Diffusion Theory

그래프의 전파 예시

전파의 종류

행동전파

정보의 전파

고장 오류의 전파

질병의 전파

의사결정 기반의 전파모형

이웃 정점의 상황을 고려하여 해당 정점이 의사결정을 내리는 방식.

어떠한 기준에서 의사결정을 하는가

선형 임계치 모형 (Linear Threshold Model)

A, B 두개의 선택지의 효용이 a, b 라 할 때

A를 선택할 임계치 $\frac{a}{a+b}$

B를 선택할 임계치 $\frac{b}{a+b}$

이는 각 선택지에 따른 효용에 따라 변한다.

만약 3개의 category 라면?..

확률적 전파 모형

상대 정점으로 인해서 해당 정점의 주체적인 의사 없이 전파되는 모델 질병..

독립적 전파 모형

정점 u 가 정점 v 에게 전파할 확률 P_{uv} 을 간선의 가중치로 부여 간선의 가중치 (전파 확률) 독립적으로 작용

SIS, SIR

확률적 전파 모형

SIR Model 질병의 확산을 수학적으로 정의하기 위해서 도입된 모델.

시간에 따른 전파 경과를 파악

S: Susceptible | : Infectious | R: Recovered

모형에서 개체는 S -> I -> R 순서로 진화 감염이 된 개체 I는 v 의 확률로 S개체를 감염시키거나, δ 확률로 면역상태 R 이 된다.

모형에서의 대상(인구수)는 고정

$$N = S + I + R$$

N = S + I + R N: number of vertices

$$rac{dS}{dt} = -rac{eta IS}{N}$$

β: the average number of contacts per person per time

γ : 회복률 (회복 기간 의 역수)

$$rac{dI}{dt} = rac{eta IS}{N} - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$\frac{\beta S}{\gamma} > 1$$
 $\frac{\beta S}{\gamma} = R_0$ 기초 감염재생 지수 : 한사람당 감염자수

wikipedia.org

 $\beta \gamma$ 를 구하여(파라미터) 위의 식을 적분, 시간에 따른 감염자 수 를 예측

확률적 전파 모형

$$\beta = 0.00022 \gamma = 0.04$$

$$\beta = 0.00019 \ \gamma = 0.04$$

파생 모델

SIS Model

S: **S**usceptible | I: Infectious

S -> I -> S 로의 진화 감염상태에서 완전한 면역 상태가 되는것이 아닌 재발가능 성이 존재한다고 가정.

https://sites.me.ucsb.edu/~moehlis/APC514/tutorials/tutorial seasonal/node2.html

전파 최대화

전파를 최대화 할 수 있는 시드 집합을 찾아내는 것

정점의 중심성 휴리스틱

Node Centrality

- 페이지 랭크
- 연결 중심성: 연결성이 높은경우
- 근접 중심성: 다른 정점들의 평균 거리 계산, 이가 가장 짧은경우
- 매개 중심성: 정점간의 최단 경로를 고려, 최단경로에 많이 놓인 정점일수록 연결을 잘하고 있기에 중심성을 높게 부여

Greedy Algorithm

전파 최대화를 이루는 시드 정점을 하나씩 추가하는 방법, 모든 정점 집합을 고려 하지 않음

But. 수학적으로 최저 성능이 보장 되어 있다.

$$G \ge (1 - \frac{1}{e}) B$$

G: 탐욕 알고리즘으로 찾은 시드 집합의 전파의 평균 크기

B: 최고의 시드 집합에 의한 전파의 평균 크기

전파의 평균 크기?