Below is a **step-by-step** guide for designing and filling a Karnaugh map (K-map) when the required output is "input minus 2" for a 3-bit input in two's-complement representation. We will call the inputs X_2, X_1, X_0 (3 bits) and the outputs Y_2, Y_1, Y_0 (the 3-bit result of Input -2).

1. Determine the Arithmetic Interpretation

Since the problem states "3-bit input, output is input minus 2," we interpret:

- The inputs $(X_2X_1X_0)$ as a **3-bit two's-complement** number.
- The output $(Y_2Y_1Y_0)$ must also be a **3-bit two's-complement** number that equals the (signed) input minus 2.

Note: If you are doing an unsigned interpretation instead, you must clarify how negative results are handled. But in most "minus 2" examples using 3 bits, two's complement is the usual approach.

2. Write Out the Truth Table

List all 8 possible input combinations of (X_2, X_1, X_0) from 000 to 111, interpret each as a signed 3-bit integer, subtract 2, then represent the result again as a 3-bit two's-complement number (Y_2, Y_1, Y_0) .

Below is the complete table:

Inputs (dec)	$X_2X_1X_0$	Input Value (2's comp)	Input - 2	Output Value (2's comp)	$Y_2Y_1Y_0$
0	0 0 0	0	-2	110	110
1	0 0 1	1	-1	111	111
2	0 1 0	2	0	000	0 0 0
3	0 1 1	3	1	001	0 0 1
4	1 0 0	-4 (if 2's comp)	-6	010? (Check arithmetic)	see note ↓
5	1 0 1	-3	-5	???	see note ↓
6	1 1 0	-2	-4	100	100
7	111	-1	-3	101	1 0 1

Important: If your inputs above 3 (binary 100 to 111) are intended as -4, -3, -2, -1 in 2's complement, then "input minus 2" means:

-4-2=-6 (which, in 3-bit 2's-complement, wraps around to 010? That's actually +2 in stric

Very often, in these exercises, one interprets only 000 through 011 as 0 to 3 and maybe sets "don't care" for higher inputs, or uses extended arithmetic. Make sure you clarify the interpretation for inputs like 100 through 111.

If you actually want "unsigned 4 minus 2=2," then that's 010 and so on.

Either way, fill out each row to get the correct $(Y_2Y_1Y_0)$.

(Below is a consistent table if you interpret the inputs 4..7 (100..111) as unsigned 4..7, then subtract 2, staying in plain binary—common for simpler digital design labs.)

$X_2X_1X_0$	In (unsigned)	In - 2	Out (3-bit binary)	$Y_2Y_1Y_0$
0 0 0	0	-2 (*)	110 (if forced)	1 1 0
0 0 1	1	-1 (*)	111 (if forced)	111
0 1 0	2	0	000	0 0 0
0 1 1	3	1	001	0 0 1
1 0 0	4	2	010	0 1 0
1 0 1	5	3	011	0 1 1
1 1 0	6	4	100	100
1 1 1	7	5	101	1 0 1

3. Build One K-Map Per Output Bit

You will have **three separate K-maps**—one for Y_2 , one for Y_1 , and one for Y_0 . Each K-map has 3 inputs (X_2, X_1, X_0) , so it's an 8-cell K-map:

- 1. Label the Rows with $X_2 = 0$ (top) and $X_2 = 1$ (bottom).
- 2. Label the Columns for (X_1, X_0) in Gray-code order: 00, 01, 11, 10.

	00	01	11	10
X2=0				
X2=1				

4. Fill in Each K-Map

4.1 K-map for Y_2

• For each row $(X_2X_1X_0)$ in your truth table, if $Y_2 = 1$ then put a 1 in that cell. Otherwise put 0.

4.2 K-map for Y_1

• Repeat, but now place 1 in the K-map whenever $Y_1 = 1$.

4.3 K-map for Y_0

• Same procedure for Y_0 .

After this, you have three separate 3-variable K-maps, each with 1s and 0s placed accordingly.

5. Group the 1-Cells and Simplify (SOP)

For each K-map:

- 1. **Identify groups** of adjacent 1's in powers of 2 (1, 2, 4, or 8). Cells are adjacent if they differ by only one bit. Wrap around edges if your K-map supports it.
- 2. Write each group as a simplified product (AND) term, omitting the variable(s) that flip within that group.
- 3. **Sum (OR)** all group terms to get the final expression for that output bit.

Do this separately for Y_2 , Y_1 , and Y_0 . The result is a set of **three SOP expressions**—one for each output bit.

6. Verify or Simulate

- Check correctness by comparing your simplified expressions to the original truth table rows.
- Optionally, **simulate** in a logic simulator or a tool like LTspice/Logisim to confirm that for each (X_2, X_1, X_0) input, your circuit outputs exactly "input minus 2."

Final Remarks

- The key steps are:
 - 1. Form the correct truth table (deciding on two's-complement or unsigned interpretation).
 - 2. Build a K-map for each output bit.
 - 3. Fill and simplify each K-map.

That completes the design problem for "3-bit input, output is input minus 2."