

Heart Disease

Machine learning - Febbraio 2025

Realizzato da: Andrea Spagnolo 879254 Davide Falanga 866053

Descrizione del problema

Dominio: Medico

Dataset: Heart Failure Prediction Dataset

(https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction/data)

Obiettivo: Individuazione di un disturbo cardiaco

L'insufficienza cardiaca rappresenta la causa principale di mortalità a livello mondiale, richiedendo approcci efficaci per la diagnosi precoce e la prevenzione.

Tipologia di problema: Classificazione binaria

Exploratory Data Analysis

Il dataset si compone delle seguenti feature e target

Feature	Descrizione	Dominio	
Age	età in anni del paziente	Valore intero	
Sex	sesso del paziente	{M, F}	
ChestPainType	tipologia di dolore al petto	{TA, ATA, NAP, ASY}	
RestingBP	pressione arteriosa a riposo misurata in millimetri di mercurio (mm Hg)	Valore continuo	
Cholesterol	livello di colesterolo sierico (mg/dl)	Valore continuo	
FastingBS	glicemia a digiuno	Valore booleano {0, 1} 1: se > 120 mg/dl, 0: altrimenti	
RestingECG	risultati dell'elettrocardiogramma a riposo	{Normal, ST, LVH}	
MaxHR	massima frequenza cardiaca raggiunta (BPM)	Valore intero	
ExerciseAngina	angina indotta dall'esercizio	Valore booleano {0, 1}	
Oldpeak	depressione del tratto ST sull'ECG	Valore continuo	
ST_Slope	categoria del segmento ST al picco dell'esercizio fisico	{UP, Flat, Down}	
HeartDisease (target)	Presenza di un disturbo cardiaco	Valore booleano {0, 1}	

di istanze: 918

Pulizia del dataset e cast

- Rimozione dei duplicati, assenza di valori mancanti
- Cast delle variabili 'object' a 'category'
- Cast della variabile HeartDisease e FastingBS a boolean
- Codifica con OneHotEncoder delle feature categoriche
- Applicata una normalizzazione delle variabili numeriche con StandardScaler

Data	columns (total	12 columns):	
#	Column	Non-Null Count	Dtype
0	Age	918 non-null	int64
1	Sex	918 non-null	object
2	ChestPainType	918 non-null	object
3	RestingBP	918 non-null	int64
4	Cholesterol	918 non-null	int64
5	FastingBS	918 non-null	int64
6	RestingECG	918 non-null	object
7	MaxHR	918 non-null	int64
8	ExerciseAngina	918 non-null	object
9	01dpeak	918 non-null	float64
10	ST_Slope	918 non-null	object
11	HeartDisease	918 non-null	int64

Distribuzioni dei dati

Distribuzioni dei dati in relazione al target

Analisi di correlazione

Principal Component Analysis

Modelli di Machine Learning

A questo punto si procede con i modelli di ML, dopo una opportuna costruzione dei dataset di training (80%) e di testing (20%).

Albero di decisione

training accuracy	test accuracy
1.0	0.78

Albero di decisione ottimizzato

training accuracy	test accuracy
0.88 (-12%)	0.83 (+5%)

Grid Search per la ricerca degli iperparametri:

ccp alpha: 0.0
criterion: gini
max_depth: 3
splitter: best

Support Vector Machines

Iperparametri:

- kernel='rbf'
- C = 1000000

training accuracy	test accuracy
1.0	0.77

SVM ottimizzato

Griglia di parametri per GridSearchCV:

```
[{'kernel': ['rbf'], 'gamma': [0.01, 0.001, 0.0001, 0.00001],
'C': [0.001, 0.10, 0.1, 10, 25, 50, 100, 1000]},
{'kernel': ['poly'], 'gamma': [0.01, 0.001, 0.0001, 0.00001],
'C': [0.001, 0.10, 0.1, 10, 25, 50, 100, 1000]},
{'kernel': ['linear'], 'C': [0.001, 0.10, 0.1, 10, 25, 50, 100, 1000]}]
```

Miglior configurazione:

```
{'C': 100, 'gamma': 0.01, 'kernel': 'rbf'}
```

training accuracy	test accuracy
0.91 (-9%)	0.84 (+7%)

Rete neurale

Architettura rete:

- 1° strato: 100 neuroni, attivazione ReLU
- 2° strato: 50 neuroni, attivazione ReLU
- Output: 1 neurone, attivazione sigmoid

Training:

- 50 epoche
- batch size 32

training accuracy	test accuracy	test loss	training loss
0.97	0.83	0.67	0.09

Rete neurale ottimizzata

Grid Search per la ricerca degli iperparametri

Attivazione: ReLU,

Batch size: 16Epoche: 50

Layer nascosti: 50 neuroni

Ottimizzatore: Adam

• **Dropout**: 0.2

training accuracy	test accuracy	test loss	training loss
0.92 (-5%)	0.82 (-1%)	0.41 (-38.8%)	0.23 (+155.5%)

Conclusioni

- La SVM e l'albero di decisione risultano essere i migliori compromessi garantendo buona precisione e tempi di calcolo ridotti
- La rete neurale ha raggiunto buoni risultati, ma la presenza non trascurabile di overfitting e tempi di calcolo molto onerosi, non la rendono la scelta migliore per l'analisi di questo dataset