Database Final Project

Colin MacDonald

Professor Schwartz

Database Management

CMPT 308N-901

23 November 2020

Table of Contents

Table of Contents		
Overview and Business Rules	2	
ER Diagram	4	
Tables	5	
Distribution Area	5	
Building	6	
LAN Room	7	
Fiber Connection	8	
ISP	9	
Patch Panel	10	
Access Point	11	
Switch	12	
UPS	13	
Justifications for Third Normal Form	14	
SQL Queries	16	
Universal Quantifier	16	
Only	17	
None	18	
Outer Joins	19	
Left Outer Join	19	
Right Outer Join	20	
Full Outer Join	21	
Use of at least 6 tables in a single query	22	
A collection of three additional queries	24	
Extra query #1	24	
Extra query #2	26	
Extra query #3	27	

Overview and Business Rules

Marist College Networking Department requires a system to document all equipment and connections installed on campus. The database is intended to track everything that the networking department is responsible for, and anything that they install in the future. In addition to tracking, the database can be used by employees to identify which equipment they need to work on to complete tasks. It can also be used for inventory and reporting. By increasing overall levels of documentation, the networking department can become more efficient and provide better service to Marist College.

The system is designed to satisfy the following requirements:

- The campus has multiple <u>buildings</u>. Most buildings have a <u>LAN room</u>, some buildings
 have multiple. If there are multiple, they are often but not always on separate floors. They
 can be identified either by floor number or cardinal direction.
- 2. Each LAN room has a single switch stack, which is composed of one or more **switches**. LAN rooms also have a **patch panel**, which has numerous ports. A patch panel port may connect to one switch port. It is important to know which patch panel port has a connection, but not necessary to know which switch port is connected. These connections are either permanent or temporary.
- 3. Each patch panel port is connected to an ethernet jack somewhere in the building, where a user can plug in a device. It could be a temporary student device in their dorm room, a permanent connection to a faculty/staff computer in an academic building, or a permanent connection to an access point in any building.

- 4. Students often open tickets to get a port activated in their dorm room. An employee makes the required connection between switch and patch panel. At the end of an academic year, all these temporary connections get unplugged.
- 5. <u>Access points</u> are installed in every building, but not every room. They serve wifi to multiple clients at the same time. It is not needed to document the individual clients.
- 6. Each building is within a **distribution area**. One building is a central hub, responsible for distributing internet access to the other buildings within the distribution area.
- 7. The network of one building connects to other buildings via **fiber connections**. There needs to be one connection for a building to be on the network, but multiple connections usually exist for redundancy.
- 8. LAN rooms often have a <u>UPS</u> which provides power to critical equipment in the event of a power failure.
- 9. The College contracts the service of several <u>ISP</u>'s. One is the primary internet connection, and the others are backups. There is also a CDN. Their connections enter the college in several buildings.

ER Diagram

Tables

Distribution Area

```
CREATE TABLE DISTRIBUTION_AREA (
AREA NUMBER(38, 0) NOT NULL
, NAME NVARCHAR2(20)
, IP_SUBNETTING NVARCHAR2(20)
, PRIMARY KEY (AREA));
```

This table documents the distribution areas. Each area is numbered, named by the building that is used as the central hub for the area, and lists the subnetting used when assigning IP addresses.

Building

```
CREATE TABLE BUILDING (
BUILDING_CODE NVARCHAR2(30) NOT NULL
, NAME NVARCHAR2(30)
, AREA NUMBER(38, 0)
, PRIMARY KEY (BUILDING_CODE)
, FOREIGN KEY (AREA) REFERENCES DISTRIBUTION_AREA);
```

This table documents buildings on campus. Each building has a name, a short code that is an abbreviation of the name, and is in an area.

LAN Room

```
CREATE TABLE LAN_ROOM (
LAN_ROOM NVARCHAR2(26) NOT NULL
, BUILDING NVARCHAR2(26)
, LOCATION NVARCHAR2(26)
, SWITCH_STACK_NAME NVARCHAR2(26)
, ACCESS_NEEDED NVARCHAR2(26)
, PRIMARY KEY (LAN_ROOM)
, FOREIGN KEY(BUILDING) REFERENCES BUILDING (BUILDING CODE));
```

This table documents the LAN rooms on campus. Each is at some location within a building. The location is usually identified by floor, but can also be cardinal direction. The combination of building and location makes the LAN room code, which uniquely identifies a room. Rooms are secured, and usually require a card or a key to enter, which is the access needed. Each room has a switch stack, and its name is used to SSH into it.

Fiber Connection

```
CREATE TABLE FIBER_CONNECTION (
OUTGOING_BUILDING NVARCHAR2(20) NOT NULL
, INCOMING_BUILDING NVARCHAR2(20) NOT NULL
, PRIMARY KEY (OUTGOING_BUILDING, INCOMING_BUILDING)
, FOREIGN KEY (OUTGOING_BUILDING) REFERENCES BUILDING
(BUILDING_CODE)
, FOREIGN KEY (INCOMING_BUILDING) REFERENCES BUILDING
(BUILDING_CODE));
```

Buildings are connected to each other and the campus network via fiber connections, and these connections are what this table lists. These connections are bidirectional, so the incoming/outgoing naming may be a bit confusing.

ISP

```
CREATE TABLE ISP (

NAME NVARCHAR2(30) NOT NULL

, SPEED NUMBER(38, 0)

, BUILDING NVARCHAR2(20)

, TYPE NVARCHAR2(20)

, PRIMARY KEY (NAME)

, FOREIGN KEY (BUILDING) REFERENCES BUILDING (BUILDING_CODE));
```

This table lists the ISPs that the college buys service from. They are named, have a max provided speed in Mbps, have a connection point in a building, and are either the primary connection, a backup, or a CDN.

Patch Panel

```
CREATE TABLE PATCH_PANEL (
LAN_ROOM NVARCHAR2(26) NOT NULL
, PATCH_NUMBER NVARCHAR2(26) NOT NULL
, ROOM NVARCHAR2(38)
, PORT NVARCHAR2(26)
, IS_ACTIVE NUMBER(38, 0)
, IS_PERMANENT NUMBER(38, 0)
, TICKET NVARCHAR2(26)
, DATE_MODIFIED DATE
, NOTE NVARCHAR2(100)
, PRIMARY KEY (LAN_ROOM, PATCH_NUMBER)
, FOREIGN KEY (LAN ROOM) REFERENCES LAN ROOM);
```

This table documents patch panel ports. They can be uniquely identified by the LAN room they are in and their number. Each port connects to another port somewhere elsewhere in the building, and the room and port letter are documented. A patch port can be active (1) or not active (0). It can also be permanent (1). Ports are often activated because of a ticket, and the ticket number is recorded, as well as the date it was last changed, and any relevant notes.

Access Point

```
CREATE TABLE ACCESS_POINT (
BUILDING NVARCHAR2(26) NOT NULL
, NAME NVARCHAR2(128) NOT NULL
, FLOOR NUMBER(38, 0)
, MAC_ADDRESS NVARCHAR2(26)
, MODEL NVARCHAR2(26)
, SERIAL_NUMBER NVARCHAR2(26)
, PRIMARY KEY (BUILDING, NAME)
, FOREIGN KEY (BUILDING) REFERENCES BUILDING (BUILDING CODE));
```

This table documents access points that are installed in buildings. Their floor is listed, and you can infer the room/location from the AP's name. AP's also have a MAC address, serial number, and a model number.

Switch

```
CREATE TABLE SWITCH (

LAN_ROOM NVARCHAR2(26) NOT NULL

, STACK_NUMBER NUMBER(38, 0) NOT NULL

, MODEL NVARCHAR2(26)

, PRIMARY KEY (LAN_ROOM, STACK_NUMBER)

, FOREIGN KEY (LAN_ROOM) REFERENCES LAN_ROOM);
```

A switch stack in a LAN room can be composed of multiple switches, and this table lists those.

A single switch can be identified by the LAN room and which position in the stack they are in.

Each switch has a model number.

UPS

```
CREATE TABLE UPS (
LAN_ROOM NVARCHAR2(26) NOT NULL
, NAME NVARCHAR2(26)
, MAKE NVARCHAR2(26)
, MODEL NVARCHAR2(26)
, SERIAL NVARCHAR2(26)
, BATTERY_INSTALLED DATE
, BATTERY_MODEL NVARCHAR2(26)
, BATTERY_COUNT NUMBER(38, 0)
, MANAGEMENT NVARCHAR2(26)
, PRIMARY KEY (LAN_ROOM)
, FOREIGN KEY (LAN_ROOM) REFERENCES LAN_ROOM);
```

This table documents UPS's that are in LAN rooms. They have a name, make, model, and serial number. This lists the last time a battery was installed, how many batteries are in a UPS, and the battery model numbers. Most UPS's can be managed over the network, but some can't.

Justifications for Third Normal Form

Short answer: Each table is in third normal form because each of them are in 2nf and have no transitive dependencies.

Longer answer: Each of them have a primary key and no repeating groups, so they are in 1nf.

They are in 1nf and have no partial dependencies, so they are in 2nf. They are in 2nf and have no transitive dependencies, so they are in 3nf.

See FD diagrams on the next page.

SQL Queries

Universal Quantifier

Get buildings that have a direct fiber connection to every other building in the same distribution area. (In other words, get buildings for which there isn't another building in their distribution area that they don't have a fiber connection with.)

SELECT *

FROM building b1

WHERE NOT EXISTS

(SELECT *

FROM building b2

WHERE b1.area=b2.area

AND b1.building_code != b2.building_code

AND NOT EXISTS

(SELECT*

FROM fiber connection

WHERE b2.building code = fiber connection.incoming building

AND b1.building code = fiber connection.outgoing building

OR b1.building code = fiber connection.incoming building

AND b2.building code = fiber connection.outgoing building));

Only

Get buildings where the lan room(s) can only be accessed by card.

SELECT DISTINCT building_code, building.name, building.area

FROM building, lan room lr0

WHERE building.building code = lr0.building

AND building_building_code NOT IN

(SELECT lr1.building

FROM lan_room lr1

WHERE lr1.lan_room NOT IN

(SELECT lr2.lan_room

FROM lan_room lr2

WHERE lr2.access_needed = 'Card'));

	♦ NAME	
MC	McCann	2
ST	Steel Plant	5
CH	Champagnat	1
GAD	Building D	3
LWCS	Lower West Cedar S	5
UWCV	Upper West Cedar V	5
AH	Allied Health	5
GAA	Building A	3
GAC	Building C	3
LB	Library	4
GAB	Building B	3
LWCP	Lower West Cedar P	5
MR	Midrise	1

None

Find buildings in area 3 where the lan room(s) use none of the model C9300-48P switches.

SELECT DISTINCT building code, building.name, building.area

FROM building, lan room lr0

WHERE building.building_code = lr0.building

AND building.area = 3

AND building_building_code NOT IN

(SELECT lr1.building

FROM lan_room lr1

WHERE lr1.lan_room IN

(SELECT switch.lan_room

FROM switch

WHERE switch.model = 'C9300-48P'));

♦ BUILDING_CODE	NAME	
FN	Fontaine	3
GAD	Building D	3
GAA	Building A	3
GAC	Building C	3
THA	Town House A	3
THM	Town House M	3
DY	Dyson	3
GAB	Building B	3
SA	Saint Annes Hermitage	3
THB	Town House B	3
THI	Town House I	3

Outer Joins

Left Outer Join

Get all ISP's, as well as the buildings they are connected to, if any.

SELECT isp.name, isp.building, building.name AS buildingName

FROM ISP LEFT JOIN building on building.building_code = isp.building;

♦ NAME		
Crown Castle (Poughkeepsie)	DN	Donnelly
Crown Castle (Kingston)	LWCP	Lower West Cedar P
CDN link	(null)	(null)
NYSERNet Internet2	(null)	(null)
Syracuse PtP link	(null)	(null)

Right Outer Join

Get all buildings, as well as their LAN rooms, if any.

SELECT lan_room.lan_room, building.building_code, building.name

FROM lan_room RIGHT JOIN building ON lan_room.building = building.building_code;

Full Outer Join

Get all UPS's and the switches that are in the same room, if any, as well as any switches that don't have a UPS.

SELECT UPS.name, switch.lan_room, switch.stack_number, switch.model

FROM UPS FULL JOIN switch on switch.lan_room = UPS.lan_room;

Use of at least 6 tables in a single query

Get the LAN room, patch number, and building rooms for permanent, active patch panel connections which are located in a LAN room which has a UPS with more than 1 battery, uses switch model C9407R, and the building is located within the Champ distribution area.

SELECT patch_panel.lan_room, patch_panel.patch_number, patch_panel.room

FROM patch_panel, lan_room, ups, switch, building, distribution_area

WHERE patch panel.is permanent = 1

AND patch panel. is active = 1

AND patch panel.lan room = lan room.lan room

AND ups.lan room = lan room.lan room

AND switch.lan_room = lan_room.lan_room

AND ups.battery count > 1

AND switch.model = 'C9407R'

AND lan_room.building = building.building_code

AND building.area = distribution area.area

AND distribution_area.name = 'Champ';

LAN_ROOM		∯ ROOM
CH-1	101	623
CH-1	124	323
CH-1	143	902
CH-1	161	502
CH-1	214	509
CH-1	224	222
CH-1	24	625
CH-1	272	807
CH-1	316	822
CH-1	340	504
CH-1	351	419
CH-1	360	920
CH-1	380	615
CH-1	385	715
CH-1	393	916
CH-1	424	215
CH-1	474	612
CH-1	50	327
CH-1	500	913
CH-1	505	211
CH-1	52	828
CH-1	534	610
CH-1	558	413
CH-1	56	923
CH-1	606	228
CH-1	84	606

A collection of three additional queries

Extra query #1

Get LAN room codes that have a model 'Smart-UPS 1500' UPS or model 'C9407R' switch.

SELECT ups.lan_room

FROM ups

WHERE ups.model = 'Smart-UPS 1500'

UNION

SELECT switch.lan_room

FROM switch

WHERE switch.model = 'C9407R';

LAN_ROOM
AS-1
BH-2
BY-0
CH-1
FN-0
FU1-1
FU2-1
FU3-1
FU4-1
FU5-1
FU6-1
FU7-1
FU8-1
GS-0
LB-2
LB-3
SC-0
SU-0
THA-1
UWCV-1
WH-1

Extra query #2

Count the number of access points on each floor in each building, but only if that building has a

LAN room which is accessible by card.

SELECT access_point.building, access_point.floor, count(access_point.name) AS apCount

FROM access point, lan room

WHERE lan_room.building = access_point.building

AND lan_room.access_needed = 'Card'

GROUP BY access_point.building, access_point.floor;

```
Extra query #3
```

Get all buildings that are in the same area as a building which is connected to an ISP.

SELECT *

FROM building b1

WHERE b1.area IN

(SELECT b2.area

FROM building b2

WHERE b2.building_code IN

(SELECT isp.building

FROM isp));