

PRINCIPLES OF DATA SCIENCE

2021 - 2022

Assoc. Prof. Dr. Salha Alzahrani Department of Computer Science

CHAPTER 4: BASIC MATHEMATICS

- BASIC SYMBOLS AND TERMINOLOGY
 - Vectors and matrices
 - Arithmetic symbols
 - Summation
 - Proportional
 - Dot product
 - Graphs
 - Logarithms/exponents
 - Set theory
- LINEAR ALGEBRA
 - Matrix multiplication

MATHEMATICS	VECTORS AND	ARITHMETIC	CDADUC	LOGARITHMS/	CET THE OBY	LINEAR
AS A DISCIPLINE	MATRICES	SYMBOLS	GRAPHS	EXPONENTS	SET THEORY	ALGEBRA

Mathematics as a discipline

- Mathematics, as a science, is one of the **oldest known forms of logical** thinking by mankind.
- Since ancient Mesopotamia and likely before (3,000 BCE), humans have been relying on arithmetic and more challenging forms of math to answer life's biggest questions.
- Whether or not you are consciously using the principles of math, the concepts live deep inside everyone's brains. It's my job as a math teacher to get you to realize it.

CH 4 : BASIC MATHEMATICS BY DR. SALHA ALZAHRANI

MATHEMATICS	VECTORS AND	ARITHMETIC	GRAPHS	LOGARITHMS/	SET THEORY	LINEAR
AS A DISCIPLINE	MATRICES	SYMBOLS	GRAPHS	EXPONENTS	SET THEORY	ALGEBRA

Vectors and matrices

- A **Vector** is defined as **an object with both magnitude and direction**.
- For our purpose, a vector is simply a 1-dimensional array representing a series of numbers.
- In another way, a vector is a list of numbers.
- It is generally represented using an arrow or bold font, as shown:

$$\vec{x}$$
 or x

- Vectors are broken into components, which are individual members of the vector.
- We use index notations to denote the element that we are referring to, as illustrated:

If
$$\vec{x} = \begin{pmatrix} 3 \\ 6 \\ 8 \end{pmatrix}$$
 then $x_1 = 3$

CH 4 : BASIC MATHEMATICS BY DR. SALHA ALZAHRANI

MATHEMATICS	VECTORS AND	ARITHMETIC	GRAPHS	LOGARITHMS/	SET THEORY	LINEAR
AS A DISCIPLINE	MATRICES	SYMBOLS	GRAPHS	EXPONENTS	SETTHEORY	ALGEBRA

Vectors and matrices

In math, we generally refer to the first element as index 1, as opposed to computer science, where we generally refer to the first element as index 0. It is important to remember what index system you are using.

• In Python, we can represent arrays in many ways. We could simply use a Python list to represent the preceding array:

$$x = [3, 6, 8]$$

• However, it is better to use the **numpy** array type to represent arrays, as shown, because it gives us much more utility when performing vector operations:

CH 4: BASIC MATHEMATICS

BY DR. SALHA ALZAHRANI

/

4

MATHEMATICS	VECTORS AND	ARITHMETIC	GRAPHS	LOGARITHMS/	SET THEORY	LINEAR
AS A DISCIPLINE	MATRICES	SYMBOLS	GRAPHS	EXPONENTS	SETTHEORY	ALGEBRA

Vectors and matrices

 Consider that we measure the average satisfaction rating (0-100) of employees for three departments of a company as being 57 for HR, 89 for engineering, and 94 for management. We can represent this as a vector with the following formula:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 57 \\ 89 \\ 94 \end{pmatrix}$$

- This vector holds three different bits of information about our data. This is the perfect use of a vector in data science.
- You can also think of a vector as being the theoretical generalization of Panda's **Series** object. So, naturally, we need something to represent the **Dataframe**.
- We can extend our notion of an array to move beyond a single dimension and represent data in multiple dimensions.

CH 4: BASIC MATHEMATICS

BY DR. SALHA ALZAHRANI

MATHEMATICS	VECTORS AND	ARITHMETIC	GRAPHS	LOGARITHMS/	SET THEORY	LINEAR
AS A DISCIPLINE	MATRICES	SYMBOLS	GRAPHS	EXPONENTS	SETTHEORY	ALGEBRA

Vectors and matrices

- A matrix is a 2-dimensional representation of arrays of numbers.
- Matrices (plural) have two main characteristics that we need to be aware of. The dimension of the matrix, denoted as n x m (n by m), tells us that the matrix has n rows and m columns.
- Matrices are generally denoted using a capital, bold-faced letter, such as **X**. Consider the following example:

$$\begin{pmatrix} 3 & 4 \\ 8 & 55 \\ 5 & 9 \end{pmatrix}$$

- This is a 3 x 2 (3 by 2) matrix because it has three rows and two columns.
- If a matrix has the same number of rows and columns, it is called a **square matrix**.

CH 4: BASIC MATHEMATICS

BY DR. SALHA ALZAHRANI

9

MATHEMATICS	VECTORS AND	ARITHMETIC	GRAPHS	LOGARITHMS/	SET THEORY	LINEAR
AS A DISCIPLINE	MATRICES	SYMBOLS	GRAPHS	EXPONENTS	SETTHEORY	ALGEBRA

Vectors and matrices

- Revisiting our previous example, let's say we have three offices in different locations, each with the same three departments: HR, engineering, and management. We could make three different vectors, each holding a different office's satisfaction scores, as shown:
- However, this is unscalable. What if you have 100 different offices? Then we would need to have 100 different 1-dimensional arrays to hold this information.
- This is where a matrix alleviates this problem. Let's make a matrix where each row represents a different department and each column represents a different office, as shown:
- This is much more natural. Now, let's strip away the labels, and we are left with a matrix!

	57	1	67)	65
x =	89	, y =	87	,z =	98
	94		84		(60)

	Office 1	Office 2	Office 3
HR	57	67	65
Engineering	89	87	98
Management	94	84	60

$$X = \begin{pmatrix} 57 & 67 & 65 \\ 89 & 87 & 98 \\ 94 & 84 & 60 \end{pmatrix}$$

CH 4: BASIC MATHEMATICS

BY DR. SALHA ALZAHRANI

10

5

MATHEMATICS AS A DISCIPLINE		ARITHMETIC SYMBOLS	GRAPHS	LOGARITHMS/ EXPONENTS	SET THEORY	LINEAR ALGEBRA	
Ar	ithmetic sy	mbols					
	mation The uppercase sigmaright of the sigma syone by one. For example, let's cre	mbol is usually s	something iterab	le , meaning that	we can go over it		
	To find the sum of th				, -1		
	$\sum x_i = 15$						
	n Python, we can us	e the following	formula:				
		_	In [1]: $\mathbf{M} = [1,2,3]$ sum(x)	,4,5]			

Out[1]: 15

BY DR. SALHA ALZAHRANI

MATHEMATICS VECTORS AND ARITHMETIC AS A DISCIPLINE MATRICES SYMBOLS GRAPHS EXPONENTS SET THEORY	LINEAR ALGEBRA
---	-------------------

Arithmetic symbols

Proportional

CH 4: BASIC MATHEMATICS

- The lowercase alpha symbol lpha represents values that are proportional to each other.
- This means that as one value changes, so does the other. Values can either vary directly
 or indirectly. If values vary directly, they both move in the same direction (as one goes
 up, so does the other). If they vary indirectly, they move in opposite directions (if one
 goes down, the other goes up).
- Consider the following examples:
 - O The sales of a company vary directly with the number of customers. This can be written as :

Sales α Customers

Gas prices vary (usually) indirectly with oil availability, meaning that as the availability of oil goes down, gas prices will go up. This can be denoted as:

Gas a Oil Availability

CH 4 : BASIC MATHEMATICS BY DR. SALHA ALZAHRANI

MATHEMATICS	VECTORS AND	ARITHMETIC	GRAPHS	LOGARITHMS/	SET THEORY	LINEAR
AS A DISCIPLINE	MATRICES	SYMBOLS	GRAPHS	EXPONENTS	SELIHEORI	ALGEBRA

Arithmetic symbols

Dot product

• The dot product is an operator like addition and multiplication. It is used to combine two vectors, as shown:

$$\binom{3}{7} \cdot \binom{9}{5} = 3*9 + 7*5 = 62$$

 So, what does this mean? Let's say we have a vector that represents a customer's sentiments towards three genres of movies—comedy, romantic, and action.

CH 4: BASIC MATHEMATICS

BY DR. SALHA ALZAHRANI

13

MATHEMATICS	VECTORS AND	ARITHMETIC	GRAPHS	LOGARITHMS/	SET THEORY	LINEAR
AS A DISCIPLINE	MATRICES	SYMBOLS	GRAPHS	EXPONENTS	SETTHEORY	ALGEBRA

Arithmetic symbols

Dot product Example

- Consider that, on a scale of 1-5, a customer loves comedies, hates romantic movies, and is alright with action movies. We might represent this as follows: (5)
- Now, let's assume that we have two new movies, one of which is a romantic comedy and
 the other is a funny action movie. The movies would have their own vector of qualities,
 as shown:

$$m_1 = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} \text{ and } m_2 = \begin{pmatrix} 5 \\ 1 \\ 5 \end{pmatrix}$$

Here, m_1 is our romantic comedy and m_2 is our funny action movie

1 3

CH 4: BASIC MATHEMATICS

BY DR. SALHA ALZAHRANI

14

7

8

MATHEMATICS AS A DISCIPLINE	VECTORS AND MATRICES	ARITHMETIC SYMBOLS	GRAPHS	LOGARITHMS/ EXPONENTS	SET THEORY	LINEAR ALGEBRA
Arit	thmetic sy	mbols				
• 1	product Example (c In order to make a customer's prefere recommended to t Let's compute the compute:	recommendation nces for each make the user.	novie. The higher	value will win an	d, therefore, will	oe
		Customer: $ \begin{pmatrix} 5 \\ 1 \\ 3 \end{pmatrix} . $	$\begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} = (1.5) \longrightarrow \text{use} \\ + \text{mo} \\ (3.1) \longrightarrow \text{use}$	er loves comedies and this ove is funny er hates romance but this ve is romantic er doesn't mind action and move is not action packed		
CH 4 : BASIC MATI	HEMATICS	BY	DR. SALHA ALZAHRA	ANI		15

MATHEMATICS AS A DISCIPLINE	VECTORS AND MATRICES	ARITHMETIC SYMBOLS	GRAPHS	LOGARITHMS/ EXPONENTS	SET THEORY	LINEAR ALGEBRA			
Arith	nmetic sy	mbols •	ot product Exampl	e (cont.)					
	Not that fa	ar. Let's try for movie $ \begin{pmatrix} 5 \\ 1 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} $	2:)=41					
This is higher than 28! Putting this number on the same timeline as before, we can also visually observe that it is a much better score, as shown:									
CH 4 : BASIC MATH			DR. SALHA ALZAHRA		nu user.	17			

MATHEMATICS AS A DISCIPLINE	VECTORS AND MATRICES	ARITHMETIC SYMBOLS	GRAPHS	LOGARITHMS/ EXPONENTS	SET THEORY	LINEAR ALGEBRA
Gra	phs					
	This is a basic Cart standard but some the x variable as b This is because wh function of x, mea graph is trying to s	esian graph (<i>x a</i> etimes do not e eing the indepe nen we write ful ning that the va	y x and y coordinate) ntirely explain the ndent variable an	. The xand ynot e big picture. We nd the yas the d to speak about t	ration are very e sometimes refer ependent variable hem as being y is :	to a
CH 4 : BASIC MATI	HEMATICS	ВУ	DR. SALHA ALZAHRA	ANI		18

MATHEMATICS AS A DISCIPLINE	VECTORS AND MATRICES	ARITHMETIC SYMBOLS	GRAPHS	LOGARITHMS/ EXPONENTS	SET THEORY	LINEAR ALGEBRA				
Gra	phs									
Suppose we have two points on a graph, as shown:										
	$y = \frac{(x_1, y_2)}{(x_1, y_1)}$									
		We refer to the	e points as (x_1, y_1) and	$(x_2,y_2).$						
	The slope between t	these two points	is defined as follow	/S:						
	$slope = m = \frac{y_2 - y_1}{x_2 - x_1}$									

BY DR. SALHA ALZAHRANI

CH 4: BASIC MATHEMATICS

MATHEMATICS AS A DISCIPLINE	VECTORS AND MATRICES	ARITHMETIC SYMBOLS	GRAPHS	LOGARITHMS/ EXPONENTS	SET THEORY	LINEAR ALGEBRA
Gra	phs					
S	ou have probably significance. The slo	ope defines the	rate of change b	etween the two	points.	

- Rates of change can be very important in data science, specifically in areas involving differential equations and calculus.
- Rates of change are a way of representing how variables move together and to what degree.
- Consider that we are modeling the temperature of your coffee in relation to the time that it has been sitting out. Perhaps we have a rate of change as follows:

 $-\frac{2 \, degrees \, F}{1 \, minute}$

• This rate of change is telling us that for every single minute, our coffee's temperature is dropping by two degrees Fahrenheit.

CH 4 : BASIC MATHEMATICS BY DR. SALHA ALZAHRANI

21

MATHEMATICS AS A DISCIPLINE	VECTORS AND MATRICES	ARITHMETIC SYMBOLS	GRAPHS	LOGARITHMS/ EXPONENTS	SET THEORY	LINEAR ALGEBRA
Log	arithms/ex	ponents				
	An exponent tells A logarithm is the base to this other	number that an number?"	exponent $= 2 \cdot 2 \cdot 2 \cdot 2 = 16$ e	. ,		the
		$\log_3 81$	$(16) = 4 \leftrightarrow 2^4 = 16$ $1 = 4 \text{ because } 3^4 = 81$ $1 = 4 \text{ because } 5^3 = 125$			

BY DR. SALHA ALZAHRANI

CH 4: BASIC MATHEMATICS

MATHEMAT AS A DISCIPL		VECTORS AND MATRICES	ARITHMETIC SYMBOLS	GRAPHS	LOGARITHMS/ EXPONENTS	SET THEORY	LINEAR ALGEBRA
5	Set	theory					
	as pu	e set theory involv a basic fundament rpose, we use the Set is a collection	tal group of the set theory in o	orems that gover	ns the rest of ma	athematics. For ou	
		I		([1, 2, 2, 3, 2, 1, 2 et will remove duplic			
			{1, 2,	3}			
CH 4 : BASIC	MATH	HEMATICS	ВУ	DR. SALHA ALZAHRA	ANI		22

MATHEMATIC AS A DISCIPLIN		ARITHMETIC SYMBOLS	GRAPHS	LOGARITHMS/ EXPONENTS	SET THEORY	LINEAR ALGEBRA
Se	et theory					
•	The magnitude of	a set is the num	ber of elements	in the set and is I	represented as fo	llows:
			A = magnitude of A			
	If we wish to denote	that an elemen	t is within a set	, we use the epsi	lon notation, as sl	nown:
			$2 \in \{1, 2, 3\}$			
	If one set is entirely	inside another s	et, we say that it	is a subset of it	s larger counterpa	art.
		A	$= \{1,5,6\}, B = \{1,5,6,7,$	8}		
			$A \subseteq B$			
CH 4 : BASIC M	ATHEMATICS	BY	DR. SALHA ALZAHR	ANI		24

MATHEMATICS	VECTORS AND	ARITHMETIC	GRAPHS LOGARITHMS/	SET THEORY	LINEAR	
AS A DISCIPLINE	MATRICES	SYMBOLS	GRAPHS	EXPONENTS	SETTHEORY	ALGEBRA

Set theory

• The **intersection** of two sets is a set whose elements appear in both the sets. It is denoted as shown:

```
user1 = {"Target", "Banana Republic", "Old Navy"}| # note that we use {} notation to create a set # compare that to using [] to make a list user2 = {"Banana Republic", "Gap", "Kohl's"} user1 \cap user2 = \{Banana \ Republic\}
```

 $|user1 \cap user2| = 1$

The union of two sets is a set whose elements appear in either set. It is denoted as shown:

```
user1 \cup user2 = \big\{Banana\ Republic, Target, Old\ Navy, Gap, Kohl's\big\}
```

 $|user1 \cup user2| = 5$

CH 4: BASIC MATHEMATICS

BY DR. SALHA ALZAHRANI

25

MATHEMATICS	VECTORS AND	ARITHMETIC	GRAPHS	LOGARITHMS/	SET THEORY	LINEAR
AS A DISCIPLINE	MATRICES	SYMBOLS	GRAPHS	EXPONENTS	SETTHEORY	ALGEBRA

Set theory

• When looking at the **similarity** between user1 and user2, we should use a combination of the union and the intersection of their sets. user1 and user2 have one element in common out of a total of five distinct elements between them. So, we can define the similarity between the two users as follows:

$$\frac{|user1 \cap user2|}{|user1 \cup user2|} = \frac{1}{5} = .2$$

• In fact, this has a name in the set theory. It is called the **jaccard measure**. In general, for the sets A and B, the jaccard measure (jaccard similarity) between the two sets is defined as:

$$JS(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

• It can also be defined as the magnitude of the intersection of the two sets divided by the magnitude of the union of the two sets.

CH 4: BASIC MATHEMATICS

BY DR. SALHA ALZAHRANI

26

MATHEMATICS AS A DISCIPLINE	VECTORS AND MATRICES	ARITHMETIC SYMBOLS	GRAPHS	LOGARITHMS/ EXPONENTS	SET THEORY	LINEAR ALGEBRA
• F	Remember the more 10,000 movies to remain a dot provided in a read of mathematical application application and the control of	vie recommendand and broduct between ides the tools to be mematics that down these object	we had to choos n the user profile n make these calc eals with the mat	e only 10 to give and each of the culations much m th of matrices and	to the user? We'd 10,000 movies. ore efficient. d vectors. It has the	
• L	et's look at a few l	-	les before proce			28

MATHEMATICS	VECTORS AND	ARITHMETIC	GRAPHS	LOGARITHMS/	CETTUEODY	LINEAR
AS A DISCIPLINE	MATRICES	SYMBOLS	GRAPHS	EXPONENTS	SET THEORY	ALGEBRA

Matrix multiplication

• Like numbers, we can multiple matrices together. Multiplying matrices is, in essence, **taking** several dot products at once. Let's, for example, try to multiple the following matrices:

$$\begin{pmatrix} 1 & 5 \\ 5 & 8 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 3 & 4 \\ 2 & 5 \end{pmatrix}$$

• You can multiple matrices together if the second number in the first dimension pair is the same as the first number in the second dimension pair.

$$3\times2\cdot2\times2$$

• The resulting matrix will always have dimensions equal to the outer numbers in the dimension pairs (the ones you did not circle in the second point). In this case, the resulting matrix will have a dimension of 3 x 2.

CH 4:	BASIC	MATHE	MATICS

BY DR. SALHA ALZAHRANI

29

MATHEMATICS	VECTORS AND	ARITHMETIC	GRAPHS	LOGARITHMS/	SET THEORY	LINEAR
AS A DISCIPLINE	MATRICES	SYMBOLS		EXPONENTS		ALGEBRA

How to multiply matrices

• To multiply matrices, there is actually a quite simple procedure. Essentially, we are performing a bunch of dot products.

 $\begin{pmatrix} 1 & 5 \\ 5 & 8 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 3 & 4 \\ 2 & 5 \end{pmatrix}$

• We know that our resulting matrix will have a dimension of 3 x 2. So, we know it will look something like the following:

CH 4: BASIC MATHEMATICS

BY DR. SALHA ALZAHRANI

30

MATHEMATICS AS A DISCIPLINE	VECTORS AND MATRICES	ARITHMETIC SYMBOLS	GRAPHS	LOGARITHMS/ EXPONENTS	SET THEORY	LINEAR ALGEBRA	
Movie recommendation example. • Recall the user's movie genre preferences of comedy, romance, and action, which are illustrated as: $U = user \ prefs = \begin{bmatrix} 5 \\ 1 \\ 3 \end{bmatrix}$ • Now suppose we have 10,000 movies, all with a rating for these three categories. To make a recommendation, we need to take the dot product of the preference vector with each of the 10,000							
• Sc	movies. We can use matrix multiplication to represent this. $M = movies = 3x10,000 \text{ dimension matrix}.$ • So, now we have two matrices, one is 3×1 and the other is $3 \times 10,000$. We can't multiply these matrices as they are because the dimensions do not work out. We can take the transpose of the matrix (turning all rows into columns and columns into rows). $U^T = transpose of U = (513)$						

BY DR. SALHA ALZAHRANI

CH 4: BASIC MATHEMATICS

