Structures Algébriqes Structure de Groupe MPSI 2

1 Définition

Définition 1.0.1

Soit (G, *) un magma.

On dit que (G,*) est un groupe si:

- \bullet * est associative
- * admet un élément neutre
- tout élément de G est symétrisable par *

Si de plus, * esr commutative sur G, on dit que (G,*) est un groupe abélien.

Conséquences:

• Règle de simplification: $a * x = a * y \Rightarrow x = y$ Démonstration:

Soit a, x et y trois éléments de G tels que a * x = a * y

Notons a' le symétrique de a (car G est un groupe)

On a alors: a' * (a * x) = a' * (a * y)

Par associativité, on a: (a'*a)*x = (a'*a)*y

Par symétrie, on a: e * x = e * y

Par définition de l'élément neutre: x = y

• Résolution d'équations: $a * x = b \iff x = a' * b$

2 Sous-groupes

2.1 Définition et critères

Soit (G, *) un groupe.

Définition 2.1.1

Soit F un sous-ensemble de G

On dit que (F,*) est un sous-groupe de (G,*) si:

- $\forall (x,y) \in G \times G, (x \in F \text{ et } y \in F) \Rightarrow (x * y \in F)$
- (F,*') est un groupe où *' est la loi induite de G sur F.

Remarques: Soit (F, *') un sous-groupe de (G, *)

- \bullet $e_G = e_F$
- F est non vide: $e \in F$
- Si x' et x'' sont les symétriques de $x \in F$ dans (G,*) et (F,*') respectivement, Alors x' = x''

Critères de sous-groupe

Soit F un sous-ensemble non vide de G.

- \bullet Critère 0: F est un sous-groupe de G ssi:
- ① $\forall (x,y) \in G \times G, (x \in F \text{ et } y \in F) \Rightarrow (x * y \in F)$
- (2) $e \in F$
- $3 \forall x \in G, (x \in F) \Rightarrow (x^{-1} \in F)$
- \bullet Critère 1: F est un sous-groupe de G ssi:
 - ① $\forall (x,y) \in G \times G, (x \in F \text{ et } y \in F) \Rightarrow (x * y \in F)$
 - ② $\forall x \in G, (x \in F) \Rightarrow (x^-1 \in F)$
- \bullet Critère 2: F est un sous-groupe de G ssi:

Démonstration des critères de sous-groupe

ullet Critère 1: Soit F un sous-ensemble non vide de G vérifiant le critère 1.

D'après ②,
$$x^{-1} \in F$$

D'après (1),
$$x * x^{-1} \in F$$

Or $x*x^1 = e$, donc $e \in F$ On a vérifié le critère 0, donc (F,*) est un sous-groupe de (G,*).

- ullet Critère 2: Soit F un sous-ensemble non vide de G vérifiant le critère 2.
 - $-\ F$ est non vide: Soit x un élément de F

D'après ①,
$$x * x^{-1} \in F \Rightarrow e \in F$$

Le point (2) du critère 0 est vérifié.

– D'après (1) avec e et x: $e * x^{-1} \in F \Rightarrow x^{-1} \in F$

Le pont (3) du critère 0 est vérifié.

– Soit x et y deux éléments de F. De plus, $y^{-1} \in F$ donc $x * (y^{-1})^{-1} \in F \to x * y \in F$