Mikroekonomia II - Zadania - lista 3

termin: 19go maja 2021

Zadanie 1 (2p) Konsument 1 posiada preferencje opisane za pomocą $u_1(x_A, x_B) = x_A + x_B$, a konsument 2 preferencje zadane przez $u_2(x_A, x_B) = \min\{x_A, x_B\}$. Początkowy zasób każdego z nich to $(\frac{1}{2}, \frac{1}{2})$.

- (i) Naszkicuj powyższy przykład wykorzystując diagram Edgewortha.
- (ii) Jaka jest relacja cen p_A do p_B w WE?
- (iii) Jaka alokacja jest obrana w równowadze Walrasowskiej?

Zadanie 2 (5p) Rozpatrz gospodarkę z jednym konsumentem i jedną firmą. Konsument posiada początkowy zasób kapitału w wysokości k_0 , oraz jednostkę czasu wolnego, którą może rozdzielić pomiędzy pracę (l) i czas wolny (n) (tym samym l+n=1). Konsument wynajmuje firmie swój kapitał po cenie r oraz pracę, otrzymując wynagrodzenie w. Cały swój dochód przeznacza na konsumpcję, którą nabywa po zadanej cenie p. Preferencje konsumenta są opisane za pomocą $u(c,n)=c^{\alpha}n^{1-\alpha}$.

Firma wynajmuje od konsumenta pracę i kapitał po zadanych cenach w i r, aby zmaksymalizować zysk z produkcji dobra konsumpcyjnego, uzyskiwanego za pomocą technologii opisanej przez $f(K,L) = K^{\beta}L^{1-\beta}$. Firma sprzedaje dobro konsumpcyjne po zadanej cenie p.

- (i) Pokaż, że niezależnie od ceny r, konsument będzie wynajmował cały swój kapitał początkowy k_0 .
- (ii) Zapisz problem konsumenta i odpowiadającą mu funkcję Lagrange'a, a następnie podaj warunki pierwszego rzędu na optymalny poziom c, l oraz n.
- (iii) Zapisz problem firmy, a następnie podaj warunki pierwszego rzędu na maksymalizację jej zysku.
- (iv) Znajdź ceny r, w, p, oczyszczające rynek. Podaj alokację c, l, n, k obierane w równowadze Walrasowskiej.

Zadanie 3 (3p) Dostępna alokacja x jest słabo Pareto optymalna, jeżeli nie istnieje inna dostępna alokacja x' taka, że każdy i-ty konsument preferuje ostro x'_i nad x_i . Dostępna alokacja x jest Pareto optymalna, jeżeli nie istnieje inna dostępna alokacja x' taka, że każdy i-ty konsument preferuje słabo x'_i nad x_i oraz istnieje przynajmniej jeden konsument j, który preferuje ostro x'_j nad x_j . Udowodnij, że dla zbioru konsumpcyjnego $X = \mathbb{R}^k_+$, oraz ciągłych i ściśle monotonicznych relacji preferencji obie definicje są równoważne.