Druid lookups for high cardinality dimensions

Pranav Bhole, Jay Yang

Agenda

- What's druid
- Overview of druid segment file
- Why lookups
- Maha druid lookups architecture
- Salient features of maha druid lookups

What's Druid?

- An open-source data store designed for sub-second OLAP queries
- Power analytic applications
- Real-time streaming ingestion
- Scalable
- Cost effective
- Highly available

Data Roll-up

Timestamp	Dimensions			Metrics		
Timestamp	AdvertiserId	Gender	Country	Impressions	Clicks	
2017-01-01T01:01:35Z	12345	Male	US	1	1	
2017-01-01T01:02:18Z	12345	Male	US	1	0	
2017-01-01T01:08:52Z	12345	Male	US	1	1	
2017-01-01T01:13:45Z	12345	Female	US	1	0	
2017-01-01T01:35:15Z	12345	Female	US	1	1	

	Timestamp	AdvertiserId	Gender	Country	Impressions	Clicks	
	2017-01-01T01:00:00Z	12345	Male	US	3	2	
k	307 01-01T01:00:00Z	12345	Female	US	2	1	

Druid req/resp

```
"queryType": "groupBy",
"dataSource": { "type": "table", "name": "sample datasource" },
                                                                                               "version" : "v1",
                                                                                               "timestamp": "2017-01-01T00:00:00.000Z",
"granularity": { "type": "all" },
                                                                                               "event" : {
"dimensions": [
                                                                                                 "AdvertiserId": 12345, "Gender": "Male", "Country": "US", "Impressions": 3, "Clicks": 2
 { "type": "default", "dimension": "AdvertiserId", "outputName": "Advertiser ID" },
 { "type": "default", "dimension": "Gender", "outputName": "Gender" },
 { "type": "default", "dimension": "Country", "outputName": "Country" }
                                                                                               "version" : "v1".
"aggregations":
                                                                                               "timestamp" : "2017-01-01T00:00:00.000Z",
 { "type": "longSum", "name": "Impressions", "fieldName": "Impressions" },
                                                                                               "event" : {
 { "type": "longSum", "name": "Clicks", "fieldName": "Clicks" }
                                                                                                 "AdvertiserId": 12345, "Gender": "Female", "Country": "US", "Impressions": 2, "Clicks": 1
"intervals": [ "2017-01-01T00:00:00.000/2017-01-02T00:00:00.000" ]
```


What about mutable dimension data?

Timestamp	AdvertiserId	Gender	Country	Impressions	Clicks
2017-01-01T01:00:00Z	12345	Male	US	3	2
2017-01-01T01:00:00Z	12345	Female	US	2	1

Immutable segment file

AdvertiserId	Status	
12345	ON T	Mutable, how to
67890	ON	support them ?

Few options

- 1. Client side join
 - overhead
 - need to handle complicated logic like filtering
 - o error prone
- 2. Use druid lookups

What's druid lookups?

- Dimension values are replaced with new values
- Two types
 - Map lookups, very small lookup that can be passed at query time
 - Globally cached lookups from local files or JDBC

Limitations of default implementation

- Not suitable for high cardinality dimensions
- Most node types have to be loaded with lookups
- Limited to only one key column with a value column
- No real time updates
- Doesn't generate monitoring metrics

Introducing maha druid lookups

- Druid Extension open sourced under maha https://github.com/yahoo/maha/tree/master/druid-lookups
- Designed for high cardinality
 dimensions with sub-second updates

Architecture

Salient features

- Designed for high cardinality dimensions used at Yahoo with > 120 million unique dimensional rows
- Supports multi-column lookups
- Real time update capability using Kafka
- Easily configurable

Salient features

- Highly performant : < 25 ms difference between running the query on druid with lookups versus running the query on Oracle
- Uses RocksDB as an embeddable persistent key-value store for fast storage
- Support dynamic schema updates without druid deployments
- Lookup as a Service (LaaS) RESTful APIs

yaho. Supports snapshotting

Why RocksDB?

- Embeddable persistent key-value store for fast storage
- Highly performant
- Keys and values are just arbitrarily sized byte streams
- Optimized for fast storage such as flash drives and SSDs
- Easily configurable

Dynamic Schema Support

Druid req/resp with lookup

```
"queryType": "groupBy",
"dataSource": { "type": "table", "name": "sample_datasource" },
                                                                                                                         "version" : "v1".
"granularity": { "type": "all" },
                                                                                                                         "timestamp" : "2017-01-01T00:00:00.000Z".
"dimensions": [
                                                                                                                         "event" : {
 { "type": "default", "dimension": "AdvertiserId", "outputName": "Advertiser ID" },
                                                                                                                          "AdvertiserId": 12345, "Gender": "Male", "Country": "US", "Status": "ON", "Impressions": 3, "Clicks": 2
  { "type": "default", "dimension": "Gender", "outputName": "Gender" },
  { "type": "default", "dimension": "Country", "outputName": "Country" },
 { "type": "extraction", "dimension": "AdvertiserId", "outputName": "Status",
    "extractionFn": { "type": "mahaRegisteredLookup", "lookup": "advertiser lookup", "valueColumn": "status"
                                                                                                                         "version" : "v1".
                                                                                                                         "timestamp" : "2017-01-01T00:00:00.000Z",
"aggregations":
                                                                                                                         "event" : {
 { "type": "longSum", "name": "Impressions", "fieldName": "Impressions" },
                                                                                                                          "AdvertiserId": 12345, "Gender": "Female", "Country": "US", "Status": "ON", "Impressions": 2, "Clicks": 1
  { "type": "longSum", "name": "Clicks", "fieldName": "Clicks" }
"intervals": [ "2017-01-01T00:00:00.000/2017-01-02T00:00:00.000" ]
```


Integration with maha

- Out of the box support for querying
- Fallback option
- GroupBy query optimization while filtering on lookup column

Contributors

- Jay Yang
- Pranav Bhole
- Hiral Patel
- Pavan Arakere Badarinath

Acknowledgement

- Eric Tschetter (creator of Druid)
- Himanshu Gupta
- Seshasai Kuchimanchi

Questions?

https://github.com/yahoo/maha

