FUNDAÇÃO MATIAS MACHLINE Profº. Marden Santos Aluno: LISTA DE EXERCÍCIOS I DE LTP/ LPI - 1º Bimestre Lógica e Conceitos Iniciais de Programação de Computadores Data: 15/02/2018 Turmas: 1AI; 1BI; 1CI

- 1. Escreva um algoritmo que leia um número inteiro qualquer, calcule e exiba o dobro, a metade e um quarto do número lido.
- 2. Desenvolver um algoritmo que leia um número inteiro qualquer e imprima seu sucessor e seu antecessor.
- 3. Crie um algoritmo que leia o lado de um quadrado, em seguida calcule e imprima sua área, seu perímetro e o valor da diagonal.
- **4.** Dado o preço de um produto em reais, converter este valor para o equivalente em dólares. O algoritmo deverá ler o preço e a cotação para o dólar. Imprima o valor equivalente em dólar.
- **5.** Elabore um algoritmo que leia dois números inteiros e imprima na saída às seguintes informações: dividendo, divisor, quociente e resto.
- **6.** Faça um algoritmo para ler uma temperatura em °C e converta em °F. imprima as duas temperaturas na saída. Formula:

$$^{\circ}F = \frac{9 * ^{\circ}C + 160}{5}$$

7. Faça um algoritmo para calcular o estoque médio de uma peça, sendo que:

ESTOQUEMÉDIO = (QTDEMÍNIMA + QTDEMÁXIMA) /2

- **8.** Suponha que você foi ao supermercado e comprou 02 produtos. Faça um algoritmo que leia o nome e o preço dos produtos comprados e calcule o preço total da compra sabendo que você obteve um desconto de 20%. Deverão ser impressos os nomes dos 02 produtos comprados, seus preços unitários e o valor total da compra com e sem o desconto obtido.
- 9. Faça um algoritmo que leia o nome de um vendedor, o seu salário fixo e o total de vendas efetuadas por ele no mês (em dinheiro). Sabendo que este vendedor ganha 15% de comissão sobre suas vendas efetuadas, informar na saída o total a receber pelo vendedor no final do mês.
- 10. O custo ao consumidor, de um carro novo, é a soma do custo de fábrica com a porcentagem do distribuidor e dos impostos (aplicados ao custo de fábrica). Supondo que a porcentagem do distribuidor seja 28% e os impostos de 45%, escreva um algoritmo para ler o custo de fábrica de um carro e escreva na saída o custo ao consumidor.
- **11.** Faça um algoritmo que efetue o cálculo do valor de uma prestação em atraso, utilizando a fórmula: Obs.: Tempo em meses.

Prestação = valor + (valor* (taxa/100) *tempo)

- **12.** Construa um algoritmo que receba os nomes de 5 clientes de uma loja e o valor que cada um destes clientes pagou por sua compra. O algoritmo deverá informar:
 - a) O valor total pago pelos 5 clientes.
 - b) O valor da compra média efetuada.

- **13.** Desenvolva um algoritmo que, ao receber do usuário o valor do salário mínimo e a quantidade de quilowatts consumidos por uma residência, informe: o valor unitário do quilowatt. O valor total do consumo, o valor a ser pago, sendo que são oferecidos 10% de desconto. Para a resolução, é informado que 100 quilowatts de energia custam um décimo do salário mínimo.
- **14.** Faça um algoritmo que leia as coordenadas de dois pontos no plano cartesiano e mostre a distância entre estes pontos. A fórmula da distância entre os pontos (x1,y1) e (x2,y2) é:

$$D = \sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}$$

- **15.** Dado um polígono convexo de n lados, podemos calcular o número de diagonais diferentes (nd) desse polígono pela formula: **nd = n*(n-3)/2**. Fazer um algoritmo que leia quantos lados tem o polígono, calcule e escreva o número de diagonais diferentes (nd) do mesmo.
- **16.** Criar um algoritmo que leia o peso de uma pessoa, só a parte inteira, calcular e imprimir:
 - a) O peso da pessoa em gramas.
 - **b)** O novo peso, em gramas, considerando que a pessoa engordou 12%.
- 17. Sabendo que o latão é obtido fundindo-se sete partes de cobre com três partes de zinco, faça um algoritmo que solicite quantos quilos de latão se quer produzir e imprima quantos quilos de cobre e de zinco são necessários para produzir a quantidade de latão lida.
- **18.** Uma máquina automática de café só funciona com notas de R\$ 5,00 e nunca dá o troco. O café custa R\$ 7,00. Assim, se o cliente pedir apenas um café, ele vai perder R\$ 3,00, pois terá que dar R\$ 10,00 e a máquina não devolverá o troco. Crie um algoritmo que leia a quantia em dinheiro que o cliente colocou na máquina e imprima quanto o cliente irá perder no troco.
- **19.** Elabore um algoritmo que leia um número no formato CDU e imprima tal número de forma invertida, ou seja, no formato UDC. Exemplo o número 123, sairá 321. O número deverá ser armazenado em outra variável antes de ser impresso.
- **20.** Desenvolva um algoritmo que leia um número real, calcular e imprimir: a parte inteira do número, a parte fracionária do número e o número arredondado.
- **21.** Elabore um algoritmo que leia dois valores numéricos inteiros e efetue a soma destes valores. Caso o valor encontrado na soma:
 - a) Seja major ou igual a 10, este valor deverá ser somado de 5 (imprima o valor):
 - b) Não seja maior ou igual a 10, este valor deverá ser subtraído de 5 (imprima o valor).
- **22.** Tendo como dados de entrada altura, nome e sexo, construa um algoritmo que calcule o peso ideal de cada pessoa, utilizando as seguintes fórmulas:

a) Para homens: (72,7*h) – 58

b) Para mulheres: (62,1*h) - 44,7

Imprima na saída os dados informados e o peso ideal calculado.

- 23. Faça um algoritmo que informe se existe estoque para atender um pedido feito a uma fábrica. O algoritmo deverá receber como entradas o número de itens em estoque e o numero de itens a serem fornecidos, e dará como saída o estoque atualizado ou uma mensagem indicando não haver itens suficientes em estoque para atender ao pedido.
- **24.** Construir um algoritmo que leia um número e imprima a raiz quadrada do número caso ele seja positivo e o quadrado do número caso ele seja negativo.
- **25.** Desenvolva um algoritmo que leia a sigla do estado de uma pessoa e imprima na saída uma das seguintes mensagens: amazonense, capixaba, potiguar, gaúcho, outros.

- 26. Elabore um algoritmo que leia a idade de uma pessoa e imprima na saída uma das seguintes opções: "maior de idade", "menor de idade" e "maior de 65".
- 27. Faça um algoritmo capaz de ler um número qualquer e identificar se este número é par ou ímpar; positivo, negativo ou zero. Imprima uma mensagem para definir o número lido.
- 28. Dados os nomes de 5 municípios de uma região e suas temperaturas médias, calcular e imprimir os seguintes dados:
 - a) Temperatura média da região.
 - b) Numero de municípios com temperatura média inferior a 10°C.
 - c) Nome dos municípios que apresentam temperatura média superior a 30°C.
- 29. Um endocrinologista deseja controlar a saúde de seus pacientes e, para isso, utiliza o índice de Massa Corporal (IMC). Sabendo-se que o IMC é calculado através da seguinte formula:

$$IMC = \frac{peso}{altura^2}$$

Onde: - peso é dado em kg;

- altura é dada em metros.

Criar um algoritmo que mostre o nome do paciente e sua faixa de risco, baseando-se na seguinte tabela:

IMC	Faixa de risco
Abaixo de 20	Abaixo do peso
A partir de 20 até 25	Normal
Acima de 25 até 30	Excesso de peso
Acima de 30 até 35	Obesidade
Acima de 35	Obesidade mórbida

- 30. Faça um algoritmo que leia um número inteiro entre 1 e 12 e escreva o mês correspondente por extenso. Caso o usuário digite um número fora desse intervalo, deverá aparecer uma mensagem informando que não existe mês com este número.
- 31. Faça um algoritmo que leia 4 valores: I, A, B, C. Onde I é um número inteiro e positivo e A, B, e C são quaisquer valores reais. O algoritmo deve escrever os valores lidos e:
 - a) Se I=1, escrever os 3 valores A, B, e C em ordem crescente.

 - b) Se I=2, escrever os 3 valores A, B, e C em ordem decrescente.
 c) Se I=3, escrever os 3 valores A, B, e C de forma que o maior valor fique entre os outros dois.
 d) Se I não for um dos 3 valores acima, dar uma mensagem indicando isso.
- **32.** Fazer um algoritmo que leia 04 valores A, B, C, e X. Para os valores lidos:
 - a) Se X= "a", verificar se os primeiros três valores podem ser coeficientes de uma equação do 2° grau com raízes reais. Neste caso, calcular e imprimir estas raízes.
 - b) Se X= "b", verificar se os primeiros três valores podem formar um triângulo. Neste caso dizer se o triângulo e equilátero, isósceles ou escalenos.
 - c) Se X= "c" e se todos os valores forem positivos, calcular e imprimir a área do trapézio que tem A e B por bases e C por altura.
 - d) Para qualquer outro valor de X emitir uma mensagem de erro.
- 33. Considere uma equação do segundo grau. Faça um algoritmo que calcule a(s) raiz (es) desta equação, tal que:
 - a) Se não houver raízes (DELTA < 0), o algoritmo retorna -99999.
 - **b)** Se houver apenas uma raiz (DELTA = 0), o algoritmo retorna o valor da raiz única.
 - c) Se houver duas raízes (DELTA > 0), o algoritmo retorna o valor das duas raízes únicas.

- **34.** Fazer um algoritmo que leia o percurso em quilômetros, o tipo do carro e informe o consumo estimado de combustível, sabendo-se que um carro tipo C faz 12 km com um litro de gasolina, um tipo B faz 9 km e o tipo A, 8 km por litro.
- **35.** Criar um algoritmo que informe a quantidade total de calorias de uma refeição a partir da escolha do usuário que deverá informar o prato, a sobremesa e bebida (veja a tabela a seguir).

Prato	Sobremesa	Bebida
Vegetariano 180cal	Abacaxi 75cal	Chá 20cal
Peixe 230cal	Sorvete diet 110 cal	Suco de laranja 70cal
Frango 250cal	Mouse diet 170cal	Suco de melão 100cal
Carne 350cal	Mouse de chocolate 200cal	Refrigerante diet 65cal

- **36.** Escreva um algoritmo que calcule o número de notas e de moedas que devem ser dados de troco para um pagamento efetuado. O algoritmo deve ler o valor a ser pago e o valor efetivamente pago. Supor que o troco seja dado somente em notas de 10 e de 1 real, e em moedas de 50, 10, 5, e 1 centavo.
- **37.** O número 3025 possui a seguinte característica:

Fazer um algoritmo que leia um número de quatro dígitos e imprima na saída uma mensagem dizendo se o número lido "É Característico" ou "Não é Característico.

- **38.** Capicuas são números que tem o mesmo valor, se lidos da esquerda para direita ou da direita para a esquerda. Exemplo: 44, 232, 131, etc. Fazer um algoritmo que leia um número qualquer (até 6 dígitos), e imprima uma mensagem dizendo se o mesmo é capicuas ou não.
- **39.** Dobradura (OLIMPÍADA BRASILEIRA DE INFORMÁTICA)

Tarefa

Zezinho tem aulas de Iniciação Artística em sua escola, e recentemente aprendeu a fazer dobraduras em papel. Ele ficou fascinado com as inúmeras possibilidades de se dobrar uma simples folha de papel. Como Zezinho gosta muito de matemática, resolveu inventar um quebra-cabeça envolvendo dobraduras. Zezinho definiu uma operação de dobradura D que consiste em dobrar duas vezes uma folha de papel quadrada de forma a conseguir um quadrado com 1/4 do tamanho original, conforme ilustrado na figura.

Depois de repetir N vezes esta operação de dobradura D sobre o papel, Zezinho cortou o quadrado resultante com um corte vertical e um corte horizontal, conforme a figura abaixo.

Zezinho lançou então um desafio aos seus colegas: quem adivinha quantos pedaços de papel foram produzidos?

Entrada

Neste algoritmo, a entrada é composta de vários conjuntos de teste. Cada conjunto de teste é composto de uma única linha, contendo um número inteiro N que indica o número de vezes que a operação de dobradura D foi aplicada. O final da entrada é indicado por N=-1.

Exemplo de Entrada

1

-1

Saída

Para cada conjunto de teste da entrada seu algoritmo deve produzir três linhas na saída. A primeira linha deve conter um identificador do conjunto de teste, no formato "Teste n", onde n a partir de 1. A segunda linha deve conter o número de pedaços de papel obtidos depois de cortar a dobradura, calculado pelo seu algoritmo. A terceira linha deve ser deixada em branco. A grafia mostrada no Exemplo de Saída, abaixo, deve ser seguida rigorosamente.

Exemplo de Saída

Teste 1

9

Teste 2

4 (esta saída corresponde ao exemplo de entrada acima)

Restrições:

 $-1 \le N \le 15$ (N = -1 apenas para indicar o fim da entrada).

40. Chocolate (OLIMPÍADA BRASILEIRA DE INFORMÁTICA)

Dada uma barra grande de chocolate, Juliana realiza divisões sucessivas da barra até obter uma barra que contém a quantidade exata de chocolate para aquela receita. Após cada divisão, ela seleciona um dos pedaços resultantes e armazena os demais para uso futuro. As divisões são determinadas por critérios técnicos relacionados ao tamanho das barras e aos equipamentos disponiveis em um dado momento. Por exemplo, se ela deseja obter uma barra de 100g de chocolate a partir de uma barra de 3Kg, primeiro ela divide a barra ao meio. Em seguida, um dos pedaços é dividido em cinco partes iguais e por fim, um desses pedaços de 300g é dividido em 3 pedaços, resultando no pedaço de 100g necessário para a receita. Nesse processo, 1 pedaço é utilizado para a receita e 7 pedaços de diferentes tamanhos serão guardados para uso futuro. A figura abaixo ilustra esse cenário.

Tarefa

Dada uma sequência de divisões realizadas por Juliana em uma barra de chocolate, elaborar um algoritmo em Portugol, para determinar quantos pedaços serão armazenados em estoque para uso futuro.

Entrada

A entrada contém um único conjunto de testes, que deve ser lido do dispositivo de entrada padrão (normalmente o teclado). A primeira linha da entrada contém um inteiro N que indica o número de divisões feitas na barra de chocolate original ($1 \le N \le 1.000$). A linha seguinte contém N inteiros I ($2 \le I \le 10$) representando o número de pedaços em que o pedaço atual foi dividido. Sempre que é feita uma divisão, um pedaço é utilizado para a próxima divisão e os demais são separados para serem armazenados em estoque.

Saída

Seu algoritmo deve imprimir, na saída padrão, uma única linha, contendo o número de pedaços de chocolate que serão armazenados em estoque.

Entrada	Entrada	Entrada
3 2 3 5	5 2 2 2 3 3	7 2 3 4 5 6 7 8
Saída 7	Saída 7	Saída 28