	Page 1	IIT Kanpur
Name:		CS771 Intro to ML
Roll N	o.: Dept.:	End-semester Examination Date: November 17, 2017
Instru	ctions:	Total: 120 marks
1. 2. 3. 4.	This question paper contains a total of 8 pages (8 sides of paper). It write your name, roll number, department on every side of every . Write final answers neatly with a pen . Pencil marks can get smu Do not give derivations/elaborate steps unless the question specifications.	y sheet of this booklet. dged and you may lose credit.
Probler	1 (True or False: $12 \times 1 = 12$ marks). For each of the following $\sin \theta$	nply write \mathbf{T} or \mathbf{F} in the box.
1.	The time it takes to make a prediction using a decision tree de in that tree.	epends on the number of nodes
2.	If $f(\mathbf{x})$ is a convex function for $\mathbf{x} \in \mathbb{R}^d$ and $g(\mathbf{x}) = \langle \mathbf{v}, \mathbf{x} \rangle + c$ fo $c \in \mathbb{R}$, then $f + g$ is always a convex function.	r some fixed vector $\mathbf{v} \in \mathbb{R}^d$ and
3.	The k-means++ algorithm for clustering, initializes the cluster c that are closest to each other.	enters to k points in the dataset
4.	In CNNs, a larger pool size, e.g., max pooling a larger number pool, preserves more information about the output of the layer	9
5.	When working with large datasets, held-out validation is cheak-fold cross validation.	per to execute as compared to
6.	The k-means++ algorithm cannot be used when performing ken nonlinear Mercer kernel with an infinite dimensional feature materials.	9
7.	If we learn a single model from a model class and find that the data, then between bagging and boosting, boosting is better	9
8.	The Power method can be used to solve the PCA problem but kernel PCA problem.	it cannot be used to solve the
9.	Solving the SVM problem is cheaper when using a linear ker Gaussian kernel.	rnel than it is when using the
10.	A neural network with a single hidden layer and a single output layer nodes using the sigmoid activation function will always	-
11.	For small scale recommendation problems, say with only 10 iter cast the problem as 10 separate classification problems.	ms to recommend from, we can
12.	When interacting with a typical recommendation system, users users what items they like and what items they do not like.	usually tell the recommendation
Probler	n 2 (Ultra Short Answer: $6 \times 4 = 24$ marks). Give your answers in th	e space provided only.
	rite down below, a feature map corresponding to the Mercer kernel $x_i = (x_i, y_i), i = 1, 2$ are 2D vectors. Note that maps will smaller dimensional dimensional distribution of the map	

Page 2	
--------	--

Nam	e:	rage z				IIT Kanpui CS771 Intro to ML	
Roll	No.:	Dept.:				End-semester Examination Date: November 17, 2017	
2.	take 990 p 300 valida	points as training an tion points is prefer	nd 10 as valida reable wherea	tion. Dick decl s Harry has he	lares that dividinard that taking	validation set. Tom tells me tong into 700 training points and 10 training and 990 validation disagree with the other two?	
3.		has trained a binary n do to boost the ac				accuracy. What is the simplest e level?	
4.		e the intersection kere map corresponding				$ \sin \{\mathbf{x}_i, \mathbf{y}_i\}. \text{ Let } \phi_{\text{int}} : \mathbb{R}^d \to \mathbb{R}^D $ $ \cot \{\mathbf{x}_i, \mathbf{y}_i\}. \text{ Let } \phi_{\text{int}} : \mathbb{R}^d \to \mathbb{R}^D $	
	the Gram $\hat{\phi}(\mathbf{x}) = [K$	matrix with $G_{ij} = \mathbf{x}$ $f(\mathbf{x}, \mathbf{x}^1), \dots, K(\mathbf{x}, \mathbf{x}^n)$	$K(\mathbf{x}^i, \mathbf{x}^j)$. I p $[h] \in \mathbb{R}^n$. Solve	$\begin{array}{l} \text{erform landma} \\ \hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \\ \end{array}$	rking with all tr $\mathbf{v} \in \mathbb{R}^n \lambda \cdot \ \mathbf{w}\ _2^2 + \sum_{i=1}^n \lambda_i \cdot \ \mathbf{w}\ _$	$\langle \mathcal{X} \to \mathbb{R}$. Let $G \in \mathbb{R}^{n \times n}$ denote aining points as landmarks i.e. $\sum_{i=1}^{n} \left(y^i - \left\langle \mathbf{w}, \hat{\phi}(\mathbf{x}^i) \right\rangle \right)^2$ at the expression for $\hat{\mathbf{w}}$.	

Page 3

6. Note that the predictor we learnt in part 5 looks like \$\left(\bar{\psi}, \hat{\phi}(\bar{\psi})\right) = \sum_{i=1}^n \gamma_i \cdot K(\bar{\psi}, \bar{\psi}, \bar{\psi}(\bar{\psi}, \bar{\psi})\right) \text{for all } \bar{x}_i^i \text{ Note that } K(\bar{\psi}, \bar{\psi}, \bar{\psi}) \right) \text{ for all } \bar{x}_i^i \text{ \$\ilde{\psi} \\ \text{Suppose we had instead solved \$\bar{\psi} = \arg \psi \min \bar{\psi} \cdot \bar{\psi} \\ \text{l} \bar{\psi} \bar{\psi} \\ \psi \bar{\psi} \\ \psi \	ame: oll N			Dept.:	CS771 Intro to MI End-semester Examination Date: November 17, 201
1. Let $\mathbf{x} = [1, \ 1]^{\top}, \mathbf{y} = [2, \ 1]^{\top} \in \mathbb{R}^2$ and let $f : \mathbb{R}^2 \to \mathbb{R}^2$ with $f(\mathbf{z}) = z_1 \cdot \mathbf{x} + z_2 \cdot \mathbf{y}$ for any $\mathbf{z} = [z_1, z_2]^{\top} \in \mathbb{R}$ Further, $\mathbf{z} = g(r) = [r^2, \ r^3]$ where $r \in \mathbb{R}$. Show how chain rule is applied here giving major steps of the	le S ke h	et $\phi_K : \mathcal{X} \to \mathcal{H}$ be Suppose we had in ternel ridge regres have obtained a pr $y = [y^1, \dots, y^n]^\top$.	e a feature map for the enstead solved $\hat{\mathbf{W}} = \text{ar}$ sion on the dataset director $\left\langle \hat{\mathbf{W}}, \phi_K(\mathbf{x}) \right\rangle = 0$ Show that if G is inverse.	e kernel K so that $K(\mathbf{x}^i, \mathbf{x})$ rg $\min_{\mathbf{W} \in \mathcal{H}} \lambda \cdot \ \mathbf{W}\ _{\mathcal{H}}^2 + \sum_{i=1}^n \delta_i \cdot K(\mathbf{x}, \mathbf{x}^i)$ where $\sum_{i=1}^n \delta_i \cdot K(\mathbf{x}, \mathbf{x}^i)$ where vertible and we set $\lambda = 0$,	$\mathbf{x}^{i} = \langle \phi_K(\mathbf{x}^i), \phi_K(\mathbf{x}^j) \rangle$ for all $\mathbf{x}^i, \mathbf{x}^j \in \mathcal{X}$ $\mathbf{x}^n_{i=1} (y^i - \langle \mathbf{W}, \phi_K(\mathbf{x}^i) \rangle)^2$, i.e. performed king then, as we saw in class, we would $\boldsymbol{\delta} = [\delta_1, \dots, \delta_n]^\top = (G + \lambda \cdot I)^{-1} \mathbf{y}$ where then $\gamma_i = \delta_i$ for all $i \in [n]$. This mean
1. Let $\mathbf{x} = [1, \ 1]^{\top}, \mathbf{y} = [2, \ 1]^{\top} \in \mathbb{R}^2$ and let $f : \mathbb{R}^2 \to \mathbb{R}^2$ with $f(\mathbf{z}) = z_1 \cdot \mathbf{x} + z_2 \cdot \mathbf{y}$ for any $\mathbf{z} = [z_1, z_2]^{\top} \in \mathbb{R}$ Further, $\mathbf{z} = g(r) = [r^2, \ r^3]$ where $r \in \mathbb{R}$. Show how chain rule is applied here giving major steps of the					
1. Let $\mathbf{x} = [1, \ 1]^{\top}, \mathbf{y} = [2, \ 1]^{\top} \in \mathbb{R}^2$ and let $f : \mathbb{R}^2 \to \mathbb{R}^2$ with $f(\mathbf{z}) = z_1 \cdot \mathbf{x} + z_2 \cdot \mathbf{y}$ for any $\mathbf{z} = [z_1, z_2]^{\top} \in \mathbb{R}$ Further, $\mathbf{z} = g(r) = [r^2, \ r^3]$ where $r \in \mathbb{R}$. Show how chain rule is applied here giving major steps of the					
	1. L F	Let $\mathbf{x} = [1, \ 1]^{\top}, \mathbf{y}$ Further, $\mathbf{z} = g(r)$	$= [2, 1]^{\top} \in \mathbb{R}^2 \text{ and let}$ $= [r^2, r^3] \text{ where } r \in \mathbb{I}$	$f: \mathbb{R}^2 \to \mathbb{R}^2 \text{ with } f(\mathbf{z}) = \mathbb{R}$. Show how chain rule is	$z = z_1 \cdot \mathbf{x} + z_2 \cdot \mathbf{y}$ for any $\mathbf{z} = [z_1, z_2]^{\top} \in \mathbb{R}$ s applied here giving major steps of the

Page	4

	Page 4				
Name:				IIT Kanpur CS771 Intro to ML	
Roll N	o.:	Dept.:		semester Examination ate: November 17, 2017	
K ke ar	(\mathbf{x}, \mathbf{z}) and $\ \phi_K(\mathbf{x}) - \phi_K(\mathbf{y})\ $ rnel K . This means that \mathbf{y} are closer than \mathbf{x} and	r kernel $K: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ and to $\ \mathbf{y}\ _{\mathcal{H}} < \ \phi_K(\mathbf{x}) - \phi_K(\mathbf{z})\ _{\mathcal{H}}$, where the kernel thinks \mathbf{x} and \mathbf{y} are leading to give the explicit $\ \mathbf{y}\ _{\mathcal{H}}$, $\ \phi_K(\mathbf{x}) - \phi_K(\mathbf{y})\ _{\mathcal{H}}$	ere $\phi_K : \mathbb{R}^2 \to \mathcal{H}$ is the ess similar than \mathbf{x} and form of the kernel, the	the feature map for the l z but in the RKHS, x ne three vectors, as well	
S_1 M	appose $\phi([1, 1]) = [1, 1, 1]$ $f \in \mathbb{R}^{4 \times 2}$ such that $\phi(\mathbf{x}) = 0$ odel $\mathbf{w} \in \mathbb{R}^2$ such that $\langle \mathbf{w} \rangle$	ear map i.e. $\phi(\mathbf{x}+\mathbf{y}) = \phi(\mathbf{x})+\phi(\mathbf{y})$ 2, 1], $\phi([1, 2]) = [1, 2, 3, 2]$, a $M\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^2$. Suppose I $\mathbf{x} = \langle \mathbf{W}, \phi(\mathbf{x}) \rangle$ for all $\mathbf{x} \in \mathbb{R}^2$.	and $\phi([2, 0]) = [2, 0, 0]$ learn a model $\mathbf{W} = [2, 0]$ Fill entries of M and	$[2, 0]$. Find the matrix $[2, 3, 1, 1] \in \mathbb{R}^4$. Find a	
	M =	w W	' = [
X fu	$= [\mathbf{x}^1, \dots, \mathbf{x}^n] \in \mathbb{R}^{d \times n}, \mathbf{y} = \mathbf{x}^n$	e regression problem $\min_{\mathbf{w} \in \mathbb{R}^d} 0$. $= [y^1, \dots, y^n]^{\top} \in \mathbb{R}^n$. Write down in $\mathbf{w} \in \mathbb{R}^d$. Then start at \mathbf{w}^0 rite down expressions for the iterity.	the gradient and the 0 and execute the 1	Hessian of the objective Newton method on this	

Nam	æ:		IIT Kanpuı CS771 Intro to ML			
Roll	No	o.:		Dept.:		End-semester Examination Date: November 17, 2017
	wh lik	here $\hat{y}, y \in \mathbb{R}$. Conscibilition distribution	ider the following for $\mathbb{P}[y^i \mathbf{x}^i, \mathbf{w}]$ as	optimization prond prior $\mathbb{P}\left[\mathbf{w}\right]$ such	oblem with \mathbf{x}^i h that $\hat{\mathbf{w}}$ is the	otherwise $\ell_{\epsilon}(y, \hat{y}) = (y - \hat{y} - \epsilon)^2$ $f \in \mathbb{R}^d, y^i \in \mathbb{R}$ and write down a me MAP estimate for your model.
			$\hat{\mathbf{w}} = \underset{\mathbf{v}}{\operatorname{arg}}$	$ \operatorname{g min}_{\mathbf{v} \in \mathbb{R}^d} \ \sum_{i=1}^n \ell_{\epsilon}(y^i, \langle \mathbf{w} \rangle) $	$(\mathbf{v},\mathbf{x}^iig angle) + \ \mathbf{w}\ _2^2$	2 2
	(\mathbf{x}^t)	$(x^t, y^t) \in \mathbb{R}^d \times \{-1, +1\}$ of matter which value	.). Show that if we of η we choose	re decide to use a c so long as we cho	constant step pose a value η	it misclassifies the t -th data point length i.e. $\eta_t \equiv \eta$ for all t , it does $t > 0$. Specifically, show that the enstant step length η , for all $\eta > 0$.

				Page	6			IIT Ka	
Name:							CS7	IIT Ka 71 Intro to	•
Roll No	o.:	.: Dept.:			End-semester Examination Date: November 17, 20		ation		
variant $\mathbf{x}^i \in \mathbb{R}^d$ where \mathbf{t}^l $\{\sigma_i\}_{i \in [n]}$ You may question 1. Define \mathbf{x}^l	of $\lim_{l \to 0} \int_{l} \int_{$	lear regression we $1, \ldots, n$ denote i is $\epsilon^i \sim \mathcal{N}(0, \sigma_i^2)$ at the shorthands ow, your expression for the erive the MAP	$+6+6=24$ may where the noise at the covariates/fig. For the <i>i</i> -th day where that this is $X=[\mathbf{x}^1,\ldots,\mathbf{x}^n]$ is sions may have used or $\mathbb{P}\left[\sigma_i y^i,\mathbf{x}^i,\mathbf{w}^i\right]$ estimate for σ_i is $\mathbf{x}^i,\mathbf{x}^i,\mathbf{w}^i$.	added to each feature vector at a point has a discriminate \mathbf{x}^n , $\mathbf{y} = [y^1, \dots]$ unspecified not \mathbf{y}^n using the pair. arg max	to data point of the respective model and x_i . The respective model and x_i , y^n , Σ = distribution of the respective prior $\mathbb{P}\left[\sigma_i\right] = \mathbb{P}\left[\sigma_i \mid y^i, \mathbf{x}^i, \mathbf{w}^i\right]$	comes from onses are general with a constant \mathbf{x}^i are not \mathbf{x}^i are not \mathbf{x}^i are not constants. Constant \mathbf{x}^i of \mathbf{x}^i if $\mathbf{x}^i \in [0, \infty)$ assuming	a different of enerated as y nown $\{(\mathbf{x}^i, y^i)\}$ of probabilis σ_n^2 to be helpfive brief/conditions, 1] and $\mathbb{P}[\sigma_i]$ g the model of	distribution! $i^i = \langle \mathbf{w}, \mathbf{x}^i \rangle$ $i^i = \langle \mathbf{w}, \mathbf{x}^i \rangle$ $i^i = \langle \mathbf{w}, \mathbf{x}^i \rangle$ $i^i = \langle \mathbf{w}, \mathbf{x}^i \rangle$ but matrix of the properties of the	Let $+ \epsilon^i$, nodel elled. in all ions. wise.

2. Derive an expression for $\mathbb{P}[\mathbf{w} | y^i, \mathbf{x}^i, \sigma_i]$ using a standard Gaussian prior $\mathbb{P}[\mathbf{w}] = \frac{1}{\sqrt{(2\pi)^d}} \exp(-\frac{1}{2} \|\mathbf{w}\|_2^2)$. Then derive the MAP estimate for \mathbf{w} i.e. $\arg\max \mathbb{P}[\mathbf{w} | \mathbf{y}, X, \Sigma]$ assuming that $\{\sigma_i\}$ are known.

3. Using the above estimates, give the pseudocode for an alternating optimization algorithm for estimating \mathbf{w} that performs MAP-based hard assignments to the latent variables σ_i to solve the problem. Give precise update expressions in your pseudocode and not just vague statements.

Page 7 Name: Roll No.: Dept.:

IIT Kanpur CS771 Intro to ML **End-semester Examination**

Date: November 17, 2017

Problem 5 (Long Answer: 8 + 16 = 24 marks). For each of the problems, give your answer in space provided.

1. Let $R \in \mathbb{R}^{d \times d}$ be a symmetric, invertible matrix, $\mathbf{x}^i \in \mathbb{R}^d$, and $y^i \in \mathbb{R}$ for $i = 1, \dots, n$. Using the same trick we used in class of introducing a new variable $\mathbf{r}_i = y^i - \langle \mathbf{w}, \mathbf{x}^i \rangle$ and corresponding constraints, solve the problem given below. Give 1) the Lagrangian, 2) the simplified dual optimization problem (with primal variables eliminated completely), 3) the dual solution and 4) the final primal solution $\hat{\mathbf{w}}$. Some shorthands you may find useful are $X = [\mathbf{x}^1, \dots, \mathbf{x}^n] \in \mathbb{R}^{d \times n}$ and $H = X^\top R^{-1} X \in \mathbb{R}^{n \times n}$ i.e. $H_{ij} = (\mathbf{x}^i)^\top R^{-1} \mathbf{x}^j$.

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{2} \mathbf{w}^{\top} R \mathbf{w} + \frac{1}{2} \sum_{i=1}^n (y^i - \langle \mathbf{w}, \mathbf{x}^i \rangle)^2$$

2. Flopkart.com has a customer who uses his account to make purchases for his entire family. There are

k members in the family, each indexed by a vector $\mathbf{u}^1, \dots, \mathbf{u}^k \in \mathbb{R}^d$. Each product on Flopkart.com is also indexed by a vector $\mathbf{v} \in \mathbb{R}^d$. It is known that the *i*-th member will give the product \mathbf{v} , a rating $r = \langle \mathbf{u}^i, \mathbf{v} \rangle + \epsilon$ where $\epsilon \sim \mathcal{N}(0, 1)$. The customer has made n purchases with Flopkart. In the t-th purchase, the item \mathbf{v}^t was purchased and a rating r^t was given to it but it is not known which member gave that rating. We have $\{(\mathbf{v}^t, r^t)\}_{t \in [n]}$ with us. Design an algorithm to estimate the user vectors corresponding to the k members of the family. Clearly specify what are the observed and latent variables in your model and give major steps of derivation whenever your algorithm uses a MAP/MLE/other estimate. Give pseudo code of your algorithm. Avoid very fine and unnecessary details e.g. application of first order optimality.

Page 8

Name:	IIT Kanpur CS771 Intro to ML	
Roll No.:	Dept.:	End-semester Examination Date: November 17, 2017