Trabalho 2 Grupos e Corpos

Yuri Kosfeld

Junho 2025

Exercício (4.1.8). a) Poderiámos provar utilizando Eisenstein, mas vamos mostrar por um processo analogo a um exemplo dessa seção. Informalmente, sabemos que uma raiz de $x^2 - 3$ é $\sqrt{3}$, assim sabemos que o polinomio pode ser reescrito como $x^2 - 3 = (x - \sqrt{3})(x + \sqrt{3})$. Então se $\sqrt{3} \in \mathbb{Q}(\sqrt{2})$, o polinomio é redutivel. Suponha então que $\sqrt{3} \in \mathbb{Q}(\sqrt{2})$. Logo $\exists a, b \in \mathbb{Q}$ tais que $\sqrt{3} = a + b\sqrt{2}$.

$$(\sqrt{3})^2 = (a + b\sqrt{2})^2$$
$$3 = a^2 + 2ab\sqrt{2} + 2b^2$$
$$= (a^2 + 2b^2) + (2ab)\sqrt{2}$$

Assim temos, $a^2 + 2b^2 = 3$ e 2ab = 0. Como 2ab = 0, então ou a = 0 ou b = 0.

- Se a=0, então $2b^2=3\Rightarrow b=\sqrt{3/2}$ e logo $b\notin\mathbb{Q}$, absurdo.
- ullet O caso b=0 é analago ao anterior, também chegando em um absurdo.

Logo $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$ e assim o polinomio é irredutivel.