

#### **SUMAS DE CUADRADOS**

Alan Reyes-Figueroa Teoría de Números

(AULA 25C) 19.OCTUBRE.2023

Caracterizamos los números que son sumas de dos cuadrados.

#### **Teorema**

Los únicos números que pueden expresarse com suma de dos cuadrados son los de la forma  $n=2^sd^2\ell$ , donde  $s\in\mathbb{N}$  y  $\ell$  es libre de cuadrados tales que su factores primos son de la forma 4k+1.

<u>Prueba</u>: Comenzamos observando que si p es un primo de la forma 4k + 3 que divide a  $n = a^2 + b^2$ , entonces  $p \mid a$  y  $p \mid b$ .

De hecho, si esto no ocurriese, b sería invertible módulo p. Luego, de  $a^2 \equiv -b^2 \pmod{p}$ , tendríamos que  $(ab^{-1})^2 \equiv a^2b^{-2} \equiv -1 \pmod{p}$  y -1 sería un residuo cuadrático módulo

p, lo cual es imposible pues 
$$(\frac{-1}{p}) = (-1)^{\frac{p-1}{2}} = (-1)^{\frac{4k+2}{2}} = (-1)^{2k+1} = -1$$
.

Luego,  $p^2 \mid a^2$ ,  $p^2 \mid b^2 \Rightarrow p^2 \mid n$ . Repitiendo el proceso son  $\frac{n}{p^2} = (\frac{a}{p})^2 + (\frac{b}{p})^2$  en lugar de n, se concluye que todo primo de la forma 4k + 3 aparece con exponente par en la factoración de n.

Ahora, todo natural n puede expresarse como  $n=k^2m$ , donde  $k,m\in\mathbb{Z}^+$  y m es libre de cuadrados.

Si  $m = a^2 + b^2$ , es suma de cuadrados, entonces lo mismo ocurre para  $n = (ka)^2 + (kb)^2$ . Además, si  $m = a^2 + b^2$  y  $n^2 = c^2 + d^2$ , entonces

$$mn = (a^2 + b^2)(c^2 + d^2) = |a + bi|^2 \cdot |c + di|^2 = |(a + bi)(c + di)|^2$$
$$= |(ac - db) + (ad + bc)i|^2 = (ac - bd)^2 + (ad + bc)^2.$$

y el producto también es suma de dos cuadrados. Así, para mostrar que todo natural n de la forma descrita en el teorema es suma de dos cuadrados, basta mostrar que 2 y que todo primo impar de la forma 4k+1 es suma de dos cuadrados. Para el caso p=2, tenemos que  $2=1^2+1^2$ . En el otro caso, precisamos del siguiente resultado.

#### Lema (Lema de Thue)

Si m > 1 es un número natural, y  $a \in \mathbb{Z}$  es tal que (a, m) = 1, entonces existen naturales  $x, y \in \mathbb{N}$ , con  $0 < x, y \le \sqrt{m}$ , tales que alguno de los números ax  $\pm y$  es múltiplo de m.

<u>Prueba</u>: Sea  $q = \lfloor \sqrt{m} \rfloor$ . Entonces  $q+1 > \sqrt{m}$  y portanto  $(q+1)^2 > m$ . Consideramos todos los  $(q+1)^2$  números de la forma ax-y, donde x y y toman valores  $0,1,\ldots,q$ . Como sólo existen m residuos al dividir entre m, por el Principio de Dirichlet, existen al menos dos de los números anteriores, digamos  $ax_1-y_1$  y  $ax_2-y_2$  son congruentes módulo m.

Luego, la diferencia  $m \mid a(x_1 - x_2) + (y_1 - y_2) = (ax_1 - y_1) - (ax_2 - y_2)$ . Tenemos además,  $0 \le x_i, y_i \le \sqrt{m} \Rightarrow |x_1 - x_2|, |y_1 - y_2| \le \sqrt{m}$ . Así,

- $x_1 = x_2 \Rightarrow x_1 x_2 = 0$ , entonces  $m \mid y_1 y_2$ , lo que implica  $y_1 = y_2$ , un absurdo, pues los pares  $(x_1, y_1)$ ,  $(x_2, y_2)$  son distintos.
- $y_1 = y_2 \Rightarrow y_1 y_2 = 0$ , entonces  $m \mid a(x_1 x_2)$ . Como (a, m) = 1, entonces  $m \nmid a$  y se tiene que  $m \mid x_1 x_2$ , lo que implica  $x_1 = x_2$ , de nuevo un absurdo, pues los pares  $(x_1, y_1)$ ,  $(x_2, y_2)$  son distintos.

Por lo tanto, los números  $x = |x_1 - x_2|$  y  $y = |y_1 - y_2|$  cumplen con la condición requerida.

Retomando el teorema inicial, si p es un primo de la forma 4k+1, entonces  $(\frac{-1}{p})=(-1)^{\frac{p-1}{2}}=(-1)^{\frac{4k}{2}}=(-1)^{2k}=1$ , Luego, existe  $a\in\mathbb{Z}$  tal que  $a^2\equiv -1\pmod p$ , de modo que  $p\mid a^2+1$ .

Aplicando el Lema de Thue, existen enteros o  $< x, y \le \sqrt{p}$  tales que alguno de los números  $ax \pm y$  es divisible entre p. De ahí que  $p \mid (ax - y)(ax + y) = a^2x^2 - y^2$ ,

$$\implies p \mid x^2(a^2+1)-(a^2x^2-y^2)=x^2+a^2x^2-a^2x^2+y^2=x^2+y^2.$$

Como o < x, y <  $\sqrt{p}$ , entonces o <  $x^2$  +  $y^2$  < 2p, de modo que p =  $x^2$  +  $y^2$ . Esto encierra la prueba del teorema.  $\Box$ 

**Comentarios**: Existen otras demostraciones del Lema de Thue. Veremos una de estas cuando hablemos de teoría algebraica de números.

El método anterior puede aplicarse para obtener otras representaciones de números primos.

**Ejemplo**: Sean  $d \in \{1, 2, 3, 7\}$  y p un número primo impar tal que  $(\frac{-d}{p}) = 1$ . Entonces, existen  $e, f \in \mathbb{N}$  tales que  $p^2 = e^2 + df^2$ .

Solución: Sea  $a \in \mathbb{N}$  tal que  $a^2 \equiv -d \pmod p$ . Por el Lema de Thue, existen enteros  $x,y \in \mathbb{Z}$  tales que  $(x+ay)(x-ay) \equiv 0 \pmod p \iff p \mid x^2+dy^2$ . Como  $0 << x^2+dy^2 < (d+1)p$ , entonces tenemos

$$x^2 + dy^2 = kp$$
, con  $k \in \{1, 2, ..., d\}$ .

Una pregunta natural es la siguiente: ¿cuántos cuadrados son necesarios sumar para representar cualquier entero positivo n?. Bachet conjeturó que todo natural  $n \in \mathbb{N}$  puede representarse como suma de a lo sumo cuatro cuadrados. Esta conjetura fue provada por Fertmat, usando su método del descenso. Veremos a continuación una prueba debido a Lagrange en 1770, usando una identidad de Euler.

#### Lema (Identidad de Euler)

Para todo  $a, b, c, d, w, x, y, z \in \mathbb{Z}$ , se tiene que

$$(a^{2} + b^{2} + c^{2} + d^{2})(w^{2} + x^{2} + y^{2} + z^{2}) = (aw + bx + cy + dz)^{2} + (ax - bw - cz + dy)^{2} + (ay + bz - cw - dx)^{2} + (az - by + cx - dw)^{2}.$$

<u>Prueba</u>: Consideramos la siguiente identidad entre matrices complejas en  $\mathbb{C}^{2\times 2}$ :

$$\begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} \begin{pmatrix} \gamma & \delta \\ -\bar{\delta} & \bar{\gamma} \end{pmatrix} = \begin{pmatrix} \alpha\gamma - \beta\bar{\delta} & \alpha\delta + \beta\bar{\gamma} \\ -\alpha\delta + \beta\bar{\gamma} & \alpha\gamma - \beta\bar{\delta} \end{pmatrix}.$$

Calculando los determinantes, obtenemos

$$(|\alpha|^2 + |\beta|^2)(|\gamma|^2 + |\delta|^2) = |\alpha\gamma - \beta\bar{\delta}|^2 + |\alpha\delta + \beta\bar{\gamma}|^2.$$

Haciendo  $\alpha=a-bi$ ,  $\beta=-c-di$ ,  $\gamma=w+xi$ ,  $\delta=y+zi$ . Se obtiene la identidad.  $\Box$ 

Esta identidad se entiende de forma más natural si utilizamos *cuaterniones*. Recordemos que el conjunto de los cuaterniones es  $\mathbb{R}^4$ , con la suma usual y la norma euclideana, donde escribimos (a,b,c,d)=a+bi+cj+dk, y definimos el producto

$$i^2 = j^2 = k^2 = -1,$$
  $ij = -ji = k,$   $jk = -kj = i,$   $ki = -ik = j.$ 

En este caso, la identidad de Euler se traduce como  $|zw| = |z| \cdot |w|$ , con z, w cuaterniones.

Más aún, si identificamos el cuaternio a + bi + cj + dk con la matriz

$$\begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix}$$

obtenemos una identificación entre cuaterniones y las matrices usadas en la prueba.



#### Lema

Si 2m es suma de dos cuadrados, entonces m es suma de dos cuadrados.

<u>Prueba</u>: Como  $2m = x^2 + y^2$ , entonces x, y tienen la misma paridad. Luego

$$m = \left(\frac{x+y}{2}\right)^2 + \left(\frac{x-y}{2}\right)^2. \ \Box$$

#### Lema

Si p es un primo impar, entonces existen  $a, b, k \in \mathbb{Z}$  tales que  $a^2 + b^2 + 1 = kp$ .

Prueba: Considere los conjuntos

$$A=\{a^2\in\mathbb{Z}/p\mathbb{Z}:\ 0\leq a\leq \tfrac{p-1}{2}\},\qquad B=\{-b^2-1\in\mathbb{Z}/p\mathbb{Z}:\ 0\leq b\leq \tfrac{p-1}{2}\}.$$

Cada conjunto posee  $\frac{p+1}{2}$  elementos de  $\mathbb{Z}/p\mathbb{Z}$ , de modo que  $A \cap B \neq 0$ , esto es, existen a, b tales que  $a^2 + b^2 + 1 \equiv 0 \pmod{p}$ .

#### Teorema (Prueba de LAGRANGE)

Todo entero positivo n puede escribirse como suma de cuatro cuadrados.

Prueba: De la identidad de Euler, basta mostrar el resultado para los números primos.

Observe que  $2=1^2+1^2=1^2+1^2+0^2+0^2$  es suma de cuatro cuadrados. Nos limitamos al caso p primo impar. Ahora, por el lema anterior, sabemos que existen  $a,b,c,d,m\in\mathbb{Z}$ , con m>0, tales que  $mp=a^2+b^2+c^2+d^2$  (aquí se toma c=1 y d=0).

Para completar la prueba, basta mostrar que si m > 1, entonces existe o < n < m tal que np se puede escribir como suma de cuatro cuadrados.

• Si m es par, entonces ninguno, dos o cuatro de los números a,b,c,d son pares. Aplicando el primer lema, basta tomar  $n=\frac{m}{2}$ , pues

$$np = \frac{m}{2}p = \left(\frac{a+b}{2}\right)^2 + \left(\frac{a-b}{2}\right)^2 + \left(\frac{c+d}{2}\right)^2 + \left(\frac{c-d}{2}\right)^2$$

(basta agrupar términos del mismo signo).



• Si m es impar, m > 1, sean w, x, y, z enteros tales que

$$w \equiv a \pmod{m}, \qquad x \equiv b \pmod{m}, \qquad y \equiv c \pmod{m}, \qquad z \equiv d \pmod{m},$$

donde w, x, y, z  $\in (-\frac{m}{2}, \frac{m}{2})$ . Luego,

$$w^2 + x^2 + y^2 + z^2 < 4 \cdot \frac{m^2}{4} = m^2$$
  $y$   $w^2 + x^2 + y^2 + z^2 \equiv 0 \pmod{m}$ .

Portanto,  $w^2 + x^2 + y^2 + z^2 = nm$ , con o < n < m. Debido a la elección de w, x, y, z, tenemos que los números ax - bw - cz + dy, ay + bz - cw - dx y az - by + cx - dw son divisibles entre m, y  $aw + bx + cy + dz \equiv a^2 + b^2 + c^2 + d^2 \equiv 0 \pmod{m}$ . Aplicando el primer lema,

$$np = \frac{1}{m^2}(mp)(nm) = \frac{1}{m^2}(a^2 + b^2 + c^2 + d^2)(w^2 + x^2 + y^2 + z^2)$$
$$= \left(\frac{aw + bx + cy + dz}{m}\right)^2 + \left(\frac{ax - bw - cz + dy}{m}\right)^2 + \left(\frac{ay + bz - cw - dx}{m}\right)^2 + \left(\frac{az - by + cx - dw}{m}\right)^2$$

es suma de cuatro cuadrados.  $\Box$ 



# El Problema de Waring

En general, para  $n \in \mathbb{N}$ , podemos preguntarnos si existe un enter positivo s = s(n), que depende de n, tal que cualquier número natural se escribe como suma de a lo sumo s n-ésimas potencias. Este problema se conoce como el **problema de** WARING, y fue respondido afirmativamente por HILBERT en 1909.

Denotemos por g(n) el menor de estos números s. El teorema anterior muestra que  $g(2) \le 4$ , de hecho, g(2) = 4 pues se puede mostrar que ningún número de la forma  $4^k(8t+7)$  se puede escribir como suma de tres cuadrados.

Se conocen algunos otros valores para g(n):

- g(2) = 4 (FERMAT, LAGRANGE, GAUSS).
- g(3) = 9 (Wieferich, Kempner).
- g(4) = 19 (Balasubramanian, Dress, Deshoulliers).
- g(5) = 37 (JUNGRUN).
- g(6) = 73 (PILLAI).

# El Problema de Waring

En general, se tiene la siguiente

#### Conjetura (Euler)

Para todo  $n \ge 2$ , vale

$$g(n)=2^n+\left\lfloor\left(\frac{3}{2}\right)^n\right\rfloor-2.$$

Se puede demostrar que

#### Teorema (Euler)

Para todo  $n \ge 2$ , vale

$$g(n) \geq 2^n + \left\lfloor \left(\frac{3}{2}\right)^n \right\rfloor - 2.$$

<u>Prueba</u>: Consideremos el número  $m = 2^n \lfloor (\frac{3}{2})^n \rfloor - 1$ , y escribámoslo como suma de n-ésimas potencias. Como  $m < 3^n$ , en esta suma sólo pueden aparecer potencias de 1 ó 2.

# El Problema de Waring

Sea k el número de potencias de 2 en esta suma. Tenemos que  $m-2^nk$  términos son iguales a 1, de modo que hay  $(m-2^nk)+k=m-(2^n-1)k$  términos en total.

Por otro lado, como  $k \leq \lfloor (\frac{3}{2})^n \rfloor - 1$ , se tiene

$$m-(2^n-1)k \geq \left(2^n\left\lfloor\left(\frac{3}{2}\right)^n\right\rfloor-1\right)-(2^n-1)\left(\left\lfloor\left(\frac{3}{2}\right)^n\right\rfloor-1\right)$$
  
  $\geq 2^n+\left\lfloor\left(\frac{3}{2}\right)^n\right\rfloor-2.$ 

### Sumas de tres Cuadrados

El siguiente teorema, demostrado por GAUSS, muestra cuándo un número es suma de tres cuadrados.

# Teorema (Teorema de los 3 Cuadrados de Gauss)

Un entero  $n \ge 0$  es suma de tres cuadrados si, y sólo si, n no es de la forma  $4^a(8b+7)$ , con  $a,b \in \mathbb{N}$ .

<u>Prueba</u>: () Observe inicialmente que  $k^2 \equiv 0, 1, 4 \pmod{8}$ , para todo  $k \in \mathbb{Z}$ . En consecuencia, una suma de tres cuadrados no puede ser congruente a 7 (mod 8).

Además, si  $x,y,z\in\mathbb{Z}$  son tales que  $x^2+y^2+z^2\equiv 0\pmod 4$ , entonces x,y,z deben ser pares.

Luego, si 
$$x^2 + y^2 + z^2 = 4^a(8b + 7)$$
, tenemos que  $x = 2\bar{x}$ ,  $y = 2\bar{y}$ ,  $z = 2\bar{z}$ , y  

$$4(\bar{x}^2 + \bar{y}^2 + \bar{z}^2) = (2\bar{x})^2 + (2\bar{y})^2 + (2\bar{z})^2 = x^2 + y^2 + z^2 = 4^a(8b + 7) \implies \bar{x}^2 + \bar{y}^2 + \bar{z}^2 = 4^{a-1}(8b + 7).$$

y usando esto repetidamente, entonces  $2^a \mid (x,y,z)$ ; y luego  $\left(\frac{x}{2^a}\right)^2 + \left(\frac{y}{2^a}\right)^2 + \left(\frac{z}{2^a}\right)^2 = 8b + 7 \equiv 7 \pmod{8}$ , lo que es un absurdo.

### Sumas de tres Cuadrados

(⇐) Para mostrar la suficiencia, primero demostramos el siguiente

#### Lema

Si  $n \in \mathbb{N}$  es supa de tres cuadrados de números racionales, entonces n es suma de tres cuadrados enteros.

<u>Prueba</u>: Sea  $n = x_1^2 + x_2^2 + x_3^2$ , con  $x_1, x_2, x_3 \in \mathbb{Q}$ . Sean  $x_1 = \frac{p_1}{q}, x_2 = \frac{p_2}{q}, x_3 = \frac{p_3}{q}$ , con q un denominador común para  $x_1, x_2, x_3$ , entonces  $q^2n = p_1^2 + p_2^2 + p_3^2$ .

Sea d > 0 el menor entero positivo para el cual existen  $y_1, y_2, y_3 \in \mathbb{N}$  con

$$d^2n = y_1^2 + y_2^2 + y_3^2.$$

Queremos mostrar que d=1. Supongamos, por absurdo, que d>1. Escribiendo  $y_1=dy_1'+z_1, y_2=dy_2'+z_2, y_3=dy_3'+z_3,$  con  $y_i',z_i\in\mathbb{Z}, |z_i|\leq \frac{d}{2}$  para i=1,2,3, definimos  $a=y_1'^2+y_2'^2+y_3'^2-n,$   $b=2(nd-y_1y_1'-y_2y_2'-y_3y_3'),$  d'=ad+b,  $y_i''=ay_i+by_i'.$ 

### Sumas de tres Cuadrados

#### **Entonces**

$$\sum_{1 \le i \le 3} (y_i'')^2 = a^2 \sum_{1 \le i \le 3} y_i^2 + 2ab \sum_{1 \le i \le 3} y_i y_i' + b^2 \sum_{1 \le i \le 3} y_i^2$$

$$= a^2 d^2 n + ab(nd - b) + b^2 (a + n) = (ad + b)^2 n = (d')^2 n.$$

J

$$dd' = ad^{2} + bd = d^{2} \left( \sum_{1 \leq i \leq 3} (y_{i}'')^{2} - n \right) + 2d \left( nd - \sum_{1 \leq i \leq 3} y_{i}y_{i}' \right)$$

$$= \sum_{1 \leq i \leq 3} y_{i}^{2} - 2d \sum_{1 \leq i \leq 3} y_{i}y_{i}' + d^{2} \sum_{1 \leq i \leq 3} (y_{i}'')^{2} = \sum_{1 \leq i \leq 3} (y_{i} - dy_{i}')^{2} = \sum_{1 \leq i \leq 3} z_{i}^{2} \leq \frac{3}{4}d^{2}.$$

Luego, O  $< d' \le \frac{3}{4}d < d$ , lo que contradice la minimalidad de d. Note que si d' = 0, entonces  $\sum_{1 \le i \le 3} z_i^2 = dd' = 0$ , de donde  $z_1 = z_2 = z_3 = 0$ , y tendríamos que  $(y_1')^2 + (y_2')^2 + (y_3')^2 = n$ , un absurdo.  $\square$