The spinner below will be used to generate a sample.



| i | Xi | $p_i$ |
|---|----|-------|
| 1 | 8  | 0.38  |
| 2 | 16 | 0.28  |
| 3 | 24 | 0.18  |
| 4 | 26 | 0.16  |
|   |    |       |

- (a) What is the probability of spinning 24? In other words, what is P(X = 24)?
- (b) What is the probability of spinning 24 or 26? In other words, what is P(X = 24 or X = 26)?
- (c) If spinning twice, what is the probability of first spinning 24 and then spinning 26? In other words, what is  $P(X_1 = 24 \text{ and } X_2 = 26)$ ?
- (d) What is the probability of spinning at most 16? In other words, what is  $P(X \le 16)$ ?
- (e) Determine the mean of the probability distribution by using  $\mu = \sum p_i x_i$ .
- (f) Determine the standard deviation of the probability distribution by using  $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$ .

The spinner below will be used to generate a sample.



| j . | $X_i$ | $p_i$ |
|-----|-------|-------|
| 1   | 2     | 0.37  |
| 2 1 | 6     | 0.08  |
| 3 1 | 7     | 0.48  |
| 4 2 | 26    | 0.07  |

- (a) What is the probability of spinning 17? In other words, what is P(X = 17)?
- (b) What is the probability of spinning 2 or 26? In other words, what is P(X = 2 or X = 26)?
- (c) If spinning twice, what is the probability of first spinning 2 and then spinning 26? In other words, what is  $P(X_1 = 2 \text{ and } X_2 = 26)$ ?
- (d) What is the probability of spinning at least 16? In other words, what is  $P(X \ge 16)$ ?
- (e) Determine the mean of the probability distribution by using  $\mu = \sum p_i x_i$ .
- (f) Determine the standard deviation of the probability distribution by using  $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$ .

The spinner below will be used to generate a sample.



| $i x_i p_i$ | i |
|-------------|---|
| 1 6 0.1     | 4 |
| 2 10 0.0    | 9 |
| 3 19 0.6    | 8 |
| 4 26 0.0    | 9 |

- (a) What is the probability of spinning 6? In other words, what is P(X = 6)?
- (b) What is the probability of spinning 10 or 26? In other words, what is P(X = 10 or X = 26)?
- (c) If spinning twice, what is the probability of first spinning 10 and then spinning 26? In other words, what is  $P(X_1 = 10 \text{ and } X_2 = 26)$ ?
- (d) What is the probability of spinning at most 10? In other words, what is  $P(X \le 10)$ ?
- (e) Determine the mean of the probability distribution by using  $\mu = \sum p_i x_i$ .
- (f) Determine the standard deviation of the probability distribution by using  $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$ .

The spinner below will be used to generate a sample.



| $i x_i p_i$ |   |
|-------------|---|
| 1 15 0.3    | 5 |
| 2 19 0.18   | 8 |
| 3 21 0.24   | 4 |
| 4 23 0.23   | 3 |

- (a) What is the probability of spinning 21? In other words, what is P(X = 21)?
- (b) What is the probability of spinning 19 or 23? In other words, what is P(X = 19 or X = 23)?
- (c) If spinning twice, what is the probability of first spinning 19 and then spinning 23? In other words, what is  $P(X_1 = 19 \text{ and } X_2 = 23)$ ?
- (d) What is the probability of spinning at least 19? In other words, what is  $P(X \ge 19)$ ?
- (e) Determine the mean of the probability distribution by using  $\mu = \sum p_i x_i$ .
- (f) Determine the standard deviation of the probability distribution by using  $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$ .

The spinner below will be used to generate a sample.



| i | Xi | $p_i$ |
|---|----|-------|
| 1 | 6  | 0.28  |
| 2 | 12 | 0.44  |
| 3 | 14 | 0.11  |
| 4 | 20 | 0.06  |
| 5 | 30 | 0.11  |
| _ |    |       |

- (a) What is the probability of spinning 20? In other words, what is P(X = 20)?
- (b) What is the probability of spinning 6 or 12? In other words, what is P(X = 6 or X = 12)?
- (c) If spinning twice, what is the probability of first spinning 6 and then spinning 12? In other words, what is  $P(X_1 = 6 \text{ and } X_2 = 12)$ ?
- (d) What is the probability of spinning at most 12? In other words, what is  $P(X \le 12)$ ?
- (e) Determine the mean of the probability distribution by using  $\mu = \sum p_i x_i$ .
- (f) Determine the standard deviation of the probability distribution by using  $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$ .

The spinner below will be used to generate a sample.



| Xi | $p_i$          |
|----|----------------|
| 10 | 0.08           |
| 24 | 0.08           |
| 25 | 0.7            |
| 27 | 0.14           |
|    | 10<br>24<br>25 |

- (a) What is the probability of spinning 24? In other words, what is P(X = 24)?
- (b) What is the probability of spinning 10 or 27? In other words, what is P(X = 10 or X = 27)?
- (c) If spinning twice, what is the probability of first spinning 10 and then spinning 27? In other words, what is  $P(X_1 = 10 \text{ and } X_2 = 27)$ ?
- (d) What is the probability of spinning at least 24? In other words, what is  $P(X \ge 24)$ ?
- (e) Determine the mean of the probability distribution by using  $\mu = \sum p_i x_i$ .
- (f) Determine the standard deviation of the probability distribution by using  $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$ .

The spinner below will be used to generate a sample.



| i | Xi | $p_i$ |
|---|----|-------|
| 1 | 22 | 0.12  |
| 2 | 25 | 0.12  |
| 3 | 26 | 0.46  |
| 4 | 28 | 0.3   |

- (a) What is the probability of spinning 22? In other words, what is P(X = 22)?
- (b) What is the probability of spinning 26 or 28? In other words, what is P(X = 26 or X = 28)?
- (c) If spinning twice, what is the probability of first spinning 26 and then spinning 28? In other words, what is  $P(X_1 = 26 \text{ and } X_2 = 28)$ ?
- (d) What is the probability of spinning at least 25? In other words, what is  $P(X \ge 25)$ ?
- (e) Determine the mean of the probability distribution by using  $\mu = \sum p_i x_i$ .
- (f) Determine the standard deviation of the probability distribution by using  $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$ .

The spinner below will be used to generate a sample.



| $\frac{i}{1}$ $\frac{x_i}{2}$ $\frac{p_i}{1}$ |   |    |                |
|-----------------------------------------------|---|----|----------------|
| 1 2 0 12                                      | i | Xi | p <sub>i</sub> |
| 1 3 0.13                                      | 1 | 3  | 0.13           |
| 2 13 0.66                                     | 2 | 13 | 0.66           |
| 3 15 0.13                                     | 3 | 15 | 0.13           |
| 4 26 0.08                                     | 4 | 26 | 0.08           |

- (a) What is the probability of spinning 26? In other words, what is P(X = 26)?
- (b) What is the probability of spinning 3 or 13? In other words, what is P(X = 3 or X = 13)?
- (c) If spinning twice, what is the probability of first spinning 3 and then spinning 13? In other words, what is  $P(X_1 = 3 \text{ and } X_2 = 13)$ ?
- (d) What is the probability of spinning at most 15? In other words, what is  $P(X \le 15)$ ?
- (e) Determine the mean of the probability distribution by using  $\mu = \sum p_i x_i$ .
- (f) Determine the standard deviation of the probability distribution by using  $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$ .

| $X_i$   | p <sub>i</sub> | $p_i x_i$           | $x_i - \mu$ | $(x_i - \mu)^2$ | $p_i(x_i-\mu)^2$                               |
|---------|----------------|---------------------|-------------|-----------------|------------------------------------------------|
| 8       | 0.38           | 3.04                | -8          | 64              | 24.32                                          |
| 16      | 0.28           | 4.48                | 0           | 0               | 0                                              |
| 24      | 0.18           | 4.32                | 8           | 64              | 11.52                                          |
| 26      | 0.16           | 4.16                | 10          | 100             | 16                                             |
| ======= | =======        | =======             | =======     | =======         | =======                                        |
|         |                | $\sum p_i x_i = 16$ |             |                 | $\sum p_i(x_i - \mu)^2 = 51.84$                |
|         |                | $\mu$ = 16          |             |                 | $\sigma = \sqrt{\sum p_i (x_i - \mu)^2} = 7.2$ |

- (a) 0.18
- (b) 0.34
- (c) 0.0288
- (d) 0.66
- (e)  $\mu = 16$
- (f)  $\sigma = 7.2$

| $X_i$   | $p_i$   | $p_i x_i$           | $\mathbf{x}_{i} - \mathbf{\mu}$ | $(x_i-\mu)^2$ | $p_i(x_i-\mu)^2$                             |
|---------|---------|---------------------|---------------------------------|---------------|----------------------------------------------|
| 2       | 0.37    | 0.74                | -10                             | 100           | 37                                           |
| 16      | 0.08    | 1.28                | 4                               | 16            | 1.28                                         |
| 17      | 0.48    | 8.16                | 5                               | 25            | 12                                           |
| 26      | 0.07    | 1.82                | 14                              | 196           | 13.72                                        |
| ======= | ======= | =======             | =======                         | =======       | =======                                      |
|         |         | $\sum p_i x_i = 12$ |                                 |               | $\sum p_i(x_i - \mu)^2 = 64$                 |
|         |         | $\mu$ = 12          |                                 |               | $\sigma = \sqrt{\sum p_i (x_i - \mu)^2} = 8$ |

- (a) 0.48
- (b) 0.44
- (c) 0.0259
- (d) 0.63
- (e)  $\mu$  = 12
- (f)  $\sigma = 8$

| Xi      | p <sub>i</sub> | $p_i x_i$           | $x_i - \mu$ | $(x_i - \mu)^2$ | $\rho_i(x_i-\mu)^2$                           |
|---------|----------------|---------------------|-------------|-----------------|-----------------------------------------------|
| 6       | 0.14           | 0.84                | -11         | 121             | 16.94                                         |
| 10      | 0.09           | 0.9                 | -7          | 49              | 4.41                                          |
| 19      | 0.68           | 12.92               | 2           | 4               | 2.72                                          |
| 26      | 0.09           | 2.34                | 9           | 81              | 7.29                                          |
| ======= | =======        | =======             | =======     | =======         | =======                                       |
|         |                | $\sum p_i x_i = 17$ |             |                 | $\sum p_i(x_i - \mu)^2 = 31.36$               |
|         |                | $\mu$ = 17          |             |                 | $\sigma = \sqrt{\sum p_i(x_i - \mu)^2} = 5.6$ |

- (a) 0.14
- (b) 0.18
- (c) 0.0081
- (d) 0.23
- (e)  $\mu = 17$
- (f)  $\sigma = 5.6$

| $X_i$   | $p_i$   | $p_i x_i$           | $\mathbf{X}_{i} - \mathbf{\mu}$ | $(x_i-\mu)^2$ | $p_i(x_i-\mu)^2$                              |
|---------|---------|---------------------|---------------------------------|---------------|-----------------------------------------------|
| 15      | 0.35    | 5.25                | -4                              | 16            | 5.6                                           |
| 19      | 0.18    | 3.42                | 0                               | 0             | 0                                             |
| 21      | 0.24    | 5.04                | 2                               | 4             | 0.96                                          |
| 23      | 0.23    | 5.29                | 4                               | 16            | 3.68                                          |
| ======= | ======= | =======             | =======                         | =======       | =======                                       |
|         |         | $\sum p_i x_i = 19$ |                                 |               | $\sum p_i(x_i - \mu)^2 = 10.24$               |
|         |         | $\mu$ = 19          |                                 |               | $\sigma = \sqrt{\sum p_i(x_i - \mu)^2} = 3.2$ |

- (a) 0.24
- (b) 0.41
- (c) 0.0414
- (d) 0.65
- (e)  $\mu$  = 19
- (f)  $\sigma = 3.2$

| Xi      | <b>p</b> i | $p_i x_i$           | $x_i - \mu$ | $(x_i-\mu)^2$ | $p_i(x_i-\mu)^2$                             |
|---------|------------|---------------------|-------------|---------------|----------------------------------------------|
| 6       | 0.28       | 1.68                | -7          | 49            | 13.72                                        |
| 12      | 0.44       | 5.28                | -1          | 1             | 0.44                                         |
| 14      | 0.11       | 1.54                | 1           | 1             | 0.11                                         |
| 20      | 0.06       | 1.2                 | 7           | 49            | 2.94                                         |
| 30      | 0.11       | 3.3                 | 17          | 289           | 31.79                                        |
| ======= | =======    | =======             | =======     | =======       | =======                                      |
|         |            | $\sum p_i x_i = 13$ |             |               | $\sum p_i(x_i - \mu)^2 = 49$                 |
|         |            | $\mu$ = 13          |             |               | $\sigma = \sqrt{\sum p_i (x_i - \mu)^2} = 7$ |

- (a) 0.06
- (b) 0.72
- (c) 0.1232
- (d) 0.72
- (e)  $\mu = 13$
- (f)  $\sigma = 7$

| X <sub>i</sub> | p <sub>i</sub> | $p_i x_i$           | $X_i - \mu$ | $(x_i - \mu)^2$ | $p_i(x_i-\mu)^2$                              |
|----------------|----------------|---------------------|-------------|-----------------|-----------------------------------------------|
| 10             | 0.08           | 0.8                 | -14         | 196             | 15.68                                         |
| 24             | 80.0           | 1.92                | 0           | 0               | 0                                             |
| 25             | 0.7            | 17.5                | 1           | 1               | 0.7                                           |
| 27             | 0.14           | 3.78                | 3           | 9               | 1.26                                          |
| =======        | =======        | =======             | =======     | =======         | =======                                       |
|                |                | $\sum p_i x_i = 24$ |             |                 | $\sum p_i(x_i - \mu)^2 = 17.64$               |
|                |                | $\mu$ = 24          |             |                 | $\sigma = \sqrt{\sum p_i(x_i - \mu)^2} = 4.2$ |

- (a) 0.08
- (b) 0.22
- (c) 0.0112
- (d) 0.92
- (e)  $\mu = 24$
- (f)  $\sigma = 4.2$

| Xi      | <b>p</b> i | $p_i x_i$           | $x_i - \mu$ | $(x_i - \mu)^2$ | $\rho_i(x_i-\mu)^2$                           |
|---------|------------|---------------------|-------------|-----------------|-----------------------------------------------|
| 22      | 0.12       | 2.64                | -4          | 16              | 1.92                                          |
| 25      | 0.12       | 3                   | -1          | 1               | 0.12                                          |
| 26      | 0.46       | 11.96               | 0           | 0               | 0                                             |
| 28      | 0.3        | 8.4                 | 2           | 4               | 1.2                                           |
| ======= | =======    | =======             | =======     | =======         | =======                                       |
|         |            | $\sum p_i x_i = 26$ |             |                 | $\sum p_i(x_i - \mu)^2 = 3.24$                |
|         |            | $\mu$ = 26          |             |                 | $\sigma = \sqrt{\sum p_i(x_i - \mu)^2} = 1.8$ |

- (a) 0.12
- (b) 0.76
- (c) 0.138
- (d) 0.88
- (e)  $\mu = 26$
- (f)  $\sigma = 1.8$

| $X_i$   | $p_i$   | $p_i x_i$           | $\mathbf{X}_i - \mathbf{\mu}$ | $(x_i-\mu)^2$ | $p_i(x_i-\mu)^2$                              |
|---------|---------|---------------------|-------------------------------|---------------|-----------------------------------------------|
| 3       | 0.13    | 0.39                | -10                           | 100           | 13                                            |
| 13      | 0.66    | 8.58                | 0                             | 0             | 0                                             |
| 15      | 0.13    | 1.95                | 2                             | 4             | 0.52                                          |
| 26      | 0.08    | 2.08                | 13                            | 169           | 13.52                                         |
| ======= | ======= | =======             | =======                       | =======       | =======                                       |
|         |         | $\sum p_i x_i = 13$ |                               |               | $\sum p_i(x_i - \mu)^2 = 27.04$               |
|         |         | $\mu$ = 13          |                               |               | $\sigma = \sqrt{\sum p_i(x_i - \mu)^2} = 5.2$ |

- (a) 0.08
- (b) 0.79
- (c) 0.0858
- (d) 0.92
- (e)  $\mu$  = 13
- (f)  $\sigma = 5.2$