Relatório do Projeto 2 de Inteligência Artificial

Mihail Brinza
83533

Ricardo Brancas

83557

8 de Dezembro de 2017

1 Métodos de Classificação

Para classificar as plavras escolhemos de entre outras, com recurso a *cross validation*, as seguintes *features*:

- 1. Paridade do número de caracteres;
- 2. Paridade do número de caracteres "z";
- 3. Paridade do número de vogais;
- 4. Paridade do número de consoantes;
- 5. Número de caracteres "a".

Para escolher o classificador, usámos novamente cross validation com os classificadores k-neighbors, com $k = \{1, 3, 5, 7, 9\}$ e decision tree, obtendo os resultados indicados na tabela 1.

	Conjunto 1	Conjunto 2
1- $neighbor$	1.0	1.0
3-neighbors	1.0	1.0
5-neighbors	1.0	1.0
7-neighbors	1.0	1.0
9-neighbors	1.0	1.0
$Decision\ Tree$	1.0	1.0

Tabela 1: F_1 scores da validação cruzada para o problema 1.

Concluímos portanto que, para estas features, qualquer um dos classificadores testados escolhe sempre bem dentro do conjunto de treino. Mais tarde verificámos que a escolha também é sempre acertada no conjunto de testes.

Decidimos utilizar o *Decision Tree Classifier* porque escolhe corretamente com maior probabilidade mesmo quando utilizamos *features* piores.

2 Métodos de Regressão

Para escolher o método de regressão mais apropriado usamos *cross validation* pontuado pelo erro quadrático médio, obtendo os resultados dispostos na tabela 2.

	$g_1()$	$g_2()$
Linear Regression	0.94	816
$KR^1 \ (\gamma = 0.05, \ \alpha = 0.1)$	0.67	1235
$KR^1 \ (\gamma = 0.05, \ \alpha = 0.01)$	0.34	707
$KR^1 \ (\gamma = 0.05, \ \alpha = 0.001)$	0.14	428
$KR^1 \ (\gamma = 0.1, \ \alpha = 0.1)$	0.23	1265
$KR^1 \ (\gamma = 0.1, \ \alpha = 0.01)$	0.10	811
$KR^1 \ (\gamma = 0.1, \ \alpha = 0.001)$	0.10	548
$KR^1 \ (\gamma = 0.2, \ \alpha = 0.1)$	0.40	1445
$KR^1 \ (\gamma = 0.2, \ \alpha = 0.01)$	0.24	1104
$KR^1 \ (\gamma = 0.2, \ \alpha = 0.001)$	0.66	799
$KR^2 \text{ (degree = 2)}$	2.27	3589
$KR^2 \text{ (degree = 3)}$	7.75	0.38
$KR^2 \text{ (degree = 4)}$	0.93	1.25
$KR^2 \text{ (degree = 5)}$	21.72	4.39
Decision Tree	0.73	1290

Tabela 2: *MSE scores* da validação cruzada para o problema 2. Os erros dentro do *threshold* definido estão marcados a azul.

Das duas parametrizações testadas que apresentam resulados aceitáveis para ambas as funções decidimos utilizar a Kernel Ridge Regression com kernels do tipo radial basis function e parâmetros $\{\gamma=0.1,\ \alpha=0.001\}$. Apresentamos nas figuras 1 e 2 os resultados obtidos.

Figura 1: Resultados obtidos para a função 1.

 $^{^1}Kernel\ Ridge\ com\ radial\ basis\ function\ kernel$

²Kernel Ridge com polynomial kernel

Figura 2: Resultados obtidos para a função 2.

3 Aprendizagem por Reforço

3.1 Trajetórias Aprendidas

3.1.1 Exemplo 1

$$5_0 \xrightarrow{0} 6_1 \xrightarrow{0} 6_1 \xrightarrow{0} 6_1 \xrightarrow{0} 6_1$$

3.1.2 Exemplo 2

$$5_0 \xrightarrow{0} 6_1 \xrightarrow{0} 1_0 \xrightarrow{1} 0_1 \xrightarrow{1} 0_{(1)}$$

3.2 Modelo do Mundo

3.2.1 Exemplo 1

Neste primeiro exemplo o ambiente consiste numa série de quadrículas sequênciais, tal como demonstrado na figura 3, em que a ação 1 corresponde a dar um passo para a esquerda e a ação 0 corresponde a dar um passo para a direita. Tentar andar para fora dos limites não tem qualquer efeito. Para além disto, no estado 5 a ação 0 não é determinística; ao realizar esta ação, o agente pode ir ter ao estado 6 ou permanecer no estado 5.

Figura 3: Ambiente 1. Os nós com duplo contorno são os nós de recompensa.

Por fim determinámos que o agente é recompensado (r=1) sempre que o estado inicial (antes da

ação) é um estado limite. (i.e. 0 ou 6), não sendo recompensado nas outras situações (r=0).

Como tal, quando começamos no estado 5 o melhor curso de ação é andar rapidamente para o estado limite mais próximo, o 6, e depois mantermonos lá.

3.2.2 Exemplo 2

No segundo exemplo o ambiente é muito semelhante ao primeiro com exceção do estado 6. Agora quando tentamos andar para a direita (ação 0) nesse estado voltamos para o estado 1, tal como representado na figura 4. A função de recompensa mantem-se também inalterada, sendo 1 quando o estado inicial é o zero ou o seis, e 0 caso contrário.

Figura 4: Ambiente 2. Os nós com duplo contorno são os nós de recompensa.

Como tal [quando começamos no estado 5] já não é possível usar a estratégia anterior de ficar parado no estado 6. Assim, o melhor a fazer nesta situação é tentermo-nos dirigir para o estado 0, de modo a maximizar a recompensa a longo prazo, que é exatamente o que obtemos com o algoritmo Q-learning.