2-GROUP BELYI MAPS

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Mathematics

by

Michael James Musty

DARTMOUTH COLLEGE

Hanover, New Hampshire

March 18, 2019

John Voight, Chair	
Thomas Shemanske	
David Roberts	
Carl Pomerance	

Examining Committee:

Dean of Graduate and Advanced Studies

F. Jon Kull, Ph.D.

Abstract

Write your abstract here.

Preface

Preface and Acknowledgments go here!

Contents

	Abs	stract					
	Pref	ace		iii			
1	Intr	oducti	ion	1			
	1.1	Belyi	maps from a historical perspective	1			
		1.1.1	Inverse Galois theory	2			
		1.1.2	Dessins d'enfants	2			
2	Bac	kgroui	\mathbf{ad}	3			
	2.1	What	is a Belyi map?	3			
		2.1.1	Complex manifolds and Riemann surfaces	3			
		2.1.2	Algebraic curves	3			
		2.1.3	Riemann's existence theorem	4			
		2.1.4	Belyi's theorem	5			
		2.1.5	Belyi maps and Galois Belyi maps	5			
		2.1.6	Permutation triples and passports	7			
	2.2	Group	theory	9			
		2.2.1	Central group extensions and $H^2(G,A)$	9			
		2.2.2	Holt's algorithm and Magma implementation	9			

		2.2.3	Results on 2-groups	Ĝ						
	2.3	Jacobi	ans of curves	Ć						
		2.3.1	2.3.1 Abel-Jacobi and the construction over \mathbb{C}							
		2.3.2	Algebraic construction	Ĝ						
		2.3.3	Riemann-Roch	E						
		2.3.4	Torsion points and torsion fields	Ĝ						
	2.4	Galois	representations	Ĉ						
		2.4.1	Representations of Galois groups of number fields	S						
		2.4.2	Representations coming from geometry	S						
3	A d	latabas	se of 2-group Belyi maps	10						
	3.1	2-group Belyi maps								
	3.2	Degree	e 1 Belyi maps	11						
	3.3	An alg	gorithm to enumerate isomorphism classes of 2-group Belyi maps	11						
	3.4	An alg	gorithm to compute 2-group Belyi curves and maps	21						
	3.5	Runni	ng time analysis	24						
	3.6	Explicit computations								
4	Cla	ssifying	g low genus 2-group Belyi maps	2 5						
	4.1	Remai	rks on Galois Belyi maps	25						
	4.2	Genus	0	26						
	4.3	Genus	1	30						
	4.4	Genus 2								
	4.5	Genus 3								
	4.6	Hyper	elliptic	32						

5	F'iel	ds of definition of 2-group Belyi maps	33
	5.1	Fields of moduli	33
	5.2	Refined passports	34
	5.3	A refined conjecture	34
6	Gro	ess's conjecture for $p=2$	36
	6.1	Beckmann's theorem	36
	6.2	Past results on Gross's conjecture	37
	6.3	A nonsolvable Galois number field ramified only at 2	37
R	efere	nces	38

List of Tables

List of Figures

2.1.1 Belyi map isomorphism	6
2.1.2 Belyi map lax isomorphism	6
$3.3.1 \widetilde{\sigma}$ a lift of σ	11
$3.3.2\widetilde{G}$ a (central) extension of G	12
3.3.3 The permutation triples $\widetilde{\sigma}$ constructed in Algorithm 3.3.5 correspond	
to Belyi maps $\widetilde{\phi}:\widetilde{X}\to\mathbb{P}^1$ in the above diagram	15
3.3.4 Two extensions of G in Example $3.3.7$	15
3.3.5 A 2-group Belyi map ϕ as a sequence of degree 2 covers. For j \in	
$\{1,\ldots,i\},\phi$ factors through a degree 2^j Belyi map denoted ϕ_j	20
3.4.1 Algorithm 3.4.3 describes how to construct $\widetilde{\phi}$ corresponding to a per-	
mutation triple $\widetilde{\sigma}$ from a given 2-group Belyi map ϕ	22

Chapter 1

Introduction

Section 1.1

Belyi maps from a historical perspective

In [2], G.V. Belyi proved that a Riemann surface X can be defined over a number field (when viewed as an algebraic curve over \mathbb{C}) if and only if there exists a non-constant meromorphic function $\phi: X \to \mathbb{P}^1_{\mathbb{C}}$ unramified outside the set $\{0,1,\infty\}$. This result came to be known as Belyi's Theorem and the maps ϕ came to be known as Belyi maps (or Belyi functions). Although Belyi's Theorem has an elementary proof, it was a starting point for a great deal of modern research in the area. This work was largely spurred on by Grothendieck's *Esquisse d'un programme* [3] where he was impressed enough to write

jamais sans doute un résultat profond et déroutant ne fut démontré en si peu de lignes!

never, without a doubt, was such a deep and disconcerting result proved in so few lines!

1.1 Belyi maps from a historical perspective

An intriguing aspect of the theory of Belyi maps that arose from Grothendieck's work in the 1980s is the reformulation of these objects in a purely topological way. The preimage $\phi^{-1}([0,1])$ is a graph embedded on X, and Grothendieck developed axioms for embedded graphs in such a way that they coincided exactly with the category of Belyi maps. He called these graphs dessins d'enfants or children's drawings.

Even as a standalone theorem, Belyi's Theorem is a remarkable result in the mysterious way that it allows us to distinguish between algebraic and transcendental objects. However, the main interest in Belyi maps arises from Galois theory. The absolute Galois group of $\mathbb Q$ acts on the set of Belyi maps via the defining equations. The induced action on the set of dessins

1.1.1. Inverse Galois theory, Hurwitz families, and fields with few ramified primes

Inverse Galois theory.

Hurwitz families.

1.1.2. Grothendieck's theory of dessins d'enfants

Chapter 2

Background

Section 2.1

What is a Belyi map?

2.1.1. Complex manifolds and Riemann surfaces

MM: [enough to define Riemann surfaces]

Definition 2.1.1. A branched cover of Riemann surfaces is a nonconstant holomorphic map $\phi: X \to \mathbb{P}^1$ where X is a compact connected Riemann surface.

2.1.2. Algebraic curves

MM: [enough to define good curves and function fields]

Theorem 2.1.2. MM: [correspondence curves and function fields]

Definition 2.1.3. Let $K \subseteq \mathbb{C}$ be a field. A branched cover of algebraic curves over K is a finite map of curves $\phi \colon X \to \mathbb{P}^1$ defined over K.

2.1.3. Riemann's existence theorem

Riemann surfaces are defined in Section 2.1.1. Algebraic curves are defined in Section 2.1.2. Here in Section 2.1.3 we establish the connection between these objects over the complex numbers.

Let X be an algebraic curve over \mathbb{C} . Let $\mathbb{C}(t)$ denote the function field of \mathbb{P}^1 . By Theorem 2.1.2, X corresponds to a finite extension $L := \mathbb{C}(X)$ over $\mathbb{C}(t)$. Let α be a primitive element of $L/\mathbb{C}(t)$. Then there exists a polynomial

$$f(x,t) = a_0(t) + a_1(t)x + a_2(t)x^2 + \dots + a_n(t)x^n \in \mathbb{C}(t)[x]$$
 (2.1.1)

where $f(\alpha, t) = 0$ and (after possibly clearing denominators) $a_i(t) \in \mathbb{C}[t]$. The polynomial f in Equation 2.1.1 defines a Riemann surface X' as a branched cover of \mathbb{P}^1 with branch points

$$S := \{t_0 \in \mathbb{C} : f(x, t_0) \text{ has repeated roots } \}.$$

Here x can be viewed as a meromorphic function on X' and we can identify the field of meromorphic functions on X' with L. This explains how we obtain a Riemann surface from an algebraic curve.

Suppose instead we start with a compact Riemann surface X. Can we reverse the above process to construct an algebraic curve? The crucial part of this process is proving that there exists a meromorphic function on X that realizes X as a branched cover of \mathbb{P}^1 (see Theorem 2.1.4 below). Given the existence of such a function, the field of meromorphic functions on X is then realized as a finite extension of the meromorphic functions on \mathbb{P}^1 . Finally, by Theorem 2.1.2, this corresponds to an al-

2.1 What is a Belyi map?

gebraic curve. The existence of such a function is given by Theorem 2.1.4 (Riemann's existence theorem).

Theorem 2.1.4. Let X be a compact Riemann surface. Then there exists a meromorphic function on X that separates points. That is, for any set of distinct points $\{x_1, \ldots, x_n\} \subset X$ and any set of distinct points $\{t_1, \ldots, t_n\} \subset \mathbb{P}^1$ there exists a meromorphic function f on X such that $f(x_i) = t_i$ for all i.

MM: [todo: more details...other formulations]

2.1.4. Belyi's theorem

In Sections 2.1.1, 2.1.2, and 2.1.3 we established the equivalence between compact Riemann surfaces and algebraic curves over \mathbb{C} . This was done, in part, using branched covers. It turns out that branched covers are the key to descending from the transcendental world to the number-theoretic world in the following sense.

Theorem 2.1.5 (Belyi's theorem [2]). An algebraic curve X over \mathbb{C} can be defined over a number field if and only if there exists a branched cover $\phi \colon X \to \mathbb{P}^1$ unramified outside $\{0,1,\infty\}$.

These remarkable covers are the main focus of this work.

2.1.5. Belyi maps and Galois Belyi maps

We now set up the framework to discuss the main mathematical objects of interest in this work.

Definition 2.1.6. A Belyi map is a branched cover of algebraic curves over \mathbb{C} (equivalently of Riemann surfaces) $\phi \colon X \to \mathbb{P}^1$ that is unramified outside $\{0, 1, \infty\}$.

Definition 2.1.7. Two Belyi maps $\phi: X \to \mathbb{P}^1$ and $\phi': X' \to \mathbb{P}^1$ are isomorphic if there exists an isomorphism between X and X' such that the diagram in Figure 2.1.1 commutes. If instead we only insist that the isomorphism makes the diagram in Figure 2.1.2 commute, then we say that ϕ and ϕ' are lax isomorphic

Figure 2.1.1: Belyi map isomorphism

$$\begin{array}{ccc} X & \stackrel{\sim}{\longrightarrow} & X' \\ \phi \Big| & & & \downarrow \phi' \\ \mathbb{P}^1 & \stackrel{\sim}{\longrightarrow} & \mathbb{P}^1 \end{array}$$

Figure 2.1.2: Belyi map lax isomorphism

Definition 2.1.8. The geometry type of a Belyi map MM: [todo]

(degenerate)
(spherical)
(Euclidean)
(hyperbolic)

Proposition 2.1.9. Galois correspondence of Belyi maps

Proof.

Proposition 2.1.10. MM: [Galois action on Belyi maps]

2.1.6. Permutation triples and passports

Definition 2.1.11. MM: [passports and such]

A (nice) curve over K is a smooth, projective, geometrically connected (irreducible) scheme of finite type over K that is pure of dimension 1. After extension to \mathbb{C} , a curve may be thought of as a compact, connected Riemann surface. A Belyi map over K is a finite morphism $\phi \colon X \to \mathbb{P}^1$ over K that is unramified outside $\{0,1,\infty\}$; we will sometimes write (X,ϕ) when we want to pay special attention to the source curve X. Two Belyi maps ϕ, ϕ' are isomorphic if there is an isomorphism $\iota \colon X \xrightarrow{\sim} X'$ of curves such that $\phi'\iota = \phi$. Let $\phi \colon X \to \mathbb{P}^1$ be a Belyi map over $\overline{\mathbb{Q}}$ of degree $d \in \mathbb{Z}_{\geq 1}$. The monodromy group of ϕ is the Galois group $\mathrm{Mon}(\phi) := \mathrm{Gal}(\mathbb{C}(X) \mid \mathbb{C}(\mathbb{P}^1)) \leq S_d$ of the corresponding extension of function fields (understood as the action of the automorphism group of the normal closure); the group $\mathrm{Mon}(\phi)$ may also be obtained by lifting paths around $0,1,\infty$ to X. A permutation triple of degree $d \in \mathbb{Z}_{\geq 1}$ is a tuple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty) \in S_d^3$ such that $\sigma_\infty \sigma_1 \sigma_0 = 1$. A permutation triple is transitive if the subgroup $\langle \sigma \rangle \leq S_d$ generated by σ is transitive. We say that two permutation triples σ , σ' are simultaneously conjugate if there exists $\tau \in S_d$ such that

$$\sigma^{\tau} := (\tau^{-1}\sigma_0\tau, \tau^{-1}\sigma_1\tau, \tau^{-1}\sigma_\infty\tau) = (\sigma'_0, \sigma'_1, \sigma'_\infty) = \sigma'. \tag{2.1.2}$$

An automorphism of a permutation triple σ is an element of S_d that simultaneously conjugates σ to itself, i.e., $\operatorname{Aut}(\sigma) = Z_{S_d}(\langle \sigma \rangle)$, the centralizer inside S_d .

Lemma 2.1.12. The set of transitive permutation triples of degree d up to simultaneous conjugation is in bijection with the set of Belyi maps of degree d up to isomorphism.

Proof. The correspondence is via monodromy [4, Lemma 1.1]; in particular, the monodromy group of a Belyi map is (conjugate in S_d to) the group generated by σ .

The group $\operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$ acts on Belyi maps by acting on the coefficients of a set of defining equations; under the bijection of Lemma 2.1.12, it thereby acts on the set of transitive permutation triples, but this action is rather mysterious. We can cut this action down to size by identifying some basic invariants, as follows. A passport consists of the data $\mathcal{P} = (g, G, \lambda)$ where $g \geq 0$ is an integer, $G \leq S_d$ is a transitive subgroup, and $\lambda = (\lambda_0, \lambda_1, \lambda_\infty)$ is a tuple of partitions λ_s of d for $s = 0, 1, \infty$. These partitions will be also be thought of as a tuple of conjugacy classes $C = (C_0, C_1, C_\infty)$ by cycle type, so we will also write passports as (g, G, C). The passport of a Belyi map $\phi \colon X \to \mathbb{P}^1$ is $(g(X), \operatorname{Mon}(\phi), (\lambda_0, \lambda_1, \lambda_\infty))$, where g(X) is the genus of X and X_s is the partition of d obtained by the ramification degrees above $s = 0, 1, \infty$, respectively. Accordingly, the passport of a transitive permutation triple σ is $(g(\sigma), \langle \sigma \rangle, \lambda(\sigma))$, where (by Riemann–Hurwitz)

$$g(\sigma) := 1 - d + (e(\sigma_0) + e(\sigma_1) + e(\sigma_\infty))/2$$
 (2.1.3)

and e is the index of a permutation (d minus the number of orbits), and $\lambda(\sigma)$ is the cycle type of σ_s for $s = 0, 1, \infty$. The size of a passport \mathcal{P} is the number of simultaneous conjugacy classes (as in 2.1.2) of (necessarily transitive) permutation triples σ with passport \mathcal{P} . The action of $\operatorname{Gal}(\overline{\mathbb{Q}} | \mathbb{Q})$ on Belyi maps preserves passports. Therefore, after computing equations for all Belyi maps with a given passport, we can try to identify the Galois orbits of this action. We say a passport is irreducible if it has one $\operatorname{Gal}(\overline{\mathbb{Q}} | \mathbb{Q})$ -orbit and reducible otherwise.

2.2 Group theory

Section 2.2

Group theory

2.2.1. Central group extensions and $H^2(G, A)$

Definition 2.2.1.

- 2.2.2. Holt's algorithm and Magma implementation
- 2.2.3. Results on 2-groups

Lemma 2.2.2. MM: [todo]

Section 2.3

Jacobians of curves

- 2.3.1. Abel-Jacobi and the construction over $\mathbb C$
- 2.3.2. Algebraic construction
- 2.3.3. Riemann-Roch
- 2.3.4. Torsion points and torsion fields

Section 2.4

Galois representations

- 2.4.1. Representations of Galois groups of number fields
- 2.4.2. Representations coming from geometry

Chapter 3

A database of 2-group Belyi maps

In this chapter we describe an algorithm to generate 2-group Belyi maps of a given degree. We begin by defining this particular family of Belyi maps in Section 3.1. The algorithm is inductive in the degree. The base case in degree 1 is discussed in Section 3.2. We then move on to describe the inductive step of the algorithm which we describe in two parts. First we discuss the algorithm to enumerate the isomorphism classes using permutation triples in Section 3.3. For a discussion on the relationship between permutation triples and Belyi maps see Section 2.1. Next we discuss the inductive step to produce Belyi curves and maps in Section 3.4. In Section 3.5 we give a detailed description of the running time of the algorithm. Lastly, in Section 3.6, we discuss the implementation and computations that we have carried out explicitly.

Section 3.1

2-group Belyi maps

Recall the definition of a Belyi map in Section 2.1. In this section we define a narrow our focus to a more specific family of Belyi maps which we now describe.

Definition 3.1.1. A degree d Belyi map ϕ with monodromy group G is said to be Galois if #G = d.

Definition 3.1.2. A 2-group Belyi map is a Galois Belyi map with monodromy group a 2-group.

MM: [some exposition]

Section 3.2

Degree 1 Belyi maps

Section 3.3

An algorithm to enumerate isomorphism classes of 2-group Belyi maps

The algorithm we describe here is iterative. The degree 1 case is discussed in Section 3.2. We now set up some notation for the iteration.

Notation 3.3.1. First we suppose that we are given σ a permutation triple corresponding to a 2-group Belyi map $\phi: X \to \mathbb{P}^1$.

Definition 3.3.2. We say that a permutation triple $\widetilde{\sigma}$ is a degree 2 lift (or simply a lift) of a permutation triple σ if there exists a short exact sequence of groups as in Figure 3.3.1 with $\iota(\mathbb{Z}/2\mathbb{Z})$ contained in the center of $\langle \widetilde{\sigma} \rangle$.

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\iota} \langle \widetilde{\sigma} \rangle \xrightarrow{\pi} \langle \sigma \rangle \longrightarrow 1$$

Figure 3.3.1: $\widetilde{\sigma}$ a lift of σ

3.3 An algorithm to enumerate isomorphism classes of 2-group Belyi maps

In Algorithm 3.3.5 below we describe how to determine all lifts $\tilde{\sigma}$ (up to isomorphism) of a given permutation triple σ .

Lemma 3.3.3. Let σ be a permutation triple corresponding to a 2-group Belyi map $\phi: X \to \mathbb{P}^1$ and $\widetilde{\sigma}$ a lift of σ corresponding to a 2-group Belyi map $\widetilde{\phi}: \widetilde{X} \to \mathbb{P}^1$. Then there exists a permutation triple $\widetilde{\sigma}'$ that is simultaneously conjugate to $\widetilde{\sigma}$ with $\iota(\langle \widetilde{\sigma}' \rangle)$ contained in the center of $\langle \sigma \rangle$.

$$\square$$

Remark 3.3.4. In light of Lemma 3.3.3, we can restrict our attention to central extensions of $\langle \sigma \rangle$ in Definition 3.3.2.

Algorithm 3.3.5. Let the notation be as described above in 3.3.1.

Input: $\sigma = (\sigma_0, \sigma_1, \sigma_\infty) \in S_d^3$ a permutation triple corresponding to a 2-group Belyi map

Output: all lifts $\widetilde{\sigma}$ of σ up to simultaneous conjugation in S_{2d} sorted by passport

1. Let $G = \langle \sigma \rangle$ and compute all central extensions \widetilde{G} sitting in the exact sequence in Figure 3.3.2 up to isomorphism (see Definition 2.2.1). For more information about the algorithms to do this see Section 2.2.2.

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\iota} \widetilde{G} \xrightarrow{\pi} G \longrightarrow 1$$

Figure 3.3.2: \widetilde{G} a (central) extension of G

2. For each extension \widetilde{G} as in Figure 3.3.2 from the previous step we perform the following:

(a) Consider the set of triples

$$\{\widetilde{\sigma} := (\widetilde{\sigma}_0, \widetilde{\sigma}_1, \widetilde{\sigma}_\infty) : \widetilde{\sigma}_s \in \pi^{-1}(\sigma_s) \text{ for } s \in \{0, 1, \infty\}\}$$
 (3.3.1)

and let Lifts(σ) denote the set of such $\widetilde{\sigma}$ with the property that $\widetilde{\sigma}_{\infty}\widetilde{\sigma}_{1}\widetilde{\sigma}_{0}=1$ and $\langle \widetilde{\sigma} \rangle = \widetilde{G}$.

(b) For each $\widetilde{\sigma} \in \text{Lifts}(\sigma)$ compute $\text{order}(\widetilde{\sigma}) := (\text{order}(\widetilde{\sigma}_0), \text{order}(\widetilde{\sigma}_1), \text{order}(\widetilde{\sigma}_\infty)) \in \mathbb{Z}^3$ and sort $\text{Lifts}(\sigma)$ according to $\text{order}(\widetilde{\sigma})$. Let

$$\operatorname{Lifts}(\sigma,(a,b,c)) := \{ \widetilde{\sigma} \in \operatorname{Lifts}(\sigma) : \operatorname{order}(\widetilde{\sigma}) = (a,b,c) \}. \tag{3.3.2}$$

- (c) For each set of triples $\text{Lifts}(\sigma,(a,b,c))$ remove simultaneously conjugate triples so that $\text{Lifts}(\sigma,(a,b,c))$ has exactly one representative from each simultaneous conjugacy class. MM: [TODO: reword]
- 3. Return the union of the sets Lifts(σ , (a, b, c)) ranging over all extensions as in Figure 3.3.2 and for each extension ranging over all orders (a, b, c).

Proof of correctness. The algorithms in Step 1 are addressed in Section 2.2.2. Let $\phi: X \to \mathbb{P}^1$ be the 2-group Belyi map corresponding to σ . By Proposition 2.1.9, the groups obtained from Step 1 are precisely the groups that can occur as monodromy groups of degree 2 covers of X. MM: [lemma in section about extensions (or in background about Belyi maps) to prove that two isomorphic extensions cannot produce nonisomorphic Belyi maps and that two nonisomorphic extensions cannot produce isomorphic Belyi maps] In Step 2 we restrict our attention to a single extension of G as in Figure 3.3.2. When we pullback a triple σ under the map π , there are $2^3 = 8$

preimages $\widetilde{\sigma}$. Of these 8 preimages, exactly 4 have the property that $\widetilde{\sigma}_{\infty}\widetilde{\sigma}_1\widetilde{\sigma}_0 = 1$. Of these 4 triples, we only take those that generate \widetilde{G} and this makes up the set Lifts(σ). In Step 2(b), we are sorting Lifts(σ) by passport. Since 2-group Belyi maps are Galois, the cycle structure of each $\widetilde{\sigma}_s \in \widetilde{\sigma}$ is determined by the order of $\widetilde{\sigma}_s$ so that sorting by order is the same as sorting by cycle structure.

Remark 3.3.6. In fact, even though we do not need this for the algorithm, there are at most 2 different passports that can occur in Lifts(σ). 2 different passports occur when one of $\sigma_s \in \sigma$ is the identity. If σ does not contain an identity element, then all triples in Lifts(σ) have the same passport.

At this point, we have constructed the sets $Lifts(\sigma, (a, b, c))$. In light of Remark 3.3.6, there are only 2 possibilities:

- There is only one such set Lifts $(\sigma, (a, b, c))$ consisting of at most 4 triples.
- There are 2 sets Lifts $(\sigma, (a, b, c))$ and Lifts $(\sigma, (a', b', c'))$ each consisting of at most 2 triples.

Step 2(c) is to eliminate simultaneous conjugation in each set Lifts(σ , (a, b, c)). After Step 2(c) is complete, the sets Lifts(σ , (a, b, c)) contain exactly one permutation triple for each isomorphism class of 2-group Belyi map with passport determined by (a, b, c) and monodromy group \widetilde{G} such that the diagram in Figure 3.3.3 commutes. In Step 3 we collect together all sets Lifts(σ , (a, b, c)) as we range over all possible extensions in Step 1, and by the discussion for Step 2 yields the desired output.

We now illustrate Algorithm 3.3.5 with the following example.

Example 3.3.7. In this example we carry out Algorithm 3.3.5 for the degree 2 permutation triple $\sigma = ((12), (1)(2), (12))$. Here $G = \langle \sigma \rangle \cong \mathbb{Z}/2\mathbb{Z}$. In Step 1, we obtain

3.3 An algorithm to enumerate isomorphism classes of 2-group Belyi maps

Figure 3.3.3: The permutation triples $\widetilde{\sigma}$ constructed in Algorithm 3.3.5 correspond to Belyi maps $\widetilde{\phi}: \widetilde{X} \to \mathbb{P}^1$ in the above diagram.

two group extensions $\widetilde{G}_1 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and $\widetilde{G}_2 \cong \mathbb{Z}/4\mathbb{Z}$: We will consider the two

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\iota_1} \widetilde{G}_1 \xrightarrow{\pi_1} G \longrightarrow 1$$

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\iota_2} \widetilde{G}_2 \xrightarrow{\pi_2} G \longrightarrow 1$$

Figure 3.3.4: Two extensions of G in Example 3.3.7

extensions separately:

• For \widetilde{G}_1 , we have

$$\begin{aligned} \operatorname{Lifts}(\sigma) = & \Big\{ ((1\,2)(3\,4), (1)(2)(3)(4), (1\,2)(3\,4)), ((1\,2)(3\,4), (1\,3)(2\,4), (1\,4)(2\,3)), \\ & \qquad \qquad ((1\,4)(2\,3), (1)(2)(3)(4), (1\,4)(2\,3)), ((1\,4)(2\,3), (1\,3)(2\,4), (1\,2)(3\,4)) \Big\} \end{aligned}$$

Before we continue with the algorithm, let us take a moment to explain this more closely in the following remark.

Remark 3.3.8. First, note that the image of ι_1 is an order 2 subgroup of \widetilde{G}_1 . Let $\tau \in \widetilde{G}_1$ denote the generator of this image. From the perspective of branched covers, τ is identifying 4 sheets in a degree 4 cover down to 2 sheets in a degree 2 cover. Elements $\widetilde{\sigma}$ of Lifts(σ) must induce a well-defined action on the identified

sheets and this action must be compatible with σ . In this example $\tau = (1\,3)(2\,4)$ meaning that τ identifies the sheets labeled 1 and 3 into a single sheet and τ identifies the sheets labeled 2 and 4 into a single sheet. Another way of saying that $\widetilde{\sigma}$ induces a well-defined action is that $\widetilde{\sigma}$ acts on the blocks $\{13,24\}$. Saying that this action is compatible with σ means that for each $s \in \{0,1,\infty\}$ the induced action of $\widetilde{\sigma}_s$ on blocks is the same as σ_s . For

$$\tilde{\sigma} = ((1\,2)(3\,4), (1\,3)(2\,4), (1\,4)(2\,4))$$

we have $\widetilde{\sigma}_0 \boxed{13} = \boxed{24}$ and $\widetilde{\sigma}_0 \boxed{24} = \boxed{13}$ so that the induced permutation of blocks is

which is the same as the permutation $\sigma_0 = (12)$ (as long as we identity $\boxed{13}$ with 1 and $\boxed{24}$ with 2).

To finish Step 2(a) we only take triples in Lifts(σ) that generate \widetilde{G}_1 , so at the end of Step 2(a) for this extension we have

$$Lifts(\sigma) = \Big\{ ((1\,2)(3\,4), (1\,3)(2\,4), (1\,4)(2\,3)), ((1\,4)(2\,3), (1\,3)(2\,4), (1\,2)(3\,4)) \Big\}.$$

In Step 2(b) we sort Lifts(σ) into passports as determined by orders of elements. Here, all $\tilde{\sigma} \in \text{Lifts}(\sigma)$ have the same orders (and hence belong to the same passport). Thus we get a single set Lifts(σ , (2,2,2)) = Lifts(σ). Lastly, in Step 2(c) we see that that the two triples in Lifts(σ , (2,2,2)) are simultaneously conjugate (by the permutation (24)) and hence we remove one of the triples 3.3 An algorithm to enumerate isomorphism classes of 2-group Belyi maps

from Lifts(σ , (2, 2, 2)).

• For \widetilde{G}_2 , we have

$$\text{Lifts}(\sigma) = \Big\{ ((1\,4\,3\,2), (1)(2)(3)(4), (1\,2\,3\,4)), ((1\,2\,3\,4), (1\,3)(2\,4), (1\,2\,3\,4)), \\ ((1\,2\,3\,4), (1)(2)(3)(4), (1\,4\,3\,2)), ((1\,4\,3\,2), (1\,3)(2\,4), (1\,4\,3\,2)) \Big\}$$

All 4 of the above triples in Lifts(σ) generate \widetilde{G}_2 , so we continue to Step 2(b) with $\# \operatorname{Lifts}(\sigma) = 4$. In Step 2(b), we sort Lifts(σ) into two sets Lifts(σ , (4, 1, 4)) and Lifts(σ , (4, 2, 4)) each containing 2 triples. In Step 2(c), we find that the 2 triples in Lifts(σ , (4, 1, 4)) are simultaneously conjugate (by the permutation (24)) and the 2 triples in Lifts(σ , (4, 2, 4)) are simultaneously conjugate (also by the permutation (24)), so we remove one permutation triple from each of these sets so that Lifts(σ , (4, 1, 4)) and Lifts(σ , (4, 2, 4)) both have cardinality 1.

In Step 3, we return

$$Lifts(\sigma, (2, 2, 2)) \cup Lifts(\sigma, (4, 1, 4)) \cup Lifts(\sigma, (4, 2, 4))$$

which is a set of 3 permutation triples each corresponding to an isomorphism class of 2-group Belyi map as in Figure 3.3.3.

Now that we have an algorithm to find all lifts of a single permutation triple, the next step is to describe how to use this to organize all isomorpism classes of 2-group Belyi maps of a given degree.

Algorithm 3.3.9. Let the notation be as described above in 3.3.1.

Input: $d = 2^m$ for some positive integer m

3.3 An algorithm to enumerate isomorphism classes of 2-group Belyi maps

Output: a sequence of bipartite graphs $\mathscr{G}_2, \mathscr{G}_4, \ldots, \mathscr{G}_{2^m}$ where the two sets of nodes of \mathscr{G}_{2^i} are

- $\mathscr{G}^{\text{above}}_{2^i}$: the set of isomorphism classes of 2-group Belyi maps of degree 2^i indexed by permutation triples $\widetilde{\sigma}$
- $\mathscr{G}_{2^i}^{\text{below}}$: the set of isomorphism classes of 2-group Belyi maps of degree 2^{i-1} indexed by permutation triples σ

and there is an edge between $\tilde{\sigma}$ and σ if and only if $\tilde{\sigma}$ is a lift (as in Definition 3.3.2) of σ . This algorithm is iterative. For each $i=1,\ldots,m$, we use $\mathscr{G}_{2^i}^{\text{below}}$ to compute $\mathscr{G}_{2^i}^{\text{above}}$ and then we define

$$\mathscr{G}^{\mathrm{below}}_{2^{i+1}} := \mathscr{G}^{\mathrm{above}}_{2^{i}}$$

and continue the process.

- 1. To begin the iteration we let $\mathscr{G}_2^{\text{below}} = \{\sigma\}$ where $\sigma = ((1), (1), (1)) \in S_1^3$ corresponds to the degree 1 Belyi map.
- 2. Now suppose we have computed $\mathscr{G}^{\text{below}}_{2^i}$. We compute $\mathscr{G}^{\text{above}}_{2^i}$ as follows:
 - (a) Apply Algorithm 3.3.5 to every $\sigma \in \mathscr{G}_{2^i}^{\text{below}}$ to obtain $\#\mathscr{G}_{2^i}^{\text{below}}$ sets $\text{Lifts}(\sigma)$. As a word of caution, the notation $\text{Lifts}(\sigma)$ has a different meaning here than in Algorithm 3.3.5. Here $\text{Lifts}(\sigma)$ is the set of lifts of σ up to simultaneous conjugation. Let

$$\mathscr{G}^{\mathrm{above}}_{2^i} := \bigcup_{\sigma \in \mathscr{G}^{\mathrm{below}}_{2^i}} \mathrm{Lifts}(\sigma)$$

and place an edge of \mathscr{G}_{2^i} between $\widetilde{\sigma} \in \mathscr{G}_{2^i}^{above}$ and $\sigma \in \mathscr{G}_{2^i}^{below}$ if and only if $\widetilde{\sigma} \in \text{Lifts}(\sigma)$.

- (b) Consider all pairs $(\widetilde{\sigma}, \widetilde{\sigma}') \in \mathscr{G}_{2^i}^{above}$ and for each pair test if $\widetilde{\sigma}$ is simultaneously conjugate to $\widetilde{\sigma}'$ in S_{2^i} . If the pair is simultaneously conjugate, then combine the nodes $\widetilde{\sigma}$ and $\widetilde{\sigma}'$ into a single node (take either triple) and combine the edge sets of $\widetilde{\sigma}$ and $\widetilde{\sigma}'$ to be the edge set of the new node.
- (c) Return the resulting bipartite graph as \mathcal{G}_{2^i} .
- (d) If i < m, then let $\mathscr{G}^{\text{below}}_{2^{i+1}} := \mathscr{G}^{\text{above}}_{2^i}$ and repeat Step 2 with i+1. If i=m, then return the sequence of bipartite graphs $\mathscr{G}_2, \mathscr{G}_4, \dots, \mathscr{G}_{2^m}$.

Proof of correctness. We first address the claim that every 2-group Belyi map ϕ : $X \to \mathbb{P}^1$ of degree 2^i is represented by a permutation triple in $\mathcal{G}_{2^i}^{\text{above}}$. Let G be the monodromy group of ϕ . Since $\#G = 2^i$, by Lemma 2.2.2, there exists a normal tower of groups

$$G_0 \le G_1 \le \dots \le G_i \tag{3.3.3}$$

where $G_0 = \{1\}$, $G_i = G$, and each consecutive quotient is isomorphic to $\mathbb{Z}/2\mathbb{Z}$. By the Galois correspondence, Proposition 2.1.9, this normal tower of groups corresponds to the diagram in Figure 3.3.5. Let σ_j be the permutation triple corresponding to ϕ_j in Figure 3.3.5. Applying Algorithm 3.3.5 to σ_j we obtain σ_{j+1} as a lift of σ_j so that the permutation triple corresponding to ϕ appears in $\mathcal{G}_{2^i}^{\text{above}}$. This shows that every 2-group Belyi map of degree 2^i is represented by at least one node in \mathcal{G}_{2^i} . We now claim that every 2-group Belyi map of degree 2^i is represented by exactly one node in \mathcal{G}_{2^i} . Since we are applying Algorithm 3.3.5 to every permutation triple in $\mathcal{G}_{2^i}^{\text{above}}$ has

Figure 3.3.5: A 2-group Belyi map ϕ as a sequence of degree 2 covers. For $j \in \{1, \ldots, i\}$, ϕ factors through a degree 2^j Belyi map denoted ϕ_j .

simultaneously conjugate triples which arise when a degree 2^i Belyi map is a degree 2 cover of more than one nonisomorphic Belyi map of degree 2^{i-1} . In Step 2(b), we combine permutation triples in $\mathcal{G}_{2^i}^{above}$ that are simultaneously conjugate by taking a single permutation triple to represent this isomorphism class of 2-group Belyi map. Note that in Step 2(b) we never remove any edges in the graph \mathcal{G}_{2^i} . It follows from Step 2(b) that $\mathcal{G}_{2^i}^{above}$ has at most one node for each 2-group Belyi map isomorphism class of degree 2^i .

Theorem 3.3.10. The following table lists the number of isomorphism classes of 2-group Belyi maps of degree d for d up to 256.

d	2	4	8	16	32	64	128	256
#								

Proof. Apply Algorithm 3.3.9.

Algorithm 3.3.11. We use Algorithm 3.3.9 to count the number of Passports of 2-group Belyi maps of a given degree. MM: [todo]

Theorem 3.3.12. The following table lists the number of passports of 2-group Belyi maps of degree d for d up to 256.

d	2	4	8	16	32	64	128	256
# passports	3	7	16	41	96	267	834	2893

Proof. Apply Algorithm 3.3.11.

Section 3.4

An algorithm to compute 2-group Belyi curves and maps

The algorithm we describe here is iterative. The degree 1 case is discussed in Section 3.2. We now set up some notation for the iteration.

Notation 3.4.1. First we suppose we are given the following data:

- $X \subset \mathbb{P}^n_K$ defined over a number field K with coordinates x_0, \ldots, x_n cut out by the equations $\{h_i = 0\}_i$ with $h_i \in K[x_0, \ldots, x_n]$
- $\phi: X \to \mathbb{P}^1$ a 2-group Belyi map of degree $d = 2^n$ given by $\phi([x_0: \dots : x_n]) = [x_0: x_1]$ with monodromy group $G = \langle \sigma \rangle$ (necessarily a 2-group) with σ a permutation triple corresponding to ϕ

- For $s \in \{0, 1, \infty\}$ and τ a cycle of $\sigma_s \in \sigma$, denote the ramification point above s corresponding to τ by $Q_{s,\tau}$
- $Y \subset \mathbb{A}^n_K$ the affine patch of X with $x_0 \neq 0$ with coordinates (y_1, \ldots, y_n) where $y_i = x_i/x_0$ cut out by the equations $\{g_i = 0\}_i$ with $g_i \in K[y_1, \ldots, y_n]$ so that $\phi: Y \to \mathbb{A}^1$ is given by $\phi(y_1, \ldots, y_n) = y_1$
- $\widetilde{\sigma}$ as in the output of Algorithm 3.3.5 applied to the input σ

Algorithm 3.4.3 below describes how to lift the degree d Belyi map ϕ to a degree 2d Belyi map $\widetilde{\phi}$ with ramification prescribed by $\widetilde{\sigma}$ (also see Figure 3.4).

Figure 3.4.1: Algorithm 3.4.3 describes how to construct $\widetilde{\phi}$ corresponding to a permutation triple $\widetilde{\sigma}$ from a given 2-group Belyi map ϕ .

Lemma 3.4.2. Let D be a degree 0 divisor on X. Then dim $\mathcal{L}(D) \leq 1$.

Proof. Suppose deg D=0, and Let $f,g\in \mathscr{L}(D)\setminus\{0\}$. Write $D=D_0-D_\infty$ with $D_0,D_\infty\geq 0$. Since $f,g\in \mathscr{L}(D)$, we have div $f,\mathrm{div}\,g\geq D_0-D_\infty$. In particular, $f/g\in K^\times$.

Algorithm 3.4.3. Let the notation be as described above in 3.4.1.

Input: A 2-group Belyi map $\phi: X \to \mathbb{P}^1_K$ and a permutation triple $\widetilde{\sigma}$

Output: A model (over \mathbb{Q}^{al}) for the Belyi map $\widetilde{\phi}: \widetilde{X} \to \mathbb{P}^1_K$ with monodromy $\widetilde{\sigma}$

3.4 An algorithm to compute 2-group Belyi curves and maps

- 1. Let R be the empty set of points on X. For each $s \in \{0, 1, \infty\}$, If the order of σ_s is strictly less than the order of $\widetilde{\sigma}_s$, then append the ramification points $\{Q_{s,\tau}\}_{\tau \in \sigma_s}$ (the ramification points on X above s corresponding to the cycles of σ_s) to R.
- 2. Let $D = \sum_{P} n_{P}P$ be a degree 0 divisor on X with n_{P} odd for every $P \in R$ and $n_{P} = 0$ for $P \notin R$. MM: [class group and base field]
- 3. Compute $f \in \overline{K}(X)^{\times}$ corresponding to a generator of the Riemann-Roch space $\mathscr{L}(D)$.
- 4. Write f = a/b with $a, b \in \overline{K}[y_1, \dots, y_n]$ and construct the ideal

$$\widetilde{I} := \langle g_1, \dots, g_k, by_{n+1}^2 - a \rangle$$

in
$$\overline{K}[y_1,\ldots,y_n,y_{n+1}]$$
.

- 5. Saturate \widetilde{I} at $\langle b \rangle$ and denote this ideal by sat(\widetilde{I}).
- 6. Let \widetilde{X} be the curve corresponding to $\operatorname{sat}(\widetilde{I})$ and $\widetilde{\phi}$ the map $(y_1, \ldots, y_{n+1}) \mapsto y_1$.

Proof of correctness. By Algorithm 3.3.5, there exists a 2-group Belyi map $\widetilde{\phi}: \widetilde{X} \to \mathbb{P}^1$ with ramification according to $\widetilde{\sigma}$. Since $\widetilde{\phi}$ is Galois, the ramification behavior above each $s \in \{0, 1, \infty\}$ is constant (i.e. for a fixed s, all $Q_{s,\tau}$ are either unramified or ramified to order 2). This ensures that the set R constructed in Step 1 is precisely the set of ramification values of ψ (in Figure 3.4). Now that we have the ramification values, we can construct the new Belyi map and curve. We do this by extracting a square root in the function field. More precisely, again by Algorithm 3.3.5, there

exists \widetilde{X} with $\overline{K}(\widetilde{X})=\overline{K}(X,\sqrt{f})$ where $f\in\overline{K}(X)^\times/\overline{K}(X)^{\times 2}$ and

$$\operatorname{div} f = \sum_{Q_{s,\tau} \in R} Q_{s,\tau} + 2D_{\epsilon} \in \frac{\operatorname{Div}^{0}(X)}{2\operatorname{Div}^{0}(X)}$$
(3.4.1)

Example 3.4.4.

Section 3.5

Running time analysis

Section 3.6

Explicit computations

Chapter 4

Classifying low genus 2-group Belyi maps

In this chapter we organize some results on 2-group Belyi maps with low genus. The conditions that need to be satisfied for a general Belyi map to be a 2-group Belyi map are quite stringent. This allows us to give a clear picture of the story in the low genus cases.

Section 4.1

Remarks on Galois Belyi maps

We summarize some of the results on Galois Belyi maps that we use for 2-group Belyi maps. A great deal is known about Galois Belyi maps (regular dessins) in general (see MM: [TODO: sources]).

Lemma 4.1.1. Let σ be a degree d permutation triple corresponding to $\phi: X \to \mathbb{P}^1$ a Galois Belyi map with monodromy group G and m_s be the order of σ_s for $s \in$

 $\{0,1,\infty\}$. Then σ_s consists of d/m_s many m_s -cycles. In particular, for a 2-group Belyi map, m_s and #G are powers of 2.

In light of Lemma 4.1.1, we get a refined version of Riemann-Hurwitz for Galois Belyi maps.

Proposition 4.1.2. Let σ be a degree d permutation triple corresponding to $\phi \colon X \to \mathbb{P}^1$ a Galois Belyi map with monodromy group G. Let a, b, c be the orders of $\sigma_0, \sigma_1, \sigma_\infty$ respectively. Then

$$g(X) = 1 + \frac{\#G}{2} \left(1 - \frac{1}{a} - \frac{1}{b} - \frac{1}{c} \right). \tag{4.1.1}$$

$$\square$$

Section 4.2

Genus 0

Let $\phi: X \to \mathbb{P}^1$ be a 2-group Belyi map where X has genus 0. Proposition 4.1.2 immediately restricts the possibilities for ramification indices.

Proposition 4.2.1. A 2-group Belyi map of genus 0 with monodromy group G has the following possibilities for ramification indices:

- degenerate: (1, #G, #G), (#G, 1, #G), (#G, #G, 1)
- dihedral: $(\frac{\#G}{2}, 2, 2)$, $(2, \frac{\#G}{2}, 2)$, $(2, 2, \frac{\#G}{2})$

Proof. Let a, b, c be the ramification indices of the Belyi map. Then by Lemma 4.1.1, a, b, c, #G are all positive powers of 2. Without loss of generality we may assume

 $a \leq b \leq c$. The proof is by cases. For g(X) = 0, Proposition 4.1.2 yields

$$\frac{\#G}{2}\left(1 - \frac{1}{a} - \frac{1}{b} - \frac{1}{c}\right) = -1. \tag{4.2.1}$$

 $\underline{a=1}$: If a=1, then Equation 4.2.1 becomes $\frac{1}{b}+\frac{1}{c}=\frac{2}{\#G}$.

 $\underline{b=1}$: If a=b=1, then Equation 4.2.1 implies a=b=c=#G=1.

 $\underline{b \geq 2}$: If a=1 and $b \geq 2$, then we can let $b=2^m$ and $c=2^n$ with $m \leq n$. In this case Equation 4.2.1 becomes

$$\frac{1}{2^m} + \frac{1}{2^n} = \frac{2}{\#G} \implies \#G(2^{n-m} + 1) = 2^{n+1}.$$

Since #G is a power of 2, we must have $2^{n-m}+1 \in \{1,2\}$ which only occurs when m=n. Therefore m=n which implies b=c=#G.

 $\underline{a=2}$: If a=2, then Equation 4.2.1 becomes

$$\frac{2}{\#G} = \frac{1}{b} + \frac{1}{c} - \frac{1}{2}.$$

 $\underline{b=2}$: If a=2 and b=2, then Equation 4.2.1 implies $c=\frac{\#G}{2}$.

 $\underline{b \geq 4}$: If a=2 and $b,c \geq 4$, then Equation 4.2.1 implies

$$\frac{2}{\#G} = \frac{1}{b} + \frac{1}{c} - \frac{1}{2} \implies \frac{2}{\#G} \le 0$$

which cannot occur.

 $\underline{a \geq 4}$: If $a, b, c \geq 4$, then Equation 4.2.1 becomes

$$\frac{2}{\#G} = \frac{1}{b} + \frac{1}{c} - \left(1 - \frac{1}{a}\right).$$

But $\left(1-\frac{1}{a}\right) \geq \frac{3}{4}$ and $\frac{1}{b}+\frac{1}{c} \leq \frac{1}{2}$ imply that $\frac{2}{\#G} < 0$ which cannot occur.

In summary there are 2 possibilities:

- a = 1 and b = c = #G
- $a = 2, b = 2, \text{ and } c = \frac{\#G}{2}$

By reordering the ramification indices we obtain the possibilities in Proposition 4.2.1.

In particular, from Proposition 4.2.1 we see that all genus 0 2-group Belyi maps are degenerate or spherical dihedral. The explicit maps in these cases are well understood MM: [TODO: cite][5]. We summarize with Proposition 4.2.2.

Proposition 4.2.2. Every possible ramification type in Proposition 4.2.1 corresponds to exactly one Belyi map up to isomorphism. Moreover, the equations for these maps have simple formulas given below. In the formulas below, we use the notation from Proposition 4.2.1 for ramification types and write a Belyi map $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ with monodromy G as a rational function in the coordinate x on an affine patch of the domain of ϕ .

• (1,1,1)

$$\phi(x) = x$$

• (1, #G, #G), #G > 2

$$\phi(x) = 1 - x^{\#G}$$

• $(\#G, 1, \#G), \#G \ge 2$

$$\phi(x) = x^{\#G}$$

• (#G, #G, 1), #G > 2

$$\phi(x) = \frac{x^{\#G}}{x^{\#G} - 1}$$

• (2,2,2), #G=2

$$\phi(x) = -\left(\frac{x(x-1)}{x-\frac{1}{2}}\right)^2$$

• $(2, 2, \frac{\#G}{2}), \#G \ge 4$

$$\phi(x) = -\frac{1}{4} \left(x^{\#G/2} + \frac{1}{x^{\#G/2}} \right) + \frac{1}{2}$$

• $(2, \frac{\#G}{2}, 2), \#G \ge 4$

$$\phi(x) = 1 - \frac{1}{1 - \left(-\frac{1}{4}\left(x^{\#G/2} + \frac{1}{x^{\#G/2}}\right) + \frac{1}{2}\right)}$$

• $(\frac{\#G}{2}, 2, 2), \#G \ge 4$

$$\phi(x) = \frac{1}{-\frac{1}{4} \left(x^{\#G/2} + \frac{1}{x^{\#G/2}} \right) + \frac{1}{2}}$$

Proof. We first address the correctness of the equations. For the ramification triples containing 1, the equations are all lax isomorphic to one of the form

$$\phi(x) = x^{\#G} \tag{4.2.2}$$

for the ramification triple (#G, 1, #G). The rational function ϕ in Equation 4.2.2 has a root of multiplicity #G at 0, a pole of multiplicity #G at ∞ , and #G unique preim-

ages above 1. The Belyi maps for ramification triples (1, #G, #G) and (#G, #G, 1) are lax isomorphic to ϕ in Equation 4.2.2 and similarly have the correct ramification of this degenerate Belyi map.

For the other ramification triples, we focus on the triple $(2, 2, \frac{\#G}{2})$. The equation for this map is a modification (pointed out to me by Sam Schiavone) of the dihedral Belyi map

$$\phi(x) = x^d + \frac{1}{x^d} \tag{4.2.3}$$

in [5, Example 5.1.2]. The other dihedral maps are then lax isomorphic to (the modification of) the map in Equation 4.2.3.

To show that there is at most one Belyi map in each of the above cases, we refer to Algorithm 3.3.5. MM: [todo]

Section 4.3

Genus 1

Let $\phi: X \to \mathbb{P}^1$ be a 2-group Belyi map where X has genus 1. Let (a, b, c) be the ramification indices of ϕ with $a \leq b \leq c$. From Proposition 4.1.2, we have that

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0. ag{4.3.1}$$

Since a, b, c are powers of 2, the only solution to Equation 4.3.1 is a = 2 and b = c = 4. We summarize this discussion in Proposition 4.3.1.

Proposition 4.3.1. The only possible ramification indices for a 2-group Belyi map of genus 1 with monodromy group G are (2,4,4), (4,2,4), or (4,4,2).

4.3 Genus 1

As was the case in genus 0, all ramification triples in Proposition 4.3.1 have corresponding Belyi maps. However, as we see in Proposition 4.3.2, these genus 1 Belyi maps occur in infinite families.

Proposition 4.3.2. Let (a,b,c) be a ramification triple in Proposition 4.3.1 and let $d = 2^m$ for $m \in \mathbb{Z}_{\geq 2}$. Then there exists exactly one degree d 2-group Belyi map up to isomorpism with ramification (a,b,c). Moreover, the equations for these maps have simple formulas which are described below. In these equations let E be the elliptic curve with j-invariant 1728 given by the Weierstrass equation

$$E \colon y^2 = x^3 + x.$$

Every degree 4 Belyi map below is of the form $\phi \colon E \to \mathbb{P}^1$. Every degree d Belyi map for $d \geq 8$ is of the form

$$E \xrightarrow{\psi} E \xrightarrow{\phi} \mathbb{P}^1$$

where ϕ is a degree 4 genus 1 Belyi map and ψ is degree d/4 isogeny of E.

- (degree 4)
 - -(2,4,4)
 - -(4,2,4)
 - -(4,4,2)
- (degree 8)

Proof.

4.4 Genus 2

Section 4.4		
	Genus 2	
Section 4.5		
	Genus 3	
Section 4.6		
	${\bf Hyperelliptic}$	

Chapter 5

Fields of definition of 2-group Belyi maps

Using data from Chapter 3, we formulate a conjecture about the possible fields of definition of 2-group Belyi maps.

Section 5.1

Fields of moduli

Recall the action of $G_{\mathbb{Q}}$ on the set of Belyi maps described in Proposition 2.1.10. For a fixed Belyi map, we can simplify matters as described in the following definition.

Definition 5.1.1. The field of moduli of a Belyi map $\phi: X \to \mathbb{P}^1$ is the fixed field

$$\{\tau \in G_{\mathbb{Q}} : \phi^{\tau} \cong \phi\}.$$

Definition 5.1.1 allows us to study a more manageable finite extension. Moreover, passports (recall Definition 2.1.11) allow us to bound the degree of the field of moduli.

Theorem 5.1.2. Let $\phi: X \to \mathbb{P}^1$ be a Belyi map with passport \mathcal{P} . Then the degree of the field of moduli of ϕ is bounded by the size of \mathcal{P} .

Proof.

Section 5.2

Refined passports

Definition 5.2.1. A refined passport \mathcal{P} consists of the data (g, G, C) where $g \geq 0$ is an integer, $G \leq S_d$ is a transitive subgroup, and $C = (C_0, C_1, C_\infty)$ is a triple of conjugacy classes of G.

MM: [some exposition about refined passports] For a refined passport $\mathcal P$ consider the set

$$\Sigma_{\mathcal{P}} = \{(\sigma_0, \sigma_1, \sigma_\infty) \in C_0 \times C_1 \times C_\infty : \sigma_\infty \sigma_1 \sigma_0 = 1, \text{ and } \langle \sigma \rangle = G\} / \sim$$

where $(\sigma_0, \sigma_1, \sigma_\infty) \sim (\sigma'_0, \sigma'_1, \sigma'_\infty)$ if and only if there exists $\alpha \in \text{Aut}(G)$ with $\alpha(\sigma_s) = \sigma'_s$ for $s \in \{0, 1, \infty\}$.

Section 5.3

A refined conjecture

Conjecture 5.3.1. Let $\mathcal{P}=(g,G,C)$ be a refined passport with $G=\operatorname{Mon}(\phi)$ for some 2-group Belyi map ϕ . Then $\#\Sigma_{\mathcal{P}}=0$ or 1.

Proof. \Box

5.3 A REFINED CONJECTURE

Corollary 5.3.2. Every 2-group Belyi map is defined over a cyclotomic field $\mathbb{Q}(\zeta_{2^m})$ for some m.

Proof.

Chapter 6

Gross's conjecture for p = 2

We begin this chapter with Theorem 6.1.1 which provides the arithmetic motivation to study 2-group Belyi maps. We then detail past results on Gross's conjecture in Section 6.2 and finish with some discussion on 2-group Belyi maps in relation to the p = 2 case of Gross's conjecture.

Section 6.1

Beckmann's theorem

In this Section we state Beckmann's theorem for Belyi maps over \mathbb{C} from 1989 which can be found in [1]. We then adapt Theorem 6.1.1 to our particular situation in Corollary 6.1.2.

Theorem 6.1.1. Let $\phi: X \to \mathbb{P}^1$ be a Belyi map with monodromy group G and suppose p does not divide #G. Then there exists a number field M with the following properties:

• p is unramified in M

Past results on Gross's conjecture
Section 6.2
Proof.
smooth projective model for X with good reduction away from $p=2$.
Corollary 6.1.2. Let $\phi: X \to \mathbb{P}^1$ be a 2-group Belyi map. Then there exists a
Proof. [1]
$ullet$ X has good reduction at all primes ${\mathfrak p}$ of M above p
ullet the Belyi curve X is defined over M
• the Belyi map ϕ is defined over M

Section 6.3

A nonsolvable Galois number field ramified only at 2

Bibliography

- [1] Sybilla Beckmann, Ramified primes in the field of moduli of branched coverings of curves, Journal of Algebra 125 (1989), no. 1, 236–255.
- [2] Gennadii Vladimirovich Belyi, On galois extensions of a maximal cyclotomic field, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 43 (1979), no. 2, 267–276.
- [3] Alexandre Grothendieck, Esquisse d'un programme, London Mathematical Society Lecture Note Series (1997), 5–48.
- [4] Michael Klug, Michael Musty, Sam Schiavone, and John Voight, Numerical calculation of three-point branched covers of the projective line, LMS Journal of Computation and Mathematics 17 (2014), no. 01, 379–430.
- [5] Cemile Kürkoğlu, Exceptional belyi coverings, Ph.D. thesis, bilkent university, 2015.