

Serial No. 09/757,049

MARKED UP VERSION SHOWING THE CHANGES.

SEQUENCE LISTING

<110> BERNSTEIN, Harold S.
COUGHLIN, Shaun R.

<120> METHODS AND COMPOSITIONS FOR REGULATING CELL CYCLE
PROGRESSION

<130> UCSF-020/02US

<140> Not Yet Available
<141> 2001-01-08

<150> US 09/156,316
<151> 1998-09-18

<150> US 60/060,688
<151> 1997-09-22

<160> [46] 50

<170> PatentIn Ver. 2.1

<210> 1
<211> 802
<212> PRT
<213> Homo sapiens

<400> 1
Met Pro Arg Ile Met Ile Lys Gly Gly Val Trp Arg Asn Thr Glu Asp
1 5 10 15
Glu Ile Leu Lys Ala Ala Val Met Lys Tyr Gly Lys Asn Gln Trp Ser
20 25 30
Arg Ile Ala Ser Leu Leu His Arg Lys Ser Ala Lys Gln Cys Lys Ala
35 40 45
Arg Trp Tyr Glu Trp Leu Asp Pro Ser Ile Lys Lys Thr Glu Trp Ser
50 55 60
Arg Glu Glu Glu Lys Leu Leu His Leu Ala Lys Leu Met Pro Thr
65 70 75 80
Gln Trp Arg Thr Ile Ala Pro Ile Ile Gly Arg Thr Ala Ala Gln Cys
85 90 95
Leu Glu His Tyr Glu Phe Leu Leu Asp Lys Ala Ala Gln Arg Asp Asn
100 105 110
Glu Glu Glu Thr Thr Asp Asp Pro Arg Lys Leu Lys Pro Gly Glu Ile

SEQUENCE LISTING

<110> BERNSTEIN, Harold S.
COUGHLIN, Shaun R.

<120> METHODS AND COMPOSITIONS FOR REGULATING CELL CYCLE
PROGRESSION

<130> UCSF-020/02US

<140> Not Yet Available
<141> 2001-01-08

<150> US 09/156,316
<151> 1998-09-18

<150> US 60/060,688
<151> 1997-09-22

<160> 50

<170> PatentIn Ver. 2.1

<210> 1
<211> 802
<212> PRT
<213> Homo sapiens

<400> 1
Met Pro Arg Ile Met Ile Lys Gly Gly Val Trp Arg Asn Thr Glu Asp
1 5 10 15

Glu Ile Leu Lys Ala Ala Val Met Lys Tyr Gly Lys Asn Gln Trp Ser
20 25 30

Arg Ile Ala Ser Leu Leu His Arg Lys Ser Ala Lys Gln Cys Lys Ala
35 40 45

Arg Trp Tyr Glu Trp Leu Asp Pro Ser Ile Lys Lys Thr Glu Trp Ser
50 55 60

Arg Glu Glu Glu Glu Lys Leu Leu His Leu Ala Lys Leu Met Pro Thr
65 70 75 80

Gln Trp Arg Thr Ile Ala Pro Ile Ile Gly Arg Thr Ala Ala Gln Cys
85 90 95

Leu Glu His Tyr Glu Phe Leu Leu Asp Lys Ala Ala Gln Arg Asp Asn
100 105 110

Glu Glu Glu Thr Thr Asp Asp Pro Arg Lys Leu Lys Pro Gly Glu Ile
115 120 125

Asp Pro Asn Pro Glu Thr Lys Pro Ala Arg Pro Asp Pro Ile Asp Met
130 135 140

Asp Glu Asp Glu Leu Glu Met Leu Ser Glu Ala Arg Ala Arg Leu Ala

145	150	155	160
Asn Thr Gln Gly Lys Lys Ala Lys Arg Lys Ala Arg Glu Lys Gln Leu			
165	170	175	
Glu Glu Ala Arg Arg Leu Ala Ala Leu Gln Lys Arg Arg Glu Leu Arg			
180	185	190	
Ala Ala Gly Ile Glu Ile Gln Lys Lys Arg Lys Arg Lys Arg Gly Val			
195	200	205	
Asp Tyr Asn Ala Glu Ile Pro Phe Glu Lys Lys Pro Ala Leu Gly Phe			
210	215	220	
Tyr Asp Thr Ser Glu Glu Asn Tyr Gln Ala Leu Asp Ala Asp Phe Arg			
225	230	235	240
Lys Leu Arg Gln Gln Asp Leu Asp Gly Glu Leu Arg Ser Glu Lys Glu			
245	250	255	
Gly Arg Asp Arg Lys Lys Asp Lys Gln His Leu Lys Arg Lys Lys Glu			
260	265	270	
Ser Asp Leu Pro Ser Ala Ile Leu Gln Thr Ser Gly Val Ser Glu Phe			
275	280	285	
Thr Lys Lys Arg Ser Lys Leu Val Leu Pro Ala Pro Gln Ile Ser Asp			
290	295	300	
Ala Glu Leu Gln Glu Val Val Lys Val Gly Gln Ala Ser Glu Ile Ala			
305	310	315	320
Arg Gln Thr Ala Glu Glu Ser Gly Ile Thr Asn Ser Ala Ser Ser Thr			
325	330	335	
Leu Leu Ser Glu Tyr Asn Val Thr Asn Asn Ser Val Ala Leu Arg Thr			
340	345	350	
Pro Arg Thr Pro Ala Ser Gln Asp Arg Ile Leu Gln Glu Ala Gln Asn			
355	360	365	
Leu Met Ala Leu Thr Asn Val Asp Thr Pro Leu Lys Gly Gly Leu Asn			
370	375	380	
Thr Pro Leu His Glu Ser Asp Phe Ser Gly Val Thr Pro Gln Arg Gln			
385	390	395	400
Val Val Gln Thr Pro Asn Thr Val Leu Ser Thr Pro Phe Arg Thr Pro			
405	410	415	
Ser Asn Gly Ala Glu Gly Leu Thr Pro Arg Ser Gly Thr Thr Pro Lys			
420	425	430	
Pro Val Ile Asn Ser Thr Pro Gly Arg Thr Pro Leu Arg Asp Lys Leu			
435	440	445	
Asn Ile Asn Pro Glu Asp Gly Met Ala Asp Tyr Ser Asp Pro Ser Tyr			

450	455	460
Val Lys Gln Met Glu Arg Glu Ser Arg Glu His Leu Arg Leu Gly Leu		
465	470	475
Leu Gly Leu Pro Ala Pro Lys Asn Asp Phe Glu Ile Val Leu Pro Glu		
485	490	495
Asn Ala Glu Lys Glu Leu Glu Glu Arg Glu Ile Asp Asp Thr Tyr Ile		
500	505	510
Glu Asp Ala Ala Asp Val Asp Ala Arg Lys Gln Ala Ile Arg Asp Ala		
515	520	525
Glu Arg Val Lys Glu Met Lys Arg Met His Lys Ala Val Gln Lys Asp		
530	535	540
Leu Pro Arg Pro Ser Glu Val Asn Thr Glu Ile Leu Arg Pro Leu Asn		
545	550	555
560		
Val Glu Pro Pro Leu Thr Asp Leu Gln Lys Ser Glu Glu Leu Ile Lys		
565	570	575
Lys Glu Met Ile Thr Met Leu His Tyr Asp Leu Leu His His Pro Tyr		
580	585	590
Glu Pro Ser Gly Asn Lys Lys Gly Lys Thr Val Gly Phe Gly Thr Asn		
595	600	605
Asn Ser Glu His Ile Thr Tyr Leu Glu His Asn Pro Tyr Glu Lys Phe		
610	615	620
Ser Lys Glu Glu Leu Lys Lys Ala Gln Asp Val Leu Val Gln Glu Met		
625	630	635
640		
Glu Val Val Lys Gln Gly Met Ser His Gly Glu Leu Ser Ser Glu Ala		
645	650	655
Tyr Asn Gln Val Trp Glu Glu Cys Tyr Ser Gln Val Leu Tyr Leu Pro		
660	665	670
Gly Gln Ser Arg Tyr Thr Arg Ala Asn Leu Ala Ser Lys Lys Asp Arg		
675	680	685
Ile Glu Ser Leu Glu Lys Arg Leu Glu Ile Asn Arg Gly His Met Thr		
690	695	700
Thr Glu Ala Lys Arg Ala Ala Lys Met Glu Lys Lys Met Lys Ile Leu		
705	710	715
720		
Leu Gly Gly Tyr Gln Ser Arg Ala Met Gly Leu Met Lys Gln Leu Asn		
725	730	735
Asp Leu Trp Asp Gln Ile Glu Gln Ala His Leu Glu Leu Arg Thr Phe		
740	745	750
Glu Glu Leu Lys Lys His Glu Asp Ser Ala Ile Pro Arg Arg Leu Glu		

755

760

765

Cys Leu Lys Glu Asp Val Gln Arg Gln Gln Glu Arg Glu Lys Glu Leu
770 775 780

Gln His Arg Tyr Ala Asp Leu Leu Leu Glu Lys Glu Thr Leu Lys Ser
785 790 795 800

Lys Phe

<210> 2

<211> 51

<212> PRT

<213> Homo sapiens

<400> 2

Ile Lys Gly Gly Val Trp Arg Asn Thr Glu Asp Glu Ile Leu Lys Ala
1 5 10 15

Ala Val Met Lys Tyr Gly Lys Asn Gln Trp Ser Arg Ile Ala Ser Leu
20 25 30

Leu His Arg Lys Ser Ala Lys Gln Cys Lys Ala Arg Trp Tyr Glu Trp
35 40 45

Leu Asp Pro

50

<210> 3

<211> 51

<212> PRT

<213> Schizosaccharomyces pombe

<400> 3

Leu Lys Gly Gly Ala Trp Lys Asn Thr Glu Asp Glu Ile Leu Lys Ala
1 5 10 15

Ala Val Ser Lys Tyr Gly Lys Asn Gln Trp Ala Arg Ile Ser Ser Leu
20 25 30

Leu Val Arg Lys Thr Pro Lys Gln Cys Lys Ala Arg Trp Tyr Glu Trp
35 40 45

Ile Asp Pro

50

<210> 4

<211> 50

<212> PRT

<213> Homo sapiens

<400> 4

Val Lys Gly Pro Trp Thr Lys Glu Glu Asp Gln Lys Val Ile Glu Leu

1

5

10

15

Val Lys Lys Tyr Gly Thr Lys Gln Trp Thr Leu Ile Ala Lys His Leu
20 25 30

Lys Gly Arg Leu Gly Lys Gln Cys Arg Glu Arg Trp His Asn His Leu
35 40 45

Asn Pro
50

<210> 5
<211> 50
<212> PRT
<213> Homo sapiens

<400> 5
Ile Lys Gly Pro Trp Thr Lys Glu Glu Asp Gln Lys Val Ile Glu Leu
1 5 10 15

Val Gln Lys Tyr Gly Pro Lys Arg Trp Ser Leu Ile Ala Lys His Leu
20 25 30

Lys Gly Arg Ile Gly Lys Gln Cys Arg Glu Arg Trp His Asn His Leu
35 40 45

Asn Pro
50

<210> 6
<211> 50
<212> PRT
<213> Homo sapiens

<400> 6
Ile Lys Gly Pro Trp Thr Lys Glu Glu Asp Gln Lys Val Ile Glu Leu
1 5 10 15

Val Gln Lys Tyr Gly Pro Lys Arg Trp Ser Val Ile Ala Lys His Leu
20 25 30

Lys Gly Arg Ile Gly Lys Gln Cys Arg Glu Arg Trp His Asn His Leu
35 40 45

Asn Pro
50

<210> 7
<211> 123
<212> PRT
<213> Homo sapiens

<400> 7
Pro Leu Lys Gly Gly Leu Asn Thr Pro Leu His Glu Ser Asp Phe Ser

1

5

10

15

Gly Val Thr Pro Gln Arg Gln Val Val Gln Thr Pro Asn Thr Val Leu
20 25 30

Ser Thr Pro Phe Arg Thr Pro Ser Asn Gly Ala Glu Gly Leu Thr Pro
35 40 45

Arg Ser Gly Thr Thr Pro Lys Pro Val Ile Asn Ser Thr Pro Gly Arg
50 55 60

Thr Pro Leu Arg Asp Lys Leu Asn Ile Asn Pro Glu Asp Gly Met Ala
65 70 75 80

Asp Tyr Ser Asp Pro Ser Tyr Val Lys Gln Met Glu Arg Glu Ser Arg
85 90 95

Glu His Leu Arg Leu Gly Leu Leu Gly Leu Pro Ala Pro Lys Asn Asp
100 105 110

Phe Glu Ile Val Leu Pro Glu Asn Ala Glu Lys
115 120

<210> 8

<211> 107

<212> PRT

<213> Schizosaccharomyces pombe

<400> 8

Ser Val Thr Ile Glu Val Arg Asn Gln Leu Met Asn Arg Glu Gln Ser
1 5 10 15

Ser Leu Leu Gly Gln Glu Ser Ile Pro Leu Gln Pro Gly Gly Thr Gly
20 25 30

Tyr Thr Gly Val Thr Pro Ser His Ala Ala Asn Gly Ser Ala Leu Ala
35 40 45

Ala Pro Gln Ala Thr Pro Phe Arg Thr Pro Arg Asp Thr Phe Ser Ile
50 55 60

Asn Ala Ala Ala Glu Arg Ala Gly Arg Leu Ala Ser Glu Arg Glu Asn
65 70 75 80

Lys Ile Arg Leu Lys Ala Leu Arg Glu Leu Leu Ala Lys Leu Pro Lys
85 90 95

Pro Lys Asn Asp Tyr Glu Leu Met Glu Pro Arg
100 105

<210> 9

<211> 119

<212> PRT

<213> Homo sapiens

<400> 9
Pro Val Lys Thr Leu Pro Phe Ser Pro Ser Gln Phe Leu Asn Phe Trp
1 5 10 15

Asn Lys Gln Asp Thr Leu Glu Leu Glu Ser Pro Ser Leu Thr Ser Thr
20 25 30

Pro Val Cys Ser Gln Lys Val Val Val Thr Thr Pro Leu His Arg Asp
35 40 45

Lys Thr Pro Leu His Gln Lys His Ala Ala Phe Val Thr Pro Asp Gln
50 55 60

Lys Tyr Ser Met Asp Asn Thr Pro His Thr Pro Thr Pro Phe Lys Asn
65 70 75 80

Ala Lys Tyr Gly Pro Leu Lys Pro Leu Pro Gln Thr Pro His Leu Glu
85 90 95

Glu Asp Leu Lys Glu Val Leu Arg Ser Glu Ala Gly Ile Glu Leu Ile
100 105 110

Ile Glu Asp Asp Ile Arg Pro
115

<210> 10
<211> 123
<212> PRT
<213> Homo sapiens

<400> 10
Ile Leu Arg Lys Lys Arg Lys Met Arg Val Gly His Ser Pro Gly Ser
1 5 10 15

Glu Leu Arg Asp Gly Ser Leu Asn Asp Gly Gly Asn Met Ala Leu Lys
20 25 30

His Thr Pro Leu Lys Thr Leu Pro Phe Ser Pro Ser Gln Phe Phe Asn
35 40 45

Thr Cys Pro Gly Asn Glu Gln Leu Asn Ile Glu Asn Pro Ser Phe Thr
50 55 60

Ser Thr Pro Ile Cys Gly Gln Lys Ala Leu Ile Thr Thr Pro Leu His
65 70 75 80

Lys Glu Thr Thr Pro Lys Asp Gln Lys Glu Asn Val Gly Phe Arg Thr
85 90 95

Pro Thr Ile Arg Arg Ser Ile Leu Gly Thr Pro Arg Thr Pro Thr Pro
100 105 110

Phe Lys Asn Ala Leu Ala Ala Gln Glu Lys Lys
115 120

<210> 11
<211> 2837
<212> DNA
<213> Homo sapiens

<400> 11
ggcacgagag gaagtggcgg ctttgagtcc ggtggccaa tcgctgttac tacttctctg 60
aagctcctct cggctgcttgc ccgagacacc ctggcccaa gatgcctcgattatgatca 120
agggggcgt atggaggaat accgaggatg aaattctgaa agcagcggta atgaaatatg 180
ggaaaaatca gtggcttagg attgcctcat tgctgcataaaaatcaga aagcagtgc 240
aagccagatg gtatgaatgg ctggatccaa gcattaagaa gacagaatgg tccagagaag 300
aagaggaaaa actcttcac ttggccaagt tgatgccaac tcagtgaggaccattgctc 360
caatcattgg aagaacagcg gcccagtgc tagaacactatgaatttctt ctggataaag 420
ctgcccuaag agacaatgaa gaggaaacaa cagatgatcc acgaaaactt aaacctggag 480
aaatagatcc aaatccagaa acaaaaaccag cgccgcctgatccaatttgat atggatgagg 540
atgaacttgc gatgcttctt gaagccagaa cccgcttggc taatactcaaggaaagaagg 600
ccaagaggaa agcaagagag aaacaattgg aagaagcaag acgtcttgc gccctccaaa 660
aaagaagaga acttcgagca gctggcataaaatccagaa gaaaagaaaaa aggaagagag 720
gagttgatta taatgccaa atccccatttggaaaaaaagcc tgcccttggttttatgata 780
cttctgagga aaactaccaa gctcttgac cagattcag gaaattaaga caacaggatc 840
tttatgggg gctaagatct gaaaaagaag gaagagatag aaaaaaaagac aaacagcatt 900
tggaaaaggaa aaaagaatct gatttaccat cagctattct tcaaactatgttggttctg 960
aatttactaa aaagagaagc aaacttagtac ttccctgcccc ttagattca gatgcagaac 1020
tccaggaagt tgtaaaagta ggccaagcga gtgaaattgc acgtcaaact gcccggaaat 1080
ctggcataac aaattctgc tccagttacac ttttgcgtgatcataatgtc accaacaaca 1140
gcgttgcctc tagaacacca cgaacaccag cttcccgaggcagaattctgc caggaagccc 1200
agaacctcat ggcccattcacc aatgtggaca ccccaattgaa aggtggactt aataccccc 1260
tgcattgagag tgacttctca ggtgtactc cacagcgaca agttgtacag actccaaaca 1320
cagttctctc tactccattc aggactcctt ctaatggagc tgaaggcgt actccccgg 1380
gtggacaacac tcccaaaacca gttattaaact ctactccggg tagaactcctt ctgcgagaca 1440
agttaaacat taatcccggatg gatggatggcagactatacgatccctt tacgtgaagc 1500
agatggaaag agaatcccga gaacatctcc gtttagggtt gttgggcctt cctggcccta 1560
agaatgatt tggaaattgtt ctaccagaaa atgcccggaa ggagctggaa gaacgtgaaa 1620
tagatgatac ttacattgaa gatgctgctg atgtggatgc tcgaaaggcag gcccatacgag 1680
atgcagagcg tgtaaaaggaa atgaaaacgaa tgcataaaagc tgccagaaa gatctgcca 1740
gaccatcaga agtaaaatgaa actattctaa gacccttaaa tgtagaaccgcctttaacag 1800
atttacagaa aagtgaagaa ctaatcaaaa aagaaaatgt cacaatgcattatgacc 1860
ttctacatca cccttatgaa ccatctggaa ataaaaaaagg caaaactgtatgggtt 1920
ccaataattc agagcacatt acctatctgg aacataatcc ttatgaaaatgatctccaaag 1980
aagagctgaa aaaggcccggatgttttg tgcaggagat ggaagtggaaatacaaggaa 2040
tgagccatgg agagctctca agtgaagctt ataaccaggatgtggaaatgc tgcatacgatc 2100
aagttttata ttctccctggg cagagccgatc acacacgggc caatctggctt agtaaaaagg 2160
acagaattgaa atcaattgaa aagaggctcg agataaaacag gggtcacatgcgacagaag 2220
ccaagaggc tgcaaaagatg gaaaaagaagatgaaatgggtt gttgggggtt taccagtctc 2280
gtgctatggg gtcatgaaa cagttgaatg acttatggaa ccaaaattgaa caggctact 2340
tggagttacg cactttgaa gaactcaaga aacatgaaatgttgc ttcgtctatt ccccgaggc 2400
tagagtgtctt aaaaaggac gtcagcgcac aacaaggaaatgagaaaaggaaatcaacata 2460
gatatgctgatgttgc gagaaggaaatgaaatgggtt gtttttttttgc ttttttttttgc 2520
atattctgtc acaggattaa ttaattggccg gtttttccatc tcttagaaggcttgc tggaaatgtat 2580
gtttatcttc attgacaaat ttacccatc tctgtgggtt ttcgttgc ttttttttttgc 2640
gatatcgatc ttacacattc ttttttttttgc gacatgttgc cccacaggacgacatgttgc 2700
agttttaaattt attaaggctatcaatcttttgc ttttttttttgc gacatgttgc 2760
tttggccctt aatttaaaaaaatcaatcttttgc gacatgttgc ttttttttttgc 2820
aaaacaaaaat ataaaaaaat 2837

<210> 12
<211> 7

<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: epitope for M2
monoclonal antibody

<400> 12
Asp Tyr Lys Asp Asp Asp Lys
1 5

<210> 13
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 13
gatttaacat aa 12

<210> 14
<211> 9
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 14
ttaacataa 9

<210> 15
<211> 15
<212> DNA
<213> Homo sapiens

<400> 15
aataaaaatca aaatt 15

<210> 16
<211> 15
<212> DNA
<213> Homo sapiens

<400> 16
aaaggggaaac acttt 15

<210> 17
<211> 55
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

```

<220>
<221> misc difference
<222> (21)..(35)
<223> n = Any Nucleotide

<400> 17
cgctcgaggg atccgaattc nnnnnnnnnn nnnnntctag aaagcttgtc gacgc      55

<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 18
gcgtcgacaa gctttctaga                                         20

<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 19
cgctcgaggg atccgaattc                                         20

<210> 20
<211> 11
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 20
attnaacata a                                                 11

<210> 21
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 21
tattnaacat aa                                              12

<210> 22
<211> 12
<212> DNA
<213> Artificial Sequence

```

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 22
gctttaacat aa 12

<210> 23
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 23
gagtttaacat aa 12

<210> 24
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 24
gatgttaacat aa 12

<210> 25
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 25
gattgttaacat aa 12

<210> 26
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 26
gatttcacat aa 12

<210> 27
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 27
gatttaccat aa 12

<210> 28
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 28
gatttaatat aa 12

<210> 29
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 29
gatttaacct aa 12

<210> 30
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 30
gatttaacag aa 12

<210> 31
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 31
gatttaacat ca 12

<210> 32
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 32

gatttaacat ac 12

<210> 33
<211> 28
<212> DNA
<213> Homo sapiens

<400> 33
cccccccttta aaccagcgtg gagggggg 28

<210> 34
<211> 26
<212> DNA
<213> Homo sapiens

<400> 34
aattccccgg atcattgcaa acaatt 26

<210> 35
<211> 17
<212> DNA
<213> Homo sapiens

<400> 35
aatgaacgaa tcaaatt 17

<210> 36
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 36
ggtgttaacgt gg 12

<210> 37
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 37
gtgttaccac at 12

<210> 38
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 38

ccataaaattt ag 12
<210> 39
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 39
gagataaaagt ct 12

<210> 40
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 40
gtgttattga aa 12

<210> 41
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 41
acccacacgtct at 12

<210> 42
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 42
ggtaggata gg 12

<210> 43
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 43
gttgatgtat at 12

```

<210> 44
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 44
ctgttaattt cc                                12

<210> 45
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 45
ggtgttattt at                                12

<210> 46
<211> 90
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 46
caagcttgca tgcctgcagg tgatttaaca taagatttaa cataagattt aacataagat    60
ttaacataag atttaacata aactctagag                90

<210> 47
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 47
cgtgtacatc gactgaaatc cc                                22

<210> 48
<211> 120
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 48
caagcttgca tgcctgcagg tcggagttact gtcctccgcc ggagttactgt cctccgccgg    60
agtactgtcc tcccgatattt aacataagat ttaacataacata aactctagag   120

```

<210> 49
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 49
gatataacat at

<210> 50
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 50
gatgtaacat ac

12

12