Entanglement measures (How much is it entangled?) (Lecture of the Quantum Information class of the Master in Quantum Science and Technology)

Géza Tóth

Theoretical Physics, University of the Basque Country (UPV/EHU), Bilbao, Spain Donostia International Physics Center (DIPC), San Sebastián, Spain IKERBASQUE, Basque Foundation for Science, Bilbao, Spain Wigner Research Centre for Physics, Budapest, Hungary

UPV/EHU, Leioa 1 February, 2022

- Entanglement measures (How much is it entangled?)
 - Motivation
 - A. General quantum operation
 - B. Local operations and classical communication (LOCC)
 - C. Entanglement of formation

Entanglement measures

 After detecting entanglement, we have to ask how entangled the state is.

It will turn out that entanglement is a resource.

- Entanglement measures (How much is it entangled?)
 - Motivation
 - A. General quantum operation
 - B. Local operations and classical communication (LOCC)
 - C. Entanglement of formation

General quantum operation

The general quantum operation is defined as

$$\varrho' = \sum_{k} \mathsf{E}_{k} \varrho \mathsf{E}_{k}^{\dagger}$$

with

$$\sum_k E_k^{\dagger} E_k = 1.$$

- E_k are Kraus operators.
- Generalized measurements, POVM (positive operator-valued measure).
- Special case: von Neumann measurements, when E_k are pairwise orthogonal projectors.
- Naimark's dilation theorem: general operation= von Neumann measurement on system+ancilla.

- Entanglement measures (How much is it entangled?)
 - Motivation
 - A. General quantum operation
 - B. Local operations and classical communication (LOCC)
 - C. Entanglement of formation

Local operations and classical communication (LOCC)

- LOCC are
 - local unitaries.
 - local von Neumann or POVM measurements,
 - local unitaries or measurements conditioned on measurement outcomes on the other party.
- Mathematical description of LOCC. Separable operations are a somewhat larger set, however, this set can easily be described.

$$\varrho' = \sum_{k} E_{k}^{(1)} \otimes E_{k}^{(2)} \varrho \left(E_{k}^{(1)} \otimes E_{k}^{(2)} \right)^{\dagger}$$

with

$$\sum_{k} \left(E_{k}^{(1)} \otimes E_{k}^{(2)} \right)^{\dagger} \left(E_{k}^{(1)} \otimes E_{k}^{(2)} \right) = 1.$$

Local operations and classical communication (LOCC) II

 Stochastic Local Operations and Classical Communication (SLOCC):

$$|\Psi\rangle' \leftarrow E_k^{(1)} \otimes E_k^{(2)} |\Psi\rangle$$

It happens with some probability, not deterministic.

- LOCC cannot create entanglement. Separable states remain separable under LOCC.
- LOCC can create correlations.

- Entanglement measures (How much is it entangled?)
 - Motivation
 - A. General quantum operation
 - B. Local operations and classical communication (LOCC)
 - C. Entanglement of formation

Entropy of entanglement

The von Neumann entropy is defined as

$$S(\varrho) = -\text{Tr}(\varrho \log_2 \varrho).$$

It can be written with the eigenvalues of the density matrix as

$$S(\varrho) = -\sum_{k=1}^{d} \lambda_k \log_2 \lambda_k.$$

- For a pure state we have $\lambda_k = \{1, 0, 0, ..., 0\}$, and thus it is zero.
- Its maximal is for the completely mixed state for which $\lambda_k = \{\frac{1}{d}, \frac{1}{d}, \frac{1}{d}, ..., \frac{1}{d}\}$, and its value is $\log_2 d$.
- For a bipartite pure state, the entropy of entanglement is

$$E_E(|\Psi\rangle) = S(Tr_1(|\Psi\rangle\langle\Psi|)).$$

That is, it is the von Neumann entropy of the reduced state is an entaglement measure.

Entropy of entanglement II

- Comments
 - It is one for two-qubit singlet states.
 - It is zero for product states.
 - It is invariant under $U_1 \otimes U_2$.