Understanding Attention Mechanism

정상근

Big Picture

Motivation and Metaphor of Attention

BLENDING

Sequence of Information 을 Blending 해보는 건 어떨까?

http://artquestionsanswered.com/wp-content/uploads/2014/05/blending-Colored-Pencil-Techniques.jpg

We want to create best reactive material to liquid ${\it Q}$ using multiple materials ${\it I}_1$ to ${\it I}_5$

Idea

Blend Q and each item, and mix tasty ones

① Mix

- 3 Mix materials with reactivity proportion
- 4 Blended Best Reactive material!

0

+

Attention as blending metaphor

Attention Without Query – In/Out View

Attention Without Query – Simple View

SANGKEUN JUNG

Attention Query – In/Out View

- 1) Calculating attention scores from the sequence data
 - 2) Applying the attention scores to the original data

Attention With Query – Simple View

SANGKEUN JUNG

Query Apply Methods

Additive Approach

Reactivity Scoring by Addition

Multiplicative Approach

Reactivity Scoring by Multiplication

Additive Approach | Bahdanau method

Bahdanau et al. (2014)

- Bahdanau attention
- First proposed mechanism

Additive Approach | Bahdanau method

- It is working even when dim(Q) != dim(H)
- Blend by addition. (it's additive attention)
- Use additional parameter *V* to make added vector to be scalar
- You can find more optimized operation bmm (batch mat-mul)

Multiplicative Approach

- For loop over multiple items N time
- It conducts N dot operation
- In optimized code, we do not use this approach

Dot method | Matrix Multiplication Approach $score = qx_i^T$ a_1 a_2 a_3 [H,1][1,H][H,1][1,H] [1,H][H,1]X X Q Q Q

- Replace for-loop with single multiplication
- It conducts 1 dot operation
- You can find more optimized operation bmm (batch mat-mul)

General method | matrix multiplication approach

 $score = cWx_i^T$

- It is working even when dim(Q) != dim(H)
- Convert query to be same shape of input item
- It conducts 1 dot operation
- You can find more optimized operation bmm (batch mat-mul)
- It is more generalized version of 'dot' method

Concat method | matrix multiplication approach

 $score = v^T tanh(W[x_i; c])$

- It is working even when dim(Q) != dim(H)
- Blend query and item by concatenation
- Use additional parameter V to make concated vector to be scalar
- You can find more optimized operation bmm (batch mat-mul)

Case Study

ATTENTION FOR ENCODING-DECODING

:: Korean → English translation

Let's go to Starbucks near Seoul station

서울역 근처 스타벅스 로 가자

Encoding

Let's go to Starbucks near Seoul station

Decoding

:: Decode more correct terms by dynamically summarizing the encoded results.

[Review] Attention With Query - Simple View

SANGKEUN JUNG

Encoding + Attention Decoding With Query

Encoding + Attention Decoding With Query (from prev. RNN output)

SANGKEUN JUNG

[Question] The number of input items should same the number of output items?

No!

Encoding + Attention Decoding With Query (from prev. RNN output)

Copyright, Sangkeun Jung, All Rights Reserved.

Attention Mechanism Review

Attention Mechanism

=

Global, Selective, Dynamic Sequence Summarization(Blending)

Case | Attention Modeling

- Bidirectional RNN for Encoding
- Attention Modeling

Bahdanau et al. (2014)

Case | Performance – Attention Modeling @ Machine Translation

:: 선별적으로 가중치가 적용된 Encoding 이 적용됨으로서, 긴 문장에서도 번역 성능이 떨어지지 않는다.

Case | Attention Modeling for Image2Text

http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/ Xu et al. (2015)

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Attention Modeling for Image2Text

Encoder / Decoder 에서 Text Sequence Encoding 을 Image Sequence Encoding 으로 교체만 해도 작동함

Y A woman is throwing a <u>frisbee</u> in a park.

A little <u>girl</u> sitting on a bed with a teddy bear.

Xu et al. (2015) Visual Attention

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention Copyright, Sangkeun Jung, All Rights Reserved.