Восстановление каплинга по реальным данным в модели Курамото Попытка вторая

22 января 2018 г.

Описание процедуры. Напомним исходное: даны две временные серии (X(t) и Y(t)), polar focalue, описывающие магнитную активность на полюсах Солнцах. Наша цель *при помощи этих измерений восстановить каплинг*. Приведем исправленную процедуру, какой она кажется сейчас:

1. Получим из данных некоторое k(t). Для этого в 11-летнем окне посчитаем скользящую корреляцию между данными X(t) и Y(t), назовем ее C(t). Далее положим систему стационарной или близкой к стационарной, для которой известно, что

$$\theta(t) = \arccos C(t),$$

где $\theta(t)$ — есть фазовая разность между маятниками. Более того, раз система находится в квазистационарном состоянии, то $\dot{\theta} \approx 0$; таким образом, подставляя $\theta(t)$ в уравнение эволюции фазовой разности в модели Курамото:

$$\dot{\theta} = 2\Delta\omega - k(t)\sin\theta(t)$$

находим $k(t)=\frac{2\Delta\omega}{\sin\theta}$ (напоминание о постоянно используемых нами обозначениях опущу).

2. **Найдем** $k_0(t)$. Заметим, что предположение о квазистационарности отнодь не является гарантией того, что при подстановке найденного k(t) в уравнение, мы получим уже известное $\theta(t)$ (как мне казалось ранее, за что я страшно извиняюсь); на самом деле мы ровно и проэксплуатируем тот факт, что мы не находимся в стационарной ситуации. Итак, решим уравнение

$$\dot{\varphi} = 2\Delta\omega - k(t)\sin\varphi(t)$$

с найденным ранее k(t); решение назовем $\varphi(t)$ (чтобы отличать эту фазовую разность от полученной из реальных данных). Добавив же в этот момент квазистацинарность, мы можем получить $k_0(t) = \frac{2\Delta\omega}{\sin\omega}$.

3. Найдем восстановленное при помощи виртуальных маятников $\hat{k}(t)$. Процедуру повторим обычную: по найденной разности $\varphi(t)$ построим два виртуальных маятника

$$\begin{cases} X_0(t) = \sin \Omega t \\ Y_0(t) = \sin \left(\Omega t + \varphi(t)\right) \end{cases},$$

у которых посчитаем скользящую корреляцию $C_0(t)$, для которой из предположения квазистацинарности найдем свои $\varphi_0(t)$ и $\hat{k}(t)$:

$$\varphi_0(t) = \arccos C_0(t), \qquad \hat{k}(t) = \frac{2\Delta\omega}{\sin\varphi_0(t)}$$

Результаты процедуры. Приведем сравнения получаемых фазовых разностей на всех трех этапах и восстановленных каплингов на всех трех этапах для трех разных $\Delta \omega$. Почему?

Заметим следующее: уравнение на шаге 2 можно переписать как

$$\dot{\varphi} = 2\Delta\omega - \frac{2\Delta\omega}{\sin\theta(t)}\sin\varphi(t) = 2\Delta\omega \left(1 - \frac{\sin\varphi(t)}{\sin\theta(t)}\right),\,$$

то есть производная пропорциональна $\Delta\omega$. Как видно на рисунках, похожесть восстановления наблюдается при довольно больших $\Delta\omega$, что вряд ли хорошо.

Рис. 1: $\Delta \omega = 0.01$

Рис. 2: $\Delta\omega=0.01$

Рис. 3: $\Delta\omega=0.1$

Рис. 4: $\Delta\omega=0.1$

Рис. 5: $\Delta\omega=0.5$

Рис. 6: $\Delta\omega=0.5$