Supporting Material

for Proceedings of the Royal Society B; doi:10.1098/rspb.2020.0665

Cranial endocast of the stem lagomorph *Megalagus* and brain structure of basal Euarchontoglires

Sergi López-Torres 1,2,3,4 , Ornella C. Bertrand 5 , Madlen M. Lang 6 , Mary T. Silcox 6 and Łucja Fostowicz-Frelik $^{4,7,8^*}$

¹Division of Paleontology, American Museum of Natural History, New York, NY, United States of America

²Richard Gilder Graduate School, American Museum of Natural History, New York, NY, United States of America

³New York Consortium in Evolutionary Primatology, New York, NY, United States of America

⁴Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland

⁵School of Geosciences, Grant Institute, University of Edinburgh, Edinburgh, EH9 3FE, Scotland, UK

⁶Department of Anthropology, University of Toronto Scarborough, Toronto, ON, Canada

⁷Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate

Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China

⁸CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China

* Corresponding Author: Łucja Fostowicz-Frelik, Institute of Paleobiology, Polish Academy of Sciences, 51/55 Twarda St, Warsaw 00-818, Poland; email lfost@twarda.pan.pl

Table of contents

Materials and Methods	3
Figures	
Fig. S1	5
Fig. S2	6
Fig. S3	7
Fig. S4	8
Fig. S5	9
Fig. S6	10
Fig. S7	11
Fig. S8	12
Fig. S9	13
Tables	
Table S1	14
Table S2	15
Table S3	17
Table S4	18
Table S5a	20
Table S5b	24
Table S6	50
Table S7	53

Materials and Methods

The skull of *Megalagus turgidus* (FMNH UC 1642) comes from the early Orellan deposits (early Oligocene; 33.7–32.00 Ma) [24] of the Brule Formation at Grime's Ranch, Sioux County, Nebraska [25]. The specimen is an almost complete (the zygomatic arches are missing), undistorted cranium (Fig. 2), associated with two mandibular bodies, and was originally described by Olson [25].

The skull of *Megalagus turgidus* (Fig. 2) was micro-CT scanned in a high resolution Phoenix v|tome|x L 240 scanner (GE Measurement & Control Solutions) at the American Museum of Natural History (New York, NY, USA) with the following parameters: voltage 155 kV, current 145 mA, and 0.2 mm Cu filter. To accommodate the length of the specimen, the skull was scanned as a multiscan in four parts. The total of 4501 images were acquired at a resolution of 22.54 µm (isotropic voxels) with 0.33 sec of exposure. Raw data were reconstructed with Phoenix datos|x 2.0 software resulting in 16-bit TIFFs (1977x1000 pixel in size). The CT-data of the endocranial cavity of *Megalagus turgidus* were manually segmented in Avizo 9.0.1 (Visualization Science Group, 1995–2015) using a WACOM Cintiq 21UX tablet in each of the three parts that contain the cranial cavity, then the three resulting datasets were merged. We compared the endocast of *Megalagus* to a sample of 10 extant lagomorph species or subspecies representing extant families (Leporidae and Ochotonidae; Figs S3, S4, see also Table S2), and to previously published endocasts of early members of Euarchontoglires (Table S3), including basal Glires (*Rhombomylus*) [5], Palaeogene rodents [35–39], plesiadapiforms [31–34], and the apatemyids *Carcinella* [43] and *Labidolemur* [42].

The comparative material of extant lagomorphs was CT-scanned, with each specimen imaged as a single scan (Table S1), at the Shared Materials Instrumentation Facility (SMIF), Duke University (Durham, NC, USA), apart from *Romerolagus diazi* which was imaged as a multiscan performed at the American Museum of Natural History.

Endocast nomenclature follows Silcox et al. [31], with modifications; in particular, we refer to the paraflocculi as 'petrosal lobules'. Linear measurements are in Fig. S1, surface area and volumetric measurements follow Bertrand and Silcox [36]. They were taken on the endocasts using Avizo 9.0.1 (see Tables 1, S2–S3). Because of poorer preservation on the left side of the *Megalagus* endocast, we followed Jerison [27] and Long et al. [28], who measured only one side of the neocortex (the most complete hemisphere), excluding the superior sagittal sinus, and then doubled the area of the hemisphere (the module 'volume edit' was used). The resulting data on the endocast volume, relative neocortical surface area, relative olfactory bulb and petrosal lobule volumes for *Megalagus* are presented in Table 1. The surface rendering of the *Megalagus* endocast used in this paper is available from the Dryad Digital Repository (doi:10.5061/dryad.0vt4b8gwg) [26].

For comparative purposes, we calculated the encephalization quotient (EQ) using two equations: Jerison's (1973) and Eisenberg's [30]. Values for those equations were calculated for fossil and extant lagomorph endocasts and are included in Tables S2, S3 (and Figs 4, S9). The data for fossil euprimates are based on available virtual endocasts (see [40], Kirk et al. 2014, Ramdarshan and Orliac 2016); for raw data see Tables S5a, b. The width of the occipital

condyles (WOC) was used to estimate the body mass (Moncunill-Solé et al. 2015) for all species of lagomorphs in our sample (Table S7).

The statistical data were analyzed using PAST software ver. 2.17c (Hammer et al. 2001); all results, including Principal Component Analysis (PCA) performed using correlation matrix (Figs 5, S8; Table S4), boxplots (Figs 4, S9; Tables S5a, b), bivariate plots, with accompanying least square regression analysis (Figs 4, S5–S6; Table S6), can be found further in the Supplementary Material. The PCA included nine endocast parameters (Table S4) analyzed for 24 species of extant lagomorphs, fossil rodents, plesiadapiforms, and *Megalagus*.

Additional references

- Ø. Hammer, D. A. T. Harper, P. D. Ryan, PAST: Paleontological Statistics software package for education and data analysis. *Palaeontol. Electron.* **4**, 1–9 (2001).
- H. J. Jerison, Evolution of the Brain and Intelligence (Academic Press, 1973), 482 p.
- E. C. Kirk, P. Daghighi, T. E. Macrini, B.-A. S. Bhullar, T. B. Rowe, Cranial anatomy of the Duchesnean primate *Rooneyia viejaensis*: New insights from high resolution computed tomography. *J. Hum. Evol.* **74**, 82–95 (2014).
- B. Moncunill-Solé, J. Quintana, X. Jordana, P. Engelbrektsson, M. Köhler, The weight of fossil leporids and ochotonids: Body mass estimation models for the order Lagomorpha. *J. Zool.* **295**, 269–278 (2015).
- A. Ramdarshan, M. J. Orliac, Endocranial morphology of *Microchoerus erinaceus* (Euprimates, Tarsiiformes) and early evolution of the Euprimates brain. *Am. J. Phys. Anthropol.* **159**, 5–16 (2016).

Fig. S1. Linear measurements of endocast (based of *Lepus arcticus* AMNH 42139). Abbreviations: CLML, cerebellum maximum length; CLW, cerebellum width (without petrosal lobes); CRMH, cerebrum maximum height; CRML, cerebrum maximum length; CRMW, cerebrum maximum width; NMH, neocortex maximum height; OH, olfactory bulbs height; OL, olfactory bulbs length; OW, olfactory bulbs width; TL, total endocast length. Left, dorsal; right, lateral view.

Fig. S2. Digital endocast of *Megalagus turgidus* in (A, D) lateral, (B) dorsal, and (C) ventral views. Abbreviations: br-ste, brain stem; cer, cerebrum; cir-fi, circular fissure; CNVII, cranial nerve VII (facial nerve); CNVIII, cranial nerve VIII (vestibulocochlear nerve); CNIX, cranial nerve IX (glossopharyngeal nerve); CNX, cranial nerve X (vagus nerve); CNXI, cranial nerve XI (accessory nerve); CNXII, cranial nerve XII (hypoglossal nerve); con-si, confluence of sinuses; inp-si, inferior petrosal sinus; int-ju-ve, internal jugular vein; lat-ce, lateral lobe of cerebellum; lat-si, lateral sinus; lat-su, lateral sulcus; midb, midbrain; olf-bu, olfactory bulbs; par-fi, paramedian fissure; pet-lo, petrosal lobule; pgl-ve, postglenoid vein; rhi-fi, rhinal fissure; sig-si, sigmoid sinus; sus-su, superior sagittal sulcus; tf, temporal foramen; tra-si, transverse sinus; ver, vermis. Color code: blue, nerves; pink, blood vessels; black, brain structures.

Fig. S3. Comparative endocast morphology of extant Lagomorpha (A–G, I–K) and *Megalagus turgidus* FMNH UC 1642 (H, in orangebrown). Leporidae (in yellow): *Lepus arcticus*, AMNH 42139 (A); *L. americanus bairdii*, AMNH 99352 (B); *L. americanus phaeonotus*, AMNH 99352 (C); *Brachylagus idahoensis*, AMNH 92869 (D); *Oryctolagus cuniculus*, AMNH 34816 (E); *Romerolagus diazi*, AMNH 148172 (F); *Poelagus marjorita*, AMNH 51052 (G). Ochotonidae (in blue): *Ochotona princeps schisticeps*, AMNH 40547 (I); *O. princeps princeps*, AMNH 120698 (J); *O. pallasi*, AMNH 59712 (K). Scale bar represents 1 cm.

Fig. S4. Lateral view of the extant lagomorph brain endocasts inside translucent crania. A, leporid, *Romerolagus diazi* (AMNH 148172); B, ochotonid, *Ochotona princeps* (AMNH 120698). The picture shows the position of the anterior extremities of the olfactory bulbs in relation to the upper tooth row. Scale bar represents 1 cm.

Fig. S5. Olfactory bulb proportions in studied Lagomorpha. Bivariate plots of olfactory bulb volume to body mass (top), and the endocranial volume (down). See metric data in Tables S2, S7. The equation parameters for the least square regression analysis are as follows: slope 0.6154, intercept 0.4475, and r^2 0.8659 for (top), and slope 1.0487, intercept -1.7248, and r^2 0.957 for (down).

Fig. S6. Petrosal lobule ratios in studied Lagomorpha. Metric data in Tables 1, S2, and S7. The equation parameters for the least square regression analysis are as follows: slope 0.4091, intercept 0.9671, and r^2 0.7977 for (A), and slope 0.7292, intercept -0.5986, and r^2 0.9649 for (B).

Fig. S7. Comparison of endocast morphology in major groups of Euarchontoglires. A, lagomorph; B, ischyromyid rodent; C, plesiadapiform (stem primate); D, euprimate.

PC	Eigenvalue	% variance
1	6,98839	77,649
2	0,710952	7,8995
3	0,462316	5,1368
4	0,35083	3,8981
5	0,284515	3,1613
6	0,0953711	1,0597
7	0,0680578	0,7562
8	0,0222138	0,24682
8	0,0222138	0,24682
9	0,0173513	0,19279
J	0,0170010	0,10270

Fig. S8. PCA loadings for the first six principal components and the Eigenvalues for all nine components.

Fig. S9. EQ based on Jerison's equation. Abbreviations: FoEp, fossil eurimates (N=10); Ples, plesiadapids (N=4); FoRo, fossil rodents (N=15); ExLe, extant leporids (N=7); ExOc, extant ochotonids (N=3); Megt, *Megalagus turgidus* (N=1). Metric data in Table S5b.

 Table S1. Information on lagomorph CT-scans used in the paper

		Location of	Author	Source-	Ene	ergy	Number	Voxel s	ize (mm)	Columns x	Total
Species	Specimen	the scan	responsible	object	sett	ings	of views			rows	number
			for	distance	kV	mA		X and Y	Z	(total)	of
			scanning	(mm)							slices
Brachylagus idahoensis	AMNH 92869	SMIF	MML	118.64	138	87	2000	0.045899	0.091798	1331 x 1393	826
Poelagus marjorita	AMNH 51052	SMIF	MML	194.94	147	91	2000	0.045899	0.091798	1255 x 1316	901
Lepus americanus	AMNH 97648	SMIF	MML	165.24	138	87	2000	0.041922	0.083844	1416 x 1413	988
phaeonotus											
Lepus americanus	AMNH 99352	AMNH	OCB	239.11	135	180	2250	0.041191	0.083844	1114 x 1111	926
bairdii											
Lepus arcticus	AMNH 42139	SMIF	MML	233.98	148	90	2000	0.055091	0.082382	1456 x 1384	911
Oryctolagus cuniculus	AMNH 34816	SMIF	MML	158.68	138	87	2000	0.040904	0.110182	1255 x 1394	953.5
Romerolagus diazi	AMNH 148172	AMNH	ŁFF	91.94	150	180	1800	0.022608	0.081808	1669 x 1361	1364
Ochotona princeps	AMNH 120698	SMIF	MML	87.95	129	94	2000	0.023833	0.045216	1255 x 1853	897
princeps											
Ochotona princeps	AMNH 40547	AMNH	OCB	134.26	105	165	2350	0.023128	0.046256	1583 x 1570	998
schisticeps											
Ochotona pallasi	AMNH 59712	SMIF	MML	89.27	123	98	2000	0.024188	0.048376	1033 x 1077	906
Megalagus turgidus	FMNH UC	AMNH	ŁFF	91.68	155	145	2250	0.022544	0.022544	1564 x 1421	2701
	1642										

 Table S2. Quantitative endocast data for Lagomorpha

Measurement	Brachylagus idahoensis AMNH 92869	Lepus americanus phaeonotus AMNH 97648	Lepus arcticus AMNH 42139	Lepus americanus bairdii AMNH 99352	Oryctolagus cuniculus AMNH 34816	Poelagus marjorita AMNH 51052	Romerolagus diazi AMNH 148172	Ochotona pallasi AMNH 59712	Ochotona princeps princeps AMNH 120698	Ochotona princeps schisticeps AMNH 40547
				Linear n	neasurements (i	in mm)				
Total length (TL)	33.02	46.36	50.01	43.92	42.70	51.99	38.57	29.73	30.33	31.05
Olfactory bulb length (OL)	5.55	8.6	8.71	10.08	6.98	14.33	6.10	5.34	5.34	4.93
Olfactory bulb width (OW)	8.98	13.68	15.01	10.55	10.09	11.55	9.00	5.39	5.79	6.06
Olfactory bulb height (OH)	6.08	7.82	8.34	7.53	6.58	7.92	6.31	5.03	4.40	4.49
Maximum neocortex height (NMH)	13.44	18.17	17.79	16.13	19.34	15.74	12.73	9.40	9.11	9.78
Cerebrum total length (CRML)	24.94	33.07	35.10	29.15	30.20	34.66	26.72	17.43	16.73	17.94
Cerebrum maximum width (CRMW)	23.00	29.02	32.64	28.02	27.22	29.01	23.49	16.37	16.43	16.81
Cerebrum maximum height (CRMH)	16.38	19.70	22.44	20.83	20.76	20.36	16.85	11.19	11.24	11.39
Cerebellum length (vermis) (CLML)	8.21	11.41	12.06	12.15	8.94	11.23	9.51	6.88	8.30	8.24
Cerebellum width (without paraflocculi) (CLW)	17.34	21.37	23.40	20.83	22.21	21.76	19.14	11.77	12.43	12.13
					Ratios (in %)					
OL/TL	16.81	18.55	17.42	22.95	16.35	27.56	15.82	17.96	17.61	15.88
CRML/TL	75.53	71.33	70.19	66.37	70.73	66.67	69.28	58.63	55.16	57.78
CLML/TL	24.86	24.61	24.12	27.66	20.94	21.60	24.66	23.14	27.37	26.54
CLW/CRMW	75.39	73.64	71.69	74.34	81.59	75.01	81.48	71.90	75.65	72.16
OW/CRMW	39.04	47.14	45.99	37.65	37.07	39.81	38.31	32.93	35.24	36.05
OW/CLW	51.79	64.01	64.15	50.65	45.43	53.08	47.02	45.79	46.58	49.96
NMH/CRMH	82.05	92.23	79.28	77.44	93.16	77.31	75.55	84.00	81.05	85.86

Table S2. continued

Measurement	Brachylagus	Lepus	Lepus	Lepus	Oryctolagus	Poelagus	Romerolagus	Ochotona	Ochotona	Ochotona
	idahoensis	americanus	arcticus	americanus	cuniculus	marjorita	diazi	pallasi	princeps	princeps
	AMNH	phaeonotus	AMNH	bairdii	AMNH	AMNH	AMNH	AMNH	princeps	schisticeps
	92869	AMNH	42139	AMNH	34816	51052	148172	59712	AMNH	AMNH
		97648		99352					120698	40547
	•	1	•	Sı	urfaces (in mm ²))	1	1	1	1
Total endocast area (TS)	2210.12	3536.03	4562.86	3256.85	3329.57	3778.56	2472.52	1223.86	1270.50	1303.88
Neocortical surface area (NS)	728.43	1255.52	1944.27	1074.20	1223.30	1298.47	720.10	430.58	400.12	433.24
Neocortical surface area (one side) (NS1)	353.76	620.70	957.75	518.48	586.10	627.89	347.10	206.26	196.74	207.56
		•		Vo	olumes (in mm ³)				
Total endocast (TV)	5145.19	10221.40	15949.90	9538.09	9363.12	11807.96	6020.62	2138.24	2270.48	2479.85
Olfactory bulbs (OV)	144.28	366.15	407.14	263.19	218.06	358.52	191.21	57.92	60.75	61.63
Petrosal lobules	153.04	201.00	270.10	231.02	207.03	210.83	142.54	59.32	74.74	71.80
(PLV)										
					Ratio(in %)					
NS/TS	32.96	35.51	42.61	32.98	36.74	34.36	29.12	35.18	31.49	33.23
OV/TV	2.80	3.58	2.55	2.76	2.33	3.04	3.18	2.71	2.68	2.49
PLV/TV	2.97	1.97	1.69	2.42	2.21	1.79	2.37	2.77	3.29	2.90
					Mass (in mg)					
Olfactory bulb mass	137.41	348.71	387.75	250.66	207.68	341.45	182.10	55.16	57.86	58.70
Petrosal lobule mass	145.75	191.43	257.24	220.02	197.17	200.79	135.75	56.50	71.18	68.38
Brain volume	5.15	1.02	15.95	9.56	9.36	11.81	6.02	2.14	2.27	2.48
converted to mass										
					halization quo		T			
Jerison's EQ	0.82	0.79	0.49	0.59	0.49	0.50	0.46	0.45	0.51	0.67
Eisenberg's EQ	1.19	1.06	0.59	0.78	0.63	0.63	0.61	0.67	0.77	1.02

Table S3. Comparative endocast parameters and EQ values for fossil Euarchontoglires taxa

	Specimen number	Epoch	Total endocast volume (mm ³)	Neocortical surface area ratio	Olfactory bulb volume ratio (%)	Petrosal lobule	Jerison's EQ	Eisenberg's
			volume (mm)	(%)	volume rano (%)	volume ratio (%)	ŁŲ	EQ
Rodentia								
Altasciurus relictus	USNM 437793	Early Oligocene	957.45	-	3.55	3.35	0.78	1.33
Protosciurus cf.	YPM 14736;	Late Oligocene-early	4546.82-	30.67-31.71	3.65-4.76	2.96-3.31	0.71	1.03
rachelae	YPM 14737	Miocene	5658.95					
Paramys copei	AMNH 4756	Early Eocene	7526.65	18.14	6.05	1.20	0.57	0.76
Paramys delicatus	AMNH 12506		12565.40	17.19	4.74	1.03	0.48	0.59
Pseudotomus horribilis	USNM 17159	Middle Eocene	15188.20	18.75	5.33	1.14	0.31	0.36
Pseudotomus oweni	USNM 17161	Middle Eocene	12063.00	21.89	5.94	0.62	0.30	0.36
Pseudotomus petersoni	AMNH 2018	Middle Eocene	17014.90	-	4.14	0.39	0.37	0.43
Pseudotomus hians	AMNH 5025	Middle Eocene	13679.10	23.29	5.43	1.04	0.49	0.61
Rapamys atramontis	AMNH 128706;	Middle Eocene	6006.47-	22.98-23.01	3.16–3.76	1.52-2.05	0.46-0.49	0.61-0.66
	AMNH 128704		7109.97					
Ischyromys typus	ROMV 1007;	Early Oligocene	5578.07-	19.83-23.41	3.15-3.68	1.60-1.63	0.36-0.53	0.47-0.70
	AMNH 12252;		7276.91					
	AMNH F:AM							
	144638							
Cedromus wilsoni	USNM 256584	Early Oligocene	3609.87	31.49	2.96	3.16	0.68	0.99
Primates								
Microsyops annectens	UW 12362	Middle Eocene	5900.00	24.3	5.1	-	0.32	0.42
Ignacius graybullianus	USNM 421608; UF 26000	Early Eocene	2140.00	21.8–24.4	5.5	-	0.42	0.61
Plesiadapis	MNHN CR 125	Late Palaeocene	5210.00	22	4.9		0.12	0.14
tricuspidens	WINHIN CK 123	Late Falaeocelle	3210.00	22	4.9	-	0.12	0.14
Plesiadapis cookei	UM 87990	Late Palaeocene	5000.00	_	7.8	-	0.23	0.29
Apatemyoidea								
Labidolemur kayi	USNM 530208;	Late Palaeocene	501.88	-	14.75	-	0.22	0.36
Ť	USNM 530221							

Table S4. Data for Principal Component Analysis of endocast measurements (see Fig. S1 for explanation) for studied lagomorphs, fossil rodents, and plesiadapiforms; var., variable

Measurement	TL	OL	OW	CRML	CRMW	CLW	CLML	OV	TV
Species	(var. 1)	(var. 2)	(var. 3)	(var. 4)	(var. 5)	(var. 6)	(var. 7)	(var. 8)	(var. 9)
Plesiadapis	43.5	9.7	4.6	18.2	22	19.6	7.5	136	5210
tricuspidens									
(MNHN CR125)									
Plesiadapis cookei	42	10	5	22	22	20	7.2	390	5700
(UM 87990)									
Microsyops	41.25	8	5	22.26	24	23.9	11.9	300	5900
annectens (UW 12362)									
Ignacius	30.79	6.28	3.94	15.8	19.44	15.6	9.4	120	2140
graybullianus									
(USNM 421608)									
Mesogaulus	28.29	4.83	8.11	16.42	21.52	16.15	5.56	114	3468
paniensis (AMNH									
F:AM 65511)									
Protosciurus cf.	32.95	6.69	8.35	19.23	22.79	15.81	6.69	216.41	4546.82
rachelae									
(YPM 14736)	26.14	6.72	0.46	10.75	21.8	17.28	C 41	2067	E(E0.05
Protosciurus cf. rachelae	36.14	6.73	8.46	19.75	21.8	17.28	6.41	206.7	5658.95
(YPM 14737)									
Paramys copei	45.82	10.11	9.63	21.05	21.47	20.3	9.92	455.45	7526.65
(AMNH 4756)	43.02	10.11	7.03	21.03	21.47	20.3	7.72	433.43	7320.03
Paramys delicatus	50.54	10.17	11.15	23.27	25.63	24.01	11.5	595.51	12565.4
(AMNH 12506)									
Pseudotomus	54.38	11.76	16.49	26.42	32.11	29.31	12.63	808.92	15188,2
horribilis									
(USNM 17159)									
Pseudotomus oweni	51.72	10.2	12.49	28.2	23	23.83	10.3	717.06	12063
(USNM 17161)									
Pseudotomus hians	47.78	7.82	15.82	23.83	32.34	29.64	12.22	743.2	13679.1
(AMNH 5025)	41.40	7.62	7.00	21.50	22.17	10.66	0.2	224 (10	7100.07
Rapamys	41.49	7.63	7.99	21.58	22.17	18.66	8.2	224.618	7109.97
atramontis (AMNH 128706)									
Rapamys	39.48	7.71	8.17	20	22.24	18.34	7.87	226.058	6006.47
atramontis	37.40	7.71	0.17	20	22.27	10.54	7.07	220.030	0000.47
(AMNH 128704)									
Ischyromys typus	40.55	7.24	7.12	20.96	23.58	19.98	9.36	180.09	5578.07
(ROMV 1007)									
Ischyromys typus	40.43	7.14	7.73	20.43	23.72	21.44	11.22	229.19	7276.91
(AMNH F:AM									
144638)									
Cedromus wilsoni	31.98	5.7	6.17	18.61	19.54	12.94	7.03	106.97	3609.87
(USNM 256584)		0.55		10 -	10.5		0.55	-0	
Megalagus	37.76	8.32	9.6	19.2	18.24	16.32	9.28	280.1	7052.78
turgidus									
(FMNH UC 1642)		l						j	

Brachylagus idahoensis (AMNH 92869)	33.02	5.55	8.98	24.94	23	17.34	8.21	144.28	5145.19
Lepus americanus (AMNH 97648)	46.36	8.6	13.68	33.07	29.02	21.37	11.41	366.15	10221.4
Lepus americanus bairdii (AMNH 99352)	43.92	10.08	10.55	29.15	28.02	20.83	12.15	263.19	9538.09
Lepus arcticus (AMNH 42139)	50.01	8.71	15.01	35.1	32.64	23.4	12.06	407.14	15949.9
Oryctolagus cuniculus (AMNH 34816)	42.7	6.98	10.09	30.2	27.22	22.21	8.94	218.06	9363.12
Poelagus marjorita (AMNH 51052)	52	14.33	11.55	34.66	29.01	21.76	11.23	358.52	11807.96
Romerolagus diazi (AMNH 148172)	38.57	6.1	9	26.72	23.49	19.14	9.51	191.21	6020.62
Ochotona pallasi (AMNH 59712)	29.73	5.34	5.39	17.43	16.37	11.77	6.88	57.92	2138.24
Ochotona princeps (AMNH 120698)	30.33	5.34	5.79	16.73	16.43	12.43	8.3	60.75	2270,48
Ochotona princeps schisticeps (AMNH 40547)	31.05	4.93	6.06	17.94	16.81	12.13	8.24	61.63	2479.85

Table S5a. Data used for the box plot analyses in Figure 4. NS1*2/TS, neocortical ratio using the neocortical surface area of one side x 2; OV/TV, olfactory bulb volume ratio; PLV/TV, petrosal lobule volume ratio

Species	Collection number	NS1*2/TS	OV/TV	PLV/TV	Source
Notharctus tenebrosus	AMNH 127167	28.89	2.1	-	Harrington et al (2016)
Notharctus tenebrosus	USNM V 23277	31.49	2.23	-	Harrington et al (2016)
Notharctus tenebrosus	USNM V 23278	31.20	1.51	-	Harrington et al (2016)
Smilodectes gracilis	USNM V 17994	30.57	2.06	-	Harrington et al (2016)
Smilodectes gracilis	USNM V 17996	31.21	1.67	-	Harrington et al (2016)
Smilodectes gracilis	USNM V 21815	32.58	1.24	-	Harrington et al (2016)
Adapis parisiensis	NHM M 1345	31.10	2.4	-	Harrington et al (2016)
Rooneyia viejaensis	TMM 40688-7	-	0.94	-	Kirk et al (2014)
Microchoerus erinaceus	UM-PRR 1771	-	0.96	-	Ramdarshan & Orliac (2016)
Microsyops annectens	UW 12362	21.3	5.09	-	Silcox et al (2010a)
Ignacius graybullianus	USNM 421608	19.72	5.53	-	Silcox et al (2009)
Plesiadapis cookei	UM 87990	-	7.8	-	Gingerich & Gunnell (2005)
Plesiadapis tricuspidens	MNHN CR 125	19.9	4.9	-	Orliac et al (2014)
Prosciurus relictus	USNM 437793	-	3.55	3.35	Bertrand et al (2018)
Protosciurus cf. rachelae	YPM 14736	30.59	4.76	3.31	Bertrand et al (2018)
	Notharctus tenebrosus Notharctus tenebrosus Notharctus tenebrosus Smilodectes gracilis Smilodectes gracilis Smilodectes gracilis Adapis parisiensis Rooneyia viejaensis Microchoerus erinaceus Microsyops annectens Ignacius graybullianus Plesiadapis cookei Plesiadapis tricuspidens Prosciurus relictus	Notharctus tenebrosus Notharctus tenebrosus USNM V 23277 Notharctus tenebrosus USNM V 23278 Smilodectes gracilis USNM V 17994 Smilodectes gracilis USNM V 17996 Smilodectes gracilis USNM V 21815 Adapis parisiensis NHM M 1345 Rooneyia viejaensis TMM 40688-7 Microchoerus erinaceus UM-PRR 1771 Microsyops annectens UW 12362 Ignacius graybullianus USNM 421608 Plesiadapis cookei UM 87990 Plesiadapis tricuspidens MNHN CR 125 Prosciurus relictus USNM 437793	Notharctus tenebrosusAMNH 12716728.89Notharctus tenebrosusUSNM V 2327731.49Notharctus tenebrosusUSNM V 2327831.20Smilodectes gracilisUSNM V 1799430.57Smilodectes gracilisUSNM V 1799631.21Smilodectes gracilisUSNM V 2181532.58Adapis parisiensisNHM M 134531.10Rooneyia viejaensisTMM 40688-7-Microchoerus erinaceusUM-PRR 1771-Microsyops annectensUW 1236221.3Ignacius graybullianusUSNM 42160819.72Plesiadapis cookeiUM 87990-Plesiadapis tricuspidensMNHN CR 12519.9Prosciurus relictusUSNM 437793-	Notharctus tenebrosus AMNH 127167 28.89 2.1 Notharctus tenebrosus USNM V 23277 31.49 2.23 Notharctus tenebrosus USNM V 23278 31.20 1.51 Smilodectes gracilis USNM V 17994 30.57 2.06 Smilodectes gracilis USNM V 17996 31.21 1.67 Smilodectes gracilis USNM V 21815 32.58 1.24 Adapis parisiensis NHM M 1345 31.10 2.4 Rooneyia viejaensis TMM 40688-7 - 0.94 Microschoerus erinaceus UM-PRR 1771 - 0.96 Microsyops annectens UW 12362 21.3 5.09 Ignacius graybullianus USNM 421608 19.72 5.53 Plesiadapis cookei UM 87990 - 7.8 Plesiadapis tricuspidens MNHN CR 125 19.9 4.9 Prosciurus relictus USNM 437793 - 3.55	Notharctus tenebrosus AMNH 127167 28.89 2.1 - Notharctus tenebrosus USNM V 23277 31.49 2.23 - Notharctus tenebrosus USNM V 23278 31.20 1.51 - Smilodectes gracilis USNM V 17994 30.57 2.06 - Smilodectes gracilis USNM V 17996 31.21 1.67 - Smilodectes gracilis USNM V 21815 32.58 1.24 - Adapis parisiensis NHM M 1345 31.10 2.4 - Rooneyia viejaensis TMM 40688-7 - 0.94 - Microchoerus erinaceus UM-PRR 1771 - 0.96 - Microsyops annectens UW 12362 21.3 5.09 - Ignacius graybullianus USNM 421608 19.72 5.53 - Plesiadapis cookei UM 87990 - 7.8 - Prosciurus relictus USNM 437793 - 3.55 3.35

Extinct Rodentia	Protosciurus cf. rachelae	YPM 14737	30.95	3.65	2.96	Bertrand et al (2018)
Extinct Rodentia	Paramys copei	AMNH 4756	17.10	6.05	1.20	Bertrand et al (2016b)
Extinct Rodentia	Paramys delicatus	AMNH 12506	16.25	4.74	1.03	Bertrand et al (2016b)
Extinct Rodentia	Pseudotomus horribilis	USNM 17159	18.89	5.33	1.14	Bertrand et al (2019)
Extinct Rodentia	Pseudotomus oweni	USNM 17161	22.92	5.94	0.62	Bertrand et al (2019)
Extinct Rodentia	Pseudotomus petersoni	AMNH 2018	22.89	4.14	0.39	Bertrand et al (2019)
Extinct Rodentia	Pseudotomus hians	AMNH 5025	23.02	5.43	1.04	Bertrand et al (2019)
Extinct Rodentia	Rapamys atramontis	AMNH 128706	20.24	3.16	1.52	Bertrand et al (2019)
Extinct Rodentia	Rapamys atramontis	AMNH 128704	21.77	3.76	2.05	Bertrand et al (2019)
Extinct Rodentia	Ischyromys typus	ROMV 1007	21.18	3.23	1.63	Bertrand and Silcox, 2016)
Extinct Rodentia	Ischyromys typus	AMNH 12252	18.45	3.68	-	Bertrand and Silcox, 2016)
Extinct Rodentia	Ischyromys typus	AMNH F:AM 144638	23.03	3.15	1.60	Bertrand and Silcox, 2016)
Extinct Rodentia	Cedromus wilsoni	USNM 256584	29.59	2.96	3.16	Bertrand et al (2017)
Extant Rodentia	Aplodontia rufa	AMNH 42389	25.94	2.58	0.82	Bertrand et al (2018)
Extant Rodentia	Sciurus carolinensis	AMNH 42389	35.41	3.18	2.03	Bertrand and Silcox, 2016)
Extant Rodentia	Sciurus granatensis	AMNH 42389	35.39	2.69	2.08	Bertrand et al (2017)
Extant Rodentia	Tamiasciurus hudsonicus	USNM 549146	36.30	2.50	2.33	Bertrand et al (2017)
Extant Rodentia	Eutamias minimus	USNM 298500	34.93	3.36	2.29	Bertrand et al (2017)
Extant Rodentia	Funisciurus pyrropus	USNM 294865	36.44	3.22	2.19	Bertrand et al (2017)

Extant Rodentia	Heliosciurus rufobrachium	USNM 378091	35.85	2.45	1.87	Bertrand et al (2017)
Extant Rodentia	Paraxerus cepapi	USNM 367956	35.62	2.62	1.46	Bertrand et al (2017)
Extant Rodentia	Protoxerus stangeri	USNM 435027	38.02	2.31	1.89	Bertrand et al (2017)
Extant Rodentia	Aeromys tephromelas	USNM 481190	35.19	2.85	1.45	Bertrand et al (2017)
Extant Rodentia	Glaucomys volans	AMNH 240290	35.69	3.49	1.68	Bertrand et al (2017)
Extant Rodentia	Petaurista petaurista	USNM 589079	35.28	1.64	1.62	Bertrand et al (2017)
Extant Rodentia	Hylopetes spadiceus	USNM 488639	36.73	3.30	0.85	Bertrand et al (2017)
Extant Rodentia	Petinomys setosus	USNM 488674	35.76	3.10	-	Bertrand et al (2017)
Extant Rodentia	Pteromyscus pulverulentus	USNM 481178	33.82	2.81	1.37	Bertrand et al (2017)
Extant Rodentia	Pteromys buechneri	USNM 172622	34.11	1.75	1.61	Bertrand et al (2017)
Extant Rodentia	Rhinosciurus laticaudatus	USNM 488511	34.10	3.88	2.22	Bertrand et al (2017)
Extant Rodentia	Callosciurus sp.	USNM 294865	38.79	3.28	1.77	Bertrand et al (2017)
Extant Rodentia	Lariscus insignis	USNM 488570	33.88	4.73	2.32	Bertrand et al (2017)
Extant Rodentia	Dremomys rufigenis	USNM 488602	36.82	3.96	2.14	Bertrand et al (2017)
Extant Rodentia	Ratufa affinis	USNM 488104	37.09	1.64	1.91	Bertrand et al (2017)
Extant Leporidae	Brachylagus idahoensis	AMNH 92869	32.01	2.80	2.97	This paper
Extant Leporidae	Lepus americanus bairdii	AMNH 42139	31.84	2.76	2.42	This paper
Extant Leporidae	Lepus americanus phaeonotus	AMNH 51052	35.11	3.58	1.97	This paper

Extant Leporidae	Lepus arcticus	AMNH 97648	41.98	2.55	1.69	This paper
Extant Leporidae	Oryctolagus cuniculus	AMNH 99352	35.21	2.33	2.21	This paper
Extant Leporidae	Poelagus marjorita	AMNH 34816	33.23	3.04	1.79	This paper
Extant Leporidae	Romerolagus diazi	AMNH 148172	28.08	3.18	2.37	This paper
Extant Ochotonidae	Ochotona pallasi	AMNH 120698	33.71	2.71	2.77	This paper
Extant Ochotonidae	Ochotona princeps princeps	AMNH 59712	30.97	2.68	3.29	This paper
Extant Ochotonidae	Ochotona princeps schisticeps	AMNH 40547	31.84	2.49	2.90	This paper
Stem lagomorph	Megalagus turgidus	FMNH UC 1642	18.98	3.97	2.31	This paper
Apatemyid	Labidolemur kayi	USNM 530208/530221	-	13.02	-	Silcox et al (2011)

Table S5b. Data used for the box plot analyses in Figure 4 and S9. EQ, encephalization quotient

Group	Species	Body mass (g)	Brain mass (g)	Jerison's EQ	Eisenberg's EQ	Source
Extant Leporidae	Brachylagus idahoensis	339.56	4.90	0.82835	1.18741999	This paper
Extant Leporidae	Lepus americanus bairdii	1396.22	9.11	0.593178	0.7753435	This paper
Extant Leporidae	Lepus americanus phaeonotus	998.68	9.73	0.793465	1.06175485	This paper
Extant Leporidae	Lepus arcticus	4003.10	15.19	0.488425	0.59304291	This paper
Extant Leporidae	Oryctolagus cuniculus	1796.07	8.917	0.490517	0.62995199	This paper
Extant Leporidae	Romerolagus diazi	1027.79	5.73	0.458422	0.61219303	This paper
Extant Leporidae	Poelagus marjorita	2480.24	11.25	0.4983	0.6256518	This paper
Extant Ochotonidae	Ochotona pallasi	223.85	2.04	0.452043	0.67164444	This paper
Extant Ochotonidae	Ochotona princeps princeps	202.92	2.16	0.512629	0.76691336	This paper
Extant Ochotonidae	Ochotona princeps schisticeps	155.10	2.36	0.670416	1.02201659	This paper
Stem lagomorph	Megalagus turgidus	2325.01	6.72	0.310803	0.39200494	This paper
Extinct Rodentia	Prosciurus relictus	30.07	0.91	0.776951	1.32855846	Bertrand et al (2018)
Extinct Rodentia	Protosciurus cf. rachelae	349.62	4.33	0.713063	1.02690931	Bertrand et al (2018)
Extinct Rodentia	Paramys copei	1029.89	7.17	0.57235	0.76422646	Bertrand et al (2016b)
Extinct Rodentia	Paramys delicatus	2913.82	11.97	0.47601	0.59096189	Bertrand et al (2016b)
Extinct Rodentia	Pseudotomus horribilis	7466.70	14.47	0.306295	0.35602181	Bertrand et al (2019)
Extinct Rodentia	Pseudotomus oweni	5396.00	11.49	0.30241	0.3595902	Bertrand et al (2019)

Extinct Rodentia	Pseudotomus petersoni	6644.56	16.20	0.371028	0.43480043	Bertrand et al (2019)
Extinct Rodentia	Pseudotomus hians	3153.50	13.03	0.491469	0.60678718	Bertrand et al (2019)
Extinct Rodentia	Rapamys atramontis	1307.61	6.77	0.460741	0.605006	Bertrand et al (2019)
Extinct Rodentia	Rapamys atramontis	918.93	5.72	0.493003	0.66355341	Bertrand et al (2019)
Extinct Rodentia	Ischyromys typus	1342.23	5.31	0.355197	0.46556207	Bertrand and Silcox, 2016)
Extinct Rodentia	Ischyromys typus	1086.42	5.65	0.43541	0.57920863	Bertrand and Silcox, 2016)
Extinct Rodentia	Ischyromys typus	1109.01	6.93	0.526586	0.6994881	Bertrand and Silcox, 2016)
Extinct Rodentia	Cedromus wilsoni	268.89	3.44	0.675003	0.99012925	Bertrand et al (2017)
Plesiadapiformes	Microsyops annectens	1686	5.62	0.322468	0.41597093	Silcox et al (2010a)
Plesiadapiformes	Ignacius graybullianus	253	2.04	0.416824	0.6140308	Silcox et al (2009)
Plesiadapiformes	Plesiadapis tricuspidens	6372	4.96	0.116843	0.13732804	Orliac et al (2014)
Plesiadapiformes	Plesiadapis cookei	2200	4.76	0.228653	0.28950948	Gingerich & Gunnell (2005)
Apatemyidae	Labidolemur kayi	74	0.478	0.222762	0.35764366	Silcox et al (2011)
Extinct Euprimates	Notharctus tenebrosus	2641	7.03	0.298608	0.37327879	Harrington et al (2016)
Extinct Euprimates	Notharctus tenebrosus	2923	7.68	0.304691	0.3781876	Harrington et al (2016)
Extinct Euprimates	Notharctus tenebrosus	2244	7.08	0.3353	0.42395277	Harrington et al (2016)
Extinct Euprimates	Smilodectes gracilis	1420	8.22	0.529184	0.69088059	Harrington et al (2016)
Extinct Euprimates	Smilodectes gracilis	1303	8.56	0.583951	0.76698416	Harrington et al (2016)
Extinct Euprimates	Smilodectes gracilis	1582	7.09	0.42436	0.54985188	Harrington et al (2016)
Extinct Euprimates	Smilodectes gracilis	1547	8.019	0.487509	0.63266649	Harrington et al (2016)

Extinct Euprimates	Adapis parisiensis	1074	8.39	0.651377	0.86719808	Harrington et al (2016)
Extinct Euprimates	Rooneyia viejaensis	381	6.89	1.070997	1.53313215	Kirk et al (2014)
Extinct Euprimates	Microchoerus erinaceus	597	4.06	0.466806	0.64755128	Ramdarshan & Orliac (2016)
Extant Rodentia	Acomys dimidiatus	76	0.97	0.444064	0.7116141	Bertrand et al (2018)
Extant Rodentia	Acomys dimidiatus	50.5	0.88	0.532189	0.87758969	Bertrand et al (2018)
Extant Rodentia	Aeromys tephromelas	904.59	10.92	0.95071	1.28101056	Bertrand et al (2018)
Extant Rodentia	Allactaga elater	80	1.90	0.840431	1.34196713	Bertrand et al (2018)
Extant Rodentia	Allactaga sibirica	193	3.50	0.85815	1.28834004	Bertrand et al (2018)
Extant Rodentia	Allactaga sibirica	106	2	0.732645	1.1470399	Bertrand et al (2018)
Extant Rodentia	Aplodontia rufa	1475.86	7.52	0.471755	0.61424253	Bertrand et al (2018)
Extant Rodentia	Aplodontia rufa	982	7.60	0.626495	0.83931688	Bertrand et al (2018)
Extant Rodentia	Aplodontia rufa	870	8.40	0.750966	1.01463516	Bertrand et al (2018)
Extant Rodentia	Aplodontia rufa	710	8.40	0.860508	1.17929641	Bertrand et al (2018)
Extant Rodentia	Aplodontia rufa	985	8.80	0.723934	0.96964939	Bertrand et al (2018)
Extant Rodentia	Aplodontia rufa	887	8.30	0.732467	0.98830156	Bertrand et al (2018)
Extant Rodentia	Apodemus agrarius	28.50	0.63	0.5582	0.95809098	Bertrand et al (2018)
Extant Rodentia	Apodemus agrarius agrarius	26.20	0.62	0.57936	1.00028465	Bertrand et al (2018)
Extant Rodentia	Apodemus flavicollis	30	0.75	0.640042	1.09462762	Bertrand et al (2018)
Extant Rodentia	Apodemus flavicollis flavicollis	33	0.80	0.640478	1.0880893	Bertrand et al (2018)
Extant Rodentia	Apodemus sylvaticus	19.40	0.59	0.674285	1.18892265	Bertrand et al (2018)

Extant Rodentia	Apodemus sylvaticus	22	0.56	0.592481	1.03552643	Bertrand et al (2018)
Extant Rodentia	Apodemus sylvaticus	21.60	0.59	0.627461	1.09807273	Bertrand et al (2018)
Extant Rodentia	Apodemus sylvaticus sylvaticus	19	0.60	0.695353	1.22785888	Bertrand et al (2018)
Extant Rodentia	Arvicola amphibius	137.80	1.53	0.470125	0.7226398	Bertrand et al (2018)
Extant Rodentia	Arvicola amphibius	131	1.50	0.476802	0.73550456	Bertrand et al (2018)
Extant Rodentia	Arvicola amphibius	84.50	1.09	0.463078	0.73659833	Bertrand et al (2018)
Extant Rodentia	Atherurus africanus	1600	17.20	1.02232	1.3235932	Bertrand et al (2018)
Extant Rodentia	Atherurus africanus	3620	25.30	0.870171	1.06402308	Bertrand et al (2018)
Extant Rodentia	Atherurus africanus	1925	17.80	0.934696	1.19458244	Bertrand et al (2018)
Extant Rodentia	Atherurus africanus	2250	23	1.087888	1.37526896	Bertrand et al (2018)
Extant Rodentia	Atlantoxerus getulus	251	3.75	0.771515	1.13716435	Bertrand et al (2018)
Extant Rodentia	Brachytarsomys albicauda	300	2.47	0.450655	0.65599736	Bertrand et al (2018)
Extant Rodentia	Brachyuromys ramirohitra	94	1.40	0.555842	0.87758318	Bertrand et al (2018)
Extant Rodentia	Callosciurus sp.	437.35	6.67	0.945942	1.34110378	Bertrand et al (2018)
Extant Rodentia	Callospermophilus lateralis	246	2.98	0.621223	0.91693369	Bertrand et al (2018)
Extant Rodentia	Callospermophilus lateralis	217	3.10	0.701592	1.0446931	Bertrand et al (2018)
Extant Rodentia	Capromys pilorides	7000	11	0.243218	0.28398474	Bertrand et al (2018)
Extant Rodentia	Castor canadensis	20500	44	0.473583	0.51289644	Bertrand et al (2018)
Extant Rodentia	Castor canadensis	18000	53	0.622389	0.68021951	Bertrand et al (2018)
Extant Rodentia	Castor canadensis	14500	45	0.610822	0.67775864	Bertrand et al (2018)

Castor canadensis	22500	52	0.525847	0.56580027	Bertrand et al (2018)
					` '
Castor canadensis	8000	38	0.768302	0.88873416	Bertrand et al (2018)
Castor canadensis	9750	48	0.850016	0.96973415	Bertrand et al (2018)
Castor canadensis	12500	42	0.629707	0.70600983	Bertrand et al (2018)
Castor canadensis	16000	38	0.482883	0.53212012	Bertrand et al (2018)
Castor canadensis	5500	43	1.117491	1.32701226	Bertrand et al (2018)
Castor canadensis	20000	40	0.437712	0.47486774	Bertrand et al (2018)
Castor canadensis	4180	25.48	0.795848	0.96339379	Bertrand et al (2018)
Castor canadensis	5380	29.52	0.778594	0.92600288	Bertrand et al (2018)
Castor canadensis	14500	45	0.610822	0.67775864	Bertrand et al (2018)
Castor fiber	14300	41.40	0.56721	0.62997968	Bertrand et al (2018)
Castor fiber	16900	38.80	0.475298	0.52175958	Bertrand et al (2018)
Castor fiber	25000	45	0.424045	0.45290986	Bertrand et al (2018)
Castor fiber	23100	45.50	0.452075	0.48552702	Bertrand et al (2018)
Castor fiber	20000	39	0.426769	0.46299604	Bertrand et al (2018)
Cavia aperea	163	2.70	0.741339	1.12621111	Bertrand et al (2018)
Cavia aperea	260	3	0.602432	0.88575955	Bertrand et al (2018)
Cavia aperea	430	3.90	0.559061	0.7935473	Bertrand et al (2018)
Cavia aperea	647	5.46	0.595258	0.82110433	Bertrand et al (2018)
Cavia aperea	460	4.20	0.575467	0.81298656	Bertrand et al (2018)
	Castor canadensis Castor fiber Cavia aperea Cavia aperea Cavia aperea	Castor canadensis 8000 Castor canadensis 9750 Castor canadensis 12500 Castor canadensis 16000 Castor canadensis 5500 Castor canadensis 20000 Castor canadensis 4180 Castor canadensis 5380 Castor canadensis 14500 Castor fiber 16900 Castor fiber 25000 Castor fiber 23100 Castor fiber 20000 Cavia aperea 163 Cavia aperea 260 Cavia aperea 430 Cavia aperea 647	Castor canadensis 8000 38 Castor canadensis 9750 48 Castor canadensis 12500 42 Castor canadensis 16000 38 Castor canadensis 5500 43 Castor canadensis 20000 40 Castor canadensis 4180 25.48 Castor canadensis 5380 29.52 Castor canadensis 14500 45 Castor fiber 16900 38.80 Castor fiber 25000 45 Castor fiber 23100 45.50 Castor fiber 20000 39 Cavia aperea 163 2.70 Cavia aperea 260 3 Cavia aperea 430 3.90 Cavia aperea 647 5.46	Castor canadensis 8000 38 0.768302 Castor canadensis 9750 48 0.850016 Castor canadensis 12500 42 0.629707 Castor canadensis 16000 38 0.482883 Castor canadensis 5500 43 1.117491 Castor canadensis 20000 40 0.437712 Castor canadensis 4180 25.48 0.795848 Castor canadensis 5380 29.52 0.778594 Castor fiber 14300 41.40 0.56721 Castor fiber 16900 38.80 0.475298 Castor fiber 25000 45 0.424045 Castor fiber 23100 45.50 0.452075 Castor fiber 20000 39 0.426769 Cavia aperea 163 2.70 0.741339 Cavia aperea 260 3 0.602432 Cavia aperea 430 3.90 0.559061 Cavia aperea 647 5.46 0.595258	Castor canadensis 8000 38 0.768302 0.88873416 Castor canadensis 9750 48 0.850016 0.96973415 Castor canadensis 12500 42 0.629707 0.70600983 Castor canadensis 16000 38 0.482883 0.53212012 Castor canadensis 5500 43 1.117491 1.32701226 Castor canadensis 20000 40 0.437712 0.47486774 Castor canadensis 4180 25.48 0.795848 0.96339379 Castor canadensis 5380 29.52 0.778594 0.92600288 Castor canadensis 14500 45 0.610822 0.67775864 Castor fiber 14300 41.40 0.56721 0.62997968 Castor fiber 16900 38.80 0.475298 0.52175958 Castor fiber 23100 45.50 0.452075 0.48552702 Castor fiber 23100 45.50 0.741339 1.12621111 Cavia aperea 163 2.70

Extant Rodentia	Cavia aperea	792	4.70	0.447477	0.60857778	Bertrand et al (2018)
Extant Rodentia	Cavia aperea	540	4.10	0.504544	0.70483481	Bertrand et al (2018)
Extant Rodentia	Cavia aperea f. porcellus	485	4.57	0.604349	0.85063291	Bertrand et al (2018)
Extant Rodentia	Cavia porcellus	520	5.40	0.681538	0.95461038	Bertrand et al (2018)
Extant Rodentia	Cavia porcellus	650	5.80	0.630369	0.86925456	Bertrand et al (2018)
Extant Rodentia	Cavia porcellus	348	6.40	1.05716	1.52295195	Bertrand et al (2018)
Extant Rodentia	Cavia porcellus	648	4.40	0.479199	0.66094001	Bertrand et al (2018)
Extant Rodentia	Cavia porcellus	493.1	3.80	0.496977	0.69869328	Bertrand et al (2018)
Extant Rodentia	Cavia porcellus	361	4.10	0.660804	0.94951842	Bertrand et al (2018)
Extant Rodentia	Cavia porcellus	324	3.80	0.658472	0.95335612	Bertrand et al (2018)
Extant Rodentia	Cavia porcellus	214.94	3.32	0.757363	1.12849124	Bertrand et al (2018)
Extant Rodentia	Cavia porcellus	214.57	3.28	0.749103	1.11631729	Bertrand et al (2018)
Extant Rodentia	Cavia porcellus	432	4	0.571616	0.81110464	Bertrand et al (2018)
Extant Rodentia	Cavia porcellus	456	4.23	0.582979	0.82410254	Bertrand et al (2018)
Extant Rodentia	Cavia porcellus	675	4.54	0.481106	0.66167683	Bertrand et al (2018)
Extant Rodentia	Cavia porcellus	971	4.28	0.355489	0.47662455	Bertrand et al (2018)
Extant Rodentia	Cavia porcellus	900	4.94	0.431721	0.58191876	Bertrand et al (2018)
Extant Rodentia	Cavia porcellus	500	5	0.647857	0.90992809	Bertrand et al (2018)
Extant Rodentia	Cavia porcellus	700	4.73	0.489175	0.67106326	Bertrand et al (2018)
Extant Rodentia	Chaetodipus baileyi	31.20	0.62	0.514588	0.87765641	Bertrand et al (2018)

Extant Rodentia	Chaetodipus californicus	26	0.57	0.536721	0.92716396	Bertrand et al (2018)
Extant Rodentia	Chaetodipus fallax	20.30	0.50	0.549048	0.96503229	Bertrand et al (2018)
Extant Rodentia	Chaetodipus formosus	15.30	0.41	0.548725	0.98374461	Bertrand et al (2018)
Extant Rodentia	Chaetodipus hispidus	35.20	0.63	0.481936	0.81505691	Bertrand et al (2018)
Extant Rodentia	Chaetodipus penicillatus	16.50	0.42	0.533787	0.95191929	Bertrand et al (2018)
Extant Rodentia	Chaetodipus spinatus	19.10	0.44	0.505935	0.89305603	Bertrand et al (2018)
Extant Rodentia	Chinchilla chinchilla	520	7.80	0.984444	1.37888167	Bertrand et al (2018)
Extant Rodentia	Chinchilla chinchilla	425	6.40	0.924652	1.31355129	Bertrand et al (2018)
Extant Rodentia	Chinchilla chinchilla	320	6.90	1.205639	1.74708074	Bertrand et al (2018)
Extant Rodentia	Chinchilla chinchilla	470	8.90	1.201996	1.69555726	Bertrand et al (2018)
Extant Rodentia	Chinchilla chinchilla	450	6	0.834291	1.18045343	Bertrand et al (2018)
Extant Rodentia	Chinchilla lanigera	432	5.20	0.743101	1.05443604	Bertrand et al (2018)
Extant Rodentia	Chinchilla lanigera	380	5.20	0.80978	1.15941349	Bertrand et al (2018)
Extant Rodentia	Chinchilla lanigera	385	5.05	0.779563	1.11512951	Bertrand et al (2018)
Extant Rodentia	Chinchilla lanigera	460	5.10	0.698781	0.98719796	Bertrand et al (2018)
Extant Rodentia	Chinchilla lanigera	385	4.90	0.756408	1.08200685	Bertrand et al (2018)
Extant Rodentia	Chinchilla lanigera	370	5.32	0.843403	1.20981015	Bertrand et al (2018)
Extant Rodentia	Chinchilla lanigera	385	5.50	0.849029	1.21449748	Bertrand et al (2018)
Extant Rodentia	Chinchilla lanigera	425	6.40	0.924652	1.31355129	Bertrand et al (2018)
Extant Rodentia	Chinchilla lanigera	500	6	0.777428	1.0919137	Bertrand et al (2018)

Extant Rodentia	Colomys goslingi	58.20	1.37	0.75106	1.22626963	Bertrand et al (2018)
Extant Rodentia	Cricetomys emini	1000	6.60	0.53748	0.71914887	Bertrand et al (2018)
Extant Rodentia	Cricetomys emini	80.50	2.70	1.189322	1.89823371	Bertrand et al (2018)
Extant Rodentia	Cricetulus griseus	36	0.67	0.506024	0.85444836	Bertrand et al (2018)
Extant Rodentia	Cricetulus griseus	23.18	0.63	0.637019	1.10930398	Bertrand et al (2018)
Extant Rodentia	Cricetus cricetus	450	2.85	0.396288	0.56071538	Bertrand et al (2018)
Extant Rodentia	Cricetus cricetus	297	2.20	0.404105	0.58865085	Bertrand et al (2018)
Extant Rodentia	Cuniculus paca	5635	35.80	0.915383	1.08516654	Bertrand et al (2018)
Extant Rodentia	Cuniculus paca	6125	33.50	0.810033	0.95468735	Bertrand et al (2018)
Extant Rodentia	Cuniculus paca	3665	33.20	1.132471	1.38356067	Bertrand et al (2018)
Extant Rodentia	Cuniculus paca	9000	37.30	0.696923	0.79954745	Bertrand et al (2018)
Extant Rodentia	Cuniculus paca	5000	26.10	0.723018	0.86432599	Bertrand et al (2018)
Extant Rodentia	Cuniculus paca	3627	21.85	0.750539	0.9176163	Bertrand et al (2018)
Extant Rodentia	Cuniculus paca	4559	48	1.414547	1.70197277	Bertrand et al (2018)
Extant Rodentia	Cynomys ludovicianus	1200	6.40	0.461262	0.60934145	Bertrand et al (2018)
Extant Rodentia	Dasymys incomtus	102.5	1.57	0.58971	0.92543077	Bertrand et al (2018)
Extant Rodentia	Dasyprocta leporina	3600	21.60	0.745675	0.91214686	Bertrand et al (2018)
Extant Rodentia	Dasyprocta leporina	2684	20	0.840552	1.04955646	Bertrand et al (2018)
Extant Rodentia	Dasyprocta leporina	2390	18.40	0.835815	1.05215142	Bertrand et al (2018)
Extant Rodentia	Dasyprocta leporina	2004	17	0.868953	1.10743815	Bertrand et al (2018)

Extant Rodentia	Dasyprocta leporina	2880	18.50	0.741647	0.92150173	Bertrand et al (2018)
Extant Rodentia	Dasyprocta leporina	2350	18	0.826943	1.04221461	Bertrand et al (2018)
Extant Rodentia	Dasyprocta leporina	2550	17	0.739411	0.92658242	Bertrand et al (2018)
Extant Rodentia	Dasyprocta leporina	3172	18.30	0.687665	0.84867109	Bertrand et al (2018)
Extant Rodentia	Dasyprocta leporina	2371	19.80	0.904232	1.13891342	Bertrand et al (2018)
Extant Rodentia	Dasyprocta leporina	2400	27	1.223041	1.53915485	Bertrand et al (2018)
Extant Rodentia	Dasyprocta leporina	2370	19.80	0.904487	1.13926901	Bertrand et al (2018)
Extant Rodentia	Dasyprocta mexicana	1527	17.80	1.091608	1.41792736	Bertrand et al (2018)
Extant Rodentia	Dasyprocta mexicana	2300	20	0.932161	1.17659301	Bertrand et al (2018)
Extant Rodentia	Dasyprocta punctata	3172	18.34	0.689168	0.8505261	Bertrand et al (2018)
Extant Rodentia	Dendromus mesomelas	14	0.51	0.725242	1.30830891	Bertrand et al (2018)
Extant Rodentia	Desmodillus auricularis	60	1.12	0.600725	0.97872564	Bertrand et al (2018)
Extant Rodentia	Dicrostonyx groenlandicus	52.1	0.90	0.529613	0.87143772	Bertrand et al (2018)
Extant Rodentia	Dipodomys deserti	114.7	1.60	0.555944	0.86560134	Bertrand et al (2018)
Extant Rodentia	Dipodomys heermanni	71.3	1.38	0.659823	1.06210467	Bertrand et al (2018)
Extant Rodentia	Dipodomys merriami	41	1.06	0.731791	1.22447097	Bertrand et al (2018)
Extant Rodentia	Dipodomys microps	65.7	1.12	0.567208	0.91826748	Bertrand et al (2018)
Extant Rodentia	Dipodomys ordii	60.2	1.39	0.744137	1.21209601	Bertrand et al (2018)
Extant Rodentia	Dipodomys panamintinus	74	1.47	0.683542	1.09742492	Bertrand et al (2018)
Extant Rodentia	Dipodomys spectabilis	146.60	1.98	0.58396	0.89373706	Bertrand et al (2018)

Extant Rodentia	Dolichotis patagonum	5500	15	0.389823	0.46291125	Bertrand et al (2018)
Extant Rodentia	Dolichotis patagonum	5650	25.70	0.655963	0.77748522	Bertrand et al (2018)
Extant Rodentia	Dolichotis patagonum	5650	25.66	0.654942	0.77627512	Bertrand et al (2018)
Extant Rodentia	Dolichotis patagonum	7880	33.50	0.684212	0.79230113	Bertrand et al (2018)
Extant Rodentia	Dolichotis patagonum	7500	32	0.675581	0.78501781	Bertrand et al (2018)
Extant Rodentia	Dolichotis patagonum	5500	26	0.675693	0.8023795	Bertrand et al (2018)
Extant Rodentia	Dolichotis patagonum	7200	30	0.650919	0.75852531	Bertrand et al (2018)
Extant Rodentia	Dremomys rufigenis	418.43	5.59	0.815626	1.15993435	Bertrand et al (2018)
Extant Rodentia	Eliurus minor	38	1.46	1.063449	1.78890741	Bertrand et al (2018)
Extant Rodentia	Eliurus myoxinus	59	1.69	0.916716	1.49530947	Bertrand et al (2018)
Extant Rodentia	Epixerus ebii	605	9.77	1.114296	1.54430811	Bertrand et al (2018)
Extant Rodentia	Erethizon dorsatum	5160	27.90	0.756742	0.90264773	Bertrand et al (2018)
Extant Rodentia	Erethizon dorsatum	3430	28.70	1.023419	1.2561431	Bertrand et al (2018)
Extant Rodentia	Erethizon dorsatum	4980	25.10	0.697186	0.83367903	Bertrand et al (2018)
Extant Rodentia	Erethizon dorsatum	4980	27.20	0.755517	0.90342907	Bertrand et al (2018)
Extant Rodentia	Erethizon dorsatum	4640	27.10	0.789262	0.94846401	Bertrand et al (2018)
Extant Rodentia	Erethizon dorsatum	6200	27.10	0.649958	0.76537507	Bertrand et al (2018)
Extant Rodentia	Erethizon dorsatum	6640	24	0.549765	0.64429051	Bertrand et al (2018)
Extant Rodentia	Erethizon dorsatum	2800	30.77	1.257044	1.56496786	Bertrand et al (2018)
Extant Rodentia	Erethizon dorsatum	2725	21.22	0.882813	1.10115647	Bertrand et al (2018)

Extant Rodentia	Erethizon dorsatum	3410	19.15	0.685555	0.84179319	Bertrand et al (2018)
Extant Rodentia	Erethizon dorsatum	5000	24	0.664845	0.79478252	Bertrand et al (2018)
Extant Rodentia	Eutamias sibiricus	110	2.60	0.929093	1.45083368	Bertrand et al (2018)
Extant Rodentia	Funisciurus anerythrus	230	4.03	0.878238	1.30240885	Bertrand et al (2018)
Extant Rodentia	Funisciurus carruthersi	107.50	4	1.45156	2.27034886	Bertrand et al (2018)
Extant Rodentia	Funisciurus carruthersi	158	4.50	1.261627	1.92079554	Bertrand et al (2018)
Extant Rodentia	Funisciurus carruthersi	195.50	3.25	0.790012	1.1849762	Bertrand et al (2018)
Extant Rodentia	Funisciurus carruthersi	168	4.10	1.103177	1.67236033	Bertrand et al (2018)
Extant Rodentia	Funisciurus carruthersi	195	4.65	1.132266	1.69864337	Bertrand et al (2018)
Extant Rodentia	Funisciurus isabella	160.50	3.14	0.871917	1.32601361	Bertrand et al (2018)
Extant Rodentia	Funisciurus lemniscatus	154	3.22	0.918137	1.4003511	Bertrand et al (2018)
Extant Rodentia	Funisciurus pyrropus	258.75	4.47	0.899855	1.32350915	Bertrand et al (2018)
Extant Rodentia	Funisciurus pyrropus	301.15	4.34	0.789315	1.14866046	Bertrand et al (2018)
Extant Rodentia	Funisciurus substriatus	186.10	3.70	0.930784	1.40095071	Bertrand et al (2018)
Extant Rodentia	Galea spixii	672	6.20	0.658981	0.90659495	Bertrand et al (2018)
Extant Rodentia	Geomys bursarius	192.40	1.49	0.365037	0.54814874	Bertrand et al (2018)
Extant Rodentia	Geomys pinetis	313.50	2.30	0.408287	0.59249563	Bertrand et al (2018)
Extant Rodentia	Gerbillus gerbillus	95	3.40	1.340364	2.11464913	Bertrand et al (2018)
Extant Rodentia	Gerbillus nanus	18	0.52	0.62487	1.10758371	Bertrand et al (2018)
Extant Rodentia	Gerbillus pyramidum	79	1.14	0.508526	0.81271013	Bertrand et al (2018)

Extant Rodentia	Gerbillus pyramidum	70	1.20	0.580476	0.93558568	Bertrand et al (2018)
Extant Rodentia	Gerbillus pyramidum	72.30	1.08	0.511234	0.82212203	Bertrand et al (2018)
Extant Rodentia	Gerbillus pyramidum	79	1.06	0.472394	0.75496494	Bertrand et al (2018)
Extant Rodentia	Gerbillus pyramidum	57.90	1	0.551516	0.90079599	Bertrand et al (2018)
Extant Rodentia	Gerbillus pyramidum	59.40	0.98	0.529725	0.86365821	Bertrand et al (2018)
Extant Rodentia	Glaucomys volans	63.97	1.91	0.983817	1.59570287	Bertrand et al (2018)
Extant Rodentia	Glaucomys volans	52	1.89	1.115728	1.83609099	Bertrand et al (2018)
Extant Rodentia	Glaucomys volans	64	1.92	0.986233	1.59956877	Bertrand et al (2018)
Extant Rodentia	Glis glis	118	1.4	0.477294	0.74166916	Bertrand et al (2018)
Extant Rodentia	Glis glis	148	1.9	0.556541	0.85120624	Bertrand et al (2018)
Extant Rodentia	Grammomys dolichurus	45	1.18	0.767447	1.27579124	Bertrand et al (2018)
Extant Rodentia	Graphiurus murinus	17.70	0.55	0.66962	1.18830042	Bertrand et al (2018)
Extant Rodentia	Heliosciurus gambianus	209.80	3.53	0.819207	1.22270988	Bertrand et al (2018)
Extant Rodentia	Heliosciurus rufobrachium	354.98	5.79	0.943314	1.35705735	Bertrand et al (2018)
Extant Rodentia	Heliosciurus rufobrachium isabellinus	280.90	4.84	0.922494	1.3490281	Bertrand et al (2018)
Extant Rodentia	Heliosciurus rufobrachium rufobrachium	334	5.03	0.853794	1.23352259	Bertrand et al (2018)
Extant Rodentia	Heterocephalus glaber	39	0.52	0.372228	0.62501495	Bertrand et al (2018)
Extant Rodentia	Heterogeomys cherriei	405	3.19	0.476079	0.67859969	Bertrand et al (2018)
Extant Rodentia	Heteromys desmarestianus	77.10	1.08	0.487957	0.78116679	Bertrand et al (2018)

Extant Rodentia	Heteromys pictus	40.20	0.71	0.501025	0.83949778	Bertrand et al (2018)
Extant Rodentia	Hoplomys gymnurus	637	3.85	0.423875	0.585334	Bertrand et al (2018)
Extant Rodentia	Hybomys univittatus	56.80	1.15	0.63933	1.04562782	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	31000	85	0.693466	0.72960221	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	24130	61.40	0.59248	0.63438196	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	29500	76	0.640991	0.67673739	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	10000	55	0.957594	1.09052985	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	12000	53	0.816664	0.91824086	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	13000	53	0.774021	0.86543142	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	17000	61	0.7443	0.8167187	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	28000	52	0.454178	0.48126166	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	24031	61.40	0.594114	0.63631487	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	28500	75	0.647342	0.68509522	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	27670	52.21	0.459649	0.48746314	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	26700	75	0.676266	0.71898164	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	34300	73	0.556538	0.58140676	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	33000	75.50	0.590692	0.61875897	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	54000	82	0.461242	0.46678548	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	29500	76.02	0.641159	0.67691547	Bertrand et al (2018)
Extant Rodentia	Hydrochoerus hydrochaeris	28000	75	0.655065	0.6941274	Bertrand et al (2018)

Extant Rodentia	Hydrochoerus hydrochaeris	32500	71	0.561197	0.5884906	Bertrand et al (2018)
Extant Rodentia	Hylopetes spadiceus	84.22	2.02	0.863155	1.37330095	Bertrand et al (2018)
Extant Rodentia	Hypogeomys antimena	875	8	0.712465	0.96223001	Bertrand et al (2018)
Extant Rodentia	Hystrix brachyura	22000	43	0.441432	0.47571905	Bertrand et al (2018)
Extant Rodentia	Hystrix cristata	7036.50	36.50	0.804234	0.93869344	Bertrand et al (2018)
Extant Rodentia	Hystrix cristata	15000	32	0.424607	0.47002106	Bertrand et al (2018)
Extant Rodentia	Hystrix cristata	10000	37	0.6442	0.73362917	Bertrand et al (2018)
Extant Rodentia	Hystrix hybrid	13500	37	0.526862	0.5875294	Bertrand et al (2018)
Extant Rodentia	Hystrix javanica	23000	20	0.199293	0.21410473	Bertrand et al (2018)
Extant Rodentia	Hystrix sp.	15000	37.50	0.497587	0.55080593	Bertrand et al (2018)
Extant Rodentia	Ictidomys tridecemlineatus	200	2.20	0.526685	0.7887427	Bertrand et al (2018)
Extant Rodentia	Ictidomys tridecemlineatus	115	2.40	0.832458	1.29589468	Bertrand et al (2018)
Extant Rodentia	Ictidomys tridecemlineatus	139	2.16	0.660443	1.0145664	Bertrand et al (2018)
Extant Rodentia	Ictidomys tridecemlineatus	153	2.30	0.657511	1.00330033	Bertrand et al (2018)
Extant Rodentia	Jaculus jaculus	73	1.85	0.87009	1.39825918	Bertrand et al (2018)
Extant Rodentia	Jaculus orientalis	140	2.64	0.802633	1.23237832	Bertrand et al (2018)
Extant Rodentia	Jaculus orientalis	98	2.50	0.965244	1.51952406	Bertrand et al (2018)
Extant Rodentia	Lagidium viscacia	2460	12.40	0.552477	0.69407208	Bertrand et al (2018)
Extant Rodentia	Lagidium viscacia	2252	16	0.756341	0.95608003	Bertrand et al (2018)
Extant Rodentia	Lagidium viscacia	2350	15.20	0.698308	0.88009233	Bertrand et al (2018)

Extant Rodentia	Lagidium viscacia	3845	14.80	0.488877	0.59526903	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	6630	20	0.458601	0.5375079	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	6385	21	0.493833	0.5803301	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	5965	17.20	0.423339	0.49986368	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	3930	18	0.585933	0.71235567	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	3765	16.50	0.552765	0.67405095	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	2940	16.30	0.644486	0.79962332	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	7000	17	0.375882	0.43888551	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	1575	12.20	0.732826	0.94983263	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	1990	14.50	0.744655	0.94949262	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	1395	12	0.781871	1.02204778	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	1500	11.10	0.688907	0.8959635	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	1265	11.80	0.820919	1.08046297	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	1125	13.20	0.993392	1.31824439	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	1095	11.70	0.896597	1.19204948	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	1440	13	0.8292	1.0815086	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	1225	12.70	0.902758	1.19085226	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	1510	12.60	0.778529	1.01205117	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	1335	11.90	0.798534	1.04704583	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	1325	11.90	0.802567	1.05288777	Bertrand et al (2018)

Extant Rodentia	Lagostomus maximus	1115	12.30	0.931214	1.236507	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	1075	11	0.85343	1.13612284	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	1030	11.20	0.894202	1.19396981	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	1125	11.20	0.842878	1.1185104	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	1230	11.70	0.829408	1.09378244	Bertrand et al (2018)
Extant Rodentia	Lagostomus maximus	3854	8.80	0.290229	0.35333192	Bertrand et al (2018)
Extant Rodentia	Lagurus lagurus	15	0.40	0.543122	0.97505099	Bertrand et al (2018)
Extant Rodentia	Lariscus insignis	324.71	4.65	0.803933	1.16378115	Bertrand et al (2018)
Extant Rodentia	Lemmus lemmus	21	0.70	0.75863	1.33024192	Bertrand et al (2018)
Extant Rodentia	Lemmus trimucronatus	32	1.13	0.920252	1.56675928	Bertrand et al (2018)
Extant Rodentia	Lemmus trimucronatus	48	1.31	0.817186	1.35235337	Bertrand et al (2018)
Extant Rodentia	Lemniscomys striatus	53.30	1.02	0.592259	0.9729643	Bertrand et al (2018)
Extant Rodentia	Lemniscomys striatus	53	1.01	0.586926	0.96458432	Bertrand et al (2018)
Extant Rodentia	Lemniscomys striatus	53.40	1.01	0.588036	0.96590028	Bertrand et al (2018)
Extant Rodentia	Lemniscomys striatus	57	0.99	0.549563	0.89859225	Bertrand et al (2018)
Extant Rodentia	Lophuromys sikapusi	63.50	1.20	0.619643	1.00554974	Bertrand et al (2018)
Extant Rodentia	Lophuromys sikapusi	70	1.13	0.546615	0.88100985	Bertrand et al (2018)
Extant Rodentia	Macrotarsomys bastardi	28.50	0.80	0.706582	1.21277339	Bertrand et al (2018)
Extant Rodentia	Macrotarsomys ingens	65	1.70	0.864203	1.40012853	Bertrand et al (2018)
Extant Rodentia	Malacomys longipes	98	1.29	0.496136	0.78103537	Bertrand et al (2018)

Extant Rodentia	Malacothrix typicus	124	0.50	0.164891	0.25533646	Bertrand et al (2018)
Extant Rodentia	Marmota bobak	5333	11.97	0.31761	0.37797396	Bertrand et al (2018)
Extant Rodentia	Marmota marmota	5000	16	0.44323	0.52985501	Bertrand et al (2018)
Extant Rodentia	Marmota marmota	4050	17	0.542341	0.65797149	Bertrand et al (2018)
Extant Rodentia	Marmota marmota	2950	17	0.670636	0.83187007	Bertrand et al (2018)
Extant Rodentia	Marmota marmota	3500	17	0.598056	0.73301597	Bertrand et al (2018)
Extant Rodentia	Marmota sibirica	1890	18.10	0.962206	1.2313222	Bertrand et al (2018)
Extant Rodentia	Mastomys coucha	21.80	0.71	0.753814	1.31834294	Bertrand et al (2018)
Extant Rodentia	Mastomys natalensis	63	0.90	0.4672	0.75858696	Bertrand et al (2018)
Extant Rodentia	Meriones crassus	122	1.36	0.453416	0.70292259	Bertrand et al (2018)
Extant Rodentia	Meriones libycus	93	1.51	0.603826	0.95405725	Bertrand et al (2018)
Extant Rodentia	Meriones meridianus	50	1.20	0.727261	1.20010242	Bertrand et al (2018)
Extant Rodentia	Meriones shawi	140	1.48	0.449961	0.69087875	Bertrand et al (2018)
Extant Rodentia	Meriones unguiculatus	50	1.30	0.787866	1.30011096	Bertrand et al (2018)
Extant Rodentia	Mesocricetus auratus	100	1.40	0.53327	0.83830664	Bertrand et al (2018)
Extant Rodentia	Mesocricetus auratus	125	1.12	0.367373	0.56856416	Bertrand et al (2018)
Extant Rodentia	Mesocricetus auratus	87	1.32	0.551969	0.87620263	Bertrand et al (2018)
Extant Rodentia	Mesocricetus brandti	80	1	0.442332	0.70629849	Bertrand et al (2018)
Extant Rodentia	Microdipodops megacephalus	13.60	0.48	0.690444	1.24806379	Bertrand et al (2018)
Extant Rodentia	Microdipodops pallidus	12.90	0.50	0.758246	1.37570417	Bertrand et al (2018)

Extant Rodentia	Micromys minutus	5.50	0.27	0.710047	1.36746979	Bertrand et al (2018)
Extant Rodentia	Micromys minutus	6.10	0.28	0.699676	1.33776522	Bertrand et al (2018)
Extant Rodentia	Micromys minutus	5.95	0.28	0.701354	1.34331267	Bertrand et al (2018)
Extant Rodentia	Microtus agrestis	42.50	0.90	0.608192	1.01510173	Bertrand et al (2018)
Extant Rodentia	Microtus agrestris	30.50	0.53	0.449003	0.76701635	Bertrand et al (2018)
Extant Rodentia	Microtus arvalis arvalis	20.50	0.40	0.440559	0.77381475	Bertrand et al (2018)
Extant Rodentia	Microtus oeconomus stimmingi	45	0.68	0.442258	0.73520173	Bertrand et al (2018)
Extant Rodentia	Microtus pennsylvanicus	23.70	0.66	0.660201	1.14788839	Bertrand et al (2018)
Extant Rodentia	Microtus pennsylvanicus	22.90	0.65	0.661044	1.15212065	Bertrand et al (2018)
Extant Rodentia	Microtus pennsylvanicus	25.20	0.72	0.687317	1.18991317	Bertrand et al (2018)
Extant Rodentia	Microtus pennsylvanicus	27.90	0.74	0.662435	1.13869445	Bertrand et al (2018)
Extant Rodentia	Mus minutoides	10.40	0.33	0.567485	1.04524464	Bertrand et al (2018)
Extant Rodentia	Mus minutoides	5	0.26	0.737025	1.42892822	Bertrand et al (2018)
Extant Rodentia	Mus musculus	18	0.43	0.516719	0.91588653	Bertrand et al (2018)
Extant Rodentia	Mus musculus	24	0.45	0.445954	0.77469555	Bertrand et al (2018)
Extant Rodentia	Mus musculus	20.85	0.43	0.468259	0.82149484	Bertrand et al (2018)
Extant Rodentia	Mus musculus	16	0.36	0.468124	0.83662065	Bertrand et al (2018)
Extant Rodentia	Mus musculus	24.32	0.48	0.46657	0.80975835	Bertrand et al (2018)
Extant Rodentia	Mus musculus	24	0.50	0.495504	0.86077284	Bertrand et al (2018)
Extant Rodentia	Mus musculus	18.92	0.42	0.492774	0.87040041	Bertrand et al (2018)

Extant Rodentia	Mus musculus domesticus	12	0.36	0.567636	1.03510224	Bertrand et al (2018)
Extant Rodentia	Mus musculus musculus	20	0.50	0.559885	0.98510535	Bertrand et al (2018)
Extant Rodentia	Mus triton	8.40	0.36	0.720865	1.34775421	Bertrand et al (2018)
Extant Rodentia	Muscardinus avellanarius	13	0.50	0.747217	1.35496099	Bertrand et al (2018)
Extant Rodentia	Myocastor coypus	3300	23	0.841671	1.03586316	Bertrand et al (2018)
Extant Rodentia	Myocastor coypus	3380	19	0.684224	0.84067883	Bertrand et al (2018)
Extant Rodentia	Myocastor coypus	5000	23	0.637143	0.76166658	Bertrand et al (2018)
Extant Rodentia	Myocastor coypus	5300	18.70	0.498191	0.59313333	Bertrand et al (2018)
Extant Rodentia	Myocastor coypus	3300	21	0.768482	0.94578811	Bertrand et al (2018)
Extant Rodentia	Myocastor coypus	7450	15.64	0.331674	0.38558131	Bertrand et al (2018)
Extant Rodentia	Myocastor coypus	7530	15.60	0.328466	0.38156733	Bertrand et al (2018)
Extant Rodentia	Myocastor coypus	8475	17.55	0.341383	0.39330422	Bertrand et al (2018)
Extant Rodentia	Myocastor coypus	5510	17.43	0.452423	0.53718029	Bertrand et al (2018)
Extant Rodentia	Myocastor coypus	3800	14.77	0.49175	0.59926029	Bertrand et al (2018)
Extant Rodentia	Myocastor coypus	5700	18.35	0.465606	0.55152289	Bertrand et al (2018)
Extant Rodentia	Myocastor coypus	5000	23	0.637143	0.76166658	Bertrand et al (2018)
Extant Rodentia	Myocastor coypus f domestica	3500	18.40	0.647308	0.79338199	Bertrand et al (2018)
Extant Rodentia	Myodes glareolus	35	0.593	0.456402	0.77218117	Bertrand et al (2018)
Extant Rodentia	Myodes glareolus	20	0.70	0.783839	1.37914749	Bertrand et al (2018)
Extant Rodentia	Myoprocta pratti	780	9.90	0.952249	1.29646279	Bertrand et al (2018)

Extant Rodentia	Mystromys albicaudatus	130	1.47	0.469671	0.72489336	Bertrand et al (2018)
Extant Rodentia	Neotamias minimus	37.05	1.45	1.073591	1.80917233	Bertrand et al (2018)
Extant Rodentia	Oenomys hypoxanthus	92	1.15	0.463211	0.73243606	Bertrand et al (2018)
Extant Rodentia	Oenomys hypoxanthus	92	1.17	0.469656	0.74262647	Bertrand et al (2018)
Extant Rodentia	Oenomys hypoxanthus	92	1.16	0.468044	0.74007887	Bertrand et al (2018)
Extant Rodentia	Oenomys hypoxanthus	178	1.48	0.383088	0.57839667	Bertrand et al (2018)
Extant Rodentia	Ondatra zibethicus	1500	4.80	0.297906	0.38744367	Bertrand et al (2018)
Extant Rodentia	Ondatra zibethicus	1500	7.60	0.471684	0.61345248	Bertrand et al (2018)
Extant Rodentia	Ondatra zibethicus	1600	8.10	0.481441	0.62332006	Bertrand et al (2018)
Extant Rodentia	Ondatra zibethicus	1032	5.70	0.454494	0.6067737	Bertrand et al (2018)
Extant Rodentia	Ondatra zibethicus	900	5.33	0.465804	0.62785972	Bertrand et al (2018)
Extant Rodentia	Ondatra zibethicus	900	5.33	0.465804	0.62785972	Bertrand et al (2018)
Extant Rodentia	Orthogeomys heterodus	630	3.96	0.439708	0.60766874	Bertrand et al (2018)
Extant Rodentia	Orthogeomys hispidus	542.10	3.66	0.448877	0.62689966	Bertrand et al (2018)
Extant Rodentia	Otomys irroratus	57.70	0.97	0.534862	0.87380724	Bertrand et al (2018)
Extant Rodentia	Otomys irroratus	66	1.62	0.815153	1.31925081	Bertrand et al (2018)
Extant Rodentia	Paraxerus cepapi	138.13	2.91	0.892084	1.37101409	Bertrand et al (2018)
Extant Rodentia	Paraxerus cepapi	223.80	3.22	0.714727	1.06195425	Bertrand et al (2018)
Extant Rodentia	Paraxerus poensis	100	2.73	1.041145	1.63669391	Bertrand et al (2018)
Extant Rodentia	Pelomys campanae	91	1.23	0.499075	0.78974948	Bertrand et al (2018)

Extant Rodentia	Pelomys fallax	121	1.46	0.489447	0.7592181	Bertrand et al (2018)
Extant Rodentia	Pelomys fallax	110	1.41	0.502425	0.78456621	Bertrand et al (2018)
Extant Rodentia	Pelomys fallax	111	1.41	0.501519	0.78265536	Bertrand et al (2018)
Extant Rodentia	Perognathus flavus	8	0.29	0.591126	1.10897111	Bertrand et al (2018)
Extant Rodentia	Perognathus longimembris	8	0.30	0.610831	1.14593682	Bertrand et al (2018)
Extant Rodentia	Perognathus parvus	17.3	0.45	0.552378	0.98181421	Bertrand et al (2018)
Extant Rodentia	Perognathus parvus	17	0.58	0.724179	1.28875588	Bertrand et al (2018)
Extant Rodentia	Peromyscus californicus	55	1.03	0.585161	0.95919356	Bertrand et al (2018)
Extant Rodentia	Peromyscus californicus	51.20	1.03	0.614093	1.011676	Bertrand et al (2018)
Extant Rodentia	Peromyscus eremicus	20.10	0.65	0.726092	1.27709688	Bertrand et al (2018)
Extant Rodentia	Peromyscus eremicus	20	0.64	0.718444	1.26408718	Bertrand et al (2018)
Extant Rodentia	Peromyscus gossypinus	27.20	0.68	0.619679	1.06709428	Bertrand et al (2018)
Extant Rodentia	Peromyscus leucopus	25.50	0.63	0.599484	1.03699267	Bertrand et al (2018)
Extant Rodentia	Peromyscus leucopus	19.70	0.64	0.720779	1.26953778	Bertrand et al (2018)
Extant Rodentia	Peromyscus leucopus	22.90	0.62	0.636193	1.10880918	Bertrand et al (2018)
Extant Rodentia	Peromyscus maniculatus bairdii	16.50	0.52	0.660088	1.17715637	Bertrand et al (2018)
Extant Rodentia	Peromyscus maniculatus bairdii	18	0.52	0.623428	1.10502774	Bertrand et al (2018)
Extant Rodentia	Peromyscus maniculatus gracilis	22.10	0.69	0.721074	1.25987811	Bertrand et al (2018)
Extant Rodentia	Peromyscus maniculatus gracilis	26	0.69	0.648936	1.12101077	Bertrand et al (2018)
Extant Rodentia	Peromyscus polionotus	13.50	0.49	0.714426	1.2920811	Bertrand et al (2018)

Extant Rodentia	Peromyscus polionotus	13.10	0.49	0.723616	1.31146123	Bertrand et al (2018)
Extant Rodentia	Petaurista petaurista	1096.65	11.73	0.898077	1.19389145	Bertrand et al (2018)
Extant Rodentia	Petinomys setosus	41.86	1.44	0.983395	1.64307785	Bertrand et al (2018)
Extant Rodentia	Podomys floridanus	36.50	0.89	0.665698	1.12298233	Bertrand et al (2018)
Extant Rodentia	Podomys floridanus	39.20	0.89	0.636115	1.06773123	Bertrand et al (2018)
Extant Rodentia	Praomys jacksoni	49	0.87	0.534449	0.88317959	Bertrand et al (2018)
Extant Rodentia	Protoxerus aubinni	525	8.03	1.006816	1.40927342	Bertrand et al (2018)
Extant Rodentia	Protoxerus stangeri	767.23	9.28	0.90281	1.23057362	Bertrand et al (2018)
Extant Rodentia	Protoxerus stangeri	690.60	10.25	1.069449	1.46848724	Bertrand et al (2018)
Extant Rodentia	Pteromys buechneri	106.37	2.22	0.81127	1.26982654	Bertrand et al (2018)
Extant Rodentia	Pteromys nitidus	1600	11.80	0.701359	0.9080465	Bertrand et al (2018)
Extant Rodentia	Pteromyscus pulverulentus	195.44	3.45	0.838463	1.25767647	Bertrand et al (2018)
Extant Rodentia	Rattus norvegicus	274	2.18	0.422651	0.6191501	Bertrand et al (2018)
Extant Rodentia	Rattus norvegicus	278	2.30	0.441608	0.64626339	Bertrand et al (2018)
Extant Rodentia	Rattus norvegicus	197	1.61	0.389361	0.58370812	Bertrand et al (2018)
Extant Rodentia	Rattus norvegicus	291	2.27	0.422704	0.61662328	Bertrand et al (2018)
Extant Rodentia	Rattus norvegicus	305	2.36	0.425843	0.61916299	Bertrand et al (2018)
Extant Rodentia	Rattus norvegicus	448	2.36	0.329135	0.46584468	Bertrand et al (2018)
Extant Rodentia	Rattus norvegicus domestica	324	2.70	0.467862	0.67738461	Bertrand et al (2018)
Extant Rodentia	Rattus norvegicus norvegicus	202	2.60	0.618311	0.92531202	Bertrand et al (2018)

Extant Rodentia	Rattus rattus	160	2.24	0.622739	0.94727069	Bertrand et al (2018)
Extant Rodentia	Rattus rattus	200	1.59	0.38065	0.57004586	Bertrand et al (2018)
Extant Rodentia	Rattus rattus	150	1.92	0.557364	0.85166454	Bertrand et al (2018)
Extant Rodentia	Rattus rattus alexandrinus	150	1.57	0.455761	0.69641319	Bertrand et al (2018)
Extant Rodentia	Rattus rattus rattus	217	1.68	0.380803	0.56702727	Bertrand et al (2018)
Extant Rodentia	Ratufa affinis	1074.27	11.73	0.910274	1.21185368	Bertrand et al (2018)
Extant Rodentia	Ratufa bicolor	1440	12	0.765415	0.99831563	Bertrand et al (2018)
Extant Rodentia	Ratufa bicolor	1400	12	0.779999	1.0193454	Bertrand et al (2018)
Extant Rodentia	Ratufa indica	1935	11.40	0.596551	0.76214184	Bertrand et al (2018)
Extant Rodentia	Ratufa indica	1010	11.60	0.938386	1.25468597	Bertrand et al (2018)
Extant Rodentia	Rhinosciurus laticaudatus	507.38	4.17	0.535657	0.75157065	Bertrand et al (2018)
Extant Rodentia	Sciurus carolinensis	592.55	7.67	0.886828	1.23084865	Bertrand et al (2018)
Extant Rodentia	Sciurus carolinesis	469	7.58	1.025185	1.44635923	Bertrand et al (2018)
Extant Rodentia	Sciurus carolinesis	466	7.48	1.016019	1.43407177	Bertrand et al (2018)
Extant Rodentia	Sciurus carolinesis	535	7.53	0.932431	1.303431	Bertrand et al (2018)
Extant Rodentia	Sciurus granatensis	336.99	6.02	1.01647	1.46763308	Bertrand et al (2018)
Extant Rodentia	Sciurus niger	365	6.90	1.103905	1.5849926	Bertrand et al (2018)
Extant Rodentia	Sciurus niger	365	6.50	1.03991	1.49310897	Bertrand et al (2018)
Extant Rodentia	Sciurus niger	703	10.20	1.051862	1.44254078	Bertrand et al (2018)
Extant Rodentia	Sciurus niger	770	10.50	1.01873	1.38822874	Bertrand et al (2018)

Extant Rodentia	Sciurus niger	650	9.20	0.999896	1.37881758	Bertrand et al (2018)
Extant Rodentia	Sciurus niger	580	8.95	1.049893	1.4593558	Bertrand et al (2018)
Extant Rodentia	Sciurus niger cinereus	328	7.20	1.237416	1.79003169	Bertrand et al (2018)
Extant Rodentia	Sciurus vulgaris	350	7.50	1.234112	1.77715693	Bertrand et al (2018)
Extant Rodentia	Sciurus vulgaris	323	6.10	1.059212	1.53389219	Bertrand et al (2018)
Extant Rodentia	Sciurus vulgaris	287	5.81	1.091978	1.59447751	Bertrand et al (2018)
Extant Rodentia	Sciurus vulgaris	316	5.89	1.037872	1.50529536	Bertrand et al (2018)
Extant Rodentia	Sciurus vulgaris	327	6.23	1.072901	1.55237835	Bertrand et al (2018)
Extant Rodentia	Sciurus vulgaris	361	5.85	0.942855	1.35480068	Bertrand et al (2018)
Extant Rodentia	Sciurus vulgaris	389	6	0.919822	1.31481126	Bertrand et al (2018)
Extant Rodentia	Sigmodon hispidus	148	1.18	0.345641	0.52864388	Bertrand et al (2018)
Extant Rodentia	Spalax leucodon	122	3	1.000182	1.55056454	Bertrand et al (2018)
Extant Rodentia	Spalax leucodon	180	2.63	0.675681	1.01936323	Bertrand et al (2018)
Extant Rodentia	Spalax leucodon	214	1.90	0.434705	0.64792133	Bertrand et al (2018)
Extant Rodentia	Spermophilus citellus	290	2.58	0.481539	0.70261927	Bertrand et al (2018)
Extant Rodentia	Spermophilus suslicus	224	2.30	0.510364	0.75826179	Bertrand et al (2018)
Extant Rodentia	Stochomys longicaudatus	65	1.27	0.64561	1.04597837	Bertrand et al (2018)
Extant Rodentia	Tachyoryctes splendens	282	2.10	0.399366	0.58386148	Bertrand et al (2018)
Extant Rodentia	Tachyoryctes splendens	174	2.29	0.601847	0.910131	Bertrand et al (2018)
Extant Rodentia	Tachyoryctes splendens	206	2.40	0.563299	0.84182994	Bertrand et al (2018)

Extant Rodentia	Tachyoryctes splendens	218	2.24	0.506175	0.75346847	Bertrand et al (2018)
Extant Rodentia	Tamias striatus	80	2.70	1.194297	1.90700593	Bertrand et al (2018)
Extant Rodentia	Tamias striatus	97	2.90	1.127404	1.77607697	Bertrand et al (2018)
Extant Rodentia	Tamias striatus	75	2.22	1.02537	1.64468415	Bertrand et al (2018)
Extant Rodentia	Tamias striatus	62	2.31	1.212072	1.97023032	Bertrand et al (2018)
Extant Rodentia	Tamiasciurus hudsonicus	256.61	4.90	0.99299	1.46134237	Bertrand et al (2018)
Extant Rodentia	Tamiasciurus hudsonicus	125	4.80	1.574455	2.43670355	Bertrand et al (2018)
Extant Rodentia	Tamiasciurus hudsonicus	159	4.10	1.144634	1.74190655	Bertrand et al (2018)
Extant Rodentia	Tamiasciurus hudsonicus	248	5.02	1.040495	1.53491504	Bertrand et al (2018)
Extant Rodentia	Tamiasciurus hudsonicus	183	4.71	1.196733	1.80335808	Bertrand et al (2018)
Extant Rodentia	Tamiasciurus hudsonicus	169	4.21	1.12828	1.70970351	Bertrand et al (2018)
Extant Rodentia	Tamiasciurus hudsonicus	183	3.97	1.008712	1.52002793	Bertrand et al (2018)
Extant Rodentia	Tamiasciurus hudsonicus	159	4.80	1.340059	2.03930523	Bertrand et al (2018)
Extant Rodentia	Thamnomys venustus	82.50	1.29	0.559398	0.89130263	Bertrand et al (2018)
Extant Rodentia	Thamnomys venustus	82.50	1.28	0.556365	0.88646985	Bertrand et al (2018)
Extant Rodentia	Thamnomys venustus	82.50	1.35	0.584963	0.93203606	Bertrand et al (2018)
Extant Rodentia	Thomomys bottae	185.20	1.41	0.355281	0.53492508	Bertrand et al (2018)
Extant Rodentia	Thomomys talpoides	90.60	1.01	0.410827	0.65030421	Bertrand et al (2018)
Extant Rodentia	Thryonomys gregorianus	3500	13.15	0.462614	0.56700941	Bertrand et al (2018)
Extant Rodentia	Thryonomys gregorianus	3500	13.15	0.462614	0.56700941	Bertrand et al (2018)

Extant Rodentia	Thryonomys swinderianus	4500	12	0.356737	0.42961442	Bertrand et al (2018)
Extant Rodentia	Urocitellus columbianus	482	3.52	0.467939	0.65891969	Bertrand et al (2018)
Extant Rodentia	Urocitellus columbianus	529	3.57	0.4456	0.62338973	Bertrand et al (2018)
Extant Rodentia	Urocitellus parryii	878	5.63	0.500249	0.6754564	Bertrand et al (2018)
Extant Rodentia	Urocitellus parryii	958	5.74	0.481078	0.64561897	Bertrand et al (2018)
Extant Rodentia	Urocitellus parryii	482	3.95	0.524851	0.73905857	Bertrand et al (2018)
Extant Rodentia	Urocitellus parryii	756	4.98	0.48924	0.6675459	Bertrand et al (2018)
Extant Rodentia	Urocitellus richardsonii	354	3.08	0.502342	0.72281254	Bertrand et al (2018)
Extant Rodentia	Urocitellus richardsonii	361	3.31	0.534169	0.76755496	Bertrand et al (2018)
Extant Rodentia	Xerus inauris	638	6.41	0.705366	0.97394253	Bertrand et al (2018)
Extant Rodentia	Zapus hudsonius	19.30	0.70	0.798302	1.40810193	Bertrand et al (2018)
Extant Rodentia	Zapus hudsonius	15.20	0.71	0.948796	1.70176556	Bertrand et al (2018)
Extant Rodentia	Zygogeomys trichopus	545	3.63	0.443781	0.6195511	Bertrand et al (2018)

Table S6. Data for bivariate plot (Fig. 4)

Group	Species	Specimen number	Total Endocranial Volume (mm3)	Log Endocranial Volume	Body mass (g)	Log Body Mass	Source
Extant Leporidae	Brachylagus idahoensis	AMNH 92869	5145.19	3.711401417	339.56	2.530917909	This paper
Extant Leporidae	Poelagus marjorita	AMNH 51052	11807.96	4.072174918	2480.24	3.394493972	This paper
Extant Leporidae	Lepus americanus bairdii	AMNH 99352	9538.09	3.979461416	1396.22	3.144953375	This paper
Extant Leporidae	Lepus americanus phaeonotus	AMNH 97648	10221.40	4.009510384	998.68	2.999426961	This paper
Extant Leporidae	Lepus arcticus	AMNH 42139	15949.90	4.202757965	4003.10	3.602396965	This paper
Extant Leporidae	Oryctolagus cuniculus	AMNH 34816	9363.12	3.971420589	1796.07	3.254323205	This paper
Extant Leporidae	Romerolagus diazi	AMNH 148172	6020.62	3.779641217	1027.79	3.011904802	This paper
Extant Ochotonidae	Ochotona pallasi	AMNH 59712	2138.24	3.33005645	223.85	2.349951356	This paper
Extant Ochotonidae	Ochotona princeps princeps	AMNH 120698	2270.48	3.356117681	202.92	2.307332896	This paper
Extant Ochotonidae	Ochotona princeps schisticeps	AMNH 40547	2479.85	3.394425412	155.10	2.190612212	This paper
Stem lagomorph	Megalagus turgidus	UC 1642	7052.78	3.848360337	2325.01	3.366424825	This paper
Extinct Rodentia	Prosciurus relictus	USNM 437793	957.45	2.981113836	30.07	1.478133428	Bertrand et al (2018)

Extinct Rodentia	Protosciurus cf. rachelae	YPM 14736	4546.82	3.657707762	349.62	2.543596268	Bertrand et al (2018)
Extinct Rodentia	Paramys copei	AMNH 4756	7526.65	3.876601721	1029.89	3.012790841	Bertrand et al (2018)
Extinct Rodentia	Paramys delicatus	AMNH 12506	12565.40	4.099176318	2913.82	3.46446272	Bertrand et al (2018)
Extinct Rodentia	Pseudotomus horribilis	USNM 17159	15188.20	4.181506307	7466.70	3.873128748	Bertrand et al (2018)
Extinct Rodentia	Pseudotomus oweni	USNM 17161	12063.00	4.081455328	5396.00	3.732071693	Bertrand et al (2018)
Extinct Rodentia	Pseudotomus petersoni	AMNH 2018	17014.90	4.230829401	6644.56	3.822466227	Bertrand et al (2018)
Extinct Rodentia	Pseudotomus hians	AMNH 5025	13679.10	4.136057524	3153.50	3.498792835	Bertrand et al (2018)
Extinct Rodentia	Rapamys atramontis	AMNH 128706	7109.97	3.851867768	1307.61	3.116477912	Bertrand et al (2018)
Extinct Rodentia	Rapamys atramontis	AMNH 128704	6006.47	3.778619312	918.93	2.96328243	Bertrand et al (2018)
Extinct Rodentia	Ischyromys typus	ROMV 1007	5578.07	3.74648396	1342.23	3.127826941	Bertrand et al (2018)
Extinct Rodentia	Ischyromys typus	AMNH 12252	5934.55	3.773387793	1086.42	3.035997752	Bertrand et al (2018)
Extinct Rodentia	Ischyromys typus	AMNH F:AM 144638	7276.91	3.861947004	1109.01	3.044935462	Bertrand et al (2018)
Extinct Rodentia	Cedromus wilsoni	USNM 256584	3609.87	3.557491562	268.89	2.429574651	Bertrand et al (2018)
Plesiadapiformes	Microsyops annectens	UW 12362	5900	3.770852012	1686	3.22685757	Silcox et al (2010a)
Plesiadapiformes	Ignacius graybullianus	USNM 421608	2140	3.330413773	253	2.403120521	Silcox et al (2009)
Plesiadapiformes	Plesiadapis tricuspidens	MNHN CR 125	5210	3.716837723	6372	3.804275767	Orliac et al (2014)
Plesiadapiformes	Plesiadapis cookei	UM 87990	5000	3.698970004	2200	3.342422681	Gingerich & Gunnell (2005)
Apatemyidae	Labidolemur kayi	USNM 530208/530221	501.88	2.700596428	74	1.86923172	Silcox et al (2011)

Extinct Euprimates	Notharctus tenebrosus	AMNH 127167	7380	3.868056362	2641	3.421768401	Harrington et al (2016)
Extinct Euprimates	Notharctus tenebrosus	USNM V 23277	8060	3.906335042	2923	3.465828815	Harrington et al (2016)
Extinct Euprimates	Notharctus tenebrosus	USNM V 23278	7430	3.870988814	2244	3.351022853	Harrington et al (2016)
Extinct Euprimates	Smilodectes gracilis	USNM V 17994	8630	3.936010796	1420	3.152288344	Harrington et al (2016)
Extinct Euprimates	Smilodectes gracilis	USNM V 17996	8990	3.953759692	1303	3.114944416	Harrington et al (2016)
Extinct Euprimates	Smilodectes gracilis	USNM V 21815	7440	3.871572936	1582	3.199206479	Harrington et al (2016)
Extinct Euprimates	Smilodectes gracilis	UM 32773	8420	3.925312091	1547	3.189490314	Harrington et al (2016)
Extinct Euprimates	Adapis parisiensis	NHM M 1345	8810	3.944975908	1074	3.031004281	Harrington et al (2016)
Extinct Euprimates	Rooneyia viejaensis	TMM 40688-7	7234	3.859378504	381	2.580924976	Kirk et al (2014)
Extinct Euprimates	Microchoerus erinaceus	UM-PRR 1771	4260	3.629409599	597	2.775974331	Ramdarshan & Orliac (2016)

Table S7. Metrical data of the width of the occipital condyles (in mm) and body mass estimation (in g; using formula of Moncunill-Solé et al. 2015) for studied lagomorph taxa

Family	Species	Specimen number	Occipital width	Body mass
Leporidae	Brachylagus idahoensis	AMNH 92869	9.81	339.5
	Poelagus marjorita	AMNH 51052	15.95	2480.2
	Lepus americanus	AMNH 97648	12.77	998.6
	phaeonotus			
	Lepus americanus	AMNH 99352	13.86	1396.2
	bairdii			
	Lepus arcticus	AMNH 42139	17.93	4003.1
	Oryctolagus cuniculus	AMNH 34816	14.74	1796.1
	Romerolagus diazi	AMNH 148172	12.86	1027.8
Ochotonidae	Ochotona princeps	AMNH 120698	8.65	202.9
	princeps			
	Ochotona princeps	AMNH 40547	8.10	155.1
	schisticep			
	Ochotona pallasi	AMNH 59712	8.86	223.8
Stem	Megalagus turgidus	UC 1642	15.70	2325.0
Lagomorpha				