## Wstęp do uczenia maszynowego Praca domowa 2

Franciszek Saliński

19 listopada 2024

## 1 Eksploracja i przygotowanie danych

Analizując dane sprawdziłem, czy występują brakujące wartości, których nie znalazłem. Następnie sprawdziłem typy danych oraz przyjrzałem się rozkładom i macierzy korelacji.

Przetworzyłem dane, tak aby nadawały się do modelowania. Dla kolumny 'employment' zastosowałem label encoding przypisując kolejnym przedziałom rosnąco wartości 0, 1, 2, 3 i 4. Dla pozostałych kolumn kategorycznych zastosowałem One-hot encoding wyrzucając jedną z kolumn. Kolumny numeryczne ustandaryzowałem do rozkładu ze średnią 0 i odchyleniem standardowym 1. Zmienną celu zmapowałem tak, żeby wartość 'bad' była 1, a 'good' 0, ponieważ bardziej interesuje nas model który skutecznie wykrywał będzie tych klientów, którym nie warto dać kredytu. Zmienna celu nie jest idealnie zbalansowana, dlatego dla wszystkich modeli używałem parametru  $class\_weigth = "balanced"$ .

Podzieliłem dane na zbiór treningowy i testowy w stosunku 8:2.

## 2 Część 1

Za pomocą 5-krotnej kroswalidacji na zbiorze treningowym szukałem modeli, które osiągną najlepszą metrykę AUC. W tym celu optymalizowałem hiperparametr C dla modeli z regularyzacją L1, L2 oraz ElasticNet, a także l1-ratio dla modelu ElasticNet, sprawdzając wartości:

- C = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 10, 20]
- $l1\_ratio = [0.1, 0.25, 0.5, 0.75, 0.9]$

Dla modelu ElasticNet zastosowałem też większą niż standardowe 100 maksymalną liczbę iteracji, ponieważ dla 100 iteracji miał problem ze zbieżnością, co prawdopodobnie wynika z solvera 'saga', który jest jedynym dostępnym dla tego modelu. Najlepsze uzyskane modele:

- Model z regularycją L1 (dalej 'L1') z parametrem C=0.5
- Model z regularycją L2 (dalej 'L2') z parametrem C=0.1
- Model z regularycją ElasticNet (dalej 'ElasticNet') z parametrami C=0.1 i  $l1\_ratio=0.1$

Następnie modele ze znalezionymi optymalnymi parametrami wytrenowałem na całym zbiorze treningowym, tak samo jak model bez regularyzacji (dalej 'No penalty'). Te 4 modele walidowałem na zbiorze testowym i uzyskałem następujące metryki oraz krzywe ROC:

|            | Data  | Accuracy | Precision | Recall | F1    | AUC   |
|------------|-------|----------|-----------|--------|-------|-------|
| Model      |       |          |           |        |       |       |
| No penalty | Test  | 0.735    | 0.545     | 0.700  | 0.613 | 0.785 |
| No penalty | Train | 0.760    | 0.574     | 0.775  | 0.660 | 0.835 |
| L1         | Test  | 0.730    | 0.537     | 0.733  | 0.620 | 0.800 |
| L1         | Train | 0.741    | 0.550     | 0.758  | 0.637 | 0.826 |
| L2         | Test  | 0.750    | 0.562     | 0.750  | 0.643 | 0.802 |
| L2         | Train | 0.746    | 0.557     | 0.758  | 0.642 | 0.824 |
| ElasticNet | Test  | 0.750    | 0.561     | 0.767  | 0.648 | 0.801 |
| ElasticNet | Train | 0.738    | 0.545     | 0.754  | 0.633 | 0.822 |



Najlepiej moim zdaniem radzi sobie model Elastic<br/>Net, uzyskał najlepszą czułość (Recall) na zbiorze testowym oraz ma najm<br/>niej rozbieżne metryki między zbiorem treningowym, a testowym. Czułość na poziomie 0.767 z jednoczesną precyzją 0.561 oznacza, że model wykrywa około 77% wszystkich tych klientów, którym nie powinniśmy udzielić kredytu i w predykcji tej klasy ma skuteczność 56%.

Przyjrzałem się także wielkościom współczynników każdego z modeli, tabela ze współczynnikami dla każdej kolumny znajduje sie na ostatniej stronie raportu. Możemy dojść do wniosku, że najistotniejszymi zmiennymi w predykcji były:

- 'checking\_status\_no checking'
- 'credit\_history\_critical/other existing credit '
- 'purpose\_education'
- 'purpose\_used car
- 'foreign\_worker\_yes'

przy czym, z powyższych zmienne 'foreign\_worker\_yes' oraz 'purpose\_education' sprzyjały predykcji klasy 1, pozostałe 0. Jeśli chodzi o zmienne mało istotne, to zająłem się nimi w 2 części zadania.

## 3 Część 2

Aby zredukować wymiar danych postanowiłem się posłużyć współczynnikami modelu z regularyzacją L1, który jak wiemy może posłużyć jako narzędzie wyboru zmiennych. Sprawdziłem które współczynniki w modelu L1 były równe 0, zdecydowałem, że można te zmienne uznać za mało istotne i pozbyłem się w ten sposób 14 kolumn.

Następnie już ze zredukowanymi danymi postepowałem podobnie jak w części 1. W modelu SVC (dalej SVM Linear) zdecydowałem się na jądro liniowe, a w 5-krotnej kroswalidacji szukałem możliwie najlepszego parametru C sprawdzając wartości:

• C = [0.01, 0.02, 0.05, 0.1, 0.2, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 5, 10, 20]

Najlepszy wynik AUC = 0.785 uzyskałem dla parametru C = 0.2. Wytrenowałem model z takim parametrem na całym zbiorze treningowym i uzyskałem następujące wyniki:

|            | Data  | Accuracy | Precision | Recall | F1    | AUC   |
|------------|-------|----------|-----------|--------|-------|-------|
| Model      |       |          |           |        |       |       |
| SVM Linear | Test  | 0.735    | 0.542     | 0.750  | 0.629 | 0.805 |
| SVM Linear | Train | 0.732    | 0.538     | 0.767  | 0.632 | 0.826 |



Jakość predykcyjna modelu jest bardzo podobna do regresji logistycznej z regularyzacją ElasticNet. Dostaliśmy niewiele mniejsze wartości metryk recall i precision, które są moim zdaniem najbardziej istotne.

|                                               | No penalty | L1     | L2     | ElasticNet |
|-----------------------------------------------|------------|--------|--------|------------|
| Feature                                       |            |        |        |            |
| duration                                      | 0.340      | 0.316  | 0.316  | 0.315      |
| $credit_amount$                               | 0.388      | 0.339  | 0.275  | 0.271      |
| employment                                    | -0.181     | -0.148 | -0.158 | -0.152     |
| $installment\_commitment$                     | 0.419      | 0.362  | 0.327  | 0.320      |
| residence_since                               | 0.026      | 0.013  | 0.024  | 0.020      |
| age                                           | -0.168     | -0.147 | -0.164 | -0.154     |
| existing_credits                              | 0.211      | 0.133  | 0.101  | 0.096      |
| $num\_dependents$                             | 0.126      | 0.093  | 0.095  | 0.087      |
| checking_status_<0                            | 0.141      | 0.213  | 0.308  | 0.298      |
| checking_status_>=200                         | -0.209     | 0.000  | -0.053 | -0.005     |
| checking_status_no checking                   | -1.462     | -1.289 | -0.993 | -0.996     |
| credit_history_critical/other existing credit | -1.726     | -0.896 | -0.628 | -0.598     |
| credit_history_delayed previously             | -1.163     | -0.154 | -0.098 | -0.031     |
| credit_history_existing paid                  | -0.925     | -0.189 | -0.088 | -0.053     |
| credit_history_no credits/all paid            | -0.525     | 0.000  | 0.163  | 0.131      |
| purpose_domestic appliance                    | -0.114     | 0.000  | -0.023 | 0.000      |
| purpose_education                             | 1.054      | 0.728  | 0.378  | 0.349      |
| purpose_furniture/equipment                   | -0.068     | 0.000  | -0.051 | -0.015     |
| purpose_new car                               | 0.677      | 0.583  | 0.422  | 0.411      |
| purpose_other                                 | -0.639     | 0.000  | -0.035 | 0.000      |
| purpose_radio/tv                              | -0.246     | -0.187 | -0.230 | -0.214     |
| purpose_repairs                               | 0.708      | 0.074  | 0.154  | 0.092      |
| purpose_retraining                            | -5.447     | 0.000  | -0.148 | -0.061     |
| purpose_used car                              | -1.104     | -0.749 | -0.541 | -0.505     |
| $savings\_status\_500 \le X \le 1000$         | 0.299      | 0.000  | -0.009 | 0.000      |
| savings_status_<100                           | 0.581      | 0.508  | 0.392  | 0.390      |
| $savings\_status\_>=1000$                     | -0.447     | 0.000  | -0.162 | -0.104     |
| savings_status_no known savings               | -0.375     | -0.349 | -0.359 | -0.338     |
| personal_status_male div/sep                  | 0.234      | 0.053  | 0.162  | 0.114      |
| personal_status_male mar/wid                  | -0.393     | -0.250 | -0.214 | -0.178     |
| personal_status_male single                   | -0.585     | -0.438 | -0.368 | -0.348     |
| other_parties_guarantor                       | -0.893     | -0.330 | -0.228 | -0.192     |
| other_parties_none                            | -0.193     | 0.000  | 0.075  | 0.045      |
| property_magnitude_life insurance             | -0.007     | 0.000  | -0.018 | 0.000      |
| property_magnitude_no known property          | 0.523      | 0.329  | 0.257  | 0.242      |
| property_magnitude_real estate                | -0.305     | -0.251 | -0.266 | -0.249     |
| other_payment_plans_none                      | -0.481     | -0.418 | -0.353 | -0.343     |
| $other\_payment\_plans\_stores$               | 0.097      | 0.000  | 0.104  | 0.056      |
| housing_own                                   | 0.273      | 0.000  | -0.121 | -0.123     |
| housing_rent                                  | 0.670      | 0.317  | 0.184  | 0.155      |
| job_skilled                                   | -0.336     | 0.000  | -0.092 | -0.053     |
| job_unemp/unskilled non res                   | -1.187     | -0.007 | -0.159 | -0.077     |
| $job\_unskilled\ resident$                    | -0.320     | 0.000  | -0.035 | 0.000      |
| own_telephone_yes                             | -0.552     | -0.340 | -0.306 | -0.277     |
| foreign_worker_yes                            | 1.289      | 0.933  | 0.354  | 0.314      |