

Rob J Hyndman

Forecasting: Principles and Practice

3. Exponential smoothing I

OTexts.com/fpp/7/

Outline

- 1 The state space perspective
- 2 Simple exponential smoothing
- 3 Trend methods
- 4 Seasonal methods
- **5** Exponential smoothing methods so far

- Observed data: y_1, \ldots, y_T .
- Unobserved state: $\mathbf{x}_1, \dots, \mathbf{x}_T$.

Forecasting: Principles and Practice

- Observed data: y_1, \ldots, y_T .
- Unobserved state: $\mathbf{x}_1, \dots, \mathbf{x}_T$.
- Forecast $\hat{y}_{T+h|T} = \mathsf{E}(y_{T+h}|\mathbf{x}_T)$.
- The "forecast variance" is $Var(y_{T+h}|\mathbf{x}_T)$.
- A prediction interval or "interval forecast" is a range of values of y_{T+h} with high probability.

- Observed data: y_1, \ldots, y_T .
- Unobserved state: $\mathbf{x}_1, \dots, \mathbf{x}_T$.
- Forecast $\hat{y}_{T+h|T} = \mathsf{E}(y_{T+h}|\boldsymbol{x}_T)$.
- The "forecast variance" is $Var(y_{T+h}|\mathbf{x}_T)$.
- A prediction interval or "interval forecast" is a range of values of y_{T+h} with high probability.

- Observed data: y_1, \ldots, y_T .
- Unobserved state: $\mathbf{x}_1, \dots, \mathbf{x}_T$.
- Forecast $\hat{y}_{T+h|T} = \mathsf{E}(y_{T+h}|\boldsymbol{x}_T)$.
- The "forecast variance" is $Var(y_{T+h}|\mathbf{x}_T)$.
- A prediction interval or "interval forecast" is a range of values of y_{T+h} with high probability.

Outline

- 1 The state space perspective
- 2 Simple exponential smoothing
- 3 Trend methods
- 4 Seasonal methods
- **5** Exponential smoothing methods so far

Component form

Forecast equation Smoothing equation

$$\hat{y}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

$$\ell_1 = \alpha y_1 + (1 - \alpha)\ell_0$$

Component form

Forecast equation Smoothing equation

$$\hat{y}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

$$\ell_1 = \alpha y_1 + (1 - \alpha)\ell_0$$

Component form

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t$$

Smoothing equation $\ell_t = \alpha y_t + (1-\alpha)\ell_{t-1}$

$$\ell_1 = \alpha y_1 + (1 - \alpha)\ell_0$$

$$\ell_2 = \alpha y_2 + (1 - \alpha)\ell_1 = \alpha y_2 + \alpha(1 - \alpha)y_1 + (1 - \alpha)^2\ell_0$$

Component form

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t$$

Smoothing equation $\ell_t = \alpha y_t + (1-\alpha)\ell_{t-1}$

$$\ell_{1} = \alpha y_{1} + (1 - \alpha)\ell_{0}$$

$$\ell_{2} = \alpha y_{2} + (1 - \alpha)\ell_{1} = \alpha y_{2} + \alpha(1 - \alpha)y_{1} + (1 - \alpha)^{2}\ell_{0}$$

$$\ell_{3} = \alpha y_{3} + (1 - \alpha)\ell_{2} = \sum_{i=0}^{2} \alpha(1 - \alpha)^{i}y_{3-i} + (1 - \alpha)^{3}\ell_{0}$$

Component form

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t$$

Smoothing equation $\ell_t = \alpha y_t + (1-\alpha)\ell_{t-1}$

$$\ell_{1} = \alpha y_{1} + (1 - \alpha)\ell_{0}$$

$$\ell_{2} = \alpha y_{2} + (1 - \alpha)\ell_{1} = \alpha y_{2} + \alpha(1 - \alpha)y_{1} + (1 - \alpha)^{2}\ell_{0}$$

$$\ell_{3} = \alpha y_{3} + (1 - \alpha)\ell_{2} = \sum_{j=0}^{2} \alpha(1 - \alpha)^{j}y_{3-j} + (1 - \alpha)^{3}\ell_{0}$$

$$\vdots$$

$$\ell_{t} = \sum_{j=0}^{t-1} \alpha(1 - \alpha)^{j}y_{t-j} + (1 - \alpha)^{t}\ell_{0}$$

Forecast equation

$$\hat{\mathbf{y}}_{t+h|t} = \sum_{j=1}^{t} \alpha (\mathbf{1} - \alpha)^{t-j} \mathbf{y}_j + (\mathbf{1} - \alpha)^t \ell_0, \qquad (0 \le \alpha \le 1)$$

Observation		igned to obse $\alpha = 0.4$	rvations for: $\alpha = 0.6$	
	0.2	0.4	0.6	
Уt-1	0.16	0.24	0.24	0.16
<i>Y</i> t−2	0.128	0.144	0.096	0.032
<i>Yt</i> −3	0.1024	0.0864	0.0384	0.0064
y_{t-4}	$(0.2)(0.8)^4$	$(0.4)(0.6)^4$	$(0.6)(0.4)^4$	$(0.8)(0.2)^4$
y_{t-5}	$(0.2)(0.8)^5$	$(0.4)(0.6)^5$	$(0.6)(0.4)^5$	$(0.8)(0.2)^5$

■ Limiting cases: $\alpha \rightarrow 1$, $\alpha \rightarrow 0$

Forecast equation

$$\hat{\mathbf{y}}_{t+h|t} = \sum_{j=1}^{t} \alpha (\mathbf{1} - \alpha)^{t-j} \mathbf{y}_j + (\mathbf{1} - \alpha)^t \ell_0, \qquad (\mathbf{0} \le \alpha \le \mathbf{1})$$

	Weights assigned to observations for:					
Observation	$\alpha = 0.2$	$\alpha = 0.4$	$\alpha = 0.6$	$\alpha = 0.8$		
Уt	0.2	0.4	0.6	0.8		
y_{t-1}	0.16	0.24	0.24	0.16		
y_{t-2}	0.128	0.144	0.096	0.032		
y_{t-3}	0.1024	0.0864	0.0384	0.0064		
y_{t-4}	$(0.2)(0.8)^4$	$(0.4)(0.6)^4$	$(0.6)(0.4)^4$	$(0.8)(0.2)^4$		
y_{t-5}	$(0.2)(0.8)^5$	$(0.4)(0.6)^5$	$(0.6)(0.4)^5$	$(0.8)(0.2)^5$		

■ Limiting cases: $\alpha \to 1$, $\alpha \to 0$.

Forecast equation

$$\hat{\mathbf{y}}_{t+h|t} = \sum_{j=1}^{t} \alpha (\mathbf{1} - \alpha)^{t-j} \mathbf{y}_j + (\mathbf{1} - \alpha)^t \ell_0, \qquad (\mathbf{0} \le \alpha \le \mathbf{1})$$

	Weights assigned to observations for:					
Observation	$\alpha = 0.2$	$\alpha = 0.4$	$\alpha = 0.6$	$\alpha = 0.8$		
Уt	0.2	0.4	0.6	0.8		
y_{t-1}	0.16	0.24	0.24	0.16		
y_{t-2}	0.128	0.144	0.096	0.032		
y_{t-3}	0.1024	0.0864	0.0384	0.0064		
y_{t-4}	$(0.2)(0.8)^4$	$(0.4)(0.6)^4$	$(0.6)(0.4)^4$	$(0.8)(0.2)^4$		
y_{t-5}	$(0.2)(0.8)^5$	$(0.4)(0.6)^5$	$(0.6)(0.4)^5$	$(0.8)(0.2)^5$		

■ Limiting cases: $\alpha \rightarrow 1$, $\alpha \rightarrow 0$.

Component form

Forecast equation Smoothing equation

$$\hat{\mathbf{y}}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha \mathbf{y}_t + (\mathbf{1} - \alpha)\ell_{t-1}$$

State space form

Observation equation

$$y_t = \ell_{t-1} + e_t$$

$$\ell_t = \ell_{t-1} + \alpha e_t$$

 $e_t = y_t - \ell_{t-1} = y_t - \hat{y}_{t|t-1}$ for t = 1, ..., T, the one-step within-sample forecast error at time t.

Component form

Forecast equation $\hat{y}_{t+h|t} = \ell_t$ Smoothing equation $\ell_t = \alpha y_t + (1-\alpha)\ell_{t-1}$

State space form

Observation equation
$$y_t = \ell_{t-1} + e_t$$

State equation $\ell_t = \ell_{t-1} + \alpha e_t$

- $e_t = y_t \ell_{t-1} = y_t \hat{y}_{t|t-1}$ for t = 1, ..., T, the one-step within-sample forecast error at time t.
- \blacksquare ℓ_t is an unobserved "state".
- Need to estimate α and ℓ_0 .

Component form

Forecast equation $\hat{y}_{t+h|t} = \ell_t$ Smoothing equation $\ell_t = \alpha$

$$\ell_t = \alpha \mathbf{y}_t + (\mathbf{1} - \alpha)\ell_{t-1}$$

State space form

Observation equation
State equation

$$y_t = \ell_{t-1} + e_t$$
$$\ell_t = \ell_{t-1} + \alpha e_t$$

- $e_t = y_t \ell_{t-1} = y_t \hat{y}_{t|t-1}$ for t = 1, ..., T, the one-step within-sample forecast error at time t.
- \blacksquare ℓ_t is an unobserved "state".
- Need to estimate α and ℓ_0 .

Component form

Forecast equation $\hat{y}_{t+h|t} = \ell_t$ Smoothing equation $\ell_t = \alpha y_t + (1-\alpha)\ell_{t-1}$

State space form

Observation equation
State equation

$$y_t = \ell_{t-1} + e_t$$
$$\ell_t = \ell_{t-1} + \alpha e_t$$

- $e_t = y_t \ell_{t-1} = y_t \hat{y}_{t|t-1}$ for t = 1, ..., T, the one-step within-sample forecast error at time t.
- \blacksquare ℓ_t is an unobserved "state".
- Need to estimate α and ℓ_0 .

Optimisation

- Need to choose value for α and ℓ_0
- Similarly to regression we choose α and ℓ_0 by minimising MSE:

$$\mathsf{MSE} = \frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2 = \frac{1}{T} \sum_{t=1}^{T} e_t^2.$$

Unlike regression there is no closed form solution — use numerical optimization.

Optimisation

- Need to choose value for α and ℓ_0
- Similarly to regression we choose α and ℓ_0 by minimising MSE:

$$\mathsf{MSE} = \frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2 = \frac{1}{T} \sum_{t=1}^{T} e_t^2.$$

 Unlike regression there is no closed form solution — use numerical optimization.

Optimisation

- Need to choose value for α and ℓ_0
- Similarly to regression we choose α and ℓ_0 by minimising MSE:

$$\mathsf{MSE} = \frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2 = \frac{1}{T} \sum_{t=1}^{T} e_t^2.$$

 Unlike regression there is no closed form solution — use numerical optimization.

$$\hat{y}_{T+h|T} = \hat{y}_{T+1|T}, \qquad h = 2, 3, \dots$$

- A "flat" forecast function
- Remember, a forecast is an estimated mean of a future value.
- So with no trend, no seasonality, and no other patterns, the forecasts are constant.

$$\hat{y}_{T+h|T} = \hat{y}_{T+1|T}, \qquad h = 2, 3, \dots$$

- A "flat" forecast function.
- Remember, a forecast is an estimated mean of a future value.
- So with no trend, no seasonality, and no other patterns, the forecasts are constant.

$$\hat{y}_{T+h|T} = \hat{y}_{T+1|T}, \qquad h = 2, 3, \dots$$

- A "flat" forecast function.
- Remember, a forecast is an estimated mean of a future value.
- So with no trend, no seasonality, and no other patterns, the forecasts are constant.

$$\hat{y}_{T+h|T} = \hat{y}_{T+1|T}, \qquad h = 2, 3, \dots$$

- A "flat" forecast function.
- Remember, a forecast is an estimated mean of a future value.
- So with no trend, no seasonality, and no other patterns, the forecasts are constant.

SES in R

```
library(fpp)

fit <- ses(oil, h=3)

plot(fit)

summary(fit)</pre>
```

Outline

- 1 The state space perspective
- 2 Simple exponential smoothing
- 3 Trend methods
- 4 Seasonal methods
- **5** Exponential smoothing methods so far

- Holt (1957) extended SES to allow forecasting of data with trends.
- Two smoothing parameters: α and β^* (with values between 0 and 1).

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t \\ \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \end{split}$$

- Holt (1957) extended SES to allow forecasting of data with trends.
- Two smoothing parameters: α and β^* (with values between 0 and 1).

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t \\ \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \end{split}$$

- Holt (1957) extended SES to allow forecasting of data with trends.
- Two smoothing parameters: α and β^* (with values between 0 and 1).

$$\hat{y}_{t+h|t} = \ell_t + hb_t
\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})
b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$$

 $m{\ell}_t$ denotes an estimate of the level of the series at time t

 b_ℓ denotes an estimate of the slope of the

- Holt (1957) extended SES to allow forecasting of data with trends.
- Two smoothing parameters: α and β^* (with values between 0 and 1).

$$\hat{y}_{t+h|t} = \ell_t + hb_t
\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})
b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$$

- lackloss denotes an estimate of the level of the series at time t
- **b**_t denotes an estimate of the slope of the series at time t.

Holt's local trend method

- Holt (1957) extended SES to allow forecasting of data with trends.
- Two smoothing parameters: α and β^* (with values between 0 and 1).

$$\hat{y}_{t+h|t} = \ell_t + hb_t
\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})
b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$$

- $lackbox{l} \ell_t$ denotes an estimate of the level of the series at time t
- b_t denotes an estimate of the slope of the series at time t.

Holt's local trend method

- Holt (1957) extended SES to allow forecasting of data with trends.
- Two smoothing parameters: α and β^* (with values between 0 and 1).

$$\hat{y}_{t+h|t} = \ell_t + hb_t
\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})
b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$$

- lacksquare ℓ_t denotes an estimate of the level of the series at time t
- b_t denotes an estimate of the slope of the series at time t.

Component form

Forecast
$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t \\ \text{Level} &\qquad \ell_t = \alpha y_t + (\mathbf{1} - \alpha)(\ell_{t-1} + b_{t-1}) \\ \text{Trend} &\qquad b_t = \beta^*(\ell_t - \ell_{t-1}) + (\mathbf{1} - \beta^*)b_{t-1}, \end{split}$$

Observation equation
$$y_t = \ell_{t-1} + b_{t-1} + e_t$$
 State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha e_t$ $b_t = b_{t-1} + \beta e_t$

Component form

Forecast
$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t \\ \text{Level} &\qquad \ell_t = \alpha y_t + (\mathbf{1} - \alpha)(\ell_{t-1} + b_{t-1}) \\ \text{Trend} &\qquad b_t = \beta^*(\ell_t - \ell_{t-1}) + (\mathbf{1} - \beta^*)b_{t-1}, \end{split}$$

Observation equation
$$y_t = \ell_{t-1} + b_{t-1} + e_t$$
 State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha e_t$ $\ell_t = b_{t-1} + \beta e_t$

- $\beta = \alpha \beta^*$
- \bullet $e_t = y_t (\ell_{t-1} + b_{t-1}) = y_t \hat{y}_{t|t-1}$
- Need to estimate $\alpha, \beta, \ell_0, b_0$.

Component form

Forecast
$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t \\ \text{Level} &\qquad \ell_t = \alpha y_t + (\mathbf{1} - \alpha)(\ell_{t-1} + b_{t-1}) \\ \text{Trend} &\qquad b_t = \beta^*(\ell_t - \ell_{t-1}) + (\mathbf{1} - \beta^*)b_{t-1}, \end{split}$$

Observation equation
$$y_t = \ell_{t-1} + b_{t-1} + e_t$$
 State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha e_t$ $\ell_t = \ell_{t-1} + \beta e_t$

- $\beta = \alpha \beta^*$
- $\blacksquare e_t = y_t (\ell_{t-1} + b_{t-1}) = y_t \hat{y}_{t|t-1}$
- Need to estimate $\alpha, \beta, \ell_0, b_0$.

Component form

Forecast
$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t \\ \text{Level} &\qquad \ell_t = \alpha y_t + (\mathbf{1} - \alpha)(\ell_{t-1} + b_{t-1}) \\ \text{Trend} &\qquad b_t = \beta^*(\ell_t - \ell_{t-1}) + (\mathbf{1} - \beta^*)b_{t-1}, \end{split}$$

Observation equation
$$y_t = \ell_{t-1} + b_{t-1} + e_t$$
 State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha e_t$ $\ell_t = \ell_{t-1} + \beta e_t$

- $\beta = \alpha \beta^*$
- $lacksquare e_t = y_t (\ell_{t-1} + b_{t-1}) = y_t \hat{y}_{t|t-1}$
- Need to estimate $\alpha, \beta, \ell_0, b_0$.

Holt's method in R

```
fit2 <- holt(ausair, h=5)
plot(fit2)
summary(fit2)</pre>
```

Holt's method in R

```
fit1 <- holt(strikes)
plot(fit1$model)
plot(fit1, plot.conf=FALSE)
lines(fitted(fit1), col="red")
fit1$model
fit2 <- ses(strikes)
plot(fit2$model)
plot(fit2, plot.conf=FALSE)
lines(fit1$mean, col="red")
accuracy(fit1)
accuracy(fit2)
```

- Holt's method will almost always have better in-sample RMSE because it is optimized over one additional parameter.
- It may not be better on other measures.
- You need to compare out-of-sample RMSE (using a test set) for the comparison to be useful.
- But we don't have enough data.
- A better method for comparison will be in the next session!

- Holt's method will almost always have better in-sample RMSE because it is optimized over one additional parameter.
- It may not be better on other measures.
- You need to compare out-of-sample RMSE (using a test set) for the comparison to be useful.
- But we don't have enough data.
- A better method for comparison will be in the next session!

- Holt's method will almost always have better in-sample RMSE because it is optimized over one additional parameter.
- It may not be better on other measures.
- You need to compare out-of-sample RMSE (using a test set) for the comparison to be useful.
- But we don't have enough data.
- A better method for comparison will be in the next session!

- Holt's method will almost always have better in-sample RMSE because it is optimized over one additional parameter.
- It may not be better on other measures.
- You need to compare out-of-sample RMSE (using a test set) for the comparison to be useful.
- But we don't have enough data.
- A better method for comparison will be in the next session!

- Holt's method will almost always have better in-sample RMSE because it is optimized over one additional parameter.
- It may not be better on other measures.
- You need to compare out-of-sample RMSE (using a test set) for the comparison to be useful.
- But we don't have enough data.
- A better method for comparison will be in the next session!

Multiplicative version of Holt's method

State space form

Forecast equation
Observation equation
State equations

$$egin{aligned} \hat{y}_{t+h|t} &= \ell_t b_t^h \ y_t &= (\ell_{t-1} b_{t-1}) + e_t \ \ell_t &= \ell_{t-1} b_{t-1} + lpha e_t \ b_t &= b_{t-1} + eta e_t / \ell_{t-1} \end{aligned}$$

- $m{\ell}_t$ denotes an estimate of the level of the series at time t
- **b**_t denotes an estimate of the relative growth of the series at time t.

Forecasting: Principles and Practice

Multiplicative version of Holt's method

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t b_t^h$$
 Observation equation $y_t = (\ell_{t-1} b_{t-1}) + e_t$ State equations $\ell_t = \ell_{t-1} b_{t-1} + \alpha e_t$ $\ell_t = b_{t-1} + \beta e_t / \ell_{t-1}$

- ℓ_t denotes an estimate of the level of the series at time t
- b_t denotes an estimate of the relative growth of the series at time t.
- In R: holt(x, exponential=TRUE)

Multiplicative version of Holt's method

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t b_t^h$$
 Observation equation $y_t = (\ell_{t-1} b_{t-1}) + e_t$ State equations $\ell_t = \ell_{t-1} b_{t-1} + \alpha e_t$ $\ell_t = b_{t-1} + \beta e_t / \ell_{t-1}$

- ℓ_t denotes an estimate of the level of the series at time t
- b_t denotes an estimate of the relative growth of the series at time t.
- In R: holt(x, exponential=TRUE)

Multiplicative version of Holt's method

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t b_t^h$$
 Observation equation $y_t = (\ell_{t-1} b_{t-1}) + e_t$ State equations $\ell_t = \ell_{t-1} b_{t-1} + \alpha e_t$ $\ell_t = b_{t-1} + \beta e_t / \ell_{t-1}$

- ℓ_t denotes an estimate of the level of the series at time t
- b_t denotes an estimate of the relative growth of the series at time t.
- In R: holt(x, exponential=TRUE)

- Gardner and McKenzie (1985) suggested that the trends should be "damped" to be more conservative for longer forecast horizons.
- Damping parameter $0 < \phi < 1$.

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$
Observation equation $y_t = \ell_{t-1} + \phi b_{t-1} + e_t$
State equations $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha e_t$
 $b_t = \phi b_{t-1} + \beta e_t$

- Gardner and McKenzie (1985) suggested that the trends should be "damped" to be more conservative for longer forecast horizons.
- Damping parameter $0 < \phi < 1$.

State space form

Forecast equation $\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$ Observation equation $y_t = \ell_{t-1} + \phi b_{t-1} + e_t$ State equations $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha e_t$ $\ell_t = \ell_{t-1} + \beta e_t$

- Gardner and McKenzie (1985) suggested that the trends should be "damped" to be more conservative for longer forecast horizons.
- Damping parameter $0 < \phi < 1$.

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

Observation equation $y_t = \ell_{t-1} + \phi b_{t-1} + e_t$
State equations $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha e_t$
 $\ell_t = \ell_{t-1} + \beta e_t$

- Gardner and McKenzie (1985) suggested that the trends should be "damped" to be more conservative for longer forecast horizons.
- Damping parameter $0 < \phi < 1$.

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$
 Observation equation $y_t = \ell_{t-1} + \phi b_{t-1} + e_t$ State equations $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha e_t$ $b_t = \phi b_{t-1} + \beta e_t$

- Gardner and McKenzie (1985) suggested that the trends should be "damped" to be more conservative for longer forecast horizons.
- Damping parameter $0 < \phi < 1$.

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$
Observation equation $y_t = \ell_{t-1} + \phi b_{t-1} + e_t$
State equations $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha e_t$
 $\ell_t = \phi b_{t-1} + \beta e_t$

- \blacksquare If $\phi = 1$, identical to Holt's linear trend.
- As $h \to \infty$, $\hat{y}_{T+h|T} \to \ell_T + \phi b_T/(1-\phi)$.
- Short-run forecasts trended, long-run forecasts constant.

- Gardner and McKenzie (1985) suggested that the trends should be "damped" to be more conservative for longer forecast horizons.
- Damping parameter $0 < \phi < 1$.

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

Observation equation $y_t = \ell_{t-1} + \phi b_{t-1} + e_t$
State equations $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha e_t$
 $b_t = \phi b_{t-1} + \beta e_t$

- If $\phi = 1$, identical to Holt's linear trend.
- As $h \to \infty$, $\hat{y}_{T+h|T} \to \ell_T + \phi b_T/(1-\phi)$.
- Short-run forecasts trended, long-run forecasts constant

- Gardner and McKenzie (1985) suggested that the trends should be "damped" to be more conservative for longer forecast horizons.
- Damping parameter $0 < \phi < 1$.

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$
Observation equation $y_t = \ell_{t-1} + \phi b_{t-1} + e_t$
State equations $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha e_t$
 $b_t = \phi b_{t-1} + \beta e_t$

- If $\phi = 1$, identical to Holt's linear trend.
- lacksquare As $h o \infty$, $\hat{y}_{T+h|T} o \ell_T + \phi b_T/(1-\phi)$.
- Short-run forecasts trended, long-run forecasts constant.

Damped trend method

Trend methods in R

```
fit4 <- holt(air, h=5, damped=TRUE)
plot(fit4)
summary(fit4)</pre>
```

Example: Sheep in Asia

Multiplicative damped trend method

Taylor (2003) introduced multiplicative damping.

$$\hat{y}_{t+h|t} = \ell_t b_t^{(\phi + \phi^2 + \dots + \phi^h)}$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} b_{t-1}^{\phi})$$

$$b_t = \beta^* (\ell_t / \ell_{t-1}) + (1 - \beta^*) b_{t-1}^{\phi}$$

- $lack \phi = 1$ gives exponential trend method
- Forecasts converge to $\ell_T + b_T^{\psi/(1-\psi)}$ as $h \to \infty$

Multiplicative damped trend method

Taylor (2003) introduced multiplicative damping.

$$\hat{y}_{t+h|t} = \ell_t b_t^{(\phi+\phi^2+\cdots+\phi^h)}$$
 $\ell_t = \alpha y_t + (1-\alpha)(\ell_{t-1}b_{t-1}^{\phi})$
 $b_t = \beta^*(\ell_t/\ell_{t-1}) + (1-\beta^*)b_{t-1}^{\phi}$

- lacktriangledown $\phi = 1$ gives exponential trend method
- Forecasts converge to $\ell_T + b_T^{\phi/(1-\phi)}$ as $h \to \infty$.

Multiplicative damped trend method

Taylor (2003) introduced multiplicative damping.

$$\hat{y}_{t+h|t} = \ell_t b_t^{(\phi + \phi^2 + \dots + \phi^h)}$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} b_{t-1}^{\phi})$$

$$b_t = \beta^* (\ell_t / \ell_{t-1}) + (1 - \beta^*) b_{t-1}^{\phi}$$

- ullet $\phi=1$ gives exponential trend method
- Forecasts converge to $\ell_T + b_T^{\phi/(1-\phi)}$ as $h \to \infty$.

Outline

- 1 The state space perspective
- 2 Simple exponential smoothing
- 3 Trend methods
- 4 Seasonal methods
- **5** Exponential smoothing methods so far

- Holt and Winters extended Holt's method to capture seasonality.
- Three smoothing equations—one for the level, one for trend, and one for seasonality.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality.

State space form

 $\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t-m+h_m^+}$

 $y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + e_t$

 $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \mathbf{e}_t$

 $b_t = b_{t-1} + \beta e_t$

 $S_t = S_{t-m} + \gamma e_t$

- Holt and Winters extended Holt's method to capture seasonality.
- Three smoothing equations—one for the level, one for trend, and one for seasonality.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality.

$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t-m+h_m^+}$$

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + e_t$$

$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha e_t$$

$$b_t = b_{t-1} + \beta e_t$$

$$s_t = s_{t-m} + \gamma e_t$$

- Holt and Winters extended Holt's method to capture seasonality.
- Three smoothing equations—one for the level, one for trend, and one for seasonality.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality.

$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t-m+h_m^+}$$
 $y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + e_t$
 $\ell_t = \ell_{t-1} + b_{t-1} + \alpha e_t$
 $b_t = b_{t-1} + \beta e_t$
 $s_t = s_{t-m} + \gamma e_t$.

- Holt and Winters extended Holt's method to capture seasonality.
- Three smoothing equations—one for the level, one for trend, and one for seasonality.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality.

$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t-m+h_m^+}$$
 $y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + e_t$
 $\ell_t = \ell_{t-1} + b_{t-1} + \alpha e_t$
 $b_t = b_{t-1} + \beta e_t$
 $s_t = s_{t-m} + \gamma e_t$.

- Holt and Winters extended Holt's method to capture seasonality.
- Three smoothing equations—one for the level, one for trend, and one for seasonality.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality.

$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t-m+h_m^+}$$
 $y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + e_t$
 $\ell_t = \ell_{t-1} + b_{t-1} + \alpha e_t$
 $b_t = b_{t-1} + \beta e_t$
 $s_t = s_{t-m} + \gamma e_t$.

Holt-Winters additive method

- Holt and Winters extended Holt's method to capture seasonality.
- Three smoothing equations—one for the level, one for trend, and one for seasonality.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality.

State space form

$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t-m+h_m^+}$$
 $h_m^+ = \lfloor (h-1) \mod m \rfloor + 1$ $y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + e_t$ $\ell_t = \ell_{t-1} + b_{t-1} + \alpha e_t$ $b_t = b_{t-1} + \beta e_t$ $s_t = s_{t-m} + \gamma e_t$.

Holt-Winters multiplicative method

Holt-Winters multiplicative method

$$\begin{split} \hat{y}_{t+h|t} &= (\ell_t + hb_t)s_{t-m+h_m^+} \\ y_t &= (\ell_{t-1} + b_{t-1})s_{t-m} + e_t \\ \ell_t &= \ell_{t-1} + b_{t-1} + \alpha e_t/s_{t-m} \\ b_t &= b_{t-1} + \beta e_t/s_{t-m} \\ s_t &= s_{t-m} + \gamma e_t/(\ell_{t-1} + b_{t-1}). \end{split}$$

- Most textbooks use $s_t = \gamma(y_t/\ell_t) + (1-\gamma)s_{t-m}$
- We optimize for α , β^* , γ , ℓ_0 , b_0 , s_0 , s_{-1} , ..., s_{1-m} .

Holt-Winters multiplicative method

Holt-Winters multiplicative method

$$\begin{split} \hat{y}_{t+h|t} &= (\ell_t + hb_t)s_{t-m+h_m^+} \\ y_t &= (\ell_{t-1} + b_{t-1})s_{t-m} + e_t \\ \ell_t &= \ell_{t-1} + b_{t-1} + \alpha e_t/s_{t-m} \\ b_t &= b_{t-1} + \beta e_t/s_{t-m} \\ s_t &= s_{t-m} + \gamma e_t/(\ell_{t-1} + b_{t-1}). \end{split}$$

- Most textbooks use $s_t = \gamma(y_t/\ell_t) + (1-\gamma)s_{t-m}$
- We optimize for α , β^* , γ , ℓ_0 , b_0 , s_0 , s_{-1} , ..., s_{1-m} .

Seasonal methods in R

```
aus1 <- hw(austourists)</pre>
aus2 <- hw(austourists, seasonal="mult")</pre>
plot(aus1)
plot(aus2)
summary (aus1)
summary (aus2)
```

Holt-Winters damped method

Often the single most accurate forecasting method for seasonal data:

State space form

$$y_{t} = (\ell_{t-1} + \phi b_{t-1})s_{t-m} + e_{t}$$

$$\ell_{t} = \ell_{t-1} + \phi b_{t-1} + \alpha e_{t}/s_{t-m}$$

$$b_{t} = \phi b_{t-1} + \beta e_{t}/s_{t-m}$$

$$s_{t} = s_{t-m} + \gamma e_{t}/(\ell_{t-1} + \phi b_{t-1}).$$

Seasonal methods in R

Outline

- 1 The state space perspective
- 2 Simple exponential smoothing
- 3 Trend methods
- 4 Seasonal methods
- **5** Exponential smoothing methods so far

- Simple exponential smoothing: no trend. ses(x)
- Holt's method: linear trend. holt(x)
- Exponential trend method. holt(x, exponential=TRUE)
- Damped trend method. holt(x, damped=TRUE)
- Holt-Winters methods hw(x, damped=TRUE, exponential=TRUE, seasonal="additive")

- Simple exponential smoothing: no trend. ses(x)
- Holt's method: linear trend. holt(x)
- Exponential trend method. holt(x, exponential=TRUE)
- Damped trend method. holt(x, damped=TRUE)
- Holt-Winters methods
 hw(x, damped=TRUE, exponential=TRUE)
 seasonal="additive")

- Simple exponential smoothing: no trend. ses(x)
- Holt's method: linear trend. holt(x)
- Exponential trend method. holt(x, exponential=TRUE)
- Damped trend method. holt(x, damped=TRUE)
- Holt-Winters methods
 hw(x, damped=TRUE, exponential=TRUE,
 seasonal="additive")

- Simple exponential smoothing: no trend. ses(x)
- Holt's method: linear trend. holt(x)
- Exponential trend method. holt(x, exponential=TRUE)
- Damped trend method. holt(x, damped=TRUE)
- Holt-Winters methods
 hw(x, damped=TRUE, exponential=TRUE,
 seasonal="additive")

- Simple exponential smoothing: no trend. ses(x)
- Holt's method: linear trend. holt(x)
- Exponential trend method. holt(x, exponential=TRUE)
- Damped trend method. holt(x, damped=TRUE)
- Holt-Winters methods hw(x, damped=TRUE, exponential=TRUE, seasonal="additive")