# CFD Course Report - Week $12\,$

# Your Name

October 22, 2024

### Abstract

This report summarizes the computational fluid dynamics (CFD) simulations and analyses conducted during week 12 of the course.

## 1 Task 1: Elementary Vector Calculus

1.1 Gradient of a scalar  $\phi$ :

$$grad(\phi) = \nabla \phi = \frac{\partial \phi}{\partial x_i} = \left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \tag{1}$$

1.2 Divergence of the velocity vector  $\vec{u}$ :

$$div(\vec{u}) = \nabla \cdot \vec{u} = \frac{\partial u_i}{\partial x_i} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$
 (2)

1.3 Curl of the velocity vector (vorticity):

$$rot(\vec{u}) = \nabla \times \vec{u} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & w \end{vmatrix} = \left( \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z}, \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}, \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$$
(3)

1.4 Material derivative of a scalar:

$$\frac{D\phi}{Dt} = \frac{\partial\phi}{\partial t} + (\vec{u} \cdot \nabla)\phi = \frac{\partial\phi}{\partial t} + u\frac{\partial\phi}{\partial x} + v\frac{\partial\phi}{\partial y} + w\frac{\partial\phi}{\partial z}$$
(4)

1.5 Material derivative of the velocity vector:

$$\frac{D\vec{u}}{Dt} = \frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u}$$

$$= \left(\frac{\partial u}{\partial t}, \frac{\partial v}{\partial t}, \frac{\partial w}{\partial t}\right) + \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right)(u, v, z)$$

$$= \left(\frac{\partial u}{\partial t}, \frac{\partial v}{\partial t}, \frac{\partial w}{\partial t}\right) + \frac{\partial u_i}{\partial x_i}(u, v, z)$$
(5)

1.6 Rate-of-strain-tensor:

$$S = \frac{1}{2} \left( \nabla \vec{u} + (\nabla \vec{u})^T \right) = \frac{1}{2} \begin{pmatrix} 2\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} & \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \\ \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} & 2\frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \\ \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} & \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} & 2\frac{\partial w}{\partial z} \end{pmatrix}$$
(6)

1.7 Divergence of the rate-of-strain tensor:

$$\nabla \cdot \mathbf{S} = \frac{\partial S}{\partial x_i} = \frac{1}{2} \left( \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \begin{pmatrix} 2\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} & \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \\ \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} & 2\frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \end{pmatrix}$$

$$= \frac{1}{2} \left( 2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 w}{\partial x \partial z} + \frac{\partial^2 u}{\partial z^2}, \right)$$

$$= \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 v}{\partial x \partial y} + 2\frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 v}{\partial y \partial z},$$

$$\frac{\partial^2 u}{\partial x \partial z} + \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 v}{\partial x \partial z} + \frac{\partial^2 w}{\partial y^2} + 2\frac{\partial^2 w}{\partial z^2} \right)$$

$$(7)$$

## 2 Task 2: Global versus local rotation

#### 2.1 Sketch of the flows:

Line vortex flow:  $\vec{u} = [u_r, u_\theta, u_z] = [0, -\frac{\alpha}{r}, 0]$ 



Figure 1: Line vortex flow

Plane shear flow:  $\vec{u} = [u, v, w] = [\beta y, -0, 0]$ 



Figure 2: Plane shear flow

Flow between rotating cylinders:  $\vec{u} = [u_r, u_\theta, u_z] = [0, Ar + \frac{B}{r}, 0]$ 



Figure 3: Flow between rotating cylinders

## 2.2 Local and global rotations:

To verify wheter a flow features a local/global rotation we need to compute its vorticity, which is a vector quantity defined as  $\vec{\omega} = \nabla \times \mathbf{u}$ .

#### Line vortex flow:

For this specific flow we have that the vorticity vector is  $\vec{\omega} = [0, 0, 0]$ , so this flow does not show a local nor a global rotation since the vorticity is the null vector.

#### Plane shear flow:

Making usage of the previously delined formula for the vorticity, we find that  $\vec{\omega} = [0, 0, -\beta]$  which indicates that we have a shear-induced rotation around the z-axis. Also this flow does not feature a global rotation because it is characterized by a velocity gradient in the y-direction (shear) rather than a circular motion and this causes fluid elements to rotate locally due to the velocity differences at different y-positions, but there is no coordinated or structured rotation of the entire flow field. The flow is linear, not circular, so it doesn't exhibit global rotation.

#### Flow between rotating cylinders:

As in the former cases we compute the vorticity:  $\vec{\omega} = [0,0,2A]$ . Also the third flow exibits a local rotation due to the non-zero vorticity, but unlike the previous cases the rotating cylinders create a structured and circular flow with a consistent rotational effect through the domain.

In all three cases, we could have reached similar conclusions by observing the graphs shown above.

3 Task 5: Simplifications of Navier-Stokes Equations