TP 9 - Formules du calcul propositionnel

5 décembre 2022

1 Formules Logiques

Dans cette section on se propose d'implémenter les formules du calcul propositionnel. On peut utiliser pour cela le type suivant :

- $_{1}$ type formula = Var of int | Not of formula | Or of formula * formula
 - 1. Étendez le type formula avec les connecteurs And et Imply et les valeurs \top et \bot .
 - 2. Définissez les formules $f_1 = p_4 \rightarrow ((p_3 \rightarrow p_2) \rightarrow p_1)$ et $f_2 = (p_1 \land (p_2 \rightarrow p_3)) \lor \bot$.
 - 3. Implémentez une fonction formula_height: formula -> in qui calcule la hauteur d'une formule passée en argument.
 - 4. Implémentez une fonction size: formula -> int qui calcule la taille d'une formule passée en argument.
 - 5. Définissez un type valuation qui est une liste de couples d'entiers, à l'identifiant d'une variable propositionnelle et de booléens correspondant à la valeur de vérité prise par la variable propositionnelle.
 - 6. Implémentez une fonction get_value: valuation -> int -> bool qui renvoie la valeur de vérité d'une variable étant donné une valuation et l'identifiant de cette variable. On pourra choisir de renvoyer false par défaut quand la valuation ne précise pas la valeur de la variable.
 - 7. Implémentez une fonction evaluate qui prend une formule et une valuation et renvoie la valeur de vérité de cette formule.
 - 8. Évaluez f_1 et f_2 avec la valuation $p_1 = 1, p_2 = 0, p_3 = 0$
 - 9. Implémentez une fonction variable_list: formula -> int list qui liste toutes les variables d'une formule sans doublon.
 - 10. Implémentez une fonction generate_all_valuations: int list -> valuation list qui génère toutes les valuations pour un ensemble de variables.
 - 11. Implémentez une fonction is_satisfiable: formula -> bool qui vérifie si une formule est satisfiable
 - 12. Implémentez une fonction is_contradiction: formula -> bool qui vérifie si une formule est une antilogie. Vous pourrez vous servir de la fonction is_satisfiable.
 - 13. Implémentez une fonction is_tautology: formula -> bool qui vérifie si une formule est une tautologie. Vous pourrez vous servir de la fonction is_satisfiable.
 - 14. Testez ces fonctions sur f_1 et f_2
 - 15. Implémentez une fonction is_equivalent: formula -> formula -> bool qui teste si deux formules sont sémantiquement équivalentes.
 - 16. (Bonus) Implémentez une fonction print_truth_table: formula -> unit qui affiche la table de vérité d'une formule (unit est le type de retour de Printf.printf). On pourra s'appuyer sur plusieurs fonctions intermédiaires pour ceci. Testez cette fonction sur f_1 et f_2 et $f_3 = (p_6 \to p_5) \lor (p_3 \land (p_4 \lor p_2)) \lor (p_1 \land p_5)$.
 - 17. Implémentez une fonction subformulas -> formula -> formula list qui extrait les sous formules d'une formule.
 - 18. Testez cette fonction sur f_1 et f_2 .
 - 19. Implémentez une fonction substitute: formula -> int -> formula -> formula qui substitue une variable dans une formule par une autre formule.
 - 20. Substituez p_4 par \perp dans f_1 .
 - 21. (Bonus) Implémentez une fonction instant_substitute: formula \rightarrow int list \rightarrow formula list \rightarrow formula qui substitue une liste de variables sans doublons dans une formule chacune par une autre formule. Substituez dans f_3 p_i par $p_{i=1mod7}$.
 - 22. Implémentez une fonction simplify : formula → formula qui simplifie une formule en remplaçant les sous formules sans variables par ⊥ ou ⊤ selon la valeur de vérité de la sous-formule.
 - 23. (Bonus) Implémentez l'algorithme de Quine. Comparez le temps d'exécution de celui-ci avec la fonction is_satisfiable pour des formules de plus en plus grandes.
 - 24. (Bonus) Implémentez une fonction to_CNF : formula -> formula qui transforme une formule quelconque en formule en forme normale conjonctive équivalente.
 - 25. (Bonus) Implémentez une fonction to_DNF: formula -> formula qui transforme une formule quelconque en formule en forme normale disjonctive équivalente.