TD Théorie des langages 1 — Feuille 4 Langages réguliers – Expressions régulières, propriétés de fermeture

Exercice 8 On admet que $\{a^nb^n \mid n \geq 0\}$ n'est pas régulier. Montrer que les langages suivants ne sont pas réguliers non plus **sans se servir du lemme de l'étoile**:

- 1. $L_1 = \{w \in \{a, b\}^* \mid w \text{ a autant de } a \text{ que de } b\}$
- 2. $L_2 = \{a^i b^j c^k \mid i+j=k \ge 0\}$
- 3. [Avancé] $L_3 = \{(ab)^{2n}(cd)^{2n} \mid n \ge 0\}$
- 4. [Avancé] $L_4 = \{uv \in \{a,b\}^* \mid vu \in \{a^nb^n \mid n \ge 0\}\}$

Solution de l'Exercice 8. Posons $M \stackrel{\text{def}}{=} \{a^n b^n \mid n \ge 0\}$.

- 1. On a $M = L_1 \cap a^*b^*$, donc L_1 n'est pas régulier.
- 2. Soit h la fonction définie par :

$$h: \left\{ \begin{array}{ccc} a & \mapsto & a \\ b & \mapsto & a \\ c & \mapsto & b \end{array} \right.$$

C'est un homomorphisme, et on a $h(L_2) = M$ donc L_2 n'est pas régulier.

3. **Remarque :** On ne voit plus la fermeture par homomorphisme inverse en cours (théorème 5.2.12 du polycopoié sur Chamilo, page 66). Soit h la fonction définie par :

$$h: \left\{ \begin{array}{ccc} a & \mapsto & a \\ b & \mapsto & \varepsilon \\ c & \mapsto & b \\ d & \mapsto & \varepsilon \end{array} \right.$$

On a $h(L_3) = \{a^{2n}b^{2n} \mid n \geq 0\}$; ce langage est régulier si L_3 est régulier. Donc, si L_3 est régulier, alors $h(L_3) \cup \{a\}.h(L_3).\{b\} = M$ est également régulier, une contradiction.

4. Soit $L'_4 = L_4 \cap b^*a^*$, et posons

$$h: \left\{ \begin{array}{ccc} a & \mapsto & b \\ b & \mapsto & a \end{array} \right.$$

Alors $h(L'_4) = M$; le langage L_4 ne peut pas être régulier.

Autre méthode : Posons $L''_4 = L_4 \cap a^*b^*$. Montrons que $L''_4 = M$. Soit $w \in L''_4$, donc $w \in L_4$, c.-à-d. w = uv avec $vu \in M$. Supposons $u \neq \varepsilon$ et $v \neq \varepsilon$. Alors, comme $vu \in M$, v commence par un a et u termine par un b. De ce fait, uv contient le sous-terme ba (à la frontière entre u et v) donc ne peut être dans L''_4 , une contradiction. Ainsi, on a $u = \varepsilon$ ou $v = \varepsilon$ et on en déduit $w \in M$. Au final, $L''_4 = M$ d'où on tire que L_4 n'est pas régulier.

Exercice 9 Montrer que les langages suivants ne sont pas réguliers en se servant du lemme de l'étoile :

- 1. $L_1 = \{wb^n \mid n \in \mathbb{N}, w \in \{a, b\}^n\}$
- 2. $L_2 = \{w \in \{a, b\}^* \mid w \text{ est un palindrome}\}$
- 3. [Avancé] $L_3 = \{1^{i^2} \mid i \geq 0\}$
- 4. [Avancé] $L_4 = \{1^p \mid p \text{ est premier}\}$

premier; on a une contradiction.

Solution de l'Exercice 9. D'après le lemme de l'étoile, si L est un langage régulier, alors il existe un entier n tel que si z est de longueur au moins n, alors z est de la forme uvw, où $|uv| \le n$, $|v| \ge 1$ et pour tout $i \ge 0$, $uv^iw \in L$.

- 1. Prenons le mot $z=a^nb^n$; alors z est de la forme uvw, et comme $1 \le |uv| \le n$, on a $uv \in a^+$. Donc $v \in a^+$, et on devrait avoir $uv^2w = a^{n+|v|}b^n \in L_1$, ce qui est impossible.
- 2. Soit $z=a^nba^n$. Ce mot est un palindrome de longueur au moins n, il est donc de la forme uvw, et nécessairement, $v\in a^+$. Mais on a $uv^0w=a^{n-|v|}ba^n$ qui n'est pas un palindrome, une contradiction.
- 3. Soit $z=1^{n^2}$; z est de la forme uvw. On pose $z'=uv^2w$. Comme $uv\leq n$, on en déduit que $|z'|\leq n^2+n<(n+1)^2$. Comme $v\neq \varepsilon$, on a aussi $n^2<|z'|$, donc z' ne peut pas être élément de L_3 .
- 4. Soit $z=1^p$, où p est un nombre premier tel que $p \ge n+2$ (un tel nombre premier existe nécessairement puisqu'il y en a une infinité). z est de la forme uvw. Comme $|uv| \le n$, on a $|w| \ge 2$, et donc $|uw| \ge 2$. Comme $|v| \ge 1$, on a également $1+|v| \ge 2$. Posons $z'=uv^{|uw|}w$. On a |z'|=|u|+|uw||v|+|w|=|uw|+|uw||v|=|uw|(1+|v|). Les deux facteurs du produit sont ≥ 2 , donc |z'| n'est pas

Exercice 11 Etant donné un vocabulaire V, on considère une famille $(L_i)_{i\in\mathbb{N}}$ de langages sur V^* telle que pour tout $i\in\mathbb{N}$, L_i est un langage régulier.

- $\,\,\triangleright\,\, \text{QUESTION}\,\, 1\,\,\, \text{Soit}\,\, n\geq 1.$ Montrer que le langage $M_n=\bigcup_{1\leq i\leq n}L_i$ est régulier.
- $\,\triangleright\,$ QUESTION 2 Peut-on en déduire que $\bigcup_{1 < i} L_i$ est régulier? Justifier

Solution de l'Exercice 11.

- \triangleright QUESTION 1 Le résultat se prouve par récurrence sur n. Pour n=1 on a $M_1=L_1$ qui est régulier d'après l'énoncé. Pour n>1 on a $M_n=\bigcup_{1\leq i\leq n}L_i=\left(\bigcup_{1\leq i\leq n-1}L_i\right)\cup L_n$. Par HR, $\bigcup_{1\leq i\leq n-1}L_i$ est régulier, et L_n est régulier d'après l'énoncé, or l'union de langages réguliers est un langage régulier (vu en cours) donc M_n est un langage régulier.
- \triangleright QUESTION 2 Prenons la famille $(L_i)_{i\in\mathbb{N}}$ où pour tout $i\in\mathbb{N},\ L_i\stackrel{\text{def}}{=}\{a^ib^i\}$. Chacun de ces langages est un singleton et est donc régulier, mais l'union de tous ces langages est $\{a^nb^n\mid n>0\}$, non régulier. La réponse est donc non.