- > library(multitable)
 > library(lattice)
 > library(tensor)
 > library(MASS)

> ab

sppA sppB sppC siteA 1.17 -0.04 0.85 siteB 0.65 -0.06 -0.37 siteC 0.51 -2.73 1.07 siteD -1.19 2.81 0.17 siteE -0.69 -0.21 0.38 > tp

 > bs

sppA sppB sppC -0.45 -0.07 1.48

```
> dl <- data.list(abundance = ab, temperature = tp, bodysize = bs, dnames = c("sites",
     "species"))
> d1
abundance:
_____
     sppA sppB sppC
siteA 1.17 -0.04 0.85
siteB 0.65 -0.06 -0.37
siteC 0.51 -2.73 1.07
siteD -1.19 2.81 0.17
siteE -0.69 -0.21 0.38
Replicated along: || sites || species ||
temperature:
siteA siteB siteC siteD siteE
-1.04 0.77 0.82 -0.38 -0.06
Replicated along: || sites ||
bodysize:
sppA sppB sppC
-0.45 -0.07 1.48
Replicated along: || species ||
REPLICATION DIMENSIONS:
 sites species
     5
```

> summary(dl)

\$dims

species

TRUE

FALSE

TRUE

\$modes

abundance temperature bodysize "numeric" "numeric" "numeric"

> str(d1)

List of 3

\$ abundance : num [1:5, 1:3] 1.17 0.65 0.51 -1.19 -0.69 -0.04 -0.06 -2.73 2.81 -0.21 ...

\$ temperature: num [1:5(1d)] -1.04 0.77 0.82 -0.38 -0.06

\$ bodysize : num [1:3(1d)] -0.45 -0.07 1.48

```
> d1[1:3, ]
abundance:
-----
     sppA sppB sppC
siteA 1.17 -0.04 0.85
siteB 0.65 -0.06 -0.37
siteC 0.51 -2.73 1.07
Replicated along: || sites || species ||
temperature:
-----
siteA siteB siteC
-1.04 0.77 0.82
Replicated along: || sites ||
bodysize:
-----
sppA sppB sppC
-0.45 -0.07 1.48
Replicated along: || species ||
REPLICATION DIMENSIONS:
```

sites species 3

3

```
> dl[, "sppB"]
abundance:
-----
      sppB
siteA - 0.04
siteB -0.06
siteC - 2.73
siteD 2.81
siteE -0.21
Replicated along: || sites || species ||
temperature:
-----
siteA siteB siteC siteD siteE
-1.04 0.77 0.82 -0.38 -0.06
Replicated along: || sites ||
bodysize:
sppB
-0.07
Replicated along: || species ||
REPLICATION DIMENSIONS:
 sites species
     5
```

```
> dl$temperature <- scale(dl$temperature)</pre>
> d1
abundance:
-----
      sppA sppB sppC
siteA 1.17 -0.04 0.85
siteB 0.65 -0.06 -0.37
siteC 0.51 -2.73 1.07
siteD -1.19 2.81 0.17
siteE -0.69 -0.21 0.38
Replicated along: || sites || species ||
temperature:
-----
           siteB siteC siteD
    {	t site A}
                                                siteE
-1.3453605 \quad 0.9475797 \quad 1.0109206 \ -0.5092608 \ -0.1038791
attr(,"scaled:center")
[1] 0.022
attr(,"scaled:scale")
[1] 0.7893795
Replicated along: || sites ||
bodysize:
_____
sppA sppB sppC
-0.45 -0.07 1.48
Replicated along: || species ||
REPLICATION DIMENSIONS:
  sites species
     5
```

> lm(abundance ~ temperature * bodysize, dl)

Call:

lm(formula = abundance ~ temperature * bodysize, data = dl)

Coefficients:

 (Intercept)
 temperature
 bodysize
 temperature:bodysize

 0.08795
 -0.40439
 0.20848
 0.09822

> rlm(abundance ~ temperature * bodysize, dl)

Call:

rlm(formula = abundance ~ temperature * bodysize, data = dl)
Converged in 5 iterations

Coefficients:

 (Intercept)
 temperature
 bodysize temperature:bodysize

 0.08346409
 -0.22734601
 0.21060731
 0.01419073

Degrees of freedom: 15 total; 11 residual

Scale estimate: 1.04

> as.data.frame(d1)

	${\tt abundance}$	temperature	bodysize
1	1.17	-1.3453605	-0.45
2	0.65	0.9475797	-0.45
3	0.51	1.0109206	-0.45
4	-1.19	-0.5092608	-0.45
5	-0.69	-0.1038791	-0.45
6	-0.04	-1.3453605	-0.07
7	-0.06	0.9475797	-0.07
8	-2.73	1.0109206	-0.07
9	2.81	-0.5092608	-0.07
10	-0.21	-0.1038791	-0.07
11	0.85	-1.3453605	1.48
12	-0.37	0.9475797	1.48
13	1.07	1.0109206	1.48
14	0.17	-0.5092608	1.48
15	0.38	-0.1038791	1.48

> variablize(dl)

	$\verb"abundance.sppA"$	$\verb"abundance.sppB"$	$\verb"abundance.sppC"$	temperature
${\tt siteA}$	1.17	-0.04	0.85	-1.3453605
${\tt siteB}$	0.65	-0.06	-0.37	0.9475797
${\tt siteC}$	0.51	-2.73	1.07	1.0109206
${\tt siteD}$	-1.19	2.81	0.17	-0.5092608
siteE	-0.69	-0.21	0.38	-0.1038791

> variablize(aperm(d1, c(2, 1)))

	$\verb"abundance.site" A$	$\verb"abundance.siteB"$	abundance.siteC	$\verb"abundance.siteD"$	$\verb"abundance.siteE"$	bodysize
sppA	1.17	0.65	0.51	-1.19	-0.69	-0.45
sppB	-0.04	-0.06	-2.73	2.81	-0.21	-0.07
sppC	0.85	-0.37	1.07	0.17	0.38	1.48

> xyplot(abundance ~ temperature | bodysize, data = as.data.frame(dl))

quartz 2 > d1 <- data.list(Abundance = Y, X, W, Z, dnames = c("time", "species", "basin"))

> summary(dl)

Α 1	٠		
\$d	п	m	c
Ψα	_	ш	·

	Abundance Temp.C	VFluoro. Chl.CV	.Fluoro	. Max	ΓempFl.	MaxChlFl.	Depth.TempMa	ax.Fl.
time	TRUE	TRUE	TRU	E	TRUE	TRUE		TRUE
species	TRUE	FALSE	FALS	E	FALSE	FALSE		FALSE
basin	TRUE	TRUE	TRUI	E	TRUE	TRUE		TRUE
	DepthChlMaxFl.	Thermocline.Depth	Year	Week	Habitat	TrophicGroup	FeedingType	Length
time	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE
species	FALSE	FALSI	FALSE 1	FALSE	TRUE	TRUE	TRUE	TRUE
basin	TRUE	TRUF	FALSE 1	FALSE	FALSE	FALSE	FALSE	FALSE

Predator.protection. FALSE TRUE species basin FALSE

\$modes

time

Abundance	Temp.CVFluoro.	Chl.CVFluoro.	MaxTempFl.
"numeric"	"numeric"	"numeric"	"numeric"
MaxChlFl.	<pre>Depth.TempMax.Fl.</pre>	DepthChlMaxFl.	Thermocline.Depth
"numeric"	"numeric"	"numeric"	"numeric"
Year	Week	Habitat	TrophicGroup
"numeric"	"numeric"	"numeric"	"numeric"
FeedingType	Length	Predator.protection.	
"numeric"	"numeric"	"numeric"	

> str(dl)

```
List of 15
                     : num [1:16, 1:12, 1:3] 0.00134 0.00269 0.00361 0.00134 0.00226 ...
$ Abundance
                     : num [1:16, 1:3] 0.56 0.52 0.42 0.39 0.41 0.57 0.48 0.48 0.44 0.4 ...
$ Temp.CV..Fluoro.
$ Chl.CV..Fluoro.
                     : num [1:16, 1:3] 0.92 0.94 1.04 1.05 0.82 0.92 0.79 0.79 0.27 0.27 ...
$ MaxTemp..Fl.
                     : num [1:16, 1:3] 23.8 21.1 22.9 26.5 22.8 ...
$ MaxChl..Fl.
                     : num [1:16, 1:3] 5.49 4.86 6.21 6.94 7.07 6.82 3.58 6.7 2.43 1.84 ...
$ Depth.TempMax.Fl.
                     : num [1:16, 1:3] 0 1 2 0 1 1 0 1 1 0 ...
                     : num [1:16, 1:3] 5 4 7 6 5 8 5 6 5 5 ...
$ DepthChlMax..Fl.
$ Thermocline.Depth
                     : num [1:16, 1:3] 4.5 4.5 4.5 4.5 4.5 4.5 3.5 3.5 4 4.5 ...
$ Year
                     $ Week
                     : int [1:16(1d)] 171 185 199 213 227 241 178 188 205 219 ...
$ Habitat
                     : factor [1:12(1d)] Pelagic Pelagic Pelagic Pelagic ...
                     : factor [1:12(1d)] Herbivore Herbivore Herbivore Herbivore ...
$ TrophicGroup
$ FeedingType
                     : factor [1:12(1d)] D-filtration D-filtration B-filtration S-filtration ...
                     : num [1:12(1d)] 0.96 0.8 0.33 0.77 0.75 1.23 0.18 1.31 0.45 0.36 ...
 $ Length
 $ Predator.protection.: factor [1:12(1d)] N Y N Y ...
```

> xyplot(Abundance ~ Chl.CV..Fluoro. | Length, data = as.data.frame(dl))


```
> pdf("/users/stevenwalker/documents/multitable/multitable/presentations/ESA2011/sweave-026.pdf")
> xyplot(Abundance ~ Chl.CV..Fluoro. | Length, data = as.data.frame(dl))
> dev.off()
```

quartz

2