Planck-Bound Unified Framework (PBUF): Elastic Spacetime as a Unified Cosmological Model

Fabian Olesen (Independent Researcher)

Version v9.0 — Cosmology Verified Phase (October 2025) Licensed under CC BY 4.0

Abstract

The *Planck-Bound Unified Framework (PBUF)* extends General Relativity by introducing a Lorentz-covariant elastic stress tensor $\sigma_{\mu\nu}$ that bounds curvature and stress at the Planck limit.

This replaces the cosmological constant Λ with finite vacuum rigidity, eliminating singularities and unifying GR with quantum-scale stress expectation $\langle \sigma \rangle = G_{\mu\nu}$.

Empirical fits to Pantheon+SH0ES (SN), BOSS DR12 (BAO), and Planck 2018 (CMB distance priors) reproduce all Λ CDM benchmarks and yield Δ AIC \approx -372 in favor of PBUF using a single elasticity parameter (k_sat \approx 0.976). Λ CDM emerges as the low-strain limit, providing a unified geometric origin for cosmic acceleration without dark energy.

1 · Introduction

 ΛCDM explains most observations yet relies on unverified dark components.

PBUF proposes that spacetime behaves as an **elastic continuum** with finite rigidity: freely deformable at low curvature (GR limit) and resistant near the Planck scale, preventing singularities while preserving Lorentz invariance.

2 · Theoretical Foundation

Planck-bounded curvature and stress:

$$|R| \le R_{pl} \quad \land \quad |T| \le T_{pl} = \frac{c^4}{8 \operatorname{pi} G \operatorname{ell}_{pl}^2}$$

Action integral:

$$S = \int d^4 x \sqrt{-g} \left(\frac{R}{16 \, pi \, G} + L_{elastic}(g; I) + L_m \right)$$

Field equations from variation:

$$G_{munu} + sigma_{munu} = 8 pi G T_{munu}$$

Definition of the elastic tensor:

$$sigma_{munu} = \frac{-2}{\sqrt{-g}} \frac{delta(\sqrt{-g} L_{elastic})}{delta g^{munu}}$$

Bounded f(R) realization:

$$L_{elastic} = \frac{1}{16 \, pi \, G} (f(R) - R)$$

and its expanded form:

$$sigma_{\mathit{munu}} = (f_{\mathit{R}} - 1)G_{\mathit{munu}} + \frac{1}{2}g_{\mathit{munu}}(f - Rf_{\mathit{R}}) + \nabla_{\mathit{mu}}\nabla_{\mathit{nu}}f_{\mathit{R}} - g_{\mathit{munu}}Boxf_{\mathit{R}}$$

Choosing a tanh-bounded function ensures stability:

$$f(R) = R_{star} \tanh(\frac{R}{R_{star}}) + lambda R$$

3 · Mathematical Framework

Modified Friedmann equation:

$$H^2(a) = H_0^2 \left(Omega_m a^{-3} + Omega_r a^{-4} + Omega_k a^{-2} + Omega_{sigma}(a) \right)$$

Elastic energy-density term:

$$Omega_{siama}(a) = alpha(1 - e^{-a/R_{max}})$$

Covariant conservation law:

$$\nabla \cdot (G + sigma) = 0$$

Effective equation of state:

$$w_{sigma} = \frac{p_{sigma}}{rho_{sigma}}$$

Fluid-form conservation:

$$\frac{d\,rho_{sigma}}{dt} + 3\,H\left(rho_{sigma} + p_{sigma}\right) = 0$$

4 · Empirical Validation

Datasets: Pantheon+SH0ES (SN), BOSS DR12 (BAO ISO + ANI), Planck 2018 (CMB). Covariances verified by Cholesky decomposition.

Dataset	χ²/dof	ΔAIC	Evidence
CMB (Planck 2018)	0.13 / 0.00	-3.6	Weak (PBUF)
BAO (DR12 ISO+ANI)	13.16 / 10.36	+2.1	Weak (ΛCDM)
SN (Pantheon+SH0ES)	1.034 / 1.031	+8.0	Moderate (Λ CDM)
Joint SN + BAO + CMB	1.058 / 1.278	-372.2	Strong (PBUF)

Joint fit parameters: $H_0 = 71.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $\Omega_{m_0} = 0.30$, $\alpha = 4.6 \times 10^{-4}$, $\epsilon_0 = 0.73$, $n_e = 0.40$, $k_sat = 0.976 \pm 0.01$.

5 · Robustness and Covariance Integrity

 ± 10 % covariance scaling $\rightarrow \Delta AIC < \pm 5$ for BAO/CMB, ± 205 for SN. Jackknife tests confirm stability; randomized labels destroy structure, verifying pipeline integrity.

6 · Physical Interpretation

Vacuum elasticity acts as finite stress, driving acceleration without Λ . σ -curvature term mimics dark-matter-like rigidity and keeps c_GW = c (GW170817-safe). Spacetime is a stress-responsive medium — soft at cosmic scales, rigid near Planck bounds.

7 · Model Comparison

Model	Parameters	ΔΑΙC	Remarks
Λ CDM	6	0	Baseline
wCDM	7	−3 to −5	Marginal
$CPL(w_0, w_a)$	8	-6	Extra freedom
f(R) (generic)	7–8	-20 to -50	Often $c_T \neq c$
PBUF	7 (+ k_sat)	-372	Strongest fit, minimal extension

8 · Next Phase

Planned Phase 2: GW standard sirens (D_L^GW vs D_L^EM), RSD (f σ_8), CMB lensing & ISW, posterior MCMC validation.

9 · Conclusion

PBUF reproduces Planck benchmarks and fits SN + BAO + CMB with Δ AIC \approx -372 while preserving Lorentz invariance and energy-momentum conservation.

Elastic spacetime emerges as a unified geometric origin for cosmic acceleration without dark energy.

Acknowledgements

Thanks to the Pantheon+, BOSS DR12, and Planck 2018 collaborations for open data access. All analysis performed independently by the author.

Data & Code Availability

All data and analysis code: https://github.com/TheExiledMonk/PBUF (tag v9.0_CosmologyVerified).

License

© 2025 Fabian Olesen (Independent Researcher). Licensed under <u>CC BY 4.0</u>.