A Book of Abstract Algebra (2nd Edition)

Bookmark

Show all steps: ON

Problem

Let V be a finite-dimensional vector space. Let dim V designate the dimension of V. Prove each of the following:

If $\{\mathbf{a}_1, ..., \mathbf{a}_n\}$ is a basis of V, so is $\{k_1\mathbf{a}_1, ..., k_n\mathbf{a}_n\}$ for any nonzero scalars

Step-by-step solution

Step 1 of 3

For any vector space with basis $(a_1, a_2, ..., a_n)$, it can be thought of as n dimensional vector space with $a_1, a_2, ..., a_n$ representing different directions. These vectors are linearly independent.

In vector form basis of this subspace with respect to $(\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n)$ is $\begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix}, ..., \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}$. Here

a 1 is placed at every pivot position with a_1 taking 1st position, a_2 taking second position and **a c** taking *n*th position.

Comment

Ste	n	2	٥f	-
ວເບ	υ	4	ΟI	J

This matrix is full rank matrix with rank equal to number of rows and columns.

Comment

Step 3 of 3

Now, another set of vectors given is $(k_1\mathbf{a}_1, k_2\mathbf{a}_2, ..., k_n\mathbf{a}_n)$. This set can be represented in vector from with respect to basis $(\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n)$ by placing coefficients of $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$ at 1st, 2nd and n^{th} position.

$$\begin{pmatrix} k_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ k_2 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots \begin{pmatrix} 0 \\ 0 \\ \vdots \\ k_n \end{pmatrix}$$

To check linear independency of these vectors a matrix with these vectors as rows is reduced to echelon form. If that matrix is full row/ column matrix or is a non-singular matrix then these vectors are independent.

This matrix is already in row reduced echelon form with *n* pivots.

Hence vectors $(k_1\mathbf{a}_1, k_2\mathbf{a}_2, ..., k_n\mathbf{a}_n)$ are linearly independent and forms a basis

Comment