Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию N2

Выполнили: Данько Артем Ковалева Василина Шматенко Дарья

Содержание

Постановка задачи	2	
Ход решения	3	
Описание программы	3	
Необходимые компоненты	6	
Участники	6	

Постановка задачи

После оглушительного успеха в освобождении Астапора, Миэрина и Юнкая от власти работорговцев Дейенерис Бурерожденная открыла себе доступ к Летнему морю, а следовательно – путь в Вестерос.

Для ведения войны с Семью Королевствами нужно оружие, я для оружия нужна сталь. Нет никаких сомнений в кузнечном искусстве Безупречных, однако поставщики стали не столь надежны.

Два основных поставщика стали – это Westeros Inc. и Harpy & Co. На протяжении нескольких месяцев мы закупаем сталь у обеих компаний, и каждая из них предлагает ощутимую скидку при заключении эксклюзивного договора на поставку.

Советник королевы Тирион Ланнистер знает о твоем умении принимать взвешенные рациональные решения и просит помощи в объективном решении вопроса о том, с какой из компаний следует заключить эксклюзивный договор на поставку стали.

У Тириона есть записи о производстве мечей каждым из кузнецов-безупречных, а также данные о количестве сломанных мечей в каждый из месяцев ведения боевых действий.

Данные имеют вид:

	unsullen.id	production.date	report.date	produced	defects	supplier
0	1.0	1	1	103.0	0.0	harpy.co
1	1.0	1	2	0	2.0	harpy.co
2	1.0	1	3	0	4.0	harpy.co
3	1.0	1	4	0	5.0	harpy.co
4	1.0	1	5	0	13.0	harpy.co

Ход решения

Мы получили данные о качестве стали компаний Westeros Inc. и Harpy&Co, построив различные графики:

- 1. Общее количество произведенного и сломавшегося оружия для каждой из компаний за все месяцы сотрудничества
- 2. Количество произведенного и сломавшегося оружия обеих компаний для каждого месяца производства
- 3. Среднее число поломанной продукции для каждого месяца
- 4. Среднее число поломанной продукции по сроку службы
- 5. Качество продукции за каждый месяц (процент сломавшейся продукции, которая была произведена в i-й месяц)
- 6. Зависимость количества поломок от кузнеца

Описание программы

1. all_time(book)

Посмотрим для каждого поставщика, сколько всего мечей было произведено и какое количество из них сломалось. Используя drop, исключим колонки report.date, production.date, unsullen.id за ненадобностью. С помощью groupby сгруппируем данные по поставщику и применим sum, таким образом, для каждой компании получим суммарное количество произведённой продукции и число сломавшихся мечей. Сгенерируем объекты fig и ахез. Используя subplots, будем строить диаграммы для каждого поставщика. Перебираем компании, вызывая функцию book.supplier.unique(), и формируем с помощью loc подтаблицы, где хранится информация только про одного поставщика. Теперь с помощью plot отобразим на диаграммах данные для каждого производителя с номером number, где по оси ординат будут отложены produced и defects, а две колонки будут отвечать за количество произведённых и сломавшихся мечей. Положение диаграмм зададим используя ахез и number.

2. crack_and_make(book)

Используя drop, исключим колонки report.date, unsullen.id за ненадобностью. С помощью groupby сгруппируем данные по поставщику и месяцу изготовления, а затем применим sum. Таким образом получим суммарное количество произведённой продукции в каждый месяц и число сломавшихся мечей. Создадим новые наборы данных prod_book и crack_book. Для этого с помощью pivot преобразуем таблицу, используя значения столбцов или индексов. Индексом будет служить production.date, колонками—supplier. Для набора prod_book ячейки будут заполнены значениями из колонки produced, для crack_book—defects. Сгенерируем объекты fig и

axes, используя subplots, и построим две диаграммы для произведённых и сломавшихся мечей, с помощью plot и 'ax' задав их положение.

3. month cracked prod(book)

Определим для каждого production.date среднюю долю поломанных к данному месяцу мечей. Используя drop, исключим колонки report.date, unsullen.id за ненадобностью. С помощью groupby сгруппируем данные по поставщику и месяцу изготовления, далее применим sum, таким образом получим суммарное количество произведённой продукции в каждый месяц и число сломавшихся мечей. Поделим число поломок на число произведённых изделий, запишем полученное частное в колонку defects и разделим её на число месяцев (7 - book['production.date']), прошедших со дня изготовления продукции. Постороим график. Перебирая поставщиков (book.supplier.unique()), формируем с помощью loc подтаблицы, где хранится информация только про одного поставщика. Теперь отобразим данные на графике с помощью fig.plot, где по оси ординат отложены defects, а по оси абсцисс — месяц изготовления.

4. mean after month(book)

Определим среднее число сломавшихся мечей после каждого месяца эксплуатации, то есть среднее количество поломок в месяц после одного месяца использования, после двух и т.д. Вычтем из report.date колонку production.date и переименуем её с помощью rename в time_to_death, получая срок службы. Используя drop, исключим колонки unsullen.id, produced за ненадобностью. С помощью groupby сгруппируем данные по месяцу изготовления, поставщику и сроку службы, следом применим sum. После, исключив столбец production.date, перегруппируем по поставщику и сроку службы. Вслед за этим, используя mean, возьмём среднее и постороим график. Перебираем поставщиков, вызывая функцию book.supplier.unique(), и формируем с помощью loc подтаблицы, где хранится информация только про одного поставщика. Теперь отобразим данные на графике, где по оси ординат отложены defects.

5. unsullens(book)

Проверим не портит ли какой-либо кузнец общий результат. Используя drop, исключим колонки report.date, production.date за ненадобностью. С помощью groupby сгруппируем данные по поставщику и кузнецу, а затем применим sum. Таким образом, получаем для каждого кузнеца суммарное количество произведённой им продукции в каждый месяц и число сломавшихся мечей. Постороим график, далее сгенерируем объекты fig и axes, используя subplots. Также введём переменную number, отвечающую за номер поставщика. Перебираем поставщиков, вызывая функцию book.supplier.unique()), и формируем с помощью loc подтаблицы, где хранится информация только про одного производителя. Индексной делаем колонку, содержащую идентификационный номер кузнеца. Используя drop, исключим за ненадобностью колонки supplier, unsullen.id. Теперь, с помощью plot, отобразим на диаграммах данные для каждого производи-

теля с номером number, где по оси ординат будут отложены produced и defects, а по оси абсцисс – номер кузнеца.

6. crack production(book)

Используя drop, исключим колонки report.date, unsullen.id за ненадобностью. С помощью groupby сгруппируем данные по поставщику и месяцу изготовления и применим sum. Таким образом, получаем суммарное количество произведённой продукции в каждый месяц. Подсчитаем сколько процентов из всей продукции, произведенной в i-й месяц, сломалось к текущему моменту, то есть найдём отношение book['defects'] к book['produced'] и сохраним его в колонку percent. Постороим график. Перебираем поставщиков, вызывая функцию book.supplier.unique(), и формируем с помощью loc подтаблицы, где хранится информация только про одного поставщика. Теперь, отобразим данные на графике, где по оси ординат отложены рercent.

Необходимые компоненты

- Библиотеки и функции
 - pandas библиотека, предназначенная для хранения таблиц. Также содержит огромное количество универсальных функций для их комфортной обрабоки.
 - сору предоставляет общие операции копирования
 - matplotlib для работы с графиками
 - read_csv(filepath_or_buffer, sep=', ') считывает csv файл в dataframe,
 sep разделитель
 - сору.deepcopy(x) возвращает полную копию x
 - drop удаляет указанную строку или столбец
 - groupby.() группирует элементы таблицы по колонке
 - sum() суммирует элементы группы
 - rename(columns) переименование колонок
 - plt.figure(figsize=None).add_subplot(numrows, numcols, fignum) figsize задаёт размер, add_subplot добавляет объект для рисования графика по укзанным координатам
 - unique() возвращает уникальные значения объекта Series
 - loc доступ к группе строк и столбцов по меткам или логическому выражению
 - fig.plot(x, y, color, label) рисует график, где точки имеют координаты (x,y), label используется для генерации легенды
 - plt.show() показ изображения (графика)
 - plt.subplots(nrows, ncols) возвращает объекты Figure и Axes
 - pivot(index, columns, values)
 index и columns столбцы, используемые для создания индекса и столбца нового датафрейма
 values столбцы, используемые для заполнения значений нового фрейма

• Программы

- Jupyter Notebook

Участники

Данько Артем, Ковалева Василина, Шматенко Дарья. Все этапы работы были выполнены совместно.