Übungsblatt 4

Dr. Stella Bollmann und Prof. Dr. Carolin Strobl

Aufgabe 1 Wie werden im einfachen linearen Regressionsmodell der unstandardisierte Steigungskoeffizient $\widehat{\beta}_1$ und der standardisierte Steigungskoeffizient $\widehat{\widehat{\beta}_1}$ interpretiert?

Aufgabe 2 Bei 10 Personen wurde der Zusammenhang zwischen dem Körpergewicht (in kg), dem Lungenvolumen (in Einheiten des Messgerätes) und allgemeiner körperlicher Fitness (gemessen mit einem Fitness-Test) untersucht.

Gewicht	87	73	66	62	68	92	60	70	71	64
Lungenvolumen	42	43	44	54	45	46	50	46	54	47
Fitness	1	6	7	15	12	4	12	13	14	10

1. Berechnen Sie die Koeffizienten $\widehat{\beta}_0$ und $\widehat{\beta}_1$ einer einfachen linearen Regression von Fitness (y) auf Gewicht (x).

Hinweis:
$$\sum_{i} x_{i}^{2} = 51823$$
, $\sum_{i} x_{i} \cdot y_{i} = 6365$

2. Wo finden Sie diese Koeffizienten im SPSS-Output?

Koeffizienten ^a										
				Standardisierte						
		Nicht standardisi	erte Koeffizienten	Koeffizienten						
		Regressions-		100000000000000000000000000000000000000						
Mod	ell	koeffizient B	Standardfehler	Beta	T	Sig.				
1	(Konstante)	33.781	7.299		4.628	.002				
	Gewicht	342	.101	766	-3.373	.010				

- a. Abhängige Variable: Fitness
- 3. Interpretieren Sie die Ergebnisse für die unstandardisierten Koeffizienten $\widehat{\beta}_0$ und $\widehat{\beta}_1$.
- 4. Interpretieren Sie nun auch den standardisierten Beta-Koeffizienten aus dem SPSS-Output.
- 5. Warum wird kein standardisierter Koeffizient für β_0 angegeben?

6. Nun wurden auch noch die Koeffizienten einer einfachen linearen Regression von Fitness (y) auf Lungenvolumen (x) mit SPSS berechnet. Interpretieren Sie auch hier die nicht-standardisierten und die standardisierten Regressionskoeffizienten.

Koeffizienten ^a									
				Standardisierte					
		Nicht standardisi	erte Koeffizienten	Koeffizienten					
		Regressions-							
Modell		koeffizient B	Standardfehler	Beta	Т	Sig.			
1	(Konstante)	-30.674	11.600		-2.644	.030			
	Lungenvolumen	.851	.245	.775	3.467	.008			

a. Abhängige Variable: Fitness

Aufgabe 3 Für 8 Personen wurde der Zusammenhang zwischen dem Zeitaufwand für die Prüfungsvorbereitung (gemessen in Stunden) und der Anzahl richtig gelöster Aufgaben in der Klausur erhoben.

Zeitaufwand	3	4	5	3	4	5	4	5
Anzahl richtig	2	5	6	3	4	5	5	6

1. Berechnen Sie die Koeffizienten $\widehat{\beta}_0$ und $\widehat{\beta}_1$ einer einfachen linearen Regression von der Anzahl richtig gelöster Aufgaben (y) auf den Zeitaufwand (x).

Hinweis:
$$\sum_i x_i = 33$$
, $\sum_i y_i = 36$, $\sum_i x_i^2 = 141$, $\sum_i x_i \cdot y_i = 156$, $\bar{x} = 4.125$, $\bar{y} = 4.5$

- 2. Interpretieren Sie die Ergebnisse für die Koeffizienten $\widehat{\beta}_0$ und $\widehat{\beta}_1$.
- 3. Berechnen Sie Bestimmtheitsmass R^2 als Quotient der entsprechenden Quadratsummen: $QS_{\hat{y}} = \sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$ und $QS_y = \sum_{i=1}^{n} (y_i \bar{y})^2$.