EXERCICES — CHAPITRE 10

Exercice 1 – On considère une variable aléatoire *X* prenant les valeurs 0, 1, 2 et 3.

On donne $P(X = 0) = \frac{1}{10}$, $P(X = 1) = \frac{1}{8}$ et $P(X = 2) = \frac{1}{5}$.

- 1. Déterminer P(X = 3).
- 2. Calculer l'espérance de *X*.

Exercice 2 – On considère une variable aléatoire X prenant les valeurs 0, 1, 2, 3 et 4.

On donne $P(X = 0) = \frac{1}{10}$, $P(X = 1) = \frac{1}{4}$ et $P(X = 2) = \frac{1}{2}$.

- 1. Sachant que les évènements [X = 3] et [X = 4] sont équiprobables, déterminer P(X = 3).
- 2. Calculer l'espérance de *X*.

Exercice 3 – Pour jouer à ce jeu, on mise $0.5 \in$. On lance deux dés non-truqués. Si on obtient deux nombres 1, on reçoit $2 \in$. Si on obtient deux nombres identiques autres que 1, on reçoit $1 \in$ et sinon on ne reçoit rien. X est le gain algébrique.

- 1. Déterminer la loi de X.
- 2. Calculer E(X).

Exercice 4 – Soit *X* une variable aléatoire dont la loi est donnée par $X(\Omega) = \{-1,0,2\}$ et

$$P(X = -1) = \frac{1}{6}$$
, $P(X = 0) = \frac{1}{3}$ et $P(X = 2) = \frac{1}{2}$.

Déterminer la fonction de répartition F de X.

Exercice 5 – Le nombre de pannes journalières d'une machine est une variable aléatoire *X* dont la loi de probabilité est donnée par

х	0	1	2	3	4	5	6
P(X = x)	0.30	0.20	0.15	0.15	0.10	0.05	0.05

- 1. Quelle est la fonction de répartition de *X*? En donner une représentation graphique.
- 2. Quelle est la probabilité que la machine ait plus de 3 pannes?
- 3. Trouver x_0 tel que $P(X \ge x_0) = 0.5$.
- 4. Trouver x_1 tel que $P(X \leqslant x_1) = 0.8$.
- 5. Calculer E(X).

Exercice 6 – On considère une variable aléatoire X dont la loi est donnée par

$$P(X = -2) = \frac{1}{4}$$
, $P(X = -1) = \frac{1}{8}$, $P(X = 1) = \frac{1}{2}$ et $P(X = 2) = \frac{1}{8}$.

Calculer l'espérance et la variance de X.

Exercice 7 – On considère une variable aléatoire X dont la loi est donnée par

$$P(X = -1) = \frac{1}{4}$$
, $P(X = 0) = \frac{1}{2}$ et $P(X = 1) = \frac{1}{4}$.

Calculer l'espérance et la variance de *X*.

Exercice 8 – Une urne contient 4 boules blanches et 5 boules noires. Les boules sont indiscernables au toucher. On prend au hasard et simultanément trois boules de l'urne. On appelle *X* la variable aléatoire égale au nombre de boules blanches obtenues lors du tirage.

- 1. Déterminer le support de *X*.
- 2. Donner la loi de probabilité de *X*.
- 3. Calculer l'espérance et l'écart-type de *X*.

Exercice 9 – On dispose de deux urnes *U* et *V*. L'urne *U* contient 3 boules noires et 2 boules blanches et l'urne *V* contient 4 boules noires et 1 boule blanche.

- 1. On choisit une urne <u>au hasard</u> et on en extrait successivement 3 boules, avec remise à chaque fois de la boule tirée. On note
 - U l'évènement "le tirage s'effectue dans l'urne U",
 - V l'évènement "le tirage s'effectue dans l'urne V".

On note X la variable aléatoire égale au nombre de boules noires tirées.

- (a) Déterminer $P_U(X = 0)$ et $P_V(X = 0)$.
- (b) En déduire la probabilité P(X = 0).
- 2. On choisit encore une urne au hasard et on en extrait successivement 3 boules, <u>sans</u> <u>remise</u> de la boule tirée. On note *Y* la variable aléatoire égale au nombre de boules noires tirées.
 - (a) Déterminer $P_U(Y=3)$ et $P_V(Y=3)$.
 - (b) En déduire la probabilité P(Y = 3).

Exercice 10 – On tire une boule au hasard dans une urne qui contient n boules blanches et m boules noires. On note X la variable aléatoire qui vaut 1 si l'on obtient une boule blanche et 0 si l'on obtient une boule noire. Quelle est la loi de X?

Exercice 11 – On procède à *n* lancers d'un dé dont les six faces sont numérotées de 1 à 6. On note *X* la variable aléatoire égale au nombre de fois où l'on obtient un numéro pair. Quelle est la loi de *X*?

Exercice 12 – Une urne contient a boules blanches et b boules noires. On effectue deux tirages successifs, en remettant à chaque fois la boule tirée.

- 1. Soit X_1 la variable aléatoire égale au rang de tirage de la première boule blanche. Reconnaître la loi de X_1 et donner sans calculs $E(X_1)$ et $V(X_1)$.
- 2. Soit X_2 la variable aléatoire égale au rang de tirage de la deuxième boule blanche. Donner la loi de X_2 et calculer son espérance.
- 3. Comparer $E(X_1)$ et $E(X_2)$. Commenter.

Exercice 13 – On considère une pièce dont la probabilité d'avoir *Pile* est de 0.3. On lance la pièce 10 fois. Quelle est la probabilité d'obtenir 3 *Pile*?

Exercice 14 – À chaque balade à cheval qu'il effectue, la probabilité que le cavalier soit désarçonné est égale à $\frac{1}{4}$.

- 1. Quelle est la probabilité qu'il ait fait 2 chutes au terme de 10 balades?
- 2. Sachant que 3 chutes entraînent obligatoirement une blessure grave, quelle est la probabilité qu'il ne soit pas blessé après ces 10 balades?

Exercice 15 - complet de ESC 2014

Un immeuble est constitué de 3 étages. Dans le hall de l'immeuble on peut accéder à un ascenseur qui distribue chaque étage. 5 personnes montent ensemble dans l'ascenseur. On suppose que chacune d'elles souhaite monter à l'un des trois étages de manière équiprobable et indépendamment des 4 autres. On suppose également que l'ascenseur dessert les étages demandés dans l'ordre et qu'il ne revient pas en arrière.

On note X_1 la variable aléatoire égale au nombre de personnes s'arrêtant à l'étage numéro 1, X_2 la variable aléatoire égale au nombre de personnes s'arrêtant à l'étage numéro 2 et X_3 celle égale au nombre de personnes s'arrêtant à l'étage numéro 3.

- 1. (a) Reconnaître la loi de X_1 . Décrire l'ensemble $X_1(\Omega)$ des valeurs prises par X_1 . Donner $P(X_1 = k)$ pour chaque k appartenant à $X_1(\Omega)$.
 - (b) Donner $E(X_1)$ et $V(X_1)$.
 - (c) Expliquer pourquoi X_2 et X_3 suivent la même loi que X_1 .
- 2. (a) Justifier que $X_1 + X_2 + X_3 = 5$.
 - (b) En déduire la probabilité $P((X_1 = 0) \cap (X_2 = 0))$.
 - (c) Montrer que la probabilité que l'ascenseur ne s'arrête qu'une fois est $\frac{1}{81}$.
- 3. On considère la variable aléatoire Z égale au nombre d'arrêts de l'ascenseur. D'après 2c, on a $P(Z=1)=\frac{1}{81}$. Déterminer l'ensemble $Z(\Omega)$ des valeurs prises par Z.
- 4. Soit Y_1 la variable aléatoire de Bernoulli égale à 1 si l'ascenseur s'arrête au premier étage et à 0 sinon. On définit de même les variables aléatoires Y_2 et Y_3 pour les étages 2 et 3.
 - (a) Justifier que $P(Y_1 = 0) = P(X_1 = 0)$.
 - (b) En déduire $P(Y_1 = 0)$ puis $E(Y_1)$. On admet que Y_2 et Y_3 suivent la même loi que Y_1 et qu'elles ont donc la même espérance.
 - (c) Exprimer Z en fonction de Y_1 , Y_2 et Y_3 . Calculer E(Z) et vérifier que

$$E(Z) = \frac{211}{81}.$$

Exercice 16 - extrait de ECRICOME 2013

Une entreprise fabrique des appareils électriques en grande quantité.

Partie I - Probabilités conditionnelles

On admet que 5% des appareils présentent un défaut. On contrôle les appareils d'un lot. Ce contrôle refuse 90% des appareils avec défaut et accepte 80% des appareils sans défaut. On prélève au hasard dans le lot.

On considère les évènements suivants

- D: "l'appareil a un défaut",
- *A* : "l'appareil est accepté à l'issue du contrôle".
- 1. Donner la valeur des probabilités et probabilités conditionnelles suivantes

$$P(D)$$
, $P(\overline{D})$, $P_D(\overline{A})$, $P_D(A)$ et $P_{\overline{D}}(A)$.

2. Calculer à 0.01 près les probabilités suivantes

$$P(A \cap D)$$
 et $P(A \cap \overline{D})$.

- 3. Déduire de ce qui précède la probabilité P(A) à 0.001 près.
- 4. Calculer à 0.001 près la probabilité qu'un appareil soit défectueux sachant qu'il a été accepté par le contrôle.

Partie II - Loi binomiale

On prélève au hasard 10 appareils électriques d'une livraison pour vérification. La livraison étant suffisamment importante pour que l'on puisse assimiler ce prélèvement à un tirage avec remise des appareils. On rappelle que 5% des appareils présentent un défaut. On considère la variable aléatoire X qui, à tout prélèvement de 10 appareils, associe le nombre d'appareils **sans défaut** de ce prélèvement.

- 1. Justifier que X suit une loi binomiale dont on déterminera les paramètres. Préciser $X(\Omega)$ et pour tout $k \in X(\Omega)$, donner la valeur de P(X = k).
- 2. Donner la probabilité que, dans un tel prélèvement, tous les appareils soient sans défaut.
- 3. Donner la probabilité que, dans un tel prélèvement, au moins un appareil ait un défaut.

Exercice 17 - complet de ESC 2012

Un professeur interroge ses élèves en posant une liste de 20 questions. Pour chaque question, il y a trois réponses possibles, une seule étant la bonne réponse. L'élève *A* répond au questionnaire. On suppose que

- l'élève A ne connaît que 60% de son cours, c'est-à-dire que, pour chaque question, la probabilité qu'il connaisse la réponse est $\frac{60}{100}$,
- Lorsqu'il ne connait pas une réponse à une question, il répond au hasard,
- les questions posées sont mutuellement indépendantes.

On considère les évènements

- *R* : "l'élève *A* connaît la réponse à la première question".
- *J* : "l'élève *A* répond juste à la première question".
- 1. Montrer en utilisant la formule des probabilités totales que $P(J) = \frac{11}{15}$. Soit X la variable aléatoire égale au nombre de réponses exactes données par l'élève aux vingt questions.
- 2. Reconnaître la loi de X. On donnera les valeurs prises par X et, pour chacune de ces valeurs k, la valeur de P(X=k).
- 3. Donner E(X) et V(X) l'espérance et la variance de X.
- 4. Pour sanctionner les choix faits au hasard, le professeur décide d'accorder un point par réponse exacte et de retirer deux points par réponse fausse. Soit *N* la variable aléatoire égale à la note obtenue par l'élève *A*.
 - (a) Justifier l'égalité N = 3X 40.
 - (b) En déduire l'espérance de N ainsi que sa variance.

L'élève *B* répond lui aussi au questionnaire. On suppose que comme l'élève *A*, il ne connaît que 60% de son cours. Mais il choisit de ne répondre qu'aux questions dont il connaît la réponse.

- 5. Soit *Y* la variable aléatoire égale au nombre de bonnes réponses de l'élève *B*.
 - (a) Déterminer la loi de Y.
 - (b) En déduire la note que l'élève B obtient en moyenne.
 - (c) En moyenne, entre l'élève *A* et l'élève *B*, quelle est la meilleure stratégie pour obtenir une bonne note?