# Ficheros y bases de datos

### Álvaro González Sotillo

### October 23, 2017

# Contents

| l  | Introducción                  | 1  |
|----|-------------------------------|----|
| 2  | Discos de datos               | 2  |
| 3  | Ficheros (archivos)           | 2  |
| 4  | Tipos de archivos             | 4  |
| 5  | Acceso a ficheros             | 6  |
| 3  | Bases de datos                | 7  |
| 7  | ${\bf Est\'andar~ANSI/SPARC}$ | 8  |
| 3  | Diseño de bases de datos      | 8  |
| 9  | SGBD                          | 9  |
| 10 | Referencias                   | 10 |
|    |                               |    |

# 1 Introducción

- Se manejan grandes cantidades de datos desde hace mucho tiempo
  - Censos romanos
  - Bancos medievales
  - Información fiscal de cada país
  - Empresas de todo tipo
- Tradicionalmente, se han usado
  - Fichas, informes, expedientes archivadores, carpetas...

#### 1.1 Antes de la informática

- Tradicionalmente
  - Manejados por personas
  - De forma manual
  - Gran componente subjetivo
- Algunos sistemas intentan eliminar el componente subjetivo
  - Sistemas burocráticos

#### 1.2 Informática

- Tratamiento automatizado de la información
- Se elimina el componente subjetivo
- Las operaciones con los datos se vuelven
  - Precisas
  - Rápidas
- Permite un mayor volumen de datos

#### 2 Discos de datos

- Originalmente, los programas de ordenador utilizaban directamente los soportes de memoria (cinta, disco)
  - Ventaja: No se depende de otros sistemas
  - Pero...
- Un programa :arrow Un disco de datos
  - Un cambio de datos hacía inútil el programa
  - Un cambio de programa hacía inútiles los datos anteriores
- Cada programa debe aprender a manejar los discos

# 3 Ficheros (archivos)

- El sistema operativo crea archivos
- Los programas se simplifican
- Los programas pueden compartir los discos
- Más de un programa puede usar los mismos ficheros de datos
  - Es necesaria una coordinación para acceder y modificar ficheros

### 3.1 ¿Qué es un archivo?

- Un archivo se compone de registros
  - Un registro son los datos agrupados de alguna entidad
- Un registro contiene campos de datos
- Cada campo tiene un nombre y un valor
  - Por simplicidad, supondremos que todos los registros tienen los mismos campos

### 3.2 Ejemplo de archivo

| Identificador | Nombre                 | $\mathbf{Deuda}$ | Dirección            |
|---------------|------------------------|------------------|----------------------|
| 987           | juan                   | 87345            | 10 norte 342         |
| 876           | $\operatorname{pedro}$ | 43649            | 8 oriente 342        |
| 123           | $_{ m jorge}$          | 03342            | av. libertad 23      |
| 69            | vicente                | 61560            | valencia n $^{0}183$ |
| 18            | lorenzo                | 06490            | $sol n^{0}18$        |
| 19            | lucía                  | 06480            | luna nº8             |

#### 3.3 Nombres de los campos

| ${f Identificador}$ | ${f Nombre}$  | Deuda | Dirección       |
|---------------------|---------------|-------|-----------------|
| 987                 | juan          | 87345 | 10 norte $342$  |
| 876                 | $_{ m pedro}$ | 43649 | 8 oriente 342   |
| 123                 | $_{ m jorge}$ | 03342 | av. libertad 23 |
| 69                  | vicente       | 61560 | valencia nº183  |
| 18                  | lorenzo       | 06490 | sol $n^{0}18$   |
| 19                  | lucía         | 06480 | luna n $^{0}8$  |

# 3.4 Un registro

| Identificador      | Nombre        | Deuda                | Dirección            |
|--------------------|---------------|----------------------|----------------------|
| 987                | juan          | 87345                | 10 norte 342         |
| 876                | $_{ m pedro}$ | 43649                | 8 oriente 342        |
| $\boldsymbol{123}$ | $_{ m jorge}$ | $\boldsymbol{03342}$ | av. libertad 23      |
| 69                 | vicente       | 61560                | valencia n $^{0}183$ |
| 18                 | lorenzo       | 06490                | $sol n^{0}18$        |
| 19                 | lucía         | 06480                | luna n $^{0}8$       |

### 3.5 Una columna

| Identificador | ${f Nombre}$     | Deuda | Dirección       |
|---------------|------------------|-------|-----------------|
| 987           | juan             | 87345 | 10  norte  342  |
| 876           | $\mathbf{pedro}$ | 43649 | 8 oriente 342   |
| 123           | jorge            | 03342 | av. libertad 23 |

 69
 vicente
 61560 valencia  $n^{0}183$  

 18
 lorenzo
 06490 sol  $n^{0}18$  

 19
 lucía
 06480 luna  $n^{0}8$ 

# 4 Tipos de archivos

- Según su uso
- Según formato
- Según su organización

#### 4.1 Tipos según su uso

- Permanentes
  - Datos que deben ser guardados
  - Ejemplo: Empleados contratados, nóminas pagadas, declaraciones de impuestos,...
- De movimiento
  - Cambios que deben ser incluidos en archivos permanentes
  - Ejemplo: un puesto de peaje debe guardar todos los pagos con tarjeta, y enviarlos juntos
- De maniobra
  - Se utilizan como extensión a la RAM de un ordenador, se borran cuando el proceso termina
  - Ejemplo: caché de disco de los navegadores

#### 4.2 Según formato

- De texto (o planos, o ASCII, o UNICODE)
  - Pueden editarse con el bloc de notas
  - Son teóricamente legibles directamente por las personas
- Binarios
  - La información se guarda en un formato numérico (binario), no legible directamente

#### 4.2.1 Ficheros binarios

- exe, dll: Ficheros ejecutables
- png, jpg, gif: Ficheros de imagen
- zip, rar : Ficheros comprimidos
- docx, pptx, xlsx, pdf : Documentos ofimáticos

#### 4.2.2 Ficheros de texto

- txt: Texto
- html, rtf, ps: Texto con formato
- ini, inf, conf, xml: configuración de programas
- sql, java, php, c, bat, sh: instrucciones de programas informáticos

#### 4.2.3 Ficheros de texto como binarios

- Al final, todos los ficheros son solo números almacenados en disco
  - Los programas o personas interpretan los números
- Un fichero de texto es en el fondo un fichero binario
- La traducción a "humano" es el estándar ASCII (o UNICODE), que asigna a cada byte una letra



#### 4.3 Tipos de ficheros según organización

- Organización secuencial
  - Los registros se colocan unos detrás de otros
  - Pueden estar ordenados por algún criterio
    - \* Orden de llegada
    - \* Alfabético por algún campo
- Organización indexada
  - Cada fichero secuencial puede tener otros ficheros de índice
  - El índice está ordenado por algún criterio
  - En el índice aparece
    - \* Identificador de cada registro
    - \* En qué línea (posición) está ese registro

Crédito: www.dlsweb.rmit.edu.au

#### 4.3.1 Ficheros indexados

- El fichero secuencial con datos es el fichero principal
- Cada fichero principal puede tener otros ficheros de índice
  - Uno por cada criterio que se desee buscar rápidamente
- Cada fichero de índice es a su vez un fichero secuencial
  - Podría indexarse, con un índice de segundo nivel



Créditos: www.tutorialspoint.com

### 4.3.2 Área de desbordamiento (overflow)

- Los criterios de un índice pueden no ser únicos
  - Por ejemplo, código postal en un fichero de alumnos
- Si hay un conflicto, los datos se almacenan en un área de overflow



Créditos: kpvxy.blogspot.com.es

### 4.4 Secuencial vs Indexado (escritura)

- Organización secuencial:
  - Si no se ordena, basta con añadir: rápido
  - Si se ordena, se puede necesitar cambiar todo el fichero: muy lento
- Organización indexada:
  - Si no hay colisiones, dos escrituras (índice y fichero principal)
  - Si hay colisiones (la clave ya está usada)
    - \* Usar un fichero de overflow (y reorganizar con el fichero principal en un futuro)
    - \* Reorganizar el fichero principal muy lento
- Para lectura, ver acceso vs organización

#### 5 Acceso a ficheros

- Acceso secuencial
  - Para llegar a un registro, es necesario pasar por todos los anteriores
  - Obligatorio en
    - \* cintas
    - \* ficheros sin indexar con campos de longitud variable (csv, xml,...)
- Acceso directo (aleatorio)
  - Se puede leer directamente un registro sin tener que pasar por los anteriores
  - Se necesita saber su posición (por un índice)

### 5.1 Acceso vs organización (lectura)

|                         | Acceso secuencial                    | Acceso directo                                          |
|-------------------------|--------------------------------------|---------------------------------------------------------|
| Organización secuencial | Fácil y rápido                       | Deben leerse los registros anteriores, o estar ordenado |
| Organización indexada   | Algo más lento (dos lecturas mínimo) | Más rápido (dos lecturas)                               |

#### 6 Bases de datos

- En una empresa, los datos pueden estar dispersos y duplicados
- Hay que actualizar todas las copias a la vez
  - centralización de los datos
- Puede haber datos confidenciales
  - permisos por fichero
- Se puede necesitar más de un programa accediendo a los mismos registros
- Pero no a los mismos campos
  - permisos por campo,
- Diferentes departamentos pueden tener nombres distintos para los ficheros, o los campos
  - diferentes formas de ver los registros

### 6.1 Definición (I)

Una colección de datos que están lógicamente relacionados entre sí, que tiene una definición y una descripción comunes y que están estructurados de una forma particular

### 6.2 Definición (II)

Una base de datos es una colección de datos estructurados según un modelo que refleje las relaciones y restricciones existentes en el mundo real. Los datos, que han de ser compartidos por diferentes usuarios y aplicaciones, deben mantenerse independientes de ésta, y su definición y descripción han de ser únicas estando almacenados junto a los mismos. Por último, los tratamientos que sufran estos datos tendrán que conservar la integridad y seguridad de éstos



#### 6.3 Ventajas de las bases de datos

- Independencia de los datos y los programas y procesos. Esto permite modificar los datos sin modificar el código de las aplicaciones.
- Menor redundancia. Aunque, sólo los buenos diseños de datos tienen poca redundancia.
- Integridad. Mayor dificultad de perder los datos o de realizar incoherencias con ellos.
- Mayor seguridad. Al limitar el acceso a ciertos usuarios.
- Datos más documentados. Gracias a los metadatos que permiten describir la información de la base de datos.

• Acceso a los datos más eficiente. La organización de los datos produce un resultado más óptimo en rendimiento.

#### 6.4 Inconvenientes

- Instalación costosa
  - El control y administración de bases de datos requiere de un software y hardware poderoso
- Requiere personal cualificado
  - Debido a la dificultad de manejo de este tipo de sistemas.
- De todas formas, las ventajas superan ampliamente los inconvenientes

# 7 Estándar ANSI/SPARC

- Define tres niveles en un SGBD
- Interno: es como se almacena la información realmente. Por lo general, en ficheros en disco
- Conceptual: incluye la estructura de la base de datos total
  - Entidades
  - Campos de las entidades
  - Relaciones entre entidades
- Externo: Cada tipo de usuario/aplicación puede operar con una parte del nivel conceptual, a veces con una transformación intermedia



#### 8 Diseño de bases de datos

- No es evidente abstraer, a partir de datos en bruto, la estructura de una base de datos
- Las bases de datos se diseñan en tres pasos
  - Nivel conceptual
  - Nivel lógico
  - Nivel físico

Nota: estos niveles son del diseño, no confundir con los niveles de la implementación Ansi/SPARC

#### 8.1 Nivel conceptual

- Un usuario no informático debe poder entenderlo
- Trata sobre
  - entidades
  - relaciones entre ellas
  - datos a almacenar por cada entidad y relación



#### 8.2 Nivel lógico

- El modelo conceptual debe ser sistematizado y simplificado, para que un ordenador pueda manejarlo
- No se decide cómo se guardarán los datos, pero sí qué forma tendrán
  - Generalmente, en forma de tabla



#### 8.3 Nivel físico

- Se describe de qué forma el nivel lógico será almacenado en ficheros
  - CSV
  - Excel
  - XML
  - Utilizando un Sistema Gestor de Bases de Datos

#### 9 SGBD

#### 9.1 SGBD: Componentes

- Hardware: Servidores, discos, componentes de red,...
- Software: Incluye un software de base de datos y las aplicaciones que los manejan
- Datos: Tanto los datos originales como los metadatos

#### 9.2 SGBD: Funciones

- Almacenar datos en la base de datos, acceder a ellos y actualizarlos
- Mantener descripciones de los datos accesibles por los usuarios (metadatos)
- Integridad: una transacción debe realizarse en su totalidad o no realizarse
- Integridad: los cambios deben poder ser realizados por varios usuarios a la vez
- Integridad: Se deben poder recuperar los datos si se pierden (backup)

- Integridad y confidencialidad: sólo usuarios autorizados pueden ver/modificar datos
- Integridad: sólo los datos que sigan el diseño lógico pueden ser almacenados
- Comunicación: Datos y operaciones están disponibles para usuarios y aplicaciones

### 9.3 SGBD: Objetivos

- Independencia física de datos
  - Un programa debería poder seguir funcionando aunque el diseño físico (cómo se almacenan los datos en disco) cambie
  - Basta con que el SGBD ofrezca sólo un nivel conceptual que pueda usar diferentes niveles físicos
- Independencia lógica de datos
  - Un programa debería poder seguir funcionando aunque el diseño lógico (cómo se relacionan los datos) cambie
  - Es más difícil, pero teóricamente son suficientes las vistas (niveles externos)

### 10 Referencias

- Formatos:
  - Transparencias
  - PDF
  - Código fuente
  - Github
- Creado con:
  - Emacs
  - org-reveal
  - Latex
- Por Álvaro González