What is claimed is:

1. A compound of formula (I)

$$R^{3}-(Y)_{\overline{m}} \stackrel{N}{\underset{R^{9}}{\bigvee}} X \stackrel{R^{1}}{\underset{(I)}{\bigvee}} X \stackrel{(R^{2})_{n}}{\underset{(I)}{\bigvee}}$$

and pharmaceutically acceptable derivatives thereof, wherein X is a C_{1-5} alkylene chain, wherein said X is optionally substituted by one or more =O, =S, -S(O)₁-, alkyl, or halogen and wherein said C_{1-5} alkylene chain may optionally have 0-3 heteroatoms selected from oxygen, phosphorus, sulfur, or nitrogen;

Ring A is a saturated, partially saturated, or aromatic 3-7 monocyclic or 8-10 membered bicyclic ring having one ring nitrogen and 0-4 additional heteroatoms selected from oxygen, phosphorus, sulfur, or nitrogen;

Ring B is a saturated 4 or 5 membered ring containing the depicted ring nitrogen;

R¹ is alkyl optionally substituted by one or more R⁷, alkenyl optionally substituted by one or more R⁷, alkynyl optionally substituted by one or more R⁷, cycloalkyl optionally substituted by one or more R⁸, heterocyclyl optionally substituted by one or more R⁸, heterocyclyl optionally substituted by one or more R⁶, or caryl optionally substituted by one or more R⁶; or R¹ and X taken together form a saturated, partially saturated or aromatic 5-6 membered ring having 0-3 heterocatoms selected from oxygen, phosphorus, sulfur, or nitrogen that is fused to Ring A:

each R^2 is independently selected from the group consisting of $-OR^0$, $-C(O)-R^0$, $-S(O)_2-R^0$, $-C(O)-N(R^0)_2$, $-S(O)_2-N(R^0)_2$, $-(CH_2)_a-N(R^0)(-V_b-R^+)$, $-(CH_2)_a-(-V_b-R^+)$, halogen, alkyl optionally substituted by one or more R^7 , alkenyl optionally substituted by one or more R^7 , aryl optionally substituted by one or more R^6 , heteroaryl optionally substituted by one or more R^6 , cycloalkyl optionally substituted by one or more R^8 , and heterocyclyl optionally substituted by one or more R^8 ; and two adjacent R^2 s on Ring A are optionally taken together to form a fused, saturated, partially saturated or aromatic 5-6 membered ring having 0-3 heteroatoms selected from oxygen, phosphorus, sulfur, or nitrogen; or two geminal R^2 s are optionally taken together to form a spiro, saturated, partially saturated or aromatic 5-6 membered ring having 0-3

heteroatoms selected from oxygen, phosphorus, sulfur, or nitrogen, said fused or spiro ring being optionally substituted by one or more R⁸;

each a independently is 0-3;

each b independently is 0 or 1;

V is -C(O)-, -C(O)O-, -S(O)₂-, or -C(O)- $N(R^0)$ -;

R⁺ is alkyl, cycloalkyl, aralkyl, aryl, heteroaryl, heteroaralkyl, or heterocyclyl, wherein said R⁺ is optionally substituted by one or more R⁸;

m is 0 or 1;

n is 0-5:

 R^3 is H, $-N(R^0)_2$, $-N(R^0)C(O)R^0$, -CN, halogen, CF_3 , alkyl optionally substituted by one or more groups selected from R^7 or -S-aryl optionally substituted by $-(CH_2)_{1-6}$ - $N(R^0)SO_2(R^0)$, alkenyl optionally substituted by one or more groups selected from R^7 or -S-aryl optionally substituted by $-(CH_2)_{1-6}-N(R^0)SO_2(R^0)$, alkynyl optionally substituted by one or more groups selected from R^7 or -S-aryl optionally substituted by $-(CH_2)_{1-6}-N(R^0)SO_2(R^0)$, cycloalkyl or carbocyclyl optionally substituted by one or more R^8 , aryl optionally substituted by one or more R^6 , heteroaryl optionally substituted by one or more R^8 ;

Y is alkyl, alkenyl, alkynyl, $-(CR^4R^5)_{p^-}$, -C(O)-, -C(O)C(O)-, -C(S)-, -O- $-(CH_2)_{0-4}$ --C(O)-, $-(CH_2)_{0-4}$ --C(O)-O-, $-N(R^0)$ --C(O)-, -C(O)-N(-C(O)-, $-N(R^0)$ -C(S)-, $-S(O)_{t^-}$, -O-C(=N-CN)-, -O-C(=N-CN)-, -C(EN-CN)-O-, -C(EN-CN)-S-, -C(EN-CN)-, $-N(R^0)$ -C(EN-CN)-, $-N(R^0)$ -C(EN-CO)-, $-N(R^0)$ -C(EN-CO)-, $-N(R^0)$ -C(EN-CO)-, $-N(R^0)$ -C(EN-R⁰)-, or $-C(EN-R^0)$ -;

each R⁴ is independently H, alkyl optionally substituted by R⁷, alkenyl optionally substituted by R⁷, or alkynyl optionally substituted by R⁷;

each R^5 is independently selected from H, -C(O)-OR⁶, -C(O)-N(R⁰)₂, -S(O)₂-N(R⁰)₂, -S(O)₂-R⁰, aryl optionally substituted by R⁶, or heteroaryl optionally substituted by R⁶;

p is 1-5;

each t independently is 1 or 2:

each R^6 is independently selected from the group consisting of halogen, -CF₃, -OCF₃, -OR⁰, -(CH₂)₁₋₆-OR⁰, -SR^o, -(CH₂)₁₋₆-SR⁰, -SCF₃, -R⁰, methylenedioxy, ethylenedioxy, -NO₂, -CN, -(CH₂)₁₋₆-CN, -N(R⁰)₂, -(CH₂)₁₋₆-N(R⁰)₂, -NR^oC(O)R⁰, -NR⁰(CN), -NR⁰C(O)N(R⁰)₂, -NR^oC(S)N(R⁰)₂, -NR^oCO₂R⁰, -NR⁰NR⁰C(O)R⁰,

 $-NR^0NR^0C(O)N(R^0)_2, -NR^0NR^0CO_2R^0, -C(O)C(O)R^0, -C(O)CH_2C(O)R^0, \\ -(CH_2)_{0+6}CO_2R^0, -O-C(O)R^0, -C(O)R^0, -C(O)N(R^0)N(R^0)_2, -C(O)N(R^0)_2, -C(O)N(R^0)OH, \\ -C(O)N(R^0)SO_2R^0, -OC(O)N(R^0)_2, -S(O)_tR^0, -S(O)_t-OR^0, -S(O)_tN(R^0)C(O)R^0, \\ -S(O)_tN(R^0)OR^0, -NR^0SO_2N(R^0)_2, -NR^0SO_2R^0, -C(=S)N(R^0)_2, -C(=NH)-N(R^0)_2, \\ -(CH_2)_{1+6}-C(O)R^0, -C(=N-OR^0)-N(R^0)_2, -O-(CH_2)_{0+6}-SO_2N(R^0)_2, -(CH_2)_{1+6}-NHC(O)R^0, \\ and -SO_2N(R^0)_2 \text{ wherein the two } R^0s \text{ on the same nitrogen are optionally taken} \\ together to form a 5-8 membered saturated, partially saturated, or aromatic ring having additional 0-4 heteroatoms selected from oxygen, phosphorus, nitrogen, or sulfur; }$

each R^7 is independently selected from the group consisting of halogen, $-CF_3$, $-R^0$, $-OR^0$, $-OCF_3$, $-(CH_2)_{1-6}-OR^0$, $-SR^0$, $-SCF_3$, $-(CH_2)_{1-6}-SR^0$, aryl optionally substituted by R^6 , methylenedioxy, ethylenedioxy, $-NO_2$, -CN, $-(CH_2)_{1-6}-CN$, $-N(R^0)_2$, $-(CH_2)_{1-6}-N(R^0)_2$, $-NR^0C(O)R^0$, $-NR^0(CN)$, $-NR^0C(O)N(R^0)_2$, $-N(R^0)C(S)N(R^0)_2$, $-NR^0NR^0C(S)N(R^0)_2$, $-NR^0NR^0C(S)N(R^0)_2$, $-NR^0NR^0C(S)N(R^0)_2$, $-C(S)N(R^0)_2$, and $-SO_2N(R^0)_2$ wherein the two $-R^0$ s on the same nitrogen are optionally taken together to form a 5-8 membered saturated, partially saturated, or aromatic ring having additional 0-4 heteroatoms selected from oxygen, phosphorus, nitrogen, or sulfur;

each R^8 is independently selected from R^7 , =0, =S, =N(R^0), and =N(CN); R^9 is H or oxo;

aromatic ring having additional 0-4 heteroatoms selected from oxygen, phosphorus, nitrogen or sulfur; and

each R* is independently H, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, or heteroaryl.

2. A compound or salt thereof selected from the group consisting of

$$F_{s} = \begin{cases} F_{s} = F_{s} = \begin{cases} F_{s} = \begin{cases} F_{s} = F_{s}$$

CI N N

3. A compound selected from the group consisting of

tert-butyl 3-(3,4-dichlorophenyl)-3-[3-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)propyl]pyrrolidine-1-carboxylate;

8-{3-[3-(3,4-dichlorophenyl)-1-(2-furoyl)pyrrolidin-3-yl]propyl}-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;

8-{3-[3-(3,4-dichlorophenyl)-1-(isoxazol-5-ylcarbonyl)pyrrolidin-3-yl]propyl}-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;

8-{3-[3-(3,4-dichlorophenyl)-1-(1H-pyrrol-2-ylcarbonyl)pyrrolidin-3-yl]propyl}-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;

8-{3-[3-(3,4-dichlorophenyl)-1-pentanoylpyrrolidin-3-yl]propyl}-1-[3-(trifluoromethyl)phenyl]-1,3,8-triazaspiro[4.5]decan-4-one; 8-{3-[3-(3,4-dichlorophenyl)-1-(2-furoyl)pyrrolidin-3-yl]propyl}-1-[3-

(trifluoromethyl)phenyl]-1,3,8-triazaspiro[4.5]decan-4-one;

- 8-{3-[1-(cyclobutylcarbonyl)-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]propyl}-1-[3-(trifluoromethyl)phenyl]-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-{3-[3-(3,4-dichlorophenyl)-1-pentanoylpyrrolidin-3-yl]propyl}-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-{3-[1-(cyclopentylcarbonyl)-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]propyl}-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one:
- 8-{3-[1-(cyclobutylcarbonyl)-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]propyl}-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-{3-[1-(cyclobutylcarbonyl)-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]propyl}-1-(3-methylphenyl)-1,3,8-triazaspiro[4.5]decan-4-one;
- 3-acetyl-8-{3-[1-acetyl-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]propyl}-1-(3-methylphenyl)-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-{3-[1-(1,3-benzoxazol-2-yl)-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]propyl}-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-(2-{[3-(3,4-dichlorophenyl)-1-(2-furoyl)pyrrolidin-3-yl]oxy}ethyl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-(2-{[1-(cyclopentylcarbonyl)-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]oxy}ethyl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-(2-{[1-acetyl-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]oxy}ethyl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-(2-{[3-(3,4-dichlorophenyl)-1-(phenylsulfonyl)pyrrolidin-3-yl]oxy}ethyl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-(2-{[3-(3,4-dichlorophenyl)-1-(2-furoyl)pyrrolidin-3-yl]oxy}ethyl)-1-(3-methoxyphenyl)-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-(2-{[1-(cyclopentylcarbonyl)-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]oxy}ethyl)-1-(3-methoxyphenyl)-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-(2-{[1-acetyl-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]oxy}ethyl)-1-(3-methoxyphenyl)-1,3,8-triazaspiro[4.5]decan-4-one; and
- 8-(2-{[3-(3,4-dichlorophenyl)-1-(phenylsulfonyl)pyrrolidin-3-yl]oxy}ethyl)-1-(3-methoxyphenyl)-1,3,8-triazaspiro[4.5]decan-4-one.
- 4. The compound of claim 1 wherein the B ring is pyrrolidine.
- 5. The compound of claim 4 wherein R⁹ is H.
- 6. The compound of claim 4 wherein R⁹ is oxo.
- 7. The compound of claim 1 wherein R¹ is optionally substitued aryl.

- 8. The compound of claim 7 wherein R¹ is phenyl mono- or di- substituted with halogen.
- 9. The compound of claim 8 wherein R¹ is phenyl di-substituted with Cl.
- 10. The compound of claim 1 wherein –(Y)_m-R³ is selected from the group consisting of

11. The compound of claim 1 wherein –(Y)_m-R³ is selected from the group consisting of

)

- 12. The compound of claim 1 wherein m is 1, Y is –C(O)-, and R³ is either aryl or heteroaryl, wherein said aryl or heteroaryl is optionally substituted, with an optionally substituted alkyl, or an optionally substituted cycloalkyl.
- 13. The compound of claim 1 wherein m is 1, Y is –(C=N-CN)-O-, and R³ is optionally substituted aryl.
- 14. The compound of claim 1 wherein m is 1, Y is –(CH₂)-, and R³ is optionally substituted aryl.
- 15. The compound of claim 1 wherein m is 1, Y is –C(O)O-, and R³ is optionally substituted alkyl or optionally substituted aryl.
- 16. The compound of claim 1 wherein m is 0 and R³ is optionally substituted heteroaryl or optionally substituted heterocyclyl.
- 17. The compound of claim 1 where X is $-(CH_2)$ -, $-(CH_2-CH_2)$ -, or
- 18. $-(CH_2-CH_2-CH_2)$ -.
- 19. The compound of claim 17 wherein X is optionally substituted by one or more halogen or oxo.
- 20. The compound of claim 18 wherein X is disubstituted with halogen.
- 21. The compound of claim 19 wherein X is disubstituted with fluoro.
- 22. The compound of claim 20 wherein X is $-CF_{2}$.
- 23. The compound of claim 17 wherein X optionally has 1-3 heteroatoms selected from oxygen, phosphorus, sulfur, or nitrogen.
- 24. The compound of claim 22 wherein X is -O- or -C(O)-.

25. The compound of claim 1 wherein the A ring, with an asterisk indicating the point of optional substitution, is selected from the group consisting of

26. The compound of claim 24 wherein each R², with an asterisk indicating the point of substitution from the A ring, independently is selected from:

27. The compound of claim 1 wherein the A ring, with two geminal R²s, is selected from:

28. The compound of claim 1 wherein the A ring is tropane or piperidine, either optionally substituted with one or more R².

28. The compound of claim 27 wherein the A ring ring in combination with R² is.

- 29. The compound of claim 1 wherein the A ring contains at least one additional nitrogen atom and said A ring optionally is N-substituted.
- 30. The compound of claim 29 wherein the A ring is N-substituted with $-(CH_2)_a$ - $(V_b$ -R+).
- 31. A method of treatment of a viral infection in a mammal comprising administering to said mammal an antiviral effective amount of a compound according to claims 1-30.
- 32. A method according to claim 31 wherein the viral infection is an HIV infection.
- 33. A method of treatment of a bacterial infection in a mammal comprising administering to said mammal an effective amount of a compound according to claims 1-30.
- 34. A method according to claim 33 wherein the bacterium is Yersinia pestis.

- 35. A method of treatment of multiple sclerosis, rheumatoid arthritis, autoimmune diabetes, chronic implant rejection, asthma, rheumatoid arthritis, Crohns Disease, inflammatory bowel disease, chronic inflammatory disease, glomerular disease, nephrotoxic serum nephritis, kidney disease, Alzheimer's Disease, autoimmune encephalomyelitis, arterial thrombosis, allergic rhinitis, arteriosclerosis, Sjogren's syndrome (dermatomyositis), systemic lupus erythematosus, graft rejection, cancers with leukocyte infiltration of the skin or organs, infectious disorders including bubonic and pneumonic plague, human papilloma virus infection, prostate cancer, wound healing, amyotrophic lateral sclerosis and immune mediated disorders in a mammal comprising administering to said mammal a pharmceutically effective amount of a compound according to claims 1-30.
- 36. A compound according to claims 1-30 for use in medical therapy.
- 37. Use of a compound according to claims 1-30 in the manufacture of a medicament for the treatment of a viral infection.
- 39. The use according to claim 37 wherein the viral infection is a HIV infection.
- 39. Use of a compound according to claims 1-30 in the manufacture of a medicament for the treatment of a bacterial infection.
- 40. The use according to claim 39 wherein the bacterium is Yersinia pestis.
- 41. Use of a compound according to claims 1-30 in the manufacture of a medicament for the treatment of multiple sclerosis, rheumatoid arthritis, autoimmune diabetes, chronic implant rejection, asthma, rheumatoid arthritis, Crohns Disease, inflammatory bowel disease, chronic inflammatory disease, glomerular disease, nephrotoxic serum nephritis, kidney disease, Alzheimer's Disease, autoimmune encephalomyelitis, arterial thrombosis, allergic rhinitis, arteriosclerosis, Sjogren's syndrome (dermatomyositis), systemic lupus erythematosus, graft rejection, cancers with leukocyte infiltration of the skin or organs, infectious disorders including bubonic and pneumonic plague, human papilloma virus infection, prostate cancer, wound healing, amyotrophic lateral sclerosis and immune mediated disorders.

- 42. A pharmaceutical composition comprising a pharmaceutically effective amount of a compound according to claims 1-30 together with a pharmaceutically acceptable carrier.
- 43. The pharmaceutical composition according to claim 42 in the form of a tablet or capsule.
- 44. The pharmaceutical composition according to claim 42 in the form of a liquid.
- 45. A method of treatment of a viral infection in a mammal comprising administering to said mammal a composition comprising a compound according to claims 1-30 and another therapeutic agent.
- 46. A method according to claim 45, wherein said composition comprises another therapeutic agent selected from the group consisting of (1-alpha, 2-beta, 3-alpha)-9-[2,3-bis(hydroxymethyl)cyclobutyl]guanine [(-)BHCG, SQ-34514, lobucavir], 9-[(2R,3R,4S)-3,4-bis(hydroxymethyl)-2-oxetanosyl]adenine (oxetanocin-G), acyclic nucleosides, acyclovir, valaciclovir, famciclovir, ganciclovir, penciclovir, acyclic nucleoside phosphonates, (S)-1-(3-hydroxy-2-phosphonyl-methoxypropyl)cytosine (HPMPC), [[[2-(6-amino-9H-purin-9yl)ethoxy]methyl]phosphinylidene]bis(oxymethylene)-2,2-dimethylpropanoic acid (bis-POM PMEA, adefovir dipivoxil), [[(1R)-2-(6-amino-9H-purin-9-yl)-1methylethoxy]methyl]phosphonic acid (tenofovir), (R)-[[2-(6-Amino-9H-purin-9-yl)-1methylethoxy]methyl]phosphonic acid bis-(isopropoxycarbonyloxymethyl)ester (bis-POC-PMPA), ribonucleotide reductase inhibitors, 2-acetylpyridine 5-[(2chloroanilino)thiocarbonyl) thiocarbonohydrazone and hydroxyurea, nucleoside reverse transcriptase inhibitors, 3'-azido-3'-deoxythymidine (AZT, zidovudine), 2',3'dideoxycytidine (ddC, zalcitabine), 2',3'-dideoxyadenosine, 2',3'-dideoxyinosine (ddl, didanosine), 2',3'-didehydrothymidine (d4T, stavudine), (-)-beta-D-2,6-diaminopurine dioxolane (DAPD), 3'-azido-2',3'-dideoxythymidine-5'-H-phosphophonate (phosphonovir), 2'-deoxy-5-iodo-uridine (idoxuridine), (-)-cis-1-(2-hydroxymethyl)-1,3oxathiolane 5-yl)-cytosine (lamivudine), cis-1-(2-(hydroxymethyl)-1,3-oxathiolan-5yl)-5-fluorocytosine (FTC), 3'-deoxy-3'-fluorothymidine, 5-chloro-2',3'-dideoxy-3'fluorouridine, (-)-cis-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol (abacavir), 9-[4-hydroxy-2-(hydroxymethyl)but-1-yl]-quanine (H2G),

ABT-606 (2HM-H2G) ribavirin, protease inhibitors, indinavir, ritonavir, nelfinavir, amprenavir, saquinavir, fosamprenavir, (R)-N-tert-butyl-3-[(2S,3S)-2-hydroxy-3-N-[(R)-2-N-(isoquinolin-5-yloxyacetyl)amino-3-methylthiopropanovl]amino-4phenylbutanoyl]-5,5- dimethyl-1,3-thiazolidine-4-carboxamide (KNI-272), 4R-(4alpha,5alpha,6beta)]-1,3-bis[(3-aminophenyl)methyl]hexahydro-5,6-dihydroxy-4,7bis(phenylmethyl)-2H-1,3-diazepin-2-one dimethanesulfonate (mozenavir), 3-[1-[3-[2-(5-trifluoromethylpyridinyl)-sulfonylaminolphenyllpropyll-4- hydroxy-6alphaphenethyl-6beta-propyl-5,6-dihydro-2-pyranone (tipranavir), N'-[2(S)-Hydroxy-3(S)-[N-(methoxycarbonyl)-l-tert-leucylamino]-4- phenylbutyl-N alpha-(methoxycarbonyl)-N'-[4-(2-pyridyl)benzyl]-L- tert-leucylhydrazide (BMS-232632), 3-(2(S)-Hydroxy-3(S)-(3-hydroxy-2-methylbenzamido)-4-phenylbutanoyl)-5,5-dimethyl-N-(2methylbenzyl)thiazolidine-4(R)-carboxamide (AG-1776), N-(2(R)-hydroxy-1(S)indanyl)-2(R)-phenyl-methyl-4(S)-hydroxy-5-(1-(1-(4-benzo[b]furanylmethyl)-2(S)-N'-(tert-butylcarboxamido)piperazinyl)pentanamide (MK-944A), interferons, α-interferon, renal excretion inhibitors, probenecid, nucleoside transport inhibitors, dipyridamole, pentoxifylline, N-acetylcysteine (NAC), Procysteine, α -trichosanthin, phosphonoformic acid, immunomodulators, interleukin II, thymosin, granulocyte macrophage colony stimulating factors, erythropoetin, soluble CD4 and genetically engineered derivatives thereof, non-nucleoside reverse transcriptase inhibitors (NNRTIs), nevirapine (BI-RG-587), alpha-((2-acetyl-5-methylphenyl)amino)-2,6dichloro-benzeneacetamide (loviride), 1-[3-(isopropylamino)-2-pyridyl]-4-[5-(methanesulfonamido)-1H-indol-2-ylcarbonyl]piperazine monomethanesulfonate (delavirdine), (10R, 11S, 12S)-12-hydroxy-6, 6, 10, 11-tetramethyl-4-propyl-11,12dihvdro-2H, 6H, 10H-benzo(1, 2-b:3, 4-b':5, 6-b")tripyran-2-one ((+) calanolide A), (4S)-6-Chloro-4-[1E)-cyclopropylethenyl)-3,4- dihydro-4-(trifluoromethyl)-2(1H)quinazolinone (DPC-083), (S)-6-chloro-4-(cyclopropylethynyl)-1,4-dihydro-4-(trifluoromethyl)-2H-3,1-benzoxazin-2-one (efavirenz, DMP 266), 1-(ethoxymethyl)-5-(1-methylethyl)-6-(phenylmethyl)-2,4(1H,3H)-pyrimidinedione (MKC-442), and 5-(3,5-dichlorophenyl)thio-4-isopropyl-1-(4-pyridyl)methyl-1H-imidazol-2-ylmethyl carbamate (capravirine), glycoprotein 120 antagonists, PRO-2000, PRO-542, 1.4bis[3-[(2, 4- dichlorophenyl)carbonylamino]-2-oxo-5,8-disodiumsulfanyl]naphthalyl-2, 5-dimethoxyphenyl-1, 4-dihydrazone (FP-21399), cytokine antagonists, reticulose (Product-R), 1,1'-azobis-formamide (ADA), 1,11-(1,4-phenylenebis(methylene))bis-

- 1,4,8,11-tetraazacyclotetradecane octahydrochloride (AMD-3100), integrase inhibitors, and fusion inhibitors.
- 47. A method of treatment of a viral infection in a mammal comprising administering to said mammal a composition comprising a compound according to claims 1-30 and ritonavir.