Classificação de Doenças Oculares: Uma Comparação de Modelos CNN

1st Alefe Vitor Almeida Gadioli Universidade Federal do Espírito Santo - UFES Vitória-ES, Brasil alefe.gadioli@edu.ufes.br 2nd Priscilla Martins Benevides *Universidade Federal do Espírito Santo - UFES*Vitória-ES, Brasil

priscilla.benevides@edu.ufes.br

Abstract—A classificação de doenças oculares utilizando aprendizado profundo tem se mostrado promissora na assistência ao diagnóstico médico. Este estudo compara três modelos de redes neurais convolucionais (CNN) – ResNet-18, EfficientNet-B0 e MobileNetV2 – na classificação de catarata, retinopatia diabética, glaucoma e olhos normais. Utilizando o conjunto de dados RFMID, os modelos foram avaliados em termos de acurácia, precisão, recall e F1-score. O MobileNetV2 destacouse com uma acurácia de 0,92, equilíbrio entre precisão e recall, eficiência computacional e menor uso de memória, tornando-o ideal para aplicações em dispositivos móveis. Futuras melhorias podem incluir a integração de técnicas de aumento de dados e ajustes finos adicionais.

I. INTRODUÇÃO

A classificação de doenças oculares é uma área de pesquisa dedicada ao desenvolvimento de algoritmos e modelos para identificar com precisão diferentes tipos de doenças oculares a partir de dados de imagem médica. Ela desempenha um papel fundamental ao auxiliar oftalmologistas e profissionais de saúde no diagnóstico e tratamento eficazes das doenças oculares.

A conscientização sobre a saúde ocular, considerando que muitas doenças, como o glaucoma, são assintomáticas nos estágios iniciais é importante para garantir um tratamento adequado e até a cura. [1] O glaucoma pode danificar o nervo óptico e levar à cegueira se não tratado [1]. Mundialmente, 2,2 bilhões de pessoas têm deficiência visual ou cegueira. No Brasil, são mais de 1,5 milhões, com 74,8% dos casos sendo evitáveis com diagnóstico precoce [1].

A cegueira afeta a capacidade laboral, a qualidade de vida e tem impactos econômicos. [1] A catarata, a principal causa de cegueira reversível, afeta 20 milhões de pessoas no mundo. [1] No Brasil, 93% da população conhece a catarata, mas 48% desconhecem que a cirurgia é o único tratamento eficaz [2].

Um estudo do Ibope de 2020 sobre glaucoma revela que, embora 53% dos brasileiros ficariam profundamente afetados com a perda da visão, apenas 37% consideram essencial visitar um oftalmologista regularmente. [1]

O objetivo da classificação de doenças oculares é utilizar técnicas de aprendizado de máquina e visão computacional para analisar imagens médicas e identificar quatro condições: catarata, retinopatia diabética, glaucoma e olhos normais.

A. Objetivo

Este estudo propõe classificar imagens oculares usando aprendizado profundo com os modelos ResNet-18, EfficientNet-B0 e MobileNetV2 no conjunto de dados RFMID, visando diagnósticos iniciais de baixo custo. Os modelos foram escolhidos para integração em sistemas simples e de baixo custo, como triagem e suporte ao diagnóstico. Exemplos de caso de usos: Triagem e Detecção Precoce, Suporte ao Diagnóstico, Planejamento e Monitoramento do Tratamento.

II. TRABALHO RELACIONADOS

A classificação de doenças oculares com aprendizado profundo tem sido recentemente explorada, com vários estudos desenvolvendo algoritmos para identificar doenças a partir de imagens.

Gulshan et al. (2016) criaram um algoritmo para detecção de retinopatia diabética em fotografias de fundo de olho, demonstrando alta precisão [3]. Ting et al. (2017) desenvolveram um sistema para detectar retinopatia diabética e outras doenças oculares em populações multiétnicas, destacando a importância de dados diversificados [4]. Bismi e Na'am (2023) investigaram a classificação de miopia usando arquiteturas VGG16, VGG19 e InceptionV3 em imagens de fundo de olho [5].

Esses estudos fornecem uma base metodológica valiosa para o presente trabalho. A utilização de arquiteturas robustas como ResNet, Inception e U-Net pode aumentar a precisão dos modelos, apesar de possíveis limitações de eficiência e custo em aplicações práticas.

III. METODOLOGIA

Usando Aprendizado Profundo para classificar doenças oculares. O método proposto neste estudo pode ser descrito conforme a figura 1. A imagem é um fluxograma que descreve o processo de treinamento e validação de modelos de aprendizado profundo. Aqui está a descrição detalhada de cada etapa do fluxograma:

A. Dataset

O conjunto de dados utilizado neste estudo foi obtido do Repositório de Imagens de Múltiplas Doenças da Retina (RFMID) [6]. Este trabalho aborda a predição de quatro condições: catarata, retinopatia diabética, glaucoma e olhos

Fig. 1. Método de pesquisa

normais. O conjunto de dados é composto por 4217 amostras. Posteriormente, foi realizado uma seleção entre os conjuntos de dados disponíveis, dividindo-os em quatro classes que explicam a classificação das diferenças entre olhos normais, catarata, retinopatia diabética e glaucoma. Com aproximadamente 1000 imagens em cada classe, a distribuição é uniforme, conforme ilustrado na Figura 2.

Fig. 2. Distribuição de imagens

O conjunto de dados foi dividido em dois subconjuntos: treinamento e teste, com 85% das imagens destinadas ao treinamento e 15% reservadas para o teste.

B. Augmentation

Augmentation de imagem é uma das estratégias de treinamento mais eficazes para ampliar coleções de imagens para modelos de aprendizado profundo que não possuem dados de imagem suficientes. Aumentação de dados de imagem é necessária porque é essencial para obter melhor precisão nos testes e ajudar na geração de dados equilibrados [7]. As

técnicas de *Augmentation* de imagem utilizadas neste estudo foram as seguintes:

- Espelhamento horizontal aleatório com probabilidade de 50%.
- Espelhamento vertical aleatório com probabilidade de 50%.
- Autocontraste aleatório com probabilidade de 50%.
- Rotação aleatória às imagens dentro de um intervalo de 15 graus.

C. Pré-processamento

As etapas de pré-processamento realizadas incluem redimensionamento, codificação de rótulos (*labels*) e normalização.

Foi constatado que todos os pixels das imagens não estavam na faixa de [0-255]. Portanto, cada imagem foi normalizada de acordo com o padrão utilizado pelos modelos para garantir consistência e precisão. Todas as imagens foram redimensionadas para (224,224).

Exemplo da imagem utilizada pode ser visto na Figura 3.

Fig. 3. Imagens das classes escolhidas

D. Deep-learning

O aprendizado profundo está evoluindo rapidamente e melhorando diversas aplicações médicas, como análise de imagens, detecção de estruturas anatômicas, segmentação de tecidos, diagnóstico auxiliado por computador e prognóstico de doenças [8]. Esse conceito é central em muitos algoritmos, utilizando modelos com múltiplas camadas que transformam dados de entrada (imagens) em saídas (presença/ausência de doença) enquanto aprendem características progressivamente. As redes neurais convolucionais (CNNs) são as mais eficazes para análise de imagens [9], e com o avanço da tecnologia e capacidades computacionais, o aprendizado profundo tem sido amplamente aplicado na classificação de imagens [9].

A seguir iremos tratar de cada arquitetura utilizada.

1) ResNet-18: Rede Neural Residual com 18 camadas é uma arquitetura de rede neural convolucional profunda, desenvolvida para superar problemas como o desaparecimento dos gradientes [10]. Faz parte da família de Redes Neurais Residuais (ResNets), conhecidas por suas conexões residuais.

Cada bloco residual permite que o sinal de entrada seja adicionado diretamente ao sinal de saída de algumas camadas subsequentes, utilizando conexões de salto que contornam uma ou mais camadas intermediárias. [10] Essas conexões ajudam a resolver o problema de gradientes desaparecendo e explodindo. [10]. Na figura 4 apresenta a arquitetura usada nesse modelo.

Fig. 4. Arquitetura ResNet-18

2) EfficientNet-B0: É uma arquitetura de rede neural convolucional desenvolvida para otimizar a eficiência e a precisão do aprendizado profundo. Introduzida por Mingxing Tan e Quoc V. Le em 2019, a EfficientNet-B0 faz parte da família EfficientNet, que utiliza dimensionamento composto para equilibrar profundidade, largura e resolução da rede, maximizando a performance [11].

A arquitetura EfficientNet-B0 é composta por blocos MB-Conv (Mobile Inverted Bottleneck Convolutional Blocks), que foram introduzidos pela primeira vez na rede MobileNetV2. Esses blocos são eficientes em termos de computação e ajudam a reduzir a quantidade de parâmetros enquanto mantêm a capacidade da rede de aprender representações complexas [11]. Na figura 5 apresenta a arquitetura usada nesse modelo.

Fig. 5. Arquitetura EfficientNet-B0

3) MobileNetV2: Introduzida por Mark Sandler, Andrew Howard e outros pesquisadores do Google em 2018, a MobileNetV2 é uma evolução da MobileNetV1, com melhorias significativas em termos de eficiência e desempenho, projetada especificamente para uso em dispositivos móveis e aplicações com recursos limitados. [12].

A MobileNetV2 introduz o conceito de blocos invertidos de gargalo, que são diferentes dos blocos residuais tradicionais [12]. Esses blocos permitem que as camadas intermediárias da rede sejam expandidas e comprimidas, reduzindo a quantidade de operações computacionais necessárias [12].

Seguindo a MobileNetV1, a MobileNetV2 utiliza convoluções separáveis em profundidade para reduzir drasticamente o número de parâmetros e a complexidade computacional, mantendo a precisão do modelo. [12]. Na figura 6 apresenta a arquitetura usada nesse modelo.

Fig. 6. Arquitetura MobileNetV2

E. Processo de Treinamento

O processo de treinamento é a etapa na qual a CNN é ajustada para melhorar a precisão da classificação. Este estágio envolve dois processos principais: feedforward e backpropagation [9].

- 1) Processo de Feedforward: É a primeira etapa do treinamento, onde várias camadas são geradas para classificar os dados de imagem, utilizando pesos e vieses atualizados durante o backpropagation. [9]
- 2) Processo de Backpropagation: É a segunda etapa do treinamento. Nesta fase, os resultados do feedforward são analisados para identificar erros da camada de saída até a primeira camada, permitindo ajustes nos pesos e vieses. [9]
- 3) Cálculo de Gradiente: O cálculo do gradiente na rede de convolução é crucial para gerar novos valores de peso e viés necessários durante o treinamento, ajustando a rede para minimizar os erros de previsão [9]

F. Processo de Teste

O processo de teste envolve a classificação utilizando os pesos e vieses obtidos no treinamento. [9] Este estágio resulta na avaliação da precisão da classificação, identificando os dados que falharam na classificação, o número de imagens que não foram corretamente classificadas e a configuração final da rede a partir do feedforward. A camada de saída está totalmente conectada com os rótulos existentes. [9]

G. Parâmetros do estudo

Os seguintes parâmetros foram utilizados neste estudo:

- Otimizador: Adam
- Taxa de aprendizado: 3e-5
- Tamanho do batch: 128
- Número de épocas: 100

Os parâmetros da camada fully connected são:

- Camada linear: 512 unidades de entrada e 128 unidades de saída
- Ativação: ReLU
- Dropout: Taxa de 0.2
- Camada linear final: 128 unidades de entrada e 4 unidades de saída

H. Métricas

A seguir, explico como cada uma dessas métricas é calculada e apresento um exemplo de código para gerar essas métricas.

Definições:

Acurácia (Accuracy): A proporção de previsões corretas em relação ao total de previsões feitas.

$$Acur\'acia = \frac{N\'umero \ de \ previs\~oes \ corretas}{N\'umero \ total \ de \ amostras}$$

Matriz de Confusão (Confusion Matrix): Uma tabela que é frequentemente usada para descrever o desempenho de um modelo de classificação. A matriz de confusão mostra os valores reais versus os valores preditos, distribuídos por classe.

Precisão (Precision)

$$Precisão = \frac{Verdadeiros\ Positivos}{Verdadeiros\ Positivos + Falsos\ Positivos}$$

Recall (Recall)

$$Recall = \frac{Verdadeiros \ Positivos}{Verdadeiros \ Positivos + Falsos \ Negativos}$$

F1-Score: A média harmônica entre a precisão e o recall.

$$\label{eq:F1-Score} \text{F1-Score} = 2 \times \frac{\text{Precisão} \times \text{Recall}}{\text{Precisão} + \text{Recall}}$$

Support: O número de ocorrências de cada classe no conjunto de dados.

I. Bibliotecas Utilizadas

Para este estudo, utilizamos várias bibliotecas. O Pandas foi empregado para a manipulação e análise de dados estruturados [13]. O NumPy forneceu suporte para arrays e matrizes multidimensionais [14]. Utilizamos o Matplotlib para a criação de gráficos [15] e o Seaborn para gráficos estatísticos atraentes [16]. O OpenCV foi utilizado para processamento de imagens e vídeos [17]. Para treinar modelos de redes neurais profundas, utilizamos o PyTorch [18]. O scikit-learn forneceu ferramentas para modelagem preditiva e avaliação, incluindo matriz de confusão e relatórios de classificação [19].

IV. RESULT AND DISCUSSION

A. ResNet-18

A classe "glaucoma" tem uma precisão de 0,89, recall de 0,88 e F1-score de 0,89. Isso sugere que o modelo se desempenha bem na identificação correta dos casos de glaucoma, mas pode haver alguns falsos negativos. A classe "normal" tem uma precisão de 0,85, recall de 0,90 e F1-score de 0,88, indicando bom desempenho tanto em precisão quanto em recall para casos normais. A classe "retinopatia diabética" apresenta alta precisão, recall e F1-score de 0,99, indicando excelente desempenho na identificação correta dos casos de retinopatia diabética. A classe "catarata" também apresenta alta precisão, recall e F1-score de 0,95 ou mais, indicando identificação precisa dos casos de catarata. Conforme mostrado na Tabela I.

A análise da matriz de confusão revela que o modelo tem bom desempenho na identificação de retinopatia diabética e catarata, mas apresenta variações na distinção entre glaucoma e olhos normais, conforme a Figura 7.

Classe	Precisão	Recall	F1-Score	Support
Glaucoma	0.89	0.88	0.89	153
Ret. Diabética	0.99	1.00	0.99	163
Normal	0.86	0.88	0.87	151
Catarata	0.97	0.95	0.96	166

TABLE I

MÉTRICAS DE AVALIAÇÃO POR CLASSE - RESNET-18

Fig. 7. Matriz Confusão - ResNet-18

Métrica	Precision	Recall	F1-Score	Support
Accuracy	-	-	0.93	633
Macro Avg	0.93	0.93	0.93	633
Weighted Avg	0.93	0.93	0.93	633
	TA	BLE II		

MÉTRICAS DE AVALIAÇÃO GERAL - RESNET-18

A acurácia geral do modelo é de 0,93, indicando a porcentagem de instâncias corretamente previstas em todas as classes, conforme visto na Tabela II.

A perda (loss) de treinamento diminuiu consistentemente, indicando aprendizado, enquanto a perda de validação apresentou alguma variação, sugerindo potencial overfitting, conforme visto na Figura 8.

Fig. 8. Loss do Treinamento - ResNet-18

A acurácia de treinamento aumentou de forma constante, aproximando-se de 1.0, enquanto a acurácia de validação variou em torno de 0.90 a 0.95, sugerindo uma boa generalização com algumas flutuações, conforme visto na Figura 9.

Fig. 9. Acurácia do Treinamento - ResNet-18

B. EfficientNet-B0

A classe "retinopatia diabética" apresenta alta precisão, recall de 0.97 e F1-score de 0,94, demonstrando excelente desempenho na identificação correta dos casos. A classe "glaucoma" apresenta precisão de 0,83, recall de 0,82 e F1-score de 0,83. Embora o modelo se saia razoavelmente bem na identificação de casos de glaucoma, ainda existem falsos negativos e falsos positivos. A classe "normal" tem precisão de 0,86, recall de 0,81 e F1-score de 0,83, indicando um equilíbrio entre precisão e recall. A classe "catarata" também apresenta alta precisão, recall e F1-score de 0,93, indicando uma identificação precisa dos casos de catarata. Conforme mostrado na Tabela III.

Classe	Precision	Recall	F1-Score	Support
Glaucoma	0.83	0.82	0.83	148
Retinopatia Diabética	0.91	0.97	0.94	152
Normal	0.86	0.81	0.83	176
Catarata	0.92	0.94	0.93	157

MÉTRICAS DE AVALIAÇÃO POR CLASSE - EFFICIENTNET-BO

A análise da matriz de confusão revela que o modelo tem bom desempenho na identificação de retinopatia diabética e catarata, mas apresenta dificuldades na distinção entre glaucoma e olhos normais, como visto na figura 10.

A acurácia geral do modelo é de 0,88, indicando a porcentagem de instâncias corretamente previstas em todas as classes, como visto na tabela IV.

Classe	Precision	Recall	F1-Score	Support
Accuracy			0.88	633
Macro Avg	0.88	0.89	0.88	633
Weighted Avg	0.88	0.88	0.88	633

MÉTRICAS DE AVALIAÇÃO GERAL - EFFICIENTNET-BO

Fig. 10. Matriz de Confusão - EfficientNet-B0

A perda de treinamento (Loss) diminuiu consistentemente, indicando aprendizado eficaz, enquanto a perda de validação apresentou alguma variação, sugerindo potencial overfitting, conforme visto na figura 11. A acurácia de treinamento aumentou constantemente, aproximando-se de 0,95, enquanto a acurácia de validação variou entre 0,85 e 0,90, sugerindo uma boa generalização com algumas flutuações, como visto na figura 12.

Fig. 11. Loss do Treinamento - EfficientNet-B0

C. MobileNetV2

A classe "catarata" também apresenta alta precisão, recall e F1-score de 0,95, indicando uma identificação precisa dos casos de catarata. A classe "glaucoma" apresenta precisão de 0,86, recall de 0,87 e F1-score de 0,87. O modelo se desempenha bem na identificação de casos de glaucoma, embora haja falsos negativos e falsos positivos. A classe "normal" tem precisão de 0,87, recall de 0,89 e F1-score de 0,88, indicando um desempenho equilibrado entre precisão e recall. A classe "retinopatia diabética" apresenta alta precisão, recall e F1-score de 0,99, demonstrando excelente desempenho na identificação correta dos casos, conforme a tabela V

Fig. 12. Acurácia do Treinamento - EfficientNet-B0

Classe	Precision	Recall	F1-Score	Support
Glaucoma	0.86	0.87	0.87	150
Retinopatia Diabética	0.98	0.99	0.99	156
Normal	0.87	0.89	0.88	149
Catarata	0.96	0.93	0.95	178
	TARI	F V		

MÉTRICAS DE AVALIAÇÃO POR CLASSE - MOBILENETV2

A análise da matriz de confusão revela que o modelo tem bom desempenho na identificação de retinopatia diabética e catarata, mas apresenta algumas dificuldades na distinção entre glaucoma e olhos normais, como visto ma figura 13.

Fig. 13. Matriz de Confusão - MobileNetV2

A acurácia geral do modelo é de 0,92, indicando a porcentagem de instâncias corretamente previstas em todas as classes, como vista na tabela VI

Precision	Recall	F1-Score	Support
		0.92	633
0.92	0.92	0.92	633
0.92	0.92	0.92	633
	0.92	0.92 0.92	0.92 0.92 0.92 0.92

MÉTRICAS DE AVALIAÇÃO GERAL - MOBILENETV2

A perda de treinamento diminuiu consistentemente, indi-

cando aprendizado eficaz, enquanto a perda de validação apresentou alguma variação, mas manteve-se estável, como visto na figura 14. A acurácia de treinamento aumentou constantemente, aproximando-se de 0,95, enquanto a acurácia de validação variou entre 0,90 e 0,93, sugerindo uma boa generalização com algumas flutuações, como visto na figura 15

Fig. 14. Loss do Treinamento - MobileNetV2

Fig. 15. Acurácia do Treinamento - MobileNetV2

D. Hardware

Ao análisar os parametros de cada modelos, apresentados na tabele VII, vemos que para aplicações com recursos de hardware limitados, EfficientNet-B0 e MobileNetV2 são mais viáveis devido ao menor número de parâmetros e operações. EfficientNet-B0 se destaca pela eficiência computacional e uso de memória, enquanto MobileNetV2 é ideal para dispositivos com ainda menos capacidade. ResNet-18 é mais robusto em termos de capacidade de modelagem, mas demanda mais recursos de hardware, sendo mais adequado para ambientes com hardware potente, como visto na tabela VIII.

V. Conclusão

Os resultados obtidos neste estudo mostram que a classificação de doenças oculares utilizando modelos de aprendizado profundo, especificamente ResNet-18, EfficientNet-B0

Modelo	Total de Parâmetros	Mult-Adds Totais
EfficientNet-B0	4,007,548	45.99M
ResNet-18	11,176,512	1.84G
MobileNetV2	2,223,872	156.06M
	TABLE VII	

Comparação dos Parâmetros e Mult-Adds dos Modelos de Redes Neurais

Modelo	Input	F/B Pass	Params	Total
EfficientNet-B0	0.57	7.08	15.29	22.94
ResNet-18	0.57	37.90	42.64	81.11
MobileNetV2	0.57	15.81	8.48	24.87

COMPARAÇÃO DOS TAMANHOS EM MEMÓRIA EM MB

e MobileNetV2, é viável e apresenta um bom desempenho, considerando para um diagnóstico inicial.

O modelo ResNet-18 destacou-se com uma acurácia geral de 0,93, especialmente na identificação de retinopatia diabética, com uma precisão e recall de 0,99, e catarata, com uma precisão de 0,97. No entanto, apresentou algumas variações na distinção entre glaucoma e olhos normais, sugerindo possíveis melhorias com maior ajuste e dados adicionais.

O modelo EfficientNet-B0 obteve uma acurácia de 0,88, mostrando eficiência computacional e uso equilibrado de memória. A presentou uma boa performance na identificação de retinopatia diabética (precisão de 0,91) e catarata (precisão de 0,92), mas com desempenho moderado em glaucoma e olhos normais.

O modelo MobileNetV2 alcançou uma acurácia de 0,92, destacando-se também na detecção de retinopatia diabética (precisão de 0,98) e catarata (precisão de 0,96), mostrando bom equilíbrio entre precisão e recall para todas as classes. Este modelo é vantajoso para aplicações em dispositivos móveis devido ao menor número de parâmetros e eficiência computacional.

A. Escolha do Melhor Modelo

Com base nos resultados apresentados e no problema apresentado, o MobileNetV2 é considerado o melhor modelo para esta aplicação específica de classificação de doenças oculares. As principais razões para esta escolha são:

- Desempenho Balanceado: O MobileNetV2 apresentou um excelente equilíbrio entre precisão e recall em todas as classes, garantindo uma identificação robusta e confiável das doenças oculares. Por exemplo, a precisão para retinopatia diabética foi de 0,98, e para catarata foi de 0,96.
- Eficiência Computacional: Com um menor número de parâmetros (2.223.872) e menor uso de memória (24.87 MB), o MobileNetV2 é altamente eficiente, tornandoo ideal para implementação em dispositivos móveis e ambientes com recursos limitados.
- Generalização: O modelo demonstrou boa capacidade de generalização, com acurácia de validação consistente,

o que é crucial para aplicações práticas em contextos clínicos diversos.

Futuras melhorias podem incluir a integração de técnicas de aumento de dados e ajustes finos adicionais para aprimorar ainda mais a precisão e robustez dos modelos.

REFERENCES

- Agência Internacional para a Prevenção da Cegueira (IAPB), "Vision atlas," 2020, disponível em: https://www.iapb.org/learn/vision-atlas/. [Online]. Available: https://www.iapb.org/learn/vision-atlas/
- [2] Ibope Inteligência, "Pesquisa sobre a saúde ocular dos brasileiros," 2020, disponível em: https://www.ibopeinteligencia.com/. [Online]. Available: https://www.ibopeinteligencia.com/
- [3] V. Gulshan *et al.*, "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs," *JAMA*, vol. 316, no. 22, pp. 2402–2410, 2016. [Online]. Available: https://jamanetwork.com/journals/jama/fullarticle/2588763
- [4] D. S. W. Ting et al., "Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes," JAMA, vol. 318, no. 22, pp. 2211–2223, 2017. [Online]. Available: https://jamanetwork.com/journals/jama/fullarticle/2665774
- W. Bismi and J. Na'am, "Classification of myopia levels using deep learning methods on fundus image," *Journal Medical Informatics Technology*, vol. 1, no. 2, pp. 42–48, 2023. [Online]. Available: https://medinftech.org/index.php/medinftech/article/view/8/10
 S. Pachade, P. Porwal, D. Thulkar, M. Kokare, G. Deshmukh,
- [6] S. Pachade, P. Porwal, D. Thulkar, M. Kokare, G. Deshmukh, V. Sahasrabuddhe, L. Giancardo, G. Quellec, and F. Mériaudeau, "Retinal fundus multi-disease image dataset (rfmid)," 2020. [Online]. Available: https://dx.doi.org/10.21227/s3g7-st65
- [7] N. E. Khalifa, M. Loey, and S. Mirjalili, "A comprehensive survey of recent trends in deep learning for digital images augmentation," *Artificial Intelligence Review*, no. 0123456789, 2021.
- [8] Z. Zhang, L. Yang, and Y. Zheng, "Translating and segmenting multimodal medical volumes with cycle- and shapeconsistency generative adversarial network," in *Proceedings* of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 9242–9251. [Online]. Available: https://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_ Translating_and_Segmenting_CVPR_2018_paper.pdf
- [9] G. Litjens et al., "A survey on deep learning in medical image analysis," Medical Image Analysis, vol. 42, pp. 60–88, 2017.
- [10] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," 2015. [Online]. Available: https://arxiv.org/abs/1512.03385
- [11] M. Tan and Q. V. Le, "Efficientnet: Rethinking model scaling for convolutional neural networks," 2020. [Online]. Available: https://arxiv.org/abs/1905.11946
- [12] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, "Mobilenetv2: Inverted residuals and linear bottlenecks," 2019. [Online]. Available: https://arxiv.org/abs/1801.04381
- [13] W. McKinney, "Data structures for statistical computing in python," in Proceedings of the 9th Python in Science Conference, 2010, pp. 51–56.
- [14] C. R. Harris, K. J. Millman, S. J. van der Walt et al., "Array programming with numpy," Nature, vol. 585, pp. 357–362, 2020.
- [15] J. D. Hunter, "Matplotlib: A 2d graphics environment," Computing in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.
- [16] M. L. Waskom, "Seaborn: Statistical data visualization," *Journal of Open Source Software*, vol. 6, no. 60, p. 3021, 2021.
- [17] G. Bradski, "The opency library," Dr. Dobb's Journal of Software Tools, 2000
- [18] A. Paszke, S. Gross, F. Massa et al., "Pytorch: An imperative style, high-performance deep learning library," in Advances in Neural Information Processing Systems, vol. 32, 2019, pp. 8024–8035.
- [19] F. Pedregosa, G. Varoquaux, A. Gramfort et al., "Scikit-learn: Machine learning in python," *Journal of Machine Learning Research*, vol. 12, pp. 2825–2830, 2011.