

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

DEPARTMENTS.

SOLUTIONS OF PROBLEMS.

ALGEBRA.

344. Proposed by V. M. SPUNAR, Cleveland, Ohio.

Given $x^7 - 5x^2y^4 = -1506...(1)$, and $y^5 - 3xy = 103...(2)$; find the values of x and y.

Solution by E. B. ESCOTT, Ann Arbor, Mich.

Drawing the graphs of the two equations we see that the only real intersection is for x between -2 and -2.84, and y between 2.4 and 2.53.

A few trials give the values to a few decimals

$$x = -2.4168$$
, $y = 2.43359$.

Also solved by the Proposer.

345. Proposed by E. B. ESCOTT, Professor of Mathematics, University of Michigan.

Solve the simultaneous equations:

$$x^3+y^2z+zw^2-xz^2-2wxy=a...(1). \ y^3+z^2w+wx^2-yw^2-2xyz=b...(2). \ z^3+w^2x+xy^2-zx^2-2yzw=c...(3). \ w^3+x^2y+yz^2-wy^2-2zwx=d...(4).$$

Solution by the PROPOSER.

If we put the determinant

$$\begin{vmatrix} x & y & z & w \\ w & x & y & z \\ z & w & x & y \\ y & z & w & x \end{vmatrix} = D...(5),$$

we see that the minors of the first row are the first members of the given equations. Therefore, the minors of x, y, z, w in the determinant, D, are equal to a, b, c, d. Therefore the determinant

$$\begin{vmatrix} a & -b & c & -d \\ -d & a & -b & c \\ c & -d & a & -b \\ -b & c & -d & a \end{vmatrix} \dots (6),$$

is the reciprocal determinant of D and is therefore equal to D^3 . Also by the