PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-128612

(43)Date of publication of application: 19.05.1995

(51)Int.CI.

G02B 27/02

(21)Application number: 05-273301

(71)Applicant: SANYO ELECTRIC CO LTD

(22)Date of filing:

01.11.1993

(72)Inventor: IKEDA TAKASHI

TERADA KATSUMI OKADA SEIJI

KANETANI KYOICHI

(54) BINOCULAR TYPE IMAGE DISPLAY DEVICE

(57)Abstract:

PURPOSE: To improve a wearing property and to enable the formation of stereoscopic viewing parts to a large size by magnifying the real images formed by macroprojecting images with projecting optical systems by magnifying virtual image systems.

CONSTITUTION: The images are projected foward from projectors 1L, 1R. Projecting optical paths 8L, 8R are changed 90° by left and right first mirrors 2L, 2R mounted at a case 9 existing in front of an observer M and the optical paths are changed 90° by second mirrors 3L, 3R, by which the images are macroprojected as the real images 5L, 5R on a screen 4 arranged in front of the observer's eyes 13L, 13R. Left and right eyepieces 6L, 6R consisting of convex lenses constituting the magnifying virtual image systems are arranged between the screen 4 and the observer's eyes 13L, 13R and the real images 5L, 5R on the screen 4 arranged behind these eyepieces 6L, 6R are magnified and are recognized as the virtual images magnified on a virtual screen 7 existing behind the screen 4 by the observer M.

BEST AVAILABLE COPY

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-128612

(43)公開日 平成7年(1995)5月19日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

G02B 27/02

Z 7036-2K

審査請求 未請求 請求項の数1 OL (全 5 頁)

(21)出顧番号	特顧平 5-273301	(71) 出願人 000001889
		三洋電機株式会社
(22) 出願日	平成5年(1993)11月1日	大阪府守口市京阪本通2丁目5番5号
		(72)発明者 池田 貴司
	•	大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
		(72)発明者 寺田 克美
		大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
		(72)発明者 岡田 誠司
		大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
		(74)代理人 弁理士 鳥居 洋
		最終頁に続く

(54) 【発明の名称】 両眼式画像表示装置

(57)【要約】

【目的】 この発明は、装着性が良好で、立体視部分を 大きくすることができる両眼式画像表示装置を提供する ことを目的とする。

【構成】 画像を接眼レンズ6L、6Rを通して拡大虚 像として結像し、左右の眼13L、13Rにそれぞれ映 像として与える両眼式画像表示装置であって、小型液晶 プロジェクタ1し、1Rからスクリーン4に画像を拡大 投影し、この画像を接眼レンズ6L、6Rで拡大する。

【手続補正書】

【提出日】平成6年8月11日 【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0008

【補正方法】変更

【補正内容】

【0008】一方、接眼レンズの口径を大きくせず焦点 距離を小さくせずに視野角を確保するためには、液晶パネルの画面サイズを大きくすれば良い。しかしながら、透過型(直視型)の液晶パネルは、画面表示部分の周囲に基板部分が存在し、画面サイズが大きくなればなるほど、基板部分も大きくなる。図8に従来の画像表示装置における映像の表示態様を示す。同図(a)は表示部分の平面図、(b)は上面図である。図8に示すように、左右に2枚の液晶パネル11L、11Rを配置した場合、左右の画面表示部分21L、21Rの間に基板部分で画面の表示できない領域Aが存在することになる。左右の眼の位置が決まれば、その内側の液晶パネル11L、11Rの表示部分21L、21Rの大きさにより立体視できる部分が決定するために、表示不可能部分(図

中A)が大きくなればなるほど、立体視部分が小さくなるという問題があった。

【手続補正2】

【補正対象書類名】図面

【補正対象項目名】図8

【補正方法】変更

【補正内容】

【図8】

フロントページの続き

(72)発明者 金谷 経一

大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内

の前方に位置するケース9に取り付けられた左右の第1ミラー2L、2Rにて投写光路8L、8Rが90度変更され、同じくケース9に取り付けられた第2ミラー3L、3Rに投写画像が与えられ、この第2ミラー3L、3Rにて光路が90度変更され、観察者の眼13L、13Rの前方に配置されたスクリーン4上に画像が実像5L、5Rとして拡大投写される。

【0015】スクリーン4と観察者の眼13L、13Rの間に拡大虚像系を構成する凸レンズからなる左右の接眼レンズ6L、6Rが配置され、この接眼レンズ6L、6Rの後方に配置されたスクリーン4上の実像5L、5Rが拡大され、スクリーン4の後方にある仮想的スクリーン7上に拡大された虚像として観察者Mに認識される

【0016】このように、この実施例によれば、拡大画像を投写するスクリーン4と小型液晶プロジェクター1L、1R間の距離(投写距離)を自由に設計でき、その画像の拡大率を容易に変更できる。更に、小型液晶プロジェクター1L、1Rを後頭部に配置することにより、光学構成部分でバランスを考慮した設計を行うことができ、装着性が改善される。

【0017】上述した小型液晶プロジェクター1L、1Rの構成例を図3ないし図5を参照して説明する。

【0018】図3に示す小型液晶プロジェクターは単板式の液晶プロジェクターで構成したものであり、カラー液晶パネル15とバックライトとして冷陰極型平面光源16を用い、平面光源16から発射される光がカラー液晶パネル15へ入射し、このカラー液晶パネル15から出射されるカラー画像を投写レンズ14でスクリーン上に投影するものである。

【0019】図4に示す小型液晶プロジェクターは3板式の液晶プロジェクターで構成したものであり、R,G,Bの3原色に対して、それぞれ専用の液晶パネル17、17、17を有し、各液晶パネル17、17、17で変調された光をキューブドプリズム18で合成して、投写レンズ14にてスクリーン上に投影する。尚、図中19はバックライトであり、上記図3のプロジェクターと同じく冷陰極型平面光源等が用いられる。

【0020】図5に示す小型液晶プロジェクターは、図4に示すものと同じく、3枚式の液晶プロジェクターで構成したものである。図4の構成と異なるところは、図4のものが光の合成をキューブドプリズム18で行っているのに対し、図5のものは光の合成をクロスダイクロイックミラー20で行っているところが相違し、他の構成は図4のものと同様である。

【0021】図2はこの発明の第2実施例の概略構成を 示す平面図である。

【0022】図2に示す両眼式画像表示装置は、観察者 Mの頭の後ろの上方部に小型プロジェクター1L(1 D) た配置し このプロジェクター1L(1D) 上川前 方に向かって画像を投写する。そして、第1ミラー2L(2R)を用い下側に光路8L(8R)を変更し、第2ミラー3L(3R)で光路を再度変更し、スクリーン4上に拡大投写する。スクリーン4上の実像を接眼レンズ6L(6R)で仮想スクリーン7上に拡大された虚像を観察する。

【0023】図6は、この発明における左右の映像を表示する態様を示す模式図であり、同図(a)は平面図、同図(b)は上面図である。左右のプロジェクタ1L、1Rから投写された画像がスクリーン4上に投影される。このスクリーン4上に投影される左右の画像の間の間隔Aは、プロジェクター1L、1R、第1ミラー2L、2Rまたは、第2ミラー3L、3Rを調整することによって、容易になくすことができる。すなわち、図8に示す透過型の液晶パネルを用いた両眼式画像表示装置における中央の画像表示できない領域Aが図6に示すこの発明のものによればなくすことができ、立体視部分を大きくすることができる。

【0024】尚、上述した実施例においては、立体画像の表示について説明したが、両プロジェクターに同一映像を表示し、2次元映像を観察することもできる。

[0025]

【発明の効果】以上説明したように、この発明によれば、収差が少ない、装着性の良好な両眼式画像表示装置が得られる。

【0026】また、左右画像表示間の表示不可能部分をなくすることが可能となり、立体表示に用いた場合、立体視部分を大きくすることができる。

【図面の簡単な説明】

【図1】この発明における第1実施例の概略構成を示す 平面図である。

【図2】この発明における第2実施例の概略構成を示す 側面図である。

【図3】この発明に用いられる小型液晶プロジェクター の構成を示す模式図である。

【図4】この発明に用いられる小型液晶プロジェクター の構成を示す模式図である。

【図5】この発明に用いられる小型液晶プロジェクター の構成を示す模式図である。

【図6】この発明の両眼式画像表示装置の左右の映像の 表示態様を示す模式図である。

【図7】従来の両眼式画像表示装置の概略構成を示す平面図である。

【図8】従来の両眼式画像表示装置の左右の映像の表示 態様を示す模式図である。

【符号の説明】

1L、1R 小型プロジェクター

2L、2R 第1ミラー

3L、3R 第2ミラー

7711-1

【特許請求の範囲】

【請求項1】 画像を拡大虚像系を通して拡大虚像として結像し、左右の眼にそれぞれ映像として与える両眼式 画像表示装置であって、投写光学系で画像を拡大投写し た実像を拡大虚像系で拡大することを特徴とする両眼式 画像表示装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、左右両眼に各々画像表示装置を有する両眼式画像表示装置に関し、特に、個人の頭部に装着する画像表示装置に好適な両眼式画像表示装置に関する。

[0002]

【従来の技術】左右両眼に各々画像表示装置を備え、左右の画像表示装置に異なる画像を表示することにより、 観察者が左右の眼に対して表示される画像の違いから得られる両眼視差効果により立体画像を得る個人用の頭部 装着型画像表示装置が種々発表されている。この種の画像表示装置としては、例えば特開平3-292091号 公報等に詳しい。

【0003】図7は従来の画像表示装置の概略構成を示す平面図である。

【0004】この図に示すように、凸レンズあるいはフレネルレンズよりなる左右一組の接眼レンズ6L、6Rにて拡大虚像系を構成し、この接眼レンズ6L、6Rの後方(観察者Mとは反対側)には、それぞれ左右一組の透過型(直視型)の液晶ディスプレイ10L、10Rが配設されている。

【0005】この液晶ディスプレイ10L、10Rはそれぞれ液晶の駆動により画像を表示する液晶パネル11L、11Rと、バックライトとして機能する平面光源12L、12Rとにより構成されている。そして、液晶ディスプレイ10L、10Rの液晶パネル11L、11Rに表示された画像は、接眼レンズ6L、6Rにより遠くに拡大され、液晶ディスプレイ10L、10Rの後方にある仮想的スクリーン7上に虚像となり、観察者Mの左右の眼13L、13Rに認識される。左右の液晶パネル11L、11Rには、異なる画像が表示されており、観察者は左右の眼13L、13Rに対して表示される画像の違いから得られる両眼視差効果により立体画像を視覚することができる。

[0006]

【発明が解決しようとする課題】しかしながら、上述した従来の両眼式画像表示装置においては、視野角確保のため、液晶パネル、バックライト、接眼レンズ(拡大虚像光学系)の各光学的配置は固定され、顔前に配置する必要がある。このため、上記装置を個人用の頭部に装着しようとすると、構成部品が顔前に集中するため重心が前に偏り、装着性が極めて悪いという問題があった。

【000つ】 せた。 南南井ノブのホキハ海見パラルた体

用して、視野角を確保するためには、接眼レンズの口径を大きくし、焦点距離 (f値)を小さくする必要がある。しかし、接眼レンズでは、口径を大きくし、かつ焦点距離を小さくすると収差が大きくなるという問題がある。

【0008】一方、接眼レンズの口径を大きくせず焦点 距離を小さくせずに視野角を確保するためには、液晶パ ネルの画面サイズを大きくすれば良い。しかしながら、 透過型(直視型)の液晶パネルは、画面表示部分の周囲 に基板部分が存在し、画面サイズが大きくなればなるほ ど、基板部分も大きくなる。図8に従来の画像表示装置 における映像の表示態様を示す。同図(a)は表示部分 の平面図、(b)は上面図である。図8に示すように、 左右に2枚の液晶パネル11L、11Rを配置した場 合、左右の画面表示部分12L、12Rの間に基板部分 で画面の表示できない領域Aが存在することになる。左 右の眼の位置が決まれば、その内側の液晶パネル11 L、11Rの表示部分12L、12Rの大きさにより立 体視できる部分が決定するために、表示不可能部分(図 中A)が大きくなればなるほど、立体視部分が小さくな るという問題があった。

【0009】この発明は上述した従来の問題点を解消し、装着性がよく、立体視部分を大きくすることができる両眼式画像表示装置を提供することをその目的とする。

[0010]

【課題を解決するための手段】この発明は、画像を拡大 虚像系を通して拡大虚像として結像し、左右の眼にそれ ぞれ映像として与える両眼式画像表示装置であって、投 写光学系で画像を拡大投写した実像を拡大虚像系で拡大 することを特徴とする。

[0011]

【作用】この発明によれば、投写系で画像を拡大することにより、拡大虚像系の負担する拡大率を小さくすることができ、拡大虚像系(接眼レンズ)における収差を改善することができる。

【0012】また、スクリーン上に投写する左右の画像の間隔は自由に設定することができ、透過型液晶パネルを用いた場合のように基板部分により発生する画像を表示できない領域をなくすことが可能となり、立体視部分を大きくすることができる。

[0013]

【実施例】以下、この発明の実施例につき、図面を参照 して説明する。図1はこの発明の第1実施例の概略構成 を示す平面図である。

【0014】この発明の両眼式画像表示装置は、図1に示すように、観察者Mの頭部の後ろの左右両側に位置するように、それぞれ小型プロジェクター1L、1Rが外装ケース9に取り付けられる。このプロジェクター1

I 1Dかに前七に向かって面像を心管する 銀密老M

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.