BC-0207 Energia: origens, conversão e uso

Aula 03 – Solar, marés, goetérmica e fontes fósseis

Prof. João Moreira

CECS - Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas Universidade Federal do ABC – UFABC

Principais tópicos

- Potencial de energia primária
 - Solar
 - Marés
 - Geotérmica
 - Petróleo
 - Gás natural
 - Carvão

Energia solar

Painéis fotovoltaicos

Geração centralizada (usina)

Geração distribuída

O Sol provê energia

- O sol movimenta a cadeia hidrológica que abastece os rios das hidrelétricas
- O calor solar alimenta as usinas solares e movimenta os ventos das usinas eólicas
- Provê energia por meio da fotossíntese para dar origem à biomassa
- Proveu no passado longínquo a energia para a formação das diversas fontes fósseis (a partir da matéria orgânica)

A luz é uma onda ou uma partícula?

 □ Resposta atual: depende do fenômeno estudado ela se comporta como partícula ou onda E = h v

Fóton – partícula ou quanta de luz

Sensitivade humana para a percepção da cor

Formação do sistema solar

- O sistema solar possui cerca de 4,6 bilhões de anos
- Originou-se do colapso de uma nuvem de gás
- O Sol tem 99,86 da massa total do sistema solar
- O raio do Sol é 109 vezes maior que o da Terra
- A massa do Sol é 330.000 vezes maior que a da Terra
- □ Temperatura do Sol é muito elevada

Formação do sistema solar

Reações Nucleares

E = mc² – reações de fusão

Reações de fusão

Radiação solar sobre a Terra

 Intensidade de radiação solar no topo da atmosfera incidindo sobre área normal à direção da radiação: I(S)=1395 W/m²

Nota: Esta intensidade é a que se espera se a temperatura Do sol é 6000 K($I_0 = \sigma T^4$)

Espectro solar

1395 W/
$$m^2 = \int_0^\infty P_\lambda \, d\lambda$$

A integral sob a curva maior fornece a constante solar = 1395 W/m²

Efeito estufa

Espectro da radiação térmica emitida pelo Sol e pela Terra Modelo do corpo negro

Energia de certos fótons utilizados pela sociedade

Elemento ou processo	Energia
Fóton no infravermelho com λ = 10000 nm — o representante mais comum na radiação térmica da Terra.	0,124 eV
Fótons na faixa do visível (400 nm < λ < 700 nm) – representantes mais comuns na emissão do Sol	1,6 a 3,4 eV
Energia necessária para arrancar o elétron do átomo de hidrogênio (ionização do H)	13,6 eV
Fóton na faixa do Raio-X (depende do tipo de raio-X)	100 a 100 000 eV
Um pernilongo voando ³	1 TeV ou 10 ¹² TeV
As colisões geradas no LHC (Large Hadron Collider) – o centro de pesquisa que detectou o Bóson de Higgs	13 TeV

Fluxo de energia solar sobre o Brasil (MJ/m²dia)

Energia das marés

- □ Tábua de marés
- O vai e vem das ondas pode ser utilizado para gerar energia

Energia geotérmica

- Em certos locais com 100 m de profundidade há nascentes de água quente completamente espontâneas.
- Na maior parte do mundo é necessário fazer furos de centenas de quilômetros para encontrar calor significativo.
- ☐ A temperatura aumenta para dentro da Terra na taxa de:

$$\frac{dT}{dz} = 28 \, {}^{0}C/km$$

Reservas e recursos fósseis

- Recursos são quantidades de energéticos (podem ser minérios ou outras substâncias da natureza) que podem ser utilizadas para algum fim útil.
- Reservas são recursos bem conhecidos por meio de prospecção e que podem ser recuperados a preços atuais com tecnologias atuais.
- Classificação de reservas
 - Reservas comprovadas –(definição acima)
 - Reservas indicadas –são recursos recuperáveis de jazidas conhecidas a partir do melhoramento das técnicas de recuperação.
 - Reservas inferidas –são os depósitos esperados em jazidas identificadas, porém ainda não quantificadas.

Reservas mundiais e consumo mundial de petróleo de vários países

Petróleo

- Decomposição de matéria orgânica e conversão final a alta temperatura e pressão ao longo de milhões de anos.
- Aterrado vários metros abaixo do solo
- É uma mistura de óleo cru, gás natural em solução e semi-sólidos aslfálticos espessos e pesados.
- É uma mistura complexa de hidrocarbonetos com:
 - 7g de C para cada 1 g de H
 - Há compostos com um átomo de carbono (CH4)
 - Há alguns com mais de 100 átomos de C

Petróleo

- Nome genérico dado a um líquido oleoso inflamável formado de hidrocarbonetos, C_nH_m.
- Formado pela transformação de matéria orgânica, depositada na Terra, fundo dos oceanos e mares, durante milhões de anos, sob pressão de camadas de sedimentos, formando as rochas sedimentares (rochas reservatórios).
- A densidade do óleo varia de 0,8-0,95 g/cm³ sendo usualmente de cor preta.
 - hidrocarbonetos 95 a 98 %
 - matéria orgânica contendo oxigênio, nitrogênio ou enxofre e traços de compostos organometálicos

Petróleo

- Poços antigos rasos petróleo de má qualidade (devido à presença de oxigênio na sua formação).
- Poços atuais:
 - Em terra (onshore)- poços de 23 m até 6000 m de profundidade
 - No mar (offshore) profundidades até 7000 m

Classificação do petróleo

- DENSIDADE: Grau API (American Petroleum Institute)
 - Expressa a densidade relativa do óleo: A escala API, medida em graus, varia inversamente à densidade relativa, isto é, quanto maior a densidade relativa, menor o grau API.
 - Leve → grau API acima de 300
 - Médio → grau API entre 22º e 30º
 - Pesado → grau API abaixo de 22º
 - Extrapesado → grau API abaixo de 10º
 - Quanto maior o grau API, mais valioso será o petróleo
- COMERCIAL: Petróleos negociados em bolsas de mercadorias
 - WTI (West Texas Intermediate): Negociado no NYMEX (NY)
 - Grau API entre 380 e 400
 - Teor de enxofre de 0,30%
 - BRENT (Nome de antiga plataforma da SHELL, MAR DO NORTE): Negociado em Londres
 - Grau API de 39,40
 - Teor de enxofre de 0,34%

Países produtores e consumidores de petróleo

(em milhões de barris/dia)

PRODUTORES

1.	Rússia	9,934
2.	Arábia Saudita (OPEP)	9,76
3.	Estados Unidos	9,141
4.	Irà (OPEP)	4,177
5.	República Popular da China	3,996
6.	Canadá	3,294
7.	México	3,001
8.	Emirados Árabes Unidos (OPEP)	2,795
9.	Brasil	2,577
10.	Kuwait (OPEP)	2,496
11.	Venezuela (OPEP)	2,471
12.	Iraque (OPEP)	2,4
13.	Noruega	2,35
14.	Nigéria (OPEP)	2,211
15.	Argélia (OPEP)	2,086

CONSUMIDORES

1.	Estados Unidos	19,771
2.	República Popular da China	8,324
3.	• Japão	4,367
4.	- Índia	3,11
5.	Rússia	2,74
6.	Brasil	2,522
7.	Alemanha	2,456
8.	Arábia Saudita (OPEP)	2,438
9.	Coreia do Sul	2,185
10.	Canadá	2,147
11.	México México	2,084
12.	França	1,828
15.	Trã (OPEP)	1,691
14.	Reino Unido	1,667
15.	I tália I tália	1,528

Fonte: Dep. de Energia - EUA

Países importadores e exportadores de petróleo

(em milhões de barris/dia)

IMPORTADORES

EXPORTADORES

1.	Estados Unidos	9,631
2.	República Popular da China	4,328
3.	Japã o	4,235
4.	Alemanha	2,323
5.	Índia	2,233
6.	Coreia do Sul	2,139
7.	França	1,749
8.	Reino Unido	1,588
9.	Espanha	1,439
10.	I Itália	1,381
11.	Países Baixos	0,973
12.	Taiwan	0,944
13.	Singapura	0,916
14.	Turquia	0,65
15.	Bélgica	0,597

1.	Arábia Saudita (OPEP)	7,322
2.	Rússia	7,194
3.		2,486
4.	Limitanos Hianes emans (of LF)	2,303
5.	noruogu	2,132
6.	Kuwait (OPEP)	2,124
7.	Nigêria (OPEP)	1,939
8.	Angola (OPEP)	1,878
9.	Algena (VPLP)	1,767
10.	Iraque (OPEP)	1,764
11.	Venezuela (OPEP)	1,748
12.	Líbia ¹(OPEP)	1,525
13.	Cazaquistao	1,299
14.	Canadá	1,147
15.	Qatar (OPEP)	1,066

Fonte: Departamento de Estatística dos E.U.A.

Evolução das reservas do Brasil

Torres de extração de petróleo

Recuperação do petróleo

- Como bombear mais petróleo do subsolo?
- Cerca de 30 % do petróleo é extraído o resto fica no poço

Plataformas de petróleo

Grande desenvolvimento no Rio de Janeiro,
Espírito Santo, Santos e Nordeste

Refino do petróleo

- O processamento do petróleo é chamado de refino
- □ Destilação
- □ Torre de fracionamento (~ 40 m de altura)
- Os vários derivados são condensados em diferentes temperaturas na torre
- Os mais pesados na parte de baixo e os mais leves em cima.
- Alguns gases são coletados no topo

Produtos do refino

- Do mais leve ao mais pesado
 - Gasolina bruta –automotiva e de aviões
 - Querosene bruto
 - Gasóleo -óleo combustível e gases de hidrocarbonetos
 - Óleo lubrificante –parafinas e lubrificantes
 - Fração pesada -coque, asfalto

Gás natural

- É uma mistura de gases com predominância de CH₄ – metano
- Formado de forma semelhante ao petróleo
- Ocorre associado ao petróleo ou em poços de somente gás
- Pode também ser originado das profundezas da terra (origem não biológica)
- □ Reservas mundiais de gás natural −130 trilhões de m³

Carvão

- Existe em grande abundância em vários países: EUA, Índia, China, Russia, etc.
- Carvão é formado a partir de material vegetal acumulado em pântanos há milhões de anos.
- A turfa formada é compacta por ao longo dos anos e forma os veios de carvão.
- Necessita-se de cerca de 20 m de vegetal para se formar 1 m de carvão.
- O poder calorífico aumenta com o teor de carbono presente.
- Utilizado primariamente para a geração de eletricidade
- Emissão de gases do efeito estufa

Tipos de carvão

Os tipos de carvão são formados de acordo com as pressão e temperatura que são submetidos.

Classificação	Carbono (%)	Conteúdo energético (Btu/lb
Lignito	30	5.000-7.000
Sub-betuminoso	40	8.000-10.000
Betuminoso	50-70	11.000-15.000
Antracito	90	14.000

^{*(}P. Averitt, U.S. Geological Survey Bulletin 1.412, 1975)

- Antracito raro
- Betuminoso mais comum

Mineração do carvão

- Mineração de superfície (céu aberto) apresenta problemas ambientais.
- Atualmente, após a exploração a área afetada deve ser retornada a condição anterior.
- Problemas com a suprimento de água local.
- Formação de ácido sulfúrico devido a reação do carvão, oxigênio e vapor de água.

Xisto

- Xisto é uma rocha sedimentar com óleo na sua constituição. Quando essa rocha é aquecida, o óleo (betume) se separa, adquire características semelhantes às do
- Petróleo.
- Atualmente extrai-se petróleo e gás do xisto pela técnica de fratura hidráulica
- ☐ Grandes reservas nos EUA, Argentina e Brasil

Energia liberada por compostos de origem fóssil e nuclear

Energia liberada pela combustão de vários compostos e pela fissão nuclear

Composto	Composto	Energia (eV)
Carbono (carvão) - sólido	С	4,08
Metano (gás natural) – gasoso	CH ₄	8,31
Propano (componente do gás de cozinha) – gasoso	C ₃ H ₈	23,01
Butano (componente do gás de cozinha) – gasoso	C ₄ H ₁₀	29,83
Octano (componente da gasolina) — líquido	C ₈ H ₁₈	56,70
Etino (acetileno, usado em maçarico) – gasoso	C ₂ H ₂	13,47
Etanol (álcool) – líquido	C ₂ H ₅ OH	14,18
Hidrogênio – gasoso	H ₂	2,96
Urânio	²³⁵ U	193x10 ⁶
Plutônio	²³⁹ Pu	199,5x10 ⁶

^{*} Combustão completa a 298 K e 1 atm.

Fim