

UNIT-V

LATTICES AND BOOLEAN ALGEBRA

5.4 DIRECT PRODUCT, HOMOMORPHISM

SCIENCE & HUMANITIES

MA8351

DISCRETE MATHEMATICS (COMMON TO CSE & IT)

LATTICE HOMOMORPHISM

Let (L_1, \land, \lor) and $(L_2, *, \bigoplus)$ be two given Lattices. A mapping $f: L_1 \to L_2$ is called Lattice Homomorphism if for every $a, b \in L_1$

$$(i)f(a \wedge b) = f(a) * f(b)$$

$$(ii) f(a \lor b) = f(a) \oplus f(b)$$

LATTICE ISOMORPHISM:

A homomorphism which is 1-1 and onto is called the lattice isomorphism.

DIRECT PRODUCT OF LATTICE:

Let $(L,*,\oplus)$ and (S,\wedge,\vee) be two given Lattices. The algebraic system $(L \times S, °, +)$ in which the binary operations on $L \times S$ are such that for any (a_1, b_1) and (a_2, b_2) in $L \times S$ (i) $(a_1, b_1)^\circ (a_2, b_2) = (a_1 * a_2, b_1 \wedge b_2)$

(ii)
$$(a_1, b_1) + (a_2, b_2) = (a_1 \oplus a_2, b_1 \vee b_2)$$

Is called the Direct product of the lattice $(L,*,\oplus)$ and (S,\wedge,\vee) .

THEOREM: If (L_1, \land, \lor) and $(L_2, *, \oplus)$ are two distributive lattices then $(L \times S, \circ, +)$ is also, a lattice.

PROOF: To prove ° *and* + satisfies commutative, associative & absorption laws.

(i)
$$(x_1, y_1) + (x_2, y_2) = (x_1 \oplus x_2, y_1 \vee y_2) = (x_2 \oplus x_1, y_2 \vee y_1)$$

$$= (x_2, y_2) + (x_1, y_1)$$

$$(x_1, y_1)^{\circ}(x_2, y_2) = (x_1 * x_2, y_1 \wedge y_2) = (x_2 * x_1, y_2 \wedge y_1)$$

$$= (x_2, y_2)^{\circ}(x_1, y_1)$$

° and + satisfies commutative laws.

(ii)
$$(x_1, y_1) + [(x_2, y_2) + (x_3, y_3)] = (x_1, y_1) + (x_2 \oplus x_3, y_2 \vee y_3)$$

$$= [x_1 \oplus (x_2 \oplus x_3), y_1 \vee (y_2 \vee y_3)]$$

$$= [(x_1 \oplus x_2) \oplus x_3, (y_1 \vee y_2) \vee y_3]$$

$$= [(x_1, y_1) + (x_2, y_2)] + (x_3, y_3)$$

Similarly, $(x_1, y_1)^{\circ}[(x_2, y_2)^{\circ}(x_3, y_3)] = [(x_1, y_1)^{\circ}(x_2, y_2)]^{\circ}(x_3, y_3)$ $\circ \ and + \text{satisfies associative laws.}$

(iii)
$$(x_1, y_1) + [(x_1, y_1)^{\circ}(x_2, y_2)] = (x_1, y_1) + [x_1 * x_2, y_1 \land y_2]$$

$$= (x_1 \oplus (x_1 * x_2), y_1 \lor (y_1 \land y_2)$$

$$= (x_1, y_1)$$

Similarly, $(x_1, y_1)^{\circ}[(x_1, y_1) + (x_2, y_2)] = (x_1, y_1)$

° and + satisfies absorption laws.

Hence $(L \times S, \circ, +)$ is a Lattice.

THEOREM: (DEMORGAN'S LAW OF LATTICES)

If $(L, \land, \lor, 0, 1)$ is a complemented lattice, the prove that

$$(i)(a \wedge b)' = a' \vee b'$$
 $(ii)(a \vee b)' = a' \wedge b'$

PROOF:

(i) To prove $(a \wedge b) \wedge (a' \vee b') = 0$ and $(a \wedge b) \vee (a' \vee b') = 1$

$$(a \wedge b) \wedge (a' \vee b') = ((a \wedge b) \wedge a') \vee ((a \wedge b) \wedge b') = (0 \wedge b) \vee (a \wedge 0)$$
$$= 0 \vee 0 = 0$$

$$(a \wedge b) \vee (a' \vee b') = (a \vee (a' \vee b')) \wedge (b \vee (a' \vee b')) = (1 \vee b) \wedge (a' \vee 1)$$
$$= 1 \wedge 1 = 1$$

(ii) To prove
$$(a \lor b) \land (a' \land b') = 0$$
 and $(a \lor b) \lor (a' \land b') = 1$

$$(a \lor b) \lor (a' \land b') = ((a \lor b) \lor a') \land ((a \lor b) \lor b')$$

$$= (1 \lor b) \land (a \lor 1) = 1 \land 1 = 1$$

$$(a \lor b) \land (a' \land b') = (a \land (a' \land b')) \lor (b \land (a' \land b'))$$

$$= (0 \land b') \lor (0 \land a') = 0 \lor 0 = 0$$

THEOREM:

In a complemented distributive lattice, complement is unique.

PROOF: Let us assume x & y are two compliments of a.

x is complement of $a \Rightarrow a \land x = 0$, $a \lor x = 0$.

y is complement of $a \Rightarrow a \land y = 0, a \lor y = 1$.

Now
$$x = x \lor 0 = x \lor (a \land y) = (x \lor a) \land (x \lor y) = 1 \land (x \lor y) = x \lor y$$
.
 $y = y \lor 0 = y \lor (a \land x) = (y \lor a) \land (y \lor x) = 1 \land (y \lor x) = y \lor x$.

Combining we have $x = x \lor y = y \lor x = y \Longrightarrow x = y$

Therefore, the complement is unique.

PROBLEM:

Show that in a distributive and complemented lattice,

$$a \leq b \Leftrightarrow a \wedge b^{'} = 0 \Leftrightarrow a^{'} \vee b = 1 \Leftrightarrow b^{'} \leq a^{'}$$

SOLUTION: (i) To prove
$$a \le b \implies a \land b' = 0$$

$$a \le b \Longrightarrow a \land b = a \& a \lor b = b$$

consider
$$a \wedge b' = ((a \wedge b) \wedge b') = (a \wedge b \wedge b') = a \wedge 0 = 0$$

(ii) To prove $a \wedge b' = 0 \Longrightarrow a' \vee b = 1$

Let $a \wedge b' = 0$. Take complement on both sides, $(a \wedge b')' = (0)' \Rightarrow a' \vee b = 1$

(iii) To prove $a' \lor b = 1 \Longrightarrow b' \le a'$

Let
$$a' \lor b = 1 \Rightarrow (a' \lor b) \land b' = 1 \land b' \Rightarrow (a' \land b') \lor (b \land b') = b'$$

$$\Rightarrow (a' \land b') \lor 0 = b' \Rightarrow a' \land b' = b'$$

$$\Rightarrow b' \le a'$$

(iv) To prove $b' \leq a' \Longrightarrow a \leq b$

Let $b^{'} \leq a^{'} \Rightarrow a^{'} \wedge b^{'} = b^{'}$. Taking complement on both sides $(a^{'} \wedge b^{'})^{'} = (b^{'})^{'} \Rightarrow a \vee b = b \Rightarrow b \geq a \Rightarrow a \leq b$.

PROBLEM

If S_{42} is the set of all divisors of 42 and D is the relation "divisor of" on S_{42} ,

prove that $\{S_{42}, D\}$ is a complimented lattice.

SOLUTION: $S_{42} = \{1,2,3,6,7,14,21,24\}$

Here the least element is 1 and greatest element is 42.

LCM $\{1,42\} = 1 \lor 42 = 42$ and GCD $\{1,42\} = 1 \land 42 = 1$

Therefore, complement of 1 is 42.

since $2 \land 21 = 2$ and $2 \lor 21 = 21 \implies (2)' = 21$.

Similarly, complement of 3 and 6 are 14 and 7 respectively.

Therefore, every element of S_{42} has complement. $\{S_{42}, D\}$ is a complimented lattice.

