

Alberto Piganti

ABC: Basic Connections

by Alberto Piganti

Copyright © 2017 Alberto Piganti. All rights reserved. Printed in Spain by Artes Graficas Mawijo, S.A.

Published by Alberto Piganti – ESY3370544T C/ Perú 4 planta 1 oficina 2 28290 Las Rozas, Madrid (Spain)

PighiXXX books can be purchased for educational, business, or promotional use. For more information, distribution, translations or bulk sales please contact our sales department at contact@abcthebook.com

Printing History:

November 2017:

First Edition

The PighiXXX logo is a registered trademark of Alberto Piganti. Other product and company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

ISBN: 978-84-946930-0-7

Important Message:

Your safety is your own responsibility, including proper use of equipment and safety gear, and determining whether you have adequate skill and experience to complete a specific project. In order to show the project steps more clearly, some illustrations do not depict safety precautions or equipment. Electricity and other resources are dangerous unless used properly and with adequate precautions, including safety gear. The projects included in this book are not intended for use by unsupervised children.

Use the instructions and suggestions in ABC: Basic Connections at your own risk. PighiXXX and the author disclaim all responsibility for any resulting damage, injury, or expense.

Dedicated to the people who have always believed in me:

My wife Olga and my mother

Table of Contents

Basic Concepts

Transistors
Reference
E24 Resistors E48 Resistors E96/E192 Resistors Capacitors (Markings) Capacitors (Color Code) NPN Transistor Selector PNP Transistor Selector
LED Test Code Typical LED Current Limiting Resistor Values . Alternating LEDs Bi-Color LED 2-Lead LEDs 3-Lead LEDs

LED Cluster
RGB LEDs
Common Cathode Configuration
Common Anode Configuration
LED Strip
Digitally-Addressable LEDs
Charlieplexing
LED Matrix
Multiple LED Clusters
ULN2803 Pinout
ULN2803 Port Schematic
Decoder/Demultiplexer
74HC238 Pinout
Connecting Multiple 74HC2381
Shift Register
74HC595 Pinout
Connecting Multiple 74HC595
Input Shift Register Via SPI
74HC165 Pinout13
Connecting Multiple 74HC16513
MAX7219 7-Segment Display Driver14
MAX7219 Pinout14
Calculating the Value of Rx14
LEDM88G 8x8 LED Matrix15
LEDM88G 8x8 LED Matrix Schematic15
Connecting Multiple MAX721915
TLC5940 LED Driver
TLC5940 Pinout10
Calculating the Value of Rx
Connecting LEDs10
Connecting Servos10
Connecting High-Power LEDs10
Connecting Multiple TLC594010
7-Segment Display17

4-Digit /-Segment Display
I/O Expander
MCP23017 Pinout
Connecting a LED19
Connecting a Pushbutton
Analog Mux/Demux
4051 Pinout 20
Doubling the Number of Ports
DC Light Bulb: Low-Power Load
DC Light Bulb: High-Power Load
DC Motor23
Solenoid24
Relay
Test Code
Status LED25
Opto-Isolated Relay
Logic-Level MOSFET 27
Non-Logic-Level MOSFET 28
Servo
Magnetic Buzzer
With External Power Supply
Piezo Buzzer
Note Frequency
IR Detector
Common IR Detectors
IR Emitter 33
Constant-Current IR Emitter 34
HD44780-Based LCD
HD44780-Based LCD Pinout
LCD Backlight Control
HD44780-Based LCD Via I2C
PCF8574 Pinout
I2C Pull-Up Resistors
Nokia 5110 LCD

OLED LCD
UC1701 128x64 LCD
ST7032i LCD
DS Touchscreen4
Simple Touch Sensor47
Pushbutton
Test Code43
Using Internal Pull-Up Resistors43
Pushbutton to 12V
Toggle Switch45
Using One Analog Input45
Multiple Pushbuttons
Rotary Encoder: Internal Pull-Up Resistors 47
Rotary Encoder 48
Simple Debouncing Circuit
Debouncing: Theory
Debouncing
Rotary Encoder Debouncing52
74LS14 & 74LS74 Pinout
Keypad 53
Keypad Pinout53
Membrane Keypad54
Membrane Keypad Pinout54
Keypad With 1 Analog Pin54
Thumbwheel Switch55
Rotary Switch
PS/2 Keyboard57
Trimmer 58
Photoresistor (LDR)
Phototransistor
Opto-Isolated DC Input
Opto-Isolated AC Input
SPST CMOS Analog Switch
AC Current Sensor64

LM34/LM35 Temperature Sensor
LM34/LM35 Temperature Sensor: Full Range66
TMP36 Temperature Sensor
MCP9700 Temperature Sensor
LM335 Temperature Sensor
Thermocouple70
DHT11 Temperature & Humidity Sensor71
DHT22 Temperature & Humidity Sensor
DHT11/DHT22 2-Wire Connection
DS18B20 Temperature Sensor
NTC Thermistor75
RTD Temperature Sensor
Gas Sensor (MQ Series)
Sharp GP2Y0A21 Distance Sensor
DIY microSD Card Reader
SD Card Pinout79
SD Card 80
SD Card Socket Pinout80
3-Wire Computer Fan81
4-Wire Computer Fan 82
Bi-Directional Level Converter83
Voltage Divider Connections83
3.3V to 5V Level Shifter
5V to 3.3V Level Shifter 84
4050 Level Shifter Pinout85
74HC125 Level Shifter Pinout
Voltage Divider87
TTL-CMOS Level Shifter
I/O Pin Protection89
Using a Zener Diode89
Using Clamping Diodes89
I/O Pin Filtering & Protection90
Two Microcontroller Boards90
VGA Output91

Composite Output	
Single-Transistor Amplifier	93
Audio Amplifier	94
Preamplifier	95
Microphone	96
Simple 5V Power Supply	97
Simple 3.3V Power Supply	
Simple Adjustable Power Supply	
Full-Wave Rectifier1	
TRIAC1	
Zero-Crossing Detector	
Solid-State Relay	
RC Snubber Network	
Soft Latching Power ON Circuit	
Reverse Voltage Protection	
RS-485 Interface	
Node Termination Jumpers1	
MIDI IN	
MIDI OUT	
Multiple MIDI OUT	
MIDI Pinout	
DMX Interface	
DMX Pinout1	
RS-232 Interface	
MAX232 Pinout1	
RS-232 Pinout 1	
RTC 1	
EEPROM	
Digital Potentiometer	
Buffer1	
Hall Effect Sensor	
Spectrum Analyzer	
Flex Sensor	
Piezo Sensor	

Op-Amp Thresh				
DAC H-Bridge				
L293D Pinou	ıt		 	 123
Unipolar Step	per Moto	r	 	 124
Stepper Mot				
Bipolar Stepp	er Motor		 	 125
Step Sequer				
Stepper Motor	Phases		 	 126
Pinouts				
ATmega328P			 	 P1
ATtiny85			 	 P2
ICSP Progra	amming		 	 P2
ATtiny84			 	 P3
ICSP Progra	amming		 	 P3
ATtiny2313			 	 P4
ESP8266				
ESP-12S Mir				
FTDI				
ICSP			 	 P7
Bifold				
UNO Pinout			 	 B1
Leonardo Pind	out		 	 B2
FLUO Pinout .			 	 B3
Nano Pinout .				
NodeMCU Pinou				
ESP-WROOM-32				
DIY Microcont				
Stepper Motor				
L298N Motor [Driver		 	 B9

Graphic Symbols

Resistor

PNP Transistor

Trimmer or Potentiometer

NPN Transistor

Ceramic Capacitor

P-Channel MOSFET

Electrolytic Capacitor

N-Channel MOSFET

Phototransistor

TRIAC

Photoresistor (LDR)

NTC Thermistor

Crystal

LED

Resonator

Common Cathode RGB LED

Silicon Diode

Common Anode RGB LED

Zener Diode

Bi-Color LED

Schottky Diode

Bi-Color LED

IR Emitter

Battery

IR Detector

Fuse

IN/OUT

Online Content

Junction

You can download additional information, support files and code related each schematic from the URLs on the cloud icons.

0-1.es/xx

We have a web page for this book where we list errata, examples, and any additional information:

abcthebook.com

For technical questions about this book, please contact our support team at:

contact@abcthebook.com

Conventions

This book uses American English spelling and the decimal point as the decimal mark. Although the International System of Units prescribes inserting a space between a number and a unit of measurement, such spaces are omitted in this book for aesthetic reasons.

The following conventions are used in this book:

Acknowledgments

I am most grateful to a great number of reviewers for their constructive criticism and suggestions. I am also indebted to the many authors whose books or websites I have consulted over the years.

This book has been realized by the effort and skill of many people.

I thank Raffaele Piacente (AKA Testato) for his excellent proofreading and testing work.

Thanks to Adafruit and Limor Fried for her support since the earliest days and for believing in my work.

On behalf of everyone who has downloaded user-contributed Arduino $^{\text{m}}$ libraries, I would like to thank the authors who have generously shared their knowledge.

A big thanks to the entire Arduino™ co unity and to and all my supporters that encourage me daily to create new content. Thanks to my friend Luis Estrella who has always believed in me and helped me in this publishing venture. And last, but not least, thanks to my wife Olga for her patience in the face of deadline—induced irritability.

And above all, thanks to all of you who supported us on our crowdfunding campaign. Thank you for making it possible!

0-1.es/A1

Ohm's Law

Basic Concepts

Ohm's law is one of the most fundamental relation—ships found in electric circuits: for a given resistance, current is directly proportional to voltage. In other words, if the voltage through a circuit with a fixed resistance increases, the current increases. If the voltage decreases, the current decreases as well. Ohm's law is expressed with a simple mathematical formula:

$$V = I \times R$$

Where **V** stands for voltage (in volts), **I** stands for current (in amperes), and **R** stands for resistance (in ohms). Ohm's law is very useful because it lets you calculate an unknown voltage, current, or resistance. If you know two of these three quantities you can calculate the third.

Known values	Resistance (R)	Current (I)	Voltage (V)	Power (P)
Current & Resistance			V=I×R	P=I ² ×R
Voltage & Current	R=V/I			P=V×I
Power & Current	R=P/I ²		V=P/I	
Voltage & Resistance		I=V/R		P=V ² /R
Power & Resistance		I=√P/R	V=√P×R	
Voltage & Power	R=V ² /P	I=P/V		

Ohm's Law

Basic Concepts

It is easier to remember this Ohm's law relationship by using pictures. Here the three quantities of **V**, **I** and **R** have been superimposed onto a triangle (called the Ohm's Law Triangle). This arrangement represents the position of each quantity within the Ohm's law formulas, making it easier to remember.

Transposing the standard Ohm's Law equation above will give us the following combinations of the same equation:

$$V = I \times R$$

$$I = \frac{V}{R}$$

$$R = \frac{V}{I}$$

0-1.es/A1

Ohm's Law

Basic Concepts

Electric Power (**P**) is the rate at which energy is absorbed or produced within a circuit. Electric power is measured in watts (**W**), that is, joules per second. A source of energy will supply power while the connected load absorbs it. A light bulb, for instance, would absorb power and convert it into both heat and light. The higher its value or rating in watts, the more electrical power it is likely to demand.

AI

0-1.es/A1

Ohm's Law Pie Chart Reference

0-1.es/A2

F

(

ć

(

ŗ

Ł

r

(

r

Resistors

Basic Concepts

Conductors are a materials that allow current to flow through them and insulators are materials that don't. The key factor that determines whether a material is a conductor or an insulator is how easily its atoms give up electrons to move charge along. Most atoms are very attached to their outermost electrons, and are therefore good insulators. But some atoms don't, making them good conductors.

If a conductor and an insulator are mixed together, the resulting material would not conduct current very well. Such a material would have an inherent resistance, resisting the flow of current through it. The degree to which the material resists current flow depends on its exact mixure of elements. A conducting material such as carbon might be mixed with an insulating material such as ceramic. If the mix is mostly carbon, the resistance of the mixture will be low. Whereas if the mix is mostly ceramic, its resistance will be high.

A2

Resistors

Basic Concepts

Resistance is measured in ohms, represented by the Greek letter omega (Ω) . The ohm is defined as the amount of resistance required to allow one ampere of current to flow when one volt of potential is applied to the circuit. In other words, if you connect a 1-ohm resistor across the terminals of a 1-volt battery, one amp of current will flow through the resistor.

In schematic diagrams, resistors are represented by a jagged line, with its resistance value typically written next to the resistor symbol.

The abbreviations k (for kilo) and M (for mega) are used for thousands and millions of ohms. Thus, a 1,000 ohm resistance is written as 1 k Ω , and a 1,000,000 ohm resistance is written as 1 M Ω .

The resistance value of a resistor can be determined by examining the color codes that are painted as stripes on its outer surface. These stripes indicate its resistance value in ohms and its tolerance, which indicates the maximum variation of the real resistance value compared to the value represented by the stripes.

0-1.es/R1

E24 Resistors

Color Code

1ST 2ND Digit Digit Multiplier Tolerance

Black

0 x1

Brown

1 ×10

Red

2 2 ×100

Orange

3 3 x1

Yellow

| 4 | x10

Green

5 **5 ×100**k

Blue

6 | 6 | |

Violet

7 | | 7

Gray

8 || 8

White

| 9

Gold

×0_1

x1M

±5%

Silver

±10%

R

0-1.es/R1

E24 Resistors

Common Standard Values

1Ω	10Ω	100Ω	1kΩ	-10kΩ	100kΩ	1ΜΩ
1.2Ω	12Ω	120Ω	1.2kΩ	12kΩ	120kΩ	1.2ΜΩ
1.5Ω	15Ω	150Ω	1.5kΩ	15kΩ	150kΩ	1.5ΜΩ
1.8Ω	18Ω	180Ω	1.8kΩ	18kΩ	180kΩ	1.8ΜΩ
2.2Ω	22Ω	220Ω	2.2kΩ	22kΩ	220kΩ	2.2ΜΩ
2.7Ω	27Ω	270Ω	2.7kΩ	27kΩ	270kΩ	2.7ΜΩ
3.30	33Ω	330Ω	-3.3kΩ	33kΩ	-330kΩ	3.3MΩ
3.9Ω	39Ω	390Ω	-3.9kΩ	39kΩ	390kΩ	3.9MΩ
4.7Ω	47Ω	470Ω	4.7kΩ	47kΩ	470kΩ	4.7ΜΩ
5.6Ω	56Ω	560Ω	5.6kΩ	-1110- 56kΩ	560kΩ	5.6ΜΩ
6.80	68Ω	680Ω	6.8kΩ	68kΩ	680kΩ	6.8ΜΩ
8.2Ω	82Ω	820Ω	8.2kΩ	82kΩ	820kΩ	8.2ΜΩ

🕡 Partial list, full version available online

0-1.es/R2

E48 Resistors

Color Code

2ND Digit Multiplier Tolerance

Black

x1

Brown

x10

Red

±2%

Orange

×100

Yellow

Green

×100k

Blue

x1M

Violet

Gray

White

9

×0.01

Gold

Silver

±10%

0-1.es/R3

E96/E192 Resistors

Color Code

×0.01

±10%

6

Silver

AZ

ŀ

(

1

1

Capacitors

Basic Concepts

Capacitors are components that that store electric energy as an electric field. They consist of two plates made of a conducting material such as silver or aluminum, separated by a thin insulating material such as Mylar or ceramic. The two conducting plates are connected to terminals so that a voltage can be applied across them.

Because the two plates are separated by a dielectric, that is, an electrical insulator that can be polarized by an electric field, a closed circuit is not formed. Nevertheless, current flows for an instant. When the voltage from a source such as a battery is connected, the negative terminal of the battery immediately begins to push electrons toward one of the plates.

Capacitors

Basic Concepts

At the same time, the positive side of the battery voltage begins to pull electrons (negative charges) away from the second plate. The electric field that builds up between the two plates allows current to flow. As the plate on the negative side of the circuit fills with electrons, the electric field created by them push the electrons away from the plate on the other side of the dielectric, toward the positive side of the battery voltage.

Capacitor Charging

As current flows, the negative plate of the capacitor builds up an excess of electrons, whereas the positive side develops a corresponding deficiency of electrons. At the same time, the voltage between the two plates increases proportionally to the difference in charge between the two plates.

The voltage continues to increase until the capacitor voltage equals the battery voltage. Once they are the same, current stops flowing through the circuit, and the capacitor is said to be charged.

0-1.es/A3

t

(

t

Capacitors

Basic Concepts

Once the capacitor has been charged it will acquire the same voltage as the battery, and the charge will remain in the capacitor even when disconnected. The amount of charge capacitors can store is proportional to the area of their plates.

When a charged capacitor is connected to a circuit, the voltage across its plates will drive current through the circuit, discharging the capacitor.

Capacitors

Basic Concepts

Capacitance is the electrical property of a capacitor that defines its ability to store an electric charge onto its two plates, with the unit of capacitance being the farad (**F**). A 1-farad capacitor can store 1 coulomb of charge at 1 volt. A coulomb is 6.25e18 (6.25 billion billion) electrons. Based on this definition, one ampere represents a rate of electron flow of 1 coulomb of electrons per second.

As in the case of resistors, capacitors also have a manufacturing tolerance for their capacitance value.

If there is enough room on the package, most manufacturers print the capacitance value directly on the capacitor along with other information such as the voltage rating and the tolerance.

0-1.es/R4

Capacitors Markings

Multiplier	Multiply by
0	1
1	10
2	100
3	1,000
4	10,000
5	100,000
8	0,01
9	0,1

10×10,000	=	100,0	00pF
100,000pF	=	0.1μF	±10%

Letter	Tolerance >10pF	Tolerance <10pF
В		±0.1pF
С		±0.25pF
D		±0.5pF
F	±1%	±1pF
G	±2%	±2pF
Н	±3%	
J	±5%	
K	±10%	
М	±20%	

Conversion Table

picofarads pF	nanofarads nF	microfarads μF
1	0.001	0.000001
10	0.01	0.00001
100	0.1	0.0001
1,000	1	0.001
10,000	10	0.01
100,000	100	0.1
1,000,000	1,000	1
10,000,000	10,000	10
100,000,000	100,000	100

Capacitors Color Code

0-1.es/A4

Components in Series

Capacitors

$$C_{TOTAL} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}} C_{TOTAL} = \frac{1}{\frac{1}{100} + \frac{1}{100} + \frac{1}{100}}$$

$$C_{TOTAL} = 33.33nF$$

Resistors

$$R_{TOTAL} = R_1 + R_2 + R_3 R_{TOTAL} = 330 + 330 + 330$$

Components in Parallel

Capacitors

$$C_{TOTAL} = C_1 + C_2 + C_3 C_{TOTAL} = 100 + 100 + 100$$

$$C_{TOTAL} = 100 + 100 + 100$$

$$C_{TOTAL} = 300 nF$$

Resistors

$$R_{TOTAL} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} \quad R_{TOTAL} = \frac{1}{\frac{1}{330} + \frac{1}{330} + \frac{1}{330}}$$

$$R_{TOTAL} = 110\Omega$$

Diodes

Basic Concepts

Diodes are components made from a combination of a p-type and n-type semiconductor material, most commonly silicon.

The lead attached to the n-type semiconductor is called the cathode. Thus, the cathode is the negative side of the diode. Alternatively, the positive side of the diode, that is, the lead attached to the p-type semiconductor, is called the anode.

In the schematic symbol of the diode, the anode is represented as a triangle and the cathode is represented as a bar. You can think of the anode side of the symbol as an arrow that indicates the direction of conventional current flow, from positive to negative.

A6

0-1.es/A6

Diodes

Basic Concepts

When p-type and n-type silicon are placed together during the manufacturing process, a junction called p-n junction is created where the p-type and n-type materials meet. Holes, or lack of electrons, close to the junction in the p-type silicon are attracted into negatively charged n-type material at the other side of the junction.

At the same time, electrons close to the junction in the n-type silicon are attracted to the positively charged p-type silicon. The recombination of holes and electrons produces a narrow region at the junction called the depletion layer.

r

1

(

١

r

Diodes

Basic Concepts

When a voltage source is connected to a diode such that the positive side of the voltage source is on the anode and the negative side is on the cathode, the diode becomes conductive and allows current to flow. This configuration is called forward bias.

Diode in Forward Conduction

Reverse-Biased Diode

If the direction of the voltage is reversed, when connecting the positive side to the cathode and the negative side to the anode, current doesn not flow. In this case, the diode becomes an insulator. This configuration is called reverse bias.

A6

0-1.es/A6

Diodes

Basic Concepts

Forward and reverse bias can be illustrated by connecting a light bulb to a battery with a diode in series. In the circuit on the left, the diode is forward biased, so current flows through the circuit and the light bulb lights up. In the circuit on the right, the diode is reverse biased, so current does not flow and the light bulb remains off.

When a diode is connected to a circuit, no current can flow between anode and cathode until the anode is made more positive than the cathode by a forward voltage sufficiently high to overcome the natural reverse potential of the p-n junction. This voltage, called forward voltage drop $(\mathbf{V_F})$, is usually around 0.5V.

Ε

(

(†

I

n

t

I

(

n

Transistors

Basic Concepts

Transistors similar to diodes but containing a third layer of either n-type or p-type semiconductor on one end. The interface between each of the three regions forms a p-n junction.

Planar transistor structure

Lateral planar transistor structure

One way in which transistors are made is by sandwitching a a p-type semiconductor between two n-type semiconductors. This type of transistors are called NPN because they have three regions: n-type, p-type, and n-type.

Alternatively, PNP transistors are made by sandwitching an n-type semiconductor between two p-type semiconductors.

A7

0-1.es/A7

Transistors

Basic Concepts

Each of the three regions of semiconductor material in a transistor has a lead attached to it. They are called collector, base and emitter respectivelly.

Collector: Attached to the largest of the semiconductor regions. Current flows through the collector to the emitter as controlled by the base.

Emitter: Attached to the second largest of the semiconductor regions. Current flows from the collector to the emitter when the base voltage allows.

Base: Attached to the middle semiconductor region. This region serves as a valve that controls how much current is allowed to flow through the collector-emitter circuit. When sufficient voltage is applied to the base, current is allowed to flow.

Transistors

Basic Concepts

Transistors are current-regulating devices that act as a current-controlled switches. The amount of current flowing through them varies proportionally with the amount of biasing voltage applied to their base terminal.

The schematic symbols for both transistors have their arrows pointing in the direction of the conventional current flow, between the base terminal and its emitter terminal. The direction of the arrow points from the positive p-type region to the negative n-type region for both transistor types, the same occurs with the standard diode symbol.

Transistors

Basic Concepts

Transistors come in a wide variety of physical packages. Package type is primarily dependent upon the required power dissipation of the transistor, with it physical size being proportional to its maximum power dissipation.

Note: It is very important to check the datasheet of each transistor since the pinouts are not standardized.

Symbol	Description		
V _{CE}	Collector-Emitter Voltage		
V _{EB}	Emitter-Base Voltage Collector-Base Voltage		
V _{CB}			
I _E	Emitter Current		
Ic	Collector Current		
I _B	Base Current		
hFE	Current Gain		

Important transistor characteristics

Transistor Selector

Transistor Selector

ATmega328P

Pinout

Power

P2

0-1.es/P2

ATtiny85 Simplified Pinout

Absolute MAX per pin 10mA, 5mA recommended

Absolute MAX per pin 60mA for the entire package

ICSP Programming

ATtiny84 Simplified Pinout

Absolute MAX per pin 10mA, 5mA recommended

Absolute MAX per pin 60mA for the entire package

ICSP Programming

— PWM Pin

Power GND

Port PIN

Interrupt PIN

Control PIN

ATtiny2313 Simplified Pinout

Absolute MAX per pin 10mA, 5mA recommended

Absolute MAX per pin 60mA for the entire package

Analog PIN Serial PIN Control PIN

ESP8266

Simplified Pinout

ESP-12S

	I015	IOØ	I02	Boot Mode
	0V	0V	3.3V	UART Bootloader
	0 V	3.3V	3.3V	Boot Sketch (SPI Flash)

ESP8266ESP-12S Minimal Setup

Don't forget to connect all the ground wires together!

FTDI Pinout

Check the I/O pin voltage before programming the microcontroller!

The FTDI cable is a USB to Serial (TTL level) converter which allows for a simple way to connect TTL interface devices to USB. Normally the I/O pins of FTDI cable are configured to operate at 5V. The FTDI cable uses the RTS signal for hardware reset when programming a microcontroller board.

P7

0-1.es/P7

ICSP Pinout

The ICSP header allows the microcontroller to receive the firmware or the bootloader. **ICSP** stands for In Circuit Serial Programming, it is a standard way to program AVR chips. ISCP uses six pins to program the microcontroller:

MISO: (Master In Slave Out): the slave line for sending data to the master.

MOSI: (Master Out Slave In): the master line for sending data to the peripherals.

SCK: (Serial Clock): the clock pulses that synchronize data transmission generated by the master.

RESET: connected to the reset signal of the microcontroller.

LEDBasic Connections

LEDs (ligth-emitting diodes) are components that are polarized and only allow current to flow in one direction. LEDs normally have two terminals: the anode (A) or positive side (the longer lead), and the cathode (K) or negative side (the shorter lead closest to the flat edge of the LED).

LEDTest Code

```
int LEDPin = 13;

void setup() {
    pinMode(LEDPin,OUTPUT);
}

void loop() {
    digitalWrite(LEDPin,HIGH);
    delay(1000);
    digitalWrite(LEDPin,LOW);
    delay(1000);
}
```

Assign variable *LEDPin* as pin 13

Initialize the pin as an OUTPUT

Turn the LED ON Wait for 1 second Turn the LED OFF Wait for 1 second

Typical LED Current Limiting Resistor Values

```
Red
\begin{array}{c}
220\Omega \\
180\Omega \\
\hline
\end{array}
Blue
\begin{array}{c}
100\Omega \\
\hline
\end{array}
Orange
\begin{array}{c}
200\Omega \\
\hline
\end{array}
White
```

Limiting the current that flows through an LED is very important! For this purpose, a current limiting resistor is used in series with the LED. If you connect the LED directly (without a resistor in series) the microcontroller or the LED may suffer damage!

Alternating LEDs Basic Connections

Bi-Color LED 2-Lead LEDs

4

LED Cluster

Basic Connections

5

0-1.es/5

LED Strip Basic Connections

A 1 meter long LED strip can draw nearly 1A when all LEDs are on full brightness. The I/O pins of most microcontroller boards can only supply up to 40mA each, so you will have to help it out with a driver circuit to boost the power. This circuit uses 3 PWM signals from the board and uses them to drive 3 MOSFETs.

Digitally-Addressable LEDs

Basic Connections

When connecting digitally-addressable LEDs to any LIVE power source or microcontroller, ALWAYS CONNECT GROUND (♠) BEFORE ANYTHING ELSE. Conversely, disconnect ground last when detaching the LEDs.

This schematic is valid only for RGB color pixels and strips based on the WS2812, WS2811 and SK6812 LED drivers, which use a single-wire control protocol. Do not power the strip directly from the 5V pin of the microcontroller board! Each individual LED draws up to 60mA when set to white at maximum brightness.

Charlieplexing Basic Connections

Charlieplexing is a technique for driving a multiplexed display in which relatively few I/O pins on a microcontroller are used to drive an array of LEDs. Not only does it take advantage of the two states that we normally change, HIGH and LOW, but it also uses a third state by changing between OUTPUT and INPUT modes.

LED MatrixBasic Connections

Multiple LED Clusters Using the ULN2803 Darlington Transistor Array

ULN2803 Pinout

The ULN2803 is an octal Darlington transistor array that delivers up to 500mA of current for each pin and operates at up to 50V. You can drive motors, DC light bulbs, relays, solenoids, etc. The Darlington output pins can even be connected in parallel for higher current applications.

Decoder/Demultiplexer Using the 74HC238 Decoder

74HC238

The 74HC238 is a high speed CMOS 3-to-8 line decoder. It has three binary select inputs (A0, A1, A2) which determine which one of the eight outputs (Y0-Y7) will go high. This chip has three enable inputs (E1, E2, E3). If you leave E3 low, no outputs can be set to high.

Shift RegisterUsing the 74HC595 Shift Register

0-

0-1.es/12

74HC595

Pinout

The 74HC595 is an 8-bit shift register. It takes 8 bits from the serial input and outputs them to 8 pins. You can daisy chain them together so it's really easy to control a big number of LEDs or power transistors from only 3 digital microcontroller pins.

Input Shift Register Via SPI Using the 74HC165 Shift Register

13

0-1.es/13

74HC165

Connecting Multiple 74HC165

The 74HC165 is an 8-bit parallel-load or serial-in shift registers with complementary serial outputs available from the last stage. You can daisy chain them together so it's really easy to control a big number of LEDs or power transistors from only 3 digital microcontroller pins.

MAX7219 7—Seg. Display Driver Connecting a 4-Digit 7-Segment Display

MAX7219

Pinout

The MAX7219 is a constant-current LED driver. Resistor Rx is used to set the current for the LEDs. You will need to know the voltage and forward current for your LED display or matrix and match the value on the table below. E.g., if you have a 2V, 20mA LED, your resistor value must be 28kΩ.

I _{SEG} (mA)	V _{LED} (V)				
	1.5	2.0	2.5	3.0	3.5
40	12.2	11.8	11.0	10.6	9.69
30	17.8	17.1	15.8	15.0	14.0
20	29.8	28.0	25.9	24.5	22.6
10	66.7	63.7	59.3	55.4	51.2

The MAX7219 is a powerful serial input/output common-cathode display driver that interfaces microcontrollers with 7-segment numeric LED displays of up to 8 digits. It has a built-in BCD decoder and brightness control. You could also use it to drive individual LEDs, Bar-graphs LEDs, or 8×8 LED matrix displays.

15

LEDM88G 8x8 LED Matrix

Using the MAX7219 LED Display Driver

Pin 1 is the first pin starting from the left if you orient the device so that the part number is facing towards you

0-1.es/15

Using one MAX7219 you can drive up to 64 LEDs using only 4 wires to interface with a microcontroller. This powerful LED driver is designed to be daisy-chained so you can connect multiple 64-pixel displays together (like those scrolling signs you see in shop windows).

16

TLC5940 LED Driver

Basic Connections

0-1.es/16

TLC5940

Calculating the value of Rx

The TLC5940 is a constant-current LED driver. The value of Rx has to be calculated according to the output current that is best suited for your application. If you want to connect components that draw 18mA of current use Ohm's law to calculate the resistor value as shown below.

$$Rx = V / I$$

 $Rx = 39.06V / 0.018A$
 $Rx = 2.170 \approx 2.2k\Omega$

The number 39.06 comes from the on-chip 1.24V voltage reference multiplied by a gain of 31.5, therefore 1.24 × 31.5 = 39.06V

The TLC5940 is a 16-channel, constant-current sink LED driver. Each channel has an individually adjustable 4096-step grayscale PWM brightness control, 6 bit current limit control (0-63), and a daisy chainable serial interface. Use this schematic to increase the number of PWM pins available to your microcontroller.

16

TLC5940 LED Driver

Connecting LEDs

Paralleleds outputs	LED current range (mA)	Number of LEDs per chip
1	0-80	16
2	0-160	8
3	0-240	5
6	0-480	2
8	0-640	2
16	0-1280	1

TLC5940 LED Driver

Connecting High-Power LEDs

Connecting Multiple TLC5940

7-Segment Display Common-Cathode Connections

A 7-Segment LED display is an electronic device housing 8 individual LEDs so you should use current-limiting resistors in series with the microcontroller pins. The segments can be combined to produce simplified representations of the arabic numerals or symbols.

4-Digit 7-Segment Display Basic Connections

19

I/O Expander

Using the MCP23017 I/O Expander

0-1.es/19

MCP23017

Pinout

Analog Mux/Demux Using the 4051 Mux/Demux

4051 Pinout

Doubling the Number of Ports

The 4051 is a single-pole octal-throw analog switch suitable for use in analog or digital 8:1 multiplexer/demultiplexer applications. The switch features three digital select inputs, eight independent inputs/outputs and common input/output.

21

DC Light Bulb

Low-Power Load

Microcontrollers can only output a very small amount of current from their output pins. These pins are meant to send control signals, not to act as power supplies. The most common way to control a direct current device from a microcontroller is to use a transistor.

0-1.es/22

DC Light Bulb

High-Power Load

The 2N2222 transistor is rated at 800mA maximum, but you should leave a good safety margin. Many electronics projects designed for switching high-current DC loads use MOSFETs. If your lamp is greater than 2W, you need a MOSFET. The IRL540 can deliver its specified 28A continuous current at 5V.

23

DC motors can create harmful voltage spikes due to their inductive nature. In this schematic the capacitor used for filtering the noise caused by the motor and the diode is used to protect the power supply from reverse voltage caused by the motor acting like an inductor.

Solenoid

Basic Connections

It's very important to use a large electrolytic capacitor in this circuit. The capacitor is used for supplying the current required by solenoid when the circuit is activated.

25

RelayBasic Connections

Relays have two types of contacts: NO and NC. NO stands for "Normally Open", whereas NC stands for "Normally Closed". When the relay is turned off, NO contacts are open and NC contacts are closed. On the other hand, when the relay is turned on, NO contacts are closed and NC contacts are open.

Relay Test Code

```
int relayPin = 9;

void setup() {
    pinMode(relayPin,OUTPUT);
}

void loop() {
    digitalWrite(relayPin,HIGH);
    delay(3000);
    digitalWrite(relayPin,LOW);
    delay(3000);
}
```

Assign variable relayPin as pin 9

Initialize the pin as an OUTPUT

Turn the relay ON Wait for 3 seconds Turn the relay OFF Wait for 3 seconds

Status LED for the Relay

Relays offer complete isolation between the control circuit and the load. They can switch AC and DC and they can be very reliable and robust. Compared to transistors, relays are very slow. Relays are ON-OFF devices, whereas transistors can have their voltage drop varied.

26

Opto-Isolated Relay

Basic Connections

The purpose of an optocoupler is to isolate two parts of a circuit. Typical examples are industrial units with lots of interferences which affect the signals in the wires. If these interferences are not isolated, they can affect the correct functioning of the unit and cause errors.

Logic-Level MOSFET

If you need to switch high-current and/or high-voltage loads with a microcontroller board, you need to use a MOSFET. This circuit is reccomended only for switching purposes or in low frequency applications. The IRL540 can deliver its specified 28A continuous current at 5V.

28

Non-Logic-Level MOSFET

Use this circuit if you have a power FET (like the IRF series) and need some galvanic separation from your microcontroller circuit. This circuit is reccomended only for switching purposes or in low frequency applications. The IRF540 can deliver its specified 28A of continuous current at 10V.

0-1.es/29

ServoBasic Connections

Standard servos are designed to receive electronic signals that tell them what position to hold. They are used, for example, to control the position of flaps, rudders and steering. Continuous rotation servos on the other hand turn at certain speed and direction. They are useful for driving wheels and pulleys.

Magnetic Buzzer Basic Connections

Piezo Buzzer

Basic Connections

Note Frequency (Hz)

32

IR Detector

Basic Connections

IR detectors are tiny microchips with a photocell that are tuned to detect infrared light. They are almost always used for remote control detection. IR detectors are digital out, either they detect a signal over a carrier (usually 38kHz) and output LOW (0V) or they do not detect anything and output HIGH (5V).

0-1.es/32

IR Detector Common IR Detectors

33

IR Emitter Basic Connections

IR (infrared) communication is a popular, inexpensive, and easy to use wireless communication technology. IR light is very similar to visible light, except that it has a slightly longer wavelength. This means IR is undetectable to the human eye, making it perfect for wireless communication.

Constant-Current IR Emitter

Basic Connections

35

HD44780-Based LCD

Basic Connections

Normally the LCD backlight is composed of LEDs in series. The total voltage drop across the LEDs is tipically 4.2V and the recommended current through the LEDs is 120mA. You should use a current limit resistor **RLIMIT** where:

RLIMIT = $(V_{BACKLIGHT}-4.2)/0.12$

0-1.es/35

HD44780-Based LCD

Pinout

LCD Backlight Control

36

HD44780-Based LCD Via I²C

Using the PCF8574 I/O Expander

0-1.es/36

PCF8574

I²C Pull-Up Resistors

I²C is a popular communication protocol in embedded systems. When interfacing with the slave device a pull-up resistor is needed on each bi-directional line. This is just two wires, called SCL and SDA. SCL is the clock line that is used to synchronize all data transfers over the I²C bus. SDA is the data line. The SCL and SDA lines are connected to all devices on the I²C bus. There needs to be a third wire which is just the ground. Both SCL and SDA lines are "open drain" drivers. What this means is that the chip can drive its output low, but it cannot drive it high. For the line to be able to go high you must provide pull-up resistors to the 5V supply. There should be a resistor from the SCL line to the 5V line and another from the SDA line to the 5V line. You only need one set of pull-up resistors for the whole I²C bus, not for each device.

37

Nokia 5110 LCD

Basic Connections

0-1.es/38

OLED LCDBasic Connections

39

UC1701 128x64 LCD

ST7032i LCD

DS Touchscreen

Simple Touch Sensor Basic Connections

This simpe touch sensor is based on a Darlington configuration of transistors. They behave like a single transistor with a very high current gain, making it sensitive enough to respond to the small current passing through your body when you touch the metallic plates, activating the circuit.

Pushbutton

Basic Connections

Pushbuttons or switches connect two points in a circuit when you press them. If you don't use the pull-up or pull-down resistor, the input pin is "floating" and will randomly return either HIGH or LOW values. Don't forget to connect all the ground wires together!

Pushbutton

Test Code

```
int LEDPin = 13;
int SWITCHPin = 4;
int val;

void setup() {
    pinMode(LEDPin,OUTPUT);
    pinMode(BUTTONPin,INPUT);
}

void loop() {
    val = digitalRead(SWITCHPin);
    if (val == LOW) {
        digitalWrite(LEDPin,HIGH);
    }
    if (val == HIGH) {
        digitalWrite(LEDPin,LOW);
    }
}
```

Assign variable *LEDPin* as pin 13 Assign variable *SwITCHPin* as pin 4 Variable for reading the pin status

Initialize the pin as an *OUTPUT* Initialize the pin as an *INPUT*

Read input value and store it in *val* Check if the button is pressed Turn LED on

Check if the button is not pressed Turn LED off

Using Internal Pull-Up Resistors

Pushbutton to 12V

Basic Connections

12V signals are often found in many electronic systems and appliances, as signal voltage swings of 12V are advantageous to increase noise immunity. Electronic noise captured by the input wiring will be reduced by about 2/3 thanks to the resistor divider. Noise can be further reduced by the 100nF capacitor.

Toggle Switch Basic Connections

Using One Analog Input

Multiple Pushbuttons Basic Connections

This circuit cannot handle simultaneous button presses. In order to do that, you could use resistors with values at 2x increments with respect to the previous one (e.g., $1k\Omega$, $2k\Omega$, $4k\Omega$, $8k\Omega$). Hence by checking the voltage value, you should be able to tell which buttons are pressed simultaneously.

Rotary Encoder Using Internal Pull-Up Resistors

Rotary Encoder Basic Connections

Inside a Rotary Encoder

Simple Debouncing Circuit Basic Connections

50

Debouncing

Theory

Contact bounce is a common problem associated with mechanical switches and relays. Switch and relay contacts are made up of spring metals which are forced to contact each other by an actuator. While they collide with each other there is a possibility of rebounding for some time before they make a stable contact. As a result of this effect there will be ON/OFF transitions generated as the contacts rapidly open and close. Contact bounce is an undesired behavior which generates multiple transitions for a single user input.

DebouncingUsing the 74LS14 Schmitt Trigger Inverter

Rotary Encoder Debouncing Using the 74LS14 & the 74LS74

52

0-1.es/52

74LS14 & 74LS74

Pinout

53

KeypadBasic Connections

53

0-1.es/53

KeypadPinout

Keypads are ubiquitous in many electronic appliances and are used as input devices. Note that computer and calculator keypads have a different key arrangement compared to telephones, locks or ATMs.

Membrane Keypad

Keypad With 1 Analog Pin Basic Connections

55

Thumbwheel Switch

Rotary Switch Basic Connections

Rotary switches are switches that have fixed angular positions that click in place when the connection is established by rotating the shaft. You could build this circuit using just one analog pin as in the Multiple Pushbuttons sheet by replacing the pushbuttons in that circuit with a rotary switch.

57

PS/2 Keyboard Basic Connections

PS/2 is a simple synchronous serial protocol that uses only two wires for communication. Due to its simplicity, PS/2 keyboards are widely used with simple microcontroller boards. PS/2 keyboards can send the equivalent ASCII value of the key that has been pressed.

58

Trimmer

Basic Connections

Trimmers are manually-adjustable, variable resistors with three terminals. Two terminals are connected to a resistive element and the third terminal is connected to an adjustable wiper. In this circuit, the position of the wiper determines the output voltage.

59

Photoresistor (LDR)

Basic Connections

Photoresistors or photocells are light-controlled variable resistors. The resistance of a photoresistor decreases with increasing incident light intensity. Photoresistors can be applied in light-sensitive detector circuits and light-activated switching circuits.

Phototransistor

Basic Connections

Phototransistors are light-sensitive transistors. Light reaches the the base-collector junction, where electrons are generated, and the current is amplified by the current gain. Phototransistors are faster than photoresistors and slower than photodiodes, but they are less sensitive to temperature.

61

Opto-Isolated DC Input

Using the 4N25 Optocoupler

Opto-Isolated AC Input

Using the 4N25 Optocoupler

SPST CMOS Analog Switch Using the 4066 Quad Bilateral Switch

AC Current Sensor

Basic Connections

These non-invasive current sensing probes are an affordable solution for measuring high AC current. They are also called CT (current transformer) sensors because they act like current transformers, delivering a fraction of the current measured through magnetic induction.

LM34/LM35 Temperature Sensor Basic Connections

The LM35 is an analog, precision temperature sensor. This circuit allows for a measuring range of 2°C to +150°C (35.6°F to +302°F) with a temperature accuracy of ± 0.5 °C (0.9°F). The output of the sensor is linear with respect to the measured temperature, increasing its output voltage by 10mV per degree Celsius.

LM34/LM35 Temperature Sensor

This circuit allows the LM35 to achieve its full potential, allowing for a temperature measuring range of -55°C to $+150^{\circ}\text{C}$ (-67°F to $+302^{\circ}\text{F}$). The voltage is measured between both analog signal outputs, so you need to read the values with your microcontroller and obtain the absolute value of the difference.

TMP36 Temperature Sensor Basic Connections

The TMP36 is an analog temperature sensor with a measuring range of -40°C to +125°C (-40°F to +257°F). It has a temperature accuracy of ±2°C and it is very linear.

MCP9700 Temperature Sensor Basic Connections

The MCP9700 is an analog temperature sensor with a measuring range of -40°C to +125°C (-40°F to +257°F). It has a temperature accuracy of ±2°C and it is very linear.

LM335 Temperature Sensor Basic Connections

The LM335 is a digital, linear, precision temperature sensor. It has a temperature measuring range of $-55\,^\circ\text{C}$ to $+150\,^\circ\text{C}$ ($-67\,^\circ\text{F}$ to $+302\,^\circ\text{F}$) with an accuracy of $1\,^\circ\text{C}$ (1.8 $^\circ\text{F}$). The LM335 measures temperature in Kelvin, so you will need to subtract 273 from your measurement to obtain the temperature in Celsius.

Thermocouple Using the LM358 Op-Amp

Check wiring color codes online

DHT11 Temp. & Humidity Sensor Basic Connections

The DHT11 is a digital, low cost, medium precision humidity and temperature sensor. Its measuring ranges are 20 to 90% (\pm 5%) for relative humidity and 0°C to 50°C (\pm 2°C) (32°F to 122°F (\pm 3.6°F)) for temperature.

72

DHT22 Temp. & Humidity Sensor Basic Connections

The DHT22 (also called AM2302) is a digital temperature and humidity sensor very similar to the DHT11, except it offers higher-precision readings. Its measuring ranges are 0 to 90% ($\pm 2\%$) for relative humidity and -40° C to 80° C ($\pm 0.5^{\circ}$ C) (-40° F to 176° F ($\pm 0.9^{\circ}$ F)) for temperature.

73

DHT11/DHT22 2-Wire Connection

Basic Connections

This 2-wire connection circuit allows for reliable measurements over long distances. Twisted pair cables like UTP CAT5, used in computer networks such as Ethernet, are affordable and ubiquitous.

DS18B20 Temperature Sensor Basic Connections

The DS18B20 is a digital, precision temperature sensor with a measuring range of -55°C to $+150^{\circ}\text{C}$ ($\pm0.5^{\circ}\text{C}$) (-67°F to $+257^{\circ}\text{F}$ ($\pm0.9^{\circ}\text{F}$)). Its 1-wire interface requires only one port pin for communication, providing the temperature value with just a few lines of code and allowing multiple sensors to run in parallel.

75

NTC Thermistor

Basic Connections

Thermistors (thermally-sensitive resistors) are a type of resistor whose resistance is dependent on temperature. Their temperature range is typically -55° C to 200° C (-67° F to 392° F). Thermistors are affordable, sensitive but not very linear.

RTD Temperature Sensor Using a PT1000 Sensor

77

Gas Sensor

Using an MQ Series Sensor

The MQ series of gas sensors use a small heater inside with an electro-chemical sensor. They are sensitive for a range of gasses at room temperature such as methane, butane, propane, natural gas, LPG, smoke, alcohol, ethanol, ozone, hydrogen, benzene, hydrogen sulfide, toluene, acetone, CO2, CO, etc.

Sharp GP2Y0A21 Distance Sensor Basic Connections

The Sharp GP2Y0A21 distance sensor is a popular choice for many projects that require accurate distance measurements, it has a measuring range of 10 to 80cm (4 to 32in). The relationship between the output voltage and the inverse of the measured distance is nonlinear and needs to be linearized in the code.

79

DIY microSD Card Reader

Basic Connections

microSD to SD card adapters come bundled with many microSD cards nowadays. You can build this circuit to convert that adapter into a microSD card reader for your microcontroller board.

79

0-1.es/79

SD Card

SD Card

Using the 4050 Buffer

If you want to have a more professional, reliable and faster SD card reader you can opt for building this circuit using the 4050 buffer/converter instead of the DIY SD card reader circuit.

SD Card Socket

3-Wire Computer Fan Basic Connections

4-Wire Computer Fan Basic Connections

Bi-Directional Level Converter

Basic Connections

Don't forget to connect all the ground wires together!

Bi-directional logic level converters allow you to connect devices that use 3.3V logic level signals to microcontroller boards that use 5V, and vice versa. You can use both 3.3V and 5V supply voltages for this circuit or use only the 5V supply and a voltage divider to obtain 3.3V.

Bi-Directional Level Converter

Voltage Divider Connections

Don't forget to connect all the ground wires together!

84

3.3V to 5V Level Shifter

Basic Connections

Logic level shifters allow you to connect devices that use 3.3V logic level signals to microcontroller boards that use 5V, or vice versa, depending on the circuit you build. Logic level shifters only allow for the signal to go from one particular logic level to another. Select the circuit according to your needs.

5V to 3.3V Level Shifter Basic Connections

85

4050 Level Shifter

The 4050 is a hex buffer with over-voltage tolerant inputs. Inputs are overvoltage tolerant to up to 15V, which enables the device to be used in HIGH-to-LOW level shifting applications. The "hex" part means there's actually six separate buffers in one chip.

74125 Level Shifter

The 74125 is a quad buffer/line driver with 3-state outputs controlled by the output enable inputs (E). A HIGH on E pin causes the outputs to assume a high-impedance OFF state. The "quad" part means there's actually four separate buffer-s/line driver in one chip.

Voltage Divider Theory

FORMULA

$$V_{OUT} = V_{IN} \times R2 / (R1 + R2)$$

$$V_{OUT} = 5V \times 3.3k\Omega / (1.8k\Omega + 3.3k\Omega)$$

$$V_{OUT} = 3.2V$$

A voltage divider is a simple circuit that produces an output voltage that is a fraction of its input voltage by using just two series resistors. Voltage dividers are one of the most fundamental circuits in electronics.

TTL-CMOS Level Shifter

Using the MC14504

The MC14504x is a hex non-inverting level shifter using CMOS technology. The level shifter will shift a TTL signal to CMOS logic levels for any CMOS supply voltage between 5 and 15 volts. A control input also allows interface from CMOS to CMOS at one logic level to another logic level.

I/O Pin Protection

Using a Zener Diode

Using Clamping Diodes

I/O Pin Filtering & Protection Basic Connections

Two Microcontroller Boards

Basic Connections

Don't forget to connect all the ground wires together!

VGA Output Basic Connections

Composite Output Basic Connections

 75Ω resistor required between $\cancel{\text{VIDEO}}$ and GND on the RCA plug for a very small subset of TVs

Single-Transistor Amplifier Basic Connections

Audio Amplifier Using the LM386 Audio Amplifier

Preamplifier Basic Connections

Microphone Using the LM386 Audio Amplifier

Simple 5V Power Supply Basic Connections

Simple 3.3V Power Supply Basic Connections

Don't forget to attach a heat sink to the LM317 if are connecting a high-power load!

99

Simple Adjustable Power Supply

Using the LM317 Voltage Regulator

You can use a trimmer instead of R1 and R2 to adjust the output voltage manually

$$V_{OUT} = 1.25 \times (1 + (R2 / R1))$$

 $V_{OUT} = 1.25 \times (1 + (390 / 240))$
 $V_{OUT} = 3.28V$

V _{OUT}	R1	R2
3.3V	240Ω	390Ω
5V	240Ω	750Ω
6V	240Ω	1kΩ
9V	240Ω	1.5Ω

Full-Wave Rectifier

Basic Connections

 \overrightarrow{i} When using a bridge rectifier and a capacitor

 $V_{OUT} = (V_{IN} - 1.4) \times 1.41$

 $V_{OUT} = (12 - 1.4) \times 1.41$ $V_{OUT} = 14.946V$

WARNING!

Mains voltage electricity is very dangerous. There is a high risk of death through electrocution if mains electricity is allowed to pass through your body, adding to the risk of fire or explosion if electricity is not cabled and fused correctly. NEVER connect mains voltage to a breadboard!

Use the instructions and suggestions in ABC: Basic Connections at your own risk. PighiXXX and the author disclaim all responsibility for any resulting damage, injury, or expense. It is your responsibility to make sure that your activities comply with the safety precautions.

WARNING!

Generally, dealing with voltages lower than 50V is relatively safe, but anything above that can be dangerous. Always make the proper connections with the wires disconnected from the power outlet. Isolation between wires and other parts of the circuit that work at lower voltages is crucial. Always use wires rated for the voltage and current applied to them. This also applies, specifically for current, for all circuits covered in this book.

Unless otherwise stated, do not connect DC signal ground (GND) and AC ground (earth) together!

0-1.es/101 TRIAC Using the MOC3023S +5V 2N2222 330Ω Light turns on when pin is set to /HIGH/ NPN $4.7k\Omega$ $4.7k\Omega$ Don't forget to connect all the ground wires together! T1 T2 G BTA08-600

Solid-State Relay Basic Connections

0-1.es/104

RC Snubber Network

Theory

The power rating of the resistor may need to be as high as 10W for circuit activations every few seconds

POWER

100 Jion 100 nF

A

The capacitor must be non-polarized and its voltage rating = voltage × (2 to 4)

LOAD

FORMULA |

$$C = \frac{I^2}{10} \qquad R(\Omega) = \frac{E}{10 \times I \times (I + \frac{50}{F})}$$

SIMPLE FORMULA

$$R(\Omega) = voltage(V) \times (.5 to 1)$$

 $C(\mu F) = current(A) \times (.5 to 1)$

 \bigcirc Standard values are 47 Ω for the resistor and 100nF for the capacitor

Snubbers are used in electrical systems with an inductive load where the sudden interruption of current flow leads to a sharp rise in voltage across the current switching device. A simple RC snubber uses a resistor and a capacitor in series to suppress a rapid rise in voltage.

Soft Latching Power ON Switch Basic Connections

Reverse Voltage Protection Basic Connections

Don't forget to connect all the ground wires together!

RS-485 Interface RS-485 Node Using the 75176 Transceiver

RS-485 Interface

Node Termination Jumpers

Maximum number of drivers and receivers per line: 32

RS-485 is a standard for serial communication transmission of data, especially useful to transmit data over long distances and in electrically noisy environments. Typical applications are process automation (chemicals, brewing, paper mills), factory automation, security, and motor control.

MIDI IN

Using the 6N138 Optocoupler

Short J1 to copy data stream from the input to the THRU port

1

MIDI OUT

Using the 74HCT125 Bus Buffer

Multiple MIDI OUT Basic Connections

MIDI Pinout

Pins 3 and 1 are used for implementing power over MIDI

MIDI Daisy Chain

Shielded twisted pair

MIDI is a widely-used protocol that allows a wide variety of electronic musical instruments, computers and other related devices to connect and communicate with one another. You can build a MIDI controller with your microcontroller board and connect it to your computer to control a sequencer and play music!

DMX Interface

Using the 75176 Transceiver

DMXPinout

RS-232 Interface

Using the MAX232 RS-232 Driver

0-1.es/112

RS-232
MAX232 Pinout

RS-232 Pinout

RS-232 is a standard for serial communication transmission of data. It was once a standard feature of a personal computer, but USB has displaced it from most of its peripheral interface roles mainly because of its low transmission speed. Nevertheless, RS-232 devices are still used, especially in industrial machines.

113

 $\operatorname{\textbf{RTC}}$ Using the DS1307 $\operatorname{I^2C}$ RTC

0-1.es/114

EEPROM

Using the 24Cxx Series EEPROM

Digital Potentiometer Using the MCP416x

0-1.es/116

Buffer Using the LM358

Don't forget to connect all the ground wires together!

117

Hall Effect Sensor

Using the SS49E Hall Effect Sensor

A Hall effect sensor are a transducesr that vary their output voltage in response to a magnetic field. The output voltage is set by the supply voltage and varies linearly in proportion to the strength of the magnetic field. They are used for proximity switching, positioning or speed detection.

Spectrum AnalyzerUsing the MSGEQ7 Equalizer

119

Flex Sensor

Basic Connections

This flex sensor is a variable resistor whose resistance increases as the body of the component bends. Sensors like these were used in the Nintendo Power Glove and are patented technology of Spectra Symbol. Please be careful not to bend them too much, especially at the base of the device, as they can get damaged.

0-1.es/120

Piezo Sensor

Basic Connections

Piezoelectric sensors use the piezoelectric effect to measure changes in pressure, vibration, temperature, strain, or force and converted into a voltage. The piezoelectric effect is generally reversible and sensors can work also as output devices. If you open a piezo buzzer you can hack it into a piezo sensor.

Op-Amp Threshold Switch Using the LM358 Op-Amp

The LM358 op-amp acts as a voltage comparator so you have to adjust the $10k\Omega$ potentiometer for your desired activation treshold. You could replace the photoresistor with any other resistive sensor!

3

0-1.es/122

DACUsing the MCP4921 12-Bit DAC

The L293D is a quadruple high-current half-H driver. It is designed to provide bidirectional drive currents of up to 600mA at voltages from 4.5V to 36V and it is able to drive inductive loads such as relays, solenoids, DC and bipolar stepper motors.

0-1.es/123

LD293D Pinout

Function Table

Unipolar Stepper Motor Using the ULN2803 Darlington Transistor Array

124

Stepper Motor

Basic Concepts

There exist two main types of stepper motors: unipolar and bipolar. In essence, they both work in the same way: electromagnets are turned on sequen-

Unipolar stepper motor

tially, causing the central shaft to turn. difference between the types is their voltage levels. Unipolar stepper motors operate only with positive voltages applied to the electromagnetic coils, e.g., 5V HIGH and 0V LOW. Bipolar stepper motors have two polarities: positive and negative, so their HIGH and

LOW voltages would be, for instance, 2.5V and -2.5V respectively. This configuration requires H-bridge circuitry to reverse the current flow through the phases, producing the two polarities of the magnetic field. By energizing the phases with alternating the polarity, all the coils can be put to work turning the motor. Bipolar step-

ning the motor. Bipolar step— Bipolar stepper motor per motors have more torque because current flows through the entire coil, producing a stronger magnetic field to induce the shaft to rotate to the appropriate angle.

Bipolar Stepper Motor Using the L293D Motor Driver

Bipolar Stepper Motor

Step Sequence

Stepper motors can be driven in two different patterns or sequences: full step sequence and half step sequence, In the full step sequence,

two coils are energized at the same time and the motor shaft rotates. The order in which coils have to be energized is given in the

table. In the half step sequence, the motor step angle is reduced in half, therefore the number of steps and the angular resolution are doubled. Half step mode is usually preffered over full step mode. The table shows the energizing pattern of the coils.

Step Angle

The step angle of a stepper motor is defined as the angle traversed by the stepper motor in one step. To calculate step angle simply divide 360 by the number of steps that it takes the stepper motor to complete one revolution. In half step mode, the number of steps per revolution doubles.

126

Stepper Motor

Phases

It's easy to identify which color corresponds to

each phase inside the stepper motor, as well as the common terminals (A and B). We assume that each coil has a resistance of 30Ω .

Use a multimeter and set it to the 200Ω range. Place the positive (+) terminal of the tester on a wire (e.g., blue) and with the negative terminal of the tester (-) begin measuring the resistance on all remaining wires.

0-1.es/126

Stepper Motor Phases

Measuring the resistance with the rest of wire combinations, we will obtain a table with all measured values:

From these measurements it can be deduced that the connections are of this type:

	8	60Ω	8	30Ω	8
∞		8	60Ω	8	30Ω
60Ω	∞		8	30Ω	8
∞	60Ω	8		8	30Ω
30Ω	∞	30Ω	8		8
∞	30Ω	∞	30Ω	∞	

ABC Basic Connections 2018.indd 215 23/11/2017 18:04

ABC Basic Connections 2018.indd 216 23/11/2017 18:04

ABC Basic Connections 2018.indd 217 23/11/2017 18:04

Nano Pinout

USB Connector Mini Type B

Input voltage to the board when it's using an external power supply. Not USB bus voltage!

Absolute MAX 200mA for the entire package

The total current of each port power group should not exceed 100mA

ABC Basic Connections 2018.indd 218 23/11/2017 18:04

NodeMCU Pinout

ABC Basic Connections 2018.indd 219 23/11/2017 18:04

ESP-WROOM-32 Pinout

Absolute MAX per pin 12mA, 6mA recommended

ABC Basic Connections 2018.indd 220 23/11/2017 18:04

ABC Basic Connections 2018.indd 221 23/11/2017 18:04

DIY Microcontroller Board

Breadboard

Step 1 of 2 Step 2 of 2

Stepper Motor Winding Configurations

Not all manufacturers use the color schemes represented here, please check the datasheet

5-Lead Unipolar

8-Lead Bipolar (Series)

6-Lead Unipolar

6-Lead Bipolar (Series)

8-Lead Unipolar

8-Lead Bipolar (Parallel)

ABC Basic Connections 2018.indd 223 23/11/2017 18:04

ABC Basic Connections 2018.indd 224 23/11/2017 18:04