Surname	Othe	r names
Pearson Edexcel GCSE	Centre Number	Candidate Number
	1.	
Mathema Unit 3: Number, A		try 2 (Calculator Higher Tie
Mathema Unit 3: Number, A	lgebra, Geome	

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators may be used.
- If your calculator does not have a π button, take the value of π to be 3.142 unless the question instructs otherwise.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P44792A
©2015 Pearson Education Ltd.

GCSE Mathematics 2MB01

Formulae: Higher Tier

You must not write on this formulae page. Anything you write on this formulae page will gain NO credit.

Volume of prism = area of cross section \times length

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

Surface area of sphere = $4\pi r^2$

In any triangle ABC

Sine Rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine Rule $a^2 = b^2 + c^2 - 2bc \cos A$

Area of triangle =
$$\frac{1}{2} ab \sin C$$

Area of trapezium = $\frac{1}{2} (a + b)h$

Volume of cone =
$$\frac{1}{3}\pi r^2 h$$

Curved surface area of cone = πrl

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$ where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Answer ALL questions.

Write your answers in the spaces provided.

You must write down all stages in your working.

1 7 calculators cost £41.65

Work out the cost of 12 of these calculators.

£

(Total for Question 1 is 2 marks)

2 Jane invests £300 at a simple interest rate of 4.5% per year. At the end of each year Jane gives the interest to a charity.

Work out the least number of years it will take for the total amount given to the charity to be greater than £50

(Total for Question 2 is 3 marks)

3	(a) Solve	4(y+3) = 19
J	(a) Solve	4(y + 3) - 19

(b) Solve the inequality
$$2p - 8 > 7$$

(c) Solve
$$x^2 + 2x - 15 = 0$$

*4 A shop sells coffee in 3 different sizes of jar.

A 150 g jar of coffee costs £4.39 A 200 g jar of coffee costs £6.39 A 275 g jar of coffee costs £7.95

Which size of jar is the best value for money? You must show all your working.

(Total for Question 4 is 4 marks)

5 (a) Complete the table of values for $y = x^2 - 2$

x	-3	-2	-1	0	1	2	3
y		2	-1			2	7

(2)

(b) On the grid, draw the graph of $y = x^2 - 2$ for values of x from -3 to 3

(2)

(Total for Question 5 is 4 marks)

Asha and Lucy are selling pencils in a school shop. They sell boxes of pencils and single pencils. Asha sells 7 boxes of pencils and 22 single pencils. Lucy sells 5 boxes of pencils and 2 single pencils. Asha sells twice as many pencils as Lucy. Work out how many pencils there are in a box. (Total for Question 6 is 4 marks) Callum has £240 He wants to buy some tickets that cost 10 euros each. The exchange rate is £1 = 1.20 euros. Work out the greatest number of tickets that Callum can buy.

(Total for Question 7 is 3 marks)

8 The diagram shows the plan of a park.

Scale: 1 cm represents 100 m

A fountain in the park is equidistant from A and from C.

The fountain is exactly 700 m from D.

On the diagram, mark the position of the fountain with a cross (X).

(Total for Question 8 is 3 marks)

***9** *ABCD* and *PQRS* are two rectangles.

Diagram **NOT** accurately drawn

Rectangle ABCD is 15 cm by 10 cm.

There is a space 5 cm wide between rectangle ABCD and rectangle PQRS.

Are rectangle *ABCD* and rectangle *PQRS* mathematically similar? You must show how you got your answer.

(Total for Question 9 is 3 marks)

10

Describe fully the single transformation that maps triangle **A** onto triangle **B**.

(Total for Question 10 is 3 marks)

11 A can of soup is a cylinder with diameter 7 cm. The can is 10 cm high.

The can is full of soup.

The soup is poured into a saucepan.

The saucepan is a cylinder with diameter 12 cm.

Work out the depth of the soup in the saucepan. Give your answer correct to 1 decimal place.

..... cn

(Total for Question 11 is 3 marks)

12 Work out
$$\frac{(2.6 \times 10^7) - (5 \times 10^6)}{2.8 \times 10^{-3}}$$

Give your answer in standard form.

(Total for Question 12 is 2 marks)

13

Diagram **NOT** accurately drawn

ABC is a right-angled triangle.

A, B and C are points on the circumference of a circle centre O.

AB = 5 cm

BC = 8 cm

AOC is a diameter of the circle.

Calculate the circumference of the circle.

Give your answer correct to 3 significant figures.

(Total for Question 13 is 4 marks)

*14

A, B and C are points on the circumference of a circle.

The straight line *PAQ* is a tangent to the circle.

Angle $PAC = 56^{\circ}$

Angle $ACB = 75^{\circ}$

Work out the size of the angle marked x.

Give reasons for each stage of your working.

(Total for Question 14 is 3 marks)

15 A ball fell 2 metres onto horizontal ground.

The ball hit the ground and bounced up and down 3 times.

The first time the ball bounced, it rose to 75% of the height it fell from.

The second time the ball bounced, it rose to 75% of the height it reached after the first bounce.

The third time the ball bounced, it rose to 75% of the height it reached after the second bounce.

Work out the height the ball reached after the third bounce.

Give your answer correct to 2 decimal places.

.....

(Total for Question 15 is 3 marks)

16 Make x the subject of the formula $y = \frac{3x}{x+5}$

(Total for Question 16 is 3 marks)

17 The diagram shows a regular pentagon ABCDE.

Diagram **NOT** accurately drawn

The pentagon is divided into 5 isosceles triangles.

$$OA = OB = OC = OD = OE = 6 \text{ m}$$

Work out the area of the pentagon.

Give your answer correct to 1 decimal place.

.....

(Total for Question 17 is 4 marks)

18 y is inversely proportional to the square of x.

When
$$x = 5$$
, $y = 15$

Write a formula for y in terms of x.

(Total for Question 18 is 3 marks)

19 a = 40 correct to 1 significant figure. b = 0.2 correct to 1 significant figure.

Calculate the upper bound of $\frac{a}{b}$

(Total for Question 19 is 3 marks)

- **20** The expression $x^2 8x + 6$ can be written in the form $(x p)^2 + q$ for all values of x.
 - (a) Find the value of p and the value of q.

p =

q =

The graph of $y = x^2 - 8x + 6$ has a minimum point.

(b) Write down the coordinates of this point.

(.....

(Total for Question 20 is 4 marks)

21 The graph of y = f(x) is shown on the grid.

(a) On the grid above, sketch the graph of y = f(x + 3)

(2)

The graph of y = g(x) is shown below.

The graph **G** is the reflection of y = g(x) in the *x*-axis.

(b) Write down an equation of graph G.

(1)

(Total for Question 21 is 3 marks)

Diagram **NOT** accurately drawn

There is a coastguard station at point A and at point B.

B is due East of A.

The distance from A to B is 12 km.

There is a rowing boat at point R.

R is on a bearing of 160° from A.

R is on a bearing of 220° from B.

There is a speedboat at point T.

T is 5 km due South of *A*.

Work out the shortest distance from T to R.

Give your answer correct to 1 decimal place.

You must show all your working.

Diagram **NOT** accurately drawn

OAB is a triangle.

$$\overrightarrow{OA} = \mathbf{a}$$

$$\overrightarrow{OB} = \mathbf{b}$$

M is the midpoint of AB.

OMN is a straight line such that ON : OM = 3 : 2

Find, in terms of **a** and **b**, an expression for the vector \overrightarrow{ON} . Write your answer in its simplest form.

(Total for Question 23 is 4 marks)

TOTAL FOR PAPER IS 80 MARKS