10

NOVEL STABILIZED ACTIVATED DERIVATIVES OF CARBAMIC ACID, THEIR PROCESS OF PREPARATION AND THEIR USE FOR THE PREPARATION OF UREAS

This is a continuation of co-pending international application PCT/FR00/00080, filed on 14 January 2000, which designates the United States of America.

The invention has for its object new stable activated derivatives of carbamic acid, particularly new stable activated carbamates, their process of preparation and their use for the preparation of urea.

The synthesis and applications of substituted ureas has for several years undergone great development. These compounds are present in a certain number of active principles now under development in the pharmaceutical industry as protease inhibitors of VIH, antagonists of the CCK-B receptor, or antagonists of endothelin 1 . Moreover, the oligoureas have been introduced as "scaffolds" for the creation of β -sheets 2 or as mimics of the peptide skeleton 3 . The methods of formation of substituted ureas rely on the reaction of amines with carbonylation agents 4 , with isocyanates 5 or with carbamates 6 .

In the field of research looking toward the development of new compounds with immunomodulatory activity, there is needed a simple method, not requiring the use of phosgene or of one of its derivatives, to produce easily peptidic analogs containing ureas or urea oligomers. In 1995, the Burgess group described for the first time the synthesis in solid phase of oligoureas. This was based on the use of isocyanate synthons derived from N-protected phthalimide diamines. This strategy requires the preparation of protected mono-phthalimide precursors and uses triphosgene as the carbonylation agent

25

to obtain the corresponding isocyanate 3a,3b. In a similar approach, the Schultz group used azido 4-nitrophenyl carbamates as pre-activated synthons 3c,3d. More recently, 4-nitrophenyl carbamates obtained by the reaction of Bocprotected N-substituted ethylenediamines with 4-nitrophenyl chloroformate have been described as synthons for the synthesis of urea-peptoids by the Liskamp group 3e. short, there does not exist at present an easy synthesis route for activated monomers obtained from amino acids protected or not by an Fmoc, Boc or Z group, avoiding the use of phosgene (or its derivatives) and permitting the synthesis of urea oligomers as well as the incorporation of urea patterns in peptides. The activated carbamates are generally prepared by the reaction of amines with carbonates 4c or chloroformates 3e,6b , or by reaction of isocyanates with alcohols 6a.

One of the aspects of the invention is to provide novel activated derivatives of carbamic particular novel stable activated carbamates.

One of the other aspects of the invention is to provide novel isocyanates.

One of the other aspects of the invention is to provide a novel process for the preparation of urea, cyclic or not.

One of the other aspects of the invention is to provide novel ureas, cyclic or not.

Generally speaking, the invention has for its object the use of isocyanates obtained from amino acid derivatives for the preparation and if desired the isolation of stable activated derivatives of carbamic acid or of activated carbamates.

According to a preferred embodiment, the invention relates to the use of isocyanates, of stable activated derivatives of carbamic acid, or of stable activated carbamates defined above, for the preparation

10

5

20 111 13

25

10

substituted ureas, cyclic or not, particularly of oligomers of ureas, cyclic or not, or for the preparation of peptides or pseudo-peptides containing urea designs, cyclic or not.

By "amino acid derivatives", is meant amino acids (alpha, beta, gamma, delta-aminated, or the like) whose primary or secondary amine function can be protected by a group selected to give a tertiary amine function, urethane, amide, urea, nitro or phthalimide.

Within the meaning of the invention, the term "amino acid derivatives" should be interpreted in its broad sense, as understood by those in the art, and designates particularly a derivative of peptide, polypeptide, protein, pseudopeptide or oligourea.

By "activated carbamate" or "activated derivative of carbamic acid", is meant a carbamate or a carbamic acid derivative capable of reacting with primary or secondary amines or with alcohols in the presence of not of a base in an organic solvent and generally at ambient temperature.

By "stable carbamate" or "stable carbamic acid derivative", is meant a stable carbamate or a stable derivative of carbamic acid because it is isolable, purifiable and can be stored (preferably at 4°C) for a period of at least 3 months without noticeable degradation. The stability can be measured for example by the following test: HPLC or thin layer chromatography.

By "isolation" is meant the process of separation of the desired product from all of the impurities present in the reaction mixture (the latter can be for example: an excess of one of the reagents used to carry out the reaction, symmetrical urea, the amine obtained by the rearrangement of isocyanate in the presence of water) and the recovery of the thus-purified product in a form permitting it to be stored (preferably at 4°C) for a long

25

10

period (several months, at least 3 months) without noticeable decomposition.

The expression "urea oligomers" means a successive chain of motifs interconnected by urea linkages (at least two)

For example: $NH_2-CHR_1-CHR'_1-NH-CO-NH-CHR_2-CHR'_2-NH-CO-NH-CHR_3-CHR'_3-CONH_2$

The invention particularly has for its object a process for the production of stable activated derivatives of carbamic acid, from an amino acid derivative in which the amino group is protected, comprising:

- a) a step of transforming the -COOH group of the amino acid derivative into the $-\text{CON}_3$ group to obtain an acyl azide,
- b) a step of transforming the $-\text{CON}_3$ group of the acylazide into the -NCO group to obtain an isocyanate,
- c) a step of treating the isocyanate to obtain said stable derivative of carbamic acid.

According to a preferred embodiment of the process of the invention, step a) for the transformation of the -COOH group into the $-\text{CON}_3$ group, is carried out by a treatment, with the nitride anion, of an activated derivative of the amino acid in which the amino group is protected.

By way of example, the nitride anion could be used in the form of sodium azide.

Thus, step a) of transformation of the -COOH group into the $-\text{CON}_3$ group could be carried by treatment of the mixed anhydride (formed from the amino acid derivative) with sodium azide.

Generally speaking, any method known to those skilled in the art permitting obtaining an azide from an acid can be used, and particularly those described in the encyclopedia of Houben-Weyl, "Methoden der organischen Chemie".

30

According to another preferred embodiment of the process of the invention, step a) for transformation of the -COOH group into the $-\text{CON}_3$ group is carried out by the treatment, with hydrazine, of an activated amino acid derivative in which the amino group is protected, to obtain a hydrazide, which is then subjected to conversion to a nitrite.

By "activated derivative of amino acid" is meant for example an acid ester or an acid halide, such as an acid chloride.

By way of example, carboxylic acid is first converted to an active derivative (ester, chloride etc...) that the action of hydrazine transforms into a hydrazide, which is then transformed into the desired acyl azide, by the action of nitrous acid.

According to another preferred embodiment of the invention, the transformation of the -COOH group into the -NCO group can be carried out by the method using unsymmetrical disubstituted dimethylhydrazine ("UDMH"), according to the synthesis reaction indicated below by way of example:

The invention also has for its object compounds according to the formula (I):

in which

5

10

25

30

35

- "n" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10,

10

- "i" is a whole number varying from 2 to n+1,
- "a $_{\rm i}$ and a' $_{\rm i}$ ", shown by a dotted line, are covalent bonds which can be single (s) or double (d),

"b_i and b_i-1", represented by broken lines, are covalent bonds which can be single (s), double (d) or triple (t), provided that:

* b_1 and b_{n+1} are always single bonds (s),

*if b_i = d, then a_i and a_{i+1} = s; a'_i and a'_{i+1} = \emptyset ; b_{i-1} and b_{i+1} = s

*if b_i = t, then a_i and a_{i+1} = \emptyset ; a'_1 and a'_{i+1} = \emptyset ; b_{i-1} and b_{i+1} = s

*if $a_i = d$, then b_{i-1} and $b_i = s$,

certain of these linkages a_i , a'_1 , b_{i-1} can also form parts of aromatic rings,

- GP is a protective group selected from:
- * oxycarbonyl (GP = ROCO), preferably Boc (R = $C(CH_3)_3$), Fmoc (fluorenylmethoxycarbonyl), benzyloxy-carbonyl (R = CH_2Ph), allyloxycarbonyl (R = $-CH_2CH=CH_2$),
- * acyl (GP = RCO), preferably R = CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl, aryl,
- * alkyl (GP = R), preferably R = trityl, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, benzyl, allyl,
 - * aryl, particularly phenyl,
- * urea (GP = RNHCO), preferably R = H, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl,
 - * phthalimide $(R^1 = \emptyset)$

30

30

٠, ١,

5

```
* O_2 (corresponds to a nitro group masked with amine),
R^1 = \emptyset
    - the groups R^1, R^1, R^1 and R can each represent
independently one of the other:
    hydrogen,
    halogen,
    the side chain of amino acid selected from natural or
synthetic amino acids,
    an alkyl (C1-C20) group, substituted or not with one or
several of the following substituents:
        1/ -COORa
        2/ -CONHRa
        3/ -COOH
        4/ -OH
        5/ -ORa
        6/ -NHR
        7/-NH_2
        8/-NH(CO)R_a
        9/ aryl, whose cyclic structure contains 5 to 20
    carbon atoms
        10/ halogen
        11/ carbonyl of 1 to 10 carbon atoms
        12/ nitrile
        13/ quanidine
        14/ nitro
    an aryl group whose cyclic structure contains 5 to 20
carbon atoms
    an alkoxy group ORa
    an NH<sub>2</sub> group
    an OH group
    -COOR<sub>a</sub>
    -CONHR<sub>a</sub>
    -CONH2
```

30

5

10

- -CH₂COOR_a
- -CH2CONHRa
- -CH₂CONH₂

 $R_{\rm a}$ representing an alkyl group of 1 to 20 carbon atoms, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

- the group X represents a group conferring on the compound of formula I an activated carbamate structure, which X group comes from a compound selected particularly from phenol, if desired substituted with at least one nitro or at least one halogen, or hydroxylamine derivatives, and more particularly selected from the following compounds:
 - N-hydroxysuccinimide
 - phenol
 - pentafluorophenol
 - pentachlorophenol
 - p-nitrophenol
 - 2,4-dinitrophenol
 - 2,4,5-trichlorophenol
 - 2,4-dichloro-6-nitrophenol
 - hydroxy-1,2,3-benzotriazole
 - 1-oxo-2-hydroxydihydrobenzotriazine (HODhbt)
 - 7-aza-1-hydroxybenzotriazole (HOAt)
 - 4-aza-1-hydroxybenzotriazole (4-HOAt)
 - tetrazole
 - imidazole

the compound of formula (I) having the following property:

- if one or several asymmetric carbons are present in the formula (I), then their configuration can be independently either D (dextro) or L (levo),

- the groups R^1 , R^i , R^i can also be defined on the basis of intramolecular cyclizations which are as follows:
 - 1/ cyclization between Ri and R'i
- 2/ cyclization between Ri or Ri and Ri+kc (where kc is a positive whole number, preferably from 1 to 3)
- 3/ cyclization between R¹ and Rⁱ or R'ⁱ preferably i=2, 3 or 4,

provided that the compound of formula (I) is different from the following compounds, in which:

- n=2, GP=Boc, R^1 = isobutyl, $R^2=R^{2}=R^{3}=R^{3}=H$, X=4nitrophenol,
- n=2, GP=Boc, $R^1 = benzyl$, $R^2=R^{2}=R^{3}=R^{3}=H$, X = 4nitrophenol,
- n=2, GP=Boc, $R^1 = CH_2-p-C_6H_4Ot-Bu$, $R^2=R^{12}=R^3=R^{13}=H$, X = 4-nitrophenol
- n=2, GP=Boc, $R^1 = H$, $R^2=R^{2}=R^{3}=R^{3}=H$, nitrophenol.

The first bond b_1 and the last b_{n+1} each connected to a nitrogen atom, are always single bonds: *b_1 and b_{n+1} are always single bonds (s).

If a b_i bond is double, this implies that the adjacent bonds b_{i-1} , b_{i+1} , a_i and a_{i+1} are single bonds and that the bonds a'i and a'1+1 do not exist:

* if $b_i = d$, then a_i and $a_{i+1} = s$; a'_i and $a'_{i+1} = \emptyset$; b_{i-1} and $b_{i+1} = s$

If a b_i bond is triple, this implies that the adjacent bonds b_{i-1} , b_{i+1} are single bonds and that the bonds a_i , a'_i , a_{i+1} and a'_{i+1} do not exist:

* if $b_i = t$, then a_i and $a_{i+1} = \emptyset$; a'_i and $a'_{i+1} = \emptyset$; b_{i-1} and $b_{i+1} = s$

If an ai bond is double, this means that the adjacent bonds b_{i-1} and b_i are single bonds and that the bond a'i does not exist.

* if $a_i = d$, then b_{i-1} and $b_i = s$.

10

5

13 = Hall with 20 m

30

30

5

10

The symbol \varnothing corresponds to the absence of the bond to which it relates.

The expression "certain of the bonds could also be part of aromatic rings, substituted or not" can be explained in the following manner. These cases can occur:

 $n \ge 2$: the bonds a_i , a_{i+1} , and b_i belong to the aromatic cycle; the bond b_{i+1} is in the ortho position relative to the b_{i-1} bond.

 $n \ge 3$: the bonds a_i , a_{i+2} , b_i and b_{i+1} belong to the aromatic cycle; the b_{i+2} bond is in the meta position relative to the b_{i-1} bond.

 $n \ge 4$: the bonds a_i , a_{i+3} , b_i , b_{i+1} and b_{i+2} belong to the aromatic cycle; the bond b_{i+3} is in the ortho position relative to the b_{i-1} bond.

If there is cyclization between R^1 , R^i and R^{i} , they can be illustrated in the following manner:

1/ Cyclization between Ri and R'i:

by way of illustration, the three following molecules, in which n=2, contain cyclization between ${\mbox{R}}^2$ and ${\mbox{R}}^{1/2}$

2/ Cyclization between R^i (or R^{i}) and R^{i+k} (where k can be a whole positive number comprised between 1 and 3):

by way of illustration, the three following molecules in which n=2, contain cyclization between R^2 and R^3 (in this case k is equal to 1)

30

5

10

3/ Cyclization between R^1 and R^i (or R^{i}) wherein preferably i=2, 3 or 4:

by way of illustration, the three following molecules in which n=2, contain a cyclization between R^1 and R^2 (or R^1 and R^3)

In all the formulas indicated above and hereafter, when GP = RCO or ROCO, R preferably represents a hydrocarbon chain.

In all the formulas indicated above and hereinbelow, when GP = ROCO, GP forms with the nitrogen atom to which it is contiguous a urethane group.

In all the formulas indicated hereafter, when A = ROCO, A forms with the nitrogen atom to which it is contiguous a urethane group.

The invention also relates to compounds of the formula (III)

in which

- "n" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10,
 - "i" is a whole number varying from 2 to n+1,
- a_i and a'_i , represented in broken lines, are covalent bonds which can be single (s) or double (d),

30

5

10

 b_i and b_{i-1} , represented by broken lines, are covalent bonds which can be single (s), double (d) or triple (t) provided that:

- * b_1 and b_{n+1} are always single bonds (s),
- * if b_i = d, then a_i and a_{i+1} = s; a'_i and a'_{i+1} = \emptyset ; b_{i-1} and b_{i+1} = s
- * if b_i = t, then a_i and a_{i+1} = Ø; a'_i and a'_{i+1} = Ø; b_{i-1} and b_{i+1} = s,
 - * if $a_i = d$, then b_{i-1} and $b_i = s$,

certain of these bonds $a_i,\ a'_i,\ b_{i-1}$ can also form part of aromatic rings,

- the groups R^1 , R^i and R^{i} can each represent independently one of the other:

hydrogen,

the side chain of an amino acid selected from natural or synthetic amino acids

- a (C1-C20) alkyl group, unsubstituted or substituted with one or several of the following substituents:
 - 1/ -COORa
 - 2/ -CONHRa
 - 3/ -COOH
 - 4/ -OH
 - 5/ -ORa
 - 6/ -NHRa
 - 7/-NH₂
 - $8/-NH(CO)R_a$
 - 9/ aryl, whose cyclic structure contains 5 to 20 carbon atoms
 - 10/ halogen
 - 11/ carbonyl
 - 12/ nitrile
 - 13/ guanidine
 - 14/ nitro

30

5

10

an aryl group whose cyclic structure contains 5 to 20 carbon atoms

- an ORa group
- an NH₂ group
- an OH group
- -COOR_a
- -CONHR_a
- -CONH₂
- -CH₂COOR_a
- -CH₂CONHR_a
- -CH2CONH2

 R_{a} representing an alkyl group of 1 to 20 carbon atoms, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

- the groups Y and Y' can be or contain:
- 1/ a pseudopeptide (peptide containing one or several pseudopeptide bonds)

 $A-N(Z_1)-C(Z'_1)(Z''_1)-\Psi_1[*]-\dots-\Psi_{k-1}[*]-C(Z'_k)(Z''_k)-\Psi_k[*]-\dots\Psi_{p-1}[*]C(Z'_p)(Z''_p)-\Psi_p[*]-\dots-\Psi_{p-1}[*]C(Z'_p)(Z''_p)$

- p is a whole number greater than or equal to 1, preferably 1 to 50, and particularly 1 to 10,
 - k is a whole number varying from 1 to p,
 - A is a group selected from:
 - * hydrogen
- * oxycarbonyl (ROCO), preferably Boc (R = $C(CH_3)_3$), Fmoc (fluorenylmetoxycarbonyl), benzyloxycarbonyl (R = CH_2Ph), allyloxycarbonyl (R = $-CH_2CH=CH_2$),
- * acyl (RCO), preferably $R = CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl, aryl,
- * alkyl (R), preferably R = trityl, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, benzyl, allyl,
 - * phenyl, particularly aryl,

10

- * urea (RNHCO), preferably $R = CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl,
 - * phthalimide (R1=Ø)

* biotin

- $Z_{\,k},\ Z^{\,\prime}_{\,k}$ and $Z^{\,\prime\,\prime}_{\,k}$ can each represent independently one of the other:

hydrogen,

the side chain of an amino acid selected from proteinogenic and non-proteinogenic amino acids

- a (C1-C20) alkyl group unsubstituted or substituted by one or several constituents from the following:
 - 1/ -COOR_b
 - 2/ -CONHR_b
 - 3/ -COOH
 - 4/-OH, OR_b
 - 5/ -NHR_b
 - 6/-NH₂
 - $7/-NH(CO)R_b$
 - 8/ aryl whose cyclic structure contains 5 to 20 carbon atoms
 - 9/ halogen
 - 10/ carbonyl of 1 to 10 carbon atoms
 - 11/ nitrile
 - 12/ guanidine

an aryl group whose cyclic structure contains 5 to 20 carbon atoms

a halogen

-OR_b

30

30

5

10

- -COOR_b
- -CONHR_b
- -CONH₂
- -CH₂COOR_b
- -CH₂CONHR_b
- -CH₂CONH₂

 R_{b} representing an alkyl group of 1 to 20 carbon atoms, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms.

- $-\psi_k[^*]-$ are independently either peptidic linkages CO-NH or bonds of different chemical nature selected particularly from the following list, which is not limiting:

 $\psi_k\,[\,^\star\,] \,-\, =\, -\text{CH}_2\text{CH}_2 \;\;; \;\; -\text{CH}\,(\,F_k\,) \,=\, \text{CH}\,(\,F_k\,'\,) \,-\, \;; \;\; -\text{CH}_2\text{NH} -\; \;; \;\; -\text{NHCO} -\; \;; \\ -\text{NHCONH} -\; ; \;\; -\text{COCH}_2 \;-\, ; \;\; -\text{CH}\,(\,\text{OH}\,)\,\,\text{CH}_2 \;-\, \;; \;\; -\text{CH}\,(\,\text{OH}\,)\,\,\text{CH}_2\text{NH} -\; \;; \;\; -\text{CH}_2 -\; \;; \\ -\text{CH}\,(\,F_k\,) \,-\, ; \;\; -\text{CH}_2\text{O} -\; ; \;\; -\text{CH}_2\text{-NHCONH} -\; ; \;\; \text{CH}\,(\,F_k\,)\,\,\text{NHCONF}_k\,' -\; ; \;\; \text{CH}_2 -\; \\ \text{CONH} -\; ; \;\; \text{CH}\,(\,F_k\,)\,\,\text{CONH} -\; ; \;\; -\text{CH}\,(\,F_k\,)\,\,\text{CONH} -\; ; \;\; \text{CH}\,(\,F_k\,)\,\,\text{CONH} -\; ; \;\; \text{CH}\,(\,F_k\,)\,\,\text{CNH} -\; ; \;\; \text{CNH}\,(\,F_k\,)\,\,\text{CNH} -\; ; \;\; \text{CNH}\,(\,F_k$

Fk and Fk' representing, independently from each other, hydrogen, halogen, an alkyl group of 1 to 20 carbon atoms, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms.

- 2/ an amino acid residue or an amino acid chain: $A-N(Z_1)-C(Z^\prime_1)(Z^{\prime\prime}_1)-CO-N(Z_2)-...-CO-N(Z_k)-C(Z^\prime_k)(Z^{\prime\prime}_k)-CO-N(Z_{k+1})-...CO-N(Z_m)-C(Z^\prime_m)(Z^{\prime\prime}_m)-CO-$
- m is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10,
 - k is a whole number varying from 1 to m,
 - A defined as above

30

5

10

3/ an oligomer of urea having the following formula:

$$A \begin{bmatrix}
Z_r \\
N_r b_r^{j-1} b_r^{j} N \\
N_r a_r^{j} N \\
Z_r^{j} Z_r^{j} O
\end{bmatrix}_q$$

- "u" is a whole number greater than or equal to 1, preferably 1 to 50, and particularly 1 to 10,
- "q" is a whole number greater than or equal to 1, preferably 1 to 50, and particularly 1 to 10,
- "j" is a whole parameter greater than or equal to 2 defined in the following manner: j always has whole values comprised from 2 to u+1,
- or "r" is a whole parameter greater than or equal to 1, always taking values comprised from 1 to q,
- " a_r^j and a'_r^j ", represented by a broken line, are covalent bonds which can be single (s) or double (d),
- "br j and br $^{j-1}$ ", represented by a broken line, are covalent bonds which can be single (s), double (d) or triple (t) provided that:
 - * $b_q^{\ 1}$ and $b_q^{\ u+1}$ are always single bonds (s)
- * if $b_r^j = d$, then a_r^j and $a_r^{j+1} = s$; a'_r^j and $a'_r^{j+1} = \emptyset$; b_r^{j-1} and $b_r^{j+1} = s$
- * if $b_r^j = t$, then a_r^j and $a_r^{j+1} = \emptyset$; a'_r^j and $a'_r^{j+1} = \emptyset$; b_r^{j-1} and $b_r^{j+1} = s$
 - * if $a_r^j = d$, then b_r^{j-1} and $b_r^j = s$

certain of these bonds can also form a part of aromatic rings,

- A defined as above
- Z_r , Z_r^j , Z'_r^j are defined independently as above for R^i , R^i , R^{i} ,

30

5

10

- the X group represents a group giving to the compound of formula I an activated carbamate structure, which X group comes from a compound selected particularly from phenols, if desired substituted by at least one nitro or at least one halogen, or hydroxylamine derivatives, and more particularly selected from the following compounds:
 - N-hydroxysuccinimide
 - phenol
 - pentafluorophenol
 - pentachlorophenol
 - p-nitrophenol
 - 2,4-dinitrophenol
 - 2,4,5-trichlorophenol
 - 2,4-dichloro-6-nitrophenol
 - hydroxy-1,2,3-benzotriazole
 - 1-oxo-2-hydroxydihydrobenzotriazine (HODhbt)
 - 7-aza-1-hydroxybenzotriazole (HOAt)
 - 4-aza-1-hydroxybenzotriazole (4-HOAt)
 - imidazole
 - tetrazole

the compound of formula (III) having the following property:

- if one or several asymmetric carbons are present in the formula (III), then their configuration can be independently either D (dextro) or L (levo),
- the groups R^1 , R^i , $R^{r\,i}$ can also be defined on the basis of intramolecular cyclizations which are the following:
 - 1/ cyclization between Ri and R'i
- 2/ cyclization between R^{i} (or R^{ri}) and R^{i+kc} (wherein kc is a whole positive number, preferably comprised between 1 and 3)

30

5

10

3/ cyclization between R^1 and R^i (or R^{i}) wherein preferably i=2, 3 or 4.

As an example of a pseudopeptide entering into the definition of Y, can be cited:

Boc-Ala-Ala-Gly-Ile-Gly-[CH2NH]-Ile-

(pseudo-hexapeptide containing a bond of the reduced type between Gly and Ile)

The invention also has for its object compounds of formula (III bis)

in which

- "n" is a whole number greater than or equal to 1, preferably 1 to 10, preferably 1 to 4,
 - "i" is a whole number varying from 2 to n+1,
 - the Y group can be or contain:

1/ a pseudopeptide (peptide containing one or several pseudopeptide linkages)

$$\begin{split} &A\text{-}N(Z_1)\text{-}C(Z'_1)(Z''_1)\text{-}\Psi_1[*]\text{-}C(Z'_2)(Z''_2)\text{-}\Psi_2[*]\text{-}\dots\text{-}\Psi_{k\text{-}1}[*]\text{-}C(Z'_k)(Z''_k)\text{-}\Psi_k[*]\text{-}\dots\\ &\Psi_{p\text{-}1}[*]C(Z'_p)(Z''_p)\text{-}\Psi_p[*]\text{-} \end{split}$$

- "p" is a whole number greater than or equal to 1, preferably 1 to 50, and particularly 1 to 10,
 - k is a whole number varying from 1 to p,
 - A is a group selected from:
 - * hydrogen
- * oxycarbonyl (ROCO), preferably Boc (R = $C(CH_3)_3$), Fmoc (fluorenylmetoxycarboyl), benzyloxycarbonyl (R = CH_2Ph), allyloxycarbonyl (R = $-CH_2CH=CH_2$),

30

5

10

- * acyl (RCO), preferably $R = CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl, aryl,
- * alkyl (R), preferably R = trityl, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, benzyl, allyl,
 - * phenyl, particularly aryl,
- * urea (RNHCO), preferably $R = CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl,
 - * phthalimide (R1=Ø)

- * biotin
- * the group A can form with the nitrogen atom N with which it is contiguous, an " $\mathrm{NH_2}^{+\prime\prime}$ " entity
- Z_k , Z_k' , and Z_k' can each represent independently of each other

hydrogen,

the protected or unprotected side chain of an amino acid selected from proteinogenic and non-proteinogenic amino acids,

an (C1-C20) alkyl group, unsubstituted or substituted with one or several of the following substituents:

- 1/ -COOR_b
- 2/ -CONHR_b
- 3/ -COOH
- 4/ -OH, OR_b
- $5/-NHR_b$
- 6/-NH₂
- $7/-NH(CO)R_b$

```
8/ aryl, whose cyclic structure contains 5 to 20
             carbon atoms
                  9/ halogen
                 10/ carbonyl of 1 to 10 carbon atoms
5
                 11/ nitrile
                 12/ quanidine
             an aryl group whose cyclic structure contains 5 to 20
         carbon atoms
             a halogen
10
             -OR_b
             -COOR<sub>b</sub>
             -CONHR<sub>b</sub>
             -CONH2
             -CH<sub>2</sub>COOR<sub>b</sub>
             -CH<sub>2</sub>CONHR<sub>b</sub>
             -CH2CONH2
                   representing
                                     an
                                           allyl, benzyl,
        fluorenylmethyl, alkyl having 1 to 20 carbon atoms group,
        or an aryl group whose cyclic structure contains 5 to 20
        carbon atoms,
             - -\psi_k[*]- are independently either peptid links CO-NH,
                               different chemical nature
              linkages
        or
                          of
                                                                   selected
        particularly from the following list, which
                                                                   is
        limiting:
25
        \psi_k[*]- = -CH(F<sub>k</sub>)- ; -CO- ; -N(F<sub>k</sub>)CO- ; -CH(F<sub>k</sub>)CO- ;
        -CH(F_k)NHCO-; -N(F_k)-; -CON(F_k)-; -CH_2CH_2;
        -CH(F_k) = CH(F_k') - ; -CH_2NH - ; -NHCO - ; -NHCONH - ;
        -N(F_k)CON(F_k')-; -COCH_2-; -CH(OH)CH_2-; -CH(OH)CH_2NH-;
        -CH<sub>2</sub>O- ; -CH<sub>2</sub>-NHCONH- ; CH(F_k)NHCON(F_k')- ; -CH<sub>2</sub>-CONH- ;
30
        CH(F_k)CONH-; -CH(F_k)CH(F_k')CONH-
             Fk and Fk' representing, independently of each other
        hydrogen, the side chain protected or not of an amino acid
        selected
                    from proteinogenic
                                              amino
                                                       acids
```

proteinogenic amino acids, halogen, an alkyl group of 1 to

10

20 carbon atoms, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

- 2/ an amino acid residue or an amino acid chain: $A-N(Z_1)-C(Z'_1)(Z''_1)-CO-N(Z_2)-\ldots-CO-N(Z_k)-C(Z'_k)(Z''_k)-CO-N(Z_{k+1})-\ldots CO-N(Z_m)-C(Z'_m)(Z''_m)-CO-$
- "m" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10,
 - "k" is a whole number varying from 1 to m,
 - A defined as above
 - 3/ a GP group which can be:
 - a protective group selected from:
 - * hydrogen
- * oxycarbonyl (GP=ROCO), preferably Boc (R = $C(CH_3)_3$), Fmoc (fluorenylmetoxycarbonyl), benzyloxycarbonyl (R = CH_2Ph), allyloxycarbonyl (R = $-CH_2CH=CH_2$),
- * acyl (GP=RCO), preferably $R = CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl, aryl,
- * alkyl (R), preferably R = trityl, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, benzyl, allyl,
 - * phenyl, particularly aryl,
- * urea (RNHCO), preferably $R = CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl,
 - * phthalimide (R1=Ø)

* biotin

30

30

5

10

- * O_2 (corresponding to a nitro group as a masked amino form), $R1=\emptyset$,
- the GP group which can also be such that the "GP-N" entity forms an "NH2+" entity,
- the \mbox{R}^1 , \mbox{R}^i and \mbox{R} groups can each represent independently of each other:

hydrogen,

halogen,

the protected or unprotected side chain of an amino acid selected from natural or synthetic amino acids

- a (C1-C20) alkyl group unsubstituted or substituted with one or several of the following substituents:
 - 1/ -COORa
 - 2/ -CONHRa
 - 3/ -COOH
 - 4/ -OH
 - $5/-OR_a$
 - 6/ -NHRa
 - $7/-NH_2$
 - 8 / -NH (CO) R_a
 - 9/ aryl, whose cyclic structure contains 5 to 20 carbon atoms
 - 10/ halogen
 - 11/ carbonyl
 - 12/ nitrile
 - 13/ quanidine
 - 14/ nitro

an aryl group whose cyclic structure contains 5 to 20 carbon atoms

an OR_a group

an NH₂ group

an OH group

- -COOR_a
- -CONHRa

30

- -CONH₂
- -CH₂COOR_a
- -CH₂CONHR_a
- -CH₂CONH₂

 R_a representing an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

10

5

- the X group represents a group giving to the compound of formula (III bis) the structure of an activated derivative of carbamic acid, which X group comes from a compound selected particularly from phenols, if desired substituted with at least one nitro or at least one halogen, or hydroxylamine derivatives, and more particularly selected from the following compounds:
 - N-hydroxysuccinimide
 - phenol
 - pentafluorophenol
 - pentachlorophenol
 - p-nitrophenol
 - 2,4-dinitrophenol
 - 2,4,5-trichlorophenol
 - 2,4-dichloro-6-nitrophenol
 - hydroxy-1,2,3-benzotriazole
 - 1-oxo-2-hydroxydihydrobenzotriazine (HODhbt)
 - 7-aza-1-hydroxybenzotriazole (HOAt)
 - 4-aza-1-hydroxybenzotriazole (4-HOAt)
 - imidazole
- tetrazole

the compound of formula (III bis) having the following property:

10

- if one or several asymmetric carbons are present in the formula (III bis), then their configuration can be independently either D (dextor) or L (levo),

- the ${\ensuremath{\mbox{R}}}^1$ and ${\ensuremath{\mbox{R}}}^i$ groups can also be defined on the basis of intramolecular cyclizations which are as follows:

1/ cyclization between ${\tt R}^i$ and ${\tt R}^{i+kc}$ (where kc is a whole positive number, preferably comprised between 1 to 3)

2/ cyclization between R^1 and R^i with preferably i=2, 3 or 4,

provided that the compound of formula (III bis) is different from the following compounds in which:

- n=2, GP=Boc, R^1 = isobutyl, $R^2=R^{\prime 2}=R^3=R^{\prime 3}=H$, X = 4-nitrophenol,

- n=2, GP=Boc, R^1 = benzyl, $R^2=R^{12}=R^3=R^{13}=H$, X=4- nitrophenol,

- n=2, GP=Boc, R^1 = CH_2 -p- C_6H_4Ot -Bu, R^2 = R^{12} = R^3 = R^{13} =H, X = 4-nitrophenol,

- n=2, GP=Boc, $R^1 = H$, $R^2=R^{^2}=R^3=R^{^3}=H$, X = 4-nitrophenol.

The invention also has for its object compounds of the formula (I bis)

in which n, i, GP, X, R^1 and R^i have the meanings mentioned above, in connection with formula (III bis).

A preferred group of compounds of formula (III bis) is constituted by those in which $1 \le n \le 4$, X is as defined above in connection with formula (III bis) and is particularly from p-nitrophenol, N-hydroxysuccinimide,

25

pentafluorophenol, hydroxy-1,2,3-benzotriazole or imidazole, A is an oxycarbonyl or acyl group as defined above in connection with formula (III bis),

and particularly the compounds in which q and m are comprised from 1 to 10, and preferably equal from 1 or 2, and more particularly those in which A=Boc and Fmoc,

and in particular the compounds having the following formulas:

$$A = \begin{bmatrix} Z_k \\ N \end{bmatrix} \begin{bmatrix} R_k^1 \\ N \end{bmatrix} \begin{bmatrix} H \\ N \end{bmatrix} \begin{bmatrix} X \\ R^2 \end{bmatrix} \begin{bmatrix} X \\ N \end{bmatrix}$$

$$A \xrightarrow{X' \atop Z_1} O \xrightarrow{R^1} H \xrightarrow{X} X$$

$$m = 1$$

$$m = 1$$

$$A \xrightarrow{Z_1} N \xrightarrow{O} X$$

$$Z_1 \xrightarrow{N} O \xrightarrow{N} X$$

$$m = 1$$

$$\begin{array}{c|c}
Z_1 & O \\
A & N & N \\
Z_1 & O \\
M & = 1
\end{array}$$

$$A \underset{Z_1}{\overset{Z_1}{\overset{}{\bigvee}}} \underset{Q}{\overset{R_1^1}{\overset{}{\bigvee}}} \underset{R^2}{\overset{Q}{\overset{}{\bigvee}}} X$$

and more particularly the compounds of the following formulas:

$$\begin{bmatrix}
Z'_{k} \\
N \\
Z_{k}
\end{bmatrix}
\begin{bmatrix}
R^{1} \\
N \\
R^{2}
\end{bmatrix}$$

$$\begin{bmatrix}
0 \\
N
\end{bmatrix}$$

$$A = \begin{bmatrix} Z'_1 & R^1 & H \\ X'_1 & N & N \\ Z_1 & O & R^2 & O \\ M & = 1 \end{bmatrix}$$

$$\begin{array}{c|c}
Z'_1 & & & & \\
A - N & & N & & N & \\
Z_1 & O & & H & O
\end{array}$$

$$\begin{array}{c|c}
N & & N & & N & & \\
N & & & N & & \\
N & & & & N & & \\
M & & & & & & & & \\
M & & & & \\$$

$$A \xrightarrow[Z_1]{Z_1} O \xrightarrow[R_1]{R^2} O \xrightarrow[N_2]{O} N$$

n=2

10

25

30

A preferred group of compounds of formula (I bis) is constituted by those in which $1 \le n \le 4$, X is as defined above with respect to formula (III bis) and is particularly from p-nitrophenol, N-hydroxysuccinimide, pentafluorophenol, hydroxy-1,2,3-benzotriazole or imidazole, GP is an oxycarbonyl or acyl group as defined above in connection with formula (III bis),

and particular those in which $\ensuremath{\mathsf{GP}}$ is preferably $\ensuremath{\mathsf{Boc}}$, $\ensuremath{\mathsf{Fmoc}}$,

and in particular the compounds having the following formulas:

10

and more particularly the compounds having the following formulas:

n=4

n=3

30

5

10

The compounds of formulas (III) and (III bis) are activated carbamates analogous to the compounds of formulas (I) and (I bis) in which the protective group is replaced for example by an amino acid chain, a pseudopeptide, or an oligomer of urea. They can be obtained from corresponding isocyanates of formula (IV) defined hereafter.

The compounds of formulas (I) and (I bis) are activated carbamates derived from N-protected amino acids of formula IX defined hereafter and which can be obtained from isocyanates of formula (II) defined hereafter.

The invention also relates to compounds of formula (IV)

in which

- "n" is a whole number greater than or equal to 1, preferably 1 to 10, preferably 1 to 4,
 - "i" is a whole number varying from 2 to n+1,
 - the Y group can be or contain:
- 1/ a pseudopeptide (peptide containing one or several
 pseudopeptide linkages)

$$\begin{split} &A\text{-}N(Z_1)\text{-}C(Z'_1)(Z''_1)\text{-}\Psi_1[*]\text{-}C(Z'_2)(Z''_2)\text{-}\Psi_2[*]\text{-}\dots\text{-}\Psi_{k\text{-}1}[*]\text{-}C(Z'_k)(Z''_k)\text{-}\Psi_k[*]\text{-}\dots\\ &\Psi_{p\text{-}1}[*]C(Z'_p)(Z''_p)\text{-}\Psi_p[*]\text{-} \end{split}$$

- "p" is a whole number greater than or equal to 1 preferably 1 to 50, preferably 1 to 10,
 - "k" is a whole number varying from 1 to p,
 - or A is a group selected from:
 - * hydrogen

30

5

10

* oxycarbonyl (ROCO), preferably Boc (R = $C(CH_3)_3$), Fmoc (fluorenylmetoxycarbonyl), benzyloxycarbonyl (R = CH_2Ph), allyloxycarbonyl (R = $-CH_2CH=CH_2$),

- * acyl (RCO), preferably $R = CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl, aryl,
- * alkyl (R), preferably R = trityl, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, benzyl, allyl,
 - * phenyl, particularly aryl,
- * urea (RNHCO), preferably $R = CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl,
 - * phthalimide (R1=Ø)

- * biotin
- * the group A can form with the nitrogen atom N to which it is contiguous an "NH2+" entity
 - Z_k , Z^{\prime}_k and $Z^{\prime\prime}_k$ can each represent or independently: hydrogen,

the protected or unprotected side chain of an amino acid selected from proteinogenic and non-proteinogenic amino acids,

- a (C1-C20) alkyl group, substituted or unsubstituted with one or several substituents from the following:
 - 1/ -COOR_b
 - 2/ -CONHR_b
 - 3/ -COOH
 - 4/ -OH, OR_b
 - 5/ -NHR_b
 - 6/-NH₂

30

5

10

```
7/-NH(CO)R_b
```

8/ aryl whose cyclic structure contains 5 to 20 carbon atoms

9/ halogen

10/ carbonyl of 1 to 10 carbon atoms

11/ nitrile

12/ quanidine

an aryl group whose cyclic structure contains 5 to 20 halogen atoms $\,$

-OR_b

-COOR_b

-CONHR_b

-CONH₂

-CH₂COOR_b

-CH₂CONHR_b

-CH₂CONH₂

 R_b representing an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

 $^ ^-\Psi_k[\,^*]^-$ are independently either peptide linkages CO-NH, or linkages of different chemical nature selected particularly from the following list:

 $\psi_k[*]\text{-}=\text{-}CH(F_k)\text{-}\;;\;\text{-}CO\text{-}\;;\;\text{-}N(F_k)CO\text{-}\;;\;\text{-}CH(F_k)CO\text{-}\;;\;\text{-}CH(F_k)NHCO\text{-}\;;\;$

 $-N(F_k)$ -; $-CON(F_k)$ -; $-CH_2CH_2$; $-CH(F_k)$ = $-CH(F_k)$ -; $-CH_2NH$ -; -NHCO-;

-NHCONH- ;-N(F_k)CON(F_k')- ; -COCH_2 - ; -CH(OH)CH_2 - ; -CH(OH)CH_2NH- ;

-CH₂O-; -CH₂-NHCONH-; CH(F_k)NHCON(F_k')-;

-CH₂-CONH- ; CH(F_k)CONH- ; -CH(F_k)CH(F_k ')CONH-

 F_k and F_k ' representing, independently from each other, hydrogen, the protected or unprotected side chain of an amino acid selected from proteinogenic and non-proteinogenic amino acids, halogen, an alkyl group of 1 to

10

20 carbon atoms, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

2/ an amino acid residue or an amino acid chain: $A-N(Z_1)-C(Z_1)(Z_1)-CO-N(Z_2)-...-CO-N(Z_k)-C(Z_k)(Z_k)-CO-N(Z_{k+1})-...CO-N(Z_{k+1})$ $N(Z_m)-C(Z'_m)(Z''_m)-CO-$

- "m" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10,
 - "k" is a whole number varying from 1 to m,
 - A defined as above,
 - 3/ A GP group which can be:
 - a protective group selected from:
 - * hydrogen
- * oxycarbonyl (GP = ROCO), preferably Boc (R $C(CH_3)_3)$, Fmoc (fluorenylmethoxycarbonyl), benzyloxycarbonyl ($R = CH_2Ph$), allyloxycarbonyl ($R = -CH_2CH = CH_2$),
- * acyl (GP = RCO), preferably $R = CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl, aryl,
- * alkyl (R), preferably R = trityl, CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, benzyl, allyl,
 - * phenyl, particularly aryl,
- * urea (GP = RNHCO), preferably $R = CH_3$, $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl,
 - * phthalimide $(R^1 = \emptyset)$

* biotin

30

30

5

10

- * O_2 (corresponds to a nitro group as the masked form of the amine), $R^1\!=\!\emptyset$
- the R^1 , R^i and R groups can each represent independently of each other:

hydrogen

halogen

the protected or unprotected side chain of an amino acid selected from natural or synthetic amino acids

- a (C1-C20) alkyl group unsubstituted or substituted with one or several substituents selected from:
 - 1/ -COORa
 - 2/ -CONHRa
 - 3/ -COOH
 - 4/ -OH
 - 5/ -ORa
 - 6/ -NHRa
 - $7/-NH_2$
 - $8/-NH(CO)R_a$
 - 9/ aryl, whose cyclic structure contains 5 to 20 carbon atoms
 - 10/ halogen
 - 11/ carbonyl of 1 to 10 carbon atoms
 - 12/ nitrile
 - 13/ quanidine
 - 14/ nitro
- an aryl group, whose cyclic structure contains 5 to 20 carbon atoms

an ORa group

an NH₂ group

an OH group

-COORa

30

5

10

- -CONHRa
- -CONH₂
- -CH₂COOR_a
- -CH₂CONHR_a
- -CH₂CONH₂

Ra representing an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

the compound of formula (IV) having the following property:

- if one or several asymmetric carbons are present in the formula (IV), then their configuration can be independently either D (dextro) or L (levo),
- the groups \mbox{R}^1 and \mbox{R}^i can also be defined on the basis of intramolecular cyclizations which are the following:
- 1/ cyclization between R^i and R^{i+kc} (where kc is a positive integer, preferably comprised between 1 to 3)
- 2/ cyclization between R^1 and R^i wherein preferably i = 2, 3 or 4.
- provided that the compound of formula (IV) be different from the compounds in which:
 - n=1, GP=Boc or benzyloxycarbonyl, R1 = \emptyset
 - n=2, GP=phtalimide, R_1 = Ø, R_3 =benzyle, R'_2 = R_2 = R'_3 =H
 - n=2, GP=phtalimide, $R_1 = \emptyset$, R_3 =methyle, $R'_2=R_2=R'_3=H$
 - n=2, GP=phtalimide, $R_1 = \emptyset$, $R_3=H$, $R'_2=R_2=R'_3=H$
 - n=2, GP=phtalimide, $R_1 = \emptyset$, $R_3=CH_2i-Pr$, $R'_2=R_2=R'_3=H$
 - n=2, GP=phtalimide, $R_1 = \emptyset$, R_3 =CH₂COOt-Bu, R'_2 = R_2 = R'_3 =H
- n=2, GP=phtalimide, $R_1 = \emptyset$, R_3 =CH₂CH₂CH₂CH₂NHBoc, R'_2 = R_2 = R'_3 =H

30

5

10

- n=2, GP=phtalimide, $R_1=\varnothing$, $R_3=$ CH_2 CH_2 CH_2 NHCNH(N-Mtr), $R'_2=R_2=R'_3=H$, (Mtr =4-methoxy-2,3,6-trimethyl-benzene-sulphonyl)

- n=2, GP=Boc, R_1 = benzyl, $R_2=R'_2=R_3=R'_3=H$
- n=2, GP=Boc, $R_1 = i-Bu$, $R_2=R'_2=R_3=R'_3=H$
- n=2, GP=Boc, $R_1 = H$, $R_2=R'_2=R_3=R'_3=H$

The invention also has for its object compounds of the formula $({\rm II})$

in which n, i, GP, R^1 and R^i have the meanings mentioned above in connection with formula (IV).

A group of preferred compounds of formula (IV) are those in which $1 \le n \le 4$, A is an oxycarbonyl or acyl group as defined above in connection with formula (IV),

and particularly the following compounds for which p and m are comprised from 1 to 10 and preferably equal to 1 or 2, and particularly those for which A = Boc and Fmoc,

$$\begin{array}{c|c} A & \begin{array}{c} Z & T \\ N \end{array} \\ \begin{array}{c} Z_1 & N \end{array} \\ \end{array} \\ \begin{array}{c} Z_1 & N \end{array} \\ \begin{array}{c}$$

 $\begin{array}{c} A \ different \ from \ Boc \\ (tertbut oxycarbonyle) \ \ and \ benzyloxycarbonyle \end{array}$

$$A = 1$$

$$R^{1}$$

$$N = 0$$

$$R^{2}$$

$$R^{2}$$

$$A \xrightarrow{Z'_1} N \xrightarrow{N \cap N} NCO$$

30

5

10

 $\begin{array}{cccc}
R^1 & & & & & \\
N & & & & & & \\
N & & & & & & \\
N & & & & & & \\
M & & & & & & \\
N & & & & \\
N & & & & \\
N & & & & \\
N & & & & \\
N & & & & \\
N & & & & \\
N & & & & \\
N & & & & & \\
N & & & \\
N & & & & \\$

A N N NCO $Z_1 O M = 1$ $Z_1 O M = 1$ $Z_1 O M = 1$

$$A \underbrace{\begin{array}{c} Z_1 & O & R^2 \\ N & \downarrow & N \\ Z_1 & F_1 & R^1 \end{array}}_{P_1 NCO}$$

n=2

A N
$$F_{k}$$
 F_{k} F_{p} F_{p}

A preferred group of compounds of formula (II) are those in which $1 \le n \le 4$, GP is an oxycarbonyl or acyl group as defined above with respect to formula (IV), and particularly the following compounds, in particular those in which GP=Boc and Fmoc,

n=3

$$R^{1}$$
 R^{3} R^{2} R^{2}

n=4

$$R^1$$
 R^3 R^5 R^5 R^5 R^5 R^5 R^5

The isocyanates of formula (IV) can be used as precursors for the synthesis of the compounds of formula (III) and (III bis) and can be obtained from compounds of the formula (X) defined hereinafter.

The isocyanates of formula (II) are the precursors used in the synthesis of compounds of formulas (I) and (I bis) and can be obtained from N-protected amino acid derivatives of formula (IX) defined hereafter.

The invention also relates to compounds of the formula (V)

$$G \qquad \qquad X \qquad \qquad X \qquad \qquad (V)$$

$$R_1 \qquad \qquad R_2 \qquad \qquad N \qquad \qquad$$

in which

5

10

25

30

- "n" is a whole number greater than or equal to 1, particularly from 1 to 4 and preferably from 1 to 2,

10

- "d" is a whole number comprised between 0 and 4, preferably equaling 0 or 1, $\,$
 - "i" is a number varying from 2 to n+1,
 - the Y group can be or contain:

1/ a pseudopeptide (peptide containing one or several
pseudopeptide linkages)

 $A-N(Z_1)-C(Z'_1)(Z''_1)-\Psi_1[*]-\dots-\Psi_{k-1}[*]-C(Z'_k)(Z''_k)-\Psi_k[*]-\dots\Psi_{p-1}[*]C(Z'_p)(Z''_p)-\Psi_p[*]-\dots-\Psi_{p-1}[*]-\dots-\Psi_{p-1$

- "p" is a whole number greater than or equal to 1, preferably from 1 to 50; preferably from 1 to 10,
 - "k" is a whole number varying from 1 to m,
 - A is a group selected from:
 - * hydrogen
- * oxycarbonyl (ROCO), preferably Boc (R = $C(CH_3)_3$), Fmoc (fluorenylmetoxycarboyl), benzyloxycarbonyl (R = CH_2Ph), allyloxycarbonyl (R = $-CH_2CH=CH_2$),
- * acyl (RCO), preferably R = CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl, aryl,
- * alkyl (R), preferably R = trityl, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, benzyl, allyl,
 - * phenyl, particularly aryl,
- * urea (RNHCO), preferably $R = CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl,
 - * phthalimide $(R^1=\emptyset)$

* biotin

30

30

5

10

- * the group A can form with the nitrogen atom N with which it is contiguous an "NH $_2$ " entity
- Z_k , Z'_k , and Z''_k can each represent and independently of one another:

hydrogen,

the protected or unprotected side chain of an amino acid selected from proteinogenic and non-proteinogenic amino acids,

- a (C1-C20) alkyl group, unsubstituted or substituted with one or several substituents from the following:
 - 1/ -COOR_b
 - 2/ -CONHR_b
 - 3/ -COOH
 - 4/ -OH, OR_b
 - 5/ -NHR_b
 - 6/-NH₂
 - $7/-NH(CO)R_{b}$
 - 8/ aryl, whose cyclic structure contains 5 to 20 carbon atoms
 - 9/ halogen
 - 10/ carbonyl of 1 to 10 carbon atoms
 - 11/ nitrile
 - 12/ guanidine

an aryl group, whose cyclic structure contains 5 to 20 carbon atoms

- a halogen
- -OR_b
- -COOR_b
- -CONHR_b
- -CONH₂
- -CH₂COOR_b
- -CH2CONHRb
- -CH₂CONH₂

10

 R_b representing an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

 $-\Psi_k[*]-$ are independently either CO-NH peptide linkages or linkages of different chemical nature selected particularly from the following list:

 $\psi_k[*] = -CH(F_k) - ; -CO - ; -N(F_k)CO - ; -CH(F_k)CO - ; -CH(F_k)NHCO - ;$

 $-N(F_k)$ -; $-CON(F_k)$ -; $-CH_2CH_2$; $-CH(F_k)$ = $-CH(F_k)$ -; $-CH_2NH$ -; -NHCO-;

-NHCONH-;-N(F_k)CON(F_k ')-;-COCH₂-;-CH(OH)CH₂-;-CH(OH)CH₂NH-;

-CH₂O-; -CH₂-NHCONH-; CH(F_k)NHCON(F_k')-;

-CH₂-CONH- ; CH(F_k)CONH- ; -CH(F_k)CH(F_k ')CONH-

Fk and Fk' representing, independently of each other, hydrogen, the protected or unprotected side chain of an amino acid selected from proteinogenic and non-proteinogenic amino acids, halogen, an alkyl of 1 to 20 carbon atoms, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

- 2/ an amino acid residue or an amino acid chain: $A\text{-}N(Z_1)\text{-}C(Z'_1)(Z''_1)\text{-}CO\text{-}N(Z_2)\text{-}\dots\text{-}CO\text{-}N(Z_k)\text{-}C(Z'_k)(Z''_k)\text{-}CO\text{-}N(Z_{k+1})\text{-}\dots\text{CO-}N(Z_m)\text{-}C(Z'_m)(Z''_m)\text{-}CO\text{-}$
- "m" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10,
 - "k" is a whole number varying from 1 to m,
 - A defined as above,
- the R^1 , R^i , and R groups can each represent independently of each other:

hydrogen,

halogen,

the protected or unprotected side chain of an amino acid selected from natural or synthetic amino acids,

a (C1-C20) alkyl group, unsubstituted or substituted with one or several substituents from the following:

25

```
1/ -COORa
                    2/ -CONHRa
                    3/ -COOH
                    4/ -OH
 5
                    5/-OR_a
                    6/ -NHRa
                    7/-NH_2
                    8 / -NH (CO) Ra
                    9/ aryl
10
                    10/ halogen
                   11/ carbonyl of 1 to 10 carbon atoms
                    12/ nitrile
                    13/ guanidine
                    14/ nitro
               an aryl group, whose cyclic structure contains 5 to 20
          carbon atoms
              an ORa group
              an NH<sub>2</sub> group
              an OH group
              -COOR<sub>a</sub>
              -CONHRa
              -CONH<sub>2</sub>
              -CH<sub>2</sub>COOR<sub>a</sub>
              -CH<sub>2</sub>CONHR<sub>a</sub>
25
              -CH<sub>2</sub>CONH<sub>2</sub>
                     representing
                                         an
                                                allyl,
                                                            benzyl,
         fluorenylmethyl, alkyl having 1 to 20 carbon atoms group,
         or an aryl group whose cyclic structure contains 5 to 20
         carbon atoms,
```

30

5

10

- the G group can be or contain:

A/ an amino acid residue or an amino acid residue chain:

 $-N(S_1)C(S'_1)(S''_1)-CO-N(S_2)-\dots -CO-N(S_k)-C(S'_k)(S''_k)-CO-N(S_{k+1})-\dots CO-N(S_v)-C(S'_v)(S''_v)-CO-D\\$

- "v" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10 with preferably v>3 and v>5,
 - D can be:
 - $-NH_2$
 - -NHCOR_c
 - -NHR_c
 - $-NR_{c}R_{d}$
 - $-N(R_c)CON(R_d)$
 - -OH
 - -OR_C

 R_{c} and R_{d} represent independently of each other an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

- S_k , S^{\prime}_k and $S^{\prime\prime}_k$ can each represent independently: hydrogen,

the protected or unprotected side chain of an amino acid selected from proteinogenic and non-proteinogenic amino acids,

- a (C1-C20) alkyl group, unsubstituted or substituted with one or several substituents from the following:
 - 1/ -COOR
 - 2/ -CONHR_e
 - 3/ -COOH
 - 4/-OH, OR_e
 - $5/-NHR_e$
 - 6/-NH₂

10

```
7/-NH(CO)R_e
```

8/ aryl whose cyclic structure contains 5 to 20 carbon atoms

9/ halogen

10/ carbonyl

11/ nitrile

12/ quanidine

an aryl group whose structure contains 5 to 20 carbon atoms

an ORe group

an NH₂ group

an OH group

a halogen

 R_{e} representing an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms.

B/ a radical selected from:

- * NH₂
- * O-benzyl
- * O-allyl
- * O-methyl
- * O-ethyl
- * O-terbutyl

- the X group represents a group giving to the compound of formula (V) an activated molecular structure adapted to react with alcohols or amines to form carbamic acid derivatives or ureas, and is particularly derived from a compound selected from phenols, if desired substituted with nitro or a halogen or hydroxylamine derivatives and more particularly selected from:

1

30

30

- N-hydroxysuccinimide
- phenol

5

10

- pentafluorophenol
- pentachlorophenol
- p-nitrophenol
- 2,4-dinitrophenol
- 2,4,5-trichlorophenol
- 2,4-dichloro-6-nitrophenol
- hydroxy-1,2,3-benzotriazole
- 1-oxo-2-hydroxydihydrobenzotriazine (HODhbt)
- 7-aza-1-hydroxybenzotriazole (HOAt)
- 4-aza-1-hydroxybenzotriazole (4-HOAt)
- imidazole
- tetrazole

the compounds of formula (V) having the following property:

- if one or several asymmetric carbons are present in formula (V), then their configuration can be in independent manner either D (dextro) or L (levo),
- the groups R^1 and R^i groups can also be defined on the basis of intramolecular cyclizations which are the following:
- 1/ cyclization between R^i and R^{i+kc} (in which kc is a positive whole number, preferably comprised between 1 and 3)
- 2/ cyclization between R^1 and R^i wherein preferably i=2, 3 or 4,

and more particularly the compounds corresponding to formula (V) in which $1 \le n \le 4$, d=0 or 1, X=N-hydroxysuccinimide, A is an oxycarbonyl or acyl group, and particularly the compounds in which p, m and v are

comprised from 1 to 10 and preferably equal to 1 or 2, and preferably those in which A = Boc and Fmoc,

and particularly the compounds of the following formulas:

The compounds of formula (V) are activated carbamates analogous to compounds of formulas (I) and (I bis) in which the activated carbamate is introduced into the side chain of a protective amino acid or a peptide, a pseudopeptide or else an oligomer of urea.

30

1.

5

10

The invention also relates to compounds of formula (Vbis)

$$G$$
 Y
 N
 R_1
 R^i
 R^i
 R^i
 R^i

in which

- "n" is a whole number greater than or equal to 1, comprised particularly by 1 to 4, and preferably 1 to 2,
- "d" is a whole number comprised from 0 to 4, preferably equaling 0 or 1,
- "i" is a whole parameter greater than or equal to 2 defined in the following manner: i takes all the whole values comprised from 2 to n+1,
 - the Y group can be or contain:
- 1/ a pseudopeptide (peptide containing one or several pseudopeptide linkages)

 $A-N(Z_1)-C(Z'_1)(Z''_1)-\Psi_1[*]-\dots-\Psi_{k-1}[*]-C(Z'_k)(Z''_k)-\Psi_k[*]-\dots\Psi_{p-1}[*]C(Z'_p)(Z''_p)-\Psi_p[*]-\dots$

- "p" is a whole number greater than or equal to 1, preferably from 1 to 50, preferably from 1 to 10,
 - "k" is a whole number varying from 1 to p,
 - A is a group selected from:
 - * hydrogen
- * oxycarbonyl (ROCO), preferably Boc (R = $C(CH_3)_3$), Fmoc (fluorenylmetoxycarboyl), benzyloxycarbonyl (R = CH_2Ph), allyloxycarbonyl (R = $-CH_2CH=CH_2$),
- * acyl (RCO), preferably $R = CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl, aryl,

30

in the second

5

10

- * alkyl (R), preferably R = trityl, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, benzyl, allyl,
 - * phenyl, particularly aryl,
- * urea (RNHCO), preferably $R = CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl,
 - * phthalimide $(R^1=\emptyset)$

- * biotin
- * the A group can form with the nitrogen atom N to which it is contiguous an "NH $_2$ " entity,
- or Z_k , $Z^{\prime}{}_k$, and $Z^{\prime}{}^{\prime}{}_k$ can each represent and independently of each other:

hydrogen,

the protected or unprotected side chain of an amino acid selected from proteinogenic and non-proteinogenic amino acids,

- a (C1-C20) alkyl group, unsubstituted or substituted with one or several substituents from the following:
 - 1/ -COOR_b
 - 2/ -CONHR_b
 - 3/ -COOH
 - 4/-OH, OR_b
 - $5/-NHR_b$
 - 6/-NH₂
 - $7/-NH(CO)R_b$
 - 8/ aryl, whose cyclic structure contains 5 to 20 carbon atoms

9/ halogen

10/ carbonyl

11/ nitrile

12/ quanidine

an aryl group whose cyclic structure contains 5 to 20 carbon atoms

a halogen

-OR_b

-COOR_b

-CONHR_h

-CONH₂

-CH₂COOR_b

-CH₂CONHR_b

-CH₂CONH₂

 R_{b} representing allyl, benzyl, an t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

- -Ψ_k[*]are independently either CO-NH linkages or linkages of different chemical natures selected particularly from the following list:

 $\psi_k[*] = -CH(F_k) - ; -CO - ; -N(F_k)CO - ; -CH(F_k)CO - ; -CH(F_k)NHCO - ; -N(F_k) - ;$ $-CON(F_k)$ -; $-CH_2CH_2$; $-CH(F_k)=CH(F_k')$ -; $-CH_2NH$ -; -NHCO-; -NHCONH-; $-N(F_k)CON(F_k')$ -; $-COCH_2 - ;$ -CH(OH)CH₂ - ; -CH(OH)CH₂NH- ;-CH₂O- ; -CH₂-NHCONH-; $CH(F_k)NHCON(F_k')$ -; -CH₂-CONH-; $CH(F_k)CONH-$; $-CH(F_k)CH(F_k')CONH$

 F_k and F_k ' representing, independently of each other, hydrogen, the protected or unprotected side chain of an selected from proteinogenic acid and proteinogenic amino acids, halogen, an alkyl group of 1 to 20 carbon atoms, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

5

10

25

30

5

10

2/ an amino acid residue or an amino acid chain: $A\text{-}N(Z_1)\text{-}C(Z'_1)(Z''_1)\text{-}CO\text{-}N(Z_2)\text{-}\dots\text{-}CO\text{-}N(Z_k)\text{-}C(Z'_k)(Z''_k)\text{-}CO\text{-}N(Z_{k+1})\text{-}\dots\text{CO-}N(Z_m)\text{-}C(Z'_m)(Z''_m)\text{-}CO\text{-}$

- "m" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10,
 - "k" is a whole number varying from 1 to m,
 - A defined as above
- the R^1 , R^i and R groups can each represent independently of each other:

hydrogen,

halogen,

the protected or unprotected side chain of an amino acid selected from natural or synthetic amino acids,

- a (C1-C20) alkyl group unsubstituted or substituted with one or several substituents from the following:
 - 1/ -COORa
 - 2/ -CONHRa
 - 3/ -COOH
 - 4/ -OH
 - $5/-OR_a$
 - 6/ -NHRa
 - $7/-NH_2$
 - $8 / -NH(CO)R_a$
 - 9/ aryl, whose cyclic structure contains 5 to 20 carbon atoms
 - 10/ halogen
 - 11/ carbonyl of 1 to 10 carbon atoms
 - 12/ nitrile
 - 13/ quanidine
 - 14/ nitro

an aryl group whose cyclic structure contains 5 to 20 carbon atoms

an ORa group

```
an NH<sub>2</sub> group
```

an OH group

-COOR_a

5

10

- -CONHRa
- -CONH₂
- -CH₂COOR_a
- -CH2CONHRa
- -CH₂CONH₂

Ra representing an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

- the group G can be or contain

A/ an amino acid residue or a chain of amino acid residues:

 $-N(S_1)C(S'_1)(S''_1)-CO-N(S_2)-\dots-CO-N(S_k)-C(S'_k)(S''_k)-CO-N(S_{k+1})-\dots CO-N(S_v)-C(S'_v)(S''_v)-CO-D$

- "v" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10 and preferably v>3 and v>5,
- "k" is a whole number varying from 1 to v, preferably 1 to 50, $\,$
 - D can be:
- $-NH_2$
 - -NHCOR
 - $-\text{NHR}_{\text{c}}$
 - $-NR_cR_d$
 - $-N(R_c)CON(R_d)$
 - -OH
 - $-OR_{c}$

 R_{c} and R_{d} represent independently of each other an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to

30

5

10

20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

- S_k , S'_k and S''_k can each represent independently of each other:

hydrogen,

the protected or unprotected side chain of an amino acid selected from proteinogenic and non-proteinogenic amino acids,

a (C1-C20) alkyl group unsubstituted or substituted with one or several of the following substituents:

- 1/ -COOR_e
- 2/ -CONHR_e
- 3/ -COOH
- 4/ -OH
- 5/ -NHR_e
- 6/-NH₂
- 7/ -NH(CO)R_e
- 8/ aryl, whose cyclic structure contains 5 to 20 carbon atoms
 - 9/ halogen
 - 10/ carbonyl
 - 11/ nitrile
 - 12/ quanidine

an aryl group, whose cyclic structure contains 5 to 20 carbon atoms

an ORe group

an NH2 group

an OH group

a halogen

 R_{e} representing an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms

10

B/ a radical selected from:

- * NH₂
- * O-benzyl
- * O-allyl
- * O-methyl
- * O-ethyl
- * O-terbutyl

the compounds of formula (Vbis) having the following property:

- if one or several asymmetric carbon atoms are present in formula (V), then their configuration can be independently of each other either D (dextro) or L (levo),
- the groups R^1 and R^i can also be defined on the basis of intramolecular cyclizations as follows:
- 1/ cyclization between R^i and R^{i+kc} (wherein kc is a positive whole number, preferably comprised between 1 and 3)
- 2/ cyclization between R^1 and R^i wherein preferably i = 2, 3 or 4,

and more particularly the compounds responding to the formula (Vbis) in which $1 \le n \le 4$, d = 0 or 1, X=N-hydroxysuccinimide, A is an oxycarbonyl or acyl group, and particular the compounds in which p, m and v are comprised from 1 to 10 and preferably equal to 1 or 2, and preferably those in which A = Boc and Fmoc.

The isocyanates of formula (Vbis) can be used as precursors for the synthesis of compounds of formula (V) and can be obtained from compounds (XI).

30

25

30

5

10

The invention also comprises compounds of the formula (VII)

in which

- "n" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10,
 - "i" is a whole number varying from 2 to n+1,
 - the Y group can be or contain:
- 1/ a pseudopeptide (peptide containing one or several pseudopeptide linkages)

$$\begin{split} &A\text{-N}(Z_1)\text{-}C(Z'_1)(Z''_1)\text{-}\Psi_1[*]\text{-}C(Z'_2)(Z''_2)\text{-}\Psi_2[*]\text{-}\dots\text{-}\Psi_{k\text{-}1}[*]\text{-}C(Z'_k)(Z''_k)\text{-}\Psi_k[*]\text{-}\dots\\ &\Psi_{p\text{-}1}[*]C(Z'_p)(Z''_p)\text{-}\Psi_p[*]\text{-} \end{split}$$

- "p" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10,
 - "k" is a whole number varying from 1 to p,
 - or A is a group selected from:
 - * hydrogen
- * oxycarbonyl (ROCO), preferably Boc (R = $C(CH_3)_3$), Fmoc (fluorenylmetoxycarbonyl), benzyloxycarbonyl (R = CH_2Ph), allyloxycarbonyl (R = $-CH_2CH=CH_2$),
- * acyl (RCO), preferably $R = CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl, aryl,
- * alkyl (R), preferably R = trityl, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, benzyl, allyl,
 - * phenyl, particularly aryl,
- * urea (RNHCO), preferably $R = CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl,

13 20

25

30

* phthalimide
$$(R^1=\emptyset)$$

- * biotin
- \ast the group A can form with the nitrogen atom N with which it is contiguous an "NH2+" entity
 - Z_k , Z_k and Z_k can each represent independently: hydrogen,

the protected or unprotected side chain of an amino acid selected from proteinogenic and non-proteinogenic amino acids,

- a (C1-C20) alkyl group, unsubstituted or substituted by one or several of the following substituents:
 - 1/ -COOR_b
 - 2/ -CONHR_b
 - 3/ -COOH
 - 4/-OH, OR_b
 - 5/ -NHR_b
 - 6/-NH₂
 - 7/ -NH(CO)R_b
 - 8/ aryl whose cyclic structure contains 5 to 20 carbon atoms
 - 9/ halogen
 - 10/ carbonyl of 1 to 10 carbon atoms
 - 11/ nitrile
 - 12/ guanidine

an aryl group, whose cyclic structure contains 5 to 20 atoms

- a halogen
- -OR_b

10

- -COOR_b
- -CONHR_b
- -CONH₂
- -CH₂COOR_b
- -CH₂CONHR_b
- -CH₂CONH₂

 $R_{\rm b}$ representing an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

 $-\Psi_k[\star]$ are independently either CO-NH peptide linkages, or linkages of different chemical natures selected particularly from the following list:

$$\begin{split} &\psi_k[^*]_- = -CH(F_k)_-\,; \ -CO_-\,; \ -N(F_k)_-CO_-\,; \ -CH(F_k)_-CO_-\,; \ -CH(F_k)_-CO_-\,; \ -CH(F_k)_-CO_-\,; \ -CH(F_k)_-CO_-\,; \ -CH_2CH_2\,; \ -CH(F_k)_-CH(F_k)_-\,; \ -CH_2NH_-\,; \ -NHCO_-\,; \ -NHCO_-\,; \ -NHCO_-\,; \ -CH_2O_-\,; \ -CH_2-NHCO_-\,; \ -CH(F_k)_-CO_-\,; \ -CH_2-CO_-\,; \ -CH$$

 F_k and F_k ' representing, independently of each other, hydrogen, the protected or unprotected side chain of an amino acid selected from proteinagenic and non-proteinagenic amino acids, halogen, an alkyl group of 1 to 20 carbon atoms, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

25

30

2/ an amino acid residue or an amino acid chain: $A-N(Z_1)-C(Z'_1)(Z''_1)-CO-N(Z_2)-\ldots-CO-N(Z_k)-C(Z'_k)(Z''_k)-CO-N(Z_{k+1})-\ldots CO-N(Z_m)-C(Z'_m)(Z''_m)-CO-$

- "m" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10,
 - "k" is a whole number varying from 1 to m,
 - A defined as above,
 - 3/ a GP group which can be:

30

5

- 10

- a protective group selected from:
- * oxycarbonyl (GP = ROCO), preferably Boc (R = $C(CH_3)_3$), Fmoc (fluorenylmethoxycarbonyl), benzyloxy-carbonyl (R = CH_2Ph), allyloxycarbonyl (R = $-CH_2CH=CH_2$),
- * acyl (GP = RCO), preferably R = CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl, aryl,
- * alkyl (R), preferably R = trityl, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, benzyl, allyl,
 - * phenyl, particularly aryl,
- * urea (RNHCO), preferably $R = CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, phenyl, benzyl, allyl,
 - * phthalimide $(R^1 = \emptyset)$

- * biotin
- * O_2 (corresponds to a nitro group as a masked amino form), $R1 = \emptyset$
- the GP group which can also be such that the "GP-N" entity forms an "NH2+" entity
- the groups R^1 , R^i and R can each represent independently of each other:

hydrogen,

halogen,

the protected or unprotected side chain of an amino acid selected from natural and synthetic amino acids,

- a (C1-C20) alkyl group, unsubstituted or substituted with one or several substituents from the following:
 - 1/ -COORa
 - 2/ -CONHRa
 - 3/ -COOH

```
The state of the s
```

```
4/ -OH
                  5/ -ORa
                  6/ -NHRa
                  7/-NH_2
                  8/-NH(CO)R_a
5
                  9/ aryl, whose cyclic structure contains 5 to 20
             carbon atoms
                  10/ halogen
                  11/ carbonyl
                  12/ nitrile
10
                  13/ guanidine
                  14/ nitro
             an aryl group, whose cyclic structure contains 5 to 20
         carbon atoms
             an ORa group
             an NH_2 group
             an OH group
             -COOR<sub>a</sub>
             -CONHR<sub>a</sub>
20
              -CONH<sub>2</sub>
              -CH<sub>2</sub>COOR<sub>a</sub>
              -CH2CONHR
              -CH<sub>2</sub>CONH<sub>2</sub>
                                                                    t-butyl,
                                             allyl,
                                                        benzyl,
              R_a
                    representing
                                      an
         fluorenylmethyl, alkyl having 1 to 20 carbon atoms group,
25
         or an aryl group whose cyclic structure contains 5 to 20
         carbon atoms,
              - the B group can be either N-W' or O,
30
              - the W and W' groups can be or contain:
              A/ hydrogen,
```

30

5

10

B/a (C1-C20) alkyl group, unsubstituted or substituted with one or several of the following substituents:

- 1/ -COOR_h
- 2/ -CONHR_h
- 3/ -COOH
- 4/ -OH
- 5/ -ORn
- 6/ -NHR
- $7/-NH_2$
- $8/-NH(CO)R_h$
- 9/ aryl, whose cyclic structure contains 5 to 20 carbon atoms
 - 10/ halogen
 - 11/ carbonyl of 1 to 10 carbon atoms
 - 12/ nitrile
 - 13/ guanidine

 R_h representing an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

C/ an aryl group, whose cyclic structure contains 5 to 20 carbon atoms,

E/ a pseudopeptide (peptide containing one or several pseudopeptide linkages)

 $-C(S'_1)(S''_1)-\Psi_1[*]-\dots-\Psi_{k-1}[*]-C(S'_k)(S''_k)-\Psi_k[*]-\dots\Psi_{h-1}[*]C(S'_h)(S''_h)-D$

- "h" is a whole number greater than or equal to 1 and preferably 1 to 50, preferably 1 to 10,
 - "k" is a whole number varying from 1 to h,
 - D can be:

30

hydrogen, -СООН -COOR_c -CONH₂ -CH₂COOR_c 5 -NHCOR_c $-NH(R_c)$ $-CONR_cR_d$ $-N(R_c)CON(R_d)$ 10 -OH $-OR_{c}$ -CN $-C(0)R_c$ R_c and R_d representing an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms, - S_k , S'_k , and S''_k can each represent independently of **1** 20 each other: hydrogen, the protected or unprotected side chain of an amino acid selected from proteinogenic and non-proteinogenic

> amino acids, a (C1-C20) alkyl group, unsubstituted or substituted with one or several of the following substituents:

> > 1/ -COOR_e

2/ -CONHR_e

3/ -COOH

4/ -OH

5/ -NHR_e

6/-NH₂

 $7/-NH(CO)R_e$

10

8/ aryl whose cyclic structure contains 5 to 20 carbon atoms

9/ halogen

10/ carbonyl

11/ nitrile

12/ quanidine

an aryl group, whose cyclic structure contains 5 to 20 carbon atoms

an ORe group

an NH2 group

an OH group

a halogen

 $R_{\rm e}$ representing an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

 $-\Psi_k[*]-$ are independently either CO-NH peptide linkages or linkages of different chemical nature selected particularly from the following list:

$$\begin{split} &\psi_k[^*]_- = -CH(F_k)_-\,; \ -CO_-\,; \ -N(F_k)CO_-\,; \ -CH(F_k)CO_-\,; \ -CH(F_k)NHCO_-\,; \ -N(F_k)_-\,; \\ &-CON(F_k)_-\,; \ -CH_2CH_2\,; \ -CH(F_k)_-CH(F_k)_-\,; \ -CH_2NH_-\,; \ -NHCO_-\,; \ -NHCONH_-\,; \\ &-N(F_k)CON(F_k)_-\,; \ -COCH_2_-\,; \ -CH(OH)CH_2_-\,; -CH(OH)CH_2NH_-\,; \ -CH_2O_-\,; \\ &-CH_2-NHCONH_-\,; \ CH(F_k)NHCON(F_k)_-\,; \ -CH_2-CONH_-\,; \ CH(F_k)CONH_-\,; \\ &-CH(F_k)CH(F_k)CONH_-\,; \end{split}$$

 F_k and F_k ' representing, independently of each other, hydrogen, the protected or unprotected side chain of an amino acid selected from proteinogenic and non-proteinogenic amino acids, a halogen, an alkyl group of 1 to 20 carbon atoms, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

F/ an amino acid residue or a chain of amino acid residues:

 $-C(S'_1)(S''_1)-CO-N(S_2)-\dots-CO-N(S_k)-C(S'_k)(S''_k)-CO-N(S_{k+1})-\dots CO-N(S_v)-C(S'_v)(S''_v)-D$

25

5

10

- "v" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10 and preferably v>3 and v>5,
 - "k" is a whole number varying from 1 to v,
- D, $S_k,\ S^{\,\prime}{}_k$ and $S^{\,\prime}{}^{\,\prime}{}_k$ are defined independently of each other as above,

the compounds of formula (VII) moreover have the following property:

- if one or several asymmetric carbons are present in the formula (VII), then their configuration can be independently of each other either D (dextro) or L (levo),
- the groups R^1 and R^i can also be defined on the basis of intramolecular cyclizations which are the following:
- 1/ cyclization between R^i and R^{i+kc} (where kc is a positive whole number, preferably comprised from 1 to 3)
- 2/ cyclization between R^1 and R^i wherein preferably i = 2, 3 or 4,

10

25

30

provided that the compound of formula (VII) is different from the analogs of the peptide Tyr-Gly-Gly-Phe-Leu-OH, containing one or several derivatives as defined below mimicking the side chain of the amino acids present in the peptide and permitting the introduction of one or several urea linkages, which is to say the compound of formula (VII) is different from the following compounds:

in which R represents hydroxybenzyl, a hydrogen atom, a benzyl group, or an isobutyl group,

provided that the compound of formula (VII) is different from:

In formula (VII), when B represents N-W', N corresponds to the nitrogen atom, and when B represents O, O corresponds to the oxygen atom.

The compounds of type (VII) are reaction products of compounds of type (III) and (III bis) or possibly (IV) with derivatives containing a primary or secondary amine or an alcohol.

30

5

10

The invention also relates to compounds of formula (VI)

in which n, i, GP, R^1 , R^i , B and W have the meanings mentioned above with respect to formula (VII).

Compounds of type (VI) are reaction products of the compounds of type (I) and (I bis) or possibly (II) with derivatives containing a primary or secondary amine or an alcohol.

A preferred group of compounds of formula (VII) is constituted by those in which $1 \le n \le 4$, and particularly the following compounds in which v, h, m and p are comprised from 1 to 10 and preferably 1 to 5 and more particularly the following compounds:

n=4

k varying from 1 to v-1

k varying from 1 to h-1

10

The state of the s

25

30

5

A preferred group of compounds is constituted by those of formula (VI) in which $1 \le n \le 4$, GP is an oxycarbonyl or acyl group as defined above with respect to the compounds of formula (VI), and more particularly the following compounds in which v and h are comprised between 1 and 10, and preferably equal to 1 or 2, and particularly those in which GP = Boc and Fmoc:

n=1

$$GP \xrightarrow{R^1} H \xrightarrow{H} N \xrightarrow{V-1} D$$

$$E^2 O \times S^1 \times S^$$

n=2

n=3

n=4

varying from 1 to v-1

30

10

5

The invention also relates to compounds of the formula (VIII)

in which:

the total number of atoms forming the cycle is greater than seven,

the groups R^{i} , R^{i} , Y^{i} , W^{i} , B have the meanings already indicated above,

the group Y in this new case can be or contain:

I/ a (C1-C20) alkyl group, unsubstituted or substituted with one or more substituents from the following:

1/ -COOR_e

2/ -CONHR_e

3/ -COOH

4/ -OH

5/ -OR

6/ -NHR_e

 $7/-NH_2$

 $8/-NH(CO)R_e$

9/ aryl, whose cyclic structure contains 5 to 20 carbon atoms,

10/ halogen

11/ carbonyl of 1 to 10 carbon atoms

12/ nitrile

13/ guanidine

30

 $\frac{\epsilon}{\epsilon}$, $\frac{\epsilon}{\epsilon}$, $\frac{\epsilon}{\epsilon}$

5

10

 $R_{\rm e}$ representing an alkyl group of 1 to 20 carbon atoms, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

II/ an aryl group

III/ a pseudopeptide (peptide containing one or several
pseudopeptidic linkages)

 $(on \ B \leftarrow) \ -C(Z'_1)(Z''_1) - \psi_1[^*] - \ldots - \psi_{k-1}[^*] \ (Z_k) - C(Z'_k)(Z''_k) - \psi_k[^*] - \ldots \\ \psi_{p-1}[^*] C(Z'_p)(Z''_p) - CO - (\rightarrow on \ NY')$

- "p" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10,
- Z_k , $Z^{\prime}{}_k$ and $Z^{\prime}{}^{\prime}{}_k$ can each represent independently of each other:

hydrogen,

the side chain of an amino acid selected from proteinogenic or non-proteinogenic amino acids

- a (C1-C20) alkyl group, unsubstituted or substituted with one or several substituents from the following:
 - 1/ -COOR_b
 - 2/ -CONHR_b
 - 3/ -COOH
 - 4/-OH, OR_b
 - 5/ -NHR_b
 - 6/-NH₂
 - $7/-NH(CO)R_b$
 - 8/ aryl whose cyclic structure contains 5 to 20 carbon atoms
 - 9/ halogen
 - 10/ carbonyl of 1 to 10 carbon atoms
 - 11/ nitrile
 - 12/ guanidine

an aryl group, whose cyclic structure contains 5 to 20 carbon atoms

a halogen

30

5

10

- -COOR_b
- -CONHR_b
- -CONH₂
- -CH2COORb
- -CH₂CONHR_b
- -CH2CONH2

 R_{b} representing an alkyl group of 1 to 20 carbon atoms, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

 $--\psi_k[*]-$ are independently either CO-NH peptidic linkages or linkages of different chemical natures selected particularly from the following list:

 $-\psi_{k}[*]- = -CH_{2}CH_{2}\;;\; -CH(F_{k}) = CH(F_{k}')-\;;\; -CH_{2}NH-\;;\; -NHCO\;-;\; -NHCONH-\;;\\ -COCH_{2}-\;;\; -CH(OH)CH_{2}-\;;\; -CH(OH)CH_{2}NH-\;;\; -CH_{2}-\;;\; -CH(F_{k})-\;;\; -CH_{2}O-\;;\\ -CH_{2}-NHCONH-\;;\; CH(F_{k})NHCONF_{k}'-\;;\; CH_{2}-CONH-\;;\; CH(F_{k})CONH-\;;\\ -CH(F_{k})CH(F'_{k})CONH-\;;\; CH(F_{k})CONH-\;;$

 F_k and F_k ' representing, independently of each other, hydrogen, halogen, an alkyl group of 1 to 20 carbon atoms, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

IV/ an amino acid residue or a chain of amino acid
residues:

 $(on B\leftarrow)-C(Z'_1)(Z''_1)-CO-N(Z_2)-\dots-CO-N(Z_k)-C(Z'_k)(Z''_k)-CO-N(Z_{k+1})-\dots CO-N(Z_m)-C(Z'_m)(Z''_m)-CO-(\rightarrow on NY')$

- "m" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10,
 - Z_k , Z'_k , and Z''_k are defined as before.

V/ an oligomer of urea defined as follows:

$$(\text{ on B} \longrightarrow)_{r} \stackrel{p_{i}^{j-1}}{\longrightarrow} \stackrel{b_{i}^{j}}{\longrightarrow} \stackrel{h}{\longrightarrow} \stackrel$$

30

5

10

- "u" is a whole number greater than or equal to 1, preferably 1 to 50, and preferably 1 to 10,
- "q" is a whole number greater than or equal to 1, preferably 1 to 50, and preferably 1 to 10,
 - "j" is a whole parameter comprised between 2 and u+1,
- "r" is a whole parameter greater than or equal to 1 taking all the values comprised from 1 to q-1.
- " a_r^j and $a'_r^{j''}$, represented by a broken line, are covalent bonds which can be single (s), or double (d),

"br j and br $^{j-1}$ ", shown by broken line, are covalent bonds which can be simple (s), double (d) or triple (t) provided that:

- * b_q^1 and b_q^{u+1} are always single bonds (s),
- * if $b_r^j = d$, then a_r^j and $a_r^{j+1} = s$; a'_r^j and $a'_r^{j+1} = \emptyset$; b_r^{j-1} and $b_r^{j+1} = s$
- * if $b_r^j = t$, then a_r^j and $a_r^{j+1} = \emptyset$; a'_r^j and $a'_r^{j+1} = \emptyset$; b_r^{j-1} and $b_r^{j+1} = s$
 - * if $a_r^j = d$, then b_r^{j-1} and $b_r^j = s$,

certain of these bonds can also form a part of aromatic rings,

 Z_r , ${Z_r}^j$, ${Z'_r}^j$ have meanings indicated with respect to R^1 , R^i , ${R'}^i$ as defined above.

A preferred group of compounds of formula (VIII) is constituted by those in which $1 \le n \le 4$, and particularly the following compounds in which h, v, t, p, m, and q are comprised from 1 to 10 and preferably 1 to 5, and more particularly the following compounds:

5

in which R^1 and R^2 have the meanings indicated above and in which ${Z_1}^1$, ${Z_1}^2$, ${Z_2}^1$, ${Z_2}^2$, ${Z_3}^1$ and ${Z_3}^2$ have the meanings indicated with respect to ${Z_r}^j$.

The invention also has for its object cyclic compounds of formula (VIII bis)

in which:

the total number of atoms forming the cycle is greater than six, preferably greater than or equal to 7,

- "n" is a whole number greater than or equal to 1, preferably from 1 to 10, preferably from 1 to 4,
 - "i" is a whole number varying from 2 to n+1,
- the groups $R^1,\ R^{\bf i}$ and R^{n+2} each can represent independently of each other:

hydrogen

halogen

the protected or unprotected side chain of an amino acid selected from natural or synthetic amino acids

25

carbon atoms,

a (C1-C20) alkyl group unsubstituted or substituted with one or several substituents of the following: 1/ -COORa 2/ -CONHRa 5 3/ -COOH 4/ -OH $5/-OR_a$ 6/ -NHRa $7/-NH_2$ 8/ -NH(CO)Ra 10 9/ aryl, whose cyclic structure contains 5 to 20 carbon atoms 10/ halogen 11/ carbonyl of 1 to 10 carbon atoms 12/ nitrile 13/ quanidine 14/ nitro an aryl group, whose cyclic structure contains 5 to 20 carbon atoms an ORa group an NH₂ group an OH group -COORa -CONHRa -CONH₂ 25 -CH₂COOR_a -CH₂CONHR_a -CH2CONH2 representing allyl, benzyl, t-butyl, an fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, 30 or an aryl group whose cyclic structure contains 5 to 20

> the groups R1 and Ri can also be defined on the basis of intramolecular cyclizations which are the following:

30

5

- 1/ cyclization between R^{i} and R^{i+kc} (where kc is a positive integer, preferably between 1 and 3)
- 2/ cyclization between R^1 and R^i wherein preferably i=2, 3 or 4,
 - the Y group can be or contain:
- I/ a (C1-C20) alkyl group, unsubstituted or substituted with one or several substituents from the following:
 - 1/ -COOR_e
 - 2/ -CONHR_e
 - 3/ -COOH
 - 4/ -OH
 - 5/ -OR
 - 6/ -NHRe
 - $7/-NH_2$
 - 8/ -NH(CO)R_e
 - 9/ aryl, whose cyclic structure contains 5 to 20 carbon atoms,
 - 10/ halogen
 - 11/ carbonyl of 1 to 10 carbon atoms
 - 12/ nitrile
 - 13/ guanidine
- $R_{\rm e}$ representing an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,
 - II/ an aryl group
- III/ a pseudopeptide (peptide containing one or several
 pseudopeptidic bonds)
- $(\text{sur }B \leftarrow) C(Z'_1)(Z''_1) \Psi_1[*] \ldots \Psi_{k-1}[*] C(Z'_k)(Z''_k) \Psi_k[*] \ldots \\ \Psi_{p-1}[*]C(Z'_p)(Z''_p) \Psi_p[*] (\rightarrow \text{sur }NR^1) (\rightarrow \text{sur }NR$
 - "p" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10,
 - \mathbf{Z}_k , $\mathbf{Z'}_k$ and $\mathbf{Z''}_k$ can each represent independently of each other:
- 35 hydrogen,

30

10

the protected or unprotected side chain of an amino acid selected from proteinogenic or non-proteinogenic amino acids,

a (C1-C20) alkyl group, unsubstituted or substituted with one or several of the following substituents:

```
1/ -COOR<sub>b</sub>
```

- 2/ -CONHR_b
- 3/ -COOH
- 4/-OH, OR_b
- 5/ -NHR_b
- 6/ -NH₂
- $7/-NH(CO)R_b$
- 8/ aryl whose cyclic structure contains 5 to 20 carbon atoms
 - 9/ halogen
 - 10/ carbonyl of 1 to 10 carbon atoms
 - 11/ nitrile
 - 12/ quanidine

an aryl group, whose cyclic structure contains 5 to 20 carbon atoms

- a halogen
- -COOR_b
- -CONHR_b
- -CONH₂
- -CH₂COOR_b
- -CH2CONHRb
- -CH₂CONH₂

Rb representing an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

- $-\Psi_k[*]-$ are independently either CO-NH peptidic linkages or linkages of different chemical natures selected particularly from the following list:

30

5

10

$$\begin{split} & \psi_k[^*] - = -CH(F_k) - ; -CO - ; -N(F_k)CO - ; -CH(F_k)CO - ; -CH(F_k)NHCO - ; -N(F_k) - ; \\ & -CON(F_k) - ; -CH_2CH_2 \; ; -CH(F_k) = CH(F_k') - ; -CH_2NH - ; -NHCO - ; -NHCONH - ; \\ & -N(F_k)CON(F_k') - ; -COCH_2 - ; -CH(OH)CH_2 - ; -CH(OH)CH_2NH - ; -CH_2O - ; \\ & -CH_2 - NHCONH - ; -CH(F_k)NHCON(F_k') - ; -CH_2 - CONH - ; -CH(F_k)CONH - ; \\ & -CH(F_k)CH(F_k')CONH - ; -CH_2 - CONH - ; -$$

 F_k and F_k ' representing, independently of each other, hydrogen, a protected or unprotected side chain of an amino acid selected from proteinogenic and proteinogenic amino acids, halogen, an alkyl group of 1 to 20 carbon atoms, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

IV/ an amino acid residue or a chain of amino acid
residues:

 $(\operatorname{sur} B \leftarrow) - \operatorname{C}(Z'_1)(Z''_1) - \operatorname{CO-N}(Z_2) - \ldots - \operatorname{CO-N}(Z_k) - \operatorname{C}(Z'_k)(Z''_k) - \operatorname{CO-N}(Z_{k+1}) - \ldots \operatorname{CO-N}(Z_m) - \operatorname{C}(Z'_m)(Z''_m) - \operatorname{CO-}(\rightarrow \operatorname{sur} \operatorname{NR}^1)$

- "m" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10,
 - Z_k , Z'_k , and Z''_k are defined as above,
 - the B group can be either N-W' or O,
 - the W' group can be or contain:
 - A/ hydrogen,

B/a (C1-C20) alkyl group, unsubstituted or substituted with one or several substituents from the following:

- 1/ -COOR_h
- 2/ -CONHR_h
- 3/ -COOH
- 4/ -OH
- 5/ -OR_h
- 6/ -NHR
- $7/-NH_2$

30

5

10

 $8/-NH(CO)R_h$

9/ aryl, whose cyclic structure contains 5 to 20 carbon atoms,

10/ halogen

11/ carbonyl of 1 to 10 carbon atoms

12/ nitrile

13/ quanidine

 R_h representing an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

C/ an aryl group, whose cyclic structure contains 5 to 20 carbon atoms,

E/ a pseudopeptide (peptide containing one or several pseudopeptidic linkages)

$$-C(S'_1)(S''_1)-\Psi_1[*]-\dots-\Psi_{k-1}[*]-C(S'_k)(S''_k)-\Psi_k[*]-\dots\Psi_{h-1}[*]C(S'_h)(S''_h)-D$$

- "h" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10,
 - "k" is a whole number varying from 1 to h,
 - D can be:

hydrogen,

- -COOH
- -COOR_c
- -CONH₂
- -CH₂COOR_c
- -NHCOR_C
- -CONR_cR_d
- $-N(R_c)CON(R_d)$
- -ОН

30

5

10

 $-OR_{c}$

-CN

-C(0)R_c

 R_{c} and R_{d} representing an ally1, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

- S_k , S'_k and S''_k can each represent independently of each other:

hydrogen,

the protected or unprotected side chain of an amino acid selected from proteinogenic and non-proteinogenic amino acids,

a (C1-C20) alkyl group, unsubstituted or substituted with one or several substituents from the following:

1/ -COOR_e

2/ -CONHR_e

3/ -COOH

4/ -OH

5/ -NHRe

6/-NH₂

 $7/-NH(CO)R_e$

8/ aryl, whose cyclic structure contains 5 to 20 carbon atoms

9/ halogen

10/ carbonyl

11/ nitrile

12/ quanidine

an aryl group, whose cyclic structure contains 5 to 20 carbon atoms

an ORe group

an NH₂ group

an OH group

10

halogen

 $R_{\rm e}$ representing an allyl, benzyl, t-butyl, fluorenylmethyl, alkyl having 1 to 20 carbon atoms group, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

- $-\Psi_k[\,^*]-$ are independently either CO-NH peptidic linkages or linkages of different chemical nature selected particularly from the following list:

$$\begin{split} &\psi_k[\text{*}]\text{-} = \text{-CH}(F_k)\text{-}\;; \text{-CO-}\;; \text{-N}(F_k)\text{CO-}\;; \text{-CH}(F_k)\text{CO-}\;; \text{-CH}(F_k)\text{NHCO-}\;; \text{-N}(F_k)\text{-}\;; \\ &-\text{CON}(F_k)\text{-}\;; \text{-CH}_2\text{CH}_2\;; \text{-CH}(F_k)\text{=CH}(F_k')\text{-}\;; \text{-CH}_2\text{NH-}\;; \text{-NHCO-}\;; \text{-NHCONH-}\;; \\ &-\text{N}(F_k)\text{CON}(F_k')\text{-}\;; \text{-COCH}_2\text{-}\;; \text{-CH}(\text{OH})\text{CH}_2\text{-}\;; \text{-CH}(\text{OH})\text{CH}_2\text{NH-}\;; \text{-CH}_2\text{O-}\;; \\ &-\text{CH}_2\text{-NHCONH-}\;; \text{CH}(F_k)\text{NHCON}(F_k')\text{-}\;; \text{-CH}_2\text{-CONH-}\;; \text{CH}(F_k)\text{CONH-}\;; \\ &-\text{CH}(F_k)\text{CH}(F_k')\text{CONH-}\;; \end{split}$$

 F_k and F_k ' representing, independently of each other, hydrogen, a protected or unprotected side chain of an amino acid selected from proteinogenic and non-proteinogenic amino acids, halogen, an alkyl group of 1 to 20 carbon atoms, or an aryl group whose cyclic structure contains 5 to 20 carbon atoms,

F/ an amino acid residue or chain of amino acid
residues:

 $-C(S'_1)(S''_1)-CO-N(S_2)-...-CO-N(S_k)-C(S'_k)(S''_k)-CO-N(S_{k+1})-...CO-N(S_v)-C(S'_v)(S''_v)-D$

- "v" is a whole number greater than or equal to 1, preferably 1 to 50, preferably 1 to 10 with preferably v>3 and v>5,

- "k" is a whole number varying from 1 to v,
- D, $S_k,\ S^{\,\prime}{}_k$ and $S^{\,\prime}{}^{\,\prime}{}_k$ are defined independently as above,

and more particularly the compounds responding to the formula (VIII bis) in which $1 \le n \le 4$, h, v, p and m are comprised from 1 to 10 and preferably 1 to 5.

25

30

5

10

The compounds of the (VIII) and (VIII bis) type are cyclic compounds obtained from compounds of the (III) and (III bis) or (IV) type and by intramolecular reaction with an amine liberated after elimination of temporary protection.

The compounds of type (VIII) and (VIII bis) are cyclic compounds obtained from compounds of type (III) and (III bis) or (IV) and by intramolecular reaction with an amine freed after elimination of temporary protection.

In the compounds of formula (I), (I bis), (III), (IIIbis), (IV), (V), (Vbis), (VI) and (VII), the aryl group is preferably selected from:

- 1/ phenyl
- 2/ naphthyl
- 3/ indenyl
- 4/ thiophenyl
- 5/ benzothiophenyl
- 6/ furanyl
- 7/ benzofuranyl
- 8/ pyridyl
- 9/ indolyl
- 10/ pyrollyl

or the aryl group can be substituted with 1 to 6 substituents selected particularly from:

- 1/ alkyl of 1 to 10 carbon atoms
- 2/ halogen
- 3/ alkoxy of 1 to 10 carbon atoms
- 4/ hydroxyl
- 5/ amine of 1 to 10 carbon atoms
- 6/ ester of 1 to 10 carbon atoms
- 7/ nitrile
- 8/ aryl, whose cycle structure contains 5 to 20 carbon atoms
 - 9/ nitro

30

5

10

- 10/ urea of 1 to 10 carbon atoms
- 11/ amide of 1 to 10 carbon atoms
- 12/ guanidine
- 13/ carboxylic acid of 1 to 10 carbon atoms.

According to a preferred embodiment of the process of the invention, the preparation of the compounds of formula (I bis), (II), (III bis), (IV), (V) or (Vbis) can be carried out from respectively:

- compounds of formula (IX) (for compounds of formula (I bis) and (II)) \cdot

$$\mathbb{GP}^{N}$$
 \mathbb{R}^{1}
 \mathbb{O}
 \mathbb{R}^{1}
 \mathbb{O}
 \mathbb{R}^{1}
 \mathbb{O}
 \mathbb{C}

- compounds of formula (X) (for compounds of formula (III bis) and (IV))

$$\mathbb{R}^{1}$$
 OH \mathbb{R}^{1} \mathbb{R}^{1} \mathbb{R}^{1} \mathbb{R}^{1}

- compounds of formula (XI) (for compounds of formula
(V) and (Vbis))

and comprises

25

30

5

10

(a) a step of transformation of the acid (IX) or (X) or (XI) into a corresponding acyl azide (XII) or (XIII) or (XIV) respectively,

$$\mathbb{R}^1$$
 \mathbb{N}_3 \mathbb{N}_3

by a suitable treatment,

- (b) a step of transformation of the acyl azide (XII) or (XIII) or (XIV) by Curtius rearrangement into the corresponding isocyanate (II) or (IV) or (Vbis), respectively,
- (c) a step of treatment of the isocyanate (II), (IV) or (V bis), preferably not isolated, under conditions permitting obtaining a derivative of the carbamic acid of formula (I bis), (III bis) or (V).

30

5

10

According to a preferred embodiment of the process of preparation of the invention:

- step a) of transformation of the acid (IX) or (X) or (XI) into the corresponding acyl azide (XII) or (XIII) or (XIV) respectively, is carried out for example by treatment of the mixed anhydride (formed by reaction of acid (IX), (X) or (XI) with ethyl or isobutyl chloroformate in the presence of a tertiary amine such as NMM (N-methylmorpholine), DIEA (di-isopropylethylamine) or $\rm Et_3N$ in THF (tetrahydrofurane)) with a sodium azide solution,
- step b) of transformation of the acyl azide (XII) or (XIII) or (XIV) into the corresponding isocyanate (II) or (IV) or (Vbis), respectively, is carried out for example by heating a solution of the acyl azide in a suitable solvent, particularly toluene or xylene, the formation of the isocyanate being followed by observation of the release of gas into the balloon, the end of the gaseous emission signifying completion of the Curtius rearrangement,
- step c) of treatment of the corresponding isocyanate (II) or (IV) or (Vbis) is carried out, when the isocyanate is in solution, for example in hot toluene, with one of the derivatives from the following list:
 - N-hydroxysuccinimide
 - phenol
 - pentafluorophenol
 - pentachlorophenol
 - p-nitrophenol
 - 2,4-dinitrophenol
 - 2,4,5-trichlorophenol
 - 2,4-dichloro-6-nitrophenol
 - hydroxy-1,2,3-benzotriazole
 - 1-oxo-2-hydroxydihydrobenzotriazine (HODhbt)
 - 7-aza-1-hydroxybenzotriazole (HOAt)
 - 4-aza-1-hydroxybenzotriazole (4-HOAt)

- imidazole
- tetrazole

(permitting obtaining a pre-activated synthon) and if desired a base such as pyridine, to obtain a carbamic acid derivative of formula (I bis), (III bis) or (V), which is then preferably isolated, preferably by crystallization or by purification, particularly on a silica column, or by HPLC or by aqueous, acid or basic washing after dissolution in an organic solvent.

By way of example, in step a) described above, mixed anhydride is formed by reaction of the acid (IX), (X)with ethyl or isobutyl chloroformate (XI) the of а tertiary amine such as MMM (Nmethylmorpholine), DIEA (di-isopropylethylamine) or Et_3N in THF (tetrahydrofurane) at a temperature of -15 °C.

By way of example, in step b) described above, the solution of acyl azide is heated in a suitable solvent (particularly toluene or xylene), to a temperature of $65\,^{\circ}\text{C}$.

By way of example, in step c) described above, the treatment of the isocyanate is carried out, when it is in solution, for example in hot toluene, at a temperature of 65°C.

According to another embodiment of the invention, the process of preparation of the compounds of formula (VI) or comprises the reaction of compounds containing primary or secondary amines or alcohols, with one of the products of formula (I bis), (II), (III bis), (IV), (V) or (Vbis) defined above, for example in a solvent such as DMF, ${\rm H_2O/acetone}$, THF, dichloromethane or acetonitrile with or without the addition of a base such as a tertiary amine (for example Et_3N , DIEA, NMM, collidine, lutidine) or such as sodium carbonate (Na_2CO_3) or sodium bicarbonate ($NaHCO_3$).

According to another preferred embodiment of the invention, the process of preparation of the compounds of

10

5

m in sie

30

10

formula (VIII bis) comprises the intramolecular cyclization of products of formula (III bis) or compounds of formula (VII), for example in a solvent such as DMF, $H_2O/acetone$, THF, dichloromethane or acetonitrile with or without the addition of a base such as a tertiary amine (for example Et_3N , DIEA, NMM, collidine, lutidine) or such as sodium carbonate (Na_2CO_3).

Figure 1: Figure 1 corresponds to the X-ray structure of the carbamate (Ig) corresponding to the following formula:

The invention is illustrated hereafter by examples I to III, which have no limiting value.

In example I, the reaction of the O-succinimidyl-2- (tert-butoxycarbonylamino)-ethylcarbamate derivatives with aliphatic or aromatic primary amines, secondary amines, or $\alpha-$ or $\beta-$ amino acid derivatives, rapidly gives urea derivatives or urea oligomers with a high yield.

In example II, the O-succinimidyl-2-[(9H-fluoren-9-ylmethoxy)carbonylamino]-ethylcarbamate derivatives used in a repetitive manner in solid phase permit obtaining the desired urea pseudopeptides and urea oligomers, with a high yield.

EXAMPLE I

30

25

An efficacious synthesis of O-succinimidyl-2-(tert-Butoxycarbonylamino)-ethylcarbamate derivatives (\mathbf{I}) and (\mathbf{Ibis}) is described as well as their utilization as monomers active in the synthesis of di- and tri-substituted ureas and urea oligomers. The β -amino N-Boc-protected acids

first gives given to the first fig. first gives and the first will be the state of the first which with

5

10

(IX) are first transformed into the corresponding acyl azide derivatives (XII). The isocyanate formed by Curtius rearrangement of compounds (XII) is immediately treated with N-hydroxysuccinimide in the presence of pyridin to give the corresponding carbamates (I) and (Ibis) (see the formula of reaction 1) (50-64%). These carbamates are stable and crystalline compounds which react spontaneously with primary and secondary amines at ambient temperature to give (VIe) ureas (79-87%). By way of example, the synthesis of the N-boc-protected tri-urea derivative (VIg) has also been carried out by step-by-step addition using carbamate (Ib).

N-Boc-protected β -amino acids (XX) are first transformed into the corresponding acyl azides (XII) by reaction of their mixed anhydride (prepared with ${\tt EtOCOC1/N-}$ methylmorpholine) with NaN_3 . The isocyanates (II),generated in situ by heating the acyl azide (XII) toluene 65° at are immediately treated hydroxysùccinimide (1 equivalent) in the presence pyridine (1 equivalent) to give the carbamate (\mathbf{I}) and (\mathbf{I} ${f bis})$. This sequence of reaction from (IX) is generally complete in less than one hour (reaction 1).

Reaction 1

25

10

Reagents: (a) i-BuOCOCl, NMM, -20°C; (b) NaN3, H2O; (c) Toluene, 65°C; (d) N-hydroxysuccinimide, pyridine.

The O-succinimidyl carbamates (I) and (Ibis) crystallize for the most part directly from the solution of toluene at ambient temperature and are obtained simply by filtration with suitable yield. Recrystallization in toluene or another suitable solvent permits obtaining pure specimens for analysis. It is interesting to note that the mild conditions employed are compatible with the use of functionalized side chains (Table 1).

Table 1. Conversion of β -amino acids (**IX**) into Osuccinimidyl carbamates (**I**) and (**Ibis**).

R =	Products (I) and (I bis)	Yield (%) ^a	m.p. (°C)	HPLC $t_{\rm R}$ (min) ^b
Н	Ia	55	132-134	6.95
Me	Ib	60	153-155	8.00
i-Pr	Ic	51	125-127	10.80
Bn	Id	55	163-164	12.79
CH ₂ CO ₂ (Bzl)	Ie	58	115-117	13.47
CH(Me)OBzl	If	64	109-110	14.59

 $^{a}\mathrm{Yield}$ of (I) and (I bis) after recrystallization. $^{b}\mathrm{linear}$ gradient of A (0.1% CF_3COOH in H_2O) and B (MeCN containing 0.08% CF_3COOH), 20-80% B, 20 min. The compound of formula (I) and (I bis) is that indicated in reaction 1 above.

Starting with 2-nitrobenzoic acid⁸, the corresponding O-succinimidyl carbamate (**Ig**) has been isolated with 71% yield after recrystallization in ethyl acetate. The X-ray structure of the carbamate (**Ig**) (Figure 1) shows that the molecule has an extended configuration with an intra-

20

10

The state of the s

20

25

30

molecular hydrogen bond between the adjacent nitro and carbamate groups ($N_2 \cdot O_2$, 2.62Å). The succinimidyl cycle is turned about 77° relative to the plane of the phenyl cycle.

Carbamates (I), (I bis) and (Ig) are stable crystalline solids which can be stored for months at 4°C without degradation. So as to study the possibilities and limits of the activated monomers of the invention for the preparation of substituted symmetric ureas, different amines and amino acids have been treated with the carbamates (I) and (I bis). The results are shown in Table 2.

Table 2 Formation of substituted ureas (\mathbf{VI}) with carbamates (\mathbf{I}) and $(\mathbf{I}\ \mathbf{bis})$

	·						
Entry	Carbam	ate	Amine	Time	(min) ^a	Urea VI	Yield(%)b
1	Ia	H ₂ N	CO ₂ Me	20	Boc N	H H N CO ₂	78 Me
2	Ть	H₂N ੑ		20	Boc N	VIPO NIPO	85
3	Id	H₂N_		20	Boc N	H H N Vico	87
4	Id	HN	CONH2	30	Boc N	H N COI	89 NH ₂

^a Reaction conditions: carbamate (3 mmol), amine (3-4 mmol), Hunig base (3 mmol), DMF (5 ml), ta.^b yield after purification.

It is found that the carbamates (I) and (I bis) react with primary amines or amino acids in the presence of Hunig base at ambient temperature to give the corresponding urea derivatives (VI) with good yield (table 1, entry 1, 2). The reaction is very rapid and all the initial product is generally consumed in twenty minutes. The N-hydroxysuccinimide is the only secondary product formed during the reaction and is easily eliminated by aqueous washing. Under the same conditions, the aromatic amines such as aniline (entry 3) and a secondary amine (entry 4) also rapidly react with the carbamate (Id) to give the respective ureas (VIc) and (VId).

The repetitive formation of urea by using carbamates (I) and (I bis) as activated monomers permits obtaining urea oligomers as shown by the synthesis of $Boc-A^uCH_2-A^uCH_2-i-Pr$ (VIe) and $Boc-A^uCH_2-A^uCH_2-i-Pr$ (VIf). (reaction 2).9

Reaction 2

5

10

The first state of the state of

25

30

Reagents (a) TFA; (b) (Ib), Hunig base, DMF.

In conclusion, the O-succinimidyl- β -(tert-butoxy-carbonyl-amino)-carbamates (I) and (Ibis) are easily prepared from β -amino acids and react properly and with good yield with the primary and secondary amines to form urea derivatives. The mild conditions employed for the preparation of carbamates (I) and (Ibis) are compatible with most of the side chains of the natural amino acids and these stable intermediaries represent synthons attractive

30

5

10

for the synthesis in solid phase of urea peptides and urea oligomers.

Experimental Section Generalities.

The amino acid derivatives have been bought Neosystem Novabiochem. THF is distilled Na/benzophenone under argon before use. The toluene is distilled over P_2O_5 and preserved on a 4Å molecular sieve. The aniline was passed through an alumina column before The $\text{Boc}-\beta^3$ -amino acids were prepared according to literature¹⁰ of procedures the by Arndt-Eistert homologation of the commercial protected amino acids. Reactions were conducted under argon pressure. The HPLC analysis was carried out on a Nucleosil C18 column (5 m, 3.9 x 150 mm) by using a linear gradient of A (0.1% CF_3COOH in H_2O) and B (MeCN) at a flow rate of 1.2 ml/min with UV detection at 214 nm.

General procedure for the preparation of O-succinimidyl carbamates (I) and (Ibis).

The N-protected β -amino acid (10 mmol) is dissolved in THF (30 ml) under argon and cooled to -20°. After addition of i-BuOCOCl (11 mmol) and NMM (11 mmol, 1.1 equivalent), the reaction mixture is agitated at -20° for 20 minutes. The resulting white suspension is reheated to -5°, and is treated with a 5 ml solution of NaN₃ (25 mmol). The mixture is then agitated for 5 minutes, diluted with EtOAc, washed with saturated NaCl, dried on MgSO₄ and concentrated under reduced pressure to give the acyl azide (XI) which is used without further purification. The toluene is then added under argon and the resulting solution is heated to 65°C with agitation. Once the emission of gas has stopped (about 10 minutes), the N-hydroxysuccinimide (10 mmol) and the

10

pyridine (10 mmol) are added. The mixture is agitated for 5 minutes at 65°C and cooled to ambient temperature. In most cases, the desired product crystallizes in the toluene solution and is collected by filtration. Recrystallization in toluene permits obtaining pure O-succinimidyl carbamate. Otherwise, the solvent is evaporated under vacuum and the residue is purified by recrystallization in a suitable solvent.

O-succinimidyl-2-(tert-Butoxycarbonylamino)-ethyl-carbamate (Ia).

3-(tert-Butoxycarbonylamino) propanoic acid (3.78 g, 20 mmol) is transformed by following the general procedure. A recrystallization in toluene gives the compound (Ia) (3.3g, 50%), constituted by colorless crystals; mp. 132-134°C; HPLC t_R 6.95 minutes (linear gradient, 20-80% B, 20 minutes); 1H -NMR (200 MHz, DMSO-D₆): 1.38 (s, 9H), 2.76 (s, 4H), 3.00-3.11 (m, 4H), 3.78-3.93 (m, 1H), 6.87 (br t, 1H); 8.27 (t, J = 5.1 Hz, 1H). ${}^{13}C$ -NMR (50 MHz, CD₃CN): 171.7, 157.5, 153.1, 79.7, 42.7, 40.6, 28.6, 26.3. MS (MALDI-TOF) (mass spectroscopy: matrix assisted laser desorption ionization - time of flight) m/z 340 [M + K]⁺, 324 [M + Na]⁺. Calculated analysis for $C_{12}H_{19}N_3O_6$: C, 47.84; H, 6.36; N, 13.95. Found: C, 48.09; H, 6.65; N, 14.00.

(S)-O-succinimidy1-2-(tert-Butoxycarbonylamino)-propy1-carbamate (Ib).

Boc- β^3 -HAla-OH (3.25 g, 16 mmol) is transformed by following the general procedure. Recrystallization in toluene gives the compound (**Ib**) (3.05 g, 60% which is a white solid; mp. 153-155°C; $\left[\alpha\right]_D^{\rm r.t.}$ - 14.4 (c 1.03, MeCN); HPLC t_R 8.00 min (linear gradient, 20-80% B, 20 min); 1 H-NMR (200 MHz, CD₃CN): 1.07 (d, J = 6.8 Hz, 3H), 1.41 (s, 9H), 2.73 (s, 4H), 3.14-3.20 (m, 2H), 3.62-3.72 (m, 1H),

25

10

5.25 (br d, 1H), .6.54 (br t, 1H). 13 C-NMR (50 MHz, CD₃CN): 171.7, 156.7, 153.3, 79.6, 47.7, 47.4, 28.7, 26.3, 18.4. Calculated analysis for $C_{13}H_{21}N_3O_6$: C, 49.52; H, 6.71; N, 13.33. Found: C, 49.45; H, 6.57; N, 13.18.

(S)-O-succinimidyl-2-(tert-butoxycarbonylamino)-(II)-methyl-butylcarbamate (Ic).

Boc- β^3 -HVal-OH (1.27g, 5.5 mmol) is transformed by following the general procedure. Recrystallization in toluene gives the compound (Ic) (956 mg, 51%) which is a white solid; mp. 125-127°C; $[\alpha]_D^{\rm r.t.}$ - 41.2 (c=1.15, THF, CHCl₃); HPLC t_R 10.80 min (linear gradient, 20-80% B, 20 min); ¹H-NMR (200 MHz, CD₃CN): 0.89 (t, J=7.0 Hz, 6H), 1.42 (s, 9H), 1.65-1.78 (m, 1H), 2.73 (s, 4H), 3.11-3.52 (m, 3H), 5.18 (br d, J=8.5 Hz, 1H), 6.46 (br t, 1H). ¹³C-NMR (50 MHz, CD₃CN): 171.7, 157.7, 153.5, 79.3, 56.7, 44.8, 31.0, 28.7, 26.3, 19.8, 18.3. MS (MALDI-TOF) m/z 383 [M + K]⁺, 367 [M + Na]⁺. Calculated analysis for $C_{15}H_{25}N_3O_6$: C, 52.47; H, 7.34; N, 12.24. Found: C, 52.26; H, 7.13; N, 11.92.

(S) -O-succinimidyl-2-(tert-butoxycarbonylamino)-4-phenyl-propylcarbamate (Id).

Boc- eta^3 -HPhe-OH (8.27g, 29.5 mmol) is transformed by following the general procedure. Recrystallization in toluene gives the compound (**Id**) (6.6g, 57 which is a white solid; mp. 163-164°C; $[\alpha]_D^{\rm r.t.}$ -15 (c 1.17, MeCN); HPLC t_R 12.79 min (linear gradient, 20-80% B, 20 min); ¹H-NMR (200 MHz, CD₃CN): 1.33 (s, 9H), 2.68-2.90 (m, 6H), 3.16-3.37 (m, 2H), 3.78-3.93 (m, 1H), 5.26 (d, J = 8.0 Hz, 1H), .6.54 (br t, 1H); 7.16-7.34 (m, 5H). ¹³C-NMR (50 MHz, CD₃CN): 171.7, 157.3, 153.3, 139.4, 130.3, 129.4, 127.4, 79.6, 53.2, 46.3, 39.0, 28.6, 26.3. MS (MALDI-TOF) m/z 430 [M + K]⁺, 414 [M +

30

30

5

10

Na] $^+$. Calculated analysis for $C_{19}H_{25}N_3O_6$: C, 58.30 ; H, 6.44 ; N, 10.74. Found: C, 58.17 ; H, 6.38 ; N, 10.69.

(S) -O-succinimidyl-3-(benzyloxycarbonyl)-2-(tert-butoxycarbonylamino)-propylcarbamate (Ie).

Boc- β^3 -HAsp(Bzl)-OH (2.53g, 7.5 mmol) is transformed by following the general procedure. Recrystallization in toluene gives the compound (Ie) (1.94g, 58%) which is a white solid; mp. 115-117°C; $[\alpha]_D^{\rm r.t.}$ - 16.3 (c 1.3, THF); HPLC t_R 13.47 min (linear gradient, 20-80% B, 20 min); 1 H-NMR (200 MHz, CD₃CN) : 1.46 (s, 9H), 2.47-2.58 (m, 2H); 2.73 (s, 4H), 3.29 (t, J = 6.2 Hz, 2H), 3.96-4.08 (m, 1H), 5.10 (s, 2H), 5.45 (br d, J = 6.2 Hz, 1H); 6.54 (br t, 1H); 7.29-7.41 (m, 5H). 13 C-NMR (50 MHz, CD₃CN): 26.3, 28.7, 37.6, 45.8, 48.9, 67.2, 80.0, 118.3, 129.1, 129.6, 137.3, 153.4, 156.5, 171.6, 171.7. MS (MALDI-TOF) m/z 488 [M + K]⁺, 472 [M + Na]⁺. Calculated analysis for $C_{21}H_{27}N_3O_8$: C, 56.12; H, 6.05; N, 9.35. Found: C, 55.89; H, 6.01; N, 9.32.

(S)-O-succinimidyl-3-(benzyloxy)-2-(tert-butoxy-carbonylamino)-propylcarbamate (If).

Boc- eta^3 -HThr(Bzl)-OH (2.31g, 7.14 mmol) is transformed by following the general procedure. Recrystallization in AcOEt/hexane gives the compound (**If**) (2.0g, 64 which is a white solid; mp. 109-110°C; $[\alpha]_D^{\text{r.t.}}$ + 8.6 (c 1.07, CH₃CN); HPLC t_R 14.59 min (linear gradient, 20-80% B, 20 min); 1 H-NMR (200 MHz, CD₃CN) : 1.16 (d, J = 6.1 Hz, 3H), 1.43 (s, 9H), 2.73 (s, 4H), 3.21-3.44 (m, 2H), 3.61-3.76 (m, 2H), 4.51 (Abq, J = 11.5 Hz, 2H), 5.21 (br d, J = 9.1 Hz, 1H), 6.49 (br t, 1H), 7.25-7.39 (m, 5H). 13 C-NMR (50 MHz, CD₃CN): 16.4, 26.3, 28.6, 44.1, 55.3, 71.5, 75.1, 128.5, 128.8, 129.3. MS (MALDI-TOF) m/z 475 [M + K]⁺, 459 [M + Na]⁺.

10

Calculated analysis for $C_{21}H_{29}N_3O_7$: C, 57.92 ; H, 6.71 ; N, 9.65. Found: C, 58.02 ; H, 6.67; N, 9.81.

O-succinimidyl-(2-nitrophenyl)carbamate (Ig) (see figure 1).

2-nitrobenzoic acid (1.17g, 7 mmol) is transformed by following the general procedure. Recrystallization in AcOEt gives the compound (**Ig**) (1.39g, 71%) which is present in the form of light yellow crystals; mp. $166-167^{\circ}$ C; HPLC t_R 9.45 min (linear gradient, 20-80% B, 20 min); 1 H-NMR (200 MHz, CDCl₃): 2.89 (s, 4H), 7.26 (dt, 1H), 7.69 (dt, 1H), 8.26 (dd, 1H), 8.40 (dd, 1H), 10.40 (br s). 13 C-NMR (50 MHz, CDCl₃): 25.6, 120.8, 124.1, 126.2, 133.1, 136.2, 148.5, 169.2. MS (MALDI-TOF) m/z 318 [M + K]⁺, 302 [M + Na]⁺. Calculated analysis for $C_{12}H_{10}N_2O_6$: C, 47.32; H, 3.25; N, 15.05. Found: C, 47.45; H, 3.26; N, 15.07.

Formation of ureas: general procedure.

O-succinimidyl carbamates (I) and (I bis) (1 mmol) and Hunig base (1 mmol) are added to a solution of the amine (1.3 mmol) in 5 ml DMF. After 10-30 minutes, the reaction mixture is diluted with saturated NaHCO₃, and extracted with AcOEt. The organic phase is washed with 1 N KHSO₄, saturated NaCl, NaHCO₃, saturated NaCl, dried (MgSO₄) and evaporated. Chromatography and/or recrystallization give the pure urea (VI).

Methyl (2S, 3R)-2-{[2-(tert-Butoxycarbonylamino)ethyl]-ureido}-3-methyl-pentanoate (Boc-GuCH2-Leu-OMe, (VIa)).

The carbamate (**Ia**) (602 mg, 2 mmol) is treated with HCl·H-Leu-OMe (436 mg, 2.4 mmol) following the general procedure. Recrystallization in EtOAc/diisopropylether gives (**VIa**) (520 mg, 78%) which is present in the form of colorless needles; mp. $86-89^{\circ}\text{C}$; $\sigma_{\text{p}}^{\text{p.t.}}$ - 10.8 (c 1.02,

30

10

MeOH); HPLC $t_{\rm R}$ 11.39 min (linear gradient, 20-80% B, 20 min); $^{1}H-NMR$ (200 MHz, CDCl₃): 0.90 (d, J=6.4 Hz, 3H), 0.91 (d, J = 6.2 Hz, 3H), 1.41 (s, 9H), 1.45-1.75 (m, 3H), 3.16-3.32 (m, 4H), 3.69 (s, 3H), 4.36-4.47 (m, 1H), 5.34 (br t, J = 5.2, 1H), 6.14 (d, J = 8.2, 1H), 6.76 (br t, J =5.0, 1H). ¹³C-NMR (50 MHz, CDCl₃): 21.9, 22.9, 24.8, 28.4, 40.3, 41.3, 41.8, 51.7, 52.1, 79.4, 156.7, 158.5, 175.3. MS (MALDI-TOF) m/z 370 $[M + K]^+$, 354 $[M + Na]^+$, 332 $[M + 1]^+$. Calculated analysis for $C_{15}H_{29}N_3O_5\colon H_2O\colon C$, 52.94 ; H, 8.82 ; N, 12.35. Found: C, 52.92; H, 8.68; N, 12.27.

(2s)-1-[2-(tert-Butoxycarbonylamino)-propyl]-3-(1methyl-ethyl)-urea (Boc- A^u CH₂-i-Pr, (VIb)).

The carbamate (Ib) (901 mg, 2.86 mmol) is treated with $i\text{-}\text{PrNH}_2$ (511 l, 6 mmol) according to the general procedure to give (VIb) (701 mg, 95%) which is a white solid; mp. 101°C; $\left[\alpha\right]_{\mathrm{D}}^{\mathrm{r.t.}}$ - 7.4 (c 0.89, MeOH); HPLC t_{R} 8.71 min (linear gradient, 20-80% B, 20 min); $^{1}H-NMR$ (200 MHz, $CD_{3}CN$): 1.03 (d, J = 6.6 Hz, 3H), 1.07 (d, J = 6.5 Hz, 6H), 1.40 (s, 9H), 3.02-3.08 (m, 2H), .3.47-3.60 (m, 1H), 3.65-3.81 (m, 1H), 4.92 (br d, 1H); 5.1 (br t, 1H), 5.66 (br, 1H); ¹³C-NMR (50 MHz, CD₃CN): 158.4, 156.4, 79.4, 47.7, 46.2, 42.2, 28.5, 23.4, 23.3, 18.6. MS (MALDI-TOF) m/z 298 $[M + K]^+$, 282 $[M + Na]^+$. Calculated analysis for $C_{12}H_{25}N_3O_3$: C, 55.57 ; H, 9.72; N, 16.20. Found: C, 55.56; H, 9.82; N, 16.16.

(2S)-1-[2-(tert-Butoxycarbonylamino)-3-phenyl-propyl]-3-phenyl-urea (Boc-FuCH2-Ph, (VIc)).

The carbamate (\mathbf{Id}) (500 mg, 1.28 mmol) is treated with (119)mg, 1.28 mmol) according to the general procedure. A recrystallization in $CH_2Cl_2/hexane$ gives (VIc) (412 mg, 87%) which is a white solid. mp. 154 °C; $[\alpha]_{\mathrm{D}}^{\mathrm{r.t.}}$ + 10.3 (c 1.03, MeOH); HPLC $t_{\rm R}$ 15.23 min (linear gradient,

30

20-80% B, 20 min); ${}^{1}\text{H-NMR}$ (400 MHz, CD₃OD): 1.35 (s, 9H), 2.70 (dd, J=8.0, 13.7 Hz, 1H), 2.80 (dd, J=7.8, 13.7 Hz, 1H), 3.16 (dd, J=8.6, 13.6 Hz, 1H), 3.33 (dd, J=4.6, 17.1 Hz, 1H), 3.81-3.85 (m, 1H), 7.16-7.34 (m, 10H). ${}^{13}\text{C-NMR}$ (400 MHz, CD₃OD): 158.8, 158.6, 141.3, 140.1, 130.8, 130.2, 129.8, 127.7, 123.9, 120.7, 80.4, 54.6, 44.8, 40.3, 29.1, 28.8 MS (MALDI-TOF) m/z 408 [M + K]⁺, 392 [M + Na]⁺, 370 [M + 1]⁺. Calculated analysis for C₂₁H₂₇N₃O₃ : C, 68.27 ; H, 7.37 ; N, 11.37. Found: C, 68.19 ; H, 7.32 ; N, 11.47.

Boc-FuCH2-Pro-NH2, (VId).

The carbamate (**Id**) (1.16g, 3 mmol) is treated with HCl·H-Pro-NH₂ (540 mg, 3.6 mmol)) according to the general procedure. A chromatography (CHCl₃/MeOH 10:1) gives (**VId**) (1.16g, 88%) which is a white solid; mp. 96-98 °C; $\left[\alpha\right]_D^{\text{r.t.}}$ -20.4 (c 1.02, MeOH); HPLC t_R 10.02 min (linear gradient, 20-80% B, 20 min); ¹H-NMR (200 MHz, CD₃OD): 1.36 (s, 9H), 1.88-2.17 (m, 4H), 2.59-2.83 (m, 2H), 2.96 (dd, J = 9.4, 13.6 Hz, 1H), 3.21-3.50 (m, 3H), 3.89-3.99 (m, 1H), 4.29 (dd, J = 3.2, 8.1 Hz, 1H), 7.11-7.29 (m, 5H). ¹³C-NMR (200 MHz, CDCl₃): 24.7, 28.4, 28.8, 39.0, 45.7, 46.3, 51.6, 60.1, 79.6, 126.6, 128.6, 129.2, 137.4, 156.6, 157.8, 175.4. MS (MALDI-TOF) m/z 429 [M + K]⁺, 413 [M + Na]⁺, 391 [M + 1]⁺. Calculated analysis for C₂₀H₃₀N₄O₄: C, 61.52; H, 7.74. Found: C, 61.78 H, 7.77.

$Boc-A^uCH_2-A^uCH_2-i-Pr$, (VIe).

The product (VIb) (650 mg, 2.5 mmol) is dissolved in CF3COOH (0.25M) at 0°. After agitation at ambient temperature for 30 minutes and concentration under reduced pressure, the trifluoroacetate salt is dried under vacuum under KOH and used without further purification.

10

5

25

30

5

10

The carbamate (**Ib**) is treated with a solution of trifluoroacetate salt according to the general procedure. Recrystallization in EtOH/hexane gives (**VIe**) (630 mg, 70%) which is a white solid. mp. $184-185^{\circ}$ C, $\left[\alpha\right]_{D}^{\text{r.t.}}$ + 9.3 (c 0.88, MeOH); HPLC t_R 8.52 min (linear gradient, 20-80% B, 20 min); 1 H-NMR (200 MHz, CD₃OD): 1.05-1.12 (m, 12H), 1.42 (s, 9H), 2.92-3.24 (m, 4H), 3.56-3.84 (m, 2H); 13 C-NMR (100 MHz, CD₃OD): 160.9, 160.7, 158.2, 80.0, 48.2, 47.8, 46.8, 46.4, 42.9, 28.5, 23.6, 23.5, 19.1, 18.6. Calculated analysis for $C_{16}H_{33}N_{5}O_{4}$: C, 53.46; H, 9.25; N, 19.48. Found: C, 53.62; H, 9.29; N, 19.43.

Boc-AuCH2-AuCH2-AuCH2-i-Pr, (VIf).

The product (**VIe**) (440 mg, 1.22 mmol) is dissolved in CF₃COOH (0.25M) at 0°. After agitation at ambient temperature and concentration under reduced pressure the trifluoroacetate salt, which precipitates by addition of Et₂O, is collected by filtration, dried under vacuum under KOH and is used without further purification.

solution of this salt in DMF are added successively (${f Ib}$) and Hunig base (637 1, 3.66 mmol). The reaction mixture is agitated for 20 minutes and saturated ${\tt NaHCO_3}$ is added. The precipitate which forms is filtered, washed with saturated $NaHCO_3$, water, and Et_2O and is dried under vacuum on P_2O_5 to give (**VIf**) (350 mg, 62%) which is a white solid. mp. 210-211°C, $\left[\alpha\right]_{\mathrm{D}}^{\mathrm{r.t.}}$ 63.6 (c 1.00, MeOH); HPLC t_R 8.53 min (linear gradient, 20-80% B, 20 min); $^1_{H-NMR}$ $(200 \text{ MHz}, \text{ CD}_3\text{OD}): 1.03-1.12 \text{ (m, 15H)}, 1.44 \text{ (s, 9H)}, 2.55-$ 2.85 (m, 3H), 3.21-3.39 (m, 3H), 3.61-3.95 (m, 4H); 13 C-NMR (100 MHz, CD₃OD): 161.2, 161.1, 160.9, 158.7, 80.3, 48.2, 47.6, 47.5, 47.2, 47.1, 46.8, 43.0, 29.0, 23.8, 23.7, 19.5, 19.0, 18.7. MS (MALDI-TOF) m/z 499 $[M + K]^+$, 483 $[M + Na]^+$,

30

5

10

461 $[M + 1]^+$. Calculated analysis for $C_{20}H_{41}N_7O_5$: C, 52.27; H, 8.99; N, 21.33. Found: C, 52.23; H, 9.00; N, 20.93.

Example II:

Preparation of O-succinimidy1-2-[(9H-fluoren-9-yl-ethoxy)carbonylamino]-ethylcarbamate derivatives from β -amino acids and application to the synthesis in solid phase of oligoureas and of pseudopeptide urea:

1) Preparation of O-succinimidyl carbamates (I) and (I bis).

Fmoc
$$N$$
 OH a,b Fmoc N N_3 c N_3 C N_4 N_5 N_5 N_6 N_6

Reaction 1. Reagents and conditions: a) EtOCOC1, NMM, THF, $-15\,^{\circ}$ C, 15 min; (b) NaN₃, H₂O, 5 min (c) Toluene, 65 $^{\circ}$ C; (d) N-hydroxysuccinimide, pyridine, 65 $^{\circ}$ C, 5 min.

In accordance with reaction 1, the N-Fmoc-protected β amino acids (IX) comprising side chains of natural amino acids Ala, Val, Leu, Phe, Tyr, et Lys are converted into the corresponding acyl azides (XII) by reaction of their mixed anhydride (formed with EtOCOCl/N-methyl morpholine (NMM)) with an aqueous solution of NaN_3 (2.5 equiv). The intermediate isocyanates (II)obtained by Curtius rearrangement on (XII) (toluene, 65°C, 5 to 15 min) are immediately treated with N-hydroxysuccinimide (1 equivalent) in the presence or not of pyridine (1 equivalent) to give the carbamates (I) and (Ibis)

crystalline products (see the yield in Table 1). As in the case of the Boc derivatives (see example 1), this reaction sequence is generally complete in 1 hour. As has been shown for the Boc-protected derivatives, the carbamates (I) and (Ibis) precipitate or recrystallize directly from the toluene solution and are simply collected by filtration. In the case of these Fmoc protected derivatives, the yields obtained (51-86%) are better than with the corresponding Boc derivatives.

Similarly, these carbamates (I) and (Ibis) stored at ambient temperature or at 4°C without noticeable degradation.

Table 1 shows the conversion of β -amino acids (IX) into the corresponding O-succinimidyl carbamates (\mathbf{I}) and (\mathbf{I} bis).

 a Yield of (I) and (I bis) after recrystallization from toluene. $^{\it b}$ linear gradient of A (0.1% TFA in ${\rm H}_2{\rm O})$ and B (MeCN containing 0.08% TFA), 30-100% B, 20 min.

R =	Carbamates	Yield (%) ^a	mp (°C)	$[\alpha]^{25}_{D}$	HPLC $t_{\rm R}$
	(I) and (Ibis)			(c, DMF)	$(\min)^b$
Me	Ih	86	161-163	-3.6 (c = 1.08)	10.44
iPr	Ii	69	109-111	+5.9 (c = 1.18)	11.84
<i>i</i> Bu	Ij	51	134-137	-10.8 (c = 1.01)	12.63
Bn	Ik	66	175-177	-26.1 (c = 1.13)	12.48
Bn(OtBu)	Il	78	138-140	-22.9 (c = 1.12)	13.87
(CH ₂) ₄ NH(Boc)	Im	79	122-124	-4.7 (c = 1.16)	12.67

Procedure for obtaining O-succinimidyl carbamates (I) and (I bis).

The N-protected β -amino acid (10 mmol) is dissolved in THF (30 ml) under Ar and cooled to -20° . After addition of i-BuOCOCl (11 mmol) and NMM (11 mmol, 1.1. equivalent), the reaction mixture is agitated at -20° for 20 minutes. The resulting white solution is reheated to -5° , and is treated with a solution (5 ml) of NaN_3 (25 mmol). The mixture is

10

5

20

30

5

10

then agitated for 5 minutes, diluted with EtOAc, washed with saturated NaCl, dried on MqSO4 and concentrated under reduced pressure to give the acyl azide which is used without further purification. Toluene is then added under argon and the resulting solution is heated to 65°C with agitation. Once the emission of gas has ceased (about 10 minutes), the N-hydroxysuccinimide (10 mmol) pyridine (10 mmol) are added. The mixture is agitated for 5 minutes at 65°C and cooled to ambient temperature. In most cases, the desired product crystallizes in the toluene solution and is collected by filtration. Recristallization in toluene permits obtaining pure O-succinimidyl carbamate. Otherwise, the solvent is evaporated under vacuum and the residue is purified by recrystallization in the appropriate solution.

2) Application to synthesis on a solid support

With monomers $(\mathbf{Ih}) - (\mathbf{Im})$, the aim was the preparation of ureidopeptide (VIIa) oligoureas and (VIIb) - (VIId)containing six to nine urea linkages.

 $H-\beta^3-HTyr^{\mu}-\beta^3-HLys^{\mu}-\beta^3-HLeu^{\nu}-\beta^3-HVal^{\mu}-\beta^3-HPhe^{\nu}-\beta^3-HLys^{\nu}-\beta^3-HAia^{\nu}-\beta^3-HVal^{\nu}-\beta^3-HTyr^{\mu}-NH_2$ VIId

(The abbreviations used for the derivative (VIId) are defined in reference 9).

10

Incorporation of a urea structure in a peptide.

The peptide sequence selected by way of example is that of the tumoral antigen MART(27-35) of the sequence:

H-Ala-Ala-Gly-Ile-Gly-Ile-Leu-Thr-Val-OH.

The use of the carbamate (\mathbf{Ih}) has permitted the introduction of a urea structure between Ala^{28} and Gly^{29} .

The synthesis in solid phase of the peptide up to Gly²⁹ out by Fmoc chemistry methoxycarbonyl) on a scale of 100 moles by starting with a Wang resin (p-benzyloxybenzyl alcohol) substituted with valine according to conventional methods of synthesis of peptides in solid phase (References: Methods in Enzymology, Vol. 89, Solid Phase Peptide Synthesis, Ed: G.B. Fields, Academic Press, NY, USA). After deprotection of the Fmoc group of Gly²⁹ with 20% piperidine in DMF, the carbamate (Ih)(5 equivalents) dissolved in DMF followed diisopropylethylamine (5 equivalents) are added to the resin, and the reaction is left to proceed for 45 minutes. This operation can if desired be repeated once. After washing and rinsing of the resin, the Fmoc group is deprotected as above, and Fmoc-Ala-OH is coupled to the resin by using methods described in the literature (references: Methods in Enzymology, Vol. 89, Solid Phase Peptide Synthesis, Ed: G.B. Fields, Academic Press, NY, USA).

10

that that the first of the second of the sec

25

30

After cleaving the resin by conventional protocols used in peptide synthesis in solid phase (references: Methods in Enzymology, Vol. 89, Solid Phase Peptide Synthesis, Ed.: G.B. Fields, Academic Press, NY, USA), the desired crude product (VIIa) is obtained after lyophilization with a purity of 73% (by HPLC) (see table 2 below). After purification by HPLC and lyophilization, the product is obtained with a purity of 99.2%. The pure product is characterized by mass spectrometry (MALDI-MS) and by HPLC.

Synthesis of urea oligomers from O-succinimidyl carbamates of formula (I) and (I bis).

The general synthesis reaction of oligoureas (VIIb)-(VIId) is shown in reaction 2. The products (VIIb)-(VIId) have been synthesized in solid phase from a commercial Rink amide resin (4-(2',4'-dimethoxyphenyl-Fmoc-aminomethyl)phenoxyacetamido-4-methylbenzhydrylamine resin) (0.60 mequiv/g) on a scale of 100 µmole.

10

25

30

Reaction 2. General procedure for synthesis in solid phase of oligoureas by using O-succinimidyl carbamates (I) and (I bis).

The carbamates (Ih) to (Im) (5 equiv.) in 2ml of DMF are added to a suspension of the resin in DMF (2ml) followed by diisopropylethylamine (5 equiv.). The reaction is left to run 90 minutes and repeated, after filtration of the resin. The Fmoc group is then cleaved by treated with 20% piperidine in DMF. The washing and filtration techniques of the resin as well as the deprotection of the Fmoc group are those currently used in peptide synthesis in solid phase. The whole operation (coupling and deprotection of the Fmoc) is repeated several times with carbamates (Ih) and (Im) alternating, to give, after cleavage of the resin (standard cleavage used in peptide synthesis in solid phase with the Fmoc strategy) the crude products (VIIb) to (VIId) with good yield.

The purity of the crude products is given in Table 2 below. The HPLC purification on a C18 column, followed by lyophilization, gives pure products (VIIb)-(VIId) with an overall yield comprised between 20 and 50% (Entries 1-4 of Table 2).

20

Entry	Product	Base	HPLC crude purity (%)	Global yield (%) ^a	HPLC $t_{\rm R} ({\rm min})^b$	MALDI-TOF MS
1	VIIa	DIEA	73	50	12.57 ^c	842.9 [M+H] ⁺
2	VIIb	DIEA	63	42	10.86^{d}	846.8 [M+H] ⁺
3	VIIc	DIEA	51	38	14.58 ^c	1051.5 [M+H] ⁺
4	VIId	DIEA	35	20	15.14 ^c	1393.0 [M+H] ⁺
5	VIIc	NMM	66	57	14.70^{c}	$1073.2 [M+Na]^+$
6	VIIc	-	61	55	14.59^{c}	1072.8 [M+Na]+

Table 2. Characterization of ureidopeptide (**VIIa**) and oligoureas (**VIIb**)-(**VIId**). ^aafter purification and lyophilization. ^blinear gradient of A (0.1% TFA in H_2O) and B (MeCN containing 0.08% TFA). ^c5-65% B, 20 min. ^d20-80% B, 20 min.

The quantity of impurities present in the raw product svnthesis increases with the size of the oligomer. Analysis by MALDI-TOF-MS shows that the principal impurities isolated by HPLC on a C18 column arise either from deletions (products of lower mass that can result from incomplete couplings or else incomplete deprotection of the Fmoc group in the latter stages of synthesis), or more surprisingly by double insertion of monomers. A study of the stability of the carbamates $(\mathbf{Ih}) - (\mathbf{Im})^{\top}$ in the solutions of DMF containing 5% diisopropylethylamine (DIEA) substantial degradation as well as partial cleavage of the Fmoc group. Based on these results, more gentle conditions for the reaction have been evaluated. On the one hand, the use of a weaker tertiary base such as N-methyl morpholine (NMM) gives better results (entry 5 of table 2). On the other hand, it has been shown that the use of a tertiary base was not necessary because good results are obtained in the absence of a base by using identical reaction times (see entry 6 of table 2).

30

5

10

In conclusion, there has been described an effective method for the preparation of optically active 0-succinimidyl - (9H-fluoren-9-ylmethoxycarbonylamino)-ethyl carbamate derivatives (Ih)-(Im) and their use as activated monomers in the synthesis in solid phase of oligoureas.

Example III

Preparation of O-succinimidyl carbamate derivatives (III) and (III bis) from N-protected dipeptides and application to the synthesis of ureido peptide and hybrid peptide/oligoureas.

1) Preparation of O-succinimidyle carbamates (III) and (III bis)

Reaction 1: Synthesis of O-succinimidyl derivatives (III) and (III bis) from N-protected dipeptides.

In accordance with reaction 1, the N-Boc or N-Fmoc protected dipeptides (\mathbf{X}) comprising side chains of natural amino acids Ala, Val, Leu, Phe, Tyr, and Lys, are converted into corresponding acyl azides (\mathbf{XIII}) by reaction of their mixed anhydride (formed with EtOCOCl/N-methyl morpholine (NMM) with an aqueous solution of NaN₃ (2.5 equivalent).

- 10

intermediate isocyanates (IV) obtained by Curtius rearrangement on (XIII) (toluene, 65°C, 5 to 15 minutes) immediately treated with N-hydroxysuccinimide equivalent) in the of presence or not pyridine (1 equivalent) to give carbamates (III) and (III bis) crystalline products (see the yields in Table 1). As in examples I and II, this reaction sequence is generally complete in 1 hour. As has been shown for the Boc-protected β -amino acid derivatives, the carbamates (III) and (III bis) precipitate or recrystallize directly from the toluene solution and are simply collected by filtration. In the case of dipeptide derivatives, the yields obtained (52-93%) are good to excellent.

Similarly, these carbamates (III) and (III bis) can be stored at ambient temperature or at $4\,^{\circ}\text{C}$ without notable degradation.

Original Dipeptides	Carbamates (III) and (III bis)	Yield (%) ^a	HPLC t_R $(min)^b$	MALDI-TOF MS
Boc-Gly-Ile-OH	IIIa	87	9.13°	-
Boc-Pro-Val-OH	IIIb	72	11.79 ^e	-
Boc-Phe-Leu-OH	IIIc	82	14.01°	513.46 [M+Na] ⁺
Boc-Ile-Val-OH	IIId	62	13.46 ^e	-
Boc-Lys-Val-OH	IIIe	69	14.98°	-
Boc-Pro-Leu-OH	IIIf	76	12.73 ^e	-
Boc-Phe-Pro-OH	IIIg	80		
Fmoc-Ile-Leu-OH	IIIh	93	12.85 ^d	601.29 [M+Na] ⁺
Fmoc-Phe-Ala-OH	IIIi	86	11.45 ^d	593.32 [M+Na] ⁺
Fmoc-Ile-Gly-OH	IIIj	52	10.94 ^d	$545.05 [M+Na]^+$

Table 1. Conversion of dipeptides (X) into the corresponding O-succinimidyl carbamates (III) and (III) bis).

^a yields of (**III**) and (**III bis**) after recrystallization from toluene. ^b linear gradient of A (0.1% TFA in H_2O) and B (MeCN containing 0.08% TFA), ^c 20-80% B, 20 min, ^d 30-100% B, 20 min, ^e 0-100% B, 20 min.

Procedure for obtaining O-succinimidyl carbamates (III) and (III bis).

The N-protected dipeptide (10 mmol) is dissolved in THF (30 ml) under Ar and cooled to -20°. After addition of i-BuOCOCl (11 mmol) and NMM (11 mmol, 1.1 equivalent), the reaction mixture is agitated at -20° for 20 minutes. The resulting white solution is reheated to -5° , and is treated with a solution (5 ml) of NaN_3 (25 mmol). The mixture is then agitated for 5 minutes, diluted with EtOAc, washed with saturated NaCl, dried on MgSO4, and concentrated under reduced pressure to give the acyl azide which is used without further purification. The toluene is then added under argon and the resulting solution is heated 65°C with agitation. Once the generation of gas has stopped (about 10 minutes), the N-hydroxysuccinimide (10 mmol) pyridine (10 mmol) are added. The mixture is agitated for 5 minutes at 65°C and cooled to ambient temperature. In most cases, the desired product crystallizes from the toluene solution and is collected by filtration. Recrystallization in toluene permits obtaining pure O-succinimidyl carbamate. Otherwise, the solvent is evaporated under vacuum and the residue is purified by recrystallization in the suitable solvent.

Experimental section

General remarks:

HPLC analyses have been carried out on a C_{18} column (5 μm , 3.9 x 150 mm by using a gradient of A (0.1% TFA in H_2O)

10

5

25

30

- 10

5

and B (0.08% TFA in MeCN) at a flow rate of 1.2 ml/min with UV detection at 214 nm.

Boc-Gly-gIle-COOSu (IIIa) :

Yield 87% white solid; HPLC t_r 9.13 (linear gradient, 20-80% B, 20 min) - 1 H RMN ([D₆]DMSO, 200 MHz) : δ = 0.79-0.95 (m, 6H, CH₃-CH-CH₂-CH₃), 0.98-1.14 (m, 2H, CH₃-CH-CH₂-CH₃), 1.38 (s, 9H, C(CH₃)₃), 1.60-1.78 (m, 1H, CH₃-CH-CH₂-CH₃), 2.77 (s, 4H, CH₂-CH₂), 3.50-3.68 (m, 2H, NHCH₂CO), 5.00-5.20 (m, 1H, NH-CH-NH), 6.90-7.00 (m, 1H, NHCO₂C(CH₃)₃), 7.99 (d, J = 8.6 Hz, 1H, NHCO₂Su), 8.54 (d, J = 8.0 Hz, 1H, NHCOCH). - 13 C RMN ([D₆]DMSO, 50 MHz) : δ = 170.7 (CO), 168.7 (CO), 155.7 (CO), 150.8 (CO), 78.0 (C), 61.4 (CH), 43.0 (CH₂), 38.1 (CH), 28.0 (CH₃), 25.2 (CH₂), 24.3 (CH₂), 14.2 (CH₃), 10.7 (CH₃).

Boc-Phe-gLeu-COOSu (IIIc) :

Yield 82% white solid; HPLC t_r 14.01 (linear gradient, 20-80% B, 20 min) - 1 H RMN ([D₆]DMSO, 200 MHz) : δ = 0.87 (d, J = 5.4 Hz, 3H, CH₃), 0.88 (d, J = 5.4 Hz, 3H, CH₃), 1.29 (s, 9H, C(CH₃)₃), 1.50-1.73 (m, 3H, CH-CH₂-CH-(CH₃)₂), 2.64-2.98 (m, 2H, CH₂-C₆H₅), 2.76 (s, 4H, CH₂-CH₂), 4.04-4.21 (m, 1H, CHCO), 5.32 (m, 1H, NHCHNH), 6.85 (d, J = 8.6 Hz, 1H, NHCO₂C(CH₃)₃), 7.10-7.30 (m, 5H, C₆H₅), 8.25 (d, J = 8.3 Hz, 1H, NHCO₂Su), 8.65 (d, J = 7.5, 1H, NHCOCH). - 13 C RMN ([D₆]DMSO, 50 MHz) : δ = 171.0 (C), 170.7 (C), 155.2 (C), 150.2 (C), 138.1 (C), 129.2 (CH), 127.9 (CH), 126.1 (CH), 77.9 (C), 56.4 (CH), 55.5 (CH), 42.9 (CH₂), 37.1 (CH₂), 28.0 (CH₃), 25.2 (CH₂), 23.8 (CH), 22.2 (CH₃), 21.9 (CH₃).

3 1 C

5

10

Boc-Lys (2C1Z) -gVal-COOSu (IIIe)

Yield 69% white solid; HPLC t_r 14.98 (linear gradient, 20-80% B, 20 min) - 1 H RMN ([D₆]DMSO) : δ = 0.84 (d, J = 6.2 Hz, 3H, Me), 0.87 (d, J = 5.4 Hz, 3H, Me), 1.15-1.57 (m, 6H, CHC H_2 C H_2 C H_2), 1.34 (s, 9H, t-Bu), 1.72-1.98 (m, 1H, Me₂CH), 2.72 (s, 4H, C H_2 CO), 2.85-3.08 (m, 2H, C H_2 NH), 3.78-3.92 (m, 1H, NHCHCO), 4.87-4.99 (m, 1H, NHCHNH), 5.06 (s, 2H, OCH₂), 6.82 (d, J = 8.2 Hz, 1H, NHCO₂(t-Bu)), 7.24-7.50 (m, 5H, H arom.), 7.93 (d, J = 8.7 Hz, 1H, NHCO₂Su), 8.54 (d, J =7.9 Hz, 1H, CHCONHCH). - 13 C RMN ([D₆]DMSO, 50 MHz) : δ = 171.6, 170.6, 150.9, 150.8, 134.5, 132.0 (C), 129.6, 129.2, 127.2 (CH), 77.9 (C), 62.8 (CH), 62.4 (CH₂), 54.1 (CH), 40.0 (CH₂), 31.8 (CH), 31.2, 29.0 (CH₂), 28.1 (CH₃), 25.2, 22.7 (CH₂), 18.2, 18.0 (CH₃).

Fmoc-Phe-gAla-COOSu (IIIi)

Yield 86% white solid; HPLC t_r 11.45 (linear gradient, 30-100% B, 20 min) - 1 H RMN ([D₆]DMSO, 200 MHz): δ = 1.31 (d, J = 6.5 Hz, Me), 2.65-2.77 (m, 5H, CH₂CO, NCHCH₂), 2.75 (br dd, 1H, NCHCH₂), 4.04-4.25 (m, 4H, CHCH₂O, CHCO), 5.31 (m, 1H, NHCHNH), 7.13-7.41 (m, 9 arom. H), 7.47-7.63 (m, 3H, arom. H, NHCOO₂Fm), 7.84 (d, J = 7.3 Hz, 2 arom. H), 8.53 (d, J = 7.8 Hz, 1H, NHCO₂Su), 8.72 (d, J = 7.0 Hz, 1H, CHCONHCH). - 13 C RMN ([D₆]DMSO, 50 MHz): δ = 170.7, 155.7, 150.3, 143.7, 140.6, 138.2 (C), 129.1, 127.9, 127.5, 127.0, 126.1, 125.2, 120.0 (CH), 65.5 (CH₂), 55.8, 54.5, 46.5 (CH), 37.3, 25.2 (CH₂), 20.5 (CH₃).

Fmoc-Ile-gGly-COOSu (IIIj)

Yield 52% white solid; HPLC t_r 10.94 (linear gradient, 30-100% B, 20 min) - 1 H RMN ([D₆]DMSO, 200 MHz): δ = 0.80

30

30

5

10

(t, J = 7.0 Hz, 3H, Me), 0.83 (d, J = 6.6 Hz, 3H, Me), 1.01-1.23 (m, 1H, CH₂Me), 1.34-1.50 (m, 1H, CH₂Me), 1.59-1.82 (m, 1H, CHMe), 2.76 (s, 4H, CH₂CO), 3.91 (t, J = 8.0 Hz, 1H, CHCH₂O), 4.22-4.30 (m, 3H, CHCH₂O, NHCH), 4.35-4.55 (m, 2H, NHCH₂), 7.28-7.46 (m, 4H, arom. H, NHCO₂Fm), 7.75 (d, J = 6.9 Hz, 2 arom. H), 7.89 (d, J = 7.0 Hz, 2 arom. H), 8.69 (br. t, J = 5.6 Hz, 1H, NHCO₂Su), 9.00 (br. t, J = 8.0 Hz, 1H, CHCONHCH₂). - ¹³C RMN ([D₆] DMSO, 50 MHz) : δ = 171.7, 170.6, 155.8, 151.9, 143.7, 140.6 (C), 127.5, 126.9, 125.3, 120.0 (CH), 65.6 (CH₂), 58.8, 46.6 (CH), 45.6 (CH₂), 36.3 (CH), 25.2, 24.3 (CH₂), 15.2, 10.7 (CH₃).

Boc-Pro-gLeu-COOSu (IIIf)

Yield 76% white solid; HPLC t_r 10.59 (linear gradient, 20-80% B, 20 min) - 1 H RMN ([D₆]DMSO, 200 MHz) : δ = 0.83 (d, J = 6.0 Hz, 6H, CH-(CH₃)₂), 1.28, 1.34 (s, 9H, C(CH₃)₃), 1.45-1.52 (m, 3H, CH-CH₂-CH-(CH₃)₂), 1.59-2.05 (m, 4H, CH₂-CH₂-CH₂-CH), 2.72 (s, 4H, CH₂-CH₂), 3.14-3.36 (m, 2H, N-CH₂-CH₂), 4.02-4.05 (m, 1H, NCHCO), 5.17-5.27 (m, 1H, NHCHNH), 8.19 (d, J = 8.0 Hz, 1H, NHCO₂Su), 8.57 (d, J = 7.3, 1H, NHCOCH). - 13 C RMN ([D₆]DMSO, 50 MHz) : δ = 171.73 (C), 171.69 (C), 153.18 (C), 150.45 (C), 78.26 (C), 59.14 (CH), 56.35 (CH), 46.40 (CH₂), 42.78 (CH₂), 30.88 (CH₂), 27.91 (CH₃), 25.20 (CH₂), 23.82 (CH), 22.85 (CH₂), 22.27 (CH₃), 21.87 (CH₃).

Boc-Pro-gVal-COOSu (IIIb)

Yield 72% white solid; HPLC t_r 8.98 (linear gradient, 20-80% B, 20 min) - 1 H RMN ([D₆]DMSO, 200 MHz) : δ = 0.87 (d, J = 6.4 Hz, 6H, CH-(CH₃)₂), 1.31, 1.37 (s, 9H, C(CH₃)₃), 1.74-2.07 (m, 5H, CH-CH-(CH₃)₂, CH-CH₂-CH₂-CH₂), 2.74 (s, 4H, CH₂-CH₂), 3.17-3.32 (m, 2H, N-CH₂-CH₂), 4.10-4.13 (m, 1H, NCHCO), 4.88-5.04 (m, 1H, NHCHNH), 8.08 (d, J = 8.5 Hz,

30

5

10

1H, NHCO₂Su), 8.49 (d, J = 7.8 Hz, 1H, NHCOCH). $- ^{13}$ C RMN ([D₆]DMSO, 50 MHz): $\delta = 171.84$ (C), 170.66 (C), 153.28 (C), 150.80 (C), 78.31 (C), 62.91 (CH), 59.19 (CH), 46.42 (CH₂), 31.61 (CH), 30.97 (CH₂), 27.98 (CH₃), 25.16 (CH₂), 22.81 (CH₂), 18.23 (CH₃).

Boc-Ile-qVal-COOSu (IIId)

Yield 62% white solid; HPLC t_r 11.67 (linear gradient, 20-80% B, 20 min) - 1 H RMN ([D₆]DMSO, 200 MHz) : δ = 0.64-0.91 (m, 12H, CH-(CH₃)₂, CH₃-CH-CH₂-CH₃), 0.97-1.05 (m, 1H, CH₃-CH-CH₂-CH₃) 1.27-1.37 (s, 10H, C(CH₃)₃, CH₃-CH-CH₂-CH₃), 1.56-1.63 (m, 1H, CH₃-CH-CH₂-CH₃), 1.80-1.94 (m, 1H, CH-CH-(CH₃)₂), 2.70 (s, 4H, CH₂-CH₂), 3.71-3.79 (m, 1H, NH-CH-CO), 4.87-4.99 (m, 1H, NHCHNH), 6.66 (d, J = 8.9Hz, 1H, NHBoc), 7.98 (d, J = 8.7 Hz, 1H, NHCO₂Su), 8.53 (d, J = 8.1 Hz, 1H, NHCOCH). - 13 C RMN ([D₆]DMSO, 50 MHz) : δ = 170.97 (C), 170.60 (C), 155.27 (C), 150.82 (C), 77.89 (C), 62.73 (CH), 58.64 (CH), 36.07 (CH), 31.67 (CH), 28.07 (CH₃), 25.18 (CH₂), 24.31 (CH₂), 18.34 (CH₃), 18.13 (CH₃), 15.24 (CH₃), 10.73 (CH₃).

Fmoc-Ile-gLeu-COOSu (IIIh)

Yield % white solid; HPLC t_r 12.85 (linear gradient, 30-100% B, 20 min) - 1 H RMN ([D₆]DMSO, 200 MHz) : δ = (m, 12H, CH-(CH₃)₂, CH₃-CH-CH₂-CH₃), (m, 1H, CH₃-CH-CH₂-CH₃) (s, 10H, C(CH₃)₃, CH₃-CH-CH₂-CH₃), 1.56-1.63 (m, 1H, CH₃-CH-CH₂-CH₃), 1.80-1.94 (m, 1H, CH-CH-(CH₃)₂), 2.70 (s, 4H, CH₂-CH₂), 3.71-3.79 (m, 1H,NH-CH-CO), 4.87-4.99 (m, 1H,NHCHNH), 6.66 (d, J = 8.9Hz, 1H, NHBoc), 7.98 (d, J = 8.7 Hz, 1H, NHCO₂Su), 8.53 (d, J = 8.1 Hz, 1H, NHCOCH). - 13 C RMN ([D₆]DMSO, 50 MHz) : δ = 170.97 (C), 170.60 (C), 155.27 (C), 150.82 (C), 77.89 (C), 62.73 (CH), 58.64 (CH), 36.07

. 10

(CH), 31.67 (CH), 28.07 (CH₃), 25.18 (CH₂), 24.31 (CH₂), 18.34 (CH₃), 18.13 (CH₃), 15.24 (CH₃), 10.73 (CH₃).

2) Reactivity of carbamates (III) and (III bis) with amines and amino acids to give urea dipeptides or ureidopeptides.

It is seen that the carbamates (III) and (IIIbis) react with primary amines or amino acids in the presence of absence of a tertiary base (DIEA, NMM, Et₃N) at ambient temperature to give corresponding urea derivatives (VI) (Reaction 2) with good yields (table 2). The reaction is rapid and all the starting product is generally consumed in several hours. The N-hydroxysuccinimide is the only secondary product formed during the reaction and is easily eliminated by aqueous washing.

Reaction 2: Synthesis of ureas (VI) from carbamates (III) and (IIIbis).

Table 2: Reactivity of carbamates (III) and (III bis) to give ureas (VI).

 a yield of (**VI**). b linear gradient of A (0.1% TFA in H₂O) and B (MeCN containing 0.08% TFA), c 20-80% B, 20 min, d 30-100% B, 20 min, e 0-100% B, 20 min.

20

25

The repetitive formation of urea by using carbamates (III) and (III bis) as activated monomers permits obtaining hybrid oligourea/peptides.

EXAMPLE IV

Examples of cyclic compounds corresponding to the formula (VIII bis):

10

The compound (VIII bis/1) can for example be synthesized by intramolecular cyclization of the linear precursor hereinafter corresponding to the formula (VII/1) (1 mmol) by treatment with carbonyldiimidazole (1 mmol) in acetonitrile (200 ml) and in the presence of an excess of DIEA (2.5 mmol) for 12 hours.

After this time, the solvent is evaporated and the residue is purified by liquid chromatography in inverse phase (C18 column) using a linear water/acetonitrile gradient.

The linear precursor (VII/1) can be prepared according to reaction 1 below. The reaction of a first activated carbamate derived from an N-methylated beta amino acid on a monoprotected diamine, leads to the obtention of a trisubstituted monourea. The deprotection of the Boc group and the repeated reaction of the O-succinimidyle carbamate previously used, leads to the obtention of a di-urea. The successive deprotection of the protective groups Boc and Z gives the derivative (VII/1).

Reaction 1: Synthesis of the linear precursor (VII-1) used in the synthesis of the compound (VIII bis/1) (DMF = dimethylformamide, DIEA = diisopropylethylamine, TFA = trifluoroacetic acid)

30

5

10

REFERENCES

(1) (a) Lam P. Y.; Jadhav P. K.; Eyermann C. J.; Hodge C. N.; Ru Y., Bacheler L.T.; Meek J. L.; Otto M. J.; Rayner M. M.; Wong Y. N.; Chang, C. -H.; Weber, P. C.; Jackson, D. A.; Sharpe, T. R.; Erickson-Viitanen, S. Science 1994 263, 380. (b) Castro J. L.; Ball R. G.; Broughton H. B.; Russell M. G., Rathbone D, Watt A. P., Baker R, Chapman K. L., Fletcher A. E., Patel S, Smith A. J., Marshall G. R., Ryecroft W, Matassa V.G. J. Med. Chem. 1996, 39(4):842 (c) von Geldern T.W., Kester J. A., Bal R, Wu-Wong J.R., Chiou W, Dixon D.B., Opgenorth T.J. J. Med. Chem. 1996 39, 968.

- (2) (a) Nowick, J. S.; Smith, E. M.; Noronha, G. W. J. Org. Chem. 1995 60, 7386. (b) Nowick, J. S.; Mahrus, S.; Smith, E. M.; Ziller, J. W. J. Am. Chem. Soc. 1996 118, 1066. (c) Nowick, J. S.; Holmes, D. L.; Mackin, G.; Noronha, G; Shaka, A. J.; Smith, E. M. J. Am. Chem. Soc. 1996 118, 2764. (d) Holmes, D. H.; Smith, E. M.; Nowick, J. S. J. Am. Chem. Soc. 1997 119, 7665.
- (3) (a) Burgess, K.; Linthicum, Shin, H. Angew. Chem. Int. Ed. Engl. 1995 34, 907. (b) Burgess, K.; Ibarzo, J.; Linthicum, D. S.; Russell, D. H.; Shin, H.; Shitangkoon, A.; Totani, R.; Zhang, A. J. J. Am. Chem. Soc. 1997 119, 1556. (c) Kim, J. -M.; Bi, Y.; Paikoff, S. J.; Schultz, P. G. Tetrahedron Lett. 1996 37, 5305. (d) Kim, J. -M.; Wilson, T. E.; Norman, T. C.; Schultz, P. G. Tetrahedron Lett. 1996, 37, 5309. (e) Kruijtzer J. A. W.; Lefeber, D. J.; Liskamp, R. M. J. Tetrahedron Lett. 1997 38, 5335. (f) Wilson, M. E.; Nowick, J. S. Tetrahedron Lett. 1998 39, 6613.

30

5

- (4) Use of the phosgene and its derivatives, see: (a), Majer, P.; Randad, R. S.; J. Org. Chem. 1994 59, 1937. (b) Scialdone, M. A.; Shuey, S. W.; Soper, P.; Hamuro, Y.; Burns, D. M. J. Org. Chem. 1998 63, 4802-4807. Carbonates, see: (c) Takeda, K.; Akagi, Y.; Saiki, A.; tsukahara, T.; Ogura, H. Tetrahedron Lett. 1983 24, 4569. Izdebski, J.; Pawlak, D. Synthesis 1989, 423. N, N' carbodiimidazole, see: (d) Zhang, X.; Rodrigues, J.; Evans, L.; Hinckle, B.; Ballantyne, L.; Pena. J. Org. Chem. 1997 62, 6420. 1,1'-carbonylbisbenzotriazole, see: (e) Katritzky, A. R.; Pleynet, D. P. M.; Yang, B. J. Org. Chem. 1997 62, 4155.
- (5) (a) Nowick, J. S.; Powell, N. A.; Nguyen, T. M.; Noronha, G. J. Org. Chem. 1992 57, 7364. (b) Reference 3b.
- (6) (a) Martinez, J.; Oiry, J.; Imbach, J. -L, winternitz, F. J. Med. Chem. 1982 25, 178. (b) Hutchins, S. M.; Chapman, K. T. Tetrahedron Lett. 1994 35, 4055. (c) Thavonekham, B. Synthesis 1997, 1189.
- (8) It is interesting to note that in the synthesis of oligoanthranilamides, the Hamilton group uses 2-nitrobenzoic acid in place of N-benzoylanthranillic acid. In this case, the nitro group as the masking group of the amine it is necessary to avoid the formation of azlactone: Hamuro, Y.; Geib, S.J.; Hamilton, A.D. J. Am. Chem. Soc. 1996 118, 7529.
- (9) We have used the code with a letter proposed by Burgess for the urea oligomers^{3b}. As an alternative, we propose the following abbreviation which permits the use of the code with a letter for the amino acids: $Boc(-\beta^3-HAla^u)_2-i-Pr$ (**VIe**) and $Boc(-\beta^3-HAla^u)_3-i-Pr$ (**VIf**). According to the

nomenclature of Spatola¹¹ for the pseudopeptides, we can also write: Boc($-\beta^3$ -HAla-[NHCONH])₂-i-Pr (**VIe**) et Boc($-\beta^3$ -HAla-[NHCONH])₃-i-Pr (**VIf**).

5

(10) (a) Podlech, J.; Seebach, D. Liebigs Ann. 1995, 1217. (b) Seebach, D.; Overhand, M.; Kühnle, F. N. M.; Martinoni, B.; Oberer, L.; Hommel, U.; Widmer, H. Helv. Chim. Acta 1996 79, 913.

10

(11) Spatola, A. F. In Chemistry and Biochemistry of Amino acids, peptides and Proteins; Weinstein, B. Ed.; Marcel Dekker Inc.: New York, 1983; Vol. 7, pp267-357.