CLAIMS

Therefore, having thus described the invention, at least the following is claimed:

1	1. A system for detecting a respiration signal of at least one subject in a				
2	target area, comprising:				
3	a scanning antenna to transmit a microwave signal across the target area,				
4	wherein the scanning antenna receives a reflected microwave signal from the at least				
5 .	one subject;				
6	a control system to track the position of the scanning antenna as the scanning				
7	antenna transmits the microwave signal;				
8	a signal processing system to detect the respiration signal of the at least one				
9	subject from the reflected microwave signal that is received by the scanning antenna.				
1	2. The system of claim 1, further comprising:				
2	a Doppler radar module to generate the microwave signal.				
1	3. The system of claim 2, wherein the Doppler radar module operates at				
2	10.525 GHz.				
1	4. The system of claim 1, further comprising:				
2	radar absorbing material to restrict the area that the scanning antenna				
3	transmits.				
1	5. The system of claim 4, the control system further comprising:				
2	a digital shaft encoder to provide positional information of the scanning				
3	antenna.				
1	6. The system of claim 1, further comprising:				
2	a display device to display a graphical plot of the reflected microwave signal.				
1	7. The system of claim 6, wherein the control system samples the				
2	reflected signal at discrete positions of the scanning antenna and compiles the sampled				
3	data to produce the graphical plot.				

. 2

1	8. The system of claim 6, wherein the control system samples the				
2	reflected signal at one discrete position of the scanning antenna and compiles the				
3	sampled data to produce the graphical plot.				
1	9. The system of claim 6, wherein the position along the horizontal				
2	scanning axis of the at least one subject is ascertained from the graphical plot.				
1	10. The system of claim 1, wherein one subject is positioned behind a				
2	reflective surface in the target area.				
1					
1	11. The system of claim 1, wherein two subjects are positioned behind a				
2	reflective surface in the target area and the respiration signature of each subject is				
3	detected.				
1	12. The system of claim 1, wherein the scanning antenna is being operated				
2	in a hand held mode.				
1	13. A system for detecting a respiration signal of at least one subject in a				
2	target area, comprising:				
3	means for transmitting a microwave signal across the target area in a				
4	horizontal scanning motion;				
5	means for receiving a reflected microwave signal from the target area;				
6	means for tracking the position of the means for transmitting as the means for				
7	transmitting transmits the microwave signal;				
8	means for detecting the respiration signal of the at least one subject, wherein				
9	the reflected microwave signal was from the at least one subject.				
1	14. The system of claim 13, wherein the means for transmitting operates at				
2	10.525 GHz.				
1	15. The system of claim 13, further comprising:				
2	means for displaying a graphical plot of the reflected microwave signal.				

I	16. The system of claim 13, further comprising.				
2	means for sampling the received reflected microwave signal at at least one				
3	discrete position of the means for transmitting; and				
4	means for compiling sampled data to produce the graphical plot.				
1	17. The system of claim 16, wherein the means for detecting processes				
2	sampled data from the received reflected microwave signal to remove an undesired				
3	signal caused by self-induced motion of the system.				
1	18. The system of claim 17, wherein the means for detecting processes th				
2	sampled data by subtracting data having the undesired signal from data having the				
3	undesired signal and the respiration signal.				
1					
1	19. The system of claim 16, wherein the means for tracking samples the				
2	reflected signal at only one discrete position.				
1	20. The system of claim 15, wherein the position along the horizontal				
2	scanning axis of the at least one subject is ascertained from the graphical plot.				
1	21. The system of claim 13, wherein one subject is positioned behind a				
2	reflective surface in the target area.				
1	22. The system of claim 13, wherein two subjects are positioned behind a				
2	reflective surface in the target area and the respiration signature of each subject is				
3	detected.				
1	23. The system of claim 13, wherein the means for transmitting is being				
2	operated in a hand held mode.				

1

2	24. A method for detecting a respiration signal of at least one subject in a				
3	target area, comprising the steps of:				
4	transmitting a microwave signal across the target area along a horizontal				
5	scanning axis;				
6	receiving a phase modulated reflected microwave signal from the target area;				
7	tracking the position at which the microwave signal is transmitted along the				
8	horizontal scanning axis;				
9	detecting the phase shifted respiration signal of the at least one subject,				
10	wherein the reflected microwave signal was from the at least one subject.				
1	25. The method of claim 24, wherein the frequency of the microwave				
2	signal is 10.525 GHz.				
1	26. The method of claim 24, further comprising the step of:				
2	displaying a graphical plot of the reflected microwave signal.				
1	27. The method of claim 26, further comprising the steps of:				
2	sampling the received reflected signal at at least one discrete position along th				
3	horizontal scanning axis; and				
4	compiling processed sampled data to produce the graphical plot.				
1	28. The method of claim 27, further comprising the step of:				
2	processing the sampled data by performing the mathematical equivalent of				
3	subtraction of scanner positions containing only hand motion induced clutter data				
4	from scanner positions containing both the hand motion and the respiration signal.				
1	29. The method of claim 26, wherein the received reflected signal is				
2	sampled at only one discrete position.				
1	30. The method of claim 26, further comprising the step of:				
2	ascertaining the position along the horizontal scanning axis of at least one				
3	subject from the graphical plot.				

1	31.	The method of claim 24, wherein one subject is positioned behind a			
2	reflective surface in the target area.				
1	32.	The method of claim 24, wherein two subjects are positioned behind a			
2	reflective surface in the target area and the respiration signature of each subject is				
3	detected.				
1	33.	The method of claim 24, wherein the transmitting step is being			
2	performed in a hand held mode.				