Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ(ТУСУР)

Кафедра компьютерных систем в управлении и проектировании (КСУП)

РАЗРАБОТКА ПЛАГИНА "АВТОМОБИЛЬНЫЙ ПОРШЕНЬ" ДЛЯ САПР КОМПАС-3D

Проект системы по лабораторному проекту по дисциплине «ОСНОВЫ РАЗРАБОТКИ САПР»

		Выполнил:
		студент гр. 580-3
		Е.А. Денисов
« _		2023 г
		Руководитель:
	к.т.н.	, доцент каф. КСУП
		А.А. Калентьев
«		2023 г.

1 Описание САПР

1.1 Описание программы

САПР (Система автоматизированного проектирования) — автоматизированная система, реализующая информационную технологию выполнения функций проектирования, представляет собой организационно техническую систему, предназначенную для автоматизации процесса проектирования, состоящую из комплекса технических, программных и других средств автоматизации его деятельности [1].

КОМПАС-3D — это российская импортонезависимая система трехмерного проектирования, ставшая стандартом для тысяч предприятий и сотен тысяч профессиональных пользователей. В основе КОМПАС-3D лежит российское геометрическое ядро C3D (создано C3D Labs, дочерней компанией АСКОН) и собственные программные технологии.

КОМПАС-3D широко используется для проектирования изделий основного и вспомогательного производств в таких отраслях промышленности, как машиностроение (транспортное, сельскохозяйственное, энергетическое, нефтегазовое, химическое и т.д.), приборостроение, авиастроение, судостроение, станкостроение, вагоностроение, металлургия, промышленное и гражданское строительство, товары народного потребления и т. д [2].

1.2 Описание АРІ

API (англ. Application Programming Interface) – описание способов, которыми одна компьютерная программа может взаимодействовать с другой программой.[3]

Для КОМПАС-3D существует API под названием API 5. Для построения объекта в Inventor через API будут использоваться следующие классы: KompasObject (таблица 1.1), ksDocument3D (таблица 1.2), PartComponentDefinition (таблица 1.3), PlanarSketches (таблица 1.4).

Таблица 1.1 — Используемые методы класса KompasObject

Название	Тип возвращаемых данных	Описание
Document3D	LPDISPATCH	Указатель на интерфейс трехмерного документа
ActiveDocument3D	LPDISPATCH	Указатель на текущий трехмерный документ
GetParamStruct	Variant	Используется для получения значения параметра структуры.

Таблица 1.2 — Используемые методы класса ksDocument3D

Название	Тип возвращаемых данных	Описание
Create	ksDocument3D	Создает пустой документ (деталь или сборку)
GetObjParam	Variant	Возвращает параметры объекта
SetObjParam	long	Установить параметры объекта
GetPart	LPDISPATCH	Получить указатель на интерфейс компонента в

Продолжение таблицы 1.2

	соответствии с
	заданным типом

Таблица 1.3 — Используемые методы класса ksEntity

Название	Тип возвращаемых данных	Описание
Create	BOOL	Создать объект в модели
Update	BOOL	Изменить свойства объекта (используя ранее установленные свойства)

1.3 Обзор аналогов

CAIIP Catia

Catia — это программное обеспечение для моделирования автомобильных САПР в основном используется для 3D-моделирования поверхностей и твердых тел, проектирования жидкостных и электронных систем, проектирования бытовой электроники, машиностроения, проектирования конструкций и 3D-моделирования для 3D-печати.

Он также широко используется для инженерных моделей и предлагает комплексное решение для проектирования, придания формы и управления интеграцией шасси и силовых агрегатов, поверхностей класса А и дизайна интерьера в жизненный цикл автомобильной продукции. Интерфейс плагина показан на рисунке 1.1.

Рисунок 1.1 — Интерфейс САПР Catia

2 Описание предмета проектирования

Поршень — подвижная деталь поршневых машин (паровых машин, насосов, компрессоров и поршневых двигателей внутреннего сгорания), перекрывающая поперечное сечение ее цилиндра и перемещающаяся вдоль его оси. В двигателях, силовых цилиндрах и прессах поршень передаёт давление рабочего тела (газа или жидкости) движущимся частям; в некоторых типах двигателей поршень выполняет также и газораспределительные функции. В насосах и компрессорах приводимый в возвратно-поступательное движение поршень производит засасывание, сжатие и подачу жидкости или газа.

На рисунке 2.1 представлен чертеж поршня.

Рисунок 2.1 – Чертеж поршня

Параметры поршня:

- высота поршня Н (36 60 мм);
- общее количество маслосъемных и компрессионных колец n (2 —
- 3) зависит от типа ДВС
 - высота головки поршня рассчитывается из формулы

$$($$
от $\frac{1}{3}$ до $\frac{1}{2}H)$

- диаметр днища поршня W (92 106 мм)
- диаметр отверстия для поршневого пальца D (от 0,16 до 0,22 W)
- Тип ДВС (бензиновый/дизельный)

3 Проект программы

3.1 Описание технических и функциональных аспектов проекта

Для графического описания абстрактной модели проекта, а также пользовательского взаимодействия (сценарии действия) использован стандарт UML.

UML язык графического описания для объектного моделирования в области разработки программного обеспечения. UML является языком широкого профиля, это — открытый стандарт, использующий графические обозначения для создания абстрактной модели системы, называемой UML — моделью. UML был создан для определения, визуализации, проектирования и документирования, в основном, программных систем. UML не является языком программирования, но на основании UML возможна генерация кода и наоборот.

При использовании UML были построены диаграмма классов.

3.2 Диаграмма классов

Диаграмма классов – структурная диаграмма языка моделирования UML, демонстрирующая общую структуру иерархии классов системы, их коопераций, атрибутов (полей), методов, интерфейсов и взаимосвязей между ними.[4]

На рисунке 3.1 представлена диаграмма классов.

Рисунок 3.1 – Диаграмма классов

- MainWindow главное окно, управляет данными.
- PistonBuilder класс, ответственный за построение поршня.
- KompasWrapper класс-обертка над API САПР Компас-3D.
- KompasSketch класс-помощник для KompasWrapper, ответственный за построение чертежа детали.

- PistonParameters — класс, хранящий параметры поршня.

3.3 Макет пользовательского интерфейса

Макет пользовательского интерфейса содержит поля, где можно вводить параметры поршня. Для создания модели необходимо нажать кнопку "Построить". Если вводятся недопустимые символы, они автоматически не будут добавляться в строку. Например, если требуется ввести только цифры, то другие символы не смогут быть введены.

На рисунке 3.3 представлен макет пользовательского интерфейса.

Рисунок 3.2 – Макет пользовательского интерфейса

После нажатия на кнопку «Построить» при введенных некорректных значениях, появится окно, сообщающее об ошибке (рисунок 3.3).

Рисунок 3.3 — Окно ошибки

Список литературы

- 1. САПР Википедия. [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/Система_автоматизированного_проектирования (дата обращения 17.10.2023).
- 2. КОМПАС-3D Официальный сайт САПР Компас. [Электронный ресурс]. Режим доступа: https://kompas.ru/kompas-3d/about/ (дата обращения 17.10.2023).
- 3. API Википедия. [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/API (дата обращения 17.10.2023).
- 4. UML. [Электронный ресурс]. Режим доступа: http://www.uml.org/ (дата обращения 17.10.2023).