- Greedy algorithms work in stages where in each stage one of the inputs is examined.
- The input is *selected* based on an optimization criterion.
- If the input forms part of an optimal solution, it is included in the solution. It is discarded otherwise.

- The steps are repeated to find the complete solution.
- This model of Greedy method is called as subset paradigm.
- The other model called as ordering paradigm is based on considering the input elements in some predefined order.

Control Abstraction

```
Algorithm Greedy(a,n)
//a contains inputs
{
    solution:={};
    for i:= 1 to n do
    {
        x=Select(a);
        if feasible(solution,x) then
            solution:=solution U {x};
    }
    return solution;
}
```

- Given n objects and a knapsack. Object i has weight w_i and profit p_i and the knapsack has a capacity m.
- The objective is to maximize the total profit by selecting objects (fraction of an object) without exceeding the total capacity of the knapsack.

- maximize $\sum_{1 \leq i \leq n} p_i x_i$
- Subject to $\sum_{1 \le i \le n} w_i x_i \le m$
- $0 \le x_i \le 1$ and $1 \le i \le n$
- x_i is 0, the object i is not selected.
- x_i is 1, the complete object i is selected.
- x_i is 0.4, 40% of the object is selected and hence contributes 40% of the profit.

- $maximize \sum_{1 \le i \le n} p_i x_i$ (1)
- Subject to $\sum_{1 \le i \le n} w_i x_i \le m$ (2)
- $0 \le x_i \le 1 \ and \ 1 \le i \le n$ (3)
- A feasible solution is any set $\{x_k, ..., x_r\}$ which satisfy (2) and (3)
- An optimum solution is a feasible solution that satisfies (1)

• Consider the instance of the Knapsack problem: $n=3, m=20, (p_1,p_2,p_3)=(25,24,15), (w_1,w_2,w_3)=(18,15,10)$

S.No	(x_1, x_2, x_3)	$\sum w_i x_i$	$\sum p_i x_i$
1	$(1,\frac{2}{15}.0)$	20	28.2
2	$(0,\frac{2}{3},1)$	20	31
3	$(0,1.\frac{1}{2})$	20	31.5

Item (I _i)	Weight (w _i)	Profit (p _i)	Profit/Weight (p _i /w _i)
1	40	280	7
2	10	100	10
3	20	120	6
4	24	120	5

No. of Items n = 4 Knapsack Capacity m = 60

According to profit/weight new order (descending) is I_2 , I_1 , I_3 , I_4

Item Order	Before Knapsack Capacity	Condition	Solution vector (x _i) [Item Capacity]	After Knapsack Capacity
I ₂	60	10<60	1	50
I ₁	50	40<50	1	10
l ₃	10	20<10	10/20 = 1/2	0
I ₄	10	24<0	0/20 = 0	0

Solution vector according to given problem is [1, 1, 1/2, 0]

Total Profit =
$$p_1x_1 + p_2x_2 + p_3x_3 + p_4x_4$$

= $280*1 + 100*1 + 120*1/2 + 120*0 =$ **440**

Item (I _i)	Weight (w _i)	Profit (p _i)	Profit/Weight (p _i /w _i)	
1	2	10	5	
2	3	5	1.66	
3	5	15	3	
4	7	7	1	
5	1	6	6	
6	4	18	4.5	
7	1	3	3	

No. of Items n = 7 Knapsack Capacity m = 15

According to profit/weight new order (descending) is I_5 , I_1 , I_6 , I_3 , I_7 , I_2 , I_4

Item Order	Before Knapsack Capacity	Condition	Solution vector (x _i)	After Knapsack Capacity
I ₅	15	1<15	1	14
I ₁	14	2<14	1	12
I ₆	12	4<12	1	8
I ₃	8	5<8	1	3
I ₇	3	1<3	1	2
I ₂	2	3<2	2/3	0
14	0	0<7	0	0

Solution vector according to given problem is [1, 2/3, 1, 0, 1, 1, 1]Total Profit = $p_1x_1 + p_2x_2 + p_3x_3 + p_4x_4 + p_5x_5 + p_6x_6 + p_7x_7 = 1*10 + 2/3*5 + 1*15 + 0*7 + 1*6 + 1*18 + 1*3 =$ **55.33**

```
Algorithm GreedyKnapSack(m,n)
//p[1..n] contains the profits and w[1..n] contains the weights
//of n objects ordered such that
//p[i]/w[i]>=p[i+1]/w[i+1]. job[1..n] contains the IDs
//of jobs in p and w. m is the capacity of knapsack. x[1..n] is the
solution vector.
      for i = 1 to n do x[i] = 0.0;
      U = m;
      for i = 1 to n do
             if (w[i] > U) then break;
             x[i] = 1.0;
             U = U - w[i];
             profit = profit + p[i];
       if (i \le n) then
             x[i] = U/w[i];
             profit = profit + p[i]* U/w[i];
       return profit;
```

Time Complexity

• Excluding the complexity of sorting, the algorithm is O(n)