1 Цепные дроби

2 Конечные цепные дроби

Определение. Выражение вида

$$a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{\ddots + \cfrac{1}{a_m}}}},$$

где $a_0 \in \mathbb{Z}$, $a_1, \ldots, a_{m-1} \in \mathbb{N}$, $a_m \in \mathbb{N}/\{1\}$ называется цепной дробью, а m - длиной цепной дроби. a_0, a_1, \ldots, a_m будем называть коэффициентами цепной дроби.

Далее для удобства такую цепную дробь будем обозначать в виде $[a_0, a_1, \dots, a_m]$.

Замечание. Нетрудно видеть что любая цепная дробь равна некоторому рациональному числу $\frac{k}{l}$.

Пример.
$$a_0 + \frac{1}{a_1}$$
 - цепная дробь длины 1, $a_0 + \frac{1}{a_1 + \frac{1}{a_2}}$ - цепная дробь

длины 2.

$$\frac{11}{3} = 3 + \frac{1}{1 + \frac{1}{2}}.$$
$$\frac{-7}{3} = -3 + \frac{1}{1 + \frac{1}{2}}.$$

Теорема 1. Дробь $\frac{k}{l}$ равна некоторой цепной дроби тогда и только тогда когда коэффициенты этой цепной дроби - последовательные неполные частные в алгоритме Евклида для пары (k,l).

Доказательство.

Докажем достаточность. Распишем алгоритм Евклида для пары (k, l):

$$k = q_1 l + r_1,$$

$$l = q_2 r_1 + r_2,$$

$$r_1 = q_3 r_2 + r_3,$$

$$...$$

$$r_s = q_{s+2} r_{s+1} + r_{s+2}$$

$$r_{s+1} = r_{s+2} q_{s+3}.$$

Перепишем его в следующем виде:

$$\frac{k}{l} = q_1 + \frac{r_1}{l},$$

$$\frac{l}{r_1} = q_2 + \frac{r_2}{r_1},$$

$$\frac{r_1}{r_2} = q_3 + \frac{r_3}{r_2},$$
 ...
$$\frac{r_s}{r_{s+1}} = q_{s+2} + \frac{r_{s+2}}{r_{s+1}},$$

$$\frac{r_{s+1}}{r_{s+2}} = q_{s+3}.$$

$$\text{Тогда } \frac{k}{l} = q_1 + \frac{r_1}{l} = q_1 + \frac{1}{l/r_1} = q_1 + \frac{1}{q_2 + \frac{r_2}{r_1}} = q_1 + \frac{1}{q_2 + \frac{1}{r_1/r_2}} = q_1 + \frac{1}{q_2 + \frac{1}{r_2}} = q_1 + \frac{1}{q_2 + \frac{1}{$$

Нетрудно видеть, что все коэффициенты q_i удовлетворяют условиям указанным в определении.

Докажем необходимость. Воспользуемся индукцией по длине дроби. Случай m=0 очевиден. В случае m=1 получаем

$$\frac{k}{l} = a_0 + \frac{1}{a_1}.$$

Исходя из того, что $\frac{1}{a_1}<1$ получаем, что $\left[\frac{k}{l}\right]=a_0$. Пусть k=ql+r, тогда $a_0=q$. Тогда $\frac{1}{a_1}=\frac{r}{l}$. Отсюда $r=1,\ a_1=l$. Отсюда получаем, что алгоритм Евклида для пары (k,l) выглядит следующим образом

$$k = ql + 1, \quad l = 1 \cdot l.$$

Нетрудно видеть что мы получили необходимое.

Пусть данное утверждение верно для всех $m \leq n$. Докажем его его для m = n + 1. Пусть

$$\frac{k}{l} = [a_0, a_1, \dots, a_n, a_{n+1}].$$

Нетрудно видеть, что $a_0 = \left[\frac{k}{l}\right] = q_1$. Тогда данное равенство можно переписать в виде

$$\frac{l}{r_1} = [a_1, \dots, a_n, a_{n+1}].$$

В правой части находится цепная дробь длины п для которой можно применить предположение индукции и получить требуемое.

Замечание. Из этой теоремы следует что любая дробь $\frac{k}{l}$ представима в виде цепной дроби единственным образом. Коэффициенты этой дроби являются неполными частными в алгоритме Евклида.

Пример. Представить в виде цепной дроби $\frac{17}{24}$. Запишем алгоритм Евклида для пары (17, 24):

$$17 = 0 \cdot 24 + 17,$$

$$24 = 1 \cdot 17 + 7,$$

$$17 = 2 \cdot 7 + 3,$$

$$7 = 2 \cdot 3 + 1,$$

$$3 = 3 \cdot 1.$$

То есть $\frac{17}{24}=[0,1,2,2,3].$ Определение. Подходящей дробью к дроби $[a_0,a_1,\ldots,a_m]$ будем называть любую дробь $\frac{P_n}{Q_n}=[a_0,a_1,\ldots,a_n],$ где $n\leq m.$ P_n будем называть подходящим числителем, а Q_n подходящим знаменателем соответственно.

Замечание. В подходящих дробях мы позволяем последнему коэффициенту быть равным 1.

Пример. Подходящими дробями для дроби [0, 1, 2, 2, 3] являются [0], [0,1], [0,1,2], [0,1,2,2], [0,1,2,2,3].

Теорема 2. Подходящие числители и знаменатели связаны следующими реккурентными соотношениями

$$P_0 = a_0, \quad Q_0 = 1,$$

$$P_1 = a_0 a_1 + 1$$
 $Q_1 = a_1$,

$$P_n = a_n P_{n-1} + P_{n-2}$$
 $Q_n = a_n Q_{n-1} + Q_{n-2}$.

Воспользуемся индукцией по $n(n \le m)$. В истинности утверждения нетрудно убедиться непосредственной проверкой для n=0,1,2. Пусть теперь это

утверждение верно для некоторого n. Докажем его для n+1. Рассмотрим подходящую дробь длины n+1 - $\frac{P_{n+1}}{Q_{n+1}}=[a_0,a_1,\ldots,a_{n-1},a_n,a_{n+1}].$ Если в этой дробт заменить $a_n+\frac{1}{a_{n+1}}$ на b_n мы получим цепную дробь длины n: $[a_0, a_1, \ldots, a_{n-1}, b_n]$. Пусть она равна $\frac{\tilde{P}_n}{\tilde{Q}_n}$. Тогда по предположению индукции

$$\frac{P_{n+1}}{Q_{n+1}} = \frac{\widetilde{P}_n}{\widetilde{Q}_n} = \frac{\left(a_n + \frac{1}{a_{n+1}}\right) P_{n-1} + P_{n-2}}{\left(a_n + \frac{1}{a_{n+1}}\right) Q_{n-1} + Q_{n-2}} = \frac{P_n + \frac{P_{n-1}}{a_{n+1}}}{Q_n + \frac{Q_{n-1}}{a_{n+1}}} = \frac{a_{n+1} P_n + P_{n-1}}{a_{n+1} Q_n + Q_{n-1}}.$$

Что и требовалось доказать.

Пример. Рассмотрим дробь [0, 1, 2, 2, 3]. Используя Теорему 2 найдём все подходящие числители и знаменатели:

$$P_0 = 0,$$
 $Q_0 = 1,$
 $P_1 = 1,$ $Q_1 = 1$
 $P_2 = 2$ $Q_2 = 3,$
 $P_3 = 5,$ $Q_3 = 7,$
 $P_4 = 17$ $Q_4 = 24.$

Свойства подходящих дробей:

$$1)P_nQ_{n-1}-P_{n-1}Q_n=(-1)^{n-1}$$
 для любого $1\leq n\leq m.$

Доказательство

Воспользуемся индукцией по n. Для n = 0, 1 это очевидно верно. Пусть это верно для некоторого n. Докажем это утверждение для n+1:

$$P_{n+1}Q_n - P_nQ_{n+1} = a_n P_n Q_n + P_{n-1}Q_n - a_n P_n Q_n - Q_{n-1}P_n = -(P_n Q_{n-1} - Q_n P_{n-1}) = -(-1)^{n-1} = (-1)^n.$$

Что и требовалось доказать.

Пример. Рассмотрим цепную дробь [0, 1, 2, 2, 3]. Как было показано ранее $P_3 = 5$, $Q_3 = 7$, $P_4 = 17$, $Q_4 = 24$. Действительно $P_4Q_3 - Q_4P_3 = -1$.

$$(2)(P_n,Q_n)=1$$
 для любого $n \leq m$.

Доказательство

Предположим $(P_n,Q_n) \neq 1$, но тогда получим противоречие исходя из равенства $P_nQ_{n-1} - P_{n-1}Q_n = (-1)^{n-1}$.

3) Последовательность Q_n возрастает. Последовательность P_n возрастает, если $a_0 \ge 0$.

Доказательство

Заметим, что $Q_0 \le Q_1$. Тогда и $Q_n \le Q_{n+1}$ исходя из равенства $Q_{n+1} =$ $a_nQ_n+Q_{n-1}.$ Аналогично для P_n при $a_0\geq 0.$

Замечание. Рассмотрим цепную дробь [-2,2,2]. Для неё $P_0=-2,P_1=$ -3, то есть P_n не возрастает.

Замечание. Заметим, что начиная со второго члена последовательность Q_n является строго возрастающей.

$$4)\frac{P_n}{Q_n} - \frac{P_{n-1}}{Q_{n-1}} = \frac{(-1)^{n-1}}{Q_n Q_{n-1}}$$
 для любого $1 \le n \le m$.

Доказательство

Данное утверждение можно получить из Свойства 2 разделив обе части равенства на $Q_n Q_{n-1}$.

$$5)P_nQ_{n-2}-P_{n-2}Q_n=a_n(-1)^n$$
 для любого $2\leq n\leq m.$

Доказательство

$$P_{n}Q_{n-2} - P_{n-2}Q_{n} = a_{n}P_{n-1}Q_{n-2} + P_{n-1}Q_{n-1} - a_{n}P_{n-2}Q_{n-1} - P_{n-2}Q_{n-1} = a_{n}(P_{n-1}Q_{n-2} - P_{n-2}Q_{n-1}) = a_{n}(-1)^{n-2} = a_{n}(-1)^{n}.$$

$$6)\frac{P_{n}}{Q_{n}} - \frac{P_{n-2}}{Q_{n-2}} = \frac{(-1)^{n}a_{n}}{Q_{n}Q_{n-2}}$$

7)Подходящие дроби чётной длины возрастают, а нечётной убывают.

Доказательство

Достаточно рассмотреть в предыдущем свойсте случаи чётного и нечётного n.

8) Любая подходящая дробь чётной длины меньше любой подходящей дроби нечётной длины.

Доказательство

Исходя из свойства 4 можно получить, что $\frac{P_{2k}}{Q_{2k}} < \frac{P_{2k+1}}{Q_{2k+1}}$. Если же некоторая дробь чётной длины больше либо равна некоторой дроби нечётной длины, то исходя из свойства 7 получаем что последняя дробь чётной длины больше либо равна последней дроби нечётной длины. Исходя из ранее доказанного получаем противоречие.

Теорема. Решениями уравнения x + by = c, (a, b)|c явялются следующие числа

$$x = (-1)^{m-1}Q_{m-1}P_mc/a + Q_mt,$$

$$y = (-1)^m P_{m-1}Q_mc/a - P_mt, t \in \mathbb{Z},$$

где $a/b = [a_0, a_1, \dots, a_m], P_m/Q_m$ и P_{m-1}/Q_{m-1} - соответствующие подходящие дроби.

Задача. Решить уравнение 17x + 24y = 1.

Оно очевидно разрешимо, так как (17, 24)|1.

Ранее было получено следующее представление 17/24 = [0, 1, 2, 2, 3]. Также было найдено, что $P_3=5,\,Q_3=7,\,P_4=17,\,Q_4=24.$ Таким образом получаем:

$$x = -7 + 24t \qquad y = 5 - 17t \quad t \in \mathbb{Z}.$$

Замечание. Можно рассмотреть понятие конечной обобщённой дроби, а именно цепной дроби $[a_0, a_1, \ldots, a_m]$, где $a_0 \in \mathbb{Z}, a_1, \ldots, a_{m-1} \in \mathbb{Z}/$ $\{0\}, a_m \in \mathbb{Z}/\{0,1\}$. Отметим, что тогда, как правило, разложение в цепную дробь не единственно, но некоторые представления числа $\frac{k}{l}$ в виде обощённой цепной дроби можно получить используя обобщённый алгоритм Евклида(такой алгоритм, вообще говоря, не единственен), а именно алгоритм в котором используется следующее деление с остатком: a = qb + r, |r| < |b|

Пример. Получить некоторые разложения в обобщённую цепную дробь дроби 17/24.

Заметим, что одно разложение 17/24 = [0, 1, 2, 2, 3] уже было найдено. Далее воспользуемся обощённым алгоритмом Евклида:

$$17 = 0 \cdot 24 + 17,$$

$$24 = 2 \cdot 17 - 10,$$

$$17 = (-2) \cdot (-10) - 3,$$

$$-10 = (-4) \cdot (-3) + 2,$$

$$-3 = (-2) \cdot 2 + 1,$$

$$2 = 2 \cdot 1.$$

Таким образом имеем также следующее разложение - 17/24 = [0, 2, -2, -4, -2, 2]. Аналогично

$$17 = 0 \cdot 24 + 17,$$

$$24 = 1 \cdot 17 + 7,$$

$$17 = 3 \cdot 7 - 4,$$

$$7 = 2 \cdot (-4) + 1,$$

$$-4 = (-4) \cdot 1.$$

Таким образом имеем также следующее разложение - 17/24 = [0, 1, 3, 2, -4].

2.1 Бесконечные цепные дроби.

Рассмотрим некоторую бесконечную последовательность $a_0, a_1, \ldots, a_m, \ldots$, такую что $a_0 \in \mathbb{Z}, a_i \in \mathbb{N}, i \neq 0$. Обозначим через $P_n/Q_n = [a_0, a_1, \ldots, a_n]$. Если существует $\alpha = \lim_{n \to \infty} \frac{P_n}{Q_n}$, то будем говорить, что *цепная дробь порожсдённая последовательностью* (a_m) *сходится* и будем записывать

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}} = \alpha.$$

Данную конструкцию будем называть бесконечной цепной дробью. По аналогии с конечными цепными дробями a_i будем называть коэффициентами бесконечной цепной дроби, P_n/Q_n , P_n и Q_n подходящей дробью, подходящим числителем и знаменателем соответственно.

Теорема 3. Любая подходящая дробь сходится.

Доказательство

Исходя из свойства 2 получаем

$$\left| \frac{P_n}{Q_n} - \frac{P_{n-1}}{Q_{n-1}} \right| = \frac{1}{Q_n Q_{n-1}} \le \frac{1}{Q_n^2}.$$

Исход из того, что Q_n является строго возрастающей начиная со второго элемената получаем, что $\lim_{n\to\infty}Q_n=+\infty$. Из этого следует, что $\lim_{n\to\infty}P_n/Q_n-P_{n-1}/Q_{n-1}=0$.

Далее обозначим $\alpha_k = P_{2k}/Q_{2k}$ и $\beta_k = P_{2k+1}/Q_{2k+1}$. Таким образом, мы получили, что $\lim_{n\to\infty} \alpha_n - \beta_n = 0$. Исходя из рассмотренных ранее свойст подходящих дробей получаем, что $\alpha_n \uparrow$ и $\beta_n \downarrow$. Также любое α_i не превосходит любого β_i .

Отметим, что последовательность α_n монотонна и ограничена(например β_0), а значит сходится. Аналогично β_n является сходящейся последовательностью. А значит

$$\lim_{n \to \infty} \alpha_n - \beta_n = \lim_{n \to \infty} \alpha_n - \lim_{n \to \infty} \beta_n = 0.$$

Тогда $\lim_{n\to\infty}\alpha_n=\lim_{n\to\infty}\beta_n$. Следовательно предел $\lim_{n\to\infty}P_n/Q_n$ существует. Задача. Найти значение подходяще дроби $[1,4,1,4,1,4,\dots]$.

Обозначим значение дроби за α . Исходя из прошлой теоремы оно всегда существует.

Исходя из того что дробь периодическая можно заметить, что

$$\alpha = 1 + \frac{1}{4 + \frac{1}{\alpha}}.$$

Отсюда $4\alpha^2 - 4\alpha - 1 = 0$. Решая квадратное уравнение получаем

$$\alpha_{1/2} = \frac{1}{2} \pm \frac{1}{\sqrt{2}}.$$

Отметим, что $\alpha_2 = \frac{1}{2} - \frac{1}{\sqrt{2}}$ отрицательно, но нетрудно видеть, что $P_n, Q_n >$ 0, а значит $\lim_{n\to\infty}\frac{P_n}{Q_n}\geq 0$. Таким образом α_2 не подходит. Отсюда следует,

$$[1,4,1,4,1,4,\dots] = \frac{1}{2} + \frac{1}{\sqrt{2}}.$$

Теорема 4. Число α представимо в виде бесконечной цепной дроби тогда и только тогда, когда оно иррационально. Причём коэффициенты a_i могут быть найдены с помощью следующего алгоритма:

$$\alpha_0 = \alpha \quad a_0 = [\alpha_0],$$

$$\alpha_i = \frac{1}{\alpha_{i-1} - a_{i-1}} \qquad a_i = [\alpha_i].$$

Теорема 5. Разложение в бесконечную цепную дробь иррационального числа α единственно.

Замечание. Доказательство этих двух теорем приведено в книге А.А.Бухштаба Теория чисел в главе Бесконечные цепные дроби.

Задача. Представить в виде бесконечной цепной дроби число $\varphi = \frac{1+\sqrt{5}}{2}$. Решение

$$\alpha_0 = \frac{1+\sqrt{5}}{2}, \quad a_0 = \left[\frac{1+\sqrt{5}}{2}\right] = 1,$$

$$\alpha_1 = \frac{2}{\sqrt{5}-1} = \frac{1+\sqrt{5}}{2}, \quad a_1 = \left[\frac{1+\sqrt{5}}{2}\right] = 1.$$

Далее нетрудно заметить, что

$$\varphi = [1, 1, 1, 1, \dots].$$

Определение. Бесконечную цепную дробь $[a_0, a_1, a_2 \dots]$ будем называть nepuoduчeckoŭ, если существую такие числа k и s_0 , что для любого $s \geq s_0$ выполняется $a_s = a_{s+k}$. Если можно взять $s_0 = 0$, то такую дробь будем называть $vucmo\ nepuodu<math>veckoŭ$.

Пример. Дробь $[1,1,1,1,\dots]$ является чисто периодической. Дробь $[2,4,4,4,4,\dots]$ является периодической, но не чисто периодической.

Теорема 6. Бесконечная цепная дробь является периодической тогда и только тогда она равна некоторой *квадратичной иррациональности* (то есть иррациональному корню некоторого многочлена второй степени с целыми коэффициентами).

Замечание. Доказательство данной теоремы приведено в книге А.А.Бухштаба Теория чисел в главе Квадратичные иррациональности и периодические цепные дроби.

Пример. $\varphi = \frac{1+\sqrt{5}}{2}$ является корнем многочлена $x^2 - x - 1 = 0$ и представимо в виде чисто периодической цепной дроби $[1,1,1,1,\ldots]$.

Можно показать, что $[2,4,4,4,4\dots]$ равно $\sqrt{5},$ то есть корню многочлена $x^2-5=0.$

Определение. Рассмотрим некоторое иррациональное число α . Дробь a/b будем называть наилучшим приближением к α , если для любой другой дроби c/d, $d \le b$ верно неравенство

$$\left|\alpha - \frac{a}{b}\right| < \left|\alpha - \frac{c}{d}\right|.$$

Теорема 7. Пусть $\alpha=[a_0,a_1,a_2,\dots]$ и P_n/Q_n - подходящая дробь данной бесконечной цепной дроби. Тогда $P_n/Q_n,\, n\geq 1$ является наилучшим приближением к α .

Пример. Рассмотрим число π . 22/7 является его наилучшим приближением, а также вторая подходящая дробь разложения числа π .

Приложение бесконечных цепных дробей. Рассмотрим уравнение в натуральных числах $x^2 - dy^2 = 1$, где d не является точным квадратом(это так называемое *уравнение Пелля*). Тогда все его решения могут быть найдены по следующим формулам:

$$x_n = \frac{1}{2} \left((x_0 + y_0 \sqrt{d})^n + (x_0 - y_0 \sqrt{d})^n \right),$$

$$y_n = \frac{1}{2\sqrt{d}} \left((x_0 + y_0 \sqrt{d})^n - (x_0 - y_0 \sqrt{d})^n \right),$$

где P_k/Q_k - подходящая дробь для \sqrt{d} , а $x_0=P_{k-1}, y_0=Q_{k-1}$, где k - четное число, такое что a_k является концом периода наименьшей четной длины с началом в a_1 .

Задача. Решить уравнение $x^2 - 5y^2 = 1$ в натуральных числах.

Воспользуемся тем фактом, что $5=[2,4,4,4,4,\dots]$. Тогда $k=2,P_1/Q_1=[2,4]=9/4$ и $x_0=9,\ y_0=4$. Тогда

$$x_n = \frac{1}{2} \left((9 + 4\sqrt{5})^n + (9 - 4\sqrt{5})^n \right),$$

$$y_n = \frac{1}{2\sqrt{5}} \left((9 + 4\sqrt{5})^n - (9 - 4\sqrt{5})^n \right).$$

3 Задачи для самостоятельного решения.

Задача 1

- а) Разложить в цепную дробь число 131/583, найти все подходящие дроби.
 - b) Найти значение бесконечной чисто периодической цепной дроби $[1,2,2,2,1,2,2,2,\dots]$.
 - c)Представить в виде бесконечной цепной дроби $\sqrt{2}$.
- d) Решить уравнения 131x + 583y = 1 и $x^2 - 2y^2 = 1$ (в натуральных и целых числах соответственно).
 - е)Найти несколько разложений в обобщённую цепную дробь числа 131/583.

Задача 2

- а) Получить аналоги свойств 1,4 и 5,6 для подх
лдящих дробей P_n/Q_n и $P_{n-3}/Q_{n-3},$ где
 $3\leq n\leq m.$
- b)Пусть $f_{\alpha}(n)$ количество точек с натуральными координатами в области координатной плоскости ограниченной прямой $y=\alpha x$, прямой x=n и осью Ox. Будем считать, что $n\in\mathbb{N}$ и $\alpha>0$. Пусть α иррационально. Покажите, что $f_{\alpha}(n)=f_{P_k/Q_k}(n)$, где P_k/Q_k любая подходящая дробь для α с знаменателем большим n.