ECON 301 - Problem Set 3

1. 38.4% of the population (across 807 observation) is smoker.

24.65% of the population (across 807 observation) resides in a state with restaurant smoking restrictions.

The difference in average smoking probability between states with restaurant smoking restrictions and states without restrictions 10.3%

2. In regression model; education, cigarette prices, being white, age, income level, resides in a state with restaurant smoking restrictions and age squared is used.

Results are the following:

807	=	ber of obs	Num	MS	df	SS	Source
5.57		, 800)					
0.0000		b > F	Pro	1.27531406	6	7.65188433	Model
0.0401		quared	R-s	.229081365	800	183.265092	Residual
0.0329		R-squared	- Adj				
.47862	=	t MSE	Roo	.236869698	806	190.916976	Total
Interval]	f.	[95% Cor	P> t	t	Std. Err.	Coef.	smoker
0132486		036566	0.000	-4.19	.0059394	0249073	educ
.0061812		0079595	0.805	-0.25	.0036019	0008891	cigpric
.0894592		114485	0.810	-0.24	.0519488	0125129	white
0016574		005616	0.000	-3.61	.0010083	0036367	age
6.52e-06		-1.20e-06	0.176	1.35	1.97e-06	2.66e-06	income
0252071		1818353	0.010	-2.59	.0398964	1035212	restaurn
1.349157		.4177986	0.000	3.72	.2372363	.8834777	_cons

With 10% significance level, we may omit cigarette price, being white and income level since they are not statistically significant.

Increase in one year of education, probability that being a smoker decreases by 2.8 %. Increase of one year in age, increase the probability of being a smoker by 2 %. Being in a state that have smoking restrictions in restaurants, decreases being a smoker by 10%.

3. Since the agesq is statistically significant, we can say that the effect of age on smoking probability is quadratic. To find the age that impact of age on smoking probability becomes negative, we can take the derivate of the formula by respect to age. So the result is $0.0202 + 2^*-0.000264^*$ age = 0 -> after **age 38** impact of age becomes negative.

smoker	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ	028552	.0059364	-4.81	0.000	0402049	0168992
cigpric	001053	.0035634	-0.30	0.768	0080477	.0059417
white	0263784	.0514915	-0.51	0.609	127453	.0746962
age	.0202079	.0056356	3.59	0.000	.0091456	.0312703
income	4.64e-07	2.01e-06	0.23	0.818	-3.48e-06	4.41e-06
restaurn	1006295	.0394733	-2.55	0.011	1781131	0231459
agesq	000264	.0000614	-4.30	0.000	0003846	0001435
_cons	.5348554	.248302	2.15	0.032	.0474541	1.022257

4.

807		umber of obs	Numi	MS	df	SS	Source
7.54	=	(7, 799)	— F(7,				
0.0000		rob > F	72 Prol	1.6908737	7	11.8361161	Model
0.0620	=	-squared	24 R-s	.2241312	799	179.08086	Residual
0.0538		dj R-squared	— Adj				
.47343		oot MSE	8 Root	.23686969	806	190.916976	Total
Interval]	nf.	[95% Co	P> t	t	. Err.	Coef. Std.	smoker
0172973	32	0040463	0.000	-4.89	59008	0288802 .005	educ
.3317275	32	6469578	0.736	-0.34	41088	0689254 .204	lcigpric
.0754449	51	8126805	0.618	-0.50	15172	0256801 .051	white
.0309378	88	0 .008693	0.000	3.50	05666	.0198158 .00	age
.0626575	35	6038333	0.636	0.47	57245	.012162 .025	lincome
0233374	9	1178185	0.011	-2.55	94431	1007616 .039	restaurn
02333/4					00617		agesq
0233374	9	0000380	0.000	-4.21	/ בסשש		

As it can be seen from the results, cigarette prices are effecting the probability of smoking negatively. Increase of 1% in cigarette prices, decreases the probability of smoking by 0.068/100.

5.

	strict = white		esq white_	restrict			
Source	ss	df	MS	Number of	obs		807
				F(6, 800)			8.93
Model	11.977995	6	1.9963325	Prob > F		=	0.0000
Residual	178.938981	800 .	223673727	R-squared			0.0627
				Adj R-squ	ared		0.0557
Total	190.916976	806 .	236869698	Root MSE		=	.47294
smoker	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
educ	028523	.0057087	-5.00	0.000 -	.0397	287	0173172
white	0626063	.063624	-0.98	0.325 -	.1874	961	.0622834
age	.0208004	.0054581	3.81	0.000	.0100	866	.0315142
restaurn	1906341	.0992685	-1.92	0.055 -	.3854	916	.0042234
agesq	0002706	.0000594	-4.55	0.000 -	.0003	873	000154
white_restrict	.105592	.108003	0.98	0.329 -	.1064	108	.3175948
	.5013577	.1344813	3.73	0.000	.2373	799	.7653355

By creating an interaction variable, we may control the claim that impact of restaurant smoking restrictions on smoking probability might be different for white and non-white individuals. As it can be seen from the results, this is not statistically significant at 10% significance level because of the p-value 0.329 >0.10.

6. No we can not see this as a casual effect. Because there might be some omitted variables that directly effect this variable. For instance, living in a child abundant area might affect the probability of smoking negatively, so the direction is negative and also it is rela-

ted with the restaurant smoking restrictions positively. Therefore, since restaurn includes the negative coefficient that comes form the child area issue, the restaurn is underestimated.

7. In this context, it might be logical to examine whether the company is productive or not. If the company is less productive therefore they might applied for the grant. So since we do not have any independent variable in the formula that represents the productivity level, we might omit some variables related to grant. In this sense, self-selection problem may lead to endogeneity as well. Another related variable in error term might be company's total capital level. If it is high then company might not apply for grant.

8. The result is the following:

reg lscrap g	rant						
Source	ss	df	MS	Numb	er of obs	=	54
				– F(1,	52)	=	0.02
Model	.039451758	1	.03945175	8 Prob	> F	=	0.8895
Residual	105.323208	52	2.0254463	1 R-sq	uared	=	0.0004
				– Adj	R-squared	=	-0.0188
Total	105.36266	53	1.9879747	2 Root	MSE	=	1.4232
lscrap	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
grant	.0566004	.4055519	0.14	0.890	757199	•	.8703998
_cons	.408526	.2405616	1.70	0.095	0741962	2	.8912482

Since the p-value is quite high and the confidence interval includes 0, the effect of grant of scarp is not statistically significant. So it is significantly lower.

9. Result is the following:

Source	SS	df	MS	Num	ber of obs	=	54
					2, 51)	=	174.94
Model	91.9584791	2	45.979239		b > F	=	0.0000
Residual	13.4041809	51	.26282707	7 R-s	quared	=	0.8728
				— Adj	R-squared	=	0.8678
Total	105.36266	53	1.9879747	2 Roo	t MSE	=	.51267
	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
lscrap							
lscrap grant	2539697	.1470311	-1.73	0.090	549146	9	.0412076
<u></u>		.1470311	-1.73 18.70	0.090	549146 .741934		.0412076 .9203865

After adding the lscrap_1, the effect of grant on lscarp deceased from 0.56 to -0.25. So this shows that scrap rate of the company in year 1987 has an important positive effect on grant (grant and lscrap_1 is positively correlated). The effect of lscrap_1 on lscrap is significant because the p-value is almost 0 and confidence interval does not include 0 even at 95% confidence level. The change in grant can be explained by omitted variable bias. Since grant is correlated with lscrap_1, including lscrap_1 to the model decreases the bias on the grant.

- 10. Equation : log wage = B0 + B1marijuana + B2education + B3female + u
- 11. Equation for testing whether marijuana usage has different effects on wages for men and women: log wage = B0 + B1marijuana*female + B2education + B3female + u

To test that there are no differences in the effects of marijuana usage on wage for men and women, t-test can be used. So we can apply t-test on wage based on marijuana usage for female/male. If the result is statistically significantly then we can say that the the difference is different than 0.

- 12. **log wage = B0 + sigma1*marijuana_light + sigma2*marijuana_moderate + sig-ma3*marijuana_heavy+ B2*education + B3female + u** (Effects are measured in comparison to non-marijuana user (base category))
- 13. I think it is not much logical to estimate a causal effect from this survey. Because since there are others aspects in the error term and these might be correlated with marijuana usage such as age (if the age is high marijuana usage might be lower and also if the age is high wage might be higher), we over/under estimate the parameter. So due to endogeneity problem it is not easy to come up with casual relation.