自动控制理论试题

班级	
学号	
姓名	

题号	_	_	三	四	五	六	七	总分
分数								
评卷人								

一、某

单位反馈控制系统开环传递函数为: (12分)

G(s) =
$$\frac{K}{s(s+2)(s^2+6s+25)}$$

求:1.为使闭环系统稳定,确定 K的取值范围。

2. 当 K 为何值时,系统出现等幅振荡,并确定等幅振荡的频率。

3. 试讨论当 K = 200、 r(t) = 2t 时, e_{ss}(∞) = ?

考场纪律 主领

审核 签字

注

意

行

为

规

范

遵

守

本题得分

二、 化简下图所示的方块图 , 并求出其闭环传递函数

Y(S) R(S) (12分)

本题得分

三、系统结构图如下:(12分)

求:1、当 r(t) =1(t) 时,系统的超调量 $\,\sigma_{_{\!P}}$ =?,及调节时间 $\,t_{_{\!S}}$ =? (Δ = 0.02),

2、当输入信号分别为 r(t) = 1(t) ; r(t) = t ; $r(t) = \frac{1}{2}t^2$ 时 , 其 $e_{ss}(∞) = ?$

本题得分

四、系统结构图如下:(12分)

求: 1) 试绘出以 T 为变量的根轨迹的大致图形。(如有渐近线;分离点、会合点;出射角、入射角;

与虚轴的交点等问题应计算之)

- 2) 为使系统稳定, T的取值范围。
- 3) 系统临界稳定时 T的数值,并指出临界稳定时的振荡频率。

本题得分

五、系统结构图为:(12分)

(注:系统的固有特性、校正特性及校正后的特性均应画在给出的对数坐标纸上。)

(提示:死区非线性的描述函数 $N(X) = k[1 - \frac{2}{\pi}(\sin^{-1}\frac{a}{X} + \frac{a}{X}\sqrt{1 - (\frac{a}{X})^2})]$)

本题得分

七、回答下列各问:(12分)

1.在下述图中,各控制系统的开环幅相频率特性如图所示, P为各开环传递函数在 s平面右半部的极点数,试判断各闭环系统的稳定性(如不稳定需指出有几个不稳定的根)。(4分)

2. 图示电路的传递函数可为 a) 亦可为 b) , 何者对?请说明原因。 (2分)

3.某单位反馈控制系统的开环传递函数为 $G(s) = \frac{K}{s(0.2 \, s^{+}1)}$, 其频率特性如图所示,试求 r(t) = t 时,

e_{ss}(∞) =?(需给出计算过程)(1分)

4.结合所学自动控制理论知识,写出五句内容正确的话。 (可以是定义、概念;可以是结论;可以是自己的理解、感悟等)(5分)