Jesenski rok 2015/2016

1.

Oscilogrami:

- a) bez odvodnika
- b) isti slučaj kao 23. zadatak u skripti, ali nije zadana brzina vala nego se mora znati da je brzina na nadzemnom vodu 300 m / us.
- 23. 600 m nadzemnog voda nailazi su u trasi srednjenaponskog kabela. Valni otpor kabela je Z₁ = Z₃ = 50 Ω, a nadzemnog voda Z₂ = 500 Ω. Brzina vala na nadzemnom vodu je v = 300 m/µs. U točki A (spoj kabela i nadzemnog voda) priključen je odvodnik prenapona čiji je proradni napon U_p = 80 kV što je ujedno i preostali napon. Odredite oscilograme napona u točkama A i B uz prenaponski val prikazan slikom.

$$Z_1 = Z_3 = 50 \Omega$$
 $Z_2 = 500 \Omega$

$$v = 300 \, m/\mu s$$

$$s = 600 m$$

$$U_0 = 100 \, kV$$

$$U_p = 80 \; kV$$

$$T_1 = 2 \mu s, T_2 = 5 \mu s$$

Tell = 121-1 = 35

3.
$$Z_1 = 4/0 \Omega$$
, $Z_2 = 60 \Omega$, $Z_3 = 400 \Omega$, $U_2 = 500 EV$,

 $V_3 = 2\mu \omega$, $V_4 = 5\mu \omega$, $V_4 = 92 EV$, $V_4 = 90 EV$
 $V_4 = 4\nu \omega$, $V_5 = 6\mu \omega$

3. $V_5 = 4\nu \omega$, $V_6 = 90 EV$
 $V_6 = 4\nu \omega$, $V_6 = 90 EV$
 $V_7 = 4\nu \omega$, $V_7 = 6\mu \omega$
 $V_7 = 4\nu \omega$, $V_7 = 6\mu \omega$
 $V_7 = 4\nu \omega$, $V_7 = 6\mu \omega$
 $V_7 = 4\nu \omega$

$$U_{0}(0) = 0$$

 $U_{0}(1) = 250 \text{ eV}$
 $U_{0}(2) = 500 \text{ eV}$
 $U_{0}(3) = 400 \text{ eV}$
 $U_{0}(4) = 300 \text{ eV}$
 $U_{0}(5) = 200 \text{ eV}$
 $U_{0}(6) = 100 \text{ eV}$
 $U_{0}(7) = 0$

2. kao 29. zadatak u skripti (sličan 8. zadatku)

29. Odredite vrijednost jakosti električnog polja u trećem dielektriku planparalelnih ploča sa slike. Jedna elektroda je priključena na napon 89.4 kV, a druga je uzemljena. Dielektrici slijedno imaju slijedeće debljine i relativne dielektričnosti: d₁ = 3 cm, ε_{r1} = 3, d₂ = 7.4 cm, ε_{r2} = 4.9, d₃ = 4 cm, ε_{r3} = 4.

R: $E_3 = 6.37 \, kV/cm$

Formula je:

$$\frac{U-\frac{\varphi_1}{d_1}}{\frac{\xi_{1}}{d_2}}\frac{\xi_{1}}{\xi_{1}} = \frac{\frac{\varphi_1-\frac{\varphi_2}{2}}{2}\xi_{12}}{\frac{\xi_{12}}{2}} = \frac{\frac{\xi_3}{\varphi_2}}{\frac{\xi_{13}}{2}}\frac{\xi_{13}}{\xi_{13}}$$

I nacrtati sliku kao u 8. zadatku

3. kao 3. zad -ljetni ispitni rok 2012/2013

prirubnica l₆=100mm

$$l_{5} = \frac{l_{1} \frac{f_{5}}{f_{4}}}{l_{1} \frac{f_{5}}{f_{5}}} \cdot l_{6} = \frac{l_{1} \frac{f_{5}}{f_{4}}}{l_{1} \frac{2f_{5} - f_{4}}{f_{5}}} \cdot l_{6}$$

$$= \frac{l_{1} \frac{f_{5}}{f_{5}}}{l_{1} \left(2 - \frac{f_{4}}{f_{5}}\right)} \cdot l_{6} = \frac{l_{1} \frac{f_{5}}{f_{5}}}{l_{1} \left(2 - \frac{g_{5}}{g_{5}}\right)} \cdot 10 = 11,110$$

$$= l_{1} \left(2 - \frac{f_{4}}{f_{5}}\right)$$

$$= l_{1} \left(2 - \frac{g_{5}}{g_{5}}\right)$$

$$\frac{2\pi l_{4} c_{4}}{l_{4}} = \frac{2\pi l_{5} c_{4}}{l_{4}} = \frac{2\pi l_{5} c_{4}}{l_{4}} = \frac{2\pi l_{5} c_{4}}{l_{4}} = \frac{l_{4} f_{5}}{l_{4}} = \frac{l_{4} f_{5}}{$$

4. Između dvije transformatorske stanice 110 / 20 kV nalaze se dva trožilna kabela? (dakle ima ih 6). Svaki kabel ima dva simetrično postavljena dielektrika sa zadanim iznosima - sve zadano kao u ovom zadatku (ali U= 110 / sqrt3)

Jednožilu eusgetski kabel psiključen je na napon 10,7 kV pogosuke pekvencije i dugačak je 6.1 km.

Tveder je s dva raeličita dielektrika Er = 3,4 i Erz = 2,3.

Kut gulitaka prog chelettika je 1,2.10⁻³, a drepg chelektrika je 1,2.10⁻³, a drepg chelektrika je 7,2.10⁻³, a drepg chelektrika je 7,2.10⁻³, a drepg splastera

9,5 mm i 12 mm.

Izračunati ukupne djelatne i jalove gubitke.

$$C_1 = \frac{2\pi l \mathcal{E}_{Grn}}{l \ln \frac{f^2}{f_1}} \qquad C_2 = \frac{2\pi l \mathcal{E}_{Grn}}{l \ln f_2}$$

ukupni gubici su :
$$P_d = 6^* U^2 \omega C_{\rm uk} t g \delta$$

5. shema za proizvodnju udarnog napona, opisati sve dijelove, nacrtati skicu udarnog napona i označiti

Udarni napon karakteriziran je maksimalnom (tjemenom) vrijednošću u[^], vremenom trajanja čela T₁ i vremenom T₂ u kojem hrbat pada na 50 % maksimalne vrijednosti.

Slika 14.2 Standardni udarni napon 1.2/50 μs

Vrijeme T1 i T2 udarnog napona se mijenja pomoću otpornika R_p i R_i. Amplituda udarnog vala se mijenja pomoću razmaka između kuglastih iskrišta. Ako se povećava iznos izmjeničnog napona na ulazu, mijenjat će se učestalost proboja.

6. odredite posljednji probojni razmak za sliku dolje:

Budući da je posljednji probojni razmak geometrijska veličina, može se izraziti i kao funkcija dimenzija glave stupa, tj.:

$$r_p \cong \frac{H+h}{2(1-\sin\Theta_S)}$$
 za (H - h < r/2) (Jed. 14.25)

Značenje pojedinih veličina iz gornjeg izraza vidljivo je sa Slike 14.25.

Dalekovod je efikasno zaštićen zaštitnim užetima dalekovoda od direktnog udara groma amplitude struje I_K koja je jednaka ili veća od:

$$I_K = \frac{0.65}{7.2} \text{ kA}$$
 (Jed. 14.26)

Slika 14.25 Određivanje posljednjeg probojnog razmaka

7. Što je koordinacija izolacije?

Transformator se ispituje 70 kV jednominutnim izmjeničnim naponom pogonske frekvencije te 145

kV udarnim atmosferskim prenaponom. Napišite izraz za stupanj izolacije ovog transformatora.

38 Si 70/ 145

8. Kako funkcionira LLS sustav?

9. nacrtati na slici podjelu prenapona prema trajanju i faktoru prenapona

Slika 14.1 Klasifikacija prenapona prema trajanju i faktoru prenapona

10. Odvodnik ograničava prenapone na iznos **preostalog napona odvodnika** samo na mjestu ugradnje odvodnika, dok s porastom udaljenosti od odvodnika **raste** / snižava se (zaokruži) i iznos napona. Izvedite izraz za zaštitnu zonu odvodnika.