Versuch 702

Aktivierung mit Neutronen

Sebastian Pape Jonah Nitschke sepa@gmx.de lejonah@web.de

> Durchführung: 18.07.2017 Abgabe: 25.07.2017

1 Auswertung

Bei der Nullmessung wurde ein Zeitintervall von $\Delta t = 900$ gewählt und es wurden zwei Messungen durchgeführt, deren Mittelwert für weitere Berechnungen verwendet wurde:

$$N_1 = 218$$

$$N_2 = 224$$

$$\bar{N} = 221$$

$$\sigma_{\rm Nullmessung} = 14.87$$

Bei allen Messungen wird eine lineare Regression in der folgenden Form verwendet, um die Zerfallskonstante zu bestimmen:

$$f(x) = A \cdot x + B \tag{1}$$

1.1 Halbwertzeit Indium

Bei der Messung von Indium wurde ein Zeitintervall von $\Delta t = 240\,\mathrm{s}$ und ein Messzeitraum von $t_{\mathrm{ges}} = 3600\,\mathrm{s}$ gewählt. Die gemessenen Zerfälle sind in Tabelle 1 eingetragen und grafisch in Abbildung 1 dargestellt.

Tabelle 1: Gemessene Zerfälle bei Indium

$\Delta t in s$	Anz.Zerfaelle	$\Delta t in \mathrm{s}$	Anz.Zerfaelle
240	2995	480	2485
720	2465	960	2346
1200	2345	1440	2268
1680	2076	1920	1943
2160	1894	2400	1827
2640	1686	2880	1555
3120	1525	3360	1512
3600	1417		

Mithilfe einer linearen Regression der Form (1) gemäß Formel ?? werden dabei die Zeitkonstante λ und $N_{0,\mathrm{Indium}}$ bestimmt:

$$A = \lambda_{\text{Indium}} = (0.0002 \pm 9 \cdot 10^{-6}) \frac{1}{\text{s}}$$
$$B = N_{0,\text{Indium}} = (7.96 \pm 0.02)$$

Abbildung 1: logarythmische Darstellung der gemessenen Zerfälle bei Indium

Mit der Formel ?? kann aus der bestimmten Zeitkonstante nun die Halbwertzeit von Indium bestimmt werden, für die sich der folgende Wert ergibt:

$$T_{\text{Indium}} = (3278 \pm 141) \,\text{s}$$

1.2 Halbwertzeit von Rhodium

Abbildung 2: Gemessene Zerfälle bei Rhodium

Um die Halbwertzeiten der zwei verschiedenen Isotope Rh^{104} sowie Rh^{104i} zu bestimmen, die bei dem Zerfall von Rh^{103}_{45} entstehen, wurden für die Unterteilung die Messzeiten $t^*=355\,\mathrm{s}$ und $t_i=80\,\mathrm{s}$ gewählt.