充足可能性ソルバ (SAT ソルバ) の原理

Hiromi ISHII

2024-03-10 Tsukuba Computer Mathematics Seminar 2024

自己紹介

自己紹介

自己紹介

- いしいひろみ
 ◆石井大海
- ◆ 2018 年度 筑波大学数学専攻博士後期課程修了(照井研)
- ◆計算機合宿には2014年から参加
- ◆ 現職: Haskell 製大規模数値計算ベンチャー研究開発職
- ◆ 宣伝: 今年 05/11, 12 に横浜でお芝居をするので興味のある方は是非観に きてください

充足可能性ソルバ (SAT ソルバ) の原理

本日の話題:充足可能性問題と SAT ソルバ

- ◆ 充足可能性問題:与えられた命題論理式が(古典的に)充足可能かどうかを判定する問題
 - ト 古典命題論理式:命題変数 $P_1,...,Q_1,...$,を \land (かつ)、 \lor (または)、 \rightarrow (ならば)、 \lnot (でない) で結んで得られる論理式
 - ▶ 古典的充足可能性:与えられた式を真とするような、 命題変数への真偽値。(真)または×(偽)の割り当てが存在するか?
- ◆ 充足可能性 (SATisfiability) を略して SAT と呼ぶ。
- ◆ 判定問題としては NP- 完全:総当たりで解けるような任意の問題が SAT に帰着できる
- ◆ 色々な問題が SAT (やその拡張である SMT ソルバ) で解け、実用上も重要

SAT で解ける問題の例:論理パズル

問 1 (三人の島民[1])

常に嘘だけをいう嘘吐きと、本当のことだけをいう正直者だけが住む島で、A, B, C = Aの島民に出会った。彼らのいうことには:

- ◆ A: 「B と C はどちらも正直者だ」
- ◆B: 「A は嘘吐きで、C は正直者だ」

A, B, C はそれぞれ正直者か、嘘吐きか?

三人の島民:回答

- ◆ *A*, *B*, *C* を「A が正直者」「B が正直者」「C が正直者」を表す命題変数とする
- ◆情報を命題論理式に変換して(1) ∧ (2) を充足する解を求めればよい:

$$A \iff B \land C$$

$$B \iff \neg A \land C$$

◆ 真偽値表を書いてみると、全員嘘吐きだとわかる。

A	B	C	(1)	(2)	$(1) \wedge (2)$	A	B	C	(1)	(2)	$(1) \wedge (2)$
0	0	0	0	×	×	×	0	0	×	0	×
0	0	×	\times	×	×	×	0	\times	0	×	×
0	×	0	×	0	×	×	×	0	0	×	×
0	×	\times	×	0	×	×	×	×	0	0	0

4/8

(1)

(2)

SAT で解ける問題の例:数独

- ◆簡単な例として、4 × 4 の小さな数独の問題を SAT で解 くことを考える。
- \bullet $i,j,k \leq 4$ に対し命題変数 $P_{ij}^{=k}$ を用意する $(d_{ij}=k$ というきもち)。
- ◆ 各マスには 1,2,3,4 のいずれかの数字一つを入れる。

$$\bigwedge_{i \le 4} \bigwedge_{j \le 4} \left\{ \left(P_{ij}^{=1} \vee P_{ij}^{=2} \vee P_{ij}^{=3} \vee P_{ij}^{=4} \right) \wedge \bigwedge_{k \le 4} \bigwedge_{l \ne k} \left(P_{ij}^{=k} \Longrightarrow \neg P_{ij}^{=l} \right) \right\}$$
(3)

SAT で解ける問題の例:数独 (続)

- ◆ 各行、各列、各 2 × 2 の小ブロックには各数字 1,...,4 が一つずつ入る。
 - ▶ 「各行」は次のように書ける(「各列」も *i*, *j* の役割を入れ換え同様):

$$\bigwedge_{i \le 4} \bigwedge_{k \le 4} (P_{i1}^{=k} \vee P_{i2}^{=k} \vee P_{i3}^{=k} \vee P_{i4}^{=k}) \tag{4}$$

- ▶ 演習問題:「一意性」の条件が要らない理由を考えてみよう。
- ▶ 演習問題:「各ブロック」の条件を書き下してみよう。
- lacktriangle あとは盤面の情報を個別に $P_{ij}^{=k}$ で与えてやれば、 個別の問題を SAT で解ける!

6/8

まとめ

まとめ

◆ Matome here

まとめ

参考文献

[1] レイモンド・スマリヤン, "スマリヤンの決定不能の論理パズル ゲーデルの定理と様相論理," 白揚社,2008.