Лабораторная работа 2.2.6

Определение энергии активации по температурной зависимости вязкости жидкости

Татаурова Юлия Романовна

17 апреля 2024 г.

Цель работы:

- 1)Измерение скорости падения шариков при разной температуре жидкости;
- 2)Вычисление вязкости жидкости по закону Стокса и расчет энергии активации

Оборудование: стеклянный цилиндр с исследуемой жидкостью; термостат; секундомер; горизонтальный компаратор; мелкие шарики.

Теоретические сведения

Для того, чтобы молекула жидкости перешла в новое состояние, она должна преодолеть участки с большой потенциальной энергией, превышающей среднюю тепловую энергию молекул. Т.е должна увеличиться на величину энергии активации W. Количество молекул с энергией, превышающей W по формуле Больцмана:

$$\eta \sim Ae^{\frac{W}{kT}} \tag{1}$$

Чтобы исследовать температурную зависимость вязкости жидкости будем использовать метод Стокса. На тело, двигающееся в вязкой жидкости, действует сила сопротивления:

$$F = 6\pi \eta r v \tag{2}$$

Рассмотрим свободное падение шарика в вязкой жидкости (23H):

$$Vg(\rho - \rho_{\text{m}}) - 6\pi\eta rv = V\rho \frac{dv}{dt}$$
(3)

где V - объем шарика, ρ - его плотность, $\rho_{\mathbf{x}}$ - плотность жидкости. Тогда из 3 получаем:

$$v(t) = v_{yct} - (v_{yct} - v_0)e^{-\frac{t}{\tau}}$$
(4)

$$v_{\rm ycr} = \frac{2}{9}gr^2 \frac{(\rho - \rho_{\rm x})}{\eta} \tag{5}$$

$$\tau = \frac{2}{9} \frac{r^2 \rho}{\eta} \tag{6}$$

где v_0 - начальная скорость шарика.

Тогда вязкость жидкости можно определить как:

$$\eta = \frac{2}{9}gr^2 \frac{\rho - \rho_{\text{\tiny JK}}}{v_{\text{ycr}}} \tag{7}$$

Однако мы пользовались методикой Стокса, поэтому стоит так же проверить эту теорию. При выводе формулы Стокса предполагалось, что характер течения ламинарный, который можно описать числом Рейнольдса $Re=\frac{vr\rho_{\text{ж}}}{\eta}\approx 0.5.$ Также должно выполняться условие $t\gg \tau$

Экспериментальная установка

Сосуд В с жидкостью помещен в рубашку D, засчет которой происходит нагрев жидкости. Схема прибора изображена ниже.

(a) Зависимость плотности глицерина от температуры

(b) Экспериментальная установка

Экспериментальные данные

Таблица 1: Зависимость скорости шариков от температуры

d, mm	2.1	2	2	2.1
<i>v</i> , мм/с	3.03	2.98	2.99	3.01

(a) Скорость шариков при $T_1 = 21.6$ °C

d, mm	2.1	2	2.12	2.1
v, mm/c	.47	7.76	7.94	9.18

(c) Скорость шариков при $T_3 = 40^{\circ}$ С

d, mm	2.02	2.06	2.02	2
<i>v</i> , мм/с	3.7	4.07	4.39	4.6

(b) Скорость шариков при $T_2 = 30.4$ °C

d, mm	2.12	2	2.02	2
v, mm/c	15.88	16.58	17.67	18.96

(d) Скорость шариков при $T_4 = 50$ ° С

$T^{\circ}C$	21.6	30.4	40	50
η , $\Pi a \cdot c$	1.028	0.723	0.395	0.177
$\tau, \text{ c} \cdot 10^{-4}$	6	8	16	34
$Re \cdot 10^{-3}$	4	7	27	126
$S, \text{ M} \cdot 10^{-7}$	18	35	130	590
$\rho_{\text{жид}}, \Gamma/\text{cm}^3$	1256	1254	1251	1248

Таблица 2: Результаты вычислений

Рис. 2: График зависимости $ln(\eta)(1/T)$

Из гарфика $\frac{W}{k} = 5901 \rightarrow W \approx 0.5$ эВ.

Результаты и выводы

$$\sigma_{\rm t} = \sqrt{\sigma_{\rm приб}^2 + \frac{\sum_{i=1}^n (t_{\rm i} - t_{\rm cp})^2}{(n-1)n}} = 0.69 \text{ c} \; ; \; \varepsilon_v = \sqrt{\left(\frac{\sigma_{\rm t}}{t_{\rm min}}\right)^2 + \left(\frac{\Delta l}{l}\right)^2} = 13.3\%$$

В ходе эксперимента были вычислены значения коэффициента вязкости глицерина при зарных температурах. Так же можно заметить, что течение в эксперименте можно считать ламинарным, т.к число Рейнольдса оказалось достаточно маленьким ($\sim 10^{-2}$). Помимо этого во всех экспериментах время релаксации, как и путь релаксации намного меньше измеряемых величин, поэтому движение шарика во время измерений можно действительно считать установившимся.