PATENT ABSTRACTS OF JAPAN

(11)Publication number : 09-284560

(43)Date of publication of application: 31.10.1997

(51)Int.CI. H04N 1/409 G06T 5/20

(21)Application number: 08-092607 (71)Applicant: DAINIPPON SCREEN MFG CO LTD

(22)Date of filing: 15.04.1996 (72)Inventor: ASADA SHINJI

(54) SHARPNESS PROCESSOR

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a printed matter which undergone the inexpensive and satisfactory sharpness processing. SOLUTION: A mask size correction parameter, a grayness correction parameter gS and an edge emphasis gain correction parameter f(u) are prepared for every output device and previously stored in a correction parameter memory 100. These parameters can obtain the images equivalent to each other with no dependence on the display characteristic of every output device. When an operator selects one of output devices, the sharpness processing is carried out based on the correction parameter corresponding to the selected output device. The sharpness processing result is outputted to the optional one of a monitor 70, a monochromatic printer 90 and a color printer 91 and confirmed there. Then a print original plate can be produced by a film plotter 92.

LEGAL STATUS

[Date of request for examination]

26.04.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-284560

(43)公開日 平成9年(1997)10月31日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
H 0 4 N	1/409			H04N	1/40	101D	
G06T	5/20			G06F	15/68	405	

審査請求 未請求 請求項の数3 〇1. (全10 頁)

		審査請求	未請求 請求項の数3 OL (全 10 頁)
(21)出願番号	特願平8-92607	(71)出顧人	000207551 大日本スクリーン製造株式会社
(22)出願日	平成8年(1996)4月15日		京都府京都市上京区堀川通寺之内上る4丁 目天神北町1番地の1
		(72)発明者	朝田 晋次 京都市上京区堀川通寺之内上る4丁目天神 北町1番地の1 大日本スクリーン製造株 式会社内
·		(74)代理人	弁理士 吉田 茂明 (外2名)

(54) 【発明の名称】 シャープネス処理装置

(57) 【要約】

(修正有)

【課題】 低コストで良好なシャープネス処理を施した 印刷物を得る。

【解決手段】 マスクサイズ補正パラメータ、グレイネス補正パラメータgS、エッジ強調ゲイン補正パラメータf(u)といった補正パラメータを各出力装置ごとに準備して補正パラメータメモリ100に予め記憶させておく。それらは、それぞれの出力装置においてその出力装置の表示特性に依存しないで同等の画像を得ることができるようにされている。オペレータが出力装置のひとつを選択するとそれに応じた補正パラメータを使用してシャープネス処理を行い、その出力装置に出力する。これにより、シャープネス処理結果の確認をモニタ70中モノクロプリンタ90、カラープリンタ91のうちの任意のものに出力して確認した後にフィルムプロッタ92により印刷原版を作成することができる。

【特許請求の範囲】

【請求項1】 入力画像信号に対するシャープネス処理を行う装置であって、

シャープネス処理のためのパラメータの値として、複数 の画像表示条件に対応した複数の値を保持する保持手段 と、

前記複数の画像表示条件から選択された特定の画像表示 条件に対応して、前記パラメータの前記複数の値から特 定の値を選択する選択手段と、

前記特定の値に応じたシャープネス処理を前記入力画像 信号に施す処理手段と、

前記シャープネス処理を通じて得られた出力画像信号 を、前記特定の画像表示条件に合致した画像表示手段へ と出力する出力手段と、を備え、

前記パラメータの前記複数の値が、前記複数の画像表示 条件において実質的に同等なシャープネス表現を与える ように定められていることを特徴とするシャープネス処 理装置。

【請求項2】 請求項1のシャープネス処理装置において、

前記パラメータの前記複数の値が、前記画像表示手段の 種類の相違に応じてそれぞれ定められていることを特徴 とするシャープネス処理装置。

【請求項3】 請求項1または請求項2のシャープネス 処理装置において、

前記パラメータは、指定されたシャープネス処理条件を 補正するための補正パラメータであることを特徴とする シャープネス処理装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、原画の画像を読み取って得られる原画の画像信号にシャープネス処理を施して出力画像信号を生成し、その出力画像信号を各種出力装置に出力するシャープネス処理装置に関する。

[0002]

【従来の技術】従来から、スキャナ等の画像入力装置で入力した画像に対してその印刷物を作成する場合に、入力画像信号に対して階調変換、色調変換、変倍、シャープネス処理等を行った後にフィルムプロッタ等により印刷原版を作成し、それにより印刷を行って印刷物を得るという作業が行われている。

[0003]

【発明が解決しようとする課題】ところで、上記のような印刷原版の作成に当たり、前述の入力画像信号に対する各種画像処理を行った後に最終的な印刷版出力の前に画像品質を確認し、それに基づいて不良を修正するといったことを行うためにレーザービームプリンタ等で画像を出力することがある。しかし、この出力画像では色調や階調性を確認することは可能であり、それに基づいてそれらの不良を修正することはできるが、シャープネス

処理については、レーザービームプリンタとフィルムプロッタでは解像度が異なる等の理由からその確認は困難である。そのため、シャープネス処理の結果は、印刷版を作成した後、実際に印刷用画像を作成して確認しなければならず、その結果が不満足な場合には、シャープネス処理の設定を変えて再度入力画像信号に対して階調変換、色調変換、変倍、シャープネス処理等を行った後に印刷原版を出力して印刷用画像を作成しなければならず、そのための資材および時間を余分に必要としてい

2

10 た。

【0004】この発明は、従来技術における上述の問題の克服を意図しており、低コストで良好なシャープネス処理を施した印刷物を得ることができるシャープネス処理装置を提供することを目的とする。

[0005]

【課題を解決するための手段】上記の目的を達成するため、この発明の請求項1の装置は、入力画像信号に対するシャープネス処理を行う装置であって、シャープネス処理のためのパラメータの値として、複数の画像表示条件に対応した複数の値を保持する保持手段と、前記複数の画像表示条件から選択された特定の画像表示条件に対応して、前記パラメータの前記複数の値から特定の値を選択する選択手段と、前記特定の値に応じたシャープネス処理を前記入力画像信号に施す処理手段と、前記特定の画像表示条件に合致した画像信号を、前記特定の画像表示条件に合致した画像表示手段へと出力する出力手段と、を備え、前記パラメータの前記複数の値が、前記複数の画像表示条件において実質的に同等なシャープネス表現を与えるように定められていることを特30 徴とする。

【0006】また、この発明の請求項2の装置は請求項1のシャープネス処理装置において、前記パラメータの前記複数の値が、前記画像表示手段の種類の相違に応じてそれぞれ定められていることを特徴とする。

【0007】さらに、この発明の請求項3の装置は請求項1または請求項2のシャープネス処理装置において、前記パラメータは、指定されたシャープネス処理条件を補正するための補正パラメータであることを特徴とする。

40 【0008】なお、この発明において「表示」とはディスプレイによる表示およびプリントによる表示等を含む ものとする。

[0009]

【発明の実施の形態】

[0010]

【1. 実施の形態における機構的構成と概略処理】図1 はこの発明の実施の形態のシャープネス処理装置のブロック図である。

【0011】このシャープネス処理装置は原画画像メモ 50 リ10、シャープネス処理部20、条件指定パラメータ

メモリ30、キーボード40、補正パラメータメモリ1 00、出力画像メモリ50、モニタインターフェイス6 0、モニタ70、プリンタ/プロッタインターフェイス 80、モノクロプリンタ90、カラープリンタ91およ びフィルムプロッタ92を備えている。

【0012】以下において実施の形態のシャープネス処 理装置の機構的構成および処理の概要を説明していく。 【0013】原画画像メモリ10は、原画を読み取って 得られた画像信号を記憶するメモリであり、シャープネ ス処理部20に接続されている。そして、この原画画像 メモリ10に予め記憶されていた原画の画像信号が選択 手段および処理手段に相当するシャープネス処理部20 に転送される。

【0014】シャープネス処理部20は転送された原画 の画像信号に対して後述するシャープネス処理を施すも ので、補正パラメータメモリ100および条件指定パラ メータメモリ30および出力画像メモリ50に接続され ている。

【0015】さらに補正パラメータメモリ100および 条件指定パラメータメモリ30にはキーボード40が接 続されており、オペレータはキーボード40によって出 カ装置の指定、USM(アンシャープ・マスキング)に おけるマスク幅やシャープネス強調ゲイン、粒状性補正 値等の条件指定パラメータを条件指定パラメータメモリ 30に設定する。この条件指定パラメータに応じたシャ ープネス処理を行うに際しては、出力装置の違いに応じ て処理内容の補正が行われるが、そのための補正パラメ ータが出力装置のそれぞれについて個別に補正パラメー タメモリ100に予め記憶されている。

【0016】さらに条件指定パラメータメモリ30から は条件指定パラメータが、補正パラメータメモリ100 からは補正パラメータがシャープネス処理部20に送ら れる。そして、それらの各パラメータを基にシャープネ ス処理部20でシャープネス処理を施された出力画像信 号が出力手段に相当する出力画像メモリ50に送られ る。

【0017】さらに、出力画像メモリ50にはモニタイ ンターフェイス60およびプリンタ/プロッタインター フェイス80が接続されており、オペレータによるひと つにの出力装置の選択に従い、モニタインターフェイス 60またはプリンタ/プロッタインターフェイス80に 出力画像信号が出力される。より具体的にはオペレータ が出力装置としてモニタ70を選択した場合には、出力 画像信号はモニタインターフェイス60に送られ、モノ クロプリンタ90、カラープリンタ91、フィルムプロ ッタ92のいずれかを出力装置として選択した場合には プリンタ/プロッタインターフェイス80に送られる。 【0018】そして、モニタインターフェイス60はモ ニタ70に接続されており、モニタインターフェイス6 0に送られた出力画像信号はモニタ70に送られて画面 に表示される。

【0019】また、プリンタ/プロッタインターフェイ ス80はモノクロプリンタ90、カラープリンタ91、 フィルムプロッタ92のそれぞれに接続されており、プ リンタ/プロッタインターフェイス80に送られた出力 画像信号は、オペレータの選択に従いそれぞれモノクロ プリンタ90、カラープリンタ91、フィルムプロッタ 92のいずれかに出力される。

4

【0020】このようにこの実施の形態のシャープネス 処理装置では、オペレータの選択によりモニタ70、モ **ノクロプリンタ90、カラープリンタ91、フィルムプ** ロッタ92のいずれかに画像を出力することができる が、このようなオペレータによる選択により、予め記憶 されている複数個の各種補正パラメータのうちの1組が 選択的にシャープネス処理部20に読み込まれる。そし てその各種補正パラメータによるシャープネス処理に対 する補正により、出力画像のシャープネス処理結果の表 示は出力装置によらず互いに同等となるようになってい る。

【0021】そのため、実際の印刷原版の作成において は、まずモニタ70に出力画像を表示し、その出力画像 のシャープネスの状況をオペレータが目視により確認 し、シャープネス処理結果が満足できるものでなけれ ば、オペレータはキーボード40を通じて条件指定パラ メータを設定し直し、再度シャープネス処理を施した画 像をモニタ70に出力する。そして、このような処理を 繰返し、シャープネス処理結果がほぼ満足できるものと なれば、モノクロプリンタ90ないしはカラープリンタ 91に出力し、さらにその出力結果による判断のもとに 30 条件指定パラメータの設定を繰返して、満足できるもの になった後にフィルムプロッタ92で印刷原版を出力す る。そして、その印刷原版を基に校正刷りを作成し、そ の結果が満足できるものになるまで上記の処理を繰り返 し最終的な印刷物を得る。

【0022】以上がこの実施の形態のシャープネス処理 装置による画像出力の概要である。

[0023]

【2.シャープネス処理部の構成および処理】つぎに、 シャープネス処理部20の詳細構成およびシャープネス 処理手順について説明していく。図2はシャープネス処 40 理部20のブロック図である。

【0024】シャープネス処理部20はアンシャープ信 号生成部21、USMマスクサイズ決定部22、第1加 算部23、グレイネス除去部24、カットレベル決定部 25、エッジ強調部26、ゲイン決定部27、第2加算 部28からなっている。

【0025】また、図3はシャープネス処理を説明する ための波形図である。図中には直交するX軸とY軸が設 けられており、X軸方向は画素の位置を1次元的に表わ 50 しており、Y軸方向は画像信号の階調を表わしている。

以下、図3の波形図を参照しながらシャープネス処理部20によるシャープネス処理の詳細について説明していく。なお、以下において各種画像信号は各画素ごとの階調信号が順次各処理部間で送受信されるため、各処理部における処理は画素ごとに行われる。また、実施の形態のシャープネス処理装置はカラー画像のR(レッド)、G(グリーン)、B(ブルー)の各色成分のそれぞれについてシャープネス処理を行うことができるが、以下の説明においてはそのうちの1成分の処理について説明する

【0026】このシャープネス処理装置によるシャープネス処理において、オペレータは画像をモニタ70、モノクロプリンタ90、カラープリンタ91およびフィルムプロッタ92のうちから画像を出力するひとつの出力装置の指定と、原画画像信号ORSからアンシャープ信号USSを得る際のUSMマスクサイズと、グレイネス除去レベルGC、エッジ強調度APをキーボード40によって入力する。

【0027】アンシャープ信号生成部21には、原画画像メモリ10(図1)およびUSMマスクサイズ決定部22が接続され、さらに、USMマスクサイズ決定部22には条件指定パラメータメモリ30および補正パラメータメモリ100が接続されている。そして、アンシャープ信号生成部21において原画画像信号ORSに対して後述する2次元重み付き平均化処理を施してアンシャープ信号USSを生成するのに際して、まず条件指定パラメータメモリ30から、オペレータによって指定されたUSMマスクのサイズおよびマスクサイズ補正パラメータがUSMマスクサイズ決定部22に入力される。

【0028】図4はUSMマスクパターンを示す図である。以下、図中の全体の区画を区切ったマトリクスの横方向の並びを行と定義し、縦の並びを列と定義するとともに、A~Kによって行および列を指定する。このUSMマスクは原画画像信号ORSの11行11列の区画の画素信号の平均化フィルタとしての役割を持ち、USMマスクパターンのマトリクスセルは画像信号の各画素に対応している。各セルの内部には平均化の重み係数a~uが表わされている。

10 【0029】ここで行う2次元重み付き平均化処理は、原画画像信号ORSのUSMマスクが適用される区画の中心、すなわち第F行第F列のセルの画素に注目し、その画素およびその周囲の画素の画像信号に対して以下のような演算を行いアンシャープ信号USSを出力する。【0030】

【数1】

$$U = \frac{1}{S} \cdot (U \, i \, j) \cdot (P \, mn)$$

【0031】ここで、Uはアンシャープ信号USSの1 画素分の信号値を表わし、Sは正規化係数を表わし、

(Uij) は図4のUSMマスクパターンを示す11行1 1列の行列であり、(Pmn)は原画画像信号ORSの区画内の11行11列の画素の信号値の行列を表わす。ただし、i, mは第A~K行を、およびj, nは第A~K列を表わしている。

【0032】なお、この式を展開すると次式のようになる。

[0033]

【数2】

$$\begin{split} & = \frac{1}{S} \cdot (a \cdot P_{FF} + b \cdot (P_{EF} + P_{FG} + P_{FF} + P_{FE}) + c \cdot (P_{EE} + P_{EG} + P_{GG} + P_{GE}) \\ & + d \cdot (P_{DF} + P_{FH} + P_{HF} + P_{FD}) + e \cdot (P_{DE} + P_{DG} + P_{EH} + P_{GH} + P_{HE} + P_{GD} + P_{ED}) \\ & + f \cdot (P_{DD} + P_{DH} + P_{HH} + P_{HD}) + g \cdot (P_{CF} + P_{FI} + P_{IF} + P_{FC}) \\ & + h \cdot (P_{CE} + P_{CG} + P_{EI} + P_{GI} + P_{IG} + P_{IE} + P_{GC} + P_{EC}) + i \cdot (P_{CD} + P_{CH} + P_{DI} + P_{HI} + P_{IH} + P_{ID} + P_{HC} + P_{DC}) \\ & + j \cdot (P_{CC} + P_{CI} + P_{II} + P_{IC}) + k \cdot (P_{BF} + P_{FJ} + P_{JF} + P_{B}) \\ & + 1 \cdot (P_{BE} + P_{BG} + P_{EJ} + P_{GJ} + P_{JG} + P_{JE} + P_{GB} + P_{EB}) + m \cdot (P_{BD} + P_{BH} + P_{DJ} + P_{HJ} + P_{JH} + P_{JD} + P_{HB} + P_{DB}) \\ & + n \cdot (P_{BC} + P_{BI} + P_{CJ} + P_{IJ} + P_{JI} + P_{JC} + P_{IB} + P_{CB}) + o \cdot (P_{BB} + P_{BJ} + P_{JJ} + P_{JJ} + P_{JB}) \\ & + p \cdot (P_{AF} + P_{FK} + P_{KF} + P_{FA}) + q \cdot (P_{AE} + P_{AG} + P_{EK} + P_{GK} + P_{KE} + P_{GA} + P_{EA}) \\ & + r \cdot (P_{AD} + P_{AH} + P_{DK} + P_{HK} + P_{KH} + P_{KD} + P_{HA} + P_{DA}) \\ & + s \cdot (P_{AC} + P_{AI} + P_{CK} + P_{IK} + P_{KH} + P_{KC} + P_{IA} + P_{CA}) + t \cdot (P_{AB} + P_{AJ} + P_{BK} + P_{JK} + P_{KJ} + P_{KB} + P_{JA} + P_{BA}) \end{split}$$

【0034】この演算は、USMマスクの11行11列の区画内の各画素に重み係数 $a\sim u$ を掛けて平均化して入力画像の第F行第F列の画素のアンシャープ化された信号値Uを得ている。これにより第F行第F列画素のア

 $+u \cdot (P_{AA} + P_{AK} + P_{KK} + P_{KA}))$

ンシャープ信号は周囲の画素信号との間で平均化された 信号値Uとなる。

【0035】このような演算を原画画像信号ORSの各 ・ 画素が第F行第F列の画素に対応してUSMマスクが位

置するように上記の演算を行うことにより全画素に対するアンシャープ信号USSを得る。

【0036】この演算により得られるアンシャープ信号 USSを1次元の波形で表現したものが図3(b)である。図3(a)と比べると波形の立ち上がりおよび立下 がりがなだらかになっている。 【0037】また、各出力装置に対する上記の重み係数 $a\sim u$ を示すマスクサイズ補正パラメータを表わしたものが以下に示す表 $1\sim$ 表 3 である。

[0038]

【表1】

	正規化係数		重み係数																			
マスクサイズ	S	a	Ъ	c_	d] e	_ f_	g	h	i	j	k	1		n	0	P	Q	r	s	t	u
0~20未満	255	255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20~40未満	255	59	23	16	6	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
40~60未満	255	47	12	10	7	6	4	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0
60~80未満	255	47	7	6	5	5	4	3	3	2	1	2	1	1	0	0	0	0	0	0	0	0
80~100未満	255	63	4	4	3	3	3	3	2	2	2	2	2	1	1	0	1	1	1	0	0	0
100~	255	67	3	3	3	3	2	2	2	2	2	2	2	1	1	1	1	1	1	1	0	0

[0039]

【表2】

	正規化係数	重み係数																				
マスクサイズ	S	a	b	c	d	e	f	g	h	j i	j	k	1	1 m	n	٥	P	q	r	s	t	l u
0~10未満	4095	4095	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10~20末満	4095	2431	416	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0
20~30未満	4095	1039	494	270	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
30~40未満	4095	563	340	253	130	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
40~50未満	4095	367	244	201	139	114	52	34	17	0	0	0	0	0	0	0	0	a	0	0	0	0
50~60未満	4095	259	180	156	121	107	71	61	52	25	0	2	0	0	0	0	0	0	0	0	0	O
60~70未満	4095	203	136	121	99	91	69	63	57	41	18	27	22	9	0	0	C	0	0	0	0	O
70~80未満	4095	175	107	97	83	77	63	59	55	44	29	34	31	23	10	0	10	8	1	0	0	a
80~90未満	4095	159	86	79	69	66	56	53	50	42	32	36	34	28	19	8	19	17	12	5	0	0
90~100未費	4095	139	74	68	61	58	51	48	46	41	33	36	34	30	23	15	23	22	18	13	5	0
100~	4095	143	65	61	55	53	47	45	44	39	33	35	34	31	25	19	25	24	21	17	11	5

[0040]

【表3】

	<i>5</i> ,																	0				
	正規化係数		重み係数																			
マスクサイズ	s	a	Ь	c	d	e	f	g	h	Li	[j]	k	1	0	n	0	р	q j	r	s	t	u
0~5未満	4095	4095	0	0	0	0	0	0	0	0	0	0	0	0	a	0	.0	0	0	0	0	Ö
5~10未満	4095	4095	0	0	0	0	G	0	0	0	0	0	0	0	О	0	0	0	0	0	0	0
10~15未満	4095	4095	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15~20未満	4095	2103	498	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20~25未満	4095	1283	511	192	0	0	0	0	0	0	0	0	Q	0	0	0	0	٥	0	0	0	0
25~30未資	4095	967	486	288	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	۵	0	0
30~35未満	4095	695	394	274	106	38	0	0	0	0	0	0	C	0	0	0	0	0	0	C	0	0
35~40未満	4095	527	325	247	136	92	0	0	0	0	0	0	0	0	0	0	0	0	0	۵	0	0
40~45未改	4095	427	279	224	145	113	33	10	0	0	0	0	0	0	0	0	0	0	0	a	0	0
45~50未満	4095	351	232	192	136	114	57	41	25	0	0	0	٥	0	0	0	0	0	0	0	0	0
50~55未稿	4095	296	198	169	127	110	68	56	44	12	0	0	0	0	0	0	0	0	0	0	0	0
55~60未读	4095	25 0	173	150	118	105	72	63	54	29	0	7	0	0	0	C	0	0	0	0	0	0
60~65未費	4095	219	150	132	107	97	71	64	57	38	10	21	15	0	0	0	0	0	0	0	0	0
65~70未満	4095	203	131	117	97	89	69	63	57	42	20	28	24	12	0	0	0	0	0	0	0	0
70~75未満	4095	195	116	105	88	82	65	61	56	44	26	33	29	20	5	0	5	2	0	0	0	0
75~80未満	4095	175	103	94	80	75	61	58	54	44	29	35	32	24	12	٥	12	10	3	0	0	0
80~85未満	4095	155	93	85	74	69	58	55	52	43	31	36	33	27	17	4	17	15	9	1	0	0
85~90未満	4095	163	84	77	68	64	55	52	49	42	32	36	34	28	20	9	20	18	14	6	0	0
90~95未満	4095	155	78	72	64	60	52	50	47	41	32	36	34	29	22	13	22	21	17	10	2	0
95~100未貨	4095	159	72	67	60	57	50	48	46	40	33	36	34	30	23	15	23	22	19	13	6	0
100~	4095	139	68	63	57	56	48	46	44	40	33	35	34	30	25	18	25	24	20	16	9	2

【0041】これらの表の各段はマスクサイズの違いを表わし、この実施の形態の装置ではマスクサイズにより 異なる重み係数を用いている。

9

【0042】表1はモニタ70用の、表2はモノクロプリンタ90およびカラープリンタ91用の、表3はフィルムプロッタ用のマスクサイズ補正パラメータをそれぞれ表わしている。なお、モノクロプリンタ90、カラープリンタ91については共通の値を用いている。そして、オペレータによって選択された出力装置によってそれらのうちのいずれかがUSMマスクサイズ決定部22によって選ばれ、補正パラメータメモリ100から読み込まれ、さらにオペレータによって入力されたマスクサイズによって表中のいずれかの段のマスクサイズ補正パラメータが重み係数としてアンシャープ信号生成部21に出力される。

【0043】さらに、これらの表のマスクサイズ補正パラメータは各出力装置の特性に応じて重み係数の分布がそれぞれ異なっており、各出力装置に出力される出力画像のシャープネスの表示状況が互いに同等になるように予め調節されている。また、表中のマスクサイズは適当な数値間隔をもっており、その数値間隔内において同じ重み係数を用いているが、これはメモリの容量の節約と処理速度を速めるためであり、理想的には異なる全てのマスクサイズに対して異なる重み係数を用いることが好ましい。

【0044】また、図2の第1加算部23には補正パラメータメモリ100、アンシャープ信号生成部21およびグレイネス除去部24が接続されており、アンシャー

プ信号USSを反転するとともに、図示しない遅延回路により遅延された原画画像信号ORSとの和をとり、エッジ信号BESを出力する。

【0045】この状況を1次元の波形で表わしたのが図3(c)である。

【0046】また、グレイネス除去部24には第1加算部23、カットレベル決定部25、エッジ強調部26が30接続されており、さらに、カットレベル決定部25には条件指定パラメータメモリ30および補正パラメータメモリ100が接続されている。そして、グレイネス除去部24においてエッジ信号BESの中間の階調以下の部分、すなわち図3(c)の例では横方向の2本の破線に挟まれた部分として定義されるグレイネス部分をカットする処理を行うが、この処理に先立ち、カットレベル決定部25では、条件指定パラメータメモリ30から入力されたグレイネス除去レベルGCおよび補正パラメータメモリ100から入力されたグレイネス除去レベルGCおよび補正パラメータメモリ100から入力されたグレイネスに基づいて決定する。

【0047】 【数3】

 $CL = g s \cdot GC$

【0048】これにより得られるカットレベルCLを1 次元の波形上に表現したものが図3(c)の横方向の破線である。

【0049】このうちオペレータによって入力されたグレイネス補正パラメータgSは各出力装置ごとに異なる 50 値を用いることが好ましいが、処理速度を重視するた

め、この実施の形態ではモニタ70、モノクロプリンタ90、カラープリンタ91、フィルムプロッタ92の全てについて「1」を用いている。

【0050】こうして得られたカットレベルCLの値は グレイネス除去部24に送られる。グレイネス除去部2 4では次式のように入力されたエッジ信号BESに対し てカットレベルCLよりもその絶対値が小さい信号値を 「0」とする処理を行う。

[0051]

【数4】

$$y = x \cdots \{ | x | > CL \}$$

 $y = 0 \cdots \{ | x | \leq CL \}$

【0052】ただし、この式においてxはエッジ信号BESの値を、yはそれによる出力信号値を表わしている。

【0053】このような演算によりグレイネス部分をカットすることができる。そして、グレイネス除去部24はグレイネス除去エッジ信号AESをエッジ強調部26に出力する。このグレイネス除去エッジ信号AESを1次元の波形で表わしたのが図3(d)である。

【0054】また、エッジ強調部26にはグレイネス除去部24、ゲイン決定部27および第2加算部28が接続されており、さらに、ゲイン決定部27には条件指定パラメータメモリ30および補正パラメータメモリ100が接続されている。そして、エッジ強調部26におして入力信号に対しエッジ強調信号SESを出力する。それに先立ちゲイン決定部27には条件指定パラメータメモリ30から、オペレータによって入力されていたエッジ強調度AP、および補正パラメータメモリ100からエッジ強調ゲイン補正パラメータf(u)が読み込まれる。図5はエッジ強調ゲイン補正パラメータf(u)の関数の例を示す図である。ただし、この図中の横軸の示すuはエッジ強調度APを、縦軸を示すvはエッジ強調ゲイン補正パラメータf(u)の値を示している。

【0055】このように補正パラメータメモリ100は、急激に立ち上がり、次第に所定値に収束していく形状のエッジ強調ゲイン補正パラメータ f(u)をモニタ70、モノクロプリンタ90、カラープリンタ91およびフィルムプロッタ92のそれぞれについて個別に予め記憶しており、それらのうちエッジ強調処理に際してオペレータの指定した出力装置に対応したものがエッジ強調部26に読み込まれる。各出力装置ごとのエッジ強調ゲイン補正パラメータ f(u)は、その出力装置の特性に応じて関数の微妙な形状がそれぞれ異なっており、各出力装置に出力される出力画像のシャープネス処理結果の表示状況が互いに同等になるように予め調節されている。

【0.0.5.6】そしてこのエッジ強調ゲイン補正パラメータ f(u)に対してエッジ強調ゲインGSを次式に従って求める。

[0057]

【数5】

GS = f(AP)

12

【0058】こうして求められたエッジ強調ゲインGSはエッジ強調部26に送られ、そこでグレイネス除去エッジ信号AESに対して次式のように掛け合わされる。 【0059】

【数 6 】

$$y = GS \cdot x$$

10 【0060】ただし、この式においてxはグレイネス除去エッジ信号AESの値を、yはそれによる出力信号値を表わしている。

【0061】これによりグレイネス除去エッジ信号AESはエッジ強調ゲインGSの倍率で拡大される。エッジ強調信号SESの状況を1次元の波形で表わしたのが図3(e)である。なお、ここではエッジ強調ゲインGSを「1」以上の値としてグレイネス除去エッジ信号AESが拡大された場合に相当した波形になっているが、実際には、エッジ強調度APを適当に採ることにより

20 「1」以下の正の値を採ることもでき、それによりグレイネス除去エッジ信号AESを縮小することによりゲインの少ないエッジ画像を得ることもできる。このようにして得られたエッジ強調信号SESは第2加算部28に送られる。

【0062】第2加算部28には原画画像メモリ10、 エッジ強調部26および出力画像メモリ50が接続され ており、第2加算部28においてエッジ強調信号SES は図示しない遅延回路により遅延された原画画像信号O RSと加算され、出力画像信号OUSとして出力画像メ モリ50に送られる。この出力画像信号OUSの状況を 1次元の波形で表わしたのが図3(f)である。

【0063】以上がシャープネス処理部20の詳細構成およびシャープネス処理手順である。

【0064】以上、説明してきたようにこの実施の形態のシャープネス処理装置ではマスクサイズ補正パラメータ、グレイネス補正パラメータgS、エッジ強調ゲイン補正パラメータf(u)といった補正パラメータを各出力装置ごとに設け、それらをそれぞれの出力装置においてその出力装置の表示特性に依存しないで同等の画像を得ることができ、シャープネス処理結果の確認をモニタ70やモノクロプリンタ90、カラープリンタ91のうちの任意のものに出力して確認した後にフィルムプロッタ92により印刷原版を作成することができるので、シャープネス処理結果の確認をフィルムプロッタ92により作成した印刷原版から得られた校正刷りを基に行う必要がない。

【0065】したがってモニタ70等において不良が見つかった場合に再度印刷原版を作成することなくマスクサイズ、グレイネス除去レベルGC、エッジ強調度APと50いった条件指定パラメータを変更してシャープネス処理

をやり直して再度モニタ70等に出力してシャープネス 処理結果を確認し、結果が満足できるものであればフィ ルムプロッタ92により印刷原版を作成して印刷するこ とができる。このため、シャープネス処理結果を確認す るためにフィルムプロッタ92により印刷原版を作成し て校正刷りを行う作業を繰返すことがないため余分な資 材および時間を必要とせず、低コストで良好なシャープ ネス処理を施した印刷物を得ることができる。

[0066]

のマスクサイズ補正パラメータ、グレイネス補正パラメ ータgS、エッジ強調ゲイン補正パラメータ f(u)に限 られるものではなく、たとえばマスクサイズ補正パラメ ータの行および列の数をより大きなものにするなどして もよい。

【0067】また、この発明は補正パラメータを出力装 置の種別の違いのみで異なるものとするのみでなく、同 じ出力装置での解像度の違いや網かけ線数、網かけパタ ーン等により補正パラメータを異なるものとすることも できる。

【0068】また、この発明のシャープネス処理は輪郭 強調を行う処理に限られるものではなく、輪郭をぼかす 処理を行うものを対象としてもよい。

【0069】さらに、上記実施の形態の装置では補正パ ラメータを複数組備えるとしたが、この各組に含まれる 補正パラメータの数は1でも複数でもよい。

[0070]

【発明の効果】以上説明したように、請求項1~請求項 3の発明では複数の画像表示条件から特定の画像表示条 件を選択することにより、複数の画像表示条件において 実質的に同等なシャープネス表現を与えるように定めら れている保持手段に保持された複数のパラメータの値の うちから、選択された特定の画像表示条件に対応した特 定の値を選択手段が選択し、処理手段がその特定の値に 応じたシャープネス処理を入力画像信号に施し、出力手 段がシャープネス処理を通じて得られた出力画像信号 を、特定の画像表示条件に合致した画像表示手段へと出 力する構成であるため、異なる画像表示条件に対しても 同等の出力画像信号を得ることができ、異なる画像表示 条件でシャープネス処理結果を確認することができる。

14

【0071】とりわけ、請求項2の発明では、複数のパ ラメータの値が、画像表示手段の種類の相違に応じてそ れぞれ定められているため、画像表示手段の特性に依存 しないで同等の画像を得ることができ、それによりシャ ープネス処理結果をモニタ等の画像表示手段により確認 することができるため、その確認をフィルムプロッタ等 により作成した印刷原版から得られた校正刷りを基に行 う必要がなく、したがってシャープネス処理結果に不良 が見つかった場合に再度印刷原版を作成して印刷を繰返 【3.変形例】なお、この発明の補正パラメータは上記 10 すことがないため余分な資材および時間を必要とせず、 低コストで良好なシャープネス処理を施した印刷物を得 ることができる。

【図面の簡単な説明】

【図1】この発明の実施の形態のシャープネス処理装置 のブロック図である。

【図2】シャープネス処理部のブロック図である。

【図3】シャープネス処理を説明するための波形図であ

【図4】USMマスクパターンを示す図である。

【図5】エッジ強調ゲイン補正パラメータの関数の例を 示す図である。

【符号の説明】

- 20 シャープネス処理部
- 30 条件指定パラメータメモリ
- 40 キーボード
- 70 モニタ
- 90 モノクロプリンタ
- 91 カラープリンタ
- 92 フィルムプロッタ
- 100 補正パラメータメモリ
 - AP エッジ強調度
 - CL カットレベル
 - GC グレイネス除去レベル
 - GS エッジ強調ゲイン
 - ORS 原画画像信号
 - OUS 出力画像信号
 - a~u 重み係数
 - f(u) エッジ強調ゲイン補正パラメータ
 - gS グレイネス補正パラメータ

40

