- · SQL non è solo un linguaggio di interrogazione (Query Language), ma
- Un linguaggio per la definizione di basi di dati (Data-definition language (DDL))

CREATE SCHEMA Nome AUTHORIZATION Utente

CREATE TABLE o VIEW, con vincoli

CREATE INDEX

CREATE PROCEDURE

CREATE TRIGGER

- · Un linguaggio per stabilire controlli sull'uso dei dati: GRANT
- · Un linguaggio per modificare i dati.

6. SQL per definire e amministrare basi di dati

A. Albano, G. Ghelli, R.Orsini Fondamenti di basi di dati Zanichelli, 2005

DEFINIZIONE DI TABELLE: ESEMPIO

```
2
```

```
CREATE TABLE Impiegati
         Codice CHAR(8) NOT NULL,
                Nome CHAR(20),
                AnnoNascita INTEGER CHECK (AnnoNascita < 2000),
                Qualifica CHAR(20) DEFAULT 'Impiegato',
         Supervisore CHAR(8),
         PRIMARY KEY pk_implegato (Codice),
         FOREIGN KEY fk_ Impiegati (Supervisore)
         REFERENCES Impiegati
CREATE TABLE FamiliariACarico
         Nome CHAR(20),
                AnnoNascita INTEGER.
         GradoParentela CHAR(10),
                CapoFamiglia CHAR(8)
         FOREIGN KEY fk_ FamiliariACarico (CapoFamiglia)
         REFERENCES Impiegati)
```

DEFINIZIONE DI TABELLE

 Ciò che si crea con un CREATE si può eliminare con il comando DROP o cambiare con il comando ALTER.

CREATE TABLE Nome

(Attributo Tipo [ValoreDefault] [VincoloAttributo] {, Attributo Tipo [Default] [VincoloAttributo]}

{, VincoloTabella})

Default := DEFAULT {valore | null | username}

· Nuovi attributi si possono aggiungere con:

ALTER TABLE Nome ADD COLUMN Nuovo Attributo Tipo

6. SQL per definire e amministrare basi di dati

A. Albano, G. Ghelli, R.Orsini Fondamenti di basi di dati Zanichelli, 2005

TABELLE INIZIALIZZATE E TABELLE CALCOLATE

Tabelle inizializzate:

CREATE TABLE Nome EspressioneSELECT

CREATE TABLE Supervisori

SELECT Codice, Nome, Qualifica, Stipendio

FROM Impiegati

WHERE Supervisore IS NULL

Tabelle calcolate (viste):

CREATE VIEW Nome [(Attributo {, Attributo})]

AS EspressioneSELECT [WITH CHECK OPTION];

CREATE VIEW Supervisori

AS SELECT Codice, Nome, Qualifica, Stipendio

FROM Impiegati

WHERE Supervisore IS NULL

A. Albano, G. Ghelli, R.Orsini Fondamenti di basi di dati Zanichelli, 2005 Vincoli su attributi

```
Vincolo Attributo :=

[NOT NULL [UNIQUE]] | [CHECK (Condizione)]

[REFERENCES Tabella [(Attributo {, Attributo})]]
```

Vincoli su tabella

```
VincoloTabella := UNIQUE (Attributo {, Attributo})

| CHECK (Condizione) |

| PRIMARY KEY [Nome] (Attributo {, Attributo})

| FOREIGN KEY [Nome] (Attributo {, Attributo})

REFERENCES Tabella [(Attributo {, Attributo})]

[ON DELETE {NO ACTION | CASCADE | SET NULL}]
```

6. SQL per definire e amministrare basi di dati

A. Albano, G. Ghelli, R.Orsini Fondamenti di basi di dati Zanichelli, 2005

ESEMPIO 6

```
    CREATE TABLE Impiegati
    ( Codice CHAR(8) NOT NULL,
    Nome CHAR(20) NOT NULL,
    AnnoNascita INTEGER NOT NULL,
    Dipartimento CHAR(20),
    Stipendio FLOAT NOT NULL,
    Supervisore CHAR(8),
    PRIMARY KEY pk_impiegato (Codice),
    FOREIGN KEY fk_ Impiegati (Supervisore)
    REFERENCES Impiegati
    ON DELETE SET NULL
```

ESEMPIO 7

```
CREATE TABLE FamiliariACarico
(Nome CHAR(20) NOT NULL,
AnnoNascita INTEGER NOT NULL,
GradoParentela CHAR(10) NOT NULL,
CapoFamiglia CHAR(8) NOT NULL,
PRIMARY KEY pk_ FamiliariACarico (CapoFamiglia, Nome)
FOREIGN KEY fk_ FamiliariACarico (CapoFamiglia)
REFERENCES Impiegati
ON DELETE CASCADE)
```

6. SQL per definire e amministrare basi di dati

A. Albano, G. Ghelli, R.Orsini Fondamenti di basi di dati Zanichelli, 2005

ESEMPIO 8

```
CREATE TABLE Nazioni
( Codice CHAR(3) NOT NULL,
  Nome VARCHAR(50) NOT NULL,
  AnnoIndipendenza INTEGER,
  Popolazione INTEGER NOT NULL,
  Superficie FLOAT NOT NULL,
  Capitale INTEGER,
  PRIMARY KEY pk_nazione (Codice),
  FOREIGN KEY TK_citta (Capitale)
    REFERENCES Citta
    ON DELETE NO ACTION
   ALTER TABLE Nazioni
    ADD CONSTRAINT (
      FOREIGN KEY fk_citta (Capitale)
      REFERENCES Citta
       ON DELETE NO ACTION
   )
```

```
CREATE TABLE Citta

( Id INTEGER NOT NULL,
  Nome VARCHAR(50) NOT NULL,
  Popolazione INTEGER NOT NULL,
  Nazione CHAR(3) NOT NULL,
  PRIMARY KEY pk_citta (Id),
  FOREIGN KEY fl_mazione (Nazione)
  DEFERENCES Nazioni
  ON DELETE CASCADE
)

• ALTER TABLE Nazioni
  ADD CONSTRAINT (
  FOREIGN KEY fk_nazione (Nazione)
  REFERENCES Nazioni
  ON DELETE CASCADE
)
```

ESEMPIO 9

CREATE TABLE Città

 (Id INTEGER NOT NULL,
 Nome VARCHAR(50) NOT NULL,
 Popolazione INTEGER NOT NULL,
 Nazione CHAR(3) NOT NULL,
 PRIMARY KEY pk_città (Id),
 FOREIGN KEY fk_citta (Capitale)
 REFERENCES Citta
 ON DELETE NO ACTION

 (Id INTEGER NOT NULL,
 PRIMARY KEY pk_città (Id),
 FOREIGN KEY fk_citta (Capitale)
 REFERENCES Citta

6. SQL per definire e amministrare basi di dati

A. Albano, G. Ghelli, R.Orsini Fondamenti di basi di dati Zanichelli, 2005

CREATE PROCEDURE/FUNCTION

10

CREATE FUNCTION contaStudenti IS

DECLARE

numStudenti INTEGER:

BEGIN

SELECT COUNT(*) INTO numStudenti FROM STUDENTI;

RETURN (numStudenti);

END

A. Albano, G. Ghelli, R.Orsini Fondamenti di basi di dati Zanichelli, 2005

I TRIGGER

• I trigger si basano sul paradigma evento-condizione-azione (ECA):

CREATE TRIGGER Nome

PrimaODopoDi Evento {, Evento}

ON Tabella [WHEN Condizione]

[Granularità]

Azione

PrimaODopoDi := BEFORE | AFTER

Evento := INSERT | DELETE | UPDATE OF Attributi

Granularità := FOR EACH ROW | FOR EACH STATEMENT

6. SQL per definire e amministrare basi di dati

A. Albano, G. Ghelli, R.Orsini Fondamenti di basi di dati Zanichelli, 2005

ESEMPIO DI TRIGGER

12

CREATE TRIGGER ControlloStipendio

BEFORE INSERT ON Impiegati

DECLARE

StipendioMedio FLOAT

BEGIN

SELECT avg(Stipendio) INTO StipendioMedio

FROM Impiegati

WHERE Dipartimento = :new.Dipartimento;

IF: new. Stipendio > 2 * Stipendio Medio

THEN RAISE_APPL._ERR.(-2061, 'Stipendio alto')

END IF;

END:

I TRIGGER

- · Proprietà essenziale dei trigger: terminazione
- · Utilità dei trigger
 - · Trattare vincoli non esprimibili nello schema
 - Attivare automaticamente azioni sulla base di dati quando si verificano certe condizioni

6. SQL per definire e amministrare basi di dati

A. Albano, G. Ghelli, R.Orsini Fondamenti di basi di dati Zanichelli, 2005

CONTROLLO DEGLI ACCESSI

14

- Chi crea lo schema della BD è l'unico che può fare CREATE, ALTER
 e DROP
- Chi crea una tabella stabilisce i modi in cui altri possono farne uso:
 - GRANT Privilegi ON Oggetto TO Utenti [WITH GRANT OPTION]

CONTROLLO DEGLI ACCESSI

- · Tipi di privilegi:
 - · SELECT: lettura di dati
 - INSERT [(Attributi)]: inserire record (con valori non nulli per gli attributi)
 - · DELETE: cancellazione di record
 - UPDATE [(Attributi)]: modificare record (o solo gli attributi)
 - REFERENCES [(Attributi)]: definire chiavi esterne in altre tabelle che riferiscono gli attributi.
- WITH GRANT OPTION: si possono trasferire i privilegi ad altri utenti.

6. SQL per definire e amministrare basi di dati

A. Albano, G. Ghelli, R.Orsini Fondamenti di basi di dati Zanichelli, 2005

CONTROLLO DEGLI ACCESSI (cont.)

16

- Chi definisce una tabella o una VIEW ottiene automaticamente tutti i privilegi su di esse, ed è l'unico che può fare un DROP e può autorizzare altri ad usarla con GRANT.
- Nel caso di viste, il "creatore" ha i privilegi che ha sulle tabelle usate nella definzione.
- · Le autorizzazioni si annullano con il comando:
 - REVOKE [GRANT OPTION FOR] Privilegi ON Oggetto FROM Utenti
 [CASCADE]
- Quando si toglie un privilegio a U, lo si toglie anche a tutti coloro che lo hanno avuto solo da U.

ESEMPI DI GRANT

- · GRANT INSERT, SELECT ON Esami TO Tizio.
- · GRANT DELETE ON On Esami TO Capo WITH GRANT OPTION
 - · Capo può cancellare record e autorizzare altri a farlo.
- · GRANT UPDATE (voto) ON Esami TO Sicuro
 - · Sicuro può modificare solo il voto degli esami.
- · GRANT SELECT, INSERT ON VistaEsamiBD1 TO Albano
 - · Albano può interrogare e modificare solo i suoi esami.

6. SQL per definire e amministrare basi di dati

A. Albano, G. Ghelli, R.Orsini Fondamenti di basi di dati Zanichelli, 2005

GRAFO DELLE AUTORIZZAZIONI

18

- L'utente I ha creato la tabella R e innesca la seguente successione di eventi:
 - · I: GRANT SELECT ON R TO A WITH GRANT OPTION
 - · A: GRANT SELECT ON R TO B WITH GRANT OPTION
 - · B: GRANT SELECT ON R TO A WITH GRANT OPTION
 - I: GRANT SELECT ON R TO C WITH GRANT OPTION
 - · C: GRANT SELECT ON R TO B WITH GRANT OPTION

A. Albano, G. Ghelli, R.Orsini Fondamenti di basi di dati Zanichelli, 2005

- Se un nodo N ha un arco uscente con un privilegio, allora esiste un cammino da SYSTEM a N con ogni arco etichettato dallo stesso privilegio + WGO.
- · Effetto del REVOKE, ad es.

I: REVOKE SELECT ON R FROM A CASCADE

• e poi I: REVOKE SELECT ON R FROM C CASCADE

6. SQL per definire e amministrare basi di dati

A. Albano, G. Ghelli, R.Orsini Fondamenti di basi di dati Zanichelli, 2005

CREAZIONE DI INDICI

20

- · Cosa sono e a cosa servono
- Non è un comando standard dell'SQL e quindi ci sono differenze nei vari sistemi
 - · CREATE INDEX NomeIdx ON Tabella(Attributi)
 - CREATE INDEX NomeIdx ON Tabella
 WITH STRUCTURE = BTREE, KEY = (Attributi)
 - DROP INDEX NomeIdx

- · Alcuni esempi di tabelle, delle quali si mostrano solo alcuni attributi, sono:
 - Tabella delle password:

PASSWORD(username, password)

· Tabella delle basi di dati:

SYSDB(dbname, creator, dbpath, remarks)

Tabella delle tabelle (type = view or table):

SYSTABLES(name, creator, type, colcount, filename, remarks)

6. SQL per definire e amministrare basi di dati

A. Albano, G. Ghelli, R.Orsini Fondamenti di basi di dati Zanichelli, 2005

CATALOGO (cont.)

22

- · Alcuni esempi di tabelle, delle quali si mostrano solo alcuni attributi, sono:
 - Tabella degli attributi:

SYSCOLUMNS(name, tbname, tbcreator, colno, coltype, lenght, default, remarks)

· Tabella degli indici:

SYSINDEXES(name, tbname, creator, uniquerule, colcount)

• e altre ancora sulle viste, vincoli, autorizzazioni, etc. (una decina).

RIEPILOGO 23

 DDL consente la definizione di tabelle, viste e indici. Le tabelle si possono modificare aggiungendo o togliendo attributi e vincoli.

- Le viste si possono interrogare come ogni altra tabella, ma in generale non consentono modifiche dei dati.
- I comandi GRANT / REVOKE + viste offrono ampie possibilità di controllo degli usi dei dati.

6. SQL per definire e amministrare basi di dati

A. Albano, G. Ghelli, R.Orsini Fondamenti di basi di dati Zanichelli, 2005

24

RIEPILOGO

- SQL consente di dichiarare molti tipi di vincoli, oltre a quelli fondamentali di chiave e referenziale.
- Oltre alle tabelle fanno parte dello schema le procedure e i trigger.
- La padronanza di tutti questi meccanismi -- e di altri che riguardano aspetti fisici, affidabilità, sicurezza -- richiede una professionalità specifica (DBA).