

Course on Atomic Structure for Class XI

Varial of
$$R(r)$$
 with $r: \rightarrow R(r) = c \frac{1}{q^{3/2}} \cdot o^{-1} \cdot e^{-\sigma/2} \left(equation of r' \right)$

$$\sigma = \frac{2\pi}{\eta}$$

$$\frac{\left[\left(r\right)_{15}}{2} = \frac{2}{\alpha^{3/2}} \cdot e^{-r/\alpha_0}$$

$$5 = \frac{2\lambda}{a_0} \qquad \frac{N-\ell-1}{1-0-1} = \mathbf{0}$$

$$\frac{R(r)_{2S}}{-\frac{1}{2\sqrt{2}}} = \frac{1}{2\sqrt{2}} \frac{1}{\sqrt{3}/2} e^{-\sigma/2} (2-\sigma)$$

$$= \frac{1}{2\sqrt{2}} \frac{1}{\sqrt{3}/2} e^{-8/2as} (2-\frac{r}{as})$$

$$R(r)_{3S} = \frac{c}{\sqrt{3}/2} e^{-\sigma/2} \left(\text{Auadratic} \right)$$

$$R(r)_{4S} = \frac{c}{\sqrt{3}/2} e^{-\sigma/2} \left(\text{Cubic al} \right)$$

5 = 2 Uo

2-0-|=1

$$R(r)_{3d} = C \frac{1}{3^{1/2}} \sigma^{2} e^{-\sigma/2} (1)$$

$$R(r)_{4d} = C \frac{1}{3^{3/2}} \sigma^{2} e^{-\sigma/2} (linear)$$

39,40,5f 2P, 3d, 4f neglisille

Anti vode no de 45. The graph between $|\psi|^2$ and r(radial distance) is shown below. This represents:

(1) 1s orbital

[JEE Main (April) 2019]

(4) 2p orbital

None

$$\frac{1}{9\sqrt{3}} \left(\frac{z}{a_0}\right)^{3/2} (6-6\sigma+\sigma^2)e^{-\sigma/2}$$

7. The correct statement about probability density (except at infinite distance from nucleus) is:

[Atomic Structure]

[Jee-Mains (Sep) 2020]

- (1) It can negative for 2p orbital
- (3) It can never be zero for 2s orbital

- (2) It can be zero for 1s orbital
- (4) It can be zero for 3p orbital

8. A certain orbital has n = 4 and $m_L = -3$. The number of radial nodes in this orbital is _____. (Round off to the Nearest Integer)

[JEE Main 17, March 21 (Shift-1)]

5. (a) The Schrodinger wave equation for hydrogen atom is

[IIT-2004]

B 35 2P 3P

Where a₀ is Bohr's radius. Let the radial node in 2s be at r₀. Then find r₀ in terms of a₀.

$$= \frac{1}{9\sqrt{30}} \left(\frac{z}{a_0}\right)^{3/2} \sigma^2 e^{-\sigma/2}$$

$$\int_{-1}^{\sqrt{-2-1-1}} \frac{3d}{\sqrt{-2-1-1}} \frac{3d}{\sqrt{-2-1-1-1}} \frac{3d}{\sqrt{-2-1-1-1-1}} \frac{3d}{\sqrt{-2-1-1-1}} \frac{3d}{\sqrt{-2-1-1-1}} \frac{3d}{\sqrt{-2-1-1-1-1}} \frac{3d}{\sqrt{-2-1-1-1-1}} \frac{3d}{\sqrt{-2-1-1-1-1-1}} \frac{3d}{\sqrt{-2-1-1-1-1}} \frac{3d}{\sqrt{-2-1-1-1-1}} \frac{3d}{\sqrt{-2-1-1-1-1$$

8 • Asked by Arnavgupta

SIR YE RHA DIAGRAM

▲ 11 • Asked by Aaditya Ag...

sir agar iske mathematical part ko alag rakh de toh iska theoritical explanation kya hoga spherical node ka ??

y = c-x

 $\sqrt{-2\pi}$

Y- n En

$$\chi^{2} - 1 = 0$$
 $\chi^{2} - \chi - 2 = 0$
 $\chi^{3} - 3 = 0$

5 · Asked by Shreya
Please help me with this doubt

23 • Asked by Raviraj

Ncert saste mein niptaa Diya,, aapne sahi bola tha

will learn its solutions for different systems in usics higher classes. For a system (such as an atom or a model. molecule whose energy does not change with model time) the Schrödinger equation is written as to the $\hat{H}\Psi = E\Psi$ where \hat{H} is a mathematical operator could called Hamiltonian. Schrödinger gave a recipe er and of constructing this operator from the tainty expression for the total energy of the system. ent of The total energy of the system takes into account the kinetic energies of all the sub-EL OF atomic particles (electrons, nuclei), attractive potential between the electrons and nuclei and repulsive potential among the electrons and 's laws nuclei individually. Solution of this equation motion falling REDMINOTES PRO and W. wave MI DUALICAMER ogen Atom and the Schrödinger

▲ 19 • Asked by Aaditya Ag...

Commerce wale friend ka reaction on Schrodinger's equation

unacademy	
▲ 5 • Asked by Rachit	
Sir yeh dekhiye xddd saaf im	age
4.1 The Hamiltonian and the Schrödinger Equation 1	113
$\hat{U}(t) = \lim_{N \to \infty} \left[1 - \frac{i}{\hbar} \hat{H} \left(\frac{t}{N} \right) \right]^N = e^{-i\hat{H}t/\hbar}$ (4.	1.9)
$N \to \infty$ [$N \setminus N $	
$ \psi(t)\rangle = e^{-i\hat{H}t/\hbar} \psi(0)\rangle \tag{4.1}$	10)
Thus in order to solve the equation of motion in quantum mechanics when \hat{H} is ting independent, all we need is to know the initial state of the system $ \psi(0)\rangle$ and to able to work out the action of the operator (4.9) on this state. What is the physical significance of the operator \hat{H} ? Like the generator rotations, \hat{H} is a Hermitian operator. From (4.4) we see that the dimensions of are those of Planck's constant divided by time—namely, energy. In addition, where \hat{H} itself is time independent, the expectation value of the observable to which the operator \hat{H} corresponds is also independent of time:	be of H
$\langle \psi(t) \hat{H} \psi(t)\rangle = \langle \psi(0) \hat{U}^{\dagger}(t)\hat{H}\hat{U}(t) \psi(0)\rangle = \langle \psi(0) \hat{H} \psi(0)\rangle (4.1)$	
since \hat{H} commutes with \hat{U} . All of these things suggest that we identify \hat{H} as the energy operator, known as the Hamiltonian . Therefore	the control of the co
$\langle E \rangle = \langle \psi \hat{H} \psi \rangle$ (4.1)	12)
The eigenstates of the Hamiltonian, which are the energy eigenstates satisfying.	
$\hat{H} E\rangle = E E\rangle$ (4.1 play a special role in quantum mechanics. The action of the time-evolution operator	ator
$\hat{U}(t)$ on these states is easy to determine using the Taylor series for the exponenti $e^{-i\hat{H}t/\hbar} E\rangle = \left[1 - \frac{i\hat{H}t}{\hbar} + \frac{1}{2!}\left(-\frac{i\hat{H}t}{\hbar}\right)^2 + \cdots\right] E\rangle$ $= \left[1 - \frac{iEt}{\hbar} + \frac{1}{2!}\left(-\frac{iEt}{\hbar}\right)^2 + \cdots\right] E\rangle = e^{-iEt/\hbar} E\rangle (4.1)$	
The operator \hat{H} in the exponent can simply be replaced by the energy eigenval when the time-evolution operator acts on an eigenstate of the Hamiltonian. Thus the initial state of the system is an energy eigenstate, $ \psi(0)\rangle = E\rangle$, then	
$ \psi(t)\rangle = e^{-i\hat{H}t/\hbar} E\rangle = e^{-iEt/\hbar} E\rangle$ (4.1)	15)
To establish that \hat{H} commutes with \hat{U} , use the Taylor-series expansion for \hat{U}_s as in (4.14)	

7 · Asked by Kavya

Models ka evolution

9 • Asked by Dhruv

Pls confirm this sir

functions pertaining to one-electron species are called one-electron systems. The probability of finding an electron at a point within an atom is proportional to the $|\psi|^2$ at that point. The quantum mechanical results

sir yahan pa bhi zie square dv ana chaiya na 42dV

▲ 10 • Asked by Ritik

Sir why it has used this equation for photon but it is applicable for electron only

