Ansys Redhawk-SC Electrothermal (CPA Feature) Training

V2020R2.0 CPS PE

Agenda

- CPA Introduction
- General setup and usage in Redhawk-SC Electrothermal

CPA Solver Highlights

Technology

- Uses 3D FEM and 3D MoM solvers
- Similar to PSI and Q3D solvers
- Extracts RLCG netlist
- Frequency dependency
- Ground bounce preserved

Accuracy

- PDN analysis with FEM solver
- Select MoM solver (Q3D) for better accuracy
- Performance-Accuracy trade-off

System Flow and Usage

- Integrated into Ansys Chip tools
- Integrated into Ansys Slwave
- Very easy to use and detailed reports

Performance/Capacity

- Very high capacity FEM solver full package and PCB structures – 10,000's of sources/sinks
- Fast extraction (minutes to a few hours

 even for extremely large packages with over 30K bumps)

Applications

- Silicon Interposer and RDL
- Thru Silicon Via (TSVs) structures
- Packages, PCBs
- Supports decaps, and embedded components
- PI and SI analysis
- IBIS modeling
- Wideband Spice models

PDN(Power Delivery Network) vs. Frequency

CPA and RedHawk Chip level extraction (up to 2GHz) is enough for PDN extraction

sourced by Power Integrity Modeling and Design for Semiconductors and Systems, p65, Madhavan Swaminathan and A.Ege Engin

CPA vs. PSI Solver, Power Nets of Si Interposer

Solver Types	Parasitic Extraction Time vs. # of Power Networks			
	1 by 1 Grouping	10 x 10 Grouping	Per Pin (4000 ports)	НРС
CPA Solver	32.5 min.	40 min.	2 hrs. 30 min.	4 ea
PSI Solver	3 hrs. 8 min.	6 hrs.	N/A	32 ea

GUI Overview

Solver Selection Recommendation

FEM CPA Solver

- No limit on number of sources and sinks
- Packages and PCBs with well defined ground planes
- Large scale PDN structures
- RDL, Silicon Interposers, TSVs
- No limit on number of Signal lines

MoM Q3D Solver

- Limited number of sources and sinks
- Leadframe designs
- Wirebond packages
- Smaller flip-chip designs
- SI analysis with "fewer" lines
- Can handle larger designs based on memory/run time requirements

- We use FEM solver by default, unless Q3D solver is selected
- For High-speed Signal net extraction, user can select PSI solver

Note: Do not compare partial RLCG data between FEM and MoM solvers. They use different global reference. We can only compare Loop-RLCG results across solvers.

Channel (Port) Setup

Traditional CPA setup using PLOC

Port setup for multiple dies and PSI solver

Note: If ploc has the grouping info in 6th column, CPA also can this pin grouping to do extraction.

Extraction Results – Pin R/L Map

HTML Report Generation

HTML Report – Lumped R/Partial L and Capacitance Matrix

7.6 Lumped Resistance and Partial Inductance matrix

S.No.	Net	Net	R (mOhm)	L (pH)
1	VDD_15	VDD_15	3.14256	445.491
2	vss	VDD_15		87.6378
3	VSS	vss	0.0910571	169.371

7.7 Per-domain Capacitance matrix

S.No.	Net	Net	C (pF)
1	VDD_15	VDD_15	0.047212
2	VDD_15	VSS	3.00085
3	VSS	VSS	0.395195

Go to top

User can review the Lumped R/Partial L and Cap per domain in this section.

Chip + Package DC Co-sim

Package DC Co-sim Results Check

Package EM Check

Tool Installation

- Set Redhawk-SC Electrothermal path and license :
 - setenv CPSROOT <choose the version installed on your server>
 - set path = (\$CPSROOT/bin \$path)
 - setenv LM_LICENSE_FILE <To your redhawk_sc_Electrothermal license>
- To execute Redhawk-SC Electrothermal :
 - redhawk_sc_et -3dic (et license)
 - Or redhawk_sc_et (cpa license)
- Evaluation Package(include product/demo/testcase/material)

https://download.ansys.com/Semiconductor%20Products

RedHawk-SC ElectroThermal Downloads				
Product Name	Size (Bytes)	md5sum	Details	
RedHawk-SC ElectroThermal 2020R2.0 Evaluation Package	864,899,758	d7b91e923a08d3aed85b369ff5d70e7f		

Ansys