Optimization

Quadratic forms II

Learning goals

- Properites of Quadratic functions
- •

Univariate case

In 1-variable calculus, the second derivative ist just a single value $q''(x) = 2 \cdot a$. Basic properties of q can easily be read off:

- q''(x) > 0 implies convex, q''(x) < 0 implies concave.
- High absolute values mean high curvature, low absolute values mean a low curvature.

Now: Multivariate case

For a multivariate quadratic function, the second derivative is a symmetric matrix of values **H** (called the Hessian).

We will see how **H** encodes the basic properties of the function q.

Example 1: A function composed of two univariate quadratic terms

$$q(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \mathbf{x}^{\top} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} = 2 \cdot x_1^2 + x_2^2$$

with
$$\nabla q(\mathbf{x}) = 2 \cdot \mathbf{A} \cdot \mathbf{x} = 4 \cdot x_1 + 2 \cdot x_2$$
, $\mathbf{H} = 2 \cdot \mathbf{A} = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}$

q has a high positive curvature of 4 in the direction of x_1 ,

Example 1: A function composed of two univariate quadratic terms

$$q(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \mathbf{x}^{\top} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} = 2 \cdot x_1^2 + x_2^2$$
with $\nabla q(\mathbf{x}) = 2 \cdot \mathbf{A} \cdot \mathbf{x} = 4 \cdot x_1 + 2 \cdot x_2$, $\mathbf{H} = 2 \cdot \mathbf{A} = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}$

q has a high positive curvature of 4 in the direction of x_1 , and a lower (positive) curvature of 2 in direction of x_2 .

Takeaway I:

- The Hessian encodes the curvature of the function
- If the Hessian H is diagonal, the diagonal elements encode the curvature of the function:
 - The *i*-th diagonal element gives us the curvature in the direction of $\mathbf{v} = \mathbf{e}_i$ because

$$\mathbf{v}^{\top} \mathbf{H} \mathbf{v} = \mathbf{e}_{i}^{\top} \mathbf{H} \mathbf{e}_{i} = h_{ii}.$$

ullet The curvature in an arbitrary direction $oldsymbol{v} \in \mathbb{R}^d, \, \|oldsymbol{v}\| = 1$, is

$$\mathbf{v}^{\top} \mathbf{H} \mathbf{v} = h_{11} v_1^2 + h_{22} v_2^2 + ... + h_{dd} v_d^2.$$

Takeaway I:

- The Hessian encodes the curvature of the function
- If the Hessian H is diagonal, the diagonal elements encode the curvature of the function:
 - The *i*-th diagonal element gives us the curvature in the direction of $\mathbf{v} = \mathbf{e}_i$ because

$$\mathbf{v}^{\top} \mathbf{H} \mathbf{v} = \mathbf{e}_{i}^{\top} \mathbf{H} \mathbf{e}_{i} = h_{ii}.$$

ullet The curvature in an arbitrary direction $oldsymbol{v} \in \mathbb{R}^d$, $\|oldsymbol{v}\| = 1$, is

$$\mathbf{v}^{\top} \mathbf{H} \mathbf{v} = h_{11} v_1^2 + h_{22} v_2^2 + ... + h_{dd} v_d^2.$$

In the general case we look at the eigenspectrum of H

Note: For diagonal matrices it is very easy to determine the eigenspectrum: The diagonal elements are the **eigenvalues**, and unit vectors are the **eigenvectors**.

$$\mathbf{He_1} = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} = \mathbf{4} \cdot \mathbf{e_1}; \qquad \mathbf{He_2} = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} = \mathbf{2} \cdot \mathbf{e_2}$$

Example 2:

$$q(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \mathbf{x}^{\top} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \mathbf{x},$$
 with $\nabla q(\mathbf{x}) = 2 \cdot \mathbf{A} \cdot \mathbf{x}$, $\nabla^2 q(\mathbf{x}) = \mathbf{H} = 2 \cdot \mathbf{A} = \begin{pmatrix} 4 & -2 \\ -2 & 4 \end{pmatrix}$

In the general case, the curvature is determined by the Eigenspectrum of *H*.

Takeaway II:

- Geometrically, directions of highest / lowest curvature are along the main axes of the ellipses representing the contour lines of q.
- Mathematically, the direction with the highest (lowest) curvature is the direction of the eigenvector \mathbf{v}_{max} (\mathbf{v}_{min}) that belongs to the largest (smallest) eigenvalue λ_{max} (λ_{min}) of **H**.

The eigenvectors and eigenvalues of $\mathbf{H} = \begin{pmatrix} 4 & -2 \\ -2 & 4 \end{pmatrix}$ are:

$$v_{\min} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \lambda_{\min} = 2$$

$$\mathbf{v}_{\min} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \lambda_{\min} = 2$$

$$\mathbf{v}_{\max} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \quad \lambda_{\max} = 3$$

The direction \mathbf{v}_{max} is also the direction in which the function increases fastest.

"Walking" the same distance along \mathbf{v}_{max} (magenta) makes us pass more level curves than walking along any other direction.

If we know the eigenspectrum of **A**, i.e. the set of its eigenvalues $\{\lambda_1, \lambda_2, ..., \lambda_d\}$, we also know the eigenspectrum of $\mathbf{H} = 2 \cdot \mathbf{A}$. The following basic properties of q can be read off from this eigenspectrum:

- If **all** eigenvalues of the \mathbf{H} are > 0 (we call \mathbf{H} positive definite):
 - the function q is convex,
 - there is a unique global minimum.
- If **all** eigenvalues of the \mathbf{H} are < 0 (we call \mathbf{H} negative definite):
 - the function q is concave,
 - there is a unique global maximum.

- If there are both positive and negative eigenvalues (we call H indefinite):
 - the function *q* is neither concave nor convex,
 - there is a saddle point.

Example: Sketch the following function

$$q(\mathbf{x}) = \mathbf{x}^{\top} \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix} \mathbf{x}$$

Step 1: Compute the Hessian

$$\mathbf{H} = 2 \cdot \mathbf{A} = \begin{pmatrix} -2 & -2 \\ -2 & 2 \end{pmatrix}$$

Example: Sketch the following function

$$q(\mathbf{x}) = \mathbf{x}^{\top} \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix} \mathbf{x}$$

Step 2: Compute eigenvectors / -values:

$$\begin{array}{rcl} \textbf{\textit{v}}_1 & = & \begin{pmatrix} 1-\sqrt{2} \\ 1 \end{pmatrix}, & \quad \lambda_1 = 2\sqrt{2} \\ \\ \textbf{\textit{v}}_2 & = & \begin{pmatrix} 1+\sqrt{2} \\ 1 \end{pmatrix}, & \quad \lambda_2 = -2\sqrt{2}. \end{array}$$

Example: Sketch the following function

$$q(\mathbf{x}) = \mathbf{x}^{\top} \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix} \mathbf{x}$$

Step 2: Compute eigenvectors / -values:

$$\begin{array}{rcl} \textbf{\textit{v}}_1 & = & \begin{pmatrix} 1-\sqrt{2} \\ 1 \end{pmatrix}, & \quad \lambda_1 = 2\sqrt{2} \\ \\ \textbf{\textit{v}}_2 & = & \begin{pmatrix} 1+\sqrt{2} \\ 1 \end{pmatrix}, & \quad \lambda_2 = -2\sqrt{2}. \end{array}$$

Example: Sketch the following function

$$q(\mathbf{x}) = \mathbf{x}^{\top} \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix} \mathbf{x}$$

EIGENSPECTRUM AND CONDITION

The condition of squared full-rank matrix can be read off from its eigenspectrum: it is $\kappa(\mathbf{A}) = \frac{|\lambda_{\text{max}}|}{|\lambda_{\text{min}}|}$, with λ_{max} being the largest eigenvalue and λ_{min} being the lowest eigenvalue (in absolute terms). A high condition means:

- The absolute value of the biggest eigenvalue λ_{max} is much larger than the absolute value of the lowest eigenvalue λ_{min} .
- The curvature in the direction of minimum curvature (v_{max}) is much lower than the one in the direction of maximum curvature (v_{min}).
- We will see later, that optimization algorithms like gradient descent will have difficulties optimizing such functions.

INTERPRETATION OF GENERAL FUNCTIONS

Every function can be locally approximated by a quadratic function via Taylor approximation:

$$f(x) \approx f(\tilde{\mathbf{x}}) + \nabla f(\tilde{\mathbf{x}})^{\top} (\mathbf{x} - \tilde{\mathbf{x}}) + \frac{1}{2} (\mathbf{x} - \tilde{\mathbf{x}})^{\top} \nabla^{2} f(\tilde{\mathbf{x}}) (\mathbf{x} - \tilde{\mathbf{x}})$$

f is shown as the hollow grid and its second-order approximation at (0,0) as a continuous surface. Source: daniloroccatano.blog.

By a basic geometric understanding of quadratic functions, we are able to understand a function's local geometry by looking at the Hessian $\nabla^2 f(\tilde{x})$.