

CS 2312: Lab 02

GTA Gehna Ahuja GTA Divya Vadlamudi GTA Suvasree Biswas

Office hours set!

Also on syllabus

Congruence Modulo \equiv_m

A very useful definition to keep in mind!

Given
$$m \in \mathbb{Z}^+$$
, $a \equiv b \mod m \Leftrightarrow m | (b-a)$

Equivalence Relations

What are the three properties needed to prove an equivalence relation?

- I. Reflexive property
- II. Symmetric property
- III. Transitive property

Exercise 1

Prove that congruence modulo is an equivalence relation.

Solution

Induction (weak)

Induction proofs have three steps:

- Base case
- Induction hypothesis
- Induction step

Bonus: can someone explain why induction is a sufficient proof?

Exercise 2

Prove using induction that for any positive integer n and any $a_0, a_1, ..., a_n \in [0..9]$ we have:

$$\sum_{i=0}^{n-1} a_i * 10^i < 10^n$$

Solution

Questions about modulo proof?

$$a \ rem \ m = b \ rem \ m \Leftrightarrow a \equiv b \ mod \ m$$

