Examen de probabilités, 2e session

USTC, 2022, cours de P. Marchal

I Soit $N \geq 2$ un entier et E l'ensemble des fonctions de $\{1, 2, ..., N\}$ dans $\{0, 1\}$. Soient $(X_{i,n}, i \in \mathbb{N}, n \in \{1, 2, ..., N\})$ des variables aléatoires iid telles que $X_{1,1}$ soit uniforme sur $\{1, 2, ..., N\}$. Pour tout $A \in E$ on définit un processus (Y_n) à valeurs dans E par $Y_0 = A$, et par récurrence, pour tout $i \in \{1, 2, ..., N\}$

$$Y_{n+1}(i) = Y_n(X_{i,n})$$

- 1) Montrer que (Y_n) est une chaine de Markov
- 2) Montrer que $P(Y_{n+1} = Y_n) > 0$. La chaine est-elle périodique ou apériodique ?
- 3) On pose $M_0 = A(1) + A(2) + \ldots + A(N)$ et $M_{n+1} = Y_{n+1}(1) + \ldots + Y_{n+1}(N)$. Pour tout n, soit F_{n+1} la tribu engendrée par les $(X_{i,m}, i \leq n, m \in \{1, 2, \ldots, N\})$. Montrer que (F_n) est une filtration et que (M_n) est une martingale pour cette filtration.
- 4) Montrer que M_n converge presque sûrement vers une variable aléatoire M_{∞} .
- 5) Calculer $P(M_{\infty} = m)$ pour tout $m \in \{0, 1, 2 \dots, N\}$.
- 6) Quels sont les états récurrents de la chaine (Y_n) ?

II Soit Ω un ensemble fini et (Z_n) une chaine de Markov sur Ω , de matrice de transition Q. Soit une famille de variables aléatoires $(X_{i,n}, i \in \Omega, n \in \mathbb{N})$ telle que

- pour tous $i, n, P(X_{i,n} = j) = Q(i, j)$
- les variables $(X_{i,n})$ sont indépendantes.

Soit E l'ensemble des fonctions de Ω dans $\{0,1\}$. Pour tout $A \in E$ on définit un processus (Y_n) à valeurs dans E par $Y_0 = A$ et par récurrence, pour tout $i \in \Omega$,

$$Y_{n+1}(i) = Y_n(X_{i,n})$$

- 1) Montrer que (Y_n) est une chaine de Markov.
- 2) On suppose que Z est irréductible apériodique et admet une probabilité invariante μ . On définit $M_{n+1} = \sum_{i \in \Omega} \mu(i) \mathbf{1}_{\{Y_n(i)=1\}}$. Montrer que (M_n) , muni de sa filtration naturelle, est une martingale.

III Dans cette partie on prend $\Omega = \mathbb{N}$ et on pose $Q(0,0) = 9/10, \ Q(0,1) = 1/10$ et pour $i \ge 1, \ Q(i,i+1) = 1/10, \ Q(i,i-1) = 9/10.$

- 1) Montrer que la chaine de Markov (Z_n) de matrice de transition Q est irréductible et apériodique.
- 2) Montrer que (Z_n) est récurrente et calculer sa probabilité stationnaire μ .
- 3) On définit (Y_n) comme dans la partie II avec A donné par A(0)=1, A(i)=0 si $i\geq 1$. Pour tout $k\in\mathbb{N}$, on considère l'événement

$$E_k = \{\exists N, \forall n \ge N, Y_n(k) = Y_{n+1}(k)\}\$$

Montrer que pour tout $k \in \mathbb{N}$, $P(E_k) = 1$. On pourra utiliser II 2 et considérer l'ensemble des valeurs possibles et des limites possibles de M_n .

4) On considère les événements

$$E = \{\exists N, \forall n \ge N, \forall i \in \mathbb{N}, Y_n(i) = 0\}$$

$$E' = \{ \forall i \in \mathbb{N}, \exists N(i), \forall n \ge N(i), Y_n(i) = 1 \}$$

Montrer que P(E) + P(E') = 1 et calculer P(E).

5*) (question facultative) Que se passe-t-il si on remplace 9/10, 1/10 par $p,\,1-p$ avec 1/2 < p<1.