Б.Г.ЗИВ В.А.ГОЛЬДИЧ

Б. Г. ЗивВ. А. Гольдич

Дидактические материалы по алгебре

для 8 класса

издание 11-е, стереотипное

Петроглиф С.-Петербург 2012 УДК 373.167.1:512 ББК 22.14я72 3 59

Рецензенты:

Заведующий кабинетом математики Санкт-Петербургского Университета Педагогического Мастерства Л.А. Жигулев; Методист кабинета математики Санкт-Петербургского Университета Педагогического Мастерства Б.Г. Некрасов

Рекомендовано кабинетом математики
Санкт-Петербургского
Университета Педагогического Мастерства
в качестве учебного пособия для средней школы

Издание осуществлено при участии ООО «Виктория плюс»

Зив Б. Г., Гольдич В. А.

3 59 Дидактические материалы по алгебре для 8 класса. — 11-е изд. — СПб.: «Петроглиф», «Виктория плюс», 2012.—128 с.: ил. — ISBN 978-5-98712-008-8, ISBN 978-5-91673-093-7

Данное пособие содержит самостоятельные и контрольные работы по курсу «Алгебра» для 8 класса, составленные в полном соответствии со школьной программой. Пособие может быть использовано как в обычных школах, так и в математических гимназиях и лицеях.

УДК 373.167.1:512 ББК 22.14я72

ISBN 978-5-98712-008-8 (Петроглиф) ISBN 978-5-91673-093-7 (Виктория плюс)

- © Зив Б. Г., Гольдич В. А., 2001
- © Е.Т. Киселев, художественное оформление, 2001
- © ООО «Петроглиф», 2012

Предисловие

Данная книга рассчитана на всех желающих улучшить свои знания по алгебре и составлена в полном соответствии со школьной программой.

Пособие содержит 17 самостоятельных работы и 6 контрольных работ. Сборник несколько отличается от обычных дидактических материалов тем, что самостоятельные работы в нем приведены в восьми вариантах, четырех уровней сложности. Чем мы руководствовались? Не секрет, что в последние годы очень существенно возросла сложность вступительных экзаменов в ВУЗы. Одновременно отмечается процесс упрощения содержания школьных учебников математики. Мы полагаем, что уже в средних классах — в 10-м и 11-м на это может просто не хватить времени — необходимо показывать ученикам более содержательные задачи.

Какова же структура наших дидактических материалов?

I уровень сложности (Вариант 1 — Вариант 2) — это минимум того, что должен знать ученик, — база.

II уровень сложности (Вариант 3 — Вариант 4) — «твердая четверка».

III уровень сложности (Вариант 5 — Вариант 6) — «на пятерку».

IV уровень сложности (Вариант 7 — Вариант 8) — для тех, кто всерьез увлечен математикой.

Если подходить к использованию книги формально, то рекомендуется следующее:

I или II уровень — для базовой школы;

II или III уровень — для гимназий;

III или IV уровень — для лицеев или математических школ.

Следует иметь в виду, что все самостоятельные и контрольные работы составлены избыточно. Учителю ни в коем случае не следует считать, что объем работ должен быть именно таким — мы лишь хотели предоставить ему возможность выбора.

Все контрольные составлены в четырех равноценных вариантах.

Вообще, структура книги полностью повторяет "Задачи к урокам геометрии" Б. Г. Зива, а значит, может быть использована как задачник.

Надеемся, что наша книга поможет учителям и детям успешно заниматься математикой.

Рекомендации

Весьма удачным дополнением к дидактическим материалам для 7-11 классов являются книги серии «Математика. Элективные курсы» А. Х. Шахмейстера.

По существу это энциклопедия различных методов решения задач, которые чаще всего встречаются непосредственно в школьном курсе.

Это прекрасные самоучители, которые позволят ученикам и абитуриентам без репетитора подготовиться к экзаменам. Естественная логика построения материала «от простого к сложному» позволит учителю использовать эти книги с учениками различного уровня подготовки. Желательно, чтобы работа с материалами этой серии книг была постоянной и планомерной, тогда она даст наибольший эффект.

Книги серии:

Дроби.

Множества. Функции. Последовательности. Прогрессии Уравнения.

Системы уравнений.

Дробно-рациональные неравенства.

Корни.

Уравнения и неравенства с параметрами.

Иррациональные уравнения и неравенства.

Тригонометрия.

Логарифмы.

Построение графиков функций элементарными методами.

Введение в мат анализ.

Задачи с параметрами в ЕГЭ.

Б.Г.Зив

Самостоятельные работы

1. Положительные и отрицательные числа. Числовые неравенства

Вариант 1

- 1. Сравните дроби $\frac{2}{3}$ и $\frac{4}{5}$.
- 2. Сравните числа x и y, если x = y 0.4.
- 3. Сравните выражения $a^2 + 49$ и 14a.
- 4. Докажите, что если ab>0, то имеет место неравенство $\frac{a}{b}+\frac{b}{a}\geqslant 2.$
- 5. Докажите неравенство $(a^2 b^2)^2 \geqslant 4ab(a b)^2$.
- 6. Решите уравнение $\frac{3x}{x+2} + \frac{7x}{2-x} = \frac{5-4x^2}{x^2-4}$.

- 1. Сравните дроби $\frac{3}{7}$ и $\frac{5}{9}$.
- 2. Сравните числа a и b, если a = b + 0.2.
- 3. Сравните выражения $x^2 + 81$ и 18x.

- 4. Докажите, что если ab < 0, то имеет место неравенство $\frac{a}{b} + \frac{b}{a} \leqslant -2$.
- 5. Докажите неравенство $\frac{x^2}{1+x^4} \le \frac{1}{2}$.
- 6. Решите уравнение $\frac{x+4}{x-3} \frac{x-3}{x+3} + \frac{7x-12}{9-x^2} = 0.$

- 1. Сравните дроби $-\frac{13}{14}$ и $-\frac{14}{15}$.
- 2. Сравните числа a и b, если $b-a=-(a^2-4a+5)$.
- 3. Сравните выражения (a-2)(a+3) и (a-5)(a+6).
- 4. Докажите: $3x^2 4xy + 4y^2 \geqslant 0$.
- 5. Докажите: $a^3 + b^3 \ge a^2b + ab^2$, если a + b > 0.
- 6. Решите уравнение $\frac{x-7}{x^2-5x+25} = \frac{3}{x+5} \frac{19+2x^2}{x^3+125}.$

Вариант 4

- 1. Сравните дроби $-\frac{7}{9}$ и $-\frac{11}{13}$.
- 2. Сравните числа x и y, если $x y = x^2 6x + 10$.
- 3. Сравните выражения (m-4)(m+3) и (m+6)(m-7).
- 4. Докажите: $2x^2 + 2y^2 \ge (x+y)^2$.
- 5. Докажите, что если a>1 и b<1, то имеет место неравенство ab+1< a+b.
- 6. Решите уравнение $\frac{2x^2-1}{x^3-27} \frac{x-5}{x^2+3x+9} = \frac{1}{x-3}$.

Вариант 5

- 1. Докажите, что $297 \cdot 299 < 298^2$.
- 2. Расположите числа в порядке возрастания:

$$\frac{28}{23}$$
, $\frac{41}{53}$, $\frac{4}{5}$.

3. Сравните выражения $m^2 + 5$ и 2m + 3.

- 4. Докажите, что если $ab \geqslant 0$, то имеет место неравенство $(a^2 b^2)^2 \geqslant (a b)^4$.
- 5. Докажите, что $\frac{a+b}{a^2+b^2}\geqslant \frac{a^2+b^2}{a^3+b^3}$, если $a>0,\ b>0$.
- 6. Решите уравнение относительно x

$$\frac{2ax-1}{a} + \frac{ax}{b} = \frac{a-b^2x}{ab}.$$

- 1. Докажите, что $315 \cdot 317 < 316^2$.
- 2. Расположите числа в порядке возрастания:

$$\frac{8}{7}$$
, $\frac{65}{73}$, $\frac{27}{32}$.

- 3. Сравните выражения $a^2 + 7$ и 6a 3.
- 4. Докажите, что если $ab \leqslant 0$, то имеет место неравенство $(a^2 b^2)^2 \leqslant (a b)^4$.
- 5. Докажите: $\frac{1}{a} + \frac{1}{b} \leqslant \frac{a}{b^2} + \frac{b}{a^2}$, если a > 0 и b > 0.
- 6. Решите уравнение относительно x

$$\frac{a(x-a)}{b} - \frac{b(b-x)}{a} = x.$$

- 1. Докажите, что $74^2 27^2 > 73^2 26^2$.
- 2. Расположите в порядке возрастания:

$$\left(-\frac{1}{4}\right)^3$$
, $\frac{1}{2}$, $\left(\frac{3}{2}\right)^2$, $\left(-1\frac{1}{3}\right)^3$.

- 3. Сравните $m^4 + 1$ и 2m|m|.
- 4. Докажите, что $2a^2 + b^2 + c^2 \ge 2a(b+c)$.
- 5. Докажите, что $(a+b)^3 \leqslant 4(a^3+b^3)$, если $a \geqslant 0$ и $b \geqslant 0$.
- 6. Решите уравнение $y \frac{a^2}{(a+b)^2} = \frac{by}{a+b}$.

- 1. Докажите, что $35^2 10^2 < 37^2 12^2$.
- 2. Расположите в порядке возрастания:

$$\left(\frac{1}{3}\right)^3$$
, $\frac{2}{3}$, $\left(-\frac{1}{3}\right)^3$, $\frac{5}{9}$.

- 3. Сравните 1-a и $\frac{1}{a}-1$, если a>0.
- 4. Докажите, что $a^2 + b^2 + c^2 \geqslant ab + ac + bc$.
- 5. Докажите, что $a^4 + b^4 \geqslant a^3b + ab^3$.
- 6. Решите уравнение $\frac{ay-a^2}{by}=1-\frac{b}{a}\left(1-\frac{b}{y}\right)$.
- 2. Свойства числовых неравенств. Сложение и умножение неравенств

Вариант 1

- 1. Пусть $1 < a < 2, \ 2 < b < 3.$ В каких пределах заключены $a + b, \ a b, \ ab$ и $\frac{a}{b}$?
- 2. Докажите:
 - а) Если a>0 и b>0, то $a^2+b^2+1\geqslant ab+a+b,$
 - 6) $a^2 + 3 > 2a$.

Вариант 2

- 1. Пусть $2 < a < 3, \ 4 < b < 5.$ В каких пределах заключены $a + b, \ a - b, \ ab$ и $\frac{a}{b}$?
- 2. Докажите:

a)
$$\frac{a+b}{c} + \frac{b+c}{a} + \frac{a+c}{b} \ge 6 \quad (a,b,c>0),$$

6) (a+1)(3-a) < 5.

- 1. Пусть -2 < a < -1; -3 < b < -2.5В каких пределах заключены $a+b, \ a-b, \ ab$ и $\frac{a}{b}$?
- 2. Докажите:

a)
$$(a+b)(\frac{1}{a}+\frac{1}{b}) \ge 4$$
 $(a,b>0),$

$$6) \ \frac{a}{a^2 + a + 1} \leqslant \frac{1}{3}.$$

Вариант 4

- 1. Пусть 1,1 < a < 2,1; -3 < b < -2,5.В каких пределах заключены $a+b, \ a-b, \ ab$ и $\frac{a}{b}$?
- 2. Докажите:

a)
$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geqslant 9 \ (a,b,c>0),$$

6)
$$\frac{a}{a^2 - 4a + 9} \leqslant \frac{1}{2}$$
.

Вариант 5

- 1. Сколько целочисленных значений может принимать выражение $2n-\frac{3}{m}$, если -4 < n < 0.8, $\frac{1}{7} < m < 0.3$?
- 2. Докажите:

a)
$$(a^2+1)(b^2+1)(a^2b^2+1) \ge 8a^2b^2$$
 $(a,b>0)$,

6)
$$a^2 + \frac{1}{a^2} \geqslant a + \frac{1}{a}$$
.

- 1. Сколько целочисленных значений может принимать выражение $\frac{1}{a} 5b$, если $-\frac{1}{4} < a < -\frac{2}{9}$, -0.4 < b < 3?
- 2. Докажите:

a)
$$(a^2 + b^2)(a^2b^2 + 9) \ge 12a^2b^2$$
 $(a, b > 0)$,

6)
$$\frac{a^4+16}{a^2+4} \geqslant 2a$$
.

- 1. Пусть $-2 < a < -0.5; \ -1 < m < \frac{2}{3}; \ -5 < p < -2\frac{1}{4}.$ Докажите, что $\frac{a}{3m-2p} > -\frac{4}{3}.$
- 2. Найдите наименьшее значение выражения

$$a^2 + \frac{4}{a^2 + 1}$$
.

3. Докажите, что $a^2 - 4a + 5 \ge 2|a - 2|$.

Вариант 8

- 1. Пусть $-4 < m < 1; \quad 5\frac{1}{6} < n < 5,5; \quad -0,8 < a < -\frac{1}{3}.$ Докажите, что $\frac{m+6n}{a} < -33,75.$
- 2. Найдите наименьшее значение выражения

$$\frac{|x|}{2} + \frac{18}{|x|+2}$$
.

- 3. Докажите, что $b^2 2b + 10 \ge 6 \cdot |b-1|$.
- 3. Решение неравенств. Числовые промежутки

Вариант 1

- 1. Какие из четных чисел принадлежат промежутку (-2,5; 7]?
- 2. Используя координатную прямую, найдите:
 - а) пересечение промежутков (-4; 5] и [0; 10],
 - б) объединение промежутков (-3;8) и (1;9).
- 3. Решите неравенства:
 - a) 7x > 49,

B) -x > -9,

6) 6x < 18,

r) -8x < -24.

- 4. При каких значениях x функция y = 2x 7 принимает:
 - а) положительные значения,
 - б) отрицательные значения?
- 5. Решите неравенство $-(3x+1) \le 4(x+2)$.
- 6. Докажите, что значение выражения $m(m-n)(m+n)-(m+n)(m^2-mn+n^2)+n^3+m\cdot n^2$ не зависит от значений входящих в него букв.

- 1. Какие из нечетных чисел принадлежат промежутку (-4,3;5]?
- 2. Используя координатную прямую, найдите:
 - а) пересечение промежутков $(-\infty; 4]$ и $[-7; +\infty)$,
 - б) объединение промежутков [-4,5;5] и [-2;2].
- 3. Решите неравенства:
 - a) 6x > 15,

B) $12x \ge -18$,

6) 3x < 2.7

- $\Gamma) -8x \leqslant 28.$
- 4. При каких значения x функция y = 3 2x принимает:
 - а) положительные значения,
 - б) отрицательные значения?
- 5. Решите неравенство $-(3x-2) \le 2(x+3)$.
- 6. Докажите, что значение выражения $(x-y)(x^2+xy+y^2)+y(x-y)^2-(x^2-xy)(x+2y)$

не зависит от значений входящих в него букв.

- 1. Укажите наибольшее и наименьшее целые числа, припадлежащие промежутку [-7;9).
- 2. Используя координатную прямую, найдите:
 - а) пересечение промежутков $(4; +\infty)$ и $(0; +\infty)$,
 - б) объединение промежутков $(-\infty; 3)$ и $(-\infty; 5)$.

3. Решите неравенства:

a)
$$\frac{x+4}{5} - \frac{3x-1}{2} \le 2(x-1)$$
,

- 6) $(x^2 6x + 10)(4 5x) < 0$.
- 4. При каких значениях x график функции y=2x-5 расположен выше графика функции y=3-4x.
- 5. Вычислите x:y, если (2x):(3y)=5:6

Вариант 4

- 1. Укажите наибольшее и наименьшее целые числа, принадлежащие промежутку [-7;27).
- 2. Используя координатную прямую, найдите:
 - а) пересечение промежутков $(-\infty;4)$ и $[5;+\infty)$,
 - б) объединение промежутков $(-\infty; 0)$ и $(-2; +\infty)$.
- 3. Решите неравенства:

a)
$$\frac{4-5x}{3} < \frac{7x+1}{12} - 2x$$
,

- $6) (x^2 4x + 5)(2 7x) > 0.$
- 4. При каких значениях x график функции y = 4x 7 расположен ниже графика функции y = 5 8x?
- 5. Вычислите a:b, если (5a):(2b)=3:4.

Вариант 5

1. Решите перавенства:

a)
$$\frac{x+1}{4} - \frac{4x+1}{5} \leqslant \frac{7-3x}{10}$$
,

6)
$$(4x-7)(x+3) > (2x-5)(5+2x)$$
,

B)
$$\frac{x(x-6)}{3} \leqslant -3$$
.

- 2. При каких значениях m уравнение 3x + 4 = m имеет отрицательный корень?
- 3. При каких значениях a неравенство ax > 8 имеет то же множество решений, что и неравенство $x > \frac{8}{a}$?

- 4. Решите неравенство 5x a > ax 3.
- 5. Вычислите (x+2y-z):(2x+3z), если x:y:z=2:3:4.

Вариант б

1. Решите неравенства:

a)
$$\frac{5-2x}{9} \geqslant \frac{x+2}{15} - \frac{7x-1}{5}$$
,

6)
$$(1-9x)(x+2) \leq (5+3x)(5-3x)$$
,

B)
$$\frac{x(x+4)}{2} \leqslant -2$$
.

- 2. При каких значениях a прямая y = 2x + a 5 пересекает положительную полуось OX?
- 3. При каких значениях m неравенство mx < 6 имеет то же множество решений, что и неравенство $x > \frac{6}{m}$?
- 4. Решите неравенство px 3 < 2x + 5.
- 5. Вычислите (2y-z):(3x+y+z), если x:y:z=2:3:4.

Вариант 7

1. Решите неравенства:

a)
$$\frac{x-1}{3} - 3\left(2x - \frac{5-2(x-1)}{4}\right) > x + 2\frac{3}{4}$$
,

6)
$$(x-2)(x^2+2x+4)-x(x^2-4)>3$$
,

B)
$$\frac{x^2 - 10x + 25}{(2x - 7)(x + 1)^2} \le 0.$$

- 2. Решите неравенство a(ax-1) > 3(2ax-3x+1).
- 3. Существуют ли такие значения a, при которых неравенство ax > 2x + 5 не имеет решений?
- 4. Постройте график функции $y = \max\{2x; x 3\}$.
- 5. Вычислите $\frac{x^2 2xy}{2xy y^2}$, если x : y = 3 : 2.

1. Решите неравенства:

a)
$$5(x-2) - 3 \le \frac{9(x-2)}{2} - 3(2x-4)$$
,

6)
$$(x+3)(x^2-3x+9)-x(x-3)(x+3)>2$$
,

B)
$$\frac{x^2 + 6x + 9}{(3 - 2x)(x - 4)^2} \le 0.$$

- 2. Решите неравенство a(ax 4x) > a + 2 4x.
- 3. Существуют ли такие значения b, при которых неравенство $b(x-b)\leqslant 3x-9$ имеет бесконечное множество решений?
- 4. Постройте график функции $y = \min\{x 4; 3x\}$.
- 5. Вычислите $\frac{x^2 xy + y^2}{2x^2 + y^2}$, если x: y = 2: 5.

4. Системы неравенств

Вариант 1

1. Решите системы неравенств:

a)
$$\begin{cases} x > 2 \\ x \geqslant 5 \\ x < 7, \end{cases}$$
 6)
$$\begin{cases} x \leqslant 3 \\ x < -1 \\ x > 5. \end{cases}$$

2. Решите систему неравенств и укажите все четные числа, которые являются ее решениями:

$$\begin{cases} 9x + 2 > 3 + x \\ 3x - 4 < x. \end{cases}$$

- 3. При каких значениях x обе функции y=-x+6 и y=4x+2 принимают положительные значения?
- 4. Решите двойное неравенство $5 \leqslant 2x + 3 \leqslant 9$.
- 5. Решите неравенство $\frac{2x-3}{x+5} > 0$.
- 6. Перечислите все нечетные значения выражения 2a-b, если -1 < a < 2 и -2 < b < 1.

1. Решите системы неравенств:

a)
$$\begin{cases} x \geqslant 3 \\ x > 2 \\ x < 10, \end{cases}$$
 6)
$$\begin{cases} x < 3 \\ x < -1,5 \\ x < 2. \end{cases}$$

2. Решите систему неравенств и укажите все нечетные числа, которые являются ее решениями:

$$\begin{cases} 1,4x - 7 \ge 0 \\ 0,9 - 0,1x \ge 0. \end{cases}$$

- 3. При каких значениях x обе функции y = 2x 3 и y = 3 4x принимают отрицательные значения?
- 4. Решите двойное неравенство -1 < 3x + 5 < 2.
- 5. Решите неравенство $\frac{2x-7}{3-x} > 0$.
- 6. Перечислите все числовые значения выражения a-2b, кратные 3, если -1 < b < 2, -3 < a < 1.

Вариант 3

1. Решите системы неравенств:

a)
$$\begin{cases} x-8 > 4 \\ 2x+6 > 1 \\ 6-x > 26, \end{cases}$$
 6)
$$\begin{cases} 1-\frac{x}{4} > x \\ x-\frac{x-4}{5} > 1 \\ 2x > 1. \end{cases}$$

2. Решите систему неравенств

$$\begin{cases} (x+2)(2-x) < (x+3)(4-x) \\ \frac{5+x}{4} + \frac{1-2x}{6} \geqslant 1. \end{cases}$$

- 3. При каких целых значениях x значения функции y=3-5x принадлежат промежутку (-6;6)?
- 4. При каких значениях m система неравенств $\begin{cases} 7x < 42 \\ x > m \end{cases}$ не имеет решений?

- 5. Решите перавенство $\frac{3x-2}{x+5} > 1$.
- 6. Оцените значения выражения (a+1)(b+6), если 1 < a < 2 и 3 < b < 4.

1. Решите системы неравенств:

a)
$$\begin{cases} x - 10 > 5 \\ 3x + 7 > 1 \\ 7 - x > 27, \end{cases}$$
 6)
$$\begin{cases} 2 - \frac{x}{3} \ge x \\ x - \frac{x+1}{5} \ge 1 \\ 2x - 3 \le 0. \end{cases}$$

2. Решите систему неравенств

$$\begin{cases} (x-1)(x+5) \geqslant (x-3)^2 \\ \frac{3+2x}{3} - \frac{5x-1}{6} < 2. \end{cases}$$

- 3. При каких целых значениях x значения функции $y=rac{2x+1}{3}$ принадлежат промежутку [-4;0]?
- 4. При каких значениях a система неравенств $\begin{cases} 9x > 27 \\ x < a \end{cases}$ не имеет решений?
- 5. Решите неравенство $\frac{2x+3}{x-6} < 1$.
- 6. Оцените значения выражения (a-2)(b-5), если 7 < a < 8 и 5 < b < 10.

Вариант 5

1. Решите неравенства:

a)
$$(2x+7)^2 - (2+7x)^2 < 0$$
, B) $\frac{2}{x} > 3$.
6) $\frac{4+x}{2x-3} < \frac{5+3x}{3-2x}$,

2. Найдите все значения x, при которых график функции $y=1-\frac{4}{x-2}$ лежит ниже графика функции $y=\frac{5+x^2}{x^2-4x+4}$.

- 3. Одна сторона треугольника равна 12, а другая 16. Какой может быть длина третьей стороны, если периметр треугольника больше 48?
- 4. Найдите наибольшее и наименьшее значения выражения $b-0.4a^2$, если $-5\leqslant a\leqslant -1.5$ и $-0.5\leqslant b\leqslant 2.4$.

- 1. Решите неравенства:
 - a) $(8-3x)^2 (8x-3)^2 \le 0$,

6)
$$\frac{3x+7}{x-2} > \frac{x-4}{2-x}$$
,

- B) $\frac{3}{r} < 4$.
- 2. Найдите все значения x, при которых график функции $y=rac{2}{x-3}$ лежит выше графика функции $y=rac{8+x^2}{x^2-6x+9}-1$.
- 3. Две стороны треугольника равны 12 и 32. Периметр треугольника меньше 70. Какой может быть длина третьей стороны?
- 4. Найдите наибольшее и наименьшее значения выражения $m^2-\frac{4}{n}, \ \text{если} \ -3\leqslant m\leqslant -0.5, \ 1.6\geqslant n\geqslant 2.$

Вариант 7

1. Решите неравенства:

a)
$$\left(\frac{2x+9}{3}\right)^2 - \left(\frac{12-x}{4}\right)^2 > 0$$
,

6)
$$\frac{9}{4+2x} > -3$$
,

- B) $x^2 6x + 8 > 0$.
- 2. Среди решений неравенства $(x-2)(x^2-2x+1)\geqslant 0$ найдите все такие, для которых выполняется неравенство $\frac{9-x^2}{x+2}\geqslant 0.$

- 3. Решите неравенство $\frac{x-a}{2x+1} \geqslant 0$.
- 4. Значение выражения $\frac{6a}{b-1}$ целое число, делящееся на 9. Найдите его, если $1.5 < a < 2.5; \ 0.1 < b < 0.4.$

1. Решите неравенства:

a)
$$\left(\frac{x-20}{2}\right)^2 \geqslant \left(\frac{9x-5}{3}\right)^2$$
,

6)
$$\frac{5}{x+1} > 2$$
,

- B) $x^2 3x 10 < 0$.
- 2. Найдите все решения неравенства $\frac{x^2 4x}{x 1} \leqslant 0$, для которых выполняется неравенство

$$(2x+1)^2(x-3) \geqslant 0.$$

- 3. Решите неравенство $\frac{3-5x}{x-a} \geqslant 0$.
- 4. Значение выражения $\frac{1,4+a}{b}$ целое число. Найдите его, если -1,1 < a < 2,2 и $-4 < b < -2\frac{1}{4}$.
- 5. Модуль числа. Уравнения и неравенства, содержащие модуль

- 1. Найдите все такие а, для которых справедливо:
 - a) |a| = a,

- 6) $|a| \le 2$.
- 2. Решите уравнения:
 - a) |2x-1| = 5x 10, 6) $\frac{|x+2|-5}{3-|x+2|} = 1$.

3. Решите неравенства:

a)
$$|x-4| \le 5$$
,

6)
$$\frac{2}{|x+2|} \le 1$$
.

4. Постройте графики функций:

a)
$$y = |x + 1|$$
,

6)
$$y = |x| + 1$$
.

Вариант 2

1. Найдите все такие a, для которых справедливо:

a)
$$|a| = -a$$
,

б)
$$|a| \ge 3$$
.

2. Решите уравнения:

a)
$$|3x-1|=2-2x$$
,

6)
$$\frac{|x-3|-4}{8-|x-3|}=1$$
.

3. Решите неравенства:

a)
$$|x-5| > 4$$
,

6)
$$\frac{3}{|x+1|} \ge 1$$
.

4. Постройте графики функций:

a)
$$y = |2 - x|$$
,

6)
$$y = 2 - |x|$$
.

Вариант 3

1. Найдите все такие m, для которых:

a)
$$|m| = -m^2$$
,

6)
$$m \geqslant |m|$$
.

2. Решите уравнения:

a)
$$|x^2 - 1| = 3x^2$$
,

6)
$$||x+1|-4|=2$$
.

3. Решите неравенства:

a)
$$2|x-1| < x$$
,

6)
$$|x-4| < |x-2|$$
.

4. Постройте графики функций:

a)
$$y = \frac{x^2 - 1}{|x - 1|}$$
,

6)
$$y = 1 - \frac{|x|}{x}$$
.

Вариант 4

1. Найдите такие p, для которых:

a)
$$|-p| = -\frac{1}{n^2}$$
,

6)
$$|p| \geqslant -2$$
.

2. Решите уравнения:

a)
$$|x^2 - 3x| = 3x$$
, 6) $||x| - 2| = 4$.

6)
$$||x|-2|=4$$

3. Решите неравенства:

a)
$$|4-3x|<2x$$
,

6)
$$|x-3| > |x+2|$$
.

4. Постройте графики функций:

a)
$$y = \frac{x^2 - 4}{|x + 2|}$$
,

6)
$$y=2+\frac{x-1}{|x-1|}$$
.

Вариант 5

- 1. Упростите: $|x^2 1| + x \cdot |x + 1|$.
- 2. Решите уравнения:

a)
$$|x+4| + |x-4| = 9$$
, 6) $||x-1| + x| = 4$.

3. Решите неравенства:

a)
$$|2x-3| > 4-5x$$
, 6) $\left|\frac{x-1}{x+2}\right| > 1$.

6)
$$\left| \frac{x-1}{x+2} \right| > 1$$

4. Постройте графики уравнений:

a)
$$\frac{y-2|x|}{x-1} = 0$$
,

6)
$$|x+y|=1$$
.

Вариант 6

- 1. Упростите: $|x^2-4|+x|x-2|$.
- 2. Решите уравнения:

a)
$$|x-1|+|x-2|=4$$
, 6) $||x+2|-x|=3$.

3. Решите неравенства:

a)
$$|2x-1|+x<5$$
,

$$6) \left| \frac{x+1}{x-3} \right| < 1.$$

4. Постройте графики уравнений:

a)
$$\frac{y+3|x|}{x+2} = 0$$
,

6)
$$|y| = x - 1$$
.

- 1. Решите уравнение |x-3|+|x+2|-|x-4|=3.
- 2. Решите уравнение |x + 5| + |3 x| = 8.
- 3. При каких значениях параметра a уравнение |3-|x-4||=a имеет три решения?

- 4. Найдите все положительные значения параметра a, при котором из неравенства |x-1,6| < a следует неравенство (x-1)(x-2) < 0.
- 5. Постройте график уравнения |y-1| = x.
- 6. Постройте график функции $y = \frac{|x+1| |x-1|}{2}$.

- 1. Решите уравнение |x-3|-|x+4|=|2x-1|-2.
- 2. Решите неравенство |x+5| + |3-x| > 8.
- 3. При каких значениях параметра a уравнение |x+2|+|x-2|=a имеет бесконечно много решений?
- 4. При каких значениях параметра a из неравенства 1 < |x-3| < 2 следует неравенство x+5a < 0?
- 5. Постройте график уравнения |y+1| = -x.
- 6. Постройте график функции $y = \frac{|x-1| |x+1|}{2}$.

6. Действительные числа. Арифметический квадратный корень

- 1. Какие из указанных чисел являются:
 - а) рациональными, б) иррациональными?

$$\sqrt{\frac{16}{25}}$$
, $\sqrt{5}$, $2,5(6)$, $\sqrt{3}-1$.

- 2. Запишите число $\frac{3}{6}$ в виде периодической дроби.
- 3. Обратите периодическую дробь 0,(71) в обыкновенную.
- 4. Между какими натуральными числами находится число $\sqrt{35}$?
- 5. Упростите $\sqrt{(\sqrt{2}-2)^2} + \sqrt{2}$.

- 6. Решите уравнение $\sqrt{(x-2)^2} + \sqrt{(3-x)^2} = 5$ при $x \geqslant 3$.
- 7. При каких значениях x определено выражение $\sqrt{2-x} + \frac{17}{x+1}$?

- 1. Какие из указанных чисел являются:
 - а) рациональными, б) иррациональными?

$$\sqrt{\frac{36}{49}}$$
, $\sqrt{7}$, $1{,}6(2)$, $\sqrt{5}+2$.

- 2. Запишите число $\frac{7}{9}$ в виде периодической дроби.
- 3. Обратите периодическую дробь 0,(29) в обыкновениую.
- 4. Между какими натуральными числами находится число $\sqrt{71}$?
- 5. Упростите: $\sqrt{(1-\sqrt{3})^2} \sqrt{3}$.
- 6. Решите уравнение $\sqrt{(x-2)^2} + \sqrt{(x-3)^2} = 5$ при x < 2.
- 7. При каких x определено выражение $\sqrt{x-4} + \frac{19}{x-5}$?

- 1. Запишите рациональные числа $2\frac{8}{11}$ в виде периодической дроби.
- 2. Обратите периодическую дробь 0,2(3) в обыкновенную.
- 3. Сравните:
 - а) 0.22(23) и 0.2223, б) $-2\frac{2}{3}$ и -2.67.
- 4. Расположите в порядке возрастания числа:

$$\sqrt{15}$$
, 3, $\sqrt{16.5}$, 4, $\sqrt{19}$.

5. Упростите выражение
$$\sqrt{(2-\sqrt{5})^2} + \sqrt{(2-\sqrt{2})^2}$$
.

- 6. Решите уравнение $\sqrt{(1-x)^2} \sqrt{(x-7)^2} = 4$ при $1 \le x \le 7$.
- 7. При каких x определено выражение

$$\sqrt{x-2} + \frac{1}{(x-4)\sqrt{5-x}}?$$

- 1. Запишите рациональное число $-1\frac{13}{33}$ в виде периодической дроби.
- 2. Обратите периодическую дробь 0,2(7) в обыкновенную.
- 3. Сравните:
 - a) 0,(26) и 0,261, 6) $-\frac{7}{6}$ и -1,16667.
- 4. Расположите в порядке возрастания числа:

$$\frac{1}{4}$$
, $\sqrt{0.1}$, 0.2, $\sqrt{\frac{1}{11}}$.

- 5. Упростите выражение $2\sqrt{m^2} + \sqrt{(m-1)^2} + 3m$ при m < 0.
- 6. Решите уравнение $\sqrt{(x-3)^2} + |6-x| = 5$ при x < 3.
- 7. При каких х определено выражение

$$\sqrt{x+2} + \frac{1}{\sqrt{2-x}} \cdot \frac{15}{x}?$$

- 1. Сравните $\frac{1}{7}$ и 0,1428(57).
- 2. Обратите периодическую дробь 3,1(45) в обыкновенную.
- 3. Приведите пример рационального числа, стоящего между числами $\sqrt{2}$ и $\sqrt{3}$.

- 4. Приведите пример иррационального числа, стоящего между числами $\frac{1}{2}$ и $\frac{3}{5}$.
- 5. Сравните числа $a = \sqrt{21} \sqrt{5}$ и $b = \sqrt{20} \sqrt{6}$.
- 6. Упростите: $\sqrt{a^2 + a + 4 + \sqrt{a^2 6a + 9}}$ при $a \ge 3$.
- 7. При каких x определено выражение

$$\sqrt{\frac{x-3}{x+1}} + \sqrt{5-x}?$$

- 1. Сравните $\frac{7}{30}$ и 0,23(12).
- 2. Обратите периодическую дробь 2,3(71) в обыкновенную.
- 3. Приведите пример рационального числа, стоящего между числами $\sqrt{5}$ и $\sqrt{7}$.
- 4. Приведите пример иррационального числа, стоящего между числами $\frac{1}{3}$ и $\frac{3}{4}$.
- 5. Сравните числа: $a = \sqrt{37} \sqrt{14}$ и $b = 6 \sqrt{15}$.
- 6. Упростите: $\sqrt{10a + 23 + \sqrt{a^4 + 4a^2 + 4}}$ при a < -5.
- 7. При каких x определено выражение

$$\sqrt{\frac{x+1}{3-x}} + \frac{1}{\sqrt{x-2}}$$
?

- 1. Выполните действия: $0,(3) + 3\frac{1}{3} + 0,4(2)$.
- 2. Между какими двумя последовательными натуральными числами находится число $\frac{1}{3}\sqrt{63}$?
- 3. Решите неравенство $(3\sqrt{2} \sqrt{19})x > 6\sqrt{2} 2\sqrt{19}$.
- 4. Упростите: $(2+\sqrt{5})^2 + \sqrt{(4\sqrt{5}-11)^2}$.

- 5. Расположите числа $\sqrt{0,3},\ 0,3$ и $(\sqrt{5}-1)^2$ в порядке возрастания.
- 6. Упростите: $(2 + \sqrt{5})\sqrt{9 4\sqrt{5}}$.
- 7. При каких x определено выражение

$$\sqrt{(x-2)\cdot\sqrt{x+1}}?$$

- 1. Выполните действия: $0,(2) + 2\frac{2}{9} + 0,5(3)$.
- 2. Между какими двумя последовательными натуральными числами находится число $\frac{3}{4}\sqrt{112}$?
- 3. Решите неравенство $(2\sqrt{5} \sqrt{21})x < 8\sqrt{5} 4\sqrt{21}$.
- 4. Упростите: $(1+\sqrt{7})^2 + \sqrt{(2\sqrt{7}-10)^2}$.
- 5. Расположите числа $\sqrt{1,7}$, 1,7 и $(3-\sqrt{7})^2$ в порядке возрастания.
- 6. Упростите: $(2\sqrt{2}+3)\sqrt{17-12\sqrt{2}}$.
- 7. При каких x определено выражение $\sqrt{(3-x)\cdot\sqrt{x-5}}$?

7. Квадратный корень из произведения и дроби

Вариант 1

1. Найдите значения выражений:

a)
$$\sqrt{45 \cdot 10 \cdot 18}$$
, 6) $\sqrt{4\frac{25}{36}}$.

- 2. Упростите: $(2\sqrt{6} 4\sqrt{3} + 5\sqrt{2} \frac{1}{4}\sqrt{8}) \cdot 3\sqrt{6}$.
- 3. Вынесите множитель за знак корня $\sqrt{75x^3y^6}$ при $y \leqslant 0$.
- 4. Внесите множитель под знак корня $-4\sqrt{5}$.

5. Сократите дроби:

a)
$$\frac{c^2-2}{c-\sqrt{2}}$$
,

6)
$$\frac{x+2\sqrt{3x}+3}{x-3}$$
.

6. Освободитесь от иррациональности в знаменателе:

a)
$$\frac{5}{4\sqrt{5}}$$
,

6)
$$\frac{5}{\sqrt{13}+3}$$
.

Вариант 2

1. Найдите значения выражений:

a)
$$\sqrt{21 \cdot 6 \cdot 7 \cdot 8}$$
,

6)
$$\sqrt{1\frac{57}{64}}$$
.

2. Упростите:
$$(\sqrt{6} - 3\sqrt{3} + 5\sqrt{2} - \frac{1}{2}\sqrt{8}) \cdot 2\sqrt{6}$$
.

- 3. Вынесите множитель за знак корня $\sqrt{32a^3b^{10}}$ при $b \le 0$.
- 4. Внесите множитель под знак корня $-6\sqrt{3}$.
- 5. Сократите дробь:

a)
$$\frac{m+\sqrt{3}}{m^2-3}$$
,

6)
$$\frac{a-2\sqrt{5a}+5}{a-5}$$
.

6. Освободитесь от иррациональности в знаменателе:

a)
$$\frac{3}{2\sqrt{3}}$$
,

6)
$$\frac{2}{\sqrt{5}-\sqrt{3}}$$
.

Вариант 3

1. Упростите:

a)
$$\sqrt{63} - 3\sqrt{1,75} - 0.5\sqrt{343} + \sqrt{112}$$
,

6)
$$(3\sqrt{5}-2)(3\sqrt{5}-1)$$
.

2. Вынесите множитель за знак кория:

a)
$$\sqrt{1152}$$
,

б)
$$\sqrt{-8c^7b^3}$$
 при $c < 0$; $b > 0$.

3. Внесите множитель под знак корня:

a)
$$(3-\sqrt{10})\sqrt{2}$$
, 6) $(x-y)\sqrt{y-x}$.

б)
$$(x-y)\sqrt{y-x}$$

4. Сравните $5\sqrt{3}$ и $4\sqrt{5}$.

- 5. Сократите дробь $\frac{a^4 + 4a^2\sqrt{3} + 12}{a^4 12}$.
- 6. Освободитесь от иррациональности в знаменателе:
 - a) $\frac{1}{2\sqrt{3}-\sqrt{2}}$, 6) $\frac{3}{\sqrt{a-b}}$.

- 1. Упростите:
 - a) $\sqrt{1,25} + \sqrt{80} \frac{1}{14}\sqrt{245} \sqrt{180}$,
 - 6) $(4\sqrt{3}-2)(4\sqrt{3}+3)$.
- 2. Вынесите множитель за знак корня:
- а) $\sqrt{647}$, б) $\sqrt{-27a^5b^2}$ при a < 0.
- 3. Внесите множитель под знак корня:
 - a) $(4 \sqrt{17})\sqrt{3}$, 6) $(a b)\sqrt{\frac{1}{b a}}$.
- 4. Сравните: $3\sqrt{7}$ и $7\sqrt{2}$.
- 5. Сократите дробь $\frac{x^4 6x^2\sqrt{2} + 18}{x^4 18}$.
- 6. Освободитесь от иррациональности в знаменателе:
 - a) $\frac{1}{3\sqrt{2}-\sqrt{3}}$, 6) $\frac{4}{\sqrt{x+y}}$.

- 1. Упростите: $\sqrt{a^3 b^3 + a^2 b ab^2}$ при a, b > 0; a > b.
 - 2. Упростите: $\frac{\sqrt{-x} + \sqrt{xy}}{1 + \sqrt{\sqrt{y^2}}}.$
 - 3. Упростите: $(2-\sqrt{5})\cdot\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}$.
 - 4. Сравните: $a = \sqrt{3} + \sqrt{5}$ и $b = \sqrt{2} + \sqrt{6}$.

5. Упростите:
$$\sqrt{\frac{3\sqrt{3}-2\sqrt{2}}{\sqrt{3}-\sqrt{2}}} + \sqrt{6}$$
.

6. Освободитесь от иррациональности в знаменателе: $\frac{1}{1+\sqrt{2}-\sqrt{5}}.$

Вариант 6

1. Упростите:
$$\sqrt{x^3 + y^3 - x^2y - xy^2}$$
 при $x, y > 0$; $x > y$.

2. Упростите:
$$\frac{\sqrt{-x}}{\sqrt{xy}} \cdot \sqrt{-y^3}$$
.

3. Упростите:
$$(3-\sqrt{10})\sqrt{\sqrt{10}+2}+\sqrt{7\sqrt{10}-22}$$
.

4. Сравните:
$$a = \sqrt{13} + \sqrt{5}$$
 и $b = \sqrt{10} + \sqrt{18}$.

5. Упростите:
$$\sqrt{\frac{7\sqrt{7}+5\sqrt{5}}{\sqrt{7}+\sqrt{5}}}-\sqrt{35}$$
.

6. Освободитесь от иррациональности в знаменателе: $\frac{1}{\sqrt{2}+\sqrt{3}-3}.$

1. Упростите:
$$(3-\sqrt{5})^2-6\sqrt{14-6\sqrt{5}}$$

- 2. Докажите, что число $2-\sqrt{3}$ является корнем уравнения $x^3-5x^2+5x-1=0$.
- 3. Докажите, что $\frac{a^2+3}{\sqrt{a^2+2}} > 2$.
- 4. Упростите: $\frac{a+\sqrt{ab}}{b+\sqrt{ab}}$ при a<0 и b<0.
- 5. Сравните: $a = \sqrt{3} \sqrt{2}$ и $b = 2 \sqrt{3}$.
- 6. Упростите: $\sqrt{a+2\sqrt{a-1}}$.

- 1. Упростите: $(2-\sqrt{3})^2-4\sqrt{7-4\sqrt{3}}$.
- 2. Докажите, что число $3-\sqrt{2}$ не является корнем уравнения $x^3-7x^2-7x+1=0$.
- 3. Докажите, что $\frac{m^2+6}{\sqrt{m^2+5}} > 2$.
- 4. Упростите: $\frac{\sqrt{ab}-a}{\sqrt{-a}}$.
- 5. Сравните: $\frac{\sqrt{5}-\sqrt{2}}{3}$ и $\sqrt{5}-2$.
- 6. Упростите: $\sqrt{a+1-4\sqrt{a-3}}$.

8. Упражнения на все действия с арифметическими корнями

Вариант 1

1. Выполните действия:

$$\frac{9}{5-\sqrt{7}} + \frac{22}{7+\sqrt{5}} - \frac{1}{\sqrt{7}+\sqrt{5}}.$$

2. Выполните действия:

$$\Big(\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}\Big)\cdot\frac{a-b}{a}.$$

Вариант 2

1. Выполните действия:

$$\frac{12}{\sqrt{15}-3} - \frac{28}{\sqrt{15}-1} + \frac{1}{2-\sqrt{3}} - \sqrt{3}.$$

2. Выполните действия:

$$\Big(\frac{\sqrt{a}}{\sqrt{b}} + \frac{\sqrt{b}}{\sqrt{a}} - 2\Big) : \frac{\sqrt{a} - \sqrt{b}}{\sqrt{a\bar{b}}}.$$

1. Выполните действия:

$$\left(\frac{16}{\sqrt{5}-1}-\frac{5}{\sqrt{3}+2}-\frac{8}{\sqrt{5}-\sqrt{3}}\right)\cdot\left(\sqrt{3}+6\right).$$

2. Выполните действия:

$$\left(\sqrt{x} - \frac{\sqrt{xy} + y}{\sqrt{x} + \sqrt{y}}\right) \cdot \left(\frac{\sqrt{x}}{\sqrt{x} + \sqrt{y}} + \frac{\sqrt{y}}{\sqrt{x} - \sqrt{y}} + \frac{2\sqrt{xy}}{x - y}\right).$$

Вариант 4

1. Выполните действия:

$$\left(\frac{15}{\sqrt{6}+1} + \frac{4}{\sqrt{6}-2} - \frac{12}{3-\sqrt{6}}\right) \cdot \left(\sqrt{6}+11\right).$$

2. Выполните действия:

$$\left(\frac{\sqrt{x}+1}{\sqrt{x}-1} - \frac{\sqrt{x}-1}{\sqrt{x}+1} + 4\sqrt{x}\right) \cdot \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right).$$

Вариант 5

1. Выполните действия:

$$(4+\sqrt{15})(\sqrt{10}-\sqrt{6})\cdot\sqrt{4-\sqrt{15}}.$$

2. Выполните действия:

$$\Big(\frac{2+\sqrt{a}}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\Big)\cdot\frac{a\sqrt{a}+a-\sqrt{a}-1}{\sqrt{a}}.$$

Вариант б

1. Выполните действия:

$$\sqrt{3-\sqrt{5}}\cdot(3+\sqrt{5})\cdot(\sqrt{10}-\sqrt{2})$$

2. Выполните действия:

$$\left(\frac{\sqrt{a}-\sqrt{b}}{a\sqrt{b}+b\sqrt{a}}+\frac{\sqrt{a}+\sqrt{b}}{a\sqrt{b}-b\sqrt{a}}\right)\cdot\frac{(\sqrt{a})^3\cdot\sqrt{b}}{a+b}-\frac{2b}{a-b}.$$

1. Упростите:
$$\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1} - \frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}.$$

2. Упростите:

$$rac{2b\sqrt{x^2-1}}{x-\sqrt{x^2-1}}$$
 при $x=rac{1}{2}\Big(\sqrt{rac{a}{b}}+\sqrt{rac{b}{a}}\Big);$ $a,b>0.$

Вариант 8

1. Упростите:
$$\frac{\sqrt{2}}{\sqrt{\sqrt{2}+1}-1} - \frac{\sqrt{2}}{\sqrt{\sqrt{2}+1}+1}$$
.

2. Упростите:

$$\dfrac{\sqrt{a+x}-\sqrt{a-x}}{\sqrt{a+x}+\sqrt{a-x}}$$
 при $x=\dfrac{2a}{b+\dfrac{1}{b}};$ $a,b>0.$

9. Неполные квадратные уравнения

- 1. Решите неполные квадратные уравнения:
 - a) $-3.5x^2 = 0$,
 - 6) $5x^2 + 2x = 0$,
 - B) $4x^2 25 = 0$,
 - $\Gamma) (x-4)(x+6) = (2-x)(x-12).$
- 2. Решите уравнение, разложив его левую часть на множители:
 - a) x(2x-1)-x(7x+2)=0,
 - 6) $x^2 + 10x + 25 = 0$,
 - B) $x^2 3x + 2 = 0$.

- 3. Решите уравнение методом выделения полного квадрата $x^2 + 12x + 20 = 0$.
- 4. Найдите область определения функции

$$y = \frac{1}{\sqrt{x}} + \frac{1}{x^2 - 9}.$$

- 1. Решите неполные квадратные уравнения:
 - a) $2.5x^2 = 0$,
 - 6) $-3x^2 + 4x = 0$,
 - B) $-9x^2 + 16 = 0$,
 - r) (15-x)(x-2) = (x-6)(x+5).
- 2. Решите уравнение, разложив его левую часть на множители:
 - a) $(3x+4) \cdot x + (2-x) \cdot x = 0$,
 - 6) $100x^2 20x + 1 = 0$,
 - B) $x^2 + 4x + 3 = 0$.
- 3. Решите уравнение методом выделения полного квадрата $x^2 14x + 24 = 0$.
- 4. Найдите область определения функции

$$y = \sqrt{x+3} + \frac{1}{x^2 + x}.$$

- 1. Решите неполные квадратные уравнения:
 - a) $0.02x^2 = 0$,
 - 6) $-3\frac{1}{2}x^2 + 7x = 0$,
 - B) $169 9x^2 = 0$,
 - r) (3x-1)(4x+12) = (2x+3)(x-4).

- 2. Решите уравнение, разложив его левую часть на множители:
 - a) (x-2)(x+4) + (x+8)(x-2) = 0,
 - $6) 16x^2 + 40x + 25 = 0,$
 - B) $x^2 8x + 12 = 0$.
- 3. Решите уравнение методом выделения полного квадрата $x^2 20x + 36 = 0.$
- 4. Найдите область определения функции

$$y = \frac{\sqrt{7-x}}{x^2 + 4x}.$$

- 1. Решите неполные квадратные уравнения:
 - a) $-0.14x^2 = 0$,
 - $6) \quad 1\frac{1}{4}x^2 5x = 0,$
 - B) $121 100x^2 = 0$,
 - r) (5x+2)(3x-10)=(2x-4)(3x+5).
- 2. Решите уравнение, разложив его левую часть на множители:
 - a) (x+7)(x-3) + (3-x)(x+9) = 0,
 - $6) \ 4x^2 12x + 9 = 0,$
 - B) $x^2 + 5x 6 = 0$.
- 3. Решите уравнение методом выделения полного квадрата $x^2 + 16x + 48 = 0.$
- 4. Найдите область определения функции

$$y = \sqrt{x+4} - \frac{1}{2x - x^2}.$$

1. Решите уравнения:

a)
$$\frac{2}{3}x(x+6) = \frac{1}{2}x(5x-10)$$
, 6) $3(x^2-2) = 2(x^2-3)$.

2. Решите уравнения:

a)
$$\frac{x}{x+4} + \frac{x}{x-4} = 5\frac{4}{9}$$
, B) $x^2 + 18x + 56 = 0$.
6) $x^2 - 13x - 30 = 0$.

3. При каких *а* данное уравнение является неполным квадратным уравнением? Решите это уравнение при полученных значениях *а*.

$$(a-1)x^2 + 2ax + a^2 - 1 = 0.$$

4. Найдите область определения функции

$$y = \frac{\sqrt{x-1}}{x^2 - a^2}.$$

Вариант 6

1. Решите уравнения:

a)
$$\frac{3}{4}x(x+3) = \frac{2}{3}x(x-4)$$
,

6)
$$6(3-x^2) = 13 + 5(1-x^2)$$
.

2. Решите уравнения:

a)
$$\frac{x}{x+1} + \frac{x}{x-1} = 2\frac{2}{3}$$
, B) $x^2 - 22x + 40 = 0$.

$$6) x^2 + 11x + 30 = 0,$$

3. При каких a данное уравнение является неполным квадратным уравнением? Решите это уравнение при полученных значениях a.

$$(a+2)x^2 + ax + a^2 - 4 = 0.$$

4. Найдите область определения функции

$$y = \frac{\sqrt{x}}{x^2 - ax}.$$

1. Решите уравнения:

a)
$$\frac{3x^2 - 11}{8} + \frac{74 - 2x^2}{12} = 10$$
,

$$6) \quad \frac{x+3}{x-3} + \frac{x-3}{x+3} = 3\frac{1}{3},$$

- B) $2x^2 + |x| 3x = 0$.
- 2. Решите уравнения разложением на множители:
 - a) $x^2 18x 40 = 0$, 6) $7x^2 + 9x + 2 = 0$.
- 3. Решите неполные квадратные уравнения с параметром a:
 - a) $a^2x^2 + ax = 0$, 6) $(a+5)x^2 + 2ax + a^2 25 = 0$.
- 4. Найдите область определения функции

$$y = \frac{\sqrt{x}}{x^2 - (2a - 1)x}.$$

Вариант 8

1. Решите уравнения:

a)
$$\frac{5x^2+9}{6} - \frac{4x^2-9}{5} = 3$$
,

6)
$$\frac{5x+7}{x-2} - \frac{2x+21}{x+2} = 8\frac{2}{3},$$

- B) $4x^2 3|x| + x = 0$.
- 2. Решите уравнения разложением на множители:
 - a) $x^2 + 16x + 48 = 0$, 6) $11x^2 6x 5 = 0$.
- 3. Решите неполные квадратные уравнения с параметром a:
 - a) $a^2x^2 2ax = 0$, 6) $(a-3)x^2 + ax + a^2 9 = 0$.
- 4. Найдите область определения функции

$$y = \frac{\sqrt{x(a-1)^2}}{x^2 - 2ax}.$$

10. Решение квадратных уравнений

Вариант 1

- 1. Решите уравнения:
 - a) $x^2 5x + 6 = 0$.
- B) $3x^2 10x + 3 = 0$.
- 6) $3x^2 x 4 = 0$.
- 2. Не решая уравнения, определите, сколько корней оно имеет:
 - a) $2x^2 x + 1 = 0$. B) $x^2 10x + 25 = 0$.
 - 6) $5x^2 + 3x 1 = 0$.
- 3. Решите уравнение $\frac{x^2}{5} \frac{2x}{3} = \frac{x+5}{6}$.

Вариант 2

- 1. Решите уравнения:
 - a) $x^2 + 6x + 5 = 0$,
- B) $2x^2 7x 4 = 0$.
- 6) $2x^2 5x + 3 = 0$.
- 2. Не решая уравнения, определите, сколько корней оно имеет:
 - a) $3x^2 x 2 = 0$. B) $x^2 + 6x + 10 = 0$.
 - 6) $16x^2 + 8x + 1 = 0$.
- 3. Решите уравнение $\frac{x^2+2}{3}+\frac{3x-1}{2}=\frac{5x+3}{4}$.

- 1. Решите уравнения:
 - a) $x^2 9x + 20 = 0$,
- B) $2x^2 + 5x 18 = 0$.
- 6) $7x^2 + 7x + 5 = 0$,
- 2. Не решая уравнения, определите, сколько корней оно имеет:
 - a) $16x^2 + 40x + 25 = 0$, 6) $4x^2 7x + 7 = 0$.

3. Решите уравнения:

a)
$$(3x-1)(x-2) + (x+1)(x+2) = 12$$
,

6)
$$\frac{1}{x-1} + \frac{1}{x^2-1} = \frac{5}{8}$$
.

Вариант 4

- 1. Решите уравнения:
 - a) $x^2 + 10x + 24 = 0$,
 - B) $9x^2 + 8x + 6 = 0$.
 - 6) $2x^2 7x 9 = 0$.
- 2. Не решая уравнения, определите, сколько корней оно имеет:
 - a) $7x^2 + 9x 5 = 0$. 6) $2x^2 + 4x + 9 = 0$.
- 3. Решите уравнения:
 - a) (2x+1)(x+2) (x-1)(3x+1) = 0,
 - 6) $\frac{4}{x^2-4}-\frac{1}{x-2}=3.$

- 1. Решите уравнения:
 - a) $x^2 4\frac{1}{2}x + 4\frac{1}{2} = 0$, 6) $3x^2 + 11x + 6 = 0$.
- 2. Решите уравнения:
 - a) $\frac{(x+3)^2}{5} + 1 \frac{(3x-1)^2}{5} = \frac{x(2x-3)}{2}$,
 - 6) $\frac{x+1}{2x-3} + \frac{x}{x+1} \frac{11x-x^2-8}{(2x-3)(x+1)} = 0.$
- 3. Найдите число а и второй корень уравнения $x^2 - 5x + a = 0$, если $x_1 = 5$.
- 4. Решите уравнение $ax^2 + (2a^2 1)x 2a = 0$.
- 5. При каких значениях параметра b уравнение $bx^2 - x + b = 0$ имеет ровно 1 корень?

1. Решите уравнения:

a)
$$x^2 + 2\frac{1}{2}x + 1 = 0$$
, b) $4x^2 - 17x - 15 = 0$.

2. Решите уравнения:

a)
$$\frac{5x-x^2}{3} - \frac{(5x-11)^2}{4} = 6 - \frac{(7-x)^2}{2}$$
,

6)
$$\frac{x}{2x-5} + \frac{x-1}{x} - \frac{13x - x^2 - 20}{(2x-5)x} = 0.$$

- 3. Найдите число a и второй корень уравнения $x^2 + ax 15 = 0$, если $x_1 = 3$.
- 4. Решите уравнение $ax^2 (3a^2 1)x 3a = 0$.
- 5. При каких значениях параметра b уравнение $(b-1)x^2+x+b-1=0$ имеет ровно 1 корень?

Вариант 7

1. Решите уравнения:

a)
$$2x^2 - 7x + 6 = 0$$
,

$$6) \quad \frac{2x-5}{x-1} = \frac{5x-3}{3x+5},$$

B)
$$\frac{x-4}{x-12} + \frac{12-x}{2x+4} - \frac{14x-70}{(x+2)(x-12)} = 0.$$

2. Решите уравнения:

a)
$$3x + \frac{(x-3)^2}{4} = \frac{(x+3)^2}{8} + \frac{(x+1)(x-1)}{3}$$
,

6)
$$x^2 - (\sqrt{5} - \sqrt{15})x - 5\sqrt{3} = 0$$
.

- 3. Решите уравнение $(a+1)x^2-2x+1-a=0$ и определите, при каком a уравнение имеет единственный корень.
- 4. Решите уравнение $ax^2 (2a + b)x + 2b = 0$.

1. Решите уравнения:

a)
$$5x^2 - 8x + 3 = 0$$
,

6)
$$\frac{5-x}{2x-1} = \frac{15-4x}{3x+1}$$
,

B)
$$\frac{x}{x-4} - \frac{x-4}{2x+6} - \frac{7x-3.5}{(x+3)(x-4)} = 0.$$

2. Решите уравнения:

a)
$$x-7+\frac{(x-6)^2}{3}=\frac{(x+4)^2}{2}-\frac{(x+2)(x+6)}{4}$$
,

6)
$$x^2 + (\sqrt{3} - 2) \cdot x - 2\sqrt{3} = 0.$$

- 3. Решите уравнение $(2-a)x^2+4x+a+2=0$ и определите, при каком а уравнение имеет единственный корень.
- 4. Решите уравнение $bx^2 + (3b a)x 3a = 0$.

Теорема Виета 11.

Вариант 1

- 1. Запишите приведенные квадратные уравнения, имеющие корни x_1 , и x_2 .
 - a) $x_1 = -1$ $x_2 = 8$,
- 6) $x_1 = -5$ $x_2 = -6$.
- 2. Подбором найдите корни уравнения:
 - a) $x^2 + 4x + 3 = 0$.
- B) $x^2 + 12x 28 = 0$.
- 6) $x^2 9x + 14 = 0$,
- 3. Сократите дроби:

a)
$$\frac{x^2 + 8x - 9}{x^2 - 3x + 2}$$
,

6)
$$\frac{3x^2+2x-1}{1-x^2}$$
.

- 1. Запишите приведенные квадратные уравнения, имеющие корни x_1 и x_2 :

 - a) $x_1 = -3$ $x_2 = 4$, 6) $x_1 = -7$ $x_2 = -4$.

2. Подбором найдите корни уравнений:

a)
$$x^2 - 5x + 4 = 0$$
,

$$x^2 + 11x - 26 = 0.$$

$$6) x^2 - 10x + 21 = 0,$$

3. Сократите дроби:

a)
$$\frac{x^2 + 5x - 14}{x^2 - 4}$$
,

6)
$$\frac{x^2 + 5x + 6}{3x^2 + x - 10}$$
.

Вариант 3

1. Подбором найдите корни уравнений:

a)
$$x^2 + 10x + 9 = 0$$
, b) $x^2 + 4x - 45 = 0$.

B)
$$x^2 + 4x - 45 = 0$$

$$6) x^2 - 16x + 39 = 0,$$

2. Сократите дроби:

a)
$$\frac{x^2 + 6x + 5}{5x^2 + 6x + 1}$$

a)
$$\frac{x^2 + 6x + 5}{5x^2 + 6x + 1}$$
, 6) $\frac{6x^2 - 7x - 3}{2x^2 - x - 3}$.

3. Найдите
$$a$$
 и x_2 , если $3x^2 + 5x + a = 0$ и $x_1 = -\frac{2}{3}$.

4. При каком значении параметра а уравнение $25x^2 - 20x + a = 0$ будет иметь равные корни?

Вариант 4

1. Подбором найдите корни уравнения:

a)
$$x^2 - 11x + 10 = 0$$
, B) $x^2 - 7x - 30 = 0$.

B)
$$x^2 - 7x - 30 = 0$$

6)
$$x^2 + 14x + 45 = 0$$
,

2. Сократите дроби:

a)
$$\frac{9x^2-10x+1}{7x^2-6x-1}$$
,

a)
$$\frac{9x^2 - 10x + 1}{7x^2 - 6x - 1}$$
, 6) $\frac{a^2 + 6a - 91}{a^2 + 8a - 105}$.

3. Найдите
$$a$$
 и x_2 , если $4x^2 - 7x + a = 0$ и $x_1 = \frac{3}{4}$.

4. При каком значении параметра а уравнение $4x^{2} + 12x + a = 0$ будет иметь равные корни?

Вариант 5

1. Решите уравнения подбором:

a)
$$x^2 - 4x - 60 = 0$$
,

$$B) 2001x^2 + 2x - 1999 = 0.$$

6)
$$x^2 + 25x + 114 = 0$$
,

2. Сократите дроби:

a)
$$\frac{2x^2 + 8x - 90}{3x^2 - 36x + 105}$$
, 6) $\frac{5x^2 - 6x - 32}{5x^2 - 11x - 16}$.

- 3. $x_1^2 x_2^2 = \frac{8}{9}$; $3x^2 2x + a = 0$. Найдите a.
- 4. Найдите все значения параметра a, при которых корни x_1 и x_2 уравнения $x^2-(a-2)\cdot x-(a+3)=0$ удовлетворяют условию $x_1^2+x_2^2=9$.
- 5. Найдите область определения функции

$$y = \frac{1}{x^2 - 12x + 11} + \sqrt{\frac{12 - x}{x}}.$$

Вариант 6

- 1. Решите уравнения подбором:
 - a) $x^2 x 56 = 0$,
- B) $2000x^2 + x 2001 = 0$.
- $6) x^2 29x + 198 = 0,$
- 2. Сократите дроби:

a)
$$\frac{24x^2 - 38x + 15}{12x^2 - 16x + 5}$$
, 6) $\frac{7x^2 + 9x - 36}{7x^2 + 16x - 48}$.

- $3. \quad x_1^2 x_2^2 = 3\frac{3}{4}; \quad 2x^2 + 3x + a = 0.$ Найдите a.
- 4. Найдите все значения параметра a, при которых корни x_1 и x_2 уравнения $x^2 (a+2) \cdot x (a+5) = 0$ удовлетворяют условию $x_1^2 + x_2^2 = 9$.
- 5. Найдите область определения функции

$$y = \sqrt{\frac{x+2}{x+3}} - \frac{1}{x^2 - 9x + 20}.$$

Вариант 7

1. Решите уравнения:

a)
$$\frac{x^2 + 12x + 32}{x^3 - x + 60} = 0$$
, 6) $\frac{x^2 - 7x - 120}{|x + 5| - 3} = 0$.

2. Произведите вычитание дробей:

$$\frac{1}{15x^2 - x - 6} - \frac{1}{24x^2 - 13x - 2}.$$

- 3. При каких значениях $a x_1 + x_2 = 0$, где x_1 и x_2 корни уравнения $x^2 - (a^2 - 5a - 14)x - a = 0$?
- 4. $2x^2 11x + 13 = 0$; x_1 и x_2 корни. Вычислить:
 - a) $\frac{x_1}{x_2} + \frac{x_2}{x_3}$,

- 6) $x_1^4 + x_2^4$.
- 5. При каком $a x_1^2 + x_2^2$ уравнения

$$x^2 + (a-1)x + a^2 - 1,5 = 0$$

будет наибольшей?

Вариант 8

1. Решите уравнения:

a)
$$\frac{x^2 + 8x - 20}{x^3 + 3x - 14} = 0$$
,

a)
$$\frac{x^2 + 8x - 20}{x^3 + 3x - 14} = 0$$
, 6) $\frac{x^2 - 11x - 60}{|x - 7| - 11} = 0$.

2. Произведите вычитание дробей:

$$\frac{1}{12x^2 + 23x - 24} - \frac{1}{28x^2 - x - 15}.$$

- 3. При каких значениях $a x_1 + x_2 = 0$, где x_1 и x_2 корни уравнения $x^2 + (a^2 + 7a - 18)x + a = 0$?
- 4. $2x^2 11x + 13 = 0$; x_1 и x_2 корни. Вычислите:
 - a) $x_1^2 + x_2^2$,

- 6) $x_1^3 + x_2^3$.
- 5. При каком $a x_1^2 + x_2^2$ уравнения

$$x^2 - (a+1)x + a^2 - 2.5 = 0$$

будет наибольшей?

Уравнения, сводящиеся к квадратным

- 1. Решите уравнения:
 - a) $x^4 6x^2 + 5 = 0$,
- 6) $x^4 + 7x^2 8 = 0$.
- 2. Решите уравнения:
 - a) $\frac{3x-7}{x+5} = \frac{x-3}{x+2}$,

6)
$$\frac{3x+13}{x+1}-4=\frac{x+11}{x^2-1}$$
.

3. Решите уравнения:

a)
$$(x^2 + x)^2 - 8(x^2 + x) + 12 = 0$$
,

6)
$$x^6 + 28x^3 + 27 = 0$$
.

4. Решите уравнение $(x-1)(x-2)(x-3) = x^3 - 14x - 2$.

Вариант 2

- 1. Решите уравнения:
 - a) $x^4 7x^2 + 6 = 0$.
- 6) $x^4 + 10x^2 11 = 0$.
- 2. Решите уравнения:

a)
$$\frac{5+2x}{4x-3} = \frac{3x+3}{7-x}$$
,

a)
$$\frac{5+2x}{4x-3} = \frac{3x+3}{7-x}$$
, 6) $\frac{2x-1}{x-1} - 1 = \frac{x+4}{x^2-1}$.

- 3. Решите уравнения:
 - a) $(x^2 3x)^2 14(x^2 3x) + 40 = 0$,
 - 6) $x^6 9x^3 + 8 = 0$
- 4. Решите уравнение x(x-1)(x-2) = (x+1)(x+2)(x+3).

- 1. Решите уравнения:
 - a) $3x^4 10x^2 + 3 = 0$.
 - 6) $(1-y^2)^2 + 7(1-y^2) + 12 = 0$.
- 2. Решите уравнения:
 - a) $\frac{6}{5x-1} = 3x + 2$,
 - 6) $\frac{6x}{2\pi 1} \frac{8}{2x + 1} + \frac{48}{9x^2 1} = 7.$
- 3. Решите уравнения:
 - a) $(x^2 5x)^2 + 10(x^2 5x) + 24 = 0$
 - 6) $(x-3)^2 + (x+4)^2 (x-5)^2 = 17x + 24$.
- 4. Решите уравнение $(x^2 5x + 2)(x^2 5x 1) = 28$.

1. Решите уравнения:

a)
$$2x^4 - 5x^2 + 2 = 0$$
,

6)
$$(z^2 - 9)^2 + 17(z^2 - 9) + 16 = 0$$
.

2. Решите уравнения:

a)
$$5x + 6 = \frac{7}{2x + 9}$$
,

6)
$$\frac{45}{x^2-1} - \frac{5}{x+1} + \frac{3x}{x-1} = 6.$$

3. Решите уравнения:

a)
$$(x^2 + 3x)^2 - 2(x^2 + 3x) - 8 = 0$$
,

6)
$$(x+5)^2 + (x-2)^2 + (x-7)(x+7) = 11x + 30$$
.

4. Решите уравнение

$$(x^2 + 8x + 7)(x^2 + 8x + 15) = -15.$$

Вариант 5

1. Решите уравнения:

a)
$$x^4 - 4x^2 - 45 = 0$$
, 6) $(x - 5)^4 + (x - 5)^2 - 20 = 0$.

2. Решите уравнения:

a)
$$1 - \frac{3-2x}{5-x} = \frac{3}{3-x} - \frac{x+3}{x+1}$$

6)
$$\frac{30}{x^2 - 1} - \frac{13}{x^2 + x + 1} = \frac{7 + 18x}{x^3 - 1}$$
.

3. Решите уравнения:

a)
$$4x^4 - (a+36)x^2 + 9a = 0$$
,

6)
$$7\left(x+\frac{1}{x}\right)-2\left(x^2+\frac{1}{x^2}\right)=9.$$

4. Решите уравнение

$$(x^2 + 2x)^2 - (x+1)^2 = 55.$$

Вариант б

1. Решите уравнения:

a)
$$x^4 + 6x^2 - 55 = 0$$
, 6) $(x+3)^4 - (x+3)^2 - 12 = 0$.

2. Решите уравнения:

a)
$$\frac{1}{2-x} - 1 = \frac{1}{x-2} - \frac{6-x}{3x^2 - 12}$$
,

6)
$$\frac{2}{x^2 - x + 1} = \frac{1}{x + 1} + \frac{2x - 1}{x^3 + 1}$$
.

3. Решите уравнения:

a)
$$x^4 - 2(a+8)x^2 + 32a = 0$$
,

6)
$$3\left(x^2 + \frac{1}{x^2}\right) - \left(x + \frac{1}{x}\right) = 24.$$

4. Решите уравнение $(x^2 - 6x)^2 - 2(x - 3)^2 = 81$.

Вариант 7

1. Решите уравнения:

a)
$$16x^4 - 24x^2 + 9 = 0$$
,

6)
$$\left(x + \frac{2}{x}\right)^2 - 2\frac{x^2 + 2}{x} - 3 = 0.$$

2. Решите уравнения:

a)
$$\frac{1}{x-1} - \frac{2}{x+2} = 1$$
,

6)
$$\frac{1}{x+2} + \frac{1}{x+20} = \frac{1}{x+4} + \frac{1}{x+8}$$

3. Решите уравнения:

a)
$$x^2 + \frac{1}{x^2} - x - \frac{1}{x} - 4 = 0$$
,

6)
$$\frac{1}{x^2 - 2x + 2} + \frac{1}{x^2 - 2x + 3} = \frac{9}{2(x^2 - 2x + 4)}$$

4. Решите уравнение

$$(x^2 - 5x + 7)^2 - (x - 2)(x - 3) = 1.$$

1. Решите уравнения:

a)
$$25x^4 - 20x^2 + 4 = 0$$
,

6)
$$\left(\frac{x^2-6}{x}\right)^2 + 4\left(x-\frac{6}{x}\right) - 5 = 0.$$

2. Решите уравнения:

a)
$$\frac{x}{x+3} + \frac{4}{x+1} = 2$$
,

6)
$$\frac{1}{x-6} + \frac{1}{x-4} = \frac{1}{x+2} + \frac{1}{x-7}$$
.

3. Решите уравнения:

a)
$$x^2 + \frac{1}{x^2} + 6x - \frac{6}{x} + 6 = 0$$
,

6)
$$\frac{1}{x^2 - 3x + 3} + \frac{2}{x^2 - 3x + 4} = \frac{6}{x^2 - 3x + 5}$$
.

4. Решите уравнение $(x^2 + x + 1)^2 - 10(x + 4)(x - 3) = 109$.

13. Решение задач с помощью квадратных уравнений

- 1. Теплоход прошел 48 км по течению и столько же против течения. На весь путь он затратил 5 ч. Определите скорость теплохода, если скорость течения равна 4 км/ч.
- 2. Бак наполняется двумя трубами за 2 ч 55 мин. Первая труба может наполнить его на 2 ч быстрее, чем вторая. За какое время каждая труба, действуя отдельно, может наполнить бак?
- Площадь прямоугольного треугольника равна 180 см². Найдите катеты этого треугольника, если один больше другого на 31 см.

- 1. Расстояние между двумя пристанями по реке 80 км. Катер проходит этот путь туда и обратно за 8 ч 20 мин. Определите скорость катера в стоячей воде, если скорость течения равна 4 км/ч.
- 2. Двое рабочих, работая вместе, могут оклеить комнату обоями за 6 ч. За сколько часов может оклеить комнату каждый, если первый это сделает на 5 ч быстрее второго?
- 3. Периметр прямоугольника равен 46 см, а его диагональ 17 см. Найдите стороны прямоугольника.

Вариант 3

- 1. Катер прошел 5 км по течению и 8 км по озеру, затратив на весь путь 1 ч. Скорость течения равна 3 км/ч. Определите скорость катера по течению.
- 2. Две бригады, работая вместе, делают некоторую работу за 12 ч. Первая бригада, работая отдельно, могла бы выполнить эту работу на 10 ч быстрее, чем вторая. За какое время эту работу выполнит первая бригада?
- 3. Два равных прямоугольника, периметры которых равны 21 м, сложили так, что их общая часть квадрат, сторона которого равна меньшей стороне прямоугольника. Площадь получившейся фигуры равна 30 м². Найдите стороны прямоугольников.

- 1. Катер прошел 7 км по течению и 10 км против течения, затратив на первый путь на 30 мин меньше, чем на второй. Найдите скорость катера против течения, если скорость течения равна 2 км/ч.
- 2. Бассейн наполняется двумя трубами за 10 ч. За сколько часов бассейн наполнит первая труба, если она это делает на 15 ч быстрее, чем первая?

Два равных прямоугольника сложили так, что они образовали букву Т и их общей частью является меньшая сторона одного из прямоугольников. Периметр образовавшейся фигуры равен 45 см, а площадь каждого прямоугольника равна 27 см². Найдите стороны прямоугольников.

Вариант 5

- 1. Смешали 10%-ный и 25%-ный растворы соли и получили 3 кг 20%-ного раствора. Какое количество каждого раствора взяли?
- 2. Двое рабочих выполняли заказ. Второй приступил к работе на 1 ч позже первого. Через 3 ч после начала работы первого им осталось сделать $\frac{9}{20}$ заказа. По окончании работы оказалось, что каждый выполнил по $\frac{1}{2}$ заказа. За сколько часов каждый может выполнить заказ?
- 3. Машина выезжает из A в B, доехав до B, тут же возвращается обратно. Через 1 час после выезда машина была на расстоянии 80 км от B, а еще через 3 в 80 км от A. На весь путь туда и обратно машина затратила меньше 9 ч. Найдите AB.

- 1. Имеется сталь двух сортов с содержанием никеля в 5% и 40%. Сколько нужно взять каждого сорта стали, чтобы получить 140 т стали с содержанием никеля в 30%?
- 2. Заказ для первого и второго рабочих состоял из одинаковых деталей. После того, как первый работал 2 ч, а второй 5 ч, оказалось, что сделана $\frac{1}{2}$ заказа. Проработав еще 3 ч, они установили, что осталось выполнить 0,05 всего заказа. За сколько часов каждый может выполнить заказ?

3. От пристани A вниз по течению отправились катер и плот. Катер доплыл до B, повернул обратно и встретил плот через 4 ч после выхода из A. Сколько времени шел катер от A до B?

Вариант 7

- 1. На шахматном турнире было сыграно 45 партий. Каждый из участников сыграл с каждым по одному разу. Сколько было участников турнира?
- 2. Два насоса различной мощности, работая вместе, наполняют бассейн за 4 ч. Для заполнения половины бассейна первому насосу требуется времени на 4 ч больше, чем второму для заполнения $\frac{3}{4}$ бассейна. За какое время может наполнить бассейн каждый насос в отдельности?
- 3. Два тела A и B движутся по двум прямым линиям, пересекающимся под прямым углом. $V_A=4$ м/с; $V_B=3$ м/с. В данный момент тело A отстоит от точки пересечения на 300 м и движется по направлению к ней, а тело B отстоит от точки пересечения на 250 м и движется от нее. Через какое временя расстояние между телами будет равно $1\,825\,$ м?

- 1. Участники похода решили обменяться фотографиями (каждый с каждым). Сколько человек участвовало в походе, если понадобились 72 фотографии?
- 2. В бассейн проведены две трубы. Если вода будет течь через вторую трубу, то бассейн наполнится на 3 ч быстрее, чем через первую трубу. Вода втекала в течение $5\frac{3}{4}$ ч через первую трубу, а затем открыли вторую трубу, и через 10 ч бассейн наполнился. За сколько часов наполнит бассейн каждая труба в отдельности?

3. Два тела движутся по сторонам прямого угла по направлению к вершине со скоростями 3 м/с и 4 м/с. В некоторый момент времени первое тело отстояло от вершины угла на 21 см, а второе — на 28 см. Через какое время расстояние между телами будет равно 5 см?

14. Решение систем 2-й степени

Вариант 1

Решите системы уравнений:

1. a)
$$\begin{cases} x + 2y = 11 \\ 5x - 3y = 3. \end{cases}$$

6)
$$\begin{cases} 2x + 5y = 25 \\ 4x + 3y = 15. \end{cases}$$

2. a)
$$\begin{cases} x^2 + y^2 = 8 \\ x - y = 4. \end{cases}$$

6)
$$\begin{cases} 2x^2 - y = 2 \\ x - y = 1. \end{cases}$$

3. a)
$$\begin{cases} (x-1)(y-1) = 2\\ x+y = 5. \end{cases}$$

$$6) \begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{3}{8} \\ x + y = 12. \end{cases}$$

4.
$$\begin{cases} |x| + y^2 = 13 \\ x + |y| = -1. \end{cases}$$

5.
$$\begin{cases} xy^2 - x = 9\\ xy - xy^3 = 18. \end{cases}$$

Вариант 2

Решите системы уравнений:

1. a)
$$\begin{cases} 3x - y = 5 \\ 5x + 2y = 23. \end{cases}$$

6)
$$\begin{cases} 4x + 3y = -4 \\ 6x + 5y = -7. \end{cases}$$

2. a)
$$\begin{cases} x^2 + y^2 = 40 \\ x + y = 8. \end{cases}$$

$$\begin{cases} xy = 15 \\ 2x - y = 7. \end{cases}$$

3. a)
$$\begin{cases} (x-2)(y+1) = 1 \\ x-y = 3. \end{cases}$$
 6)

$$6) \begin{cases} \frac{1}{x} - \frac{1}{y} = -\frac{4}{5} \\ x - y = 4. \end{cases}$$

4.
$$\begin{cases} |x| + y^2 = 5 \\ |x| + |y| = 3. \end{cases}$$

$$5. \begin{cases} x + xy^3 = 9 \\ xy + xy^2 = 6. \end{cases}$$

Решите системы уравнений:

1. a)
$$\begin{cases} 6x - 7y = 40 \\ 5y - 2x = -8. \end{cases}$$

6)
$$\begin{cases} 7x - 3y = 15 \\ 5x + 6y = 27. \end{cases}$$

2. a)
$$\begin{cases} x^2 + xy = 2 \\ y - 3x = 7. \end{cases}$$

6)
$$\begin{cases} x - y = -8 \\ x^2 + y^2 + 6x - 2y = 0. \end{cases}$$

$$3. a) \begin{cases} x^2 = xy \\ x^2y = 4y. \end{cases}$$

$$\begin{cases} x^4 + y^4 = 6xy \\ x^2y = 3x. \end{cases}$$

4.
$$\begin{cases} |x| + y = 1 \\ x^2 + y^2 = 5. \end{cases}$$

5.
$$\begin{cases} \frac{x^2}{y} + \frac{y^2}{x} = 12\\ \frac{1}{x} + \frac{1}{y} = \frac{1}{3}. \end{cases}$$

Вариант 4

Решите системы уравнений:

1. a)
$$\begin{cases} 2x - 3y = 8 \\ 7x - 5y = -5. \end{cases}$$

6)
$$\begin{cases} 12x + 16y = -1\\ 3x + 4y = -2. \end{cases}$$

2. a)
$$\begin{cases} x^2 - xy - y^2 = 19 \\ x - y = 7. \end{cases}$$

6)
$$\begin{cases} 2x - y = 1 \\ 2x^2 - y^2 + x + y = -11. \end{cases}$$

3. a)
$$\begin{cases} x^2 - y^2 - 2x + 2y = 0 \\ x^2 + y^2 = 10. \end{cases}$$

6)
$$\begin{cases} x^2 + xy = 6x \\ x^2 + y^2 = 3(x+y). \end{cases}$$

$$4. \begin{cases} |x| + |y| = 2 \\ xy = 1. \end{cases}$$

5.
$$\begin{cases} xy(x+y) = 20\\ \frac{1}{x} + \frac{1}{y} = \frac{5}{4}. \end{cases}$$

Вариант 5

Решите системы 1-4:

1.
$$\begin{cases} (x+2y+3)(x-y-1) = 0\\ (x+y+2)(x+3y+1) = 0. \end{cases}$$

2. a)
$$\begin{cases} x^2 + y^2 - 6y = 0 \\ y + 2x = 0. \end{cases}$$

$$\begin{cases} x - y + xy = 7 \\ x - y - xy = -5. \end{cases}$$

3. a)
$$\begin{cases} \frac{x+y}{x-y} + \frac{x-y}{x+y} = \frac{10}{3} \\ x^2 + y^2 = 5. \end{cases}$$
 6)
$$\begin{cases} x^2 - xy + y^2 = 7 \\ x^4 + x^2y^2 + y^4 = 91. \end{cases}$$

6)
$$\begin{cases} x^2 - xy + y^2 = 7\\ x^4 + x^2y^2 + y^4 = 91 \end{cases}$$

4.
$$\begin{cases} 4x^2 - 3xy - y^2 = 0\\ 32x^2 - 36xy + 9y^2 = 6. \end{cases}$$

5. При каком а данная система имеет ровно 3 решения?

$$\begin{cases} |x| = y - a \\ x^2 + y^2 = 9. \end{cases}$$

Вариант 6

Решите системы 1-4:

1.
$$\begin{cases} (x+2y+3)(x-y-1) = 0\\ (x+2y+2)(y-3) = 0. \end{cases}$$

2. a)
$$\begin{cases} x^2 - xy + y^2 = 63 \\ x - y = -3. \end{cases}$$
 6)
$$\begin{cases} x + y = 5xy \\ x - y = xy. \end{cases}$$

$$\begin{cases} x + y = 5xy \\ x - y = xy. \end{cases}$$

3. a)
$$\begin{cases} \frac{x+y}{x-y} + \frac{x-y}{x+y} = \frac{5}{2} \\ x^2 + y^2 = 20 \end{cases}$$
 6)
$$\begin{cases} x^2 - xy + y^2 = 3 \\ x^4 + x^2y^2 + y^4 = 21. \end{cases}$$

6)
$$\begin{cases} x^2 - xy + y^2 = 3\\ x^4 + x^2y^2 + y^4 = 21. \end{cases}$$

4.
$$\begin{cases} 15x^2 + xy - 2y^2 = 0 \\ 7x^2 - 4xy - 3y^2 = -32. \end{cases}$$

5. При каком а данная система имеет ровно 3 решения?

$$\begin{cases} x^2 + y^2 = 4 \\ y + |x| = a. \end{cases}$$

Вариант 7

Решите системы 1-4:

1.
$$\begin{cases} \frac{1}{x^2} + \frac{1}{y^2} = \frac{53}{9} \\ \frac{3}{x^2} - \frac{2}{y^2} = -\frac{86}{9}. \end{cases}$$

2. a)
$$\begin{cases} \frac{4}{x-1} - \frac{5}{y+1} = 1 \\ \frac{3}{x+3} = \frac{2}{y}. \end{cases}$$
 6)
$$\begin{cases} \frac{1+x+x^2}{1+y+y^2} = 3 \\ x+y=6. \end{cases}$$
 3. a)
$$\begin{cases} x^3 - y^3 = 65 \\ x^2y - xy^2 = -20. \end{cases}$$
 6)
$$\begin{cases} xy + x - y = 7 \\ x^2y - xy^2 = 6. \end{cases}$$
 4.
$$\begin{cases} x^2 - 3xy + y^2 = -1 \\ 3x^2 - xy + 3y^2 = 13. \end{cases}$$

5. При каком a данная система имеет ровно два решения? $\begin{cases} (x+y)^2 = 36 \\ x^2 + y^2 = a^2. \end{cases}$

Вариант 8

Решите системы 1-4:

1.
$$\begin{cases} \frac{3}{2-x} + y^2 = 7\\ \frac{1}{2-x} + 3y^2 = 13. \end{cases}$$

2. a)
$$\begin{cases} \frac{3}{x+5} + \frac{2}{y-3} = 2\\ \frac{4}{x-2} = \frac{1}{y-6}. \end{cases}$$
 6)
$$\begin{cases} \frac{x^2+y+1}{y^2+x+1} = \frac{3}{2}\\ x-y=1. \end{cases}$$

3. a)
$$\begin{cases} xy(x+y) = 30 \\ x^3 + y^3 = 35. \end{cases}$$
 6)
$$\begin{cases} x^2y - xy^2 = 6 \\ xy + x - y = -5. \end{cases}$$

4.
$$\begin{cases} 5x^2 - 6xy + 5y^2 = 29 \\ 7x^2 - 8xy + 7y^2 = 43. \end{cases}$$

5. При каком a данная система имеет ровно два решения?

$$\begin{cases} x^2 + y^2 = a \\ (x - y)^2 = 16. \end{cases}$$

15. Квадратичная функция

Вариант 1

- 1. Определите координаты вершин парабол:
 - a) $y = x^2 7$.

B) $y = 2x^2 - 8x + 7$.

- 6) $y = -x^2 + 2x$.
- 2. Найдите координаты точек пересечения параболы с осями координат:
 - a) $y = x^2 4x + 3$.
- 6) $y = -2x^2 + x + 1$.
- 3. Постройте графики функции и укажите промежутки возрастания и убывания:

 - a) $y = (x-3)^2 + 2$, 6) $y = -x^2 + 6x 5$.
- 4. Найдите наибольшее значение функции

$$y = -2x^2 + 8x + 1.$$

Вариант 2

- 1. Определите координаты вершин парабол:
 - a) $y = -x^2 + 5$.

B) $y = -3x^2 + 12x - 2$.

- 6) $y = x^2 + 2x$.
- 2. Найдите координаты точек пересечения парабол с осями координат:
 - a) $y = x^2 + 5x + 4$,
- 6) $y = -3x^2 + 2x + 1$.
- 3. Постройте графики функций и укажите промежутки возрастания и убывания:
 - a) $y = -(x+1)^2 + 4$, 6) $y = x^2 + 2x 3$.
- 4. Найдите наименьшее значение функции

$$y = 2x^2 + 12x - 15.$$

Вариант 3

- 1. Постройте графики функций и укажите, при каких xфункция принимает отрицательные значения:
 - a) $y = 16 x^2$.

6) $y = 2x^2 + 6x$.

- 2. Укажите, при каком значении x функция принимает наибольшее значение: $y = -4x^2 + 16x - 7$.
- 3. Найдите точки пересечения графиков функций y = x + 1 и $y = 3 - x^2$.
- 4. Постройте графики функций:
 - a) $y = x^2 2x 3$,
- 6) $y = x^2 2|x| 3$,
- B) $y = |x^2 2|x| 3|$.

- 1. Постройте график функции и укажите, при каких xфункция принимает отрицательные значения:
 - a) $y = x^2 9$.

- 6) $y = 7x x^2$.
- 2. Укажите, при каком значении x функция принимает наименьшее значение: $y = 3x^2 - 12x + 7$.
- 3. Найдите точки пересечения графиков функций y=x и $u = x^2 - 2$.
- 4. Постройте графики функций:
 - a) $y = -x^2 + 4x 3$, 6) $y = -x^2 + 4|x| 3$,
 - B) $y = |-x^2 + 4|x| 3|$.

- 1. Постройте графики:
 - a) $y = -3x^2 + 6x$.
 - 6) $u = 2x^2 + 6x + 4$.
- 2. Найдите точки пересечения графиков функций y = x + 2 и $(x - 2)^2 + 2$.
- 3. Найдите $a, \ b$ и c для параболы $y = ax^2 + bx + c$, если M — вершина, а N принадлежит параболе: M(-2;5); N(0;1).
- 4. Постройте графики функций:
 - a) $y = (1 x) \cdot \frac{x^2 4}{|x 2|}$,
- $6) \ y = 2\sqrt{x^2 6x + 9} x^2.$
- 5. Постройте график уравнения

$$(x^2 - 2x - y)(y^2 - 2y + 1) = 0.$$

- 1. Постройте графики:
 - a) $y = 2x^2 + 8x$.

- 6) $y = -x^2 + 6x 5$.
- 2. Найдите точки пересечения графиков функций $y = -(x+2)^2 + 3$ и y = -x - 1.
- 3. Найдите a, b и c для параболы $y = ax^2 + bx + c$, если M — вершина, а N принадлежит параболе: M(-1;6); N(0;4).
- 4. Постройте графики функций:

a)
$$y = \frac{|x^2 - 1|}{x - 1}x$$
,

6)
$$y = x^2 - 2\sqrt{x^2 + 2x + 1}$$
.

5. Постройте график уравнения

$$(x^2 + 2x + 1)(y - x^2 + 3x) = 0.$$

Вариант 7

1. Постройте графики:

a)
$$y = -\sqrt{x^4 - 4x^2 + 4}$$
, 6) $y = x^2 - \frac{|x|}{x}$.

f)
$$y = x^2 - \frac{|x|}{x}$$
.

2. Найдите наибольшее значение функции

$$y = -3(4x - 7)^2 + 12(4x - 7) - 17.$$

- 3. Число 34 представьте в виде суммы двух положительных слагаемых, так чтобы сумма их квадратов была наименьшей.
- 4. При каких значениях параметра графики функций пересекаются в одной точке?

$$y = 2ax^2 + 2x + 1$$
 и $y = 5x^2 + 2ax - 2$.

5. Определите по данному графику функции $y = ax^2 + bx + c$ знаки a, b и c.

a)

б)

1. Постройте графики:

a)
$$y = \sqrt{25 - 10x^2 + x^4}$$
, 6) $y = \frac{2|x - 1|}{x - 1}x - x^2$.

2. Найдите наименьшее значение функции

$$y = 2(9 - 5x)^2 - 8(5x - 9) + 3.$$

- 3. Найдите наибольшую площадь прямоугольника, если его периметр равен 20 см.
- 4. При каких значениях параметра графики функций пересекаются в одной точке? $y = 2ax^2 + 2x + 1$ и $y = 5x^2 + 2ax 2$.
- 5. Определите по данному графику функции $y = ax^2 + bx + c$ знаки a, b и c.

16. Квадратные неравенства

- 1. Решите неравенства:
 - a) $4 x^2 \ge 0$,

- B) $5x^2 3x 2 > 0$,
- 6) $4x^2 4x + 1 \le 0$,
- r) $2x^2 6x + 5 < 0$.
- 2. Решите неравенства графически:
 - a) $x^2 3x + 2 > 0$,
- 6) $4x x^2 \ge 0$.
- 3. Решите неравенства:
 - a) $\frac{x^2 7x + 12}{x^2 9} < 0$,
- 6) $\frac{-2x^2 + x + 1}{x^2} \geqslant 0.$

- 1. Решите неравенства:
 - a) $x^2 81 > 0$.

- B) $4x^2 + 3x 7 \le 0$,
- 6) $9x^2 6x + 1 > 0$.
- Γ) $3x^2 x + 2 \le 0$.
- 2. Решите неравенства графически:
 - a) $2x + x^2 \ge 0$,

- $6) -x^2 + 4x 3 > 0.$
- 3. Решите неравенства:
 - a) $\frac{x^2 9x + 20}{16 x^2} \ge 0$,
- 6) $\frac{3x^2 2x 1}{x^2} < 0.$

Вариант 3

- 1. Решите неравенства:
 - a) $3x x^2 > 0$,

- B) $\frac{x+5}{3-x} \le 0$,
- 6) $-x^2 + 13x 42 \ge 0$,
- $r) \frac{x^2 16}{2x^2 3x + 3} < 0.$
- 2. Решите неравенства графически:
 - a) $\frac{1}{4} x^2 > 0$,

- $6) -x^2 2x + 3 \leqslant 0.$
- 3. Решите неравенства:
 - a) $\frac{1}{x+3} \frac{1}{x-3} > 0$,
- 6) $\frac{x^2 2x + 1}{x^2 4} \ge 0.$

- 1. Решите неравенства:
 - a) $5x + 2x^2 \le 0$,

- B) $\frac{2-x}{x+7} \geqslant 0$,
- $6) -x^2 10x 12 > 0,$
- $\Gamma) \frac{6x^2 + 5x + 3}{x^2 + 3x 4} < 0.$
- 2. Решите неравенства графически:
 - a) $1 \frac{1}{4}x^2 \le 0$,

- $6) x^2 4x 5 < 0.$
- 3. Решите неравенства:
 - a) $\frac{1}{2-x} + \frac{1}{2+x} \ge 0$,
- 6) $\frac{4x^2 4x + 1}{x^2 x} \ge 0.$

1. Решите неравенства:

a)
$$5x^2 - 3x + 2 > 0$$
,

$$B) \frac{2x}{6-x} \geqslant 0.$$

6)
$$2x^2 + 5x + 1 \le 0$$
,

2. Решите системы неравенств:

(a)
$$\begin{cases} x^2 - 5x + 6 \le 0 \\ x^2 - 4x + 3 \ge 0, \end{cases}$$
 (b)
$$\begin{cases} \frac{x}{x - 5} > \frac{1}{2} \\ 81 - x^2 > 0 \end{cases}$$

3. Найдите все значения параметра a, при которых уравнение имеет два различных корня:

$$(a-2)x^2 - 2ax + 2a - 3 = 0.$$

Вариант б

1. Решите неравенства:

a)
$$3x^2 - 2x + 4 < 0$$
, b) $\frac{8+x}{5x} \ge 0$.

$$B) \frac{8+x}{5x} \geqslant 0$$

$$6) \ 3x^2 - 6x + 1 \geqslant 0,$$

2. Решите системы неравенств:

a)
$$\begin{cases} 1 - x^2 \ge 0 \\ x^2 - 4x - 5 \ge 0, \end{cases}$$
 6)
$$\begin{cases} \frac{1}{x} \le 1 \\ x^2 - 5 < 0. \end{cases}$$

3. Найдите все значения параметра a, при которых уравнение имеет два различных корня:

$$(a-2)x^2 + 2ax + 4a - 8 = 0.$$

Вариант 7

1. Решите неравенства:

a)
$$\frac{x^2 - 7|x| + 10}{x^2 - 6x + 9} < 0$$
,

6)
$$(x^2 + 3x + 1)(x^2 + 3x - 3) \ge 5$$
,

B)
$$(x^2 - 5x + 6)\sqrt{2x^2 - 3x - 5} \ge 0$$
.

2. Решите системы неравенств:

a)
$$\begin{cases} \frac{2-x}{x+1} \ge 1 \\ \frac{2-x}{x+1} \le 2, \end{cases}$$
 6)
$$\begin{cases} x^2 - 2x - 3 > 0 \\ x^2 - 11x + 28 \ge 0. \end{cases}$$

3. Найдите все значения параметра a, при которых неравенство

$$(a^2 - 1)x^2 + 2(a - 1)x + 2 > 0$$

истинно при любых x.

Вариант 8

1. Решите неравенства:

a)
$$\frac{x^2 - 8x + 16}{x^2 - 8|x| + 15} \ge 0$$
,

6)
$$(x^2-x-1)(x^2-x-7)<-5$$
,

B)
$$(-x^2 + 7x - 10)\sqrt{-x^2 + 9x - 18} \le 0.$$

2. Решите системы неравенств:

a)
$$\begin{cases} \frac{3x-1}{2x+1} \ge 1\\ \frac{3x-1}{2x+1} < 2, \end{cases}$$
 6)
$$\begin{cases} 3x^2 - 4x + 1 \ge 0\\ 3x^2 - 5x + 2 \le 0. \end{cases}$$

3. Найдите все значения параметра a, при которых неравенство

$$(a^2 - 4)x^2 - 2(a+2)x + 2 > 0$$

истинно при любых x.

17. Метод интервалов

Вариант 1

1. Решите неравенства:

a)
$$\frac{1}{25} - x^2 \ge 0$$
,
 B) $x \cdot (x^2 - 8x + 15) > 0$.

6)
$$-3x^2 + 4x - 1 < 0$$
.

2. Решите неравенства:

a)
$$\frac{1-x}{x+1} \le 0$$
,
b) $\frac{x^2}{x^2-2x-15} \ge 0$.
6) $\frac{x^2-3x+2}{-x^2-7x-12} \ge 0$,

3. Решите неравенство $\frac{1}{x+4} - \frac{1}{x-4} > 0,5.$

Вариант 2

1. Решите неравенства:

a)
$$\frac{x^2}{16} - 25 > 0$$
,
b) $(2 - x - x^2)(-x - 5) < 0$.
6) $-2x^2 + 5x - 3 \ge 0$,

2. Решите неравенства:

a)
$$\frac{2x+5}{7-x} \geqslant 0$$
,
b) $\frac{4x^2-3x-1}{x^2} \leqslant 0$.
6) $\frac{-x^2+5x-4}{-x^2+9} < 0$,

3. Решите неравенство $\frac{1}{x+2} - \frac{1}{x-2} \le 1$.

Вариант 3

1. Решите неравенства:

a)
$$(4-x^2)x \ge 0$$
,

6)
$$(x^2 - 3x - 28)(3x^2 - x + 2) < 0$$

B)
$$(x^2 - 4x + 4)(x^2 - 9) < 0$$
.

2. Решите неравенства:

a)
$$\frac{x(x-2)^2}{x-3} \geqslant 0$$
,
b) $\frac{14x}{x+1} - \frac{9x-30}{x-4} < 0$.
6) $\frac{1-x^2}{x^2-3x-10} \geqslant 0$,

3. Найдите область определения функции

$$y = \sqrt{\frac{-4x^2 + 4x + 3}{\sqrt{2x^2 - 7x + 3}}}.$$

1. Решите неравенства:

a)
$$(x^2 - 9)(1 - x) \le 0$$
,

6)
$$(-5x^2 + 3x - 1)(x^2 - 4x - 12) > 0$$
,

B)
$$(x^2 - 6x + 9)(16 - x^2) > 0$$
.

2. Решите неравенства:

a)
$$\frac{(x^2+2x+1)(x-5)}{3-x} \ge 0$$
, B) $\frac{5x+4}{x+3} - \frac{x+2}{1-x} \le 0$.
6) $\frac{x^2-49}{x^2-9x+8} \le 0$,

3. Найдите область определения функции

$$y = \sqrt{\frac{\sqrt{6 + 7x - 3x^2}}{-3x^2 + 2x + 8}}.$$

Вариант 5

1. Решите неравенства:

a)
$$x^4 - 5x^2 + 4 \le 0$$
,

6)
$$(-8x^2 + 3x + 5)(x^2 - 9x + 20) > 0$$
,

B)
$$(x^2 - 6x + 8)(x^2 - 4)(x^2 - 4x + 4) \ge 0$$
.

2. Решите неравенства:

a)
$$\frac{x^2 - 4x + 3}{x^2 + 4x - 5} \le 0$$
,

6)
$$\frac{3x^2 - 2x - 1}{2x^2 + 5x + 3} < \frac{2x^2 - 3x + 1}{3x^2 + 7x + 4}$$

B)
$$\frac{7}{(x-1)(x-2)} + \frac{9}{x-2} + 1 < 0.$$

3. Решите неравенство
$$\frac{(x+1)\sqrt{121-x^2}}{x^2-17x+16} \geqslant 0.$$

- 1. Решите неравенства:
 - a) $x^4 10x^2 + 9 \ge 0$,

6)
$$(-x^2+13x-40)(-7x^2+4x+3)<0$$
,

B)
$$(x+3)(x^2-x)^2(x-2) \ge 0$$
.

2. Решите неравенства:

a)
$$\frac{x^2 + 6x - 7}{x^2 - 6x + 5} \le 0$$
,

6)
$$\frac{5x^2 + x - 4}{2x^2 - x - 1} + \frac{3x^2 + 4x + 1}{4x^2 - 5x + 1} < 0,$$

B)
$$\frac{20}{(x-4)(x-5)} + \frac{10}{x-5} + 1 > 0.$$

3. Решите неравенство

$$\frac{(x+2)\sqrt{-x^2-10x+11}}{x^2+x-12} \geqslant 0.$$

- 1. Решите неравенства:
 - a) $(4x^2 + 2x + 3)(x^2 x 2) < 0$,
 - 6) $(x^2 5|x| + 6)(x^2 + x 6) \le 0$,
 - B) $(x^3 4x^2 + x + 6)(x^2 1) \ge 0$.
- 2. Решите неравенства:

a)
$$(x^3 + 6x^2 + 5x - 12)^2 + (3 - 2x - x^2)^2 > 0$$
,

6)
$$(x^2 - 2x)(2x - 2) - \frac{9(2x - 2)}{x^2 - 2x} \le 0$$

B)
$$\frac{\sqrt{x^2 - 64}(x^2 - 10x + 25)}{(x^2 - 144)(x^2 - 11x + 10)} \ge 0.$$

- 1. Решите неравенства:
 - a) $(x^2 4x 5)(7x^2 6x + 2) < 0$,
 - 6) $(x^2 8|x| + 15)(x^2 2x 15) \le 0$,
 - B) $(x^3 + 4x^2 + x 6)(x^2 + 3x) \ge 0$.
- 2. Решите неравенства:
 - a) $(3x x^2 2)^2 + (x^3 + 2x^2 13x + 10)^2 \le 0$,
 - 6) $(x^2 + 3x)(2x + 3) \frac{16(2x + 3)}{x^2 + 3x} \ge 0$,
 - B) $\frac{\sqrt{(x^2 81)(x^2 + 10x + 25)}}{(169 x^2)(x^2 + 12x + 11)} \leqslant 0.$

|Контрольные |работы

1. Неравенства

Вариант 1

- 1. Докажите, что (x+2)(x-5) > (x+4)(x-7).
- 2. Известно, что -12 < a < 10. Оцените значение выражения 8-a.
- 3. При каких a значение дроби $\frac{7+a}{3}$ меньше соответствующего значения дроби $\frac{12-a}{2}$?
- 4. Решите систему неравенств:

a)
$$\begin{cases} 2x - 3 > 0 \\ 7x + 4 > 0, \end{cases}$$
 6) $\begin{cases} 3 - 2x < 1 \\ 1, 6 + x < 2, 9. \end{cases}$

- 5. Решите уравнение |2x 3| = x 5.
- 6. Решите неравенство |3x 2| > 1.
- 7. Решите неравенство $\frac{x-2}{2x+1} < 1$.
- 8. Постройте график функции y = |x 2| + x.

- 1. Докажите, что (x-8)(x+2) < (x+1)(x-7).
- 2. Известно, что -5 < a < -3. Оцените значение выражения -2a + 3.

- 3. При каких x значение дроби $\frac{x-7}{5}$ больше соответствующих значений дроби $\frac{3-x}{10}$?
- 4. Решите систему неравенств:

a)
$$\begin{cases} 4x + 3 < 0 \\ 2x + 14 < 0, \end{cases}$$
 6)
$$\begin{cases} 5x - 4 > 0 \\ 10x + 2 < 0. \end{cases}$$

- 5. Решите уравнение |2x + 7| = 3 x.
- 6. Решите неравенство |4x 5| < 2.
- 7. Решите неравенство $\frac{x-3}{4x-2} > 2$.
- 8. Постройте график функции y = |x + 1| x.

- 1. Докажите, что $a(a-6) < (a-3)^2$.
- 2. Пусть 4 < x < 5; -2 < y < -1. Оцените значение выражения x y.
- 3. При каких a значение дроби $\frac{a+1}{3}$ меньше соответствующих значений a-6?
- 4. Решите систему неравенств:

a)
$$\begin{cases} 3x - 9 < 0 \\ 5x + 2 > 0, \end{cases}$$
 6)
$$\begin{cases} 15x - x < 14 \\ 4 - 2x < 5. \end{cases}$$

- 5. Решите уравнение |2x 3| = x 2.
- 6. Решите перавенство $|3x-5| \geqslant 3$.
- 7. Решите неравенство $\frac{2}{r-3} > 2$.
- 8. Постройте график функции y = 2x |x 2|.

- 1. Докажите, что $\frac{(b+2)^2}{4} \geqslant b+1$.
- 2. Пусть 1,5 < a < 3; 0 < b < 4. Оцените значение выражения -a + 4b.

- 3. При каких a значение выражения a+6 меньше соответствующего значения дроби $\frac{a+2}{4}$?
- 4. Решите систему неравенств:

a)
$$\begin{cases} 6x - 12 > 0 \\ 2x - 3 > 0, \end{cases}$$
 6)
$$\begin{cases} 26 - x < 25 \\ 2x + 7 < 13. \end{cases}$$

- 5. Решите уравнение |x 1| = 8 + x.
- 6. Решите неравенство |2x + 5| < 4.
- 7. Решите неравенство $\frac{3}{x+4} < 3$.
- 8. Постройте график функции y = |x 1| 2x.

2. Арифметический квадратный корень

Вариант 1

1. При каких значениях x определено выражение

$$\sqrt{x+2} + \frac{\sqrt{3-x}}{x}?$$

2. Выполните действия:

$$\left(\frac{1}{2}\sqrt{6} - \sqrt{12} + 0.5 \cdot \sqrt{24} + \frac{3}{4}\sqrt{48}\right) \cdot 2\sqrt{2}.$$

- 3. Упростите: $\sqrt{(2-\sqrt{5})^2} \frac{1}{\sqrt{5}+2}$.
- 4. Сократите дробь:

a)
$$\frac{3-\sqrt{a}}{a-9}$$
, 6) $\frac{a\sqrt{a}+b\sqrt{b}}{a-\sqrt{ab}+b}$.

5. Внесите множитель под знак корня:

a)
$$(a-1)\sqrt{b}$$
, 6) $(2\sqrt{2}-3)\sqrt{17+12\sqrt{2}}$.

- 6. Сравните: $a = \sqrt{3} + \sqrt{2}$ и $b = \sqrt{10}$.
- 7. Предварительно упростив, постройте график функции

$$y = \left(\frac{\sqrt{x}-2}{\sqrt{x}+2} + \frac{\sqrt{x}+2}{\sqrt{x}-2}\right) \cdot \frac{1}{2}\sqrt{(x-4)^2}.$$

1. При каких x справедливо равенство

$$\sqrt{(x-1)(x+2)} = \sqrt{x-1} \cdot \sqrt{x+2}?$$

2. Выполните действия:

$$\left(\frac{1}{4}\sqrt{12} - \frac{3}{8}\sqrt{27} + \frac{1}{2}\sqrt{48} - \frac{3}{4}\sqrt{75}\right) \cdot 4\sqrt{3}.$$

- 3. Упростите: $\sqrt{(\sqrt{5}-\sqrt{7})^2}-\frac{3}{\sqrt{7}+2}+\sqrt{5}$.
- 4. Сократите дробь:

a)
$$\frac{3-k^2}{\sqrt{3}+k}$$
,

$$6) \ \frac{a\sqrt{a}+1}{a-\sqrt{a}+1}.$$

5. Внесите множитель под знак корня:

a)
$$(m+2)\sqrt{n}$$
,

6)
$$(4-a)\sqrt{\frac{1}{a-4}}$$
.

- 6. Сравните: $a = \sqrt{2} + \sqrt{5}$ и $b = \sqrt{13}$.
- 7. Предварительно упростив, постройте график функции

$$y = \left(\frac{1}{\sqrt{x+1}+1} - \frac{\sqrt{x+1}}{\sqrt{x+1}-1}\right) \cdot \sqrt{x^2}.$$

Вариант 3

1. При каких х определено выражение

$$\sqrt{x+5} + \frac{2}{(x^2-4)\sqrt{x-1}}$$
?

2. Выполните действия:

$$(2\sqrt{20} - 5\sqrt{8} - 2\sqrt{5} + \sqrt{18}) \cdot 3\sqrt{10}$$
.

- 3. Упростите: $\sqrt{(2\sqrt{2}-3)^2} \frac{8}{4+2\sqrt{2}}$.
- 4. Сократите дробь:

a)
$$\frac{4-\sqrt{m}}{m-16}$$
,

6)
$$\frac{p\sqrt{p}-1}{p+\sqrt{p}+1}.$$

5. Внесите множитель под знак корня:

a)
$$(3-k)\sqrt{p}$$
,

6)
$$(n-2)\sqrt{\frac{1}{2-n}}$$
.

- 6. Сравните: $a = \sqrt{3} + \sqrt{5}$ и $b = \sqrt{15}$.
- 7. Предварительно упростив, постройте график функции

$$y = \left(\frac{\sqrt{x}}{\sqrt{x} - 1} - \frac{1}{\sqrt{x} + 1}\right) \cdot \sqrt{(x - 1)^2}.$$

1. При каких x справедливо равенство

$$\sqrt{\frac{x+1}{3-x}} = \frac{\sqrt{x+1}}{\sqrt{3-x}}?$$

2. Выполните действия:

$$(8\sqrt{24} - 12\sqrt{54} + 6\sqrt{96} - 4\sqrt{150}) : 2\sqrt{3}.$$

- 3. Упростите: $\sqrt{(\sqrt{17}-3\sqrt{2})^2} + \frac{1}{\sqrt{17}-4} 3\sqrt{2}$.
- 4. Сократите дробь:

a)
$$\frac{x - 6\sqrt{x} + 9}{x - 9}$$
, 6) $\frac{\sqrt{a} + \sqrt{b}}{a\sqrt{a} + b\sqrt{b}}$.

5. Внесите множитель под знак кория:

a)
$$(c+5)\sqrt{k}$$
, 6) $(a-3)\sqrt{\frac{1}{3-a}}$.

- 6. Сравните $a = \sqrt{7} + \sqrt{3}$ и $b = \sqrt{19}$.
- 7. Предварительно упростив, постройте график функции

$$y = \left(\frac{\sqrt{x}-1}{\sqrt{x}+1} + \frac{\sqrt{x}+1}{\sqrt{x}-1}\right) \cdot \sqrt{(x-1)^2}.$$

3. Квадратные корни

Вариант 1

1. Решите уравнения:

a)
$$-7x^2 + 3x = 0$$
, B) $x^2 - 20x - 69 = 0$.

$$6) 6x^2 - 5x - 1 = 0.$$

2. Решите системы:

a)
$$\begin{cases} x + y = 6 \\ x^2 - y^2 = 12, \end{cases}$$
 6)
$$\begin{cases} x^2 - xy = 28 \\ y^2 - xy = -12. \end{cases}$$

- 3. Сократите дробь $\frac{2x^2 + 7x 22}{3x^2 8x + 4}.$
- 4. Решите уравнения:

a)
$$x^4 - 15x^2 - 16 = 0$$
,

6)
$$\frac{7}{x+1} + \frac{x+4}{2x-2} = \frac{3x^2 - 38}{x^2 - 1}$$
.

- 5. Электропоезд был задержан в пути на 4 мин и ликвидировал опоздание на перегоне в 20 км, пройдя его со скоростью на 10 км/ч больше той, которая полагалась по расписанию. Определите скорость поезда на этом перегоне по расписанию.
- 6. Решите систему

$$\begin{cases} \frac{5}{x^2 + xy} + \frac{4}{y^2 + xy} = \frac{13}{6} \\ \frac{8}{x^2 + xy} - \frac{1}{y^2 + xy} = 1. \end{cases}$$

Вариант 2

1. Решите уравнения:

a)
$$9x - 4x^2 = 0$$
,

B)
$$x^2 + 18x - 40 = 0$$
.

$$5) \ 7x^2 - 3x - 4 = 0,$$

2. Решите системы:

a)
$$\begin{cases} x - y = 2 \\ x^2 - y^2 = 8, \end{cases}$$
 6) $\begin{cases} x^2 + xy = 15 \\ y^2 + xy = 10. \end{cases}$

- 3. Сократите дробь $\frac{4x^2 5x 21}{2x^2 11x + 15}$
- 4. Решите уравнения:

a)
$$x^4 + 48x^2 - 49 = 0$$
,

6)
$$\frac{x+0.5}{9x+3} = \frac{x+2}{3x-1} - \frac{8x^2+3}{9x^2-1}$$
.

- 5. На середине пути между станциями A и B поезд был задержан на 10 мин. Чтобы прийти в B по расписанию, машинисту пришлось первоначальную скорость увеличить на 12 км/ч. Найти первоначальную скорость поезда, если AB=120 км.
- 6. Решите систему

$$\begin{cases} \frac{2}{x^2 + 3xy} + \frac{3}{y^2 - xy} = \frac{25}{14} \\ \frac{3}{x^2 + 3xy} - \frac{2}{y^2 - xy} = -\frac{4}{7}. \end{cases}$$

1. Решите уравнения:

a)
$$16x^2 - 25 = 0$$
.

B)
$$x^2 - 14x - 51 = 0$$
.

$$6) \ 2x^2 + 5x - 3 = 0,$$

2. Решите системы:

a)
$$\begin{cases} x^2 + xy + y^2 = 19 \\ x + y = 5, \end{cases}$$
 6)
$$\begin{cases} x + xy + y = 7 \\ x^2 + xy + y^2 = 13. \end{cases}$$

3. Сократите дробь

$$\frac{7x^2 - 2x - 5}{9x^2 - 5x - 4}.$$

4. Решите уравнения:

a)
$$(2x-7)^4 + 2(2x-7)^2 - 99 = 0$$
,

6)
$$\frac{14}{x^2-9} + \frac{4-x}{3+x} = \frac{7}{x+3} - \frac{1}{3-x}$$
.

5. Двое рабочих, выполняя определенное задание вместе, могли бы закончить его за 12 дисй. Если сначала будет работать только один их них, а когда он выполнит $\frac{1}{2}$ работы, его сменит второй, то все задание будет закончено за 25 дней. За сколько дней каждый рабочий в отдельности может выполнить все задание?

6. Решите систему

$$\begin{cases} 2\left(\frac{x^2}{y^2} + \frac{y^2}{x^2}\right) - \left(\frac{y}{x} + \frac{x}{y}\right) = -6\\ x^2 + y^2 = 5. \end{cases}$$

Вариант 4

1. Решите уравнения:

a)
$$49 - 4x^2 = 0$$
,

B)
$$x^2 - 10x - 39 = 0$$
.

$$6) \ 2x^2 - 3x - 2 = 0,$$

2. Решите системы:

a)
$$\begin{cases} x^2 - 3xy + y^2 = 1 \\ x + y = 4, \end{cases}$$
 6)
$$\begin{cases} (x - 2)(y - 2) = 4 \\ x^2 + y^2 + xy = 3. \end{cases}$$

3. Сократите дробь

$$\frac{11x^2 - 8x - 3}{10x^2 - 3x - 7}$$

4. Решите уравнения:

a)
$$(3-2x)^4 - (3-2x)^2 - 72 = 0$$
,

6)
$$\frac{2}{x^2 - 4} - \frac{1}{x^2 - 2x} + \frac{x - 4}{x^2 + 2x} = 0.$$

- 5. Два сварщика, из которых второй начинает работу $1\frac{1}{2}$ днями позже первого, могут выполнить работу за 7 дней. За сколько дней каждый из них отдельно мог бы выполнить эту работу, если известно, что второй сварщик может выполнить эту работу на 3 дня скорее, чем первый?
- 6. Решите систему

$$\begin{cases} \frac{x^2}{y^2} + \frac{y^2}{x^2} = \frac{x}{y} + \frac{y}{x} \\ x^2 + y^2 = 2. \end{cases}$$

4. Квадратные уравнения

Вариант 1

- 1. При каком a график функции $f(x) = x^2 2ax + a$ проходит через точку B(-1;2)?
- 2. Постройте график $f(x) = -x^2 + 8x 15$:
 - а) определите координаты точек пересечения графика функции с осями координат;
 - б) при каких $x \ f(x) > 0$; f(x) < 0; f(x) = 0?
 - в) определите промежутки возрастания и убывания функции;
 - г) определите наибольшее (наименьшее) значение функции.
- 3. В треугольнике ABC $h_a + a = 16$ см. Определите наибольшую площадь треугольника ABC.
- 4. Постройте графики функций:

a)
$$y = x^2 - 4\frac{x^2}{|x|}$$
, 6) $y = \frac{(|x|+2)(x^2-5|x|+6)}{|x|-2}$.

- 1. При каком a график функции $f(x) = x^2 + 3ax a$ проходит через точку B(2;5)?
- 2. Постройте график $f(x) = x^2 + 6x + 8$.
 - а) определить координаты точек пересечения графика функции с осями координат;
 - б) при каких x f(x) > 0; f(x) < 0; f(x) = 0?
 - в) определите промежутки возрастания и убывания функции;
 - г) определить наибольшее (наименьшее) значения функции.
- 3. Периметр прямоугольника равен 28 см. Найдите его наибольшую площадь.

4. Постройте графики функций:

a)
$$y = x^2 + \frac{2|x|}{x}$$
, 6) $y = \frac{(|x|+3)(x^2-|x|-2)}{|x|-2}$.

Вариант 3

- 1. Проходит ли график функции $f(x) = 2x^2 7x + 4$ через точку A(2;2)?
- 2. Постройте график функции $y = x^2 2x 8$:
 - а) найдите координаты точек пересечения графика функции с осями координат;
 - б) при каких $x \ f(x) \le 0; \ f(x) > 0$?
 - в) при каких x = f(x) возрастает, убывает?
 - г) найдите наименьшее (наибольшее) значение функцин.
- 3. Найдите наибольшее значение площади трапеции, если сумма ее средней линии и высоты равна 12 см.
- 4. Постройте график функции y = |(x+2)(1-|x|)|.
- 5. Найдите наибольшее значение функции

$$y = -x - 4\sqrt{x} + 5.$$

- 1. Проходит ли график функции $f(x) = -3x^2 + 4x + 4$ через точку A(2;0)?
- 2. Постройте график функции $y = -x^2 + 4x + 12$:
 - а) найдите координаты точек пересечения графика функции с осями координат;
 - б) при каких $x \ f(x) \le 0; \ f(x) > 0$?
 - в) при каких $x \ f(x)$ возрастает, убывает?
 - г) найдите наименьшее (наибольшее) значение функции.
- 3. Найдите наибольшее значение площади ромба, если сумма его диагоналей равна 24 см.

- 4. Постройте график функции y = |(x-3)(|x|+1).
- 5. Найдите наименьшее значение функции $y = x + 2\sqrt{x} 3$.

Квадратичная функция 5.

Вариант 1

- 1. Решите неравенства графически:
 - a) $x^2 4x + 3 \le 0$. 6) $-x^2 6x > 0$.
- 2. Решите неравенства системой:
 - a) $x^2 2x > 3$,
- B) $\frac{2x+7}{2} \ge 0$.
- $6) -4x^2 + 12x 9 < 0,$
- 3. Решите неравенства методом интервалов:
 - a) $x^3 25x < 0$,
- B) $\frac{(x^2-2)^2}{x^2-3x-28} \geqslant 0$,
- 6) $\frac{x^2 3x + 2}{9 x^2} \ge 0$, r) $\frac{3x^2 + 7x 10}{x^2} \le 0$.
- 4. При каком значении параметра a неравенство

$$(x^2 + (2a - 1)x - 2a)(x^2 + (2 - a)x - 2a) > 0$$

не будет иметь решения только при двух значениях x?

- 1. Решите неравенства графически:
 - a) $-x^2 + 5x 4 > 0$. 6) $x^2 + 8x < 0$.
- 2. Решите неравенства системой:
 - a) $x^2 + 2x < 3$,
- $B) \quad \frac{5-x}{3x+5} \leqslant 0.$
- 6) $-25x^2 + 10x 1 \ge 0$.
- 3. Решите неравенства методом интервалов:
 - a) $4x x^3 < 0$,
- B) $\frac{-x^2 5x + 24}{(x^2 5)^2} \ge 0$,
- 6) $\frac{1-x^2}{2x^2-5x+2} \ge 0$, r) $\frac{4x^2-4x+1}{-x^2-8x+9} \le 0$.

4. При каком значении параметра a неравенство

$$(x^2 + (a-1)x - a)(x^2 + (2-2a)x - 4a) \le 0$$

будет иметь решение только при двух значениях x?

Вариант 3

- 1. Решите неравенства системой:
 - a) $3x^2 14x + 11 \ge 0$, B) $\frac{2x+1}{5} \ge 0$.
 - 6) $-x^2 + 2x 3 < 0$
- 2. Решите неравенства методом интервалов:
 - a) $(2x^2 + 3x 5)(2 x) > 0$,
 - 6) $\frac{9-6x+x^2}{x^2-10x-24} \ge 0$,
 - B) $\frac{1}{(4-x^2)(x^2-x-2)} < 0.$
- 3. Решите неравенства:
 - a) $\frac{2}{x-5} \frac{2}{x+1} \ge 0$,
 - 6) $(x^2 x 2)^2 + (x^3 + 2x 12)^2 \le 0$.
- 4. При каких значениях параметров a и b неравенство $(x^2 - ax + 4a)(x^2 + bx - 2b) \le 0$

будет иметь решение в единственной точке?

- 1. Решите неравенства системой:
 - a) $9x^2 4x 5 \le 0$, B) $\frac{7 2x}{x + 1} \le 0$.
 - 6) $x^2 x + 3 > 0$.
- 2. Решите неравенства методом интервалов:
 - a) $(6-x)(3x^2-5x+2)<0$,
 - 6) $\frac{4x^2+12x+9}{16x^2}>0$,
 - B) $\frac{25-10x+x^2}{-x^3+x^2+56x} \le 0.$

3. Решите неравенства:

a)
$$\frac{1}{x-1} - \frac{1}{x+3} + 1 \le 0$$
,

6)
$$(x^2 + x - 2)^2 + (x^3 - 4x^2 + 7x - 4)^2 \le 0$$
.

4. При каких значениях параметров a и b неравенство

$$(x^2 + 2ax - 3a)(x^2 - 4bx + 8b) > 0$$

не будет иметь решения только в одной точке?

6. Итоговая работа

Вариант 1

- 1. Двое рабочих, работая вместе, выполнили задание за 12 ч. Сколько времени необходимо было бы каждому рабочему отдельно, если один из них может выполнить все задание на 10 ч быстрее другого.
- 2. Выполните действия:

$$\frac{b-1}{b+\sqrt{b}+1}\cdot\left(\frac{\sqrt{b^3}-1}{\sqrt{b}+1}\right)+2\sqrt{b}-b.$$

3. Решите систему уравнений:

$$\begin{cases} x^2 + 3y^2 + x + 3y = 30 \\ x^2 - y^2 + x - y = 6. \end{cases}$$

4. Решите неравенства:

a)
$$\frac{(x-3)(x+1)}{2-x} > 0$$
, 6) $\frac{(x+3)(x^2-x)^2}{x-2} \ge 0$.

- 5. Постройте график функции $y=x^2-4x-5$. Установите:
 - а) на каких промежутках функция возрастает, убывает,
 - б) наибольшее и наименьшее значения функции на промежутке [-1;3].

6. При каких значениях a неравенство

$$ax^2 + 4x + a + 3 < 0$$

выполняется при всех действительных значениях x?

7. Постройте график функции $y = \sqrt{(x^2 - 4x)^2}$.

Вариант 2

- 1. Поезд был задержан в пути на 6 мин. Это опоздание было ликвидировано на промежутке в 20 км за счет увеличения скорости на 10 км/ч. Найдите скорость поезда по расписанию.
- 2. Выполните действия:

$$\frac{5}{2+\sqrt{2}} - \frac{1}{3+\sqrt{2}} - \frac{32-23,5\sqrt{2}}{7}.$$

3. Решите уравнение

$$\frac{13}{2x^2 + x - 21} + \frac{1}{2x + 7} - \frac{6}{x^2 - 9} = 0.$$

4. а) установите область определения функции

$$y = \sqrt{\frac{x^2 - 3x + 2}{\sqrt{9 - x^2}}},$$

- б) решите неравенство $(x+3)^2 \cdot (x-2)(x+5) < 0$.
- 5. При каких значениях параметра $\,m\,$ уравнение

$$(m+1)x^2 + 2mx - m = 0$$

- а) имеет корень, равный -2;
- б) имеет действительно различные корни;
- в) имеет один корень;
- г) не имеет действительных корней?
- 6. Найдите сумму квадратов корпей уравнения

$$x^2 + (2-a)x - a - 3 = 0$$

и установите, при каких значениях a она будет наименьшей.

7. Постройте график функции $y = x^2 - 4\sqrt{x^2}$.

- 1. Два экскаватора вырыли траншею за 20 ч. За сколько часов выполнил бы эту работу каждый экскаватор, работая отдельно, если известно, что первому для этого необходимо на 9 ч больше, чем второму?
- 2. Выполните действия:

$$\left(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right):\left(\sqrt{ab}\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)\right).$$

3. Решите систему уравнений:

$$\begin{cases} x^2 - 4y^2 - xy + 5y = 1\\ x^2 + 3y^2 - xy - 4y = -1. \end{cases}$$

4. Решите неравенства:

a)
$$\frac{(x-4)(x+2)}{(x-1)} > 0$$
, 6) $\frac{(x-2)(x^2-4x)^2}{x+3} \ge 0$.

- 5. Постройте график функции $y = -x^2 + 2x + 8$. Установите:
 - а) на каких промежутках функция возрастает, убывает;
 - б) какие значения принимает функция на промежутке [0;3]?
- 6. При каких значениях а неравенство

$$ax^2 - 4ax - 3 \leqslant 0$$

выполняется при всех значениях x?

7. Постройте график функции $y = \sqrt{(x^2 + 4x)^2}$.

Вариант 4

 С двух аэродромов, расстояние между которыми 2 400 км, вылетели навстречу друг другу два учебных самолета. Скорость одного из них, вылетевшего на 4 мин раньше другого, меньше скорости второго на 60 км/ч. Самолеты встретились на середине пути между аэродромами. Найдите скорость каждого самолета. 2. Выполните действия:

$$\frac{\frac{1}{\sqrt{2}} + 2 - \frac{1}{\sqrt{3}} + \sqrt{3}}{\sqrt{1,5} + 1} \cdot \frac{15 + 3\sqrt{6}}{19\sqrt{3}}.$$

3. Решите уравнение

$$\frac{2x+7}{x^2+5x-6} + \frac{3}{x^2+9x+18} = \frac{1}{x+3}.$$

4. а) установите область определения функции

$$y = \sqrt{\frac{\sqrt{25 - x^2}}{x^2 - 7x + 12}};$$

- 6) решите неравенство $\frac{(x-4)^2}{(x-2)(x-3)} > 0.$
- 5. При каких значениях параметра a уравнение

$$(a-1)x^2 - 2ax - a = 0$$

- а) имеет корень, равный 2;
- б) имеет действительные различные корни;
- в) имеет один корень;
- г) не имеет действительных корней?
- 6. Найдите сумму квадратов корней уравнения

$$x^{2} + (p-1)x + p^{2} - 1.5 = 0$$

и установите, при каком значении $\,p\,$ эта сума будет наибольшей.

7. Постройте график функции $y = x^2 + 4\sqrt{x^2}$.

|Самостоятельные |работы

1. Положительные и отрицательные числа. Числовые неравенства

Вариант 1

1.
$$\frac{2}{3} < \frac{4}{5}$$
. 2. $x < y$. 3. $a^2 + 49 \ge 14a$.

4. Решение:
$$\frac{a}{b} + \frac{b}{a} - 2 = \frac{a^2 + b^2 - 2ab}{ab} = \frac{(a-b)^2}{ab} \geqslant 0,$$
 т.к. $(a-b)^2 \geqslant 0$ и $ab > 0$.

5. Per шение:
$$(a^2 - b^2) - 4ab(a - b)^2 = (a - b)^2(a + b)^2 - 4ab(a - b)^2 = (a - b)^2(a^2 + 2ab + b^2 - 4ab) = (a - b)^4 \ge 0.$$

6.
$$x = -\frac{1}{4}$$
.

Вариант 2

1.
$$\frac{3}{7} < \frac{5}{9}$$
. 2. $a > b$. 3. $x^2 + 81 \ge 18x$.

4. Cm. B-1 4). **5.** P e ш e н и e:
$$\frac{x^2}{1+x^4} - \frac{1}{2} = \frac{2x^2 - 1 - x^4}{2(x^4 + 1)} = \frac{-(x^2 - 1)^2}{2(x^4 + 1)} \le 0$$
. **6.** $x = -2\frac{1}{2}$.

1.
$$-\frac{13}{14} > -\frac{14}{15}$$
. 2. $a > b$. 3. $(a-2)(a+3) > (a-5)(a+6)$.

4. P е ш е н и е:
$$3x^2 - 4xy + 4y^2 = x^2 - 4xy + 4y^2 + 2x^2 = (x - 2y)^2 + 2x^2 \ge 0$$
.

5. Решение: $a^3+b^3-a^2b-ab^2=(a+b)(a^2-ab+b^2)-ab(a+b)=(a+b)(a-b)^2\geqslant 0$, т.к. a+b>0 по условию и $(a-b)^2\geqslant 0$. **6.** x=7.

Вариант 4

1.
$$-\frac{7}{9} > -\frac{11}{13}$$
. 2. $x > y$.

3.
$$(m-4)(m+3) > (m+6)(m-7)$$
.

4.
$$2x^2 + 2y^2 - (x+y)^2 = x^2 - 2xy + y^2 = (x-y)^2 \ge 0$$
.

5. Решение:
$$ab+1-a-b=a(b-1)-(b-1)=$$
 $=(a-1)(b-1)$. Если $a>1$ и $b<1$, то $a-1>0$ и $b-1<0$, т.о. $(a-1)(b-1)<0$.

6. x = 5.

Вариант 5

- 1. У к а з а н и е: представьте 297 и 299 в виде 298-1 и 298+1. 2. $\frac{41}{52}<\frac{4}{5}<\frac{28}{23}$. 3. $m^2+5>2m+3$.
- **4.** Решение: $(a-b)^2 \cdot (a+b)^2 \geqslant (a-b)^2 \cdot (a-b)^2$. Если a=b, то имеет место равенство. Если $a \neq b$, то $(a-b)^2 > 0$. Теперь нужно доказать, что $(a+b)^2 \geqslant (a-b)^2$ или $4ab \geqslant 0$, что следует из условия.
- **5.** У к а з а н и е: необходимо составить разность $\frac{a+b}{a^2+b^2}-\frac{a^2+b^2}{a^3+b^3}$ и доказать, что она больше или равна нулю.
- 6. $x = \frac{1}{a+b}$, если $a \neq 0$, $b \neq 0$, $a \neq -b$; если a = 0 или b = 0, решений нет; если a+b=0 и $a \neq 0$, $b \neq 0$, то x любой.

2.
$$\frac{27}{32} < \frac{65}{73} < \frac{8}{7}$$
. **3.** $a^2 + 7 > 6a - 3$.

$$=\frac{(a+b)(-a^2+2ab-b^2)}{a^2b^2}=-\frac{(a+b)(a-b)^2}{a^2b^2}\leqslant 0.$$
 6. $x=\frac{1}{a+b},$ если $a\neq 0,$ $b\neq 0,$ $a\neq -b.$

T.e. $m^4 + 1 \ge 2m|m|$.

4. Pe шение:
$$2a^2 + b^2 + c^2 - 2ab - 2ac = a^2 - 2ab + b^2 + a^2 - 2ac + c^2 = (a - b)^2 + (a - c)^2 \ge 0$$
.

5. Permerine:
$$(a+b)^3 - 4(a^3+b^3) = (a+b)^3 - 4(a+b)(a^2-ab+b^2) = (a+b)(a^2+2ab+b^2-4a^2+4ab-4b^2) = (a+b)(-3a^2+6ab-3b^2) = -3(a+b)(a^2-2ab+b^2) = -3(a+b)(a-b)^2 \le 0.$$

6.
$$y = \frac{a}{a+b}$$
, если $a \neq 0$, $b \neq -a$. Если $a = 0$, $b \neq 0$, то x — любой. Если $a = -b$, то решений нет.

$$2. \left(-\frac{1}{3}\right)^3 < \left(\frac{1}{3}\right)^2 < \frac{5}{9} < \frac{2}{3}.$$

3. Решение:
$$1-a-\frac{1}{a}+1=\frac{a-a^2-a+a}{a}=\frac{-a^2+2a-1}{a}=-\frac{(a-1)^2}{a}\leqslant 0.$$

4. Решение:
$$a^2 + b^2 + c^2 - ab - ac - bc =$$

$$= \frac{2a^2 + 2b^2 + 2c^2 - 2ab - 2ac - 2bc}{2} =$$

$$= \frac{(a-b)^2 + (a-c)^2 + (b-c)^2}{2} \geqslant 0.$$

5. Решение:
$$a^4 + b^4 - a^3b - ab^3 = a^3(a-b) + b^3(b-a) =$$

= $(a-b)(a^3-b^3) = (a-b)^2(a^2+ab+b^2) = (a-b)^2 \times$
 $\times \left(\left(a+\frac{b}{2}\right)^2 + \frac{3b^2}{4}\right) \geqslant 0$. 6. $y=b+a$, если $a\neq 0$, $b\neq 0$, $a\neq -b$. Если $a=0$, $b=0$, $a=-b$, то решений нет.

2. Свойства числовых неравенств. Сложение и умножение неравенств

Вариант 1

1.
$$3 < a + b < 5$$
; $-2 < a - b < 0$; $2 < ab < 6$; $\frac{1}{3} < \frac{a}{b} < 1$.

Вариант 2

$$\frac{1. \ 6 < a + b < 8; \ -3 < a - b < -1; \ 8 < ab < 15; \\ \frac{2}{5} < \frac{a}{b} < \frac{3}{4}.$$

Вариант 3

1.
$$-5 < a + b < 1,5$$
 $-4,5 < a - b < 2;$ $-5 < ab < 6;$ $-\frac{4}{5} < \frac{a}{b} < \frac{2}{3}.$

Вариант 4

Вариант 5

- 1. 20.
- **2. а)** решение: $\frac{a^2+1}{2} \geqslant a; \; \frac{b^2+1}{2} \geqslant b; \; \frac{a^2b^2+1}{2} \geqslant ab.$

Перемножив эти неравенства, получим

$$\frac{(a^2+1)(b^2+1)(a^2b^2+1)}{8} \geqslant a^2b^2,$$

т.е. $(a^2+1)(b^2+1)(a^2b^2+1)\geqslant 8a^2b^2$, что и требовалось доказать.

- 1. 17.
- 2. У казание: решается аналогично В-5 2 а).

2. Решение:
$$a^2 + \frac{4}{a^2 + 1} = a^2 + 1 + \frac{4}{a^2 + 1} - 1 =$$

= $2\left(\frac{a^2 + 1}{2} + \frac{2}{a^2 + 1}\right) - 1 \geqslant 3$, т.к. $\frac{a^2 + 1}{2} + \frac{2}{a^2 + 1} \geqslant 2$.

Наименьшее значение равно 3.

3. У казание: $a^2 - 4a + 5 = (a-2)^2 + 1 = |a-2|^2 + 1$.

Вариант 8

2. Решение:
$$\frac{|x|}{2} + \frac{18}{|x|+2} = \frac{|x|}{2} + 1 + \frac{18}{|x|+2} - 1 =$$

$$= \frac{|x|+2}{2} + \frac{18}{|x|+2} - 1 = 3\left(\frac{|x|+2}{6} + \frac{6}{|x|+2}\right) - 1 \geqslant 5,$$
т.к. $\frac{|x|+2}{6} + \frac{6}{|x|+2} \geqslant 2$. Наименьшее значение равно 5.

3. У казание: $b^2 - 2b + 10 = (b-1)^2 + 9 = |b-1|^2 + 9$.

3. Решение неравенств. Числовые промежутки

Вариант 1

1. -2; 0; 2; 4; 6. **2.** a)
$$[0;5]$$
; **6)** $(-3;9)$. **5.** $\left[-1\frac{2}{7};\infty\right)$.

Вариант 2
1.
$$-3$$
; -1 ; 1; 3; 5. 2. а) $[-7;4]$; 6) $[-4,5;5]$.

5.
$$\left[-\frac{4}{5}; -\infty\right)$$
.

Вариант 3

$$\overline{\mathbf{1.} \ 8;} \ -7. \ \mathbf{2.} \ \mathbf{a)} \ (4;+\infty); \ \mathbf{6)} \ (-\infty;5). \ \mathbf{3.} \ \mathbf{a)} \ [1;+\infty);$$

б)
$$\left(\frac{4}{5}; +\infty\right)$$
. Указание: нужно учесть, что

$$x^2 - 6x + 10 = (x - 3)^2 + 1 > 0.$$

4. При $x > \frac{4}{3}$. **5.** x : y = 5 : 4.

1. 26; -7. 2. a) \emptyset ; 6) $(-\infty; +\infty)$. 3. a) $(5; +\infty)$; 6) $\left(-\infty; \frac{2}{7}\right)$. 4. При x < 1. 5. a : b = 3 : 10.

Вариант 5

- 1. a) $[-2,6;+\infty)$; 6) $(-0,8;+\infty)$; B) $\{3\}$.
- **2.** При m < 4. **3.** При a > 0. **4.** При a < 5 $x > \frac{a-3}{5-a}$; при a = 5 \emptyset ; при a > 5 $x < \frac{a-3}{5-a}$. **5.** $\frac{1}{4}$.

Вариант 6

1. a) $[-0,2;+\infty)$; 6) $\left[-\frac{23}{17};+\infty\right)$; B) $\{-2\}$. 2. При a < 5. 3. При m < 0. 4. При p > 2 $x < \frac{8}{p-2}$; при p = 2 $x \in \mathbb{R}$; при p < 2 $x > \frac{8}{p-2}$. 5. $\frac{2}{13}$.

Вариант 7

- 1. a) $\left(-\infty; \frac{13}{49}\right)$; 6) $\left(2\frac{3}{4}; +\infty\right)$; B) $(-\infty; -1) \cup \cup (-1; 3, 5) \cup \{5\}$. 2. При $a \neq 3$ $x > \frac{a+3}{(a-3)^2}$; при a = 3 \emptyset . 3. При a = 2.
- 4. Решение: если $2x\geqslant x-3$, т.е. $x\geqslant -3$, то тогда y=2x. Если же 2x< x-3, т.е. x<-3, то тогда y=x-3 (см. рис. 1). 5. $-\frac{3}{8}$.

- 1. a) $\left(-\infty; 2\frac{6}{13}\right]$; 6) $\left(-2\frac{7}{9}; +\infty\right)$; B) $\{-3\} \cup (1,5;4) \cup (4; +\infty)$. 2. При $a \neq 2$ $x > \frac{a+2}{(a-2)^2}$; при a = 2 \emptyset .
- **3.** При b = 3. **4.** См. рис. 2. **5.** $\frac{19}{33}$.

4. Системы неравенств

Вариант 1

1. a) [5;7); **6)** \emptyset . **2.** $\left(-\frac{1}{8};2\right)$; 0. **3.** $\left(-\frac{1}{2};6\right)$. **4.** [1;3].

5. $(-\infty; -5) \cup \left(\frac{3}{2}; \infty\right)$. **6.** -1; 1; 3; 5.

Вариант 2

1. a) [3;10); **6)** $(-\infty;-1,5)$. **2.** [5;9]; 5,7 и 9. **3.** $(\frac{3}{4};1\frac{1}{2})$.

4. (-2;1). **5.** (3;3,5). **6.** -6;-3;0.

Вариант 3

1. a) \emptyset ; **6**) $\left(\frac{1}{2}, \frac{4}{5}\right)$. **2.** (-8, -5]. **3.** 0; 1. **4.** При $m \ge 6$.

5. $(-\infty; -5) \cup (3,5; +\infty)$. 6. 18 < (a+1)(b+6) < 30.

Вариант 4

1. a) \emptyset ; **6**) $\left\{\frac{3}{2}\right\}$. **2.** $[1,4;+\infty)$. **3.** -6;-5;-4;-3;-2;-1.

4. При $a \le 3$. **5.** (-9;6). **6.** 0 < (a-2)(b-5) < 30.

Вариант 5

1. a) $(-\infty; -1) \cup (1; +\infty);$ 6) (-2,25;1,5); B) $(0; \frac{2}{3}).$

2. $\left(\frac{7}{8}; 2\right) \cup (2; +\infty).$

3. 20 < c < 28. У к а з а н и е: необходимо воспользоваться неравенством треугольника: |a-b| < c < a+b.

4. Решение: если $-5 \leqslant a \leqslant -1,5$, то $2,25 \leqslant a^2 \leqslant 25$; $0,9 \leqslant 0,4a^2 \leqslant 10$; $-10 \leqslant -0,4a^2 \leqslant -0,9$.

Т.к. $-0.5 \le b \le 2.4$, то $-10.5 \le b - 0.4a^2 \le 1.5$, тогда наибольшее значение равно 1.5, а наименьшее -10.5.

Вариант 6

1. a)
$$(-\infty; -1] \cup [1; +\infty);$$
 6) $\left(-\infty; -\frac{3}{4}\right) \cup (2; +\infty);$

B)
$$(-\infty;0) \cup (\frac{3}{4};+\infty)$$
. 2. $(-\infty;\frac{5}{4})$. 3. $20 < c < 26$.

4. Наибольшее значение равно 7, $\hat{\mathbf{a}}$ наименьшее равно -2,25.

1. a) $(-\infty; -14.4) \cup (0; +\infty)$; 6) $(-\infty; -3.5) \cup (-2; +\infty)$;

Вариант 7

в)
$$(-\infty; 2) \cup (4; +\infty)$$
. У к а з а н и е: разложите выражение $x^2 - 6x + 8$ на множители. **2.** $[2; 3] \cup \{1\}$. **3.** Если $a > -\frac{1}{2}$, то $x < -\frac{1}{2}$; $x > a$. Если $a = -\frac{1}{2}$, то $x \in \mathbb{R}$; $x \neq -\frac{1}{2}$. Если $a < -\frac{1}{2}$, то $x > -\frac{1}{2}$ и $x < a$.

4. Решение: т.к. $0,1 < b < 0,4$, то $-0,9 < 0.4$. Решение: т.к. $0,1 < b < 0.4$, то $-0,9 < 0.4$. То $-0,6$; $0,6 < 1 - b < 0.4$; $\frac{10}{9} < \frac{1}{1-b} < \frac{5}{3}$. Т.к. $1,5 < a < 2,5$, то $\frac{5}{3} < \frac{a}{1-b} < \frac{25}{6}$; $10 < \frac{6a}{1-b} < 25$;

 $-25 < \frac{-6a}{b-1} < -10$. В этот промежуток попадает только одно число, кратное 9. Это будет число -18.

1. а)
$$\left[-\frac{10}{3}; \frac{10}{3}\right]$$
; б) $(-1; 1.5)$; в) $(-2; 5)$. 2. $[3; 4] \cup \left\{-\frac{1}{2}\right\}$. 3. Если $a < 0.6$, то $a < x \leqslant 0.6$. Если $a = 0.6$, то \emptyset . Если $a > 0.6$, то $0.6 \leqslant x < a$. 4. -1 .

5. Модуль числа. Уравнения и неравенства, содержащие модуль

Вариант 1

1. а) $a \geqslant 0$; б) $-2 \leqslant a \leqslant 2$. 2. а) x = 3; б) x = 2 и x = -6. 3. а) [-1; 9]; б) $(-\infty; -4] \cup [0; +\infty)$. 4. См. рис. 3 и 4.

Рис. 3.

Рис. 4.

Вариант 2

- **1.** a) $a \le 0$; **6**) $a \le -3$; $a \ge 3$.
- **2.** a) x = -1; $x = \frac{3}{5}$; 6) x = -3 if x = 9.
- **3.** a) $(-\infty; 1) \cup (9; +\infty)$; **6)** $[-4; -1) \cup (-1; 2]$.
- 4. См. рис. 5 и 6.

Рис. 5.

1. a)
$$m = 0$$
; **6)** $m \ge 0$. **2. a)** $x = \pm \frac{1}{2}$; **6)** $x = 1$, $x = -3$, $x = 5$, $x = -7$. **3. a)** $\left(\frac{2}{3}; 2\right)$; **6)** $(3; +\infty)$. **4.** См. рис. 7 и 8.

1. a) \emptyset ; б) $-\infty . 2. a) <math>x = 0$; x = 6; б) $x = \pm 6$. 3. a) $\left[\frac{4}{3}; 4\right]$; б) $\left(-\infty; \frac{1}{2}\right)$. 4. См. рис. 9 и 10.

- 1. -x-1 при x < -1; x+1 при $-1 \leqslant x < 1$;
- $2x^2 + x 1$ при $x \ge 1$; **2.** a) $x = \pm 4.5$; **6**) x = 2.5.
- **3.** a) $\left(\frac{1}{3};\infty\right)$; **6**) $\left(-\infty;-\frac{1}{2}\right)$. **4.** Cm. puc. 11 и 12.

Рис. 12.

Вариант б

1. 2x - 4 при x < -2; $-2x^2 + 2x + 4$ при $-2 \le x < 2$; $2x^2 - 2x - 4$ при $x \ge 2$. **2.** a) $x = -\frac{1}{2}$ и x = 3.5; **6**) x = -2.5. **3.** a) (-4;2); **6**) $(-\infty;1)$. **4.** См. рис. 13 и 14. a)

Рис. 14.

- 1. x = -6 и x = 2.
- **2.** Решение: |a+b|=|a|+|b|, если a и b имеют одинаковые знаки или a=0 и b=0, т.е. $ab\geqslant 0$. В нашем случае |x+5|+|3-x|=|(x+5)+(3-x)|. В таком случае $(x+5)(3-x)\geqslant 0$ и $-5\leqslant x\leqslant 3$. Ответ: [-5;3].
- **3.** a=3. У к а з а н и е: необходимо построить график функции y=||x-4|-3|. Прямая y=a пересечет этот график в трех точках, если a=3.
- 4. Решение: |x-1,6| < a. Тогда 1,6-a < x < < 1,6+a (x-1)(x-2) < 0 и тогда 1 < x < 2. Исходя из условия $(1;2) \subset (1,6-a;1,6+a)$. В нашем случае $\left\{ \begin{array}{l} 1,6-a \geqslant 1 \\ 1,6+a \leqslant 2, \end{array} \right. \left\{ \begin{array}{l} a \leqslant 0,6 \\ a \leqslant 0,4. \end{array} \right.$ Отсюда $a \leqslant 0,4$, исходя из условия $0 < a \leqslant 0,4$. Ответ: $0 < a \leqslant 0,4$.
- **5.** Решение: если $y \geqslant 1$, то y = x + 1; если $y \leqslant 1$, то y = 1 x. См. рис. 15. **6.** См. рис. 16.

Рис. 15.

Рис. 16.

1. $\left[-4; \frac{1}{2}\right]$. 2. Решение: |a+b| < |a| + |b|, если ab < 0. В нашем случае |x+5| + |3-x| > |(x+5) + (3-x)|, и тогда (x+5)(3-x) < 0. Ответ: $(-\infty; -5) \cup (3; +\infty)$.

3. a=4. У к а з а н и е: необходимо построить график функции y=|x+2|+|x-2|. Прямая y=a совпадает с горизонтальным звеном этого графика при a=4. Тогда решением уравнения будет промежуток [-2;2].

4. Решение: 1<|x-3|<2. Отсюда следует, что 1< x<2 или 4< x<5. С учетом того, что все эти решения были решениями неравенства x<-5a, должно выполняться неравенство $5\leqslant -5a$, т.е. $a\leqslant -1$. Ответ: $a\leqslant -1$.

5. См. рис. 17. **6.** См. рис. 18.

Рис. 17.

Рис. 18.

6. Действительные числа. Арифметический квадратный корень

Вариант 1

1. Рациональные числа: $\sqrt{\frac{16}{25}}$; 2,5(6). Иррациональные числа: $\sqrt{5}$; $\sqrt{3}-1$. **2.** 0,(3). **3.** $\frac{71}{99}$. **4.** $5<\sqrt{35}<6$. **5.** 2. **6.** x=5. **7.** $(-\infty;-1)\cup(-1;2]$.

Вариант 2

1. Рациональные числа: $\sqrt{\frac{36}{49}}$; 1,6(2). Иррациональные числа: $\sqrt{7}$; $\sqrt{5}+2$. 2. 0,(7). 3. $\frac{29}{99}$. 4. $8<\sqrt{71}<9$. 5. -1. 6. x=0. 7. $[4;5)\cup(5;+\infty)$.

Вариант 3

1. 2,(72). 2. $\frac{7}{30}$. 3. a) 0,22(23) > 0,223; 6) -2,67 < < $-2\frac{2}{3}$. 4. 3; $\sqrt{15}$; 4; $\sqrt{16,5}$; $\sqrt{19}$. 5. $\sqrt{5}-\sqrt{2}$. 6. x=6. 7. [2;4) \cup (4;5).

Вариант 4

1. -1,(39). 2. $\frac{5}{18}$. 3. a) 0,(26) > 0,261; 6) $-\frac{7}{6} > -1,16667$. 4. 0,2; $\frac{1}{4}$; $\sqrt{\frac{1}{11}}$; $\sqrt{0,1}$. 5. 1. 6. x = 2. 7. $[-2;0) \cup (0;2)$.

Вариант 5

1. $\frac{1}{7} < 0.1428(57)$. 2. $3\frac{8}{55}$. 3. Например, $\frac{3}{2}$. 4. Например, $\frac{\sqrt{30}}{10}$. 5. a > b. 6. a + 1. 7. $(-\infty; -1) \cup [3; 5]$.

1. $\frac{7}{30} > 0.23(12)$. 2. $2\frac{184}{495}$. 3. Например, 2.5. 4. Например, $\frac{\sqrt{2}}{2}$. 5. a > b. 6. -a - 5. 7. (2;3).

Вариант 7

1.
$$4\frac{4}{45}$$
. **2.** $2 < \frac{1}{3}\sqrt{63} < 3$. **3.** $(-\infty; 2)$. **4.** 20. **5.** $0,3 < \sqrt{0,3} < (\sqrt{5}-1)^2$. **6.** 1. **7.** $\{-1\} \cup [2; +\infty)$.

Вариант 8

1.
$$2\frac{44}{45}$$
. **2.** $7 < \frac{3}{4}\sqrt{112} < 8$. **3.** $(4; +\infty)$. **4.** 18. **5.** $(3 - \sqrt{7})^2 < \sqrt{1,7} < 1,7$. **6.** 1. **7.** $\{5\}$.

7. Квадратный корень из произведения и дроби

Вариант 1

1. a) 90; 6)
$$\frac{13}{6}$$
. **2.** $36 - 36\sqrt{2} + 27\sqrt{3}$. **3.** $-5xy^3\sqrt{3x}$.

4.
$$-\sqrt{80}$$
. **5. a)** $c + \sqrt{2}$; **6)** $\frac{\sqrt{x} + \sqrt{3}}{\sqrt{x} - \sqrt{3}}$. **6. a)** $\frac{\sqrt{5}}{4}$;

6)
$$\frac{5(\sqrt{13}-3)}{4}$$
.

1. a) 84; **6)**
$$\frac{11}{8}$$
. **2.** $2(6-9\sqrt{2}+8\sqrt{3})$. **3.** $-4ab^5\sqrt{2a}$.

4.
$$-\sqrt{108}$$
. **5. a)** $\frac{1}{m-\sqrt{3}}$; **6)** $\frac{\sqrt{a}-\sqrt{5}}{\sqrt{a}+\sqrt{5}}$. **6. a)** $\frac{\sqrt{3}}{2}$;

6)
$$\sqrt{5} + \sqrt{3}$$

1. a)
$$2\sqrt{7}$$
; **6**) $47 - 9\sqrt{5}$. **2.** a) $24\sqrt{2}$; **6**) $-2c^3b\sqrt{-2cb}$.

3. a)
$$-\sqrt{2(19-6\sqrt{10})}$$
; **6)** $-\sqrt{(y-x)^3}$. **4.** $5\sqrt{3} < 4\sqrt{5}$.

5.
$$\frac{a^2 + 2\sqrt{3}}{a^2 - 2\sqrt{3}}$$
. 6. a) $\frac{2\sqrt{3} + \sqrt{2}}{10}$; 6) $\frac{3\sqrt{a - b}}{a - b}$.

Вариант 4

1. a)
$$-2\sqrt{5}$$
; 6) $42 + 4\sqrt{3}$. 2. a) $15\sqrt{3}$; 6) $-3a^2b\sqrt{-3a}$.

3. a)
$$-\sqrt{3(33-8\sqrt{17})}$$
; 6) $-\sqrt{b-a}$. 4. $7\sqrt{2} > 3\sqrt{7}$.

5.
$$\frac{x^2 - 3\sqrt{2}}{x^2 + 3\sqrt{2}}$$
. 6. a) $\frac{3\sqrt{2} + \sqrt{3}}{15}$; 6) $\frac{4\sqrt{x+y}}{x+y}$.

Вариант 5

1.
$$(a+b)\sqrt{a-b}$$
.

2. Решение: из текста примера следует, что
$$x \leqslant 0$$

2. Решение: из текста примера следует, что
$$x \le 0$$
 и $y \le 0$. Тогда
$$\frac{\sqrt{-x} + \sqrt{xy}}{1 + \sqrt{\sqrt{y^2}}} = \frac{\sqrt{-x} + \sqrt{(-x)(-y)}}{1 + \sqrt{|y|}} =$$

$$=\frac{\sqrt{-x}(1+\sqrt{-y})}{1+\sqrt{-y}}=\sqrt{-x}.$$
 Other: $\sqrt{-x}$.

3. 0. У казание: внесите множитель $2-\sqrt{5}$ под знак корня. 4. a > b. 5. $\sqrt{3} + \sqrt{2}$. 6. $\frac{(1+\sqrt{2}+\sqrt{5})(1+\sqrt{2})}{2}$.

1.
$$(x-y)\sqrt{x+y}$$
.

2. Решение: из текста примера следует, что
$$x<0$$

и
$$y < 0$$
. Тогда $\frac{\sqrt{-x}}{\sqrt{xy}} \cdot \sqrt{-y^3} = \frac{\sqrt{-x}}{\sqrt{-x} \cdot \sqrt{-y}} \cdot |y| \cdot \sqrt{-y} = \frac{1}{\sqrt{-y}} \cdot |y| \sqrt{-y} = |y| = -y$. Ответ: $-y$.

3. 0. **4.**
$$b > a$$
. **5.** $\sqrt{7} - \sqrt{5}$. **6.** $\frac{(3 + \sqrt{2} + \sqrt{3})(2 + \sqrt{6})}{4}$.

- 1. -4. Указание: $14 6\sqrt{5} = (3 \sqrt{5})^2$.
- 2. У к а з а н и е: $x^3-5x^2+5x-1=(x-1)(x^2++x+1)-5x(x-1)=(x-1)(x^2-4x+1)$. После этих преобразований подставить $x=2-\sqrt{3}$.
- 3. Решение: $\frac{a^2+3}{\sqrt{a^2+2}}=\frac{a^2+2}{\sqrt{a^2+2}}+\frac{1}{\sqrt{a^2+2}}=$ $=\sqrt{a^2+2}+\frac{1}{\sqrt{a^2+2}}>2$, т.к. $x+\frac{1}{x}>2$ при x>0 и $x\neq 1$.
- **4.** Решение: $\frac{a + \sqrt{ab}}{b + \sqrt{ab}} = \frac{(\sqrt{-a})^2 + \sqrt{-a} \cdot \sqrt{-b}}{(\sqrt{-b})^2 + \sqrt{-a} \cdot \sqrt{-b}} = \frac{\sqrt{-a}(\sqrt{-a} + \sqrt{-b})}{\sqrt{-b}(\sqrt{-a} + \sqrt{-b})} = \frac{\sqrt{-a}}{\sqrt{-b}} = \sqrt{\frac{a}{b}}.$ Ответ: $\sqrt{\frac{a}{b}}$.
- **5.** Решение: $a=\sqrt{3}-\sqrt{2}=\frac{1}{\sqrt{3}+\sqrt{2}};\;\;b=\frac{1}{2+\sqrt{3}}.$ Так как $2+\sqrt{3}>\sqrt{3}+\sqrt{2},\;$ то $\frac{1}{2+\sqrt{3}}<\frac{1}{\sqrt{3}+\sqrt{2}}.$ Ответ: b<a.
- **6.** Решение: пусть $\sqrt{a-1}=x\geqslant 0$. Тогда $a=x^2+1$. Отсюда $\sqrt{a+2\sqrt{a-1}}=\sqrt{x^2+1+2x}=|x+1|=x+1,$ т.к. $x\geqslant 0$. Ответ: $\sqrt{a-1}+1$.

Вариант 8

- **1.** -1. У казание: $7 4\sqrt{3} = (2 \sqrt{3})^2$. **2.** См. указание к примеру 2 из В-7. **3.** См. решение пр. 3 из В-7.
- **4.** Решение: из условия следует, что a < 0 и b < 0.

Тогда
$$\frac{\sqrt{ab}-a}{\sqrt{-a}} = \frac{\sqrt{-a}\cdot\sqrt{-b}-(\sqrt{-a})^2}{\sqrt{-a}} = \frac{\sqrt{-a}(\sqrt{-b}-\sqrt{-a})}{\sqrt{-a}} = \sqrt{-b}-\sqrt{-a}.$$

Ответ: $\sqrt{-b} - \sqrt{-a}$.

- 5. $\frac{\sqrt{5}-\sqrt{2}}{3} > \sqrt{5}-2$. См. решение пр. 5 из В-7.
- **6.** $|\sqrt{a-3}-2|$. См. решение пр. 6 из В-7.

8. Упражнения на все действия с арифметическими корнями

Вариант 1

1. 6. 2.
$$\frac{a+b}{a}$$
.

Вариант 2

1. 6. 2.
$$\sqrt{a} - \sqrt{b}$$
.

Вариант 3

1.
$$-33$$
. 2. $\sqrt{x} + \sqrt{y}$.

Вариант 4

1.
$$-115$$
. 2. $4x$.

Вариант 5

1. P е ш е н и е:
$$(4 + \sqrt{15})(\sqrt{10} - \sqrt{6}) \cdot \sqrt{4 - \sqrt{15}} =$$

 $= \sqrt{2}(\sqrt{5} - \sqrt{3})\sqrt{(4 + \sqrt{15})^2(4 - \sqrt{15})} =$
 $= \sqrt{2}(\sqrt{5} - \sqrt{3})\sqrt{4 + \sqrt{15}} = \sqrt{2}\sqrt{(8 - 2\sqrt{15})(4 + \sqrt{15})} =$
 $= \sqrt{2} \cdot \sqrt{2(4 - \sqrt{15}) \cdot (4 + \sqrt{15})} = 2$. Ответ: 2.
2. 2.

Вариант 6

1. 8. У к а з а н и е: решается аналогично пр. 1 из В-5. **2.** 2.

$$\frac{\sqrt{3}}{1. \text{ P е шение:}} \frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1} - \frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1} = \frac{\sqrt{3}(\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1)}{\sqrt{3}+1-1} = \frac{2\sqrt{3}}{\sqrt{3}} = 2.$$
Ответ: 2.

2. Решение:
$$x = \frac{1}{2} \cdot \frac{a+b}{\sqrt{ab}}$$
.
$$\sqrt{x^2 - 1} = \sqrt{\frac{(a+b)^2}{4ab} - 1} = \sqrt{\frac{(a-b)^2}{4ab}} = \frac{|a-b|}{2\sqrt{ab}}.$$

$$\frac{2b\sqrt{x^2 - 1}}{x - \sqrt{x^2 - 1}} = \frac{2b \cdot \frac{|a-b|}{2\sqrt{ab}}}{\frac{a+b}{2\sqrt{ab}} - \frac{|a-b|}{2\sqrt{ab}}} = \frac{2b|a-b|}{a+b-|a-b|} =$$

$$= \begin{cases} \frac{2b(a-b)}{a+b-a+b} = a-b & \text{при } a > b \\ \frac{2b(b-a)}{a+b-b+a} = \frac{b}{a}(b-a) & \text{при } 0 < a \leqslant b. \end{cases}$$

1. 2. У казание: решение аналогично пр. 1 из В-7

2. Решение:
$$x = \frac{2a}{b + \frac{1}{b}} = \frac{2ab}{b^2 + 1}$$
.

$$\sqrt{a + x} = \sqrt{a + \frac{2ab}{b^2 + 1}} = \sqrt{\frac{a(b^2 + 1 + 2b)}{b^2 + 1}} = |b + 1| \cdot \sqrt{\frac{a}{b^2 + 1}}.$$

$$\frac{\sqrt{a + x} - \sqrt{a - x}}{\sqrt{a + x} + \sqrt{a - x}} = \frac{|b + 1| - |b - 1|}{|b + 1| + |b - 1|} =$$

$$= \begin{cases} \frac{b + 1 - b + 1}{b + 1 + b - 1} = \frac{2}{2b} = \frac{1}{b} & \text{при } b \geqslant 1 \\ \frac{b + 1 - 1 + b}{b + 1 + 1 - b} = \frac{2b}{2} = b & \text{при } 0 < b < 1. \end{cases}$$

9. Неполные квадратные уравнения

1. a) 0; **6**)
$$-\frac{2}{5}$$
; 0; **B**) -2.5 ; 2.5; **r**) 0; 6. **2.** a) $\frac{3}{5}$; 0; **6**) -5 ; **B**) 1; 2. **3.** -10 ; -2 . **4.** $(0;3) \cup (3;\infty)$.

1. a) 0; **6**) 0; $\frac{4}{3}$; **B**) $-\frac{4}{3}$; $\frac{4}{3}$; **r**) 0; 9. **2.** a) -3; 0; **6**) 0,1; **B**) -3; -1. **3.** 2; 12. **4.** $[-3;-1) \cup (-1;0) \cup (0;\infty)$.

Вариант 3

1. a) 0; **6**) 0; 2; **B**)
$$-\frac{13}{3}$$
; $\frac{13}{3}$; **r**) 0; -3,7. **2.** a) -6; 2; **6**) $-\frac{5}{4}$; **B**) 2; **6**. **3**. 2; 18. **4**. $(-\infty; -4) \cup (-4; 0) \cup (0; 7]$.

Вариант 4

1. a) 0; **6**) 0; 4; **B**)
$$-1,1;1,1;$$
 r) 0; $4\frac{2}{5}$. **2.** a) 3; **6**) 1,5; **B**) $-6;1$. **3.** $-12;-4$. **4.** $[-4;0) \cup (0;2) \cup (2;\infty)$.

Вариант 5

1. a)
$$0; \frac{54}{11};$$
 6) 0. **2.** a) $-\frac{28}{\sqrt{31}}; \frac{28}{\sqrt{31}};$ **6)** $-2; 15;$

B) -14; -4.

3. a = -1, тогда x = 0 и x = -1; и a = 0, тогда решений нет.

4. если |a|<1, то $x\in [1;\infty)$; если |a|=1, то $x\in (1;\infty)$; если a<-1, то $x\in [1;-a)\cup (-a;\infty)$; если a>1, то $x\in [1;a)\cup (a;\infty)$.

Вариант 6

- **1.** a) -59;0; 6) 0. **2.** a) -2;2; 6) -6;-5; B) 2;20.
- **3.** a=2, тогда x=0 и x=-0.5; a=0, тогда $x=-\sqrt{2}$; $x=\sqrt{2}$.
- **4.** Если $a\leqslant 0$, то $x\in (0,\infty)$; если a>0, то $x\in (0,a)\cup (a,\infty)$.

- **1.** a) -5;5; 6) -6;6; B) 0;1. 2. a) -2;20; 6) $-1;\frac{2}{7}.$
- **3.** а) $a \neq 0$, тогда x = 0, $x = -\frac{1}{a}$; a = 0, тогда

x — любое число; **6**) a=0, тогда $x=-\sqrt{5}$, $x=\sqrt{5}$; a=5, тогда x=0, x=-1.

4. $a \leqslant \frac{1}{2}$, тогда $(0;\infty)$; $a > \frac{1}{2}$, тогда $(0;2a-1) \cup (2a-1;\infty)$.

Вариант 8

1. a) нет решений; **6**) -4; 4; B) -1; 0; $\frac{1}{2}$. **2.** a) -12; -4;

6)
$$-\frac{5}{11}$$
; 1. 3. а) $a \neq 0$, тогда $x = 0$; $x = \frac{2}{a}$; $a = 0$, тогда x — любое число.

4. $a=1 \implies x \neq 0, \ x \neq 2; \ 0 < a < 1, \ a > 1,$ тогда $(0;2a) \cup (2a;\infty), \ a < 0, \ (0;\infty).$

10. Решение квадратных уравнений

Вариант 1

1. а) 2;3; б) $-1;\frac{4}{3};$ в) $\frac{1}{3};3.$ 2. а) нет корней; б) 2 корня; в) 1 корень. 3. $-\frac{5}{6};5.$

Вариант 2

1. а) -5;-1; б) 1;1,5; в) $-\frac{1}{2};4.$ 2. а) 2 корня; б) 1 корень; в) нет корней. 3. $-\frac{7}{4};1.$

Вариант 3

 $\overline{ f 1. a) } \ 4;5; \ {f 6})$ нет решений; ${f B}) \ -4,5;2. \ {f 2. a) } \ 1$ корень; ${f 6})$ нет корней. ${f 3. a) } \ -1;2; \ {f 6}) \ -rac{7}{5};3.$

Вариант 4

(1. a) -6; -4; 6) -4,5; 1; в) решений нет. 2. а) 2 корня;

6) решений нет. **3. a**) 1;6; **6**) $-2\frac{1}{3}$.

- **1. a)** 1,5;3; **б)** -3; $-\frac{2}{3}$. **2. a)** -0,5;2; **б)** решений нет.
- **3.** a=0; $x_2=0.$ **4.** $\overset{\mathbf{3}}{a}=0,$ тогда x=0; $a\neq 0,$ тогда $x=\frac{1}{a};$ x=-2a. **5.** b=0; b=-0.5; b=0.5.

Вариант 6

1. а) -0.5; -2; **6)** $-\frac{3}{4}; 5.$ **2. а)** $\frac{47}{73}; 3;$ **6)** решений нет. **3.** a=2; $x_2=-5.$ **4.** Если a=0, то x=0; если $a\neq 0,$ то $x=-\frac{1}{2};$ x=3a. **5.** $b=\frac{1}{2};$ b=1; b=1.5.

Вариант 7

- **1. a)** 1,5;2; **6)** -7;4; **B)** 10. **2. a)** -1,4;5; **6)** $-\sqrt{15};\sqrt{5}.$
- **3.** Если $a \neq -1$, то x=1; $x=\frac{1-a}{1+a}$; если a=-1; то x=1; a=-1, a=0. **4.** Если $a\neq 0$, то x=2; $x=\frac{b}{a}$; если a=0 и b=0, то $x\in \mathbb{R}$; если a=0 и $b\neq 0$, то x=2.

Вариант 8

- **1. а)** $\frac{3}{5}$; 1; **б)** 2; **в)** решений нет. **2. а)** 0; 60; **б)** $-\sqrt{3}$; 2.
- 3. Если $a \neq 2$, то x = -1; $x = \frac{a+2}{a-2}$; если a = 2, то x = -1; a = 0, a = 2. 4. Если $b \neq 0$, то x = -3, $x = \frac{a}{b}$; если b = 0, a = 0, то $x \in \mathbb{R}$; если b = 0, $a \neq 0$, то x = -3.

11. Теорема Виета

- **1. a)** $x^2 7x 8 = 0$; **6)** $x^2 + 11x + 30 = 0$. **2. a)** -3; -1;
- **6)** 2; 7; **B)** -14; 2. **3. a)** $\frac{x+9}{x-2}$; **6)** $\frac{3x-1}{1-x}$.

$$\overline{\mathbf{1. a}}$$
 $x^2 - x - 12 = 0$; **6**) $x^2 + 11x + 28 = 0$. **2. a**) 1;4;

6) 3; 7; **B)** -13; 2. **3. a)**
$$\frac{x+7}{x+2}$$
; **6)** $\frac{x+3}{3x-5}$.

Вариант 3

1. a)
$$-9$$
; -1 ; **6)** 3 ; 13 ; **B)** -9 ; 5 . **2. a)** $\frac{x+5}{5x+1}$; **6)** $\frac{3x+1}{x+1}$.

3.
$$a=2$$
, $x_2=-1$. **4.** 4.

Вариант 4

1. a) 1;10; **6**) -9;-5; b) -3;10. **2.** a)
$$\frac{9x-1}{7x+1}$$
;

6)
$$\frac{a+13}{a+15}$$
. 3. $a=3$, $x_2=1$. 4. 9.

Вариант 5

1. a)
$$-6;10;$$
 6) $-19;-6;$ B) $-1;\frac{1999}{2001}.$ **2.** a) $\frac{2(x+9)}{3(x-7)};$

6)
$$\frac{x+2}{x+1}$$
. **3.** $a=-1$. **4.** $a=1$. **5.** $(0;1)\cup(1;11)\cup(11;12]$.

Вариант 6

1. a) -7;8; 6) 11;18; b)
$$-\frac{2001}{2000}$$
;1. 2. a) $\frac{4x-3}{2x-1}$;

6)
$$\frac{x+3}{x+4}$$
. 3. $a=-2$. 4. $a=5$; $a=-1$. 5. $(-\infty;-3)\cup\cup[-2;4)\cup(4;5)\cup(5;\infty)$.

1. a)
$$-8$$
; 6) -15 . 2. $\frac{1}{(5x+3)(8x+1)}$. 3. $a = 7$.

4. a)
$$\frac{69}{26}$$
; **6)** $\frac{3409}{16}$. **5.** $a = -1$.

1. a) -10; 6) 15. 2.
$$\frac{1}{(7x+5)(3x+8)}$$
. 3. $a = -9$.

4. a)
$$\frac{69}{4}$$
; **6)** $\frac{473}{8}$. **5.** $a=1$.

12. Уравнения, сводящиеся к квадратным

Вариант 1

1. a)
$$-\sqrt{5}$$
; -1; 1; $\sqrt{5}$; 6) -1; 1. **2.** a) 0,5; 1; 6) 4; 5.

3. a)
$$-3$$
; -2 ; 1; 2; 6) -1 ; -3 . **4.** $\frac{1}{6}$; 4.

Вариант 2

1. a)
$$-\sqrt{6}$$
; -1; 1; $\sqrt{6}$; 6) -1; 1. **2.** a) $\frac{11}{7}$; 2; 6) -2; 2.

3. a)
$$-5$$
; -4 ; 1; 2; 6) -1 ; 2. **4.** Решений нет.

Вариант 3

1. a)
$$-\sqrt{3}$$
; $-\frac{\sqrt{3}}{3}$; $\frac{\sqrt{3}}{3}$; $\sqrt{3}$; 6) $-\sqrt{5}$; -2; 2; $\sqrt{5}$.

2. a)
$$-1$$
; $\frac{8}{15}$; **6**) $-\frac{7}{5}$; 1. **3.** a) 1; 2; 3; 4; **6**) -3 ; 8.

4.
$$\frac{5-3\sqrt{5}}{2}$$
; $\frac{5+\sqrt{5}}{2}$; 2; 3.

Вариант 4

1. a)
$$-\sqrt{2}$$
; $-\frac{\sqrt{2}}{2}$; $\frac{\sqrt{2}}{2}$; $\sqrt{2}$; 6) $-2\sqrt{2}$; $2\sqrt{2}$. 2. a) -4.7 ; -1 ;

6)
$$-\frac{14}{3}$$
; 4. **3. a)** -4 ; -1; 1; -2; **6)** $-3\frac{1}{3}$; 5. **4.** -6; 2; $-4-\sqrt{6}$; $-4+\sqrt{6}$.

1. a)
$$-3;3;$$
 6) $3;7.$ **2. a)** $-9;2;$ **6)** $-4;9.$ **3. a)** $a<0,$ $x=-3, x=3; a \ge 0, x=-3, x=3, x=-\frac{\sqrt{a}}{2};$

$$x = \frac{\sqrt{a}}{2}$$
; 6) $\frac{1}{2}$; 2.

4. -4; 2. У к а з а н и е: заметить, что $(x+1)^2 = x^2 + 2x + 1$; замена $x^2 + 2x = y$.

Вариант 6

1. а)
$$-\sqrt{5}$$
; $\sqrt{5}$; **6)** -5 ; -1 . **2. а)** -3 ; $\frac{2}{3}$; **6)** 2. **3. а)** если $a < 0$, то $x = -4$, $x = 4$; если $a \ge 0$, то $x = -4$, $x = 4$, $x = -\sqrt{2}a$, $x = \sqrt{2}a$; **6)** $\frac{1}{3}$; 3. $\frac{-3 - \sqrt{5}}{2}$; $\frac{-3 + \sqrt{5}}{2}$.

Вариант 7

1. a)
$$-\frac{\sqrt{3}}{2}$$
; $\frac{\sqrt{3}}{2}$; 6) 1; 2. 2. a) $-1-\sqrt{7}$; $-1+\sqrt{7}$.

3. a)
$$-1; \frac{3-\sqrt{5}}{2}; \frac{3+\sqrt{5}}{2};$$

б) 1. У казание: замена $x^2 - 2x + 2 = y$.

4. 2; 3. У казание: заметим, что $(x-2)(x-3) = x^2 - 5x + 6$, и сделаем замену $x^2 - 5x + 7 = y$.

Вариант 8

1. a)
$$-\frac{\sqrt{10}}{5}; \frac{\sqrt{10}}{5};$$
 6) $-6; -2; 1; 3.$

2. a)
$$\frac{-3-\sqrt{33}}{2}$$
; $\frac{-3+\sqrt{33}}{2}$; **6)** 5,2; 10.

3. а) Указание: пусть
$$x - \frac{1}{x} = y$$
, тогда $x^2 + \frac{1}{x^2} = y^2 + 2$; $y^2 + 6y + 8 = 0$;

$$\begin{bmatrix} x - 1/x = -2 \\ x - 1/x = -4 \end{bmatrix} \begin{bmatrix} x^2 + 2x - 1 = 0 \\ x + 4x - 1 = 0 \end{bmatrix}$$
 $x = -1 \pm \sqrt{2}$

6) 1; 2. **4.** -3; -2; 1; 2.

13. Решение задач

с помощью квадратных уравнений

Вариант 1

1. 20 км/ч. 2. 5 ч и 7 ч. 3. 40 см и 9 см.

Вариант 2

1. 20 км/ч. 2. 10 ч и 15 ч. 3. 15 см и 8 см.

Вариант 3

1. 15 км/ч. **2.** 20 ч. **3.** 2 см и 8,5 см или 5 см и 5,5 см.

Вариант 4

1. 10 км/ч. 2. 15 ч. 3. 9 см и 3 см.

Вариант 5

1. 2 кг и 1 кг 2. 10 ч и 8 ч 3. 120 км.

Вариант 6

- 1. 40 т и 100 т. 2. 12 ч и 15 ч.
- 3. 3 ч. У к а з а н и е: пусть V скорость катера, x скорость течения и плота, t искомое время; тогда $(V+x)\cdot t=(V-x)(4-t)+4x;$ $\underline{Vt}+xt=4V-4x-\underline{Vt}+xt+4x$ 2Vt=4V; t=2.

- 1. 10 участников. У к а з а н и е: учесть, что в каждой партии играют два участника.
- 2. $16 \text{ чи } 5\frac{1}{3} \text{ ч.}$
- 3. 375 с. У к а з а н и е: принять за x искомое время и применить теорему Пифагора к треугольнику, катетами которого будут (300-4x) и (250+3x), а гипотенузой расстояние в $1\,825$ м.

- 1. 9 человек. 2. 27 ч и 24 ч.
- 3. Через 6 с и через 8 с. У к а з а н и е: через 8 с оба тела будут находиться на продолжении сторон прямого угла.

14. Решение систем 2-й степени

Вариант 1

- **1.** a) (3;4); 6) (0;5). **2.** a) (2;-2); 6) (-0,5;-1,5) (1;0).
- **3.** a) (2;3) (3;2); **6)** (4;8) (8;4). **4.** (-4;-3) (-4;3).
- **5.** (3; 2).

Вариант 2

1. a) (3;4); **6)** (0,5;-2). **2. a)** (2;6) (6;2); **6)** (-1,5;-10)(5;3). **3. a)** (1;-2) (3;0); **6)** (-1;-5) (5;1). **4.** (-1;-2)(1;-2) (-1;2) (1;2). **5.** (1;2) (8;0,5).

Вариант 3

- **1.** a) (9;2); 6) (3;2). 2. a) (-2;1) (0,25;7,75);
- **6)** (-6;2) (-4;4). **3. a)** (-2;-2) (0;0) (2;2); **6)** $(-\sqrt{3};-\sqrt{3})$ (0;0) $(\sqrt{3};\sqrt{3})$. **4.** (-2;-1) (2;-1).

5.
$$(6;6)\left(\frac{-3+3\sqrt{5}}{2}; \frac{-3-3\sqrt{5}}{2}\right)$$

 $\left(\frac{-3-3\sqrt{5}}{2}; \frac{-3+3\sqrt{5}}{2}\right)$.

- 1. а) (-5; -6); б) решений нет. 2. а) (4; -3) (17; 10);
- **6)** (-1; -3) (4,5;8). **3. a)** (-1;3) (3;-1) $(-\sqrt{5}; -\sqrt{5})$
- $(\sqrt{5}; \sqrt{5});$ **6)** (0;0) (0;3) (3;3). **4.** (-1;-1) (1;1). **5.** (1;4) (4;1) $(\frac{-5-\sqrt{41}}{2};\frac{-5+\sqrt{41}}{2})$
- $\left(\frac{-5+\sqrt{41}}{2}; \frac{-5-\sqrt{41}}{2}\right)$.

1.
$$(-1;-1)(-4;2)(0,5;-1,5)(0,5;-0,5)$$
.

2. a)
$$(0;0)$$
 $(-2,4;4,8)$; **6)** $(-2;-3)$ $(3;2)$.

3. a)
$$(-2;1)$$
 $(2;-1)$ $(-2;-1)$ $(2;1)$.

6)
$$(-3;-1)$$
 $(-1;-3)$ $(1;3)$ $(3;1)$.

6)
$$(-3; -1)$$
 $(-1; -3)$ $(1; 3)$ $(3; 1)$.
4. $\left(-\frac{\sqrt{30}}{40}; \frac{\sqrt{30}}{10}\right) \left(\frac{\sqrt{30}}{40}; -\frac{\sqrt{30}}{10}\right) \left(-\frac{\sqrt{30}}{5}; -\frac{\sqrt{30}}{5}\right) \left(\frac{\sqrt{30}}{5}; \frac{\sqrt{30}}{5}\right)$.

У казание: решить уравнение $4x^2 - 3xy - y^2 = 0$ относительно $x \dots x = y$ или $x = -\frac{1}{4}y \dots$ 5. a = -3.

Вариант 6

1.
$$(-9;3)$$
 $(0;-1)$ $(4;3)$.

2. a)
$$(-9, -6)$$
 $(6, 9)$; **6)** $(0, 0)$ $(\frac{1}{2}, \frac{1}{3})$.

3. a)
$$(-3\sqrt{2}; -\sqrt{2})$$
 $(-3\sqrt{2}; \sqrt{2})$ $(3\sqrt{2}; -\sqrt{2})$ $(3\sqrt{2}; \sqrt{2});$

6)
$$(-2;-1)$$
 $(-1;-2)$ $(1;2)$ $(2;1)$.

4.
$$(-1; -3)$$
 $(1; 3)$ $\left(-\frac{8\sqrt{14}}{7}; \frac{20\sqrt{14}}{7}\right) \left(\frac{8\sqrt{14}}{7}; -\frac{20\sqrt{14}}{7}\right)$.

5.
$$a = 2$$
.

Вариант 7

1. a)
$$\left(-\frac{3}{7}; -\frac{3}{2}\right)\left(-\frac{3}{7}; \frac{3}{2}\right)\left(\frac{3}{7}; -\frac{3}{2}\right)\left(\frac{3}{7}; \frac{3}{2}\right)$$
.

2. a)
$$\left(-10; -\frac{14}{3}\right)$$
 (3;4); **6**) (4;2) (16;-10).

3. a)
$$(1; -4)$$
 $(4; -1)$.

6)
$$(-2; -3)$$
 $(3; 2)$ $(3 - \sqrt{10}; 3 + \sqrt{10})$ $(3 + \sqrt{10}; 3 - \sqrt{10}).$

У казание: сделать замену x-y=u xy=v.

4. (-2;-1) (-1;-2) (1;2) (2;1). У казание: умножить первое уравнение на 13 и сложить его со вторым. Далее см. указание к В-5 п.4.

5.
$$a = -3\sqrt{2}$$
; $a = 3\sqrt{2}$.

- **1. a)** (1;-2) (1;2). **2. a)** $\left(-7,5;3\frac{5}{8}\right)$ (-2;5);
- **6)** (2;1) (3;2). **3. a)** (2;3) (3;2); **6)** (-2;1) (-1;2).
- **4.** (-2; -3) (-3; -2) (2; 3) (3; 2). **5.** a = 8.

15. Квадратичная функция

Вариант 1

- **1. a)** (0;-7); **6)** (1;1); **B)** (2;-1).
- **2.** a) (1;0) (3;0); (0;3); **6)** $\left(-\frac{1}{2};0\right)$ (1;0); (0;1).
- **3. а)** у возрастает на $[3; \infty)$; y убывает на $(-\infty; 3]$;
- **б)** y возрастает на $(-\infty; 3]; y$ убывает на $[3; \infty)$.
- **4.** $y_{\text{Hauf.}} = 9$.

Вариант 2

- (0;5); 6) (-1;-1); B) (2;10).
- **2. a)** (-4;0) (-1;0); (0;4); **6)** $\left(-\frac{1}{3};0\right)$ (1;0); (0;1).
- **3. а)** y возрастает на $(-\infty; -1]; y$ убывает на $[-1; \infty);$
- **б)** y возрастает на $[-1;\infty);\ y$ убывает на $(-\infty;-1].$
- 4. $y_{\text{HBMM}} = -33$.

- **1. a)** x < -4; x > 4; **6)** -3 < x < 0. **2.** x = 2.
- **3.** (-2;-1) (1;2). **4. a**) см. рис. 19; **б**) см. рис. 20; **в**) см. рис. 21;

Рис. 19.

Рис. 20.

Рис. 21.

1. a) -3 < x < 3; **6)** x < 0; x > 7. **2.** x = 2. **3.** (-1;-1) (2;2). **4.** a) cm. puc. 22; **6)** cm. puc. 23; **B)** cm. puc. 24;

Вариант 5

1. — **2.** (1; 3) (4; 6). **3.** a = -1; b = -4; c = 1. **4.** a) см. рис. 25; **6**) см. рис. 26; **5.** см. рис. 27.

- 1. 2. (-3;2) (0;-1). 3. a = -2; b = -4; c = 4.
- **4. a)** см. рис. 28; **б)** см. рис. 29; **5.** см. рис. 30.

1. a) см. рис. 31; **6**) см. рис. 32. **2.** $y_{\text{наиб.}} = -5$. **3.** 17

и 17. **4.** a = 2.5; a = 4. **5. a)** a < 0; b < 0; c > 0; **6)** a > 0; b > 0; c = 0.

Вариант 8

1. а) см. рис. 33; б) см. рис. 34.

2. $y_{\text{HAMM}} = -5$. **3.** 25 cm^2 .

4. $a=2,5; \ a=4$. У к а з а н и е: решить систему $\left\{ \begin{array}{l} y=2ax^2+2x+1 \\ y=5x^2+2ax-2, \end{array} \right.$ уравнение $2ax^2+2x+1=5x^2+2ax-2$ или $(2a-5)x^2+(2-2a)x+3=0$ должно иметь единственное решение, что достигается при 2a-5=0 или $D=0\dots$

5. a) a > 0; b < 0; c > 0; **6)** a < 0; b < 0; c < 0.

16. Квадратные неравенства

Вариант 1

1. а) $-2 \leqslant x \leqslant 2$; б) $\frac{1}{2}$; в) $x < -\frac{2}{5}$; x > 1; г) решений нет. 2. а) x < 1; x > 2; б) $0 \leqslant x \leqslant 4$. 3. а) $(-3;3) \cup \cup (3;4)$; б) $\left[-\frac{1}{2};0\right) \cup (0;1]$.

Вариант 2

1. a) x < -9; x > 9; б) $x \neq \frac{1}{3}$; в) $-\frac{7}{4} \leqslant x \leqslant 1$; г) решений нет. **2.** a) $x \leqslant -2$; $x \geqslant 0$; б) 1 < x < 3.

3. a) $(-4;4) \cup (4;5]$; **6)** $\left(-\frac{1}{3};0\right) \cup (0;1)$.

Вариант 3

1. a) 0 < x < 3; 6) $6 \le x \le 7$; B) $x \le -5$; x > 3;

$$(\vec{r})$$
 $-4 < x < 4$. 2. a) $-\frac{1}{2} < x < \frac{1}{2}$; 6) $x \le -3$; $x \ge 1$.

3. a) -3 < x < 3; **6)** x < -2; x = 1; x > 2.

Вариант 4

1. a) $-\frac{2}{5} \leqslant x \leqslant 0$; 6) 7 < x < 6; B) $-7 < x \leqslant 2$;

r)
$$-4 < x < 1$$
. 2. a) $x \le -2$; $x \ge 2$; 6) $-1 < x < 5$.

3. a) -2 < x < 2; **6)** x < 0; $x = \frac{1}{2}$; x > 1.

1. a)
$$x \in \mathbb{R}$$
; 6) $\frac{-5 - \sqrt{13}}{4} \le x \le \frac{-5 + \sqrt{13}}{4}$; b) $0 \le x < 6$. **2.** a) $x = 3$; 6) $[-9; -5) \cup (5; 9]$. **3.** $1 < a < 2$; $2 < a < 6$.

Вариант 6

1. а) решений нет; б)
$$x \leqslant \frac{3-\sqrt{6}}{3}$$
; $x \geqslant \frac{3+\sqrt{6}}{3}$; в) $x \leqslant 8-8$; $x>0$. **2.** а) $x=-1$; б) $-\sqrt{5} < x < 0$; $1 \leqslant x < 8 < \sqrt{5}$. **3.** $\frac{4}{3} < x < 2$; $2 < a < 4$.

Вариант 7

- 1. а) $(-5;-2) \cup (2;3) \cup (3;5);$ б) $x \leqslant -4;$ $-2 \leqslant x \leqslant -1;$ $x \geqslant 1$ У к а з а н и е: сделать замену $x^2 + 3x 3 = y,$ тогда $x^2 + 3x + 1 = y + 4 \dots;$ в) $x \leqslant -1;$ x = 2,5 $x \geqslant 3.$
- **2.** a) $\left[0; \frac{1}{2}\right]$; **6)** $\left(-\infty; -1\right) \cup (3; 4] \cup [7; \infty)$.
- 3. a=1. У к а з а н и е: чтобы выполнялось данное условие, необходимо $\begin{cases} a^2-1>0 \\ D<0; \end{cases}$ кроме того, отдельно рассмотреть случай, когда $a^2-1=0.$

Вариант 8

1. a)
$$x < -5$$
; $-3 < x < 3$; $x = 4$; $x > 5$; **6**) $(-2; -1) \cup \cup (2; 3)$; B) $x = 3$; $5 \le x \le 6$. **2.** a) $x < -3$; $x \ge 2$; **6**) $x = 1$. **3.** $a = -2$.

17. Метод интервалов

Вариант 1

1. a) $-\frac{1}{5} \le x \le \frac{1}{5}$; 6) $x < \frac{1}{3}$; x > 1; B) 0 < x < 3; x > 5. **2.** a) x < -1; $x \ge 1$; 6) -4 < x < -3; $1 \le x \le 2$; B) x < -3; x = 0; x > 5. **3.** $(-4; 0) \cup (0; 4)$.

1. a) x < -20; x > 20; **6)** $1 \le x \le 1,5;$ **B)** x < -5; -2 < x < 1. **2. a)** $-2,5 \le x < 7;$ **6)** $(-3;1) \cup (3;4);$ **B)** $\left[-\frac{1}{4};0\right) \cup (0;1].$ **3.** $(-\infty;-2) \cup \{0\} \cup (2;\infty).$

Вариант 3

1. a) $x \le -2$; $0 \le x \le 2$; **6)** -4 < x < 7; **B)** -3 < x < 2; 2 < x < 3. **2. a)** $x \le 0$; x = 2; x > 3; **6)** $-2 < x \le -1$; $1 \le x < 5$; **B)** $(-1; 1) \cup (4; 6)$. **3.** [-0,5; 0,5).

Вариант 4

1. a) $-3 \le x \le 1$; $x \ge 3$; **6)** -2 < x < 6; **B)** -4 < x < 3; 3 < x < 4. **2. a)** x = -1; $3 < x \le 5$; **6)** $-7 \le x < 1$; $7 \le x < 8$; **B)** -3 < x < 1. **3.** $\left[-\frac{2}{3}; 2 \right) \cup \{3\}$.

Вариант 5

1. a) $[-2;-1] \cup [1;2];$ 6) $\left(-\frac{5}{8};1\right) \cup (4;5);$ B) $(-\infty;-2] \cup \{2\} \cup [4;\infty).$ **2.** a) $(-5;1) \cup (1;3];$ 6) $\left(-\frac{3}{2};-\frac{4}{3}\right) \cup (-1;1);$ B) $(-6;0) \cup (1;2).$ 3. x = -11; $-1 \le x < 1;$ x = 11.

Вариант 6

- 1. a) $(-\infty; -3] \cup [-1; 1] \cup [3; \infty);$ 6) $(-\frac{3}{7}; 1) \cup (5; 8);$
- B) $(-\infty; -3] \cup \{0\} \cup \{1\} \cup [2; \infty)$. 2. a) $[-7; 1) \cup (1; 5)$;
- 6) $\left(-1; -\frac{1}{2}\right) \cup \left(\frac{1}{4}; 1\right); \ \mathbf{B}\right) \ \left(-\infty; -1\right) \cup (0; 4) \cup (5; \infty).$
- 3. x = -11; $-4 < x \le -2$; x = 1.

Вариант 7

1. a) (-1;2); 6) $\{-3\} \cup [-2;3]$;

в) $\{-1\} \cup [1;2] \cup [3;\infty)$. Указание: $x^3 - 4x^2 + x + 6 = (x^3 + x^2) + (-5x^2 + x + 6) = x^2(x+1) + (x+1)(-5x+6) = x^2(x+6) = x^2(x+6) + x^2(x+6) = x^2(x+6$

 $=(x+1)(x^2-5x+6)=(x+1)(x-2)(x-3)\dots$

- **2. а)** $x \neq -3$; $x \neq 1$. У к а з а н и е: заметить, что выражение обращается в 0 только при x = +1 и x = -3, следовательно, остается лишь проверить, обращается при первое выражение в ноль при этих x;
- **6)** $x \le -1$; $0 < x \le 1$; $2 < x \le 3$; **B)** x < -12; x = -8; $8 \le x < 10$; x > 12.

- **1. a)** (-1;5); **6)** $[-5;3] \cup \{5\}$; **B)** $\{-3\} \cup [-2;0] \cup [1;\infty)$.
- **2.** a) x = 1; x = 2; 6) $[-4, -3) \cup [-1, 5, 0) \cup [1, \infty)$;
- B) x < -13; $-11 < x \le -9$; x = -5; x = 9; x > 13.

Контрольные работы

Неравенства

Вариант 1

Вариант 2

$$\overline{\mathbf{2.} \ 9} < -2a + 3 < 13.$$
 3. При $x > 5\frac{2}{3}$. **4.** a) $(-\infty; -7)$;

6)
$$\emptyset$$
. **5.** $x = -\frac{4}{3}$ is $x = -10$. **6.** $\left(\frac{3}{4}; 1\frac{3}{4}\right)$. **7.** $\left(\frac{1}{7}; \frac{1}{2}\right)$.

8.
$$y = \begin{cases} 1 & \text{при } x \ge -1 \\ -2x - 1 & \text{при } x < -1. \end{cases}$$

Вариант 3
2.
$$5 < x - y < 7$$
. 3. При $a > 9\frac{1}{2}$. 4. a) $\left(-\frac{2}{5};3\right)$;

6)
$$(1; +\infty)$$
. **5.** \emptyset . **6.** $\left(-\infty; \frac{2}{3}\right] \cup \left[2\frac{2}{3}; +\infty\right)$. **7.** $(3; 4)$.

8.
$$y = \begin{cases} x+2 & \text{при } x \geqslant 2\\ 3x-2 & \text{при } x < 2. \end{cases}$$

$$\overline{\mathbf{2.} - 3} < -a + 4b < 14,5$$
. **3.** При $a < -7\frac{1}{3}$. **4.** a) $(2; +\infty)$;

6) (1;3). **5.**
$$x = -3.5$$
. **6.** $(-4.5; -0.5)$. **7.** $(-\infty, -4) \cup$

$$\cup (-3; +\infty). \ \ \mathbf{8.} \ \ y = \left\{ \begin{array}{ll} -x - 1 & \text{при } x \geqslant 1 \\ -3x + 1 & \text{при } x < 1. \end{array} \right.$$

Арифметический квадратный корень

Вариант 1

1ант 1
1. При
$$-2 \le x < 0$$
 и $0 < x \le 3$. **2.** $6\sqrt{3} + 2\sqrt{6}$. **3.** 0. **4. a)** $-\frac{1}{3+\sqrt{a}}$; **6)** $\sqrt{a} + \sqrt{b}$.

4. a)
$$-\frac{1}{3+\sqrt{a}}$$
; **6)** $\sqrt{a}+\sqrt{b}$.

5. а)
$$\sqrt{(a-1)^2b}$$
 при $a \ge 1$, $-\sqrt{(a-1)^2b}$ при $a < 1$;

6) -1. **6.**
$$a < b$$
. **7.** $y = \begin{cases} x+4 & \text{при } x > 4 \\ -x-4 & \text{при } 0 \le x < 4. \end{cases}$

Вариант 2

1. При
$$x \ge 1$$
. 2. $-28,5$. 3. 2. 4. a) $\sqrt{3} - k$; 6) $\sqrt{a} + +1$. 5. a) $\sqrt{(m+2)^2 n}$ при $m \ge -2$; $-\sqrt{(m+2)^2 n}$ при $m < -2$; 6) $-\sqrt{a-4}$. 6. $a > b$.

7. $y = \begin{cases} -x - 2 & \text{при } x > 0 \\ x + 2 & \text{при } -1 \le x < 0. \end{cases}$

Вариант 3

1. При
$$1 < x < 2$$
; $x > 2$. 2. $6(5\sqrt{2} - 7\sqrt{5})$. 3. -1.

4. a)
$$-\frac{1}{4+\sqrt{m}}$$
; **б)** $\sqrt{p}-1$. **5. a)** $\sqrt{(3-k)^2p}$ при $k \le 3$; $-\sqrt{(3-k)^2p}$ при $k > 3$; **б)** $-\sqrt{2-n}$. **6.** $a > b$.

7.
$$y = \begin{cases} x+1 & \text{при } x > 1 \\ -x-1 & \text{при } 0 \leqslant x < 1. \end{cases}$$

$$\overline{\mathbf{1.}}$$
 При $-1 \leqslant x < 3.$ **2.** $-8\sqrt{2}$. **3.** 4. **4.** a) $\frac{\sqrt{x}-3}{\sqrt{x}+3}$;

6)
$$\frac{1}{a-\sqrt{ab}+b}$$
. 5. a) $\sqrt{(c+5)^2 \cdot k}$ при $c \ge -5$; $-\sqrt{(c+5)^2 \cdot k}$ при $c < -5$; 6) $-\sqrt{3-a}$. 6. $a > b$.

7.
$$y = \begin{cases} 2x + 2 & \text{при } x > 1 \\ -2x - 2 & \text{при } 0 \le x < 1. \end{cases}$$

3. Квадратные корни

Вариант 1

$$(1. \ a)$$
 0; $\frac{3}{7}$; 6) $-\frac{1}{6}$; 1; B) -3; 23. 2. a) (4;2);

6)
$$(-7;-3)$$
 $(7;3)$. **3.** $\frac{2x+11}{3x-2}$. **4. a)** $-4;4;$ **6)** $-\frac{11}{5};$ 6.

5. 50 км/ч. **6.** (2;1) (-2;-1).

Вариант 2

1. a) 0;
$$2\frac{1}{4}$$
; 6) $-\frac{4}{7}$; 1; B) -20 ; 2. a) (3;1);

6)
$$(-3;-2)$$
 $(3;2)$. **3.** $\frac{4x+7}{2x-5}$. **4. a)** $-1; 1;$ **6)** $\frac{5}{36}; 1.$

5. 60 км/ч. **6.** (-1;-2) (1;2) (-3,5;0,5) (3,5;-0,5).

Вариант 3

$$\overline{\mathbf{1. a)}}$$
 -1,25; 1,25; **6**) -3; 0,5; **B**) -3;17. **2. a**) (2;3) (3;2);

б) (3;1) (1;3). **3.**
$$\frac{7x+5}{9x+4}$$
. **4. a)** 2; 5; **б)** -5; 4. **5.** 30 дней,

20 дней.

6.
$$\left(-\frac{\sqrt{10}}{2}; -\frac{\sqrt{10}}{2}\right) \left(\frac{\sqrt{10}}{2}; \frac{\sqrt{10}}{2}\right)$$
 $(-2; -1)$ $(-1; -2)$

(2;1) (1;2). У казание: пусть $\frac{y}{x} + \frac{x}{y} = u$, тогда

$$\frac{x^2}{u^2} + 2 + \frac{y^2}{x^2} = u^2$$
 и $\frac{x^2}{u^2} + \frac{y^2}{x^2} = u^2 - 2 \dots$

Вариант 4

1. a)
$$-3.5$$
; 3.5 ; **6**) -0.5 ; 2; B) -3 ; 13. **2.** a) $(1;3)$ $(3;1)$;

б)
$$(-2;1)$$
 $(1;-2)$. **3.** $\frac{11x+3}{10x+7}$. **4. а**) $0;3;$ **6**) $3.$ **5.** 14 дней и 11 дней. **6.** $(-1;-1)$ $(1;1)$.

4. Квадратные уравнения

Вариант 1

 $\overline{ f 1. } \ a = rac{1}{3}. \ {f 2. } \ {f a}) \ (3;0) \ (5;0) \ (0;-15); \ {f 6}) \ 3 \ < \ x < < 5; \ x < 3, \ x > 5; \ x = 3, \ x = 5; \ {f B}) \ y$ возрастает на

 $(-\infty;4];\ y$ убывает на $[4;\infty);\ r)\ y_{\text{наиб.}}=1.$ 3. $32\ \text{cm}^2.$ 4. a) см. рис. 35; б) см. рис. 36.

Вариант 2

1. $a = \frac{1}{5}$. 2. а) (-2;0) (-4;0) (0;8); б) x < -4, x > -2; -4 < x < -2; x = -4, x = 2; в) y возрастает на $[-3;\infty)$; y убывает на $(-\infty;-3]$; г) $y_{\text{наим.}} = -1$. 3. 49 см². 4. а) см. рис. 37; б) см. рис. 38.

Рис. 37.

Рис. 38.

1. Het. **2. a)** (-2;0) (4;0) (0;-8); **6)** $-2 \le x \le 4$; x < < -2, x > 4; **B)** y возрастает на $[1;\infty)$; y убывает на $(-\infty;1]$; **г)** $y_{\text{Haum.}} = -9$. **3.** 36 см². **4.** см. рис. 39; **5.** $y_{\text{Hau6.}} = 5$.

Рис. 39.

Рис. 40.

Вариант 4

1. Да. **2.** а) (-2;0) (6;0) (0;12); б) $x \le -2$, $x \ge 6$, -2 < x < 6; в) y возрастает на $(-\infty;2]$; y убывает на $[2;\infty)$; г) $y_{\text{наиб.}} = 16$. **3.** 72 см^2 . **4.** а) см. рис. 40; г) $y_{\text{наим.}} = -3$.

5. Квадратичная функция

- **1.** a) $1 \le x \le 3$; b) -6 < x < 0. **2.** a) x < -1; x > 3;
- **6)** $x \neq 1.5$; **B)** $-3.5 \leqslant x < 3$. **3. a)** x < -5; 0 < x < 5;
- **6)** $(-3;1] \cup [2;3); \ \mathbf{B}) \ x < -4; \ x = -\sqrt{2}; \ x = \sqrt{2}; \ x > 7;$
- r) $\left[-3\frac{1}{3};0\right)\cup(0;1].$
- **4.** a=1. У к а з а н и е: разложить каждый квадратный трехчлен на множители

$$(x-1)(x+2a)(x+2)(x-a) > 0;$$

$$\begin{cases}
 x - 1 = x + 2a \\
 x + 2 = x - a \\
 x - 1 = x - a \\
 x + 2a = x + 2
\end{cases}
\begin{cases}
 2a = -\frac{1}{2} \\
 a = -2 \\
 a = 1 \\
 a = 1
\end{cases}$$

1. a)
$$1 < x < 4$$
; 6) $-8 < x < 0$. 2. a) $-3 < x < 1$;

6)
$$x = \frac{1}{5}$$
; B) $-\frac{5}{3} < x \le 5$. 3. a) $-2 < x < 0$; $x > 2$;

6)
$$-1 \leqslant x < \frac{1}{2}$$
; $1 \leqslant x < 2$; **B**) $[-8; -\sqrt{5}) \cup (-\sqrt{5}; \sqrt{5}) \cup$

$$\cup(\sqrt{5};3]; \ \mathbf{r}) \ (-\infty;-9) \cup \left\{\frac{1}{2}\right\} \cup (1;\infty). \ \mathbf{4.} \ a=-1.$$

Вариант 3

1. a)
$$x \le 1$$
; $x \ge 3\frac{2}{3}$; 6) $x \in \mathbb{R}$; b) $-0.5 \le x < 5$.

2. a)
$$x < -2.5$$
; $1 < x < 2$; **6**) $x < -2$; $x = 3$; $x > 12$;

B)
$$x < -2$$
; $-1 < x < 2$; $x > 2$. **3. a)** $x < -1$; $x > 5$;

6)
$$x = 2$$
.

4.
$$a=0$$
 или $a=16$, тогда $-8 < b < 0$; $0 < a < < 16$, тогда $b=-8$ или $b=0$. У к а з а н и е: пусть $D_1=a^2-16a$ и $D_2=b^2+8b$, тогда искомый результат достигается при
$$\left\{ \begin{array}{l} D_1=0 \\ D_2<0 \end{array} \right.$$
 нли $\left\{ \begin{array}{l} D_1<0 \\ D_2=0 \ldots \end{array} \right.$

1. a)
$$-\frac{5}{9} \le x \le 1$$
; 6) $x \in \mathbb{R}$; B) $x < -1$; $x \ge 3.5$.

2. a)
$$\frac{2}{3} < x < 1$$
; $x > 6$; **6**) $-4 < x < -1,5$ $-1,5 < x < < 4$; **B**) $-7 < x < 0$; $x = 5$; $x > 8$. **3.** a) $x < -3$; $x = -1$; $x > 1$; **6**) $x = 1$. **4.** $a = -3$ или $a = 0$, тогда $0 < b < 2$. $-3 < a < 0$, тогда $b = 0$ или $b = 2$.

6. Итоговая работа

Вариант 1

1. 30 ч; 20 ч. 2. 1 3. (3; 2); (-4; -3); (-4; 2); (3; -3). 4. a) $(-\infty; -1) \cup (2; 3)$; б) $(-\infty; -3] \cup \{0\} \cup \{1\} \cup (2; +\infty)$. 5. a) функция возрастает на промежутке $[2; +\infty)$ и убывает на $(-\infty; 2]$; б) $y_{\text{наиб.}} = 0$, $y_{\text{наим.}} = -9$ (см. рис. 41). 6. При a < -4.

7.
$$y = |x^2 - 4x| = \begin{cases} x^2 - 4x \text{ при } x \leqslant 0; \ x \geqslant 4 \\ -x^2 + 4x \text{ при } 0 < x < 4 \end{cases}$$
 (см. рис. 42).

Рис. 41.

Рис. 42.

Вариант 2

1. 40 км/ч. 2. $\sqrt{2}$. 3. x=-4. 4. a) $(-3;1] \cup [2;3);$ 6) $(-5;-3) \cup (-3;2)$. 5. a) при m=4; 6) при $m<-\frac{1}{2}$ и m>0; в) при m=0, $m=-\frac{1}{2}$ и при m=-1; г) при $-\frac{1}{2}< m<0$.

Рис. 43.

6. Решение:
$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = (a-2)^2 - 2(-a-3) = a^2 - 2a + 10 = (a-1)^2 + 9$$
; $x_1^2 + x_2^2$ наименьшие при $a = 1$. 7. $y = x^2 - 4|x| = \begin{cases} x^2 - 4x & \text{при } x \geqslant 0 \\ x^2 + 4x & \text{при } x < 0. \end{cases}$

1. 45 ч; 36 ч. 2. $\sqrt{a} + \sqrt{b}$. 3. (0;1); (1;1). 4. a) $(-2;1) \cup (4;+\infty)$; 6) $(-\infty;-3) \cup \{0\} \cup [2;+\infty)$. 5. a) функция возрастает на промежутке $(-\infty;1]$ и убывает на промежутке $[1;+\infty)$; 6) $5 \le y \le 9$. У к а з а н и е: см. пр.5 из В-1. 6. При $-\frac{3}{4} \le a \le 0$.

7.
$$y = |x^2 + 4x| = \begin{cases} x^2 + 4x & \text{npu } x \le -4; \ x \ge 0 \\ -x^2 - 4x & \text{npu } -4 < x < 0. \end{cases}$$

См. рис. 44.

Рис. 44.

Рис. 45.

Вариант 4

1. 300 км/ч; 360 км/ч. **2.** 1. **3.** x = -8. **4.** a) $[-5;3) \cup \cup (4;5]$; **6)** $(-\infty;2) \cup (3;4) \cup (4;+\infty)$. **5.** a) при a=4;

б) при $a<0;\ a>rac{1}{2};\ \mathbf{B})$ при $a=0;\ a=rac{1}{2}$ и a=1;

г) при $0 < a < \frac{1}{2}$. **6.** При p = -1; $x_1^2 + x_1^2 = -p^2 - 2p + 4$.

7. $y = x^2 + 4|x| = \begin{cases} x^2 + 4x \text{ npu } x \geqslant 0 \\ x^2 - 4x \text{ npu } x < 0. \end{cases}$ Cm. puc. 45.

Содержание

Пр	едисловие		3
			Ответы
Ca	мостоятельные работы	5	81
1.	Положительные и отрицательные числа.		
	Числовые неравенства	5	81
2.	Свойства числовых неравенств. Сложение		
	и умножение неравенств	8	84
3.	Решение неравенств. Числовые		
	промежутки	10	85
4.	Системы неравенств	14	87
5.	Модуль числа. Уравнения и неравенства,		
	содержащие модуль	18	89
6.	Действительные числа. Арифметический		
	квадратный корень	21	93
7.	Квадратный корень из произведения		
	и дроби	25	94
8.	Упражнения на все действия		
	с арифметическими корнями		
9.	Неполные квадратные уравнения		
	Решение квадратных уравнений		
	Теорема Виета		
	Уравнения, сводящиеся к квадратным	42	103
13.	Решение задач с помощью квадратных	40	105
	уравнений		
	Решение систем 2-й степени		
	Квадратичная функция		
	Квадратные неравенства		
17.	Метод интервалов	60	112
Кс	онтрольные работы	65	115
1.	Неравенства	65	115
	Арифметический квалратный корень		

		Ответы
В. Квадратные корни	69	117
l. Квадратные уравнения	73	117
б. Квадратичная функция	75	119
S. Итоговая работа	77	121

Зив Борис Германович Гольдич Владимир Анатольевич

ДИДАКТИЧЕСКИЕ МАТЕРИАЛЫ ПО АЛГЕБРЕ ДЛЯ 8 КЛАССА

Редактор И.Б. Смирнов Компьютерная верстка Л.Н.Соловьева Художник Е.Т.Киселев Корректор Н.В.Евстигнеева

ООО «Петроглиф». Подписано к печати 10.07.2012г. Формат $60 \times 90/16$. Бумага офсетная. Печать офсетная. Объем 8 п.л. Тираж $5\,000$ экз. Заказ № 627.

ИЗДАТЕЛЬСТВО «ПЕТРОГЛИФ»

Тел.: (812) 943-8076. E-mail: spb@petroglyph.ru

ИЗДАТЕЛЬСТВО «ВИКТОРИЯ ПЛЮС»

Тел.: (812) 292-3660, (499) 488-3005. E-mail: victory@mailbox.alkor.ru

Налоговая льгота — ОКП 005-93-95-3005

Отпечатано с диапозитивов в ГППО «Псковская областная типография». 180004, г. Псков, ул. Ротная, 34