STOR 565 Homework

- 1. (Basic properties of the inner product) Let $x, y, z \in \mathbb{R}^d$ and $a, b \in \mathbb{R}$. Show that
 - a. $\langle x, y \rangle = \langle y, x \rangle$
 - b. $\langle ax, by \rangle = ab \langle x, y \rangle$
 - c. $\langle x+z,y\rangle = \langle x,y\rangle + \langle z,y\rangle$
 - d. $||x+y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2$
- 2. (Data and sample covariance matrices) Let **S** be the sample covariance matrix of a data set $\mathbf{x}_1, \dots, \mathbf{x}_n$. Answer/verify the following. You may repeat the arguments given in class, but clearly explain your work.
 - a. Define the data matrix X
 - b. Give the definition of S in terms of the data matrix X
 - c. Show that $\mathbf{S} = n^{-1} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^t$
 - d. S is symmetric and non-negative definite
 - e. Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$ be the eigenvalues of **S**. Show that $\sum_{k=1}^p \lambda_k = n^{-1}||\mathbf{X}||^2$
 - f. $rank(\mathbf{S}) = rank(\mathbf{X}^t \mathbf{X}) = rank(\mathbf{X}) \le min(n, p)$
 - g. If p > n then rank(\mathbf{S}) < p and \mathbf{S} is not invertible.
- 3. Let $\mathbf{u}_1 = (-1, 2, 0)$ and $\mathbf{u}_2 = (2, 4, 3)$. Find the projections of \mathbf{u}_1 and \mathbf{u}_2 onto \mathbf{v} where:
 - a. $\mathbf{v} = (0,1,0)$
 - b. $\mathbf{v} = (1,1,1)$
 - c. $\mathbf{v} = (1,0,-1)$
- 4. Let $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^d$ be orthonormal vectors with span $V = \{\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 : \alpha, \beta \in \mathbb{R}\}$. For $\mathbf{u} \in \mathbb{R}^d$ define the projection of \mathbf{u} onto V to be the vector $v \in V$ that is closest to \mathbf{u} ,

$$\operatorname{proj}_V(\mathbf{u}) = \operatorname*{argmin}_{v \in V} ||u - v||.$$

1

Show that $\operatorname{proj}_V(\mathbf{u}) = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2$. Hint: Adapt the argument used in class for the projection onto a one-dimensional subspace.

5. Consider a data set consisting of four points in \mathbb{R}^2

$$\mathbf{x}_1^t = (1,2), \ \mathbf{x}_2^t = (-1,2), \ \mathbf{x}_3^t = (2,-1), \ \mathbf{x}_4^t = (2,1)$$

- a. Write down the data matrix \mathbf{X}_0 associated with this data set
- b. Column center \mathbf{X}_0 so that each column has mean zero. This is equivalent to replacing each observation \mathbf{x}_i by the centered observation $\tilde{\mathbf{x}}_i = \mathbf{x}_i \frac{1}{4} \sum_{i=1}^4 \mathbf{x}_i$. Check that $\sum_{i=1}^4 \tilde{\mathbf{x}}_i = \mathbf{0}$, and draw a plot of the points $\tilde{\mathbf{x}}_i$. Call the recentered data matrix \mathbf{X} .
- c. Calculate the sample covariance matrix $\mathbf{S} = \frac{1}{4}\mathbf{X}^T \mathbf{X}$.
- d. Calculate the eigenvalues of **S**. Is **S** invertible? If so, find S^{-1} .
- e. Find orthonormal eigenvectors of S.
- f. What is the best one-dimensional subspace (line) for approximating the centered observations $\tilde{\mathbf{x}}_i$? Draw this line on your plot.
- 6. Let **A** be a 3×3 lower triangular matrix given below:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 2 & 4 & 3 \end{pmatrix}$$

- a. What are the eigenvalues of **A**?
- b. Find $det(\mathbf{A})$?
- c. Argue that \mathbf{A}^{-1} exists and calculate it.
- 7. (Norms of outer products) Find an expression relating the norm of the outer product $||\mathbf{u}\mathbf{v}^t||$ to the norms of the vectors $||\mathbf{u}||$ and $||\mathbf{v}||$.