TD 14 Limites de fonctions et continuité

Exercice 1: ★★

Une personne parcourt 4 km en une heure. Montrer qu'il existe un intervalle de 30 minutes pendant lequel elle parcourt exactement 2km.

Exercice 2: ★★★

Soient f et g deux fonctions continues en $a \in \mathbb{R}$. Montrer que $x \mapsto \max(f(x), g(x))$ est continue en a.

Exercice 3: ★★★

Étudier la continuité de la fonction $x \mapsto (x - |x|)^2 + |x|$.

Exercice 4: ★★★

Soient f et g deux fonctions définies sur un intervalle I, continues en $a \in I$ et telles que $f(a) \neq g(a)$. Montrer qu'il existe un intervalle J contenant a tel que $f(x) \neq g(x)$ pour tout $x \in J$.

Exercice 5: ★★

Soit $f:[0,1]\to [0,1]$ continue. Montrer que f admet un point fixe :

$$\exists \ a \in [0,1], \ f(a) = a.$$

Exercice 6: ★★★

Soient

$$\begin{array}{cccc} g: & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & \left\{ \begin{array}{ccc} 0 & \text{si } x \in \mathbb{Q} \\ 1 & \text{sinon} \end{array} \right. \end{array}$$

et $f: x \mapsto x^2(x-2)g(x)$. Montrer que f est continue en 0 et en 2, et discontinue en tout $x \notin \{0,2\}$.

Exercice 7: ★★★

Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ continue et telle que $\lim_{x \to +\infty} f(x) = 0$. Prouver que pour tout $a \in \mathbb{R}^+_*$, il existe $b \ge a$ en lequel f atteint son maximum sur $[a, +\infty[$.

Exercice 8: ★★★

Soit f une fonction définie et strictement croissante sur [a,b] et telle que f([a,b])=[f(a),f(b)]. Montrer que f est continue sur [a,b].

Exercice 9: ★★★

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction continue vérifiant $f(x^2) = f(x)$ pour tout $x \ge 0$.

- (1) Montrer que pour tout a > 0 et tout $n \in \mathbb{N}$, $f(a) = f\left(a^{\frac{1}{2^n}}\right)$.
- (2) En déduire que f est constante.

Exercice 10: ★★★

Soit $f:[0,1] \to [0,1]$ continue telle que $f \circ f = f$. On note $E_f = \{x \in [0,1] \mid f(x) = x\}$. Montrer que E_f est un intervalle non vide. Trouver toutes les fonctions $f:[0,1] \to [0,1]$ continues telles que $f \circ f = f$.

Exercice 11: ★★★

Soit $A \subset \mathbb{R}$ et $f: x \mapsto \inf\{|x-a| \mid a \in A\}$. Montrer que f est continue.

Exercice 12: ★★★

Soit $f:[0,1]\to\mathbb{R}$ telle que pour tout $y\in[0,1], \lim_{x\to y, x\neq y}f(x)$ existe. On note alors $\varphi(y)$ cette limite. Montrer que la fonction φ est continue sur [0,1].

Exercice 13: ★★★★

Soient f et g deux fonctions continues sur [a,b] et $\varphi: x \mapsto \sup_{t \in [a,b]} (f(t) + xg(t))$. Montrer que φ est continue.