Experiment 9: Decision Tree with Cross Validation and Grid Search CV

Name: Ashish Nanda

Roll No.: J041

```
In [1]:
```

```
import os
print(os.getcwd())
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import OrdinalEncoder
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
from sklearn import tree
from sklearn.metrics import confusion_matrix, classification_report
%matplotlib inline
```

/Users/ashishnanda/Desktop/Experiment9

```
In [2]:
```

```
data = pd.read_csv('car_evaluation.csv', header=None)
```

In [3]:

```
data.head()
```

Out[3]:

```
01234560vhighvhigh22smalllowunacc1vhighvhigh22smallmedunacc2vhighvhigh22smallhighunacc3vhighvhigh22medlowunacc4vhighvhigh22medmedunacc
```

In [4]:

```
col_names = ['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety', 'clas
s']
data.columns = col_names
col_names
```

Out[4]:

```
['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety', 'clas
s']
```

In [5]:

```
data.head()
```

Out[5]:

	buying	maint	doors	persons	lug_boot	safety	class
0	vhigh	vhigh	2	2	small	low	unacc
1	vhigh	vhigh	2	2	small	med	unacc
2	vhigh	vhigh	2	2	small	high	unacc
3	vhigh	vhigh	2	2	med	low	unacc
4	vhigh	vhigh	2	2	med	med	unacc

In [6]:

```
data.info()
```

```
RangeIndex: 1728 entries, 0 to 1727
Data columns (total 7 columns):
# Column Non-Null Count Dtype
              -----
0 buying 1728 non-null object
1 maint 1728 non-null object
2 doors 1728 non-null object
 3 persons 1728 non-null
                                object
    lug_boot 1728 non-null
                                object
 5
     safety
              1728 non-null
                                object
     class
               1728 non-null
                                object
dtypes: object(7)
memory usage: 94.6+ KB
```

<class 'pandas.core.frame.DataFrame'>

```
In [7]:
```

```
for i in col names:
    print(data[i].value_counts())
med
         432
low
         432
         432
high
         432
vhigh
Name: buying, dtype: int64
med
         432
low
         432
high
         432
vhigh
         432
Name: maint, dtype: int64
         432
3
         432
4
         432
         432
5more
Name: doors, dtype: int64
        576
more
2
        576
        576
Name: persons, dtype: int64
big
         576
med
         576
         576
small
Name: lug_boot, dtype: int64
med
        576
low
        576
        576
high
Name: safety, dtype: int64
unacc
        1210
          384
acc
good
           69
           65
vgood
Name: class, dtype: int64
In [8]:
data.shape
Out[8]:
(1728, 7)
In [9]:
X = data.drop(['class'], axis=1)
y = data['class']
In [10]:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_
state=42)
```

```
In [11]:
```

```
enc = OrdinalEncoder()
X_train = enc.fit_transform(X_train)
X_test = enc.transform(X_test)
```

Gini index as criterion

0.9247311827956989

s split': 2}

```
In [12]:
clf gini = DecisionTreeClassifier(criterion='gini', max depth=3, random state=42
clf gini.fit(X train, y train)
Out[12]:
DecisionTreeClassifier(max_depth=3, random_state=42)
In [13]:
y_pred = clf_gini.predict(X_test)
Grid Search CV
In [14]:
option = ['gini', 'entropy']
weight option=['auto', 'sqrt', 'log2']
param_grid = {'criterion': option , 'max_features':[2, 3, 4, 5, 6] , 'max_depth'
:[4, 5, 6, 7], 'min_samples_split':[2, 3, 4, 5]}
grid = GridSearchCV(clf_gini, param_grid, cv=3, scoring='accuracy')
grid.fit(X train, y train)
Out[14]:
GridSearchCV(cv=3,
             estimator=DecisionTreeClassifier(max depth=3, random st
ate=42),
             param_grid={'criterion': ['gini', 'entropy'],
                         'max_depth': [4, 5, 6, 7],
                         'max_features': [2, 3, 4, 5, 6],
                         'min samples split': [2, 3, 4, 5]},
             scoring='accuracy')
In [15]:
print(grid.best_score_)
print(grid.best_params_)
```

{'criterion': 'gini', 'max_depth': 7, 'max_features': 6, 'min_sample

```
In [16]:
```


In [17]:

```
# Check for underfitting
print(f'Training set score: {clf_gini.score(X_train, y_train)}')
print(f'Test set score: {clf_gini.score(X_test, y_test)}')
```

Training set score: 0.7775020678246485 Test set score: 0.7572254335260116

Model after Grid Search

```
In [18]:
```

```
dtc = DecisionTreeClassifier(criterion='gini', max_depth=7, max_features=6)
dtc.fit(X_train, y_train)
```

Out[18]:

DecisionTreeClassifier(max_depth=7, max_features=6)

In [19]:

```
y_pred = dtc.predict(X_test)
```

```
In [20]:
```

```
print(f'Training set score: {dtc.score(X_train, y_train)}')
print(f'Test set score: {dtc.score(X_test, y_test)}')
```

Training set score: 0.9330024813895782 Test set score: 0.9344894026974951

In [21]:

Cross Validation

```
In [22]:
```

```
score = cross_val_score(dtc, X_train, y_train, cv=10, scoring='accuracy')
score.mean()
```

Out[22]:

0.920564738292011

In [23]:

```
score = cross_val_score(dtc, X_test, y_test, cv=10, scoring='accuracy')
score.mean()
```

Out[23]:

0.8959653092006032

```
In [24]:
```

```
cm = confusion_matrix(y_test, y_pred)
```

In [25]:

```
print(cm)
```

In [26]:

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
acc	0.84	0.92	0.88	118
good	0.60	0.32	0.41	19
unacc	1.00	0.97	0.98	358
vgood	0.75	1.00	0.86	24
accuracy			0.93	519
macro avg	0.80	0.80	0.78	519
weighted avg	0.94	0.93	0.93	519