Case Summary

Case ID: wue_transient_heatflux

Objective: Verify the WU–E (urban structure) heat-flux prototype that couples a wind-aligned anisotropic fire ellipse (Hamada-style regression) with a piecewise transient design-fire curve for HRRPUA. We check that (i) geometric transformations, (ii) ellipse reach/coverage, (iii) per-cell HRR normalization, and (iv) heat-flux partitions (direct flame contact vs. radiation) reproduce expected behavior and conserve energy consistently.

0.1 Methods

0.1.1 Theory

Coordinate Transformations

Geometric angle from source to target cell:

$$\theta = \arctan(j, i) \quad (rad). \tag{1}$$

Wind-aligned major-axis angle (radians) from the 20-ft met direction (blowing from):

$$\theta_{\text{wind}} = \frac{\pi}{180} \left(270 - WD_{20ft} \right). \tag{2}$$

Relative angle for ellipse formulas:

$$\theta_f = \theta - \theta_{\text{wind}}, \qquad R = \sqrt{(i\,\Delta)^2 + (j\,\Delta)^2}.$$
 (3)

Wind-Aligned Ellipse (Hamada-Style)

Convert wind speed to m/s:

$$V = 0.447 \,\text{WS}_{20ft}.\tag{4}$$

Downwind (D_{\downarrow}) , upwind (D_{\uparrow}) , and sidewind (D_{\perp}) distances (m) are piecewise functions of V with coefficients depending on (A, D) and scaled by W_p :

Low wind
$$(V < 10)$$
: $D_{\downarrow} = W_p (D_1 V + D_2), D_{\perp} = W_p (S_1 V + S_2), D_{\uparrow} = W_p (U_1 V + U_2), (5)$

High wind
$$(V > 17.3)$$
: $D_{\downarrow} = W_p (D_1 V + D_2), D_{\perp} = W_p (S_1 V + S_2), D_{\uparrow} = W_p (U_1 V + U_2), (6)$

Moderate (10
$$\leq V \leq$$
 17.3): $D_{\downarrow} = W_p (D_1 V^2 + D_2 V + D_3),$
 $D_{\perp} = W_p (S_1 V^2 + S_2 V + S_3),$
 $D_{\uparrow} = W_p (U_1 V^2 + U_2 V + U_3).$

Ellipse parameters:

$$a = \frac{D_{\downarrow} + D_{\uparrow}}{2}, \qquad \qquad \varepsilon = \min\left(\frac{a}{2}, a - D_{\uparrow}\right), \qquad \qquad E_{b2} = 1 - \left(\frac{\varepsilon}{a}\right)^2,$$
 (7)

$$b = \begin{cases} \frac{D_{\perp}}{\sqrt{E_{b2}}}, & E_{b2} > 0, \\ 0, & E_{b2} \le 0. \end{cases}$$
(8)

State vector:

$$\mathbf{E} = \begin{bmatrix} a, b, \varepsilon, D_{\downarrow} \end{bmatrix}^{\mathsf{T}}.$$

Ellipse Reach and Coverage

Maximum reach (scalar):

$$R_{\text{max}} = 0.3 \, D_{\downarrow} \, \frac{a - \varepsilon}{b^2}. \tag{9}$$

Directional reach along θ_f :

$$R_{\rm ell}(\theta_f) = \frac{R_{\rm max} b^2}{a - \varepsilon \cos \theta_f}.$$
 (10)

DFC coverage fraction (cell-centered, clipped to [0,1]):

$$C_{\rm DFC} = \max \left\{ \min \left(\frac{R_{\rm ell}(\theta_f) + \frac{1}{2}\Delta - R}{\Delta}, 1 \right), 0 \right\}. \tag{11}$$

Radiation annulus outside DFC, bounded by cutoff:

$$R_{\text{rad limit}}(\theta_f) = R_{\text{ell}}(\theta_f) + R_{\text{rad}},$$
 (12)

$$\Delta_{\text{rad}} = \max \left\{ \min \left(\frac{R_{\text{rad limit}}(\theta_f) + \frac{1}{2}\Delta - R}{\Delta}, 0 \right), 1 \right\}, \tag{13}$$

$$F_{\rm rad} = \Delta_{\rm rad} (1 - C_{\rm DFC}). \tag{14}$$

Per-Cell HRR Normalization

To conserve total HRRPUA over the ellipse footprint, use the adjuster

$$C_{\text{HRR}} = \frac{\Delta^2}{\pi (b/a) a b} = \frac{\Delta^2}{\pi b^2}.$$
 (15)

Transient HRRPUA

For burning time τ and parameters ($t_{\text{early}}, t_{\text{dev}}, t_{\text{decay}}, \text{HRRPUA}_{\text{peak}}$):

$$\label{eq:HRRPUA} \text{HRRPUA}_{\text{peak}} \frac{1}{t_{\text{early}}} \tau, \qquad 0 \leq \tau \leq t_{\text{early}}, \\ \text{HRRPUA}_{\text{peak}}, \qquad t_{\text{early}} < \tau \leq t_{\text{dev}}, \\ \frac{1}{t_{\text{dev}} - t_{\text{decay}}} (\tau - t_{\text{decay}}), \quad t_{\text{decay}} < \tau, \\ 0, \qquad \text{otherwise}, \\ \end{pmatrix}$$

Per-Cell Heat Fluxes

Let $C_{\text{burn}} = 1 - \text{NONBURNABLE_FRAC}$. Then

$$q_{\rm DFC}'' = C_{\rm burn} C_{\rm DFC} \, HRRPUA(\tau) \, C_{\rm HRR}, \tag{17}$$

$$q_{\rm rad}'' = \frac{0.3 \, C_{\rm burn} \, \alpha \, F_{\rm rad} \, C_{\rm HRR} \, {\rm HRRPUA}(\tau) \, \Delta^2}{4\pi \, R_{\rm eff}^2}, \qquad R_{\rm eff} = \begin{cases} \Delta \, (1 - C_{\rm DFC}), & 0 < C_{\rm DFC} < 1, \\ R - R_{\rm ell}(\theta_f), & \text{otherwise.} \end{cases}$$
(18)

Algorithm (Per Time Step)

- 1. Set $\tau = t t_0$ and compute HRRPUA(τ).
- 2. From (WS_{20ft}, A, D, W_p) compute $\mathbf{E} = [a, b, \varepsilon, D_{\downarrow}].$
- 3. For each cell (i, j) with center $(i \Delta, j \Delta)$:
 - 3.1. Compute R, θ, θ_f and $R_{\text{ell}}(\theta_f)$.
 - 3.2. Compute C_{DFC} , F_{rad} , R_{eff} .
 - 3.3. Evaluate q''_{DFC} and q''_{rad} .

0.1.2 Assumptions

- Urban array represented on a uniform analysis grid of square cells of size Δ (m).
- Structures have a non-burnable fraction NONBURNABLE_FRAC; the remainder contributes to heat release/flux.
- HRRPUA follows a piecewise transient curve with early growth, plateau, and decay; negative segments are clipped to zero.
- Wind-aligned ellipse is derived from 20-ft wind inputs (WD_{20ft}, WS_{20ft}) and geometric parameters (A, D) with a proportionality W_p .
- Radiation is applied outside the ellipse up to a cutoff radius $R_{\rm rad}$; convective/design-fire contact (DFC) acts within the ellipse footprint.
- Units: distances in meters; heat flux in kW/m^2 .

0.1.3 Simulation Setup

Parameter Table (defaults)

Properties	Symbols	Values
Absorptivity	α	0.89
Radiation cutoff (m)	$R_{ m rad}$	100
Analysis cell size (m)	Δ	20
Wind direction (deg, from)	WD_{20ft}	0
Wind speed (mph)	WS_{20ft}	40
Footprint dim. (m)	A	10
Separation (m)	D	10
Wind proportionality	W_p	1
Non-burnable fraction	NONBURNABLE_FRAC	0
Early, dev., decay times (s)	$(t_{\mathrm{early}}, t_{\mathrm{dev}}, t_{\mathrm{decay}})$	(300, 3900, 4200)
Peak HRRPUA (kW/m^2)	$\mathrm{HRRPUA_{peak}}$	400

Grid and Indices

Cells are indexed by $i, j \in \{-5, ..., 5\}$ with centers $(x, y) = (i \Delta, j \Delta)$ relative to the burning structure at (0, 0).

0.1.4 Input Data

Describe input rasters, constants, initial conditions.

0.1.5 Numerical Controls

Mesh resolution, Time step(CFL), level-set solver options, etc.

Expected Results and Reasoning

- Geometric consistency: As V increases, D_{\downarrow} grows faster than D_{\perp} and D_{\uparrow} , increasing a and eccentricity (smaller b/a); $R_{\rm ell}(\theta_f)$ elongates downwind.
- Coverage partition: Cells inside the ellipse $(C_{DFC} > 0)$ receive q''_{DFC} proportional to HRRPUA and C_{HRR} ; outer annulus receives q''_{rad} diminishing with R_{eff}^{-2} .

 • Conservation: With C_{HRR} , summing q''_{DFC} over the footprint tracks the design HRRPUA(τ) (up
- to discretization error).
- Limits: For $V \to 0$, the ellipse tends toward isotropic $(D_{\downarrow} \approx D_{\perp} \approx D_{\uparrow})$; for very large V, footprint becomes highly elongated downwind; q''_{rad} shifts outward.

Acceptance Criteria 0.3

- Energy consistency: $\sum_{\text{cells}} |Q_{simulation} Q_{analytical}|/Q_{analytical}| \le 0.5\%$, Q will be HRRPUA, transient DFC and radiative heat fluxes.
- Partition sanity: q"_{rad} → 0 as R_{eff} → ∞ and vanishes inside pure DFC cells when F_{rad} = 0.
 Directional response: Downwind flux peak > side > upwind for V in moderate/high ranges.

0.4Results

Metric	Value
HRR mean relative error	0.000314
DFC mean relative error	1.8e-05
RAD mean relative error	0.000288

Table 1: Comparison errors (analytic vs simulation).

Figure 1: Transient HRR (analytic vs. simulation).

Figure 2: Analytic DFC heat flux at selected times.

Figure 3: Simulated DFC heat flux at selected times.

0.5 Discussion

- Clarify parameter sensitivities (e.g., A, D, W_p) and wind-direction convention: $\theta_{\text{wind}} = \frac{\pi}{180}(270 \text{WD}_{20ft})$ points the major axis toward +x when $WD_{20ft} = 0^{\circ}$.
- Document any discretization effects at coarse Δ and how C_{HRR} compensates for footprint changes.
- Note corner cases: $E_{b2} \leq 0$ (degenerate b), transition regions in the piecewise wind regression, and clipping of coverage fractions.

Reproducibility

- MATLAB functions: ellipse_ucb, hrr_transient, heat_flux_calc.
- Command(s): ./run_case.sh; environment: <modules/conda env>.
- Logs under cases/wue_transient_heatflux/logs/; figures in cases/wue_transient_heatflux/figures/.

Figure 4: Analytic radiative heat flux at selected times.

Figure 5: Simulated radiative heat flux at selected times.

Figure 6: Radiative heat flux time history at (x, y) = (0, -30) m.

Figure 7: DFC heat flux time history at (x,y)=(0,-20) m.