

University of Brighton Department of Computer Science

Cl603 Data Mining

Data Mining Coursework

Module leader: Dr Gulden Uchyigit

A report submitted in partial fulfilment of the requirements of the University of Brighton for the degree of Bachelor of Science in *Computer Science*

Executive summary

This report presents a data mining analysis of high-dimensional telemetry and race session data extracted from the F1 2020 simulation platform. The primary objective was to develop an analytical pipeline that transforms raw telemetry data into actionable insights, supporting strategic decision-making and performance profiling in motorsport environments.

Leveraging over one million telemetry records per session across 22 race simulations, this project implemented a scalable analysis pipeline within the Databricks environment using PySpark. The analytical workflow included data preprocessing, exploratory data analysis, feature engineering, machine learning, and rule-based inference methods. The aim was to extract actionable intelligence from raw simulation telemetry, proving suitability for real-world applications.

A key stage in the pipeline was the application of Principal Component Analysis for dimensionality reduction. This technique successfully retained 73% of the variance in lap time data using only two principal components, significantly reducing computational overhead whilst preserving critical information for subsequent tasks such as clustering and visualisation.

Clustering using the K-Means algorithm allowed for effective segmentation of driver and team performance. With a high Silhouette score of 0.975, the clustering results demonstrated strong internal cohesion and external separation, highlighting clear groupings within race telemetry and lap time metrics.

In the classification stage, a Random Forest model was employed to predict tyre compound usage based on telemetry features. The model achieved an accuracy of 74% with balanced precision and recall. Notably, visualisation of tyre surface and inner temperatures showed strong alignment with predicted compounds, enhancing interpretability.

The final analytical layer employed association rule mining using FP-Growth. This uncovered over 14,000 meaningful rules, with an average confidence of 72% and strong lift values. These rules revealed dependencies between driving inputs, environmental factors, and tyre strategy, supporting rule-based explainability and tactical insights.

In conclusion, this project demonstrates the value of an integrated data mining approach to extract knowledge from complex telemetry data. The findings validate that machine learning, when paired with statistical and rule-based techniques, can uncover hidden patterns, guide strategic decisions, and provide interpretable analytics. These capabilities are directly applicable to competitive domains where real-time data-driven decision-making is crucial. The project offers a replicable blueprint for adopting data mining in simulation environments or real-world telemetry systems across industries.

Report's total word count: 2738 words

Contents

1 Introduction				
2	Data	aset	2	
	2.1	Source	2	
	2.2	Structure	2	
	2.3	Pre-processing	3	
3	Impl	lementation	5	
	3.1	Exploratory Data Analysis (EDA)	5	
		3.1.1 Dataset metadata	5	
		3.1.2 Visualisations	6	
	3.2	Feature engineering	10	
			10	
	3.3		11	
			11	
	3.4		13	
			13	
	3.5		14	
			15	
4	Eval	uation	17	
-	4.1		- · 17	
	4.2	, and the state of	 18	
	4.3	0	21	
	4.4		 22	
Αþ	pend	lices	25	
Α	EDA	metadata results	25	
	A.1	Schema	25	
	A.2	Summary	28	
	A.3	The first entries	32	
	A.4	Count	37	
	A.5	Missing values	37	
В	Eval	uation results	38	
			38	
	B.2		38	
	B.3	<u> </u>	39	
			40	

List of Figures

3.1	Scatter plot of speed against throttle and brake values	8
3.2	Line chart of average sector 2 time for each session grouped by driver	8
3.3	Histogram of sector 2 time in milliseconds	9
3.4	A box plot of lap times for each driver	9
4.1	Scatter plot of sector 2 and 3 timings grouped by cluster analysis results	20
4.2	Scatter plot of PC1 and PC2 telemetry data grouped by cluster analysis results.	20
4.3	Scatter plot of tyre surface temperature and tyre inner temperature grouped	
	by classification tyre compound prediction	22

List of Tables

2.1	An overview of the datasets from the F1 2020 simulation game	2
2.2	Pre-processing tasks and their descriptions	3
3.1	EDA metadata functions and their descriptions	5
3.2	EDA plotting functions and their descriptions	7
3.3	PCA pipeline stages and their descriptions	10
3.4	Clustering stages and their descriptions	11
3.5	Classification stages and their descriptions	13
3.6	Association stages and their descriptions	15
4.1	PCA evaluation results of lap time data with 2 principal components	17
4.2	Clustering evaluation results for lap time clustering with $k=6$	18
4.3	Classification evaluation results for classifying actual tyre compound	21
4.4	Association rule mining evaluation results based on telemetry and session data	23

Chapter 1

Introduction

This project explores the application of data mining techniques to high-resolution telemetry and race data from F1 2020, a racing simulation developed by Codemasters. The dataset, sourced from Kaggle (Mine, 2020), includes detailed records across 22 race sessions, capturing participant details, session metadata, lap times, and granular telemetry such as speed, throttle, and G-forces. Due to the data's volume and complexity, the project is implemented using PySpark within a Databricks environment, enabling scalable processing and analysis (Apache Spark, 2025, Databricks, 2025).

Primary aim: To apply data mining techniques to telemetry data to derive actionable insights, helping to understand race dynamics, driver behaviour, and strategies.

Objectives:

- To clean and prepare multi-session telemetry data for analysis.
- To perform dimensionality reduction to simplify high-dimensional telemetry and timing data whilst maintaining variance.
- To apply clustering and classification techniques to profile driver/team performance and predict tyre strategies.
- To extract interpretable associations between telemetry patterns and race conditions using rule mining.
- To provide meaningful visualisations for exploratory analysis, clustering results, and classification outputs to support interpretability and decision-making.
- To demonstrate the practical utility of data mining in motorsport analytics.

Chapter 2

Dataset

2.1 Source

The datasets used in this project were sourced from Kaggle (Mine, 2020) and were generated by the F1 2020 simulation game developed by Codemasters. The data is derived from in-game telemetry exported via UDP streams during simulated races. This telemetry data captures real-time information on car dynamics, driver inputs, and environmental conditions across each frame of the race, making it highly detailed and time-sensitive.

Each race session has been simulated using consistent parameters, ensuring comparability across the datasets. These include an AI difficulty setting of 90, fixed weather conditions, 50% race length, and the absence of safety cars, including virtual. The starting order was randomly assigned, car damage settings were set to reduced, and standardised fuel strategies were applied (three additional laps of fuel at the start). This created a realistic yet controlled racing simulation environment suitable for analytical modelling. This structured and uniform configuration enhances the dataset's reliability for exploring driver performance, vehicle behaviour, and race strategies through data mining techniques.

2.2 Structure

The dataset is organised into 22 separate race sessions, each containing four structured data files containing distinct aspects of the race environment and driver performance. These files are consistently named and follow a unified schema across all sessions, enabling scalable analysis and streamlined integration.

Dataset	Rows	Columns	Key attributes
Participant	20	6	pilot_index, driverId, teamId
data			
Session data	1	6	weather, trackTemperature, trackId
Race time	561	9	LapTime, sector1TimeInMS, sector2TimeInMS,
data			sector3TimeInMS, carPosition, currentLapNum
Telemetry	1,113,180	56	speed, throttle, steer, brake, clutch, gear, engin-
data			eRPM, actualTyreCompound, tyresPressure

Table 2.1: An overview of the datasets from the F1 2020 simulation game

These datasets are loaded into PySpark DataFrames and cleaned before saving to the Parquet format for efficient retrieval. The telemetry data, being the largest dataset, provides the foun-

dation for time-series analysis, clustering, and classification tasks. The schema is consistent across sessions, with identifiers facilitating joins across datasets. This modular and consistent structure supports both individual session analysis and cross-session aggregation, making it well-suited for large-scale data mining applications.

2.3 Pre-processing

Data preprocessing is a critical step in preparing the F1 2020 telemetry and race data for effective analysis. Although each race session requires specific cleaning operations, the consistency of the dataset schema across all sessions allows a unified cleaning pipeline to be applied to all sessions.

Task	Description		
Parse slash-separated	Convert strings into numerical arrays for variables such as tyre		
string arrays	temperatures, pressures, and surface types.		
Normalise string fields	Trim the whitespaces, convert to lowercase, and replace spaces		
	with underscores. This normalisation reduces variability caused		
	by inconsistent text formatting.		
Dropping duplicate	Removing duplicate entries ensures data integrity.		
records			
Add session identifiers	Adds session_id field to each dataset to facilitate merging		
	and comparative analysis across multiple sessions.		
Dropping irrelevant or	Columns such as aiControlled and maxRPM can be dropped		
invariant fields	from participant data as they do not contribute towards the		
	analysis.		
Maintain order	After cleaning, the records are sorted by key columns (e.g.,		
	<pre>pilot_index, frameIdentifier), preserving temporal and</pre>		
	logical data integrity.		

Table 2.2: Pre-processing tasks and their descriptions

The array parsing and string normalisation are implemented using a PySpark user-defined function (UDF). Due to the large volume of telemetry data, exceeding one million rows per session, the cleaning process is computationally intensive and time-consuming. To optimise subsequent analyses, the cleaned data for each session and data category is saved in Parquet format, which supports efficient storage and retrieval. The cleaning pipeline ensures that the data is consistently prepared for tasks such as exploratory data analysis, feature engineering, and machine learning.

```
# UDF for converting strings to arrays
Qudf(returnType=ArrayType(FloatType()))
def parse_slash_array(s):
    # --- Omitted: input validation ---
    return [float(x) for x in re.findall(r"\d+(?:\.\d+)?", s)]

# UDF for normalising strings
Qudf(returnType=StringType())
def normalize_string(s):
    # --- Omitted: input validation ---
    return s.strip().lower().replace(" ", "_")
```

```
# Applies the string normalisation to all string columns
def normalize_all_string_columns(df):
    for field in df.schema.fields:
        if isinstance(field.dataType, StringType):
            df = df.withColumn(field.name, normalize_string(F.col(field.name)))
    return df

# Reusable function for cleaning datasets
def base_clean(df, session_id, normalize_strings=False):
    df = df.dropDuplicates()
    if normalize_strings:
        df = normalize_all_string_columns(df)
    return df.withColumn("session_id", F.lit(session_id))
```

Listing 2.1: Data cleaning functions

Chapter 3

Implementation

3.1 Exploratory Data Analysis (EDA)

Exploratory Data Analysis is essential for understanding the structure, quality, and distributions of the F1 telemetry and race datasets before applying more complex modelling techniques. Given the consistent schema across all 22 sessions, EDA operations can be efficiently applied to either individual sessions or across all sessions.

3.1.1 Dataset metadata

A range of reusable functions facilitates the identification of dataset metadata for each session (see Appendix A).

EDA function	Description
Schema	Shows field names and data types for verification.
Summary	Calculates count, mean, standard deviation, minimum, and
	maximum values for numerical columns.
Sample records	Shows the first data entries for initial data inspection.
Count	Prints the number of rows and columns to gain an understand-
	ing of the dimensionality.
Missing values	Displays the number of missing values.

Table 3.1: EDA metadata functions and their descriptions

The implementation of these EDA functions leverages a generic apply_to_sessions() method, which applies any given function to either all sessions or just the first session (Session_1). This modular design ensures consistency and scalability in metadata exploration across the full dataset.

```
# Apply a function to either all sessions or just Session_1

def apply_to_sessions(data_dict, func, print_all=False, **kwargs):
    if print_all:
        for session_name, session_data in data_dict.items():
            print(f"\nRunning on {session_name}...")
            func(session_name, session_data, **kwargs)

else:
        session_name = "Session_1"
        if session_name not in data_dict:
            print("Session_1 not found in data.")
```

```
11
              return
          print(f"\nRunning on {session_name}...")
12
          func(session_name, data_dict[session_name], **kwargs)
13
14
15 # Print the schema's of the dataset in a race session
  def print_session_schemas(session_name, session_data):
16
      # --- Omitted: Print statements and category loop ---
17
18
              df.printSchema()
19
  apply_to_sessions(cleaned_data, print_session_schemas)
20
21
22 # Print the description of the dataset, ignoring null values
23 def print_session_summary(session_name, session_data):
      # --- Omitted: Print statements and category loop ---
24
              df.dropna()
25
              df.describe().show()
26
27
28 apply_to_sessions(cleaned_data, print_session_summary)
29
30 # Print first entries of the datasets
31 def print_session_first_entries(session_name, session_data,
     number_of_entries=5):
      # --- Omitted: Print statements and category loop ---
32
              df.show(number_of_entries)
34
apply_to_sessions(cleaned_data, print_session_first_entries)
36
37 # Print dimensionality of the datasets
38 def print_session_count(session_name, session_data):
      # --- Omitted: Print statements and category loop ---
39
              print(f"\n{category} dataset size: {df.count()} rows x
40
     {len(df.columns)} columns")
41
42 apply_to_sessions(dfs, print_session_count)
43
44 # Print missing values
45 def print_missing_values(session_name, session_data):
      # --- Omitted: Print statements, category loop, column is null
     count ---
47
          print(f"\n{category} missing values:")
          for col_name, missing_count in missing_values.items():
48
              print(f" - {col_name}: {missing_count} missing values")
49
51 apply_to_sessions(cleaned_data, print_missing_values)
```

Listing 3.1: EDA dataset metadata code (Feng, 2021)

3.1.2 Visualisations

Visual analysis is performed using Databricks' built-in visualisation framework, accessed through the display() function (Databricks, 2025). This integration offers interactive plotting, with support for various plot types such as line charts, scatter plots, histograms, and box plots. The plots provide insights into temporal dynamics and distributions.

EDA function	Description	
Column plot-	Plots specified columns, enabling focused inspection of relevant	
ting	data (see figure 3.1)	
Cross-session	Plots aggregated mean metrics such as lap and sector times	
average plots	per driver, facilitating the identification of performance trends	
	over multiple races (see figure 3.2).	
Numerical dis-	Histograms highlight the frequency and spread of key metrics,	
tributions	such as lap times (see figure 3.3).	
Outlier detec-	Box plots highlight extreme values, which potentially identify	
tion	anomalies (see figure 3.4).	

Table 3.2: EDA plotting functions and their descriptions

Collectively, these visualisations complement the metadata analysis by providing insightful plots that guide subsequent feature engineering and machine learning stages.

```
# plots the sepcified columns of the dataset
 def plot_data(cleaned_data, category, suffix, display_cols=[]):
      # --- Omitted: Dataset selection ---
      display(df.selectExpr(*display_cols))
 plot_data(cleaned_data, categories[3], session_suffixes[0], ["
     throttle", "speed", "brake"])
8 # Plot average telemetry data for each session
g def plot_average(cleaned_data, category, avg_cols=[]):
      # --- Omitted: Aggregation, grouping, average column selection
      display(result_df.selectExpr(*select_expr))
13 avg_columns = ["LapTime", "sector1TimeInMS", "sector2TimeInMS", "
     sector3TimeInMS"]
plot_average(cleaned_data, categories[2], avg_columns)
15
 # Plot numerical distribution by selecting numerical columns for
16
     histogram
 def plot_numerical_distribution(df):
17
      # --- Omitted: Int and double column selection ---
      display(df.selectExpr(*num_cols))
19
21 plot_numerical_distribution(cleaned_data["Session_1"][categories
     [2]])
22
23 # Identifies outliers by selecting numerical columns for box plot
24 def plot_outliers(df):
      # --- Omitted: Int and double column selection ---
26
      display(df.selectExpr(*num_cols))
plot_numerical_distribution(cleaned_data["Session_1"][categories
     [2]])
```

Listing 3.2: EDA plotting functions (Feng, 2021)

Figure 3.1: Scatter plot of speed against throttle and brake values.

Figure 3.2: Line chart of average sector 2 time for each session grouped by driver.

Figure 3.3: Histogram of sector 2 time in milliseconds.

Figure 3.4: A box plot of lap times for each driver.

3.2 Feature engineering

Feature engineering is a crucial stage of data mining. This step converts raw data into suitable representations that improve the performance of machine learning models. This step is particularly important when working with high-dimensional datasets such as telemetry data, which consists of multiple time series and sensor variables. Without careful feature engineering, the presence of redundant or correlated features can hide underlying patterns and reduce the effectiveness of processes such as clustering and classification.

3.2.1 Principal Component Analysis (PCA)

Principal Component Analysis is a statistical method that reduces the number of variables in a dataset by projecting the data onto a set of principal components that capture the greatest variance. The first component captures the direction of maximum variance, the second captures the next highest variance orthogonal to the first, and so on (Uchyigit, 2025b). This makes PCA especially useful for multivariate telemetry data, where many features may be correlated. PCA is implemented in this project using a PySpark ML pipeline, ensuring scalability and modular integration with the larger analysis workflow. The implementation consists of three main stages:

Stage	Description	
Vector assem-	The selected input features are combined into a single vector	
bly	column using VectorAssembler.	
Standardisation	All features are standardised using StandardScaler to ensure	
	each contributes equally to the PCA transformation.	
PCA transfor-	The PCA model reduces the standardised features to k principal	
mation	components, which are added as new columns for analysis.	

Table 3.3: PCA pipeline stages and their descriptions

The PCA pipeline is contained in the $run_pca()$ function, which takes the cleaned data and produces a transformed DataFrame containing the principal components. The number of components k is configurable based on the analysis task. This function can be applied to simplify complex data for visualisation or improve clustering performance by reducing noise and redundant dimensions.

```
# Run PCA using the pipeline with k number of components

def run_pca(cleaned_data, suffix, category, k=3, features=None):
    # --- Omitted: Dataset selection and drop missing values ---
    assembler = VectorAssembler(inputCols=features, outputCol="
    raw_features")

scaler = StandardScaler(inputCol="raw_features", outputCol="
    pca_features", withMean=True, withStd=True)
    pca = PCA(k=k, inputCol="pca_features", outputCol="pca_vector")

pipeline = Pipeline(stages=[assembler, scaler, pca])
    model = pipeline.fit(df)
    result = model.transform(df)

# --- Omitted: Conversion from PCA vector to array and individal columns ---
```

```
pca_model = model.stages[-1]
return pca_model, result
```

Listing 3.3: PCA function (Feng, 2021)

3.3 Clustering

Clustering is an unsupervised learning technique used to group observations in a dataset based on similarities, without the use of predefined labels. In the context of F1 data, clustering allows for the identification of underlying performance trends among drivers or teams, such as driving style, tyre usage, or sector performance consistency. These insights are valuable for strategic analysis, post-race evaluation, and driver profiling.

3.3.1 K-Means

The project uses K-Means clustering, a widely used algorithm that groups data into k non-overlapping clusters by minimising intra-cluster variance (Tan et al., 2019). K-Means is well-suited for this application due to its scalability, simplicity, and effectiveness when working with numerical, continuous telemetry features. Given the high dimensionality of telemetry and lap data, K-Means allows for compact performance differentiation, especially after applying dimensionality reduction (see section 3.2). For this project, clustering is implemented using a pipeline, and supports three input configurations: Telemetry data, lap time data, or a combination of both. The perform_cluster_analysis function supports both clustering by driver or by team, providing flexibility in performance grouping.

Stage	Description		
Data prepara-	Based on the analysis type, relevant datasets and features are		
tion	selected and joined.		
Missing value	Records with null values in selected features are removed.		
handling			
Optional	Data can be grouped by driver (pilot_index) or team		
grouping	(teamId) by calculating average values.		
Vector assem-	Features are assembled into a single vector and standardised to		
bly and scaling	ensure uniform scaling.		
Model fitting	A K-Means model is applied to the scaled data, and cluster		
	labels (cluster_prediction) are assigned to each record.		

Table 3.4: Clustering stages and their descriptions

The number of clusters k is user-defined but can be optimised using the find_no_of_clusters() function. This method iteratively evaluates cluster quality using the Silhouette score, a metric that represents the cohesion of clusters and the separation between them (Feng, 2021). The optimal k is determined based on the maximum Silhouette score within a specified range.

Clustering enables natural performance grouping in the data that may not be obvious through direct observation. By applying clustering to multiple configurations (telemetry, lap times, and combined), the analysis covers both temporal driving patterns and lap-specific driving styles. This clustering approach improves the interpretation of driver behaviour and team performance across different metrics.

```
1 # Perform clustering analysis on the datasets with optional
     grouping
2 def perform_cluster_analysis(cleaned_data, suffix, analysis_type="
     combined", clusters=3, group_by=None, features=None):
      # --- Omitted: Input validation, dataset and feature selection,
      drop missing values, and dataset joining ---
      # Group by driver or team
      if group_by == "driver":
          df = df.groupBy("pilot_index").agg(*[F.avg(col).alias(f')]
     avg_{col}') for col in feature_list])
          df = df.join(participant_data, on="pilot_index", how="left"
          feature_list = [f'avg_{col}' for col in feature_list]
10
      elif group_by == "team":
          df = df.join(participant_data, on="pilot_index", how="left"
          df = df.groupBy("teamId").agg(*[F.avg(col).alias(f'avg_{col})
     }') for col in feature_list])
          feature_list = [f'avg_{col}' for col in feature_list]
14
15
      # --- Omitted: Dataset joining ---
16
      # Vector assembler, standard scaler, and k-means pipeline
      assembler = VectorAssembler(inputCols=feature_list, outputCol="
19
     cluster_features")
      scaler = StandardScaler(inputCol="cluster_features", outputCol=
     "scaled_features", withMean=True, withStd=True)
      kmeans = KMeans(k=clusters, seed=1, featuresCol="
21
     scaled_features", predictionCol="cluster_prediction")
22
      pipeline = Pipeline(stages=[assembler, scaler, kmeans])
23
      model = pipeline.fit(df)
24
      result = model.transform(df)
25
      return result
27
28
29 # Iteratively find the most suitable number of clusters (range
     (2,10)
30 def find_no_of_clusters(cleaned_data, suffix, analysis_type="
     combined", group_by=None, features=None):
    evaluator = ClusteringEvaluator(
      predictionCol='cluster_prediction',
32
      featuresCol='scaled_features',
33
      metricName='silhouette',
34
      distanceMeasure='squaredEuclidean'
35
    )
36
37
    silhouette_scores = {}
38
    for k in range (2,10):
40
      result_df = perform_cluster_analysis(cleaned_data, suffix,
41
     analysis_type, k, group_by, features)
      score=evaluator.evaluate(result_df)
```

```
silhouette_scores[k] = score
print(f'Silhouette Score for k = {k} is {score}')

best_k = max(silhouette_scores, key=silhouette_scores.get)
best_score = silhouette_scores[best_k]
print(f"\nBest k = {best_k} with silhouette score = {best_score : .4f}")
return best_k

best_k = find_no_of_clusters(cleaned_data, session_suffixes[0], analysis_type="lap_time")
```

Listing 3.4: Clustering code (Feng, 2021)

3.4 Classification

Classification is a supervised machine learning technique that involves predicting discrete target labels based on a set of input features. In the context of this project, classification is used to predict the tyre compound used during a session based on telemetry and environmental data. Tyre strategy is one of the most critical variables influencing race performance in Formula 1, and the ability to derive a tyre compound from telemetry data can support both retrospective analysis and strategic forecasting.

3.4.1 Random Forest

The project utilises the Random Forest algorithm, an ensemble learning method based on decision trees. A Random Forest builds multiple decision trees during training and outputs the class that is most common in the individual trees (Tan et al., 2019). This approach can handle high-dimensional data and offers robustness to noise and over-fitting, as averaging over multiple trees reduces variance. Random Forest is particularly appropriate for this use case because the underlying relationship between telemetry data and tyre compound is non-linear and potentially complex. Classification is implemented using features derived from both car telemetry and session environmental data.

Stage	Description		
Data integration	Telemetry and session data are retrieved and joined using the ses-		
	sion ID to form a complete dataset.		
Feature aggregation	Telemetry variables that are stored as arrays, such as tyre tem-		
	perature and wear, are aggregated to average values for simplicity		
	and compatibility.		
Label encoding	Maps actualTyreCompound to numeric labels using		
	StringIndexer.		
Vectorisation	The input features are combined into a single vector column.		
Data splitting	The data is randomly split into training and testing sets $(80/20)$		
	split).		
Model training	The Random Forest classifier model is fit to the training dataset.		
Prediction	Apply the trained model to the test dataset to generate prediction		
	labels.		

Table 3.5: Classification stages and their descriptions

This classification task complements earlier data mining stages by validating whether telemetry and environmental data can reliably predict tyre strategy. In real-world applications, such models could assist teams in analysing competitor strategies, enhance commentary, or support data-driven strategy decisions.

```
# Classify session data using a classification pipeline and random
     split
2 def classify_session_data(df, feature_cols, target_col, label_col="
     label", prediction_col="prediction"):
      # --- Omitted: Input validation, column selection, drop missing
      values ---
      indexer = StringIndexer(inputCol=target_col, outputCol=
      assembler = VectorAssembler(inputCols=feature_cols, outputCol="
     features")
     clf = RandomForestClassifier(featuresCol="features", labelCol=
     label_col, predictionCol=prediction_col, seed=1)
      pipeline = Pipeline(stages=[indexer, assembler, clf])
9
10
      train_df, test_df = df.randomSplit([0.8, 0.2], seed=1)
12
      model = pipeline.fit(train_df)
13
      predictions = model.transform(test_df)
15
      return model, predictions
16
17
18 # Classify tyre compound using telemetry data
 def classify_tyre_compound(cleaned_data, suffix):
      # --- Omitted: Data retrieval and joining ---
20
21
      # Aggregate array columns to a single average value
22
      df = df.withColumn(
23
          "avg_tyresSurfaceTemperature",
24
          F.expr("aggregate(tyresSurfaceTemperature, OD, (acc, x) ->
25
     acc + x) / 4")
26
      # --- Omitted: Additional aggregation, feature and target
     selection ---
28
     return classify_session_data(df,feature_cols=features,
29
     target_col=target)
```

Listing 3.5: Classification code (Feng, 2021)

3.5 Association rule mining

Association rule mining is a data mining technique used to discover meaningful relationships between variables in large datasets. In the context of F1 telemetry, association rules can reveal underlying connections between driving behaviours, environmental conditions, and tyre strategies. These patterns are particularly valuable for gaining interpretability, identifying strategies, and supporting data-driven decision making.

3.5.1 FP-Growth

This project leverages the Frequent Pattern Growth (FP-Growth) algorithm to perform association rule mining. FP-Growth uses a prefix tree structure (FP-tree) to compress and navigate the dataset more efficiently (Tan et al., 2019, Uchyigit, 2025a). FP-Growth is particularly well-suited for this project, as the algorithm is computationally efficient, can handle high-dimensional categorical data effectively, and can generate interpretable and actionable rules. Given that the telemetry data is naturally transactional and contextual, association rule mining offers a unique perspective not captured by supervised learning or clustering alone.

The discretisation process converts continuous telemetry signals into meaningful ranges, with category cut-off values derived from EDA calculations such as mean, standard deviation, minimum and maximum values. Most features are discretised into three categories (low, medium, and high) to capture general behavioural patterns. However, certain features, such as gear and weather, are divided into more categories to enhance the granularity and accuracy of the association rules. These discretised variables, combined into transactional arrays, are passed to the FPGrowth model, which is configured with a default minimum support of 0.01 and minimum confidence of 0.3. As a result, rules are only generated if they are sufficiently frequent and reliable across the session data.

Stage	Description		
Feature selection	Choose relevant telemetry and session features, such as speed,		
	throttle, and gear.		
Data integration	Retrieve and join telemetry data with session data on		
	session_id.		
Discretisation	Bin numerical features into labelled categories (e.g.,		
	speed=fast).		
Label generation	Convert the actualTyreCompound into a labelled format (e.g.,		
	tyre=soft).		
Transaction as-	Aggregate categorical labels into an items array representing		
sembly	each observation.		
Model training	Apply FP-Growth to identify frequent itemsets and generate		
	association rules.		

Table 3.6: Association stages and their descriptions

Association rule mining complements the earlier stages by providing rule-based interpretability. FP-Growth identifies explicit logical relationships between telemetry conditions and tyre selections. In practice, this approach enables the identification of specific combinations of telemetry variables that frequently result in the use of a particular tyre compound. It also reveals behavioural patterns that differentiate the tyre compounds, providing additional insights into tyre strategy. This interpretability aligns closely with the objectives of real-world motorsport analytics, where understanding the relationships behind strategic choices is just as critical as making accurate predictions.

```
# Run FP growth on the session data

def run_fpgrowth_on_session(df, min_support=0.01, min_confidence
=0.3):
    fpg = FPGrowth(itemsCol="items", minSupport=min_support,
    minConfidence=min_confidence)
    model = fpg.fit(df)
    return model.freqItemsets, model.associationRules
```

```
# Run association rule mining on telemetry data
a def run_association(cleaned_data, suffix, cols_to_include=None):
      # --- Omitted: feature selection, data retrieval and joining,
     drop missing values ---
10
      # Column binning
      if "speed" in cols_to_include:
12
          df = df.withColumn("speed_cat",
13
              F.when(F.col("speed") < 100, "speed=slow")
14
              .when(F.col("speed") < 200, "speed=medium")</pre>
15
              .otherwise("speed=fast")
          )
18
      # --- Omitted: additional discretisation ---
19
      # Add label to tyre compound
21
      if "actualTyreCompound" in cols_to_include:
22
          df = df.withColumn("actualTyreCompound_cat",
23
              F.concat_ws("=", F.lit("tyre"), F.col("
24
     actualTyreCompound"))
          )
25
26
      # Combine columns to include into a single column
      df = df.withColumn("items", F.array(*[F.col(f"{c}_cat") for c
28
     in cols_to_include]))
29
      return run_fpgrowth_on_session(df)
```

Listing 3.6: Association rule code (Feng, 2021)

Chapter 4

Evaluation

4.1 Dimensionality reduction

Evaluating the effectiveness of Principal Component Analysis (PCA) is essential to ensure that the dimensionality reduction retains sufficient information from the original features. Since the principal components aim to maximise variance, the quality of the transformation is assessed through the explained variance. This metric indicates how much of the original dataset's variability is preserved by each component, and thus how informative the reduced representation is. A well-performing PCA transformation will typically result in a high cumulative explained variance in the first few components, suggesting that most of the data's structure can be retained with minimal loss. This is particularly important when PCA is followed by clustering or visualisation, as it ensures that meaningful patterns are not removed.

In this project, PCA evaluation is performed using the evaluation_reduction function, which calculates the explained variance for the top k components. The function returns the proportion of variance captured by each principal component and their total, providing a quantitative basis for deciding how many components to retain (see Appendix B.1).

Metric	Value	Description
Total variance 0.729		73% of the lap time variability is retained with only
		2 principal components.
PC1 variance 0.522		The first principal component contains 52% of the
		features' variability.
PC2 variance	0.207	The second principal component contains 21% of
		the features' variability.

Table 4.1: PCA evaluation results of lap time data with 2 principal components

```
return result

return result

# Feature selection for lap times and telemetry
features_time = ["LapTime", ..., "carPosition"]
featuers_telem = ["throttle", ..., "worldVelocityZ"]

# Run evaluation
result = evaluate_reduction(cleaned_data=cleaned_data, suffix= session_suffixes[0], category=categories[2], features= features_time, k=2)
print(result)
```

Listing 4.1: PCA evaluation code (Feng, 2021)

4.2 Clustering

The performance of clustering models is evaluated using the Silhouette score. A higher Silhouette score indicates more cohesive and well-separated clusters, with a maximum value of 1.0. In this project, the evaluate_clustering() function is used to calculate the Silhouette score and assess the quality of the resulting cluster assignments by the K-Means algorithm. Additionally, the function analyses cluster distribution. This helps ensure that the clustering model is not only quantitatively valid but also practically meaningful (see Appendix B.2).

Metric	Value	Description
Silhouette	0.975	Shows excellent internal cohesion and external separation
score		based on the scaled features and cluster predictions.
Cluster	89.3%, 7.49%,	Represents the distribution of points across clusters, in-
distribu-	1.07%, 0.89%,	dicating that the majority of lap time data is significantly
tion	0.36%, 0.89%	similar.

Table 4.2: Clustering evaluation results for lap time clustering with k=6

```
1 # Use clustering evaluator to calculate silhouette score
 def evaluate_clustering(df, features_col="scaled_features",
     prediction_col="cluster_prediction"):
      evaluator = ClusteringEvaluator(
          featuresCol=features_col,
          predictionCol=prediction_col,
          metricName="silhouette"
     )
      silhouette = evaluator.evaluate(df)
      cluster_sizes = df.groupBy(prediction_col).count().orderBy(
     prediction_col)
      cluster_distribution = cluster_sizes.withColumn(
          "percentage",
          F.round((F.col("count") / df.count()) * 100, 2)
13
14
15
      # --- Omitted: print and return statements ---
16
17
```

```
18 df = perform_cluster_analysis(cleaned_data, session_suffixes[0], "
     lap_time", 6)
19 evaluate_clustering(df)
20
21 # Plot clustering results of two feature columns
22 def plot_cluster(cleaned_data, suffix, analysis_type, clusters=3,
     group_by=None, features=[]):
      df = perform_cluster_analysis(cleaned_data, suffix,
     analysis_type, clusters, group_by, features)
      if group_by == "team":
24
          features.append("teamId")
25
      else:
          features.append("pilot_index")
      features.append("cluster_prediction")
      display(df.selectExpr(*features)) # Scatter plot grouped by
     cluster predictions
30
plot_cluster(cleaned_data, session_suffixes[0], "lap_time",
     clusters=4, features=["sector2TimeInMS", "sector3TimeInMS"])
32
33 # Apply PCA before clustering, display results.
34 def plot_pca_cluster(cleaned_data, suffix, category, pca_k=2,
     clusters=3, group_by=None, display_cols=["PC1", "PC2", "
     cluster_prediction"]):
      # --- Omitted: feature selection ---
35
      pca_model, pca_result = run_pca(cleaned_data, suffix, category,
36
      2, features)
      df = perform_cluster_analysis(pca_result, suffix, "PCA",
     clusters, group_by, features=["PC1", "PC2"])
      display(df.selectExpr(*display_cols)) # Scatter plot grouped by
      cluster predictions
40 plot_pca_cluster(cleaned_data, session_suffixes[0], categories[3],
     clusters=3)
```

Listing 4.2: Clustering evaluation code (Feng, 2021)

Further analysis was supported visually through scatter plots of selected features. A 2D scatter plot of sector2TimeInMS and sector2TimeInMs (see figure 4.1) shows how lap time features are grouped into clusters. Additionally, clustering was applied to PCA-reduced telemetry data using PC1 and PC2, resulting in a clear visual representation of clusters (see figure 4.2). This confirms the effectiveness of PCA as a pre-processing step for high-dimensional telemetry clustering.

Figure 4.1: Scatter plot of sector 2 and 3 timings grouped by cluster analysis results.

Figure 4.2: Scatter plot of PC1 and PC2 telemetry data grouped by cluster analysis results.

4.3 Classification

The performance of the classification model is evaluated using a combination of standard metrics suitable for multiclass classification, including accuracy, F1 score, precision, and recall (see Table 4.3). These metrics provide a comprehensive view of the model's predictive ability, particularly in the context of class imbalances. The evaluation is conducted using PySpark's MulticlassClassificationEvaluator, which applies each metric to the predicted and actual class labels produced by the classification pipeline (see Appendix B.3).

Metric	Value	Description				
Accuracy	0.739	Approximately 74% of predictions matched the ac-				
		tual tyre compound.				
F1 score	0.737	The score suggests a balanced trade-off between precision and recall.				
Precision	0.737	Proportion of correctly predicted compounds among all predicted compounds.				
Recall	0.739	Proportion of correctly predicted compounds				
		among all actual compounds.				
True positives	62,364	Number of correctly predicted tyre observations				
		(label = 1.0).				
False positives	33,361	Number of incorrectly predicted tyre observations				
		(label = 0.0).				
False negatives	24,740	Number of incorrectly predicted tyre observations				
		(label = 1.0).				
True negatives	101,976	Number of correctly predicted tyre observations				
		(label = 0.0).				

Table 4.3: Classification evaluation results for classifying actual tyre compound

```
1 # Use multiclass classification evaluator to calculate accuracy and
      f1 score
2 def evaluate_classification(predictions, label_col="label",
     pred_col="prediction"):
     evaluator = MulticlassClassificationEvaluator(labelCol=
     label_col, predictionCol=pred_col)
     metrics = {
          "accuracy": evaluator.evaluate(predictions, {evaluator.
     metricName: "accuracy"}),
          "f1": evaluator.evaluate(predictions, {evaluator.metricName
     : "f1"}),
          "precision": evaluator.evaluate(predictions, {evaluator.
     metricName: "weightedPrecision"}),
          "recall": evaluator.evaluate(predictions, {evaluator.
     metricName: "weightedRecall"})
     }
     confusion_matrix = predictions.groupBy(label_col, pred_col).
     count()
13
     # --- Omitted: print and return statements ---
```

Listing 4.3: Classification evaluation code (Feng, 2021)

A scatter plot of average tyre surface temperature against tyre inner temperature, grouped by predicted tyre compound (see figure 4.3), further illustrates effectiveness. The visualisation reveals a clear separation between predicted tyre compounds. This aligns with the physical characteristics of different compounds, supporting the model's predictive logic and enhancing the interpretability of its outputs.

Figure 4.3: Scatter plot of tyre surface temperature and tyre inner temperature grouped by classification tyre compound prediction.

4.4 Association rule

To assess the effectiveness of the association rule mining process, several key indicators were computed based on the output of the FP-Growth algorithm. The evaluation focused on the number and quality of both frequent itemsets and rules generated. Metrics such as confidence, lift, and support were used to measure rule strength, reliability, and significance, whilst ranked summaries of the strongest rules provide additional insight into the nature of the discovered relationships. These metrics help determine whether the mined rules are not only statistically significant but also contextually relevant to the domain (see Appendix B.4).

Metric	Value	Description
Total frequent	3,719	The total number of frequent itemsets generated
itemsets		by the FP-Growth algorithm.
Total rules gen-	14,415	The total number of association rules itemsets
erated		generated by the FP-Growth algorithm.
Average confi-	0.717	Rules were correct nearly 72% of the time when
dence		their antecedent occurred.
Average lift	1.359	Most rules revealed strong and statistically sig-
		nificant associations between telemetry conditions
		and outcomes.

Table 4.4: Association rule mining evaluation results based on telemetry and session data

```
# Print number of itemsets and rules, top 20 rules order by
     confidence
2 def evaluate_association(cleaned_data, suffix, cols_to_include=None
     itemsets, rules = run_association(cleaned_data, suffix,
     cols_to_include)
     total_itemsets = itemsets.count()
     total_rules = rules.count()
     top_confidence = rules.orderBy("confidence", ascending=False).
     limit(10)
     top_lift = rules.orderBy("lift", ascending=False).limit(10)
     top_support = rules.orderBy("support", ascending=False).limit
     (10)
     # --- Omitted: print and return statements ---
11
12
evaluate_association(cleaned_data, session_suffixes[0])
```

Listing 4.4: Association evaluation code (Feng, 2021)

These results confirm that the FP-Growth model successfully captured both intuitive and nuanced behavioural patterns within the telemetry data. For example, top lift rules showed particularly strong associations between low-throttle, high-speed driving and hard braking, with lift values exceeding 8.4, indicating a strong dependency beyond chance.

References

- Apache Spark (2025), 'Apache Spark Python API Documentation'. Accessed on: 10/02/2025.
 - **URL:** https://spark.apache.org/docs/latest/api/python/index.html
- Databricks (2025), 'Databricks AWS Documentation'. Accessed on: 24/02/2025.
 - **URL:** https://docs.databricks.com/aws/en/
- Feng, W. (2021), 'Learning apache spark with python'. Accessed on: 24/02/2025. **URL:** https://runawayhorse001.github.io/LearningApacheSpark/pyspark.pdf
- Mine, N. (2020), 'F1 2020 Race Data'. Accessed on: 03/02/2025. URL: https://www.kaggle.com/datasets/coni57/f1-2020-race-data
- Tan, P.-N., Steinbach, M., Kumar, V. and Karpatne, A. (2019), *Introduction to Data Mining*, 2 edn, Pearson Education, Limited.
- Uchyigit, D. G. (2025a), Association rule mining, fp-growth algorithm. Lecture slides for module Cl603 Data Mining, Lecture 2.
- Uchyigit, D. G. (2025*b*), Principal component analysis. Lecture slides for module Cl603 Data Mining, Lecture 8.

Appendix A

EDA metadata results

A.1 Schema

```
Running on Session_1...
Schema for Session 1:
  ParticipantData:
root
 |-- pilot_index: integer (nullable = true)
 |-- driverId: string (nullable = true)
 |-- teamId: string (nullable = true)
 |-- idleRPM: integer (nullable = true)
 |-- session_id: integer (nullable = true)
  SessionData:
root
 |-- weather: integer (nullable = true)
 |-- trackTemperature: integer (nullable = true)
 |-- airTemperature: integer (nullable = true)
 |-- totalLaps: integer (nullable = true)
 |-- trackLength: integer (nullable = true)
 |-- trackId: string (nullable = true)
 |-- session_id: integer (nullable = true)
  RaceTimeData:
root
 |-- frameIdentifierStart: integer (nullable = true)
 |-- frameIdentifierStop: integer (nullable = true)
 |-- pilot_index: integer (nullable = true)
 |-- LapTime: double (nullable = true)
 |-- sector1TimeInMS: integer (nullable = true)
 |-- sector2TimeInMS: integer (nullable = true)
 |-- sector3TimeInMS: integer (nullable = true)
 |-- carPosition: integer (nullable = true)
 |-- currentLapNum: integer (nullable = true)
 |-- session_id: integer (nullable = true)
  TelemetryData:
```

```
root
 |-- sessionTime: double (nullable = true)
 |-- frameIdentifier: integer (nullable = true)
 |-- pilot_index: integer (nullable = true)
 |-- worldPositionX: double (nullable = true)
 |-- worldPositionY: double (nullable = true)
 |-- worldPositionZ: double (nullable = true)
 |-- worldVelocityX: double (nullable = true)
 |-- worldVelocityY: double (nullable = true)
 |-- worldVelocityZ: double (nullable = true)
 |-- worldForwardDirX: integer (nullable = true)
 |-- worldForwardDirY: integer (nullable = true)
 |-- worldForwardDirZ: integer (nullable = true)
 |-- worldRightDirX: integer (nullable = true)
 |-- worldRightDirY: integer (nullable = true)
 |-- worldRightDirZ: integer (nullable = true)
 |-- gForceLateral: double (nullable = true)
 |-- gForceLongitudinal: double (nullable = true)
 |-- gForceVertical: double (nullable = true)
 |-- yaw: double (nullable = true)
 |-- pitch: double (nullable = true)
 |-- roll: double (nullable = true)
 |-- speed: double (nullable = true)
 |-- throttle: double (nullable = true)
 |-- steer: double (nullable = true)
 |-- brake: double (nullable = true)
 |-- clutch: double (nullable = true)
 |-- gear: double (nullable = true)
 |-- engineRPM: double (nullable = true)
 |-- drs: double (nullable = true)
 |-- brakesTemperature: array (nullable = true)
     |-- element: float (containsNull = true)
 |-- tyresSurfaceTemperature: array (nullable = true)
     |-- element: float (containsNull = true)
 |-- tyresInnerTemperature: array (nullable = true)
      |-- element: float (containsNull = true)
 |-- engineTemperature: double (nullable = true)
 |-- tyresPressure: array (nullable = true)
     |-- element: float (containsNull = true)
 |-- surfaceType: array (nullable = true)
      |-- element: float (containsNull = true)
 |-- fuelMix: double (nullable = true)
 |-- pitLimiterStatus: double (nullable = true)
 |-- fuelInTank: double (nullable = true)
 |-- fuelRemainingLaps: double (nullable = true)
 |-- tyresWear: array (nullable = true)
     |-- element: float (containsNull = true)
 |-- actualTyreCompound: string (nullable = true)
 |-- tyresDamage: array (nullable = true)
```

```
|-- element: float (containsNull = true)
|-- ersStoreEnergy: double (nullable = true)
|-- ersDeployMode: double (nullable = true)
|-- ersHarvestedThisLapMGUK: double (nullable = true)
|-- ersHarvestedThisLapMGUH: double (nullable = true)
|-- ersDeployedThisLap: double (nullable = true)
|-- carPosition: integer (nullable = true)
|-- currentLapTime: double (nullable = true)
|-- currentLapNum: integer (nullable = true)
|-- lapDistance: double (nullable = true)
|-- totalDistance: double (nullable = true)
|-- pitStatus: string (nullable = true)
|-- sector: integer (nullable = true)
|-- driverStatus: string (nullable = true)
|-- resultStatus: string (nullable = true)
|-- session_id: integer (nullable = true)
```

A.2 Summary

Running on Session_1...

Summary for Session_1:

Checking ParticipantData dataset:

+	-+	+			+
summar	pilot_index	driverId	teamId	idleRPM	session_id
coun		20	20	20	20
mean	9.5	null	null	4039.6	1.0
stdde	7 5.916079783099616	null	null	341.37838244388	0.0
min	1 0	alexander_albon	alfa_romeo	3499	1
l ma:	19	valtteri_bottas	williams	4300	1
+	-+	+	+		

Checking SessionData dataset:

	summary	weather	trackTemperature	airTemperature	totalLaps	trackLength	trackId	session_id
	count	1	1 32.0	1 26.0	1 28.0	1 5547.0	1 null	1 1.0
	mean stddev	null	null	null	null	null	null	null
	min max	0 0	32 32				yas_marina yas_marina	

Checking RaceTimeData dataset:

+	•	frameIdentifierStart	-	pilot_index	LapTime	sector1TimeInMS
i	count		561	561	561	561
	mean	30537.313725490196	32732.076648841354	9.516934046345812	102.7155347950089	19737.4064171123
	stddev	18134.350311572478	18032.41809787624	5.78021396146243	11.797555036767218	5104.91725295623
-	min	01	2304	01	0.0	0
-	max	61593	61593	19	121.84802	38233
+						

	 				+
	sector2TimeInMS			•	
-	+	++			+
	561	561	561	561	561
	42450.22459893048	40527.40285204991	10.483065953654188	14.52584670231729	1.0
	6583.820226740453	4548.939313368133	5.78021396146243	8.100912120471417	0.01
	0	0	11	1	1
	48154	44319	20	29	1
_	+				+

Checking TelemetryData dataset:

_						
	summary	sessionTime	•	pilot_index	worldPositionX	worldPositionY
	count mean	1113180 1454.1806857624258	·	1113180 9.5	1113180 118.4211698882486	1113180 5.111965461353947
	min max		•	0 19	-726.21606 834.65466	-1.88867 13.44968

	+	+	+		+-	+
	worldForwardDirX	cityZ	worldVeloc	${\tt worldVelocityY}$	worldVelocityX	worldPositionZ
	1113180	.13180 .01311		1113180 271814980505978	1113180	1113180 28.134711612973902 -
	23434.685159763794				41.3058750967056	301.95107595571045
	-32767 32766	43197 44661		-3.53851 4.07681	-92.58421 81.70893	-314.91916 657.55359
	- · · · · ·				+	+
gForceLateral	•	·		+ worldRightDirX	worldForwardDirZ	++- worldForwardDirY
1113180	1113180		1113180			1113180
					22651.99251066368	49.243800643202356 - 442.4237039789084
-16.16686	-32767		-2142	-32766	-32767	-3270
17.97173	32766 t		2380	32767	32766	2343
+		-+		+	+	++-
+	+ rol	pitch	+ 		gForceVertical	+ gForceLongitudinal
•	•	113180	•		•	l 1113180
						0.007252874934871201
	0.01307201337183536					1.2020397877584408
				-3.14159 3.14159		-13.24528 10.81696
+	+		+		+	+

gear	clutch	brake	stee	throttle	speed
 1113140	 1113140	1113140	 111314	1113140	+ 1113140
5285884974037405	0.016529816554970624	0.0959791076683973	-0.0412619431428219	0.6181204417773135	187.42319474639308
2.216158204510602	1.2855776543599093	0.2524421022102898	0.2365618707108489	0.4287409184882302	77.17248184686964
0.0	0.0	0.0	-1.	0.0	0.0
8.0	100.0	1.0	1.	1.0	333.0 +
+		+-	++		++
fuelInTank	pitLimiterStatus +	fuelMix	engineTemperature ++	drs 	engineRPM +
1113100	1113100	1113100	•		1113140
	014664450633366275 30				
	.12020572990597053 16	5642715472751436			1128.5885960496346
0.73334	0.0	0.0			3480.0
61.69364	1.0 +	2.0	128.0 ++	1.0	13025.0 +
-		+	+	+	+
	${ t rsHarvestedThisLapMGUB}$	ersDeployMode	ersStoreEnergy	actualTyreCompound	fuelRemainingLaps
•	1113100	1113100	1113100	1113100	1113100
	532864.7823205276	.1147165573623214	1806766.9042802476	null	1.2837225181834544
	332567.0343529078	31867971392454053	625397.4324571986	null	1.0042049793456325
	0.0	1.0	286561.84375	medium	-0.86009
	1278835.12	2.0	4000000.0	soft	3.93183
•		+	+	+-	+

+		+	+	+	+	
ersHarvestedThisLapMGUH	 ersDeployedThisLap	carPosition	currentLapTime	currentLapNum	lapDistance	TTEN
1113100	1113100	1113180	1113180	1113180	1113180	UIX
643592.113166892	1364199.1716915332	10.5	51.97768310813166	14.215152985141666	2849.900960048742	Α.
411776.7205358306	861674.6449259303	5.7662838873411415	30.4000736948662	7.938015985390431	1634.7144908459093	F
0.0	0.01	1	0.0	1	-51.625	D/A
1875489.5	4000780.75	20	121.83666	29	5547.11719	3
+	++	+	+	+	+	Ţ

totalDistance	pitStatus	sector	driverStatus	resultStatus	session_id
1113180	16321	1113180	1113180	1113180	1113180
76155.9092728247	null	1.197817064625667	null	null	1.0
44043.4554272805	null	0.7366130024992832	null	null	0.0
-51.625	in_pit_area	0	in_lap	active	1
155319.78125	pitting	2	out_lap	active	1
+	+		+		+

A.3 The first entries

Running on Session_1...

First 5 entries for Session_1:

Printing 5 entries for ParticipantData dataset:

pilot_index	driverId	teamId	idleRPM	++ session_id +
. 0	pierre_gasly	toro_rosso	3499	1
1	charles_leclerc	ferrari	4300	1
2	max_verstappen	red_bull_racing	3499	1
3	lando_norris	mclaren	3799	1
4	sebastian_vettel	ferrari	4300	1
+		·	+	++

only showing top 5 rows

Printing 5 entries for SessionData dataset:

weather trackT	emperature airTem	 perature tota	+ :lLaps tra	 ckLength	 trackId s	+ ession_id
++ 0	32	26 l	28	+ 5547 ya	s_marina	1

Printing 5 entries for RaceTimeData dataset:

+					L	
frameIdentifierStart	frameIdentifierStop	pilot_index	 LapTime	sector1TimeInMS	sector2TimeInMS	sector3TimeInMS
+		+	+			r+
0	2468	0	113.29473	23686	47302	42306
2470	4720	01	103.73251	18314	43825	41593
4721	7046	01	103.59639	18408	43450	41738
7047	9241	01	104.06097	18423	43749	41888
9243	11494	0	104.15616	18486	43618	42052
		•	·			

+			+
carPc	sition curre	entLapNum sessi	on_id
+			+
1	15	1	1
1	15	2	1
1	15	3	1
1	15	4	1
1	15	5	1
+			+

only showing top 5 rows

Printing 5 entries for TelemetryData dataset:

+	sessionTime		•	•	+ X worldPositionY	•		worldVelocityY
ŀ	1427.42664	30468	2	2 -725.1724	.9 4.39897	580.46643	-0.12031	-0.03396
- 1	1427.42664	30468	3	44.9352	5.93634	-307.54974	-83.84908	-0.00885
- 1	1427.42664	30468	1 4	170.2835	5.95592	-308.86057	-82.49887	-0.00856
- 1	1427.42664	30468	J 5	344.8928	88 5.98473	-309.90738	-81.3914	-0.00964
	1427.42664	30468	l 6	-379.0483	4.00352	-301.15857	-19.89058	0.03777

|worldVelocityZ|worldForwardDirX|worldForwardDirY|worldForwardDirZ|worldRightDirX|worldRightDirY|worldRightDirZ| 40.76767| -52| -133| 32766 -32753| 925 -48| 0.81945| -32765| 85| 316| -316| 0| -32765| 0.79761| -32765| 89| 313| -313| -32765| 0| 0.74661 -32765 56| 302| -302 0| -32765 10.11578 -29686 -1| 13869 -13869| 265 -29685|

gForceLateral gi	ForceLongitudinal	-	l yawl	pitch	roll	speed	++ throttle	steer	brake	clutch	gear
1.68183	-2.81545	0.01295	-0.0016	0.02824 <i>-</i>	-0.02825	146.0		-0.14312	0.80079	0.0	3.0
-0.02033	0.08644		-1.56113								8.0
0.01264	0.11058		-1.56123					-0.00123			8.0
-6.0E-4 1.82556	0.25253 -0.66331	•	-1.56156 -1.13374		·	•		0.0 -0.60385			7.0 1.0
•	brakesTemperatu	•	Temperatur	re tyresIr	nerTempe	rature	· e engineTe	mperature	el		
10772.0 0.0 [992.0, 993.0, 10.	[86.0, 89	.0, 91.0	[91.0,	92.0, 9	3.0	.	89.0)		
10529 010 015	395.0, 396.0, 25.	I [87 0 88	0 88 0	[91.0,	92 0 9	4 0	1	89.0	٦I		
10020.010.01	000.0, 000.0, 20.	, [01.0, 00	,	[01.0;	02.0, 0	1.0	• 1	05.0	7		
	451.0, 452.0, 31.			-				89.0	•		
10358.0 0.0 [4	•	[90.0, 90	.0, 88.0	[88.0,	89.0, 9	0.0	.) I		
10358.0 0.0 [4 11762.0 1.0 [9 9992.0 0.0 [451.0, 452.0, 31.	[90.0, 90 [85.0, 85 [83.0, 85	.0, 88.0 .0, 84.0	[88.0, [90.0, [90.0,	89.0, 9 91.0, 9 90.0, 9	00.0 03.0 03.0	. . .	89.0 89.0 89.0) 		
10358.0 0.0 [4 11762.0 1.0 [9 9992.0 0.0 [451.0, 452.0, 31. 525.0, 527.0, 39. 1015.0, 1016.0, .	[90.0, 90 [85.0, 85 [83.0, 85	.0, 88.0 .0, 84.0 .0, 90.0	[88.0, [90.0, [90.0,	89.0, 9 91.0, 9 90.0, 9	00.0 03.0 03.0	. . .	89.0 89.0 89.0))) -+		+
10358.0 0.0 [- 11762.0 1.0 [- 9992.0 0.0 [451.0, 452.0, 31. 525.0, 527.0, 39. 1015.0, 1016.0, .	[90.0, 90 [85.0, 85 [83.0, 85	.0, 88.00, 84.00, 90.0	[88.0, [90.0, [90.0, +	89.0, 9 91.0, 9 90.0, 9	00.0 03.0 03.0 Cank fu	. . . -+ nelRemaini	89.0 89.0 89.0 ngLaps) -+	tyres	
10358.0 0.0 [4 11762.0 1.0 [9 9992.0 0.0 [451.0, 452.0, 31. 525.0, 527.0, 39. 1015.0, 1016.0, .	[90.0, 90 [85.0, 85 [83.0, 85 +	.0, 88.00, 84.00, 90.0	[88.0, [90.0, [90.0, +	89.0, 9 91.0, 9 90.0, 9 	00.0 03.0 03.0 'ank fu	. . . -+ uelRemaini	89.0 89.0 89.0 ngLaps) + 	tyres	+
10358.0 0.0 [- 11762.0 1.0 [- 9992.0 0.0 [- 	451.0, 452.0, 31. 525.0, 527.0, 39. 1015.0, 1016.0,	[90.0, 90 [85.0, 85 [83.0, 85 +	.0, 88.00, 84.00, 90.0+ ix pitLimi	[88.0, [90.0, [90.0, + iterStatus	89.0, 9 91.0, 9 90.0, 9 s fuelInT 0 28.38	00.0 03.	. . . -+ 1elRemaini	89.0 89.0 ngLaps	0 0 0 -+ 	tyres 	+
10358.0 0.0 [4 11762.0 1.0 [9 9992.0 0.0 [451.0, 452.0, 31. 525.0, 527.0, 39. 1015.0, 1016.0,	[90.0, 90 [85.0, 85 [83.0, 85 	.0, 88.00, 84.00, 90.0+ ix pitLimi	[88.0, [90.0, [90.0, +	89.0, 9 91.0, 9 90.0, 9 s fuelInT 0 28.38	00.0 03.0 03.0 03.0 03.0 03.0 03.0 03.0 03.0 03.0 03.0 03.0	. . . -+	89.0 89.0 89.0 	0 0 0 -+ 	tyres .0, 22.0	
10358.0 0.0 [4 11762.0 1.0 [8 9992.0 0.0 [451.0, 452.0, 31. 525.0, 527.0, 39. 1015.0, 1016.0,	[90.0, 90 [85.0, 85 [83.0, 85 +	.0, 88.00, 84.00, 90.0ix pitLimi	[88.0, [90.0, [90.0, [90.0, [90.0, [90.0,	89.0, 9 91.0, 9 90.0, 9 s fuelInT 0 28.38 0 29.67	00.0 03.0 03.0 Cank fu	. . . 	89.0 89.0 89.0 	24.0, 24. 11.0, 1.0,	tyres .0, 22.0 .0, 9.0,	

	Harvested	.apMGUK ers	SHarvestedThisL	ployMode er	reEnergy ers	e ersSt	resDamage	tyr	ctualTyreCompound
647346.687		56.375	6833	1.0	3022.875	. 11	, 22.0	24.0, 24.0,	soft
10718.3437	4	4.8125	33401	1.0	4613.125	. 12	9.0,	11.0, 11.0,	medium
844681.7		2.26562	251932	1.0	1182.875] 13	1.0, 1.0]	1.0, 1.0, 1	soft
463771.12		.40625	337044	1.0	7022.375	. 19	10.0	11.0, 11.0,	medium
508305.62		1.9375	53647	1.0	6593.375	. 14	9.0,	10.0, 10.0,	medium
									+
	sector dr	pitStatus	totalDistance		currentLapNu		currentLa		
riverStatus	sector dr 2	pitStatus null	totalDistance ; + 75868.75781	lapDistance	currentLapNu 1 1	LapTime	currentLa 62.	arPosition +	ersDeployedThisLap
riverStatus on_track	sector dr + 2 1	pitStatus + null null	totalDistance + 75868.75781 74440.98438	lapDistance 3756.22656	currentLapNu 1 1 1	LapTime 2.36975	currentLa 62. 40.	arPosition + 2	ersDeployedThisLap 1510565.875
on_track	sector dr 2 1 1	pitStatus null null null	totalDistance ; 	lapDistance 3756.22656 2328.45312 2203.10156	currentLapNu 1 1 1 1	LapTime 2.36975 0.02254	62. 40.	arPosition + 2 9	ersDeployedThisLap 1510565.875 834218.3125

+		+
res	ultStatus sess	ion_id
+		+
1	active	1
	active	1
+		+
-		

only showing top 5 rows

A.4 Count

Running on Session_1...

Count for Session_1:

ParticipantData dataset size: 20 rows x 6 columns

SessionData dataset size: 1 rows x 6 columns

RaceTimeData dataset size: 561 rows x 9 columns

TelemetryData dataset size: 1113180 rows x 56 columns

A.5 Missing values

Running on Session_1...

Missing values for Session_1

ParticipantData missing values:

SessionData missing values:

RaceTimeData missing values:

TelemetryData missing values:

- speed: 40 missing values

throttle: 40 missing valuessteer: 40 missing values

- brake: 40 missing values - clutch: 40 missing values

- gear: 40 missing values

- engineRPM: 40 missing values

- drs: 40 missing values

- engineTemperature: 40 missing values

- fuelMix: 80 missing values

- pitLimiterStatus: 80 missing values

- fuelInTank: 80 missing values

- fuelRemainingLaps: 80 missing values

- ersStoreEnergy: 80 missing values

- ersDeployMode: 80 missing values

ersHarvestedThisLapMGUK: 80 missing valuesersHarvestedThisLapMGUH: 80 missing values

- ersDeployedThisLap: 80 missing values

- actualTyreCompound: 80 missing values

- pitStatus: 1096859 missing values

Appendix B

Evaluation results

B.1 Dimensionality reduction

only showing top 5 rows

'total_variance': 0.7288847302794471,
'PC1_variance': 0.5218527363684351,
'PC2_variance': 0.20703199391101204

B.2 Clustering

Clustering evaluation metrics:

Silhouette score: 0.975

Cluster distribution:

+	+	++
cluster_prediction	count	percentage
+	+	+
0	501	89.3
1	42	7.49
1 2	6	1.07
3	5	0.89
1 4	1 2	0.36
1 5	J 5	0.89
	L	LL

B.3 Classification

Classification metrics:

Accuracy: 0.739 F1 Score: 0.737 Precision: 0.737 Recall: 0.739

Confusion Matrix:

+-		+-	+
1	abel pr	ediction	count
+-		+	+
	1.0	1.0	62364
	0.01	1.0	24740
	1.0	0.0	33361
	0.01	0.0	101976

B.4 Association rule

Association rule mining metrics: Total frequent itemsets: 3719 Total rules generated: 14415 Average confidence: 0.717

Average lift: 1.359

Top 10 Rules by Confidence:

+	+	+
antecedent 		confidence
[gear=medium, fuel=medium, speed=fast, throttle=high, weather=clear, track=warm]	[brake=none]	1.0
[throttle=medium, speed=medium, tyre=soft, track=warm]	[weather=clear]	1.0
[gear=medium, fuel=low, throttle=low, speed=medium]	[weather=clear]	1.0
[speed=medium, tyre=soft, throttle=high]	[brake=none]	1.0
[speed=slow, fuel=low, throttle=low, brake=none, weather=clear]	[gear=low]	1.0
[gear=low, fuel=high, throttle=high, track=warm]	[weather=clear]	1.0
[brake=light, speed=medium, tyre=medium]	[weather=clear]	1.0
[speed=medium, tyre=soft, throttle=high]	[weather=clear]	1.0
[throttle=medium, gear=low, track=warm]	[brake=none]	1.0
[tyre=soft, throttle=high]	[track=warm]	1.0

Top 10 Rules by Lift:

+	+	+
antecedent 	consequent	
[throttle=low, fuel=medium, speed=fast, weather=clear]	[[brake=nard]	0.9021543464374892
[throttle=low, fuel=medium, speed=fast, track=warm]	[brake=hard]	0.9021543464374892
[throttle=low, fuel=medium, speed=fast]	[brake=hard]	0.9021543464374892
[throttle=low, fuel=medium, speed=fast, weather=clear, track=warm]	[brake=hard]	0.9021543464374892
[throttle=low, gear=high, speed=fast, tyre=medium, track=warm]	[brake=hard]	0.8949367088607595
[throttle=low, gear=high, speed=fast, tyre=medium, weather=clear, track=warm]	[brake=hard]	0.8949367088607595
[throttle=low, gear=high, speed=fast, tyre=medium]	[brake=hard]	0.8949367088607595
[throttle=low, gear=high, speed=fast, tyre=medium, weather=clear]	[brake=hard]	0.8949367088607595
[throttle=low, gear=high, tyre=medium, weather=clear]	[brake=hard]	0.8949233183175583
[throttle=low, gear=high, tyre=medium, track=warm]	[brake=hard]	0.8949233183175583

lift	support
+	++
8.443450429405026	0.013957416224957326
18.443450429405026	0.013957416224957326
18.443450429405026	0.013957416224957326
18.443450429405026	0.013957416224957326

```
|8.375899056031745|0.015879076453148865|

|8.375899056031745|0.015879076453148865|

|8.375899056031745|0.015879076453148865|

|8.375899056031745|0.015879076453148865|

|8.375773731148938|0.01588446680442009|

|8.375773731148938|0.01588446680442009|
```

Top 10 Rules by Support:

+	consequent	confidence	lift	support
			1.0	
[track=warm]	[weather=clear]	11.0	1.0	1.0
[weather=clear, track=warm]	[brake=none]	0.8532809271404187	1.0	0.8532809271404187
[track=warm]	[brake=none]	0.8532809271404187	1.0	0.8532809271404187
[weather=clear]	[brake=none]	0.8532809271404187	1.0	0.8532809271404187
[brake=none, weather=clear]	[track=warm]	11.0	1.0	0.8532809271404187
[brake=none]	[weather=clear]	11.0	1.0	0.8532809271404187
[brake=none, track=warm]	[weather=clear]	11.0	1.0	0.8532809271404187
[brake=none]	[track=warm]	11.0	1.0	0.8532809271404187
[track=warm]	[tyre=medium]	0.5706495373281826	1.0	0.5706495373281826
+	+	+	+	++