

Service-Anleitung

Kopie von schlechter Kopie

Lenco L85

Technische Beschreibung der Feinregulierung sowie des Abstellers

Kurzbeschreibung (siehe Block-Schema)

Der Antrieb erfolgt durch einen gekapselten und federnd aufgehängten 16poligen Synchronmotor. Ein Synchronmotor wurde deshalb gewählt, da die Drehzahl sowohl temperatur- wie spannungsunabhängig stabil bleibt. Die Kraftübertragung auf den Plattensteller erfolgt über einen geschliffenen Flachriemen. Die Tourenzahlen 33⅓ und 45 werden mechanisch umgeschaltet. Die elektronische Feinregulierung ermöglicht eine Abweichung der Tourenzahl um $\pm 5\%$. Ein im Bereich von 47—53 Hz abstimmbarer Oszillator liefert die erforderliche Frequenzänderung der Motor speisespannung. Befindet sich der Drehknopf für die Feinregulierung in der Stellung «Off», wird der Motor direkt über den Transformator gespiesen und funktioniert im Netz-Synchron-Betrieb. Die Elektronik für die Feinregulierung ist in dieser Position ausgeschaltet.

Der elektronische Endabschalter ist mit automatischem Abheben des Tonarmes von der Schallplatte kombiniert. Der Absteller arbeitet kontaktlos und wird durch die Winkelgeschwindigkeit des Tonarmes gesteuert. Bis zu einem Radius von 70 mm, gemessen von der Plattenstellerachse-Mitte bis Nadelspitze, ist die Funktion des Abstellers elektronisch blockiert. Dadurch kann bis zu diesem Punkt der Tonarm frei bewegt werden, ohne den Absteller ungewollt zu früh zum Einsatz zu bringen. Als «Lage-Geber» des Tonarmes wird die Änderung der Spannung an einem Resonanzkreis bei Verstimmung benutzt. Der Parallelschwingkreis besteht aus einem Kondensator von 15 nF und einer veränderlichen Induktivität, die im Tonarm eingebaut ist. Diese veränderliche Induktivität besteht aus einem Ferritsegment, welches die Drehung des Tonarmes mitmacht und über eine fest montierte Spule geführt wird. Der Resonanzkreis wird mit einem Multivibrator auf einer Frequenz von 80 kHz angeregt.

Beschreibung der Schaltung

Die elektronische Tourenzahl-Feinregulierung

Als Generator dient ein modifizierter RC-Phasenschieber-Oszillator mit Transistor T 10. Bei Zeitsymmetrie der Speisespannung weist der Synchronmotor ein Minimum an Vibration auf. Für die Symmetrierung werden als Begrenzer die Diolen D 9 und D 10 verwendet: Geregelt wird mit dem Trimm-Potentiometer TP 5. Damit der Oszillator gestartet werden kann, wird ein Widerstand von 22 kΩ parallel zum Diodenbegrenzer geschaltet, um den Kondensator von 220 nF beim Ausschalten zu entladen. Die Frequenz wird im zweiten RC-Glied verändert. Die Frequenz-Grobeinstellung erfolgt über das Trimm-Potentiometer TP 6, die Feinregulierung über das auf der Montageplatte angebrachte Potentiometer P 1. Die Frequenz- und Amplituden-Temperaturkom-

pensation erfolgt durch einen aus Kupferdraht gewickelten Widerstand von 56 Ohm. Der Oszillator wird über das RC-Glied 820 Ohm und 100 µF entkoppelt.

Als Trennstufe zwischen Oszillator und Leistungsverstärker ist der Transistor T 11 als Emitterfolger geschaltet. Im Leistungsverstärker werden die Transistoren T 12, T 13 und T 14 verwendet. Die Eingangsspannung des Leistungsverstärkers wird mit dem Trimm-Potentiometer TP 7 eingestellt. Die optimale Einstellung der Endstufensymmetrie wird mit dem Trimm-Potentiometer TP 8 vorgenommen. Damit die Endstufe bei Umschaltung von Synchronbetrieb auf Feinregulierung sofort bereit ist, wird die Endstufe mit einem Widerstand von 220 Ohm vorbelastet. Da die Leistungsstufe mit konstanter Amplitude arbeitet, ist eine Temperaturkompensation des Ruhestromes überflüssig.

Der elektronische Absteller

Der elektronische Absteller

Mit den Transistoren T 1 und T 2 wird ein Multivibrator mit einer Frequenz von 80 kHz gebildet. Durch diese Schaltung wird mit einem minimalen Aufwand eine maximale Stabilität erreicht. Die Frequenz des Multivibrators wird mit dem Trimm-Potentiometer TP 1 abgestimmt, da Spule und Segment im Tonarm fest und nicht abstimmbar montiert sind. Der Tonarm wird gegen die Plattenstellerachse gebracht, bis die Nadel auf einem Radius von 48 mm (von Tellerachsmitte aus gemessen) zu stehen kommt, mit TP 1 abstimmen, bis das Maximum der Resonanzspannung erreicht wird. Mit dem relativ niederohmigen Ausgang des Multivibrators wird die Spannungsteilerkombination, bestehend aus einem Widerstand von 22 kΩ und dem lagebestimmenden Parallelresonanzkreis gespiesen.

Für die richtige Funktion des Abstellers im ganzen Arbeitsgebiet muss die Spannung in einem linearen Verhältnis zum Drehwinkel des Tonarmes sein. Da zur Lagebestimmung ein Resonanzkreis eingesetzt ist, erhalten wir keine lineare Funktion der Ausgangsspannung zum Drehwinkel. Zur Linearisierung ist der Arbeitspunkt des Verstärkertransistors T 3 so eingestellt, dass die Nichtlinearität der Stufe zusammen mit der Nichtlinearität der Spannungsverdopplerdioden D 5 und D 6 gerade die Nichtlinearität des Resonanzkreises kompensiert. Die Gleichspannung nach der D 6 ergibt eine lineare Funktion des Drehwinkels.

Um die Winkelgeschwindigkeit des Tonarmes zu erhalten, müssen wir nun die lageabhängige Gleichspannung differenzieren. Kippt der Tonarm in die Abstellrinne der Schallplatte, wird eine Steigung von 2,6 mm erreicht, wonach nach dem Differenzierglied eine Spannung resultiert, welche den

Nadel-Einstellehre
Stylus-adjusting gauge
Calibre d'ajustement pour aiguille

Lenco L 85

Printed in Switzerland

Ausschaltmechanismus in Funktion setzt. Das differenzierte Signal, welches den Schwellwert eines Darlington-Verstärkers (Transistoren T 4 und T 5) überschreitet, wird über eine zweite Darlington-Schaltung mit den Transistoren T 8 und T 9 in Serie den Elektromagneten für die Endabschaltung sowie für das Abheben des Tonarmes zugeführt.

Eine nichtlineare positive Rückkopplung, die von T 9 zu T 4 zurückführt, beschleunigt den Ausschaltvorgang.

Wie schon erwähnt, muss die Abstellfunktion bis zu einem Radius von 70 mm blockiert sein. Dies wird mit der Schmitt-Trigger-Schaltung, mit den Transistoren T 6 und T 7 erreicht. Der Grenzwert von 70 mm wird mit dem Trimm-Potentiometer TP 2 eingestellt. Solange die lageabhängige Gleichspannung einen bestimmten Grenzwert nicht erreicht hat, ist der Transistor T 7 gesperrt. Die Diode D 7 liegt in diesem Falle in Serie mit einem Widerstand von 10 kΩ gegen Masse und blockiert dadurch den Differenzierkon-

densator von 1 mF.

Im deblockierten Zustand ist der Transistor T 7 leitend, infolgedessen wird eine positive Spannung an die Diode D 7 gebracht, diese wird dadurch hochohmig und gibt deshalb das Signal für den Transistor T 4 frei.

Netzteil

Der Netzteil ist sehr einfach und befindet sich mit Ausnahme des Netztransformators ebenfalls auf der gedruckten Leiterplatte. Er liefert die Gleichspannung von 15,5 Volt stabilisiert. Im weiteren gibt der Netztransformator eine Wechselspannung von 5,2 Volt für den Synchronbetrieb des Motors (Schaltstellung «Off») ab. Zu erwähnen bleibt der Kondensator von 68 nF über den Transistor T 15, welcher ein Eigen-schwingen der Stabilisationsstufe verhindert.

Service-Anleitung

A. Allgemeine Angaben

1. Netzanschluss 220 V	auf Wunsch 110/220 V
2. Sicherungen: 1 X 63 mA	2 X 63 mA
1 X 400 mA	1 X 400 mA

B. Funktionskontrolle des Tonarmlift-Elektromagneten

Tonarmlift-Mechanik muss so justiert werden, dass der Elektromagnet bei 90 — 120 mA funktioniert. (Anschlüsse ablösen und mit externem Speisegerät prüfen.)

C. Kontrolle des richtigen Drehwinkels des Tonarmes

Beim Drehen des Tonarmes in Richtung Plattenstellerachse soll die minimale Entfernung der Nadelspitze zur Mitte der Plattenstellerachse 40 mm betragen, auf Nadeleinstelllehre Punkt B. Wenn nötig mit Hilfe der Madenschrauben im Tonarm Flansch Lage des Tonarmes korrigieren.

D. Elektrische Kontrolle und Einstellung der Trimm-Potentiometer auf der Leiterplatte Netz-, Gleichrichter- und Stabilisatorteil

1. Netzzspannung: 220 V
2. Stromaufnahme: bei Synchronbetrieb 35 — 40 mA
bei Feinregulierung 42 — 47 mA
3. Motorklemmenspannung bei Synchronbetrieb
4,8 — 5,3 V
4. Die stabilisierte Spannung U (M1 — I) beträgt
15 — 16,5 V
5. Die Speisespannung des Abstellers U (M1 — B) ist
1,3 — 2,0 V kleiner als U (M1 — I).

Motorteil

6. Feinregulierung einschalten.
7. Trimm-Potentiometer TP 7 im Uhrzeigersinn auf Maximum drehen.
8. Die Gleichspannung U (M1 — I) messen.
9. Trimm-Potentiometer TP 8 so einstellen, dass die Span-

nung U (K — I) die Hälfte der Spannung U (M1 — I) aus-macht.

10. Mit dem Trimm-Potentiometer TP 7 die Motor-Klemmen-Spannung auf 4,55 — 4,65 V einstellen.
11. Das Potentiometer für die Feinregulierung PI in die Mitte seines Bereiches einstellen.
12. Mit dem Trimm-Potentiometer TP 6 die Tourenzahl mittels Stroboskop 33 1/3 oder 45 Touren genau einregu-lieren.
13. Mit Hilfe der Rumpel-Messplatte mit Trimm-Potentio-meter TP 5 die 50 Hz Komponente auf minimalen Rumpel einstellen.

Absteller

14. Das Gerät einschalten. Die Nadeleinstelllehre aufsetzen und die Nadel des Tonarmes genau auf Punkt «C» setzen. Schaltet der Absteller dabei aus, bevor der Punkt «C» erreicht ist, ist der Läufer des Trimm-Potentiometers TP 2 leicht in Richtung des Transistors T 7 zu drehen. (Bei steckbarer Leiterplatte ist der Läufer des Trimm-Potentiometers TP 2 leicht in Richtung des Transistors T 6 zu drehen.)
15. Die Gleichspannung U (D — B) messen, mit Trimm-Poten-tiometer TP 1 das Maximum aufsuchen (ca. 8 — 10 V), messen und auf einen 0,2 — 0,5 V kleineren Wert als das Maximum einstellen. (Nach links oder rechts ver-stimmen.)
Das Messinstrument muss einen Eingangswiderstand von mindestens 1 MΩ aufweisen.

Kontrolle:

Das Spannungsmaximum U (D — B) muss auf der Einstell-Lehre zwischen B und C liegen und bei Bewegung des Tonarmes in Richtung «D» von «C» an gleichmassig sinken.
Lieg das Maximum zwischen «C» und «D», ist die Verstim-mung in anderer Richtung vorzunehmen.

16. Den Tonarm auf der Nadel-Einstelllehre auf Punkt «D» legen (70 mm Tellerachsmitte bis Nadelspitze). Das Trimm-Potentiometer TP 2 langsam im Gegenuhrzeiger-sinn drehen, bis die Spannung zwischen dem Kollektor des Transistors T 6 und Punkt «B» sprunghaft sinkt.

Service-Anleitung

A. Allgemeine Angaben

1. Netzanschluss 220 V oder 110/220 V
2. Sicherungen 1 X 63 mAT 2 X 63 mAT
1 X 400 mAT 1 X 400 mAT

B. Funktionskontrolle des Tonarmlift-Elektromagneten

Tonarmlift-Mechanik muss so justiert werden, dass der Elektromagnet bei 90—120 mA funktioniert. (Anschlüsse ablösen und mit externem Speisegerät prüfen.)

C. Kontrolle des richtigen Drehwinkels des Tonarmes

Beim Drehen des Tonarmes in Richtung Plattentellerachse soll die minimale Entfernung der Nadespitze zur Mitte der Plattentellerachse 40 mm betragen, auf Nadeleinstellehre Punkt B.

Wenn nötig, ist mit Hilfe der Madenschrauben im Tonarmflansch die Lage des Tonarmes zu korrigieren.

D. Elektrische Kontrolle und Einstellung der Trimm-Potentiometer auf der Printplatte

Stromversorgung:

1. Stromaufnahme bei Netzzspannung 220 V AC = 47,5—52,5 mA
2. Gleichspannung U 1 = 20—21 V gemessen zwischen M 1 (—) und C 19 (+) Bild 5
3. Stabilisierte Gleichspannung U 2 = 14,75—15,75 V gemessen zwischen M 1 (—) und B (+) Bild 5
4. Dreieckspannung für Antriebsmotor = 4,55—4,65 V gemessen mit Universalmessinstrument $R_i > 1 \text{ k}\Omega$ (gemessen mit KO beträgt diese Spannung 14 Vpp)
5. Eingestellt wird diese Dreieckspannung mit TP 4. (Bild 5)

BILD 4

6. Jetzt drehen Sie das Potentiometer für die Feinregulierung P 1 auf Anschlag im Uhrzeigersinn und vergleichen Sie seine Position mit dem Bild 4.

Wenn die Position nicht stimmt, korrigieren Sie sie. (Knopfschraube lösen, Knopf richtig justieren und mit der Schraube wieder fixieren.)

BILD 5

7. Feinregulierungs-Potentiometer P 1 in die Position 50 Hz (gemäß Bild 4) zurückdrehen. Jetzt sollen die oberen Balken auf dem Stroboskopring stillstehen. (Die oberen

Balken gelten für 33 1/3, die unteren für 45 Umdrehungen.) Wenn das nicht der Fall ist, stellen Sie die richtige Tourenzahl mit dem TP 3 ein. (Bild 5)

F

Technische Beschreibung der Feinregulierung sowie des Abstellers

Kurzbeschreibung (siehe Block-Schema)

Der Antrieb erfolgt durch einen gekapselten und federnd aufgehängten 16poligen Synchronmotor. Die Kraftübertragung auf den Plattensteller erfolgt über einen geschliffenen Flachriemen. Die Tourenzahlen $33\frac{1}{3}$ und 45 werden mechanisch umgeschaltet. Die elektronische Feinregulierung ermöglicht eine Abweichung der Tourenzahl um -3% bis $+7\%$. Ein im Bereich von 48,5 Hz bis 53,5 Hz abstimmbarer Oszillator liefert die erforderliche Frequenzänderung der Motor speisespannung.

Der elektronische Endabschalter ist mit automatischem Abheben des Tonarmes von der Schallplatte kombiniert. Der Absteller arbeitet kontaktlos und wird durch die Winkelgeschwindigkeit des Tonarmes gesteuert. Bis zu einem Radius von 70 mm (Plattentellerachsmitte bis Nadelspitze) ist die Funktion des Abstellers elektronisch blockiert. Dadurch kann bis zu diesem Punkt der Tonarm frei bewegt werden, ohne den Absteller ungewollt zu früh zum Einsatz zu bringen. Es

ist aber auch möglich, innerhalb der 70 mm von der Platte ein Stück zu wiederholen. Zuerst muss man den Tonarm über den gewünschten Einsatzpunkt bringen, dann die Taste «On» so lange drücken, bis ein leises «Klick» gehört wird, und anschließend den Tonarm mit Tonarmlift sinken lassen. Der Endabsteller wird wieder funktionieren, wenn die Winkelgeschwindigkeit die Grösse, welche den Verhältnissen auf der Abstellrille entspricht, erreicht hat. Als «Lage-Geber» des Tonarmes wird die Änderung der Resonanzspannung eines Colpitt-Oszillators benutzt. Die Induktivität der im Tonarm eingebauten Spule ändert sich mit Hilfe des im Tonarmsupport eingebauten Ferritsegmentes, das mit der Drehung des Tonarmes über die fix montierte Spule geführt wird. Mit steigender Induktivität steigt die Spannung über der Spule, und zwar proportional zu der Winkelgeschwindigkeit des Tonarmes. Hat die Spannungssteigerung einen Wert erreicht, der den Auslauffrillen-Verhältnissen entspricht, wird das Gerät abgeschaltet und hebt dabei den Tonarm von der Schallplatte ab.

Detail-Beschreibung der Schaltung

Die elektronische Tourenzahl-Feinregulierung

Als Generator dient die integrierte Schaltung NE 566 V, die drei- sowie viereckige Ausgangssignale liefert. Für die Speisung des Motors wurde der Dreieckspannungsverlauf gewählt. Wichtiger als der Speisespannungsverlauf ist die Zeitsymmetrie der Speisespannung. Beim zeitsymmetrischen Verlauf weist der Synchronmotor ein Minimum an Vibration auf. Um dieses Minimum zu garantieren, wird in der Fabrikation jede integrierte Schaltung kontrolliert und auf Zeitsymmetriefehler von kleiner als 2,5% aussortiert.

Frequenzbestimmende Komponenten sind: C 10, R 21, TP 3, R 24, R 25 und P 1. Die Frequenzgrobeinstellung erfolgt über das Trimm-Potentiometer TP 3, die Feinregulierung über das auf der Montageplatte angebrachte Potentiometer P 1. Da diese integrierte Schaltung den Motor nicht direkt speisen kann, ist zwischen dem Generator und dem Motor noch ein integrierter Leistungsverstärker μA 706 B notwendig. Die Eingangsspannung des Leistungsverstärkers und damit auch die Motor-Klemmspannung wird mit dem Trimm-Potentiometer TP 4 eingestellt. Weitere Einstellelemente sind für die Motorsteuerung nicht notwendig.

Der elektronische Endabschalter

Die sich im Tonarm befindende Spule bildet mit dem Transistor T 1 einen Colpitt-Oszillator. Wie schon erwähnt, ändert sich die Induktivität der Spule beim Drehen des Tonarmes. Die Induktivität steigt, und damit steigt auch die HF-Spannung über der Spule. Diese HF-Spannung wird gleichgerichtet durch die Diode D 1 und weiter dem ersten Spannungskomparatoren zugeführt. Mit dem Trimm-Potentiometer TP 1 stellt man die Referenzspannung des Komparators ein.

Bei einem Komparator kann die Signalspannung auf dem Ausgang desselben nur erscheinen, wenn die Eingangs-Signalspannung die Referenzspannung überschritten hat. Den Tonarm auf die Nadelstell-Lehre Punkt «D» legen, mit TP 1 die Referenzspannung der gleichgerichteten Tonarmspulenspannung entsprechend einstellen. Wie bereits erwähnt wurde, ist der Endabschalter nicht durch die Position des Tonarmes, sondern dessen Winkelgeschwindigkeit gesteuert. Um die Winkelgeschwindigkeit des Tonarmes zu erhalten, müssen wir nun die lageabhängige Gleichspannung im Punkt «D» differenzieren.

Kommt der Tonarm in die Abstellrille der Schallplatte, wird eine Steigung von mindestens 2,6 mm erreicht, woraus nach dem Differenzierglied (C 8, R 10) eine Spannung resultiert, welche im zweiten Teil des IC 1 verstärkt und auf den dritten Teil des IC 1 geführt wird. Dieser funktioniert wieder wie ein Komparator, und mit dem Einstellen der Referenzspannung (Trimm-Potentiometer TP 2) definieren wir, bei welcher Winkelgeschwindigkeit des Tonarmes der Absteller funktionieren muss. Der letzte Teil des IC 1 ist als Schaltverstärker geschaltet und treibt den Transistor T 2, welcher den nötigen Strom für den Elektromagneten liefert.

Speiseteil

Der Speiseteil ist sehr einfach und befindet sich, mit Ausnahme des Netztransformators, ebenfalls auf der gedruckten Leiterplatte. Er besteht aus der Gleichrichterbrücke G 1, Siebkondensator C 19 und Spannungsstabilisator IC 4, welcher 15 V Gleichspannung für IC 1, IC 2 und T 1 liefert. Der Leistungsverstärker IC 3 wird direkt — ohne Stabilisation — gespiesen.

Wichtige Spannungen

Spelsotell

Stabilisierte Spannung $U(MI - I) = 15,0 - 16,5 \text{ V.DC}$

Motorteil Transistor T 10 Emitter: ca. 1,5 V.DC
Basis: ca. 2,1 V.DC
Kollektor: ca. 7,0 V.DC

Transistoren T 13 u. T 14:

$U(K - I) = \frac{1}{2} U(MI - I) \text{ DC.}$

Ausgangsspannung mit angeschlossenem Motor:
 $U(MI - M 2 = 4,55 - 4,65 \text{ V.AC.}$

Abstellerleit Spannung $U(MI - B)$ muss ca. 2 V kleiner als $U(MI - I)$ sein.
Gleichspannung Resonanzteil $U(D - B) = 7,75 - 10,5 \text{ V.DC.}$
Gleichspannung $U(F - B) = 0,7 - 0,8 \text{ V.DC.}$
(gemessen bei einer Umgebungstemperatur von ca. 23°).

Fehlersuche

Fehler

Gerät funktioniert nicht, Glimmlampe leuchtet nicht auf.

Sicherung 63 mA brennt durch, bei entfernter Sekundär-Sicherung von 400 mA.

Glimmlampe leuchtet, Gerät funktioniert jedoch nicht, nach Ausschalten leuchtet die Glimmlampe, jedoch schwächer.

Gerät funktioniert nur bei Synchronbetrieb, Feinregulierung und Absteller funktionieren nicht.

Die Sekundär-Sicherung 400 mA brennt nach dem Einschalten durch.

Feinregulierung funktioniert nicht, dagegen Synchronbetrieb sowie Absteller i. O.

Gerät schaltet sofort nach dem Einschalten wieder aus. Der Tonarm befindet sich auf der Stütze.

Ursache

Sicherung 63 mA prüfen.

Kurzschluss im Primärnetzkreis.

Kurzschluss der Glimmlampe oder in deren Sockel.

Kurzschluss im Motor oder dessen Verkabelung.

Transformator defekt. Zur Prüfung Sekundäranschlüsse ablöten und primärseitig Stromaufnahme messen. Primärleeraufstrom ca. 20 mA AC. bei 220 V. 50 Hz. Ausführung.

Primärwicklung im Netztrafo unterbrochen.

Sekundärsicherung 400 mA defekt.

Zu grosse Stromaufnahme der Leiterplatte.

Kurzschluss der Verbindungskabel.

Schlechte Dioden (D 1 — D 4).

Transistoren T 13 oder T 14 defekt.

Kondensator 68 nF defekt.

Transistor T 12 oder Diode D 11 defekt.

Fehler im Motorteil.

Transistoren T 13, T 14 oder beide unterbrochen.

Transistor T 11 funktioniert nicht.

Oszillator Stufe mit Transistor T 10 nicht in Ordnung.

Erst die DC-Spannungen am Transistor T 10 messen und erst dann die weiteren Komponenten prüfen.

Schalterlamellen von «Off»-Schalter bleiben geschlossen, oder die Verbindung auf Punkt «G» hat Kurzschluss mit Chassis.

Spule des Elektromagneten macht Kurzschluss mit Chassis. Transistoren des Absteller-Gleichstromverstärkers T 4, T 5, T 8 oder T 9 sind defekt oder weisen zu grossen Rute Strom auf.

Transistoren T 6 oder T 7 70 mm Begrenzers defekt. Ein Spulenende des Elektromagneten vom Tonarmlift ablöten und gemäss Serviceanleitung 70 mm Begrenzer kontrollieren und wenn nötig einstellen.

Resonanzkreis im Tonarm. Ein Spulenende vom Tonarmlift-Elektromagneten ablöten. Tritt beim Bewegen des Tonarmes in Richtung Tellerachse keine Veränderung der gemessenen Spannung von $U(D - B)$ auf, liegt der Fehler im Resonanzkreis oder den Bindungen zur Leiterplatte.

Feinregulierung funktioniert, jedoch Absteller nicht.

Die Spule des Elektromagneten ist unterbrochen.
Mechanischer Fehler verursacht zu grossen Stromaufnahme
des Elektromagneten, bei richtiger Einstellung liegt die
Stromaufnahme des Elektromagneten bei 90 — 120 mA.
Einer der Transistoren T 4, T 5, T 8 oder T 9 ist unterbro-
chen.
Begrenzer funktioniert nicht richtig. Transistor T 3 oder eine
der dazugehörigen Komponenten defekt.

Multivibrator (Transistor T 1 und T 2) schwingt nicht (Kon-
trolle mit K. O.).

Veränderung der Spannung U (D — B) beim Bewegen des
Tonarmes Richtung Tellerachse kontrollieren. Bleibt die ge-
messene Spannung konstant, den Resonanzkreis des Ton-
armes überprüfen: Unterbruch Spule oder Kondensator,
evtl. Ferrit-Element verschoben.

Wichtig

Nach jeder Reparatur ist das Gerät genau zu überprüfen
und, wenn nötig, gem. Serviceanleitung genau einzustellen.

Montage des Lenco Entzerrer-Vorverstärker VV7 das Gerät L85

Allgemein

Der VV 7 wird benötigt, wenn der Plattenspieler L-85 mit
einem Magnetabtastsystem ausgerüstet werden soll, der
verwendete Verstärker oder Radioapparat jedoch keinen
eigenen Entzerrer-Vorverstärker aufweist. Die Empfindlich-
keit des VV 7 ist so ausgelegt, dass die handelsüblichen
Verstärker ausgesteuert werden können.

Montage

Der L-85 enthält in der Montageplatte zwei Löcher zur Be-
festigung des VV 7. Mit zwei M 3 X 8 Schrauben, Unterlags-
scheiben sowie Federscheiben und Muttern wird der Vor-
verstärker an seinen beiden Befestigungslaschen so auf die
Montageplatte aufgeschraubt, dass die Netzanschlussseite
desselben gegen den Netztransformator des Plattenspielers
gerichtet ist.

Bei Ausführung mit separatem Masse-Verbindungs-Kabel ist
der VV 7 mit den isolierenden Distanz-Hülsen Lenco Mag.
Nr. 060.0260 und den Zylinderschrauben M 3X8 mm, Mag.
Nr. 000.0909 zu montieren.

Verdrahtung bei Geräten 110 V oder 220 V «Fix»

Die mit der vorhandenen Netzzspannung übereinstimmenden
Anschlüsse des VV 7 (110 V oder 220 V) werden mit den
Netzanschlüssen des Netztransformators zusammen in die
Leuchterklemme geschraubt. Die abgeschilderten, äusseren
Pick-up-Kabel vom Tonarm ablösen und auf den VV-7-Aus-
gang (Output) anlöten. Beachten Sie bitte die den Kanälen
zugeordneten Farbkennzeichen:

L = Linker Kanal: weiss

G = Abschirmung beider Kanäle

R = Rechter Kanal: rot

Mit abgeschilderten, flexiblen inneren Pick-up-Kabeln den
VV 7 Eingang (Input) mit den Tonarmanschlüssen verbin-
den. Beachten Sie bitte die Farbkennzeichen!

Auf der Fig. 1 sehen Sie schematisch die Lage und Ver-
drahtung des VV 7.

Im Vorverstärker VV 7 ist die Verbindung zwischen Chassis
und Abschirmung der Kabel hergestellt. Deshalb ist es wich-
tig, die Verbindung zwischen Chassis und Abschirmung der
Kabel auf dem Tonarm abzulöten oder abzuschneiden
(Fig. 2).

Bei einer Demontage des Vorverstärkers ist diese Verbin-
dung wieder herzustellen.

Verdrahtung bei umschaltbaren Geräten 110 — 220 V

Bei den umschaltbaren Geräten muss auch der Netztrans-
formator des VV 7 umgeschaltet werden.

Der mit «O» bezeichnete Anschluss wird mit dem roten Ka-
bel, der Anschluss 110 V mit dem gelben Kabel und der
Anschluss 220 V mit dem blauen Kabel am Umschalter ver-
lötet (Fig. 3).

Die Tonarmkabel werden gleich angeschlossen wie bei der
«Fix»-Ausführung.

Wichtig

Bei den umschaltbaren Geräten mit eingebautem VV7 müs-
sen beide Sicherungen 63 mAAT durch 80 mAAT ersetzt wer-
den!

Erhöhung der Betriebssicherheit des L85

Bei der Umschaltung von Synchron- auf Feinregulierungs-Betrieb entsteht ein kurzzeitiger Strom-Unterbruch, der eine Spannungs-Spitze von über 100 V zur Folge haben kann. Durch diese Spannungs-Spitze kann der Transistor T 13 zerstört werden.

Um diesen Defekt zu vermeiden, werden zwei gegeneinander in Serie geschaltete Zener-Dioden, parallel zum Kondensator von 68 nF auf den Motor geschaltet. Dadurch wird

die Spitzen-Spannung soweit reduziert, dass eine Beschädigung des Transistors T 13 mit Sicherheit vermieden wird. Es eignet sich jede Zener-Diode mit einer Zener-Spannung zwischen 10 und 15 Volt.

Wir empfehlen bei allen früheren Geräten, die aus irgend-einem Grunde in die Service-Abteilung kommen, diese Zener-Dioden einzubauen. Diese Zener-Dioden können von uns unter der Mag. Nr. 171'0007 bezogen werden.

Kondensator
condenser
condensateur

Zener-Dioden
zener diodes
diodes Zener

Blockschema der L85 Elektronik

liegt auf der Ein-Ausschalter-Einheit
mounted on the on/off switch circuit board
couplé à interrupteur «Marche-Arrêt»

L85

Schema Feinregulierung und Absteller
Plan of fine control and stop system
Schéma réglage fin et arrêt automatique

L85

Gedruckte Platte komplett
 Printed circuit board complete
 Circuit imprimé complet

Endabschalter

8. Einstellung des Arbeitsbereiches

Die Einstellung kann gemäss 8.a von oben oder gemäss 8.b auch von unten her vorgenommen werden.

a) Plättenteller abheben, Nadeleinstell-Lehre aufsetzen, Abtastnadel auf den Punkt «D» setzen und das Gerät einschalten.

Bei Fall A schaltet das Gerät sofort aus, bei Fall B schaltet das Gerät nicht aus.

Im Fall A das Trimmstellschraube TP 1 durch die Öffnung in der Nadeleinstell-Lehre um etwa 90° bis 120° gegen die Pfeilrichtung drehen, das Gerät wieder einschalten und TP 1 langsam in Pfeilrichtung verstetzen, bis das Gerät ausschaltet.

Im Fall B das TP 1 langsam in Pfeilrichtung drehen, bis das Gerät ausschaltet.

b) Nadeleinstell-Lehre auf den Plättenteller legen, Abtastnadel auf Punkt «D» setzen und das Gerät einschalten.

Bei Fall A schaltet das Gerät sofort aus, bei Fall B schaltet das Gerät nicht aus.

Im Fall A das Trimmstellschraube TP 1 (Bild 5) von unten um etwa 90° bis 120° im Uhrzeigersinn drehen, das Gerät einschalten und TP 1 langsam im Gegenuhrzeigersinn verstetzen, bis das Gerät ausschaltet.

Im Fall B TP 1 langsam im Gegenuhrzeigersinn verstetzen, bis das Gerät ausschaltet.

Bei genauer Einstellung muss das Gerät nun nach dem Einschalten innerhalb der auf der Nadeleinstell-Lehre markierten Toleranz von $+3,2$ mm und $-1,6$ mm abstellen.

Die Einstellung des Punktes «D» kann sich bei höherer Umgebungstemperatur sowie zunehmender Alterung leicht in Richtung Plattenrand verschieben. Die Funktion des Endabschalters wird jedoch dadurch nicht beeinflusst.

9. Einstellung der Ansprechempfindlichkeit

Hilfsmittel: Gleichspannungsvoltmeter 3 V, $R_i > 1 \text{ M}\Omega$
Prüfschallplatte Lenco Nr. 722

Auf der Lenco-Prüfplatte, Seite A, befindet sich eine Auslauffrille mit einer Steigung von 1,6 mm pro Umdrehung (Band 11, etwa 75 mm vom Zentrum entfernt). Mit dieser Auslauffrille kann die Funktion der Abschaltvorrichtung auf einfache Weise geprüft werden.

Dreht sich der Plattenspieler mit $33\frac{1}{3}$ Umdrehungen je Minute, darf die Abschaltvorrichtung nicht ansprechen, bei 45 Umdrehungen aber ist die Winkelgeschwindigkeit des Tonarmes grösser, deshalb muss das Gerät abschalten.

Vor Neuabgleich bitte die Kontrolle folgendermassen durchführen:

a) Prüfplatte, Seite A, auflegen, Gerät einschalten und mit Hilfe des Stroboskops die Drehzahl genau auf $33\frac{1}{3}$ U/min. einregulieren. Abtastnadel auf den Anfang des Auslauffrillenfeldes setzen und, wenn erforderlich, Gerät erneut einschalten. (On-Taste mindestens 2 Sekunden drücken.) Der Tonarm muss nun über das ganze Auslauffrillenband laufen, ohne dass der Plattenspieler abstellt. Ist das nicht der Fall, ist eine Neueinstellung nach c notwendig.

b) Gleiche Prüfung mit 45 U/min. durchführen. Die Abstelltvorrichtung muss ansprechen, bevor das Auslauffrillenband durchgelaufen ist. Stellt das Gerät nicht ab, ist eine Neueinstellung nach c erforderlich.

c) **Neueinstellung:** Voltmeter anschliessen, Minuspol an M 1, Pluspol an X auf der Printplatte. Gerät einschalten (Tourenzahl $33\frac{1}{3}$ U/min.). Tonarm auf Anfang des Feldes mit Auslauffrillen-Steigung 1,6 mm (Lenco-Prüfplatte 722, Seite A) aufsetzen. Stellt das Gerät nach einigen Umdrehungen ab, TP 2 (Bild 5) im Gegenuhrzeigersinn verstetzen und Vorgang wiederholen. Der Tonarm bewegt sich nun über das ganze Auslauffrillenband. Dabei Voltmeter beobachten und höchste angezeigte Spannung ablesen (ca. 0,8 bis 2,2 Volt).

Nun Plusklemme des Voltmeters von Punkt X auf Punkt Y legen (Bild 5). Gerät einschalten, Tonarm auf der Stütze. Mit TP 2 (Bild 5) eine um 0,5 Volt höhere Spannung, als an Punkt X abgelesen, einstellen, d. h. etwa 1,3 bis 2,7 Volt. Anschliessend Kontrolle nach a und b wiederholen.

Wichtige Spannungen

E. Wichtige Spannungen

Speisestell

Gleichspannung U 1: 20—21 V (bei normaler Netzspannung)
Gleichspannung U 2: 14,25—15,75 V

Motorell

IC 2, Anschluss 4: Wechselstrom-Komponenten-Spannung
Grösser als 2,4 V Spitze—Spitze

Motorklemmenspannung: 4,55—4,65 V~

Abstellerteil

Gleichspannung auf dem R 5: 160 mV—350 mV (Tonarm auf der Tonarm-Stütze)

Gleichspannung auf dem

Läufer des TP 1: 400—650 mV

Gleichspannung im Punkt D: 100 mV—13 V, je nach Lage des Tonarmes

Gleichspannung im Punkt X: 0,8—2,2 V mit Lenco-Prüfplatte Nr. 722, Seite A (Rillenabstand 1,6 mm) bei $33\frac{1}{3}$.

Gleichspannung im Punkt Y: 1,4—2,7 V

Alle Spannungen sind gegen Punkt M 1 (Bild 5) gemessen mit Voltmeter, dessen Eingangswiderstand grösser als $1 \text{ M}\Omega$ pro Volt ist.

Fehlersuche

Fehler	Ursache	Absteller i. O.	
Gerät funktioniert nicht, Glimmlampe leuchtet nicht auf.	Sicherung 63 mA prüfen.		P 1 oder seine Anschlüsse defekt. Komponentenfehler im Motorteil.
Sicherung 63 mA brennt bei entfernter Sekundär-Sicherung von 400 mA durch.	Kurzschluss im Primärnetzkreis. Kurzschluss der Glimmlampe oder in deren Sockel. Transformator defekt. Zur Prüfung Sekundäranschlüsse ablöten und primärseitig Stromaufnahme messen. Primärleerlaufstrom ca. 20 mA AC bei 220 V 50-Hz-Ausführung. Primärwicklung im Netztrafo unterbrochen.	Gerät schaltet sofort nach dem Einschalten wieder aus. Der Tonarm befindet sich auf der Stütze. Feinregulierung funktioniert, jedoch Absteller nicht.	Motor defekt. Transistor T 2 defekt. IC 1 defekt. Komponentenfehler.
Glimmlampe leuchtet, Gerät funktioniert jedoch nicht, nach Ausschalten leuchtet die Glimmlampe, jedoch schwächer. Die Sekundärsicherung 400 mA brennt nach dem Einschalten durch.	Zu grosse Stromaufnahme der Leiterplatte. Kurzschluss der Verbindungskabel. IC 3 defekt. Elko C 19, C 20, C 21 defekt. IC 4 defekt. Gleichrichterbrücke defekt. IC 3 defekt. IC 2 defekt.		Die Spule des Elektromagneten ist unterbrochen. Mechanischer Fehler verursacht zu grosse Stromaufnahme des Elektromagneten, bei richtiger Einstellung liegt die Stromaufnahme des Elektromagneten bei 90—120 mA. Transistor T 2 defekt. IC 1 defekt. Oszillator-Teil bzw. T 1 defekt, Spule im Tonarm oder ihre Anschlüsse defekt. Ferrit-Element im T. A. defekt oder hat nicht richtige Lage. Absteller nicht richtig eingestellt.
Feinregulierung funktioniert nicht, dagegen			Wichtig: Nach jeder Reparatur ist das Gerät genau zu überprüfen und, wenn nötig, gemäss Serviceanleitung genau einzustellen.

Einbau der Elektronik L85-IC in einen alten L85-Plattenspieler

Die neue Elektronik ist mit der alten Schaltung vollkommen kompatibel.

Das bedeutet:

- a) Alte Elektronik abschrauben;
- b) neue einsetzen, Stecker einstecken;
- c) Kondensator 15 nF auf dem Tonarm abschneiden;
- d) Widerstand 47 Ohm auf dem Motor kurzschließen.

Jede Elektronik kann für 50-Hz- wie auch für 60-Hz-Ausführung arbeiten. Den gewünschten Bereich stellt man mit dem TP 3 ein.

Bemerkung zu b: Kühlblech muss isolierend befestigt sein. Bei Berührung mit Chassis entsteht über zusätzliche Masse-Verbindung Brummspannung.

L85-IC

Gedruckte Schaltung

Printed circuit

Circuit imprimé

Integrierte Schaltungen	Integrated circuits	Circuits Imprimés	Bestell-Nr. Part No. Nº de comm.
IC 1:	MC 3302 P - Motorola, LM 339 N - National Semiconductor		170'0500
IC 2:	NE 566 V - Signetics, LM 566 CN - National Semiconductor		170'0501
IC 3:	μA 706 BPC - Fairchild, TBA 641 B 11 - SGS		170'0502
IC 4:	830 CE - Teledyne, TBA 625 CX 5 - SGS		170'0503
Transistoren-Dioden	Transistors-Diodes	Transistors-Diodes	
T 1:	BC 109 B, BC 149 B, BC 239 B, BC 209 B, BC 409 B		170'0025
T 2:	MPSU-51-Motorola, SPS-5374-Motorola		170'0022
D 1, D 2:	1 N 914, 1 N 4148		171'0009
G 1:	S 1 RB 10 - Shindengen Electric MFG, Co, Ltd., Japan		180'0003
Metallfilmwiderstände	Metal film resistors	Résistances à couche métallique	
R 21:	2,2 K $\pm 1\%$ 0,25 W		130'3027
R 24:	1,2 K $\pm 1\%$ 0,25 W		130'3032
R 25:	15 K $\pm 1\%$ 0,25 W		130'3034
Kohlemassewiderstände	Carbon composition resistors	Résistances au carbon	
R 20:	22 Ohm $\pm 10\%$ 0,5 W		130'1043
R 27:	33 Ohm $\pm 10\%$ 0,5 W		130'1053
R 28:	82 Ohm $\pm 10\%$ 0,5 W		130'1070
R 26:	150 Ohm $\pm 10\%$ 0,5 W		130'1066
R 19:	2,7 K $\pm 10\%$ 0,5 W		130'1019
R 23:	4,7 K $\pm 10\%$ 0,5 W		130'1023
R 14:	5,6 K $\pm 10\%$ 0,5 W		130'1028
R 6, R 7, R 15:	10 K $\pm 10\%$ 0,5 W		130'1049
R 3:	12 K $\pm 10\%$ 0,5 W		130'1039
R 1, R 2, R 9, R 13, R 17, R 18:	15 K $\pm 10\%$ 0,5 W		130'1034
R 22:	56 K $\pm 10\%$ 0,5 W		130'1035
R 4, R 5:	100 K $\pm 10\%$ 0,5 W		130'1012
R 8:	680 K $\pm 10\%$ 0,5 W		130'1071
R 10, R 11:	1 M $\pm 10\%$ 0,5 W		130'1010
R 12, R 16:	8,2 M $\pm 10\%$ 0,5 W		130'1069
Polyester-Kondensatoren	Polyester capacitors	Condensateurs en polyestre	
C 9, C 15:	1 nF $\pm 20\%$ 50 V		150'0044
C 4, C 5:	15 nF $\pm 20\%$ 50 V		150'0043
C 3, C 13:	33 nF $\pm 20\%$ 50 V		150'0053
C 1, C 2:	68 nF $\pm 20\%$ 50 V		150'0041
C 17:	330 nF $\pm 20\%$ 50 V		150'0058
C 8, C 10:	1 μ F $\pm 10\%$ 100 V		150'0060
Elektrolytkondensatoren	Electrolytic capacitors	Condensateurs électrolytiques	
C 6, C 18, C 20, C 21:	1 μ F 50 V		160'0018
C 7:	10 μ F 35 V		160'0038
C 11, C 12:	100 μ F 16 V		160'0025
C 14:	220 μ F 16 V		160'0026
C 16:	1000 μ F 16 V		160'0041
C 19:	2200 μ F 25 V		160'0036

L85-IC
Gedruckte Platte komplett

Blockschema der L85-IC Elektronik

Umbau eines L85-Gerätes mit lötbaren Anschlüssen auf der Leiterplatte auf steckbare Ausführung mit IC

Die neue Elektronik ist auch mit der lötbaren Leiterplatte vollkommen kompatibel. Der Umbau ist sehr einfach, man muss jedoch folgende Punkte beachten:

1. Alte Elektronik mit den angeschlossenen Kabeln sauber ablöten und losschrauben.
2. IC-Elektronik mit zwei Schrauben montieren.
Achtung: Kühlblech muss vom Chassis getrennt bleiben (Isolation durch Kunststoff-U-Scheiben).

3. Stecker mit Kabelbaum aufstecken. Mag-Nr. 122'0010'01
4. Einlöten nach Anschlussplan (Bild 6).
5. Zwei Zener-Dioden (10 bis 16 V Zener-Spannung) und einen Kondensator (68 nF/50 V) auf Motor löten.
6. Kondensator 15 nF auf PU wegschneiden.
7. Elektronik einstellen nach Einstellvorschrift.

L85-IC
Schema-Absteller

L85-IC
Schema Feinregulierung

L85-IC
Schema Feinregulierung

Technische Beschreibung der Feinregulierung sowie des Abstellers

Kurzbeschreibung (siehe Block-Schema)

Der Antrieb erfolgt durch einen gekapselten und federnd aufgehängten 16poligen Synchronmotor. Die Kraftübertragung auf den Plattenteller erfolgt über einen geschliffenen Flachriemen. Die Tourenzahlen $33\frac{1}{3}$ und 45 werden mechanisch umgeschaltet. Die elektronische Feinregulierung ermöglicht eine Abweichung der Tourenzahl um -3% bis $+7\%$. Ein im Bereich von 48,5 Hz bis 53,5 Hz abstimmbarer Oszillator liefert die erforderliche Frequenzänderung der Motor speisespannung.

Der elektronische Endabschalter ist mit automatischem Abheben des Tonarmes von der Schallplatte kombiniert. Der Absteller arbeitet kontaktlos und wird durch die Winkelgeschwindigkeit des Tonarmes gesteuert. Bis zu einem Radius von 70 mm (Plattentellerachsmitte bis Nadelspitze) ist die Funktion des Abstellers elektronisch blockiert. Dadurch kann bis zu diesem Punkt der Tonarm frei bewegt werden, ohne den Absteller ungewollt zu früh zum Einsatz zu bringen. Es

ist aber auch möglich, innerhalb der 70 mm von der Plattenmitte ein Stück zu wiederholen. Zuerst muss man den Tonarm über den gewünschten Einsatzpunkt bringen, dann die Taste «On» so lange drücken, bis ein leises «Klick» gehört wird, und anschliessend den Tonarm mit Tonarmlift sinken lassen. Der Endabsteller wird wieder funktionieren, wenn die Winkelgeschwindigkeit die Grösse, welche den Verhältnissen auf der Abstellrille entspricht, erreicht hat. Als «Lage-Geber» des Tonarmes wird die Änderung der Resonanzspannung eines Collpitt-Oszillators benutzt. Die Induktivität der im Tonarm eingebauten Spule ändert sich mit Hilfe des im Tonarmsupport eingebauten Ferritsegmentes, das mit der Drehung des Tonarmes über die fix montierte Spule geführt wird. Mit steigender Induktivität steigt die Spannung über der Spule, und zwar proportional zu der Winkelgeschwindigkeit des Tonarmes. Hat die Spannungssteigerung einen Wert erreicht, der den Auslaufgruppen-Verhältnissen entspricht, wird das Gerät abgeschaltet und hebt dabei den Tonarm von der Schallplatte ab.

Detail-Beschreibung der Schaltung

Die elektronische Tourenzahl-Feinregulierung

Als Generator dient die integrierte Schaltung NE 566 V, die drei- sowie viereckige Ausgangssignale liefert. Für die Speisung des Motors wurde der Dreieckspannungsverlauf gewählt. Wichtiger als der Speisespannungsverlauf ist die Zeitsymmetrie der Speisespannung. Beim zeitsymmetrischen Verlauf weist der Synchronmotor ein Minimum an Vibration auf. Um dieses Minimum zu garantieren, wird in der Fabrikation jede integrierte Schaltung kontrolliert und auf Zeitsymmetriefehler von kleiner als 2,5% aussortiert.

Frequenzbestimmende Komponenten sind: C 10, R 21, TP 3, R 24, R 25 und P 1. Die Frequenzgrobeinstellung erfolgt über das Trimm-Potentiometer TP 3, die Feinregulierung über das auf der Montageplatte angebrachte Potentiometer P 1. Da diese integrierte Schaltung den Motor nicht direkt speisen kann, ist zwischen dem Generator und dem Motor noch ein integrierter Leistungsverstärker μ A 706 B notwendig. Die Eingangsspannung des Leistungsverstärkers und damit auch die Motor-Klemmenspannung wird mit dem Trimm-Potentiometer TP 4 eingestellt. Weitere Einstellelemente sind für die Motorsteuerung nicht notwendig.

Der elektronische Endabschalter

Die sich im Tonarm befindende Spule bildet mit dem Transistor T 1 einen Collpitt-Oszillator. Wie schon erwähnt, ändert sich die Induktivität der Spule beim Drehen des Tonarmes. Die Induktivität steigt, und damit steigt auch die HF-Spannung über der Spule. Diese HF-Spannung wird gleichgerichtet durch die Diode D 1 und weiter dem ersten Spannungskomparator zugeführt. Mit dem Trimm-Potentiometer TP 1 stellt man die Referenzspannung des Komparators ein.

Bei einem Komparator kann die Signalspannung auf dem Ausgang desselben nur erscheinen, wenn die Eingangs-Signalspannung die Referenzspannung überschritten hat. Den Tonarm auf die Nadeleinstell-Lehre Punkt «D» legen, mit TP 1 die Referenzspannung der gleichgerichteten Tonarmspulenspannung entsprechend einstellen. Wie bereits erwähnt wurde, ist der Endabschalter nicht durch die Position des Tonarmes, sondern dessen Winkelgeschwindigkeit gesteuert. Um die Winkelgeschwindigkeit des Tonarmes zu erhalten, müssen wir nun die lageabhängige Gleichspannung im Punkt «D» differenzieren.

Kommt der Tonarm in die Abstellrille der Schallplatte, wird eine Steigung von mindestens 2,6 mm erreicht, woraus nach dem Differenzierglied (C 8, R 10) eine Spannung resultiert, welche im zweiten Teil des IC 1 verstärkt und auf den dritten Teil des IC 1 geführt wird. Dieser funktioniert wieder wie ein Komparator, und mit dem Einstellen der Referenzspannung (Trimm-Potentiometer TP 2) definieren wir, bei welcher Winkelgeschwindigkeit des Tonarmes der Absteller funktionieren muss. Der letzte Teil des IC 1 ist als Schaltverstärker geschaltet und treibt den Transistor T 2, welcher den nötigen Strom für den Elektromagneten liefert.

Speiseteil

Der Speiseteil ist sehr einfach und befindet sich, mit Ausnahme des Netztransformators, ebenfalls auf der gedruckten Leiterplatte. Er besteht aus der Gleichrichterbrücke G 1, Siebkondensator C 19 und Spannungsstabilisator IC 4, welcher 15 V Gleichspannung für IC 1, IC 2 und T 1 liefert. Der Leistungsverstärker IC 3 wird direkt — ohne Stabilisation — gespeist.

Service-Anleitung

A. Allgemeine Angaben

1. Netzanschluss	220 V	oder 110/220 V
2. Sicherungen	1 x 63 mA	2 x 63 mA
	1 x 400 mA	1 x 400 mA

Wenn nötig, ist mit Hilfe der Madenschrauben im Tonarmflansch die Lage des Tonarmes zu korrigieren.

D. Elektrische Kontrolle und Einstellung der Trimmponentiometer auf der Printplatte

Stromversorgung:

1. Stromaufnahme bei Netzzspannung 220 V AC = 47,5—52,5 mA
2. Gleichspannung U 1 = 20—21 V
gemessen zwischen M 1 (—) und C 19 (+) Bild 5
3. Stabilisierte Gleichspannung U 2 = 14,75—15,75 V
gemessen zwischen M 1 (—) und B (+) Bild 5
4. Dreieckspannung für Antriebsmotor = 4,55—4,65 V
gemessen mit Universalmessinstrument $R_i > 1 \text{ k}\Omega$
(gemessen mit KO beträgt diese Spannung 14 Vpp)
5. Eingestellt wird diese Dreieckspannung mit TP 4. (Bild 5)

BILD 4

6. Jetzt drehen Sie das Potentiometer für die Feinregulierung P 1 auf Anschlag im Uhrzeigersinn und vergleichen Sie seine Position mit dem Bild 4.

Wenn die Position nicht stimmt, korrigieren Sie sie.
(Knopfschraube lösen, Knopf richtig justieren und mit der Schraube wieder fixieren.)

BILD 5

7. Feinregulierungs-Potentiometer P 1 in die Position 50 Hz (gemäß Bild 4) zurückdrehen. Jetzt sollen die oberen Balken auf dem Stroboskopring stillstehen. (Die oberen

Balken gelten für 33⅓, die unteren für 45 Umdrehungen.)
Wenn das nicht der Fall ist, stellen Sie die richtige Tourenzahl mit dem TP 3 ein. (Bild 5)

7

Service-Anleitung

A. Allgemeine Angaben

1. Netzzschluss 220 V oder 110/220 V
2. Sicherungen 1 X 63 mA 2 X 63 mA
1 X 400 mA 1 X 400 mA

Wenn nötig, ist mit Hilfe der Madenschrauben im Tonarmflansch die Lage des Tonarmes zu korrigieren.

D. Elektrische Kontrolle und Einstellung der Trimm-Potentiometer auf der Printplatte

Stromversorgung:

1. Stromaufnahme bei Netzspannung 220 V AC = 47,5—52,5 mA
2. Gleichspannung U 1 = 20—21 V
gemessen zwischen M 1 (—) und C 19 (+) Bild 5
3. Stabilisierte Gleichspannung U 2 = 14,75—15,75 V
gemessen zwischen M 1 (—) und B (+) Bild 5
4. Dreieckspannung für Antriebsmotor = 4,55—4,65 V
gemessen mit Universalmessinstrument $R_i > 1 \text{ k}\Omega$
(gemessen mit KO beträgt diese Spannung 14 Vpp)
5. Eingestellt wird diese Dreieckspannung mit TP 4. (Bild 5)

BILD 4

6. Jetzt drehen Sie das Potentiometer für die Feinregulierung P 1 auf Anschlag im Uhrzeigersinn und vergleichen Sie seine Position mit dem Bild 4.

Wenn die Position nicht stimmt, korrigieren Sie sie.
(Knopfschraube lösen, Knopf richtig justieren und mit der Schraube wieder fixieren.)

BILD 5

7. Feinregulierungs-Potentiometer P 1 in die Position 50 Hz (gemäß Bild 4) zurückdrehen. Jetzt sollen die oberen Balken auf dem Stroboskopring stillstehen. (Die oberen

Balken gelten für $33\frac{1}{3}$, die unteren für 45 Umdrehungen). Wenn das nicht der Fall ist, stellen Sie die richtige Tourenzahl mit dem TP 3 ein. (Bild 5)

7

Technische Beschreibung der Feinregulierung sowie des Abstellers

Kurzbeschreibung (siehe Block-Schema)

Der Antrieb erfolgt durch einen gekapselten und federnd aufgehängten 16poligen Synchronmotor. Die Kraftübertragung auf den Plattenteller erfolgt über einen geschliffenen Flachriemen. Die Tourenzahlen $33\frac{1}{3}$ und 45 werden mechanisch umgeschaltet. Die elektronische Feinregulierung ermöglicht eine Abweichung der Tourenzahl um -3% bis $+7\%$. Ein im Bereich von 48,5 Hz bis 53,5 Hz abstimmbarer Oszillator liefert die erforderliche Frequenzänderung der Motor speisespannung.

Der elektronische Endabschalter ist mit automatischem Abheben des Tonarmes von der Schallplatte kombiniert. Der Absteller arbeitet kontaktlos und wird durch die Winkelgeschwindigkeit des Tonarmes gesteuert. Bis zu einem Radius von 70 mm (Plattentellerachsmitte bis Nadelspitze) ist die Funktion des Abstellers elektronisch blockiert. Dadurch kann bis zu diesem Punkt der Tonarm frei bewegt werden, ohne den Absteller ungewollt zu früh zum Einsatz zu bringen. Es

ist aber auch möglich, innerhalb der 70 mm von der Plattenmitte ein Stück zu wiederholen. Zuerst muss man den Tonarm über den gewünschten Einsatzpunkt bringen, dann die Taste «On» so lange drücken, bis ein leises «Klick» gehört wird, und anschließend den Tonarm mit Tonarmlift sinken lassen. Der Endabsteller wird wieder funktionieren, wenn die Winkelgeschwindigkeit die Grösse, welche den Verhältnissen auf der Abstellrille entspricht, erreicht hat. Als «Lage-Geber» des Tonarmes wird die Änderung der Resonanzspannung eines Collpitt-Oszillators benutzt. Die Induktivität der im Tonarm eingebauten Spule ändert sich mit Hilfe des im Tonarmsupport eingebauten Ferritsegmentes, das mit der Drehung des Tonarmes über die fix montierte Spule geführt wird. Mit steigender Induktivität steigt die Spannung über der Spule, und zwar proportional zu der Winkelgeschwindigkeit des Tonarmes. Hat die Spannungssteigerung einen Wert erreicht, der den Auslaufgrillen-Verhältnissen entspricht, wird das Gerät abgeschaltet und hebt dabei den Tonarm von der Schallplatte ab.

Detail-Beschreibung der Schaltung

Die elektronische Tourenzahl-Feinregulierung

Als Generator dient die integrierte Schaltung NE 566 V, die drei- sowie viereckige Ausgangssignale liefert. Für die Speisung des Motors wurde der Dreieckspannungsverlauf gewählt. Wichtiger als der Speisespannungsverlauf ist die Zeitsymmetrie der Speisespannung. Beim zeitsymmetrischen Verlauf weist der Synchronmotor ein Minimum an Vibration auf. Um dieses Minimum zu garantieren, wird in der Fabrikation jede integrierte Schaltung kontrolliert und auf Zeitsymmetriefehler von kleiner als 2,5 % aussortiert.

Frequenzbestimmende Komponenten sind: C 10, R 21, TP 3, R 24, R 25 und P 1. Die Frequenzgrobeinstellung erfolgt über das Trimm-Potentiometer TP 3, die Feinregulierung über das auf der Montageplatte angebrachte Potentiometer P 1. Da diese integrierte Schaltung den Motor nicht direkt speisen kann, ist zwischen dem Generator und dem Motor noch ein integrierter Leistungsverstärker μ A 706 B notwendig. Die Eingangsspannung des Leistungsverstärkers und damit auch die Motor-Klemmenspannung wird mit dem Trimm-Potentiometer TP 4 eingestellt. Weitere Einstellelemente sind für die Motorsteuerung nicht notwendig.

Der elektronische Endabschalter

Die sich im Tonarm befindende Spule bildet mit dem Transistor T 1 einen Collpitt-Oszillator. Wie schon erwähnt, ändert sich die Induktivität der Spule beim Drehen des Tonarmes. Die Induktivität steigt, und damit steigt auch die HF-Spannung über der Spule. Diese HF-Spannung wird gleichgerichtet durch die Diode D 1 und weiter dem ersten Spannungskomparator zugeführt. Mit dem Trimm-Potentiometer TP 1 stellt man die Referenzspannung des Komparators ein.

Bei einem Komparator kann die Signalspannung auf dem Ausgang desselben nur erscheinen, wenn die Eingangs-Signalspannung die Referenzspannung überschritten hat. Den Tonarm auf die Nadeleinstell-Lehre Punkt «D» legen, mit TP 1 die Referenzspannung der gleichgerichteten Tonarmspulenspannung entsprechend einstellen. Wie bereits erwähnt wurde, ist der Endabschalter nicht durch die Position des Tonarmes, sondern dessen Winkelgeschwindigkeit gesteuert. Um die Winkelgeschwindigkeit des Tonarmes zu erhalten, müssen wir nun die lageabhängige Gleichspannung im Punkt «D» differenzieren.

Kommt der Tonarm in die Abstellrille der Schallplatte, wird eine Steigung von mindestens 2,6 mm erreicht, woraus nach dem Differenzierglied (C 8, R 10) eine Spannung resultiert, welche im zweiten Teil des IC 1 verstärkt und auf den dritten Teil des IC 1 geführt wird. Dieser funktioniert wieder wie ein Komparator, und mit dem Einstellen der Referenzspannung (Trimm-Potentiometer TP 2) definieren wir, bei welcher Winkelgeschwindigkeit des Tonarmes der Absteller funktionieren muss. Der letzte Teil des IC 1 ist als Schaltverstärker geschaltet und treibt den Transistor T 2, welcher den nötigen Strom für den Elektromagneten liefert.

Speiseteil

Der Speiseteil ist sehr einfach und befindet sich, mit Ausnahme des Netztransformators, ebenfalls auf der gedruckten Leiterplatte. Er besteht aus der Gleichrichterbrücke G 1, Siebkondensator C 19 und Spannungsstabilisator IC 4, welcher 15 V Gleichspannung für IC 1, IC 2 und T 1 liefert. Der Leistungsverstärker IC 3 wird direkt — ohne Stabilisation — gespeist.

Original

henco 7

Fehlersuche

Fehler	Ursache	Absteller i. O.	
Gerät funktioniert nicht, Glimmlampe leuchtet nicht auf.	Sicherung 63 mA prüfen.		P 1 oder seine Anschlüsse defekt. Komponentenfehler im Motorteil.
Sicherung 63 mA brennt bei entfernter Sekundär-Sicherung von 400 mA durch.	Kurzschluss im Primärnetzkreis. Kurzschluss der Glimmlampe oder in deren Sockel. Transformator defekt. Zur Prüfung Sekundäranschlüsse ablöten und primärseitig Stromaufnahme messen. Primärleeraufstrom ca. 20 mA AC bei 220 V 50-Hz-Ausführung. Primärwicklung im Netztrafo unterbrochen.	Gerät schaltet sofort nach dem Einschalten wieder aus. Der Tonarm befindet sich auf der Stütze. Feinregulierung funktioniert, jedoch Absteller nicht.	Motor defekt. Transistor T 2 defekt. IC 1 defekt. Komponentenfehler.
Glimmlampe leuchtet, Gerät funktioniert jedoch nicht, nach Ausschalten leuchtet die Glimmlampe, jedoch schwächer. Die Sekundärsicherung 400 mA brennt nach dem Einschalten durch.	Zu grosse Stromaufnahme der Leiterplatte. Kurzschluss der Verbindungsstäbe. IC 3 defekt. Elko C 19, C 20, C 21 defekt. IC 4 defekt. Gleichrichterbrücke defekt. IC 3 defekt. IC 2 defekt.		Die Spule des Elektromagneten ist unterbrochen. Mechanischer Fehler verursacht zu grösse Stromaufnahme des Elektromagneten, bei richtiger Einstellung liegt die Stromaufnahme des Elektromagneten bei 90—120 mA. Transistor T 2 defekt. IC 1 defekt. Oszillator-Teil bzw. T 1 defekt, Spule im Tonarm oder ihre Anschlüsse defekt. Ferrit-Element im T. A. defekt oder hat nicht richtige Lage. Absteller nicht richtig eingestellt.
Feinregulierung funktioniert nicht, dagegen			Wichtig: Nach jeder Reparatur ist das Gerät genau zu überprüfen und, wenn nötig, gemäss Serviceanleitung genau einzustellen.

Einbau der Elektronik L85-IC in einen alten L85-Plattenspieler

Die neue Elektronik ist mit der alten Schaltung vollkommen kompatibel.

Das bedeutet:

- a) Alte Elektronik abschrauben;
- b) neue einsetzen, Stecker einstecken;
- c) Kondensator 15 nF auf dem Tonarm abschneiden;
- d) Widerstand 47 Ohm auf dem Motor kurzschließen.

Jede Elektronik kann für 50-Hz- wie auch für 60-Hz-Ausführung arbeiten. Den gewünschten Bereich stellt man mit dem TP 3 ein.

Bemerkung zu b: Kühlblech muss isolierend befestigt sein. Bei Berührung mit Chassis entsteht über zusätzliche Masse-Verbindung Brummspannung.

Endabschalter

8. Einstellung des Arbeitsbereiches

Die Einstellung kann gemäss 8.a von oben oder gemäss 8.b auch von unten her vorgenommen werden.

a) Plättenteller abheben, Nadeleinstell-Lehre aufsetzen, Abtastnadel auf den Punkt «D» setzen und das Gerät einschalten.

Bei Fall A schaltet das Gerät sofort aus, bei Fall B schaltet das Gerät nicht aus.

Im Fall A das Trimmponentiometer TP 1 durch die Öffnung in der Nadeleinstell-Lehre um etwa 90° bis 120° gegen die Pfeilrichtung drehen, das Gerät wieder einschalten und TP 1 langsam in Pfeilrichtung verstetlen, bis das Gerät ausschaltet.

Im Fall B das TP 1 langsam in Pfeilrichtung drehen, bis das Gerät ausschaltet.

b) Nadeleinstell-Lehre auf den Plättenteller legen, Abtastnadel auf Punkt «D» setzen und das Gerät einschalten.

Bei Fall A schaltet das Gerät sofort aus, bei Fall B schaltet das Gerät nicht aus.

Im Fall A das Trimmponentiometer TP 1 (Bild 5) von unten um etwa 90° bis 120° im Uhrzeigersinn drehen, das Gerät einschalten und TP 1 langsam im Gegenuhrzeigersinn verstetlen, bis das Gerät ausschaltet.

Im Fall B TP 1 langsam im Gegenuhrzeigersinn verstetlen, bis das Gerät ausschaltet.

Bei genauer Einstellung muss das Gerät nun nach dem Einschalten innerhalb der auf der Nadeleinstell-Lehre markierten Toleranz von $+3,2$ mm und $-1,6$ mm abstellen.

Die Einstellung des Punktes «D» kann sich bei höherer Umgebungstemperatur sowie zunehmender Alterung leicht in Richtung Plattenrand verschieben. Die Funktion des Endabschalters wird jedoch dadurch nicht beeinflusst.

9. Einstellung der Ansprechempfindlichkeit

Hilfsmittel: Gleichspannungsvoltmeter 3 V, $R_i > 1 \text{ M}\Omega$
Prüfschallplatte Lenco Nr. 722

Auf der Lenco-Prüfplatte, Seite A, befindet sich eine Auslauftrille mit einer Steigung von 1,6 mm pro Umdrehung (Band 11, etwa 75 mm vom Zentrum entfernt). Mit dieser Auslauftrille kann die Funktion der Abschaltvorrichtung auf einfache Weise geprüft werden.

Dreht sich der Plattenspieler mit $33\frac{1}{3}$ Umdrehungen je Minute, darf die Abschaltvorrichtung nicht ansprechen, bei 45 Umdrehungen aber ist die Winkelgeschwindigkeit des Tonarmes grösser, deshalb muss das Gerät abschalten.

Vor Neuabgleich bitte die Kontrolle folgendermassen durchführen:

a) Prüfplatte, Seite A, auflegen, Gerät einschalten und mit Hilfe des Stroboskops die Drehzahl genau auf $33\frac{1}{3}$ U/min. einregulieren. Abtastnadel auf den Anfang des Auslauftrillenfeldes setzen und, wenn erforderlich, Gerät erneut einschalten. (On-Taste mindestens 2 Sekunden drücken.)

Der Tonarm muss nun über das ganze Auslauftrillenband laufen, ohne dass der Plattenspieler absteilt. Ist das nicht der Fall, ist eine Neueinstellung nach c notwendig.

b) Gleiche Prüfung mit 45 U/min. durchführen. Die Abstellvorrichtung muss ansprechen, bevor das Auslauftrillenband durchgelaufen ist. Stellt das Gerät nicht ab, ist eine Neueinstellung nach c erforderlich.

c) Neueinstellung: Voltmeter anschliessen, Minuspol an M 1, Pluspol an X auf der Printplatte. Gerät einschalten (Tourenzahl $33\frac{1}{3}$ U/min.). Tonarm auf Anfang des Feldes mit Auslauftrillen-Steigung 1,6 mm (Lenco-Prüfplatte 722, Seite A) aufsetzen. Stellt das Gerät nach einigen Umdrehungen ab, TP 2 (Bild 5) im Gegenuhrzeigersinn verstetlen und Vorgang wiederholen. Der Tonarm bewegt sich nun über das ganze Auslauftrillenband. Dabei Voltmeter beobachten und höchste angezeigte Spannung ablesen (ca. 0,8 bis 2,2 Volt).

Nun Plusklemme des Voltmeters von Punkt X auf Punkt Y legen (Bild 5). Gerät einschalten, Tonarm auf der Stütze. Mit TP 2 (Bild 5) eine um 0,5 Volt höhere Spannung, als an Punkt X abgelesen, einstellen, d. h. etwa 1,3 bis 2,7 Volt. Anschliessend Kontrolle nach a und b wiederholen.

Wichtige Spannungen

E. Wichtige Spannungen

Speisetell

Gleichspannung U 1: 20—21 V (bei normaler Netzspannung)
Gleichspannung U 2: 14,25—15,75 V

Motortell

IC 2, Anschluss 4: Wechselstrom-Komponenten-Spannung
Grösser als 2,4 V Spitze—Spitze

Motorklemmenspannung: 4,55—4,65 V~

Abstellteil

Gleichspannung auf dem R 5: 160 mV—350 mV (Tonarm auf der Tonarm-Stütze)

Gleichspannung auf dem

Läufer des TP 1: 400—650 mV

Gleichspannung im Punkt D: 100 mV—13 V, je nach Lage des Tonarmes

Gleichspannung im Punkt X: 0,8—2,2 V mit Lenco-Prüfplatte Nr. 722, Seite A (Rillenabstand 1,6 mm) bei $33\frac{1}{3}$.

Gleichspannung im Punkt Y: 1,4—2,7 V

Alle Spannungen sind gegen Punkt M 1 (Bild 5) gemessen mit Voltmeter, dessen Eingangswiderstand grösser als 1 M Ω pro Volt ist.

L85-IC
Gedruckte Platte komplett

Blockschema der LOUD-Elektronik

L85-IC
Schema Feinregulierung

Umbau eines L85-Gerätes mit lötbaren Anschlüssen auf der Leiterplatte auf steckbare Ausführung mit IC

Die neue Elektronik ist auch mit der lötbaren Leiterplatte vollkommen kompatibel. Der Umbau ist sehr einfach, man muss jedoch folgende Punkte beachten:

1. Alte Elektronik mit den angeschlossenen Kabeln sauber ablösen und los schrauben.
2. IC-Elektronik mit zwei Schrauben montieren.
Achtung: Kühlblech muss vom Chassis getrennt bleiben (Isolation durch Kunststoff-U-Scheiben).

3. Stecker mit Kabelbaum aufstecken. Mag-Nr. 122'0010'01
4. Einlöten nach Anschlussplan. (Bild 6).
5. Zwei Zener-Dioden (10 bis 16 V Zener-Spannung) und einen Kondensator (68 nF/50 V) auf Motor löten.
6. Kondensator 15 nF auf PU wegschneiden.
7. Elektronik einstellen nach Einstellvorschrift.

L85-IC
Schema-Absteller

