ELEC 221 Formula Sheet

Continuous Time Signals

Even and Odd Components:

$$x_e(t) = \frac{1}{2}[x(t) + x(-t)]$$

$$x_o(t) = \frac{1}{2}[x(t) - x(-t)]$$

A signal is periodic with fundamental period T_0 if $x(t + kT_0) = x(t) \quad \forall t \in (-\infty, \infty)$

Energy:

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

Causality:

- Causal: x(t) = 0 for t < 0.
- Anti-Causal: x(t) = 0 for $t \ge 0$.
- A-Causal or Non-Causal: Both of the above.

Continuous Time Systems

Dynamic systems have memory. Active systems can deliver energy to the outside world.

Linearity:

$$\mathcal{S}[\alpha x(t) + \beta y(t)] = \alpha \mathcal{S}[x(t)] + \beta \mathcal{S}[y(t)]$$

Time Invariance:

If
$$S[x(t)] = y(t)$$
 then $S[x(t \pm \tau)] = y(t \pm \tau)$.

Zero-State Response:

Due to the input as the initial conditions are zero.

Zero-Input Response:

Due to the initial conditions as the input is zero.

Convolution Integral:

$$[x * y](t) = \int_{-\infty}^{\infty} x(\tau)y(t-\tau) d\tau = \int_{-\infty}^{\infty} x(t-\tau)y(\tau) d\tau$$

Total Response from Impulse Response:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

Causality:

A continuous time system S is causal if whenever x(t) = 0 and there are no initial conditions, y(t) = 0 and the output y(t) does not depend on future inputs.

Bounded-Input Bounded-Output Stability:

If an input x(t) bounded then the output of an BIBO system is also bounded.

$$\int_{-\infty}^{\infty} |h(t)| \, dt < \infty$$

Laplace Transform

 $s = \sigma + i\omega$

Eigenfunction Property:

$$\mathcal{S}[e^{s_0t}] = H(s_0)e^{s_0t}$$

One Sided Laplace Transform:

$$F(s) = \mathcal{L}[f(t)u(t)] = \int_{0^{-}}^{\infty} f(t)e^{-st} dt$$

Region of Convergence:

- Finite support \rightarrow Entire s-plane.
- Causal function $\to \sigma > \max(\sigma_i), -\infty < \omega < \infty$.
- Anti-causal $\rightarrow \sigma < \min(\sigma_i), -\infty < \omega < \infty$.
- Non-causal $\rightarrow \mathcal{R} = \mathcal{R}_{causal} \cap \mathcal{R}_{anti-causal}$.

Initial Value Theorem:

$$f(0+) \Leftrightarrow \lim_{s \to \infty} sF(s)$$

Final Value Theorem:

$$\lim_{t \to \infty} f(t) \Leftrightarrow \lim_{s \to 0} sF(s)$$

Bounded-Input Bounded-Output Stability:

If the region of convergence contains the $i\omega$ -axis, then the system is BIBO stable.

Fourier Series

Fourier analysis in the steady state.

Eigenfunction Property:

$$S[e^{j\omega_0 t}] = H(j\omega_0)e^{j\omega_0 t}$$

$$x(t) = \sum_k X_k e^{j\omega_k t} \implies y(t) = \sum_k X_k H(j\omega_k)e^{j\omega_k t}$$

$$= \sum_k X_k |H(j\omega_k)|e^{j(\omega_k t + \angle H(\omega_k))}$$
Fourier Series Coefficients (for any t_0):

$$X_k = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) e^{-jk\omega_0 t} dt$$

Parseval's Power Relation (for any t_0):

$$P = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} |x(t)|^2 dt = \sum_{k = -\infty}^{\infty} |X_k|^2$$

Symmetry of Line Spectra:

$$|X_k| = |X_{-k}|$$

$$\angle X_k = -\angle X_{-k}$$

Trigonometric Fourier Series:

$$x(t) = X_0 + 2 \sum_{k=1}^{\infty} |X_k| \cos(k\omega t + \Theta_k)$$

$$x(t) = c_0 + 2 \sum_{k=1}^{\infty} [c_k \cos(k\omega_0 t) + d_k \sin(k\omega_0 t)]$$

$$c_k = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) \cos(k\omega_0 t) dt \quad k = 0, 1, 2...$$

$$d_k = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) \sin(k\omega_0 t) dt \quad k = 1, 2, 3...$$

$$\Theta_k = -\arctan(d_k/c_k)$$

Fourier Coefficients from Laplace Transform:

If $x_1(t)$ is a single period of x(t), then

$$X_k = \frac{1}{T_0} \mathcal{L}[x_1(t)] \Big|_{s=jk\omega_0}$$

Response of LTI Systems to Periodic Signals:

If the input to an LTI system has Fourier Series $x(t) = X_0 + 2 \sum_{k=1}^{\infty} |X_k| \cos(k\omega t + \angle X_k)$, then the steady state response is $y(t) = X_0 |H(j0)| +$ $2\sum_{k=1}^{\infty} |X_k| |H(jk\omega_0)| \cos(k\omega_0 t + \angle X_k + \angle H(jk\omega_0))$

Fourier Transform

$$\begin{split} X(\omega) &= \int_{-\infty}^{\infty} x(t) e^{-j\omega t} \, dt \\ x(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} \, d\omega \end{split}$$

Fourier Transform from Laplace Transform (if X(s)contains the $i\omega$ -axis):

$$\mathcal{F}[x(t)] = \mathcal{L}[x(t)]|_{s=j\omega} = X(s)|_{s=j\omega}$$

$$X(t) \stackrel{\mathcal{F}}{\Longleftrightarrow} 2\pi x(-\omega)$$

Fourier Transform of Periodic Signals:

$$\sum_{k} X_{k} e^{jk\omega_{0}t} \stackrel{\mathcal{F}}{\iff} \sum_{k} 2\pi_{k} \delta(\omega - k\omega_{0})$$

Parseval's Energy Relation:

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} |X(\omega)|^2 d\omega$$

Symmetry of Spectral Representations:

$$|X(\omega)| = |X(-\omega)|$$

$$Re[X(\omega)] = Re[X(-\omega)]$$

$$\angle X(\omega) = -\angle X(-\omega)$$

$$Im[X(\omega)] = -Im[X(-\omega)]$$

https://github.com/DonneyF/formula-sheets

Updated December 1, 2018