alternating chain

Yasuda Yasutomo

2019年11月22日

One-step lemma を使って枝の一方が ill-fouded となっている alternating chain を作る.

1 準備

定義 1.1. T を M 上の iteration tree とする. $\alpha < \beta < lh(T)$ に対して

$$\rho(\alpha, \beta) = \min\{\operatorname{strength}^{\mathcal{M}_{\gamma}}(E_{\gamma}) \mid \alpha \leq \gamma < \beta\}$$

と定義する.

定義 1.2. \mathcal{T} を iteration tree とし, $\beta + 2 < \text{lh}(\mathcal{T})$ とする. このとき $\mu(\beta)$ を,

$$\mu(\beta) = \sup \{ \operatorname{cp}(E_{\alpha}) \mid (\alpha + 1)_{-}^{T} \le \beta < \alpha < \operatorname{lh}(T) \}$$

と定義する.

また iteration tree Tが plus one であるとは,

$$\mu(\beta) + 1 \leq \operatorname{strength}^{\mathcal{M}_{\beta}}(E_{\beta})$$

を満たすときのことをいう.

定理 1.3 (One-step lemma). 次を仮定する.

- M, N は推移的な ZFC のクラスモデル.
- $\delta \in M \cap N$ を V で到達不能基数, M で Woodin 基数.
- $\kappa \leq \eta < \delta$ を順序数.
- $\xi < \beta_M$ を M の順序数とする. また β_N を N の順序数とする.
- $x_M,y_M\in{}^{<\omega}V^M_{\delta+\xi}$ かつ $x_N\in{}^{<\omega}V^N_{\delta+\beta_N}$. ただし $\mathrm{lh}\left(x_M\right)=\mathrm{lh}\left(x_N\right)$ とする.
- $\phi(v)$ を論理式とする.

これらに対して,次を仮定する.

- M, N agree through $\kappa + 1$.
- $\left(\operatorname{tp}_{\delta,\beta_M}^{\kappa}\right)^M(x_M) = \left(\operatorname{tp}_{\delta,\beta_N}^{\kappa}\right)^N(x_N)$
- κ は M において, β_M -reflecting in x_M relative to δ .
- $V^M_{\delta+\beta}\models\phi[\xi]$

このとき,ある順序数 $\lambda<\delta$ と M の (κ,λ) -エクステンダー $E\in V^M_\delta$ が存在して, $\prod_E^N(N,\in)$ は ill-founded または、順序数 $\kappa^* \in \text{Ult}(N,E)$ と $\xi^* \in \text{Ult}(N,E)$, $y^* \in {}^{<\omega}V^{\text{Ult}(N,E)}_{\delta+\xi^*}$ が存在して次を満たす.

- $i_E^N(x_N) \in {}^{<\omega}V^{\mathrm{Ult}(N,E)}_{\delta+\xi^*}$
- $\bullet \ \eta < \kappa^* < i_E^N(\kappa) < \delta$
- $\xi^* < i_E^N(\beta_N)$
- Ult (N, E), M agree through $\kappa^* + 1$. $\left(\operatorname{tp}_{\delta, \xi^*}^{\kappa^*}\right)^{\operatorname{Ult}(N, E)} \left(i_E^N(x_N)\hat{y}^*\right) = \left(\operatorname{tp}_{\delta, \xi}^{\kappa^*}\right)^M (x_M\hat{y}_M)$
- κ^* lt Ult (N, E) lt tive, ξ^* -reflecting in $i_E^N(x_N)^*y^*$ relative to δ .
- $\bullet \ V_{\delta + i_E^N(\beta_N)}^{\mathrm{Ult}(N,E)} \models \phi[\xi^*]$

iteration tree の構成をうまく回すトリックが次である.

命題 1.4. δ を到達不能基数とする. $X \in V_{\delta}$ を空でない集合とし, T を $X \times Y$ 上の木とする. このときある順序数 ν , ζ_0 , ζ_1 , ρ が存在して次を満たす.

- 1. $\nu < \zeta_0 < \zeta_1 < \rho$
- $2. \nu, \zeta_0, \zeta_1, \rho$ は共終数が δ より大きい強極限基数.
- 3. $(\operatorname{tp}_{\rho,0}^{\nu})(\langle \zeta_0 \rangle) = (\operatorname{tp}_{\rho,0}^{\nu})(\langle \zeta_1 \rangle)$
- 4. $T \in V_{\nu}$

証明.Z を ho は共終数が δ より大きい強極限基数のクラスとする. $u\in Z$ を $T\in V_
u$ となる最小でとる.u を $|V_{\nu+1}|$ 番目の Z の元とする. 取り方から条件を満たす ζ_0, ζ_1 が存在する.

Note 1. 上の状況と同じ状況とし, ν , ζ_0 , ζ_1 , ρ を取る. このとき次が成立.

- $U \in V_{\delta}$ を iteration tree とすると, U から定まる初等埋め込みに関して ν , ζ_0 , ζ_1 , ρ は固定される.
- 任意の $z \in {}^{<\omega}V_{\nu}$ と $\alpha < \delta$ に関して, $(\operatorname{tp}_{\delta,\zeta_0}^{\alpha})(z) = (\operatorname{tp}_{\delta,\zeta_0}^{\alpha})(z)$ が成立する.
- 任意の $z \in {}^{<\omega}V_{\nu}$ と $\kappa < \delta$ に関して, κ が ζ_0 -reflecting in z relative to δ であることと ζ_1 -reflecting in z relative to δ であることは同値.

定理 1.5. alternating chain とは長さ ω の V 上の iteration tree C で次の tree ordering C を持つものである.

$$mCn \Leftrightarrow 0 = m < n \lor \exists k \ge 1 (m + 2k = n)$$

• 定義から alternating chain は plus one であることがわかる. Note 2.

• alternating chain には枝が 2 本あり, $\{2n \mid n \in \omega\}$ を Even, $\{0\} \cup \{2n+1 \mid n \in \omega\}$ を Odd と呼ぶ.

2 構成

定理 **2.1.** δ を Woodin 基数とする. このとき alternating chain \mathcal{C} で $\mathcal{C} \in V_{\delta}$ かつ Even が ill-founded となるものが存在する.

証明. δ に対して, ν , ζ_0 , ζ_1 , ρ を取る. $k \in \omega$ 上の帰納法で \mathcal{C}_{2k} , κ_{2k} , β_k で次を満たすものを構成する.

- $\mathcal{C}_{2k} \in V_{\delta}$ は V 上の長さ 2k+1 の iteration tree で, tree ordering が $C \upharpoonright (2k+1)$ となる.
- $\kappa_{2k} < \delta$
- β_k は順序数.

さらに各 $k \in \omega$ に関して次を満たすように構成する.

- 1. M_{2k} , $M_{(2k+1)^-}$ agree through $\kappa_{2k} + 1$.
- 2. $\left(\operatorname{tp}_{\delta,\beta_k+1}^{\kappa_{2k}}\right)^{M_{2k}'}(\emptyset) = \left(\operatorname{tp}_{\delta,\zeta_0+1}^{\kappa_{2k}}\right)^{M_{(2k+1)}-}(\emptyset)$
- 3. κ_{2k} は M_{2k} において, (β_k+1) -reflecting in \emptyset relative to δ .
- 4. $n < m \le k$ ならば、 $\beta_m < j_{2n,2m}(\beta_n)$ が成立する.

(構成) k=0 のとき. δ は Woodin 基数であるから κ_0 を (ζ_0+1) -reflecting in \emptyset relative to δ となるように取り, $\beta_0=\zeta_0$ とする.

 C_{2k} , κ_{2k} , β_k まで構成したと仮定する. δ は iteration tree の超冪における初等埋め込みにおいて固定されることから, δ は M_{2k} において Woodin 基数である.

One-step lemma を,

- $M = M_{2k}$
- $N = M_{(2k+1)}$
- $\kappa = \kappa_{2k}$
- $\eta = \kappa_{2k}$
- $\beta_M = \beta_k + 1$
- $\xi = \beta_k$
- $\beta_N = \zeta_0 + 1$
- $x_M = \emptyset$
- $y_M = \emptyset$
- $x_N = \emptyset$
- $\phi(v) = \kappa + v$ は最大の順序数"

に対して使う. $\lambda < \delta$ と M_{2k} の (κ_{2k}, λ) -エクステンダー $E \in V_\delta^{M_{2k}}$ を取る. このとき帰納法の仮定より $\prod_E^{M_{(2k+1)^-}} M_{(2k+1)^-}$ は整礎となる. よって κ^* , ξ^* , y^* を取る. このとき $y^* = \emptyset$, $\xi^* = \zeta_0$ となっている.

 $E_{2k}=E, \, \kappa_{2k+1}=\kappa^*$ とし, \mathcal{C}_{2k} の延長を $\mathcal{C}_{2k+1}\in V_\delta$ とする. \mathcal{C}_{2k+1} は V 上の長さ 2k+2 の iteration tree で, $tree \ ordering が <math>C \upharpoonright (2k+2)$ となっている.

また One-step lemma と ζ_0 , ζ_1 の取り方から次が成立する.

1. M_{2k+1} , M_{2k} agree through $\kappa_{2k+1} + 1$.

$$\mathcal{Q}.\ \left(\operatorname{tp}_{\delta,\zeta_{1}}^{\kappa_{2k+1}}\right)^{M_{2k+1}}(\emptyset) = \left(\operatorname{tp}_{\delta,\beta_{k}}^{\kappa_{2k+1}}\right)^{M_{2k}}(\emptyset)$$

3. κ_{2k+1} は M_{2k+1} において, ζ_1 -reflecting in \emptyset relative to δ .

再び One-step lemma を,

- $M = M_{2k+1}$
- $N=M_{2k}$
- $\kappa = \kappa_{2k+1}$
- $\eta = \kappa_{2k+1}$
- $\beta_M = \zeta_1$
- $\xi = \zeta_0 + 1$
- $\beta_N = \beta_k$
- $x_M = \emptyset$
- $y_M = \emptyset$
- $x_N = \emptyset$
- $\phi(v) = "v = v"$

に対して使う。 $\lambda^* < \delta$ と M_{2k+1} の $(\kappa_{2k+1}, \lambda^*)$ -エクステンダー $E^* \in V_\delta^{M_{2k+1}}$ を取る。このとき $\prod_{E^*}^{M_{2k}} M_{2k}$ は整礎となる。よって κ^* , ξ^* を取る。 $\xi = \zeta_0 + 1$ より β_{k+1} を $\beta_{k+1} + 1 = \xi^*$ となるように取る。 $E_{2k+1} = E^*$, $\kappa_{2k+2} = \kappa^*$ として, C_{2k+1} の延長を $C_{2k+2} \in V_\delta$ とする。 C_{2k+2} は V 上の長さ 2k+3 の iteration tree で,tree ordering が $C \upharpoonright (2k+3)$ となっている。

2k+3 においても帰納法の仮定は成立している. (構成終)

枝 Even の direct limit を $(\bar{M}_{Even}, \langle j_{2n}^{Even} \mid n \in \omega \rangle)$ とすると, $n < m \in \omega$ について、構成より $j_{2m}^{Even}(\beta_m) < j_{2n}^{Even}(\beta_n)$ が成立するので \bar{M}_{Even} は ill-founded である.

参考文献

- [1] Martin, D., and J. R. Steel. Iteration Trees. Journal of the American Mathematical Society 7, no. 1 (1994): 1-73. doi:10.2307/2152720
- [2] Martin, D., and Steel, J. (1989). A Proof of Projective Determinacy. Journal of the American Mathematical Society, 2(1), 71-125. doi:10.2307/1990913
- [3] Martin, D. Determinacy of Infinitely Long Games.