Session #2: Additive vs Multiplicative Models

Guy F. Sutton

Centre for Biological Control Rhodes University, South Africa Email: g.sutton@ru.ac.za

Additive vs multiplicative models

- So far, we have only looked at linear models with a single predictor (X) variable.
 - However, we can include two or more variables into our models
 - When we do this, we can fit these models as additive or multiplicative models
 - They make different assumptions and test different hypotheses
 - Need to be very sure we know which model we want

An extended example

Let's reconsider the femurLength and bodyMass example, and assume we reared half the insects on stock plants (Control) and the other half on nitrogen-enriched plants (Nitrogen) (hereafter treatment)

Additive model - fitting

- Hypothesis: Is there a diet treatment effect on bodyMass after controlling for femurLength?
- Tests for a difference in means between treatment groups

```
1 # Fit additive model
2 mod_add <- glm(
3   data = df,
4   family = gaussian(link = "identity"),
5   bodyMass ~ 1 + femurLength + treatment
6 )</pre>
```

Additive model - LRT

```
Analysis of Deviance Table (Type II tests)

Response: bodyMass

LR Chisq Df Pr(>Chisq)

femurLength 1409.75 1 <2e-16 ***

treatment 0.04 1 0.8456

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

There is no statistical support for a difference in bodyMass between insects reared on stock plants versus nitrogenenriched plants (X2 = 0.04, df = 1, P = 0.846).

Additive model - beta

- (Intercept) = 81.65
 - Population mean bodyMass when femurLength = 0 (averaged across treatments)

Additive model - beta

- Beta femurLength = 3.96
 - As femurLength in the Control treatment increases by 1mm, bodyMass increases by 3.96mg

Additive model - beta

Multiplicative model - fitting

- Hypothesis: Is the relationship between bodyMass and femurLength comparable between stock and nitrogenenriched plants (treatment)?
- Tests for a difference in slopes between treatment groups
- This is often called and interaction term model or slopes model

```
1 # Fit multiplicative model
2 mod_mlt <- glm(
3    data = df,
4    family = gaussian(link = "identity"),
5    bodyMass ~ 1 + femurLength + treatment + femurLength:treatment
6 )</pre>
```

Multiplicative - LRT

```
Analysis of Deviance Table (Type II tests)

Response: bodyMass

LR Chisq Df Pr(>Chisq)

femurLength 2747.79 1 <2e-16 ***

treatment 0.07 1 0.7857

femurLength:treatment 187.98 1 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- The femurLength: treatment term indicates statistical support for an interactive/multiplicative effect of femurLength on bodyMass (X2 = 187.79, df = 1, P < 0.001).
 - I.e. The relationship between femurLength and bodyMass depends on whether the insect was reared on stock plants or nitrogen-enriched plants

Multiplicative model - intercept

- (Intercept) = 81.65
 - Mean bodyMass when femurLength = 0 in the Control group

Multiplicative model - beta

- Beta femurLength = 2.97
 - As femurLength in the Control treatment increases by 1mm, bodyMass increases by 2.97mg, on average

Multiplicative model - beta

- Beta treatmentNitrogen = -41.79
 - Mean bodyMass when femurLength = 0 in the Nitrogen group is
 41.79mg less than in the Control group

Multiplicative model - beta

- Beta femurLength:treatmentNitrogen = 2.07
 - As femurLength increases by 1mm, bodyMass increases by 2.07mg more, on average, than for a 1mm increase in the Control treatment

Additive vs multiplicative

- 1. Additive model: Tests for a difference in means between treatments
- 1 # Fit additive model
 2 mod_add <- glm(
 3 data = df,
 4 family = gaussian(link = "identity"),
 5 bodyMass ~ 1 + femurLength + treatment
 6)</pre>
- Treatment
 Control
 Nitrogen

 120100100Femur length (mm)

2. Multiplicative model: Tests for a difference in slopes between treatments

```
1 # Fit multiplicative model
2 mod_mlt <- glm(
3   data = df,
4   family = gaussian(link = "identity"),
5   bodyMass ~ 1 + femurLength + treatment
6 )</pre>
```

