Introduction to Bioinformatics – Final Thoughts

Colin Dewey Fall 2019

Where we've been

Concept map

The many facets of bioinformatics

- Molecular biology -> data and tasks
- Statistics -> models and objective functions
- Mathematics -> structural insight
- Computer Science -> efficient computation

Science as unsupervised learning

- We do not know the "truth"
- There are only data and models
- Generally, the goal is to find the model that maximizes P(model | data)

General strategy

Objective functions

Formulate objective function

- Assembly: shortest superstring
- Alignment: sum of substitution scores + gap penalty
- HMMs: maximum likelihood
- Clustering: within-cluster scatter/maximum likelihood
- Networks: P(graph | data)

Objective function: should be based on the biology and optionally on computational complexity

Devising algorithms

- Graph-based algorithms
- Greedy algorithms
- Dynamic programming
- Branch and bound
- Is NP-hard?
 - use heuristics to obtain fast (but perhaps not optimal) result
 - Use exact algorithm but cut down on search space (e.g., branch and bound)

Devise algorithm for optimizing objective

Estimating uncertainty

Devise method for estimating uncertainty of prediction

- The bootstrap
- Equally-optimal solutions (highroad, low-road alignments)
- Posterior probabilities
- Multiple initializations

"Magical" moments

- Assembly: Eulerian path formulation -> Polynomial time algorithm
- Alignment: Dynamic programming
- Phylogenetic trees: Neighbor joining "corrected" distances
- Genome annotation: Baum—Welch algorithm for unsupervised learning of HMMs
- Clustering: Soft clustering with Gaussian mixture models
- Networks: Closed-form expression for Bayesian network structure score

Reproducible research

- "A minimal standard for data analysis and other scientific computations is that they be reproducible: that the code and data are assembled in a way so that another group can re-create all of the results (e.g., the figures in a paper)" – Dr. Karl Broman
- http://kbroman.org/Tools4RR/

Jupyter notebooks: A valuable tool for reproducible research

12

To further develop your reproducible research skills

- Prof. Karl Broman's "Tools for Reproducible Research" course:
 - http://kbroman.org/Tools4RR/
- Other tools
 - git version control
 - make (or similar) workflow management
 - if you like Python: snakemake
 - R rmarkdown/knitr

Examples from the Dewey Lab: RSEM

- Given: RNA-seq data, gene annotations
- Outputs: estimates of gene expression values
- Techniques:
 - Bayesian networks
 - Expectation—
 Maximization
 - Sequence alignment

B. Li, V. Ruotti, R. Stewart, J. Thomson, and C. Dewey (2010) **RNA-Seq gene expression estimation with read mapping uncertainty**. *Bioinformatics* 26(4): 493-500.

Examples from the Dewey Lab: PSGInfer

 Given: RNA-seq data, gene splice graphs

 Outputs: estimates of splicing probabilities

- Techniques:
 - Graph-based
 - Markov chains
 - Dynamic programming
 - Expectation
 Maximization

L. LeGault and C. Dewey. (2013) <u>Inference of alternative splicing from RNA-Seq</u> <u>data with probabilistic splice graphs</u>. <u>Bioinformatics</u>. 29(18):2300-2310.

Examples from the Dewey Lab: Mercator

- Given: Multiple whole genome sequences

- Techniques:
 - Graph-based
 - Probabilistic graphical models
 - Sequence alignment

C. Dewey (2007) <u>Aligning multiple whole genomes with Mercator and MAVID</u>. In N. Bergman, editor, *Comparative Genomics*, volume 395 of *Methods in Molecular Biology*. Humana Press.

Next steps

- BMI/CS 776: Advanced Bioinformatics
 - Taught in the spring (Prof. Daifeng Wang)
- Seminars
 - CIBM training program seminar
 - BMI departmental seminars
 - Genomics seminar
- Get involved in research

Thanks!