КОСЯЧЕНКО С.А., МИКРЮКОВ А.Н., НАУМОВ А.И. ВУНЦ ВВС «ВВА имени профессора Н.Е. Жуковского и Ю.А. Гагарина», г.Москва

НЕЛИНЕЙНЫЕ ОПТИМАЛЬНЫЕ АЛГОРИТМЫ РЕЛЬЕФОМЕТРИЧЕСКИХ КОРРЕЛЯЦИОННО-ЭКСТРЕМАЛЬНЫХ НАВИГАЦИОННЫХ СИСТЕМ

Представлена общая постановка задачи байесовских алгоритмов оптимального оценивания. Описаны алгоритмы Point Mas Filter, Partical Filter. Приведены результаты численных исследований описанных алгоритмов.

ВВЕДЕНИЕ

Повышение точности информационно-измерительных систем может быть достигнуто как за счет улучшения качества аппаратуры, так и путем совершенствования алгоритмов обработки используемой измерительной информации. В полной мере это относится и к навигационным системам, основное назначение которых заключается в определении местоположения объекта в пространстве, его ориентации и характера передвижения.

В настоящее время в таких системах широкое применение нашли алгоритмы калмановского типа, получение которых опирается на хорошо разработанную теорию линейной фильтрации марковских последовательностей и процессов [1, 2]. Простота получаемых здесь оптимальных алгоритмов является следствием гауссовского характера апостериорной (условной к измерениям) плотности для вектора состояния.

На практике при обработке навигационной информации приходится сталкиваться с задачами, в которых апостериорная плотность не является гауссовской. Нахождение как самой апостериорной плотности, так и соответствующих ей алгоритмов вычисления оценок, обеспечивающих оптимальное решение задачи при негауссовском характере этой плотности, существенно осложняется. При создании таких алгоритмов приходится обращаться к теории нелинейной фильтрации, центральное место в которой занимает проблема нахождения апостериорной плотности. В докладе рассматривается общая постановка задачи байесовских алгоритмов оптимального оценивания, оптимальные нелинейные алгоритмы Point Mas Filter PMFI. Partical Filter PFI.

БАЙЕСОВСКИЙ ПОДХОД

В рамках байесовского подхода задача оценивания n-мерного вектора $x = (x_1, ... x_n)^T$ по m-мерному вектору измерений $y = (y_1, ... y_m)^T$ реша-

ется в предположениях, когда вектор x и ошибки измерения v, а следовательно, и сами измерения y считаются случайными.

Количественная характеристика качества оценивания x по измерениям y может быть введена с помощью скалярной функции $L(x-\tilde{x}(y))$, устанавливающей определенный штраф за отличие оценки от истинного значения оцениваемого параметра и называемой функцией потерь. Наибольшее распространение при анализе качества оценок в задачах обработки навигационной информации получила квадратичная функция потерь

$$L(x-\tilde{x}(y)) = \sum_{i=1}^{n} (x-\tilde{x}(y))^{2} = (x-\tilde{x}(y))^{T} (x-\tilde{x}(y)) =$$

$$= Sp\{(x-\tilde{x}(y))(x-\tilde{x}(y))^{T}\}.$$

Введем связанный с ней критерий в виде математического ожидания от этой функции

$$J(x) = M_{x,y} \left\{ L(x - \tilde{x}(y)) \right\} = M_{x,y} \left\langle Sp \left\{ (x - \tilde{x}(y))^{\mathsf{T}} (x - \tilde{x}(y)) \right\} \right\rangle = Sp \left\{ \tilde{P} \right\}$$
 где
$$\tilde{P}(x) = M_{x,y} (x - \tilde{x}(y)) (x - \tilde{x}(y))^{\mathsf{T}} = \left\{ \left[(x - \tilde{x}(y))(x - \tilde{x}(y))^{\mathsf{T}} f_{x,y}(x,y) dx dy \right] \right\}$$

апостериорная матрица ковариации ошибок.

Следует обратить внимание на то, что эта апостериорная матрица ковариаций не зависит от измерений, поскольку она отыскивается путем вероятностного осреднения как по x, так и по y.

Сформулируем задачу оценивания вектора x по измерениям y следующим образом: найти такую оценку, которая обеспечит минимум математического ожидания для квадратичной функции потерь, т.е.

$$\hat{x}(y) = \operatorname*{arg\,min}_{\tilde{x}(y)} M_{x,y} \left\{ \sum_{i=1}^{n} (x - \tilde{x}_i(y))^2 \right\} = \operatorname*{arg\,min}_{\tilde{x}(y)} Sp \left\{ \tilde{P} \right\}.$$

АЛГОРИТМ POINT MASS FILTER

PARTICAL FILTER

Можно вставить пару слов о сложности алгоримов

Сложность обоих, рассматриваемых здесь алгоритмов, зависит от количества гипотез (M) и шагов сравнения (K) и составляет O(M*K), что позволяет рассчитывать на сходную ресурсоемкость алгоритмов.

Численные исследования алгоритмов РКЭНС

Для определения эффективности алгоритмов PMF и PF в задаче РКЭНС был проведен ряд численных экспериментов. В качестве эталона использовалась цифровая карта рельефа местности формата SRTM [5] на район среднерусской возвышенности. Модельные реализации полетов ЛА представляли собой прямолинейные участки траектории длиной до 30 км. Ошибки инерциальной навигационной системы (ИНС) вдоль оси *ОХ* моделировались следующим образом:

$$\delta x(t) = \delta x_{i\hat{a}+} + \int (\delta V x_{i\hat{a}+} + \delta a_x(t)) dt,$$

где, $\delta x_{ia} = N(0,1000)$ - координатная ошибка ИНС в начальный момент вре-

мени; $\delta V x_{i\hat{a}+} = N(0,5)$ - скоростная ошибка ИНС в начальный момент времени; $\delta a_x = N(0.002,0.01)$ - составляющая, вызванная дрейфом гироскопа. Ошибки по оси OZ моделируются аналогично. Ошибка измерения высоты моделировались следующим образом:

$$\delta h = N(0.015 \cdot (h_{ABC} - h_{PB})) + \delta h_{PB},$$

где $h_{{\scriptscriptstyle A\!B\!C}}-$ абсолютная высота полета; $h_{{\scriptscriptstyle D\!\hat{A}}}-$ показания радиовысотомера; $\partial\! h_{{\scriptscriptstyle D\!\hat{A}}}-$ ошибка, вызванная нелинейностью рельефа в точке измерения.

Во всех проведенных экспериментах

В эксперименте 1, была исследована точность полученного решения, в зависимости от количества гипотез (узлов) сети. Результаты представлены в таблице (1). Заметим, что в случае использования небольшого количества узлов РF существенно проигрывает в точности РМF, однако, с увеличением числа гипотез, оба алгоритма показывают очень близкие результаты

	100 узлов	400 узлов	900 узлов	1600 узлов	2500 узлов
PMF	271.9	155.3	124.5	101.5	97.4
PF	352.1	164.3	122.9	104.1	97.9

Таблица 1.

Проведем замер скорости обработки информации по 200 реализациям, каждая длинной около 11 километров. Результаты представлены в таблице (2).

	400 узлов	900 узлов	1600 узлов
PMF	111.9	232.0	410.4
PF	113.0	233.1	422.1

Таблица 2.

Как и следовало ожидать из (...) оба алгоритма показывают практически одинаковую скорость работы.

Выводы

1. **Белоглазов И.Н.** Корреляционно-экстремальные системы / И.Н. Белоглазов, В.П. Тарасенко. — М.: Сов. радио, 1974.

СПИСОК ЛИТЕРАТУРЫ

- 2. **Степанов О.А.** Основы теории оценивания с приложениями к задачам обработки навигационной информации. Часть 1. Введение в теорию оценивания / О.А. Степанов. СПб.: ГНЦ РФ ЦНИИ «Электроприбор», 2009. 496 с.
- 3. **Bergman N.** Point-mass filter and Cramer-Rao bound for Terrain-Aided Navigation / Niclas Bergman. Linköping, Sweden: Department of Electrical Engineering Linköping University, 1997. 7 c. LiTH-ISY-R-1987.

- 4. **Bergman N.** Recursive Bayesian Estimation Navigation and Tracking Applications / Niclas Bergman. Linköping, Sweden: Department of Electrical Engineering Linköping University, Dissertation No. 579, 1999. 205 p. ISBN 91-7219-473-1.
- 5. <u>ftp://eosrpoln.ecs.nasa.gov/SRTM/versbon2.</u>