

Laboratório de Física Experimental Avançada I

... Estatistica

Detectores

Gaussiana

• Para médias altas existe outra distribuição limite: a gaussiana:

$$P(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Média: μ
- Desvio Padrão: σ

Flutuação no valor médio:

$$\sigma(\bar{x}) = \frac{\sigma}{\sqrt{N}}$$

Nota: Não temos acesso à distribuição. Apenas a conjunto de eventos representativos da distribuição

Resultados

Adoptamos como resultado o valor médio ±incerteza estatística:

$$\mu \pm \sigma$$

• E quando queremos **derivar outras quantidades**? Por exemplo uma função $x \to f(x)$

•
$$f(x + \delta x) \sim f(x) + f'(x) \cdot \delta x$$

• $\delta f(x) = f(x + \delta x) - f(x)$

$$\delta f(x) \sim f'^{(x)} \cdot \delta x$$

Impacto no resultado

Incerteza na variável

Somando em quadratura outras variáveis:

$$f(x_1, x_2, x_3, \dots)$$

$$\delta f(x_1, x_2, x_3 \dots) = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i} \cdot \delta x_i\right)^2}$$

Dois casos práticos

$$f = \chi + \gamma \qquad \Rightarrow \qquad \sigma f^2 = \left(\frac{\partial f}{\partial \kappa}\right)^2 \sigma_{\kappa}^2 + \left(\frac{\partial f}{\partial \gamma}\right)^2 \sigma_{\gamma}^2 = \sigma_{\kappa}^2 + \sigma_{\gamma}^2$$

$$= \chi + \gamma \qquad \Rightarrow \qquad \zeta = \left(\frac{1}{2}\chi\right)^{-1}\chi$$

$$f = \chi \cdot y \longrightarrow \sigma_f^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sigma_n^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2$$

$$= y^2 \pi^2 + \chi^2 \tau_y^2$$

$$= y^2 \sqrt{x^2 + \chi^2} \sqrt{y^2}$$

$$= \chi^2 y^2 \sqrt{x^2 + \chi^2} \sqrt{y^2} \sqrt{y^2}$$

$$= y^2 \sqrt{x^2 + \chi^2} \sqrt{y^2}$$

$$= \chi^2 y^2 \sqrt{x^2 + \chi^2} \sqrt{y^2} \sqrt{y^2}$$

exemplos

$$\mathcal{E}^{2}(x+y) = \mathcal{E}^{2}(x) + \mathcal{E}^{2}(y)$$

$$\mathcal{E}^{2}_{R}(x,y) = \mathcal{E}^{2}_{R}(x) + \mathcal{E}^{2}_{R}(y)$$
Manter um olho nos valores absolutos e relativos e perceber de onde vên e pare onde vas
$$\mathcal{E}^{2}(x+y) = \mathcal{E}^{2}(x) + \mathcal{E}^{2}(y)$$

$$\mathcal{E}^{2}_{R}(x) + \mathcal{E}^{2}(y)$$

$$\mathcal{E}^{2}_{R}(x) + \mathcal{E}^{2}(y)$$

$$\mathcal{E}^{2}_{R}(x) + \mathcal{E}^{2}(y)$$

$$\mathcal{E}^{2}_{R}(x) + \mathcal{E}^{2}_{R}(y)$$

$$\mathcal{E}^{2}_{R}(y) + \mathcal{E}^{$$

Laboratório de Física Experimental Avançada I

Detetores

Detecção Partículas carregadas

Partículas carregadas

- Interagem por colisão e podem ionizar (gas, sólidos)
 - Mais tarde iremos ao detalhe da interacção carregados c/ matéria
- Alta probabilidade de interacção \rightarrow alta secção eficaz
- Nº ionizações pode ser proporcional à sua energia
- Seguem-se alguns exemplos de deteção

As partículas carregadas excitam e/ou ionizam directamente os átomos

Cloud/bubble chamber

Deposited energy → change of state (bubbles of droplets)

Number of bubbles → energy deposited

Position of bubbles →

Detecção Partículas carregadas

Detectores gasosos de ionização

Detectores de Ionização

- A partícula deposita energia por ionização:
 - Pares carga negativa-positiva (electrão-ião ou electrão-buraco)
 - Transporte?
 - Amplificação?
 - Recolha?
- Várias variações possíveis. Vamos olhar para um volume cilíndrico de gás – contador de geiger

- Cátodo: cilindro de paredes condutoras cheio de um gás nobre
- Ânodo: fio condutor ao longo do eixo do cilindro (+V_o)
- Campo eléctrico: radial

$$E(r) = \frac{1}{r} V_0 \ln \frac{r_{ext}}{r_{int}}$$

collection

Primary ionization

Secondary ionization

Tertiary ionization

multiplication

O dispositivo

Campo eléctrico radial Muito forte perto do fio central

$$E = \frac{1}{r} \frac{V_0}{\ln(b/a)}$$

r: raio

b: raio do interno cilindro

a: raio do fio

Quando atravessado por partículas é depositada uma certa energia e são criados pares ião-electrão (em média 1 por cada 30 eV)

Regimes de funcionamento

Vários tipos de detector no mesmo Hardware, dependendo da tensão

Região I – se V_o ~ 0, os pares e – ião recombinam-se.
 Não há carga recolhida.

Região II – Câmara de ionização

A partir de certo valor de V_o todos os pares são recolhidos, sem multiplicação, e um aumento de V_o não tem efeito: **primeiro patamar.**

Região III – Contador proporcional

Continuando a aumentar V_o, os electrões libertados têm energia suficiente para produzir **ionizações secundárias** e estes ganham **E**...

- → Ionização em avalanche (junto ao ânodo)
- \rightarrow amplificações 10^4 a 10^6
- → Mais tensão maior multiplicação
- →Space charge Effect limita crescimento avalanche (prop. limitada)

• Região IV – Contador Geiger-Müller

Aumentando V_o ocorre uma **descarga no gás**: avalanches provocadas por fotões de desexcitação moleculares. O sinal em corrente satura - **patamar**

Região descarga

O detector está permanentemente em descarga

Regime Geiger

- Neste modo existem ionizações "em todo o gás"
- Corrente está limitada pelo detector (depende da carga armazenada (condensador) e da reposição de carga (correntes) para manter tensão
- É necessário quenching: algo que mate a avalanche e permita recuperar
- Não há medida da energia funciona em descarga, todos os sinais são de igual amplitude, independentemente da energia depositada (nº de pares e⁻-ião inicial);
- Basta "1" ionização
- Tempo de recuperação relativamente alto --"dead-time";
- Apenas permite medir taxas de contagem da ordem de 10² Hz;
- Sistema simples
- Sinais generosos
- Não precisa amplificação electrónica

Contagens com Geiger

Se o Geiger não tem resolução em E, então a amplitude dos pulsos pode ser ignorada e transformados em digital com um limiar

Detecção Partículas carregadas

- Ionização do volume sensível
- Energia depositada → número de pares
- Colectar os pares: Sinal
- O Número de portadores livres tem que ser muito baixo: pode funcionar se arrefecido

Detectores Semicondutores

p-type semiconductor region

The combining of electrons and holes depletes the holes in the p-region and the electrons in the n-region near the junction.

Os portadores são varridos da zona de depleção: Um par e-H é varrido para os lados

Radiação ioniza e cria pares: ~1 par por cada 3.6 eV depositados.

Se na zona de deplecção → varridos e recolhidos

Por difusão os "extras" vão para o outro lado: Tipo P: excesso de electrões → - - - - -Tipo N: excesso de buracos → + + + + +

Desenvolve-se uma diferença de potencial de contacto que não permite a passagem de mais portadores

- Potencial de contacto típico ~alguns volt
- Reverse Biasing: aplicação de uma tensão para aumentar a zona de depleção
- Detector mais eficiente (zona activa aumenta)
- A dada altura dá-se a disrupção do detector!
- Tipicamente tensões de biasing entre 10 e 1000V (típico <100V)
- Zonas de deplecção passam das dezenas para as centenas (~10x)

- Detectores de barreira de superfície
- Técnica especial que permite ter uma janela de entrada com perturbação mínima à entrada da radiação.
- Substrato N
- "electron traps" at surface junction with gold
- Layer de Ouro muito fina
- Tão fina que é opticamente transparente!

- Muitos pares criados: não é efectuada amplificação no volume sensível
- Sinal electrónico "curto": precisa amplificação
- e-H pares não recombinam
- Numero de pares em média proporcional à energia depositada
- Denso: se suficientemente espesso: toda a energia é deixada no detector
- Assim, Sinal no detector ⇔ Energia da partícula
 - → Espectroscopia alfa?
 - → Espectroscopia beta?
 - → Espectroscopia muões?
 - → Contagens?
 - → Espectroscopia gama?

Gama

Detector de cintilação

Scintillators

Particle interaction → material excitation → return to ground state Emission of LIGHT (typical UV / Blue / Green) mainly by fluorescence

Fast Light production: Fluorescence

Delayed light production: Phosforecence

Parameters:

- Light production
 - Efficiency: Light Yeld
 How many photons per energy deposited
 - Time of emission and time spread fast: allow high counting rates; allow time tagging
 - Spectra of emission
 How many photons at which wavelength
- Light transmission
 - transparency / mean free path

scintillators

Material	eV/fotão	Tempo (nsec)	λ_{max} (nm)	$ ho$ (g/cm 3)	$\frac{dE}{dx}$ (mip) (MeV/cm)	n
Anthracene	60 (100%)	30	447	1.25		1.62
Plástico NE104	88 (68%)	1.9	406	1.032		1.58
Nal	26 (230%)	230	413	3.67	4.8	1.85
BGO	173	300	480	7.13	9.2	2.20

Whats happening

Whats happening

Detecção de luz

Fotomultiplicador

photomultipliers

Anode: collect the charge

Photoelectric: $1 \gamma \rightarrow 0.2 e^{-1}$ (20 % quantum efficiency)

Multiplication:

HV: accelerate electron

~900 V

10 dynodes

Secondary emmission:

in each dynode some (3~5) are emmitted

10 dynodes = 4^{10} = 10^6

3 example models of PMT

Application: gamma spectroscopy: NaI + PMT

Gamas

Processos de interacção

3 efeitos

Efeito Fotoeléctrico

- Fotão (γ) é totalmente absorvido
 - Absorvido → Deposita toda a energia
 - Não absorvido → Não deposita
- Energia absorvida por electrão atómico que adquire uma energia de :

$$T_e = E_{\nu} - \Phi$$

 $E_{\nu} = h\nu$: Energia fotão

 Φ :Energia ligação

• Secção eficaz:

$$\sigma_{ph} \sim Z^5 \left(\frac{m_e c^2}{E_{\gamma}}\right)^3$$

- Importante para baixas Energias (<100keV) e **Z** altos
- Resultado: 1 electrão energético e uma posição vaga
 - lonização
 - Emissão de um Rx ou Electrão de Auger no rearranjo (Nota: electrão de Auger é como se o Rx fosse absorvido no próprio átomo)

Fotão colide (scattering) com um electrão das camadas exteriores (quase livre, com baixa energia)

No limite em que Energia é nula:

Conservação Energia e momento

$$E_{\gamma} + m_e c^2 = E'_{\gamma} + E'_e$$
$$p_{\gamma} = p'_{\gamma} \cos \theta$$
$$0 = p'_{\gamma} \sin \theta$$

$$E_{\gamma}^{'} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_{\alpha}c^{2}}(1 - \cos\theta)}$$

$$T_e' \equiv E_e' - m_e c^2 = E_{\gamma} - E_{\gamma}'$$

Difusão de compton

$$E_{\gamma}$$
 E_{γ}
 E'

$$E_{\gamma} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_{\rho} c^{2}}} (1 - \cos \theta)$$

Limite
$$\theta=0^\circ$$

$$E_{\gamma}^{'} = E_{\gamma}$$

 $E_{e}^{'} = ???$

Limite $\theta = 180^{\circ}$

$$E_{\gamma}^{'} = \frac{E_{\gamma}}{1 + 2\frac{E_{\gamma}}{m_{e}c^{2}}}$$

$$E_{\gamma}^{'} = \frac{E_{\gamma}}{1 + 2\frac{E_{\gamma}}{511ke^{\gamma}}}$$

Difusão de compton

Secção eficaz Compton

Klein-Nishina formula

$$rac{d\sigma}{d\Omega} = rac{1}{2} lpha^2 r_c^2 P(E_\gamma, heta)^2 [P(E_\gamma, heta) + P(E_\gamma, heta)^{-1} - \sin^2(heta)]$$

where $\frac{d\sigma}{d\Omega}$ is a differential cross section, $d\Omega$ is an infinitesimal solid angle element, α is the fine structure constant (~1/137.04), θ is the scattering angle; $r_c=\hbar/m_ec$ is the "reduced" Compton wave length of the electron (~0.38616 pm); m_e is the mass of an electron (~511 keV/ c^2); and $P(E_\gamma,\theta)$ is the ratio of photon energy after and before the collision:

$$P(E_{\gamma}, heta)=rac{1}{1+(E_{\gamma}/m_ec^2)(1-\cos heta)}=rac{\lambda}{\lambda'}$$

$$rac{d\sigma}{d\Omega} = rac{1}{2} r_e^2 igg(rac{\lambda}{\lambda'}igg)^2 \left[rac{\lambda}{\lambda'} + rac{\lambda'}{\lambda} - \sin^2(heta)
ight]$$

Where
$$r_e = \frac{e^2}{m_e c^2} = 2.818 \text{ fm}$$

Produção de pares

$$\gamma + \gamma^* \rightarrow e^+ + e^-$$

Criação de um par electrão-positrão (no campo do átomo)

Energia mínima:

$$E_{\gamma} \ge 2m_e c^2 (= 1022 keV)$$

Secção eficaz

$$\sigma_{pair} \sim 4 \ \alpha \ Z^2 \ r_e^2 \left[\frac{7}{9} \ln \left(\frac{183}{Z^{1/3}} \right) \right] \sim \frac{7}{9} \ \frac{A}{N_A} \ \frac{1}{X_0}$$

Importante para altas energias

3 efeitos

Gamas

Espectro de energia

- Um gama com energia E = hv
- Abstraindo das especificidades do detector
- Naïve expectation

- Fotoeléctrico
- Electrão resultante excita material

• Compton + fotoeléctrico no difundido

- Uma interacção de Compton
- Fotão difundido escapa
- Energia do electrão depositada

• Produção de pares

• Produção de pares

Small detector

Figure 10.2 The "small detector" extreme in gamma-ray spectroscopy. The processes of photoelectric absorption and single Compton scattering give rise to the low-energy spectrum at the left. At higher energies, the pair production process adds a double escape peak shown in the spectrum at the right.

Big detector

"mais ou menos"

Complications - backscatter

Compton + fotoelectrico

Toda a energia

Compton a um ângulo elevado perto da borda

- Fotão volta para detector e faz fotoeléctrico
- Electrão sai

Apenas Energia do fotão difundido

Compton a um ângulo elevado no invólucro ou shielding

- Fotão volta para detector e faz fotoeléctrico
- Electrão perde-se

Apenas Energia do fotão difundido

Sumário espectros

- γ faz difusão de Compton. γ difundido abandona o detector
 → patamar de Compton
- γ faz difusão de Compton. γ difundido faz fotoeléctrico. Toda energia é recolhida
 → Pico de absorção total
- γ faz retrodifusão (tranferencia grande E para electrão e este abandona o detector. Apenas E do fotão difundido absorvido →"pico" a E=E_{total}-E_{electrao compton}
- 4. γ faz par e⁺ e⁻. O positrão aniquila-se gerando dois fotões de 511keV.
 Fotões são absorvidos
 → Pico absorção total
- 5. Igual anterior mas 1 fotão escapa
 → Pico deslocado E=E_{total}-511keV (pico escape simples)
- 6. Igual anterior mas 2 fotões escapam
 → Pico deslocado E=E_{total}-1022keV (Pico escape duplo)

Es pectro de energia do Tálio-208: observam-se or picos de absorção total, de escape simples e duplo.

Nal + PMT

 Uma fonte emite, em média, 20 partículas por minuto com uma energia de 1 MeV. Como será o espectro de energia registado?

Espectro de energia: Distribuição do número de eventos segundo as diferentes energias das partículas

• Uma fonte emite, em média, 20 partículas por minuto com uma energia de 1 MeV. Como será o espectro de energia registado?

• Uma fonte emite, em média, 20 partículas por minuto com uma energia de 1 MeV. Como será o espectro de energia registado?

Não temos acesso à energia da partícula mas sim a um sinal eléctrico, medido por uma ADC (10 bits de resolução -> 2^{10} níveis = 1024 níveis

• Uma fonte emite, em média, 20 partículas por minuto com uma energia de 1 MeV. Como será o espectro de energia registado?

Imaginando um detector ideal, com uma electrónica ideal

Não há mais informação além de:

"existem 1200 acontecimentos no bin [770,771["

"registaram-se 1200 eventos com sinal entre 770 e 771 em unidades ADC"

• Uma fonte emite, em média, 20 partículas por minuto com uma energia de 1 MeV. Como será o espectro de energia registado?

Imaginando um detector ideal, com uma electrónica assim-assim

• Uma fonte emite, em média, 20 partículas por minuto com uma energia de 1 MeV. Como será o espectro de energia registado?

Imaginando um detector com uma resolução em energia, com uma electrónica assim-assim

• Uma fonte emite, em média, 20 partículas por minuto com uma energia de 1 MeV. Como será o espectro de energia registado?

Imaginando um detector com uma má resolução em energia, com uma electrónica assim-assim

Flutuações

 Gerando sempre números aleatórios de acordo com uma gaussiana com exactamente os mesmos parâmetros.

Gamas

Detection characteristics

Characteristics of the detectors

Sensitivity

Response/linearity

Efficiency

Energy resolution

Dead Time

=> Application NaI + PMT

Sensitivity

The detector response to a certain radiation (type, energy). Depends on the cross sections and on the detector mass involved

```
\alpha/\beta – highly ionizing \gamma - smaller cross section \rightarrow more mass \rightarrow more volume
```

Noises and energy losses are relevant:

- Cannot detect below noise level
- Cannot detect if a lot energy is lost. E.g. window

Plastic and crystals for photons

```
Plastic Crystal Low Z \rightarrow low photopeak efficiency High Z \rightarrow Good photopeak efficiency Low Light Yield \rightarrow Bad peak resolution High Yield \rightarrow Good resolution
```

Response and linearity

If detector large enough → gamma is contained → All energy is deposited

Electrical signal in time → integration → Total charge

Total charge is proportional to energy

If the shape is always the same, some parameters are proportional to the Energy (e.g. amplitude, time over threshold,...)

If linear, Measured Energy = k . Measured quantity; k is the calibration constant

Eficiency

$$\varepsilon_{\text{total}}$$
 = Detected events / expected events

$$\varepsilon_{\text{total}} = \varepsilon_{\text{intrinsic}} \times \varepsilon_{\text{geometric}}$$

 $\varepsilon_{\text{intrinsic}}$ = detected events / incident particles

Depends on cross sections, particle type, energy, volume of detector

 $\epsilon_{geometric}$ = incident particles in detector / emitted particles by source Depends on the geometry, angular distribution, solid angle

E.g.: Solid angle calculation

Count rate = Actividty x $\Delta\Omega/4\pi$

$$d\Omega = ds/d^2 = d\cos\theta \cdot d\varphi \Rightarrow \Delta\Omega = 2\pi(1 - \cos\theta_{\text{max}})$$

$$\cos \theta_{\text{max}} = d / \sqrt{d^2 + a^2} = 1 / \sqrt{1 + (a/d)^2}$$

Energy resolution

Capcity of the detector to distinguish two values of energy.

Need to take into account the statistics...

A set of values fluctuating around a mean value

$$R = \frac{\Delta E}{E} = \frac{FWHM}{E}$$

Resolution with energy: R varies with 1/√E

Poisson statistics => σ^2 = N (Δ N = FWHM = 2.35 σ) R = Δ E / E = Δ N / N = 2.35/ \sqrt{N}

E.g.: Resolution of Nal + PMT for the photopeak of Cs-137

Deposited Energy $\Delta E = 662 \text{ [KeV]}$

Number of photons Ny = 662 x 10³ [eV] / 26 [eV/fotão] \approx 2.5 x 10⁴ fotões

Photoelectrons Npe = N γ . ϵ_{geom} . QE \approx 1.25 x 10³ (eff 5%)

Resolution ~ $2.35/\sqrt{N} = 7 \%$

Dead time

 τ : the necessary time to process an event If the detector keeps active during that time: Pile-up! Information lost on both

If the detector blocks: loss of second event.

