高三期初质量检测试卷•化学

注意事项:

- 1.本试卷分为选择题和非选择题两部分,共100分,考试时间75分钟。
- 2.请把选择题和非选择题的答案均填写在答题卷的指定栏目内。

可能用到的相对原子质量: H1 Li7 C12 N14 O16 S32 Cl35.5 K39 Cr52 Mn55 Fe 56

一、单项选择题: 共13题, 每题3分, 共39分。每题只有一个选项最符合题意。

1.我国提出 2030 年碳达峰、2060 年碳中和的目标。下列关于 CO₂ 的说法不正确是(

A.CO,固体易升华

B.CO,是酸性氧化物

C.CO,为极性分子

D.CO,属于非电解质

2.肼(N_2H_4)是发射航天飞船常用的高能燃料,可通过反应 $NaClO + 2NH_3 \longrightarrow N_2H_4 + NaCl + H_2O$ 制备。下列说 法正确的是()

A. NaClO 既含离子键又含共价键

B. NH₃的电子式为H:N:H

 $C. N_2H_4$ 的结构式为: H-H=N-H D. Na^+ 与 Cl^- 具有相同的电子层结构

3.实验室制取 Cl, 的实验原理及装置均正确的是(

 $4._7$ N、 $_{15}$ P、 $_{33}$ As、 $_{51}$ Sb 是周期表中 VA 族元素。下列说法正确的是(

A.原子半径: r(N) > r(P) > r(As) B.酸性: $H_3AsO_4 > H_3PO_4 > HNO_3$

C.第一电离能: $I_1(N) > I_1(P) > I_1(As)$ D. VA 族元素单质的晶体类型相同

阅读下列材料,完成5~7题:

第三周期元素的单质及其化合物具有重要用途。如在熔融状态下,可用金属钠制备金属钾; MgCl,可制备多种 镁产品; 铝—空气电池具有较高的比能量, 在碱性电解液中总反应为 $4Al+3O_2+4OH^-+6H_2O=-4[Al(OH)_4]^-$ 。 高纯硅广泛用于信息技术领域,高温条件下,将粗硅转化为三氯硅烷(SiHCl3),再经氢气还原得到高纯硅。硫有

多种单质,如斜方硫 (燃烧热为 $297 \, \text{kJ} \cdot \text{mol}^{-1}$)、单斜硫等。 $H_{2}S$ 可除去废水中 $H_{2}S$ 等重金属离子, $H_{2}S$ 水溶液在 空气中会缓慢氧化生成S而变浑浊。

5.下列说法正确的是(

A.斜方硫和单斜硫互为同位素

B.H₂S的沸点比H₂O低

C.1 $mol [Al(OH)_4]$ 中含有 4 $mol \sigma$ 键 D. Si—Si 键的键能大于 Si—O 键的键能

6.下列化学反应表示正确的是(

A. SiHCl₃ 转化为高纯硅: SiHCl₃ + H₂—Si + 3HCl

B.向 CuSO₄溶液中加入小粒金属钠: 2Na + Cu²⁺—Cu + 2Na⁺

C.斜方硫燃烧: S(s, A) 分元 S(g) S(g) $\Delta H = 297kJ \cdot mol^{-1}$

D.铝一空气电池(碱性电解液)放电时的负极反应, $Al-3e^-+4OH^-$ = $[Al(OH)_4]^-$

7.下列物质的性质与用途具有对应关系的是(

A.熔融 MgCl, 能电解,可用作冶炼镁的原料

 $B.H_{2}S$ 具有还原性,可除去废水中的 Hg^{2+}

C.钠的密度比钾大,可用于冶炼金属钾

D.晶体硅熔点高、硬度大,可用作通讯设备的芯片

8.硫及其化合物的转化具有重要应用。下列说法不正确的是

A.实验室制取少量 SO_2 的原理: $Cu + 2H_2SO_4$ (浓) —— $CuSO_4 + SO_2 \uparrow + 2H_2O$

B.实验室检验 SO_2 既具有氧化性也具有还原性: $S \leftarrow {}^{Na_2S} - SO_2 \longrightarrow SO_4^{2-}$

C.工业上接触法制硫酸过程中物质转化: $FeS_2 \xrightarrow{O_2} SO_2 \xrightarrow{G_2} SO_3 \xrightarrow{H_2O} H_2SO_4$

D.工业上用 $Fe_2O_3 \cdot H_2O$ 脱除天然气中的 H_2S : $Fe_2O_3 \cdot H_2O + 3H_2S$ — $Fe_2S_3 \downarrow +4H_2O$

9.化合物 Z 是合成药物沙丁胺醇的重要中间体, 其合成路线如下:

已知: $X \rightarrow Y$ 过程中,X 先与 HCHO 发生加成反应,再与 HCl 发生取代反应。下列说法正确的是(

A.X 分子中所有原子在同一平面上

B.X \rightarrow Y 的中间产物分子式为 $C_9H_{10}O_3$

C.Z 最多能与 2 mol NaOH 反应

D.X、Y、Z可用FeCl、溶液和AgNO、溶液进行鉴别

 $10.\ MnO_2-CeO_2$ 催化剂能催化 NH_3 脱除烟气中的 NO ,反应为 $4NH_3(g)+4NO(g)+O_2(g)$ — $4N_2(g)+6H_2O(g)$,其机理如题 10 图所示。下列说法正确的是(

A.该反应 $\Delta S < 0$

B.该反应的平衡常数
$$K = \frac{c^4(NH_3) \cdot c^4(NO) \cdot c(O_2)}{c^4(N_2) \cdot c^6(H_2O)}$$

C.步骤 I 可描述为 NH_3 吸附到 MnO_2 表面与表面吸附氧反应生成 $-NH_2$ 和 H_2O ,同时 MnO_2 被还原为 Mn_2O_3 ; 烟气中的 NO 和 $-NH_2$ 反应生成 N_2 和 H_2O

D.该反应中每消耗 $1 \mod O_2$,转移电子的数目约为 $4 \times 6.02 \times 10^{23}$

11.室温下,探究 $0.1 \, \text{mol} \cdot \text{L}^{-1} \, \text{FeCl}_3$ 溶液的性质,下列实验方案**不**能达到探究目的的是()

选项	探究目的	实验方案
A	溶液中是否含有Fe ³⁺	向 2 mL 0.1 mol·L ⁻¹ FeCl ₃ 溶液滴加几滴 KSCN 溶液,观察溶液颜色变化
В	Fe ³⁺ 是否具有氧化性	向 $2\mathrm{mL}0.1\mathrm{mol}\cdot\mathrm{L}^{-1}\mathrm{FeCl}_3$ 溶液滴加适量 $\mathrm{Na}_2\mathrm{S}$ 溶液,观察生成沉淀的颜色
С	Fe ³⁺ 能否催化 H ₂ O ₂ 分 解	向 $2\text{mL}5\%\text{H}_2\text{O}_2$ 溶液中滴加几滴 $0.1\text{mol}\cdot\text{L}^{-1}\text{FeCl}_3$ 溶液,观察滴加 FeCl_3 溶液前后气泡产生情况
D	Fe ³⁺ 与 I ⁻ 的反应是否存 在限度	取 2 mL 0.1 mol·L $^{-1}$ FeCl $_3$ 溶液和 1 mL 0.1 mol·L $^{-1}$ KI 溶液混合,充分反应后,再加 2 mL CCl $_4$,振荡、静置,取上层清液滴加少量 KSCN 溶液,观察溶液颜色变化

12.一种脱除燃煤烟气中 SO_2 的方法如题 12 图所示。室温下用 $0.1\,\mathrm{mol}\cdot\mathrm{L}^{-1}$ 氨水吸收 SO_2 ,若通入 SO_2 所引起的溶液体积变化和 $\mathrm{H}_2\mathrm{O}$ 挥发可忽略,溶液中含硫物种的浓度 $c_{\mathrm{gl}}=c\left(\mathrm{SO}_3^{2-}\right)+c\left(\mathrm{H}_2\mathrm{SO}_3\right)+c\left(\mathrm{HSO}_3^{-}\right)$ 。

题 12 图

已知: $NH_3 \cdot H_2O$ 的 $K_b = 1.7 \times 10^{-5}$, H_2SO_3 的 $K_{a1} = 1.3 \times 10^{-2}$, $K_{a2} = 6.2 \times 10^{-8}$ 。

下列说法正确的是()

A. NH_4HSO_3 溶液中: $c(H_2SO_3)-c(SO_3^{2-})$

B. "吸收"所得
$$c_{\dot{\otimes}} = 0.05 \text{mol} \cdot \text{L}^{-1}$$
溶液中: $c\left(\text{H}^{+}\right) + c\left(\text{HSO}_{3}^{-}\right) + c\left(\text{H}_{2}\text{SO}_{3}\right) < c\left(\text{OH}^{-}\right) + c\left(\text{NH}_{3} \cdot \text{H}_{2}\text{O}\right)$

C. "氧化"过程中:
$$\frac{c\left(\mathrm{NH_4^+}\right)}{c\left(\mathrm{NH_3 \cdot H_2O}\right)}$$
逐渐减小

D.向"氧化"后的溶液中加入过量 $\mathrm{Ba}(\mathrm{OH})_2$ 充分反应过滤,所得滤液中: $c\left(\mathrm{Ba}^{2+}\right)\cdot c\left(\mathrm{SO}_4^{2-}\right) < K_{\mathrm{sp}}\left(\mathrm{BaSO}_4\right)$

13. CO_2 催化加氢可合成二甲醚,发生的主要反应有:

反应 I:
$$2CO_2(g) + 6H_2(g)$$
— $CH_3OCH_3(g) + 3H_2O(g)$ $\Delta H_1 = -122.5 \text{kJ} \cdot \text{mol}^{-1}$

反应 II:
$$CO_2(g) + H_2(g) - CO(g) + H_2O(g)$$
 $\Delta H_2 = akJ \cdot mol^{-1}$

在恒压、 $n_{\text{hd}} = (\text{CO}_2)$: $n_{\text{hd}}(\text{H}_2) = 1$: 3 时,若仅考虑上述反应,平衡时 CH_3OCH_3 和CO的选择性及 CO_2 的转化率随温度的变化如题 13 图中实线所示。

$$CH_3OCH_3$$
 的选择性 = $\frac{2n_{\text{生成}}\left(CH_3OCH_3\right)}{n_{\text{反应}}\left(CO_2\right)}$ ×100%。下列说法正确的是(

A. a < 0

B.图中曲线①表示平衡时 CO_2 转化率随温度的变化

C.平衡时H,转化率随温度的变化可能如图中虚线所示

D.200~280℃,温度越高,平衡时CH3OCH3的物质的量越小

二、非选择题: 共4题,共61分。

14.(15 分) MnO_2 在电池中有重要应用。以软锰矿(含 MnO_2 及少量 Fe 、 Al 的氧化物)为原料制备粗二氧化锰颗粒的过程如下:

- (1) 浸出。用 H_2SO_4 和 $FeSO_4$ 可溶解软锰矿,生成 Mn^{2+} 的离子方程式为
- (2) 净化、分离。
- ①浸出液中的 Fe^{3+} 、 Al^{3+} 可加入NaOH溶液并调节溶液pH在 $5\sim6$ 之间,转化为沉淀去除。溶液的pH不能超过6的原因是
- ②为减少碱用量,可以通过稀释浸出液除去 Fe³⁺ ,结合离子方程式解释原理:
- (3) 热解。在一定空气流速下,相同时间内 $MnCO_3$ 热解产物中不同价态Mn的占比随热解温度的变化如右图。

注:图中Mn(II)等表示化合物中锰元素的价态

MnCO₃热解过程中涉及如下化学反应:

i .
$$MnCO_3(s) = MnO(s) + CO_2(g)$$

ii
$$.4MnO(s) + O_2(g) \rightleftharpoons 2Mn_2O_3(s) \quad \Delta H < 0$$

iii.
$$2Mn_2O_3(s) + O_2(g) \rightleftharpoons 4MnO_2(s)$$
 $\Delta H < 0$

- ①为了增大产物中MnO₂的占比,除控制温度在450℃左右外,还可采用的措施有
- ②温度升高,产物中 MnO 的占比降低,可能的原因是。
- (4)测定 MnO_2 的纯度。称取 0.1450g MnO_2 粗品置于具塞锥形瓶中,加水润湿后,依次加入足量稀硫酸和过量 KI溶液。盖上玻璃塞,充分摇匀后静置 30min。用 $0.1500\,0$ mol· L^{-1} $Na_2S_2O_3$ 标准溶液滴定生成的 I_2 ,消耗 $Na_2S_2O_3$

(5) 分析 $\mathbf{MnO_2}$ 的结构。题 14 图是 $\mathbf{MnO_2}$ 的一种晶型的晶胞,该晶胞中 $\mathbf{O^{2-}}$ 所围成的空间构型是_____。

题 14 图

15. (15 分) 化合物 G 是一种抗病毒和调节免疫力的药物, 其合成路线如下:

- (1) 化合物 G 中碳原子的杂化轨道类型为。
- (2) D→E 的反应类型为。
- (3) A→B 的过程为先发生加成反应,再发生消去反应,写出消去过程中另一种主要副产物(含 2 个甲基)的结构简式:
- (4) 写出同时满足下列条件的 C 的一种同分异构体的结构简式: _____。 分子中含有苯环和四个甲基,核磁共振氢谱有四个峰; 能与银氨溶液发生银镜反应。
- (5) 乙酸和乙酸酐 () 均可以发生酯化反应,但 C→D 反应采用乙酸酐而不采用乙酸的可能原因是

成路线流程图 (无机试剂和有机溶剂任用,合成路线流程图示例见本题题干)。

16. (15分) 钴及其化合物在工业生产中有着广阔的应用前景。

已知: Co^{2+} 不易被氧化, Co^{3+} 具有强氧化性; $\left[\operatorname{Co}\left(\operatorname{NH}_{3}\right)_{6}\right]^{2+}$ 具有较强还原性, $\left[\operatorname{Co}\left(\operatorname{NH}_{3}\right)_{6}\right]^{3+}$ 性质稳定。

(1) 从锂钴废料(主要成分为 $LiCoO_2$)分离 Co^{2+} 。

- ①Co²⁺的电子排布式为。
- ②"酸溶"时不选择浓 HCl 的理由是: ▲
- ③ "净化"时,加 NaF 固体是将 Li⁺ 转化为沉淀,"净化"后溶液中 $c(\mathbf{F}^-)=4.0\times10^{-2}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$ 。若"过滤 1"后溶液中 Li⁺ 浓度为 $1.0\,\mathrm{mol}\cdot\mathrm{L}^{-1}$,则"净化"后 $c(\mathrm{Na}^+)=$ _____。[溶液体积变化忽略不计,不考虑其他离子影响。 $25\,\mathrm{C}$ 时 $K_\mathrm{sp}(\mathrm{LiF})=2.0\times10^{-3}$]
- (2) 从由CoCl₂制备「Co(NH₃)₆ Cl₃。

实验过程: 称取研细的 $CoCl_2 \cdot 6H_2O$ 10.0g 和 NH_4Cl 50g 于烧杯中溶解,将溶液转入三颈烧瓶,分液漏斗中分别装有 25 mL 浓氨水,5 mL 30%的 H_2O_2 溶液,控制反应温度为 $60^{\circ}C$,打开分液漏斗,反应一段时间后,得 $\left[Co\big(NH_3\big)_6 \right] Cl_3$ 溶液。实验装置如题 16 图-1 所示。

- ①由 $CoCl_2$ 制备 $\left[Co\left(NH_3\right)_6\right]Cl_3$ 溶液的离子方程式为_____。
- ②分液漏斗中液体加入三颈烧瓶中的顺序为。

(3) CoCO₃ 热分解制备 Co₃O₄。

有氧和无氧环境下, $CoCO_3$ 热解所得 Co_3O_4 和CoO 的百分含量与温度关系如题 16 图-2 所示。请补充完整由 $CoCO_3$ 制备较纯净的 Co_3O_4 实验方案,取一定质量的 $CoCO_3$ 于热解装置中,_______,干燥。

(已知: Co_3O_4 、CoO均难溶于水。 Co_3O_4 难溶于酸,CoO能溶于酸中。**须**使用的试剂有: $Imol \cdot L^{-1} H_2SO_4$,蒸馏水, $BaCl_5$ 溶液)

17. (16 分) 将 CO₂ 转化为 HCOOH 能存效减少 CO₂ 排放。

(1) 己知: I
$$2CO(g) + O_2(g) = 2CO_2(g)$$
 $\Delta H_1 = -566.0 \text{kJ} \cdot \text{mol}^{-1}$

II
$$2H_2(g) + O_2(g) = 2H_2O(g)$$
 $\Delta H_2 = -483.6 \text{kJ} \cdot \text{mol}^{-1}$

III
$$HCOOH(1) - CO_2(g) + H_2O(g)$$
 $\Delta H_3 = +72.6 \text{kJ} \cdot \text{mol}^{-1}$

则
$$CO_2(g)+H_2(g)$$
—HCOOH(1) $\Delta H_4 =$ ______

- (2) 325℃时, 水在 Mn 粉表面产生 H, 和 MnO, H, 再与 CO, 反应生产甲酸。
- ①由 H_2O 、Mn、 CO_2 制备甲酸的化学方程式为_____。
- ②直接加热 H, 与 CO, 难以生成甲酸, 该条件下能较快生成甲酸的原因是。
- (3) 科学家利用 CO, 在 Ru (与 Fe 同族) 基催化剂上加氢成功制得甲酸。其过程如下图所示。

- ① CO_2 与Ru-H通过加成形成中间体X,画出中间体X的结构式:______。
- ②反应过程中加入 NaOH 或 NH, 的目的是____。
- (4) \mathbf{CO}_2 通过电解法转化为 \mathbf{HCOO}^- 的反应机理如题 17 图-1 所示。Pt 电极上覆盖的 Nafion 膜是一种阳离子交换膜,对浓度不高的 \mathbf{HCOO}^- 有较好的阻拦作用,可让 $\mathbf{H}_2\mathbf{O}$ 自由通过。

题 17 图-1

①Sn 电极上生成 HCOO ⁻ 的电极反应式为。
②电路中通过的电量与HCOO ⁻ 产率的关系如题 17 图-2 所示。相同条件下,Pt 电极有 Nafion 膜HCOO ⁻ 产率明显
提高,但电量>1000C后又显著下降,可能原因是。
③若电解时将 Nafon 膜置于两个电极中间,保持电流恒定, $20h$ 时向阳极区补充 $KHCO_3$,电压与时间关系如题 17
图-3 所示。0~20h, 电压增大的原因是。