Nome, cognome, matricola

Calcolatori Elettronici (12AGA) -esame del 1.9.2020

Domande a risposta chiusa (è necessario rispondere correttamente ad almeno 6 domande). Tempo: 15 minuti.

 Si consideri una memoria composta da 32Kparole da 20 bit ciascuna. Quanti bit di indirizzo compaiono tra i suoi segnali di ingresso?

A B

2 Quanti transistor sono necessari per implementare una cella di SRAM? 1 4 6

		6	X	
		Dipende dalla dimensione della memoria	D	
3	Quale delle seguenti affermazioni è vera?	Quando un processore riceve una richiesta di interrupt, la	A	\neg
		corrispondente procedura di servizio dell'interrupt viene attivata	X	

	corrispondente procedura di servizio dell'interrupt viene attivata	X	
	non appena termina l'istruzione in corso	<u> </u>	
	Quando un processore riceve una richiesta di interrupt, la	В	
	corrispondente procedura di servizio dell'interrupt viene attivata		
	non appena termina il programma in corso		
	Quando un processore riceve una richiesta di interrupt, la	С	
	corrispondente procedura di servizio dell'interrupt viene attivata al		
	termine del periodo di clock in corso		
	Quando un processore riceve una richiesta di interrupt, la	D	
	corrispondente procedura di servizio dell'interrupt viene attivata		
	non appena il programma in corso accetta di venire sospeso		

- 4 Quale dei moduli elencati NON è presente all'interno di un microcontrollore?

 | PGA | Memoria RAM | C | Interfaccia di periferico | D |
- Si consideri un sistema per l'arbitraggio del bus tra 20 unità master che utilizza il meccanismo del polling.
 Quanti segnali sono necessari per l'arbitraggio?

- 6 Si consideri la memoria di microcodice esistente in un'unità di controllo microprogrammata, e si assuma che la memoria sia composta da 200 parole da 80 bit ciascuna. Quanti bit sono necessari per il µPC?
- 6 Si consideri il meccanismo della memoria virtuale: Nella memoria principale A ove è memorizzato il TLB?
 Nella memoria secondaria B Nella cache C Nella MMU

	Q	uanto vale il pa	arametro (CPI in ur	n proces	ssore CI	SC?	C	Sempre meno di 1 A Circa 1 B Sempre più di 1						В						
											process	sore					ľ	X			
9	St	quanti bit del codice mac	è rappre china di	sentato un'istru	l'imme	ediato MIPS d	all'inte li tipo I	? 1	6									A B			
											'istruzi						1	D			
	l' a	Quale valore (esecuzione d ndi \$s0, ssumendo ch	ell'istruz	zione 7					11 0 =	11 00 7	1 1	1 1 1 1	1								
										•											
																				-	

Risposte corrette

Nome,	cognome, matricola	1

Domande a risposta aperta (sino a 5 punti per ogni domanda) - Non è possibile consultare alcun materiale -Tempo: 40 minuti.

Si consideri un processore connesso ad una memoria da 64KB e dotato di una cache direct mapped da 16 linee, ciascuna da 32 byte. Assumendo che inizialmente le 16 linee contengano i primi 16 blocchi di memoria (quindi la linea 0 contiene il blocco 0, la linea 1 il blocco 1, e così via), si determini quali dei seguenti 12 accessi in memoria da parte del processore provocano un hit, e quali un miss, scrivendo H o M nella colonna di destra della corrispondente riga nella tabella.

Indirizzo	Blocco	Linea acceduta	H/M
0100 0000 0011 0011	29 + 1	1	/1
0100 0001 0001 1000	23+8	8	M
0000 010 <u>0</u> 1000 1110	36	4	Μ
0010 0000 1011 1110	28 + 5	5	M
0100 000 <u>0 100</u> 1 1111	23 + 4	4	M
0100 0000 0011 0011	23+1	1	H
0000 1010 0001 0011	80	0	Μ
0000 1010 0101 0100	26 + 18	2	M
0000 0011 0011 0100	25	9	M
0000 0011 0011 0110	25	في	H
0000 1000 1001 1000	26 + h	4	<i>✓</i>
0000 0000 0001 1001	ν.	0	M

12 Si consideri un sistema a microprocessore che utilizza il meccanismo dell'interrupt vettorizzato.

Si illustri il processo che va dal momento in cui un periferico attiva la richiesta di interrupt a quello in cui parte l'esecuzione della prima istruzione della corrispondente procedura di servizio dell'interrupt.

- (1) DISP. invio richieto di int. Oll'IC

- Dist. invie nichiero bi int. Oll'IC

 The complete l'int. olle CPU

 The complete l'istrue. corente

 CPU invie l'int. ACK

 The IC science l'identifications del DISP. rul DRUS

 CPU volve il contents nello STACK -> PC e REG. II STATO

 The CPU occade all'IVT legends l'indiritto dell'ISP

 CPU ovoice ISP

 CPU ovoice ISP

 The complete of the contents of the contents dell'ISP

 The contents of the contents of the contents dell'ISP

 The contents of the contents of the contents dell'ISP

 The contents of the contents of the contents dell'ISP

 The contents of the contents of the contents dell'ISP

 The contents of the contents of the contents dell'ISP

 The contents of the contents of the contents dell'ISP

 The contents of the contents of the contents dell'ISP

 The contents of the conten

Nome, Cognome, Matricola:

Esercizio di programmazione

sino a 12 punti – è possibile consultare solamente il foglio consegnato con l'instruction set MIPS - tempo: 60 minuti

Si scriva, in linguaggio Assembly MIPS32, una procedura SpaceRemove, che esegua una elaborazione degli elementi contenuti in un vettore di byte vetRX[] e restituisca un vettore di byte vetTX[] di dimensione minore o eguale a quella di vetRX[].

Il vettore vetRX[] presenta la seguente struttura :

posizione	vetRX []
0	Indirizzo Destinazione
1	Indirizzo Origine
2	1 [^] Byte Messaggio
3	2^ Byte Messaggio
4	3^ Byte Messaggio
N	M-esimo Byte Messaggio
N+1	<eom></eom>

La procedura dovrà leggere i contenuti di vetRX[] e costruire vetTX[] con le seguenti regole:

- scambiare gli indirizzi Origine e Destinazione
- memorizzare in vetTX[], a partire dalla posizione vetTX[2], i valori letti tra vetRX[2] e
 vetRX[N] (elemento che precede il carattere <EOM> (0x03)), avendo cura di scartare i
 caratteri blank (0x20).
- concludere vetTX[]con il carattere <EOM> (0x03)

```
Esempio:
```

```
vetRX[] 0x84, 0xFA, 0x09, 0x54, 0x20, 0x42, 0x19, 0x20, 0x41, 0xB1, 0x03
vetTX[] 0xFA, 0x84, 0x09, 0x54, 0x42, 0x19, 0x41, 0xB1, 0x03
```

I parametri sono passati alla procedura attraverso i registri:

- \$a0 contiene l'indirizzo di vetRX []
- \$a1 contiene l'indirizzo di vetTX []

Di seguito un esempio di programma chiamante:

```
.data
              .byte 0x84, 0xFA, 0x09, 0x54, 0x20, 0x42, 0x19, 0x20, 0x41,
vetRX:
0xB1, 0x03
vetTX:
              .space DIM
               .text
               .globl main
               .ent main
main:
               [...]
              la $a0, vetRX
              la $a1, vetTX
              jal SpaceRemove
              [...]
               .end main
```