Wellennachweis - Antriebswelle

Quentin Huss, Nadine Schulz 20.06.2023

Verformung / Neigung

maximale Verforming in x:	0.138	μm
maximaler Verformungsgradient in x:	0.298	mm/m
maximale Verformung in y:	0.087	$\mu m^{'}$
maximaler Verformungsgradient in y:	0.188	mm/m
Neigung im Festlager x:	0.0002776	rad
Neigung im Festlager y:	0.0004577	rad
Neigung im Loslager x:	-0.0002609	rad
Neigung im Loslager y:	-0.0005047	rad

Wellennachweis - Pressverbindung

0 gegebene Größen

Geometrie Stelle 0 mm der Antriebswelle

Wellendurchmesser:

$$d_w = 30.0mm$$

Beanspruchung

Biegemittelspannung:

$$\sigma_{bm} = 0 \frac{N}{mm^2}$$

Biegeausschlagspannung:

$$\sigma_{ba} = 0.0 \frac{N}{mm^2}$$

Torsionsmittelspannung:

$$\tau_{tm} = 0 \frac{N}{mm^2}$$

Torsionsausschlagspannung:

$$\tau_{ta} = -1.48 \frac{N}{mm^2}$$

${\bf 1}\ {\bf Bauteil we chself estigke iten}$

Kerbwirkungszahlen

$$\beta_{\sigma_b} = 2.702$$

$$\beta_{\tau} = 1.855$$

Gesamteinflussfaktoren

$$K_{\sigma,b} = 3.162$$

$$K_{\tau} = 2.143$$

Baute il wech self estigke it

$$\sigma_{bWK} = 161.61 \frac{N}{mm^2}$$

$$\tau_{tWK} = 143.075 \frac{N}{mm^2}$$

2 Bauteilfließgrenzen

$$\sigma_{bFK} = 1077.729 \frac{N}{mm^2}$$

$$\tau_{tFK} = 565.661 \frac{N}{mm^2}$$

3 Gestaltfestigkeit

$$\sigma_{bADK} = 161.61 \frac{n}{mm^2}$$

$$\tau_{tADK} = 143.075 \frac{N}{mm^2}$$

$$S_F = 382.153$$

$$S_D = 96.659$$

Geometrie an der Stelle 60 mm der Antriebswelle

 $\begin{array}{ll} \text{großer Durchmesser} & D = 40.0mm \\ \text{kleiner Durchmesser} & d = 30.0mm \\ \text{Radius} & r = 5mm \\ \text{Absatzsprung} & t = 5.0mm \end{array}$

Biegemittelspannung:

$$\sigma_{bm} = 0 \frac{N}{mm^2}$$

Biegeausschlagspannung:

$$\sigma_{ba} = 163.64 \frac{N}{mm^2}$$

Torsionsmittelspannung:

$$\tau_{tm} = 0 \frac{N}{mm^2}$$

Torsionsausschlagspannung:

$$\tau_{ta} = -1.48 \frac{N}{mm^2}$$

1 Bauteilwechselfestigkeiten

Kerbwirkungszahlen

$$\beta_{\sigma_b} = 1.46$$

$$\beta_{\tau} = 1.24$$

Gesamteinflussfaktoren

$$K_{\sigma,b} = 1.789$$

$$K_{\tau} = 1.462$$

$$\sigma_{bWK} = 275.61 \frac{N}{mm^2}$$

$$\tau_{tWK} = 202.349 \frac{N}{mm^2}$$

$$\sigma_{bFK} = 933.876 \frac{N}{mm^2}$$

$$\tau_{tFK} = 539.174 \frac{N}{mm^2}$$

3 Gestaltfestigkeit

$$\sigma_{bADK} = 275.61 \frac{n}{mm^2}$$

$$\tau_{tADK} = 202.349 \frac{N}{mm^2}$$

$$S_F = 5.706$$

$$S_D = 1.684$$

Geometrie an der Stelle 102 mm der Antriebswelle

 $\begin{array}{ll} \text{großer Durchmesser} & D = 50.0mm \\ \text{kleiner Durchmesser} & d = 40.0mm \\ \text{Radius} & r = 3mm \\ \text{Absatzsprung} & t = 5.0mm \end{array}$

Biegemittelspannung:

$$\sigma_{bm} = 0 \frac{N}{mm^2}$$

Biegeausschlagspannung:

$$\sigma_{ba} = 83.471 \frac{N}{mm^2}$$

Torsionsmittelspannung:

$$\tau_{tm} = 0 \frac{N}{mm^2}$$

Torsionsausschlagspannung:

$$\tau_{ta} = -0.468 \frac{N}{mm^2}$$

1 Bauteilwechselfestigkeiten

Kerbwirkungszahlen

$$\beta_{\sigma_b} = 1.759$$

$$\beta_{\tau} = 1.383$$

Gesamteinflussfaktoren

$$K_{\sigma,b} = 2.157$$

$$K_{\tau} = 1.651$$

$$\sigma_{bWK} = 222.182 \frac{N}{mm^2}$$

$$\tau_{tWK} = 174.12 \frac{N}{mm^2}$$

$$\sigma_{bFK} = 943.206 \frac{N}{mm^2}$$

$$\tau_{tFK} = 518.629 \frac{N}{mm^2}$$

3 Gestaltfestigkeit

$$\sigma_{bADK} = 222.182 \frac{n}{mm^2}$$

$$\tau_{tADK} = 174.12 \frac{N}{mm^2}$$

$$S_F = 11.299$$

$$S_D = 2.662$$

Geometrie an der Stelle 148 mm der Antriebswelle

 $\begin{array}{ll} \text{großer Durchmesser} & D=60.0mm \\ \text{kleiner Durchmesser} & d=50.0mm \\ \text{Radius} & r=1mm \\ \text{Absatzsprung} & t=5.0mm \end{array}$

Biegemittelspannung:

$$\sigma_{bm} = 0 \frac{N}{mm^2}$$

Biegeausschlagspannung:

$$\sigma_{ba} = 34.546 \frac{N}{mm^2}$$

Torsionsmittelspannung:

$$\tau_{tm} = 0 \frac{N}{mm^2}$$

Torsionsausschlagspannung:

$$\tau_{ta} = -0.192 \frac{N}{mm^2}$$

1 Bauteilwechselfestigkeiten

Kerbwirkungszahlen

$$\beta_{\sigma_b} = 2.528$$

$$\beta_{\tau} = 1.759$$

Gesamteinflussfaktoren

$$K_{\sigma,b} = 3.068$$

$$K_{\tau} = 2.107$$

$$\sigma_{bWK} = 152.523 \frac{N}{mm^2}$$

$$\tau_{tWK} = 133.262 \frac{N}{mm^2}$$

$$\sigma_{bFK} = 956.137 \frac{N}{mm^2}$$

$$\tau_{tFK} = 501.842 \frac{N}{mm^2}$$

3 Gestaltfestigkeit

$$\sigma_{bADK} = 152.523 \frac{n}{mm^2}$$

$$\tau_{tADK} = 133.262 \frac{N}{mm^2}$$

$$S_F = 27.676$$

$$S_D = 4.415$$

Geometrie an der Stelle 317 mm der Antriebswelle

 $\begin{array}{ll} \text{großer Durchmesser} & D=60.0mm \\ \text{kleiner Durchmesser} & d=40.0mm \\ \text{Radius} & r=1mm \\ \text{Absatzsprung} & t=10.0mm \end{array}$

Biegemittelspannung:

$$\sigma_{bm} = 0 \frac{N}{mm^2}$$

Biegeausschlagspannung:

$$\sigma_{ba} = 2.576 \frac{N}{mm^2}$$

Torsionsmittelspannung:

$$\tau_{tm} = 0 \frac{N}{mm^2}$$

Torsionsausschlagspannung:

$$\tau_{ta} = -0.093 \frac{N}{mm^2}$$

1 Bauteilwechselfestigkeiten

Kerbwirkungszahlen

$$\beta_{\sigma_b} = 2.518$$

$$\beta_{\tau} = 1.798$$

Gesamteinflussfaktoren

$$K_{\sigma,b} = 3.097$$

$$K_{\tau} = 2.18$$

$$\sigma_{bWK} = 151.107 \frac{N}{mm^2}$$

$$\tau_{tWK} = 128.765 \frac{N}{mm^2}$$

$$\sigma_{bFK} = 956.137 \frac{N}{mm^2}$$

$$\tau_{tFK} = 501.842 \frac{N}{mm^2}$$

3 Gestaltfestigkeit

$$\sigma_{bADK} = 151.107 \frac{n}{mm^2}$$

$$\tau_{tADK} = 128.765 \frac{N}{mm^2}$$

$$S_F = 370.269$$

$$S_D = 58.602$$

Wellennachweis - umlaufende Rechtecknut

0 gegebene Größen

Geometrie an Stelle 363 mm der Antriebswelle

Wellendurchmesser D=40.0mmTiefe der Nut t=7mmRadius r=0.2mmBreite der Nut b=2mm

Biegemittelspannung:

$$\sigma_{bm} = 0 \frac{N}{mm^2}$$

Biegeausschlagspannung:

$$\sigma_{ba} = 0.0 \frac{N}{mm^2}$$

Torsionsmittelspannung:

$$\tau_{tm} = 0 \frac{N}{mm^2}$$

Torsionsausschlagspannung:

$$\tau_{ta} = -0.468 \frac{N}{mm^2}$$

1 Bauteilwechselfestigkeiten

Kerbwirkungszahlen

$$\beta_{\sigma_b} = 8.913$$

$$\beta_{\tau} = 5.721$$

Gesamteinflussfaktoren

$$K_{\sigma,b} = 10.215$$

$$K_{\tau} = 6.536$$

$$\sigma_{bWK} = 48.273 \frac{N}{mm^2}$$

$$\tau_{tWK} = 45.263 \frac{N}{mm^2}$$

$$\sigma_{bFK} = 1073.958 \frac{N}{mm^2}$$

$$\tau_{tFK} = 539.174 \frac{N}{mm^2}$$

3 Gestaltfestigkeit

$$\sigma_{bADK} = 48.273 \frac{n}{mm^2}$$

$$\tau_{tADK} = 45.263 \frac{N}{mm^2}$$

$$S_F = 1151.237$$

$$S_D = 96.646$$

Geometrie an der Stelle 367 mm der Antriebswelle

 $\begin{array}{ll} {\rm großer\ Durchmesser} & D=40.0mm \\ {\rm kleiner\ Durchmesser} & d=32.0mm \\ {\rm Radius} & r=5mm \\ {\rm Absatzsprung} & t=4.0mm \end{array}$

Biegemittelspannung:

$$\sigma_{bm} = 0 \frac{N}{mm^2}$$

Biegeausschlagspannung:

$$\sigma_{ba} = 0.0 \frac{N}{mm^2}$$

Torsionsmittelspannung:

$$\tau_{tm} = 0 \frac{N}{mm^2}$$

Torsionsausschlagspannung:

$$\tau_{ta} = -0.468 \frac{N}{mm^2}$$

1 Bauteilwechselfestigkeiten

Kerbwirkungszahlen

$$\beta_{\sigma_b} = 1.46$$

$$\beta_{\tau} = 1.237$$

Gesamteinflussfaktoren

$$K_{\sigma,b} = 1.824$$

$$K_{\tau} = 1.489$$

$$\sigma_{bWK} = 270.403 \frac{N}{mm^2}$$

$$\tau_{tWK} = 198.727 \frac{N}{mm^2}$$

$$\sigma_{bFK} = 933.876 \frac{N}{mm^2}$$

$$\tau_{tFK} = 539.174 \frac{N}{mm^2}$$

3 Gestaltfestigkeit

$$\sigma_{bADK} = 270.403 \frac{n}{mm^2}$$

$$\tau_{tADK} = 198.727 \frac{N}{mm^2}$$

$$S_F = 1151.237$$

$$S_D = 424.318$$

Geometrie an der Stelle 387 mm der Antriebswelle

großer Durchmesser D=32.0mmkleiner Durchmesser d=30.0mmRadius r=5mmAbsatzsprung t=1.0mm

Biegemittelspannung:

$$\sigma_{bm} = 0 \frac{N}{mm^2}$$

Biegeausschlagspannung:

$$\sigma_{ba} = 0.0 \frac{N}{mm^2}$$

Torsionsmittelspannung:

$$\tau_{tm} = 0 \frac{N}{mm^2}$$

Torsionsausschlagspannung:

$$\tau_{ta} = -1.143 \frac{N}{mm^2}$$

1 Bauteilwechselfestigkeiten

Kerbwirkungszahlen

$$\beta_{\sigma_b} = 1.16$$

$$\beta_{\tau} = 1.125$$

Gesamteinflussfaktoren

$$K_{\sigma,b} = 1.468$$

$$K_{\tau} = 1.344$$

$$\sigma_{bWK} = 345.31 \frac{N}{mm^2}$$

$$\tau_{tWK} = 226.329 \frac{N}{mm^2}$$

$$\sigma_{bFK} = 969.462 \frac{N}{mm^2}$$

$$\tau_{tFK} = 559.719 \frac{N}{mm^2}$$

3 Gestaltfestigkeit

$$\sigma_{bADK} = 345.31 \frac{n}{mm^2}$$

$$\tau_{tADK} = 226.329 \frac{N}{mm^2}$$

$$S_F = 489.515$$

$$S_D = 197.941$$

Wellennachweis - Passfeder

0 gegebene Größen

Geometrie Stelle 450 mm der Antriebswelle

Wellendurchmesser:

$$d_w = 30.0mm$$

Beanspruchung

Biegemittelspannung:

$$\sigma_{bm} = 0 \frac{N}{mm^2}$$

Biegeausschlagspannung:

$$\sigma_{ba} = 0.0 \frac{N}{mm^2}$$

Torsionsmittelspannung:

$$\tau_{tm} = 0 \frac{N}{mm^2}$$

Torsionsausschlagspannung:

$$\tau_{ta} = -1.48 \frac{N}{mm^2}$$

1 Bauteilwechselfestigkeiten

Kerbwirkungszahlen

$$\beta_{\sigma_b} = 2.996$$

$$\beta_{\tau} = 1.777$$

Gesamteinflussfaktoren

$$K_{\sigma,b} = 3.486$$

$$K_{\tau} = 2.056$$

Baute il wech self estigke it

$$\sigma_{bWK} = 146.586 \frac{N}{mm^2}$$

$$\tau_{tWK} = 149.099 \frac{N}{mm^2}$$

2 Bauteilfließgrenzen

$$\sigma_{bFK} = 1077.729 \frac{N}{mm^2}$$

$$\tau_{tFK} = 565.661 \frac{N}{mm^2}$$

3 Gestaltfestigkeit

$$\sigma_{bADK} = 146.586 \frac{n}{mm^2}$$

$$\tau_{tADK} = 149.099 \frac{N}{mm^2}$$

$$S_F = 382.153$$

$$S_D = 100.729$$