Code: 13A05404

Max. Marks: 70

B.Tech II Year II Semester (R13) Regular Examinations May/June 2015

FORMAL LANGUAGES & AUTOMATA THEORY

Time: 3 hours

(Computer Science and Engineering)

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - What is a string? How to concatenate two strings? (a)
 - (b) What is context free grammar?
 - (c) Describe the language generated by the regular expression: $(a + b)^* aaa(a + b)^*$.
 - Let r₁ be the regular expression representing the language L₁, r₂ be the regular expression representing the language L_2 , what is the language represented by the regular expression $r_2 + r_1$.
 - Identify the language generated by context free grammar: $S \to (S)|()|SS$. (e)
 - (f) Define ambiguous grammar with example.
 - Can push down automata accept the regular language? (g)
 - (h) Give any two examples of languages that are accepted by PDA.
 - Define linear bounded automata. (i)
 - Define multi-tape Turing machine. (i)

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- (a) Construct the language generated by grammar $S \to aSb/\varepsilon$.
 - (b) Construct the language generated by the grammar $S \to aCa$; $C \to aCa/b$.

OR

3 Design a minimal DFA over the alphabet $\Sigma = \{0, 1\}$ to accept the language $L = \{w | w \cong 0 \mod 3\}$.

UNIT - II

State and prove Arden's theorem.

OR

- 5 (a) Write the identities of regular expressions.
 - Draw the NFSA to accept the languages generated by aa^*bb^*

[UNIT - III]

Remove unit productions in the following grammar:

 $S \rightarrow ABaC$

 $A \rightarrow BC$

 $B \rightarrow b \mid \in$

 $C \rightarrow D \mid \in$

 $D \rightarrow \in$

(b) Remove unit productions in the following grammar:

 $S \rightarrow aSb$

 $S \to A$

 $A \rightarrow cAd$

 $A \rightarrow cd$

OR

7 Define Chomsky normal form, convert the following grammar into CNF:

 $S \rightarrow bA|aB$; $A \rightarrow bAA|aS|a$; $B \rightarrow aBB|bS|a$.

UNIT – IV

8 Construct a PDA that accepts the language generated by the following grammar: $S \to aB$; $B \to bA/b$; $A \to aB$.

Construct a PDA to accept the language $L = \{WCW^R/W \in (a, b)^+\}$ by the empty stack. 9

[UNIT – V]

10 Design a Turing machine to accept the language = $\{a^n b^n, n \ge 1\}$. Show an ID for the string 'aaabbb' with tape symbols.

OR

11 Write short notes on: (i) Instantaneous Description of TMs. (ii) Recursively Enumerable and Recursive Languages.
