Storm

A probabilistic model checker

Florent Delgrange

UMONS

Faculté des Sciences

Mab2 Science Informatique

Plan

- 1. Modèles
 - 1.1 Temps continu
- 2. Formats d'entrée
 - 2.1 PRISM
 - 2.2 Explicite
- Propriétés
 - 3.1 PrCTL
- 4. Implémentation
 - 4.1 Engines
 - 4.2 Arithmétique exacte
 - 4.3 Solveurs
- Résultats

Modèles

Modèles

- Chaines de Markov à temps discret (CM)
- Chaines de Markov à temps continu (CMC)
- Processus décisionnels de Markov (PDM)
- Automates de Markov (AM)

Modèles

Chaines de Markov à temps continu

Definition (Chaîne de Markov à temps continu)

Une chaîne de Markov \mathcal{M} à temps continu est définie par

- un ensemble d'états S
- une fonction de transition initiale $Q: S \times S \rightarrow [0, 1] \cap \mathbb{Q}$, définissant une **distribution de probabilité intiale** sur les états S
- une fonction de taux d'intensité $\lambda: S \to \mathbb{R}$
- une fonction génératrice $A: S \times S \rightarrow [0, 1]$

Chaînes de Markov à temps continu

Soient $s, s' \in S$, deux états de \mathcal{M} et T_s , le temps passé par le système dans l'état s

- $\mathbb{P}(T_s \ge t) = e^{-\lambda(s)t}$
- La distribution exponentielle négative est la seule à respecter la propriété de Markov (états sans mémoire)!
- $\mathbb{E}(T_s) = \frac{1}{\lambda(s)}$
- $A(s, s') = \begin{cases} -\lambda(s) & \text{si } s = s' \\ \lambda(s) \cdot Q(s, s') & \text{sinon} \end{cases}$

Remarque : Q(s, s') = 0 en temps continu

Modèles

Chaînes de Markov à temps continu

Supposons à présent que l'ensemble des états S de la chaîne est **fini**. Alors, la fonction $\mathcal A$ peut être caractérisée par une matrice génératrice A, telle que

$$\mathcal{A}(s_i, s_j) = A_{i,j}$$

Dès lors, soit la fonction $P: \mathbb{R}^+ \to [0,1]^{|S| \times |S|}$, la fonction générant la matrice caractérisant la fonction de transition $\Delta: S \times S \times \mathbb{R}^+ \times [0,1]$ selon un temps $t \in \mathbb{R}^+$,

$$P(t) = \begin{cases} 1 & \text{si } t = 0 \\ e^{At} & \text{sinon} \end{cases}$$
$$\Leftrightarrow \Delta(s_i, s_j, t) = P(t)_{i,j}$$

Plan

- 1. Modèles
 - 1.1 Temps continu
- 2. Formats d'entrée
 - 2.1 PRISM
 - 2.2 Explicite
- Propriétés
 - 3.1 PrCTL
- 4. Implémentation
 - 4.1 Engines
 - 4.2 Arithmétique exacte
 - 4.3 Solveurs
- Résultats

Format d'entrées

- **PRISM**
- JANI
- Réseaux de Petri stochastiques généralisés (GSPN)
- Dynamic Fault Trees (DFTs)
- pGCL
- **Explicite**

PRISM

Syntaxe

Soit $\mathcal{M} = (S, A, \Delta, w)$, un PDM.

Énumération et initialisation des états

Soit $X \subseteq S$, avec $|X| = n \in \mathbb{N}$

$$x : [0...n-1] init 0$$

avec x_0 , un état initial de \mathcal{M}

PRISM

Syntaxe

Soit $\mathcal{M} = (S, A, \Delta, w)$, un PDM.

Transitions

Soit $S_i \in S$, le $i^{\text{ème}}$ état de S. Pour toute action $\alpha \in A(s)$,

$$[\alpha]$$
 $S = i \rightarrow \delta_1 : S' = j_1 + \cdots + \delta_m : S' = j_m$

Avec

- $S_{i_1}, \ldots S_{i_m}$, les α -successeurs de S_i
- $\delta_k = \Delta(s_i, \alpha, s_{i\nu})$

Syntaxe

Soit $\mathcal{M} = (S, A, \Delta, w)$, un PDM.

Rewards

Soient une action $\alpha \in A$ et Φ , une formule d'états de S,

 $[\alpha]$ $\Phi:r$

r correspond à la *récompense* du choix de l'action α menant aux états satisfaisant Φ .

Note: Le poids de l'action α , i.e., $W(\alpha)$, est exprimé par

 $[\alpha]$ true: r

PRISM

Exemple

```
mdp
 2
 3
     module classic
 4
 5
     s: [0..2] init 0;
6
7
     [beta] s=0 \rightarrow 0.5 : (s'=1) + 0.5 : (s'=2):
     [qamma] s=1 -> 1 : (s'=0);
     [alpha] s=2 \rightarrow 1 : (s'=2);
10
     [gamma] s=2 \rightarrow 1 : (s'=0);
11
12
     endmodule
13
                                                                     \beta | 3
                                                         1/2
                                                                                  1/2
     label "T" = s=1:
14
15
16
     rewards "weights"
17
       [alpha] true : 5;
       [beta] true : 3;
18
       [gamma] true : 2;
19
     endrewards
20
```

Explicite

Explicite

Soit $\mathcal{M} = (S, A, \Delta, w)$, un PDM. \mathcal{M} est représenté par

• *P*, une matrice de transition de 4 colonnes telle que chaque ligne exprime la probabilité d'une transition.

Exemple: P_i . = 0 0 1 0.3 signifie que l'état $s_0 \in S$ rejoint l'état s_1 lorsque l'actions s_0 est choisie avec une probabilité $\frac{3}{10}$

 R, une matrice de récompenses (rewards transition matrix) de taille 4 telle que chaque ligne exprime la récompense d'une transition.

Exemple: R_i . = 0 0 1 5 signifie que la transition de l'état $s_0 \in S$ en l'état s_1 lorsque l'actions a_0 est choisie induit une récompense de 5.

Explicite

Exemple

$$P = \begin{pmatrix} 0 & 1 & 1 & \frac{1}{2} \\ 0 & 1 & 2 & \frac{1}{2} \\ 1 & 2 & 0 & 1 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 0 & 1 \end{pmatrix}$$

$$R = \begin{pmatrix} 0 & 1 & 1 & 3 \\ 0 & 1 & 2 & 3 \\ 1 & 2 & 0 & 2 \\ 2 & 0 & 2 & 5 \\ 2 & 2 & 0 & 2 \end{pmatrix}$$

Plan

- 1. Modèles
 - 1.1 Temps continu
- 2 Formats d'entrée
 - 2.1 PRISM
 - 2.2 Explicite
- 3. Propriétés
 - 3.1 PrCTL
- 4. Implémentation
 - 4.1 Engines
 - 4.2 Arithmétique exacte
 - 4.3 Solveurs
- Résultats

PrCTL

Propriétés

États

PrCTL (Prism-CTL)

Soient Φ , Ψ , des formules d'état,

- Φ U Ψ Φ until Ψ
- $F\Phi \equiv true U \Phi$
- ΦU{op}tΨ (après t étapes en temps discret et t unités de temps en continu)
- $F\{op\}\Phi \equiv trueU\{op\}\Phi$
- $G\Phi$ exprime les chemins pour lesquel Φ est vrai à chaque étape

Propriétés

Chemins

PrCTL (Prism-CTL)

Soient Φ , Ψ , des formules d'état,

- P{op}x [Φ] probabilité des chemins satisfaisant Φ, avec X un seuil de probabilité
- $LRA\{op\}X[\Phi]$ propabilité des chemins satisfaisant Φ lorsque le système est en **état stationnaire**, avec X un seuil de probabilité
- $R\{op\}C[\Phi]$ coût attendu pour atteindre les chemins satisfaisant Φ , avec C, un seuil de coût

Pour les systèmes non-déterministes, min ou max doit être spécifié avant l'opérateur (e.g., *Pmax*, *Rmin*, etc.)

Propriétés

PrCTL

Exemples de propriétés :

- $P \le x[FT] \equiv \mathcal{P}_{\le x} \lozenge T$, i.e., FT = trueUT
- $P = x[F \le tT] \equiv \mathcal{P}_{=x}(\lozenge^{\le t}T)$, i.e., T est atteint après t étapes (ou t unités de temps lorsque ce dernier est continu) dans une CM
- $Pmax = x[FT] \equiv \mathcal{P}^{max}_{=x} \lozenge T$ (choix non-déterministes)
- LRA $<= x[\Psi]$, i.e., la probabilité que le système se situe en un des états qui satisfont la formule d'états Ψ lorsque le système est en état stationnaire (long run average probability) est inférieure à X
- Rmin <= x [FT], i.e., l'espérance maximale pour atteindre un état de T est inférieure à X (choix non-déterministes)
- etc.

PrCTL

Propriétés

PrCTL

Exemples de requêtes :

- P = ?[F <= tT]
- Pmax =? [FT] (choix non-déterministes)
- *LRA* <=?[Ψ]
- Rmin <=? [FT] (choix non-déterministes)
- etc.

- 1. Modèles

- 4. Implémentation
 - 4.1 Engines
 - 4.2 Arithmétique exacte
 - 4.3 Solveurs

- Hybrid: représentations par des MTBDDs, mais emploie parfois des matrices creuses si les opérations sont jugées plus appropriées avec ce format
- DD : représentation par MTBDDs
- Abstraction-Refinement: rend les modèles (pas forcément finis) de Markov à temps discret en jeux stochastiques (finis) et améliore l'abstraction si nécessaire.
- Exploration : représentation par matrice creuse. Ce modèle explore l'espace d'état avec des méthodes de machine learning.

Sparse

- En général, les graphes sous-jacent des modèles de Markov sont rarement complets (ou presque)
- Les matrices de transition représentant de tels modèles sont creuses
 - des méthodes d'analyse numérique permettent des implémentations efficaces
 - pour stocker de telles matrices en mémoire
 - pour effectuer rapidement les opérations matricielles

Sparse

Représentation

Exemple de représentation (avec stormpy)

>> model.transition_matrix()

```
0 1 2
---- group 0/2 ----
0 ( 0 0.5 0.5 ) 0
---- group 1/2 ----
1 ( 1 0 0 ) 1
---- group 2/2 ----
2 ( 1 0 0 ) 2
3 ( 0 0 1 ) 3
```

Hybrid et DD

- MTBDD: Multi Terminal Binary Decision Diagram
- BDDs permettant des valeurs numériques comme valeur pour les feuilles
- DAG pour représenter de façon plus compacte les BDDs
- efficace pour diverses opérations matricielles

Arithmétique exacte

Arithmétique exacte

- Les méthodes numériques appliquées aux vérificateurs de modèles probabilistes (probabilistic model checkers) sont sujets à des problèmes numériques
- **STORM** permet d'activer le mode d'arithmétique exacte permettant d'obtenir des résultats précis

Arithmétique exacte

Arithmétique exacte

Exemple

stormpy 1.1.1 (désactivée par défaut)

```
formula = 'Rmin=? [F "T"]'
properties = \
  stormpy.parse_properties_for_prism_program(
    formula, prism_program
model = stormpy.build_model(prism_program, properties)
result = stormpy.model_checking(model, properties[0])
assert result result for all states
for s, x in enumerate(result.get_values()):
    print("v[{}]={}".format(s, x))
```

```
v[0]=7.999990463256836
v[1]=0.0
v[2]=9.999984741210938
```

Arithmétique exacte

Arithmétique exacte

Exemple

stormpy 1.2.0 (activée par défaut)

```
formula = 'Rmin=? [F "T"]'
properties = \
  stormpy.parse_properties_for_prism_program(
    formula, prism_program
model = stormpy.build_model(prism_program, properties)
result = stormpy.model_checking(model, properties[0])
assert result result for all states
for s, x in enumerate(result.get_values()):
    print("v[{}]={}".format(s, x))
```

```
0.8 = [0]v
v[1]=0.0
v[2]=10.0
```

Solveurs

Solveurs

- Équations de Bellman utilisant les matrices creuses et les MTBDDs
- MILP (Mixed Integer Linear Programming)
- Jeux stochastiques

Note: STORM ne supporte pas les jeux stochastiques en modèle d'entrée; mais le *abstraction refinement engine* utilise ces représentations

Solveurs

- SMT (Satisfiability Modulo Theories)
 - problème de décision pour les formules de logique du premier ordre avec égalité et sans quantificateurs
 - But : déterminer si une telle formule est satisfiable par rapport à une théorie sous-jacente
 - Exemple:

$$(x < 0 \lor x > 1) \land (x = y + 5) \land (y > 0)$$

satisfiable par rapport à la théorie des nombres réels?

 En pratique : employé pour minimiser la taille des modèles de Markov par bisimulation (curse of dimensionality).

Storm 1.2.0

- Nouvelle release (8 décembre 2017)
- Support pour les "reward bounded reachability properties" en multi-objectif
- Model checking par programmation linéaire pour les PDM
- Performances augmentées
- etc.

Plan

- 1. Modèles
 - 1.1 Temps continu
- Formats d'entrée
 - 2.1 PRISM
 - 2.2 Explicite
- Propriétés
 - 3.1 PrCTL
- 4. Implémentation
 - 4.1 Engines
 - 4.2 Arithmétique exacte
 - 4.3 Solveurs
- 5. Résultats

Résultats

