MTH 161 A1 Exam 3

University of Miami

Spring semester, 2025

Name:										
			Point	s Dist	ributio	on				
uestion:	1	2	3	4	5	6	7	8	Total	
oints:	12	10	10	10	16	24	8	10	100	
core:										

Instructions:

- 1. You have **75 minutes** to complete the examination.
- 2. Write all your work and answers in this booklet.
- 3. No calculators are allowed on this exam.
- 4. Please sign the Honor Code statement:

Honor	Code, I certii	fy that I have	e neither	given r	or rece	ived any	aid on	this exa	amination	
	Signature:									

Good luck!

Page 2, 11, and 12 are left blank for scratch paper.

The page has been left intentionally blank.

1.	(12)	points)
1.	(12)	points,

(a) (3 points) Write down the distance function between two points (x_0, y_0) and (x_1, y_1) on the xy-plane.

 $D = \underline{\hspace{2cm}}$

- (b) (1 points) To minimize or maximize D, it suffices to minimize or maximize D^2 . Briefly explain why.
- (c) (8 points) Use part (a) and (b), find the point(s) on the curve

$$y = x^2 - 13$$

that are **closest** to the point (0, 3.5). It suffices to give either x or y coordinate(s).

2. (10 points) Suppose an object is moving along a straight line. The acceleration function of the car with respect to time is given by

$$a(t) = 4t - 3.$$

You can assume the domain of function in this question to be $t \in [0, \infty)$.

(a) (4 points) Find the velocity function v(t) with the initial condition v(0) = -9.

(b) (6 points) Write down the expression that calculate the **distance** travelled by the object during [0,6] **using definite integral**. You do not need to evaluate the expression, but you need to express it so that **no absolute value function appears**.

Reminder: you don't have to evaluate the expression!

3. (10 points) The graph of f defined on [-4,8] is given above. Define

$$g(x) = \int_{2}^{x} f(t)dt.$$

(a) (2 points) Find g(6).

Answer:

(b) (2 points) Find g(-2).

Answer:

(c) (3 points) On which interval(s) is g increasing?

Answer:

(d) (3 points) On which interval(s) is g' increasing?

Answer:

4. (10 points) Use **Fundamental Theorem of Calculus** to evaluate the **derivative** of the function

$$y = \int_{x^3}^{-x} \sin(\sqrt[3]{t}) + t \ dt$$

- 5. (16 points) Evaluate the following definite integrals.
 - (a) (8 points) $\int_0^3 x\sqrt{3-x}\ dx$, it's okay to stop at the last evaluating step (i.e. it suffices to write down the antiderivative and the corresponding upper and lower bounds).

(b) (8 points) $\int_0^{\pi/4} \frac{1 - \cos^2(\theta)}{\cos^2(\theta)} d\theta$

6. (24 points) Evaluate the following indefinite integrals.

(a) (8 points)
$$\int \csc^2(x) \cdot \cot^7(x) dx$$

(b) (8 points)
$$\int \frac{\cos(\pi/x)}{x^2} dx$$

(c) (8 points)
$$\int \left(x + \frac{1}{x}\right)^2 dx$$

7. (8 points) Let $f(x) = (x-3)^{-2}$. Is there a value c on (1,4) that satisfies

$$f'(c) = \frac{f(4) - f(1)}{4 - 1}$$
 ?

If your answer is no, why does this not contradict the Mean Value Theorem?

8. (10 points) We have learnt quite a few methods to evaluate an integral. One interesting result involves both geometry and algebra.

Answer 2 short questions and use them to evaluate an integral.

(a) (2 points) What does it mean for a function f to be an **odd** function? Examples of odd function: $\sin(x)$, x^3 , $\cos(5x) \cdot x^5$.

A function is odd if its graph is symmetric about ______.

- (b) (2 points) If f is an odd function and integrable, then $\int_{-a}^{a} f(x) dx = \underline{\hspace{1cm}}$.
- (c) (6 points) Evaluate

$$\int_{-5}^{5} x^{2025} \cdot \cos(3x) + |x - 3| \ dx$$

using part (a) and (b).

The page has been left intentionally blank.

The page has been left intentionally blank.