ALGORİTMALAR

BÖLÜM 2-DVM

İÇERİK

- Recurrence Relations (Özyineleme İlişkileri)
 - Exact Solution (Kesin Çözüm)
 - Forward substitution (İleriye Doğru yerine koyma)
 - Backward substitution (Geriye Doğru Yerine Koyma)
 - Diferansiyel denklemlerde kullanılan yöntemler,
 - Asymptotic Solution (Asimptotik Çözüm)
 - Master teoremi

 Genellikler özyineleme bulunan fonksiyonlarda görülür

Örnekler:

$$f(n) = f(n/2) + 1$$
$$f(0) = 1$$

$$f(n) + f(n-1) - 6f(n-2) = 2^{n} - 1$$

Örnekler

- Array'deki en büyük elemanı belirleme
 - İki özyineli çağırım
- Binary search

Recurrence Relations

- Recurrence Relations(Özyineleme İlişkileri)
 - Exact Solution (Kesin Çözüm)
 - Forward substitution (İleriye Doğru yerine koym)
 - Backward substitution (Geriye Doğru Yerine Koyma)
 - Diferansiyel denklemlerde kullanılan yöntemler
 - Asymptotic Solution
 - Master theorem

Hedef:

Herhangi bir doğal tamsayı n için **F**(n)=n! **Faktöriyel** fonksiyonunu hesapla.

$$n! = n \times (n-1) \times ... \times 1 = n \times (n-1)!$$
 for $n \ge 1$ and $0! = 1$

$$F(n) = F(n-1) \times n$$
 for $n > 0$

$$F(0) = 1$$

Algoritma:

if n=0 return 1 else return F(n-1)*n

Analizi:

$$M(n) = M(n-1) + 1$$
 for $n > 0$,
 $M(0) = 0$.

Forward Substitution (İleriye Doğru yerine koyma)

- Initial condition ile başlayın
- Çözüme doğru bir kaç terimi hesaplayın.
 - Önceden bulduğunuz terimleri kullanarak
- Bir desen bulmaya çalışın
- Kapalı formda bir formül bulmaya çalışın
- Bulduğunuz formulü doğrulayın
 - Tümevarım
 - Yerine koyma

Forward substitution:

$$M(0) = 0$$

 $M(1) = M(0) + 1 = 1$
 $M(2) = M(1) + 1 = 2$
 $M(3) = M(2) + 1 = 3$
 \vdots
 $M(n) = n$

(Backward Substituiton) Geriye doğru yerine koyma ile: M(n) = M(n-1)+1

$$M(n) = M(n-1)+1$$
 $M(n) = M(n-2)+1+1$
 $M(n) = M(n-3)+1+1+1$
 \vdots
 $M(n) = M(n-i)+i$
for $n = i$
 $M(n) = M(0)+n=n$

Backward Substitution

- Recurrence denklemi ile başlayın (f(n) ile)
- f(n-1) terimini açın
 - Recurrence denklemini kullanarak
- Aynı işlemi birkaç kere tekrarlayın.
 - for *f*(*n*-2), *f*(*n*-3) etc..
- f(n) denkleminin formülünün f(n-i) cinsinden bulmaya çalışın.
- Desenin doğruluğunu kontrol edin
 - Genellikle tümevarım ile
- n-i'yi initial condition yapan i'yi seçin ve kapalı formülü elde ediniz.

Hedef:

n tane diski A çubuğundan C çubuğuna arada B çubuğunu kullanarak yerleştirme

Yaklaşım: (recursive)

- n-1 tane diski A 'dan B'ye C çubuğunu kullanarak aktarın
- En büyük diski A'dan C'ye iletin.
- n-1 tane diski B çubuğundan C'ye A çubuğunu kullanarak iletin

Toplam hareket sayısı

$$T(n) = 2T(n-1) + 1$$

 $T(1) = 1$

Recursive algoritmalarda Genel Plan

- Girdi boyutunu belirleyecek parametrelere karar verme.
- Algoritmanın temel işlemini (basic operation) belirle.
- Her recursive çağırmada temel işlem kaç defa çalıştırılıyor belirle.
 - Eğer çalıştırma sayısı aynı boyuttaki farklı girdiler de değişiyorsa;
 - worst-case, average-case ve best-case durumları ayrı ayrı incelenmelidir.
 - Temel işlem çağrılmasını sayan bir özyineleme ilişkisi oluşturun.
 - Özyinelemeli çağrımları ve bu çağrımlardaki girdi boyutunu belirleyin.
 - Uygun bir initial condition bulun.
- Özyinelemeyi çözün.
 - En azından girdi büyüdükçe işlem adımlarındaki büyümeyi belirleyin.

Towers of Hanoi

$$T(n) = 2T(n-1) + 1$$

$$T(1) = 1$$

Backward Substituion

$$T(n) = 2T(n-1) + 1$$

$$T(n) = 4(T(n-2)) + 2 + 1$$

$$T(n) = 4(2T(n-3)+1)+2+1$$

$$T(n) = 8T(n-3) + 4 + 2 + 1$$

:

$$T(n) = 2^{i} T(n-i) + 2^{i-1} + 2^{i-2} + ... + 2^{1} + 1 \leftarrow Doğrulama$$

when
$$i = n - 1$$

$$T(n) = 2^{n-1}T(1) + 2^{n-2} + ... + 2^{1} + 1$$

$$T(n) = 2^n - 1 = \theta(2^n)$$

Example 3: Counting #bits

ALGORITHM BinRec(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n's binary representation

if n = 1 return 1

else return $BinRec(\lfloor n/2 \rfloor) + 1$

Örnek

$$T(n) = 2T(\sqrt{n}) + 1 \qquad T(2) = 0$$

$$T(n) = 2T(n^{1/2}) + 1$$

$$T(n) = 2(2T(n^{1/4}) + 1) + 1$$

$$T(n) = 4T((n^{1/4}) + 1 + 2$$

$$T(n) = 2T(n^{1/8}) + 1 + 2 + 3$$

$$T(n) = 8T(n^{1/8}) + 1 + 2 + 3$$

:

$$T(n) = 2^{i} T(n^{1/2^{i}}) + 2^{0} + 2^{1} + \dots + 2^{i-1}$$

$$n^{1/2^{i}} = 2 \implies i = \log \log(n)$$

$$T(n) = 2^{0} + \dots + 2^{\log \log n - 1} = \theta(\log n)$$

ROAD MAP

Recurrence Relations

- Exact Solution
 - Forward substitution
 - Backward substitution
 - Methods similar to those used in solving differential equations
- Asymptotic Solution
 - Master theorem

Fibonacci numbers

The Fibonacci numbers:

The Fibonacci recurrence:

$$F(n) = F(n-1) + F(n-2)$$

$$F(0) = 0$$

$$F(1) = 1$$

Genel 2nd derece lineer homojen recurrence denklemi

constant coefficients:

$$aX(n) + bX(n-1) + cX(n-2) = 0$$

Fibonacci numbers

$$F(n) = \frac{1}{\sqrt{5}}(\phi^n - \hat{\phi}^n),$$

$$\phi = (1 + \sqrt{5})/2 \approx 1.61803$$

$$\hat{\phi} = -1/\phi \approx -0.61803$$

ALGORITHM F(n)

//Computes the nth Fibonacci number recursively by using its definition //Input: A nonnegative integer n //Output: The nth Fibonacci number if $n \le 1$ return n else return F(n-1) + F(n-2)

$$A(n) = A(n-1) + A(n-2) + 1$$
 for $n > 1$,
 $A(0) = 0$, $A(1) = 0$.

$$[A(n) + 1] - [A(n - 1) + 1] - [A(n - 2) + 1] = 0$$

$$B(n) = A(n) + 1:$$

$$A(n) = B(n) - 1 = F(n+1) - 1 = \frac{1}{\sqrt{5}}(\phi^{n+1} - \hat{\phi}^{n+1}) - 1.$$

ALGORITHM Fib(n)

```
//Computes the nth Fibonacci number iteratively by using its definition //Input: A nonnegative integer n //Output: The nth Fibonacci number F[0] \leftarrow 0; F[1] \leftarrow 1 for i \leftarrow 2 to n do F[i] \leftarrow F[i-1] + F[i-2] return F[n]
```