H18T1A4

In dieser Aufgabe bezeichne $H:=\{z\in\mathbb{C}\mid \mathrm{Im}(z)>0\}$ die obere Halbebene und $S:=\{z\in\mathbb{C}\mid 0<\mathrm{Re}(z)<1\}$ einen Streifen in $\mathbb{C}.$

- a) Gib (mit Begründung) eine holomorphe, bijektive Abbildung $g:S\to H$ an.
- b) Bestimme eine holomorphe bijektive Funktion $f: S \to S$ mit $f\left(\frac{1}{2}\right) = \frac{1}{4}$

Zu a):

Betrachte für den Streifen $S' = \{z \in \mathbb{C} \mid 0 < \operatorname{Im}(z) < \pi\}$ die beiden Funktionen

Deren Komposition $g: S \to H \\ z \mapsto e^{i\pi z}$ ist dann eine holomorphe, bijektive Abbildung:

Wir zeigen zuerst q(S) = H.

Für $s = x + iy \in S$ ist $g(s) = e^{i\pi s} = e^{i\pi x} \cdot e^{-\pi y}$ und damit $\text{Im}(g(s)) = \sin(\pi x) \cdot e^{-\pi y} > 0$, da nach Voraussetzung $x \in]0,1[$; daher ist $g(S) \subseteq H$.

Ist andererseits $h \in H$ vorgegeben, so schreibe $h = re^{i\varphi}$ in Polarkoordinaten $(r,\varphi) \in [0,\infty[\times[0,2\pi[$.

Als Element der oberen Halbebene weist h positiven Imaginärteil $\mathrm{Im}(h) = r \cdot \sin \varphi$ auf, also ist $\varphi \in]0, \pi[$. Damit ist $s := \frac{\varphi}{\pi} - \frac{i}{\pi} \ln(r)$ ein Element des Streifens S mit $g(s) = e^{i\pi s} = e^{\ln(r) + i\varphi} = h$, es folgt g(S) = H.

Zum Nachweis der Injektivität nehmen wir g(s)=g(s') für $s=x+iy,s'=x'+iy'\in S$ an.

Dies ist äquivalent zu $1 = e^{i\pi(s-s')} = e^{i\pi(x-x')} \cdot e^{-\pi(y-y')}$ und damit y = y' und $x = x' + 2\pi k, k \in \mathbb{Z}$. Da der Streifen S nur Realteile zwischen 0 und 1 zulässt, folgt schließlich x = x' und hieraus s = s'. Insgesamt ist $g: S \to H$ also eine bijektive Abbildung, die als Verkettung holomorpher Funktionen holomorph istwie gewünscht.

Zu b):

Wir bemerken $g\left(\frac{1}{2}\right)=e^{i\frac{\pi}{2}}=i$ und $g\left(\frac{1}{4}\right)=e^{i\frac{\pi}{4}}=\frac{1+i}{\sqrt{2}}$ und definieren daher $h:\ H\to H$ $z\mapsto \frac{1\cdot z+1}{0\cdot z+\sqrt{2}}=\frac{z+1}{\sqrt{2}}$

Bei h handelt es sich um eine Möbiustransformation, die wegen det $\begin{pmatrix} 1 & 1 \\ 0 & \sqrt{2} \end{pmatrix} = \sqrt{2} > 0$ und des Isomorphismus' $\operatorname{Aut}(\mathbb{H}) \cong \operatorname{SL}_2(\mathbb{R})$ eine holomorphe Selbstabbildung der oberen Halbebene darstellt. [Wenn man das nicht weiß, kann man dies auch analog wie in a) nachrechnen.]

Definiere schlussendlich
$$f: S \rightarrow S$$

 $z \mapsto (g^{-1} \circ h \circ g)(z)$.

Als Verkettung holomorpher, bijektiver Abbildungen ist f auch holomorph; g^{-1} ist dabei als Umkehrfunktion einer holomorphen, bijektiven Funktion wieder holomorph - dies ist eine Konsequenz aus dem Umkehrsatz.

Zur Sicherheit geben wir f noch explizit an. Hierzu stellen wir zunächst fest, dass die Umkehrfunktion von g durch $g^{-1}(z) = \frac{1}{i\pi} \text{Log}(z)$ gegeben ist, wobei Log den Hauptzweig des komplexen Logarithmus bezeichne. Es folgt:

$$f(z) = \frac{1}{i\pi} \operatorname{Log}\left(\frac{e^{i\pi z} + 1}{\sqrt{2}}\right)$$
 und
$$f\left(\frac{1}{2}\right) = \frac{1}{i\pi} \operatorname{Log}\left(\frac{e^{i\pi/2} + 1}{\sqrt{2}}\right) = \frac{1}{i\pi} \operatorname{Log}\left(\frac{i + 1}{\sqrt{2}}\right) = \frac{\operatorname{Log}\left(e^{i\pi/4}\right)}{i\pi} = \frac{\left(\ln(1) + i\frac{\pi}{4}\right)}{i\pi} = \frac{1}{4}.$$