

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

QA 47 BG

FOUR TIGURE MATHEMATICAL TABLES

J. J. OTTOMLEY

IN MEMORIAM FLORIAN CAJORI

Hlorian Cajori

4,

FOUR FIGURE MATHEMATICAL TABLES.

FOUR FIGURE

MATHEMATICAL TABLES:

COMPRISING LOGARITHMIC AND TRIGONOMETRICAL TABLES, AND TABLES OF SQUARES, SQUARE ROOTS, AND RECIPROCALS.

BY

J. T. BOTTOMLEY, M.A., LL.D., D.Sc., F.R.S., F.R.S.E., F.C.S.,

LATE LECTURER IN NATURAL PHILOSOPHY IN THE UNIVERSITY OF GLASGOW.

Condon

MACMILLAN AND CO., LIMITED

NEW YORK: THE MACMILLAN COMPANY

1905

All rights reserved

no vivili Associal

First Edition 1887.

Reprinted 1890, 1893, 1894, 1896, 1897, 1899 (twice), 1900, 1901, 1902, 1903 (twice). With additions 1904, 1905 (twice).

CAJORI

GLASGOW: PRINTED AT THE UNIVERSITY PRESS BY ROBERT MACLEHOSE AND CO. LTD.

EXPLANATIONS AND RULES

FOR THE

USE OF THE ACCOMPANYING TABLES.

THE logarithm of a number consists in general of two parts, an integer part and a decimal. The integer part is called the *Index* or *Characteristic*; the decimal part is called the *Mantissa*.

RULE I. The Index of the logarithm of a number greater than unity is the number which is less by one than the number of digits in the integral part of the given number.

Thus, the index of the logarithm of 47320 is 4.
4732 is 2.
4732 is 0.

RULE II. The Index of the logarithm of a number less than unity, and reduced to the form of a decimal fraction, is negative, and is a higher number by one than the number of zeros that follow the decimal point of the given number.

Thus, the index of the logarithm of 4732 is -1 004732 is -3

To denote that the index is negative the sign minus is often written above it; thus $\overline{1}$, $\overline{3}$.

RULE III. To find the mantissa of the logarithm of a given number consisting of four figures.—Find the first two figures in the left hand column of the table. Pass along the corresponding horizontal line and take the number in the vertical column headed by the third figure. To this number add the number found in the difference columns under the fourth figure of the given number. The sum with a decimal point prefixed is the required mantissa.

Example. Find the mantissas corresponding to the sequences of figures 4732 and 6985.

RULE IV. To find the logarithm of a given number consisting of four figures.—Find the mantissa corresponding to the given four figures, and to it prefix the proper index. The number thus obtained is the required logarithm.

Examples.

log 47320	•	•	•	is 4 [.] 6751
log 47°32	•	-	•	is 1.6751
log 6.985	•	•	•	is 0 [.] 8442
log 0.006982	-	-	-	is 3 [.] 8442

Note.—A logarithm whose index is negative really consists of a positive mantissa with a negative index algebraically added to it. Thus:— $\overline{1}.8442 = +0.8442 - 1$. It is important to bear this in mind in numerical operations on logarithms. For example, in taking the square root of 0.6985, the logarithm of that number is divided by 2, and in taking the cube by 3. The simplest way of doing this is as follows:—

 $\frac{1}{2}(.8442 - 1) = \frac{1}{2}(1.8442 - 2) = .9221 - 1$ $\frac{1}{3}(.8442 - 1) = \frac{1}{3}(2.8442 - 3) = .9481 - 1$

RULE V. To find the anti-logarithm of a given logarithm, i.e., the number corresponding to the given logarithm.—Find in the table of anti-logarithms, proceeding as in Rule III., the sequence of figures corresponding to the mantissa of the given logarithm. To these figures place a decimal point, in the position indicated by the index of the given logarithm, prefixing or affixing zeros, if necessary. (See Rules I. and II.) The number thus obtained is that required.

Examples. Given the logarithm 2.7834 find the anti-logarithm.

Hence the number whose logarithm is 2.7834 is 607.3.

The number corresponding to the logarithm 6.7834 is 6073000; that corresponding to $\overline{4}.7834$ is '0006073.

Note.—The use of Rules I. and II., which are commonly given for the purposes of finding the index and of placing the decimal point in an anti-logarithm, may be dispensed with altogether if the principle on which these rules are founded is kept in view; and in reality the principle is more simple than the rules and easier to remember. The logarithm, to the base 10, of any number greater than I and less than 10 is a positive proper fraction, and is given in the tables as a decimal without whole number. On the other hand the anti-logarithm of a decimal without whole number is a number greater than I and less than 10.

Thus log 7'32=0'8645; and the logarithm 0'6931 corresponds to the number 4'933.

Any number such as 7320, or '000732 is derived from 7'32 by multiplying or dividing by a power of 10; and the corresponding change in the logarithm is made by adding or subtracting the index of that power of 10.

Thus $7320 = 7 \cdot 32 \times 10^3$; $\log \cdot 7320 = 8645 + 3$ $\cos 732 = 7 \cdot 32 \times 10^{-4}$; $\log \cdot \cos 732 = 8645 - 4$

In the same way since '6931 as a logarithm corresponds to 4'933, it follows that 2'6931, or '6931+2, corresponds to $4'933 \times 10^2$; and $\overline{3}'6931$, or '5931-3, corresponds to $4'933 \times 10^{-3}$.

RULE VI. Given any angle less than 90° to find its natural sine, cosine, tangent, etc., or its value in radian measure.*—Find the degrees in the left hand column of the proper table. Pass along the corresponding horizontal line, and take out the number in the vertical column headed by the number of minutes lower than, and nearest to, the given number of minutes. Take the difference between the number of minutes given and the number of minutes just found, and from the difference columns find in the same horizontal line the corresponding correction. This correction is additive in the cases of the sine, tangent, secant, and radian measure. In the cases of cosine, cotangent, and cosecant it is subtractive.

Note.—It will be observed that the main division of the degree in the trigonometrical tables is into parts of 6' each. This corresponds to decimals of the degree. Thus, 12°18'=12°3.

Note.—In the tables of natural sines and cosines the decimal points are omitted. In the other tables the decimal points and the whole numbers which precede them are omitted in all the columns except

* Formerly called "circular measure."

that headed o'; and excepting also the case of a few numbers at the extremities of the tables, where the variation of the trigonometrical function is extremely rapid. At the extremities of some of the tables differences are not given, as the variation of the function is so rapid as to make the differences unserviceable.

Examples. Find the sine and cosine of 18°27', and the tangent and secant of 58°44'.

From table of sines	18°24′	•	•	•	•3156
	3′	•	•	•	8
sin	. 18°27′	•	•	•	. 3164
From table of cosines	18°24′	•	•	•	9489
	3′	•	•	•	3
cos	18°27′	•	•	•	•9486
From table of tangents	58°42′	•	-	•	1.6447
_	2'	•	•	•	21
tan	58°44′	•	•	•	1.6468
From table of secants	58°42′	•	•	•	1'9249
	2'	•	•	-	18
					-
sec	: 58°44′	•	•	-	1.9267

RULE VII. To find the logarithmic sine, tangent, cosine, cotangent, secant, or cosecant of an angle less than 90°. Proceed as in Rule VI., using the proper table.

Note.—The sines of all angles, and the tangents of angles less than 45°, being less than unity, the logarithms of these sines and tangents are preceded by a negative index. In order to avoid the writing of these negative indices the number 10 is added to the real value of the log. sin. log. tan. etc., and the number so found is entered in the tables. In all calculations this must be borne in mind, and allowance must be made.

RULE VIII. To find the angle in degrees and minutes, or in degrees and decimals of a degree, corresponding to any given natural or logarithmic sine, cosine, tangent, etc. Find in the proper table the number nearest to that given, interpolating, if necessary, by means of the difference columns; and by reversing the process of Rules VI. and VII. obtain the corresponding number of degrees and minutes, or degrees and decimals of a degree.

The preceding explanations are easily applicable to the remaining

tables of squares, square roots, and reciprocals. With regard to the tables of squares and square roots, it is to be noticed that while the square of such a number as 528 is found from the square of 528 simply by multiplying by a power of 10, a similar relation does not hold always in the case of the square root. It is necessary, therefore, to have two tables of square roots—one extending from 1 or 100 to 9.99 or 999, and the other from 10 or 1000 to 99.99 or 9999.*

RULE IX. To find the Neperian or hyperbolic logarithm of a number.—If the number be greater than I and less than Io its Neperian logarithm is found directly from the proper table in the manner explained in Rule III. If the number is greater than Io or less than I, it may always be expressed as the product of two factors, of which one is a power of Io, and the other a number greater than I and less than Io; the latter being simply the original series of figures with the decimal point suitably moved. The sum of the Neperian logarithms of these two factors is the Neperian logarithm of the given number. A table of Neperian logarithms of powers of Io is given on pp. 54, 55. Examples.

Find the Neperian logarithms of 3'241, 324'1, and '0003241.

(2)
$$\log_{\epsilon} 324 \cdot I = \log_{\epsilon} 3 \cdot 24I \times I0^{2}$$

$$\log_{\epsilon} 3 \cdot 24I - I \cdot 1759$$

$$\log_{\epsilon} 10^{2} - 4 \cdot 6052$$

$$\log_{\epsilon} 324 \cdot I - 5 \cdot 781I$$
(3)
$$\log_{\epsilon} 000324I = \log_{\epsilon} 3 \cdot 24I \times 10^{-4}$$

log_3'241

(1)

$$\log_{\epsilon} 0003241 = \log_{\epsilon} 3.241 \times 10^{-4}$$

$$\log_{\epsilon} 10^{-4} - \frac{100}{5.7897}$$

$$\log_{\epsilon} 0003241 - \frac{99656}{5}$$

In calculating the value of a fraction, of which the numerator and denominator each consists of two or more factors, it is often of advantage, instead of *subtracting* the logarithms of the denominator factors, to add in the logarithms of their reciprocals—the complemental logarithms or co-logs as they are sometimes called.

^{*} That which causes the necessity for two such tables gives rise also to the necessity for watchfulness on the part of the calculator. Probably the 'jest preventive against mistakes is the habit, excellent in all calculations, of making a mental estimate of the number to be expected as the result of taking the square root. Mistakes may also be avoided easily and with little loss of time by comparing with the table of squares.

RULE X. To find the mantissa of the logarithm of a reciprocal.— Write down the difference between the mantissa of the logarithm of the given number and 10000; or simply, commencing at the left hand, write down the series of numbers which will make each figure of the mantissa of the logarithm of the number up to be equal to 9, except the last significant figure, which must be made up to 10.

RULE XI. Otherwise: To find the mantissa of the logarithm of a reciprocal.—Proceed as in Rule III., using the Table of Logarithms of Reciprocals.

RULE XII. To find the index for the logarithm of a reciprocal.—
If the given number consist of a whole number and a decimal, the index is equal to the number of the digits which constitute the whole number, and is negative. If the given number is a decimal without a whole number the index is equal to the number of zeros which follow the decimal point and is positive.

Examples. Find

log
$$\frac{I}{237.4}$$

Mantissa of co-log from table, p. 16. - 6246.

Index - - - - - - - 3

 $\log \frac{I}{237.4} = 6246 - 3 \text{ or } \overline{3}.6246$
 $\log \frac{I}{237.4} = 6246 + 2 \text{ or } 2.6246$

Remark.—In finding the logarithm of the reciprocal of a trigonometrical function it is only necessary to subtract the tabular logarithm from 10. This will readily be seen from an example.

Since (see Note to Rule VII.),

$$\log \sin 36^\circ = \text{Tab. } \log \sin 36^\circ - 10$$

we have

$$\log\left(\frac{1}{\sin 36^\circ}\right) = -\log \sin 36^\circ = 10 - \text{Tab. log sin } 36^\circ.$$

The subtraction from 10 is most easily performed by writing down the numbers which make up the figures of the tabular logarithm to 9, as in Rule X., except in the case of the last significant figure, for which write the number which, if added to it, would make it up to be 10.

An example of calculation is given here in order to show a convenient way of writing down the given numbers and their logarithms. It is scarcely possible to overestimate the importance of strict adherence to method; for instance, in physical calculations. In the

first place errors are thus most easily avoided or detected; and it is also frequently useful to be able to return on the arithmetical steps in order to make an alteration of form, or, if improved data are forthcoming, to obtain a result true to a closer degree of approximation.

Example. Calculate the value of

	27	"34×0)°I 3	325	×	sin 29°	
	14	.23×.	001	76	×	tan 34°	
Numbers.							Logs.
27:34	-	-	-		-	•	°4368+1
0.1322	(see	table,	p.	12))	•	1222 — I
sin 29°	-	•	-		-	•	9.6856 - 10
1/14.23	-	-	-		-	-	·8468 – 2
1/00176	-	-	-		-	-	7545+2
1/tan 34°	· -	-	-		-	-	0.1410+0
							0169+2
R	esult	-		•		1.040 >	(10 ² .

In bringing out a Second Edition of this Book of Tables, I desire to acknowledge the kind assistance of friends; and in particular the valuable criticisms and suggestions which I have received from Prof. Sir G. Gabriel Stokes, Bart., Pres. R. S., and from Prof. G. H. Darwin, F.R.S.

J. T. B.

February 18, 1890.

LOGARITHMS 1000 TO 1409.

	0	1	2	3	4	5	6	7	8	9
100	0000	0004	0009	0013	0017	0022	0026	0030	0035	0039
101	0043	0048	0052	0056	0060	0065	0069	0073	0077	0082
102	0086	0090	0095	0099	0103	0107	0111	0116	0120	0124
103	0128	0133	0137	0141	0145	0149	0154	0158	0162	0166
104	0170	0175	0179	0183	0187	0191	0195	0199	0204	0208
105	0212	0216	0220	0224	0228	0233	0237	0241	0245	0249
106	0253	0257	0261	0265	0269	0273	0278	0282	0286	0290
107	0294	0298	0302	0306	0310	0314	0318	0322	0326	0330
108	0334	0338	0342	0346	0350	0354	0358	0362	0366	0370
109	0374	0378	0382	0386	0390	0394	0398	0402	0406	0410
110	0414	0418	0422	0426	0430	0434	0438	0441	0445	0449
111	0453	0457	0461	0465	0469	0473	0477	0481	0484	0488
112	0492	0496	0500	0504	0508	0512	0515	0519	0523	0527
113	0531	0535	0538	0542	0546	0550	0554	0558	0561	0565
114	0569	0573	0577	0580	0584	0588	0592	0596	0599	0603
115	0607	0611	0615	0618	0622	0626	0630	0633	0637	0641
116	0645	. 0648	0652	0656	0660	0663	0667	0671	0674	0678
117	0682	0686	-Q689	0693	0697	0700	0704	0708	0711	0715
118	0719	0722	0726	0730	0734	0737	0741	0745	0748	0752
119	0755	0759	0763	0766	0770	0774	0777	0781	0785	0788
120	0792	0795	0799	0 803	0806	0810	0813	0817	0821	0824
121	0828	0831	0835	0839	0842	0846	0849	0853	0856	0860
122	0864	0867	0871	0874	0878	0881	0885	0858	0892	0896
123	0899	0903	0906	0910	0913	0917	0920	0924	0927	0931
124	0934	0938	0941	0945	0948	0952	0955	0959	0962	0966
125	0969	0973	0976	0980	0983	0986	0990	0993	0997	1000
126	1004	1007	1011	1014	1017	1021	1024	1028	1031	1035
127	1038	1041	1045	1048	1052	1055	1059	1062	1065	1069
128	1072	1075	1079	1082	1086	1089	1092	1096.	1099	1103
129	1106	1109	1113	1116	1119	1123	1126	1129	1133	1136
130	1139	1143	1146	1149	1153	1156	1159	1163	1166	1169
131	1173	1176	1179	1183	1186	1189	1193	1196	1199	1202
132	1206	1209	1212	1216	1219	1222	1225	1229	1232	1235
133	1239	1242	1245	1248	1252	1255	1258	1261	1265	1268
134	1271	1274	1278	1281	1284	1287	1290	1294	1297	1300
135	1303	1307	1310	1313	1316	1319	1323	1326	1329	1332
136	1335	1339	1342	1345	1348	1351	1355	1358	1361	1364
137	1367	1370	1374	1377	1380	1383	1386	1389	1392	1396
138	1399	1402	1405	1408	1411	1414	1418	1421	1424	1427
139	1430	1433	1436	1440	1443	1446	1449	1452	1455	1458
140	1461	1464	1467	1471	1474	1477	1480	1483	1486	1489

LOGARITHMS OF RECIPROCALS.

	LOGI	KIII	.m5 C	T, KL	CII K	OCAL			1409.	13
	0	1	2	3	4	5	в	7	8	9
100		9996	9991	9987	9983	9978	9974	9970	9965	9961
101 102	9957 9914	9952 9910	9948 9905	9944 9901	9940 9897	9935 9893	9931 9889	99 27 9884	9923 9880	9918 9876
103	9872	9867	9863	9859	9855	9851	9846	9842	9838	9834
104 105	9830 9788	9825 9784	9821 9780	9817	9813	9809 9767	9805	9801	9796	9792
106	9747	9743	9739	9776 9735	9772 9731	9707	9763 9722	9759 9718	9755 9714	9751 9710
107	9706	9702	9698	9694	9690	9686	9682	9678	9674	9670
108 109	9666 9626	9662 9622	9658 9618	9654 9614	9650 9610	9646 9606	9642 9602	9638 9598	9634 9594	9630 9590
110	9586	9582	9578	9574	9570	9566	9562	9559	9555	9551
111 112	9547 9508	9543 9504	9539 9500	9535 9496	9531 9492	9527 9488	9523 9485	9519 9481	9516 9477	9512 9473
113	9469	9465	9462	9458	9454	9450	9446	9442	9477	9473
114 115	9431	9427	9423	9420	9416	9412	9408	9404	9401	9397
116	9393 9355	9389 9352	9385 9348	9382 9344	9378 9340	9374 9337	93 70 933 3	9367 9329	9363 9326	9359 9322
117	9318	9314	9311	9307	9303	9300	9296	9292	9289	9285
118 119	9281 9245	9278 9241	9274 9237	9270 9234	9266 9230	9263 9226	9259 9223	9255 9219	9252	9248 9212
120	9208	9205	9201	9197	9194	9190	9187	9183	9179	9176
121 122	9172 9136	9169	9165 9129	9161	9158 9122	9154	9151	9147 9112	9144 9108	9140
123	9130	9133 9097	9094	9126 9090	9087	9083	9115 9080	9076	9073	9104 9069
124 125	9066	9062	9059	9055	9052	9048	9045	9041	9038	9034
126	9031 8996	9027 8993	9024 8989	9020 8986	9017 8983	9014 8979	9010 8976	9007 8972	9003 8969	8965
127	8962	8959	8955	8952	8948	8945	8941	8938	8935	8931
128 129	8928 8894	8925 8891	8921 8887	8918 8884	8914 8881	8911 8877	8908 8874	8904 887 i	8901 8867	8897 8864
130	8861	8857	8854	8851	8847	8844	8841	8837	8834	8831
131 132	8827 8794	8824 8791	8821 8788	8817 8784	8814 8781	8811 8778	880 7 8775	8804 8771	8801 8768	8798 8765
133	8761	8758	8755	8752	8748	8745	8742	8739	8735	8732
134 135	8729	8726	8722	8719	8716	8713	8710	8706	8703	8700
136	8697 8665	8693 8661	8690 8658	.8687 .8655	8684 8652	8681 8649	8677 8645	8674 8642	8671 8639	8668 8636
137 138	8633	8630	8626	8623	8620	8617	8614	8611	8608	8604
139	8601 8570	8598 8567	8595 8564	8592 8560	8589 8557	8586 8554	8582 8551	8579 8548	8576 8545	8573 8542
140	8539	8536	8533	8529	8526	8523	8520	8517	8514	8511

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	в	7	8	9
10	0000	0043	0086	0128	0 170	0212	0253	0294	0334	0374	4	8	12	17	21	25	29	33	37
11 12 13	0792	0453 0828 1173	0492 0864 1206	0899	0569 0934 1271	0969	1004	1038	1072	0755 1106 1430	3	7		14	19 17 16	21	24	30 28 26	
14 15	1461 1761	1492 1790	1523 1818	1553 1847	1584 1875	1614 1903	1644 1931	1673 1959	1703 1987	1732 2014	3	6	9	12 11	15 14	18	2I 20	24 22	27 25
16 17 18	2304	2068 2330 2577		2380	2148 2405 2648	2430	2455	2480	2504	2529	2	<u>5</u> 5 5	- 8 - 7 7		13 12 12	16 15 14	17	21 20 19	22
19	2788		2833	2856	2878 3096	2900	2923		2967	2989 3201	2	4	7	9	11		_	18	
21 22 23	3424	3444	3263 3464 3655	3483		3522	354	3560	3579	3598	2	4 4 4	6	8 8 7	10	12 12 11	14 14 13	16 15	
24 25	3802 3979	3820 3997	3838 4014	3856 4031	3874 4048	3892 4065	3909 4082	3927 4099	3945 4116	3962 4133	2	4 3/	5	7	9	10	12 12	14 14	16 15
26 27 28	4314	4330	4183 4346 4502	4362	4378	4393	4409	4425	4440	4456	2 2 2	•	5 5 5	7 6 6	8 8, 8	9	11	13 13 12	15 14
29 30	4624	4639	4654 4800	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9 9	10	12	13
31 32 33	5051	5065	4942 5079 5211	5092	5105	5119	5132	5145	5024 5159 5289	5172	I I I	3 3	4 4	6 5 5	7 7 6	8	10 9 9		I2 I2 I2
34 35	5315 5441	5328 5453	5340 5465 5587	5353 5478	5366 5490	5378 5502	5391 5514	5403 5527		5428 5551	II	3 2 2	4 4	5 5 5	6 6	8 7 7	9	10 10	
37 38	5682 5798	5694 5809	5705 5821	5717 5832	5729 5843	5740 5855	5752 5866	5763 58 7 7	5775 5888	5786 5899	I	2 2	3	 5 5	6	7	8	9	10
39 40	-11	-	5933 6042			-	5977 6085	-	5999 6107	6117	ī	2	3	4	<u>5</u> 5	7 6	8	9	10
41 42 48	6232	6243	6149 6253 6355	6263	6274	6284	6294	6304	6314	6222 6325 6425	II	2 2 2	3 3	4 4 4	5 5 5	6	7 7 7	8 8 8	9 9
44	6435	6444 6542	6454 6551 6646	6464 6561	6474 6571	6484 6580	6493 6590	6503 6599	6513 6609	6522 6618	l I	2 2 2	3	4	5	6	7	8	9 98
47	6721	6730 6821	6739 6830	6749 6839	6758 6848	6767 6857	6776 6866	6785 6875	6794 6884	6803 6893	I	2 2	3 3 3	4 4 4	5 5 4	5 5	7 6 6	7 7 7	
49 50	-		6920 7007							-	1	2	3	3	4	<u>5</u> 5	$\frac{6}{6}$	7	- 8 - 8
51 52 53	7160	7084 7168	7093 7177	7101 7185	7110 7193	7118 7202	7126 7210	7135 7218	7143 7226	7152 7235	1	2	3	3	4	5	6	7 7 6	8 7
54	-	<u> </u>	7259 7340	<u> </u>				7300 7380		7316 7396	1	2	2	3	4	<u>5</u> 5	6	6	_ 7 7

 \mathcal{N}_{i}

	0	1	2	3	4	5	6	7	8	9	1	2	8	4	-5	6	7	8	Ð
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56 57 58	7559	7566	7574	7582	7513 7589 7 664	7597	7604	7536 7612 7686	7619	7627	I I	2	2 2 2	3 3 3	4 4 4	5 5 4	5 5 5	6 6 6	7777
59 60 61	7782	7780	7796	7803	7738 7810 7882	7818	7825	7760 7832 7903	7839	7846	· I	I I I	2	3 3 3	4 4 4	4	5 5 5	6 6 6	7 6 6
62 63 64	7993 8062	8000 8069	8007 8075	8082	8021 8089	8096	8102	8041 8109	8116	8055	I I I	I	2 2 2	3 3 3	3 3 3	4 4 4	5 5 5	6 5 5	6 6 6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	I	2	_3	3	4	_ 5	5	6
66 67 68	8261	8267	8274	828 o	8222 8287 8351	8293	8299			8254 8319 8382		I I I	2 2 2	3 3 3	3 3 3	4 4 4	5 5 4	5 5 5	6 6
69 70 71	8451	8457	8463	8470	8414 8476 8537	8482	8488		8500		_	I I I	2 2	2 2 2	3 3	4 4 4	4 4 4	5 5 5	6 5
72 73 74	8633	8639	8645	8651	8597 8657 8716	8663	8669	8615 8675 8733	8621 8681 8739	8627 8686 8745	I I	I I I	2 2 2	2 2 . 2	3 3 3	4 4 4	4 4 4	5 5 5	5 5 5
75	8751	8756	8762	876 8	8774	8779	8785	8791	8797	8802	I	I	2	2	3	3	4	5	5
76. 77 78	8865	8871	8876	8882	8831 8887 8943	8893	8899		8910		I I I	I I I	2 2	2 2 2	3 3 3	3 3 3	4 4 4	5 4 4	5 5 5
79 80 81	9031	9036	9042	9047	8998 9053 9106	9058	9063	9069	9020 9074 9128	9025 9079 9 133	I I I	I I I	2 2 2	2 2 2	3 3 3	3 3	4 4 4	4, 4 4	5 5
82 83 84	9191	9196	9201	9206	9159 9212 9263	9217	9222	9227		9238	I I I	I I I	2 2 2	2 2 2	3 3 3	3 3	4 4 4	4 4 4	5 5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	I	2	2	3	3	4	4	5
86 87 88	9395	9400	9405	9410	9365 9415 9465	9420	9425	9430	9385 9435 9484	9440	_	I I	2 I I	2 2 2	3 2 2	3 3 3	4 3 3	4 4 4	5 4 4
89 90 91	9542	9547		9557	9513 9562 9609	9566	9571	9576		9538 9586 9633	o	I I I	I I I	2 2 2	2 2 2	3 3	3 3 3	4 4 4	4 4 4
92 93 94	9685		9694	9699	9657 9703 9750	9708	9713	9717		9680 9727 9773	0	I i I	I I	2 2 2	2 2 2	3 3	3 3 3	4 4 4	4 4 4
95		9782		97 91		9800			9814	9818	0	I	1	2	2	3	3	4	4
96 97. 98	9823 9868 9912	9872	9832 9877 9921	9881	9841 9886 9930			9 899		9863 9908 9952		I I I	I	2. 2 2,	2 2 2	3 3	3 3 3	4 4 4	4 4 4
99			-		9974						0		1	2	2	3	3	3	4

LOGARITHMS OF RECIPROCALS.

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10		 9957	9914	9872	9830	9788	9747	9706	9666	9626	4	8	12	17	21	25	29	33	37
11 12	9208	9547 9172	9136	9469 9101	9066	9393 9031	8996	8962	9281 8928	9245 8894	4	8 7	10	14	19 17	21		30 28	34 31
13 14 15	8539	8827 8508 8210	8477	8761 8447 8153	8416	8386	8356	8327	8297 8013	8268	3	6 6	9	12	15	18	21	26 24 22	27
16 17	7959	7932 7670	7905	7878	7852 7595	7825 7570	7799 7545		7747 7496		3 2	5	8	11	13	16		21	25 24 22
18 19	7212	7423 7190	7399 7167	7375 7144	7352 7122	7328 7100	7305 7077	7282 7055	7258 7033	7235 7011	2 2	5 4	7	9	12 11	14	16	19 18	
20 21 22	6778	6968 6757 6556	6737	6925 6716 6517		6676	6655	6840 6635	6615	6799 6596	2 2 2	4	6	8 8 8	10	13 12 12	15	16	18
23 24	6383	6364 6180		6326		6289	6271 6091	6253 6073	6421 6234 6055	6216	2 2	4 4	6	7 7.	9	11	14 13	15 15	17
25 26	602 f 5850	6003 5834	5986 5817	5969 5800	5952 5784	5935 5768	5918 5751	5901 5735	5884 5719	5867 5702	2	3	5	7	8	10 10	12 11	14 13	15
27 28 29	5528	5670 5513 5361	5498		5622 5467 5317	5452	5591 5436 5287		5560 5406 5258	5544 5391 5243	2 2 1	3 3 3	5 5 4	6 6	8 8 7	9 9 9	11	13 12 12	14
80 81	1	5214 5072	5200		5171 5031	5157	5143	5129 4989	5114 4976	5100 4962	1	3	4	6	7	9 8		11	13
32 33	4948	4935 4802	4921	4908 4776	4895	4881 4750	4868 4737	4855 4724	4841 4711		I	3	4	5	7 6	8 8		11	12
84 85 86	4559	4672 4547 4425	4535	4647 4 522 4401	4634 4510 4389	4498	4609 4486 4365	4473	4584 4461 4342	4572 4449 4330	I I I	3 2 2	4 4	5 5 5	6 6	8 7 7	9 9 9	10 10	11
37 38 39	4202	4306 4191 4078	4295 4179 4067	4283 4168 4056		4260 4145 4034	4248 4134 4023		4225 4112 4001	4214 4101 3990	II	2 2 2	3 3	5 5 4	6 6	7 7 7	8 8 8	9	10
10		3969	3958	3947	3936	3925	3915	3904	3893	3883	ī	2	3	4	5	6	7	8	. 9
12 13	3768	3862 3757 3655	3851 3747 3645	3737	3830 3726 3625	3716	3809 3706 3605	3696	3788 3686 3585	3778 3675 3575	I	2 2	3 3 3	4 4 4	5 5 5	6 6 6	7 7 7	8 8	9
14 15 16	3468	3556 3458 3363	3546 3449 3354		3526 3429 3335	3420	3507 3410 3316		3487 3391 3298	3478 3382 3288		2 2 2	3 3 3	4 4 4	5 5 5	6 6 6	7 7 7	8 8 7	0.00
17 18	3279 3188	3270 3179 3089	3261 3170	3251	3242 3152	3233 3143	3224 3134	3215 3125	3206	3197 3107	I I I	2 2 2	3	4 4	5	5 5	6 6	7 7 7	- 8
50	-	3002	2993	2984	2976	2967	3045 2958	2950	2941	2933	1	2	_3 _3	3	4	5	6	7	8
51 52 53	2840	2916 2832 2749	2907 2823 2741	2899 2815 2733	2807	2798		2782	2774		1	2 2 2	3 2 2	3 3	4 4 4	5 5 5	6 6	7 7 6	
54	-		2660						2612	-	-			3	4		6	 6	

N.B.—Numbers in Difference Columns to be Subtracted, not Added.

LOGARITHMS OF RECIPROCALS.

															_				-,
	0	1	2	3	4	5	6	.7	8	9	1	2	3	4	5	6	7	8	9
55 56	2596 2518	2588 2510	2581 2503	2573 2 495	2565 2487	2557 2480	2549 2472	2541 2464	2534 2457	2526 2449	I	2	2	3	4	5 5	5 5	6 6	7
57 58 59	2366		2426 2351 2277	2343	2336		2321	2388 2314 2240	2306	2373 2299 2226	I I I	2 I I	2 2 2	3 3 3	4 4 4	5 4 4	5 5 5	6 6 6	7 7 7
60	2218	22 I I	2204	2197	2190	2182	2175	2168	2161	2154	1	I	2	_ 3	4	4	5	6	6
61 62 63	2076	2069		2125 2055 1986	2048	2041	2034		2020	2013	I I	I	2 2 2	3 3 3	4 3 3	4 4 4	5 5 5	6 6 5	6 6 6
64 65 66	1871	1864	1925 1858 1791	1851	1911 1844 1778	1838	1831	1891 1824 1759	1818		I I	I I I	2 2 2	3 3 3	3 3 3	4 4 4	5 5 5	5 5 5	6 6 6
67 68 69	1675	1733 1669 1605	1662	1720	1713 1649	1707 1643	1701 1637	1694 1630	1688 1624	1681 1618	1	I I I	2 2 2	3 3 3	3 3 3	4 4 4	4 4 4	5 5 5	6 6
70		1543						1506			I	I	2	2	3	4	4	5	5
71 72 73	1427	1421	1475 1415 1355			1397	1391	1445 1385 1325	1379	1373	I	I I I	2 2 2	2 2 2	3 3 3	4 4 4	4 4 4	5 5 5	5 5 5
74 75 76	1249	1244	1238	1290 1232 1175	1226	1221	1215	1267 1209 1152	1203		I I I	I I I	2 2 2	2 2 2	3 3 3	3 3 3	4 4 4	5 5 5	5 5 5
77 78 79	1079	1073	1124 1068 1013	1118 1062 1007	1057	1051	1046	1096 1040 0985	1035	1029	I I	I	2 2 2	2 2 2	3 3 3	3 3 3	4 4 4	4 4 4	5 5 5
80.	0969	0964	0958	0953	0947	0942	0937	0931	0926	0921	I	I	2	2	3	3	4	4	5
81 82 83	0862	0857	0904 0851 0799		0894 0841 0788	0835	0830	0878 0825 0773	0820	0814	I I I	I I I	2 2 2	2 2 2	3 3 3	3 3 3	4 4 4	4 4 4	5 5 5
84 85 86	0706	0752 0701 0650	0747 0696 0645	0691	0685	0731 0680 0630	0675	0721 0670 0620	0665			I I I	2 2 2	2 2 2	3 3 3	3 3 3	4 4 4	4 4 4	5 5 5
87 88 89	0555	0550	0545	0590 0540 0491	0535	0531	0526	0521	0516	0560 0511 0462	0 0 0	I I I	I I I	2 2 2	2 2 2	3 3 3	3 3 3	4 4 4	4 4 4
90	0458	0453	0448	0443	0438	0434	0429	0424	0419	0414	0	I	I	2	2	3	3	4	4
91 92 93	0362	0405 0357 0311	0353	0395 0348 0301	0343	0339	0334	0376 0329 0283	0325	0320	0 0 0	I I I	I I I	2 2 2	2 2 2	3 3 3	3 3 3	4 4 4	4 4 4
94 95 96	0223	0264 0218 0173	0214	0255 0209 0164	0205	0200	0195	0237 0191 0146	0186	0182	000	I I I	I I I	2 2 2	2 2 2	3 3 3	3 3 3	4 4 4	4 4 4
97 98 99	0132	0128 0083	0123	0119	0114	0110	0106	0101 0057	0097	0092	000	I I	I	2 2 2	2 2 2	3 3 3	3 3 3	4 4 3	4 4 4

N.B.—Numbers in Difference Columns to be Subtracted, not Added.

í 8					A	NT	LOC	GAR	ITH	MS.	_	10	<u>'</u> `	• • •	ζ,	8v-	• ,		`
Ŀ	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
.00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	٥	0	I	1	1	I	2	2	2
·01 ·02 ·03	1023 1047 1072	1026 1050 1074	1028 1052 1076	1030 1054 1079	1033 1057 1081	1035 1059 1084		1064	1067		0	0	1 1 1	I I	I	I I	2 2 2	2 2 2	. 2 . 2
·04 ·05 ·06	1096 1122 1148	1099 1125 1151	1102 1127 1153	1104 1130 1156	1107 1132 1159	1109 1135 1161	1112 1138 1164		1117 1143 1169		0 0 0	I	I I I	I	I I I	2 2 2	2 2	2 2 2	2 2 2
·07 ·68 ·09	1175 1202 1230	1178 1205 1233	1180 1208 1236	1183 1211 1239	1186 1213 1242	1189 1216 1245	1191 1219 1247	1194 1222 1250	1197 1225 1253	1199 1227 1256	000	I	I I I	I I	I	2 2 2	2 2 2	2 2 2	2 3
10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	<u> </u>	1	<u>-</u>	<u>.</u>	2			3
·11 ·12 ·18	1288 1318 1349	1291 1321 1352	1294 1324 1355	1297 1327 1358	1300 1330 1361	1303 1334 1365	1306 1337 1368	1309 1340 1371	1312 1343 1374	1315 1346 1377	000	I I	I I	I I I	2 2 2	2 2 2	2 2 2	2 2 3	3 3 3
·14 ·15 ·16	1380 1413 1445	1384 1416 1449	1387 1419 1452	1390 1422 1455	1393 1426 1459	1396 1429 1462	1400 1432 1466	1403 1435 1469	1406 1439 1472	1409 1442 1476	000	I I I	I I	I I	2 2 2	2 2 2	2 2 2	3 3 3	3 3
·17 ·18 ·19	1479 1514 1549	1483 1517 1552	1486 1521 1556	1489 1524 1560	1493 1528 1563	1496 1531 1567	1500 1535 1570	1503 1538 1574	1507 1542 1578	1510 1545 1581	000	I I I	I I I	I I	2 2 2	2 2 2	2 2 3	3 3 3	3 3
•20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	τ	1	1	2	2	3	3	3
·21 ·22 ·23	1622 1660 1698	1626 1663 1702	1629 1667 1706	1633 1671 1710	1637 1675 1714	1641 1679 1718	1644 1683 1722	1648 1687 1726	1652 1690 1730	1656 1694 1734	0	I I I	1	2 2 2	2 2 2	2 2 2	3 3 3	3 3 3	3 3 4
·24 ·25 ·26	1738 1778 1820	1742 1782 1824	1746 1786 1828	1750 1791 1832	1754 1795 1837	1758 1799 1841	1762 1803 1845	1766 1807 1849	1770 1811 1854	1774 1816 1858	0	I I	I I	2 2 2	2 2 2	2 2 3	3 3 3	3 3 3	4 4 4
·27 ·28 ·29	1862 1905 1950	1866 1910 1954	1871 1914 1959	1875 1919 1963	1879 1923 1968	1884 1928 1972	1888 1932 1977	189 £ 1936 1982	1897 1941 1986	1901 1945 1991	0	I I I	I I I	2 2 2	2 2 2	3 3 3	3 3 3	3 4 4	4 4 4
.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	I	1	2	2	3	3_	4	4
·31 ·32 ·33	2042 2089 2138	2046 2094 2143	2051 2099 2148	2056 2104 2153	2061 2109 2158	2055 2113 2163	2070 2118 2168	2075 2123 2173	2080 2128 2178	2084 2133 2183	0	I I	I I I	2 2 2	2 2 2	3 3 3	3 3 3	4 4 4	4 4 4
·34 ·35 ·36	2188 2239 2291	2193 2244 2296	2198 2249 2301	2203 2254 2307	2208 2259 2312	2213 2265 2317	2218 2270 2323	2223 2275 2328	2228 2280 2333	2234 2286 2339	I I	I I I	2 2 2	2 2 2	3 3 3	3 3	4 4 4	4 4 4	5 5 5
·37 ·38 ·39	2344 2399 2455	2350 2404 2460	2355 2410 2466	2360 2415 2472	2366 2421 2477	2371 2427 2483	2377 2432 2489	2382 2438 2495	2388 2443 2500	2393 2449 2506	I I	I I I	2 2 2	2 2 2	3 3 3	3 3 3	4 4 4	4 4 5	5 5 5
•40	2512	2518	2523	2529	2 535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5
·41 ·42 ·43	2570 2630 2692	2576 2636 2698	2582 2642 2704	2588 2649 2710	2594 2655 2716	2600 2661 2723	2606 2667 2729	2612 2673 2735	2618 2679 2742	2624 2685 2748	I I	I I I	2 2 2	2 2 3	3 3 3	4 4 4	4 4 4	5 5 5	5 6 6
·44 ·45 ·46	2754 2818 2884	2761 2825 2891	2767 2831 2897	2773 2838 2904	2780 2844 2911	2786 2851 2917	2793 2858 2924	2799 2864 2931	2805 2871 2938	2812 2877 2944	I I I	I I. I	2 2 2	3 3 3	3	4 4 4	4 5 5	5 5 5	6 6
·47 ·48 ·49	2951 3020 3090	2958 3027 3097	2965 3034 3105	2972 3041 3112	2979 3048 3119	2985 3055 3126	2992 3062 3133	2999 3069 3141	3006 3076 3148	3013 3083 3155	I I T	I ·	2 2	3 3 3	3 4 4	4 4	5 5 5	5 6 6	6 6

				-							_			_					
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
•50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	I	1	2	3	4	4	5	6	7
·51 ·52 ·53	3236 3311 3388	3 ² 43 3319 3396	3251 3327 3404	3258 3334 3412	3266 3342 3420	3273 3350 3428	3281 3357 3436	3289 33 ⁶ 5 3443		3304 3381 3459	I	2 2	2 2	3 3 3	4 4 4	5 5 5	5 5 6	6 6 6	7 7
·54 ·55 •58	3467 3548 3631	3475 3556 3639	3483 3565 3648	3491 3573 3656	3499 3581 3664	3508 3589 3 ⁶ 73	3516 3597 3681	35 <u>24</u> 3606 3690	3532 3614 3698	3540 3622 3707		2 2 2	2 2 3	3 3 3	4 4 4	5 5	6 6	6 7 7	7 7 8
·57 ·58 ·59	3715 3802 3890	3724 3811 3899	3733 3819 3908	3741 3828 3917	3750 3 ⁸ 37 39 2 6	3758 3846 3936	37 ⁶ 7 3 ⁸ 55 3945	377 ⁶ 3864 3954	37 ⁸ 4 3 ⁸ 73 39 ⁶ 3	3793 3882 3972	I I I	2 2 2	3 3 3	3 4 4	4 4 5	5 5 5	6 6	7 7 7	8 8 8
.60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8
·61 ·62 ·63	4074 4169 4266		4093 4188 4285	4102 4198 4295	4111 4207 4305	4121 4217 4315	4130 4227 4325	4140 4236 4335	4150 4246 4345	4159 4256 4355	I I I	2 2	3 3 3	4 4 4	5 5 5	6 6 6	7 7 7	8 8 8	9
·64 ·65 ·66	4365 4467 4571	4375 4477 4581	43 ⁸ 5 44 ⁸ 7 459 ²	4395 4498 4603	4406 4508 4613	4416 4519 4624	4426 4529 4634	4436 4539 4645	4446 4550 4656	4457 4560 4667	I I I	2 2 2	3 3 3	4 4 4	5 5 5	6 6 6	7 7 7	. 8 8 . 9	9 9 10
·67 ·68 ·69	4677 4786 4898	4688 4797 49 0 9	4699 4808 49 2 0	4710 4819 4932	4721 4831 4943	4732 4842 4955	4742 4853 4966	4753 4864 4 977	4764 4875 4989	4775 4887 5000	I I	2 2 2	3 3	4 4 5	5 6 6	7 7 7	8 8 8	é	10 10
.70	5012	5023	5035	5047	5058	5070	5032	5093	5105	5117	r	2	4	5	6	7	8	9	ÍI
·71 ·72 ·73	5129 5248 5370	5140 5260 53 ⁸ 3	5152 5272 5395	5164 5284 5408	5176 5297 5420	5188 5309 5433	5200 5321 5445	5212 5333 5458	5224 5346 5470	5236 5358 5483	I I	2 2 3	4 4 4	5 5 5	6 6 6	7 7 8	8 9 9	10	11 11
·74 ·75 ·76	5495 5623 5754	5508 5636 5768	5521 5649 5781	5534 5662 5794	5546 5675 5808	5559 5689 5821	5572 5702 5834	55 ⁸ 5 5715 5848	5598 5728 5861	5610 5741 5 ⁸ 75	1 1 1	3 3 3	4 4 4	5 5 5	6 7 7	8 8 8	9 9 9	10	12 12 12
·77 ·78 ·79	5888 6026 6166	5902 6039 6180	5916 6053 6194	5929 6067 6209	5943 6081 6223	5957 6095 6237	5970 6109 6252	5984 6124 6266	5998 6138 6281	6012 6152 6295	I I	3 3	4 4 4	5 6 6	7 7 7	8 8 9	10 10	11	12 13 13
.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
·81 ·82 ·83	6457 6607 6761	6471 6622 6776	6486 6637 6792	6501 6653 6808	6516 6668 6823	6531 6683 6839	6546 6699 6855	6561 6714 6871	6577 6730 6887	6592 6745 6992	2 2	3 3 3	5 5 5	6 6	8 8 8	9 9 9	11 11	12	14 14 14
·84 ·85 ·86	6918 7 079 72 44	6934 7096 7261	6950 7112 7278	6966 7129 7295	6982 7145 7311	6998 7161 7328	7015 7178 7345	7031 7194 7362	7047 7211 7379	7063 7228 7396	9 9 9	3 3 3	5 5 5	6 7 7	8	10	11 12 12	13 13 13	15
·87 ·88 ·89	7413 7586 7762	7430 7603 7780	7447 7621 7798	7464 7638 7816	7482 7656 7834	7499 7674 7852	7516 7691 7870	7534 7709 7889	7551 7727 79 07	7568 7745 7925	2 2 2	3 4 4	5 5	7 7 7	ģ	11	12 12 13	14 14 14	
.90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
·91 ·92 ·93	8128 8318 8511	8147 8337 8531	8166 8356 8551	8185 8375 8570	8204 8395 8590	8222 8414 8610	8241 8433 8630	8260 8453 8650	8279 8472 8670	8299 8492 8690	2 2 2	4 4 4	6		10	11 12 12	13 14 14	15	17 17 18
·94 ·95 ·96	8710 8913 9120	8730 8933 9141	8750 8954 9162	8770 8974 9183	8790 8995 9204	8810 9016 9226	8831 9036 9 3 47	8851 9057 9268	8872 9078 9290	8892 9099 9311	2 2 2	4 4 4	6 6	8	10	12 12 13	14 15 15	17	18 19 19
·97 ·98 ·99	9333 9550 9772	9354 9572 9795	9376 9594 9817	9397 9616 9840	9419 9638 9863	9441 9661 9886	9462 9683 990 8	9484 9705 9931	9506 9727 9954	9528 9750 9977	2 2 2	4 4 5	7 7 7	ģ.	II	13 13 14	15 16 16	17 : 18 : 18 :	

	0′	6′	12′	18′	24′	30′	36′	42′	48′	54 ′	1	2	3	4	5
0°	Inf. Neg.	7:2419	5429	7190	8439	9408	·0200	ō870	ī450	ī961					
1 2 3	8·2419 8·5428 8·7188	2832 5640 7330	3210 5842 7468	3558 6035 7602	3880 6220 7731	4179 6397 7857	4459 6567 7979	6731	4971 6889 8213	5206 7041 8326	21	41	62	82	103
4 5 6	8.8436 8.9403 9.0192	8543 9489 0264	8647 9573 0334	8749 9655 0403	8849 9736 0472	8946 9816 0539	9042 9894 0605		9226 0046 0734	9315 0120 0797	13	32 26 22	48 39 33	64 52 44	80 65 55
7 8 9	9.0859 9.1436 9.1943	0920 1489 1991	0981 1542 2038	1040 1594 2085	1646	1157 1697 2176	1214 1747 2221	1271 1797 2266	1326 1847 2310	1381 1895 2 353	10 8 8	19 17 15	29 25 23	38 34 30	48 42 38
10	9'2397	2439	2482	2524	2565	2606	2647	2687	2727	2767	7	14	20	27	34
11 12 13	9.3521 9.3179 9.3521	2845 3214 3554	2883 3250 3586	2921 3284 3618		2997 3353 3682	3034 33 ⁸ 7 3713		3107 3455 3775	3143 3488 3806	6 6 5	12 11 11	19 17 16	25 23 21	31 28 26
14 15 16	9.3837 9.4130 9.4403	3867 4158 4430	3897 4186 4456	39 2 7 4214 4482		3986 4269 4533	4015 4296 4559		4073 4350 4609	4102 4377 4634	5 5 4	10 9 9	15 14 13	20 18 17	24 23 21
17 18 19	9.4659 9.4900 9.5126	4684 4923 5148	4709 4946 5170	4733 4969 5192	4992	4781 5015 5235	4805 5037 5256	506ó	4853 5082 5299	4876 5104 5320	4 4	8 8 7	I2 II II	16 15 14	20 19 18
20	9.2341	5361	5382	5402	5423	5443	5463		5504	5523	3	7	10	14	17
21 22 23	9.5543 9.5736 9.5919	5563 5754 5937	5583 5773 5954	5602 5792 5972	5810	5641 5828 6007	5660 5847 6024	5865	5698 5883 6059	5717 5901 6076	3 3 3	6 6 6	10 9 9	13 12 12	16 15 15
24 25 26	9.6093 9.6259 9.6418	6110 6276 6434	6127 6292 6449		6324	6177 6340 6495	6194 6356 6510	6371	6227 6387 6541	6243 6403 6556	3 3 3	6 5 5	8 8 8	11 11 10	14 13 13
27 28 29	9.6570 9.6716 9.6856	658 5 6730 6869	6600 6744 6883	6615 6759 6896		6644 6787 6923	6659 6801 6937	6673 6814 6950	6687 6828 6963	6702 6842 6977	2 2 2	5 5 4	7 7 7	10 9 9	12 12 11
30	9. 69 90	7003	7016	7029	<u> </u>	7055	7068	7080	7093	7106	2	4	6	9	11
31 32 33	9.7118 9.7242 9.7361	7131 7254 7373	7144 7266 7384	7156 7278 7396	7290	7181 7302 7419	7193 7314 7430	7326	7218 7338 7453	7230 7349 7464	2 2 2	4 4 4	6 6	8 8 8	10 10
34 35 36	9.7476 9.7586 9.7692	7487 7597 7703	7498 7607 7713	7509 7618 7723	7629	7531 7640 7744	7542 7650 7754		7564 7671 7774	7575 7682 7785	2 2 2	4 4 3	6 5 5	7 7 7	9 9 9
37 38 39	9.7795 9.7893 9.7989	7805 7903 7998	7815 7913 8007	7825 7922 8017	7835 7932 8026	7844 7941 8035	7854 7951 8044	7864 7960 8053	7874 7970 8063	7884 7979 8072	2 2 2	3 3 3	5 5	7 6 6	8 8 8
40	9.8081	809 0	8099	8108	8117	8125	8134	8143	8152	8161	I	3	4	6	7
41 42 43	9.8169 9.8255 9.8338	8178 8264 8346	8187 8272 8354	8195 8280 8362			8221 8305 8386	8230 8313 8394	8238 8322 8402	8247 8330 8410	I I I	3 3 3	4 4 4	6 6 5	7 7 7
44	9.8418	8426	8433	8441	8449	8457	8464	8472	8480	8487	1	3	4	5	6

											0					
				LOC	ARI	TH	MIC	SIN	ES.	~	log	1	mi	0	+1	المناول والمناول
	0′	6′	12′	18′	24′	30′	36′	42′	48′	54′	7	2	3	4	5	
45°	9.8495	8502	8510	8517	8525	8532	8540	8547	8555	8562	1	2	4	5	6	i
46 47 48	9.8569 9.8641 9.8711	8577 8648 8718	8584 8655 8724	8662	8598 8669 8738	8676	8683	8620 8690 8758	8697	8704	I I I	2 2 2	4 3 3	5 5 4	6 6 6	
49 50 51	9 ^{.8} 778 9 ^{.88} 43 9 ^{.8} 905	8784 8849 8911	8791 8855 8917	_	8804 8868 8929	8874	8880	8887	8 893	8899	I I	2 2 2	3 3 3	4 4 4	5 5 5	
52 53 54	9.8965 9.9023 9.9080	8971 9029 9085	8977 9035 9091	8983 9041	8989 9046 9101	8995	9000 9057	9006 9063	9012	9018 9074	I	2 2 2	3 3	4 4 4	5 5 5	
55	9.9134	9139	9144	9149			9165	<u> </u>	9175	9181	1	2	3	3	4	
56 57 58	9.9186 9.9236 9.9284	9191 9241 9289	9196 9246 9294	9201 9251 9298	9206 9255 9303	9260	9216 9265 9312	9270	9226 9275 9322	9279	I I I	2 2 2	3 2 2	3 3 3	4 4 4	
59 60 61	9°9331 9°9375 9°9418	9335 9380 9422	9340 9384 9427	9344 9388 9431	9393		9401	9362 9406 9447	9367 9410 9451	9371 9414 9455	I I I	I I I	2 2 2	3 3 3	4 4 3	
62 63 64	9°9459 9°9499 9°9537	9463 9503 9540	9467 9507 9544	9471 9510 9548	9475	9479 9518	9483	9487 9525 9562	9491 9529 9566		I I I	I I I	2 2 2	3 3 2	3 3 3	
65	9.9573	9576	9580	9583	9587	9590		9597	9601	9604	I	1	2	2	3	
66 67 68	9 [.] 960 7 9 [.] 9640 9 [.] 9672	9611 9643 9675	9614 9647 9678		9621 9653 9684	9624 9656 9687	9659	9631 9662 9693	9634 9666 9696		I I O	I I I	2 2 1	2 2 2	3 2	
69 70 71	9 ⁹ 702 9 ⁹ 730 9 ⁹ 757	9704 9733 9759	9707 9735 9762	9738	9713 9741 9767	9743			9724 9751 9777	9727 9754 9780	0 0	I I I	I I I	2 2 2	2 2 2	
72 73 74	9.9782 9.9806 9.9828	9785 9808 9831	9787 9811 9833	9813	9792 9815 9837		9797 9820 9841		9801 9824 9845	9804 9826 9847	0 0	I I I	I I I	2 2 I	2 2 2	
75	9.9849	9851	9853	9855	9857	9859	9861	9863	9865	9867	0	1	1	1	2	
76 77 78	9°9869 9°9887 9°9904	9871 9889 9906	9873 9891 9907	9875 9892 9909	9876 9894 9910	9 896	9897	9882 9899 9915	9884 9901 9916	, ,	0 0 0	I I I	I I I	I I I	2 I I	
79 80 81	9 ⁹ 9919 9 ⁹ 9946	9921 9935 9947	9922 9936 9949	9924 9937 9950	9925 9939 9951	9927 9940 9952		9943	9931 9944 9955	993 2 9945 9956	0 0	0 0	I I I	I I I	I I	
82 83 84	9.9958 9.9968 9.9976	9959 9968 9977	9960 9969 9978	9961 9970 9978		9963 9972 9980	9964 9973 9981		9966 9975 9982	9967 9975 9983	0 0 0	0 0 0	1 0 0	I I O	I I	
85	9.9983	9984	9985	9985	9986		9987	9988	9988	9989	0	0	0	0	0	
86 87 88	9.9989 9.9994 9.9997	9990 9994 9998	9990 9995 9998	9991 9995 9998	9991 9996 9998		9992 9996 9999		9993 9997 9 999	9994 9997 9999	0 0 0	0 0 0	0 0 0	0	0 0	
89	9.9999	9999	ō000	ō0000	0000	ō000	ō000	ō000	0000	ō000	0	٥	0	0	0	

	0′	6′	12′	18′	24′	30′	36	42'	48′	54'	1	2	3	4	5
											<u> </u>	_			
0°	10,0000	0000	0000	0000	0000	0000	0000	0000	0000	9.333 3	٥	0	0	٥	٥
1	9.9999	9999	9999	9999	9999	9999	9998		9998	9998	0	0	0	0	0
3	9'9997 9'9994	9997 9994	9997 9993	9990	9996 9992	9990	9990	9995 9991	9995 9990	9994 9990	0	0	0	0	0
4	9.9989	9989	9988	9988	9987	9987		9985	9985	9984	0	0	0	0	0 .
5	9.9983	9983	9982	9981	9981	9980	9979	9978	9978	9977	o	o	o	o	I
6	9.9976	9975	9975	9974	9973	9972	997 I	9 970	9969	9968	0	0	0	I	I
7	9.9968	9967	9966	9965		9963	9962	9961	9960	9959	0	0	I	I	I
8 9	9.9957	9956 9945	9955 9944	9954 9943	9953 9941	9952 9940	9951	9950 9937		9947 9935	0	0	I	I	I
10		9932	9931	9929	9928	9927	9925	9924	9922	9921	0	<u> </u>			<u> </u>
	9'9934								9907	9906	0	<u></u>	<u>.</u>	<u>.</u>	<u>.</u>
11 12	9.9904	9918 9902	9916 9901	9915 9899	9913 9897	9912 9896		9909 9892		9889	0	ī	ī	ī	Ī
13	9.9887	9885	9884		9880	9878			9873	9871	0	I	I	I	2
14	9.9869	9867	9865	9863		9859	9857	9855	9853	9851	0	ľ	1	I	2
15	9.9849	9847	9845		9841			9835	9833 9811	9831 9808	0	I I	I	1 2	2
16	9.9828	9826	9824		9820	<u></u>		9813							
17 18	9.9806 9.9782	9804 9780	9801 9777	9799 9775	9797 9772	9794 9770		9789 9764		9785 9759	0	I	I	2	2
19	9.9757	9754	9751		9746			9738		9733	o	I	I	2	2
20	9.9730	9727	9724	9722	9719	9716	9713	9710	9707	9704	0	I	I	2	2
21	9.9702	9699	9696		9690	9687	9684		9678	9675	0	I	I	2	2
22 23	9.9672	9669 9637	9666 9634	9662 9631	9659 9627	9656 9624	9653 9621	9617	9647 9614	9643 9611	I	I	2	2	3
24	9.9607	9604	9601	9597	9594	9590	9587	9583	9580	9576	I	· I	2	2	3
25	9.9573	9569			9558	9555		9548		9540	I	I	2	2	3
26	9.9537	9533	9529		9522	9518		9510		9503			2	3	3
27 28	9.9499	9495 9455	9491 9451	9487 9447	9483 9443	9479 9439	9475 9435	9471	9467 9427	9463 9422	I	I	2	3	3
29	9.9418		9410		9401			9388		9380	I	I	2	3	4
30	9.9375	9371	9367	9362	9358	9353	9349	9344	9340	9335	1	I	2	3	4
31	9.9331	9326	9322	9317	9312			9298		9289	I	2	2	3	4
32 33	9.9284	9279 9231	9275 9226		9265	9200		9251 9201	9240	924I 919I	I	2	3	3	4
34	9.0186	9181	9175		9165			9149	9144	9139	1	2	3	3	4
35	9'9134	9128			9112			9096	9091	9085	1	2	3	4	5
36	9.9080	9074	9069	9063	9057			9041	9035	9029	1	2	_3_	4	5
37	9,9023	9018	9012	9006	9000	8995	8989	8983	8977	8971	I	2	3	4	5
38 39	9.8965	8959 8899	8953 8893	8947 8887	8880	8935 8874	8868	8923 8862	8917 8855	8911 8849	I	2	3	4	5
40	9.8843	8836	8830	8823	8817	8810	8804	8797	8791	8784	1	2	3	4	5
41	9.8778	8771	8765	8758		8745	8738	8731	8724	8718	I	2	3	5	6
42	9.8711	8704	8697	8690	8683	8676	8669	8662	8655	8648	I	2	3	5	6
43	9.8641	8634	8627	8620	8613	8606	8598	8591	8584	8577	1	2	4	5_	6
44	. 9.8569	8562	8555	8547	8540	8532	8525	8517	8510	8502	1	2	4	5	6

N.B.—Numbers in difference columns to be subtracted, not added. —See Rules.

46° 9:8495 8487 8480 8472 8464 8457 8449 8441 8433 8426 I 3 4 5 6 46° 9:8418 8410 8402 8394 8386 8378 8370 8362 8354 8346 I 3 3 4 5 7 9:8338 8330 8322 8313 8305 8297 8289 8280 8272 8264 I 3 3 4 6 7 9:8318 8478 8288 8230 8322 8313 8305 8297 8289 8280 8272 8264 I 3 3 4 6 7 99 8169 8161 8152 8143 8134 8125 8117 8108 8099 8090 I 3 3 4 6 7 80° 9:8081 8072 8063 8053 8044 8035 8026 8017 8007 7998 2 3 5 6 8 19 7989 7079 7070 7960 7951 7041 7932 7922 7913 7903 2 3 5 6 8 9 7:7989 7779 7707 7960 7951 7041 7754 7744 7734 7723 7713 7703 2 3 5 7 8 9 7:795 7785 7747 7764 7754 7744 7734 7723 7713 7703 2 3 5 7 9 85 9:7586 7575 7564 7553 7542 7531 7520 7509 7498 7487 2 4 6 8 10 87 9:7361 7349 7338 7326 7344 7302 7990 7278 7366 7254 2 4 6 8 10 88 9:7242 7230 7318 7205 7193 7181 7168 7156 7144 7131 2 4 6 6 8 10 9:9**Color 6079 6036 6050 6037 6037 6036 6050 6037 6037 6038 6010 8306 6883 6809 2 4 7 9 9 11 9:6**Color 6070 6056 6056 6054 6056 6054 6049 6044 6029 6076 6056 6054 6054 6054 6054 6054 6054 605				· ·								-	-			
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		Ο'	6'	12′	18′	24′	30′	36′	42′	48′	54′	1	2	3	4	5
47 9.9338 8330 8322 8313 8305 8227 8238 820 8272 8264 1 3 4 4 6 7 7 9 8255 8247 8238 8230 8221 8213 8204 8195 8187 8178 1 3 4 4 6 7 7 9 9806 8161 8152 8143 8134 8125 8248 8195 8187 8178 1 3 4 4 6 7 7 9 9806 91 9:8081 8072 8063 8053 8044 8035 8026 8017 8007 9998 2 3 5 6 8 8 8 9:7989 7979 9707 996 7951 7941 7932 7922 7913 7903 2 3 5 6 8 8 9:7989 7979 7970 7960 7951 7941 7932 7922 7913 7903 2 3 5 5 7 8 8 9:7989 7979 7970 7960 7951 7941 7932 7922 7913 7903 2 3 5 5 7 8 8 9:7992 7982 7682 7671 7661 7650 7640 7629 7618 7607 7597 2 4 5 7 7 9 9:7865 7575 7564 7553 7542 7531 7520 7509 7498 7487 2 4 6 7 9 9:7866 7573 7349 7338 7326 7314 7302 7209 7218 7205 7393 7181 7620 7509 7498 7487 2 4 6 8 10 9:7476 7464 7453 7442 7430 7419 7407 7396 7384 7373 2 4 6 6 8 10 8 9:7446 7349 7338 7326 7314 7302 7209 7218 7205 7093 7408 7466 7254 2 4 6 8 10 9:600 9:600 9:600 9:7009 7060 6037 6023 6050 6037 6023 6050 6037 6023 6040 6040 60434 3 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	45°	9.8495	8487	8480	8472	8464	8457	8449	8441	8433	8426	1	3	4	5	6
48 9 :8255 8247 8238 8230 8221 8213 8204 8195 8187 817 3 4 6 7 49 9:8169 8161 8152 8143 8134 8123 8171 817 809 8090 81 4 6 7 50 9:801 8972 8063 8053 8044 8035 8068 8072 809 809 809 2 3 5 6 8 50 9:7893 7884 8747 806 7854 7744 7734 7732 7933 7932 2 3 5 7 8 58 9:7795 7765 7774 7644 7754 7744 7734 7723 7793 2 4 6 7 9 56 9:7586 7575 7564 7553 7542 7531 7520 7509 7488 74873 2 4 6	11									8354					5	
60 6 9 886 I 8072 Pype 805 J 804 J 804 J 802 J 804 J 802 J 804 J 802 J 795 Pype 7979 Pype 7970 Pype 7951 Pype 7931 Pype 7932 Pype 7931 Pype 7932 Pype 7931 Pype 7932 Pype 7933 Pype 2 3 5 6 8 8 6 8 8 80 9 7893 Pype 7884 Pype 7864 Pype 7854 Pype 7847 Pype 7848 Pype 7847 Pype 7848 Pype					8230									- 1		
51 9.7989 7979 7970 7960 7951 7941 7932 7922 7913 7903 2 3 5 6 8 52 9.7893 7884 7874 7864 7854 7844 7835 7825 7815 7805 2 3 5 7 8 58 9.7795 7862 7774 7764 7754 7764 7754 7734 7723 7713 7703 2 3 5 7 9 56 9.786 7575 7564 7553 7542 7531 7520 7509 7498 7487 2 4 6 8 10 57 9.7361 7349 7338 7326 7341 7302 7590 7498 7487 2 4 6 8 10 58 9.7476 7464 7453 7427 7437 7596 7448 7333 2 4 6																7
58 by 97795 7785 7785 7774 7764 7754 7754 7764 7754 7764 7754 7769 7692 7618 7607 7597 2 3 5 5 7 9 9 7969 7682 7671 7661 7650 7660 7629 7618 7607 7597 2 4 5 5 7 9 9 7861 7679 7682 7671 7661 7650 7640 7629 7618 7607 7597 2 4 5 5 7 9 9 7861 7575 7564 7553 7542 7531 7520 7509 7498 7487 2 4 6 7 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		1	- 1	1								-				
64 9 7692 7682 7671 7661 7650 7640 7629 7618 7607 7597 2 4 5 5 7 9 9 56 9 7586 7575 7564 7553 7542 7531 7520 7509 7488 7487 2 4 6 7 9 9 57 9 7361 7349 7338 7326 7314 7302 7290 7288 7264 724 6 8 10 58 9 7242 7230 7218 7205 7131 7186 7166 7093 7080 7068 7051 7181 7166 7729 7218 7264 724 6 8 10 59 97218 7166 7093 7080 7068 7055 7042 7029 7016 7033 2 4 6 8 10 8 10 60 96900 6076 6682 6814 6801 6787 6773 6799 6744 6733 58 11 13 61 9 9 6570 6643																
56 97476 7464 7453 7442 7430 7419 7407 7396 7384 7373 2 4 6 8 10 8 10 58 97242 7230 7218 7205 7193 7181 7168 7156 7144 7131 2 4 6 8 10 8 10 59 97118 7106 7093 7080 7085 7055 7092 7029 7016 7131 2 4 6 8 10 60 96900 6977 6963 6950 6937 6693 6693 6696 6886 6888 6888 6814 6801 6787 6773 6759 6744 6730 2 5 7 9 12 62 96510 6556 6541 6801 6787 6773 6759 6744 6730 2 5 7 9 12 63 965290 6243 6227 6210 6194 6177 6161 6144 6127 6110 3 6 8 11 11 14 64 9641																
87 9 7361 7349 7338 7326 7314 7302 7290 7278 7266 7254 2 4 6 8 10 89 9 77242 7230 7218 7205 7193 7181 7106 7156 7144 7131 2 4 6 8 10 60 9 6900 6977 6963 6950 6937 6963 6950 6937 6963 6886 6881 680 6910 6886 6883 6860 2 4 7 9 11 63 9 6570 6556 6871 6650 6650 6673 6650 6644 6629 6615 6640 6385 2 5 7 9 12 64 9 6418 6403 6387 6371 6356 6340 6456 6456 6440 6426 6440 6440 6434 3 5 8 11 13 65 9 6259 6043 6226 6510 6670 6340 6177 6161 6144 6127 6110 3 6 <th< th=""><th></th><th>9.7586</th><th>7575</th><th></th><th>7553</th><th>7542</th><th>7531</th><th>7520</th><th>7509</th><th></th><th>7487</th><th>2</th><th>4</th><th>6</th><th></th><th>9</th></th<>		9.7586	7575		7553	7542	7531	7520	7509		7487	2	4	6		9
58 9·7242 7230 7218 7205 7193 7181 7168 7156 7144 7131 2 4 6 8 10 59 9·7118 7106 7093 7080 7068 7055 7042 7029 7016 7003 2 4 6 9 11 60 9·6856 6842 6828 68314 6801 6787 6773 6753 6659 644 6689 6674 6733 659 6444 6629 6615 6600 6585 2 5 7 10 12 63 9·6570 6556 6541 6526 6510 6495 6480 6465 6449 6434 3 5 8 10 13 65 9·6259 6243 6221 6104 6177 6161 6144 6127 6110 3 6 8 11 13 65 9·6393 5075	1			7453						7384						
60 9 699 6997 6963 6957 6963 6957 6953 6957 6953 6958 6896 6883 6869 2 4 7 9 11 9 6889 6883 6869 6883 6869 2 4 7 9 12 9 6856 6842 6828 6814 6801 6787 6773 6759 6744 6730 2 5 7 9 12 82 9 6716 6702 6687 6673 6659 6644 6629 6615 6600 6585 2 5 7 10 12 688 64 9 6434 3 5 8 10 13 685 9 6259 6243 6287 6371 6356 6360 6324 6308 6292 6276 3 5 8 11 13 685 9 6259 6243 6227 6210 6194 6177 6161 6144 6127 6110 3 6 8 11 14 686 9 6903 6076 6059 6042 6024 6007 5909 5972 5954 5937 3 6 9 12 15 68 9 5736 5717 5698 5679 5660 5641 5621 5602 5583 5563 3 6 10 13 16 69 9 5543 5523 5504 5484 5463 5641 5622 5583 5563 3 6 10 13 16 89 9 5124 55104 5082 5060 5037 5015 4992 4969 4946 4923 4 8 11 15 19 9 6403 4377 4350 4323 4296 4269 4242 4214 4186 4158 5 9 14 18 23 78 9 4403 4377 4350 4323 4296 4269 4242 4214 4186 4158 5 9 14 18 23 78 9 9 130 4102 4073 4044 4015 3086 3957 3927 3897 3867 5 10 15 20 24 80 9 2397 2353 2310 2266 2221 2176 2131 2085 2038 1991 8 15 23 30 38 19 9 1943 1895 1847 1797 1747 1697 1646 1594 1594 1489 8 17 25 31 88 9 9 1436 1381 1326 1271 1214 1157 109 1040 0981 0920 1019 29 3 8 48 9 0192 0120 0046 9970 9894 9816 8849 8749 8647 8543 16 32 48 64 80 88 8 8436 8326 8328 8328 8931 9019 20120 0046 9970 9894 9816 8849 8749 8647 8543 16 32 48 64 80 88 8 8436 8326 8328 8338 8971 0040 6889 6731 6587 6739 6220 6035 5842 5640				7218	7205											
61 9·6856 6842 6828 6814 6801 6787 6773 6759 6744 6730 2 5 7 9 12 63 9·6710 6702 6687 6673 6659 6644 6629 6615 6600 6585 2 5 7 10 12 64 9·6570 6556 6541 6520 6510 6495 6480 6465 6449 6434 3 5 8 11 13 65 9·6259 6243 6227 6210 6194 6177 6161 6144 6127 6110 3 6 8 11 13 66 9·6093 6076 6059 6042 6007 5990 5972 5937 5937 3 6 9 12 15 67 9·5919 5901 5883 5865 5847 5828 5810 5792 5773 5753 3	1					12 1	7055 6023									
63 9·6570 6556 6541 6526 6510 6350 6340 6324 6308 6292 6276 3 5 8 10 13 65 9·6418 6403 6387 6371 6356 6340 6324 6308 6292 6276 3 5 8 11 13 65 9·6259 6243 6227 6210 6194 6177 6161 6144 6127 6110 3 6 8 11 14 66 9·6093 6076 6059 5042 5883 5865 5847 5828 5810 5792 5773 5754 3 6 9 12 15 67 9·5919 5901 5883 5865 5847 5828 5810 5792 5773 5754 3 6 9 12 15 68 9·5736 5717 5698 5679 5660 5641 5621 5602 5583 5563 3 6 10 13 16 69 9·5543 5523 5504 5484 5463 5256 5235 5213 5102 5170 5148 4 7 11 14 18 70 9·5341 5320 5299 5278 5268 5268 5235 5213 5102 5170 5148 4 7 11 14 18 72 9·4900 4876 4853 4829 4805 5065 5037 5015 4992 4969 4964 4923 4 8 811 15 19 72 9·4900 4876 4853 4829 4805 4781 4757 4733 4709 4684 4 8 12 16 20 73 9·4130 4102 4073 4044 4015 3986 3957 3927 3897 3867 5 10 15 20 24 76 9·3837 3866 3775 3745 3745 3713 3682 3333 3319 3284 3250 3214 6 11 17 23 28 79 9·3521 3488 3455 3421 3387 3353 3319 3284 3250 3214 6 11 17 23 28 79 9·3806 2767 2727 2687 2677 2677 2677 2677 267				6828	6814	6801		6773								
64 9'6418 6403 6387 6371 6356 6340 6324 6308 6292 6276 3 5 8 11 13 65 9'6259 6243 6227 6210 6194 6177 6161 6144 6127 6110 3 6 8 11 14 66 9'6093 6076 6059 6042 6024 6007 5990 5972 5954 5937 3 6 9 12 15 67 9'5919 5901 5883 5865 5847 5828 5810 5792 5773 5754 3 6 9 12 15 68 9'5543 5523 5504 5484 5463 5443 5423 5402 5583 5563 3 6 0 12 15 71 9'5341 5325 5504 5848 5463 5478 54781 5473 510 5924										_				7		
66 9·6093 6076 6059 6042 6024 6007 5990 5972 5954 5937 3 6 9 12 15 68 9·5919 5901 5883 5865 5847 5828 5810 5792 5773 5754 3 6 9 12 15 68 9·5736 5717 5698 5679 5660 5641 5621 5602 5583 5563 3 6 9 12 15 68 9·5543 5523 5504 5484 5463 5443 5423 5402 5382 5361 3 7 10 14 17 70 9·5341 5320 5299 5278 5256 5235 5513 5168 4 7 11 14 18 71 9·5126 5104 5082 5060 5037 5015 4992 4969 4946 4923 4 11 18 11 12								- '							1	-
67 9:5919 5901 5883 5865 5847 5828 5810 5702 5773 5754 3 6 9 12 15 68 9:5736 5717 5698 5679 5660 5641 5621 5602 5783 5754 3 6 9 12 15 69 9:5543 5523 5504 5484 5463 5443 5423 5402 5382 5361 3 7 10 14 17 70 9:5126 5104 5082 5060 5037 5015 5926 5170 5148 4 711 14 18 71 9:5126 5104 5082 5060 5037 5015 4992 4969 4946 4923 4 8 11 15 19 72 9:4900 4876 4853 4829 4805 4781 4757 4733 4709 4684 4 8	65	9.6259	6243					6161	6144	6127	6110	3		8	11	14
68 9:5736 5717 5698 5679 5660 5641 5621 5602 5583 5563 3 6 10 13 16 69 9:5543 5523 5594 5484 5463 5443 5423 5402 5382 5361 3 7 10 14 17 70 9:5341 5320 5299 5278 5256 5235 5213 5192 5170 5148 4 7 11 18 18 71 9:5126 5104 5082 5060 5037 5015 4992 4969 4946 4923 4 8 II 15 19 72 9:4900 4876 4853 4859 4533 4508 4482 4456 4430 4 9 13 17 21 11 16 20 74 9:4130 4102 4073 4044 4015 3086 3957 397 3867		, ,,		6059 5883	6042 5865											
70 9:5341 5320 5299 5278 5256 5235 5213 5192 5170 5148 4 7 II 14 18 71 9:5126 5104 5082 5060 5037 5015 4992 4996 4946 4923 4 8 II 15 19 72 9:4900 4876 4853 4829 4805 4781 4757 4733 4709 4684 4 8 II 15 19 74 9:4459 4634 4609 4584 4559 4363 44508 4482 44456 4430 4 9 I3 17 21 18 23 76 9:4130 4102 4073 4044 4015 3986 3957 3927 3897 3867 5 II I6 21 26 77 9:3873 3888 3455 3421 3387 3353 3319 3284 3250 3214 6 II I7 23<	68															
71 9.5126 5104 5082 5060 5037 5015 4992 4969 4946 4923 4 8 11 15 19 72 9.4900 4876 4853 4829 4805 4781 4757 4733 4709 4684 4 8 12 16 20 73 9.4659 4634 4609 4584 4559 4533 4508 4482 4456 4430 4 9 13 17 21 74 9.4403 4377 4350 4323 4296 4269 4242 4214 4186 4158 5 9 14 18 23 75 9.4130 4102 4073 4044 4015 3986 3957 3927 3897 3867 5 10 15 20 24 76 9.3837 3806 3775 3745 3713 3682 3650 3618 3586 3554 5 11 16 21 26 77 9.3521 3488 3455 3421 3387 3353 3319 3284 3250 3214 6 11 17 23 28 78 9.3179 3143 3107 3070 3034 2997 2959 2921 2883 2845 6 12 19 25 31 79 9.2806 2767 2727 2687 2647 2606 2565 2524 2482 2439 7 14 20 27 34 80 9.2397 2353 2310 2266 2221 2176 2131 2085 2038 1991 8 15 23 30 38 81 9.1943 1895 1847 1797 1747 1697 1646 1594 1542 1489 8 17 25 34 42 82 9.1436 1381 1326 1271 1214 1157 1099 1040 0981 0920 10 19 29 38 48 83 9.0859 0797 0724 0670 0605 0539 0472 0403 0334 0264 11 22 33 44 55 84 9.0192 0120 0046 9970 9894 9816 9736 9655 9573 9489 13 26 39 52 65 85 8.9403 9315 9226 9135 9042 8946 8849 8749 8647 8543 16 32 48 64 80 86 8.8436 8326 8213 8098 7979 7857 7731 7602 7468 7330 21 41 62 82 103 87 8.7188 7041 6889 6711 66567 6397 6220 6035 5842 5640																
73 9·4659 4634 4609 4584 4559 4533 4508 4482 4456 4430 4 9 13 17 21 74 9·4403 4377 4350 4323 4296 4269 4242 4214 4186 4158 5 9 14 18 23 75 9·4130 4102 4073 4044 4015 3986 3957 3927 3897 3867 5 10 15 20 24 76 9·3837 3866 3775 3745 3713 3682 3650 3618 3586 3554 5 11 16 21 26 78 9·3179 3143 3107 3070 3034 2997 2921 2883 2845 6 12 19 25 31 79 9·2806 2767 2727 2687 2647 2606 2565 2524 2482 2439 7 14												•				
74 9:4403 4377 4350 4323 4296 4269 4242 4214 4186 4158 5 9 14 18 23 76 9:4130 4102 4073 4044 4015 3986 3957 3927 3897 3867 5 10 15 20 24 76 9:3837 3866 3775 3745 3713 3682 3650 3618 3586 3554 5 11 16 21 26 78 9:3521 3488 3455 3421 3387 3353 3319 3284 3250 3214 6 11 17 23 28 79 9:2806 2767 22727 2687 2647 2606 2565 2524 2482 2439 7 14 20 27 34 80 9:2397 2353 2320 2266 2221 2176 2131 2085 2038 1991 <t< th=""><th></th><th>1 - '-</th><th>• • •</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>•</th><th></th><th></th><th></th><th></th></t<>		1 - '-	• • •									•				
76 9:3837 3806 3775 3745 3713 3682 3650 3618 386 3554 5 11 16 21 26 77 9:3521 3488 3455 3421 3387 3353 3319 3284 3250 3214 6 11 17 23 28 78 9:3179 3143 3107 3070 3034 2997 2959 2921 2883 2845 6 12 19 25 31 79 9:2806 2767 2727 2687 2647 2606 2565 2524 2482 2439 7 14 20 27 34 80 9:2397 2353 2310 2266 2221 2176 2131 2085 2038 1991 8 15 23 30 38 81 9:1943 1895 1847 1797 1747 1697 1646 1594 1542 1489 8 17 25 34 42 82 9:1436 1381 1326 1271 1214 1157 1099																
77 9·3521 3488 3455 3421 3387 3353 3319 3284 3250 3214 6 II I7 23 28 78 9·3179 3143 3107 3070 3034 2997 2959 2921 2883 2845 6 II I7 23 28 79 9·2806 2767 2727 2687 2647 2606 2565 2524 2482 2439 7 I4 20 27 34 80 9·2397 2353 2310 2266 2221 2176 2131 2085 2038 1991 8 15 23 30 38 81 9·1943 1895 1847 1797 1747 1697 1646 1594 1542 1489 8 17 25 34 42 82 9·1436 1381 1326 1271 1214 1157 1099 1040 0981 0920 10 19 38 48 83 <t< th=""><th>75</th><th>9.4130</th><th></th><th></th><th>4044</th><th></th><th></th><th>3957</th><th>3927</th><th>3897</th><th>3867</th><th>5</th><th>10</th><th>15</th><th>20</th><th></th></t<>	75	9.4130			4044			3957	3927	3897	3867	5	10	15	20	
78 9 3179 3143 3107 3070 3034 2997 2959 2921 2883 2845 6 12 19 25 31 79 9 2806 2767 2727 2687 2647 2606 2565 2524 2482 2439 7 14 20 27 34 80 9 2397 2353 2310 2266 2221 2176 2131 2085 2038 1991 8 15 23 30 38 81 9 1943 1895 1847 1797 1747 1697 1646 1594 1542 1489 8 17 25 34 42 82 9 1436 1381 1326 1271 1214 1157 1099 1040 0981 0920 10 19 29 38 48 83 9 0859 0797 0724 0670 0605 0539 0472 0403 0334 0264 11 22 33 44 55 84 9 0192 0120 0046 9970 9894 9816 9736 9655 9573 9489 13 26 39 52 65 85 8 9403 9315 9226 9135 9042 8946 8849 8749 8647 8543 16 32 48 64 80 86 8 8436 8326 8213 8098 7979 7857 7731 7602 7468 7330 21 41 62 82 103 87 8 7188 7041 6889 6731 6567 6397 6220 6035 5842 5640						3713 3387										
80 9·2397 2353 2310 2266 2221 2176 2131 2085 2038 1991 8 15 23 30 38 81 9·1943 1895 1847 1797 1747 1697 1646 1594 1542 1489 8 15 23 30 38 82 9·1436 1381 1326 1271 1214 1157 1099 1040 0981 0920 10 19 29 38 48 83 9·0859 0797/70724 0670 0605 0539 0472 0403 0334 0264 11 22 33 44 55 84 9·0192 0120 0046 9970 9894 9816 9736 9655 9573 9489 13 26 39 52 65 85 8·9403 9315 9226 9135 9042 8946 8849 8749 8647 8543 16 32 48 64 80 86 8·8436 8326 8213 8098 7979 7857 7731 7602<			• •													
81 9 1 2 4 3 1895 1847 1797 1747 1697 1646 1594 1542 1489 8 1 7 25 34 42 82 9 1 36 1381 1326 1271 1214 1157 1099 1040 0981 0920 10 19 29 38 48 83 9 0859 0797 0724 0600 0605 0539 0472 0403 0334 0264 11 22 33 44 55 84 9 0192 0120 0046 9970 9894 9816 9736 9655 9573 9489 13 26 39 52 65 85 8 9403 9315 9226 9135 9042 8946 8849 8749 8647 8543 16 32 48 64 80 86 8 8436 8326 8213 8098 7979 7857 7731 7602 7468 7330 21 41 62 82 103 87 188 7041 6889 6731 6567 6397 6220 <th></th> <th>J</th> <th></th> <th>•</th> <th></th> <th></th> <th></th>		J											•			
88 9 0859 0797! 0724 0600 0605 0539 0472 0403 0334 0264 11 22 33 44 55 84 9 0192 0120 0046 9970 9894 9816 9736 9655 9573 9489 13 26 39 52 65 85 8 9403 9315 9226 9135 9042 8946 8849 8749 8647 8543 16 32 48 64 80 86 8 8436 8326 8213 8098 7979 7857 7731 7602 7468 7330 21 41 62 82 103 87 8 7188 7041 6889 6731 6567 6397 6220 6035 5842 5640	• • •												_		34	42
84 9 0192 0120 0046 9970 9894 9816 9736 9655 9573 9489 13 26 39 52 65 85 8 9403 9315 9226 9135 9042 8946 8849 8749 8647 8543 16 32 48 64 80 86 8 8436 8326 8213 8098 7979 7857 7731 7602 7468 7330 21 41 62 82 103 87 8 7188 7041 6889 6731 6567 6397 6220 6035 5842 5640		1 - 2-												-		•
86 8:8436 8326 8213 8098 7979 7857 7731 7602 7468 7330 21 41 62 82 103 87 8:7188 7041 6889 6731 6567 6397 6220 6035 5842 5640		1 -		, :	l - '				-: -		- ·		_			
87 8.7188 7041 6889 6731 6567 6397 6220 6035 5842 5640	85	8.9403	9315	9226	9135	9042	8946	8849	8749	8647	8543	16	32	48	64	8 o
88 8.5428 5206 4971 4723 4459 4179 3880 3558 3210 2832									I '.			21	41	62	82	103
					1 - 1 5					3210						
89 8.2419 1961 1450 0870 0200 7.9408 8439 7190 5429 2419	89	8.2419	1961	1450	0870	0200	7:9408	8439	7190	5429	2419					

N.B.—Numbers in difference columns to be subtracted, not added.—See Rules

	O'	6′	12′	18′	24′	30′	36′	42'	48′	54'	1	2	3	4	5
0°	Inf. Neg.	7:2419	5429	7190	843 9	9409	0200	- 0870	- 1450	1962	-			_	
1 2 3	8·2419 8·5431	2833 5643	3211 5845	3559 6038			4461 6571 7988	4725 6736		5208 7046		58			145
4	8.7194	7337 8554	7475 8659	7609 8762	7739 8862	7865 8960	9056	8107 9150	8223 9241	8336 9331		32		83 64	103 81
5 6	8.9420 9.0216	9506 0289	9591 0360	9674 0430	9756	9836 0567		9992	5 068		13	26 22	40	53 45	66 56
7 8 9	9°0891 9°1478 9°1997	0954 1533 2046	1015 1587 2094	1076 1640 2142		1194 1745 2236	1252 1797 2282	1310 1848 2328	1367 1898 2374	1423 1948 2419		20 17 16	26	39 35 31	49 43 39
10	9.2463	2507	2551	2594	2637	2680	2722	2764	2805	2846	7	14		28	35
11 12 13	9 ²⁸⁸ 7 9 ³² 75 9 ³⁶ 34	2927 3312 3668	2967 3349 3702	3006 3385 3736	3046 3422 3770	3085 3458 3804	3123 3493 3837	3162 3529 3870	3200 3564 3903			13 12 11		26 24 22	32 30 28
14 15 16	9'3968 9'4281 9'4575	4000 4311 4603	4032 4341 4632	4064 437 I 4660	4095 4400		4158 4459 4744	4189 4488 4771	4220 4517 4799	4546	5 5 5	10 10 9	16 15 14	21 20 19	26 25 23
17 18 19	9.4853 9.5118 9.5370	4880 5143 5394	4907 5169 5419	4934 5195 5443	5220	4987 5245 5491	5014 5270 5516		5066 5320 5563	5092 5345 5587	4 4 4	9 8 8	13 13 12	18 17 16	22 21 20
20	9.2611	5634	5658	5681	5704	5727	5750	5773	5796	5819	4	8	12	15	19
21 22 23	9.5842 9.6064 9.6279	5864 6086 6300	5887 6108 6321	5909 6129 6341	5932 6151 6362	5954 6172 6383	5976 6194 6404	5998 6215 6424	6020 6236 6445	6042 6257 6465	4 4 3	7 7 7	II II	15 14 14	19 18 17
24 25 26	9.6486 9.6687 9.6882	6506 6706 6901	6527 6726 6920	6547 6746 6939	ای دا	6587 6785 6977	6607 6804 6996	6627 6824 7015	6647 6843 7034	6667 6863 7053	3 3 3	7 7 6	10 10 9	13 13 13	17 16 16
27 28 29	9'7072 9'7257 9'7438	7090 7275 7455	7109 7293 7473	7128 7311 7491	7146 7330	7165 7348 7526	7183 7366	7202 7384	7220 7402 7579	7238 7420 7597	3 3 3	6 6	9	I2 I2 I2	15 15 15
30	9'7614	7632	7649	7667	7684	7701	7719	7736	7753	777 I	3	6	9	12	14
31 32 33	9.7788 9.7958 9.8125	7805 7975 8142	7822 7992 8158	7839 8008 8175	7856 8025 8191	7873 8042 8208	7890 8059 8224	7907 8075 8241	7924 8092 8257	7941 8109 8274	3.3	6 6 5	9 8 8	11	14 14 14
34 35 36	9.8290 9.8452 9.8613	8306 8468 8629	8323 8484 8644	8339 8501 8660	8355 8517	8371 8533 8692	8388 8549 8708	8404 8565	8420 8581 8740	8436 8597	3 3 3	5 5 5	8 8 8	11	14 13 13
37 38 39	9.8771 9.8928 9.9084	8787 8944 9099	8803 8959 9115	8818 8975 9130	8990	8850 9006 9161	9022	8881 9037	8897 9053 9207		3 3	5 5 5	8 8 8	10 10	13 13 13
40	9.9238	9254	9269	9284	9300	9315	9330	9346	9361	9376	3	5	8	10	13
41 42 43	9'9392 9'9544 9'9697	9407 9560 9712	9422 9575 9727	9438 9590 9742		9468 9621 9773	9483 9636 9788	9499 9651 9803	9514 9666 9818		3 3 3	5 5 5	8 8 8	10 10	13 13 13
44	9.9848	9864	9879	9894	9909	9924	9939	9955	9970	9985	3	5	8	10	13

_	7	1									_			_	
	O'	6'	12′	18′	24′	30′	36′	42′	48′	54′	1	2	3	4	5
45°	10,0000	∞15	0030	0045	0061	0076	0091	0106	0121	0136	3	5	8	10	13
46	10.012	0167	0182	0197	0212	0228	0243	0258	0273	0288	3				
47 48	10.0303	0319 0471	0334 0486		0364 0517	0379	0395	0410 0562	0425 0578	0440	3				- 5
49	10.0608	0624	0639	0654	0670	0685	0700	0716	0731	0746	3			-	
50	10.0262	0777	0793	0808		0839	0854	0870	0885	0901	3				•
51	10.0016	0932	0947	0963	0978	0994	1010	1025	1041	1056	3			10	
52	10.102	1088	1103	1119	1135	1150	1166	1182	1197	1213	3	5 5	8		
53 54	10.1382	1245 1403	1260 1419	1276 1435	1292 1451	1308 1467	1324	1340 1499	1356 1516	1371	3	5 5	8		13 13
55	10.1248	1564	1580	1596	1612	1629	1645	1661	1677	1694	3	5	8		14
56	10.1210	1726	1743	1759	1776	1792	1809	1825	1842	1858	3	5	8		14
57 58	10.1872	1891 2059	1908 2076	1925 2093	1941	1958	1975	1992 2161	2008 2178	2025 2195	3	6	8 9	II	14 14
59	10.5215	2229	2247	2264	2281	2299	2316		2351	2368	3	$\frac{0}{6}$		12	14
60	10.5386	2403	2421	2438		2474	249I	2333 2509	2527	2545	3	6	9	12	15
61	10.2562	2580	2598	2616	2634	2652	2670	2689	2707	2725	3	6	9	12	15
62	10.2743	2762	2780	2798	2817	2835	2854	2872	2891	2910	3	6	9	12	15
63 64	10,3118	2947 3137	2966 3157	2985 3176	3004 3196	3023 3215	3042 3235	3061 3254	3080 3274	3099 3294	3	6	9	13	16 16
65	10.3313	3333	3353	3373	3393	3413	3433	3453	3473	3494	3	7	10	13	17
66	10.3214	3535	3555	3576	3596	3617	3638	3659	3679	3700	3	- /7	10	14	17
67	10.3721	3743	3764	3785	3806	3828	3849	3871	3892	3914	4	7	11	14	18
68	10.3936	3958	3980	4002	4024	4046	4068	4091	4113	4136	4	7	11	15	19
69	10.4158	4181	4204	4227	4250	4273	4296	4319	4342	4366	4	8	12	15	19
70 71	10.4389	4413 4655	4437 4680	4461 4705	4484 4730	4509 4755	4533 4780	4557 4805	4581 4831	4606 4857	4	8	12	16 17	20 2 I
72	10.4883	4908	4934	4960	4986	5013	5039	5066	5093	5120	4	9	13	18	22
73	10.2147	5174	5201	5229	5256	5284	5312	5340	5368	5397	5	9	14	19	23
74	10.2422	5454	5483	5512	5541	5570	5600	5629	5659	5689	5	10	15	20	25
75	10.2419	5750	5780	5811	5842	5873	5905	5936	5968	6000	5	10	16	21	26
76 77	10.6032	6065	6097	6130	6163	6196	6230	6264	6298	6332 6688	-	11	17	22	28
78	10.6366	6401 6763	6436 6800	6471 6838	6507 6877	6542	6578 6954	6615 6994	7033	7073		12 13	18	24 26	30 32
79	10.2113	7154	7195	7236	7278	7320	7363	7406	7449	7493		14	21	28	35
80	10.7537	7581	7626	7672	7718	7764	7811	7858	7906	7954	8	16	23	31	39
81	10.8003	8052	8102	8152	8203	8255	8307	8360	8413	8467	-	17	26	35	43
82 83	10.8522	8577 9172	8633 9236	8690 9301	8748 9367	8806 9433	8865 9501	8924 9570	8985 9640			20 22	29 34	39 45	49 56
84	10.9784	9857	9932		5085	ō164	Ö244	ō326	ō409	ō494		26	٠,١	53	66
85	11.0280	0669	0759	0 850	0944	1040	1138	1238	1341				48	64	81
86	11.1224	1664	1777	1893	2012	2135	2261	2391	2525		20		62		103
87 88	11.4569	2954 4792	3106 5027	3264	3429	3599 5819	3777 6119	396 2 6441	4155 6789	4357 7167	29	58	87	116	144
89		8038	<u></u>	5275	5539		1561	2810	<u>-</u>	758I					
0,	11.7581	0030	0550	9130	9000	0591	1501	2010	4571	/501	_				

	O'	6'	12'	18′	24'	30′	36′	42'	48'	54'	1	2	3	4	5
-								<u> </u>							
0°	Inf.	12.76	4571	2810	1561	0591	9800	9130	8550	8038				ļ	
1 2	11.7581	7167	6789	6441	61 19 3777	5819	5539	5275	5027	4792 2954	20	59	88	8	147
3	11.4269 11.4269	4357 2663	2525		2261			1893		1664	21		63	83	104
4	11.1224	1446	1341	_	-	•	: -	_	<u>0</u> 759	0669	16	٠.	49	65	81
5 6	11°0580 10°9784	0494 9711	0409 9640		0244 9501					9857 9172	13		40 34	53 45	66 55
7	10.0100	9046	8985		8865	8806	8748	8690	8633	8577			29	39	49
8 9	10.822	8467 7954	8413 7906	7858	8307 7811	7764	7718	7672	7626	8052 7581	8	17 16	26 23	35	43 39
10	10.7537	7493	7449		7363	7320	7278	7236	7195	7154	7	14	21	28	35
11 12	10.4113	7073 6688	7033		6954 6578			6838		6763		13 12	19 18	26	32
13	10.6366	6332			6230					6401 6065		II	17	24 22	30 28
14 15	10.6032	6000	5968		5905				5780	5750	5	10	15	21	26
16	10.2422	5689 5397	5659 5368	5340	5600 5312	5284	5256	5229	5201	5454 5174	5 5	10 9	15 14	20 19	25 23
17	10.2147	5120	5093		5039					4908	4	9	13	18	22
18 19	10.4882	4857 4606	4581		4780 4533				4680 4437	4655 4413	4	9 8	13 12	17 16	21 20
20	10.4389	4366	4342	4319	42 96	4273	4250	4227	4204	4181	4	8	12	15	19
21 22	10.4128	4136 3914	4113 3892		4068 2840	4046 2828	4024 2806	4002 3785	3980 3764	3958 3743	4	7	II II	15 14	19 18
23	10.3721	3700			3638					3535	3	7	10	14	17
24 25	10.3214	3494 3294	3473 3274		3433	3413	3393	3373 3176	3353 3157	3333 3137	3	7 6	10 10	13 13	17 16
26	10,3118	3099			3042	3023	3004	2985	2966	2947	3	6	9	13	16
27 28	10.2928	2910 2725	2891 2707		2854 2670			2798 2616		2762 2580	3	6	9	I2 I2	15 15
29	10.5265	2545	2527		2491			2438		2403	3	6	9	12	15
30	10.5386	2368	2351		2316			2264	2247	2229	3	6	9	12	14
31 32	10.2212	2195 2025			2144 1975			2093 1925		2059 1891	3	6 5	9	II II	14 14
33	10.1872	1858	1842	1825	1809	1792	1776	1759	1743	1726	3	<u>5</u>	8	11	14
34 35	10.1710	1694 1532	1677 1516	1661 1499	1645 1483			1596 1435		1564 1403	3	5 5	8	II	14 13
36	10.1384	1371		1340	1324	1308	1292	1276		1245	3	_5	8	11	13
37 38	10'1229 10'1072	1213	1197 1041	1182	1166 1010	1150 0004	1135 0978	0963	1103 0947	1088	3	5 5	8	10	13
39	10.0019	0901	0885		0854	0839	0824	0808	0793	0777	3.		8	10	13
40	10.0762	0746	0731		0700	0685	0670	0654	0639	0624	3	5	8	10	13
41 42	10.0608	0593 0440	0425	0562 0410	0395	0532 0379		0501 0349		0471	3	5 5	8	10	13
43	10.0303	0288	0273	0258	0243	0228	0212	0197	0182	0167	3	5	8	10	13
44	10.0122	0136	0121	0106	0091	0076	0061	0045	0030	∞15	3	5	8	10	.13

N.B.-Numbers in difference columns to be subtracted, not added.- See Rules.

1	O'	6'	12'	18′	24'	30′	36′	42'	48′	54'	1	_		1	6
				10	27		30	42	48	04	<u> </u> _	2	` 3	4	5
4 5°	10,0000	9985	9970	9955	9939	9924	9 909	98 9 4.	9879	9864	3	5	[^] 8	10	13
46 47	9°9848 9°9697	9833 9681	9818 9666	9803 9651	9788 9636	9773	9757	9742	9727	9712	3	- 5	8	10	13
48	9.9544	9529	9514		9483	9621 9468	9605 9453	9590 9438	9575 9422	9560 9407	3	5 5	8 8	IO IO	13
49	9.9392	9376	9361	9346	9330	9315	9300	9284	9269	9254	3	5	8	IO	13
50 51	9'9238	9223 9068	9207 9053	9192 9037	9176 9022	9161 9006	9146	9130	9115	9099	3	5	8	10	13
52	9.8928	8912	8897	8881	8865	8850	8990 8834	8975 8818	8959 8803	8944 8787	3	<u>5</u>	-8	IO	13
53	9.8771	8755	8740	8724	8708	8692	8676	8660	8644	8629	3	5	8	11	13
54	9.8613	8597	8581		8549	8533	8517	8501	8484	8468	3	5	8	11	13
55	9.8452	8436	8420	8404	8388	8371	8355	8339	8323	8306	3	_5	_8	11	14
56 57	9.8125	8274 8109	8257 8092	8241 8075	8224 8059	8208 8042	8191 8025	8175 8008	8158 7992	8142	3	5	8 8	II	14
58	9.7958	7941	7924	7907	7890	7873	7856	7839	7822	7975 7805	3	6	9	11	14 14
59	9.7788	777 I	7753	7736	7719	7701	7684	7667	7649	7632	3	6	9	12	14
60 61	9.7614 9.7438	7597 7420	7579 7402	7562 7384	7544 7366	7526 7348	7509 7330	7491 7311	7473 7293	7455 7275	3	6 6	9	I2 I2	15 15
62	9'7257	7238	7220	7202	7183	7165	7146	7128	7109	7090	3	6	_ 9	12	15
63	9.7072	7053	7034	7015	6996	6977	6958	6939	6920	6901	3	6	9	13	16
64	9.6882	6863	6843	6824	6804	6785	6765	6746	6726	6706	3		10	13	16
65	9.6687	6667	6647	6627	6607	6587	6567	6547	6527	6506	3	7	10	13	17
66 67	9.6486	6465 6257	6445 6236	6424 6215	6404 6194	6383	6362 6151	6341 6129	6321 6108	6300 6086	3 4	7	10 11	14	17 18
68	9.6064	6042	6020		5976	5954	5932	5909	5887	5864	4	7	11	15	19
69	9.5842	5819	5796	5773	5750	5727	5704	5681	5658	5634	4	8	12	15	19
70 71	9.2911	5587 5345	5563 5320		5516 5270	5491 5245	5467 5220	5443 5195	5419 5169	5394 5143	4	8	12 13	16 17	20 21
72	9.2118	5092	5066	5040	5014	4987	4961	4934	4907	4880	4	9	13	18	22
73	9 4853	4826	4799	477I	4744	4716	4688	4660	4632	4603	5	9	14	19	23
74	9.4575	4546	4517	4488	4459	4430	4400	4371	4341	4311	_5	10		20	25
75	9'4281	4250	4220		4158	4127	4095	4064	4C32	4000	5	10		21	26
76 77	9°3968 9°3634	3935 3599	3903 3564	3870 3529	3837 3493	3804 3458	3770 3422	3736 3385	3702 3349	3668 3312	6	11 12	17 18	22	28 30
78	9.3275	3237	3200	3162	3123	3085	3046	3006	2967	2927	6	13	19	26	32
79	9.2887	2846	2805		2722	2680	2637	2594	2551	2507	7	14	21	28	35
80 81	9.1997	2419 1948	2374 1898	2328 1848	2282 1797	2236 1745	2189 1693	2142 1640	2094 1587	2046 1533	8	16 17	23 26	31 35	39 43
82	9.1478	1423	1367	1310	1252	1194	1135	1076	1015	0954		20	29	39	49
83	9.0891	0828	0764	<u>o</u> 699	o633	0567	0499	0430	0360	0289	11	23	34	45	56
84	9.0216	0143	0068	9992	9915	9836	9756	9674	9591	9506	13	_ <u>-</u> -	40	53	66
85	8.9420	9331	9241	9150	9056	8960	8862	8762	8659	8554	16	32	49	65	81
86 87	8·8446 8·7194	8336 7046	8223 6894	8107 6736	7988 6571	7865 6401	7739 6223	7609 6038	7475 5845	7337 5643	21 29	42 59	03 88	81 I	104 147
88	8.2431	5208	4973	4725	4461	4181	3881	3559	3211	2833	ľ	-			"
89	8.2419	1962	1450	0870	0200	9409	8439	7190	- 5429	- 2419					

N.B.-Numbers in difference columns to be subtracted, not added.- See Rules.

	O'	6′	12′	18′	24′	30′	36′	42′	48′	54'	1	2	3	4	5
0°	10,0000	0000	0000	0000	0000	0000	0000	0000	0000	1000	o	0	0	0	0
1 2 3	10,0009 10,0003 10,0001	0001 0003 0006	0001 0003 0007	0001 0004 0007	0001 0004 0008	000I 0004 0008	0002 0004 0009	0002 0005 0009	0002 0005 0010	0002 0006 0010	000	0	0 0 0	0 0	0 0
4 5 6	10'0011 10'0017 10'0024	0011 0017 0025	0012 0018 0025	0012 0019 0026	0013 0019 0027	0013 0020 0028	0014 0021 0029	0015 0022 0030	0015 0022 0031	0016 0023 0032	0 0	0	000	0 0 I	0 I
7 8 9	10'0032 10'0054	0033 0044 0055	0034 0045 0056	0035 0046	0036 0047 0059	0037 0048 0060	0038 0049 0061	0039 0050 0063	0040 0051 0064	004I 0053 0065	000	0 0	0 I I	I I	I I I
10	10.0099	0068	0069	0071	0072	0073	0075	0076	0078	0079	0	。	1	<u> </u>	<u>.</u>
11 12 13	10.0113 10.0009 10.0081	0082 0098 0115	0084 0099 0116	0085 0101 0118	0087 0103 0120	0088 0104 0122	0090 0106 0124	0091 0108 0125	0093 0109 0127	0094 0111 0129	000	I I I	I I I	I I I	I I 2
14 15 16	10°0131 10°0151 10°0172	0133 0153 0174	0135 0155 0176	0157	0139 0159 0180	0141 0161 0183	0143 0163 0185	0145 0165 0187	0147 0167 0189	0149 0169 0192	000	I I I	I I I	I I I	2 2 2
17 18 19	10.0194 10.0518 10.0543	0196 0220 0246	0199 0223 0249	0201 0225 0251	0203 0228 0254	0206 0230 0257	O2O8 O233 O259	0211 0236 0262	0213 0238 0265	0215 0241 0267	000	I I I	I I	2 2 2	2 2 2
20	10'0270	0273	0276	0278	0281	0284	0287	0290	0293	0296	0	I	I	2	2
21 22 23	10°0298 10°0328 10°0360	0301 0331 0363	0304 0334 0366	0307 0338 0369	0310 0341 0373	0313 0344 0376	0316 0347 0379	0319 0350 0383	032 2 0353 0386	0325 0357 0389	O I I	I I	I 2 2	2 2 2	3
24 25 26	10.0393 10.0427 10.0463	0396 0431 0467	0399 0434 0471	0403 0438 0475	0406 0442 0478	0410 0445 0482	0413 0449 0486	0417 0452 0490	0420 0456 0494	0424 0460 0497	I I	I I I	2 2 2	2 2 3	3 3 3
27 28 29	10.0501 10.0541 10.0582	0505 0545 0586	0509 0549 0590	0513 0553 0594	0517 0557 0599	0521 0561 0603	0525 0565 0607	0529 0569 0612	0533 0573 0616	0537 0578 0620	I I I	I I	2 2 2	3 3 3	3 3 4
30	10.0622	0629	0633	0 638	0642	0647	0651	o656	0660	0665	I	I	2	3	4
31 32 33	10°0669 10°0716 10°0764	0674 0721 0769	0678 0725 0774	0683 0730 0779	o688 o735 o784	0692 0740 0789	0697 0745 0794	0702 0749 0799	0706 0754 0804	0711 0759 0809	I I I	2 2 2	2 2 2	3 3 3	4 4 4
34 35 36	10°0814 10°0866 10°0920	0819 0872 0926	0825 0877 0931	0830 0882 0937	0835 0888 0943	0840 0893 0948	0845 0899 0954	0851 0904 0959	0856 0909 0965	0861 0915 0971	I I I	2 2 2	3 3 3	3 4 4	4 5 5
37 38 39	10.0022 10.1032 10.1032	0982 1041 1101	0988 1047 1107	0994 1053 1113	1000 1059 1120	1005 1065 1126	1011 1071 1132	1017 1077 1138	1023 1083 1145	1029 1089 1151	I I I	2 2 2	3 3 3	4 4 4	5 5 5
40	10.1122	1164	1170	1177	1183	1190	1196	1203	1209	1216	I	2	3	4	5
41 42 43	10.1323 10.1323 10.1323	1229 1296 1366	1235 1303 1373	1242 1310 1380	1249 1317 1387	1255 1324 1394	1262 1331 1402	1269 1338 1409	1276 1345 1416	1282 1352 1423	I I I	2 2 2	3 4	4 5 5	6 6 6
44	10.1431	1438	1445	1453	1460	1468	1475	1483	1490	1498	I	2	4	5	6

	0′	6′	12′	18′	24'	30′	3 6′	42′	48′	54 ′	1	2	3	4	5
45°	10.1202	1513	1520	1528	1536	1543	1551	1559	1567	1574	1	3	4	5	6
46 47 48	10'1582 10'1662 10'1745	1590 1670 1753	1598 1678 1762	1606 1687 1770	1614 1695 1779	1622 1703 1787	1630 1711 1796	1638 1720 1805	1646 1728 1813	1654 1736 1822	I I I	3 3	4 4 4	5 6 6	7 7 7
49 50	10.1010	1839 1928	1848 1937	1857 1947	1866 1956	1875 1965	1883 1974	1892 1983	1901	1910 2002	I 2	3	4 5	6	7 8
51 52 53	10.2107	2021 2116 2215	2030 2126 2226	2040 2136 2236	2049 2146 2246	2059 2156 2256	2068 2165 2266	2078 2175 2277	2087 2185 2287	2097 2195 2297	2 2 2	3 3 3	5 5 5	6 7 7	8 9
54 55	10.2308	2318 2425	2329 2436	2339 2447	2350	2360 2469	2371	2382	2393	2403	2	4	<u>5</u> 5	7	9
56 57 58	10°2524 10°2639 10°2758	2536 2651 2770	2547 2662 2782	2558 2674 2795	2570 2686 2807	2581 2698 2819	2593 2710 2832	2604 2722 2844	2616 2734 2856	2627 2746 2869	2 2 2	4 4 4	6 6 6	8 8 8	10 10
59 60 61	10'2882 10'3010 10'3144	2894 3023 3158	2907 3037	2920 3050	2932 3063 3199	2945 3077 3213	2958 3090 3227	297 I 3104 324 I	2984 3117 3256	2997 3131 3270	2 2 2	4 4 5	6 7 7	8 9 9	II II I2
62 63 64	10.3284 10.3430 10.3282	3298 3444 3597	3313 3459 3613	3327 3474	3341 3490 3644	3356 3505 3660	337 I 3520 3676	3385 3535 3692	3400 3551 3708	3415 3566 3724	2 3 3	-5 5 5	7 8 8	10 10	12 13 13
65	10'3741	3757	3773	3790	3806	3823	3839	3856	3873	3890	3	6	8	11	14
66 67 68	10'3907 10'4081 10'4264	3924 4099 4283	3941 4117 4302		3976 4153 4340	3993 4172 4359	4010 4190 4379	4028 4208 4398	4046 4227 4417	4063 4246 4437	3 3 3	6 6 6		12 12 13	14 15 16
69 70 71	10'4457 10'4659 10'4874	4477 4680 4896		4722	4537 4744 4963	4557 4765 4985	4577 4787 5008	4598 4808 5031	4618 4830 5054	4639 4852 5077	3 4 4		11		17 18 19
72 73 74	10.2100 10.2341 10.2294	5124 5366 5623	5147 5391 5650	5171 5416 5677	5195 5441 5704	5219 5467 5731	5243 5492 5758	5267 5518 5786	5291 5544 5814	5316 5570 5842	4 4 5	8 9	12 13 14	16 17 18	20 21 23
75	10.2840	5898	5927	5956	5985	6014	6043	6073	6103	6133	5		15	20	24
76 77 78	10.6163 10.6821	6194 6512 6857	6225 6545 6893	6579	6287 6613 6966	6318 6647 7003	6350 6681 7041	6382 6716 7079	6414 6750 7117	6446 6786 7155	5 6 6	11 11 12	16 17 19	21 23 25	26 28 31
79 80 81	10.7194 10.7603 10.8057	7233 7647 8105	7273 7690 8153	7313 7734 8203	7353 7779 8253	7394 7824 8303	7435 7869 8354	7476 7915 8406	7518 7962 8458	7561 8009 8511	7 8 8	- 3	20 23 25	27 30 34	34 38 42
82 83 84	10.8564	8619 9203 9880	8674 9266	1 200	8786 9395 ō106	8843 9461 ō184	8901 9528 5264	8960 9597 	9019 9666 ō427	9080 9736 ō511	10 11	22	29 33 39	38 44 53	48 56 66
85	11.0597	0685	9954 9774	0865	0958	1054	1151	1251	1353	1457		32		53 64	
86 87 88	11.1564 11.2812 11.4572	1674 2959 4794	3111		2021 3433 5541	2143 3603 5821	2269 3780 6120	2398 3965 6442	2532 4158 6790	2670 4360 7168					
89	11.7581	8039	8550	9130	9800	ō592	ī 561	2810	4571	7581					

										,	_			T	
	o *	6'	12′	18′	24′	30′	36′	42′	48′	54'	1	2	3	4	5
0°	Inf.	12.76	457 I	2810	1561	0592	<u>5</u> 800	<u>-</u> 9130	8550	8039					
1 2	11.7581 11.4572	7168 4360	6790	644 2	6120	5821 2602	5541	5277 3260	5029	4794 2959					
3	11.5815	2670	2532	2398	2269	2143	2021	1902	1787	1674					
4 5	11.1264	1457	1353	1251		1054		0865					48	64	81
6	10.9808	0511 9736	0427 9666	9597	9528	9461	9395	9330	9954 9266	9880 9203	11	26 22		53 44	66 56
7 8	10.9141	9080	9019	8960	8901	8843	8786	8729	8674	8619		19 17		38	48
9	10.8057	8511 8009	7962	7915	7869	7824	7779	8203 7734	7690	7647		15		34	42 38
10	10.7603	7561		7476							7	14	20	27	34
11 12	10'7194 10'6821	7155 6786	7117	7079	7041 6681	7003	6966	6930 6579	6893	6857	_	12 11	19 17	25	31 28
13	10.6479	6446	6414	6382	6350	6318	6287	6255	6225	6194		11	•.	21	26
14 15	10.6163	6133 5842	6103					5956		5898	5	10	15 14	20 18	24 23
16	10.222	5570		5518				5677 5416		5366	5 4	9	13	17	21
17 18	10.2341	5316	5291	5267	5243	5219	5195	5171 4940	5147	5124 4806	4	8	12 11	16 15	20 19
19	10.4874	5077 4852	4830					4722			4	7	11	14	18
20	10.4629	4639	4618	4598	4577	4557	4537	4516	4496	4477	3	7	10	13	17
21 22	10'4457 10'4264	4437 4246	4417	4398	4379	4359	4340	4321 4135	4302	4283 4000	3	6 6	10 9	13	16 15
23	10.4081	4063	4046	4028	4010	3993	3976	3958	3941	3924	_3	6	9	12	14
24 25	10.3907 10.3741	3890 3724	3873		3839 2676			3790 3629		3757	3	6 5	8	11	14 13
26	10.3283	3566	3551					3474		3444	3	5	8	10	13
27 28	10°3430 10°3284	3415 3270						3327 3186		3298 3158	2	5	7	10 9	I2 I2
29	10.3144	3131						3050			2	5 4	7	9	II
30	10.3010	2997	2984					2920	2907	2894	2	4	6	8	11
31 32	10°2882 10°2758	2869 2746	2856 2734	2844 2722					2782 2662	2770 2651	2	4	6 6	8	10
33	10.5639	2627	2616	2604	2593	2581	2570	2558	2547	2536	2	4	6	8	10
34 35	10.524	2513		2491					2436		2	4	5	7	9
36	10°2414 10°2308	2403 2297						2339 2236		2318 2215	2	4	5 5	7	9
37 38	10.5502	2195	2185	2175	2165	2156	2146	2136	2126	2116	2	3	5	7	8
39	10°2107 10°2011	2097 2002	2087 1993	2078 1983	1974	2059 1965	2049 1956	2040 1947	1937	2021 1928	2 2	3 3	5	6	8 8
40	10,1616	1910	1901	1892					1848	1839	I	3	4	6	7
41 42	10.1831	1822	1813					1770			I	3	4	6	7
43	10°1745 10°1662	1736 1654	1728 1646	1638	1630	1703 1622	1614	1606	1678 1598	1670 1590	I	3	4	6 5	7 7
44	10.1285	1574	1567	1559	1551	1543	1536	1528	1520	1513	1	3	4	5	6

N.B.—Numbers in difference columns to be subtracted, not added.—See Rules.

<u> </u>			-											_	
	O'	6′	12′	18′	24′	30′	36′	42'	48′	54′	1	2	3	4	5
45°	10.1202	1498	1490	1483	1475	1468	1460	1453	1445	1438	1	2	4	5	6
46	10.1431	1423					1387		1373		I	2	4	5	6
47 48	10.1329	1352 1282			1331 1262		1317 1249		1303	1296	I	2	3	5	6 6
49	10.1555	1216			1196		1183		1170		ī	2	3	4	5
50	10.1124	1151		_			1120		1107		I	2	3	4	5
51	10.1002	1089	<u> </u>		1071		1059		1047		I	2	3	4	5
52 53	10.1032	1029 0971	ں ۔	•	1011 0954		1000 0943		0988 0931		I	2	3	4	5
54	10.0920	0915						0882			I	2	3	4	5
55	10.0866	0861	0856	0851	0845	0840	0835	0830	0825	0819	I	2	3	3	4
56	10.0814	0809			0794		0784		0774		I	2	2	3	4
57 58	10.0764	0759 0711	0754		0745 0697		0735 0688		0725		I	2	2	3	4
59	10.0999	0665			0651		0642	0638			<u> </u>	<u>-</u>	2	3	
60	10.0622	0620		1 20	0607		0599				î	ī	2	3	4
61	10.0582	0578			0565			0553			I	I	2	_3	3
62 63	10.0241	0537	0533 0494		0525 0486		0517	0513 0475	0509		I	I	2	3	3
64	10.0201	0497 0 460	0456		0449			0475			ī	I	2 2	3	3
65	10.0427	0424	0420	0417	0413	0410	0406	0403	0399	0396	1	1	2	2	3
66	10.0393	0389			0	0376					I	I	2	2	3
67 68	10.0360	0357 0325	0353 0322		0347 0316			0338 0307			0	I I	2 I	2 2	3 2
69	10.0298	0296			' '	•					0	I	I	2	2
70 71	10.0270	0267 0241	0265 0238	ا د	0259 0233			0251 0225	0249		0	I	I	2	2 2
72	10 0218	0215			_	0206			0199		0	ī	·I	2	2
73	10.0194	0192	0189	0187	0185	-0183	0180	0178	0176	0174	o	ī	ī	ī	2
74	10.0145	0169	0167		0163						0	I	1	I	2
75	10.0121	0149	0147	0145	0143						0	<u> </u>	1	I	2
76 77	10.0113	0129 0111	O127 O109	0125	0124 0106			0101 0118		×	0	I	I	I	2 I
78	10.0096	0094	0093		0090		0087	0085			0	ī	ī	ī	ī
79	1800.01	0079	0078	0076	0075	0073		0071			0	0	I	I	I
80 81	10.0066 10.0024	0065	0064	0063	0061	0060	0059	0057	0056 0045		0	0	I	I	I
82	10'0042	0041	0040	0039	0038	0037		0035	0034		0	。	-	- <u>-</u>	÷
83	10.0032	0032	0031	0030	0029	0028		0026	0025	0025	0	0	0	I	ī
84	10.0024	0023	0022	0022	0021	0020	∞ 19	∞ 19	8100	0017	0	٥	0	0	1
85	10.0012	0016	0015	0015	0014	∞13			0012	0011	0	0	0	0	0
86 87	10.0000	0010	0010	0005	0009 0004	0008		• • •	0007		0	0	0	0	0
88	10,0003	0002	0002	0002	0002	0004		- (0003 0001	-	0	0	0	0	9.
89	10,0001	1000	0000	0000	0000	0000	0000	0000	0000	0000	0	0	0	0	ò

	0'	6'	12′	18	24′	30′	36′	42'	48'	54'	1	2	3	4	5
													_		
0°	0000	0017	∞35	0052	0070	0087	0105	0122	0140	0157	3	6	9	12	15
1	0175	0192	0209	0227	0244	0262	0279	0297 047 I	0314	0332 0506	3	6	9	12	15 15
2 3	0349 0523	0366 0541	0384 0558	0401 0576	0419 0593	0436 0610	0454 0628	0645	0663	0680	3	ő	9	12	15
4	0698	0715	0732	0750	0767	0785	0802	0819	0837	0854	3	6	9	12	15
5	0872	0889	0906	0924	0941	0958	0976	0993 1167	1011	1028	3	6	9	12 12	14 14
6	1045	1063	1080	1097	1115	1132	1149	<u> </u>	<u>-</u>		Ĕ-	6	9	12	14
7 8	1219	1236	1253	1271 1444	1288 1461	1305	1323 1495	1340 1513	1357 1530	1374 1547	3	6	9	12	14
9	1564	1582	1599	1616	1633	1650	1668	1685	1702	1719	3	6	9	12	14
10	1736	1754	1771	1788	1805	1822	1840	1857	1874	1891	3	6	9	12	14
11	1908	1925	1942	1959	1977	1994	2011 2181	2028	2045	2062	3	6	9	II II	14 14
12 13	2079	2096 2267	2113	2130	2147 2317	2164 2334	2351	2198 2368	2215 2385	2232 2402	3	6	9 8	11	14
14	2419	2436	2453	2470	2487	2504	2521	2538	2554	2571	3	6	8	11	14
15	2588	2605	2622	2639	2656	2672	2689	2706	2723	2740	3	6	8	II II	14 14
16	2756	2773	2790	2807	2823	2840	2857	2874	2890	2074	3	6	8	11	14
17 18	2924 3090	2940 3107	2957 3123	2974 3140	2990 3156	3007	3024 3190	3040 3206	3057	3074 3239	3	6	8	11	14
19	3256	3272	3289	3305	3322	3338	3355	3371	3387	3404	3	5	8	II	14
20	3420	3437	3453	3469	3486	3502	3518	3535	3551	3567	3	5	8	11	14
21	3584	3600	3616	3633	3649	3665	3681	3697	3714	3730	3	5	8	II II	I
22 23	3746 3907	3762 3923	3778	3795 3955	3811 3971	3827 3987	3843 4003	3859 4019	3875 4035	3891 4051	3	5 5	8	11	14
24	4067	4083	4099	4115	4131	4147	4163	4179	4195	4210	3	5	8	ΙΙ	13
25	4226	4242	4258	4274	4289	43°5	4321	4337	4352	4368	3	5	8	11	13
26	4384	4399	4415	4431	4446	4462	4478	4493	4509 4664	4524	3	5	8	10	13
27 28	4540	4555 4710	4571 4726	4586 4741	4602 4756	4617 4772	4633 4787	4648 4802	4818	4679 4833	3	5 5	8	10	13
29	4848	4863	4879	4894	4909	4924	4939	4955	4970	4985	3	5	8	10	13
30	5000	5015	5030	5045	5060	5075	5090	5105	5120	5135	3	5	8	10	13
31	5150	5165	5180	5195	5210	5225	5240	5255	5270	5284	2	5	7	10	I2 I2
32 33	5299 5446	5314 5461	5329 5476	5344 5490	5358 5505	5373	5388 5534	5402 5548	5417 5563	5432 5577	2	5 5	7	10	12
34	5592	5606	5621	5635	5650	5664	5678	5693	5707	5721	2	5	7	10	12
35	5736	5750	5764	5779	5793	5807	5821	5835	5850	5864	2	5	7	10	I2 I2
36	5878	5892	5906	5920	5934	5948	5962	5976	5990	6004	2	_5	7	. 9	12
37 38	6018	6032 6170	6046 6184	6060	6074 6211	6088	6101 6239	6115 6252	6129 6265	6143 6280	2	5 5	7 7	9	II
39	6293	6307	6320	6334	6347	6361	6374	6388	6401	6414	2	4	7	<u> </u>	11
40	6428	6441	6455	6468	6481	6494	6508	6521	6534	6547	2	4	7	9	11
41	6561	6574	6587	6600	6613	6626	6639	6652	6665	6678	2	4	7	9	11
42 43	6691 6820	6704 6833	6717 6845	6730 6858	6743 6871	6756 6884	6769 6896	6782 6909	6794 6921	6807 6934	2	4 4	6	9 8	II
44	6947	6959	6972	6984	6997	7009	7022	7034	7046	7059	2	4	6	8	10
لتت	- 277						•				L	_			

					NA'	TUR	AL S	INES). =	je	þ	÷		hy	ا 133
	O'	6′	12'	18′	24′	30′	36′	42′	48′	54′	1	2	3	4	5
45°	7071	7083	7096	7108	7120	7133	7145	7157	7169	7181	2	4	6	8	10
46 47 48	7193 7314 7431	7206 7325 7443	7218 7337 7455	7230 7349 7466	7242 7361 7478	7254 7373 7490	7266 7385 7501	7278 7396 7513	7290 7408 7524	7302 7420 7536	2 2 2	4 4 4	6 6 6	8 8 8	10 10
49 50 51	7547 7660 7771	7558 7672 7782	7570 7683 7793	7581 7694 7804	7593 7705 7815	7604 7716 7826	7615 7727 7837	7627 7738 7848	7638 7749 7859	7649 7760 7869	2 2 2	4 4 4	6 6 5	8 7 7	9 9 9
52 53 54	7880 7986 8090	7891 7997 8100	7902 8007 8111	7912 8018 8121	7923 8028 8131	7934 8039 8141	7944 8049 8151	7955 8059 8161	7965 8070 8171	7976 8080 8181	2 2 2	4 3 3	5 5 5	7 7 7	9 9 8
55 56	8192 8290	8202	8211	8221	8231 8329	8241	8251 8348	8261 8358	8271	8281	2	3	5	6	8
57 58	8387 8480	8396 8490	8406 8499	8415 8508	8425 8517	8434 8526	8443 8536	8453 8545	8462 8554	8471 8563	2 2	3	5	6 6	8
59 60 61	8572 8660 8746	8581 8669 8755	8590	8599 686 8771	8607 8695 8780	8616 8704 8788	8625 8712 8796	8634 8721 8805	8643 8729 8813	8652 8738 8821	I I I	3 3 3	4 4	6 6 6	7 7 7
62 63 64	8829 891 0 8988	8838 8918 8996	8846 8926 9003	8854 8934 9011	8862 8942 9018	8870 8949 9026	8878 895 7 9033	8886 8965 9041	8894 8973 9048	8902 8980 9056	I I	3 3 3	4 4 4	5 5 5	7 6 6
65 6	9063	9070	9078	9085	9092 9164	9100	9107	9114	9121	9128	I	2	4	5	6
67 68	9135 9205 9272	9143 9212 9278	9150 9219 9285	9157 9225 9291	9232 9298	9239 9304	9178 9245 9311	9252 9317	9191 9259 9323	9198 9265 9330	I I I	2 2 2	3 3	5 4 4	6 5
69 70 71	9336 9397 9455	9342 9403 9461	9348 9409 9466	9354 9415 94 72	9361 9421 9478	9367 9426 9483	9373 9432 9489	9379 9438 9494	9385 9444 9500	9391 9449 9505	I I I	2 2 2	3 3 3	4 4 4	5 5 5
72 73 74	9511 9563 9613	9516 9568 9617	9521 9573 9622	9527 9578 9627	9532 9583 9632	9537 9588 9636	9542 9593 9641	9548 9598 9646	9553 9603 9650	9558 9608 9655	I I I	2 2 2	3 2 2	4 3 3	4 4 4
75	9659	9664	9668	9673	9677	9681	9686	9690	9694	9699	1	I	2	3_	4
76 77 78	9703 9744 9781	9707 9748 9785	9711 9751 9789	9715 9755 9792	9720 9759 9796	9724 9763 9799	9728 9767 9803	9732 9770 9806	9736 9774 9810	9740 9778 9813	I I I	I I	2 2 2	3 2	3 3 3
79 80 81	9816 9848 9877	9820 9851 9880	9823 9854 9882	9826 9857 9885	9829 9860 9888	9833 9863 9890	9836 9866 9893	9839 9869 9895	9842 9871 9898	9845 9874 9900	I 0 0	I I I	2 I I	2 2 2	3 2 2
82 83 84	9903 9925 9945	9905 9928 9947	990 7 9930 9949	9910 9932 9951	9912 9934 9952	9914 9936 9954	991 7 9938 9956	9919 9940 9957	9921 9942 9959	9923 9943 9960	0 0 0	I I I	I I I	2 I I	2 2 I
85	9962	9963	9965	9966	9968	9969	9971	9972	9973	9 974	0	0	I	I	1
86 87 88	9976 9986 9994	997 7 998 7 9995	9978 9988 9995	9979 9989 9996	9980 9990 9996	9981 9990 9997	9982 9991 9997	9983 9992 9997	9984 9993 9998	9985 9993 9998	0 0 0		1 0 0	I I O	I O
89	9998	9999	9999	9999	9999		I 'OOO nearly.			I 'OOO nearly.	0	0	0	0	0

	Ο′	6′	12′	18′	24′	30′	36′	42′	48′	54′	1	2	3	4	5
0°	1,000	I 'OOO nearly.	I 'OOO nearly.	I 'OOO nearly.	I 'OOO nearly.	9999	9999	9999	9999	9999	0	0	0	0	0
1 2 3	9998 9994 9986	9998 9993 9985	9998 9993 9984	9997 9992 9983	9997 9991 9982	9997 9990 9981	9996 9990 9980	9996 9989 9979	9995 9988 9978	9995 9987 9977	000	0 0	0	0 I I	0 I I
4 5 6	9976 9962	9974 9960	9973 9959	9972 9957	9971 9955	9969 9954	9968 9952	9966 9951	9965 9949	9963 9947	0 0	0 I	I	I	I 2
7 8	9945 9925 9903	9943 9923 9900	9942 9921 9898	9940 9919 9895	9938 9917 9893	9936 9914 9890	9934 9912 9888	9932 9910 9885	9930 9907 9882	9928 9905 9880	0 0 0	I I I	I	2 2	2 2 2
10	9877 9848	9 ⁸ 74 9 ⁸ 45	9871 9842	9869 9839	9866 9836	9863 9833	9860 9829	9857 9826	9854 9823	9851 9820	0	I	2	2	3
11 12 13	9816 9781 9744	9813 9778 9740	9810 9774 9736	9806 9770 9732	9803 9767 9728	9799 9763 9724	9796 9759 9720	9792 9755 9715	9789 9751 9711	9785 9748 9707	I I I	I I	2 2 2	2 3 3	3 3 3
14 15 16	9703 9659 9613	9699 9655 9608	9694 9650 9603	9690 9646 9598	9686 9641 9593	9681 9636 9588	967 7 963 2 9583	9673 9627 9578	9668 9622 9573	9664 9617 9568	I I I	I 2 2	2 2	3 3 3	4 4 4
17 18 19	9563 9511 9455	9558 9505 9449	9553 9500 9444	9548 9494 9438	9542 9489 9432	9537 9483 9426	9532 9478 9421	9527 9472 9415	9521 9466 9409	9516 9461 9403	I I I	2 2 2	3	4 4 4	4 5 5
20	9397	9391	9385	9379	9373	9367	9361	9354	9348	9342	1	2	3	4	5
21 22 23	9336 9272 9205	9330 9265 9198	9323 9259 9191	9317 9252 9184	9311 9245 9178	9304 9239 9171	9298 923 2 9164	9291 9225 9157	9285 9219 9150	9278 9212 9143	I I	2 2 2	3 3	4 4 5	5 6 6
24 25 26	9135 9063 8988	9128 9056 8980	9121 9048 8973	9114 9041 8965	9107 9033 8957	9100 9026 8949	9092 9018 8942	9085 9011 8934	9078 9003 8926	9070 8996 8918	I I I	3 3	4 4 4	5 5 5	6 6 6
27 28 29	8910 8829 8746	8902 8821 8738	8894 8813 8729	8886 8805 8721	8878 8796 8712	8870 8788 8704	8862 8780 8695	8854 8771 8686	8846 8763 8678	8838 8755 8669	I I I	3 3 3	4 4 4	5 6 6	7 7 7
30	8660	8652	8643	8634	8625	8616	8607	8599	8590	8581	I	3	4	6	7
31 32 33	8572 8480 8387	8563 8471 8377	8554 8462 8368	8545 8453 8358	8536 8443 8348	8526 8434 8339	8517 8425 8329	8508 8415 8320	8499 8406 8310	8490 8396 8300	2 2	3 3 3	5 5 5	6 6	8 8 8
34 35 36	8290 8192 8090	8281 8181 8080	827 I 817 I 8070	8261 8161 8059	8251 8151 8049	8241 8141 8039	8231 8131 8028	8221 8121 8018	8211 8111 8007	8202 8100 7997	2 2 2	3 3 3	5 5 5	7 7 7	8 8 9
37 38 39	7986 7880 7771	7976 7869 7760	7965 7859 7749	7955 7848 7738	7944 7837 7727	7934 7826 7716	7923 7815 7705	7912 7804 7694	7902 7793 7683	7891 7782 7672	2 2 2	4 4 4	5 5	7 7 7	9 9 9
40	7660	7649	7638	7627	7615	7604	7593	7581	7570	7559	2	4	6	8	9
41 42 43	7547 7431 7314	7536 7420 7302	7524 7408 7290	7513 7396 7278	7501 7385 7266	7490 7373 7254	7478 7361 7242	7466 7349 7230	7455 7337 7218	7443 7325 7206	2 2 2	4 4 4	6 6	8 8 8	10 10
44	7193	7181	7169	7157	7145	7133	7120	7108	7096	7083	2	4	6	8	10

	O'	6′	12′	18′	24′	30′	3 6′	42′	48′	54′	1	2	3	4	5
45°	7071	7059	7046	7034	7022	7009	6997	6984	6972	6959	2	4	6	8	10
46 47 48	6947 6820 6691	6934 680 7 6678	6921 6794 6665	6909 6782 6652	6896 6769 6639	6884 6756 6626	6871 6743 6613	6858 6730 6600	6845 6717 6587	6833 6704 6574	2 2 2	4 4 4	6 6 7	8 9 9	11
49 50 51	6561 6428 6293	6547 6414 6280	6534 6401 6266	6521 6388 6252	6508 6374 6239	6494 6361 6225	6481 6347 6211	5468 6334 6198	6455 6320 6184	6441 6307 6170	2 2 2	4 4 5	7 7 7	9.	11 11
52 53 54	6157 6018 5878	6143 6004 5864	6129 5990 5850	6115 5976 5835	6101 5962 5821	6088 5948 5807	6074 5934 5793	6060 5920 5779	6046 5906 5764	6032 5892 5750	2 2 2	5 5 5	7 7 7	9 9	12 12 12
55	5736	5721	5707	5693	5678	5664	5650	5635	5621	5606	2	5	7	10	12
56 57 58	5592 5446 5299	5577 5432 5284	5563 5417 5270	5548 5402 5255	5534 5388 5240	5519 5373 5225	5505 5358 5210	5490 5344 5195	5476 5329 5180	5461 5314 5165	2 2 2	5 5 5	7 7 7	10 10	12 12 12
59 60 61	5150 5000 4848	5135 4985 4833	5120 4970 4818	5105 4955 4802	5090 4939 4787	5 ⁰ 75 49 ² 4 477 ²	5060 4909 4756	5045 4894 4741	5030 4879 4726	5015 4863 4710	3 3 3	5 5 5	8 8 8	10 10	13 13 13
62 63 64	4695 4540 4384	4679 4524 4368	4664 4509 435 2	4648 4493 4 337	4633 4478 4321	4617 4462 4305	.4602 4446 4289	4586 4431 4274	4571 4415 4258	4555 4399 4242	3 3	5 5 5	8 8 8	10 11	13 13 13
65	4226	4210	4195	4179	4163	4147	4131	4115	4099	4083	3	5	8	II	13
66 67 68	4067 3907 3746	4051 3891 3730	4035 3875 3714	4019 3859 3697	4003 3843 3681	3987 3827 3665	3971 3811 3649	3955 3795 3633	3939 3778 3616	3923 3762 3600	3 3	5 5 5	8 8 8	11	14 14 14
69 70 71	3584 3420 3256	3567 3404 3239	3551 3387 3223	3535 3371 3206	3518 3355 3190	3502 3338 3173	3486 3322 3156	3469 3305 3140	3453 3289 3123	343 7 3272 3107	3339	5 5 6	8 8 8	II II	14 14 14
72 73 74	3090 2924 2756	3074 2907 2740	3057 2890 2723	3040 2874 .2706	3024 2857 2689	3007 2840 2672	2990 2823 2656	2974 2807 2639	2957 2790 2622	2940 2773 2605	3	6 6 5	8 8	II II	14 14 14
75	2588	2571	2554	2538	2521	2504	2487	2470	2453	2436	3	6	8.	ŢI	14
76 77 78	2419 2250 2079	2402 2233 2062	2385 2215 2045	2368 2198 2028	2351 2181 2011	2334 2164 1994	231 7 214 7 1977	2300 2130 1959	2284 2113 1942	2267 2096 1925	3 3 3	6 6 6	8 9 9	II II	14 14 14
79 80 81	1908 1736 1564	1891 171 9 1547	1874 1702 1530	1857 1685 1513	1840 1668 1495	182 2 1650 1478	1805 1633 1461	1788 161 6 1444	1771 1599 1426	1754 1582 1409	3 3	6 6 6	9 9	12 12 12	14 14 14
82 83 84	1392 1219 1045	1374 1261 1028	1357 1184 1011	1340 1167 0993	1323 1149 0976	1305 1132 0958	1288 1115 0941	1271 1097 0924	1253 1080 0906	1236 1063 0889	3 3 3	6 6 6	9 9 9	I2 I2 I2	14 14 14
85	0872	0854	0837	0819	0802	0785	0767	0750	0732	0715	3	6	9	12	15
86 87 88	0698 0523 0349	0680 0506 0332	0663 0488 0314	0645 0471 0297	0628 0454 0279	0610 0436 0262	0593 0419 0244	0576 0401 0227	0558 0384 0209	0541 0366 0192	3 3 3	6 6 6	9 9 9	12 12 12	15 15 15
89	0175	0157	0140	0122	0105	0087	0070	0052	∞35	0017	3	6	9	12	15

													_		_
	Ο′	6'	12'	18′	24′	30′	36′	42′	48′	54′	1	2	.3	4	5
0°	.0000	0017	0035	0052	∞ 70	0087	0105	0122	0140	0157	3	6	9	12	14*
1 2	·0175	0192 0367	0209 0384	0227 0402	0244 0419	0262 0437	0279 0454	0297 0472	0314	0332	3	6	9	12. 12	•15 •15
3	0524	0542	0559	0577	0594	0612	0629	0647	0664	0682	3	6	9	12	15
5	·1051	0892	0734 0910 1086	0752 0928 1104	0769 0945 1122	0787 0963 1139	0981	0998	1016	1033	3 3	6	9 9	12 12 12	15 15
7 8 9	1228 1405	1246 1423	1263 1441 1620	1281	1299	1317.	1334 1512	1352 1530	1370	1388 1566	3	6 6	9	12	15
10	·1584	1602	1799	1638	1655	1853	1691	1709	1727	1745	3	6	9	12	15
11	1944	1962	1980	1998	2016	2035	2053	2071	2089	2107	3	- 6	9	12	15
12 13	·2126 ·2309	2144 2327	2162 2345	2180 2364	2199 2382	2217 2401	2235 2419	2254 2438	2272 2456	2290 2475	3	6	9	12 12	15
14 15	*2493 *2679	2512 2698	2530 2717	2549	2568	2586	2605	2623 2811	2642 2830	2661 2849	3	6	9	12	16 16
16	2867	2886	2905	2736 2924	2754 2943	2773 2962	2792 2981	3000	3019	3038	3	6	9	13	16
17 18	·3057 ·3249	3076 3269	3096 3288	3115 3307	3134 3327	3153 3346	3172 3365	3191 3385	3211 3404	3230 3424	3	6	10 10	13	16 16
19	*3443	3463	3482	3502	3522	3541	3561	3581	3600	3620	3	6	10	13	17
20	.3640	3659	3679	3699	3719	3739	3759	3779	3799	3819	3	7	10	13	17
21 22 23	3839 4040 4245	3859 4061 4265	3879 4081 4286	3899 4101 4307	3919 4122 4327	3939 4142 4348	3959 4163 4369	3979 4183 4390	4000 4204 4411	4020 4224 4431	3	7	10 10	13 14 14	17 17 17
24	4452	4473	4494	4515	4536	4557	4578	4599	4621	4642	4	7	10	14	18
25 26	4663 4877	4684 4899	4706 4921	4727 4942	4748 4964	4770 4986	4791 5008	4813 5029	4834 5051	4856 5073	4	7	II II	14 15	18 18
27	5095	5117	5139	5161	5184	5206	5228	5250	5272	5295	4	7	11	15	18
28	.2312	5340	5362	5384	5407	5430	5452	5475	5498	5520	4	8	11	15	19
30	5543	5566	5589 5820	5612	5635 5867	5658	5681	5704	5727	5750	4	8	12	15	19
31	*5774 *6009	5797 6032	6056	5844 6080	6104	5890 6128	5914 6152	5938 6176	5961 6200	5985 6224	4	8	I2 I2	16 16	20
82	6249	6273	6297	6322	6346	6371	6395	6420	6445	6469	4	8	12	16	20
33	6494	6519	6544	6569	6594	6619	6644	6669	6694	6720	4	8	13	17	21
34 35	·6745	6771 7028	6796 7054	6822 7080	6847 710 7	6873	6899 7159	6924 7186	6950 7212	6976 7239	4	9	13 13	17	2 I 2 2
36	.7265	7292	7319	7346	7373	7400	7427	7454	7481	7508	5	ģ	14	18	23
37 38	7536 7813	7563 7841	7590 7869	7618 7898	7646 7926	7673	7701 7983	7729 8012	7757	7785 8069	5	9 10	14	18	23
39	.8098	8127	8156	8185	7920 8214	7954 8243	8273	8302	8040 8332	8361	_	10	14 15	19 20	24 24
40	·8391	8421	8451	8481	8511	8541	8571	8601	8632	8662	5	10	15	20	25
41 42	·8693	8724 9036	8754	8785	8816	8847	8878	8910	8941	8972	~	10	16	21	26
43	9325	9358	9067 9391	9099 9424	9131 9457	9163 9490	919 5 9523	9228 9556	9260 9590	9293 9623	-	1 I	16	2I 22.	27 28
44	·965 7	9691	9725	9759	9793	9827	9861	9896	9930	9965	6	11	17	23.	29

NATURAL TANGENTS. = 5 pp. - adi37

1		_									_	<u> </u>			
	Ο′	6′	12′	18′	24′	30′	36′	42′	48′	54′	1	2	3	4	5
45°	1,0000	∞35	0070	0105	0141	0176	0212	0247	0283	0319	6	12	· 18	24	30
46	1.0322	0392	0428	0464	0501	0538	0575	0612	0649	0686	6	12	18	25	31
47	1.0724	0761	0799 1184	0837 1224	0875	0913	0951	0990	1028	1067	6	13	19	25	32
		1145				1303	1343	1383	1423	1463	7	13	20	26	33
49 50	1.1204	1544 1960	1585 2002	1626 2045	1667 2088	1708 2131	1750 2174	1792 2218	1833	1875 2305	7	14 14	2 I 22	28 29	34 36
51	1.5349	2393	2437	2482		2572	2617	2662	2708	2753	8	15	23	30	38
52	1.2799	2846	2892	2938	2985	3032	3079	3127	3175	3222	8	16	23	31	39
53	1.3240	3319	3367	3416		3514	3564		3663	3713	8	16	25	33	41
54	1.3764	3814		3916	3968		4071	4124	4176	4229	9	17	26	34	43
55	1.4281	4335	4388	4442	4496	4550	4605	4659	4715	4770	9	18	27	36	45
56	1.4826	4882	4938	4994		5108	5166		5282	5340	10	19	29	38	48
57 58	1.2399	5458 6066	5517 6128	5577 6191	5637 6255	5697 6319	5757 6383	5818 6447	5880 6512	5941 6577	10 11	20 21	30 32	40 43	50
59	1.6643	6709	6775	6842	6909	6977	7045	7113	7182	7251	11				53 56
60	1.7321	739I	7461		7603	7675	7747	7820		7966	12	23 24	34 36	45 48	60
61	1 804ò	8115	8190			8418			8650	8728	13	26	38	51	64
62	1.8807	8887	8967	9047	9128	9210	9292	9375	9458	9542	14	27	41	55	68
63	1.9626	9711	9797	9883	9 970	ō057			0323	0413	15	29	44	58	73
64	2.0203	0594	0686	0778	<u> </u>	0965	1060	1155	1251	1348	16	31	47	63	78
65	2.1442	1543	1642	1742	1842	1943	2045	2148	2251	2355	17	34	51	68	85
66	2.2460	2566	2673	2781	2889	2998	3109	3220		3445	18	37	55	74	92
67 68	2.3559	3673 4876	3789			4142			4504	4627	20 22	40	60 6r	79	99
-	2.4751		5002			5386		5649		5916	_	43	65	<u> </u>	108
69 70	2.6051 2.7475	6187 7625	6325 7776	6464 7929	~ ~~	6746 8239		7034 8556	7179 8716	7326 8878	24 26	47 52	71 78	95 104	118
71	2'9042	9208	9375		_	9887	0061		0415	0595	29	58	87	115	-
72	3.0777	0961	1146		1524	1716	1910		2305	2506	32	64	<u>.</u> 96	129	
78	3.2709	2914	3122	3332	3544	3759	3977	4197	4420	4646	3 6	72	108	144	180
74	3'4874	5105	5339	5576	5816	6059	6305	6554	6806	7062	41	82	122	162	203
75	3'7321	7583	7848	8118	8391	8667	8947	9232	9520	9812	46	94	139	186	232
76	4°0108	0408	0713		1335	1653	1976		2635	2972	53	107	160	214	
77	4.3312	3662	4015		4737	5107	5483	-	6252			124		248	1
78	4.7046	7453	7867			9152		0045	0504	0970	-		_	292	
79	5.1446	1929	2422	2924	3435	3955	4486		5578		87	175	262	350	437
80	5.6713	7297	7894		9124				1742	2432	l				
81	6.3138	3859	4596	5350		6912	7720		9395	0264					
82	7'1154	2066	3002	1	4947	5958		8062	_	0285	l				
83 84	8·1443 9·5144	2636 0:677	3863	5126	6427 10°20	7769	9152	0579	2052	3572				-colu	
														e use rapie	
85	11.43				12.43					13.95	wi	th w	hich 1	the va t chan	lue
86 87	14.30 19.08				15.89					18.46 27. 27	l ‴		-		
88	28.64				35·80					52.08					
89	57:29								286.5						

2.90 3.07

107

 $\mathsf{Digitized} \ \mathsf{by} \ Google$

NATURAL COTANGENTS.

	O'	6′	12′	18′	24′	30′	36′	42′	48′	54'					
O°	Inf.	573.0	286.5	191.0	143'2	114.6	95.49	81.85	71.62	63.66	l				
1 2 8	57°29 28°64 19°08	27'27	47°74 26°03 17°89	24.00	23.86	22.00	22.02	21.50	31.82 20.45 15.06	30°14 19°74 14°67	n	Diffe	ful h	ere, o	
4. 5 6	14'30 11'43 9'5144	I I '20	10.99	10.28	10.28	10.39	10.50	5126 10.02 5126		2636 9.677 2636	w	hich t	he va	lue o	f the
7 8 9	8·1443 7·1154 6·3138	0285 0264 2432	9158 9395 1742	8062	6996 7720	5958	4947 6122	3962 5350	3002 4596 7894	2066 3859 7297					
10	5.6713	6140		5026		3955	3435	2924	2422	1929	1	2	3	4	5
11 12 18	5°1446 4°7046 4°3315	0970 6646 2972	0504 6252	5864		9152 5107	8716 4737	8288 4374 1022	7867 4015 0713	7453 3662 0408	63	125	188	252	314
14 15 16	4°0108 3°7321 3°4874	9812 7062 4646	9520 6806 4420	6554		8667 6059 3759	8391 5816 3544	8118 5576 3332	7848 5339 3122	7583 5105 2914		82	122	163	232 204 180
17 18 19	3 ^{.2709} 3 ^{.0777} 2 [.] 9042	2506 0595 8878	0415	0237	0061	1716 9887 8239	1524 9714 8083	9544	9375 7776	0961 9208 7625	32 29 26	64 58 52	87	129 115 104	161 144 130
20	2.7475	7326	7179	7034	6889	6746	6605	6464	6325	6187	24	47	71	95	118
21 22 23	2.4751 2.3559	5916 4627 3445	5782 4504 3332		5517 4262 3109	5386 4142 2998	5257 4023 2889	3906	5002 3789 2673	4876 3673 2566	22 20 18	43 40 37	65 60 <u>55</u>	87 79 74	108 99 92
24 25 26	2.2460 2.1445 2.0503	2355 1348 0413	2251 1251 0323		1060	1943 0965 0057	1842 0872 9970		1642 0686 9797	1543 0594 9711	17 16 15	34 31 29	51 47 44	68 63 58	85 78 73
27 28 29	1.9626 1.8807 1.8040	9542 8728 7966	9458 8650	9375 8572	9292 8495	9210 8418 7 675	9128 8341	9047	8967 8190 7461	8887 8115 7391	I4 I3 I2	27 26 24	41 38 36	55 51 48	68 64 60
30	1.7321	7251	7182	7113	7045	6977	6909	6842	6775	6709	11	23	34	45	56
31 32 33	1.6643 1.6003 1.2399	6577 5941 5340	6512 5880 5282	6447 5818 5224		6319 5697 5108			6128 5517 4938	6066 5458 4882	11 10 10	21 20 19	32 30 29	43 40 38	53 50 48
34 35 36	1.4826 1.4281 1.3764	4770 4229 3713	4715 4176 3663	4124	4605 4071 3564	4550 4019 3514		3916	3865	4335 3814 3319	9 9 8	18 17 16	27 26 25	36 34 33	45 43 41
37 38 39	1°3270 1°2799 1°2349	3222 2753 2305	3175 2708 2261		3079 2617 2174	3032 2572 2131	2985 2527 2088	2938 2482 2045	2892 2437 2002	2846 2393 1960	8 8 7	16 15 14	23 23 22	31 30 29	39 38 36
40	1.1018	1875	1833	1792	1750	1708	1667	1626	1585	1544	7	14	21	28	34
41 42 48	1°1504 1°1106 1°0724	1463 1067 0686	1423 1028 0649	1383 0990 0612	1343 0951 0575	1303 0913 0538	1263 0875 0501	1224 0837 0464	1184 0799 0428	1145 0761 0392	7 6 6	13 13 12	20 19 18	26 25 25	33 32 31
44	1.0322	0319						0105	0070	0035	6	12	18	24	30

	ii .						T	_						_	
	O'	6′	12'	18′	24′	30′	36′	42′	48′	54′	1	2	3	4	5
45°	1,0	0.9962	0,0030	0.0806	0.0861	0*9827	0.9793	0.9759	0,925	0.0601	6	11	17	23	29
46 47	.9657	9623 9293	9590 9260	9556 9228	9523 9195	9490 9163	9457 9131	9424 9099	9391 9067	9358 9036	5	II	17 16	22 21	28 27
48	·9004 ·8693	8972 8662	8632	8910	8878	8847	8816	8785 8481	8754	8724	-	10		21	26
50 51	·8391 ·8098	8361 8069	8332 8040	8302 8012	8571 8273 7983	8541 8243 7954	8214 7926	8185 7898	8451 8156 7869	8127 7841	5 5 5	10	15 15 14	20 19	25 24 24
52 53 54	7813 7536 7265	7785 7508 7239	7757 7481 7212	7729 7454 7186	7701 7427 7159	7673 7400 7133	7646 7373 7107	7618 7346 7080	7590 7319 7054	7563 7292 7028	5 5 4	9 9 9	I4 I4 I3	18 18 18	23 23 22
55	.7002	6976	6950	6924	6 89 9	6873	6847	6822	6796	6771	4	9	13	17	2 I
56 57 58	·6745 ·6494 ·6249	6720 6469 6224	6694 6445 6200	6669 6420 617 6	6644 6395 6152	6619 6371 6128	6594 6346 6104	6569 6322 6080	6544 6297 6056	6519 6273 6032	4 4 4	8 8 8	13 12 12	17 16 16	2I 20 20
59 60 61	.6009 .5774 .5543	5985 5750 5520	5961 5727 5498	5938 5704 5475	5914 5681 5452	5890 5658 5430	5867 5635 5407	5844 5612 5384	5820 5589 5362	5797 5566 5340	4 4 4	_	12 12 11	16 15 15	20 19 19
62 63 64	·5317 ·5095 ·4877	5295 5073 4856	5272 5051 4834	5250 5029 4813	5228 5008 4791	5206 4986 4770	5184 4964 4748	5161 4942 4727	5139 4921 4706	5117 4899 4684	4 4 4	7 7 7	11 11	15 15 14	18 18 18
65	•4663	4642	4621	4599	4578	4557	4536	4515	4494	4473	4	7	10	14	18
66 67 68	'4452 '4245 '4040	4431 4224 4020	4411 4204 4000	4390 4183 3979	4369 4163 3959	4348 4142 3939	4327 4122 3919	4307 4101 3899	4286 4081 3879	4265 4061 3859	3 3 3	7	10 10	14 14 13	17 17 17
69 70 71	*3839 *3640 *3443	3819 3620 3424	3799 3600 3404	3779 3581 3385	3759 3561 3365	3739 3541 3346	3719 3522 3327	3699 3502 3307	3679 3482 3288	3659 3463 3269	3 3 3	6	10 10	13 13 13	17 17 16
72 73 74	3249 3057 2867	3230 3038 2849	3211 3019 2830	3191 3000 2811	3172 2981 2792	3153 2962 2773	3134 2943 2754	3115 2924 2736	3096 2905 2717	2886	3 3 3	6 6 6	10 9 9	13 13 13	16 16 16
75	.2679	2661	2642	2623	2605	2586	2568	2549	2530	2512	3	6	9	12	16
76 77 78	*2493 *2309 *2126	2475 2290 2107	2456 2272 2089	2438 2254 2071	2419 2235 2053	2401 2217 2035	2382 2199 2016	2364 2180 1998		2144	3 3 3	6 6 6	9	I2 I2 I2	15 15 15
79 80 81	·1944 ·1763 ·1584	1926 1745 1566	1908 1727 1548	1890 1709 1530	1871 1691 1512	1853 1673 1495	1835 1655 1477	1817 1638 1459	179 9 1620 1441	1602	3 3 3	6 6 6	9 9 9	I2 I2 I2	15 15 15
82 83 84	1405 1228 1051	1388 1210 1033	1370 1192 1016	1352 1175 0998	1334 1157 0981	1317 1139 0963	1299 1122 0945	1281 1104 0928	1263 1086 0910	1069	3 3 3	6 6 6	9 9 9	12 12 12	15 15 15
85	·0875	0857	0840	0822	0805	0787	0769	0752			3	6	9	12	15
86 87 88	.0699 .0524 .0349	0682 0507 0332	0664 0489 0314	0647 0472 0297	0629 0454 0279	0612 0437 0262	0594 0419 0244	0577 0402 0227	0384	0367	3 3 3	6 6	9	I2 I2 I2	15 15 15
89	.0175	0157	0140	0122	0105	0087	0070	0052	0035	∞17	3	6	9	12	14
													_		

	O'	6'	12′	18′	24'	30′	36′	42′	4 8′	54′	1	2	3	4	5
0°	1,0000	0000	0000	0000	0000	0000	1000	1000	1000	0001	0	0	0	0	0
1 2 3	I '0002 I '0006 I '0014	0002 0007 0015	0002 0007 0016	0003 0008 0017	0003 0009 0018	0003 0010 0019	0004 0010 0020	0004 0011 0021	0005 0012 0022	0006 0013 0023	000	0 0	0	0 0 I	0 0 I
4 5	1.0038	0026	0027	0017	0030	0031	0032	0034	0022 0035 0051	0023 0037 0053	00	0	I	ı I	I
6 7	1.0022	∞57 ∞77	0059	0061	0063	0065	0067	0069	0071	0073	0	I	1	1 2	2
8 9	1.0038	0101 0127	0103 0130			0111	0114	0116	0119	0122	00	I	I	2 2	2 2
10	1.0124	0157	0161	0164	0167	0170	0174	0177	0180	0184	I	I	2	2	3
11 12 18	1.0187 1.0223 1.0263	0191 0227 0267	0194 0231 0271	0235		0205 0243 0284	0209 0247 0288	0212 0251 0293	0216 0255 0297	0220 0259 0302	I I I	I I	2 2 2	3 3 3	3 3 4
14 15 16	1.0306 1.0353 1.0403	0311 0358 0408		0367		0329 0377 0429	0334 0322 0435	0338 0388 0440	0343 0393 0446	0348 0398 0451	I I I	2 2 2	3	3 3 4	4 4 5
17 18 19	1.0457 1.0515 1.0576	0463 0521 0583	0468 0527	0474 0533	0480	0485 0545 0608	0491 0551 0615	0497 0557 0622	0503 0564 0628	0509 0570 0635	I I I	2 2 2	3 3	4 4	5 5 5
20	1.0642	0649	0655			0676	0683	0690	0697	0704	Ì	2	3	5	6
21 22 23	1.0711 1.0864	0719 0793 0872	0801	0808		0748 0824 0904	0755 0832 0913	0763 0840 0921	0770 0848 0929	0778 0856 0938	I I I	3 3	4 4 4	5 5 6	6 6 7
24 25 26	1.034 1.1136	0955 1043 1136	1052	1061	1070	0989 1079 1174	0998 1089 1184	1007 1098 1194	1016 1107 1203	1025 1117 1213	I 2 2	3 3 3	4 5 5	6 6 6	7 8 8
27 28 29	1°1223 1°1326 1°1434	1233 1336 1445		1357	1368	1274 1379 1490	1284 1390 1501	1294 1401 1512	1305 1412 1524	1315 1423 1535	2 2 2	3 4 4	5 6	7 7 8	9
30	1.1547	1559		·		1606	1618	1630	1642	1654	2	4	6	8	10
31 32 33	1°1666 1°1792 1°1924	1679 1805 1937	1818	1831	1844	1728 1857 1992	1741 1870 2006	1753 1883 2020	1766 1897 2034	1779 1910 2048	2 2 2	4 4 5	6 7 7	8 9 9	10 11 12
34 35 36	1,5391 1,5508 1,5095	2076 2223 2376	2238	2253	2268	2134 2283 2440	2149 2299 2456	2163 2314 2472	2178 2329 2489	2193 2345 2505	2 3 3	5 5 5	7 8 8	10 10	,12 13 13
37 38 39	1.5868 1.5868	2538 2708 2886	2725	2742		2605 2778 2960	2622 2796 2978	2639 2813 2997	2656 2831 3016	267.3 2849 3035	3 3 3	6 6 6	8 9 9	II I2 I2	14 15 16
40	1.3024	3073	3093	3112	3131	3151	3171	3190	3210	3230	3	7	10	13	16
41 42 43	1.3220 1.3420 1.3623	3270 3478 3696	3499	3520	3542	3352 3563 3786	3373 3585 3809	3393 3607 3832	3414 3629 3855	3435 3651 3878	3 4 4	7 8	10 11	14 14 15	17 18 19
44	1.3902	3925	3949	3972	3996	4020	4044	4069	4093	4118	4	8	12	16	20

,			1								_			Т.	
	0′	6′	12"	18′	24′	30′	36′	42′	48′	54'	1	2	3	4	<u>5</u>
45°	1'4142	4167	4192	4217	4242	4267	4293	4318	4344	4370	4	8	13	17	21
46	1'4396	4422				יייו		4581	4608	4635	4	9	13	1	22
47 48	1.4663	4690 4974								4916 5212	5 5	9 10	14 15		23 25
49	1.243	5273		5335	_		5429		5493	5525	Ť	10	16		26
50	1.2222	5590				5721			5822	5856	5 6	11	17	1	28
51	1.2890	5925				6064		6135	6171	6207	6	12	18	24	29
52 53	1.6243	6279 6655			6390		6464		6540	6578	6	12	19	25 26	31
54	1.7013	7054		6733 7137	6772 7179		6852 7263		6932 7348	6972 7391	777	13 14	20 21	28	33 35
55	1.7434	7478			7610		7700	7745	7791	7837	7	15	22	30	37
56	1.7883	7929	7976	8023	8070		8166	8214	8263	8312	8	16	24	32	40
57	1.8361	8410		8510		8612			8766	8818	9	17	26	34	43
58	1.8871	8924		9031	<u> </u>		9194	9249	9304	9360	9	18	27	36	45
59 60	2.0000	9473 0061		9587 0183	9645 0245			9821 0434	9880 0498	9940 0562	10 10	19 21	29 31	39	49 52
61	2.0622	0692		0824			1025	1093	1162	1231	11	22	34	45	56
62	2.1301	1371	1441	1513	1584	1657	1730	1803	1877	1952	12	24	36	48	61
63	2.5052	2103		2256	2333	2412	2490	2570	2650	2730	13	26	3 9	52	66
64	2.5815	2894	2976	3060	3144	3228	3314	3400	3486	3574	14	28	43	57	71
65	2.3662	3751	3841	3931	4022	4114	4207	4300	4395	4490	15	31	46	62	77
66 67	2,4586	4683 5699	4780 5805		4978 6022	5078 6131	2	5282 6354	5384 6466	5488 6580	17 18	34	50	67	84 92
68	2.5593 2.6695	6811		5913 7046	7165	7285	6242 7407	7529	7653	7778	20	37 40	55 60	73 81	101
69	2'7904	8032	8161	8291			8688	8824	8960	9099	22	44	67	89	III
70	2.9238	9379		9665	9811	9957	ō106	ō256	ō407	ō561	25	49	74	99	123
71	3.0716	0872		1190		1515	1681	1848	2017		27	55		110	•
72 73	3.5361	2535	2712	2891	3072	3255	3440	3628 5629	3817 5843	4009 6060	31	61		123 138	154
74	3.4203 3.6280	4399 6502	4598 6727	6955	5003 7186	5209 7420		7897	8140	8387	35 39	69 79	118		196
75	3.8637	8890	9147	9408	9672	9939	Ö2 I I	ō486	ō765	1048	45	90	135	180	225
76	4'1336	1627		2223		2837	3150	3469	3792	4121		104			
77	4.4454	4793	5137		5841	6202	6569		7321		61	122	182	243	304
78	4.8097	8496	8901	9313	9732	Ō159	ō593	1034	1484	1942	72	144	216	287	359
79	5.2408	2883	3367	3860	4362	4874	5396	5928	6470		86	173	259	345	432
80	5.7588	8164	8751	9351	9963	ō589	1227	1880		3228					
81	6.3925	4637	5366	6111	6874		8454	9273	Ŏ112	ō972					
82	7.1853	2757	3684	4635				8700	9787	0905					
83	8.2022	3238	4457	5711	7004		9711	Ī129	2593	4105					
84	9.2668	7283	8955	0685		4334	6261	8260	11.03	11.52					
85	11.47		11.95						13.65	13.99	Ì				
86 87	14.34	14.70	15°09 20°47	15.20	15.93	16,38	16.88	17:37	17.91 26.02	18.49					
88	28.65	30.19	31.84	33.41	35.81	38.50	40.63	44.08	47.75	52.09	1				
89	57:30	63.66							286.2	573.0					
	J1 J2	ייי לייי	,		73 47		-73 -	- 7		5.0	<u> </u>				

	O'	6′	12′	18′	24′	30′	36′	42′	48′	54′	1	2	3	4	5
0°	Inf.	573°0	286.5	191.0	143.2	114.6	95.49	81.85	71.62	63.66					
1	57:30	52.09	47.75	44 08	40.63	38.20	35.81	33.41	31.84						
2 3	28.65 19.11	18.49	20.05 17.91	24.92 17.37	23·88 16·86	16.38	15.03	15.23	20°47	19.77					
4	14'34	13.99	13.65	13.34	13.03	12.75	12.47	12.30	11.95	11.41	ı				
5 6	11.47				10.63				9.895		1				
	9.5668				9711				4457	3238					
7 8	8·2055 7·1853	0905 0972		8700 9273	7642 8454		5011 6874	4635	3684 5366	2757 4637					
9	6.3922	3228		1880			9963	-	875I	8164					
10	5.7588	7023				4874	4362	386o	3367	2883	l				
11	5.2408	1942	1484	1034	0593	0159	9732	9313		8496	i				
12 13	4.8097	7706	7321	6942	6569	6202	5841	5486	5137	4793	61	122	182	243	304
_	4*4454	4121	3792		3150		_		1923	1627				_	
14 15	4°1336 3°8637	1048 8387	0765 8140		0211 7657	9939 7420			9147 6727	8890 6502		90 79	135	157	225 196
16	3.6280	6060	5843		5418		5003		4598	4399	35				173
17 18	3.4203	4009 2188	3817	3628					2712	2535		61			154
19	3°2361 3°0716	0561	2017 0407	1848 0256		1515 9957	1352 9811		1030 9521	0872 9379		55 49	74	110	13/
20	2.9238	9099	8960	8824			8422	8291	8161	8032	22	44	67	<u> </u>	111
21	2.7904	7778	7653	7529		7285	7165	7046	6927	6811		40	60	81	IOI
22 23	2.6695 2.5593	6580 5488	6466 5384	6354	6242 5180		6022 4978	32.3	5805 4780	5699 4683	18 17	37 34	55 50	73 67	92 84
24	2.4586	4490	4395	_	4207	4114	4022		3841	3751	15	31	46	-	77
25	2.3662	3574	3486	3400	3314	3228	3144	3060	2976	2894	14	28	43	57	71
26	2.5815	2730				<u> </u>			2179	2103	13	26	39		65
27 28	2.2027	1952 1231	1877 1162	1803 1093		0957	1584 0890		1441 0757	1371	I 2 I I	24 22	36 34	48 45	60 56
29	2.0622	0562	0498	0434		0308	0245		0122	0061	10	21	31	42	52
80	2.0000	9940	9 880	9821	9762	9703	9645	9587	9530	9473	10	19	29	39	49
31 32	1.9416	9360	9304	9249			9084		8977	8924	9	18	27	36	45
33	1.8871 1.8361	8818 8312	8766 8263	8714 8214					8460 7976	7929	8 8	17 16	25 24	34 32	42 40
34	1.7883	7837	7791	7745	7700			7566	7522	7478	7	15	22	30	37
35 36	1'7434	7391 6972	7348 6932	7305 6892		7221 6812	7179 6772		7095 6694	7054 6655	7	14	2I 20	28 26	35
37	1.6616	6578		6502				6353	6316	6279	6	- 13	19	25	33 31
38	1.6243	6207	6171	6135	6099	6064	6029	5994	5959	5925	6	12	18	23	29
39	1,2890	5856	<u> </u>	5788		5721	5688		5622	5590	6	11	17	22	28
40	1.2222	5525	5493	5461	5429	5398		5335	5304	5273	5	10	-16	21	26
41 42	I '5243 I '4945	5212 4916	5182 4887	5151 4859	5121 4830	5092 4802	5062 4774	5032 4746	5003 4718	4974 4690	5	10 9	15 14	20 19	25 23
48	1.4663	4635	4608	4581	4554	4527	4501	4474	4448	4422	4	_ <u>ģ</u>	13	18	22
44	1.4396	4370	4344	4318	4293	4267	4242	4217	4192	4167	4	8	13	17	21

	· 0	6'	12'	18′	24'	30′	36′	42′	48'	54 ′	1	2	3	4	5
													_	_	
45°	1.4142	4118	4093	4069	4044	4020	3996	3972	3949	3925	4	8	12	16	20
46 47	1.3623	3878 3651	3855 3629	3832 3607	3809 3585	3786 3563	3763 3542	3741 3520	3718 3499	3696 3478	4	8 7		15	19 18
48	1.3456	3435	3414	3393	3373	3352	3331	3311	3499 3291	3270	3	7	10		
49 50	1.3250	3230	3210	3190	3171	3151	3131	3112	3093	3073 2886	3	7		13	16
51	1.3024	3035 2849	3016 2831	2997 2813	2978 2796	2960 2778	2941 2760	2923 2742	2904 2725	2708	3	6	9	I2 I2	15 15
52	1.2690	2673	2656	2639	2622	2605	2588	2571	2554	2538	3	6	8	II	14
58 54	1.5221 1.5221	2505 2345	2489 2329	2472	2456 2299	2440 2283	2424 2268	2408 2253	2392 2238	2376 2223	3	5 5	8	10	13
55	1.5508	2193	2178	2163	2149	2134	2120	2105	2091	2076	2	5	7	10	12
56 57	1.5065	2048	2034 1897	2020 1883	2006 1870	1992 1857	1978	1964 1831	1951 1818	1937 1805	2 2	5	7	9	I2 II
58	1.1924 1.126	1910 1779	1766	1753	1741	1728	1844 1716	1703	1691	1679	2	4 4	7 6	8	10
59	1.1999	1654	1642	1630	1618	1606	1594	1582	1570	1559	2	4	6	8	10
60 61	1°1547 1°1434	1535 1423	1524 1412	1512 1401	1390	1490 1379	1478 1368	1467 1357	1456 1347	1336	2	4 4	6 5	7	9
62	1.1326	1315	1305	1294	1284	1274	1264	1253	1243	1233	2	3	5	7	9
63 64	1.1152	1213	1203	1098	1184	1174	1164	1155	1145	1136	2	3	5 5	6	8
65	1.1034	1025	1016	1007	0998	0989	0981	0972	0963	0955	I	3	4	6	7
66 67	1.0946	0938	0929	0921 0840	0913	0904	0896 0816	0888 0808	0880 0801	0872	I	3	4	6	7
68	1.0864 1.0785	0856 0778	0848 0770	0763	0832 0755	0824 0748	0740	0733	0726	0793 0719	I	3 2	4 4	5	7 6
69	1.0711	0704	0697	0690	0683	0676	0669	0662	0655	0649	I	2	3	5	6
70 71	1°0642 1°0576	0635 0570	0628 0564	0622 0557	0551	0608	0602 0539	O595 O533	0589 0527	0583	I	2	3	4	5
72	1.0212	0509	0503	0497	0491	0485	0480	0474	0468	0463	I	2	3	4	5
73 74	1.0424	0451	0446 0393	0440 0388	0435 0382	0429	0424 0372	0419 0367	0413	0408 0358	I	2	3	4	4
75	1.0323	0348		0338	0334	0329	0324	0320	0315	0311	I	2	2	3	4
76	1.0306	0302	0297	0293	0288	0284	0280	0276	0271	0267	I	I	2	3	4
77 78	1.0263	0259 0220	0255	0251 0212	0247 0209	0243 0205	0239 0201	0235 0198	0231 0194	0227	I	I	2	3	3
79	1.0182	0184	0180	0177	0174	0170	0167	0164	0161	0157	1	I	2	2	3
80 81	1.0154	0151 0122	0148 0119	0145	0142 0114	0139	0136	0133	0130	0127 0101	0	I	I	2	2 2
82	1.0098	0096	0093	0091	0089	0086	0084	0082	0079	0077	0	1	1	2	2
83 84	1.0022	0073 0053	0071	0069	0067	0065	0063	0061	0059	0057 0040	0	I	I	I	. 2 I
85	1.0038	0037	0035	0034	0032	0031	0030	0028	0027	0026	0	0	I	1	I
86	1 '0024	0023	0022	0021	0020	0019	0018	0017	0016	0015	0	0	0	I	I
87 88	1.0004	0013	0012	0001	0010 0004	0003	0009	0008	0007	0007	0	0	0	0	1 0
89	1'0002	0001		1000	1000	0000	0000	0000	0000	0000	°	0	0	0	0
	N R	<u> </u>			<u> </u>		1	acted n			<u>. </u>	_		<u> </u>	

	O'	6'	12'	18′	24′	30′	36′	42′	48′	54'	1	2	3	4	5
o°	0,0000	0017	∞35	∞52	0070	0087	0105	0122	0140	0157	3	6	9	12	15
1	0,0122	0192	U209	0227	0244	0262	0279	0297	0314	0332	3	6	9	12	15
3	0°0349 0°0524	0367 0541	0384 0559	0401 0576	0419 0593	0436 0611	0454 0628	047 I 0646	0489 0663	0506 0681	3	6 6	9	I2 I2	15 15
4 5	0.0698	0716 0890	0733 0908	0750 0925	0768 0942	0785 0960	0803 0977	0820	0838 1012	0855 1030	3	6	9	I 2 I 2	15 15
6	0.1042	1065	1082	1100	1117	1134	1152	1169	1187	1204	3	6	9	12	15
8 9	0°1222 0°1571	1239 1414 1588	1257 1431 1606	1274 1449 1623	1292 1466 1641	1309 1484 1658	1326 1501 1676	1344 1518 1693	1361 1536 1710	1379 1553 1728	3 3	6	9	12 12 12	15 15
10	0.1242	1763	1780	1798	1815	1833	1850	1868	1885	1902	3	6	9	12	15
11 12	0.1920	1937	1955	1972	1990 2164	2007 2182	2025 2199	2042 2217	2059 2234	2077 2251	3	6	9	I2 I2	15 15
13	0.5566	2286	2304	2321	2339	2356	2374	2391	2409	2426	3	6	9	12	15
14 15 16	0.2443	2461 2635 2810		2496 2670 2845	2513 2688 2862	2531 2705 2880	2548 2723 2897	2566 2740 2915	2583 2758	2601 2775 2950	3	6 6	9	12 12 12	15 15
17	0.5962	2985	3002	3019	3037	3054	3072	3089	2932 3107	3124	3	6	9	12	15
18 19	0.3145	3159 3334	3176 3351	3194 3368	3211 3386	3229 3403	3246 3421	3264 3438	3281 3456	3299 3473	3 3	6	9	12	15 15
20	0.3491	3508	3526	3543	3560	3578	3595	3613	3630	3648	3	6	9	12	15
21 22 23	0°3665 0°3840 0°4014	3683 3857 4032	3700 3875 4049	3718 3892 4067	373 5 3910 4084	3752 3927 4102	3770 3944 4119	37 ⁸ 7 3962 4136	3805 3979 4154	3822 3997 4171	3 3	6 6	9 9	I2 I2 I2	15 15 15
24 25 26	0'4189 0'4363 0'4538	4206 4381 4555	4224 4398 4573	4241 4416 4590	4259 4433 4608	4276 4451 4625	4294 4468 4643	4311 4485 4660	4328 4503 4677	4346 4520 4695	3 3	6 6 6	9 9. 9	I2 I2 I2	15 15
27 28 29	0.4712 0.4887 0.5061	4730 4904 5079	4747 4922	4765 4939 5114	4782 4957 5131	4800 4974 5149	4817 4992 5166	4835 5009 5184	4852 5027 5201	4869 5044 5219	3 3 3	6 6 6	9	I2 I2 I2	15 15 15
30	0.236	5253	5271	5288	5306	5323	5341	5358	5376	5393	3	6	9	12	15
31 32 33	0.2411 0.2582 0.2411	5428 5603 5777	5445 5620 5794	5463 5637 5812	5480 5655 5829	5498 5672 5847	5515 5690 5864	5533 5707 5882	5550 5725 5899	5568 5742 5917	3 3	6 6	9	12 12 12	15 15 15
34 35 36	0.283 0.6100 0.6283	5952 6126 6301	5969	5986 6161	6004 6178 6353	6021 6196 6370	6039 6213 6388	6056 6231 6405	6074 6248 6423	6091 6266 6440	3 3 3	6 6	9	12 12 12	15 15 15
37 38 39	0.6458 0.6632 0.6807	6475 6650 6824	6493	6510 6685 6859	6528 6702 6877	6545 6720 6894	6562 6737 6912	6580 6754 6929	6597 6772 6946	6615 6789 6964	3 3 3	6 6	9 9	I2 I2 I2	15 15 15
40	0.6981	6999	7016	7034	7051	7069	7086	7103	7121	7138	3	6	9	12	15
41 42 · 43	0.7156 0.7330 0.7505	7173 7348 7522	7191 7365 7540	7208 7383 7557	7226 7400 7575	7243 7418 7592	7261 7435 7610	7278 7453 7627	7295 7470 7645	7313 7487 7662	3 3 3	6 6	9	12 12 12	15 15 15
44	0.7679	7697			7749	7767	7784	7802	7819	7837	Ť	t 6	9		15

	0′	6'	12'	18′	24′	30′	36′	42′	48′	54'	1	2	3	4	5
<u> </u>		<u> </u>						<u> </u>			L		_	_	
45°	0.7854	7871	788 9	7906	7924	7941	7959	7976	7994	8011	3	6	9	12	15
46	0.8029	8046	8063	8081	8098	8116	8133	8151	8168	8186	3	6	9	12	15
47 48	0.8378	8221 8395	8238 8412		8273 8447	8290 8465	8308 8482	8325 8500	8343 8517	8360 8535	3	6	9	12 12	15
49	0.8552	8570	8587	8604	8622	8639	8657	8674	8692	8709	3	6	9	12	15
50	0.8727	8744	8762		8796	8814	8831	8849	8866	8884	3	6	9	12	15
51	0.8901	8919	8936		8971	8988	9006	9023	9041	9058	3		9	12	15
52 58	0'9076	9093 9268	9111 9285	9128 9303	9146 9320	9163 9338	9180 9355	9198 9372	9215 9390	9233 9407	3	6 6	9	12 12	15 15
54	0.9422	9442		9477	9495	9512	9529	9547	9564	9582	3	6	9	12	15
55	0.0299	9617	9634	9652	9669	9687	9704	9721	9739	9756	3	6	9	12	15
56	0.9774	9791	9809	9826	9844	9861	9879	9896	9913	9931	3	6	9	12	15
57 58	0'9948	9966 0140	9983 0158	0001 0175	0018	ō036 0210	0053	0071 0245	0088 0263	0105 0280	3	6	9	12	15 15
59	1.0297	0315	0332	0350	0367	0385	0402	0420	0437	0455	3	6	9	12	15
60	1.0472	0489	0507	0524	0542	0559	0577	0594	0612	0629	3	6	9	12	15
61	1.0647	0664	0681		0716	0734	0751	0769	0786	0804	3	6	9	12	15
62 63	1.0821	0838 1013	0856 1030		0891 1065	0908	0926	0943	0961	0978	3	6	9	I 2 I 2	15
64	1.1140	1188	1205	1222	1240	1257	1275	1292	1310	1327	3	6	9	12	15
65	1.1342	1362	1380	1 397	1414	1432	1449	1467	1484	1502	3	6	9	12	15
66 67	1.1210	1537	1554	1572	1589	1606 1781	1624	1641 1816	1659	1676 1851	3	6	9	I 2 I 2	15
67 68	1°1694 1°1868	1711 1886	1729 1903		1764 1938	1956	1798	1990	1833 2008	2025	3	6	9	12	15
69	1.5043	2060	2078	2095	2113	2130	2147	2165	2182	2200	3	6	9	12	15
70 71	1.5395	2235 2409	2252 2427	2270 2444	2287 2462	2305 2479	2322 2497	2339 2514	2357 2531	2374 2549	3	6	9	12 12	15
72	1.5266	2584	2601	2619	2636	2654	2671	2689	2706	2723	3	6	9	12	15
73	1.2741	2758	2776	2793	2811	2828	2846	2863	2881	2898	3	6	9	12	15
74	1.5912	2933	2950		2985	3003	3020	3038	3055	3073	3	6	9	12	15
75	1,3000	3107	3125	3142	3160	3177	3195	3212	3230	3247	3	6	9	12	15
76 77	1.3265	3282 3456	3299 3474	3317 3491	3334 3509	3352 3526	3369 3544	3387 3561	3404 3579	3422 3596	3	6	9	I2 I2	15
78	1.3614	3450 3631	3474 3648	3666	3683	3701	35 44 3718	3736	3753	377 I	3	6	9	12	15
79	1.3788	3806	3823	3840	3858	3875	3893	3910	3928	3945	3	6	.9	12	15
80 81	1.3963	3980	3998 4172	4015 4190	4032 4207	4050 4224	4067 4242	4085 4259	4102 4277	4120 4294	3	6	9	I2 I2	15
82	1'4312	4155	4347	4364	4382	4399	4416	4434	4451	4469	3	6	9	12	15
83	1.4486	4504	4521	4539	4556	4573	4591	4608	4626	4643	3	6	9	12	. 15
84	1.4661	4678	4696	4713	473I	4748	4765	4783	4800	4818	3	6	9	12	15
85	1.4835	4853	4870	4888	4905	4923	4940	4957	4975	4992	3	6	9	12	15
86 87	1.2010	5027 5202	5045 5219	5062 5237	5080 5254	5097 5272	5115 5289	5132 5307	5149 5324	5167 5341	3	6	9	12 12	15
88	1.2329	5376			5429	5446	5464	548I	5499	5516	3	6	9	12	15
89	1.2233	5551	5568	5586	5603	5621	5638	5656	5673	5691	3	6	9	12	15
•		<u> </u>					<u>' </u>	.			-	_			

I		0	1	2	3	4	5	6	7	8	.9	1	2	3	4	5	6	7	8	9
	1.0	1.000	1.030	1 '040	1,061	1.082	1.103	1.154	1.142	1.199	1.188	2	4.	6	8	10	13	15	17	19
I	1·1 1·2 1·3	1·440 1·690	1.464	1 488	1.213	1.238	1.263	1.288	1.613	1.638	1.664	2	5 5 5	7 7 8	IÓ	11 12 13	15	17	20	
I	1·4 1·5	1 960 2 250	1.988 2.580	2°016 2°310	2°045 2°341	2°074 2°372	2°103 2°403	2°132 2°434	2°161 2°465	2°190 2°496	2.220	3	6	9	12	14 15	17	20	23	26 28
	1.7	2.890 3.240	2.924	2.958	2.993	3.028	3.063	3.098	3.133	3.168	3.204	3	7	10	14	16	2 I	24	28	30 31
	1.9	3.610 4.000	3.648	3.686	3 .72 5	3.764	3.803	3.842	3.881	3.920	3.960	4	.8	12	16	18 19 20	23	27	31	33 35 37
	2.1	4°410 4°840	4.452 4.884	4°494 4°928	4°537 4°973	4°580 5°018	4.623 5.063	4.666 5.108	4°709 5°153	4.752 5.198	4.796	4	9	13 13	17 18	2I 22 23	26 27	30 31	34 36	39 40 42
	2·4 2·5	5°760 6°250	5·808 6·300	5·856 6·350	5°905 6°401	5°954 6°452	6 · 003 6 · 503	6°052 6°554	6.602 6.101	6·656	6°200	5 5	10 10	15 15	20 20	24 25	29 31	34 36	39 41	44 46
		6.760 7.290 7.840										_			22	26 27 28	33	37 38 40	44	48 49 51
	3·0	8.410	8.468	8.526	8.282	8.644	8.403	8.762	8.821	8.880	8·940 9·548	6	12	18	24		35	4 I	47 49	53 55
	8.1	9.610					1		10.02	10'11	10.18	I	13 1 1	19 2 2	25 3 3	31 3 3	38 4 4	44 5 5	50 5 5	57 6
	3·3 3·4	11.26	11.63	11.02	11.09	11.83 11.16	11.30	11.52	11 . 36	11.45	11.49	I	I	2	3	3	4	5	6	6
	3.6	12.69	13.03	13.10	13.18	13.52	13.32	13.40	13.47	13.24	13.62	1	I I 2	2 2	3 3	4 4	4 4 5	5 5	6 6	7
	3.8 3.8	14.44 12.51	14°52 15°29	14·59 15·37	14·67 15·44	14.75 15.2	14.82 15.60	14'90 15'68	14 · 98 15·76	15°05 15°84	15.03	I	2	2	3	4	5 5	5 6	6 6	7
	4·0 4·1 4·2	16.81	16.89	16.97	17.06	17:14	17:22	17:31	17:39	17:47	16.73 17.56 18.40	1	2 2 2	2 3	3 3	4 4 4	5	6	6 7 7	7
	4·4	18.49	18·58 19·45	19.24	18.75	18·84 19·71	18192	19.89	19.98 19.10	19.18	19.52	I	2	3	3	<u>4</u> 5	5 	6	7	00.
	4·5 4·6	21.19	21.52	21.34	21.44	21.23	21.62	21.2	21.81	21.90	21.07 22.00	I	2 2 2	3	4	5 5	6	7	7 7 8	0 00 0
	4·8 4·9	23°04 24°01	23°14	23.53	23.33	23.43	23.25	23.62	23.22	23.81	23.91 27.90	1	2	3 3	4 4	5 5 5	6	7 7 7	8	9
	5·1 5·2	26.01	26.11	26.51	26.35		26.22	26.63	26.73	26.83	26.94		2 2 2	3	4	_ <u>5</u>	-6 6 6	7 7 7	8 8 8	9
	5.3	28.09 29.16	28.30	28.30	28.41	28.22	28.62	28.73	28.84	28.94	29.05 29.05	1	2 2	3	4 4	5 5 6	6 -7	7 7 8	9	10

	17.00	10		100			1				_	_		_	_	_	_	_	4
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	8
5.2	30*25	30.36	30.47	30.28	30.69	30.80	30.91	31,05	31.14	31.25	I	2	3	4	6	7	8	9	1
5.6 5.7 5.8	31.36 32.49 33.64	32.00	32.72	32.83	32.95	33'06	33.18	33'29	33'41	33.52	T	2 2 2	3 4	5 5 5	6 6	7 7 7	8 8 8	9	I
5, 9 6 · 0 6 · 1	34.81	34.93 36.12	35.05	35°16 36°36 37°58	35°28	35.40	35.2 36.2	35.64 36.84	35°76	35.88 37.09	I	2 2 2	4 4 4	5 5 5	6 6	7 7 7	8 9	-	I
6·2 6·3 6·4	38.44	38·56 39·82	38.69	38.81	38·94 40·20	39.06	39.19	39.31	39.44	39.56	I	3 3	4 4 4	555	6 6	8 8	9	10 10	I
6.5	42.25	42.38	42.21	42.64	42.77	42.90	43.03	43.16	43'30	43.43	1	3	4	5	7	8	9	10	1
6.6 6.7 6.8	43°56 44°89 46°24	45'02	45'16	45'29	45'43	45:56	45'70	45'83	45'97	46.10	I	3 3 3	4 4 4	5 5 5	7 7 7	8 8	9	11	1
7.0	47.61 49.00 50.41	47°75 49°14	47.89	48.02	48.16	48.30	48.44	48.58	48.72	48.86	I	3 3 3	4 4	666	7 7 7	8 8 9	01	11	
7·2 7·3	51.84	51°98 53°44	52.13	52°27	52°42 53°88	52.26	52.71	52.85	53'00	53,14	I	3 3 3	4 4 4	6 6 6	7 7 7	9	10	12	I
7.5				56.40							2	3	5	6	8	-	11	-	-
7.7	57.76 59.29 60.84	59'44	59'60	59'75	10.65	60.06	60'22	60:37	60.23	60.68	2 2 2	3 3 3	555	6 6	8 8	9 9	11	12 12 13	I
7.9	62°41	62·57	62.73 64.32	62.88 64.48	63°04 64°64	63°20 64°80	63°36	63.22	63.68 65.29	63.84	2 2 2	3 3 3	5 5 5	6 6 7	8 8	10	11	13	I
8.3	67:24 68:89 70:56	67.40 69.06	67·57 69·22	67.73	67.90 69.56	68°06	68.23	68.39	68.56	68.72	2 2 2	333	5 5 5	7 7 7	8	-	12	-	I
	72'25											3	5	7	9	10	12	_	-
8.4	73°96 75°69 77°44	75.80	76'04	76'21	76:39	76'56	76'74	76.91	77'09	77'26	2 2 2	3 4 4	5 5 5	7 7 7	9	11	12 12 12	14	
8.9	79°21 81°00 82°81	79 . 39	79°57 81°36	79°74 81°54	79°92 81°72	80.10	80°28 82°08	80°46 82°26	80.64 82.45	80.82 82.63	-	4 4 4	5 5 5	7 7 7	9	11	-	14	
9.3	84.64 86.49 88.36	84.82 86.68	85.01	85.19	85.38	85.26	85.75 87.61	85.93	86'12	86:30	2 2 2	4 4 4	666	7	9	11	13 13 13	15	I
	90.25										2	4	6	-	10		13	-	1
9·6 9·7	92°16 94°09 96°04	92°35 94°28	92°54 94°48	92°74 94°67	92.93 94.87	93°12	93.35	93.51	93.70	93.90	2	4 4 4	6 6	8	10	12	_	15 16	1
				98:60	-							-	6				-	16	Ì

48			SQ	UAF	RE I	ROO	TS	FRO	M IC	ю т	Э (99	9.6).					
	0	1	2	3	4	5	6	7	8	9	·1	·2	∙3	4	•5	. 6	·7	.8	.8
10	10.00	10.02	10.10	10.12	10.50	10.5	10.30	10.34	10.39	10.44	0	I	1	2	2	3	,3	4	4
11 12	10.02	11.00	11.02	10.63	11.14	11.18	II 22	I I '27	11.31	11.36	0 0	I	I	2	2 2	3	3	4	4
18 14	11'40	11.42	11.49	11.23	11.28	11.62	11.66	11.40	11.75	11.49	0	I	I	2	2	3	3	3	4
15 16	12.25	12.50	12.33	12.37	12.41	12.45	12.49	12.23	12.27	12.61	ō	I	I	2	2	2	3	3	4 4 4
17	13'04	13.08	13.11	13.12	13.10	13.53	13.27	13.30	13.34	13.38		I	I I	2 I	2 2	2 2	3	3	3
18 19	13.48	13.82	13.86	13.89	13.93	13.96	14.00	14.04	14.07	14.11	0	ī	I	I	2	2	3	3	3
20				14.25		_					0	I	I	I	2	2	2	3	3
22 23	14.83	14.87	14.00	14.93	14.92	15.00	15.03	15.02	12.10	12.13	0	I I	I I	I	2 2	2	2 2	3	3
24 25	15.49	15.2	15.26	12.20	15.62	15.65	15.68	15.2	15.22	15.48	0 0	I I	I	I	2 2	2	2 2	3	3
26	16.15	19.19	19.19	16.55	16.52	16.58	16.31	16.34	16.32	16.40	0	I	1	1	2	2	2	2	3
27 28 29	16.43	16.46	16.48	16.82 16.82	16.82	16.88	16.91	16.94	16.97	17.do	0 0	I	I I I	I	2 I I	2 2	2 2	2 2 2	3 3
30	II			17.41					_			1	ī	I	1	2	2	2	3
31 32	17.89	17.92	17'94	17.69 17.97	18.00	18.03	18.00	18.08	18.11	18.14	0	I	I I	I	I	2	2	2 2	3
33				18.25							0	I	I	I	I	2	2 2	2	2
35 36	18.71	18.73	18.76	18.79	18.81	18.84	18.87	18.89	18.92	18.95	0	I	I I	I	I I	2	2	2 2	2
37 38	19'24	19.26	19.29	19.31	19.34	19:36	19.39	19.42	19.44	19.47	0 0	I	I I	I	I I	2 2	2 2	2 2	2 2
39 40	19.75	19.77	19.80	19.82	19.85	19.87	19,90	19.92	19.95	19.97	0	I	<u> </u>	I	I	2 I	2	2	2
41	20.5	20.27	20.30	20.02	20.32	20:37	20.40	20'42	20.45	20.47	0	0	1	1	1	1	2	2	2
42 43				20.21							00	0	I I	I I	I	1	2	2	2
44 45	21.51	21.54	21.26	21.02	21.31	21,33	21.35	21.38	21'40	21.42	0	0	I I	I	I	I	2	2 2	2
46				21.22							0	0	1	I	I	I	2	2	2
48 49	21.01	21.93	21.95	21.98	22.00	22.03	22.05	22.02	22.09	22'I I	0	0	I I	I	I I	I	2	2 2	2 2
50			-	22.43	-		 		I		0	0		I	I	1	2	2	2
51 52 53	22.80	22.83	22.8	22.65	22.89	22.01	22.93	22 96	22.98	23.00	0 0	0	I I I	I	I I I	I I I	2 2	2 2 2	2 2 2
54				23.30	1						<u>°</u>	_	_	<u> </u>	<u>.</u>	<u>.</u> I	<u>2</u> 1	2	2
102	25 24	23 20	23 20	23 30	7-3 32	-3 33	~3 3/	~3 39	-3 41	-3 43	Ľ	_	_	Ļ		_	ئــــــــــــــــــــــــــــــــــــــ	_	

			SQ	UA:	RE	ROC	OTS	FRC	M I	00 Т	o	99	9	9.					49
	0	1	2	3	4	5	в	7	8	8	1	·2	·3	·4	·5	.ც	.7	·8	Ġ
55 56								23.81 23.81				0	I	1	I	I	I I	2 2	2 2
57 58 59	24.08	24'10	24'12	24.12	24.12	24.19	24.51	24 °02 24 °23 24 °43	24.25	24.27	000	0 0	I I	I I	I I I	I I I	I I I	2 2 2	2 2 2
60	I							24.64			_	0	1	I	1	I	1	2	2
61 62 63	24 90	24.92	24.94	24.96	24 98	25.00	25.02	24·84 25·04 25·24	25.06	25 08	o	0	I I I	I I I	I I I	I I I	I I	2 2 2	2 2
64 65 66	25.20	25.21	25.23	25.22	25.24	25.29	25.61	25 [.] 44 25 [.] 63 25 [.] 83	25.65	25.67	0	000	I I I	I I I	I I I	III	I I I	2 2 2;	2 2 2
67 68 69	25.88 26.08	25.90 26.10	25.92 26.12	25 [.] 94 26 [.] 13	25·96 26·15	25.98 26.17	26.00	26.02 26.31 26.40	26°04 26°23	26.06 26.5	00	0 0	I I I	I I	I I I	I I	I I I	2 2 2	2 2 2
70								26.29			0	0	ī	<u>, </u>	i	ī	1	2	2
71 72 73	26.83	26.85	26.87	26.89	26.91	26.93	26.94	26·78 26·96 27·15	26.98	27 00	000	0 0 0	I I I	I I	I I I	I I I	I I I	I I I	2 2 2
74 75 76	27:39	27:40	27.42	27.44	27.46	27.48	27.50	27·33 27·51 2 7· 69	27.53	27.55	000	0 0 0	I I I	I I I	I I I	I I I	I I I	I I I	2 2 2
77 78 79	27·75 27·93	27 [.] 77 27 [.] 95	27·78 27·96	27 ·80 27 ·98	27·82 28·00	27·84 28·02	27·86 28·04	27·87 28·05 28·23	27·89 28·07	27·91 28·09	0	0 0	I I I	I I	I I I	I I I	I I I	I I	2 2 2
80								28.41			0	0	1	<u>.</u>	1_	1	ı	1	2
81 82 83	28·46 28·64	28·48 28·65	28·50 28·67	28·51 28·69	28 ·5 3 28·71	28·55 28·72	28·57 28·74	28·58 28·76 28·93	28.60 28.77	28·62 28·79	0	0 0	I I I	I I I	I I I	III	I 1 I	I. I	2 2 2
84 85 86	28·98 29·15	29.00 29.12	29 .02	29.03 29.51	29.05 29.52	29°07 29°24	29. 26	29'10 29'27 29'44	29.15 29.15	29'31 29'4	0	0 0	I I	I I I	I I I	I I I	I I I	I I	2 2 2
87 88 89	29.20	29·51	29·53 29·70	29.25 29.25	29·56 29·73	29·58 29·75	29.60 29.77	29.61 29.78 29.95	29.63 29.80	29.65 29.82	00	0 0	I I	I I I	I I I	I I I	I I I	I I I	2 2 2
90								30,15				0	0	I	ī	I	<u>,</u>	1	1
91 92 93	30.33	30.32	30.36	30.38	30'40	30.41	30.43	30°28 30°45 30°61	30.46	30.48	0	0 0	0	I I	I I I	III	I I I	I I I	I
94 95 96	30.85	30.68 30.84	30.85	30.21	30 .2 30.89	30.4 30.4	30.26 30.92	30°77 30°94	30.42 30.42	30.81	0.0	0	0	I I	I I	I	I	I I	I 1
97 98 99	31.14	31.16 31.16	31.18	31.32	31.31	31.38	31 '24 31 '40	31.10 31.42 31.42	31.43	31 ·29	0	000	0 0 0	I	I	I I I	I	I	I
99	31.40	31.48	31.50	51-51	31.23	31 54	51.20	31.28	31.29	31 01	٥	0	0	I	1	I	I	I	I

R.H.m. Lee Digitized by Google

	O 31.62	1	2	3	4										•				
	31.62					5	6	7	8	9	Ė	_	_	_		_	Ŀ.	<u> </u>	9
	_	31.78	31 .94	32.09	32.5	32.40	32.26	32.41	32.86	33.03	2	3	5	6	8	9	II	12	14
12	33°17 34°64	34.79	34'93	35.07	35.51	35.36	35.20	34°21 35°64	34°35 35°78	34.20 35.92	I	3	4	6	•	8	10 10	II	13
	36.06							37.01	37.12	37.28	_	<u> </u>		5			10		
15	37 ·42 38 ·73 40 ·0 0	38.86	38.99	39.15	39.54	39:37	39.20	38·34 39·62 40·87	38.47 39.75 40.99	38.60 39.87 41.11	I I I	3 2	4	5 5		8 8	9	11 10 10	11
	41.53							42 07	42.10	42.31	Ī	2	4	<u> </u>	6	-	÷	10	_
18	42·43 43·59	42.24	42.66	42.78	42°9 0	43.01	43.13	43°24 44°38	43.36	43.47			3	5	6 6	7	8		10 10
	44.2							45.20	45.61	45.72	1	2	3	4	6	7	8	9	10
	45.83							46.58	46.69	46.80		2	~	4		6	8	9	10
	46.90 42.90							47.64 48.68				2	3	4	5	6	7	8	9
	48 ·9 9 50 ·0 0							49'70 50'70		49.80 50.89		2	3	4	•	6	7	8	9
26	20.66	51.09	21.19	51.58	51.38	51.48	51.28		51.22	51.87	I	2		4	5	6	7	8	9
	52.05			52°25				52.63 53.57	52.23 53.67	52·82	I	2	3	4	•	6	7	8 7	8
29	53.85	53°94	54.04	54'13	54.55	54.31	54.41	54.20	54.29	54.68	1	2	3	4		5	6	7	8
				5 5 .05	_			55.41	55.20		_	_			_	5	6	7	8
31 32	5 5 .68	55.77 56.66	55.86 56.75	55.83 56.83	56°04	56°12	56.51	56.30	56·39 57·27	56.48 57.36			3	3		5	6	7	8
33	57°45	57°5 3	57.62	57.7 I	57:79	57.88	57:97	58.05	58.14	58.55	I	2	3			5	6	7	8
34 35	58.31			58·57 59·41				58·91 59·75	58:99 59:83	59°08		2 2	3 2	3	-	5	6 6	7	8
	90.00							90.28	90.66	60.75	1	2				5	6	7	7
	60.83							61,40	61.48		I I	2	2 2	3		5	6	7 6	7
	62.45							63.01	63.09		ī		2		4		6	6	7
	63.52							63.80		63.95	_	2	2	3	4	5	6	6	7
	64°03 64°81							64·58	64.65 65.42	64.23	I		2	3		5	5	6	7
43	65.22	65.65	65.43	65.80	65.88	65.95	66.03	99.11	66.18	66.56	1	2		_	•	5	<u>5</u>	6	7
	66 ·33 67 · 08							66·86	66.93 67.68		I	2 I	2 2	_		5	5 5	6 6	7
46	67·82	67.90	6 7:9 7	68·04	68.15	68.19	68.26	68·34	68 41			ī	2	3		4	<u>5</u>	6	7
	68.28							69°07	69 [.] 14			I I	2 2	_	-	4	5	6	7
	69 . 28							70.20	- 1	70.64	î		2	<u>3</u>	•	4	5	6	6
50	70.41	70.78	70.85	70.92	70.99	71.06	71.13	71.30	71.27	71.34	I	I	2	3	4	4	5	6	6
51 52	71.41	71.48	71.55	71.62 72.32	71.69	71.76	71.83	71.90 72.59	71.97 72.66	72°04 72°73		I I	2 2	3		4	5 5	6 6	6
				73.01				73.58	73.35					3		4	5	5	6
54	73.48	73.22	73.62	73.69	73.76	73.82	73.89	73.96	74.03	74.09	1	I	2	3	3	4	5	5	6

SQUARE ROOTS FROM 1000 TO 9999.

51

			_ ·				_		-			_	_		_	-	I ==	_	_
	0	1	2	8	.4	5	6	7	8	9	1	2	3	4	5	8	7	8	9
55	74°16	74°2 3	74°30	74°36	74°43	74.20	74°57	74 .63	74.40	74.77	1	1	2	3	3	4	5	5	6
56 57	74.83	74.90 75.56	74 [.] 97 75.63	75°03 75°70	75°10 75°76	75°17 75°83	75°23	75°30	75°37	75.43 76.09		I	2	3	3	4	5	5 5	6
58	76.16	76.53	76.59	76:35	76.42	76.49	76.22	76.62	76.68	76.75	1	I	2	3	3	4	5	5	6
59 60	76·81 77·46	76·88 77·52	76°94 7 7° 59	77.01 77.65	77°07 77°72	77°14 77°78	77°20	77°27	77°33	77°40 78°04		I	2	3	3	4	4	5 5	6
61	78.10	78.17	78.53	78.29	78:36	78.42	78.49	78.55	78.61	78.68	┝	_	2	3	3	4	4	5	6
62 63	78 ·74 79 ·3 7	7974	79:50	79.56	79.62	79:69	79.75	79·18 79·81	79 ²⁵	79°31	I	I	2	3	3	4	4	5 5	6
64 65	80.00 80.62							80.44	81.15	81.18	_	<u> </u>	2	2	÷	4	4	<u>5</u> 5	6 5
66	81.24							81.06	81.73	81.79	_	ī	2	2	<u> </u>	4	4	<u> </u>	5
67 68	81·85 82·46	81.91	81.08	82.04	82,10	82.19	82.55	82·28 82·89			I	I	2	2	3	4	4	5	5
69	83.04							83.49	83.22	83.61	⊢	ī	2	2	-	4	4	5	5
70 71	83·67 84·26	83.23	83.79	83.85	83.00	83.96	84 02	84.08 84.68			I	I	2	2	_	4	4 4	5	5
72	84.85	84.01	84.97	85.03	85.09	85.12	85.51	85.26	85.32	85.38		I	2	2	3	3	4	5	
73 74	85.44 86.02	85°50 86°08	85°56 86°14	85.62 8 6. 20	85·67 86·26	85.43 86.31	85·79 86·37	85·85 86·43		85.97 86.24		I	2	2	3	3	4 4	5 5	5 5 5
75	86.60	86.66	86.72	86.78	86.83	86.89	86.95	87.01	87.06	87'12	1	1	2	2	3	3	4	5	5
76 77	87°18 87°75	87·24 87·81	87:29 87:86	87:35	87'41 87'08	87°46 88°03	87·52	87·58 88·15	87.64 88.20	87.69 88.26	I	I	2	2	3	3	4 4	5 4	5
78	88·32							88.71	88.77	88.83		1	2			3	4	4	_5
79 80	88·88 89 · 44	88 · 94	88.66	89°05 80°61	89°11 80°67	89°16 80°72	89°22 80°78	89°27 89°83	89.89 89.33	89:39 89:39	I	I I	2			3	4	4	5
81	30,00	90. 00	90.11	90'17	90.55	90.58	90.33	30.3 0	90.44	90.20	1	1	2	2	3	3	4	4	5
82 83	91.10 90.22	01.16 00.91	90.66	90°72 91°27	90.22 91.35	01.38 00.83	90.88	90.94	90 . 99	91.60 91.02	I	I	2		3	3	4	4	5 5
84	91.65	91.71	91.46	91.82	91.87	91.92	91.98	92.03	92.09	92'14	1	1		_	_	3	4	4	5
85				92:36				92.27	92.63	92.68	I	I	2	2		3	4	4	5
86 87.	93.57	93.33	93.38		93°49	93°54	93.29	93.11 93.62	93.40	93.75	I	I	2	2	3	3	4	4	5
88	93.81			93°97 94°50				94.18	94.23	94.82	$\overline{}$	I	2	2	3	3	4	4	5
90	94.87	94.92	94.97	95.03	95.08	95.13	95.18	95.24	95.59		I	I	2	2	3	3	4	4	5
91 92	95.35 92.39							95°76		96.38	_	ī	2			3	4	4	5
93 94	96.44 96.92	96.49	96.24	96.29	96.64	96.40	96.75	96.80	96·85 97·37	96.90 97.42	I	I I	2	2	3	3	4 4	4	5
95				97 11	_		_	97.83	97.88	97.93	_	<u>-</u>		2	3	3	 -	4	5
96	97:98	98.03	98.08	98.13	98.18	98.53	98.59	98.34	98.39	98:44	1	I	2	2	3	3	4	4	5
97 98	98 · 49	98.54	98.29	98.64	98.69	98.74	98.49	98·84 99·35	98.89 99.40	98°94 99°45		I	2 I	2	3 2	3	3	4 4_	5 4
—	99.20								99,90		Г	1	ı	2	2	3	3	4	4
ت	22 30	JJ 33	JJ 00	77 -3	,,,,	,,,,	D 2		/	5	L	_	_	_	-	_	_		\perp

	0	1	2	3	4	5	6	7	8	9	H	2	3	4	5	B	7	8	ρ
			_			_			_		F	_	_	_	_	_	Ŀ	_	_
10	000010000	9901	9804	9709	<u> 9</u> 615	9 524	9434	9346			L								
11 12	0.0008333			8850 8130						8403 7752									
13	0.0001695			7519	7463	7407	7353			7194									
14	0 0007143		7042				6849	6803		6711 6289				19 17					
15 16	0.0006667			6536 6135			6410 60 24			5917				15					
17	0.0002885		5814		5747	5714	5682			5587		6		13					
18 19	0.0005263		5495 5208	5464 5181	5435 5155	5128	5376 5102			5291 5025		5	8	II	13	16	18	2 J 2 I	26. 24
20	0.0002000	4975	4950	4926	4902	4878	4854	4831	4808	4785	2	5	7	10	12	14	17	19	2 I
21 22	0 0004762			4695 4484			4630 4425	4608		4566 4367		4	7	9	11	I 3 I 2	15	17	20 18
23	0'0004348			4292			4237			4184	2	4	5	7		11			
24 25	0.0004167	4149	4132	4115 3953			4065 3906	4049 2801		4016 3861		3	5 5	7	8	10		13 12	•
26	0.0004000	3831	3817	3953 3802			3759		3731		ī	3	4	6	7			11	
27	0.0003704			3663			3623			3584	1	3	4	5	7	8		11	
28 29	0.0003241			3534 3413			3497 3378			3460 3344	ī	2	4 3	5 5	6	7	8		10
30	0.0003333	3322	3311	3300	32 89	3279	3268	3257	3247	3236	I	2	3	4	5	6	7	9	10
31 32	0.0003226			3195 3096			3165 3067			3135 3040		2	3	4	5 5	6 6	7	8 8	9
33	0.0003030			3003			2976		2959		ī	2	<u>3</u>	4	4	5	6	7	<u> 8</u>
34 35	0.0002941			2915 2833			2890 2809		2874 2793		I	2	3 2	3	4	5	6	7	8 7
36	0.0002234			2755			2732			2710		2	2	3	4	_5	5	-	
37 38	0.0002703		2688 2618				2660 2591		2646 2577	2639	I	I	2	3	4	4 4	5 5	6 5	6
39	0.0002564			2545			2525			2506	4	ī	2	3	_3	4	4		-
40	0°0002500	2494	2488	2481	247 5	2469	2463			2445	I	1	2	2	_3	4	4	_5	5
41 42	0.0002439		2427	2421 2364			2404 2347		2392 2336	2387 2331	I	I	2	2	3	3	4	5 4	5 5
43	0.0005352			2309			2294	2288	2283	2278	ī	I	2	2	3	3	4	4	5
44 45	0.0002273		2262	2257 2208			2242 2193	2237 2188		2227 2179	L	I	. 2 I	2	3	3 3	4	4	5 4
46	0.0002124			2160			2146	2141		2132		1	1	2	2	_3	3	4	4
47 48	0.0002128		2119	2114 2070			2101 2058	2096 2053		2088 2045		I	I	2	2	3	3	4	4 4
49	0.0002041			2028			2016			2004		i	ī	2	2	2	3	3	4
50	0.0002000	1996	1992	1988		<u> </u>	1976	1972		1965	₽	I	1	2	2	2	3	3	4
51 52	0.0001953		1953	1949			1938 1901	1934 1898	1931 1804	1927 1890		I	ı ı	2 I	. 2	2	3	3	3
53	0.0001882			1876			1866		1859		6		:1		2	٠2	2	3	3
54	0.000182	1848	1845	1842	1838	1835	1832	1828	1825	1821	þ	į	1	1	12	2	2	73	, 3

N.B.—Three zeros follow the decimal point in the reciprocal of any four figure whole number except the number 1000.

	0	1	2	3	4	5	6	7	8	9	11	2	3	4	5	R	7	ρ	0
-		<u> </u>						<u> </u>	<u> </u>		Ļ		_		_	_	Ľ	_	_
55	0.0001818	1815	1812	1808	1805	1802	1799	1795	1792	1789	٥	1	1	I	2	2	2	3	3
56	0.0001486	1783			1773				1761				I	I	2	2	2	3	3
57 58	0.0001754	1751 1721			1742 1712				1730 1701		c	I	I	I	2 I	2	2 2	2	3
59	0.0001602	1692		1686	1684		1678		1672	 -	<u> </u>	<u>-</u>		ī	<u>-</u>	<u>-</u>	2		3
60	0.0001667	1664	1661	1658	1656			1647			ŏ		ī	ī	ī	2	2	2	3
61	0.0001639		1634				1623	1621	1618	1616	0	I	1	1	1	2	2	2	2
62 63	0.0001613		1608 1582		1603		1597	1595			0	-	I	I	I	2 I	2 2	2	2
64	0'0001563							1570 1546				0		ī	ī	ī	2	2	2
65	0.0001238		1534					1522			0	0	<u> </u>	1	I	1	2	2	2
66	0.0001212		1511					1499				0		1	I	I	2	2	2
67 68	0.0001493							1477 1456				0		I	I	I	2	2 2	2 2
69	0.0001440	1447	1445		1441	1439		1435			-	<u>.</u>			<u>:</u> I	<u>.</u>	2	2	2
70	0'0001429	1427	1425	1422				1414				o		I	ī	1	I	2	2
71	0.0001408		1404	1403	1401	1399	1397	1395	1393	1391	0	0	1	1	1	1	1	2	2
72	0.0001380							1376				0	- 1	I	I	I	I	2	2
73 74	0.0001320	1308	1300	1304	1302	1301	1359 1340	1357 1339	1355 1337	1353		0	- 1	I	I	I I	I	2 I	2 2
75	0,0001333		1330		1326			1321			├	0		I		I	I	I	2
76	0.0001319							1304			0	0	I			1	I	I	2
77 78	0.0001282	ا `مَا	1295 1279					1287 1271				0	- 1			I	I	I	I
79	0.0001366	1264	1263	1261	1259				1253		0	0	0	ī	I	ī	I	1	I
80	0.0001220		1247		1244	1242	1241	1239	1238	1236	0		- 1			I	1	I	Ī
81	0.0001532		1232		1229			1224			0					I	1	1	1
82 83	0.0001220	1218	1217		1214		1211	1209 1195	1208	1206	0					I	I	I	I
84	0.0001100		1188	1186				1181								ī	Ī	ī	ī
85	0'0001176	1175	1174	1172	1171	1170	1168	1167	1166	164	0	0	0	I	1	I	I	ı	1
86	0.0001193		1160		1157			1153								1	I	_	I
87 88	0'0001136		1147					1140			0		- 1			I I	I		I
89	0.0001124	-	1121	_	1119			1115					-ŀ		-	I	I		7
90	0.0001111	1110	1109	1107	1106	1105	1104	1103	1101	100	0	0	o۱	I	I	1	1	1	1
91	0,00010000		1096		1094			1091			0	0	<u> </u>	0	I	1	I	-	긔
92 93	0.0001082		1085					1079	1078		0		- 1	-		I	I		I
94	0.0001002	1074	1062		1059			1056			0		- 1			i	ī		i
95	0.0001023		1050		1048				1044		0	0	0	0	I	I	I	1	1
96	0.0001042	1041			1037				1033		0		- 1	0		I	I		I
97 98	0.0001031		1029		1027			1024	1022		0		- 1	0 0	_	I I			! !
99	0.0001010	1009	1008					1003	1002	1001	0	0	0	0	0	1	I	1	1

N.B.—Three zeros follow the decimal point in the reciprocal of any four figure whole number except the number 1000.

NEPERIAN OR HYPERBOLIC LOGARITHMS.

54

	0	1	2	3	4	5	в	7	8	9	1	2	3	4	5	в	7	8	9
1.0	0.0000	0100	0198	0296	0392	0488	0583	0677	0770	0862	10	19	29	38	48	57	67	76	86
1·1 1·2 1·8	0°0953 0°1823 0°2624	1906	1989	2070	1310 2151 2927	2231	2311	2390	2469	1740 2546 3293	8	16	24	35 32 30	40	48	56	70 64 59	78 72 67
1.4 1.5 1.6	0.3365 0.4055 0.4700	4121	3507 4187 4824			3716 4383 5008	4447	3853 4511 5128	4574	3988 4637 5247	6		19	26	35 32 30	39		55 52 48	62 58 55
1.7 1.8 1.9	o·5306 o·5878 o·6419	5933	5423 5988 6523	5481 6043 6575	5539 6098 6627	6152	6206	5710 6259 6780	6313	5822 6366 6881	5	11	16	22	29 27 26	32	40 38 36	43	51 49 46
2.0	0.6931	6981	7031	7080	7129	7178	7227	7275	7324	7372	5	10	15	20	24	29	34	39	44
2·1 2·2 2·8	0'7419 0'7885 0'8329	7467 7930 83 72	7514 7975 8416		7608 8065 8502		8154	7747 8198 8629		7839 8286 8713	4	9	13	18	23 22 21	27	31		42 40 38
2·4 2·5 2·6	0.8722 0.8163 0.8222	, ,	8838 9243 9632	9282	8920 9322 9708	9361 9746	9400 9783		9478 9858	9123 9517 9895	4	8	12	16	20, 20 19	24	27	-31	37 35 34
2·7 2·8 2·9	0.9933 1.0642 1.0643	0332	ōoo6 0367 0716			0473	0508	õ188 0543 0886	0578			7	11	15 14 14	18 18 17	21	25 25 24		33 32 31
8.0	1.0986	1019	1053	1086	1119	1151	1184	1217	1249	1282	3	7	10	13	16	20	23	·26	30
3·1 3·2 3·3	1.1939 1.1937	1663			1442 1756 2060		1817	1537 1848 2149		1600 1909 2208	_	6 6 6	9	12	16 15 15	18	2ξ	25	29 28 27
3·4 3·5 3·6	1 ·2238 1 ·2528 1 ·2809	2556	2296 2585 2865	2613	2355 2641 2920	2384 2669 2947	-	2442 2726 3002	2754	2499 2782 3056	3	6 6 5	8	11	15 14 14	17	20	22	26 25 25
8·7 8·8 3·9	1,3083 1,3320	3376	3137 3403 3661		3191 3455 3712	3218 3481 3737	3507	3271 3533 3788	3297 3558 3813	3324 3584 3838		5 5 5	8	10	13 13 13	16	18	21	24 23 23
4.0	1.3863	3888	3913	3938	3962	3987	4012	4036	4061	4085	2.	5	7	10	12	15	17	20	22
4·1 4·2 4·3	1,4110 1,4351 1,4586	4134 4375 4609	4159 4398 4633		4207 4446 4679		4493	4516	4303 4540 4770	43 ² 7 4563 4793		5 5 5	7 7 7	9	12			19 19 18	22 21 21
4·4 4·5 4·6	1.4816 1.2041 1.2061	4839 5063 5282	4861 5085 5304	5107	4907 5129 5347	5151	5173	4974 5195 5412		5019 5239 5454		5 4 4	7 6	9	11 11	13	16 15 15	18	20 20 19
4·7 4·8 4·9	1 · 5476 1 · 5686 1 · 5892	5497 5707 5913	5518 5728 5933	5539 5748 5953	5560 5769 5974	5790	5810	5623 5831 6034	5644 5851 6054	5665 5872 6074	2 2 2	4 4 4	6 6 6	8 8 8		12		17 16 16	19 19
2.0	1.6094	6114	6134	6154	6174	6194	6214	6233	6253	6273	2	4	6	8	10	12	14	16	18
5·1 5·2 5·3	1.6292 1.6487 1.6677	6312 6506 6696	6332 6525 6715	6351 6544 6734	6371 6563 6752	6582	6601		6639	6467 6658 6845	2 2 2	4 4 4	6 6	8 8 7	10 10 9	12 11 11	13	16 15 15	18 17 17
5.4	1.6864	6882	6901							7029	2	4	5	7	9	11	13	15	16

TABLE OF NEPERIAN LOGARITHMS OF 10+n

n		I	2	3	4	5	6	7	8.	9
\log_{ϵ}	IO ⁿ	2.3026	4.6052	6 90 78	9.2103	11.2129	13.8155	16.1181	18.4207	20.7233

Digitized by GOOGLE

	0	1	.2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
5·5 5·6	1 '7047 1 '7228	7066 7246	7084 7263	7102 7281	7120 7299	7138 7317	7156 7334	7174 7352	7192 7370	7210 7387	2 2	4	5	7 7	-	II II	13		
5·7 5·8	1.7405 1.7579	7596	7440 7613	7457 7630	7475 7647	7492 7664	7509 7681	7527 7699	7544 7716	7561 7733	2 2	3	5	7	9	10		14	15
6.0	1.7750		7783 7951	7800 7967	7817 7984	7834 8001	7851 8017	7867 8034	7884 8050	7901 8066	2	3	5	7	_		12	<u> </u>	
6 1	1.8083	8099	8116	8132	8148	8165	8181	8197	8213	8229	2	3	5	6	8	10	11		
6·3	1.8245 1.8405	8262 8421	8278 8437	8294 8453	8310 8469	8326 8485	8342 8500	8358 8516	8374 8532	8390 8547	2 2	3	5	6	8 8	٠,	I I	•	
6·4 6·5 6·6	1.8563 1.8718 1.8871	8733	8594 8749 8901	8610 8764 8916	8625 8779 8931	8641 8795 8946	8656 8810 8961	8672 8825 8976	8687 8840 8991	8703 8856 9006	2	3 3 3	5 5	6 6 6	8 8 8	9	II II II	12	14
6·7 6·8 6·9	1,0312		9051 9199 9344	9066 9213 9359	9081 9228 9373	9095 9242 9387	9110 9257 9402		9140 9286 9430	9155 9301 9445	II	3 3 3	4 4	666	777	-	10 10		13
7:0	1.9459	9473	9488	9502	9516	9530	9544	9559	9573	9587	1	3	4	6	7	9.		11	
7·1 7·2 7·3	1 '9601 1 '9741 1 '9879	9615 9755 9892	9629 9769 9906	9643 9782 9920	9657 9796 9933	9671 9810 9947	9685 9824 9961	9699 9838 9974	9713 9851 9988	9727 9865 5001	I I I	3 3 3	4 4	6 6 5	7777	8 8 8	10	11 11 11	12
7·4 7·5 7·6	2'0015 2'0149 2'0281	0028 0162 0295	0042 0176 0308	0055 0189 0321	0069 0202 0334	0082 0215 0347	0096 0229 0360	0109 0242 0373	0122 0255 0386	0136 0268 0399	1	3 3 3	4 4	5 5 5	777	8 8.	ģ	11 11 10	12
7·7 7·8 7·9	2'0412 2'0541 2'0669	0425 0554 0681	0438 0567 0694	0451 0580 0707	0464 0592 0719	0477 0605 0732	0490 0618 0744	0503 0631	0516 0643 0769	0528 0656 0782	1	3 3 3	4 4	5 5 5	6 6	8 8	ģ	10 10	12
8.0	2.0794	0807	0819	0832	0844	0857	0869	0882	0894	0906	ī	3	4	5	6	8	<u> </u>	10	
8·1 8·2 8·3	2.0919 2.1163	0931 1054 1175	0943 1066 1187	0956 1078 1199	0968 1090 1211	0980 1102 1223	0992 1114 1235	1126	1017 1138 1258		ī	2 2 2	4	5 5 5	666	7 7 7	9	10 10	II
8·4 8·5 8·6	2°1282 2°1401 2°1518	1294 1412	1306 1424 1541	1318 1436 1552		1342 1459 1576	1353	1365 1483	1377	1389 1506	1	2 2 2	4 4	5	6 6	7 7 7	-	10 9	
8·7 8·8 8·9	2°1633 2°1748 2°1861	1645 1759	1656 1770 1883	1668 1782 1894	1679	1691 1804 1917	1702 1815 1928	1713 1827	1725 1838	1736 1849	I I	2 2 2	3 3	5 5	6 6	777	8 8	9	10 10
9.0	2.1025		1994	2006	2017	2028	2039			2072	Ι	2	_ 3	4	6	7	8	<u> </u>	10
9·1 9·2 9·3	2.3300	22 03	2214	2116	2235	2138		2268	2170			2 2 2	3 3	4	5 5	7 6 6	8.	ģ	10
9·4 9·5	2°2300 2°2407 2°2513	2418 2523	2322 2428 2534	2332 2439 2544	2450 2555	2354 2460 2565	247 I 2576	2481 2586	2386 2492 2597	2502 2607	I I	2	3 3	4 4	5 5 5	6	777	8	10 9
9·6 9·7 9·8	2.2618	2732	2638 2742 2844	2649 2752 2854	2762	2670 2773 2875	2680 2783 2885	2793	2701 2803 2905	2711 2814 2915	1	2 2 2	3 3	4	<u>5</u> 5	6	7 7 7	-8 -8 8	9
9.9	2.5652		2946	2956		2976	~~		- 9			2	3	4.			7	8	

TABLE OF NEPERIAN LOGARITHMS OF 10-n.

1	n	1	2	3	4	5	6	7	8	9
1	log _€ 10 ⁻ⁿ	3.6974	5.3948	7.0922	10.4894	12.4871	14.1845	17.8819	ī9·5793	21.2767

Table of Powers of e;-e being the Base of the Hyperbolic Logarithms.

				e-† 0.8669 e-† 0.8825			4559×10 ⁻⁴ 947·8× ,, 197·0× ,, 40·96× ,,
_		. –	e i 1.1814	e# 1'1536 e# 1'1331	£ 1.1175	e 1 ³ 1'1052	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
e-4 0.6065	6-\$ 0.2231 6-\$ 0.0821	6-¥ 0.0302	e-‡ 0.7788	e-8 0.8825 e-1 0.9394	e_s½ 0.0692		$e^{-\frac{3}{3}}$ 20788 × 10 ⁻⁵ $e^{-\frac{3}{3}}$ 898·33 × ,, $e^{-\frac{5}{3}}$ 38·820 × ,, $e^{-\frac{7}{3}}$ 1·6776 × ,,
e d 1.6487	e 1 4.4816 e 4 12.182			e s 1.1331 e s 1 1.0645	e 37 1 0317		$\begin{array}{ccc} \mathbf{g} & 4.8105 \\ \mathbf{e} & \frac{3\pi}{2} & 111.32 \\ \mathbf{e} & \frac{\pi}{2} & 25760 \\ \mathbf{e} & \frac{7\pi}{2} & 59609.6 \\ \mathbf{e} & \frac{2\pi}{2} & 1379406 \end{array}$
				e- ° 0.002479 e- ° 0.0009119			e-# 43214×10-6 e-3# 1867× ,, e-3# 80·699× ,, e-4# 3·487× ,, e-6# '1507× ,,
e 2.7183	e 7.3891 e 20.086	e* 54°598	e ⁵ 148'41	e 403.43 e' 1096.6	e [*] 2981.0	e³ 8103°1 e¹0 22026°	e ^T 23'1407 e ^{3T} 535'491 e ^{3T} 12391'7 e ^{4T} 286752' e ^{bT} 6635627

USEFUL FORMULAS AND NUMBERS.

Binomial Theorem.

$$(1\pm e)^n = 1\pm ne + \frac{n.\overline{n-1}}{1.2}e^2 \pm \frac{n.\overline{n-1}.\overline{n-2}}{1.2.3}e^3 + \&c.$$

Hence, when ne is so small that its square and higher powers may be neglected, $(1 \pm e)^n = 1 \pm ne$.

Examples-

$$e = 01$$
; $(1 + 01)^2 = 102$; $(1 + 01)^{\frac{1}{2}} = 1005$; $(1 + 01)^{-\frac{1}{2}} = 00967$.

Barometric Formula.—Let P and p be the atmospheric pressures observed by the barometer at the lower and upper stations respectively; and let T and t be the respective atmospheric temperatures on the Fahrenheit scale; then H, being the difference of levels in feet,

$$H=60360 \{\log P - \log p\} \left(1 + \frac{T+t-64}{986}\right).$$

Base of Hyperbolic or Neperian Logarithms,	$\epsilon = 2.71828$
To convert common into hyperbolic logarithms, multi-	
ply by	2.30258.
To convert hyperbolic into common logarithms, multi-	
ply by	0.43429.
Ratio of circumference of circle to diameter,	
Number of degrees in one radian (the unit angle, which	is the angle
subtended by arc equal to radius), 57° 2958 = 57° 17′ 45″ =	=206265".

T ------

							.ogarıı	hm.	
	$\pi = 3$			•	•		0.497	715	
	€=2	7182	8.	•	•	•	0'434	29	
Metre in inches,			39*379	43	Cubic	inch	of d	listilled	
Foot in centimetres			30.479		wat	er at 2	ı°C.		252.80 grains.
Mile in kilometres.			1,000					ater at	5 ,0 .
Gramme in grains,	•		15'432		4°C,				62°43 lbs.
Pound in grammes,			453 593				of n	nercury	
Kilogramme in pou	nds.		2 204		at o	°C,		. :	3439 grains.
British ton in French	h tói	าร		·	Do.	ď	o.,	•••	4913 lbs.
of 1000 kilos.,	•		, 1'016	;	Litre	of dry	air a	t o'C,	., 0
Litre in cubic inche			61.022		760	m.m. pi	ressur	e, ´.	1 2932 grms.
Cubic inch in cubic o	entin	etres	. 16°386	6	Cubic	foot	,,	,,	565'I grains.
Cubic foot in cubic c	entin	etres	, 28316	'o .	Densi	ty of r	nerću	ry, ′′.	13'596.
				52	! -	•		• •	

981 ergs.

```
I centim. gramme .
I metre kilogramme
                                                                 9.81 × 107.
                                                                 13'56 × 106 ergs.
I ft. lb. .
I ft. poundal (independent of g.).
                                                                 421390 ergs.
I joule (I watt for I second) .
                                                                 107 ergs.
                                                                 7'46 × 109 ergs per sec.
1 horse power.
I watt (rate of working of I volt through I ohm, or of I volt carrying I ampere)
     = 107 ergs per second.
Earth's mean radius, 6'371 × 108centims
                                              Mass of moon,
                                                                 . 1/81'5 of earth's mass
Earth's niean radius
                                              Distance of moon
                    . 21 × 106 feet.
                                                from earth,
                                                                 . 3'8 × 1010 centims.
  (approx.),
Mass of earth, as-
suming 5 67 as
                                              Sun's radius,
                                                                 . 697 \times 10^8 centims.
                                              Mass of sun,
                                                                 . 324000 earth's mass.
  mean density,
                                              Distance of
                   .6'14 × 10'7 grammes
                                                              sun
                                                                 . 1'498 × 1018 centims.
                                                 from earth,
Earth's mass (ap-
                   . 13'5 × 1024 lbs.=
  proximately),
                                              Distance of
                                                              sun
                                                                 . 93'1 × 106 miles.
                            6 x 10<sup>21</sup> tons.
                                                 from earth,
Seconds pendulum at
                                              Mass in grammes which
                       . 39'139 inches=
                                                 concentrated at
  Greenwich, .
                          99'414 centims.
                                                 point I centimetre
                                                 distant from a point at
Gravity of 1 pound
                       32°191 poundals.
  at Greenwich,
                                                 which another equal
Gravity of 1 pound
mass in lat. 55° 35'
(approximately that
of Edinburgh or
                                                 mass is concentrated
                                                 would attract it with a
                                                                         3928 grammes.
                                                 force of 1 dyne,
                                              Same where the foot, pound, and poundal are units of length,
                      . 32'2 poundals.
  Glasgow),
Gravity of I gramme
                                                 mass, and force,
                                                                         31,075 lbs.
  in same latitude, . 981'424 dynes.
Height of Homogeneous atmosphere at Greenwich at c°C, 26,210 ft. =
```

 7.988×10^5 centims.

Newtonian velocity of sound in air at o°C, . . 918'5 feet per second, =27996 centims. per second.

True velocity at $t^{\circ}C = 33240 \sqrt{1 + \cos 366 t}$ centims. per second.

Joule's Equivalent. 777'2 Greenwich foot-pounds of work will raise I lb. pure water from 60° to 61° Fahrenheit.

This is equivalent to 1399 ft.-lbs. per pound degree centigrade.—or 41.84 × 106 ergs per gramme degree centigrade,—or 42600 centimetre-grammes per gramme degree.

Latent heat of water, 79.25. Latent heat of steam at 100°, 537

Specific heat of air pressure constant, 0.237;

sp. heat of air pres. const. = 1'4. sp. heat of air vol. const.

I litre of hydrogen at o°C and 760 mm. pressure weighs 0.0896 gm.

Density of hydrogen compared with air =0.0693 = $\frac{1}{14/43}$.

Conductivity of heat. Quantity, in gramme-water-centigrade units; conducted per second; per square centimetre of area; per degree, per centimetre of thickness, of difference of temperature of two sides of plate.

Copper,	996
Iron,	15 to 19
Stone	or to '00'

Velocity of light in vacuum = 3.004×10^{10} centims. per second. Mean wave length 5.3×10^{-5} centim.

One electromagnetic unit = 3 × 1010 electrostatic units of electricity

1 B. A. Unit= 9866 Ohm. **1 Ohm**=1.01358 B. A. Unit.

Resistance of	100 metre	es of pure	ann	ealed	round	wire,	I mi	m. in
diameter, a	at o°C,	Copper,				2	·028 (ohms.
,,	,,	Iron,.		•		12	·34	,,
,,	,,	Platinum,					·50	,,
"	"	Platinoid,	•			· 41	17	"
Electro-motive	force of I	Daniell's	cell,				1.07	volt.
1)		Grove's ce						
"	"Standa	rd Clark c	ell at	15°C,				
••		••	t°C	;	1'435[1	r - '000	77(t-	- 15)]

One volt through one ohm (1 watt) generates per second $\frac{1}{4.184}$ of a thermal unit (gramme-water-centigrade).

Electro-Chemical Decomposition.—

Element.	Atomic Weight.	Chem. Equivalent.	Electrolytic Decom- position, Grammes per second, per ampere.
Hydrogen,	1	I	00001038
Potassium,	39°03	39 .03	*0004051
Sodium,	23.	23'	*0002387
Silver,	107.7	107.7	811100
Copper,*	63.35	31.68	1 000329 0
Zinc,	64.88	32.44	*0003367
Lead,	206.4	103'2	*0 0107 1
Oxygen,	15:96	7.98	*00008283
Chlorine,	35.37	35'37	·0003671

^{*} For cathode surface of 50 sq. centims, per ampere, the quantity of copper deposited per ampere per second is '0003287 gms. For increments in cathode surface subtract 1-16th p.c. per 50 sq. centims. The numbers given for silver and copper are the results of direct experiment.

GLASGOW: PRINTED AT THE UNIVERSITY PRESS BY ROBERT MACLEHOSE AND CO. LTD.

14 DAY USE RETURN TO DESK FROM WHICH BORROWED

LOAN DEPT.

This book is due on the last date stamped below, or on the date to which renewed.

Renewed books are subject to immediate recall.

21Mar'62JE		ľ
REC'D LD		
MAR 9 1962		
5 May'64LM		
REC'D LD		
APR 2 1'64 -5 PI	и	
	"	
11Jul 65DP	_	
REC'D LD		
JUL 1 2 '65 -8 F	M	อบฮ
LD 21A-50m-8,'61 (C1795s10)476B	General Library University of California Berkeley	

911380

3A47 B6

1

THE UNIVERSITY OF CALIFORNIA LIBRARY

Digitized by Google

B 4 512 734

GIFT OF French commission P.P.I.E.

· . i .

EXERCICES DU COURS

DE

MATHÉMATIQUES SPÉCIALES.

PARIS. — IMPRIMERIE GAUTHIER-VILLARS,

S2755 Quai des Grands-Augustins, 55.

EXERCICES DU COURS

DΕ

MATHÉMATIQUES SPÉCIALES

Par J. HAAG,

PROFESSEUR A LA FACULTÉ DES SCIENCES DE CLERMONT-FERRAND.

TOME I.
ALGÈBRE ET ANALYSE.

PARIS,

GAUTHIER-VILLARS, IMPRIMEUR-LIBRAIRE
DU BUREAU DES LONGITUDES, DE L'ÉCOLE POLYTECHNIQUE,
Quai des Grands-Augustins, 55.

1914

Tous droits de traduction, de reproduction et d'adaptation réservés pour tous pays.

EXERCICES DU COURS

DE

MATHÉMATIQUES SPÉCIALES.

CHAPITRE I.

NOMBRES INCOMMENSURABLES. - RADICAUX; EXPOSANTS.

EXERCICES PROPOSÉS.

1. Étant donnés quatre nombres incommensurables positifs A, B, A', B', démontrer que si l'on a

$$A > B$$
 et $A' > B'$,

on a aussi

$$A + A' > B + B'$$
, $AA' > BB'$, $\frac{1}{A} < \frac{1}{B}$.

2. Étendre aux nombres incommensurables l'identité

$$(A_1 + A_2 + ... + A_n)B = A_1B + A_2B + ... + A_nB;$$

en déduire la règle de multiplication de deux sommes.

3. Étant données deux suites infinies (n° 37) de nombres rationnels (u_n) et (v_n) , la première non décroissante, la deuxième non croissante, on suppose que la différence $v_n - u_p$ soit positive, quels que soient n et p, et puisse être rendue aussi petite qu'on le veut, à condition de choisir n et p assez grands. Cela posé, on range dans une première classe tous les u_n et les nombres plus petits, et dans une seconde classe tous les v_n et les nombres plus grands. Montrer qu'on obtient une coupure et que, par suite, on définit un nombre commensurable ou incommensurable. Déduire de là que tout symbole décimal illimité définit un nombre déterminé.

(Prendre pour les u_n les nombres obtenus en limitant le symbole à

HAAG. - Exercices, I.

- $1, 2, \ldots, n$ décimales et pour les v_n les nombres obtenus de la même manière, mais en forçant la dernière décimale.)
- 4. Pour multiplier une racine $m^{i e m e}$ par un nombre, on peut multiplier la quantité sous le radical par la puissance $m^{i e m e}$ de ce nombre (c'est ce qu'on appelle faire entrer le nombre sous le radical). De même, si sous un radical d'indice m se trouve un facteur élevé à la puissance m, on peut le faire sortir du radical en le réduisant à la première puissance.
 - 5. Simplifier les radicaux suivants :

$$\sqrt{8}$$
, $\sqrt{27}$, $\sqrt[5]{64}$, $\sqrt[3]{40}$, $\sqrt[4]{405}$, $\sqrt{980}$.

(Utiliser l'exercice précédent. On peut aussi se servir des exposants fractionnaires. Par exemple, $\sqrt{8} = 2^{\frac{3}{2}} = 2^{1+\frac{1}{2}} = 2 \cdot 2^{\frac{1}{2}} = 2\sqrt{2}$.)

6. Simplifier les expressions

$$\frac{\sqrt[5]{4}\sqrt{8}\left(\sqrt[3]{\sqrt[5]{4}}\right)^2}{\sqrt[3]{\sqrt[3]{2}}}; \quad \frac{\left(\sqrt[5]{9}\right)^3 \sqrt[15]{3}\sqrt[3]{9}}{\left(\sqrt[3]{\sqrt{3}}\right)^2 \sqrt[5]{27}}.$$

(Utiliser les exposants fractionnaires et négatifs.)

7. Ranger par ordre de grandeur croissante les trois nombres

$$\sqrt[6]{8}$$
, $\sqrt[7]{32}\sqrt{2}$, $\frac{\sqrt[3]{16}}{\sqrt[5]{2}}$.

(Les mettre sous forme de puissances fractionnaires de 2.)

- 8. Déterminer α pour que 100^{α} 1 soit inférieure à $\frac{1}{1000}$.
- 9. Déterminer m pour que l'on ait

$$2^{\frac{1}{m}} < 1 + \frac{1}{1000}, \qquad \left(\frac{2}{3}\right)^{m} < \frac{1}{1000} \qquad (E. C., 1908) \quad (^{1}),$$
$$2^{m} < \frac{1}{1000} \qquad (E. P., 1907) \quad (^{1}).$$

10. Les nombres A, B, C, a, b étant rationnels, on ne peut avoir l'égalité

$$A\sqrt{a} + B\sqrt{b} = C,$$

⁽¹⁾ Nous désignerons dorénavant sous les rubriques E. C., E. P., E. N., les examens oraux des Écoles Centrale, Polytechnique et Normale supérieure. Le nombre qui suivra indiquera l'année où a été posée la question mentionnée.

que si a et b sont des carrés de nombres rationnels, ou bien si C = 0 et $\sqrt{\frac{a}{b}} = -\frac{B}{A}$.

(Multiplier l'égalité par l'expression conjuguée du premier membre, c'est-à-dire $A\sqrt{a}$ — $B\sqrt{b}$.)

11. Les nombres a et b étant rationnels, mais \sqrt{b} ne l'étant pas, peut-on trouver deux nombres rationnels x et y tels que

$$\sqrt{a \pm \sqrt{b}} = \sqrt{x} \pm \sqrt{y}$$
?

(Élevant au carré et tenant compte de l'exercice précédent, on trouve

$$x + y = a$$
, $4xy = b$; d'où $(x - y)^2 = a^2 - b$.

Le problème est donc possible seulement si a² — b est carré parfait.)

12. Simplifier les expressions

$$\sqrt{2}\sqrt{2+\sqrt{3}}(\sqrt{3}-1),\sqrt{2-\sqrt{3}}(\sqrt{6}-\sqrt{2})(2+\sqrt{3}).$$

(Utiliser l'exercice précédent.) (E. P., 1906.)

- 13. Montrer que la quantité $\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}$ est un nombre entier.
- (Cf. Leçons; exercice 14). (Élever au carré ou bien utiliser l'exercice 11.)
 - 14. Calculer les quantités

$$\sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}}, \quad \sqrt[3]{54 + 30\sqrt{3}} + \sqrt[3]{54 - 30\sqrt{3}}$$
 (E. P., 1911).

[Ce sont des nombres entiers. Les désigner par x, puis élever au cube. On obtient une équation du troisième degré en x, dont on cherche la racine positive et entière (Cf. Chapitre XXI). Pour la première expression, par exemple, on limitera les essais en remarquant que $x > \sqrt[3]{27} = 3$.]

15. Rendre rationnel le dénominateur de la fraction $\frac{1}{\sqrt[3]{5} + \sqrt[3]{7}}$. (E. C., 1902.)

[Multiplier haut et bas par $(\sqrt[3]{5})^2 - \sqrt[3]{5} \cdot \sqrt[3]{7} + (\sqrt[3]{7})^2$, en s'appuyant sur l'identité $x^3 + y^3 = (x + y)(x^2 - xy + y^2)$.]

-

CHAPITRE II.

ANALYSE COMBINATOIRE. - FORMULE DU BINOME.

EXERCICES RÉSOLUS.

1. PROBABILITÉS. — Imaginons m événements possibles et également probables; supposons que p d'entre eux satisfassent à une condition déterminée (c'est ce qu'on appelle les événements ou cas favorables). Un de ces m événements venant à se produire au hasard, la probabilité pour qu'il remplisse la condition considérée est, par définition, le rapport $\frac{p}{m}$.

Cela posé, on demande quelle est la probabilité pour qu'on ait le roi en jouant à deux à l'écarté, en supposant successivement qu'on ait donné les cartes ou qu'elles aient été données par l'adversaire. Rapport de ces deux probabilités.

Rappelons qu'à l'écarté chaque joueur a 5 cartes. De plus, le donneur en retourne une sixième, qui fixe l'atout, et qu'il a le droit de garder pour lui, à condition d'en écarter une autre quelconque. Avoir le roi, c'est avoir dans son jeu le roi d'atout. Enfin le jeu est de 32 cartes.

Cela posé, la question revient à la suivante: Dans un jeu de 32 cartes, on prend au hasard 5 cartes que nous appellerons le groupe A, puis une sixième, que nous appellerons la carte B. Quelle est la probabilité pour que, soit dans le groupe A + B, soit dans le groupe A seulement, se trouve le roi de même espèce que la carte B?

Nombre de cas possibles. — A chaque groupe A correspond une combinaison de 32 cartes 5 à 5 et réciproquement. Il y a donc C_{32}^5 manières d'obtenir ce groupe. Un groupe étant formé, il faut tirer la carte B, ce qui peut se faire de 27 manières, puisqu'il reste 27 cartes au jeu. Le nombre total de cas possibles est donc 27. C_{32}^5 .

Nombre de cas favorables. — I. Le premier joueur a donné les cartes.

Il peut y avoir le roi dans le groupe A. Supposons, pour fixer les idées, que B soit l'as de cœur. A chaque groupe A contenant, dans cette hypothèse, le roi de cœur, correspond une combinaison 4 à 4 des

30 cartes autres que le roi et l'as de cœur, et réciproquement. Donc, quand on tourne l'as de cœur, il y a C_{30}^{1} manières d'avoir le roi. Il en va de même chaque fois que B n'est pas un roi, ce qui peut arriver 28 fois et donne, en tout, $28.C_{30}^{4}$ cas favorables.

Il peut arriver maintenant que B soit un roi. — Si, par exemple, B est le roi de cœur, le groupe A donne une combinaison 5 à 5 des 31 cartes autres que ce roi. Il y a donc C_{31}^5 cas où l'on tourne le roi de cœur. En tout, il y a $4. C_{31}^5$ cas où B est un roi.

Le nombre total des cas favorables est finalement $28.C_{30}^4 + 4.C_{31}^5$. La probabilité d'avoir le roi est donc

(1)
$$p = \frac{28.C_{30}^{\frac{5}{4}} + 4.C_{31}^{\frac{5}{4}}}{27.C_{32}^{\frac{5}{4}}} = \frac{28.30.29.28.27.5 + 4.31.30.29.28.27}{27.32.31.30.29.28},$$

ou, en divisant haut et bas par 30.29.28.27,

(2)
$$p = \frac{28.5 + 4.31}{32.31} = \frac{66}{248} = \frac{33}{124} = 0.27$$
 (par excès).

II. Le premier joueurn'a pas donné les cartes. — Dans ce cas, il ne peut avoir le roi que si celui-ci se trouve dans le groupe A, puisque la carte B ne lui appartient pas. D'après ce qui précède, le nombre des cas favorables est alors 28. C₃₀; la probabilité est

(3)
$$p' = \frac{28.C_{30}^4}{27.C_{30}^2} = \frac{28.5}{32.31} = \frac{35}{248} = 0.14 \quad \text{(par défaut)}.$$

Le rapport $\frac{p}{p'}$ est égal à $\frac{66}{35} = 1,89$ (par excès).

Conclusions. — Des calculs précédents nous pouvons conclure que le joueur qui donne les cartes a un peu plus d'une chance sur quatre d'avoir le roi $\left(\rho \text{ est un peu plus grand que }\frac{1}{4}\right)$, tandis que son partenaire a un peu moins d'une chance sur sept $\left(p'<\frac{1}{7}\right)$. De ce point de vue, il y a donc environ deux fois plus d'avantage à donner qu'à ne pas donner (1).

⁽¹⁾ Quand on dit que le premier joueur a une chance sur quatre d'avoir le roi, on veut dire que sur un très grand nombre de parties, il y en aura approximativement le quart pour lesquelles cet événement se réalisera. Mais, il serait évidemment absurde de prétendre que sur quatre parties consécutives, il y en aura toujours une et une seule qui donnera le roi. L'expérience montre au contraire qu'on peut avoir le roi plusieurs fois de suite, ou bien ne pas l'avoir pendant très longtemps. D'une façon générale, pour que le calcul des probabilités ait quelque signification pratique, il faut que les événements auxquels il se rapporte soient répétés un très grand nombre de fois.

2. Combien de mots différents peut-on former avec les lettres du mot « administration »?

Tout d'abord, nous entendons par mot un assemblage quelconque de lettres, n'ayant pas forcément une signification. Deux mots différeront par l'ordre des lettres. On a donc en somme à compter des permutations, mais dans lesquelles certaines lettres (a, n, t, i) sont répétées plusieurs fois. Ces permutations, un peu différentes de celles du n° 16, portent le nom de permutations avec répétition (1).

Pour les compter, commençons par placer les deux lettres a. Il y a en tout 14 places. De plus, l'ordre relatif des deux lettres a n'importe pas, puisqu'en les échangeant on retombe sur le même mot. A chaque manière de placer les a correspond dès lors une combinaison a à a des 14 places possibles et réciproquement; cela nous fait donc C_{14}^2 manières. Les a étant placés, nous plaçons a dans l'une des 12 places restantes, ce qui peut se faire de a le lettre a de la lettre a de la lettre a dans l'une des 11 places restantes, puis les trois a dans trois des 10 places restantes, et ainsi de suite.

Finalement, on voit que le nombre des mots différents est

$$C_{1\,4}^{\,2}\,C_{1\,2}^{\,1}\,C_{1\,1}^{\,1}\,C_{1\,0}^{\,3}\,C_{7}^{\,2}\,C_{5}^{\,1}\,C_{4}^{\,2}\,C_{2}^{\,1}\,C_{1}^{\,1}$$

$$=\frac{14!}{2! \ t! \ 1! \ 3! \ 2! \ t! \ 2! \ 1! \ 2! \ 1! \ 1!} = \frac{14!}{8.6} = 14.13.2.11.10.9.7.6.5.4.2 = 605404800.$$

Plus généralement, le lecteur démontrera que le nombre de mots différents qu'on peut former avec α lettres a, β lettres b, ..., λ lettres l est

$$\frac{(\alpha+\beta+\ldots+\lambda)!}{\alpha!\beta!\ldots\lambda!}.$$

3. Somme des puissances semblables des termes d'une progression arithmétique.

Soit à calculer la somme

$$S_n = a^n + (a+r)^n + (a+2r)^n + \ldots + (a+pr)^n.$$

Partons de l'identité (nº 25)

$$(1) \quad (x+r)^{n+1} = x^{n+1} + C_{n+1}^1 x^n r + C_{n+1}^2 x^{n-1} r^2 + \ldots + C_{n+1}^n x r^n + r^{n+1}.$$

Remplaçons-y successivement x par a, a + r, a + 2r, ..., a + pr et

⁽¹⁾ Il existe aussi des arrangements et des combinaisons avec répétition. (Cf. Lecons, exercices 117, 118.)

ajoutons en colonnes (1). Le premier membre, à l'exception de son dernier terme, est détruit par la première colonne du second membre, abstraction faite de son premier terme. La deuxième colonne du second membre devient visiblement, en y mettant $C_{n+1}^1 r$ en facteur, $C_{n+1}^1 r . S_n$. La troisième colonne devient de même $C_{n+1}^2 r^2 S_{n-1}$; etc. Finalement, on a

(2)
$$[a+(p+1)r]^{n+1} = a^{n+1} + C_{n+1}^{1} r S_{n} + C_{n+1}^{2} r^{2} S_{n-1} + \dots + C_{n+1}^{n} r^{n} S_{1} + r^{n+1} (p+1).$$

Cette formule de récurrence (Note I) permet de calculer S_n en fonction des sommes d'indices moindres. En l'appliquant pour les valeurs successives de n, à partir de n=1, on aura, de proche en proche, les valeurs de S_1 , S_2 , S_3 ,

EXERCICES PROPOSÉS.

- 1. Former le Tableau des permutations des 5 lettres a, b, c, d, e.
- 2. Former le Tableau des arrangements 3 à 3 de ces 5 lettres.
- 3. Former le Tableau des combinaisons 3 à 3, puis 4 à 4, des lettres a, b, c, d, e, f.
- 4. Combien de mots peut-on former avec les lettres du mot « musique »?
- 5. Même question pour le mot « perpétuellement ». (Cf. exercice résolu n° 2.)
- 6. Combien d'airs différents peut-on former avec les 5 notes : do, ré, mi, fa, sol, en supposant d'abord qu'aucune d'elles n'est répétée et que l'air comprend quatre notes de même durée, puis que l'air comprend huit notes de même durée, un nombre quelconque d'entre elles pouvant être identiques.

(Dans le second cas, on a des arrangements avec répétitions. On peut former leur Tableau suivant un procédé analogue à celui du nº 20. C'est ainsi que, dans l'exemple actuel, en supposant formés tous les airs de sept notes, on aura ceux de huit en ajoutant successivement à droite de

⁽¹⁾ Nous entendons par là que nous allons grouper ensemble les termes qui seraient écrits les uns au-dessous des autres. Le lecteur est prié d'écrire effectivement les p+1 équations les unes au-dessous des autres, afin de mieux saisir les réductions qui se produisent dans l'addition.

chacun d'eux les cinq notes données et non pas seulement celles qui pourraient être absentes de l'air considéré.)

7. De combien de manières différentes peut-on placer 12 convives autour d'une table? Même question en supposant qu'on alterne les dames et les messieurs.

(Dans le second cas, placer d'abord les dames, puis les messieurs.)

8. On donne n points dans un plan; on les joint par des droites de toutes les manières possibles. Calculer le nombre des points d'intersection ainsi obtenus. (E. P., 1912.)

(Ne pas oublier d'enlever des points d'intersection les points proposés, dont chacun doit compter C_{n-1}^2 fois.)

- 9. On jette un dé non truqué; quelle est la probabilité d'amener le numéro 6, ou bien un numéro inférieur à 4?
- 10. On prend un domino dans un jeu complet. Quelle est la probabilité d'amener une somme supérieure à 8?
- 11. On tire 5 cartes d'un jeu de 32 cartes. Quelle est la probabilité d'amener 5 cartes rouges, ou bien 1, 2, 3, 4 rois?
- 12. Une loterie contient 300 000 numéros, dont 1000 gagnants. Une personne en prend 10. Quelle est la probabilité pour qu'elle gagne 1, 2, ..., 10 lots?

(A chaque façon de gagner p lots correspondent une combinaison des 10 numéros choisis p à p et une combinaison des 300000 — p numéros autres que ceux de ces lots 1000 — p à 1000 — p.)

13. Démontrer la formule

$$C_m^p = C_{m-q}^p + C_q^1 C_{m-q}^{p-1} + C_q^2 C_{m-q}^{p-2} + \ldots + C_q^q C_{m-q}^{p-q}.$$

(Généraliser le raisonnement du n° 24, en considérant les combinaisons qui renferment une ou plusieurs des q premières lettres a, b, c, \ldots, l .)

- 14. Démontrer la formule du binome par la méthode de récurrence.
- **15.** Calculer $(x+a)^6$, $(x+a)^{10}$.
- 16. Calculer la somme des n premiers nombres entiers, ou impairs, ainsi que les sommes de leurs carrés et de leurs cubes.

17. Calculer la somme

1.2.3 + 2.3.4 + ... + 1000.1001.1002 (E. P., 1911).
$$[\Sigma(n-1) n(n+1) = \Sigma n(n^2-1) = \Sigma n^3 - \Sigma n].$$

- 18. Calculer $\sum n(n+2)(n+3)$. (E. C., 1909.)
- 19. On écrit les nombres impairs consécutifs de la manière suivante : Sur une première ligne, on écrit le premier; sur la seconde ligne, on écrit les deux suivants; sur la troisième, les trois suivants,

(Calculer la somme des nombres de la nième ligne.) (E. P., 1908 et 1909.)

20. Calculer la somme des coefficients du binome.

(Faire x = 1 dans le développement de $(x + 1)^m$. En faisant x = 1, puis x = -1, on a deux équations qui permettent de calculer la somme des coefficients de rang pair et la somme des coefficients de rang impair.)

21. Calculer la somme des carrés des coefficients du binome.

(Multiplier par lui-même le développement de $(x + 1)^m$ et prendre le coefficient de x^m .)

22. Développer et ordonner $(x + 2y - z)^3$, $(x + y - 2z + 3t - 1)^2$.

CHAPITRE III.

NOMBRES COMPLEXES.

EXERCICES RÉSOLUS.

1. Calculer
$$z = \frac{(1+i)(1-i)^4}{(1+2i)^3} - \frac{3i(i+2)(2i+1)^2}{3+i}$$
.
On a (n° 30)
$$(1-i)^4 = 1 - 4i + 6i^2 - 4i^3 + i^4 = -4,$$

$$(1+2i)^3 = 1 + 6i + 12i^2 + 8i^3 = -11 - 2i,$$

$$\frac{(1+i)(1-i)^4}{(1+2i)^3} = 4\frac{1+i}{11+2i} = 4\frac{(1+i)(11-2i)}{125} = 4\frac{13+9i}{125};$$

$$3i(i+2)(2i+1)^2 = 3(-1+2i)(2i+1)(2i+1)$$

$$= 3(2i+1)(4i^2-1) = -15(2i+1),$$

$$\frac{3i(i+2)(2i+1)^2}{3+i} = -15\frac{1+2i}{3+i} = -15\frac{(1+2i)(3-i)}{10}$$

$$= -\frac{15}{10}(5+5i) = -\frac{15}{2}(1+i);$$

$$z = \frac{(13+9i)8-15\times125(1+i)}{250} = -7,084-7,212i.$$

2. Résoudre l'équation $x^3 = 1$.

D'après le nº 36, on a

$$x = \cos \frac{2k\pi}{3} + i \sin \frac{2k\pi}{3}$$
 (k = 0, 1, 2);

d'où

(i)
$$x_1 = 1$$
, $x_2 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$, $x_3 = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$.

Autrement: On a évidemment la racine $x_1 = 1$. Divisant $x^3 - 1$ par x - 1, nous voyons que les deux autres racines vérifient l'équation

$$(2) x^2 + x + 1 = 0.$$

En résolvant, on retrouve les formules (1).

Remarque. — Si l'on appelle j la racine x_2 , par exemple, nous savons (n° 36) que l'on doit avoir $j^2 = x_3$, $j^3 = 1$. C'est ce qu'il est aisé de vérifier par un calcul direct. On peut aussi observer que, la somme des racines de (2) étant — 1, on a $x_3 = -1 - j = j^2$, puisque $j^2 + j + 1 = 0$.

3. Au point M d'affixe z, on fait correspondre le point M' d'affixe

$$(1) z'=az+b,$$

où a et b désignent deux nombres complexes quelconques donnés. Quelle est la transformation géométrique ainsi définie?

Cette transformation résulte des deux suivantes :

$$z'' = az, \qquad z' = z'' + b.$$

Soient A et M" les points d'affixes a et z" (fig. 1). On a (nº 33)

d'où $(\overbrace{Ox,OM''}) = (\overbrace{Ox,OM}) + (\overbrace{Ox,OA}),$ et

OM'' = OM.OA.

Il en résulte que si k et α sont le module et l'argument de α , on passe de M à M'' par une homothètie de centre O et de rapport k, suivie d'une rotation de l'angle α .

Soit maintenant B le point d'affixe b. On a (nº 31)

d'ou (OM') = (OM'') + (OB), (M''M') = (OB).

On passe de M' à M' par la translation représentée par le vecteur (OB). Finalement, on passe de M à M' par une homothétie, suivie d'une rotation, suivie d'une translation. La formule (1) définit donc la transformation par similitude directe la plus générale,

EXERCICES PROPOSÉS.

1. Calculer les nombres complexes

$$(2+i)(-1+i)+(2i+1)^2, \quad \frac{(i-3)^2}{4+i}, \quad \frac{(i-1)^5}{(i+1)^4}.$$

[Pour le dernier, on peut remarquer que i-1=i(i+1).]

2. Calculer f(2+3i), sachant que

$$f(z) = z^4 + iz^3 - (1+2i)z^2 + 3z + 1 + 3i$$

3. On pose

$$x = \frac{\mathbf{1} - uv}{u - v}, \qquad y = i \frac{\mathbf{1} + uv}{u - v}, \qquad z = \frac{u + v}{u - v}.$$

Vérifier que l'on a $x^2 + y^2 + z^2 = 1$. Quelle est la condition pour que x, y, z soient réels?

- 4. Mettre sous la forme trigonométrique les nombres : $i, -1, i, -i, i + i, \sqrt{3} + i, 2 3i$.
 - 5. Calculer

$$\sqrt{8-6i}$$
, $\sqrt[3]{+8}$, $\sqrt[3]{2i-\sqrt{3}}$, $\sqrt[3]{\frac{2i+\sqrt{3}}{2i-\sqrt{3}}}$, $\sqrt[6]{i}$, $\sqrt[6]{i+\sqrt{3}}$.

6. Résoudre les équations

$$x^4 + x^2 + 4 = 0$$
, $x^4 - 2x^2 + 2i + 4 = 0$, $2x^6 - x^3 + i - 1 = 0$, $x^4 + x^3 + x^2 + x + 1 = 0$.

7. Résoudre les équations

$$\left(\frac{1+ix}{1-ix}\right)^4 = \frac{1+ia}{1-ia}, \qquad x^3 + 3x + 2i = 0$$
 (E. P., 1912).

(Pour la première, on peut poser $x = \tan \varphi$, $a = \tan \alpha$, en supposant x et a réels. Pour la seconde, remarquer que i est racine.)

- 8. Soient deux nombres complexes a et b. Lieu des points dont l'affixe z donne au rapport $\frac{z-a}{z-b}$ un module ou un argument constants.
- 9. Connaissant z, a, b, a', b', construire le point dont l'affixe z' vérifie l'équation

$$\frac{z-a}{z-b} = \frac{z'-a'}{z'-b'}$$
 (E. P., 1906).

- 10. Soit un triangle équilatéral ABC. Calculer l'affixe de C, connaissant ceux de A et B. (E. P., 1908.)
- 11. Quelle est la transformation géométrique définie par l'équation zz'=1?

(Cf. exercice résolu nº 3.)

12. Même question pour l'équation $z' = \frac{az+b}{cz+d}$, a, b, c, d étant des nombres complexes donnés.

[On pourra s'appuyer sur ce que la transformation homographique équivaut à des transformations élémentaires (n° 244).]

13. Étudier les variations de l'argument de

$$\sqrt{(z-a)(z-b)(z-c)(z-d)}$$

quand le point d'affixe z décrit une courbe fermée.

CHAPITRE IV.

SÉRIES.

EXERCICES RÉSOLUS.

1. Nature de la série $\alpha(e^{\frac{1}{n}}-1) + \sqrt{n^2+1} - n$ (E. P., 1907).

Posons $\frac{1}{n} = h$, nous avons (Chap. VII et VIII)

$$u_n = \alpha(e^h - 1) + \frac{1}{h} \left[(1 + h^2)^{\frac{1}{2}} - 1 \right] = \alpha \left(h + \frac{h^2}{2} + \dots \right) + \frac{1}{h} \left(\frac{1}{2} h^2 - \frac{1}{4} h^4 + \dots \right).$$

Si $\alpha \neq -\frac{1}{2}$, la partie principale est $\left(\alpha + \frac{1}{2}\right)h$; la série est divergente.

Si $\alpha = -\frac{1}{2}$, la partie principale est $\frac{\alpha}{2}$ h^2 ; la série est convergente.

2. Nature de la série $\frac{1}{n^a(\log n)^b}$.

On ne peut trouver la partie principale de u_n . Néanmoins, appliquons la règle $n^{\alpha}u_n$, après avoir remarqué que la série est à termes positifs. Nous avons

$$n^{\alpha}u_n = \frac{n^{\alpha-a}}{(\log n)^b}.$$

Si $\alpha > a$, cette quantité augmente indéfiniment avec n; si $\alpha < a$, elle tend vers zéro (n° 96). On en conclut que si a < 1 la série est divergente, car on peut prendre $a < \alpha < 1$; si a > 1, elle est convergente, car on peut prendre $a > \alpha > 1$.

Si a=1, b<0, nu_n augmente indéfiniment, il y a divergence. Le seul cas qui nous échappe est donc celui de a=1, b>0. Appliquons alors le théorème III du n° 42. La série (u_n) est de même nature que la suivante, par exemple,

$$o_n = \frac{2^n}{2^n (n \log 2)^b} = \frac{1}{(\log 2)^b} \frac{1}{n^b},$$

laquelle est convergente si b > 1, divergente si $b \le 1$.

3. Nature de la série $\frac{n!}{n!}$ (E. N., 1905).

La factorielle du numérateur incite à essayer la règle de Dalembert :

$$\frac{u_{n+1}}{u_n} = (n+1) \frac{n^n}{(n+1)^{n+1}} = \left(\frac{n}{n+1}\right)^n = \frac{1}{\left(1 \div \frac{1}{n}\right)^n},$$

quantité qui tend vers $\frac{1}{e}$ (n° 91). Comme e > 1, il y a convergence.

4. Nature de la série $\frac{n^n}{x^{n^2}}$ (E. N., 1905).

D'abord, pour que le terme général tende vers zéro, il faut que |x|>1. Appliquons alors la règle de Cauchy à la série des valeurs absolues, ce qui revient à supposer x>0. On a $\sqrt[n]{u_n}=\frac{n}{x^n}$, quantité qui tend vers zéro (n° 96). Donc, si |x|>1, la série est absolument convergente. Si $|x| \le 1$, elle est divergente.

5. Nature de la série $(-1)^n n^{\alpha} \left(\log \frac{n+1}{n-1}\right)^{\beta}$ (E. P., 1907). Posant $n = \frac{1}{h}$, nous avons (n° 107, II)

$$u_n = (-1)^n h^{-\alpha} (2h + ...)^{\beta}.$$

La partie principale de un est

$$2^{\beta}(-1)^n h^{\beta-\alpha} = 2^{\beta} \frac{(-1)^n}{n^{\beta-\alpha}}.$$

Si $\beta > \alpha + 1$, la série est absolument convergente. Si $\alpha < \beta \le \alpha + 1$, la série des valeurs absolues est divergente; mais on a affaire à une série alternée, à laquelle s'applique le théorème du n° 48; il y a semi-convergence. Si $\alpha \le \beta$, le terme général ne tend pas vers zéro; la série diverge.

6. Nature de la série $\frac{x^n}{n!} \sin nx$ (E. P., 1907). On a

$$|u_n| \leq \frac{|x|^n}{n!}$$
.

Le second membre est le terme général d'une série convergente (n° 90); donc (u_n) est absolument convergente.

7. Sachant que le rapport $\frac{u_{n+1}}{u_n} = \frac{n+a}{n+b}$ (a, b = const.), sommer la

série. — On a

Ajoutons membre à membre; il vient, grâce à des réductions évidentes,

$$nu_{n+1} + b(S_{n+1} - u_1) = (a+1)S_n,$$

ou, en remplaçant S_{n+1} par $S_n + u_{n+1}$,

$$S_n(a+1-b) = (n+b)u_{n+1}-bu_1$$

Écartons le cas où a+1=b, pour lequel on a $u_{n+1}=\frac{bu_1}{n+b}$, série comparable à la série harmonique et par suite divergente. Nous avons alors

$$S_n = \frac{(n+b)u_{n+1} - bu_1}{a+1-b}.$$

Si la série est convergente, $(n+b)u_{n+1} = (n+1)u_{n+1}$. $\frac{n+b}{n+1}$ doit tendre vers zéro, en vertu de la règle $n^{\alpha}u_n$ (nº 44) (¹). Donc S_n a pour limite $\frac{bu_1}{b-a-1}$.

8. Calculer, avec cinq décimales, la somme de la série

$$S = x + \frac{x^3}{3} + \frac{x^5}{5} + \ldots + \frac{x^{2n-1}}{2n-1} + \ldots$$
 pour $x = 0, 1.$

D'abord, la série est convergente, car

$$\frac{u_{n+1}}{u_n} = x^2 \frac{2n-1}{2n+1} < x^2 = \frac{1}{100} < 1.$$

Calculons les termes successifs avec sept décimales (nº 54) :

$$u_1 = 0, 1, \qquad u_2 = 0,0003333, \qquad u_3 = 0,0000020, \qquad u_4 = 0,00000000.$$

Nous prenons donc

(1)
$$S = u_1 + u_2 + u_3 = 0,1003353.$$

⁽¹⁾ Si (n+b) u_{n+1} et, par suite, nu_n ne tendaient pas vers zéro, on aurait, à partir d'un certain rang, $nu_n > k$, k désignant un certain nombre fixe non nul. D'où, etc.

SÉRIES. 17

L'erreur de première espèce est $<\frac{1}{10^7}$, car u_2 est seul évalué d'une manière approchée. Pour l'erreur de seconde espèce, nous nous rappelons que la convergence a été établie à l'aide de la règle de Dalembert. Nous avons (n° 54)

$$R_3 < \frac{u_4}{1-k} = \frac{1}{7 \times 10^7 \times 0.99} < \frac{2}{10^8} < \frac{1}{10^7}$$

L'erreur totale est donc plus petite que $\frac{2}{10^7}$. Elle est d'ailleurs positive, car u_2 a été calculé par défaut et $R_3 > 0$. Donc, S est compris entre 0, 1003353 et 0,1003355. Les six premières décimales fournies par la formule (1) sont donc exactes.

Remarque. — On aurait pu se borner à évaluer les premiers termes avec six décimales; mais le calcul n'eût pas été plus simple.

EXERCICES PROPOSÉS.

1. On définit la suite (u_n) par la formule $u_n = \sqrt{2 + u_{n-1}}$, avec $u_1 = \sqrt{2}$. Démontrer que cette suite est convergente et calculer sa limite.

(On prouvera, par récurrence, que $u_n > u_{n-1}$ et que $u_n < 2$. La limite est la racine positive de l'équation $x^2 = 2 + x$.)

2. Même question, en supposant
$$u_n = \frac{1}{2} \left(u_{n-1} + \frac{A}{u_{n-1}} \right)$$
 (E.P., 1912). $\left(u_n < u_{n-1} \text{ et } u_n > \sqrt{A} \text{. La limite est } \sqrt{A} \right)$

3. Reconnaître les séries

$$\frac{\sqrt[3]{n+2}}{n^3+1}, \quad \tan g^2\left(\frac{x}{n}\right), \quad \sqrt[4]{n^4+1} - \sqrt[4]{n^4-1}, \quad \alpha \tan g \frac{1}{n} - \beta \sin \frac{1}{n},$$

$$\log \cos \frac{x}{n}, \quad \frac{1}{n} \log \frac{n+\alpha}{n+\beta}, \quad \log \frac{an^3+bn^2+cn+d}{(n+1)^3},$$

$$e^{\frac{1}{\sqrt{n}}} + a + \frac{b}{\sqrt{n}} + \frac{c}{n}, \quad e^{\frac{1}{n}} - \cos \frac{x}{n} + \alpha \sin \frac{1}{n}.$$

[Appliquer (1°) du nº 55.]

4. Reconnaître les séries

$$\frac{3^n+5}{4^n+n^2}$$
 (E. C., 1912), $\frac{1}{a+bx^n}$ (E. P., 1912).

Comparer à
$$\left(\frac{3}{4}\right)^n$$
, x^n , par le théorème I du nº 42.

HAAG. - Exercices, I.

5. Reconnaître les séries

$$\frac{x^n \sqrt{n}}{n^2 + 1}, \quad \frac{x^n \log n}{n} \quad (E. C., 1912);$$

$$\frac{n!}{x(x+1)...(x+n)}, \quad \frac{n^4}{n!} x^n, \quad \frac{1^3 \cdot 3^3 \cdot ... (2n-1)^3}{2^3 \cdot 4^3 \cdot ... (2n)^3} \quad (E. P., 1912).$$
(Règle de d'Alembert.)

6. Reconnaître les séries

$$\left(\frac{n^2+1}{n^2+n+1}\right)^{n^2} \quad (E. C., 1912); \qquad x^n e^{-\sqrt{n}} \quad (E. P., 1911);$$
$$\left(\frac{x}{\log n}\right)^n, \quad \frac{1}{n^n} \quad (\text{Regle de Cauchy}).$$

7. Reconnaître les séries

$$\frac{x^n}{n(2^n+3^n)}, \frac{x^n}{n+\log n}, \frac{1}{n\sqrt[n]{n}}$$
 (E. C., 1912);
$$\frac{x^n}{n-\sqrt{n}}, \frac{n^{2x}}{x^n+\log n}, \frac{x^n}{\sqrt[n]{n^n-a}}$$
 (E. P., 1911 et 1912).

(Théorème I, nº 42.)

8. Reconnaître les séries

$$(-1)^n \frac{n^2}{\sqrt{n^5+1}}, \quad (-1)^n \frac{\log n}{n}, \qquad (-1)^n \frac{\sin n x}{n(n+1)}, \quad (-1)^n \frac{\sin n x}{\sqrt{n}}.$$

(Pour les deux premières, on reconnaîtra qu'on est en droit d'appliquer le théorème des séries alternées (n° 48), en cherchant le signe, pour x très grand et positif, des dérivées des fonctions $\frac{x^5+1}{x^4}$, $\frac{\log x}{x}$.)

- 9. On considère la courbe $y = \frac{\sin x}{x}$. Étudier la série formée par les aires successsives qu'elle délimite avec Ox, en comptant positivement les aires au-dessous et négativement les aires au-dessous.
 - 10. Prouver que les suites

$$u_n = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n}, \qquad u_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \log n,$$

$$u_n = \log 1 + \log 2 + \ldots + \log n - \left(n + \frac{1}{2}\right) \log n + n$$

ont convergentes (E. P., 1908).

On prouvera que les séries de termes généraux u_{n+1} — u_n sont con-

vergentes. — La limite de la seconde suite s'appelle la constante d'Euler (Cf. Leçons, n° 238).]

11. Changement de l'ordre des termes dans une série. — Si une série est absolument convergente, on peut intervertir d'une manière quelconque l'ordre de ses termes sans changer sa convergence, ni sa somme. Si elle est semi-convergente, on peut, au contraire, en modifiant convenablement l'ordre de ses termes, lui donner telle somme que l'on veut.

[Considérer d'abord une série à termes positifs (Cf. Leçons, nº 185); puis, dans une série absolument convergente, la série des termes positifs et la série des termes négatifs.

Pour la série semi-convergente, si l'on veut lui donner la somme S, on commence par prendre les termes positifs, dans l'ordre où ils se présentent, jusqu'à ce que leur somme dépasse S; puis, on prend de même des termes négatifs jusqu'à ce que la somme devienne inférieure à S, et ainsi de suite.]

12. Si S est la somme de la série harmonique alternée (nº 48), la série

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots + \frac{1}{4n-3} + \frac{1}{4n-1} - \frac{1}{2n} + \dots$$

est convergente et a pour somme $\frac{3}{2}$ S.

La somme des 3n premiers termes s'écrit

$$S_{4n} + \frac{1}{2} \left(\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \right),$$

en appelant S_{4n} la somme des 4n premiers termes de S. S'appuyer ensuite sur l'exercice 10.

13. Multiplier les séries

$$u_n = \frac{x^n}{n!}, \qquad v_n = \frac{y^n}{n!}; \qquad u_n = (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \qquad v_n = (-1)^n \frac{x^{2n}}{(2n)!};$$

$$u_n = \frac{m(m-1)\dots(m-n+1)}{n!} x^n, \qquad v_n = \frac{p(p-1)\dots(p-n+1)}{n!} x^n.$$

14. Sommer les séries

$$\frac{1}{n(n+1)(n+2)}$$
, $\frac{1.3.5...(2n-1)}{2.4.6...2(n+1)}$

(Cf. exercice résolu nº 7.)

15. Sommer les séries

arc tang
$$\frac{1}{2n^2}$$
, arc tang $\frac{1}{n^2+n+1}$, $\log\left(1-\frac{1}{n^2}\right)$ (E. P., 1912).

Plus généralement, pour sommer une série de la forme

$$\arctan \frac{1}{\alpha n^2 + \beta n + \gamma}$$

ou

$$\log\left(1+\frac{1}{\alpha n^2+\beta n+\gamma}\right)$$

on met son terme général sous la forme

$$arc tang \frac{an+b}{cn+d} - arc tang \frac{a(n-1)+b}{c(n-1)+d}$$

ou

$$\log \frac{an+b}{cn+d} - \log \frac{a(n-1)+b}{c(n-1)+d} \cdot \right]$$

16. Sommer la série $u_n = \log \cos \frac{x}{2^n}$.

$$\left(\text{Se ramener à la limite du produit } \cos \frac{x}{2} \cos \frac{x}{4} \cdot \dots \cdot \cos \frac{x}{2^n} = \frac{\sin x}{2^n \sin \frac{x}{2^n}} \cdot \right)$$

- 17. Calculer à $\frac{1}{100}$ près la série $\left(\frac{1}{2n}\right)^n$.
- 18. Calculer à $\frac{1}{1000}$ près les séries $\frac{\sin n \frac{\pi}{3}}{n!}$, $(-)^n \frac{(0,41)^n}{n}$.
- 19. Calculer avec cinq décimales la série $\frac{\pi}{10} \frac{\left(\frac{\pi}{10}\right)^3}{3!} + \frac{\left(\frac{\pi}{10}\right)^5}{5!} \dots$

CHAPITRE V.

FONCTIONS D'UNE VARIABLE RÉELLE.

EXERCICES RÉSOLUS.

1. Calculer la dérivée de $y = \arctan \left(\frac{x+a}{1-ax}\right)$. — Nous avons affaire à une fonction de fonction (n° 71). Si l'on pose $u = \frac{x+a}{1-ax}$, on a $y = \arctan u$. D'où (n° 71 et 78)

$$y' = \frac{1}{1+u^2}u'.$$
Or (n° 70)
$$u' = \frac{(1-ax)(x+a)' - (x+a)(1-ax)'}{(1-ax)^2} = \frac{1-ax+a(x+a)}{(1-ax)^2} = \frac{1+a^2}{(1-ax)^2}.$$

Donc

$$y' = \frac{1}{1 + \frac{(x+a)^2}{(1-ax)^2}} \frac{1+a^2}{(1-ax)^2} = \frac{1+a^2}{(1-ax)^2 + (x+a)^2}$$
$$= \frac{1+a^2}{(1+a^2)(1+x^2)} = \frac{1}{1+x^2}.$$

Telle est la dérivée demandée.

Dans la pratique, lorsqu'on a acquis quelque habitude du calcul des dérivées, on se dispense de poser, ainsi que nous l'avons fait, $u = \frac{x+a}{1-ax}$. On le fait mentalement et l'on écrit directement

$$y' = \frac{1}{1 + \left(\frac{x+a}{1-ax}\right)^2} \frac{1 - ax + a(x+a)}{(1-ax)^2} = \dots = \frac{1}{1+x^2}.$$

Remarque. — Le lecteur n'est pas sans avoir remarqué la simplicité du résultat obtenu. Il doit même observer que la dérivée calculée est identique à celle de la fonction $\arctan x$ (n° 78). D'où il résulte que la différence y — $\arctan x$ doit être constante (n° 64). C'est ce qu'il est aisé de vérifier.

Posons

$$arc tang x = \alpha$$
, $y - arc tang x = \beta = y - \alpha$.

Pour prouver que β est constant, il suffit de faire voir que tang β l'est. Or

$$tang \beta = tang(y - \alpha) = \frac{tang y - tang \alpha}{1 + tang y tang \alpha}$$

D'autre part,

$$tang y = \frac{x+a}{1-ax}, tang \alpha = x;$$

d'où

tang
$$\beta = \frac{\frac{x+a}{1-ax}-x}{1+\frac{(x+a)x}{1-ax}} = \frac{a(1+x^2)}{1+x^2} = a = \text{const.}$$

On aurait pu aussi poser a priori

$$\beta = \arctan \alpha$$
, $\alpha = \tan \beta$; $\alpha = \arctan \alpha$, $\alpha = \tan \alpha$

D'où

$$\tan g y = \frac{x+a}{1-ax} = \frac{\tan \alpha + \tan \beta}{1-\tan \alpha \tan \beta} = \tan (\alpha + \beta);$$

d'où

$$y = \alpha + \beta + k\pi$$
, $y - \alpha = \beta + k\pi$,
 $y - \arctan x = \arctan x + k\pi = const.$

La valeur de l'entier k est d'ailleurs aisée à calculer, si l'on observe que y, arctang x, arctang a sont compris entre $-\frac{\pi}{2}$ et $+\frac{\pi}{2}$ (n° 78). Suivant que arctang x + arctang a est compris entre $-\pi$ et $-\frac{\pi}{2}$, ou entre $-\frac{\pi}{2}$ et $+\frac{\pi}{2}$, ou entre $\frac{\pi}{2}$ et π , on a k=1, o, ou π .

2. Calculer $\sin 31^{\circ} \stackrel{1}{a} \frac{1}{100} pr \stackrel{.}{es}$.

Ce calcul peut se faire aisément comme application de la formule des accroissements finis. On a, en effet (1),

$$\sin 31^{\circ} = \sin 30^{\circ} + \frac{\pi}{180} \cos \lambda,$$

λ désignant un arc compris entre 30° et 31°. On ne connaît pas λ; mais

⁽¹⁾ Ne pas oublier que, dans l'application de la formule, l'accroissement d'un degré doit être évalué en radians.

on sait que cos λ est plus petit que cos $30^\circ = \frac{\sqrt{3}}{2}$ et plus grand que cos $45^\circ = \frac{\sqrt{2}}{2}$. Donc, on a la double inégalité

$$0.5 + \frac{\pi}{180} \frac{\sqrt{2}}{2} < \sin 31^{\circ} < 0.5 + \frac{\pi}{180} \frac{\sqrt{3}}{2};$$

d'où, a fortiori,

$$\sin 31^{\circ} > 0,5 + \frac{3,14 \times 1,4}{180 \times 2} = 0,5 + \frac{1,57 \times 7}{900} = 0,5 + \frac{10,99}{900} > 0,512$$

et

$$\sin 31^{\circ} < 0.5 + \frac{3.142}{180} \frac{1.8}{2} = 0.5 + \frac{3.142}{200} < 0.516.$$

On a donc $\sin 31^{\circ} = 0.51$, à $\frac{1}{100}$ près, et $\sin 31^{\circ} = 0.514$, à $\frac{1}{500}$ près.

3. Étudier la dérivée $n^{ième}$ de $y=rac{1}{1+x^2}$. On a

(1)
$$y' = \frac{-2x}{(1+x^2)^2}, \quad y'' = \frac{6x^2-2}{(1+x^2)^3}, \quad y''' = \frac{24x(1-x^2)}{(1+x^2)^4}.$$

On peut induire la formule générale

(2)
$$y^{(n)} = \frac{P_n}{(1+x^2)^{n+1}},$$

où P_n désignerait un polynome de degré n, ne renfermant que des termes de même parité (1).

Pour prouver la généralité de cette formule, procédons par récurrence. Admettant l'égalité (2), nous avons

$$\begin{split} \mathcal{Y}^{(n+1)} &= \frac{(\mathbf{1} + x^2)^{n+1} \, \mathbf{P}'_n - \mathbf{P}_n (n+1) (\mathbf{1} + x^2)^n \, 2x}{(\mathbf{1} + x^2)^{2n+2}} \\ &= \frac{(\mathbf{1} + x^2) \, \mathbf{P}'_n - 2 (n+1) x \, \mathbf{P}_n}{(\mathbf{1} + x^2)^{n+2}} = \frac{\mathbf{P}_{n+1}}{(\mathbf{1} + x^2)^{n+2}} \cdot \end{split}$$

Le numérateur est un polynome en x. Son degré est n+1, si le terme en x^{n+1} de $(1+x^2)P'_n$ n'est pas détruit par le terme analogue de $2(n+1)xP_n$. Or, si a_nx^n est le terme de plus haut degré de P_n , celui de P_{n+1} est

$$na_n x^{n+1} - 2(n+1)a_n x^{n+1} = -(n+2)a_n x^{n+1}$$

⁽¹⁾ Cette dernière propriété est évidente α priori si l'on remarque que γ est une fonction paire, donc γ' une fonction impaire. γ'' une fonction paire, etc.

qui ne peut être nul. Donc P_{n+1} est bien de degré n+1. En outre, P_n ne renfermant que des termes de même parité, il en est de même de P'_n , $(1+x^2) P'_n$, $2(n+1)x P_n$, donc de P_{n+1} . Les propriétés prévues sont donc exactes. De plus, nous avons la formule de récurrence

(3)
$$P_{n+1} = (1+x^2)P'_n - 2(n+1)xP_n.$$

Il est aisé de calculer le terme de plus haut degré $a_n x^n$ de P_n . Nous venons de voir, en effet, qu'on avait

$$(4) a_{n+1} = -(n+2)a_n;$$

formule de récurrence linéaire et homogène, qui donne (Note I, n° 314), en remarquant que $a_0 = \tau$,

(5)
$$a_n = (-1)^n (n+1)!$$

Je dis maintenant que le polynome P_n a toutes ses racines réelles et distinctes. En effet, ceci est manifestement vrai pour n=1, 2, 3. Pour montrer que c'est général, admettons la propriété pour P_n et prouvons qu'elle a encore lieu pour P_{n+1} . Soient $\alpha_1, \alpha_2, \ldots, \alpha_n$ les racines de P_n . Pour $x=\alpha_p$ et α_{p+1} , la fonction $y^{(n)}$ s'annule. Comme elle est continue et que sa dérivée $y^{(n+1)}$ est toujours finie, cette dernière s'annule entre α_p et α_{p+1} , en vertu du théorème de Rolle (n° 61). Il s'ensuit que P_{n+1} a u moins une racine dans chacun des n-1 intervalles $(\alpha_1,\alpha_2), (\alpha_2,\alpha_3), \ldots$ (α_{n-1},α_n) .

En second lieu, $y^{(n)}$ s'annule pour $x = \pm \infty$, car le degré du dénominateur de la fraction (2) surpasse celui du numérateur (n° 126, II). Donc, $y^{(n+1)}$ a aussi au moins une racine entre $-\infty$ et α_1 et entre α_n et $+\infty$ (1).

Nous trouvons en tout au moins n+1 racines réelles et distinctes (2) pour P_{n+1} . On sait, d'autre part (n° 219) qu'il ne peut y en avoir davantage. Ceci prouve que, dans chacun des n+1 intervalles précédemment considérés, il y a une racine et une seule.

Finalement, les racines de P_{n+1} sont toutes réelles, distinctes et séparées par celles de P_n .

On obtient des résultats intéressants en appliquant la formule de Leibniz (n° 69) au produit

$$(6) y(\mathbf{i} + x^2) = \mathbf{i}.$$

⁽¹⁾ Nous admettons ici que le théorème de Rolle s'étend au cas où l'intervalle (a, b) devient infini, ce qui est à peu près évident si l'on imagine que b tende vers $+\infty$, ou bien a vers $-\infty$.

⁽²⁾ Elles sont distinctes, parce que séparées par les nombres $\alpha_1, \alpha_2, \ldots, \alpha_n$.

Prenant la dérivée $(n + 2)^{\text{ième}}$ des deux membres et remarquant que les dérivées de $1 + x^2$ sont nulles dès le troisième ordre, nous avons

(7)
$$y^{(n+2)}(1+x^2) + 2(n+2)xy^{(n+1)} + (n+2)(n+1)y^{(n)} = 0;$$

ou, d'après (2),

(8)
$$P_{n+2} + 2(n+2)xP_{n+1} + (n+2)(n+1)(1+x^2)P_n = 0.$$

Cette relation de récurrence ne renferme pas de dérivée [comme (3)], mais intéresse trois polynomes consécutifs. On peut la combiner avec (3). Si l'on y remplace P_{n+2} par $(1+x^2)$ P'_{n+1} — $2(n+2)xP_{n+1}$, elle se réduit à

(9)
$$P'_{n+1} + (n+1)(n+2)P_n = 0.$$

En dérivant (3) et tenant compte de (9) on a maintenant

(10)
$$(1+x^2)P_n'' - 2nxP_n' + n(n+1)P_n = 0,$$

équation différentielle linéaire du second ordre (n° 196), qui va nous permettre de calculer sans peine les coefficients de P_n (Cf. exercice résolu n° 1, Ch. XV).

Soit $a_p x^p$ le terme général. Annulons le coefficient de x^p dans (10)

$$a_{p+2}(p+2)(p+1) + a_p p(p-1) - 2npa_p + n(n+1)a_p = 0,$$

(11)
$$a_{p} = -\frac{(p+1)(p+2)}{(n-p)(n+1-p)}a_{p+2}.$$

ou

D'autre part, nous savons qu'il n'y a que des termes de même parité et nous connaissons a_n . Nous avons alors

Multipliant membre à membre et tenant compte de (5), nous avons

$$a_{n-2q} = (-1)^{n+q} \frac{(n+1)! \ n(n-1)(n-2) \dots (n-2q+1)}{(2q+1)!}$$
$$= (-1)^{n+q} \frac{(n+1)! \ n!}{(2q+1)! (n-2q)!}.$$

4. Étudier les variations de la fonction $y = \sin x + \frac{1}{3} \sin 3x$ (E. P., 1911).

La fonction est définie et continue quel que soit x. Elle admet pour période 2π (n° 66); de sorte qu'il suffit de prendre pour intervalle de variation un intervalle quelconque de longueur 2π . De plus, la fonction est impaire; par suite, si l'on a pris pour intervalle initial $(-\pi, +\pi)$, on est ramené à l'intervalle $(0, \pi)$, quitte à faire une symétrie par rapport à l'origine. Pour réduire encore, essayons le changement $x \mid \pi - x$; il ne modifie pas y. Cela nous indique une symétrie par rapport à la droite $x = \frac{\pi}{2}$ et réduit notre intervalle de variation à $\left(0, \frac{\pi}{2}\right)$ (1). Ce dernier ne peut plus être diminué, car le changement $x \mid \frac{\pi}{2} - x$ modifie la valeur absolue de y.

Prenous maintenant la dérivée

$$y' = \cos x + \cos 3x.$$

Elle s'annule pour

$$\cos 3x = -\cos x = \cos(\pi - x),$$

d'où

$$3x = 2k\pi \pm (\pi - x) = (2k + 1)\pi \pm x.$$

La seule racine de cette équation comprise entre o et $\frac{\pi}{2}$ est $\frac{\pi}{4}$, comme le constatera aisément le lecteur. D'ailleurs, pour x=0, y'=2, et pour $x=\frac{\pi}{3}>\frac{\pi}{4}$, $y'=-\frac{1}{2}$; donc y' est > 0 entre 0 et $\frac{\pi}{4}$ et < 0 entre $\frac{\pi}{4}$ et $\frac{\pi}{2}$. Nous pouvons maintenant dresser le Tableau suivant :

D'où la courbe ci-contre (fig. 2), que l'on complètera par une symétrie

⁽¹⁾ Quand x décrit cet intervalle, $\pi - x$ varie de π à $\frac{\pi}{2}$; la réunion des deux intervalles donne bien l'intervalle $(0, \pi)$.

par rapport à By, puis par une symétrie par rapport à O, et enfin par les translations $\pm 2\pi$, $\pm 4\pi$, ..., suivant Ox.

Fig. 2.

5. Variations de $y = \frac{\arcsin x}{4x^2 - 1}$.

La fonction n'est définie que dans l'intervalle (-1, +1), à cause du numérateur. Elle est impaire, ce qui réduit notre intervalle à (0, +1), tout en indiquant, pour la courbe représentative, une symétrie par rapport à l'origine. Elle devient infinie pour $x = \frac{1}{2}$.

Prenons la dérivée

(1)
$$y' = \frac{\frac{4x^2 - 1}{\sqrt{1 - x^2}} - 8x \arcsin x}{(4x^2 - 1)^2}.$$

Il nous faut le signe du numérateur N. Or, nous ne savons pas trouver directement ses racines, qui sont données par une équation transcendante. Nous devons alors expliquer une des méthodes indiquées au Chapitre XXII.

On song θ tout d'abord à étudier les variations de N. Mais, en prenant mentalement sa dérivée, on constate que arc $\sin x$ ne disparaît pas; on serait donc encore conduit à la résolution d'une équation transcendante. On évite au contraire cette difficulté, en mettant x en facteur dans N, soit

(2)
$$N = x \left(\frac{4x^2 - 1}{x\sqrt{1 - x^2}} - 8 \arcsin x \right) = xz,$$

et étudiant les variations de z.

Cette nouvelle fonction est définie et continue dans tout l'intervalle

(o, +1), les bornes exceptées. On a maintenant (1)

$$\begin{split} z' &= \frac{8 \, x^2 \, \sqrt{1 - x^2} - (4 \, x^2 - 1) \left(\sqrt{1 - x^2} - \frac{x^2}{\sqrt{1 - x^2}} \right)}{x^2 (1 - x^2)} - \frac{8}{\sqrt{1 - x^2}} \\ &= \frac{(4 \, x^2 - 1) \, (2 \, x^2 - 1)}{x^2 (1 - x^2)^{\frac{3}{2}}}, \end{split}$$

quantité qui change de signe pour $x = \frac{1}{2}$ et $x = \frac{1}{\sqrt{2}}$. Nous formons le Tableau auxiliaire suivant, où nous indiquons seulement les signes de z,

x	0		1/2		$\frac{1}{\sqrt{2}}$		T
z'		+				+	
z	_	×	_	×		У	+

On voit que z s'annule, en passant du négatif au positif, pour une certaine valeur x_1 comprise entre $\frac{1}{\sqrt{2}}$ et 1 (2). Nous pouvons à présent dresser le Tableau des variations de y:

. x	o		<u>7</u>		x_1		ι
y .'	— I				o	+	+ &
у	o	×	$-\infty \left +\infty \right $	¥	J'1	1	$\frac{\pi}{6}$

On a d'ailleurs

$$y_1 = \frac{\arcsin x_1}{4x_1^2 - 1},$$

$$\frac{8}{\sqrt{3}} - \frac{8\pi}{3} = \frac{8}{3} \left(\sqrt{3} - \pi \right) < 0.$$

⁽¹⁾ Nous nous servons, pour ce calcul, de la dérivée d'un radical (nº 94).

⁽²⁾ Elle est même comprise entre $\frac{\sqrt{3}}{2}$ et 1, car, pour $x = \frac{\sqrt{3}}{2}$, z est égal à

ou, en se rappelant que x_1 annule z,

$$y_1 = \frac{1}{8x_1\sqrt{1-x_1^2}}.$$

Nous traçons enfin la courbe représentative, qui a l'allure suivante (fig. 3). Le point A est un point d'arrêt; la tangente y est parallèle

à Oy. La tangente en O est la deuxième bissectrice. La droite $x=\frac{1}{2}$ est asymptote. Ajoutons enfin qu'en faisant la symétrie signalée au début, on obtient la courbe tracée en pointillé.

EXERCICES PROPOSÉS.

- 1. Soit une fonction f(x), qui, dans l'intervalle (a, b), admet une dérivée dont la valeur absolue reste inférieure à un nombre fixe A. Étant donné un nombre positif ε , déterminer un nombre η tel que l'oscillation de la fonction soit inférieure à ε dans tout intervalle plus petit que η .
- (Cf. n° 59, Théorème IV. Appliquer la formule des accroissements finis)
- 2. Calculer approximativement, à l'aide de la formule des accroissements finis, les quantités suivantes : $\sin 59^{\circ}$, $\cos 46^{\circ}$, arc tang 1,023, $(1,001)^{7} 2(1,001)^{3}$.
- 3. Si f(x) et g(x) sont deux fonctions finies et continues dans l'intervalle (a, b), y admettant des dérivées finies et ne pouvant s'annuler

simultanément; si enfin $g(b) \neq g(a)$, on a

$$k = \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)},$$

en appelant c un nombre compris entre a et b.

[Généralisation de la formule des accroissements finis. Se démontre d'une manière analogue, en considérant la fonction

$$f(x) - f(a) - k[g(x) - g(a)]$$

4. Calculer les dérivées des fonctions

$$\frac{ax+b}{cx+d}, \quad \frac{ax^2+bx+c}{a'x^2+b'x-c'}, \quad \frac{x^3-3x^3-x+2}{x^3-x-1}, \quad \sin^3 x \cos x,$$

$$\tan g\left(\frac{x+1}{1-2x^3}\right), \quad \arcsin \frac{x}{x^2+1}, \quad \arctan g\left(\frac{x^3-1}{x+2}\right). \quad \arctan g\left(\sin x^2\right)^3\right].$$

5. Calculer les dérivées des fonctions suivantes et expliquer les résultats (Cf. exercice résolu n° 1):

arc
$$\cos(2x^2-1)$$
, $\arcsin(3x-4x^2)$, $\arctan \frac{1}{x}$, $\arctan \frac{2x}{1-x^2}$, $\arcsin(\cos x)$, $\arcsin(x\cos x+\beta\sin x)$ sachant que $\alpha^2+\beta^2=1$.

$$\arcsin\frac{2x}{1+x^2},\quad \arccos\frac{1-x^2}{1+x^2},$$

$$\arcsin\left(\alpha\sqrt{1-x^2}+x\sqrt{1-\alpha^2}\right),\quad \arcsin2x\sqrt{1-x^2},$$

$$\arctan\frac{\sqrt{1-x^2}}{x},\quad \arctan\sqrt{\frac{1-\sin x}{1+\sin x}}.$$

6. Calculer les dérivées n^{iemes} des fonctions $x^n \sin x$, $\sin x \cos x$, $(x-a)^n (x-b)^n$.

Employer la formule de Leibniz (n° 69). Pour la deuxième fonction, on comparera le résultat avec celui qu'on obtiendrait en dérivant $\frac{1}{2}\sin 2x$. Pour la troisième, on examinera le cas de a=b et l'on en déduira la somme des carrés des coefficients du binome.

- 7. Étudier la dérivée $n^{\text{ième}}$ de $\frac{1}{x^2 2x \cos \theta + 1}$. (Cf. exercice résolu n° 3.)
- 8. Étudier la dérivée $n^{\text{lème}}$ de $y = \sin(x^2) + \cos(x^2)$. [Elle est de la forme $P_n \sin(x^2) + Q_n \cos(x^2)$, P_n et Q_n désignant

deux polynomes de degré n, dont on pourra calculer les termes de plus haut degré.]

- 9. Calculer arc sin x et arc cos x, pour x = 0, $\frac{1}{2}$, $\frac{\sqrt{2}}{2}$, $\frac{\sqrt{3}}{2}$, 1, ainsi que arc tang x et arc cot x, pour x = 0, $\frac{1}{\sqrt{3}}$, 1, $\sqrt{3}$, $+\infty$.
- 10. Calculer, à l'aide des Tables, arc $\sin (-0.258)$, arc $\cos (0.586)$, arc $\tan (-8.231)$.
 - 11. Étudier les variations des fonctions suivantes :

- 12. Calculer la dérivée de la fonction $\frac{i}{2} \left(\frac{1}{x+i} \frac{1}{x-i} \right)$.
- 13. Calculer la dérivée logarithmique de la fonction $\cos x + i \sin x$.

CHAPITRE VI.

FONCTIONS EXPONENTIELLE ET LOGARITHMIQUE. NOMBRE e.

EXERCICES RÉSOLUS.

1. La fonction exponentielle est la seule fonction continue satisfaisant à l'identité fonctionnelle

(1)
$$f(x)f(y) = f(x+y).$$

Cette proposition, qui est en quelque sorte une réciproque de la formule (2) du nº 81, peut s'établir comme il suit :

Si dans (1) on fait x = 0, on a

$$f(\mathbf{0})f(\mathbf{y}) = f(\mathbf{y}),$$

d'où

$$f(0)=I.$$

Si l'on fait maintenant x = y, on a

$$[f(x)]^2 = f(2x).$$

Plus généralement, je dis que, si n est un entier positif, on a

$$[f(x)]^n = f(nx).$$

En effet, ceci est vrai pour n=2. Procédons dès lors par récurrence. Admettons

$$[f(x)]^{n-1} = f[(n-1)x].$$

En multipliant les deux membres par f(x), il vient

$$[f(x)]^n = f[(n-1)x]f(x) = f[(n-1)x + x] = f(nx).$$

La formule est donc vraie pour toutes les valeurs entières et positives de n. Je dis qu'elle l'est également pour n fractionnaire positif. Soit à

démontrer

$$[f(x)]^{\frac{p}{q}} = f\left(\frac{p}{q}x\right).$$

A cet effet, élevons les deux membres à la puissance q:

$$[f(x)]^p = \left[f\left(\frac{p}{q}x\right)\right]^q = f\left(\frac{p}{q}x,q\right) = f(px),$$

ce que nous savons être exact.

Je dis maintenant qu'on a encore (3) quand n est incommensurable et positif. En effet, imaginons que $\frac{p}{q}$ tende vers n, ce qui est possible (n° 5). On aura constamment (4). Mais, le premier membre tend vers $[f(x)]^n$, d'après la continuité de la fonction exponentielle. Le second membre tend vers f(nx) parce qu'on suppose la fonction f(x) continue. Donc, à la limite, on a bien (3).

Enfin, je dis que l'égalité a encore lieu pour n < 0. Soit n' = -n(n > 0). Il faut prouver que

$$[f(x)]^{-n} = f(-nx),$$

ou

$$\frac{1}{[f(x)]^n} = f(-nx).$$

D'après ce qui précède, ceci revient à

$$I = f(nx)f(-nx) = f(nx - nx) = f(0),$$

ce qui est vrai. [Équation (2).]

Finalement, l'identité (3) a lieu quels que soient x et n. Si nous y faisons x = 1 et si nous posons f(1) = a, nous obtenons $f(n) = a^n$, ou, en changeant n en x,

$$f(x) = a^x.$$
 C. Q. F. D.

2. Limite de $(\cos x)^{\frac{1}{x^2}}$ pour x = 0.

L'exposant devient infini, $\cos x$ tend vers 1. On a une expression de la forme $(1 + \alpha)^{\beta}$ (n° 92). On a

$$\beta = \frac{1}{x^2}, \qquad \alpha = \cos x - 1 = -2\sin^2\frac{x}{2},$$

d'où

$$\alpha\beta = -\frac{2\sin^2\frac{x}{2}}{x^2} = -\frac{1}{2}\left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2 \rightarrow -\frac{1}{2}.$$

La limite demandée est

$$e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}}.$$

3. Dérivée de $\log(x + \sqrt{x^2 + a})$.

On a

$$y' = \frac{1 + \left(\sqrt{x^2 + a}\right)'}{x + \sqrt{x^2 + a}}.$$

Or $\sqrt{x^2+a}=(x^2+a)^{\frac{1}{2}}$ a pour dérivée (n° 71 et 94)

$$\frac{1}{2}(x^2+a)^{\frac{1}{2}-1}2x=\frac{x}{\sqrt{x^2+a}} \quad (1).$$

Donc

$$y' = \frac{1 + \frac{x}{\sqrt{x^2 + a}}}{x + \sqrt{x^2 - a}} = \frac{1}{\sqrt{x^2 + a}}$$

4. Différences tabulaires dans les Tables de logarithmes.

La formule des accroissements finis (n° 62) permet d'avoir aisément une valeur approchée de ces différences. On a

$$\delta = \log_{10}(x+1) - \log_{10}x = M[\log(x+1) - \log x]$$
 (n° 88).

Or, d'après la formule des accroissements finis, on peut écrire

$$\log(x+1) - \log x = \frac{1}{x+\theta} \qquad (0 < \theta < 1).$$

Donc, δ est compris entre $\frac{M}{x+1}$ et $\frac{M}{x}$. Chacun de ces nombres est approché de δ à moins de

$$\mathbf{M}\left(\frac{\mathbf{I}}{x} - \frac{\mathbf{I}}{x+1}\right) = \frac{\mathbf{M}}{x(x+1)} < \frac{\mathbf{I}}{2x^2}.$$

Cherchons par exemple la différence relative aux nombres 3586 et 3587. On a

$$\delta = \frac{M}{3587},$$

$$(\sqrt{y})' = \frac{\frac{y'}{2}}{\sqrt{y}}.$$

⁽¹⁾ D'une façon générale, on a la formule suivante, qu'il est commode de savoir par cœur, vu son application fréquente :

avec une erreur par défaut inférieure à

$$\frac{1}{2(3586)^2} < \frac{1}{20000000} = \frac{1}{2.10^7}.$$

Si, dans l'évaluation du quotient $\frac{M}{3587}$, on commet une erreur par excès moindre que $\frac{1}{2.10^7}$, l'erreur totale sera toujours inférieure à cette même quantité. Or, si ε est l'erreur commise sur M, l'erreur sur le quotient est $\frac{\varepsilon}{3587}$. Prenons donc $\frac{\varepsilon}{3587} < \frac{1}{2.10^7}$; il suffit que $\varepsilon < \frac{2.10^3}{2.10^7} = \frac{1}{10^4}$. Autrement dit, nous prenons M = 0,4343 (n° 88). Nous avons alors

$$\delta = \frac{0,4343}{3587} = 0,00012108....$$

Nous sommes assurés que δ est compris entre 0,00012103 et 0,00012113. Si l'on se contente de tables à 5 décimales, la différence tabulaire doit être 0,00012, c'est-à-dire 12. C'est ce que le lecteur vérifiera sur une table.

5. Étudier les variations de $y = \left(1 + \frac{1}{x}\right)^x$.

La fonction n'est définie que pour $1 + \frac{1}{x} > 0$, c'est-à-dire x > 0, ou bien x < -1.

Calculons la dérivée. Nous pourrions le faire en appliquant le théorème des fonctions composées (n° 130). Il est plus simple de passer par le logarithme

$$\log y = x \log \left(1 + \frac{1}{x}\right),$$

$$\frac{y'}{y} = \log \left(1 + \frac{1}{x}\right) + x \frac{-\frac{1}{x^2}}{1 + \frac{1}{x}} = \log \left(1 + \frac{1}{x}\right) - \frac{1}{1 + x} = z.$$

Le signe de y' est celui de z, car y est essentiellement positif. Nous ne savons pas résoudre l'équation z = 0; étudions dès lors les variations de z (Chap. XXII). Nous avons

$$z' = \frac{-\frac{1}{x^2}}{1 + \frac{1}{x}} + \frac{1}{(1+x)^2} = \frac{-1}{x(x+1)^2}.$$

Lorsque x croît de $-\infty$ à -1, z' reste > 0; donc z croît, d'ailleurs à partir de zéro, et par suite demeure > 0. Quant x croît de 0 à $+\infty$,

z' reste < 0; donc z décroît, d'ailleurs jusqu'à zéro, et par suite demeure > 0.

Finalement, y' est toujours > 0; la fonction y crott dans tout intervalle où elle est continue.

Pour $x = \pm \infty$, y = e (n° 91). Quand x tend vers -1, $1 + \frac{1}{x}$ tend vers zéro, $\log \left(1 + \frac{1}{x}\right)$ vers $-\infty$, $\log y$ vers $+\infty$, donc y vers $+\infty$.

Quand x tend vers zéro par valeurs positives, $1 + \frac{1}{x}$ tend vers $+\infty$, $\log y$ tend vers zéro (n° 96) (¹); donc y tend vers $e^0 = 1$.

On a finalement le Tableau

D'où la courbe ci-dessous (fig.4). Le point A(o, 1) est un point d'arrêt. La tangente en ce point est Oy, car y' y est infini.

6. Limite de
$$y = \frac{(\log x)^x}{x^m}$$
, pour $x = +\infty$.

Posons $\log x = z$; il faut chercher la limite, pour $z = +\infty$, de

$$y = \frac{(z)^e}{e^{mz}}.$$

$$\log y = \frac{\log\left(1 + \frac{1}{x}\right)}{1 + \frac{1}{x}}\left(1 + \frac{1}{x}\right)x.$$

Le premier facteur tend vers zéro (n° 96, 5°), le second vers 1; donc $\log y$ tend vers zéro.

⁽¹⁾ On sait en effet que c'est le facteur rationnel qui l'emporte sur le logarithme Du reste, on peut écrire

Passons au logarithme

$$\log y = e^z \log z - mz = z \left(\frac{e^z}{z} \log z - m\right).$$

Pour $z = +\infty$, $\frac{e^z}{z}$ tend vers $+\infty$ (n° 96), ainsi que $\log z$; donc aussi la parenthèse, et, par suite, $\log y$. D'où il résulte enfin que la limite cherchée est $+\infty$.

EXERCICES PROPOSÉS.

1. Trouver les fonctions continues satisfaisant aux identités fonctionnelles

$$f(x) + f(y) = f(xy), \quad f(x) + f(y) = f(x+y), \quad f(x)f(y) = f(xy).$$

[Cf. exercice résolu nº 1. On établira les identités

$$n f(x) = f(x^n), \quad n f(x) = f(n x), \quad [f(x)]^n = f(x^n).$$

Puis, on posera $x^n = z$ pour la première et la dernière, x = 1 pour la deuxième.

On peut aussi se ramener à l'identité (1) de l'exercice ci-dessus mentionné. Pour la première, considérer la fonction inverse de f(x). Pour la seconde, poser $e^{f(x)} = \varphi(x)$. Pour la troisième, poser $f(e^x) = \varphi(x)$ Pour la première, on peut aussi poser $e^{f(e^x)} = \varphi(x)$.]

- 2. Étant donnés deux nombres positifs a et ε , déterminer η tel que l'inégalité $|x-x'| < \eta$ entraîne $|a^x-a^{x'}| < \varepsilon$, quels que soient x et x' dans un intervalle donné (α, β) .
 - 3. Limites, pour x = 0, des expressions

$$(1+\sin x)^{\cot x}, \quad \left(\frac{a^{\alpha x}+b^{\beta x}}{2}\right)^{\frac{1}{x}}, \quad \left(\frac{x}{\sin x}\right)^{\frac{1}{x^2}}.$$

4. Limites, pour m infini, des expressions

$$\left(1+\frac{a}{m}+\frac{b}{m^2}\right)^m, \quad \left(\frac{m^2+am+b}{m^2+cm+d}\right)^{\alpha+\beta m+\gamma m^2},$$

$$\left(1+\frac{1}{\log m}\right)^{m^\alpha}, \quad (1+e^{-m})e^{\sqrt{m}+m}.$$

5. Dérivées de $\log \sin x$, $\log \tan \frac{x}{2}$, $\log \tan \left(\frac{\pi}{4} + \frac{x}{2}\right)$.

6. Dérivées de
$$2^{2^x}$$
, $x^{\sin x}$, $\log \log \log (x + \sqrt{x^2 + a})$, x^{x^x} , $\sqrt[3]{x^2 + 3x}$, $\frac{1}{\sqrt{ax^2 + bx + c}}$.

- 7. Dérivées $n^{\text{ièmes}}$ de $e^x x^p$, $e^x \cos x$. (Formule de Leibniz, nº 69.)
 - 8. Dérivées $n^{\text{ièmes}}$ de $\frac{1}{x+a}$, $\frac{1}{x^2+1}$, $\log(1+x)$, $\log(1+x^2)$. [Pour la deuxième function, écrire

$$\frac{1}{x^2+1} = \frac{i}{2} \left(\frac{1}{x+i} - \frac{1}{x-i} \right) \cdot$$

Cf. Chap. V, exercice résolu nº 3].

- 9. Étudier la dérivée $n^{\text{ième}}$ de e^{-x^2} .
- [Cf. exercice mentionné ci-dessus. On montrera que $y^{(n)}$ est de la forme $e^{-x^2}P_n(x)$, P_n étant un polynome de degré n, pair ou impair, ayant toutes ses racines réelles. On établira une équation différentielle vérifiée par P_n en appliquant la formule de Leibniz au produit y' = -2xy.]
 - 10. Même question pour $e^{\frac{1}{x}}$.
 - 11. Variations des fonctions

$$x^x, \quad x^{\frac{1}{x}}, \quad \frac{\log x}{x}, \quad \log x - x, \quad e^x x^m, \quad x \left(1 + \frac{1}{x}\right)^x;$$

$$\tan x + \log x, \quad \frac{\sqrt{x^2 + x} + \sqrt{x - x^2}}{x}.$$

- 12. Limites, pour x infini, de $\frac{e^{x^2-2x-1}}{x^6+4x^3}$, $\frac{\log(x^2-1)}{x+1}$.
- 13. Limite, pour x infini, de $y = \frac{\log(x+a)}{\log x}$.

$$\left[\text{Écrire } y - 1 = \frac{\log \frac{x+a}{x}}{\log x} \cdot \right]$$

- 14. Limite de $\frac{\log u}{\log v}$, pour u et v infinis, sachant que le rapport $\frac{u}{v}$ reste fini. (Cf. 13.)
 - 15. Limite de $\frac{\log(a^n+b)}{\alpha n+\beta}$ pour *n* infini. (*Cf.* 14.)

16. Limites de $(\sin x)^{\tan x}$, $x^2 \log \frac{x^3+1}{\sin x}$, pour x=0, et de

$$\frac{\log[1-(\sin x)^p]}{\tan x}, \quad \text{pour } x = \frac{\pi}{2}.$$

17. Résoudre les équations

$$\frac{e^x + e^{-x}}{2} = a, \qquad e^{3x} + pe^x = qe^{-x}, \qquad \alpha \log ax + \beta \log bx + \gamma \log cx = m.$$

(Pour les deux premières, prendre pour inconnue e^x ou e^{2x} . Pour la troisième, on se ramène à une équation de la forme $x^p = A$.)

CHAPITRE VII.

SÉRIES ENTIÈRES.

EXERCICES RÉSOLUS.

1. Calculer la somme de la série $u_n = \frac{x^n}{n(n-1)(n-2)}$. Généra-liser. — Soit y la somme de cette série, pour laquelle nous supposerons que la plus petite valeur de n est n=3, afin que u_n ne devienne pas infini. Si nous dérivons trois fois de suite le terme général, il se réduit à x^{n-3} . Donc

$$y''' = \sum_{n=3}^{+\infty} x^{n-3} = 1 + x + x^2 + \ldots = \frac{1}{1-x}$$
 (n° 107, I),

en supposant |x| < 1. Intégrant trois fois de suite (n° 161, IV) et observant que y, y', y'' s'annulent pour x = 0, nous avons

$$y'' = -\log(1-x), \qquad y' = (1-x)\log(1-x) + x.$$

$$y = -\frac{(1-x)^2}{2}\log(1-x) + \frac{3x^2}{4} - \frac{x}{2}.$$

Vérification. — Nous avons (nº 107, II)

$$-\log(1-x) = \frac{x}{1} + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n} + \dots,$$
$$\frac{(1-x)^2}{2} = \frac{1}{2} - x + \frac{x^2}{2}.$$

Multiplions et ajoutons à $\frac{3x^2}{4} - \frac{x}{2}$. Les termes en x et x^2 disparaissent. Pour n > 2, le terme en x^n a pour coefficient

$$\frac{1}{2n} - \frac{1}{n-1} + \frac{1}{2(n-2)} = \frac{1}{n(n-1)(n-2)}.$$

Généralisations. — On pourrait calculer de même la série de terme général $\frac{x^n}{n(n-1)\dots(n-p+1)}$.

Plus généralement, soit

(2)
$$y = \sum \frac{x^n}{(n+q)(n+q-1)...(n+q-p+1)}$$

q et p étant deux entiers quelconques, le second positif. La fonction $z = yx^q$ rentre dans le type précédent. On la calculera; puis, l'on aura $y = zx^{-q}$.

Plus généralement encore, imaginons une série entière dont le coefficient de x^n soit une fraction rationnelle en n ayant tous ses pôles (n° 211) simples, entiers et négatifs (¹). Par une décomposition de cette fraction en éléments simples, on se ramènera à des séries telles que $\frac{x^n}{n+p}$ et $n^p x^n$. La première rentre dans le type (2). Quant à la seconde, si l'on désigne sa somme par y_n , on a la formule de récurrence, facile à vérifier,

$$y_p = xy'_{p-1};$$

qui permet de calculer, de proche en proche, y_1, y_2, y_3, \ldots en fonction de $y_0 = \sum_{n=1}^{\infty} x^n = \frac{1}{1-x}$.

Une autre généralisation est la suivante: Sommer une série dont le terme général est le produit de $\frac{x^n}{n!}$ par une fraction rationnelle du type précédent.

En procédant comme tout à l'heure, on se ramène à des séries de la forme $\frac{x^n}{(n+p)n!}$ et $n^p\frac{x^n}{n!}$. Pour sommer la première, il suffit de multiplier par x^p et de dériver pour retomber sur la série $e^x x^{p-1}$; de sorte que l'on est ramené à la quadrature $\int e^x x^{p-1} dx$, qui se calcule par les fonctions élémentaires dès que $p \ge 1$ (n° 161, I).

Quant à $y_p = \sum_{n=1}^{\infty} n^p \frac{x^n}{n!}$, elle vérifie encore la relation (3) et se ramène, de proche en proche, à $y_0 = e^x - 1$ (2).

⁽²⁾ Cf. J. HAAG, Nouv. Ann. de Math. (avril 1912, p. 181), et EGAN, Id. (septembre 1912, p. 424).

⁽¹⁾ On les suppose négatifs pour que la fraction ne devienne infinie pour aucune valeur de n positive ou nulle. S'il y avait des pôles positifs, il suffirait d'augmenter n d'un nombre naturel convenable pour les rendre négatifs.

On pourrait admettre aussi des pôles multiples. Mais, on serait conduit à des quadratures ne se ramenant pas aux fonctions élémentaires. On pourrait même envisager des pôles non entiers, ou imaginaires, c'est-à-dire en somme une fraction rationnelle quelconque.

2. Développer en série entière la fonction $y = \frac{1}{1 - 2x \cos \theta + x^2}$. Décomposons en éléments simples (n° 107, I). Les pôles sont

$$x = \cos\theta \pm \sqrt{\cos^2\theta - 1} = \cos\theta \pm i \sin\theta = \begin{cases} e^{i\theta} \\ e^{i-\theta} \end{cases} \quad (\text{n° 109, I}).$$

Nous avons alors

$$y = \frac{1}{(e^{i\theta} - x)(e^{-i\theta} - x)} = \frac{1}{e^{-i\theta} - e^{i\theta}} \left(\frac{1}{e^{i\theta} - x} - \frac{1}{e^{-i\theta} - x} \right)$$
$$= \frac{i}{2\sin\theta} \left(\frac{1}{e^{i\theta} - x} - \frac{1}{e^{-i\theta} - x} \right).$$

Or,

(2)
$$\frac{1}{e^{i\theta}-x} = \frac{1}{e^{i\theta}} \frac{1}{1-xe^{-i\theta}} = e^{-i\theta}(1+xe^{-i\theta}+x^2e^{-2i\theta}+...+x^ne^{-ni\theta}+...),$$

formule valable pour $|xe^{-i\theta}| < 1$, c'est-à-dire |x| < 1, puisque $|e^{-i\theta}| = 1$, (n° 109, 1).

De même, en changeant θ en $-\theta$.

(3)
$$\frac{1}{e^{-i\theta}-x}=e^{i\theta}(1+xe^{i\theta}+x^2e^{2i\theta}+\ldots+x^ne^{ni\theta}+\ldots).$$

Portons dans (1)

$$y = \frac{i}{2\sin\theta} \left[(e^{-i\theta} - e^{i\theta}) + x(e^{-2i\theta} - e^{2i\theta}) + \ldots + x^n (e^{-(n+1)i\theta} - e^{(n+1)i\theta}) + \ldots \right],$$

$$(4) \quad \mathbf{y} = \frac{1}{\sin \theta} \left[\sin \theta + x \sin 2\theta + x^2 \sin 3\theta + \ldots + x^2 \sin (n+1)\theta + \ldots \right],$$

formule valable pour |x| < 1.

3. Développer en série arc tang [R(x)], log[R(x)], où R(x) désigne une fraction rationnelle quelconque.

Les dérivées de ces fonctions sont visiblement rationnelles. On les développera par la méthode du n° 107, l; puis on intégrera terme à terme (n° 106, I).

Pour le logarithme, il est néanmoins plus simple de procéder de la manière suivante; on décompose le numérateur et le dénominateur de R(x) en un produit de facteurs linéaires (n° 205); soit

$$R(x) = A \frac{(x+a)^{\alpha}(x+b)^{\beta}...(x+l)^{\lambda}}{(x+a')^{\alpha'}(x+b')^{\beta'}...(x+l')^{\lambda'}}$$

On a

$$\log R(x) = \log A + \alpha \log(x+a) + \ldots - \alpha' \log(x+a') - \ldots$$

On développe chaque terme en série, en écrivant par exemple

$$\log(x+a) = \log\left(1 + \frac{x}{a}\right) + \log a;$$

puis, on ajoute (1).

4. Développer en série la fonction $y = (\arcsin x)^2$ (E. P., 1911). — On pourrait former le carré de arc $\sin x$ (n° 107, VII); mais les calculs semblent compliqués. Essayons de prendre la dérivée

$$y' = \frac{2 \arcsin x}{\sqrt{1 - x^2}}.$$

On ne peut encore développer directement. Dérivons de nouveau

(2)
$$y'' = 2 \arcsin x \frac{x}{(1-x^2)^{\frac{3}{2}}} + \frac{2}{1-x^2}.$$

On ne peut encore développer. Mais, si l'on élimine arc $\sin x$ entre (1) et (2), on obtient l'équation différentielle linéaire très simple

(3)
$$y''(1-x^2)-xy'-2=0$$
,

ce qui nous conduit à la méthode des coefficients indéterminés (n° 106, III).

Posons

$$-x \mid y' = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + \ldots,$$

$$1 - x^2 \mid y'' = a_1 + 2 a_2 x + 3 a_3 x^2 + \ldots + n a_n x^{n-1} + \ldots$$

Portons dans (3) et annulons successivement les termes constant, en x, en x^2 , ..., en x^n ; il vient

$$a_1 - 2 = 0$$
, $2a_2 - a_0 = 0$, $3a_3 - a_1 - a_1 = 0$, ...,
 $(n+1)a_{n+1} - (n-1)a_{n-1} - a_{n-1} = 0$.

D'où

$$a_1 = 2,$$
 $a_2 = \frac{a_0}{2},$ $a_3 = \frac{4}{3},$...,

$$(4) \qquad (n+1)a_{n+1} = na_{n-1}.$$

La formule (4) nous conduit à distinguer les termes de rang pair et ceux de rang impair.

Pour x = 0, y' s'annule; donc a_0 et par suite tous les termes de rang

⁽¹⁾ On développerait de même $\log \sqrt[p]{\mathrm{R}(x)} = \frac{1}{p} \log \mathrm{R}(x)$.

pair sont nuls (1). Nous avons seulement à calculer a_{2n+1} , d'après la formule de récurrence

$$(2n+1)a_{2n+1}=2na_{2n-1},$$

et en tenant compte de $a_1 = 2$. En opérant suivant la méthode générale (n° 314), on trouve

$$a_{2n+1} = 2 \frac{2 \cdot \cancel{1} \cdot 6 \cdot \cdot \cdot 2n}{3 \cdot \cancel{5} \cdot \cancel{7} \cdot \cdot \cdot (2n+1)}$$

Nous avons donc

(5)
$$y' = 2 \left[x - \frac{2}{3} x^3 - \frac{2.4}{3.5} x^5 + \ldots + \frac{2.4 \cdot 6 \cdot \ldots 2n}{3.5 \cdot 7 \cdot \ldots (2n+1)} x^{2n+1} + \ldots \right].$$

Cette série admet pour intervalle de convergence (-1, +1), comme le montre la règle de d'Alembert. La formule (5) est donc valable à l'inrieur de cet intervalle. En intégrant terme à terme, on a finalement, en remarquant que γ s'annule pour x = 0.

(6)
$$y = x^2 + \frac{2}{3} \cdot \frac{2^4}{2} + \frac{2 \cdot 4}{3 \cdot 5} \cdot \frac{x^6}{3} + \dots + \frac{2 \cdot 4 \cdot 6 \dots 2n}{3 \cdot 5 \cdot 7 \dots (2n-1)} \cdot \frac{x^{2n+2}}{n+1} + \dots$$

5. Calcul des logarithmes. — Le développement (16) du nº 107 permet de calculer les logarithmes népériens, et par suite les logarithmes vulgaires, des nombres compris entre o et 2. Mais, il est d'un emploi peu commode, à cause de sa très lente convergence. Dans la pratique, voici comment il vaut mieux procéder:

On a

$$\log(1+x) = -\frac{x}{1} - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$
$$\log(1-x) = -\frac{x}{1} - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots$$

Retranchons

$$\log \frac{1-x}{1-x} = 2\left(\frac{x}{1} + \frac{x^3}{3} + \frac{x^5}{5} + \ldots\right).$$

Ce développement est valable pour |x| < 1.

Posons

$$\frac{1+x}{1-x} = \frac{N-1}{N}, \quad x = \frac{1}{2N+1};$$

nous avons

$$\log(N+1) = \log N + 2 \left[\frac{1}{2N+1} + \frac{1}{3} \left(\frac{1}{2N+1} \right)^3 + \frac{1}{5} \left(\frac{1}{2N+1} \right)^5 + \dots \right].$$

⁽¹⁾ C'était à prévoir, car y' est une fonction impaire.

Si N désigne un nombre entier positif, $\frac{1}{2N+1}$ est inférieur à l'unité, et la formule ci-dessus permet de calculer de proche en proche les logarithmes de tous les nombres entiers, au moyen d'une série qui converge rapidement, surtout quand N devient grand.

6. Calcul de π . — La formule (17) du nº 107 (III) permet de calculer le nombre π avec une approximation illimitée. Si l'on y faisait par exemple $x=\frac{1}{\sqrt{3}}$, on obtiendrait la valeur de $\frac{\pi}{6}$. On rend les calculs plus rapides en procédant comme il suit.

De la formule (Cf. Chap. V, exercice résolu nº 1)

$$arc tang a - arc tang b = arc tang \frac{a-b}{1+ab}$$

on déduit (1)

4 arc tang
$$\frac{1}{5}$$
 — arc tang 1 = arc tang $\frac{1}{239}$;

d'où

$$\begin{split} \frac{\pi}{4} &= \arctan \pi \, \mathbf{i} = 4 \arctan g \, \frac{\mathbf{i}}{5} - \arctan g \, \frac{\mathbf{i}}{239} \\ &= 4 \left[\frac{\mathbf{i}}{5} - \frac{\mathbf{i}}{3} \left(\frac{\mathbf{i}}{5} \right)^3 + \frac{\mathbf{i}}{5} \left(\frac{\mathbf{i}}{5} \right)^5 - \dots \right] \\ &- \left[\frac{\mathbf{i}}{239} - \frac{\mathbf{i}}{3} \left(\frac{\mathbf{i}}{239} \right)^3 + \frac{\mathbf{i}}{5} \left(\frac{\mathbf{i}}{239} \right)^5 - \dots \right]. \end{split}$$

Prenons par exemple trois termes dans le premier crochet et un terme dans le second. L'erreur ε_1 commise sur le premier crochet est du signe du premier terme négligé $-\frac{1}{7}\left(\frac{1}{5}\right)^7$ et inférieure à ce terme en valeur absolue (n° 54, 4°). On a donc

$$\epsilon_1 < 0, \qquad |\epsilon_1| < \frac{2^7}{7 \cdot 10^7} = \frac{128}{7 \cdot 10^7} < \frac{2}{10^6}$$

De même, l'erreur ε_2 commise sur le second crochet est négative et l'on a

$$|\epsilon_2| < \frac{1}{3} \frac{1}{(239)^3} < \frac{1}{3(200)^3} = \frac{1}{24.10^6} < \frac{1}{10^7}$$

(1) On calcule d'abord

$$2 \arctan \frac{1}{5} = \arctan \frac{1}{5} + \arctan \frac{1}{5} = \arctan \left(\frac{\frac{2}{5}}{1 - \frac{1}{25}}\right) = \arctan \frac{5}{12};$$

puis, de mème,

4 arc tang
$$\frac{1}{5}$$
 = 2 arc tang $\frac{5}{12}$ = arc tang $\frac{120}{119}$.

L'erreur commise sur $\frac{\pi}{4}$ est $4\varepsilon_1 - \varepsilon_2$; elle est inférieure en valeur absolue à $\frac{8}{10^6}$. L'erreur sur π est donc plus petite que $\frac{32}{10^6}$.

Effectivement, si l'on fait le calcul avec 6 décimales, on trouve

$$\pi = 3, 1.11616...$$

La valeur réelle étant, comme on sait, 3,141592, ..., on a une valeur approchée par excès, l'erreur étant $< 0,000024 < \frac{32}{10^6}$.

7. Calculer les deux sommes

$$S = \cos a + \cos(a + h) + \cos(a + 2h) + \dots + \cos(a + nh),$$

$$S' = \sin a + \sin(a + h) + \sin(a + 2h) + \dots + \sin(a + nh).$$

Ce calcul se fait très simplement par l'emploi de la formule d'Euler (nº 109, I). On a, en effet,

$$\begin{split} \mathbf{S} + i \mathbf{S}' &= \sum_{p=0}^{n} \left[\cos(a + ph) + i \sin(a + ph) \right] = \sum_{p=0}^{n} e^{i(a + ph)} \\ &= e^{ia} (\mathbf{1} + e^{ih} + e^{2ih} + \ldots + e^{nih}) \\ &= e^{ia} \left[\mathbf{1} + e^{ih} + (e^{ih})^2 + \ldots + (e^{ih})^n \right] \\ &= e^{ia} \frac{(e^{ih})^n - \mathbf{1}}{e^{ih} - \mathbf{1}} = e^{ia} \frac{e^{inh} - \mathbf{1}}{e^{ih} - \mathbf{1}} = e^{ia + \frac{inh}{2} - \frac{ih}{2}} \frac{e^{\frac{inh}{2}} - e^{-\frac{inh}{2}}}{e^{\frac{ih}{2}} - e^{-\frac{ih}{2}}} \\ &= e^{i \left[a + (n-1) \frac{h}{2} \right]} \frac{\sin n \frac{h}{2}}{\sin \frac{h}{2}} = \frac{\sin n \frac{h}{2}}{\sin \frac{h}{2}} \left[\cos \left(a + \frac{n-1}{2} h \right) + i \sin \left(a + \frac{n-1}{2} h \right) \right]. \end{split}$$

Égalons les parties réelles et imaginaires (1); nous obtenons

$$S = \frac{\cos\left[\alpha + (n-1)\frac{h}{2}\right]\sin n\frac{h}{2}}{\sin\frac{h}{2}}, \qquad S' = \frac{\sin\left[\alpha + (n-1)\frac{h}{2}\right]\sin n\frac{h}{2}}{\sin\frac{h}{2}}.$$

⁽¹⁾ On suppose a et h récls. Mais, le calcul serait valable quand même ils seraient imaginaires. Il suffirait de former de même S-iS', puis d'ajouter et retrancher.

EXERCICES PROPOSÉS.

1. Sommer les séries

$$nx^{n-1}, \quad n^{2}x^{n}, \quad n(n-1)(n-2)x^{n}, \quad \frac{x^{n}}{n(n-1)}, \quad \frac{x^{n}}{(n+3)(n+2)(n+1)}, \\ \frac{x^{n}}{(n+3)(n+1)}, \quad \frac{nx^{n}}{(n+5)(n+2)(n+1)}, \quad \frac{n^{3}+1}{n(n+2)}x^{n}; \\ \frac{x^{n}}{(n+1)!}, \quad \frac{x^{n}}{(n+3)(n+2)n!}, \quad \frac{n^{2}+4n-1}{(n+4)}\frac{x^{n}}{n!}.$$

2. Multiplier les développements en série de $\frac{1}{(1-x)^n}$ et $\frac{1}{(1-x)^{n'}}$; en déduire des identités arithmétiques par comparaison avec le développement de $\frac{1}{(1-x)^{n+n'}}$.

On doit trouver l'identité

$$C_{n+n'+p}^{n+n'-1} = C_{n'+p}^{n'-1} + C_n^{n-1} C_{n'+p-1}^{n'-1} + C_{n+1}^{n-1} C_{n'+p-2}^{n'-1} + \ldots + C_{n+p-1}^{n-1} C_{n'}^{n'-1} + C_{n+p}^{n-1}.$$

3. Vérifier sur les développements en série les identités

$$\sin^2 x + \cos^2 x = 1$$
, $\sin 2x = 2 \sin x \cos x$, $\cos 2x = 2 \cos^2 x - 1$.

4. Développer en série les fonctions suivantes :

$$\frac{x^2+3x-1}{(x-1)(x+2)(3x+1)}, \frac{x-2}{(x+1)^2(x+3)^3},$$

$$\frac{x-1}{x^2+x+1}, \frac{1}{x^p+x^{p-1}+\ldots+x+1}.$$

Pour les deux dernières, les écrire $\frac{(x-1)^2}{x^3-1}$ et $\frac{x-1}{x^{p+1}-1}$; puis développer par exemple

$$\frac{1}{1-x^3} = 1 + x^3 + x^6 + \dots,$$

et multiplier par $(1-x)^2 = 1 - 2x + x^2$.

5. Développer en série la fonction $\frac{1}{x^2 + px + q}$, sachant que le trinome a ses racines imaginaires.

[On pourrait décomposer en éléments simples et appliquer la méthode générale (n° 107, I); mais il serait assez pénible de faire disparaître les imaginaires, à moins qu'on ne mette celles-ci sous la forme trigonométrique. Il revient au même de mettre le trinome sous la forme $z^2-2z\cos\theta+1$, en posant $x=z\sqrt{q}$; ce qui est toujours possible si $p^2-4q<0$. On est alors ramené à l'exercice résolu n° 2. On développe suivant z; puis l'on revient à x.]

6. Appliquer la méthode précédente aux fonctions

$$\frac{1}{x^2+x+1}$$
, $\frac{x^2+3}{x^2-2x+4}$, $\frac{x-1}{2x^2+3x+3}$.

7. Développer les fonctions

$$\frac{x^2-x+3}{x^4-3x^2+2}$$
, $\frac{x+1}{2x^4+x^2+2}$, $\frac{x^2-3}{(x^3-1)(x^3+2)}$.

[D'une façon générale, si le dénominateur ne dépend que de x^m , on développe son inverse suivant les puissances de x^m et l'on multiplie par le numérateur.]

8. Développer les fonctions

$$\arctan \frac{2x+1}{x-1}, \quad \arctan \frac{1-mx}{x+m}, \quad \arctan \frac{x^2+1}{3x^2+2},$$

$$\arctan \frac{2x}{1-x^2}, \quad \arctan \frac{x}{x^2+1}, \quad \arctan (x+a).$$

Le développement de arc tang $\frac{u}{v}$ se ramène à celui de $\frac{1}{u^2+v^2}$.

9. Développer les fonctions

$$\log \frac{x^2 - 1}{x + 2}, \quad \log \frac{x^3 - 2x^2 + 1}{x^2 - 4}, \quad \log (x^2 + x + 1),$$

$$\log \frac{x^3 + 1}{x^4 - 2x^2 + 4}, \quad \log \sqrt{\frac{1 - x}{1 + x}}, \quad \log \frac{\sqrt{x^2 + 1}}{\sqrt[3]{x^3 + 1}}.$$

10. Développer:

$$\sin x \cos^3 x$$
, $\cosh^2 x \sin^3 x$, $e^x \cos x$, $e^{x \cos a} \cos(x \sin a)$.

$$\left[\text{Éorire ces fonctions}: \frac{\sin 2x}{4} + \frac{\sin 4x}{8}, \frac{(e^x + e^{-x})^2(e^x - e^{-x})^3}{32} \text{ développé} \right]$$
 suivant les puissances de e^x , $\frac{e^{x(1+i)} + e^{x(1-i)}}{2}$, $\frac{e^{xe^{ia}} + e^{xe^{-ia}}}{2}$.

11. Développer $[\log(1+x)]^2$ (E. P., 1911) (Cf. exercice résolu nº 4.)

12. Développer $y = (\operatorname{arc} \tan g x)^2$.

Établir la formule

$$y''(1+x^2) + 2xy' = \frac{2}{1+x^2} = 2(1-x^2+x^4-\ldots).$$

13. Calculer $\log_{10} 2$ avec 5 décimales en se servant de la formule

$$\log 2 = 3\log\frac{5}{4} + \log\frac{41}{40} - \log\frac{1025}{1024}$$

et de la série de l'exercice résolu nº 5. (Leçons, exercice nº 235.)

- 14. Pour calculer les logarithmes des nombres qui ne sont pas dans les Tables, on admet qu'entre deux nombres consécutifs le logarithme de x varie proportionnellement à x. Calculer l'ordre de grandeur de l'erreur commise en faisant cette hypothèse. (Cf. Leçons, n° 237.)
 - 15. Calculer les sommes

$$A_n = 1 + x \cos \theta + x^2 \cos 2\theta + \dots + x^n \cos n\theta,$$
 $B_n = 1 + x \sin \theta + x^2 \sin 2\theta + \dots + x^n \sin n\theta,$
 $C_n = 1 + x \cos \theta + 2x^2 \cos 2\theta + \dots + nx^n \cos n\theta,$
 $D_n = 1 + x \sin \theta + 2x^2 \sin 2\theta + \dots + nx^n \sin n\theta.$

(Pour A_n et B_n , procéder comme à l'exercice résolu n° 7. Pour C_n et D_n , dériver les résultats précédents par rapport à x ou par rapport à θ .

On pourra déduire de là les sommes des séries entières $x^n \cos n\theta$, $x^n \sin n\theta$, $nx^n \cos n\theta$, $nx^n \sin n\theta$.)

- 16. Même exercice avec les fonctions hyperboliques.
- 17. Résoudre les équations

$$x = \log(y + \sqrt{1 + y^2}), \qquad x = \log(y + \sqrt{y^2 - 1}), \qquad x = \log\sqrt{\frac{1 + y}{1 - y}}.$$

[Pour la première, on a

$$y + \sqrt{1 + y^2} = e^x$$
, $(y - \sqrt{1 + y^2}) e^x = y^2 - (1 + y^2) = -1$;

d'où

$$y - \sqrt{1 + y^2} = -e^{-x}.$$

En ajoutant, il vient $y = \sinh x$.

Pour la seconde équation, on trouve de même y = ch.x. Pour la troisième, y = th.x.]

HAAG. - Exercices, I.

18. Trouver tous les nombres complexes z satisfaisant aux équations

$$e^z = x + yi$$
, $\cos z = x + yi$, $\sin z = x + yi$, $\tan z = x + yi$.

Quelles fonctions de x + yi peut-on déduire de là? Calculer leurs dérivées par rapport à un paramètre réel t, dont dépendraient x et y.

19. Comment peut-on définir $(a + bi)^{c+di}$?

$$[(a+bi)^{c+di}=e^{(c+di)\log(a+bi)}].$$

Combien y a-t-il de déterminations? Comment passe-t-on de l'une à l'autre? Cas où c est entier, ou bien $a^2 + b^2 = 1$. Conditions pour que toutes les déterminations soient réelles.

CHAPITRE VIII.

DÉVELOPPEMENTS LIMITÉS.

EXERCICES RÉSOLUS.

1. Trouver le développement du cinquième ordre de

$$y = e^{\tan x} + \sin x \log(1+x).$$

Nous avons une combinaison des fonctions e^x , $\sin x$, $\cos x$, $\log(1+x)$, dont nous connaissons les développements en série entière. Appliquons donc les règles des nos 116, 117, 118, en limitant tous nos développements intermédiaires au cinquième ordre (1):

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} - \dots,$$

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \dots,$$

$$x - \frac{x^3}{6} + \frac{x^5}{120} - \dots \qquad 1 - \frac{x^2}{2} + \frac{x^4}{24} - \dots$$

$$(R_1) \qquad \frac{x^3}{3} - \frac{x^5}{30} + \dots \qquad x + \frac{x^3}{3} + \frac{2}{15}x^5 + \dots$$

$$(R_2) \qquad \frac{2x^5}{15} + \dots \qquad x + \frac{x^3}{3} + \frac{2}{15}x^5 + \dots$$

$$\tan x = x + \frac{x^3}{3} + \frac{2}{15}x^5 + \dots,$$

$$e^{\tan x} = 1 + \tan x + \frac{1}{2}\tan x^2 + \frac{1}{6}\tan x^3 + \frac{1}{24}\tan x^4 + \frac{1}{120}\tan x^5 + \dots,$$

$$1 \quad \dots \qquad \tan x = x + \frac{x^3}{3} + \frac{2}{15}x^5 + \dots,$$

$$\frac{1}{2} \quad \dots \qquad \tan x^2 = x^2 \left(1 + \frac{x^2}{3} + \dots\right)^2 = x^2 \left(1 + \frac{2}{3}x^2 + \dots\right)$$

⁽¹⁾ Nous n'écrivons pas les restes λx^6 ; nous les remplaçons simplement par des points ...

$$\frac{1}{6} \cdot \dots \cdot \tan 3x = x^{3} \left(1 + \frac{x^{2}}{3} + \dots\right)^{3} = x^{3} (1 + x^{2} + \dots) \quad (1),$$

$$\frac{1}{24} \cdot \dots \cdot \tan 3x = x^{3} (1 + \dots)^{5} = x^{5} + \dots,$$

$$\frac{1}{120} \cdot \dots \cdot \tan 3x = x^{5} (1 + \dots)^{5} = x^{5} + \dots;$$

$$e^{\tan 3x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{2} + \frac{3}{8} x^{4} + \frac{37}{120} x^{5} + \dots \quad (2).$$

$$\sin x = x - \frac{x^{3}}{6} + \frac{x^{5}}{120} - \dots,$$

$$\log(1 + x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \frac{x^{5}}{5} - \dots,$$

$$\sin x \log(1 + x) = x^{2} \left(1 - \frac{x^{2}}{6} + \dots\right) \left(1 - \frac{x}{2} + \frac{x^{2}}{3} - \frac{x^{3}}{4} + \dots\right),$$

$$= x^{2} \left(1 - \frac{x}{2} + \frac{x^{2}}{6} - \frac{x^{3}}{6} + \dots\right).$$

$$y = 1 + x + \frac{3}{2} x^{2} + \frac{13}{24} x^{4} + \frac{17}{120} x^{5} + \lambda x^{6}.$$

Le lecteur pourra comparer avec la formule de Mac-Laurin, s'il se sent le courage de former les cinq premières dérivées de y.

2. Développer
$$y = \sqrt{\sin x - \frac{1}{2}}$$
 au voisinage de $x = \frac{\pi}{6}$.
Posons $x = \frac{\pi}{6} + h$. Nous avons
$$\sin x = \sin \frac{\pi}{6} \cos h + \sin h \cos \frac{\pi}{6} = \frac{1}{2} \cos h + \frac{\sqrt{3}}{2} \sin h.$$

Développons $\sin h$ et $\cos h$ jusqu'au troisième ordre, par exemple; nous obtenons

$$\sin x = \frac{1}{2} \left(1 - \frac{h^2}{2} + \dots \right) + \frac{\sqrt{3}}{2} \left(h - \frac{h^3}{6} + \dots \right).$$

$$y = \sqrt{\frac{\sqrt{3}}{2} h - \frac{h^2}{4} - \frac{\sqrt{3}}{12} h^3 + \dots}} = \sqrt{\frac{\sqrt{3}}{2} h^{\frac{1}{2}} \left(1 - \frac{h}{2\sqrt{3}} - \frac{h^2}{6} + \dots \right)^{\frac{1}{2}}}.$$

Posons

$$z = -\left(\frac{h}{2\sqrt{3}} + \frac{h^2}{6}\right) + \dots$$

⁽¹⁾ Nous développons $\left(1+\frac{x^2}{3}\right)^2$ et $\left(1+\frac{x^2}{3}\right)^3$ par la formule du binome (n° 25).

⁽²⁾ Pour faire commodément le calcul, nous avons indiqué en marge les coefficients de tang x, ... dans $e^{\tan x}$.

et développons $(1+z)^{\frac{1}{2}}$ par la série du binome (n° 107, VI), en nous bornant naturellement au second ordre, comme nous l'avons fait pour z:

$$(1+z)^{\frac{1}{2}} = 1 + \frac{1}{2}z - \frac{1}{8}z^{2} + \dots$$

$$= 1 - \frac{1}{2}\left(\frac{h}{2\sqrt{3}} + \frac{h^{2}}{6}\right) - \frac{1}{8}\frac{h^{2}}{12} + \dots = 1 - \frac{h}{4\sqrt{3}} - \frac{3}{32}h^{2} + \dots;$$

$$y = \sqrt{\frac{\sqrt{3}}{2}}\left(h^{\frac{1}{2}} - \frac{h^{\frac{3}{2}}}{4\sqrt{3}} - \frac{3}{32}h^{\frac{5}{2}} + \lambda h^{\frac{7}{2}}\right).$$

3. Développer

$$y = \frac{\sqrt{x^5 + 2x^4 - x^3 + 2x^2 + x - 1} - \sqrt{x^3 + x^2 - 3x - 4}}{x^2 + x + 1},$$

au voisinage de $x = \infty$.

Nous avons, en posant $x=\frac{1}{h}$.

$$y = \frac{x^{\frac{5}{2}}(1+2h-h^2+2h^3+h^4-h^5)^{\frac{1}{2}} - x^{\frac{3}{2}}(1+h-3h^2-4h^3)^{\frac{1}{2}}}{x^2(1+h+h^2)},$$

$$y = x^{\frac{1}{2}} \frac{(1+2h-h^2+2h^3+h^4-h^5)^{\frac{1}{2}} - h(1+h-3h^2-4h^3)^{\frac{1}{2}}}{1+h+h^2}.$$

Poussons, par exemple, nos développements en h jusqu'au terme en h^2 :

$$(1+2h-h^2+\ldots)^{\frac{1}{2}}=1+\frac{1}{2}(2h-h^2)-\frac{1}{8}(2h-h^2)^2+\ldots=1+h-h^2+\ldots,$$

$$-h(1+h+\ldots)^{\frac{1}{2}}=-h\left(1+\frac{h}{2}+\ldots\right)=-h-\frac{h^2}{2}+\ldots,$$

$$y=x^{\frac{1}{2}}\frac{1-\frac{3}{2}h^2+\ldots}{1+h+h^2}=x^{\frac{1}{2}}\Big(1-h-\frac{3}{2}h^2+\ldots\Big)=x^{\frac{1}{2}}-x^{-\frac{1}{2}}-\frac{3}{2}x^{-\frac{3}{2}}+\lambda x^{-\frac{5}{2}}.$$

EXERCICES PROPOSÉS.

 Calculer les développements du cinquième ordre des fonctions suivantes :

$$\sin x \, e^x$$
, $\arcsin x \log(1+x)$, $\tan x \, e^{\arctan x}$,
$$\frac{\sqrt[3]{1+x^2}}{\sqrt{\cos x}}, \quad \sqrt[3]{\arcsin x - x}.$$

2. Développements du troisième ordre des fonctions

$$(1+x)^{\frac{1}{x}}, \quad (\cos x)^{\sin x}.$$

$$\left(e^{\frac{1}{x}\log 1+x}, e^{\sin x\log\cos x}\right).$$

- 3. Développements du quatrième ordre des fonctions $\frac{1+2\cos x}{\sin^2 x}$, au voisinage de $\frac{\pi}{6}$; log tang x, au voisinage de $\frac{\pi}{4}$.
- 4. Développer $(\cot x)^3$, $\sqrt{1-e^x}$, $\log \sin x \log x$, au voisinage de x = 0.
 - 5. Développer $\frac{e^{x+\sin x}}{\sqrt{\cos x + \sin 2x}}$, au voisinage de $x = \frac{\pi}{2}$.
 - 6. Développer

$$\sqrt{x^{5}+x^{3}-x^{2}+2}-\sqrt[3]{x^{6}-2x^{5}+x^{5}+x^{3}-x^{2}-1},$$

$$\frac{x^{5}-x^{3}-x^{2}}{x^{2}-2x-1}, \quad \tan g \frac{\pi(x-1)}{2x-1},$$

au voisinage de $x = \infty$.

7. L'équation $x - e \sin x = M$ définit x comme fonction de e (n° 135). Trouver, en admettant son existence, le développement du troisième ordre de cette fonction.

[Méthode des coefficients indéterminés, en s'appuyant sur ce qu'une fonction n'a qu'un seul développement d'ordre donné (n° 110). On posera au préalable $x = M + \gamma$, de manière que γ s'annule avec e.]

8. La formule des accroissements finis $f(a+h)=f(a)+hf'(a+\theta h)$ définit θ comme fonction de h. Trouver, en admettant son existence, le développement du troisième ordre de cette fonction.

[Poser $\theta = a_0 + a_1h + a_2h^2 + a_3h^3 + \dots$ Puis, développer f(a+h) et $f'(a+\theta h)$ par la formule de Taylor; substituer la valeur précédente de θ , et identifier les deux membres.

On peut généraliser en partant de la formule de Taylor limitée à un nombre quelconque de termes, et développer le 9 qui figure dans le reste.]

CHAPITRE IX.

INFINIMENT PETITS. FORMES INDÉTERMINÉES.

EXERCICES RÉSOLUS.

1. Trouver la partie principale de

$$y = \frac{\log \cos x \left(\sqrt{\cot^3 x} - \sqrt{\frac{a^2 + x^2}{x^3 + 2 \cdot x^5}}\right)}{\alpha \arctan x - \sin m x}.$$

Calculons d'abord la partie principale du numérateur. Pour cela, nous calculons séparément les parties principales des deux facteurs dont il est le produit. Pour log cos x, nous écrivons (n° 107, V et II)

$$\cos x = 1 - \frac{x^2}{2} + \dots, \qquad \log \cos x = \log \left(1 - \frac{x^2}{2} + \dots \right) = -\frac{x^2}{2} + \dots$$

La partie principale du premier facteur est donc $-\frac{x^2}{2}$.

Le second facteur étant une somme, nous devons calculer les développements limités de ses deux termes, en procédant par essais successifs, comme on l'a dit au n° 122.

Pour ne pas allonger outre mesure la rédaction, nous écrivons cidessous les différents développements dont nous avons besoin, en marquant p points au-dessous de chaque terme obtenu après le $(p+1)^{\text{lème}}$ essai. Le lecteur voudra bien refaire les calculs dans l'ordre où nous les supposons faits.

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \dots,$$

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} - \dots,$$

$$\cot x = \frac{1}{x} \frac{1 - \frac{x^2}{2} + \frac{x^4}{24} - \dots}{1 - \frac{x^2}{6} + \frac{x^4}{120} - \dots} = \frac{1}{x} \left(1 - \frac{x^2}{3} - \frac{x^4}{45} + \dots \right) = \frac{1}{x} (1 - \frac{x}{3}),$$

$$(\cot x)^{\frac{3}{2}} = x^{-\frac{3}{2}} (1-z)^{\frac{3}{2}} = x^{-\frac{3}{2}} \left(1 - \frac{3}{2}z + \frac{3}{8}z^{2} + \dots\right)$$

$$= x^{-\frac{3}{2}} \left(1 - \frac{x^{2}}{2} + \frac{x^{4}}{120} + \dots\right);$$

$$\frac{a^{2} + x^{2}}{x^{3} + 2x^{5}} = \frac{1}{x^{3}} \frac{a^{2} + x^{2}}{1 + 2x^{2}} = \frac{1}{x^{3}} (a^{2} - x^{2} + 2x^{4} + \dots)$$

$$= \frac{a^{2}}{x^{3}} (1 - x^{2} + 2x^{4} + \dots) = \frac{a^{2}}{x^{3}} (1 + t);$$

$$\left(\frac{a^{2} + x^{2}}{x^{3} + 2x^{5}}\right)^{\frac{1}{2}} = ax^{-\frac{3}{2}} (1 + t)^{\frac{1}{2}}$$

$$= ax^{-\frac{3}{2}} \left(1 + \frac{t}{2} - \frac{t^{2}}{8} + \dots\right) = ax^{-\frac{3}{2}} \left(1 - \frac{x^{2}}{2} + \frac{7x^{4}}{8} + \dots\right);$$

$$[] = x^{-\frac{3}{2}} \left[(1 - a) - \frac{13x^{4}}{15} + \dots\right].$$

Si $a \neq 1$, la partie principale du crochet est $(1-a)x^{-\frac{3}{2}}$. Si a=1, elle est $-\frac{13}{15}x^{\frac{5}{2}}$.

Procédons de même pour le dénominateur :

$$\alpha \arctan x = \alpha \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \dots \right),$$

$$\sin mx = mx - \frac{m^3 x^3}{6} + \frac{m^5 x^5}{120} - \dots,$$
Dénominateur = $(\alpha - m)x + \frac{m(m^2 - 2)}{6} x^3 + \frac{\epsilon \sqrt{2}}{6} x^5 + \dots$

La partie principale est $(\alpha - m)x$, si $\alpha \neq m$; $\frac{m(m^2 - 2)}{6}x^3$, si $\alpha \leq m \neq \pm \sqrt{2}$; $\epsilon \frac{\sqrt{2}}{6}x^5$, si $\alpha = m = \epsilon\sqrt{2} (\epsilon = \pm 1)$.

Finalement, on peut dresser le Tableau suivant pour la partie principale de y:

$$a \neq 1, \ \alpha \neq m \dots \qquad \frac{a-1}{2(\alpha - m)} \ x^{-\frac{1}{2}},$$

$$a \neq 1, \ \alpha = m \neq \pm \sqrt{2} \dots \qquad \frac{3(a-1)}{m(m^2 - 2)} \ x^{-\frac{5}{2}},$$

$$a \neq 1, \ \alpha = m = \varepsilon \sqrt{2} \dots \qquad \frac{3(a-1)}{\varepsilon \sqrt{2}} \ x^{-\frac{9}{2}},$$

$$a = 1, \ \alpha \neq m \dots \qquad \frac{13}{30(\alpha - m)} \ x^{\frac{7}{2}},$$

$$a = 1, \ \alpha = m \neq \pm \sqrt{2} \dots \qquad \frac{13}{5m(m^2 - 2)} x^{\frac{3}{2}},$$

$$a = 1, \ \alpha = m = \varepsilon \sqrt{2} \dots \qquad \frac{13}{5\varepsilon \sqrt{2}} \ x^{-\frac{1}{2}}.$$

- 2. Trouver les limites de $y = \frac{(\pi \sin x \cos^3 x x)\sqrt{x + \arcsin x}}{(x + \beta \arctan x) \log \tan x}$, pour x = 0 et $\frac{\pi}{4}$.
- 1° Limite pour x = 0. On a le symbole $\frac{0}{0 \times x}$, qui comporte deux indéterminations. Cherchons la partie principale de γ (n° 125).

Facteur $\pi \sin x \cos^3 x - x$: Les parties principales de $\sin x$ et $\cos x$ sont respectivement x et 1; donc celle de $\sin x \cos^3 x$ est x et celle du facteur est $(\pi - 1)x$.

Facteur $\sqrt{x + \arcsin x}$: La partie principale de arc $\sin x$ étant x, celle du facteur est $\sqrt{2} x^{\frac{1}{2}}$.

Numérateur : La partie principale est $\sqrt{2}(\pi-1)x^{\frac{3}{2}}$.

Facteur $(x + \beta \arctan x)$: On a, en adoptant les conventions de l'exercice précédent,

$$arc tang x = x - \frac{x^3}{3} + \dots,$$
 $x + \beta arc tang x = x(t + \beta) + \frac{x^3}{3} + \dots$

La partie principale du facteur est donc $x(1+\beta)$, si $\beta \neq -1$, et $\frac{x^2}{3}$, si $\beta = -1$.

Facteur $\log \tan g x$: Il est équivalent à $\log x$ (n° 120), car $\log \tan g x - \log x = \log \left(\frac{\tan g x}{x}\right)$ tend vers zéro, puisque $\frac{\tan g x}{x}$ tend vers $\mathfrak{1}$ (¹). Or, $\log x$ n'a pas de partie principale, mais est d'un ordre infinitésimal infiniment petit (n° 120). Il en est donc de même de $\log \tan g x$.

Finalement, si $\beta \neq -1$, y a même limite que $\frac{\sqrt{2}(\pi-1)}{1+\beta} \frac{x^{\frac{1}{2}}}{\log x}$, c'està-dire zéro (n° 96). Si $\beta = -1$, la limite est celle de $\frac{3\sqrt{2}(\pi-1)}{x^{\frac{3}{2}}\log x}$, c'està-dire $-\infty$.

2° Limite pour $x=\frac{\pi}{4}$. — On a le symbole $\frac{\sigma}{\sigma}$. Le facteur $\sqrt{x+\arcsin x}$ tend vers $\sqrt{\frac{\pi}{4}+\arcsin\frac{\pi}{4}}$ et ne contribue pas à l'indétermination. Il en est $\frac{\pi}{2}$

de même de $x + \beta \arctan g x$, quand $\beta \neq -\frac{\overline{4}}{\arctan g \frac{\pi}{4}}$. Reste à trouver

⁽¹⁾ La partie principale de tang x est, en effet, x.

la limite du rapport $\frac{\pi \sin x \cos^3 x - x}{\log \tan x}$. Le plus simple est ici d'appliquer la règle de l'Hospital, qui conduit au rapport $\frac{\pi(\cos^4 x - 3\sin^2 x \cos^2 x) - 1}{1}$,

lequel tend vers $-\frac{\pi+2}{2}$.

Donc, si
$$\beta \neq -\frac{\pi}{4 \arctan \frac{\pi}{4}}$$
, la limite de γ est $-\frac{(\pi+2)\sqrt{\frac{\pi}{4} + \arcsin \frac{\pi}{4}}}{\pi+4\beta \arctan \frac{\pi}{4}}$.

i $\beta = -\frac{\pi}{\pi}$, elle est infinie.

Si
$$\beta = -\frac{\pi}{4 \arctan \frac{\pi}{4}}$$
, elle est infinie.

3. Limite de $y = \frac{\sqrt{x^4 + x^3 - 1} - x\sqrt[3]{x^6 + x^2 + 1}}{x^2 + 2x - 1}$, pour x infini. — Suivant le signe de α , on a le symbole $\frac{\infty \pm \infty}{\infty}$, qui comporte une ou deux indéterminations.

Prenons x pour infiniment grand principal. La partie principale du dénominateur est x2 (1). Pour avoir celle du numérateur, nous écrirons les développements des radicaux, en adoptant toujours les mêmes signes conventionnels pour indiquer les essais successifs :

$$\sqrt{x^4 + x^3 - 1} = x^2 \left(1 + \frac{1}{x} - \dots \right)^{\frac{1}{2}} = x^2 \left(1 + \frac{1}{2x} + \dots \right),$$

$$\alpha \sqrt[3]{x^6 + x^2 + 1} = \alpha x^2 (1 + \dots)^{\frac{1}{3}} = \alpha x^2 (1 + \dots),$$

$$\text{Numérateur} = x^2 (1 - \alpha) + \frac{x}{2} + \dots$$

Si $\alpha \neq 1$, $\lim y = 1 - \alpha$; si $\alpha = 1$, $\lim y = \infty$.

4. Limites de $y = \left(x\cos\frac{x}{x^2+1}\right)^{\frac{x}{x^2+1}}$ pour x = 0 et pour $x = \infty$. Nous avons

$$\log y = \frac{x}{x^2 + 1} \log x + \frac{x}{x^2 + 1} \log \cos \frac{x}{x^2 + 1}$$

Pour x = 0, $x \log x$ tend vers zéro (nº 96); $\cos \frac{x}{x^2 + 1}$ tend vers

⁽¹⁾ La partie principale d'un polynome en x, lorsque x est l'infiniment grand principal, est le terme de plus haut degré, puisque c'est le premier terme du développement limité, qui n'est autre que le polynome lui-même ordonné suivant les puissances décroissantes de x.

 $\cos o = 1$, son logarithme tend vers zéro; donc, aussi $\log y$. La limite de y est 1.

Pour $x=+\infty$ (1), $\frac{x\log x}{x^2+1}$ équivant à $\frac{\log x}{x}$, qui a pour limite zéro (n° 96); $\cos\frac{x}{x^2+1}$ tend encore vers 1; $\log y$ tend vers zéro, y a encore pour limite 1.

EXERCICES PROPOSES.

1. En prenant x pour infiniment petit principal, calculer les parties principales de

$$\sin x, \ \tan g x, \ \operatorname{arc} \sin x, \ \operatorname{arc} \tan g x, \ \log(1+x), \ 1-\cos x, \ x-\sin x,$$

$$x-\tan g x, \ x-\operatorname{arc} \sin x, \ x-\operatorname{arc} \tan g x, \ x-\log(1+x), \ e^x-1,$$

$$\log \cos 2 x, \ \log \tan g \left(x+\frac{\pi}{4}\right), \ \alpha \sqrt{1+x}-\sqrt[3]{1+x},$$

$$\sqrt[3]{1+x^2}-\sqrt{1+x^3}+\alpha \sqrt{x \sin x \arctan g \frac{x}{3}-\frac{e^x}{3}[\log(1+x)]^3},$$

$$\sin^3 \frac{3x}{2}\log(1+x)\tan g 2x, \ \sqrt{\sin x}-\sqrt[4]{x \tan g x}, \ \frac{\alpha x+\beta x^2+\gamma \log \cos \sqrt{x}}{\sin x \sqrt[3]{\tan g x}}.$$

2. Quel est l'ordre infinitésimal de x^x-1 ?

(Il n'existe pas; il devrait être < 1, mais supérieur à tout nombre plus petit que 1.)

3. Limites de

$$\frac{\sin x}{1-\cos x}, \frac{\sin x}{\log(1+x)}, \frac{\sin(\arctan x) - \alpha x - \beta x^3}{\sqrt{x+1} - \sqrt{1+\gamma x + \delta x^2}},$$

$$\frac{a\sqrt{1+x}\tan^2(x^2) + \beta \arctan 2x(1-\cos x)\log(1+x)}{e^{1+x}\sin x^4 + \gamma x \arcsin(x^3)}, \quad \text{pour } x = 0;$$

$$\frac{e^{x\sin x}\left(\log\tan x - \frac{1}{2}\log 3\right)}{(x-1)\cos 3x\left[\tan x^2 - 3 + \tan \left(x - \frac{\pi}{3}\right)\right]}, \quad \text{pour } x = \frac{\pi}{3};$$

$$\frac{\log\left(\frac{x+a}{x+b}\right)}{\sin\left(\frac{x+a}{x^2+b}\right)}, \quad \text{pour } x = \infty.$$

⁽¹⁾ x ne peut tendre vers $-\infty$, car $x \cos \frac{x}{x^2+1}$ deviendrait négatif, ce qui ne doit pas être (n° 80).

4. Limites de

$$\frac{x^{m}+1}{x^{p}+1}, \quad \frac{\sqrt{x^{2}+3x}}{\sqrt[3]{x^{3}-3x^{2}}}, \quad \frac{(x+1)\sqrt{x^{4}-x^{3}+2}\sqrt{3x+1}}{(x^{2}-2x-1)\sqrt{x+2}\sqrt[3]{x^{3}-x^{2}}},$$

$$\frac{\log(x+1)}{\log\left(\tan\frac{1}{x}\right)}, \quad \text{pour } x=\infty.$$

5. Limites de

$$x\sin\frac{1}{x}$$
, $\left(\arctan x - \frac{\pi}{2}\right)x$, $x\log\frac{1+x}{1+mx}$, pour $x = \infty$; $(e^x - \cos x)\log\sin x$, pour $x = 0$; $(\log\tan x)\tan 2x$, pour $x = \frac{\pi}{4}$.

6. Limites de

$$\sqrt{x-1} - \sqrt{x+1}, \quad \sqrt[3]{x^2-3} - \sqrt{x+1}, \quad \alpha\sqrt{x^3+2x-1} - \sqrt[4]{x^6+1},$$

$$x^p - \log x, \quad \text{pour } x = \infty; \quad \tan x - \tan 3x, \quad \text{pour } x = \frac{\pi}{2}.$$

7. Limites de

$$x^{\sin x}, \quad \left[(1+x)^{\frac{1}{x}} - e \right]^{x}, \quad (\cot x)^{\sin x}, \quad \text{pour } x = 0;$$

$$(\tan x)^{\tan x}, \quad \text{pour } x = \frac{\pi}{2}; \quad (1 + \log \cos x)^{\cot x}, \quad \text{pour } x = 0.$$

CHAPITRE X.

FONCTIONS DE PLUSIEURS VARIABLES.

EXERCICES RÉSOLUS.

1. Calculer la dérivée de $y = x^{x^x}$.

On pourrait calculer cette dérivée en passant par le logarithme, comme nous l'avons déjà fait dans des cas analogues. On peut aussi remarquer que y est une fonction composée. C'est ce que devient la fonction de trois variables $\omega = u^{\nu w}$, quand on y remplace u, v, w par x. Appliquons alors la formule (4) du numéro 130. On a

$$\frac{\partial \omega}{\partial u} = \varrho^w u^{\varrho^w - 1}, \qquad \frac{\partial \omega}{\partial v} = u^{\varrho^w} \log u \, \omega \varrho^{w - 1}, \qquad \frac{\partial \omega}{\partial w} = u^{\varrho^w} \log u \, \varrho^w \log \varrho;$$

d'où

$$y' = x^x x^{x^{x-1}} + x^{x^x+x} \log x + x^{x^x+x} (\log x)^2 = x^{x^x+x} \left[\frac{1}{x} + \log x + (\log x)^2 \right].$$

2. L'équation $x\left(\sin\frac{y}{x} + e^{\frac{x}{y}}\right) - ky = 0$ définit y comme fonction implicite de x. Calculer $\frac{dy}{dx}$ (E. P., 1909.)

Appliquons la formule (13) du numéro 135. Nous avons

$$\frac{dy}{dx} = -\frac{\sin\frac{y}{x} + e^{\frac{x}{y}} + x\left(-\frac{y}{x^2}\cos\frac{y}{x} + \frac{1}{y}e^{\frac{x}{y}}\right)}{x\left(\frac{1}{x}\cos\frac{y}{x} - \frac{x}{y^2}e^{\frac{x}{y}}\right) - k}$$

On peut essayer de simplifier cette formule en tenant compte de l'équation proposée. Remplaçons au numérateur sin $\frac{y}{x} + e^{\frac{x}{y}}$ par $k\frac{y}{x}$; il vient

$$\frac{dy}{dx} = \frac{-k\frac{y}{x} + \frac{y}{x}\cos\frac{y}{x} - \frac{x}{y}\frac{e^{\frac{x}{y}}}{e^{\frac{x}{y}} - k}}{\cos\frac{y}{x} - \frac{x^2}{y^2}\frac{e^{\frac{x}{y}}}{e^{\frac{y}{y}} - k}} = \frac{\frac{y}{x}\left(-k + \cos\frac{y}{x} - \frac{x^2}{y^2}\frac{e^{\frac{x}{y}}}{e^{\frac{y}{y}} - k}\right)}{\cos\frac{y}{x} - \frac{x^2}{y^2}\frac{e^{\frac{x}{y}}}{e^{\frac{y}{y}} - k}} = \frac{y}{x}.$$

Comme on le voit, on arrive à une formule excessivement simple. On en peut déduire d'ailleurs, par intégration (n° 188), $\frac{y}{x}$ = const. Ce résultat pouvait être prévu. En effet, l'équation proposée est homogène. Si l'on pose $\frac{y}{x} = z$, elle peut s'écrire

$$\sin z + e^{\frac{1}{5}} - k z = 0,$$

d'où l'on tire nécessairement z = const.

EXERCICES PROPOSES.

1. Calculer les dérivées partielles du premier et du second ordre des fonctions

$$z = e^x \cos y$$
, $u = e^x \sin y$; $z = e^{x^2 - y^2} \cos 2xy$, $u = e^{x^2 - y^2} \sin 2xy$;
 $z = \sin \frac{x}{x^2 + y^2} \operatorname{ch} \frac{y}{x^2 + y^2}$, $u = -\cos \frac{x}{x^2 + y^2} \operatorname{sh} \frac{y}{x^2 + y^2}$.

Vérifier les identités

$$\frac{\partial z}{\partial x} = \frac{\partial u}{\partial y}, \qquad \frac{\partial z}{\partial y} = -\frac{\partial u}{\partial x}, \qquad \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0, \qquad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

- 2. Calculer les dérivées partielles d'ordre n de la fonction $\sin x \sin y \sin z$.
- 3. Calculer les dérivées des fonctions $x^{\log x}$, $(\sin x)^{\sin x}$, $(x \log x)^{x^x}$.
- 4. Calculer la valeur de la fonction $x^y \sin z$, pour x = e, $y = \pi$, $z = \frac{1}{\sqrt{2}}$, en prenant les valeurs approchées $e = 2, 7, \ \pi = 3, 1, \ \frac{1}{\sqrt{2}} = 0, 7$.

Calculer une limite supérieure de l'erreur commise.

(Pour l'erreur, appliquer la formule des accroissements finis, en prenant $h=2,7-e,\ k=3,1-\pi,\ e=0,7-\frac{1}{\sqrt{2}}$. Cf. Leçons, n° 218.)

5. Vérifier l'identité d'Euler sur les fonctions homogènes suivantes :

$$x^3 + 3x^2y - xyz + y^3$$
, arc tang $\frac{y}{x}$, $\log \frac{\sqrt{x^2 + y^2}}{x + y}$, $\sin \frac{xyz}{x^2 + y^3 + z^3}$.

6. Dérivées première et seconde de la fonction y définie par

$$(x^2+y^2)^2+x^2-y^2=0, \quad x^2+y^2=\left(\arg\frac{y}{x}\right)^2, \quad x^2+y^2=e^{\arctan\frac{y}{x}}.$$

CHAPITRE XI.

DIFFÉRENTIELLES.

EXERCICES RÉSOLUS.

1. Étant données les formules

(1)
$$\sin \beta = \sin \delta \cos \epsilon - \cos \delta \sin (\alpha + \lambda) \sin \epsilon$$
,

(2)
$$\cos \beta \sin(l + \psi) = \sin \delta \sin \varepsilon + \cos \delta \sin(\alpha + \lambda) \cos \varepsilon$$
,

(3)
$$\cos \beta \cos(l + \psi) = \cos \delta \cos(\alpha + \lambda),$$

qui servent à calculer les coordonnées équatoriales α et δ d'un astre à l'époque t en fonction de ses coordonnées écliptiques l et β à l'époque o, calculer les accroissements d α et d δ subis par les premières pendant un petit intervalle de temps dt, sachant que l'on a

(4)
$$\psi = 50'', 36923t, \quad \lambda = 14'', 673t, \quad \varepsilon = 23^{\circ}27'31'', 83.$$

(Corrections de précession.)

Nous observons d'abord que ces trois équations sont compatibles, comme on le voit en élevant au carré et ajoutant.

Pour un accroissement dt de t, ψ et λ subissent les accroissements $d\psi = a\,dt$ et $d\lambda = b\,dt$, en appelant α et b les coefficients de t dans ψ et λ . Les angles ε , β , l restent fixes. Pour calculer $d\alpha$ et $d\delta$, nous allons différentier totalement (1), (2), (3), en tenant compte des hypothèses précédentes. Nous aurons trois équations linéaires à deux inconnues, qui devront être compatibles :

(5)
$$o = \cos \epsilon \cos \delta d\delta + \sin \epsilon [\sin(\alpha + \lambda) \sin \delta d\delta - \cos \delta \cos(\alpha + \lambda) (d\alpha + d\lambda)],$$

(6)
$$\cos \beta \cos(l+\psi) d\psi$$

= $\sin \epsilon \cos \delta d\delta - \cos \epsilon [\sin(\alpha+\lambda)\sin \delta d\delta - \cos \delta \cos(\alpha+\lambda)(d\alpha+d\lambda)],$

(7)
$$-\cos\beta\sin(l+\psi)d\psi = -\cos(\alpha+\lambda)\sin\delta d\delta - \cos\delta\sin(\alpha+\lambda)(d\alpha+d\lambda)$$
.

Les combinaisons linéaires (5) $\cos \varepsilon + (6) \sin \varepsilon$ et (5) $\sin \varepsilon - (6) \cos \varepsilon$

nous donnent immédiatement

(8)
$$\cos \delta d\delta = \cos \beta \cos(l + \psi) \sin \varepsilon d\psi$$

(9)
$$\sin(\alpha + \lambda)\sin\delta d\delta - \cos\delta\cos(\alpha + \lambda)(d\alpha + d\lambda)$$
$$= -\cos\beta\cos(l + \psi)\cos\epsilon d\psi;$$

ou, en tenant compte de (3),

(10)
$$d\hat{o} = \sin \varepsilon \cos(\alpha + \lambda) d\psi,$$

(11)
$$d\alpha = -d\lambda + |\cos \varepsilon + \tan \varepsilon \sin (\alpha + \lambda)| d\psi.$$

En portant dans (7), on doit obtenir une identité. Effectivement, en faisant le calcul, on retombe sur (2).

Les formules (10) et (11) résolvent le problème. Si α n'est pas très petit et si t n'est pas très grand, on peut les simplifier un peu, en négligeant λ vis-à-vis de α ; ce qui donne

(12)
$$d\hat{o} = n \cos \alpha \, dt, \qquad d\alpha = (m + n \, \tan \alpha \, \hat{o} \, \sin \alpha) \, dt,$$

en posant

(13)
$$\begin{cases} n = a \sin \varepsilon = 20'', 05150, \\ m = a \cos \varepsilon - b = 46'', 05931. \end{cases}$$

2. Étant données les équations

(1)
$$x \sin \theta \cos \varphi + y \sin \theta \sin \varphi + z \cos \theta = \omega,$$

(2)
$$x\cos\theta\cos\varphi + y\cos\theta\sin\varphi - z\sin\theta = \frac{\partial\omega}{\partial\theta},$$

(3)
$$-x \sin\theta \sin\varphi + y \sin\theta \cos\varphi = \frac{\partial \omega}{\partial \varphi}$$

où ω désigne une fonction donnée de θ , φ , on imagine que l'on élimine θ , φ entre elles. L'équation obtenue définit z comme fonction de x et de y. Calculer les dérivées partielles $\frac{\partial z}{\partial x}$ et $\frac{\partial z}{\partial y}$.

Nous allons différentier nos trois équations. Nous éliminerons $d\theta$ et $d\varphi$; nous obtiendrons de la sorte une relation linéaire et homogène en dx, dy, dz, qui nous donnera les dérivées demandées.

Différentions (1):

$$dx \sin \theta \cos \varphi + dy \sin \theta \sin \varphi + dz \cos \theta + (x \cos \theta \cos \varphi + y \cos \theta \sin \varphi - z \sin \theta) d\theta + (-x \sin \theta \sin \varphi + y \sin \theta \cos \varphi) d\varphi = d\omega;$$

ou, en tenant compte de (2) et (3),

$$dx \sin \theta \cos \varphi + dy \sin \theta \sin \varphi + dz \cos \theta + \frac{\partial \omega}{\partial \theta} d\theta + \frac{\partial \omega}{\partial \varphi} d\varphi = d\omega.$$

Mais $d\omega = \frac{\partial \omega}{\partial \theta} d\theta + \frac{\partial \omega}{\partial \varphi} d\varphi$. Notre équation se réduit donc à

(4)
$$dx \sin\theta \cos\varphi + dy \sin\theta \sin\varphi + dz \cos\theta = 0.$$

Les différentielles $d\theta$, $d\varphi$ se sont éliminées d'elles-mêmes et nous avons

(5)
$$\frac{\partial z}{\partial x} = -\tan\theta \cos\varphi, \qquad \frac{\partial z}{\partial y} = -\tan\theta \sin\varphi.$$

3. Étant donnée l'expression $(y^2-x^2+2xy)dx+(y^2-x^2-2xy)dy$, par quelle fonction de (x^2+y^2) faut-il la multiplier pour qu'elle devienne une différentielle totale exacte?

Soit à le facteur cherché. On doit avoir (nº 141)

$$\frac{\partial}{\partial y} \left[\lambda (y^2 - x^2 + 2xy) \right] = \frac{\partial}{\partial x} \left[\lambda (y^2 - x^2 - 2xy) \right],$$

ou, en appelant λ' la dérivée de λ par rapport à $(x^2 + y^2)$,

$$\begin{split} \lambda' y (y^2 - x^2 + 2xy) + \lambda (y + x) &= \lambda' x (y^2 - x^2 - 2xy) - \lambda (x + y), \\ \lambda' (x^3 + x^2y + xy^2 + y^3) + 2\lambda (x + y) &= 0, \\ \frac{\lambda'}{\lambda} &= -2 \frac{x + y}{x^3 + x^2y + xy^2 + y^3}. \end{split}$$

Si λ est une fonction de $x^2 + y^2$, le second membre ne doit plus dépendre que de cette même quantité. Effectivement, le dénominateur peut s'écrire $(x + y)(x^2 + y^2)$, et il reste l'équation

$$\frac{\lambda'}{\lambda} = -\frac{2}{x^2 + v^2};$$

d'où

$$\log \lambda = -2 \log(x^2 + y^2) + \log c \qquad (c = \text{const.});$$

$$\lambda = \frac{c}{(x^2 + y^2)^2}.$$

Vérifions a posteriori que l'expression

$$\frac{(y^2-x^2+2xy)\,dx+(y^2-x^2-2xy)\,dy}{(x^2+y^2)^2}$$

est bien la différentielle totale d'une fonction z de x et y, que nous allons calculer. On doit avoir

$$\frac{\partial z}{\partial x} = \frac{y^2 - x^2 + 2xy}{(x^2 + y^2)^2};$$

HAAG. -- Exercices, I.

d'où

$$z = \int \frac{(y^2 - x^2 + 2xy) dx}{(x^2 + y^2)^2} + Y,$$

Y désignant une certaine fonction de y.

Calculant l'intégrale du second membre par les méthodes habituelles (Chap. XIII), on trouve

$$z = \frac{x - y}{x^2 + y^2} + Y.$$

Portons dans

$$\frac{\partial z}{\partial y} = \frac{y^2 - x^2 - 2xy}{(x^2 + y^2)^2};$$

$$Y' + \frac{-(x^2 + y^2) - 2y(x - y)}{(x^2 + y^2)^2} = \frac{y^2 - x^2 - 2xy}{(x^2 + y^2)^2},$$

$$Y' = 0.$$

Donc Y = const. et

$$z = \frac{x - y}{x^2 + y^2} + \text{const.}$$

EXERCICES PROPOSÉS.

1. Calculer les différentielles totales des fonctions

$$x^2+y^2+z^2$$
, $\arctan g \frac{y}{x}$, $(x^2+y^2)e^{\arctan g \frac{y}{x}}$, $\arctan g \frac{x+y+z-xyz}{1-xy-yz-zx}$.

2. Que devient l'expression (1)

$$ds^2 = dx^2 + dy^2 + dz^2$$

après le changement de variables

$$x = \rho \sin \theta \cos \varphi$$
, $y = \rho \sin \theta \sin \varphi$, $z = \rho \cos \theta$?

3. Que deviennent les expressions

$$ds^2 = dx^2 + dy^2$$
 et $dA = x dy - y dx$,

après le changement de variables

$$x = \rho \cos \omega, \quad y = \rho \sin \omega$$
?

⁽¹⁾ Dans cette expression, ds^2 , dx^2 , dy^2 , dz^2 sont les carrés des différentielles ds, dx, dy, dz, c'est-à-dire $(ds)^2$, $(dx)^2$, $(dy)^2$, $(dz)^2$.

4. Que devient l'expression

$$ds^2 = dx^2 + dy^2 + dz^2$$

quand on pose

$$x = \frac{1-\alpha\beta}{\alpha-\beta}, \qquad y = i\frac{1+\alpha\beta}{\alpha-\beta}, \qquad z = \frac{\alpha+\beta}{\alpha-\beta}$$
?

- 5. L'équation $x^5y^3z^4 + x^2yz^6 x^9y^7z^2 = 1$ est vérifiée pour x = y = z = 1. Calculer approximativement la valeur de z, voisine de l'unité, qui y satisfait pour x = 0,0001, y = 1,0002.
 - 6. Même question pour l'équation

$$\left(\sin\frac{\pi}{2x}\right)^y + \cos\frac{\pi z}{2} = 2^x.$$

- 7. On reprend les formules de l'exercice résolu n° 1, en y faisant $\lambda = \psi = 0$. On donne à l et ε les accroissements dl = -17'', 27 sin Ω , $d\varepsilon = 9''$, 24 cos Ω , sans changer β . Calculer les accroissements $d\alpha$ et $d\delta$ qui en résultent. (Corrections de nutation.)
- 8. Étant donné une fonction ω de x, y, z, on fait le changement de variables

$$x' = x + y + z,$$
 $y' = x^2 + y^2 + z^2,$ $z' = x^3 + y^3 + z^3.$

Calculer $\frac{\partial \omega}{\partial x'}$, $\frac{\partial \omega}{\partial y'}$, $\frac{\partial \omega}{\partial z'}$, en fonction de $\frac{\partial \omega}{\partial x}$, $\frac{\partial \omega}{\partial y}$, $\frac{\partial \omega}{\partial z}$.

9. Que devient l'équation aux dérivées partielles

$$(x+y)\frac{\partial z}{\partial x} + (x-y)\frac{\partial z}{\partial y} = 0$$

par le changement de variables $x^2-y^2-2xy=u$, y=v? En déduire toutes les fonctions qui vérissent cette équation.

- 10. Même question pour l'équation $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = 0$ et le changement de variables x + y = u, x y = v.
 - 11. Que deviennent les expressions

$$\begin{split} \Delta\omega &= \left(\frac{\partial\omega}{\partial x}\right)^2 + \left(\frac{\partial\omega}{\partial y}\right)^2 + \left(\frac{\partial\omega}{\partial z}\right)^2,\\ \Delta_2\omega &= \frac{\partial^2\omega}{\partial x^2} \;+\; \frac{\partial^2\omega}{\partial y^2} \;+\; \frac{\partial^2\omega}{\partial z^2}, \end{split}$$

à la suite du changement de variables de l'exercice n° 2?

- 12. Reprenant les équations (1), (2), (3) de l'exercice résolu n° 2, calculer les dérivées partielles premières et secondes de z, θ , φ par rapport à x et y.
- 13. Par quelle fonction faut-il multiplier (tang $x + \tan y$) (dx + dy) pour obtenir une différentielle exacte? (Poser x + y = u.)
 - 14. Par quelle fonction de x + y + z faut-il multiplier l'expression

$$(y+z)yz\,dx+(z+x)zx\,dy+(x+y)xy\,dz,$$

pour obtenir une dissérentielle exacte?

15. Par quelle fonction faut-il multiplier l'expression

$$(y+z)\left(\frac{dx}{x}+\frac{dy}{y}\right)-dy-dz,$$

pour obtenir une différentielle exacte? (Poser y + z = u, xy = v.)

CHAPITRE XII.

INTÉGRALES DÉFINIE ET INDÉFINIE.

EXERCICES RÉSOLUS.

1. Étant donnée l'intégrale $I = \int_u^v f(x) dx$, où u et v désignent deux fonctions données d'un paramètre t, calculer la dérivée $\frac{dI}{dt}$.

Cette question est une généralisation de celle qui a été traitée au n° 148. Nous allons, pour la résoudre, procéder d'une manière analogue. Donnons à t un accroissement Δt et soient Δu , Δv , ΔI les accroissements correspondants de u, v, I. On a

$$\mathbf{I} + \Delta \mathbf{I} = \int_{u+\Delta u}^{v+\Delta v} f(x) \, dx = \int_{u+\Delta u}^{u} + \int_{u}^{v} + \int_{v}^{v+\Delta v};$$

d'où

$$\Delta \mathbf{I} = \int_{u+\Delta u}^{u} + \int_{v}^{v+\Delta v} = \int_{v}^{v+\Delta v} - \int_{u}^{u+\Delta u}.$$

Appliquons la formule de la moyenne (nº 145):

$$\Delta \mathbf{I} = \Delta \mathbf{v} f(\mathbf{v} + \mathbf{0} \Delta \mathbf{v}) - \Delta \mathbf{u} f(\mathbf{u} + \mathbf{0}' \Delta \mathbf{u}) \qquad (\mathbf{o} < \mathbf{0}, \, \mathbf{0}' < \mathbf{1});$$

d'où

$$\frac{\Delta \mathbf{I}}{\Delta t} = \frac{\Delta v}{\Delta t} f(v + \theta \Delta v) - \frac{\Delta u}{\Delta t} f(u + \theta' \Delta u).$$

Supposons maintenant que Δt tende vers zéro; nous aurons, à la limite, en admettant l'existence des dérivées de u et v,

$$\frac{d\mathbf{I}}{dt} = f(v) \frac{dv}{dt} - f(u) \frac{du}{dt}.$$

Remarque. — Si l'on suppose u = const. = a, v = t, on retrouve la formule du n° 148.

2. Différentiation sous le signe \int . — Calculer la dérivée par

rapport à t de l'intégrale

$$I = \int_a^b f(x,t) \, dx,$$

a et b désignant deux constantes et f(x, t) une fonction donnée des deux variables x et t.

Donnons à t l'accroissement Δt . Nous avons

(1)
$$\Delta I = \int_a^b f(x, t + \Delta t) dx - \int_a^b f(x, t) dx,$$

d'où (nº 145, 3°)

(2)
$$\frac{\Delta I}{\Delta t} = \int_{a}^{b} \left[\frac{f(x, t + \Delta t) - f(x, t)}{\Delta t} \right] dx.$$

Faisons tendre Δt vers zéro, nous avons à la limite (1)

$$\frac{d\mathbf{I}}{dt} = \int_{a}^{b} \frac{\partial f}{\partial t} dx.$$

3. Limite, pour n infini, de $\frac{1}{n}\sqrt[n]{(n+1)(n+2)\dots 2n}$. Cette expression peut s'écrire

$$P_n = \left[\left(1 + \frac{1}{n} \right) \left(1 + \frac{2}{n} \right) \cdots \left(1 + \frac{n}{n} \right) \right]^{\frac{1}{n}}.$$

Prenons son logarithme

$$\log P_n = \frac{\log \left(1 + \frac{1}{n}\right) + \log \left(1 + \frac{2}{n}\right) + \ldots + \log \left(1 + \frac{n}{n}\right)}{n},$$

(1) Ceci suppose toutefois la propriété suivante : si la fonction g(v, t) tend vers g(x) pour t = 0, l'intégrale $I_t = \int_a^b g(x, t) dx$ tend vers $I_0 = \int_a^b g(x) dx$. Effectivement, supposons que $|t| < \tau_1$ entraîne, quel que soit x entre a et b.

$$|g(x,t)-g(x)|<\varepsilon.$$

On aura

$$|\mathbf{I}_t - \mathbf{I}_0| = \left| \int_a^b [g(x, t) - g(x)] dx \right| < \varepsilon (b - a),$$

d'après la définition même de l'intégrale définie; d'où, etc.

dont la limite n'est autre que la valeur moyenne de la fonction $\log x$ dans l'intervalle (1, 2), (n° 146). On a donc

$$\lim (\log P_n) = \int_1^2 \log x \, dx = [x (\log x - 1)]_1^2 = 2 \log 2 - 1 = \log \frac{4}{e};$$

par suite, la limite de P_n est $\frac{4}{e}$.

4. Calculer à -1 près l'intégrale définie

$$1 = \int_0^1 \sin(x^2) \, dx.$$

Cette intégrale ne peut être calculée par la méthode des primitives. Appliquons-lui la méthode des trapèzes.

Cherchons d'abord quelle valeur il faut prendre pour n pour que l'erreur soit inférieure à $\frac{1}{200}$. Puis nous ferons nos calculs auxiliaires de façon qu'ils n'entraînent pas une erreur supérieure à $\frac{1}{200}$. Nous serons alors assurés d'une erreur totale plus petite que $\frac{1}{100}$.

La dérivée seconde de $\sin(x^2)$ est $2\cos(x^2) - 4x^2\sin(x^2)$. Si l'on remarque que sa dérivée est négative dans l'intervalle $\left(0, \sqrt{\frac{\pi}{2}}\right)$, son maximum est 2 et son minimum est

$$2\cos i - 4\sin i > 2\cos \frac{\pi}{3} - 4\sin \frac{\pi}{3} = i - 2\sqrt{3} > -\frac{5}{2}$$

Une limite supérieure de sa valeur absolue est donc

$$\mathbf{M} = \frac{5}{2}$$
.

Dès lors, déterminons h par l'inégalité (nº 150)

$$\frac{5}{3} \frac{h^2}{13} < \frac{1}{200}$$

ou

$$n^2 > \frac{1000}{24} = 41, \ldots$$

Le plus petit nombre entier vérifiant cette inégalité est n = 7. Nous prendrons donc (n° 150)

$$I = \frac{1}{7} \left(\frac{\sin t}{2} + \sin \frac{t}{49} + \sin \frac{4}{49} + \sin \frac{9}{49} + \sin \frac{16}{49} + \sin \frac{25}{49} + \sin \frac{36}{49} \right).$$

Calculons avec 2 décimales chaque terme de la parenthèse, mais en

d'où

la dernière s'il y a lieu, de façon à avoir une erreur moindre que $\frac{1}{200}$, ce qui nous donne pour la parenthèse une erreur plus petite que $\frac{7}{200}$ et une erreur plus petite que $\frac{1}{200}$ pour I.

Si nous consultons une Table de sinus naturels, nous constatons que, pour avoir deux décimales il suffit de calculer les arcs en grades à 10' près. Or, on a

Finalement

$$I = 0.31$$
.

Pour nous rendre compte de la valeur de la méthode de Simpson, appliquons-la en prenant seulement n = 2. Nous avons

$$I = \frac{1}{6} \left(4 \sin \frac{1}{4} + \sin 1 \right) = \frac{1,84}{6} = 0,31.$$

On retrouve le même résultat.

Autre méthode (n° 152). — Développons $\sin(x^2)$ en série entière; nous avons, quel que soit x (n° 107),

$$\sin(x^2) = x^2 - \frac{x^6}{6} + \frac{x^{10}}{5!} - \ldots + (-1)^n \frac{x^{4n+2}}{(2n+1)!} + \ldots$$

Intégrons terme à terme (n° 102):

$$\int_0^1 \sin(x^2) dx = \frac{1}{3} - \frac{1}{42} + \frac{1}{5! \, 1!} - \ldots + (-1)^n \, \frac{1}{(2n+1)! \, (4n+3)} + \ldots$$

Prenons, par exemple, les trois premiers termes. L'erreur commise sera

négative et inférieure à

$$\frac{1}{7!15} = \frac{1}{75000} < \frac{1}{75000} = \frac{4}{3} \cdot \frac{1}{100000}$$

Prenons ensuite

$$\frac{1}{3} = 0,333333,$$

$$\frac{1}{42} = 0,023809,$$

$$\frac{1}{5/11} = 0,000757.$$

Nous avons trois erreurs $<\frac{1}{10^6}$. L'erreur totale est donc certainement inférieure à

$$\frac{4}{3} \frac{1}{10^5} + \frac{3}{10^6} < \frac{5}{3} \frac{1}{10^5} < \frac{2}{10^5}$$

On obtient de la sorte

$$I = 0,310281,$$

et l'on peut écrire

I = 0,3102 par défaut, I = 0,3103 par excès.

Comme on le voit, cette seconde méthode est plus avantageuse que la première.

5. Nature de l'intégrale
$$\int_0^{+\infty} e^{-x^2} dx$$
.

Le produit $x^m e^{-x^2}$ tend vers zéro, quel que soit m. Donc, l'intégrale proposée est convergente (n° 153). Elle converge plus rapidement que $\int_0^\infty \frac{dx}{x^m}$, si grand que soit m. On démontre que sa valeur est égale à $\frac{\sqrt{\pi}}{2}$. (Cf. Leçons, t. II, p. 562-563.)

6. Nature de l'intégrale
$$\int_0^1 \frac{\sqrt{1-x} dx}{x^{\alpha} \log x}$$
 ($\alpha > 0$).

La fonction sous le signe \int devient infinie aux deux bornes de l'intégrale. Considérons d'abord l'intégrale $\int_{\frac{1}{2}}^{1} \frac{dx\sqrt{1-x}}{x^2 \log x}$. Elle est de même

nature que $\int_{\frac{1}{2}}^{1} \frac{\sqrt{1-x} dx}{\log x}$. Or, si nous posons 1-x=h, nous avons

$$\frac{\sqrt{1-x}}{\log x} = \frac{\sqrt{h}}{\log(1-h)} = \frac{\sqrt{h}}{-h - \frac{h^2}{2} - \dots}.$$

Le produit $\frac{\sqrt{h}\sqrt{h}}{\log x}$ a pour limite — 1, quand h tend vers zéro. Donc (n° 154) l'intégrale a même nature que $\int_{\frac{1}{2}}^{1} \frac{dx}{\sqrt{1-x}}$; c'est-à-dire qu'elle est convergente.

Considérons maintenant l'intégrale $\int_0^{\frac{1}{2}} \frac{\sqrt{1-x} \, dx}{x^\alpha \log x}$. Elle est de même nature que $\int_0^{\frac{1}{2}} \frac{dx}{x^\alpha \log x}$. Le produit $x^\alpha f(x)$ tend vers zéro; donc si $\alpha < 1$, l'intégrale a un sens. Si $\alpha = 1 + \varepsilon (\varepsilon > 0)$, le produit $xf(x) = \frac{1}{x^\varepsilon \log x}$ augmente indéfiniment (n° 96). Donc l'intégrale n'a pas de sens. Enfin, si $\alpha = 1$, on a

$$\int_0^{\frac{1}{2}} \frac{dx}{x \log x} = \int_0^{\frac{1}{2}} \frac{d(\log x)}{\log x} = (\log |\log x|)_0^{\frac{1}{2}} = \log \left|\log \frac{1}{2}\right| - \log |\log o| = -\infty.$$

En résumé, l'intégrale n'a de sens que si $\alpha < 1$.

7. Nature de l'intégrale $\int_0^\infty \sin(x^2) dx$.

La fonction sous le signe \int change indéfiniment de signe; nous ne pouvons donc pas utiliser les critères du n° 153. Nous allons nous livrer à une étude directe de l'intégrale. A cet effet, nous allons la comparer à la série alternée dont les termes successifs sont obtenus en décomposant l'intégrale au moyen des valeurs de x qui font changer le signe de $\sin(x^2)$. Ces valeurs sont $\sqrt{k\pi}$, k prenant toutes les valeurs entières positives. Nous aurons donc la série alternée

$$u_0 - u_1 + u_2 - \ldots + u_{2n} - u_{2n+1} + \ldots$$

en posant

Je dis que la suite (u_p) est décroissante.

Pour le prouver commodément, nous allons ramener toutes nos intégrales à avoir les mêmes bornes. Il suffit pour cela, de poser

$$(2) x = \sqrt{p\pi + y}.$$

Nous avons alors (nº 158)

(3)
$$u_{p} = (-1)^{p} \int_{0}^{\pi} \sin(p\pi + y) \frac{dy}{2\sqrt{p\pi + y}} = \int_{0}^{\pi} \frac{\sin y \, dy}{2\sqrt{p\pi + y}}.$$

Lorsque p augmente, la quantité sous le signe \int diminue; donc l'intégrale diminue (1).

Je dis maintenant que u_p tend vers zero, pour p infini. En effet, d'après la formule de la moyenne (n° 145), on peut écrire

$$(4) u_p = \pi \frac{\sin \eta}{2\sqrt{p\pi + \eta}} < \frac{\pi}{2\sqrt{p\pi}} (o < \eta < \pi).$$

Quand p augmente indéfiniment, $\frac{\pi}{2\sqrt{p\pi}}$ tend vers zéro; donc, a fortiori, u_p .

Finalement, notre série alternée est convergente (n° 48). Soit S sa somme. Je dis que $\int_0^z \sin(x^2) dx$ a pour limite S, quand z tend vers $+\infty$.

⁽¹⁾ Nous admettons ici la propriété évidente qui suit : Si dans l'intervalle (a,b), on a constamment f(x)>g(x), on a aussi $\int_a^b f(x)\,dx>\int_a^b g(x)\,dx$. Cela revient, en effet, à $\int_a^b \left[f(x)-g(x)\right]dx>0$; ce qui est évident, puisque, pour cette intégrale, tous les éléments de la somme Σ sont positifs. Ajoutons que nous avons supposé implicitement a< b.

En effet, soit p le quotient à une unité près par défaut de z^2 par π . Si S_p désigne la somme des p premiers termes de la série, on a (n° 145)

(5)
$$\int_0^z = \int_0^{\sqrt{p\pi}} + \int_{\sqrt{p\pi}}^z = S_p \div \int_{\sqrt{p\pi}}^z$$

Mais

$$\left|\int_{\sqrt{p\pi}}^{z}\right| < \left|\int_{\sqrt{p\pi}}^{\sqrt{(p+1)\pi}}\right| = u_{p},$$

qui tend vers zéro. Donc $\int_0^z - S_p$ tend vers zéro et, par suite, \int_0^z tend vers S, limite de S_p .

Remarques. — I. On a

$$\int_0^{-\infty} \sin(x^2) \, dx = \int_0^{+\infty} \sin(x^2) \, d(-x) = -\int_0^{+\infty} \sin(x^2) \, dx = -S.$$

Donc

$$\int_{-\infty}^{+\infty} = \int_{-\infty}^{0} + \int_{0}^{+\infty} = 2 S.$$

II. Les intégrales

$$\int_0^{+\infty} \sin(x^2) \, dx \quad \text{et} \quad \int_0^{+\infty} \cos(x^2) \, dx$$

jouent un rôle important dans certaines questions de Physique et portent le nom d'intégrales de Fresnel. On démontre qu'elles ont toutes deux pour valeur $\frac{1}{2}\sqrt{\frac{\pi}{2}}$.

EXERCICES PROPOSÉS.

1. Généralisation de la formule de la moyenne. — Si, dans l'intervalle (a, b), la fonction g(x) garde un signe constant, on a

$$\int_a^b f(x) g(x) dx = f(c) \int_a^b g(x) dx \qquad (c \text{ comprisent } a \text{ et } b).$$

2. Appliquer la formule précédente à l'intégrale $\int_0^1 \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}}$, en prenant

$$f(x) = \frac{\mathrm{I}}{\sqrt{\mathrm{I} - k^2 x^2}}, \qquad g(x) = \frac{\mathrm{I}}{\sqrt{\mathrm{I} - x^2}}$$

et supposant k < 1.

3. Étudier les intégrales

$$\int_0^x f(t) dt, \quad \int_{-x}^x f(t) dt,$$

quand la fonction f(t) est paire ou impaire.

4. Si f(x) est périodique et de période p, on a, quel que soit x,

$$\int_{x}^{x+p} f(t) dt = \int_{0}^{p} f(t) dt = P, \qquad \int_{x}^{x+kp} = kP \qquad (k \text{ entier}).$$

L'intégrale \int_a^b peut toujours être ramenée, à un multiple de P près, à être égale à \int_{α}^{β} , où α et β sont compris entre o et p ou entre $-\frac{p}{2}$ et $+\frac{p}{2}$.

Calculer la dérivée par rapport à t de l'intégrale

$$\int_{t}^{t+\pi} \sin^{4}x \, dx.$$

6. Calculer les intégrales de la forme

$$\int_0^1 \cos x. x^m dx, \quad \int_0^1 \sin x. x^m dx,$$

en prenant les dérivées successives de

$$\int_0^1 \cos tx \ dx \quad \text{et} \quad \int_0^1 \sin tx \ dx$$

par rapport à t.

7. Calculer la limite de

$$\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2n},$$

pour $n=\infty$, au moyen de la valeur moyenne d'une certaine fonction.

8. Calculer la limite vers laquelle tend la moyenne arithmétique des diagonales d'un polygone régulier de rayon 1, lorsque le nombre de ses côtés augmente indéfiniment.

9. Calculer à 100 près les intégrales

$$\int_{\frac{\pi}{2}}^{\pi} \frac{\sin x}{x} \, dx, \quad \int_{0}^{\frac{1}{2}} \sqrt{1 - x^{4}} \, dx.$$

10. Reconnaître la nature des intégrales suivantes :

$$\int_{0}^{+\infty} \frac{\sqrt{x^{2}+1} - \sqrt[3]{x^{2}+x+1}}{x^{p}} dx, \quad \int_{e}^{+\infty} \frac{dx}{\log x}, \quad \int_{0}^{1} \frac{dx}{\arctan x},$$

$$\int_{0}^{1} \frac{dx}{\sqrt{x(x^{2}-1)}}, \quad \int_{0}^{1} \frac{dx}{\sqrt{x(x-1)\log x}}.$$

11. Si f(x) est une fonction constamment positive, décroissante et tendant vers zéro pour $x=+\infty$, l'intégrale $\int_0^{+x} f(x) \sin x \, dx$ est convergente.

(Raisonner comme à l'exercice résolu nº 7.)

12. Nature des intégrales

$$\int_0^{+\infty} e^{-x^2} \sin x \, dx, \quad \int_0^{+\infty} \frac{\sin x}{x} \, dx.$$

CHAPITRE XIII.

CALCUL DES QUADRATURES.

EXERCICES RÉSOLUS.

1. Calculer.

$$I = \int_0^{\frac{1}{2}} \frac{x^4 + 3x^3 + x}{(x - 1)^3 (x^2 - x + 1)^2} dx.$$

Nous avons (nº 163) (1)

$$\begin{split} \mathbf{I} &= 5 \int_{0}^{\frac{1}{2}} \frac{dx}{(x-1)^{3}} + 4 \int_{0}^{\frac{1}{2}} \frac{dx}{(x-1)^{2}} \\ &- 8 \int_{0}^{\frac{1}{2}} \frac{dx}{x-1} - 3 \int_{0}^{\frac{1}{2}} \frac{dx}{(x^{2}-x+1)^{2}} + 4 \int_{0}^{\frac{1}{2}} \frac{(2x-1) dx}{x^{2}-x+1} \\ &= -\frac{5}{2} \left[\frac{1}{(x-1)^{2}} \right]_{0}^{\frac{1}{2}} - 4 \left(\frac{1}{x-1} \right)_{0}^{\frac{1}{2}} - 8 (\log|x-1|)_{0}^{\frac{1}{2}} \\ &- 3 \int_{0}^{\frac{1}{2}} \frac{dx}{(x^{2}-x+1)^{2}} + 4 [\log(x^{2}-x+1)]_{0}^{\frac{1}{2}}. \end{split}$$

Reste à calculer

$$J = \int_{0}^{\frac{1}{2}} \frac{dx}{(x^{2} - x + 1)^{2}}.$$

Le trinome $x^2 - x + 1$ s'écrit

$$\left(x-\frac{1}{2}\right)^2+\frac{3}{4}$$

Posons donc (nº 164)

$$x - \frac{1}{2} = \frac{\sqrt{3}}{2}t.$$

⁽¹⁾ Nous désignons par la notation $[f(x)]_{x_0}^{x_1}$ la quantité $f(x_1) - f(x_0)$.

Nous avons

$$J = \int_{-\frac{1}{\sqrt{3}}}^{0} \frac{\frac{\sqrt{3}}{2} dt}{\frac{3}{4} (1+t^2)^2} = \frac{2}{\sqrt{3}} \int_{-\frac{1}{\sqrt{3}}}^{0} \frac{dt}{(1+t^2)^2} = \frac{1}{\sqrt{3}} \left(\operatorname{arc tang} t + \frac{t}{1+t^2} \right)_{-\frac{1}{\sqrt{3}}}^{0} (n^{\circ}164).$$

Finalement

$$1 = -\frac{15}{2} + 4 + 8\log_2 - \sqrt{3}\left(\frac{\pi}{6} + \frac{\sqrt{3}}{4}\right) + 4\log_2 \frac{3}{4} = -4,25 + 4\log_3 - \frac{\pi\sqrt{3}}{6};$$

$$1 = -4,32806.$$

2. Calculer

$$I = \int \frac{\sqrt{x+1} + \sqrt[3]{x+1}}{\sqrt{x+1} - \sqrt[3]{x+1}} dx.$$

Posons (nº 165)

$$x+\mathfrak{l}=t^6, \qquad dx=6t^5\,dt.$$

On a

$$= 6 \int \frac{t+\tau}{t-1} t^5 dt = 6 \int \left(t^5 + 2 t^4 + 2 t^3 + 2 t^2 + 2 t + 2 + \frac{2}{t-1} \right) dt$$

$$= t^6 + \frac{12 t^5}{5} + 3 t^4 + 4 t^3 + 6 t^2 + 12 t + 12 \log(t-1),$$

$$I = x + \tau + \frac{12}{5} (x+1)^{\frac{5}{6}} + 3 (x+1)^{\frac{2}{3}} + 4 (x+1)^{\frac{1}{2}} + 6 (x+1)^{\frac{1}{3}}$$

$$+ 12 (x+1)^{\frac{1}{6}} + 12 \log(\sqrt[6]{x+1} - 1).$$

3. L'équation $x^3 + y^3 - xy = 0$ définit y comme fonction implicite de x. On considère, dans l'intervalle $\left(0, \frac{1}{2}\right)$ pour x, la branche y définie par la plus grande racine. Calculer l'intégrale

$$\int_0^{\frac{1}{2}} \frac{x+y}{x^2+y^2} dx.$$

L'équation proposée représente, en coordonnées cartésiennes, une courbe unicursale (t. II). Si l'on pose, en effet, y = tx, on en déduit

$$x = \frac{t}{1+t^3}$$
, $y = \frac{t^2}{1+t^3}$, $dx = \frac{(1-2t^3)dt}{(1+t^3)^2}$

Moyennant quoi, notre élément différentiel devient

$$\frac{(1-2\,t^3)\,dt}{t(1+\,t^2)\,(1-\,t\,+\,t^2)}\cdot$$

Il nous faut chercher maintenant dans quel intervalle il faut varier t pour que x croisse de o à $\frac{1}{2}$, y prenant en outre pour valeurs successives les racines supérieures de l'équation proposée. Si l'on remarque que, pour une valeur donnée positive de x, y = tx est d'autant plus grand que t est plus grand, on voit qu'il faut prendre pour intervalle de variation de t celui qui comprend les racines supérieures de l'équation

$$xt^3-t+x=0,$$

quand x croît de o à $\frac{1}{2}$. Or, pour x=0, on a les racines t=0, $t=\pm\infty$. Pour $x=\frac{1}{2}$, on a les racines

$$t = 1,$$
 $t = \frac{-1 + \sqrt{5}}{2},$ $t = \frac{-1 - \sqrt{5}}{2},$

dont la plus grande est 1. Nous devons donc prendre pour intervalle d'intégration l'intervalle $(+\infty, 1)$ (1); et notre intégrale s'écrit

$$I = \int_{-\infty}^{1} \frac{(1-2t^3) dt}{t(1+t^2)(1-t+t^2)}.$$

Suivant la méthode générale des nºs 163 et 164,, nous avons (2)

$$\begin{split} \mathbf{I} &= \left\{ \log t + \log \left(\mathbf{I} + t^2 \right) + \arctan t - \sqrt{3} \arctan \frac{2t - 1}{\sqrt{3}} - \frac{3}{2} \log \left[\left(t^2 - t + 1 \right) \right] \right\}_{+\infty}^{1} \\ &= \left[\log \frac{t \left(\mathbf{I} + t^2 \right)}{\left(t^2 - t + 1 \right)^{\frac{3}{2}}} \right]_{+\infty}^{1} + \left(\arctan t \right)_{+\infty}^{1} - \sqrt{3} \left(\arctan \frac{2t - 1}{\sqrt{3}} \right)_{+\infty}^{1} \\ &\cdot \\ \end{split}$$

Le premier terme est égal à $\log 2$, car, pour $t = +\infty$, la fraction sous le signe \log est égale à 1, puisque son numérateur et son dénominateur admettent tous deux t^3 pour partie principale (n° 126).

Le second terme vaut
$$\frac{\pi}{4} - \frac{\pi}{2} = -\frac{\pi}{4}$$
.
Le troisième vaut $-\sqrt{3}\left(\frac{\pi}{6} - \frac{\pi}{2}\right) = \frac{\pi}{\sqrt{3}}$.

⁽¹⁾ On arrive au même résultat, et d'une manière en quelque sorte moins abstraite, en construisant la courbe. Parmi les trois arcs compris entre les deux droites x=0, $x=\frac{1}{2}$, on prend le plus élevé et l'on voit immédiatement comment varie t quand le point (x,y) décrit cet arc, qui est ici la moitié de la boucle comprise entre Oy et la première bissectrice. (Le lecteur est prié de faire la figure.)

⁽²⁾ Le lecteur est prié de faire les calculs.

Nous avons donc

$$I = \log_2 - \frac{\pi}{4} + \frac{\pi}{\sqrt{3}} = 0,1307 - 0,7854 + 1,8138 = 1,1591.$$

4. Calculer
$$1 = \int \frac{\sqrt{x^2 - x + 1}}{x - 1} dx$$
.

Employons la méthode de réduction (nº 168) (1). Nous avons

$$\frac{\sqrt{x^2 - x + 1}}{x - 1} = \frac{x^2 - x + 1}{x - 1} \frac{1}{\sqrt{x^2 - x + 1}} = \frac{x}{\sqrt{x^2 - x + 1}} + \frac{1}{(x - 1)\sqrt{x^2 - x + 1}},$$

$$\int \frac{x \, dx}{\sqrt{x^2 - x + 1}} = \int \frac{\left(x - \frac{1}{2}\right) \, dx}{\sqrt{x^2 - x + 1}} + \frac{1}{2} \int \frac{dx}{\sqrt{x^2 - x + 1}}$$

$$= \sqrt{x^2 - x + 1} + \frac{1}{2} \int \frac{dx}{\sqrt{x^2 - x + 1}}.$$

Calculons
$$\int \frac{dx}{\sqrt{x^2-x+1}}$$
. On a

$$x^2 - x + i = \left(x - \frac{1}{2}\right)^2 + \frac{3}{4}$$

Posons dès lors

$$x-\frac{1}{2}=t.$$

Nous avons

(1)
$$\int \frac{dx}{\sqrt{x^2 - x + 1}} = \int \frac{dt}{\sqrt{t^2 + \frac{3}{4}}} = \log\left(t + \sqrt{t^2 + \frac{3}{4}}\right) = \log\left(x - \frac{1}{2} + \sqrt{x^2 - x + 1}\right).$$

Nous avons maintenant à calculer $\int \frac{dx}{(x-1)\sqrt{x^2-x+1}}$. Posons (n° 168) $x-1=\frac{1}{t}$; l'intégrale devient $\int \frac{dt}{\sqrt{t^2+t+1}}$ (2), qui se déduit de (1) par le changement de x en -t et a, par conséquent, pour valeur

$$\log\left(-t-\frac{1}{2}+\sqrt{t^2+t+1}\right)=\log\left[\frac{x+1}{2(1-x)}+\frac{\sqrt{x^2-x+1}}{1-x}\right].$$

⁽¹⁾ Nous conseillons au lecteur, à titre d'exercice et pour comparer la rapidité des deux méthodes, d'utiliser aussi le changement de variable $\sqrt{x^2 - x + 1} = x + t$ (n° 167).

⁽²⁾ En supposant, pour fixer les idées, t < 0, c'est-à-dire x < 1.

Finalement, nous avons

$$1 = \sqrt{x^2 - x + 1} + \frac{1}{2} \log \left(x - \frac{1}{2} + \sqrt{x^2 - x + 1} \right) + \log \left(\frac{x + 1}{2} + \sqrt{x^2 - x + 1} \right).$$

5. Calcular
$$I = \int_a^b \frac{x \, dx}{\sqrt{(x-a)(b-x)}}$$
 (E. P., 1911).

Les racines du radical sont réelles. Posons donc (nº 167)

$$\frac{x-a}{b-x}=t^2, \qquad x=\frac{a+bt^2}{1+t^2}, \qquad dx=\frac{2(b-a)t}{(1+t^2)^2}, \qquad b-x=\frac{b-a}{1+t^2}.$$

Lorsque x croît de a à b, t croît de o à $+\infty$. Nous avons alors

$$I = \int_0^{+\infty} \frac{2(b-a)(a+bt^2)t\,dt}{(1+t^2)^3t\,\frac{(b-a)}{1+t^2}} = 2\int_0^{+\infty} \frac{(a+bt^2)\,dt}{(1+t^2)^2}.$$

Posons (nº 164) $t = \tan g \varphi$; il vient

$$I = 2 \int_0^{\frac{\pi}{2}} (a\cos^2\varphi + b\sin^2\varphi) \, d\varphi = \int_0^{\frac{\pi}{2}} [a(1 + \cos 2\varphi) + b(1 - \cos 2\varphi)] \, d\varphi,$$

$$I = (a+b)\frac{\pi}{2} + \frac{a-b}{2} (\sin 2\varphi)_0^{\frac{\pi}{2}} = \frac{\pi(a+b)}{2}.$$

6. Calculer
$$I = \int_0^{\pi} \frac{dx}{(1 - e \cos x)^3}$$
.

Observons d'abord qu'il est nécessaire de supposer e < 1 pour que l'intégrale ait un sens (n° 154). Cela étant admis, posons (n° 169)

$$\tan g \, \frac{x}{2} = t.$$

Nous avons

$$\mathbf{I} = 2 \int_0^{+\infty} \frac{(\mathbf{1} + t^2)^2 dt}{[t^2(\mathbf{1} + e) + \mathbf{1} - e]^3}.$$

Faisons maintenant le changement de variable t = mu, en posant, pour abréger l'écriture, $m = \sqrt{\frac{1-e}{1+e}}$. Il vient

$$I = \frac{2m}{(1-e)^3} \int_0^{+\infty} \frac{(1+m^2u^2)^2 du}{(1+u^2)^3}.$$

Posons (nº 164) $u = \tan g \varphi$; nous avons

$$I = \frac{2m}{(1-e)^3} \int_0^{\frac{\pi}{2}} (\cos^2\varphi + m^2 \sin^2\varphi)^2 d\varphi.$$

Or,

$$\begin{split} &(\cos^2\varphi + m^2\sin^2\varphi)^2 \\ &= \frac{1}{4} \left[1 + m^2 + (1 - m^2)\cos 2\varphi \right]^2 \\ &= \frac{1}{4} \left[(1 + m^2)^2 + 2(1 - m^4)\cos 2\varphi + \frac{(1 - m^2)^2}{2} (1 + \cos 4\varphi) \right]. \end{split}$$

Donc

$$I = \frac{m}{2(1-e)^3} \left[(1+m^2)^2 + \frac{(1-m^2)^2}{2} \right] \frac{\pi}{2} = \frac{\pi \left(1+\frac{e^2}{2}\right)}{(1-e^2)^{\frac{3}{2}}}.$$

7. Calculer
$$I = \int_0^{\frac{\pi}{2}} \frac{dx}{\cos^4 x + \sin^4 x}$$
 (E. P., 1912).

La fonction sous le signe \int admet pour période $\frac{\pi}{2}$. Ceci suggère l'idée de poser (cf. n° 169) tang 2x = t. Effectivement, on peut écrire

$$\begin{aligned} \cos^4 x + \sin^4 x &= (\cos^2 x + \sin^2 x)^2 - 2\sin^2 x \cos^2 x \\ &= 1 - \frac{1}{2}(\sin 2x)^2 = 1 - \frac{1}{2}\frac{t^2}{1 + t^2} \end{aligned}$$

D'autre part, quand x croît de o à $\frac{\pi}{2}$, 2x croît de o à π ; t croît de o à $+\infty$; puis de $-\infty$ à o. On a

$$I = \int_0^{\infty} \frac{dt}{2 + t^2} + \int_{-\infty}^0 \frac{dt}{2 + t^2} = 2 \int_0^{+\infty} \frac{dt}{2 + t^2} = \int_0^{\infty} \frac{dt}{1 + \left(\frac{t}{\sqrt{2}}\right)^2} = \sqrt{2} \left(\arctan \frac{t}{\sqrt{2}} \right)_0^{+\infty} = \frac{\pi}{\sqrt{2}}.$$

8. Calculer l'intégrale définie
$$I = \int_0^{-1} \frac{dx}{\sqrt{4 - (e^x + 1)^2}}$$

Pour faire disparaître le radical, sans en introduire d'autre, faisons le changement de variable

$$e^x - 1 = 2 \sin t,$$

On tire de cette équation

$$x = \log(2\sin t - 1), \qquad dx = \frac{2\cos t \, dt}{2\sin t - 1};$$

puis

(2)
$$\sqrt{4 - (e^x + 1)^2} = \sqrt{4 \cos^2 t} = \pm 2 \cos t.$$

Lorsque x varie de 0 à -1, $\sin t$ varie de 1 à $\frac{1+e}{2e}$; nous pouvons faire varier t de $\frac{\pi}{2}$ à arc $\sin \frac{1+e}{2e} = 47^6$, 947. Dans cet intervalle, $\cos t$ est positif, de sorte qu'il faut prendre le signe + dans la formule (2). Nous avons alors

$$I = \int_{\frac{\pi}{2}}^{47^{6}, 947} \frac{dt}{2 \sin t - 1}.$$

Faisons maintenant le changement de variable (n° 169)

$$\tan g \frac{t}{2} = u$$
.

Lorsque t décroît de $\frac{\pi}{2}$ à 47^{G} , 947, u décroît de 1 à 0, 39544. Nous avons alors

$$I = \int_{1}^{0,39544} \frac{2 \ du}{4 \ u - 1 - u^2}.$$

Or

$$\int \frac{du}{4u - 1 - u^2} = -\int \frac{du}{(u - 2)^2 - 3}$$

$$= -\frac{1}{2\sqrt{3}} \left[\int \frac{du}{u - 2 - \sqrt{3}} - \int \frac{du}{u - 2 + \sqrt{3}} \right]$$

$$= -\frac{1}{2\sqrt{3}} \log \left| \frac{u - 2 - \sqrt{3}}{u - 2 + \sqrt{3}} \right|.$$

Donc

$$I = -\frac{1}{\sqrt{3}} \left(\log \frac{\sqrt{3} + 2 - 0.39544}{\sqrt{3} - 2 + 0.39544} - \log \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \right) = -1,1245.$$

9. Calculer $\int \frac{dx}{x \log x}$.

L'intégrale s'écrit

$$\int \frac{d(\log x)}{\log x} = \log \log x.$$

Plus généralement, si l'on pose, pour abréger l'écriture,

$$\log_p x = \overbrace{\log\log\ldots\log x}^{p \text{ fois}},$$

on a

$$\int \frac{dx}{x \log x \log_1 x \dots \log_p x} = \log_{p+1} x.$$

10. Calculer $I = \int e^{2x} x^3 dx$.

Intégrons par parties (I, nº 161):

$$I = \int \frac{x^3}{2} d(e^{2x}) = e^{2x} \frac{x^3}{2} - \int \frac{3}{2} e^{2x} x^2 dx,$$

$$-\frac{3}{2} \int e^{2x} x^2 dx = -\frac{3}{4} e^{2x} x^2 + \frac{3}{2} \int e^{2x} x dx,$$

$$\frac{3}{2} \int e^{2x} x dx = \frac{3}{4} e^{2x} x - \frac{3}{4} \int e^{2x} dx,$$

$$-\frac{3}{4} \int e^{2x} dx = -\frac{3}{8} e^{2x}.$$

Ajoutons membre à membre, il vient

$$I = e^{2x} \left(\frac{x^3}{2} - \frac{3}{4} x^2 + \frac{3}{4} x - \frac{3}{8} \right).$$

11. Calculer $I = \int \frac{\log(x^2 - 3x + 2)}{x^2} dx$.

Intégrons par parties (nº 161, IV) :

$$\begin{split} \mathbf{I} &= \int \log (x^2 - 3x + 2) d \left(-\frac{1}{x} \right) \\ &= -\frac{\log (x^2 - 3x + 2)}{x} + \int \frac{1}{x} \left(\frac{1}{x - 1} + \frac{1}{x - 2} \right) dx \quad (^1), \\ \mathbf{I} &= -\frac{\log (x^2 - 3x + 2)}{x} + \int \left(-\frac{3}{2} \frac{1}{x} - \frac{1}{x - 1} + \frac{1}{2} \frac{1}{x - 2} \right) dx, \\ \mathbf{I} &= -\frac{\log (x^2 - 3x + 2)}{x} - \frac{3}{2} \log x - \log (x - 1) + \frac{1}{2} \log (x - 2). \end{split}$$

12. Calcular I =
$$\int \frac{(1+x^2) \arctan \left(x+\frac{1}{x}\right)}{(x^2-1)^2} dx.$$

Intégrons par parties (n° 161, IV), en prenant $v = \int \frac{(1+x^2)dx}{(x^2-1)^2}$. Il nous faut, au préalable, calculer v, suivant la méthode générale du n° 163. On a

$$\frac{1+x^2}{(x^2-1)^2} = \frac{1}{2} \left[\frac{1}{(x-1)^2} + \frac{1}{(x+1)^2} \right];$$

$$\log(x-1)(x-2) = \log(x-1) + \log(x-2).$$

⁽¹⁾ Pour obtenir immédiatement la dérivée du logarithme décomposée en éléments simples, écrire celui-ci sous la forme

d'où,

$$v = -\frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) = \frac{x}{1-x^2}$$

Puis,

$$I = \frac{x}{1-x^2}\arctan\left(x+\frac{1}{x}\right) - \int \frac{x}{1-x^2} \frac{1-\frac{1}{x^2}}{1+\left(x+\frac{1}{x}\right)^2} dx.$$

L'intégrale du second membre s'écrit

$$\int \frac{-x \, dx}{x^4 + 3x^2 + 1} = -\frac{1}{2} \int \frac{d(x^2)}{\left(x^2 + \frac{3 + \sqrt{5}}{2}\right) \left(x^2 + \frac{3 - \sqrt{5}}{2}\right)}$$

$$= -\frac{1}{2\sqrt{5}} \left[\int \frac{d(x^2)}{x^2 + \frac{3 - \sqrt{5}}{2}} - \int \frac{d(x^2)}{x^2 + \frac{3 + \sqrt{5}}{2}} \right]$$

$$= -\frac{1}{2\sqrt{5}} \log \frac{x^2 + \frac{3 - \sqrt{5}}{2}}{x^2 + \frac{3 + \sqrt{5}}{2}}.$$

Finalement

$$I = \frac{x}{1 - x^2} \arctan\left(x + \frac{1}{x}\right) + \frac{1}{2\sqrt{5}} \log \frac{x^2 + \frac{3 - \sqrt{5}}{2}}{x^2 + \frac{3 + \sqrt{5}}{2}}.$$

13. Calculer
$$I = \int_0^{-1} \frac{3x^2 - 1}{\sqrt{x(x^2 - 1)}} \arcsin \frac{x + 1}{x - 1} dx$$
.

Intégrons par parties (n° 161, IV), en prenant $v = \int \frac{(3x^2-1)dx}{\sqrt{x(x^2-1)}}$. Si l'on observe que $3x^2-1$ est la dérivée de $x(x^2-1)=x^3-x$, on voit qu'on peut prendre

$$v = \frac{1}{2}\sqrt{x(x^2-1)};$$

d'où

$$\begin{split} \mathbf{I} &= \left[\frac{1}{2} \sqrt{x(x^2 - 1)} \arcsin \frac{x + 1}{x - 1} \right]_0^{-1} - \frac{1}{2} \int_0^{-1} \sqrt{x(x^2 - 1)} \frac{-\frac{2}{(x - 1)^2}}{\sqrt{1 - \left(\frac{x + 1}{x - 1}\right)^2}} dx, \\ \mathbf{I} &= \int_0^{-1} \frac{\sqrt{x(x^2 - 1)}}{(x - 1)^2 \sqrt{\frac{-4x}{(x - 1)^2}}} = \int_0^{-1} \frac{\sqrt{x(x^2 - 1)}}{(1 - x)\sqrt{-4x}} dx \quad (1) \\ &= \frac{1}{2} \int_0^{-1} \sqrt{\frac{1 + x}{1 - x}} dx. \end{split}$$

⁽¹⁾ On a, en effet, $\sqrt{(x-1)^2} = 1 - x$, car, dans l'intervalle d'intégration, 1 - x est positif.

Posons (nº 165)

$$\sqrt{\frac{1-x}{1-x}} = t$$
, $x = \frac{t^2-1}{t^2+1}$, $dx = \frac{4t \, dt}{(t^2+1)^2}$.

Nous avons

$$\begin{split} \mathbf{I} &= 2 \int_{1}^{0} \frac{t^{2} dt}{(t^{2}+1)^{2}} = \int_{1}^{0} t \, d\left(-\frac{1}{t^{2}+1}\right) = -\left(\frac{t}{t^{2}+1}\right)_{1}^{0} + \int_{1}^{0} \frac{dt}{t^{2}+1}, \\ \mathbf{I} &= \frac{1}{2} + \arctan go - \arctan gi = \frac{1}{2} - \frac{\pi}{4} = -0,2854. \end{split}$$

EXERCICES PROPOSÉS.

1. Calculer les intégrales suivantes :

$$\int \frac{dx}{(x-1)(x+2)}, \quad \int \frac{x^3+1}{(x-1)^2} dx, \quad \int_1^3 \frac{x(x+2)}{(x+1)^3(x+3)} dx,$$

$$\int_0^{+\infty} \frac{(x-3) dx}{x^2(x^2+x+1)}, \quad \int \frac{dx}{x^5-1}, \quad \int_0^{+\infty} \frac{dx}{(x^2+1)^n},$$

$$\int_0^{-\infty} \frac{(x^2-2x) dx}{(x^2-2x+4)^2(x-1)}.$$

- 2. Déterminer à pour que l'intégrale $\int \frac{(\alpha x + 5) dx}{(x-2)^2 (x-1)^3}$ soit algébrique.
 - 3. Calculer

$$\int \frac{\sqrt{x}+1}{\sqrt{x}-1} dx, \quad \int \frac{\sqrt[3]{x+1}-\sqrt{x+1}}{x+2} dx, \quad \int_{a}^{b} \sqrt{\frac{b-x}{x-a}} x dx,$$

$$\int_{a}^{b} \sqrt{\frac{b^{2}-x^{2}}{x^{2}-a^{2}}} x dx, \quad \int_{1}^{4} \frac{\sqrt{\frac{x}{x+1}}+\sqrt[3]{\frac{x^{2}}{(x+1)^{2}}}}{x^{2}\sqrt[3]{\frac{x^{3}}{(x+1)^{3}}}} dx.$$

4. Calculer

$$\int \frac{dx}{x^2+y^2},$$

sachant que $y(x^2 + y^2) + x^2 - y^2 = 0$.

5. Calculer

$$\int \frac{x+1}{\sqrt{x(1-x)}} dx, \quad \int_{0}^{4} \frac{dx}{\sqrt{4x-x^{2}}}, \quad \int_{a}^{b} \frac{x dx}{\sqrt{(b-x)(x-a)}},$$

$$\int \sqrt{x^{2}+2x\cos\varphi+1} dx, \quad \int \frac{(x-1) dx}{x+\sqrt{x^{2}+x+2}}, \quad \int \frac{x+\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}} dx,$$

$$\int_{-1}^{+1} \frac{dx}{\sqrt{1-x}+\sqrt{1+x}}, \quad \int_{0}^{1} \frac{x^{n} dx}{\sqrt{x^{2}+1}}, \quad \int_{0}^{1} \frac{x^{n} dx}{\sqrt{1-x^{2}}}.$$

6. Calculer

$$\int \frac{dx}{a + \cos x}, \quad \int \frac{dx}{a \cos^2 x + b \sin^2 x}, \quad \int \frac{dx}{a \cos x + b \sin x + c},$$

$$\int_0^{\pi} \frac{dx}{\cos x + \cos 2x - 3}, \quad \int_0^{3\pi} \frac{\sin x \cos x \, dx}{1 - e \cos x} (e < 1), \quad \int_{-\frac{5\pi}{100}}^{\frac{13\pi}{5}} \frac{\sin^2 x \, dx}{\cos^2 x + 2 \sin^2 x}.$$

7. Calculer

$$\int \sin^3 x \, dx, \quad \int \cos^5 x \sin^2 x \, dx, \quad \int_0^{4\pi} \sin^4 x \cos^2 x \, dx, \quad \int_0^{\frac{\pi}{2}} (\cos x)^n \, dx,$$

$$\int \frac{dx}{\sin^3 x}, \quad \int \sin^2 x \tan x \, dx, \quad \int_0^{\pi} (\sin x - \cos x)^3 \, dx, \quad \int \sin x \sin 2x \sin 3x \, dx.$$

8. Calculer

$$\int \frac{e^{x}+1}{e^{2x}-1} dx, \quad \int_{1}^{+\infty} \frac{dx}{e^{2x}+e^{x}-2}, \quad \int \frac{(e^{x}+1)^{3}}{(e^{2x}-1)^{2}} dx,$$

$$\int \frac{dx}{\cosh x+1}, \quad \int \frac{dx}{\cosh x+\sinh x}, \quad \int_{0}^{+\infty} \frac{\sinh x \, dx}{\cosh^{3}x+\sinh^{3}x}, \quad \int_{0}^{1} (\sinh x)^{n} \, dx.$$

9. Calculer

$$\int \frac{x \, dx}{(x^2+1)^2}, \quad \int \frac{x^3 \, dx}{\sqrt{x^4-1}}, \quad \int \frac{x^3 \, dx}{\sqrt{x^2-1}}, \quad \int \frac{\sqrt{x^3-2}}{x^4} \, dx.$$

10. Calculer

$$\int \frac{\sin^3 x \, dx}{\cos x + 1}, \quad \int_0^\pi \frac{\cos x \, dx}{\sqrt{3 + \cos 2x}}, \quad \int \tan g^n x \, dx.$$

[Poser $t = \cos x$, $\sin x$ ou tang a.]

11. Calculer

$$\int \frac{\sqrt{e^x + 1} + e^x}{\sqrt{e^x - 1}} dx, \quad \int_{-\infty}^{+\infty} \frac{dx}{\sqrt{e^{2x} + 1}}.$$

12. Calculer

$$\int e^x x^3 dx, \quad \int_0^3 e^{x^2+1} (x^4+1) x^3 dx.$$

[Pour la seconde, poser $x^2 + 1 = t$.]

13. Calculer

$$\int_{0}^{+\pi} x^{2} \sin x \, dx, \quad \int_{0}^{e} x \cosh x \, dx, \quad \int (x^{3} - x + 4) (\sin^{2} x - \cos x) \, dx,$$

$$\int_{0}^{+\infty} x e^{-x} \sin^{3} x \, dx, \quad \int (x^{2} - 1) e^{2x} \sin 3x \, dx.$$

14. Calculer

$$\int_{0}^{1} x \arctan x \, dx, \quad \int (x^{2} + 1) \log x \, dx, \quad \int x \sqrt{x^{2} + 1} \log x \, dx,$$

$$\int_{1}^{+\infty} \frac{\log(1 + x^{2})}{x^{4}} \, dx, \quad \int_{-1}^{2} \arctan \frac{x + 1}{x - 2} \, dx,$$

$$\int_{0}^{1} \arcsin x \, dx, \quad \int x^{2} \arcsin \sqrt{x^{2} - 1} \, dx.$$

15. Calculer

$$\int (\log x)^n dx, \quad \int (\arcsin x)^2 dx.$$

[Intégrer n, 2 fois par parties.]

16. Calculer

$$\int \frac{x \, dx}{\cos^2 x}, \quad \int \frac{x(z + \cos x) \, dx}{\sin^2 x}.$$

[Intégrer par parties en prenant u = x.]

CHAPITRE XIV.

APPLICATIONS DES QUADRATURES.

EXERCICES RÉSOLUS.

1. Longueur d'un arc de parabole. — Soit la parabole $y^2 = 2px$. Nous voulons calculer la longueur de l'arc OM, M étant défini par son ordonnée y. L'élément linéaire est donné par la formule

$$ds^2 = dx^2 + dy^2 = dy^2 \left(1 + \frac{y^2}{p^2}\right)$$

Donc

$$s = \int_0^y \sqrt{1 + \frac{y^2}{\rho^2}} dy = p \int_0^y \sqrt{1 + t^2} dt.$$

Calculons l'intégrale indéfinie I $= \int \sqrt{1+t^2} dt$. On a (n° 168)

$$1 = \int \frac{dt}{\sqrt{1+t^2}} + \int \frac{t^2 dt}{\sqrt{1+t^2}} = \log(t+\sqrt{1+t^2}) + t\sqrt{1+t^2} - \int \sqrt{1+t^2} dt;$$

d'où

$$I = \frac{1}{2} \left[\log \left(t + \sqrt{1 + t^2} \right) + t \sqrt{1 + t^2} \right];$$

et enfin

$$s = \frac{\rho}{2} \left[\log \left(\frac{\gamma}{\rho} + \sqrt{1 + \frac{\gamma^2}{\rho^2}} \right) + \frac{\gamma}{p} \sqrt{1 + \frac{\gamma^2}{\rho^2}} \right].$$

2. Longueur d'une cardioïde. — Soit la cardioïde d'équation polaire

$$\rho = a \cos \omega + a$$
.

On a

$$ds^{2} = d\rho^{2} + \rho^{2} d\omega^{2} = a^{2} [\sin^{2}\omega + (1 + \cos\omega)^{2}] d\omega^{2}$$
$$= 2 a^{2} (1 + \cos\omega) d\omega^{2} = 4 a^{2} \cos^{2}\frac{\omega}{2} d\omega^{2};$$

92

d'où

$$ds = 2 a \cos \frac{\omega}{2} d\omega,$$

$$s = 2 a \int_0^{\omega} \cos \frac{\omega}{2} d\omega = 4 a \sin \frac{\omega}{2}.$$

Si l'on veut la longueur totale, il suffit de faire $\omega = \pi$ et de doubler, ce qui donne s = 8a.

3. Longueur d'une loxodromie. — Soit la loxodromie dont l'équation est, en coordonnées polaires sphériques,

$$\tan g \frac{\theta}{2} = e^{m\varphi}$$
 $(m = \text{const.}).$

On en déduit

$$m \varphi = \log \tan \frac{\theta}{2}, \qquad m \, d\varphi = \frac{d\theta}{\sin \theta};$$

d'où, en appelant R le rayon de la sphère qui porte la loxodromie,

$$\begin{split} ds^2 &= \mathrm{R}^2 \bigg(d\theta^2 + \frac{d\theta^2}{m^2} \bigg) = \mathrm{R}^2 \bigg(\mathrm{I} + \frac{\mathrm{I}}{m^2} \bigg) \, d\theta^2, \\ ds &= \mathrm{R} \, \sqrt{\mathrm{I} + \frac{\mathrm{I}}{m^2}} \, d\theta, \qquad s = \mathrm{R} \, \sqrt{\mathrm{I} + \frac{\mathrm{I}}{m^2}} (\theta_2 - \theta_1), \end{split}$$

en appelant s l'arc compris entre les deux points M_1 , M_2 de colatitudes θ_1 et θ_2 .

En particulier, si M_1 tend vers le pôle, θ_1 tend vers zéro, s tend vers la limite finie R $\sqrt{1+\frac{1}{m^2}}\theta_2$, bien que M_1 tourne indéfiniment autour du pôle.

4. Aire comprise entre une hyperbole équilatère et son asymptote. — Soit l'hyperbole équilatère $xy = a^2$. Évaluons l'aire A comprise entre cette ligne, l'axe des x, et les parallèles à Oy d'abscisses x_1 et x_2 . Nous avons

$$A = \int_{x_1}^{x_2} y \ dx = a^2 \int_{x_1}^{x_2} \frac{dx}{x} = a^2 (\log x)_{x_1}^{x_2} = a^2 \log \frac{x_2}{x_1}.$$

En particulier, on voit que, si a = 1, $\log x$ représente l'aire comprise entre l'hyperbole, son asymptote et les parallèles à Oy d'abscisses 1 et x. C'est à cause de cette propriété qu'on donne quelquefois aux logarithmes népériens le nom de logarithmes hyperboliques.

5. Aire de l'ellipse. — Soit à calculer l'aire limitée par l'ellipse d'équation $\frac{x^2}{a^2} + \frac{y^2}{h^2} - 1 = 0$.

Les calculs les plus simples sont obtenus en exprimant x et y au moyen de l'anomalie excentrique, soit

$$x = a \cos \varphi, \qquad y = b \sin \varphi.$$

Nous avons alors (nº 175)

$$A = \frac{1}{2} \int_0^{2\pi} \left(x \frac{dy}{d\varphi} - y \frac{dx}{d\varphi} \right) d\varphi = \frac{1}{2} ab \int_0^{2\pi} (\cos^2 \varphi + \sin^2 \varphi) d\varphi = \pi ab.$$

L'aire du secteur balayé par OM quand φ croît de φ_1 à φ_2 est égale à $\frac{ab}{2}(\varphi_2-\varphi_1)$, ce qui s'explique aisément si l'on considère l'ellipse comme projection de son cercle principal.

6. Aire de la lemniscate de Bernoulli. — Soit la lemniscate d'équation polaire $\rho^2 = \cos 2\omega$. On a (n° 175)

$$A = 4 \int_0^{\frac{\pi}{4}} \frac{1}{2} \cos 2\omega \, d\omega = 4 \left(\frac{\sin 2\omega}{4} \right)_0^{\frac{\pi}{4}} = 1.$$

7. Aire de l'ellipsoïde de révolution. — Soit l'ellipsoïde engendré par l'ellipse de l'exercice n° 5 en tournant autour de Oy. L'élément d'aire correspondant à l'accroissement $d\varphi$ de l'anomalie excentrique est

$$dA = 2\pi x ds = 2\pi a \cos\varphi \sqrt{a^2 \sin^2\varphi + b^2 \cos^2\varphi} d\varphi.$$

On a donc

$$A = 2 \int_0^{\frac{\pi}{2}} 2\pi a \sqrt{a^2 \sin^2 \varphi + b^2 \cos^2 \varphi} \cos \varphi \, d\varphi.$$

Faisons le changement de variable $\sin \varphi = t$; il vient

$$\mathbf{A} = 4\pi a \int_0^1 \sqrt{c^2 t^2 + b^2} dt = \frac{4\pi a b^2}{c} \int_0^{\frac{c}{b}} \sqrt{1 + u^2} du;$$

ou, en tenant compte d'un calcul déjà fait (exercice nº 1),

$$\mathbf{A} = \frac{2\pi ab^2}{c} \left[\log \left(\frac{c}{b} + \sqrt{1 + \frac{c^2}{b^2}} \right) + \frac{c}{b} \sqrt{1 + \frac{c^2}{b^2}} \right].$$

A titre de vérification, on peut chercher ce que devient cette expres-

sion lorsque a tend vers b: on doit, en effet, retrouver l'aire de la sphère de rayon b. Nous laissons au lecteur le soin de s'en rendre compte, en se reportant au n° 126.

8. Volume du tore. — Soit le tore engendré par le cercle c en tournant autour de Oz (fig. 5). Coupons-le par le plan de cote z; nous

obtenons une couronne comprise entre deux cercles de rayons x et x', abscisses des points M et M'. L'aire de cette couronne est

(1)
$$A(z) = \pi(x^2 - x'^2) = \pi(x - x')(x + x') = \pi MM'$$
. $2a = 2\pi a \cdot MM'$;

l'élément de volume est, par suite,

$$dV = 2 \pi a \,\mathrm{MM'} \,dz.$$

Pour éviter les radicaux, prenons pour variable d'intégration l'angle $ACM = \phi$; nous le ferons croître de o à $\frac{\pi}{2}$ et nous doublerons le volume obtenu, pour avoir le volume total. Nous avons, de la sorte,

$$\begin{split} \mathbf{M}\mathbf{M}' &= 2\,\mathbf{R}\cos\varphi, \qquad \mathbf{z} = \mathbf{R}\sin\varphi, \qquad d\mathbf{z} = \mathbf{R}\cos\varphi\,d\varphi; \\ \mathbf{V} &= 4\,\pi\,a\,\int_0^{\frac{\pi}{2}} 2\,\mathbf{R}^2\cos^2\varphi\,d\varphi \\ &= 4\,\pi\,\mathbf{R}^2\,a\,\int_0^{\frac{\pi}{2}} (\mathbf{1} + \cos2\,\varphi)\,d\varphi = 4\,\pi\,\mathbf{R}^2\,a\left(\varphi + \frac{\sin2\varphi}{2}\right)_0^{\frac{\pi}{2}} = 2\,\pi^2\,a\,\mathbf{R}^2. \end{split}$$

9. Masse d'un cube sachant que la densité en chaque point est égale à la quatrième puissance de la distance à un sommet. — Prenons trois axes de coordonnées formés par les arêtes qui aboutissent au sommet considéré. On ne peut songer à découper par les surfaces d'égale densité; car ce sont des sphères de centre O, qui donneraient lieu à des volumes compliqués dès que leur rayon dépasserait l'arête a du cube. Les seules surfaces simples qui permettent de balayer commodément tout le cube sont des plans parallèles aux plans de coordonnées.

Coupons par les plans (x) et (x+dx). Nous obtenons une petite tranche, dont il faut calculer la masse dm. Comme elle n'est pas homogène, nous la découpons à son tour par les plans (y), (y+dy). Nous obtenons une petite bande, dont il faut calculer la masse d_1m . Comme elle n'est pas homogène, nous la découpons par les plans (z), (z+dz). Le petit morceau obtenu est sensiblement homogène et a pour masse

 $d_2 m = \overline{\mathrm{OM}}^4 dx dy dz = (x^2 + y^2 + z^2)^2 dx dy dz.$

Puis

$$d_{1} m = dx dy \int_{0}^{a} (x^{2} + y^{2} + z^{2})^{2} dz$$

$$= dx dy \left[(x^{2} + y^{2})^{2} a + 2(x^{2} + y^{2}) \frac{a^{3}}{3} + \frac{a^{5}}{5} \right];$$

$$dm = dx \int_{0}^{a} \left[(x^{2} + y^{2})^{2} a + 2(x^{2} + y^{2}) \frac{a^{3}}{3} + \frac{a^{5}}{5} \right] dy$$

$$= a dx \left[x^{4} a + 2x^{2} \frac{a^{3}}{3} + \frac{a^{5}}{5} + \frac{2a^{2}}{3} \left(x^{2} a + \frac{a^{3}}{3} \right) + \frac{a^{5}}{5} \right]$$

$$= a^{2} dx \left(x^{4} + \frac{4}{3} a^{2} x^{2} + \frac{28}{45} a^{4} \right);$$

$$m = \int_{0}^{a} dm = a^{2} \int_{0}^{a} \left(x^{4} + \frac{4}{3} a^{2} x^{2} + \frac{28}{45} a^{4} \right) dx$$

$$= a^{2} \left(\frac{a^{5}}{5} + \frac{4}{9} a^{5} + \frac{28}{45} a^{5} \right) = \frac{19}{15} a^{7}.$$

10. Centre de gravité d'un arc d'hélice. — Soit l'arc d'hélice AB décrit par le point M de coordonnées (t. II),

(1)
$$x = R \cos \varphi, \quad y = R \sin \varphi, \quad z = k \varphi,$$

lorsque φ croît de — α à + α . Il admet Ox pour axe de symétrie; donc, si on le suppose homogène, son centre de gravité est sur cette droite. On a (n° 181)

$$\overline{\mathrm{OG}} = \frac{m_x}{m},$$

en appelant m la masse réelle obtenue en supposant, par exemple, la densité égale à 1 et m_x la masse fictive correspondant à la densité x. Or,

$$dm = ds = \sqrt{dx^2 + dy^2 + dz^2} = \sqrt{R^2 + k^2} d\varphi,$$

 $dm_x = x dm = R\sqrt{R^2 + k^2} \cos \varphi d\varphi;$
 $m = \sqrt{R^2 + k^2} \cdot 2\alpha,$ $m_x = R\sqrt{R^2 + k^2} \cdot 2 \sin \alpha.$

Donc

$$\overline{OG} = R \frac{\sin \alpha}{\alpha}.$$

Remarque. — \overline{OG} est indépendant de k. Or, pour k = 0, l'arc AB se réduit à l'arc de cercle ab (fig. 6). Donc, le centre de gravité d'un

arc d'hélice coïncide avec celui de sa projection sur son plan de section droite moyenne.

11. Centre de gravité d'une demi-ellipse. — Soit l'ellipse de l'exercice n° 5. Cherchons le centre de gravité de l'aire qu'elle comprend à droite de Oy. Il se trouve sur Ox à une distance $OG = \frac{m_x}{m}$.

En supposant la densité égale à 1, nous avons déjà $m=\frac{\pi ab}{2}$ (exercice n° 5). Calculons m_x .

Découpons par des parallèles à Oy. Nous avons (fig. 7)

$$dm_x = x$$
. aire MM'N'N = x MN $dx = 2 yx dx$.

Or, en dissérentiant l'équation de l'ellipse, nous avons

$$\frac{x\,dx}{a^2}+\frac{y\,dy}{b^2}=0.$$

Donc

$$dm_x = -2y \frac{a^2}{b^2} y dy = -\frac{2a^2}{b^2} y^2 dy;$$

d'où, en intégrant le long de l'arc BA (nº 178),

$$m_2 = -\frac{2a^2}{b^2} \int_b^b y^2 dy = \frac{2}{3}a^2b.$$

Finalement,

$$OG = \frac{\frac{2}{3}a^2b}{\frac{\pi}{2}ab} = \frac{4}{3\pi}a.$$

12. Centre de gravité du segment sphérique. — Il se trouve sur l'axe Oz du segment (fig. 8). Cherchons sa cote $\overline{OG} = \frac{m_z}{m}$. En suppo-

sant toujours la densité réelle égale à 1 et coupant par des plans perpendiculaires à Oz, nous avons

$$\begin{split} dm &= \pi \overline{\text{IM}}^2 \, dz = \pi (\, \mathbb{R}^2 - z^2) \, dz, \qquad dm_z = \pi (\, \mathbb{R}^2 - z^2) \, z \, dz; \\ m &= \pi \int_a^b (\, \mathbb{R}^2 - z^2) \, dz = \pi \, \mathbb{R}^2 (\, b - a) - \frac{\pi}{3} (\, b^3 - a^3) \\ &= \frac{\pi}{3} \, h \, (3 \, \mathbb{R}^2 - a^2 - b^2 - ab), \\ m_z &= \pi \int_a^b (\, \mathbb{R}^2 - z^2) \, z \, dz = \pi \, \frac{\mathbb{R}^2}{2} \, (\, b^2 - a^2) - \frac{\pi}{4} (\, b^4 - a^4) \\ &= \frac{\pi \, h \, (a + b)}{4} \, (\, 2 \, \mathbb{R}^2 - b^2 - a^2); \\ \overline{\text{OG}} &= \frac{3}{4} \, (a + b) \, \frac{2 \, \mathbb{R}^2 - a^2 - b^2}{3 \, \mathbb{R}^2 - a^2 - b^2 - ab}. \end{split}$$

Comme vérification, $\overline{\text{OG}}$ s'annule pour a=-b, c'est-à-dire quand O est centre de symétrie du segment.

13. Théorèmes de Guldin. — I. L'aire engendrée par un arc de ligne plane, en tournant autour d'un axe Oz situé dans son plan et ne le

rencontrant pas, est égale à la longueur de cet arc multipliée par la longueur de la circonférence décrite par son centre de gravité.

En effet, nous avons (n° 176), en prenant, dans le plan de la ligne, un axe des x perpendiculaire à Oz,

$$A = \int_{(AB)} 2 \pi x \, ds.$$

Or, si l'on imagine que l'arc, supposé homogène, ait pour densité 2π , son centre de gravité a pour abscisse

$$X = \frac{\int_{(AB)} 2\pi x \, dx}{2\pi l} = \frac{A}{2\pi l};$$

d'où

$$\mathbf{A} = \mathbf{2} \pi l \mathbf{X} = l \times 2 \pi \mathbf{X}. \qquad \qquad \mathbf{C. Q. F. D.}$$

II. Le volume engendré par une aire plane, tournant autour d'un axe situé dans son plan et ne la rencontrant pas, est égal au produit de cette aire par la longueur de la circonférence engendrée par son centre de gravité.

En effet, décomposons l'aire en petits morceaux par des parallèles à Ox et à Oz. Nous obtenons de la sorte, en négligeant les morceaux irréguliers qui sont au voisinage du périmètre, de petits rectangles

tels que ABCD (fig. 9). Celui-ci engendre un petit anneau, dont le volume est

$$\begin{split} v &= \pi \left(\overline{EB}^2 - \overline{EA}^2\right) AD \\ &= \pi AD(EB - EA)(EB + EA) = 2\pi . AD. AB. PM = 2\pi . PM \times aire \ ABCD, \end{split}$$

en désignant par M le centre du rectangle.

Le volume V engendré par l'aire totale est évidemment la limite de la somme des volumes v lorsque le nombre des petits rectangles augmente indéfiniment, chacun d'eux tendant à se réduire à un point (1). On a donc

$$V = \lim (\sum 2\pi PM \times aire ABCD).$$

Mais, cette limite est aussi le numérateur de l'abscisse X du centre de gravité de l'aire plane, supposée homogène et de densité 2π ; le dénominateur étant alors 2π . A, en appelant A la mesure de l'aire. On a donc

$$X = \frac{V}{2\pi A};$$

d'où

$$V = 2\pi AX = A \times 2\pi X.$$

C. Q. F. D.

Ces deux théorèmes peuvent servir soit à calculer des surfaces ou des volumes, soit à déterminer des centres de gravité. Par exemple, la surface et le volume du tore s'en déduisent immédiatement. De même, en partant de la surface ou du volume de la sphère, on peut obtenir le centre de gravité de la demi-circonférence ou du demi-cercle.

14. Moment d'inertie d'une sphère homogène par rapport à une droite quelconque de l'espace. — Menons par le centre O de la sphère une droite D' parallèle à la droite D donnée. Si d désigne la distance de O à D, on a (n° 184)

$$I_D = I_{D'} + M d^2$$
.

Tout revient donc à calculer I_D . Or, le moment d'inertie d'une sphère homogène est évidemment le même par rapport à tous ses diamètres. D'autre part, la somme des moments d'inertie par rapport à trois diamètres rectangulaires est égale à deux fois le moment d'inertie par rapport au centre (n° 183); de sorte que $I_D = \frac{2}{3} I_0$.

Or, rien n'est plus aisé que le calcul direct de I_0 . Si nous découpons par des sphères concentriques, le moment d'inertie élémentaire du volume compris entre deux sphères consécutives de rayons r et r+dr est sensiblement, en appelant ρ la densité (2),

$$dI = \rho \times 4\pi r^2 dr. r^2 = 4\pi \rho r^4 dr.$$

⁽¹⁾ Ceci revient à admettre que l'aire engendrée par les morceaux irréguliers tend vers zéro, ce qui semble assez intuitif. Le lecteur ne doit pas cependant considérer ceci comme une démonstration entièrement rigoureuse, laquelle sortirait des limites de cet Ouvrage.

⁽²⁾ La partie principale du volume compris entre les deux sphères est la différentielle de $\frac{4}{3}\pi r^3$, volume de la sphère de rayon r (n° 138).

Donc

$$\begin{split} I_0 &= 4\,\pi \rho \int_0^R r^4\,dr = \frac{4\,\pi \rho\,R^3}{5} = \frac{3}{5}\,MR^2, \\ I_{D'} &= \frac{2}{5}\,MR^2, \qquad I_D &= M\left(\frac{2}{5}\,R^2 + d^2\right), \end{split}$$

où M représente la masse de la sphère.

15. Moment d'inertie d'un tétraèdre régulier par rapport à une hauteur (E. P., 1911). — Il ne faut évidemment pas songer à aborder le calcul direct, car les cylindres de révolution ayant pour axe la hauteur coupent les faces du tétraèdre suivant des ellipses et déterminent entre eux des volumes beaucoup trop compliqués. Considérons au contraire

Fig. 10.

les deux plans rectangulaires SAH et SEHD (fig. 10). Nous avons (nº 183)

$$I_{SH} = I_{SAH} + I_{SED}$$
.

Calculons I_{SAH} . Coupons par des plans parallèles situés aux distances x et x + dx de SAH. La tranche ainsi obtenue a sensiblement pour moment d'inertie, en appelant ρ la densité,

$$dI = aire MNP.dx.\rho x^2$$
.

Or, on sait que

$$\frac{\text{aire MNP}}{\text{aire AA'S}} = \left(\frac{BN}{BA'}\right)^2 = \left(\frac{\frac{a}{2} - x}{\frac{a}{2}}\right)^2 = \frac{(a - 2x)^2}{a^2}.$$

D'autre part,

aire AA'S =
$$\frac{1}{2}$$
AA'. SH = $\frac{1}{2} a \frac{\sqrt{3}}{2} a \sqrt{\frac{2}{3}} = \frac{a^2}{2\sqrt{2}}$;

donc

$$\begin{split} d\mathbf{I} &= \rho \, x^2 \, dx \frac{(a-2\,x)^2}{2\,\sqrt{2}} = \frac{\rho}{2\,\sqrt{2}} (\,a^2\,x^2 - \,4\,a\,x^3 + \,4\,x^4\,) \, dx, \\ \mathbf{I}_{\mathrm{SAH}} &= 2 \int_0^{\frac{\pi}{2}} \frac{\rho}{2\,\sqrt{2}} (\,a^2\,x^2 - \,4\,a\,x^3 + \,4\,x^4\,) \, dx = \frac{\rho}{\sqrt{2}} \, \frac{a^5}{2\,40} = \mathbf{M} \, \frac{a^2}{40}, \end{split}$$

en appelant M la masse du tétraèdre.

Il s'agit maintenant de calculer I_{SED}. On pourrait faire ce calcul directement comme le précédent. Il serait aussi simple pour ce qui concerne la portion SADE du tétraèdre et serait un peu plus compliqué pour ce qui concerne la portion SEDBC. Nous irons plus vite en remarquant que, par raison de symétrie, les moments d'inertie sont les mêmes par rapport aux trois plans SHA, SHB, SHC, et en nous appuyant, d'autre part, sur le théorème général suivant:

Théorème. — Si le moment d'inertie d'un milieu est le même par rapport à trois plans passant par une même droite, il est le même par rapport à tous les plans passant par cette droite.

En effet, le moment d'inertie par rapport à un plan quelconque

$$x \cos \alpha + y \sin \alpha = 0$$

passant par Oz est

$$I = \sum m(x\cos\alpha + y\sin\alpha)^2 = A\cos^2\alpha + 2B\sin\alpha\cos\alpha + C\sin^2\alpha,$$

en posant

$$A = \sum m x^2$$
, $B = \sum m xy$, $C = \sum m y^2$.

Si, dans cette formule, on considère I comme donné et qu'on cherche α, on a une équation du second degré en tang α, qui ne saurait admettre trois racines sans être vérifiée identiquement. Autrement dit, trois plans ne sauraient donner la même valeur pour I sans qu'il en soit de même pour tous les autres.

Cela posé, si nous revenons à notre tétraèdre, nous voyons qu'il admet le même moment d'inertie par rapport à tous les plans passant par SH. Donc, en particulier I_{SED} = I_{SAH}; d'où

$$I_{SH} = 2 I_{SAH} = M \frac{a^2}{20}$$
.

EXERCICES PROPOSÉS.

- 1. Calculer la longueur de la cycloïde, de la chaînette (t. II).
- 2. Rectifier les spirales logarithmique, d'Archimède, hyperbolique

$$\left(\rho = e^{m\omega}, \, \rho = m\omega, \, \rho = \frac{m}{\omega}\right)$$

CHAPITRE XIV.

3. Rectifier la courbe définie par les équations

一句句(安台44) 李君4年(第2日4年)

$$x = t - \frac{t^3}{3}$$
, $y = t^2$, $z = 3t + t^3$.

Quelle relation existe-t-il entre l'arc de cette courbe et celui de sa projection sur $x \circ y$?

- 4. Calculer la longueur de l'arc de la courbe $\rho=\tan g^2\omega$, qui est obtenu en faisant varier ω de o à $\frac{\pi}{4}$.
- 5. Soit le paraboloïde de révolution $x^2 + y^2 = 2z$. On le coupe par un cylindre ayant pour section droite dans le plan $x \circ y$ la spirale d'Archimède $\rho = m\omega$. Trouver la longueur de la portion de la courbe d'intersection comprise entre $x \circ y$ et le plan perpendiculaire à l'axe mené par le foyer.
- 6. Même question en remplaçant la spirale d'Archimède par la spirale logarithmique $\rho=e^{m\omega}$, puis par la spirale hyperbolique $\rho=\frac{m}{\omega}$.
- 7. Calculer l'aire comprise entre une parabole et deux cordes perpendiculaires à l'axe.
 - 8. Même question pour une ellipse et pour une hyperbole.
 - 9. Calculer l'aire de la boucle de la strophoïde

$$x(x^2+y^2)+x^2-y^2=0$$
.

- 10. Même question pour le folium de Descartes, $x^3 + y^3 = xy$.
- 11. Calculer l'aire comprise entre Ox et la courbe $y(x^2+1)=1$.
- 12. Calculer l'aire comprise entre la chaînette $y = \operatorname{ch} x$, l'axe des x et deux ordonnées, ou bien entre la chaînette, l'axe des y et deux abscisses.
 - 13. Aire de la boucle de la courbe définie par les équations

$$x=t-t^3, \qquad y \stackrel{\checkmark}{=} t^3+t^2+1.$$

- 14. Aire d'un secteur parabolique, elliptique ou hyperbolique ayant pour sommet un foyer.
 - 15. Aire du limaçon de Pascal.
 - 16. Aire d'un secteur de spirale logarithmique.

- 17. Aire comprise entre la conchoïde de Nicomède $\rho = \frac{a}{\cos \omega} + b$, l'axe polaire et la droite $\omega = \frac{\pi}{4}$.
- 18. Calculer l'aire d'une calotte de paraboloïde de révolution limitée par le plan perpendiculaire à l'axe mené par le foyer.
 - 19. Calculer la surface du tore.
- 20. Aire de la surface engendrée par une cycloïde en tournant autour de sa base, ou d'une tangente de rebroussement, ou de la normale au sommet.
- 21. Même question pour une chaînette tournant autour de sa base Ox ou de son axe de symétrie Oy.
- 22. Même question pour la lemniscate d'équation polaire $\rho = \sqrt{\cos 2 \omega}$, tournant autour de Ox ou de Oy.

D'abord, l'élément linéaire est donné par la formule

$$ds^2 = d\rho^2 + \rho^2 d\omega^2 = \rho^2 d\omega^2 \left[1 + \left(\frac{d\rho}{\rho d\omega} \right)^2 \right] = \rho^2 d\omega^2 (1 + \tan g^2 2\omega) = \frac{\rho^2 d\omega^2}{\cos^2 2\omega};$$
d'où

$$ds = \frac{\rho \ d\omega}{\cos 2 \omega}.$$

Puis, en tournant autour de Ox,

$$d\mathbf{A} = 2\pi\rho\sin\omega\,ds = \frac{2\pi\rho^2\sin\omega\,d\omega}{\cos2\omega} = 2\pi\sin\omega\,d\omega;$$

en tournant autour de Oy,

$$d\Lambda' = 2\pi\rho\cos\omega ds = 2\pi\cos\omega d\omega$$
.

On pourrait plus généralement faire tourner autour d'une droite quelconque issue du pôle, définie par son angle polaire α .

23. Même question pour la boucle de la courbe définie par les équations

$$x=t-m^2t^3, \qquad y=t^2,$$

l'axe de rotation étant Oy.

Montrer qu'il existe une valeur de m pour laquelle l'aire engendrée par un arc quelconque de la courbe est un polynome par rapport aux ordonnées des extrémités de cet arc.

- 24. Volume de l'ellipsoïde $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} 1 = 0$.
- 25. Volume du paraboloïde $\frac{y^2}{p} + \frac{z^2}{q} 2x = 0$ (p, q > 0), limité au plan $x = \frac{p+q}{2}$.
- 26. Volume engendré par une cycloïde ou une chaînette tournant comme dans les exercices nos 20 et 21.
- 27. Même question pour la lemniscate du n° 22 et pour la courbe du n° 23.
- 28. Calculer la masse d'une ellipse en supposant que la densité linéaire en chaque point est proportionnelle à la distance au grand axe.
- 29. Masse d'un arc de parabole terminé au sommet O, en supposant la densité en chaque point M proportionnelle à OM.
- 30. Masse de la surface d'une ellipse en supposant la densité proportionnelle à la distance au petit axe.
- 31. Masse de la surface d'un tore, la densité en chaque point étant l'inverse du carré de la distance au centre.
- 32. Masse d'une sphère dont la densité en chaque point M est $\frac{1}{\overline{AM}^2}$, A désignant un point fixe de la surface.
- 33. Masse d'un cône de révolution limité par une section circulaire, sachant que la densité en chaque point est égale à la distance de ce point au sommet.
- 34. Masse d'un cylindre de révolution dont la densité en M est OM, O désignant le centre du cylindre supposé limité par deux sections droites.
 - 35. Centre de gravité d'un arc de parabole, supposé homogène.
- 36. Centres de gravité du secteur circulaire, du segment circulaire, du secteur elliptique, du segment elliptique, du segment parabolique, de la zone sphérique, de la zone de paraboloïde de révolution.
- 37. Centres de gravité des segments d'ellipsoïde de révolution, de paraboloïde de révolution.
 - 38. Centre de gravité d'un cône homogène à base quelconque.

- 39. Centres de gravité de la cycloïde, de son aire, de la surface et du volume qu'elle engendre en tournant autour de sa base.
 - 40. Mêmes questions pour un arc de chaînette.
- 41. Moment d'inertie d'un segment de droite par rapport à une droite quelconque de l'espace.
 - 42. Moment d'inertie d'une circonférence par rapport à un diamètre. (Se ramène au moment d'inertie par rapport au centre.)
- 43. Moments d'inertie d'un rectangle ou d'un triangle par rapport à une droite parallèle à l'un des côtés, par rapport à un point du plan.
- 44. Moments d'inertie d'un disque circulaire par rapport à une droite de son plan, d'un disque elliptique par rapport à son grand axe, d'un segment parabolique par rapport à son axe.
- 45. Moment d'inertie d'une sphère creuse par rapport à une droite quelconque.
- 46. Moments d'inertie d'un cube par rapport à une arête, d'un prisme droit à base triangulaire équilatérale par rapport à ses axes de symétrie (ternaire et binaire).
- 47. Moments d'inertie d'un cône de révolution par rapport à son axe, d'un cylindre de révolution par rapport à une génératrice.
- 48. Moments d'inertie d'un ellipsoïde quelconque par rapport à un axe, d'un tore par rapport à un axe.
- 49. Moments d'inertie d'une cycloïde et de son aire par rapport à sa base, ainsi que de la surface et du volume qu'elle engendre en tournant autour de cette base.
 - 50. Mêmes questions pour une chaînette.

CHAPITRE XV.

ÉQUATIONS DIFFÉRENTIELLES.

EXERCICES RÉSOLUS.

1. Chercher les séries entières qui vérisient l'équation dissérentielle

(1)
$$x(1-x)y'' + [\gamma - (\alpha + \beta + 1)x]y' - \alpha\beta y = 0.$$

Soit

$$y = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n + ..., - \alpha \beta$$

$$y' = a_1 + 2 a_2 x + 3 a_3 x^2 + ... + n a_n x^{n-1} + ..., \gamma - (\alpha + \beta + 1) x,$$

$$y'' = 2 a_2 + 6 a_3 x + ... + n (n-1) a_n x^{n-2} + ..., x(1-x),$$

Multiplions par les coefficients indiqués à droite et ajoutons; nous devons obtenir une série entière identiquement nulle. Annulons le coefficient de x^n ,

$$-\alpha\beta a_n + \gamma(n+1)a_{n+1} - (\alpha+\beta+1)na_n + (n+1)na_{n+1} - n(n-1)a_n = 0,$$

·ou

(2)
$$a_{n+1}(n+1)(n+\gamma) = a_n(n+\alpha)(n+\beta).$$

A cause du facteur $n + \gamma$, il nous faut distinguer deux cas :

Premier cas: γ n'est pas entier négatif, ni nul. — Alors $n + \gamma$ ne s'annule jamais et l'on peut écrire

$$a_{n+1} = a_n \frac{(\alpha + n)(\beta + n)}{(1+n)(\gamma + n)}.$$

D'où l'on déduit (Note I), en supposant $a_0 = 1$,

(3)
$$a_n = \frac{\alpha(\alpha+1)\dots(\alpha+n-1)\beta(\beta+1)\dots(\beta+n-1)}{1\cdot2\dots n\cdot\gamma(\gamma+1)\dots(\gamma+n-1)}.$$

La série cherchée est donc, à un facteur constant arbitraire près

(valeur de a_0),

(4)
$$y = 1 + \frac{\alpha\beta}{1 \cdot \gamma} x + \frac{\alpha(\alpha + 1)\beta(\beta + 1)}{1 \cdot 2 \cdot \gamma(\gamma + 1)} x^2 + \dots + \frac{\alpha(\alpha + 1)\dots(\alpha + n - 1)\beta(\beta + 1)\dots(\beta + n - 1)}{1 \cdot 2 \cdot \dots n \cdot \gamma(\gamma + 1)\dots(\gamma + n - 1)} x^n + \dots$$

Elle est connue sous le nom de série hypergéométrique de Gauss et joue un rôle fort important dans de nombreuses questions d'Analyse. Son intervalle de convergence est (-1, +1), comme le montre la règle de d'Alembert (1).

Deuxième cas: γ est un entier \leq 0. — Soit $\gamma = -p$ ($p \geq$ 0).

Si, dans la formule (2), on fait n=p, on obtient $a_p=0$. En faisant ensuite successivement n=p-1, p-2, ..., 1, 0, on trouve que les p+1 premiers coefficients sont tous nuls (2). Si l'on suppose ensuite n=p+1, p+2, ..., on peut calculer les coefficients a_{p+2} , a_{p+3} , ... en fonction de a_{p+1} , lequel demeure arbitraire et peut être pris égal à 1, en négligeant un facteur constant. On obtient de la sorte la série

(5)
$$y = x^{p+1} + \frac{(\alpha + p + 1)(\beta + p + 1)}{(1 + p + 1) \cdot 1} x^{p+2} + \dots$$

$$+ \frac{(\alpha + p + 1)(\alpha + p + 2) \dots}{(1 + p + 1)(\beta + p + 1)(\beta + p + 2) \dots (\beta + p + n)} x^{p+1+n} + \dots$$

On peut l'écrire

$$y = x^{p+1}z,$$

z désignant ce que devient la série (4) si l'on y remplace α par $\alpha+p+1$, β par $\beta+p+1$, γ par 1+p+1.

On peut d'ailleurs arriver directement à ce résultat, en faisant le changement de variable défini par (6). D'une façon générale, si l'on pose

$$(7) y = x^{1-\gamma}z,$$

l'équation (1) se transforme en la suivante (3),

$$(8) \quad x(1-x)z'' + [2-\gamma - (\alpha+\beta+3-2\gamma)x]z' - (\alpha+1-\gamma)(\beta+1-\gamma)z = 0,$$

⁽¹⁾ On trouvera quelques propriétés de cette série dans Leçons (nº 354).

⁽²⁾ Ceci suppose toutefois qu'aucun des facteurs $(n + \alpha)$, $(n + \beta)$ ne s'annule, condition certainement réalisée si les nombres α , β ne sont pas des entiers $\leq \alpha$.

⁽³⁾ Le lecteur est prié de faire les calculs, qui ne présentent pas de difficultés.

qui se déduit de (1) par le changement de α en $\alpha + 1 - \gamma$, de β en $\beta + 1 - \gamma$ et de γ en $2 - \gamma$.

En supposant $\gamma = -p$, on a $2 - \gamma = 2 + p > 0$; on se trouve dans le premier cas et l'on retrouve bien la formule (6).

Remarque. — Ainsi qu'on vient de le voir, les séries entières qui vérissent l'équation (1) ne dépendent que d'une constante arbitraire, qui rentre comme facteur. Or, nous savons (n° 186) que l'intégrale générale doit dépendre de deux constantes. Ceci nous prouve que certaines intégrales de certaines équations disférentielles peuvent ne pas être développables suivant les puissances croissantes de x. En conséquence, la méthode de résolution des équations dissérentielles signalée au n° 186 peut, dans certains cas, ne pas être applicable ou ne l'être que partiellement (comme c'est ici le cas), c'est-à-dire ne donner que des intégrales particulières.

Pour terminer, observons que, dans l'hypothèse où y n'est pas entier, la formule (4), combinée avec la formule (7), donne l'intégrale générale. Mais celle-ci renferme alors un développement à exposants fractionnaires.

2. Intégrer l'équation différentielle

$$\frac{dx}{\sqrt{a+2bx-x^2}} = \frac{dy}{\sqrt{a+2by-y^2}}.$$

Les variables sont séparées (nº 188); d'où l'intégrale générale

(1)
$$\int \frac{dx}{\sqrt{a+2bx-x^2}} = \int \frac{dy}{\sqrt{a+2by-y^2}} + \text{const.}$$

ou, en effectuant les quadratures par la méthode de réduction (nº 168),

(2)
$$\arcsin \frac{x-b}{\sqrt{a+b^2}} = \arcsin \frac{y-b}{\sqrt{a+b^2}} + \text{const.}$$

Il semble, à première vue, qu'on obtient une intégrale transcendante. En réalité, la relation entre x et y est algébrique.

Appelons, en effet, α et β les arcs sinus du premier et du second membres. Nous avons

(3)
$$\alpha - \beta = \text{const.}$$

ou

(4)
$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \sin \beta \cos \alpha = \text{const.},$$

ou

$$\frac{x-b}{\sqrt{a+b^2}} \sqrt{1 - \frac{(y-b)^2}{a+b^2}} - \frac{y-b}{\sqrt{a+b^2}} \sqrt{1 - \frac{(x-b)^2}{a+b^2}} = \text{const.},$$

$$(x-b) \sqrt{a+b^2} - \frac{(y-b)^2}{a+b^2} - \frac{(y-b)^2}{a+b^2} = \text{const.},$$

$$(x-b) \sqrt{a+b^2} - \frac{(y-b)^2}{a+b^2} - \frac{(y-b)^2}{a+b^2$$

(5)
$$(x-b)\sqrt{a+2by-y^2}-(y-b)\sqrt{a+2bx-x^2}=\text{const.}=C$$

C'est bien là une relation algébrique. On peut d'ailleurs la rendre rationnelle. Si l'on pose, pour simplifier l'écriture,

(6)
$$x-b=X, y-b=Y, a+b^2=m,$$

on obtient, par deux élévations au carré,

(7)
$$m^2(X^2-Y^2)^2+2C^2[2X^2Y^2-m(X^2+Y^2)]+C^4=0.$$

Les courbes intégrales sont du huitième degré.

3. Intégrer l'équation

$$(xy'-y)(x^2+y^2)\sin\frac{y}{x}-x^3=0.$$

Cette équation est homogène en x, y. Posons donc (n° 190) $\frac{y}{x} = t$. Il vient

$$(1+t^2)\sin t\ dt=\frac{dx}{x},$$

d'où

$$\log x = 2t\sin t + (1-t^2)\cos t + \text{const.}$$

Les équations paramétriques de l'intégrale générale sont

$$x = C e^{2t \sin t + (1-t^2) \cos t}$$

$$y = C t e^{2t \sin t + (1-t^2) \cos t}$$
 (C = const.)

4. Intégrer l'équation

$$2x^2y' + xy = x^2 + 1$$
 (E. P., 1912).

Cette équation est linéaire. Appliquons la méthode décrite au nº 191.

I. Équation sans second membre :

$$2x^2y'+xy=0,$$

ou

$$\frac{dy}{y} + \frac{1}{2} \frac{dx}{x} = 0, \qquad \log y + \frac{1}{2} \log x = \log C;$$

$$y = \frac{C}{\sqrt{x}}.$$

II. Variation de la constante :

$$2x^{2}\frac{C'}{\sqrt{x}} = x^{2} + 1,$$

$$C' = \frac{1}{2}\frac{x^{2} + 1}{x^{2}}\sqrt{x} = \frac{1}{2}\left(x^{\frac{1}{2}} + x^{-\frac{3}{2}}\right),$$

$$C = \frac{1}{2}\left(x^{\frac{3}{2}}\frac{2}{3} - 2x^{-\frac{1}{2}}\right) + k = \frac{1}{3}x^{\frac{3}{2}} - x^{-\frac{1}{2}} + k \qquad (k = \text{const.}).$$

Portant dans (1), nous avons pour intégrale générale de l'équation proposée

$$y = \frac{x}{3} - \frac{1}{x} + \frac{k}{\sqrt{x}}.$$

5. Intégrer l'équation

$$5y'-y\sin x+y^4\sin 2x=0.$$

C'est une équation de Bernoulli (nº 192); elle s'écrit

$$5\frac{y'}{y^4} - \frac{1}{y^3}\sin x + \sin 2x = 0,$$

ou, en posant $z = \frac{1}{y^3}$,

$$\frac{5}{3}z'+z\sin x=\sin 2x.$$

Équation sans second membre:

$$\frac{dz}{z} = -\frac{3}{5}\sin x \, dx,$$

$$\log z = \frac{3}{5}\cos x + \log C, \qquad z = Ce^{\frac{3}{5}\cos x}.$$

Variation de la constante :

$$\frac{5}{3} C' e^{\frac{3}{5}\cos x} = \sin 2x,$$

$$C = \int \frac{3}{5} e^{-\frac{3}{5}\cos x} \sin 2x \, dx.$$

Posons

$$-\frac{3}{5}\cos x = t, \qquad \frac{3}{5}\sin x \, dx = dt,$$

il vient

$$\begin{split} \mathbf{C} &= \int e^t \left(-\frac{\mathbf{10}}{3} \, t \right) dt = -\frac{\mathbf{10}}{3} \int e^t t \, dt = -\frac{\mathbf{10}}{3} \left(e^t t - \int e^t \, dt \right) \\ &= \frac{\mathbf{10}}{3} \, e^t (\mathbf{1} - t) + \mathrm{const.} = \frac{\mathbf{10}}{3} \, e^{-\frac{3}{5} \cos x} \left(\mathbf{1} + \frac{3}{5} \cos x \right) + \mathrm{const.}; \end{split}$$

d'où

$$z = \frac{10}{3} \left(1 + \frac{3}{5} \cos x \right) + k e^{\frac{3}{5} \cos x} \qquad (k = \text{const.}),$$

$$y = \frac{1}{\sqrt[3]{\frac{10}{3} \left(1 + \frac{3}{5} \cos x \right) + k e^{\frac{3}{5}} \cos x}}.$$

6. Intégrer l'équation

$$y = x f(y') + g(y').$$

Cette équation, qui est dite équation de Lagrange, rentre dans le premier cas examiné au n° 193; car, si l'on y regarde x et y comme des coordonnées courantes, elle représente une droîte et par suite une courbe unicursale. Comme paramètre t, nous pouvons garder x. Nous posons, d'autre part (n° 193),

$$y' = \frac{dy}{dx} = u.$$

Nous avons alors

$$(2) y = x f(u) + g(u);$$

d'où

(3)
$$dx f(u) + x f'(u) du + g'(u) du = u dx$$

ou

(4)
$$\frac{dx}{du}[f(u) - u] + xf'(u) + g'(u) = 0.$$

Cette équation est linéaire par rapport à x. On l'intégrera, ce qui donnera (n° 191)

(5)
$$\begin{cases} x = F(u) + CG(u) \\ y = f(u)F(u) + g(u) + Cf(u)G(u) \end{cases}$$
 (C = const.)

pour équations paramétriques de l'intégrale générale.

Cas particulier. Équation de Clairaut. — L'équation (4) cesse d'être une équation différentielle dans le cas particulier où f(u) = u. L'équation correspondante

$$(6) y = xy' + g(y')$$

est dite équation de Clairaut.

Dans ce cas, l'équation (4) donne

(7)
$$\begin{cases} x = -g'(u), \\ y = g(u) - u g'(u). \end{cases}$$

On n'a plus de constante arbitraire. En réalité, ceci tient à ce qu'il n'est pas légitime, dans le calcul actuel, de diviser l'équation (3) par du pour obtenir l'équation (4). La première se réduit en effet à

$$du\left[x+g'(u)\right]=0$$

et donne : soit

$$x = -g'(u),$$

d'où la courbe (7); soit

$$du = 0$$

d'où

$$u = \text{const.} = C$$

et

(8)
$$y = Cx + g(C).$$

L'intégrale générale est constituée par l'équation (8), qui se déduit de (6) par le simple remplacement de y' par une constante, et qui représente une famille de droites. La courbe (7) n'est autre que l'enveloppe de ces droites (t. II) et constitue ce qu'on appelle une intégrale singulière.

7. Intégrer l'équation

$$y'^3 - 3yy' + y^3 = 0$$
 (É. P., 1906).

Cette équation n'est pas résoluble par rapport à y'; mais elle représente une courbe unicursale (folium de Descartes) si l'on y regarde y et y' comme des coordonnées courantes.

Posons

$$\gamma' = t \gamma$$

nous obtenons

(1)
$$y = \frac{3t}{1+t^3}, \quad y' = \frac{3t^2}{1+t^3};$$

$$dy = 3\frac{1-2t^3}{(1+t^3)^2}dt = y' dx = \frac{3t^2}{1+t^3}dx;$$

$$dx = \frac{(1-2t^3)dt}{t^2(1+t^3)} = \left(\frac{1}{t^2} + \frac{1}{t+1} - \frac{t+1}{t^2-t+1}\right)dt;$$

$$\begin{cases} x = -\frac{1}{t} + \log\frac{t+1}{\sqrt{t^2-t+1}} - \sqrt{3} \arctan\frac{2t-1}{\sqrt{3}} + \text{const.}, \\ y = \frac{3t}{1+t^3}. \end{cases}$$

Telles sont les équations paramétriques de l'intégrale générale.

8. Intégrer l'équation

$$yy'' + \frac{y'^2}{2} = \frac{1}{y^2}.$$

La variable x manque. Posons (nº 195)

$$\gamma'^2 = 2z.$$

Nous obtenons l'équation linéaire du premier ordre

$$y\frac{dz}{dy}+z=\frac{1}{y^2}$$

qui, intégrée, nous donne

$$z = \frac{k}{\gamma} - \frac{1}{\gamma^2} = \frac{1}{2} \left(\frac{d\gamma}{dx}\right)^2$$
 $(k = \text{const.});$

d'où l'on tire

$$x = \int \frac{y \, dy}{\sqrt{2(ky-1)}} \cdot$$

Posant

$$ky-1=t^2,$$

il vient

$$x-x_0=rac{\sqrt{2}}{k^2}\int (1+t^2)\,dt=rac{\sqrt{2}}{k^2}igg(t+rac{t^3}{3}igg) \qquad (x_0={
m const.}),$$

ou, en élevant au carré et remplaçant t2 par ky - 1,

$$(x-x_0)^2 = \frac{2}{9k^4}(ky-1)(ky+2)^2.$$

Telle est l'équation de l'intégrale générale.

9. Intégrer l'équation

$$f \equiv y'' - 3y' + 2y = x^2 + x^3 \operatorname{ch} x + x e^{2x} \cos x.$$

I. Équation sans second membre. — L'équation caractéristique $r^2 - 3r + 2 = 0$ a pour racines 1 et 2; d'où

$$y_0 = c_1 e^x + c_2 e^{2x}.$$

II. $f = x^2$. — Substituons $y = ax^2 + bx + c$ (no 198):

$$y' = ax^2 + bx + c,$$
 2,
 $y' = 2ax + b,$ -3,
 $y'' = 2a,$ 1.

En multipliant par les facteurs écrits à droite et ajoutant, on doit trouver x^2 . Donc

$$2a = 1$$
, $2b - 6a = 0$, $2c - 3b + 2a = 0$,

d'où l'intégrale particulière

(2)
$$y_1 = \frac{x^2}{2} + \frac{3x}{2} + \frac{7}{4}.$$

III. $f = \frac{x^3 e^x}{2}$ (nous décomposons chx en $\frac{e^x}{2} + \frac{e^{-x}}{2}$). — Faisons le changement de variable $y = e^x z$ (n° 198, II); l'équation transformée s'écrit immédiatement (les nouvelles racines de l'équation caractéritique sont 0, 1)

$$z''-z'=\frac{x^3}{2},$$

d'où, en intégrant (1)

$$z'-z=\frac{x^4}{8}\cdot$$

Substituons

$$z = -\frac{x^4}{8} + ax^3 + bx^2 + cx + d, \qquad -1,$$

$$z' = -\frac{1}{2}x^3 + 3ax^2 + 2bx + c, \qquad 1,$$

$$a = -\frac{1}{2}, \qquad b = -\frac{3}{2}, \qquad c = -3, \qquad d = -3;$$

d'où

(3)
$$y_2 = e^x \left(-\frac{x^4}{8} - \frac{x^3}{2} - \frac{3x^2}{2} - 3x \right) \quad (2).$$

IV. $f = \frac{x^3 e^{-x}}{2}$. — Faisons le changement de variable $y = e^{-x}z$; les nouvelles racines sont 2, 3; donc

$$z'' - 5z' + 6z = \frac{x^3}{2}$$

En substituant

$$z = \frac{x^3}{12} + ax^2 + bx + c,$$

on trouve

(4)
$$y_3 = \frac{e^{-x}}{12} \left(x^3 + \frac{5x^2}{2} + \frac{19x}{6} + \frac{65}{36} \right).$$

⁽¹⁾ Il est inutile d'introduire une constante, puisqu'on veut seulement une intégrale particulière.

⁽²⁾ Nous négligeons le terme constant, car il donnerait un terme rentrant dans C_1e^x de y_n .

V. $f = e^{2x}x\cos x$. — Faisons le changement de variable $y = e^{2x}z$; les nouvelles racines sont — 1, 0; donc

$$z'' + z' = x \cos x,$$

$$z' + z = \int x \cos x \, dx = x \sin x + \cos x.$$

Substituons

$$\begin{aligned} z &= (ax+b)\cos x + (cx+d)\sin x, \\ z' &= (cx+d+a)\cos x + (-ax-b+c)\sin x, \\ a+c &= 0, \quad b+d+a = 1, \quad c-a = 1, \quad d-b+c = 0; \end{aligned}$$

d'où

(5)
$$y_4 = e^{2x} \left[\left(-\frac{x}{2} + 1 \right) \cos x + \left(\frac{x}{2} + \frac{1}{2} \right) \sin x \right].$$

En définitive, l'intégrale générale de l'équation proposée est

$$y = c_1 e^x + c_2 e^{2x} + \frac{x^2}{2} + \frac{3x}{2} + \frac{7}{4} - e^x \left(\frac{x^4}{8} + \frac{x^3}{2} + \frac{3x^2}{2} + 3x \right) + \frac{e^{-x}}{12} \left(x^3 + \frac{5x^2}{2} + \frac{19x}{6} + \frac{65}{36} \right) + e^{2x} \left[\left(-\frac{x}{2} + 1 \right) \cos x + \frac{(x+1)}{2} \sin x \right].$$

10. Déterminer l'intégrale de

$$y'' - 2y' + 2y = xe^x \cos x,$$

qui s'annule pour x = 0, en même temps que sa dérivée. Cherchons d'abord l'intégrale générale.

I. Équation sans second membre. — Les racines de l'équation caractéristique $r^2 - 2r + 2 = 0$ sont $1 \pm i$; donc (n° 197)

(1)
$$\gamma_0 = e^x (C_1 \cos x + C_2 \sin x).$$

II. Intégrale particulière (1). — Décomposons le second membre en $\frac{x}{2}e^{x(1+i)} + \frac{x}{2}e^{x(1-i)}$. Pour le premier terme, faisons le changement de variable $y = e^{x(1+i)}z$; les nouvelles racines sont o, — 2i; donc

$$z'' + 2iz' = \frac{x}{2},$$

 $z' + 2iz = \frac{x^2}{4}.$

⁽¹⁾ Nous engageons le lecteur à recommencer la détermination de cette intégrale par les deux autres procédés indiqués au n° 198 (IV). Il pourra ainsi comparer la rapidité des trois méthodes.

Substituant

$$z=-i\frac{x^2}{8}+ax+b,$$

on trouve

$$a=\frac{1}{8}, \qquad b=\frac{i}{16};$$

d'où, en négligeant le terme en b, qui rentre dans y_0 ,

$$y_1 = \frac{x}{8} e^{x(1+i)} (-ix+1) = \frac{x}{8} e^x (\cos x + i \sin x) (-ix+1).$$

Pour le second terme $\frac{x}{2}e^{x(1-i)}$, on obtiendrait une intégrale particulière imaginaire conjuguée de celle-ci; en la lui ajoutant, on doit trouver le double de la partie réelle de y_1 . On peut donc écrire tout de suite l'intégrale relative au second membre complet, à savoir

$$\frac{x}{4}e^x(\cos x + x\sin x),$$

l'intégrale générale étant dès lors

(3)
$$y = e^x \left(C_1 \cos x + C_2 \sin x + \frac{x}{4} \cos x + \frac{x^2}{4} \sin x \right).$$

III. Calcul des constantes. — En annulant x dans y, nous avons d'abord $C_1 = 0$. Prenons ensuite la dérivée, en laissant de côté les termes qui disparaissent pour x = 0; il vient

$$y' = e^x \left(C_2 \cos x + \frac{\cos x}{4} + \ldots \right).$$

Écrivant que y' s'annule avec x, nous avons $C_2 = -\frac{1}{4}$. Finalement, l'intégrale demandée est

$$y = \frac{e^x}{4} [x \cos x + (x^2 - 1) \sin x].$$

- 11. Intégrer l'équation $y'' 4y' + 4y = x^4 e^{2x}$.
- I. Équation sans second membre. L'équation caractéristique $r^2 4r + 4 = 0$ a une racine double égale à 2. Donc (n° 197)

$$y_0 = e^{2x}(C_1 x + C_2).$$

II. Intégrale particulière. — Faisons la transformation $y = e^{2x}z$: les

nouvelles racines sont o, o; donc

$$z'' = x^{5}, \qquad z' = \frac{x^{5}}{5}, \qquad z = \frac{x^{6}}{30}.$$

L'intégrale générale est donc

$$y = e^{2x} \left(\frac{x^6}{30} + C_1 x + C_2 \right).$$

12. Intégrer l'équation $x^2y'' + pxy' + qy = 0$ (p, q = const.), par le changement de variable $x = e^t$.

On a

$$y' = \frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = \frac{dy}{dt} \frac{1}{x},$$
$$y'' = \frac{dy'}{dx} = \frac{d^2y}{dt^2} \frac{1}{x^2} - \frac{dy}{dt} \frac{1}{x^2}.$$

Portons dans l'équation proposée

(1)
$$\frac{d^2y}{dt^2} + (p-1)\frac{dy}{dt} + qy = 0,$$

équation linéaire à coefficients constants.

Soient r₁, r₂ les racines de l'équation caractéristique

(2)
$$r^2 + (p-1)r + q = 0.$$

L'intégrale générale est $y = C_1 e^{r_1 t} + C_2 e^{r_2 t}$, ou

(3)
$$y = C_1 x^{r_1} + C_2 x^{r_2}.$$

Dans le cas où $r_2 = r_1$, $y = e^{r_1 t} (C_1 t + C_2)$,

(4)
$$y = x^{r_1}(C_1 \log x + C_2).$$

On peut arriver directement à ce résultat, en faisant le changement de variable $y = x^r z$, qui donne

$$x^2z'' + x(2r+p)z' + [r(r-1) + pr + q]z = 0.$$

On annule le coefficient de z et l'on a une équation du premier ordre en z'. Nous laissons au lecteur le soin d'expliciter les calculs et de retrouver, par cette voie, les formules (3) et (4).

EXERCICES PROPOSÉS.

1. Trouver les séries entières qui vérifient les équations différentielles

(I)
$$xy'' + (2n+1)y' - xy = 0$$
 (équation de Bessel),

$$y'' + xy' + y = 0,$$

(III)
$$(1-x^2)y'' - xy' + y = 0,$$

(IV)
$$x^{2}(y''' + y'') + (x - 2)y' - y = 0.$$

2. Intégrer les équations

$$y' + x(y^2 + 1) = 0$$
, $y' + \tan g x \tan g y = 0$, $y dx = \sin x dy$, $y' = y^3 - 1$, $y' \cos^2 x = 2y^2 + y + 1$, $y' + \frac{x}{y}e^{x+y} = 0$.

3. Intégrer les équations

$$y'(x^2 + y^2) = x^2 - y^2,$$
 $(xy^2 - yx^2) dx + (x^3 + y^3) dy = 0,$ $y'\sqrt{xy} = 2y - x.$

4. Intégrer les équations

$$xy' - 2y = x^3$$
, $(1-x^2)y' + 2y = x + 2$, $(x^2 + 1)y' - xy - x^2 = 0$, $y'\cos x - y\sin x = \sin 2x$, $y'\sin x + y = \sin x + \cos 2x$, $y' + 2xy + x^3 = 0$.

5. Intégrer les équations

$$y'\sqrt{1+x^2}+y+xy^3=0$$
, $\sin x(y'+y^2)+2\cos x.y(1-xy)=0$.

6. Intégrer les équations

$$y = xy'^3 - y'\sqrt{y'^2 - 1}, \qquad y = xy' + \frac{1}{1 + y'^2}.$$

7. Intégrer l'équation

$$x^2y'^2+y^2=y'^2m.$$

[No 193, premier cas. Poser, par exemple, $xy' = y'^m \cos t$, $y = y'^m \sin t$.]

8. Intégrer les équations

$$x^3 - xy' + y'^3 = 0,$$
 $(x - y')^3 + y'(x - y') + 1 = 0.$

[No 193, deuxième cas. Poser y' = tx, x - y' = t.]

9. Intégrer les équations

$$y'^4 + y^4 = yy'(y + y'), \qquad (y' + y)^4 = y' + 3y.$$

[No 193, troisième cas. Poser y'=ty, y'+y=t.]

10. Intégrer l'équation

$$x^{\frac{1}{2}}y'^{\frac{1}{2}} + 2x(x^{\frac{1}{2}}y - 1)y' + 4(1 - y) = 0.$$

N° 193, troisième cas. Poser y'=t et résoudre par rapport à y. On pourra aussi, à titre d'exercice, faire le changement de variable $z=xy+\frac{1}{x}$.

11. Intégrer les équations

$$xy'' + 2y' = x \sin x$$
, $y'' + y'^2 = 1 + 2y$, $2y'' - y'^2 = e^{2y}$, $y'' - y'^2 = e^{y} + 1$, $2y'' + y'^2 = 2 \sin 2y - \cos 2y + 1$.

12. Intégrer les équations

$$y'' = f(y), \qquad y'' y''' = f(y).$$

[On peut appliquer la méthode générale du nº 195, ou bien multiplier les deux membres par γ' et intégrer.]

13. Intégrer l'équation

$$5(y''')^2 = 3y''y^{(4)}$$
.

[Poser y'' = z. On trouve comme courbes intégrales toutes les paraboles du plan.]

14. Intégrer les équations

$$y'' - 4y' - y = x^3 + x \sin x,$$
 $y'' + y' - 2y = \left(\frac{x}{e^x}\right)^2,$ $y'' + 5y' + 2y = x^2 e^{3x} \cos^3 x.$

15. Intégrer les équations

$$y'' + y' + y = (x + 2)^{2} + \sin^{2} x \cos x, \qquad y'' + y = x^{5} \cos x,$$
$$y'' + 4y = e^{x} \cos 2x + \sin 2x, \qquad y'' + 2y' + 5y = e^{x} (\cos^{2} x + x^{2}).$$

16. Intégrer les équations

$$y'' + 2y' + y = x \operatorname{ch} x,$$
 $y'' - 6y' + 9y = \operatorname{sh}^{3} x,$ $4y'' - 4y' + 1 = \left(x + e^{\frac{x}{2}}\right)^{2} + \sin x.$

- 17. Trouver une fonction satisfaisant à l'équation y'' y' + 7y = x et telle que, pour x = 1, on ait y = 3, y' = -1.
 - 18. Intégrer l'équation

$$y''' - 6y'' + 2iy' - 26y = e^{2x}\cos 3x$$
 (E. P., 1912).

[Même procédé d'intégration que pour une équation du second ordre.]

19. Intégrer les systèmes

$$\begin{aligned} \frac{dx}{dt} + y - x &= 0, & \frac{dy}{dt} + 2x - y &= 0; \\ \frac{d^2x}{dt^2} + y &= 0, & \frac{d^2y}{dt^2} + x &= 0; \\ \frac{dx}{dt} &= y, & \frac{dy}{dt} &= z, & \frac{dz}{dt} &= x. \end{aligned}$$

[Éliminer y pour les deux premières, y et z pour la troisième, en dérivant un nombre suffisant de fois.]

- 20. Étant donnée l'équation $(1-x^2)y''-xy'+n^2y=0$, on fait le changement de variable $x=\varphi(t)$. Déterminer la fonction φ pour que l'équation transformée ne renferme pas de terme en $\frac{dy}{dt}$. Puis intégrer. (Leçons, exercice n° 399.)
- 21. A quelle condition doivent satisfaire les fonctions p et q pour que l'équation y'' + py' + qy = 0 admette deux intégrales u et v liées par la relation $u^2 + v^2 = 1$? (E. P., 1909.)

[En posant $u=\cos\varphi$, $v=\sin\varphi$, on trouve $q=\varphi'^2$, $p=-\frac{\varphi''}{\varphi'}$; d'où 2pq+q'=0. Si elle est remplie, on peut calculer $\varphi=\int\sqrt{q}\,dx$, et l'on a l'intégrale générale $C_1\cos\varphi+C_2\sin\varphi$, qu'on peut aussi obtenir par le changement de variable $y=z\cos\varphi$.]

- 22. Intégrer l'équation $xy'' y' + x^3y = 0$. [Appliquer l'exercice précédent.]
- 23. Étant donnée une équation linéaire du second ordre quelconque, sans second membre, si l'on en connaît une intégrale particulière y_1 , on peut avoir l'intégrale générale par deux quadratures. En déduire la forme $C_1y_1 + C_2y_2$ de cette intégrale.

[Faire le changement de variable $y = y_1 z$.]

24. Montrer que l'équation

$$(x-a)(x-b)y'' + (m+nx)y' + py = 0,$$

où a, b, m, n, p sont des constantes, peut être ramenée à l'équation de la série hypergéométrique (exercice résolu n° 1) par un changement de variable de la forme $x = \alpha + \beta t$.

25. Étant donnée l'équation

$$\frac{\partial^2 \mathbf{U}}{\partial x^2} + \frac{\partial^2 \mathbf{U}}{\partial y^2} + \frac{\partial^2 \mathbf{U}}{\partial z^2} = \mathbf{0},$$

déterminer les solutions de la forme

$$\mathbf{U} = f(\sqrt{x^2 + y^2 + z^2}), \qquad \mathbf{U} = f\left(\frac{x^2 + y^2}{z^2}\right), \qquad \mathbf{U} = f\left(\frac{y}{x}\right).$$

26. Déterminer les solutions de la forme $U = f(\sqrt{x^2 + y^2 + z^2})$ pour l'équation

$$\frac{\partial^2 \mathbf{U}}{\partial x^2} + \frac{\partial^2 \mathbf{U}}{\partial y^2} + \frac{\partial^2 \mathbf{U}}{\partial z^2} + \mathbf{U} = \mathbf{0}.$$

On posera
$$U = \frac{V(r)}{r}$$
, $r = \sqrt{x^2 + y^2 + z^2}$.

CHAPITRE XVI.

POLYNOMES.

EXERCICES RÉSOLUS.

1. Diviser le polynome

$$2x^{7} - 3x^{6} + (3i - 2)x^{5} + (i + 4)x^{4} - 7x^{3} + 4x^{2} - 2ix - 4 + 3i$$

par

$$x^3 - 2x^2 + 3ix + 4$$

Nous disposons les calculs de la manière suivante :

$$2x^{7} - 3x^{6} + (3i - 2)x^{6} + (i + 4)x^{4} - 7x^{3} + 4x^{2} - 2ix - 4 + 3i$$

$$x^{6} - (3i + 2)x^{5} + (i - 4)x^{4} - 7x^{3} + 4x^{2} - 2ix - 4 + 3i$$

$$- 3ix^{5} - 3(i + 2)x^{4} - 11x^{3} + 4x^{2} - 2ix - 4 + 3i$$

$$- 4(2i + 1)x^{4} - 20x^{3} + 4(1 + 3i)x^{2} - 2ix - 4 + 3i$$

$$- 4(4i + 7)x^{3} + 4(6i - 5)x^{2} + 2(8 + 15i)x - 4 + 3i$$

$$- 4(2i + 19)x^{2} + 2(57i - 16)x + 108 + 67i$$

Le quotient est inscrit au-dessous du trait horizontal de droite. Les restes partiels successifs sont écrits sur les lignes de gauche, au-dessous du dividende. Le dernier est le reste de la division, qui doit donner lieu, dès lors, à l'identité

$$2x^{7} - 3x^{6} + (3i - 2)x^{5} + (i + 4)x^{4} - 7x^{3} + 4x^{2} - 2ix - 4 + 3i$$

$$\equiv (x^{3} - 2x^{2} + 3ix + 4)[2x^{4} + x^{3} - 3ix^{2} - 4(2i + 1)x - 4(4i + 7)]$$

$$- 4(2i + 19)x^{2} + 2(57i - 16)x + 108 + 67i,$$

dont la vérification constituerait une preuve de la division.

Conseil pratique. — Il devient rapidement pénible de faire mentalement le calcul des coefficients des restes partiels. Aussi, conseillonsnous au lecteur d'effectuer lesdits calculs sur une feuille de papier séparée, comme d'ailleurs, dans la résolution d'un problème quelconque, il convient de le faire pour tous les calculs auxiliaires, afin de ne pas noyer les résultats principaux, qui servent de jalons dans la marche à suivre. 2. Diviser $2 + x - x^3$ par $1 + 3x - x^2 - x^4$ suivant les puissances croissantes de x, en s'arrêtant au premier reste qui renferme x^6 en facteur.

La disposition des calculs est la même que précédemment :

On a l'identité

$$2 + x - x^3 = (1 + 3x - x^2 - x^4)(2 - 5x + 17x^2 - 57x^3 + 190x^4 - 632x^5) + x^6(2103 - 689x + 190x^2 - 632x^3).$$

3. Diviser $\sin \theta$ par $1-2x\cos \theta+x^2$ suivant les puissances croissantes de x. (Cf. Leçons, t. I, p. 161.)

Le premier terme du quotient est sin θ . Le premier reste partiel est

$$R_1 = x \sin 2\theta - x^2 \sin \theta.$$

Le deuxième terme du quotient est $x\sin 2\theta$. Le deuxième reste partiel est

$$R_2 = x^2 (2 \sin 2\theta \cos \theta - \sin \theta) - x^3 \sin 2\theta$$

= $x^2 (\sin 3\theta + \sin \theta - \sin \theta) - x^3 \sin 2\theta$
= $x^2 \sin 3\theta - x^3 \sin 2\theta$.

Le troisième terme du quotient sera $x^2 \sin 3\theta$ et l'on devine que, d'une manière générale, le $n^{\text{lème}}$ terme doit être $x^{n-1} \sin n\theta$, et le $n^{\text{lème}}$ reste partiel

(1)
$$R_n = x^n \sin(n+1)\theta - x^{n+1} \sin n\theta.$$

Pour le prouver, raisonnons par récurrence. Admettons (1). Le $(n+1)^{\text{lème}}$ terme du quotient sera $x^n \sin{(n+1)\theta}$ et le reste correspondant

$$\begin{aligned} \mathbf{R}_{n+1} &= \mathbf{R}_n - x^n \sin(n+1)\theta(1-2x\cos\theta+x^2) \\ &= x^{n+1} [2\sin(n+1)\theta\cos\theta - \sin n\theta] - x^{n+2}\sin(n+1)\theta \\ &= x^{n+1} [\sin(n+2)\theta + \sin n\theta - \sin n\theta] - x^{n+2}\sin(n+1)\theta \\ &= x^{n+1}\sin(n+2)\theta - x^{n+2}\sin(n+1)\theta, \end{aligned}$$

ce qui est bien l'expression déduite de (1) en changeant n en n+1.

On a donc, quels que soient n, x, θ ,

(2)
$$\sin \theta = (1 - 2x \cos \theta + x^2)(\sin \theta + x \sin 2\theta + x^2 \sin 3\theta + ... + x^{n-1} \sin n\theta) + x^n [\sin (n+1)\theta - x \sin n\theta].$$

Autre méthode. — On peut arriver au même résultat en décomposant la fraction $\frac{\sin \theta}{1 - 2x \cos \theta + x^2}$ en éléments simples (Chap. XVII). On a (Chap. VII; exercice résolu n° 2).

(3)
$$\frac{\sin\theta}{1-2x\cos\theta+x^2} = \frac{1}{2i} \left(\frac{1}{x-e^{i\theta}} - \frac{1}{x-e^{-i\theta}} \right).$$

Divisons 1 par $x - e^{i\theta}$, suivant les puissances croissantes de x. Nous écrivons (n° 203)

$$\frac{1}{x-e^{i\theta}} = -e^{-i\theta} \frac{1}{1-xe^{-i\theta}}.$$

Puis

$$\begin{split} \mathbf{I} &= (\mathbf{I} - x \, e^{-i\theta}) (\mathbf{I} + x \, e^{-i\theta} + x^2 \, e^{-2i\theta} + \ldots + x^{n-1} \, e^{-(n-1)i\theta}) + x^n \, e^{-ni\theta}, \\ \frac{\mathbf{I}}{\mathbf{I} - x \, e^{-i\theta}} &= \mathbf{I} + x \, e^{-i\theta} + x^2 \, e^{-2i\theta} + \ldots + x^{n-1} \, e^{-(n-1)i\theta} + x^n \, \frac{e^{-ni\theta}}{\mathbf{I} - x \, e^{-i\theta}}, \\ \frac{\mathbf{I}}{x - e^{i\theta}} &= -e^{-i\theta} - x \, e^{-2i\theta} - x^2 \, e^{-3i\theta} - \ldots - x^{n-1} \, e^{-ni\theta} + x^n \, \frac{e^{-ni\theta}}{x - e^{i\theta}}. \end{split}$$

Changeant i en -i, nous avons

$$-\frac{1}{x - e^{-i\theta}} = e^{i\theta} + x e^{2i\theta} + x^2 e^{3i\theta} + \dots + x^{n-1} e^{ni\theta} - x^n \frac{e^{ni\theta}}{x - e^{-i\theta}}.$$

Ajoutant et portant dans (3), en tenant compte des formules d'Euler (n° 109), il vient

(4)
$$\frac{\sin \theta}{1 - 2x \cos \theta + x^2} = \sin \theta + x \sin 2\theta + x^2 \sin 3\theta + \dots \\ + x^{n-1} \sin n\theta + \frac{x^n \left[e^{-ni\theta}(x - e^{-i\theta}) - e^{ni\theta}(x - e^{i\theta})\right]}{2i(1 - 2x \cos \theta + x^2)}.$$

Le crochet est égal à

$$e^{(n+1)i\theta} - e^{-(n+1)i\theta} - x(e^{ni\theta} - e^{-ni\theta}) = 2i[\sin(n+1)\theta - x\sin n\theta].$$

En remplaçant dans (4), on retrouve bien (2) divisé par

$$1-2x\cos\theta+x^2$$
.

Remarque. — Si, dans l'identité (2), on fait x = 1, il vient

$$\sin\theta + \sin 2\theta + \ldots + \sin n\theta = \frac{\sin\theta - 2\sin\frac{\theta}{2}\cos\left(n + \frac{1}{2}\right)\theta}{4\sin^2\frac{\theta}{2}}$$

$$= \frac{\cos\frac{\theta}{2} - \cos\left(n + \frac{1}{2}\right)\theta}{2\sin\frac{\theta}{2}}$$

$$= \frac{\sin\frac{n+1}{2}\theta\sin\frac{n\theta}{2}}{\sin\frac{\theta}{2}},$$

formule bien connue, que nous retrouverons en trigonométrie (1).

4. Calculer la valeur du polynome $x^8 - 8x^7 + 11x^6 + x^5 - x^2 + 2$, pour x = 6.

Nous formons le reste de division par x - 6 (nº 203).

$$x^8 - 8x^7 + 11x^6 + x^5 + 0.x^4 + 0.x^3 - x^2 + 0.x + 2,$$

1, -2, -1, -5, -30, -180, -1081, -6486, -38914.

Nous avons écrit les coefficients successifs au-dessous des termes correspondants du dividende, complété là où il y avait lieu. Le reste, c'est-à-dire f(6), est le dernier nombre obtenu, c'est-à-dire — 38914.

3. Calculer la valeur du polynome

$$106x^5 - 9x^4 + 48x^3 + 31x^2 + 19x + 2$$

pour $x = -\frac{1}{8}$

Nous divisons par 1+8x, suivant les puissances croissantes de x, en nous rappelant que le reste égale $(-8)^5 f\left(-\frac{1}{8}\right)$, quand on a épuisé tous les termes du dividende (n° 204):

Donc

$$f\left(-\frac{1}{8}\right) = \frac{-334}{(-8)^5} = \frac{334}{8^5} = \frac{167}{4 \times 8^4} = \frac{167}{16384}.$$

6. Calculer le p. g. c. d. et le p. p. m. c. des deux polynomes $x^5 + 3x^4 + 3x^3 + 7x^2 + 5x + 1$ et $x^4 + 2x^3 - 3x^2 - 4x - 1$.

⁽¹⁾ Cf. Chap. VII, exercice résolu nº 7.

Cherchons d'abord le p. g. c. d. On dispose les calculs comme, en arithmétique, pour le p. g. c. d. de deux nombres entiers; c'est-à-dire qu'on écrit les quotients successifs au-dessus des diviseurs, qui doivent, tour à tour, servir de dividendes.

Remarques pratiques importantes. — Le reste de la première division n'a que des coefficients pairs; nous l'avons divisé par 2 avant de le prendre pour nouveau diviseur. Cela ne faisait que doubler le quotient de la deuxième division, sans changer son reste, tout en simplifiant les calculs. La deuxième division avait alors pour premier terme $2x^3$, ce qui devait introduire, dès le début de la division, des coefficients fractionnaires. Pour éviter ceux-ci, nous avons multiplié le dividende par 2, ce qui doublait le reste. Nous avons répété la même opération sur le premier reste partiel, ce qui doublait encore le reste. Enfin, nous avons changé le signe du dernier diviseur. Ces modifications n'influent pas essentiellement sur le p. g. c. d., car elles ne peuvent que le multiplier par un facteur constant. Or, au point de vue de la divisibilité, il n'y a évidemment pas lieu de distinguer deux polynomes de rapport constant.

Le p. g. c. d. est $x^2 + 3x + 1$.

Pour calculer le p. p. m. c., formons le quotient $\frac{x^4 + 2x^3 - 3x^2 - 4x - 1}{x^2 + 3x + 1}$

On trouve $x^2 - x - 1$. Multipliant ensuite par

$$x^5 + 3x^4 + 3x^3 + 7x^2 + 5x + 1$$

nous obtenons

$$x^7 + 2x^6 - x^5 + x^4 - 5x^3 - 11x^2 - 6x - 1$$

qui est le p. p. m. c. cherché.

7. Étant donnés deux polynomes $\varphi(x)$ et $\psi(x)$ et deux constantes distinctes a et b, déterminer le polynome le plus général f(x) tel que f(x) + a soit divisible par $\varphi(x)$ et f(x) + b par $\psi(x)$.

Application: $\varphi(x) = (x-1)^3$, $\psi(x) = (x+1)^3$, a=1, b=-1. On doit avoir deux identités de la forme

(1)
$$\begin{cases} f(x) \equiv \varphi(x) \ \Phi(x) - a, \\ f(x) \equiv \psi(x) \ \Psi(x) - b; \end{cases}$$

d'où

$$\varphi(x)\,\Phi(x)-\psi(x)\,\Psi(x)\equiv a-b,$$

ou

(2)
$$\varphi(x) \mathbf{U}(x) + \psi(x) \mathbf{V}(x) \equiv \mathbf{I},$$

en posant

(3)
$$U(x) = \frac{\Phi(x)}{a-b}, \qquad V(x) = -\frac{\Psi(x)}{a-b}.$$

On reconnaît l'identité de Bezout (nº 209).

Ceci nous prouve d'abord que le problème n'est possible qu'autant que φ et ψ sont premiers entre eux. Cette condition étant supposée remplie, on déterminera les polynomes particuliers U' et V' qui satisfont à (2) et, en outre, aux conditions de degrés énoncées au n° 209. On prendra ensuite

$$\mathbf{U} = \mathbf{U}' - \psi(x) \,\theta(x), \qquad \mathbf{V} = \mathbf{V}' + \varphi(x) \,\theta(x),$$

où $\theta(x)$ désigne un polynome arbitraire; puis, d'après (3) et (1),

$$f(x) \equiv \varphi(x)(a-b)[U'-\psi(x)\theta(x)] - a$$

$$\equiv \psi(x)(b-a)[V'+\varphi(x)\theta(x)] - b;$$

$$f(x) \equiv \lambda(x) + \mu(x)\varphi(x)\psi(x),$$
(4)

en désignant par $\mu(x)$ un polynome arbitraire et par $\lambda(x)$ la valeur commune des deux polynomes $U'(a-b)\varphi(x)-a$ et $V'(b-a)\psi(x)-b$.

Application. — Effectuons la recherche du p. g. c. d. de $(x-1)^3$ et $(x+1)^3$,

D'où l'on déduit les identités

$$\varphi = \psi - 2(3x^{2} + 1), \quad 3\psi = (3x^{2} + 1)(x + 3) + 8x, \quad (3x^{2} + 1) = x.3x + 1;$$

$$3x^{2} + 1 = \frac{\psi - \varphi}{2}, \qquad x = \frac{3\psi + (x + 3)\frac{(\varphi - \psi)}{2}}{8},$$

$$1 = \frac{\psi - \varphi}{2} + \frac{3x}{8} \left[\frac{(\psi - \varphi)}{2}(x + 3) - 3\psi \right];$$

$$1 = \varphi \left(-\frac{1}{2} - \frac{9x}{16} - \frac{3x^{2}}{16} \right) + \psi \left(\frac{1}{2} - \frac{9x}{16} + \frac{3x^{2}}{16} \right).$$

Nous prenons donc

$$U' = -\frac{1}{2} - \frac{9x}{16} - \frac{3x^2}{16}, \qquad V' = \frac{1}{2} - \frac{9x}{16} + \frac{3x^2}{16};$$
$$\lambda(x) = -\frac{x}{8}(3x^4 - 10x^2 + 15).$$

Finalement, $\mu(x)$ désignent un polynome arbitraire, nous avons

$$f(x) = (x^2 - 1)^3 \mu(x) - \frac{x}{8} (3x^4 - 10x^2 + 15).$$

EXERCICES PROPOSÉS.

1. Diviser suivant les puissances décroissantes de x:

$$x^{5}-ix^{4}-2ix^{3}+x^{2}+3x-i \quad \text{par} \quad x^{3}+x+i;$$

$$x^{7}+x^{4}-x^{2}+1 \quad \text{par} \quad x^{4}+x+2;$$

$$x^{7}+7x^{6}+6x^{5}-22x^{4}+9x^{3}+4x^{2}-x-4 \quad \text{par} \quad x^{5}+4x^{4}-2x^{3}+x+1.$$

2. Diviser suivant les puissances croissantes de x:

$$1-x-x^2+3x^3$$
 par $1+x+x^2-3x^3+4x^4$,

en s'arrêtant au reste en x^6 ;

$$2 + x - 8x^2 - 3x^3 + 6x^4 - 2x^5 - 2x^6 + x^7$$
 par $1 - x - 2x^2 + x^3$.

3. Diviser 1 par $(1-x)^3$ suivant les puissances croissantes de x, jusqu'au reste en x^n .

(On pourra d'abord diviser 1 par 1-x, jusqu'au reste en x^{n+2} ; puis dériver deux fois l'identité obtenue. Ensuite, et à titre d'exercice, on fera directement la division et l'on vérifiera le résultat obtenu par la première méthode.)

4. Déterminer m et n pour que $x^4 + 3x^2 + mx + n$ soit divisible par $x^2 - 2mx + 2$.

(Faire la division suivant les puissances décroissantes et annuler le reste.)

5. Calculer les valeurs des polynomes

$$x^{10}-x^8-16x^5+4x+2$$
, pour $x=3$; $x^5+4x^4+4x^3+38x^2+407x-1$, pour $x=-7$.

6. Calculer les valeurs des polynomes

$$3x^6 - 14x^5 - x^4 + 29x^3 - x + 1,$$
 pour $x = \frac{1}{7}$;
 $43x^9 + 25x^7 + 9x^6 - x^4 + 2x^3 + 10x^2 - 1,$ pour $x = -\frac{1}{5}$.

7. Calculer les p. g. c. d. et p. p. m. c. des polynomes

$$2x^{7} + x^{5} + x^{4} - 3x^{3} + x^{2} - x - 3 \quad \text{et} \quad x^{6} - x^{5} + 3x^{3} - x^{2} + 2;$$

$$x^{4} - x^{3} - 15x^{2} + 11x + 4 \quad \text{et} \quad x^{7} + 10x^{6} - 35x^{5} - 94x^{4} + 39x^{3} + 13x^{2} - 33x - 12;$$

$$(x^{2} - 1)^{3}(x^{2} - 3x + 2)^{2}(x + 2) \quad \text{et} \quad (x^{3} - 1)(x^{2} - 4x + 3)^{3}(x + 1).$$

- 8. Si un polynome est premier avec plusieurs autres, il est premier avec leur produit.
- (On peut raisonner comme en arithmétique, ou bien écrire l'identité de Bezout pour chaque facteur du produit et multiplier membre à membre.)
- 9. Si un polynome est divisible par plusieurs polynomes premiers entre eux deux à deux, il est divisible par leur produit.
 - 10. Trouver les polynomes U et V satisfaisant à l'identité

$$Ux^m + V(I-x)^n = I$$
 (E. N., 1901).

11. Trouver un polynome f(x) tel que f(x) + 1 soit divisible par $x^2 + 1$ et f(x) + 2 par $(x + 2)^4$.

(Cf. exercice résolu nº 7.)

- 12. Prouver que $x^{3m} + x^{3n+1} + x^{3p+2}$ est divisible par $x^2 + x + 1$, m, n, p désignant trois nombres naturels quelconques. (E. P., 1908.)
- 13. Si le polynome f(x, y, z) est divisible par x y, y z, z x, il est divisible par leur produit.
- 14. Si un polynome symétrique en x et y est divisible par x-y, il l'est aussi par $(x-y)^2$.

[On a

$$f(x,y) \equiv (x-y) g(x,y),$$
 $2f(x,y) \equiv (x-y) [g(x,y)-g(y,x)].$

CHAPITRE XVII.

FRACTIONS RATIONNELLES.

EXERCICES RÉSOLUS.

1. Calculer le développement d'ordre 4 de la fraction

$$y = \frac{x^4 + 2x^3 - x^2 - 5x + 1}{x^5 - 7x^4 + 19x^3 - 24x^2 + 14x - 3},$$

au voisinage de x = 1.

Posons x - 1 = z. Nous avons, tous calculs faits (1),

$$y = \frac{-\,2\,+\,3\,z\,+\,11\,z^2\,+\,6\,z^3\,+\,z^4}{z^2\,+\,z^3\,-\,2\,z^4\,+\,z^3} = \frac{1}{z^2}\,\frac{-\,2\,+\,3\,z\,+\,11\,z^2\,+\,6\,z^3\,+\,z^4}{1\,+\,z\,-\,2\,z^2\,+\,z^3}.$$

Divisons suivant les puissances croissantes de z, jusqu'à ce que nous ayons z^7 en facteur au reste :

Nous avons

$$y = -\frac{2}{z^2} + \frac{5}{z} + 2 + 16z - 16z^2 + 46z^3 - 94z^4 + \rho z^5,$$

avec

$$\rho = \frac{202 - 234z + 94z^2}{1 + z - 2z^2 + z^3}.$$

⁽¹⁾ Il est commode d'utiliser la formule de Taylor, pour ordonner le numérateur et le dénominateur par rapport à z.

 $oldsymbol{2}.$ Décomposer en éléments simples la fraction rationnelle

$$y = \frac{x^5 + 2x^4 - x^3 - 2x^2 + x - 4}{(x - 1)^3(x - 2)},$$

I. Pôle 1. -x-1=z;

$$y = \frac{1}{z^3} \frac{-3 + 7z + 17z^2 + 17z^3 + 7z^5 + z^5}{-1 + z}.$$

Or, en appliquant la règle du nº 204, on écrit immédiatement

$$3-7z-17z^2-17z^3-7z^4-z^5=(1-z)(3-4z-21z^2)-38z^3-7z^4-z^5.$$

D'où

II. Pôle 2. -x-2=z;

$$y_1 = \frac{1}{z} [38 + 7(z+1) + (z+1)^2] = \frac{1}{z} (46 + 9z + z^2) = \frac{46}{z} + 9 + z,$$

$$y_1 = \frac{46}{z-2} + 9 + z - 2 = \frac{46}{z-2} + z + 7.$$

Finalement,

$$y = \frac{3}{(x-1)^2} - \frac{4}{(x-1)^2} - \frac{21}{x-1} + \frac{46}{x-2} + x + 7.$$

3. Décomposer

Pôle

$$y = \frac{x^6 + 4\,x^5 - x^4 + x^3 - 3\,x^2 - 6\,x - 1}{(x - 1)\,(2\,x + 3)\,(x - 4)\,(3\,x - 1)} \cdot$$

Les pôles sont simples. On peut donc calculer immédiatement les résidus.

Pôle I: nous multiplions par
$$x-1$$
 et faisons $x = 1$: $\frac{3}{5(-3)2} = \frac{1}{6}$
Pôle $-\frac{3}{2}$: $x + \frac{3}{2}$ $x = -\frac{3}{2}$: $\frac{-\frac{1675}{64}}{-\frac{5}{2}2(-\frac{11}{2})(-\frac{11}{2})} = \frac{335}{1936}$

Pole 4:
$$x = 4$$
: $\frac{7927}{3} = \frac{7927}{363}$

Pôle
$$\frac{1}{3}$$
: $x - \frac{1}{3}$ $x = \frac{1}{3}$: $\frac{-\frac{2309}{36}}{-\frac{2}{3}\frac{11}{3}\left(-\frac{11}{3}\right)3} = -\frac{2399}{19602}$

Digitized by Google

Cherchons maintenant la partie entière. Nous allons diviser le numérateur par le dénominateur, suivant les puissances décroissantes de x. Comme nous n'avons pas besoin du reste, puisque nous avons déjà les autres parties de la décomposition, nous pouvons négliger, au dividende et dans les restes partiels, les termes de degré < 4, qui n'interviennent pas dans le quotient. Comme conséquence, nous pouvons négliger au diviseur les termes de degré < 2, qui donneraient dans les restes partiels des termes de degré < 4. Nous avons dès lors la division suivante:

Finalement,

$$y = \frac{x^2}{6} + \frac{47}{36}x + \frac{1129}{216} + \frac{1}{6(x-1)} + \frac{335}{968(2x+3)} + \frac{7927}{363(x-4)} - \frac{2399}{6534(3x-1)}.$$

4. Décomposer la fraction $y = \frac{x^4 + x^2 + 2}{(x^2 - 1)^2}$ en éléments simples.

La partie entière est visiblement 1.

Nous allons maintenant calculer la partie relative au pôle x=1. Nous en déduirons ensuite la partie relative au pôle x=-1, par le changement de x en -x; car ce changement doit transformer l'une dans l'autre ces deux parties, étant donné que leur somme ne doit pas être modifiée, en vertu de la parité de y.

Posons donc x-1=z. Il nous faut diviser $(1+z)^4+(1+z)^2+2$ par $(2+z)^2$, jusqu'au terme en z quotient. Nous n'avons d'ailleurs pas à nous préoccuper du reste, grâce à la remarque faite plus haut. Bornons-nous donc aux deux premiers termes dans le dividende et le diviseur. Nous avons la division suivante:

$$\begin{array}{c|c} 4+6z & 4+4z \\ 2z & 1+\frac{1}{2}z \end{array}$$

La partie relative au pôle x=1 est donc $\frac{1}{(x-1)^2}+\frac{1}{2(x-1)}$, et l'on a

$$y = \frac{1}{(x-1)^2} + \frac{1}{2(x-1)} + \frac{1}{(x+1)^2} - \frac{1}{2(x+1)} + 1.$$
Digitized by Google

5. Décomposer en éléments réels

$$\frac{x+2}{(x+1)(x^2+x+1)^2(x^2-2x+2)}.$$

Première méthode. — Appliquons la méthode des coefficients indéterminés. Soit

(1)
$$y = \frac{A}{x+1} + \frac{Bx+C}{(x^2+x+1)^2} + \frac{Dx+F}{x^2+x+1} + \frac{Gx+H}{x^2-2x+2}.$$

Nous devons avoir l'identité :

$$\begin{split} x+2 &\equiv \mathbf{A}(x^2+x+1)^2(x^2-2x+2) \\ &\quad + (\mathbf{B}x+\mathbf{C})(x+1)(x^2-2x+2) \\ &\quad + (\mathbf{D}x+\mathbf{F})(x+1)(x^2-2x+2)(x^2+x+1) \\ &\quad + (\mathbf{G}x+\mathbf{H})(x+1)(x^2+x+1)^2, \\ x+2 &\equiv \mathbf{A}(x^4+2x^3+3x^2+2x+1)(x^2-2x+2) \\ &\quad + (\mathbf{B}x+\mathbf{C})(x^3-x^2+2)+(\mathbf{D}x+\mathbf{F})(x^5+x^2+2x+2) \\ &\quad + (\mathbf{G}x+\mathbf{H})(x^5+3x^4+5x^2+5x^2+3x+1). \end{split}$$

Identifiant terme à terme, nous avons les sept équations suivantes :

$$A + D + G = 0,$$

$$F + 3G + H = 0,$$

$$A + B + 5G + 3H = 0,$$

$$- B + C + D + 5G + 5H = 0,$$

$$3A - C + 2D + F + 3G + 5H = 0,$$

$$2A + 2B + 2D + 2F + G + 3H = 1,$$

$$2A + 2C + 2F + H = 2.$$

Ce système peut être résolu de bien des manières. Par exemple, nous tirons des quatre premières équations :

(2)
$$\begin{cases} G = -A - D, & F = 3A + 3D - H, \\ B = 4A + 5D - 3H, & C = 9A + 9D - 8H; \end{cases}$$

en portant dans les trois autres, il vient

(3)
$$-6A - 7D + 12H = 0,$$

(4)
$$15A + 17D - 5H = 1$$
,

(5)
$$26A + 24D - 17H = 2.$$

En faisant la combinaison linéaire (3) — (4) + (5), on élimine simultanément D et H et l'on trouve $A = \frac{1}{5}$. Moyennant quoi, (3) et (4)

donnent

$$D = -\frac{18}{169}, \qquad H = \frac{32}{845}.$$

Portant dans (2), on a enfin

$$G = -\frac{79}{845}$$
, $F = \frac{41}{169}$, $B = \frac{2}{13}$, $C = \frac{7}{13}$.

Nous avons finalement

(6)
$$y = \frac{1}{5(x+1)} + \frac{2x+7}{13(x^2+x+1)^2} + \frac{-18x+41}{(69(x^2+x+1))} + \frac{-79x+32}{845(x^2-2x+2)}$$

Deuxième méthode. — Nous allons extraire séparément les différentes parties de la décomposition, par la méthode de la division indiquée au n° 218.

Pôle 1. — Multiplions y par x+1, faisons x=-1; nous obtenons le résidu $\frac{1}{5}$.

Partie relative à $x^2 + x + 1$. — Posons

$$x^2 + x + 1 = z,$$
 $x^2 = -x - 1 + z.$

Portons dans le dénominateur de v

$$(x+1)(x^2-2x+2) = (x+1)(-3x+1+z) = -3x^2+x(z-2)+1+z = x(z+1)+4-2z.$$

Nous avons ensuite (nº 218)

$$\begin{split} \frac{x+2}{x(1+z)+4-2z} &= \frac{x^2+2x}{x^2(1+z)+x(4-2z)} \\ &= \frac{x-1+z}{3x(1-z)-1} \quad (1) \\ &= \frac{3(z-1)(x+2)+(z+1)(x-1+z)}{3(z-1)(4-2z)-(z+1)} \\ &= \frac{-(2x+7)+(4x+6)z}{-13+17z} \quad (1). \end{split}$$

Divisons suivant les puissances croissantes de z jusqu'au reste en z^2 :

$$\begin{array}{c|c}
2x + 7 - (4x + 6)z & 13 - 17z \\
-18x + 41 & 2 & 2x + 7 \\
\hline
13 & 13 & 169
\end{array}$$

^{(° (°)} Nous négligeons les puissances de z supérieures à la première (n° 218).

La partie relative à $x^2 + x + 1$ est donc

$$\frac{2x+7}{13(x^2+x+1)^2} + \frac{-18x+41}{169(x^2+x+1)}.$$

Partie relative à $x^2 - 2x + 2$. — Nous devons poser $x^2 - 2x + 2 = z$, puis opérer comme précédemment, en négligeant tous les termes en z. Cela revient à remplacer, dans le coefficient de $\frac{1}{x^2 - 2x + 2}$ dans y, x^2 par 2x - 2; ce qui nous donne successivement

$$\frac{x+2}{(x+1)(3x-1)^2} = \frac{x+2}{(x+1)(12x-17)} = \frac{x+2}{19x-41};$$

puis

$$\frac{x+2}{19x-41} = \frac{x^2+2x}{19x^2-41x} = \frac{4x-2}{-3x-38} = \frac{3(x+2)+19(4x-2)}{-3\times41-19\times38} = \frac{79x-32}{-845}.$$

La partie relative à $x^2 - 2x + 2$ est donc

$$\frac{-79 \cdot x + 32}{845 (x^2 - 2 \cdot x + 2)},$$

et l'on retrouve bien la formule (6).

EXERCICES PROPOSÉS.

1. Calculer les développements de

$$\frac{x^3+2}{x^6+6x^5+15x^4+21x^3+18x^2+9x+2},$$

au voisinage de x=-1 et jusqu'au dixième ordre; de $\frac{x^5+x^2-1}{x^3+2x^2-x+2}$, au voisinage de x=4 et jusqu'au troisième ordre; de

$$\frac{x^6 + x^5 - 3x^4 + 5x + 3}{x^2 + 7x - 4}$$

au voisinage de $x = \infty$ et jusqu'à l'ordre — 2.

2. Décomposer en éléments simples les fractions rationnelles

$$\frac{x^6+1}{(x+1)^2(x+2)^3}$$
, $\frac{x+7}{(2x+1)^4(x-3)}$, $\frac{x^8}{(x-1)(x-2)^2(x-3)^3}$

3. Décomposer en éléments simples les fractions rationnelles

$$\frac{x^2-x-1}{(x+4)\,(x+1)\,(x-5)\,(\,2\,x+7)},\,\,\frac{x(x-1)}{(x+1)\,(x+2)},\,\,\frac{x^5+3\,x^4-x^3+2}{(x-1)(x-2)\,(\,3\,x+1)}\cdot$$

4. Même question pour

$$\frac{x^2}{(x^2-4)^3}, \quad \frac{x^4+3}{(x^2-9)\left(x^2-\frac{1}{4}\right)^2}.$$

5. Calculer le résidu du pôle x = -2 dans la fraction

$$\frac{x^8+4x^6-x-5}{(x+2)^6(x-1)^3(x+3)^2}.$$

(x + 2 = z; négliger dans la division les termes en z de degrès > 3).

6. Trouver le polynome de degré minimum qui prend les valeurs $1, 2, 3, \ldots, n$ pour $x = 1, 2, 3, \ldots, n$, ou bien pour $x = n, n - 1, \ldots, 2, 1$.

(Dans le premier cas, on pourra comparer le résultat avec la solution évidente y = x et en déduire des identités arithmétiques.)

7. Connaissant les restes de division d'un polynome par x-a, x-b, ..., x-l, calculer le reste de division par le produit

$$(x-a)(x-b)...(x-l).$$

[Si n est le nombre des diviseurs linéaires donnés, le reste cherché est le polynome de degré n-1 qui prend les valeurs connues

$$f(a)$$
, $f(b)$, ..., $f(l)$, pour $x = a, b, ..., l$.

8. Etant donnés n nombres distincts a, b, \ldots, l , et un nombre naturel $p \le n - 2$, on a l'identité

$$\frac{a^{p}}{(a-b)(a-c)...(a-l)} + \frac{b^{p}}{(b-a)(b-c)...(b-l)} + ... + \frac{l^{p}}{(l-a)(l-b)...(l-h)} = 0.$$

(S'appuyer sur ce que la somme des résidus d'une fraction rationnelle est nulle, lorsque le degré du dénominateur surpasse de deux unités au moins le degré du numérateur.)

9. Étant donnée l'équation du troisième degré en à

(1)
$$\frac{x^2}{a^2+\lambda}+\frac{y^2}{b^2+\lambda}+\frac{z^2}{c^2+\lambda}-1=0,$$

on appelle λ_1 , λ_2 , λ_3 ses racines. Calculer x^2 , y^2 , z^2 en fonction de λ_1 , λ_2 et λ_3 , ainsi que

$$\frac{x^2 + y^2 + z^2}{(a^2 + \lambda_1)(a^2 + \lambda_2)} + \frac{y^2}{(b^2 + \lambda_1)(b^2 + \lambda_2)} + \frac{z^2}{(c^2 + \lambda_1)(c^2 + \lambda_2)},$$

$$\frac{x^2}{(a^2 + \lambda_1)^2} + \frac{y^2}{(b^2 + \lambda_1)^2} + \frac{z^2}{(c^2 + \lambda_1)^2}, \quad dx^2 + dy^2 + dz^2.$$

Partir de l'identité en λ

(2)
$$\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} + \frac{z^2}{c^2 + \lambda} - 1 \equiv -\frac{(\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)}{(\lambda + a^2)(\lambda + b^2)(\lambda + c^2)}.$$

Pour calculer x^2 , y^2 , z^2 , décomposer le second membre en éléments simples.

Pour $x^2 + y^2 + z^2$, développer suivant les puissances croissantes de $\frac{1}{\lambda}$ et égaler, de part et d'autre, les coefficients de $\frac{1}{\lambda}$.

Pour $\int \frac{x^2}{(a^2+\lambda_1)(a^2+\lambda_2)}$, on pourra retrancher les égalités obtenues en remplaçant successivement λ par λ_1 et λ_2 dans (1).

Pour $S \frac{x^2}{(a^2 + \lambda_1)^2}$, dériver (2) par rapport à λ et faire $\lambda = \lambda_1$, en observant que le second membre est de la forme $(\lambda - \lambda_1) f(\lambda)$.

Pour $dx^2 + dy^2 + dz^2$, on calculera dx, dy, dz en prenant les différentielles logarithmiques des expressions trouvées pour x^2 , y^2 , z^2 . On s'appuiera ensuite sur les valeurs de

$$S^{\frac{x^2}{(a^2+\lambda_1)^2}}$$
 et $S^{\frac{x^2}{(a^2+\lambda_1)(a^2+\lambda_2)}}$.

10. Décomposer en éléments simples réels les fractions

$$\frac{x^3}{x^4-1}, \frac{x^4}{x^3-1}, \frac{1}{x^5-1}, \frac{1}{x^8+1}, \frac{x^4+3x^3-x^2-2x-3}{(x^2+2x+2)(x^2+3)},$$

$$\frac{1}{(x^2+1)^3(x^2-x+1)^2}, \frac{1}{(x^2-2x\cos a+1)(x^2-2x\cos b+1)}.$$

CHAPITRE XVIII.

PROPRIÉTÉS GÉNÉRALES DES ÉQUATIONS ALGÉBRIQUES.

EXERCICES RÉSOLUS.

- 1. Soit l'équation $x^4 + ax^3 + bx^2 + cx + d = 0$.
- 1º Chercher la condition pour que le produit de deux de ses racines soit égal au produit des deux autres. Résoudre l'équation dans ce cas.
- 2° L'équation étant supposée quelconque, on lui fait subir la transformation x=y+h. Déterminer h pour que l'équation en y satisfasse à la condition précédemment trouvée. En déduire une méthode de résolution algébrique de l'équation du quatrième degré.
- 1º Soient x_1 , x_2 , x_3 , x_4 les quatres racines, supposées telles que $x_1x_2=x_3x_4$. Elles sont partagées en deux groupes symétriques (x_1, x_2) et (x_3, x_4) , ce qui nous incite à poser (1)

(1)
$$x_1 + x_2 = p$$
, $x_1 x_2 = q$, $x_3 + x_4 = p'$, $x_3 x_4 = q'$.

La condition imposée s'écrit alors

$$(2) q = q',$$

tandis que les relations entre les coefficients et les racines prennent la forme

$$(3) p+p'=-a,$$

$$(4) q+q'+pp'=b,$$

$$(5) pq'+qp'=-c,$$

$$(6) qq' = d.$$

Il faut éliminer p, q, p', q' entre (2), (3), (4), (5), (6), ou p, p', q

⁽¹⁾ Voir la note de la page 282 du Cours.

entre

$$(7) p+p'=-a,$$

$$pp' + 2q = b,$$

$$(9) (p+p')q = -c,$$

$$q^2 = d.$$

Si l'on tient compte de (7), (9) donne

$$q = \frac{c}{a}.$$

Portant dans (10), on a la condition cherchée

$$c^2 = a^2 d.$$

Si elle est remplie, (11) donne q; de (7) et (8) on tire ensuite p + p' et pp'; d'où p et p' par une équation du second degré; puis x_1 , x_2 et x_3 , x_4 par deux nouvelles équations du second degré.

Remarque. — On aurait pu aussi trouver les relations (7) à (10) en identifiant l'équation proposée avec la suivante

$$(x^2-px+q)(x^2-p'x+q)=0.$$

2° Si l'on désigne par f(x) le premier membre de l'équation proposée, l'équation en y s'écrit

$$f(y+h)=0$$

ou (nº 115)

(13)
$$f(h) + y f'(h) + y^2 \frac{f''(h)}{2} + y^3 \frac{f'''(h)}{6} + y^4 = 0.$$

Écrivons, pour elle, la condition (12)

(14)
$$[f'(h)]^2 = \frac{[f'''(h)^2]}{36} f(h),$$

ou

$$(4h^3 + 3ah^2 + 2bh + c)^2 - (4h + a)^2(h^4 + ah^3 + bh^2 + ch + d) = 0,$$

ou

(15)
$$h^{3}(-8c + 4ab - a^{3}) + h^{2}(4b^{2} - 2ac - 16d - a^{2}b) + h(4bc - 8ad - a^{2}c) + c^{2} - a^{2}d = 0.$$

Il y a donc trois valeurs de h répondant à la question. De plus, on voit qu'on peut ramener la résolution de toute équation du quatrième degré à celle d'une équation du troisième degré suivie de celles de trois équa-

tions du second degré. D'une façon plus précise, ayant formé l'équation (15) en h, on en cherchera une racine. En la portant dans (13), on obtiendra une équation en y résoluble par la méthode indiquée dans 1°. Ayant les racines de (13), on aura celles de l'équation proposée, en ajoutant à chacune d'elles la valeur précédente de h.

2. Étant donnée l'équation $x^3 + 3x^2 - x - 7 = 0$, calculer la somme des sixièmes puissances de ses racines.

Nous pouvons nous ramener aux sommes des deux premières puissances (1), en divisant x^6 par $x^3 + 3x^2 - x - 7$; ce qui nous donne l'identité

$$x^6 \equiv (x^3 + 3x^2 - x - 7)(x^3 - 3x^2 + 10x - 26) + 67x^2 + 44x - 182.$$

La somme demandée est donc égale à $67S_2 + 44S_1 - 182$, en conservant les notations du n° 224. Or,

$$S_1 = -3$$
.

Puis,

$$S_2 = (S_1)^2 - 2s_2 = 9 + 2 = 11.$$

Finalement, la somme cherchée est égale à

$$67 \times 11 - 44 \times 3 - 182 = 423.$$

3. Calculer $\sum a^3 b^2 c^2$, pour l'équation $x^4 + 2x^2 - x + 1 = 0$. — On a, par exemple (n° 223),

$$S_3 \Sigma a^2 b^2 = (a^3 + b^3 + c^3 + d^3) (a^2 b^2 + a^2 c^2 + a^2 d^2 + b^2 c^2 + b^2 d^2 + c^2 d^2)$$

$$= \Sigma a^5 b^2 + \Sigma a^3 b^2 c^2,$$

d'où

Puis,

$$(S_2)^2 = (a^2 + b^2 + c^2 + d^2)^2 = S_4 + 2 \sum a^2 b^2;$$

d'où

(2)
$$\Sigma a^2 b^2 = \frac{1}{2} (S_2^2 - S_4).$$

Enfin,

$$S_5 S_2 = S_7 + \sum a^5 b^2$$

d'où

(3)
$$\Sigma a^5 b^2 = S_5 S_2 - S_7.$$

⁽¹⁾ Voir la note de la page 289 du Cours.

Portant (2) et (3) dans (1), il vient

(4)
$$\Sigma a^3 b^2 c^2 = \frac{1}{2} S_3 (S_2^2 - S_4) - S_5 S_2 + S_7.$$

Il nous faut calculer S_2 , S_3 , S_4 , S_5 , S_7 . Employons les formules de Newton (n° 224):

$$S_1 = 0$$
,
 $S_2 + 4 = 0$,
 $S_3 + 2S_1 - 3 = 0$,
 $S_4 + 2S_2 - S_1 + 4 = 0$,
 $S_5 + 2S_3 - S_2 + S_1 = 0$,
 $S_6 + 2S_4 - S_3 + S_2 = 0$,
 $S_7 + 2S_5 - S_4 + S_3 = 0$;

d'où

$$S_2 = -4$$
, $S_3 = 3$, $S_4 = 4$, $S_5 = -10$, $S_7 = 21$.

Portant dans (4), il vient

$$\sum a^3 b^2 c^2 = -1$$
.

Autre méthode. — On peut encore écrire (cf., nº 223, remarque III),

$$\sum a^3 b^2 c^2 = a^2 b^2 c^2 d^2 \sum \frac{a}{d^2} = \sum \frac{a}{d^2} = \sum a b^{-2}.$$

Or

$$S_1 S_{-2} = S_{-1} + \sum ab^{-2}$$
.

d'où

$$\Sigma ab^{-2} = S_1 S_{-2} - S_{-1} = - S_{-1}$$

D'autre part, S_{-1} est la somme des racines de l'équation aux inverses (n° 242, III) : $y^4 - y^3 + 2y^2 + 1 = 0$; c'est-à-dire que $S_{-1} = 1$. Finalement,

$$\sum a^3 b^2 c^2 = -1$$
.

On voit que cette seconde méthode est beaucoup plus rapide que la première.

4. Calculer
$$\Delta = (a-b)^2(b-c)^2(c-a)^2$$
, pour l'équation
$$x^3 + px + q = 0.$$

On peut faire ce calcul en décomposant \(\Delta \) en groupes symétriques. Nous conseillons au lecteur d'employer cette méthode, à titre d'exercice.

Nous allons nous servir ici de la méthode des coefficients indéterminés

(n° 225). Le degré de Δ en p et q est au plus égal au plus fort exposant de a, c'est-à-dire 4. Le poids est égal au degré d'homogénéité de Δ en a, b, c, c'est-à-dire 6. Si l'on se rappelle que les poids de p et q sont 2 et 3, les seuls termes possibles sont des termes en p^3 et q^2 . Donc

$$\Delta = A p^3 + B q^2.$$

Pour déterminer les coefficients A et B, prenons d'abord a = b = 1, c = -2; nous avons

$$\Delta = 0, \qquad p = -3, \qquad q = 2,$$

d'où l'équation

$$\mathbf{27 A} = \mathbf{4B}.$$

Prenons ensuite q = 0, p = -1; d'où

$$a = 0$$
, $b = 1$, $c = -1$, $\Delta = 4$, d'où $A = -4$.

Portant dans (2), on a

$$B = -27.$$

Finalement,

(3)
$$\Delta = -(4p^3 + 27q^2).$$

5. Trouver les conditions pour que l'équation $x^5 + mx^4 + nx^2 + p = 0$ ait une racine triple.

Une première méthode consisterait à éliminer x entre les trois équations (n° 226)

(1)
$$f(x) \equiv x^5 + mx^4 + nx^2 + p = 0,$$

(2)
$$f'(x) \equiv 5x^{4} + 4mx^{3} + 2nx = 0,$$

(3)
$$f''(x) \equiv 20x^3 + 12mx^2 + 2n = 0.$$

Mais cela semble devoir donner lieu à des calculs pénibles.

On pourrait aussi, et c'est beaucoup plus simple, éliminer x entre (3), $f''_{xy} = 0$, $f''_{y^2} = 0$. Nous conseillons au lecteur de faire ce calcul.

Voici une troisième méthode, qui est encore plus rapide.

Si (1) possède une racine triple, (2) possède une racine double. Or, l'équation (2) se décompose en x = 0 et

$$5x^3 + 4mx^2 + 2n = 0$$

Pour que x = 0 soit racine triple de (1), il faut que f(x) contienne x^3 en facteur, ce qui exige p = n = 0; auquel cas, zéro est racine quadruple.

Cette solution banale étant écartée, écrivons que (4) a une racine

double. Cette racine doit satisfaire à l'équation dérivée

$$15x^2 + 8mx = 0$$
.

Comme nous supposons $x \neq 0$, la racine cherchée est nécessairement $x = -\frac{8m}{15}$. Si nous écrivons qu'elle vérifie (4) puis (1), nous aurons les deux conditions cherchées

$$2n = 5 \times \frac{8^3}{15^3}m^3 - 4 \times \frac{8^2}{15^2}m^3 = 4 \times \frac{8^2}{15^2}m^3\left(\frac{2}{3} - 1\right) = -\frac{4}{3} \times \frac{8^2}{15^2}m^3$$

ou

$$(5) n = -\frac{2}{3} \frac{8^2}{15^2} m^3$$

et

(6)
$$p = \frac{8^2}{15^2} m^2 \left(\frac{8^3}{15^3} m^3 - \frac{8^2}{15^2} m^3 + \frac{2}{3} \times \frac{8^2}{15^2} m^3 \right)$$
$$= \frac{8^4}{15^4} m^5 \left(\frac{8}{15} - 1 + \frac{2}{3} \right) = \frac{1}{5} \times \frac{8^4}{15^4} m^5.$$

Asin de simplisier l'écriture, il convient de poser

$$-\frac{8m}{15}=a.$$

On a alors

$$m = -\frac{15a}{8}$$
, $n = \frac{5}{4}a^3$, $p = -\frac{3}{8}a^5$,

de sorte que l'équation la plus générale qui soit de la forme (1) et qui possède une racine triple non nulle peut s'écrire

(7)
$$x^5 - \frac{15}{8}ax^4 + \frac{5}{4}a^3x^2 - \frac{3}{8}a^5 = 0,$$

où a désigne une constante quelconque, qui n'est autre que la racine triple.

A priori, (7) doit être divisible par $(x-a)^3$. Effectivement, si l'on fait la division, on trouve un quotient exact égal à

$$x^2 + \frac{9}{8}ax + \frac{3}{8}a^2$$

Les racines de (7) autres que la racine triple sont donc données par l'équation

(8)
$$x^2 + \frac{9}{8}ax + \frac{3}{8}a^2 = 0.$$

Elles sont imaginaires.

6. Déterminer m pour que l'équation $mx^3 + m^2x^2 + x + m = 0$ ait une racine double,

Les équations dérivée et dérivée par rapport à la variable d'homogénéité sont

$$3mx^2 + 2m^2x + 1 = 0,$$

$$m^2x^2+2x+3m=0.$$

Éliminons x (n° 234)

$$(9m^2-m^2)^2-(6m-2m^4)(6m^3-2)=0.$$

On peut diviser par m, qui ne saurait manifestement être nul. Il vient alors, en posant $m^3 = u$,

$$64u - 4(3 - u)(3u - 1) = 0;$$

ou

$$u^2 + 2u + 1 = 0.$$

d'où

$$u=-1$$
, $m=-1$.

Si m possède cette valeur, la racine double de l'équation proposée est la solution commune à (1) et (2). Elle vérifie

$$(1) + 3.(2) = 0$$

c'est-à-dire x = 1. L'autre racine est donnée, par exemple, par le produit des trois racines, qui est -1; elle est donc égale à -1.

7. Déterminer p et q pour que l'équation

$$x^4 + 4x^3 - 2x^2 + px + q = 0$$

n'ait que deux racines distinctes.

Une première méthode consiste à écrire que le plus grand commun diviseur entre le premier membre f(x) et sa dérivée est du second degré, en vertu du théorème du n° 229. A cet effet, on effectue la recherche de ce plus grand commun diviseur par la méthode de la division (n° 206), et quand on a au diviseur un polynome du second degré, on annule le reste correspondant. Ce reste étant du premier degré, on obtient deux équations de condition, d'où l'on tire p et q. Nous conseillons au lecteur de faire ce calcul, à titre d'exercice.

Nous allons suivre une méthode différente, qui donne lieu à des calculs plus simples.

Observons d'abord que deux cas seulement peuvent se présenter :

Premier cas. — Deux racines doubles. — Dans ce cas, f(x) est le carré d'un trinome du second degré, soit

(1)
$$x^4 + 4x^3 - 2x^2 + px + q \equiv (x^2 + \lambda x + \mu)^2$$
.

Égalant les termes en x^3 et en x^2 , nous avons successivement

(2)
$$\lambda = 2, \quad \mu = -3.$$

Égalant ensuite les termes en x et constant, nous obtenons

$$(3) p = -12, q = 9.$$

Voilà donc une première solution, qui correspond à deux racines doubles, données par l'équation

$$(4) x^2 + 2x - 3 = 0$$

et, par conséquent, égales à 1 et - 3.

Deuxième cas. — Une racine triple et une racine simple. — La racine triple a doit annuler les deux premières dérivées; donc

$$\alpha^3 + 3\alpha^2 - \alpha + \frac{P}{4} = 0,$$

(6)
$$3\alpha^2 + 6\alpha - 1 = 0.$$

L'équation (6) a tous ses coefficients numériques. On en tire deux valeurs réelles pour α . Choisissant l'une d'elles, on la porte dans (5) et l'on obtient, en tenant compte de (6),

(7)
$$p = \frac{4}{3}(8\alpha - 1).$$

Portant ensin dans l'équation proposée, ou plus simplement dans l'équation dérivée deux sois par rapport à la variable d'homogénéité (n° 227), on a

$$(8) \qquad -\alpha^2 + \frac{3p}{2}\alpha + 3\dot{q} = 0,$$

d'où

$$q = \frac{32\alpha - 5}{3}.$$

Les équations (6), (7), (9) nous fournissent donc deux nouvelles solutions. Pour chacune d'elles, α est racine triple; la racine restante β est donnée par la somme — 4 des quatre racines, c'est-à-dire que $\beta = -(4+3\alpha)$.

EXERCICES PROPOSÉS.

1. Soit l'équation $ax^3 + bx^2 + cx + d = 0$, de racines x_1, x_2, x_3 . Trouver la condition pour que l'on ait

$$(1) x_1 x_2 = -1,$$

(II)
$$x_1 + x_2 = mx_3 \quad (m \neq -1),$$

$$(III) x_3 = \sqrt{x_1 x_2},$$

(IV)
$$\frac{2}{x_3} = \frac{1}{x_1} + \frac{1}{x_2}$$

[Pour (I), (II), (III), une des relations entre les coefficients et les racines donne immédiatement x_3 . Il suffit de porter ensuite cette valeur dans l'équation proposée, pour avoir la condition cherchée. Pour (IV), prendre l'équation aux inverses (n° 242, III).]

2. Étant donnée l'équation précédente, trouver la condition pour que l'on ait

$$x_1 + x_2 = x_1 x_2 + m x_3$$
 $(m \neq -1).$

Comment peut-on résoudre l'équation dans ce cas?

- 3. Étant donnée l'équation $x^3 + \rho x + q = 0$, exprimer que deux de ses racines ont un rapport constant, ou que l'une d'elles est égale au carré de l'autre.
- 4. Étant donnée l'équation $x^3 + ax^2 + bx + c = 0$, on désigne ses racines par tang A, tang B, tang C. Trouver la condition pour que l'on ait 2A + B + C = 0.

Cette condition étant supposée remplie, on pose z - b = y, a - c = z, et l'on demande de discuter la réalité des angles B et C suivant la position du point de coordonnées y et z dans le plan $y \circ z$.

Application numérique. — Calculer en grades les angles A, B, C, en supposant y=3, z=3.

5. Les coefficients de l'équation du n° 1 étant supposés réels, on suppose que la racine x_3 est seule réelle, les deux autres étant imaginaires conjuguées (n° 249). Soient M_1 , M_2 , M_3 les points d'affixes x_1 , x_2 , x_3 . Trouver la condition qui doit lier les coefficients a, b, c, d pour que le triangle M_1 , M_2 , M_3 soit rectangle en M_3 ou équilatéral (E. P., 1909).

Digitized by Google

On doit avoir

$$\left(\frac{x_1+x_2}{2}-x_3\right)^2+\frac{(x_1-x_2)^2}{4}=0,$$

dans le premier cas, et

$$\left(\frac{x_1+x_2}{2}-x_3\right)^2+\frac{3}{4}(x_1-x_2)^2=0,$$

dans le second cas].

- 6. Condition pour que l'équation $x^4 + ax^3 + bx^2 + cx + d = 0$ aient deux racines dont la somme soit égale à la somme des deux autres. Résoudre l'équation dans cette hypothèse.
- 7. Déterminer m pour que l'équation $x^4 + x^3 + mx^2 + 3x + 2 = 0$ ait deux racines dont la somme soit égale au produit des deux autres. Résoudre ensuite l'équation obtenue.
- 8. Déterminer m pour que l'équation $x^5 6x^3 x^2 + mx + 4 = 0$ ait deux racines de somme nulle.
- 9. Comment peut-on résoudre une équation algébrique sachant que ses racines sont en progression arithmétique?

(Les deux premières relations entre les coefficients et les racines permettent de calculer la plus petite racine et la raison.)

10. Déterminer trois nombres a, b, c pour qu'ils soient racines de l'équation $x^3 + ax^2 + bx + c = 0$ (E. P., 1911).

(Se servir des relations entre les coefficients et les racines.)

11. Étant donnée l'équation $x^3 + px + q = 0$, calculer

$$\Sigma a^3 b$$
, $\sum \frac{a}{b}$, $\Sigma a^4 bc$, $(a^2 + b^2)(b^2 + c^2)(c^2 + a^2)$.

12. Étant donnée la même équation, former l'équation du second degré qui a pour racines $ab^2 + bc^2 + ca^2$ et $ac^2 + ba^2 + cb^2$.

[On peut calculer la somme et le produit; ou bien remarquer que la différence de ces deux quantités est égale à (a-b)(b-c)(c-a), dont on sait calculer le carré (Exercice résolu n° 4).]

13. Calculer

$$\sum a^{4}bc \quad \text{pour} \quad x^{4} + px + q = 0,$$

$$\sum a^{2}b^{2}cd \quad \text{pour} \quad x^{5} - 4x^{3} + x^{2} + 3x + 1 = 0,$$

$$\sum \frac{a}{bc} \quad \text{pour} \quad x^{8} + x^{6} - 1 = 0.$$

- 14. Étant donnée l'équation binome $x^m = 1$, calculer S_p pour les différentes valeurs de p.
- 15. Calculer l'aire d'un triangle dont les côtés sont racines de l'équation $x^3 + \alpha x^2 + \beta x + \gamma = 0$ (E. P., 1909).

[Appliquer la formule bien connue $S = \sqrt{p(p-a)(p-b)(p-c)}$.]

16. Calculer trois nombres connaissant leur somme, la somme de leurs carrés et la somme de leurs cubes.

(Écrire les formules de Newton pour l'équation du troisième degré dont ces nombres sont les racines.)

17. Résoudre le système

$$x + y + z = 0$$
, $x^{5} + y^{5} + z^{5} = -50$ (E. P., 1912).

(Cf. Exercice précédent.)

18. Condition pour que les équations

$$x^3 + px + q = 0$$
, $ax^3 + bx^2 + cx + d = 0$, $x^4 + px^3 + q = 0$

aient une racine double.

19. Déterminer m pour que l'équation

$$3x^4 + 4x^3 - 6x^2 - 12x + m = 0$$

ait une racine double.

20. Déterminer m, n pour que l'équation

$$x^4 + mx^3 + 2x + n = 0$$

ait une racine triple.

21. Déterminer m, n, p pour que l'équation

$$x^6 + mx^4 + 10x^3 + nx + p = 0$$

ait une racine quadruple.

22. Déterminer m, n pour que l'équation

$$x^5 - 35x^3 + 30x^2 + mx + n = 0$$

n'ait que trois racines distinctes.

23. Déterminer m, n, p, q pour que l'équation

$$x^6 - 18x^4 + 6mx^3 + 6nx^2 + 6px + q = 0$$

n'ait que deux racines distinctes.

[On montrera qu'il doit exister une identité de la forme

$$f'(x) \equiv (x - \alpha) f'_{\gamma}$$
.

En identifiant terme à terme, on aura des équations pour déterminer m, n, p, q, α .]

24. Séparer les ordres de multiplicité de l'équation

$$x^5 - x^4 - 5x^3 + x^2 + 8x + 4 = 0.$$

CHAPITRE XIX.

ÉLIMINATION.

EXERCICES RÉSOLUS.

1. Déterminer p et q pour que les équations

$$(1) x^3 - 7x + q = 0,$$

(2)
$$x^4 + 3x^3 - 3x^2 - 11x + p = 0$$

aient deux racines communes.

Nous allons écrire que le plus grand commun diviseur est du second degré (n° 230)

$$x^{4} + 3x^{3} - 3x^{2} - 11x + p$$

$$3x^{3} + 4x^{2} - (11 + q)x + p$$

$$4x^{2} + (10 - q)x + p - 3q$$

$$\left[3q - p - 28 + \frac{(q - 10)^{2}}{4}\right]x + 4q + (p - 3q)\frac{(10 - q)}{4}$$

Annulons le reste correspondant au diviseur du second degré

(3)
$$4(3q-p-28)+(q-10)^2=0,$$

(4)
$$16q + (p-3q)(10-q) = 0.$$

Éliminons p, par la combinaison (10 – q).(3) + 4.(4); il vient

(5)
$$(q - 10)^3 - 4 \times 28(q - 10) - 4^3q = 0.$$

Nous simplifierons cette équation en posant

$$(6) q = 10 + 4u,$$

il vient, en effet,

$$(7) u^3 - 11u - 10 = 0.$$

Ayant u, (6) donne q; puis de (3) on tire

(8)
$$p = 2(2u^2 + 6u + 1).$$

Les racines communes à (1) et (2) sont obtenues en annulant le plus grand commun diviseur

$$(9) x^2 - ux + u^2 - 7 = 0.$$

La troisième racine de (1) est -u, car la somme des trois est nulle et la somme des deux premières est u, d'après (9).

Les troisième et quatrième racines de (2) sont données par

$$(10) x^2 + (u+3)x + 3u + 4 = 0,$$

comme on le voit en calculant le quotient de (2) par (9), ce qu'on peut faire en négligeant, au diviseur et dans les restes partiels, tous les termes de degré plus petit que 2.

Le problème admet trois solutions, qui correspondent aux trois racines de (7). — Parmi celles-ci, la racine u = -1 saute aux yeux et donne q = 6, p = -6, 2 et -3 comme racines communes, 1 comme troisième racine de (1), -1 comme troisième et quatrième racines de (2). — Les deux autres racines de (7) sont données par

(11)
$$u^2 - u - 10 = 0;$$

elles sont réelles, mais incommensurables. Si l'on tient compte de (11), les équations (8) et (9) se simplifient un peu et s'écrivent

$$(12) p = 2(8u + 21),$$

$$(13) x^2 - ux + u + 3 = 0.$$

Nous laissons au lecteur le soin de prouver que la plus petite racine de (11) donne seule des racines réelles pour (13), ainsi que pour (10).

2. Éliminer x entre les deux équations

(1)
$$x^3 + 4mx^2 - 3x + 2 = 0,$$

(2)
$$2x^3 + (m+2)x^2 - 5x + 1 = 0.$$

Nous allons nous ramener à deux équations du second degré (n° 236). Multiplions (1) par — 2 et ajoutons à (2)

(3)
$$(2-7m)x^2+x-3=0.$$

Multiplions (2) par -2, ajoutons à (1) et divisons par x, en remar-

quant que zéro ne peut jamais être racine commune

(4)
$$-3x^2+2(m-2)x+7=0.$$

Annulons enfin le résultant de (3) et (4),

$$[(2-7m)7-9]^2-[2(2-7m)(m-2)+3][7+6(m-2)]=0$$

ou

$$28 m^3 + 713 m^2 - 100 m = 0.$$

Il y a donc trois valeurs de m pour lesquelles les équations proposées ont une racine commune. Cette dernière peut être obtenue par la combinaison linéaire $7 \cdot (3) + 3 \cdot (4)$, qui donne, en enlevant le facteur x,

(6)
$$x = \frac{6m-5}{49m-5}.$$

En particulier, pour m = 0, la racine commune est 1.

Autre méthode. — Éliminons m entre les équations proposées, au moyen de la combinaison -(1)+4(2); nous obtenons une équation à coefficients tous numériques:

$$7x^3 + 8x^2 - 17x + 2 = 0,$$

dont les racines sont les racines communes possibles de (1) et (2).

Ayant calculé l'une d'elles, on aura la valeur de m correspondante en la substituant à x dans (1), par exemple, ou mieux dans (6).

Si l'on tenait à avoir l'équation du troisième degré en m qui constitue effectivement le résultat de l'élimination, c'est-à-dire l'équation (5), il suffirait de remplacer x par l'expression (6) dans (7). Mais, un tel calcul est inutile si l'on cherche seulement les valeurs de m pour lesquelles il y a racine commune. Il suffit en effet, pour cela, de résoudre l'équation (7). Or, on aperçoit aisément la racine x=1. Après division par x=1, il reste l'équation du second degré $7x^2+15x=2=0$.

3. Éliminer x entre les équations

(1)
$$x^4 + ax^3 + bx^2 + cx + d = 0,$$

(2)
$$x^2 + px + q = 0.$$

Remplaçons dans (1) x^4 par $(\rho x + q)^2$ et x^3 par $-x(\rho x + q)$, nous obtenons l'équation du second degré

(3)
$$x^{2}(p^{2}-ap+b)+x(2pq-aq+c)+q^{2}+d=0.$$

Il ne nous reste plus qu'à annuler le résultant de (2) et (3) :

$$\begin{aligned} &(q^2\!+d-qp^2\!+apq-bq)^2\\ &-(2pq-aq+c-p^3\!+ap^2\!-bp)(pd-pq^2\!+aq^2\!-cq)=0. \end{aligned}$$

4. Résoudre le système

(1)
$$5x^2 - 5y^2 - 3x + 9y = 0,$$

(2)
$$5x^3 + 5y^3 - 15x^2 - 13xy - y^2 = 0$$

Éliminons x (nº 237). A cet effet, multiplions (1) par x, (2) par -1 et ajoutons

(3)
$$12x^2 + xy(22 - 5y) + y^2(1 - 5y) = 0.$$

Annulons le résultant de (1) et (3) par rapport à x:

$$y^{2}[12(9-5y)-5y(1-5y)]^{2} + y^{2}[(22-5y)(9-5y)+3(1-5y)][36+5y(22-5y)] = 0,$$

$$y^{2}[(25y^{2}-5\times13y+12\times9)^{2} + (25y^{2}-5\times34y+3\times67)(-25y^{2}+5\times22y+36)] = 0,$$

ou

ou

$$y^2(25 \times 150 y^3 - 25 \times 528 y^2 + 50 \times 39 y + 36 \times 3 \times 175) = 0$$

ou, en divisant par 150,

(4)
$$y^2(25y^3 - 88y^2 + 13y + 126) = 0.$$

A chaque racine de cette équation correspond pour x la racine commune à (1) et à (3), que l'on peut obtenir par la combinaison -12.(1) + 5.(3), ce qui donne

(5)
$$x = \frac{25 y^3 - 65 y^2 + 108 y}{-25 y^2 + 110 y + 36}.$$

Nous avons d'abord la solution y = 0, x = 0. L'équation (4) admet ensuite la racine y = -1, à laquelle correspond

$$x=\frac{-198}{-99}=2.$$

En divisant (4) par $y^2(y+1)$, il reste l'équation du second degré

(6)
$$25y^2 - 113y + 126 = 0,$$

dont les racines sont

$$\frac{113 \pm \sqrt{169}}{50} = \frac{113 \pm 13}{50} = \begin{cases} 2, 52 \\ 2 \end{cases},$$

auxquelles correspondent des valeurs de x données par (5), qui peut s'écrire, en tenant compte de (6),

(7)
$$x = 6 y \frac{8y - 3}{-3y + 162},$$

ce qui donne les deux solutions

$$y = 2$$
, $x = 1$; $y = 2.52$, $x = 15.12 \frac{429}{3861} = 1.68$.

5. Résoudre le système $x^3 = 7x + 3y$, $y^3 = 7y + 3x$ (E. P., 1911). — Si l'on change x en y et y en x, les deux équations ne font que s'échanger. Le système est donc symétrique. Du reste, il est équivalent au suivant, obtenu par addition et soustraction,

(1)
$$x^3 + y^3 = 10(x + y),$$

(2)
$$x^3 - y^3 = 4(x - y).$$

Chacune de ces équations se décompose, de sorte que notre système équivant aux quatre suivants :

$$(1) x+y=0, x-y=0;$$

(II)
$$x + y = 0, \quad x^2 + xy + y^2 = 4;$$

(III)
$$x^2 - xy + y^2 = 10, \quad x - y = 0;$$

(IV)
$$x^2 - xy + y^2 = 10, \quad x^2 + xy + y^2 = 4.$$

Les trois premiers donnent les solutions suivantes :

(3)
$$x = y = 0, \quad x = -y = \pm 2, \quad x = y = \pm \sqrt{10}.$$

Pour résoudre le dernier, nous ajoutons et retranchons

$$x^2 + y^2 = 7$$
, $xy = -3$,

d'où

$$(x+y)^2 = 1, \qquad x+y = \pm 1;$$

de sorte que x et y sont racines de l'une ou l'autre des deux équations $z^2 \pm z - 3 = 0$.

Ceci conduit aux solutions

(4)
$$x = \frac{-1 + \sqrt{13}}{2}$$
, $y = \frac{-1 - \sqrt{13}}{2}$; $x = \frac{-1 - \sqrt{13}}{2}$, $y = \frac{-1 + \sqrt{13}}{2}$;

(5)
$$x = \frac{1 + \sqrt{13}}{2}$$
, $y = \frac{1 - \sqrt{13}}{2}$; $x = \frac{1 - \sqrt{13}}{2}$, $y = \frac{1 + \sqrt{13}}{2}$.

On a en tout 9 solutions.

EXERCICES PROPOSÉS.

1. Déterminer p et q pour que les équations

$$x^3-6x^2+px-3=0$$
, $x^3-x^2+qx+2=0$

aient deux racines communes.

2. Déterminer p, q, r pour que les équations

$$x^5 - 3x^4 + x^3 - x^2 + px + q = 0,$$
 $x^5 + x^4 - 3x^3 - x^2 + rx + 3 = 0$

aient trois racines communes.

3. Éliminer x entre les équations

$$x^3 + (m-1)x^2 + (3m-10)x + 12 = 0$$

et

$$x^{3} + (m-8)x^{2} + (m+16)x - 3 = 0;$$

$$x^{3} + mx^{2} - 4 = 0 et x^{3} + mx + 2 = 0;$$

$$x^{4} - 2x^{3} + x^{2} + 5x + m = 0 et x^{4} + x^{3} - 3x^{2} - 2x - 2m = 0;$$

$$x^{4} + ax + b = 0 et x^{3} + a'x + b' = 0;$$

$$x^{5} + ax + b = 0 et x^{2} + a'x + b' = 0.$$

4. Résoudre les systèmes

$$2x - 3y + 1 = 0, x^2 - xy - y^2 + 2x + y - 1 = 0;$$

$$2x^2 + y^2 - 3x + 2y - 2 = 0, x^2 - y^2 + xy - 2x + y = 0,$$

$$x \cos \varphi + y \sin \varphi = p, x^2 + y^2 = R^2 (poser x \sin \varphi - y \cos \varphi = q);$$

$$x^3 = ax + by, y^3 = ay + bx;$$

$$x + y + 2z = -4, x^2 + y^2 - 4z^2 + z = 1, x^3 + y^3 + z^2 - 5z = 4;$$

$$x^2 + y^2 + z^2 = a, xy + yz + zx = b, x^3 + y^3 + z^3 = c;$$

$$xy + zt = xz + ty = xt + yz = a, x + y + z + t = b.$$

5. Résoudre le système

$$x^{y} = y^{x}$$
, $x^{p} = y^{q}$ (E. P., 1906).

(Prendre les logarithmes et diviser membre à membre.)

6. Résolution de l'équation du troisième degré. — Soit l'équation

$$(1) x^3 + px + q = 0.$$

On pose x = y + z et l'on détermine y et z par les équations

$$3yz + p = 0,$$
 $y^3 + z^3 + q = 0.$

Déduire de là que les trois racines de (1) sont données par la formule (de Cardan)

$$x = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{\rho^3}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{\rho^3}{27}}},$$

les deux racines cubiques étant associées de manière que leur produit soit $-\frac{p}{3}$ (Cf. Leçons, n° 280.)

CHAPITRE XX.

TRANSFORMATION DES ÉQUATIONS.

EXERCICES RÉSOLUS.

1. Former l'équation aux carrés des racines de l'équation

(1)
$$x^{4} + mx^{3} + \frac{m^{2}}{2}x^{2} + mpx + p^{2} = 0.$$

Nous allons éliminer x entre (1) et

$$y=x^2.$$

En tenant compte de (2), (1) s'écrit

(3)
$$y^2 + mxy + \frac{m^2}{2}y + mpx + p^2 = 0,$$

d'où

(4)
$$x = -\frac{y^2 + \frac{m^2}{2}y + p^2}{m(y+p)}.$$

Portons dans (2)

$$\left(y^2 + \frac{m^2}{2}y + p^2\right)^2 = y m^2 (y + p)^2,$$

ou

(5)
$$y^4 + y^2 \left(2p^2 - 2pm^2 + \frac{m^4}{4} \right) + p^4 = 0.$$

On obtient une équation bicarrée, L'ayant résolue (n° 242), on aura les quatre racines de (1) par l'application de la formule (4).

Il convient toutefois d'observer ici que cette formule n'est valable que si $m(y+p) \neq 0$. Le cas où m = 0 n'offre aucun intérêt, car l'équation (1) se réduit alors à $x^4 + p^2 = 0$. Voyons maintenant ce qui se passe si y = -p. En portant cette valeur dans (3), on a la condition $p = \frac{m^2}{4}$.

Si cette condition est remplie, l'équation (1) est vérifiée pour

$$x = \pm \sqrt{-p} = \pm i \frac{m}{2}$$
.

Son premier membre est divisible par $x^2 + p$; on trouve d'ailleurs pour quotient

$$x^2 + mx + \frac{m^2}{4} = \left(x + \frac{m}{2}\right)^2$$

Les racines de (1) sont donc, dans ce cas, $\pm i \frac{m}{2}$ et $-\frac{m}{2}$, qui est racine double.

Revenons au cas général pour discuter la réalité des racines. Observons d'abord que, d'après (2) et (4), x et y sont réels en même temps. Or, pour que (5) ait des racines réelles, il faut d'abord que l'on ait

$$\left(2p^2-2pm^2+\frac{m^4}{4}\right)^2-4p^4 \stackrel{?}{=} 0,$$

ou

(6)
$$m^2 \left(2p - \frac{m^2}{2}\right)^2 \left(2p - \frac{m^2}{4}\right) \leq 0.$$

Ecartant les cas déjà examinés de m = 0, $p = \frac{m^2}{4}$, nous avons la condition

$$(7) p \leq \frac{m^2}{8}.$$

En second lieu, l'équation (5), considérée comme du second degré en y^2 , doit avoir au moins une racine positive. Mais, ses deux racines ont le même signe, car leur produit p^* est positif. Il faut donc que la somme soit positive, ce qui se traduit par

$$2p^2 - 2pm^2 + \frac{m^4}{4} < 0.$$

Le premier membre est un trinome du second degré en p; ses racines sont $\frac{m^2}{4}(2\pm\sqrt{2})$; et p doit être compris entre elles. Mais, cette dernière condition est incompatible avec (7), si l'on observe que $\frac{m^2}{4}(2-\sqrt{2})>\frac{m^2}{8}$. Il s'ensuit que l'équation (1) n'a jamais aucune racine réelle, sauf le cas où $p=\frac{m^2}{4}$.

2. Faire la transformation

$$y = 2 - x^2$$

sur l'équation

(2)
$$x^4 + x^3 - 4x^2 - 4x + 1 = 0$$
 (E. P., 1912).

Il nous faut éliminer x entre (1) et (2). En tenant compte de (1), (2) s'écrit

$$(2-y)^2 + x(2-y) - 4(2-y) - 4x + 1 = 0$$

ou

$$x = \frac{y^2 - 3}{y + 2}.$$

Portant dans (1), il vient

$$(y^2-3)^2+(y-2)(y+2)^2=0$$

ou

$$y^4 + y^3 - 4y^2 - 4y + 1 = 0.$$

On retombe sur l'équation proposée. Il semble donc que la transformation soit inutile au point de vue de la recherche des racines. Nous allons voir qu'il n'en est rien.

Ce qui précède nous apprend que si α est une racine de (2), $2-\alpha^2$ en est une autre, d'ailleurs distincte de α , car on ne peut avoir $\alpha=2-\alpha^2$ que pour $\alpha=1$ ou -2, valeurs qui ne vérisient pas (2).

Les racines de (2) sont donc de la forme α , β , $2 - \alpha^2$, $2 - \beta^2$.

Si l'on pose $\alpha + \beta = p$, $\alpha\beta = q$, on a

$$(2-\alpha^2)+(2-\beta^2)=4-p^2+2q$$

et

$$(2-\alpha^2)(2-\beta^2)=4-2p^2+4q+q^2=(q+2)^2-2p^2.$$

On en conclut qu'il doit exister une identité de la forme

$$x^4 + x^3 - 4x^2 - 4x + 1$$

$$\equiv (x^2 - px + q)[x^2 + (p^2 - 2q - 4)x + (q + 2)^2 - 2p^2].$$

Autrement dit, le système

(3)
$$1 = p^2 - 2q - 4 - p,$$

(4)
$$-4 = (q+2)^2 - 2p^2 - p^3 + 2pq + 4p + q,$$

(5)
$$-4 = -p(q+2)^2 + 2p^3 + qp^2 - 2q^2 - 4q,$$

(6)
$$i = q(q+2)^2 - 2p^2q,$$

doit être compatible.

Multiplions (4) par p et ajoutons à (5)

$$-4-4p=-p^4+3p^2q+4p^2+pq-2q^2-$$

ou, en remplaçant q par sa valeur $\frac{p^2-p-5}{2}$ tirée de (3),

$$(7) p^2 + p - 1 = 0;$$

moyennant quoi on a

(8)
$$q = -(p+2).$$

Si, dans (4), (5), (6), on remplace maintenant p^2 par 1-p et q par -(p+2), on constate qu'on obtient des identités.

Finalement, l'équation proposée se décompose en deux équations du second degré, obtenues en remplaçant p par les deux racines réelles de (7) dans

(9)
$$x^2 - px - (p+2) = 0,$$

ce qui donne

$$x = \frac{p \pm \sqrt{3(p+3)}}{2}$$

(en remplaçant p^2 par 1-p sous le radical), avec $p=\frac{-1\pm\sqrt{5}}{2}$; d'où les quatre racines

$$x_1 = -1,82,$$
 $x_2 = -1,34,$ $x_3 = 0,21,$ $x_4 = 1,95.$

calculées à $\frac{1}{100}$ près.

Comme vérification facile, on constate que la somme est bien égale $\grave{a}-1$.

3. Theorems. — Toute transformation rationnelle effectuée sur une équation du troisième degré peut être ramenée à une transformation entière du second degré au plus ou à une transformation homographique.

Soit l'équation du troisième degré

$$(1) f(x) = 0,$$

et la transformation rationnelle

$$y = \frac{\varphi(x)}{\Psi(x)},$$

où φ et ψ désignent deux polynomes quelconques, le second étant pre-.

mier avec f(x), afin que y reste fini pour toutes les racines de (1). En vertu de cette hypothèse, on peut trouver deux polynomes U et V donnant lieu à l'identité (n° 209)

(3)
$$Uf(x) + V \psi(x) \equiv I.$$

Si l'on y remplace x par une racine de (1), on obtient

$$\frac{1}{\psi(x)} = V.$$

En portant dans (2), on obtient la transformation entière équivalente $y = V \varphi(x)$. Mais, si $V \varphi(x)$ est de degré > 2, on peut le diviser par f(x), ce qui donne l'identité

(5)
$$\mathbf{V}\,\varphi(x) \equiv f(x)\mathbf{Q} + \mathbf{R}(x),$$

R(x) étant au plus du second degré. En y remplaçant x par une racine de f(x), on voit que $V \varphi(x)$ et R(x) prennent la même valeur; de sorte que la transformation (2) équivaut finalement à la transformation entière du second degré (1)

$$\mathbf{y} = \mathbf{R}(x).$$

Je dis maintenant que cette dernière équivant à une transformation homographique. En effet, divisons f(x) par R(x); nous avons

$$f(x) \equiv R(x)Q(x) + \rho(x),$$

Q(x) et $\rho(x)$ désignant deux polynomes du premier degré.

Si x vérifie (1), on a

$$\mathbf{R}(x) = -\frac{\mathbf{p}(x)}{\mathbf{Q}(x)};$$

de sorte que (6) équivaut à la transformation homographique

$$\gamma = -\frac{\rho(x)}{Q(x)}.$$

4. Calculer $\sum \frac{ab}{(a^4-a^2-1)(b^4-b^2-1)}$ pour les racines a, b, c de l'équation

$$(1) x^3 - x^2 + 2x + 1 = 0.$$

⁽¹⁾ Le lecteur démontrera de la même façon que toute transformation rationnelle effectuée sur une équation du $n^{i\pm m \cdot n}$ degré équivaut à une transformation entière de degré n-1 au plus.

Nous allons faire la transformation

$$y = \frac{x}{x^4 - x^2 - 1},$$

puis, nous calculerons la somme des produits deux à deux des racines de l'équation transformée.

Nous pourrions, d'après le théorème de l'exercice précédent, nous ramener à une transformation homographique. Il est plus rapide de procéder directement. Contentons-nous seulement, comme simplification préliminaire, de remplacer le dénominateur de (2) par son reste de division par (1), à savoir $-(2x^2+3x+2)$. Nous avons alors à éliminer x entre (1) et $y=-\frac{x}{2x^2+3x+2}$, ou

(3)
$$2x^2y - x(3y + 1) + 2y = 0.$$

La combinaison $2y \cdot (1) - (3)$ nous donne, en divisant par x, qui ne peut être nul,

(4)
$$2y \cdot x^2 - 4y \cdot x + y - 1 = 0.$$

Cette équation peut remplacer (1), à condition que $y \neq 0$. Annulons le résultant de (3) et (4):

(5)
$$4y^2(y+1)^2 + 2y(7y+1)[(3y+1)(y-1) + 8y^2] = 0.$$

En divisant par 2y, qui est un facteur étranger, nous obtenons l'équation transfòrmée. Il nous suffit d'ailleurs d'en calculer les coefficients de y^3 et de y; on trouve 79 et -7. La somme cherchée est donc $-\frac{7}{79}$.

5. Former l'équation aux carrés des différences des racines de

$$(1) x^3 + px + q = 0.$$

Première méthode. — Soient a, b, c les trois racines. Nous devons faire la transformation du second ordre $y = (a - b)^2$. Mais, elle est symétrique et peut être ramenée à une transformation du premier ordre (n° 245). Effectivement, on peut écrire

(2)
$$y = (a+b)^2 - 4ab = c^2 + 4\frac{q}{c}.$$

L'équation transformée sera donc obtenue en éliminant x entre (1) et $y=x^2+\frac{4\,q}{x}$, ou, en chassant le dénominateur et remplaçant x^3

$$par - (px + q),$$

$$x = \frac{3 q}{y + p}.$$

Portant cette valeur dans (1), nous obtenons l'équation demandée

(4)
$$y^3 + 6py^2 + 9p^2y + 4p^3 + 27q^2 = 0.$$

Deuxième méthode. — Appliquons la méthode générale décrite au n° 247. Posons

$$u=\frac{a+b}{2}, \qquad v=\frac{a-b}{2},$$

d'où

$$a=u+v, \qquad b=u-v.$$

Écrivons que a et b vérifient (1):

(5)
$$(u+v)^3 + p(u+v) + q = 0,$$

(6)
$$(u-v)^3 + p(u-v) + q = 0;$$

d'où l'on déduit, par addition et soustraction,

(7)
$$u^3 + 3uv^2 + pu + q = 0,$$

(8)
$$3u^2 + v^2 + p = 0 \quad \text{(en divisant par } v\text{)}.$$

Posant $v^2 = \frac{y}{4}$ et éliminant u, nous aurons l'équation cherchée. En tenant compte de (8), (7) s'écrit

$$2u(y+p)+3q=0.$$

On en tire u et, en portant dans (8), on retrouve l'équation (4).

Remarque. — En prenant le produit des racines de (4), on retrouve la formule établie à l'exercice résolu n° 4 du Chapitre XVIII.

EXERCICES PROPOSES.

- 1. Former les équations aux carrés et aux cubes des racines des équations complètes du troisième et du quatrième degré.
 - 2. Faire la transformation $y = x^2 x$ sur l'équation

$$x^4 + x^3 + x^2 - 9x + 6 = 0.$$

3. Faire la transformation $y = x^2 + x$ sur l'équation

$$3x^4 + 10x^3 + 7x^2 - 8x - 9 = 0.$$

4. Étant donnée l'équation $x^3 + px + q = 0$, trouver m et n tels que l'une ou l'autre des transformations

$$y = x^2 + mx + n, \qquad y = \frac{x+m}{x+n}$$

conduise à une équation binome en y. Déduire de là une méthode de résolution algébrique de l'équation du troisième degré.

5. Étant donnée l'équation $x^3 + x - 1 = 0$, trouver une transformation homographique équivalente à $y = \frac{x^5}{x^2 - 1}$.

(On peut suivre la méthode décrite à l'exercice résolu n° 3. On peut aussi se ramener d'abord à $y = \frac{x^2 + x - 1}{x^2 - 1} = 1 + \frac{x}{x^2 - 1}$; puis déterminer A, B, C, D pour que l'égalité $\frac{x}{x^2 - 1} = \frac{Ax + B}{Cx + D}$ soit entraînée par $x^3 = 1 - x$.)

- 6. Calculer $\sum_{a=1}^{a+2}$ pour l'équation $x^5 + 2x^4 x 1 = 0$.
- 7. Appliquer à l'équation $3x^3 3x^2 + 33x 25 = 0$ la méthode de résolution du n° 4.
 - 8. Résoudre et discuter l'équation

$$x^4 + mx^3 + 2mx^2 + mx + 1 = 0$$

9. Résoudre l'équation

$$\frac{1}{x} + \frac{1}{x+a} + \frac{1}{x+2a} + \frac{1}{x+3a} + \frac{1}{x+4a} = 0$$
 (E. P., 1908).

(Poser x + 2a = y.)

- 10. Étant donnée l'équation $x^3 + px + q = 0$, de racines x_1 , x_2 , x_3 , former l'équation qui a pour racines les quantités telles que $x_1^2 + x_2^2$, ou $\frac{x_1x_2^2 + x_2x_1^2}{x_3}$.
 - 11. Étant donnée la même équation, calculer $\sum \frac{1}{x_1^2 + x_2^2 + mx_1x_2}$
- 12. Faire la transformation $y = \frac{x_1 x_2}{x_1 x_3}$ pour l'équation complète du troisième degré.

(On pourra utiliser les relations entre les coefficients et les racines.

On calculera, par exemple, x_2 et x_3 en fonction de x_1 et de y. On portera ensuite dans $\sum x_1 x_2$ et $x_1 x_2 x_3$ et l'on éliminera x_1 .)

13. Étant donnée l'équation $x^4 + ax^3 + bx^2 + cx + d = 0$, faire les transformations

$$y = x_1 + x_2 - x_3 - x_4,$$

(II)
$$y = x_1 x_2 + x_3 x_4.$$

En déduire deux méthodes de résolution algébrique de l'équation du quatrième degré. [Méthodes de Descartes (I) et de Ferrari (II).] (Cf. Leçons, n° 266.)

[Poser $x_1 + x_2 = p$, $x_1x_2 = q$, $x_3 + x_4 = p'$, $x_3x_4 = q'$. (Cf. exercice résolu nº 1, Chap. XVIII.)]

14. Faire, pour la même équation, la transformation

$$y = x_1 x_2 + x_2 x_3 + x_3 x_1.$$

15. Faire, pour la même équation, la transformation

$$y = (x_1 x_2 x_3 x_4)$$
 (Note II).

[Équation aux 6 rapports anharmoniques. Se ramène à la transformation (II) de l'exercice n° 13, suivie de la transformation du n° 12.

On doit constater que l'équation en y ne change pas quand on transforme l'équation en x par une transformation homographique quelconque (n° 322). En particulier, on peut faire disparaître le terme en x^3 .

L'équation en y doit être réciproque et demeurer invariante pour la transformation $y \mid x - y \pmod{319}$.

CHAPITRE XXI.

ÉQUATIONS A COEFFICIENTS RÉELS.

EXERCICES RÉSOLUS.

1. Décomposer en facteurs réels du second degré le polynome

$$f(x) = x^4 + ax^2 + bx + c.$$

Nous commencerons par faire, au sujet de cette décomposition, les observations suivantes : Soient x_1, x_2, x_3, x_4 les racines de l'équation

$$f(x) = 0.$$

Si l'on ne se préoccupe pas de la réalité, il y a trois manières d'effectuer la décomposition : il suffit, en effet, d'associer le facteur linéaire $x-x_1$ successivement avec $x-x_2$, $x-x_3$, $x-x_4$, en associant entre eux les deux facteurs restants. On peut donc prévoir que le problème va dépendre de la résolution d'une équation du troisième degré (1).

Si l'on suppose maintenant que a, b, c soient réels, il peut arriver que les quatre racines soient réelles, ou bien que deux soient réelles, par exemple x_1 et x_2 , les deux autres étant imaginaires conjuguées (n° 249); ou enfin que les quatre racines soient imaginaires, x_1 et x_3 étant respectivement conjuguées de x_2 et x_4 .

Dans le premier cas, les trois décompositions prévues sont réelles. Dans les deux autres cas, il faut associer $x-x_1$ avec $x-x_2$ pour obtenir un facteur réel (2); donc une seule décomposition est réelle.

Voyons maintenant comment on peut résoudre le problème sans calculer au préalable les racines de f(x). Employons la méthode des

⁽¹⁾ D'où il résultera une nouvelle méthode de résolution algébrique de l'équation du quatrième degré; car si l'on calcule une racine de l'équation du troisième degré à laquelle il est fait allusion, on en déduira la décomposition de l'équation (1) en deux équations du second degré. Rappelons, d'autre part, que l'équation générale du quatrième degré se ramène aisément à la forme (1), (n° 242, I).

⁽²⁾ Rappelons que le produit de deux imaginaires conjuguées est réel (n° 33).

coefficients indéterminés et posons, en remarquant de suite que la somme des racines est nulle,

(2)
$$x^{4} + ax^{2} + bx + c \equiv (x^{2} + \alpha x + \beta)(x^{2} - \alpha x + \beta').$$

Identifions

$$\beta + \beta' = \alpha^2 + a$$
, $\beta' - \beta = \frac{b}{2}$, $\beta\beta' = c$;

d'où

(3)
$$\beta = \frac{1}{2} \left(a + \alpha^2 - \frac{b}{\alpha} \right), \qquad \beta' = \frac{1}{2} \left(a + \alpha^2 + \frac{b}{\alpha} \right);$$

puis, en posant $\alpha^2 = z$,

(4)
$$g(z) \equiv z^3 + 2az^2 + (a^2 - 4c)z - b^2 = 0.$$

Nos prévisions se vérifient. Ayant une racine de (4), on prend $\alpha = +\sqrt{z}$; puis, on calcule β et β' par (3), et l'on a une décomposition. En prenant $\alpha = -\sqrt{z}$, on retomberait sur la même, les deux facteurs ne faisant visiblement que s'échanger.

Le nombre des solutions réelles est égal au nombre des racines positives de (4). Or, g(0) et $g(+\infty)$ ayant respectivement les signes — et +, il y a dans l'intervalle $(0, +\infty)$ un nombre impair de racines $(n^{\circ} 250)$, c'est-à-dire une ou trois (1). Il y a donc bien une ou trois décompositions réelles.

2. Théorème des lacunes. — Le nombre des racines imaginaires d'une équation algébrique est au moins égal au nombre total n des racines imaginaires des équations binomes obtenues en annulant successivement tous les groupes de deux termes consécutifs.

Pour que les équations binomes dont il est question donnent des racines imaginaires, il faut qu'il manque des termes dans l'équation proposée, ou, comme on dit, que son premier membre f(x) présente des lacunes.

Soient V et V' les nombres de variations de f(x) et f(-x). Le nombre des racines imaginaires est au moins égal à m-(V+V'), en appelant m le degré de l'équation (n° 253). Or, nous allons prouver que cette différence est précisément égale à n.

A cet effet, imaginons que l'on complète f(x) par des termes quelconques. Soient V_1 et V_1' les nombres de variations présentées par le polynome $f_1(x)$ obtenu et par $f_1(-x)$. On sait (n° 253) que $V_1 + V_1' = m$.

⁽¹⁾ On pourrait aussi invoquer le théorème de Descartes. Il donnerait même le nombre exact des solutions réelles, dans le cas où g(z) a toutes ses racines réelles (n° 254).

D'autre part, soient $A_p x^p$ et $A_{p-q} x^{p-q}$ deux termes consécutifs quelconques de f(x). Ils présentent une lacune de q-1 termes. Si q est impair, ils fournissent une unité dans V+V'; si q est pair, ils fournissent o ou 2 unités, suivant que A_p et A_{p-q} sont de même signe ou de signes contraires. Dans les trois cas, ils fournissent autant d'unités que l'équation binome

$$A_p x^q + A_{p-q} = 0$$

a de racines réelles.

Si l'on considère maintenant dans $f_1(x)$ le groupe qui est limité par les deux termes ci-dessus, il donne q unités dans $V_1 + V_1$, c'est-à-dire un nombre égal au nombre total des racines de (1). Il en résulte, par conséquent, dans la différence $(V_1 + V_1') - (V + V_1')$, un nombre d'unités égal au nombre des racines imaginaires de (1).

Si l'on raisonne de même pour tous les groupes de deux termes consécutifs de f(x), on voit que la différence

$$(V_1 + V'_1) - (V + V') = m - (V + V')$$

est égale à la somme n des nombres de racines imaginaires de toutes les équations telles que (1). C. Q. F. D.

Remarque. — Pour les équations à coefficients numériques, ce théorème ne présente aucune utilité, car il équivaut au calcul de la somme V + V', lequel est alors immédiat. Pour les équations à coefficients littéraux, il peut servir quelquefois. En particulier, il arrive qu'en multipliant un polynome complet par un facteur convenable, ne possédant que des racines réelles, on introduise des lacunes signalant l'existence de racines imaginaires au produit, donc aussi au polynome primitif.

C'est ainsi qu'on peut établir certains théorèmes, tels que ceux de de Gua et d'Hermite. (Cf. Exercices proposés, nos 7 et 8.)

3. Trouver la limite supérieure des racines positives de l'équation

(1)
$$3x^6 + x^5 - 4x^4 + x^3 + 2x^2 - 5x + 1 = 0$$
.

Nous allons appliquer successivement les trois méthodes décrites aux nos 257 et 258, à titre de comparaison.

1º Règle de Newton. - Les dérivées successives sont :

$$(2) 18x^5 + 5x^4 - 16x^3 + 3x^2 + 4x - 5,$$

$$2(45x^4 + 10x^3 - 24x^2 + 3x + 2),$$

(4)
$$6(60x^3 + 10x^2 - 16x + 1),$$

$$(5) 24(45x^2 + 5x - 4).$$

La quatrième admet une racine positive, qui est <1, car x=1 donne, dans (5), un résultat positif. Le même nombre, substitué dans (4), (3) et (2), donne encore des résultats positifs. Mais, dans (1), on obtient -1. Substituons 2; nous obtenons un résultat positif. Donc 2 est limite supérieure des racines positives.

2º Règle des groupements. — Considérons le polynome (1) comme la somme des deux suivants :

$$3x^6 - 4x^4 + 2x^2,$$

$$(7) x^5 + x^3 - 5x,$$

Le premier $x^2(3x^4-4x^2+2)$ est toujours positif, car le trinome en x^2 entre parenthèses a ses racines imaginaires. Le second peut s'écrire $x(x^4+x^2-5)$. La racine positive du trinome en x^2 est

$$\frac{-1+\sqrt{21}}{2} < \frac{-1+5}{2} = 2.$$

Donc, $\sqrt{2}$ est une limite supérieure des racines de ce trinome. Comme (8) est positif, on voit qu'on peut prendre $\sqrt{2}$ comme limite supérieure.

3º Règle de Lagrange. — Elle donne, comme limite, $1 + \sqrt{\frac{5}{3}}$. On voit que la limite la plus rapprochée est donnée par la règle des groupements.

4. Rechercher les racines commensurables de l'équation

(1)
$$8x^6 - 34x^5 - 11x^4 + 152x^3 - 76x^2 - 39x + 18 = 0.$$

Diviseurs du dernier terme : 1, 2, 3, 6, 9, 18.

Diviseurs du premier terme : 1, 2, 4, 8.

Racines possibles: ± 1 , ± 2 , ± 3 , ± 6 , ± 9 , ± 18 , $\pm \frac{1}{2}$, $\pm \frac{3}{2}$, $\pm \frac{9}{2}$, $\pm \frac{1}{4}$, $\pm \frac{3}{4}$, $\pm \frac{9}{4}$, $\pm \frac{1}{8}$, $\pm \frac{3}{8}$, $\pm \frac{9}{8}$.

Par la règle de Lagrange, nous déterminons les limites suivantes des racines :

Limite supérieure des racines positives : $1 + \frac{76}{8} < 11$;

Limite inférieure des racines positives : $\frac{1}{1+\frac{76}{18}} > \frac{1}{6}$;

et

Limite inférieure des racines négatives :

$$-\left(1+\sqrt{\frac{152}{8}}\right) = -\left(1+\sqrt{19}\right) > -6.$$

Limite supérieure des racines négatives : $\frac{-1}{1+\sqrt{\frac{152}{18}}} < -\frac{1}{5}$.

Nous devons donc enlever du Tableau précédent $-6,-9,\pm$ ı $8,\pmrac{\mathrm{I}}{8}\cdot$

Règle d'exclusion: f(1) = 18, f(-1) = -140; ce qui nous enlève

$$+1$$
, $+6$, $+9$, $+\frac{9}{2}$, $+\frac{9}{4}$, $+\frac{3}{8}$, -3 , $-\frac{3}{2}$, $-\frac{9}{2}$, $-\frac{1}{4}$, $-\frac{3}{4}$, $-\frac{9}{4}$, $-\frac{3}{8}$, $-\frac{9}{8}$, $+2$, $+\frac{1}{2}$, $+\frac{9}{8}$, -1 .

Reste à essayer: $-2, +3, -\frac{1}{2}, +\frac{3}{2}, +\frac{1}{4}, +\frac{3}{4}$

Essai de -2. — Divisons par $1 + \frac{x}{2}$ (nº 260, IV). Nous avons la suite des coefficients

$$18, -48, -52, +178, -100, 16, 0.$$

Donc, - 2 est racine; le quotient correspondant est, au facteur 2 près,

(2)
$$f_1(x) \equiv 8x^5 - 50x^4 + 89x^3 - 26x^2 - 24x + 9.$$

Il nous reste à essayer les mêmes nombres sur ce quotient (1).

Essai de — 2. — Divisons par $1 + \frac{x}{2}$. Le premier coefficient 9 n'est pas divisible par 2. Donc, l'essai ne réussit pas.

Essai de
$$+3$$
. — Divisons par $1-\frac{x}{3}$

$$9, -21, -33, +78, -24, 0.$$

(1) La règle d'exclusion ne donne rien;

$$f_1(\tau) = \frac{f(\tau)}{\tau + 2} = 6$$
 et $f_1(-\tau) = \frac{f(-\tau)}{-\tau + 2} = -\tau 40$

sont divisibles respectivement par les $(\alpha - \beta)$ et $(\alpha + \beta)$.

3 est racine; nous avons le quotient (divisé par - 3)

(3)
$$f_2(x) \equiv 8x^4 - 26x^3 + 11x^2 + 7x - 3.$$

 $f_2(1) = -3$ n'est pas divisible par 3 - 1 = 2; donc, 3 n'est plus racine. Les autres nombres à essayer ne sont pas éliminés par la règle d'exclusion.

Essai de
$$-\frac{1}{2}$$
 — Divisons par $x + \frac{1}{2}$

$$8, -30, 26, -6, 0.$$

 $-\frac{1}{2}$ est racine; nous avons le quotient (divisé par 2)

(4)
$$f_3(x) \equiv 4x^3 - 15x^2 + 13x - 3.$$

 $f_3(1) = -1$ n'est pas divisible par -1 - 2 = -3; donc, $-\frac{1}{2}$ n'est plus racine (1). De même, $\frac{1}{4}$ est exclu. Restent à essayer $\frac{3}{2}$ et $\frac{3}{4}$.

Essai de
$$\frac{3}{2}$$
 — Divisons par 1 — $\frac{2}{3}x$

 $11 \times \frac{2}{3}$ n'est pas entier; donc, $\frac{3}{2}$ ne convient pas.

Essai de
$$\frac{3}{4}$$
. — Divisons par $x = \frac{3}{4}$

 $\frac{3}{4}$ est racine; nous avons le quotient

(5)
$$f_{4}(x) \equiv x^{2} - 3x + 1,$$

dont les racines sont $\frac{3 \pm \sqrt{5}}{2}$.

Finalement, les racines de l'équation (1) sont -2, 3, $-\frac{1}{2}$, $\frac{3}{4}$, $\frac{3 \pm \sqrt{5}}{2}$

EXERCICES PROPOSÉS.

1. Si une équation algébrique à coefficients entiers admet une racine de la forme $a + b\sqrt{N}$, où a, b, N désignent des nombres rationnels,

⁽¹⁾ On peut aussi observer que, d'après le théorème de Descartes, l'équation (1) a au plus deux racines négatives.

dont le troisième n'est pas carré parfait, elle admet aussi la racine $a-b\sqrt{N}$ au même ordre de multiplicité.

(Démonstration analogue à celle du n° 249, \sqrt{N} jouant le rôle de i.)

2. Reconnaître si l'équation $x^3-5x-2=0$ admet une racine de la forme ci-dessus.

(Il doit y avoir une racine commensurable.)

3. Décomposer en facteurs réels du second degré les polynomes

$$x^4+1$$
, x^4+2x^2+4 , x^6+1 , x^8+1 , $x^{2m}+1$.

[On peut passer par l'intermédiaire des facteurs linéaires. Pour les deux premiers, on peut aussi employer la méthode des coefficients indéterminés, ou bien mettre le polynome sous la forme d'une différence de deux carrés : d'une façon générale, on peut écrire

$$x^{1} + ax^{2} + b^{2} = (x^{2} + b)^{2} - (2b - a)x^{2}$$
.

4. Décomposer de même

$$(x^2 + x - 1)^2 + x^4,$$
 $(x^2 + 1)^3 + (x - 1)^6,$
 $x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1.$

Chercher les racines imaginaires

$$\left(\frac{x^2+x-1}{x^2}\right)^2=-1, \ \left[\frac{x^2+1}{(x-1)^2}\right]^3=-1, \ \frac{x^9-1}{x-1}=0 \ \Big\}.$$

5. Démontrer que si f(x) a toutes ses racines réelles, il en est de même de $f(x) + \lambda f'(x)$, quel que soit λ (E. P., 1909).

[D'après le théorème de Rolle (n° 61), f'(x) a toutes ses racines réelles; les substituer dans $f + \lambda f'$.]

6. Prouver que, quel que soit m, l'équation

$$x^4 + 3x^3 + mx^2 - x - 5 = 0$$

a une racine positive et une seule.

7. Démontrer que si trois coefficients consécutifs d'un polynome sont en progression géométrique, il a au moins deux racines imaginaires (de Gua).

(Si q est la raison, multiplier par x-q et se reporter à l'exercice résolu n° 2.)

8. Même propriété si quatre coefficients sont en progression arithmétique (*Hermite*).

[Multiplier par
$$(x-1)^2$$
.]

9. Limites supérieure et inférieure des racines positives et négatives des équations

$$4x^7 + 3x^6 + 5x^4 - x^3 - 8x^2 + x - 2 = 0,$$
 $x^5 - 2x^4 + 3x^3 - x^2 + 5 = 0.$

10. Racines commensurables des équations

$$2x^{5} - 5x^{4} - 21x^{3} - 15x^{2} - 23x - 10 = 0,$$

$$45x^{4} - 168x^{3} - 55x^{2} + 26x + 8 = 0,$$

$$x^{6} - x^{5} - 19x^{4} - 10x^{3} + 29x^{2} - 17x - 15 = 0.$$

11. Si, en substituant p nombres entiers consécutifs dans un polynome à coefficients entiers, aucun des résultats n'est divisible par p, le polynome ne peut pas avoir de racines entières (Gauss).

[Si a était une racine entière, $\frac{f(x)}{x-a}$ serait entier pour toutes les valeurs entières de x. S'appuyer, d'autre part, sur ce que, parmi p entiers consécutifs, il y a toujours un multiple de p.]

CHAPITRE XXII.

ÉQUATIONS A COEFFICIENTS NUMÉRIQUES.

EXERCICES RÉSOLUS.

1. Discuter l'équation $x^4 - 4x^2 - mx - 1 = 0$.

Elle rentre dans le type III du nº 265. Nous allons donc discuter l'équation aux inverses

(1)
$$f(x) \equiv x^4 + mx^3 + 4x^2 - 1 = 0.$$

A cet effet, nous étudions les variations de f(x). Nous avons

$$f'(x) \equiv x(4x^2 + 3mx + 8) \equiv x g(x).$$

Le trinome g(x) a des racines réelles et distinctes, si $gm^2-4^2.8>0$, ou $m>\frac{8\sqrt{2}}{3}$, en se bornant à considérer les valeurs positives de m (1). Nous devons donc déjà distinguer deux cas.

Premier cas: $m \le \frac{8\sqrt{2}}{3} \cdot -g(x)$ est essentiellement > 0; f'(x) a le signe de x et f(x) prend sa valeur minimum pour x = 0. Cette valeur étant négative (-1) et la valeur pour $x = \pm \infty$ étant positive, on voit qu'il y a 2 racines, l'une positive, l'autre négative.

Deuxième cas : $m > \frac{8\sqrt{2}}{3} \cdot - g(x)$ a deux racines x_1, x_2 , toutes deux négatives. Nous avons le Tableau de variations :

⁽¹⁾ La discussion pour m < 0 se déduirait de celle que nous allons faire par la simple remarque que le changement de m en -m ne fait que changer le signe des racines.

Il nous faut les signes de y_1 et de y_2 . Nous savons qu'on peut remplacer ces quantités par les résultats de substitution dans la dérivée par rapport à la variable d'homogénéité

$$mx^3 + 8x^2 - 4$$
.

Mais, ce polynome peut s'écrire, en tenant compte de g(x) = 0,

$$mx\left(-\frac{3mx}{4}-2\right)-6mx-16-4=-\left(\frac{3}{4}m^2x^2+8mx+20\right)=-\varphi(x).$$

Les signes de y_1 et de y_2 sont donc opposés à ceux de $\varphi(x_1)$ et de $\varphi(x_2)$. Pour avoir ceux-ci, on peut procéder comme il suit :

Le produit $\varphi(x_1) \varphi(x_2)$ a même signe que le résultant des trinomes g(x) et $\varphi(x)$, à savoir

$$F(m^2) = 27 m^4 - 13 \times 64 m^2 + 6400.$$

Le discriminant de ce trinome en m² s'écrit

$$13^2, 32^2 - 27, 16^2, 25 = 16^2(169 \times 4 - 27 \times 25) = 16^2(676 - 675) = 16^2.$$

Les racines sont donc $\frac{16}{27}$ (26 \pm 1), c'est-à-dire 16 et $\frac{400}{27}$. Les valeurs positives correspondantes de m sont 4 et $\frac{20}{3\sqrt{3}}$. Elles sont toutes deux plus grandes que $\frac{8\sqrt{2}}{3}$. Nous sommes donc obligés de partager notre deuxième cas en plusieurs autres.

I. $4 > m > \frac{20}{3\sqrt{3}}$. — $F(m^2)$ est négatif; y_1 et y_2 sont de signes contraires. Mais, d'après le Tableau, $y_1 < y_2$. Donc, $y_1 < 0$, $y_2 > 0$. Il y a 4 racines, une dans chacun des intervalles $(-\infty, x_1)$, (x_1, x_2) , $(x_2, 0)$, $(0 + \infty)$.

II. m > 4. — $F(m^2)$ est positif; $\varphi(x_1)$ et $\varphi(x_2)$ sont de même signe. Pour avoir ce signe, observons que c'est aussi celui de $\varphi(x_1) + \varphi(x_2)$, fonction symétrique facile à calculer

$$\begin{split} \varphi(x_1) + \varphi(x_2) &= \frac{3}{4} \, m^2 \left(\frac{9 \, m^2}{16} - 4 \right) + 8 \, m \left(-\frac{3 \, m}{4} \right) + 40 \\ &= \frac{27}{64} \, m^4 - 9 \, m^2 + 40 = \mathrm{G}(m^2). \end{split}$$

Ce trinome en m^2 a deux racines réelles et positives, m_1^2 et m_2^2 . Mais G(16) = 4 > 0; de plus, $16 > \frac{m_1^2 + m_2^2}{2} = \frac{9 \cdot 32}{27} = \frac{32}{3}$. Donc, 16 est plus grand que ces deux racines. Par suite, l'hypothèse m > 4 entraîne $m > m_1$, $m > m_2$, donc $G(m^2) > 0$. Il suit de là que $\varphi(x_1)$ et $\varphi(x_2)$ sont positifs et, par suite, y_1 et y_2 négatifs. Nous avons donc seulement 2 racines, l'une plus petite que x_1 , l'autre positive.

III.
$$\frac{20}{3\sqrt{3}} > m > \frac{8\sqrt{2}}{3} \cdot - \varphi(x_1)$$
 et $\varphi(x_2)$ ont encore même signe, celui de $G(m^2)$. Mais, $G\left[\left(\frac{20}{3\sqrt{3}}\right)^2\right] = -\frac{20}{27}$ et $G\left[\left(\frac{8\sqrt{2}}{3}\right)^2\right] = -\frac{8}{3}$ sont négatifs. Donc, $\left(\frac{20}{3\sqrt{3}}\right)^2$ et $\left(\frac{8\sqrt{2}}{3}\right)^2$ sont tous deux compris entre m_1^2 et m_2^2 . Par suite, dans l'hypothèse actuelle, m^2 est aussi compris entre ces nombres, et $G(m^2)$ est négatif. Il s'ensuit que y_1 et y_2 sont positifs. Nous avons 2 racines, l'une comprise entre x_2 et 0, l'autre positive.

Cas intermédiaires. — a. m=4. — $F(m^2)=0$, $G(m^2)>0$. Un des nombres y_1, y_2 est nul, l'autre est négatif. Comme $y_1< y_2$, c'est y_2 qui est nul et y_1 négatif. Donc, il y a une racine double égale à x_2 et deux racines simples, l'une plus petite que x_1 , l'autre plus grande que zéro.

b.
$$m = \frac{20}{3\sqrt{3}}$$
. $-F(m^2) = 0$, $G(m^2)$. < 0. En raisonnant comme cidessus, on voit que $y_1 = 0$, $y_2 > 0$. Il y a une racine double égale à x_1 et deux racines simples comprises respectivement entre x_2 et 0 et entre 0 et $+\infty$.

Remarque. — On aurait pu confondre les cas II et III et observer que, quel que soit le signe commun à y_1 et à y_2 , il y a toujours deux racines réelles et deux seulement, dont l'une est positive et l'autre négative. Nous avons voulu montrer néanmoins comment on pourrait déterminer dans tous les cas les signes de y_1 et de y_2 , ce qui, pour d'autres exemples, pourrait avoir de l'importance au point de vue du nombre des racines. En outre, cette détermination fournit une meilleure séparation des racines.

2. Étudier l'équation

(1)
$$f(x) \equiv 6x^5 - 15x^4 + 10x - 3 = 0.$$

Calculer sa plus petite racine à $\frac{1}{1000}$ près. Étudions les variations de f(x). Nous avons

(2)
$$f'(x) = 10(3x^4 - 6x^3 + 1).$$

Il nous faut maintenant étudier l'équation

(3)
$$g(x) \equiv 3x^4 - 6x^3 + 1 = 0.$$

On a

$$g'(x) = 6x^2(2x-3);$$

d'où le Tableau

(4)
$$\frac{x \left| -\infty \frac{3}{2} + \infty \right|}{g \left| + \infty - 7 + \right|}$$

$$\left[g\left(\frac{3}{2}\right) = \frac{3^5}{16} - \frac{3^4}{4} + 1 = -\frac{3^4}{16} + 1 = \frac{-81 + 16}{16} < 0 \right].$$

L'équation (3) admet donc deux racines x_1 et x_2 , séparées par le nombre $\frac{3}{2}$.

Formons maintenant le Tableau des variations de f(x):

Il nous faut les signes de y_1 et y_2 , ou des résultats de substitution dans $f'_y = 5$ ($-3x^4 + 8x - 3$). Mais, en tenant compte de (3), la parenthèse s'écrit $-6x^3 + 8x - 2 = -2(3x^3 - 4x + 1)$. La nouvelle parenthèse s'annule visiblement pour x = 1 et son quotient par x = 1 est

(6)
$$h(x) = 3x^2 + 3x - 1.$$

Soient ξ_1 , ξ_2 les racines de ce trinome. Il faut les placer, ainsi que 1, par rapport à x_1 , x_2 . D'abord, g(1) < 0; donc

$$(7) x_1 < \mathfrak{l} < x_2;$$

puis, en supposant $\xi_1 < \xi_2$, on peut écrire

(8)
$$\xi_1 < x_1 < x_2$$

car $\xi_1 < 0$ et $x_1 > 0[g(0)$ est positif].

Cherchons maintenant le signe de $g(\xi_2)$. Nous pouvons remplacer g(x) par le reste $13\left(-x+\frac{1}{3}\right)$ de sa division par h(x). Cela nous conduit à placer $\frac{1}{3}$ par rapport à ξ_2 . Dans ce but, nous formons

$$h\left(\frac{1}{3}\right) = \frac{1}{3} > 0.$$

Nous voyons que $\frac{1}{3}$ est extérieur à l'intervalle (ξ_1, ξ_2) et, comme $\xi_1 < 0$, $\frac{1}{3}$ est $> \xi_2, -\xi_2 + \frac{1}{3}$ est > 0, $g(\xi_2)$ est > 0. Comme $\xi_2 < \frac{3}{2}$ (puisque $< \frac{1}{3}$)

HAAG. - Exercices, I.

et que $\frac{3}{2} < x_2$, d'après (4), on a nécessairement

(9)
$$\xi_2 < x_1 < x_2$$
.

Finalement, le trinome $3x^3 - 4x + 1 = (x - 1)h(x)$ prend le signe — pour $x = x_1$ et le signe + pour $x = x_2$. Donc $y_1 > 0$, $y_2 < 0$. L'équation proposée a trois racines réelles.

Remarque. — Ces racines sont séparées par les nombres x_1 et x_2 ; mais ceux-ci ne sont pas explicitement connus. Pour obtenir une séparation effective, procédons par substitutions successives. D'abord, f(0) < 0; comme $0 < x_1$, les trois racines sont positives.

[On peut le voir aussi par le théorème de Descartes; car f(-x) n'ayant pas de variations, il n'y a pas de racines négatives.]

Puis f(1) = -2 < 0. Comme $1 > x_1$, les deux plus petites racines sont comprises entre 0 et 1. Pour les séparer, calculons, par exemple,

$$f\left(\frac{1}{2}\right) = 2 - \frac{12}{16} > 0.$$

Finalement, si X₁, X₂, X₃ sont les trois racines rangées par ordre de grandeur croissante, nous avons la disposition suivante:

o,
$$X_1$$
, $\frac{1}{2}$, X_2 , 1, X_3 .

D'ailleurs f(3) > 0; donc $X_3 < 3$.

Calcul de X_1 . — Commencer par resserrer l'intervalle $\left(0, \frac{1}{2}\right)$. Nous avons

$$f(0,3) = -3 + 3 + (0,3)^{4}(6 \times 0,3 - 15) < 0;$$

$$f(0,4) = -3 + 4 - 0,384 + 0,06144 > 0.$$

Donc, X₁ est compris entre 0,3 et 0,4.

Appliquons la méthode de Newton. — Il nous faut le signe de f''(x), (n° 270). Or $f''(x) = 60(2x^3 - 3x^2) = 60x^2(2x - 3)$ est négatif dans tout l'intervalle. Nous devons donc appliquer la méthode au nombre 0,3. Si $X_1 = 0,3 + h$, nous prenons comme valeur approchée de h celle qui est donnée par

$$f(0,3) + hf'(0,3) = 0,$$

ou

$$h_1 = \frac{(0,3)^4 \cdot 13,2}{8,623} = \frac{0,10692}{8,623} = 0,01239$$
 (par défaut).

L'erreur commise ε est plus petite que $\frac{1}{200} \frac{-f''(0,4)}{8,623}$. [Le maximum de -f''(x) entre 0,3 et 0,4 est atteint pour x=0,4, car, dans cet intervalle, -f'''(x)=360x(1-x) est positif.] Donc

$$\varepsilon < \frac{60.0, 16.2, 2}{200.8, 623} = \frac{1,056}{86, 23} < 0,013.$$

Mais, si nous observons maintenant que h est exactement inférieur à 0.013 + 0.013 = 0.026, nous pouvons écrire

$$\epsilon < (0,026)^2 \cdot 1,3 < 0,0007 \cdot 1,3 = 0,00091$$
.

On en conclut que X₁ est compris entre les deux nombres

$$0,31239$$
 et $0,31239+0,00091=0,31330,$

qui constituent deux valeurs approchées, par défaut et par excès, à moins de $\frac{1}{1000}$ près. En prenant leur moyenne arithmétique 0,312845, on obtient une valeur approchée, à moins de $\frac{1}{2000}$; mais on ne sait pas dans quel sens. Enfin, on peut se borner à trois décimales, en prenant 0,313 comme valeur approchée à moins de $\frac{1}{1000}$ près; mais on ne sait pas non plus quel est le sens de l'approximation. On ne connaît donc pas le troisième chiffre du développement illimité de X_1 en fraction décimale, bien qu'on possède une valeur approchée à moins de $\frac{1}{2000}$; mais cela a peu d'importance pratique.

3. Discuter l'équation

$$(1) x \cos x - 2 \sin x + m = 0,$$

et calculer sa plus petite racine positive et autre que $\frac{\pi}{2}$ quand m=2.

Nous commencerons par observer qu'on peut se borner à considérer les valeurs positives de m, car le changement de m en -m équivaut à celui de x en -x.

Cela posé, pour séparer les racines de l'équation (1), on songe tout d'abord à étudier les variations de son premier membre (n° 263). Mais l'équation dérivée $x \sin x + \cos x = 0$ est transcendante et nécessiterait une étude particulière. Nous éviterons cet inconvénient en divisant au préalable l'équation (1) par $\cos x$ (1). Autrement dit, nous allons

⁽¹⁾ On peut enlever, par cette opération, les racines $x=k\pi+\frac{\pi}{2}$, si elles existent; ce qui n'arrive que pour $m=2\sin\left(k\pi+\frac{\pi}{2}\right)$, c'est-à-dire k pair, m=2.

étudier les variations de la fonction

(2)
$$y = f(x) = x - 2 \tan x + \frac{m}{\cos x}$$

Intervalle de variation. — Si l'on change x en $x + 2k\pi$, y se change en $y + 2k\pi$. Il suffit donc de construire la courbe dans un intervalle de longueur 2π , quitte à lui faire subir ensuite toutes les translations $(2k\pi, 2k\pi)$.

Si l'on change x en $\pi - x$, y se change en $\pi - y$. Cela indique une symétrie par rapport au point $I\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Finalement, nous prenons pour intervalle de variation $\left(-\frac{\pi}{2}, +\frac{\pi}{2}\right)$.

Ayant construit la courbe correspondante, nous prendrons sa symétrique par rapport au point I; puis nous lui ferons subir les translations $T_k(2k\pi, 2k\pi)$, qui sont parallèles à la première bissectrice.

Continuité. — La fonction est définie et continue dans tout l'intervalle $\left(-\frac{\pi}{2}, +\frac{\pi}{2}\right)$, sauf peut-être aux extrémités.

Dérivée. - On a

$$y' = 1 - \frac{2}{\cos^2 x} + \frac{m \sin x}{\cos^2 x} = \frac{-(1 - m \sin x + \sin^2 x)}{\cos^2 x}.$$

Il nous faut le signe du trinome en $\sin x$

(3)
$$z = g(\sin x) = \sin^2 x - m \sin x + 1.$$

Premier cas: m < 2. — z est toujours positif, donc y' négatif; y décroît. Pour

$$x = -\frac{\pi}{2} + \epsilon$$
, $\tan g x = -\infty$, $\frac{m}{\cos x} = +\infty$, $y = +\infty$.

Pour $x=rac{\pi}{2}-arepsilon,$ y se présente sous la forme $\infty-\infty$. Mais, si on l'écrit

$$y = x + \frac{m - 2\sin x}{\cos x},$$

on voit qu'il tend vers $-\infty$. On a donc la courbe suivante (fig. 11). Si l'on prend sa symétrique par rapport au point I, on obtient la courbe en pointillé. Il suffit ensuite d'imaginer les translations T_k pour se rendre compte que l'équation proposée admet une racine x_k et une seule dans chaque intervalle tel que $\left(k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2}\right)$, quel que soit l'entier k, positif, négatif ou nul.

Si k est très grand positif, x_k est très voisin de $k\pi + \frac{\pi}{2}$. Si k est négatif et de très grande valeur absolue, x_k est très voisin de $k\pi - \frac{\pi}{2}$.

Deuxième cas : m=2. — La seule différence avec le cas précédent provient de ce que, pour $x=\frac{\pi}{2}$, $y=x+2\frac{(1-\sin x)}{\cos x}$ est égal à $\frac{\pi}{2}$. (Appliquer la règle de l'Hospital.) La courbe passe au point I et présente la forme suivante (fig. 12). La symétrie donne ensuite le trait

pointillé. En imaginant enfin les translations T_k , on voit qu'en dehors des racines $2k\pi + \frac{\pi}{2}$ (Cf. note de la page 179), il y a une racine x_k et une seule dans chaque intervalle tel que $\left(2k\pi - \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2}\right)$. Pour les grandes valeurs de k, même observation que plus haut.

Troisième cas: m > 2. — Le trinome z admet une racine et une seule comprise entre — 1 et + 1; cette racine est d'ailleurs positive. Soit α

la valeur correspondante de $x\left(\mathrm{o}<lpha<rac{\pi}{2}
ight)\cdot$ On a le Tableau

avec

$$\beta = \alpha + \frac{m - 2\sin\alpha}{\cos\alpha} = \alpha + \cot\alpha,$$

en remplaçant m par $\frac{1+\sin^2\alpha}{\sin\alpha}$. Cela nous donne la courbe C suivante (fig. 13). Par symétrie, on obtient la courbe C' en pointillé.

La translation T_k amène C en C_k , qui coupe Ox en deux points, si l'ordonnée y_k du point A_k , homologue de A, est négative ou nulle (1). Or $y_k = \beta + 2k\pi$; on doit donc avoir

$$\beta + 2k\pi \le 0$$
 ou $k \le -\frac{\beta}{2\pi}$.

Ceci aura lieu pour $k \le -k_1$, si l'on appelle k_1 le plus petit nombre entier $\ge \frac{\beta}{2\pi}$.

De même, la translation T_k amène C' en C'_k , qui coupe Ox en deux points, si l'ordonnée y'_k du point A'_k est positive ou nulle (1). Or

$$y'_{k} = \pi - \beta + 2k\pi;$$

on doit donc avoir

$$\pi - \beta + 2k\pi \stackrel{>}{=} 0$$
 ou $k \stackrel{>}{=} \frac{\beta - \pi}{2\pi}$.

⁽¹⁾ Si $y_k = 0$, les deux points sont confondus; $\alpha + 2k\pi$ est racine double. Ceci arrive lorsque $\frac{\beta}{2\pi}$ est un nombre entier. Remarque analogue pour y_k' .

Ceci aura lieu pour $k \ge k_2$, si l'on appelle k_2 le plus petit nombre entier $\ge \frac{\beta}{2\pi} - \frac{1}{2}$, nombre d'ailleurs visiblement égal à k_1 ou à $k_1 - 1$.

Finalement, nous pouvons énoncer les résultats suivants :

Les entiers k_1 et k_2 étant déterminés comme il vient d'être expliqué, l'équation possède deux racines dans chaque intervalle

$$\left(2k\pi-\frac{\pi}{2},\ 2k\pi+\frac{\pi}{2}\right)$$

pour toutes les valeurs de $k \leq -k_1$, ainsi que dans chaque intervalle

$$\left(2k\pi+\frac{\pi}{2},\ 2k\pi+\frac{3\pi}{2}\right)$$

pour toutes les valeurs de $k \geq k_2$; elle n'en admet pas d'autres.

La discussion est donc à présent complète.

Calcul de la plus petite racine positive autre que $\frac{\pi}{2}$, quand m=2.

— La figure 12 nous montre que cette racine est comprise entre $\frac{\pi}{2}$ et π .

On peut le voir aussi en transformant l'équation comme il suit.

Posons $\frac{\pi}{2} - x = 2u$; il vient

$$\left(\frac{\pi}{2} - 2u\right)\sin 2u + 2(1 - \cos 2u) = 0,$$

ou, en exprimant $\sin 2u$ et $\cos 2u$ en fonction de $\sin u$ et $\cos u$ et divisant par $\sin u$ (ce qui enlève les solutions $u=k\pi$, $x=\frac{\pi}{2}-2k\pi$),

$$\left(\frac{\pi}{2}-2u\right)\cos u+2\sin u=0,$$

ou enfin

$$\tan u = u - \frac{\pi}{4}.$$

Rien n'est plus facile que d'étudier cette équation graphiquement. Ses racines sont les abscisses des points d'intersection de la courbe bien connue $y=\tan x$ et de la droite $y=x-\frac{\pi}{4}$. La figure 14 montre que l'équation (5) admet une racine et une seule dans chaque intervalle $\left(k\pi-\frac{\pi}{2},\ k\pi+\frac{\pi}{2}\right)$. Par suite, (1) admet une racine et une seule

dans chaque intervalle

$$\left(\frac{\pi}{2} - 2k\pi + \pi, \frac{\pi}{2} - 2k\pi - \pi\right)$$
 ou $\left(2k\pi - \frac{\pi}{2}, 2k\pi + 3\frac{\pi}{2}\right)$,

conformément au résultat précédemment obtenu.

L'avantage de la transformation ci-dessus consiste en ce que l'équation (5) est plus simple de forme que l'équation (1) et sera plus facile à résoudre.

D'après la formule $2u = \frac{\pi}{2} - x$, la plus petite racine positive en x correspond à la racine en u qui est immédiatement inférieure à $\frac{\pi}{4}$. La figure 14 montre que cette dernière est comprise entre o et $-\frac{\pi}{2}$, et semble d'ailleurs assez voisine de $-\frac{\pi}{4}$.

Posons $\varphi(u) = \tan u - u + \frac{\pi}{4}$. Nous avons

$$\phi(o) = \frac{\pi}{4}, \qquad \phi\left(-\frac{\pi}{4}\right) = -1 + \frac{\pi}{2} > 0.$$

Donc la racine est comprise entre $-\frac{\pi}{4}$ et $-\frac{\pi}{2}$. Faisons d'autres substitutions pour resserrer l'intervalle. En nous servant d'une Table de conversion des grades en radians et d'une Table de tangentes naturelles, nous avons

$$\varphi(-60?) = -1,376 + 0,942 + 0,785 > 0,$$

 $\varphi(-70?) = -1,963 + 1,100 + 0,785 < 0,$
 $\varphi(-65?) = -1,632 + 1,021 + 0,785 > 0,$
 $\varphi(-68?) = -1,819 + 1.068 + 0,785 > 0,$
 $\varphi(-69?) = -1,889 + 1,083 + 0.785 < 0.$

La racine est donc comprise entre — 68° et — 69°. Appliquons la méthode de Newton à cet intervalle.

Nous avons

$$\varphi'(u) = \tan g^2 u, \qquad \varphi''(u) = 2 \tan g u (1 + \tan g^2 u).$$

 $\varphi''(u)$ est négatif dans l'intervalle considéré. Il faut donc appliquer la méthode à $-69^{\gamma} = -1,08385$.

Nous avons, en utilisant cette fois une Table de logarithmes à cinq décimales,

$$\varphi(-697) = -1,88870 + 1,08385 + 0,78540 = -0,01945.$$

Si u+h désigne la racine exacte, nous prenons pour valeur approchée de h

$$h_1 = -\frac{\varphi(-69^{\gamma})}{\varphi'(-69^{\gamma})} = \frac{0.01945}{\tan g^2 69^{\gamma}} = 0.00545;$$

d'où

$$u_1 = -1,08385 + 0,00545 = -1,07840.$$

Limite de l'erreur. — Le maximum de $|\varphi''(u)|$ dans l'intervalle $(-69^{\gamma}, -68^{\gamma})$ est

$$2 \tan 69^{\gamma} (1 + \tan 2^{2} 69^{\gamma}) < 4(1 + 4) = 20.$$

D'autre part,

$$h < 1,084 - 1,068 = 0,016;$$

donc

$$\epsilon < \frac{0.000256.20}{2 \ \text{tang}^2 \ 69 \gamma} = \frac{0.00256}{\text{tang}^2 \ 69 \gamma} < \frac{0.00256}{(1.8)^2} = \frac{0.00064}{0.81} < \frac{0.00064}{0.8} = 0.0008.$$

Mais alors h est inférieur à

$$h_1 + o,0008 < o,0055 + o,0008 = o,0063;$$

donc (nº 271; remarque),

$$\epsilon < \frac{(0,0063)^2.10}{\tan^2 69^{\gamma}} < \frac{(0,0064)^2.10}{(1,8)^2} = \frac{(0,0032)^2}{0,081} < 0,000128 < 0,00013.$$

Finalement, la racine u est comprise entre -1,07845 et -1,07858. On peut donc prendre, à moins de $\frac{1}{10000}$ près (1),

$$u = -1,0785;$$

⁽¹⁾ Nous supposons toutefois que les calculs auxiliaires, qui ont été faits avec cinq décimales seulement, ne donnent pas d'erreurs supplémentaires suffisantes pour modifier cette approximation.

d'où

$$x = \frac{\pi}{2} - 2u = 1,5708 + 2,1570 = 3,7278$$
 (1).

EXERCICES PROPOSÉS.

1. Discuter les équations

$$4x^3 + 3x^2 - 6x + m = 0,$$
 $2mx^3 - 4x^2 - 5x + 2 = 0,$ $6mx^3 - x^2 + mx + 3 = 0,$ $x^3 + mx^2 - 3x + 2 = 0.$

2. Discuter les équations

$$x^{4} + px + q = 0,$$
 $x^{5} + px + q = 0.$

3. Discuter les équations

$$x^4 + 2x^3 - x^2 + m = 0$$
, $2x^4 - 8x^3 - 12x^2 + 8x + m = 0$, $3x^4 + 4x^3 + 4mx^2 + 1 = 0$.

4. Étudier les équations

$$2x^3 + x^2 - 5x + 3 = 0, x^4 + 4x^3 - 4x^2 - 8x + 1 = 0,$$

$$x^5 - x^3 + 2x^2 + 1 = 0, x^6 + x^2 + 2x - 1 = 0, x^6 + x^3 + x^2 - 1 = 0.$$

(Pour la seconde, on remarquera que la dérivée s'annule pour x = 1. Pour les deux dernières, prendre l'équation aux inverses.)

5. Discuter les équations

$$4x^6 - 27(x - a)^2 = 0,$$
 $\frac{x^4}{4!} + \frac{x^3}{3!} + \frac{x^2}{2!} + \frac{x}{1} + 1 = 0,$ (E. C., 1908 et 1911.)

6. Étudier l'équation

$$2(x^2-x-1)^4-x^2+x=0$$
 (E. P., 1968). (Poser $x^2-x-1=y$.)

7. Les nombres a, b, c, \ldots, l étant supposés tous distincts et les nombres A, B, C, ..., L tous positifs, montrer que l'équation

$$\frac{\mathbf{A}}{x-a} + \frac{\mathbf{B}}{x-b} + \ldots + \frac{\mathbf{L}}{x-l} = 0$$

a toutes ses racines réelles.

⁽¹⁾ La quatrième décimale est encore moins certaine que pour u, car l'erreur sur x est double de celle relative à u. Mais nous pouvons affirmer l'exactitude des trois premières.

(Étudier les variations du premier membre, sans oublier les discontinuités.)

8. Étudier les équations

$$x - e \sin x = m$$
 (0 < e < 1), $\log(x^m) = x$,
 $e^x = mx^2$, $2x \arctan x = x^2 + 2$, $\log x = \arcsin x$,
 $(x^2 + 1) \log x = x + m$, $\log x = e^x$.

- 9. Résoudre à $\frac{1}{1000}$ près l'équation $x^3 + x + 1 = 0$.
- 10. Calculer à 100 près la plus petite racine positive de l'équation

$$x^6 + x^2 - x - 2 = 0.$$

- 11. Calculer à $\frac{1}{100}$ près les deux racines de l'équation $x = 3 \log x$, ainsi que leur somme et leur produit.
 - 12. Résoudre à 1000 près l'équation

$$x - 0.01677 \sin x = 2.58614$$
.

13. Séparer les racines de l'équation

$$x \cos x = \sin x + \cos 2x$$

et calculer la plus petite racine positive à 1000 près.

14. Résoudre approximativement les systèmes

$$x^{2} + y^{2} - 2x + 4y + 1 = 0,$$
 $x^{2} - 2y^{2} + 4x + 6y = 0;$ $x^{3} + y^{3} - xy = 0,$ $x^{2} + 2y^{2} - y = 0.$

CHAPITRE XXIII.

DÉTERMINANTS.

EXERCICES RÉSOLUS.

1. Calculer le déterminant

$$D = \begin{vmatrix} 1 & 2 & -1 & 0 & 3 \\ -4 & 3 & 1 & -1 & 2 \\ 5 & -1 & 2 & 1 & 1 \\ -2 & 3 & -4 & -1 & 2 \\ 0 & 1 & 2 & -5 & 4 \end{vmatrix}.$$

On pourrait le développer directement suivant les éléments d'une ligne ou d'une colonne. Mais, il vaut mieux essayer de le simplisser au préalable par des combinaisons de lignes ou de colonnes (n° 281) faisant apparaître des zéros ou des rangées partiellement proportionnelles. C'est ainsi que, si l'on retranche la deuxième ligne de la quatrième, celle-ci devient:

Quatrième ligne: 2, 0, -5, 0, 0.

Ajoutant la deuxième à la troisième, celle-ci devient :

Troisième ligne: 1, 2, 3, 0, 3.

A part l'élément du milieu, on obtient la première ligne. Retranchons donc celle-ci de notre nouvelle troisième ligne; nous obtenons:

Troisième ligne: o, o, 4, o, o.

Nous pouvons donc écrire

$$\mathbf{D} = \begin{vmatrix} \mathbf{1} & \mathbf{2} & -\mathbf{1} & \mathbf{0} & \mathbf{3} \\ -4 & 3 & \mathbf{1} & -\mathbf{1} & \mathbf{2} \\ \mathbf{0} & \mathbf{0} & 4 & \mathbf{0} & \mathbf{0} \\ \mathbf{2} & \mathbf{0} & -5 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{2} & -5 & 4 \end{vmatrix} = 4 \begin{vmatrix} \mathbf{1} & \mathbf{2} & \mathbf{0} & \mathbf{3} \\ -4 & 3 & -\mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & -5 & 4 \end{vmatrix} = 4 \times 2 \begin{vmatrix} \mathbf{2} & \mathbf{0} & \mathbf{3} \\ \mathbf{3} & -\mathbf{1} & \mathbf{2} \\ \mathbf{1} & -5 & 4 \end{vmatrix},$$

en développant suivant la troisième ligne, puis encore suivant la troisième.

Il nous reste à calculer un déterminant du troisième ordre. On peut le développer par la règle de Sarrus, ou bien suivant la première ligne ou la deuxième colonne. Adoptons, par exemple, ce dernier moyen; nous obtenons

$$D = 4 \times 2[-1(2 \times 4 - 3) + 5(2 \times 2 - 3 \times 3)] = 4 \times 2(-5 - 25) = -240.$$

2. Déterminant de Vandermonde. — Les n + 1 nombres a, b, c, \ldots, l étant supposés différents, calculer le déterminant

$$D = \begin{vmatrix} I & a & a^2 & \dots & a^n \\ I & b & b^2 & \dots & b^n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ I & l^2 & \dots & l^n \end{vmatrix}.$$

Ce déterminant, qu'on appelle déterminant de Vandermonde, est évidemment un polynome homogène par rapport aux n+1 lettres a, b, c, ..., l. Or, pour a=b, il est identiquement nul, comme ayant ses deux premières lignes identiques. Il est donc divisible par (b-a) (n° 203).

Pour la même raison, il est divisible par c-a, d-a, ..., et par suite par le produit de tous ces facteurs (n° 205). On a donc une identité de la forme

(1)
$$D = (b-a)(c-a)(d-a)...(l-a)$$
$$(c-b)(d-b)...(l-b)$$
$$.....(l-h)Q = PQ,$$

le quotient Q étant un certain polynome en a, b, \ldots, l .

3. Effectuer le produit des deux déterminants

$$D = \begin{vmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{vmatrix}, \qquad D' = \begin{vmatrix} a & 0 & 0 & 0 \\ 0 & a & 0 & 0 \\ d & -b & a & 0 \\ e & -c & 0 & a \end{vmatrix}.$$

Multiplions lignes par lignes

$$DD' = \begin{vmatrix} o & -a^2 & -ab & -ac \\ a^2 & o & -ad & -ae \\ o & o & o & -cd + be - af \\ o & o & -eb + cd + af & o \end{vmatrix}.$$

En développant suivant la première colonne, puis suivant la seconde, nous avons

$$DD' = (-a^2)(-a^2)(cd + af - eb)^2 = a^4(cd + af - eb)^2.$$

Sil'on remarque maintenant que D' se réduit à son terme principal a^* , nous en concluons, en supposant toutefois $a \neq 0$ (1),

$$D = (cd + af - eb)^2.$$

4. Faire le produit des matrices

$$\begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ x_1^2 + y_1^2 + z_1^2 & x_1 & y_1 & z_1 & 1 \\ x_2^2 + y_2^2 + z_2^2 & x_2 & y_2 & z_2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n^2 + y_n^2 + z_n^2 & x_n & y_n & z_n & 1 \end{vmatrix},$$

$$\begin{vmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & -2x_1' & -2y_1' & -2z_1' & x_1'^2 + y_1'^2 + z_1'^2 \\ 1 & -2x_2' & -2y_2' & -2z_2' & x_2'^2 + y_2'^2 + z_2'^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & -2x_n' & -2y_n' & -2z_n' & x_n'^2 + y_n'^2 + z_n'^2 \end{vmatrix}.$$

D'après la règle du nº 285, l'élément général est

$$\begin{split} c_i^j &= x_{i-1}^2 + \mathcal{Y}_{i-1}^2 + z_{i-1}^2 - 2\,x_{i-1}x_{j-1}' - 2\,\mathcal{Y}_{i-1}\,\mathcal{Y}_{j-1}' \\ &- 2\,z_{i-1}\,z_{j-1}' + x_{j-1}'^2 + \mathcal{Y}_{j-1}'^2 + z_{j-1}'^2, \\ c_i^j &= (x_{i-1} - x_{j-1}')^2 + (\mathcal{Y}_{i-1} - \mathcal{Y}_{j-1}')^2 + (z_{i-1} - z_{j-1}')^2, \end{split}$$

du moins tant que i et j sont tous deux supérieurs à l'unité. En outre, $c_1^i = c_1^i = 1$, si j > 1; $c_1^i = 0$.

⁽¹⁾ Si a était nul, le développement par la règle de Laplace donnerait de suite $D = (be - cd)^2.$

Dès lors, appelons d'une manière générale α_{ij} le carré de la distance du point M_i qui aurait pour coordonnées rectangulaires x_i , y_i , z_i au point M'_j , qui aurait pour coordonnées x'_j , y'_j , z'_j , par rapport aux mêmes axes (t. II). Le produit de nos deux matrices est égal au déterminant

Différents cas peuvent alors se présenter suivant la valeur de n.

Si n > 4, le produit est nul. En particulier, si l'on confond les points M'_i avec les points M_i et si l'on prend n = 5, on obtient la relation qui existe entre les distances de 5 points de l'espace associés deux à deux de toutes les manières possibles. (Observer que, dans cette hypothèse, on a $\alpha_{II} = 0$ et $\alpha_{Ij} = \alpha_{Ji}$.) En prenant le cinquième point au centre de la sphère qui passe par les quatre premiers, on a une équation du premier degré pour calculer le carré du rayon de cette sphère.

Pour n=4, le déterminant (1) est égal au produit des déterminants déduits des deux matrices, qui sont alors des tableaux carrés. Mais, en les développant suivant la première ligne, on constate, d'après une formule de Géométrie analytique (t. II), qu'ils sont égaux respectivement à 6V et à $48 \, \text{V}'$ (au signe près), en appelant V et V' les volumes des deux tétraèdres $M_1 \, M_2 \, M_3 \, M_4$ et $M_1' \, M_2' \, M_3' \, M_4'$. Le déterminant (1) est donc égal à $288 \, \text{VV}'$. Si l'on confond les deux tétraèdres, on a une formule donnant le volume d'un tétraèdre en fonction des arêtes.

Pour n < 4, le déterminant (1) est égal à une somme de produits de déterminants. Prenons, par exemple, n = 3. Les seuls produits non nuls sont de la forme

$$\begin{vmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ x_{1}^{2} + y_{1}^{2} + z_{1}^{2} & y_{1} & z_{1} & \mathbf{I} \\ \mathbf{n} & y_{2} & z_{2} & \mathbf{I} \\ \mathbf{n} & y_{3} & z_{3} & \mathbf{I} \end{vmatrix} \times \begin{vmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I} \\ \mathbf{I} & -2y_{1}' & -2z_{1}' & x_{1}'^{2} + y_{1}'^{2} + z_{1}'^{2} \\ \mathbf{I} & -2y_{2}' & -2z_{2}' & \mathbf{n} \\ \mathbf{I} & -2y_{3}' & -2z_{3}' & \mathbf{n} \end{vmatrix}$$

$$= -4 \begin{vmatrix} y_{1} & z_{1} & \mathbf{I} \\ y_{2} & z_{2} & \mathbf{I} \\ y_{3} & z_{3} & \mathbf{I} \end{vmatrix} \times \begin{vmatrix} y_{1}' & z_{1}' & \mathbf{I} \\ y_{2}' & z_{2}' & \mathbf{I} \\ y_{3}' & z_{3}' & \mathbf{I} \end{vmatrix}.$$

Le déterminant (1) est alors égal à $-16(S_xS_x' + S_yS_y' + S_zS_z')$, en appelant S_x , par exemple, l'aire algébrique de la projection du triangle $M_1M_2M_3$ sur y O z. Mais, si α , β , γ sont les angles du plan de ce

triangle avec y O z, z O x, x O y et si S est son aire, on a

$$S_x = S \cos \alpha$$
, $S_y = S \cos \beta$, $S_z = S \cos \gamma$.

De même

$$S'_x = S' \cos \alpha', \quad S'_y = S' \cos \beta', \quad S'_z = S' \cos \gamma'.$$

Donc

$$S_x S_x' + S_y S_y' + S_z S_z' = SS'(\cos\alpha\cos\alpha' + \cos\beta\cos\beta' + \cos\gamma\cos\gamma') = SS'\cos V$$

en appelant V l'angle des deux plans $M_1 M_2 M_3$, $M_1' M_2' M_3'$. Finalement, on a la formule élégante

$$\begin{vmatrix} o & I & I & I \\ I & \alpha_{11} & \alpha_{12} & \alpha_{13} \\ I & \alpha_{21} & \alpha_{22} & \alpha_{23} \\ I & \alpha_{31} & \alpha_{32} & \alpha_{33} \end{vmatrix} = 16 SS' \cos V \quad (1).$$

Pour n = 2, les seuls produits non nuls sont de la forme

$$\begin{vmatrix} 1 & 0 & 0 \\ x_1^2 + y_1^2 + z_1^2 & x_1 & 1 \\ x & x_2 & 1 \end{vmatrix} \times \begin{vmatrix} 0 & 0 & 1 \\ 1 & -2x_1' & x_1'^2 + \dots \\ 1 & -2x_2' & x \end{vmatrix} = 2(x_1 - x_2)(x_1' - x_2').$$

Leur somme est égale à $2 M_1 M_2 \cdot M_1' M_2' \cdot \cos V$, en appelant V l'angle des deux vecteurs $(M_1 M_2)$ et $(M_1' M_2')$. En développant (1), on obtient alors la formule élégante

$$\overline{M_1 M_2'}^2 + \overline{M_2 M_1'}^2 - \overline{M_1 M_1'}^2 - \overline{M_2 M_2'}^2 = 2 \overline{M_1 M_2} \cdot \overline{M_1' M_2'} \cos V.$$

En particulier, si $V = \frac{\pi}{2}$, on a le théorème suivant :

Dans tout tétraèdre orthocentrique, la somme des carrés de deux arêtes opposées est la même pour les trois couples d'arêtes.

[A part les cas n=3 et n=2, nous avons emprunté ces applications au cours professé à la Sorbonne par M. Darboux, pendant l'année scolaire 1904-1905.]

⁽¹⁾ On pourrait aisément interpréter les signes des deux membres, en considérant les sens de parcours $M_1M_2M_3$, $M_1'M_2'M_3'$ sur les deux triangles (Cf. t. II). Si l'on confond les deux triangles, on a la surface en fonction des côtés.

EXERCICES PROPOSÉS.

1. Calculer les déterminants suivants :

$$\begin{vmatrix} 2 & -1 & 3 \\ 5 & -2 & -4 \\ -8 & 4 & 1 \end{vmatrix}, \qquad \begin{vmatrix} 1 & 3 & 2 & -1 \\ 2 & 0 & 1 & -2 \\ -1 & 5 & 1 & 1 \\ 2 & 7 & -6 & 3 \end{vmatrix},$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 6 & 8 & 0 \\ -5 & -4 & -3 & -2 & -1 \\ 0 & 1 & 1 & x \\ x & 2 & 3 & -4 & x \end{vmatrix}.$$

2. Calculer les déterminants suivants :

$$\begin{vmatrix} x & y & z \\ x^{2} & y^{2} & z^{2} \\ x^{4} & y^{4} & z^{4} \end{vmatrix}, \qquad \begin{vmatrix} x+y & y+z & z+x \\ x^{2}+y^{2} & y^{2}+z^{2} & z^{2}+x^{2} \\ x^{3}+y^{3} & y^{3}+z^{3} & z^{3}+x^{3} \end{vmatrix},$$

$$\begin{vmatrix} 1 & 1 & 1 \\ y+z & z+x & x+y \\ yz & zx & xy \end{vmatrix}, \qquad \begin{vmatrix} 1 & 1 & 1 \\ \sin x & \sin y & \sin z \\ \cos x & \cos y & \cos z \end{vmatrix}, \qquad \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}.$$

[Pour le dernier, ajouter les lignes, puis retrancher chaque colonne de la suivante, etc.]

3. Soient n quantités distinctes x_1, x_2, \ldots, x_n . On désigne par σ_i^j la somme des produits i à i de celles de ces quantités autres que x_j . Démontrer que le déterminant du $n^{i\text{ème}}$ ordre

est égal au déterminant de Vandermonde déduit de x_1, x_2, \ldots, x_n , multiplié par $(-1)^{\frac{n(n-1)}{2}}$.

HAAG. - Exercices, I.

On peut se servir des identités (nº 225)

$$\sigma_1^j = s_1 - x_j, \qquad \sigma_2^j = s_2 - x_j \sigma_1^j, \qquad \dots,$$

 $\sigma_i^j = s_i - x_j \sigma_{i-1}^j, \qquad \dots, \qquad \sigma_{n-1}^j = s_{n-1} - x_j \sigma_{n-2}^j,$

où s_i désigne la somme des produits i à i des n quantités proposées. En portant dans D, on obtient le déterminant

$$D' = \| \mathbf{1} \quad s_1 - x_j \quad s_2 - x_j \sigma_1^j \quad \dots \quad s_{n-1} - x_j \sigma_{n-2}^j \|.$$

En multipliant la première colonne successivement par $-s_1, -s_2, \ldots, -s_{n-1}$ et ajoutant aux $2^e, 3^e, \ldots, n^{iemes}$ colonnes, on obtient

$$D = D' = (-1)^{n-1} \| 1 \quad x_j \quad x_j \sigma_1^j \quad \dots \quad x_j \sigma_{n-2}^j \|.$$

On opère sur ce déterminant comme sur D' et, en continuant de la sorte, on arrive à éliminer de proche en proche tous les σ .

4. Soit le déterminant d'ordre n+1

$$\mathbf{D}_{n} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & x+1 & 1 & 1 & \dots & 1 \\ 1 & 1 & x+1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & x+1 \end{bmatrix}.$$

Calculer sa dérivée par rapport à x. En déduire son développement. $[D'_n = nD_{n-1}$. De plus $D_n = 0$, pour x = 0. Enfin $D_1 = x$. En intégrant de proche en proche, on obtient D_n . On peut aussi, en retranchant la première ligne de la deuxième, établir la formule de récurrence $D_n = xD_{n-1}$.

5. Faire le carré du déterminant

$$\begin{bmatrix} a & b \\ a' & b' \end{bmatrix}$$
.

En déduire le théorème d'Arithmétique suivant : Le produit d'une somme de deux carrés par une somme de deux carrés est une somme de deux carrés.

6. Multiplier lignes par lignes les déterminants

$$\left|\begin{array}{cc} a & b \\ -b & a \end{array}\right|, \qquad \left|\begin{array}{cc} a' & b' \\ -b' & a' \end{array}\right|$$

et en déduire une autre démonstration du théorème précédent (Darboux, loc. cit.).

7. Faire le carré du déterminant

$$\begin{vmatrix} a & b & c & d \\ -b & a & -d & c \\ c & -d & -a & b \\ d & c & -b & -a \end{vmatrix}.$$

En le multipliant par un déterminant analogue, en déduire une extension du théorème des nos 5 et 6 (Darboux, loc. cit.).

8. Calculer les entiers x_1, x_2, \ldots, x_{10} de manière que le produit lignes par lignes des deux déterminants

$$\begin{vmatrix}
-2 & -1 & 5 & 1 \\
1 & 3 & -2 & 0 \\
-4 & 2 & 1 & 1 \\
-1 & 6 & 2 & 4
\end{vmatrix},$$

$$\begin{vmatrix}
x_1 & 0 & 0 & 0 \\
x_2 & x_3 & 0 & 0 \\
x_4 & x_5 & x_6 & 0 \\
x_7 & x_8 & x_9 & x_{10}
\end{vmatrix}$$

n'ait que des éléments nuls au-dessus de la diagonale principale.

9. Déterminants fonctionnels. — Étant données trois fonctions, par exemple, u, v, w de x, y, z, on appelle déterminant fonctionnel, ou jacobien, de ces trois fonctions le déterminant

$$\frac{\mathrm{D}(u,v,w)}{\mathrm{D}(x,y,z)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{vmatrix}$$

Montrer que si l'on fait un changement de variables quelconque (nº 139), on a identiquement

$$\frac{\mathrm{D}(u,v,w)}{\mathrm{D}(x',y',z')} = \frac{\mathrm{D}(u,v,w)}{\mathrm{D}(x,y,z)} \frac{\mathrm{D}(x,y,z)}{\mathrm{D}(x',y',z')}.$$

10. Pour résoudre le système

$$ax + by + cz = d$$
, $a'x + b'y + c'z = d'$, $x^2 + y^2 + z^2 = d''$,

on peut prendre pour inconnue auxiliaire le déterminant fonctionnel des premiers membres. Calculer le carré de ce déterminant (Darboux, loc. cit.).

11. Soient une courbe plane orientée et une origine des arcs M₀ sur cette courbe. On considère trois points M₁, M₂, M₃ d'abscisses curvi-

lignes infiniment petites s_1 , s_2 , s_3 . Calculer, au quatrième ordre près, l'aire algébrique du triangle $M_1M_2M_3$.

[Si x, y sont les coordonnées du point d'abscisse curviligne s et si x', y', x'', y'' sont leurs dérivées premières et secondes, l'aire demandée est, à un facteur numérique près, le produit des deux déterminants

$$\begin{bmatrix} \mathbf{I} & s_1 & s_1^2 \\ \mathbf{I} & s_2 & s_2^2 \\ \mathbf{I} & s_3 & s_3^2 \end{bmatrix}, \qquad \begin{bmatrix} \mathbf{I} & \mathbf{O} & \mathbf{O} \\ x_0 & x_0' & x_0'' \\ y_0 & y_0' & y_0'' \end{bmatrix},$$

lequel produit est égal à

$$-\frac{1}{\rho}\overline{M_1M_2}.\overline{M_2M_3}.\overline{M_3M_1},$$

ρ désignant le rayon de courbure en Mo.]

12. Étendre l'exercice précédent à un tétraédre infiniment petit inscrit dans une courbe gauche.

[On prouvera que le volume du tétraèdre est, à un facteur numérique et au septième ordre près,

$$\frac{1}{\rho^2 \tau} \overline{M_1 M_2}, \overline{M_1 M_3}, \overline{M_1 M_4}, \overline{M_2 M_3}, \overline{M_3 M_4}, \overline{M_4 M_2},$$

 ρ et τ désignant les rayons de courbure et de torsion en M_0 (Darboux, $loc.\ cit.$).]

- 13. Voir ce que devient l'exercice résolu n° 4 quand on se borne à la géométrie plane $(z_i = 0)$.
- 14. Étant données quatre demi-droites issues du même point : $O\lambda$, $O\lambda'_1$, $O\lambda'_2$, $O\lambda'_3$, de cosinus directeurs a, b, c; a_1 , b_1 , c_1 ; etc., faire le produit des matrices

$$\left\| \begin{array}{cccc} a & b & c \\ a_1 & b_1 & c_1 \end{array} \right\|, \qquad \left\| \begin{array}{ccccc} a' & b' & c' \\ a'_1 & b'_1 & c'_1 \end{array} \right\|.$$

En déduire la relation

$$\cos \beta \cos \beta' - \cos \gamma \cos \gamma' = \cos V \sin \alpha \sin \alpha'$$

où l'on appelle α , α' , β , β' , γ , γ' les angles $\widehat{\lambda O \lambda_1}$, $\widehat{\lambda' O \lambda_1'}$, $\widehat{\lambda O \lambda_1'}$, $\widehat{\lambda_1 O \lambda_1'}$, $\widehat{\lambda' O \lambda_1}$ et V l'angle des deux plans $\lambda O \lambda_1$ et $\lambda' O \lambda_1'$.

15. Étant données les quatre demi-droites Oλ₁, Oλ₂, Oλ₃, Oλ₄ de

cosinus directeurs a_1 , b_1 , c_1 , etc., multiplier par elle-même la matrice

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \\ a_4 & b_4 & c_4 \end{bmatrix}.$$

En déduire la relation qui existe entre les angles que font ces quatre demi-droites deux à deux.

16. Développer par la règle de Laplace le déterminant

CHAPITRE XXIV.

ÉQUATIONS ET PORMES LINÉAIRES.

To The Children person of

EXERCICES RESOLUS.

1. Résoudre et discuter le système

$$y+z+mt=a,$$

$$(2) z+t+mx=b,$$

$$(3) t + x + my = c,$$

$$(4) x+y+mz=d.$$

Première méthode. — On peut employer la méthode générale décrite au n° 290. Le déterminant des coefficients des inconnues est

$$D = \left| \begin{array}{ccccc} 0 & 1 & 1 & m \\ m & 0 & 1 & 1 \\ 1 & m & 0 & 1 \\ 1 & 1 & m & 0 \end{array} \right|.$$

Pour le calculer aisément, ajoutons toutes les lignes à la première; celle-ci devient

$$m+2, m+2, m+2, m+2.$$

Faisant sortir le facteur m+2, nous retranchons ensuite la dernière colonne des trois premières; il vient, en développant suivant la première ligne,

$$D = -(m+2) \begin{vmatrix} m-1 & -1 & 0 \\ 0 & m-1 & -1 \\ 1 & 1 & m \end{vmatrix} = -(m+2) [m(m-1)^2 + 1 + m - 1],$$

(5)
$$D = -m(m+2)(m^2-2m+2).$$

 $I: m(m+2) \neq 0$. — Il y a une solution unique donnée par les

formules de Cramer. Par exemple,

formules de Cramer. Far exemple,
$$\begin{vmatrix}
a & 1 & 1 & m \\
b & 0 & 1 & 1 \\
c & m & 0 & 1 \\
d & 1 & m & 0
\end{vmatrix}$$

$$= \frac{a(m^2+1) - b(m^3 - m + 1) + c(1-2m) - d(1+m-m^2)}{-m(m+2)(m^2-2m+2)}.$$

Les valeurs de y, z, t s'en déduiraient par permutations circulaires sur a, b, c, d, car le système proposé ne change pas quand on permute circulairement à la fois x, y, z, t et a, b, c, d.

II : m = 0. — Si l'on enlève à D sa quatrième ligne et sa quatrième colonne, on obtient un déterminant qui est égal à 1. On peut le prendre pour déterminant principal. Le déterminant caractéristique correspondant est

$$\delta = \begin{vmatrix} 0 & 1 & 1 & a \\ 0 & 0 & 1 & b \\ 1 & 0 & 0 & c \\ 1 & 1 & 0 & d \end{vmatrix} = -a + b - c + d = (b + d) - (a + c).$$

Si $a + c \neq b + d$, il n'y a pas de solution.

Si a + c = b + d, il y a une infinité de solutions, obtenues en donnant à t une valeur arbitraire et résolvant ensuite les équations (1), (2). (3) par rapport à x, y, z, ce qui donne immédiatement

(7)
$$x = c - t, \quad y = a - b + t, \quad z = b - t.$$

III: m = -2. — On peut prendre le même déterminant que tout à l'heure pour déterminant principal, car il est égal cette fois à 5. Le déterminant caractéristique est

$$\delta = \begin{vmatrix} 0 & 1 & 1 & a \\ -2 & 0 & 1 & b \\ 1 & -2 & 0 & c \\ 1 & 1 & -2 & d \end{vmatrix} = 5(a+b+c+d).$$

Si $a + b + c + d \neq 0$, pas de solution.

Si a+b+c+d=0, infinité de solutions obtenues, comme plus haut, en résolvant par rapport à x, y, z le système

(8)
$$y + z = 2t + a$$
, $z - 2x = b - t$, $x - 2y = c - t$.

On pourrait employer les formules de Cramer. Mais il est plus rapide, par exemple, de multiplier la première équation par 2, la seconde par — 2, la troisième par 1 et d'ajouter; on obtient de la sorte

$$5x = 2(2t+a) + 2(t-b) + c - t = 5t + 2a - 2b + c;$$

d'où

(9)
$$x = t + \frac{2a - 2b + c}{5}$$
, $y = t + \frac{a - b - 2c}{5}$, $z = t + \frac{4a + b + 2c}{5}$.

Deuxième méthode. — Ajoutons les quatre équations données

(10)
$$(x+y+z+t)(m+2) = a+b+c+d.$$

Ceci nous conduit immédiatement à distinguer deux cas :

Premier cas: m = -2. — Pour que le système soit compatible, il faut qu'on ait

$$a+b+c+d=0.$$

Si cette condition est remplie, chaque équation est une conséquence des trois autres. On peut, par exemple, se borner à considérer les trois premières. On retombe alors sur le système (8) et, par suite, sur les formules (9).

Deuxième cas : $m \neq -2$. — De (10) on tire

(11)
$$x + y + z + t = \frac{a + b + c + d}{m + 2} = S.$$

Si l'on tient compte de cette équation, les proposées s'écrivent, en posant $m-1=\mu$, pour abréger l'écriture,

(12)
$$\begin{cases} x = \mu t + S - \alpha, \\ y = \mu x + S - b, \\ z = \mu y + S - c, \\ t = \mu z + S - d. \end{cases}$$

Des trois premières on tire successivement x, y, z en fonction de t. En portant dans la quatrième, il vient, en posant encore, pour abréger l'écriture, $S - a = \alpha$, $S - b = \beta$, $S - c = \gamma$, $S - d = \delta$,

(13)
$$t = \mu^{4} t + \mu^{3} \alpha + \mu^{2} \beta + \mu \gamma + \delta.$$

Le coefficient de t étant $1 - \mu^4$, il faut de nouveau distinguer plusieurs cas :

 $I: \mu \neq \pm 1, m \neq 2 \text{ ou o.} - \text{On a}$

(14)
$$t = \frac{1 - u^4}{u^2 x + u^2 \beta + u \gamma + \delta}.$$

Il y a une seule solution, donnée par la formule (14) et celles qu'on obtient par permutations circulaires. Nous laissons au lecteur le soin de vérifier l'identité de ces formules avec celles qui sont données par (6).

II: $\mu = 1$, m = 2. — L'équation (13) est vérifiée identiquement, si l'on tient compte de la valeur (11) de S. Mais, c'est ici le lieu d'observer que, si les équations (12) sont des conséquences du système proposé, la réciproque peut ne pas être vraie. Les équations (12) ont été obtenues en retranchant (11) de (1), (2), (3), (4). Inversement, on obtient (1), (2), (3), (4) en retranchant (11) de (12). Donc, le système proposé est une conséquence des équations (12) si l'on peut déduire de celles-ci l'équation (11). Or, en les ajoutant, on a

(15)
$$(x+y+z+t)(1-\mu)=4S-(a+b+c+d)=S[4-(m+2)]=S(1-\mu),$$

c'est-à-dire l'équation (11), sauf si $\mu=1$. C'est précisément l'hypothèse actuelle.

Pour avoir un système équivalent au proposé, il nous faut prendre, par exemple, les trois premières équations (12) et leur adjoindre (11). En portant dans (11) les valeurs de x, y, z calculées en fonction de t, nous avons

$$4t + 6S - 3a - 2b - c = S$$

d'où

(16)
$$t = \frac{7a + 3b - c - 5d}{16}.$$

Les valeurs de x, y, z s'en déduisent par permutations circulaires. On a une seule solution.

III : $\mu = -1$, m = 0. — L'équation (13) se réduit à $\alpha + \gamma = \beta + \delta$, ou

$$(17) a+c=b+d.$$

Pour que le système soit compatible, il faut donc que la condition (17) soit remplie. Si elle l'est, les formules (12), ou mieux les équations (1), (2), (3), (4) donnent la solution générale

(18)
$$x = -t + c, \quad y = t - c + d, \quad z = -t + b,$$

où t est arbitraire.

EXERCICES PROPOSÉS.

1. Résoudre les systèmes suivants, et discuter s'il y a lieu :

(I)
$$2x+y-z=1$$
, $x-5y+2z=0$, $3x+2y-4z=6$;

(11)
$$x + 2y - 5z = 0$$
, $3x + z = -2$, $6x - y = 5$;

(III)
$$\begin{cases} x+y+z+t=4, & x+2y+3z=1, \\ y+2z+3t=1, & z+2t+3x=1; \end{cases}$$

(IV)
$$\frac{y+z-x}{a} = \frac{z+x-y}{b} = \frac{x+y-z}{c}$$
, $Ax + By + Cz + D = o$;

$$\frac{x+my+nz}{x}=\frac{y+mz+nx}{y}=\frac{z+mx+ny}{z};$$

(VI)
$$\begin{cases} mx + ny = a, & my + nz = b, & mz + nt = c, \\ mt + nu = d, & mu + nx' = e. \end{cases}$$

(Pour III, retrancher la première de la seconde; puis retrancher la troisième.

Pour IV, prendre pour inconnue auxiliaire ρ la valeur commune des rapports; calculer x, y, z en fonction de ρ , et porter dans la dernière équation.

Pour V, prendre encore pour inconnue auxiliaire la valeur commune des rapports; on obtient un système de trois équations linéaires et homogènes qu'il faut discuter.

Pour VI, on peut multiplier par m^4 , — m^3n , m^2n^2 , — mn^3 , n^4 et ajouter.)

2. Étudier l'indépendance des tormes

$$x-y+z-t$$
, $x+y+z+t$, $ax+by+cx+dt$;
 $a_1x_1+x_2+x_3+\ldots+x_n$, $x_1+a_2x_2+x_3+\ldots+x_n$, ...,
 $x_1+x_2+\ldots+a_nx_n$.

(Pour les dernières, chercher la combinaison linéaire nulle. Prendre pour inconnue auxiliaire $\lambda_1 + \lambda_2 + \ldots + \lambda_n = \lambda$.)

3. Étant donnée une substitution linéaire, calculer les valeurs de x_1 , x_2, \ldots, x_n pour que les valeurs correspondantes des y_i leur soient proportionnelles.

 $\left(\frac{\gamma_1}{x_1} = \frac{\gamma_2}{x_2} = \ldots = \frac{\gamma_n}{x_n} = S$; d'où *n* équations linéaires et homogènes en x_i . En annulant le déterminant, on obtient une équation en S du $n^{\text{ième}}$ degré. Donc, en général, il y a *n* solutions distinctes. Montrer, en

particulier, qu'il en est certainement ainsi si l'équation en S n'a que des racines simples.

Dans le cas où la substitution est orthogonale, prouver que l'équation en S est réciproque. Admet-elle les racines ± 1 ?

4. Prouver que les formules

$$\rho x + \mu z - \nu y = \rho x' - \mu z' + \nu y',$$

$$\rho y + \nu x - \lambda z = \rho y' - \nu x' + \lambda z',$$

$$\rho z + \lambda y - \mu x = \rho z' - \lambda y' + \mu x'$$

définissent une substitution orthogonale, quels que soient λ , μ , ν , ρ .

(Si on les résout par rapport à x, y, z, on obtient les formules dites d'Olinde Rodrigues.

Pour démontrer qu'on a bien une substitution orthogonale, élever au carré les équations données et ajouter. En se servant de l'identité de Lagrange et de l'équation $\lambda x + \mu y + \nu z = \lambda x' + \mu y' + \nu z'$, conséquence des proposées, on obtient $x^2 + y^2 + z^2 = x'^2 + y'^2 + z'^2$.)

CHAPITRE XXV.

FORMES QUADRATIQUES.

EXERCICES RÉSOLUS.

1. Décomposer en carrés la forme quadratique

$$\omega = x^2 + 9y^2 + z^2 + mt^2 - 4yz - 2zx + 6xy + 2tx - 2mty + tz.$$

Prenons x pour variable directrice (nº 301):

$$\omega = (x+3y-z+t)^2 - (3y-z+t)^2 + 9y^2 + z^2 + mt^2 - 4yz - 2mty + tz,$$

$$\omega = P_1^2 + [+(m-1)t^2 + 2yz - 2(3+m)yt + 3zt] = P_1^2 + \omega_1.$$

Prenons ensuite y et z pour variables directrices simultanées :

$$\omega_{1} = 2\left[z - (3+m)t\right]\left(y + \frac{3}{2}t\right) + 3(3+m)t^{2} + (m-1)t^{2},$$

$$\omega_{1} = \frac{1}{2}\left[y + z - \left(\frac{3}{2} + m\right)t\right]^{2} - \frac{1}{2}\left[y - z + \left(\frac{9}{2} + m\right)t\right]^{2} + 4(m+2)t^{2}.$$

Finalement,

$$\omega = (x + 3y - z + t)^{2} + \frac{1}{2} \left[y + z - \left(\frac{3}{2} + m \right) t \right]^{2} - \frac{1}{2} \left[y - z + \left(\frac{9}{2} + m \right) t \right]^{2} + 4(m+2)t^{2}.$$

Autrement: Prenons z pour variable directrice

$$\begin{aligned} \omega &= \left(z - x - 2y + \frac{t}{2}\right)^2 - \left(x + 2y - \frac{t}{2}\right)^2 \\ &+ x^2 + 9y^2 + mt^2 + 6xy + 2tx - 2mty, \\ \omega &= Q_1^2 + \left[5y^2 + \left(m - \frac{1}{4}\right)t^2 + 2xy + 3tx + 2(1 - m)ty\right] = Q_1^2 + \theta_1. \end{aligned}$$

Prenons ensuite y pour variable directrice

$$\begin{aligned} \theta_1 &= \frac{1}{5} \left[5 y + x + (1-m)t \right]^2 - \frac{1}{5} \left[x + (1-m)t \right]^2 + \left(m - \frac{1}{4} \right) t^2 + 3 t x, \\ \theta_1 &= \frac{1}{5} Q_2^2 + \left[-\frac{x^2}{5} - \left(\frac{m^2}{5} - \frac{7m}{5} + \frac{9}{20} \right) t^2 + \frac{13 + 2m}{5} t x \right] = \frac{1}{5} Q_2^2 + \frac{1}{5} \theta_2. \end{aligned}$$

Prenons x pour variable directrice

$$\theta_2 = -\left[x - \left(\frac{13}{2} + m\right)t\right]^2 + \left(\frac{13}{2} + m\right)^2t^2 - \left(m^2 - 7m + \frac{9}{4}\right)t^2,$$

$$\theta_2 = -Q_3^2 + 20(m+2)t^2.$$

Finalement

$$\omega = \left(z - x - 2y + \frac{t}{2}\right)^2 + \frac{1}{5}[5y + x + (1 - m)t]^2 - \frac{1}{5}\left[x - \left(\frac{13}{2} + m\right)t\right]^2 + 4(m + 2)t^2.$$

On vérifie, conformément à la loi d'inertie (n° 306), que dans les deux modes de décomposition, on a trois carrés positifs et un carré négatif si m > -2, et deux carrés positifs et deux carrés négatifs si m < -2. Si m = -2, on a seulement trois carrés, dont un seul est négatif.

On peut encore vérifier que le discriminant s'annule pour m = -2 et dans ce cas seulement. Effectivement, on a

$$\delta = \begin{vmatrix} 1 & 3 & -1 & 1 \\ 3 & 9 & -2 & -m \\ -1 & -2 & 1 & \frac{1}{2} \\ 1 & -m & \frac{1}{2} & m \end{vmatrix}.$$

En développant, par exemple, suivant la première ligne, on a

$$\delta = \left(9m + m + m - m^2 - \frac{9}{4} - 4m\right) - 3\left(3m - 1 + \frac{m}{2} + m - \frac{3}{4} - 2m\right) - \left(-6m + \frac{9}{2} - m^2 - 2m + \frac{3}{2}m + 9m\right) - \left(-3 + 9 - 2m - 4 + 3m + \frac{9}{2}\right),$$

$$\delta = -4(m + 2),$$

quantité qui ne s'annule que pour m = -2.

Le déterminant formé par les trois premières lignes et colonnes est d'ailleurs égal à $2 \neq 0$; de sorte que, lorsque m = -2, ω est a priori décomposable en trois carrés, ce que nous avons vérifié.

2. Calculer la forme polaire de la forme quadratique précédente relativement aux groupes de variables

$$(x, y, z, t), (x', y, z', t'),$$

 $(x, y, z, t), (0, 0, 0, 1).$

วน

Pour le premier groupe, nous appliquons la règle pratique donnée au n° 308, et nous écrivons immédiatement

$$\omega(x \mid x') = xx' + 9yy' + zz' + mtt' - 2(yz' + zy') - (zx' + xz') + 3(xy' + yx') + (tx' + xt') - m(ty' + yt') + \frac{1}{2}(tz' + zt').$$

Pour le deuxième groupe, nous utilisons la formule

$$\omega(x \mid x') = \frac{1}{2} \left(x' \frac{\partial \omega}{\partial x} + y' \frac{\partial \omega}{\partial y} + z' \frac{\partial \omega}{\partial z} + t' \frac{\partial \omega}{\partial t} \right),$$

qui se réduit ici à

$$\omega(x \mid x') = \frac{1}{2} \frac{\partial \omega}{\partial t} = mt + x - my + \frac{1}{2}z.$$

3. Calculer la forme polaire de

$$\omega = (x + y - z - t)^2 + (2x + y)(z - t) + t^2,$$

relativement aux groupes (x, y, z, t), (1, 1, 1, 1).

Regardant ω comme une forme quadratique des formes linéaires $x + \gamma - z - t$, $2x + \gamma$, z - t, t, nous avons (n° 308)

$$\begin{split} \omega(x \mid x') &= (x + y - z - t) (1 + 1 - 1 - 1) \\ &+ \frac{1}{2} [(2x + y) (1 - 1) + (z - t) (2 + 1)] + t \times 1, \end{split}$$

ou

$$\omega(x \mid x') = \frac{3}{2}(z-t) + t = \frac{3}{2}z - \frac{1}{2}t.$$

4. Invariants d'une forme quadratique. — Les coefficients de l'équation en S d'une forme quadratique sont des invariants pour toute substitution orthogonale.

Étant donnée la forme quadratique ω , considérons une fonction quelconque de ses coefficients, soit $I = f(a_i^k)$. Imaginons qu'on fasse maintenant sur ω une substitution linéaire (S), transformant $\omega(x)$ en une autre forme quadratique $\theta(y)$, dont nous désignons les coefficients par b_i^k . Ces coefficients sont certaines fonctions linéaires des a_i^k . Cela posé, on dit que la fonction 1 est un invariant pour la substitution (S), si l'on a identiquement $f(b_i^k) \equiv f(a_i^k)$ (1).

Par exemple, le discriminant est un invariant pour toutes les substitutions de module ±1; comme cela résulte du théorème démontré au n^d 309.

Je dis maintenant que les n coefficients du polynome en S que nous avons appelé $\delta(S)$ sont des invariants pour toute substitution orthogonale.

Appelons $\varepsilon(S)$ le polynome analogue relatif à la forme $\theta(y)$. Il faut montrer que $\delta(S) \equiv \varepsilon(S)$. Pour cela, nous observons que $\delta(S)$ est le discriminant de la forme quadratique

(1)
$$\omega'(x) \equiv \omega(x) - S(x_1^2 + x_2^2 + ... + x_n^2).$$

De même, $\varepsilon(S)$ est le discriminant de

(2)
$$\theta'(y) \equiv \theta(y) - S(y_1^2 + y_2^2 + ... + y_n^2).$$

On a d'ailleurs, quels que soient S et les x_i ,

(3)
$$\theta'(y) \equiv \omega'(x),$$

car

$$\theta(y) \equiv \omega(x)$$

par hypothèse, et

$$(y_1^2 + \ldots + y_n^2) \equiv (x_1^2 + \ldots + x_n^2),$$

parce que la substitution est orthogonale. Donc, on a aussi (nº 309)

$$\varepsilon(S) \equiv \delta(S)$$
,

parce que le carré du module de la substitution est égal à 1 (nº 299) (2).

5. Invariants simultanes de deux formes quadratiques. — Soient deux formes quadratiques $\omega(x)$ et $\theta(x)$. Le discriminant $\delta(S)$ de la forme $\omega(x) - S\theta(x)$ est un polynome de degré n en S.

Faisons une substitution linéaire quelconque et soient $\Omega(y)$, $\Theta(y)$ et par suite $\Omega(y) - S\Theta(y)$ les formes transformées de $\omega(x)$, $\theta(x)$ et $\omega(x) - S\theta(x)$. Le discriminant $\Delta(S)$ de $\Omega(y) - S\Theta(y)$ est encore un polynome de degré n en S. On sait d'ailleurs que, si μ est le module de

⁽¹⁾ Ceci doit avoir lieu quels que soient les a_i^k .

⁽²⁾ On peut aussi, en s'appuyant sur le théorème du n° 309, démontrer que les deux polynomes $\delta(S)$ et $\varepsilon(S)$ ont les mêmes racines, parce que pour chacune de ces racines $\omega'(x)$ et $\theta'(y)$ se décomposent en moins de n carrés (n° 305).

la substitution, on a l'identité

(1)
$$\Delta(S) \equiv \mu^2 \, \delta(S).$$

On voit donc que les coefficients de $\Delta(S)$ sont proportionnels à ceux de $\delta(S)$. Autrement dit, les rapports des coefficients de $\delta(S)$ à l'un d'entre eux sont des invariants pour toute substitution linéaire. C'est ce qu'on appelle des invariants simultanés des deux formes quadratiques.

L'équation

$$\delta(S) = 0$$

est liée intimement au problème suivant :

Trouver une substitution linéaire qui fasse disparaître simultanément les termes rectangles dans les deux formes ω et θ .

Soit

(3)
$$x_i = \alpha_i^1 y_1 + \alpha_i^2 y_2 + \ldots + \alpha_i^n y_n \qquad (i = 1, 2, \ldots, n)$$

une telle substitution. On a, par hypothèse,

(4)
$$\omega(x) \equiv \Omega(y) = A_1 y_1^2 + A_2 y_2^2 + \ldots + A_n y_n^2,$$

(5)
$$\theta(x) \equiv \theta(y) = B_1 y_1^2 + B_2 y_2^2 + \ldots + B_n y_n^2.$$

Différentions par rapport à y_i ,

(6)
$$A_i y_i \equiv \frac{1}{2} \left(\alpha_1^i \frac{\partial \omega}{\partial x_1} + \alpha_2^i \frac{\partial \omega}{\partial x_2} + \ldots + \alpha_n^i \frac{\partial \omega}{\partial x_n} \right) \equiv \frac{1}{2} \left(x_1 \frac{\partial \omega}{\partial \alpha_1^i} + \ldots + x_n \frac{\partial \omega}{\partial \alpha_n^i} \right)$$

$$(7) \quad \mathbf{B}_{i} \mathbf{y}_{i} \equiv \frac{1}{2} \left(\alpha_{1}^{i} \frac{\partial \mathbf{\theta}}{\partial x_{1}} + \alpha_{2}^{i} \frac{\partial \mathbf{\theta}}{\partial x_{2}} + \ldots + \alpha_{n}^{i} \frac{\partial \mathbf{\theta}}{\partial x_{n}} \right) \equiv \frac{1}{2} \left(x_{1} \frac{\partial \mathbf{\theta}}{\partial \alpha_{1}^{i}} + \ldots + x_{n} \frac{\partial \mathbf{\theta}}{\partial \alpha_{n}^{i}} \right).$$

Éliminons y_i ; nous avons, en posant $S_i = \frac{B_i}{A_i}$,

(8)
$$x_1 \left(\frac{\partial \omega}{\partial \alpha_1^i} - S_i \frac{\partial \theta}{\partial \alpha_1^i} \right) + x_2 \left(\frac{\partial \omega}{\partial \alpha_2^i} - S_i \frac{\partial \theta}{\partial \alpha_2^i} \right) + \ldots + x_n \left(\frac{\partial \omega}{\partial \alpha_n^i} - S_i \frac{\partial \theta}{\partial \alpha_n^i} \right) = 0.$$

Ceci doit avoir lieu quels que soient les x; donc

(9)
$$\frac{\partial \omega}{\partial \alpha_i^i} - S_i \frac{\partial \theta}{\partial \alpha_i^i} = o$$
, $\frac{\partial \omega}{\partial \alpha_b^i} - S_i \frac{\partial \theta}{\partial \alpha_b^i} = o$, ..., $\frac{\partial \omega}{\partial \alpha_h^i} - S_i \frac{\partial \theta}{\partial \alpha_h^i} = o$.

Nous obtenons, pour déterminer α_1^i , α_2^i , ..., α_n^i , n équations linéaires et homogènes. Comme nous devons avoir une solution autre que la solution zéro, le déterminant de ces équations doit être nul. Autrement dit, S_i doit être une racine de l'équation (2).

Bornons-nous au cas où cette équation n'a pas de racine multiple. A chaque racine correspond un système tel que (9), qui admet une solution déterminée, à un facteur près (1). Ce facteur étant choisi quelconque, on obtiendra de la sorte tous les coefficients de la substitution (3).

Reste à montrer maintenant que, les coefficients étant ainsi calculés, on n'aura effectivement aucun terme rectangle dans $\Omega(y)$, ni dans $\Theta(y)$.

Pour montrer, par exemple, que le rectangle $y_i y_j$ n'est pas dans $\Omega(y)$, il suffit de prouver que la forme polaire $\Omega(y|y')$ est nulle pour le couple de valeurs

$$(y_i = 1, y_j = 0, j \neq i), (y'_j = 1, y'_i = 0, i \neq j);$$

ou encore que la forme polaire $\omega(x \mid x')$ est nulle pour les valeurs correspondantes

$$(\alpha_1^i, \alpha_2^i, \ldots, \alpha_n^i), (\alpha_1^j, \alpha_2^j, \ldots, \alpha_n^j).$$

Il suffit donc de vérifier les égalités

(10)
$$\omega(\alpha_k^i \mid \alpha_k^j) = 0, \quad \theta(\alpha_k^i \mid \alpha_k^j) = 0.$$

Or, si l'on multiplie les équations (9) respectivement par α_1^j , α_2^j , ..., α_n^j et qu'on ajoute, on obtient

(11)
$$\omega(\alpha_k^i \mid \alpha_k^j) - S_i \theta(\alpha_k^i \mid \alpha_k^j) = 0.$$

De même

ls à ce

) à [:

re, Cè

es qu

ıltar-

$$\omega(\alpha_k^i | \alpha_k^j) - S_j \theta(\alpha_k^i | \alpha_k^j) = 0.$$

Comme $S_i \neq S_i$, on en conclut nécessairement (10).

6. Calculer la forme adjointe de la forme quadratique

$$\omega(x, y, z) = x^2 - y^2 + 3z^2 - 2yz - 2zx + 6xy.$$

Appelons u, v, w les variables adjointes. Nous avons

(1)
$$x + 3y - z = u$$
, $3x - y - z = v$, $-x - y + 3z = w$.

Résolvant, il vient

(2)
$$x = \frac{2u + 4v + 2w}{12}$$
, $y = \frac{4u - v + w}{12}$, $z = \frac{2u + v + 5w}{12}$.

⁽¹⁾ Le déterminant principal est, en effet, d'ordre n-1, car si tous les mineurs d'ordre n-1 étaient nuls, S_i serait racine multiple de $\delta(S)$. (Cf. n° 310.)

Portons dans

(3)
$$\omega = (ux + vy + wz);$$

il vient

$$\Omega(u, v, w) = \frac{1}{12} (2u^2 - v^2 + 5w^2 + 2vw + 4wu + 8uv).$$

Comme vérification, on constate que les formules (2) sont identiques aux suivantes :

$$x = \frac{1}{2} \frac{\partial \Omega}{\partial u}, \qquad y = \frac{1}{2} \frac{\partial \Omega}{\partial v}, \qquad z = \frac{1}{2} \frac{\partial \Omega}{\partial w}.$$

On constate également, conformément à ce qui a été vu au n° 312, que les coefficients de Ω sont égaux aux mineurs du discriminant δ de ω divisés par δ . En effet,

$$\delta = \begin{vmatrix} 1 & 3 & -1 \\ 3 & -1 & -1 \\ -1 & -1 & 3 \end{vmatrix} = -24.$$

Le coefficient de u^2 , par exemple, doit être égal à

$$\frac{\begin{vmatrix} -1 & -1 \\ -1 & 3 \end{vmatrix}}{-24} = \frac{-4}{-24} = \frac{2}{12}.$$

C'est bien ce que nous avons trouvé. Nous laissons au lecteur la vérification des autres coefficients, ainsi que celle des différentes formules établies au n° 312.

EXERCICES PROPOSÉS.

1. Décomposer en carrés les formes quadratiques suivantes :

$$-x^{2} + 3y^{2} + z^{2} + 2yz - 4zx + 8xy,$$

$$mx^{2} + y^{2} - mz^{2} - 2myz + 2zx + 6xy,$$

$$3x^{2} - y^{2} + z^{2} + mt^{2} + 6xy - 2xz - 2yz + 4mtx + 6mty + 2tz,$$

$$x^{2} - y^{2} + z^{2} - 17t^{2} + 2xy - 2xz - 2yz + 2tx + 14ty - 2tz.$$

2. Calculer les formes polaires des formes quadratiques précédentes par rapport aux groupes de variables

$$(x, y, z, t), (x', y', z', t'); (x, y, z), (x', y', z'); (1, 0, 1, 0), (-1, -1, 2, 1), (0, 0, 1), (x, y, 1).$$

3. Calculer les formes polaires de

$$(x+z)(t-y)+(y+3z-t)(z-3x+t)$$

pour

$$(x, y, z, t), (0, 2, 1, 2);$$

 $(x-y-2z)^2+(3x+y)^2$ pour $(x, y, z), (1, 2, 3).$

4. Étant donnée la forme quadratique $Ax^2 + 2Bxy + Cy^2$, vérifier que A + C et $AC - B^2$ sont des invariants pour la substitution orthogonale

$$x = x' \cos \varphi - y' \sin \varphi,$$
 $y = x' \sin \varphi + y' \cos \varphi.$

5. Étant donnée la forme quadratique

$$\omega(x, y, z) \equiv Ax^{2} + A'y^{2} + A''z^{2} + 2Byz + 2B'zx + 2B''xy,$$

à quelle condition doivent satisfaire ses coefficients pour qu'on puisse, par une substitution orthogonale, la mettre sous la forme

$$\omega' = \lambda x'^2 + 2 \mu \gamma' z'?$$

[L'équation en S de la seconde forme est $(\lambda - S)(S^2 - \mu^2) = 0$. On est donc ramené à exprimer que l'équation en S de ω a deux racines de somme nulle (Exercice résolu n° 4), ce qui est un problème facile (n° 220). La condition étant supposée remplie, on saura résoudre l'équation en S; donc, ramener ω et ω' à la forme $\omega'' = S_1 x''^2 + S_2 y''^2 + S_3 z''^2$. Inversement, on saura passer de ω'' à ω' ; donc finalement, de ω à ω' .]

6. Étant donnée une forme quadratique à quatre variables, trouver les conditions pour qu'on puisse, par une substitution orthogonale, la mettre sous la forme $\lambda x'y' + \mu z't'$.

(L'équation en S doit être bicarrée.)

7. Trouver la substitution orthogonale qui fait disparaître les termes rectangles de la forme quadratique

$$x^2 + y^2 + z^2 + 2(yz + xy) - 2zx$$
.

8. Étant données deux formes quadratiques à trois variables

$$\omega(x,y,z)$$
 et $\theta(x,y,z)$,

trouver la condition pour qu'on puisse, par une substitution linéaire convenable, les mettre respectivement sous la forme

$$\lambda y'z' + \mu z'x' + vx'y'$$
 et $\alpha x'^2 + \beta y'^2 + \gamma z'^2$.

(L'équation en S relative à ces deux formes doit avoir trois racines de somme nulle.)

9. Faire disparaître simultanément les termes rectangles des deux formes

$$x^2 + 2xy - 2y^2$$
 et $2x^2 + 4xy - y^2$.

10. Calculer les formes adjointes des formes quadratiques suivantes :

$$Ax^2 + By^2 + Cz^2 + Dt^2$$
, $Ayz + Bzx + Cxy$, $x^2 - 2y^2 + 3z^2 + t^2 - 2yz + 4zx - 6xy + 2tx + 8ty + 4tz$.

11. Pour résoudre le système

(1)
$$\begin{cases} a_1^1 & x_1 + a_1^2 & x_2 + \ldots + a_1^n & x_n = b_1, \\ a_2^1 & x_1 + a_2^2 & x_2 + \ldots + a_2^n & x_n = b_1, \\ \vdots & \vdots & \vdots & \vdots \\ a_{n-1}^1 x_1 + a_{n-1}^2 x_2 + \ldots + a_{n-1}^n x_n = b_{n-1}, \\ \omega(x_1, x_2, \ldots, x_n) = b_n, \end{cases}$$

où ω désigne une forme quadratique, on peut prendre pour inconnue auxiliaire λ le déterminant fonctionnel (Exercice proposé n° 9, Chap. XXIII) des premiers membres. On peut alors calculer les x_t en fonction de λ par la résolution d'un système linéaire. En portant dans(2), on a une équation du second degré en λ . Prouver que cette équation ne renferme pas de terme en λ (cf. exercice proposé n° 10, Chap. XXIII).

[Si l'on désigne par $\alpha_1, \alpha_2, \ldots, \alpha_n$, les déterminants d'ordre n-1 déduits du Tableau des coefficients de (1), on a l'équation supplémentaire

(3)
$$x_1 \frac{\partial \omega}{\partial x_1} + x_2 \frac{\partial \omega}{\partial x_2} + \ldots + x_n \frac{\partial \omega}{\partial x_n} = \lambda.$$

En résolvant (1), (3), on obtient des formules de la forme

(4)
$$x_1 = k\lambda \alpha_1 + \alpha'_1$$
, $x_2 = k\lambda \alpha_2 + \alpha'_2$, ..., $x_n = k\lambda \alpha_n + \alpha'_n$

 $k, \alpha'_1, \alpha'_2, \ldots, \alpha'_n$ désignant certaines constantes.

Il faut alors montrer que

$$\alpha'_1 \frac{\partial \omega}{\partial \alpha_1} + \alpha'_2 \frac{\partial \omega}{\partial \alpha_2} + \ldots + \alpha'_n \frac{\partial \omega}{\partial \alpha_n} = 0.$$

Or, cela résulte de (4) et (3) pour $\lambda = 0$.

12. Résoudre les systèmes

$$x + y + z = 1$$
, $ax + by + cz = 1$, $yz + zx + xy = 1$;
 $ux + vy + w = 0$, $ax^2 + 2bxy + cy^2 = 1$.

NOTE I.

SUR LES RELATIONS DE RÉCURRENCE.

EXERCICES RÉSOLUS.

1. Calculer u_n , sachant qu'on a $u_1 = 0$ et

(1)
$$(n+1)^2 u_n = (n-1)^2 u_{n-1} - n.$$

Première méthode. - Nous écrivons

Multiplions par les facteurs indiqués à droite et ajoutons

$$u_n n^2 (n+1)^2 = -[2^3 + 3^3 + ... + (n-1)^3 + n^3] = I - S_3,$$

en appelant S_3 la somme des cubes des n premiers nombres entiers; d'où

(2)
$$u_n = \frac{1 - S_3}{n^2 (n+1)^2}$$

Deuxième méthode. — Si nous employons le critérium et les notations du n° 315, nous avons

$$\frac{a_n-1}{b_n} = \frac{(n-1)^2 - (n+1)^2}{-n} = 4 = \text{const.}$$

Dès lors, faisons le changement de variable $u_n = v_n + A$. Si nous annulons le terme constant dans la relation transformée, nous avons

$$A(n+1)^2 = A(n-1)^2 - n;$$

214 NOTE I.

d'où
$$A = -\frac{1}{4}$$
 Puis

Multiplions

$$o_n = \frac{1^2 \cdot 2^2}{(n+1)^2 n^2} \frac{1}{4} = \frac{1}{n^2 (n+1)^2};$$

d'où

(3)
$$u_n = v_n - \frac{1}{4} = \frac{4 - n^2(n+1)^2}{4n^2(n+1)^2} = -\frac{(n-1)(n+2)(n^2+n+2)}{4n^2(n+1)^2}$$

Remarque. — Si l'on compare (2) et (3), on trouve

$$S_3 = \frac{n^2(n+1)^2}{4},$$

formule qu'on pourrait établir en suivant la marche indiquée à l'exercice résolu n° 3 du Chapitre II.

EXERCICES PROPOSÉS.

1. Calculer u_n sachant qu'on a

(I)
$$u_n = n^2 u_{n-1}, u_0 = 1;$$

(II)
$$(n+4)u_n = nu_{n-1}, u_0 = 1;$$

(III)
$$(n+1)(n-1)u_n = n^2u_{n-3}, u_0 = 1, u_1 = 0, u_2 = -1.$$

2. Calculer u_n sachant qu'on a

$$(I) u_n = nu_{n-1} + 1, u_0 = 1;$$

(II)
$$(n+2)u_n = nu_{n-1} + 2, \quad u_0 = 1;$$

(III)
$$(n+1)^3 u_n + (n-1)^3 u_{n-1} = n(n^2+3), \quad u_1 = -13;$$

(IV)
$$u_n = 2u_{n-1} + 6.$$

3. Calculer u_n sachant qu'on a

(1)
$$(u_n u_{n-1})^n = u_{n-1}, \quad u_1 = 2;$$

(II)
$$u_n u_{n-1}^2 = a, u_0 = 1.$$

4. Étant donnée la relation de récurrence

(1)
$$P_n = -x^2 P'_{n-1} + 2n(x-1) P_{n-1},$$

où P'_{n-1} désigne la dérivée de P_{n-1} par rapport à x, montrer que, si l'on suppose $P_0 = 1$, P_n est un polynome de degré n en x. Calculer son terme de plus haut degré et son terme constant. Montrer qu'il a toutes ses racines réelles et distinctes.

[Pour prouver que P_n est un polynome de degré n, raisonner par induction. Pour prouver qu'il a toutes ses racines réelles et distinctes, substituer dans P_n les racines de P_{n-1} , supposées réelles et distinctes, en y ajoutant — ∞ et $+\infty$. En tenant compte de (1) et du théorème de Rolle, on n'obtient que des variations.

5. Étant donnée la relation

(1)
$$P_{n}-nxP_{n-1}+[n(n-1)x-2]P_{n-2}=0,$$

montrer que, si l'on suppose $P_0 = 1$ et $P_1 = x$, P_n est polynome de degré n en x. Calculer son terme constant, le coefficient de x^n et celui de x^{n-1} .

NOTE III.

SUR L'É QUATION DE RICCATI.

EXERCICES RÉSOLUS.

1. Chercher si l'équation

(1)
$$2x\frac{dy}{dx} = y^2 - 2x^2y + x^4 + 4x^2 - 1$$

admet pour intégrale particulière un polynome et l'intégrer dans ce cas.

Soit m le degré du polynome. Le premier membre est de degré m. Le degré du second membre est le plus grand des trois nombres 2m, m+2 et 4, si toutefois il n'y a pas de réductions. Si m>2, celles-ci ne sont pas possibles, car 2m est supérieur à m+2 et 4. Le second membre est de degré supérieur au degré du premier; l'identité est impossible. Pour m=2, les trois nombres 2m, m+2 et 4 sont égaux; il peut y avoir des réductions.

Posons donc

$$y = ax^2 + bx + c,$$

et portons dans (1)

$$2x(2ax+b)=(ax^2+bx+c)^2-2x^2(ax^2+bx+c)+x^4+4x^2-1.$$

ldentifions. En annulant le coefficient de x^4 , nous avons d'abord

$$a^2 - 2a + 1 = 0$$
;

d'où

$$a=1$$
.

Le terme en x^3 disparaît alors identiquement. En égalant les coefficients de x^2 , nous trouvons ensuite b = 0. Le terme en x disparaît. En annulant enfin le terme constant, nous obtenons $c^2 = 1$; d'où $c = \pm 1$. Il y a donc deux polynomes répondant à la question; ce sont

(3)
$$y_1 = x^2 + 1, \quad y_2 = x^2 - 1.$$

L'équation (1) doit donc s'intégrer par une quadrature (n° 323). Effectivement, faisons le changement de variable

$$(4) v = x^2 + t + \frac{t}{z};$$

nous avons

$$(5)^* 2xz' = -2z - 1.$$

Cette équation doit admettre l'intégrale particulière

$$z_1 = \frac{1}{y_2 - (x^2 + 1)} = -\frac{1}{2};$$

ce qui se vérifie d'un coup d'œil. Nous aurons l'intégrale générale en ajoutant à $z_1 = -\frac{1}{2}$ l'intégrale générale de l'équation sans second membre (n° 191, remarque IV). Celle-ci s'écrit

$$\frac{dz}{z} = -\frac{dx}{x}$$

et donne

$$z = \frac{C}{x}$$
 (C = const.).

L'intégrale générale de (5) est donc

$$z = \frac{C}{x} - \frac{1}{2} = \frac{2C - x}{2x}$$

et celle de (1) est finalement

$$y = x^2 + 1 + \frac{1}{z} = x^2 + 1 + \frac{2x}{2C - x} = \frac{2C(x^2 + 1) - x(x^2 - 1)}{2C - x}$$

EXERCICES PROPOSÉS.

1. Intégrer l'équation

$$y' = m(y - a)(y - b)$$
 $(m, a, b = const.),$

en observant qu'elle admet les solutions particulières $y_1 = a$, $y_2 = b$. Comparer avec la méthode de séparation des variables.

2. Vérifier que l'équation

$$y' = 1 - 6x + 2(5 - 4x)y + 8xy^2$$

admet une intégrale particulière fonction homographique de x. En déduire l'intégrale générale.

3. Vérifier que l'équation

$$y'\cos x = y^2 - (\sin x + 4\cos x)y + 5\cos^2 x$$

admet trois intégrales particulières de la forme $A\cos x + B\sin x$. En déduire l'intégrale générale.

4. Intégrer l'équation

$$\frac{d\varphi}{dx} = \cos\varphi(\mathbf{1} - \cot^2x) - 2\sin\varphi\cot x + 3 + \cot^2x,$$

après avoir vérifié qu'elle admet une intégrale de la forme mx, m désignant une constante.

5. Intégrer l'équation différentielle linéaire du second ordre à coefficients constants, en la transformant en une équation de Riccati.

FIN DU TOME I.

TABLE DES MATIÈRES.

	Page	8.
CHAPITRE I.	- Nombres incommensurables Radicaux; exposants	I
CHAPITRE II.	— Analyse combinatoire. — Formule du binome	4
Chapitre III	— Nombres complexes	10
CHAPITRE IV	— Séries	14
CHAPITRE V.	— Fonction d'une variable réelle	21
CHAPITRE VI	 Fonctions exponentielle et logarithmique. — Nombre e. 	32
CHAPITRE VI	— Séries entières	40
CHAPITRE XI	— Développements limités	51
CHAPITRE IX	- Infiniment petits Formes indéterminées	55
CHAPITRE X.	- Fonctions de plusieurs variables	6 ı
CHAPITRE XI	— Différentielles	63
CHAPITRE XI	— Intégrales définie et indéfinie	69
Chapitre XI	— Calcul des quadratures	79
CHAPITRE XI	- Applications des quadratures	91
CHAPITRE XV	- Équations différentielles 10	06
Chapitre XV	— Polynomes	22
CHAPITRE XV	Fractions rationnelles 1	3о
CHAPITRE XV	II. — Propriétés générales des équations algébriques 1	38
CHAPITRE XI	— Élimination 1	50
CHAPITRE XX	- Transformation des équations 1	57
CHAPITRE XX	- Équations à coefficients réels	66
CHAPITRE XX	. – Équations à coefficients numériques 1	74
CHAPITRE XX	I. — Déterminants 1	88
CHAPITRE XI	- Equations et formes linéaires 19	98
CHAPITRE XX	. — Formes quadratiques 2	04
Note I.	- Relations de récurrence 21	ı 3
Nome III	Énuation de Discoti	. 6

FIN DE LA TABLE DES MATIÈRES DU TOME I.

PARIS. — IMPRIMERIE GAUTHIER-VILLARS,
52755 Quai des Grands-Augustins, 55.

