Translating Meson Decay Bounds to our System

March 5, 2018

The existing flavor-dependent bounds on secret ineractions from particle decay widths are [Peres] $\sum_{\alpha} |g_{e\alpha}|^2 \le 5.5 \times 10^{-6}$, $\sum_{\alpha} |g_{\mu\alpha}|^2 \le 4.5 \times 10^{-5}$ and $\sum_{\alpha} |g_{\tau\alpha}|^2 \le 5.5 \times 10^{-2}$. Under our model the couplings are directly to neutrino mass states, and so:

$$g_{\beta\alpha} = \sum_{i} U_{\alpha i}^* U_{\beta i} g_i \tag{1}$$

with $g = m_i/\nu_h$. The weakest bounds apply when the lightest neutrino is massless, such that, in NO, $g_2 = \sqrt{\Delta m_{12}^2/\nu_h}$ and $g_3 = \sqrt{\Delta m_{23}^2 + \Delta m_{12}^2/\nu_h}$. The coupling we have been considering in this work is $g = g_3$, and in these terms we can identify all the other g's, $g_1 = 0$; $g_2 = \sqrt{\Delta m_{12}^2/(\Delta m_{23}^2 + \Delta m_{12}^2)}g$; $g_3 = g$. To obtain the flavor-dependent couplings in [Peres] we must account for flavor mixing:

$$g_{\beta\alpha} = \left[U_{\beta 2}^* U_{\alpha 2} \sqrt{\frac{\Delta m_{12}^2}{\Delta m_{23}^2 + \Delta m_{12}^2}} + U_{\beta 3}^* U_{\alpha 3} \right] g \tag{2}$$

Finally the limits are expressed as sum over index α :

$$\sum_{\alpha} |g_{\beta\alpha}|^2 = \sum_{\alpha} \left| U_{\beta 2}^* U_{\alpha 2} \sqrt{\frac{\Delta m_{12}^2}{\Delta m_{23}^2 + \Delta m_{12}^2}} + U_{\beta 3}^* U_{\alpha 3} \right|^2 g^2 = \mathcal{K}_{\beta}^{NO} g^2$$
 (3)

In the IO, we have a slightly different arrangement of masses. In this case $g_3 = 0$; $g_1 = \sqrt{\frac{\Delta m_{23}^2 - \Delta m_{12}^2}{\Delta m_{23}^2}}$ g; $g_2 = g$ and Namely:

$$\sum_{\alpha} |g_{\beta\alpha}|^2 = \sum_{\alpha} \left| U_{\beta 1}^* U_{\alpha 1} \sqrt{\frac{\Delta m_{23}^2 - \Delta m_{12}^2}{\Delta m_{23}^2}} + U_{\beta 2}^* U_{\alpha 2} \right|^2 g^2 = \mathcal{K}_{\beta}^{IO} g^2$$
(4)

We now evaluate the various $\mathcal{K}'s$:

	NO	IO
\mathcal{K}_e	0.031	0.93
\mathcal{K}_{μ}	0.40	0.60
$\mathcal{K}_{ au}$	0.60	0.38

And so the limits on our g from each mode are:

	NO	IO
e	0.013	0.0024
μ	0.011	0.0086
τ	0.28	0.36