Functions and Quadratics Review Materials covered in the next test. Due Tuesday

Solve for the roots or zeros of a quadratic function, f(x) = 0

Factoring

Solve for the roots of the function by factoring.

1.
$$f(x) = x^2 - 4x$$

2.
$$f(x) = -2x^2 + 10x$$

3.
$$f(x) = x^2 - 9x + 18$$

4.
$$f(x) = x^2 - 8x - 20$$

5.
$$f(x) = 2x^2 - 7x - 30$$

6.
$$f(x) = \frac{7}{10}(x^2 + 12x - 45)$$

Completing the square

Rewrite the function in vertex form, $f(x) = a(x-h)^2 + k$. Include the step showing the $(-\frac{b}{2a})^2$ term. State the vertex as an ordered pair and the equation for the axis of symmetry.

7.
$$f(x) = x^2 + 10x + 14$$

8.
$$f(x) = x^2 + 8x + 11$$

9.
$$f(x) = -(x^2 + 2x - 3)$$

Using the quadratic formula

Solve using the quadratic formula.

10.
$$x^2 + 5x + 5 = 0$$

11.
$$x^2 + 5x = 2$$

12.
$$x^2 + 7x - 7 = 2x^2$$

Sketching a quadratic function

Expand the function from vertex form to standard form, $ax^2 + bx + c$ where $a, b, c \in \mathbb{R}$. Then factor the result and state the roots. Sketch the function, labeling the intercepts with values and the vertex as an ordered pair. Show the axis of symmetry as a dotted line and label it with its equation.

13.
$$f(x) = -(x+1)^2 + 4$$

14.
$$f(x) = \frac{1}{2}(x-4)^2 - 8$$
 (sketch your own axes for this plot)

Graphing quadratics

15. Graph the function $f(x) = -2x^2 - 4x + 3$. You may use a graphing calculator rather than factoring the function and completing the square.

Label the scales with at least a few values. Mark the vertex as an ordered pair and label each intercept with its value. Plot the axis of symmetry as a dotted line and label it with its equation.

Model situations with quadratic functions

The path of a diver is given by

$$y = -\frac{4}{9}x^2 + \frac{24}{9}x + 12$$

where y is the height (in feet) and x is the horizontal distance from the end of the diving board (in feet).

- (a) Use a graphing calculator to view the graph and a table of values. On the grid below, graph the function over the domain where $y \ge 0$. Use a horizontal scale of 1 square equals six inches and vertical scale of 1 square equals one foot. Label the intercepts and vertex.
- (b) What is the maximum height of the diver?
- (c) What is the diver's horizontal distance to the point she enters the water?

The inverse of a function

Derive the inverse of each function. Simplify the expression.

16.
$$f(x) = \frac{1}{3}x - 12$$

17.
$$f(x) = \frac{2}{3}(x-1)^2 - 5$$

18.
$$f(x) = \sqrt{x-1} - \frac{3}{2}$$

Function substitution

19. Given
$$f(x) = x^2 + x + 1$$
. Simplify $f(-2x)$?

20. Given
$$f(x) = x(2x - 1)$$
. Simplify $f(x - 11)$?

21. Given
$$f(x) = 1 - (2x^2 + x)$$
. Simplify $f(\frac{3}{4}x - 3)$?

Function composition

In each exercise, perform the composition $f \circ g$ and simplify.

22. Given
$$f(x) = \frac{1}{2}x^2 + 1$$
 and $g(x) = \sqrt{x}$

23. Given
$$f(x) = \frac{1}{x-4}$$
 and $g(x) = \frac{1}{x} + 4$

24. Given
$$f(x) = \frac{1-x}{x^2} + 1$$
 and $g(x) = 3x - 3$

Domain and range of a function

State the domain and range of each function

25.
$$f(x) = (x-3)^2 - 14$$

26.
$$g(x) = \sqrt{x+2} + 3$$

