Clustering

Last time ...

- ▶ PageRank
 - ► Topic-sensitive
 - ▶ Link Spam

- ▶ Today
 - ▶ Clustering

Points, Spaces & Distances

- Points
- Spaces (normed vector space)
 - ▶ e.g. Euclidean
 - $\|x\| > 0$, if $x \neq 0$
 - $\|\alpha x\| = |\alpha| \|x\|$ for any scalar α
 - ► Triangle inequality, $||x + y|| \le ||x|| + ||y||$
- Distance measure
 - ▶ non-negative
 - Symmetric
 - ▶ Triangle inequality

Clustering

- ► Hierarchical or agglomerative algorithms
- Point assignment
- Euclidean or arbitrary distance measure (e.g. Riemann, Hyperbolic)
 - Centroid of cluster
- Will the data fit in main memory
- Dimensionality

Hierarchical Clustering

- \blacktriangleright Start with n clusters, with 1 point each
- While (not stopping criteria)
 - pick two clusters to merge
 - Merge clusters and update centroid
- ▶ Each iteration is $O(n^2)$
 - $\triangleright \mathcal{O}(n^3)$
 - $\triangleright \mathcal{O}(n^2 \log n)$
- ▶ Use fast distance computations \rightarrow BSP / octrees $\rightarrow \mathcal{O}(n \log n)$

Non-Euclidian Spaces

- Need to pick appropriate distance measure
- Centroid not appropriate for clustering
 - Choose a sample in place of centroid
- Hyperplane partitions

K-means clustering

- Point assignment algorithm
- Assume Euclidean space
- \triangleright Assume number of clusters, k, is known in advance
- 1. Choose k points that are likely to be in different clusters
- 2. Foreach remaining point p do
 - 1. Find the cluster (centroid) closest to p
 - 2. Add p to this cluster
 - 3. Update the centroid for the cluster

Initializing the clusters

- ▶ Pick points that are as far away from one another as possible
 - Pick a random first point
 - Add additional points that maximize the minimal distance to already selected points
- Cluster a sample of the data and choose clusters
 - Random samples
 - ▶ Hierarchical clustering

Bradley, Fayyad & Reina (BFR)

- ▶ High-dimensional Euclidean space
- Clusters are normally distributed about the centroid (assumption)
- Start by choosing k centroids
- Read data in chunks
- Keep 3 types of information in memory
 - ▶ Discard Set $\rightarrow 2d + 1$ values (number of points, sum, sum of squares)
 - ▶ Compressed Set \rightarrow 2d + 1 values
 - Retained Set

Bradley, Fayyad & Reina (BFR)

- First, all points that are sufficiently close to the centroid of a cluster are added to that cluster (Mahalanobis distance)
- ▶ For the points that are not sufficiently close to any centroid, we cluster them, along with the points in the retained set
- Merge miniclusters (new clusters + existing compressed set)
- Final processing of points in the retained set and the miniclusters in the compressed set
 - ▶ Discard → outliers
 - merge

Clustering Using REpresentatives

- CURE
- Assumes Euclidean space
- No assumptions on the shape of clusters
- Uses a collection of representative points
- 1. Sample data and cluster hierarchically
- 2. Select representative points for each cluster
- 3. Move each of the representative points a fixed fraction of the distance between its location and the centroid of its cluster
- 4. Merge clusters if close

Clustering in non-Euclidean spaces

Clustering in non-Euclidean spaces

- Use a combination of hierarchical and point-assignment
- Represent clusters by sample points in memory
- Organize clusters hierarchically in a tree
- Insert new points by traversing the tree

Representing Clusters (Ganti et al.)

- Clusters represented by a set of features
 - N, total number of points in the cluster
 - Clusteroid > point in the cluster that has minimum cumulative squared distance to all other points
 - ▶ The cumulative squared distance (CSD) of the clusteroid
 - k closest points to the clusteroid and their CSD
 - ▶ New clusteroid will be from one of these
 - ▶ k furthest points to the clusteroid and their CSD
 - ▶ Needed to decide whether to merge two clusters

Initializing the tree

- Tree structure is similar to a B-tree
- Each leaf node holds as many clusters as possible
- Interior nodes holds a sample of the clusteroids on its subtrees
- Initialize by hierarchically clustering a sample of the data
 - Choose only clusters that are of a specific size
 - ▶ These are the leaf nodes
 - Group clusters based on common ancestors
- Balance tree if necessary

Adding points

- Read points from disk and traverse down tree, using distance to clusteroid (samples)
- On reaching the leaf, pick and update the cluster representation
 - ▶ Increment N
 - ▶ Update the CSD of all 2k + 1 points
 - Squared distance to the new point
 - Estimate the CSD of the new point, p
 - $\triangleright \mathsf{CSD}(p) = \mathsf{CSD}(c) + Nd^2(p,c)$
 - Check if p is either the k nearest or farthest point
 - Check if one of the k nearest points is the new clusteroid

Clustering in a Streaming model

- Assume a sliding window of N points
- We are interested in the clusteroids of the best clusters formed from the most recent m points, for any $m \le N$
- Pre-cluster the points so that queries can be answered

Stream-Clustering (Babcock et al.)

- Partition and summarize data into buckets
 - ▶ Bucket sizes are powers of two $\rightarrow c 2^k$
 - Only one or two of any size
 - Bucket sizes are restrained to be non-decreasing as we go back in time
 - $\triangleright \log N$ buckets
- Contents of a bucket
 - Size of the bucket
 - ▶ Timestamp of the bucket → most recent point
 - Cluster representations (multiple clusters per bucket)
 - ▶ Number of points in the cluster
 - Clusteroid
 - ▶ Other info needed to merge and maintain the clusters

Initializing buckets

- p smallest bucket size
- \triangleright Every p points, create a new bucket. Timestamp the bucket
 - Cluster points
- Drop any bucket older than N
- ▶ If we have 3 buckets of size $p \rightarrow$ merge the two oldest
- \blacktriangleright Might have to propagate merges $(2p, 4p \dots)$

Merging buckets

- Size of new bucket is twice as large
- Timestamp of the new bucket is the newer of the two being merged
- Decide on whether to merge clusters
- Consider: k-means, Euclidean
 - ightharpoonup Represent clusters using number of points (n) and centroid (c)
 - ▶ Choose p = k, or larger $\rightarrow k$ -means clustering while creating bucket
 - ▶ To merge, $n = n_1 + n_2$, $c = \frac{n_1 c_1 + n_2 c_2}{n_1 + n_2}$

Merging buckets

- Size of new bucket is twice as large
- Timestamp of the new bucket is the newer of the two being merged
- Decide on whether to merge clusters
- Consider: non-Euclidean (Ganti et al.)
 - Represent clusters using clusteroid and CSD
 - Need to choose new clusteroid while merging
 - \blacktriangleright Will be one of the k-points furthest from the clusteroids
 - \triangleright $CSD_m(p) = CSD_1(p) + N_2(d^2(p, c_1) + d^2(c_1, c_2)) + CSD_2(c_2)$

Answering queries

 \blacktriangleright Given m, choose the smallest set of buckets that covers the most recent m points. At most 2m points

Merge clusters

