# COMP3251 Lecture 8: Breadth-First Search (Chapter 4.1 and 4.2)

#### Some Definitions

A path is a sequence of edges in which the end vertex of an edge equals the start vertex of the following edge.





#### Some Definitions

A path is a sequence of edges in which the end vertex of an edge equals the start vertex of the following edge.

The length of a path is the number of edges in this path.



#### Some Definitions

A path is a sequence of edges in which the end vertex of an edge equals the start vertex of the following edge.

The length of a path is the number of edges in this path.

The distance d(u, v) from u to v is the length of the shortest path (the one with the smallest length) from u to v.



There are three paths from u to v, and the shortest ones have length three. Thus, d(u,v) = 3.

#### Single-Source Shortest Paths Problem

Given an input directed graph G = (V, E) and a specific vertex  $s \in V$ , find, for every vertex  $x \in V$ , the distance from s to x.

#### Single-Source Shortest Paths Problem

Given an input directed graph G = (V, E) and a specific vertex  $s \in V$ , find, for every vertex  $x \in V$ , the distance from s to x.

**Assumption (for simplicity):** All vertices are reachable from s. **Notations:** 

- For any vertex v, let dist(v) = d(s, v).
- For any  $k \ge 0$ , let  $L_k$  be the set of vertices v with dist(v) = k.
- Let  $adj(L_k)$  be the set of vertices that are adjacent to some vertices in  $L_k$ , i.e.,

$$adj(L_k) = \{ u : (v, u) \in E \text{ for some } v \in L_k \}$$

• In essence, our problem is to find  $L_k$  for all  $k \ge 0$ .

• Initially, we set visited(v) = false for all vertices v. As soon as we know that v is in  $L_i$ , we set visited(v) = true.

- Initially, we set *visited(v) = false* for all vertices v. As soon as we know that v is in  $L_i$ , we set *visited(v) = true*.
- We already know  $L_0$ , which is  $\{s\}$ , and *visited(s)* = *true*.

- Initially, we set *visited(v)* = *false* for all vertices v. As soon as we know that v is in  $L_i$ , we set *visited(v)* = *true*.
- We already know  $L_0$ , which is  $\{s\}$ , and visited(s) = true.
- We know that  $L_1$  is a subset of  $adj(L_0)$ , and in general for any  $k \ge 0$ ,  $L_{k+1}$  is a subset of  $adj(L_k)$ .

- Initially, we set *visited(v)* = *false* for all vertices v. As soon as we know that v is in  $L_i$ , we set *visited(v)* = *true*.
- We already know  $L_0$ , which is  $\{s\}$ , and visited(s) = true.
- We know that  $L_1$  is a subset of  $adj(L_0)$ , and in general for any  $k \ge 0$ ,  $L_{k+1}$  is a subset of  $adj(L_k)$ .
- **Key question:** Given  $L_k$ , how can we find  $L_{k+1}$  from  $adj(L_k)$ ?

- Initially, we set *visited(v)* = *false* for all vertices v. As soon as we know that v is in  $L_i$ , we set *visited(v)* = *true*.
- We already know  $L_0$ , which is  $\{s\}$ , and *visited(s)* = *true*.
- We know that  $L_1$  is a subset of  $adj(L_0)$ , and in general for any  $k \ge 0$ ,  $L_{k+1}$  is a subset of  $adj(L_k)$ .
- **Key question:** Given  $L_k$ , how can we find  $L_{k+1}$  from  $adj(L_k)$ ?
- **Observation:** Suppose we have determined  $L_0, L_1, ..., L_k$ , but not  $L_{k+1}, L_{k+2}, ...$  Then, for any v in  $adj(L_k)$ ,
  - if visited(v) = true, then v is in  $L_i$  for some  $i \le k$ ;
  - if visited(v) = false, then v is in  $L_{k+1}$ .

- Initially, we set *visited(v) = false* for all vertices v. As soon as we know that v is in  $L_i$ , we set *visited(v) = true*.
- We already know  $L_0$ , which is  $\{s\}$ , and *visited(s)* = *true*.
- We know that  $L_1$  is a subset of  $adj(L_0)$ , and in general for any  $k \ge 0$ ,  $L_{k+1}$  is a subset of  $adj(L_k)$ .
- **Key question:** Given  $L_k$ , how can we find  $L_{k+1}$  from  $adj(L_k)$ ?
- **Observation:** Suppose we have determined  $L_0, L_1, \ldots, L_k$ , but not  $L_{k+1}, L_{k+2}, \ldots$  Then, for any v in  $adj(L_k)$ ,
  - if visited(v) = true, then v is in  $L_i$  for some  $i \le k$ ;
  - if *visited*(v) = *false*, then v is in  $L_{k+1}$ .
- Hence, given  $L_0$ , we can find  $L_1$  by picking vertices v in  $adj(L_0)$  with visited(v) = false; and then similarly find  $L_2$ ,  $L_3$  ...

Breadth-First Search implements the idea directly. Breadth-first means to expand the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier (just like water-front), i.e., the algorithm discovers all vertices in  $L_k$  before discovering any vertices  $L_{k+1}$ .



Breadth-First Search implements the idea directly. Breadth-first means to expand the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier (just like water-front), i.e., the algorithm discovers all vertices in  $L_k$  before discovering any vertices  $L_{k+1}$ .



**Breadth-First Search** implements the idea directly. Breadth-first means to expand the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier (just like water-front), i.e., the algorithm discovers all vertices in  $L_k$  before discovering any vertices  $L_{k+1}$ .

source s is vertex a

All undiscovered vertices next to a s-distance 1 vertex form a new frontier with s-distance 2.



Breadth-First Search implements the idea directly. Breadth-first means to expand the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier (just like water-front), i.e., the algorithm discovers all vertices in  $L_k$  before discovering any vertices  $L_{k+1}$ .

source s is vertex a

All undiscovered vertices next to a s-distance 2 vertex form a new frontier with s-distance 3.



```
BFS(s):
  Set Discovered[s] = true and Discovered[v] = false for all other v
  Initialize L[0] to consist of the single element s
  Set the layer counter i = 0
  Set the current BFS tree T = \emptyset
  While L[i] is not empty
    Initialize an empty list L[i+1]
    For each node u \in L[i]
      Consider each edge (u, v) incident to u
      If Discovered[v] = false then
        Set Discovered[v] = true
        Add edge (u, v) to the tree T
        Add v to the list L[i+1]
      Endif
    Endfor
    Increment the layer counter i by one
  Endwhile
```

## Time Complexity of BFS

- 1) Every vertex will be put in some L[i] exactly once and be checked once. This takes O(|V|) step.
- 2) When we explore a vertex, we explore all its adjacency edges once. This takes O(|E|) steps.

In sum, the time complexity of BFS is O(|V| + |E|).

#### Implementation in the Textbook

```
1) initialize dist(s) = 0 and dist(u) = \infty for all other u \in V.
2) initialize queue Q = [s] (a queue containing just s).
3) while Q is not empty:
4)
     u = \mathbf{eject}(Q).
5)
     for all edges (u, v) \in E:
6)
         if dist(v) = \infty:
            inject(Q, v).
7)
8)
            dist(v) = dist(u) + 1.
```

**Note:** The two implementations are essentially the same.

**Exercise:** Give an implementation of DFS similar to the above, using a stack instead of a queue.

#### Retrieving the Shortest Path

In our discussion, we only focused on how to determine dist(u).

#### Can we also retrieve the shortest path?

- This is easy!
  - For each vertex v, let the algorithm remember *prev[v]*, the vertex immediately precedes v in shortest path.
  - To do that, each time that the algorithm discovers a new vertex *v* through an edge (*u*, *v*), let *prev*[*v*] = *u*.

#### DFS vs. BFS

### Why two different search algorithms?

|                       | DFS        | BFS        |
|-----------------------|------------|------------|
| Detecting cycles      |            | <b>X</b> 1 |
| Topological ordering  |            | <b>X</b> 2 |
| Finding CCs           | <b>✓</b>   | <b>✓</b>   |
| Finding SCCs          | <b>✓</b>   | <b>X</b> 3 |
| Shortest path problem | <b>X</b> 4 | <b>✓</b>   |

- 1. When BFS encounters a non-tree edge, it is not easy to check whether it is a back edge.
- 2. The "post-ordering" numbers in BFS are not meaningful.
- 3. Same as above.
- 4. DFS focuses on going deep instead of using the shortest path.