoria), n° procesadores (arquitecturas paralelas), ...
- Recursos **no computacionales**: dificultad de implementación, disponibilidad de bibliotecas, ...

Comparación de algoritmos

La comparación en tiempo depende de:

- Datos de entrada
- Calidad del código generado por el compilador
- Rapidez del procesador
- Complejidad intrínseca del algoritmo

Estudios sobre el tiempo:

- **Teórico** (a priori): función que acote el tiempo de ejecución para unos valores de los datos de entrada
- Real (a posteriori): tiempo de ejecución para una determinada entrada y en un ordenador concreto

Comparación de algoritmos

Principio de Invarianza

• Dado un algoritmo y dos implementaciones I_1 e I_2 , que tardan $T_1(n)$ y $T_2(n)$ respectivamente, existe una constante real positiva $c \in \mathbb{R}^+$ y un natural $n_0 \in \mathbb{N}$ tales que:

$$\forall n \geq n_0 \quad T_1(n) \leq c \cdot T_2(n)$$

• El tiempo de ejecución de dos implementaciones distintas no va a diferir más que en una cte. multiplicativa

Comparación de algoritmos

Estudio real

· Medida del tiempo de ejecución de un algoritmo

Estudio teórico

- Estimación del **comportamiento** de un algoritmo
- Independiente del ordenador
- No requiere una ejecución

Comparación de algoritmos

Complejidad Algorítmica:

- Determina la **eficiencia** de un algoritmo
- No proporciona medidas absolutas (p.e. segundos) sino relativas al tamaño del problema
- Es independiente del ordenador en el que se ejecute el algoritmo

T(n): tiempo empleado para ejecutar el algoritmo con una entrada de tamaño n

Dada una entrada de tamaño n, no se mide en unidades de **tiempo** (seg) sino en "**pasos**" (#instrucciones)

Ejemplos de complejidad de tiempo

Problema I: sumar las componentes de un vector

Dato relevante: n° de componentes

para j <-1 hasta n hacer
suma <- suma + c[j]</pre>

fpara

• • •

n° ejecuciones cuerpo bucle: n = T(n) = k * n

Ejemplos de complejidad de tiempo

Problema 2: producto de 2 matrices *n* x *n*

Dato relevante: orden de las matrices

Ejemplos de complejidad de tiempo

Problema 3: ordenar las componentes de un vector comparando claves

Dato relevante: n° de componentes

Operaciones elementales

• • •

fpara

fpara

• • •

Para cada valor de i, j ejecuciones del bucle más interno

```
i = 1, j = n - 1

i = 2, j = n - 2

i = 3, j = n - 3

...

i = n - 1. i = 1
```

Ejemplos de complejidad de tiempo

Problema 4: Búsqueda secuencial. Las operaciones no se ejecutan el mismo número de veces para cualquier *n*

T(n) varia si se encuentra en: I, n/2, n, ... pasos

Medidas asintóticas

Tmax(n): complejidad en el caso peor. Tiempo máximo para una entrada de tamaño *n*

Tmin(n): complejidad en el caso mejor. Tiempo mínimo para una entrada de tamaño *n*

Tmed(n): complejidad en el caso medio. Tiempo medio para una entrada de tamaño *n*

- Se suele suponer que toda las secuencias de entrada son equiprobables ¿Cuál utilizar?
 - Tmáx(n)
 - Caso mejor: poco representativo
 - Caso medio: puede resultar difícil de calcular

Medidas asintóticas

- Definir clases de equivalencia correspondientes a funciones que "crecen de la misma forma"
- **Asintótico**: valores de los datos suficientemente grandes ya que, para valores pequeños, la diferencia de eficiencia entre algoritmos puede ser marginal

Medidas del comportamiento asintótico de la complejidad

- Θ (theta) orden exacto de la función
- O (o mayúscula) cota superior
- Ω (omega) cota inferior

Medidas asintóticas. Notación O

Es una cota superior

- Dada una función f, estudiamos funciones g que, a lo sumo, crezcan **tan deprisa** como f
- •Al conjunto de esas funciones se les llama cota superior de f y es O(f)
- Conociendo O(f) de un algoritmo, se puede asegurar que en ningún caso el tiempo será de un **orden superior** al de la cota

Medidas asintóticas. Notación O

Definición: Sean $f, g: \mathbb{Z}^+ \to \mathbb{R}^+$, se dice que $f \in O(g)$ si existen dos constantes $n_0 \in \mathbb{N}$ y $\lambda \in \mathbb{R}^+$ tales que:

$$\forall n \ge n_o \quad f(n) \le \lambda g(n)$$

- La función f no crece más deprisa que ninguna función proporcional a g
- •Si $f(n) \in O(g(n))$ se dice que f(n) está en O de g(n) para todo n suficientemente grande

Medidas asintóticas. Notación O

- n^2+100 está inicialmente por encima de $2n^2$, pero para n>10 se da que $n^2+100<2n^2$
- Si tomamos $f(n) = n^2 + 100$ entonces $f(n) \in O(n^2)$, donde: $n_0 = 10$, $\lambda = 2$, $g(n) = n^2$

Medidas asintóticas. Notación O

Una cota superior siempre se puede estimar al alza

$$(5n+3) \in O(n^2)$$

 $(5n+3) \in O(n)$ es más preciso

Propiedades de O

- I. Para cualquier f se tiene que $f \in O(f)$ (reflexibilidad)
- 2. $f \in O(g) \Rightarrow O(f) \subset O(g)$
- 3. $O(f) = O(g) \Leftrightarrow f \in O(g)$ y $g \in O(f)$
- 4. Si $f \in O(g)$ y $g \in O(h) \Rightarrow f \in O(h)$ (transitividad)

Medidas asintóticas. Notación O

5. Si
$$f \in O(g) \Rightarrow f \in O(kg) \ \forall \ k \in \mathbb{R}^+$$
 (escalabilidad) consecuencia: $O(\log_a n) = O(\log_b n) = O(\log n)$ no hace falta expresar la base

6. Si
$$f \in O(g)$$
 y $f \in O(h) \Rightarrow f \in O(\min(g,h))$

7. Regla de la suma o regla del máximo:

Si
$$f_1 \in O(g_1)$$
 y $f_2 \in O(g_2) \Rightarrow f_1 + f_2 \in O(\max(g_1, g_2))$
siendo $\max(g_1, g_2)(n) = \max(g_1(n), g_2(n))$

Medidas asintóticas. Notación O

Generalizando:

Si $f_i \in O(f)$ para todo i=1,...k entonces $c_1 f_1 + ... + c_k f_k \in O(f)$

Si $p_k(n)$ es un polinomio de grado k entonces

$$p_k(n) \in O(n^k)$$

8. Regla del producto:

Si
$$f_1 \in O(g_1)$$
 y $f_2 \in O(g_2) \Rightarrow f_1$. $f_2 \in O(g_1, g_2)$

Consecuencia: Si p < q entonces $O(n^p) \subset O(n^q)$

Medidas asintóticas. Notación O

- 9. Si existe $\lim_{n\to\infty} f(n)/g(n) = k$ tenemos:
 - a) Si $k \neq 0$ y $k < \infty$ entonces O(f) = O(g)
 - b) Si k = 0 entonces $f \in O(g)$, es decir, $O(f) \subset O(g)$, pero se verifica que $g \notin O(f)$

Cálculo de la eficiencia

- Sentencias simples. Instrucciones de lectura, escritura, asignación, ...
 - Tiempo constante

- Bloques de sentencias
 - Suma de tiempos y aplicar la regla del máximo

- Sentencias condicionales
 - Máximo entre el bloque if y bloque else

Cálculo de la eficiencia

- Bucles
 - **Suma** de los tiempos de cada iteración (incluido la evaluación de la condición
 - Iteraciones idénticas => número de iteraciones **multiplicado** por el tiempo de una iteración

- Llamadas a funciones
 - · Equivalente a la complejidad de la propia función

Cálculo de la eficiencia

Funciones recursivas

- Método de sustitución
- · Árbol de recursividad
- Expansión de recurrencias
- · Ecuación característica

Cálculo de la eficiencia

· Recurrencias de divide y vencerás

$$T(n) = aT\left(\frac{n}{b}\right) + cn^k \operatorname{con} a \ge 1, b \ge 2, k \ge 0, c > 0$$

$$T(n) = \begin{cases} O(n^k), & a < b^k \\ O(n^k \log_b n) & a = b^k \\ O(n^{\log_b a}) & a > b^k \end{cases}$$

- a: sub-problemas generados
- b: divisor del problema
- · k: complejidad del método de combinación

Medidas asintóticas

Ordenes de eficiencia más habituales

• Suponiendo Imicro segundo por operación elemental

n	O(log n)	O(n)	O(n log n)	O(n²)	O(2 ⁿ)	O(n!)
10	3 µs	10 µs	30 µs	0.1 ms	1 ms	4s
25	5 μs	25 µs	0.1 ms	0.6 ms	33 s	10 ¹¹ años
50	6µ	50µs	0.3ms	2.5ms	36 años	
100	7 μs	100 µs	0.7 ms	10 ms	10 ¹⁷ años	
1000	10 µs	1 ms	10 ms	1s		
10000	13 µs	10 ms	0.1 s	100 s		
100000	17 µs	100 ms	1.7 s	3 horas		
1000000	20 µs	1s	20 s	12 días		

$$O(1) \iff O(\log n) \iff O(n) \iff O(n^2) \iff O(n^3) \iff \dots \iff O(n^n) \iff O$$

Medidas asintóticas. Notación Ω

Es una cota inferior

- Dada una función f, estudiamos funciones g que a lo sumo crezcan tan lentamente como f
- •Al conjunto de esas funciones se les llama cota inferior de f y es $\Omega(f)$
- Conociendo $\Omega(f)$ de un algoritmo, se puede asegurar que en ningún caso el tiempo será de un orden inferior al de la cota

Medidas asintóticas. Notación Ω

Sean $f, g: \mathbb{Z}^+ \to \mathbb{R}^+$, se dice que $f \in \Omega(g)$ si existen dos constantes $n_0 \in \mathbb{N}$ y $\lambda \in \mathbb{R}^+$ tales que: $\forall n \geq n_o \qquad f(n) \geq \lambda g(n)$

- La función f crece más deprisa que alguna función proporcional a g
- •Si $f(n) \in \Omega(g(n))$ se dice que f(n) está en Ω de g(n) para todo n suficientemente grande
- La función f necesita para su ejecución un tiempo mínimo dado por la función g

Medidas asintóticas. Notación Ω

Ejemplo de cota inferior

$$5n^2 \in \Omega$$
 (n^2) ya que para $n \ge 0$, $5n^2 \ge n^2$

$$\lambda = 1 \text{ y } n_0 = 0, \quad 5n^2 \in \Omega (n^2)$$

 Una cota inferior siempre se puede estimar a la baja

$$(n^3) \in \Omega \ (n^2)$$
, ya que si $n \ge 1 \ n^3 \ge n^2$

$$(5n+3) \in \Omega$$
 (n) es más preciso

Medidas asintóticas. Notación Ω

Propiedades de Ω

- 1. Para cualquier función f se tiene que $f \in \Omega(f)$ (reflexibilidad)
- 2. $f \in \Omega(g) \Rightarrow \Omega(f) \subset \Omega(g)$
- 3. $\Omega(f) = \Omega(g) \Leftrightarrow f \in \Omega(g) \ \ y \ \ g \in \Omega(f)$
- 4. Si $f \in \Omega(g)$ y $g \in \Omega(h) \Rightarrow f \in \Omega(h)$ (transitividad)
- 5. Si $f \in \Omega(g) \Rightarrow f \in \Omega(kg) \ \forall \ k \in \mathbb{R}^+$ (escalabilidad)

Consecuencia: $\Omega(\log_a n) = \Omega(\log_b n) = \Omega(\log n)$

no hace falta expresar la base

Medidas asintóticas. Notación Ω

6. Si
$$f \in \Omega(g)$$
 $y f \in \Omega(h) \Rightarrow f \in \Omega(\min(g,h))$

7. Regla de la suma o regla del máximo:

Si
$$f_1 \in \Omega(g_1)$$
 y $f_2 \in \Omega(g_2) \Rightarrow f_1 + f_2 \in \Omega(\max(g_1, g_2))$
siendo máx $(g_1, g_2)(n) = \max(g_1(n), g_2(n))$

8. Regla del producto:

Si
$$f_1 \in \Omega(g_1)$$
 y $f_2 \in \Omega(g_2) \Rightarrow f_1$. $f_2 \in \Omega(g_1, g_2)$

Medidas asintóticas. Notación Ω

9. Si existe
$$\lim_{n\to\infty} f(n)/g(n) = k$$
 tenemos:

- a) Si $k \neq 0$ y $k < \infty$ entonces $\Omega(f) = \Omega(g)$
- b) Si k=0 entonces $g\in\Omega(f)$, es decir, $\Omega(g)\subset\Omega(f)$, pero se verifica que $f\notin\Omega(g)$

Medidas asintóticas. Notación Ω

Regla de la dualidad

$$f \in O(g) \Leftrightarrow g \in \Omega(f)$$

$$f(n) \le \lambda g(n) \Leftrightarrow g(n) \ge (1/\lambda) f(n)$$

Medidas asintóticas. Notación Θ

- Es el orden exacto
- Dada una función f, estudiamos funciones g que crecen asintóticamente de la misma forma
- Al conjunto de esas funciones se les llama orden exacto de f y es $\Theta(f)$
- ullet Conociendo ullet(f) de un algoritmo, se puede asegurar que el tiempo es de dicho orden

Medidas asintóticas. Notación Θ

Definición: Sean $f, g: \mathbb{Z}^+ \to \mathbb{R}^+$, se dice que $f \in \Theta(g)$ si $f \in O(g) \cap \Omega(g)$; es decir f pertenece tanto a O(g) como a $\Omega(g)$

 $f \in \Theta(g) \to f$ está en el orden exacto de f

 $\Theta(g)$ es el conjunto de funciones de complejidad f(n) para las que si existen constantes $n_0 \in \mathbb{N}$ y $c, d \in \mathbb{R}^+$ tales que:

$$\forall n \ge n_o \quad cg(n) \le f(n) \le dg(n)$$

Medidas asintóticas. Notación Θ

Ejemplos:

$$g(n)=5n^2 + 100n + 3 \in \Theta(n^2)$$

 $t(n) = (n-1) \text{ n } /2 = n^2/2 - \text{ n}/2 \in \Theta(n^2)$

Propiedades de ⊕

- 1. Para cualquier función f se tiene que $f \in \Theta(f)$ (reflexibilidad)
- 2. $f \in \Theta(g) \Rightarrow \Theta(f) = \Theta(g)$
- 3. $\Theta(f) = \Theta(g) \Leftrightarrow f \in \Theta(g) \ y \ g \in \Theta(f)$

Medidas asintóticas. Notación Θ

- 4. Si $f \in \Theta(g)$ y $g \in \Theta(h) \Rightarrow f \in \Theta(h)$ (transitividad)
- 5. Si $f \in \Theta(g) \Rightarrow f \in \Theta(kg) \ \forall \ k \in \mathbb{R}^+$ (escalabilidad)
- 6. Regla de la suma o regla del máximo:

Si
$$f_1 \in \Theta(g_1)$$
 y $f_2 \in \Theta(g_2) \Rightarrow f_1 + f_2 \in \Theta(\max(g_1, g_2))$
siendo máx $(g_1, g_2)(n) = \max(g_1(n), g_2(n))$

7. Regla del producto:

Si
$$f_1 \in \Theta(g_1)$$
 y $f_2 \in \Theta(g_2) \Rightarrow f_1$. $f_2 \in \Theta(g_1, g_2)$

Medidas asintóticas. Notación Θ

8. Si existe
$$\lim_{n\to\infty} f(n)/g(n) = k$$
 tenemos:

- a) Si $k \neq 0$ y $k < \infty$ entonces $\Theta(f) = \Theta(g)$
- b) Si k = 0 entonces $\Theta(f) \neq \Theta(g)$