Circuitos Lógicos Portas Lógicas

Prof.: Daniel D. Silveira

Álgebra de Boole

- George Boole desenvolveu um sistema de análise lógica por volta de 1850
- Este sistema é conhecido atualmente como álgebra de Boole
- A álgebra de Boole expressa a operação de um circuito na forma de uma operação algébrica
- Na álgebra Booleana, as constantes e variáveis podem ter apenas 2 valores: 0 ou 1 (níveis lógicos)

Variáveis Lógicas

 As variáveis lógicas assumem estados distintos, e podem representar situações da

vida real

Nível Lógico 0	Nível Lógico 1
Falso	Verdadeiro
Desligado	Ligado
Baixo	Alto
Nao	Sim
Chave aberta	Chave Fechada

 A álgebra booleana tem apenas três operações básicas: AND (E), OR (OU), NOT (NÃO)

Tabela verdade

 Técnica para determinar como a saída lógica de um circuito depende dos níveis lógicos presentes nas entradas do circuito

Α	В	С	X
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1
		(b)	

А	В	C	D	X
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 0 0 0 0 1 1 1	1	0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 0 0 1 1 0 0 0 1 0 0 0 1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	0 0 1 1 0 0 1 1 0 0	1	1
		(c)		

A operação OR (OU)

Representada algebricamente como:
 S=A+B (leia-se A OU B)

0	B 0	X = A + B		
0	1	1		
1	0	1		
1	1	1		

Α	В	С	X = A + B + C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

A operação OR (OU) – Aplicação

Ativação de um alarme caso um sensor seja

ativado

A operação AND (E)

Representada algebricamente como:
 S=A.B (leia-se A e B)

Α	В	C	X = ABC	
0	0	0	0	
0	0	1	0	
0	1	0	0	A •
0	1	1	0	B • X = ABC
1	0	0	0	C • — /
1	0	1	0	
1	1	0	0	
1	1	1	1	

A operação AND (E) – Exemplos

Diagramas de tempo:

Circuito inibidor/habilitador

A operação NOT (NÃO) ou inversor

Representada algebricamente como:

$$S = \overline{A}$$
 ou $S = A'$ lê-se (A barra) ou (NÃO A)

- Tem apenas uma entrada
- Também conhecido como complemento

A porta NOR (NÃO-OU)

Combinação da porta OU com a porta inversora

A porta NAND (NÃO-E)

Combinação da porta AND com a porta inversora

Quadro resumo

Blocos lógicos básicos

Blocos lógicos derivados

		AND	NAND
Α	В	AB	ĀB
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1 1	0

Associações de portas

 Usando-se expressões booleanas, pode-se determinar a expressão lógica de saída

Avaliando a saída dos circuitos lógicos

 Pode-se substituir as variáveis pelos valores desejados e obter o resultado da expressão

$$A = 0, B = 1, C = 1 e D = 1.$$

$$x = \overline{ABC(A + D)}$$

$$= \overline{0} \cdot 1 \cdot 1 \cdot (\overline{0 + 1})$$

$$= 1 \cdot 1 \cdot 1 \cdot (\overline{0})$$

$$= 1 \cdot 1 \cdot 1 \cdot (\overline{1})$$

$$= 1 \cdot 1 \cdot 1 \cdot 0$$

$$= 0$$

$$x = [D + \overline{(A + B)C}] \cdot E$$

$$= [1 + \overline{(0 + 0)} \cdot 1] \cdot 1$$

$$= [1 + \overline{0}] \cdot 1$$

$$= [1 + \overline{0}] \cdot 1$$

$$= [1 + \overline{0}] \cdot 1$$

$$= [1 + 1] \cdot 1$$

$$= 1 \cdot 1$$

$$= 1$$

 Quais as saídas quando todas as entradas forem 1 para as duas expressões?

Determinando o nível lógico na saída dos diagramas

 Analisa-se a saída de cada porta separadamente

FIGURA 3.16 Determinando o nível lógico da saída a partir de um diagrama do circuito.

 Se todas as entradas estivem em nível lógico baixo, qual a saída?

Implementando circuitos a partir de expressões booleanas

Montando a tabela verdade a partir de um circuito

Primeiro deriva-se a expressão de saída

Exercícios propostos

- Desenhe o circuito que executa a função booleana S=A.B.C+(A+B).C e gere sua tabela verdade
- Escreva a expressão que representa o circuito:

Exercícios propostos

- 3.17 a) Aplique as formas de onda de entrada da Figura abaixo em uma porta NOR e desenhe a forma de onda de saída.
- b) Repita para a entrada C mantida permanentemente em nível BAIXO.
- c) Repita para a entrada C mantida permanentemente em nível ALTO.

3.18 – Repita o problema 3.17 para uma porta NAND.

A porta XOR

- Nível ALTO na saída somente quando as 2 entradas são diferentes entre si!
- A porta lógica que representa esta função é a XOR

A porta XNOR

- Para a porta XNOR, teremos o resultado 1 somente quando as 2 entradas forem iguais (exatamente o inverso da XOR)!
- Tanto a porta XOR quanto a XNOR possuem **somente** duas entradas $x = AB + \overline{A}\overline{B}$

