

机器学习

刘祥龙

北京航空航天大学计算机学院 软件开发环境国家重点实验室

2018年11月27日

个体与集成

- No Free Lunch: 没有单一的算法可以保证永远最好
- 集成学习(ensemble learning)通过构建并结合多个学习器来 提升性能
- 不同的学习器采用不同的算法、参数、表征(属性、特征、模态等)、训练数据、子问题等

几种典型的集成学习方法

• 有 T 个弱分类器 y_m , 产生强分类器 Y_M

$$Y_M = rac{1}{M} \sum_{m=1}^M y_m$$
 Bagging

• 有T个弱分类器,根据各处的权重,产生强分类器

$$Y_M = rac{1}{M} \sum_{m=1}^{M} lpha_m y_m$$
 Boosting

• 若进一步考虑弱分类器和样本进行自适应 Adaptive Boosting Adaboost

Bagging (Bootstrap aggregating)

• 基本步骤

- 选取T个bootstrap样例 (可重复选取)
- 在不同的bootstrap样例上训练得到T个不同的分类器(相互独立)
- 对于新的测试样例,由T个分类器分别预测,并计算平均值(或者 多数投票)

```
输入: 训练集 D = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_m, y_m)\}; 基学习算法 \mathfrak{L}; 训练轮数 T.
```

过程:

1: **for**
$$t = 1, 2, ..., T$$
 do

2:
$$h_t = \mathfrak{L}(D, \mathcal{D}_{bs})$$

3: end for

输出:
$$H(\boldsymbol{x}) = \operatorname*{arg\,max}_{y \in \mathcal{Y}} \sum_{t=1}^{T} \mathbb{I}(h_t(\boldsymbol{x}) = y)$$

Boosting

• 基本步骤

- □ 顺序训练每个分类器
- □ 新的分类器主要集中在上一轮错误分类的样例上
- □ 组合所有得到的分类器预测结果

• 特点

- □ 个体学习器存在强依赖关系
- 训练数据相同,但每次需要调整数据分布
- □ 每个分类器是"弱"的,但集成是"强"的

Boosting实例

Boosting - AdaBoost算法

Boosting算法中最著名的代表是AdaBoost

输入: 训练集
$$D = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_m, y_m)\};$$
 基学习算法 $\mathfrak{L};$ 训练轮数 $T.$ 过程: 1: $\mathcal{D}_1(\boldsymbol{x}) = 1/m.$

1:
$$\mathcal{D}_1(x) = 1/m$$
.

2: **for**
$$t = 1, 2, ..., T$$
 do

3:
$$h_t = \mathfrak{L}(D, \mathcal{D}_t);$$

4:
$$\epsilon_t = P_{\boldsymbol{x} \sim \mathcal{D}_t}(h_t(\boldsymbol{x}) \neq f(\boldsymbol{x}));$$

5: if
$$\epsilon_t > 0.5$$
 then break

6:
$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right);$$

7:
$$\mathcal{D}_{t+1}(\boldsymbol{x}) = \frac{\mathcal{D}_{t}(\boldsymbol{x})}{Z_{t}} \times \begin{cases} \exp(-\alpha_{t}), & \text{if } h_{t}(\boldsymbol{x}) = f(\boldsymbol{x}) \\ \exp(\alpha_{t}), & \text{if } h_{t}(\boldsymbol{x}) \neq f(\boldsymbol{x}) \end{cases}$$
$$= \frac{\mathcal{D}_{t}(\boldsymbol{x})\exp(-\alpha_{t}f(\boldsymbol{x})h_{t}(\boldsymbol{x}))}{Z_{t}}$$

8: end for

输出:
$$H(\boldsymbol{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\boldsymbol{x})\right)$$

Boosting - AdaBoost推导

• 模型: 基学习器的线性组合

$$H(oldsymbol{x}) = \sum_{t=1}^T lpha_t h_t(oldsymbol{x})$$

• 损失函数: 最小化指数损失函数

$$\ell_{\exp}(H \mid \mathcal{D}) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}}[e^{-f(\boldsymbol{x})H(\boldsymbol{x})}]$$

Boosting - AdaBoost推导

• 优化:

lacksquare 参数 α_t : 当基分类器 h_t 基于分布 D_t 产生后,该基分类器的权重 α_t 应 使得 $\alpha_t h_t$ 最小化指数损失函数

$$\ell_{\exp} \left(\alpha_{t} h_{t} \mid \mathcal{D}_{t}\right) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{t}} \left[e^{-f(\boldsymbol{x})\alpha_{t} h_{t}(\boldsymbol{x})} \right]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{t}} \left[e^{-\alpha_{t}} \mathbb{I} \left(f\left(\boldsymbol{x}\right) = h_{t}\left(\boldsymbol{x}\right) \right) + e^{\alpha_{t}} \mathbb{I} \left(f\left(\boldsymbol{x}\right) \neq h_{t}\left(\boldsymbol{x}\right) \right) \right]$$

$$= e^{-\alpha_{t}} P_{\boldsymbol{x} \sim \mathcal{D}_{t}} \left(f\left(\boldsymbol{x}\right) = h_{t}\left(\boldsymbol{x}\right) \right) + e^{\alpha_{t}} P_{\boldsymbol{x} \sim \mathcal{D}_{t}} \left(f\left(\boldsymbol{x}\right) \neq h_{t}\left(\boldsymbol{x}\right) \right)$$

$$= e^{-\alpha_{t}} \left(1 - \epsilon_{t} \right) + e^{\alpha_{t}} \epsilon_{t} \qquad \epsilon_{t} = P_{\boldsymbol{x} \sim \mathcal{D}_{t}} \left(h_{t}(\boldsymbol{x}) \neq f(\boldsymbol{x}) \right)$$

□ 对 α_t 求导为0

$$lpha_t = rac{1}{2} \ln \left(rac{1 - \epsilon_t}{\epsilon_t}
ight)$$

Boosting - AdaBoost推导

• 优化

 \Box 在获得 H_{t-1} 之后的样本分布进行调整,使得下一轮的基学习器 h_t 能纠正 H_{t-1} 的一些错误,理想的 h_t 能纠正全部错误

$$\begin{split} h_t(\boldsymbol{x}) &= \operatorname*{arg\,min}_h \ell_{\exp} \big(H_{t-1} + h \mid \mathcal{D} \big) \\ &= \operatorname*{arg\,min}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \left(1 - j \right) \right] \\ &= \operatorname*{arg\,min}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \left(1 - j \right) \right] \\ &= \operatorname*{arg\,max}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \left(1 - j \right) \right] \\ &= \operatorname*{arg\,max}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,max}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname*{arg\,max}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname*{arg\,max}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,max}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,max}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,max}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,max}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,max}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,max}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,max}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,max}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,max}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,max}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,max}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,min}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,min}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,min}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,min}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,min}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,min}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,min}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,min}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,min}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,min}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \right] \\ &= \operatorname{arg\,min}_h$$

$$=rg\max_{m{x}}\mathbb{E}_{m{x}\sim\mathcal{D}_t}\left[f(m{x})h(m{x})
ight]\;.$$

分类器

低维嵌入

- 缓解维数灾难的一个重要途径是降维(dimension reduction)
 - □ 即通过某种数学变换,将原始高维属性空间转变为一个低维"子空间" (subspace),在这个子空间中样本密度大幅度提高,距离计算也变得更为容易。
- 为什么能进行降维?
 - 数据样本虽然是高维的,但与学习任务密切相关的也许仅是某个低维分布,即高维空间中的一个低维"嵌入"(embedding),因而可以对数据进行有效的降维。

(a) 三维空间中观察到的样本点

(b) 二维空间中的曲面

线性降维方法

• 对原始高维空间进行线性变换。给定d维空间中的样本 $\mathbf{X} = (x_1, x_2, ..., x_m) \in \mathbb{R}^{d \times m}$, 变换之后得到 $d' \leq d$ 维空间中的样本 $\mathbf{Z} = \mathbf{W}^{\mathrm{T}} \mathbf{X}$,

其中 $\mathbf{W} \in \mathbb{R}^{d \times d'}$ 是变换矩阵, $\mathbf{Z} \in \mathbb{R}^{d' \times m}$ 是样本在新空间中的表达。

- 变换矩阵 W 可视为 d' 个d 维属性向量。换言之, z_i 是原属性向量 x_i 在新坐标系 $\{w_1, w_2, \ldots, w_{d'}\}$ 中的坐标向量。若 w_i 与 w_j ($i \neq j$) 正交,则新坐标系是一个正交坐标系,此时 W为正交变换。
- 显然,新空间中的属性是原空间中的属性的线性组合。

主成分分析

- 降维:对于正交属性空间中的样本点,如何用一个超平面对所有样本进行恰当的表达?
- 容易想到,若存在这样的超平面,那么它大概应具有 这样的性质:
 - □ 使得降维后最大程度保持原始的数据特性: 方差最大
 - □ 使得降维后数据的误差尽可能小:均方误差最小
- 能分别得到主成分分析的两种等价推导。

最大化方差

- 基本思想: 使用较少的数据维度保留数据特性 (方差)
- 将D维数据集 $\{x_n\}, n = 1, 2, ..., N$ 降为 M < D , 不失一般性,先考虑 M = 1 , 投影为 \mathbf{u}_1 , $\mathbf{u}_1^T \mathbf{u}_1 = 1$
- 模型:
 - $lacksymbol{\square}$ 每个数据点 $lacksymbol{\mathbf{x}}_n$ 在新空间中表示为标量 $lacksymbol{\mathbf{u}}_1^T lacksymbol{\mathbf{x}}_n$
 - lackbox 样本均值在新空间中表示为 $\mathbf{u}_1^Tar{\mathbf{x}}$,其中 $ar{\mathbf{x}}=rac{1}{N}\sum_{n=1}^{N}\mathbf{x}_n$
- 投影后样本方差表示为

$$\frac{1}{N} \sum_{n=1}^{N} \{\mathbf{u}_1^T \mathbf{x}_n - \mathbf{u}_1^T \bar{\mathbf{x}}\}^2 = \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1$$
 最大

• 其中原样本方差
$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^T$$

最大化方差

• 基本思想: 使用较少的数据维度保留原数据特性

• 优化目标: $\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1, s.t. \mathbf{u}_1^T \mathbf{u}_1 = 1$

- 求解: 利用拉格朗日乘子法 $\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 + \lambda_1 (1 \mathbf{u}_1^T \mathbf{u}_1)$
 - lue 对 \mathbf{u}_1 求导置零得到

$$Su_1 = \lambda_1 u_1$$
 u_1 是 S 的特征向量

□ 进一步得到

$$\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 = \lambda_1$$

u₁是S最大特征值对应的特征向量时 方差取到极大值,称u₁为第一主成分

最小化误差

• 优化目标: 最小化失真度

$$\mathbf{x}_n - \tilde{\mathbf{x}}_n = \sum_{i=M+1}^D \{ (\mathbf{x}_n - \bar{\mathbf{x}})^T \mathbf{u}_i \} \mathbf{u}_i$$
$$J = \frac{1}{N} \sum_{n=1}^N \sum_{i=M+1}^D (\mathbf{x}_n^T \mathbf{u}_i - \bar{\mathbf{x}}^T \mathbf{u}_i)^2 = \sum_{i=M+1}^D \mathbf{u}_i^T \mathbf{S} \mathbf{u}_i$$

• 优化: 拉格朗日乘子法

$$\tilde{J} = \sum_{i=M+1}^{D} \mathbf{u}_i^T \mathbf{S} \mathbf{u}_i + \sum_{i=M+1}^{D} \lambda_i (1 - \mathbf{u}_i^T \mathbf{u}_i)$$

 $lacksymbol{\square}$ 求导得到 $lacksymbol{\mathbf{S}}\mathbf{u}_i=\lambda_i\mathbf{u}_i$ $lacksymbol{J}$ 最小的取 $oldsymbol{D}$ - $oldsymbol{M}$ 个最小的特征值

 $lacksymbol{\square}$ 对应失真度为 $J=\sum_{i=M+1}^D \lambda_i$ 主子空间对应M个最大特征值

主成分分析-算法

- 计算步骤
- ①计算给定样本 $\{x_n\}, n = 1, 2, ..., N$ 的均值 \bar{x} 和协方差 矩阵S;
- ②计算S的特征向量与特征值, X = UAUT;
- ③将特征值从大到小排列,前M个特征值 $\lambda_1, ..., \lambda_M$ 所对应的特征向量 $\mathbf{u}_1, ..., \mathbf{u}_M$ 构成投影矩阵。

主成分分析-应用

特征脸(Eigenfaces)#1~#8

核主成分分析 (Kernel PCA)

- 将主成分分析的线性假设一般化使之适应非线性数据
- 传统PCA: D维样本 $\{\mathbf{x}_n\}, n = 1, 2, ..., N$, $\sum_n \mathbf{x}_n = \mathbf{0}$ $\mathbf{S}\mathbf{u}_i = \lambda_i \mathbf{u}_i$ $\mathbf{S} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_n \mathbf{x}_n^{\mathrm{T}}$ $\mathbf{u}_i^T \mathbf{u}_i = 1$
- 核PCA: 非线性映射 $\phi(\mathbf{x})$, $\mathbf{x}_n \mapsto \phi(\mathbf{x}_n)$, $\Sigma_n \phi(\mathbf{x}_n) = 0$

$$\mathbf{C}\mathbf{v}_i = \lambda_i \mathbf{v}_i$$
 $\mathbf{C} = \frac{1}{N} \sum_{n=1}^N \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^{\mathrm{T}}$

$$\longrightarrow_{\frac{1}{N}} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \{ \phi(\mathbf{x}_n)^T \mathbf{v}_i \} = \lambda_i \mathbf{v}_i$$

核主成分分析

• 新的数据空间下 $\mathbf{v}_i = \sum a_{in} \phi(\mathbf{x}_n)$

$$\mathbf{v}_i = \sum_{n=1}^N a_{in} \boldsymbol{\phi}(\mathbf{x}_n)$$

$$\frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T \sum_{m=1}^{N} a_{im} \phi(\mathbf{x}_m) = \lambda_i \sum_{n=1}^{N} a_{in} \phi(\mathbf{x}_n)$$

$$k(\mathbf{x}_n, \mathbf{x}_m) = \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_m)$$

$$\longrightarrow_{N} \frac{1}{N} \sum_{n=1}^{N} k(\mathbf{x}_{l}, \mathbf{x}_{n}) \sum_{m=1}^{N} a_{im} k(\mathbf{x}_{n}, \mathbf{x}_{m}) = \lambda_{i} \sum_{n=1}^{N} a_{in} k(\mathbf{x}_{l}, \mathbf{x}_{n})$$

$$\longrightarrow \mathbf{K}^2 \mathbf{a}_i = \lambda_i N \mathbf{K} \mathbf{a}_i$$

$$\longrightarrow$$
 $\mathbf{K}\mathbf{a}_i = \lambda_i N \mathbf{a}_i$

流形学习(manifold learning)

- "流形"是在局部与欧氏空间同胚的空间,换言之, 它在局部具有欧氏空间的性质,能用欧氏距离来进行 距离计算。
- 一类借鉴了拓扑流形概念的降维方法:若低维流形嵌入到高维空间中,则数据样本在高维空间的分布虽然看上去非常复杂,但在局部上仍具有欧氏空间的性质,因此,可以容易地在局部建立降维映射关系,然后再设法将局部映射关系推广到全局。
- 当维数被降至二维或三维时,能对数据进行可视化展示,因此流形学习也可被用于可视化。

等距映射 (Isometric Mapping, Isomap)

- 低维流形嵌入到高维空间之后,直接在高维空间中 计算直线距离具有误导性,因为高维空间中的直线 距离在低维嵌入流形上不可达
- 低维嵌入流形上两点间的本真距离是"测地线" (geodesic)距离。

等距映射 (Isometric Mapping, Isomap)

• 测地线距离的计算

- □ 利用流形在局部上与欧氏空间同胚 这个性质,对每个点基于欧氏距离 找出其近邻点,然后就能建立一个 近邻连接图,图种近邻点之间存在 连接,而非近邻点之间不存在连接 ,于是,计算两点之间测地线距离 的问题,就转变为计算近邻连接图 上两点之间的最短路径问题。
- □ 最短路径的计算可通过Dijkstra算法或Floyd算法实现。得到距离后可通过多维缩放方法获得样本点在低维空间中的坐标。

(b) 测地线距离与近邻距离

- · 若要求原始空间中样本之间的距离在低维空间中得以保持,即得到"多维缩放" (Multiple Dimensional Scaling, MDS)
 - lacksquare 假定有m个样本,在原始空间中的距离矩阵为lacksquare lacksquare 的距离矩阵为lacksquare lacksquare lacksquare
 - □ 目标是获得样本在 d' 维空间中的 欧氏距离等于原始空间中的距离, $\mathbf{D}||\mathbf{z}_i \mathbf{z}_j|| = dist_{ij}$.
 - $lue{lue{\Box}}$ 令 $lue{lue{B}} = lue{lue{Z}}^{
 m T} lue{lue{Z}} \in \mathbb{R}^{m imes m}$,其中 $lue{lue{B}}$ 为降维后的内积矩阵, $b_{ij} = lue{z}_i^{
 m T} lue{z}_j$,有

$$dist_{ij}^2 = ||\mathbf{z}_i||^2 + ||\mathbf{z}_j||^2 - 2\mathbf{z}_i^T \mathbf{z}_j|$$

= $b_{ii} + b_{jj} - 2b_{ij}$.

□ 可通过降维前的距离矩阵D获得

(a) 三维空间中观察到的样本点

(b) 二维空间中的曲面

图 10.2 低维嵌入示意图

• 为便于讨论,令降维后的样本 Z 被中心化,即 $\sum_{i=1}^{m} z_i = 0$ 。显然,矩阵 B 的行与列之和均为零,即

$$\sum_{i=1}^{m} b_{ij} = \sum_{j=1}^{m} b_{ij} = 0.$$

由

$$dist_{ij}^2 = ||\mathbf{z}_i||^2 + ||\mathbf{z}_j||^2 - 2\mathbf{z}_i^T \mathbf{z}_j|$$

= $b_{ii} + b_{jj} - 2b_{ij}$.

易知

$$\sum_{i=1}^{m} dist_{ij}^{2} = \text{tr}(\mathbf{B}) + mb_{jj}, \quad \sum_{j=1}^{m} dist_{ij}^{2} = \text{tr}(\mathbf{B}) + mb_{ii}, \quad \sum_{i=1}^{m} \sum_{j=1}^{m} dist_{ij}^{2} = 2m \text{ tr}(\mathbf{B}),$$

$$\sum_{i=1}^{m} dist_{ij}^{2} = \text{tr}(\mathbf{B}) + mb_{jj}, \quad \sum_{j=1}^{m} dist_{ij}^{2} = \text{tr}(\mathbf{B}) + mb_{ii}, \quad \sum_{i=1}^{m} \sum_{j=1}^{m} dist_{ij}^{2} = 2m \text{ tr}(\mathbf{B}),$$

记:

$$dist_{i\cdot}^2 = rac{1}{m} \sum_{i=1}^m dist_{ij}^2$$

$$tr(\mathbf{B}) = rac{1}{2m} \sum_{i=1}^m \sum_{j=1}^m dist_{ij}^2.$$

$$dist_{\cdot j}^2 = rac{1}{m} \sum_{i=1}^m dist_{ij}^2$$

$$dist^2_{\cdot\cdot\cdot}=rac{1}{m^2}\sum_{i=1}^m\sum_{j=1}^m dist^2_{ij}$$

则:

$$b_{ii} = rac{1}{m}(m \cdot dist_{i\cdot}^2 - rac{m}{2} dist_{\cdot\cdot}^2),$$

$$b_{jj} = rac{1}{m}(m \cdot dist_{\cdot j}^2 - rac{m}{2} dist_{\cdot \cdot}^2).$$

$$tr(\mathbf{B}) = rac{m}{2} dist_{\cdot \cdot \cdot}^2$$

由:

$$b_{ii} = rac{1}{m}(m \cdot dist_{i\cdot}^2 - rac{m}{2} dist_{\cdot\cdot\cdot}^2),$$

$$b_{jj} = rac{1}{m}(m \cdot dist_{.j}^2 - rac{m}{2} dist_{..}^2).$$

则:

$$\begin{aligned} dist_{ij}^2 &= ||z_i||^2 + ||z_j||^2 - 2z_i^T z_j \\ &= b_{ii} + b_{jj} - 2b_{ij}. \end{aligned}$$

$$b_{ij} = \frac{1}{2} (b_{ii} + b_{jj} - dist_{ij}^2)$$

$$b_{ij} = rac{1}{2}(dist_{i\cdot}^2 + dist_{\cdot j}^2 - dist_{\cdot i}^2 - dist_{ij}^2)$$

• 对矩阵 B 做特征值分解 $B = V \Lambda V^T$,其中

$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_d)$$

为特征值构成的对角矩阵

• 在现实应用中为了有效降维,往往仅需降维后的距离与原始空间中的距离尽可能接近,而不必严格相等。此时可取 $d' \ll d$ 个最大特征值构成对角矩阵,令 \tilde{v} 表示相应的特征向量矩阵,则z可表达为

$$\mathbf{Z} = \tilde{\mathbf{\Lambda}}^{1/2} \tilde{\mathbf{V}}^{\mathrm{T}} \in \mathbb{R}^{d' \times m}.$$

 $\tilde{\mathbf{\Lambda}} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_{d'})$

等距映射

●计算步骤

①构造临近关系图

对每一个点,将它与指定半径邻域内所有点相连(或与指定个数最近邻相连)

②计算最短路径

计算临近关系图所有点对之间的最短路径,得到距离矩阵

③多尺度分析

将高维空间中的数据点投影到低维空间,使投影前后的距离 矩阵相似度最大

等距映射 (Isometric Mapping, Isomap)


```
输入: 样本集 D = \{x_1, x_2, \dots, x_m\}; 近邻参数 k; 低维空间维数 d'.
```

过程:

- 1: **for** i = 1, 2, ..., m **do**
- 2: 确定 x_i 的 k 近邻;
- 3: x_i 与 k 近邻点之间的距离设置为欧氏距离, 与其他点的距离设置为无穷大;
- 4: end for
- 5: 调用最短路径算法计算任意两样本点之间的距离 $\operatorname{dist}(\boldsymbol{x}_i, \boldsymbol{x}_i)$;
- 6: 将 dist(x_i, x_j) 作为 MDS 算法的输入;
- 7: return MDS 算法的输出

输出: 样本集 D 在低维空间的投影 $Z = \{z_1, z_2, \dots, z_m\}$.

等距映射

K=**7**, *N*=**1000**

局部线性嵌入试图保持邻域内的线性关系,并使得该 线性关系在降维后的空间中继续保持。

$$\boldsymbol{x}_i = w_{ij}\boldsymbol{x}_j + w_{ik}\boldsymbol{x}_k + w_{il}\boldsymbol{x}_l$$

- Local Linear Embedding (LLE)
- 保持数据点的原有流形结构

Nonlinear Dimensionality Reduction by Locally Linear Embedding

Sam T. Roweis¹ and Lawrence K. Saul²

SCIENCE VOL 290 22 DECEMBER 2000

- 前提假设: 采样数据所在的低维流形在局部是线性的,每个采样点可以用它的近邻点线性表示。
- 学习目标:在低维空间中保持每个邻域中的权值不变,即假设 嵌入映射在局部是线性的条件下,最小化重构误差。

• 优化目标:LLE先为每个样本 x_i 找到其近邻下标集合 Q_i ,然后计算出基于 Q_i 的中的样本点对 x_i 进行线性重构的系数 w_i

$$egin{aligned} \min_{oldsymbol{w}_1, oldsymbol{w}_2, \dots, oldsymbol{w}_m} \sum_{i=1}^m \left\| oldsymbol{x}_i - \sum_{j \in Q_i} w_{ij} oldsymbol{x}_j
ight\|_2^2 \ ext{s.t.} \sum_{j \in Q_i} w_{ij} = 1, \end{aligned}$$

• 其中 $m{x}_i$ 和 $m{x}_j$ 均为已知,令 $C_{jk}=(m{x}_i-m{x}_j)^{\mathrm{T}}(m{x}_i-m{x}_k)$, w_{ij} 有闭式解

$$w_{ij} = \frac{\sum_{k \in Q_i} C_{jk}^{-1}}{\sum_{l,s \in Q_i} C_{ls}^{-1}}.$$

• 优化目标:LLE在低维空间中保持 w_i 不变,于是 x_i 对应的低维空间坐标 z_i 可通过下式求解:

$$\min_{oldsymbol{z}_i} \quad \sum_{i=1}^m \left\| oldsymbol{z}_i - \sum_{j \in Q_i} w_{ij} oldsymbol{z}_j
ight\|_2^2$$

•
$$\diamondsuit$$
 $\mathbf{Z} = (\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_m) \in \mathbb{R}^{d' \times m}, (\mathbf{W})_{ij} = w_{ij},$

$$\mathbf{M} = (\mathbf{I} - \mathbf{W})^{\mathrm{T}} (\mathbf{I} - \mathbf{W}),$$

则优化式可重写为右式,并通过特征值分解求解。

$$\min_{\mathbf{Z}} \operatorname{tr}(\mathbf{Z}\mathbf{M}\mathbf{Z}^{\mathrm{T}})$$
s.t. $\mathbf{Z}\mathbf{Z}^{\mathrm{T}} = \mathbf{I}$.

局部线性嵌入

• 计算步骤

局部线性嵌入 (Locally Linear Embedding, LLE)


```
输入: 样本集 D = \{x_1, x_2, ..., x_m\};
近邻参数 k;
低维空间维数 d'.
```

过程:

- 1: **for** i = 1, 2, ..., m **do**
- 2: 确定 x_i 的 k 近邻;
- 3: 从式(10.27)求得 $w_{ij}, j \in Q_i$;
- 4: 对于 $j \notin Q_i$, 令 $w_{ij} = 0$;
- 5: end for
- 6: 从式(10.30)得到 **M**;
- 7: 对 M 进行特征值分解;
- 8: **return M** 的最小 d' 个特征值对应的特征向量

输出: 样本集 D 在低维空间的投影 $Z = \{z_1, z_2, \ldots, z_m\}$.

局部线性嵌入 (Locally Linear Embedding, LLE)

Local Linear Embedding (LLE)

Surfaces

N=1000 inputs

k=8 nearest neighbors

D=3 d=2 dimensions

局部线性嵌入 (Locally Linear Embedding, LLE)

降维方法对比

PCA projection

IsoMap projection

主成分分析-问题

• 利用PCA处理高维数据

- □ 在实际应用中,样本维数可能很高,远大于样本的个数
- □ 在人脸识别中,1000张人脸图像,每张图像100×100像素
- □ D维空间,N个样本点,X是N×D维的数据矩阵

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^T \longrightarrow \mathbf{S} = N^{-1} \mathbf{X}^T \mathbf{X}$$

S维数? D×D维 10000×10000

主成分分析-问题

- 利用PCA处理高维数据
 - □ 在实际应用中, 样本维数可能很高, 远大于样本的个数
 - □ 在人脸识别中,1000张人脸图像,每张图像100×100像素
 - $lacksymbol{\square}$ 对 $\frac{1}{N}\mathbf{X}\mathbf{X}^T$ 求的特征值 λ_i 和特征向量 \mathbf{V}_i

$$\left(\frac{1}{N}\mathbf{X}\mathbf{X}^{T}\right)\mathbf{v}_{i}=\lambda_{i}\mathbf{v}_{i}$$
 D×D维

lue 如何从 $lue{v}_i$ 到 $lue{u}$

$$\longrightarrow \frac{1}{N} \mathbf{X}^T \mathbf{X} (\mathbf{X}^T \mathbf{v}_i) = \lambda_i (\mathbf{X}^T \mathbf{v}_i)$$
 S的特征向量

$$\mathbf{u}_i \propto \mathbf{X}^T \mathbf{v}_i \qquad \|\mathbf{u}_i\| = 1$$

$$\mathbf{u}_i = \frac{1}{(N\lambda_i)^{1/2}} \mathbf{X}^T \mathbf{v}_i$$

奇异值分解(Singular Value Decomposition, SVD)

奇异值分解 (Singular Value Decomposition, SVD)

• 矩阵 $X \in \mathbb{R}^{n \times m}$ 存在以下分解

$$X = U \Lambda V^{T} = \sum_{k=1}^{r} u_{k} \lambda_{k} V_{k}^{T}$$

与PCA的关系

- 而特征分解只能适用于特定类型的方阵,故奇异值分解的适用范围更广
- 但二者存在关联:
 - □ 对任意矩阵 $X \in \mathbb{R}^{n \times m}$

$$X = U \Lambda V^{T} = \sum_{k=1}^{r} u_{k} \lambda_{k} V_{k}^{T}$$

$$X^{T}X = (U\Lambda V^{T})^{T}(U\Lambda V^{T}) = V\Lambda U^{T}U\Lambda V^{T} = V\Lambda^{2}V^{T}$$

 \square $XX^{\mathsf{T}} \in \mathbb{R}^{n \times n}$

$$XX^{T} = (U\Lambda V^{T}) (U\Lambda V^{T})^{T} = U\Lambda V^{T}V\Lambda U^{T} = U\Lambda^{2}U^{T}$$

 \square $X^TU = (U\Lambda V^T)^TU = V\Lambda$

低秩近似(Low-rank Approximation)

• 矩阵低秩近似
$$\widetilde{A} = \min_{A: rank(A)=k} ||A - X||_F$$

$$\widetilde{A} = U \operatorname{diag}(\lambda_1, \ldots, \lambda_k, 0, \ldots, 0)V^T$$

设置最小的 m-k 奇异值为0

$$\widetilde{A} = \sum_{i=1}^{k} \lambda_i u_i v_i^T$$

- 文档检索: 原始矩阵A
 - □ 术语i和j有多相似?
 - □ 文档i和j有多相似?
 - □ 术语i和文档j有多相关?

	d_1	d_2	d_3	d_4	d_5	d_6
cosmonaut	1	0	1	0	0	0
astronaut	0	1	0	0	0	0
moon	1	1	0	0	0	0
car	1	0	0	1	1	0
truck	0	0	0	1	0	1

• SVD分解:

		d_1	d_2	d_3	d_4	d_5	d_6
	cosmonaut	1	0	1	0	0	0
1 —	astronaut	0	1	0	0	0	0
A =	moon	1	1	0	0	0	0
	car	1	0	0	1	1	0
	truck	0	0	0	1	0	1

	cosm.	-0.44	-0.30	0.57	0.58	0.25
	astro.	-0.13	-0.33	-0.59	0	0.73
T =	moon	-0.48	-0.51	-0.37	0	-0.61
	car	-0.70	0.35	0.15	-0.58	0.16
	truck	-0.26	0.65	-0.41	0.58	-0.09

 $A_{t\times d} = T_{t\times n} S_{n\times n} (D_{d\times n})^{\mathsf{T}}$

0	0	0	0
1.59	0	0	0
0	1.28	0	0
0	0	1	0
0	0	0	0.39
	0	1.59 0 0 1.28 0 0	1.59 0 0 0 1.28 0 0 0 1

	a_1	a_2	u_3	a_4	u_5	u_6
	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
ות	-0.29	-0.53	-0.19	0.63	0.22	0.41
$D^{T} =$	0.28	-0.75	0.45	-0.20	0.12	-0.33
	0	0	0.58	0	-0.58	0.58
	-0.53	0.29	0.63	0.19	0.41	-0.22

• *A降维处理: B=S*_{2*2}*D*^T_{2*d}

$$X^{T}U = (U \Lambda V^{T})^{T}U=V \Lambda$$

	d_1	d_2	d_3	d_4	d ₅	d_6
Dimension 1	-1.62	-0.60	-0.04	-0.97	-0.71	-0.26
Dimension 2	-0.46	-0.84	-0.30	1.00	0.35	0.65

• 图示:

• 向量夹角余弦值:

CosSim(
$$D_i$$
, Q) =
$$\frac{\sum_{k=1}^{t} (d_{ik} \cdot q_k)}{\sqrt{\sum_{k=1}^{t} d_{ik}^2 \cdot \sum_{k=1}^{t} q_k^2}}$$

• 文本之间相似度矩阵

	d_1	d_2	d_3	d_4	d_5	d_6
$\overline{d_1}$	1.00					
d_1 d_2	0.78	1.00				
d ₃ d ₄ d ₅ d ₆	0.40	0.88	1.00			
d_4	0.47	-0.18	-0.62	1.00		
d ₅	0.74	0.16	-0.32	0.94	1.00	
d_6	0.10	-0.54	-0.87	0.93	0.74	1.00

降维前后的对比

- 在新空间中, d₁和d₂之间的相似度为0.78, d₄,d₅和 d₆为0.94, 0.93, 0.74,而在原空间上两者的值是相等的
- 在原空间中, d₂,d₃没有共同的单词,相似度为0,但是在新空间中的相似度为0.88之所已有这种结果,在于它们之间存在着同现模式

	d_1	d_2	d_3	d_4	d_5	d_6
cosmonaut	1	0	1	0	0	0
astronaut	0	1	0	0	0	0
moon	1	1	0	0	0	0
car	1	0	0	1	1	0
truck	0	0	0	1	0	1

	d_1	d_2	d_3	d4	d_5	d_6
$\overline{d_1}$	1.00					
d_2	0.78	1.00				
d_3	0.40	0.88	1.00			
d_4	0.47	-0.18	-0.62	1.00		
d3 d4 d5 d6	0.74	0.16	-0.32	0.94	1.00	
d_6	0.10	-0.54	-0.87	0.93	0.74	1.00

查询处理

- 如何在降维空间中表示查询字段和新增文档
 - □ 查询可以作为一个伪文档
- · 每次重新计算SVD, 计算量太大
- •解决方案:

$$A=TSD^{T}$$
, $T^{T}A=T^{T}TSD^{T}=SD^{T}$

• 新的查询q,再降维后新空间表示为 T_{t*k} ^Tq(可以理解为一种映射)

推荐系统

Customer X

- Buys Metallica CD
- Buys Megadeth CD

Customer Y

- Does search on Metallica
- Recommender system suggests Megadeth from data collected about customer X

helping you find the right movies

推荐模型

• X = 用户集合, S = 商品集合

- 效用函数u: X × S → R
 - □ R = 用户评价
 - □ e.g., 0-5星、[0,1]评分等

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

基于内容的推荐

- 基本思想: 向用户x推荐和该用户评价较高的相似商品
 - □ 电影推荐:推荐具有相同演员、导演等内容的电影
 - □ 网页、博客、新闻推荐:推荐具有相似内容的网站

协同过滤(Collaborative Filtering)

- 对于用户x
- 选中其他N个用户,这些用户和x给出的商品评价比较相似

• 基于这些用户的商品评价估计x未评价的商品,并推荐

潜在语义模型(Latent Factor Models)

潜在语义模型

• 采用SVD对评价矩阵进行近似: R ≈ Q · P^T svd: A = U ∑ V^T

• SVD基于完整矩阵进行分解,如果评价不完整如何分解?

缺失评价的估计

• 如果存在特定的语义分解,那么如何估计评价

$$\hat{r}_{xi} = q_i \cdot p_x = \sum_f q_{if} \cdot p_{xf}$$

users items 3 5 3 4

 $q_i = \text{row } i \text{ of } Q$ $p_x = \text{column } x \text{ of } P^T$

1.4

1.2

.7

2.4

-.1

-.6

	.1	4	.2
(0	5	.6	.5
items	2	.3	.5
ite	1.1	2.1	.3
	7	2.1	-2
	-1	.7	.3

factors

-.2 .3 .5 -.5 .8 .3 -.4 -2 .7 .5 1.4 2.9 -.7 1.4 -1 -.3 .8 -.4 .6 1.7 2.4 .9 .4

PT

users

-.9

1.3

潜在语义模型

• 优化目标: 寻找P 和 Q

$$\min_{P,Q} \sum_{(i,x) \in R} (r_{xi} - q_i \cdot p_x)^2$$

□ 为防止过拟合,通常采用

$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$
"error"
"length"

- 优化方法: 梯度下降
 - □ 初始化:采用SVD初始化**P**和**Q**
 - □ 交替优化

$$P \leftarrow P - \eta \cdot \nabla P$$
; $Q \leftarrow Q - \eta \cdot \nabla Q$

