## PARTE A

1. Data  $f(x) = \frac{x+2}{x^2-1} - \log(2x-3)$ . Allora f'(2) è uguale a A: N.A. B: 1 C:  $2\pi$  D: 0 E:  $-\frac{31}{9}$ 

2. L'integrale

$$\int_0^{-1} \arctan(x) \, dx$$

vale

A: 1 B: N.A. C:  $\frac{\pi - \log(4)}{4}$  D:  $\pi/2$  E: 0

3. La serie di potenze

$$\sum_{n=1}^{\infty} \frac{2 + \sin(n)}{n^2} (x - 1)^n$$

converge per

A:  $x \in [0, 2]$  B:  $x \in ]-2, 2[$  C:  $x \in [0, 2[$  D: N.A. E: |x| < 1

4. L'integrale

$$\int_{1}^{\infty} \frac{1}{\sqrt[a]{x^4 - 1}} \, dx$$

converge per a

A: a > 1 B:  $a \in [2, 5]$  C: a < 1 D:  $a \in ]1, 4[$  E: N.A.

5. Il polinomio di Taylor di  $f(x) = \sqrt{1+x} - \sqrt{1-x}$  di grado 3, relativo al punto  $x_0 = 0$  vale A:  $x + \frac{x^3}{3!}$  B:  $x^3$  C:  $x + \left(\frac{x}{2}\right)^3$  D:  $1 + \frac{x}{2} + \frac{x^2}{3} + \frac{x^3}{4}$  E: N.A.

6. La funzione  $f: [1, \pi^4] \to \mathbb{R}$  definita da  $f(x) = x^7 - x$  è

A: concava B: iniettiva C: non continua D: N.A. E: surgettiva

7. Sia y soluzione del problema di Cauchy  $y(t)y'(t)=\sin(t),\ y(0)=1.$  Allora  $y(\pi/3)$  vale A:  $\sin(1)$  B:  $\sqrt{2-\pi/3}$  C:  $\pi/3$  D: 0 E: N.A.

8. L'argomento delle soluzioni di

$$z^2 + 3iz + 4 = 0$$

è

A:  $(\pi/3, \pi/6)$  B:  $(0, \pi/2)$  C:  $(\pi/2, -\pi/2)$  D:  $(0, \pi)$  E: N.A.

9. Il limite

$$\lim_{x \to 0} (e^x + x)^{1/x}$$

vale

A: 1 B: e C: N.E. D: N.A. E:  $e^2$ 

10. Inf, min, sup e max dell'insieme

$$A = \{n \in \mathbb{N} \setminus \{0\} : \tan(n^2/4) < 1\},\$$

valgono

A:  $\{1, 1, +\infty, N.E.\}$  B: N.A. C:  $\{-1, N.E., 1, N.E.\}$  D:  $\{-1, -1, 1, 1\}$  E:  $\{0, 0, 1, 1\}$ 

## Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

15 febbraio 2018

| (Cognome) |  |  |  |  |  |  |  |  |  | (Nome) |  |  |  |  |  |  |  | (Numero di matricola) |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------|--|--|--|--|--|--|--|--|--|--------|--|--|--|--|--|--|--|-----------------------|--|--|--|--|--|--|--|--|--|--|--|--|

# ABCDE

| 1  | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | •          |   |
|----|---|------------|------------|------------|------------|---|
| 2  | 0 | $\bigcirc$ | •          | $\bigcirc$ | $\bigcirc$ |   |
| 3  | • | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |   |
| 4  | 0 | $\bigcirc$ | $\bigcirc$ |            | $\bigcirc$ | - |
| 5  | 0 | $\bigcirc$ | •          | $\bigcirc$ | $\bigcirc$ | - |
| 6  | 0 | •          | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |   |
| 7  | 0 | $\bigcirc$ | 0          | $\bigcirc$ | •          |   |
| 8  | 0 | $\bigcirc$ | •          | $\bigcirc$ | $\bigcirc$ |   |
| 9  | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |            |   |
| 10 | • | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |   |

## Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

15 febbraio 2018

## PARTE B

## 1. Si studi per $\lambda > 0$ la funzione

$$f(x) = \begin{cases} x e^{-\frac{\lambda}{x^2}} & \text{se } x \neq 0\\ 0 & \text{se } x = 0 \end{cases}$$

e in particolare se ne determinino gli intervalli di convessità.

**Soluzione.** La funzione f(x) è strettamente positiva per x > 0 e strettamente negativa per x < 0. Osserviamo che

$$\lim_{x \to 0} x e^{-\frac{\lambda}{x^2}} = 0$$

da cui deduciamo che la funzione f è continua su tutto  $\mathbb R.$  Calcolando i limiti agli estremi del dominio troviamo

$$\lim_{x \to +\infty} f(x) = +\infty, \ \lim_{x \to -\infty} f(x) = -\infty.$$

Inoltre

$$\lim_{x \to +\infty} f(x)/x = +1, \ \lim_{x \to -\infty} f(x)/x = +1,$$

quindi la funzione ha asintoti obliqui per  $x \to \pm \infty$ . Derivando la funzione una volta si ottiene, per  $x \neq 0$ ,

$$f'(x) = e^{-\frac{\lambda}{x^2}} (1 + 2\lambda x^{-2}),$$

che è sempre positiva. Si verifica anche facilmente che  $\lim_{x\to 0} f'(x) = 0$ , da cui segue la continuità della derivata prima in 0. Derivando la funzione due volte troviamo, per  $x \neq 0$ ,

$$f''(x) = \frac{2\lambda e^{-\frac{\lambda}{x^2}} \left(2\lambda - x^2\right)}{x^5}$$

La derivata seconda si annulla per  $x = \pm \sqrt{2\lambda}$ , è positiva per  $x < -\sqrt{2\lambda}$  e per  $0 < x < \sqrt{2\lambda}$ , intervalli ove la funzione è convessa. Altrove è concava. Abbiamo quindi tre punti di flesso in  $x_1 = -\sqrt{2\lambda}$ , in  $x_2 = 0$  e in  $x_3 = \sqrt{2\lambda}$ .

#### 2. Si risolva il problema di Cauchy

$$\begin{cases} y'(x) + 4x^3 y(x) = x e^{-x^4} \\ y(0) = y_0 \end{cases}$$



Figura 1: Grafico approssimativo di f(x)

per ogni  $y_0 \in \mathbb{R}$ .

Si determini poi se esistono  $y_0$  tali che la soluzione y(x) corrispondente al dato iniziale  $y_0$  è tale che

$$\lim_{x \to +\infty} y(x) = 0$$

**Soluzione.** L'equazione differenziale si può risolvere con il metodo del fattore integrante. Infatti se moltiplichiamo a sinistra e a destra dell'equazione per  $e^{x^4}$  troviamo

$$(e^{x^4}y(x))' = x.$$

Integrando a sinistra e destra e tendendo conto della condizione iniziale  $y(0) = y_0$  otteniamo

$$y(x) = e^{-x^4} \left( \int_0^x t \, dt + y_0 \right)$$

ovvero

$$y(x) = e^{-x^4} \left( \frac{x^2}{2} + y_0 \right).$$

Per ogni scelta di  $y_0 \in \mathbb{R}$  vale  $\lim_{x \to +\infty} y(x) = 0$ .

3. Studiare, al variare di  $\alpha>0$  la convergenza dell'integrale

$$\int_{\mathbb{R}} \frac{1}{\cosh(\alpha x)} \, dx$$

e chiamato  $\Phi(\alpha) := \int_{\mathbb{R}} \frac{1}{\cosh(\alpha x)} dx$ , dove è definita, studiare

$$\lim_{\alpha \to 0^+} \Phi(\alpha)$$

Soluzione. Ricordiamo che

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

e quindi

$$\frac{1}{\cosh(\alpha x)} = \frac{2}{\mathrm{e}^{\alpha x} + \mathrm{e}^{-\alpha x}}.$$

Vogliamo verificare che gli integrali  $\int_{-\infty}^{0} \frac{1}{\cosh(\alpha x)} dx$  e  $\int_{0}^{+\infty} \frac{1}{\cosh(\alpha x)} dx$  convergono per ogni  $\alpha > 0$ . Osserviamo che  $\frac{1}{\cosh(\alpha x)}$  è una funzione limitata ed integrabile su ogni intervallo del tipo [0,c] con  $c \in \mathbb{R}$  costante positiva arbitraria. Ci interessa quindi studiare il comportamento per  $x \to +\infty$ . In virtù della formula scritta sopra abbiamo per  $x \to +\infty$ 

$$\frac{1}{\cosh(\alpha x)} \sim \frac{2}{\mathrm{e}^{\alpha x}}$$

ed in particolare possiamo dire per ogni $\alpha$ esiste  $c_{\alpha}>0$ tale che se $x>c_{\alpha}$ allora

$$\frac{1}{\cosh(\alpha x)} \sim \frac{2}{\mathrm{e}^{\alpha x}} < \frac{2}{x^2}.$$

Riassumendo, per ogni $\alpha>0$ possiamo scrivere

$$\int_0^{+\infty} \frac{1}{\cosh(\alpha x)} dx = \int_0^{c_\alpha} \frac{1}{\cosh(\alpha x)} dx + \int_{c_\alpha}^{+\infty} \frac{1}{\cosh(\alpha x)} dx$$

ove il primo integrale converge perché integriamo una funzione limitata su un intervallo limitato, mentre il secondo integrale converge perché maggiorato dall'integrale convergente  $\int_{c_{\alpha}}^{+\infty} \frac{1}{x^2} dx$ . Infine, siccome  $\cosh(\alpha x)$  è una funzione pari, abbiamo

$$\int_{-\infty}^{0} \frac{1}{\cosh(\alpha x)} dx = \int_{0}^{+\infty} \frac{1}{\cosh(\alpha x)} dx$$

quindi anche l'integrale su  $(-\infty,0)$  converge. Usando che

$$\frac{1}{\cosh(\alpha x)} = \frac{2e^{\alpha x}}{e^{2\alpha x} + 1},$$

calcoliamo

$$\int_0^{+\infty} \frac{1}{\cosh(\alpha x)} dx = \lim_{a \to +\infty} \int_0^a \frac{1}{\cosh(\alpha x)} dx$$

$$= \lim_{a \to +\infty} \int_0^a \frac{2e^{\alpha x}}{e^{2\alpha x} + 1} dx$$

$$= \lim_{a \to +\infty} \frac{2}{\alpha} \int_1^{e^{\alpha a}} \frac{1}{t^2 + 1} dt$$

$$= \lim_{a \to +\infty} \frac{2}{\alpha} [\arctan(t)]_1^{e^{\alpha a}}$$

$$= \lim_{a \to +\infty} \frac{2}{\alpha} [\arctan(e^{\alpha a}) - \pi/4] = \frac{\pi}{2\alpha}.$$

Allora

$$\int_{\mathbb{R}} \frac{1}{\cosh(\alpha x)} dx = 2 \int_{0}^{+\infty} \frac{1}{\cosh(\alpha x)} dx = \frac{\pi}{\alpha},$$

e

$$\lim_{\alpha \to 0^+} \Phi(\alpha) = +\infty.$$

4. Sia f(x) una funzione continua e c<br/>n derivata continua e che si annulla per x=0,1 Dimostrare che

$$\lim_{n \to +\infty} \int_0^1 f(x) \sin(nx) \, dx = 0.$$

Cosa si può dire invece di

$$\lim_{n \to +\infty} \int_0^1 f(x) \cos(nx) \, dx?$$

Soluzione. Integrando per parti si ha

$$\int_0^1 f(x)\sin(nx) \, dx = -\frac{1}{n}f(x)\cos(nx)\Big|_0^1 + \frac{1}{n}\int_0^1 f'(x)\cos(nx) \, dx$$

Il termine finito si annulla dato che f(0)=f(1)=0, mentre l'integrale converge a zero, dato che f' è limitata e quindi

$$\left|\frac{1}{n}\int_0^1 f'(x)\cos(nx)\,dx\right| \leq \frac{1}{n}\max_{[0,1]}|f'(x)| \to 0 \qquad \text{per } n \to +\infty.$$

Con lo stesso ragionamento si ha anche

$$\lim_{n \to +\infty} \int_0^1 f(x) \cos(nx) \, dx = 0.$$