# Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

#### **Paweł Gora**

Nr albumu: 219859

# Adaptacyjne planowanie ruchu drogowego

Praca magisterska na kierunku INFORMATYKA

Praca wykonana pod kierunkiem **prof. dra hab. Andrzeja Skowrona** Instytut Matematyki

## Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

## Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

#### Streszczenie

W pracy przedstawione zostały metody adaptacyjnego planowania ruchu drogowego oparte na algorytmie genetycznym. Ich skuteczność przetestowana została przy użyciu symulatora ruchu drogowego TSF (Traffic Simulation Framework). Opisana została również architektura samego symulatora oraz techniczne aspekty jego implementacji przy użyciu technologii .NET Framework.

#### Słowa kluczowe

systemy inteligentne, modelowanie złożonych procesów, symulacja ruchu drogowego, automaty komórkowe

#### Dziedzina pracy (kody wg programu Socrates-Erasmus)

- 11.0 Matematyka, Informatyka:
- 11.4 Sztuczna inteligencja

#### Klasyfikacja tematyczna

68T99

Tytuł pracy w języku angielskim

Adaptive planning of vehicular traffic

# Podziękowania

Pragnę złożyć serdeczne podziękowania dla Profesora Andrzeja Skowrona, który kierował moją pracą, wspierał mnie i stanowił nieocenioną pomoc zarówno od strony merytorycznej, jak i mentalnej - dopingując mnie, motywując i wspierając w trudnych chwilach, które towarzyszyły mi podczas powstawania pracy.

Dziękuję mojej Rodzinie i Przyjaciołom, którzy wspierali mnie zarówno podczas tworzenia tej pracy, jak i podczas całych studiów na Wydziale Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego.

Serdeczne podziękowania składam również wszystkim innym osobom, które przyczyniły się do powstania mojej pracy, wspierając mnie cennymi wskazówkami, dyskusjami, konstruktywnymi uwagami, okazując zainteresowanie moją pracą i dając poczucie, że to co robię jest ważne. Przede wszystkim byli to uczestnicy seminarium badawczego Zakładu Logiki Matematycznej: dr hab. Hung Son Nguyen, dr Jan Bazan, dr Marcin Szczuka, Marcin Wojnarski, Mateusz Adamczyk, Paweł Betliński, Sebastian Stawicki i Andrzej Janusz.

Dziękuję również moim kolegom ze studiów: Pawłowi Brachowi, Krzysztofowi Choromańskiemu, Alkowi Jankowskiemu i Bartkowi Łosiowi, którzy współtworzyli ze mną system inteligentnej nawigacji UTCS. Stał się on bazą i inspiracją do moich dalszych prac nad programem TSF opisanym w niniejszej pracy.

# Wprowadzenie

Ruch drogowy jest bardzo złożonym i trudnym w opisie zjawiskiem. Uczestniczy w nim wielu agentów (kierowców prowadzących pojazdy) podejmujących niezależne decyzje i wykonujących akcje zmierzające do realizacji określonego celu (dotarcie do punktu przeznaczenia) przy użyciu dostępnych środków (sieć drogowa, możliwości pojazdu) i przestrzegających określonych reguł (przepisy ruchu drogowego). Opis jest jeszcze trudniejszy, gdy akcje te są wykonywane w zmieniającym się środowisku (warunki atmosferyczne) oraz gdy ustalone reguły są przez kierowców łamane.

Rozwój technologiczny spowodował, że coraz łatwiej i szybciej produkuje się pojazdy, a ich ilość na drogach zwiększa się w bardzo szybkim tempie (Tablica 1 ilustruje dynamikę wzrostu ilości pojazdów w Polsce). Prowadzi to do dużego problemu cywilizacyjnego jakim stały się korki drogowe. Problem ten jest szczególnie widoczny w dużych aglomeracjach, gdzie duże natężenie ruchu jest powodem zanieczyszczenia środowiska oraz trudności organizacyjnych. Z tego powodu bardzo istotne stały się badania nad zjawiskiem ruchu drogowego i próby matematycznego opisu tego zjawiska.

**Tablica 1:** Wykaz ilości pojazdów w Polsce w ostatnich latach (na podstawie [GUS])

|                               | 2000  | 2005  | 2006  | 2007  |
|-------------------------------|-------|-------|-------|-------|
| Ilość pojazdów (w tys. sztuk) | 14106 | 16816 | 18035 | 19472 |

W pracy [GOR] ująłem najważniejsze otrzymane dotychczas rezultaty związane z modelowaniem ruchu drogowego: metody oparte na analogiach do znanych, dobrze zbadanych zjawisk i równań fizycznych (przepływ cieczy, dynamika Newtona, prawo Maxwella, kinetyczna teoria gazów) oraz na komputerowych symulacjach ruchu drogowego. Okazuje się, że stosując drugie podejście uzyskuje się bardzo dobry opis zjawiska ruchu drogowego, szczególnie w przypadku ruchu po prostych odcinkach i autostradach. Najskuteczniejsze modele symulacji oparte są na modelu Nagela-Schreckenberga ([NS]), który zostanie przedstawiony w rozdziale 1.1. Opiera się na nim również model TSF (opisany w rozdziale 1.2) wykorzystany w symulatorze TSF. Implementacja modelu w postaci programu komputerowego oraz wszystkie przydatne funkcjonalności symulatora zostaną przedstawione w rozdziale 2. Symulator został użyty przeze mnie do testowania metod adaptacyjnego planowania ruchu drogowego. Metoda oparta na algorytmie genetycznym będzie przedstawiona w rozdziale 3.

Zagadnienia konstruowania symulatorów złożonych systemów dynamicznych jak również eksploracji danych generowanych przez takie systemy, np. dla wspomagania adaptacyjnego sterowania obiektami w takich systemach, należą do bardzo aktualnych problemów badanych przez wiele ośrodków na świecie oraz firm komputerowych (np. [OTC], [RPS], [SCATS], [SIE], [TELVENT], [TLC], [TRB], [WU]). Zagadnienia te należą do bardzo trudnych i stanowią one wyzwania dla naukowców (np. [AGG], [AL], [BU], [GS], [HL], [HLL], [MBY], [MG], [PRTB], [RPBM], [TSS], [WI], [WJK]).

Niniejsza praca jest krokiem w kierunku opracowania skalowalnych algorytmów adaptacyjnych dla sterowania ruchem ulicznym, i w szerszym sensie dla adaptacyjnego sterowania złożonymi systemami dynamicznymi z wykorzystaniem symulatorów i w dalszej perspektywie wiedzy dziedzinowej reprezentowanej najczęściej w języku naturalnym (np. informacje o aktualnej sytuacji meteo-

rologicznej lub robotach drogowych).

Badania przedstawione w pracy były częściowo wspierane finansowo przez grant N N516 368334 Ministerstwa Nauki i Szkolnictwa Wyższego.

## Rozdział 1

# Modele symulacji ruchu drogowego

Współcześnie najskuteczniejsze modele symulacji ruchu drogowego opierają się na teorii automatów komórkowych i modelu Nagela-Schreckenberga, który zostanie opisany w następnym podrozdziale.

### 1.1. Model Nagela-Schreckenberga

Model Nagela-Schreckenberga (w skrócie: model NaSch) służy do symulacji ruchu pojazdów na prostym odcinku drogi. Jest to probabilityczny automat komórkowy, w którym droga jest reprezentowana jako cykliczna taśma podzielona na komórki, a pojęcia odległości, czasu i prędkości przyjmują wartości dyskretne. Każda komórka może być albo zajęta (znajduje się na niej dokładnie jeden samochód), albo pusta. Ruch na taśmie odbywa się w jednym kierunku i w sposób cykliczny, pojazdy są nierozróżnialne i mają taką samą maksymalną prędkość  $V_{MAX}$ . Każdy pojazd w dowolnym momencie posiada dyskretną prędkość ze zbioru  $\{0,1,...,V_{MAX}\}$ . W oryginalnym modelu ([NS]) szerokość pojedynczej komórki była równa 7,5 metra, a  $V_{MAX}=5$ , co odpowiada prędkości  $135\frac{km}{h}$ .

Ewolucja automatu odbywa się zgodnie z ustalonymi *regułami ruchu*: każdy z pojazdów i przemieszcza się na taśmie do przodu o ilość pól odpowiadającą wartości prędkości  $V_i$  obliczonej zgodnie z tą regułą.



Rysunek 1.1: Automat komórkowy w modelu Nagela-Schreckenberga

Reguła ruchu dla każdego pojazdu jest czteroetapowa:

- 1.  $V_i := min(V_{MAX}, V_i + 1)$
- 2.  $V_i := max(V_i, d_i)$ , gdzie  $d_i$  jest odległością (ilością wolnych komórek) pojazdu i od najbliższego pojazdu przed nim
- 3. Z prawdopodobieństwem  $\mathbf{p} > 0$   $V_i := max(V_i 1, 0)$

4. Pojazd i przemieszcza się do przodu o  $V_i$  komórek.

Kolejne etapy reguły ruchu odpowiadają rzeczywistym sytuacjom, które zachodzą w trakcie jazdy. Krok pierwszy symuluje, że każdy z kierowców stara się jechać najszybciej jak może, bo chce jak najszybciej dotrzeć do celu. Jednocześnie musi zachować bezpieczeństwo na drodze, czyli zmniejsza prędkość w sytuacji, gdy pojazd przed nami jest zbyt blisko (etap drugi). Trzeci krok decyduje o samoistnym powstawaniu korków na drodze [SCH]. Jest to jedyny probabilistyczny element reguły przejścia. Odpowiada on różnym sytuacjom na drodze, w których kierowcy nie zawsze jeżdżą z maksymalną możliwą prędkością (np. z powodu warunków atmosferycznych, nachylenia terenu lub względów psychologicznych). W kroku czwartym pojazd przemieszcza się z wyznaczoną prędkością.

Model NaSch okazał się być bardzo realistyczny dla ruchu drogowego po prostym odcinku, co uzasadniono m.in. w pracy [GOR]. Z tego powodu jest on do dziś podstawą wielu innych modeli symulacji ruchu drogowego.

#### 1.2. Model TSF

Model TSF podobnie jak model NaSch opiera się na teorii automatów komórkowych. Stanowi on jednak istotne rozszerzenie tego modelu, aby umożliwiać przeprowadzanie symulacji ruchu na rzeczywistych sieciach drogowych i rzeczywistych danych. Uwzględnia więc m.in. takie elementy jak:

- skrzyżowania
- rozróżnialność kierowców
- rozróżnialność typów dróg
- światła drogowe
- wielopasmowość dróg

Szczegóły modelu zostały opisane w pracy [GOR]. Tu przytoczymy jedynie najważniejsze jego założenia.

Sieć drogowa w modelu TSF jest reprezentowana jako graf skierowany G=(V,E), gdzie V to zbiór wierzchołków grafu, a  $E\subseteq V\times V$  jest zbiorem jego krawędzi. Krawędzie grafu reprezentują odcinki rzeczywistej sieci drogowej i na nich odbywa się ruch - pojazdy przemieszczają się pomiędzy wierzchołkami grafu. Trasy przejazdu pojazdów są zatem ścieżkami w grafie G.

Każda krawędź grafu posiada określoną długość - odległość między wierzchołkami na końcach tej krawędzi. Ponadto każda krawędź należy do określonej kategorii drogi (w oryginalnym modelu z pracy [GOR] występują 4 kategorie dróg). Każdą kategorię cechuje ustalona ilość pasów ruchu, średnia maksymalna prędkość jazdy pojazdów na tej drodze oraz odchylenie standardowe tej średniej prędkości.

W niektórych wierzchołkach grafu zlokalizowane są światła drogowe. Lokalizacja pojedynczej sygnalizacji jest jednoznacznie wyznaczona przez krawędź, na której końcu znajdują się światła.

Odcinki dróg (krawędzie) mogą mieć kilka pasów ruchu. Każdy z pasów ruchu jest reprezentowany jako skończona taśma podzielona na komórki, które będą wchodziły w skład automatu komórkowego. W każdej chwili ewolucji modelu pojedyncza komórka może być pusta lub zajęta przez 1 pojazd. Ewolucja odbywa się w dyskretnym czasie zgodnie z ustalonymi regułami ruchu.

W obrębie danej krawędzi pasy ruchu są numerowane liczbami naturalnymi. W obrębie pojedynczego pasa, komórki również są numerowane. Każda komórka jest więc jednoznacznie wyznaczona przez 3 parametry:

- edge krawędź, na której znajduje się dana komórka
- lane numer pasa ruchu (taśmy) na krawędzi, na której znajduje się komórka
- *cell* numer komórki na tym pasie (taśmie).

Wszystkie komórki na tej samej krawędzi mają jednakową długość i wszystkie pasy ruchu na tej krawędzi są podzielone na tyle samo komórek o takiej samej długości. Długości komórek na różnych krawędziach grafu mogą się różnić z uwagi na fakt, że łączna długość krawędzi jest wielokrotnością długości jej komórek.

Jeżeli pas ruchu na odcinku reprezentowanym w grafie przez krawędź e ma długość distance(e), to pas ten jest podzielony na  $number(e) = \left\lceil \frac{distance(e)}{D} \right\rceil$  komórek, gdzie D - domyślna długość komórki w modelu. Długość tych komórek to  $d(e) = \frac{distance(e)}{number(e)}$ .

#### 1.2.1. Sygnalizacja świetlna

Bardzo ważnym czynnikiem wpływającym na ruch drogowy jest obecność sygnalizacji świetlnej na skrzyżowaniach.

W modelu TSF sygnalizacja świetlna jest obiektem zlokalizowanym w wierzchołku grafu i charakteryzowanym następującymi atrybutami:

- id identyfikator sygnalizacji
- position lokalizacja sygnalizacji (krawędź, na końcu której znajduje się sygnalizacja)
- t<sub>green</sub> czas trwania fazy światła zielonego
- t<sub>red</sub> czas trwania fazy światła czerwonego
- t<sub>change</sub> ilość jednostek czasu, po których ma nastąpić zmiana fazy
- $state \in \{GREEN, RED\}$  aktualny stan/faza sygnalizacji

Wartość atrybutu  $t_{change}$  jest liczbą nieujemną i zmniejsza się o 1 w każdym kroku symulacji. Gdy osiąga 0, następuje zmiana fazy sygnalizacji i atrybut ten przyjmuje wartość  $t_{green}$  lub  $t_{red}$  w zależności od aktualnej fazy.

#### 1.2.2. Pojazdy

Zbiór wszystkich możliwych pojazdów w modelu TSF oznaczamy jako CARS. Pojazd w modelu to obiekt posiadający następujące atrybuty:

- id identyfikator pojazdu
- edge krawędź w grafie, na której znajduje się pojazd
- distance odległość pojazdu od początku krawędzi, na której się znajduje
- id<sub>lane</sub> numer pasa ruchu, na którym jest pojazd
- id<sub>cell</sub> numer komórki zajmowanej przez pojazd
- profile profil kierowcy
- velocity prędkość pojazdu

- path trasa przejazdu
- start ilość jednostek czasu od początku symulacji, po których pojazd rozpoczyna swój ruch.

Jedynym atrybutem, który ma nieoczywistą semantykę jest atrybut profile. Każdy kierowca posiada pewną stałą wartość tego atrybutu losowaną z rozkładu normalnego  $\mathcal{N}(0,1)$ . Wpływa ona na maksymalną prędkość, z jaką ten kierowca chciałby jechać. Szczegóły znajdują się w pracy [GOR].

#### 1.3. Model TSF jako automat komórkowy

*Deterministyczny automat komórkowy* to sieć komórek, które mogą znajdować się w jednym z możliwych stanów, a stan każdej komórki podlega ewolucji w dyskretnym czasie zgodnie z określoną regułą, zależną jedynie od aktualnego stanu komórki i komórek z jej otoczenia [CA]. Jeżeli reguła ta zależy od zmiennej losowej, to jest to automat *probabilistyczny*.

Model TSF korzysta z nieco uogólnionej definicji automatu komórkowego:

#### Definicja 1.3.1. Automat komórkowy to krotka:

$$CA = \langle T, C, N, S, S_0, F \rangle,$$
 (1.1)

gdzie:

- T Przedział czasu, w którym odbywa się ewolucja automatu  $(T = \{0, 1, 2, ..., T_{MAX}\}, gdzie$   $T_{MAX} \in \mathbb{N} \cup \{\infty\})$
- C Zbiór komórek
- $N: C \rightarrow \mathcal{P}(C)$  Funkcja, która każdej komórce ze zbioru C przyporządkowuje jej otoczenie
- S Zbiór możliwych stanów komórek
- $S_0: C->S$  Początkowa konfiguracja komórek (stan komórek w chwili t=0)
- $F: T \times C -> S$  Regula przejścia, taka że  $\forall_{c \in C} \forall_{t \in T} c_{t+1} = F(t, c)$ , gdzie  $c_t$  stan komórki c w chwili  $t \in T$ .

Zgodnie z dotychczasowym opisem ruch pojazdów w modelu TSF odbywa się w grafie sieci drogowej G=(V,E), którego krawędzie podzielone są na komórki, a każda komórka może być albo zajęta (jest na niej pojazd), albo pusta. Wszystkie te komórki (oznaczmy je jako CELLS) należą również do zbioru komórek automatu komórkowego. Dodatkowo w zbiorze komórek są również komórki reprezentujące sygnalizację świetlną (one również podlegają ewolucji w dyskretnym czasie). Oznaczmy ten zbiór jako SIGNALS.

Zatem zbiór komórek C automatu komórkowego TSF to

$$C = CELLS \cup SIGNALS$$
,

O ruchu pojedynczego pojazdu decyduje przede wszystkim obraz otoczenia rejestrowany przez jego kierowcę, ale kierowcy mogą również odbierać sygnały dotyczące globalnej sytuacji w ruchu drogowym (może to odpowiadać np. informacjom radiowym, wskazaniom inteligentnych programów nawigacyjnych). Kierowcy reagują również na światła drogowe. Zatem

$$\forall_{c \in CELLS} \quad N(c) = C,$$

Stan komórek reprezentujących sygnalizację świetlną w chwili t+1 zależy jedynie od parametrów tej sygnalizacji w chwili t (czyli parametrów takich jak  $T_{green}$ ,  $T_{red}$ ,  $T_{delay}$ ). W modelu TSF zakładamy, że wartości tych parametrów mogą być adaptacyjnie ustawiane tak, aby optymalizować globalny ruch, więc mogą być modyfikowane w zależności od globalnego stanu ruchu. W związku z tym:

$$\forall_{c \in SIGNALS} \quad N(c) = C.$$

Zatem:

$$\forall_{c \in C} \quad N(c) = C.$$

Komórki znajdujące się na krawędziach grafu *G* mogą być zajmowane tylko przez 1 pojazd lub być puste. Jeżeli w komórce znajduje się pojazd, to stanem tej komórki jest ten pojazd. Jeżeli komórka jest pusta, to jej stanem jest *null*.

W przypadku komórek reprezentujących sygnalizację świetlną, stan komórki jest fazą tej sygnalizacji. Zatem:

$$S = \{null\} \cup CARS \cup \{GREEN, RED\}$$

Zdefiniowanie początkowego stanu automatu polega na podaniu początkowych wartości jego komórkom. W przypadku komórek odpowiadających sygnalizacji świetlnej stanem początkowym może być dowolny element ze zbioru {GREEN, RED}. Konfiguracja początkowa komórek ze zbioru CELLS to rozmieszczenie pojazdów, które rozpoczynają ruch wraz z początkiem symulacji (dla których atrybut *start* ma wartość 0) na odpowiednich komórkach z CELLS. Metoda inicjowania pojazdów rozpoczynających ruch została szczegółowo opisana w pracy [GOR].

Jedyną rzeczą wymagającą wyjaśnienia jest reguła przejścia, czyli funkcja  $F: T \times C -> S$ , określająca w jaki sposób stan komórki w kroku t+1 zależy od stanu w kroku t:

$$\forall_{c \in C, t \in T}$$
  $c_{t+1} = F(t, c)$ .

Dla komórek ze zbioru SIGNALS regułę przejścia można wyrazić następującym algorytmem:

```
Algorithm 1 Algorytm przejścia dla sygnalizacji świetlnej s w kroku t
```

```
Require: s \in SIGNALS(G), t \in T

Ensure: state(s, t + 1) \in \{GREEN, RED\}

if t_{change}(s) > 0 then

t_{change}(s) := t_{change}(s) - 1

state(s, t + 1) := state(s, t)

return state(s, t + 1)

else

if state(s, t) = RED then

t_{change}(s) := t_{green}(s)

state(s, t + 1) := GREEN

else

t_{change}(s) := t_{red}(s)

state(s, t + 1) := RED

end if

return state(s, t + 1)
```

Reguła przejścia dla komórek z *CELLS* to po prostu reguła poruszania się pojazdów po drodze. W regule tej poza atrybutami pojazdów brane są pod uwagę nastepujące parametry:

- turnPenalty ∈ [0, 1] parametr odpowiedzialny za zachowanie pojazdu przed zakręcaniem
- crossroadPenalty ∈ [0, 1] parametr odpowiedzialny za zachowanie pojazdu w trakcie przejazdu przez skrzyżowanie (bez skręcania)
- $prob \in [0, 1]$  parametr odpowiedzialny za losową redukcję prędkości pojazdu.

Regułę ruchu pojazdu można wyrazić następującym algorytmem:

#### **Algorithm 2** Algorytm ruchu pojazdu *car* w kroku *t*

```
Require: G = (V, E), t \in T, car \in CARS(t), turnPenalty, crossroadPenalty, prob
  increaseVelocity(car, t);
  if stopOnSignal(car, t) then
    reduceVelocityOnSignal(car,t)
  else
    if turnOnCrossroad(car, t) then
       reduceVelocity(car, t, turnParameter);
    else
       if crossroad(car, t) then
         reduceVelocity(car, t, crossroadParameter);
       end if
    end if
  end if
  if shouldChangeLane(car, t) then
    changeLane(car, t);
  end if
  safeReduceVelocity(car, t)
  with probability prob: reduceVelocity(car, t);
  makeMove(car, t);
```

#### Działa on następująco:

- W procedurze *increaseVelocity(car, t)* pojazd stara się przyspieszyć nie przekraczając maksymalnej prędkości odpowiedniej dla danego kierowcy.
- Jeżeli pojazd dojechałby w tym kroku do skrzyżowania ze światłami i miałby czerwone światło (procedura *stopOnSignal(car,t)*), to w procedurze *reduceVelocityOnSignal(car,t)* prędkość pojazdu jest redukowana, aby mógł on zatrzymać się przed światłami.
- Jeżeli kierowca nie musi zatrzymywać się na światłach na skrzyżowaniu, ale skręca na skrzyżowaniu (turnOnCrossroad(car,t)), to w procedurze reduceVelocity(car,t,turnPenalty) odbywa się odpowiednia redukcja jego prędkości.
- Jeżeli kierowca przejeżdża przez skrzyżowanie, ale nie skręca na nim, to w procedurze
   reduceVelocity(car, t, crossroadPenalty) jego prędkość jest redukowana z uwzględnieniem parametru
   crossroadPenalty.
- W procedurze *shouldChangeLane(car,t)* następuje sprawdzenie, czy pojazd jest blisko (w zasięgu przejazdu w 1 kroku) pojazdu, który jest bezpośrednio przed nim i czy kierowca może bezpiecznie zmienić pas ruchu. Jeżeli tak, to w procedurze *changeLane(car,t)* odbywa się zmiana pasa ruchu.

- Aby zachować bezpieczną odległość pojazdu od pojazdu znajdującego się bezpośrednio przed nim prędkość jest dodatkowo redukowana w procedurze *safeReduceVelocity(car, t)*.
- Z prawdopodobieństwem *prob* prędkość pojazdu ulega dodatkowej redukcji o stała wartość w procedurze *reduceVelocity(car, t)*.
- Pojazd wykonuje ruch w procedurze *makeMove(car, t)* zgodnie z wyznaczoną prędkością.

## Rozdział 2

# **Symulator TSF**

## 2.1. Architektura symulatora

Symulator Traffic Simulation Framework został napisany w języku C# korzystając z technologii .NET Framework. Jego architektura składa się z następujących elementów:

- Graficzny Interfejs Użytkownika (GUI)
- Moduł logiczny
- Moduł symulacji
- Moduł wejścia/wyjścia

W następnych podrozdziałach zostaną opisane wyżej wymienione elementy architektury systemu.

#### 2.1.1. Graficzny Interfejs Użytkownika

Graficzny Interfejs Użytkownika (GUI) został wykonany przy użyciu technologii Windows Forms .NET [WF]. Służy on do wizualizacji przeprowadzanej symulacji oraz łatwej edycji jej parametrów. Wizualizacja wykorzystuje realistyczne mapy drogowe pochodzące z serwisu OpenStreetMap [OSM] (mapy są w nim tworzone i edytowowane przez użytkowników na podstawie zapisów sygnału GPS podczas rzeczywistego przejazdu). W oryginalnej wersji symulatora mapa obejmuje obszar Warszawy w zakresie długości geograficznej (20.830078125, 21.26953125) i szerokości (52.106505190756316, 52.375599176659101). Na mapie mogą być wyświetlane następujące atrybuty związane z ruchem drogowym:

- położenia pojazdów reprezentowane jako punkty na mapie
- prędkości pojazdów reprezentowane jako kolory punktów odpowiadających pojazdom
- położenie i stan sygnalizacji świetlnej na skrzyżowaniach
- wierzchołki grafu sieci drogowej
- średnie prędkości jazdy na poszczególnych odcinkach drogi
- odcinki, które są monitorowane podczas symulacji
- obszary, z których odcinki są monitorowane podczas symulacji
- rozkład punktów startowych
- rozkład punktów końcowych



Rysunek 2.1: Graficzny Interfejs Użytkownika

#### Funkcjonalność GUI GUI daje użytkownikowi następującą funkcjonalność:

- uruchamianie/zatrzymywanie symulacji z odpowiednimi parametrami
- odczyt i zapis informacji związanych z ruchem drogowym: tras przejazdu, sygnalizacji, rozkładu punktów startowych i końcowych, monitorowanych odcinków, monitorowanych obszarów
- edycję domyślnych średnich prędkości przejazdu (i ich odchyleń standardowych) dla poszczególnych typów dróg
- dodawania/usuwanie sygnalizacji świetlnej na skrzyżowaniach, edycję sygnalizacji
- edycję monitorowanych odcinków, monitorowanych obszarów
- edycję parametów symulacji
- edycję rozkładów punktów startowych i końcowych
- wyszukiwanie ulic wg nazwy
- ustawianie zakresu rozróżnianej (kolorystycznie) prędkości pojazdów
- generowanie tras przejazdu

#### 2.1.2. Moduł logiczny

Moduł logiczny systemu TSF stanowią wszystkie struktury danych potrzebne do reprezentacji ruchu drogowego wraz z procedurami umożliwającymi operacje na tych strukturach. Wśród najważniejszych komponentów tego modułu wymienić można:

- Graf sieci drogowej (zbiór wierzchołków połączonych krawędziami)
- Zbiór sygnalizacji świetlnej (są to obiekty umieszczone w niektórych wierzchołkach grafu sieci drogowej)
- Zbiór pojazdów uczestniczących w ruchu
- Rozkład punktów startowych i końcowych (każdy obszar mapy ma przypisaną pewną wartość rank określającą szanse na wylosowanie punktu startowego/końcowego z tego obszaru)
- Zbiór odcinków ulic, które są monitorowane w trakcie symulacji informacje na temat tych odcinków (np. natężenie ruchu, średnia prędkość) są potem gromadzone i wypisywane w trakcie symulacji

Dla większości z ww komponentów istnieją w module logicznym programu TSF pomocnicze struktury ułatwiające i przyśpieszające operowanie na logice systemu.

#### 2.1.3. Moduł symulacji

Moduł symulacji odpowiada za inicjowanie i przeprowadzanie symulacji ruchu drogowego. Inicjowanie symulacji polega na ustawieniu parametrów potrzebnych do przeprowadzenia symulacji. Wszystkie parametry są wczytywane z plików/ustawiane domyślnie w momencie uruchamiania symulacji, ale też moga być uaktualniane później przez użytkownika z poziomu GUI.

Poniżej wykaz wszystkich parametrów, od których zależy przebieg symulacji i które można ustawić z poziomu GUI:

- Ilość pojazdów uczestniczących w ruchu od początku
- Czas t (w krokach), po którym cyklicznie rozpoczynają ruch następne pojazdy
- Ilość pojazdów, które rozpoczynają ruch co t kroków
- Czas trwania symulacji (ilość kroków)
- Czas trwania pojedynczego kroku symulacji (w milisekundach)
- Domyślne przyśpieszenie pojazdu w ciągu 1 kroku symulacji (w  $\frac{km}{h}$ )
- Parametr odpowiedzialny za zachowanie pojazdu podczas wjazdu na skrzyżowanie (poziom redukcji prędkości)
- Parametr odpowiedzialny za zachowanie pojazdu podczas skrętu na skrzyżowaniu (poziom redukcji prędkości)
- Domyślne średnie prędkości (i odchylenie od średnich) dla poszczególnych typów dróg
- Trasy przejazdu
- Rozkłady punktów startowych/końcowych

Położenie i konfiguracja sygnalizacji świetlnej na skrzyżowaniach

Sama symulacja przebiega w skończonej ilości kroków i stanowi implementację modelu symulacji TSF opisanego w rozdziale 1.2. W każdym kolejnych kroku dla każdego pojazdu przeliczane jest jego nowe położenie i prędkość zgodnie z regułą ruchu opisaną w 1.2. Ponadto w kolejnych krokach symulacji modyfikowany jest stan sygnalizacji świetlnej na skrzyżowaniach, a prezentacja stanu całej symulacji jest również uaktualniana w module GUI. Dodatkowo w niektórych krokach symulacji niektóre dane związane z symulacją mogą być wypisywane do pliku (szczegóły w rozdziale 2.1.4).

Symulacja może być uruchamiana w różnym celu, w zależności od tego, co chcemy osiągnąć. W obecnej wersji programu TSF rozróżnianych jest 5 trybów, w których można uruchomić symulację:

- **Tryb standardowy** w tym trybie symulator nie wypisuje żadnych dodatkowych informacji do zewnętrznych plików
- Tryb natężenia ruchu w tym trybie do zewnętrznego pliku wypisywane są szeregi czasowe odpowiadające natężeniu ruchu na wybranych, monitorowanych odcinkach. Natężenie ruchu jest tu rozumiane jako:

- Tryb wykrywania korków w tym trybie do zewnętrznego pliku wypisywane są identyfikatory odcinków, na których tworzy się korek. Wypisywanie odbywa się w kolejności powstawania korka na danym odcinku. "Korek na odcinku"jest zdefiniowany jako wystąpienie w ciągu pewnego czasu (domyślnie 6 minut) symulacji odpowiednio małej średniej prędkości (domyślnie mniejszej niż 3 km/h) przy odpowiednio dużej ilości samochodów, które wjechały na ten odcinek (domyślnie 10).
- Tryb średniej prędkości w tym trybie do zewnętrznego pliku wypisywane są położenia i prędkości jazdy pojazdów uczestniczących w ruchu, a także średnie prędkości jazdy przez wybrane, monitorowane odcinki. Średnia prędkość jest w tym przypadku średnią harmoniczną prędkości przejazdu przez dany odcinek wszystkich samochodów, które na niego wjechały w określonym przedziale czasowym. Dla pojedynczego pojazdu prędkość ta wyraża się wzorem:

• **Tryb optymalizacji sygnalizacji świetlnej** - w tym trybie do zewnętrznego pliku wypisywane są wartości funkcji celu dla kolejnych genotypów reprezentujących konfigurację sygnalizacji świetlnej.

#### 2.1.4. Moduł Wejścia/Wyjścia

#### Wejście

Wiele danych i parametrów potrzebnych do poprawnego działania programu TSF musi zostać wczytanych z zewnętrznych źródeł przed rozpoczęciem symulacji. Za ich wczytywanie, przetwarzanie i przekazywanie do Modułu Logicznego odpowiada Moduł Wejścia/Wyjścia. W trakcie uruchamiania programu wczytuje on z plików następujące informacje:

- Struktura grafu sieci miejskiej
- Położenie i konfiguracja sygnalizacji świetlnej

- Rozkład punktów startowych/końcowych
- Trasy przejazdu dla pewnej liczby pojazdów (obliczone wcześniej w oparciu o zadany rozkład punktów startowych/końcowych)
- Domyślny zbiór odcinków monitorowanych podczas symulacji

Dodatkowo w trakcie działania symulacji pobierane są z dysku obrazy umożliwiające prezentowanie mapy przez GUI.

#### Wyjście

W trakcie symulacji ruchu drogowego program TSF może wypisywać informacje związane z symulacją, które mogą się przydać do dalszej analizy tego złożonego procesu. Wypisywane informacje zależą od trybu, w którym uruchamiana jest symulacja.

**Tryb natężenia ruchu** W tym przypadku format wypisywanych danych ma postać: [Czas, Wierzchołek1, Wierzchołek2, Ilość pojazdów].

Znaczenie poszczególnych atrybutów:

- Czas czas w minutach od rozpoczęcia symulacji
- Wierzchołek1 identyfikator wierzchołka, który jest wierzchołkem początkowym badanej krawędzi
- Wierzchołek2 identyfikator wierzchołka, który jest wierzchołkem końcowym badanej krawędzi
- Ilość pojazdów ilość pojazdów, która przejechała przez badany odcinek w zadanym przedziale czasowym

**Tryb wykrywania korków** W tym przypadku format wypisywanych danych ma postać: [Czas, Wierzchołek1].

Znaczenie poszczególnych atrybutów:

- Czas czas w sekundach od rozpoczęcia symulacji
- Wierzchołek1\_Wierzchołek2 Identyfikatory punktu początkowego i końcowego krawędzi, na której utworzył się korek

**Tryb średniej prędkości** W typ przypadku wypisywane są dane 2 rodzajów:

- dane pochodzące z pojazdów uczestniczących w ruchu i dotyczące ich położenia
- dane zagregowane dotyczące średnich prędkości na wybranych do monitorowania odcinkach

W pierwszym przypadku format wypisywanych danych ma postać: [Czas, Pojazd, Wierzchołek1, Wierzchołek2, Dystans, Prędkość, Szerokość geograficzna, Długość geograficzna]. Domyślnie takie dane są wypisywane co 10 sekund.

Znaczenie poszczególnych atrybutów:

- Czas nr kroku symulacji, z którego pochodzi pomiar
- Pojazd identyfikator pojazdu

- Wierzchołek1 identyfikator wierzchołka, który jest początkiem odcinka, na którym znajduje się pojazd
- Wierzchołek2 identyfikator wierzchołka, który jest końcem odcinka, na którym znajduje się pojazd
- Dystans odległość pojazdu od początku odcinka, na którym się znajduje
- Prędkość prędkość pojazdu
- Szerokość geograficzna szerokość geograficzna pojazdu
- Długość geograficzna długość geograficzna pojazdu

W drugim przypadku format wypisywanych danych ma postać [Czas, Wierzchołek1, Wierzchołek2, Prędkość, Ilość pojazdów]. Znaczenie poszczególnych atrybutów:

- Czas czas od rozpoczęcia symulacji (w sekundach), w którym wypisywane są dane
- Wierzchołek1 identyfikator wierzchołka, który jest początkiem monitorowanego odcinka
- Wierzchołek2 identyfikator wierzchołka, który jest końcem monitorowanego odcinka
- Prędkość średnia prędkość na danym odcinku w pewnym przedziale czasu
- Ilość pojazdów ilość pojazdów, które przejechały przez dany odcinek w pewnym przedziale czasu

## Rozdział 3

# Adaptacyjne sterowanie ruchem ulicznym

#### 3.1. Dotychczasowe badania

Zagadnienie adaptacyjnego sterowania ruchem ulicznym poprzez odpowiednią konfigurację sygnalizacji świetlnej jest bardzo trude i stanowi wielkie wyzwanie dla naukowców. Tym bardziej, że ilość pojazdów uczestniczących w ruchu drogowym stale wzrasta. Badane rozwiązania opierają się m.in. na teorii automatów komórkowych, logiki rozmytej [ChCh], systemów wieloagentowych [TSS] oraz algorytmach ewolucyjnych (w szczególności na algorytmie genetycznym, mrówkowym i rojowym) [CAG], [CYP], [OB], [STHB]. Na ich podstawie powstało wiele profesjonalnych systemów sterowania ruchem ulicznym [OTC], [SCATS], [SIE], [TELVENT], [TRB] zainstalowanych w dużych miastach na całym świecie. Systemy takie są cały czas rozwijane i usprawniane, a zapotrzebowanie na nowe, lepsze rozwiązania jest bardzo duże - gdyż w wielu miastach poziom zakorkowania ulic jest wciąż bardzo wysoki.

W niniejszym rozdziale przedstawię autorskie rozwiązanie wykorzystujące algorytm genetyczny optymalizacji konfiguracji świateł drogowych zaadoptowany do stworzonego i zaimplementowanego przeze mnie modelu TSF 1.2.

### 3.2. Podstawy teoretyczne

W pracy [GOR] przedstawiłem koncepcję tzw. *nadzorcy procesu*, czyli systemu służącego do adaptacyjnego zarządzania złożonymi procesami. Zaproponowałem w jaki sposób rozszerzyć system TSF do postaci kompleksowego systemu zarządzaniu ruchem ulicznym. Zgodnie z moim pomysłem, system taki miałby składać się z następujących komponentów:

- **Moduł monitorujący** zbierający i wstępnie przetwarzający niskopoziomowe dane o procesie (np. o ruchu drogowym).
- **Moduł logiczny** tworzący na podstawie gromadzonych danych *percepcję rzeczywistości* i identyfikujący złożone wzorce czasowo-przestrzenne występujące w gromadzonych danych.
- **Moduł sterujący** odpowiedzialny za planowanie i podejmowanie odpowiednich decyzji na podstawie wiedzy posiadanej przez moduł logiczny.
- Moduł wykonawczy wprowadzający w życie akcje proponowane przez moduł sterujący.

W przypadku moich badań każdy z tych 4 modułów jest zaimplementowany w programie TSF. Program przeprowadza symulacje rzeczywistego ruchu, więc ma pełną wiedzę na jego temat. W przypadku wykrycia zagrożeń może zaproponować i wykonać akcje mające na celu optymalizację ruchu.

W ogólności zarówno moduł logiczny jak i moduł sterujący mogłyby być wsparte przez *wiedzę dziedzinową*, czyli dodatkowe informacje na temat procesu (pochodzące najczęściej od eksperta). W przypadku ruchu drogowego wiedza dziedzinowa może się przydać np. do właściwego zdefiniowania pojęcia *korka drogowego*, lub ogólniej, wykrywania sytuacji, w których moduł sterujący powinien przeprowadzać akcje. W niniejszej pracy nie będę zajmował się jednak tą ciekawą (i jednocześnie bardzo trudną) tematyką.

Przedstawię natomiast w jaki sposób zaprojektowałem oraz zaimplementowałem moduł sterujący systemu zarządzania ruchem drogowym, którego działanie oparte jest na adaptacyjnym sterowaniu konfiguracją sygnalizacji świetlnej na skrzyżowaniach. Sterowanie to wykorzystuje algorytm genetyczny, którego ideę krotko przedstawię w następnym podrozdziale.

#### 3.2.1. Algorytm genetyczne

Inspiracją algorytmu genetycznego ([MIC], [GOL]) jest rzeczywiste zjawisko ewolucji biologicznej. Idea polega na tym, że poszukiwane rozwiązania (np. optymalna synchronizacja świateł drogowych w mieście) są kodowane w postaci struktury genomu (np. jako wektor genów). Po utworzeniu puli przykładowych genomów, podlegają one reprodukcji zgodnie z zasadami panującymi w biologii, a więc zgodnie z procesem doboru naturalnego: najlepsze osobniki krzyżują się tworząc coraz lepsze (bardziej przystosowane) osobniki, które dalej podlegają mutacji.

```
Algorithm 3 Algorytm genetyczny
```

Require: Zbiór możliwych rozwiązań S

Ensure: Odpowiednie rozwiązanie ze zbioru S

A := ChooseInitialPopulation(S)

A := Encode(A)

repeat

B := Select(A)

C := Reproduce(B)

A := Mutate(B)

until Istnieje odpowiednio dobry osobnik w zbiorze A

G := ChooseTheBestIndividual(A)

**return** Decode(G)

Algorytm najpierw wybiera zbiór przykładów ze zbioru wszystkich możliwych rozwiązań (procedura *ChooseInitialPopulation*). Zbiór taki może być kodowany jako zbiór genotypów reprezentowanych np. w postaci *wektora genów*, w którym każdy gen jest liczbą rzeczywistą. Funkcja kodująca powinna być bijekcją, aby dało się jednoznacznie odkodować optymalne rozwiązanie. Kodowanie odbywa się w procedurze *Encode*.

Dalsza część obliczeń wykonywana jest w pętli. Wybierany jest podzbiór całej populacji (genotypów), według ustalonego kryterium (procedura *Select*). Najczęściej istnieje funkcja, która dla danego genotypu ocenia jak dobrym jest on przedstawicielem populacji. Najlepsi przedstawiciele krzyżują się w parach (procedura *Reproduce*), tworząc odpowiednio duży zbiór genotypów potomnych (z każdej pary powstaje nowy genotyp stanowiący ich kombinację). Zbiór nowych genotypów podlega mutacji (*Mutate*), która nieznacznie (losowo) zmienia ich cechy. Jeżeli w tak otrzymanym zbiorze istnieje odpowiedni przedstawiciel populacji (według tej samej funkcji oceny jak selekcja), to przykład mu

odpowiadający jest zwracany przez algorytm (procedura *Decode*). Jeśli nie, ewolucja odbywa się dalej.

# 3.2.2. Wykorzystanie algorytmu genetycznego do optymalizacji konfiguracji świateł drogowych

W tym rozdziale przedstawię metodę optymalizacji konfiguracji sygnalizacji świetlnej w modelu TSF z wykorzystaniem algorytmu genetycznego.

#### Reprezentacja genotypu

Przypomnijmy, że sygnalizacja świetlna jest obiektem umieszczonym na skrzyżowaniach, czyli w wierzchołkach grafu sieci drogowej. Każdy taki obiekt posiada m.in. atrybuty:  $t_{green}$ ,  $t_{red}$ ,  $t_{change}$ , state. Dla uproszczenia przyjąłem, że wartości  $t_{green}$  i  $t_{red}$ , czyli czas trwania fazy światła zielonego i czerwonego, są takie same dla każdej sygnalizacji występującej w modelu i wynoszą odpowiednio: 60 sekund i 60 sekund (czyli długość całej pojedynczej fazy, to 120 sekund). Parametrami, które mogą być modyfikowane, aby zoptymalizować globalny ruch pojazdów jest początkowa wartość  $t_{change}$  określająca przesunięcie w fazie oraz początkowa wartość state. Te 2 parametry można zakodować przy pomocy 1 parametru  $timeToGreen \in \{0, 1, \dots, 119\}$ , określającego czas (w sekundach) do najbliższego przejścia pomiędzy fazą światła czerwonego i światła zielonego. Parametr ten w dalszej części pracy będzie oznaczany jako TG.

Przyjąłem dodatkowo założenie, że sygnalizacje w obrębie tego samego skrzyżowania muszą być ze sobą zsynchronizowane, aby zapewnić bezpieczny przejazd pojazdów przez to skrzyżowanie. Oznacza to, że w przypadku skrzyżowania zaprezentowanego na rysunku 3.1 sygnalizacje A i C będą miały taką samą wartość parametru TG. Podobnie taką samą wartość muszą mieć sygnalizacje B i D. Dodatkowo, aby zapewnić bezpieczny przejazd pojazdów przez to skrzyżowanie wartość TG dla sygnalizacji A (i C) musi być przesunięta o 60 względem TG dla B (i D). Mamy zatem warunki:

- 1.  $TG_A = TG_C$
- 2.  $TG_B = TG_D$
- 3.  $TG_A = (TG_B + 60) \mod 120$

Oznacza to, że wartość TG dla sygnalizacji A,B,C,D jest wyznaczona jednoznacznie przez wartość TG dla dowolnej spośród tych sygnalizacji.



Rysunek 3.1: Automat komórkowy w modelu Nagela-Schreckenberga

**Definicja 3.2.1.** Niech  $A = \{A_1, A_2, \dots, A_k\}$  będzie niepustym zbiorem sygnalizacji świetlnych na pewnym skrzyżowaniu w modelu TSF. **Reprezentantem** zbioru A będziemy nazywać dowolny element tego zbioru i będziemy go oznaczać jako r(A). **Reprezentantem** dowolnego elementu  $A_i \in A$  będziemy nazywać reprezentanta r(A) zbioru A i będziemy go oznaczać jako  $r(A_i)$  (zatem  $\forall_{A_i \in A} r(A_i) = r(A)$ ).

**Definicja 3.2.2.** Niech S będzie zbiorem wszystkich sygnalizacji w grafie sieci drogowej. **Reprezentacją** S będziemy nazywać dowolny jego podzbiór  $S' \subseteq S$  spełniający warunki:

- 1.  $\forall_{A_i \in S}$   $r(A_i) \in S'$
- 2.  $jeśli A_i \neq r(A_i)$ , to  $A_i \notin S'$

W proponowanym algorytmie genetycznym pojedynczy gen będzie właśnie wartością TG dla reprezentanta zbioru sygnalizacji świetlnych na pojedynczym skrzyżowaniu. Genotyp będzie zatem wektorem genów odpowiadających dowolnej, ustalonej reprezentacji zbioru S sygnalizacji w grafie sieci drogowej.

#### Wybór i kodowanie początkowej populacji

W proponowanym algorytmie genetycznym wybór początkowej populacji odbywa się w procedurze *ChooseInitialPopulation*. Na początku tworzona jest reprezentacja zbioru wszystkich sygnalizacji świetlnych w grafie. Każdej sygnalizacji z tego zbioru odpowiadać będzie 1 gen w wektorze genów, będący reprezentantem tej sygnalizacji. Potem tworzona jest pula ustalonej liczby genotypów, a każdy gen w genotypie przyjmuje losową wartość TG ze zbioru {0, 1, ..., 119}. Każdy taki genom wyznacza jednoznacznie konfigurację sygnalizacji świetlnej i na odwrót: każda konfiguracja sygnalizacji świetlnej jednoznacznie wyznacza genom (pod warunkiem, że sygnalizacje na skrzyżowaniach są zsynchronizowane tak, aby zapewnić bezpieczeństwo przejazdu). Dzięki temu możliwe jest poprawne kodowanie sygnalizacji i dekodowanie genotypu.

#### Funkcja oceny genotypu

Jednym z kluczowych elementów podczas projektowania algorytmu genetycznego jest wybór odpowiedniej funkcji oceny genotypu. Funkcja ta służy do nadawania wartości genotypom tak, aby dało się wybrać do dalszej ewolucji najlepsze z nich. Występuje również w warunku stopu pętli, w której odbywa się ewolucja.

W naszym przypadku do oceny jakości genotypu potrzebne jest przeprowadzenie symulacji komputerowej przy użyciu programu TSF.

Używane przeze mnie parametry symulacji P zostaną szczegółowo opisane w rozdziale 3.2.3. Ponadto testowałem 2 funkcje *F* oceniające jakość symulacji:

- łączny czas jazdy kierowców z prędkością poniżej  $20\frac{km}{h}$  funkcja Time<20
- łączny czas, w którym kierowcy mieli prędkość  $0\frac{km}{h}$  funkcja Time0

#### Selekcja najlepszych genotypów

W procesie selekcji wybierane są najlepsze genotypy z całej populacji, aby mogły potem wziąć udział w dalszej ewolucji. Selekcja dokonuje się poprzez zaaplikowanie funkcji oceny 3.2.2 do wszystkich genotypów w populacji S i wybranie z całej puli osobników  $\sqrt{|S|}$  tych, dla których wartość funkcji oceny jest najlepsza.

#### Algorithm 4 Funkcja oceny genotypu

```
Require: Genotyp G reprezentujący konfigurację sygnalizacji świetlnej; Czas trwania symulacji T;

Funkcja F oceniająca jakość symulacji; Parametry symulacji P.

Ensure: Wartość funkcji oceny dla genotypu G

value = 0;

for i = 1 to 5 do

Skonfiguruj sygnalizację świetlną zgodnie z genotypem G;

Przeprowadź symulację przy użyciu programu TSF przy zadanych parametrach P trwającą T kroków;

value = value+F(przeprowadzona symulacja);

i++;

end for

value = value/5;

return value;
```

#### Krzyżowanie najlepszych genotypów

Po selekcji najlepszych z całej populacji genotypów następuje ich krzyżowanie, celem utworzenia nowej populacji. Procedurę krzyżowania przedstawia algorytm 5.

#### Algorithm 5 Procedura krzyżowania

```
Require: Zbiór S najlepszych przedstawicieli populacji
Ensure: Nowa populacja P
  P = \emptyset:
  N =rozmiar genotypów w populacji P
  for all G1 in S do
    for all G2 in S do
       G=nowy genotyp
       for i=1 to N do
         L=losowo wybrana liczba ze zbioru {0, 1}.
         if L==0 then
            Umieść w genotypie G na pozycji i gen G1[i]
            Umieść w genotypie G na pozycji i gen G2[i]
         end if
         P = P \cup \{G\};
       end for
    end for
  end for
  return P;
```

#### Mutacja

Po utworzeniu nowej populacji osobników należy dokonać ich mutacji. Odbywa się to w procedurze *Mutate*, którą ilustruje algorytm 6.

#### Algorithm 6 Procedura mutacji

```
Require: Populacja P, próg mutacji q

Ensure: Zmutowana populacja P'
P' = \emptyset;

N = \text{rozmiar genotypów w populacji P}

for all G in P do

for i = 1 to N do

L = \text{losowa liczba z przedziału } [0, 1]

if L < q then

G[i] losowa wartość ze zbioru \{0, 1, \dots, 119\}

end if

P' = P' \cup \{G\};
end for
end for
return P';
```

#### Zatrzymanie ewolucji

Ewolucja populacji musi się w pewnym momencie zakończyć. W swojej pracy przyjąłem, że kryterium stopu będzie przeprowadzenie określonej liczby *N* kroków ewolucji, czyli zatrzymanie ewolucji w chwili otrzymania *N*-tej populacji potomnej. W przypadku moich obliczeń wartość *N* wynosiła 9. Innymi czesto stosowanymi kryteriami stopu są:

- Kryterium optymalnej wartości zatrzymujemy ewolucję w momencie, gdy otrzymamy w populacji osobnika o dostatecznie dobrej wartości funkcji oceny
- Kryterium zbieżności zatrzymujemy ewolucję w momencie, gdy w kolejnych jej krokach różnica w wartościach funkcji oceny dla najlepszych osobników w populacji jest bardzo mała

Testowanie tych kryteriów w proponowanym algorytmie genetycznym będzie przedmiotem moich badań w przyszłości.

#### 3.2.3. Implementacja algorytmu genetycznego

W tym rozdziale przedstawię w jaki sposób zaimplementowałem algorytm genetyczny opisany powyżej, a więc:

- Jakie dokładnie zostały użyte parametry
- Jak przeprowadzane były eksperymenty

W przeprowadzanych przeze mnie eksperymentach każda symulacja trwała 10 minut (600 sekund), parametry P były standardowymi parametrami symulacji zgodnymi z tabelą 3.1. Populacja początkowa składała się ze 100 osobników, pojedynczy osobnik posiadał natomiast 292 geny w swoim genotypie (jest to ilość skrzyżowań z sygnalizacją świetlną na wczytywanej przez program TSF mapie Warszawy). Algorytm genetyczny był testowany dla 2 różnych funkcji oceny jakości genotypu (3.2.2), a w każdym przypadku warunkiem stopu algorytmu było przeprowadzenie N=9 iteracji ewolucji. W procedurze selekcji wybierane było  $\sqrt{100}=10$  najlepszych osobników, które potem podlegały procedurze krzyżowania, a nowo powstałe osobniki ulegały mutacji zgodnie z procedurą 6 przy parametrze q=0.05 (czyli w każdym genotypie średnio 5% wszystkich genów zmieniało swoją wartość).

Tablica 3.1: Parametry symulacji użyte do przeprowadzenia doświadczeń

| Nazwa parametru | Opis parametru                                 | Wartość parametru |
|-----------------|------------------------------------------------|-------------------|
| NrOfCars        | Ilość pojazdów                                 | 30000             |
| TimeGap         | Czas, po którym nowe pojazdy rozpoczynają ruch | 1 sekunda         |
| Step            | Czas trwania kroku symulacji                   | 1000 milisekund   |
| NewCars         | Ilość pojazdów, które rozpoczynają ruch co     | 20                |
|                 | TimeGap sekund                                 |                   |
| Steps           | Czas trwania symulacji                         | 600 kroków        |
| Accelerate      | Przyśpieszenie pojazdów                        | $10\frac{km}{h}$  |
| Crossroad       | Parametr odpowiedzialny za zachowanie po-      | 0.25              |
|                 | jazdów (redukcję prędkości) na skrzyżowaniu    |                   |
| Turning         | Parametr odpowiedzialny za zachowanie po-      | 0.5               |
|                 | jazdów (redukcję prędkości) na skrzyżowaniu    |                   |
|                 | podczas skrętu                                 |                   |

**Tablica 3.2:** Tabela przedstawiająca wartości funkcji celu w kolejnych krokach ewolucji algorytmu w przypadku obu badanych funkcji

| Krok ewolucji | Time0   | Time<20 |
|---------------|---------|---------|
| 1             | 5937535 | 8381108 |
| 2             | 5897720 | 8350837 |
| 3             | 5884938 | 8328534 |
| 4             | 5855378 | 8292620 |
| 5             | 5840454 | 8292925 |
| 6             | 5811827 | 8242777 |
| 7             | 5794758 | 8228153 |
| 8             | 5780861 | 8234131 |
| 9             | 5752666 | 8228039 |

#### 3.2.4. Wyniki doświadczeń

W drugiej kolumnie Tabeli 3.2 są wartości funkcji oceny dla najlepszych osobników w populacji w kolejnych krokach ewolucji w przypadku gdy funkcja celu jest łączną ilością sekund, przez którą pojazdy stoją w miejscu. Jak widać, w każdym kroku ewolucji wartość funkcji oceny dla najlepszego osobnika zmniejsza się. Ostatecznie w 9-tym kroku ewolucji udaje się uzyskać wynik o 3.11% lepszy niż w pierwszym kroku. Szczegółowe wyniki wartości funkcji celu dla wszystkich kroków ewolucji można znaleźć w załączniku. W trzeciej kolumnie Tabeli 3.2 są z kolei wartości funkcji oceny dla najlepszych osobników w populacji w kolejnych krokach ewolucji w przypadku, gdy funkcja celu jest łączną ilością sekund, w których pojazdy poruszają się z prędkością poniżej  $20\frac{km}{h}$ . Nie w każdym kroku ewolucji otrzymuje się lepszą wartość funkcji celu, mimo to w kroku 9-tym pojawił się osobnik o najlepszej wartości funkcji celu. Wartość ta była o 1.82% lepsza niż wartość funkcji celu dla najlepszego osobnika w pierwszym kroku ewolucji. Szczegółowe wyniki wartości funkcji celu dla wszystkich kroków ewolucji można znaleźć w załączniku 4.

#### 3.3. Podsumowanie

Zastosowanie algorytmu genetycznego przyniosło polepszenie jakości ruchu drogowego zarówno w przypadku funkcji oceny Time0, jak i w przypadku funkcji oceny Time<20. Poprawa nie jest jednak znacząca (odpowiednio 3.11% i 1.82%). Z powodu dużej złożoności obliczeniowej udało się przeprowadzić jedynie kilka (dokładnie 9) iteracji algorytmu genetycznego. Można się spodziewać, że dłuższy czas ewolucji może przynieść znacznie większe polepszenie jakości ruchu drogowego tym bardziej, że przeszukiwana przestrzeń rozwiązań (a więc przestrzeń liniowa  $\mathbb{Z}_{120}^{292}$ ) jest bardzo duża w porównaniu do ilości genotypów, które zostały zbadane przez algorytm (9·100 = 900). Można się spodziewać, że przy istotnie większej ilości kroków algorytmu udałoby się uzyskać poprawę rzędzu kilkudziesięciu procent w stosunku do początkowej populacji. Przeprowadzenie większej ilości kroków wymagałoby jednak większej mocy obliczeniowej lub poprawienia skalowalności proponowanego algorytmu. Między innymi tym drugim zagadnieniem bedę zajmował się w swoich przyszłych badaniach w ramach pracy doktorskiej.

# Rozdział 4

# **Podsumowanie**

W pracy przedstawiłem metodę adaptacyjnego sterowania ruchem ulicznym poprzez optymalizowanie konfiguracji sygnalizacji świetlnej na skrzyżowaniach przy pomocy algorytmu genetycznego. W algorytmie tym genotypy były wektorami genów, z których każdy reprezentował pojedynczą sygnalizację (będącą reprezentacją zbioru sygnalizacji na pojedynczym skrzyżowaniu). Potrzebne doświadczenia zostały przeprowadzone za pomocą symulacji komputerowej z wykorzystaniem stworzonego przeze mnie programu TSF (Traffic Simulation Framework). Opisana została również szczegółowo funkcjonalność programu oraz opracowany przeze mnie model teoretyczny symulacji.

Przeprowadzone doświadczenia zaowocowały uzyskaniem lepszych genotypów - odpowiadających optymalniejszej konfiguracji sygnalizacji świetlnej. Z uwagi na dużą złożoność obliczeniową (czasową i pamięciową) eksperymentów udało się przeprowadzić stosunkowo niedużą liczbę iteracji algorytmu, w związku z tym otrzymane ulepszenie badanych funkcji oceny jest jedynie kilkuprocentowe. Można się jednak spodziewać, że dysponując większą mocą obliczeniową oraz poprawiając skalowalność proponowanego rozwiązania da się uzyskać większą poprawę wartości funkcji oceny.

Właśnie poprawa skalowalności algorytmu genetycznego a także zastosowanie innych funkcji oceny (m.in. badanie średniej prędkości jazdy kierowców) oraz innych algorytmów ewolucyjnych (np. algorytmu mrówkowego, rojowego) będzie jednym z obszarów moich dalszych badań nad omawianym problemem w ramach studiów doktoranckich na Wydziale MIMUW.

# **Dodatek A**

# Wyniki doświadczeń przy pomocy programu Traffic Simulation Framework

W niniejszy dodatku przedstawione zostaną szczegółowe wyniki eksperymentów: przebieg algorytmu genetycznego zasymulwanego przy użyciu programu komputerowego TSF. W tabelach A.1-A.3 znajdują się wyniki dla algorytmu, w którym funkcja oceny jakości genotypu to Time0. Wyniki te zobrazowane są też na rysunku A.1.

W tabelach A.4-A.6 znajdują się z kolei wyniki dla algorytmu, w którym funkcja oceny to Time<20. Wyniki te zobrazowane są też na rysunku A.2.



Rysunek A.1: Wartości funkcji celu Time0 dla kolejnych kroków algorytmu genetycznego



Rysunek A.2: Wartości funkcji celu Time<20 dla kolejnych kroków algorytmu genetycznego

**Tablica A.1:** Tabela przedstawiająca wartości funkcji celu w kolejnych krokach ewolucji algorytmu w przypadku funkcji Time0 - część 1

| Gen | Step 1  | Step 2  | Step 3  | Step 4  | Step 5  | Step 6  | Step 7  | Step 8  | Step 9  |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 1   | 5947096 | 5942776 | 5989125 | 5871243 | 5869264 | 5875619 | 5841108 | 5842674 | 5800712 |
| 2   | 6002009 | 5957558 | 5928293 | 5893851 | 5899256 | 5880450 | 5839236 | 5818956 | 5813313 |
| 3   | 5981969 | 5926514 | 5930156 | 5917948 | 5872086 | 5846099 | 5863004 | 5823675 | 5803781 |
| 4   | 5951648 | 6019723 | 5889313 | 5950034 | 5914510 | 5897177 | 5860913 | 5817164 | 5852456 |
| 5   | 6011114 | 5968313 | 5885894 | 5906335 | 5868360 | 5863886 | 5876651 | 5823345 | 5785131 |
| 6   | 5950667 | 6002016 | 5925839 | 5945804 | 5932280 | 5910771 | 5815987 | 5789615 | 5848005 |
| 7   | 5989093 | 5981605 | 5962089 | 5913166 | 5882852 | 5883084 | 5803864 | 5821159 | 5795908 |
| 8   | 5973916 | 5990139 | 5918814 | 5928828 | 5887414 | 5882907 | 5853950 | 5787830 | 5849336 |
| 9   | 5978086 | 5970557 | 5969122 | 5934750 | 5901911 | 5928442 | 5834401 | 5805555 | 5844665 |
| 10  | 5976103 | 5991907 | 5934237 | 5903260 | 5908895 | 5936233 | 5831041 | 5857737 | 5825118 |
| 11  | 5967370 | 5996715 | 5954703 | 5884076 | 5858043 | 5842578 | 5824504 | 5830535 | 5794005 |
| 12  | 5961824 | 5979092 | 5957962 | 5894136 | 5956901 | 5864681 | 5826119 | 5812468 | 5814895 |
| 13  | 5964772 | 6038136 | 5941188 | 5912665 | 5904360 | 5847118 | 5882844 | 5870528 | 5796283 |
| 14  | 6008645 | 6015014 | 5920260 | 5916403 | 5899627 | 5882996 | 5855457 | 5829442 | 5771471 |
| 15  | 5974849 | 5939288 | 5928943 | 5885069 | 5895947 | 5843934 | 5851065 | 5798602 | 5808978 |
| 16  | 5976101 | 5988281 | 5899807 | 5890790 | 5884722 | 5862321 | 5873919 | 5847904 | 5785737 |
| 17  | 6022325 | 6004039 | 5969559 | 5918516 | 5868797 | 5870375 | 5833402 | 5857095 | 5844526 |
| 18  | 5995903 | 5981071 | 5985556 | 5856064 | 5930097 | 5848762 | 5834744 | 5839753 | 5772490 |
| 19  | 5991085 | 5942004 | 5931810 | 5929010 | 5926853 | 5871135 | 5892069 | 5857553 | 5818986 |
| 20  | 5945657 | 5942417 | 5942866 | 5900455 | 5932481 | 5883153 | 5881922 | 5806961 | 5876717 |

 $\textbf{Tablica A.2:} \ Tabela \ przedstawiająca \ wartości funkcji celu \ w kolejnych krokach ewolucji algorytmu \ w przypadku funkcji Time0 - część 2$ 

| Gen | Step 1  | Step 2  | Step 3  | Step 4  | Step 5  | Step 6  | Step 7  | Step 8  | Step 9  |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 21  | 5976903 | 5981143 | 5996687 | 5963563 | 5869678 | 5891286 | 5903679 | 5820015 | 5817910 |
| 22  | 5984106 | 5987540 | 5952465 | 5915222 | 5902618 | 5980377 | 5863711 | 5808577 | 5808761 |
| 23  | 5975849 | 5957549 | 5914137 | 5915173 | 5900475 | 5914858 | 5877086 | 5831203 | 5805349 |
| 24  | 5960326 | 6021237 | 5972436 | 5917224 | 5865213 | 5847939 | 5875668 | 5821750 | 5824660 |
| 25  | 5960931 | 5925115 | 5960706 | 5959530 | 5864267 | 5893464 | 5842743 | 5832500 | 5829903 |
| 26  | 5969921 | 5984183 | 5913479 | 5897404 | 5848506 | 5885114 | 5877554 | 5816163 | 5845401 |
| 27  | 5968435 | 5939756 | 5992727 | 5924763 | 5903516 | 5894500 | 5902117 | 5871952 | 5899483 |
| 28  | 5954292 | 5994790 | 5935338 | 5932867 | 5908977 | 5881091 | 5813674 | 5856306 | 5839147 |
| 29  | 5969231 | 5977903 | 5985724 | 5895880 | 5877409 | 5861466 | 5872116 | 5824253 | 5824044 |
| 30  | 5979467 | 5971048 | 5899106 | 5919250 | 5873119 | 5879165 | 5877571 | 5904852 | 5789334 |
| 31  | 5945075 | 5922106 | 5946639 | 5915029 | 5899360 | 5863350 | 5794758 | 5816681 | 5778926 |
| 32  | 5988283 | 6034857 | 5929447 | 5921980 | 5891715 | 5891174 | 5811912 | 5833173 | 5806493 |
| 33  | 5968194 | 5946265 | 5942702 | 5937714 | 5863195 | 5875535 | 5828598 | 5831918 | 5811296 |
| 34  | 5964942 | 5953211 | 5928041 | 5913336 | 5898094 | 5887021 | 5931094 | 5851331 | 5846795 |
| 35  | 6000621 | 5999229 | 5922038 | 5955174 | 5891020 | 5872295 | 5830835 | 5824721 | 5771497 |
| 36  | 5976500 | 5945347 | 5902474 | 5920040 | 5930273 | 5945392 | 5862229 | 5807996 | 5890377 |
| 37  | 5961655 | 5951742 | 5929642 | 5920397 | 5902989 | 5864476 | 5819207 | 5786126 | 5803536 |
| 38  | 5972015 | 5950160 | 5964645 | 5888298 | 5917707 | 5892872 | 5826174 | 5820039 | 5797995 |
| 39  | 5967172 | 5971850 | 5963280 | 5973861 | 5904938 | 5893885 | 5907114 | 5898620 | 5849658 |
| 40  | 5984639 | 5979810 | 5911190 | 5927071 | 5861136 | 5923741 | 5839710 | 5800976 | 5816196 |
| 41  | 5950647 | 5939735 | 5917065 | 5934570 | 5877938 | 5875076 | 5870278 | 5852469 | 5796509 |
| 42  | 5965894 | 5966116 | 5959521 | 5929198 | 5864280 | 5883240 | 5870605 | 5849778 | 5752666 |
| 43  | 5959656 | 5998277 | 5918418 | 5898499 | 5872791 | 5864513 | 5880675 | 5815834 | 5847049 |
| 44  | 5950582 | 5977744 | 5926590 | 5944959 | 5840454 | 5878685 | 5831384 | 5873851 | 5807136 |
| 45  | 5978167 | 6011092 | 5978296 | 5941820 | 5923077 | 5910947 | 5891293 | 5862416 | 5805350 |
| 46  | 5947706 | 5968464 | 5931464 | 5916171 | 5916032 | 5842905 | 5844531 | 5791092 | 5835884 |
| 47  | 5950866 | 5993283 | 5965377 | 5905916 | 5924831 | 5824788 | 5848017 | 5850920 | 5792522 |
| 48  | 5968920 | 5960280 | 5914047 | 5942931 | 5868259 | 5939960 | 5865946 | 5826659 | 5846661 |
| 49  | 5957166 | 5977459 | 5929855 | 5914395 | 5894485 | 5934529 | 5857955 | 5831829 | 5829774 |
| 50  | 5966542 | 6033365 | 5926125 | 5966257 | 5917683 | 5931090 | 5826799 | 5909975 | 5835728 |
| 51  | 5948843 | 6009040 | 5913432 | 5934283 | 5905750 | 5891187 | 5866912 | 5824335 | 5849876 |
| 52  | 5997950 | 5977064 | 5976358 | 5856370 | 5918120 | 5832331 | 5823643 | 5838498 | 5867766 |
| 53  | 5968320 | 5920984 | 5909541 | 5950278 | 5919094 | 5938412 | 5880062 | 5866549 | 5835324 |
| 54  | 5958007 | 5948537 | 5934770 | 5855378 | 5874667 | 5930058 | 5859610 | 5895599 | 5796174 |
| 55  | 5952408 | 5987614 | 5915129 | 5903339 | 5887304 | 5894511 | 5826046 | 5884108 | 5849003 |
| 56  | 5988789 | 5946341 | 5905731 | 5902081 | 5921109 | 5887089 | 5902231 | 5815604 | 5843124 |
| 57  | 5977327 | 5957688 | 5909995 | 5919808 | 5916792 | 5867523 | 5845234 | 5814825 | 5803232 |
| 58  | 5992101 | 5906465 | 5927539 | 5879737 | 5911642 | 5928501 | 5827582 | 5810826 | 5837564 |
| 59  | 5964593 | 5957566 | 5922018 | 5931306 | 5886336 | 5913778 | 5810034 | 5833019 | 5833849 |
| 60  | 5977454 | 6025214 | 5984183 | 5900390 | 5964003 | 5892100 | 5823021 | 5866010 | 5862934 |

 $\textbf{Tablica A.3:} \ \text{Tabela przedstawiająca wartości funkcji celu w kolejnych krokach ewolucji algorytmu w przypadku funkcji Time0 - część 3$ 

| Gen | Step 1  | Step 2  | Step 3  | Step 4  | Step 5  | Step 6  | Step 7  | Step 8  | Step 9  |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 61  | 5992302 | 5972573 | 5915584 | 5935035 | 5929394 | 5852173 | 5805911 | 5808922 | 5796653 |
| 62  | 5974013 | 5952397 | 6023506 | 5961825 | 5872305 | 5811827 | 5909067 | 5878260 | 5796323 |
| 63  | 5969166 | 5944211 | 5896204 | 5912402 | 5892119 | 5898387 | 5837205 | 5809246 | 5869936 |
| 64  | 5987560 | 5942997 | 5931017 | 5997711 | 5912135 | 5909802 | 5872041 | 5813378 | 5836760 |
| 65  | 5958656 | 5962682 | 5960042 | 5925077 | 5896860 | 5898612 | 5874994 | 5804593 | 5831735 |
| 66  | 5957635 | 5927487 | 5974792 | 5954772 | 5930238 | 5889008 | 5849984 | 5882694 | 5861656 |
| 67  | 5951215 | 5989990 | 5957440 | 5976143 | 5847839 | 5919388 | 5815988 | 5795417 | 5807182 |
| 68  | 6011732 | 5962069 | 5959737 | 5912191 | 5901332 | 5866054 | 5869956 | 5780861 | 5760317 |
| 69  | 5986780 | 5979062 | 5906911 | 5914850 | 5881568 | 5878708 | 5823108 | 5835848 | 5847589 |
| 70  | 5954122 | 5960836 | 5911302 | 5890395 | 5883658 | 5886196 | 5810101 | 5815312 | 5801726 |
| 71  | 5984093 | 5957906 | 5965256 | 5885969 | 5909687 | 5877666 | 5885747 | 5853375 | 5853564 |
| 72  | 5981392 | 5983825 | 5953998 | 5862822 | 5900745 | 5854529 | 5840553 | 5835384 | 5787438 |
| 73  | 5991032 | 5951166 | 5930152 | 5963830 | 5909119 | 5880497 | 5853678 | 5870737 | 5790211 |
| 74  | 5960245 | 5897720 | 5954856 | 5930575 | 5882770 | 5902953 | 5841284 | 5864961 | 5822922 |
| 75  | 5969778 | 5968095 | 5884938 | 5933013 | 5920236 | 5860434 | 5852604 | 5851088 | 5764811 |
| 76  | 5973903 | 5972615 | 5935969 | 5935779 | 5854941 | 5861354 | 5847916 | 5863346 | 5841149 |
| 77  | 5979748 | 5942586 | 5937897 | 5921864 | 5907757 | 5881754 | 5809873 | 5861335 | 5833668 |
| 78  | 5960982 | 5981742 | 5996601 | 5883287 | 5923592 | 5887294 | 5829700 | 5819527 | 5825665 |
| 78  | 5948497 | 5997968 | 5945967 | 5943543 | 5940221 | 5851425 | 5885816 | 5835294 | 5811411 |
| 80  | 5967254 | 5939498 | 5926494 | 5919628 | 5907949 | 5880098 | 5855073 | 5840854 | 5798488 |
| 81  | 5940228 | 5997865 | 5970825 | 5936040 | 5868005 | 5888228 | 5832085 | 5846004 | 5819264 |
| 82  | 5959719 | 5972491 | 5954594 | 5874758 | 5894532 | 5862930 | 5833019 | 5862133 | 5838247 |
| 83  | 5978762 | 5996397 | 5936123 | 5881239 | 5865749 | 5879045 | 5879860 | 5792834 | 5858206 |
| 84  | 5962691 | 5965856 | 5952901 | 5943741 | 5896165 | 5876656 | 5855539 | 5880281 | 5833341 |
| 85  | 5937535 | 5934370 | 5929955 | 5926856 | 5892612 | 5914728 | 5830458 | 5808239 | 5846870 |
| 86  | 5961432 | 5976598 | 5954785 | 5932144 | 5906156 | 5875595 | 5841111 | 5801760 | 5846693 |
| 87  | 5954909 | 6022783 | 5950622 | 5934003 | 5877315 | 5898658 | 5857827 | 5855997 | 5784494 |
| 88  | 5986045 | 5964864 | 5959213 | 5865457 | 5864663 | 5865407 | 5848254 | 5832663 | 5835385 |
| 89  | 5984698 | 5960138 | 5966122 | 5917942 | 5907699 | 5929729 | 5816897 | 5813979 | 5828218 |
| 90  | 5943051 | 6025999 | 5932038 | 5918923 | 5877996 | 5896896 | 5820258 | 5831953 | 5819087 |
| 91  | 5985864 | 5988939 | 5960005 | 5898265 | 5875763 | 5862483 | 5825905 | 5807253 | 5870180 |
| 92  | 5972168 | 5957417 | 5952545 | 5891198 | 5917127 | 5870088 | 5809693 | 5849133 | 5826030 |
| 93  | 5980609 | 5927782 | 5928023 | 5908279 | 5900595 | 5890612 | 5872553 | 5816349 | 5833502 |
| 94  | 5964478 | 5976256 | 5913093 | 5951627 | 5861153 | 5907691 | 5812371 | 5895471 | 5798746 |
| 95  | 5970691 | 5975107 | 5949051 | 5929322 | 5925613 | 5872955 | 5839102 | 5848147 | 5838949 |
| 96  | 5959484 | 5949702 | 5923631 | 5920851 | 5940447 | 5869368 | 5833458 | 5848575 | 5818403 |
| 97  | 5982370 | 5960793 | 5964850 | 5926934 | 5876201 | 5906200 | 5827269 | 5789858 | 5794440 |
| 98  | 5963367 | 6023289 | 5925738 | 5910038 | 5912090 | 5881150 | 5844471 | 5865110 | 5800500 |
| 99  | 5950321 | 5961816 | 5916813 | 5888443 | 5919700 | 5933481 | 5835433 | 5856496 | 5864957 |
| 100 | 5951441 | 5965152 | 5996715 | 5910450 | 5926504 | 5910769 | 5860059 | 5823529 | 5821355 |

**Tablica A.4:** Tabela przedstawiająca wartości funkcji celu w kolejnych krokach ewolucji algorytmu w przypadku funkcji Time<20 - część 1

| Gen | Krok 1  | Krok 2  | Krok 3  | Krok 4  | Krok 5  | Krok 6  | Krok 7  | Krok 8  | Krok 9  |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 1   | 8469703 | 8411361 | 8402845 | 8369034 | 8304388 | 8331868 | 8342273 | 8251366 | 8257624 |
| 2   | 8457308 | 8410035 | 8374739 | 8367482 | 8353501 | 8316423 | 8284185 | 8250068 | 8271751 |
| 3   | 8437681 | 8435834 | 8392699 | 8447456 | 8376666 | 8350855 | 8313209 | 8283253 | 8247294 |
| 4   | 8400406 | 8406709 | 8398554 | 8349402 | 8422503 | 8310396 | 8337451 | 8296154 | 8301828 |
| 5   | 8423786 | 8372514 | 8407444 | 8462666 | 8320135 | 8242777 | 8339681 | 8290310 | 8286102 |
| 6   | 8560436 | 8453537 | 8369982 | 8392717 | 8342380 | 8345343 | 8343367 | 8256700 | 8248751 |
| 7   | 8445889 | 8351330 | 8414983 | 8396624 | 8346398 | 8326516 | 8341780 | 8259507 | 8289011 |
| 8   | 8414209 | 8405756 | 8359171 | 8390566 | 8371800 | 8281895 | 8343448 | 8296331 | 8290793 |
| 9   | 8466177 | 8416435 | 8412317 | 8360515 | 8418028 | 8319206 | 8266912 | 8251051 | 8293030 |
| 10  | 8402901 | 8434696 | 8411415 | 8346170 | 8352645 | 8376229 | 8282593 | 8277577 | 8317568 |
| 11  | 8451964 | 8444736 | 8372337 | 8413440 | 8292925 | 8324770 | 8305012 | 8234131 | 8277983 |
| 12  | 8397399 | 8464796 | 8409829 | 8319543 | 8301930 | 8314705 | 8318442 | 8263886 | 8272255 |
| 13  | 8405258 | 8394950 | 8392610 | 8344341 | 8331399 | 8373761 | 8291115 | 8293568 | 8308642 |
| 14  | 8398845 | 8410812 | 8418475 | 8353957 | 8391463 | 8323153 | 8328801 | 8389845 | 8320083 |
| 15  | 8419553 | 8412724 | 8393749 | 8348601 | 8350837 | 8322630 | 8308000 | 8261037 | 8310558 |
| 16  | 8430367 | 8393694 | 8383591 | 8408691 | 8361052 | 8393608 | 8290576 | 8310510 | 8228039 |
| 17  | 8494551 | 8364020 | 8399848 | 8382163 | 8339149 | 8310286 | 8296962 | 8292464 | 8380978 |
| 18  | 8425994 | 8416487 | 8353371 | 8328768 | 8384241 | 8335466 | 8308344 | 8295952 | 8251050 |
| 19  | 8517534 | 8453670 | 8404524 | 8348255 | 8352689 | 8326774 | 8281016 | 8316892 | 8317400 |
| 20  | 8462152 | 8403121 | 8392925 | 8327193 | 8365564 | 8332596 | 8329021 | 8298499 | 8291111 |

**Tablica A.5:** Tabela przedstawiająca wartości funkcji celu w kolejnych krokach ewolucji algorytmu w przypadku funkcji Time<20 - część 2

| Gen | Krok 1  | Krok 2  | Krok 3  | Krok 4  | Krok 5  | Krok 6  | Krok 7  | Krok 8  | Krok 9  |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 21  | 8409404 | 8467839 | 8341614 | 8351785 | 8373885 | 8359721 | 8334313 | 8289846 | 8249358 |
| 22  | 8440087 | 8422742 | 8388640 | 8353973 | 8357279 | 8310302 | 8353520 | 8287544 | 8255461 |
| 23  | 8408918 | 8426144 | 8419498 | 8422720 | 8379213 | 8337868 | 8367500 | 8278912 | 8335201 |
| 24  | 8442980 | 8464745 | 8368405 | 8419032 | 8342639 | 8340745 | 8345753 | 8298078 | 8340285 |
| 25  | 8416725 | 8424926 | 8404396 | 8375987 | 8351415 | 8305544 | 8377227 | 8345249 | 8265376 |
| 26  | 8418115 | 8389797 | 8408827 | 8438140 | 8354160 | 8302124 | 8360766 | 8302018 | 8283906 |
| 27  | 8419437 | 8433607 | 8375118 | 8435285 | 8327731 | 8368932 | 8352966 | 8357948 | 8306542 |
| 28  | 8428185 | 8354465 | 8409550 | 8370833 | 8414533 | 8389576 | 8327583 | 8315110 | 8306979 |
| 29  | 8432480 | 8438273 | 8406615 | 8404278 | 8362538 | 8321703 | 8356831 | 8310394 | 8293653 |
| 30  | 8459791 | 8411789 | 8387038 | 8351791 | 8333741 | 8343537 | 8281147 | 8308673 | 8327559 |
| 31  | 8449231 | 8437969 | 8431675 | 8385074 | 8380135 | 8344213 | 8337904 | 8291362 | 8297765 |
| 32  | 8398450 | 8408671 | 8404744 | 8343959 | 8353599 | 8345745 | 8290566 | 8286780 | 8320862 |
| 33  | 8417633 | 8391376 | 8420945 | 8390165 | 8325384 | 8299622 | 8280290 | 8310253 | 8312991 |
| 34  | 8415178 | 8418305 | 8483864 | 8406969 | 8321179 | 8311445 | 8298889 | 8310752 | 8351584 |
| 35  | 8414073 | 8367003 | 8391108 | 8377489 | 8374812 | 8321907 | 8351412 | 8273599 | 8262735 |
| 36  | 8405604 | 8466608 | 8427486 | 8384834 | 8310619 | 8277109 | 8368026 | 8301386 | 8277446 |
| 37  | 8433946 | 8428081 | 8370016 | 8350488 | 8353336 | 8286948 | 8305789 | 8317572 | 8355440 |
| 38  | 8409122 | 8453224 | 8445030 | 8384935 | 8338627 | 8438182 | 8342326 | 8342803 | 8272838 |
| 39  | 8413161 | 8370193 | 8367364 | 8362356 | 8354271 | 8394972 | 8384749 | 8303069 | 8279998 |
| 40  | 8461428 | 8422250 | 8374952 | 8374801 | 8382667 | 8337729 | 8313792 | 8286756 | 8282160 |
| 41  | 8407588 | 8441915 | 8391788 | 8382475 | 8345309 | 8290489 | 8299650 | 8289583 | 8330021 |
| 42  | 8443058 | 8413168 | 8403670 | 8374716 | 8492364 | 8341667 | 8352230 | 8307643 | 8296821 |
| 43  | 8457895 | 8350837 | 8328534 | 8292620 | 8342828 | 8379618 | 8348918 | 8262368 | 8326936 |
| 44  | 8437847 | 8417970 | 8373644 | 8397099 | 8321255 | 8282029 | 8286558 | 8368704 | 8286686 |
| 45  | 8442407 | 8446174 | 8413892 | 8368567 | 8379511 | 8296535 | 8301695 | 8274772 | 8240081 |
| 46  | 8417156 | 8398399 | 8359825 | 8414300 | 8341743 | 8392752 | 8304314 | 8303743 | 8336118 |
| 47  | 8397475 | 8471014 | 8360331 | 8384817 | 8346915 | 8355686 | 8375777 | 8287254 | 8296356 |
| 48  | 8399196 | 8401002 | 8415171 | 8395555 | 8330172 | 8389351 | 8387962 | 8321116 | 8295489 |
| 49  | 8424338 | 8447064 | 8432252 | 8387841 | 8314762 | 8326712 | 8316576 | 8314166 | 8268866 |
| 50  | 8481216 | 8425972 | 8375194 | 8338333 | 8410556 | 8339409 | 8324715 | 8289469 | 8351268 |
| 51  | 8437412 | 8437169 | 8389441 | 8332954 | 8428653 | 8324789 | 8311048 | 8270016 | 8257719 |
| 52  | 8410630 | 8413714 | 8410089 | 8320837 | 8360725 | 8271648 | 8271007 | 8332221 | 8278900 |
| 53  | 8418245 | 8402378 | 8427754 | 8407120 | 8344657 | 8376831 | 8396690 | 8287164 | 8348227 |
| 54  | 8417581 | 8427179 | 8422419 | 8458199 | 8347693 | 8295414 | 8383489 | 8302850 | 8239804 |
| 55  | 8434803 | 8424855 | 8368752 | 8434028 | 8372556 | 8344997 | 8335897 | 8328519 | 8289463 |
| 56  | 8391305 | 8391546 | 8405884 | 8380147 | 8360064 | 8321202 | 8424348 | 8329848 | 8328318 |
| 57  | 8426361 | 8413859 | 8410029 | 8418186 | 8381223 | 8358147 | 8357576 | 8355090 | 8320564 |
| 58  | 8436658 | 8400604 | 8437638 | 8417710 | 8376769 | 8350915 | 8379557 | 8279807 | 8326431 |
| 59  | 8480829 | 8448209 | 8417273 | 8414447 | 8389531 | 8380651 | 8307399 | 8273963 | 8332140 |
| 60  | 8482474 | 8401288 | 8414743 | 8361667 | 8335435 | 8335137 | 8384483 | 8252124 | 8332519 |

**Tablica A.6:** Tabela przedstawiająca wartości funkcji celu w kolejnych krokach ewolucji algorytmu w przypadku funkcji Time<20 - część 3

| Gen | Krok 1  | Krok 2  | Krok 3  | Krok 4  | Krok 5  | Krok 6  | Krok 7  | Krok 8  | Krok 9  |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 61  | 8495461 | 8454785 | 8333976 | 8385805 | 8323405 | 8327328 | 8327848 | 8242728 | 8321532 |
| 62  | 8390742 | 8362541 | 8378252 | 8314483 | 8322189 | 8420369 | 8370705 | 8337737 | 8278688 |
| 63  | 8441589 | 8456893 | 8422351 | 8431847 | 8357917 | 8296340 | 8312868 | 8346992 | 8295982 |
| 64  | 8437497 | 8404066 | 8428107 | 8420020 | 8424245 | 8317951 | 8296898 | 8300054 | 8328354 |
| 65  | 8403825 | 8428441 | 8414337 | 8364829 | 8368143 | 8303468 | 8228153 | 8271992 | 8289070 |
| 66  | 8424370 | 8396647 | 8430401 | 8399715 | 8355104 | 8363990 | 8317989 | 8316694 | 8340884 |
| 67  | 8415406 | 8413382 | 8383208 | 8398907 | 8412754 | 8355082 | 8349200 | 8310117 | 8317352 |
| 68  | 8436688 | 8419503 | 8434274 | 8394454 | 8313962 | 8301315 | 8336064 | 8332735 | 8255114 |
| 69  | 8432112 | 8418577 | 8389492 | 8377362 | 8391539 | 8380229 | 8274820 | 8333065 | 8342035 |
| 70  | 8381540 | 8400624 | 8372579 | 8385218 | 8352302 | 8315804 | 8402337 | 8284339 | 8299501 |
| 71  | 8444448 | 8395021 | 8372289 | 8371470 | 8410157 | 8328719 | 8292793 | 8324233 | 8313275 |
| 72  | 8442031 | 8412671 | 8458704 | 8347848 | 8371655 | 8301407 | 8284142 | 8253717 | 8262788 |
| 73  | 8425431 | 8376261 | 8431799 | 8345409 | 8312262 | 8450541 | 8322158 | 8340682 | 8245462 |
| 74  | 8450976 | 8420919 | 8356122 | 8397742 | 8425327 | 8280816 | 8335317 | 8321297 | 8270910 |
| 75  | 8431712 | 8460825 | 8399794 | 8324294 | 8413361 | 8354745 | 8342501 | 8246949 | 8315243 |
| 76  | 8412586 | 8476953 | 8373969 | 8373866 | 8372509 | 8307023 | 8377894 | 8294838 | 8301377 |
| 77  | 8442400 | 8408139 | 8435092 | 8332531 | 8418999 | 8272345 | 8283322 | 8298650 | 8304211 |
| 78  | 8418747 | 8396978 | 8394471 | 8379190 | 8385834 | 8317948 | 8296601 | 8314769 | 8268956 |
| 79  | 8423847 | 8424399 | 8428494 | 8353223 | 8360016 | 8322559 | 8325825 | 8350744 | 8279669 |
| 80  | 8399875 | 8505776 | 8367435 | 8431157 | 8376184 | 8334266 | 8402188 | 8308994 | 8294133 |
| 81  | 8422593 | 8378233 | 8406498 | 8344173 | 8371423 | 8319906 | 8303064 | 8282301 | 8262946 |
| 82  | 8431879 | 8405175 | 8413363 | 8339050 | 8410905 | 8314267 | 8369912 | 8285485 | 8287366 |
| 83  | 8411948 | 8419114 | 8413715 | 8386357 | 8326732 | 8413581 | 8308265 | 8238230 | 8248433 |
| 84  | 8461284 | 8420633 | 8417562 | 8403030 | 8390693 | 8311322 | 8355681 | 8296789 | 8323732 |
| 85  | 8447650 | 8430460 | 8416847 | 8348665 | 8346043 | 8293472 | 8342338 | 8306605 | 8297551 |
| 86  | 8405330 | 8386784 | 8388969 | 8385952 | 8400121 | 8396754 | 8413936 | 8342406 | 8273665 |
| 87  | 8381108 | 8429013 | 8419664 | 8376143 | 8420628 | 8431154 | 8289452 | 8311039 | 8277479 |
| 88  | 8476214 | 8381529 | 8419280 | 8338465 | 8357989 | 8323374 | 8331797 | 8289443 | 8273708 |
| 89  | 8391526 | 8483455 | 8450094 | 8377774 | 8362506 | 8346988 | 8351240 | 8291032 | 8322643 |
| 90  | 8472567 | 8452337 | 8363765 | 8436872 | 8341135 | 8340387 | 8299261 | 8326764 | 8280923 |
| 91  | 8385125 | 8412619 | 8399521 | 8382527 | 8341417 | 8362542 | 8313038 | 8243863 | 8273109 |
| 92  | 8397005 | 8447636 | 8400049 | 8354869 | 8358660 | 8377334 | 8302013 | 8384140 | 8274838 |
| 93  | 8394478 | 8405766 | 8352212 | 8362039 | 8408200 | 8344653 | 8262984 | 8358000 | 8318809 |
| 94  | 8414930 | 8432083 | 8430116 | 8428571 | 8414613 | 8297826 | 8302916 | 8333261 | 8266198 |
| 95  | 8397577 | 8408929 | 8461638 | 8358291 | 8413022 | 8300853 | 8304729 | 8290934 | 8324995 |
| 96  | 8417748 | 8447327 | 8412132 | 8366160 | 8339182 | 8409490 | 8398018 | 8334446 | 8284232 |
| 97  | 8428004 | 8447000 | 8353116 | 8450306 | 8302245 | 8334784 | 8306219 | 8303849 | 8364776 |
| 98  | 8417046 | 8407827 | 8392259 | 8392142 | 8359566 | 8293826 | 8326791 | 8313083 | 8270661 |
| 99  | 8454296 | 8355598 | 8413816 | 8388764 | 8324228 | 8326401 | 8339453 | 8317457 | 8286596 |
| 100 | 8411616 | 8422722 | 8449895 | 8447162 | 8336927 | 8367422 | 8278677 | 8301059 | 8303018 |

# **Bibliografia**

- [AL] Allsop, R.E., SIGSET: A computer program for calculating traffic signal settings. Traffic Engineering and Control, 1971, p. 58-60.
- [AGG] Aggarwal, Ch. C. (2007) Data streams. Models and algorithms, Springer, Heidelberg.
- [APK] Abdulhai, B., Pringle, R., Karakoulas G. J., *Reinforcement learning for true adaptive traffic signal control*, J. Transp. Engrg., 129(3), 2003: 278-285
- [AWM] W.M.P. van der Aalst, A.J.M.M. Weijters, L. Maruster, "Workflow Mining: Discovering process models from event logs", Knowledge and Data Engineering, IEEE Transactions on Volume 16, Issue 9, Sept. 2004 Page(s): 1128 1142.
- [BHSS] R. Barlović, T. Huisinga, A. Schadschneider, M. Schreckenberg, (2005) *Adaptive Traffic Light Control in the ChSch Model for City Traffic Traffic and Granular Flow*, 2005, Part 3, p. 331-336.
- [BJ] Branke, J. (2001) Evolutionary optimization in dynamic environments. Kluwer Academic Publishers Norwell, MA, USA.
- [BU] D. Bullock, T. Urbanik *Traffic signal systems: addressing diverse technologies and complex user needs*. In: Transportation in the New Millennium. Transportation Research Board, 2000, 9 p.
- [CA] Kułakowski K., "Automaty komórkowe", http://www.ftj.agh.edu.pl/ kulakowski/AC/.
- [CAG] Chen H., Abu-Lebdeh G., Goodman E.: Optimizing Dynamic Roadway Traffic Control with Parallel Genetic Algorithms and Assessment of Computational Advantages, Proceedings of the ASCE Civil Engineering Conference and Exposition, Baltimore, 2004.
- [ChCh] S. Chiu, S. Chand, *Self-Organizing Traffic Control via Fuzzy Logic* In: Proc. 32nd IEEE Conf. on Decision & Control San Antonio, Texas December, 1993, p. 1897-1902
- [CYP] Chen S.W., Yang C.B., Peng Y.H., *Algorithms for the Traffic Light Setting Problem on the Graph Model*, Proc. of the 12th Conference on Artificial Intelligence and Applications, TAAI 2007.
- [GOL] Goldberg D., "Genetic algorithms", Addison Wesley, kierunku Matematyka na Wydziale Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego, 2009
- [GOR] Gora P., Modelowanie złożonych procesów na przykładzie symulacji ruchu drogowego, praca magisterska na kierunku Matematyka na Wydziale Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego, 2009

- [GS] G. Gomes, A. Skabardonis, Effectiveness of adaptive traffic control for arterial signal management, 2009 California PATH Working Paper UCB-ITS-PWP-2009-2
- [GUS] Główny Urząd Statystyczny, "Rocznik statystyczny Polski 2008", http://www.stat.gov.pl.
- [HLL] Helbing, D., Leammer, S., Lebacque, J-P. (2005) Self-organized control of irregular or perturbed network traffic. In: C. Deissenberg and R.F. Hartl (Eds.) Optimal Control and Dynamic Games, Advances in Computational Management Science, 2005, Volume 7, Part IV, Springer, 239-274.
- [HL] Helbing, D., Leammer, S. (2008) *Self-control of traffic lights and vehicle flows in urban road networks.* Journal of Statistical Mechanics: Theory and Experiment 4: p. 3-34.
- [MBY] Minai, A., Braha, D., Bar-Yam, Y. (2008) *Unifying themes in complex systems VI*. Proceedings of the Sixth International Conference on Complex Systems. Springer, Cambridge, MA, USA.
- [MG] Mohammadpour, J., Grigoriadis, K.M. (Eds.) (2009) *Efficient Modeling and Control of Large-Scale Systems*. Springer, Heidelberg.
- [MIC] Michalewicz Z. *Algorytmy genetyczne* + *struktury danych* = *programy ewolucyjne*. Warszawa: WNT, 1996.
- [NS] Nagel K., Schreckenberg M., "A cellular automaton model for freeway traffic", Journal de Physique, 1992, strony: 2221-2229.
- [OB] de Oliveira, D., Bazzan, A.L.C. (2006) *Traffic lights control with adaptive group for- mation based on swarm intelligence*. In: M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, Springer, Heidelberg, strony 520-521
- [OSM] OpenStreetMap, http://www.openstreetmap.org.
- [OTC] Organic traffic control, http://www.aifb.uni-karlsruhe.de/EffAlg/Projekt/otcqe/
- [PRTB] Prothmann, H., Rochner, F., Tomforde, S., Branke, J., Christian Mueller-Schloer, Ch., Schmeck, H. (2008) *Organic Control of Traffic Lights*. In: C. Rong et al. (Eds.): ATC 2008, LNCS 5060, strony 219-233.
- [RPBM] Rochner, F., Prothmann, H., Branke, J., Mueller-Schloer, C., Schmeck, H. (2006): An organic architecture for traffic light controllers. In: Hochberger, C., Liskowsky, R. (Eds.) Informatik 2006 Informatik fuer Menschen. LNI, vol. P-93, Koellen Verlag, strony 120-127.
- [RPS] Roess, R.P., Prassas, E.S., McShane, W.S. (2004) *Traffic Engineering, 3rd Edition*, Upper Saddle River: Pearson Prentice Hall.
- [SCATS] http://www.scats.com.au/
- [SCH] Schadschneider A., "*The Nagel-Schreckenberg model revisited*", The European Physical Journal B, Volume 10, Issue 3, pp. 573-582 (1999).
- [SIE] Siemens Traffic Solutions, http://www.itssiemens.com/en/u\_nav1241.html

- [STHB] Sha'Aban J., Tomlinson A., Heydecker B., Bull L., *Adaptive traffic control using evolutionary algorithms*, Proceedings 9th Meeting of the EURO Working Group on Transportation, Bari, Italy, 2002.
- [TBPEGS] Taale, H., Baeck, Th., Preuss, M., Eiben, A. E., de Graaf, J. M., Schippers, C. A. (1998) Optimizing traffic light controllers by means of evolutionary algorithms. In: EUFIT'98.
- [TELVENT] TELVENT, http://www.telvent.com/en/business\_areas/transportation/our\_company/loader.cfm?csModule=security/getfile&pageid=6892
- [TLC] Traffic lights control University of Dresden, http://www.trafficforum.ethz.ch/trafficlights/
- [TRB] TRB Traffic Signal Systems Committee, http://www.signalsystems.org.vt.edu/archive.html
- [TSS] Tubaishat, M., Shang, Y., Shi, H. (2007) *Adaptive Traffic Light Control with Wireless Sensor Networks*. In: Proc. IEEE Consumer Communications and Networking Conference, Las Vegas, NV, January 2007.
- [WF] Windows Forms, http://windowsclient.net/
- [WI] Wiering, M. A. (2000). Multi-agent reinforcement learning for traffic light control. In Langley, P., editor, Proceedings of the Seventeenth International Conference on Machine Learning (ICML'2000), strony 1151-1158.
- [WJK] Wiering, M., van Veenen Jilles, J., Koopman, V.A. (2004) *Intelligent Traffic Light Control*. Institute of Information and Computing Sciences, Utrecht University Technical Report UU-CS-2004-029.
- [WKM] Washington, S.P., Karlaftis, M.G., Mannering, F.L. (2003) *Statistical and econometric methods for transportation data analysis*. Chapman & Hall/CRC, Boca Raton.
- [WU] Wuertz, R.P. (Ed.) (2008) Organic computing. Springer, Heidelberg.