1

Assignment 1

Archit Ganvir (CS21BTECH11005)

Abstract—This document gives the solution for Assignment 1 (ICSE Class 10 Maths 2018 Q.1(b)).

Q.) Sonia had a recurring deposit account in a bank and deposited ₹600 per month for $2\frac{1}{2}$ years. If the rate of interest was 10% p.a., find the maturity value of this account.

Formula	Description
$P_{total} = P \times n$	Total sum deposited
$I = P \times \frac{n(n+1)}{2 \times 12} \times \frac{r}{100}$	Interest on the total sum
	deposited
$M.V. = P_{total} + I$	Maturity value of the re-
	curring deposit
$M.V. = P \times n + P \times \frac{n(n+1)}{2 \times 12} \times \frac{r}{100}$	

TABLE II

Solution:

• *Given* :-

Sum deposited every month, P = 600Number of months, n = number of years x 12 = 2.5 x 12 = 30

Rate of interest (p.a.), r = 10%

Symbol	Value	Description
P	600	Sum deposited every month
n	30	Number of months
R	10	Rate of interest (p.a.)

TABLE I

Substituting the values of P, n and r, and solving, we get:-

$$M.V. = 20325$$
 (5)

Therefore, the maturity value of the account is $\mathbf{7}20325$.

The code in

Assignment1/codes/recdep.py

verifies the solution.

• Formula :-

Total sum deposited = Sum deposited every month x Number of months

$$P_{total} = P \times n \tag{1}$$

Interest on the total sum deposited,

$$I = P \times \frac{n(n+1)}{2 \times 12} \times \frac{r}{100} \tag{2}$$

Maturity value of the recurring deposit, M.V. = Total sum deposited + Interest on the total sum deposited

$$M.V. = P_{total} + I \tag{3}$$

• To Find :-

The maturity value of the given account

• Solution :-

From eq.s (1), (2), (3), we get:-

$$M.V. = P \times n + P \times \frac{n(n+1)}{2 \times 12} \times \frac{r}{100} \quad (4)$$