Sessió 10

1. App Classification Learner

L'objectiu d'aquesta pràctica és aprendre a classificar mostresa partir dels seus vectors de caracteristiques. Usarem la App Classification learner de Matlab. Trobareu la informació necessària a:

https://uk.mathworks.com/help/stats/train-decision-trees-in-classification-learner-app.html

https://uk.mathworks.com/help/stats/train-classification-models-in-classification-learner-app.html

Podeu utilitzar el dataset Fisher iris (tot un clàssic) i experimentar amb diferents classificadors. En acabar heu de ser capaços de:

- Tunnejar correctament els paràmetres d'un classificador
- Probar diferents classificadors i escollir-ne els que donin millors resultats
- Fer experiments amb rigor (p.ex: cross-validation)
- Presentar els resultats de forma correcta (corba RoC, matriu de confusió...)

```
fishertable = readtable('fisheriris.csv');
view(trainedModel.ClassificationTree,'Mode','graph');
yfit = trainedModel.predictFcn(fishertable);
```

2. Classificació automàtica d'espècies arbòries

Un cop domineu la app Clasification learner, es planteja un problema de classificació amb imatges reals. Dins la tasca corresponent a la sessió 10 a Atenea, trobareu imatges de fulles de roure, faig i plàtan. Entreneu varios classificadors per aquestes tres espècies usant com a vectors de característiques els seus descriptors de Fourier. Es demana un informe (en pdf) que inclogui el codi usat per a obtenir els descriptors, la descripció dels experiments realitzats, els classificadors que han funcionat millor i els resultats obtinguts. Indiqueu quines caracaterístiques del vector són necessàries per a la correcta classificació, i quines no són significatives.

Al trabajar con los descriptores de Fourier de las respectivas imagenes, se nos planteó el dilema de usar el modulo de los descriptores odividir los descriptores, que son números complejos, en dos partes, real e imaginaria.

Haremos pruebas de ambos casos y decidiremos cual nos dá un mejor resultado.

Clasificación

Primero estudiaremos los resultado en función del número de descriptores (5, 20, 50, 75)

Para las pruebas, hemos decidido dividir nuestros datos en 2 conjuntos: Train y Test.

Test es un 30% del total de los datos y serán escogidos aleatoriamente en cada prueba, sin embargo, sabremos que del 30%, el primer tercio son Arce, el segundo tercio son Haya y el último tercio son Roble.

Clasificación usando parte real e imaginaria

• Usando 5 descriptores nos da los siguientes resultados:

1.2 Tree Last change: Medium Tree	Accuracy: 86.7% 20/20 features
1.3 Tree Last change: Coarse Tree	Accuracy: 86.7% 20/20 features
1.4 🖒 Linear Discriminant Last change: Linear Discriminant	Accuracy: 80.0% 20/20 features
1.5 🖒 Quadratic Discriminant Last change: Quadratic Discriminant	Failed 20/20 features
1.6 \(\sigma\) Naive Bayes Last change: Gaussian Naive Bayes	Accuracy: 90.0% 20/20 features
1.7 \(\triangle \) Naive Bayes Last change: Kernel Naive Bayes	Accuracy: 73.3% 20/20 features
1.8 SVM Last change: Linear SVM	Accuracy: 76.7% 20/20 features
10 > SVM	Accuracy: 70.0%

Haremos una prueba con los datos Test:

1	Roure
2	Roure
3	Erable
4	Erable
5	Erable
6	Erable
7	Faig
8	Roure
9	Faig
10	Faig
11	Faig
12	Faig
13	Roure
14	Roure
15	Roure
16	Roure
17	Roure
18	Faig
10	

Como se puede observar y sabiendo los resultados correctos expuestos arriba, hay un gran porcentaje de fallos, un 20% aproximadamente.

• Usando 20 descriptores nos da los siguientes resultados:

History Quadratic Discriminant	Failed
Last change: Quadratic Discriminant	80/80 features
1.6 🖒 SVM Last change: Linear SVM	Accuracy: 66.7% 80/80 features
1.7 🖒 SVM Last change: Quadratic SVM	Accuracy: 63.3% 80/80 features
1.8 SVM Last change: Cubic SVM	Accuracy: 63.3% 80/80 features
1.9 🏠 SVM Last change: Fine Gaussian SVM	Accuracy: 86.7% 80/80 features
1.10 😭 SVM Last change: Medium Gaussian SVM	Accuracy: 80.0% 80/80 features
1.11 🟠 SVM Last change: Coarse Gaussian SVM	Accuracy: 56.7% 80/80 features
1.12 C KNN Last change: Fine KNN	Accuracy: 73.3% 80/80 features
1.13 🏠 KNN Last change: Medium KNN	Accuracy: 36.7% 80/80 features
1.14 🏠 KNN Last change: Coarse KNN	Accuracy: 33.3% 80/80 features
1.15 🏠 KNN Last change: Cosine KNN	Accuracy: 56.7% 80/80 features
1.16 KNN Last change: Cubic KNN	Accuracy: 40.0% 80/80 features
1.17 🏠 KNN Last change: Weighted KNN	Accuracy: 43,3% 80/80 features
1.18 🖒 Ensemble Last change: Boosted Trees	Accuracy: 33,3% 80/80 features
1.19 🏠 Ensemble Last change: Bagged Trees	Accuracy: 90.0% 80/80 features
1.20 🏠 Ensemble Last change: Subspace Discriminant	Accuracy: 86.7% 80/80 features
1.21 🏠 Ensemble Last change: Subspace KNN	Accuracy: 73.3% 80/80 features
1.22 🏠 Ensemble Last change: RUSBoosted Trees	Accuracy: 33,3% 80/80 features

_	
	1
1	Erable
2	Erable
3	Erable
4	Erable
5	Erable
6	Erable
7	Faig
8	Faig
9	Faig
10	Faig
11	Faig
12	Faig
13	Faig
14	Roure
15	Faig
16	Roure
17	Roure
18	Roure

Como podemos observar solo ha fallado 2/18. Lo que demuestra que ha disminuido bastante el error.

• Usando 50 descriptores nos da los siguientes resultados:

Last change: Quadratic Discriminant	200/200 features
1.6 🖒 SVM	Accuracy: 50.0%
Last change: Linear SVM	200/200 features
1.7 SVM	Accuracy: 46.7%
Last change: Quadratic SVM	200/200 features
1.8 SVM Last change: Cubic SVM	Accuracy: 46.7% 200/200 features
1.9 🏠 SVM	Accuracy: 66.7%
Last change: Fine Gaussian SVM	200/200 features
1.10 ☆ SVM	Accuracy: 80.0%
Last change: Medium Gaussian SVM	200/200 features
1.11 🏠 SVM	Accuracy: 43.3%
Last change: Coarse Gaussian SVM	200/200 features
1.12 🏠 KNN	Accuracy: 50.0%
Last change: Fine KNN	200/200 features
1.13 A KNN	Accuracy: 33.3%
Last change: Medium KNN	200/200 features
1.14 🏠 KNN Last change: Coarse KNN	Accuracy: 33.3% 200/200 features
1.15 A KNN	Accuracy: 40.0%
Last change: Cosine KNN	200/200 features
1.16 ☆ KNN	Accuracy: 33.3%
Last change: Cubic KNN	200/200 features
1.17 ☆ KNN	Accuracy: 33.3%
Last change: Weighted KNN	200/200 features
1.18 CEnsemble	Accuracy: 33.3%
Last change: Boosted Trees	200/200 features
1.19 Ensemble	Accuracy: 80.0% 200/200 features
Last change: Bagged Trees	
1.20 \(\text{ Ensemble} \) Last change: Subspace Discriminant	Accuracy: 60.0% 200/200 features
1.21 ☆ Ensemble	Accuracy: 76.7%
Last change: Subspace KNN	200/200 features
1.22 🟠 Ensemble	Accuracy: 33.3%
Last change: RUSBoosted Trees	200/200 features

	1
1	Roure
2	Erable
3	Erable
4	Erable
5	Roure
6	Erable
7	Faig
8	Faig
9	Faig
10	Faig
11	Faig
12	Faig
13	Faig
14	Roure
15	Roure
16	Roure
17	Roure
18	Roure

Como podemos observar ha fallado en 3/16. Como se puede admirar los resultados han empeorado respecto a los anteriores experimentos.

• Usando 75 descriptores nos da los siguientes resultados:

1.5 Quadratic Discriminant Last change: Quadratic Discriminant	<u>Failed</u> 300/300 features
1.6 ☆ SVM Last change: Linear SVM	Accuracy: 46.7% 300/300 features
1.7 😭 SVM Last change: Quadratic SVM	Accuracy: 43.3% 300/300 features
1.8 SVM Last change: Cubic SVM	Accuracy: 43.3% 300/300 features
1.9 😭 SVM Last change: Fine Gaussian SVM	Accuracy: 70.0% 300/300 features
1.10 😭 SVM Last change: Medium Gaussian SVM	Accuracy: 86.7% 300/300 features
1.11 ☆ SVM Last change: Coarse Gaussian SVM	Accuracy: 36.7% 300/300 features
1.12 🏠 KNN Last change: Fine KNN	Accuracy: 40.0% 300/300 features
1.13 ☆ KNN Last change: Medium KNN	Accuracy: 33,3% 300/300 features
1.14 ☆ KNN Last change: Coarse KNN	Accuracy: 33,3% 300/300 features
1.15 🏠 KNN Last change: Cosine KNN	Accuracy: 46.7% 300/300 features
1.16 ☆ KNN Last change: Cubic KNN	Accuracy: 33,3% 300/300 features
1.17 ☆ KNN Last change: Weighted KNN	Accuracy: 33.3% 300/300 features
1.18 ☆ Ensemble Last change: Boosted Trees	Accuracy: 33.3% 300/300 features
1.19 ☆ Ensemble Last change: Bagged Trees	Accuracy: 83.3% 300/300 features
1.20 ☆ Ensemble Last change: Subspace Discriminant	Accuracy: 56.7% 300/300 features
1.21 🏠 Ensemble Last change: Subspace KNN	Accuracy: 76.7% 300/300 features
1.22 🏠 Ensemble Last change: RUSBoosted Trees	Accuracy: 33.3% 300/300 features

_	
	1
1	Roure
2	Erable
3	Erable
4	Roure
5	Erable
6	Erable
7	Faig
8	Faig
9	Faig
10	Faig
11	Faig
12	Faig
13	Roure
14	Roure
15	Roure
16	Roure
17	Roure
18	Roure

Como podemos observar ha fallado en 2/16. Como se puede admirar los resultados han mejorado pero no son superior a los que han dado con 5 y 20 descriptores.

• Usando 5 descriptores nos da los siguientes resultados:

1.7 \(\triangle \) Naive Bayes Last change: Kernel Naive Bayes	Accuracy: 73.3% 10/10 features
1.8 SVM Last change: Linear SVM	Accuracy: 96.7% 10/10 features
1.9 SVM Last change: Quadratic SVM	Accuracy: 96.7% 10/10 features
1.10 SVM Last change: Cubic SVM	Accuracy: 93.3% 10/10 features
1.11 😭 SVM Last change: Fine Gaussian SVM	Accuracy: 80.0% 10/10 features
1.12 😭 SVM Last change: Medium Gaussian SVM	Accuracy: 93.3% 10/10 features
1.13 😭 SVM Last change: Coarse Gaussian SVM	Accuracy: 73.3% 10/10 features
1.14 🏠 KNN Last change: Fine KNN	Accuracy: 96.7% 10/10 features
1.15 🏠 KNN Last change: Medium KNN	Accuracy: 80.0% 10/10 features
1.16 KNN Last change: Coarse KNN	Accuracy: 33.3% 10/10 features
1.17 🏠 KNN Last change: Cosine KNN	Accuracy: 70.0% 10/10 features
1.18 😭 KNN Last change: Cubic KNN	Accuracy: 80.0% 10/10 features
1.19 🏠 KNN Last change: Weighted KNN	Accuracy: 90.0% 10/10 features
1.20 🖒 Ensemble Last change: Boosted Trees	Accuracy: 33.3% 10/10 features
1.21 🖒 Ensemble Last change: Bagged Trees	Accuracy: 83.3% 10/10 features
1.22 🖒 Ensemble Last change: Subspace Discriminant	Accuracy: 100.0% 10/10 features
1.23 🖒 Ensemble	Accuracy: 96.7%

1	Erable
2	Erable
3	Erable
4	Erable
5	Erable
6	Erable
7	Faig
8	Faig
9	Faig
10	Faig
11	Faig
12	Faig
13	Roure
14	Roure
15	Roure
16	Roure
17	Roure
18	Roure

Buenos resultados aunque es posible debido a la poca cantidad de datos

• Usando 20 descriptores nos da los siguientes resultados:

1.1 Tree Last change: Fine Tree	Accuracy: 93.3% 40/40 features
1.2 Tree Last change: Medium Tree	Accuracy: 93.3% 40/40 features
1.3 Tree Last change: Coarse Tree	Accuracy: 93.3% 40/40 features
1.4 🖒 Linear Discriminant Last change: Linear Discriminant	Accuracy: 96.7% 40/40 features
1.5 \(\text{Quadratic Discriminant} \) Last change: Quadratic Discriminant	Failed 40/40 features
1.6 Naive Bayes Last change: Gaussian Naive Bayes	Accuracy: 93.3% 40/40 features
1.7 \(\triangle \) Naive Bayes Last change: Kernel Naive Bayes	Accuracy: 90.0% 40/40 features
1.8 SVM Last change: Linear SVM	Accuracy: 90.0% 40/40 features
1.9 🖒 SVM Last change: Quadratic SVM	Accuracy: 96.7% 40/40 features
1.10 🖒 SVM Last change: Cubic SVM	Accuracy: 96.7% 40/40 features
1.11 😭 SVM Last change: Fine Gaussian SVM	Accuracy: 56.7% 40/40 features
1.12 😭 SVM Last change: Medium Gaussian SVM	Accuracy: 93.3% 40/40 features
1.13 🖒 SVM Last change: Coarse Gaussian SVM	Accuracy: 83.3% 40/40 features
1.14 KNN Last change: Fine KNN	Accuracy: 100.0% 40/40 features
1.15 🏠 KNN Last change: Medium KNN	Accuracy: 86.7% 40/40 features
1.16 🏠 KNN Last change: Coarse KNN	Accuracy: 33.3% 40/40 features
A	

	1
1	Erable
2	Erable
3	Erable
4	Erable
5	Erable
6	Erable
7	Faig
8	Faig
9	Faig
10	Faig
11	Faig
12	Faig
13	Faig
14	Roure
15	Roure
16	Faig
17	Roure
18	Roure
19	

En este experimento podemos ver que hay un clasificador que funciona con 100% de exito. En contraposición ha fallado 2 veces.

• Usando 50 descriptores nos da los siguientes resultados:

1.1 Tree Last change: Fine Tree	Accuracy: 76.7% 100/100 features
1.2 Tree Last change: Medium Tree	Accuracy: 76.7% 100/100 features
1.3 Tree Last change: Coarse Tree	Accuracy: 76.7% 100/100 features
1.4 \(\triangle \) Linear Discriminant Last change: Linear Discriminant	Accuracy: 100.0% 100/100 features
1.5 \(\triangle \) Quadratic Discriminant Last change: Quadratic Discriminant	Failed 100/100 features
1.6 \(\triangle \) Naive Bayes Last change: Gaussian Naive Bayes	Accuracy: 90.0% 100/100 features
1.7 \(\triangle \) Naive Bayes Last change: Kernel Naive Bayes	Accuracy: 86.7% 100/100 features
1.8 SVM Last change: Linear SVM	Accuracy: 90.0% 100/100 features
1.9 SVM Last change: Quadratic SVM	Accuracy: 93.3% 100/100 features
1.10 🖒 SVM Last change: Cubic SVM	Accuracy: 100.0% 100/100 features
1.11 🖒 SVM Last change: Fine Gaussian SVM	Accuracy: 60.0% 100/100 features
1.12 🖒 SVM Last change: Medium Gaussian SVM	Accuracy: 100.0% 100/100 features
1.13 🖒 SVM Last change: Coarse Gaussian SVM	Accuracy: 83.3% 100/100 features
1.14 KNN Last change: Fine KNN	Accuracy: 100.0% 100/100 features
1.15 A KNN Last change: Medium KNN	Accuracy: 90.0% 100/100 features
1.16 A KNN Last change: Coarse KNN	Accuracy: 33.3% 100/100 features

	1
1	Erable
2	Erable
3	Erable
4	Erable
5	Erable
6	Erable
7	Faig
8	Faig
9	Faig
10	Faig
11	Faig
12	Faig
13	Roure
14	Roure
15	Erable
16	Roure
17	Roure
18	Roure
19	

Como podemos observar con 50 descriptores hay un clasificador que nos sale con 100 % de error. En contraposición al usar los test nos sale que se equivoca una vez

• Usando 75 descriptores nos da los siguientes resultados:

1.1 Tree Last change: Fine Tree	Accuracy: 93.3% 150/150 features
1.2 Tree Last change: Medium Tree	Accuracy: 93.3% 150/150 features
1.3 Tree Last change: Coarse Tree	Accuracy: 93.3% 150/150 features
1.4 \(\triangle \) Linear Discriminant Last change: Linear Discriminant	Failed 150/150 features
1.5 \(\triangle \) Quadratic Discriminant Last change: Quadratic Discriminant	Failed 150/150 features
1.6 Naive Bayes Last change: Gaussian Naive Bayes	Accuracy: 93.3% 150/150 features
1.7 \(\triangle \) Naive Bayes Last change: Kernel Naive Bayes	Accuracy: 90.0% 150/150 features
1.8 SVM Last change: Linear SVM	Accuracy: 76.7% 150/150 features
1.9 🖒 SVM Last change: Quadratic SVM	Accuracy: 76.7% 150/150 features
1.10 SVM Last change: Cubic SVM	Accuracy: 80.0% 150/150 features
1.11 🖒 SVM Last change: Fine Gaussian SVM	Accuracy: 40.0% 150/150 features
1.12 🖒 SVM Last change: Medium Gaussian SVM	Accuracy: 56.7% 150/150 features
1.13 🏠 SVM Last change: Coarse Gaussian SVM	Accuracy: 60.0% 150/150 features

	1	
1	Erable	Г
2	Erable	
3	Erable	
4	Erable	
5	Erable	
6	Erable	
7	Faig	
8	Faig	
9	Faig	L
10	Faig	L
11	Faig	
12	Faig	L
13	Faig	
14	Roure	
15	Roure	
16	Faig	
17	Roure	
18	Roure	

Como podemos observar a partir de 75 empieza a fallar el algoritmo. Probablemente se deba a que utilizamos demasiados descriptores.

Conclusiones

Como conclusión diriamos que el numero de descriptores es un factor importante para crear un clasificador. El hecho de coger poco hace que el clasificador no tenga demasiado features para estudiar en contraposición si cogemos más de 50 features los modelos que salian despues de entrenar un clasificador fallaban. También es importante ver que features se puede extraer para hacer un buen clasificador. Como hemos podido ver en la mayoria de clasificadores cuyo features era el valor absoluto de la transformación de fourier daban buenos resultados.

```
%im = imread('l2nr002.jpg')
%[descriptor] = descriptor fourier(im,nan)
p = randperm(16);
train = p(1:10);
test = p(11:16);
[T1Train, T2Train, dataTrain] = getdataexercise2(train)
data = 30 \times 100
   3.8587 7.0293 7.6136 7.5930 7.1094 7.4845 4.9829
                                                         6.2418 • • •
  -27.1308 7.4173 6.5639 6.5329 7.1705 6.4775 5.7044 6.1339
  -26.5127 9.9683 9.6453 8.8969 7.4996 5.6353 6.9428 7.7369
  -26.8457 8.2493 8.2071 8.0854 7.3447 7.5338 6.3328 3.2623
  -27.3319 6.7330 6.3030 5.7996 6.6231 6.4854 5.1848 5.8195
  -26.1190 8.8138 8.3693 8.6093 8.1314 8.0509 6.1810 6.9407
   3.6478 6.2503 6.0083 5.1783 6.1637 6.3466 5.4748 4.7473
  -27.6601 6.7120 7.0322 7.0347 7.1219 6.6904 7.1124
                                                         6.3540
  -25.9204 9.5454 9.4655 9.2270 8.4868 8.3080 7.9425
                                                        7.0082
  -26.6238 9.2434 8.9246 8.6632 8.0915
                                         7.3710 7.3055
                                                         6.8677
```

T1Train = 30×2 table

. . .

	Var1								
1	-5.8124	32.2384	-1.8461e+03	1.4800e+03	738.2587	-1.6510e+03			
2	-0.0000	-166.4627	677.0051	612.0444	-1.2720e+03	-230.1854			
3	-0.0000	-668.8164	-1.4241e+04	5.0108e+03	544.6774	259.2328			
4	0.0000	-2.5569e+03	310.1030	2.1587e+03	-1.5302e+03	819.1064			
5	-0.0000	-295.3093	265.2105	113.2147	-175.2901	637.2709			
6	-0.0000	2.7817e+03	-4.2877e+03	-1.4423e+03	3.3235e+03	1.7034e+03			
7	20.5164	-101.2310	256.1201	172.6546	315.1910	324.3557			
8	0.0000	-703.9492	-1.1243e+03	-2.7106	1.2333e+03	462.2507			
9	0.0000	-1.9026e+03	-6.6437e+03	1.0106e+04	-2.2938e+03	-739.9788			
10	-0.0000	-5.6256e+03	-6.4431e+03	3.0559e+03	2.4166e+03	-974.1993			

:

 $T2Train = 30 \times 2 table$

. . .

	Var1							
1	3.8587	7.0293	7.6136	7.5930	7.1094	7.4845		
2	-27.1308	7.4173	6.5639	6.5329	7.1705	6.4775		
3	-26.5127	9.9683	9.6453	8.8969	7.4996	5.6353		

	Var1								
4	-26.8457	8.2	493	8.2071	8.0	854	7.3447	7.5338	
5	-27.3319	6.7	330	6.3030	5.7	996	6.6231	6.4854	
6	-26.1190	8.8	138	8.3693	8.6	6093	8.1314	8.0509	
7	3.6478	6.2	503	6.0083	5.1	783	6.1637	6.3466	
8	-27.6601	6.7	120	7.0322	7.0	347	7.1219	6.6904	
9	-25.9204	9.5	454	9.4655	9.2	2270	8.4868	8.3080	
10	-26.6238	9.2	434	8.9246	8.6	6632	8.0915	7.3710	
		7.6136 6.5639 9.6453	7.5930 6.5329 8.8969	7.1094 7.1705 7.4996	7.4845 6.4775 5.6353	4.9829 5.7044 6.9428	6.2418 · · · 6.1339 7.7369		
-26.3 -27.3	8457 8.2493 3319 6.7330	8.2071 6.3030 8.3693	8.0854 5.7996 8.6093	7.3447 6.6231 8.1314	7.5338 6.4854 8.0509	6.3328 5.1848 6.1810	3.2623 5.8195 6.9407		
3.0 -27.0 -25.9	9204 9.5454	6.0083 7.0322 9.4655 8.9246	5.1783 7.0347 9.2270 8.6632	6.1637 7.1219 8.4868 8.0915	6.3466 6.6904 8.3080 7.3710	5.4748 7.1124 7.9425 7.3055	4.7473 6.3540 7.0082 6.8677		
:	J.2 134	0.52.0	3.0032	3.0313	7,37,20				

[T1Test, T2Test, dataTest] = getdataexercise2(test)

data = 18×10	0						
-27.3793	6.7368	6.4260	4.3216	6.5274	6.2917	4.9732	6.1190
-26.3696	8.6595	8.7784	8.5441	8.3605	7.7050	7.8760	5.5064
4.2374	7.9803	7.6499	5.5623	7.1377	7.1419	6.4169	6.8696
-26.9452	9.5737	9.3567	8.8743	7.7975	7.7446	7.0923	7.1415
3.8152	6.8771	6.1727	5.9180	5.8778	6.2619	5.9195	5.6903
-26.6475	9.1840	8.9940	8.5383	7.5868	6.6525	6.5862	7.1747
3.3640	7.0582	4.5301	6.1609	3.5153	5.1074	3.2495	4.8730
-29.3081	5.9744	3.3381	5.3789	3.9624	4.0620	3.0034	3.6673
2.9744	5.5075	4.4792	4.9996	3.0557	3.5737	2.8911	3.2622
3.0321	6.6905	4.6489	5.6019	3.0646	4.7761	3.0004	4.2917
:							
:							

T1Test = 18×2 table

	Var1								
1	0.0000	-483.2583	488.8170	-39.2839	170.3581	241.2344			
2	0.0000	-3.6158e+03	-5.4124e+03	2.7842e+03	2.7615e+03	-1.3597e+03			
3	-1.3150	-1.5565e+03	856.8904	255.3012	419.7425	896.1349			
4	-0.0000	-744.7536	-1.1521e+04	1.0325e+03	2.4044e+03	877.7265			
5	6.8058	-583.9130	121.7863	358.2363	346.0846	-71.2172			
6	0.0000	-4.0645e+03	-6.6488e+03	3.6187e+03	886.7399	216.5933			
7	0.4527	255.4347	-63.7501	-18.9704	24.8369	-26.0260			

23

	Var1								
8	-0.0000	-215.0699	16.4410	121.2552	-18.2832	-37.1078			
9	-2.4790	36.6957	75.8535	62.0926	-21.2341	-23.2910			
10	-4.2229	-20.5771	-80.2211	168.9080	-20.1176	-99.6831			

 $T2Test = 18 \times 2 table$

	Var1								
1	-27.3793	6.7368	6.4260	4.3216	6.5274	6.2917			
2	-26.3696	8.6595	8.7784	8.5441	8.3605	7.7050			
3	4.2374	7.9803	7.6499	5.5623	7.1377	7.1419			
4	-26.9452	9.5737	9.3567	8.8743	7.7975	7.7446			
5	3.8152	6.8771	6.1727	5.9180	5.8778	6.2619			
6	-26.6475	9.1840	8.9940	8.5383	7.5868	6.6525			
7	3.3640	7.0582	4.5301	6.1609	3.5153	5.1074			
8	-29.3081	5.9744	3.3381	5.3789	3.9624	4.0620			
9	2.9744	5.5075	4.4792	4.9996	3.0557	3.5737			
10	3.0321	6.6905	4.6489	5.6019	3.0646	4.7761			
:	'	'		'	'				

```
dataTest = 18 \times 100
                                              4.9732
                                                      6.1190 ...
 -27.3793 6.7368
                6.4260 4.3216 6.5274 6.2917
        8.6595
                                               7.8760
                                                      5.5064
                                        7.7050
 -26.3696
                8.7784 8.5441 8.3605
                7.6499
                                                      6.8696
  4.2374 7.9803
                        5.5623 7.1377
                                        7.1419 6.4169
 -26.9452 9.5737
                9.3567
                        8.8743 7.7975
                                       7.7446 7.0923
                                                      7.1415
  3.8152 6.8771
                6.1727
                       5.9180 5.8778 6.2619 5.9195 5.6903
 -26.6475 9.1840 8.9940 8.5383 7.5868 6.6525 6.5862 7.1747
  3.3640 7.0582 4.5301 6.1609 3.5153 5.1074 3.2495 4.8730
 -29.3081 5.9744 3.3381 5.3789 3.9624 4.0620 3.0034 3.6673
  2.9744 5.5075 4.4792 4.9996 3.0557 3.5737 2.8911 3.2622
   3.0321 6.6905
                4.6489 5.6019
                                 3.0646
                                        4.7761
                                                3.0004
                                                        4.2917
```

%view(trainedModel.ClassificationTree,'Mode','graph');

```
yfit = trainedModel.predictFcn(T1Test);
```

```
function [T1, T2, data] = getdataexercise2(listaNum)
   nDesc = 50;
```

```
descriptorsComp = [];
    descriptorsMod = [];
    namesleaf = [];
    images = ["12nr0", "115nr0", "14nr0"];
    fulles = ["Erable", "Faig", "Roure"];
    for k = 1:length(images)
        image = images(k);
        for i = listaNum
            if i < 10
                im = imread(strcat(fulles(k),'/',image ,'0', int2str(i) ,'.jpg'));
            else
                im = imread(strcat(fulles(k),'/',image ,int2str(i) ,'.jpg'));
            end
            [descriptorComp,descriptorMod] = descriptor fourier(im, nDesc);
            descriptorsComp = [descriptorsComp; descriptorComp];
            descriptorsMod = [descriptorsMod; descriptorMod];
            namesleaf = [namesleaf; fulles(k)];
        end
    end
    data = descriptorsMod
    T1 = table(double(descriptorsComp), namesleaf);
    T2 = table(double(descriptorsMod), namesleaf);
    writetable(T1, 'resultado1.csv');
    writetable(T2, 'resultado2.csv');
end
function [descriptorDiv,descriptor] = descriptor fourier(im, Ndescriptors)
    [d1 d2 d3] = size(im);
    if (d3 == 3)
        im = rgb2gray(im);
    end
    im =im2bw(im, graythresh(im)); % Binarització per Otsu
    im = imcomplement(im);
    im=imresize(im,1/16);
    % obtenim el contorn
    ero=imerode(im, strel('disk',1));
    cont=xor(ero,im);
    % obtenim les coordenades del contorn
    [fila col] = find(im,1); % Busquem el primer píxel
    B = bwtraceboundary(im,[fila col], 'E'); %direccio est a l'atzar
    % B conté les coordenades
    % centrem coordenades
    mig=mean(B);
    B(:,1)=B(:,1)-mig(1);
    B(:,2)=B(:,2)-mig(2);
    % Convertim les coordenades a complexes
    s = B(:,1) + i*B(:,2);
    % Cal que la dimensio del vector sigui parell
    [mida bobo]=size(B);
    if(mida/2~=round(mida/2))
        s(end+1,:)=s(end,:); %dupliquem l'ultim
        mida=mida+1;
```

```
end
% Calculem la Fast Fourier Transform
descriptor=fft(s);
% Obtenim el
if (~isnan(Ndescriptors))
    descriptor = [descriptor(1:Ndescriptors);descriptor(end-Ndescriptors+1:end)];
    descriptorDiv = [real(descriptor); imag(descriptor)];
end
descriptor = log(abs(descriptor));
descriptor = descriptor';
descriptorDiv = descriptorDiv';
end
```