

Algoritmo de maximización de la esperanza (Expectation Maximization algorithm)

Cristian Guarnizo-Lemus cristianguarnizo@itm.edu.co

Instituto Tecnológico Metropolitano

Contenido

- 1 Definición del problema
- 2 Algoritmo EM
- 3 Ejemplo Práctico Mezclas de Gaussianas
- 4 Aplicaciones
- 5 Resumen

Contenido

- Definición del problema
- 2 Algoritmo EM
- 3 Ejemplo Práctico Mezclas de Gaussianas
- 4 Aplicaciones
- 5 Resumer

y_n

 $Z_n = 0$

*y*_n 4.3 6.0

Institución Universitaria

*y*_n 4.3 6.0 7.2

Para z:

$$p(z) = \pi^{z}(1-\pi)^{1-z}, \quad p(z=1) = \pi, \quad p(z=0) = 1-\pi.$$

Para y:

$$p(y|z) = \left(\mathcal{N} \left(y|\mu_1, \sigma_1^2 \right) \right)^z \left(\mathcal{N} \left(y|\mu_0, \sigma_0^2 \right) \right)^{1-z}.$$

Entonces la probabilidad conjunta:

$$p(y,z) = \left(\pi \mathcal{N}\left(y|\mu_1,\sigma_1^2\right)\right)^z \left((1-\pi)\mathcal{N}\left(y|\mu_0,\sigma_0^2\right)\right)^{1-z}.$$

Asumamos que tenemos $(\mathbf{y}, \mathbf{z}) = \{y_n, z_n\}_{n=1}^N$. Los parámetros $\theta = \{\pi, \mu_1, \mu_2, \sigma_1^2, \sigma_2^2\}$, se pueden estimar como

$$\begin{split} \theta_{\mathsf{ML}} &= \arg\max_{\theta} \; \mathsf{In} \left(p(\mathbf{y}, \mathbf{z}|\theta) \right), \\ &= \arg\max_{\theta} \; \mathsf{In} \left(\prod_{n=1}^{N} p(y_n, z_n|\theta) \right), \\ &= \arg\max_{\theta} \sum_{n=1}^{N} \mathsf{In} \left(p(y_n, z_n|\theta) \right). \end{split}$$

Donde:

$$\ln p(y_n, z_n | \theta) = z_n \left(\ln(\pi) + \ln \mathcal{N} \left(y_n | \mu_1, \sigma_1^2 \right) \right)$$

$$+ (1 - z_n) \left(\ln(1 - \pi) + \ln \mathcal{N} \left(y_n | \mu_0, \sigma_0^2 \right) \right)$$

Asumamos que tenemos $\mathbf{y} = \{y_n\}_{n=1}^N$, y \mathbf{z} es desconocida (latente). Los parámetros $\theta = \{\pi, \mu_1, \mu_2, \sigma_1^2, \sigma_2^2\}$, se pueden estimar como

$$heta_{\mathsf{ML}} = rg \max_{ heta} \ \sum_{n=1}^{N} \ln \left(p(y_n | heta) \right),$$

$$= rg \max_{ heta} \ \sum_{n=1}^{N} \ln \left(\sum_{z} p(y_n, z_n | heta) \right).$$

Donde:

$$\ln\left(\sum_{z}p(y_{n},z_{n}|\theta)\right)=\ln\left(\pi\mathcal{N}\left(y_{n}|\mu_{1},\sigma_{1}^{2}\right)+(1-\pi)\mathcal{N}\left(y_{n}|\mu_{0},\sigma_{0}^{2}\right)\right).$$

Definición del problema - General

Asumamos que el modelo consiste en observaciones \mathbf{y} y una variable aleatoria \mathbf{z} latente. Entonces

$$p(\mathbf{y}|\theta) = \prod_{n=1}^{N} p(y_n|\theta)$$

$$= \prod_{n=1}^{N} \sum_{\mathbf{z}} p(y_n, \mathbf{z}|\theta) = \prod_{n=1}^{N} \sum_{\mathbf{z}} p(y_n|\mathbf{z}, \theta) p(\mathbf{z}|\theta)$$

La estimación θ_{ML} esta dada por

$$\begin{aligned} \theta_{\mathsf{ML}} &= \operatorname*{arg\,max}_{\theta} \ln \left(p(\mathbf{y}|\theta) \right) \\ &= \operatorname*{arg\,max}_{\theta} \sum_{n=1}^{N} \ln \left(\sum_{\mathbf{z}} p(y_n|\mathbf{z},\theta) p(\mathbf{z}|\theta) \right) \end{aligned}$$

Definición del problema

$$heta_{\mathsf{ML}} = rg \max_{ heta} \sum_{n=1}^{N} \ln \left(\sum_{\mathbf{z}} p(y_n, |\mathbf{z}, heta) p(\mathbf{z}| heta) \right)$$

- La sumatoria acopla los parámetros θ .
- Los gradientes no tienen forma cerrada.
- \blacksquare **z** y θ están acoplados.

Contenido

- Definición del problema
- 2 Algoritmo EM
- 3 Ejemplo Práctico Mezclas de Gaussianas
- 4 Aplicaciones
- 5 Resumer

Innovación Tecnológica con Sentido Humano

Desigualdad de Jensen

Desarrollo EM - Desigualdad de Jensen

$$\log p(\mathbf{y}|\theta) = \sum_{n=1}^{N} \ln \left(\sum_{\mathbf{z}} p(y_n, \mathbf{z}|\theta) \right)$$

Desarrollo EM - Desigualdad de Jensen

$$\log p(\mathbf{y}|\theta) = \sum_{n=1}^{N} \ln \left(\sum_{\mathbf{z}} p(y_n, \mathbf{z}|\theta) \right)$$
$$= \sum_{n=1}^{N} \ln \left(\sum_{\mathbf{z}} q(\mathbf{z}) \frac{p(y_n, \mathbf{z}|\theta)}{q(\mathbf{z})} \right)$$

Desarrollo EM - Desigualdad de Jensen

$$\log p(\mathbf{y}|\theta) = \sum_{n=1}^{N} \ln \left(\sum_{\mathbf{z}} p(y_n, \mathbf{z}|\theta) \right)$$

$$= \sum_{n=1}^{N} \ln \left(\sum_{\mathbf{z}} q(\mathbf{z}) \frac{p(y_n, \mathbf{z}|\theta)}{q(\mathbf{z})} \right)$$

$$\geq \sum_{n=1}^{N} \sum_{\mathbf{z}} q(\mathbf{z}) \ln \left(\frac{p(y_n, \mathbf{z}|\theta)}{q(\mathbf{z})} \right)$$

Asumiendo un valor para los parámetros como $\theta^{(t)}$, que forma debe tener $q(\mathbf{z})$ para maximizar la expresión

$$\ln p(\mathbf{y}|\theta^{(t)}) \geq \sum_{n=1}^{N} \sum_{\mathbf{z}} q(\mathbf{z}) \ln \left(\frac{p(\mathbf{z}|y_n, \theta^{(t)}) p(y_n|\theta^{(t)})}{q(\mathbf{z})} \right)$$

Asumiendo un valor para los parámetros como $\theta^{(t)}$, que forma debe tener $q(\mathbf{z})$ para maximizar la expresión

$$\begin{split} \ln p(\mathbf{y}|\theta^{(t)}) &\geq \sum_{n=1}^{N} \sum_{\mathbf{z}} q(\mathbf{z}) \ln \left(\frac{p(\mathbf{z}|y_n, \theta^{(t)}) p(y_n|\theta^{(t)})}{q(\mathbf{z})} \right) \\ &\geq \sum_{n=1}^{N} \sum_{\mathbf{z}} q(\mathbf{z}) \left[\ln \left(\frac{p(\mathbf{z}|y_n, \theta^{(t)})}{q(\mathbf{z})} \right) + \ln p(y_n|\theta^{(t)}) \right] \end{split}$$

Asumiendo un valor para los parámetros como $\theta^{(t)}$, que forma debe tener $q(\mathbf{z})$ para maximizar la expresión

$$\begin{aligned} \ln p(\mathbf{y}|\theta^{(t)}) &\geq \sum_{n=1}^{N} \sum_{\mathbf{z}} q(\mathbf{z}) \ln \left(\frac{p(\mathbf{z}|y_n, \theta^{(t)}) p(y_n|\theta^{(t)})}{q(\mathbf{z})} \right) \\ &\geq \sum_{n=1}^{N} \sum_{\mathbf{z}} q(\mathbf{z}) \left[\ln \left(\frac{p(\mathbf{z}|y_n, \theta^{(t)})}{q(\mathbf{z})} \right) + \ln p(y_n|\theta^{(t)}) \right] \end{aligned}$$

reorganizando,

$$\sum_{n=1}^{N} \ln p(y_n|\theta^{(t)}) \ge \sum_{n=1}^{N} \sum_{\mathbf{z}} q(\mathbf{z}) \ln \left(\frac{p(\mathbf{z}|y_n, \theta^{(t)})}{q(\mathbf{z})} \right) + \sum_{n=1}^{N} \ln p(y_n|\theta^{(t)}),$$

Asumiendo un valor para los parámetros como $\theta^{(t)}$, que forma debe tener $q(\mathbf{z})$ para maximizar la expresión

$$\begin{aligned} \ln p(\mathbf{y}|\theta^{(t)}) &\geq \sum_{n=1}^{N} \sum_{\mathbf{z}} q(\mathbf{z}) \ln \left(\frac{p(\mathbf{z}|y_n, \theta^{(t)}) p(y_n|\theta^{(t)})}{q(\mathbf{z})} \right) \\ &\geq \sum_{n=1}^{N} \sum_{\mathbf{z}} q(\mathbf{z}) \left[\ln \left(\frac{p(\mathbf{z}|y_n, \theta^{(t)})}{q(\mathbf{z})} \right) + \ln p(y_n|\theta^{(t)}) \right] \end{aligned}$$

reorganizando,

$$\sum_{n=1}^{N} \ln p(y_n|\theta^{(t)}) \ge \sum_{n=1}^{N} \sum_{\mathbf{z}} q(\mathbf{z}) \ln \left(\frac{p(\mathbf{z}|y_n, \theta^{(t)})}{q(\mathbf{z})} \right) + \sum_{n=1}^{N} \ln p(y_n|\theta^{(t)}),$$

entonces, $q(\mathbf{z}) = p(\mathbf{z}|\mathbf{v}_n, \theta^{(t)}).$ www.itm.edu.co — 🕝 🌚 🔾 🔾 — Vigilada Mineducación

Estimación de los parámetros

Sí
$$q(\mathbf{z}) = p(\mathbf{z}|y_n, \theta^{(t)}),$$

$$\begin{aligned} \theta^{(t+1)} &= \arg\max_{\theta} \sum_{n=1}^{N} \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{y}_{n}, \theta^{(t)}) \ln \left(\frac{p(\mathbf{y}_{n}, \mathbf{z}|\theta)}{p(\mathbf{z}|\mathbf{y}_{n}, \theta^{(t)})} \right) \\ &= \arg\max_{\theta} \sum_{n=1}^{N} \mathbb{E}_{q(\mathbf{z})} \left[\ln \left(p(\mathbf{y}_{n}, \mathbf{z}|\theta) \right) \right] \\ &= \arg\max_{\theta} \mathcal{Q} \left(\theta, \theta^{(t)} \right) \end{aligned}$$

Innovación Tecnológica con Sentido Humano

Institución Universitaria

Algoritmo EM - Pseudo-código

Dada la distribución conjunta $p(\mathbf{y}, \mathbf{z}|\theta)$, el objetivo es maximizar $p(\mathbf{y}|\theta)$ con respecto a θ .

- Selectionar los parámetros iniciales $\theta^{(t)} \leftarrow \theta^{(0)}$.
- **2** Evaluar el paso E, $q(\mathbf{z}) = p(\mathbf{z}|\mathbf{y}, \theta^{(t)})$.
- 3 Evaluar paso M.

Institución Universitaria

$$\theta^{(t+1)} = \underset{\theta}{\operatorname{arg max}} \mathcal{Q}\left(\theta, \theta^{(t)}\right)$$

4 Verificar convergencia. Sí no se satisface, entonces

$$\theta^{(t)} \leftarrow \theta^{(t+1)},$$

y regresar al paso 2.

Contenido

- Definición del problema
- 2 Algoritmo EM
- 3 Ejemplo Práctico Mezclas de Gaussianas
- 4 Aplicaciones
- 5 Resumer

Mezclas de Gaussianas

Mezclas de Gaussianas - Modelo

Observaciones $\mathbf{Y} = \{\mathbf{y}_1, \dots, \mathbf{y}_N\}, \ \mathbf{Y} \in \mathbb{R}^{N \times D}$. Para la variable latente $\mathbf{z} = \{z_1, \dots, z_K\}$:

$$egin{aligned} & p(z_k=1) = \pi_k \ & p(\mathbf{y}_n|z_k=1) = \mathcal{N}(\mathbf{y}_n|\mu_k, \Sigma_k) \end{aligned}$$

Modelo probalístico:

Institución Universitaria

$$egin{align}
ho(\mathbf{y}_n) &= \sum_{k=1}^K \pi_k \mathcal{N}\left(\mathbf{y}_n | oldsymbol{\mu}_k, oldsymbol{\Sigma}_k
ight) \
ho(\mathbf{Y}) &= \prod_{k=1}^N \sum_{k=1}^K \pi_k \mathcal{N}\left(\mathbf{y}_n | oldsymbol{\mu}_k, oldsymbol{\Sigma}_k
ight) \end{aligned}$$

Objetivo: Determinar $\theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$

Mezclas de Gaussianas - Paso E

Definimos
$$\gamma(z_{nk}) = p(z_k = 1 | \mathbf{y}_n, \theta^{(t)}),$$

$$\gamma(\mathbf{z}_{+}) = p(\mathbf{y}_n | \mathbf{z}_{+})$$

$$\gamma(z_{nk}) = \frac{p(\mathbf{y}_n|z_k = 1)p(z_k = 1)}{p(\mathbf{y}_n)}$$
$$= \frac{\mathcal{N}(\mathbf{y}_n|\boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)})\boldsymbol{\pi}_k^{(t)}}{\sum_{k=1}^K \pi_j^{(t)} \mathcal{N}(\mathbf{y}_n|\boldsymbol{\mu}_j^{(t)}, \boldsymbol{\Sigma}_j^{(t)})}$$

Mezclas de Gaussianas - Paso M

La función objetivo:

$$\theta^{(t+1)} = \arg\max_{\theta} \sum_{n=1}^{N} \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{y}_n, \theta^{(t)}) \ln \left(p(\mathbf{y}_n, |\mathbf{z}, \theta) p(\mathbf{z}|\theta) \right)$$

Mezclas de Gaussianas - Paso M

La función objetivo:

$$\theta^{(t+1)} = \arg\max_{\theta} \sum_{n=1}^{N} \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{y}_n, \theta^{(t)}) \ln (p(\mathbf{y}_n, |\mathbf{z}, \theta)p(\mathbf{z}|\theta))$$

$$= \arg\max_{\theta} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(\mathbf{z}_{nk}) \ln (\mathcal{N}(\mathbf{y}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\pi_k)$$

Mezclas de Gaussianas - Paso M

La función objetivo:

Institución Universitaria

$$\theta^{(t+1)} = \underset{\theta}{\arg \max} \sum_{n=1}^{N} \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{y}_n, \theta^{(t)}) \ln (p(\mathbf{y}_n, |\mathbf{z}, \theta)p(\mathbf{z}|\theta))$$
$$= \underset{\theta}{\arg \max} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \ln (\mathcal{N}(\mathbf{y}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\pi_k)$$

$$\mu_k^{(t+1)} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{y}_n, \quad \pi_k^{(t+1)} = \frac{N_k}{N}$$

$$\Sigma_{k}^{(t+1)} = \frac{1}{N_{k}} \sum_{k=1}^{N} \gamma(z_{nk}) \left(\mathbf{y}_{n} - \boldsymbol{\mu}_{k}^{(t+1)} \right) \left(\mathbf{y}_{n} - \boldsymbol{\mu}_{k}^{(t+1)} \right)^{\top},$$

donde $N_k = \sum_{n=1}^N \gamma(Z_{nk})$. www.itm.edu.co $0 \otimes 0 \odot V_{igilada Minedu.co}$

Contenido

- Definición del problema
- 2 Algoritmo EM
- 3 Ejemplo Práctico Mezclas de Gaussianas
- 4 Aplicaciones
- 5 Resumer

Datos faltantes

ſ	<i>y</i> ₁	y 2	y 3
ſ	1.5	3.2	2.
	2.2	2.7	
	1.7		
	1.5	3.2	2.2
1	2.2	2.9	
		3.0	

Datos faltantes

<i>y</i> ₁	y 2	y 3
1.5	3.2	2.
2.2	2.7	1.8
1.7	2.8	2.1
1.5	3.2	2.2
2.2	2.9	2.3
1.9	3.0	2.1

$$\hat{\mathbf{z}} = \mathbb{E}_{oldsymbol{
ho}(\mathbf{z}|\mathbf{Y}, heta^{(t)})}[oldsymbol{
ho}(\mathbf{Y},\mathbf{z}| heta)]$$

Datos faltantes

<i>y</i> ₁	y 2	y 3
1.5	3.2	2.
2.2	2.7	1.8
1.7	2.8	2.1
1.5	3.2	2.2
2.2	2.9	2.3
1.9	3.0	2.1
	1.5 2.2 1.7 1.5 2.2	1.5 3.2 2.2 2.7 1.7 2.8 1.5 3.2 2.2 2.9

$$egin{aligned} \hat{\mathbf{z}} &= \mathbb{E}_{p(\mathbf{z}|\mathbf{Y}, heta^{(t)})}[p(\mathbf{Y}, \mathbf{z}| heta)] \ heta^{(t+1)} &= rg \max_{ heta} p(\mathbf{Y}, \hat{\mathbf{z}}| heta) \end{aligned}$$

Contenido

- Definición del problema
- 2 Algoritmo EM
- 3 Ejemplo Práctico Mezclas de Gaussianas
- 4 Aplicaciones
- 5 Resumen

Resumen

- El algoritmo EM permite realizar estimación de máxima verosimilitud sobre modelos con variables latentes.
- El paso E construye la función $Q(\theta, \theta^{(t)})$ (conjunta) a partir del valor esperado (posterior) de las variables latentes.
- La función $Q(\theta, \theta^{(t)})$ que es más fácil de maximizar que ln $p(\mathbf{y}|\theta)$.

Referencias I

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Berlin, Heidelberg: Springer-Verlag, ISBN: 0387310738.

