Übung 10 (Redox-Gleichgewichte und Elektrochemie)

Verwenden Sie neben den in der Aufgabenstellung gegebenen Potenzialen auch die Werte aus der Potenzial-Tabelle im Mortimer.

- 1. Ammoniak kann als Oxidationsmittel (OM), Reduktionsmittel (RM), Säure (S) oder Base (B) wirken. Bestimmen Sie die Funktion des Ammoniaks in den folgenden Gleichungen.
 - i) $2 \text{ NH}_3 + 3 \text{ Cl}_2 \rightarrow \text{N}_2 + 6 \text{ HCl}$
 - ii) Na + NH $_3 \rightarrow$ NaNH $_2 + 0.5 H_2$
 - iii) $NH_3 + H_2O + CO_2 \rightarrow NH_4HCO_3$
 - iv) $NH_3 + LiCH_3 \rightarrow LiNH_2 + CH_4$
 - i) OM, ii) RM, iii) S, iv) B
 - i) RM, ii) OM, iii) S, iv) B
 - i) OM, ii) RM, iii) B, iv) S
 - i) RM, ii) OM, iii) B, iv) S
- 2. Die folgenden Redoxgleichungen zur Herstellung verschiedener Elemente sind stöchiometrisch nicht ausgeglichen. Vervollständigen Sie die Gleichungen. Formulieren Sie dazu auch jeweils Teilgleichungen für die Oxidation und Reduktion.

a)
$$As_2O_3 + NO_3$$
 $\longrightarrow H_3AsO_4 + N_2O_3$ (saure Lösung)

b)
$$MnO_4^- + H_2O_2 \longrightarrow Mn^{2+} + O_2$$
 (saure Lösung)

c)
$$Cr(OH)_3 + H_2O_2 \longrightarrow CrO_4^{2-} + H_2O$$
 (alkalische Lösung)

3. Prüfungsaufgabe W2013

Gegeben ist folgende galvanische Zelle:

$$E^{\circ} (Cr^{3+}/Cr) = -0.73 \text{ V}$$

$$E^{\circ} (Fe^{3+} / Fe) = -0.04 V$$

Dazu werden folgende sechs Aussagen gemacht. <u>Genau zwei</u> dieser Aussagen sind falsch. Markieren Sie diese. (Nehmen Sie für beide Halbzellen Standardbedingungen an.)

- Die Cr³⁺ / Cr Elektrode ist die Anode.
- Die Elektronen fliessen beim Entladeprozess durch den Leitungsdraht von der Fe³⁺ / Fe -Elektrode zur Cr³⁺ / Cr -Elektrode.
- Die Cr³⁺ / Cr Elektrode ist der Minuspol der Zelle.
- Im Laufe des Entladeprozesses wird Fe zu Fe³⁺ oxidiert.
- Die Fe³⁺ / Fe Elektrode ist der Pluspol der Zelle.
- Die Fe³⁺ / Fe Elektrode ist die Kathode.

4. Prüfungsaufgabe S2013

Gegeben sind folgende Standardreduktionspotenziale:

AgCl + e⁻
$$\rightarrow$$
 Ag + Cl⁻ E° = + 0.22V
Cl₂ + 2 e⁻ \rightarrow 2 Cl⁻ E° = + 1.36V

Wie gross sind E° , ΔG° und ΔS° für die folgende Reaktion bei 25°C?

$$2 \text{ Ag (s)} + \text{Cl}_2 \text{ (g)} \rightarrow 2 \text{ AgCl (s)} \quad \Delta H^{\circ} = -254.0 \text{ kJ mol}^{-1}$$

5. Prüfungsaufgabe S2012

a) Wie ändert sich das Elektrodenpotenzial für die Halbreaktion

$$M^{2+}(aq) + 2e^{-} \longrightarrow M(s)$$

wenn die Metallionenkonzentration

- i) halbiert wird?
- ii) verzehnfacht wird?
- b) Die folgende Redoxreaktion läuft in saurer Lösung ab:

$$Zn + NO_3^- \longrightarrow Zn^{2+} + NH_4^+$$

$$E^{\circ} (Zn^{2+}/Zn) = -0.76 \text{ V} ; E^{\circ} (NO_3^-/NH_4^+) = +1.11 \text{ V}$$

- i) Formulieren Sie eine stöchiometrisch korrekte Gleichung.
- ii) Berechnen Sie das Standardreaktionspotenzial und die Gleichgewichtskonstante der Reaktion bei 298 K.

6. **Prüfungsaufgabe S2014**

Einige Metalle können mit Salzsäure HCl (aq) ($c \approx 1 \text{ M}$) reagieren. Geben Sie für folgende Reaktionen an, ob diese in wässriger Lösung bei 25°C spontan oder nicht spontan sind. Formulieren Sie für die spontanen Reaktionen stöchiometrisch korrekte Reaktionsgleichungen. Bei Reaktionen, die nicht spontan ablaufen, ist der Reaktionspfeil durchzustreichen.

$$E^{\circ}(Al^{3+}/Al) = -1.66 \text{ V}; \ E^{\circ}(Ag^{+}/Ag) = +0.81 \text{ V}; \ E^{\circ}(Mn^{2+}/Mn) = -1.18 \text{ V}; \ E^{\circ}(Bi^{3+}/Bi) = +0.20 \text{ V}$$

i) Al +
$$HCl(aq) \rightarrow$$

ii) Ag +
$$HCl(aq) \rightarrow$$

iii) Mn +
$$HCl(aq) \rightarrow$$

iv) Bi +
$$HCl(aq) \rightarrow$$

7. Prüfungsaufgabe W2015

a) i) Berechnen Sie das Potenzial einer Wasserstoffelektrode E (H⁺ / H₂) unter folgenden Bedingungen:

$$T = 298 \text{ K}$$
; $p(H_2) = 1 \text{ bar}$; pH 3

ii) Das Standardpotenzial einer Bleielektrode beträgt

$$E^{\circ}(Pb^{2+}/Pb) = -0.13 \text{ V}.$$

Verhält sich die Standard-Bleielektrode gegenüber der Standard-Wasserstoffelektrode als Anode oder als Kathode? Formulieren Sie die Reaktionsgleichung der spontanen Reaktion.

- iii) Verhält sich die Standard-Bleielektrode gegenüber der unter i) beschriebenen Wasserstoffelektrode als Anode oder als Kathode? (Reaktionsgleichung?)
- b) Welche bleihaltigen Produkte werden beim Aufladen eines Bleiakkumulators gebildet?

 \square nur Pb(s)

 \square nur PbO₂(s)

 \square nur PbSO₄(s)

PbO₂(s) und PbSO₄(s)

 \square Pb(s) und PbO₂(s)

8. **Prüfungsaufgabe S2015**

In einer elektrochemischen Zelle läuft folgende Reaktion ab:

$$\operatorname{Sn}^{2+}(\operatorname{aq}) + \operatorname{Mn}(s) \rightarrow \operatorname{Sn}(s) + \operatorname{Mn}^{2+}(\operatorname{aq})$$

$$E^{\circ} (Sn^{2+}/Sn) = -0.14 \text{ V}$$
 $E^{\circ} (Mn^{2+}/Mn) = -1.18 \text{ V}$ $F = 96485 \text{ As mol}^{-1}$ $R = 8.314 \text{ J K mol}^{-1}$

- i) Berechnen Sie das Standardpotenzial und die Gleichgewichtskonstante der Reaktion bei T = 298 K.
- ii) Berechnen Sie das Potenzial der Zelle unter folgenden Bedingungen

$$c (Sn^{2+}) = 0.0100 \text{ M}$$
; $c (Mn^{2+}) = 2.00 \text{ M}$

9. Prüfungsaufgabe W 2016

Die folgende Redoxreaktion läuft in saurer Lösung ab:

$$Cr_2O_7^{2-} + H_2O_2 \longrightarrow Cr^{3+} + O_2$$

pH 0:
$$E^{\circ} (Cr_2O_7^{2-}/Cr^{3+}) = +1.33 \text{ V}$$
; $E^{\circ} (O_2/H_2O_2) = +0.69 \text{ V}$

- a) Formulieren Sie eine stöchiometrisch korrekte Gleichung.
- b) Berechnen Sie das Standardreaktionspotenzial E° , die Gleichgewichtskonstante K und die Gibbsenergie $\Delta_{\rm r}G^{\circ}$ bei $T=298~{\rm K.}$ F = 96485 As mol⁻¹