

Computer Architecture

Hossein Asadi
Department of Computer Engineering
Sharif University of Technology
asadi@sharif.edu

Today's Topics

- Syllabus & Objectives
- Textbook
- Assignments
- Class Policy
- Reminder from "Logic Design" & "CSL" Course
- Introduction to Computer
 Architecture

Course Introduction

- · Instructor: Hossein Asadi
- Classes
 - Sat & Mon: 9:00AM~10:30AM
 - Attend class on time
- Office Hours
 - Sun. 10:30AM~12:00AM
 - Sun. 4:30PM~6:00PM
 - Wed. afternoons with appointment only
 - Room # 610
 - TAs Classes
 - Tuesdays 12:15~1:15PM, Location: 101
 Sharif University of Technology, Spring 2019

Course Introduction (cont.)

- · Course Webpage on CW
 - Check this webpage on regular basis
 - · At least on Sun, Tue, Thur
 - · Q&A only using CW forums
 - Everything will be posted on CW
 - Announcements, handouts, assignments, grades, quiz and exam notices, simulators, ...
 - Handouts
 - Will be posted a day before class
 - Print it & bring it to class
 - But I may update it a day after class

Copyright Notice

- · Parts (text & figs) of lectures adopted from
 - Computer Organization & Design, The Hardware/Software Interface, 4th Edition, by D. Patterson and J. Hennessey, MK publishing, 2012.
 - "Intro to Computer Architecture" handouts, by Prof. Hoe, CMU, Spring 2009.
 - "Computer Architecture & Engineering" handouts, by Prof. Kubiatowicz, UC Berkeley, Spring 2004.
 - "Intro to Computer Architecture" handouts, by Prof. Hoe, UWisc, Spring 2019.
 - "Computer Arch I" handouts, by Prof. Garzarán, UIUC, Spring 2009.
 Lecture 1 Sharif University of Technology, Spring 2019

Few Notes on Assignments

- · Post All your Questions on CW Forums
 - Check forum history before posting any question
- Be Respectful to your Classmates and TAs
- Harsh Cheating Penalty

Course Introduction (cont.)

- · Course Webpage
 - Sharif CW webpage, http://cw.sharif.edu
 - Make sure to have an account on CW
 - Check this webpage on regular basis
 - · At least on Sun, Tue, Thur
 - Everything will be posted online
 - · Announcements, assignments, and toolsets
 - Handouts (in pdfs)
 - Print it & bring it to class
 - · I may update it a day after class
 - Check out submission date of handouts
 Lecture 1 Sharif University of Technology, Spring 2019

Course Introduction (cont.)

- Textbook
 - Computer Organization & Design, The Hardware/Software Interface, 4th Edition, by D. Patterson and J. Hennessey, MK publishing, 2012.

Syllabus

Review

- Combinational & sequential logic design
- Design abstractions
- Computer/CPU history
- Computer organization
- Addressing modes
- Instruction Set Architecture (ISA)

Number Representation

- Fixed-point
- IEEE 754 Floating-point standard
 - Single precision and double precision

Syllabus (cont.)

- · Performance Evaluation
 - Performance
 - Important factors in performance
 - Benchmarks
- · Data-Path and Control-Path Design
 - Register Transfer Logic (RTL)
 - Data-path components
 - Control unit design and hardwired controller
 - MIPS data-path
 - Interrupt and I/O polling

Syllabus (cont.)

- Micro-Programmed Controller
 - Pros & cons compared to hardwired
- Multi-Cycle Architecture
- · Introduction to Pipeline Architecture
- I/O Approaches
 - I/O handshaking
- Introduction to Multi-Core Systems
- Introduction to Parallel Computing

Syllabus (cont.)

- Memory System
 - Types of memory
 - Memory hierarchy
 - Cache memory and cache configurations
- Arithmetic Algorithms
 - Addition, subtraction, multiplication, division
 - Arithmetic architectures
 - Booth and array multiplication

Objective

- Understand Basic Architecture of CPUs
- Be Able to Evaluate and Analyze
 Performance of Different Processors
 - Using simulation tools
- · Understand Arithmetic Algorithms
- Understand Memory Hierarchy
 - And its impact on overall performance
- Understand Basics of Pipelining and Multi-Cores Systems

Objective (cont.)

- By the end of semester, you should be able to answer these questions:
 - What is functionality of main components of a processor?
 - Why standard benchmarks used for performance evaluation?
 - What are pros and cons of single-cycle, multi-cycle, and pipelined data-paths?
 - Difference between micro-programmed controller and hardwired controller?

Objective (cont.)

- By the end of semester, you should be able to answer these questions:
 - Tradeoffs of small vs. large L1 caches?
 - How many levels in a cache hierarchy?
 - What are pros and cons of directmapped, set-associative, and fullyassociative cache configurations?
 - What are pros and cons of different adder implementations (RC, CSA, CLA)?
 - Ripple-carry, carry-select, carry look-ahead adder

Grading

- Midterm Exam: 25%
 - Farvardin 24th
- Final Exam: 30% (date posted in EDU)
- · Quiz (1&2): 15%
 - First quiz: Esfand 20th
 - Second quiz: Ordibehesht 21st
 - Up to three additional unscheduled quizzes
- · Assignments & Project: 30%
 - Bonus points for outstanding projects

Exams: Topics of this Class and TA Classes

Lecture 1

Class Policy

- · Ask Questions Anytime
 - Don't hesitate to ask even stupid questions!!!
- Cell Phones Off or on Silent
- Absence
 - Only three sessions allowed
- Food No, Drink yes!
- Feel Free to Pass Me Your Feedbacks
 - Anything related to this course

Assignments

- 10~12 Assignments
 - 5~6 analytical assignments
 - 5~6 design & simulation assignments
 - Altera Quartus toolset ©
 - · SimpleScalar toolset ©
 - Spend enough time on assignments as they will be covered in midterm and final exams

Assignments (cont.)

- Assignment Policy
 - Two late assignments will be accepted!
 - Only two days late!
 - Third late assignment (two-day late)
 - HW will be graded out of 50%
 - Forth and next late assignments will not be accepted!
 - Discussions encouraged!
 - But do your own handwriting!
 - Zero score for copied assignments!
 - · Second time zero score for 30% share!

What You Learned So Far

- Logic Design
 - Simple logical & arithmetic logic design
 - Addition and subtraction units
 - Multiplexer and tri-state buffer
 - Latch and flip-flop
 - · Sequential logic, registers, shifters, counters
- · Computer Structure & Language
 - Computer organization
 - Instruction Set Architecture (ISA)
 - Assembly programming
 - Now "Computer Architecture"
 - What is "Computer Architecture"?

 Sharif University of Technology, Spring 2019

Reminder: Computer Systems

- A computer system consists of hardware and software that are combined to provide a tool to solve problems (with best performance)
 - Hardware may include:
 - CPU, memory, disks, printers, screen, keyboard, mouse, ...
 - Software may include:
 - System software
 - A general environment to create specific applications
 - Application software
 - A tool to solve a specific problem
 Lecture 1 Sharif University of Technology, Spring 2019

Reminder: Computer Organization

- · Computer Components
 - Input, output, memory, control unit, & datapath

Reminder: ISA

- Instruction Set Architecture (ISA)
 - A set of instructions used by a machine to run programs
 - Interface between hardware & software
 - Provides an abstraction of hardware implementation
 - Hardware implementation decides what and how instructions are implemented
 - ISA specifies
 - Instructions, Registers, Memory access, Input/output

Reminder: ISA (cont.)

- Key ISA Decisions
 - Instruction length?
 - How many registers?
 - Where operands reside?
 - · Which instructions can access memory?
 - Instruction format?
 - Operand format?
 - How many? How big?

Reminder: ISA (cont.)

ISA Classes

Code sequence for C = A + B

<u>Stack</u>	<u>Accumulator</u>	Register-Memory	<u>Load-Store</u>
Push A	Load A	Add C, A, B	Load R1,A
Push B	Add B		Load R2,B
Add	Store C		Add R3,R1,R2
Pop C			Store C,R3

Reminder: Addressing Modes

Addressing Modes

- Immediate addressing
- Register addressing
- Base or displacement addressing
- PC-relative addressing
- Pseudo-direct addressing
- Register indirect
- Direct
- Memory indirect
- Scaled
- Auto-increment / Auto-decrement
- Indexed

Computer Systems Abstractions

Applications

Compilers

Operating System (OS)

Architecture (ISA)

Micro-architecture

Digital Design

Circuit

Device

User and problems

Prog. Languages

Resources / virtualization

HW/SW interface

Datapath

Registers, ALU

Digital logic

Transistors, signals

Atoms, electrons

Lecture 1

Micro-Architecture (uArch)

- Definition from Wiki
 - A way a given ISA is implemented on a processor
- · ISA
 - Can be implemented with different uArch
 - Why different implementation?
 - · Different goals (performance, power, cost, ...)
- · Computer Architecture?
 - ISA + uArch

Computer Organization

- · Computer Components
 - Input, output, memory, control unit, & datapath

Sharif University of Technology, Spring 2019

Computer Organization

· Computer Components

Memory Bus (GB/sec)

Main Memory (DRAM)

Typical ISA

- Data Transfer Instructions
 - CPU ⇔ Memory
 - CPU ⇔ I/O
- · Arithmetic & Logical Instructions
- Control Instruction
 - Conditional branch
 - Unconditional branch

Reminder: Von-Neumann Model

- Stored Program
 - Instructions stored in a linear memory array
- Sequential Instruction Processing
 - 1. Program counter identifies current instruction
 - 2. Instructions fetched one by one from memory
 - 3. Once fetched, instruction is executed
 - 4. Results stored in memory
 - 5. Program counter incremented
 - 6. Return to step 1

Execution Cycle

Micro-Architecture

- BIG Picture
 - Basic blocks
 - Components need to execute Von-Neumann algorithm

Micro-Architecture

- · Basic Blocks of a Micro-Architecture
 - A high-speed unit to keep code & data
 - · CPU runs very fast but memory is slow
 - Cache memory (instruction & data cache)
 - A unit to fetch instructions from cache
 - Instruction fetch unit (IFU)
 - Instructions transferred from I-cache to IFU
 - A unit to decode instructions after fetch process
 - · Instruction decoder unit

Micro-Architecture (cont.)

- · Basic Blocks of a Micro-Architecture
 - A unit to execute instructions
 - Execution unit
 - A unit to do arithmetic/logical operations
 - · ALU
 - A unit to execute branch instruction
 - Branch unit
 - A unit to execute load/store instructions
 - · Load/store unit
 - LSU ⇔ D-cache

Micro-Architecture (cont.)

- · Basic Blocks of a Micro-Architecture
 - A unit to save temporary results within processor
 - Register file
 - A unit to locate next instruction
 - Program counter
 - A unit to schedule all data movements
 - · Control unit

Backup

