第六章 分支限界法

学习要点

- 理解分支限界法的剪枝搜索策略。
- 通过应用范例学习分支限界法的设计策略。

6.1 分支与限界法的基本思想

n=3时,0/1背包问题的状态空间树

分支与界限法的基本思想:在分支结点上,**预先分别估算**沿着它的各个孩子结点向下搜索的路径中,目标函数可能取得的"界",然后,把它的这些孩子结点和它们可能取得的"界"保存在一张**结点表**中,再从表中选取"界"最大或最小的结点向下搜索。

在整个搜索过程中,每遇到一个活结点,就对它的各个孩子结点进行目标函数可能取得值得估算,然后把以此来更新表结点: 丢弃不再需要的结点,加入新的结点。再从表

中选取"界"取极值的结点,并重复上述过程。

 随着过程的不断深入,结点表中所估算的目标函数的极值, 越来越接近问题的解。当搜索到一个叶子结点时,如果对 该结点所估算的目标函数的值就是结点表中最大或最小值, 那么沿叶子结点到根结点的路径确定的解就是问题的解。

分支限界法的基本思想

- 在分支结点上,预先分别估计沿着它的各个孩子结点向下搜索的路径中,目标函数可能取得的"界",然后将它的这些孩子结点和它们可能取得的界保存在一张结点表中,再从表中选取"界"最大或最小的结点向下搜索。
- 为了在每次进行选取时选则取得极值的结点,因 此用优先队列来维护这张表。

分支限界法不再像回溯法那样盲目的 进行搜索,也不是遇到死区才回头。而是 依据结点表中不断更新的信息,不断调整 搜索的方向,有选择,有目标地进行搜索, 回溯也不是单纯的沿着父结点一层层的向 上回溯,而是依据结点表中的信息回溯。

分支限界法与回溯法比较

- (1) 求解目标:回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。
- (2)搜索方式的不同:回溯法以**深度**优先的方式搜索解空间树,而分支限界法则以**广度**优先 或**以最小耗费优先**的方式搜索解空间树。

- 在整个搜索过程中,每遇到一个活结点,就对它的各个孩子结点进行目标函数可能取得值得估算,以此来更新表结点:丢弃不再需要的结点,加入新的结点。再从表中选取"界"取极值的结点,并重复上述过程。
- 当从根结点开始向下搜索时,由 n_1 个孩子结点分别构成 n_1 棵子树的根,从而组成部分解 x_1 的 n_1 种可能取值方式。对这 n_1 个孩子结点分别估计他们可能取得的目标函数的值 bound(x_1)。如果是求最小值,就把bound(x_1)称为该孩子的下界,意思是沿着孩子结点向下搜索所可能取得的值得最小值不应小于bound(x_1)。

两种典型的求解方法

第一种解法

• 假定问题的解向量为 $X=(x_1,x_2,...,x_n)$,其中x的取值范围为某个有穷集 S_i , $|S_i|=n_i,1<=i<=n$ 。

• 假如 $X=(x_1,x_2,...,x_k)$ 是沿着该孩子结点一层层向下搜索所得的部分解,那么应有:

 $bound(x_1) \le bound(x_1, x_2) \le \le bound(x_1, x_2, ..., x_k)$

在求得n₁个孩子结点的下界之后,把它们保存在结点表中,并删除根结点在结点表中的登记项。这时在结点表中登记的结点及其相应的下界bound(x₁)有n₁个,于是从结点表中选取下界bound(x₁)最小的孩子结点作为下一次搜索的起点。

分支界限法的另外一种方法

当从根结点开始向下搜索时,预先通过某种方式的处理,从众多孩子结点中挑选一个孩子结点作为搜索树的一个分支结点,而把去掉这个结点之后的其他孩子结点的集合,作为搜索树的另外一个分支结点。

• 当从根结点开始向下搜索时,不是如第一种方法那样,对这n₁个孩子结点分别估计他们可能取得的目标函数的值bound(x₁),再选取最大或最小的结点进行分支搜索,而是预先通过某种方式的处理,从众多孩子结点中选择一个孩子结点作为搜索树的一个分支结点,而把去掉这个结点之后的其他孩子结点集合,作为搜索树的另外一个分支结点。令bound(x₁)是选择孩子结点进行分支搜索时所可能取得的目标函数的界,令bound(x̄₁)是不选择该孩子结点时所可能取得的目标函数的界。

- 然后选取界最大或最小的分支结点,继续 上述处理,直到最后得到界最大或最小的 结点为止。
- 该方法每进行一次分支选择,只计算两个目标函数的界。所生成的搜索树是一棵二叉树。
- 关键:如何选择分支和如何计算目标函数的上下界。

6.2 货郎担问题

• 费用矩阵

	0	1	2	3	4
0	∞	25	41	32	28
1	5	∞	18	31	26
2	20	16	∞	7	1
3	10	51	25	∞	6
4	23	9	7	11	8

14

6.2.1 费用矩阵的行归约(列归约)

费用矩阵c的第i行(或第j列)中的每个元素减去一个正常数lh_i(或ch_j),得到一个新的费用矩阵,使得新矩阵中第i行(或第j列)中的最小值为0,称为费用矩阵的行归约(列归约),称lh,为行归约常数,称ch,为列归约常数。

	0	1	2	3	4
0	∞	25	41	32	28
1	5	∞	18	31	26
2	20	16	∞	7	1
3	10	51	25	8	6
4	23	9	7	11	oo

6.2.2 矩阵的归约常数

• 对费用矩阵的每一行和每一列都进行归约和列归约,得到一个新的费用矩阵,<u>使得新矩阵中每一行和每一列都至少有一个元素为0</u>称为费用矩阵的归约。常数h:

$$h = \sum_{i=0}^{n-1} lh_i + \sum_{j=0}^{n-1} ch_j \qquad (6.2.1)$$

为矩阵的归约常数。

						1						
	0	1	2	3	4			0	1	2	3	4
0	∞	25	41	32	28	<i>lh₀</i> =25	0	∞	0	16	7	3
1	5	∞	18	31	26	<i>lh₁</i> =5	1	0	∞	13	26	21
2	20	16	∞	7	1	<i>lh</i> ₂ =1	2	19	15	∞	6	0
3	10	51	25	∞	6	lh ₃ =6	3	4	45	19	∞	0
4	23	9	7	11	∞	lh₄=7	4	16	2	0	<u>4</u>	∞
						, ,	_					

		U	1	2	3	4
	0	∞	0	16	3	3
ch ₃ =4	1	0	∞	13	22	21
	2	19	15	∞	2	0
	3	4	45	19	∞	0
	1	16	2	0	0	α
	4	10	2	U	U	\sim

$h = \sum_{i=0}^{n-1} lh_i + \sum_{j=0}^{n-1} ch_j$
=25+5+1+6+7+4
= 48

• <u>引理</u>: 令*G*=(*V,E*)是一个有向带权图, *I*是图*G*的一条哈密尔顿回路, *c*是图*G*的费用矩阵,则回路上的边对应于费用矩阵*c*中每行每列各一个元素。

האנו	. All 122	712	マハフ	七叶	しヤエ
	0	1	2	3	4
0	∞	25	41	32	28
1	5	∞	18	31	26
2	20	16	∞	7	1
3	10	51	25	∞	6
4	23	9	7	11	∞

 $l=v_0, v_3, v_1, v_4, v_2, v_0$

 $c_{03}, c_{31}, c_{14}, c_{42}, c_{20}$

 ν_i 是回路中的任意一个顶点($0 \le i \le n - 1$),它在回路中只有一条 出边,该边对应于费用矩阵中第i行中的一个元素。根据哈密 尔顿回路的定义, ν_i 在回路中只出现一次,因此第i行中有且 仅有一个元素与其对应。 • <u>引理</u>: $\Diamond G = (V, E)$ 是一个有向带权图,I是图G的一条哈密尔顿回路,C是图G的费用矩阵,则回路上的边对应于费用矩阵C中每行每列各一个元素。

	0	1	2	3	4
0	∞	25	41	32	28
1	5	∞	18	31	26
2	20	16	∞	7	1
3	10	51	25	∞	6
4	23	9	7	11	∞

 $l=v_0, v_3, v_1, v_4, v_2, v_0$

 $c_{03}, c_{31}, c_{14}, c_{42}, c_{20}$

设 ν_i 对应于费用矩阵中第i行中第j列的一个元素,即表示在回路中是从 ν_i 出发到达 ν_j ,根据哈密尔顿回路的定义, ν_j 在回路中只出现一次,因此第j列中不能再有元素出现。

• 定理2: 令G=(V,E)是一个有向带权图,I是图 G的一条哈密尔顿回路,c是图G的费用矩阵, \overline{c} 是费用矩阵 c 的归约矩阵,图 \overline{G} 是费用矩阵相对应的图,令 \overline{c} 是图 \overline{G} 的邻接矩阵,则 I 是图G的一条哈密尔顿回路。

• 定理1: 令G=(V,E)是一个有向带权图,l是图G的一条哈密尔顿回路,c是图G的费用矩阵,w(l)是以费用矩阵c计算的这条回路的费用,如果矩阵 \overline{c} 是费用矩阵c的归约矩阵,归约常数为h, $\overline{w}(l)$ 是以费用矩阵 \overline{c} 计算的这条回路的费用,则有:

 $w(l) = \overline{w}(l) + h$ (6.2.2)

根据定理1和定理2,求解图G的最短哈密尔顿回路问题,可以先求图G费用矩阵c的归约矩阵c,得到归约常数h后,再转换求与费用矩阵c对应的图G的最短哈密尔顿回路问题。且图G的最短哈密尔顿回路的费用,最少不会少于归约常数h。因此,归约常数h即为状态空间树中根结点的下界。

22

6.2.3 界限的确定

• 搜索方法:

当从根结点开始向下搜索时,预先通过某种方式的处理,从众多孩子结点中挑选一个孩子结点作为搜索树的一个分支结点Y,而把去掉这个结点之后的其他孩子结点的集合,作为搜索树的另外一个分支结点Y。

• Y的界限:

		0	1	2	3	4
	0	∞	0	16	3	3
	1	0	∞	13	22	21
	2	19	15	8	2	0
	3	4	45	19	∞	0
	4	16	2	0	0	∞
ı						

根结点X的下界:归约常数h。

如果选择从 ν_1 出发到达 ν_0 ,则该回路的边必然包括 $\overline{c_{10}}$,根据引理1,费用矩阵中第1行和第0列的元素在今后的计算中不再起作用,可以将它们删除。同时,回路中也不再有从 ν_0 出发到达 ν_1 的边,可以令 $\overline{c_{10}}=\infty$

	0	1	2	3	4
0	∞	0	16	3	3
1	0	∞	13	22	21
2	19	15	∞	2	0
3	4	45	19	∞	0
4	16	2	0	0	∞
3	4	45	19	∞	0

沿着 ν_1 出发到达 ν_0 的回路,其 费用肯定不会小于48+2+3=53 W(Y)=w(X)+h (6.2.3)

	1	2	3	4	
0	∞	16	3	3	
2	15	∞	2	0	
3	45	19	∞	0	
4	2	0	0	∞	
		_	_		
	1	2	3	4	
0	1 ∞	2	3	4	<i>Ih_o</i> =3
0	r ·		_	1] <i>Ih_o</i> =3
	∞	13	0	0	<i>lh₀</i> =3
2	∞ 13	13 ∞	0 2	0	<i>Ih</i> ₀ =3

 $ch_1=2$

• \bar{Y} 的界限:

2	3	4
16	3	3
13	22	21
∞	2	0
19	8	0
0	0	∞
	16 13 ∞	16 3 13 22 ∞ 2 19 ∞

根结点X的下界: 归约常数h。

因为回路中不再包含边 $\nu_i \nu_j$,则 可令 $\overline{c}_{ij} = \infty$,同时,在后续 的选择中,必然包含第i行 的最小元素和第j列的最小 元素(除 c_{ij} 之外的)。

则结点 \overline{Y} 的下界为: $w(\overline{Y}) = w(X) + d_{ii}$ (6.2.5)

	0	1	2	3	4
0	∞	0	16	3	3
1	0	∞	13	22	21
2	19	15	∞	2	0
3	4	45	19	∞	0
4	16	2	0	0	∞

$$w(\overline{Y}) = w(X) + d_{ij} = 48 + 4 + 13 = 65$$

6.2.4 分支的选择

- 在父结点的归约矩阵中,每行每列至少包含一个值 为0的元素。于是分支的选取按下面的两个思路进 行:
 - (1) 沿着 c_{ii} =0的方向选取,使所选路线尽可能短。
- (2) 沿着 d_{ij} 最大的方向选取,使得 $w(\bar{Y})$ 尽可能大。 令S是费用矩阵中 c_{ij} =0的元素集合,则:

$$D_{kl} = \max_{S} \{d_{ij}\}$$

$$w(\overline{Y}) = w(X) + D_{kl}$$

2 3 ∞ 3 0 3 16 0 13 22 ∞ 21 2 19 15 ∞ 0 3 4 45 19 0 ∞ 2 0 0 16

 $c_{01}=0$, $c_{10}=0$, $c_{24}=0$, $c_{34}=0$, $c_{42}=0$, $c_{43}=0$

$$d_{01}$$
=3+2=5, d_{10} =13+4=17, d_{24} =2+0=2, d_{34} =4+0=4, d_{42} =0+13=13, d_{43} =0+2=2

6.2.5 求解过程

- 用优先队列存储搜索的结点表,求解过程如下:
- (1) 初始化优先队列为空;
- (2) 建立父结点X,费用矩阵为X.c,费用矩阵阶数X.k=n,归约X.c,得到归约常数h,则父结点的下界为X.w=h;
- (3) 由(6.2.4),计算全部的 c_{ii} =0的 d_{ii} 。
- (4) 由 (6.2.6) ,计算 D_{kl} ,选取边 $\nu_k \nu_l$ 为分支方向,将 $\nu_k \nu_l$ 加入到回路边表中
- (5) 建立孩子结点Y, 将Y的下界插入优先队列中。
- (6) 建立孩子结点Y, 若Y.k=2, 直接判断最短回路的两条边, 使得Y.k=0, 否则将Y的下界插入优先队列中。
- (7) 取优先队列头元素作为X结点,若X.k=0,算法结束,否则,转

6.3 0/1背包问题

• n个物体重量为 w_0 , w_1 ,..., w_{n-1} , 价值分别为 p_0 , p_1 ,..., p_{n-1} , 背包载重量为M。按价值重量 比进行递减排序。排好序的物体序号S={0,1 , ...,n-1}。将物体划分为3个集合:装入背包 的物体集合 S_1 , 不装入背包的物体集合 S_2 , 以及尚待选择的物体集合 S_3 。初始时,有:

$$S_1(0) = \varphi, S_2(0) = \varphi, S_3(0) = \{0,1,...,n-1\}$$

分支的确定:

• *K*为当前价值重量比最大的元素,将*k*装入背包的动作为:

$$S_1(k+1) = S_1(k) \cup \{k\}$$

$$S_2(k+1) = S_2(k)$$

$$S_3(k+1) = S_3(k) - \{k\}$$

• *K*为当前价值重量比最大的元素,不将*k*装入 背包的动作为:

$$S_1(k+1) = S_1(k)$$

$$S_2(k+1) = S_2(k) \cup \{k\}$$

$$S_3(k+1) = S_3(k) - \{k\}$$

界限的确定:

- 假设b(k)为在选择K时,某个分支结点的背包中物体的价值上界。这时, $S_3=\{k,k+1,...,n-1\}$ 。
- 计算两种分支结点的背包中物体价值的上界: 若:

$$M < \sum_{i \in S_1(k)} w_i$$
 \emptyset $b(k) = 0$ (6.3.1)

• 若:

$$M = \sum_{i \in S_1(k)} w_i + \sum_{i=k+1}^{l-1} w_i + x \cdot w_l$$
$$0 \le x < 1, k < l, k \in S_1(k), l \in S_3(k)$$

则:

$$b(k) = \sum_{i \in S_1(k)} p_i + \sum_{i=k+1}^{l-1} p_i + x \cdot p_l$$
 (6.3.2)

• 例题: 五个物体, 重量为(8,16,21,17,12), 价值 为(8,14,16,11,7), 背包载重量为37.

• 价值重量比排序: 1,0.875,0.76,0.65,0.58

排序	1	0.875	0.76	0.65	0.58
序号	0	1	2	3	4

求解过程:

- 1. 将物体按价值重量比递减排序;
- 2. 建立根结点X, X.b=0,X.k=0,X.S₁=Φ, X.S₂=Φ, X.S₂=S;
- 3. 若X.k=n, 算法结束, X.S₁=即为装入背包的物体, X.b即为装入背包的最大值, 否则转步骤4;
- 4. 建立Y结点,令Y.S₁=X.S₁U{X.k}, Y.S₂=X.S₂, Y.S₃=X.S₃-{X.k}, Y.k=X.k+1; 按照式(6.3.1),(6.3.2)计算 Y.b ,将结点Y按Y.b插入堆中;
- 5. 建立Z结点,令Z.S₁=X.S₁, Z.S₂=X.S₂U{X.k},Z.S₃=X.S₃-{X.k}, Z.k=X.k+1;按照式(6.3.1),(6.3.2)计算 Z.b ,将结点Z按Z.b插入堆中;
- 6. 取得堆顶元素为X结点,转入步骤3.

w	8	16	21	17	12	
р	8	14	16	11	7	M=37
排序	1	0.875	0.76	0.65	0.58	
序号	0	1	2	3	4	
$S_1 = \Phi$ $S_2 = \Phi$ $S_3 = \{0, b = 0\}$	} B					

 $37 < \sum_{i \in S_i(0)} w_i = 8$ 不成立

w	8	16	21	17	12			
р	8	14	16	11	7	M=37		
排序	1	0.875	0.76	0.65	0.58			
序号	0	1	2	3	4			
$S_1 = \Phi$ $S_2 = \Phi$ $S_3 = \{0$ b = 0	4} B							
$37 = \sum_{i \in S_1(0)} w_i + \sum_{i=1}^{l-1} w_i + x \cdot w_l = 8 + (16) + x \cdot 21$ $l = 2, x = 0.619$ $b(0) = \sum_{i \in S_1(0)} p_i + \sum_{i=1}^{2-1} p_i + 0.619 \cdot p_2$								
=8-	+(14)+0	0.6198*	16 = 31.9	9		65		

W	8	16	21	17	7	12		
р	8 14		16		L	7	M=37	
排序	1	0.875	0.76	0.65		0.58		
序号	0	1	2	3		4		
S ₂ =Φ	S ₁ =Φ S ₂ =Φ S ₃ ={0,1,2,3,4} b=0 K=0 不装入 S ₂ ={0} S ₃ ={1,2,3,4} b=30						(1) C	
$37 = \sum_{i \in S_1(0)} w_i + \sum_{i=1}^{l-1} w_i + x \cdot w_i = 0 + (16 + 21) + 0.17$ $l = 3, x = 0$								
b($b(0) = \sum_{i \in S_1(0)} p_i + \sum_{i=1}^{3-1} p_i + 0 \cdot p_3$							
=	= 0 + (14 + 16) + 0 * 11 = 30							

6.4 作业分配问题

n个操作员以n种不同时间完成n种不同作业,要求 分配每一位操作员完成一项工作,使得完成n项工作的 总时间最少。 • 将*n*个操作员编号为0,1,..., *n* -1, *n*个作业编号为0,1,..., *n* -1。用矩阵*c*来描述每位操作员完成每个作业的时间。用向量*x*_i描述分配给操作员的作业编号,如表示分配给第*i*为操作员的作业编号。

按第一种方法,从根结点开始,在整个搜索过程中,每遇到一个e结点,就对它的所有孩子结点计算它们的下界,并把它们登记在结点表中。再从结点表中选取下界最小的结点,重复上述过程。当搜索到一个叶子结点时,如果该结点的下界是结点表中最小的,则该结点就是最优解。否则对下界最小的结点继续进行扩展。

下界的计算

• k表示搜索深度, 当k=0时, 从结点开始向下搜索。 这时它有n个孩子结点对应n个操作员。如果把作业 0(k=0)分配给第i位操作员, 其余作业分配给其他操 作员, 则需要的时间至少为:

$$t = c_{i0} + \sum_{i=1}^{n-1} (\min_{k \neq i} c_{kj})$$

作业

把第0号作业分配给第0位操作员时, c_{00} =3,第1号作业分别由其他3位操作员完成时,最短时间为7,第2号作业的最短时间为6,第三号作业的最短时间为3,因此,当把第0号作业分配给第0位操作员时,所需要的时间不会小于3+7+6+3=19,可以把它看成是根结点下第0个结点的下界。同样,如果把第0号作业分配给第1位操作员时,所需要的最少时间为23,可以把它看成是根结点下第1个结点的下界。

• 当搜索深度为k时,前面0,1,...,k-1号作业已 经分配给各个操作员。令S={0,1,...,n-1}表示 操作员编号, m_{k-1} ={ i_0 , i_1 ,..., i_{k-1} }表示作业已 分配的操作员编号的集合。当把第k个作业 分配给编号为 i_k 的操作员时, i_k \in S- m_{k-1} ,所 需要至少的时间为:

$$t = \sum_{l=0}^{k} c_{i_{l}l} + \sum_{l=k+1}^{n-1} (\min_{i \in S - m_{k}} c_{il})$$
 (1)

作业分配算法

- 1. 建立根结点X, 令根结点X.k=0, $X.S=\{0,1,...,n-1\},X.m=\phi$
- 2. 对所有编号为i的操作员, $i \in X.S$,建立孩子结点 Y_i ,把结点X的数据复制到结点 Y_i
- 令Y_i·m=Y_i·m ∪{i}, Y_i·S=Y_i·S-{i}, Y_i·x_i=Y_i·k, Y_i·k=Y_i·k+1, 按 照公式 (1) 计算Y_i·t
- 4. 把根结点Y,插入到最小堆
- 取堆顶元素作为子树的根X, 若X.k=n, 则算法结束, 否则转步骤2.

作业

 $t_{00} = 3+7+6+3=19$ $t_{10} = 9+7+4+3=23$ $t_{20} = 8+7+4+5=24$ $t_{30} = 12+7+4+3=26$

当k=0时,有:

于是,在根结点下建立4个孩子结点,把第0号作业分配给第0,1,2,3号操作员,其下界分别是19,23,24,26。

将这些结点插入到优先队列中,这时,结点0的下界最小,可以从该结点 开始进行搜索。又生成3个孩子结点。

> t_{11} =3+12+6+3=24 t_{21} =3+7+6+5=21 t_{31} =3+7+9+3=22

将这些结点插入到优先队列中,这时, 结点0的下界最小,可以从该结点 开始进行搜索。又生成3个孩子结点。

> t_{11} =3+12+6+3=24 t_{21} =3+7+6+5=21 t_{31} =3+7+9+3=22

 t_{12} =3+7+13+8=31 t_{32} =3+7+5+6=21

0号操作员分配0号作业,2号操作员分配1号作业,3号操作员分配2号作业,1号操作员分配3号作业。

6.5 同题异策一"算法"与"策略"

- 没有刻意区分
- □ 策略
 - 一种思想,提出解决问题的思路
 - 从战略高度上面向问题
- 算法
 - 对一个/类具体问题的解决方法
 - 面向具体实现,可以用任何方式描述
 - 策略对算法有指导性
 - 在一种策略的指导下,可以有多种不同的算法实现
 - □ 如排序问题,使用贪婪策略,列出3种有效算法

同题异策一"算法"与"策略"

- 迭代(递推)
- 枚举
- 贪婪
- 动态规划
- 分治

同题异策一"算法"与"策略"

- 迭代(递推)
 - 中心思想: 重复使用迭代(递推)公式,根据变量的旧值推出新值;
 - 适用问题:具有明确迭代公式的问题,主要是数值计算等。

同题异策一"算法"与"策略"

- 贪婪
 - ✓中心思想:通过一系列的局部选择来得到一个问题的解,所作的每一步选择:"只顾眼前最优,不管将来好坏"

✓适用问题: **这项要求很高**

- 1)贪婪选择性质; 2)最优子结构性质。
- 动态规划
 - ✓ 中心思想:把求解的问题 分成许多阶段/子问题,然 后按顺序求解各阶段/子问 题;记录每个阶段决策得 到的结果序列。最后阶段 的解就是初始问题的解。
 ✓ 适用问题:
 - 1)最优子结构; (必须有)
 - 2)无后向性;
 - 3)子问题重叠性质。 (体现 优势)

同题异策一"算法"与"策略"

•分治

- 中心思想:将整个问题分解 成若干个小问题后分而治之; 分解,解决,合并。
- 适用问题:
 - 1)问题的规模缩小到一定程度就 可容易解决;
 - 2)问题可以分解为若干个规模较 小的相似问题;
 - 3)子问题的解可以合并为原问题 的解;
 - 4) 子问题相互独立。

枚举

- 中心思想: 枚举 出问题的所有可 行解,找出其中 的最优解;
- 适用问题: 其它 策略难以奏效。

6.6 同题异策一算法策略的总结

- 对问题进行分解的策略: "分治法"与"动态规划法"
- "分治法"与"动态规划法"都是递归思想的应用之一, 是找出大问题与小的子问题之间的关系,直到小的子问题 很容易解决,再由小的子问题的解导出大问题的解。
- · 动态规划的实质: 分治算法思想+解决子问题冗余情况

同题异策一算法策略的总结

- 多阶段逐步解决问题的策略: "贪婪算法"、"递推法"、 "递归法"和"动态规划法"
- 多阶段过程就是按一定顺序(从前向后或从后向前等)一定的策略,逐步解决问题的方法。
 - 。"贪婪算法"每一步根据策略得到一个结果传递到下一步,自顶向下,一步一步地作出贪心选择。
 - 。"动态规划法"则根据一定的决策,每一步决策出的不是一个结果,而只是使问题的规模不断的缩小,如果决策比较简单,是一般的算法运算,则可找到不同规模问题间的关系,使算法演变成"递推法"、"递归法"算法。
 - "递推法"、"递归法"更注重每一步之间的关系,决策的因素较少。

同题异策一 算法策略的总结

- 全面逐一尝试: 比较"枚举法"、"递归回溯法"
- 有这样一类问题,问题中不易找到信息间的相互关系,也 不能分解为独立的子问题,似乎只有把各种可能情况都考 虑到,并把全部解都列出来之后,才能判定和得到最优解。
- 对于规模不大的问题,这些策略简单方便;而当问题的计算复杂度高且计算量很大时,还是考虑"动态规划法"这个更有效的算法策略。
- 实现
 - 循环次数固定的问题:通过循环嵌套枚举问题中各种可能的情况,如八皇后问题能用八重循环嵌套枚举。
 - 不固定的问题: 靠递归回朔法来"枚举"或"遍历"各种可能情况。比如n皇后问题只能用"递归回朔法"通过递归实现(当然可以通过栈,而不用递归)。

求解组合优化问题的算法设计技术比较

技术	动态规划	分支限界	贪心法
使用条件	优化原则 多步判断	多步判断	贪心选择+优化原则 多步判断
选择依据	子问题结果	约束条件和界	局部最优性质
计算过程	看子问题结果选择 自底向上	选择后生成子问题 自顶向下	选择后生成子问题 自顶向下
数据结构	二维表	树、队列	线性表
解	一个最优解	一个和多个最优解	一个最优或近似解
关键问题	递推方程 空间复杂性高	设定代价函数 时间复杂性高	贪心选择性质证明 近似解的误差估计