Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 258.4 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 9.36, tilsynelatende blå størrelseklass $m_B=10.45$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 9.36, tilsynelatende blå størrelseklass $m_B = 11.45$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=4.24,$ tilsynelatende

blå størrelseklass m_B = 5.33

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 4.24, tilsynelatende blå størrelseklass $m_B=6.33$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.65 og store halvakse a=64.92 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.65 og store halvakse a=31.31 AU.

Filen 1F.txt

Ved bølgelengden 472.00 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen~1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E

5.25
5.00
4.75
4.50
3.75
0 20 40 60 80

Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 19.60 solmasser, temperatur på 20.00 Kelvin og tetthet 1.10e-20 kg per kubikkmeter

Gass-sky B har masse på 16.80 solmasser, temperatur på 49.40 Kelvin og tetthet 5.89e-21 kg per kubikkmeter

Gass-sky C har masse på 8.40 solmasser, temperatur på 66.90 Kelvin og

tetthet 1.70e-21 kg per kubikkmeter

Gass-sky D har masse på 20.80 solmasser, temperatur på 78.10 Kelvin og tetthet 6.83e-21 kg per kubikkmeter

Gass-sky E har masse på 17.00 solmasser, temperatur på 35.40 Kelvin og tetthet 7.20e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

STJERNE B) stjernas energi kommer hovedsaklig fra heliumfusjon i skall

STJERNE C) hele stjerna er elektrondegenerert

STJERNE D) stjerna har en degenerert heliumkjerne

STJERNE E) kjernen består av karbon og oksygen og er degenerert

Filen 1L.txt

Stjerne A har spektralklasse B6 og visuell tilsynelatende størrelseklasse m_V = 4.27

Stjerne B har spektralklasse M7 og visuell tilsynelatende størrelseklasse m_V = 5.90

Stjerne C har spektralklasse F2 og visuell tilsynelatende størrelseklasse m_V = 7.60

Stjerne D har spektralklasse M1 og visuell tilsynelatende størrelseklasse m $_{-}$ V = 1.63

Stjerne E har spektralklasse G9 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 7.88

Filen 1P.txt

Alle partiklene har hastighetskomponent kun langs synsretningen som er enten $100~\rm m/s$ mot deg eller fra deg (like mange i hver retning)

$Filen~2A/Oppgave 2A_Figur 1.png$

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 1 . i ż ġ ż 5 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.57799999999999825561 AU.

Tangensiell hastighet er 45374.583478377149731386 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.666 AU.

Kometens avstand fra jorda i punkt 2 er r2=6.635 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=19.175.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9356 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00022 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=1060.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9916 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 664.20 nm.

Filen 4A.txt

Stjernas masse er 1.32 solmasser.

Stjernas radius er 0.44 solradier.

Filen 4C.png

Figur 4C 2.4000 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -200 200 -400 -600 400 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 26.43 millioner K

Filen 4G.txt

Massen til det sorte hullet er 3.00 solmasser.

r-koordinaten til det innerste romskipet er r $=9.08~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=14.02~\mathrm{km}.$