$$u^* = \sqrt{uv}$$

Pascal Michaillat, Emmanuel Saez

April 2022

Paper available at https://www.pascalmichaillat.org/13.html

A FORMULA FOR EFFICIENT UNEMPLOYMENT, u^*

- sufficient statistic for optimal stabilization policies
 - monetary policy
 - fiscal policy
 - unemployment insurance
- welfare-based measure of "full employment"
 - statutory target for US policymakers
 - Full Employment and Balanced Growth Act of 1978

THIS PAPER: A SIMPLE WELFARE-BASED MEASURE

WORKERS

- 1. share *u* of labor force is unemployed
 - no contribution to social welfare
- 2. share *v* of labor force is recruiting
 - one worker per vacancy
 - # vacancies determined by Beveridge curve v(u)
- 3. share 1 (u + v) of labor force is producing
 - production determines social welfare

SOCIAL PLANNER'S PROBLEM

- minimize nonproduction u + v
- subject to Beveridge curve v = A/u, or uv = A
- solution by symmetry: $u^* = v^* = \sqrt{A} = \sqrt{uv}$
- solution by first-order condition:
 - minimize u + A/u, which is convex
 - first-order condition is necessary & sufficient

$$1 - A/u^2 = 0 \implies u = \sqrt{A}$$

EFFICIENT UNEMPLOYMENT RATE

efficient unemployment rate:

$$u^* = \sqrt{uv}$$

• economy is inefficiently tight when $u < u^*$ or

• economy is inefficiently slack when $u > u^*$ or

GENERALIZATION [MICHAILLAT & SAEZ 2021]

- home production per unemployed worker: $0 \rightarrow \zeta$
- # recruiters per vacancy: $1
 ightarrow \kappa$
- Beveridge curve: $v = A/u \rightarrow v = A/u^{\epsilon}$
- efficient tightness:

$$\theta^* = 1 \rightarrow \theta^* = \frac{1-\zeta}{\kappa \epsilon}$$

efficient unemployment rate:

$$u^* = \sqrt{uv} \quad \to \quad u^* = \left(\frac{\kappa \cdot \epsilon}{1 - \zeta} \cdot v \cdot u^{\epsilon}\right)^{1/(1 + \epsilon)}$$

HAGEDORN & MANOVSKII [2008]: $\zeta = 0.96$

LIMITED INFLUENCE OF MATCHING DYNAMICS

- 1. unemployment is almost always on Beveridge curve
 - $-\dot{u}(t) = \lambda \cdot [1 u(t)] f \cdot u(t)$
 - Beveridge curve: $\dot{u} = 0 \implies u^b = \lambda/(\lambda + f)$
 - unemployment dynamics: $u(t) u^b = [u(0) u^b]e^{-(\lambda + f)t}$
 - half life of $u(t) u^b$: $\ln(2)/(\lambda + f) = \ln(2)/0.59 = 1.17$ month
- 2. efficient tightness θ^* is almost equal to Hosios tightness θ^h
 - with interest rate r and matching elasticity η :

$$\frac{\theta^* - \theta^h}{\theta^*} = \frac{r}{\eta(\lambda + f)}$$

– under Shimer [2005] calibration: $(\theta^* - \theta^h)/\theta^* = 1.1\%$

UNEMPLOYMENT pprox ON BEVERIDGE CURVE

UNEMPLOYMENT pprox ON BEVERIDGE CURVE

EFFICIENT UNEMPLOYMENT \approx HOSIOS

EFFICIENT UNEMPLOYMENT \approx HOSIOS

UNITED STATES, 1951–2019

UNEMPLOYMENT RATE (CPS)

VACANCY RATE (BARNICHON 2010 & JOLTS)

ECONOMY IS TOO SLACK WHEN U > V

ECONOMY IS TOO TIGHT WHEN $U \le V$

EFFICIENT UNEMPLOYMENT RATE IS \sqrt{uv}

UNEMPLOYMENT GAP IS COUNTERCYCLICAL

UNITED STATES, 2020-2022

UNEMPLOYMENT & VACANCY RATES

ECONOMY IS TOO TIGHT SINCE MAY 2021

EFFICIENT UNEMPLOYMENT RATE IS \sqrt{uv}

MOST EXTREME UNEMPLOYMENT GAPS ON RECORD

