

فصل دوم

معماری اجمالی یک سیستم فرضی مبتنی بر ریزپردازنده،

ریزپردازنده ۱ محمد مهدی همایون پور

سرفصل مطالب

- بلوک دیاگرام یک ریزپردازنده فرضی
 - واکشی و اجرای دستورالعمل
 - پرچمها
- انواع سیکلهای باس (سیکل ماشین)

بلوک دیاگرام یک ریزپردازنده فرضی

محمد مهدی همایون پور

بعضی از پرچمها در ۸۰۸۶

نام	عملكرد	
پرچم		
CF	پرچم Carry: اگر بر بیت پر ارزش نتیجه، Carry <mark>یا Borrow</mark> اتفاق افتد، این پرچم 1 شده و در غیر اینصورت 0 خواهد بود.	
	عير اينصورت و حواهد بود.	
PF	پرچم Parity: این پرچم 1 می شود اگر تعداد بیتهای ۱ در بیتهای نتیجه، <mark>زوج</mark> باشد. در غیر	
	اینصورت 0 میشود.	
AF	اگر از چهار بیتِ کم ارزش Carry ،AL یا Borrow اتفاق افتد، مقدار این پرچم برابر 1 و گرنه 0	
	می شود.	
ZF	پرچم Zero: اگر نتیجه صفر باشد، این پرچم 1 و گرنه 0 می شود	
SF	پرچم Sign: این پرچم مقدار پرارزش ترین بیت نتیجه را می گیرد. (بیت علامت)	
IF	پرچم Interrupt-enable: وقتی این پرچم <mark>1</mark> شود، وقفه های قابل mask شدن باعث می شوند که CPU، <mark>کنترل برنامه را به مکان بردار وقفه منتقل کند</mark> .	

انواع سیکلهای باس (سیکل ماشین)

آجرای یک دستورالعمل با اجرای یک یا چند سیکل باس صورت میگیرد.

انواع سیکلهای باس

- سیکل خواندن از حافظه (MR)
- سیکل نوشتن در حافظه (MW)
 - سیکل خواندن از I/O (IOR)
- سیکل نوشتن در I/O (IOW)

is op cade /sils cly memony Read yeur is silver

• سیکل باس بیکار (ldle) (عملیات داخل CPU انجام می شود که نیازی به دسترسی به باس ندارد)

INC AX

Bus cycles: MR (Opcode read)

MOV AX, [SI] ; AX \leftarrow [SI] Machine code: 8B 04

Bus cycles: MR (Opcode read), MR (Reading the content of SI location in memory)

MOV[SI], AX; $[SI] \leftarrow AX$

Bus cycles: MR (Opcode read), MW (Writing AX in the SI memory location)

He

IN AH, 50H ; AH \leftarrow Content of Port 50H

Bus cycles: MR (Opcode read), IOR (Reading the content of port No. 50H)

MR (Reading 50 H as an address)

OUT 50H, AH ; Port $50H \leftarrow AH$

Bus cycles: MR (Opcode read), IOW (Writing AH in the port No. 50H)

MR (Reading 50 H as an address)

INC BYTE PTR[SI]

فرمت یک دستورالعمل در زبان اسمبل*ی*

Label: Instruction operands ;Comments

Instruction: کد حفظی (mnemonic) دستورالعمل مورد نظر. مثل NOP ،INC ،ADD و مانند آن بیان آبری دهیم گریترانیم به آن

Operands: عملوندها که می تواند هیچ، یک یا دو عملوند که می تواند یک داده بلافصل، یک ثبات، آدرس داده مورد نظر در حافظه، یک آدرس در حافظه، شماره یک پورت و مانند آن باشد.

Comments: توضيحات دستورالعمل که بايد بعد از ; بيايد.

شبه دستورالعملها مانند ORG ،EQU ،DB و

ORG 1000H

EQU Value 10H

MOV AH, 23H;

MOV CX, Value

LoopBegin: NOP

MOV AX, [SI]

(هير کار زيرن اي رهد) INC SI:

OUT 50H, AX ومترقبين كم جعام ورتغيرواده

JNZ LoopBegin

DEC CX - التعييري لحامة ; Decrement CX

IAH wahe in Constant in Live

; Fill AX with and Immediate value;

; CX is used as a counter

; No operation, An Instruction with no operand

; Transfer data from address in memory indicated by [SI] to AX / Register indirect addressing made

: Increment SI

; Transfer AX to output port (port address: 50H) / Di rect addressing

; Jump if Z flag is not set

Jump non zero

معرفي چند شبهدستورالعمل

	شبه دستوراالعمل	توضيحات
<i>bу</i> не	ORG Address	مشخص کننده آدرس قرارگیری کد در حافظه
	EQU Define Duble word	یک شناسه را به یک مقدار ثابت منتسب میکند
	DB, DW, DD, DQ, DT	رزرو فضا در حافظه برای متغیرها و و مقداردهی آنها
	.model	مدل حافظه: اندازه حافظه برنامه و داده
	.data .code .extra .stack	مشخص کردن سگمنت مورد نظر
	.stack size	مشخص کردن حجم پشته

مثال:

.model memory_model

(در درس کاری باهاش سایم ش)

memory_model انواع

tiny: code+data <= 64K (.com program) small: code<=64K, data<=64K, one of each medium: data<=64K, one data segment compact: code<=64K, one code segment large: multiple code and data segments huge: allows individual arrays to exceed 64K

flat: no segments, 32-bit addresses, protected mode only (80386 and higher)

معرفي چند شبه دستورالعمل (ادامه)

مثال:

```
;Note: EQUated symbols are not variables
```

Count EQU 10 Element EQU 5

MyString EQU "Maze of twisty passages"

مثال

- ; Names can be associated with storage locations, These names are called variables.
- ; DB, DW, DD, DQ and DT are used for reserving space in memory for variables
- ; Word, doubleword, and quadword data are stored in reverse byte order (in memory)

- dara - (8086) y (8086) Tulbyte so ward بایرین درحانظه راری در DB 255,?,-128,'X' ; ? represents an uninitialized storage location ك ASCIL كر الماكية الماكية خانه حافظ خال ر منفی کور در منفی کور در در منفی کاریم بیش در منفی کور در منفی کاریم بیش در منفی کور در رتم های براوش بالاتر قراری کرید م videoBase DW 0800h → word & ___ MyWord DW 256 ; 00 01 1111 1111 ; 67 45 23 01 MyDoubleWord DD 1234567h MyQuadWord DO 10 ; 0A 00 00 00 00 00 00 00 ~ aTOm DB "ABCDEFGHIJKLM" ; Asccii of characters are used 13 ون م 3 بایت و Ascer دخیره م اثرد ترس ذخيره شن حريف از چپ به راست ـــه 00 00 00 00 00 00 00 A

معرفي چند شبهدستورالعمل (ادامه)

مثال:

The above names are variables:

ANum refers to a byte storage location, initialized to FCh=-4D The next word has no associated name ONE and UNO refer to the same word X is an uninitialized doubleword

نمونهای از پایههای یک ریزپردازنده (۸۰۸۶)

شکل ۴