Week 4: Estimating Dynamic Models

Advanced Econometrics 4EK608

Vysoká škola ekonomická v Praze

Outline

- 1 Finite and infinite distributed lag models
- Polynomial distributed lag
- 3 Geometric distributed lag (Koyck)
- 4 PAM, AEH, Rational expectations
- 5 FWL theorem repetition from BSc courses

Czech terminology

Modely konečných a nekonečných rozložených zpoždění, řád modelu, okamžitý a dlouhodobý multiplikátor, rozdělení zpoždění, dynamicky úplné modely, polynomicky (geometricky, racionálně) rozdělené zpoždění, Koyckova transformace, model částečného přizpůsobení, cílová (optimální) úroveň vysvětlované proměnné, koeficient přizpůsobení, rychlost přizpůsobení, adaptivní a racionální očekávání, hypotéza efektivních trhů.

Finite and infinite distributed lag models

• Static models

$$y_t = \beta_0 + \beta_1 x_t + u_t, \quad t = 1, 2, \dots, T$$

• Finite distributed lag (FDL) Models

$$y_t = \alpha_0 + \delta_0 x_t + \delta_1 x_{t-1} + \delta_2 x_{t-2} + u_t$$

 Order of the FDL model, impact multiplier vs. long-run multiplier, temporary vs. permanent change in x, lag distribution

Finite and infinite distributed lag models

Dynamically complete models

- Model is dynamically complete if we have a "sufficient" number of lags of regressors, so that no more additional lags would help with explanation of variance in the dependent variable.
- In dynamically incomplete models, we usually detect autocorrelation in the error term of the LRM.

Finite and infinite distributed lag models

Infinite distributed lag (IDL) models

- Lagged regressors extend back to infinity
- We cannot estimate IDL models without the use of simplifying restrictions on parameters,
 i.e. restrictions on lag distribution
- IDL models are useful under the assumption of lagged coefficients converging to zero as lag increases
- Order of the IDL model (∞) , impact multiplier vs. long-run multiplier, temporary vs. permanent change in x, ... all analogical to FDL models

FDL: Polynomial distributed lag (Almon)

Used in Finite distributed lag models

 \ldots example below also extends to higher order polynomials

$$y_t = \alpha + \beta_0 x_t + \beta_1 x_{t-1} + \dots + \beta_m x_{t-m} + u_t$$
 (1)

$$y_t = \alpha + (\sum_{i=0}^m \beta_i x_{t-i}) + u_t$$
, (*i* is the lag operator here)

Simplifying assumption:

$$\beta_{i} = k_{0} + k_{1}i + k_{2}i^{2} \qquad (2)$$

$$\beta_{0} = k_{0}$$

$$\beta_{1} = k_{0} + k_{1} + k_{2}$$

$$\beta_{2} = k_{0} + k_{1} \cdot 2 + k_{2} \cdot 4$$

$$\vdots$$

$$\beta_{m} = k_{0} + k_{1}m + k_{2}m^{2}$$

Polynomial distributed lag

• Almon-type transformation of (1) for m = 8 and k = 2:

$$y_{t} = \alpha + k_{0}x_{t} + (k_{0} + k_{1} + k_{2})x_{t-1} + (k_{0} + 2k_{1} + 4k_{2})x_{t-2} + \cdots + (k_{0} + 8k_{1} + 64k_{2})x_{t-8} + u_{t}$$

$$y_{t} = \alpha + k_{0}(x_{t} + x_{t-1} + \cdots + x_{t-8}) + \cdots + k_{1}(x_{t-1} + 2x_{t-2} + \cdots + 8x_{t-8}) + \cdots + k_{2}(x_{t-1} + 4x_{t-2} + \cdots + 64x_{t-8}) = \cdots$$

$$y_{t} = \alpha + k_{0} \sum_{i=0}^{8} x_{t-i} + k_{1} \sum_{i=1}^{8} i x_{t-i} + k_{2} \sum_{i=1}^{8} i^{2} x_{t-i} + u_{t}$$

$$y_{t} = \alpha + k_{0}W_{0t} + k_{1}W_{1t} + k_{2}W_{2t} + u_{t}$$

$$(5)$$

We estimate (5), then calculate β_i (lags 0 to 8) as in (2) ... note the reduction in estimated parameters (10 vs 4).

Polynomial distributed lag

- Method developed by Shirley Almon in the 60ies.
- Equation (5) can be generalized: for m lags, sums go to m, for higher order polynomials, we add more W-terms.
- Advantages of this approach:
 - Saves degrees of freedom
 - Removes the problem of multicollinearity
 - Does not affect the assumptions for u, because errors do not change during transformation
- In EViews, transformation is slightly modified.
- In R, routines are available.

Geometric distributed lag (Koyck)

IDL linear regression model: $y_t = f(x_t, x_{t-1}, x_{t-2}, \dots)$:

$$y_t = \alpha + \delta_0 x_t + \delta_1 x_{t-1} + \delta_2 x_{t-2} + \delta_3 x_{t-3} + \dots + u_t$$

Assumption for the geometric δ_j weights:

•
$$\delta_j = \gamma \rho^j$$
, $0 < \rho < 1$, $j = 0, 1, 2, ...$
(j is the lag operator here)
 $\delta_0 \equiv \gamma$ for convenience of notation (see RDL)
 $|\rho| < 1$ not used here (allows sign oscilations in δ_j).
 $\delta_j = \delta_{j-1} \rho$, $0 < \rho < 1$.

Instantaneous propensity (multiplier): $\delta_0 = \gamma \rho^0 = \gamma$

alternative notation of the above

Long-run propensity (multiplier):

$$\delta_0 + \delta_1 + \dots = \gamma(1 + \rho + \rho^2 + \rho^3 + \dots) = \frac{\gamma}{1 - \rho}$$

Geometric distributed lag (Koyck)

Koyck transformation of the IDL model:

$$y_{t} = \alpha + \delta_{0}x_{t} + \delta_{1}x_{t-1} + \delta_{2}x_{t-2} + \dots + u_{t} \quad |\delta_{j} = \gamma \rho^{j}$$

$$y_{t} = \alpha + \gamma x_{t} + \gamma \rho x_{t-1} + \gamma \rho^{2} x_{t-2} + \dots + u_{t}$$
 (6)

$$y_{t-1} = \alpha + \gamma x_{t-1} + \gamma \rho x_{t-2} + \gamma \rho^2 x_{t-3} + \dots + u_{t-1} \mid \times \rho \quad (7)$$

$$\rho y_{t-1} = \alpha \rho + \gamma \rho x_{t-1} + \gamma \rho^2 x_{t-2} + \dots + \rho u_{t-1}$$
 (8)

Now, we subtract (8) from (6):

$$y_t - \rho y_{t-1} = \underbrace{\alpha(1-\rho)}_{\alpha_0} + \gamma x_t + \underbrace{u_t - \rho u_{t-1}}_{v_t}$$
 (9)

$$y_t = \alpha_0 + \gamma x_t + \rho y_{t-1} + v_t \tag{10}$$

Geometric distributed lag (Koyck)

IDL model: $y_t = \alpha + \delta_0 x_t + \delta_1 x_{t-1} + \delta_2 x_{t-2} + \dots + u_t$

Koyck transf.: $y_t = \alpha_0 + \gamma x_t + \rho y_{t-1} + v_t$

Using the Koyck transformation, we can calculate parameters of the IDL model from the estimated model after Koyck transformation:

$$\hat{\delta}_0 = \hat{\gamma}$$

$$\hat{\delta}_j = \hat{\gamma} \,\hat{\rho}^j \; ; \; j = 1, 2, 3, \dots$$

$$\hat{\alpha} = \frac{\hat{\alpha}_0}{1 - \hat{\rho}}$$

Problems of the Koyck transformation:

- in (10), regressor y_{t-1} is not exogenous $(v_t = u_t \rho u_{t-1})$... IVR will be discussed in Week 8
- $v_t = u_t \rho u_{t-1}$ is not i.i.d.
- Koyck transformation extends to models with multiple regressors only if common ρ (geometric decay) can be assumed.

Rational distributed lag

The geometric distributed lag is a special case of rational distributed lag (RDL) model:

$$y_t = \alpha_0 + \gamma x_t + \rho y_{t-1} + v_t \quad \text{(geometric distributed lag)}$$

$$y_t = \alpha_0 + \gamma_0 x_t + \gamma_1 x_{t-1} + \rho y_{t-1} + v_t \quad \text{(RDL)}$$
 (11)

This can be shown by successive substitution for the y_{t-1} term of RDL equation (11), where we get:

$$y_{t} = \alpha + \gamma_{0}x_{t} + (\rho\gamma_{0} + \gamma_{1})x_{t-1} + \rho(\rho\gamma_{0} + \gamma_{1})x_{t-2} + \rho^{2}(\rho\gamma_{0} + \gamma_{1})x_{t-3} + \rho^{3}(\rho\gamma_{0} + \gamma_{1})x_{t-4} + \dots + \rho^{h-1}(\rho\gamma_{0} + \gamma_{1})x_{t-h} + \dots + u_{t}$$

$$(12)$$

After estimating (11), we can calculate lag distribution for (12)

Rational distributed lag

RDL specification:

$$y_t = \alpha_0 + \gamma_0 x_t + \gamma_1 x_{t-1} + \rho y_{t-1} + v_t$$

can be used to calculate δ_h in the IDL model:

$$y_t = \alpha + \delta_0 x_t + \delta_1 x_{t-1} + \delta_2 x_{t-2} + \dots + u_t$$

With RDLs, impact propensity $\gamma_0 \equiv \delta_0$ can differ in sign from lagged coefficients.

$$\delta_h = \rho^{h-1}(\rho\gamma_0 + \gamma_1)$$
 corresponds to the x_{t-h} variable for $h \ge 1$.

 $\dots \delta_0$ may differ in sign from "lags", even if $\rho > 0$.

... for $\rho > 0$, δ_h doesn't change sign with growing $h \ge 1$.

Long-run propensity: $LRP = \frac{\gamma_0 + \gamma_1}{1 - \rho}$,

where $|\rho| < 1 \implies$ the sign of LRP follows the sign of $(\gamma_0 + \gamma_1)$.

Also,
$$u_t = v_t + \rho v_{t-1} + \rho^2 v_{t-2} + \cdots MA(\infty)$$

Koyck transformation and RDL model – summary

IDL model specification:

$$y_t = \alpha + \delta_0 x_t + \delta_1 x_{t-1} + \delta_2 x_{t-2} + \delta_3 x_{t-3} + \dots + u_t$$

Koyck:
$$y_t = \alpha_0 + \gamma x_t + \rho y_{t-1} + v_t$$

RDL:
$$y_t = \alpha_0 + \gamma_0 x_t + \gamma_1 x_{t-1} + \rho y_{t-1} + v_t$$

Table 1: Koyck vs. RDL coefficients

	Koyck	RDL
Impact multiplier	$\delta_0 = \gamma$	$\delta_0 = \gamma_0$
Lagged multiplier (lag h)	$\delta_h = \gamma \rho^h$	$\delta_h = \rho^{h-1}(\rho\gamma_0 + \gamma_1)$
LRP	$\frac{\gamma}{1-\rho}$	$\frac{\gamma_0 + \gamma_1}{1 - \rho}$

Partial adjustment model

Partial adjustment model (PAM) is based on two main assumptions:

• LRM describes long-run behavior of y_t^* : the unobserved, expected/equilibrium/target/optimum value of y_t :

$$y_t^* = \alpha + \beta x_t + u_t \tag{13}$$

2 Between two time periods, y_t follows the process:

$$y_t - y_{t-1} = \theta(y_t^* - y_{t-1}), \quad 0 < \theta < 1$$
 (14)

Hence, the actual Δy_t is only a fraction of the "desirable" change from y_{t-1} to the optimum value of y_t^* in the special case of $\theta = 1$, Δy_t leads to optimum.

Note: (14) can be re-written as: $y_t = \theta y_t^* + (1 - \theta)y_{t-1}$

Partial adjustment model

Parameter estimation of PAM:

$$y_t^* = \alpha + \beta x_t + u_t \tag{13}$$

$$y_t = \theta y_t^* + (1 - \theta)y_{t-1}, \quad 0 < \theta < 1$$
 (14)

• Substitute for y_t^* in (14) from (13):

$$y_{t} = \alpha \theta + \beta \theta x_{t} + (1 - \theta) y_{t-1} + \theta u_{t} y_{t} = \beta'_{0} + \beta'_{1} x_{t} + \beta'_{2} y_{t-1} + \theta u_{t}$$
(15)

2 Estimate (15) and then calculate sought parameters of the PAM in (13) and (14):

$$\hat{\theta} = 1 - \hat{\beta}_2'$$

$$\hat{\alpha} = \hat{\beta}_0'/\hat{\theta}$$

$$\hat{\beta} = \hat{\beta}_1'/\hat{\theta}$$

Note that θu_t can be independent of y_{t-1} and i.i.d.

Partial adjustment model

Parameter interpretation of PAM:

$$y_{t}^{*} = \alpha + \beta x_{t} + u_{t}$$

$$y_{t} = \theta y_{t}^{*} + (1 - \theta)y_{t-1}, \quad 0 < \theta < 1$$

$$y_{t} = \alpha \theta + \beta \theta x_{t} + (1 - \theta)y_{t-1} + \theta u_{t}$$

$$y_{t} = \beta'_{0} + \beta'_{1}x_{t} + \beta'_{2}y_{t-1} + \theta u_{t}$$

Parameters:

- θ : $\theta = (1 \beta_2')$ is the adjustment coefficient; higher $\hat{\theta}$ indicates higher speed of adjustment towards equilibrium.
- β'_1 : impact multiplier (short-run marginal propensity)
- $\beta~:~~\beta=\beta_1'/\theta$ is the long run multiplier.

Adaptive expectations hypothesis

Adaptive expectations hypothesis (AEH) model is based on two main assumptions:

• LRM describes behavior of y_t , as a function of x_t^* : the unobserved, expected/equilibrium/target/optimum value of x_t (permanent income, potential output, etc.):

$$y_t = \alpha + \beta x_t^* + u_t. \tag{16}$$

2 The unobserved x_t^* process is defined as:

$$x_{t}^{*} - x_{t-1}^{*} = \phi(x_{t} - x_{t-1}^{*}), \quad 0 < \phi < 1$$

$$\downarrow \qquad \qquad (17)$$

$$x_{t}^{*} = \phi x_{t} + (1 - \phi) x_{t-1}^{*}.$$

with $\phi = 0$ for static expectations and $\phi = 1$ for immediate adjustment.

Note: alternative 2^{nd} hypothesis: $x_t^* = \phi x_{t-1} + (1 - \phi) x_{t-1}^*$.

Adaptive expectations hypothesis

Parameter estimation of AEH model:

$$y_t = \alpha + \beta x_t^* + u_t, \tag{16}$$

$$x_t^* = \phi x_t + (1 - \phi) x_{t-1}^* \tag{17}$$

Successive substitution for x_t^* from (17) to (16): IDL process

$$y_t = \alpha + \beta \phi x_t + \beta \phi (1 - \phi) x_{t-1} + \beta \phi (1 - \phi)^2 x_{t-2} + \dots + u_t$$
 (18)

After applying Koyck transformation, we get

$$y_{t} = \alpha \phi + \beta \phi x_{t} + (1 - \phi) y_{t-1} + v_{t}$$

$$y_{t} = \beta'_{0} + \beta'_{1} x_{t} + \beta'_{2} y_{t-1} + v_{t}$$
(19)

Estimate (19), then calculate parameters in (16) and (17). $\hat{\phi} = 1 - \hat{\beta}'_2$ (ϕ is the "adaptive expectations coefficient")

$$\hat{lpha}=\hat{eta}_{2}^{\prime}/\hat{\phi}$$

$$\hat{\beta} = \hat{\beta}_1'/\hat{\phi}$$
 (β_1' and β are the SR and LR propensities)

Note: Problems of Koyck-transformed model estimation apply.

The same underlying regression model (statistical form) is used:

- The Koyck transformation: $y_t = \alpha_0 + \gamma x_t + \rho y_{t-1} + v_t$
- The Partial adjustment model (PAM): $y_t = \alpha \theta + \beta \theta x_t + (1 \theta) y_{t-1} + \theta u_t$
- The Model with adaptive expectations (AEM): $y_t = \alpha \phi + \beta \phi x_t + (1 \phi)y_{t-1} + v_t$

We can make three different interpretations from one estimated equation.

Of course, not all interpretations are always relevant, we must choose according to application and test assumptions.

Example: Model for $c_t \leftarrow f(x_t, x_{t-1}, x_{t-2}, \dots)$: private consumption (c_t) as a function of disposable income (x_t) . Same estimated model for Koyck, PAM, AEH:

$$\hat{c}_t = 1,038 + 0.404x_t + 0.501c_{t-1}$$
 Koyck: $\hat{c}_t = \hat{\alpha}_0 + \hat{\gamma}x_t + \hat{\rho}c_{t-1}$

Koyck: IDL, geometric decay in δ parameters assumed:

- $\hat{\rho} = 0.501$
- $\hat{\alpha}_0 = 1,038 = \hat{\alpha}(1-\hat{\rho}) = \hat{\alpha}(1-0.501) \Rightarrow \hat{\alpha} = \frac{1,038}{0.499} = 2,080$
- $\hat{\delta}_j = \hat{\gamma}\hat{\rho}^j = 0.404 \times 0.501^j$
- $LRP = \frac{\hat{\gamma}}{1-\hat{\rho}} = \frac{0.404}{0.499} \doteq 0.81$
- IDL: $\hat{c}_t = 2,080 + \underbrace{0.404}_{\hat{\gamma}\hat{\rho}^0} x_t + \underbrace{0.202}_{\hat{\gamma}\hat{\rho}} x_{t-1} + \underbrace{0.101}_{\hat{\gamma}\hat{\rho}^2} x_{t-2} + \dots$

Example continued:

$$\hat{c}_t = 1,038 + 0.404x_t + 0.501c_{t-1}$$

PAM: $\hat{c}_t = \hat{\alpha}\hat{\theta} + \hat{\beta}\hat{\theta}x_t + (1-\hat{\theta})c_{t-1}$

- $(1 \hat{\theta}) = 0.501 \Rightarrow \hat{\theta} = 0.499$
- $\hat{\alpha}\hat{\theta} = 1,038 \Rightarrow \hat{\alpha} = \frac{1,038}{0.499} = 2,080$
- $\hat{\beta}\hat{\theta} = 0.404 \Rightarrow \hat{\beta} = \frac{0.404}{0.499} \doteq 0.81$
- PAM: $\hat{c}_t^* = 2,080 + 0.81x_t$ $c_t - c_{t-1} = 0.499 \cdot (c_t^* - c_{t-1})$
- If c_t has a prominent inertia and Δc_t significantly follows changes in habits, we might use the PAM approach.

Example continued:

$$\hat{c}_t = 1,038 + 0.404x_t + 0.501c_{t-1}$$
AEH: $\hat{c}_t = \hat{\alpha}\hat{\phi} + \hat{\beta}\hat{\phi}x_t + (1-\hat{\phi})c_{t-1}$

- $(1 \hat{\phi}) = 0.501 \Rightarrow \hat{\phi} = 0.499$
- $\hat{\alpha}\hat{\phi} = 1,038 \Rightarrow \hat{\alpha} = \frac{1,038}{0.499} = 2,080$
- $\hat{\beta}\hat{\phi} = 0.404 \Rightarrow \hat{\beta} = \frac{0.404}{0.499} \doteq 0.81$
- AEH: $\hat{c}_t = 2,080 + 0.81x_t^*$ $x_t^* = 0.499x_t + 0.501x_{t-1}^*$
- If c_t if formed as a function of expected (e.g. permanent) income, we might prefer AEH.

Rational expectations

• Rational expectations

$$\mathbf{E}_{t-1}(x_t) = a_0 + a_1 x_{t-1} + b_1 z_{1,t-1} + b_2 z_{2,t-2} + \dots$$

 $\mathbf{E}_{t-1}(x_t)$: expected value of x_t at time t-1 $z_{k,t-j}$: exogenous variables with impact on $\mathbf{E}_{t-1}(x_t)$

We put
$$x_t^* = \mathbf{E}_{t-1}(x_t)$$
 into (16): $y_t = \alpha + \beta x_t^* + u_t$

We assume that agents:

- know all relevant information
- know how to use this information

Agents can make prediction errors (v_t) , so:

$$x_t = x_t^* + v_t$$

Rational vs. adaptive expectations

Under rational expectations:

- Expected value of prediction errors $[v_t = x_t x_t^*]$ must be zero. If they were systematically different from zero, rational agents would immediately adjust their forecasting methods accordingly.
- $[v_t = x_t x_t^*]$ prediction error must be uncorrelated with any information available when the prediction is made (t-1). If not, this would imply that the forecaster has not made use of all available information.
- These properties can be used for testing the rational expectations hypothesis in different applications (e.g. through ex-post simulated dynamic forecasts).

Some economic application that use expectations

- Philips curve (Expectations-augmented Phillips curve)
- Efficient market hypothesis (EMH)
- Consumption function Permanent income hypothesis

FWL theorem - repetition from BSc courses

Frisch and Waugh in the 30-ies: detrending Lovell in the 60-ies: deseasonalizing

• Example: Spurious regression with trend-stationary series: e.g. Regression of the US GDP on salmon production in Norway

Solution (identical $\hat{\beta}_2$ estimates)

M1: $gdp_t = \beta_0 + \beta_1 year_t + \beta_2 salmon_t + u_t$

M2: $gdp.detrended_t = \beta_2 salmon.detrended_t + u_t$

M2: $gdp.detrended_t = \beta_0 + \beta_1 year_t + \beta_2 salmon_t + u_t$

M4: $gdp_t = \beta_2 salmon.detrended_t + u_t$

• Note that β_0 , β_1 and u_t may differ among equations.

FWL theorem

• Partitioned regression

$$y = X\beta + u = X_1\beta_1 + X_2\beta_2 + u \tag{20}$$

Projection matrices and residual makers

$$egin{aligned} m{P} &= m{X} (m{X}'m{X})^{-1}m{X}', & m{M} &= m{I} - m{P} \ m{P}_1 &= m{X}_1 (m{X}_1'm{X}_1)^{-1}m{X}_1', & m{M}_1 &= m{I} - m{P}_1 \ m{P}_2 &= m{X}_2 (m{X}_2'm{X}_2)^{-1}m{X}_2', & m{M}_2 &= m{I} - m{P}_2 \end{aligned}$$

Some properties

$$egin{aligned} m{PP_1} &= m{P_1}, \;\; m{PX_1} &= m{X_1} \;\; (m{X_1} \; ext{is in the span} \;\; (m{X})) \ m{PP_1} &= (m{P_1P})' &= m{P_1P} &= m{P_1} \ m{MM_1} &= (m{M_1M})' &= m{M_1M} &= m{M} \ m{M_1X_1} &= m{0}, \;\;\; m{X_2'M} &= m{0} \end{aligned}$$

FWL theorem

M1:
$$gdp_t = \beta_0 + \beta_1 year_t + \beta_2 salmon_t + u_t$$

 $y = X_1\beta_1 + X_2\beta_2 + u = X\beta + u$

M2:
$$gdp.detrended_t = \beta_2 salmon.detrended_t + u_t$$

 $M_1y = M_1X_2\beta_2 + u$

M3:
$$gdp.detrended_t = \beta_0 + \beta_1 year_t + \beta_2 salmon_t + u_t$$

 $M_1 y = X_1 \beta_1 + X_2 \beta_2 + u$

M4:
$$gdp_t = \beta_2 salmon.detrended_t + u_t$$

 $\boldsymbol{y} = \boldsymbol{M}_1 \boldsymbol{X}_2 \beta_2 + \boldsymbol{u}$

FWL theorem

FWL theorem & applications

- Estimates of β_2 for a partioned model (20) in all M1 M4 models are the same
- 2 Residuals from M1, M2, M3 are the same

Lemma: Based on properties of projection matrices and residual makers, we can show that $\hat{\beta}_2$ estimators in all four (M1 to M4) specifications can be expressed as:

$$\hat{m{eta}}_2 = ({m{X}}_2' {m{M}}_1 {m{X}}_2)^{-1} {m{X}}_2' {m{M}}_1 {m{y}}$$

Application: deseasonalizing, centered coefficient of determination, interchangeability of reference categories (e.g. quarterly dummies), simplification of many proofs in econometrics

FWL theorem (detrending)

$$oldsymbol{y} = oldsymbol{X}\hat{oldsymbol{eta}} + \hat{oldsymbol{u}} = oldsymbol{P}oldsymbol{y} + oldsymbol{M}oldsymbol{y} = oldsymbol{X}_1\hat{eta}_1 + oldsymbol{X}_2\hat{eta}_2 + oldsymbol{M}oldsymbol{y}$$

Skeleton of the proof (for M1 equation):

$$egin{aligned} oldsymbol{y} &= oldsymbol{X}_1 \hat{oldsymbol{eta}}_1 + oldsymbol{X}_2 \hat{oldsymbol{eta}}_2 + oldsymbol{M} oldsymbol{y} & | oldsymbol{X}_2' oldsymbol{M}_1 imes \\ oldsymbol{X}_2' oldsymbol{M}_1 oldsymbol{y}_1 = oldsymbol{X}_2' oldsymbol{M}_1 oldsymbol{X}_1 \hat{oldsymbol{eta}}_1 + oldsymbol{X}_2' oldsymbol{M}_1 oldsymbol{X}_2 \hat{oldsymbol{eta}}_2 + oldsymbol{X}_2' oldsymbol{M}_1 oldsymbol{M}_1 oldsymbol{y} \\ oldsymbol{W}_1 oldsymbol{W}_1 oldsymbol{y} = oldsymbol{X}_2' oldsymbol{M}_1 oldsymbol{X}_1 oldsymbol{eta}_1 + oldsymbol{X}_2' oldsymbol{M}_1 oldsymbol{X}_2 oldsymbol{W}_1 oldsymbol{W}_1 oldsymbol{W}_1 oldsymbol{y} \\ oldsymbol{W}_1 oldsy$$

$$X_2'M_1y = X_2'M_1X_2\hat{\boldsymbol{\beta}}_2 \Rightarrow \hat{\boldsymbol{\beta}}_2 = (X_2'M_1X_2)^{-1}X_2'M_1y \Rightarrow \text{QED}$$