Assignment 6 Qual Problems

D. Zack Garza

November 7, 2019

Contents

1	Prol	blem 1																1														
	1.1	Part (a)																														
	1.2	Part (b)]

1 Problem 1

1.1 Part (a)

Definition: A field extension L/F is said to be a *splitting field* of a polynomial f(x) if L contains all roots of f and thus decomposes as

$$f(x) = \prod_{i=1}^{n} (x - \alpha_i)^{k_i} \in L[x]$$

where α_i are the distinct roots of f and k_i are the respective multiplicities.

1.2 Part (b)

Let F be a finite field with q elements, where $q=p^k$ is necessarily a prime power, so $F\cong \mathbb{F}_{p^k}$. Every finite degree extension of a finite field is simple, so $E=F(\alpha)$ for a single primitive element α . Then $\alpha^{p^k}=\alpha$, so we can define $f(x)\coloneqq x^{p^k}-x\in F[x]$ and it follows that every power of α is a root of f.