Algoritmos de Búsqueda Multiarranque y Genéticos

Alejandro Trujillo Caballero

Universidad de Huelva. Grado en Ingeniería Informática.

Resumen Análisis del funcionamiento de varios algoritmos de búsqueda multiarranque (GRASP, ILS y VNS) y genéticos aplicados al Problema de Asignación Cuadrática.

Keywords: Búsqueda multiarranque, GRASP, ILS, VNS, Algoritmos Genéticos, Genético CHC, Asignación Cuadrática (QAP).

1. Introducción

1.1. Problema de Asignación Cuadrática

El Problema de Asignación Cuadrática (QAP) es un problema de optimización combinatoria que consiste en asignar una serie de unidades a localizaciones (teniendo el mismo número de ambas). El objetivo es optimizar una función de coste que consiste en la suma de los productos de la distancia entre localizaciones y el transito entre las unidades asignadas.

Un ejemplo de aplicación de este problema podría ser la distribución de los diferentes departamentos de un hospital en las diferentes plantas o zonas del edificio.

2. Algoritmos Analizados

2.1. Algoritmo Greedy o Voraz

Se ha utilizado un algoritmo voraz como base para el análisis del resto de algoritmos.

El algoritmo intenta minimizar el coste asignado las unidades con mayor transito a las localizaciones más céntricas.

El algoritmo siempre sigue el mismo criterio para construir una solución y obtiene la misma por lo que no puede considerase una búsqueda.

2.2. Métodos Multiarranque

Los métodos multiarranque se basan en la ejecución de un algoritmo de búsqueda local básico con diferentes soluciones iniciales (generalmente aleatorias) con el objetivo de explorar un espacio de soluciones mayor.

Los algoritmos que se han utilizado son mejoras sobre este planeamiento básico del multiarranque.

2.2.1. **GRASP**

El algoritmo GRASP intenta mejorar las soluciones iniciales desde las que arrancan las ejecuciones. En cada iteración se genera una solución greedy aleatorizada, a la que se aplica un algoritmo de búsqueda local. Finalmente el algoritmo devuelve la mejor solución encontrada entre todas las ejecuciones.

Para construir la solución greedy aleatorizada se parte de la misma premisa que en el algoritmo greedy normal. Localizaciones y unidades se ordenan según su potencial, pero en lugar de emparejar la mejor localización con la mejor unidad las parejas se van formando eligiendo aleatoriamente una de las l primeras localizaciones y una de las l primeras unidades.

En nuestro caso, se realizaran 10 iteraciones y el valor del parámetro l sera $l=0,1\cdot n$ siendo n el tamaño del problema.

2.2.2. ILS

El algoritmo ILS (Iterated Local Search) intenta refinar una solución mediante ejecuciones sucesivas de búsquedas locales junto con un operación de mutación de la solución.

Partiendo de una solución inicial aleatoria el algoritmo aplica una búsqueda local. Una vez obtenida la solución la compara con la mejor solución obtenida hasta ese momento y aplica la mutación a la mejor de las dos. Tras mutar la solución inicia una nueva búsqueda local tomándola como punto de partida.

En nuestro caso la mutación consiste en seleccionar aleatoriamente una sublista dentro de la solución de tamaño s=n/4 donde n es el tamaño del problema y desordenarla de forma aleatoria.

Se aplicaran 10 iteraciones, la primera sobre una solución aleatoria y las 9 restantes sobre la mutación de la mejor solución encontrada.

2.2.3. VNS

La Búsqueda de Entorno Variable o VNS (Variable Neighborhood Search) se basa en la idea de variar el concepto de vecindario dentro de una búsqueda local, aumentando el tamaño de este si la búsqueda no avanza.

El algoritmo parte de una solución aleatoria a la cual aplica una búsqueda local. Una vez obtenido un resultado, aplica una mutación como en el caso del algoritmo ILS y vuelve a aplicar la búsqueda local. Sin embargo, si la solución obtenida tras la búsqueda local que parte de la solución mutada no mejora la mejor solución obtenida hasta el momento, se incrementa el tamaño de la mutación.

Una vez que se encuentra una mejor solución, el tamaño de la mutación vuelve a fijarse al mínimo. La condición de parada se establece añadiendo un limite al tamaño de la mutación, es decir, si tras k_{max} iteraciones la solución no ha mejorado en ninguna de ellas, el algoritmo se detiene.

Para nuestro caso el parámetro $k_{max}=5$. La mutación es la misma que en el algoritmo ILS y se varía el tamaño de la sublista siguiendo la regla s=n/(9-k) donde n es el tamaño del problema y k indica el número de iteraciones consecutivas sin mejora. En el momento que $k>k_{max}$ el algoritmo se detiene.

2.3. Algoritmos Genéticos

Los algoritmos genéticos son algoritmos de búsqueda, optimización o aprendizaje basados en los conceptos de selección natural y genética.

El concepto básico de algoritmo genético se basa en tener una población (conjunto de soluciones) y que por "selección natural" los mejores individuos (soluciones) se reproduzcan o crucen dando lugar a nuevos individuos diferentes o que muten de forma individual. Estos descendientes y mutantes remplazan la población (o una parte de ella) explorando así las posibles soluciones del problema (y preferiblemente mejorandolas).

4 Algoritmos de Búsqueda Basados en Trayectorias..

3. Resultados

Para analizar el funcionamiento de los diferentes algoritmos se han utilizado tres ejemplos de diferente tamaño de los cuales se conoce el coste de la solución óptima:

■ **Tai25b:** 25 lugares y unidades, coste: 344355646.

■ Sko90: 90 lugares y unidades, coste: 115534.

■ Tai150b: 150 lugares y unidades, coste: 498896643.

Para analizar los algoritmos se han realizado 10 ejecuciones de cada uno con diferentes semillas para el generador de números aleatorios (ya que todos los algoritmos tiene algún componente aleatorio).

A continuación se detallan los resultados obtenidos por cada algoritmo.

 ${\bf Cuadro~1.}$ Costes de las soluciones proporcionadas por el algoritmo de Búsqueda Aleatoria

Seed	tai25	sko90	tai150
1	1173664963	142420	683423057
2	1194390165	141814	682175843
3	1196021141	142056	682400410
4	1201615718	141968	682907768
5	1186447299	142246	682840264
6	1224953864	142340	683620162
7	1178951674	142506	681266728
8	1194823852	141922	680849383
9	1194916409	141802	681370190
10	1199973625	141932	681353354
Media	1194575871	142101	682220716
Desv. T	13949407	257	975284

 ${\bf Cuadro~2.}$ Costes de las soluciones proporcionadas por el algoritmo de Búsqueda Local

Seed	tai25	sko90	tai150
1	413373879	118426	517754022
2	454985757	117582	513947464
3	353465428	118702	518922684
4	376336066	117696	520330467
5	411644796	118684	522055451
6	352048709	119516	520584440
7	398432882	117446	515304984
8	472936529	118182	513041392
9	459297404	119054	515305032
10	422745919	119124	519625414
Media	411526737	118441	517687135
Desv. T	42674173	705	3103204

 ${\bf Cuadro~3.}$ Costes de las soluciones proporcionadas por el algoritmo de Enfriamiento Simulado

Seed	tai25	sko90	tai150
1	366621015	117626	513226444
2	371725572	117552	513322732
3	367818611	117170	514686453
4	398264229	117824	517801729
5	416599460	117956	515247819
6	439006905	117568	515793920
7	365491673	118028	514295612
8	406671691	118298	519586022
9	426523708	118000	524200812
10	359474161	117208	515421269
Media	391819703	117723	516358281
Desv. T	29176378	365	3374897

 ${\bf Cuadro~4.}$ Costes de las soluciones proporcionadas por el algoritmo de Búsqueda Tabú

Seed	tai25	sko90	tai150
1	344743823	118244	512796581
2	345675295	117972	511883040
3	395351036	117638	517545690
4	347720408	117906	512090462
5	363961225	118210	511258562
6	346703840	117876	510626132
7	347984063	117642	512807837
8	347684843	118342	514336213
9	346483036	118188	514097120
10	364427055	118520	511212655
Media	355073462	118054	512865429
Desv. T	15939318	295	2040887

3.1. Comparación de resultados

 ${\bf Cuadro~5.}$ Resultados globales de los algoritmos para el problema Tai
25

Algoritmo	Peor	Media	Mejor	Desv. T.
Óptimo	-	344355646	-	-
Greedy	-	734935031	-	-
B. Aleatoria	1224953864	1194575871	1173664963	13949407
B. Local	472936529	411526737	352048709	42674173
Enf. Simu	439006905	391819703	359474161	29176378
B. Tabú	395351036	355073462	344743823	15939318

 ${\bf Figura\,1.}$ Resultados de los algoritmos para el problema Tai
25

Cuadro 6. Resultados globales de los algoritmos para el problema Sko90

Algoritmo	Peor	Media	Mejor	Desv. T.
Óptimo	-	115534	-	-
Greedy	-	131262	-	-
B. Aleatoria	142506	142101	141802	257
B. Local	119516	118441	117446	705
Enf. Simu	118298	117723	117170	365
B. Tabú	118520	118054	117638	295

 ${\bf Figura\,2.}$ Resultados de los algoritmos para el problema Sko
90

513226444

510626132

3374897

2040887

Algoritmo	Peor	Media	Mejor	Desv. T.
Óptimo	-	498896643	-	-
Greedy	-	623469733	-	-
B. Aleatoria	683620162	682220716	680849383	975284
B. Local	522055451	517687135	513041392	3103204

516358281

512865429

524200812

517545690

Cuadro 7. Resultados globales de los algoritmos para el problema Tai150

 ${\bf Figura~3.}$ Resultados de los algoritmos para el problema Tai
150

4. Análisis y conclusiones

Enf. Simu

B. Tabú

En general, el algoritmo de Búsqueda Aleatoria obtiene peores resultados que la solución Greedy. Además de tener en todos los casos la desviación típica menor, lo que indica que no solo obtiene malos resultados sino que no suele alejarse de ellos.

Para los tres problemas estudiados el algoritmo de Búsqueda Local obtiene resultados mejores que la solución Greedy y bastante mejores que las solucio-

nes aleatorias, pero tiene una desviación típica alta lo que indica que no es un algoritmo que de resultados sólidos.

Para el problema de tamaño 90 el Enfriamiento simulado obtiene el mejor resultado, seguido muy de cerca por el algoritmo de Búsqueda Tabú que además obtiene el mejor resultado en los otros dos problemas.

En todos los casos, la desviación típica de los resultados de Búsqueda Tabú es inferior a la de enfriamiento simulado y búsqueda local, lo que indica que es el algoritmo más sólido de todos y tiene más probabilidad de dar una mejor solución en un menor número de ejecuciones.

En cuanto al número de iteraciones, destacar que el algoritmo de Búsqueda Tabú obtiene mejores resultado que el enfriamiento simulado habiendo realizado la mitad de iteraciones y analizando menos vecinos por iteración (40 Tabú frente a 50 enfriamiento).

En general, tanto el Enfriamiento Simulado como la Búsqueda Tabú son buenas opciones frente al resto de algoritmos para enfrentar problemas de búsqueda de grandes dimensiones, sin embargo la mejora de la Búsqueda Tabú sobre el Enfriamiento Simulado no parece demasiado significativa, sobre todo teniendo en cuenta que la implementación del algoritmo Tabú es más compleja.