

Introdução à Preparação e Análise de Dados

- Aula 11 -Coleta, Preparação e Análise de Dados

Prof. Me. Lucas R. C. Pessutto

Slides adaptados do material do Prof. Lucas Silveira Kupssinskü e do Prof. Luan Fonseca Garcia

Análise de Dados

- Para conduzir uma mineração ou análise de dados de sucesso é *essencial* que conheçamos nossos dados.
 - Quais tipos de atributos ou campos?
 - Que tipos de valores cada atributo tem?
 - Como esses valores estão distribuídos?
 - Como podemos medir a similaridade entre determinados dados em relação a outros?
- Este tipo de insight facilita a análise subsequente dos dados!

Um exemplo...

012	232	33.5	0	10.7
020	121	16.9	2	210.1
027	165	24.0	0	427.6
:				

Data Objects

- Data sets são compostos de objetos de dados (data object).
- Um **objeto de dado** representa uma entidade.
 - Mesmo que amostra, exemplo, instância, ponto, tupla, objeto.
- Exemplos:
 - Banco de vendas: clientes, vendas, itens da loja;
 - Base médica: pacientes, tratamentos;
 - Banco da universidade: estudantes, professores, cursos
- Dados são descritos por atributos.
- Linhas em um BD-> objetos de dado; Colunas -> atributos

Dados costumam vir em diferentes sabores

	age	workclass	fnlwgt	education	education-num	marital-status	occupation	relationship	race	sex	capital-gain	capital-loss	hours-per-week	native-country	class
0	25	Private	226802	11th	7	Never-married	Machine-op-inspct	Own-child	Black	Male	0	0	40	United-States	<=50K
1	38	Private	89814	HS-grad	9	Married-civ-spouse	Farming-fishing	Husband	White	Male	0	0	50	United-States	<=50K
2	28	Local-gov	336951	Assoc-acdm	12	Married-civ-spouse	Protective-serv	Husband	White	Male	0	0	40	United-States	>50K
3	44	Private	160323	Some-college	10	Married-civ-spouse	Machine-op-inspct	Husband	Black	Male	7688	0	40	United-States	>50K
4	18		103497	Some-college	10	Never-married		Own-child	White	Female	0	0	30	United-States	<=50K

Atributos

- Atributo (ou dimensão, features, variável): um campo do banco de dados, representando alguma característica do objeto de dado.
 - Ex.: cliente _ID, nome, endereço
- Tipos:
 - Nominal
 - Binário
 - Ordinal
 - Numérico (quantitativo)
 - Em escala intervalar
 - Em escala proporcional

Tipos de Atributos Qualitativos

- Nominal: categorias, estados, "nomes de coisas"
 - Cor_do_cabelo= {loiro, preto, branco, castanho}
 - Estado civil, ocupação, identidade, CEP

Binário

- Atributo nominal com apenas dois estados (0 e 1)
- <u>Simétricos</u>: valores com importância igual.
 - Ex: macho ou fêmea
- <u>Assimétricos</u>: valores com importância distinta.
 - Teste médico (positivo vs. negativo)
 - Convenção: atribuir 1 para o valor mais importante (tem HIV)

Ordinal

- Valores possuem uma ordenação significativa (ranqueamento), mas a magnitude entre os valores não é conhecida.
- Tamanho = {pequeno, médio, grande}

Tipos de Atributos Numéricos

• Quantidades (inteiros ou valores reais)

Intervalar

- Medidos em uma escala em que unidades possuem o mesmo tamanho
- Valores possuem ordenamento
 - Temperatura em C°ou F°, Datas no calendário
- Não há um "ponto zero" real, não podemos estabelecer proporções

Proporcional

- Possuem um ponto zero inerente real
- Podemos calcular proporções entre os valores
 - 10 K° é o dobro do que 5 K°.
 - 2 metros é o dobro de 1 metro.
 - Comprimento, dinheiro, "contagens" em geral (anos de experiência, número de palavras, etc)

Representação numérica de atributos

- Podemos representar atributos nominais utilizando números.
 - Classe 1, classe 2, classe 3.
 - 0 ou 1 para binários.
- Isto não faz deles atributos numéricos!

 Não há uma noção de escala entre os valores, é apenas a representação!

Atributos Discretos vs. Contínuos

Atributo Discreto

- Possui um conjunto de valores possíveis "contável" (finito)
 - CEP, profissões, conjunto de palavras em um doc.
- "Contável infinito" é quando os possíveis valores são infinitos, mas na prática temos uma relação de um para um com números naturais. Ex: id_cliente

Atributo contínuo

- Possui o conjunto do reais como possíveis valores
 - Temperatura, altura, peso
- Obviamente na prática valores reais só podem ser medidos e representados utilizando um conjunto finito de dígitos.
- Tipicamente representados como variáveis de ponto flutuante.

Tipos de Dados

- Conforme tipo:
 - Numérico
 - Categórico
- Conforme operações:
 - Posso testar igualdade?
 - Existe uma relação de ordem?
 - Faz sentido adicionar valores?
 - Faz sentido multiplicar?

Resumo

•	Tipo	Descrição	Exemplo	Operações
Categórico (Qualitativo)	แนดทากลา	Um atributo nominal só nos possibilita saber se um objeto é igual ou diferente a outro.	Cep, cpf, ids, cor dos olhos.	Igualdade
Cate Qual	Binário	Apenas dois valores possíveis	Masculino/Feminino	Igualdade
	Ordinal	Possui uma noção de ordem.	Tamanho, Escala Likert.	Comparação
rico ativo)	Intervalar	Diferenças entre valores tem significado.	Temperatura em Celsius, datas.	Adição e Subtração
Numérico (Quantitativo)	Razão ou Proporção	Razões possuem significado.	duantidades monetarias	Multiplicação e Divisão

Tipos de Transformações

	Tipo	Transformação	Exemplo				
Categórico (Qualitativo)	Nominal	Qualquer mapeamento um-para-um.	Permutação ou reindexação.				
Categ (Quali	Ordinal	$x^{(1)\prime} = f(x^{(1)})$ tal que f é uma função	A noção de ruim, regular e bom pode ser igualmente representada pelos valores {-1,0,1}.				
érico itativo)	Intervalar	$x^{(1)'} = ax^{(1)} + b$, tal que a e b são constantes	Conversão de fahrenheit para celsius.				
Numérico (Quantitativo)	Razão ou Proporção	$\gamma(1)' = \alpha \gamma(1)$	Um valor monetário pode ser medido em dólar ou em reais.				

Um caso especial, atributos assimétricos.

- Representam dados (normalmente) binários onde apenas valores diferentes de zero são informativos.
- Por exemplo:
 - Dados de estudantes (linhas) x Disciplinas cursadas (colunas)

Quais são os tipos esses tipos?

	age	workclass	fnlwgt	education	education-num	marital-status	occupation	relationship	race	sex	capital-gain	capital-loss	hours-per-week	native-country	class
0	25	Private	226802	11th	7	Never-married	Machine-op-inspct	Own-child	Black	Male	0	0	40	United-States	<=50K
1	38	Private	89814	HS-grad	9	Married-civ-spouse	Farming-fishing	Husband	White	Male	0	0	50	United-States	<=50K
2	28	Local-gov	336951	Assoc-acdm	12	Married-civ-spouse	Protective-serv	Husband	White	Male	0	0	40	United-States	>50K
3	44	Private	160323	Some-college	10	Married-civ-spouse	Machine-op-inspct	Husband	Black	Male	7688	0	40	United-States	>50K
4	18		103497	Some-college	10	Never-married		Own-child	White	Female	0	0	30	United-States	<=50K

Importante

- Capacidade de distinção, ordem, intervalos e razões são apenas quatro características dos dados.
- Outras formas de classificar dados existem (estruturados, cíclicos,...)
- O tipo de dado usado para armazenar uma feature pode levar você a cometer erros... Ex. computar média de lds.
- Dados podem ser transformados para facilitar análises.

Conjuntos de dados baseados em "registros"

• A maioria do trabalho em análise de dados se baseia em dados *tabulares* ou na forma de *registros*.

Tipos de dados tabulares

Dados de Transações

TID	ITEMS
1	Bread, Soda, Milk
2	Beer, Bread
3	Beer, Soda, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Soda, Diapers, Milk

Matriz de Dados

Projection of x Load	Projection of y Load	Distance	Load	Thickness
10.23	5.27	15.22	27	1.2
12.65	6.25	16.22	22	1.1
13.54	7.23	17.34	23	1.2
14.27	8.43	18.45	25	0.9

Matriz Termo-Documento

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Dados em Grafos: Redes Sociais

Dados em Grafos: Químicos

Dados Textuais, Imagens, Som e Vídeo

Cut food

Dados Ordenados: Dados Genéticos

Dados Ordenados – Séries Temporais

```
In [8]: # Plot the daily temperature change
plt.figure(figsize=(16,10), dpi=100)
plt.plot(temp_df.index, temp_df.T_mu, color='tab:red')
plt.gca().set(title="Daily Temperature in Helsinki, Finland from 2016 to 2019", xlabel='Date', ylabel="Degree (in Ce plt.show()
```


Dados Ordenados: Dados de temperatura com informações posicionais.

Land & Ocean Temperature Percentiles Jan 2021 NOAA's National Centers for Environmental Information Data Source: NOAAGlobalTemp v5.0.0-20210208 Record Cooler than Near Warmer than Record Coldest Warmest Average Warmer than Average Average GHCNM v4.0.1.20210207.gfe

Dados ordenados - Desafios

- Dados "próximos" conforme a ordenação tendem a ser similares
- Dificuldade para análises preditivas e prescritivas.

Qualidade de Dados

Qualidade dos Dados

- Corretude: Dados precisam ser sempre corretos (livres de manipulação)
- Confiabilidade: Fonte dos dados deve ser confiável
- Consistência: Dados não podem estar corrompidos ou faltando
- Atualidade: Dados devem estar atualizados
- Exemplos de problemas na qualidade dos dados:
 - Ruídos e Outliers
 - Dados Faltantes
 - Dados Duplicados

Ruído

 O ruído ocorre quando há uma modificação nos valores originais dos dados

Exemplos contraditórios

Classificações incorretas

Valores incorretos para atributos

	Atrib. 1	Atrib. 2	Classe
outos.	0.25	Vermelho	+
outos	0.25	Vermelho	-
	0.99	Verde	-
Valor Incorreto	1.02	Verde	+

Classificação Incorreta

Outliers

• Outliers são registros que possuem valores consideravelmente diferentes do que o resto dos outros objetos do dataset

Anthony Daniels

Valores Faltantes

- Múltiplas razões:
 - A informação não foi coletada (pessoa não quis responder sua idade e peso)
 - Atributos podem não ser aplicados em algum caso (salário não é aplicável a uma criança)
 - Desleixo (funcionário deixou de preencher campos na hora de fazer o cadastro)

						Mic	oi	no			dua				
	Missing value														
										N					
	loan_amnt	term	int_rate	sub_grade	emp length	home_ownership	annual_inc	loan_status	addr_state	dti	mt/s_since_recent_ing re	vol_util	bc_open_to_buy	bc_util	num_op_rev_tl
0	3600	36 months	14	C4	10+ years	MORTGAGE	55000	Fully Paid	PA	6		30	1506	37	4
1	24700	36 months	12	C1	10+ years	MORTGAGE	65000	Fully Paid	SD	Λ	1/ 0/	19	57830	27	20
2	20000	60 months	11	В4	10+ years	MORTGAGE	63000	Fully Paid	IL	П	10	1 36	2737	56	4
3	35000	60 months	15	C5	10+ years	MORTGAGE		Current	NJ	U		12	54962	12	10
4	10400		1//	F1	3 years	MORTGAGE	104483	Fully Paid	PA	V	1	64	4567	78	7
5			13	С3	4 years	RENT	34000	Fully Paid	GA	10		68	844	91	4
6	20000	36 months	9	B2	10+ years	MORTGAGE		Fully Paid	MN	15	10	84		103	9
7	20000	36 prontes	8	B1	10+ years	MORTGAGE	85000	Fully Paid	sc	18	8	6	13674	6	3
8		6 ponths	6	A2	6 years	RENT	85000	Fully Paid	PA	13	1	34		50	13
9		6 months	11	B5	10+ years	MORTGAGE	42000	Fully Paid	RI	35	10	39	9966	41	5

Dados Duplicados

- O dataset pode incluir registros que estão duplicados, ou quase duplicados
 - Esse problema acontece geralmente quando juntamos dados de diversas fontes

Nome do Professor

Lucas Rafael Costella Pessutto

Lucas R. C. Pessutto

Lucas Pessutto

Pessutto, Lucas C.

Pré-Processamento de Dados

Etapas de Pré-Processamento

- Agregação
- Amostragem
- Redução de Dimensionalidade
- Seleção de Features
- Criação de Features
- Transformação de Atributos

Agregação

 Combinação de dois ou mais registros em um único

- Redução de dados
 - Diminui o tamanho do dataset
- Mudança de escala
 - Cidades agregadas em estados agregados em países
- Dados mais estáveis
 - Dados agregados tendem a ter menos variabilidade

Q4

\$586,000

Amostragem

- Técnica utilizada para realizar seleção de um conjunto menor de registros de um dataset
 - Muito usada para realizar análises preliminares e posteriores no conjunto de dados
- Amostragem também é utilizada quando processar todo o dataset demanda muito processamento e leva muito tempo

• Deve ser feita com cautela, para não descaracterizar os dados

Amostragem

Redução de Dimensionalidade

- Objetivo: reduzir os dados para poucas dimensões.
 - <u>Maldição da dimensionalidade</u>: Quando o número de dimensões aumenta, os dados tendem a ficar cada vez mais espalhados pelo espaço em que eles estão dispostos
- Porque?
 - Evitar a maldição da dimensionalidade
 - Reduzir tempo e memória necessários para executar algoritmos de aprendizagem de máquina
 - Permitir que os dados sejam visualizados mais facilmente
 - Identificação de features irrelevantes ou ruído
- Técnicas utilizadas:
 - Principal Componet Analysis (PCA), Singular Value Decomposition (SVD), etc.

Seleção de Features

Outra forma de reduzir a dimensionalidade dos dados

- Remoção de colunas redundantes
 - Informação duplicada ou muito parecida (cidade, UF, país)
- Features Irrelevantes
 - A informação não é útil para o problema
 - Ex: Número do RG e CPF de uma pessoa

Criação de Features

 Criação de novas colunas no dataset, que capturem informações importantes dos dados mais eficientemente do que as colunas originais

Técnicas utilizadas:

- Discretização
- One-hot-encoding
- Binarização
- Splitting
- Calculated features

Valor Categórico	Valor Inteiro	Valore	es Binar	izados	One-Hot Encoding					
	valor interio	x_1	x_2	x_3	x_1	x_2	x_3	x_4	x_5	
Péssimo	0	0	0	0	0	0	0	0	1	
Ruim	1	0	0	1	0	0	0	1	0	
Regular	2	0	1	0	0	0	1	0	0	
Bom	3	0	1	1	0	1	0	0	0	
Ótimo	4	1	0	0	1	0	0	0	0	

Transformação de Atributos

- Usar uma função que mapeia todo o conjunto de valores de um dado atributo para um novo conjunto de valores
 - Padronização e Normalização
- Exemplos:
 - Escala Logarítmica $(\log(x))$
 - Normalização de case: upper / lower case