5	(a)	A loudspeaker oscillates with frequency f to produce sound waves of wavelength λ . The loudspeaker makes N oscillations in time t .

(i) State expressions, in terms of some or all of the symbols f, λ and N, for:

1. the distance moved by a wavefront in time t

distance =

2. time *t*.

time $t = \dots$ [2]

(ii) your answers in (i) to deduce the equation relating the speed v of the sound wave to f and λ .

[1]

(b) The waveform of a sound wave is displayed on the screen of a cathode-ray oscilloscope (c.r.o.), as shown in Fig. 5.1.

Fig. 5.1

The time-base setting is $0.20\,\mathrm{ms\,cm^{-1}}$.

Determine the frequency of the sound wave.

(c) Two sources S_1 and S_2 of sound waves are positioned as shown in Fig. 5.2.

Fig. 5.2 (not to scale)

The sources emit coherent sound waves of wavelength 0.85m. A sound detector is moved parallel to the line S_1S_2 from a point X to a point Y. Alternate positions of maximum loudness L and minimum loudness Q are detected, as illustrated in Fig. 5.2.

Distance S_1X is equal to distance S_2X . Distance S_2Y is 7.40 m.

(i)	Explain what is meant by <i>coherent</i> waves.
	[1
(ii)	State the phase difference between the two waves arriving at the position of minimum loudness Q that is closest to point X.
	phase difference = ° [1
(iii)	Determine the distance S ₁ Y.

distance = m [2]

[Total: 9]