Раздел 2. Векторная алгебра на плоскости и в пространстве Вариант 1*

- 1. Векторы \bar{a} и \bar{b} взаимно перпендикулярны, вектор \bar{c} образует с ними углы, равные $\frac{\pi}{3}$; зная, что $|\bar{a}|=3, |\bar{b}|=5, |\bar{c}|=8$, вычислить: $(3\cdot \bar{a}-2\cdot \bar{b})\cdot (\bar{b}+3\cdot \bar{c})$.
- 2. Точки A, B, C, D вершины параллелограмма, O точка пересечения диагоналей. Упростить выражение $(\overrightarrow{AB} + \overrightarrow{DO}) + \overrightarrow{OA}$.
- 3. В параллелограмме \overrightarrow{ABCD} : \overrightarrow{K} и M середины сторон \overrightarrow{BC} и \overrightarrow{CD} , $\overrightarrow{AK} = \overrightarrow{a}$, $\overrightarrow{AM} = \overrightarrow{b}$. Разложить \overrightarrow{AD} по векторам \overrightarrow{a} и \overrightarrow{b} .
- 4. На стороне ON параллелограмма AMNO и его диагонали взяты такие точки B и C, что $\overline{OB} = \frac{1}{n} \cdot \overline{ON}$, $\overline{OC} = \frac{1}{n+1} \cdot \overline{OM}$. Доказать, что точки A, B, C лежат на одной прямой.
- 5. Дан треугольник ABC. Постройте такую точку X, что $\overline{XA} + \overline{XB} 3\overline{XC} = \overline{0}$.

Раздел 2. Векторная алгебра на плоскости и в пространстве Вариант 2*

- 1. Векторы \bar{a} и \bar{b} взаимно перпендикулярны, вектор \bar{c} образует с ними углы, равные $\frac{\pi}{3}$; зная, что $|\bar{a}|=3, |\bar{b}|=5, |\bar{c}|=8$, вычислить: $\left(2\cdot\bar{a}+\bar{b}-\bar{c}\right)^2$.
- 2. Точки A, B, C, D вершины параллелограмма, O точка пересечения диагоналей. Упростить выражение $(\overrightarrow{BC} + \overrightarrow{OA}) + \overrightarrow{OD}$.
- 3. В параллелограмме ABCD: K и M середины сторон BC и CD, $\overrightarrow{AK} = \overrightarrow{a}$, $\overrightarrow{AM} = \overrightarrow{b}$. Разложить \overrightarrow{AB} по векторам \overrightarrow{a} и \overrightarrow{b} .
- 4. Пусть ABC и $A_1B_1C_1$ произвольные треугольники в пространстве. Доказать, что $\overline{AA_1} + \overline{BB_1} + \overline{CC_1} = 3\overline{MM_1}$, где M и M_1 точки пересечения медиан данных треугольников.
- 5. Дан треугольник ABC. Постройте такую точку X, что $\overline{XA} + \overline{XB} + \overline{XC} = \overline{0}$.

Раздел 2. Векторная алгебра на плоскости и в пространстве Вариант 3*

- 1. Векторы \bar{a} и \bar{b} взаимно перпендикулярны, вектор \bar{c} образует с ними углы, равные $\frac{\pi}{3}$; зная, что $|\bar{a}|=3, |\bar{b}|=5, |\bar{c}|=8$, вычислить: $(\bar{a}+\bar{b}+\bar{c})^2$.
- 2. Точки A, B, C, D вершины параллелограмма, O точка пересечения диагоналей. Упростить выражение $\overrightarrow{OA} + \overrightarrow{BC} + \overrightarrow{DO} + \overrightarrow{CD}$.
- 3. В параллелограмме ABCD: K и M середины сторон BC и CD, $\overrightarrow{AK} = \overrightarrow{a}$, $\overrightarrow{AM} = \overrightarrow{b}$. Разложить \overrightarrow{BD} по векторам \overrightarrow{a} и \overrightarrow{b} .
- 4. Даны треугольник ABC и произвольная точка пространства O; точки E, F, G середины сторон треугольника ABC. Доказать, что \overline{OA} + \overline{OB} + \overline{OC} = \overline{OE} + \overline{OF} + \overline{OG} .
- 5. Дан треугольник ABC. Постройте такую точку X, что $\overline{XA} 2\overline{XB} \overline{XC} = \overline{0}$.

Раздел 2. Векторная алгебра на плоскости и в пространстве Вариант 4*

- 1. Векторы \bar{a} и \bar{b} взаимно перпендикулярны, вектор \bar{c} образует с ними углы, равные $\frac{\pi}{3}$; зная, что $|\bar{a}|=3, \ |\bar{b}|=5, \ |\bar{c}|=8$, вычислить: $(3\cdot\bar{a}+2\cdot\bar{c})\cdot(-\bar{a}+\bar{b}+\bar{c})$.
- 2. Точки A, B, C, D вершины параллелограмма, O точка пересечения диагоналей. Упростить выражение $(\overrightarrow{AB} + \overrightarrow{AD}) + \overrightarrow{OB}$.
- 3. В параллелограмме ABCD: K и M середины сторон BC и CD, $\overrightarrow{AK} = \overrightarrow{a}$, $\overrightarrow{AM} = \overrightarrow{b}$. Разложить \overrightarrow{CB} по векторам \overrightarrow{a} и \overrightarrow{b} .
- 4. Пусть SABC треугольная пирамида, O точка пересечения медиан основания пирамиды. Доказать, что вектор \overline{SA} + \overline{SB} + \overline{SC} параллелен прямой SO.
- 5. Дан треугольник ABC. Постройте такую точку X, что $\overline{XA} \overline{XB} + 3\overline{XC} = \overline{0}$.

Раздел 2. Векторная алгебра на плоскости и в пространстве Вариант 5*

- 1. Векторы \bar{a} и \bar{b} взаимно перпендикулярны, вектор \bar{c} образует с ними углы, равные $\frac{\pi}{3}$; зная, что $|\bar{a}|=3, |\bar{b}|=5, |\bar{c}|=8$, вычислить: $(\bar{a}+2\cdot\bar{b}-3\cdot\bar{c})^2$.
- 2. Точки A, B, C, D вершины параллелограмма, O точка пересечения диагоналей. Упростить выражение $(\overrightarrow{AB} + \overrightarrow{AO}) + \overrightarrow{OC}$.
- 3. В параллелограмме \overrightarrow{ABCD} : \overrightarrow{K} и M середины сторон \overrightarrow{BC} и \overrightarrow{CD} , $\overrightarrow{AK} = \overrightarrow{a}$, $\overrightarrow{AM} = \overrightarrow{b}$. Разложить \overrightarrow{DA} по векторам \overrightarrow{a} и \overrightarrow{b} .
- 4. Пусть $A_1A_2A_3A_4A_5$ правильный пятиугольник и точка O его центр. Доказать, что $\overline{OA_1}$ + $\overline{OA_2}$ + $\overline{OA_3}$ + $\overline{OA_4}$ + $\overline{OA_5}$ = $\overline{0}$.
- 5. Дан треугольник ABC. Постройте такую точку X, что $2\overline{XA} \overline{XB} 3\overline{XC} = \overline{0}$.