AULA PRÁTICA 2

ALGORITMOS DE RESOLUÇÃO DE SISTEMAS LINEARES ALGORITMOS ITERATIVOS

 Implementar uma função Scilab resolvendo um sistema linear Ax = b usando o algoritmo iterativo de Jacobi.

A função deve ter como variáveis de entrada:

- a matriz A;
- o vetor b;
- uma aproximação inicial x₀ da solução do sistema;
- uma tolerância E;
- um número máximo de iterações M;
- o tipo de norma a ser utilizada: 1, 2 ou %inf.

Como variáveis de saída:

- a solução x_k do sistema encontrada pelo método;
- a norma da diferença entre as duas últimas aproximações (||x_k - x_{k-1}||);
- o número k de iterações efetuadas;
- a norma do resíduo (||r_k|| = ||b − Ax_k||).

Critério de parada do algoritmo: use "||x_k - x_{k-1}||<E ou k>M".

2) Implementar uma função Scilab resolvendo um sistema linear Ax = b usando o algoritmo iterativo de Gauss-Seidel.

A função deve ter como variáveis de entrada:

- a matriz A;
- o vetor b;
- uma aproximação inicial x₀ da solução do sistema;
- uma tolerância E;
- um número máximo de iterações M;
- o tipo de norma a ser utilizada: 1, 2 ou %inf.

Como variáveis de saída:

- a solução xk do sistema encontrada pelo método;
- a norma da diferença entre as duas últimas aproximações (||x_k - x_{k-1}||);
- o número k de iterações efetuadas;
- a norma do resíduo ($||r_k|| = ||b Ax_k||$).

Critério de parada do algoritmo: use " $||x_k - x_{k-1}|| \le ou k \ge M$ ".

Faça duas implementações diferentes:

- a) uma usando a função "inv" do Scilab para calcular a inversa de L+D, obtendo assim a matriz do método $M_G = -(L+D)^{-1}U$ e o vetor $c_G = (L+D)^{-1}b$ para fazer as iterações $x_{k+1} = M_G^*x_k + c_G$;
- b) outra resolvendo o sistema linear (L+D) * $x_{k+1} = -U * x_k + b$ para fazer as iterações (a matriz L+D é triangular inferior; escreva uma função para resolver sistemas em que a matriz dos coeficientes é triangular inferior e use-a a cada iteração).
- 3) Teste as funções implementadas para resolver o sistema Teste as runções implementados x-4y+2z=2 2y+4z=1 6x-y-2z=1Use o vetor $x_0 = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$ como aproximação inicial.

Use o vetor
$$x_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 como aproximação inicial.

Agora reordene as equações do sistema dado, de modo que a matriz dos coeficientes seja estritamente diagonal dominante e teste novamente as funções implementadas. Comente os resultados.

- 4) a) Para o sistema do exercício 3 da Lista de Exercícios 2, mostre que o método de Jacobi com $\mathbf{x}^{(0)}=\mathbf{0}$ falha em dar uma boa aproximação após 25 iterações.
 - b) Use o método de Gauss-Seidel com $\mathbf{x}^{(0)}=\mathbf{0}$ para obter uma aproximação da solução do sistema linear com precisão de 10⁻⁵ na norma-infinito.
- 5) a) Utilize o método iterativo de Gauss-Seidel para obter uma aproximação da solução do sistema linear do exercício 5 da Lista de Exercícios 2, com tolerância de 10⁻² e o máximo de 300 iterações.
 - b) O que acontece ao repetir o item a) quando o sistema é

alterado para
$$\begin{cases} x_1 & -2x_3 = 0.2 \\ -\frac{1}{2}x_1 + x_2 - \frac{1}{4}x_3 = -1.425 \\ x_1 - \frac{1}{2}x_2 + x_3 = 2 \end{cases}$$

6) Agora gere matrizes A_{nxn} com diagonal estritamente dominante para n=10, n=100, n=1000, n=2000, ... bem como vetores b com dimensões compatíveis e resolva esses sistemas Ax=b pelo Método de Gauss-Seidel, usando as duas versões implementadas no item 2. Use as funções tic() e toc() do Scilab para medir os tempos de execução e compará-los.