МИНОБРНАУКИ РОССИИ

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) Кафедра ИИСТ

ЛАБОРАТОРНАЯ РАБОТА По дисциплине «Метрология» Тема: ИССЛЕДОВАНИЕ ОСНОВНЫХ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Студент гр. 9309		Аль Сайед А.З.
Преподаватель		Орлова Н.В.
Ca	анкт-Петербург 2021	

Цель работы:

Ознакомление с методикой поверки электромеханических приборов и определение некоторых метрологических характеристик.

Схема установки.

Спецификация применяемых средств измерения.

<u>ліецификация применяемых средств измерения.</u>								
Сертификация применяемых средств измерений								
Наименование	Диапазоны	Характеристики	Рабочий	Параметры				
Средств	измерений	точности,	диапазон	входа				
измерений		классы	частот	(выхода)				
		точности						
Вольтметр	0-20B	0,001U	-	R _B x≥10 MO _M				
универсальный								
цифровой								
GDM-8135								
Универсальный	0-10B	5%	1 Гц -30 кГц					
Электро-								
механический								
Прибор ҮХ-								
360TR								
Генератор	1 Гц -30 кГц		1 Гц -20 гГц	50 Ом				
низкочастотный								
SFG-2120								

Поверка электромеханического миллиамперметра.

f(Гц)	21	30	40	50	1000	10000	20000	30000	40000	50000	60000	70000
U(B)	6	6	6	6	5,95	5,8	5,2	4,6	4	3,6	3,4	3
K(f)	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1	0,9	0,8	0,7	0,6

$$\Delta x_{y_B} = x - x_{0y_B}; \qquad \Delta x_{y_M} = x - x_{0y_M}; \qquad \delta = 100 \Delta x/x; \qquad \Upsilon = 100 \Delta x/x_N; \qquad x_N = 5 \text{MA}; \qquad B = 100 | x_{y_B} - x_{y_M}|/x_N$$

Показания проверяемо	Показания	Абсолютная	Относит.	Прирадац	Вариация В, %
	образцового СИ	погрешность Δ	погрешно	Приведен ная	
1 1	X_0 , MA	X, MA	сть δ, %		,

го прибора,	Увелич	Умень	Увелич	Умень		погрешно	
x, MA		ш.		ш.		сть γ, %	
2,0	1,9700	1,9500	0,0300	0,0500	1,5	2,5	2,50
4,0	3,9600	3,9200	0,0400	0,0800	1	2	2,00
6,0	5,9700	6,0000	0,0300	0,0000	0,5	0	0,50
8,0	8,0000	7,9800	0,0000	0,0200	0	0,25	0,25
10,0	9,9400	9,9200	0,0600	0,0800	0,6	0,8	0,80

Зависимость относительной и приведенной погрешностей миллиамперметра в зависимости от его показаний

Выводы:

Поверка электромеханического миллиамперметра показала, что прибор соответствует своему классу точности, равному 0.5, т.к. приведенная погрешность на всей шкале его не превосходит.