Parallel Computing with GPUs: GPU Assignment Project Exam Help

https://eduassistpro.github.io/

Dr Paul Ric http://paulrichmond.shef.ac edu_assist_pro_ http://paulrichmond.shef.ac

Last week

□ Parallelism can add performance to our code

□ We must identify parallel regions
□ OpenMP can be both data and task parallel
Assignment Project Exam Help
□ OpenMP data parallel
□ ta elements
□ but threads operate in https://eduassistpro.github.io/
□ Critical sections cause serialisations edu_assist_pyo

This Lecture

- ☐What is a GPU?
- ☐General Purpose Computation on GPUs (and GPU History)
- ☐GPU CUDA Hardware Model
- Assignment Project Exam Help

 Accelerated Systems

https://eduassistpro.github.io/

GPU Refresher

Assignment Project Exam Help

https://eduassistpro.github.io/

Latency vs. Throughput

- □ Latency: The time required to perform some action
 □ Measure in units of time
 □ Throughput: The number of actions executed per unit of time
 □ Measured in units Actional Exam Help
- https://eduassistpro.github.io/
 E.g. An assembly line takes 6 hours to
 manufacture a GPU but Atche Wise Induledu_assist_optofacture 100 GPUs
 per day.

CPU vs GPU

□CPU ☐ Latency oriented □Optimised for serial code performance Good for single complexitasient Project Exam Help **□**GPU https://eduassistpro.github.io/ ☐Throughput oriented ☐ Massively parallel architecture Chat edu_assist_pro □Optimised for performing many simila simultaneously (data parallel)

CPU vs GPU

Assignment Project Exam Help

https://eduassistpro.github.io/

The contempt of the contempt o	S LO
--	-------------

- ☐ Hide long latency memory access
- ☐ Powerful Arithmetic Logical Unit (ALU)
 - ☐ Low Operation Latency
- ☐ Complex Control mechanisms
 - ☐ Branch prediction etc.

- ☐ But faster memory throughput
- ☐ Energy efficient ALUs
 - ☐ Long latency but high throughput
- ☐Simple control
 - ☐ No branch prediction

Data Parallelism

Program has many similar threads of execution
☐ Each thread performs the same behaviour on different data
☐Good for high throughput
☐ We can classify an architecture based on instructions and data (Flynn's Taxonomy)
□Instructions: https://eduassistpro.github.io/ □Single instruction (SI)
Multiple Instruction (MAdd WeChat edu_assist_pro
☐Single Program (SP) ☐Multiple Program (MP) Not part of the original taxonomy
□Data:
☐Single Data (SD) – w.r.t. work item not necessarily single word
☐Multiple Data (MD)
\square e.g. SIMD = Single Instruction and Multiple Data

SISD and SIMD

- \square SISD
 - □Classic von Neumann architecture
 - □PU = Processing Unit

Assignment Project Exam Help

https://eduassistpro.github.io/

Add \$\text{\$\text{Model}\$ hat edu_assist_pro

- ☐ Multiple processing elements performing the same operation simultaneously
- ☐ E.g. Early vector super computers
- ☐ Modern CPUs have SIMD instructions
 - ☐ But are not SIMD in general

MISD and MIMD

☐ E.g. Pipelining architectures

Assignment Project Exam Help

https://eduassistpro.github.io/

- ☐ Different processors may execute different instructions on different data
- ☐ E.g. Most parallel computers
- ☐ E.g. OpenMP programming model

SPMD and MPMD

⊒ SPMD	
☐Multiple autonomous different data	s processors simultaneously executing a program on
☐ Program execution ca	n have an independent path for each data point signment Project Exam Help chines.
☐E.g. Message passing	chines.
□ MPMD	https://eduassistpro.github.io/
☐Multiple autonomous independent program	s processors simuedu_assist_pro at least two is.
☐Typically client & hos	t programming models fit this description.
☐E.g. Sony PlayStation configurations with C	3 SPU/PPU combination, Some system on chip PU and GPUs

☐ What taxonomy best describes data parallelism with a GPU?

□SISD?

□SIMD? Assignment Project Exam Help

■MISD?

MIMD? https://eduassistpro.github.io/

■SPMD?

□MPMD?

Taxonomy of a GPU

□ What taxonomy best describes data parallelism with a GPU?
□ Obvious Answer: SIMD

Assignment Project Exam Help

☐ Less Obvious answer:

https://eduassistpro.github.io/

- □Slightly confusing answeld SWMTKSi edu_assisttipmo Multiple Thread)
 - ☐ This is a combination of both it differs from SIMD in that;
 - 1) Each thread has its own registers
 - 2) Each thread has multiple addresses
 - 3) Each thread has multiple flow paths
 - ☐ We will explore this in more detail when we look at the hardware!
 - http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

This Lecture

- ☐What is a GPU?
- ☐ General Purpose Computation on GPUs (and GPU History)
- ☐GPU CUDA Hardware Model
- Assignment Project Exam Help

 Accelerated Systems

https://eduassistpro.github.io/

GPU Early History

☐ Hardware has evolved from the demand for increased quality of 3D computer graphics ☐ Initially specialised processors for each part of the graphics pipeline Uvertices (points of trising less ent de la pixels) can be manipulated in paralle ☐ The stages of the grap https://eduassistpro.github.jo/programmable in early 2000's Add WeChat edu_assist_pro ■NVIDIA GeForce 3 and ATI Radeon 9700 □ DirectX 9.0 required programmable pixel and vertex shaders

The Graphics Pipeline

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

GPGPU

Source: NVidia Cg Users Manual

GPGPU

□ General Purpose computation on Graphics Hardware
□ First termed by Mark Harris (NVIDIA) in 2002
□ Recognised the use of GPUs for non graphics applications
□ Requires mapping Assproblem til Project phices to Indepts
□ Data into textures (im □ Computation into sha https://eduassistpro.github.io/
□ Later unified processor's deleven to the desired to the project phices phices to the project phi

Unified Processors and CUDA

□ Compute Unified Device Architecture (CUDA)
□ First released in 2006/7
□ Targeted new bread of unified "streaming multiprocessors"
□ C like programming spignment Project Exam Help
□ No computer graphics https://eduassistpro.glihub.io/
□ Revolutionised GPU p

Add WeChat edu_assist_pro

Other GPU Programming Techniques

raries and Applications (MATLAB, Ansys, etc)
ed from end user
· · · · · · · · · · · · · · · · · · ·
signment Project Exam Help
https://eduassistpro.github.io/
MP
Add WeChat edu_assist_pro
targeted at more general data parallel architectures

Other GPU Programming Techniques

☐GPU Accelerated Libraries and Applications (MATLAB, Ansys, etc)
☐GPU mostly abstracted from end user
□Pros: Easy to learn and use
□Cons: difficult to master (High level of abstraction reduces ability to perform bespoke optimisations) bespoke optimisations.
GPU Accelerated Direct
□Helps compiler auto gen https://eduassistpro.github.io/
□Very similar to OpenMP
□Very similar to OpenMP □Pros: Performance portability, limited that edu_assist propare required
☐ Cons: Limited fine grained control of optimisation
□ OpenCL
☐Inspired by CUDA but targeted at more general data parallel architectures
□Pros: Cross platform
☐ Cons: Limited access to cutting edge NVIDIA specific functionality, limited support

This Lecture

- ☐What is a GPU?
- ☐ General Purpose Computation on GPUs (and GPU History)
- ☐GPU CUDA Hardware Model

Assignment Project Exam Help

Accelerated Systems

https://eduassistpro.github.io/

Hardware Model

NVIDIA CUDA Core

- □CUDA Core
 - □ Vector processing unit
 - ☐Stream processor
 - □Works on a single Assignment Project Exam Help operation

https://eduassistpro.github.io/

NVIDIA GPU Range

☐GeForce ☐ Consumer range ☐Gaming oriented for mass market Quadro Range Assignment Project Exam Help ☐ Workstation and prof https://eduassistpro.github.io/ □Tesla □Number crunching boxesdd WeChat edu_assist_pro ☐ Much better support for double precision ☐ Faster memory bandwidth ☐ Better Interconects

Tesla Range Specifications

	"Kepler" K20	"Kepler" K40	"Maxwell" M40	Pascal P100	Volta V100
CUDA cores	2496	2880	3072	3584	5120
Chip Variant	GK110 AS			kam Help	
Cores per SM	192	•		oro.github	
Single Precision Performance	3.52 Tflops	4.29 Thops	echat edu	ı_assist_p	15TFFlops
Double Precision Performance	1.17 TFlops	1.43 Tflops	0.21 Tflops	4.7 Tflops	7.5Tflops
Memory Bandwidth	208 GB/s	288 GB/s	288GB/s	720GB/s	900GB/s
Memory	5 GB	12 GB	12GB	12/16GB	16GB

Fermi Family of Tesla GPUs

☐ Chip partitioned into **Streaming Multiprocessors** Assignment Project Exam (PPs)

32 vector cores per SMP https://eduassistpro.github.io/Not cache coherent. No

Add WeChat edu_assist_prounication possible across SMPs.

Kepler Family of Tesla GPUs

- ☐Streaming Multiprocessor Extreme (SMX)
- ☐ Huge increase in the number of cores per SMX
 - ☐Smaller 28nm processes
- ☐Increased L2 Cache
- ☐ Cache coherency at L2 not at L1

Assignment Project Exam Help

https://eduassistpro.github.io/

Maxwell Family Tesla GPUs

Pascal P100 GPU

	☐Many more SMPs
	☐More GPCs
Assignment Project Exam H	☐Each CUDA core is more lelefficient
https://eduassistpro.gith	nub.io More registers available
Add WeChat edu_assis	Same die size as Maxwell Lipro Memory bandwidth
	improved drastically
	□NVLink

Warp Scheduling

☐GPU Threads are always executed in groups called warps (32 threads) **□** Warps are transparent to users □SMPs have zero overnead warp scheduling Help Warps with instructio https://eduassistpro.github.lo/ https://eduassistpro.github.lo/ rity (context switching) ☐ Eligible warps are sele □All threads execute the Aside Moschiet edu_assiste preceded on the vector processors (CUDA cores) ☐ The specific way in which warps are scheduled varies across families ☐ Fermi, Kepler and Maxwell have different numbers of warp schedulers and dispatchers

NVIDIA Roadmap

Assignment Project Exam Help

https://eduassistpro.github.io/

Performance Characteristics

Assignment Project Exam Help

https://eduassistpro.github.io/

Performance Characteristics

Assignment Project Exam Help

https://eduassistpro.github.io/

This Lecture

- ☐What is a GPU?
- ☐General Purpose Computation on GPUs (and GPU History)
- ☐GPU CUDA Hardware Model
- Assignment Project Exam Help

 Accelerated Systems

https://eduassistpro.github.io/

Accelerated Systems

- □CPUs and Accelerators are used together
 - ☐GPUs cannot be used instead of CPUs
 - ☐GPUs perform compute heavy parts
- Communication is Aisi @ Communication is Aisi @ Collection

 Leading to the control of the cont
 - ☐PCle 3.0: up to 8 GB p

□NVLINK: 5-12x faster t https://eduassistpro.github.io/

Simple Accelerated Workstation

□ Insert your accelerator into PCI-e

□ Make sure that Assignment Project Exam Help
□ There is enough space
□ Your power supply un https://eduassistpro.github.io/
to the job
□ You install the latest GPU drivers

Larger Accelerated Systems

GPU Workstation Server

☐ Multiple Servers can be connected via interconnect Assignment Project Exam Help
Several vendors offer https://eduassistpro.github.io/ servers ☐ For example 2 multi coxe GRUSChat edu_assist_pro 4 GPUS ☐ Make sure your case and power supply are upto the job!

Accelerated Supercomputers

NVIDIA® NVLink™ Hybrid Cube Mesh

DGX-1 (Volta V100)

Assignment Project Exam Help

https://eduassistpro.github.io/

Capabilities of Machines Available to you

☐ Diamond High Spec Lab (for lab sessions)
□Quadro K5200 GPUs
☐Kepler Architecture
2.9 Tflops Single Precision Assignment Project Exam Help
□VAR Lab
☐Same machines as Highttps://eduassistpro.gitelsktbpip.
Must be booked to access (link) Chat edu_assist_pro
☐ShARC Facility
□Kepler Tesla K80 GPUs (general pool)
☐ Pascal Tesla P100 GPUs in DGX-1 (DCS only)
□Lab in week 8

Summary

☐GPUs are better suited to parallel tasks that CPUs Accelerators are typically not used alone, but work in tandem with Assignment Project Exam Help **CPUs** ☐GPU hardware is cons https://eduassistpro.github.io/ GPU accelerated systems colerated systems to largescale supercomputers □CUDA is a language for general purpose GPU (NVIDIA only) programming

Mole Quiz Next Week

- □Next Weeks lecture 15:00-16:00 in LECT DIA-LT08
- ☐ This time next week (16:00) will be a MOLE quiz.
 - **□Where**? DIA-004 (Computer room 4)
 - **□When**? Now
 - How Long: 45 mins (25 constitions) Project Exam Help

□What? Everything up to https://eduassistpro.github.io/

□E.g.

```
int a[5] = \{1, 2, 3, 4, 5\};
x = &a[3];
```

- \square What is \times ?
 - a pointer to an integer with value of 3
 - a pointer to an integer with value of 4
 - a pointer to an integer with a value of the address of the third element of a
 - 4. an integer with a value of 4

