Вопрос	Ответ
Схемт2	Формула для крутизны К включает ток
	стока, который зависит от напряжения
	затвор-исток. В линейной области ток
	стока можно описать через параметр
	крутизны и напряжение затвор-исток. В
	лабораторной работе ток стока при
	Uзи=0 использовался для вычисления
	начальной крутизны.
Какое свойство полевого транзистора	Крутизна полевого транзистора
показывает крутизна	показывает его способность усиливать
показывает крутизна	ток. Она выражает изменение тока
	стока при изменении напряжения на
	затворе, и от неё зависит коэффициент
	усиления транзистора в усилительных
	схемах. Крутизна особенно важна в
	области насыщения.
Схемы включения полевого	Основные схемы включения полевого
транзистора	транзистора:
гранзистора	1. С общим истоком (наиболее часто
	используемая для усилителей).
	2. С общим стоком (источник
	повторителя).
Р добо очомо с	3. С общим затвором (реже встречается).
В лабе схема с общим истоком. n-канальный транзистор с управляющим p-n переходом	
Схема с общим истоком	правляющим р-п переходом Плюсы:
схема с оощим истоком	
	- Значительное усиление по
	напряжению.
	- Часто используется в усилительных каскадах.
	каскадах. Минусы:
	- Более низкое усиление по току по
	сравнению с общим стоком.
	- Влияние паразитных емкостей может
	снижать частотные характеристики.
Схема с общим стоком	Плюсы:
Слема с оощим стоком	HIJITULDI.
	- Высокий коэффициент усиления по
	- Высокий коэффициент усиления по току.
	- Высокий коэффициент усиления по току Хорошая частотная характеристика.
	- Высокий коэффициент усиления по току Хорошая частотная характеристика. Минусы:
	- Высокий коэффициент усиления по току.- Хорошая частотная характеристика.Минусы:- Низкое усиление по напряжению
	 - Высокий коэффициент усиления по току. - Хорошая частотная характеристика. Минусы: - Низкое усиление по напряжению (коэффициент близок к 1), поэтому
	- Высокий коэффициент усиления по току.- Хорошая частотная характеристика.Минусы:- Низкое усиление по напряжению
	 - Высокий коэффициент усиления по току. - Хорошая частотная характеристика. Минусы: - Низкое усиление по напряжению (коэффициент близок к 1), поэтому
	 - Высокий коэффициент усиления по току. - Хорошая частотная характеристика. Минусы: - Низкое усиление по напряжению (коэффициент близок к 1), поэтому
	 - Высокий коэффициент усиления по току. - Хорошая частотная характеристика. Минусы: - Низкое усиление по напряжению (коэффициент близок к 1), поэтому
	 - Высокий коэффициент усиления по току. - Хорошая частотная характеристика. Минусы: - Низкое усиление по напряжению (коэффициент близок к 1), поэтому

Схема с общим затвором	Плюсы: - Широкий частотный диапазон Хорошие входные характеристики. Минусы: - Меньшее усиление по току по сравнению с другими схемами Более сложная схема согласования сигналов.
Типы ПТ	Основные типы полевых транзисторов: 1. Полевые транзисторы с управляющим р-п переходом (ПТУП). 2. Полевые транзисторы с изолированным затвором (МОПтранзисторы), которые могут быть с индуцированным и встроенным каналом.
По графику U затвор	На графике зависимости тока стока от напряжения затвор-исток видна начальная точка отсечки, где ток практически отсутствует. При увеличении напряжения на затворе ток стока начинает возрастать.
На графике области насыщения	Область насыщения на графике характеризуется тем, что ток стока почти не зависит от напряжения стокисток. Это позволяет использовать транзистор в режиме усилителя, где ток через сток стабилизируется.
Что на графике	На графике отображена зависимость тока стока от напряжения затвор-исток, а также зависимости тока стока от напряжения сток-исток при фиксированных значениях напряжения на затворе.
Есть линейная область есть насыщения	Линейная область характеризуется тем, что ток стока зависит как от напряжения на затворе, так и от напряжения сток-исток. В этой области транзистор можно использовать как регулируемое сопротивление. В области насыщения ток стока стабилизируется и почти не зависит от напряжения стокисток.

Ток по разным формулам в разных областях в методе	В линейной области ток стока рассчитывается по формуле (3.1) 2k((Uпор – Uзи)Uси – Uси²)., где учитываются напряжения затвор-исток и сток-исток. В области насыщения используется формула (3.4) і = k(Uпор – Uзи)²., где ток зависит только от напряжения затвор-исток.
Формулы из методички	Методичка содержит следующие формулы: - Формула (3.1) для линейной области: i = 2k((Uпор – Uзи)Uси – Uси ²) Формула (3.4) для области насыщения: i = k(Uпор – Uзи) ² .
Как считали К и откуда переменные	Коэффициент К был рассчитан по формуле (5.1) на основе экспериментальных данных: начального тока стока и напряжения отсечки. Величина К учитывает конструктивные параметры транзистора.
Что такое крутизна, что определяет и как высчитывается	Крутизна характеризует изменение тока стока при изменении напряжения затвор-исток. Она рассчитывается по формуле (3.6) $S = \text{dic} \setminus \text{dusu} = 2k(U \text{пор} - U \text{зи})$ и показывает способность транзистора усиливать ток. Чем выше крутизна, тем лучше транзистор подходит для использования в усилительных схемах.

$$\begin{split} &i_{C} = 2k((U_{\Pi \text{OP}} - U_{\text{3M}})U_{\text{CM}} - \frac{U_{\text{CM}}^{2}}{2}) \qquad I_{C} \approx 2k(U_{\text{пор}} - U_{\text{3M}})U_{\text{CM}} \\ &R_{\text{K}} = \frac{U_{\text{CM}}}{i_{C}} = \frac{1}{2k(U_{\text{пор}} - U_{\text{3M}})} \qquad i_{C} = k(U_{\text{пор}} - U_{\text{3M}})^{2} \qquad i_{C} = kU_{\text{пор}}^{2} \\ &S = \left|\frac{di_{C}}{du_{\text{3M}}}\right| = 2k(U_{\text{пор}} - U_{\text{3M}}) \qquad S = S_{max}(1 - \frac{U_{\text{3M}}}{U_{\text{пор}}}) \qquad k = \frac{I_{\text{CMAY}}}{(U_{\text{3M.OTC}})^{2}} \\ &S = \frac{(I_{C,2} - I_{C,1})}{(U_{\text{3M.2}} - U_{\text{3M.1}})} \qquad K_{y} = S \cdot R_{C} \end{split}$$