ASSIGNMENT 1 MATH 251 NICHOLAS HAYEK

QUESTION 1

Define $V:=(0,\infty)\subset\mathbb{R}$ with the operations $r\oplus s=rs$ and $\lambda\otimes r=r^\lambda$, where rs and r^λ are defined as usual, and $\mathbb{O}_V=1$. This is a vector space over \mathbb{R} .

We are given that *V* is abelian. Let $\alpha, \beta \in \mathbb{R}$ and $r, s \in V$. Then

1. Where $\mathbb R$ is a field, $\mathbb 1_{\mathbb R}=1$. Then for any $r\in V$, $\mathbb 1_{\mathbb R}\otimes r=r^1=r$

2.
$$\alpha \otimes (\beta \otimes r) = \alpha \otimes (r^{\beta}) = (r^{\beta})^{\alpha} = r^{\beta \alpha} = (\alpha \beta) \otimes r$$
.

3.
$$(\alpha + \beta) \otimes r = r^{\alpha + \beta}$$
. Similarly, $\alpha \otimes r \oplus \beta \otimes r = r^{\alpha} r^{\beta} = r^{\alpha + \beta}$.

4.
$$\alpha \otimes (r \oplus s) = \alpha \otimes (rs) = (rs)^{\alpha}$$
. Similarly, $\alpha \otimes r \oplus \alpha \otimes s = r^{\alpha}s^{\alpha} = (rs)^{\alpha}$

QUESTION 2

Part (a): $M_{n\times m}(\mathbb{F})$ is an abelian group, where $(a_{ij}) \oplus (b_{ij}) = (a_{ij} + b_{ij})$ for all $(a_{ij}), (b_{ij}) \in M_{n\times m}(\mathbb{F})$, and + is defined as usual over \mathbb{F} .

Group axioms: Define the neutral element \mathbb{O}_M to be the matrix of $\mathbb{O}_{\mathbb{F}}$ entries. Choose $(a_{ij}) \in M_{n \times m}(\mathbb{F})$. Then $(a_{ij}) \oplus \mathbb{O}_M = (a_{ij} + \mathbb{O}_{\mathbb{F}}) = (a_{ij})$.

Furthermore, we have the inverse element $(-a_{ij})$ for (a_{ij}) , the matrix of additive inverses in \mathbb{F} for each coordinate a_{ij} .

 $M_{n\times m}(\mathbb{F})$ is associative: $[(a_{ij})\oplus(b_{ij})]\oplus(c_{ij})=(a_{ij}+b_{ij}+c_{ij})=(a_{ij})\oplus[(b_{ij})\oplus(c_{ij})];$ and commutative: $(a_{ij}\oplus b_{ij})=(a_{ij}+b_{ij})=(b_{ij})\oplus(a_{ij}).$

 $M_{n\times m}(\mathbb{F})$ is a vector space over \mathbb{F} , where scalar multiplication is defined $\lambda\otimes(a_{ij})=(\lambda a_{ij})$, and λa_{ij} is defined as usual over \mathbb{F} . Let $\alpha,\beta\in\mathbb{F}$. We check the axioms:

For notational reasons, [] will be used for associativity. () are all sequences.

- 1. $\mathbb{1}_{\mathbb{F}} \otimes (a_{ij}) = (\mathbb{1}_{\mathbb{F}} a_{ij}) = (a_{ij})$, since $a_{ij} \in \mathbb{F}$.
- 2. $\alpha \otimes [\beta \otimes (a_{ij})] = \alpha \otimes (\beta a_{ij}) = (\alpha \beta a_{ij}) = [\alpha \beta](a_{ij})$
- 3. $[\alpha + \beta] \otimes (a_{ij}) = ([\alpha + \beta]a_{ij})$. Similarly, $\alpha \otimes (a_{ij}) \oplus \beta \otimes (a_{ij}) = (\alpha a_{ij}) \oplus (\beta a_{ij}) = (\alpha a_{ij} + \beta a_{ij}) = ([\alpha + \beta]a_{ij})$
- 4. $\alpha \otimes [(a_{ij}) \oplus (b_{ij})] = \alpha \otimes (a_{ij} + b_{ij}) = (\alpha [a_{ij} + b_{ij}]) = (\alpha a_{ij} + \alpha b_{ij}) = (\alpha a_{ij}) \oplus (\alpha b_{ij}) = \alpha \otimes (a_{ij}) \oplus \alpha \otimes (b_{ij})$

Dropping the \oplus , \otimes notation now.

Part (b): Consider $M_n(\mathbb{F})$ and $\operatorname{Sym}_n(\mathbb{F})$, the set of matrices for which $(a_{ij}) = (a_{ji})$. This is a subspace of $M_n(\mathbb{F})$. To check:

- 1. As above, \mathbb{O}_M is the $n \times n$ matrix of $\mathbb{O}_{\mathbb{F}}$ entries. This is clearly symmetric, so $\mathbb{O}_M \in \operatorname{Sym}_n(\mathbb{F})$
- 2. Suppose (a_{ij}) and (b_{ij}) are in $\operatorname{Sym}_n(\mathbb{F})$. Then $(a_{ij} + b_{ij}) = (a_{ij}) + (b_{ij}) = (a_{ji}) + (b_{ji}) = (a_{ji} + b_{ji})$, so $(a_{ij}) + (b_{ij})$ is symmetric, i.e. $x, y \in \operatorname{Sym}_n(\mathbb{F}) \Longrightarrow x + y \in \operatorname{Sym}_n(\mathbb{F})$
- 3. Suppose $(a_{ij}) \in \operatorname{Sym}_n(\mathbb{F})$, and let $\alpha \in \mathbb{F}$. Then $\alpha(a_{ij}) = (\alpha a_{ij})$. Similarly, $\alpha(a_{ij}) = \alpha(a_{ji}) = (\alpha a_{ji})$, so especially $(\alpha a_{ij}) = (\alpha a_{ji})$, and $\alpha(a_{ij}) \in \operatorname{Sym}_n(\mathbb{F})$.
- \implies Sym_n(\mathbb{F}) $\subseteq M_n(\mathbb{F})$ is a subspace.

3 ASSIGNMENT 1

QUESTION 3

- (a) Consider $U := \{(x, y, z) : x, y, z > 0\}$. For any a, b > 0, we know that a + b > 0, and thus if (x, y, z), $(x', y', z') \in U$, their sum $(x + x', y + y', z + z') \in U$. Thus, *U* is closed under addition.
 - This is not closed under scalar multiplication: take $\lambda = 0$, for example. $0 \cdot (x, y, z) = (0, 0, 0)$, and clearly 0 is not positive, so $0(x, y, z) \notin U$
- (b) Consider $V := \{(x, y, z) : x, y, z \in \mathbb{N}\}$. This is closed under addition, since the naturals are closed under addition. However, $\lambda(x, y, z) \notin V$, where λ is irrational, for example, so it is not closed under scalar multiplication.
- (c) Consider $W := \{(0,0,z) : z \in \mathbb{R}\}$. This is closed under addition: (0,0,z) + $(0,0,z') = (0,0,z+z') \in W$. This is also closed under scalar multiplication: $\lambda \cdot (0,0,z) = (0,0,\lambda z)$. Lastly, $\mathbb{O}_{\mathbb{R}^3} \in W$, so $W \subseteq \mathbb{R}^3$ is a subspace. It is proper Proper: (1,0,0) cannot be repand nontrivial.

Non-trivial: (0, 0, 1) exists

QUESTION 4

It has been shown in class that X + Y is a subspace. Also, $X + Y \supseteq X \cup Y$, as any element in $X \cup Y$ can be represented as $x + \mathbb{O}_V$ or $\mathbb{O}_V + y$.

Suppose that $U \supseteq X \cup Y$ is a subspace. Let $v \in X + Y$. Then v = x + y for $x \in X$ and $y \in Y$. We know that $x, y \in U$, since $x, y \in X \cup Y \subseteq U$. Since U is a subspace, it is closed under addition, and so $x + y \in U$, or $v \in U$, and we conclude that $U \supseteq X + Y$.

QUESTION 5

Let *V* be a vector space over \mathbb{F} and $S \subseteq V$ be a subspace.

 (\Longrightarrow) Let S be linearly dependent. Then there exists at least one $v_j \in S$ such that $v_j \in \operatorname{Span}(S \setminus v_j)$, so $v_j = b_1 v_1 + ... + b_{j-1} v_{j-1} + b_{j+1} v_{j+1} ... + b_n v_n$, where b_i not all zero and $\{v_i\}_{i\in[n]} = S$

Let $w \in \text{Span}(S)$. Then we can write $w = a_1v_1 + ... + a_nv_n$, where a_i not all zero. Substituting our expression for v_i in the linear combination for w yields

$$w = a_1 v_1 + ... + a_{j-1} v_{j-1} + (b_1 v_1 + ... + b_{j-1} v_{j-1} + b_{j+1} v_{j+1} ... + b_n v_n) + a_{j+1} v_{j+1} + ... + a_n v_n$$

This is a linear combination that does not contain v_j , so we conclude that $w \in \operatorname{Span}(S \setminus v_j) \Longrightarrow \operatorname{Span}(S) \subseteq \operatorname{Span}(S \setminus v_j)$, where clearly $S \setminus v_j \subseteq S$. Furthermore, $\operatorname{Span}(S \setminus v_j) \subseteq \operatorname{Span}(S)$ automatically, so $\operatorname{Span}(S) = \operatorname{Span}(S \setminus v_j)$

(\iff) Suppose there exists a proper subset $S' \subsetneq S$ such that Span(S) = Span(S'). Let $w \in \text{Span}(S) = \text{Span}(S')$ be defined as $v_1 + ... + v_n$. Then $w = \sum_{i \in I} a_i v_i$, where $I \subsetneq [n]$, and WLOG, all a_i are non-zero.

$$\implies v_1 + \dots + v_n = \sum_{i \in I} a_i v_i \implies v_1 + \dots + v_n - \sum_{i \in I} a_i v_i = 0$$

Since $S' \subseteq S$, there exists some vectors in $\{v_1, ..., v_n\}$ which are *not* in $\{v_i : i \in I\}$. In particular, these vectors have the coefficient 1 in front. Thus, we've found a non-trivial linear combination = 0, and S is linearly dependent.

To clarfiy: one "throws out" any zero coefficients in w's representation. Indices $i: a_i \neq 0$ then make up the set I, which we know to be non-empty.

QUESTION 6

Let *V* be a v.s. over a field \mathbb{F} for which $2 \neq 0$.

 (\Longrightarrow) Suppose $x, y \in V$ are independent. Consider a(x + y) + b(x - y) = 0, and assume that at least one of $a, b \neq 0$. Rearranging, we get (a + b)x + (a - b)y = 0. Since x, y are independent, we know a + b = 0 and a - b = 0. This implies $b = -b \implies 2 = 0$, which is a contradiction. Thus, a = b = 0.

 $\implies x + y, x - y$ are independent.

(\iff) Suppose x + y, x - y are independent. As we did above, we can rearrange ax + by = 0, which we assume to be non-trivial.

$$ax + by = (x + y)\frac{a + b}{2} + (x - y)\frac{a - b}{2} = 0$$

 $2 \neq 0!$

 $\implies x, y$ are independent.

7 assignment 1

QUESTION 7

Let $S \subseteq \mathbb{F}[t]$ be a possibly infinite set containing non-zero polynomials with pairwise different degrees. This is linearly independent. Consider an arbitrary, finite subset $S_0 \subset S$. If S_0 is linearly independent, so is S. Take $f \in S_0$ to have degree n, and assume $f \in \operatorname{Span}(S_0 \setminus f)$. Since $S_0 \subset S$ contains functions of distinct degrees, one writes $f = \sum_{i \in I} a_i t^i$, where $n \notin I$.

However, this is impossible: the summation would have degree $\max(i \in I)$, which is especially $\neq n$, while f has degree n.

 $\implies f \notin \operatorname{Span}(S_0 \setminus v)$, so S_0 , and thus S, is linearly independent.

QUESTION 8

Consider the set $S \subseteq \operatorname{Sym}_n(\mathbb{F})$ of matrices with all zero entries except at a two particular locations, ij and ji, where a 1 is placed. If i=j, i.e. lie on the diagonal, only one 1 will be placed. This set is $S = \{(z_{ij} + z_{ji}) : ij \in I\} \cup \{z_{ij} : ij \in D\}$, where I is the set of coordinates in the upper triangle $(i \neq j)$, and D is the set of coordinates on the diagonal (i = j).

Notice also that all elements of S are symmetric: $(z_{ij} + z_{ji}) = (z_{ji} + z_{ij})$, where $i \neq j$, and $z_{ij} = z_{ii} = z_{ji}$ where i = j. The following is a rough enumeration of these elements:

$$S = \left\{ \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \quad \cdots \quad \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \right\}$$

This is independent. Write an arbitrary linear combination in *S* as follows:

$$\sum_{ij\in I} \lambda_{ij}(z_{ij}+z_{ji}) + \sum_{ij\in D} \lambda_{ij}(z_{ij}) = \mathbb{O}_{\operatorname{Sym}_n(\mathbb{F})}$$

This is exactly the following matrix:

$$\begin{bmatrix} \lambda_{11} & \lambda_{21} & \lambda_{31} & \cdots & \lambda_{n1} \\ \lambda_{21} & \lambda_{22} & \lambda_{32} & \cdots & \lambda_{n2} \\ \lambda_{31} & \lambda_{32} & \lambda_{33} & \cdots & \lambda_{n3} \\ \vdots & \vdots & \vdots & \ddots & \\ \lambda_{n1} & \lambda_{n2} & \lambda_{n3} & \cdots & \lambda_{nn} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

 $\implies \lambda_{ij} = 0$ for all i, j, so S is linearly independent. Now consider a nonzero symmetric matrix $(a_{ij}) \in \operatorname{Sym}_n(\mathbb{F}) \setminus S$, and let $\varphi(ij)$ be a function returning the value of (a_{ij}) at each coordinate. Then we have:

$$(a_{ij}) - \sum_{ij \in I} \varphi(ij)(z_{ij} + z_{ji}) - \sum_{ij \in D} \varphi(ij)(z_{ij}) = \mathbb{O}_{\operatorname{Sym}_n(\mathbb{F})}$$

This is a nontrivial linear combination, so $S \cup \{(a_{ij})\}$ is linearly dependent.

 \implies S is maximally independent, and thus a basis for Sym_n(\mathbb{F}).

QUESTION 9

Consider t and e^t in the vector space of continuous functions, $C[\mathbb{R}]$, over the field \mathbb{R} . Let $at + be^t = 0$, and assume WLOG that one of $a, b \neq 0$. Choose t = 0. Then b = 0. We update our assumption to find $at = 0 \implies a = 0$, since t is arbitrary. a = b = 0, so t, e^t are linearly independent.

t and e^t do not form a basis. Consider $t^2 = at + be^t$. At t = 0 we find that b = 0. We update our assumption to $t^2 = at$. Choosing t = 1 yields a = 1, and we are left with $t^2 = t$, which is clearly not true in generality. Thus, we've found $f \in C[\mathbb{R}]$ t^2 is continuous such that $f \notin \mathrm{Span}(t, e^t)$, so $\{t, e^2\}$ does not span $C[\mathbb{R}]$, and is not a basis.