$$\frac{\partial E_{in}}{\partial \vec{w}_1} = \sum_{n=1}^4 \frac{\partial E_{in}(\vec{x}_n)}{\partial \vec{w}_1} = (\hat{y}_1 - 1)\vec{x}_1 + (\hat{y}_1 - 1)\vec{x}_2 + \hat{y}_2\vec{x}_3 + \hat{y}_3\vec{x}_4$$

=
$$(1-1)\vec{x}_1 + (1-1)\vec{x}_2 + 1\vec{x}_3 + 0\vec{x}_4 = (1,0,3)^T$$

同理,我们可以得到: $\frac{\partial E_{in}}{\partial \vec{w}_2} = 0\vec{x}_1 + 0\vec{x}_2 + (0-1)\vec{x}_3 + 0\vec{x}_4 = (-1,0,-3)^T$,

$$\frac{\partial E_{in}}{\partial \vec{w}_3} = 0\vec{x}_1 + 0\vec{x}_2 + 0\vec{x}_3 + (1-1)\vec{x}_4 = (0,0,0)^T$$

用梯度下降法对 \vec{w}_k 进行更新:

$$\vec{w}_1^{(2)} = \vec{w}_1^{(1)} - \frac{\partial E_{in}}{\partial \vec{w}_1} = (0.67, 5, 3)^T - (1, 0, 3)^T = (-0.33, 5, 0)^T$$

$$\vec{w}_2^{(2)} = \vec{w}_2^{(1)} - \frac{\partial E_{in}}{\partial \vec{w}_2} = (-0.33, -1.0)^T - (-1.0, -3)^T = (0.67, -1.3)^T$$

$$\vec{w}_3^{(2)} = \vec{w}_3^{(1)} - \frac{\partial E_{in}}{\partial \vec{w}_3} = (-0.33, -4, -3)^T - (0, 0, 0)^T = (-0.33, -4, -3)^T$$

根据 $\vec{w}_1^{(2)}$, $\vec{w}_2^{(2)}$ 和 $\vec{w}_3^{(2)}$, 我们用式 (1) 得到:

对于
$$\vec{x}_1$$
, 我们有: $s_1 = \vec{w}_1^T \vec{x}_1 = (-0.33,5,0) \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} = 14.67$, $s_2 = \vec{w}_2^T \vec{x}_1 = (-0.33,5,0) \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} = 14.67$

$$(0.67, -1.3)$$
 $\begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} = -2.33, \quad s_3 = \vec{w}_3^T \vec{x}_1 = (-0.33, -4, -3) \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} = -12.33$

利用式 (2) ,我们可以得到:
$$\hat{y}_1 = \frac{e^{s_1}}{e^{s_1} + e^{s_2} + e^{s_3}} = 1.00$$
, $\hat{y}_2 = \frac{e^{s_2}}{e^{s_1} + e^{s_2} + e^{s_3}} = 1.00$

$$0.00$$
, $\hat{y}_3 = \frac{e^{s_3}}{e^{s_1} + e^{s_2} + e^{s_3}} = 0.00$, 即, $\vec{\hat{Y}}_1 = (1.00, 0.00, 0.00)^T$,对照 $\vec{Y}_1 = (1, 0, 0)^T$,

此时对于样本 21分类是正确的。

同理:对于 \vec{x}_2 ,我们有 $s_1=14.67$, $s_2=15.67$, $s_3=-30.33$,对应的我们可以计算出 $\vec{\hat{Y}}_2=(0.27,0.73,0.00)^T$,对照 $\vec{Y}_2=(1,0,0)^T$,此时对于样本 \vec{x}_2 分类是错误的。

对于 \vec{x}_3 ,我们有 $s_1=-0.33$, $s_2=9.67$, $s_3=-9.33$,对应的我们可以计算 出 $\vec{\hat{Y}}_3=(0.00,1.00,0.00)^T$,对照 $\vec{Y}_3=(0,1,0)^T$,此时对于样本 \vec{x}_3 分类是正确的。