BUDT 730 Data, Models and Decisions

Lecture 19

Decision Tree (2)

Prof. Sujin Kim

Learning Objectives

- Decision Making under Uncertainty
 - Learn the concept of expected monetary value (EMV).
 - Understand the concept of risk preference/attitude
- Decision Tree
 - Understand how to construct a single stage decision tree
 - Learn how probabilities are used in the decision-making process

Decision and Risk Analysis

https://fortune.com/2014/07/15/the-art-of-predicting-business-risks-why-non-experts-do-it-better/

Decision Making under Uncertainty and Risk

- EMV maximization is a rational approach that may produce good outcomes in the long run.
- However, this decision does not take into account the risk of having undesirable outcomes
- Many business decisions are only made once
 - O What if large amounts of money are at stake?
 - Should this change our decision-making approach?
 - Some decision makers sacrifice EMV to reduce risk
- We'll study how to take into account the risk in decision making under uncertainty.

Risk Analysis – Two Approaches

- We can consider two approaches.
- The choice depends on the underlying analytical method/model.
- Risk measure approach:
 - Measure the risk, and make a decision based on the EMV and the risk
 - Widely used in finance and operations management
 - We will take this approach in Simulation Analysis (Ch15)
- Utility function approach:
 - Maximize the expected utility
 - We will take this approach in Decision Tree (Ch6)

What is Risk?

Risk:

- Possibility of loss, or any other negative occurrence
- It occurs since we must make a decision for which the outcome is unknown
 - Decision rules do not eliminate risk!

- Risk measures
 - O Variance (or standard deviation): Var(X), X = return or profit
 - Probability of loss: P(X < 0)
 - Value at Risk (VaR)
 - Expected shortfall, and many others

Risk Attitude (Preference)

- Your risk tolerance expresses your willingness to take risk in your quest for better consequences
- Your risk tolerance depends primarily on how significant you consider the worst case compared to the best case
 - Can you afford to loose all of your retirement savings?
- Attitude towards risk
 - Risk-neutral
 - Risk-averse
 - Risk-seeking

Risk Preference

Risk neutral

- completely insensitive to risk
- only interested in maximizing the EMV

Risk averse

 prefers a lower EMV with no/lower risk rather than a higher EMV with an unknown/higher risk

Risk seeking

- more risky decision is chosen
- prefers a lower EMV with a greater risk rather than no-risk investment with a higher EMV,
- but the probability of achieving high monetary value/return would be high

What is Utility?

- Utility is the capacity of a commodity to satisfy some human want (i.e., happiness)
- Most researchers believe that if certain basic behavioral assumptions hold, people are expected utility maximizers—that is, they choose the alternative with the largest expected utility.

Maximizing Expected Utility

- Rather than maximize EMV, we maximize expected utility (EU), which is the probability weighted average of utilities
- Utility functions transform monetary values—payoffs and costs—into utility values
 - Utility values don't have a specific meaning, but larger values are better, i.e., they
 make an individual happier
 - Typical shapes of utility function include log, and exponential

Risk Attitudes: Utility Function Approach

The curvature of the utility function determines the decision-maker's attitude towards risk

Risk Aversion

- Most individuals are risk averse: common in investment strategies.
- The value of an additional dollar of payoff declines with the level of payoff

Exponential Utility

- Exponential Utility is a most widely used risk averse utility function
- An exponential utility function has the following form:

$$u(x) = 1 - e^{-\frac{x}{R}}$$

- R is called the risk tolerance
- It affects the shape of the exponential curve, making it more or less concave
- The higher the risk tolerance, the less concavity, thus the less risk averse
- It is a unitless quantity

Decision Tree

Single-Stage
Decision Problem

Image Credit: Boo-Tique / Shutterstock.com

Example: Ann's Auto Insurance (Part A)

- Ann has a 1% chance of being in an automobile accident during the year that will cost \$10,000
- She is offered an insurance policy for \$120 (no deductible)
- If Ann is an EMV maximizer, will she purchase the policy?

This is a single stage (one-stage) decision problem: one stage decision is made, right now.

Decision Trees

- A graphical tool called a decision tree has been developed to represent decision problems.
 - It is particularly useful for more complex decision problems
 - It clearly shows the sequence of events (decisions and outcomes), as well as probabilities and monetary values.
 - But, it can handle problems only with finite discrete random variables (limitation of decision tree)

Decision Trees

 Decision trees are composed of nodes (squares, circles, and triangles) and branches (lines).

- Decision node
- Chance (probability) node
- End node

The nodes represent points in time and time proceeds from left to right

Decision Tree Basics

Decision node

- A decision node represents a time when the decision maker makes a decision.
- Each possible decision represented as a branch emanating out of the decision node

Decision Tree Basics

Chance node

- A Chance node represents a time when the result of an uncertain outcome becomes known.
- Each possible outcome is represented as a branch that emanates out of the chance node
- All events must be mutually exclusive (no more than one outcome can occur at a time), and collectively exhaustive (probabilities sum to 1)

Decision Tree Basics

End node

An end node indicates that the problem is completed—all decisions have been made, all
uncertainty has been resolved, and all payoffs and costs have been incurred.

Finding the 'Best' Decision

- The best decision is found using the rollback (folding-back) procedure
- Start at the end and work your way backwards (to the left)
 - For a chance node, compute the EMV using the probabilities and payoffs of each branch
 - For a decision node, choose the branch with the highest EMV

Example: Ann's Auto Insurance Part A - EMV

Example: Ann's Auto Insurance Part A – Risk Averse

Part A

- Ann has a 1% chance of being in an automobile accident during the year that will cost \$10,000
- She is offered an insurance policy for \$120 (no deductible)
- The risk neural decision was "do not buy insurance"
- Suppose Ann's risk attitude is best represented by an exponential utility function with a risk tolerance R = \$10,000. How does this utility model affect Ann's decision?
 - O Note: How to determine the value of R? This is not a trivial question. Based on a market research, the company may estimate it. In this class, we assume that it is given.

Example: Ann's Auto Insurance Part A – Risk Averse $u(x) = 1 - e^{-x/10000}$

In-Class Exercise

New Product Decision at ACME (Example 6-1 in Text)

New Product Decision at ACME

- ACME's cost accountants estimate the monetary inputs: the fixed costs (\$6,000) and the unit margin (\$18).
- The uncertain sales volume is really a continuous variable but, as in many decision problems, Acme has replaced the continuum by three representative possibilities: great (45%), fair (35%) and awful (20%)
- The company estimates that the corresponding sales volumes (in thousands of units sold) are 600, 300, and 90, respectively.
- Each sales volume is multiplied by the unit margin to obtain the net revenues.

New Product Decision at ACME

Q2: Suppose ACME's risk attitude is best represented by an exponential utility function with a risk tolerance R = \$5,000. Compute the EU for each decision. How does this utility model affect ACME's decision?

Next ...

- More on decision tree
 - Precision Tree
 - Sensitivity analysis
 - Multi-stage problem