Quiz 1 (Deadline March 14, 2025)

Problem 1

Please download ciphertext.txt from the new e3 platform.

A message has been encrypted, producing ciphertext characters with ASCII values ranging from 32 to 126.

a) (1 pt) Use frequency analysis to attempt to recover the original plaintext. Fill Table 1 below by mapping each ciphertext character to its corresponding plaintext character. Include a snapshot of your filled table in your report. (Leave an entry blank if there is no corresponding plaintext character.)

Hint: The plaintext spans a wide range of ASCII characters (32–126), including lowercase letters, uppercase letters, punctuation, and whitespace.

Hint: Refer to the frequency count information in Table 2 to guide your analysis.

Table 1: Ciphertext-to-plaintext mapping (ASCII 32–126)

Ciphertext	(space)	!	"	#	\$	%	&	'	()	*	+	,	-	
ASCII	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
Plaintext															
Ciphertext	/	0	1	2	3	4	5	6	7	8	9	:	;	<	=
ASCII	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61
Plaintext															
Ciphertext	>	?	0	A	В	С	D	E	F	G	Н	I	J	K	L
ASCII	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
Plaintext															
Ciphertext	М	N	0	P	Q	R	S	T	U	V	W	Х	Y	Z	[
ASCII	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91
Plaintext															
Ciphertext	\]	^	_	•	a	Ъ	С	d	е	f	g	h	i	j
ASCII	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106
Plaintext															
Ciphertext	k	1	m	n	0	p	q	r	s	t	u	v	W	х	У
ASCII	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121
Plaintext															
Ciphertext	z	{	ı	}	~										
ASCII	122	123	124	125	126										
Plaintext															

Table 2: Typical letter frequency (%) in English

E	A	R	I	O	T	N	S	L	С	U	D	P
11.16	8.5	7.58	7.54	7.16	6.95	6.65	5.74	5.49	4.54	3.63	3.38	3.17
M	Н	G	В	F	Y	W	K	V	X	Z	J	Q
3.01	3.0	2.47	2.07	1.81	1.78	1.29	1.10	1.01	0.29	0.27	0.20	0.20

b) (1 pt) Assume the encryption uses the affine transformation

$$y = (ax + b) \mod 95 + 32,$$

where y is the ciphertext and x is the plaintext (both in the ASCII range). Determine the values of a and b.

- c) (1 pt) An attacker discovers that the plaintext contains the word created. How could this known plaintext be used to break the encryption? What is the name of the technique involved?
- d) (1 pt) What is the size of the key space for this affine cipher on ASCII characters from 32 to 126? Why does this method provide relatively weak security?
- e) (1 pt) Next, consider a Monoalphabetic Substitution Cipher over ASCII characters from 32 to 126. What is the size of its key space, and how does this size affect the feasibility of a brute-force attack in terms of computational limits?
- f) (Bonus 1 pt) Propose an enhanced encryption method that is more resilient against frequency analysis. Your design should:
 - 1. Include at least two transformation steps (e.g., affine plus a bitwise operation).
 - 2. Make frequency-based attacks more difficult.
 - 3. Remain fully reversible to allow for accurate decryption.

In your response, explain how your design meets each of these three criteria.

Problem 2

The plaintext is encrypted via an affine cipher over \mathbb{Z}_n where n is a prime number satisfying

$$30 < n < 100$$
.

The encryption is given by

$$y = ax + b \mod n$$
,

with y the ciphertext and $k_{\text{enc}} = (a, b)$ the encryption key.

- a) (1 pt) For a given n, compute the size of the key space by determining:
 - 1. The number of valid a values.
 - 2. The number of possible b values.
 - 3. The total number of possible keys.

Please use standard Discrete Mathematics functions to represent your answer.

- **b)** (1 pt) List all elements in \mathbb{Z}_{30} that have multiplicative inverses, and identify those inverses.
- c) (1 pt) An attacker intercepts the following plaintext-ciphertext pairs.

Plaintext x	Ciphertext y
81	48
14	91
3	72

Determine the encryption key $k_{\text{enc}} = (a, b)$.

d) (1 pt) Find the decryption key $k_{\text{dec}} = (c, d)$ such that

$$x = cy + d \mod n$$
.

e) (1 pt) After a recent attempted breach, Dr. Shieh changed the key $k_{\text{enc}} = (a, b)$ and the prime number modulus n satisfying

$$30 < n < 100$$
.

However, the attacker intercept a few plaintext-ciphertext pairs, albeit with some digits obscured. In the intercepted data, a missing digit is denoted by a "?" symbol.

Plaintext x	Ciphertext y
12	4?
?3	72
45	23
2	39

Determine the encryption key $k_{\text{enc}} = (a, b)$.

Submission Guidelines

- 1. Upload a single PDF file named <student_id>.pdf (where <student_id> is replaced by your actual student ID) to the new e3 platform.
- $2. \ \ Present \ your \ solutions \ in \ \textbf{numerical order}, \ clearly \ labeling \ each \ subproblem.$

Grading Policy

- 1. This quiz comprises 10 standard subproblems plus 1 bonus subproblem, for a total of up to 11 points (one point per subproblem).
- 2. Late Submission Penalty: A penalty of **0.5 points per day** will be applied for late submissions, up to a maximum of 20 days. Beyond 20 days, late submissions will be assigned zero.
- 3. All quizzes are **mandatory**. Failure to submit any quiz will result in an automatic failing grade for the course.