STA4003: Time Series

Tutorial 4

The Chinese University of Hong Kong, Shenzhen

March 9, 2022

1/11

Tutorial 4 STA4003

Overview

AR Model

Matching Coefficients

Sercises

Tutorial 4

AR Model: Definition

AR(p) model:

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + w_t$$

- X_t : stationary, $\mu = 0$
- $\phi_1 \dots \phi_p$: constants, $\phi_p \neq 0$
- w_t: white noise

Use backshift operator,

$$(1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p) X_t = w_t$$

Define autoregressive operator $\phi(B) := 1 - \phi_1 B - \cdots - \phi_p B^p$,

$$\phi(B)X_t = w_t$$

Tutorial 4 STA4003 March 9, 2022 3 / 11

AR Model: Properties

Property: AR(p) model can be written as a linear process.

Example: AR(1) model

$$X_{t} = \phi X_{t-1} + w_{t}$$

$$= \phi(\phi X_{t-2} + w_{t-1}) + w_{t}$$

$$= \dots = \phi^{k} X_{t-k} + \phi^{k-1} w_{t-(k-1)} + \dots + \phi w_{t-1} + w_{t}$$

If $|\phi| < 1$, $\phi^k X_{t-k} \to 0$ as $k \to \infty$. Thus

$$X_t = \sum_{j=0}^{\infty} \phi^j w_{t-j}$$

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (C)

4 / 11

Tutorial 4 STA4003 March 9, 2022

AR Model: Properties

Property: AR(p) is causal stationary if and only if every root r_i of $\phi(Z)$ satisfies $|r_i| > 1$, i.e., outside the unit circle.

 $\phi(Z)$: autoregressive polynomial of the AR(p) model

$$\phi(Z) = 1 - \phi_1 Z - \phi_2 Z^2 - \dots - \phi_p Z^p$$
$$= \prod_{i=1}^{p} (1 - r_i^{-1} Z)$$

The autoregressive operator $\phi(B)$ can also be written as $\prod_{i=1}^{p} (1 - r_i^{-1}B)$. So the AR(p) model $\phi(B)X_t = w_t$ is equivalent to

$$(1-r_1^{-1}B)(1-r_2^{-1}B)\dots(1-r_p^{-1}B)X_t=w_t$$

If all $|r_i^{-1}| < 1$, i.e., $|r_i| > 1$, then X_t is a causal stationary linear process.

Tutorial 4 STA4003 March 9, 2022 5/11

AR Model: Properties

Example (continued): AR(1) model
$$X_t = \phi X_{t-1} + w_t$$
 - if $|\phi| < 1$, $X_t = \sum_{j=0}^{\infty} \phi^j w_{t-j}$, stationary - if $|\phi| = 1$, $X_t = X_{t-1} + w_t$, nonstationary - if $|\phi| > 1$,

$$X_{t} = \phi^{-1} X_{t+1} - \phi^{-1} w_{t+1}$$

$$= \phi^{-1} (\phi^{-1} X_{t+2} - \phi^{-1} w_{t+2}) - \phi^{-1} w_{t+1}$$

$$= \dots = (\phi^{-1})^{k} X_{t+k} - \sum_{i=1}^{k+1} \phi^{-i} w_{t+j}$$

Since $|\phi^{-1}| < 1$, $(\phi^{-1})^k X_{t+k} \to 0$ as $k \to \infty$. Thus

$$X_t = -\sum_{j=1}^{\infty} \phi^{-j} w_{t+j}$$

not causal stationary!

Matching Coefficients

- We know that an AR(p) model (satisfying some conditions) can be written as a causal stationary linear process. (coefficient: ϕ)
- We also know that a linear process has the form $X_t = \sum_{j=0}^{\infty} \psi_j w_{t-j}$. (coefficient: ψ)

Aim: find the relationship between ϕ and ψ .

Define $\psi(B) := \sum_{i=0}^{\infty} \psi_i B^i$, then the linear process has the form

$$X_t = \psi(B)w_t$$

Also, recall the expression of the AR(p) model,

$$\phi(B)X_t = w_t$$

Therefore, we have

$$\phi(B)\psi(B)w_t = w_t \Rightarrow \phi(B)\psi(B) = 1$$

Tutorial 4 STA4003 March 9, 2022 7 / 11

Question 1

Find the autocovariance function $\gamma(h)$ and the autocorrelation function $\rho(h)$ of AR(1) model: $X_t = \phi X_{t-1} + w_t$, where $|\phi| < 1$.

Tutorial 4 STA4003 March 9, 2022 8/11

Question 2

Show that in AR(1) model: $X_t = \phi X_{t-1} + w_t$, we have $\psi_j = \phi^j$, where $\psi'_j s$ are the coefficients in the corresponding linear process, and $|\phi| < 1$.

Tutorial 4 STA4003 March 9, 2022 9 / 11

Question 3

Consider a process that satisfies the zero-mean, "stationary" AR(1) equation $Y_t = \phi Y_{t-1} + e_t$ with $-1 < \phi < 1$. Let c be any nonzero constant and define $W_t = Y_t + c\phi^t$.

• Show that $E(W_t) = c\phi^t$.

Show that $\{W_t\}$ satisfies the "stationary" AR(1) equation $W_t = \phi W_{t-1} + e_t$.

3 Is $\{W_t\}$ stationary?

10 / 11

Tutorial 4 STA4003 March 9, 2022

Thank you!

Tutorial 4 STA4003 March 9, 2022 11 / 11