Комбинаторика и теория графов

Конспектировал: студент группы 0302 Хаматов Вадим

2021

Содержание

1 Бинарные отношения

Лекция 1

Определение M - множество $\neq \oslash$

 $R\subset M$ х M - бинарные отношения Пояснение M х M - множество пар из элементов R. Допустим $M=\ a,b,c$

$$M \times M = [(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c)]$$

или

M = N
$$\rightarrow$$
 M x M = N x N = [(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3)... ∞]

отношения R - это подмножество пар.

Обозначение $(x,y) \in R$ - пара (x,y) принадлежит отношению.

Иначе xRy

вместо (x,y) ∉ R будем писать xRy

Примеры

1.
$$M = R > R = [(x,y) : x > y]$$

$$(3,2) \in R \quad 3R2 \quad 3>2$$

$$(3,4) \notin R \quad 3R4 \qquad 3 > 4$$

2.
$$M = R$$
 отношение " \geq " $7 \geq 6$ $7 \geq 7$

$$3. M = R$$
отношение = $7=7$

7=8

4.
$$M = R : \approx (x, y) \in \approx x \approx y \leftrightarrow |x - y| < 1$$

5.
$$M = R : @ x@y \leftrightarrow x * x > y$$

$$2@2$$
 т.к. $2*2 > 2$

1@2

6.
$$M = N : x : y \leftrightarrow \exists k \in Z : x = ky$$

4:2

2.4

7.
$$M = Z$$
 \equiv_3 $0 \equiv_3 3$ $1 \equiv_3 4$ $1 \equiv_{3} 8$ $0 \equiv_{3} 2$ $1 \equiv_{3} 7$

8.
$$M = N$$
 Ц

а Ц b, если в числе а "b"цифр

100 Ц 3

238 Ц 3

9. М = прямые на \mathbb{R}^2

 $\mid\mid$ - $e_1\mid\mid e_2$, если l_1 не пересек l_2 при $l_1=l_2$

10. $\perp e_1 \perp e_2$ перпендикулярны

$$c \parallel d$$
 $b \perp c$

 $a \parallel a$

11. Студенты ЛЭТИ

 $x{\succ}y$ средник балл за последнюю сессию больше у x

12. М=пользователи одноклассники

 $x \rightarrow y$, если 'y' в друзьях у 'x'

Иванов \rightarrow Петров

 Π етров \rightarrow Π осов

Свойства бинарных отношений

Определение

Бинарное отношение R на V называют рефлексивным,
если $\forall x \in M \quad \ge R$ х (x,x)
єR

 $\underline{3}$ амечание: Отношение не рефлексивно $\leftrightarrow \exists \ \mathbf{x} \mathbf{R} \mathbf{x}$ - контрпример.

= - рефлексивно \forall x: x=x

$$\geq$$
 $\forall x: x \geq x$

> - не рефлексивно $2{>}2$

Ц - не рефлексивно ЗЦЗ

Определение

Бинарное отношение R на множестве R называется
антирефлексивным, если \forall x x R x

 $\underline{3}$ амечание : R - не антирефлексивно $\leftrightarrow \exists \ x : x \ R \ x$ - контрпример

Примеры >
$$x>x$$
 (> - антирефлексивно)

Ц - не антирефлексивно контрпример 1ц1

Замечание

- 1) Ц не рефлексивно не антирефлексивно
- 2) Не бывает R, которое и рефлекторно, и антирефлексивно (рассмотрим а \in M \to a R а \to не антирефлексивно \to а R а \to не рефлексивно

Определение Бинарное отношение R, на множестве M симметрично, если \forall x,y x R y \leftrightarrow y R x

Замечание R не симметрично $\leftrightarrow \exists x,y : xRy \qquad yRx$

Пример: = - симметрично $x=y \leftrightarrow y=x$

$$pprox$$
 - симметрично $xpprox y\leftrightarrow ypprox x$

$$|x-y| < 1$$
 $|y-x| < 1$

: - не симметрично 4 : 2

2.4 (контрпример)

 \parallel , \perp - симметрично. $a \parallel b \leftrightarrow b \parallel a$

 \coprod - не симметрично. 100 \coprod 3 \qquad 3 \coprod 100

Определение Бинарное отношение R на множестве M антисимметрично, если \forall x \neq y x R y \rightarrow yRx

Замечание: R - не антисимметрично, если $\exists x \neq y x R y, y R x$ - контрпример.

$$>: x \neq y, \rightarrow y > x$$

 $x \neq y,$ х > у, у > х - невозможно

$$\geq$$
 - $~~$ x \neq y $~~$ x \geq y , y \geq x - нет кнтр примера

$$=$$
 - антисимметрично (x \neq y) x=y, y=x - такое невозможно

$$\equiv_3$$
 - симметрично ($1 \neq 4$) $1 \equiv_3 4, 4 \equiv_3 1$

$$\vdots$$
 над N - антисимметрично (x \neq y) — x \vdots y , y \vdots x - невозможно при N

$$\vdots$$
 над Z - не антисимметрично ($4 \neq -4$) $4 \stackrel{.}{:} -4, -4 \stackrel{.}{:} 4$ Лекция 2

2 Антисимметричность

 \vdots на Z - не антисимметрично

 $-2\dot{:}2$ - контрпример

 $2 \neq -2$

: на N - антисимметрично х \neq у х : у у : х \Rightarrow невозможно

$$x \neq y \ x \ \dot{:} \ y \Rightarrow x \ \dot{\vdots} \ y$$

Определение R - бинарное отношение на M- ассиметричность, если \forall x, y $xRy \Rightarrow yRx$ (x 6= y- y антисимметричность) контрпример - xRy, yRx

Утверждение R- симметрично <=> R-антисимметрично и антирефлексивно

Пример

>- асиметрично \forall x, y x>y=> y>x (пустое)- асиметрично (пусто, когда R=0) "выше асиметрично "начальник"х нач y => y нач x R-бинарное отношение транзитивно, если \forall x, y, z x xRy, yRz => xRz

Контрпример > трназитивно x>y, $y>z=>x>z \ge$ транзитивно

 \vdots транзитивно x : y, y : z => x : z

 \bot не транзитивно х \bot у, у \bot z, $x \bot z$

Ц(кол-во цифр) 100Ц3 3Ц1

не транзитивно 100Ц1

Определение Отношение R называется отношением эквивалентности, если R-рефлексивно, симметрично, транзитивно

Пример

= на R(или ∀ другом множестве)

∀х х=х- рефлексивно

 $\forall x,y \ x{=}y => y{=}x$ - симметрично

 $\forall x,y,z \ x{=}y, \ y{=}z => x{=}z$ - транзитивно

 e^{-9}

||- параллельность

≡-сравнение

≥ - не ОЭ т.к. не симметрично

 $x \geq y => y \geq x$

 $z \ge 1, 1 \ge z$

 \approx - не ОЭ(по транзитивности)

 \uparrow

отношение † на N х†у, если у х и у поровну цифр

 $2 \uparrow 5 \ 35 \uparrow 100$

 $12 \uparrow 42$

ОЭ х ↑ х- рефлексивно

 $x \uparrow y => y \uparrow x$ - симметричность

 $x \uparrow y, y \uparrow z => x$

R - ОЭ на множестве М

 $x \in M$, класс элемента x

$$M_x = y|xRy$$

Пример

$$= M_5 = 5 \equiv_3 M_2 = 2, 5, 8, 11... //M_e = //////...$$

Утверждение

R-ОЭ на М

 \forall x, y \in M $M_x = M_y$ или МХ $\cap M_y = 0$

Доказательство

$$\supset$$
 MX \cap M_y 6= 0=> \ni z \in M_x , z \in M_y => xRz ,

$$vRz = > (cumm.) = > zRv = > (транз.) = > xRv$$

Теперь проверим, что класс $\mathbf{M}\mathbf{x}=\mathbf{M}\mathbf{y}$ Возьмем $\mathbf{u}\in M_x$, проверим, что $\mathbf{u}\in M_y$

 $u \in M_x => xRu$

 $xRy => yRx => yRu => u \in M_y$

Следствие R-OЭ не M тогда M разбито на несколько классов эквивалентности $M=M_{1u}...uM_n$ $M_i\cap M_j=0$ = на N=1 и 2 и 3... \equiv_3 на N=0,3,6,9,...1,4,7,10,...2,5,8,11,... Замечание

Если есть M=0 разбитое на $M_i=0$ $M=M_{1u}...uM_n$ и $M_i\cap M_j$ Тогда можно ввести отношение R x R y, если $\supset M_i:$ x,y $\in M_i$ a b c d e f g

aRb bRc aRdgRy gRa

Отношения порядка (выше, лучше, сильнее, важнее) Определение

R-бинарное отношение

R- транзитивно, антисимметрично

1)рефлексивно-нестрогий порядок

2)антирефлексивно- строгий порядок

обозначения обычно ≥ нестрогий > строгий

$$a \succ bb \succ c => a \succ c$$

антисимметрично $a \succ b$ b \succ а

Примеры

> на R- строий порядок

 \geq R- не строгий порядок

: на N- не строгий порядок

нач

а нач b

а нач с

b нач f

 $\mathbf c$ нач f

Определение

 \supset R-строгий или нестрогий порядок R-линейный, если \forall x 6= у xRу или vRx

R- частичный иначе $(\supset x6 = yxRyyRx)$

Примеры $>, \geq$ -линейный порядок

: - частичный 2:3 3:2

нач- частичный

Утверждение

R- порядок
(строй или нестрогий) на M- конечное $|\mathbf{M}| < \infty$

Тогда $\ni x$ - минимальный, т.е. $\forall \ y: x \succ y \ \textbf{Лекция} \ \textbf{3}$

3 Топологическая сортировка

Определение Отношение R_1 на множестве \mathbb{M} расширяет R_2 на \mathbb{M} , если $R_2 \subset R_1$. R_1 добавляет пары где xRy. То есть из xR_2y следует, что xR_1y .

Теорема о топологической сортировке

Если отношение порядка \succ — строгое или нестрогое на конечном множестве $\mathbb{M},$ то существует \gg — отношение линейного порядка на $\mathbb{M},$ такое что \gg расширяет \succ .

не линейный порядок

топологическая сортировка

где ГД - генеральный директор, О - начальник отдела, С - сотрудник.

Доказательство Найдем минимальный элемент отношения \succ (пусть это $x_1 \in \mathbb{M}$) и удалим его из множества. Теперь имеем ограниченное отношение $\succ |_{\mathbb{M}-\{x_1\}}$. Очевидно, что это новое отношение имеет те же свойства, что и изначальное (антисимметрично, транзитивно и рефлексивно/антирефлексивно). В нем тоже есть минимальный элемент x_2 , который мы удаляем и получаем ограниченное множество $\succ |_{\mathbb{M}-\{x_1,x_2\}}$. Продолжаем...

В какой-то момент по свойству конечности множество $\mathbb{M} - \{ \forall x_i \}$ станет пустым. Итого, имеем последовательность $\{x_1, x_2, \dots, x_n\}$, где n = |M|

размер исходного множества М.

Вводим новый порядок $x_i \ll x_j$ для i < j:

$$x_1 \ll x_2 \ll \cdots \ll x_n$$

Почему \ll расширяет \prec ? Если $x \prec y$, то x был удален из множества раньше y, следовательно $x \ll y$.

Замечание Алгоритм поиска минимума и удаления не самый эффективный. Более эффективно будет сделать поиск в глубину и построить обратную нумерацию.

<u>Замечание</u> Топологическая сортировка - практически важная задача. Как пример зависимостей: нельзя расдать листовки, пока они не напечатаны, при этом нельзя распечатать листовки, пока нет чернил и бумаги.

4 Транзитивное замыкание

По решению задачи топологической сортировки мы расширяли порядок до линейности. Теперь перед нами стоит задача расширить отношение до транзитивности.

Пример Пусть есть отношение подчиненности:

где ГД - генеральный директор, О - начальник отдела, С - сотрудник.

Черным цветом показана изначальная связь. Мы можем сказать, что $\Gamma \square RO1$ и O1RC1, но отсюда не следует, что $\Gamma \square RC1$.

Для этого в множество необходимо добавить пару ГДRС1, чтобы отношение стало транзитивным (розовый цвет). Аналогично для ГДRС2.

Теорема Пусть R - отношение на множестве \mathbb{M} и существует такое отношение \overline{R} на том же множестве, что:

- 1. \overline{R} расширяет R ($R \subset \overline{R}$).
- 2. \overline{R} транзитивно
- 3. \overline{R} минимальное транзитивное расширение, то есть если \tilde{R} транзитивное расширение R, то $\tilde{R}\supset \overline{R}$.

Доказательство условное Рассмотрим все транзитивные расширения отношения $\{\overline{R_i}\}$ и посчитаем R как пересечение всех $\overline{R_i}$ (берем те ребра, которые есть только у транзитивного расширения).

Пример Пусть множество $\mathbb{M} = \{a,b,c,d\}$ и на нем есть отношения aRb,bRc,bRd. Мы можем его любым способом достроить до транзитивного (к примеру, достроим отношения aRc,aRd,cRd). Минимальным элементом \overline{R} будет являться пересечение всех таких транзитивных отношений, и оно подходит под все условия:

- 1. \overline{R} расширяет R (пусть xRy, тогда $\forall \overline{R_i} \ x\overline{R_i}y$, значит $x\overline{R}y$).
- 2. \overline{R} транзитивно (пусть $x\overline{R}y$, а $y\overline{R}z$, то $\forall \overline{R_i}\ x\overline{R_i}y, y\overline{R_i}z$, значит $x\overline{R_i}z$, то есть $x\overline{R}z$).
- 3. \overline{R} минимальное транзитивное расширение (так как пересечение находится $\overline{\langle R_i \rangle}$).
- 4. Существует ли $\overline{R_i}$? Скажем, что R_1 полное отношение = $\mathbb{M} \times \mathbb{M}$. Получили, что расширить можно в любом случае.

5 Графы

5.1 Неориентированный граф

 $G = (\mathbb{V},E),$ где \mathbb{V} - множество вершин

 $\mathrm{E}\subset (\mathrm{u},\!\mathrm{v}),$ где $\mathrm{u},\!\mathrm{v}\in \mathbb{V}$ - пара неупорядочения

Как рисовать:

- 1. Вершины обозначаются точками ⋅ или кругами о.
- 2. Ребра линии между узлами.
- 3. Важен только факт соединения.

Пример

Граф G называется $\mathit{nonhum},$ если $\forall u,v \in \mathbb{V} \ (u,v) \in \mathbb{E}.$

Пример полного графа

Пример пустого графа

2

 $\mathbb {V}$ - $\mathit{vertex},\, \mathbb {E}$ - $\mathit{edge}.$

Определение Pазмеp (порядок) графа определяется как количество вершин:|G|=1

 $|\mathbb{V}| = n$

 $|\mathbb{E}| = m$

G - это (n,m) граф

Определение *Степень вершины* $v \in \mathbb{V}$ - это количество ребер с этой вершиной.

Обозначается как: $\deg v$

Определениеk-регулярным графом называется граф, $\deg v = k$ Лекция 4

Степень графа

5.2 Путь в графе

Определение *Путь в графе* — последовательность вершин-ребер $v_1, e_1, v_2, e_2, \ldots, v_n$ Причем, каждый e ведет от вершины v_i к $v_i + 1$.

a,b,c,d— подразумевается путь в графе от а к b, от b к c, и так далее.

 $\it Замкнутый путь$ - где начался, там и закончался. $\it V_1 = \it V_n$

Hезамкнутый nуть(открытый) - начало и конец в разных точках. $V_1 \neq V_n$

Простой путь - такой путь, в котором только различные ребра.

Пример

- 1. b, e, d, c, e простой путь (нет повторов).
- $2. \ a, b, c, d, e, c, d, e, b, a$ замкнутый путь.

Определение *Цепью* называется открытый путь в графе, все вершины которого разные (кроме первой с последней).

Пример

Простые графы

Замкнутый граф

Теорема Если между вершинами u и v существует путь, то существует и цепь между этими вершинами.

Доказательство Пусть есть путь $u, e_1, v_1, e_2, v_2, \ldots, e_n, v$. Рассмотрим все такие возможные пути и возьмем самый короткий. Поймем, что это и есть uenb. Представим, что какие то вершины совпали:

$$u \dots v_i \dots v_j \dots v, \ v_i = v_j$$

Тогда среднюю часть можно убрать, и тогда это не самый короткий путь. Противоречие.

Теорема Если есть простой замкнутый путь через ребро e, то есть и $uu\kappa n$ через это ребро.

Доказательство Аналогично предыдущей теореме, можно найти самый короткий путь, где ребро не повторяется.

5.3 Связность графа

Определение: Граф связан, если \forall u,v \in \mathbb{V} . \exists цепь (путь) из и в v

Пример

2)

1,4 - связаны 2,3 - не связаны

Введем отношение = на вершинах графа:

 $u \equiv v$, если \exists путь из и в v

Пример

 $a \equiv c$

 $e \equiv g$

 $a \equiv d$

 $a \equiv e$

Проверим, что \equiv - это отношение эквивалентности.

- 1) Рефлективность $u \equiv u$ верно, путь u
- 2) Симметричность и \equiv v \Rightarrow v \equiv u путь $u, e_1, v_1 \dots v$, путь $v \dots v_1, e_1, u$
- 3) Транзитивность $u\equiv v,v\equiv \omega$ путь $u,e_1,v_1...vv...\omega$ не повторяется, а входит в 2 пути.

5.4 Компонент связности графа

Определение: Классы эквивалентости ≡ - это компоненты свзяности

2 компонент связности

Определение $G_1=(\mathbb{V}_{\mathbb{K}},\mathbb{E}_{\mathbb{K}}$ - подграф G, если $\mathbb{V}_{\mathbb{K}}\subset\mathbb{V},$ $\mathbb{E}_{\mathbb{K}}\subset\mathbb{E}$

Пример

Помечение "О является подграфом

Замечание

G - свой подграф

О - пусой граф - подграф чего угодно.

5.5 Moct

Определение G ребро е называется мостом, если компонент свзяности G

Пример

Жирными линиями выделены мосты

Определение Степень связности графа G - это количество ребер, которые надо выкинуть чтобы G стал несвязным.

Определение Двусвязный граф - надо выкинуть больше 2 ребер, чтобы он стал связным.

Замечание двусвязный значит нет мостов и связи.

Определение Вершина $V\in \mathbb{V}$ называется точкой сочленения, если количество компонента свзяности G< количества компонента связности G'

$$\mathbf{G}' = (\mathbb{V}_v, E'(u, v) | (v, u) \in E)$$

Пример

Теорема В графе $G=(\mathbb{V},\!E),$ если deg (u) - степень вершины u

$$|E| = 1/2 \, \textstyle \sum \deg(v)$$

Пример

Рёбер: $6=1/2(3+2+2+4+1) \Rightarrow$ Верно

Доказательство

deg (v) = количество ребер, выходящих из вершин.

 $\sum \deg (v) =$ все ребра посчитали дважды = 2|E|

Следствие:

- 1) Сумма степеней вершин всегда четна.
- 2) Вершин нечетной степени четно.

Пример

15 инопланетян, по 3 руки у каждого, могут ли они взятся за руки, чтобы не было свободных рук?

Решение Нет, это граф из 15 нечетных вершин степени 3.

5.6 Висячая вершина

Определение Висячая вершина - это вершина степени 1.

Теорема Если в графе есть ребра, но нет висячих вершин, то ∃ цикл.

Доказательство

Берем ребро $e = (u_1, u_2)$

 u_2 - не висячая вершнина ightarrow из нее есть еще ребро.

Продолжаем, пока очередность u_n не будет равна $u_i 1 \leq i \leq n$

Путь $u_i, u_{i+1}...un$ - цикл (ребра разные, вершины разные)

5.7 Дерево

Определение: Дерево - связный граф без циклов

Пример

Теорема В любом дереве ≤ 2 висячих вершины

Доказательство Берем \forall вершину, если она не висячая, идем по ребру, если опять не висячая, есть ребро и т.д.

Циклов нет \rightarrow Конец.

Чтобы найти вторую, надо начать из первой.

Теорема Если G-дерево, то |V| = 1 + |E|

Лекция 5

5.8 Планарные графы

Определение Планарные графы - это те графы, которые можно нарисовать на плоскости так, чтобы ребра не пересекались.

Пример Пример "правильного" и "неправильного" планарных графов:

Неправильный граф

Теорема Формула Эйлера Если связный планарный граф $G = (\mathbb{V}, \mathbb{E})$ нарисован на плоскости, то у него можно посчитать *грани* f. Пусть $|\mathbb{V}| = n$, $|\mathbb{E}| = m$. Тогда: n - m + f = 2

Посчитать грани следующих графов:

Доказательство Индукция по количеству ребер.

База: G - дерево. m - n + f = n - (n - 1) + 1 = 2

Переход: G - не знаем, верно ли (G,G' - связные планарные), если G' имеет меньше ребер \to верно

G - не дерево ightarrow есть цикл, берем ребро цикла.

Вокруг него 2 грани, удалим ребро, получим G' - тоже связан и планарен.

 ${\rm n', m', f'}$ - вершины, ребра, грани ${\rm G'}$

n'=n

m' = m - 1

f' = f - 1

По индукции предположим:

n' - m' - f' =
$$2 \Rightarrow f_n - (m-1) + (f-1) = 2 \Rightarrow n-m+f = 2$$

Следствия из формулы Эйлера:

- 1. Не важно, как рисовать планарный граф, количество граней постоянно
- 2. Теорема про многогранники. 8-12+6=2

- 3. Если граф G планарен (не обязательно связан), то:n-m+f=1+ |компоненты связности|
- 4. У каждой грани вокруг ≥ 3 ребра

 $3f \leq \sum$ кол-во ребер вокруг
 $g \leq 2m$ (у каждого ребро посчитана 1 или 2 раза)

 $\Rightarrow 3f \leq 2m$

но n - m + F = 2

3n-3m+3f = $6 \Rightarrow 3$ n - 3m + 2m ≥ 6

 $\Rightarrow 3n$ - $m \geq 6 \Rightarrow m \leq 3n$ - 6

Итого m ≤ 3n-6 в связном планарном графе.

5. Полный граф при $n \geq 5$ не планарен.

граф планарен

Доказательство $n=5, m=5*4/2=10, 10\geq 3*5$ - 6=9 ??

<u>Замечание</u> Пусть K_5 — полный граф с количеством вершин, равным 5.

Граф $K_{3,3}$ — тоже не планарен.

 $\underline{\mbox{Замечание}}\ K_5$ - полный граф n=5

Утверждение граф $K_{3,3}$ тоже не планарный

Доказательство n=6, m=9 $9 \ge 3*6-6$ (верно) нет противоречия.

Сколько граней, если полярный: 6 - 9 + f = 2 \Rightarrow f = 5 граней

В K_3 все циклы четные (ходим лево - право или право - лево) \Rightarrow У грани ≤ 4 ребра

НЕВОЗМОЖНО

 $4 \mathrm{f} \geq \sum$ ребер грани g $\geq 2 \mathrm{m} \Rightarrow \mathrm{m} \leq 2 \mathrm{~f} \; g \leq 2 * 5$

Теорема Понтрягина-Куратовского Граф G планарен только, если он не содержит полуграфов G', стягивающихся к K_5 и к $K_{3,3}$.

Пример стягивающихся графов:

стягивается к $K_{3,3}$

стягивается к K_5

6 Темы: Хроматизм

Определение раскраска графа G в K цветов это функция $G: V \to [1...k]$ (целое) причем, если есть ребра (u,v), то $C(u) \neq C(v)$

Раскраска

не раскраска

Определение Граф G двудолен, если его можно раскрасить в 2 цвета.

 $K_{3,3}$ - двудольный

не двудолен

Замечание Двудольные графы часто рисуют из вторых частей (долей).

Теорема G - двудолен \Leftrightarrow все циклы G имеют четную длину.

Доказательство 1) Двудолен ⇒ циклы четные

2) циклы четные ⇒ двудолен "подвесим граф за вершину"

∀ вершин

Лекция 6

Теорема Граф двудолен ⇒ все циклы четные.

Определение G = (V,E) - граф

 $\chi(g)$ - хроматическое число графа минимальное количество цветов, в которые его можно раскрасить.

Пример

Замечание Если $\leq \chi(g)$, то G можно покрасить в к цветов

Утверждение $\chi(g) \geq \max \deg v + 1$

6.1 Хроматические многочлены

Определение $\sqsupset \chi(G,K)$ - это функция "сколько способов раскрасить G в K цветов"

$$egin{array}{ll} K=0 & 0 \\ K=1 & 0 \end{array}$$

$$\chi(0--0,k) = ext{K=2} ext{2}$$

$$ext{K=3} ext{6}$$

иначе k(k-1)

$$\chi(0 - - 0, k) = k(k - 1)$$

$$\chi(0 \qquad 0, k) = k^2$$

Утверждение

 $1)\chi(\phi_n,k)=k^n\;(\phi_n$ граф из

 п вершин без ребер)

$$2)\chi(K_n, k) = k(k-1)(k-2)...(k-n+1)$$

 $3)\chi(T_n,k=k(k-1)^n$ подвесим дерево за \forall вершину k-1 цвет возможен

 $4)\overline{G}$ - граф; u,v вершин с ребром (u,v)

G = G : (u,v) (без ребр)

 $G^{(0)} = G$, где u,v станут в вершину

способы раскрасить G,

где u и v - разный цвет

Следствие: $\chi(\underline{G}, k) = \chi(G, k) - \chi(G_0, k)$

Лекция 7

Утверждение χ (G,K) - это многочлен

- 1)Старший коэффициент = 1
- 2) Степень = n (количество вершин)
- 3) Знаки чередуются
- 4) Младший коэффициент = 0
- 5) Коэффициент при $k^{n-1} = +$ -m (количество ребер)

Доказательство Индукция по количеству вершин, при равном количестве вершин: количество ребер

База Пустой граф из

 першин χ (пуст.граф,k) = k^n = переход \overline{G}

- 1) Старший коэффициент $(1*k^n)$ (k^{n-1}) ...
- 2) Степень = n
- 3) $(k^n k^{n-1} + k^{n-2}) (k^{n-1} k^{n-2} + k^{n-3} + ...)$
- 4) Младший коэффициент =0 0=0
- 5) Ребер G^*k^{n-1} k^{n-1} = -(количество ребер $G+1)k^{n-1}$

Утверждение $\chi(g)$ - хром число (мин. число цветов для раскраски)

 $\chi(G,k)$ k=0,1,2.... $\chi(G)-1$ корни многочленов $\chi(g)$ - не корень

7 Эйлеровы графы

Нарисовать данный граф, не проводя по одному ребру дважды:

Определение Эйлеров путь - простой путь, содержащий все ребра, не проходящий дважды по одному ребру.

Определение Эйлеров цикл - цикл, содержащий все ребра, не проходим дважды по 1 ребру.

Утверждение Пусть G содержит эйлеров цикл, тогда G связен, и $\deg v$ — четная $\forall v \in \mathbb{V}$.

есть эйлеров цикл

нет эйлеров циклов

Доказательство Если граф G связен, кол-во входов = кол-во выходов. deg четно

Доказательство обратное Начнем строить цикл. Идем из \forall вершины, выбираем ребро, которое еще не использовалось. В каждой вершине по пути использовано четное количество ребер (к входов, к выходов) +1 ребро, через которое вошли. Использовали нечетное количество ребер, есть еще одно, по нему можно уйти, кроме начальное из нее вышли на 1 раз больше. \rightarrow мы закончили ходить в начальной вершине.

обошли не все, выкинем просмотренные ребра

Теорема Если граф связан, из начальной точки все вершины х можно попасть в \forall вершину и ребро.

Повторим процесс из $\forall \in 1$ циклу, из которой ведет ребро.

Объеденим 2 цикла

Продолжать пока все ребра не объединятся в 1 цикл.

Теорема Граф содержит Эйлеров путь \Leftrightarrow

- 1) Граф связан.
- 2) Степени всех вершин четны, степени всех вершин кроме двух четны (в этом случае нечетные вершины это начало и конец)

8 Гамильтонов путь/цикл

Определение Гамильтоновы пути или циклы - простые цепи/циклы по всем вершинам.