Machine Learning in Benthic Habitat Mapping

Justin Ting — Honours Student
Simon O'Callaghan — NICTA Researcher
NICTA
SIT

Introduction

► Less than 10% of the world's oceans are mapped compared to 99% of Earth's topology mapped (low resolution)¹

 $^{^{1}} http://www.wired.com/2009/06/nasa-satellite-maps-99-of-earths-topography/\\$

Problem Statement

- Marine habitat mapping cuts across marine biology, geology, hydrography, oceanography, geophysics (Brown et al., 2011), along with habitat mapping
- Much research in benthic habitat mapping generates deterministic maps using as-is machine learning techniques/implementations
- We need to be able to monitor marine habitats on a large scale to assess human impact over time to be able to make informed management decisions

Solution

- We will use Gaussian Processes to obtain distributions of likely habitat maps
- Probabilistic approach allows us to state certainty about a particular mapped area
- ▶ Use of Gaussian Processes requires a matrix inversion step with $O(n^3)$ complexity attempt to overcome this by making our covariance matrix sparse and hence the inversion step computationally feasible for large datasets

Results

stuff

Discussion and Analysis

stuff

Bibiolgraphy

Craig Brown, Stephen J Smith, and Peter Lawton. Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. *Estuarine, Coastal and Shelf Science*, 92, 2011.