frame is important

- in graphics, we often keep track of a number of frames
 - each object, the camera, the world ...
 - so we need to be careful how we use matrices.
- given point and matrix is not enough to specify mapping
- for example point \tilde{p} and the matrix

$$\mathbf{S} = \left[\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

- the matrix is non-uniform scaling
- \bullet fix a frame $\vec{\mathbf{f}}^{\mathbf{t}}$
- in this frame $\tilde{p} = \vec{\mathbf{f}}^t \mathbf{c}$
- transform with matrix $\vec{\mathbf{f}}^t \mathbf{c} \Rightarrow \vec{\mathbf{f}}^t \mathbf{S} \mathbf{c}$
- the stretches by factor of two in first axis of $\vec{\mathbf{f}}^t$
- see fig

other frame

- pick some other frame $\vec{\mathbf{a}}^t$.
- relationship between bases $\vec{\mathbf{a}}^{\mathbf{t}} = \vec{\mathbf{f}}^{\mathbf{t}} \mathbf{A}$.
- express same point as $\tilde{p} = \vec{\mathbf{f}}^t \mathbf{c} = \vec{\mathbf{a}}^t \mathbf{A}^{-1} \mathbf{c} = \vec{\mathbf{a}}^t \mathbf{d}$,
- use matrix S we get $\vec{\mathbf{a}}^{\mathbf{t}}\mathbf{d} \Rightarrow \vec{\mathbf{a}}^{\mathbf{t}}\mathbf{S}\mathbf{d}$.
 - (equiv statement $\vec{a}^t A^{-1}c \Rightarrow \vec{a}^t S A^{-1}c$.)
- the same point \tilde{p} is stretched about first axis of $\vec{\mathbf{a}}^t$
- see fig
- also rot fig

left-of rule

- point is transformed with respect to the the frame that appears immediately to the left of the transformation matrix in the expression.
- We read

$$\tilde{p} = \vec{\mathbf{f}}^t \mathbf{c} \Rightarrow \vec{\mathbf{f}}^t S \mathbf{c}$$

- as " \tilde{p} is transformed by S with respect to $\vec{\mathbf{f}}^{t}$ ".
- We read

$$\tilde{p} = \vec{\mathbf{a}}^t A^{-1} \mathbf{c} \Rightarrow \vec{\mathbf{a}}^t S A^{-1} \mathbf{c}$$

– as " \tilde{p} is transformed by S with respect to $\vec{\mathbf{a}}^{t}$ ".

more generally

• We read

$$\tilde{p} = \vec{\mathbf{f}}^t A B \mathbf{c} \Rightarrow \vec{\mathbf{f}}^t A S B \mathbf{c}$$

– as " \tilde{p} is transformed by S with respect to $\vec{\mathbf{f}}^t A$ ".

for frames

- same for transformations of frames
- We read

$$\vec{\mathbf{f}}^t \Rightarrow \vec{\mathbf{f}}^t S$$

- " $\vec{\mathbf{f}}^t$ is transformed by S with respect to $\vec{\mathbf{f}}^t$ ".
- We read

$$\vec{\mathbf{f}}^t = \vec{\mathbf{a}}^t A^{-1} \Rightarrow \vec{\mathbf{a}}^t S A^{-1}$$

– as " $\vec{\mathbf{f}}^t$ is transformed by S with respect to $\vec{\mathbf{a}}^t$ ".

more generally

• We read

$$\vec{\mathbf{g}}^t = \vec{\mathbf{f}}^t A B \Rightarrow \vec{\mathbf{f}}^t A S B$$

- as " $\vec{\mathbf{g}}^t$ is transformed by S with respect to $\vec{\mathbf{f}}^t A$ ".

auxiliary frame

- we may wish to transform a frame $\vec{\mathbf{f}}^t$ in some specific way represented by a matrix M, with respect to some auxiliary frame $\vec{\mathbf{a}}^t$.
 - For example, we may be using some frame to model the planet Earth, and we now wish the Earth to rotate around the Sun's frame.
- let $\vec{\mathbf{a}}^t = \vec{\mathbf{f}}^t A$
- then The transformed frame can then be expressed as

$$\vec{\mathbf{f}}^t$$
 (1)

$$= \vec{\mathbf{a}}^t A^{-1} \tag{2}$$

$$= \vec{\mathbf{a}}^t A^{-1}$$

$$\Rightarrow \vec{\mathbf{a}}^t M A^{-1}$$
(2)
$$(3)$$

$$= \vec{\mathbf{f}}^t A M A^{-1} \tag{4}$$

multiple transformations

- using the "left of" rule
- example:
 - a rotation matrix R rotating a point by θ degrees about origin
 - translation matrix T, translating the point by one unit in the direction of the first frame axis.

interp 1

• given tform

$$\vec{\mathbf{f}}^t \Rightarrow \vec{\mathbf{f}}^t TR$$

- break into 2 steps
- In the first step

$$\vec{\mathbf{f}}^t \Rightarrow \vec{\mathbf{f}}^t T = \vec{\mathbf{f}'}^t$$

 $-\vec{\mathbf{f}}^t$ is transformed by T with respect to $\vec{\mathbf{f}}^t$ and we call the resulting frame $\vec{\mathbf{f}}'^t$.

• In the second step,

$$\vec{\mathbf{f}}^t T \Rightarrow \vec{\mathbf{f}}^t T R
\vec{\mathbf{f}'}^t \Rightarrow \vec{\mathbf{f}'}^t R$$

– This is interpreted as: $\vec{\mathbf{f}}^{\prime t}$ is transformed by R with respect to $\vec{\mathbf{f}}^{\prime t}$.

other way

• In the first step

$$\vec{\mathbf{f}}^t \Rightarrow \vec{\mathbf{f}}^t R = \vec{\mathbf{f}}^{\circ t}$$

- $\vec{\mathbf{f}}^t$ is transformed by R with respect to $\vec{\mathbf{f}}^t$ and we call the resulting frame $\vec{\mathbf{f}}^{\circ t}$.
- In the second step,

$$\vec{\mathbf{f}}^t R \Rightarrow \vec{\mathbf{f}}^t T R$$

 $\vec{\mathbf{f}}^{\circ t}$ is transformed by T with respect to $\vec{\mathbf{f}}^t.$

summary

- both interps can be useful
- left to right, wrt latest (local)
 - right to left, wrt original frame (global)
- $\bullet~$ ex. 8-11