Link Layer & 一點點的Physical Layer

Prof. Michael Tsai 2019/03/04

Multiple Access Protocols (Link Layer)

- ▶ Point-to-point link link的兩端各有一個傳輸(Transmitter,TX) &接收器(Receiver, RX)
- ▶ Broadcast link 多個裝置共用一個"連結"/媒體(Medium)
 - 共用 = 你講話大家都聽得到
 - ▶ Collision = 多個人一起講話,每個人都聽到同時兩個人以上講話 → 沒人聽得懂 → 剛剛的時間(頻寬)就浪費了
- ▶ 大家必須有某種decentralized, 簡單, 公平的協議來避免 collision!
 - Channel partition protocols & "taking-turns" protocols
 - Random access protocols:
 - ▶ 傳的時候全速傳
 - ▶ 壞掉再重傳 (retransmission)

Ethernet's Carrier Sensing / Collision Detection

- ▶ 上層(network layer)有東西要傳的時候,會將準備好的 封包放進buffer內。
- 1. Carrier Sensing: 說前先聽,如果有人在說話(如果你聽到了),先等他說完再說。
 - ▶ 如果96-bit duration沒有偵測到傳輸,則開始傳輸。
- 2. Collision Detection: 如果有人同時開始講話(如果你聽到了),立刻停下來。
 - ▶ 停下來以後,傳輸48-bit duration的jam signal。
- 3. Exponential Back-off: 每次傳輸失敗後,這個裝置會 進入exponential back-off模式。
- 》當傳輸這個封包碰到連續第n次collision後,則須等待 $random(0,1,2,\ldots,2^m-1)\times 512$ bit duration, $m=\min(n,10)$ 的時間,然後回到步驟1。

2 CSMA Nodes with Colliding Transmissions

2 CSMA/CD Nodes with Colliding Transmissions

CSMA/CD的效率

- ト d_{prop} =最大propagation delay
- $ullet d_{trans}$ =最大packet transmission time

$$Efficiency = \frac{1}{1 + \frac{5 \cdot d_{prop}}{d_{trans}}}$$

Ethernet: 從broadcast link到point-to-point link

Ethernet: 從broadcast link到point-to-point link

Switch:

- 1. The internal address table will learn the MAC addresses on that port.
- 2. Packets to a specific address will be sent to only the port with that address.
- 3. Packets with new addresses will be sent to all ports.
- 4. Point-to-point links! No longer need a MAC!

常用使用網路線的Ethernet科技

▶ 10 Base2: 使用類似家裡第四台用的同軸電纜傳輸。速度可達10 Mbps。資訊館最早的網路使用此科技。

- ▶ 10 BaseT: 使用Cat. 3 or Cat. 5網路線中的四芯(兩對)。所有 裝置都直接接到HUB或Switch(星狀拓樸)。
- ▶ 100 BaseTX:使用Cat. 5網路線中的四芯(兩對)。
- ▶ 1000 BaseT:使用Cat. 5等級或更好的網路線中的八芯(四對)。
- ▶ 10G BaseT:使用Cat. 6a等級或更好的網路線。
- ▶ 25G BaseT: 使用Cat. 8等級網路線。

10 BaseT的訊號

- 可以經常切換high & low voltages (-2.5 及 2.5 Volt)
- Clock recovery: 需要知道每個bit開始及結束的時間。但是每個裝置內部的時間不同! 因此需要從對方傳輸的訊號變換來估計每個bit的時間有多長!
- · 接收端用0 volt來當作threshold判斷到底是high or low。
- Noise: 電路中的雜訊會加在收到的訊號上。當訊號相對於雜訊太弱的 時候,就有可能會誤判high or low。
- SNR: signal-to-noise ratio. 通常SNR高==錯誤率低。

100 BaseTX的訊號

	4B5B	+	MLT-3	編碼
--	------	---	-------	----

▶ 4B5B: 把0和1做更平均的分配

▶ MLT-3: +1, 0, -1 Volt

▶ Bit 1: 移動到下一個state

▶ Bit 0: 同樣一個state

Name	4b	5b	
0	0000	11110	
1	0001	01001	
2	0010	10100	
3	0011	10101	
4	0100	01010	
5	0101	01011	
6	0110	01110	
7	0111	01111	
8	1000	10010	
9	1001	10011	
Α	1010	10110	
В	1011	10111	
С	1100	11010	
D	1101	11011	
E	1110	11100	
F	1111	11101	
F	1111	11101	

Ethernet Frame Structure

Octets = Bytes

Preamble	Start of frame delimiter	MAC destinati on	MAC source	Length (IEEE 802 .3)	802.1Q ta g (optional)	Payload	Frame check sequence (32-bit C RC)
7 octets	1 octet	6 octets	6 octets	2 octets	(4 octets)	42–1500 octets	4 octets

- ▶ Preamble: 10101010, 用來做clock recovery用途。
- ▶ MAC source/destination: 紀錄來源及目的裝置網路卡號
- ▶ MTU (Maximum Transmission Unit): 如果上層封包> 1500 Bytes, 則會被切小分段傳輸。
- ▶ FCS (CRC): 可以檢查這個封包是否有錯誤。

