Állapotgépek, időzítők és számlálók

Programozható irányítóberendezések és szenzorrendszerek

> KOVÁCS Gábor gkovacs@iit.bme.hu

A létradiagram kiértékelése

- A PLC ciklikus működésű
- A programvégrehajtás fázisában a teljes kód feldolgozásra kerül
- Minden egyes
 ciklusban a teljes
 létradiagram
 kiértékelésre kerül

Létrasor = Logikai függvény

ELSE Y=0

Jelzőlámpa

Jelzőlámpa

Állapotok

- A rendszer működésének egy fázisát vagy stádiumát reprezentálja
- Egyszerre csak egy állapot lehet aktív egy rendszeren belül (aktuális állapot)

Állapotok reprezentációja

Bitregiszter minden egyes állapothoz

- Egy állapothoz rendelt bit aktív értéke jelzi, hogy az adott állapot az aktuális állapot
- Egyszerre csak egy ilyen bit lehet aktív
- Előny: egyszerű működés
- Hátrány: sok regiszterre van szükség (állapotok számával megegyező)
- Egyetlen szó-regiszter
 - Az aktuális állapot sorszámát (azonosítóját) tartalmazza
 - Előny: egyetlen regiszterre van szükség
 - Hátrány: egy állapot aktív mivoltának ellenőrzése komparálást igényel

Állapotok reprezentációja

Átmenetek

 "Az S állapotban vagyok. Merre menjek tovább és mikor"?

Átmenetek

- · Az állapotátmenetet akkor kell végrehajtani, ha
 - kiindulási állapota aktív

ÉS

az átmenet feltétele igaz

- Egy átmenet végrehajtása során
 - az aktuális állapot regiszterét 0-ba kell állítani
 - a célállapot regiszterét 1-be kell állítani

Átmenetek megvalósítása

Átmenet feltétele (tetszőleges logikai függvény)

Kimenetek

- Mealy automata: a kimenetek értéke az aktuális állapottól és a bemenetek aktuális értékétől függ
- Moore automata: a kimenetek értéke csak az aktuális állapottól függ

Kimenetek

- Minden állapotban a kimenetek valamely kombinációja aktív
- A kimeneti leképezés egy táblázattal is megadható

Állapot	Р	PS	Z	S	Н
Piros fény	1	1	0	0	0
Sárga fény	0	1	0	1	0
Zöld fény	0	0	1	0	0
Villogó sárga	0	0	0	0	1

A kimeneti leképezés megvalósítása

Állapot	Р	PS	Z	S	Н
Piros fény	1	1	0	0	0
Sárga fény	0	1	0	1	0
Zöld fény	0	0	1	0	0
Villogó sárga	0	0	0	0	1

Ezt a megvalósítást választva a P állapotban egyik fény sem világít!

A kimeneti leképezés megvalósítása

A kezdeti állapot

 Melyik állapot lesz aktív, amikor az állapotgépet "bekapcsoljuk"?

Az állapotgép inicializálása

- Elv: ha nincsen aktuális állapot, akkor a kezdeti állapotot állítsuk be aktuálisnak
- Általános megoldás
 - Minden PLC-típuson működik
 - Semmit sem kell tudnunk a belső státuszregiszterekről

Állapotgép inicializálása

Típusspecifikus megoldás

- A PLC státuszinformációinak használata
- A PLC-k egy biten jelzik, ha az adott ciklus a RUN módba állítás utáni első ciklus (first scan)
 - Schneider TWIDO: %S13 rendszerbit
 - Siemens S7-1200: %MBx bájt 0. bitje

Állapotgép inicializálása

Típusspecifikus megoldás

- Számos környezetben definiálható olyan programblokk, ami kizárólag az első ciklusban fut le, a felhasználói program más részeinek kiértékelése előtt (pl. Siemens OB100)
- Ebben a kezdeti állapot regisztere feltétel nélkül állítható be

Formálisan

- A Moore automata egy hatos: $C = (Q, \Lambda, \Omega, \rho, \varphi, q_0)$
 - Q: állapotok halmaza
 - Λ: bemeneti szimbólumok (feltételek és események)
 halmaza
 - Ω: kimeneti szimbólumok halmaza
 - $-\rho: Q \times \Sigma \rightarrow Q$: állapotátmeneti függvény
 - $-\varphi:Q\to\Omega$: kimeneti leképezés
 - $-q_0$: kezdeti állapot

Praktikusan: állapotgép =

állapotok

%M0.0, %M0.1, %M0.2...

+ átmenetek

+ kimeneti leképezés

+ kezdeti állapot

Jelzőlámpás kereszteződés

Jelzőlámpás kereszteződés

Jelzőlámpás kereszteződés – 2. megoldás

Párhuzamos állapotgépek megvalósítása

- Definiáljunk állapotregisztereket minden állapotgépnek
- Valósítsuk meg az állapotgépek átmeneteit ugyanabban a létradiagramban
- Valósítsuk meg az állapotgépek kimeneti leképezéseit ugyanabban a létradiagramban
- Indításkor állítsuk be minden állapotgép kezdeti állapotát

Párhuzamos állapotgépek megvalósítása

 Egy állapotgép átmenete <u>nem</u> állíthatja egy másik állapotgép állapotregisztereit

 Közös kimenetek esetén a kimeneti leképezésben a különböző állapotgépek állapotait egy létrasorban kell szerepeltetni

Párhuzamos állapotgépek szinkronizálása

Párhuzamos állapotgépek szinkronizálása

Párhuzamos állapotgépek szinkronizálása

- Egy állapotgépe átmenetének feltételeként használható egy másik állapotgép állapotregisztere
- Egy állapotgép állapotváltása egy másik állapotgép állapotátmenetét okozhatja

Funkcióblokkok és függvény-blokkok a létradiagramban

Funkcióblokkok és függvény-blokkok a létradiagramban

Funkcióblokkok / Függvény-blokkok

- Kész funkcióblokkok
 - Szabványos (IEC-61131)
 - Gyártóspecifikus

Felhasználói blokkok

Időzítők

Időzítők Szabványos megvalósítás

IN: Számláló bemenet (timer input)

PT: Késleltetés (timer preset)

Q: Számláló kimenet (timer output)

ET: Eltelt idő (elapsed time)

Bekapcsolás-időzítő (On-delay timer, TON)

Kikapcsolás-időzítő (Off-delay timer, TOF)

Impulzus időzítő (Pulse timer, TP)

Retentív időzítők

- A retentív TON/TOF időzítők belső számlálóját a bemenet lefutó/felfutó éle nem nullázza
- A bemenet összegzett 1/0 állapotban töltött idejét méri
- Nullázásra külön Reset bemenet
- Nem szabványos, de sok fejlesztőkörnyezetben elérhető

Retentív TON időzítő

Állapotgépek időzítése

Vissza a jelzőlámpához

Számlálók

Felfelé számláló (CTU) Szabványos megvalósítás

CU: Élérzékeny számláló bemenet (counting input)

R: Számláló nullázása (reset) – $CV \coloneqq 0$

PV: Célérték (preset value)

Q: Státusz kimenet (status output): elérte-e a

számláló a küszöbértéket? $Q = (CV \ge PV)$

CV: Számláló regiszter értéke (counter value)

Felfelé számláló (CTU)

Lefelé számláló (CTD)

Szabványos megvalósítás

CD: Élérzékeny számláló bemenet (counting input)

LD: Kezdőérték betöltése a számláló regiszterbe (load) - CV \coloneqq PV

PV: Kezdőérték (preset value)

Q: Státusz kimenet *(status output)*: elérte-e a számláló a nullát?

 $Q = (CV \le 0)$

CV: Számláló érték (counter value)

Lefelé számláló (CTD)

Fel- és lefelé számláló (CTUD)

Szabványos megvalósítás

CU: Élérzékeny felfelé számláló bemenet (count up input)

CD: Élérzékeny lefelé számláló bemenet (count down input)

R: Számláló nullázása (reset) - $CV \coloneqq 0$

LD: Kezdő/célérték betöltése (load) - CV ≔ PV

PV: Kezdő/célérték (preset value)

QU: Felfelé számláló státusz

$$QU = (CV \ge PV)$$

QD: Lefelé számláló státusz

$$QD = (CV \le 0)$$

CV: Számlálóérték

(counter value)

Fel- és lefelé számláló (CTUD)

A bitműveleteken túl

Műveletek szavakon, hosszúszavakon...

- Összehasonlítás
- Értékadás
- Aritmetikai és logikai műveletek

Engedélyező be- és kimenetek

- A létradiagram vezetékein csak logikai értékek jelenhetnek meg
- Hogyan integrálható egy nem logikai ki- és bemenetekkel rendelkező blokk (pl. összeadó)?
- ENI / ENO pár
 - Szabványos blokkoknál mindenképpen megvan
 - ENI: Enable Input
 - A művelet csak akkor hajtódik végre, ha ENI=1
 - ENO beállítása
 - Alapértelmezésben ENO:=ENI
 - Hiba esetén ENO:=0
 - Tetszőleges beállítás a blokkon belül

Értékadás Szabványos megvalósítás

OUT := IN

Összehasonlítás

Szabványos megvalósítás

Mnemonic	Művelet	
GT	>	
GE	≥	
LT	<	
LE	≤	
EQ	=	
NEQ	≠	

Aritmetikai műveletek

Szabványos megvalósítás

Mnemonic	Művelet		
ABS	F = IN		
SQRT	$F = \sqrt{IN}$		
LN	F = ln IN		
EXP	$F = e^{IN}$		
LOG	$F = \log_{10} IN$		
SIN	$F = \sin IN$		
COS	$F = \cos IN$		
TAN	F = tan IN		
ASIN	$F = \sin^{-1} IN$		
ACOS	$F = \cos^{-1} IN$		
ATAN	$F = tan^{-1} IN$		

Többváltozós aritmetikai műveletek Szabványos megvalósítás

Mnemonic	Művelet	
ADD	+	
MUL	×	
SUB	_	
DIV	/	
MOD	IN1 mod IN2	
EXPT	IN1 ^{IN2}	

További műveletvégző blokkok

- Konverziós műveletek
 - BCD bináris
 - Word Double Word
 - **—** ...
- Szó eltolás és logikai műveletek
- Regiszterek (sorok)
 - LIFO
 - FIFO

Programszervezési utasítások

- Megszakított vagy nemlineáris programvégrehajtást tesz lehetővé
- A PLC-ciklusnak a programvégrehajtási fázisára hat
 - Nincs hatása a bemenetek olvasására és a kimenetek beállítására
 - A be- és kimeneti kép a szokásos módon kerül kezelésre

- A programszervezési utasítások jelentősen ronthatják a ciklusidőt
- Hiba esetén túlléphető a maximális ciklusidő!

Programvégrehajtás leállítása

- Egy ciklusban a program végrehajtása megáll
 - az utolsó létrasor után
 - egy END tekercs hatására

Feltételes leállítás

- A programvégrehajtás leállítása, ha egy feltétel teljesül
 - Csökkenti a ciklusidőt
 - Hibakeresésnél hasznos

```
IN<sub>0</sub>
IN2
                                              OUT0
         IN3
IN1
       Csak akkor kerül végrehajtásra
                    Ha IN0=0
IN3
                                              OUT2
```

Ugró utasítások

- A létrafokokhoz címkék (label) kapcsolhatók
- Ugró utasítás hatására a programvégrehajtás a megfelelő címkéjű létrasortól folytatódik

Ugró utasítások

Ugró utasítások

Ugró utasítások hatása

INO	1	OUT0	1
IN1	1	OUT1	0
IN2	0	OUT2	0
IN3	0		

- Az ugró utasítás és a célcímke közötti létrasorok "kimaradnak"
- A kimaradó sorok logikai függvényei nem értékelődnek ki
- A kapcsolódó kimenetek nem kerülnek beállításra
- A tekercsek változói megőrzik előző értéküket

Visszaugrás

- Végtelen ciklus veszélye
- Kerülendő módszer
- Ha alkalmazzuk, legyünk nagyon óvatosak!

Szubrutinok

- Szubrutin: egymást követő létrasorok halmaza
- Kezdete: szubrutin címke
- Vége: RET (return) utasítás

Szubrutinok

 Hívás hiányában a szubrutinhoz tartozó létrasorok nem kerülnek kiértékelésre

 Best practice: a szubrutinokat a kód végére célszerű elhelyezni. Ugyan a működést ez nem befolyásolva, de a kód átláthatóbb lesz

Szubrutinok

- A szubrutinok hívása az ugró utasításhoz hasonló
- Egy szubrutin több létrasorból is hívható
- A szubrutin lefutása után a végrehajtás a következő létrasortól folytatódik

Paraméterátadás

- A szubrutin nem függvény → nincs formális paraméterátadás
- Megoldás: memóriabitek vagy szavak használata, pl.
 - A paramétereket az %MW1 és %M12 regiszterekbe helyezzük a hívás előtt
 - A szubrutin az eredményt az %MW8 regiszterbe tölti