Online Experiments for Computational Social Science ICWSM Tutorial

Eytan Bakshy Sean J. TaylorFacebook Core Data Science

ICWSM 2014, Ann Arbor, MI June 1, 2014

Outline

- 1. Introduction and Causal Inference (30 minutes)
- 2. Planning Experiments (30 minutes)

```
<30 minute break>
Discussion + analysis exercise (15 minutes)
```

- 3. Designing and Implementing Experiments (45 minutes)
- 4. Analyzing Experiments (30 minutes)

Everything we assume

- Minimum requirements
 - Some basic knowledge of statistics
 - The ability to follow code
- Necessary to understand 90%
 - Intermediate knowledge of R and beginner knowledge of Python
- Necessary to understand 100%
 - Advanced knowledge of R, intermediate Python, intermediate stats, design of experiments

Don't panic!

Don't panic!

Buddy up! Group learning is good for you!

Software requirements

http://bit.ly/icwsm14_experiments

- If you are the kind of person who wants to tinker with code yourself, here are the software requirements
 - Section 1: None
 - Section 2: R
 - Part 3: IPython + PlanOut
 - Part 4: R
- Can't install the software? Buddy up

facebook

Section 1: Introduction and Causal Inference

Obligatory

Associations

 (X_i, Y_i)

- Health: (smoking, cancer)
- Sports: (running the ball, winning games)
- Education: (completes MOOC course, gets a promotion)
- Social Media: (likes a page on Facebook, buys a product)

Possible Relationships

- Pr(Y_i | X_i) = Pr(Y_i)(independence)
- $Pr(Y_i | X_i) \neq Pr(Y_i)$ (dependence)

Dependence between variables is useful, but interpretation of this relationship can often be tricky.

Possible Causal Relationships

All three causal relationships are possible when there's a dependency between variables.

Correlation without Causation: Introducing Z_i

- Smoking causes cancer (genetics)
- Running the ball causes winning games (having a lead)
- Completing a MOOC causes a promotion (self-motivation)
- Liking a page on Facebook causes a person to buy a product (brand loyalty)

Bigger Example

Why Causal Inference?

- 1. Science: Why did something happen?
- 2. Decisions: What will happen if I change something?

Causal Inference for Science

- 1. Associations between two variables are always more interesting when they're causal.
- Understanding a
 phenomenon is different
 from predicting it.

Explanatory Modeling	Predictive Modeling	
model captures causal function	model captures association	
model carefully constructed from theory	models constructed from data	
retrospective	forward-looking	
minimize bias	minimize variance	
basic science	applied science	
make better data	make better features	

Two Kinds of Out-of-Sample

Machine Learning / Statistics

People we Observe

Similar People

Similar People under different circumstances

Attribute Outcomes to Causes

non-social ad

social ad

Social Influence in Social Advertising: Evidence from Field Experiments.

Bakshy, Eckles, Yan, Rosenn. EC 2012.

Attribute Outcomes to Causes

1 liking friend0 friends shown

1 liking friend1 friend shown

Causal Inference for Decisions

- Health: Quit smoking? Brush your teeth?:)
- Sports: run the ball more?
- Social media: recruit more Facebook fans for my page?
- Advertising: purchase ads?
- Education: invest time in completing a MOOC?

Test complete alternatives

News Feed (2011)

News Feed (2014)

Explore a design space

News Feed (2011)

News Feed (2014)

A Social Science Problem

Causal inference is easy for the natural sciences:

- Manipulation is easy!
- Molecules, cells, animals, plants are exchangeable!

For people, there's always something we may not be observing perfectly.

- Latent traits provide alternative explanations that we often cannot rule out.
- Experiments are often the only way of ruling them out.

Potential Outcomes Framework

	Υ	Υ	D	Effect
Eytan	10	-5		15
Anna	0	5		-5
Gary	-20	5		-25
Linda	-10	10		-20
Edna	-5	0		-5
Sean	10	5		5
Mean	-2.14	2.86		-5

 $Y_i(1)$ is the outcome under treatment $Y_i(0)$ is the outcome under control

Fundamental Problem of Causal Inference

	Y	Y	D	Effect
Eytan	10		1	?
Anna		5	0	?
Gary		5	0	?
Linda		10	0	?
Edna		0	0	?
Sean	10		1	?
Mean				

We only ever observe a unit in either treatment or control. Individual level effects are never defined.

Confounding

	Y	Y	D	Effect
Eytan	10		1	?
Anna		5	0	?
Gary		5	0	?
Linda		10	0	?
Edna		0	0	?
Sean	10		1	?
Mean	10	5	0.29	5

Here we assumed they selected D_i to maximize their outcome.

Randomization

	Υ	Υ	D	Effect
Eytan		-5	0	?
Anna	0		1	?
Gary	-20		1	?
Linda		10	0	?
Edna		0	0	?
Sean	10		1	?
Mean	-3.33	1.67	0.5	-5

With randomly assigned D_i, we get unbiased effect estimates. The difference in means is called the **Average Treatment Effect**

The Average Treatment Effect

ATE =
$$\delta = \mathbb{E}[Y_i(1) - Y_i(0)] = \mathbb{E}[Y_i(1)] - \mathbb{E}[Y_i(0)]$$

- Due to the linearity of expectations, we can separate the ATE into two measurements.
- In practice, we *estimate* these expectations using the means in our treatment and control groups.

$$\widehat{ATE} = \frac{1}{N} \sum_{i \in T} Y_i(1) - \frac{1}{M} \sum_{i \in C} Y_i(0)$$

Uncertainty

• How sure are we about the ATE we measured?

Variability in ATE estimates comes from:

- 1. variation in random assignment
- 2. variation in subjects

Variation due to Random Assignment

Histogram of reps

For a given set of potential outcomes and a randomization, we may not always arrive at the right estimate, but it will not be biased.

Standard Errors

• How can we quantify uncertainty about ATEs we measure?

$$\widehat{SE}(\widehat{ATE}) = \sqrt{\frac{1}{n_0 + n_1}} \sqrt{\frac{n_1}{n_0} \operatorname{Var}(Y_i(0)) + \frac{n_0}{n_1} \operatorname{Var}(Y_i(1))}$$

- SE decreases with √N
- SE is smaller when variances of potential outcomes are smaller
- want n_0 and n_i to be similar if the variances are the same
- want more observations for higher variance conditions

Confidence Intervals

• 95% confidence interval is 1.96 times $\widehat{\rm SE}(\widehat{\rm ATE})$

 SEs shrink with the square root of the number of observations, so to double the precision of your experiment you need four times the number of subjects.

Confidence Intervals vs p-values

- Often easy to get statistical significance with big data.
 Most things have effects!
- Harder to get big, <u>practically significant</u>, effects!
- CIs make uncertainty about an estimate more credible.
- Should favor reporting Cls.

facebook

Section 2: Planning Experiments

The Routine

The routine

- Step 1: Formulate a research hypothesis
- Step 2: State an expected effect size
- Step 3: Design your experiment
- Step 4: Power analysis
- Step 5: Write up analysis plan
- Step 6: Collect data
- Step 7: Analyze data according to plan

- A specific hypothesis:
 - Population
 - Empirical context
 - Treatment(s)
 - Subgroups
 - Outcomes

The routine

- Step 1: Formulate a research hypothesis
- Step 2: State an expected effect size
- Step 3: Design your experiment
- Step 4: Power analysis
- Step 5: Write up analysis plan
- Step 6: Collect data
- Step 7: Analyze data according to plan

- Use prior literature
- Use existing data
- Collect your own observational data
- Small effects need big data

- Step 1: Formulate a research hypothesis
- Step 2: State an expected effect size
- Step 3: Design your experiment
- Step 4: Power analysis
- Step 5: Write up analysis plan
- Step 6: Collect data
- Step 7: Analyze data according to plan

- Follows from step 1
- Identify:
 - Constraints
 - Threats to validity
 - Ways to increase precision

- Step 1: Formulate a research hypothesis
- Step 2: State an expected effect size
- Step 3: Design your experiment
- Step 4: Power analysis
- Step 5: Write up analysis plan
- Step 6: Collect data
- Step 7: Analyze data according to plan

- Simulate experiment with posited effects and design
- You should feel comfortable that you'll find a clinically significant effect

- Step 1: Formulate a research hypothesis
- Step 2: State an expected effect size
- Step 3: Design your experiment
- Step 4: Power analysis
- Step 5: Write up analysis plan
- Step 6: Collect data
- Step 7: Analyze data according to plan

- Makes it easier to communicate your study
- Helps catch problems with plan
- Keeps you honest as a scientist

- Step 1: Formulate a research hypothesis
- Step 2: State an expected effect size
- Step 3: Design your experiment
- Step 4: Power analysis
- Step 5: Write up analysis plan
- Step 6: Collect data
- Step 7: Analyze data according to plan

- Collect pre-treatment data (if applicable)
- Implement
- Collect experiment data
 - Log sane data

- Step 1: Formulate a research hypothesis
- Step 2: State an expected effect size
- Step 3: Design your experiment
- Step 4: Power analysis
- Step 5: Write up analysis plan
- Step 6: Collect data
- Step 7: Analyze data according to plan

- Wrangle data to get it into a format that you can analyze in R
- Apply appropriate statistical procedures
- Analysis should be easy!

Planning Experiments using Simulation

open: power_part1.R

In-class Exercise

open: power_part2.R

Power analysis for peer effects study

facebook

Section 3: Designing and Implementing Experiments with PlanOut

Be a subject in a linguistic alignment study

http://icwsm.seanjtaylor.com (3 minutes)

PlanOut

PlanOut scripts are high-level descriptions of randomized parameterizations

The PlanOut Idea

- User experiences are parameterized by experimental assignments
- PlanOut scripts describe assignment procedures
- Experiments are PlanOut scripts plus a population
- Parallel or follow-on experiments are centrally managed

Sample PlanOut script

```
button_color = uniformChoice(
  choices=["#ff0000", "#00ff00"],
  unit=userid);

button_text = uniformChoice(
  choices=["I'm voting", "I'm a voter"],
  unit=userid);
```

2x2 factorial design

Compiled PlanOut Code

```
"op": "seq",
                                        "op": "set",
"seq": [
                                        "var": "button_text",
    "op": "set",
                                        "value": {
    "var": "button_color",
                                          "choices": {
                                            "op": "array",
    "value": {
                                            "values": [
      "choices": {
        "op": "array",
                                              "I'm voting",
        "values": [
                                              "I'm a voter"
          "#ff0000",
          "#00ff00"
                                          "unit": {
                                            "op": "get",
      "unit": {
                                            "var": "userid"
        "op": "get",
        "var": "userid"
                                           "op": "uniformChoice"
      "op": "uniformChoice"
```

Using PlanOut

\$ ipython notebook --pylab inline

open: o-planout-intro.ipynb

Selective Exposure Experiment

- Communication literature has shown people tend to choose news sources that align with their political ideologies.
- This experiment was designed to test this hypothesis.
- News source icons were randomly applied to the sample set of stories, and presented in a random order.

Python Web Application Walkthrough

open: webapp/app.py

Extracting Data from Logs

open: webapp/extract_data.py

facebook

Section 4: Analyzing Experimental Data

Outline

- 1. Dependence (non-i.i.d. data)
- 2. The bootstrap
- 3. Using covariates
- 4. Data reduction
- 5. "Big Data Guide"
- 6. Example in R

Dependence

- Most formulas for confidence intervals assume that each individual data point is independent of all the others.
- In practice, we often have repeated observations of users or content items.
- Ignoring this fact in inference will tend to make confidence intervals anti-conservative.

See Bakshy and Eckles, "Uncertainty in Online Experiments with Dependent Data" (KDD 2013)

The Bootstrap

Figure 3: Diagram of probabilistic simulation and bootstrap sampling estimates of sampling distributions.

Bootstrapping in Practice

Get a distribution over statistic of interest (e.g. the ATE)

- take mean
- CIs == 95% quantiles
- SEs == standard deviation

Using Covariates

- With simple random assignment, using covariates is not necessary.
- However, you can improve precision of ATE estimates if covariates explain a lot of variation in the potential outcomes.
- Can be added to a linear model and SEs should decrease if they are helpful.
- Should always at least report results without using covariates.

Data Reduction

Subject	D	Y
Evan	0	1
Ashley	0	1
Greg	1	0
Leena	1	0
Ema	0	0
Seamus	1	1

D	Y=1	Y=0
0	2	1
1	1	2

treatments

Ν

Data Reduction with Covariates

Subject	Х	D	Υ
Evan	М	0	1
Ashley	F	0	1
Greg	М	1	0
Leena	F	1	0
Ema	F	0	0
Seamus	М	1	1
	N.I.		

Can analyze the reduced data using a weighted linear model.

Data Reduction with Dependent Data

Subject	D	Υ
Evan	1	1
Evan	1	0
Ashley	0	1
Ashley	0	1
Ashley	0	1
Greg	1	0
Leena	1	0
Leena	1	1
Ema	0	0
Seamus	1	1

Create bootstrap replicates

reduce the replicates as if they're i.i.d.

compute statistics on reduced data

Experiment Analysis (i.i.d. data)

Data Size	Fits in memory < 2M rows	Doesn't fit in memory
Using Covariates	linear regression	data reduction + weighted linear models
No Covariates	t-test	data reduction

Experiment Analysis (dependent data)

Data Size	Fits in memory < 2M rows	Doesn't fit in memory
Using Covariates	random effects models or bootstrap + linear models	bootstrap + data reduction + weighted linear models
No Covariates	random effects models or bootstrap in R	bootstrap + data reduction

Analyzing our Experimental Data

open: analyzing_experiments.R

facebook

(c) 2009 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0