Rappels

Fourmule de la courbure $\frac{\left\|\alpha'(t) \times \alpha''(t)\right\|}{\left\|\alpha'(t)\right\|^3}$

$$\kappa(s) = - \iff \text{segment de droite}$$

$$\tau = 0 \iff$$
 la courbe est planaire

$$\tau(s) = 0$$
 et $\kappa(s) \equiv c \iff \alpha$ portion de cercle de rayon

Forme locale canonique (Taylor)

Isométrie
$$x \mapsto Ax + b$$
 $AA^t = 1$

La courbure et la torsion sont invarientes par isométries

Pour A une isométrie directe $A\vec{u} \times A\vec{v} = A(\vec{u}\vec{v})$ En général $A\vec{u} \times A\vec{v} = \det(A)A(\vec{u} \times \vec{v})$

Théorème fondamentale des courbes dans \mathbb{R}^3

Deux courbes C, C^* dans \mathbb{R}^3 de courbure non-nulle diffèrent par une isométrie directe \iff ellse ont la même courbure et torsion ($\kappa = \kappa^*$ et $\tau = \tau^*$)

Dém Soit α , α^* des courbes paramétrées par longueures d'arc de C, C^*

Prenons A, l'unique matrice orthogonale t.q.

$$AT(0) = T^*(0)$$

$$AN(0) = N^*(0)$$

$$AB(0) = B^*(0)$$

Rappel : si A enovie une base or htonormée vers une base orthonormée alors A est orthogonale. Si A envoie une base positiviement orienté à une base positiviement orientée alors $\det\{A\} > 0$

Soit
$$\vec{b} \in \mathbb{R}^3$$
 t.q. $A \cdot \alpha(0) + \vec{b} = \alpha^*(0)$

Définissons
$$I(x) = Ax + \vec{b}$$
 et $\tilde{\alpha}(s) = I(\alpha(s)) = A\alpha(s) + b$

reste à montrer que $\tilde{\alpha}(s) = \alpha^*(s) \forall s$

On a
$$\tilde{\alpha}(0) = A\alpha(0) + \vec{b} = \alpha^*(0)$$

Et comme I est une isométrie

$$\tilde{T}(0) = AT(0) = T^*(0)\tilde{N}(0) = AN(0) = N^*(0)\tilde{B}(0) = AB(0) = B^*(0)$$

Comme κ , τ sont ivarients par isométries directe

$$\kappa^*(s) = \kappa(s) = \tilde{\kappa}(s)\tau^*(s) = \tau(s) = \tilde{\tau}(s)$$

Définissons une fonction $f(s) = \tilde{T}(s) \cdot T^*(s) + \tilde{N} \cdot N^* + \tilde{B} \cdot b^*$

f'(s) = C'est vraiment long à écrire, fuck ça, règle de chaine mdr = 0

$$\implies f(s) \equiv C \text{ mais } f(0) = 1 + 1 + 1 = 3 \implies f(s) = 3$$

Par l'inégalité de Chauchy-Swatzsdfjhh ($|u \cdot v| \le ||u|| ||v||$)

$$\tilde{T}(s) \cdot T^*(s) \le 1$$

$$\tilde{N}(s) \cdot N^*(s) \le 1$$

$$\tilde{B}(s) \cdot B^*(s) \le 1$$

On en conclut que les vecteur du repert de frenet tilde et étoile sont les mêmes

En particulier
$$\tilde{\alpha}'(s) = \alpha^{*'}(s) \implies \tilde{\alpha}(s) = \alpha^{*}(s) + \vec{v}_0 \text{ mais } \vec{v}_0 = 0 \text{ car } \tilde{\alpha}(0) = \alpha^{*}(0)$$

Question: Étant donné deux donctions $\kappa(s)$, $\tau(s)$, existe-t-il une courbe α ayant κ , τ comme courbure et torsion?

Oui! (avec suffisement de régularité)

Pour trouver α , on résout le système

$$\begin{array}{rcl} T' & = & \kappa T \\ N' & = & -\kappa T \\ B' & = & \tau B \end{array}$$

puis on intègre T. On sait qu'une solution existe grace au théorème d'exsitance des solutions d'équation différentielles.

Courbes planaires

<u>Théorème</u> [inégalité isopérimétrique] :

Soit C une courbe planaire $\underline{\text{simple}}$ fermée de longeure l et A est l'aire de la région bornée par C. Alors $l^2 - 4\pi A \le 0$ Avec $=\iff C$ est un cercle

Rappel

Théroème de Greene :

$$\int_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathbf{R}} rot(\mathbf{F}) dA$$

En particulier, aire(R) = $\int_{\mathcal{C}}=\frac{1}{2}\int_c(yx)\cdot\mathrm{d}\mathbf{r}=\frac{1}{2}\int xy'-yx'\mathrm{d}t$

 α paramétrée par longeure d'arc de C $\bar{\alpha}$ paramétré du cercle

 $Figure \ 1-parametrisation \ is operimetrique$

Calculons

$$A + \bar{A} = A + \pi r^2 = \int_0^l x(s)y'(s)ds + \int_0^l -\bar{y}(s)x'(s)dy$$

Fuck les notes; dodo. Aussi, criss que mon shéma est laid, faut vraiment que j'aprène à utiliser inkscape