Droblem Set 5.

Problem 1

Prove the following limits using the definition of limits

- (a) $\lim_{n \to \infty} \left(\sqrt{n+1} \sqrt{n} \right) = 0$
- (b) $\lim_{n \to \infty} \sqrt{x_n + y_n} = 2$, where $\{x_n\}$ and $\{y_n\}$ are two sequences of positive real number with $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 2$.

hm xn =x => YCTO. JKEIN S.t. |Xn-X | <2 Y AZK

(A).
$$\sqrt{NH} - \sqrt{N} = \frac{1}{\sqrt{NH} + \sqrt{N}} < \frac{1}{2\sqrt{N}} < \frac{1}{2\sqrt{N}} < \frac{1}{\sqrt{N}} <$$

Then for all 1>K, we have $|\sqrt{n+1}-\sqrt{n}|<\frac{1}{2\ln}<\epsilon$ Finish the proof, #

We let $\{x_n\}$ and $\{y_n\}$ be two sequence of real number with $\lim_{n\to\infty}x_n=x$ and $\lim_{n\to\infty}y_n=y$. Suppose that xy>0, show that there exists $K\in\mathbb{N}$ such that x_n and y_n have the same sign (either both positive or both negative) when $n \geq K$.

$$|x_{n}-x| < \varepsilon_{1} = \sum_{x=\frac{|x|}{2}} < x_{n} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{1} = \sum_{x=\frac{|x|}{2}} < x_{n} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x_{n} < x + \frac{|x|}{2}$$

$$|y_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < y_{n} < y + \frac{|x|}{2}$$

$$|y_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < y_{n} < y + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < y_{n} < y + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x_{n} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x_{n} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x_{n} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x_{n} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x_{n} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x_{n} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x_{n} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x_{n} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x_{n} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x_{n} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x_{n} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x_{n} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x_{n} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < \varepsilon_{2} = \sum_{x=\frac{|x|}{2}} < x + \frac{|x|}{2}$$

$$|x_{n}-x| < x + \frac{|x|}{2}$$

$$|x_{$$

Problem 3

- (a) Give an example of two divergent sequences $\{x_n\}$, $\{y_n\}$ such that the sequence $\{x_n+y_n\}$ converges.
- **(b)** Give an example of two divergent sequences $\{x_n\}$, $\{y_n\}$ such that the sequence $\{x_ny_n\}$ converges.

$$X_{n} = (-1)^{n}$$

$$Y_{n} = (-1)^{n+1}.$$

$$X_{n} + Y_{n} = 0.$$

$$X_{n} + Y_{n} = -1.$$

Problem 4

Show that the sequence $\{x_n\}$ defined by $x_n = n^2 - n$ diverges to $+\infty$ using the definition.

Recall how to prove
$$X_n$$
 divergers to tw .
 $\forall M > 0$. Choose $N = [\sqrt{M}] + 2$
 $\forall n > N$ $\times n = n^2 - n > (n-1)^2 > M$.

Problem 5

We let $\{x_n\}$ be a sequence of positive real number which $\lim_{n\to\infty}x_n=+\infty$. Show that $\lim_{n\to\infty}\frac{1}{x_n}=0$.

Problem 6

Show that the sequence $\{x_n\}$ defined by $x_n=(-1)^n\left(2+\frac{1}{n}\right)$ does not converge.

Proof:
$$n=2k$$
. $\lim_{k\to\infty} X_{2k}=2$

$$n=2kH \lim_{k\to\infty} X_{2kH}=-2.$$