

Quick derivation of the Curtin-Hammett Principle

$$\Delta\Delta G^\ddagger = \Delta G^\ddagger_2 - \Delta G^\ddagger_1 + \Delta G^\circ$$

First, $d[P_1]/dt = k_1[A]$ and $d[P_2]/dt = k_2[B]$.

Due to rapid equilibration, we can make the approximation that

$[B]/[A] = k_{AB}/k_{BA} = K$, so that $d[P_2]/dt = k_2[B] = Kk_2[A]$.

That means that $d[P_2] = (Kk_2/k_1)d[P_1]$. Integrating, $[P_2] = (Kk_2/k_1)[P_1]$ or

$$[P_2]/[P_1] = Kk_2/k_1.$$

Converting into energies,

$$[P_2]/[P_1] = \exp(-\Delta G^\circ/RT) \exp(-\Delta G^\ddagger_2/RT) \exp(\Delta G^\ddagger_1/RT) = \exp[-(\Delta G^\ddagger_2 - \Delta G^\ddagger_1 + \Delta G^\circ)/RT], \text{ so}$$

$$[P_2]/[P_1] = \exp(-\Delta\Delta G^\ddagger/RT).$$