Intervals, Transformations, and Slope Solution (version 81)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-9,-1) \cup (4,8)$
Negative	$(-1,4) \cup (8,9)$
Increasing	$(-9, -7) \cup (1, 7)$
Decreasing	$(-7,1) \cup (7,9)$
Domain	(-9,9)
Range	(-3,9)

Intervals, Transformations, and Slope Solution (version 81)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=47$ and $x_2=62$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 47 & 78 \\ 51 & 47 \\ 62 & 51 \\ 78 & 62 \\ \end{array}$$

$$\frac{g(62) - g(47)}{62 - 47} = \frac{51 - 78}{62 - 47} = \frac{-27}{15}$$

The greatest common factor of -27 and 15 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-9}{5}$$

2