

When we say: We are given

a Regular Language $\ L$

We mean: Language L is in a standard

representation

Elementary Questions about

Regular Languages

Membership Question

Question: Given regular language L

and string w

how can we check if $w \in L$?

Answer: Take the DFA that accepts L

and check if w is accepted

Question: Given regular language L

how can we check

if L is empty: $(L = \emptyset)$?

Answer: Take the DFA that accepts L

Check if there is any path from the initial state to a final state

Question: Given regular languages L_1 and L_2 how can we check if $L_1=L_2$?

Answer: Find if $(L_1\cap \overline{L_2})\cup (\overline{L_1}\cap L_2)=\varnothing$

Non-regular languages

How can we prove that a language $\,L\,$ is not regular?

Prove that there is no DFA that accepts $\,L\,$

Problem: this is not easy to prove

Solution: the Pumping Lemma!!!

-QT

The Pigeonhole Principle

15

The Pigeonhole Principle

and

DFAs

The Pumping Lemma

Observation: The string
$$x y y y z$$
 is accepted

y

x

x

x

x

x

x

x

x

x

The Pumping Lemma:

- \cdot Given a infinite regular language L
- \cdot there exists an integer m
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|xy| \le m$ and $|y| \ge 1$
- such that: $x y^i z \in L$ i = 0, 1, 2, ...

Applications of the Pumping Lemma

Theorem: The language
$$L = \{a^n b^n : n \ge 0\}$$

is not regular

$$L = \{a^n b^n : n \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since
$$L$$
 is infinite we can apply the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$

length $|w| \ge m$

We pick $w = a^m b^m$

Write:
$$a^m b^m = x y z$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a^m b^m = \underbrace{a...aa...aa...ab...b}_{x \quad y \quad z}$$

Thus: $y = a^k$, $k \ge 1$

$$x \ y \ z = a^m b^m \qquad \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^i z \in L$ i = 0, 1, 2, ...

Thus: $x y^2 z \in L$

$$x \ y \ z = a^m b^m \qquad \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \underbrace{a...aa...aa...aa...ab...b}_{m+k} \in L$$

Thus: $a^{m+k}b^m \in L$

$$a^{m+k}b^m \in L$$
 $k \ge 1$

BUT: $L = \{a^n b^n : n \ge 0\}$

 $a^{m+k}b^m \notin L$

CONTRADICTION!!!

Therefore: Our assumption that L

is a regular language is not true

Conclusion: L is not a regular language

50

Non-regular languages
$$\{a^nb^n: n \ge 0\}$$