Работа 3.5.3² Релаксационные колебания

Валеев Рауф Раушанович группа 825

20 ноября 2019 г.

Цель работы

Изучение вольт-амперной характеристики нормального тлеющего разряда; исследование релаксационных колебаний генератора на стабилитроне.

В работе используются

Стабилитрон на монтажной плате, магазин ёмкостей, магазин сопротивлений, источник питания, амперметр, вольтметр, осциллограф.

Описание установки

Рис. 1: Схема экспериментального стенда

Схема установке представлена на рис.1. Штриховой линией выделена панель, на которой установлен стабилитрон и последовательно с ним - сопротивление r, позволяющее предохранить диод от перегорания, а так же получить напряжение, пропорциональное току разряда, это сопротивление остается включенным при всех измерениях.

Теория

Рис. 2: Упрощенная вольт-амперная характеристика стабилитрона

В работе исследуются релаксационные колебания, возбуждаемые в электрическом контуре состоящем из ёмкости C, резистора R и газоразрядного диода с S-образной вольт-амперной характеристикой.

В данном случае сами колебания являются совокупностью двух апериодических процессов — зарядки и разрядки конденсатора.

Выясним, при каком условии возможен колебательный процесс. В стационарном режиме, когда напряжение V на конденсаторе постоянно и dV/dt=0, ток через лампу

$$I_{\rm ct} = \frac{U - V}{R + r} \tag{1}$$

Данное равенство представлено на рис. 2.

Рассмотрим, как происходит колебательный про-

цесс, отсчитывая время с того момента, когда напряжение на конденсаторе C равно V_2 . При зарядке конденсатора через сопротивление R напряжение на нём увеличивается (рис.3). Как только оно достигает напряжения зажигания V_1 , лампа начнет проводить ток, причем прохождения тока сопровождается разрядкой конденсатора.

Рис. 3: Осциллограмма релаксационных колебаний

Рассчитаем период колебаний. Полное время одного периода колебаний — T состоит из суммы времени зарядки τ_3 и времени разрядки τ_p , но если сопротивление R существенно превосходит сопротивление зажженной лампы и резистора r, то $\tau_3 \gg \tau_p$ и $T \approx \tau_3$, что подтверждается в эксперименте. Во время зарядки конденсатора лампа не горит (I(V) = 0), и уравнение уравнение для напряжения принимает вид V(t):

$$RC\frac{dV}{dt} = U - V \tag{2}$$

Мы рассчитываем время с момента гашения лампы, поэтому $V = V_2$ при t = 0. Решим уравнение (3) и получим, что

$$V = U - (U - V_2)e^{-t/RC}$$
(3)

В момент зажигания $V = V_1$, поэтому

$$V_1 = U - (U - V_2)e^{-\tau_3/RC} \tag{4}$$

Из уравнения (4) получим, что

$$T \approx \tau_3 = \ln \frac{U - V_2}{U - V_1} \tag{5}$$

Ход работы

Характеристика стабилитрона

Снимем часть вольт-амперной характеристики стабилитрона с сопротивлением r=5,1 кОм. Снимем с возрастанием и с убыванием напряжения. В этой работе используются вольтметр с $\sigma_V=0,2$ В и амперметр с $\sigma_I=0,02$ мА. Представим эти данные в виде графиков.

возрастание V			убывание V		
V, B	I, м A	$V - r \cdot I$, B	V, B	<i>I</i> , мА	$V - r \cdot I$, B
10,0	0,00	10,0	180,0	19,70	79,5
80,0	0,00	80,0	171,1	18,05	79,0
96,0	0,00	96,0	160,2	16,19	77,6
89,1	3,16	73,0	141,7	12,89	76,0
94,6	4,23	73,0	133,1	11,28	75,6
100,0	5,22	73,4	122,5	9,48	74,2
110,0	7,00	74,3	102,0	5,76	72,6
120,5	8,84	75,4	90,0	3,50	72,2
130,6	10,66	76,2	79,1	0,01	79,0
139,8	12,28	77,2	10,0	0,01	9,9
151,3	$14,\!35$	78,1			
161,3	16,15	78,9			
170,2	17,86	79,1			
180,2	$19,\!67$	79,9			

Таблица 1: Данные об ВАХ стабилитрона

Рис. 4: Вольт-амперная характеристика стабилитрона без r

Рис. 5: Вольт-амперная характеристика стабилитрона без r

В итоге мы получаем, что $V_1=(96,0\pm0,2)$ В, $I_1=(4,50\pm0,02)$ мА, $V_2=(89,1\pm0,2)$ В, $I_2=(3,16\pm0,02)$ мА.

Осциллограммы релаксационных колебаний

В данном разделе мы измеряем зависимость осциллограммы от изменения R и C у установки и сравнения их с теоретическими.

Сами колебания выглядят следующим образом

Для этого приведем в таблице 2 приведем в параллельных столбцах теоретические и практические значения для данных R и C. Так же стоит отметить, что у погрешность измерений периода, сопротивления и емкости составляют $\sigma_T = 0, 3$ мс, $\sigma_R = 10$ Ом, $\sigma_C = 2$ н Φ . Так же все измерения мы проводим при U = 132 В.

C , н Φ	Т, ед	T_{exp} , MC	T_{theor} , MC
50	6	3,0	3,0
45	5,4	2,7	2,7
40	4,8	2,4	2,4
35	4,2	2,1	2,1
30	3,6	1,8	1,8
25	3	1,5	1,5
20	2,4	1,2	1,2

Таблица 2: Зависимость T от C при фиксированном $R=900~{\rm kOm}$

			-
R, кОм	T, ед	T_{exp} , MC	T_{theor} , MC
900	5,8	2,9	3,0
800	5,2	2,6	2,7
700	4,6	2,3	2,3
600	4	2,0	2,0
500	3,4	1,7	1,7
400	2,8	1,4	1,3

Таблица 3: Зависимость T от R при фиксированном C=50 н Φ

По этим таблицам мы видим, что эксперимент сходится с теорией.

Фазовые траектории релаксационных колебаний

С помощью осциллографа в двухканальном режиме получим изображение фазовой траектории релаксационных колебаний. И на практике и в теории масштаб такой, что 1

Рис. 4: Теоретически и практически полученные фазовые кривые

деление по оси Ox-2 B, а по оси Oy-1 B.

Вывод

Мы получили зависимость периода от R и C очень близкие к теоретическим данным, так же мы получили очень похожую на теоретическую вольт-амперную характеристику для стабилитрона.

Так же в этой лабораторной работе мы изучили релаксационные колебания, но с некоторыми расхождениями от теоретических. Это может быть вызвано тем, что в цепи есть еще дополнительное сопротивление, которое уменьшает напряжение, из-за чего нижняя часть графика в эксперименте вырождается в кривую.

Литература

- 1. **Лабораторный практикум по общей физике:** Учебное пособие. В трех томах. Т. 2. Электричество и магнетизм /Гладун А.Д., Александров Д.А., Берулёва Н.С. и др.; Под ред. А.Д. Гладуна М.: МФТИ, 2007. 280 с.
- 2. Дополнительное описание лабораторной работы **3.5.3** Вариант **2**: Исследование спектров сигналов; Под ред. МФТИ, 2018 г. 10 с.