Математическая логика

Предваренная нормальная форма

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Курс математической логики

	Наименование	Содержание раздела
п/п	раздела дисциплины	
1.	Введение в алгебру	Прямое произведение множеств. Соответствия и функции. Алгебры.
	логики	Функции алгебры логики. Суперпозиции и формулы. Булева Алгебра.
		Принцип двойственности. Совершенная дизьюнктивная нормальная
		форма (СДНФ). Совершенная конъюнктивная нормальная форма
		(СКНФ). Разложение булевых функций по переменным. Построение
		СДНФ для функции, заданной таблично.
2.	Минимизация	Проблема минимизации. Порождение простых импликантов.
	булевых функций	Алгоритм Куайна и Мак-Клоски. Таблицы простых импликантов.
3.	Полнота и	Замкнутые классы. Класс логических функций, сохраняющий
	замкнутость систем	константы 0 и 1. Определение и доказательство замкнутости. Класс
	логических функций	самодвойственных функций. Определение и лемма о
		несамодвойственной функции. Класс монотонных функций.
		Определение и лемма о немонотонной функции. Класс линейных
		функций. Определение и лемма о нелинейной функции.
4.	Исчисление	Общие принципы построения формальной теории. Интерпретация,
	высказываний и	общезначимость, противоречивость, логическое следствие. Метод
	предикатов	резолюций для исчисления высказываний. Понятие предиката.
		Кванторы. Алфавит. Предваренная нормальная форма. Алгоритм
		преобразования формул в предваренную нормальную форму.
		Скулемовская стандартная форма. Подстановка и унификация.
		Алгоритм унификации. Метод резолюций в исчислении предикатов.

Литература

- Зарипова Э.Р., Кокотчикова М.Г., Севастьянов Л.А. Лекции по дискретной математике: Учеб. пособие. Математическая логика. Москва: РУДН, 2014. 118 с.
- Светлов В.А., Логика: учебное пособие, изд-во: Логос, 2012 г. 429 с.
- Микони С.В., Дискретная математика для бакалавра. Множества, отношения, функции, графы. СПб., Изд-во Лань, 2013 г., 192 с.
- Горбатов В.А., Горбатов А.В., Горбатова М.В., Дискретная математика, М.: АСТ, 2014 г, 448 с.
- Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- Учебный портал РУДН, раздел «Математическая логика» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522

Предваренная нормальная форма

Формула F исчисления предикатов находится в предваренной нормальной форме (ПНФ) т. и т.т., когда формула F имеет вид

$$(Q_1x_1)...(Q_nx_n)(M),$$

где каждое $(Q_i x_i)$, i = 1, n, есть $(\forall x_i)$ или $(\exists x_i)$, а M - формула, не содержащая кванторов. $(Q_1 x_1) \dots (Q_n x_n)$ называется префиксом, а M - матрицей формулы F.

Предваренная нормальная форма

Для приведения формулы исчисления предикатов к ПНФ рассмотрим ряд эквивалентностей, содержащих кванторы.

Обозначения:

F[x] — формула, содержащая свободную переменную x (обозначим).

G - формула, не содержащая переменную x.

Qx есть $\forall x$ или $\exists x$.

Преобразования

1)
$$(Qx)F[x] \lor G = (Qx)(F[x] \lor G)$$
;

2)
$$(Qx)F[x] \wedge G = (Qx)(F[x] \wedge G)$$
;

3)
$$(\forall x)F[x] = (\exists x)F[x]$$
;

4)
$$(\exists x)F[x] = (\forall x)F[x];$$

5)
$$(\forall x)F[x] \land (\forall x)H[x] = (\forall x)(F[x] \land H[x]),$$

6)
$$(\exists x)F[x]\lor(\exists x)H[x]=(\exists x)(F[x]\lor H[x])$$

Преобразования

7)
$$(\forall x)F[x] \lor (\forall x)H[x] \neq (\forall x)(F[x] \lor H[x]),$$

 $(\forall x)F[x] \lor (\forall x)H[x] = (\forall x)F[x] \lor (\forall z)H[z] =$
 $= (\forall x)(\forall z)(F[x] \lor H[z]).$

8)
$$(\exists x)F[x] \land (\exists x)H[x] \neq (\exists x)(F[x] \land H[x]),$$

 $(\exists x)F[x] \land (\exists x)H[x] = (\exists x)F[x] \land (\exists z)H[z] =$
 $= (\exists x)(\exists z)(F[x] \land H[z]).$

Преобразования

9)
$$(Q_1x)F[x] \lor (Q_2x)H[x] = (Q_1x)(Q_2z)(F[x] \lor H[z]),$$

10)
$$(Q_3x)F[x] \wedge (Q_4x)H[x] = (Q_3x)(Q_4z)(F[x] \wedge H[z])$$

Если $Q_1 = Q_2 = \exists$, а $Q_3 = Q_4 = \forall$, то не нужно переименовывать переменную x.

Алгоритм преобразования в ПНФ

Шаг1. Используем упрощения

$$F \rightarrow G = \overline{F} \vee G$$
.

Шаг 2. Используем F = F,

ИЛИ

$$\overline{F \vee G} = \overline{F} \wedge \overline{G}$$
, $\overline{F \wedge G} = \overline{F} \vee \overline{G}$,

ИЛИ

$$\overline{(\forall x)F[x]} = (\exists x)\overline{F[x]}, \ \overline{(\exists x)F[x]} = (\forall x)\overline{F[x]},$$

чтобы внести знак отрицания внутрь формулы.

Алгоритм преобразования в ПНФ

Шаг 3. Переименовываем связанные переменные, если это необходимо.

Шаг 4. Используем эквивалентности (1) - (10).

Пример 1

Привести к ПНФ формулу
$$(\forall x)P(x) \rightarrow (\exists x)Q(x)$$
.

Решение:

$$(\forall x)P(x) \to (\exists x)Q(x) =$$

$$= (\forall x)P(x) \lor (\exists x)Q(x) =$$

$$= (\exists x)\overline{P(x)} \lor (\exists x)Q(x) =$$

$$= (\exists x)(P(x) \lor Q(x))$$

Пример 2

Привести к ПНФ формулу

$$(\forall x)(\exists y)\Big(\Big(P(x,z)\land P(y,z)\Big)\rightarrow (\exists u)Q(x,y,u)\Big).$$

Решение:

$$(\forall x)(\exists y) \Big(\Big(P(x,z) \land P(y,z) \Big) \to (\exists u) Q(x,y,u) \Big) =$$

$$(\forall x)(\exists y) \Big(\overline{\Big(P(x,z) \land P(y,z) \Big)} \lor (\exists u) Q(x,y,u) \Big) =$$

$$(\forall x)(\exists y) \Big(\overline{\Big(P(x,z) \lor P(y,z) \Big)} \lor (\exists u) Q(x,y,u) \Big) =$$

$$(\forall x)(\exists y) \Big(\exists u) \Big(\overline{P(x,z)} \lor \overline{P(y,z)} \lor Q(x,y,u) \Big).$$

Тема следующей лекции:

«ССФ».