In the Claims:

1. (Currently amended) Use of A process for preparing compositions which provide upon activation an olfactory compound comprising incorporating into the composition a compound of formula (I) as precursor for olfactory compounds compound

wherein the acrylic acid ester double bound is of the E configuration;

n is zero or 1;

Y is $-CR^5R^6R^7$, wherein R^5 , R^6 and R^7 are independently hydrogen or a C_1 - C_{18} hydrocarbon residue, and the sum of all carbon atoms ($R^5 + R^6 + R^7$) is not greater than 18; or

Y is $-CR^5R^6R^7$, wherein R^5 , R^6 and R^7 are independently hydrogen or a C_1 - C_{18} hydrocarbon residue containing one or more atoms/groups selected from O, N and C(O), and the sum of all carbon atoms ($R^5 + R^6 + R^7$) is not greater than 18; or

Y is $-CR^8=CR^9R^{10}$, wherein R^8 , R^9 and R^{10} are independently hydrogen or a C_{18} hydrocarbon residue, the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^8 + R^9 + R^{10}$) is not greater than 18; or

Y is $-CR^8=CR^9R^{10}$, wherein R^8 , R^9 and R^{10} are independently hydrogen or a C_{1-} C_{18} hydrocarbon residue containing one or more atoms/groups selected from O, N and C(O), the geometry of the enol double bond is E or Z, and the sum of all carbon atoms $(R^8 + R^9 + R^{10})$ is not greater than 18;

 R^2 and R^3 are independently hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy residue, -NH₂, -NO₂, -NHCO₂CH₃, -N(C_1 - C_6 alkyl)₂, -N(hydroxyalkyl)₂, -NHC(O)-(C_1 - C_8 alkyl) or -NHC(O)-(C_3 - C_8 aryl); or

 R^2 and R^3 are attached at the positions C(6,7), C(7,8), or C(8,9), and form together with the carbon atoms to which they are attached a dioxolane ring or a dioxane ring;

 R^4 in 2- or 3-position is hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_3 - C_6 cycloalkyl, or -CN; and

- a) if n is zero, R is a C₁-C₂₄ hydrocarbon residue, or C₁-C₂₄ hydrocarbon residue containing one or more heteroatoms selected from N, O and Si; or
- b) if n is 1, R is a C₁- C₂₅ hydrocarbon residue, a C₁- C₂₅ hydrocarbon residue containing one or more atoms/groups selected from N, O, Si, and C(O), or C₁- C₂₅ hydrocarbon residue substituted by an ionic substituent of the formula N(R²⁰)₃⁺, in which R²⁰ is the residue of an alkyl group with 1 to 18 carbon atoms; or

R is a monovalent residue of the formula (i)

wherein

X is $-CR^{14}R^{15}R^{16}$, wherein R^{14} , R^{15} and R^{16} are independently hydrogen or a C_1 - C_{18} hydrocarbon residue, and the sum of all carbon atoms (R^{14} + R^{15} + R^{16}) is not greater than 18; or

X is $-CR^{14}R^{15}R^{16}$, wherein R^{14} , R^{15} and R^{16} are independently hydrogen or a C_1 - C_{18} hydrocarbon residue containing one or more atoms/groups selected from O, N and C(O), and the sum of all carbon atoms ($R^{14}+R^{15}+R^{16}$) is not greater than 18; or

X is $-CR^{17}=CR^{18}R^{19}$, wherein R^{17} , R^{18} and R^{19} are independently hydrogen or a C_1 - C_{18} hydrocarbon residue, the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^{17} + R^{18} + R^{19}$) is not greater than 18; or

X is $-CR^{17}=CR^{18}R^{19}$, wherein R^{17} , R^{18} and R^{19} are independently hydrogen or a C_1 - C_{18} hydrocarbon residue containing one or more atoms/groups selected from O, N and C(O), the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^{17} + R^{18} + R^{19}$) is not greater than 18;

 R^{12} and R^{13} are independently hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy residue,

-NO₂, -NH₂, -NHCO₂CH₃, -N(C₁-C₆ alkyl)₂, -N(hydroxyalkyl)₂, -NHC(O)-(C₁-C₈ alkyl) or -NHC(O)-(C₃-C₈ aryl); or

R¹² and R¹³ are attached at the positions C(vi,vii), C(vii,viii), or C(viii,ix), and form together with the carbon atoms to which they are attached a dioxolane ring or a dioxane ring;

 R^{11} in ii- or iii-position is hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_3 - C_6 cycloalkyl, or –CN.

- 2. (canceled)
- 3. (canceled)
- 4.(canceled)
- 5.(canceled)

6. (new) A process according to claim 1 for preparing compositions which provide upon activation an olfactory compound comprising incorporating into the composition a compound of formula (I) wherein R^5 , R^6 and R^7 are independently hydrogen or a C_1 - C_{10} hydrocarbon residue.

7.(new) A process according to claim 1 wherein the sum of carbon atoms $R^5 + R^6 + R^7$ is between 6 and 15.

8.(new) A process according to claim 1 for preparing compositions which provide upon activation an olfactory compound comprising incorporating into the composition a compound of formula (I) wherein at least one residue R⁵, R⁶ and R⁷ is not hydrogen.

9.(new) A process according to claim 1 for preparing compositions which provide upon activation an olfactory compound comprising incorporating into the composition a compound of formula (I) wherein R⁸, R⁹ and R¹⁰ are independently hydrogen or a C₁-C₁₀ hydrocarbon residue.

10.(new) A process according to claim 1 wherein the sum of carbon atoms $R^8 + R^9 + R^{10}$ is between 6 and 15.

11.(new) A process according to claim 1 for preparing compositions which provide upon activation an olfactory compound comprising incorporating into the composition a compound of formula (I) wherein at least one residue R⁸, R⁹ and R¹⁰ is not hydrogen.

12.(new) A process according to claim 1 for preparing compositions which provide upon activation an olfactory compound comprising incorporating into the composition a compound of formula (I) wherein R^{14} , R^{15} and R^{16} are independently hydrogen or a C_{I} - C_{I0} hydrocarbon residue.

13.(new) A process according to claim 1 wherein the sum of carbon atoms $R^{14} + R^{15} + R^{16}$ is between 6 and 15.

14.(new) A process according to claim 1 for preparing compositions which provide upon activation an olfactory compound comprising incorporating into the composition a compound of formula (I) wherein at least one residue R¹⁴, R¹⁵ and R¹⁶ is not hydrogen.

15.(new) A process according to claim 1 for preparing compositions which provide upon activation an olfactory compound comprising incorporating into the

composition a compound of formula (I) wherein R^{17} , R^{18} and R^{19} are independently hydrogen or a C_1 - C_{10} hydrocarbon residue.

16.(new) A process according to claim I wherein the sum of carbon atoms $R^{17} + R^{18} + R^{19}$ is between 6 and 15.

17. (new) A process according to claim 1 for preparing compositions which provide upon activation an olfactory compound comprising incorporating into the composition a compound of formula (I) wherein at least one residue R¹⁷, R¹⁸ and R¹⁹ is not hydrogen.

18. (new) A process according to claim 1 for preparing compositions which provide upon activation an olfactory compound comprising incorporating into the composition a compound of formula (I) wherein n is 1.

19 (new) A process according to claim 1 for preparing compositions which provide upon activation an olfactory compound comprising incorporating into the composition a compound of formula (I) wherein n is 1 and Y a residue selected from the group consisting of a fragrant alcohol HO–CR⁵R⁶R⁷, of the enol form of a fragrant alcehyde of the formula O=(CH)-CHR⁹R¹⁰, and of the enol form of a fragrant ketone of the formula O=(CR⁸)-CHR⁹R¹⁰.

20.(new) A process according to claim 19 wherein the fragrant alcohol having a molecular weight between 46 and 400.

21.(new) A process according to claim 1 for preparing compositions which provide upon activation an olfactory compound comprising incorporating into the composition a compound of formula (I) wherein n is 1 and Y a residue selected from the group consisting of a fragrant alcohol HO–CR⁵R⁶R⁷, of the enol form of a fragrant aldehyde of the formula O=(CH)-CHR⁹R¹⁰, and of the enol form of a

fragrant ketone of the formula O=(CR⁸)-CHR⁹R¹⁰, and R is selected from the group consisting of methyl, ethyl, propyl, butyl, pentyl, 2-ethylhexyl, cyclopentyl, cyclohexyl, and the residue of a fragrant alcohol.

- 22. (new) A process according to claim 21 wherein the fragrant alcohol having a molecular weight between 46 and 400.
- 23.(new) A process according to claim 19 wherein the fragrant aldehyde having a molecular weight between 100 and 450.
- 24. (new) A process according to claim 21 wherein the fragrant aldehyde having a molecular weight between 100 and 450.
- 25. (new) A process according to claim 19 wherein the fragrant ketone having a molecular weight between 100 and 450.
- 26. (new) A process according to claim 21 wherein the fragrant ketone having a molecular weight between 100 and 450.
- 27.(new) A process according to claim 1 for preparing compositions which provide upon activation an olfactory compound comprising incorporating into the composition a compound of formula (I) wherein n is 1 and R is amonovalent residue of formula (i).
- 28. (new) A consumer product comprising a compound of formula (I) as defined by claim 1.
- 29. (new) A consumer product according to claim 28 comprising a compound of formula (I) wherein n is 1 and Y a residue selected from the group consisting of a fragrant alcohol HO–CR⁵R⁶R⁷, of the enol form of a fragrant aldehyde of the formula

 $O=(CH)-CHR^9R^{10}$, and of the enol form of a fragrant ketone of the formula $O=(CR^8)-CHR^9R^{10}$.

30.(new) A consumer product according to claim 28 wherein the consumer product is selected from fine fragrance, industrial care products, institutional care products, home care products, personal care products, industrial cleaning products, institutional cleaning products, home cleaning products, and fabric conditioner.

- 31. (new) A process of providing an olfactory compound to a substrate comprising the steps:
 - a) cleaving a compound of formula (I) by hydrolysis

wherein the acrylic acid ester double bound is of the E configuration;

n is zero or 1;

Y is $-CR^5R^6R^7$, wherein R^5 , R^6 and R^7 are independently hydrogen or a C_1 - C_{18} hydrocarbon residue, and the sum of all carbon atoms (R^5 + R^6 + R^7) is not greater than 18; or

Y is $-CR^5R^6R^7$, wherein R^5 , R^6 and R^7 are independently hydrogen or a C_1 - C_{18} hydrocarbon residue containing one or more atoms/groups

selected from O, N and C(O), and the sum of all carbon atoms ($R^5 + R^6 + R^7$) is not greater than 18; or

Y is $-CR^8=CR^9R^{10}$, wherein R^8 , R^9 and R^{10} are independently hydrogen or a C_1 - C_{18} hydrocarbon residue, the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^8 + R^9 + R^{10}$) is not greater than 18; or

Y is $-CR^8=CR^9R^{10}$, wherein R^8 , R^9 and R^{10} are independently hydrogen or a C_1 - C_{18} hydrocarbon residue containing one or more atoms/groups selected from O, N and C(O), the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^8 + R^9 + R^{10}$) is not greater than 18;

R² and R³ are independently hydrogen, C₁-C₆ alkyl, C₁-C₆ alkoxy residue, -NH₂, -NO₂, -NHCO₂CH₃, -N(C₁-C₆ alkyl)₂, -N(hydroxyalkyl)₂, -NHC(O)-(C₁-C₈ alkyl) or -NHC(O)-(C₃-C₈ aryl); or

R² and R³ are attached at the positions C(6,7), C(7,8), or C(8,9), and form together with the carbon atoms to which they are attached a dioxolane ring or a dioxane ring;

 R^4 in 2- or 3-position is hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_3 - C_6 cycloalkyl, or -CN; and

a) if n is zero, R is a C₁-C₂₄ hydrocarbon residue, or C₁-C₂₄
 hydrocarbon residue containing one or more heteroatoms selected from N, O and Si; or

b) if n is 1, R is a C₁- C₂₅ hydrocarbon residue, a C₁- C₂₅ hydrocarbon residue containing one or more atoms/groups selected from N, O, Si, and C(O), or C₁- C₂₅ hydrocarbon residue substituted by an ionic substituent of the formula N(R²⁰)₃⁺, in which R²⁰ is the residue of an alkyl group with 1 to 18 carbon atoms; or R is a monovalent residue of the formula (i)

$$\begin{array}{c|cccc}
v_i & & & & & & & & \\
v_i & & & & & & & \\
R^{13} & & & & & & & \\
v_{ii} & & & & & & \\
v_{ii} & & & & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
x & & & & & \\
R^{11} & & & & & \\
\hline
\end{array}$$
(i)

wherein

X is $-CR^{14}R^{15}R^{16}$, wherein R^{14} , R^{15} and R^{16} are independently hydrogen or a C_1 - C_{18} hydrocarbon residue, and the sum of all carbon atoms (R^{14} + R^{15} + R^{16}) is not greater than 18; or

X is $-CR^{14}R^{15}R^{16}$, wherein R^{14} , R^{15} and R^{16} are independently hydrogen or a C_1 - C_{18} hydrocarbon residue containing one or more atoms/groups selected from O, N and C(O), and the sum of all carbon atoms ($R^{14}+R^{15}+R^{16}$) is not greater than 18; or

X is $-CR^{17}=CR^{18}R^{19}$, wherein R^{17} , R^{18} and R^{19} are independently hydrogen or a C_1 - C_{18} hydrocarbon residue, the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^{17} + R^{18} + R^{19}$) is not greater than 18; or

X is $-CR^{17}=CR^{18}R^{19}$, wherein R^{17} , R^{18} and R^{19} are independently hydrogen or a C_1 - C_{18} hydrocarbon residue containing one or more atoms/groups selected from O, N and C(O), the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^{17} + R^{18} + R^{19}$) is not greater than 18;

 R^{12} and R^{13} are independently hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy residue,

-NO₂, -NH₂, -NHCO₂CH₃, -N(C₁-C₆ alkyl)₂, -N(hydroxyalkyl)₂,

-NHC(O)-(C_1 - C_8 alkyl) or -NHC(O)-(C_3 - C_8 aryl); or

R¹² and R¹³ are attached at the positions C(vi,vii), C(vii,viii), or C(viii,ix), and form together with the carbon atoms to which they are attached a dioxolane ring or a dioxane ring;

 R^{11} in ii- or iii-position is hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_3 - C_6 cycloalkyl, or -CN;

resulting in a compound of formula (Ia)

wherein R², R³, R⁴ and Y have the same meaning as given above; followed by

b) cleaving the compound of formula (Ia) of step a under activating conditions in the presence of light resulting in a coumarin (IIa)

$$R^2$$
 R^3
 R^4
(IIa)

wherein R^2 , R^3 and R^4 have the same meaning as given above.

32.(new) A compound of formula (I)

wherein the acrylic acid ester double bound is of the E configuration;

n is zero or 1;

Y is $-CR^5R^6R^7$, wherein R^5 , R^6 and R^7 are independently hydrogen or a C_1 - C_{18} hydrocarbon residue, and the sum of all carbon atoms ($R^5 + R^6 + R^7$) is not greater than 18 and at least 6; or

Y is $-CR^5R^6R^7$, wherein R^5 , R^6 and R^7 are independently hydrogen or a C_1 - C_{18} aliphatic residue containing one or more atoms/groups selected from O, N and C(O), [and] the sum of all carbon atoms $(R^5 + R^6 + R^7)$ is not greater than 18; and at least one of the residues R^5 , R^6 and R^7 is not hydrogen; or

Y is $-CR^8=CR^9R^{10}$, wherein R^8 , R^9 and R^{10} are independently hydrogen or a C_{18} hydrocarbon residue, the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^8 + R^9 + R^{10}$) is not greater than 18; or

Y is $-CR^8=CR^9R^{10}$, wherein R^8 , R^9 and R^{10} are independently hydrogen or a C_{18} hydrocarbon residue containing one or more atoms/groups selected from O, N and C(O), the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^8 + R^9 + R^{10}$) is not greater than 18;

R² and R³ are independently hydrogen, C₁-C₆ alkyl, C₁-C₆ alkoxy residue, -NH₂, -NO₂, -NHCO₂CH₃, -N(C₁-C₆ alkyl)₂, -N(hydroxyalkyl)₂, -NHC(O)-(C₁-C₈ alkyl) or -NHC(O)-(C₃-C₈ aryl); or

R² and R³ are attached at the positions C(6,7), C(7,8), or C(8,9), and form together with the carbon atoms to which they are attached a dioxolane ring or a dioxane ring;

 R^4 in 2- or 3-position is hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_3 - C_6 cycloalkyl, or –CN; and

- a) if n is zero, R is a C₂-C₂₄ hydrocarbon residue, or C₁-C₂₄ hydrocarbon residue containing one or more heteroatoms selected from N, O and Si; or
- b) if n is 1, R is a C₁- C₂₅ hydrocarbon residue, a C₁- C₂₅ hydrocarbon residue containing one or more atoms/groups selected from N, O, Si, and C(O), or C₁- C₂₅ hydrocarbon residue substituted by an ionic substituent of the formula N(R²⁰)₃⁺, in which R²⁰ is the residue of an alkyl group with 1 to 18 carbon atoms; or

R is a monovalent residue of the formula (i)

$$\begin{array}{c|cccc}
v_i & & & & & & & & & & \\
v_i & & & & & & & & & \\
R^{13} & & & & & & & & \\
v_{ii} & & & & & & & \\
v_{ii} & & & & & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
x & & & & & & \\
R^{13} & & & & & & \\
v_{ii} & & & & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
x & & & & & \\
R^{11} & & & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
x & & & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
x & & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
x & & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
x & & & & \\
\end{array}$$

$$\begin{array}{c|ccccc}
x & & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
x & & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
x & & & \\
\end{array}$$

$$\begin{array}{c|ccccc}
x & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
x & & & \\
\end{array}$$

$$\begin{array}{c|ccccc}
x & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
x & & & \\
\end{array}$$

wherein

X is $-CR^{14}R^{15}R^{16}$, wherein R^{14} , R^{15} and R^{16} are independently hydrogen or a C_1 - C_{18} hydrocarbon residue, and the sum of all carbon atoms (R^{14} + R^{15} + R^{16}) is not greater than 18; or

X is $-CR^{14}R^{15}R^{16}$, wherein R^{14} , R^{15} and R^{16} are independently hydrogen or a C_1 - C_{18} hydrocarbon residue containing one or more atoms/groups selected from O, N and C(O), and the sum of all carbon atoms ($R^{14}+R^{15}+R^{16}$) is not greater than 18; or

X is $-CR^{17}=CR^{18}R^{19}$, wherein R^{17} , R^{18} and R^{19} are independently hydrogen or a C_1 - C_{18} hydrocarbon residue, the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^{17} + R^{18} + R^{19}$) is not greater than 18; or

X is $-CR^{17}=CR^{18}R^{19}$, wherein R^{17} , R^{18} and R^{19} are independently hydrogen or a C_1 - C_{18} hydrocarbon residue containing one or more atoms/groups selected from O, N and C(O), the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^{17} + R^{18} + R^{19}$) is not greater than 18;

 R^{12} and R^{13} are independently hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy residue,

-NO₂, -NH₂, -NHCO₂CH₃, -N(C₁-C₆ alkyl)₂, -N(hydroxyalkyl)₂, -NHC(O)-(C₁-C₈ alkyl) or -NHC(O)-(C₃-C₈ aryl); or

R¹² and R¹³ are attached at the positions C(vi,vii), C(vii,viii), or C(viii,ix), and form together with the carbon atoms to which they are attached a dioxolane ring or a dioxane ring;

 R^{11} in ii- or iii-position is hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_3 - C_6 cycloalkyl, or -CN.

33. (new) A compound according to claim 32 wherein n is 1 and R², R³ and R⁴ are hydrogen.

34. (new) A compound according to claim 32 wherein n is I, R^2 and R^3 are hydrogen and R^4 is selected from methyl and -CN.

35 (new) A compound according to claim 32 wherein n is 1, R² and R³ are hydrogen and R⁴ is phenyl at C(3).

36. (new) A compound according to claim 32 wherein n is 1, R^2 is hydrogen, R^3 is at either C(6) to C(8) and R^3 is selected from methyl, ethyl, propyl, isopropyl, methoxy, ethoxy and propyloxy, and R^4 is selected from hydrogen, methyl, –CN, and phenyl at C(3).

37. (new) A compound according to claim 32 wherein n is 1, R^2 and R^3 are methyl at position C(6,7), C(6,8), C(6,9), C(7,8), or C(8,9), and R^4 is selected from hydrogen, –CN, and phenyl at C(3).

- 38. (new) A compound according to claim 32 wherein n is 1, R^2 and R^3 are methoxy at C(7,9), and R^4 is selected from hydrogen, -CN, and phenyl at C(3).
- 39. (new) A compound according to claim 32 wherein n is 1, R⁴ is selected from hydrogen, methyl, -CN, and phenyl at C(3), R² is methyl at C(6) and R³ is isopropyl at C(9).
- 40. (new) A compound according to claim 32 wherein n is 1, R^4 is selected from hydrogen, methyl, -CN, and phenyl at C(3), R^2 is isopropyl at C(6) and R^3 is methyl at C(9).
- 41. (new) A compound according to claim 32 wherein n is 1, R⁴ is selected from hydrogen and methyl, and R² and R³ are hydrogen.
- 42. (new) A compound according to claim 32 wherein n is 1, R^4 is selected from hydrogen and methyl, R^2 is hydrogen, and R^3 is 7-methoxy.
- 43. (new) A compound according to claim 32 wherein n is 1, R^4 is selected from hydrogen and methyl, R^2 is hydrogen, and R^3 is 6-methyl.
- 44. (new) A compound according to claim 32 wherein n is 1, R⁴ is selected from hydrogen and methyl, R² is hydrogen, and R³ is 7-methyl.
- 45. (new) A compound according to claim 32 wherein n is 1, R⁴ is selected from hydrogen and methyl, R² is hydrogen, and R³ is 8-methyl.
- 46. (new) A compound according to claim 32 wherein n is 1, R^4 is selected from hydrogen and methyl, R^2 is hydrogen, and R^3 is 6-tert-butyl.

47. (new) A compound according to claim 32 wherein n is 1, R⁴ is selected from hydrogen and methyl, R² is 6-tert-butyl, and R³ is 8-tert-butyl.

48. (new) A compound according to claim 32 wherein n is 1 and R is a monovalent residue of the formula (i)

$$V_{i}$$

$$V_{i$$

wherein X, R^{11} , R^{12} and R^{13} are defined according to claim 27.

49. (new) A compound according to claim 48 wherein R⁴=R¹¹, R³=R¹³ and R²=R¹².

50. (new) A process according to claim 31 wherein the compound of formula (I) hydrolysis in the presence of enzymes.