Clipping & Visibility

Luiz Velho IMPA

Main Viewing Operations

Clipping

Clipping

Overview

- Usage
 - Visualization
 - o Others
- Geometry
 - o Line
 - o Polygon
 - Patches

Analysis of the Problem

- · Space Partition
 - Local
 - o Global
- Separability

Clipping for Visualization

- · Clipping Volume (Pyramid)
 - Normalized
 - Convex
 - Reasons
 - Avoid Projection Errors
 - Efficiency
 - Strategies
 - Eliminate Simple Cases
 - Canonical Situation
 - o Coordinate System
 - Euclidean Space
 - Projective Space

Clipping Types

- · <u>Culling</u>
- Analytic (Exact)
- Subdivision (Approximate)

Culling

Techniques

Backface Elimination

- Discard Polygons Facing Away from Camera
- · Dot Product with Viewing Direction

Elimination of Trivial Cases

• Entire Polygon (or Bounding Box) Outside Frustrum

Analytic Clipping

- · Plane Schedule
 - o Entire Polygon
 - Each Plane
- Polygon Types
 - Concave / Convex
 - Planar / Non Planar
- Clipping Region
 - o Convex
- Pipeline
- Storage

Hardware Implementation

Sutherland-Hodgman Algorithm

Sutherland-Hodgman Clipping

Rasterisation

Rasterisation

Description of the Problem

Scan Conversion

Enumerate all image elements corresponding to a graphical object, and sample its attributes

- Enumeration
- Sampling

Visibility

Visibility & Visualization

Analysis

- · Main Problem: Ordering
 - Rasterization: XY
 - Visibility: Z
- Characterisitics
 - o Partial (need only first)
 - o Random / Nearly Sorted
- Operations
 - Sorting
 - Searching
 - Culling
 - Merging

Classification

- YXZ
 - o Z-Buffer
 - o Scanline
- (XY)Z
- → ∘ Ray Casting
- → ∘ Screen Subdivision
- Z(XY)
 - Z-Sort
 - o Recursive Clipping

Visibility & Geometry

Scene Geometry

- Object Types
 - o Polygons
 - o Parametric Patches
 - o Implicit Algebraic Surfaces
 - o Procedural
- Cases
 - (triangles)
 - o General

Coordinate Systems

- · Image Space
 - Ordering at Each Ray
 - (Visibility Last)
- Object Space
 - o Pre-Compute Order of Pieces
 - o (Visibility First)

Visibility Code

Ray Tracing

```
for(each pixel (sample) on the viewing area)
{
    for(each primitive in the world model)
    {
        if(ray-pixel intersection)
        {
            select the frontmost intersection;
            calculate color;
        }
    }
```


Screen Subdivision Visible Surface

- Divide & Conquer Algorithm
- Recursive
 - If (simple)
 draw
 else
 subdivide & recurse
- · Subdivision Criteria
 - Complex Visibility Configuration
- When is simple?
 - No more than one polygon in view

Warnock Algorithm

Quad-Tree Recursion

```
Warnock(PolyList PL, ViewPort VP)
If ( PL simple in VP) then
        Draw PL in VP
else
        Split VP vertically and horizontally into VP1,VP2,VP3,VP4
        Warnock(PL in VP1, VP1)
        Warnock(PL in VP2, VP2)
        Warnock(PL in VP3, VP3)
        Warnock(PL in VP4, VP4)
end
```

Warnock Algorithm

· In Action

• Runtime: $O(p \times n)$

p: number of pixels n: number of polygons

Clipping & Visibility

A Bit of History

• From Polygon Clipping to Visible Surface Computation

Reentrant Polygon Clipping

Screen Subdivision Visibility

Algorithmic Principles

- Sutherland-Hodgman
 - Structure
- Warnock
 - Divide & Conquer
- Both
 - Recursion