Analysis für Informatiker 2012/13

bei Prof. Dr. Lau

October 11, 2012

Inhaltsverzeichnis

1 Mengen

1.1 Definition

1)

Eine Menge ist eine Ansammlung verschiedener Objekte.

2)

Die Objekte einer Menge heißen Elemente.

Notation:

 $a \in M$ heißt: a ist Element der Menge M

 $a \notin M$ heißt: a ist kein Element der Menge M 3)

Sei M eine Menge. Eine Menge U heißt Teilmenge von M, wenn jedes Element von U auch ein Element von M ist.

Notation:

 $U\subseteq M$ heißt: U ist Teilmenge der Menge M

 $U \not\subseteq M$ heißt: U ist keine Teilmenge der Menge M

1.2 Beispiele

1)

Sei M die Menge aller Studierenden in L1,

W die Menge aller weiblichen Studierenden in L1,

F die Menge aller Frauen.

Dann gilt: $W \subseteq M, W \subseteq F, M \not\subseteq F, F \not\subseteq M$.

2)

Die Menge der natürlichen Zahlen: $+N = \{1, 2, 3, ...\}$

G sei Menge der geraden natürlichen Zahlen.

$$G := \{ n \in \mathbb{N} | n \text{ gerade } \}$$

$$:= \{ 2m | m \in \mathbb{N} \}$$

$$:= \{ 2, 4, 6, 8, ... \}$$

Es gilt $G \subseteq \mathbb{N}$, $\mathbb{N} \not\subseteq G$.

3)

Die Menge der ganzen Zahlen:

$$\mathbb{Z} = \{0, -1, 1, -2, 2, ...\}$$

4)

Menge der rationalen Zahlen:

$$\mathbb{Q} = \frac{a}{b} | a, b \in \mathbb{Z}, b \neq 0 \}$$

5)

Die Menge ohne Elemente heißt leere Menge.

Symbol:
$$\emptyset = \{\}$$

Bemerkung

Für jede Menge
$$M$$
 gilt: $\emptyset \subseteq M$ $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q}$

1.3 Definition

Sei M eine Menge, $U, V \subseteq M$ Teilmengen.

1)

Die Vereinigung von U und V ist $U \cup V := \{x \in M | x \in U \text{ oder } x \in V\}$

2)

Der Durchschnitt von U und V ist $U \cap V := \{x \in M | x \in U \text{ oder } x \in V\}$

3)

Die Differenzmenge von U und V ist $U/V := \{x \in U | x \notin V\}$

4)

Das Komplement von U ist $U^c = M/U = \{x \in M | x \notin U\}$

Beispiel

Sei $M = \mathbb{N}$.

$$\{1,3\} \cup \{3,5\} = \{1,3,5\}$$

$$\{1,3\} \cap \{3,5\} = \{3\}$$

 $\{1,3\} \cap \{2,4,7\} = \emptyset$, also sind $\{1,3\}$ und $\{2,4,7\}$ disjunkt.

$$\{1,2,3\}/\{3,4,5\} = \{1,2\}$$

$$\{1,3,5\}^c = \{2,4,6,7,8,\ldots\}$$

1.4 (de Morgansche Regeln)

M Menge, $U, V \subseteq M$ Teilmengen.

1)
$$(U \cup V)^c = U^c \cap V^c$$

2)
$$(U \cap V)^c = U^c \cup V^c$$

Beweis

1)

Sei
$$x \in M$$
. Es gilt: $x \in (U \cup V)^c \Leftrightarrow x \not\in U \cup V \Leftrightarrow x \not\in U \text{ und } x \not\in V \Leftrightarrow x \in U^c \text{ und } x \in V^c \Leftrightarrow x \in U^c \cap V^c$

2)

 $\ddot{U}bungsaufgabe$

Vollständige Induktion

1.5 Prinzip der vollständigen Induktion

Für jedes $n \in \mathbb{N}$ sei eine Aussage A(n) gegeben. <u>Ziel:</u> Beweisen, dass A(n) für jedes $n \in \mathbb{N}$ wahr ist. Dafür reicht es zu zeigen:

1)

Induktionsanfang: A(1) ist wahr.

Induktionsschritt: Wenn für ein $n \in \mathbb{N}$ A(n) wahr ist, dann ist auch A(n+1)wahr.

1.6 Satz / Beispiel

Für jede natürliche Zahl n gilt: $1+2+3+...+n=\frac{n(n+1)}{2}$

Beweis des Satzes (mit Induktion)

Abkürzung: S(n) = 1 + 2 + ... + nAussage: $A(n) : S(n) = \frac{n(n+1)}{2}$

1) IA:
$$n=1$$
 $S(1)=1=\frac{1\cdot 2}{2}$ 2) IS: $n\to n+1$

2) IS:
$$n \to n+1$$

Annahme:
$$A(n)$$
 gilt, $S(n) = \frac{n(n-1)}{2}$

Annahme:
$$A(n)$$
 gilt, $S(n) = \frac{n(n-1)}{2}$ Zu zeigen: $A(n+1)$ gilt, $S(n+1) = \frac{(n+1)(n+2)}{2}$

$$S(n+1) = S(n) + n + 1 = \frac{n(n+1)}{2} + \frac{2(n+1)}{2} = \frac{(n+2)(n+1)}{2}$$

Dies beendet den Beweis.

Zur Vereinfachung der Notation: Seien $a_1, a_2, a_3,...,a_n$ Zahlen $n \in \mathbb{N}$ Setze $\sum_{n=1}^{n} := a_1 + a_2 + \dots + a_n$

Allgemeiner: Sei
$$l, m \in \mathbb{N}, l \leq m \leq n$$

Allgemeiner: Sei
$$l, m \in \mathbb{N}, l \leq m \leq n$$

$$\Rightarrow \sum_{k=l}^{m} a_k := a_l + a_{l+1} + \dots + a_m$$

Aussage von Satz 1.6:
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Kombinatorik

1.7 Definition

Seien A,B Mengen. Das kartesische Produkt von A und B ist definiert als $A \times B := \{(a,b) | a \in A, b \in B\}$

Die Elemente von $A \times B$ heißen geordnete Paare.

Beispiel:
$$\{1,7\} \times \{2,3\} = \{(1,2),(1,3),(7,2),(7,3)\}$$

Allgemeiner: Gegeben seien Mengen $A_1, ..., A_k$ mit $k \in \mathbb{N}$. Das kartesische Produkt von $A_1, ..., A_k$ ist $A_1 \times ... \times A_k = \{(a_1, ..., a_k) | a_i \in A_i \text{ für } i = 1, ..., k\}$

Elemente von $A_1 \times ... \times A_k$ heißen k-Tupel.

Falls
$$A_1 = A_2 = \dots = A_k = A$$
, schreibe auch $\underbrace{A \times \dots \times A}_{k-Mol} = A^k$

1.8 Definition

Eine Menge A ist endlihc, wenn A nur endlich viele Elemente hat. Dann bezeichnet #A = |A| die Anzahl der Elemente von A.

Wenn A nicht endlich ist, dann schreiben wir $\#A = \infty$.

Beispiele:
$$\#\emptyset = 0, \ \#\mathbb{N} = \infty, \ \#\{1, 3, 5, 1\} = 3$$

1.9 Bemerkung

Sei A Menge, $U, V \subseteq A$ disjunkte Teilmengen.

Dann: $\#(U \cup V) = \#U \overline{+ \#V}$

2)

Seien $A_1, ..., A_k$ endliche Mengen, $k \in \mathbb{N}$.

Dann: $\#(A_1 \times A_2 \times ... \times A_k = \#A_1 \cdot \#A_2 \cdot ... \cdot \#A_k)$

1.10 Definition

1)

Für $n \in \mathbb{N}$ setze $n! = 1 \cdot 2 \cdot \ldots \cdot n = \prod_{k=1}^{n} k$ \leftarrow Produkt

Setze 0! = 1

2)

Für $k, n \in \mathbb{Z}$ mit $0 \le k \le n$ sei $\binom{n}{k := \frac{n!}{k!(n-k)!}}$ \leftarrow Binomialkoeffizient

- TABELLE -

Beispiel: $\binom{5}{2} = \frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1} = 10$

Bemerkung: $\binom{n}{0} = 1 = \binom{n}{n}$

1.11 Lemma

Für $0 \le k \le n$ gilt: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

$$Beweis {\binom{n-1}{k-1} + \binom{n-1}{k}} = \frac{(n-1)!}{(k-1)(n-k)!} + \frac{(n-1)!}{k!(n-1-k)!} = \frac{k(n-k)! + (n-k)(n-1)!}{k!(n-k)!} = \frac{n(n-1)!}{k!(n-k)!} = \binom{n}{k}$$