Теория и практика компиляции программ: лексический анализ

Юхин Кирилл

iLab, Intel Corp

МФТИ, 26 сентября 2018 года

Положение лексического анализа

Токен, лексама и шаблон

- Токен пара: имя и, опционально, прикреплённое значение. Имя – это элемент некоторого конечного множества.
- Лексема последовательность знаков, соответствующая определённому токену.
- Шаблон описание всех лексем, соответствующих токенам с одним и тем же именем.

Имя токена	Шаблон	Лексемы
BOOLEAN	"#t" или "#f"	#t, #f
LPAREN	"(" или "["	(, [
SYMBOL	набор букв и цифр, содер-	alala, 3k34dk, if, let
	жащий букву	
NUMBER	непустой набор цифр и	32, 0.0, .121, 3.14
	точки	
STRING	всё, кроме " окружённое "	"мечты" "error"
SPACE	непустая последователь-	
	ность пробелов	

Атрибуты токенов

```
(format #t "\sima" 18.3)
```

- (LPAREN)
- (SYMBOL, индекс "format" в таблице символов)
- (SPACE)
- (BOOLEAN, true)
- (SPACE)
- (STRING, индекс " \sim а" в таблице строк)
- (SPACE)
- (NUMBER, 18.3)
- (RPAREN)

Лексические ошибки

- Некоторые ошибки лексер не способен обнаружить, например:
 - ▶ (let ((a 3))) a) \to лишняя скобка
 - ▶ $(/\ 1\ "2") o$ неправильный тип
- Однако некоторые, может:
 - ▶ "abcd \langle EOF \rangle \rightarrow незаконченная строка
 - lacktriangleright 13a
 ightarrowнедопустимая конструкция в Си
- Такие ошибки как правило сигнализируются когда ни один шаблон не может отыскать лексему в тексте

Восстановление после ошибок

Паника Игнорирование всех последующих знаков. До конца файла, либо до некоторого знака (например пробела)

Догадка

- Удаление одного знака из входного потока,
- Вставка надостающего знака во входной поток
- Замена одно знака другим
- Перестановка двух соседних знаков

и повторная попытка найти лексему.

Общий механизм анализа

- Лексер считывает и запоминает по одному знаку.
- Когда информации становится достаточно, он передаёт парсеру очередной токен.
- Иногда лексеру требуется знать последующие символы, чтобы определить текущий токен. Например:
 - ▶ B Fortran: DO 5 I = $1.25 \leftrightarrow DO 5 I = 1,25$
 - **▶** B Cu: -, <, =

Для этого применяется двухбуферная схема.

Определения

Алфавит – конечное множество знаков. Обозначим Σ .

Язык – набор строк знаков из алфавита Σ .

Грамматика – набор правил, выделяющий из всех последовательностей алфавитных знаков, строки принадлежащие языку.

Функция значания L(e) = M - язык M соответствующий грамматике e.

Грамматика задаёт только один язык. Но язык может быть определён несколькими грамматиками. L(e) - сюръекция.

Регулярные грамматики

- Задают языки, включающие:
 - ► Пустую строку ε: {""} или Ø
 - Одиночные символы из алфавита ∑ : {"a"}, {"b"}
 - ▶ Объединение: $A+B=\{a|a\in A\}\cup\{b|b\in B\}$
 - ▶ Конкатенация: $AB = \{ab | a \in A \land b \in B\}$
 - ▶ Повторение: $A^* = \bigcup_{i \geq 0} A^i$, $\{A^0 = \varepsilon, A^i = A \dots A \ i$ раз $\}$
- Контекстно-свободные
 - ► C++ шаблон: A<B<C>> a;
 - ▶ C++ сдвиг: C>> a;
- Задаются регулярными выражениями
- Задаются конечными автоматами

Регулярные выражения

- База:
 - ▶ Пустая строка ε : $L(\varepsilon) = \{\emptyset\}$
 - ▶ Один символ $a \in \Sigma$: $L(\# \setminus a) = \{ "a" \}$
- Композиция:
 - ▶ Объединение: $L(A + B) = L(A) \cup L(B)$
 - ▶ Конкатенация: $L(AB) = \{ab | a \in L(a) \land b \in B\}$
 - ► Повторение: $L(A^*) = \bigcup_{i \ge 0} A^i$
- Расширения:
 - $A^{+} = AA^{*}$
 - A? = $A + \varepsilon$
 - $A^k = \underbrace{AA \cdots A}_{k \text{ pas}}$

POSIX нотация

- "" $\equiv \varepsilon$
- "abc" $\equiv \{ "a'' \} | \{ "b'' \} | \{ "c'' \} |$
- $(A) \equiv A$
- $A|B \equiv A + B$
- AB
- . $\equiv \Sigma \setminus \{\text{"перевод строки"}\}$
- [abc] ≡ "a"|"b"|"c"
- $[j-p] \equiv \{$ все буквы коды которых лежат между j и p включительно $\}$
- ullet [^...] $\equiv \Sigma$ кроме [...]
- $A\{n\} \equiv A^n$
- $A\{n,m\} \equiv A^n + A^{n+1} + \cdots + A^m$
- $A\{, m\} \equiv A\{0, m\}; A\{n, \} \equiv A^n A^*$

- 4 ロ ト 4 昼 ト 4 佳 ト - 佳 - 夕 Q O

- ullet Цифра: '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9' \equiv [0-9]
- Целое неотрицательное число (Z_0^+) :
- Целое число(Z):
- Десятичное дробное число:
- Идентификатор в Си:

- ullet Цифра: '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9' \equiv [0-9]
- ullet Целое неотрицательное число (Z_0^+) : $[0-9]^+$
- Целое число(Z):
- Десятичное дробное число:
- Идентификатор в Си:

- ullet Цифра: '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9' \equiv [0-9]
- ullet Целое неотрицательное число (Z_0^+) : $[0-9]^+$
- Целое число(Z): $'-'?[0-9]^+$
- Десятичное дробное число:
- Идентификатор в Си:

- Цифра: $'0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9' \equiv [0-9]$
- ullet Целое неотрицательное число (Z_0^+) : $[0-9]^+$
- Целое число(Z): $'-'?[0-9]^+$
- Десятичное дробное число: $'-'?[0-9]^*'.'[0-9]^+$
- Идентификатор в Си:

- Цифра: $'0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9' \equiv [0-9]$
- ullet Целое неотрицательное число (Z_0^+) : $[0-9]^+$
- Целое число(Z): '-'?[0 9] $^+$
- Десятичное дробное число: $'-'?[0-9]^{*'}.'[0-9]^+$
- ullet Идентификатор в Си: $[a-zA-Z_{_}][0-9a-zA-Z_{_}]^*$

А имплементация?

Для строки s и выражения e, $s \in L(e)$?

Конечный автомат

- Входной алфавит Σ
- \bullet Конечный набор состояний S

ullet Начальное состояние $n \in S$

ullet Набор конечных состояний $F\subseteq S$

• Набор переходов из состояния $s_1 \in S$ в состояние $s_2 \in S$ по входу $a \in \Sigma$: $s_1 \stackrel{a}{\to} s_2$

Таблица и диаграмма переходов

	a	b	С	d
q_0	Ø	q_1, q_2	Ø	Ø
q_1	Ø	Ø	q_3	q_4
q_2	q 4	q_2	Ø	Ø
q 3	q 3	Ø	q 5	Ø
q_4	Ø	Ø	Ø	q_5
q_5	Ø	Ø	Ø	Ø

→□▶ →□▶ → □▶ → □ ♥ ♀ ♥ ♀ ♥

множественные и ε - переходы

ДКА и НКА

Не детерменированный конечный автомат (НКА)

Конечный автомат, который может одновременно быть в нескольких состояниях.

Может содержать:

- ε -переходы
- множественные переходы

НКА как правило лаконичнее.

Детерменированный конечный автомат (ДКА)

Конечный автомат, находящийся в каждый момент времени только в одном состоянии.

Не содержит:

- ε-переходы
- множественные переходы

НКА может быть преобразован в ДКА принимающий тотже язык

Общая схема генерации сканера

Построение НКА для регулярного выражения

Автоматы для базовых елементов:

• ε (пустая строка):

a∈ Σ:

Общее обозначение НКА для выражения Е

Построение НКА для регулярного выражения

Комбинации:

• *A* + *B*:

Построение НКА для регулярного выражения

• *A**:

К. Юхин (iLab)

Преобразование НКА в ДКА

ε -замыкание

arepsilon-замыкание — Множество состояний НКА, в которые можно перейти из данного по цепочке arepsilon-переходов.

$$\varepsilon closure(q_i) = \{q_i\} \cup \{\varepsilon closure(q_j) | \exists q_i \xrightarrow{\varepsilon} q_j\}$$

Пусть S – множество состояний HKA, s – его начальное состояние, F – все конечные.

- Каждое состояние ДКА (X) это подмножество (S) состояний НКА. $X \subset S$
- Начальное состояние: $\varepsilon closure(s)$
- Конечные состояния: $\{X|X\cap F\neq\varnothing\}$
- ullet Переходы: $\exists X \stackrel{a}{ o} Y \Leftrightarrow Y = \bigcup_{q_i} arepsilon closure(q_i), q_i \in X$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かくで

К. Юхин (iLab) Лексический анализ 2018 25 / 26

К. Юхин (iLab) Лексический анализ 2018 25 / 26

К. Юхин (iLab) Лексический анализ

анализ 2018

25 / 26

К. Юхин (iLab) Лексический анализ 2018 25 / 26

К. Юхин (iLab) Лексический анализ 2018 25 / 26

Табличная имплементация

Α	а	b	С
q_1	q ₃	q_2	q_4
q_2	Ø	q_2	q_4
q 3	Ø	Ø	q 4
q_4	Ø	Ø	Ø

