October 13, 2025

1.	\mathbf{Use}	Theorem	4.2.1	\mathbf{to}	determine	which	\mathbf{of}	\mathbf{the}	following	are
subs	paces	of R^3 . b)								

All vectors of the form (a, 1, 1).

 $\mathbf{c})$

All vectors of the form (a,b,c), where b=a+c.

3. Use Theorem 4.2.1 to determine which of the following are subspaces of P^3 . b)

All polynomials $a_0 + a_1x + a_2x^2 + a_3x^3$ for which $a_0 + a_1 + a_2 + a_3 = 0$.

 $\mathbf{c})$

All polynomials of the form $a_0 + a_1x + a_2x^2 + a_3x^3$ in which a_0, a_1, a_2 , and a_3 are rational numbers.

4. Which of the following are subspaces of $F(-\infty,\infty)$? b)

All functions f in $F(-\infty, \infty)$ for which f(0) = 1.

 $\mathbf{c})$

All functions f in $F(-\infty, \infty)$ for which f(-x) = f(x).

5. Which of the following are subspaces of R^{∞} ? a)

All sequences v in R^{∞} of the form.

$$v = (v, 0, v, 0, v, 0, \ldots).$$

b)

All sequences \mathbf{v} in R^{∞} of the form

$$\mathbf{v} = (v, 1, v, 1, v, 1, \ldots)$$

10. In each part express the vector as a linear combination of $\mathbf{p}_1=2+x+4x^2, \mathbf{p}_2=1-x+3x^2,$ and $\mathbf{p}_3=3+2x+5x^2.$ a)

$$-9 - 7x - 15x^2$$

11. In each part, determine whether the vectors span \mathbb{R}^3 a)

$$\mathbf{v}_1 = (2, 2, 2), \ \mathbf{v}_2 = (0, 0, 3), \ \mathbf{v}_3 = (0, 1, 1)$$

12. Suppose that $\mathbf{v}_1=(2,1,0,3),\ \mathbf{v}_2=(3,-1,5,2),\ \text{and}\ \mathbf{v}_3=(-1,0,2,1).$ Which of the following vectors are in span $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$? a)

(2,3,-7,3)

 $\mathbf{c})$

(1, 1, 1, 1)

14. Let $f = \cos^2 x$ and $g = \sin^2 x$. Which of the following lie in the space spanned by f and g? a)

 $\cos 2x$

b)

(0, 0, 0, 0)