51 单片机汇编语言教程: 第7课一单片机的特殊功能寄存器

(基于 HJ-1G、HJ-3G 实验板)

通过前面的学习,我们已知单片机的内部有 ROM、有 RAM、有并行 IO 口,那么,除了这些东西之外,单片机内部究竟还有些什么,这些个零碎的东西怎么连在一起的,让我们来对单片机内部的寄存器作一个完整的功能分析吧!

下图中我们能看出,在 51 单片机内部有一个 CPU 用来运算、控制,有四个并行 IO 口,分别是 PO、P1、P2、P3,有 ROM,用来存放程序,有 RAM,用来存放中间结果,此外还有定时计数器,串行 IO 口,中断系统,以及一个内部的时钟电路。在一个 51 单片机的内部包含了这么多的东西。

单片机内部结构图

对上面的图进行进一步的分析,我们已知,对并行 I0 口的读写只要将数据送入到对应 I0 口的锁存器就能了,那么对于定时计数器,串行 I0 口等怎么用呢?在单片机中有一些独立的存储单元是用来控制这些器件的,被称之为特殊功能寄存器 (SFR)。事实上,我们已接触过 P1 这个特殊功能寄存器了,还有哪些呢?看下表 1

符号	地址	功能介绍
В	FOH	日寄存器
ACC	ЕОН	累加器
PSW	DOH	程序状态字
IP	ввн	中断优先级控制寄存器
Р3	вон	P3口锁存器
IE	АВН	中断允许控制寄存器
P 2	АОН	P2口锁存器
SBUF	99H	串行口锁存器
SCON	98H	串行口控制寄存器
P1	90H	P1口锁存器
TH1	8DH	定时器/计数器1(高8位)
ТН0	8CH	定时器/计数器1(低8位)
TL1	8BH	定时器/计数器0(高8位)
TLO	8АН	定时器/计数器0(低8位)
TMOD	89A	定时器/计数器方式控制寄存器
TCON	88H	定时器/计数器控制寄存器
DPH	83H	数据地址指针(高8位)
DPL	82H	数据地址指针(低8位)
SP	81H	堆栈指针
PO	80H	PO口锁存器
PCON	87H	电源控制寄存器

表 1

特殊功能寄存器地址映象表(一)

SFR 名称	符号			位地址	/位定	义名/	位编号	1		字节地址
	পাড	D7	De	Ds	D4	Ds	D2	Dı	Do	
B 寄存器	В	F7H	F6H	F5H	F4H	F3H	F2H	F1H	FOH	(FOH)
累加器 A	4	E7H	E6H	E5H	E4H	ЕЗН	E2H	E1H	EOH	(POIL)
ANUTO A	Acc	Acc. 7	Acc. 6	Acc. 5	Acc. 4	Acc. 3	Acc. 2	Acc. 1	Acc. 0	(EOH)
41 - 44 -		D7H	D6H	D5H	D4H	D3H	D2H	D1H	DOH	
程序状态字 寄存器	PSW	Су	AC	FO	RS1	RSO	OV	F1	P	(дон)
可行品		PSW. 7	PSW.6	PSW.5	PSW. 4	PSW.3	PSW.2	PSW. 1	PSW.O	1
中断忧先级	IP	BFH	BEH	BDH	BCH	ввн	BAH	вэн	В8Н	(DOIL)
控制寄存器	11				PS	PT1	PX1	PTO	PXO	(B8H)
I/0端口3	DO.	В7Н	B6H	B5H	В4Н	взн	В2Н	B1H	вон	(DOLD)
1/0 4前口 3	P3	P3.7	P3.6	P3.5	P3. 4	P3.3	P3.2	P3. 1	P3.0	(вон)
中断允许		AFH	AEH	ADH	ACH	ABH	AAH	АЭН	A8H	(1010)
控制寄存器	IE	EA			ES	ET1	EX1	ETO	EXO	(A8H)
- (a *** - a	no.	A7H	A6H	A5H	A4H	АЗН	A2H	A1H	AOH	(1011)
I/0端口2	P2	P2.7	P2.6	P2.5	P2. 4	P2.3	P2.2	P2. 1	P2.0	(AOH)

特殊功能寄存器地址映象表(二)

定行数据 缓冲器	SBUF									991
串行控制	CCOV	9 F H	9EH	9DH	9CH	9BH	9AH	991	98Н	(98Н)
寄存器	SCON	SMO	SM1	SM2	REN	TB8	RB8	TI	RI	
I/0 端口 1	20.4	971	9611	95H	9411	93Н	92H	91H	901	(0011)
1/0 岩岬 1	P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	TI RI 91H 90H P1.1 P1.0	(90H)	
定时/计数器 1 (高字节)	тні									8DH
定时/计数器 0 (高字节)	тно								3	8CH
定时/计数器 1 (低字节)	TL1									881
定时/计数器 0 (低字节)	TLO									HA8
定时/计数器 方式选择	TMOD	GATE	C/Ŧ	M1	MO	GATE	C/Ī	M1	MO	8911
定时/计数器	TCOM	8 F H	8EH	8DH	8CH	8BH	HA8	891	881	(0010)
控制寄存器	TCON	TF1	TR1	TFO	TRO	IE1	IT1	IEO	ITO	(88н)
电源控制及 波特率选择	PCON	SMOD				GF1	GF0	PD	IDL	8711

特殊功能寄存器地址映象表(三)

数据批针 (高字节)	DPH	60								8311
数据指针 (低字节)	DPL	0								82H
堆栈指针	SP					No.				81H
工/0 繰口 0	PO	87H	86H	85H	84H	83H	82H	81H	80H	(80H)
I/0端口0	10	PO. 7	PO. 6	P0.5	PO. 4	PO. 3	P0.2	PO. 1	PO. 0	(001)

下面,我们介绍一下几个常用的 SFR,看图 2。

ACC: 累加器,常常用 A 表示。这是个什么东西,可不能从名字上理解,它是一个寄存器,而不是一个做加法的东西,为什么给它这么一个名字呢?或许是因为在运算器做运算时其中一个数一定是在 ACC 中的缘故吧。它的名字特殊,身份也特殊,稍后我们将学到指令,能发

现,所有的运算类指令都离不开它。

- 2、B: 一个寄存器。在做乘、除法时放乘数或除数,不做乘除法时,随你怎么用。
- 3、PSW: 程序状态字。这是一个很重要的东西, 里面放了 CPU 工作时的很多状态, 借此, 我们能了解 CPU 的当前状态, 并作出对应的处理。它的各位功能请看表 2

D 7	D 6	D 5	D4	D3	D 2	D1	D0
C Y	A C	F O	RS 1	RS 0	0 V		Р

表 2

PSW 也称为标志寄存器,了解这个对于了解单片机原理非常的重要,存放各有关标志。其结构和定义如下:

位编号	PSW.7	PSW.6	PSW.5	PSW.4	PSW.3	PSW.2	PSW.1	PSW.O
位地址	D7H	D6H	D5H	D4H	DЗH	D2H	D1H	DOH
位定义名	Су	AC	FO	RS1	RSO	ov	F1	Р

下面我们逐一介绍 sfr 各位的用途

- (1) CY: 进位标志。用于表示 Acc. 7 有否向更高位进位。8051 中的运算器是一种 8 位的运算器,我们知道,8 位运算器只能表示到 0-255,如果做加法的话,两数相加可能会超过 255,这样最高位就会丢失,造成运算的错误,怎么办?最高位就进到这里来。这样就没事了。例: 78H+97H (011111000+10010111)
- (2) AC: 辅助进位标志也叫半进位标志。 用于表示 Acc. 3 有否向 Acc. 4 进位例: 57H+3AH(01010111+00111010)
- (3) FO: 用户标志位,由我们(编程人员)决定什么时候用,什么时候不用。
- (4) RS1、RS0: 工作寄存器组选择位。这个我们已知了。

RS1, RS0 = 00 — $0 \boxtimes (00 \text{H} \sim 07 \text{H})$

RS1, RS0 = 01 —— $1 \times (08 \text{H} \sim 0 \text{FH})$

RS1, RS0 = 10 —— $2 \times (10 \text{H} \sim 17 \text{H})$

RS1, RS0 = 11 \longrightarrow 3 \boxtimes (18H \sim 1FH)

- (5) 0V: 溢出标志位。 表示 Acc 在有符号数算术运算中的溢出,什么是溢出我们稍后再谈吧。
- (6) P: 奇偶校验位: 它用来表示 ALU 运算结果中二进制数位 "1"的个数的奇偶性。若为 奇数,则 P=1,不然为 0。

例:某运算结果是 78H (01111000),显然 1 的个数为偶数,所以 P=0。

- 4、DPTR (DPH、DPL):数据指针,能用它来访问外部数据存储器中的任一单元,如果不用,也能作为通用寄存器来用,由我们自己决定如何使用。16 位,由两个 8 位寄存器 DPH、DPL 组成。主要用于存放一个 16 位地址,作为访问外部存储器(外 RAM 和 ROM)的地址指针。5、P0、P1、P2、P3:这个我们已经知道,是四个并行输入输出口的寄存器。它里面的内容对应着管脚的输出。
- 6、SP: 堆栈指针。(专用于指出堆栈顶部数据的地址。)

堆栈介绍: 日常生活中, 我们都注意到过这样的现象, 家里洗的碗, 一只一只摞起来,

最晚放上去的放在最上面,而最早放上去的则放在最下面,在取的时候正好相反,先从最上面取,这种现象我们用一句话来概括:"先进后出,后进先出"。请大家想想,还有什么地方有这种现象?其实比比皆是,建筑工地上堆放的砖头、材料,仓库里放的货物,都是"先进后出,后进先出",这实际是一种存取物品的规则,我们称之为"堆栈"。

在单片机中,我们也能在 RAM 中构造这样一个区域,用来存放数据,这个区域存放数据的规则就是"先进后出,后进先出",我们称之为"堆栈"。为什么需要这样来存放数据呢?存储器本身不是能按地址来存放数据吗?对,知道了地址的确就能知道里面的内容,但如果我们需要存放的是一批数据,每一个数据都需要知道地址那不是麻烦吗?如果我们让数据一个接一个地放置,那么我们只要知道第一个数据所在地址单元就能了(看图 2)如果第一个数据在 27H,那么第二、三个就在 28H、29H 了。所以利用堆栈这种办法来放数据能简化操作。

那么 51 中堆栈什么地方呢?单片机中能存放数据的区域有限,我们不能够专门分配一块地方做堆栈,所以就在内存(RAM)中开辟一块地方,用于堆栈,但是用内存的哪一块呢?还是不好定,因为 51 是一种通用的单片机,各人的实际需求各不相同,有人需要多一些堆栈,而有人则不需要那么多,所以怎么分配都不合适,怎样来解决这个问题分不好干脆就不分了,把分的权利给用户(编程者),根据自己的需要去定吧,所以 51 单片机中堆栈的位置是能变化的。而这种变化就体现在 SP 中值的变化,看图 2, SP 中的值等于 27H 不就相当于是一个指针指向 27H 单元吗?当然在真正的 51 机中,开始指针所指的位置并非就是数据存放的位置,而是数据存放的前一个位置,比如一开始指针是指向 27H 单元的,那么第一个数据的位置是 28H 单元,而不是 27H 单元,为什么会这样,我们在学堆栈命令时再说明。其它的 SFR,我们在用到时再介绍。

51 实验板推荐(点击下面的图片可以进入下载资料链接)

