phw3

May 11, 2025

```
[2]: # Necessary libraries
     import h5py
     import numpy as np
     import matplotlib.pyplot as plt
     import math
     from collections import Counter
     import tensorflow as tf
     from sklearn.model_selection import train_test_split
     from sklearn.utils import shuffle
     from sklearn.preprocessing import LabelEncoder
     from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
     from tensorflow.keras.utils import to_categorical
     import librosa, librosa.display, numpy as np, matplotlib.pyplot as plt, pandas⊔
      ⇔as pd
     from tensorflow.keras.models import load_model
     import pathlib
     data = h5py.File('birds/bird_spectrograms.hdf5', 'r')
```

```
[3]: # loading the file
data = h5py.File('birds/bird_spectrograms.hdf5', 'r')

bird_names = list(data.keys())
print(bird_names)

#labeling them for readability
names = {
    'amecro': 'American Crow',
    'amerob': 'American Robin',
    'bewwre': 'Bewicks Wren',
    'bkcchi': 'Black capped Chickadee',
    'daejun': 'Dark eyed Junco',
    'houfin': 'House Finch',
    'houspa': 'House Sparrow',
    'norfli': 'Northern Flicker',
    'rewbla': 'Red winged Blackbird',
    'sonspa': 'Song Sparrow',
```

```
'spotow': 'Spotted Towhee',
    'whcspa': 'White crowned Sparrow'
print(names)
print("All bird species:")
all_birds = [names[code] for code in bird_names]
for bird in all_birds:
    print(bird)
for code in bird names:
    shape = data[code].shape
    print(f"{code:7s} {names.get(code, 'Unknown'):25s} {shape}")
n_cols, n_rows = 3, math.ceil(len(bird_names) / 3)
fig, axes = plt.subplots(n_rows, n_cols, figsize=(12, 4 * n_rows))
axes = axes.flatten()
for i, code in enumerate(bird_names):
        spectro = data[code][:, :, 0]
        axes[i].imshow(spectro, aspect="auto", origin="lower", cmap="gray")
        axes[i].set_title(f"{code} | {names.get(code, '')}", fontsize=9)
        axes[i].set_xlabel("Time bins")
        axes[i].set ylabel("Frequency bins")
for j in range(i + 1, len(axes)):
    axes[j].axis("off")
plt.tight_layout()
plt.show()
['amecro', 'amerob', 'bewwre', 'bkcchi', 'daejun', 'houfin', 'houspa', 'norfli',
'rewbla', 'sonspa', 'spotow', 'whcspa']
{'amecro': 'American Crow', 'amerob': 'American Robin', 'bewwre': 'Bewicks
Wren', 'bkcchi': 'Black capped Chickadee', 'daejun': 'Dark eyed Junco',
'houfin': 'House Finch', 'houspa': 'House Sparrow', 'norfli': 'Northern
Flicker', 'rewbla': 'Red winged Blackbird', 'sonspa': 'Song Sparrow', 'spotow':
'Spotted Towhee', 'whcspa': 'White crowned Sparrow'}
All bird species:
American Crow
American Robin
Bewicks Wren
Black capped Chickadee
Dark eyed Junco
House Finch
House Sparrow
Northern Flicker
```

Red winged Blackbird Song Sparrow Spotted Towhee White crowned Sparrow

White ci	rowned Sparrow			
amecro	American Crow	(128,	517,	66)
amerob	American Robin	(128,	517,	172)
bewwre	Bewicks Wren	(128,	517,	144)
bkcchi	Black capped Chickadee	(128,	517,	45)
daejun	Dark eyed Junco	(128,	517,	125)
houfin	House Finch	(128,	517,	84)
houspa	House Sparrow	(128,	517,	630)
norfli	Northern Flicker	(128,	517,	37)
rewbla	Red winged Blackbird	(128,	517,	187)
sonspa	Song Sparrow	(128,	517,	263)
spotow	Spotted Towhee	(128,	517,	137)
whcspa	White crowned Sparrow	(128,	517,	91)

[4]: with data as f:
 song_sparrow = f['sonspa'][...].astype(np.float32) / 255.0

```
white_sparrow = f['whcspa'][...].astype(np.float32) / 255.0
        # making into 2-d
       song_sparrow = np.transpose(song_sparrow, (2, 0, 1))
       white_sparrow = np.transpose(white_sparrow, (2, 0, 1))
       # making both the classes the same length
       minimum_length = min(song_sparrow.shape[0], white_sparrow.shape[0])
       song_sparrow = song_sparrow[:minimum_length]
       white_sparrow = white_sparrow[:minimum_length]
       # Labels, O for Song Sparrow, 1 for white crowned sparrow
       song_one = np.zeros(minimum_length, dtype=np.uint8)
       white_one = np.ones(minimum_length, dtype=np.uint8)
       x_class = np.concatenate([song_sparrow, white_sparrow], axis=0)
       y_class = np.concatenate([song_one, white_one], axis=0)
       x_class = x_class[..., np.newaxis]
       x_class, y_class = shuffle(x_class, y_class, random_state=42)
       # Splitting 30% train, 40% test, 30% validation set
       x_one, x_test, y_one, y_test = train_test_split(x_class, y_class, u_class, u_cl

stest_size=0.4, stratify=y_class, random_state=42)

       x_train, x_valid, y_train, y_valid = train_test_split(x_one, y_one,_u
```

```
[]: # binary CNN model
     model_one = tf.keras.Sequential([
         tf.keras.layers.Conv2D(16, (3, 3), activation='relu', input_shape=x_train.
      \hookrightarrowshape[1:]),
         tf.keras.layers.MaxPooling2D((2, 2)),
         tf.keras.layers.Conv2D(32, (3, 3), activation='relu'),
         tf.keras.layers.MaxPooling2D((2, 2)),
         tf.keras.layers.Flatten(),
         tf.keras.layers.Dense(32, activation='relu'),
         tf.keras.layers.Dropout(0.3),
         tf.keras.layers.Dense(1, activation='sigmoid')
     ])
     model_one.compile(
         optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
         loss='binary_crossentropy',
         metrics=['accuracy', tf.keras.metrics.AUC(name='auc')]
     )
```

```
model_one.summary()
callbacks_one = [
    tf.keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True),
    tf.keras.callbacks.ModelCheckpoint("lecture_cnn_sparrows.keras", __
 ⇔save_best_only=True)
1
history = model_one.fit(
    x_train, y_train,
    validation_data=(x_valid, y_valid),
    epochs=100,
    batch_size=32,
    callbacks=callbacks_one,
    verbose=1
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.legend()
plt.title('Accuracy')
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.legend()
plt.title('Loss')
plt.tight_layout()
plt.show()
loss, acc, auc = model_one.evaluate(x_test, y_test, verbose=0)
print(f"\n Final Test Accuracy: {acc:.4f} | AUC: {auc:.4f}")
probability_one = model_one.predict(x_test)
prediction_one = (probability_one > 0.5).astype(int).flatten()
conf_matrix = confusion_matrix(y_test, prediction_one)
matrix_one = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,__

¬display_labels=['Song Sparrow', 'White crowned Sparrow'])

matrix_one.plot(cmap=plt.cm.Blues)
plt.title("Confusion Matrix")
plt.show()
```

Model: "sequential"

```
Layer (type)
                 Output Shape
                                 Param #
______
                 (None, 126, 515, 16)
conv2d (Conv2D)
                                 160
max_pooling2d (MaxPooling2D (None, 63, 257, 16)
conv2d_1 (Conv2D)
                 (None, 61, 255, 31)
                                 4495
max_pooling2d_1 (MaxPooling (None, 30, 127, 31)
2D)
                 (None, 118110)
flatten (Flatten)
dense (Dense)
                 (None, 32)
                                 3779552
dropout (Dropout)
                 (None, 32)
dense 1 (Dense)
                 (None, 1)
                                 33
Total params: 3,784,240
Trainable params: 3,784,240
Non-trainable params: 0
Epoch 1/100
0.5000 - auc: 0.6187 - val_loss: 0.6864 - val_accuracy: 0.4909 - val_auc: 0.7698
Epoch 2/100
0.5000 - auc: 0.5123 - val_loss: 0.6800 - val_accuracy: 0.4909 - val_auc: 0.7884
Epoch 3/100
0.5926 - auc: 0.7154 - val loss: 0.6774 - val accuracy: 0.6182 - val auc: 0.7930
Epoch 4/100
0.6111 - auc: 0.6043 - val_loss: 0.6749 - val_accuracy: 0.6182 - val_auc: 0.7884
Epoch 5/100
0.6296 - auc: 0.6529 - val_loss: 0.6686 - val_accuracy: 0.5455 - val_auc: 0.7844
Epoch 6/100
0.6481 - auc: 0.7641 - val loss: 0.6662 - val accuracy: 0.5091 - val auc: 0.7844
Epoch 7/100
0.6111 - auc: 0.7867 - val_loss: 0.6628 - val_accuracy: 0.5455 - val_auc: 0.7890
Epoch 8/100
```

```
0.6296 - auc: 0.7538 - val_loss: 0.6587 - val_accuracy: 0.6182 - val_auc: 0.7864
Epoch 9/100
0.7037 - auc: 0.7682 - val_loss: 0.6555 - val_accuracy: 0.6909 - val_auc: 0.7831
Epoch 10/100
0.6111 - auc: 0.6584 - val_loss: 0.6532 - val_accuracy: 0.7273 - val_auc: 0.7890
Epoch 11/100
0.7222 - auc: 0.7483 - val loss: 0.6504 - val accuracy: 0.6909 - val auc: 0.7831
Epoch 12/100
0.7222 - auc: 0.7846 - val_loss: 0.6485 - val_accuracy: 0.6909 - val_auc: 0.7831
0.6852 - auc: 0.7250 - val_loss: 0.6466 - val_accuracy: 0.7091 - val_auc: 0.7851
Epoch 14/100
0.5926 - auc: 0.7222 - val_loss: 0.6444 - val_accuracy: 0.7091 - val_auc: 0.7791
0.6481 - auc: 0.7023 - val_loss: 0.6441 - val_accuracy: 0.6727 - val_auc: 0.7665
Epoch 16/100
0.6667 - auc: 0.7119 - val loss: 0.6405 - val accuracy: 0.6727 - val auc: 0.7685
Epoch 17/100
0.7037 - auc: 0.7332 - val_loss: 0.6362 - val_accuracy: 0.6727 - val_auc: 0.7738
Epoch 18/100
0.7037 - auc: 0.7545 - val_loss: 0.6318 - val_accuracy: 0.7273 - val_auc: 0.7778
Epoch 19/100
0.7222 - auc: 0.7840 - val loss: 0.6283 - val accuracy: 0.7091 - val auc: 0.7817
Epoch 20/100
0.7407 - auc: 0.8114 - val_loss: 0.6267 - val_accuracy: 0.7273 - val_auc: 0.7864
Epoch 21/100
0.6481 - auc: 0.7798 - val_loss: 0.6231 - val_accuracy: 0.7273 - val_auc: 0.7857
Epoch 22/100
0.7222 - auc: 0.7819 - val loss: 0.6200 - val accuracy: 0.6909 - val auc: 0.7837
Epoch 23/100
0.6296 - auc: 0.7318 - val_loss: 0.6190 - val_accuracy: 0.6909 - val_auc: 0.7837
Epoch 24/100
```

```
0.6111 - auc: 0.6255 - val_loss: 0.6190 - val_accuracy: 0.6727 - val_auc: 0.7791
Epoch 25/100
0.6296 - auc: 0.6818 - val_loss: 0.6181 - val_accuracy: 0.6727 - val_auc: 0.7784
Epoch 26/100
0.6296 - auc: 0.6536 - val_loss: 0.6133 - val_accuracy: 0.6909 - val_auc: 0.7870
Epoch 27/100
0.7407 - auc: 0.7373 - val loss: 0.6083 - val accuracy: 0.6909 - val auc: 0.7917
0.7407 - auc: 0.8045 - val_loss: 0.6064 - val_accuracy: 0.6909 - val_auc: 0.7903
Epoch 29/100
0.7222 - auc: 0.7730 - val_loss: 0.6068 - val_accuracy: 0.7091 - val_auc: 0.7917
Epoch 30/100
0.7222 - auc: 0.7778 - val_loss: 0.6060 - val_accuracy: 0.7091 - val_auc: 0.7903
Epoch 31/100
0.7407 - auc: 0.7922 - val_loss: 0.6027 - val_accuracy: 0.6909 - val_auc: 0.7950
Epoch 32/100
0.7037 - auc: 0.7599 - val loss: 0.5996 - val accuracy: 0.7091 - val auc: 0.7956
Epoch 33/100
0.7037 - auc: 0.7997 - val_loss: 0.5955 - val_accuracy: 0.7091 - val_auc: 0.7970
Epoch 34/100
0.7778 - auc: 0.8182 - val_loss: 0.5926 - val_accuracy: 0.7273 - val_auc: 0.7989
Epoch 35/100
0.7037 - auc: 0.8086 - val loss: 0.5905 - val accuracy: 0.7091 - val auc: 0.8009
Epoch 36/100
0.7593 - auc: 0.8059 - val_loss: 0.5883 - val_accuracy: 0.7273 - val_auc: 0.8009
Epoch 37/100
0.6852 - auc: 0.8251 - val_loss: 0.5852 - val_accuracy: 0.7273 - val_auc: 0.8049
Epoch 38/100
0.7593 - auc: 0.8141 - val_loss: 0.5851 - val_accuracy: 0.7091 - val_auc: 0.8036
Epoch 39/100
0.7037 - auc: 0.8045 - val_loss: 0.5876 - val_accuracy: 0.6727 - val_auc: 0.8029
Epoch 40/100
```

```
0.7037 - auc: 0.7695 - val_loss: 0.5858 - val_accuracy: 0.7091 - val_auc: 0.8022
Epoch 41/100
0.7222 - auc: 0.7785 - val_loss: 0.5856 - val_accuracy: 0.7091 - val_auc: 0.8036
Epoch 42/100
0.7778 - auc: 0.8512 - val_loss: 0.5823 - val_accuracy: 0.7273 - val_auc: 0.8056
Epoch 43/100
0.7778 - auc: 0.8388 - val_loss: 0.5785 - val_accuracy: 0.7273 - val_auc: 0.8069
Epoch 44/100
0.7593 - auc: 0.8567 - val_loss: 0.5739 - val_accuracy: 0.7273 - val_auc: 0.8069
Epoch 45/100
0.7407 - auc: 0.7805 - val_loss: 0.5707 - val_accuracy: 0.7273 - val_auc: 0.8082
Epoch 46/100
0.6667 - auc: 0.7915 - val_loss: 0.5706 - val_accuracy: 0.7273 - val_auc: 0.8075
Epoch 47/100
0.6852 - auc: 0.8073 - val_loss: 0.5695 - val_accuracy: 0.7091 - val_auc: 0.8102
Epoch 48/100
0.7593 - auc: 0.8189 - val loss: 0.5656 - val accuracy: 0.7273 - val auc: 0.8102
Epoch 49/100
0.7963 - auc: 0.8896 - val_loss: 0.5611 - val_accuracy: 0.7273 - val_auc: 0.8095
Epoch 50/100
0.7593 - auc: 0.8073 - val_loss: 0.5598 - val_accuracy: 0.7636 - val_auc: 0.8102
Epoch 51/100
0.7593 - auc: 0.8567 - val loss: 0.5569 - val accuracy: 0.7455 - val auc: 0.8082
Epoch 52/100
0.7407 - auc: 0.7956 - val_loss: 0.5563 - val_accuracy: 0.7273 - val_auc: 0.8082
Epoch 53/100
0.6667 - auc: 0.7270 - val_loss: 0.5647 - val_accuracy: 0.7273 - val_auc: 0.8102
Epoch 54/100
0.8148 - auc: 0.8978 - val loss: 0.5664 - val accuracy: 0.7273 - val auc: 0.8102
Epoch 55/100
0.7407 - auc: 0.8237 - val_loss: 0.5546 - val_accuracy: 0.7455 - val_auc: 0.8089
Epoch 56/100
```

```
0.7963 - auc: 0.8656 - val_loss: 0.5511 - val_accuracy: 0.7636 - val_auc: 0.8115
Epoch 57/100
0.7593 - auc: 0.8381 - val_loss: 0.5503 - val_accuracy: 0.7636 - val_auc: 0.8122
Epoch 58/100
0.7778 - auc: 0.8333 - val_loss: 0.5487 - val_accuracy: 0.7091 - val_auc: 0.8128
Epoch 59/100
0.7778 - auc: 0.8827 - val_loss: 0.5594 - val_accuracy: 0.7455 - val_auc: 0.8135
0.6852 - auc: 0.8121 - val_loss: 0.5539 - val_accuracy: 0.7273 - val_auc: 0.8148
0.7963 - auc: 0.8683 - val_loss: 0.5414 - val_accuracy: 0.7636 - val_auc: 0.8181
Epoch 62/100
0.7963 - auc: 0.8717 - val_loss: 0.5388 - val_accuracy: 0.7636 - val_auc: 0.8188
0.7593 - auc: 0.8704 - val_loss: 0.5376 - val_accuracy: 0.7636 - val_auc: 0.8168
Epoch 64/100
0.8333 - auc: 0.8923 - val_loss: 0.5377 - val_accuracy: 0.7455 - val_auc: 0.8175
Epoch 65/100
0.7593 - auc: 0.8731 - val_loss: 0.5381 - val_accuracy: 0.7273 - val_auc: 0.8181
Epoch 66/100
0.8333 - auc: 0.8841 - val_loss: 0.5410 - val_accuracy: 0.7636 - val_auc: 0.8208
Epoch 67/100
0.8148 - auc: 0.8813 - val loss: 0.5354 - val accuracy: 0.7636 - val auc: 0.8228
Epoch 68/100
0.7593 - auc: 0.8786 - val_loss: 0.5329 - val_accuracy: 0.7636 - val_auc: 0.8241
Epoch 69/100
0.7407 - auc: 0.8381 - val_loss: 0.5334 - val_accuracy: 0.7636 - val_auc: 0.8228
Epoch 70/100
0.7778 - auc: 0.9053 - val_loss: 0.5304 - val_accuracy: 0.7636 - val_auc: 0.8254
Epoch 71/100
0.8148 - auc: 0.9225 - val_loss: 0.5320 - val_accuracy: 0.8000 - val_auc: 0.8228
Epoch 72/100
```

```
0.8333 - auc: 0.9198 - val_loss: 0.5386 - val_accuracy: 0.7455 - val_auc: 0.8254
Epoch 73/100
0.8519 - auc: 0.9053 - val_loss: 0.5306 - val_accuracy: 0.7818 - val_auc: 0.8254
Epoch 74/100
0.8148 - auc: 0.9047 - val_loss: 0.5255 - val_accuracy: 0.7636 - val_auc: 0.8267
Epoch 75/100
0.8704 - auc: 0.9396 - val loss: 0.5265 - val accuracy: 0.7636 - val auc: 0.8261
0.8519 - auc: 0.9294 - val_loss: 0.5246 - val_accuracy: 0.7636 - val_auc: 0.8307
0.9259 - auc: 0.9479 - val_loss: 0.5247 - val_accuracy: 0.8000 - val_auc: 0.8307
Epoch 78/100
0.9074 - auc: 0.9588 - val_loss: 0.5255 - val_accuracy: 0.8000 - val_auc: 0.8320
Epoch 79/100
0.9259 - auc: 0.9568 - val_loss: 0.5208 - val_accuracy: 0.8182 - val_auc: 0.8333
Epoch 80/100
0.8704 - auc: 0.9335 - val_loss: 0.5171 - val_accuracy: 0.8000 - val_auc: 0.8366
Epoch 81/100
0.8889 - auc: 0.9609 - val_loss: 0.5167 - val_accuracy: 0.8364 - val_auc: 0.8360
Epoch 82/100
0.8704 - auc: 0.9492 - val_loss: 0.5112 - val_accuracy: 0.8000 - val_auc: 0.8353
Epoch 83/100
0.8519 - auc: 0.9369 - val loss: 0.5093 - val accuracy: 0.8000 - val auc: 0.8327
Epoch 84/100
0.7963 - auc: 0.9218 - val_loss: 0.5094 - val_accuracy: 0.8000 - val_auc: 0.8287
Epoch 85/100
0.9074 - auc: 0.9616 - val_loss: 0.5102 - val_accuracy: 0.8000 - val_auc: 0.8287
Epoch 86/100
0.8889 - auc: 0.9616 - val_loss: 0.5113 - val_accuracy: 0.8182 - val_auc: 0.8280
Epoch 87/100
0.9259 - auc: 0.9698 - val_loss: 0.5068 - val_accuracy: 0.8000 - val_auc: 0.8307
Epoch 88/100
```

```
0.9259 - auc: 0.9534 - val_loss: 0.5048 - val_accuracy: 0.8000 - val_auc: 0.8300
Epoch 89/100
0.9259 - auc: 0.9794 - val_loss: 0.5031 - val_accuracy: 0.8000 - val_auc: 0.8313
Epoch 90/100
0.9444 - auc: 0.9746 - val_loss: 0.5053 - val_accuracy: 0.8182 - val_auc: 0.8360
Epoch 91/100
0.9444 - auc: 0.9781 - val loss: 0.5000 - val accuracy: 0.8182 - val auc: 0.8300
0.8704 - auc: 0.9616 - val_loss: 0.5017 - val_accuracy: 0.8000 - val_auc: 0.8307
0.8519 - auc: 0.9664 - val_loss: 0.4975 - val_accuracy: 0.8000 - val_auc: 0.8327
Epoch 94/100
0.9259 - auc: 0.9691 - val_loss: 0.4999 - val_accuracy: 0.8182 - val_auc: 0.8360
0.9259 - auc: 0.9883 - val_loss: 0.5008 - val_accuracy: 0.8182 - val_auc: 0.8446
Epoch 96/100
0.8704 - auc: 0.9726 - val loss: 0.4948 - val accuracy: 0.8182 - val auc: 0.8433
Epoch 97/100
0.9259 - auc: 0.9746 - val_loss: 0.4949 - val_accuracy: 0.8182 - val_auc: 0.8419
Epoch 98/100
0.8704 - auc: 0.9794 - val_loss: 0.5015 - val_accuracy: 0.7818 - val_auc: 0.8433
Epoch 99/100
0.9444 - auc: 0.9733 - val_loss: 0.4928 - val_accuracy: 0.8182 - val_auc: 0.8439
Epoch 100/100
0.9259 - auc: 0.9877 - val_loss: 0.4960 - val_accuracy: 0.8182 - val_auc: 0.8439
```


Final Test Accuracy: 0.6575 | AUC: 0.6821 3/3 [=======] - 0s 67ms/step


```
[ ]: # MULTI-CLASS MODEL
      x_{all}, y_{all} = [], []
      all_birds = []
      with data as f:
          for idx, key in enumerate(f.keys()):
              spec = f[key][...].astype(np.float32) / 255.0
              spec = np.transpose(spec, (2, 0, 1))
              x_all.append(spec)
              y_all.append(np.full(spec.shape[0], idx, dtype=np.uint8))
              all birds.append(key)
      x_class = np.concatenate(x_all, axis=0)
      y_class = np.concatenate(y_all, axis=0)
      x_class = x_class[..., np.newaxis]
      x_class, y_class = shuffle(x_class, y_class, random_state=42)
      x_one, x_test, y_one, y_test = train_test_split(x_class, y_class, test_size=0.
       4, stratify=y_class, random_state=42)
      x_train, x_valid, y_train, y_valid = train_test_split(x_one, y_one, test_size=0.
      ⇒5, stratify=y_one, random_state=42)
      x_multi, x_test, y_multi, y_test = train_test_split(x_class, y_class,
                                                     test_size=0.40,
       ⇒stratify=y_class, random_state=42)
      x_train, x_valid, y_train, y_valid = train_test_split(x_multi, y_multi,
                                                           test_size=0.50,
       ⇒stratify=y_multi, random_state=42)
      num_class = len(all_birds)
      print("Input shape: ", x_train.shape[1:], " | classes:", num_class)
     Input shape: (128, 517, 1) | classes: 12
[18]: model two = tf.keras.Sequential([
          tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=x_train.
       \hookrightarrowshape[1:]),
          tf.keras.layers.MaxPooling2D(2),
          tf.keras.layers.Conv2D(64, 3, activation='relu'),
          tf.keras.layers.MaxPooling2D(2),
          tf.keras.layers.Conv2D(128, 3, activation='relu'),
          tf.keras.layers.MaxPooling2D(2),
```

```
tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(num_classes, activation='softmax')
])
model_two.compile(
    optimizer=tf.keras.optimizers.Adam(1e-4),
    loss='sparse_categorical_crossentropy',
    metrics=['accuracy']
)
model_two.summary()
callbacks_two = [
    tf.keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True),
    tf.keras.callbacks.ModelCheckpoint('multiclass_birds.keras',_
 ⇒save_best_only=True)
]
history = model two.fit(
    x_train, y_train,
    validation_data=(x_valid, y_valid),
    epochs=150,
    batch_size=32,
    callbacks=callbacks_two,
    verbose=1
)
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.title('Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Loss')
plt.legend()
plt.tight_layout()
plt.show()
```

```
loss, acc = model_two.evaluate(x_test, y_test, verbose=0)
print(f"\nFinal Test Accuracy: {acc:.4f}")

probability_two = model_two.predict(x_test)
prediction_two = np.argmax(probability_two , axis=1)
conf_mat = confusion_matrix(y_test, prediction_two)

ConfusionMatrixDisplay(conf_mat, display_labels=all_birds).plot(
    xticks_rotation=90, cmap=plt.cm.Blues)
plt.title('Multiclass Confusion Matrix')
plt.tight_layout()
plt.show()
```

Model: "sequential_8"

Layer (type)	Output Shape	 Param #			
conv2d_18 (Conv2D)		320			
<pre>max_pooling2d_18 (MaxPoolin g2D)</pre>	(None, 63, 257, 32)	0			
conv2d_19 (Conv2D)	(None, 61, 255, 64)	18496			
<pre>max_pooling2d_19 (MaxPoolin g2D)</pre>	(None, 30, 127, 64)	0			
conv2d_20 (Conv2D)	(None, 28, 125, 128)	73856			
<pre>max_pooling2d_20 (MaxPoolin g2D)</pre>	(None, 14, 62, 128)	0			
flatten_8 (Flatten)	(None, 111104)	0			
dense_16 (Dense)	(None, 128)	14221440			
dense_17 (Dense)	(None, 12)	1548			
Total params: 14,315,660					

Total params: 14,315,660 Trainable params: 14,315,660 Non-trainable params: 0

```
0.3182 - val_loss: 2.1773 - val_accuracy: 0.3182
Epoch 3/150
0.3182 - val_loss: 2.1681 - val_accuracy: 0.3182
Epoch 4/150
0.3182 - val_loss: 2.1595 - val_accuracy: 0.3182
Epoch 5/150
0.3182 - val_loss: 2.1539 - val_accuracy: 0.3182
Epoch 6/150
0.3182 - val_loss: 2.1412 - val_accuracy: 0.3182
Epoch 7/150
0.3182 - val_loss: 2.1486 - val_accuracy: 0.3182
Epoch 8/150
0.3232 - val_loss: 2.1106 - val_accuracy: 0.3199
Epoch 9/150
0.3283 - val_loss: 2.0888 - val_accuracy: 0.3249
Epoch 10/150
0.3384 - val_loss: 2.0950 - val_accuracy: 0.3232
Epoch 11/150
0.3569 - val_loss: 2.0502 - val_accuracy: 0.3333
Epoch 12/150
0.3838 - val_loss: 2.0182 - val_accuracy: 0.3737
Epoch 13/150
0.4158 - val_loss: 2.0049 - val_accuracy: 0.3687
Epoch 14/150
0.4461 - val_loss: 1.9768 - val_accuracy: 0.3805
Epoch 15/150
0.4714 - val_loss: 1.9693 - val_accuracy: 0.3906
Epoch 16/150
0.4916 - val_loss: 1.9797 - val_accuracy: 0.3872
Epoch 17/150
0.5084 - val_loss: 2.0024 - val_accuracy: 0.3923
Epoch 18/150
```

```
0.5236 - val_loss: 1.9506 - val_accuracy: 0.3822
Epoch 19/150
0.5842 - val_loss: 1.9886 - val_accuracy: 0.3906
Epoch 20/150
0.6178 - val_loss: 2.0165 - val_accuracy: 0.3788
Epoch 21/150
0.6246 - val_loss: 2.0711 - val_accuracy: 0.3838
Epoch 22/150
0.6431 - val_loss: 2.1433 - val_accuracy: 0.3502
Epoch 23/150
0.6953 - val_loss: 2.1644 - val_accuracy: 0.3771
Epoch 24/150
0.6936 - val_loss: 2.2003 - val_accuracy: 0.3535
Epoch 25/150
0.7256 - val_loss: 2.2995 - val_accuracy: 0.3519
Epoch 26/150
0.7407 - val_loss: 2.3097 - val_accuracy: 0.3636
Epoch 27/150
0.7929 - val_loss: 2.2911 - val_accuracy: 0.3872
Epoch 28/150
19/19 [============== ] - 31s 2s/step - loss: 0.6892 - accuracy:
0.8081 - val_loss: 2.3744 - val_accuracy: 0.3704
```



```
[]: # EXTERNAL TEST DATA
audios = {
    "test1": "/Users/alekh/Desktop/birds/test1.wav",
    "test2": "/Users/alekh/Desktop/birds/test2.wav",
    "test3": "/Users/alekh/Desktop/birds/test3.wav"
}

def waveforms(path, name):
    audio, sr = librosa.load(path, sr=22050)

    plt.figure(figsize=(10, 4))
        librosa.display.waveshow(audio, sr=sr)
```

```
plt.title(f"waveform {name}")
  plt.xlabel("time (secs)")
  plt.ylabel("amplitude")
  plt.show()

return audio, sr

audio_list = {}
for name, path in audios.items():
  audio, sr = waveforms(path, name)
  audio_list[name] = (audio, sr)
```



```
[13]: def generate_spectrograms(audio, sr, start_sec, end_sec, name):
          start_sample = int(start_sec * sr)
          end_sample = int(end_sec * sr)
          window = audio[start_sample:end_sample]
          S = librosa.feature.melspectrogram(y=window, sr=sr, n_fft=2048,__
       →hop_length=512, n_mels=256)
          S_DB = librosa.power_to_db(S, ref=np.max)
          plt.figure(figsize=(10, 4))
          librosa.display.specshow(S_DB, sr=sr, hop_length=512, x_axis='time',_

y_axis='mel', cmap= 'gray')

          plt.colorbar(format='%+2.0f dB')
          plt.title(f'Spectrogram of {name}')
          plt.show()
      time_windows = {
          "test1": (15, 17),
          "test2": (0, 2),
          "test3": (2, 4)
      }
      for name, (audio, sr) in audio_list.items():
          start_sec, end_sec = time_windows[name]
          generate_spectrograms(audio, sr, start_sec, end_sec, name)
```



```
[14]: def spectro_array(audio, sr, start_sec, end_sec, n_mels=256, n_fft=2048,__
       ⇔hop_length=512):
          start_sample = int(start_sec * sr)
          end sample = int(end sec * sr)
          window = audio[start_sample:end_sample]
          S = librosa.feature.melspectrogram(y=window, sr=sr, n_fft=n_fft,__
       ⇔hop_length=hop_length, n_mels=n_mels)
          S_DB = librosa.power_to_db(S, ref=np.max)
          return S_DB
      with h5py.File('/Users/alekh/Desktop/birds/spectrograms.h5', 'w') as hf:
          for name, (audio, sr) in audio list.items():
              start_sec, end_sec = time_windows[name]
              S_DB = spectro_array(audio, sr, start_sec, end_sec)
              hf.create_dataset(name, data=S_DB)
              plt.figure(figsize=(10, 4))
              librosa.display.specshow(S_DB, sr=sr, hop_length=512, x_axis='time',_

y_axis='mel', cmap='grey')

              plt.colorbar(format='%+2.0f dB')
              plt.title(f'Spectrogram of {name}')
              plt.show()
```



```
[16]: import os
      import h5py
      import numpy as np
      import librosa
      import matplotlib.pyplot as plt
      from tensorflow.keras.models import Sequential
      from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense,
       →Dropout
      from tensorflow.keras.utils import to_categorical
      from sklearn.preprocessing import LabelEncoder
      spectro_path = '/Users/alekh/Desktop/birds/bird_spectrograms.hdf5'
      audios = {
          "test1": "/Users/alekh/Desktop/birds/test1.wav",
          "test2": "/Users/alekh/Desktop/birds/test2.wav",
          "test3": "/Users/alekh/Desktop/birds/test3.wav"
      }
      time_windows = {
          "test1": (15, 17),
          "test2": (0, 2),
          "test3": (2, 4)
      }
      spectrogram_list = []
      labels = []
      with h5py.File(spectro_path, 'r') as f:
          species = list(f.keys())
          for key in species:
              data = f[key][...]
```

```
if data.ndim == 3:
            for i in range(data.shape[2]):
                spectrogram_list.append(data[:, :, i])
                labels.append(key)
        elif data.ndim == 2:
            spectrogram_list.append(data)
            labels.append(key)
        else:
            raise ValueError(f"ndim={data.ndim}")
spectrogram_list = np.array(spectrogram_list)
labels = np.array(labels)
label encoder = LabelEncoder().fit(labels)
labels_encoded = label_encoder.transform(labels)
labels_onehot = to_categorical(labels_encoded)
mel_bins, time_frames = spectrogram_list.shape[1], spectrogram_list.shape[2]
spectrogram list = spectrogram list.reshape(-1, mel bins, time frames, 1).
 ⇒astype(np.float32) / 255.0
model_three = Sequential([
    Conv2D(32, (3,3), activation='relu', input shape=(mel bins, time frames,
 \hookrightarrow 1)),
    MaxPooling2D((2,2)),
    Conv2D(64, (3,3), activation='relu'),
    MaxPooling2D((2,2)),
    Conv2D(128, (3,3), activation='relu'),
    MaxPooling2D((2,2)),
    Flatten().
    Dense(128, activation='relu'),
    Dropout(0.5),
    Dense(len(species), activation='softmax')
])
model_three.compile(optimizer='adam', loss='categorical_crossentropy', __
 →metrics=['accuracy'])
model_three.fit(spectrogram_list, labels_onehot, epochs=5, batch_size=32)
test_data = []
for name, path in audios.items():
    audio, sr = librosa.load(path, sr=22050)
    start, end = time windows[name]
    clip = audio[int(start*sr):int(end*sr)]
    S = librosa.feature.melspectrogram(y=clip, sr=sr, n_fft=2048,_
 ⇔hop_length=512, n_mels=mel_bins)
    S db = librosa.power_to_db(S, ref=np.max)
    if S_db.shape[1] < time_frames:</pre>
        S_db = np.pad(S_db, ((0,0),(0, time_frames - S_db.shape[1])),_{\sqcup}
```

```
else:
     S_db = S_db[:, :time_frames]
  test_data.append(S_db)
test_data = np.array(test_data).reshape(-1, mel_bins, time_frames, 1).astype(np.
 →float32) / 255.0
test_predictions = model_three.predict(test_data, verbose=0)
test_one = np.argmax(test_predictions, axis=1)
test_class = label_encoder.inverse_transform(test_one)
for i, pred in enumerate(test_class, 1):
  print(f"Test Spectrogram {i} predicted as {pred}")
Epoch 1/5
0.2968
Epoch 2/5
Epoch 3/5
0.3125
Epoch 4/5
0.3150
Epoch 5/5
0.3241
Test Spectrogram 1 predicted as sonspa
Test Spectrogram 2 predicted as sonspa
```

Test Spectrogram 3 predicted as sonspa