Wine

Introduction:

This exercise is a adaptation from the UCI Wine dataset. The only pupose is to practice deleting data with pandas.

Step 1. Import the necessary libraries

```
import pandas as pd
import numpy as np
```

Next steps: (

Step 2. Import the dataset from this address.

Step 3. Assign it to a variable called wine

Generate code with wine

```
wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data')
wine.head()
\overline{z}
         1 14.23 1.71 2.43 15.6 127 2.8 3.06
                                                       .28 2.29 5.64 1.04 3.92 1065
                                                                                            \blacksquare
                         2 14
                               11 2 100 265
      0 1 13 20
                  1 78
                                                2.76 0.26
                                                            1 28
                                                                  4 38
                                                                        1 05
                                                                                     1050
                                                                               3.40
                  2.36
                         2.67
                                18.6
                                          2.80
            13.16
                                     101
                                                 3.24
                                                      0.30
                                                            2.81
                                                                   5.68
                                                                         1.03
                                                                               3.17
                                                                                     1185
            14 37
                   1 95
                         2 50
                                16.8
                                    113 3.85
                                                 3.49 0.24
                                                            2 18
                                                                  7 80
                                                                         0.86
                                                                               3.45
                                                                                     1480
            13.24
                   2.59
                         2.87
                               21.0
                                     118 2.80
                                                 2.69
                                                     0.39
                                                            1.82
                                                                  4.32
                                                                         1.04
                                                                               2.93
                                                                                     735
            14.20
                   1.76
                         2.45
                                15.2
                                     112
                                          3.27
                                                 3.39
                                                      0.34
                                                             1.97
                                                                   6.75
                                                                         1.05
                                                                               2.85
                                                                                     1450
```

New interactive sheet

Step 4. Delete the first, fourth, seventh, nineth, eleventh, thirteenth and fourteenth columns

View recommended plots

```
wine_c = wine.copy()
wine_c.drop(wine_c.columns[[0,3,6,8,10,12,13]], axis=1, inplace=True)
wine_c.head()
₹
         14.23 1.71 15.6 127 3.06 2.29 1.04
                                                     扁
      0 13.20
               1.78
                      11.2 100
                                 2.76
                                       1.28
                                             1.05
                                                     ıl.
         13.16
                2.36
                      18.6 101
                                 3.24
                                       2 81
                                             1.03
                1.95
                      16.8
                           113
                                 3.49
                                       2.18
         14.37
         13.24
                2.59
                      21.0 118
                                 2.69
                                       1.82
                                             1.04
         14.20
                1.76
                      15.2
                            112
                                 3.39
                                        1.97
                                             1.05
                                        View recommended plots
                                                                      New interactive sheet
 Next steps: (
             Generate code with wine_c
```

Step 5. Assign the columns as below:

The attributes are (donated by Riccardo Leardi, riclea '@' anchem.unige.it):

- 1) alcohol
- 2) malic_acid
- 3) alcalinity_of_ash
- 4) magnesium
- 5) flavanoids
- 6) proanthocyanins
- 7) hue

```
wine_c.columns = ['alcohol', 'malic_acid', 'alcalinity_of_ash', 'magnesium', 'flavanoids', 'proanthocyanins', 'hue']
wine_c.head()
```

₹		alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	proanthocyanins	hue		
	0	13.20	1.78	11.2	100	2.76	1.28	1.05	ıl.	
	1	13.16	2.36	18.6	101	3.24	2.81	1.03		
	2	14.37	1.95	16.8	113	3.49	2.18	0.86		
	3	13.24	2.59	21.0	118	2.69	1.82	1.04		
	4	14.20	1.76	15.2	112	3.39	1.97	1.05		
Nex	t ste	ens: Gen	erate code with	wine C View	recommende	d plots Ne	w interactive sheet			

Step 6. Set the values of the first 3 rows from alcohol as NaN

```
wine_c.loc[0:2, 'alcohol'] = np.nan
wine_c.head()
```

		alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	proanthocyanins	hue	
	0	NaN	1.78	11.2	100	2.76	1.28	1.05	ıl.
	1	NaN	2.36	18.6	101	3.24	2.81	1.03	
	2	NaN	1.95	16.8	113	3.49	2.18	0.86	
	3	13.24	2.59	21.0	118	2.69	1.82	1.04	
	4	14.20	1.76	15.2	112	3.39	1.97	1.05	
	4 4								

Next steps: Generate code with wine_c View recommended plots New interactive sheet

Step 7. Now set the value of the rows 3 and 4 of magnesium as NaN

wine_c.loc[2:3, 'magnesium'] = np.nan
wine_c.head()

₹		alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	proanthocyanins	hue	
	0	NaN	1.78	11.2	100.0	2.76	1.28	1.05	ıl.
	1	NaN	2.36	18.6	101.0	3.24	2.81	1.03	
	2	NaN	1.95	16.8	NaN	3.49	2.18	0.86	
	3	13.24	2.59	21.0	NaN	2.69	1.82	1.04	
	4	14.20	1.76	15.2	112.0	3.39	1.97	1.05	
	∢ ∈								

Next steps: Generate code with wine_c

View recommended plots

New interactive sheet

Step 8. Fill the value of NaN with the number 10 in alcohol and 100 in magnesium

wine_c['alcohol'] = wine_c['alcohol'].fillna(10)
wine_c['magnesium'] = wine_c['magnesium'].fillna(100)
wine_c.head()

alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	proanthocyanins	hue	
10.00	1.78	11.2	100.0	2.76	1.28	1.05	ıl.
10.00	2.36	18.6	101.0	3.24	2.81	1.03	
10.00	1.95	16.8	100.0	3.49	2.18	0.86	
13.24	2.59	21.0	100.0	2.69	1.82	1.04	
14.20	1.76	15.2	112.0	3.39	1.97	1.05	
	10.00 10.00 10.00 10.00 13.24	10.00 1.78 10.00 2.36 10.00 1.95 13.24 2.59	10.00 1.78 11.2 10.00 2.36 18.6 10.00 1.95 16.8 13.24 2.59 21.0	10 10.00 1.78 11.2 100.0 10.00 2.36 18.6 101.0 2 10.00 1.95 16.8 100.0 3 13.24 2.59 21.0 100.0	10 10.00 1.78 11.2 100.0 2.76 1 10.00 2.36 18.6 101.0 3.24 2 10.00 1.95 16.8 100.0 3.49 3 13.24 2.59 21.0 100.0 2.69	10 10.00 1.78 11.2 100.0 2.76 1.28 1 10.00 2.36 18.6 101.0 3.24 2.81 2 10.00 1.95 16.8 100.0 3.49 2.18 3 13.24 2.59 21.0 100.0 2.69 1.82	10.00 1.78 11.2 100.0 2.76 1.28 1.05 10.00 2.36 18.6 101.0 3.24 2.81 1.03 2. 10.00 1.95 16.8 100.0 3.49 2.18 0.86 3. 13.24 2.59 21.0 100.0 2.69 1.82 1.04

Next steps: Generate code with wine_c

• View recommended plots

New interactive sheet

Step 9. Count the number of missing values

wine_c.isnull().sum()

→ Step 10. Create an array of 10 random numbers up until 10

```
random_indices = np.random.randint(0, len(wine_c), size=10)
print(random_indices)

      [ 48 159 163 23 22 59 78 51 163 126]
```

Step 11. Use random numbers you generated as an index and assign NaN value to each of cell.

```
wine_c.loc[random_indices, :] = np.nan
wine_c.head()
```

∓ •		alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	proanthocyanins	hue	
	0	10.00	1.78	11.2	100.0	2.76	1.28	1.05	ıl.
	1	10.00	2.36	18.6	101.0	3.24	2.81	1.03	
	2	10.00	1.95	16.8	100.0	3.49	2.18	0.86	
	3	13.24	2.59	21.0	100.0	2.69	1.82	1.04	
	4	14.20	1.76	15.2	112.0	3.39	1.97	1.05	

Next steps: Generate code with wine_c

• View recommended plots

New interactive sheet

 ✓ Step 12. How many missing values do we have?

wine_c.isnull().sum()

 ✓ Step 13. Delete the rows that contain missing values

```
wine_c.dropna(inplace=True)
wine_c.head()
```

	alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	proanthocyanins	hue	
0	10.00	1.78	11.2	100.0	2.76	1.28	1.05	11.
1	10.00	2.36	18.6	101.0	3.24	2.81	1.03	
2	10.00	1.95	16.8	100.0	3.49	2.18	0.86	
3	13.24	2.59	21.0	100.0	2.69	1.82	1.04	
4	14.20	1.76	15.2	112.0	3.39	1.97	1.05	

wine_c['alcohol']

Step 15. Reset the index, so it starts with 0 again

wine_c.reset_index(drop=True, inplace=True)
wine_c.head()

0 10.00 1.78 11.2 100.0 2.76 1.28 1.05 1 10.00 2.36 18.6 101.0 3.24 2.81 1.03 2 10.00 1.95 16.8 100.0 3.49 2.18 0.86 3 13.24 2.59 21.0 100.0 2.69 1.82 1.04 4 14.20 1.76 15.2 112.0 3.39 1.97 1.05	→		alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	proanthocyanins	hue
2 10.00 1.95 16.8 100.0 3.49 2.18 0.86 3 13.24 2.59 21.0 100.0 2.69 1.82 1.04		0	10.00	1.78	11.2	100.0	2.76	1.28	1.05
3 13.24 2.59 21.0 100.0 2.69 1.82 1.04		1	10.00	2.36	18.6	101.0	3.24	2.81	1.03
		2	10.00	1.95	16.8	100.0	3.49	2.18	0.86
4 14.20 1.76 15.2 112.0 3.39 1.97 1.05		3	13.24	2.59	21.0	100.0	2.69	1.82	1.04
		4	14.20	1.76	15.2	112.0	3.39	1.97	1.05

Next steps: Generate code with wine_c

• View recommended plots

New interactive sheet

→ BONUS: Create your own question and answer it.

q: how many unique values in alcohol column *after filling NaN values*?

wine_c['alcohol'].nunique()

→ 119