Protocol: Microfabrication of Parylene Microelectrode Arrays

Description: This document details the microfabrication protocol for Parylene microelectrode arrays (MEAs) for the standard multi-project wafer model of the Polymer Implantable Electrode (PIE) Foundry.

Note: Standard equipment and materials (e.g. tweezers, microscopes, DI water, cleanroom wipes, N_2 gun, scale, etc.) are not listed in materials lists.

Table of Contents

1	Base	Parylene C	2
	1.1	Dry-Bake	2
	1.2	Deposit Parylene C	2
	1.3	Measure Parylene Thickness	2
	1.4	Thermal Anneal	3
2	Elect	rode (Metal) Layer	3
	2.1	Photomask Cleaning	3
	2.2	High Resolution Image Reversal Lithography	3
	2.3	Descum Wafer	4
	2.4	Deposit Metal	4
	2.5	Pattern Metal via Lift-Off	4
	2.6	Dry-Bake	4
3	Insul	ation Parylene C	5
	3.1	Descum Wafer	5
	3.2	Silanization	5
	3.3	Dry-Bake	5
	3.4	Deposit Parylene C	5
	3.5	Measure Parylene Thickness	5
4	Patte	ern Parylene (Etch #1)6	5
	4.1	Photomask Cleaning	5
	4.2	Pattern Etch Mask with Photolithography	5
	4.3	Etch Parylene	5
	4.4	Strip Photoresist Mask	7
5	Patte	ern Parylene (Etch #2)	7
	5.1	Photomask Cleaning	7
	5.2	Pattern Etch Mask with Photolithography	3
	5.3	Etch Parylene	3

Date: 12/13/2024

	5.4	Strip Photoresist Mask			
		Please MEAs			
7		ost-Process Annealing			
	7.1	Release Stress (Flatten)			
	7.2	Vacuum Anneal	9		
	7.3	High Temperature Vacuum Anneal	10		
8	Ро	ost-Process Cleaning	10		
	A.	Process Flow Diagram	11		
	B.	Material Sources	12		
	C.	Equipment Models	12		

Date: 12/13/2024

1 BASE PARYLENE C

1.1 DRY-BAKE

Note: this step assumes you are working with new wafers directly taken from the box in which they were shipped in – the assumption is that these wafers are completely clean

Note: this step should be performed immediately before Parylene deposition

Materials: 4" prime double-sided-polished 525 micron thick silicon wafer(s) (laser serial marked

preferred)

Equipment: Oven or hot plate

1. Bake wafers at 110 °C in an oven at atmosphere for at least 30 minutes (overnight is OK), or on a hot plate for >5 minutes

1.2 Deposit Parylene C

Note: this step should be performed immediately after dry-bake (step 1.1)

Materials: Parylene C dimer Equipment: Parylene PVD

- 1. Deposit 10 microns of Parylene C on to wafers. See Parylene C Coating Subprotocol.
 - a. 30-36 g of dimer is typical, but amount should be verified by comparing to past Parylene runs and adjusted as needed
 - b. 12 wafers per batch is recommended and varying the wafer number will affect the amount of dimer required

1.3 Measure Parylene Thickness

Equipment: Thin film thickness measurement system

1. Measure Parylene thickness at center of wafer using non-contact optical profilometer

a. As an alternative, glass reference slides can be coated alongside each Parylene C wafer shelf. Sections of the Parylene C coating on these slides can be removed by way of a sharp blade, and the reference slide coating thickness measured directly using a contact profilometer. Please note that this method is less accurate.

Date: 12/13/2024

2. Log measurements into logbook

1.4 THERMAL ANNEAL

Equipment: Vacuum oven

1. Anneal all wafers with base Parylene C at 150 °C under hard vacuum with a soak time of 4 hours. The purpose of the step is to improve thermal properties of the Parylene C prior to metal evaporation, and to improve adhesion of the Parylene C base to the carrier wafer prior to lithography in Step 2.

2 ELECTRODE (METAL) LAYER

2.1 PHOTOMASK CLEANING

Note: This step should be skipped for newly purchased photomasks which have been first opened under cleanroom conditions

Safety: Use acid-resistant gloves, apron, and googles when using Nanostrip

Materials: Acetone

Isopropanol Nanostrip

Equipment: Glass tank designated for Nanostrip

Hotplate Mask tweezers Teflon mask holder

1. Clean photomask prior to lithography. See Photomask Cleaning Subprotocol.

2.2 HIGH RESOLUTION IMAGE REVERSAL LITHOGRAPHY

Materials: 5214-E Photoresist

AZ340 Developer

5 mL Polypropylene Syringe (per wafer)

22-Gauge Luer Stub (per wafer)

Equipment: Vacuum oven with N2

Contact mask aligner with UV source

Photoresist spinner

Hot plate

IR temperature sensor UV intensity meter IR temperature sensor Wafer centering tool

HDPE trays for developer and water baths

Wafer dipper/holding tool

Prepared by: PIE Foundry Reviewed by: Kee Scholten Page **3** of **12**

Contact profilometer

1. Prepare an image reversal photoresist mask of the electrodes, traces, and contact pads. <u>See</u> High Resolution Image Reversal Lithography Subprotocol.

Date: 12/13/2024

2. Confirm and record the thickness of the photoresist with contact profilometer. Target is 1.2 ± 0.15 micron.

2.3 DESCUM WAFER

Note: this step should be performed immediately before metal deposition

Equipment: RIE

1. Descum (clean) wafers in the RIE, two 4'' wafers at the same time, using the following recipe: 150 mT, 100 W, 50 sccm O_2 , 180 s.

2.4 DEPOSIT METAL

Note: this step should be performed immediately after descum

Materials: Titanium

Platinum Gold

Equipment: E-beam evaporator

1. Coat the wafers in a layer of evaporated metal using e-beam evaporation.

a. Metal stack and parameters:

20 nm Ti (1 Å/s) 25 nm Pt (1 Å/s) 155 nm Au (2 Å/s)

25 nm Pt (1 Å/s)

2.5 PATTERN METAL VIA LIFT-OFF

Materials: Acetone

N-Methylpyrrolidone (NMP)

Isopropanol (IPA)

Equipment: Glass dishes designated for lift-off

Sonicating bath

1. Lift-off photoresist to reveal metal pattern. See Metal Patterning via Lift-Off Subprotocol.

2.6 DRY-BAKE

Note: this step should be performed immediately before Parylene C

Equipment: Vacuum oven with N_2

1. Bake wafers at 60 °C in an oven under light vacuum (35-40 cmHg) and N₂ flow (15-20 sccm) for >15 minutes

Prepared by: PIE Foundry Reviewed by: Kee Scholten Page 4 of 12

3 Insulation Parylene C

3.1 DESCUM WAFER

Equipment: Asher

1. Descum (clean) wafers in the asher using the following recipe:

125 mT, 100 W, 30 sccm O₂, 300 s

3.2 SILANIZATION

Note: this step should be performed within 12 hours of Parylene deposition

Materials: A-174 Silane

Isopropanol Aluminum foil

Equipment: Glass dishes designated for A-174

Crystalizing dish labeled for A-174 Wafer cassette designated for A-174

Stirring rod

1. Treat the wafers with a solution of A-174 silane to improve adhesion to the insulating Parylene C layer. See Silanization Subprotocol.

Date: 12/13/2024

3.3 DRY-BAKE

Note: this step should be performed immediately before Parylene C

Equipment: Vacuum oven with N_2

2. Bake wafers at 60 °C in an oven under light vacuum (35-40 cmHg) and N₂ flow (15-20 sccm) for >15 minutes

3.4 Deposit Parylene C

Note: this step should be performed within 12 hours after silanization

Materials: Parylene C dimer Equipment: Parylene PVD

- 1. Deposit 10 microns of Parylene C on to wafers. See Parylene C Deposition Protocol.
 - a. 30-36 g of dimer is typical, but amount should be verified by comparing to past Parylene runs and adjusted as needed
 - b. 12 wafers per batch is recommended and varying the wafer number will affect the amount of dimer required

3.5 Measure Parylene Thickness

Equipment: Thin film thickness measurement system

- 1. Measure Parylene thickness at center of wafer using non-contact optical profilometer
 - a. As an alternative, glass reference slides can be coated alongside each Parylene C wafer shelf. Sections of the Parylene C coating on these slides can be removed by way of a sharp blade, and the reference slide coating thickness measured directly using a contact profilometer. Please note that this method is less accurate.

Prepared by: PIE Foundry Reviewed by: Kee Scholten Page **5** of **12**

2. Log measurements into logbook

4 PATTERN PARYLENE (ETCH #1)

4.1 PHOTOMASK CLEANING

Note: This step should be skipped for newly purchased photomasks which have been first opened under cleanroom conditions

Date: 12/13/2024

Safety: Use acid-resistant gloves, apron, and googles when using Nanostrip

Materials: Acetone

Isopropanol Nanostrip

Equipment: Glass tank designated for Nanostrip

Hotplate Mask tweezers Teflon mask holder

1. Clean photomask prior to lithography. See Photomask Cleaning Subprotocol.

4.2 PATTERN ETCH MASK WITH PHOTOLITHOGRAPHY

Materials: 12XT-20PL-15 photoresist

MIF 726 developer

Equipment: Contact mask aligner with UV source

Photoresist spinner

Hot plate

IR temperature sensor Wafer centering tool

- 3. Prepare a photoresist etch mask, approximately 15 microns thick, defining the outline of the MEA, and the openings over the electrodes and contact pads. See Etch Mask Lithography Protocol.
- 4. Confirm and record the thickness of the photoresist with contact profilometer. Target is 16 ± 1 micron.

4.3 ETCH PARYLENE

Equipment: RIE-ICP or RIE

- 1. Etch through approximately 10 microns of Parylene C using O₂ plasma using either deep reactive ion etch (DRIE) or reactive ion etch (RIE).
- 2. DRIE (preferred): A two-step switch-chemistry Bosch-type etch process using an ICP-RIE etching tool. Etch approximately 100-110 cycles in batches of 60 cycles or fewer, with wafers vented and cooled to room temperature between batches.
 - a. Etch step:

Gas: 60 sccm O₂, 40 sccm Ar

RF Power: 20 W

Prepared by: PIE Foundry Reviewed by: Kee Scholten Page **6** of **12**

ICP Power: 700 W
Time: 10 seconds
b. Passivation step:

Gas: 35 sccm C₄F₈, 40 sccm Ar

RF Power: 10 W ICP Power: 700 W Time: 3 seconds

c. Etch rate: approximately 0.095 microns per loop

3. RIE (alternative): A single step O₂ RIE process. Two 4" wafers run side-by-side on a 10" platen.

Date: 12/13/2024

a. Gas: 50 sccm O₂ RF Power: 150 W Time: 50 minutes

b. Etch rate: approximately 0.19 microns per minute.

4.4 STRIP PHOTORESIST MASK

Materials: Acetone

Isopropanol (IPA)

Equipment: Glass dishes designated for photoresist stripping

Solvent fume hood

- 1. Perform chemical work in solvents fume hood
- 2. Soak wafer in acetone bath for 5 minutes.
- 3. Soak wafer in isopropanol bath for 5 minutes.
- 4. Soak in DI water for 5 minutes.
 - a. 3× rinse in DI water
- 5. Blow dry with N_2

4.5 DRY-BAKE

Note: this step should be performed immediately before Parylene C

Equipment: Vacuum oven with N_2

1. Bake wafers at 60 °C in an oven under light vacuum (35-40 cmHg) and N₂ flow (15-20 sccm) for >15 minutes

5 PATTERN PARYLENE (ETCH #2)

5.1 PHOTOMASK CLEANING

Note: This step should be skipped for newly purchased photomasks which have been first opened under cleanroom conditions

Safety: Use acid-resistant gloves, apron, and googles when using Nanostrip

Materials: Acetone

Isopropanol Nanostrip

Prepared by: PIE Foundry Reviewed by: Kee Scholten Page **7** of **12**

Equipment: Glass tank designated for Nanostrip

Hotplate Mask tweezers Teflon mask holder

1. Clean photomask prior to lithography. See Photomask Cleaning Subprotocol.

5.2 PATTERN ETCH MASK WITH PHOTOLITHOGRAPHY

Materials: 12XT-20PL-15 photoresist

MIF 726 developer

Equipment: Contact mask aligner with UV source

Photoresist spinner

Hot plate

IR temperature sensor Wafer centering tool

 Prepare a photoresist etch mask, approximately 15 microns thick, defining the outline of the MEA, and the openings over the electrodes and contact pads. <u>See Etch Mask Lithography</u> Protocol.

Date: 12/13/2024

2. Confirm and record the thickness of the photoresist with contact profilometer. Target is 16 ± 1 micron.

5.3 ETCH PARYLENE

Equipment: RIE-ICP or RIE

- 1. Etch through approximately 10 microns of Parylene C using O₂ plasma using either deep reactive ion etch (DRIE) or reactive ion etch (RIE).
 - a. DRIE (preferred): A two-step switch-chemistry Bosch-type etch process using an ICP-RIE etching tool. Etch approximately 100-110 cycles without venting in between the process.
 - b. Etch step:

Gas: 60 sccm O₂, 40 sccm Ar

RF Power: 20 W ICP Power: 700 W Time: 10 seconds c. Passivation step:

Gas: 35 sccm C₄F₈, 40 sccm Ar

RF Power: 10 W ICP Power: 700 W Time: 3 seconds

- d. Etch rate: approximately 0.095 microns per loop
- 2. RIE (alternative): A single step O₂ RIE process. Two 4" wafers run side-by-side on a 10" platen.

a. Gas: 50 sccm O₂ RF Power: 150 W Time: 50 minutes

b. Etch rate: approximately 0.19 microns per minute.

Prepared by: PIE Foundry Reviewed by: Kee Scholten Page 8 of 12

5.4 STRIP PHOTORESIST MASK

Note: Parylene C dies may begin to lift off from wafer during this step.

Materials: Acetone

Isopropanol (IPA)

Equipment: Glass dishes designated for photoresist stripping

- 1. Perform chemical work in solvents fume hood
- 2. Soak wafer in acetone bath for 5 minutes.
- 3. Soak wafer in isopropanol bath for 5 minutes.
- 4. Soak in DI water briefly (<2 minutes)
- 5. Carefully blow dry if possible

6 RELEASE MEAS

Note: Parylene C MEAs often curl following release due to inter-layer stress.

Equipment: Scalpel

Microneedles Sharp tweezers Stereoscope

- 1. To remove a tabulated sheet:
 - a. Place a droplet of water at the sheet edge.
 - b. Looking through a stereoscope, use a scalpel or microneedle to gently lift the edge of the device, allowing the water to wick between the Parylene and the wafer

Date: 12/13/2024

- c. If needed, tug very gently at the edge of the sheet or along a handling tab using tweezers.
 - i. Add more water as needed

7 Post-Process Annealing

7.1 RELEASE STRESS (FLATTEN)

Materials: Ceramic plates

Isopropanol

Equipment: Hot Plate

- 1. Lay released MEAs flat on a ceramic plate. A few drops of isopropanol may help pull MEAs flat using surface tension.
- 2. Cover with second ceramic plate and place on hot plate.
- 3. Set hot plate to 115 °C. Wait 15 minutes after the hot plate has reached temperature and return to < 60 °C temperature. Allow plates and MEAs to cool on hot plate.

7.2 VACUUM ANNEAL

Materials: Ceramic plates

Prepared by: PIE Foundry Reviewed by: Kee Scholten Page 9 of 12

Equipment: Vacuum oven with N_2

1. Sandwich released MEAs between clean ceramic plates and place in vacuum oven

Date: 12/13/2024

- 2. Pump down vacuum oven, then rinse $3\times$ with N_2 .
- 3. Anneal 200 °C with a soak time of 4 hours, and a ramp up/down time of 8 hours.

7.3 HIGH TEMPERATURE VACUUM ANNEAL

Materials: Ceramic plates

Equipment: Vacuum oven capable of reaching > 200 °C

- 1. Sandwich released MEAs between clean ceramic plates and place in vacuum oven
- 2. Pump down vacuum oven.
- 3. Anneal 200 °C with a soak time of 4 hours, and a ramp up/down time of 8 hours.

8 Post-Process Cleaning

Note: this step is recommended to remove any remaining scum on electrode sites and improve impedance values

Materials: Prime silicon wafer(s) or soda lime wafer(s)

Kapton tape

Equipment: Asher

- 1. Attach released devices to a clean carrier wafer (Si or glass) with the electrode sites exposed using small pieces of Kapton tape
- 2. Clean devices in the Asher using the following recipe:

125 mT, 100 W, 30 sccm O₂, 5 minutes

Prepared by: PIE Foundry Reviewed by: Kee Scholten Page **10** of **12**

A. PROCESS FLOW DIAGRAM

Date: 12/13/2024

B. MATERIAL SOURCES

Note: Standard materials (e.g. acetone, DI water, cleanroom wipes, etc.) are not listed

Material	Supplier
CR-7 chrome etchant	Transene, Danvers, MA
Parylene dimer	Specialty Coating Systems, Indianapolis, IN
AZ 12XT-20PL-15 photoresist	AZ Electronic Materials, Branchburg, NJ
AZ 5214 E photoresist	AZ Electronic Materials, Branchburg, NJ
AZ 340 developer	AZ Electronic Materials, Branchburg, NJ
AZ 726MIF developer	AZ Electronic Materials, Branchburg, NJ
Edge Bead Removal (EBR) solvent	AZ Electronic Materials, Branchburg, NJ
NMP Rinse	AZ Electronic Materials, Branchburg, NJ
Titanium	Provided by USC cleanroom
Platinum	Provided by USC cleanroom
Gold	Provided by USC cleanroom
Nanostrip 2X	CMC Materials, Santa Ana, CA

Date: 12/13/2024

C. EQUIPMENT MODELS

Note: Standard equipment (e.g. tweezers, microscopes, N₂ gun, scale, etc.) are not listed

Equipment	Model #	Supplier
Vacuum oven	TVO-2	Cascade Tek Inc., Longmont, CO
with N ₂	VO914A	Lindberg/Blue M, New Columbia, PA
Profilometer	DektakXT	Bruker, Billerica, MA
Spin coater	WS-400B-6NPP Lite	Laurell Technologies, North Wales, PA
Hot plate	PMC 730 Dataplate	Barnstead/Thermolyne, Dubuque, IA
	1000-1	Electronic Micro Systems, Sutton Coldfield, UK
Sonicating bath	3510	Branson Ultrasonics, Danbury, CT
DRIE	Plasmalab 100	Oxford Instruments, Bristol, UK
RIE	PlasmaPro 80	Oxford Instruments, Bristol, UK
	Series 85	Technics, Pleasanton, CA
Asher	CV200RFS	Yield Engineering Systems, Fremont, CA
Mask aligner	Model 200	OAI, San Jose, CA
E-beam	Mark 40	CHA Industries, Livermore, CA
evaporator	PRO Line PVD 75	Kurt J. Lesker, Jefferson Hills, PA
Parylene PVD	PDS 2010 Labcoter	Specialty Coating Systems, Indianapolis, IN