1 Problem Statement

EIA RECS surveyed respondents to see if their household had a medical device. This medical device included those that are electricity-dependent. Examples of these include breathing machines, such as CPAP machines, respirators, and ventilators, oxygen concentrators, power wheelchairs and scooters, suction pumps, intravenous equipment, and feeding equipment, etc.

The rising vulnerability of US households to power outages are caused by extreme weather events, which are exacerbated by climate change and old power grid infrastructure. These households need power to prevent, manage, or sustain their health. Not much is known, in the previous limited literature review, about their household's energy consumption patterns, experience with power outages, socioeconomic status, or their experience using a utility energy assistance program (i.e., helps them pay their power bills).

The primary problems in RECS survey study are detecting who the electricity-dependent medical device households are, measuring power outage risks in electricity-dependent medical device households and understanding electricity-dependent medical device HHs' energy insecurity or resilience. Future work will be to look at CA utility programs that deploy backup, portable batteries to households.

2 Literature Review

2.1 Electricity Dependent Medical Device (EDMD)

Previous studies suggest that people have been receiving medical care at home over the years, which also contributes to the growing trend of medical device household use.

Care at home has seen major growth in recent years influenced by changes in patient demographics, economic factors and technological advances. The FDA (Food and Drug Administration) considers home care devices as the fastest growing segment of MD (medical device) industry.

Most household-use medical devices consume electricity to function, and these electricity dependent medical devices (EDMD) play an important role in household medical care. According to U.S. department of Health & Human Services, over 3 million Medicare beneficiaries rely on electricity-dependent durable medical and assistive equipment and devices, such as ventilators, to live independently in their homes.

2.2 Energy Security and Resilience Problems in EDMD Households

One of the most concerning problems in the use of EDMD is energy security and resilience, especially under severe weather conditions. Power outage threatens the health of patients relying on their EDMD, and some patients have to pay for the high bills resulting from EDMD use.

According to Administration for Strategic Preparedness and Response (ASPR) and the Centers for Medicare and Medicaid Services (CMS), there are a total of 66,496,126 people beneficiaries receiving home health services from electricity-dependent durable medical and assistive equipment (DME) and devices.

Many of the DME users are defined as medical vulnerable people, including those reliant on electricity for independence (e.g. electric wheelchairs, mobility scooters etc), as well as those reliant on electricity for survival (e.g. those with ventilators, oxygen concentrators, reliance on exceptional temperature stability or other critical at-home medical devices). A much larger subset of the population may additionally be considered electricity vulnerable, such as those susceptible to heat/cold, or with limited mobility to leave home in a blackout.

Severe weather and other emergencies, especially those with prolonged power outages, can be life-threatening for these individuals. Many may rapidly seek assistance from emergency medical services (EMS), and or overwhelm hospitals and shelters when seeking access to care or secure power. Others may shelter in place, as they are unable to evacuate safely without assistance, putting their lives at risk. This leads to severe surges in healthcare demand and stress on public health, health care, emergency management, and first responder systems and shelters, and commonly leads to increases in adverse health outcomes for at-risk individuals impacted by the event.

2.3 Research on the EDMD Energy Security & Resilience Problems

To date, the literature on the impact of power outages on health has primarily been focused on hospital settings and has failed to examine the geographic regions at the highest risk for the consequences of extreme weather and power outages among individuals reliant on medical devices in their own households. As for historical research, stable electricity supply or contingency for loss of supply remains a knowledge gap. Obstacles to accessing home battery storage will need to be addressed with prioritized solutions to ensure that electricity-dependent, medically vulnerable populations can safely withstand a power outage.

Brown et.al stated that low-income households with high utility bills have to make trade-offs between meeting alternative critical household expenditures. Paying for food, medical care, telecommunications, and shelter are often sacrificed to make timely utility bill payments. These trade-offs create a negative feedback loop that traps families in an enduring cycle of poverty.

Electricity termination can have health and safety consequences, which can be particularly serious for the elderly and young children, and for those needing medical equipment. Problems associated with high energy burdens often include adverse health effects. This will intern increase their risk of catching diseases, thus worsening their financial state. In-depth studies in U.S. cities and an analysis conducted at the U.S. Census Division level revealed that certain demographic populations are more likely to be energy insecure, including households of color, those without a college education, and the chronically underemployed. Brown et.al found that poverty is the strongest determinant of energy burden. Particular combinations of vulnerabilities – such as living in low-income, female-headed households with children – are associated with particularly high energy burdens. Health related consequences are the second most common energy vulnerability issues after Service disconnection/bill delinquencies, which are the most frequent issues. As energy-burden vulnerabilities increase, in number, health-related consequences become more common. Adam X. Andresen et.al revealed that many households did not receive assistance, whether financial or other tangible resources. There is a significant difference in power outage length between high-income and low-income households in Phoenix. Households owning medical devices have many more outages than those not owning medical devices. Households owning generators have many more outages than those not owning one. Households owning homes have many more outages than those renting homes. Spurlock et.al found that high disaster counts and high DME populations were found scattered throughout the southeastern US, with coastal counties exhibiting higher concentrations of both. Molinari et.al discovered that the highest proportion of electricity-dependent persons was identified in the South (~39%), while the North Central region had the largest proportion of rural living electricity-dependent individuals (~28%) More than threefourths of the electricity-dependent population lived in MSAs, which were defined as urban.

To cope with the energy insecurity and resilience problems in EDMD households, energy security technologies and policies need to adjust to meet the needs of the home health care community. Policy barriers should be replaced with incentives and programs that make solar and battery storage adoption easier. Gaps in preparedness and response are endangering an already vulnerable population and must be addressed. The technology to improve resiliency and energy independence exists, and it needs to be made more accessible to those who could most benefit from resilient and reliable emergency power options

3 Summary of Data

The study used the 2020 Residential Energy Consumption Survey (RECS) dataset. The survey dataset included data from 17,942 households, of which 2,257 households are medical device households, taking up a proportion of 14.09%, with 1020 fields of variables. Summary tables and plots were derived to explore the heterogeneities of household features and energy consumption patterns between medical device households/non-medical device households. This section mainly focuses on the major factors influencing the energy consumption patterns and the medical conditions of households, ranging from geographic to demographic features.

3.1 Spatial Distribution

The spatial distribution of medical device households/non-medical-device households are different, in terms of Census regions and states.

Medical device/Census region	MIDWEST	NORTHEAST	SOUTH	WEST
1	536	468	971	637
0	3250	3143	5368	3892
Percentage of medical device households	14.2	13.0	15.3	14.1

Table 3.1 Number of households by Census region

Figure 3.1 Number of households by Census region

DECLONG	MEDIC	T . 1	
REGIONC	0	1	Total
MIDWEST	3250	536	3786
	20.8 %	20.5 %	20.7 %
NORTHEAST	3143	468	3611
	20.1 %	17.9 %	19.8 %
SOUTH	5368	971	6339
	34.3 %	37.2 %	34.7 %
WEST	3892	637	4529
	24.9 %	24.4 %	24.8 %
Total	15653	2612	18265
	100 %	100 %	100 %

 $\chi^2 = 10.913 \cdot df = 3 \cdot Cramer's V = 0.024 \cdot p = 0.012$

Table 3.2 Cross table of household numbers and Census regions

More households in the South Census region tend to have medical devices at home, while less households in the Northeast Census region tend to have medical devices at home. From the crosstable Chi-square test, there is a significant difference in medical device use for households in different Census regions.

Similarly, conduct cross-table analysis for the number of households and states. The full table is in the Appendix A.

From the cross-table, there are significantly more medical device households in California, New York and Texas than other states. However, considering the rate of using medical devices compared to the total household numbers, Arizona, Iowa, Idaho, Kentucky have larger percentage of medical device user households, while the rate of medical device users in CA, NY and TX is rather low. There is a significant difference in medical device use for households in different states.

3.2 Number of Household Members

The demographic features of medical device households/non-medical-device households are different in many dimensions. One of the most important factors is the size of the household.

Number of household member by medical device used or not

Figure 3.2 Number of household members by medical device/ non-medical-device households

From Figure 3.2, The proportion of single person households is less in households using medical devices, indicating that single person tends not to use medical devices at home. Most households using medical devices have 2 household members. Households using medical devices generally

have less than 4 household members, while larger households generally tend not to use medical devices at home.

3.3 Household income level

DICOMELEUE	MEDIC	CALDEV	<i>T</i> D 4 1
INCOMELEVEL	0	1	Total
1	459	60	519
	3 %	2.3 %	2.9 %
2	182	29	211
	1.2 %	1.1 %	1.2 %
3	204	37	241
	1.3 %	1.4 %	1.3 %
4	343	62	405
	2.2 %	2.4 %	2.3 %
5	287	54	341
	1.9 %	2.1 %	1.9 %
6	457	99	556
	3 %	3.9 %	3.1 %
7	683	131	814
	4.4 %	5.1 %	4.5 %
8	631	115	746
	4.1 %	4.5 %	4.2 %
9	743	121	864
	4.8 %	4.7 %	4.8 %
10	679	102	781
	4.4 %	4 %	4.4 %
11	1134	1 79	1313
	7.4 %	7 %	7.3 %
12	1267	201	1468
	8.2 %	7.9 %	8.2 %
13	1656	296	1952
	10.8 %	11.6 %	10.9 %
14	1998	322	2320
	13 %	12.6 %	12.9 %
15	2258	400	2658
	14.7 %	15.6 %	14.8 %
16	2404	349	2753
	15.6 %	13.6 %	15.3 %
Total	15385	2557	17942
	100 %	100 %	100 %

 $\frac{100\%}{\chi^2 = 23.561 \cdot df = 15 \cdot Cramer's \ V = 0.036 \cdot p = 0.073}$

Table 3.3 Cross table of household numbers and income level

The data is measured in annual gross income, divided into 16 levels from lower than 5,000\$ to higher than 150,000\$. From the cross-table, there is significant difference between the income level of medical device HHs and non-medical device HHs. The biggest difference is that non-medical device HHs have a greater proportion of high-income families, with income more than 15,0000\$ a year.

Histogram of income level, Medical Device HH

Figure 3.3 Histogram of income level of medical device HHs

Figure 3.4 Histogram of income level of non-medical-device HHs

3.4 Electricity Consumption

From the literature review, the energy consumption patterns should vary for different types of households.

Figure 3.5 Density plot of annual electricity consumption for the 2 types of households

It is observed that there is a larger proportion of high electricity consumption in medical device households, especially those whose annual electricity consumption is larger than 10,000 kWh. In terms of distribution, there is a large proportion of households consuming about 10,000 kWh in the non-medical-device households, while the energy consumption pattern of the medical device households is more evenly distributed.

4 Statistics Tests

To measure the different patterns of power consumption and power outage risks in the 2 types of households, formal statistics tests were derived. In general, there are 2 levels of the independent variable, which is the type of the household. The dependent variable could have many levels, or categories, corresponding to the variables like power outage reasons in the dataset. Below are the tests implemented on the dataset.

A 2x2 chi-square test is used when there are two levels of the independent variable & two levels of the dependent variable, and a Chi-square test is used in cases with more than two categories. Under rare circumstances, there are less than 5 frequencies of variables in a cell of the cross table, then a Fisher's test should be used.

In most cases, the independent and dependent variables are both categorized. If the dependent variables are continuous and normally distributed, such as the electricity consumption and costs, a one-way ANOVA should be tested.

If the dependent variable is ordinal, such as the education level, then a Kruskal Wallis test should be conducted.

In some special cases, Wilcoxon signed rank sum test is used to test the difference between continuous data.

Below is the summary of statistics test conducted between the medical device households and non-medical device households, on several important variables.

Table 4.1 Statistics tests for important variables

Variable	Test Type	p-value	Conclusion: significant/insignificant difference between 2 types of HHs	% in Medical Device HHS	% in non- medical -device HHs
Number of household members	Kruskal- Wallis	0.000	significant		
Census Regions	Chi-square	0.012	significant		
States	Chi-square	0.000	significant		
KWH used in other appliances (except for charging electric vehicles)	Wilcoxon	0.000	significant		

Variable	Test Type	p-value	Conclusion: significant/insignificant difference between 2 types of HHs	% in Medical Device HHS	% in non-medical -device HHs
KWH used in charging electric vehicles	Wilcoxon	0.941	insignificant		
Heating Degree Days	Wilcoxon	0.618	insignificant		
Cooling Degree Days	Wilcoxon	0.658	insignificant		
Backup generator	Chi-square	0.000	significant	20.5%	14.8%
Power outage	Chi-square	0.000	significant	19.8%	17.7%
Housing type	Chi-square	0.000	significant		
Number of elderly people	Kruskal Wallis	0.000	significant		
Frequency of foregoing basic necessity	Chi-square	0.000	significant		

Variable	Test Type	p-value	Conclusion: significant/insignificant difference between 2 types of HHs	% in Medical Device HHS	% in non- medical -device HHs
Frequency of keeping home at unhealthy temperature	Chi-square	0.000	significant		
Frequency of receiving disconnection notice	Chi-square	0.000	significant		
Receive energy assistance	Chi-square	0.005	significant	19.7%	13.5%
Medical attention is needed because home is too hot	Chi-square	0.000	significant	0.9%	0.3%
Medical attention is needed because home is too cold	Chi-square	0.000	significant	1.5%	0.5%
Urban type(Urban)	Chi-square	0.000	Significant	62.1%	68%
Rent or own home(own)	Chi-square	0.000	Significant	77.3%	72%
Education	Kruskal Wallis	0.000	Significant		
Employment	Chi-square	0.000	Significant		

Besides, the reasons for power outage were also tested.

Variable	Test Type	p-value	Conclusion: significant/insignificant difference between 2 types of HHs	% in Medical Device HHS	% in non- medical -device HHs
Reasons for power outage	Fisher's	0.138	insignificant		
Natural disasters/weathers vs no power outage	Fisher's	0.024	significant		
Unable to pay bills vs no power outage	Fisher's	0.464	insignificant		
utility had planned or unplanned outage	Fisher's	0.146	insignificant		

Table 4.2 Statistics tests of reasons for power outage

5 Latent Class Analysis (LCA)

A Latent Class Model (LCM) is built to detect the underlying groups of different households, with regard to their need for energy assistance, their frequencies of suffering from power outage problems, their energy consumption and housing status. Covariates of the LCM are demographic variables ranging from income level to education level.

The name and meaning of the outcome & covariate variables are listed below

Variable name	Variable meaning	Variable type
regionc	Census region,	Outcome variable
	1=Midwest,2=Northeast,3=South,4=West	
Uatyp10	Urban type, 1=urban cluster, 2=rural,3=	Outcome variable
	urban	
typhuq	Type of housing unit,	Outcome variable
	1 Mobile home	
	2 Single-family house detached from any	
	other house	
	3 Single-family house attached to one or	
	more other houses (for example: duplex,	
	row house, or townhome)	
	4 Apartment in a building with 2 to 4	
	units	
	5 Apartment in a building with 5 or more	
	units	
backup	Backup generator, 1=have backup	Outcome variable
	generator 0=does not have backup	
	generator	
powerout	Experienced power outage last year/not	Outcome variable
energyasst	Received energy assistance/not	Outcome variable
hotma	Medical attention needed too hot/not	Outcome variable
coldma	Medical attention needed too cold/not	Outcome variable
scaleb	Frequency of reducing or forgoing basic	Outcome variable
	necessities due to home energy bill,	
	3 Almost every month	
	2 Some months	
	1 1 or 2 months	
	0 Never	
scaleg	Frequency of keeping home at unhealthy	Outcome variable
	temperature	
	3 Almost every month	
	2 Some months	
	1 1 or 2 months	
	0 Never	

scalee	Frequency of receiving disconnection	Outcome variable
	notice	
	3 Almost every month	
	2 Some months	
	1 1 or 2 months	
	0 Never	
kwh	Total electricity use (taking the log)	Outcome variable

Table 5.1 List of outcome variables

Variable name	Variable meaning	Variable type
employhh	Respondent employment	Covariate variable
	status	
	1 Employed full-time	
	2 Employed part-time	
	3 Retired	
	4 Not employed	
education	Education level,	Covariate variable
	1 Less than high school	
	diploma or GED	
	2 High school diploma or	
	GED	
	3 Some college or Associate's	
	degree	
	4 Bachelor's degree	
	5 Master's, Professional, or	
	Doctoral degree	
топеуру	Household income level(1-	Covarate variable
	16)	
nhsldmem	Number of household	Covariate variable
	members	
Numadult2	Number of elderly people	Covariate variable

Table 5.2 List of covariate variables

The LCM is estimated by the poLCA package in R, where the BIC criterion is used to determine the number of latent classes.

Number of latent classes	BIC
2	35840
3	35339
4	35252
5	35505

Table 5.3 The information criterion of different number of latent classes

The BIC value reaches the minimum at 4 latent classes. Therefore, the best number of latent classes should be 4.

The estimation result of the LCM is listed below

Variable	Conditional	Level			
name/Classes	Probability				
regionc	1	2	3	4	
1	0.18	0.16	0.46	0.21	
2	0.21	0.19	0.27	0.32	
3	0.26	0.28	0.25	0.23	
4	0.20	0.14	0.51	0.15	

Variable name/Classes	Conditional Probability	Level		
Uatyp10	1	2	3	
1	0.11	0.20	0.69	
2	0.10	0.08	0.82	
3	0.18	0.09	0.72	
4	0.15	0.63	0.23	

Variable name/Classes	Conditional Probability	Level			
Typhuq	1	2	3	4	5
1	0.15	0.54	0.12	0.09	0.10
2	0.00	0.86	0.11	0.01	0.03
3	0.06	0.24	0.15	0.18	0.37
4	0.11	0.89	0.00	0.00	0.00

Variable name/Classes	Conditional Probability	Level
backup	1	0
1	0.88	0.12
2	0.85	0.15
3	0.91	0.09
4	0.59	0.41

Variable	Conditional	
name/Classes	Probability	
powerout	0	1
1	0.74	0.26
2	0.86	0.14
3	0.88	0.12
4	0.73	0.27

Variable name/Classes	Conditional Probability	Level
energyasst	0	1
1	0.75	0.25
2	0.99	0.01
3	0.91	0.09
4	0.99	0.01

Variable name/Classes	Conditional Probability	Level			
scaleb	0	1	2	3	
1	0.19	0.25	0.36	0.19	_
2	0.98	0.00	0.00	0.02	
3	0.86	0.03	0.08	0.03	
4	0.93	0.01	0.02	0.03	

Variable name/	Conditional Probability	Level					
kwh	1	2	3	4	5	6	7
1	0.00	0.00	0.02	0.26	0.62	0.10	0.00
2	0.00	0.00	0.00	0.23	0.69	0.08	0.00
3	0.00	0.01	0.13	0.73	0.13	0.00	0.00
4	0.00	0.00	0.00	0.16	0.67	0.17	0.00

Table 5.4-5.11 LCM model result

The covariate variables and their coefficients of different latent classes are listed below

Class 2	Coefficients	Standard error	t value	Pr(> t)
intercept	-8.26	0.77	-10.71	0.00
employhh	0.08	0.10	0.83	0.41
education	0.41	0.10	4.43	0.00
moneypy	0.57	0.04	13.06	0.00
nhlsdmem	-0.32	0.07	-4.70	0.00
numadult2	1.01	0.13	7.97	0.00

Class 3	Coefficients	Standard error	t value	Pr(> t)
intercept	1.12	0.58	1.93	0.05
employhh	-0.19	0.11	-1.67	0.10
education	0.10	0.10	0.98	0.33
топеуру	0.17	0.03	4.95	0.00
nhlsdmem	-1.87	0.16	-12.05	0.00
numadult2	0.65	0.16	4.19	0.00

Class 4	Coefficients	Standard error	t value	Pr(> t)
intercept	-3.55	0.53	-6.72	0.00
employhh	0.01	0.09	0.14	0.89
education	-0.06	0.09	-0.65	0.52
moneypy	0.36	0.03	11.67	0.00
nhlsdmem	-0.53	0.07	-7.33	0.00
numadult2	1.01	0.12	8.40	0.00

Table 5.12-5.14 Coefficients of covariate variables

From the LCM results, there are 4 latent classes of households, in terms of regions, house types, energy assistance and medical vulnerability. Class 1 is for urban households with single houses, which forgo their basic necessities, consuming high level of electricity, but undergoing low

probability of power outage, accounting for 21% of total households. Class 2 is for urban single households with high electricity consumption and high probability of power outage risks, which accounts for 38% of the total households. Class 3 is for urban apartments households with low kwh consumption but high probability of power outage, taking up 15% of the total households. Class 4 is for rural single house families with high kwh and low risks of power outage, taking up 26% of the population. Note that, compared with the urban classes, the rural class has a larger vulnerability to severe weather conditions and disasters as they tend to buy fewer backup generators.

The covariate variables impact the conditional probability that one household become to a latent class differently. As is observed from the coefficients, an increasing number of family members suggests less probability that the household belongs to class 2, indicating that urban single households with high electricity consumption and large power outage risks are more likely to be small families. Similarly, people with better employment status are less likely to belong to urban apartment households. People with higher education levels are less likely to live in rural houses.

6 Structural Equation Modeling (SEM)

Incorporating the significant factors in the statistics tests and the latent class analysis of these households, an SEM model with latent variables of energy assistance levels and medical vulnerability levels is derived, where the energy assistance level is assumed to impact the energy assistance program enrollment, the frequency of forgoing necessities and the reasons of power outage, while the medical vulnerability level is assumed to impact the frequency of people keeping their house under unhealthy temperatures whether too hot or too cold.

Figure 6.1 SEM path diagram and coefficients values

			OIM				
		Coefficient	std. err.	z	P> z	[95% conf.	interval]
ructural							
logelectricitycost							
	icaldev	.0952435	.0130463	7.30	0.000	.0696732	.1208139
energyass		1	(constraine				
medicalvulner		.6819326	.2132004	3.20	0.001	.2640675	1.099798
	atyp10r	.1367136	.0106842	12.80	0.000	.115773	.1576543
	moneypy	.0270906	.0016003	16.93	0.000	.0239541	.030227
	_cons	6.880145	.018147	379.13	0.000	6.844577	6.915712
medicaldev							
energyass	istance	.0899511	.0144178	6.24	0.000	.0616927	.1182095
medicalvulner		1	(constraine	ed)			
nu	madult2	.0481637	.0034441	13.98	0.000	.0414134	.0549141
	_cons	.1293967	.0038806	33.34	0.000	.1217909	.1370026
energyassistance							
t	ypehuq3	2268793	.0137086	-16.55	0.000	2537476	2000109
t	ypehuq4	4351466	.0178523	-24.37	0.000	4701365	4001567
t	ypehuq5	4899451	.0139999	-35.00	0.000	5173844	4625059
medicalvulnerability							
етр	loyhhne	.0091292	.0015816	5.77	0.000	.0060293	.012229
ed	ucation	0020026	.00041	-4.88	0.000	0028062	0011991
ko	wnrent2	.0107231	.0014889	7.20	0.000	.0078049	.0136412
asurement							
energyasst							
energyass	istance	0774377	.0096443	-8.03	0.000	0963401	0585353
	_cons	.0375606	.0018498	20.31	0.000	.0339352	.0411861
scalee_1							
energyass	istance	1158683	.0227475	-5.09	0.000	1604526	0712841
	_cons	.1287215	.0044159	29.15	0.000	.1200664	.1373765
scaleb_1							
energyass	istance	4242838	.0345874	-12.27	0.000	4920738	3564938
	_cons	.2952965	.0069285	42.62	0.000	.2817169	.3088762
whypowerout1							
energyass	istance	.1433045	.0156285	9.17	0.000	.1126732	.1739357
0,	_cons	.1724032	.0031469	54.79	0.000	.1662354	.1785709

Table 6.2 Summary of the SEM estimation

whypowerout3	energyassistance	0178184	.0055994	-3.18	0.001	028793	0068439
	_cons	.0180177	.0011974	15.05	0.000	.015671	.0203645
whypowerout2	energyassistance	0008309	.0017237	-0.48	0.630	0042094	.0025475
	_cons	.0016951	.0003638	4.66	0.000	.0009821	.0024081
hotma	edicalvulnerability	.8221375	.0951634	8.64	0.000	.6356206	1.008654
m	_cons	.0064524	.0010841	5.95	0.000	.0043275	.0085772
coldma	edicalvulnerability	1.268145	.1473093	8.61	0.000	.9794237	1.556866
	_cons	.0101027	.001614	6.26	0.000	.0069394	.013266
scaleg_1	edicalvulnerability	6.436285	.7476568	8.61	0.000	4.970905	7.901665
	_cons	.1817334	.0087931	20.67	0.000	.1644992	.1989675

Table 6.3 Summary of the SEM estimation (following Table 6.2)

Crucial conclusions from the SEM are:

- 1) Energy assistance and medical vulnerability level contribute to the chance that a household uses electricity dependent medical devices. They increase the expense of electricity both directly and indirectly by medical devices.
- 2) The rural households tend to have higher electricity costs, but fewer backup generators. Policies should be driven to secure their resilience to extreme weather and disasters, especially for those using medical devices in rural houses.
- 3) Apartment buildings with more units tend to receive less energy assistance, so the energy assistance program should pay attention to medical device user households living in apartments with more units.
- 4) People owning houses suffer more from medical vulnerabilities than people renting houses.
- 5) Households with higher education levels tend to suffer less from medical vulnerabilities.
- 6) People not employed suffer more from medical vulnerabilities and tend to keep their housing at unhealthy temperatures.

7 Summary and Suggestions for Future Work

From the modeling results, there is a high relevance between the power outage rate, or the vulnerability in energy use, and people's medical service demand at home. Within medical device user households, people living in different urban types and housing types have different patterns in power outage problems and the demand for energy assistance. The low-income households living in urban apartment buildings tend to consume more electricity, receive less energy assistance and suffer from more power outage problems, and they also suffer more from basic needs for keeping home at normal temperatures. In addition, for rural medical device users, preparing more backup generators can strengthen their stability of health when encountering natural disasters.

Future work on this study might investigate the specific energy assistance programs the medical device households enrolled in, and how they benefit from it or need more assistance from policies.

References

- [1] https://www.fda.gov/medical-devices/classify-your-medical-device/how-determine-if-your-product-medical-device
- [2] https://www.fda.gov/medical-devices/home-health-and-consumer-devices/home-use-devices
- [3] Nicole M. Coomer, Jill Akiyama, Melissa Morley, Melvin J. Ingber, Benjamin Silver, Anne Deutsch, Methods for Estimating Costs for Stays at Inpatient Rehabilitation Facilities and Long-Term Care Hospitals, Archives of Physical Medicine and Rehabilitation, 2024, ISSN 0003-9993, https://doi.org/10.1016/j.apmr.2024.07.018.
- [4] Medical Device Home Use Initiative White Paper, https://www.fda.gov/media/78647/download
- [5] Chandrasekaran, R., Katthula, V. and Moustakas, E., 2020. Patterns of use and key predictors for the use of wearable health care devices by US adults: insights from a national survey. Journal of medical Internet research, 22(10), p.e22443.
- [6] Coomer, N.M., Akiyama, J., Morley, M., Ingber, M.J., Silver, B. and Deutsch, A., 2024. Methods for Estimating Costs for Stays at Inpatient Rehabilitation Facilities and Long-Term Care Hospitals. Archives of Physical Medicine and Rehabilitation.
- [7] Arkeliana Tase, Bhamini Vadhwana, Peter Buckle, George B. Hanna, Usability challenges in the use of medical devices in the home environment: A systematic review of literature, Applied Ergonomics, Volume 103,2022,103769,ISSN 0003-6870, https://doi.org/10.1016/j.apergo.2022.103769
- [8] Henriksen, K., Joseph, A. and Zayas-Cabán, T., 2009. The human factors of home health care: a conceptual model for examining safety and quality concerns. Journal of Patient Safety, 5(4), pp.229-236.
- [9] https://empowerprogram.hhs.gov/about.html
- [10] https://empowerprogram.hhs.gov/empowermap
- [11] Bean, R., Snow, S., Glencross, M., Viller, S. and Horrocks, N., 2020. Keeping the power on to home medical devices. Plos one, 15(7), p.e0235068.
- [12] Molinari NA, Chen B, Krishna N, Morris T. Who's at Risk When the Power Goes Out? The At-home Electricity-Dependent Population in the United States, 2012. Journal of public health management and practice. 2017;23(2):152–159. 10.1097/PHH.0000000000000345
- [13] Marriele Mango, Joan A. Casey, Diana Hernández,
- [14] Resilient Power: A home-based electricity generation and storage solution for the medically vulnerable during climate-induced power outages, Futures, Volume 128, 2021, 102707, ISSN 0016-3287, https://doi.org/10.1016/j.futures.2021.102707.

- [15] Brown, M.A., Soni, A., Lapsa, M.V., Southworth, K. and Cox, M., 2020. High energy burden and low-income energy affordability: conclusions from a literature review. Progress in Energy, 2(4), p.042003.
- [16] Graff, M., Carley, S., Konisky, D.M. and Memmott, T., 2021. Which households are energy insecure? An empirical analysis of race, housing conditions, and energy burdens in the United States. Energy Research & Social Science, 79, p.102144.
- [17] Brown, M. A., Kale, S., & Anthony, R. (2023). Rescaling energy burden: Using household surveys to examine vulnerabilities and consequences in the Southeastern United States. Energy Research & Social Science, 106, 103308. https://doi.org/10.1016/J.ERSS.2023.103308
- [18] Adam X. Andresen, Liza C. Kurtz, Paul M. Chakalian, David M. Hondula, Sara Meerow, Melanie Gall, A comparative assessment of household power failure coping strategies in three American cities, Energy Research & Social Science, Volume 114,2024,03573, SSN 2214-6296, https://doi.org/10.1016/j.erss.2024.103573
- [19] Spurlock, T., Sewell, K., Sugg, M.M., Runkle, J.D., Mercado, R., Tyson, J.S. and Russell, J., 2023. A spatial analysis of power-dependent medical equipment and extreme weather risk in the southeastern United States. International Journal of Disaster Risk Reduction, 95, p.103844.
- [20] Do, V., McBrien, H., Flores, N.M. et al. Spatiotemporal distribution of power outages with climate events and social vulnerability in the USA. Nat Commun 14, 2470 (2023). https://doi.org/10.1038/s41467-023-38084-6
- [21] Andresen, A.X., Kurtz, L.C., Hondula, D.M., Meerow, S. and Gall, M., 2023. Understanding the social impacts of power outages in North America: a systematic review. Environmental Research Letters, 18(5), p.053004.
- [22] Molinari, N.A.M., Chen, B., Krishna, N. and Morris, T., 2017. Who's at risk when the power goes out? The at-home electricity-dependent population in the United States, 2012. Journal of public health management and practice, 23(2), pp.152-159.

.

Appendix: Cross table test of number of households and states

state_postal	MEDICALDEV		
	0	1	Total
AK	259	52	311
	1.7 %	2 %	1.7 %
AL	196	43	239
	1.3 %	1.6 %	1.3 %
AR	202	63	265
	1.3 %	2.4 %	1.5 %
AZ	420	69	489
	2.7 %	2.6 %	2.7 %
CA	1003	136	1139
	6.4 %	5.2 %	6.2 %
СО	312	46	358
	2 %	1.8 %	2 %
CT	253	34	287
	1.6 %	1.3 %	1.6 %
DC	202	17	219
	1.3 %	0.7 %	1.2 %
DE	119	23	142
	0.8 %	0.9 %	0.8 %
FL	559	90	649
	3.6 %	3.4 %	3.6 %
GA	356	57	413
	2.3 %	2.2 %	2.3 %
НІ	250	28	278
	1.6 %	1.1 %	1.5 %
IA	230	53	283
	1.5 %	2 %	1.5 %
ID	215	52	267
	1.4 %	2 %	1.5 %
IL	469	54	523
	3 %	2.1 %	2.9 %

INI	326	67	393
IN	2.1 %	2.6 %	2.2 %
KS	174	31	205
	1.1 %	1.2 %	1.1 %
KY	344	79	423
KI	2.2 %	3 %	2.3 %
LA	252	55	307
L/1 1	1.6 %	2.1 %	1.7 %
MA	473	72	545
WIA	3 %	2.8 %	3 %
MD	305	52	357
1112	1.9 %	2 %	2 %
ME	196	25	221
	1.3 %	1 %	1.2 %
MI	329	54	383
1111	2.1 %	2.1 %	2.1 %
MN	286	39	325
IVIIN	1.8 %	1.5 %	1.8 %
MO	247	45	292
1410	1.6 %	1.7 %	1.6 %
MS	136	27	163
1010	0.9 %	1 %	0.9 %
MT	148	21	169
1411	0.9 %	0.8 %	0.9 %
NC	401	73	474
NC	2.6 %	2.8 %	2.6 %
ND	279	46	325
T(D	1.8 %	1.8 %	1.8 %
NE	163	23	186
. 122	1 %	0.9 %	1 %
NH	150	25	175
1111	1 %	1 %	1 %

NJ	399	52	451
	2.5 %	2 %	2.5 %
NM	149	28	177
	1 %	1.1 %	1 %
NV	193	36	229
	1.2 %	1.4 %	1.3 %
NY	762	126	888
	4.9 %	4.8 %	4.9 %
ОН	291	44	335
	1.9 %	1.7 %	1.8 %
OK	194	35	229
	1.2 %	1.3 %	1.3 %
OR	263	45	308
	1.7 %	1.7 %	1.7 %
PA	530	83	613
	3.4 %	3.2 %	3.4 %
RI	164	25	189
	1 %	1 %	1 %
SC	279	50	329
	1.8 %	1.9 %	1.8 %
SD	148	33	181
	0.9 %	1.3 %	1 %
TN	412	81	493
	2.6 %	3.1 %	2.7 %
TX	869	134	1003
	5.6 %	5.1 %	5.5 %
UT	155	30	185
	1 %	1.1 %	1 %
VA	382	60	442
	2.4 %	2.3 %	2.4 %
VT	216	26	242
	1.4 %	1 %	1.3 %

WA	377	54	431
	2.4 %	2.1 %	2.4 %
WI	308	47	355
	2 %	1.8 %	1.9 %
WV	160	32	192
	1 %	1.2 %	1.1 %
WY	148	40	188
	0.9 %	1.5 %	1 %
Total	15653	2612	18265
	100 %	100 %	100 %

 $\chi^2 = 101.305 \cdot df = 50 \cdot Cramer's \ V = 0.074 \cdot p = 0.000$