THE PERILS OF EXPLORATION UNDER COMPETITION: A COMPUTATIONAL MODELING APPROACH

GUY ARIDOR
COLUMBIA ECONOMICS

KEVIN LIU COLUMBIA CS

ALEX SLIVKINS
MICROSOFT RESEARCH, NYC

STEVEN WU
UNIVERSITY OF MINNESOTA CS

20TH ACM CONFERENCE ON ECONOMICS AND COMPUTATION

MOTIVATION

- Online platforms increasingly engage in product experimentation
 - Search Engines
 - Recommender Systems
 - E-commerce platforms

- However, they also simultaneously compete for users
- This paper: Firms compete for customers and learn from the data generated by them

OUR SCOPE

- Study the tradeoff between exploration and competition.
 - 1. Need to incentivize consumers to choose me over competition today
 - 2. Need to explore to gain information to have a better product tomorrow

Questions:

- Does competition incentivize adoption of better algorithms?
- What is the role that data and reputation play as barriers to entry?

(STOCHASTIC) MULTI-ARMED BANDITS

- In each period, select an action ("arm") from a fixed set of arms, observe (random) reward for this arm, and nothing else
 - mean reward of each arm is fixed over time but not known
 - Goal: maximize cumulative reward over T periods.
- Captures exploration-exploitation tradeoff
 - Exploit Make the best decision today given the current information
 - Explore Make a sub-optimal decision today (w.r.t. current information) in order to gather information and make better decisions tomorrow

OUR MODEL

- Two firms, both face the same bandit problem
 - K arms: different ways to serve a user
 - Initially, each firm commits to a bandit algorithm
 - Warm start: T₀ rounds before the competition starts
- In each round: new user arrives and chooses a firm, the firm chooses an "arm", the user receives a reward
 - Reward is only observed by the chosen firm
- Each firm's goal: maximize its (expected) market share
- User's choice driven by "reputation" (average reward over sliding window)

INNOVATION VS COMPETITION

MAB ALGORITHMS

- Innovation: Utilize the distinction between three classes of MAB learning algorithms.
 - Dynamic Greedy (DG): pick arm with maximum mean reward based on current information.
 - Exploration-Separating: exploration does not use observations.
 - Use Dynamic Eps-Greedy (DEG): choose random arm with probability epsilon, else Greedy
 - Adaptive Exploration: zoom in on the best arm. Use Thompson Sampling (TS)

• Competition: vary timing of entry and number of firms in the market

METHODOLOGY

- Study our model via numerical simulation
- Consider three representative classes of instances:
 - Needle-In-Haystack 1 "good" arm, K-1 identical "bad" arms
 - Uniform mean rewards drawn from Uniform[0.25, 0.75]
 - Heavy Tail mean rewards drawn from Beta(0.6, 0.6)
- Each experiment: competition between bandit algorithms
 - Parameters: bandit algorithms, competition model, bandit instance

RELATED LITERATURE

- Multi-armed bandits: well-studied model for exploration
 - Huge literature on bandit algorithms
- Bandit algorithms with incentives (large literature, different scenarios):
 - "principal" runs a bandit algorithm
 - "agents" are bidders in an auction, users in a recommendation system, etc.
- Competition vs Innovation
 - •In general: "Inverted-U relationship: Schumpter (1942), Aghion et.al (2005)
 - For exploration: (Mansour, Slivkins, Wu 2018)
 - •different model: no "reputation", competition varied via user response
 - Theory only, "asymptotic" results

PERFORMANCE IN ISOLATION

- Mean reputation not a useful indicator of performance in competition
- Track *relative reputation* at a given time t, fraction of simulations in which Alg 1 has a higher reputation score than Alg 2
- Purposeful exploration can lead to short-term reputation consequences
 - When this occurs, call the instance exploration-disadvantaged

COMPETITION INTENSITY LEVELS

- We find the equilibrium strategies for four separate "competition intensity" levels:
 - 1. Monopoly: only one firm in the market
 - 2. <u>Incumbent</u>: one firm enters early, is a monopolist for X periods, and then the other firm enters
 - 3. <u>Duopoly</u>: both firms enter the market at the same time
 - 4. Entrant: the firm enters after there already is an incumbent for X periods

OVERVIEW OF COMPETITION RESULTS

• On exploration disadvantaged instances, we have the following set of results:

DUOPOLY EQUILIBRIUM

- Use simulation to compute expected market share (payoffs)
- For exploration-disadvantaged instances, (DG, DG) is a PSNE

Table 4: Heavy Tail

	TS D		DG
TS	0.50, 0.50	0.3, 0.7	0.29, 0.71
DEG	0.7, 0.3	0.50, 0.50	0.38, 0.62
DG	0.71, 0.29	0.62, 0.38	0.50, 0.50

Table 5: Needle In Haystack

	TS	DEG	DG	
TS	0.50, 0.50	0.57, 0.43	0.64, 0.36	
DEG	0.43, 0.57	0.50, 0.50	0.54, 0.46	
DG	0.36, 0.64	0.43, 0.57	0.50, 0.50	

User share of row player

DUOPOLY DEATH SPIRAL

• Effective End of Game: last round t s.t. agents t and t-1 choose different firms

	TS vs DG	TS vs DEG	DG vs DEG
Effective End of Game	55 (0)	37 (0)	410 (7)

Mean (Median) Effective End of Game for Heavy-Tail Instance, T=2000

• Low effective end of game indicative of death spiral effect:

Fewer Users

EARLY ENTRY

EQUILIBRIUM

- Allow one firm to enter early and give it a temporary monopoly
 - Incumbent (the early entrant) incentivized to play TS
 - Entrant (the late entrant) incentivized to play DG

	TS	DEG	DG	
TS	0.003 ± 0.003	0.083 ±0.02	0.17 ± 0.02	
DEG	0.045 ± 0.01	0.25 ±0.02	0.23 ±0.02	
DG	0.12 ±0.02	0.36 ±0.03	0.3 ±0.02	

User share of row player (entrant), 200 round head-start, Heavy-Tail Instance

EARLY ENTRY

INTUITION

- Allows incumbent to not have to worry about the immediate reputation consequences of exploration!
- For sufficiently large "temporary monopoly" period,
 - incumbent only faces the classic exploration-exploitation tradeoff
 - picks algorithms that are best at optimizing this tradeoff
 - recovers the reputation consequences of exploration

WELFARE EQUILIBRIUM

- Welfare measure = total "regret" accrued by all consumers
- Temporary monopoly induces highest welfare in competition

WELFARE MANY FIRMS

• Restricting firms to playing greedy, increasing number of firms weakly decreases welfare

DATA AND REPUTATION AS BARRIERS TO ENTRY

- Two advantages of early entry:
 - Reputation advantage: More definite / better reputation
 - Data advantage: More data than the entrant
- Which advantage is a larger barrier to entry? Two experiments:
 - Reputation advantage only: reset incumbent's information when game starts
 - Data advantage only: reset incumbent's reputation when game starts

DATA OR REPUTATION?

- Either advantage alone leads to large market share
- Data advantage is larger when incumbent commits to Thompson Sampling

	Reputation advantage (only)		Data advantage (only)			
	TS	DEG	DG	TS	DEG	DG
TS	0.021 ±0.009	0.16 ±0.02	0.21 ±0.02	0.0096 ±0.006	0.11 ±0.02	0.18 ±0.02
DEG	0.26 ±0.03	0.3 ±0.02	0.26 ±0.02	0.073 ± 0.01	0.29 ±0.02	0.25 ±0.02
DG	0.34 ±0.03	0.4 ±0.03	0.33 ±0.02	0.15 ±0.02	0.39 ±0.03	0.33 ±0.02

User share of row player (entrant)

CONCLUSION

- Considered a model of competition between learning algorithms
- "Better algorithms" not always better in competition due to the reputational consequences of exploration
- Data can serve as a barrier to entry in online platforms, especially when exploration has reputational consequences