Module Langages Formels TD 6 : Lemme de l'étoile et Lemme d'Ogden

Exercice 1 Point d'Étoile noire, le lemme de l'étoile nous suffit!

Montrer que les langages suivants ne sont pas algébriques.

- 1. $L_1 = \{a^i b^j c^k, i < j < k\};$
- 2. $L_2 = \{a^n b^n c^m, n \leq m \leq 2n\};$
- 3. $L_3 = \{a^{2^n}, n \ge 0\}$;
- 4. $L_4 = \{a^{n^2}, n \ge 0\}$;

Exercice 2 Lemme d'Ogden

L'objectif de cet exercice est de montrer une version plus forte du lemme de l'étoile pour les langages algébriques :

Lemme (Ogden):

Soit L un langage algébrique. Il existe un entier N tel que pour tout mot $z \in L$ dans lequel on marque au moins N positions distinctes, il est possible de décomposer z sous la forme z=uxvyw avec

- x ou y contient au moins une position marquée,
- xvy contient au plus N positions marquées,
- pour tout $i \geq 0$, $ux^ivy^iw \in L$.
- **2.1.** On se donne une grammaire algébrique propre G engendrant un langage L. Montrer qu'il existe une grammaire sous forme normale de Chomsky (CNF) reconnaissant le langage $L \{ \epsilon \}$.
- ▶ Rappel : Une grammaire CNF est une grammaire dont toutes les productions sont de la forme

$$A \rightarrow BC$$
 ou $A \rightarrow a$

Définition:

Soit T un sous-arbre d'un arbre de dérivation selon une grammaire CNF. On suppose marquées certaines feuilles de T. On appelle *embranchement* un nœud de T ayant deux fils, tel que chacun de ses fils contienne au moins une feuille marquée.

2.2. Soit T un sous-arbre d'un arbre de dérivation selon une grammaire CNF. On suppose qu'au moins 2^h feuilles distinctes de T ont été marquées.

Montrer qu'il existe un chemin, de la racine à une feuille, passant par au moins h embranchements.

- **2.3**. On considère une grammaire CNF G engendrant le langage L. Montrer qu'il existe un entier N tel que :
- pour tout mot $w \in L$ dans lequel on margue au moins N positions,
- pour tout arbre de dérivation de w,

il existe deux embranchements b_1 et b_2 tels que

- b_1 est un ancêtre de b_2 ,
- b_1 est un ancêtre d'au plus N feuilles marquées,
- b_1 et b_2 sont étiquetés par la même variable.
- 2.4. En déduire le lemme d'Ogden.
- **2.5**. On s'intéresse au langage $L_5 = \{a^i b^j c^k d^l \mid i = 0 \text{ ou } j = k = l\}$.
- **2.5. 1.** Montrer que pour tout $N \in \mathbb{N}^+$ et tout mot $z \in L_5$ avec $|z| \ge N$, il existe une décomposition z = uxvyw telle que
- $-|xy| \ge 1$
- $-|xvy| \leq N$
- pour tout $i \ge 0$, $ux^ivy^iw \in L_5$.
- **2.5. 2.** Montrer que L_5 n'est pas algébrique.

Exercice 3 Couper la poire en deux n'est pas toujours rationnel.

Pour tout langage L sur Σ , on définit

$$\frac{1}{2}L = \{x \in \Sigma^* | \exists y \in \Sigma^*, |x| = |y| \text{ et } xy \in L\}$$

- **3.1.** Montrer que le langage $L_6 = \{a^nb^nc^md^{3m}|n,m \geq 1\}$ est algébrique.
- **3.2**. Calculer $\frac{1}{2}L_6$.
- **3.3**. Montrer que $\frac{1}{2}L_6$ n'est pas algébrique.