PHYS 605 Lab#5

Evin O'Shea and Morgan Daly* (Dated: March 5, 2016)

I. BACKGROUND

II. METHODOLOGY

For the low pass filer:

$$|G| = \frac{1}{(1 + (\omega RC))^{\frac{1}{2}}} \tag{1}$$

For the High pass filter:

$$|G| = \frac{\omega RC}{(1 + (\omega RC)^2)^{\frac{1}{2}}} \tag{2}$$

$$\phi = \arctan(\frac{1}{\omega RC})\tag{3}$$

Gain of a casacde is $G_1 * G_2$

III. RESULTS AND ANALYSIS

LOW PASS FILTER: C=0.510nF, R=54.7kOhm expected characteristic f=5705.1Hz The data collected for the low pass filter is shown below:

frequency	$V_{in}(mV)$	$V_{out}(V)$	$\phi(degrees)$
10.33Hz	4.56	4.32	0
66.67Hz	4.6	4.40	0
100.7Hz	4.6	4.40	3
520.8Hz	4.6	4.32	7
1.111kHz	4.6	4.24	16
$3.205 \mathrm{kHz}$	4.6	3.44	41
5.682kHz	4.6	2.72	57
8.197kHz	4.6	2.08	64
$10.42 \mathrm{kHz}$	4.6	1.76	73
60.24kHz	4.6	$312 \mathrm{mV}$	77
108.7kHz	4.6	$180 \mathrm{mV}$	86

The calculated data for the low pass filter is shown below:

^{*}Electronic address: eco2000@wildcats.unh.edu

$\log(f)$	Gain (dB)	$Gain_{expected}$ (dB)	% error
1.014	-0.4696	-0.0079	
1.824	-0.3861	-0.0505	
2.003	-0.3861	-0.0760	
2.717	-0.5455	-0.3793	
3.046	-0.7078	-0.7727	
3.506	-2.5240	-1.936	
3.755	-4.5638	-3.002	
3.914	-6.9691	-3.868	
4.018	-8.4201	-4.512	
4.780	-23.3721	-10.63	·
5.036	-28.1497	-13.02	

HIGH PASS FILTER: C=1.526nF, R=55.0kOhm expected characteristic f=1896.3Hz The data collected for the high pass filter is shown below:

frequency	$V_{in}(mV)$	$V_{out}(V)$	$\phi(degrees)$
10.37Hz	4.48	$36 \mathrm{mV}$	-80
60.24Hz	4.6	$152 \mathrm{mV}$	-86
106.4Hz	4.6	$248 \mathrm{mV}$	-90
257.9Hz	4.6	1.44	-71
862.1Hz	4.6	1.8	-60
1.894kHz	4.6	3.04	-43
5.618kHz	4.6	3.92	-20
6.494kHz	4.6	4.00	-18
10.31kHz	4.6	4.00	-7
46.30kHz	4.6	4.00	-3
108.7kHz	4.6	4.00	0

The data calculated for the high pass filter is shown below:

$\log(f)$	Gain (dB)	$Gain_{expected}$ (dB)	% error
1.016	-41.8995	-45.24	
1.780	-29.6183	-29.96	
2.027	-25.3661	-25.03	
2.411	-10.0879	-17.4	
2.936	-8.1497	-7.663	
3.277	-3.5977	-3.016	
3.750	-1.3894	-0.4686	
3.813	-1.2140	3554	
4.013	-1.2140	-0.1445	
4.666	-1.2140	-0.0073	
5.036	-1.2140	-0.0013	

BAND PASS FILTER (out of low pass to in of high pass): The data collected for the band pass filter is shown below:

frequency	$V_{in}(mV)$	$V_{out}(V)$	$\phi(degrees)$
10.33 Hz	4.6	$29.6 \mathrm{mV}$	
68.49 Hz	4.6	$168 \mathrm{mV}$	
108.7Hz	4.6	$248 \mathrm{mV}$	
625.0 Hz	4.6	1.24	
$1.020 \mathrm{kHz}$	4.6	1.60	-29
$3.425 \mathrm{kHz}$	4.6	1.84	-25
8.197kHz	4.6	1.44	41
$13.16 \mathrm{kHz}$	4.6	1.12	53
60.24kHz	4.6	$272 \mathrm{mV}$	82
108.7kHz	4.6	$163 \mathrm{mV}$	89

The data calculated for the band pass filter is shown below:

$\log(f)$	Gain (dB)	$Gain_{expected}$ (dB)	% error
$10.33 \mathrm{Hz}$	-43.8293	$29.6 \mathrm{mV}$	
68.49Hz	-28.7490	$168 \mathrm{mV}$	
108.7Hz	-25.3661	$248 \mathrm{mV}$	
625.0Hz	-11.3867	1.24	
$1.020 \mathrm{kHz}$	-9.1728	1.60	
$3.425 \mathrm{kHz}$	-7.9588	1.84	
8.197kHz	-10.0879	1.44	
$13.16 \mathrm{kHz}$	-12.2708	1.12	
60.24kHz	-24.5638	$272 \mathrm{mV}$	
$108.7 \mathrm{kHz}$	-28.9583	163mV	

NEED TO SAY THAT WHEN THE VOLTAGE GETS LOW, THE MEASURMENTS GO TO SHIT, HAPPENED BEFORE TOO

IV. CONCLUSION

V. REFERENCES