<u>Warmup</u>	suppose T: F^2 to F^2 sends	$BMB^{-}(-1) = (1/2) B M adj(B)$
v1 = 1 to	2 $v2 = -1$ to 1	= (1/2)2 1 1 1 2 -1 -1 1
1	2 1 –1	= $(1/2)1$ 3 3 1
matrix of T wrt std basis (e1, e2) of F^2?		= 1/2 3/2 [works] 3/2 1/2
1) matrix w	Vrt (v1, v2): $M = 2 00 -1$	(Axler §5A) given a linear op T : V to V:
2) v1 = e1 v2 = -e		<u>Df</u> a subspace W sub V is T-stable, aka T-invariant, iff w in W implies Tw in W
, , ,	$\begin{bmatrix} B^{(-1)} = 1/2 & 1/2 \\ 1 & 1 & -1/2 & 1/2 \end{bmatrix}$ -1 1	Ex above: Fv1, Fv2 are T-stable Fe1, Fe2 are not

for any linear op T : V to V, {**0**} and V are are [trivially] T-st

(0) and V are are [trivially] T-stable

Ex suppose T : F^3 to F^3 has the matrix

* * wrt some basis

* * *

0 0 *

then $\{(x, y, 0) \mid x, y\}$ is a nontrivial T-stable subsp.

how about * * 0 ? * * 0 ?

* * 0 * * 0

* * * 0 0 *

[only $\{(0, 0, z) \mid z\}$ for LHS, both for RHS]

a block-diagonal matrix for T with k blocks corresponds to

a T-stable direct sum $V = W_1 + ... + W_k$

[in particular:]

a diagonal matrix for T corresponds to a decomposition of V into T-stable lines

<u>Df</u> for any linear op T : V to V

an eigenline of T is a T-stable line [dim-1 subsp.]

an <u>eigenvector</u> of T is v in V s.t. Fv is an eigenline (which forces $v \neq \mathbf{0}$)

here, if $Tv = \lambda v$, then λ is the <u>eigenvalue</u> of T on v

[does P have any eigenvectors?]

$$\lambda x = 0$$
 1 • $x = y$
 λy 0 3 y 3 y

[take $\lambda = 0$:] {(x, 0)} eigenline with eigenvalue 0 [take $\lambda \neq 0$:] {(y/3, y)} eigenline with eigenvalue 3

$$\underline{Ex}$$
 N: F^2 to F^2 given by the matrix 0 1 wrt the std basis 0 0

[regardless of λ :] y = 0{(x, 0)} is the only eigenline with eigenvalue 0 [same regardless of whether F = R or F = C]

$$\underline{Ex}$$
 H: R^2 to R^2 given by the matrix 1 -1 wrt the std basis 1 1

$$\lambda x = 1 \quad -1 \quad \cdot \quad x = x - y$$
 $\lambda y \quad 1 \quad 1 \quad y \quad x + y$

messy to solve...

notice:
$$(1/\sqrt{2}) \, H = 1/\sqrt{2} \, -1/\sqrt{2} \, (1+i)x = x-y \, \text{imply ix} = -y \, \text{and iy} = x \, (1+i)y = x+y \, = \cos(\pi/4) \, -\sin(\pi/4) \, \sin(\pi/4) \, \cos(\pi/4) \, \text{so} \, \{(x \, \text{eigenline with eigenvalue 1} + i \, ix)\} \,$$
 so H is the composition of: rotate by $\pi/4$ scale by $\sqrt{2}$ $(x \, \text{eigenline with eigenvalue 1} - i \, -ix)\}$ no H-stable lines through $\mathbf{0}$ $\mathbf{0}$

<u>Moral</u>	choice of R vs C affects eigenstuff
--------------	-------------------------------------

pf set n = dim V
v, Tv, ..., T^nv must be lin. dep.
so there are a_0, ..., a_n in F s.t.
$$a_i \neq 0$$
 for some i,
 $(a \ 0 + a \ 1T + ... + a_nT^n) v = 0$

since $V \neq \{0\}$, can pick $v \neq 0$

key idea: plug linear op T into polynomials

using lemma, pick f(z) of minimal deg s.t. f is nonzero and f(T) v = 0

Pf of Thm

note: constant term a_0 treated as a_0 id_V

Lem

for any F and V fin. dim. and v in V:
some nonzero
$$p(z)$$
 gives $p(T)$ $v = 0$

since $v \neq \mathbf{0}$, know f is <u>nonconst</u> by the fund. thm of algebra, f has a root λ : i.e.,

$$f(z) = (z - \lambda) g(z)$$
 for (nonzero) $g(z)$ in $C[z]$

now $(T - \lambda \text{ id}_V) (g(T) \text{ v}) = \mathbf{0}$ notice $T(g(T)\text{v}) = \lambda(g(T)\text{v})$ so just need $g(T) \text{ v} \neq \mathbf{0}$ if g nonconst, then done bc deg(g) < deg(f) if g const, then done bc g nonzero and $\text{v} \neq \mathbf{0}$

[where did we use F = C? fund. thm of algebra]

<u>Summary</u>

if W sub V is stable under T : V to V then T restricts to a lin op T|_W, easier to study

nicer when V is a sum of T-stable subspaces nicest when V is a sum of eigenlines i.e., T is <u>diagonalizable</u>

over R T may have no eigenlines
over C T will have some eigenline,
but V need not be sum(eigenlines)

Rem the sum of all eigenlines with eigenval λ is called the λ-eigenspace of T