Importing Liabraries

```
In [1]: import pandas as pd
import numpy as np
```

Loading Dataset

```
In [3]: dataset=pd.read_csv(r'D:\csv files\Brain Stroke.csv')
    dataset
```

Out[3]:

	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glı	
0	Male	67.0	0	1	Yes	Private	Urban		
1	Male	80.0	0	1	Yes	Private	Rural		
2	Female	49.0	0	0	Yes	Private	Urban		
3	Female	79.0	1	0	Yes	Self- employed	Rural		
4	Male	81.0	0	0	Yes	Private	Urban		
4976	Male	41.0	0	0	No	Private	Rural		
4977	Male	40.0	0	0	Yes	Private	Urban		
4978	Female	45.0	1	0	Yes	Govt_job	Rural		
4979	Male	40.0	0	0	Yes	Private	Rural		
4980	Female	80.0	1	0	Yes	Private	Urban		
4981 rows × 11 columns									

Preprocessing

```
In [6]: from sklearn.preprocessing import LabelEncoder
l1=LabelEncoder()

In [7]: dataset['gender']=l1.fit_transform(dataset['gender'])
    dataset['ever_married']=l1.fit_transform(dataset['ever_married'])
    dataset['work_type']=l1.fit_transform(dataset['work_type'])
    dataset['Residence_type']=l1.fit_transform(dataset['Residence_type'])
    dataset['smoking_status']=l1.fit_transform(dataset['smoking_status'])
```

In [8]: dataset

Out[8]:

	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glı
0	1	67.0	0	1	1	1	1	
1	1	80.0	0	1	1	1	0	
2	0	49.0	0	0	1	1	1	
3	0	79.0	1	0	1	2	0	
4	1	81.0	0	0	1	1	1	
4976	1	41.0	0	0	0	1	0	
4977	1	40.0	0	0	1	1	1	
4978	0	45.0	1	0	1	0	0	
4979	1	40.0	0	0	1	1	0	
4980	0	80.0	1	0	1	1	1	

4981 rows × 11 columns

```
In [9]: x=dataset.iloc[:,:-1].values
        y=dataset.iloc[:,-1].values
In [10]: x
Out[10]: array([[
                                 0., ..., 228.69, 36.6,
                  1.
                         67.,
                                                             1.
                                                                ],
                  1.,
                         80.,
                                 0.,..., 105.92, 32.5,
                                                             2.
                                                               ],
                         49. ,
                                 0., ..., 171.23,
                                                   34.4 ,
                                                             3.
                                                                ],
                                                   31.8 ,
                         45.
                                            95.02,
                                                             3.
                                                               ],
                                 1.
                                                    30.,
                                                             3. ],
                         40.,
                  1.,
                                 0.
                                            83.94,
                         80.,
                                 1.
                                            83.75,
                                                   29.1 ,
                                                                ]])
In [11]: y
Out[11]: array([1, 1, 1, ..., 0, 0, 0], dtype=int64)
In [13]: from sklearn.preprocessing import StandardScaler
         sc=StandardScaler()
         scale=sc.fit_transform(x)
```

```
In [14]: | scale
Out[14]: array([[ 1.18390850e+00,
                                   1.04058433e+00, -3.26185770e-01, ...,
                  2.72341090e+00, 1.19323816e+00, -3.53933192e-01],
                [ 1.18390850e+00, 1.61427033e+00, -3.26185770e-01, ...,
                 -5.22766599e-04, 5.89389611e-01, 5.78839946e-01],
                [-8.44659868e-01, 2.46249882e-01, -3.26185770e-01, ...,
                  1.44852918e+00, 8.69221866e-01, 1.51161308e+00],
                [-8.44659868e-01, 6.97311148e-02, 3.06573766e+00, ...,
                 -2.42364234e-01, 4.86293516e-01, 1.51161308e+00],
                [ 1.18390850e+00, -1.50917344e-01, -3.26185770e-01, ...,
                 -4.88199415e-01, 2.21189274e-01, 1.51161308e+00],
                [-8.44659868e-01, 1.61427033e+00, 3.06573766e+00, ...,
                 -4.92415000e-01, 8.86371531e-02, 5.78839946e-01]])
In [15]: dataset['stroke'].value_counts()
Out[15]: 0
              4733
               248
         1
         Name: stroke, dtype: int64
In [16]: from imblearn.over sampling import RandomOverSampler
         ros=RandomOverSampler()
         X,Y=ros.fit resample(scale,y)
In [17]: | from collections import Counter
         print(Counter(Y))
         Counter({1: 4733, 0: 4733})
         Splitting data into train and test set
In [18]: from sklearn.model selection import train test split
         x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=9)
```

Logistic Regression

Accuracy of Logistic Regression

```
In [23]: from sklearn.metrics import accuracy_score
print(accuracy_score(y_pred,y_test)*100)
```

75.55438225976768

KNN

```
In [25]: from sklearn.neighbors import KNeighborsClassifier
    knn=KNeighborsClassifier(n_neighbors=5,metric='minkowski',p=2)
    knn.fit(x_train,y_train)

Out[25]: KNeighborsClassifier()

In [26]: y1_pred=knn.predict(x_test)
```

```
y1_pred
```

Out[26]: array([1, 1, 1, ..., 0, 1, 1], dtype=int64)

Accuracy of KNN

```
In [27]: from sklearn.metrics import accuracy_score
print(accuracy_score(y1_pred,y_test)*100)
92.18585005279832
```

```
In [ ]:
```