The Theory of Text Categorization

Ko, Youngjoong

Sungkyunkwan University

- Text Categorization (Sebastiani, 2002)
 - Assign documents to one or more of a predefined set of categories
 - The task of automatically determining an assignment of a value from {0,1} to each entry of the decision matrix.

- where
 - $C = \{c_1, ..., c_m\}$ is a set of pre-defined categories
 - $D = \{d_1, ..., d_n\}$ is a set of documents to be categorized

- The formal notation
 - To approximate the unknown function $f: D*C \rightarrow \{0,1\}$ by means of a function $\hat{f}: D*C \rightarrow \{0,1\}$ (the classifier, or model, or hypothesis) such that \hat{f} and \hat{f} coincide as much as possible.

- Different constraints depending on the application
 - Single-label case: exactly one category must be assigned to each document
 - Multi-label case : general case
 - We will focus on the more general multi-label case and assume that categories are stochastically independent of each other
 - $f(d_i, c')$ does not depend on $f(d_i, c'')$.
 - The classification problem for the D*C decision matrix
 - The m independent problems of categorizing the documents in D under a category c_i , for i = 1,...,m.
 - A classifier for c_i is a function f_i : $D \rightarrow \{0, 1\}$ that approximates an unknown function f_i : $D \rightarrow \{0, 1\}$

- Two category and document-pivoted categorization methods to make a decision matrix
 - CPC (category-pivoted categorization) : one row at a time
 - DPC (document-pivoted categorization) : one column at a time
- The sets of categories and documents are not always available from the start
 - DPC:
 - If a user submits one document at a time for categorization, the categories may be ranked in decreasing order of estimated appropriateness for the document
 - CPC:
 - a new category may be added to a set of categories after a number of documents have already been categorized under the set of categories

Information Retrieval Techniques

- Content-based document management tasks
 - TC and IR
- Three phases of the TC system life cycle
 - IR-style *indexing* is always performed on all documents
 - IR-style *techniques* (such as document-request matching, ...) are typically used in the inductive construction of the classifiers
 - IR-style evaluation of the effectiveness of the classifiers is performed

Indexing Technique

- The two choices of text representation
 - Lexical semantics (Unigram)
 - Compositional semantics (Bigram, trigram ...)
 - Lewis have found that more sophisticated representations (linguistic phrases, statistical phrases, etc) yield worse effectiveness
- The *bag of words* approach
 - Consider a document as a bag; it contains many words
 - The vector of a document: n weighted terms (or *features*) t_k that occur in d_j .
 - Weight (w_{ki})
 - [0,1]: the most frequent case
 - $\{0,1\}$: presence or absence of t_k in d_j

The Preprocessing of Indexing

- Removal of stop words
 - Topic-neutral words
 - Function words (articles, prepositions, conjunctions, etc)
- Stemming
 - Its utility is controversial.
 - http://www.tartarus.org/~martin/PorterStemmer/index.html

The machine learning approaches for TC

- In the 80's, the typical approach is a hand-crafting *expert* system which uses a set of rules of type
 - If <conjunction of terms> then <category>
 - bushels & expert → wheat
 - The drawback of this "manual" approach
 - *Knowledge acquisition bottleneck*
- In the 90's, the machine learning approach appears
 - A general inductive process automatically builds a classifier for a category
 - Advantages of this approach
 - construction not of a classifier, but of an automatic builder of classifiers (learner)
 - The effectiveness of these classifiers matches that of hand-crafted classifiers

Methods for Constructing Classifiers

- Two Phases of the inductive construction
 - The Categorization Status Value (CSV) function
 - The classifier is a function to generate a prediction score (CSV)
 - $CSV_i: D \rightarrow [0,1]$ (given d_i , for category c_i)
 - The definition of a threshold τ_i
 - $CSV_i(d_i) \ge \tau_i$: a decision to categorize d_i under c_i
 - $CSV_i(d_i) < \tau_i$: a decision not to categorize d_i under c_i
 - A particular case
 - The classifier already provides a binary judgment
 - $-CSV_i: D \rightarrow \{0,1\}$
 - Decision Tree

Probabilistic Classifiers

- Naïve Bayes classifiers (McCallum & Nigam, 1998)
 - View $CSV_i(d_i)$ in terms of Bayes' theorem

$$P(c_i \mid d_j) = \frac{P(c_i)P(d_j \mid c_i)}{P(d_j)}$$

- Use of the independence assumption for $P(d_i|c_i)$

$$P(d_j \mid c_i) = \prod_{k=1}^r P(w_{kj} \mid c_i)$$

- Important research directions
 - To introduce non-binary document weights
 - To introduce document length normalization
 - To relax the independence assumption

Neural Networks

- (Wiener, Pedersen, and Weigend, 1995)
- A neural network (NN) TC system is a network of units
 - *Input units*: terms appearing in the document
 - Output units : categories to be assigned
- NNs are trained by backpropagation
- Linear *NNs* vs. non-linear *NNs*
 - Non-linear component provides absolutely no advantage

Decision Tree Classifiers

- Build a binary Tree (Lewis and Ringuette, 1994)
 - Internal nodes: labeled by index terms
 - Branches: the values that the index term has in the representation of the test document
 - Leaf nodes : labeled by categories

Example-based Classifiers

- The distance weighted k-NN (Yang, 94)
 - The k-nearest neighbors algorithm is amongst the simplest of all machine learning algorithms
 - Classified by a majority vote of its neighbors:

$$CSV_i(d_j) = \sum_{\overline{d}_z \in Tr_k(d_j)} RSV(d_j, \overline{d}_z) \cdot b_{iz}$$

- $RSV(d_j, \overline{d}_z)$: a measure or semantic relatedness between
 - Ex) vector-based measures : inner-product, cosine similarity d_i and \overline{d}_z
- The b_{iz} values are from the correct decision matrix of $\{0,1\}$
- $Tr_k(d_j)$ is the set of the k documents \bar{d}_z for which $RSV(d_j, \bar{d}_z)$ is maximum: the k value should be determined on a validation set

Example-based Classifiers

Advantages

High performance, Not suffer from the "linear separation problem"

Drawbacks

- Too late running time, lazy learners.

The k-NN Classifier

SVM

- The support vector machine (Joachims, 1998)
 - To find the surface σ that separate the positive from the negative training examples in the best possible way
 - Structural risk minimization principle

SVM

Advantages

- Top performing classifier
- Applicable for not linearly separable cases
- No feature selection is needed. SVM does not suffer from overfitting
- Default choice of parameter settings : Not need human and machine effort in parameter tuning.
- The best decision surface is determined by only a small set of training examples, support vectors

Evaluation Issues for TC

• The contingency table for c_i

Category		expert judgments	
c_i		YES	NO
classifier	YES	TP_i	FP_i
judgments	NO	FN_i	\overline{TN}_i

- Precision of c_i (Pr_i): the degree of soundness of the classifier

$$\widehat{\mathbf{P}}\mathbf{r}_{i} = \frac{TP_{i}}{TP_{i} + FP_{i}}$$

- Recall of c_i (Re_i): the degree of completeness of the classifier

$$\widehat{R}e_i = \frac{TP_i}{TP_i + FN_i}$$

Other Measures of TC Effectiveness

- Other measures alternative to Pr and Re
 - Accuracy

$$\hat{A}c = \frac{TP + TN}{TP + TN + FP + FN}$$

- Error

$$\hat{E}c = \frac{FP + FN}{TP + TN + FP + FN} = 1 - \hat{A}c$$

- Two reasons for not widely being used in TC
 - The typically large value of the denominator makes them much more insensitive to a variation in the number of correct decisions (TP+TN) than Pr and Re.
 - Trivial rejector tends to outperform all non-trivial classifiers

Combined Effectiveness Measures

- The inverse proportion relation between Pr and Re
 - In order to obtain 100% Re, one only needs to set every threshold τ_i to 0
 - Tune thresholds τ_i
 - *More liberal*: high *Re* to the detriment of *Pr*
 - *More conservative* : high *Pr* to the detriment of *Re*

- Various combined Measures
 - (interpolated) 11-point average precision
 - Each τ_i is set to the values for which *Re* takes up values of 0.0, 0.1, ..., 0.9, 1.0
 - Prs are computed for the 11 resulting values and averaged

Combined Effectiveness Measures

• F₁ function

$$F_1 = \frac{2 \cdot \Pr \cdot Re}{\Pr + Re}$$

- Breakeven point
 - The value at which at which Pr equals Re.
 - Breakeven is always less or equal than F_1 (Yang, 1999)

Combined Effectiveness Measures

Test Collections

- Standard Initial Corpora
 - The REUTERS-21578 corpus, consisting of a revised version of an older corpus known as REUTERS-22173.
 - Newspaper articles
 - The OHSUMED corpus
 - Medical journal
 - The Newsgroup corpus
 - Newsgroup postings
 - The WebKB corpus
 - Web pages from 4 Universities
 - A Linguistic Link Database Web Site
 - http://www.phil.unipassau.de/linguistik/linguistik_urls/urls.php?CAT=computing:Language+ Resources:Machine+Learning+Data+Sets

What is the best learner?

- Experiments should be performed under the following conditions
 - The same collection
 - Same documents and same categories
 - The same choice of *Te* and *Tr*
 - The same effectiveness measure and the same parameter choice
 - All internal parameters have not been tuned on Te

What is the best learner?

- Some tentative indications can be obtained:
 - Top performers
 - *Classifiers* : SVM, *k*-NN
 - Average performers
 - *Classifiers*: Neural Networks, Decision Trees, linear classifiers, DNF decision rules
 - Under performers
 - Classifiers: Rocchio, Naïve Bayes