EVAL LAB 5

Zeel Mehta 21BAI1533

```
In [262]: import pandas as pd
           import numpy as np
           import matplotlib.pyplot as plt
           import seaborn as sns
           %matplotlib inline
In [263]: df=pd.read_csv('/Users/zeelmehta/Desktop/Indian Liver Patient Datas
In [264]: df.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 582 entries, 0 to 581
           Data columns (total 11 columns):
                Column Non-Null Count
                                         Dtype
            0
                65
                        582 non-null
                                         int64
                Female
                                         object
            1
                        582 non-null
           2
                0.7
                        582 non-null
                                         float64
           3
                        582 non-null
                                         float64
                0.1
           4
                187
                        582 non-null
                                         int64
           5
                16
                        582 non-null
                                         int64
           6
                18
                        582 non-null
                                         int64
            7
                6.8
                        582 non-null
                                         float64
           8
                3.3
                        582 non-null
                                         float64
                        578 non-null
                                         float64
           9
                0.9
           10
                1
                        582 non-null
                                         int64
           dtypes: float64(5), int64(5), object(1)
           memory usage: 50.1+ KB
In [265]: df.isnull().sum()
Out[265]: 65
                     0
          Female
                     0
           0.7
                     0
           0.1
                     0
           187
                     0
           16
                     0
           18
                     0
           6.8
                     0
           3.3
                     0
           0.9
                     4
                     0
           dtype: int64
```

```
In [266]: df.columns
Out[266]: Index(['65', 'Female', '0.7', '0.1', '187', '16', '18', '6.8', '3.
           3', '0.9',
                   '1'],
                  dtype='object')
In [267]: df.dtypes
Out[267]: 65
                         int64
           Female
                        object
                       float64
           0.7
           0.1
                       float64
           187
                         int64
           16
                         int64
           18
                         int64
           6.8
                       float64
           3.3
                       float64
           0.9
                       float64
           1
                         int64
           dtype: object
In [268]: df.head()
Out[268]:
                                          18 6.8 3.3
              65 Female
                          0.7 0.1 187
                                     16
                                                      0.9 1
            0 62
                                             7.5
                    Male
                         10.9
                             5.5
                                  699
                                      64
                                         100
                                                 3.2 0.74 1
            1 62
                    Male
                          7.3 4.1
                                  490
                                      60
                                          68 7.0 3.3 0.89 1
            2 58
                    Male
                          1.0 0.4
                                  182
                                      14
                                          20
                                             6.8 3.4
                                                     1.00 1
```

Perform pre-processing if required (2 Marks)

7.3 2.4 0.40 1

14 7.6 4.4 1.30 1

27

19

3 72

4 46

Male

Male

3.9 2.0 195

1.8 0.7 208

```
In [269]: df.columns =['age', 'gender', 'tb', 'db', 'alkphos', 'sgpt', 'sgot', 't
    df.head()
```

Out [269]:

	age	gender	tb	db	alkphos	sgpt	sgot	tp	alb	agratio	label
0	62	Male	10.9	5.5	699	64	100	7.5	3.2	0.74	1
1	62	Male	7.3	4.1	490	60	68	7.0	3.3	0.89	1
2	58	Male	1.0	0.4	182	14	20	6.8	3.4	1.00	1
3	72	Male	3.9	2.0	195	27	59	7.3	2.4	0.40	1
4	46	Male	1.8	0.7	208	19	14	7.6	4.4	1.30	1

```
In [271]: Encoder(df)
df['gender']
```

```
Out [271]: 0
                     1
            1
                     1
            2
                     1
            3
                     1
            4
                     1
            577
                     1
            578
                     1
            579
                     1
            580
                     1
            581
```

Name: gender, Length: 582, dtype: int64

```
In [272]: | df.isnull().sum()
Out [272]: age
                         0
            gender
            tb
                         0
            db
                         0
            alkphos
                         0
            sgpt
                         0
                         0
            sgot
            tp
                         0
                         0
            alb
            agratio
                         4
            label
                         0
            dtype: int64
In [273]: | from sklearn.impute import SimpleImputer
            imp=SimpleImputer(missing_values=np.NaN,strategy='mean')
            df['agratio']=imp.fit transform(x)
In [274]: df['agratio'].isnull().sum()
Out[274]: 0
In [275]: df.head()
Out [275]:
                    gender
                                db alkphos sgpt
                                                sgot
                                                       tp alb agratio label
               age
                                                          3.2
            0
                62
                        1 10.9
                                5.5
                                       699
                                              64
                                                  100
                                                      7.5
                                                                 62.0
                                                                         1
                62
                        1
                            7.3 4.1
                                       490
                                              60
                                                   68 7.0 3.3
                                                                 62.0
            1
                                                                         1
            2
                58
                            1.0 0.4
                                        182
                                              14
                                                      6.8 3.4
                                                                 58.0
                        1
                                                   20
                                                                         1
            3
                72
                            3.9 2.0
                                        195
                                              27
                                                   59 7.3 2.4
                                                                 72.0
                            1.8 0.7
                                       208
                                              19
                                                   14 7.6 4.4
                                                                 46.0
                46
                                                                         1
```

Draw the heat map (2 Marks)

Out[276]: <AxesSubplot:>

Split the dataset into Train and Test.

```
In [277]: from sklearn.model_selection import train_test_split
```

Out [278]:

	age	gender	tb	db	alkphos	sgpt	sgot	tp	alb	agratio
0	62	1	10.9	5.5	699	64	100	7.5	3.2	62.0
1	62	1	7.3	4.1	490	60	68	7.0	3.3	62.0
2	58	1	1.0	0.4	182	14	20	6.8	3.4	58.0
3	72	1	3.9	2.0	195	27	59	7.3	2.4	72.0
4	46	1	1.8	0.7	208	19	14	7.6	4.4	46.0
577	60	1	0.5	0.1	500	20	34	5.9	1.6	60.0
578	40	1	0.6	0.1	98	35	31	6.0	3.2	40.0
579	52	1	8.0	0.2	245	48	49	6.4	3.2	52.0
580	31	1	1.3	0.5	184	29	32	6.8	3.4	31.0
581	38	1	1.0	0.3	216	21	24	7.3	4.4	38.0

582 rows × 10 columns

In [280]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

In [281]: x_train.head()

Out[281]:

	age	gender	tb	db	alkphos	sgpt	sgot	tp	alb	agratio
149	56	1	1.1	0.5	180	30	42	6.9	3.8	56.0
470	49	0	0.6	0.1	185	17	26	6.6	2.9	49.0
498	55	1	3.6	1.6	349	40	70	7.2	2.9	55.0
404	31	0	8.0	0.2	215	15	21	7.6	4.0	31.0
483	62	1	5.0	2.1	103	18	40	5.0	2.1	62.0

In [282]: x_test.head()

Out [282]:

	age	gender	tb	db	alkphos	sgpt	sgot	tp	alb	agratio
254	38	1	1.7	0.7	859	89	48	6.0	3.0	38.0
321	36	1	1.7	0.5	205	36	34	7.1	3.9	36.0
258	42	1	30.5	14.2	285	65	130	5.2	2.1	42.0
83	32	1	0.6	0.1	237	45	31	7.5	4.3	32.0
409	18	1	1.4	0.6	215	440	850	5.0	1.9	18.0

```
In [283]: y_train.head()
Out[283]: 149
                  2
          470
                  2
          498
                  1
          404
                  1
          483
                  1
          Name: label, dtype: int64
In [284]: y_test.head()
Out[284]: 254
                  1
          321
                  1
          258
                  1
          83
                  1
          409
          Name: label, dtype: int64
```

Apply Decision Tree on the data(3 Marks)

```
In [285]: from sklearn.tree import DecisionTreeClassifier
In [286]: dt=DecisionTreeClassifier()
In [287]: dt.fit(x_train,y_train)
Out[287]: DecisionTreeClassifier()
In [288]: pred=dt.predict(x_test)
```

```
In [292]: from sklearn.tree import plot_tree
  plt.figure(figsize=(25,20))
  x.columns = x.columns.astype(str)
  y=y.astype(str)
  a = plot_tree(dt,feature_names=x.columns,class_names=y,filled=True,
```


Display the classification metrics. (3 Marks)

In [289]: from sklearn.metrics import classification_report,confusion_matrix

In [290]: print(classification_report(y_test,pred))

	precision	recall	f1-score	support	
1 2	0.78 0.45	0.82 0.40	0.80 0.42	127 48	
accuracy macro avg weighted avg	0.62 0.69	0.61 0.70	0.70 0.61 0.70	175 175 175	

```
In [291]: print(confusion_matrix(y_test,pred))
        [[104    23]
            [ 29    19]]
```

Perform cross validation using cross (5 Marks)

```
In [293]: from sklearn.model_selection import cross_val_score
In [294]: from sklearn.ensemble import RandomForestClassifier
          rf=RandomForestClassifier(n_estimators=300,random_state=0)
          rf.fit(x_train, y_train)
Out[294]: RandomForestClassifier(n_estimators=300, random_state=0)
In [295]: | rfpred= rf.predict(x_test)
In [296]: print(confusion_matrix(y_test,rfpred))
                   6]
           [[121
                   911
            [ 39
In [297]: |print(classification_report(y_test,rfpred))
                                      recall
                         precision
                                               f1-score
                                                          support
                              0.76
                                        0.95
                                                              127
                      1
                                                   0.84
                      2
                              0.60
                                        0.19
                                                   0.29
                                                               48
                                                   0.74
                                                              175
              accuracy
                              0.68
                                        0.57
                                                   0.56
                                                              175
             macro avg
          weighted avg
                              0.71
                                        0.74
                                                   0.69
                                                              175
In [298]: | all_accuracies=cross_val_score(estimator=rf,X=x_train,y=y_train,cv=
In [299]: all accuracies
Out[299]: array([0.74390244, 0.7195122 , 0.7654321 , 0.66666667, 0.74074074]
In [300]: |all_accuracies.mean()
Out[300]: 0.7272508280638361
  In [ ]:
```