法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号:大数据分析挖掘
 - 新浪微博: ChinaHadoop

第三讲

数据分析工具Pandas

--梁斌

目录

- Pandas的数据结构
- Pandas的数据操作
- Pandas统计计算和描述
- 数据的分组与聚合
- 数据清洗、合并、转化和重构
- 聚类模型:K-Means
- 实战案例:全球食品数据分析(Open Food Facts)

什么是Pandas

Pandas

- 一个强大的分析结构化数据的工具集
- · 基础是NumPy,提供了高性能矩阵的运算
- 应用,数据挖掘,数据分析
 - 如,学生成绩分析、股票数据分析等。
- 提供数据清洗功能

目录

- Pandas的数据结构
- Pandas的数据操作
- Pandas统计计算和描述
- 数据的分组与聚合
- 数据清洗、合并、转化和重构
- 聚类模型: K-Means
- 实战案例:全球食品数据分析(Open Food Facts)

Series

- 类似一维数组的对象
- 通过list构建Series
 - ser_obj = pd.Series(range(10))
- 由数据和索引组成
 - 索引在左,数据在右
 - 索引是自动创建的
- 获取数据和索引
 - ser_obj.index, ser_obj.values
- 预览数据
 - ser obj.head(n)

SERIES

index	element
IIIUEA	

0	1
1	2
2	3
3	4
4	5

Series (续)

- 通过索引获取数据
 - ser_obj[idx]
- 索引与数据的对应关系仍保持在数组运算的结果中
- 通过dict构建Series
- name属性
 - ser_obj.name, ser_obj.index.name

DataFrame

- 类似多维数组/表格数据 (如 , excel, R中的data.frame)
- 每列数据可以是不同的类型, what about ndarray?
- 索引包括列索引和行索引

示例代码: 01_pandas_data_structures.ipynb

DataFrame

- 通过ndarray构建DataFrame
- 通过dict构建DataFrame
- 通过列索引获取列数据(Series类型)
 - df_obj[col_idx] 或 df_obj.col_idx
- 增加列数据,类似dict添加key-value
 - df_obj[new_col_idx] = data
- 删除列
 - del df_obj[col_idx]

索引对象Index

- Series和DataFrame中的索引都是Index对象
- 不可变(immutable)
 - 保证了数据的安全
- · 常见的Index种类
 - Index
 - Int64Index
 - MultiIndex, "层级"索引
 - DatetimeIndex, 时间戳类型

目录

- Pandas的数据结构
- Pandas的数据操作
- Pandas统计计算和描述
- 数据的分组与聚合
- 数据清洗、合并、转化和重构
- 聚类模型: K-Means
- 实战案例:全球食品数据分析(Open Food Facts)

索引操作

- Series索引
 - 行索引, ser_obj['label'], ser_obj[pos]
 - 切片索引 , ser_obj[2:4], ser_obj['label1':'<mark>label3</mark>']
 - 注意,按索引名切片操作时,是包含终止索引的。
 - 不连续索引, ser_obj[['label1',' label2', 'label3']] ser_obj[[pos1, pos2, pos3]]
 - 布尔索引

索引操作(续)

DataFrame索引

Column index (df.columns)

索引操作(续)

- DataFrame索引
 - 列索引
 - df_obj['label']
 - 不连续索引
 - df_obj[['label1' , 'label2']]

索引操作总结

- Pandas的索引可归纳为3种
- .loc,标签索引
- .iloc,位置索引
- .ix,标签与位置混合索引
 - 先按标签索引尝试操作,然后再按位置索引尝试操作
- 注意
 - DataFrame索引时可将其看作ndarray操作
 - 标签的切片索引是包含末尾位置的

运算与对齐

- · 按索引对齐运算,没对齐的位置补NaN
 - Series 按行索引对齐
 - DataFrame按行、列索引对齐
- 填充未对齐的数据进行运算
 - 使用add, sub, div, mul
 - 同时通过fill value指定填充值
- 填充NaN
 - fillna

函数应用

- 可直接使用NumPy的ufunc函数,如abs等
- 通过apply将函数应用到行或列上
 - · 注意指定轴的方向,默认axis=0
- 通过applymap将函数应用到每个数据上

排序

- sort_index,索引排序
 - 对DataFrame操作时注意轴方向
- 按值排序
 - sort_values(by= 'label')

处理缺失数据

- 判断是否存在缺失值
 - ser_obj.isnull(), df_obj.isnull()
- dropna
 - 丢弃缺失数据
- fillna
 - 填充缺失数据

目录

- Pandas的数据结构
- Pandas的数据操作
- Pandas统计计算和描述
- 数据的分组与聚合
- 数据清洗、合并、转化和重构
- 聚类模型:K-Means
- 实战案例:全球食品数据分析(Open Food Facts)

Pandas统计计算和描述

常用的统计计算

- sum, mean, max, min...
- axis=0 按列统计, axis=1按行统计
- skipna 排除缺失值 ,默认为True
- idmax, idmin, cumsum

统计描述

describe 产生多个统计数据

示例代码: 03_pandas_stats.ipynb

Pandas统计计算和描述

方法	说明
count	非NA值的数量
describe	针对Series或各DataFrame列计算汇总统计
min, max	计算最小值和最大值
argmin argmax	计算能够获取到最小值和最大值的索引位置(整数)
idxmin、idxmax	计算能够获取到最小值和最大值的索引值
quantile	计算样本的分位数(0到1)
sum	值的总和
mean	值的平均数
median	值的算术中位数(50%分位数)
mad	根据平均值计算平均绝对离差
var	样本值的方差
std	样本值的标准差

Pandas统计计算和描述

方法	说明
skew	样本值的偏度(三阶矩)
kurt	样本值的峰度(四阶矩)
cumsum	样本值的累计和
cummin, cummax	样本值的累计最大值和累计最小值
cumprod	样本值的累计积
diff	计算一阶差分 (对时间序列很有用)
pct_change	计算百分数变化

目录

- Pandas的数据结构
- Pandas的数据操作
- Pandas统计计算和描述
- 数据的分组与聚合
- 数据清洗、合并、转化和重构
- 聚类模型: K-Means
- 实战案例:全球食品数据分析(Open Food Facts)

Pandas层级索引

层级索引 (hierarchical indexing)

- MultiIndex对象
- 选取子集
 - 外层选取 ser_obj['outer_label']
 - 内层选取 ser_obj[:, 'inner_label']
- 常用于分组操作、透视表的生成等
- 交换分层顺序
 - swaplevel()
- 排序分层
 - sortlevel()

示例代码: 04_pandas_multi_index.ipynb

Pandas层级索引

层级索引(续)

		0	1	2	3
bar	one	-1.133800	0.548640	1.109034	0.643708
	two	-0.792654	0.518681	-0.611958	0.913413
baz	one	0.775624	-2.520829	-0.472691	-0.557803
Daz	two	0.190005	0.435193	1.635680	1.584821
foo	one	-0.592235	-0.361735	1.336444	-1.280014
100	two	-1.016622	1.409086	0.114743	0.408211
qux	one	0.662941	-1.258482	-0.373214	-0.974658
	two	-0.931004	0.596507	0.148323	0.475039

示例代码: 04_pandas_multi_index.ipynb

分组 (groupby)

- 对数据集进行分组,然后对每组进行统计分析
- SQL能够对数据进行过滤,分组聚合
- pandas能利用groupby进行更加复杂的分组运算
- 分组运算过程
 - split->apply->combine
 - 拆分:进行分组的根据
 - 应用:每个分组运行的计算规则
 - 合并:把每个分组的计算结果合并起来

分组 (续)

- 分组运算过程
 - split->apply->combine

分组 (续)

- GroupBy对象: DataFrameGroupBy, SeriesGroupBy
- GroupBy对象没有进行实际运算,只是包含分组的中间数据
- 对GroupBy对象进行分组运算/多重分组运算,如mean()
 - 非数值数据不进行分组运算
- size() 返回每个分组的元素个数

分组 (续)

- 按列名分组
 - obj.groupby('label')
- 按列名多层分组
 - obj.groupby(['label1' , 'label2'])->多层dataframe
- 按自定义的key分组
 - obj.groupby(self_def_key)
 - 自定义的key可为列表或多层列表
- unstack可以将多层索引的结果转换成单层的dataframe

分组 (续)

- GroupBy对象支持迭代操作
 - 每次迭代返回一个元组 (group_name, group_data)
 - 可用于分组数据的具体运算
- GroupBy对象可以转换成列表或字典
- Pandas也支持按列分组
- 其他分组方法
 - 通过字典分组
 - 通过函数分组,函数传入的参数为行索引或列索引
 - 通过索引级别分组

聚合 (aggregation)

- 数组产生标量的过程,如mean()、count()等
- 常用于对分组后的数据进行计算
- 内置的聚合函数
 - sum(), mean(), max(), min(), count(), size(), describe()
- 可自定义函数,传入agg方法中
 - grouped.agg(func)
 - func的参数为groupby索引对应的记录

聚合(续)

- 应用多个聚合函数
 - 同时应用多个函数进行聚合操作,使用函数列表
 - 对不同的列分别作用不同的聚合函数,使用dict

聚合 (续)

• 常用的内置聚合函数

函数名	说明
count	分组中非NA值的数量
sum	非NA值的和
mean	非NA值的平均值
median	非NA值的算术中位数
std 、var	无偏(分母为n - 1)标准差和方差
min, max	非NA值的最小值和最大值
prod	非NA值的积
first、last	第一个和最后一个非NA值

数据的分组运算

分组运算

- 原因:
 - 聚合运算改变了原始数据的shape
 - 如何保持原始数据的shape?
 - 使用merge的外连接,比较复杂
 - transform
- transform的计算结果和原始数据的shape保持一致
 - 如:grouped.transform(np.mean)
 - 也可传入自定义函数

示例代码: 06_pandas_grouped_apply_transform.ipynb

数据的分组运算

分组运算(续)

- grouped.apply(func)
 - func函数在各分组上调用,然后结果通过pd.concat组装到一起
 - 产生层级索引
 - 外层索引是分组名
 - 内层索引是df_obj的行索引
 - 禁止层级索引, group_keys=False
- apply可以用来处理不同分组内的缺失数据填充
 - 如:填充该分组的均值

示例代码: 06_pandas_grouped_apply_transform.ipynb

目录

- Pandas的数据结构
- Pandas的数据操作
- Pandas统计计算和描述
- 数据的分组与聚合
- 数据清洗、合并、转化和重构
- 聚类模型:K-Means
- 实战案例:全球食品数据分析(Open Food Facts)

数据清洗

- 数据清洗是数据分析关键的一步,直接影响之后的处理工作
- 数据需要修改吗?有什么需要修改的吗?数据应该怎么调整才能适用于接下 来的分析和挖掘?
- 是一个迭代的过程,实际项目中可能需要不止一次地执行这些清洗操作
- 处理缺失数据
 - pd.fillna() , pd.dropna()

数据连接

pd.merge

- 根据单个或多个键将不同DataFrame的行连接起来
- 类比数据库的连接操作 (第三课)
- 默认将重叠列的列名作为"外键"进行连接
 - on显示指定 "外键"
 - left_on, 左侧数据的"外键"
 - right on , 右侧数据的 "外键"
- 默认是"内连接"(inner), 即结果中的键是交集

示例代码: 07_data_merge.ipynb

数据连接

pd.merge (续)

- how指定连接方式
- "外连接" (outer) , 结果中的键是并集
- "左连接" (left)
- "右连接" (right)
- 处理重复列名
 - suffixes,默认为_x,_y
- 按索引连接
 - left_index=True或right_index=True

示例代码: 07_data_merge.ipynb

数据合并

pd.concat

- 沿轴方向将多个对象合并到一起
- NumPy的concat
 - np.concatenate
- pd.concat
 - 注意指定轴方向,默认axis=0
 - join指定合并方式,默认为outer
 - Series合并时查看行索引
 - DataFrame合并时同时查看行索引和列索引

示例代码: 08_data_concat.ipynb

数据重构

重构

- stack
 - 将列索引旋转为行索引,完成层级索引
 - DataFrame->Series
- unstack
 - 将层级索引展开
 - Series->DataFrame
 - 默认操作内层索引,即level=-1

示例代码: 09_data_reshape.ipynb

数据重构

重构

- stack
 - 将列索引旋转为行索引,完成层级索引
 - DataFrame->Series
- unstack
 - 将层级索引展开
 - Series->DataFrame
 - 默认操作内层索引,即level=-1

示例代码: 09_data_reshape.ipynb

数据转换

处理重复数据

- duplicated() 返回布尔型Series表示每行是否为重复行
- drop_duplicates() 过滤重复行
 - 默认判断全部列
 - 可指定按某些列判断

map

• Series根据map传入的函数对每行或每列进行转换

数据替换

replace

示例代码: 10_data_transform.ipynb

目录

- Pandas的数据结构
- Pandas的数据操作
- Pandas统计计算和描述
- 数据的分组与聚合
- 数据清洗、合并、转化和重构
- 聚类模型: K-Means
- 实战案例:全球食品数据分析(Open Food Facts)

K-Means

- 聚类 (clustering) 属于无监督学习 (unsupervised learning)
- 无类别标记
- 在线demo http://syskall.com/kmeans.js/

K-Means

- 数据挖掘十大经典算法之一
- 算法接收参数k;然后将样本点划分为k个聚类;同一聚类中的样本相似度较高;不同聚类中的样本相似度较小
- 算法思想:

以空间中k个样本点为中心进行聚类,对最靠近它们的样本点归类。通过迭代的方法,逐步更新各聚类中心,直至达到最好的聚类效果

示例代码: lect03_kmeans

K-Means

- 算法描述:
 - 1. 选择k个聚类的初始中心
 - 2. 在第n次迭代中,对任意一个样本点,求其到k个聚类中心的距离,将该样本点归类到距离最小的中心所在的聚类
 - 3. 利用均值等方法更新各类的中心值
 - 4. 对所有的k个聚类中心,如果利用2,3步的迭代更新后,达到稳定,则迭代结束。
- 优点:速度快,简单
- 缺点:最终结果和初始点的选择相关,容易陷入局部最优,需要给定k值

目录

- Pandas的数据结构
- Pandas的数据操作
- Pandas统计计算和描述
- 数据的分组与聚合
- 数据清洗、合并、转化和重构
- 聚类模型:K-Means
- 实战案例:全球食品数据分析(World Food Facts)

实战案例

项目介绍

• https://www.kaggle.com/openfoodfacts/world-food-facts

项目任务

• 统计各国家食物中的食品添加剂种类个数

涉及知识点

• 掌握Pandas的数据操作和分析

示例代码:lect03_proj

参考

• 10分钟了解Pandas

http://pandas.pydata.org/pandas-docs/stable/10min.html

• Pandas的索引操作

http://pandas.pydata.org/pandas-docs/stable/indexing.html

• Pandas处理缺失数据

http://pandas.pydata.org/pandas-docs/stable/missing_data.html

Pandas绘图

http://pandas.pydata.org/pandas-

docs/version/0.18.1/visualization.html

• Pandas高级索引/层级索引

http://pandas.pydata.org/pandas-docs/stable/advanced.html

参考

- 《Python for Data Analysis》
- Pandas中的GroupBy

http://pandas.pydata.org/pandas-docs/stable/groupby.html

• Pandas透视表

http://pandas.pydata.org/pandas-docs/stable/reshaping.html

k-means

https://en.wikipedia.org/wiki/K-means_clustering

• k-means算法及示例

http://www.saedsayad.com/clustering_kmeans.htm

疑问

□问题答疑: http://www.xxwenda.com/

■可邀请老师或者其他人回答问题

小象问答 @Robin_TY

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象

- 新浪微博: ChinaHadoop

