Computability and Complexity

Lecture 13

Space Complexity Savitch's Theorem Space Complexity Class PSPACE

given by Jiri Srba

Time and Space Complexity

For practical solutions to computational problems

- available time, and
- available memory

are two main considerations.

We have already studied time complexity, now we will focus on space (memory) complexity.

Question:

How do we measure space complexity of a Turing machine?

Time and Space Complexity

For practical solutions to computational problems

- available time, and
- available memory

are two main considerations.

We have already studied time complexity, now we will focus on space (memory) complexity.

Question:

How do we measure space complexity of a Turing machine?

Answer:

The largest number of tape cells a Turing machine visits on all inputs of a given length n.

Definition of Space Complexity

Definition (Space Complexity of a TM)

Let M be a deterministic decider. The space complexity of M is a function

$$f: \mathbb{N} \to \mathbb{N}$$

where f(n) is the maximum number of tape cells that M scans on any input of length n. Then we say that M runs in space f(n).

Definition of Space Complexity

Definition (Space Complexity of a TM)

Let M be a deterministic decider. The space complexity of M is a function

$$f: \mathbb{N} \to \mathbb{N}$$

where f(n) is the maximum number of tape cells that M scans on any input of length n. Then we say that M runs in space f(n).

Definition (Space Complexity of a Nondeterministic TM)

Let M be a nondeterministic decider. The space complexity of M is a function

$$f: \mathbb{N} \to \mathbb{N}$$

where f(n) is the maximum number of tape cells that M scans on any branch of its computation on any input of length n. Then we say that M runs in space f(n).

The Complexity Classes SPACE and NSPACE

Definition (Complexity Class SPACE(t(n)))

Let $t: \mathbb{N} \to \mathbb{R}^{>0}$ be a function.

 $\mathsf{SPACE}(t(n)) \stackrel{\mathrm{def}}{=} \{L(M) \mid M \text{ is a decider running in space } O(t(n))\}$

The Complexity Classes SPACE and NSPACE

Definition (Complexity Class SPACE(t(n)))

Let $t : \mathbb{N} \to \mathbb{R}^{>0}$ be a function.

 $SPACE(t(n)) \stackrel{\text{def}}{=} \{L(M) \mid M \text{ is a decider running in space } O(t(n))\}$

Definition (Complexity Class NSPACE(t(n)))

Let $t : \mathbb{N} \to \mathbb{R}^{>0}$ be a function.

$$\mathsf{NSPACE}(t(n)) \stackrel{\mathrm{def}}{=}$$

 $\{L(M) \mid M \text{ is a nondetermin. decider running in space } O(t(n))\}$

The Complexity Classes SPACE and NSPACE

Definition (Complexity Class SPACE(t(n)))

Let $t : \mathbb{N} \to \mathbb{R}^{>0}$ be a function.

 $SPACE(t(n)) \stackrel{\text{def}}{=} \{L(M) \mid M \text{ is a decider running in space } O(t(n))\}$

Definition (Complexity Class NSPACE(t(n)))

Let $t: \mathbb{N} \to \mathbb{R}^{>0}$ be a function.

In other words:

- SPACE(t(n)) is the class (collection) of languages that are decidable by TMs running in space O(t(n)), and
- NSPACE(t(n)) is the class (collection) of languages that are decidable by nondeterministic TMs running in space O(t(n)).

Example: SAT is Decidable in Linear Deterministic Space

Theorem

 $SAT \in SPACE(n)$

Proof: Here is a deterministic decider *M* for *SAT*:

- M= "On input $\langle \phi \rangle$ where ϕ is a Boolean formula:
 - 1. For every truth assignment to the variables in ϕ , evaluate ϕ on that assignment.
 - 2. If ϕ gets ever evaluated to 1 then accept, else reject."

Example: SAT is Decidable in Linear Deterministic Space

Theorem

 $SAT \in SPACE(n)$

Proof: Here is a deterministic decider *M* for *SAT*:

- M= "On input $\langle \phi \rangle$ where ϕ is a Boolean formula:
 - 1. For every truth assignment to the variables in ϕ , evaluate ϕ on that assignment.
 - 2. If ϕ gets ever evaluated to 1 then accept, else reject."
 - Observe that *M* can reuse the space for the different truth assignments.
 - M runs in O(n) space (number of variables is bounded by n).
 - Btw. the time complexity of the machine *M* is exponential!

Example: ALL_{NFA} is Decidable in Linear Nondeterm. Space

$$ALL_{NFA}\stackrel{\mathrm{def}}{=} \{\langle A \rangle \mid A \text{ is an NFA such that } L(A) = \Sigma^* \}$$

Theorem

 $\overline{ALL_{NFA}} \in \mathsf{NSPACE}(n)$

Example: ALL_{NFA} is Decidable in Linear Nondeterm. Space

$$ALL_{NFA}\stackrel{\mathrm{def}}{=} \{\langle A \rangle \mid A \text{ is an NFA such that } L(A) = \Sigma^* \}$$

Theorem

 $\overline{ALL_{NFA}} \in \mathsf{NSPACE}(n)$

Proof: We want to find a nondeterministic decider M running in linear space such that

M accepts $\langle A \rangle$ where *A* is NFA if and only if $L(A) \neq \Sigma^*$.

Example: ALL_{NFA} is Decidable in Linear Nondeterm. Space

$$ALL_{NFA}\stackrel{\mathrm{def}}{=} \{\langle A \rangle \mid A \text{ is an NFA such that } L(A) = \Sigma^* \}$$

Theorem

$\overline{ALL_{NFA}} \in \mathsf{NSPACE}(n)$

Proof: We want to find a nondeterministic decider M running in linear space such that

M accepts $\langle A \rangle$ where *A* is NFA if and only if $L(A) \neq \Sigma^*$.

Idea: Use the power-set construction to determinize A into DFA A_{det} and accept iff A_{det} has some rejecting computation.

Problem: A_{det} might be exponentially larger than A.

Solution: Find nondeterministically a rejecting path in A_{det} while reusing the space (on-the-fly construction of a rejecting path).

A Nondeterministic Decider for $\overline{ALL_{NFA}}$ Using O(n) Space

We want to construct M such that

M accepts $\langle A \rangle$ if and only if $L(A) \neq \Sigma^*$

- M = "On input $\langle A \rangle$ where A is an NFA with control states Q:
 - 1. Let $s \subseteq Q$ be the initial state in A_{det} .
 - 2. Repeat 2^m times where m = |Q|:
 - a) If s consists only of rejecting states of A then accept.
 - b) Nondeterministically select a transition $s \stackrel{a}{\longrightarrow} s'$ in A_{det} .
 - c) s := s'
 - 3. Reject."

A Nondeterministic Decider for $\overline{ALL_{NFA}}$ Using O(n) Space

We want to construct M such that

M accepts $\langle A \rangle$ if and only if $L(A) \neq \Sigma^*$

- M = "On input $\langle A \rangle$ where A is an NFA with control states Q:
 - 1. Let $s \subseteq Q$ be the initial state in A_{det} .
 - 2. Repeat 2^m times where m = |Q|:
 - a) If s consists only of rejecting states of A then accept.
 - b) Nondeterministically select a transition $s \stackrel{a}{\longrightarrow} s'$ in A_{det} .
 - c) s := s'
 - 3. Reject."

Space requirements:

- To store $s, s' \subseteq Q$ we need O(n) space.
- To store a counter value in the loop we need O(n) space.
- Total: O(n) of nondeterministic space.

Discussion

So now we know that

$$\overline{ALL_{NFA}} \in \mathsf{NSPACE}(n).$$

What can we say about ALL_{NFA} ?

Discussion

So now we know that

$$\overline{ALL_{NFA}} \in \mathsf{NSPACE}(n).$$

What can we say about ALL_{NFA}?

- In order to complement the nondeterministic machine *M* from the proof above, we first need to determinize it.
- Determinization of TM means exponential slow-down in the running time.
- Does determinization imply that we will need also exponentially more memory?

Discussion

So now we know that

$$\overline{ALL_{NFA}} \in \mathsf{NSPACE}(n).$$

What can we say about ALL_{NFA}?

- In order to complement the nondeterministic machine *M* from the proof above, we first need to determinize it.
- Determinization of TM means exponential slow-down in the running time.
- Does determinization imply that we will need also exponentially more memory?

Answer (Savitch's Theorem):

For every nondeterministic TM there is an equivalent deterministic TM that uses only quadratically more space!

Savitch's Theorem

Let $t:\mathbb{N} \to \mathbb{R}^{>0}$ be a function such that $t(n) \geq n$. Then

$$NSPACE(t(n)) \subseteq SPACE(t^2(n))$$
.

Savitch's Theorem

Let $t: \mathbb{N} \to \mathbb{R}^{>0}$ be a function such that $t(n) \geq n$. Then

$$NSPACE(t(n)) \subseteq SPACE(t^2(n))$$
.

Proof:

- Let N be a nondeterministic TM using space O(t(n)).
- We want to find an equivalent deterministic TM M with space complexity $O(t^2(n))$.

Savitch's Theorem

Let $t: \mathbb{N} \to \mathbb{R}^{>0}$ be a function such that $t(n) \geq n$. Then

$$NSPACE(t(n)) \subseteq SPACE(t^2(n))$$
.

Proof:

- Let N be a nondeterministic TM using space O(t(n)).
- We want to find an equivalent deterministic TM M with space complexity $O(t^2(n))$.

Algorithm CANYIELD (c_1, c_2, t) accepts iff configuration c_2 is reachable (in N) from c_1 in at most t steps.

N is using O(t(n)) space which means that it has at most $2^{dt(n)}$ different configurations for some constant d.

Savitch's Theorem

Let $t: \mathbb{N} \to \mathbb{R}^{>0}$ be a function such that $t(n) \geq n$. Then

$$NSPACE(t(n)) \subseteq SPACE(t^2(n))$$
.

Proof:

- Let N be a nondeterministic TM using space O(t(n)).
- We want to find an equivalent deterministic TM M with space complexity $O(t^2(n))$.

Algorithm CANYIELD (c_1, c_2, t) accepts iff configuration c_2 is reachable (in N) from c_1 in at most t steps.

N is using O(t(n)) space which means that it has at most $2^{dt(n)}$ different configurations for some constant d.

Now N accepts w iff CANYIELD($c_{start}, c_{accept}, 2^{dt(n)}$) accepts.

Computing CANYIELD (c_1, c_2, t) Deterministically

```
\begin{aligned} & \mathsf{CANYIELD} = \\ & \text{"On input } \langle c_1, c_2, t \rangle \text{:} \\ & 1. \; \mathsf{Case} \; t = 1 \text{:} \\ & \; \mathsf{If} \; c_1 = c_2 \; \mathsf{or} \; c_1 \to c_2 \; \mathsf{(in} \; \mathit{N}) \; \mathsf{then} \; \underline{\mathsf{accept}}, \; \mathsf{else} \; \underline{\mathsf{reject}}. \\ & 2. \; \mathsf{Case} \; t > 1 \text{:} \\ & \; \mathsf{For} \; \mathsf{all} \; \mathsf{configurations} \; c_m \; \mathsf{(in} \; \mathit{N}) \; \mathsf{of} \; \mathsf{length} \; \mathsf{at} \; \mathsf{most} \; t(n) \text{:} \\ & \; \mathsf{Call} \; \mathsf{CANYIELD}(\langle c_1, c_m, t/2 \rangle). \\ & \; \mathsf{Call} \; \mathsf{CANYIELD}(\langle c_m, c_2, t/2 \rangle). \\ & \; \mathsf{If} \; \mathsf{both} \; \mathsf{calls} \; \mathsf{accepted} \; \mathsf{then} \; \; \underline{\mathsf{accept}}. \\ & 3. \; \mathsf{Reject."} \end{aligned}
```

Computing CANYIELD(c_1, c_2, t) Deterministically

```
CANYIELD =
"On input \langle c_1, c_2, t \rangle:
   1. Case t = 1:
       If c_1 = c_2 or c_1 \rightarrow c_2 (in N) then accept, else reject.
   2. Case t > 1:
       For all configurations c_m (in N) of length at most t(n):
            Call CANYIELD(\langle c_1, c_m, t/2 \rangle).
            Call CANYIELD(\langle c_m, c_2, t/2 \rangle).
            If both calls accepted then accept.
   3. Reject."
```

- CANYIELD is implementable on a deter. TM using a stack.
- The initial call CANYIELD($c_{start}, c_{accept}, 2^{dt(n)}$) uses a stack of height O(t(n)).
- Every stack entry stores a configuration of size O(t(n)).

Total space used:
$$O(t(n)) * O(t(n)) = O(t^2(n))$$
.

Complexity Class PSPACE

Definition

The class PSPACE is the class of languages decidable in polynomial space on deterministic Turing machine, i.e.,

$$\mathsf{PSPACE} \stackrel{\mathrm{def}}{=} \bigcup_{k \geq 0} \mathsf{SPACE}(n^k) \ .$$

Complexity Class PSPACE

Definition

The class PSPACE is the class of languages decidable in polynomial space on deterministic Turing machine, i.e.,

$$\mathsf{PSPACE} \stackrel{\mathrm{def}}{=} \bigcup_{k>0} \mathsf{SPACE}(n^k) \ .$$

Discussion:

- The class PSPACE is robust with respect to nondeterminism (the class remains the same even if we use nondeterministic TM in its definition). Hence PSPACE=NPSPACE.
- Because every language $L \in \mathsf{PSPACE}$ has a deterministic poly-space TM M, we can swap the accept and reject states in M and get a poly-space decider for \overline{L} , hence $\overline{L} \in \mathsf{PSPACE}$.

Complexity Class PSPACE

Definition

The class PSPACE is the class of languages decidable in polynomial space on deterministic Turing machine, i.e.,

$$\mathsf{PSPACE} \stackrel{\mathrm{def}}{=} \bigcup_{k>0} \mathsf{SPACE}(n^k) \ .$$

Discussion:

- The class PSPACE is robust with respect to nondeterminism (the class remains the same even if we use nondeterministic TM in its definition). Hence PSPACE=NPSPACE.
- Because every language $L \in \mathsf{PSPACE}$ has a deterministic poly-space TM M, we can swap the accept and reject states in M and get a poly-space decider for \overline{L} , hence $\overline{L} \in \mathsf{PSPACE}$.

Example: SAT, \overline{SAT} , ALL_{NFA} , $\overline{ALL_{NFA}} \in PSPACE$

Properties of the Class PSPACE

$\mathsf{Theorem}$

$NP \subset PSPACE$

Proof: Let $L \in NP$.

- Then there is nondeterministic decider M running in time $O(n^k)$ such that L(M) = L.
- Note that M can scan at most $O(n^k)$ tape cells and so $L \in \mathsf{NSPACE}(n^k)$.
- Savitch's Theorem gives that $L \in SPACE(n^{2k})$.
- Hence $L \in \mathsf{PSPACE}$.

Properties of the Class PSPACE

$\mathsf{Theorem}$

 $NP \subset PSPACE$

Proof: Let $L \in NP$.

- Then there is nondeterministic decider M running in time $O(n^k)$ such that L(M) = L.
- Note that M can scan at most $O(n^k)$ tape cells and so $L \in \mathsf{NSPACE}(n^k)$.
- Savitch's Theorem gives that $L \in SPACE(n^{2k})$.
- Hence $L \in \mathsf{PSPACE}$.

Theorem

 $co-NP \subseteq PSPACE$

Proof: Next tutorial.

Properties of the Class PSPACE

Theorem

PSPACE ⊂ EXPTIME

Proof: Let $L \in PSPACE$.

- Then there is a deterministic decider M running in space $O(n^k)$ such that L(M) = L.
- Note that M has at most $2^{O(n^k)}$ different configurations.
- In any computation of the decider M none of the configurations can ever repeat (otherwise the machine loops).
- Hence the running time of M is bounded by $2^{O(n^k)}$ and so $L \in \mathsf{EXPTIME}.$

Overview of Time and Space Complexity Classes

Overview of Time and Space Complexity Classes

Remarks:

- We know that $P \neq EXPTIME$, but
- the strictness of all the other inclusions is still open!

Exam Questions

- Definition of space complexity of deterministic and nondeterministic TMs.
- Definitions of SPACE, NSPACE and PSPACE.
- Savitch's Theorem.
- Basic properties of the class PSPACE (hierarchy of complexity classes).