

Hieroglyphs

O echipă de cercetători studiază asemănările între șiruri de hieroglife. Ei reprezintă fiecare hieroglif printr-un întreg nenegativ. Pentru a desfășura studiul ei folosesc următoarele concepte despre șiruri. Pentru un șir dat A, un șir S se numește **subșir** al lui A dacă și numai dacă S poate fi obținut ștergând anumite elemente (eventual niciunul) din A. În tabelul următor sunt câteva exemple de subșiruri ale șirului A = [3,2,1,2].

Subșir	Cum poate fi obținut din ${\cal A}$
[3, 2, 1, 2]	Nu se șterge niciun element.
[2, 1, 2]	[3 , 2, 1, 2]
[3, 2, 2]	[3, 2, 1 , 2]
[3, 2]	[3, 2 , 1 , 2] or [3, 2, 1 , 2]
[3]	[3, 2 , 1 , 2]
[]	[3 , 2 , 1 , 2]

Pe de altă parte, [3,3] sau [1,3] nu sunt subșiruri ale lui A.

Considerăm două subșiruri de hieroglife, A și B. Un șir S se numește **subșir comun** al lui A și B dacă și numai dacă S este subșir atât pentru A cât și pentru B.

Mai mult, spunem că subșirul U este **subșir comun universal** pentru A și B dacă și numai dacă se îndeplinesc următoarele două condiții:

- U este subșir comun al lui A și B.
- Orice subșir comun al lui A și B este de asemenea subșir al lui U.

Se poate arăta că oricare două șiruri A și B au cel mult un subșir comun universal.

Cercetătorii au găsit două secvențe de hieroglife A și B.

Şirul A are N hieroglife iar şirul B are M hieroglife.

Ajutați cercetătorii să determine un subșir comun universal pentru șirurile A și B sau determinați dacă nu există un astfel de subșir.

Detalii de implementare

Aveți de implementat următoarea funcție.

std::vector<int> ucs(std::vector<int> A, std::vector<int> B)

- A: un tablou de lungime N care descrie primul șir.
- B: un tablou de lungime M care descrie al doilea șir.
- Dacă există un subșir comun universal pentru A și B, funcția va returna un tablou care reprezintă subșirul comun universal al lor. Altfel, fucnția va returna [-1] (un tablou de lungime 1, al cărui singur element este -1).
- Această funcție este apelată o singură dată la fiecare test.

Restricții

- $1 \le N \le 100\,000$
- $1 \le M \le 100\,000$
- $0 \leq A[i] \leq 200\,000$, $0 \leq i < N$
- $0 \leq B[j] \leq 200\,000$, $0 \leq j < M$

Subtaskuri

Subtask	Punctaj	Restricții suplimentare
1	3	N=M; A și B sunt formate din N întregi $distincți$ cuprinși între 0 și $N-1$ (inclusiv)
2	15	Pentru orice întreg k , numărul de elemente ale lui A egale cu k plus numărul de elemente ale lui B egale cu k este cel mult 3 .
3	10	$A[i] \leq 1$ pentru orice i cu $0 \leq i < N$; $B[j] \leq 1$ pentru orice j cu $0 \leq j < M$
4	16	Există un subșir comun universal pentru A și B .
5	14	$N \leq$ 3000; $M \leq$ 3000
6	42	Fără restricții suplimentare.

Exemple

Exemplul 1

Considerăm următorul apel.

```
ucs([0, 0, 1, 0, 1, 2], [2, 0, 1, 0, 2])
```

Aici, subșirurile comune pentru A și B sunt următoarele: $[\]$, [0], [1], [2], [0,0], [0,1], [0,2], [1,0], [1,2], [0,0,2], [0,1,0], [0,1,2], [1,0,2] and [0,1,0,2].

Întrucât [0,1,0,2] este un subșir comun al lui A și B, și toate subșirurile comune ale lui A și B sunt subșiruri ale lui [0,1,0,2], funcția trebuie să returneze [0,1,0,2].

Exemplul 2

Considerăm următorul apel.

```
ucs([0, 0, 2], [1, 1])
```

Aici, singurul subșir comun al lui A și B este șirul vid $[\,]$. Asta înseamnă că funcția trebuie să returneze un tablou fără niciun element $[\,]$.

Exemplul 3

Considerăm următorul apel.

```
ucs([0, 1, 0], [1, 0, 1])
```

Aici, subșirurile comune pentru A și B sunt $[\,\,],[0],[1],[0,1]$ and [1,0]. Se poate arăta că un subșir universal comun nu există. Așadar, funcția trebuie să returneze [-1].

Grader local

Format de intrare:

```
N M
A[0] A[1] ... A[N-1]
B[0] B[1] ... B[M-1]
```

Format de ieșire:

```
T
R[0] R[1] ... R[T-1]
```

Aici, R este tabloul returnat de ucs și T este lungimea sa.