CMPE 240 Midterm Exam (Version B) S 2021

First Name:	Last Name:	SID
receive unpermitted aid dur	gree, individually and collectively, ing examinations. Engaging in such signature, I affirm that I have adher	n unpermitted actions is
Signature:	Date:	

Please Read: instructions for Zoon based online exam.

- 1. this is an one hour exam, starting from 1:30 and last till 2:30;
- 2. use cellphone to scan your papers, save them as pdf file, then you must convert it zip file;
- 3. Submit the zip file on line before 2:45, late submission will make the paper disqualified; After 2:45 no submission will be accepted (based on the time stamp of the submission). Thank you and stay safe.

This test has total 30 points. Please provide a step-by-step calculation.

- 1. (10 points) Based on the 32 RISC CPU architecture, answer the following design questions, the data sheet is given in the Appendix.
- 1.1 (4 pts) Given SSP1's CR0 register, find the memory bank which holds the SSP1 peripheral controller? Find the starting address of this memory bank?

1.2 (6 pts) In SPI Color LCD interface design, to display live video with 160x120 resolution, 30 FPS (frames per second), 24 bit color per pixel, (1) find the SPI clock rate based on the design in the class and in your lab? (2) find binary pattern to perform CR0 init and config to realize the design requirements (assume PCLK=50 Mhz, and CPSDVSR is minimum), (3) modify the following program code if needed to realize this requirements.

```
void initSSP1(void){
    //power up spi1
    LPC_SC->PCONP |= (1<<10);
    //01 PCLK_peripheral = CCLK.. 01, since it's CCLK/1
    LPC_SC->PCLKSEL0 &= ~(3<<20);
    LPC_SC->PCLKSEL0 |= (1<<20);

//P0.6 is used as a GPIO output and acts as a Slave select
    LPC_GPIO0->FIODIR |= (1<<6);
    LPC_GPIO0->FIOSET = (1<<6);
    //P0.7:9 init
    LPC_PINCON->PINSEL0 &= ~((3<<18)|(3<<16)|(3<<14));
    LPC_PINCON->PINSEL0 |= ((2<<18)|(2<<16)|(2<<14));
    //data size set to 8 bits
    LPC_SSP1->CR0 = 0x07
```

- 2. (10 points), In design of 2D GE (Graphics Engine), suppose a TFT color display panel is given, design display controller, e.g., display drive, by using one additional LPC1769 to realize SPI interface with CPU and to control LCD display (see Figure below).
- 2.1 (2 pts) Design a display controller by drawing the schematics using the following blocks to realize CPU SPI interface to the display controller?
- 2.2 (3 pts) Continued from the above, draw schematics for the controller to control the TFT color display panel? (Reference design is based on the project in class, and it is given at the Appendix of this paper)
- 2.3 (5 pts) Assume the TFT display panel has 320-by-240 resolution, 24 bpp (bit per pixel), 30 FPS (frames per second), find the time needed to plot a green pixel at (201,137) location? Hint: use Sync F, Sync H, Sync D in your calculation.

LPC1769 CPU	2 nd LPC1769 CPU as Display Controller	TFT Display Panel

- 3. (10 pts) In graphics engine (GE) design, answer the following questions:
- (1) (5 pts) Given P1=(0,-5), P2=(0,5), lamda = 0.8, based on 2D vector equation $P(x,y) = P_1(x,y) + lamda * (P_2(x,y) P_1(x,y))$, and rotation matrix, generate tree patterns in the figure below by finding next level P'2 left, e.g., 30 degree counter clockwise rotation branch with respect to P2.
- (2) (5 pts) Now, find the (x,y) value of the above result on the physical display whose origin (0,0) is set at the top left corner of the display device with its x-axis from left to right as positive, and y-aixs top down as positive. (assuming the display device resolution is 160x120).

Appendix A. Datasheet Reference

Table 371: SSPn Control Register 0 (SSP0CR0 - address 0x4008 8000, SSP1CR0 - 0x4003 0000) bit description

Bit	Symbol	Value	Description	Reset Value	
3:0	DSS		Data Size Select. This field controls the number of bits transferred in each frame. Values 0000-0010 are not supported and should not be used.	0000	
	0011	4-bit transfer			
	0100	5-bit transfer			
		0101	6-bit transfer		
	0110	7-bit transfer			
	0111	8-bit transfer			
	1000	9-bit transfer			
		1001	10-bit transfer		
	1010	11-bit transfer			
		1011	12-bit transfer		
		1100	13-bit transfer		
		1101	14-bit transfer		
		1110	15-bit transfer		
		1111	16-bit transfer		
5:4	FRF		Frame Format.	00	
		00	SPI		
		01	TI		
		10	Microwire		
		11	This combination is not supported and should not be used.		
6	CPOL		Clock Out Polarity. This bit is only used in SPI mode.	0	
		0	SSP controller maintains the bus clock low between frames.		
		1	SSP controller maintains the bus clock high between frames.		
7	CPHA		Clock Out Phase. This bit is only used in SPI mode.	0	
		0	SSP controller captures serial data on the first clock transition of the frame, that is, the transition away from the inter-frame state of the dock line.		
		1	SSP controller captures serial data on the second clock transition of the frame, that is, the transition $backto$ the inter-frame state of the clock line.		
15:8	SCR		Serial Clock Rate. The number of prescaler-output docks per bit on the bus, minus one. Given that CPSDVSR is the prescale divider, and the APB dock PCLK clocks the prescaler, the bit frequency is PCLK / (CPSDVSR \times [SCR+1]).	0x00	
31:8	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA	

Appendix B. Pin Reference for the display controller design.

Color LCD pins
LITE
N N N N N N N N N N N N N N N N N N N
SCK
MOSI
TFT_CS
D/C
RESET
Vcc
Gnd