Lecturer:	Date October	App	rove	d by:		Date Octobe	r
Dr. Nguyen Tien Dung	6 th , 2023					$6^{th}, 202$	
	Midterm 1	Exam		demic year m date	2023-2024 October 16	Semester th 2023	1
BK Product	Course title	Probab		and Statistic		Score	
UNIVERSITY OF TECHNOLOGY - VNUHCM	Course ID	MT201		Sheet code			
Faculty of Applied Science	Duration	50 min	utes	Shift	7:00		
Instructions to students:							
- You are allowed to use your OW.	N materials and	calculate	or. T	otal available	score: 10.		
- At the beginning of the working t	, ,	fill in ye	our fui	ll name and s	student ID on	this question	n
sheet. There are 20 questions on	1 0	,	, 1	. 1 1			
- Do not round between steps. Rou	ina your final ar	nswers to	9 4 ae	cimai places.			

- Do not round between steps. Itound your find unswers to 4 dec	cimai piaces.
Student's full name:	Invigilator 1:
Student Id: Group:	Invigilator 2:

1. Let A and B be two events such that P(A) = 0.21 and $P(A \cap B) = 0.16$. Find the probability P(B)such that A and B are independent.

(A) 0.6619

- (B) 0.7619
- (C) 0.8719
- (D) 0.8819
- (E) 0.3319

2. Suppose that the probability for you to win 381 dollars in a game is 15%, while the probability of losing 15 dollars is 85%. Compute your average net gain in a game.

- (A) Lose 34.4 dollars.
- (B) Win 47.4 dollars.
- (C) Win 39.4 dollars.
- (D) Lose 50.4 dollars.

(E) Win 44.4 dollars.

3. Consider three events A, B, and C in the sample space Ω such that P(A) = 0.25, P(B) = 0.12, P(C) = 0.11, and P(A|C) = 0.16. Suppose that A and B are independent. In addition, B and C are disjoint. Compute $P(A \cup B \cup C)$.

- (A) 0.4324
- (B) 0.6324 (C) 0.7424
- (D) 0.3624
- (E) 0.5824

4. Which of the following functions is the probability density function of random variable? Assume that these functions are zero outside the given interval.

Questions 5 through 8. The diameter of a molecule (in micrometer) is a random varible with the following probability density function

$$f(x) = \begin{cases} \frac{8k}{(x-6)^2}, & \text{if } 0 \le x \le 2\\ 0, & \text{otherwise} \end{cases}$$

5. Determine the constant k. (A) 1.6445 (B) 1.2445 (C) 1.1445 \bigcirc 0.9445 (E) 1.5

6. Find the value of the cumulative distribution function at 1.9.

- (B) 0.9713 (C) 0.9268(D) 0.4713(E) 0.7713
- 7. Put Y = 2X + 8. What is the mean of Y?
 - (A) 9.8133
- (B) 10.4133
- (C) 10.2688
- (D) 10.1133
- (E) 10.3133

 \bigcirc 0.4808

8. Find the median of the diameter of a molecule.

(C) 1.3445

9. Find the probability that the first methods is selected and fails twice.

 \bigcirc 0.4008

(B) 1.5445

(B) 0.0908

Questions 9 through 12. There are three methods to conduct an experiment and the probabilities of success for these methods are 0.75, 0.7, and 0.7 respectively. One student randomly selects a method and use it to carry on the experiment two times independently. Denote by X the number of successes.

 \bigcirc 0.0208

(E) 1.4445

(E) 0.2808

that the time beween two consecutive defective items does not exceed 49 minutes. (A) 0.4937 (B) 0.8637 (C) 0.7137 (D) 0.9137 (E) 0.5937
Poisson distribution with an average of 3 defective productions per hour. Calculate the probability that the time beween two consecutive defective items does not exceed 49 minutes.
16. Suppose further that the number of defective products of the production line per hour also follows a
(A) 0.4888 (B) 0.5388 (C) 0.9888 (D) 0.4988 (E) 0.6888
15. Select 19 products of the production line randomly. Calculate the probability that there are at most 2 defective products.
A 0.2266 B 0.1666 C 0.7066 D 0.7966 E 0.0365
line?
14. What is the standard deviation of the average number of defects on products of the production
A) 0.5163 B) 0.0253 C) 0.1463 D) 0.5663 E) 0.1563
13. Compute the average number of defects on a product of this production line.
Questions 13 through 16. Assume that the number of defects on a product of a production line is a random variable following a Poisson distribution and the numbers are independent across products. A product with at least one defect will be classified as a defective product. Assume further that the percentage of defective products made by this production line is 0.025.
12. Suppose that each failure costs the student 1.5 dollars. Compute the variance of the failure cost. (A) 1.4363 (B) 0.9163 (C) 1.3663 (D) 0.5863 (E) 0.8363
(A) 1.3633 (B) 1.4333 (C) 0.9633 (D) 1.2433 (E) 1.5033
11. What is the mean of X ?
$\textcircled{A} \ 0.095 \ \textcircled{B} \ 0.405 \ \textcircled{C} \ 0.145 \ \textcircled{D} \ 0.605 \ \textcircled{E} \ 0.325$

19. Compute the probability that there are at least three days of a week (7 days) in which Billy uses his smartphone more than 125.8 minutes per day.

 \bigcirc 0.3285

B 0.004

 \bigcirc 0.0535

① 0.1085

20. Find the probability that, on average, Billy uses his smartphone less than 125.8 minutes per day in a week. A 0.6645 B 0.5545 C 0.7195 D 1 E 0.4995

Stu. Fullname: Stu. ID: Page 3 of 3

Lecturer:	Date	App	rove	d by:		Date	
	October					Octobe	\overline{r}
Dr. Nguyen Tien Dung	$6^{th}, 2023$					$6^{th}, 202$	3
BK	Midterm 1		Exa	demic year m date	2023-2024 October 16		
BK TP.HCM							
INITION OF TRAINING ON ANUMAN		Course title Probability		ty and Statistics		$\underline{\text{Score}}$	
UNIVERSITY OF TECHNOLOGY - VNUHCM	Course ID	MT201	.3	Sheet code	2312		
Faculty of Applied Science	Duration	50 min	utes	Shift	7:00		
		•					
Instructions to students:							
	N materials and	l $calculate$	or. T	otal available	score: 10.		
Instructions to students: - You are allowed to use your OW At the beginning of the working t						this question	$\frac{-}{n}$
- You are allowed to use your OW.	ime, you MUST					this questio	\overline{n}

- Do not round between steps. Round your final answers to 4 decimal places.

Invigilator 1: Student's full name: Student Id: Group: Invigilator 2:

- 1. Let A and B be two events such that P(A) = 0.28 and $P(A \cap B) = 0.25$. Find the probability P(B)such that A and B are independent.
 - (A) 0.7729
- (B) 0.7129
- (C) 0.6429
- (D) 0.8029
- (E) 0.8929
- 2. Suppose that the probability for you to win 276 dollars in a game is 28%, while the probability of losing 49 dollars is 72%. Compute your average net gain in a game.
 - (A) Lose 41 dollars. 43 dollars.
- (B) Win 43 dollars.
- (C) Win 42 dollars.
- (D) Lose 45 dollars.
- (E) Win
- 3. Consider three events A, B, and C in the sample space Ω such that P(A) = 0.17, P(B) = 0.27, P(C) = 0.3, and P(B|C) = 0.19. Suppose that A and B are independent. In addition, A and C are disjoint. Compute $P(A \cup B \cup C)$.
 - (A) 0.7471
- (B) 0.8871
- (C) 0.6371
- (D) 0.7271
- (E) 0.4771
- 4. Which of the following functions is the probability density function of random variable? Assume that these functions are zero outside the given interval.

Questions 5 through 8. The diameter of a molecule (in micrometer) is a random varible with the following probability density function

$$f(x) = \begin{cases} \frac{10k}{(x-8)^2}, & \text{if } 0 \le x \le 4\\ 0, & \text{otherwise} \end{cases}$$

- 5. Determine the constant k. (A) 0.4445
- (B) 1.1445
- \bigcirc 0.9445
- \bigcirc 0.8445
- (E) 0.8

- 6. Find the value of the cumulative distribution function at 2.7.
 - (A) 0.3539
- (B) 0.1539
- (C) 0.0539
- (D) 0.2539
- (E) 0.5094
- 7. Put Y = 2X + 4. What is the mean of Y?
 - (A) 9.1541
- (B) 8.7541
- (C) 8.4541
- (D) 9.0541
- (E) 8.9096

 \bigcirc 2.2112

 \bigcirc 0.0375

Questions 9 through 12. There are three methods to conduct an experiment and the probabilities of success for these methods are 0.85, 0.9, and 0.75 respectively. One student randomly selects a method and use it to carry on the experiment two times independently. Denote by X the number of successes.

 $\stackrel{\frown}{(E)}$ 2.8112

(E) 0.3575

 \bigcirc 0.0075

8. Find the median of the diameter of a molecule.

 \bigcirc 2.3112

9. Find the probability that the first methods is selected and fails twice.

 \bigcirc 0.1175

(B) 2.6667

 \bigcirc 0.4475

Stu. Fullname: Stu. ID: Page 2	of 3
(A) (72, 140) (B) (101, 111) (C) (80, 132) (D) (103, 109) (E) (85.84, 126.16)	
18. Determine an interval centered at 106 such that X takes values in that interval in 85% days.	
17. Find the probability that Autry uses his smartphone less than 84.2 minutes in one day. (A) 0.6152 (B) 0.0597 (C) 0.2819 (D) 0.393 (E) 0.1708	
Questions 17 through 20. Autry uses his smartphone X minutes everyday where X is a ran variable following a normal distribution with a mean of 106 minutes and a standard deviation of minutes.	
A 0.7547 B 0.4547 C 0.4047 D 0.8147 E 0.8647	
16. Suppose further that the number of defective products of the production line per hour also followed Poisson distribution with an average of 3 defective productions per hour. Calculate the probability that the time between two consecutive defective items does not exceed 40 minutes.	
 15. Select 10 products of the production line randomly. Calculate the probability that there are at r 1 defective products. (A) 0.7359 (B) 0.8559 (C) 0.4559 (D) 0.3759 (E) 0.8759 	nost
(A) 0.2988 (B) 0.1387 (C) 0.6388 (D) 0.3788 (E) 0.7688	moat
14. What is the standard deviation of the average number of defects on products of the production?	tion
A 0.1924 B 0.5134 C 0.7334 D 0.2334 E 0.8434	
13. Compute the average number of defects on a product of this production line.	
Questions 13 through 16. Assume that the number of defects on a product of a production line a random variable following a Poisson distribution and the numbers are independent across product. A product with at least one defect will be classified as a defective product. Assume further that percentage of defective products made by this production line is 0.175.	ucts.
12. Suppose that each failure costs the student 2 dollars. Compute the variance of the failure cost (A) 1.6722 (B) 1.5022 (C) 0.8322 (D) 1.5622 (E) 1.1422	•
(A) 2.0567 (B) 1.7667 (C) 1.6667 (D) 1.9367 (E) 2.1067	
11. What is the mean of X ?	
A) 0.62 B) 0.66 C) 0.22 D) 0.27 E) 0.46	

19.	Compute the probability that there are at least three days of a week (7 days) in which Autry use	es
	his smartphone more than 84.2 minutes per day.	

 \bigcirc 0.5545

 $\bigcirc B 0.6095$

 \bigcirc 1 \bigcirc 0.7195

© 0.8845

20. Find the probability that, on average, Autry uses his smartphone less than 84.2 minutes per day in a week. (A) 0.0495 \bigcirc 0.2145 \bigcirc 0.4345 $\bigcirc 0.1045$ $\stackrel{\frown}{(E)}$ 0

Stu. Fullname: Stu. ID: Page 3 of 3

Lecturer:	Date	App	rove	d by:		Date	
	October					Octobe	\overline{r}
Dr. Nguyen Tien Dung	$6^{th}, 2023$					$6^{th}, 202$	23
	Midterm 1	Exam		demic year	2023-2024	Semester	1
BK TP HCM	Course title			m date	October 16	,	
UNIVERSITY OF TECHNOLOGY - VNUHCM				and Statistic		$\underline{\mathbf{Score}}$	
	Course ID	MT201	13	Sheet code	2313		
Faculty of Applied Science	Duration	$50 \mathrm{min}$	utes	Shift	7:00		
Instructions to students:							
- You are allowed to use your OW.	N materials and	calculat	or. T	otal available	score: 10.		
- At the beginning of the working to sheet. There are 20 questions on	, •	fill in ye	our fu	ll name and s	student ID on	this questio	\overline{n}

Student's full name: Invigilator 1: Invigilator 2: Student Id: Group:

1. Let A and B be two events such that P(A) = 0.44 and $P(A \cap B) = 0.39$. Find the probability P(B)such that A and B are independent.

(A) 0.8864

(B) 0.8064

(C) 0.6664

- Do not round between steps. Round your final answers to 4 decimal places.

(D) 0.5364

(E) 0.9864

2. Suppose that the probability for you to win 261 dollars in a game is 17%, while the probability of losing 13 dollars is 83%. Compute your average net gain in a game.

(A) Lose 41.58 dollars.

(B) Win 33.58 dollars.

(C) Win 31.58 dollars.

(D) Win 25.58 dollars.

(E) Lose 38.58 dollars.

3. Consider three events A, B, and C in the sample space Ω such that P(A) = 0.14, P(B) = 0.13, P(C) = 0.29, and P(B|C) = 0.2. Suppose that A and B are independent. In addition, A and C are disjoint. Compute $P(A \cup B \cup C)$.

(A) 0.6438

(B) 0.0438

(C) 0.5438

(D) 0.4838

(E) 0.1738

4. Which of the following functions is the probability density function of random variable? Assume that these functions are zero outside the given interval.

(E) 0.5445

Questions 5 through 8. The diameter of a molecule (in micrometer) is a random varible with the following probability density function

 $f(x) = \begin{cases} \frac{10k}{(x-8)^2}, & \text{if } 0 \le x \le 4\\ 0, & \text{otherwise} \end{cases}$

5. Determine the constant k. (A) 1.1445 (B) 0.8445 \bigcirc 0.4445

6. Find the value of the cumulative distribution function at 3.2.

(A) 0.6667

(B) 0.4112

(C) 0.2112

(D) 0.1112

(E) 0.5112

7. Put Y = 4X + 6. What is the mean of Y?

(A) 15.3638

(B) 16.1638

(C) 16.2638

(D) 15.8193

(E) 16.3638

 \bigcirc 0.8

(A) 0.51

8. Find the median of the diameter of a molecule.

 \bigcirc 2.4112

9. Find the probability that the first methods is selected and fails twice.

 $\bigcirc 0.45$

 \bigcirc 0.03

(B) 2.6667

 \bigcirc 0.34

 \bigcirc 3.2112

Questions 9 through 12. There are three methods to conduct an experiment and the probabilities of success for these methods are 0.7, 0.8, and 0.9 respectively. One student randomly selects a method and use it to carry on the experiment two times independently. Denote by X the number of successes.

 $\stackrel{\frown}{(E)} 0.3$

 $\stackrel{\frown}{(E)}$ 2.5112

19. Compute the probability that there are at least three days of a week (7 days) in which Jonathan uses his smartphone more than 104.4 minutes per day.

 \bigcirc 0.3529

 \bigcirc 0.5729

 \bigcirc 0.7434

① 0.4629

20. Find the probability that, on average, Jonathan uses his smartphone less than 104.4 minutes per day in a week. A 0.5468 B 0.7613 C 0.5963 D 0.1013 E 0.4313

Stu. Fullname: Stu. ID: Page 3 of 3

Lecturer:	Date	App	rove	d by:		Date	
	October					Octobe	
Dr. Nguyen Tien Dung	$6^{th}, 2023$					$6^{th}, 202$	23
	Midterm 1	Evam	Aca	demic year	2023-2024	Semester	1
BK TP.HCM	whater in	ZXaIII	Exa	m date	October 16	th, 2023	
	Course title	Probak	oility	and Statistic	cs	Score	
UNIVERSITY OF TECHNOLOGY - VNUHCM	Course ID	MT201	.3	Sheet code	2314		
Faculty of Applied Science	Duration	50 min	utes	Shift	7:00		
Instructions to students:							
- You are allowed to use your OW.	N materials and	calculat	or. T	$botal\ available$	score: 10.		
- At the beginning of the working to	, 9	fill in ye	our fui	ll name and s	student ID on	this question	n
sheet. There are 20 questions on	1 0						
- Do not round between steps. Rou	and your final ar	nswers to) 4 de	cimal places.			

Student's full name:	Invigilator 1:
Student Id: Group:	Invigilator 2:

1. Let A and B be two events such that P(A) = 0.28 and $P(A \cap B) = 0.24$. Find the probability P(B) such that A and B are independent.

 \widehat{A} 0.7571

(B) 0.3671

 \bigcirc 0.6071

 \bigcirc 0.8571

 $\widehat{(E)}$ 0.6371

2. Suppose that the probability for you to win 292 dollars in a game is 11%, while the probability of losing 34 dollars is 89%. Compute your average net gain in a game.

A Lose 8.86 dollars.

B Win 1.86 dollars.

© Lose 7.86 dollars.

(D) Win 9.86 dollars.

(E) Win 0.14 dollars.

3. Consider three events A, B, and C in the sample space Ω such that P(A) = 0.19, P(B) = 0.22, P(C) = 0.17, and P(B|C) = 0.13. Suppose that A and B are independent. In addition, A and C are disjoint. Compute $P(A \cup B \cup C)$.

(A) 0.1761

® 0.4761

 \bigcirc 0.0461

 $\bigcirc 0.8561$

4. Which of the following functions is the probability density function of random variable? Assume that these functions are zero outside the given interval.

Questions 5 through 8. The diameter of a molecule (in micrometer) is a random varible with the following probability density function

$$f(x) = \begin{cases} \frac{10k}{(x-6)^2}, & \text{if } 0 \le x \le 2\\ 0, & \text{otherwise} \end{cases}$$

5. Determine the constant k. (A) 0.7445 (B) 1.6445 (C) 1.2 (D) 0.9445 (E) 0.8445

6. Find the value of the cumulative distribution function at 1.6.

(A) 0.8718

(B) 0.7273

(C) 0.4718

(D) 0.7718

(E) 0.3718

7. Put Y = 2X + 4. What is the mean of Y?

(A) 5.7133

(B) 6.4133

© 5.9133

(D) 6.2688

(E) 6.8133

 \bigcirc 0.3933

8. Find the median of the diameter of a molecule.

 \bigcirc 0.6445

9. Find the probability that the first methods is selected and fails twice.

 \bigcirc 0.3533

(B) 1.7445

(B) 0.5433

Questions 9 through 12. There are three methods to conduct an experiment and the probabilities of success for these methods are 0.8, 0.85, and 0.85 respectively. One student randomly selects a method and use it to carry on the experiment two times independently. Denote by X the number of successes.

 \bigcirc 0.0133

(E) 1.4445

(E) 0.4433

 \bigcirc 0.7445

Stu. Fullname:	Stu. ID:	Page 2 of 3
(A) (66.8, 145.2) (B) (33, 179) (C)) (64, 148) D (58, 154) E (7	73, 139)
18. Determine an interval centered at 106		Ť
A 0.0778 B 0.6333 C 0.3 (I	es his smartphone less than 77.6 m 0.5222 0.4111	inutes in one day.
Questions 17 through 20. Trevante use variable following a normal distribution winutes.	with a mean of 106 minutes and a	standard deviation of 20
(A) 0.6834 (B) 0.6734 (C) 0.7334	① 0.9634 ② 0.3234	
16. Suppose further that the number of der Poisson distribution with an average of that the time beween two consecutive	of 3 defective productions per hour.	Calculate the probability
2 defective products. (A) 0.6332 (B) 0.8332 (C) 0.6532	-	
15. Select 19 products of the production lin		lity that there are at most
 14. What is the standard deviation of th line? (A) 0.8142 (B) 0.0641 (C) 0.3642 		roducts of the production
(A) 0.759 (B) 0.929 (C) 0.078 (I	-	
13. Compute the average number of defection of the computer of		line.
Questions 13 through 16. Assume that a random variable following a Poisson dist A product with at least one defect will be percentage of defective products made by	tribution and the numbers are indeed classified as a defective product.	ependent across products.
(A) 1.6256 (B) 1.1456 (C) 1.1156		
12. Suppose that each failure costs the stu	_	nce of the failure cost.
11. What is the mean of X ? (A) 2.0667 (B) 1.6667 (C) 2.0067	① 1.8367	
	① 0.0467 ② 0.0867	
10. Find the probability that there is exact	_	

19. Compute the probability that there are at least three days of a week (7 days) in which Trevante uses his smartphone more than 77.6 minutes per day.

 \bigcirc 0.9999

(B) 0.9394

 \bigcirc 0.7744

 $\bigcirc 0.8294$

 \bigcirc 0.4444

20. Find the probability that, on average, Trevante uses his smartphone less than 77.6 minutes per day in a week. A 0.2696 B 0.4896 C 0.1046 D 0.0001 E 0.1596

Stu. Fullname: Stu. ID: Page 3 of 3

Lecturer:	Date	App	rove	d by:		Date
	October					October
Dr. Nguyen Tien Dung	$6^{th}, 2023$					$6^{th}, 2023$
BK	Midterm 1	Exam		demic year m date	2023-2024 October 16	Semester th, 2023
BK TP.HCM						
	Course title			and Statistic		$\underline{\mathbf{Score}}$
TINIVERSITY OF TECHNOLOGY VNITHOM	Course ID	MT201	.3	Sheet code	2315	
Faculty of Applied Science	Duration	50 min	utes	Shift	7:00	
	Duration	50 min	utes	Shift	7:00	
Instructions to students:				1 12 1		
Faculty of Applied Science Instructions to students: - You are allowed to use your OW	N materials and	l calculat	or. T	otal available	score: 10.	this question
Faculty of Applied Science Instructions to students:	N materials and ime, you MUST	l calculat	or. T	otal available	score: 10.	this question

Do not round between steps. Round your final answers to 4 decimal places.

Student's full name:	Invigilator 1:
Student Id: Group:	Invigilator 2:

- 1. Let A and B be two events such that P(A) = 0.43 and $P(A \cap B) = 0.24$. Find the probability P(B)such that A and B are independent.
 - (A) 0.2981
- (B) 0.8581
- (C) 0.5581
- (D) 0.9381
- (E) 0.4381

(E) Lose

- 2. Suppose that the probability for you to win 419 dollars in a game is 20%, while the probability of losing 21 dollars is 80%. Compute your average net gain in a game.
 - (A) Win 74 dollars. (B) Win 71 dollars. (C) Lose 76 dollars. (D) Win 67 dollars. 74 dollars.
- 3. Consider three events A, B, and C in the sample space Ω such that P(A) = 0.28, P(B) = 0.3, P(C) = 0.13, and P(B|C) = 0.27. Suppose that A and B are independent. In addition, A and C are disjoint. Compute $P(A \cup B \cup C)$.
 - (A) 0.9609
- (B) 0.5909 (C) 0.0909
- (D) 0.4709
- (E) 0.8209
- 4. Which of the following functions is the probability density function of random variable? Assume that these functions are zero outside the given interval.

Questions 5 through 8. The diameter of a molecule (in micrometer) is a random varible with the following probability density function

$$f(x) = \begin{cases} \frac{10k}{(x-4)^2}, & \text{if } 0 \le x \le 2\\ 0, & \text{otherwise} \end{cases}$$

- 5. Determine the constant k. (A) 0.5445 (B) 0.9445 \bigcirc 0.4445 $\bigcirc 0.8445$
- 6. Find the value of the cumulative distribution function at 1.5.
- (B) 0.9445
- (C) 0.3445
- (D) 0.7445
- (E) 0.6
- 7. Put Y = 4X + 6. What is the mean of Y?
 - (A) 10.9541
- (B) 10.9096
- (C) 11.2541
- (D) 11.1541
- (E) 11.4541

8. Find the median of the diameter of a molecule.
A 0.9778 B 1.4778 C 0.8778 D 1.3333 E 1.0778
Questions 9 through 12. There are three methods to conduct an experiment and the probabilities of success for these methods are 0.6 , 0.7 , and 0.65 respectively. One student randomly selects a method and use it to carry on the experiment two times independently. Denote by X the number of successes.
9. Find the probability that the first methods is selected and fails twice.
A 0.0133 B 0.5133 C 0.5933 D 0.3433 E 0.0533
10. Find the probability that there is exactly one failure. (A) 0.4517 (B) 0.4917 (C) 0.7217 (D) 0.0717 (E) 0.0417
11. What is the mean of X ?
12. Suppose that each failure costs the student 1.5 dollars. Compute the variance of the failure cost. A 1.0313 B 1.4813 C 0.6913 D 1.4913 E 0.5513
Questions 13 through 16. Assume that the number of defects on a product of a production line is a random variable following a Poisson distribution and the numbers are independent across products. A product with at least one defect will be classified as a defective product. Assume further that the percentage of defective products made by this production line is 0.035.
13. Compute the average number of defects on a product of this production line.
$\bigcirc A 0.8166 \bigcirc B 0.0566 \bigcirc C 0.0356 \bigcirc D 0.8366 \bigcirc E 0.3266$
14. What is the standard deviation of the average number of defects on products of the production line?
$\textcircled{A} \ 0.6805 \ \textcircled{B} \ 0.5505 \ \textcircled{C} \ 0.3605 \ \textcircled{D} \ 0.0504 \ \textcircled{E} \ 0.6705$
15. Select 14 products of the production line randomly. Calculate the probability that there are at most 2 defective products.
A 0.7083 B 0.9883 C 0.6783 D 0.7783 E 0.5783
16. Suppose further that the number of defective products of the production line per hour also follows a Poisson distribution with an average of 3 defective productions per hour. Calculate the probability that the time beween two consecutive defective items does not exceed 25 minutes. (A) 0.6335 (B) 0.4035 (C) 0.6935 (D) 0.7135 (E) 0.6735
(A) 0.0335 (B) 0.4035 (C) 0.0935 (D) 0.7135 (E) 0.0735
Questions 17 through 20. Aarón uses his smartphone X minutes everyday where X is a random variable following a normal distribution with a mean of 90 minutes and a standard deviation of 13 minutes.
17. Find the probability that Aarón uses his smartphone less than 81.5 minutes in one day.
$egin{array}{cccccccccccccccccccccccccccccccccccc$
18. Determine an interval centered at 90 such that X takes values in that interval in 85% days.

Stu. Fullname: Stu. ID: Page 2 of 3

(D) (89, 91)

(A) (69, 111) (B) (59, 121) (C) (71.28, 108.72)

19. Compute the probability that there are at least three days of a week (7 days) in which Aarón uses his smartphone more than 81.5 minutes per day.

 \bigcirc 0.9855

 $\bigcirc B 0.54$

 \bigcirc 0.43

 $\bigcirc 0.925$

 $\widehat{\text{E}}$ 0.485

20. Find the probability that, on average, Aarón uses his smartphone less than 81.5 minutes per day in a week. A 0.4213 B 0.1463 C 0.0913 D 0.0418 E 0.2563

Stu. Fullname: Stu. ID: Page 3 of 3

Lecturer:	Date	App	rove	d by:		Date		
	October			· ·		October		
Dr. Nguyen Tien Dung	$6^{th}, 2023$					$6^{th}, 2023$		
<u></u>	Midterm 1	Exam		demic year m date	2023-2024 October 16	Semester 1		
BK TO HOLE	Course title	Probal	Probability and Statisti			Score		
UNIVERSITY OF TECHNOLOGY - VNUHCM	Course ID	MT20	13	Sheet code	2316			
Faculty of Applied Science	Duration	50 min	utes	Shift	7:00			
Instructions to students:								
- You are allowed to use your OWN materials and calculator. Total available score: 10. - At the beginning of the working time, you MUST fill in your full name and student ID on this question								

Student's full name:	Invigilator 1:
Student Id: Group:	Invigilator 2:

- 1. Let A and B be two events such that P(A) = 0.38 and $P(A \cap B) = 0.35$. Find the probability P(B)such that A and B are independent.
 - (A) 0.8511
 - (B) 0.7611

sheet. There are 20 questions on 3 pages.

(C) 0.7811

- Do not round between steps. Round your final answers to 4 decimal places.

- (D) 0.7311
- (E) 0.9211
- 2. Suppose that the probability for you to win 237 dollars in a game is 21%, while the probability of losing 47 dollars is 79%. Compute your average net gain in a game.
 - (A) Win 22.64 dollars.
- (B) Win 12.64 dollars.
- (C) Lose 8.64 dollars.
- (D) Win 19.64 dollars.

- (E) Lose 17.64 dollars.
- 3. Consider three events A, B, and C in the sample space Ω such that P(A) = 0.25, P(B) = 0.3, P(C) = 0.27, and P(B|C) = 0.2. Suppose that A and B are independent. In addition, A and C are disjoint. Compute $P(A \cup B \cup C)$.
 - (A) 0.751
- \bigcirc 0.701
- \bigcirc 0.401
- \bigcirc 0.501
- (E) 0.691
- 4. Which of the following functions is the probability density function of random variable? Assume that these functions are zero outside the given interval.

Questions 5 through 8. The diameter of a molecule (in micrometer) is a random varible with the following probability density function

$$f(x) = \begin{cases} \frac{8k}{(x-6)^2}, & \text{if } 0 \le x \le 4\\ 0, & \text{otherwise} \end{cases}$$

- 5. Determine the constant k. (A) 0.1195
- \bigcirc 0.0195
- \bigcirc 0.6195
- \bigcirc 0.2195
- (E) 0.375

- 6. Find the value of the cumulative distribution function at 3.2.
- (B) 0.5714
- (C) 0.3159
- (D) 0.0159
- (E) 0.1159
- 7. Put Y = 4X + 8. What is the mean of Y?
 - (A) 18.8167 (B) 19.1612
- (C) 19.3612
- (D) 19.2612
- (E) 18.9612

8.			iameter of a \bigcirc 2.5445	molecule. (D) 3.1445	E	3
of s	success for the	ese methods a	are 0.75, 0.6, a	and 0.8 respec	ctivel	aduct an experiment and the probabilities by. One student randomly selects a method the third by X the number of successes.
9.	-	v		hods is select \bigcirc 0.0208		nd fails twice. 0.5308
10.	_	v		tly one failure 0.4817		0.6917
11.	What is the	mean of X ?				

 (\widehat{A}) 1.9633 (\widehat{B}) 1.4333 (\widehat{C}) 1.6333 (\widehat{D}) 1.2433 (\widehat{E}) 0.9733

12. Suppose that each failure costs the student 1.5 dollars. Compute the variance of the failure cost.

(A) 1.0663 (B) 1.3963 (C) 0.4163 (D) 0.9463 (E) 0.9063

Questions 13 through 16. Assume that the number of defects on a product of a production line is a random variable following a Poisson distribution and the numbers are independent across products. A product with at least one defect will be classified as a defective product. Assume further that the percentage of defective products made by this production line is 0.095.

13. Compute the average number of defects on a product of this production line.

(A) 0.2008 (B) 0.0998 (C) 0.9108 (D) 0.2708 (E) 0.2408

14. What is the standard deviation of the average number of defects on products of the production line?

(A) 1.05 (B) 0.0999 (C) 1.07 (D) 0.69 (E) 0.89

15. Select 10 products of the production line randomly. Calculate the probability that there are at most 2 defective products.

A 0.8382 B 0.7582 C 0.9382 D 0.6882 E 0.8182

16. Suppose further that the number of defective products of the production line per hour also follows a Poisson distribution with an average of 1 defective productions per hour. Calculate the probability that the time between two consecutive defective items does not exceed 24 minutes.

(A) 0.8197 (B) 0.2797 (C) 0.3297 (D) 0.5897 (E) 0.4597

Questions 17 through 20. Jermaine uses his smartphone X minutes everyday where X is a random variable following a normal distribution with a mean of 120 minutes and a standard deviation of 14 minutes.

17. Find the probability that Jermaine uses his smartphone less than 130 minutes in one day.

(A) 0.3181 (B) 0.8736 (C) 0.9847 (D) 0.5403 (E) 0.7625

18. Determine an interval centered at 120 such that X takes values in that interval in 83% days.

(A) (100.82, 139.18) (B) (108, 132) (C) (104, 136) (D) (82, 158) (E) (113, 127)

Stu. Fullname: Stu. ID: Page 2 of 3

19.	Compute the probability	that there	are at least	three days	of a	week (7	days) in	which	Jermaine
	uses his smartphone mor	e than 130	minutes per	day.					

 \bigcirc 0.0476

® 0.2181

 \bigcirc 0.1576 \bigcirc 0.3776

20. Find the probability that, on average, Jermaine uses his smartphone less than 130 minutes per day in a week. \bigcirc 0.4151 (B) 0.9706 (C) 0.8551 \bigcirc 0.9101

Stu. Fullname: Stu. ID: Page 3 of 3

Lecturer:	Date	Appi	rove	d by:		Date	
	October					Octobe	\overline{r}
Dr. Nguyen Tien Dung	$6^{th}, 2023$					$6^{th}, 202$	3
BK TO NCM	Midterm 1				October 16 th , 2023		
	Course title	Probab	robability and Statistics			Score	
UNIVERSITY OF TECHNOLOGY - VNUHCM	Course ID	MT201	3	Sheet code	2317		
Faculty of Applied Science	Duration	50 minu	utes	Shift	7:00		
Instructions to students:							
- You are allowed to use your OW.	N materials and	l $calculato$	or. T	otal available	score: 10.		
- At the beginning of the working t	ime, you MUST				Ų	this question	\overline{n}
sheet. There are 20 questions on	3 nages						
siteet. There are 20 questions on	o pageo.						

Student's full name: Invigilator 1: Invigilator 2: Student Id: Group:

- 1. Let A and B be two events such that P(A) = 0.5 and $P(A \cap B) = 0.44$. Find the probability P(B)such that A and B are independent.
 - $\bigcirc 0.47$ (A) 0.72(B) 0.48(C) 0.75(E) 0.88
- 2. Suppose that the probability for you to win 453 dollars in a game is 18%, while the probability of losing 32 dollars is 82%. Compute your average net gain in a game.
 - (A) Lose 61.3 dollars. (B) Win 58.3 dollars. (C) Lose 64.3 dollars. (D) Win 59.3 dollars. (E) Win 55.3 dollars.
- 3. Consider three events A, B, and C in the sample space Ω such that P(A) = 0.14, P(B) = 0.2, P(C) = 0.21, and P(B|C) = 0.12. Suppose that A and B are independent. In addition, A and C are disjoint. Compute $P(A \cup B \cup C)$.
 - (A) 0.1368 (B) 0.0768(C) 0.4968(D) 0.3668(E) 0.6768
- 4. Which of the following functions is the probability density function of random variable? Assume that these functions are zero outside the given interval.

Questions 5 through 8. The diameter of a molecule (in micrometer) is a random varible with the following probability density function

$$f(x) = \begin{cases} \frac{10k}{(x-8)^2}, & \text{if } 0 \le x \le 2\\ 0, & \text{otherwise} \end{cases}$$

- 5. Determine the constant k. (A) 2.4 (B) 1.9445 (C) 2.7445 \bigcirc 2.2445 (E) 2.0445
- 6. Find the value of the cumulative distribution function at 0.9.
 - (B) 0.7248 (C) 0.2248(D) 0.4248(E) 0.3803
- 7. Put Y = 4X + 8. What is the mean of Y?
 - (A) 12.3825 (B) 12.427 (C) 11.827 (D) 12.827 (E) 12.027

 \bigcirc 1.1429

Questions 9 through 12. There are three methods to conduct an experiment and the probabilities of success for these methods are 0.7, 0.7, and 0.9 respectively. One student randomly selects a method and use it to carry on the experiment two times independently. Denote by X the number of successes.

(E) 0.5

(E) 1.5874

 \bigcirc 0.03

8. Find the median of the diameter of a molecule.

 \bigcirc 1.2874

9. Find the probability that the first methods is selected and fails twice.

 $\bigcirc 0.28$

 \bigcirc 0.21

(B) 0.6874

 \bigcirc 0.13

10.	Find the probability that there is exactly one failure. \textcircled{A} 0.61 \textcircled{B} 0.69 \textcircled{C} 0.01 \textcircled{D} 0.62 \textcircled{E} 0.34
11.	What is the mean of X ?
12.	Suppose that each failure costs the student 2 dollars. Compute the variance of the failure cost. A 1.5022 B 1.5222 C 1.1522 D 1.2822 E 1.0822
a r	testions 13 through 16 . Assume that the number of defects on a product of a production line is andom variable following a Poisson distribution and the numbers are independent across products. Product with at least one defect will be classified as a defective product. Assume further that the centage of defective products made by this production line is 0.115.
13.	Compute the average number of defects on a product of this production line. A 0.7332 B 0.1222 C 1.0732 D 0.6732 E 0.9532
14.	What is the standard deviation of the average number of defects on products of the production line? A 0.6503 B 0.3803 C 0.0303 D 0.000299999999999 E 0.0802
15.	Select 19 products of the production line randomly. Calculate the probability that there are at most 2 defective products. (A) 0.2639 (B) 0.4939 (C) 0.6239 (D) 0.4139 (E) 0.3339
16.	Suppose further that the number of defective products of the production line per hour also follows a Poisson distribution with an average of 5 defective productions per hour. Calculate the probability that the time beween two consecutive defective items does not exceed 42 minutes. (A) 0.6798 (B) 0.5898 (C) 0.9498 (D) 0.9698 (E) 0.5498
var	estions 17 through 20 . Kele uses his smartphone X minutes everyday where X is a random table following a normal distribution with a mean of 90 minutes and a standard deviation of 16 nutes.
17.	Find the probability that Kele uses his smartphone less than 121 minutes in one day. A 0.4182 B 0.5293 C 0.9737 D 0.8626 E 0.7515
18.	Determine an interval centered at 90 such that X takes values in that interval in 92% days. (A) (43, 137) (B) (62, 118) (C) (50, 130) (D) (81, 99) (E) (72, 108)
${\mathrm{Stu}}$. Fullname: Stu. ID: Page 2 of 3

19. Compute the probability that there are at least three days of a week (7 days) in which Kele uses his smartphone more than 121 minutes per day.

 \bigcirc 0.2151

(B) 0.4901

 \bigcirc 0.0006

① 0.4351

20. Find the probability that, on average, Kele uses his smartphone less than 121 minutes per day in a week. A 0.7195 B 1 C 0.8295 D 0.6095 E 0.8845

Stu. Fullname: Stu. ID: Page 3 of 3

6 th , 2023	Exam		demic year	2023-2024	6 th , 202		
idterm l	Exam		demic year	2023-2024	Semester		
idterm l	Exam		demic year	2023-2024	Semester	1	
.iaterm 1	r⁄xam					1	
$\operatorname{Iidterm} \operatorname{Exam} \frac{\operatorname{Acad}}{\operatorname{Exam}}$		n date October 16		6 th , 2023			
urse title	Probak	oility a	and Statistics		Score		
urse ID	MT201	13	Sheet code	2318			
Duration 5		iutes	Shift	7:00	-		
aterials and	calculat	or. To	otal available	score: 10.			
					this question	\overline{n}	
ages.							
UNIVERSITY OF TECHNOLOGY - VNUHCM Course ID MT2013 Sheet code 2318 Exam date October 16 th , 2023 Course title Probability and Statistics Score							

Invigilator 1: Student's full name: Invigilator 2: Student Id: Group:

- 1. Let A and B be two events such that P(A) = 0.48 and $P(A \cap B) = 0.25$. Find the probability P(B)such that A and B are independent.
 - (A) 0.9908
 - (B) 0.0408
- (C) 0.8208
- (D) 0.6808
- (E) 0.5208
- 2. Suppose that the probability for you to win 259 dollars in a game is 32%, while the probability of losing 30 dollars is 68%. Compute your average net gain in a game.
 - (A) Lose 72.48 dollars.
- (B) Lose 69.48 dollars.
- (C) Win 67.48 dollars.
- (D) Win 72.48 dollars.

- (E) Win 62.48 dollars.
- 3. Consider three events A, B, and C in the sample space Ω such that P(A) = 0.27, P(B) = 0.18, P(C) = 0.29, and P(A|C) = 0.17. Suppose that A and B are independent. In addition, B and C are disjoint. Compute $P(A \cup B \cup C)$.
 - (A) 0.2921
- (B) 0.9221
- (C) 0.5321
- (D) 0.6421
- (E) 0.9521
- 4. Which of the following functions is the probability density function of random variable? Assume that these functions are zero outside the given interval.

Questions 5 through 8. The diameter of a molecule (in micrometer) is a random varible with the following probability density function

$$f(x) = \begin{cases} \frac{8k}{(x-4)^2}, & \text{if } 0 \le x \le 2\\ 0, & \text{otherwise} \end{cases}$$

- 5. Determine the constant k. (A) 0.0445
- (B) 1.0445
- (C) 0.9445
- (D) 0.5
- (E) 0.5445

- 6. Find the value of the cumulative distribution function at 1.8.
 - (A) 0.8182
- (B) 0.9627
- (C) 0.6627
- (D) 0.2627
- (E) 0.4627
- 7. Put Y = 6X + 8. What is the mean of Y?
 - (A) 15.3645
- (B) 15.609
- (C) 15.509
- (D) 14.909
- (E) 15.409

 \bigcirc 0.1208

8. Find the median of the diameter of a molecule.

(C) 1.3333

9. Find the probability that the first methods is selected and fails twice.

 \bigcirc 0.3208

(B) 0.9778

(B) 0.2608

 \bigcirc 1.7778

 \bigcirc 0.0208

Questions 9 through 12. There are three methods to conduct an experiment and the probabilities of success for these methods are 0.75, 0.65, and 0.6 respectively. One student randomly selects a method and use it to carry on the experiment two times independently. Denote by X the number of successes.

(E) 1.3778

(E) 0.5508

Stu. Fullname:				Stu. ID:	Page 2 of 3
18. Determine <a>(A) (65, 16)		atered at 116 .55) © (10	_	takes values in that (83.7, 148.3) ①	interval in 91% days. (95, 137)
17. Find the p (A) 0.9593	_	Kyrie uses h © 0.8482	is smartphon D 0.4038	e less than 149.1 min (E) 0.5149	nutes in one day.
					day where X is a random a standard deviation of 19
		consecutive	defective iten	ns does not exceed 4	c. Calculate the probability 0 minutes.
_		_	_		line per hour also follows a
2 defective		_	_	_	ility that there are at most
(A) 0.0745	B 0.9146	© 0.0646	① 0.5946	© 0.8746	
14. What is the line?					products of the production
(A) 0.1109	B 0.3919	© 1.1019	① 0.2319	E 1.0019	
13. Compute t	he average nui	mber of defec	ts on a produ	ct of this production	line.
a random varia A product wit	able following a	a Poisson dist defect will b	tribution and e classified as	the numbers are inc	luct of a production line is lependent across products. Assume further that the
(A) 1.3675		© 1.0175	_	© 1.5575	
					riance of the failure cost.
11. What is th (A) 1.4833	_	© 1.0933	① 1.3333	(E) 1.4333	
(A) 0.4567	B 0.8567	© 0.3867	(D) 0.4367	(E) 0.7767	
_	v		etly one failur		

19. Compute the probability that there are at least three days of a week (7 days) in which Kyrie uses his smartphone more than 149.1 minutes per day.

(A) 0.3266

(B) 0.1066

 \bigcirc 0.5466

 \bigcirc 0.4366

 \bigcirc 0.0021

20. Find the probability that, on average, Kyrie uses his smartphone less than 149.1 minutes per day in a week. A 1 B 0.8295 C 0.4995 D 0.4445 E 0.8845

Stu. Fullname: Stu. ID: Page 3 of 3

Answers Sheet

Questic	on sheet co	ode 2311:							
1 B.	2 E.	3 A.	4 E. 5 E	E. 6 C.	7 C.	8 D.	9 D.	10 B.	11 B.
12 B.	13 B.	14 E.	15 C.	16 D.	17 E.	18 C.	19 B.	20 D.	
Questic	n sheet c	ode 2312:							
1 E.	2 C.	3 C.	4 C. 5 H	E. 6 E.	7 E.	8 B.	9 A.	10 D.	11 C.
12 E.	13 A.	14 B.	15 C.	16 E.	17 B.	18 E.	19 C.	20 E.	
Questic	n sheet c	ode 2313:							
1 A.	2 B.	3 D.	4 E. 5 I	O. 6 A.	7 D.	8 B.	9 C.	10 A.	11 A.
12 B.	13 E.	14 B.	15 E.	16 C.	17 D.	18 A.	19 C.	20 A.	
Questic	n sheet c	ode 2314:							
1 D.	2 B.	3 E.	4 B. 5 C	C. 6 B.	7 D.	8 A.	9 D.	10 C.	11 B.
12 C.	13 C.		15 B.					20 D.	
Questic	n sheet c	ode 2315:							
1 C.	2 D.	3 B.	4 E. 5 H	E. 6 E.	7 B.	8 D.	9 E.	10 A.	11 A.
12 A.			15 B.			18 C.	19 A.	20 D.	
Questic	n sheet c	ode 2316:							
1 E.	2 B.	3 E.	4 B. 5 F	E. 6 B.	7 A.	8 E.	9 D.	10 A.	11 B.
	13 B.		15 C.				19 B.	20 B.	
					_, _,				
Questic	n sheet c	ode 2317:							
			4 E. 5 A	6 E.	7 A.	8 D.	9 A.	10 E.	11 A.
			15 C.				19 C.	20 B.	
12 11.	10 D.	11 2.	10 0.	10 D.	11 0.	10 D.	10 0.	20 2.	
Questic	n sheet c	ode 2318:							
1 E.			4 D. 5 I). 6 A.	7 A.	8 C.	9 D.	10 D.	11 D.
			15 A.				19 E.	20 A.	·
12 0.	10 11.	1111.	10 11.	10 D.	11 11.	10 D.	то д.	20 11.	

2 3 1 1 • •

 $$\operatorname{MT}2013$$ Probability and Statistics

OISP

2 3 1 2

 $$\operatorname{MT}2013$$ Probability and Statistics

OISP

2 3 1 3

 $$\operatorname{MT}2013$$ Probability and Statistics

OISP

•

•

•

•

2 3 1 4

Probability and Statistics

 $\rm MT2013$

OISP

1 2023-2024 16/10/2023 7:00

2 3 1 5

Probability and Statistics

 $\rm MT2013$

OISP

lacktriangle

1 2023-2024 16/10/2023 7:00

 $\rm MT2013$

2 3 1 6

Probability and Statistics
OISP

2 3 1 7

MT2013

•

Probability and Statistics

OISP

2 3 1 8

 $$\operatorname{MT}2013$$ Probability and Statistics

OISP

•

•

•

•

•

•