DEPARTMENT OF CHEMICAL & PROCESS ENGINEERING

### Computer-aided Design of **Bio-inspired Nanoporous** Silica Materials

**By André Crescenzo** 

#### **Miguel Jorge**

Supervisor Department of Chemical and Process Engineering

#### **Alessia Centi**

Supervisor Department of Chemical and Process Engineering

#### Carlos F. Rangel

Supervisor Department of Chemical and Process Engineering









# Silica-surfactant materials



**Highly Structured Materials** 

High Porosity
High Surface area

Generated by

MSU-V 1,2-diaminododecane

# Synthesis

MCM-50



MCM-41

DOI:10.1039/C3CS60016E

### **Nature**



DOI:10.1039/C0CC05648K

### Self-Assembly structure



DOI:10.1021/ja970228v

# Molecular simulation



## **Molecular Dynamics**

#### **Newton's Law**

$$m_i \frac{d^2 \vec{r}_i(t)}{dt^2} = \vec{F}_i(t)$$



### "Leap-frog" Algorithm

$$\vec{r}_i(t + \Delta t) = \vec{r}_i(t) + \vec{v}_i(t + \Delta t/2)\Delta t$$

$$\vec{v}_i(t + \Delta t/2) = \vec{v}_i(t - \Delta t/2) + \frac{\vec{F}_i(t)}{m_i} \Delta t$$

### **Monte Carlo Simulations**

### Probability distribution function

$$\rho(\lambda) = \frac{\exp\left(-\frac{U(\lambda)}{kT}\right)}{\int_{V} \dots \int_{V} \exp\left(-\frac{U(\lambda)}{kT}\right) d\vec{r}_{1} d\vec{r}_{2} \dots d\vec{r}_{N}}$$



#### **Metropolis Method**

$$P_{1\mapsto 2} = \begin{cases} 1 & for \frac{\rho(\lambda_2)}{\rho(\lambda_1)} \geqslant 1\\ \frac{\rho(\lambda_2)}{\rho(\lambda_1)} & for \frac{\rho(\lambda_2)}{\rho(\lambda_1)} < 1 \end{cases}$$

# Coarse-graining





# MagiC: a systematic method



### **Boltzmann** inversion

- Low no. Monte Carlo steps
- Great to initial potentials
- No cross-correlations

#### Inverse Monte Carlo

- More reliable potentials
- Cross-correlations
- High no. Monte Carlo steps



# **Atomistic Model**





## **Analysis Objectives**

- Box size
- Concentration
- pH

## Atomistic Simulations

- NPT ensemble
- Over 100 ns

### CG: Bead Size and Concentration



## Multiple Models

- Model 1:



- Model 2:



## Reproduction test:



**Multiple Concentrations** 



Medium: 1.62 mM



# CG: Charged Systems



New Techniques for process efficiency

- Simplified model



Multi-states reference

Short range reference: ~30 nm box

Long range reference: > 42 nm box

Changes on MagiC inputs



Influence of Electrostatic forces

Integrated





Long-range

### Short-range





**PME** 

# CG: Silica surfactant system



Ionic silica (OSAi) with neutral surfactant (DMDDn): Very High pH





# Conclusion



- CG potentials are a feasible option
- Silica model still need improvements
- MagiC technique is very flexible
- Atomistic reference has deep influence in CG model

### Ideas for the future

- Mixed CG model
- Multi-state potentials
- More focus in pH value