```
Download from finelybook www.finelybook.com
def transform(self, X):
   return X[self.attribute names].values
```

Select and Train a Model

At last! You framed the problem, you got the data and explored it, you sampled a training set and a test set, and you wrote transformation pipelines to clean up and prepare your data for Machine Learning algorithms automatically. You are now ready to select and train a Machine Learning model.

Training and Evaluating on the Training Set

The good news is that thanks to all these previous steps, things are now going to be much simpler than you might think. Let's first train a Linear Regression model, like we did in the previous chapter:

```
from sklearn.linear_model import LinearRegression
lin reg = LinearRegression()
lin reg.fit(housing prepared, housing labels)
```

Done! You now have a working Linear Regression model. Let's try it out on a few instances from the training set:

```
>>> some data = housing.iloc[:5]
>>> some_labels = housing_labels.iloc[:5]
>>> some_data_prepared = full_pipeline.transform(some_data)
>>> print("Predictions:\t", lin_reg.predict(some_data_prepared))
Predictions:
             [ 303104. 44800. 308928. 294208. 368704.]
>>> print("Labels:\t\t", list(some_labels))
                [359400.0, 69700.0, 302100.0, 301300.0, 351900.0]
Labels:
```

It works, although the predictions are not exactly accurate (e.g., the second prediction is off by more than 50%!). Let's measure this regression model's RMSE on the whole training set using Scikit-Learn's mean_squared_error function:

```
>>> from sklearn.metrics import mean_squared_error
>>> housing predictions = lin reg.predict(housing prepared)
>>> lin_mse = mean_squared_error(housing_labels, housing_predictions)
>>> lin rmse = np.sqrt(lin mse)
>>> lin_rmse
68628.413493824875
```

Okay, this is better than nothing but clearly not a great score: most districts' median_housing_values range between \$120,000 and \$265,000, so a typical prediction error of \$68,628 is not very satisfying. This is an example of a model underfitting the training data. When this happens it can mean that the features do not provide enough information to make good predictions, or that the model is not powerful enough. As we saw in the previous chapter, the main ways to fix underfitting are to