TD7 : Distribution de Maxwell-Boltzmann et théorème d'équipartition

Fabio Pietrucci, Alice Sinatra, Sorbonne Université

19 mars 2024

Un résultat central de la thermodynamique statistique est l'expression $p_{\alpha} = e^{-\beta E_{\alpha}}/Z$ pour la **probabilité d'un micro-état** α dans l'ensemble canonique (N,V,T). Cette expression est la pierre angulaire de nombreuses études, elle peut notamment être appliquée pour obtenir la distribution des vitesses de Maxwell-Boltzmann dans un gaz et le théorème d'équipartition.

1 Statistique des vitesses de Maxwell-Boltzmann

1.1

Écrivez la fonction de densité de probabilité (normalisée) $\rho(v_x)$ pour la composante x de la vitesse d'une particule dans l'ensemble canonique (N, V, T).

1.2

Calculez la movenne, la variance et la valeur la plus probable de v_x .

1.3

Quelle est la valeur de $\langle v^2 \rangle$? Peut-on l'utiliser pour calculer la température? Est-ce qu'elle suggère une équipartition de l'énergie cinétique?

1.4

Considérez maintenant le vecteur vitesse tridimensionnel \mathbf{v} d'une particule : écrivez la densité de probabilité de la norme $|\mathbf{v}| = v$ et tracez-la avec celle de v_x . Calculez la moyenne de $\langle v \rangle$ et la valeur la plus probable v_p . On pourra utiliser le formulaire joint sur les intégrales gaussiennes. On remarquera que $\langle v \rangle > v_p$.

1.5

Ecrivez formellement la densité de probabilité dans l'espace des phases pour un système de N particules d'hamiltonien $H = \sum_{i=1}^{N} \frac{\mathbf{p}_{i}^{2}}{2m} + U(\mathbf{q}_{1}, \dots, \mathbf{q}_{N})$, à l'équilibre thermique dans l'ensemble canonique.

2 Distribution de l'énergie cinétique

2.1

En utilisant la même procédure que dans l'exercice précédent, écrivez la fonction de densité de probabilité des impulsions.

2.2

Quelle est la densité de probabilité de l'énergie pour une particule d'un gaz parfait ? Indice : utiliser le fait que $\rho(\mathbf{p})d^3p = f(E)dE$.

3 Moyennes de l'espace-phase et théorème d'équipartition

3.1

Comment pouvons-nous exprimer la fonction de partition dans l'espace des phases pour un système de N particules en interaction ?

3.2

Montrez qu'une simplification se produit lors du calcul de la moyenne des observables $A(\mathbf{q}_1, ... \mathbf{q}_N)$ qui ne dépendent que de la position, ou $B(\mathbf{p}_1, ... \mathbf{p}_N)$ qui ne dépendent que des impulsions.

3.3

Montrez que chaque degré de liberté contribuant quadratiquement au hamiltonien a une moyenne thermique de $k_BT/2$ (théorème d'équipartition).

Intégrales gaussiennes

On veut calculer les intégrales

$$I_n = \int_0^{+\infty} x^n e^{-ax^2} dx, \quad a \in \mathbb{R}_+^*.$$

Pour I_0 , on remarque que l'on peut écrire

$$(2I_0)^2 = \left[\int_{-\infty}^{+\infty} e^{-x^2} dx \right]^2 = \int_{-\infty}^{+\infty} e^{-x^2} dx \times \int_{-\infty}^{+\infty} e^{-y^2} dy = \int_{\mathbb{R}^2} e^{-(x^2 + y^2)} dx dy$$

où l'on a simplement changé le nom d'une des variables d'intégration. L'intégration se faisant dans le plan \mathbb{R}^2 , on peut passer des coordonnées cartésiennes (x,y) au coordonnées polaires planes (ρ,θ) . On a $x^2+y^2=\rho^2$ et dx d $y=\rho$ d ρ d θ , ce qui donne

$$(2I_0)^2 = \int_{\theta=0}^{\theta=2\pi} \int_{\rho=0}^{\rho=+\infty} e^{-\rho^2} \rho \, \mathrm{d}\rho \, \mathrm{d}\theta = 2\pi \int_0^{+\infty} \rho \, e^{-\rho^2} \mathrm{d}\rho \, .$$

Cette dernière se calcule facilement et vaut π . On a donc finalement

$$I_0 = \int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

Le calcul I_1 ne pose aucun problème et on a

$$I_1 = \int_0^{+\infty} x e^{-x^2} dx = \frac{1}{2}.$$

Pour les intégrales suivantes, on obtient une relation de récurrence par intégration par partie

$$I_{n+2} = \int_0^{+\infty} x^{n+2} e^{-x^2} dx = \left[-\frac{x^{n+1}}{2} e^{-x^2} \right]_0^{+\infty} + \frac{n+1}{2} \int_0^{+\infty} x^n e^{-x^2} dx$$
$$= \frac{n+1}{2} \int_0^{+\infty} x^n e^{-x^2} dx$$

ce qui donne pour $n\in\mathbb{N}$:

$$I_{n+2} = \frac{n+1}{2} I_n.$$