 Not	2.A VECTOR SPACES e Title 7/2/2013	
	A vector space V is a set with two operations:	_
	- Addition (u,v) → u+v (u,v∈V) - Scalar multiplication (c,u) → cu (ceR, u∈V)	_
		_
	Such that for all u,v, w ∈ V and all c, delk the following axioms hold. (AI) u+v ∈ V (addition is c(osed) (MI) cu ∈ V (sc. unlt is closed))
	(A2) u+v=v+u (commutative) (M2) c(u+v)=cu+cv (distributive)	
	(A3) (u+v)+w= u+ (v+w) (Associative) (M3) (c+d)u=cu+du (distributive)	

c(du) = (cd) u

In= u

(A4) There is an element, DEV st. u+0= u

(A5) For each u, there is -ueV st. u+(-u)=0

```
Motivation: Model sets after IR", Mmxn.

Examples: - IR" set of all n-vectors (usual addition, scalar multiplication)

- Mmxn set of all mxn matrices (" ", " ")

Vector - P set of all polynomials (usual agerations)

spaces

- F(R) set of all functions f: R-R is a v.s. under
```

addition: f + g: $R \rightarrow R$, (f+g)(x) = f(x) + g(x) all $x \in R$ S(-mult): $cf: R \rightarrow R$, (cf)(x) = cf(x) all $x \in R$ Example: Let $V = |R^2|$ with the usual addition. The scalar multiplication is defined by $CO[a_1] = \begin{bmatrix} ca_1 \\ a_2 \end{bmatrix}.$

Is V a rector space?

Sol' (M3):
$$(c+d)u = cu+du$$

$$(c+d)o\begin{bmatrix}a_1\\a_2\end{bmatrix} = \begin{bmatrix}(c+d)a_1\\a_2\end{bmatrix} = \begin{bmatrix}ca_1+da_1\\a_2\end{bmatrix}$$
NoT a vector space
$$co\begin{bmatrix}a_1\\a_2\end{bmatrix} + do\begin{bmatrix}a_1\\a_2\end{bmatrix} = \begin{bmatrix}ca_1\\a_2\end{bmatrix} + \begin{bmatrix}da_1\\a_2\end{bmatrix} = \begin{bmatrix}ca_1+da_1\\a_2\end{bmatrix} = \begin{bmatrix}ca_1+da_1\\a_2\end{bmatrix} = \begin{bmatrix}ca_1+da_1\\a_2\end{bmatrix}$$

SUBSPACES

A subset W of a v.s. V is a (vector) subspace if W itself is a v.s. under the same addition and scalar multiplication as V.

Theorem (Criterion for Subspace)

Let W be a nonempty subset of a v.s. V. Then
W is a subspace of V

2. If CER, NEW = CHEW

lie. > Wis 7 closed under the two operations

any plane through the

- 2. The Span of any set of vectors
- 3. Other Examples

Example: Is
$$S = \{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, x_1 + 3x_2 = 0 \}$$
 a subspace of $[R]$? What about $K = \{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, x_1 + 3x_2 = 1 \}$? Solⁿ S : $U = \{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, V = \{ y_1 \} \text{ in } S$. $x_1 + 3x_2 = 0$, $y_1 + 3y_2 = 0$

 $2410 = \begin{cases} x_1 + y_1 \\ x_2 + y_2 \end{cases} = \begin{cases} (x_1 + y_1) + 3(x_2 + y_2) = (x_1 + 3x_2) + (y_1 + 3y_2) = 0 + 0 = 0. \text{ Yes its in S} \\ \text{S is a subspace.} \end{cases}$ $\begin{cases} (x_1 + y_1) + 3(x_2 + y_2) + (x_1 + 3x_2) = (0 + 0 = 0. \text{ Yes its in S} \\ (x_2) + 3(x_2) + (x_1 + 3x_2) = (0 + 0 = 0. \text{ Yes its in S} \\ (x_2) + 3(x_2) + (x_1 + 3x_2) = (0 + 0 = 0. \text{ Yes its in S} \\ (x_2) + 3(x_2 + 3x_2) + (x_1 + 3x_2) = (0 + 0 = 0. \text{ Yes its in S} \\ (x_2) + 3(x_2 + 3x_2) + (x_1 + 3x_2) = (0 + 0 = 0. \text{ Yes its in S} \\ (x_2) + 3(x_2 + 3x_2) + (x_1 + 3x_2) = (0 + 0 = 0. \text{ Yes its in S} \\ (x_2) + 3(x_2 + 3x_2) + (x_1 + 3x_2) = (0 + 0 = 0. \text{ Yes its in S} \\ (x_2) + 3(x_2 + 3x_2) = (0 + 0 = 0. \text{ Yes its in S} \\ (x_3) + 3(x_2 + 3x_2) + (x_1 + 3x_2) = (0 + 0 = 0. \text{ Yes its in S} \\ (x_3) + 3(x_2 + 3x_2) + (x_3 + 3x_2) = (0 + 0 = 0. \text{ Yes its in S} \\ (x_3) + 3(x_3 + 3x_2) + (x_3 + 3x_2) = (0 + 0 = 0. \text{ Yes its in S} \\ (x_3) + 3(x_3 + 3x_3) + (x_3 + 3x_3) = (0 + 0 = 0. \text{ Yes its in S} \\ (x_3) + 3(x_3 + 3x_3) + (x_3 + 3x_3) + (x_3 + 3x_3) = (0 + 0 = 0. \text{ Yes its in S} \\ (x_3) + 3(x_3 + 3x_3) + (x_3 +$

Example: Is $S = \{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, x_1 x_2 x_3 = 0 \}$ a subspace of [R]?

Sol NO: $[1] + [0] = [1] \notin S$ not closed under addition.

More Examples

- Pn all polynomials of degree in is a subspace of P
- ((R) all continuous functions f: IR IR is a subspace of F(R)

