

域的基本性质

定理

- 加法消去律: 设 $a,b,c \in F$, 如果a+c=b+c, 则一定有a=b。
- 乘法消去律: 设 $a,b,c \in F$,且 $c \neq 0$,如果 $a \cdot c = b \cdot c$,则一定
- 对于任意的 $a \in F$,都有-(-a) = a。
- 对于任意的 $a \in F$,且 $a \neq 0$,都有 $(a^{-1})^{-1} = a$ 。
- 对于任意的 $a \in F$,都有 $a \cdot 0 = 0$ 。

域的基本性质

定理

- 加法消去律: 设 $a, b, c \in F$, 如果a + c = b + c, 则一定有a = b.
- 乘法消去律: 设 $a,b,c \in F$,且 $c \neq 0$,如果 $a \cdot c = b \cdot c$,则一定
- 对于任意的 $a \in F$,都有-(-a) = a。
- 对于任意的 $a \in F$,且 $a \neq 0$,都有 $(a^{-1})^{-1} = a$ 。
- 对于任意的 $a \in F$,都有 $a \cdot 0 = 0$ 。

域的基本性质

定理

- 加法消去律: 设 $a, b, c \in F$, 如果a + c = b + c, 则一定有a = b.
- 乘法消去律: 设 $a,b,c \in F$,且 $c \neq 0$,如果 $a \cdot c = b \cdot c$,则一定 $有a=b_o$
- 对于任意的 $a \in F$,都有-(-a) = a。
- 对于任意的 $a \in F$,且 $a \neq 0$,都有 $(a^{-1})^{-1} = a$ 。
- 对于任意的 $a \in F$,都有 $a \cdot 0 = 0$ 。

域的基本性质

定理

- 加法消去律: 设 $a, b, c \in F$, 如果a + c = b + c, 则一定有a = b.
- 乘法消去律: 设 $a,b,c \in F$,且 $c \neq 0$,如果 $a \cdot c = b \cdot c$,则一定 $有a=b_o$
- 对于任意的 $a \in F$,都有-(-a) = a。
- 对于任意的 $a \in F$,且 $a \neq 0$,都有 $(a^{-1})^{-1} = a$ 。
- 对于任意的 $a \in F$,都有 $a \cdot 0 = 0$ 。

域的基本性质

定理

- 加法消去律: 设 $a,b,c \in F$, 如果a+c=b+c, 则一定有a=b.
- 乘法消去律: 设 $a,b,c \in F$,且 $c \neq 0$,如果 $a \cdot c = b \cdot c$,则一定 $有a=b_o$
- 对于任意的 $a \in F$,都有-(-a) = a。
- 对于任意的 $a \in F$,且 $a \neq 0$,都有 $(a^{-1})^{-1} = a$ 。
- 对于任意的 $a \in F$,都有 $a \cdot 0 = 0$ 。

域的基本性质

定理

- 加法消去律: 设 $a, b, c \in F$, 如果a + c = b + c, 则一定有a = b.
- 乘法消去律: 设 $a,b,c \in F$,且 $c \neq 0$,如果 $a \cdot c = b \cdot c$,则一定 $有a=b_o$
- 对于任意的 $a \in F$,都有-(-a) = a。
- 对于任意的 $a \in F$,且 $a \neq 0$,都有 $(a^{-1})^{-1} = a$ 。
- 对于任意的 $a \in F$, 都有 $a \cdot 0 = 0$.

域的基本性质

- 对于任意的 $a,b \in F$,若 $a \cdot b = 0$,则一定有a = 0或b = 0。
- 对于任意的 $a, b \in F$,都有-(a + b) = (-a) + (-b)。
- 对于任意的 $a,b \in F$,都有 $a \cdot (-b) = (-a) \cdot b = -a \cdot b$ 。
- 对于任意的 $a, b \in F$,都有 $(-a) \cdot (-b) = a \cdot b$ 。
- 对于任意的 $a, b \in F$,且 $a \neq 0, b \neq 0$,都有 $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$ 。
- 对于任意的 $a \in F$,且 $a \neq 0$,都有 $(-a)^{-1} = -a^{-1}$ 。

域的基本性质

- 对于任意的 $a,b \in F$,若 $a \cdot b = 0$,则一定有a = 0或b = 0。
- 对于任意的 $a, b \in F$,都有-(a + b) = (-a) + (-b)。
- 对于任意的 $a, b \in F$, 都有 $a \cdot (-b) = (-a) \cdot b = -a \cdot b$.
- 对于任意的 $a,b \in F$,都有 $(-a) \cdot (-b) = a \cdot b$ 。
- 对于任意的 $a, b \in F$,且 $a \neq 0, b \neq 0$,都有 $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$ 。
- 对于任意的 $a \in F$,且 $a \neq 0$,都有 $(-a)^{-1} = -a^{-1}$ 。

域的基本性质

- 对于任意的 $a,b \in F$,若 $a \cdot b = 0$,则一定有a = 0或b = 0。
- 对于任意的 $a, b \in F$,都有-(a + b) = (-a) + (-b)。
- 对于任意的 $a, b \in F$,都有 $a \cdot (-b) = (-a) \cdot b = -a \cdot b$ 。
- 对于任意的 $a,b \in F$,都有 $(-a) \cdot (-b) = a \cdot b$ 。
- 对于任意的 $a, b \in F$,且 $a \neq 0, b \neq 0$,都有 $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$ 。
- 对于任意的 $a \in F$,且 $a \neq 0$,都有 $(-a)^{-1} = -a^{-1}$ 。

域的基本性质

- 对于任意的 $a,b \in F$,若 $a \cdot b = 0$,则一定有a = 0或b = 0。
- 对于任意的 $a, b \in F$,都有-(a + b) = (-a) + (-b)。
- 对于任意的 $a, b \in F$, 都有 $a \cdot (-b) = (-a) \cdot b = -a \cdot b$ 。
- 对于任意的 $a, b \in F$,都有 $(-a) \cdot (-b) = a \cdot b$ 。
- 对于任意的 $a, b \in F$,且 $a \neq 0, b \neq 0$,都有 $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$ 。
- 对于任意的 $a \in F$,且 $a \neq 0$,都有 $(-a)^{-1} = -a^{-1}$ 。

域的基本性质

- 对于任意的 $a,b \in F$,若 $a \cdot b = 0$,则一定有a = 0或b = 0。
- 对于任意的 $a, b \in F$,都有-(a + b) = (-a) + (-b)。
- 对于任意的 $a, b \in F$,都有 $a \cdot (-b) = (-a) \cdot b = -a \cdot b$ 。
- 对于任意的 $a, b \in F$,都有 $(-a) \cdot (-b) = a \cdot b$ 。
- 对于任意的 $a, b \in F$,且 $a \neq 0, b \neq 0$,都有 $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$ 。
- 对于任意的 $a \in F$,且 $a \neq 0$,都有 $(-a)^{-1} = -a^{-1}$ 。

域的基本性质

- 对于任意的 $a,b \in F$,若 $a \cdot b = 0$,则一定有a = 0或b = 0。
- 对于任意的 $a, b \in F$,都有-(a + b) = (-a) + (-b)。
- 对于任意的 $a, b \in F$, 都有 $a \cdot (-b) = (-a) \cdot b = -a \cdot b$ 。
- 对于任意的 $a, b \in F$, 都有 $(-a) \cdot (-b) = a \cdot b$.
- 对于任意的 $a, b \in F$,且 $a \neq 0, b \neq 0$,都有 $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$ 。
- 对于任意的 $a \in F$,且 $a \neq 0$,都有 $(-a)^{-1} = -a^{-1}$ 。