Unit-I

Inequalities on LMVT

Ex.1: Prove that (if
$$0 < a < b < 1$$
), $\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2}$ and hence show that $\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$

Ex.2.: Prove that
$$1 - \frac{a}{b} < \log \frac{a}{b} < \frac{b}{a} - 1$$
 and hence show that $\frac{1}{6} < \log \frac{6}{5} < \frac{1}{5}$

Ex.3: If
$$f(x) = \sin^{-1} x$$
, $0 < a < b < 1$ then use mean value theorem to prove that

$$\frac{b-a}{\sqrt{1-a^2}} < \sin^{-1}b - \sin^{-1}a < \frac{b-a}{\sqrt{1-b^2}}$$
. Hence show that $\frac{\pi}{6} - \frac{1}{2\sqrt{3}} < \sin^{-1}\frac{1}{4} < \frac{\pi}{6} - \frac{1}{\sqrt{15}}$

Taylor's series

Ex.1: Expand using Taylor's theorem, $(x-2)^4 - 3(x-2)^3 + 4(x-2)^2 + 5$ in powers of x.

Ex.2: By Taylor's series expand $7 + (x + 2) + 3(x + 2)^3 + (x + 2)^4$ in ascending power of x.

Ex.3: Expand $x^3 + 7x^2 + x - 6$ in power of (x - 3).

Ex.4.: Using Taylor's theorem expand $2x^3 + 3x^2 - 8x + 7$ in powers of (x - 2).

Ex.5: Use Taylor's theorem express $3x^3 - 2x^2 + x - 4$ in powers of (x + 2).

Unit-II

Directionl derivative

- **Ex.1**: Find directional derivative of $\phi = x^2yz + 4xz^2$ at the point (1, -2, -1) in the direction of vector $2\overline{i} \overline{j} 2\overline{k}$.
- **Ex.2**: Find the directional derivative of $xy^2 + yz^3$ at (2, -1, 1) along the line 2(x 2) = y + 1 = z 1
- **Ex.3**: Find the directional derivative of $\phi = 5x^2y 5y^2z + 2z^2x$ at the point (1, 1, 1) in the direction of the line. $\frac{x-1}{2} = \frac{y-3}{-2} = \frac{z}{1}$
- **Ex.4**: Find directional derivative of $\phi = 4xz^3 3x^2y^2z$ at point (2, -1, 2) along a line equally inclined with co-ordinate axes
- **Ex.5**: Find the directional derivative of the function $\phi = e^{2x-y-z}$ at (1,1,1) in the direction of the

tangent to the curve $x = e^{-t}$, $y = 2 \sin t + 1$, $z = t - \cos t$ at t = 0.

Vector Integration

Ex.1: Evaluate $\iint_S curl \ \overline{F} \cdot \hat{n} \, ds$ for $\overline{F} = (2x - y) \ \overline{i} - y \ z^2 \ \overline{j} - y^2 \ z \ \overline{k}$ and S is the surface of the hemisphere $x^2 + y^2 + z^2 = 1$ above the XY plane.

- **Ex.2:** Evaluate $\int_{S}^{J} \left(\nabla \times \overline{F} \right) \cdot \hat{n}$ ds where s is the curved surface of the parabolid : $x^2 + y^2 = 2z$ bounded by the plane z = 2 where $\overline{F} = 3$ (x y) $\overline{i} + 2xz$ $\overline{j} + xy$ \overline{k}
- **Ex.3:** Evaluate \iint curl \overline{F} · \widehat{n} ds for the surface of paraboloid $z=9-(x^2+y^2)$ above the plane z=0 and $\overline{F}=(x^2+y-4)$ $\overline{i}+3xy$ $\overline{j}+(2x$ $z+z^2)$ \overline{k}
- **Ex.4:** Evaluate $\int_{C} \overline{F} \cdot d\overline{r}$ by using Stoke's theorem for $\overline{F} = -4y\overline{i} + 4x\overline{j} + 3\overline{k}$, where, S is a disk of radius 1 lying on the plane z = 1 and C is its boundary.

Unit-III

Method of variation of parameters

Solve following differential equations by Method of variation of parameters

$$1)\frac{d^2y}{dx^2} + y = \csc x$$

2)
$$(D^2 - 4D + 4)y = \frac{e^{2x}}{x^2}$$

3)
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{2x} \sec^2 x$$

4)
$$(D^2 + 3D + 2)y = \sin e^x$$

Solve following differential Equations

1)
$$y^{-3} \frac{dy}{dx} - x y^{-2} = x^3$$

2)
$$e^{y} \frac{dy}{dx} + e^{x} e^{y} = -e^{2}$$

3)
$$\sec y \tan y \frac{dy}{dx} - \sec y = -x$$

4)
$$\frac{dy}{dx} - xy = -y^3 e^{-x^2}$$