Homework 6

Due: Wednesday, 13. Oct. 2021

Definition. Let Cat be the category of small categories. Let \mathcal{I} be the category with two objects, 0 and 1, and a unique isomorphism between them. Define \mathcal{C} to be the collection of morphisms in Cat which are injective on objects. Define \mathcal{F} to be collection of morphisms in Cat which have the right lifting property with respect to the inclusion $[0] \to \mathcal{I}$. We call the elements of \mathcal{F} the *isofibrations*. Let \mathcal{W} be the collection of all equivalences of categories.

Exercise 1. Let $F: \mathsf{C} \to \mathsf{D}$ be a functor between small categories.

1. Define a category L whose objects are tuples (c, d, ϕ) where $c \in C$, $d \in D$, and $\phi : F(c) \xrightarrow{\cong} d$ is an isomorphism in D, and whose morphisms are given by

$$\operatorname{Hom}_{\mathsf{L}}((c,d,\phi),(a,b,\psi)) := \operatorname{Hom}_{\mathsf{C}}(c,a).$$

Show that F factors as

$$C \xrightarrow{G} L \xrightarrow{H} D$$

such that G is an equivalence of categories, $G \in \mathcal{C}$, and $F \in \mathcal{F}$.

2. Define a category R with $Ob(R) := Ob(C) \coprod Ob(D)$. For $c_1, c_2 \in C$ and $d_1, d_2 \in D$, define

$$\operatorname{Hom}_{\mathsf{R}}(c_1, c_2) := \operatorname{Hom}_{\mathsf{D}}(F(c_1), F(c_2))$$

 $\operatorname{Hom}_{\mathsf{R}}(d_1, d_2) := \operatorname{Hom}_{\mathsf{D}}(d_1, d_2)$
 $\operatorname{Hom}_{\mathsf{R}}(c_1, d_1) := \operatorname{Hom}_{\mathsf{D}}(F(c_1), d_1)$

$$\operatorname{Hom}_{\mathsf{R}}(d_1, c_1) := \operatorname{Hom}_{\mathsf{D}}(d_1, F(c_1))$$

Show that F factors as

$$C \xrightarrow{G} R \xrightarrow{H} D$$

where H is an equivalence of categories, $H \in \mathcal{F}$, and $G \in \mathcal{C}$.

Exercise 2. Show that \mathcal{F} and \mathcal{C} , and \mathcal{W} are stable under retracts.

Exercise 3. Suppose given a diagram of small categories

$$\begin{array}{ccc} \mathsf{A} & \stackrel{F}{\longrightarrow} & \mathsf{C} \\ J & & & \downarrow_P \\ \mathsf{B} & \stackrel{G}{\longrightarrow} & \mathsf{D} \end{array}$$

where $J \in \mathfrak{C}$ and $P \in \mathfrak{F}$.

- 1. Show that if J is an equivalence of categories, there exists a lift $L: \mathsf{B} \to \mathsf{C}$.
- 2. Show that if P is an equivalence of categories, there exists a lift $L: \mathsf{B} \to \mathsf{C}$.

Exercise 4. Conclude using the previous exercises that $(Cat, \mathcal{C}, \mathcal{F}, \mathcal{W})$ is a model category. Identify the fibrant objects and the cofibrant objects in this model structure.