Mathematik für die Informatik C Hausaufgabenserie 5

Henri Heyden, Nike Pulow stu240825, stu239549

$\mathbf{A1}$

Vor.: Definiere $f: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} e^x & x < 0 \\ 1 - x & \text{sonst} \end{cases}$ und $S = T = \mathbb{R}$.

Beh.: f ist stetig.

Bew.: Definiere $A :=]-\infty, 0[$ und $B := [0, +\infty[$ und bemerke $S = A \cup B = \mathbb{R}$. Nun zeigen wir, dass $f|_A$ und $f|_B$ stetig sind:

(1) Für $f|_A$ gilt:

 $f(x) = e^x$ wegen der Funktionsdefinition und x < 0. Die Exponentialfunktion ist stetig auf ganz \mathbb{R} , das ist trivial, also insbesondere auch stetig auf A.

(2) Für $f|_B$ gilt:

f(x) = 1 - x wegen der Funktionsdefinition und $x \ge 0$. Offenbar ist f auf B also eine lineare Funktion und deren Stetigkeit trivial.

Da f sowohl auf A, als auch auf B stetig ist, also auf allen Teilen von S stetig ist, ist folglich auch f stetig.

$\mathbf{A2}$

Vor.: $A := [0, 1], \mathbb{R}$ ist ein metrischer Raum.

Beh.: Nicht jede abgeschlossene Menge, die Teilmenge einer kompakten Mengen ist, ist auch kompakt.

Bew.: A ist offenbar abgeschlossen, da ihr Komplement $]-\infty,0[\cup]1,+\infty[$ offen ist, und folglich kompakt, da A abgeschlossen und beschränkt ist. Definiere nun B:=]0,1]. Es gilt offenbar $B\subset A$. Wie leicht erkennbar ist, ist B

nicht kompakt, da das linksseitige Komplement $]-\infty,0]$ nicht offen ist und es sich bei B somit nicht um ein abgeschlossenes Intervall handelt.

A3

Vor.:

Definiere $A := (\mathbb{R}, d)$ mit $d : \mathbb{R} \times \mathbb{R} \to [0, \pi[, (x, y) \mapsto |atan(x) - atan(y)|]$. $(x_n)_n \in S(A)$ ist eine Cauchyfolge.

Vor.: A ist vollständig.

Bew.: Es gilt für $(x_n)_n$: $\forall \epsilon > 0 \exists n_0 \forall n, k \geq n_0 : d(x_n, x_k) < \epsilon$, also auch $d(x_n, x_k) = |atan(x_n) - atan(x_k)| < \epsilon$. Bekannt ist, dass $atan : \mathbb{R} \to] - \frac{\pi}{2}, \frac{\pi}{2}[$ stetig ist, folglich konvergiert $atan(x_n)$, wir definieren also: $p := \lim_{n \to \infty} atan(x_n)$.

Es existiert also ein Grenzwert $p \in A$ für eine beliebige Cauchyfolge $(x_n)_n \in S(A)$. Nach Definition von vollständigen Räumen ist also A vollständig. \square