In Network Compute

Surendra Anubolu
Broadcom Inc
11/8/2023

Importance of All Reduce in Generative Al

- Training uses data parallel technique for scaling
- LLM training employs Tensor Parallelism (TP) to increase memory capacity
- Fabric is not scaling at the same rate as compute
 - Fabric is increasingly the limiter in the performance: Amdahl's Law

Transformer Layer

All Reduce operation – An example

- GPU nodes communicate over the network
- Data is exchanged and GPU servers do the addit
- When all the nodes sum up, the data out = sum(in)
- Reduced value (sum) is broadcasted down the tree
- At the end all the nodes have the same parameters
- Next run starts

Observation

- Data traverses at least twice on the network
- Takes many steps to converge to the average (log(n))

Figure 1. Binary tree using a power-of-two pattern

Each square represents a GPU node

Network I/O is Key For AI Workloads

OCP keynote by Alexis Bjorlin at 2022 OCP Global Summit

M# = ML model #

Collectives

Common Collectives

- Barrier
- (All) Reduce
- Reduce Scatter
- All to All
- Broadcast
- All Gather

Example: Barrier

Collective Examples

In Network Compute – Offload to the fabric

- Switches are natural choice for collective offload
- All the data passes through the switch
- Reduce the link load
 - Better performance
 - Lower power potential oversub at higher layers
- Switches have high fanin and fanout
 - Large radix to 51T
- GPUs have limited bandwidth compared to network switch elements

Deploying In Network Compute

- Switch needs to be aware of the collectives
- Requires controller "INC Manager"
- INC Manager responsible for
 - Discovery of fabric elements
 - Process requests from GPU
 - Allocation of resources
 - Error reporting and tear down

Number Formats

- INT32, INT8
- All the floating point numbers have
 - A sign bit
 - Range exponent
 - Precision mantissa
- New Number formats being discussed

Format	Exponent	Mantissa
FP32	8	23
FP16	5	10
BF16	8	7
FP8-E4M3	4	3
FP8-E5M2	5	2

Shared scale formats

- Scaling block size
 - Typical 32
- MXFP8, MXFP6, MXFP4, MXINT8

Complexity for network based reduction

Implementation considerations

- Switch is the endpoint for RDMA transfers
- Block number formats
- Lightweight implementations
 - Driven by high radix and large throughput
- Interop between providers
- Error recovery and reporting
 - Large training clusters
 - Long job runs

INC Summary

- Al workloads spend large amounts of time on the collectives
- Fabric becomes part of the compute
 - Challenge: Keep up with number formats
- Power and cost savings
- Significant speed up with collective offload to the Fabric