Laborator 4

Acest proiect valoreaza 15% din nota finala. el trebuie trimis pana la data urmatorului laborator al dvs (deci in 2 saptamani).

In acest proiect Fiecare student va genera in Matlab un numar de identificare cu comanda

$$A = log2(sum(double('NUMEPRENUME')))$$

FOLOSITI LITERE MARI. SCRIETI NUMAI PRIMUL PRENUME DACA AVETI 2. Spre exemplu, un student cu numele POPESCU si prenumele DAN MATEI va scrie

$$A = log2(sum(double('POPESCUDAN')))$$

dupa care in tot acest laborator va folosi valoarea acelui numar A acolo unde e specificat.

AR TREBUI SA DESCHIDETI ACEST FISIER CU ADOBE ACROBAT READER PENTRU CA ALTFEL ANUMITE LINII DE COD SUNT TRATATE CA SI COMENTARII

Interpolare Lagrange pe portiuni

Interpolantul continuu, liniar pe portiuni

Fie $f:[a,b]\to R$ o functie care genereaza un tabel de date

unde
$$f(x_i) = y_i$$
, $i = 1..n$ si $x_1 = a$, $x_n = b$.

Notam
$$h_i = x_{i+1} - x_i$$
, $i = 1, ..., n-1$ si $h = \max_{i=1..n-1} h_i$

Interpolantul continuu, liniar pe portiuni corespunzator lui f e notat cu $\Pi_h^1 f$ si are proprietatea ca e functie continua pe [a, b], pe fiecare subinterval $[x_i, x_{i+1}]$, i = 1..n - 1, $\Pi_h^1 f$ e functie liniara si, in plus, el interpoleaza f, altfel spus

$$\Pi_h^1 f(x_i) = y_i \ (= f(x_i)), \ i = 1..n$$

Din aceste conditii se deduce ca pe fiecare subinterval $[x_i, x_{i+1}]$, i = 1..n-1 avem ca $\Pi_h^1 f(x)$ este functia liniara (dreapta) al carei grafic trece prin punctele (x_i, y_i) si (x_{i+1}, y_{i+1}) ,

$$\Pi_h^1 f(x) = (y_{i+1} - y_i)(x - x_i) / (x_{i+1} - x_i) + y_i, \ x \in [x_i, x_{i+1}]$$
(1)

Theorem 0.1. (Estimarea erorii de interpolare cu functii continue, liniare pe portiuni) $Daca \ f \in C^2[a,b]$ atunci

$$||f - \Pi_h^1 f||_{L^2(a,b)} \le Ch^2 ||f^{(2)}||_{L^2(a,b)}$$

$$||f' - (\Pi_h^1 f)'||_{L^2(a,b)} \le Ch||f^{(2)}||_{L^2(a,b)}$$

 $unde\ C\ este\ o\ constanta\ generala\ ce\ nu\ depinde\ de\ f\ sau\ h.$

Sunt disponibile si estimari in alte norme, insa in perspectiva prezentarii metodei elementului finit, lucrul cu norma $||\cdot||_{L^2(a,b)}$ este cel mai util. Va reamintesc ca pentru $g \in L^2(a,b)$

$$||g||_{L^2(a,b)} = \left(\int_a^b g^2(x)dx\right)^{1/2}$$

In general, estimarile din teorema de mai sus sunt bune, in sensul ca

$$eroare_{f,h} = ||f - \Pi_h^1 f||_{L^2(a,b)} \approx Ch^2 ||f^{(2)}||_{L^2(a,b)}$$

$$eroare_{f',h} = ||f' - (\Pi_h^1 f)'||_{L^2(a,b)} \approx Ch||f^{(2)}||_{L^2(a,b)}$$

Sesizati ca daca reteaua de noduri e injumatatita ca marime (adica adaugam si mijloacele subintervalelor) atunci vom avea ca

$$eroare_{f,h/2} = ||f - \Pi^1_{h/2} f||_{L^2(a,b)} \approx C \frac{h^2}{4} ||f^{(2)}||_{L^2(a,b)}$$

$$eroare_{f',h/2} = ||f' - (\Pi_{h/2}^1 f)'||_{L^2(a,b)} \approx C \frac{h}{2} ||f^{(2)}||_{L^2(a,b)}$$

altfel spus

$$eroare_{f,h/2} \approx eroare_{f,h}/4$$
, $eroare_{f',h/2} \approx eroare_{f',h}/2$

cu alte cuvinte, atunci cand reteaua e injumatatita ca marime, eroarea in aproximarea lui f se va imparti la 4 iar eroarea in aproximarea derivatei lui f se va imparti la 2. Acest fenomen il vom vedea in testele noastre.

Cerinta 1 Scrieti o functie matlab care sa evalueze in xval(un vector de valori) interpolantul $\Pi_h^1 f$ al datelor din tabelul dat de vectorii x si y = f(x) unde f este data. Obligatoriu valorile din xval trebuie sa fie intre x(1) si x(n)-ultima valoare din x. Folositi sablonul de mai jos.

AR TREBUI SA FACETI COPY/PASTE DIN ADOBE ACROBAT READER PENTRU CA ALTFEL ANUMITE LINII DE COD SUNT TRATATE CA SI COMENTARII

```
%===========
function yval=interpliniar(x,f,xval)
%x,y = f(x), se calculeaza cu functia feval
n=length(x);
y=feval(f,x);
%initializam yval
yval=xval;
for(k=1:length(xval))
%in aceasta bucla vom evalua interpolantul in fiecare xval(k)
%determinam indexul primului interval [x_i,x_(i+1)] in care se afla xval(k)
i=sum(x<=xval(k));</pre>
if(i==n) i=n-1; end%***
%evaluam interpolantul in xval(k). (a se vedea formula (1),
% aveti in vedere ca y_i=f(x_i)) deci
yval(k)= ???????????????
end
end
%==========
Faceti copy/paste la codul vostru ca raspuns la cerinta 1.
Cerinta 2 Rulati comenzile urmatoare (inlocuiti A).
x=1:5;
f=inline('2*x+A');
xval=1:0.2:5;
yval=interpliniar(x,f,xval);
norm(yval-2*xval-A)
Puneti mai jos rezultatul rularii ultimei comenzi. daca ati lucrat corect ultima comanda
va returna valoarea 0 (sau un nr foarte, foarte mic). Explicati rezultatul obtinut (minim
3 randuri font 12 de explicatii).
Cerinta 3 Faceti graficul functiei f(x) = sin(x + A) (inlocuiti A)
f=inline('sin(x+A)');
pe intervalul [0,pi/2] precum si al interpolantului continuu linear pe portiuni al lui f, pe
urmatoarele retele:
linspace(0,pi/2,5);
linspace(0,pi/2,9);
linspace(0,pi/2,17);
```

Puneti comenzile utilizate ca raspuns la cerinta 3. Ce observati? (2 randuri de explicatii minim).

Cerinta 4

Pentru functia f pe intervalul $[0, \pi/2]$ definita anterior scrieti un cod care sa evalueze erorile

$$||f - \Pi_h^1 f||_{L^2(0,\pi/2)} = (\int_0^{\pi/2} (f(x) - \Pi_h^1 f)^2 dx)^{0.5}, \quad ||f' - (\Pi_h^1 f)'||_{L^2(0,\pi/2)} = (\int_0^{\pi/2} (f' - (\Pi_h^1 f)')^2 dx)^{0.5}$$

unde $\Pi_h^1 f$ e corespunzator unei diviziuni date stocate intr-un vector dat.

Pentru a calcula aceste integrale vom face o bucla peste toate subintervalele $[x_i, x_{i+1}]$, i = 1..n - 1 si pe fiecare astfel de subinterval vom calcula exact (folosind formula Leibniz Newton teoretic)

$$\int_{x_i}^{x_{i+1}} (\sin(x) + A - \Pi_h^1 f)^2 dx, \int_{x_i}^{x_{i+1}} (\cos(x) - (\Pi_h^1 f)')^2 dx, \tag{2}$$

ATENTIE: daca in formulele de mai sus inlocuim pe fiecare interval $[x_i, x_{i+1}]$, $\Pi_h^1 f(x) = c_1 x + c_2$ (cu c_1, c_2 determinati din formula 1 sau cu comanda polyfit) rezulta integrale calculabile. As vrea sa va arat, pe scurt, in urmatorul exemplu cum pot fi calculate astfel de integrale.

Example 0.1. Sa presupunem ca avem o functie

$$g(t) = sin(t) - (c_1 * t + c_2)$$

unde $c_1 = 1$, $c_2 = 2$ si vrem sa calculam

$$\int_{3}^{4} g(t)dt$$

codul Matlab care face acest calcul este:

Va trebui ca noi sa aplicam aceste linii de cod pe fiecare subinterval $[x_i, x_{i+1}]$.

Modificati potrivit codul de mai jos pentru a calcula erorile

$$\left(\int_0^{\pi/2} (\sin(x) + A - \Pi_h^1 f)^2 dx\right)^{1/2}, \left(\int_0^{\pi/2} (\cos(x) - (\Pi_h^1 f)')^2 dx\right)^{1/2},$$

```
function [eroaref,eroarefprim]=calcul_erori(n)
%n va reprezenta nr de subintervale in care este divizat intervalul [0,pi/2]
%ca atare vom avea marimea retelei h=pi/(2n)
% si vom avea n+1 noduri echidistante in retea
% aceasta este diviziunea
x=linspace(0,pi/2,n+1);
%inlocuiti A corespunzator
y=sin(x)+A;
eroaref=0;
eroarefprim=0;
for(i=1:n)
% calculam integralele din formula 2
% c1,c2 sunt coef interpolantului asa ca el sa fie c1*x+c2
% ei pot fi calculati direct din formula 1, sau pot fi calculati cu polyfit
c=polyfit(??????,1);
c1=c(1);
c2=c(2);
%vrem sa calculam integrala functiei (sin(t)+A-(c1*t+c2))^2 pe intervalul [ x(i),x(i+1)],
%vezi exemplul 0.1 de mai sus.
%inlocuiti corespunzator
g=inline( '(sin(t)+????????).^2','t','c1','c2');
er= quad(@(t)g(t,c1,c2),???????);
eroaref=eroaref+ er;
%acum vrem sa calculam eroarea in aproximarea derivatei vezi a 2-a integrala in formula (2).
g=inline( '(cos(t)-??????).^2','t','c1');
er= quad(@(t)g(t,c1),???????);
eroarefprim=eroarefprim+ er;
end
eroaref=eroaref^0.5;
eroarefprim=eroarefprim^0.5;
%===============
Inlocuiti??????? cu codul corespunzator. faceti copy/paste la codul vostru ca raspuns la
cerinta 4.
Cerinta 5 Apoi rulati liniile de cod
[e1,e1p]=calcul_erori(4)
```

```
[e2,e2p]=calcul_erori(8)
[e3,e3p]=calcul_erori(16)
[e4,e4p]=calcul_erori(32)
```

Observati ca folosim succesiv 4,8,16,32 subintervale, ca atare reteaua e succesiv injumatatita.

Ce reprezinta e1,e2,e3,e4? Dar e1p,e2p,e3p,e4p? Descrieti cu cuvintele voastre (cel putin 3 randuri font 12)

Calculati

e1/e2

e2/e3

e3/e4

e1p/e2p

e2p/e3p

e3p/e4p

Ce observati? Explicati! (rezultatele obtinute ar trebui sa confirme rezultatele teoretice prezentate anterior, formula scrisa in albastru). Minim 3 randuri font 12.

Interpolantul continuu, cuadratic pe portiuni

Cu notatiile anterioare, acest interpolant $\Pi_h^2 f$ e continuu, $\Pi_h^2 f$ e polinom de grad cel mult 2 pe fiecare $[x_i, x_{i+1}], i = 1..n - 1$ si desigur

$$\Pi_h^2 f(x_i) = f(x_i), \ i = 1..n$$

dar in plus, el interpoleaza f si in mijloacele intervalelor $[x_i, x_{i+1}]$ adica

$$\Pi_h^2 f(x_i') = f(x_i'), \quad i = 1..n - 1$$

unde $x_i' = (x_i + x_{i+1})/2$.

rezulta ca pe fiecare interval $[x_i, x_{i+1}]$ el este exact polinomul Lagrange de interpolare al lui f pe nodurile x_i, x'_i, x_{i+1} ca atare pe acest interval el ia forma

$$\Pi_h^2 f(x) = c_1 x^2 + c_2 x + c_3$$

iar vectorul de coeficienti $c = [c_1, c_2, c_3]$ pot fi determinati in matlab cu formula

$$c = polyfit([x_i, x_i', x_{i+1}], f([x_i, x_i', x_{i+1}]), 2)$$

Desigur ca poate fi folosita si formula analitica generala a interpolantului Lagrange de grad cel mult 2, o scriu aici pe un tabel de forma $X = [X_1, X_2, X_3], Y = [Y_1, Y_2, Y_3]$

$$P(x) = \sum_{i=1}^{3} y_i l_i(x)$$

unde

$$l_i(x) = \frac{\prod_{\substack{j=1..3\\j\neq i}} (x - x_j)}{\prod_{\substack{j=1..3\\j\neq i}} (x_i - x_j)}$$

(aici Π semnifica operatia de produs).

Theorem 0.2. (Estimarea erorii de interpolare cu functii continue, quadratice pe portiuni) Daca $f \in C^3[a,b]$ atunci

$$||f - \Pi_h^2 f||_{L^2(a,b)} \le Ch^3 ||f^{(3)}||_{L^2(a,b)}$$

$$||f' - (\Pi_h^2 f)'||_{L^2(a,b)} \le Ch^2 ||f^{(3)}||_{L^2(a,b)}$$

unde C este o constanta generala ce nu depinde de f sau h.

Facand o analiza ca in cazul liniar se poate deduce ca pe cazul cuadratic atunci cand reteaua e injumatatita ca marime, eroarea in aproximarea lui f se va imparti la 8 iar eroarea in aproximarea derivatei lui f se va imparti la 4. Acest fenomen il vom vedea in testele noastre.

Cerinta 5 Scrieti o functie matlab care sa evalueze in xval(un vector de valori) interpolantul $\Pi_h^2 f$ al functiei f pe diviziunea din vectorul x.

Functia ar trebui sa arata in felul urmator

```
%===========
function yval=interpcuadratic(x,f,xval)
n=length(x);
%initializam yval
yval=xval;
  for(k=1:length(xval))
    %in aceasta bucla vom evalua interpolantul in fiecare xval(k)
    %determinam indexul primului interval [x_i,x_(i+1)] in care se afla xval(k)
    i=sum(x<=xval(k));</pre>
    if(i==n) i=n-1; end%***
    %calculam nodurile pe care interpolam (vezi formula rosie)
    xx=[x(i),(x(i)+x(i+1))/2,x(i+1)];
  %evaluam f in xx
   yy=feval(f,xx);
    %calculam coeficientii interpolantului(vezi formula rosie)
   c=polyfit(xx,yy,2);
    %evaluam interpolantul in xval(k).
     yval(k)= ???????????
  end
end
Faceti copy/paste la codul dvs ca raspuns la aceasta cerinta.
Cerinta 6 Rulati comenzile urmatoare.
x=1:5;
f=inline('2*x.^2+A');
xval=1:0.2:5;
yval=interpcuadratic(x,f,xval);
norm(yval-2*xval.^2-A)
Puneti mai jos rezultatul rularii ultimei comenzi. Explicati rezultatul obtinut (minim 3
randuri).
Cerinta 7 Faceti graficul functiei \sin(x+A) pe intervalul [0,pi/2] precum si al interpolan-
tului continuu cuadratic pe portiuni al lui \sin(x+A), pe urmatoarele retele:
x=linspace(0,pi/2,2);
x=linspace(0,pi/2,3);
```

puneti mai jos comenzile utilizate. Ce se observa ?(minim 2 randuri de explicatii). Cerinta 8 Pentru f(x) = sin(x+A) pe intervalul $[0, \pi/2]$ scrieti un cod care sa evalueze erorile

$$||f - \Pi_h^2 f||_{L^2(0,\pi/2)} = (\int_0^{\pi/2} (\sin(x) + A - \Pi_h^2 f)^2 dx)^{0.5}, \quad ||f' - (\Pi_h^2 f)'||_{L^2(0,\pi/2)} = (\int_0^{\pi/2} (\cos(x) - (\Pi_h^2 f)')^2 dx)^{0.5}$$

unde $\Pi_h^2 f$ e corespunzator unei diviziuni date stocate intr-un vector dat.

Pentru a calcula aceste integrale vom face o bucla peste toate subintervalele $[x_i, x_{i+1}]$, i = 1..n - 1 si pe fiecare astfel de subinterval vom calcula exact (folosind formula Leibniz Newton)

$$\int_{x_i}^{x_{i+1}} (\sin(x) + A - \Pi_h^2 f)^2 dx, \int_{x_i}^{x_{i+1}} (\cos(x) - (\Pi_h^2 f)')^2 dx, \tag{3}$$

ATENTIE: daca in formulele de mai sus inlocuim $\Pi_h^2 f(x) = c_1 x^2 + c_2 x + c_3$ (cu c_1, c_2, c_3 determinati cu comanda polyfit, vezi formula rosie) rezulta integrale calculabile exact ca in cazul liniar descris anterior la cerinta 4. codul va avea urmatoarea structura:

```
%==========
function [eroaref,eroarefprim]=calcul_erori_quad(n)
%n va reprezenta nr de subintervale in care este divizat intervalul [0,pi/2]
% aceasta este diviziunea
x=linspace(0,pi/2,n+1);
eroaref=0;
eroarefprim=0;
for(i=1:n)
% calculam integralele din formula 2
%c1,c2,c3 sunt coef interpolantului asa ca el sa fie c1*x^2+c2*x+c3
%ei pot fi calculati cu polyfit ca in formula rosie
xx=[x(i),(x(i)+x(i+1))/2,x(i+1)];
yy=?????;
c=polyfit(???????);
c1=c(1); c2=c(2); c3=c(3);
%vrem sa calculam integrala functiei (sin(t)+A-(c1*t^2+c2*t+c3))^2
% pe intervalul [ xi,x(i+1)],
g=inline( '(sin(t)+???????).^2','t','c1','c2','c3');
er= quad(@(t)g(t,c1,c2,c3),?????);
eroaref=eroaref+ er;
%vrem sa calculam integrala functiei (cos(t)-(2*c1*t+c2))^2
%pe intervalul [ xi,x(i+1)],
g=inline( '(cos(t)???????).^2','t','c1','c2');
er= quad(@(t)g(t,c1,c2),???????);
eroarefprim=eroarefprim+er;
end
eroaref=eroaref^0.5;
eroarefprim=eroarefprim^0.5;
%===========
Inlocuiti??????? cu codul corespunzator; Faceti copy/paste la codul dvs ca raspuns la
aceasta cerinta.
Cerinta 9 Apoi rulati liniile de cod
[e1,e1p]=calcul_erori_cuad(4);
[e2,e2p]=calcul_erori_cuad(8);
[e3,e3p]=calcul_erori_cuad(16);
[e4,e4p]=calcul_erori_cuad(32);
Observati ca folosim succesiv 4,8,16,32 subintervale, ca atare reteaua e succesiv inju-
matatita.
```

Calculati

e1/e2 e2/e3 e3/e4

e1p/e2p e2p/e3p e3p/e4p

Faceti copy/paste la numerele obtinute mai sus. Ce observati? Explicati! (rezultatele obtinute ar trebui sa confirme rezultatele teoretice prezentate anterior, a se vedea textul colorat in magenta). Minim 4 randuri de explicatii.