

# 统计与数据科学学院 《数据采集方法》课程报告

小 组: B+X9bo 组

姓 名: 蒋贵豪

实验名称: 纸飞机试验设计

年 级: 2021 级

专业:应用统计学

完成日期: 2021年11月12日

# 目 录

| 1 | 因子选择    | 1 |
|---|---------|---|
| 2 | 试验细节    | 1 |
| 3 | 试验顺序及数据 | 2 |
| 4 | 拟合模型    | 4 |
| 5 | 附录      | F |

#### 1 因子选择

对于我们制作的纸飞机,其设计平面图如图1所示。



图 1: 纸飞机设计平面示意图

可以选择的试验因子为:

- 纸的半宽 W
- 纸飞机机翼长度  $L_{wings}$
- 纸飞机底座高度  $L_{base}$
- 纸飞机底座宽度 B

我们从上述 4 个因子中选择纸的半宽 W 和纸飞机机翼长度  $L_{wings}$  为我们的试验 因子,并为选中的两个因子设定高 (+) 和低 (-) 两个水平。其中,对于 W,我们选取的高 (+) 水平为 W=3cm,低水平 (-) 为 W=2cm。对于  $L_{wings}$ ,我们选取的高 (+) 水平为  $L_{wings}=8cm$ ,低水平 (-) 为  $L_{wings}=7cm$ 。

对于没有选中的因子,我们取为固定值。选取的纸飞机底座高度  $L_{base} = 9cm$ ,纸飞机底座宽度 B = 2cm。试验中,我们选用统一的标准 A4 纸(70g),其中纸张的宽度 L = 21cm。

## 2 试验细节

对于我们纸飞机的制作,我们将每一种因子组合的纸飞机分别做3架。具体而言,总共有4种不同因子组合的纸飞机,我们小组的3位成员每人做4架不同因子组合的纸飞机,共计12架,并给纸飞机编上编号1-12。制作过程中,均采取同样的测量工具及裁剪工具及同一类型的回形针,纸飞机的编号和相应的因子水平如表1所示。

| 编号           | $L_{wings}$ | W   | 因子水平  |
|--------------|-------------|-----|-------|
| $1 \pmod{4}$ | 7cm         | 2cm | (-,-) |
| $2 \pmod{4}$ | 7cm         | 3cm | (-,+) |
| $3 \pmod{4}$ | 8cm         | 2cm | (+,-) |
| $0 \pmod{4}$ | 8cm         | 3cm | (+,+) |

表 1: 纸飞机的编号和相应的因子水平

在我们的飞行试验,我们选取关闭门窗的南开大学教室为试验场所。释放纸飞机时,我们将纸飞机的两个机翼顶在天花板上,保证与天花板平齐。这样做的目的是保证每次释放纸飞机的高度相同,并且每次释放纸飞机时不会有初速度,而且天花板的高度较高,飞行时间长,可以减少时间测量的相对误差。经过测量,我们试验选取的放飞高度 H=210cm。

在我们的计时过程中,我们采用一位同学释放纸飞机,两位同学计时的策略。最后 记录的飞机飞行时间为两位同学记录时间的平均时长。

#### 3 试验顺序及数据

在试验前,我们随机生成了 12 架纸飞机的飞行顺序。对于每一架纸飞机,我们需要飞行 3 次,这 3 次飞行试验由 3 位不同的同学按随机顺序完成。表2展示了 12 架纸飞机的飞行顺序以及每架飞机放飞 3 次的放飞顺序。

| 制作人  |   | V | VY |    |    | W | J |   |   | S  | ${ m ST}$ |    |
|------|---|---|----|----|----|---|---|---|---|----|-----------|----|
| 飞机编号 | 1 | 2 | 3  | 4  | 5  | 6 | 7 | 8 | 9 | 10 | 11        | 12 |
| 飞行顺序 | 5 | 9 | 3  | 10 | 12 | 6 | 1 | 8 | 2 | 7  | 11        | 4  |
| WY   | 1 | 1 | 2  | 2  | 3  | 3 | 1 | 1 | 2 | 2  | 3         | 3  |
| WJ   | 2 | 3 | 1  | 3  | 1  | 2 | 2 | 3 | 1 | 3  | 1         | 2  |
| ST   | 3 | 2 | 3  | 1  | 2  | 1 | 3 | 2 | 3 | 1  | 2         | 1  |

表 2: 纸飞机飞行顺序

按照表2给定的实验顺序,我们于 2021 年 11 月 12 日 21 时在选取的地点进行了试验。我们得到的按照既定试验顺序的数据和 12 只纸飞机的平均飞行时长如表3所示。

表 3: 实验数据

|                                          |       |          |       |       | × ×   | 久 5. 大型数胎 |       |          |       |       |       |       |
|------------------------------------------|-------|----------|-------|-------|-------|-----------|-------|----------|-------|-------|-------|-------|
| 制作人                                      |       | <b>X</b> | WY    |       |       | WJ        | .J    |          |       | ST    | Ţ     |       |
| 飞机编号                                     | 1     | 2        | 3     | 4     | ಗು    | 9         | 2     | $\infty$ | 6     | 10    | 11    | 12    |
| 因子水平                                     | (-,-) | (-,+)    | (+,-) | (+,+) | (-,-) | (-,+)     | (+,-) | (+,+)    | (-,-) | (-,+) | (+,-) | (+,+) |
| 飞行顺序                                     | Ю     | 6        | 3     | 10    | 12    | 9         | П     | $\infty$ | 2     | 7     | 11    | 4     |
|                                          | 1.67  | 1.57     | 1.17  | 1.89  | 2.03  | 1.84      | 1.18  | 1.87     | 1.28  | 1.60  | 0.92  | 1.16  |
| とは、は、お、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は | 1.86  | 1.55     | 1.22  | 1.85  | 2.10  | 1.77      | 0.98  | 1.77     | 96.0  | 1.64  | 1.02  | 1.43  |
|                                          | 1.93  | 1.63     | 1.20  | 1.85  | 1.92  | 1.93      | 1.18  | 2.03     | 1.42  | 1.50  | 1.25  | 1.34  |
| 均值 (秒)                                   | 1.82  | 1.58     | 1.20  | 1.86  | 2.02  | 1.85      | 1.11  | 1.89     | 1.22  | 1.58  | 1.06  | 1.31  |
|                                          |       |          |       |       |       |           |       |          |       |       |       |       |

#### 4 拟合模型

我们以选取的两个因子为自变量,响应即飞行时长为因变量,采用线性回归模型。 拟合模型的代码见附录。我们代码得到的拟合参数见表4。

Coefficients: Estimate Std. Error t value  $\Pr(>|t|)$ (Intercept) 2.89472 0.789133.668 0.000853-0.271670.09962-2.7270.010154 $L_{wings}$ W0.273890.099622.7490.009610

表 4: 线性拟合参数

从表4中可以看出,三个参数的 P 值均小于我们给定的显著性水平 0.05。于是三个参数均通过我们的显著性检验。从而我们拟合模型为:

$$T = 0.27389W - 0.27167L_{wings} + 2.89472$$

我们模型的总平方和 SST, 残差平方和 SSE, 回归平方和 SSR 为: SST = 4.286764, SSE = 2.947403, SSR = 1.339361。

我们还给出了我们各个参数的95%置信区间,如表5所示。

|             | 2.5 %       | 97.5 %      |
|-------------|-------------|-------------|
| (Intercept) | 1.28922579  | 4.50021865  |
| $L_{wings}$ | -0.47434274 | -0.06899059 |
| W           | 0.07121282  | 0.47656496  |

表 5: 参数的置信区间

通过我们的拟合模型,我们应选择  $L_{wings}=7cm,\,W=3cm,\,$ 得到的纸飞机飞行时间最长。

### 5 附录

#### 拟合模型代码

```
1 flydata <- read.csv("fly.csv")</pre>
2 as.numeric(flydata$x1)
3 as.numeric(flydata$x2)
4 as.factor(flydata$maker)
5 as.factor(flydata$num)
6 as.factor(flydata$flynum)
7 model1 <- lm(y \sim x1 + x2, data = flydata)
8 summary (model1)
9 sse = deviance (model1)
10 r2 <- summary (model1) $r.squared
11 \text{ sst} = \text{sse}/(1 - \text{r2})
12 ssr = sst-sse
13 sse
14 sst
15 ssr
16 confint(model1)
```