

FILE COPY

TECHNICAL REPORT.

MORPHOLOGICAL CHARACTERISTICS OF NORTH ATLANTIC AND NORTH PACIFIC SEAMOUNTS AS FACTORS FOR DESIGNING EFFECTIVE SURVEY DETECTION STRATEGIES.

DEWEY R./BRACEY

MARCH 1981

Approved for public release; distribution unlimited.

PREPARED BY
COMMANDING OFFICER,
NAVAL OCEANOGRAPHIC OFFICE
NSTL STATION, BAY ST. LOUIS, MS 39522

PREPARED FOR
COMMANDER
NAVAL OCEANOGRAPHY COMMAND
NSTL STATION, BAY ST. LOUIS, MS 39529

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENT	ATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1 REPORT NUMBER	AD-ALOS	O. 3 RECIPIENT'S CATALOG NUMBER	
Morphological Characterist and North Pacific seamount signing effective survey d	ics of North Atlantic s as factors for de-	5 TYPE OF REPORT & PERIOD COVERED 6 PERFORMING ORG. REPORT NUMBER	
Dewey R. Bracey		8. CONTRACT OR GRANT NUMBER(A)	
 PERFORMING ORGANIZATION NAME AND Code 8230 U. S. Naval Oceanographic Bay St. Louis, MS 39522 	Office	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
11. CONTROLLING OFFICE NAME AND ADDR	RESS	March, 1981 13. NUMBER OF PAGES 31	
14. MONITORING AGENCY NAME & ADDRESS	(if different from Controlling Office)	15. SECURITY CLASS. (of this report) UNCLASSIFIED 15. DECLASSIFICATION DOWNGRADING SCHEDULE	
Approved for public release		TAB Communication	1
17. DISTRIBUTION STATEMENT (of the abatra	ct entered in Black 20, 11 different fro	tom Report) Distribution Availability Code:	9
18. SUPPLEMENTARY NOTES		Mail and/or	
SEAMOUNT DETECTION SEA	AMOUNT SURVEY STRATEGY		
This report defines bathym seamount morphological para North Pacific seamounts. (are used to develop require	ameters, for the detec Characteristics derived ed survey track orient	survey strategies, based on ction of North Atlantic and ed from the morphological data cations and track spacing to e oceans using the most econo-	

DD 1 FORM 1473

5 N 0102- LF- 014- 6601

CONTENTS

P	age
roduction	.1
North Atlantic seamounts	.2
North Pacific seamounts	10
Limitations and conclusions	17
FIGURES	
gure 1. Histograms of North Atlantic seamount basal dimension distributions	. 3
gure 2. North Atlantic seamount short vs. long axis basal dimension plot	.4
gure 3. Seamount height vs. water depth in the North Atlantic	.6
gure 4. Percent probability of encountering a North Atlantic seamount with a given track spacing	.8
gure 5. Histograms of North Pacific seamount basal dimensions distributions	11
gure 6. North Pacific seamount short vs. long axis basal dimension plot	12
gure 7. Seamount height vs. water depth in the North Pacific	14
gure 8. Percent probability of encountering a North Pacific seamount with a given track spacing	15
gure 9. Example of survey track spacing reduction that may be required due to ambient bottom relief ("background noise")	18
APPENDIXES	
pendix A. North Atlantic seamount morphological parameters	23
pendix B. North Pacific seamount morphological parameters	26

INTRODUCTION

To develop an effective search technique, one must first have as clear an understanding as possible of the object of the search. This report attempts to define seamount morphological characteristics (size, shape, orientation) in the North Atlantic and North Pacific Oceans. The factors resulting from this definition can then be used for the development of efficient bathymetric or geophysical survey strategies to locate and delineate those seamounts which may constitute navigational hazards or that may be of interest to other Navy programs.

A resultant corollary is that those areas that have sufficient survey coverage within accepted probability limits can be quickly identified and excluded from further survey effort, while those areas with limited coverage can be filled in with the required track spacing for adequate delineation of any existing seamount.

I. NORTH ATLANTIC SEAMOUNTS

Appendix A presents morphological data for 72 isolated seamounts, randomly selected from the Bathymetric Atlas of the North Atlantic (C), (1975), at depths equal to or greater than 2000 meters. These data reveal that the seamounts can be divided into two morphological classes: 1) Elongated, oval-shaped seamounts (64%); and 2) conical seamounts (35%).

Figure 1 shows the basal axial dimension distribution of the seamounts. The distribution, while random, is not normal but seems to follow a chi-square of F distribution pattern. A possible explanation is that while there is a minimum basal dimension size, the maximum basal dimension can increase without limit.

Also shown on this figure are the basal dimensions of those seamounts less than or equal to 1000 meters in depth, the seamounts of particular interest in this study.

Figure 2 is a plot of short versus long axial dimensions. The mean and standard deviations of the seamount dimensions are also plotted; they are 16.8×23.5 nm and $\frac{1}{2} \times 6.0 \times \frac{1}{2} \times 8.5$ nm, respectively.

The linear regression line for the elongated seamounts is also shown in figure 2. The line is determined by $A_S = 0.56A_L + 1.53$, where A_S and A_L are the short and long axial dimensions in nm, respectively. The line indicates that the long axis of the average elongated seamount is about 1.5 times the short axis dimension. Statistical evidence indicates that the elongation is significant at the 95% confidence level.

As shown in Appendix A, the long axes of the elongated seamounts tend to parallel the direction of sea-floor spreading. Fifty-seven percent of the elongated axes fall within $\frac{1}{2}$ 30° of the sea-floor spreading direction, while 80° fall within $\frac{1}{2}$ 45° of this azimuth. Two possible explanations for this

North Atlantic Seamounts

Figure 1. Histograms of North Atlantic seamount basal dimension distributions. Histogram (1) shows long axis distributions, (2) shows short axis distributions, and (3) and (4) show the same respective data for seamounts with peaks ≤ 1000 m in depth. Conical seamount are included in the distributions.

Figure 2. North Atlantic seamount short vs. long axis basal dimension plot. Mean dimension and standard deviations for all seamounts indicated by hexagon and light dashed lines, respectively. Linear regression line for elongated seamounts shown by heavy dashed line. R² and R are goodness of fit and correlation coefficient, respectively.

phenomenom are offered: 1) the source of the seamount-forming magma may have been stationary in the upper mantle beneath the moving oceanic crust, depositing the magma pile on progressively younger crust and elongating the seamount in the spreading direction; 2) the magma source may have been located in the oceanic crust which was moving outward and downward (due to crustal cooling and shrinkage) from the spreading axis, resulting in the outpouring magma to tend to flow "downhill" under the influence of gravity, resulting in elongation of the seamount in the spreading direction.

Figure 3 shows that the height of the average North Atlantic seamount is $2378 \stackrel{+}{-} 872$ (s.d.) meters and that the seamount occurs in water depths of $4092 \stackrel{+}{-} 772$ (s.d.) meters. Statistical tests show that there is no significant linear regression (increase in height with depth) for either all the seamounts considered together or for the conical seamounts alone. There is significant regression for those seamounts ≤ 1000 meters in depth, as shown in figure 3; but this is simply a mathematical expression of the obvious—in order to reach within 1000 meters of the surface, heights would have to increase with depth.

In the ocean basins, crustal depths are also a function of age (Sclater, and others, 1971). The approximate age taken from their age versus depth plot for the North Atlantic is shown as one of the ordinates in figure 3. This must be considered as only a rough estimate of age due to the uncertainties involved but may prove useful in areas where crustal ages have been established by magnetic anomaly identifications.

One interesting feature of figure 3 is that there appear to be no seamounts in water depths between 2200 and 3000 meters (\sim 2-5 m.y. B.P.). This may, however, result from the sampling technique and should be regarded with caution.

Figure 3. Seamount height vs. water depth and crustal age in the North Atlantic. Mean height/depth and standard deviations shown by hexagon and light dashed lines, respectively. Linear regression line for seamount peaks ≤1000 m depth shown by heavy dashed line. R² and R as in figure 2.

Another interesting feature is the total absence of seamounts shoaler than 1000 meters in water depths greater than 4100 meters (~ 2.5 m.y. B.P. age). It is doubtful that this phenomenon is also an artifact of the sampling technique since half the seamounts sampled were in water depths greater than 4100 meters.

The probability of encounter curves in figure 4 were developed by an empirical technique from the data of figure 1. The method consists of first normalizing the interval areas (0-5 nm, 5-10 nm, etc.) of histograms (1) and (2) of figure 1. The probability that a seamount will be encountered by a survey track spacing with a given interval is then determined by:

$$Pn = 1 + \sum_{i=0}^{n} (-Ni)$$

where i,....,n are the intervals considered (0-5, 5-10, 10-15, etc.)

N is the normalized value of the interval,

and Pn is the probability of encounter in n intervals.

Pn is then plotted at the median point of the interval considered. Note that "encounter" means passing over any part of the seamount.

This method has an advantage in that it assumes no particular distribution (normal, chi-square, etc.) of the data but uses the actual data distribution. It does assume that the data are randomly distributed. By inspection of figure 1, this assumption seems warranted.

The curves in figure 4 give the probability of encountering a North Atlantic seamount under two conditions: 1) The long axis of elongated seamounts is perpendicular to the track, and 2) the long axis is parallel to the track. For example: A 95% probability of encounter would require an 8.5 nm spacing in case 1) and a 5 nm spacing in case 2).

To summarize some of the factors resulting from this study which will bear upon seamount survey strategy in the North Atlantic:

Figure 4. Percent probability (using empirical method) of encountering a North Atlantic seamount with a given track spacing. Curve (1) assumes that the long axis of elongated seamounts is normal to the track. Curve (2) assumes that the short axis is normal to the track, and includes conical seamounts.

- 1) Elongated seamounts are more prevalent in the North Atlantic than conical seamounts (65% versus 36%).
- 2) The usual ratio of long to short axes of any elongated seamount is about 1.5:1.
- 3) The azimuths of the long axes of elongated seamounts tend to fall within $\stackrel{+}{}$ 45° of the local sea-floor spreading direction; therefore, track orientation should be normal to this direction (parallel to the magnetic sea-floor spreading anomalies) to allow the maximum possible chance of encounter. These directions are quite well established in the North Atlantic, and the choice of track orientation should present no problem. An additional advantage is that the fracture zones, with their associated high-relief ridges and any associated seamounts, will also be normal to the track.
- 4) Since seamount peaks \leq 1000 meters in depth seem to occur in water depths of less than 4100 meters, first priority should be given to surveys in these depths.
- 5) Maximum track spacing for 95% encounter probability in the North Atlantic is 5 nm if we assume the "worse case" configuration of the seamounts (all long axes parallel to the track); but as we have seen in 3), this will usually not be the case. We may therefore be justified in expanding this spacing somewhat (to about 6 nm) and still remain in the 95% confidence range.

II. NORTH PACIFIC SEAMOUNTS

Morphological data for the 100 North Pacific seamounts, selected by the same criteria as were those in the North Atlantic, are given in Appendix B. The data were extracted from the Bathymetric Atlas of the North Pacific Ocean (1973).

Figure 5 shows the distribution of the North Pacific seamount axial dimensions in 5 nm intervals as in figure 1. The long axis distribution [(1) in figure 5] is very unusual and unlike either the North Atlantic distributions or the Pacific short axes distribution. The reason for this anomalous distribution is not clear.

As in the Atlantic, elongated seamounts predominate over conical seamounts (74% to 26%). A cautionary note should be added here. Bathymetric data in the North Pacific are generally not as dense as those in the North Atlantic. Therefore, elongation of some seamounts may have resulted from cartographic license.

The plot of short versus long axial dimensions in figure 6 indicates that the mean North Pacific seamount is somewhat larger than its North Atlantic counterpart by about 2-3 nm. The mean basal dimensions are $19.1 \stackrel{+}{-} 6.4$ (s.d.) X $26.8 \stackrel{+}{-} 10.4$ (s.d.) nm. As in the North Atlantic, Pacific seamount long axial dimensions are approximately 1.5 times the short axis although the linear regression fit is not quite as good.

There is also a tendency here for the long axes of elongated seamounts to align themselves in the direction of sea-floor spreading. The data in Appendix B shows that 49% of the long axes fall within $\frac{1}{2}$ 30° of the spreading direction, while 66% fall within $\frac{1}{2}$ 45°. While these percentages are less impressive than those in the Atlantic, there does seem to be significant

North Pacific Seamounts

Figure 5. Histograms of North Pacific seamount basal dimension distributions. Histogram (1) shows long axis distributions, (2) shows short axis distributions, and (3) and (4) show the same respective data for seamounts with peaks ≤ 1000 m in depth. Conical seamounts are included in the distributions.

Figure 6. North Pacific seamount short vs. long axis basal dimension plot. Mean dimension and standard deviations for all seamounts indicated by hexagon and light dashed lines, respectively. Linear regression line for elongated seamounts shown by heavy dashed line. R² and R as in figure 2.

alignment of long axes in the spreading direction. The reasons for this alignment may be similar to those given for the Atlantic in Section I.

Unlike North Atlantic seamounts, statistical tests show that the linear regression plot of height versus depth for all the seamounts shown in figure 7 is real and significant at the 95% confidence level. It shows that there is a definite increase in seamount height with water depth (age). The reason for this phenomenon is not clear. Perhaps there has been a gradual decrease in seamount activity with time or a reactivation of the older seamounts.

Figure 7 also shows that there is no "cutoff" depth (age) for seamounts with peaks shoaler than 1000 meters as was the case in the North Atlantic for depths exceeding 4100 meters. In the Pacific, shoal seamounts are found to depths of 5700 meters.

The probability of encounter curves of figure 8 were computed by the same method as those of figure 4 from the distribution data in figure 5.

The curves show that at the 95% confidence level, track spacings of 8.5 - 10.0 nm would be required for detection of North Pacific seamounts, depending on whether the assumption was made that the long axes were parallel to the track ("worse case") or normal to the track orientation.

This increased track spacing for the North Pacific relative to the North Atlantic can be attributed to the fact that the Pacific seamounts are generally larger than their Atlantic counterparts.

Again, a summary of morphological factors relating to the design of survey strategies to detect North Pacific seamounts is warranted:

- 1) As in the North Atlantic, elongated Pacific seamounts are more prevalent than conical seamounts.
- 2) The usual ratio of North Pacific long to short axes is also about 1.5:1.

Figure 7. Seamount height vs. water depth and crustal age in the North Pacific. Mean height/depth and standard deviations shown by hexagon and light dashed lines, respectively. Linear regression line for all seamounts shown by heavy dashed line. R² and R as in figure 2.

Figure 8. Percent probability (using empirical method) of encountering a North Pacific Seamount with a given track spacing. Curve (1) assumes that the long axis of elongated seamounts is normal to the track. Curve (2) assumes that the short axis is normal to the track, and includes conical seamounts.

- 3) Azimuths of elongated North Pacific seamount long axes tend to parallel the direction of sea-floor spreading. Survey track orientation should therefore be normal to this direction. While not nearly as well established as those in the North Atlantic, sea-floor spreading directions are known in the Pacific to a degree that will allow proper track orientation. The remarks made in the summary of Section I as to fracture zone orientations also apply here.
- 4) There are no indications here of a decrease in the number of shoal seamounts with depth/age--quite the contrary. There is, therefore, no reason to assign areal priorities on that basis.
- 5) The maximum track spacing in the North Pacific under "worse case" conditions is 8.5 nm. However, there may be some justification for expanding this somewhat (~ 9 nm) based on the knowledge of a preferred orientation of seamount long axes normal to track. Also, the observed increase in seamount size with age/depth may allow an expansion of the track spacing in the older/deeper areas of the North Pacific.

III. LIMITATIONS AND CONCLUSIONS

As noted earlier, the probability of encounter courves of figures 4 and 8 are predicated upon passing over any part of a given seamount. If seamounts were perfect and regular conic structures, resting on perfectly flat ocean floor, the track spacings given for various probabilities of encounter would be sufficient to positively identify any feature encountered (bathymetric or geophysical) as a seamount. Unfortunately, seamounts are neither perfect cones nor, in most cases, do they rest on perfectly flat ocean floor. The seafloor may contain features (knolls, etc.) that are indistinguishable from a flanking seamount profile. A "worse case" situation is selected to illustrate this point.

Figure 9 shows, in plan (A) and profile (B), the smallest (in basal dimensions) North Pacific seamout lying within 1000 meters of the surface. The plan view (A) shows the 8.5 nm track spacing specified for North Pacific seamounts at the 95% probability of encounter for long axis parallel to track, plotted at the worst possible encounter configuration (minimum relief encounter). If the seamount were a cone as shown in (B)-(1), the bathymetric profile would show 850 meters maximum relief (and geophysical profiles would show commensurate displacements); and there should be no problem in identifying the feature as a seamount flank. If, however, the seamount profile was as (B)-(2), which is probably a more realistic gradient (there is no single representative gradient known to this author which holds for all seamounts) for at least the deeper part of the seamount, the maximum relief encountered would be only 100 meters. If the area contains other bottom features of this magnitude and shape ("background noise"), unique identification of this feature as a seamount from this profile would be impossible.

Figure 9. An example of survey track spacing reduction that may be required due to ambient bottom relief ("background noise").

By reducing the track spacing to 7.5 nm (12%), and again using a minimum relief encounter configuration [figure 9 (A)], the maximum relief now encountered is 200 meters, 100 meters above the assumed background noise; and the feature would warrant further investigation.

In figure 9 (C) an attempt is made to relate background noise to required track spacing reductions. This figure is based on several assumptions, the most dubious being that all seamount gradients approximate those shown in figure 9 (B)-(2). If these limitations are recognized, however, the principles involved may serve as a useful tool in designing approximating track spacing reduction graphs in areas of various levels of background noise. One of the more obvious conclusions to be drawn from the figure is that track spacing need never be reduced more than 50% no matter how severe the background noise.

The conclusions reached in this study as to survey track orientation (normal to the sea-floor spreading direction) will be valid for any detection metral, whether echo-sounding surveys or geophysical (shipboard or airborne dravity/anagretics) surveys. The track spacings given may require modification based upon the type of detection equipment used. For example: A wide-beam sonar array survey system may allow some increase in track spacing, depending on the characteristics of the equipment used, while an airborne gravity or magnetic survey may require a decrease in the given track spacing due to the limitations imposed by the decrease in the amplitude of these potential fields by the inverse square or cube (respectively) of the distance of the sensor from the source.

are no seamounts present in a given areas (that is, seamounts are not randomly distributed), the track spacings indicated here (or their modifications) will

be required to ascertain the presence or absence of seamounts in the oceanic areas indicated.

REFERENCES

- Sclater, J. G.; Anderson, R. H.; and Bell, M. L.; Elevation of ridges of the Central East Pacific, Jour. Geophys. Res. 76, 7888-7916, 1971.
- Naval Oceanographic Office, Bathymetric Atlas of the North Pacific Ocean (U), Spec. Pub. No. 1301-2-3, 172, 1973, UNCLASSIFIED
- Naval Oceanographic Office, Bathymetric Atlas of the North Atlantic Ocean (U), Spec. Pub. No. 1304, 130, 1975. CONFIDENTIAL

APPENDIX A

NORTH ATLANTIC SEAMOUNT MORPHOLOGICAL PARAMETERS

Delta Azm. (deg.)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	:
Sea-Floor Spreading Azm. (deg.)	070 070 075 075 070 070 085 085 085 085 085 085 085 085 085 08	ı
Long Axis Azm. (deg.)	020 030 020 050 040 - 030 090 - 140 050 090 090 045 100	•
Long Axis	35 25 33 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	13
Short Axis (nm)	20	13
Delta Depth	1462 1688 1800 1262 2075 2075 2075 2075 3763 3763 3763 3763 3744 1769 1775 1775 3566	2149
Bottom Depth (m)	3000 4200 4800 4300 4500 4500 3800 3700 3700 3700 4500 4500 4100 4100 4100 4100	4200
Depth to Top (m)	1538 3000 3000 2512 2698 2745 1078 1078 112 1222 11462 1359 1359	2051
Long. (deg.)	006.3E 003.5E 003.5E 002.7E 001.3E 001.3E 001.3E 0001.3E 0001.3E 0001.3E 0001.3E 0001.3E 0001.3E 0001.3E 0001.3E 0001.3E	021.3W
Lat. (deg.)	00.6S 02.5S 03.6S 02.9S 01.3S 01.3S 01.3S 01.3S 01.3S 01.3S 01.3S 01.3S 01.3S 01.3S 01.3S	08.4N

APPENDIX A (Cont'd.)

Lat.	Long	Depth to Top	Bottom Depth	Delta Depth	Short	Long	long Axis	Sea-Floor Spreading	De1ta
(deg.)	(deg.)	اگ	(E)	(m)	(mn)	(uuu)	Azm. (deg.)	Azm. (deg.)	Azm. (deg.)
08.4N	020.7W	2656	4100	1444	ဆင်္	8 %	10	1 0	1 1
Ċu	020.	00'- 300'	3700	1495	<u> </u>	77 12	0.0	c 80	6/-
α		3187	3400	1733	2.0	<u>.</u> 5	000	- 400	ו ע ו
15.3N	021.9W	488	4000	3512	20	23	010	110	-100
o.		3938	5300	1362	25	25	ı	ı	
*	~	2192	4000	1808	27	27	ı	•	;
*	*	3113	2000	1887	12	20	085	105	-20
*	*	1275	4700	3425	20	20	í	•	;
*	*	2810	5100	2290	18	22	055	105	-50
*	*	994	4100	3106	20	27	160	115	45
¥	*	1511	4100	2589	20	32	010	110	-100
*	*	626	4000	3021	35	20	140	105	35
*	*	169	4100	3931	25	35	075	105	-30
*	*	1/9	4200	3529	18	18	,	ı	;
*	*	908	3500	2694	12	23	100	6.85	15
33.5N	057.0W	2531	5200	5669	25	30	145	120	25
34.411	052.5W	1968	5400	3432	23	23	125	125	0
*	*	1894	4700	2806	20	25	150	130	50
*	*	2343	4400	2057	12	20	155	130	25
*	*	1479	4200	2721	13	13	,	•	1
*	*	1650	5300	3650	25	25	,	•	;
*	*	1269	5100	3831	25	25	,		1
*	*	2010	5100	3090	13	20	035	135	160
*	*	1471	4700	3229	22	22	,	1	1 1
*	*	2193	5100	2907	15	15	,	•	•
*	*	2531	5200	2669	13	13	,	•	1 1
*	*	619	3000	2381	15	15	,	ι	:
*	*	1127	3200	2073]]	_	,	•	i 1
41.1N	052.7W	3827	5100	1273	ಐ	14	130	085	45
×	*	5888	4600	1601	0	25	090	085	52+
47.71	041.6W	2548	4400	1852	15	<u>.</u>	J	t	;

APPENDIX A (Cont'd.)

		Depth	Bottom	Delta	Short	Long		Sea-Floor	
Lat. (deg.)	Long. (deg.)	to Top (m)	Depth (m)	Depth (m)	Axis (nm)	Axis (nm)	Long Axis Azm. (deg.)	Spreading Azm. (deg.)	Delta Azm. (deg.)
08.4N	020.7W	2656	4100	1444	8	∞	ı	ı	1
08.8N	020.1W	1188	4100	2912	15	22	010	085	-75
05.6N	033.0W	1905	3400	1495	15	15	,	ı	:
08.6N	042.9W	3187	4900	1713	20	30	060	095	-5
15.3N	021.9W	488	4000	3512	20	23	010	110	-100
10.5N	024.2W	3938	5300	1362	25	25	ı	1	:
*	*	2192	4000	1808	27	27	•	1	ł
*	*	3113	2000	1887	12	20	085	105	-20
*	*	1275	4700	3425	20	20	•	1	;
*	*	2810	5100	2290	18	22	055	105	-50

 $\ ^\star$ Only UNCLASSIFIED geographic locations listed.

APPENDIX B

NORTH PACIFIC SEAMOUNT MORPHOLOGICAL PARAMETERS

Delta Azm. (deg.)	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Sea-Floor Spreading Azm. (deg.)	180 080 080 080 080 090 090 090 090 090 0
Long Axis Azm. (deg.)	115 090 150 095 035 070 070 140 070 070 070 070
Long Axis (nm)	20 31 30 30 30 30 30 30 30 30 30 30 30 30 30
Short Axis (nm)	287223332722 28822322332722 28823232233223333333333
Delta Depth (m)	2224 3407 1800 1800 1889 1382 1470 1507 3085 3472 3976 3015 2744 2161 1726 2225 2409 3607 3607
Bottom Depth (m)	2400 3500 3500 3500 3500 3100 3100 3100 31
Depth to Top (m)	176 93 2000 1700 1700 1611 2518 1630 1593 1593 815 824 552 1185 756 639 1574 417 1445 1689 1689 1689 1018
Long.	090 8W 108 8W 107 0W 104 8W 107 1W 108 7W 108 9W 111 1W 111 1W 111 5W 111 5W 111 9W 111 9W 111 9W 111 9W 111 9W
Lat. (deg.)	03.3N 06.5N 06.0N 14.3N 14.3N 14.3N 16.5N 16.5N 16.5N 16.2N 16.2N 17.2N 18.2N

APPENDIX B (Cont'd.)

or ng Delta .) Azm. (deg.)	-20	20	: 1	;	;	1	;	-85	ł I	-40	-15	0	!	1	10	-20	t i	09-	-70	09-	15	50	35	65	-15	-115	5-	;	0 8	08- 1	-120
Sea-Floor Spreading Azm. (deg.)	075	888	•	•	•	1	•	085	1	080	080	080	1	•	060	080	1	080	100	070	060	82	82	82	155	155	150	1	165	165 1	155
Long Axis Azm. (deg.)	055	130	,	j	1	1	J	000	1	040	90	080	•	1	100	090	1	020	030	010	105	105	120	150	140	040	145	•	165	082	035
Long Axis (nm)	8 5 7	92	22	9[91	91	91	32	15	52	27	58	17	50	17	20	17	27	15	32	20	22	9	22	52	22	8	15	50	20	56
Short Axis (nm)	23	2	22	91	91	91	91	27	15	14	9[23	17	20	15	9[17	18	6	31	13	15	20	13	15	91	12	15	9[<u>.</u>	25
Delta Depth	3589	1781	2140	2939	3704	3505	2739	3396	3452	2063	2263	3855	3159	3435	3152	3544	2818	3041	2010	2676	3267	2822	3833	2355	3206	3117	3478	3713	3854	2/2/	4282
Bottom Depth (m)	3700	4300	4300	4300	4200	4200	4100	4100	4100	4100	4100	4300	4300	4300	4300	4100	4100	3600	3200	4200	4600	4300	4300	4300	4300	4600	5700	4500	5200	6300	5700
Depth to Top (m)	111	2519	2160	1361	496	695	1361	704	648	2037	1837	445	1141	865	1148	256	1282	559	1190	1524	1333	1478	417	1945	1094	1483	2222	787	1346	3543	1418
Long.	115.94	124.3W	127.5W	121.5W	123.8W	124.1W	121.5W	121.7W	125.1W	123.0W	122.8W	127.8W	127.3W	126.9W	126.3W	122.7W	123.2W	121.0W	128.9W	134.8W	131.1W	135.8W	132.5W	131.1W	137.5E	135.2E	133.7E	130.8E	146.9E	144.9E	144.3E
Lat. (deg.)	24.9N	14.6N	22.6N	20.4N	17.8N	17.7N	20.3N	25.0N	23.1N	27.1N	27.5N	32.3N	32.2N	32.1N	31.8N	30.5N	30.6N	33.1N	40.9N	NO.00	22.5N	28.9N	32.8N	39.0N	28.0N	24.5N	19. JA	04.7N	40.6N	40.9N	35.8N

APPENDIX B (Cont'd.)

Delta Azm. (deg.)		- 30	<i>د</i> ٠	٠	-35	-25	0	ഹ	2	10	٠.	<i>د</i> ٠	<i>د</i> .	;	;	വ	-20	- 10	35	:	115	٠.	۰.	-35	;	1	;	100	О	മ
Sea-Floor Spreading Azm. (deg.)	050	045	ر. د	<i>د</i> ٠	155	155	045	045	045	045	٠	<i>د</i> ،	<i>د</i> .	•	•	045	050	090	050	,	050	¢.	٠.	050	·	í	í	040	050	090
Long Axis Azm. (deg.)	045 005	035	145	100	120	130	045	020	055	020	155	150	025	1	t	020	030	020	085	1	165	015	165	015	•		,	140	020	065
Long Axis (nm)	25 32 72	25	28	40	40	9	36	35	40	35	40	33	40	15	22	27	33	23	25	35	55	40	45	50	-	25	13	27	39	40
Short Axis (nm)	25 28 20	11	25	20	တ္တ	25	22	20	27	24	28	22	23	15	22	23	17	15	22	35	40	35	35	15	7	2£	13	23	28	25
Delta Depth	4378 4700 4924	3007	4674	3891	4267	4207	3563	4118	4526	4134	4350	3548	4126	2370	2746	4182	2126	2829	4180	3815	3791	3697	3884	3333	2782	3248	3019	4119	3715	3470
Bottom Depth (m)	5800 5700 5000	2600	2600	3900	2600	2600	2600	2600	2600	5400	5600	5400	5700	4500	5400	5700	5700	5700	5300	5000	5200	4900	5000	5000	2900	5100	5000	5400	5400	2600
Depth to Top (m)	1422 1000 76	2593	926	6	1333	1393	2037	1482	1074	1296	1250	1852	1574	2130	2654	1518	3574	2871	1120	1185	1409	1203	1111	1667	118	1852	1981	1281	1685	2130
Long. (deg.)	148.4E 148.8E																													
Lat. (deg.)	32.8N 23.8N 27.3N				•		•	•													-									

Delta Azm. (deg.)	!	;	;	06	65	82	140	06-
Sea-Floor Spreading Azm. (deg.)	•	•	•	070	070	070	025	170
Long Axis Azm. (deg.)	ı	,	,	160	135	155	165	080
Long Axis (nm)	14	10	25	30	45	38	45	45
Short Axis (nm)	14	10	25	17	20	30	35	20
Delta Depth (m)	3378	4585	4652	4126	3996	4535	4648	4004
Bottom Depth (m)	2600	4600	5300	5200	4600	4000	5500	5300
Depth to Top (m)	2222	15	648	1074	604	65	852	1296
Long.	179.9E	173.3E	174.0W	173.1W	171.1W	176.7W	173.4W	M7 671
Lat. (deg.)	13.4N	N6.50	29.8N	30 ZN	28.0N	28 6N	13.5N	

DISTRIBUTION LIST

ONR	2
CNO (OP-212, PME-124)	4
COMNAVOCEANCOM	3
NORDA (330)	4
NRL (8100)	4
Western Electric	2
DTIC	12

