# Overfitting and Model Tuning

# Overfitting and Model Tuning

author: Son Nguyen

# Reading Materials

► Max Kuhn. Chapter 4.

#### Prediction Problem

Given data of  $X = [X_1, X_2, ..., X_d]$  and Y. Find the relation between X and Y.

# Prediction Problem - Examples

► One Input Variable X

| X  | Υ   |
|----|-----|
| 13 | 4.0 |
| 6  | 3.5 |
| 14 | 3   |
| 10 | 3.9 |
| 7  | 2.7 |
| 12 | 3.8 |
| 1  | 1.5 |
|    |     |

How are X and Y related?

# Prediction Problem - Examples

► Multiple Input Variables

| $X_1$ | $X_2$ | <br>X <sub>35</sub> | Y          |
|-------|-------|---------------------|------------|
| 1     | -1    | <br>2               | Tree       |
| 2.1   | 0     | <br>6               | Not a Tree |
| 3     | 0     | <br>8               | Tree       |

How are X and Y related?

#### Prediction Problem

- ▶ If *Y* is continous, we have a **regression** problem.
- ▶ If *Y* is categorical, we have a **classification** problem.
- ▶ If *Y* is binary, we have a **binary classification** problem.

# Prediction Problem - Examples

▶ This is a regression problem since *Y* is continuous.

| 4.0 |
|-----|
| 3.5 |
| 3   |
| 3.9 |
| 2.7 |
| 3.8 |
| 1.5 |
|     |

# Prediction Problem - Examples

▶ This is a binary classification Problem since *Y* is binary.

| $X_1$ | $X_2$ | <br>X <sub>35</sub> | Y          |
|-------|-------|---------------------|------------|
| 1     | -1    | <br>2               | Tree       |
| 2.1   | 0     | <br>6               | Not a Tree |
| 3     | 0     | <br>8               | Tree       |
|       |       |                     |            |

# Overfitting

Consider the data:

| Χ  | Υ   |
|----|-----|
| 13 | 4.0 |
| 6  | 3.5 |
| 14 | 3   |
| 10 | 3.9 |
| 7  | 2.7 |
| 12 | 3.8 |
| 1  | 1.5 |
|    |     |

- ▶ We will fit these data by polynomial model.
- ightharpoonup In polynomial model, Y is a polynomial function of X.

# Overfitting



- ▶ We will fit these data by **polynomial model**.
- $\triangleright$  In polynomial model, Y is a polynomial function of X.

- ▶ In polynomial model, we need to specify the degree of the polynomial, *n*. Let try a few.
- ▶ If n = 1, we have a familiar **linear model**.
- Question: Does increasing n resuls in a better model?

ightharpoonup n = 1.



ightharpoonup n=2.



ightharpoonup n = 3.



ightharpoonup n = 4.



ightharpoonup n=5.



n = 6.



**Question**: What are the errors when n > 6?

- **Question**: What are the errors when n > 6?
- ▶ **Answer**: The errors are all zeros. (There are actually many solutions for each degree greater than 6.)

▶ Question: What is the best model?

- Question: What is the best model?
- ► **Answer**: We do not know. We need a validation dataset to validate the models.

► The errors we have seen are called **training errors** 

- Let's validate these models with a validation dataset
- Validation Data

| X  | Υ   |
|----|-----|
| 5  | 2.6 |
| 7  | 3.5 |
| 9  | 4.0 |
| 6  | 3.7 |
| 12 | 5.0 |
|    | J.0 |

ightharpoonup n = 1.



ightharpoonup n=2.



n = 3.



n = 4.



n = 5.



n = 6.



► Training Error vs. Validation Error

|       | Training Error | Validation Error |
|-------|----------------|------------------|
| n=1   | 0.4443277      | 3.726484         |
| n = 2 | 0.2104958      | 2.304728         |
| n = 3 | 0.1724256      | 1.955191 (Best!) |
| n = 4 | 0.08719074     | 2.515661         |
| n = 5 | 0.05131475     | 5.987636         |
| n = 6 | 0              | 18.24475         |
|       |                |                  |

► Training Error vs. Validation Error



- As the degree n increases, the training errors decrease
- ▶ Model 6 (n = 6) is the best (perfect) in training but the worst in validation.
- ► The best model is the model with the best (lowest) error in validation data.

Overfitting - Polynomial Model ## - Model 4, 5 and 6 are **overfitted** - Model 1 and 2 are **underfitted** - Model 3 is the best model.

# Overfitting in Regression



# Overfitting in Classification



## Model Complexity/Capacity

- ▶ In polynomial models, the larger *n*, the more complex/capable the model.
- Model complexity can be measured by the number of parameters/unknown of the model.

Linear model:

$$y = ax + b$$

▶ Question: How many unknowns/parameters in linear model?

▶ Linear model (n = 1):

$$y = ax + b$$

- Question: How many unknowns/parameters in linear model?
- **Answer**: Two unknowns/paramters: a and b

▶ Quadratic model (n = 2):

$$y = ax^2 + bx + c$$

- Three unknowns: a, b, and c.
- Quadratic model has more unknowns/parameters then linear model. Thus, quadratic model is more complex than linear model

► The mode complex the model, the easier it becomes overfitted!



## Model Tuning

- We just "tuned" the the parameter *n*.
- ► The parameter *n* is called **tuning parameter**, or **hyperparameter**

#### Model Tuning

- Model tuning is the process of finding the **best** values for the tuning parameters of the model
- ► This is done through **trying out** many values for the tuning parameters then select the best values.

## Model Training

- Model training is the process of finding the unknown/parameters of the model
- **Example**: Training linear model y = ax + b is to find a and b that best fit the data

# Model Training vs. Model Tuning

- ► Model training finds the **parameters**
- ► Model tuning finds **hyperparameters**

## Model vs. Family of Models

- ► The polynomial model is a **family** of models.
- Linear model is just **one** model
- A family of models has "tuning parameters".
- A single model, say, linear model, does not have tuning parameter
- Some model has multiple tuning parameters.

## Data Splitting

- ▶ We need validation data for model tuning.
- ▶ **Question**: How can one of obtain validation data?

## Data Splitting

- We need validation data for model tuning.
- ▶ Question: How can one of obtain validation data?
- ▶ **Answer**: We do not use the entire data to train models. We use a portion of it for training and save data for validation and testing.

## Data Splitting: Train-Validation-Test



#### k-folds Cross Validation



Final Accuracy = Average(Round 1, Round 2, ...)

#### k-folds Cross Validation



#### k-folds Cross Validation and test

