School mapping in ESRI imagery

Andrija Gorup, Marin Kačan, Siniša Šegvić

October 3rd, 2024

Recap from last meeting

ESRI imagery outdated compared to Google Maps

• New schools (visible on Google Maps), might not be visible in ESRI images

ESRI

GOOGLE

ESRI imagery outdated compared to Google Maps

• New schools (visible on Google Maps), might not be visible in ESRI images

4

2-stage training, fine-tune and eval on Anditi schools

2-fold cross-validation

- 50:50 train/val split of school locations
- add equal number of non-school locations
 - sampled throughout Vietnam
- unusually high results F1: 93.91 pp
 - o in spite of potentially problematic outdated imagery

Data analysis

Newer schools

• visible on Google Maps but not visible in ESRI images

Newer schools

• visible on Google Maps but not visible in ESRI images

Newer schools

visible on Google Maps but not visible in ESRI images

- urban growth layer (2014 2023) [Anditi]
 - o new schools more likely in areas where urban growth was recorded
 - o get an "urban growth score" for each school tile

Newer schools

visible on Google Maps but not visible in ESRI images

- urban growth layer (2014 2023) [Anditi]
 - new schools more likely in areas where urban growth was recorded
 - get an "urban growth score" for each school tile
- ESRI metadata layer
 - o get the date of capture of ESRI satellite imagery for a given school tile
 - o get an "oldness score" for each school tile

Newer schools

visible on Google Maps but not visible in ESRI images

- urban growth layer (2014 2023) [Anditi]
 - new schools more likely in areas where urban growth was recorded
 - get an "urban growth score" for each school tile
- ESRI metadata layer
 - get the date of capture of ESRI satellite imagery for a given school tile
 - o get an "oldness score" for each school tile
- combine the two scores and sort schools from highest to lowest

A binary mask; 500m resolution

• urban growth: 0/1

A binary mask; 500m resolution

• urban growth: 0/1

Example (74.5% tile coverage):

A binary mask; 500m resolution

• urban growth: 0/1

Example (74.5% tile coverage):

A binary mask; 500m resolution

• urban growth: 0/1

For each school tile

- urban growth score = area covered by u.g. mask / total area of tile
- scores in the interval [0,1]

Histogram of urban growth scores

Imagery captured at varying dates (oldest 2014, newest 2023)

Oldness score

• how to score older tiles? linearly, logarithmically, ...?

Oldness score

- how to score older tiles? linearly, logarithmically, ...?
- check HR LULC per-year urban growth (2015 2020) for relevant provinces

Oldness score

- how to score older tiles? linearly, logarithmically, ...?
- linear growth

Score linearly with the "age" of the imagery (in days)

• normalize to [0,1]

Score linearly with the "age" of the imagery (in days)

• normalize to [0,1]

Histogram of "oldness" scores

Combined score

UG - urban growth score O - oldness score

combined score (C)

• (UG + O) / 2

Combined score - histogram

Combined score

Find outdated tiles on areas with observed urban growth

Sort by combined score (from highest)

• checked top 40 schools

Find outdated tiles on areas with observed urban growth

Sort by combined score (from highest) Examples:

ESRI (2021-05-30)

GOOGLE MAPS (2024)

Find outdated tiles on areas with observed urban growth

Sort by combined score (from highest) Examples:

ESRI (2021-02-10)

GOOGLE MAPS (2024)

Only use oldness score (without urban growth)

Only use oldness score (without urban growth)

Estimated urban growth = 0

ESRI (2019-12-08)

GOOGLE MAPS (2024)

Only use oldness score (without urban growth)

Estimated urban growth = 0

ESRI (2020-03-09)

GOOGLE MAPS (2024)

Only use urban growth score (without oldness score)

Examples:

Only use urban growth score (without oldness score)

Examples:

ESRI (2022-10-29)

GOOGLE MAPS (2024)

Sort images by file size, look for smallest image

Sort images by file size, look for smallest image

- information theory images with no urban area will often have lower entropy
 - o consequently, their compressed file size will be smaller

Sort images by file size, look for smallest image

information theory - images with no urban area will often have lower entropy

Sort images by file size, look for smallest image

information theory - images with no urban area will often have lower entropy

Sort images by file size, look for smallest image

• information theory -- images with no urban area will often have lower entropy

Examples:

Sort images by file size, look for smallest image

• information theory -- images with no urban area will often have lower entropy

Smallest image

Sort images by file size, look for smallest image

• information theory -- images with no urban area will often have lower entropy

Smallest image - cloud-covered:

Sort images by file size, look for smallest image

• information theory -- images with no urban area will often have lower entropy

Smallest image - cloud-covered:

Another issue with ESRI - different appearance

Not just out of date, but also more pronounced variations in general appearance

Another problem with ESRI - different appearance

Not just out of date, but also more pronounced variations in general appearance

ESRI GOOGLE MAPS

Issues in cross-validation experiments

2-stage training, fine-tune and eval on Anditi schools

2-fold cross-validation

- 50:50 train/val split
- add equal number of non-school locations
 - sampled throughout Vietnam
- unusually high results F1: 93.91 pp
 - o in spite of potentially problematic outdated imagery

Issues

Many schools next to each other

Distance: ~1.5 m

Distance: ~51 m

Distance: ~103 m

Distance: ~199 m

Outdated neighbouring schools (3 separate "schools")

Histogram of pairwise distances (only distances <500m)

- 1) Many schools next to each other
 - for cross-validation experiments, we do a random **50:50** train/val split
 - **leakage** -- very overlapping images get into both splits
 - o model can overfit to those examples

- 1) Many schools next to each other
 - for cross-validation experiments, we do a random **50:50** train/val split
 - **leakage** -- very overlapping images get into both splits
 - model can overfit to those examples
- 2) Schools in areas with distinct "appearance"
 - not due to similar landscape/architecture, but source of imagery

- 1) Many schools next to each other
 - for cross-validation experiments, we do a random **50:50** train/val split
 - **leakage** -- very overlapping images get into both splits
 - o model can overfit to those examples
- 2) Schools in areas with distinct "appearance"
 - not due to similar landscape/architecture, but source of imagery

- 1) Many schools next to each other
 - for cross-validation experiments, we do a random **50:50** train/val split
 - **leakage** -- very overlapping images get into both splits
 - model can overfit to those examples
- 2) Schools in areas with distinct "appearance"
 - not due to similar landscape/architecture, but source of imagery
 - tiles with very similar appearance get into both splits
 - non-schools are sampled from entire Vietnam
 - probably don't have that area-specific appearance
 - model can overfit to that kind of area-specific appearance

Solution - split by clusters

Solution - split by clusters

Two very obvious clusters

2-stage training, fine-tune and eval on Anditi schools

More realistic results

• F1: 81.55 pp

• P: 95.94 pp

• R: 73.97 pp

2-stage training, fine-tune and eval on Anditi schools

More realistic results

• F1: 81.55 pp

P: 95.94 pp

R: 73.97 pp

Additional improvement (future work)

sample non-school locations from areas where schools are located

Conclusion, future work

Google

• use this investigation to justify the request for Google's satellite imagery

Conclusion, future work

Google

use this investigation to justify the request for Google's satellite imagery

Dense inference (run our model on tiles covering the chosen 26 districts)

re-run the procedure (we now have a better setup for model selection)