In [1]:	#import necessary libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import torch from torch.utils.data import random_split from torch.utils.data import DataLoader, Dataset
In [2]:	<pre>import torch.nn.functional as F from torch.utils.tensorboard import SummaryWriter from sklearn.metrics import r2_score import cv2 import os #getting the path to the folder dir=os.getcwd()</pre> <pre> DATA PATH</pre>
	<pre>#paths to data albedo=dir+"/DATA/Data_Albedo/Albedo_Map.csv" LPFe_Map=dir+"/DATA/Data_Albedo/LPFe_Map.csv" LPK_Map=dir+"/DATA/Data_Albedo/LPK_Map.csv" LPTh_Map=dir+"/DATA/Data_Albedo/LPTh_Map.csv" LPTi_Map=dir+"/DATA/Data_Albedo/LPTi_Map.csv" DATA VISUALIZATION: #lunar albedo map</pre>
	<pre>albedo_img=np.array(pd.read_csv(albedo)) print(np.shape(albedo_img)) a=albedo_img[:,360:720] print(np.shape(a)) plt.imshow(albedo_img) plt.show() (359, 720) (359, 360)</pre> 0 0 100
In [6]:	#chemical composition map of the moon surface fe_map_img=np.array(pd.read_csv(LPFe_Map)) K_map_img=np.array(pd.read_csv(LPK_Map))
	<pre>Th_map_img=np.array(pd.read_csv(LPTh_Map)) Ti_map_img=np.array(pd.read_csv(LPTi_Map)) ffig, faxes = plt.subplots(1,4 , figsize=(30,30)) faxes[0].imshow(fe_map_img) faxes[0].set_title("Fe_Map") faxes[0].grid(False) faxes[1].imshow(K_map_img) faxes[1].set_title("K_Map") faxes[1].grid(False)</pre>
	faxes[2].imshow(Th_map_img) faxes[2].set_title("Th_Map") faxes[2].grid(False) faxes[3].imshow(Ti_map_img) faxes[3].set_title("Ti_Map") faxes[3].grid(False)
In [4]:	<pre>class dataset_nearby_pixel(Dataset): definit(self,path_1,path_2,path_3,path_4,path_5,mode): self.path_1=path_1 self.path_2=path_2</pre>
	<pre>self.path_3=path_3 self.path_4=path_4 self.path_5=path_5 self.mode=mode #converting the data to ndarray self.X_1=np.array(pd.read_csv(path_1)) self.X_2=np.array(pd.read_csv(path_2)) self.X_3=np.array(pd.read_csv(path_3)) self.X_4=np.array(pd.read_csv(path_4)) self.X_5=cv2.GaussianBlur(np.array(pd.read_csv(path_5)), ksize=(0,0), sigmaX=9) self.X=[] self.Y=[] n, m=np.shape(self.X_5)[0], np.shape(self.X_5)[1]</pre>
	<pre>for i in range(1,n-1): for j in range(1,m-1): nearby=[] for chem in [self.X_1,self.X_2,self.X_3,self.X_4]: for a in [-1,0,1]:</pre>
In [8]:	<pre>self.Y=np.array(self.Y)[:l] elif mode== "Test" or "test":</pre>
	<pre>definit(self,path_1,path_2,path_3,path_4,path_5,start_split,end_split): self.path_1=path_1 self.path_2=path_2 self.path_3=path_3 self.path_4=path_4 self.path_5=path_5 self.start_split=start_split self.end_split=end_split #converting the data to tensors self.X_1=torch.FloatTensor(np.array(pd.read_csv(path_1))) self.X_2=torch.FloatTensor(np.array(pd.read_csv(path_2))) self.X_3=torch.FloatTensor(np.array(pd.read_csv(path_3))) self.X_4=torch.FloatTensor(np.array(pd.read_csv(path_4)))</pre>
	<pre>self.X_5=torch.FloatTensor(cv2.GaussianBlur(np.array(pd.read_csv(path_5)), ksize=(0,0), sigmaX=9)) #normalizing the data self.X_1=(self.X_1[:,self.start_split:self.end_split].flatten()-torch.mean(self.X_1[:,self.start_split:self.self.X_2=(self.X_2[:,self.start_split:self.end_split].flatten()-torch.mean(self.X_2[:,self.start_split:self.self.X_3=(self.X_3[:,self.start_split:self.end_split].flatten()-torch.mean(self.X_3[:,self.start_split:self.self.X_4=(self.X_4[:,self.start_split:self.end_split].flatten()-torch.mean(self.X_4[:,self.start_split:self.self.X_5=self.X_5[:,self.start_split:self.end_split].flatten() self.X=torch.stack((self.X_1,self.X_2,self.X_3,self.X_4),1) self.Y=self.X_5</pre> deflen(self): self.filelength=len(self.Y)
In [5]:	<pre>return self.filelength defgetitem(self,idx): return self.X[idx],self.Y[idx] NEURAL NETWORK MODEL #neural network model class model(torch.nn.Module): definit(self, n_feature, n_hidden, n_output): super(model, self)init()</pre>
	<pre>self.hidden1 = torch.nn.Linear(n_feature, n_hidden) self.hidden2 = torch.nn.Linear(n_hidden, n_hidden) self.hidden3 = torch.nn.Linear(n_hidden, n_hidden) self.predict = torch.nn.Linear(n_hidden, n_output) self.dropout = torch.nn.Dropout(p=0.2) def forward(self, x): x = self.dropout(F.relu(self.hidden1(x))) x = self.dropout(F.relu(self.hidden2(x))) x = self.dropout(F.relu(self.hidden3(x))) x = self.predict(x) return x</pre>
In [10]:	<pre>Train Function: class train(): definit(self, batch_size, epochs, lr, train_val_split, scheduler, near): self.batch_size=batch_size self.scheduler=scheduler self.epochs=epochs self.lr=lr self.train_val_split=train_val_split self.near=near if self.near== True: self.data=dataset_nearby_pixel(LPFe_Map, LPTh_Map, LPTi_Map, albedo, mode="train")</pre>
	<pre>self.train_data, self.val_data=random_split(self.data, [len(self.data)-int(self.train_val_split*len(s) self.train_loader=DataLoader(self.train_data, batch_size=self.batch_size, shuffle=True) self.val_loader=DataLoader(self.val_data, batch_size=self.batch_size, shuffle=True) self.net=model(n_feature=36, n_hidden=25, n_output=1) else: self.data=dataset(LPFe_Map, LPK_Map, LPTi_Map, LPTi_Map, albedo, 0, 360) self.train_data, self.val_data=random_split(self.data, [len(self.data)-int(self.train_val_split*len(s) self.train_loader=DataLoader(self.train_data, batch_size=self.batch_size, shuffle=True) self.val_loader=DataLoader(self.val_data, batch_size=self.batch_size, shuffle=True) self.net=model(n_feature=4, n_hidden=4, n_output=1) self.optimizer = torch.optim.Adam(self.net.parameters(), lr=self.lr) if self.scheduler==True:</pre>
	<pre>self.sched=torch.optim.lr_scheduler.ExponentialLR(self.optimizer, gamma=0.7) self.loss_func = torch.nn.MSELoss() self.writer = SummaryWriter() def trainer(self): self.net=self.net.train() self.net=self.net.cuda() for epoch in range(self.epochs): for input, gt in self.train_loader:</pre>
	<pre>output = self.net(input.float()) loss = self.loss_func(output, gt.float()) self.optimizer.zero_grad() loss.backward() self.optimizer.step() if self.scheduler == True: self.sched.step() print('Epoch : {},</pre>
	<pre>val_output = self.net(input.float()) val_loss = self.loss_func(val_output,gt.float()) print('Epoch : {}, val_loss : {}'.format(epoch+1,val_loss.item())) self.writer.add_scalar("Loss/train", loss, epoch) self.writer.add_scalar("Loss/val", val_loss, epoch) if self.scheduler == True: self.writer.add_scalar("lr/epoch",self.lr,epoch) torch.save(self.net.state_dict(),f"albedo_{self.epochs}_{self.lr}_{self.batch_size}.pth") Normal Training</pre>
In []:	train_best=train(batch_size=64, epochs=100, lr=0.0001, train_val_split=0.3, scheduler=False, near=False) train_best_trainer() Nearby Training train_best_near=train(batch_size=64, epochs=100, lr=0.0001, train_val_split=0.3, scheduler=False, near=True) train_best_near.trainer() Epoch : 1, train loss : 3.663121461868286 Epoch : 1, val_loss : 6.235400199890137 Epoch : 2, train loss : 0.7315381765365601 Epoch : 2, val_loss : 3.8570151329040527 Epoch : 3, train loss : 0.07767129689455032
	Epoch: 3, val_loss: 0.2592722773551941 Epoch: 4, train loss: 0.10861585289239883 Epoch: 4, val_loss: 0.11481534689664841 Epoch: 5, train loss: 0.008385946974158287 Epoch: 5, val_loss: 0.017458129674196243 Epoch: 6, train loss: 0.005931203253567219 Epoch: 6, val_loss: 0.003923547919839621 Epoch: 7, train loss: 0.0025380842853337526 Epoch: 7, val_loss: 0.0029416827019304037 Epoch: 8, train loss: 0.004413996357470751 Epoch: 8, val_loss: 0.0031808745115995407 Epoch: 9, train loss: 0.012463897466659546
	Epoch: 9, val_loss: 0.003448056522756815 Epoch: 10, train loss: 0.0019360400037840009 Epoch: 10, val_loss: 0.0037086177617311478 Epoch: 11, train loss: 0.0040307193994522095 Epoch: 11, val_loss: 0.010060365311801434 Epoch: 12, train loss: 0.002174395602196455 Epoch: 12, val_loss: 0.00344918854534626 Epoch: 13, train loss: 0.0023952273186296225 Epoch: 13, val_loss: 0.003041810356080532 Epoch: 14, train loss: 0.0017142867436632514 Epoch: 14, val_loss: 0.0021764987614005804 Epoch: 15, train loss: 0.0014936740044504404
	Epoch: 15, val_loss: 0.0022012456320226192 Epoch: 16, train loss: 0.003076739376410842 Epoch: 16, val_loss: 0.0009612948633730412 Epoch: 17, train loss: 0.0015559596940875053 Epoch: 17, val_loss: 0.0025409129448235035 Epoch: 18, train loss: 0.0015360764227807522 Epoch: 18, val_loss: 0.0018302740063518286 Epoch: 19, train loss: 0.001237700693309307 Epoch: 19, val_loss: 0.0019883476197719574 Epoch: 20, train loss: 0.00222037825773448755503 Epoch: 20, val_loss: 0.0022203782573342323 Epoch: 21, train loss: 0.0016786059131845832 Epoch: 21, val_loss: 0.0010781113523989916
	Epoch: 22, train loss: 0.0017608670750632882 Epoch: 22, val_loss: 0.0012630890123546124 Epoch: 23, train loss: 0.0010691287461668253 Epoch: 24, val_loss: 0.0013512464938685298 Epoch: 24, train loss: 0.0012054055696353316 Epoch: 25, train loss: 0.00012054055696353316 Epoch: 25, val_loss: 0.0012353716883808374 Epoch: 26, train loss: 0.0011798352934420109 Epoch: 26, val_loss: 0.001084773102775216 Epoch: 27, train loss: 0.0014434707118198276 Epoch: 27, val_loss: 0.0014055464416742325 Epoch: 28, train loss: 0.0011658326257020235
	Epoch: 28, val_loss: 0.0011192505480721593 Epoch: 29, train loss: 0.000996971968561411 Epoch: 29, val_loss: 0.0010654942598193884 Epoch: 30, train loss: 0.0009139752364717424 Epoch: 30, val_loss: 0.001506188651546836 Epoch: 31, train loss: 0.0011110090417787433 Epoch: 31, val_loss: 0.0016047991812229156 Epoch: 32, train loss: 0.000691440945956856 Epoch: 32, val_loss: 0.0007233612122945487 Epoch: 33, train loss: 0.00012839565752074122 Epoch: 33, val_loss: 0.000796501524746418 Epoch: 34, train loss: 0.0008774904999881983
	Epoch: 35, train loss: 0.0011977748945355415 Epoch: 35, val_loss: 0.0013015763834118843 Epoch: 36, train loss: 0.0007563638500869274 Epoch: 36, val_loss: 0.0005425375420600176 Epoch: 37, train loss: 0.0013771128142252564 Epoch: 37, val_loss: 0.0011425369884818792 Epoch: 38, train loss: 0.0005532536306418478 Epoch: 38, val_loss: 0.0005635066190734506 Epoch: 39, train loss: 0.0007006324594840407 Epoch: 39, val_loss: 0.0016416457947343588 Epoch: 40, train loss: 0.001068621058948338 Epoch: 40, val_loss: 0.0008183511672541499 Epoch: 41, train loss: 0.0010209355968981981
	Epoch: 41, val_loss: 0.0005957492394372821 Epoch: 42, train loss: 0.0007886828389018774 Epoch: 42, val_loss: 0.0009132841369137168 Epoch: 43, train loss: 0.0012918113498017192 Epoch: 43, val_loss: 0.0004883845103904605 Epoch: 44, train loss: 0.001936109852977097 Epoch: 44, val_loss: 0.001604806398972869 Epoch: 45, train loss: 0.0011068286839872599 Epoch: 45, val_loss: 0.0008437742362730205 Epoch: 46, train loss: 0.0008930325857363641 Epoch: 47, train loss: 0.0005946513847447932
	Epoch: 47, val_loss: 0.0014873286709189415 Epoch: 48, train loss: 0.0009564015781506896 Epoch: 48, val_loss: 0.0009345290018245578 Epoch: 49, train loss: 0.0008203402976505458 Epoch: 49, val_loss: 0.0006639375351369381 Epoch: 50, train loss: 0.0006902476889081299 Epoch: 50, val_loss: 0.0004883912042714655 Epoch: 51, train loss: 0.0004926125984638929 Epoch: 51, val_loss: 0.0005961637943983078 Epoch: 52, train loss: 0.0010780099546536803 Epoch: 52, val_loss: 0.0004606142174452543 Epoch: 53, train loss: 0.000989591353572905 Epoch: 53, val_loss: 0.000580992316827178
	Epoch: 54, train loss: 0.0011824460234493017 Epoch: 54, val_loss: 0.000974780588876456 Epoch: 55, train loss: 0.0006822660798206925 Epoch: 55, val_loss: 0.0004125862615182996 Epoch: 56, train loss: 0.0008135645766742527 Epoch: 56, val_loss: 0.0006902160821482539 Epoch: 57, train loss: 0.0009542423649691045 Epoch: 57, val_loss: 0.00039271762943826616 Epoch: 58, train loss: 0.0008922462584450841 Epoch: 58, val_loss: 0.0007991312886588275 Epoch: 59, train loss: 0.0006207296391949058 Epoch: 59, val_loss: 0.0007134519401006401 Epoch: 60, train loss: 0.0009470575605519116
	Epoch: 60, val_loss: 0.000669115805067122 Epoch: 61, train loss: 0.0007827691151760519 Epoch: 61, val_loss: 0.0007869868422858417 Epoch: 62, train loss: 0.000519180262926966 Epoch: 63, train loss: 0.0007944981334730983 Epoch: 63, val_loss: 0.0008610078948549926 Epoch: 64, train loss: 0.0009551187395118177 Epoch: 64, val_loss: 0.0013211076147854328 Epoch: 65, train loss: 0.0005760446656495333 Epoch: 66, train loss: 0.0003230560396332294
	Epoch: 66, val_loss: 0.0009266051347367465 Epoch: 67, train loss: 0.000610663671977818 Epoch: 67, val_loss: 0.0005076468805782497 Epoch: 68, train loss: 0.0008647426147945225 Epoch: 69, val_loss: 0.001021400559693575 Epoch: 69, val_loss: 0.0010973482858389616 Epoch: 70, train loss: 0.0004339746665209532 Epoch: 70, val_loss: 0.0007570530287921429 Epoch: 71, train loss: 0.0005887422594241798 Epoch: 72, train loss: 0.0007722012815065682 Epoch: 72, val_loss: 0.0005130531499162316
	Epoch: 73, train loss: 0.0018175251316279173 Epoch: 73, val_loss: 0.0004409474495332688 Epoch: 74, train loss: 0.00042749271960929036 Epoch: 74, val_loss: 0.001030655112117529 Epoch: 75, train loss: 0.0007682000286877155 Epoch: 75, val_loss: 0.0010296714026480913 Epoch: 76, train loss: 0.00037100250483490527 Epoch: 76, val_loss: 0.0008103959262371063 Epoch: 77, train loss: 0.0005352107109501958 Epoch: 77, val_loss: 0.0006429732893593609 Epoch: 78, train loss: 0.0007945024408400059
	Epoch: 79, train loss: 0.0007028317195363343 Epoch: 79, val_loss: 0.0005052924971096218 Epoch: 80, train loss: 0.0007530470029450953 Epoch: 80, val_loss: 0.0005417302018031478 Epoch: 81, train loss: 0.0008213587570935488 Epoch: 81, val_loss: 0.0004592018376570195 Epoch: 82, train loss: 0.0006208617123775184 Epoch: 82, val_loss: 0.0006394697120413184 Epoch: 83, train loss: 0.00046105877845548093 Epoch: 83, val_loss: 0.0005040430114604533 Epoch: 84, train loss: 0.0007674590451642871 Epoch: 85, train loss: 0.0004630036710295826
	Epoch: 85, val_loss: 0.0006507369107566774 Epoch: 86, train loss: 0.0007244964363053441 Epoch: 87, val_loss: 0.0006188398692756891 Epoch: 87, train loss: 0.0006361436098814011 Epoch: 87, val_loss: 0.0006549252429977059 Epoch: 88, train loss: 0.0009385882876813412 Epoch: 88, val_loss: 0.00028558558551594615 Epoch: 89, train loss: 0.0005726788658648729 Epoch: 89, val_loss: 0.0007325569167733192 Epoch: 90, train loss: 0.0005987148033455014 Epoch: 90, val_loss: 0.0008759270422160625 Epoch: 91, train loss: 0.0008082077838480473
	Epoch: 92, train loss: 0.0006906176568008959 Epoch: 92, val_loss: 0.000645042397081852 Epoch: 93, train loss: 0.0004759599396493286 Epoch: 94, val_loss: 0.0006071369862183928 Epoch: 94, train loss: 0.0005505573353730142 Epoch: 95, train loss: 0.0005994646926410496 Epoch: 95, val_loss: 0.0005493136122822762 Epoch: 96, train loss: 0.0006827820907346904 Epoch: 97, train loss: 0.000642237445600331 Epoch: 97, val_loss: 0.0008642153698019683
In [12]:	Epoch: 98, train loss: 0.0006725455750711262 Epoch: 98, val_loss: 0.0005417084903456271 Epoch: 99, train loss: 0.0006881540757603943 Epoch: 99, val_loss: 0.0003667235723696649 Epoch: 100, train loss: 0.000471629376988858 Epoch: 100, val_loss: 0.0006030588410794735 Test Normal test_data=dataset(LPFe_Map, LPK_Map, LPTi_Map, LPTi_Map, albedo, 360, 720) test_loader=DataLoader(test_data, batch_size=1) loss_function=torch.nn.MSELoss() net_test=model(4,4,1)
	<pre>net_test=net_test.cuda() net_test.load_state_dict(torch.load(dir+"/pytorch-models/albedo_blur_best.pth")) right_predicted=[] right_truth=[] total_loss=[] net_test=net_test.eval() for i, l in test_loader: i=i.cuda() l=l.cuda() l=torch.reshape(l,(len(l),1)) output=net_test(i.float()) loss=loss_function(output,l.float()) loss=loss.cpu().item()</pre>
	<pre>total_loss.append(np.sqrt(loss)) right_predicted.append(output.cpu().item()) right_truth.append(l.cpu().item()) print("RMSE Loss on right half :",np.mean(total_loss)) print("R2 score:",r2_score(right_truth,right_predicted)) residual=np.subtract(right_predicted,right_truth) plt.hist(residual,bins=100) plt.show() RMSE Loss on right half : 0.021777820362415982 R2 score: 0.5114797708710908 (array([2.000e+00, 2.000e+00, 1.000e+01, 2.900e+01, 4.300e+01,</pre>
Out[12]:	3.500e+01, 4.800e+01, 4.600e+01, 5.700e+01, 4.800e+01, 5.400e+01, 5.700e+01, 5.700e+01, 1.210e+02, 1.860e+02, 2.440e+02, 2.710e+02, 2.900e+02, 2.630e+02, 4.110e+02, 5.460e+02, 5.570e+02, 7.260e+02, 9.420e+02, 8.910e+02, 9.890e+02, 9.980e+02, 1.149e+03, 1.225e+03, 1.250e+03, 1.473e+03, 1.504e+03, 1.778e+03, 1.920e+03, 2.229e+03, 2.405e+03, 2.457e+03, 2.796e+03, 3.098e+03, 3.721e+03, 4.325e+03, 4.465e+03, 4.448e+03, 4.288e+03, 4.335e+03, 4.571e+03, 4.670e+03, 4.658e+03, 4.926e+03, 4.677e+03, 4.332e+03, 4.120e+03, 4.000e+03, 3.379e+03, 2.950e+03, 2.824e+03, 2.741e+03, 2.811e+03, 2.588e+03, 2.343e+03, 2.153e+03, 1.968e+03, 1.658e+03, 1.473e+03, 1.311e+03, 1.185e+03, 1.220e+03, 1.055e+03, 8.720e+02, 7.700e+02, 6.860e+02, 4.770e+02, 3.970e+02, 2.180e+02, 2.070e+02, 2.250e+02, 1.820e+02, 1.720e+02, 1.230e+02, 9.100e+01, 1.050e+02, 7.300e+01, 4.200e+01, 5.800e+01,
	3.900e+01, 2.800e+01, 1.600e+01, 1.300e+01, 1.000e+01, 6.000e+00, 6.000e+00, 1.000e+00, 1.800e+01, 5.000e+00, 7.000e+00, 9.000e+00, 7.000e+00, 0.000e+00, 2.000e+01]), array([-1.01200700e-01, -9.93611804e-02, -9.75216609e-02, -9.56821415e-02, -9.38426220e-02, -9.20031026e-02, -9.01635832e-02, -8.83240637e-02, -8.64845443e-02, -8.46450248e-02, -8.28055054e-02, -8.09659860e-02, -7.91264665e-02, -7.72869471e-02, -7.54474276e-02, -7.36079082e-02, -7.17683887e-02, -6.99288693e-02, -6.80893499e-02, -6.62498304e-02, -6.44103110e-02, -6.25707915e-02, -6.07312721e-02, -5.88917527e-02, -5.70522332e-02, -5.52127138e-02, -5.33731943e-02, -5.15336749e-02, -4.96941555e-02, -4.78546360e-02, -4.60151166e-02, -4.41755971e-02, -4.23360777e-02, -4.04965582e-02, -3.86570388e-02, -3.68175194e-02, -3.49779999e-02, -3.31384805e-02, -3.12989610e-02, -2.94594416e-02,
	-2.76199222e-02, -2.57804027e-02, -2.39408833e-02, -2.21013638e-02, -2.02618444e-02, -1.84223250e-02, -1.65828055e-02, -1.47432861e-02, -1.29037666e-02, -1.10642472e-02, -9.22472775e-03, -7.38520831e-03, -5.54568887e-03, -3.70616943e-03, -1.86664999e-03, -2.71305442e-05, -7.38520831e-03, -2.71305442e-05, -7.38520831e-03, -7.33094722e-03, -7.33094722e-03, -7.33094722e-03, -7.33094722e-03, -7.33094722e-03, -7.33094722e-03, -7.33094722e-03, -7.33094722e-03, -7.33094722e-03, -7.33094722e-02, -7.330
	6.06770110e-02, 6.25165305e-02, 6.43560499e-02, 6.61955693e-02, 6.80350888e-02, 6.98746082e-02, 7.17141277e-02, 7.35536471e-02, 7.53931665e-02, 7.72326860e-02, 7.90722054e-02, 8.09117249e-02, 8.27512443e-02]), <barcontainer 100="" artists="" object="" of="">) 5000</barcontainer>
In [17]:	ffig, faxes = plt.subplots(2, 2, figsize=(10, 10)) faxes[0, 0].imshow(np.reshape(right_truth, (359, 360))) faxes[0, 0].set_title("Actual map (right)") faxes[0, 0].grid(False)
	<pre>faxes[0, 1].imshow(np.reshape(right_predicted, (359, 360))) faxes[0, 1].set_title("Predicted map (right)") faxes[0, 1].grid(False) faxes[1, 0].imshow(np.reshape(residual, (359, 360))) faxes[1, 0].set_title("Residual map") faxes[1, 0].grid(False) faxes[1, 1].hist(residual, bins=100) faxes[1, 1].set_title("1D Histogram") faxes[1, 1].grid(False) Actual map (right) Predicted map (right)</pre>
	50 - 50 - 100 - 100 - 150 - 200 - 200 - 250 - 30
	300 - 350 - 300 - 350 -
	200 - 250 - 2000
In [6]:	<pre>test_data_nearby=dataset_nearby_pixel(LPFe_Map, LPK_Map, LPTi_Map, albedo, mode="test") test_loader_nearby=DataLoader(test_data_nearby, batch_size=1) loss_function=torch.nn.MSELoss() net_test=model(36,25,1) net_test=net_test.cuda() net_test.load_state_dict(torch.load(dir+"/pytorch-models/albedo_nearby_blur_best.pth")) right_predicted_near=[] right_truth_near=[] total_loss_near=[] net_test=net_test.eval() for i, l in test_loader_nearby: i=i.cuda() l=l.cuda()</pre>
	<pre>l=torch.reshape(l,(len(l),1)) output=net_test(i.float()) loss=loss_function(output,l.float()) loss=loss.cpu().item() total_loss_near.append(np.sqrt(loss)) right_predicted_near.append(output.cpu().item()) right_truth_near.append(l.cpu().item()) print("RMSE Loss on right half :",np.mean(total_loss_near)) print("R2 score:",r2_score(right_truth_near,right_predicted_near)) residual_near=np.subtract(right_predicted_near,right_truth_near) plt.hist(residual_near,bins=100)</pre>
	plt.hist(residual_near,bins=100) plt.show() RMSE Loss on right half : 0.02398096107180612 R2 score: 0.6268074896858192 5000 4000 3000
In [7]:	ffig, faxes = plt.subplots(2, 2, figsize=(10, 10)) faxes[0, 0].imshow(np.reshape(right_truth_near, (357, 359))) faxes[0, 0].set_title("Actual map (right)") faxes[0, 0].grid(False)
	<pre>faxes[0, 1].imshow(np.reshape(right_predicted_near, (357, 359))) faxes[0, 1].set_title("Predicted map (right)") faxes[0, 1].grid(False) faxes[1, 0].imshow(np.reshape(residual_near, (357, 359))) faxes[1, 0].set_title("Residual map") faxes[1, 0].grid(False) faxes[1, 1].hist(residual_near, bins=100) faxes[1, 1].set_title("1D Histogram") faxes[1, 1].grid(False)</pre> Actual map (right) Predicted map (right)
	50 - 50 - 100 - 100 - 150 - 150 - 200 - 25
	300 - 350 -
In []:	200 - 250 - 2000