CS226 Project Report IITB-Proc

Dhruv Arora - 190050034 Raj Aryan Agrawal - 190050097 Sahasra Ranjan - 190050102 Sibasis Nayak - 190050115

May 21, 2021

Final Circuit

Figure 1: Final Circuit

State Transition Diagram for FSM

Figure 2: State Transition Diagram

States in the FSM

- 1. S_0 : State for synchronization. Next state: S_1
- 2. S_1 : Update instructions
- 3. S_2 : Understand instruction and proceed to compute in single state instructions. Set appropriate controls for ADD, ADZ,
- 4. S_3 : If a single state transition, reset the FSM.
 - $alu_ac = 10$
 - $alu_bc = 01$
 - $upd_pc = 1$
- 5. S_4 : Activate memory read control
 - m_rac = 1
- 6. S₅: Reset the FSM (for LW operation)
 - $rf_we = 1$
 - zc = 1

- $upd_pc = 1$
- $alu_ac = 10$
- $alu_bc = 01$

7. S_6 : Final state for BEQ operation, change the branch accordingly and reset the FSM

- $alu_ac = 10$
- $upd_pc = 1$
- if z_imm is 1, alu_bc is set to "10" else is set to "01"

8. S_7 : For SA operation

- $rf_rc = 1$
- $m_we = 1$
- $alu_ac = 11$
- $alu_bc = 01$

9. S_8 : For LA operation read instruction from memory

- $m_rac = 1$
- alu_ac = 11
- $alu_bc = 01$

10. S₉: For LA update writing controls

- m_rac = 1
- alu_ac = 11
- $alu_bc = 01$
- $rf_we = 1$
- $rf_wc = 11$

11. S_10 : For LA update the register and go to state 3

- $rf_we = 1$
- rf_wc = 11

12. $S_{AN}\colon \mbox{Controls for ADD} \ / \ \mbox{ADC} \ / \ \mbox{ADZ} \ / \ \mbox{NDU} \ / \ \mbox{NDC} \ / \ \mbox{NDZ}$

- $upd_c = 1, upd_z = 1$
- rf wc = 10
- rf dc = 01
- $rf_we = 1$
- $alu_op = 1$

13. S_{ADI} : Controls for ADI

- $upd_c = 1, upd_z = 1$
- $rf_wc = 01$
- $rf_dc = 01$
- $rf_we = 1$
- $alu_bc = 10$
- 14. S_{LHI} : Controls for LHI
 - $upd_pc = 1$
 - $rf_dc = 11$
 - $rf_we = 1$
 - alu_ac = 10
 - $alu_bc = 01$
- 15. S_{LW}: Controls for LW
 - $alu_ac = 01$
- 16. S_{SW} : Controls for SW
 - $alu_ac = 01$
 - $alu_a = 10$
 - $alu_bc = 01$
 - m_wac = 1
 - $m_we = 1$
 - $upd_pc = 1$
- 17. S_{LA}: Controls for LA
 - trc = 1
- 18. S_{SA}: Controls for SA
 - trc = 1
- 19. S_{BEQ}: Controls for BEQ
 - alu_cin = 1
- 20. S_{JAL} : Controls for JAL
 - $rf_dc = 10$
 - rf_we = 1
 - alu_ac = 10
 - alu_bc = 11
 - upd_pc = 1

21. S_{JLR}: Controls for JLR

- rf_dc = 10
- rf_we = 1
- pc_c = 1
- upd_pc = 1