Bachelor Thesis

Inferring the Population Quantity of Multilocus Genotype Data

Supervisors: Manfred Opper, Olivier Françios, Michael Blum

Fabian Bergmann, 372918

Pages: 4

Submission Date: January 7, 2019

Olivier Françios, Michael Blum

Bachelor Thesis Generating Data

Biological Background

Key words

- Chromosome: A DNA molecule that encodes genetic information.
- Gene: A DNA (or RNA) sequence that specifies the structure of a particular functional molecule.
- Locus: A particular position on the chromosome, like the position of a specific gene.
- Allele: A variant form of a given gene. Different alleles can lead to distinct phenotypic traits.

Admixture

The subsequent admixture model, follows a model proposed by Pritchard, Stephens, and Donnelly 2000.

Bachelor Thesis

Aufgabe 1: Titel (Punkte: 7)

Für den folgenden Abschnitt solltet Ihr den Latex-Code mit der Ausgabe vergleichen. Einen neuen Absatz beginnt ihr durch das einfügen einer Leerzeile. Hier beginnt die neue Zeile: Zeilenumbrüche in der .tex Datei werden ignoriert.

Aufgabe 1.1: Unterpunkt (Punkte: 1)

Kommentarzeilen werden in Latex mit % begonnen.

Ihr werdet in diesem Kurs viel mit mathematischen Ausdrücken arbeiten. Daher folgen nun die wichtigste Umgebung: align (bitte betrachtet wieder den Latex-Code).

$$a_1 = b^2 + 4 (1)$$

$$a_1 - 4 = b^2 (2)$$

Wollt ihr die Zeilen nicht durchnummeriert haben, so müsst ihr folgendes ändern:

$$a_1 = b^2 + 4$$

 $a_1 - 4 = b^2$

 $a_1 - b_1 = 0$

Um mehr als ein Zeichen hoch- oder tiefgestellt darzustellen, müssen diese in geschweifte Klammern geschrieben werden.

$$a_{i+10} = b^{2+j} + 4 (3)$$

$$a_{i+10} - 4 = b^{2+j} (4)$$

Jetzt müssen noch die Gleichheitszeichen untereinander gesetzt werden.

$$a_1 = b^2 + 4 (5)$$

$$a_1 - 4 = b^2 (6)$$

Matrizen können wie folgt dargestellt werden:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} = \begin{pmatrix} -3 & 6 & 12 \\ 4.3 & -1.2 & 9 \end{pmatrix}$$
$$\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} = \begin{pmatrix} -4 & 4 & 9 \\ 0.3 & -6.2 & 3 \end{pmatrix}$$
$$\Rightarrow a = -4$$
$$\Rightarrow b = 4$$
$$\Rightarrow c = 9$$
$$\Rightarrow d = 0.3$$
$$\Rightarrow e = -6.2$$
$$\Rightarrow f = 3$$

Bachelor Thesis

REFERENCES

Im Folgenden findet ihr eine Liste der wichtigsten Symbole und Zeichen. Weitere Zeichen findet ihr unter http://tug.ctan.org/info/symbols/comprehensive/symbols-a4.pdf.

{ } \bigcup \cap \subseteq \supset \in ∉ \mathbb{N} \mathbb{Z} \mathbb{Q} \mathbb{R} \mathbb{C} \neq \approx \leq \leq \leq \geq \geq β \vec{v}

References

[1] Jonathan K Pritchard, Matthew Stephens, and Peter Donnelly. "Inference of population structure using multilocus genotype data". In: *Genetics* 155.2 (2000), pp. 945–959.