Tutorato Aritmetica

SIMONE CAPPELLINI & DIEGO SANTORO

http://poisson.phc.dm.unipi.it/~cappellini http://poisson.phc.dm.unipi.it/~santoro

18 giugno 2019

ATTENZIONE: i testi di alcuni esercizi (il 31 e il 33) avevano degli errori, che sono stati corretti. Vi preghiamo di farci notare eventuali altri.

Qui potete trovare alcuni esercizi da svolgere. Parte di questi sono stati, o saranno, svolti durante gli incontri. Può essere un ottimo allenamento provare ad esercitarsi e a scriverne per bene la soluzione. Chiunque voglia può consegnarci il proprio lavoro per avere un riscontro su quanto ha scritto.

ESERCIZIO 1: Risolvere il seguente sistema di congruenze:

$$\begin{cases} 55x \equiv 1 & \pmod{87} \\ 20^{3x-2} \equiv 4 & \pmod{11}. \end{cases}$$

ESERCIZIO 2: Risolvere il seguente sistema di congruenze:

$$\begin{cases} 3^x \equiv x^5 + 1 & \pmod{7} \\ x^2 \equiv 1 & \pmod{15}. \end{cases}$$

ESERCIZIO 3: Discutere al variare di $a \in \mathbb{Z}$ la risolubilità del seguente sistema

$$\begin{cases} (6a-1)x \equiv 1 & \pmod{35} \\ x \equiv a & \pmod{21}. \end{cases}$$

ESERCIZIO 4: Discutere la risolubilità del sistema al variare di $a \in \mathbb{Z}$ e quando possibile determinarne le soluzioni

$$\begin{cases} x^2 + x + 1 \equiv 0 & \pmod{13} \\ ax \equiv 27 & \pmod{78}. \end{cases}$$

ESERCIZIO 5: Discutere la risolubilità del sistema al variare di $a \in \mathbb{Z}$ e quando possibile determinarne le soluzioni

$$\begin{cases} 7^x \equiv a & \pmod{8} \\ (x+a)^4 \equiv 0 & \pmod{200}. \end{cases}$$

ESERCIZIO 6: Al variare di $a \in \mathbb{Z}$, determinare i valori interi di x per cui

$$\frac{1}{3}x^3 - \frac{8}{21}ax^2 + \frac{3}{7}x + \frac{1}{7}a$$

è intero.

Esercizio 7: Risolvere il seguente sistema di congruenze:

$$\begin{cases} 7^x \equiv 4 & \pmod{9} \\ x^2 + 2x - 8 \equiv 0 & \pmod{99}. \end{cases}$$

ESERCIZIO 8: Determinare in funzione dell'intero $a \in \mathbb{Z}$ il numero di soluzioni del sistema:

$$\begin{cases} 6x \equiv 4a \pmod{72} \\ 5x \equiv 2 \pmod{39}. \end{cases}$$

ESERCIZIO 9: Risolvere il seguente sistema di congruenze:

$$\begin{cases} x^{131} \equiv x \pmod{55} \\ x^6 + x \equiv 0 \pmod{125}. \end{cases}$$

ESERCIZIO 10: Determinare per quali valori dell'intero a il seguente sistema di congruenze è risolubile e determinarne le soluzioni:

$$\begin{cases} x^{27} \equiv x^2 & \pmod{144} \\ 10x \equiv a & \pmod{25} \\ 2^{x-1} \equiv 4 & \pmod{11}. \end{cases}$$

ESERCIZIO 11: Sia G un gruppo e siano H e K due sottogruppi di G, con $H \subset K$. Dire quali delle seguenti affermazioni sono vere e trovare un controesempio per le false.

- Se $H \triangleleft K$, allora $H \triangleleft G$.
- Se $K \triangleleft G$, allora $H \triangleleft G$.
- Se $H \triangleleft K$ e $K \triangleleft G$, allora $H \triangleleft G$.

ESERCIZIO 12: Mostrare che se H è un sottogruppo di G di indice 2, allora H è normale in G.

ESERCIZIO 13: Sia $f: G \to G'$ un omomorfismo di gruppi. Dire quali delle seguenti affermazioni sono vere e trovare un controesempio per le false.

- Se H è un sottogruppo di G, allora f(H) è un sottogruppo di G'.
- Se H' è un sottogruppo di G', allora $f^{-1}(H')$ è un sottogruppo di G.
- Se H è un sottogruppo normale di G, allora f(H) è un sottogruppo normale di G'.
- Se H' è un sottogruppo normale di G', allora $f^{-1}(H')$ è un sottogruppo normale di G.
- Se f è surgettiva e H è un sottogruppo normale di G, allora f(H) è un sottogruppo normale di G'.

ESERCIZIO 14: Dato un gruppo G definiamo il centro di G come l'insieme $Z(G) = \{g \in G | gh = hg \ \forall h \in G\}.$

- Mostrare che Z(G) è un sottogruppo di G.
- Mostrare che Z(G) è un sottogruppo normale di G.

ESERCIZIO 15: Dato un gruppo G definiamo $\operatorname{Aut}(G) = \{f : G \to G | f \text{ è un isomorfismo } \}$. Definiamo, inoltre, per ogni $g \in G$, la funzione $\varphi_g : G \to G$ definita da $\varphi_g(h) = ghg^{-1} \ \forall h \in G$.

- Mostrare che Aut(G) con l'operazione di composizione di funzioni è un gruppo.
- Mostrare che, per ogni $g \in G$, $\varphi_g \in Aut(G)$.
- Indicato con Int(G) l'insieme Int(G) = $\{\varphi \in Aut(G) | \exists g \in G \text{ t.c. } \varphi = \varphi_g\}$, mostrare che Int(G) è un sottogruppo di Aut(G).
- Mostrare che $G/Z(G) \cong Int(G)$.

ESERCIZIO 16: Sia $f: G \longrightarrow G$ un omomorfismo da un gruppo G in sé tale che $f \circ f = f$. Mostrare che allora:

- Ker $f \cap \text{Im } f = \{e\}$;
- $G = \operatorname{Ker} f \cdot \operatorname{Im} f$.

ESERCIZIO 17: Sia G un gruppo e sia H < G. Definiamo il centralizzatore di H in G come $Z(H) := \{g \in G \mid gh = hg \ \forall h \in H\}$. Dimostrare che:

- Z(H) è un sottogruppo di G;
- Se $H \triangleleft G$ allora anche $Z(H) \triangleleft G$;
- Per ogni omomorfismo di gruppi $f \colon G \longrightarrow G'$ vale $f(Z(H)) \subseteq Z(f(H))$;
- Dare un esempio di un omomorfismo $f\colon G\longrightarrow G'$ e di un sottogruppo H di G tali che Z(H)=G e $Z(f(H))\neq G'$.

ESERCIZIO 18: Fissato $n \geq 3$, sia $D_n := \{s^i r^j \mid i, j \in \mathbb{Z}, s^2 = r^n = e, srs = r^{-1}\}$, detto gruppo diedrale. Mostrare che:

- D_n è un gruppo finito non abeliano di cardinalità 2n;
- Dimostra che $H = \{e, r^2\}$ è un sottogruppo normale di D_4 ;
- Trova i sottogruppi $Z(D_4)$ e Z(H).

ESERCIZIO 19: Contare il numero di elementi di ordine 4 e 12 in S_8 .

ESERCIZIO 20: Dimostrare i seguenti enunciati:

- Non esistono omomorfismi surgettivi da \mathbb{Z}_6 in S_3 .
- Non esistono omomorfismi surgettivi da $\mathbb{Z}_3 \times \mathbb{Z}_4$ in S_3 .
- Per ogni gruppo abeliano G e per ogni $n \geq 3$, non esistono omomorfismi surgettivi da G in S_n .

ESERCIZIO 21: Dato $k \leq n$, il ciclo $\tau = (i_1, \ldots, i_k) \in S_n$ e la permutazione $\sigma \in S_n$ mostrare che vale:

$$\sigma\tau\sigma^{-1} = (\sigma(i_1), \dots, \sigma(i_k)).$$

Dedurre che la struttura della decomposizione in cicli disgiunti viene conservata tramite il coniugio per elementi di S_n (ovvero che se $\sigma = c_1 \circ \cdots \circ c_k$ cicli disgiunti, con c_i un n_i -ciclo allora $\tau \sigma \tau^{-1} = \tilde{c}_1 \circ \cdots \circ \tilde{c}_k$ cicli disgiunti, dove \tilde{c}_i è un n_i -ciclo per ogni $\tau \in S_n$).

ESERCIZIO 22: Date le permutazioni $\sigma = (123)(456) \in S_6$ e $\tau = (132)(465) \in S_6$ esibire $\eta \in S_6$ tale che $\eta \sigma \eta^{-1} = \tau$.

ESERCIZIO 23: Mostrare che se σ e τ in S_n hanno la stessa struttura nella decomposizione in cicli disgiunti allora sono coniugate (ovvero che se $\sigma = c_1 \circ \cdots \circ c_k$ cicli disgiunti, con c_i un n_i -ciclo e $\tau \sigma \tau^{-1} = \tilde{c}_1 \circ \cdots \circ \tilde{c}_k$ cicli disgiunti, dove \tilde{c}_i è un n_i -ciclo per ogni $\tau \in S_n$, allora esiste $\eta \in S_n$ tale che $\eta \sigma \eta^{-1} = \tau$).

ESERCIZIO 24: Sia $\sigma \in S_n$. Considerare la funzione $\chi: S_n \to S_n$ definita da $\chi(\tau) = \tau \sigma \tau^{-1}$ e mostrare che $\frac{|S_n|}{|Z(\sigma)|} = |Cl(\sigma)|$, dove $Z(\sigma) = \{\tau \in S_n | \tau \sigma \tau^{-1} = \sigma\}$ è il centralizzatore di σ e $Cl(\sigma) = \{\tau \sigma \tau^{-1} | \tau \in S_n\}$ è la classe di coniugio di σ . (Hint: provare ad usare le idee del primo teorema di omomorfismo, facendo attenzione al fatto che χ non è un omomorfismo)

ESERCIZIO 25: Siano date le permutazioni $\tau = (12)(345)$ e $\sigma = (567)$ in S_9 .

- Calcolare $\tau \sigma$ e calcolare gli ordini di σ, τ e $\tau \sigma$.
- Descrivere i centralizzatori di σ , τ e $\tau\sigma$ e in particolare calcolarne la cardinalità.

ESERCIZIO 26: Si consideri il gruppo $G = \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$.

- Determinare il numero degli elementi di ordine 6 e il numero dei sottogruppi ciclici di ordine 6 di G.
- Determinare i possibili ordini dei sottogruppi ciclici di G.

ESERCIZIO 27: Sia G il gruppo $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/15\mathbb{Z}$.

- Contare il numero di elementi di G di ogni possibile ordine.
- Determinare gli omomorfismi da G in $\mathbb{Z}/10\mathbb{Z}$.

ESERCIZIO 28: Dimostrare che il centro di S_n è banale per $n \geq 3$.

ESERCIZIO 29: Sia $(A, +, \cdot)$ un anello commutativo con identità e sia I un suo ideale. Mostrare che $(A/I, \tilde{+}, \tilde{\cdot})$ è un anello commutativo con identità, dove per definizione $[a]\tilde{+}[b] = [a+b]$ e $[a]\tilde{\cdot}[b] = [a \cdot b]$. (Attenzione: va dimostrato anche che tali operazioni sono ben definite).

Esercizio 30: Sia A un anello commutativo con identità e sia I un suo ideale.

- Mostare che I è primo $\Leftrightarrow A/I$ è un dominio.
- Mostrare che I è massimale $\Leftrightarrow A/I$ è un campo.

ESERCIZIO 31: Siano A e B due anelli, sia $f:A\to B$ un omomorfismo di anelli, e indichiamo con J un ideale di B.

- Mostrare che $f^{-1}(J)$ è un ideale di A.
- Mostrare che se J è primo, allora anche $f^{-1}(J)$ è primo.
- Mostrare che se f è surgettivo e I è un ideale di A, allora f(I) è un ideale di B.
- Mostrare che se f è surgettivo e J è massimale, allora anche $f^{-1}(J)$ è massimale.
- ullet Trovare un controesempio per le ultime due affermazioni nel caso in cui f non sia surgettivo.

ESERCIZIO 32: Dato A un anello commutativo con identità e data una famiglia arbitraria I_j di suoi ideali, dimostrare che $\bigcap_j I_j = \{a \in A | a \in I_j \forall j\}$ è un ideale di A. Dedurne che dato un qualsiasi sottoinsieme non vuoto S di A è ben definito l'ideale generato da S, definito come il più piccolo ideale di A che contiene S e indicato con (S). Mostrare che $(S) = \{a_1s_1 + \ldots a_ns_n | a_i \in As_i \in S\}$.

ESERCIZIO 33: Dato un anello commutativo con identità A e dati due elementi x e y in A, diciamo che x divide y se esiste $z \in A$ tale che zx = y, e in tal caso indichiamo x|y. Diciamo inoltre che un elemento non invertibile $a \in A$ è primo se per ogni coppia di elementi $b, c \in A$, a|bc implica a|b oppure a|c. Diciamo invece che un elemento non invertibile $a \in A$ è irriducibile se per ogni coppia $b, c \in A$ a = bc implica che b è invertibile o che c è invertibile.

- Mostrare che $a \in A$ è primo se e solo se (a) è un ideale primo di A.
- Mostrare che se A è un dominio e $a \neq 0$, allora a primo $\Rightarrow a$ irriducibile.
- Mostrare che se A è un dominio, allora a è irriducibile se e solo se (a) è massimale tra gli ideali principali.
- Mostrare che se A è un PID e $a \neq 0$ allora a irriducibile $\Rightarrow a$ primo.

ESERCIZIO 34: Sia $f: G \to G'$ un omomorfismo di gruppi e sia H un sottogruppo di G. Poniamo $S_H = \{g \in G | f(gh) = f(hg) \forall h \in H\}.$

- Dimostrare che S_H è un sottogruppo di G;
- Dimostrare che se H è un sottogruppo normale di G allora anche S_H lo è;
- Dare un esempio in cui S_H non sia normale in G.

ESERCIZIO 35: Contare il numero di omomorfismi $S_3 \to \mathbb{Z}/6\mathbb{Z}$.

ESERCIZIO 36: Mostrare che dato un gruppo G e due elementi $g, h \in G$ vale $Z(hgh^{-1}) = hZ(g)h^{-1}$, dove come al solito con Z(x) indichiamo il centralizzatore in G dell'elemento x.

Esercizio 37:

Contare il numero di omomorfismi iniettivi $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \to S_6$.

¹Ricordiamo che un ideale I è detto principale se esiste $x \in A$ tale che I = (x). Quindi l'esercizio chiede di mostrare che se $(a) \subset I$ con I principale, allora I = A o I = (a).

ESERCIZIO 38: Risolvere il sistema di congruenze:

$$\begin{cases} 3^{x^2+2} \equiv 5^x & \pmod{11} \\ 16x^2 \equiv 1 & \pmod{21}. \end{cases}$$

Esercizio 39:

- Dimostrare che $[2]_{13}$ è un generatore di $(\mathbb{Z}/13\mathbb{Z})^*$.
- Determinare i valori dell'intero a per cui la seguente congruenza ha soluzione

$$2^{2x} \equiv a \pmod{13}.$$

• Risolvere $2^{2x} \equiv 3^x \pmod{13}$.

ESERCIZIO 40: Sia G un gruppo. Consideriamo la relazione su G: $x \sim y$ se esiste $g \in G$ tale che $gxg^{-1} = y$.

- \bullet Dimostrare che \sim è una relazione di equivalenza su G.
- Sia C_x la classe di equivalenza di x. Dimostrare che $C_x = \{x\}$ se e solo se $x \in Z(G)$.
- Dimostrare che per ogni $f \in Aut(G)$ ed ogni $x \in G$ esiste $y \in G$ tale che $f(C_x) = C_y$.

ESERCIZIO 41: Sia G un gruppo finito e sia N un suo sottogruppo normale.

- Dimostrare che per ogni $g \in G$, si ha che $o_{G/N}(gN)$ divide $o_G(g)$.
- Sia H un sottogruppo di G e supponiamo che MCD(|G/N|, |H|) = 1. Dimostrare che $H \subset N$.
- E' vero che se $H \subset N$ allora MCD(|G/N|, |H|) = 1?

ESERCIZIO 42: Sia (G,\cdot) un gruppo abeliano. Consideriamo l'applicazione

$$\varphi:G\to G\times G$$

$$g \mapsto (g^2, g^{-1})$$

e l'applicazione

$$\pi:G\times G\to G$$

$$(g_1,g_2)\mapsto g_1g_2^2$$

Dimostrare che

- φ e π sono omomorfismi di gruppi.
- φ è iniettiva.
- π è surgettiva.
- $\ker \pi = \operatorname{Im} \varphi$.

ESERCIZIO 43: Dato un anello commutativo $(A, +, \cdot)$ indichiamo con \mathcal{D} l'insieme dei suoi divisori di zero e con A^* l'insieme dei suoi elementi invertibili. Inoltre diciamo che $a \in A$ è nilpotente se esiste un $n \in \mathbb{N}$ tale che $a^n = 0$, e indichiamo con \mathcal{N} l'insieme degli elementi nilpotenti di A.

- Mostrare che l'insieme (A^*,\cdot) è un gruppo abeliano.
- Mostrare che \mathcal{N} è un ideale, e che $\mathcal{N} \subset \mathcal{D}$.
- Mostrare che se A è finito allora $A = \mathcal{D} \sqcup A^*$, dove il simbolo \sqcup indica l'unione disgiunta. Dedurne che se A un dominio di integrità finito allora A è un campo.

ESERCIZIO 44: Dati due anelli commutativi con identità A e A' diciamo che un omomorfismo di anelli $f: A \to A'$ è unitario se $f(1_A) = 1_{A'}$. Mostrare che se A' è un dominio allora ogni omomorfismo di anelli non nullo $f: A \to A'$ è unitario.²

ESERCIZIO 45: Sia \mathbb{K} un campo, sia f(x) un polinomio non nullo in $\mathbb{K}[x]$ e si consideri $I = (f(x)) \in \mathbb{K}[x]$. Mostrare che $\mathbb{K}[x]/I$ è un campo se e soltanto se f(x) è irriducibile in $\mathbb{K}[x]$. Altrimenti, se f(x) è riducibile, $\mathbb{K}[x]/I$ ha zero divisori.

ESERCIZIO 46: Sia $\mathbb{F} \subset \mathbb{K}$ una estensione di campi. Dato $\alpha \in \mathbb{K}$ diciamo che α è algebrico se esiste un polinomio f in $\mathbb{F}[x]$ tale che $f(\alpha) = 0$; diciamo che è trascendente altrimenti. Si consideri l'omomorfismo di anelli $v_{\alpha} : \mathbb{F}[x] \to \mathbb{K}$ definito da $v_{\alpha}(g) = g(\alpha)$.

- dimostrare che α è algebrico se e solo se il nucleo di v_{α} è diverso dall'ideale nullo.
- se α è algebrico chiamiamo polinomio minimo di α su \mathbb{F} il generatore monico di Ker v_{α} . Sia ora $p(x) \in \mathbb{F}[x]$ un polinomio che si annulla in α . Mostrare che p(x) è il polinomio minimo di α su \mathbb{F} se e solo se p(x) è monico e irriducibile su \mathbb{F} .

ESERCIZIO 47: Sia $K \subset L$ una estensione di campi. Sia $\alpha \in L$ un elemento algebrico su K di grado dispari. Dimostrare che $K(\alpha^2) = K(\alpha)$.

ESERCIZIO 48: Sia $f: \mathbb{K} \to \mathbb{K}$ un omomorfismo di campi non nullo. Mostrare che $Fix_f = \{x \in \mathbb{K} | f(x) = x\}$ è un sottocampo di \mathbb{K} .

ESERCIZIO 49: Trovare un campo \mathbb{K} , un naturale $n \geq 3$ e un polinomio $f \in \mathbb{K}[x]$ di grado n tale che il grado del campo di spezzamento di f su \mathbb{K} sia n!.

ESERCIZIO 50: Mostrare che se G è un gruppo infinito e H un suo sottogruppo di indice finito, allora H ha intersezione non banale con ogni sottogruppo infinito di G.

E' ancora vero se H è un sottogruppo non banale di G di indice infinito?

ESERCIZIO 51: Dato G un gruppo e H un suo sottogruppo diciamo che H è un sottogruppo caratteristico di G se per ogni automorfismo φ di G vale $\varphi(H) = H^3$. Diciamo che un sottogruppo proprio H è massimale se non esiste nessun sottogruppo proprio di G che lo contiene strettamente.

²Il docente del corso nella definizione di omomorfismo di anelli ha richiesto che fosse unitario. Questo esercizio mostra che in una varietà di casi abbastanza ampia questa richiesta non è particolarmente stringente.

 $^{^3}$ Questa uguaglianza è un'uguaglianza insiemistica, quindi non si richiede che tutti gli elementi di H siano tenuti fissi da φ .

- Mostrare che H caratteristico $\Rightarrow H$ normale.
- Mostrare che Z(G) è caratteristico.
- ullet Mostrare che l'intersezione di tutti i sottogruppi massimali di G è caratteristico.
- \bullet Mostrare un esempio in cui H è normale ma H non è caratteristico.

ESERCIZIO 52: Determinare, in funzione del parametro intero a, le soluzioni del sistema di congruenze

$$\begin{cases} 39x \equiv 2a & \pmod{57} \\ x^2 \equiv 1 & \pmod{12}. \end{cases}$$

 $\underline{\text{ESERCIZIO }53:}\,$ Determinare, per un modulo opportuno, il numero di soluzioni del sistema di congruenze

$$\begin{cases} 5^{x^3} \equiv 8 & \pmod{13} \\ x^{27} \equiv x^3 & \pmod{13}. \end{cases}$$

ESERCIZIO 54: Sia A un anello con la seguente proprietà: per ogni $x \in A$ esiste un $n \geq 2$, dipendente da x, tale che $x^n = x$. Mostrare che un ideale di A è primo se e solo se è massimale.

ESERCIZIO 55: Sia $K = \mathbb{Q}(i, \sqrt[3]{2})$.

- Calcolare il grado di K su \mathbb{Q} .
- Dimostrare che $K = \mathbb{Q}(i\sqrt[3]{2})$
- Calcolare il polinomio minimo f di $i\sqrt[3]{2}$ su \mathbb{Q} .
- K è il campo di spezzamento di f su \mathbb{Q} .

ESERCIZIO 56: Sia $\alpha \in \mathbb{C}$ una radice di $x^4 + 1$. Qual è la dimensione di $\mathbb{Q}(\alpha)$ su \mathbb{Q} ? E' vero che $x^4 + 1$ si fattorizza come prodotto di fattori di grado 1 in $\mathbb{Q}(\alpha)$?

ESERCIZIO 57: Sia $\mathbb{K} = \mathbb{Q}[\sqrt{2}]$.

- Caratterizzare gli interi a per cui $\mathbb{Q}[a] = \mathbb{K}$.
- Al variare di a in $\mathbb Z$ calcolare il grado del campo di spezzamento del polinomio x^2-a su $\mathbb K$.

ESERCIZIO 58: Sia G un gruppo e sia (H,+) un gruppo abeliano.

- Dimostrare che l'insieme Hom(G, H) con l'operazione $\tilde{+}$ definita da $f\tilde{+}g(x) = f(x) + g(x)$ è un gruppo abeliano.
- Fissati $f, g \in Hom(G, H)$ mostrare che l'insieme $K = \{x \in G | f(x) = g(x)\}$ è un sottogruppo normale di G.
- Descrivere $(Hom(G,\mathbb{Z}),\tilde{+})$ con G gruppo finito.
- Descrivere $(Hom(\mathbb{Z}, \mathbb{Z}), \tilde{+})$.

ESERCIZIO 59: Risolvere il seguente sistema di congruenze.

$$\begin{cases} 2^{x^2} \equiv 8^{x-2} & \pmod{11} \\ 5x \equiv 4 & \pmod{22}. \end{cases}$$

 $\underline{\text{Esercizio } 60\text{:}} \ \ \text{Sia} \ p \ \text{un numero primo e sia} \ G = \{z \in \mathbb{C} | \exists n \in \mathbb{N} \ \text{tale che} \ z^{p^n} = 1\}.$

- ullet Dimostrare che G è un gruppo rispetto alla moltiplicazione.
- Dimostrare che un sottogruppo H di G è proprio se e solo se esiste un intero m tale che $z^{p^m}=1$ per ogni $z\in H$.
- Dimostrare che ogni sottogruppo proprio di G è finito e ciclico.

ESERCIZIO 61: Sia $\alpha = \sqrt{5} + i \in \mathbb{C}$.

- Calcolare il polinomio minimo f(x) di α su \mathbb{Q} .
- Calcolare il grado del campo di spezzamento del polinomio f(x) su \mathbb{Q} e su \mathbb{F}_7 .