Cache Provisioning for Interactive NLP Services

Jaimie Kelley and Christopher Stewart
The Ohio State University

Sameh Elnikety and Yuxiong He Microsoft Research

Interactive NLP

"Watson looks at the language. It tries to understand what is being said and find the most appropriate, relevant answer..."

Rob High, IBM Fellow

- Natural Language Processing (NLP) Service
 - Users issue queries via network messages
 - Analyzes and understands human text in context
 - Response times should be fast (bounded latency)
 - Examples: Bing, Google, IBM Watson, OpenEphyra

Interactive NLP

Query: Who volunteered as District 12's tribute in the Hunger Games?

Answer: Katniss Everdeen

NLP Service Layer
Lucene OpenEphyra

Data Flow

- 1. NLP processing: Extract Keywords and synonyms
- 2. Fetch relevant data

inverted indexes

raw content

3. More processing, reply

Scalable, Distributed Main Memory Storage

Memcache-1 • • • Memcache-N

Persistent Disk Storage Layer

MYSQL-1

• • •

MYSQL-M

Interactive NLP Services

- To compete with Jeopardy champions, IBM Watson had 3 sec. latency bound
- Our experience: 8th graders -> 4 sec. Bound
- Internet services demand sub-second response times

Tight Latency Bounds

- Access DRAM in parallel
- Disk accesses timeout!

NLP Service Layer OpenEphyra Lucene Scalable, Distributed Main Memory Storage

Memcache-1 • • • Memcache-N

Persistent Disk Storage Layer

MYSQL-1

• • • MYSQL-M

Problem: Data Growth

Data is growing too fast to keep in main memory.

Sources: IDC, Radicati Group, Facebook, TR research, Pew Internet

Cache Management

 When the data is too large to fit in cache, what should we evict?

Traditional Compute Workloads:

Every data access is needed to answer a query

Evict least recently used (LRU)

NLP services:

Only some data are needed (redundant content)
Remove redundant data with little quality loss

Quality-Aware Cache Management

For NLP services, evict data that will cause the least quality loss.

New Data

Harry Potter Chapter 1

What Data Will LRU Evict?

New York Times or Hunger Games

Our Approach

Does existing cache management work well for NLP?

Query: Who volunteered as District 12's tribute?

Most Relevant Document: New York Times Oct 2006

Most Relevant Document: Hunger Games, Chapter 9

We measure *quality loss*

i.e., dissimilarity between real and ideal

Our Approach

 Can quality-aware cache management reduce provisioning costs over time?

NLP Service Layer

Main Memory Storage

Size: 20 GB

Cache Miss Rate: 40%

Avg. Quality Loss: 15%

NLP Service Layer

Main Memory Storage

Size: 40 GB

Cache Miss Rate: 20%

Avg. Quality Loss: 15%

Outline

- Introduction
- Defining Quality Loss
 - Intuition, base model, full model
- Quality Loss in NLP Services
 - Representative queries, data sets, infrastructure, results
- Quality-Aware Cache Provisioning
- Conclusion

Intuition: What is quality loss?

Real System:

Ideal System:

Query:

Who volunteered as District 12's tribute?

Query:

Who volunteered as District 12's tribute?

Answers:

Answers:

Katniss Foxface

Katniss Everdeen

Harry Potter

Peeta Mellark

Peeta Mellark

Prim

Jeanine F. Pirro

Foxface

Base Model: Quality Loss

Real

Harry Potter

Jeanine F. Pirro

Real & Ideal

Foxface

Peeta Mellark

Ideal

Katniss Everdeen

Prim

$$S(w, \hat{w}, D, Q) = 1 -$$

$$\sum_{Q} \sum_{K} \Phi(\sum_{k2} |R_{q,k} (\hat{w}, D) \cap R_{q,k2} (w, D)|)$$

|Q|K

Full Model: Quality Loss

- NLP responses present challenges:
 - Synonyms
 - Answers from ideal setup fall within categories
 - Real setup should match categories

Query: Flowers in Washington State

Answers: florists, gardening, Coast Rhododendron

Noise Tolerance

 Answers from the real setup can be a superset of answers from ideal setup

Outline

- Introduction
- Defining Quality Loss
 - Intuition, base model, full model
- Quality Loss in NLP Services
 - Query trace, data sets, infrastructure, results
- Quality-Aware Cache Provisioning
- Conclusion

Infrastructure

Real NLP Service:

10 sec latency bound Analyzes keywords

Ranks all indexes requested from storage.

Distributed Cache:

Set max size < | data |

Implemented interface between cache and disk.

Disk Storage:

Two 3-TB hard disks

We used Lucene libraries

Ideal NLP Service:

Exact same processing

Distributed Cache:

No set maximum size

9 GB / cache node

Provision more as needed

Disk Storage:

No timeouts

Key Insight: Ideal setup returns the result created by processing all relevant data without timeouts.

Obtaining a Query Trace

- Google Trends
 - Trace of most popular queries per category 2004-2013
 - Most (over 70%) are multiple word queries

Jan. 2004 Books:

The Bible
The Lord of the Rings
The Da Vinci Code
1984
Kama Sutra
Romeo and Juliet
Hamlet
Macbeth
To Kill a Mockingbird
The World Factbook

June 2009 Books:

The Bible
Alice's Adventures in ...
The Lord of the Rings
Midnight Sun
1984
Kama Sutra
Romeo and Juliet
Quran
Diagnostic and ...
Diccionario de la lengua...

Sept. 2013 Books:

The Bible
Fifty Shades of Grey
The Great Gatsby
Under the Dome
The Hunger Games
Psalms
The Lord of the Rings
Sword Art Online
1984
The 85 Ways to Tie a Tie

Data Sets

New York Times

October 2004 – March 2006

Total Index size: 3 GB

Max Data/Month: 88 MB

Wikipedia

January 2001 – March 2013

Total Index size: 4.7 TB

Max Data/Month: 30 GB

Types of Data

Caching Policies: LRU

- Least Recently Used Cache Management
 - Common approach in distributed stores
 - Implemented in Redis
- Infrequent search terms are sent to disk, unable to be accessed within latency bounds

Caching Policies: LRU

Quality loss rises as terms are evicted

Multiple word queries and single-word synonyms benefit from redundancy

- Non-evicted data may overlap evicted data
- Answers from ideal system can come from non-evicted terms

In both Wikipedia pages and NYT articles, content related to queries were found in non-evicted terms.

Caching Policies: Limit Content

Caching Policies: Limit Content

Quality loss rises as key documents are excluded from index

Documents may contain content that effectively has the same meaning

Wikipedia pages are less redundant, as a result of their review process

On average 1 of 2 NYT articles can be removed with low quality loss

Outline

- Introduction
- Defining Quality Loss
 - Intuition, base model, full model
- Quality Loss in NLP Services
 - Representative queries, data sets, infrastructure, results
- Quality-Aware Cache Provisioning
- Conclusion

DRAM Trends

Provisioning Cost = #GB RAM * \$/GB RAM

http://www.jcmit.com/memoryprice.htm

Cache Provisioning Policies

- Over provisioning
 - Always have more RAM available than data
- Provision on Data Growth
 - Wait for more data to be added
- Provision on Quality Loss
 - Wait for quality loss to pass a threshold

Cost Savings

Conclusion

- Data is growing fast, forcing NLP services to respond to queries after accessing only a portion of the data
- NLP services can remove redundant content and/or terms from distributed caches with little quality loss
- New cache management approach: Wait until quality loss occurs before provisioning DRAM to reduce costs