Zadania – Potencjał pola elektrycznego

Zadanie 1. Dwa ładunki $Q_1 = 15 \mu C$ i $Q_2 = 5 \mu C$ umieszczono w odległości r = 2 m od siebie. Oblicz potencjał pola wytworzonego przez ładunki Q_1 i Q_2 w punkcie A.

$$r=2m$$
 $r_1=1m$ Q_2 A

(odp. V = 90 kV)

Zadanie 2. Przy przesunięciu ładunku q = 1 mC w jednorodnym polu elektrycznym między dwoma punktami została wykonana praca W = 10 J. Oblicz różnicę potencjałów U między tymi punktami.

 $(odp. \ U = 10 \ kV)$

Zadanie 3. Potencjał kuli o promieniu r = 1 m wynosi $V_0 = 1$ kV. Oblicz:

- a) potencjał w odległości x = 1 m od powierzchni kuli,
- b) wartość natężenia pola w tym miejscu.

(odp.
$$V = \frac{V_0 r}{r + x} = 500 V$$
; $E = \frac{kQ}{(r + x)^2} = 250 \frac{V}{m}$)

Zadanie 4. Oblicz wartość potencjału elektrostatycznego w środku geometrycznym trójkąta równobocznego o boku a = 10 cm. W wierzchołkach trójkąta znajdują się ładunki o wartościach: 10^{-7} C, $2 \cdot 10^{-7}$ C i $4 \cdot 10^{-7}$ C. Największy z ładunków jest ujemny, a pozostałe dodatnie.

(odp.
$$V = \frac{3k}{q\sqrt{3}}(Q_1 + Q_2 + Q_3) = -1,56\cdot10^4 V$$
)

Zadanie 5. Ładunek q = 2 mC przemieścił się z punku A do B. Oblicz pracę, którą wykonała przy tym siła zewnętrzna; $Q_1 = -10$ mC, $Q_2 = 4$ mC, L = 20 cm.

(Odp. W = 0,158 J)

Zadanie 6. Metalowa kulista czasza o promieniu R = 10 cm została naładowana ładunkiem dodatnim Q, który rozłożył się równomiernie na jej powierzchni. Rozkład potencjału w zależności od odległości od środka kuli przedstawiono na wykresie.

Oblicz:

a) całkowity ładunek elektryczny zgromadzony na powierzchni kuli,

b) natężenie pola w odległości r = 4R od środka naładowanej kuli,

c) pracę, jaką należy wykonać, aby dodatni ładunek punktowy równy ładunkowi elementarnemu $e = 1,6\cdot 10^{-19}C$ przemieścić w polu wytworzonym przez kulę z odległości $r_1 = 4R$ na odległość $r_2 = 2R$. Wynik podaj w dżulach i elektronowoltach.

(odp. a)
$$Q = \frac{V \cdot R}{k} = 13,3 \cdot 10^{-9} \, C$$
; b) $E = \frac{V}{16 \, R} = 750 \frac{V}{m}$; c) $W = 480 \cdot 10^{-19} \, J = 300 \, eV$

Zadanie 7. Kulkę A o promieniu r_1 = 6 cm naelektryzowano do potencjału V_1 = 3000 V, a kulę B o promieniu r_2 = 4 cm do potencjału V_2 = 5000 V. Oblicz potencjał kulek po połączeniu ich długim, cienkim drutem.

$$V_1$$
 Q_2

$$(odp. \ V = \frac{V_1 r_1 + V_2 r_2}{(r_1 + r_2)} = 3800 V)$$

Zadanie 8. Kulę o promieniu r_1 = 20 cm naelektryzowano do potencjału V_1 = 3000 V i połączono cienkim, długim drutem z drugą nienaelektryzowaną kulą, wskutek czego potencjał kuli zmniejszył się do V = 1200 V. Oblicz promień r_2 drugiej kuli.

(odp.
$$r_2 = \frac{V_1 r_1 - V r_1}{V} = 0.3 \, m$$
)