Wash 1950b) Every finite strategic-form game has a mixed strategy equilibrium. main idea: Kakutani's fixed point theorem. Prove : there is a player i's Ti maps each strategy profile reaction correspondence $66\sum = x_i\sum_i$ to the set of mixed strategies that maximize \sum_i i's payoff when his opponents play 6-i. r: 5 -> E be the Cartesian Product of ri. i.e. $\Gamma = (\Gamma_1 \times \Gamma_2 \times \Gamma_3 \times \cdots \times \Gamma_n)$. Hence 6 = Y(6) => 0; Eti(6) ti. fixed point $6 = (6_1, 6_2, ---, 6_n)$. Proof: According to Kakutani's theorem, the Sufficient conditions for r: >> > to have a fixed point: (1) \sum is a compact, convex, nonempty subset of a (finite-dimensional) Euclidean space. (2) r (6) is nonempty for all 5.

(3) \(\(\) (6) is convex for all 6.

(4) \(\(\) \(\) have a closed graph: If a sequence $(6^n, \hat{3}^n) \rightarrow (6, \hat{6})$ with $\hat{G}^n \in \Gamma(6^n)$, then $\hat{G} \in \Gamma(6)$. (3): assume = 6'& r(6), 6" & r(6) $\lambda 6' + (1-\lambda) 6'' \notin r(6)$ $6i \in \Gamma_{i}(6)$ => 6i and 6i' are best $6i' \in \Gamma_{i}(6)$ responses to 6-i. Ui(6i, 6-i) = Ui(6i, 6-i) =) $Ui(\Lambda 6't(1-\lambda)6\ddot{i}, 6-i)$ = Nli(6, 6-2) + (1-7) Ui(6, 6-1) is also best response to 6-i. =) Contradiction. (4) assume \exists sequence $(6^h, 6^h) \rightarrow (6, 6)$ 6° € r (6°) but 6 € r (6). Thus, there is a EDU and O'S.t. Ui(6'i, 6-i) > Ui(6i, 6-i) +38.

Since Ui is continous and (6 ⁿ , 3 ⁿ) -> (0, 3.
for n sufficiently large
$U_{i}(O_{i}, O_{-i}^{n}) > U_{i}(O_{i}, O_{-i}) - E > U_{i}(O_{i}, O_{-i}) + 2E$
$\mathcal{L}(\hat{b}_{i}^{n}, \hat{b}_{-i}^{n}) + \mathcal{E}$
which contradicts to bier(6)