



# BUSCA LINEAR E BUSCA BINÁRIA

ECM404

# DEFINIÇÃO DO PROBLEMA

□ Dada uma chave de busca e uma coleção de elementos, onde cada elemento possui um identificador único, desejamos encontrar o elemento da coleção que possui o identificador igual ao da chave de busca ou verificar que não existe nenhum elemento na coleção com a chave fornecida.

# DEFINIÇÃO DO PROBLEMA

☐ Exemplo: Desejamos buscar o valor 1 no array abaixo.



☐ Neste caso, o algoritmo retornará 2, pois é a posição na qual ele encontrou o valor que estava buscando.

# DEFINIÇÃO DO PROBLEMA

☐ Exemplo: Desejamos buscar o valor 5 no array abaixo.



☐ Neste caso, o algoritmo retornará -1, pois não encontrou o valor que estava buscando.

## ALGORITMOS DE BUSCA

- ☐ Existem diversos algoritmos de busca. Entretanto, em nossa disciplina estudaremos dois:
  - ☐ Busca linear ou busca sequencial;
  - Busca binária.

☐ Para mais informações: geeksforgeeks.org

#### **BUSCA LINEAR**

- ☐ A busca linear é o algoritmo mais simples de busca:
  - ☐ Percorra o array comparando a chave com os valores dos elementos em cada uma das posições;
  - ☐ Se a chave for igual a algum dos elementos, retorne a posição correspondente no array;
  - ☐ Se o array todo foi percorrido e a chave não foi encontrada, retorne o valor -1.

#### ATIVIDADE - BUSCA LINEAR

☐ Implemente a busca linear como uma função que receba como parâmetros o array e a chave desejada.

#### **BUSCA LINEAR**

- ☐ Vantagem: fácil implementação.
- ☐ Desvantagem: Suponha que você queira buscar informações de uma estrela em particular, cadastrada no catálogo Tycho-2. Este catálogo possui informações sobre as 2.539.913 estrelas mais brilhantes na nossa galáxia. Assim, no pior caso, o algoritmo irá comparar todas as 2.539.913 estrelas para encontrar a que você deseja obter informações.

#### **BUSCA BINÁRIA**

Caso o catálogo esteja organizado segundo um critério, utilizando o algoritmo **busca binária** não seriam necessárias mais do que 22 comparações para encontrar a estrela desejada, mesmo no pior caso.

# BUSCA BINÁRIA

| A b  | ousca binária é um algoritmo mais eficiente, entretanto, requer que a lista esteja ordenada |  |
|------|---------------------------------------------------------------------------------------------|--|
| pel  | os valores da chave de busca.                                                               |  |
| A ic | A ideia do algoritmo é a seguinte:                                                          |  |
|      | Verifique se a chave de busca é igual ao valor da posição do meio do array;                 |  |
|      | Caso seja igual, devolva esta posição;                                                      |  |
|      | Caso o valor central seja maior que a chave, então repita o processo, mas considere un      |  |
|      | array reduzido, com os elementos do começo do array até a posição anterior a do meio;       |  |
|      | Caso o valor central seja menor que a chave, então repita o processo, mas considere un      |  |
|      | array reduzido, com os elementos da posição seguinte a do meio até o fim do array;          |  |

### BUSCA BINÁRIA – EXEMPLO

☐ Considere que desejamos buscar a chave 15.



☐ Como [pos\_meio] > chave, devemos continuar a busca na primeira metade da região.

☐ Considere que desejamos buscar a chave 15.



☐ Como [pos\_meio] < chave, devemos continuar a busca na segunda metade da região.

☐ Considere que desejamos buscar a chave 15.



☐ Finalmente, encontramos a chave ( [pos\_meio] = chave ). Assim, devolvemos sua posição no array (pos\_meio).

☐ Considere que desejamos buscar a chave 50.



☐ Como [pos\_meio] < chave, devemos continuar a busca na segunda metade da região.

☐ Considere que desejamos buscar a chave 50.



☐ Como [pos\_meio] > chave, devemos continuar a busca na primeira metade da região.

### BUSCA BINÁRIA – EXEMPLO

☐ Considere que desejamos buscar a chave 50.



☐ Como [pos\_meio] < chave, devemos continuar a busca na segunda metade da região.

### BUSCA BINÁRIA – EXEMPLO

☐ Considere que desejamos buscar a chave 50.



☐ Como [pos\_meio] > chave, devemos continuar a busca na primeira metade da região.

☐ Considere que desejamos buscar a chave 50.



☐ Como pos\_ini > pos\_fim, determinamos que a chave não está na lista e assim retornamos o valor -1.

### ATIVIDADE - BUSCA BINÁRIA

- ☐ Implemente o algoritmo de busca binária como uma função que recebe como parâmetro uma matriz e a chave que deseja-se buscar.
  - ☐ Caso a matriz esteja ordenada, utilize a busca binária;
  - ☐ Caso a matriz esteja desordenada, utilize a busca sequencial;