Datawarehouse Inhalt

- Datenbankentwurf für Data Warehouse
- Star Join
- Roll-Up/Drill-Down-Anfragen
- Materialisierung von Aggregaten
- Der Cube-Operator
- Data Warehouse-Architekturen
- Data Mining

Datawarehouse

- Zwei Arten von Datenbankanwendungen:
 - OLTP (Online Transaction Processing): zB: Bestellungen in einem Handelsunternehmen
 - OLAP (Online Analytical Processing): zB: Auswirkungen gewisser Marketingstrategien.
 - OLAP-Anwendungen verarbeiten sehr große
 Datenmengen und greifen auf historische Daten zurück.
 - Sie bilden die Grundlage für Decision-Support-Systeme.

Datawarehouse

- OLTP- und OLAP-Anwendungen sollten
 - nicht auf demselben Datenbestand arbeiten aus folgenden Gründen:
 - OLTP-Datenbanken sind auf Änderungstransaktionen mit begrenzten Datenmengen hin optimiert.
 - OLAP-Auswertungen benötigen Daten aus verschiedenen Datenbanken in konsolidierter, integrierter Form.
 - Typischerweise wird beim **Transferieren** der Daten aus den operationalen Datenbanken eine **Verdichtung** (sum,avg, ...) durchgeführt, da nun nicht mehr einzelne Transaktionen im Vordergrund stehen, sondern ihre **Aggregation**.

Datawarehouse

- Aufbau eines Data Warehouse,

Datenbankentwurf für Data Warehouse

 Als Datenbankschema für Data Warehouse-Anwendungen hat sich das sogenannte Sternschema (engl.: star scheme) durchgesetzt.

- Dieses Schema besteht aus
 - einer Faktentabelle und

mehreren Dimensionstabellen

Sternschemata

Fakten- und Dimensionstabellen

Faktentabelle

Verkäufe					
VerkDatum Filiale Produkt Anzahl Kunde Verkäufer					
30-Jul-96	Passan	1347	1	4711	825

Filialen						
Filialenkenning	Land	Bezirk				
Passan	D	Bayern				

Kunden					
KundenNr	Name	wiealt			
4711	Kemper	38			

Verkäufer					
VerkäuferNr	Name	Fachgebiet	Manager	wiealt	
825	Handyman	Elektronik	119	23	

Zeit								
Datum	Tag	Monat	Jahr	Quartal	KW	Wochentag	Saison	
30-Jul-96 23-Dec-97	30 27	Juli Dezember	1996 1997	3 	31 52	 Dienstag Dienstag	 Hochsommer Weihnachten	

Produkte					
ProduktNr Produkttyp Produktgruppe Produkthauptgruppe Hersteller					
1347	Handy	Mobiltelekom	Telekom	Siemens	

Fakten- und Dimensionstabellen

 Faktentabelle Verkäufe können mehrere Millionen Tupel sein, während die

• **Dimensionstabelle** *Produkte* vielleicht 10.000 Einträge und die

Dimensionstabelle Zeit vielleicht 1.000 Einträge (für die letzen drei Jahre) aufweist.

Dimensionstabellen nicht normalisiert

- Zeit-Dimension
 - Es lassen sich alle Attribute aus dem Schlüsselattribut Datum ableiten.
 - Trotzdem ist die explizite Speicherung dieser Dimension sinnvoll, da **Abfragen** nach Verkäufen in bestimmten Quartalen oder an bestimmten Wochentagen dadurch **effizienter** durchgeführt werden können

Dimensionstabellen nicht normalisiert

Achtung:

Dimensionstabellen nicht normalisiert:

Tabelle: Produkte hat folg. funktionalen Abhängigkeiten:

- ProduktNR ->Produkttyp ,
- Produkttyp -> Produktgruppe und
- Produktgruppe -> Produkthauptgruppe .

```
Prodnr, Prodtyp, Prodgruppe, ProdHptgruppe, Hersteller,...

123, Handy, Mobiltelekom, Telekom, Siemens,
```

Dimensionstabellen nicht normalisiert

- Die Verletzung der Normalformen in den Dimensionstabellen ist bei Decision-Support-Systemen nicht so gravierend,
 - Da die Daten nur selten verändert werden und
 - da der durch die Redundanz verursachte erhöhte Speicherbedarf bei den relativ kleinen Dimensionstabellen im Vergleich zu der großen (normalisierten) Faktentabelle nicht so sehr ins Gewicht fällt.

Star Join

- Sternschema führt bei typischen Abfragen zu sogenannten Star Joins:
 - Welche Handys (d.h. von welchen Herstellern)
 - haben junge Kunden
 - in den bayrischen Filialen
 - zu Weihnachten 1996 gekauft ?

Star Join

Wieviele und welche Handys (d.h. von welchen Herstellern) haben junge Kunden in den bayrischen Filialen zu Weihnachten 1996 gekauft ?

```
select sum (v.Anzahl), p.Hersteller
from Verkäufe v,
 Filialen f, Produkte p, Zeit z, Kunden k
where
 z.Saison = 'Weihnachten' and
 z.Jahr = 1996 and k.wiealt < 30 and
 p.Produkttyp = 'Handy' and
                                     STAR-JOIN
 f.Bezirk = 'Bayern'
and v. VerkDatum = z. Datum
and v.Produkt = p.ProduktNr
and v.Filiale = f.Filialenkennung
and v.Kunde = k.KundenNr
group by p. Hersteller;
```

Roll-Up/Drill-Down-Anfragen

- Der Verdichtungsgrad bei einer SQL-Anfrage wird durch die group by-Klausel gesteuert.
- Werden mehr Attribute in die group by-Klausel aufgenommen, spricht man von einem drill down.

 Werden weniger Attribute in die group by-Klausel aufgenommen, spricht man von einem roll up.

Drill-Down-Anfragen

 Wieviel Handys wurden von welchem Hersteller in welchem Jahr verkauft ? (drill down)

```
select Hersteller, Jahr, sum(Anzahl)
from
   Verkäufe v, Produkte p, Zeit z
where   v.Produkt = p.ProduktNr
and    v.VerkDatum = z.Datum

and   p.Produkttyp = 'Handy'
group by p.Hersteller, z.Jahr;
```

Roll-Up -Anfragen (entlang der Dimension Datum)

- Durch das Weglassen der Zeitangabe aus der group by-Klausel (und der select-Klausel) entsteht ein roll up entlang der Dimension z.Jahr:
- Wieviel Handys wurden von welchem Hersteller verkauft?

```
select Hersteller, sum(Anzahl)
from Verkäufe v, Produkte p
where v.Produkt = p.ProduktNr
and v.VerkDatum = z.Datum
and p.Produkttyp = 'Handy'
group by p.Hersteller;
```

Roll-Up -Anfragen (entlang Dim Hersteller)

- Durch das Weglassen der Herstellerangabe aus der group by-Klausel (und der select-Klausel) entsteht ein roll up entlang der Dimension p.Hersteller:
- Wieviel Handys wurden in welchem Jahr verkauft?
 select Jahr, sum (Anzahl)
 from
 Verkäufe v, Produkte p, Zeit z
 where v.Produkt = p.ProduktNr
 and v.VerkDatum = z.Datum
 and p.Produkttyp = 'Handy'

group by z.Jahr;

Roll-Up -Anfragen vollständiges ROLL-UP

- Die ultimative Verdichtung besteht im vollständigen Weglassen der group-by-Klausel. Das Ergebnis besteht aus einem Wert, nämlich 19.500:
- Wieviel Handys wurden verkauft ?
 select sum(Anzahl)
 from Verkäufe v, Produkte p
 where v.Produkt = p.ProduktNr
 and p.Produkttyp = 'Handy';

Roll-Up/Drill-Down-Anfragen

Drill down

Handyverkänfe nach						
1	Hersteller und Jahr					
Hersteller	Hersteller Jahr Anzahl					
Siemens	1994	2.000				
Siemens	1995	3.000				
Siemens	1996	3.500				
Motorola	1994	1.000				
Motorola	1995	1.000				
Motorola	1996	1.500				
Bosch	1994	500				
Bosch	1995	1.000				
Bosch	1996	1.500				
Nokai	1995	1.000				
Nokai	1996	1.500				
Nokai	1996	2.000				

Roll up

Handyverkänfe			
nach Jahr			
Jahr	Anzahl		
1994	4.500		
1995	6.500		
1996	8.500		

Handyverkänfe			
nach Her	steller		
Hersteller Anzahl			
Siemens 8.500			
Motorola 3.500			
Bosch 3.000			
Nokai	4.500		

n -dimensionales Spreadsheet

 Durch eine sogenannte cross tabulation (Kreuztabelle) können die Ergebnisse obiger 3 Anfragen in einem n -dimensionalen Spreadsheet (einem 2-dimensionalen Datenwürfel data cube.) zusammengefaßt werden.

$\mathbf{Hersteller} \setminus \mathbf{Jahr}$	1994	1995	1996	Σ
Siemens	2.000	3.000	3.500	8.500
Motorola	1.000	1.000	1.500	3.500
Bosch	500	1.000	1.500	3.000
Nokai	1.000	1.500	2.000	4.500
Σ	4.500	6.500	8.500	19.500

- Da es sehr zeitaufwendig ist, die Aggregation(zB. Sum()) jedesmal neu zu berechnen, empfiehlt es sich, sie zu materialisieren, d.h.
- die vorberechneten Aggregate verschiedener Detaillierungsgrade in einer Relation abzulegen.
 - Es folgen einige SQL-Statements, welche die linke Tabelle der folg. Abbildung erzeugen. Mit dem **null**-Wert wird markiert, dass entlang dieser Dimension die Werte aggregiert wurden.

Handy2DCube					
Hersteller	Jahr	Anzahl			
Siemens	1994	2.000			
Siemens	1995	3.000			
Siemens	1996	3.500			
Motorola	1994	1.000			
Motorola	1995	1.000			
Motorola	1996	1.500			
Bosch	1994	500			
Bosch	1995	1.000			
Bosch	1996	1.500			
Nokai	1995	1.000			
Nokai	1996	1.500			
Nokai	1996	2.000			
null	1994	4.500			
null	1995	6.500			
null	1996	8.500			
Siemens	null	8.500			
Motorola	null	3.500			
Bosch	null	3.000			
Nokai	null	4.500			
null	null	19.500			

Handy3DCube					
Hersteller	Jahr	Land	Anzahl		
Siemens	1994	D	800		
Siemens	1994	A	600		
Siemens	1994	CH	600		
Siemens	1995	D	1.200		
Siemens	1995	A	800		
Siemens	1995	CH	1.000		
Siemens	1996	D	1.400		
Motorola	1994	D	400		
Motorola	1994	A	300		
Motorola	1994	CH	300		
Bosch					
null	1994	D			
null	1995	D			
Siemens	null	null	8.500		
null	null	null	19.500		

```
create table Handy2DCube (
Hersteller varchar(20),
Jahr integer,
Anzahl integer);
```

```
insert into Handy2DCube (
 select p.Hersteller, z.Jahr, sum(v.Anzahl)
 from Verkäufe v, Produkte p, Zeit z
where v.Produkt = p.ProduktNr
and v.VerkDatum = z.Datum
and p.Produkttyp = 'Handy'
group by z.Jahr, p.Hersteller
```

union

```
-- roll up
(select
 p.Hersteller, to number(null), sum(v.Anzahl)
 from Verkäufe v, Produkte p
where v.Produkt = p.ProduktNr
and p.Produkttyp = 'Handy'
group by p. Hersteller
```

union

```
-- roll up
       (select null, z.Jahr, sum(v.Anzahl)
        from Verkäufe v, Produkte p, Zeit z
       where v.Produkt = p.ProduktNr
        and p.Produkttyp = 'Handy'
        and v.VerkDatum = z.Datum
       group by z.Jahr
     union
      (select null, to number(null), sum(v.Anzahl)
       from Verkäufe v, Produkte p
      where v.Produkt = p.ProduktNr and
       p.Produkttyp = 'Handy'
      );
```

- Offenbar ist es recht mühsam, diese Art von Anfragen zu formulieren, da <u>bei n Dimensionen insgesamt 2ⁿ</u> <u>Unteranfragen</u> formuliert und mit union verbunden werden müssen.
- Außerdem sind solche Anfragen extrem
 zeitaufwendig auszuwerten, da jede Aggregation
 individuell berechnet wird, obwohl man viele
 Aggregate aus anderen (noch nicht so stark
 verdichteten) Aggregaten berechnen könnte.

Der Cube-Operator

Der Cube-Operator

- Um der mühsamen Anfrageformulierung und der ineffizienten Auswertung zu begegnen, wurde der
- SQL-Operator namens cube eingeführt.

Zur Erläuterung wollen wir ein 3dimensionales Beispiel konstruieren, indem wir auch entlang der zusätzlichen Dimension Filiale.Land ein drill down vorsehen:

Der Cube-Operator

```
select
   p.Hersteller, z.Jahr, f.Land, sum(Anzahl)
from
Verkäufe v, Produkte p, Zeit z, Filialen f
where v.Produkt = p.ProduktNr
and v.VerkDatum = z.Datum
and v.Filiale = f.Filialenkennung
and p.Produkttpy = 'Handy'

group by z.Jahr, p.Hersteller, f.Land
with cube;
```

Data Mining

- große Datenmengen nach (bisher unbekannten) Zusammenhängen zu durchsuchen.
- Man unterscheidet zwei Zielsetzungen bei der Auswertung der Suche:
 - Klassifikation von Objekten,
 - Finden von Assoziativregeln

Klassifikation für Haftpflicht-Risikoabschätzung

Klassifikation von Objekten

- Klassifikation von Objekten(z.B: Menschen, Aktienkursen, ...) um, Vorhersagen über das zukünftige Verhalten auf Basis bekannter Attributwerte zu machen.
- Für die Risikoabschätzung könnte man vermuten, daß Männer zwischen 35 und 50 Jahren, die ein Coupé fahren, in eine hohe Risikogruppe gehören. Diese Klassifikation wird dann anhand einer repräsentativen Datenmenge verifiziert. Die Wahl der Attribute für die Klassifikation erfolgt (benutzergesteuert oder auch automatisch) durch "Ausprobieren".

Suche nach Assoziativregeln

- Um Zusammenhänge bestimmter Objekte durch Implikationsregeln(Assoziativregeln) auszudrücken, die vom Benutzer vorgeschlagen oder vom System generiert werden.
- Zum Beispiel könnte eine Regel beim Kaufverhalten von Kunden folgende (informelle) Struktur haben:
 - Wenn jemand einen PC kauft dann kauft er auch einen Drucker.

Suche nach Assoziativregeln

- Bei der Verifizierung solcher Regeln wird keine 100 %-ige Einhaltung erwartet.
 Stattdessen geht es um zwei Kenngrößen:
 - Confidence
 - Support

Suche nach Assoziativregeln

Confidence:

Dieser Wert legt fest, bei welchem Prozentsatz der Datenmenge, bei der die Voraussetzung (linke Seite) erfüllt ist, die Regel (rechte Seite) auch erfüllt ist.

 Eine Confidence von 80% sagt aus, dass vier Fünftel der Leute, die einen PC gekauft haben, auch einen Drucker dazu genommen haben.

Support:

Dieser Wert legt fest, wieviel Datensätze überhaupt gefunden wurden, um die Gültigkeit der Regel zu verifizieren.

Bei einem Support von 1% wäre also jeder Hunderste Verkauf ein PC zusammen mit einem Drucker.