Functional Analysis

Ikhan Choi

December 30, 2021

Contents

Ι	Topological vector spaces	3
1	Locally convex spaces	4
	1.1 The Hahn-Banach theorem	 4
2	Barreled spaces	5
3	Fréchet, Banach, and Hilbert spaces	8
II	Weak topologies	9
4	Weak* topologies	10
	4.1 The Banach-Alaoglu theorem	 10
	4.2 The Krein-Milman theorem	10
5	Distribution theory	12
6	Operator topologies	13
II	I Spectral theory	14
7	Compact operators	15
	7.1 Finite-rank operators	 15
	7.2 Spectral theorem for compact normal operators	 15
	7.3 Fredholm theory	 15
8	Nuclear operators	16
	8.1 Trace-class operators	 16
	8.2 Hilbert-Schmidt operators	 16

9 Unbounded operators	1'	7
IV Operator algebras	18	8
10 Banach algebras	19	9
10.1 Spectrum		9
10.2 Holomorphic functional calculus		9
11 C* algebras	20	
11.1 Continuous functional calculus		0
11.2 Positive linear functionals		0
11.3 The Gelfand-Naimark-Siegel represe	ntation	0
12 Von Neumann algebras	2	1
12.1 The double commutant theorem		1
12.2 The Kaplansky density theorem		1
12.3 Borel functional calculus		1

Part I Topological vector spaces

Locally convex spaces

1.1 The Hahn-Banach theorem

Barreled spaces

- **2.1** (The Baire category theorem).
- 2.2 (Barreled spaces). A barrel.

If a closed convex cone contains a dense subset of absorbing at a point, then it is entire?

- **2.3** (Uniform boundedness principle). Let $f: S \subset X \to \mathbb{R}_{\geq 0}$. Suppose $||T_{\alpha}x|| \leq f(x)$ on S.
- (a) $S \subset \bigcup_{n=1}^{\infty} \bigcap_{\alpha} T_{\alpha}^{-1} B_n$.
- (b) If *X* is the closed linear span of *S*, then $\bigcap_{\alpha} T_{\alpha}^{-1} B_1$ is a barrel of *X*.
- **2.4** (Open mapping theorem). Let $T: X \to Y$ be a bounded linear operator between Banach spaces. Suppose T is surjective.
- (a) There is r > 0 such that $B_r \subset \overline{TB_1}$.
- (b) There is r > 0 such that $B_r \subset TB_1$.
- (c) T is open.
- (d) T is open even for complete locally convex X and barreled Y.

Proof. (a) The set $\overline{TB_1}$ is clearly closed and absolutely convex. The surjectivity of T implies $\overline{TB_1}$ is absorbing. Since Y is barreled, $\overline{TB_1}$ contains an open ball B_r .

(b) Let r > 0 such that $B_r \subset \overline{TB_{1/2}}$. For $y \in B_r$, we are going to construct $x \in B_1 \subset X$ such that y = Tx. We claim for n that

$$(y+TB_{1-1/2^n})\cap B_{r/2^n}\neq\emptyset.$$

We have

$$(y+B_{r/2})\cap TB_{1/2}\neq\emptyset$$
,

and

$$(y+TB_{1/2})\cap B_{r/2}\neq\emptyset,$$

and

$$(y + TB_{1/2}) \cap \overline{TB_{1/4}} \neq \emptyset$$

and

$$(y + TB_{1/2} + B_{r/4}) \cap TB_{1/4} \neq \emptyset$$
,

and

$$(y+TB_{3/4})\cap B_{r/4}\neq\varnothing.$$

- **2.5.** Let (T_n) be a sequence in B(X,Y). If T_n coverges then $||T_n||$ is bounded by the uniform boundedness principle.
- **2.6.** We show that there is no projection from ℓ^{∞} onto c_0 .
- (a) Show that a Banach space *X* is isometrically isomorphic to a Hilbert space if there is a bounded linear projection on every closed subspace of *X*.
- **2.7** (Bounded below maps in Banach spaces). Let $T: X \to Y$ be a bounded linear map between Banach spaces. Show that the following statements are equivalent:
- (a) It is bounded below.
- (b) It is injective and has closed range.
- (c) It is a isometric isomorphism onto its image.
- **2.8** (Bounded below maps in Hilbert spaces). Let $T: H \to K$ be a bounded linear operator between Hilbert spaces. Show that the following statements are equivalent:
- (a) It is bounded below.
- (b) It has a left inverse.
- (c) Its adjoint has right inverse.
- (d) The product T^*T is invertible.

In particular, a normal operator in B(H) is bounded below if and only if it is invertible.

- **2.9** (Injectivity and surjectivity of dual map). Let $T: X \to Y$ be a bounded linear operator between Banach spaces and $T^*: Y^* \to X^*$ be its dual.
- (a) Show that T^* is injective if and only if T has dense range.
- (b) Show that T^* is surjective if and only if T is bounded below.
- **2.10.** For $T \in B(H)$, we have an obvious fact $(\operatorname{im} T)^{\perp} = \ker T^*$. If T is normal, then the kernel of T and T^* are equal.
- (a) Show that if *T* is surjective bounded operator, then *T* is invertible.
- **2.11** (Schur's property of ℓ^1). .
- **2.12.** Let $\varphi: L^{\infty}([0,1]) \to \ell^{\infty}(\mathbb{N})$ be an isometric isomorphism. Suppose φ is realised as a sequence of bounded linear functionals on L^{∞} .
- (a) Show that $\varphi^*(\ell^1) \subset L^1$ where ℓ^1 and L^1 are considered as closed linear subspaces of $(\ell^{\infty})^*$ and $(L^{\infty})^*$ respectively.
- (b) Show that φ^* is indeed an isometric isomorphism, and deduce φ cannot be realised as bounded linear functionals on L^{∞} .

Fréchet, Banach, and Hilbert spaces

Part II Weak topologies

Weak* topologies

4.1 The Banach-Alaoglu theorem

4.2 The Krein-Milman theorem

- **4.1** (Predual correspondence). Let X be a Banach space and Z be a linear subspace of X^* . Define $\varphi: X \to Z^*$ as the restriction of the dual map of inclusion $Z \subset X^*$.
- (a) Show that if φ is an isometric isomorphism, then closed ball of X is compact Hausdorff in $\sigma(X,Z)$.
- (b) Show that the converse holds by using Goldstine's theorem.
- **4.2.** Let *X* be a closed subspace of a Banach space *Y* and

$$i: X \to Y$$

the inclusion. Suppose X and Y have preduals X_* and Y_* respectively. Let

$$j:=i^*|_{Y_*}:Y_*\to Z\subset X^*,$$

where $Z := i^*(Y_*)^-$. Then we can show

$$i^*: Z^* \subset X^{**} \to Y$$

coincides with i on $X \cap Z^*$. From the existence of X_* we have $X^{**} \to X$, which is restricted to define a map $k: Z^* \to X$.

We can show k is an isomorphism so that we have

$$X_* \cong Y_*/Y_* \cap \ker(i^*).$$

Chapter 5
Distribution theory

Operator topologies

6.1 (Compact left multiplications and SOT). Let T_n be a sequence of bounded linear operators on a Hilbert space that converges in SOT. For compact K, T_nK converges in norm, but KT_n generally does not unless T is self-adjoint.

Part III Spectral theory

Compact operators

- 7.1 Finite-rank operators
- 7.2 Spectral theorem for compact normal operators
- 7.3 Fredholm theory

Nuclear operators

- 8.1 Trace-class operators
- 8.2 Hilbert-Schmidt operators

Unbounded operators

Part IV Operator algebras

Banach algebras

- 10.1 Spectrum
- 10.2 Holomorphic functional calculus

C* algebras

11.1 Continuous functional calculus

11.2 Positive linear functionals

- **11.1** (Operator monotonicity of square and commitativity). Let \mathcal{A} be a C*-algebra in which the square function is operator monotone, that is, $0 \le a \le b$ implies $a^2 \le b^2$ for any positive elements a and b in \mathcal{A} . We are going to show that \mathcal{A} is necessarily commutative. Let a and b denote arbitrary positive elements of \mathcal{A} .
- (a) Show that $ab + ba \ge 0$.
- (b) Let ab = c + id where c and d are self adjoints. Show that $d^2 \le c^2$.
- (c) Suppose $\lambda > 0$ satisfies $\lambda d^2 \le c^2$. Show that $c^2 d^2 + d^2 c^2 2\lambda d^4 \ge 0$.
- (d) Show that $\lambda (cd + dc)^2 \le (c^2 d^2)^2$.
- (e) Show that $\sqrt{\lambda^2 + 2\lambda 1} \cdot d^2 \le c^2$ and deduce d = 0.
- (f) Extend the result for general exponent: A is commitative if $f(x) = x^{\beta}$ is operator monotone for $\beta > 1$.
- 11.2 (Injective *-homomorphism is an isometry).

11.3 The Gelfand-Naimark-Siegel representation

Von Neumann algebras

- 12.1 The double commutant theorem
- 12.2 The Kaplansky density theorem
- 12.3 Borel functional calculus

resolution of identity