Prof. Tai-kyong Song
Dept. of Electronic Engineering
SOGANG UNIVERSITY

Filtering operations

- **❖ Noise suppression**
- Enhancement of selected freq. range
- Bandwidth limiting
- **❖** Removal or attenuation of specific frequencies
- Special operations
 - Differentiation, Integration
 - Hilbert transform
 - Other mathematical operations

	Analog filter	Digital filter
Realization	Analog circuits	Digital hardware, software
Noise sensitivity	Poor	Free except for quantization noise
Linearity	Nonlinear	Ideal
Dynamic range	limited	Can be infinite
Accuracy	limited	Can achieve any desired level
Stability	Poor	Ideal
Flexibility	Very limited	Maximum
Repeatability	Imperfect	Ideal
Frequency rang	e Theoretically infinite (Hardware limitation)	$f_s/2$
Size and Cost	limited	Can achieve any goals
Operation complexity	limited	Any desirable degree

Digital Filter types

- ❖ FIR (Finite Impulse Response) filter: All-zero filter
- ❖ IIR (Infinite Impulse Response) filter: Pole-zero filter

FIR vs. IIR

- ❖ FIR: Ideal response (linear phase), stable
- ❖ IIR:
 - Better magnitude response (sharper transition and/or lower stopband attenuation than FIR with the same number of parameters: HW efficient)
 - Established filter types and design methods.

Filter Specifications / Classifications

- ❖ Low-pass, High-pass, Band-pass, Band-stop(reject), Multi-band filters
- **❖** Differentiator, Hilbert transform, etc.

Filter Specifications

- ***** Frequency response $H(\theta) = |H(\theta)|e^{j\Psi(\theta)}$
 - Magnitude function (response): $|H(\Theta)|$
 - Phase response: $\Psi(\Theta)$

Figure 8.2 Magnitude characteristics of physically realizable filters.

- δ₁: passband ripple
- δ_2 : stopband ripple
- Θ_p : passband edge freq.
- Θ : stopband edge freq.

bandwidth of the filter = passband width

Filter Specifications

Other definition (generally used for IIR filters)

- Passband ripple : $A_b = -20 \log (1 \delta_b) \approx 8.6859 \delta_t$
- Stopband attenuation : $A_s = -20 \log \delta_s$
- (-3dB) cutoff frequency : Θ_{3db}

Filter Specifications

LTI filters are preferred.

$$H(\Theta) = \frac{\sum_{k=0}^{M} b_{k} e^{-j\Theta k}}{1 + \sum_{k=1}^{N} a_{k} e^{-j\Theta k}} \qquad y(n) = -\sum_{k=1}^{N} a_{k} y(n-k) + \sum_{k=0}^{M} b_{k} x(n-k)$$

- **\Leftrightarrow** Filter spec: Θ_p , Θ_s , δ_1 , δ_2 , M, N
- * A monotone response, either increasing and decreasing
- An oscillating, or rippling, response
- Equiripple filter

Ideal lowpass filter

$$H(\Theta) = \begin{cases} 1, & |\Theta| \le \Theta_c \\ 0, & \Theta_c < \Theta \le \pi \end{cases} \qquad h(n) = \begin{cases} \frac{\Theta_c}{\pi}, & n = 0 \\ \frac{\Theta_c}{\pi}, & \sin \Theta_c n \\ \frac{\Theta_c}{\pi}, & \sin \Theta_c n \end{cases}, \qquad n \neq 0$$

- **Tero phase response** $H(e^{j\theta}) = A(\theta)e^{j\phi(\theta)}$ $A(\theta) = 1$ $\phi(\theta) = 0$
- **❖ Noncausal system**
- Infinite duration

Ideal lowpass filter

- ❖ To make it causal, the impulse response is shifted after being truncated.
 - → Windowing
 - → Shifting: Linear phase / Constant group delay

Ideal lowpass filter

❖ Note that truncation with a rectangular window results in the Gibbs phenomenon.

- Transition band
- Ripples in passband, stopband

FIR filter

❖ All-zero filters

$$y(n) = b_0 x(n) + b_1 x(n-1) + \cdots + b_{M-1} x(n-M+1)$$

$$= \sum_{k=0}^{M-1} b_k x(n-k)$$

$$y(n) = \sum_{k=0}^{M-1} h(k) x(n-k)$$

- **\Leftrightarrow Finite impulse response:** $h(k) = b_k$
- **❖** System function

$$H(z) = \sum_{k=0}^{M-1} h(k)z^{-k}$$
: a polynomial of degree M-1 in z^{-1}

FIR filter - Introduction

- ❖ stable
- \bullet noncausal \longrightarrow delay causal
- **❖** Linear phase : constant time or group delay.
 - h(n) = h(M-1-n): symmetric or
 - h(n) = -h(M-1-n): antisymmetric
- Used in many applications:
 - speech-processing, data-transmission, image processing, etc.
- **❖ Need a long filter (or many taps) for sharp transition.**
- ❖ Methods for designing an FIR filter
 - window method
 - frequency-sampling method
 - optimal or minimax method

Ideal Filter Response

... Linear phase

$$H(\Theta) = \begin{cases} Ce^{-j\Theta n_0^2}, & \Theta_1 < \Theta < \Theta_2 \\ 0, & otherwise \end{cases}$$

$$h(n) = h_0(n - n_0)$$

$$H(z) = z^{-n_0}H_0(z)$$

 $\theta_1 < \theta < \theta_2$

$$= Y(\Theta) = X(\Theta)H(\Theta) = CX(\Theta)e^{-j\Theta n_0}$$
$$y(n) = Cx(n - n_0) : \textbf{Group delay: } n_0$$

Group delay or envelope delay

$$\tau_{g}(\Theta) = -\frac{d\Theta(\Theta)}{d\Theta} \qquad |H(\theta)| \cdot e^{-j(\theta n_{0} + costant)}$$

- $\tau_g(\Theta) = n_0$ in the linear phase systems.
 - **X** All the signal components with different frequencies shall be delayed equally.
 - **X** No phase distortion, which is of great importance.
 - **X Only FIR systems can have the linear phase characteristic.**
- $\star \tau_g(\Theta) = 0$ in the zero phase systems.
 - **X** This must be a noncausal system.

Linear phase vs Zero phase from group delay viewpoint

Group delay vs. linear phase x(n) = x0(n) + x1(n)

$$x0(n) \qquad \theta_0 = \frac{2\pi}{16} = \frac{\pi}{8}$$

$$x1(n) \qquad \theta_1 = \frac{2\pi}{8} = \frac{\pi}{4}$$

$$x(n) = \frac{\pi}{8}$$

$$x$$

Group delay vs. linear phase

$$x(n) \longrightarrow H(\theta) = 1 \cdot e^{-j\theta n_0} \longrightarrow y(n)$$

$$= x0(n)$$

$$+ x1(n)$$

$$n_0 = 2$$

$$Y(\theta) = e^{-j\theta^2} X(\theta) = X_0(\theta) e^{-j\pi/4} + X_1(\theta) e^{-j\pi/2}$$

$$y(n) = x(n-2) = x0(n-2) + x1(n-2)$$

$$Y(\theta) = e^{-j\theta 2}X(\theta) = X0(\theta)e^{-j\pi/4} + X1(\theta)e^{-j\pi/2}$$

$$e^{j\frac{\pi}{8}n}e^{-j\frac{2\pi}{8}} = e^{j\frac{\pi}{8}(n-2)}$$

$$y(n) = x(n-2) = x0(n-2) + x1(n-2)$$

$$e^{j\frac{\pi}{4}n}e^{-j\frac{2\pi}{4}} = e^{j\frac{\pi}{4}(n-2)}$$

Group delay vs. linear phase x(n) = x0(n) + x1(n)

What if phase is nonlinear?

Group delay vs. linear phase

transient response

steady state response

linear phase
$$y(n) = x(n-1), y(n) = y_0(n-1)$$

Linear Phase FIR filter

$$\begin{split} H(z) &= h_0 + h_1 z^{-1} + h_2 z^{-2} + h_3 z^{-3} + h_4 z^{-4} \quad (M = 5, \ h_0 = \pm h_4, \ h_1 = \pm h_3) \\ H(z) &= h_0 (1 \pm z^{-4}) + h_1 (z^{-1} \pm z^{-3}) + h_2 z^{-2} \\ &= z^{-2} \Big\{ h_2 + h_0 \big[z^2 \pm z^{-2} \big] + h_1 \big[z \pm z^{-1} \big] \Big\}, \quad (M - 1)/2 = 2, \quad (M - 3)/2 = 1 \\ &= z^{-(M - 1)/2} \Big\{ h_2 + \sum_{n = 0}^{(M - 3)/2} h_n \big[z^{(M - 1 - 2n)/2} 2 \pm z^{-(M - 1 - 2n)/2} \big] \Big\} \\ H(e^{jw}) &= e^{-jw(M - 1)/2} \Big\{ h_2 + \sum_{n = 0}^{(M - 3)/2} h_n \big[e^{jw(M - 1 - 2n)/2} \pm e^{-jw(M - 1 - 2n)/2} \big] \Big\} \\ &= e^{-jw(M - 1)/2} \Big\{ h_2 + \sum_{n = 0}^{(M - 3)/2} h_n \big[e^{jw(M - 1 - 2n)/2} \pm e^{-jw(M - 1 - 2n)/2} \big] \Big\} \\ &= \Big\{ e^{-jw(M - 1)/2} \Big\{ h_2 + \sum_{n = 0}^{(M - 3)/2} 2h_n \big[\cos(\omega(M - 1 - 2n)/2) \Big\} \\ &= \Big\{ e^{-jw(M - 1)/2} \Big\{ h_2 + \sum_{n = 0}^{(M - 3)/2} 2h_n \big[\sin(\omega(M - 1 - 2n)/2) \Big\}, \quad h_2 = 0 \quad \text{Odd Symmetric} \\ 2je^{(-jw(M - 1)/2)} \Big\{ 0 + \sum_{n = 0}^{(M - 3)/2} h_n \big[\sin(\omega(M - 1 - 2n)/2) \Big\}, \quad h_2 = 0 \quad \text{Odd Symmetric} \\ \end{pmatrix}$$

Linear Phase FIR filter

Linear phase condition

$$h(n) = \pm h(M-1-n)$$
 $n = 0, 1, ..., M-1$

$$z^{-(M-1)}H(z^{-1}) = \pm H(z)$$

$$H(z) = h_0 + h_1 z^{-1} + \dots + h_{M-2} z^{-(M-2)} + h_{M-1} z^{-(M-1)}$$

$$H(z^{-1}) = h_0 + h_1 z^1 + \dots + h_{M-2} z^{(M-2)} + h_{M-1} z^{(M-1)}$$

$$z^{-(M-1)} H(z) = h_0 z^{-(M-1)} + h_1 z^{-(M-2)} + \dots + h_{M-2} z^{-1} + h_{M-1}$$

$$= h_{M-1} + h_{M-2} z^{-1} + \dots + h_1 z^{-(M-2)} + h_0 z^{-(M-1)}$$

Linear Phase FIR filter

❖ Zeros of LP FIR filter must occur in reciprocal pairs.

$$z^{-(M-1)}H(z^{-1}) = \pm H(z)$$

❖ If h(n) is real, complex-valued zeros of H(z) must occur in complex-conjugate pairs.

$$:: H^*(z) = H(z^*)$$

=> If z_i is a zero, then so are z_i^* , $1/z_i$, $1/z_i^*$

$$H(z_k) = H(z_k^{-1}) = H(z_k^*) = H(1/z_k^*) = 0$$

$$\lim_{z_3} \int_{0}^{z_2} \int_{0}^{z_3} \int_{0}^{z_4} \int_{0}^{z_4} \int_{0}^{z_5} \int_{0}$$

Figure 8.3 Symmetry of zero locations for a linear-phase FIR filter.

Linear Phase FIR filter

❖ Frequency response analysis of LP FIR filters

$$h(n) = h(M-1-n)$$

$$H(\Theta) = H_{*}(\Theta) e^{-j\Theta(M-1)/2}$$

 $\star H_r(\Theta)$: Amplitude function that can have negative values.

$$\begin{split} H_r(\theta) &= h\Big(\frac{M-1}{2}\Big) + 2\sum_{n=0}^{(M-3)/2} h(n)\cos\theta\Big(\frac{M-1}{2} - n\Big) \qquad M \text{ odd} \\ H_r(\theta) &= 2\sum_{n=0}^{(M/2)-1} h(n)\cos\theta\Big(\frac{M-1}{2} - n\Big) \qquad M \text{ even} \\ \Psi(\theta) &= \begin{cases} -\theta\Big(\frac{M-1}{2}\Big), & \text{if } H_r(\theta) > 0 \\ -\theta\Big(\frac{M-1}{2}\Big) + \pi, & \text{if } H_r(\theta) < 0 \end{cases} \end{split}$$

Linear Phase FIR filter

❖ Frequency response analysis of LP FIR filters

$$\begin{split} h(n) &= -h(M-1-n) \\ H(\theta) &= H_r(\theta) \, e^{\,i\left[-\theta(M-1)/2 + \pi/2\right]} \\ H_r(\theta) &= 2 \sum_{n=0}^{(M-3)/2} h(n) \sin\theta \Big(\frac{M-1}{2} - n\Big) \qquad M \, \, oda \\ H_r(\theta) &= 2 \sum_{n=0}^{(M/2)-1} h(n) \sin\theta \Big(\frac{M-1}{2} - n\Big) \qquad M \, \, even \\ \Theta(\theta) &= \begin{cases} \frac{\pi}{2} - \theta \Big(\frac{M-1}{2}\Big), & \text{if } H_r(\theta) > 0 \\ \frac{3\pi}{2} - \theta \Big(\frac{M-1}{2}\Big), & \text{if } H_r(\theta) < 0 \end{cases} \end{split}$$