

M3 Framework: User's guide & tutorial

Making smart discussions between things

Creator	Amelie Gyrard (Eurecom - Insight - NUIG/DERI)							
	Designed and implemented by Amélie Gyrard, she was a PhD student at Eurecom							
	under the supervision of Prof. Christian Bonnet and Dr. Karima Boudaoud.							
	Currently, LOVIoT is maintained since she is a post-doc researcher at Insight within th							
	IoT unit led by Dr. Martin Serrano and involved in the FIESTA-IoT (Federated							
	Interoperable Semantic IoT/Cloud Testbeds and Applications) H2020 project.							
Send	Do not hesitate to ask for help or give us feedback, advices to improve our tools or							
Feedback	documentations, fix bugs and make them more user-friendly and convenient:							
	amelie.gyrard@insight-centre.org							
Google Group	https://groups.google.com/d/forum/m3-semantic-web-of-things							
Last updated	June 2016							
	Adding the end to end scenario							
	Update the documentation							
Created	March 2015							
Status	Work in progress							
Goal	This documentation enables a first approach with M3:							
	Understand what we can do with M3							
	Understanding M3 and its components							
URL	http://www.sensormeasurement.appspot.com/documentation/UserGuide.pdf							

Table of contents

I.	Citations	5
II.	Introduction	5
III.	Understanding what you can do with M3	7
IV.	Generating Semantic Web of Things templates with the SWoT generator	7
V.	Interpreting IoT data with SLOR	g
VI.	Reusing domain knowledge with LOv4IoT	g
VII.	Simulating SenML sensor measurements	11
VIII.	Converting senML sensor data with the M3 language and the Semantic Annotator	13
IX.	Testing our scenarios	15

Table of figures

FIGURE 1. HOME PAGE	5
FIGURE 2. M3 FRAMEWORK AND ITS COMPONENTS	
FIGURE 3. BUILDING DEDUCING MEANINGFUL INFORMATION WITH M3 AND ITS COMPONENTS	7
FIGURE 4. GENERATING SEMANTIC WEB OF THINGS TEMPLATES	8
FIGURE 5. ZIP FILE GENERATED WITH DOMAIN KNOWLEDGE FOR INTERPRETING SENSOR DATA	8
FIGURE 6. FINDING RULES TO INTERPRET SENSOR DATA WITH S-LOR	9
FIGURE 7. ONTOLOGIES CLASSIFIED IN VARIOUS DOMAINS	10
FIGURE 8. CLASSIFICATION OF PROJECTS ACCORDING TO THE REUSABILITY	
FIGURE 9. SCREENSHOT OF LOV4IOT	11
FIGURE 10. SIMULATE M2M AREA NETWORKS	12
FIGURE 11. SIMULATING SENSOR MEASUREMENTS	13
FIGURE 12. SEMANTICALLY ANNOTATING IOT DATA WITH THE M3 CONVERTER USER INTERFACE	14
FIGURE 13. SEMANTICALLY ANNOTATING SENSOR DATA	15
FIGURE 14. TESTING OUR SCENARIOS	15

Terms and acronyms

IoT	Internet of Things (IoT)
LOV	Linked Open Vocabularies
LOV4IoT	Linked Open Vocabularies for Internet of Things
M3 framework	Machine-to-Machine Measurement (M3) framework
S-LOR	Sensor-based Linked Open Rules
SWoT	Semantic Web of Things
WoT	Web of Things
STAC	Security Toolbox: Attacks & Countermeasures

I. Citations

Please do not forget to cite our M3 framework:

- Cross-Domain Internet of Things Application Development: M3 Framework and Evaluation. 3rd
 International Conference on Future Internet of Things and Cloud (FiCloud 2015), 24-26 August 2015,
 Rome, Italy. Amelie Gyrard, Soumya Kanti Datta, Christian Bonnet, Karima Boudaoud
- Enrich Machine-to-Machine Data with Semantic Web Technologies for Cross-Domain Applications
 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, March 6-8, 2014. Amelie Gyrard,
 Christian Bonnet and Karima Boudaoud
- All publications:
 - http://localhost:57708/?p=publication

II. Introduction

The M3 framework enables assisting to (see Figure 1):

- Develop Semantic Web of Things (SWoT) applications with the SWoT generator.
- Interpret IoT data with S-LOR
- Find & reuse domain knowledge already designed by domain experts with LOV4IoT
- Find attacks & security mechanisms related to specific technologies employed in IoT with STAC

Machine-to-Machine Measurement (M3) is a framework to semantically annotate and easily interpret Internet of Things (IoT) data.

M3 enables to design interoperable domain-specific or cross-domain Semantic Web of Things (SWoT) applications.

M3 is composed of the following components:

Figure 1. Home page

Figure 2. M3 framework and its components

III. Understanding what you can do with M3

- Go there: http://www.sensormeasurement.appspot.com/?p=end_to_end_scenario
- Follow the tutorial:
 - o STEP 1 is using the SWoT generator
 - STEP 2 is using the M3 language and its semantic annotator
 - STEP 3 is the core based on the Jena framework to build semantic web of things applications
 - o STEP 4 executes the reasoning engine
 - STEP 5 executes the query engine.
 - o STEP 6 provides smarter data to visualize in a user-friendly interface.

Building the naturopathy application with a Body Thermometer

Figure 3. Building Deducing meaningful information with M3 and its components

IV. Generating Semantic Web of Things templates with the SWoT generator

The main purpose of the template generated is to interpret IoT data to provide suggestions.

- → Go to this web page: http://www.sensormeasurement.appspot.com/?p=m3api (see Figure 2)
- → Choose a sensor (e.g., Precipitation)
- → Choose a domain (e.g., Weather)
- → Click on the button "Search IoT application template"
- → The drop-down list in STEP 2 is not empty anymore

- → Choose a template (e.g., Precipitation, Transportation and Safety devices)
- → Click on the button "Generate zip file"
- → A zip file has been generated with interoperable M3 and domain ontologies, rules and datasets (Figure 3).

Generate IoT applications to reason on sensor data

STEP 1: Search IoT Application Template

Figure 4. Generating Semantic Web of Things templates

Figure 5. Zip file generated with domain knowledge for interpreting sensor data

V. Interpreting IoT data with SLOR

Go to this web page: http://www.sensormeasurement.appspot.com/?p=slor

- → Select a sensor to find all rules interpreting sensor values as depicted in Figure 4 (e.g., Precipitation)
- → The demonstration will show all rules related to the sensor chosen by the user to interpret sensor values.
 - (e.g., if precipitation = 0 mm/h then NoPrecipitation)
- → You have both the rule for humans and for machines (click on the LinkedOpenRules link)

Sensors used in your application?

Figure 6. Finding rules to interpret sensor data with S-LOR

VI. Reusing domain knowledge with LOv4IoT

- → Go to the Linked Open Vocabularies for Internet of Things (LOV4IoT) web page (see Figure 5): http://www.sensormeasurement.appspot.com/?p=ontologies
- → Choose 1 domain by clicking on the image (e.g., transportation) as depicted in Figure 5.

Linked Open Vocabularies for Internet of Things (LOV4IoT)
Reusing domain knowledge expertise

Figure 7. Ontologies classified in various domains

- → You will find a table with the following information as depicted in Figure 7:
 - o Domain experts names (authors)
 - Year of publication
 - Research articles
 - Ontology URL of available
 - o Technologies used in their project
 - o Sensors used in their project
 - Rules designed

-Ontologies and projects have been classified according to different colors (see Figure 6):

- Red: the ontology is not available
- White: we do not have any links to get the ontology
- Orange: we contacted authors to get their ontologies. They answered us they will share ontologies and rules soon.
- Yellow: we retrieve the ontology URL or get a copy
- Green: Ontologies published online, cannot be referenced on the Linked Open Vocabularies (LOV)¹ project due to a lack of best practices.
- Dark green: The ontology is referenced on the Linked Open Vocabularies project. It checks best practices.

The ontology will never	We are waiting the	Authors are	Ontology published online	Ontology published online and	Already on
be available (lost,	response of the	publishing online the	but the Semantic Web	referenced by LOV since	Already on LOV - No
Y	authors to publish the	ontology (ongoing	best practices are not	Semantic Web best practices	email sent
confidential, etc.) :-(ontology online	work)	complied with.	are adopted! :-)))	emaii sent

Figure 8. Classification of projects according to the reusability

¹ http://lov.okfn.org/dataset/lov/

Intelligent Transport Systems

Authors	Year	Paper	Url onto	Technologies	Sensors	Rules	LOV status	Security
Bermejo, Astrain Escola Mail: 14/02/14, Response: 18/02/14	2014	Paper: Ontology based road traffic management	(response), but sent us the OWL ontology copy URL Application ? Concepts: 24 classes, 12 properties, 77	Jess reasoner, extension of A3ME ontology, OWL API 3.4.2	sensor -> Space (Lateral, Ahead,	change line, decelerate, accelerate, maintain distance with car in front.	Priority 1, responsive, ongoing, lov metadata, uri deferencable 26/03/14, ask for label and comment	
Morignot, Pollard et al.	2013	Paper: An ontology-based Model to determine the automation level of an automated vehicle for co-driving Paper: An ontology-based approach to relax traffic regulation for autonomous vehicle assistance	cloudy, snowy, sunny, rainy),	Pellet, SWRL (DLSafeRule), Protege, SWOOPS (ontology editor)	Position, velocity, acceleration/braking and steering actuators	foggy -> mode manual, search for parking place, stopped, hasNextMotion	content negociation, uri def error, vapour rdf/xml	

Figure 9. Screenshot of LOV4IoT

VII. Simulating SenML sensor measurements

The following interface enables to simulate sensor data:

http://emulator-box-services.appspot.com/senmladmin/zones

These data are compliant with the SenML² format.

You can simulate heterogeneous domains (healthcare, smart kitchen, smart home, etc.), as you can see in Figure 8. You can create a new domain (Add sub zone button).

² http://www.ietf.org/archive/id/draft-jennings-senml-10.txt

Figure 10. Simulate M2M area networks

Click on the button "Edit" associated to the kitchen zone.

You go to the following URL:

http://emulator-box-

 $\underline{services.appspot.com/senmladmin/ahdzfmVtdWxhdG9yLWJveC1zZXJ2aWNlc3IWCxIJWm9uZUFkbWluIg\underline{draXRjaGVuDA/edit}.$

You can simulate smart devices (sensors, actuators, transducer, controllers and RFID tags).

In this use case, we simulate RFID tags embedded on ingredients.

We simulate SenML measurements (in XML or JSON).

A measurement has a name, a value, a unit, and the date.

Example 1: Measure name: Temperature, Unit: Degree Celsius, Value: 35

Example 2: Measure name: banana, Unit: Gram, Value: 1000

Use the M3 nomenclature³ to describe sensor measurements.

To be sure that the M3 converter will semantically annotate correctly the sensor measurements.

It will ease the process to build the application with the Semantic Web of Things

template.

Figure 11. Simulating sensor measurements

VIII. Converting senML sensor data with the M3 language and the Semantic Annotator

Go to the M3 converter to semantically annotate SenML data with RDF according to the M3 ontology.

³ www.sensormeasurement.appspot.com/documentation/NomenclatureSensorData.pdf

Use Chrome to get the data in a text format, with Firefox you only have the JavaScript alert popup.

SenML to RDF Converter

Copy/paste your SenML/XML sensor data here:

Figure 12. Semantically annotating IoT data with the M3 converter user interface

SenML to RDF Converter

SenML to RDF Converter (Use chrome)

- 1. Simulate your data
- 2. Get SenML/XML data
- 3. Enter an url (see previous link): http://emulator-box-services.appspot.com/senml/zones/ahdzfmVtdWxhdG9yLWJveC1zZXJ2aWNlc3IVCxIJWm9uZUFkbWlulgZoZWFsdGgM SenML to RDF Converter

Wait 1 minute!

Figure 13. Semantically annotating sensor data

Testing our scenarios

- → Go to the menu bar
- → Go to the tab called "Scenarios".
- → Choose a scenario (e.g. tourism)

Figure 14. Testing our scenarios

If you choose the tourism scenario. You will have the following web page.

- → Click on the "Activity & Precipitation" button.
- → It will display the M3 results after the reasoning process

Tourism (Weather & Emotion & Activity & Transport)

Weather & Activity

- 1. This scenario is based on these M3 RDF sensor data
- 2. We deduce the weather outside.
- 3. We propose activities according to the weather.
- 4. M2M Application (Temperature => weather => Activity): Activity & Temperature
- 5. M2M Application (Luminosity => weather => Activity): Activity & Luminosity
- 6. M2M Application (Precipitation => weather => Activity): Activity & Precipitation | Click here to display m3 reasoning results
- 7. M2M Application (Wind speed => weather => Activity): Activity & Wind Speed Inferred data

Inferred data after M3 process

- Name=precipitation, Value = 1.0, Unit=m InferType = Precipitation, Deduce = LightRain, Suggest= Paintball
 Name=precipitation, Value = 1.0, Unit=m InferType = Precipitation, Deduce = LightRain, Suggest= Squash
- Name=precipitation, Value = 1.0, Unit=m InferType = Precipitation, Deduce = LightRain, Suggest= Concert
- Name=precipitation, Value = 1.0, Unit=m InferType = Precipitation, Deduce = LightRain, Suggest= Opera
- Name=precipitation, Value = 1.0, Unit=m InferType = Precipitation, Deduce = LightRain, Suggest= Bowling
- Name=precipitation, Value = 1.0, Unit=m InferType = Precipitation, Deduce = LightRain, Suggest= Theater

Do not hesitate to try other scenarios.