Machine Precision

1. Results

machine precision.c

```
cindytsai@TURQUOISEA /cygdrive/d/GitHub/Computational_Physics/Assignment/ProblemSet_1
$ gcc machine_precision.c -o a.out

cindytsai@TURQUOISEA /cygdrive/d/GitHub/Computational_Physics/Assignment/ProblemSet_1
$ ./a.out
single precision (float),
machine precision epsilon : 5.9604644775e-08 (2^-24)
double precision (double),
machine precision epsilon : 1.1102230246e-16 (2^-53)
```

2. Discussion

After running the code *machine_precision.c*, we get the biggest number (ϵ) for each data type that the computer "cannot" distinguish.

Data Type	ε	
Single precision (float)	$5.9604644775 \times 10^{-8}$	2^{-24}
Double precision (double)	$1.1102230246 \times 10^{-16}$	2-53

For single precision number, there are 23 fraction bits. So the biggest number that the computer cannot distinguish is 2^{-24} , which is reasonable. Since the number shifts out of the range of single precision number's fraction bits.

This reason also stands for double precision number.

Richardson Extrapolation

1. Results

richardson extrapolation.c

```
indytsai@TURQUOISEA /cygdrive/d/GitHub/Computational_Physics/Assignment/ProblemSet_1
 gcc richardson_extrapolation.c -o a.out
indytsai@TURQUOISEA /cygdrive/d/GitHub/Computational_Physics/Assignment/ProblemSet_1
 (x) = x * exp(x)
  (x) = 2 * exp(x) + x * exp(x)
  (2) = 2.9556224396e+01
Using Richardson Extrapolation Method:
                                                   D3
                                                                     D4
                                  D2
     3.0151567480e+01
     2.9704268474e+01 2.9555168806e+01
2.9593186100e+01 2.9556158642e+01
                                            2.9556224631e+01
     2.9565461742e+01
                         2.9556220290e+01
                                             2.9556224399e+01
                                                                2.9556224396e+01
```

2. Discussion

I'm not sure if the first course derived the Richardson Extrapolation for the second order derivative, since I have not chosen this course yet.

So I try to reason this relationship for the second order case.

$$f(x-h) = f(x) - h \cdot f'(x) + \frac{h^2}{2!} \cdot f''(x) - \frac{h^3}{3!} \cdot f^{(3)}(x) + \cdots$$

$$f(x+h) = f(x) + h \cdot f'(x) + \frac{h^2}{2!} \cdot f''(x) + \frac{h^3}{3!} \cdot f^{(3)}(x) + \cdots$$

Since we want the second order term, we must try to cancel out the first order. So add two equation together and organize it, we have

$$f''(x) = \frac{f(x+h)-2\cdot f(x)+f(x-h)}{h^2} - 2\cdot \frac{h^2}{4!}\cdot f^{(4)}(x) - 2\cdot \frac{h^4}{6!}\cdot f^{(6)}(x) - \cdots$$

Let

$$D_1(h) = \frac{f(x+h)-2\cdot f(x)+f(x-h)}{h^2}$$
, this is same as three-point formula. When we change h

to h/2, we can have the similar form of equation with different coefficients. So that with these two equations, we can cancel the 4th order term, and have a better approximation.

With this relation, we can derive Richardson Extrapolation for second order derivatives. And because D_i will canceled out i terms of irrelevant fluctuation, it will be more accurate as i becomes larger. We can see this from the code's result above.