DSC 255 - MACHINE LEARNING FUNDAMENTALS

DUALITY IN LINEAR CLASSIFICATION

SANJOY DASGUPTA, PROFESSOR

COMPUTER SCIENCE & ENGINEERING

HALICIOĞLU DATA SCIENCE INSTITUTE

Topics We'll Cover

- 1 Dual form of the Perceptron
- 2 Dual form of the support vector machine

Dual Form of the Perceptron Solution

Given a training set of points $\{(x^{(i)}, y^{(i)}): i = 1 \dots n\}$:

The Perceptron Algorithm

- Initialize w = 0 and b = 0
- While some training point (x, y) is misclassified:

$$w = w + yx$$

$$b = b + y$$

$$\triangleright b = b + y$$

Dual Form of the Perceptron Solution

Given a training set of points $\{(x^{(i)}, y^{(i)}): i = 1 \dots n\}$:

The Perceptron Algorithm

- Initialize w = 0 and b = 0
- While some training point (x, y) is misclassified:

$$w = w + yx$$

$$b = b + y$$

$$\triangleright b = b + y$$

The final answer is of the form:

$$w = \sum_{i} \alpha_i y^{(i)} x^{(i)},$$

where $\alpha_i = \#$ of time an update occurred on point i.

Dual Form of the Perceptron Solution

Given a training set of points $\{(x^{(i)}, y^{(i)}): i = 1 \dots n\}$:

The Perceptron Algorithm

- Initialize w = 0 and b = 0
- While some training point (x, y) is misclassified:

$$\triangleright b = b + y$$

The final answer is of the form:

$$w = \sum_{i} \alpha_i y^{(i)} x^{(i)},$$

where $\alpha_i = \#$ of time an update occurred on point i.

Can equivalently represent w by $\alpha = (\alpha_1, ..., \alpha_n)$.

Dual Form of the Perceptron Algorithm

Perceptron algorithm: primal form

- Initialize w = 0 and b = 0
- While some training point $(x^{(i)}, y^{(i)})$ is misclassified:
 - $> w = w + y^{(i)}x^{(i)}$
 - $\triangleright b = b + y^{(i)}$

Perceptron algorithm: dual form

- Initialize $\alpha = 0$ and b = 0
- While some training point $(x^{(i)}, y^{(i)})$ is misclassified:
 - $\triangleright \alpha_i = \alpha_i + 1$
 - $\triangleright b = b + y^{(i)}$

Answer: $w = \sum_{i} \alpha_{i} y^{(i)} x^{(i)}$

Hard-margin SVM

■ Initialize $(x^{(i)}, y^{(i)}), ..., (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$

```
(PRIMAL) \min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|^2 s.t.: y^{(i)}(w \cdot x^{(i)} + b) \ge 1 for all i = 1, 2, ..., n
```

- This is a **convex optimization problem**:
 - Convex objective function
 - Linear constraints

Hard-margin SVM

■ Initialize $(x^{(i)}, y^{(i)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$

(PRIMAL)
$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|^2$$
 s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1$ for all $i = 1, 2, ..., n$

- This is a **convex optimization problem**:
 - Convex objective function
 - Linear constraints
- As such, it has a dual maximization problem.
- The primal and dual problems have the same optimum value.

The Dual Program

(PRIMAL)
$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} ||w||^2$$

s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1$ for all $i = 1, 2, ..., n$

(DUAL)
$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{ij=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (x^{(i)} \cdot x^{(j)})$$
s.t.:
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0$$

$$\alpha \ge 0$$

The Dual Program

(PRIMAL)
$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} ||w||^2$$

s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1$ for all $i = 1, 2, ..., n$

(DUAL)
$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{ij=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (x^{(i)} \cdot x^{(j)})$$
s.t.:
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0$$

$$\alpha \ge 0$$

Complementary slackness: At optimality, $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ and

$$\alpha_i > 0 \Longrightarrow y^{(i)}(w \cdot x^{(i)} + b) = 1$$

Points $x^{(i)}$ with $\alpha_i > 0$ are **support vectors**.

Dual of Soft-Margin SVM

(PRIMAL)
$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} ||w||^2 + C \sum_{i=1}^n \xi_i$$
s.t.: $y^{(i)} (w \cdot x^{(i)} + b) \ge 1 - \xi_i$ for all $i = 1, 2, ..., n$

$$\xi \ge 0$$

(DUAL)
$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{ij=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (x^{(i)} \cdot x^{(j)})$$
s.t.:
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0$$

$$0 \le \alpha_i \le C$$

At optimality,
$$w = \sum_{i} \alpha_{i} y^{(i)} x^{(i)}$$
, with

$$0 < \alpha_i < C \Rightarrow y^{(i)} (w \cdot x^{(i)} + b) = 1$$

$$\alpha_i = C \Rightarrow y^{(i)} (w \cdot x^{(i)} + b) = 1 - \xi_i$$