Time Series Forecasting of Department Store Retail Data in Australia

Tanjeena (s4076334) | Priyanka (s4016331) | Syeda (s4020189)

Introduction

This project aims to analyse and forecast the number of department stores in Australian retail sector over time using advanced time series modelling techniques. The dataset comprises monthly observations of department store count from April 1982 onwards, with no missing time point, enabling a comprehensive and continuous temporal analysis.

By examining this data, the study seeks to uncover underlying patterns such as ling-term trends and seasonal fluctuations that influence retail dynamics. Understanding these patterns is crucial for stakeholders to make informed decision related to inventory management, marketing strategies, and business expansion.

The central research question guiding this project is: How can Seasonal Autoregressive Integrated Moving Average models be effectively applied to model and forecast the number of department stores in Australia's retail sector, and which model specifications yield the best forecasting performance?

To answer this, this project involves the following steps:

- Conducting exploratory data analysis to identify initial trends, seasonality, and any anomalies.
- Performing stationarity testing and applying variance-stabilizing transformations as needed.
- Fitting a range of SARIMA models with different parameter configurations.
- Evaluating model performance using accuracy metrics such as AIC, BIC, RSME, MAE; and

Generating forecasts for the next 10 months of department store counts based on the selected optimal SARIMA model.

Methodology

Dataset

The dataset used in this project contains monthly retail turnover figures (in millions of Australian dollars) specifically for department stores across Australia, spanning from April 1982 to March 2025. It provides a continuous, complete time series with no missing values, making it well-suited for time series analysis and forecasting. The data was sourced from the Australian Bureau of Statistic Website. Table 1. Retail turnover, by industry group, identified by the reference code A3348618 [1]. For this analysis, the focus

is on the department store turnover values to explore trends and seasonal patterns in the Australian retail sector.

Data Preprocessing and Exploration

The dataset was reviewed for the presence of missing values and missing timestamps. Basic descriptive statistics were generated to get an idea on the overall distribution of the data. The data was then transformed into a time series format. The time series plot was observed for key insights about the series. Additionally, ACF and PACF plots, as well as scatter plots for lags 1 and 2, were generated to provide further insights about the series.

Normality and Stationarity Assessment

To assess the normality of the time series data, a Q-Q plot was generated, and the Shapiro-Wilk test was conducted. If the series deviated from normality, appropriate transformations were applied to the data to approximate a normal distribution.

For stationarity, the Augmented Dickey-Fuller (ADF) test, Phillips-Perron (PP) test, and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test were performed. If the series was found to be non-stationary, differencing was applied to ensure stationarity.

If the series was found with seasonality, seasonal difference has been applied to remove seasonal effect before further analysis.

Model Specification and Selection

Residual approach was applied to determine the seasonal components of the model. Autocorrelation (ACF) and Partial Autocorrelation (PACF) plots, along with the Extended Autocorrelation Function (EACF) and Bayesian Information Criterion (BIC), were used to identify the various parameters for potential models. These analyses led to the identification of several plausible models.

Goodness-of-fit indicators, including the Akaike Information Criterion (AIC) and BIC, were then examined to select the best-fitting model. Additionally, error metrics were explored to ensure the chosen model provided the most consistent and accurate forecasts.

Diagnostic Checking

Residuals from the finally fitted SARIMA model were examined for autocorrelation, normality, and constant variance.

Forecasting

Best fitted model was used to forecast department store turnover for the next 10 months.

Descriptive Analysis

The lowest monthly department store turnover recorded was 378.0 million AUD, while the highest record was 3,216.1 million AUD. In this data, 25% of the monthly turnover values are below 829.7 million AUD, median monthly turnover is 1,198.0 million AUD and 75% of the monthly turnover values are below 1,472.1 million AUD. The average monthly turnover across the entire time series is 1,221.8 million AUD, slightly higher than the median.

A check confirmed that the dataset contains no missing values or missing time points, ensuring a continuous and complete monthly time series.

Figure 1.1: Time Series plot of total number of department stores in retail

Figure 1.2: Time series plot of total number of department stores in retail.

The time series plot (figure 1.1 & 1.2) reveals several key features of the department store retail turnover data. It displays a clear linear increasing trend over time, with a strong seasonal pattern and a consistent and prominent peaks occurring every December, likely driven by heightened consumer spending during the Christmas season. The plot also exhibits changing variance, with fluctuations becoming more pronounced in recent years. The underlying behavior appears to be largely autoregressive (AR) in nature but can be influenced by seasonal components. Finally, there is no visible change point.

Figure 1.3: ACF of number of department stores in retail

The ACF plot (figure 1.3) a monthly frequency of 12, showing a repeating seasonal pattern and slowly decaying lags, suggesting an AR process. A high autocorrelation at lag 1 also supports this. The PACF plot (figure 1.4) shows no clear cutoff, but several lags exceed the confidence bounds, indicating a complex structure and possibly multiple AR terms. These findings point to non-stationarity with strong seasonal and autoregressive behavior.

Figure 1.4: PACF of total number of department stores in retail

Lag Scatter Plots and Autocorrelation

Figure 1.5: Scatter plot of neighboring number of stores

The scatter plot for lag 1 (figure 1.5) shows a moderate to strong positive autocorrelation, with a correlation coefficient of 0.6305, indicating a noticeable relationship with the previous time point.

Figure 1.6: Scatter plot of number of stores and its second lag values

The scatter plot for lag 2 (figure 1.6) displays a weaker but still positive autocorrelation, with a correlation coefficient of 0.4513. These results are consistent with the patterns observed in the PACF plot, further supporting the presence of autoregressive behavior in the time series.

Transformation and Stationarity

The time series plot showed changing variance, prompting normality checks.

Figure 2.1: QQ plot of number of department stores in retail

The Q-Q plot (figure 2.1) revealed significant deviation from normality. In Shapiro-Wilk test (W = 0.92163, p-value = 9.723e-16), we reject the null hypothesis of normality. Therefore, the presence of changing variance is confirmed, and a transformation has been applied to stabilize the variance.

Transformation

The Box-Cox transformation was attempted with various lambda ranges, finally with λ = 0.16 the Box-Cox transformation was applied. The transformation improved the stationarity of the model (figure 2.2).

Figure 2.2: Box-Cox transformed data of number of department stores in retail

Following the Box-Cox transformation, the Q-Q plot (figure 2.3) demonstrated an improved alignment with normality compared to the original series.

Figure 2.3: QQ plot of Box-cox transformed data

However, in Shapiro-Wilk test (W = 0.9825, p-value = 7.14e-06), we still reject the null hypothesis of normality. This deviation from normality may be due to underlying seasonality or trend in the data. Nonetheless, since the transformation successfully stabilized the variance, the transformed series was retained for subsequent analysis.

Differencing

To assess stationarity, three formal tests were conducted on the transformed series.

Test	Test Statistic	p-value	Conclusion
Augmented Dickey- Fuller (ADF)	-5.7922	0.01	Stationary (reject H ₀)
Phillips-Perron (PP)	-325.22	0.01	Stationary (reject H ₀)
KPSS(Level Stationarity)	6.8217	0.01	Non-stationary (reject H ₀)

Table 2.1: Stationarity tests

The Augmented Dickey-Fuller (ADF) test and the Phillips-Perron (PP) test both returned p-values of 0.01, suggesting that the series is stationary. However, the KPSS test with a p-value of 0.01 indicates non-stationarity. Given the test outcomes and visual evidence, first differencing was applied to proceed with stationarity.

First lag Differencing

After first differencing, the series became stationary.

Figure 2.4: First Difference of Transformed data of number of department stores.

Key features of this time series plot (figure 2.4):

- 1. No trend
- 2. Seasonality present
- 3. Reduced changing variance compared to the original series
- 4. Behaviour is mostly autoregressive (AR)
- 5. No changing point observed

Stationarity Check after Differencing

ACF & PACF plots, the Dickey-Fuller Test, Phillips-Perron Unit Root Test, and the KPSS test were used to confirm non-stationarity after differencing.

Figure 2.5: ACF of first difference of transformed data

The ACF plot (figure 2.5) shows no decreasing pattern but has high seasonal lags, and the PACF plot (figure 2.6) has several lags outside the borders, indicating that the series is non-stationary after differencing.

Test	Test Statistic	p-value	Conclusion		
Augmented Dickey-	-10.173	0.01	Stationary	(rej	ect
Fuller (ADF)	-10.173	0.01	H_0)		
Dhilling Dorron (DD)	-427.85	0.01	Stationary	(rej	ect
Phillips-Perron (PP)	-427.83	0.01	H_0)		
KPSS(Level	0.013852	0.1	Stationary	(fail	to
Stationarity)	0.013032	0.1	reject H ₀)		

Table 2.2: Stationarity tests of first differenced series

The agreement between ADF, PP, and KPSS tests indicates that after applying the Box-Cox transformation and first differencing, the time series has achieved stationarity (table 2.2).

Seasonal differencing

Finally, seasonal differencing has been applied to the transformed and first differenced series to control seasonal patterns.

Figure 2.7 shows the first and seasonal differenced of the transformed series with no seasonal pattern.

Model Specification

We have determined the model's components d=1 and D=1 with s=12. Now, we implied residual approach to determine the other seasonal components P and Q.

Residual approach to confirm model's seasonal components (P & Q) Considering SARIMA(0,1,0)x $(0,1,0)_{-}[12]$ model

The residual diagnostics for the SARIMA(0,1,0)(0,1,0)_12 model shows no trend or seasonality in the residual time series plot. However, the ACF and PACF plots reveal significant autocorrelations at various lags. In the ACF plot, spikes are observed at lags 1, 10, 11, and 13, along with seasonal spikes at lags 12 and 36. The PACF plot shows significant lags at 1, 2, 3, 5, 8, and 10, and a weak seasonal spike at lag 48. So, this model fails to adequately capture both seasonal and non-seasonal structures in the data.

Considering SARIMA(0,1,0)x(1,1,2)_[12] model

Although this model also shows residuals that are not white noise, the lack of strong seasonal spikes in the ACF and PACF plots suggests that the seasonal components (P=1, D=1, Q=2) are appropriate.

Now, we determine the other components (p and q) of the model.

ACF and PACF Plots

Figure 3.1: ACF of first & seasonal difference of transformed data

Figure 3.2: PACF of first & seasonal difference of transformed data

Based on the ACF plot (figure 3.1), significant spikes are observed at lags 3 and 4, suggesting that values of q = 3 and 4 should be considered. In the PACF plot (figure 3.2), lags 5, 6, and 7 cross the significance boundary, indicating potential values of p = 5, 6, and 7. Therefore, we explore the following SARIMA models:

- SARIMA(5,1,3)x(1,1,2)_[12]
- SARIMA(5,1,4)x(1,1,2)_[12]
- SARIMA(6,1,3)x(1,1,2)_[12]
- SARIMA(6,1,4)x(1,1,2) [12]
- SARIMA(7,1,3)x(1,1,2) [12]
- SARIMA(7,1,4)x(1,1,2) [12]

EACF Matrix

	0	1	2	3	4	5	6	7	8	9	10
0	Х	0	0	0	0	0	0	0	0	Χ	Х
1	Х	X	0	0	0	0	0	X	0	0	0
2	Х	X	0	0	0	0	0	0	0	0	0
3	Х	X	X	0	0	0	0	0	0	0	0
4	Х	X	X	X	0	0	0	0	0	0	0
5	Х	X	X	X	0	0	0	0	0	0	0
6	Х	0	X	X	0	0	X	0	0	0	0
7	0	X	X	X	X	X	0	0	0	0	0
8	Х	X	X	0	X	X	0	0	0	0	0
9	Х	X	X	0	X	X	0	0	0	0	0
10	Х	0	X	X	X	X	0	0	0	0	Х

The top-left 'o' indicates p = 0 and q = 1, and the neighboring 'o's are also considered when deciding on the models. From the EACF matrix, we identified the following models:

• SARIMA(0,1,1)(1,1,2)_12

- SARIMA(0,1,2)(1,1,2) 12
- SARIMA(1,1,2)(1,1,2)_12

BIC plot

Figure 3.3: BIC selection plot for models

BIC ln the plot (figure 3.3), the SARIMA(1,1,3)x(1,1,2) [12] and SARIMA(2,1,3) x(1,1,2) [12] models are identified as the best models due to their lowest The second-best models are SARIMA(1,1,2)x(1,1,2) [12] SARIMA(2,1,2)x(1,1,2) [12]. Models with q = 8 were not considered because there wasn't enough evidence or support.

Final suggested models:

- 1. $SARIMA(0,1,1)x(1,1,2)_{12}$
- 2. SARIMA(0,1,2)x(1,1,2)₁₂
- 3. SARIMA(1,1,2)x(1,1,2)₁₂
- 4. SARIMA(1,1,3)x(1,1,2)₁₂
- 5. SARIMA(2,1,2)x(1,1,2)₁₂
- 6. SARIMA(2,1,3)x(1,1,2)₁₂
- 7. SARIMA(5,1,3)x(1,1,2)₁₂
- 8. SARIMA(5,1,4)x(1,1,2)₁₂
- 9. SARIMA(6,1,3)x(1,1,2)₁₂
- 10. SARIMA(6,1,4)x(1,1,2)₁₂
- 11. SARIMA(7,1,3)x(1,1,2)₁₂
- 12. SARIMA(7,1,4)x(1,1,2)₁₂

4. Model Fitting & Selection

To identify the most appropriate SARIMA model for the transformed time series data, a comprehensive model fitting process was conducted using three estimation methods:

- Maximum Likelihood (ML)
- Conditional Sum of Squares (CSS)
- Hybrid approach, (CSS-ML)

All models were fitted with a **fixed seasonal component of (1,1,2)[12]** and candidate non-seasonal parameters (p,d,q) were derived based on:

- ACF/PACF analysis
- Extended ACF (EACF)
- Bayesian Information Criterion (BIC)

As the series was already differenced and transformed, the differencing order was fixed at d = 1. A range of simple to complex models were explored capture the underlying structure of the data.

Model Evaluation Criteria:

Each model was evaluated using the following criteria:

- Coefficient significance tests (Z-tests via coeftest)
- Information criteria:
 - Akaike Information Criterion (AIC)
 - Bayesian Information Criterion (BIC)
- Forecast accuracy metrics:
 - Mean Absolute Percentage Error (MAPE)
 - Root Mean Square Error (RMSE)
 - Mean Absolute Scaled Error (MASE)

Exclusion of Unstable or Inadequate Models

Many of the higher-order models estimated using the CSS method exhibited convergence issues or returned NaN standard errors, indicating unreliable parameter estimates. These were excluded from final consideration.

Several simpler models, including SARIMA(0,1,1), (0,1,2), (1,1,2), (1,1,3) and (2,1,2) featured fewer parameters and were computationally efficient. However, they were not selected as the best models due to the following reasons:

- They consistently showed higher error metrics and lower forecast accuracy.
- AIC and BIC values were higher, indicating poorer model fit.
- These models underfit the data, missing key seasonal or autocorrelation structures and thus limiting forecasting capability.

4.1 Coefficient Significance Analysis:

The coeftest results provided detailed statistical summaries of the autoregressive (AR), moving average (MA), and seasonal components:

- In well-performing models such as SARIMA(5,1,3)x(1,1,2)_[12] and SARIMA(6,1,3)x(1,1,2)_[12] under both ML and CSS-ML methods, majority of estimated parameters were statistically significant(p<0.05),indicating reliable model specificantion.
- These significant coefficients confirm that included lag terms contributed meaningfully to explaining variance in the time series.
- In more complex models like SARIMA(6,1,4)x(1,1,2)_[12] , SARIMA(7,1,3)x(1,1,2)_[12] , SARIMA(7,1,4)(1,1,2)[12] some coefficients had p-values > 0.05, indicating potential overfitting or redundancy, also had NaN standard errors which indicated non-convergence.

Co-Efficient Test ML Method:

Model	Significant Coefficient	Comments
SARIMA(0,0,1)x(1,1,2)_[12]	ma1: -0.783, sma1: -0.818	MA(1) and seasonal MA(1) strongly significant
SARIMA(0,0,2)x(1,1,2)_[12]	ma1: -0.783, sma1: -0.819	Additional MA(2) which is insignificant.
SARIMA(1,0,2)x(1,1,2)_[12]	Sma1: -0.861	Only Seasonal MA(1) significant.
SARIMA(1,0,3)x(1,1,2)_[12]	sma1: -0.822	Only Seasonal MA(1) significant.
SARIMA(2,0,2)x(1,1,2)_[12]	sma1: -0.817	Only Seasonal MA(1) significant.
SARIMA(2,0,3)x(1,1,2)_[12]	sma1: -0.819	Only Seasonal MA(1) significant.
SARIMA(5,0,3)x(1,1,2)_[12]	ar1: -1.057, ar2: -0.739 ,ar3: 0.291,ma1: 0.312, ma3: -0.861, sma1: -0.959	Multiple AR and MA terms significant; seasonal MA(1) significant
SARIMA(5,0,4)x(1,1,2)_[12]	ar2: 0.269, ar3: 0.969 ,ma1: -0.642,ma2: -0.335, ma3: -0.822 , ma4: 0.818 , sma1: -0.968	Most AR/MA terms significant; seasonal MA(1) significant
SARIMA(6,0,3)x(1,1,2)_[12]	ar1: -1.025, ar2: -0.693, ar3: 0.340, ar4: 0.267, ma1: 0.277, ma3: -0.882, sma1: -1.014	Several AR and MA terms significant; seasonal MA(1) significant

Table 4.1: Coeffest ML Method

Co-Efficient Test CSS-ML Method:

SARIMA(0,0,1)x(1,1,2)_[12]	ma1: -0.783, sma1: -0.818	MA(1) and seasonal MA(1) significant
SARIMA(0,0,2)x(1,1,2)_[12]	ma1: -0.783, sma1: -0.817	Ma(1) and sma(1) are siginifcant. Rest all are not significant.
SARIMA(1,0,2)x(1,1,2)_[12]	sma1: -0.819	Only seasonal MA(1) significant
SARIMA(1,0,3)x(1,1,2)_[12]	sma1: -0.819	Only seasonal MA(1) significant
SARIMA(2,0,2)x(1,1,2)_[12]	sma1: -0.819	Only seasonal MA(1) significant
SARIMA(2,0,3)x(1,1,2)_[12]	ar1: -1.156, ar2: -0.992, ma1: 0.413, ma2: 0.081, ma3: -0.762, sma1: -0.930	Strong AR and MA terms; seasonal MA(1) also significant
SARIMA(5,0,3)x(1,1,2)_[12]	ar1: -1.057, ar2: -0.738, ar3: 0.292, ma1: 0.311, ma3: -0.862, sma1: -0.966	Several AR and MA terms; seasonal MA(1) significant
SARIMA(5,0,4)x(1,1,2)_[12]	sma1: -0.926	Only seasonal MA(1) significant; others had NaN
SARIMA(6,0,3)x(1,1,2)_[12]	ar1: -1.025, ar2: -0.693, ar3: 0.340, ar4: 0.267, ma1: 0.277, ma3: -0.882, sma1: -1.014	Several AR and MA terms significant; seasonal MA(1) significant

Table 4.2: Coeftest (CSS-ML) Method

4.2 Parameter Estimation Comparison: ML vs. CSS-ML

Both ML and CSS-ML methods identified similar model structures, but key distinctions were observed:

- Coefficient Stability: ML typically produced more precise estimates with lower standard errors and narrower confidence intervals.
- Significance Patterns: Parameters that were significant under ML were generally also significant under CSS-ML, indicating robustness of model dynamics across methods.
- Efficiency: ML is theoretically more efficient under correct model specification, which was evident in tighter bounds and better convergence behaviour.

4.3.Model Ranking and Selection

Model	AIC	BIC	RSME	MAE	MAPE	MASE	ACF1	Notes
SARIMA(6,1,3)x (1,1,2)_[12]	-411.98	-351.11	0.1527	0.1075	207.42	0.6259	-0.004	Best overall model with lowest RMSE and MAE.
SARIMA(5,1,4)x (1,1,2)_[12]	-411.96	-354.78	0.1530	0.1078	203.15	0.6278	-0.004	Good model with slightly higher error.
SARIMA(5,1,3)x (1,1,2)_[12]	-411.96	-361.31	0.1529	0.1077	200.58	0.6272	-0.003	This model is a very close competito r with best BIC.
SARIMA(2,1,3)x (1,1,2)_[12]	-381.42	-343.43	0.1589	0.1147	268.55	0.6678	-0.032	Moderate , decent AIC, but higher error
SARIMA(2,1,2)x (1,1,2)_[12]	-379.77	-346.01	0.1595	0.1144	266.38	0.6661	0.0008	Moderate , less efficient.
SARIMA(1,1,3)x (1,1,2)_[12]	-379.73	-345.97	0.1595	0.1146	267.18	0.6671	- 0.0015	Moderate like above.
SARIMA(1,1,2)x (1,1,2)_[12]	-381.73	-352.19	0.1595	0.1146	266.95	0.6671	- 0.0015	Moderate , with minor variation

SARIMA(0,1,2)x (1,1,2)_[12]	-383.73	-358.41	0.1595	0.1146	267.08	0.6671	0.0015	Moderate less accurate.
SARIMA(0,0,1)x (1,1,2)_[12]	-385.73	-364.63	0.1595	0.1146	266.95	0.6671	- 0.0011 5	Worst model among all with highest MAE and RMSE.

Table 4.3: SARIMA Model Comparison –(ML) Method

Model	AIC	BIC	RSME	MAE	MAPE	MASE	ACF1	Notes
SARIMA(6,1,3) x(1,1,2)_[12]	-411.98	-357.11	0.1527	0.1075	207.42	0.6259	-0.0043	Strong performer with best RSME and MASE
SARIMA(5,1,4) x(1,1,2)_[12]	-409.62	-354.75	0.1530	0.107 8	202.79	0.6276	-0.0045	Moderate Model, but with no best AIC/BIC
SARIMA(5,1,3) x(1,1,2)_[12]	-411.96	-361.31	0.1529	0.1077	200.77	0.6272	-0.0034	Compared to above model but with slightly higher errors.
SARIMA(2,1,3) x(1,1,2)_[12]	-413.29	-375.31	0.1536	0.1077	211.16	0.6271	0.0017	Best AIC and BIC among all the models
SARIMA(2,1,2) x(1,1,2)_[12]	-379.77	-346.00	0.1595	0.1144	266.63	0.6662	-0.0010	Weak AIC/BIC and errors.
SARIMA(1,1,3) x(1,1,2)_[12]	-379.76	- 345.9 9	0.1595	0.1145	266.91	0.6665	-0.0019	Among the least effective.

SARIMA(1,1,2) x(1,1,2)_[12]	-381.74	-352.20	0.1595	0.1146	267.44	0.6671	-0.003	Poor fit, no gain from added complexity.
SARIMA(0,1,2) x(1,1,2)_[12]	-383.73	-358.41	0.1595	0.1146	267	0.6671	0015	High errors
SARIMA(0,0,1) x(1,1,2)_[12]	-385.73	-364.63	0.1595	0.1146	266.94	0.6671	-0.0012	High errors, simple model.

Table 4.4: SARIMA Model Comparison –(CSS-ML) Method

4.4 Final Model Recommendations

Based on the combination of AIC/BIC scores, parameter significance, and forecast accuracy, the top models are:

- · Best-Overall Models:
- SARIMA(6,1,3)x(1,1,2) [12] (CSS-ML),(ML)
 - Demonstrated the lowest RMSE and MASE, indicating excellent short-term predictive accuracy.
 - o Balanced model complexity with strong forecast performance.
 - Since SARIMA(6,1,3)x(1,1,2)_[12] (ML) convergence we are going to consider method for diagnostic checking.
- SARIMA(5,1,3)x(1,1,2) [12](ML)
 - Slightly higher AIC/BIC than the top model.
 - Comparable accuracy with statistically significant coefficients.
 - Benefited from ML's precision and stable parameter estimation.
- SARIMA(2,1,3)x(1,1,2)_[12](CSS-ML)
 - Best lowest AIC and lowest BIC among all the models, suggesting the best overall fit under information criteria.
 - Slightly higher RMSE and MASE than SARIMA(6,1,3)x(1,1,2)_[12], but still within acceptable accuracy limits.

While exploring more complex variants of the final model SARIMA(6,1,3)×(1,1,2)121212, such as SARIMA(6,1,4)×(1,1,2)121212 and SARIMA(7,1,3)×(1,1,2)121212, estimation instability was observed. Specifically, coefficient significance tests returned NaN values, indicating non-identifiable parameters and suggesting overfitting due to excessive model complexity. Comparisons between SARIMA(5,1,3)×(1,1,2)121212, SARIMA(6,1,3)×(1,1,2)121212, and SARIMA(5,1,4)×(1,1,2)121212 were also conducted, with SARIMA(5,1,4)×(1,1,2)121212 eliminated due to poor forecast accuracy. Additionally, adjacent models for SARIMA(2,1,3)×(1,1,2)121212 were excluded as they failed to converge under both estimation methods.

5.Diagnostic Checking

We considered the top 3 models for diagnostic checking. For each model, we analysed the residuals to understand whether there were any important information that the models were unable to capture.

$SARIMA(2,1,3)x(1,1,2)_[12] - CSS-ML$

The smallest and best performing model in coefficient test is SARIMA(2,1,3)x(1,1,2)[12]. Figure 5.1 shows the histogram and QQ plot of the residuals from the model. The histogram appears symmetric, with few large outliers. The tails of the QQ plot deviate from the reference line. This suggests that the residuals are not normally distributed, which is further confirmed by Shapiro-wilk test (p<0.05) in table 5.1.

Table 5.1: Shapiro-Wilk normality test

data: res.213 W = 0.94404, p-value = 4.868e-13

The standardized residuals plotted in fig 5.2 (a) appear random, without any obvious trend. We can infer that this model captures trend sufficiently. The ACF of residuals do not have any significant seasonal lag, suggesting that the seasonality was captured by the model. The pacf of residuals in fig 5.3 confirms this. The Ljung-box test shows several p-values below the threshold of 0.05, meaning that the model fails to capture autocorrelation.

Fig 5.2: (a)Standardized Residuals (b)ACF of Residuals (c) Ljung-Box statistic: $SARIMA(2,1,3)x(1,1,2)_{[12]}$

SARIMA(5,1,3)x(1,1,2)_[12] -ML

The histogram of SARIMA(5,1,3)x(1,1,2)[12] is symmetric, with some extreme values. The QQ plot suggests that that the distribution of the residuals is not normal. The tail at the further end of the plot does not align with the QQ line. Shapiro test confirms that the distribution is not normal (p<0.05).

Table 5.2 Shapiro-Wilk normality test

data: res.513 w = 0.94668, p-value = 1.127e-12

The residual plot in figure 5.5 appears a random with no strong trend, which means that the model captures trend quite well. The ACF plot in 5.5 (b) has no significant seasonal lag. PACF plot in figure 5.6 also shows no significant seasonal lag, meaning that this model captures all seasonality. The Ljung-box test shows all p-values above the significant level. This suggests that the model is able to capture autocorrelation well.

Fig 5.5: (a)Standardized Residuals (b)ACF of Residuals (c) Ljung-Box statistic: $SARIMA(2,1,3)x(1,1,2)_{[12]}$

SARIMA(6,1,3)x(1,1,2)_[12] -ML

SARIMA(6,1,3)x(1,1,2)[12] is the largest model amongst the candidates. The histogram of its residuals in figure 5.7 (a) once again shows a symmetric plot with some extreme values. The dots in the QQ plot align with QQ line, except at the tails. This shows the absence of normality in the residuals. This is confirmed by Shapiro Wilk test which has p-value < 0.05.

Table 5.3: Shapiro-Wilk normality test

data: res.613 w = 0.94547, p-value = 7.655e-13

Figure 5.8 gives the standardized residuals, ACF and Ljung-box test. Fig 5.9 shows the PACF of the model. The standardized residuals do not have any apparent trend. The data appears random. This means that the model captures trend well. The ACF and PACF do not have any significant seasonal lag, meaning that the model is able to capture seasonality. Finally, the results of the Ljung-box test show all p-value above the threshold, suggesting that the autocorrelation was also captured well by this model.

Fig 5.8: (a)Standardized Residuals (b)ACF of Residuals (c) Ljung-Box statistic: $SARIMA(2,1,3)x(1,1,2)_{[12]}$

Fig 5.9: PACF of Residuals from the SARIMA(6,1,3)x(1,1,2)_12 Model.

6.Forecasting

Based on the outcome of the diagnostic tests, SARIMA(5,1,3)x(1,1,2)[12] and SARIMA(6,1,3)x(1,1,2)[12] are strong candidates for forecasting. However, adhering to parsimony principle, we will use SARIMA(5,1,3)x(1,1,2)[12]. It is the smaller and less complicated model among the two. Table 6.1 shows the forecasted values. It provides predicted values for the next 10 months, along with the corresponding high and low bounds within the 80% and 95% confidence intervals for each month. Figure 6.1 shows the plot of the predicted value, along with the data and the fitted model. We can observe a rising trend peaking, followed by a drop. The widening of the boundary values reflects the model's decreasing certainty over longer horizons.

Table 6.1: Point forecast for the next 10 intervals

Point Forecast	Lo 80	ні 80	Lo 95	ні 95	
Apr 2025	14.46479	14.26423	14.66534	14.15807	14.77151
May 2025	14.67045	14.46349	14.87740	14.35393	14.98696
Jun 2025	14.68009	14.46647	14.89372	14.35338	15.00681
Jul 2025	14.49174	14.27299	14.71048	14.15719	14.82628
Aug 2025	14.26385	14.04078	14.48691	13.92270	14.60499
Sep 2025	14.37542	14.15002	14.60081	14.03070	14.72013
Oct 2025	14.67378	14.44474	14.90282	14.32350	15.02407
Nov 2025	15.46841	15.23619	15.70062	15.11326	15.82355
Dec 2025	16.65034	16.41612	16.88456	16.29213	17.00855
Jan 2026	14.46304	14.22529	14.70079	14.09943	14.82665

Fig 6.1: Forecasts from SARIMA(5,1,3)(1,1,2)[12]

Conclusions

In this project we analysed the time series data of retail turnover in Australia between April 1982 to March 2025. Close inspection of the data revealed a series with trend, seasonality, changing variance and autoregressive behaviour. Exploratory data analysis confirmed clear seasonal patterns and long-term trend. We tested for stationarity and applied appropriate transformations to mitigate changing variance. Next multiple SARIMA models were fitted and evaluated. Model selection was guided by performance metrics including AIC, BIC, RMSE, and MAE, ensuring a balance between model complexity and predictive accuracy. The selected SARIMA model, SARIMA(5,1,3)x(1,1,2)[12] was then used to predict 10 months ahead with 80% and 95% confidence intervals.

Limitations

We used differencing to remove linear trend in the data. While this ensures a stationary data for modelling, it also leads to loss of some information. Despite applying appropriate transformation, changing variance was not completely removed form the data. This may influence the reliability of the forecasting. Additionally, the model we used is relatively large and complex. Therefore, there is a risk of overfitting, leading to poor generalization of future values. Finally, as the forecasting horizon extends further into the future, the model's accuracy tends to decline due to the accumulation of uncertainty and potential divergence from historical patterns.

Recommendations

Since changing variance was not fully corrected, alternative approaches such as ARCH/GARCH models or hybrid models could be considered. Furthermore, additional diagnostic testing could be performed on all the selected models to ensure robust model selection, potentially avoiding complex, over-fitted models.

References

[1] Australian Bureau of Statistics. (2024). *Retail Trade, Australia, Table 1. Retail turnover, by industry group.* [Online]. Available:

https://www.abs.gov.au/statistics/industry/retail-and-wholesale-trade/retail-trade-australia/latest-release#data-downloads [Accessed: Jun. 14, 2025].

[2]solutionModule1Tasks 2024.R. RMIT Canvas:

https://rmit.instructure.com/courses/140832/files/43692248?module_item_id=7077673 [Accessed: May. 10, 2025].

[3]MATH13182204_Module3_pres_annotated_2025.pdf. RMIT Canvas: https://rmit.instructure.com/courses/140832/files/44536644?module_item_id=7224915 [Accessed: May. 10, 2025].

[4]solutionModule3Tasks 2024.R. RMIT Canvas:

https://rmit.instructure.com/courses/140832/files/44536989?module_item_id=7225020 [Accessed: May. 12, 2025].

[5]MATH13182204_Module4_pres_annotated_2025.pdf. RMIT Canvas: https://rmit.instructure.com/courses/140832/files/44626120?module_item_id=7232257 [Accessed: May. 15, 2025].

[6]solutionModule4Tasks 2024.R. RMIT Canvas:

https://rmit.instructure.com/courses/140832/files/43692306?module_item_id=7077746 [Accessed: May. 15, 2025].

[7]MATH13182204_Module5_pres_annotated_2025.pdf. RMIT Canvas:

https://rmit.instructure.com/courses/140832/files/44853978?module_item_id=7250308 [Accessed: May. 20, 2025].

[8]solutionModule5Tasks 2024.R. RMIT Canvas:

https://rmit.instructure.com/courses/140832/files/44854127?module_item_id=7250312 [Accessed: May. 20, 2025].

[9]MATH13182204 Module6 pres annotated 2025.pdf. RMIT Canvas:

https://rmit.instructure.com/courses/140832/files/45246926?module_item_id=7298828 [Accessed: May. 20, 2025].

[10] solutionModule6Tasks 2024.R. RMIT Canvas:

https://rmit.instructure.com/courses/140832/files/45246826?module_item_id=7298823 [Accessed: May. 20, 2025].

[11] solutionModule7Tasks 2024.R. RMIT Canvas:

https://rmit.instructure.com/courses/140832/files/45375451?module_item_id=7307940 [Accessed: May. 22, 2025].

Appendix

Appendix 1: R code

Clear workspace

rm(list = ls())

Set working directory

setwd("D:/Git/time_series_project")

Load necessary libraries

library(readr)

library(tseries)

library(Imtest)

library(forecast)

library(TSA)

Necessary functions

```
# function to check if a series follows normal distribution
check normality <- function(series, plot title) {</pre>
 par(mfrow = c(1, 1))
 # QQ plot
 ggnorm(series, main = plot title)
 qqline(series, col = 4, lwd = 1.5, lty = 1)
 # Shapiro-Wilk test
 SWresult <- shapiro.test(series)
 print(SWresult)
}
# function for stationarity check using Dickey-Fuller and Phillips-Perron Unit Root test
test stationarity <- function(ts data) {
 adf result <- adf.test(ts data)
 print(adf_result)
 pp result <- pp.test(ts data)
 print(pp result)
 kpss_result <- kpss.test(ts_data)</pre>
 print(kpss result)
}
#function for sort AIC and BIC
sort.score <- function(x, score = c("bic", "aic")){
 if (score == "aic"){
  x[with(x, order(AIC)),]
 } else if (score == "bic") {
  x[with(x, order(BIC)),]
 } else {
```

```
warning('score = "x" only accepts valid arguments ("aic","bic")')
 }
}
# Check the data
check data <- function(data) {</pre>
 print(class(data))
 print(any(is.na(data)))
 print(summary(data))
 print(head(data))
}
# function to plot different SARIMA models (p=0, d=1, q=0)(P=0, D=1, Q=0) s
## purpose: (1) Check residuals of series (ts plot, acf plot, pacf plot)
## purpose: (2) Returns model
sarima res test <- function(ts data, p = 0, d = 1, q = 0, P = 0, D = 1, Q = 0, s = 12) {
 model \leftarrow arima(ts data, order = c(p, d, q),
           seasonal = list(order = c(P, D, Q), period = s))
 res <- residuals(model)
 # ts plot, acf and pacf plots of residuals
 par(mfrow = c(3, 1))
 plot(res, xlab = 'Time', ylab = 'Residuals', main = 'Residuals Time Series', type = 'I')
 acf(res, lag.max = 50, main = 'ACF of Residuals')
 pacf(res, lag.max = 50, main = 'PACF of Residuals')
 par(mfrow = c(1, 1))
 return(model) # returns SARIMA model
}
```

```
#getwd()
# Set working directory
#setwd("/Users/priyankatiwari/Documents/RMIT/Sem4/time series/Assignment3")
data =read csv("DepartmentStoreretailing.csv")
check data(data)
# Result: All data available
# checking for missing timepoints
time_str <- data$Time # e.g., "Apr-1982"
months <- substr(time str, 1, 3)
years <- as.numeric(sub(".*-", "", time str))</pre>
time numeric <- years * 12 + match(months, month.abb)
full range <- min(time numeric):max(time numeric)
full months <- (full range - 1) %% 12 + 1
full years <- (full range - 1) %/% 12
full labels <- paste0(month.abb[full months], "-", full years)
actual_labels <- paste0(months, "-", years)
missing months <- setdiff(full labels, actual labels)
if (length(missing months) == 0) {
 cat("None, all timepoints available\n")
} else {
 cat("Missing timepoint(s):\n")
 print(missing months)
}
# Result: All timepoints available
```

```
retail data= ts(data$`Department store retailing`, start = c(1982,4), frequency = 12)
class(retail data)
head(retail_data)
summary(retail data)
plot(retail data,cex.main = 0.8, type='o',ylab="Department stores retail", main="Figure
1.1: Time Series plot of total number of department stores in retail ")
plot(retail_data,cex.main = 0.8,,type='l', ylab = "Department stores retail", main="Figure
1.2: Time series plot of total number of department stores in retail.")
points(y=retail data,x=time(retail data), pch=as.vector(season(retail data)))
# Sample every 6 months for plot clarity
idx < -seq(1, length(retail data), by = 6)
plot(time(retail data)[idx], retail data[idx], type = "o",
   xlab = "Year", ylab = "Retail Sales (sampled every 6 months)",
   main = "Sampled Department Store Retail Sales",
   col = "black", pch = 16, lwd = 2)
# ACF & PACF plot to confirm frequency
acf(as.vector(retail data), main = "Figure 1.3: ACF of number of department stores in
retail", xlab = "Lag", ylab = "ACF", lag.max=50)
pacf(as.vector(retail data), main = "Figure 1.4: PACF of total number of department
stores in retail", xlab = "Lag", ylab = "PACF", ylim = c(-1, 1))
# first lag scatter plot
lag1 retail data <- zlag(retail data)
index = 2:length(retail data)
plot(y=retail data,x=lag1 retail data, ylab='Number of stores', xlab='First lag', main=
"Figure 1.5: Scatter plot of neighboring number of stores",cex.main = 0.8)
```

```
cor(retail data[index], lag1 retail data[index])
# second lag scatter plot
lag2 retail_data <- zlag(lag1_retail_data)</pre>
index2 = 3:length(lag2 retail data)
plot(y=retail data,x=lag2 retail data, ylab='Number of stores', xlab='Second lag', main=
"Figure 1.6: Scatter plot of number of stores and its second lag values",cex.main = 0.8)
cor(retail data[index2], lag2 retail data[index2])
## Changing variance, seasonality, non-stationary
# checking if the original series follows normal distribution
check normality(retail data, "Figure 2.1: QQ plot of number of department stores in
retail")
# Transformation
## trying different seq for BoxCox transformation
# BC1 <- BoxCox.ar(retail data,lambda = seq(-1, 0, 0.01)) # Error
# BC2 <- BoxCox.ar(retail data,lambda = seg(-1, 1, 0.01)) # Error
# BC3 <- BoxCox.ar(retail data,lambda = seq(0, 1, 0.01)) # seq worked
BC4 <- BoxCox.ar(retail data,lambda = seq(0, 2, 0.01)) # seq worked
# BC5 <- BoxCox.ar(retail_data,lambda = seq(0, 3, 0.01)) # Error
BC4$ci
lambda <- BC4$lambda[which(max(BC4$loglike) == BC4$loglike)]
lambda
rt dataBC = (retail data^lambda-1)/lambda #Box-cox transformed data
# check again --> plot and normality
plot(rt_dataBC, type = "o", ylab = "Box-cox transformed data", xlab = "Time (Months)",
main = "Figure 2.2: Box-Cox transformed data of number of department stores in retail",
cex.lab = 0.5, cex.main = 0.8)
# check noramality of transformed data
check normality(rt dataBC, "Figure 2.3: QQ plot of Box-cox transformed data")
```

```
# Trend & Seasonality
# checking for stationarity of transformed series
test_stationarity(rt_dataBC)
# 1st difference on transformed series
rt dataBCDiff <- diff(rt dataBC, differences = 1)
# time series plot of 1st difference on transformed series
plot(rt_dataBCDiff, type = "o", ylab = "Number of department stores", xlab = "Time
(Months)", main = "Figure 2.4: First Difference of Transformed data of number of
department stores.", cex.main = 0.8)
# ACF & PACF plot of 1st difference on transformed series
acf(rt_dataBCDiff, main = "Figure 2.5: ACF of first difference of transformed data", xlab =
"Lag", ylab = "ACF", lag.max = 80, cex.main = 0.8)
pacf(rt_dataBCDiff, main = "Figure 2.6: PACF of first difference of transformed data", xlab
= "Lag", ylab = "PACF", ylim = c(-1, 1), cex.main = 0.8)
# checking for stationarity in 1st difference of transformed series
test stationarity(rt dataBCDiff)
# seasonal difference on 1st difference on transformed series
rt_dataBCDiffSD <- diff(rt_dataBCDiff, lag = 12)
# time series plot of 1st & seasonal difference on transformed series
plot(rt_dataBCDiffSD, type = "o", ylab = "Number of department stores", xlab = "Time
(Months)", main = "Figure 2.7: First & seasonal difference of transformed data.", cex.main
= 0.8)
```

```
# Residuals approach to finalize seasonal components of model
# --> applied on transformed data
## SARIMA (0,1,0)x(0,1,0)12 returns residual model
m1 = sarima res test(rt dataBC)
# SARIMA(0,1,0) (1,1,2) 12 returns residual model
m2 = sarima res test(rt dataBC, P=1, Q=2)
# nonseasonal parameter determinations
# --> applied on 1st and seasonal difference on transformed data
# ACF & PACF plot of 1st & seasonal difference on transformed series
acf(rt dataBCDiffSD, main = "Figure 3.1: ACF of first & seasonal difference of
transformed data", xlab = "Lag", ylab = "ACF", lag.max = 80, cex.main = 0.8)
pacf(rt dataBCDiffSD, main = "Figure 3.2: PACF of first & seasonal difference of
transformed data", xlab = "Lag", ylab = "PACF", ylim = c(-1, 1), cex.main = 0.8)
# EACF plot
eacf(rt_dataBCDiffSD, ar.max = 10, ma.max = 10)
# BIC based model selection
set.seed(92397)
res = armasubsets(y=rt_dataBCDiffSD, nar=10, nma=10, y.name='p',ar.method='ols')
plot(res, main = "")
title(main = "Figure 3.3: BIC selection plot for models", line = 6)
###p = 5, 6, 7
##q = 3, 4
```

```
###### MODEL FITTING USING ML, CSS ML, CSS(CSS some models failed and were
assigned NA)
library(forecast)
library(Imtest)
# Define seasonal component for SARIMA
seasonal order \leftarrow list(order = c(1, 1, 2), period = 12)
# List of (p,d,q) orders to fit
orders to fit <- list(
 c(0, 0, 1), c(0, 0, 2), c(1, 0, 2), c(1, 0, 3), c(2, 0, 2),
 c(2, 0, 3), c(5, 0, 3), c(5, 0, 4), c(6, 0, 3) #c(6, 0, 4), c(7,0,3)c(7, 0, 4) not considered
due to non convergence.
# Function to fit SARIMA models with specified estimation method and print coeftest
fit sarima models <- function(series, method) {
 model list <- list()
 for (ord in orders to fit) {
  label <- paste0("SARIMA(", paste(ord, collapse = ","), ")x(1,1,2)[12] Method-", method)
  cat("\nFitting:", label, "\n")
  fit <- Arima(series, order = ord, seasonal = seasonal order, method = method)
  # Print coeftest output for the fitted model
  cat("Coefficient test for", label, ":\n")
  print(coeftest(fit))
  cat("\n----\n")
```

```
model_list[[label]] <- fit
 }
 return(model list)
}
# The rest of your code remains unchanged:
# compare models(), extract accuracy metrics(), and the loop running all three methods
# Fit models with all three methods
methods <- c("ML", "CSS-ML", "CSS")
all results <- list()
for (m in methods) {
 cat("\n=========
                                     Fitting
                                                models
                                                           with
                                                                    method:",
                                                                                  m,
"=======\n")
 all results[[m]] <- fit sarima models(rt dataBCDiff, method = m)
}
# Compare and display results for each method
for (m in methods) {
 cat("\n==== Model comparison for method:", m, "====\n")
 scores <- compare_models(all_results[[m]])</pre>
 cat("\nSorted by AIC:\n")
 print(scores[order(scores$AIC), ])
 cat("\nSorted by BIC:\n")
```

```
print(scores[order(scores$BIC), ])
 cat("\nAccuracy metrics:\n")
 acc <- extract_accuracy_metrics(all_results[[m]])</pre>
 print(acc)
}
# Diagnostic Checking
helper <- function(class = c("acf", "pacf"), ...) {
 # Capture additional arguments
 params <- match.call(expand.dots = TRUE)
 params <- as.list(params)[-1]
 # Calculate ACF/PACF values
 if (class == "acf") {
  acf_values <- do.call(acf, c(params, list(plot = FALSE)))</pre>
 } else if (class == "pacf") {
  acf values <- do.call(pacf, c(params, list(plot = FALSE)))
 }
 # Extract values and lags
 acf_data <- data.frame(</pre>
```

```
Lag = as.numeric(acf values$lag),
  ACF = as.numeric(acf_values$acf)
 # Identify seasonal lags to be highlighted
 seasonal lags <- acf data$Lag %% 1 == 0
 # Plot ACF/PACF values
 if (class == "acf") {
  do.call(acf, c(params, list(plot = TRUE)))
 } else if (class == "pacf") {
  do.call(pacf, c(params, list(plot = TRUE)))
 }
 # Add colored segments for seasonal lags
 for (i in which(seasonal_lags)) {
  segments(x0 = acf_data$Lag[i], y0 = 0, x1 = acf_data$Lag[i], y1 = acf_data$ACF[i], col
= "red")
 }
}
# seasonal acf ------
seasonal_acf <- function(...) {
 helper(class = "acf", ...)
}
```

```
# seasonal pacf ------
seasonal pacf <- function(...) {
 helper(class = "pacf", ...)
}
#-----ML513-----
fit_ml_5_1_3 <- Arima(rt_dataBC, order = c(5,1,3), seasonal = c(1,1,2), method = "ML")
res.513 <- rstandard(fit_ml_5_1_3)
par(mfrow = c(1, 2))
# Histogram
hist(res.513,xlab='Standardized Residuals',main="Fig 5.4 (a) Residuals from the
SARIMA(5,1,3)x(1,1,2) 12 Model")
#QQ plot
ggnorm(res.513,main="Fig5.4 (b): Q-Q plot for Residuals: SARIMA(5,1,3)x(1,1,2) 12
Model.")
qqline(res.513)
#Shapiro wilk
shapiro.test(res.513)
par(mar=c(1,1,4,1))
tsdiag(fit ml 5 1 3,gof=15,omit.initial=F)
```

```
par(mfrow = c(2, 1))
# Seasonal PACF
seasonal pacf(res.513,
        lag.max=36,
        main="Fig 5.6: PACF of Residuals from the SARIMA(5,1,3)x(1,1,2) 12 Model.")
#-----ML613-----
fit_ml_6_1_3 \leftarrow Arima(rt_dataBC, order = c(6,1,3), seasonal = c(1,1,2), method = "ML")
res.613 <- rstandard(fit_ml_6_1_3)
par(mfrow = c(1, 2))
# Histogram
hist(res.613,xlab='Standardized Residuals',main="Fig 5.7 (a) Residuals from the
SARIMA(6,1,3)x(1,1,2)_12 Model")
#QQ plot
qqnorm(res.613,main="Fig 5.7 (b): Q-Q plot for Residuals: SARIMA(6,1,3)x(1,1,2) 12
Model.")
qqline(res.613)
#Shapiro wilk
shapiro.test(res.613)
```

```
par(mar=c(1,1,4,1))
tsdiag(fit_ml_6_1_3,gof=15,omit.initial=F)
par(mfrow = c(2, 1))
# Seasonal PACF
seasonal pacf(res.613,
        lag.max=36,
        main="Fig 5.9: PACF of Residuals from the SARIMA(6,1,3)x(1,1,2) 12 Model.")
#-----CSS213-----
fit css ml 2 1 3 <- Arima(rt dataBC, order = c(2,1,3), seasonal = c(1,1,2), method =
"CSS-ML")
res.213 <- rstandard(fit css ml 2 1 3)
par(mfrow = c(1, 2))
# Histogram
hist(res.213,xlab='Standardized Residuals',main="Fig 5.1 (a) Residuals from the
SARIMA(2,1,3)x(1,1,2) 12 Model")
#QQ plot
qqnorm(res.213,main="Fig 5.1 (b): Q-Q plot for Residuals: SARIMA(2,1,3)x(1,1,2) 12
Model.")
qqline(res.213)
```

```
#Shapiro wilk
shapiro.test(res.213)
par(mar=c(1,1,4,1))
tsdiag(fit css ml 2 1 3,gof=15,omit.initial=F)
par(mfrow = c(1, 1))
# Seasonal PACF
seasonal_pacf(res.213,
       lag.max=36,
       main="Fig 5.3: PACF of Residuals from the SARIMA(2,1,3)x(1,1,2) 12 Model.")
#-----
# Forecasting
#-----
frc.513.ml <- forecast(fit ml 5 1 3, h=10)
print(frc.513.ml)
plot(frc.513.ml)
lines(fitted(frc.513.ml), col= "blue")
legend("topleft", lty=1, pch=1, col=c("blue","black"), text.width = 2, c("Data", "Fitted "))
#-----
# Forecasting
```

```
#-----

frc.513.ml <- forecast(fit_ml_5_1_3, h=10)

print(frc.513.ml)

plot(frc.513.ml, main = "Fig 6.1: Forecasts from SARIMA(5,1,3)(1,1,2)[12]")

lines(fitted(frc.513.ml), col= "blue")

legend("topleft", lty=1, pch=1, col=c("blue","black"), text.width = 2, c("Data", "Fitted "))
```

Appendix 2: Acknowledgement on Generative AI Tool

Generative AI tools, including ChatGPT, Microsoft Copilot and Val were used in this assignment. These tools assisted with sentence rewriting, table formatting, English grammar checking, and improving sentence structure.