МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №4

по дисциплине «Сети и телекоммуникации»

Тема: Изучение понятий ІР-адреса и подсетей

Студент гр. 0303	 Калмак Д.А.
Преподаватель	 Борисенко К.А

Санкт-Петербург

Цель работы.

Изучение IP-адресации (IPv4), логического построения локальных сетей.

Порядок выполнения работы.

- 1. Создать две виртуальные машины (лаб. работа № 1).
- 2. Определить адрес сети по ІР и маске.
- 3. Определить широковещательный ІР-адрес для конкретной подсети.
- 4. Определить принадлежность IP-адресов к одной подсети.
- 5. Построить схему сети с использованием различных масок и IP-адресов.
- 6. Проверить п. 4 на реальной инфраструктуре, построенной в VirtualBox.

Выполнение работы.

1. Созданы и настроены две виртуальные машины. (см. рис. 1)

Рисунок 1 – Виртуальные машины

2. Были выданы следующие ІР-адреса:

168.189.34.234/16 — для первой виртуальной машины 168.200.45.245/16 — для второй виртуальной машины Найдем адреса сетей для этих IP-адресов:

168.189.34.234 при маске 255.255.0.0-168.189.0.0 адрес сети

10101000.10111101.00100010.11101010

111111111111111111100000000.00000000

10101000.10111101.00000000.00000000

168.200.45.245 при маске 255.255.0.0 - 168.200.0.0 адрес сети

10101000.11001000.00101101.11110101

11111111.11111111.00000000.00000000

10101000.11001000.00000000.00000000

Найдем широковещательные адреса:

168.189.34.234 при маске 255.255.0.0 – 168.189.255.255 широковещательный адрес

10101000.10111101.00100010.11101010

00000000.000000000.111111111.111111111

10101000.10111101.1111111111.1111111

168.200.45.245 при маске 255.255.0.0 – 168.200.255.255 широковещательный адрес

10101000.11001000.00101101.11110101

00000000.000000000.111111111.11111111

10101000.11001000.111111111.1111111

Два IP-адреса относятся к разным подсетям. Проверим в виртуальных машинах связь между ними.

Связи между виртуальными машинами нет. (см. рис. 2)

```
## Chort Usuntu Server (Pa6craer) - Oracle VM VirtualBox

@aân Maiuma Bug Boog VcrpoAcras Chpaska

withsturius*** If config
emplos Link encousithermet Maddr 08:00:27:8d:58:e4
inet addr:188.189:34;284 Boog VcrpoAcras Chpaska

withsturius*** If config
emplos Link encousithermet Maddr 08:00:27:8d:58:e4
inet addr:188.189:34;284 Boog VcrpoAcras Chpaska

withsturius*** If config
emplos Link encousithermet Maddr 08:00:27:8d:58:ac
inet addr:188.189:34;284 Boog VcrpoAcras Chpaska

usunturius*** If config
emplos Link encousithermet Maddr 08:00:27:8d:58:ac
inet addr:186.200.45;255 Boogs:186.200.55;255 Mask:255.255.0.0

## REMOCAST Institution Will Institution
RX packets:38 errors:0 dropped:0 overruns:0 frame:0
TX packets:38 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:39366 (395.6 kB) TX bytes:391696 (381.6 kB)

## Button:in addr:127.0.0.1 Mask:255.0.0.0

Intel addr:127.0.0.1
```

Рисунок 2 – Связи между виртуальными машинами нет

3. Заменим IP-адрес второй виртуальной машины на 168.189.45.245, чтобы она была в одной подсети с первой виртуальной машиной.

Найдем адрес сети:

168.189.45.245 при маске 255.255.0.0 - 168.189.0.0 адрес сети

10101000.10111101.00101101.11110101

11111111.111111111.00000000.000000000

10101000.10111101.00000000.00000000

Найдем широковещательный адрес:

168.189.45.245 при маске 255.255.0.0 – 168.189.255.255

широковещательный адрес

10101000.10111101.00101101.11110101

00000000.000000000.111111111.111111111

10101000.10111101.111111111.111111111

Две виртуальные машины находятся в одной подсети. Проверим в виртуальных машинах связь между ними. (см. рис. 3)

Рисунок 3 – Между виртуальными машинами есть связь

4. Спроектированная схема сети представлена на рис. 4.

Рисунок 4 – Спроектированная схема сети

Настройки компьютеров в собственных подсетях представлены в табл. 1. Таблица 1 – IP-адреса, маски подсети и шлюзы по умолчанию для компьютеров

Название	IP-адрес (eth0)	Маска подсети	Шлюз по	
			умолчанию	
PCBOSS	188.0.14.5	255.255.254.0	188.0.15.15	
PCBOSS	188.0.15.5	255.255.254.0	188.0.15.15	
(RESERV)				
PCUNDERBOSS	16.0.0.5	240.0.0.0	16.0.0.7	
PCSECRETARY	17.0.0.5	240.0.0.0	16.0.0.7	
PCSITEDEV1	200.200.0.5	255.128.0.0	200.200.0.7	
PCSITEDEV2	200.201.0.5	255.128.0.0	200.200.0.7	
PCGAMEDEV1	170.0.0.5	255.128.0.0	170.3.0.5	
PCGAMEDEV2	170.1.0.5	255.128.0.0	170.3.0.5	

Компьютеры PCBOSS и PCBOSS (RESERV) находятся в сети 188.0.14.0. Компьютеры PCUNDERBOSS и PCSECRETARY находятся в сети 16.0.0.0. Компьютеры PCSITEDEV1 и PCSITEDEV2 находятся в сети 200.128.0.0. Компьютеры PCGAMEDEV1 и PCGAMEDEV2 находятся в сети 170.0.0.0.

Заданные для маршрутизаторов IP-адреса, маски подсети, шлюзы по умолчанию представлены в табл. 2.

Таблица 2 — IP-адреса, маски подсети и шлюзы по умолчанию для маршрутизаторов

Название	IP-адрес	Маска подсети	IP-адрес (eth1)	Маска	Шлюз по
	(eth0)	(eth0)		подсети	умолчанию
				(eth1)	
R1	16.0.0.7	240.0.0.0	10.0.120.1	255.255.254.0	10.0.120.3
R2	188.0.15.15	255.255.254.0	10.0.120.2	255.255.254.0	10.0.120.3
R3	170.2.0.5	255.128.0.0	10.0.120.3	255.255.254.0	170.3.0.5
R4	200.200.0.7	255.128.0.0	170.3.0.5	255.128.0.0	170.2.0.5

Настроим таблицу маршрутизации для R1. (см. рис. 5)

Рисунок 5 — Таблица маршрутизации для R1 Настроим таблицу маршрутизации для R2. (см. рис. 6)

```
Route table

Codes: C - connected, S - static, R - RIP,
B - BGP, O - OSPF, * - candidate default

S 16.0.0.0/240.0.0.0[0] via 10.0.120.1 (eth1)
S* default/0.0.0.0[0] via 10.0.120.3 (eth0)
C 10.0.120.2/255.255.254.0 is directly connected, eth1
C 188.0.15.15/255.255.254.0 is directly connected, eth0
```

Рисунок 6 – Таблица маршрутизации для R2 Настроим таблицу маршрутизации для R3. (см. рис. 7)

Рисунок 7 – Таблица маршрутизации для R3

Выводы.

Таким образом, были созданы и настроены две виртуальные машины, изучена IP-адресация (IPv4), логическое построение локальных сетей. Была настроена связь между двумя виртуальными машинами, спроектирована сеть.