Machine Learning

Reinforcement Learning - Markov Decision Processes

Marcello Restelli

Outline

Sequential Decision Problem Examples

Markov Decision Processes

Marcello Restelli April 29, 2024

Sequential Decision Making

- Goal: select actions to maximize cumulative rewards
- Actions may have long-term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
- Examples:
 - A financial investment (may take months to mature)
 - Refueling a helicopter (might prevent a crash in several hours)
 - Blocking opponent moves (might help winning chances many moves from now)

Marcello Restelli April 29, 2024

Agent-Environment Interface

- At each step t the agent:
 - Executes action a_t
 - Receives observation o_t
 - Receives scalar reward r_t
- The environment:
 - Receives action a_t
 - Emits observation o_t
 - Emits scalar reward r_t

4/44

History and State

• The **history** is the sequence of observations, actions, rewards

$$h_t = a_1, o_1, r_1, \dots, a_t, o_t, r_t$$

- all observable variables up to time t
- the sensorimotor stream of a robot or embodied agent
- What happens next depends on the history
 - agent selects actions
 - environment selects observations and rewards
- State is the information used to determine what happens next
- Formally, state is a function of the history:

$$s_t = f(a_1, o_1, r_1, \dots, a_t, o_t, r_t)$$

5/44

Rat Example

CRAIG SWANSON @ WWW. PERSPICUITY. COM

- What if agent state = last 3 observations?
- What if agent state = counts of different observations?
- What if agent state = complete sequence?

Marcello Restelli April 29, 2024 6/44

Environment State

- The environment state s_t^e is the environment's private representation
 - whatever representation the environment uses to produce the next observation/reward
- The environment state is **not usually** visible to the agent
- Even if s_t^e is visible, it may contain **irrelevant** information

7/44

Agent State

- The agent state is the agent's internal representation
 - whatever information the agent uses to select the next action

- is the information used by RL agents
- It can be any function history:

$$s_t^a = f(h_t)$$

Fully Observable Environments

• Full observability: agent directly observes environment state

$$o_t = s_t^a = s_t^e$$

- Formally, this is a Markov Decision Process (MDP)
- The majority of this course will consider the MDP case

When is RL useful?

- When the dynamics of the environment are unknown or difficult to be modeled
 - e.g., trading, betting
- When the model of the environment is too **complex** to be solved exactly, so that **approximate** solutions are searched for
 - e.g., humanoid robot control, group elevator dispatching

Marcello Restelli April 29, 2024 10/44

Example 1: Rubik's Cube

- Invented in 1974 by Ernő Rubik
- Formalization
 - State space: $\sim 4.33 \times 10^{19}$
 - Actions: 12 for each state
 - Deterministic state transitions
 - Rewards: -1 for each step
 - Undiscounted
- The cube can be solved in 20 moves or fewer

12/44

Example 2: Blackjack

- The most played casino game
- Formalization
 - State space: totals ~ 800 , composition $\sim 104,000$
 - Actions: from 2 to 4 according to the state
 - Stochastic state transitions
 - Rewards: 0 for each step, $\{-2, -1, 0, 1, 1.5, 2\}$ at the end
 - Undiscounted
- Using the optimal policy, the house edge is very low ($\sim 0.4\% 0.7\%$)

13/44

Example 3: Pole balancing

- A classical RL benchmark
- Formalization
 - State space: four continuous state variables $x, \dot{x}, \theta, \dot{\theta}$
 - Actions: two actions $\{-N, N\}$
 - Deterministic state transitions
 - Rewards:
 - 0 when in the goal region
 - \bullet -1 when outside goal region
 - \bullet -100 when outside feasible region

14/44

Example 4: Robot Navigation

- The most important task in mobile robotics
- Formalization
 - State space: robot coordinates
 - Actions: moving actions
 - Stochastic state transitions
 - Rewards: -1 until goal is reached
 - Undiscounted/discounted
- Often the state cannot be observed
- Shift to POMDP framework

15/44

Example 5: Web Banner Advertising

- We have to choose which banner ad showing in a certain slot of our web page
- Formalization
 - State space: single state or multiple states (contexts)
 - Actions: one for each banner
 - No dynamics
 - Rewards: probability of click times the cost per click
- Multi-armed bandit: exploration vs exploitation

Marcello Restelli April 29, 2024 16/44

Example 6: Chess

- Very popular board game
- Formalization

• State space: $\sim 10^{47}$

• Actions: from 0 to 218

- Deterministic opponent-dependent state transitions
- Rewards: 0 each step, $\{-1,0,1\}$ at the end
- Undiscounted
- The size of the game tree is 10^{123}

Marcello Restelli April 29, 2024 17/44

Example 7: Texas Hold'em

- Recently, the most played poker version
- Formalization
 - State space: huge, and not observable
 - Actions: fold, call, and raise
 - Stochastic opponent-dependent state transitions
 - Rewards: 0 each step, $\{-1,0,1\}$ at the end
 - Undiscounted
- The size of the limit game with 2 players is 10^{18}

18/44

Markov Assumption

"The future is independent of the past given the present"

Definition

A stochastic process X_t is said to be **Markovian** if and only if

$$\mathbb{P}(X_{t+1} = j | X_t = i, X_{t-1} = k_{t-1}, \dots, X_1 = k_1, X_0 = k_0) = \mathbb{P}(X_{t+1} = j | X_t = i)$$

- The state **captures all the information** from history
- Once the state is known, the history may be thrown away
- The state is a **sufficient statistic** for the future
- The conditional probabilities are **transition probabilities**
- If the probabilities are **stationary** (time invariant), we can write:

$$p_{i,i} = \mathbb{P}(X_{t+1} = i | X_t = i) = \mathbb{P}(X_1 = i | X_0 = i)$$

20/44

Discrete-time Finite Markov Decision Processes

A Markov decision process (MDP) is Markov reward process with **decisions**. It models an environment in which all states are Markov and time is divided into **stages**.

Definition

A **Markov Process** is a tuple $\langle S, A, P, R, \gamma, \mu \rangle$

- S is a (finite) set of states
- A is a (finite) set of actions
- P is a state transition probability matrix, P(s'|s,a)
- R is a reward function, $R(s, a) = \mathbb{E}[r|s, a]$
- γ is a discount factor, $\gamma \in [0, 1]$
- a set of initial probabilities $\mu_i^0 = P(X_0 = i)$ for all i

Marcello Restelli April 29, 2024 21/44

Example: Student MDP

Marcello Restelli April 29, 2024

Goals and Rewards

- Is a scalar reward an adequate notion of a goal?
 - **Sutton hypothesis**: That all of what we mean by goals and purposes can be well thought of as the maximization of the cumulative sum of a received scalar signal (reward)
 - Probably ultimately wrong, but so simple and flexible we have to disprove it before considering anything more complicated
- A goal should specify what we want to achieve, not how we want to achieve it
- The same goal can be specified by (infinite) different reward functions
- A goal must be outside the agent's direct control thus outside the agent
- The agent must be able to measure success:
 - explicitly
 - frequently during her lifespan

Marcello Restelli April 29, 2024 23/44

Return

- Time horizon
 - finite: finite and fixed number of steps
 - indefinite: until some stopping criteria is met (absorbing states)
 - infinite: forever
- Cumulative reward
 - total reward:

$$V = \sum_{i=1}^{\infty} r_i$$

• average reward:

$$V = \lim_{n \to \infty} \frac{r_1 + \dots + r_n}{n}$$

discounted reward:

$$V = \sum_{i=1}^{\infty} \gamma^{i-1} r_i$$

mean-variance reward

Infinite-horizon Discounted Return

Definition

The **return** v_t is the total discounted reward from time-step t.

$$v_t = r_{t+1} + \gamma r_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

- The discount $\gamma \in [0,1)$ is the present value of future rewards
- The value of receiving reward r after k+1 time-steps is $\gamma^k r$
- Immediate reward vs delayed reward
 - γ close to 0 leads to "myopic" evaluation
 - γ close to 1 leads to "far-sighted" evaluation
- γ can be also interpreted as the **probability** that the process will **go on**

Marcello Restelli April 29, 2024

Why discount?

Most Markov reward (and decision) processes are discounted, why?

- Mathematically convenient to discount rewards
- Avoids infinite returns in cyclic Markov processes
- Uncertainty about the future may not be fully represented
- If the reward is **financial**, immediate rewards may earn more interest than delayed rewards
- Animal/human behavior shows preference for immediate reward
- It is sometimes possible to use **undiscounted** Markov reward processes (i.e. $\gamma = 1$), e.g. if all sequences **terminate**

Marcello Restelli April 29, 2024

Policies

- A policy, at any given point in time, decides which action the agent selects
- A policy fully defines the **behavior** of an agent
- Policies can be:
 - Markovian ⊆ History–dependent
 - Deterministic ⊆ Stochastic
 - Stationary ⊆ Non–stationary

Marcello Restelli April 29, 2024

Stationary Stochastic Markovian Policies

Definition

A policy π is a **distribution over actions** given the state:

$$\pi(a|s) = \mathbb{P}[a|s]$$

- MDP policies depend on the **current state** (not the history)
- i.e., Policies are **stationary** (time-independent)
- Given an MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, P, R, \gamma, \mu \rangle$ and a policy π
 - The state sequence s_1, s_2, \ldots is a Markov process $\langle \mathcal{S}, P^{\pi}, \mu \rangle$
 - The state and reward sequence $s_1, r_2, s_2, ...$ is a **Markov reward process** $\langle \mathcal{S}, P^{\pi}, R^{\pi}, \gamma, \mu \rangle$, where

$$P^{\pi} = \sum_{a \in A} \pi(a|s) P(s'|s,a) \quad R^{\pi} = \sum_{a \in A} \pi(a|s) R(s,a)$$

28/44

Value Functions

Given a policy π , it is possible to define the **utility** of each state: **Policy Evaluation**

Definition

The state–value function $V^{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[v_t|s_t = s]$$

For **control purposes**, rather than the value of each state, it is easier to consider **the value of each action** in each state

Definition

The action–value function $Q^{\pi}(s,a)$ is the expected return starting from state s, taking action a, and then following policy π

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[v_t|s_t = s, a_t = a]$$

Marcello Restelli April 29, 2024

Example: Value Function of Student MDP

Marcello Restelli April 29, 2024

Bellman Expectation Equation

The state-value function can again be **decomposed** into immediate reward plus discounted value of successor state,

$$V^{\pi}(s) = \mathbb{E}_{\pi}[r_{t+1} + \gamma V^{\pi}(s_{t+1})|s_t = s]$$

$$= \sum_{a \in A} \pi(a|s) \left(R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{\pi}(s') \right)$$

The action-value function can similarly be decomposed

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) | s_t = s, a_t = a]$$

$$= R(s, a) + \gamma \sum_{s' \in S} P(s' | s, a) V^{\pi}(s')$$

$$= R(s, a) + \gamma \sum_{s' \in S} P(s' | s, a) \sum_{a' \in A} \pi(a' | s') Q^{\pi}(s', a')$$

Marcello Restelli April 29, 2024

Bellman Expectation Equation (Matrix Form)

The Bellman expectation equation can be expressed **concisely** using the induced MRP

$$V^{\pi} = R^{\pi} + \gamma P^{\pi} V^{\pi}$$

with direct solution

$$V^{\pi} = (I - \gamma P^{\pi})^{-1} R^{\pi}$$

Marcello Restelli April 29, 2024

Bellman operators for V^{π}

Definition

The Bellman operator for V^{π} is defined as $T^{\pi}: \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$ (maps value functions to value functions):

$$(T^{\pi}V^{\pi})(s) = \sum_{a \in A} \pi(a|s) \left(R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^{\pi}(s') \right)$$

• Using Bellman operator, Bellman expectation equation can be **compactly** written as:

$$T^{\pi}V^{\pi} = V^{\pi}$$

- V^{π} is a **fixed point** of the Bellman operator T^{π}
- This is a **linear equation** in V^{π} and T^{π}
- If $0 < \gamma < 1$ then T^{π} is a **contraction** w.r.t. the maximum norm

Marcello Restelli April 29, 2024

Bellman operators for Q^{π}

Definition

The Bellman operator for Q^{π} is defined as $T^{\pi}: \mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|} \to \mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|}$ (maps action–value functions to action–value functions):

$$(T^{\pi}Q^{\pi})(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \sum_{a' \in A} \pi(a'|s') \left(Q^{\pi}(s',a')\right)$$

• Using Bellman operator, Bellman expectation equation can be compactly written as:

$$T^{\pi}Q^{\pi} = Q^{\pi}$$

- Q^{π} is a fixed point of the Bellman operator T^{π}
- This is a linear equation in Q^{π} and T^{π}
- If $0 < \gamma < 1$ then T^{π} is a contraction w.r.t. the maximum norm

Marcello Restelli April 29, 2024 34/44

Optimal Value Function

Definition

The **optimal state-value function** $V^*(s)$ is the maximum value function over all policies

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

The **optimal action–value function** $Q^*(s,a)$ is the maximum action–value function over all policies

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

- The optimal value function specifies the **best** possible performance in the MDP
- An MDP is "solved" when we know the optimal value function

Marcello Restelli April 29, 2024 35/44

Example: Optimal Value Function of Student MDP

Marcello Restelli April 29, 2024

Optimal Policy

Value functions define a partial ordering over policies

$$\pi \ge \pi' \text{ if } V^{\pi}(s) \ge V^{\pi'}(s), \quad \forall s \in \mathcal{S}$$

Theorem

For any Markov Decision Process

- There exists an optimal policy π^* that is better than or equal to all other policies $\pi^* \geq \pi$, $\forall \pi$
- All optimal policies achieve the optimal value function, $V^{\pi^*}(s) = V^*(s)$
- All optimal policies achieve the optimal action–value function, $Q^{\pi^*}(s,a) = Q^*(s,a)$
- There is always a **deterministic optimal policy** for any MDP

A deterministic optimal policy can be found by maximizing over $Q^*(s, a)$

$$\pi^*(a|s) = \begin{cases} 1 & \text{if } a = arg \max_{a \in \mathcal{A}} Q^*(s, a) \\ 0 & \text{otherwise} \end{cases}$$

Marcello Restelli April 29, 2024

Example: Optimal Policy for Student MDP

Marcello Restelli April 29, 2024

Bellman Optimality Equation

Bellman Optimality Equation for V*

$$\begin{split} V^*(s) &= & \max_a Q^*(s,a) \\ &= & \max_a \left\{ R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a) V^*(s') \right\} \end{split}$$

Bellman Optimality Equation for Q*

$$\begin{split} Q^*(s,a) &= R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a) V^*(s') \\ &= R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a) \max_{a'} Q^*(s',a') \end{split}$$

Marcello Restelli April 29, 2024

Example: Bellman Optimality Equation in Student MDP

Marcello Restelli

Bellman Optimality Operator

Definition

The Bellman optimality operator for V^* is defined as $T^*: \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$ (maps value functions to value functions):

$$(T^*V^*)(s) = \max_{a \in A} \left(R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V^*(s') \right)$$

Definition

The Bellman optimality operator for Q^* is defined as $T^*: \mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|} \to \mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|}$ (maps action–value functions to action–value functions):

$$(T^*Q^*)(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) \max_{a'} Q^*(s', a')$$

Marcello Restelli April 29, 2024

Properties of Bellman Operators

• Monotonicity: if $f_1 \le f_2$ component–wise

$$T^{\pi} f_1 \le T^{\pi} f_2$$
 , $T^* f_1 \le T^* f_2$

• Max-Norm Contraction: for two vectors f_1 and f_2

$$||T^{\pi} f_1 - T^{\pi} f_2||_{\infty} \le \gamma ||f_1 - f_2||_{\infty}$$

$$||T^* f_1 - T^* f_2||_{\infty} < \gamma ||f_1 - f_2||_{\infty}$$

- V^{π} is the unique fixed point of T^{π}
- V^* is the unique fixed point of T^*
- For any vector $f \in \mathbb{R}^{|\mathcal{S}|}$ and any policy π , we have

$$\lim_{k \to \infty} (T^{\pi})^k f = V^{\pi} \quad , \quad \lim_{k \to \infty} (T^*)^k f = V^*$$

42/44

Solving the Bellman Optimality Equation

- Bellman optimality equation is **non-linear**
- No closed form solution for the general case
- Many **iterative** solution methods
 - Dynamic Programming
 - Value Iteration
 - Policy Iteration
 - Linear Programming
 - Reinforcement Learning
 - Q-learning
 - SARSA

Marcello Restelli April 29, 2024

Extensions to MDP

- Undiscounted, average reward MDPs
- Infinite and continuous MDPs
- Partially observable MDPs
- Semi-MDPs
- Non-stationary MDPs, Markov games

Marcello Restelli April 29, 2024