Course Project Operating System

Operating System-Phase 1

- Virtual Machine
- Instruction Set
- Job
- Program Execution
- Algorithm
- Programming
- Output

Virtual Machine:

	Address	Memory Location Content			
	00				
	01				
	02				
	03				
7					
	:				
		+			

Virtual Machine:

- 1. 1 word =4 Bytes
 - Size of total Memory= 100 words=100 x 4 Bytes =400Bytes
- 2. Memory is divided into Blocks/Pages
 - Size of Block (Page) = 10 words = 10 x + 4 Bytes of each word = 40 Bytes.
- 3. No of pages (Blocks) in memory= Size of Total Memory/ Size of one page
 - = 100 words/10 words
 - = 10 Pages.
 - 10 Pages (0 Page 9 Page)
- 4. Card Reader(Input device) read Block of Data / Page (40 Bytes)
- 5. Line Printer (Output device) print Block of Data / Page (40 Bytes)

SR.No.	Instruction	Operation	Example	Data	Modes
1	GD	Get Data from card reader and placed memory location specified in instruction	GD10,GD20	Block of data (40 Bytes)	Master/Kernel Mode
2	PD	Put (print data) to Line Printer from memory location content specified in instruction.	PD10,PD20	Block of data (40 Bytes)	Master/Kernel Mode
3	LR	Load Register with memory location content specified in instruction	LR12,LR20	Word of data (4 Bytes)	Slave/User Mode
4	SR	Store Register content to memory location specified in instruction.	SR24,SR50	Word of data (4 Bytes)	Slave/User Mode
5	CR	Compare register content with memory location content specified in instruction. Comparison result is equal- C-True Comparison result is not equal-C-False	CR20,CR45	Word of data (4 Bytes)	Slave/User Mode
6	ВТ	Branch to specified memory location in instruction if toggle register is true.	BT23	Byte data (Toggle Reg.)	Slave/User Mode
7	HLT	Stop execution of program.	HLT	-	Master/Kernel Mode

Note: GD and PD are I/O instruction. It works on BLOCK of data(40 Bytes)

- 1. **GD**-Get data from Card Reader and placed specify memory location in instruction.
 - e.g. GD10 Get Data from Card Reader and placed data at specified memory location 10.

- 2. PD- Put (Print) data to Line Printer. Get the data from specified memory location in instruction and put data to Line Printer.
 - e.g. PD10-Fetch (Block) of data from memory location 10 and put data to line printer.

LR 23

Note: LR and SR (4 Bytes)perform word data transfer operation

3. LR-Load Register content from specified memory location in instruction. e.g. LR 20- Load data(Word data) into register from memory location 20

- 4. SR-Store Register content to specified memory location in instruction.
 - e.g. SR 40-Store content of register into memory location 40 SR 45

Note: Compare instruction works on word data.

- **5. CR**-Compare Register content with Memory location content specified in instruction. Result of comparison-Set/Reset (true/false)store in Toggle C register.
 - e.g. CR 30 Compare the content of register with memory location 30 Result C-T/F (1/0)

CR 25

- **6. BT**-Branch if true (C Flag status) to specify memory location in instruction e.g. BT25 —Branch to memory location 25 if C(toggle register) is true.
- 7. H-HLT —Stop Program Execution.

Q. Write an program to display Hello message through Line Printer.

\$AMJ000100030001

; (Job id / Total Time Limit / Total Line Limit)

GD10PD10H

\$DTA

Hello

\$END0001

Address	Memory Location			
	Content			
00	G	D	1	0
01	P	D	1	0
02	Н			
03				
:				
09				
10	Н	e	1	1
11	O			
12				
:				
19				
:				
99				

Q. Write an program to display following message through Line Printer.

I LIKETHIS PEN OF HIS

Assume Data Card consist following data:

I LIKETHIS PEN OF

Address	Memory Location Content			
00				
01				
02				
03				
:				
09				
10	I		L	I
11	K	E		T
12	Н	I	S	
13	Р	E	N	
14	0	F		
15				
:				
99				

Q. Write an program to display following message through Line Printer.

I LIKETHIS PEN OF HIS

Assume Data Card consist following data:

I LIKETHIS PEN OF

Ans:

\$AMJ000200050001

GD10LR12SR15PD10H

\$DTA

I LIKETHIS PEN OF

\$END0002

Address	Memory Location Content			
00	G	D	1	0
01	L	R	1	2
02	S	R	1	5
03	P	D	1	0
04	Н			
:				
09				
10	I		L	I
11	K	Е		T
12	Н	I	S	
13	Р	E	N	
14	0	F		
15	Н	1	S	
:				
99				

Q.Write an program to compare data from data card given in the program. **Assume Data Cards consist following data: ABCD ABCD DO NOT MATCH Output: ABCD ABCD MATCH**

Address	Memory Location Content			
00				
01				
02				
03				
:				
09				
10				
11				
12				
13				
14				
15				
99				

Q. Write an program to compare strings given in the program.

Ans.

\$AMJ000300130003

GD20PD20GD30PD30GD40GD50LR20CR30BT11PD40

HPD50H

\$DTA

ABCD

ABCD

DO NOT

MATCH

\$END0003

Addr	Memory Location				
ess	Content				
00					
01					
02					
03					
:					
09					
10					
11					
12					
13					
14					
15					
99					

Q.Write an program to compare data from data card given in the program.

Assume Data Cards consist following data:

VIT

VIIT

IS SAME

NOT SAME

Output:

VIT

VIIT

NOT SAME

Memory Location Content			

Q.Write an program to compare two sting VIT and VIIT given in the program.

Ans:

\$AMJ000400120003

GD20PD20GD30PD30GD40GD50LR20CR30BT11PD40

HPD50H

\$DTA

VIT

VIIT

IS SAME

NOT SAME

\$END0004

Addr	dr Memory Location		on		
ess	Content				
00					
01					
02					
03					
:					
09					
10					
11					
12					
13					
14					
15					
99					

Program:

- 1. Input File
- 2. Operating System Program
- 3. Output File

ASSUMPTIONS:

- Jobs entered without error in input file
- No physical separation between jobs
- Job outputs separated in output file by 2 blank lines
- Program loaded in memory starting at location 00
- No multiprogramming, load and run one program at a time
- SI interrupt for service request

NOTATION

M: memory; IR: Instruction Register (4 bytes)

IR [0, 1]: Bytes 1, 2 of IR/Operation Code

IR [2, 3]: Bytes 3, 4 of IR/Operand Address

M[&]: Content of memory location &

IC: Instruction Counter Register (2 bytes)

R: General Purpose Register (4 bytes)

C: Toggle (1 byte)

: Loaded/stored/placed into

LOAD

 $m \leftarrow 0$

While not e-o-f

Read next (program or control) card from input file in a buffer

Control card: \$AMJ, INIT

\$DTA, START EXECUTION

\$END, end-while

Program Card: Store buffer in memory locations m through m + 9

 $m \leftarrow m + 10$

End-While

STOP

INIT

M: memory- *

IR: Instruction Register -*

IC: Instruction Counter Register -*

R:General Purpose Register -*

C:Toggle-*

Buffer-*

START EXECUTION

 $IC \leftarrow 00$

EXECUTE USER PROGRAM

```
EXECUTE USER PROGRAM (SLAVE MODE)
    Loop
                IR \leftarrow M [IC]
                IC \leftarrow IC+1
                 Examine IR[0,1]
                              R \leftarrow M [IR[2,3]]
                         LR:
                         SR: R \rightarrow M [IR[2,3]]
                         CR:
                               Compare R and M [IR[2,3]]
                                 If equal C \leftarrow T else C \leftarrow F
                                 If C = T then IC \leftarrow IR [2,3]
                         BT:
                         GD: SI = 1
                         PD: SI = 2
                         H: SI = 3
                End-Examine
    End-Loop
```

MOS (MASTER MODE)

Case SI of

1: Read

2: Write

3: Terminate

End case

READ

Read next (data) card from input file in memory locations IR [2,3] through IR [2,3]

EXECUTE USER PROGRAM

WRITE

Write one block (10 words of memory) from memory locations IR [2,3] through IR [2,3] + 9 to output file

EXECUTE USER PROGRAM

TERMINATE

Write 2 blank lines in output file

LOAD