Solving a 190-year astronomical mystery: the story of epsilon Aurigae

Brian Kloppenborg

Outline

- Epsilon Aurigae
 - Background
 - Photometry
 - Spectroscopy
 - Astrometry
 - Interferometry
- GSU research topics
 - Young stellar objects
 - Novae

Background

Epsilon Aurigae research in collaboration with:

Robert Stencel, John Monnier, Gail Schaefer, Ming Zhao, Fabien Baron, Xiao Che, Rob Parks, Chris Tycner, Bob Zavalia, Don Hutter, Hal McAlister, Michelle Creech-Eakman, various folks from PTI, Theo ten Brummelaar, Chris Farrington, PJ Sallave-Goldfinger, Judit Sturmann, Laszlo Sturmann, Ettore Pedretti, Nathalie Thureau, Nils Turner, Sean M. Carroll

Epsilon Aurigae

The (first?) discovery?

1846-1847 Eclipse of epsilon Auriage, filled points by Argelander; Image Credit: Güssow (1936)

- "... Den Stern in der Ziege des Fuhrmanns sehe ich oft gegen ζ und η so schwach, dafs er kaum zu erkennen war. Hat man dies schon beobachtet?"
- Fritsch (1824, from Quedlinburg)

As of 1903, we knew...

Photometric Monitoring:

- System dims by ~50% every 9890 days (27.1 years) (Ludendorff, 1903), stays faint for ~2-years
- Spectroscopic Monitoring:
 - Epsilon Aurigae is a single line spectroscopic binary
 - Dimming thought to be due to an eclipse.
- System composition
 - Visible component is F0Ia
 - Other component: unknown

Early explanations for the eclipse

- 1912: Ludendorff
 - A swarm of meteorites,
 10-100 um in diameter.

- 1937: Struve et al.
 - A large semitransparent infrared orbited by an F-type supergiant.
- 1938: Schoenberg et al.
 - A super-cool star that forms solid particles during convection

1985 model

- 1965: Huang
 - The first analytical model supporting a disk-like object as the cause of the eclipse.

- 1986: Kemp
 - Obtained polarimetry during the 1983 eclipse, argued that the disk is inclined.

2009 Model of eps Aur

2009: fundamental questions remain

- What causes the eclipse?
- What is the distance to the system?
- In what evolutionary state do we observe the binary?
 - What are the spectral types of the components?
 - What are the masses of the components?
- What causes the photometric variability?

Photometry

27 years of photometry

Photometry from L. Boyd and J. Hopkins (amateur collaborators)

2009-2011 eclipse

WWZ analysis

Spectroscopy

Eps Aur SED: Three components

Hot and hotter

Work from amateur astronomers

Astrometry

Dynamical parallaxes

But with eps Aur...

$$M_2 = \frac{f(M)(1+q)^2}{\sin^3 i}$$

Getting the masses in epsilon Auriage will require much effort!

$$M_1 = M_2 q$$
.

A scan, of a print, of a photographic plate, from the Sproul observatory

#: 68 2 curis 8 193 File 14

Bayesian fit to RV + Astrometric data

Interferometry

Data from multiple interferometers CHARA-MIRC, CHARA-CLIMB, NPOI, PTI

Optical interferometry data products

- UV points
- Visibility squared

$$|V|^2$$

Triple product

$$T_{ijk} = V_{ij}V_{jk}V_{ki}$$

$$= |V_{ij}V_{jk}V_{ki}|e^{i(\phi_{ij}+\phi_{jk}+\phi_{ki})}$$
Triple Amplitude Closure Phase

Triple Amplitude

$$\phi_{123} = \phi_{12} + \phi_{\text{atm}} + \phi_{23} + (-\phi_{\text{atm}}) + \phi_{31}$$

Differential quantities (spectrally dispersed data)

- Visibilities
- Phase
- Closure Amplitudes

UV Coverage

2008-09 (3T, 1 bracket)

2009-11 (4T, 3 Nights)

2011-09 (6T, 1 Night)

What can we trust in the images?

Artifacts abound

Likely Artifacts:

- Bright Spots along equator
- Bright spot at North Pole
- Dark alias in northern hemisphere
- Scalloped Edge of disk

Not Artifacts:

Southern Pole

Undecided:

Straight Edges on F-star

Five of 14 model-independent images

Mid-eclipse (CHARA-MIRC) 2010-08

Egress (CHARA-CLIMB)

2010-04

How do we model the disk?

Huang 1965 "brick"

Kemp 1986 "inclined brick"

New software: liboi and SIMTOI

- OpenCL Interferometry Library (liboi)
 - GPU computing library for OI
 - Image + OIFITS → Simulated observations
 - Can perform ~280 (image → data → chi2r) / second
 - About 150x faster than the same algorithms on a CPU
- Simulation and Modeling Tool for Optical Interferometry (SIMTOI)
 - Models rendered using OpenGL (computer graphics)
 - Environment is fully 3D, time-dependent, and includes orbits!
 - Has several minimization engines
 - Callable via. scripting languages
 - Uses liboi as a backend for fast computations

The photometry hints at the orbital parameters... if you have a disk model Ingress Slopes as a function of semi-major axis Total orbital 0.1 semi-major axis 0.1 0.2 Orbital inclination 0.2 0.3 0.3 15 mas 0.4 0.4 = 89 deg 0.5 0.5 0.6 0.6 0.7 0.7 0.8 i = 87 deg 40 mas 0.9 └ 500 750 550 600 650 700 800 500 600 800 900 1000 1100 1200 1300 Days past periastron (HJD - 2454515) Days past periastron (HJ D - 2454515) Light curve as a function of Disk Height Light curve implied by out-of-plane disk -0.10 0 0.1 0.1 Disk tilt (P.A.) Disk height 0.2 0.2 +/- 1 degree 0.3 0.3 h = 0.70 mas0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.85 mas 0.8 **h** 8.0 500 600 800 900 1000 1100 1200 1100 400 500 600 800 900 1200 1300 Days past periastron (HJD - 2454515) Days past periastron (HJD - 2454515)

Photometry is Ic band, from AAVSO contributors

Our models were inspired by resolved images of proplyds

Best-fit symmetric disk models

The disk is not symmetric

Predicted eclipse photometry from symmetric disk models

Young Stellar Objects

An overview of YSOs

Variable YSOs

UXors (Zaitseva 1983; Grinn 1998) Prototype: UX Ori

Feature rapid (few hour/day), irregular fading with superimposed repeating

patterns

c. PUIR Instabilities

 Color reversal called "bluing" at minimum light

 Probably Herbig Ae/Be stars seen at high inclination

d. Wind-driven dust clouds

H, He, and Ca emission lines

Accretion

Dust free inner disk

Dust disk with puffed up inner rim.

a. Inner few AU of a Herbig Disk (modified from Dullemond et al. 2010)

UXor observable

Eruptive YSOs

- FUor (Hartman & Kenyon 1985)
 Prototype: FU Ori
 - Long outbursts of 10s of years
 - Accretion rates 10-4 10-5 MSolar/yr
 - When in eruption, spectra dominated by absorption lines
 - Progenitors thought to be Classical TTauri Stars (CTTS)

- EXor (Herbig 1989)
 Prototype: EX Lup
 - Short outbursts (weeks-months) with similar recurrence times
 - Accretion rates of 10-6 10-7 MSolar/yr
 - Resemble CTTS when in quiescence; characterized by numerous emission lines when erupting.
 - 23 Known objects with 8.5 < V < 20+;6.2 < K < 13.2; 0.2 < N < 10
 - Monitoring program EXORCISM

Novae

Novae observables

Figures: (left) Strope et al. 2010, (right top) Riberio 2013; (right bottom) Loyd 1997

Nova Cen 2013

Solving a 190-year astronomical mystery: the story of epsilon Aurigae