권류터 공학과/ 2017/630/ 남주형		
2.2对 Gauss-Jordan 在刊时		
#1 기아 해 4다리를 해결(reduced row-echelon form matrix)을 정의하이라,(즉, 정의를		
정확는(적어라.)		
m x h 크기의 경기 존재할때		
(1) 만야 모든 성분이 o으로만 이루어진 행(영행, zero row)가 존재한다면 행열의 제일아래에 위기한다.		
(2) 엉행을 제외한 각행에서 처음으로 내내는 0이 아닌성 분은 반드시 1이다. (이 때의 1일		
"leading 1" of et 2 = ct.)		
(3) 아가 하는 이 "leading 1"은 위의 행의 "leading 1"보다 같지나 왼쪽의 열에 키시하기 있는다.		
(4) "leading 1"을 포함하 가연에서 "leading 1"을 제외한 다른 성분은 모두 0 이다.		
조건 (1)~(3) 을 만족하는 행전은 해 사다리를 해졌 (row-echelon form matrix)라고하고		
(1)~(4)의 대가지 조건을 모두 만족하는 행건을 기약 행 사악리를 행건 (reduced row-echelon term matrix)		
etz of ct.		
# 2 다음 이 생건이 기야 해 사다리를 해건이지를 판단하여라. 만야기야 해 사다리를 했던		
아니라면 그 이유를 말하고 적절한 기본 행 연소를 생산이 기야 해 사다리를 해얻을		
반들이라,		
(1) [100] D2(2) [100, (2) [123] 710k stt 4927 01ct		
021 001 000 : 1912,2,1-(1)~(+) 만족		
1 a law at a law h 202		
4 2 3 에서 60 이 1 기에 문에 (3) 0 10 (3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
710 1/4 4 4 2 20 1 oyut. [001]		
(1. 73912,2.1-(2)) 1中 7392,2.1-(1) 01934		
기억 8년 사악리를 생각 나아니다.		
(4) \[1 -7 5 5 \] \[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
0132 7 0132		
0000		
4 전의 2,고,1 - (4) 에밀왕		
기야 행수 이익 를 행걸이아니다.		

_

권퓨터 공하고	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
나 정의 2.2.1-(3),(4) =	
吹补 另外里子 rick of	
사악길을 해결이 아니다.	
(6) $\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} C_{21} & 0 & 1 & -1 & 0 & 3 \\ 0 & 1 & -1 & 0 & 3 \end{bmatrix}$ $\begin{bmatrix} C_{12}(1) & 0 & 1 \\ 0 & 1 & -1 & 0 & 3 \end{bmatrix}$	01003 03(2)01003
01-103 -> 00100 ->	00100 -7 00100
001-25 001-25 E32(1)	00075 0001-5
La 350/2,2,1-(3),(4) =	
吹雪和其中里 被对 4年間 销程的 4月年	
$(7) \hspace{0.2cm} / \hspace{0.2cm} \circ \hspace{0.2cm} \circ \hspace{0.2cm} -7 \hspace{0.2cm} \mid \hspace{0.2cm} E_{13}(7) \hspace{0.2cm} \mid \hspace{0.2cm} / \hspace{0.2cm} \circ \hspace{0.2cm} \circ \hspace{0.2cm} \circ \hspace{0.2cm} \mid$	
0 1 -3 0 7 01-30	
0 0 0 1 0001	
4 경의 2.2.1 - (4) 를 만족42(동바므로	
기야 왕 사악리를 생긴이 아니다.	
(8) \[1 -6 6 6 6 3 -2 \]	
001047	
0 0 0 1 5 8	
0 0 0 0 0 0	
4 경의 2.2.1-(1)~(4)를 만족하므로	
기야 행 사다리를 챙긴 이다.	

la a ...

경류터공학과/20171630/남주형

#3 다음의 기야행사다리꼴 행전이 나타내는 연립선형 방정 서의 해를 벡터를 이용하여 나타내이라. (의 2,2,3에서의 에의 포헌법을 참고하여라.)

(1)
$$\begin{bmatrix} 12001 \\ 00100 \\ 0012 \end{bmatrix}$$
 $\begin{cases} \lambda_1 = -2\lambda_2 + 1 \\ \lambda_3 = 0 \end{cases}$ $\lambda_{12} = 5$ $\lambda_{2} = 5$ $\lambda_{3} = 0$ $\lambda_{4} = 2$ $\lambda_{4} = 2$

(3)
$$[1 234] + \lambda_1 = 2\lambda_2 - 3\lambda_3 + 4 + \lambda_2 = 5, \lambda_3 = 1$$

$$\begin{array}{c} \lambda_1 = -25 - 3 + 4 \\ \lambda_2 = 5 \\ \lambda_3 = 1 \end{array}$$
(s.t. $\in \mathbb{R}$)

$$\begin{array}{c|c} 1 & \begin{array}{c|c} 1 & \begin{array}{c|c} 1 & \begin{array}{c|c} 1 & \end{array} \\ \begin{array}$$

컴퓨터 용화과/2이 11630/ 남구형

4 Gauss - Jordan 在內間是 이용하여 연립선정 財務사의 베를 가하여라, 다, 나게 터를 여용하여 배를 나타내어가.

경폭터 공학과 /20171630 /삼수형 Esi(6) [12-1-3] D1(-1) [12 1-3] E12(-2) [1023] $\frac{1}{4}$ 0 -2 3 1 $\frac{1}{4}$ 0 1 - $\frac{3}{2}$ - $\frac{1}{2}$ 0-699 0-699 E32(6) 0006 D3(古) 102 ま E3(ま) 1020 サ 01-3-ナ サ 01-30 のれのなりも1 中部十年刊報ではこれ。 0001 [20(2) 0001] $(4) (22, -32) = -2 [2 -3 -2] [0, (1) [1 - \frac{3}{2} - 1] E_{21}(2) [1 - \frac{3}{2} - 1]$ $0 \frac{12}{2} 4 \int \left[\frac{13}{32} \left(-\frac{13}{2} \right) \right] = 0 0 -\frac{5}{32}$ 001 E23(4) [00] 이나 1 = 1 + 해가존재하지만는다. 12, +3d2 +7d3 + 2d4=2 + 13722 + 05661 1 1 -12/2-11 76 - 1676 = 5 [1 +2 +1 +6 5 [53(t)] 0-14-12-124 $E_{13}(-\frac{17}{5}) \begin{bmatrix} 1 & 0 & -5 & -\frac{11}{12} \\ 4 & 0 & 1 & 0 & 0 & -\frac{3}{2} \end{bmatrix} + \begin{bmatrix} 1_1 & -51_4 & -\frac{11}{12} \\ 1_2 & -\frac{3}{2} & + 21_4 & -\frac{3}{2} \end{bmatrix} + \begin{bmatrix} 1_2 & -5 & -\frac{11}{12} \\ 1_3 & -\frac{3}{2} & + 21_4 & -\frac{3}{2} \end{bmatrix} + \begin{bmatrix} 1_2 & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \end{bmatrix} + \begin{bmatrix} 1_2 & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \end{bmatrix} + \begin{bmatrix} 1_2 & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \end{bmatrix} + \begin{bmatrix} 1_2 & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \end{bmatrix} + \begin{bmatrix} 1_2 & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 1_3 & -\frac{3}{2} & -\frac{3$ (SER)

35.A.E.	1 공학과 /20171630/ 남주행
(6)	\$ 12+313-214=0 013-20 [21-430]
	24+22-423+32420 21-430 612013-20
	24,+342+243-2420 232-10 232-10
	-47,-12,+523-4x4=0 [-4-35-40] [-4-35-40]
n/s)	$ \begin{bmatrix} 1 & \pm -2 & \frac{3}{2} & 0 \\ 0 & 1 & 3 & 2 & 0 \end{bmatrix} $ $ \begin{bmatrix} 1 & \pm 2 & \frac{3}{2} & 0 \\ 0 & 1 & 3 & -2 & 0 \end{bmatrix} $ $ \begin{bmatrix} 1 & \pm 2 & \frac{3}{2} & 0 \\ 0 & 1 & 3 & -2 & 0 \end{bmatrix} $ $ \begin{bmatrix} 1 & \pm 2 & \frac{3}{2} & 0 \\ 0 & 1 & 3 & -2 & 0 \end{bmatrix} $ $ \begin{bmatrix} 1 & \pm 2 & \frac{3}{2} & 0 \\ 0 & 1 & 3 & -2 & 0 \end{bmatrix} $
D ₁ (\(\frac{1}{2}\)	01320 (312) 013-20 (12(-2) 013-20
•	23270 026-40 E32(-2) 0000
	-4-35-40 E4(4) 0-1-320 E42(1) 00000
	$(1 = \frac{3}{5} \cdot \frac{3}{5} + \left[\frac{3}{2}\right] \left[\frac{2}{5}\right]$
4	$ \begin{cases} $
·	$[212 - 32]_3 + 221_4$ (5, t \(R \) $24 = t$ $24 = t$ $24 = t$
	$(s,t \in \mathcal{L})$
#5	다음 동식은 만족하는 행권 X가 존개한다면 모두 구하여라, 만약 존개하기 안동는다면
7	이위를 설명하이라
(1)	$AX = B \left[1 - 1 \right] \left[2 - 1 - 5 \cdot 7 \cdot 8 \right]$
	X=A-1B 230 X= 40-301
	0 2 -1 35 -7 21
	B'
A2	(9) 3/ 2/2 7 34 0% / 1 1 1 0 0 E2 (2) 1 7 1 1 1 0 0
	230 010 + 052 -210
	0 2 -1 0 0 1 0 2 -1 0 0 1
E23(2)	[1-11, 100 E12(1) 1 0 1]-1 1-2 E13(1) [100 3-13]
→	0101-21-2 - 010 -21-2 - 010-21-2
	02-1,001 E32(-2) 00-1 4-25 00-14-25
D3(4)	100 3-13 3-13 X=A'B[U 12-321 26)
4	010-21-2 +1, A= 21-2 1, X= -6-81-18-17
	001-42-5 -42-5 -15-21 9-38-35

Date. / / 컴퓨터 문학과 /2011/620/ 남주형 [112] (2)1 0 2 X = 0 3 2 2 -2 -1 2 13 X= ATB 1. ATE 78/DY 1 / 2 | /00 | D2(-1) 1 / 2 | 100 E21(-1) E2(1) p AT 外色型制型实验中。 0 ((1-10 E2(1) (3)2 13 23 233 2 -2 -1 $\lambda_{11} + \lambda_{21} + 2\lambda_{31} = 2$ $\lambda_{11} = 0$ $\lambda_{11} = 0$ $\lambda_{12} = 0$ 24, +22, +323, = 2 / 23, = 0 2 + 2 + 2 + 2 + 2 + 2 + 3 + 2 = 7 2 + 2 + 2 + 3 + 2 = 3 2 + 2 + 2 + 3 + 2 = -2 2 + 2 + 2 + 3 + 2 = -2 2 + 2 + 3 + 2 = -2 2 + 3 + 2 = -24 4가 정사 행정이 아니기때문에 लुअखूर इस् अस्टा हर. 212+223+2223=-3) 213= 7 2 / + 223= -5 2/13 + 1/23 = 2 | + 2/23 = -6 2/13 + 1/23 + 3/23 = -1 | d33 = 0 $\frac{221_{11}-12_{12}}{-11_{11}+321_{11}=1}$ $\frac{2}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ 211-7/212-1 $\frac{2\lambda_{12} - 2\lambda_{22} = 5}{-\lambda_{11} + 3\lambda_{12} = 0} = \frac{\lambda_{12} = 3}{\lambda_{12}} = \frac{2}{3}$ -1/12+31/21=0 / d22=1

검퓨터 공학과 /20171630 /남국행 (4) [2 -1 13] [1 2 0] -2 0 -1 0 X = 1 -1 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
6 \$\frac{4}{5} \cdot 0, Ca \$\distant 0 \\ \text{T} = 0 \$\distant 2, \distant 0 \\ \distant 0 \\\ \distant 0 \\\\distant 0 \\\\dint 0 \\\\dint 0 \\\\dint 0 \\\dint 0 \\\\dint 0 \\\\dint 0 \\\\dint 0 \\\\dint 0 \\\dint 0 \\

정류더 공학과/20171630/남주형 #7 다음 어김선정 바닷식이 해를 깨뜨릴 실수 k의 값을 감에라 고리고 그 때의 部是 对别对. 31,-6,12+213-224=9 [3-62-2-9 | E12(-1) [1-2-11-13 21,-41,+313-314-4 + 2-4 3-3 4 + 5-107-7 R 5-107-7 K 52, -102,+723-724= K D2(5) 1 2 7 1-13 F12(1) 1-200-7 1 -2 -1 1-13 E21 (-2) 0 0 5 -5 30 0 0 12 -12 (k+65) + 1 0 0 12-12 (R+65) (=32(+2) 0 0 0 0 (k-1) E31(-5) 排電中型科學 k=70196時中 $|2_1 = 2_{2} + 1|$ $|2_1 = 2_{1} + 1|$ $|2_1 = 2_{1} + 1|$ $|2_1 = 2_{1} + 1|$ $|2_1 = 2_{1} + 1|$ $|2_1 = 2_{1} + 1|$ 1 k=7 23=24+6 2+32 84 71321+6 $(5, t \in R)$ [2] [1] [5] [5] [6] [7] [7]