An Overview of YOLOv8 and Vision Transformer (ViT)

Jingyang Chen, Xuzhong Wang, Huizhi Zhao

October 17, 2025

Abstract

This document introduces two state-of-the-art computer vision architectures used in the DEEPSEA project: YOLOv8 for object detection and Vision Transformer (ViT) for image classification. We describe their core design principles, mathematical foundations, and their integration into marine species detection and classification.

1 Introduction

Deep learning has transformed computer vision tasks such as object detection and image classification. In the DEEPSEA framework, two models play central roles:

- YOLOv8 (You Only Look Once, version 8): A fast, real-time object detector that predicts bounding boxes and class probabilities in a single forward pass.
- Vision Transformer (ViT): A transformer-based architecture that applies self-attention to image patches, achieving state-of-the-art accuracy in image classification.

2 YOLOv8: Object Detection Model

2.1 Model Overview

YOLOv8 belongs to the YOLO (You Only Look Once) family of detectors, which reformulates object detection as a single regression problem rather than a two-stage pipeline. The model outputs bounding box coordinates and class probabilities directly from input images.

2.2 Mathematical Formulation

Given an input image $I \in \mathbb{R}^{H \times W \times 3}$, YOLO divides it into $S \times S$ grid cells. Each grid cell predicts B bounding boxes, where each bounding box is represented by (x, y, w, h, c):

$$x, y \in [0, 1], \quad w, h \in [0, 1], \quad c = P(\text{object})$$

and class probabilities $P(\text{class}_i|\text{object})$ for each class i.

The final detection confidence for each class i is:

$$P(\text{class}_i) = P(\text{object}) \cdot P(\text{class}_i|\text{object})$$

2.3 Loss Function

YOLOv8 minimizes a composite loss function combining localization, confidence, and classification terms:

$$\mathcal{L} = \lambda_{\rm box} \mathcal{L}_{\rm box} + \lambda_{\rm obj} \mathcal{L}_{\rm obj} + \lambda_{\rm cls} \mathcal{L}_{\rm cls}$$

where

$$\mathcal{L}_{\text{box}} = \sum_{i} \|b_i - \hat{b}_i\|_2^2,$$

$$\mathcal{L}_{\text{obj}} = \sum_{i} (c_i - \hat{c}_i)^2,$$

$$\mathcal{L}_{\text{cls}} = -\sum_{i} y_i \log(\hat{y}_i)$$

The model uses anchor-free detection with feature pyramids to efficiently detect multiscale objects, improving both precision and inference speed.

3 Vision Transformer (ViT): Image Classification Model

3.1 Patch Embedding

Unlike CNNs that use convolutional filters, ViT treats an image as a sequence of fixed-size patches. Given an image $x \in \mathbb{R}^{H \times W \times C}$, it is divided into N patches $x_p^i \in \mathbb{R}^{P^2 \times C}$, where P is the patch size.

Each patch is linearly projected into a D-dimensional embedding:

$$z_0^i = x_p^i E + E_{\text{pos}}^i, \quad i = 1, \dots, N$$

where $E \in \mathbb{R}^{(P^2 \cdot C) \times D}$ is the learned embedding matrix and E_{pos}^i adds positional information.

3.2 Transformer Encoder

The embeddings are fed into a stack of L Transformer encoder layers, each consisting of:

- Multi-Head Self-Attention (MHSA)
- Multi-Layer Perceptron (MLP)
- Layer Normalization (LN) and residual connections

The self-attention mechanism computes:

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V$$

where Q, K, and V are the query, key, and value matrices.

The multi-head variant concatenates multiple attention outputs:

$$MHA(Q, K, V) = [head_1, ..., head_h]W^O$$

3.3 Classification Head

A special [CLS] token is prepended to the patch embeddings. After processing through the encoder, the final representation of this token $z_L^{(0)}$ is passed through an MLP for classification:

$$\hat{y} = \operatorname{softmax}(W_{\operatorname{cls}} z_L^{(0)} + b)$$

The cross-entropy loss is then minimized:

$$\mathcal{L}_{\text{CE}} = -\sum_{i=1}^{K} y_i \log(\hat{y}_i)$$

4 Integration in DEEPSEA

In DEEPSEA:

- YOLOv8 performs localization of marine species, outputting bounding boxes and detection confidences in real time.
- ViT classifies cropped objects or full images to determine the specific benthic species category.

This hybrid pipeline achieves both spatial detection and semantic understanding, with ViT providing high accuracy (\sim 92%) and YOLOv8 offering fast detection (\sim 80% mAP).

5 Conclusion

The combination of YOLOv8 and ViT provides a powerful framework for underwater computer vision. YOLOv8's efficiency in spatial localization and ViT's superior classification performance together enable accurate, real-time marine species identification.