

Memória em Curvas Elípticas

Manoel Domingues Junior

- Não são elipses
- São utilizadas em criptografia assimétrica

$$y^2 = x^3 + ax + b$$

$$P + R + Q = 0$$

$$P + Q = -R$$

https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/

$$A + B = C$$

$$A + C = D$$

https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/

A + B = C

A + C = D

https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/

A + B = C

A + C = D

A + D = E

$$A + A = B$$

$$A + B = C$$

$$A + C = D$$

$$A + D = E$$

Curvas Elípticas - caso do trabalho

A - escolhido aleatoriamente

B - fixo (x = 9)

Será que uma rede neural consegue aprender quem seria o C?

Vamos dividir o trabalho em partes:

- adição
- mod

ttps://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/

ZAREMBA, Wojciech; SUTSKEVER, Ilya. Learning to Execute. **arXiv [cs.NE]**, 2014. Disponível em: https://arxiv.org/abs/1410.4615.

- 2 digits reversed: + 1 layer LSTM (128 HN), 5k training examples = 99% train/test accuracy in 55 epochs
- 3 digits reversed: + 1 layer LSTM (128 HN), 50k training examples = 99% train/test accuracy in 100 epochs
- 4 digits reversed: + 1 layer LSTM (128 HN), 400k training examples = 99% train/test accuracy in 20 epochs
- 5 digits reversed: + 1 layer LSTM (128 HN), 550k training examples = 99% train/test accuracy in 30 epochs

ZAREMBA, Wojciech; SUTSKEVER, Ilya. Learning to Execute. **arXiv [cs.NE]**, 2014. Disponível em: https://arxiv.org/abs/1410.4615>.

ZAREMBA, Wojciech; SUTSKEVER, Ilya. Learning to Execute. **arXiv [cs.NE]**, 2014. Disponível em: https://arxiv.org/abs/1410.4615>.

- 5 digits reversed: + 1 layer LSTM (128 HN), 550k training examples = 99% train/test accuracy in 30 epochs

ZAREMBA, Wojciech; SUTSKEVER, Ilya. Learning to Execute. **arXiv [cs.NE]**, 2014. Disponível em: https://arxiv.org/abs/1410.4615>.

- 5 digits reversed: + 1 layer LSTM (128 HN), 550k training examples = 99% train/test accuracy in 30 epochs
 - 10 epochs (suficiente)

ZAREMBA, Wojciech; SUTSKEVER, Ilya. Learning to Execute. **arXiv** [cs.NE], 2014. Disponível em: https://arxiv.org/abs/1410.4615>.

- 10 digits reversed: + 1 layer LSTM (128 HN), 600k training examples = 99% / 99% train/test accuracy in 94 epochs

- 3 digits: + 1 layer LSTM (128 HN), 50k training examples = 97% / 83% train/test accuracy in 100 (30) epochs

- 3 digits reversed: + 1 layer LSTM (128 HN), 50k training examples = 87% / 84% train/test accuracy in 30 epochs

- 3 digits reversed: + 1 layer LSTM (128 HN), 50k training examples = 87% / 84% train/test accuracy in 30 epochs

Sem alterações, mas podemos ver que a rede aprende a repetir o menor número.

- 5 digits reversed: + 1 layer LSTM (128 HN), 500k training examples = 86% / 86% train/test accuracy in 10 epochs

Q 52%58222

Rede Neural para *mod*

T 52

2 52

- 5 digits reversed: + 1 layer LSTM (128 HN), 500k training examples = 86% / 86% train/test accuracy in 10 epochs

- 5 digits reversed: + 1 layer LSTM (128 HN), 500k training examples = 75% train/test accuracy in 70 epochs

Dataset ajustado para casos onde o resultado é diferente dos operandos.

T 16

T 43

43

0 68291%25

Q 637%66

- 5 digits reversed: + 1 layer LSTM (128 HN), 500k training examples = 75% train/test accuracy in 70 epochs

Dataset ajustado para casos onde o resultado é diferente dos operandos.

- 5 digits reversed: + 1 layer LSTM (128 HN), 100k training examples = 72% train/test accuracy in 76 epochs

Dataset (menor) ajustado para casos onde o resultado é diferente dos operandos.

- 5 digits reversed: + 1 layer LSTM (128 HN), 200k training examples = 70% train/test accuracy in 49 epochs

Dataset ajustado para casos onde o resultado é diferente dos operandos.

- 5 digits reversed: + 1 layer LSTM (256 HN), 200k training examples = 71% train/test accuracy in 25 epochs

Dataset ajustado para casos onde o resultado é diferente dos operandos. Com **2x (256)** memory cells

- 5 digits reversed: + 2 layers LSTM (128 HN), 200k training examples = 71% train/test accuracy in 35 epochs

Dataset ajustado para casos onde o resultado é diferente dos operandos.

- 5 digits reversed: + 1 layer LSTM (256 HN), 500k training examples = 80/76 % train/test accuracy in 32 epochs

Dataset (maior) ajustado para casos onde o resultado é diferente dos operandos.

- 5 digits reversed: + 1 layer LSTM (256 HN), 1M training examples = 80 % train/test accuracy in 44 epochs

Dataset (bem maior) ajustado para casos onde o resultado é diferente dos operandos.

- 5 digits reversed: + 1 layer LSTM (256 HN), 10M training examples =
85 % train/test accuracy in 29 epochs

Dataset (bem maior) ajustado para casos onde o resultado é diferente dos operandos.

- 5 digits reversed: + 1 layer LSTM (256 HN), 100M training examples = ?? % train/test accuracy in ?? epochs

Dataset (bem maior) ajustado para casos onde o resultado é diferente dos operandos.

Conclusões

- Operações de adição conseguem ser cobertas com redes LSTM.
- Operações de **mod** ainda precisam ser melhor estudadas.
 - Abordagens diretas não funcionam, é preciso separar o problema.

64 digits, 1 layer LSTM (256 HN), 100k training examples = 7% train/test accuracy in 100 epochs

Conclusões

- Operações de adição conseguem ser cobertas com redes LSTM.
- Operações de **mod** ainda precisam ser melhor estudadas. Opções:
 - Abordagens diretas não funcionam, é preciso separar o problema.
 - Menor tamanho de batch (aumenta bastante o tempo de treinamento), sem resultados evidentes
 - Datasets maiores linearmente (100k,200k,500k não apresentaram mudanças significativas)
 - Datasets maiores em ordem de grandeza sim! (1M, 10M,...)
- Google Colab n\u00e3o funciona muito bem com LSTM (PaperSpace).

Próximos passos

- Operações de **mod**:
 - return_sequences=True

Próximos passos

- Operações de mod:
 - return_sequences=True
 - Utilizar outros tipos de redes (baseadas em mecanismos de atenção)
 - Utilizar uma topologia diferente