三角函数

2025年7月23日

辅助角公式和两角和、倍角公式

1. $4\cos 50^{\circ} - \tan 40^{\circ} =$ _____.

- 2. 己知函数 $f(x) = \sin x + 2\cos^2 \frac{x}{2}$.
 - (1) 求 f(x) 的最小正周期及单调递减区间;
 - $(2) ~ 若 ~ f(\alpha) = \frac{9}{4}, \alpha \in (\frac{\pi}{4}, \frac{\pi}{2}), ~ 求 \sin \alpha + \sin 2\alpha ~ 的值.$

- 3. 已知角 α 的顶点在坐标原点 O,始边与 x 轴的非负半轴重合,将 α 的终边按顺时针方向旋转 $\frac{\pi}{2}$ 后得到角 β 的终边,且经过点 $(\frac{2}{\sqrt{5}},\frac{1}{\sqrt{5}})$.
 - (1) 求 $\cos \alpha$ 的值;
 - (2) 求函数 $f(x) = \cos^2(x \alpha) + \sin^2(x + \beta)$ 的值域.

- 4. 己知函数 $f(x) = \sqrt{3}\sin 2x + 2\cos^2 x 1$.
 - (1) 求函数 f(x) 的单调递减区间;
 - (2) 将函数 f(x) 分别向左、向右平移 m(m>0) 个单位相应得到 g(x)、h(x),且 $\cos m = \frac{\sqrt{3}}{3}$,求函数 y = g(x) + h(x), $x \in [0, \frac{\pi}{2}]$ 的值域。

对称性、周期性、极值点和单调性

- 1. 已知函数 $f(x) = \sin^2\left(x + \frac{\pi}{3}\right) + \frac{1}{2}\cos\left(2x + \frac{\pi}{6}\right)$.
 - (1) 求 $f\left(\frac{\pi}{24}\right)$ 的值;
 - (2) 求函数 y = f(x) 的最小正周期及其单调递增区间.

- 2. 己知函数 $f(x) = \cos^2 x + \cos x \sin\left(x \frac{\pi}{6}\right)$ $(x \in \mathbf{R})$.
 - (1) 当 $x \in \left[-\frac{\pi}{4}, \frac{\pi}{6}\right]$ 时,求 f(x) 的值域;
 - (2) 求 f(x) 在 $[0,\pi]$ 上的增区间.

3. 设函数 $f(x) = \cos(\omega x - \frac{\pi}{6})(\omega > 0)$ 的最小正周期为 $\frac{\pi}{5}$,求其对称轴方程.

- 4. 设函数 $f(x)=\frac{\sqrt{3}}{2}-\sqrt{3}\sin^2\omega x-\sin\omega x\cos\omega x\,(\omega>0)$,且 y=f(x) 的图象的一个对称中心到最近的对称轴的距离为 $\frac{\pi}{4}$.
 - (1) 求 ω 的值;
 - (2) 求 f(x) 在区间 $\left[\pi, \frac{3\pi}{2}\right]$ 上的最大值和最小值.

三角函数的图像

- 1. 已知函数 $f(x) = \sin(\omega x + \varphi)$ $(0 < \varphi < \pi)$ 图象上相邻两个最高点的距离为 π .
 - (1) 若 y = f(x) 的图象过点 $(0, \frac{1}{2})$, 且部分图象如右图所示, 求函数 f(x) 的解析式;
 - (2) 若函数 y = f(x) 是偶函数,将 y = f(x) 的图象向左平移 $\frac{\pi}{6}$ 个单位长度,得到 y = g(x) 的图象,求函数 $y = 2\left[f\left(\frac{x}{2}\right)\right]^2 + g(x)$ 在 $[0, \frac{\pi}{2}]$ 上的最大值与最小值.

- 2. 已知函数 $f(x)=\frac{\sqrt{3}}{2}\cos^2\frac{\omega x}{2}-\frac{1}{4}\sin(\omega x)-\frac{\sqrt{3}}{4}\left(\omega>0\right)$ 的图象如图所示,其中 A 为图象的最高点,B,C 为图象与 x 轴的交点,且 $\triangle ABC$ 为等腰三角形.
 - (1) 求 ω 的值及 f(x) 的单调递增区间;
 - (2) 设 $g(x) = f(x) + f(x + \frac{1}{3})$,求函数 g(x) 在 $[-\frac{1}{2}, \frac{1}{3}]$ 上的最大值及此时 x 的值.

- 3. 己知函数 $f(x) = A\cos(\omega x + \varphi)$ $(A > 0, \omega > 0, -\frac{\pi}{2} < \varphi < \frac{\pi}{2})$. y = f(x) 的图象如图所示.
 - (1) 求 f(x) 的解析式;
 - (2) 记 $g(x) = f(x) \left| x \frac{5\pi}{6} \right|$, 求 g(x) 的最大值.

- 4. 己知函数 $f(x) = A\sin(\omega x + \phi)$ $(x \in \mathbf{R}, A > 0, \omega > 0, 0 < \phi < \frac{\pi}{2})$ 的图像如图所示;
 - (1) 求函数 f(x) 的解析式;
 - (2) 求函数 $g(x) = f\left(x \frac{\pi}{12}\right) f\left(x + \frac{\pi}{12}\right)$ 的单调递增区间.

ω 相关

1. 已知函数 $f(x) = \sin(\omega x + \frac{\pi}{3})(\omega > 0)$ 在区间 $(0,\pi)$ 内无零点,其图像关于 $x = \frac{2\pi}{3}$ 对称,求 f(x) 的解析式.

2. 已知函数 $f(x)=\sin(\omega x+\frac{\pi}{3})(\omega>0)$ 的图像关于点 $(\frac{\pi}{3},0)$ 对称,且在 $(\frac{\pi}{4},\frac{\pi}{2})$ 上只有两条对称轴,求 ω 的值.

3. 已知函数 $f(x) = \sin(\omega x + \varphi)(\omega > 0, -\frac{\pi}{2} < \varphi < \frac{\pi}{2}), x = -\frac{\pi}{4}$ 为 f(x) 的零点, $x = \frac{\pi}{4}$ 为 y = f(x) 的对称轴,且 f(x) 在区间 $\left(\frac{\pi}{18}, \frac{5\pi}{36}\right)$ 上单调,求 ω 的最大值.

4. 已知函数 $y=\sin(\omega x+\frac{\pi}{6})(\omega>0)$ 在区间 $(0,\frac{\pi}{2})$ 上有一个最高点和一个最低点,求 ω 的取值范围.

5. 已知函数 $f(x) = 2\cos(\omega x + \frac{\pi}{6})(\omega > 0)$ 在区间 $[-\frac{\pi}{6}, \frac{\pi}{3}]$ 上单调递减,且在区间 $[0, \pi]$ 上有且仅有 1 个零点,求 ω 的取值范围.

6. 己知函数 $f(x) = \cos(\omega x + \varphi)(\omega > 0, -\frac{\pi}{2} < \varphi < 0)$, $\left| f(-\frac{\pi}{6}) \right| = 1, f(\frac{\pi}{6}) = 0$,且 f(x) 在区间 $\left(\frac{\pi}{6}, \frac{5\pi}{24} \right)$ 上单调,求 ω 的取值范围.