A. MUTATION

- A change in the DNA base sequence.
- A base substitution is when one base in the DNA sequence is replaced by another base.

B. SICKLE-CELL ANAEMIA

How it is caused

• Caused by a base <u>substitution</u> mutation in the haemoglobin beta (HBB) gene.

- DNA base sequence changes from CTC → CAC.
- mRNA codon changes from GAG → GUG.
- Protein amino acid sequence changes.
- Glu (6th amino acid) is replaced by Val.
- Protein folds differently.
- Protein has a different tertiary structure.
- (So) haemoglobin molecules stick together/form long strands
- (Causing) red blood cells to become sickle-shaped

Symptoms of sickle-cell anaemia

Sickle-shaped red blood cells have a reduced SA:VOL

(So) slower/less diffusion of oxygen

(Also) they can get stuck in capillaries

(So) blood clots / blockages occur

(So) cells/tissues receive less oxygen

(So) slower/less (aerobic) respiration

(So) less energy released/ATP produced

(So feel) weak and tired

• Sickle cells are also destroyed more rapidly than normal cells, leading to a low red blood cell count (anaemia).

Sickle-cell anaemia and malaria

There are two alleles involved in sickle-cell anaemia: Hb^A (normal) and Hb^S (sickle-cell).

Genotype	Phenotype
Hb ^A Hb ^A	Healthy
Hb Hb s	Sickle-cell trait (but fine)
Hb Hb s	Sickle-cell anaemia

The Hb^s allele that causes sickle-cell anaemia has become quite common in parts of the world affected by malaria

The Hb^s allele provides some resistance to malaria.

Genotype	Selection
Hb ^A Hb ^A	Greater risk of dying from malaria
Hb ^A Hb ^S	Gives a selective advantage as oxygen carriage is okay and has some resistance to malaria
	oray and has some resistance to malana
Hb ^s Hb ^s	Greater risk of dying from sickle-cell anaemia

- HB^A HB^S individuals (heterozygotes) have a selective advantage and are more likely to survive, reproduce and pass on their alleles.
- This is why the HB^s allele is at a higher frequency than expected in some parts of Africa.