CSE121: IoT

ADC/DAC

Jose Renau renau@ucsc.edu

Announcements

- Lab3 due next week
- Quiz next class
- Acknowledgments
 - •Heiner Litz
 - Aaron Schulman

Single-Ended GPIO

• GPIO like in ESP32

Single-ended limitations

- •Clock frequency limits the amount of information that can be transferred via ${\rm I/O}$
- Maximum frequency is limited (100's of MHz)
 - Longer PCB traces have higher capacity and impedance
 - Single ended signals operate at 3.3V/5C
 - Need to charge net to full swing
- •DC signal generates current flow from one endpoint to the other
- Solution: Differential signaling (LVDS)

LVDS

- •Use two pins carrying an inverted voltage level
- No current flow
- •Without full swing, just determine if I1 > I2 or I1 < I2
- Much higher frequencies (GHz)
- Longer (impedance-matched) PCB traces
- Supported by many microcontrollers (not PSoC)
- Higher power efficiency
- More Crosstalk immunity

Digital Systems

- Almost all Integrated Circuits are digital systems
 - Robust: easy to distinguish 0 vs. 1 voltage-wise
 - Robust: temperature and variation tolerant
 - •Simple: How to you build an electrical circuit to multiply 2 analog voltages? (e.g. 1.7V*0.8V=1.36V)
- •BUT: we live in an analog world
 - Audio
 - Video

We live in analog world

- Everything in the physical world is an analog signal
 - Sound, light, temperature, pressure
- Need to convert into electrical signals
 - Transducers: converts one type of energy to another
 - Electro-mechanical, Photonic, Electrical, ...
 - Examples
 - Microphone/speaker
 - Thermocouples
 - Accelerometers

ADC/DAC

- Analog-to-digital converter (ADC)
 - E.g: Microphone
- Digital-to-analog converter (DAC)
 - E.g: Speaker

ADC

- Transforms continuous into discrete signal
- Discrete in time (x-axis)
- Described by sampling rate
 - How frequently do we measure?
 - Discrete amplitude (y-axis)
- Sensor produces a continuous range of voltages, e.g. 0V-5V
 - ADC input range needs to match sensor
 - An e.g. 12-bit ADC translates it into 212 discrete values
 - Discrete values uniformly distributed over range

ADC

- E.g:
 - •12 levels, 0 to 3.3V

Sampling frequency

• 200Hz sampled at 2KHz

Sampling frequency

• 1KHz sampled at 2KHz

Sample aliasing "funny effects"

•2200Hz signal samples at 2000Hz

Shannon-Nyquist

• If a function contains no frequencies higher than B hertz, then it can be completely determined from its ordinates at a sequence of points spaced less than 1/(2B) seconds apart.

$$f_{\text{samples}} > 2f_{\text{max}}$$

What about alias?

•Use a low-pass filter to remove high frequencies that can alias

 If you sampling frequency is 1Khz, you should remove frequencies higher than 1KHz to avoid potential alias

Most ADC have a built-in filter

ADC Dithering

- Some ADCs have dithering (not ESP32)
 - Oversample with random noise
 - •Filter (smooth) data

Direct Samples

Dithered Samples

a. Dither disabled; no averaging

b. Dither disabled; average of 50 acquisitions

c. Dither enabled; no averaging

d. Dither enabled; average of 50 acquisitions

Building a DAC/ADC

• http://users.ece.utexas.edu/~valvano/Volume1/E-Book/C13_Interactives.htm

Thermometer encoded DAC

• https://www.chegg.com/homework-help/analog-integrated-circuit-design-2nd-edition-chapter-16-solutions-9780470770108

•

DAC

Not all the bits may switch at once

ESP32 ADC

- ESP32C3 SAR ADC
 - 2 channels
 - •12-bit, 11-bit, 10-bit, 9-bit configurable resolution
- ESP32C3 DAC
 - •2 8-bit channels

SAR ADC

- Successive approximation ADC
 - Vin approximated as a static value in a sample and hold (S/H) circuit
 - •Successive approximation register (SAR) is a counter that increments each clock as long as it is enabled by the comparator
 - output of the SAR is fed to a DAC that generates a voltage to compare with VIN

 when the output of the DAC = VIN the value of SAR is the digital representation of VIN

Brute-force search for VIN

Sampling rate and gyro?

• Check ESP32 doc...

Prof. Renau 25

Next Class

Concurrency

Prof. Renau 26