Data Sheet: Technical Data

Kinetis K64F Sub-Family Data Sheet

120 MHz ARM® Cortex®-M4-based Microcontroller with FPU

The K64 product family members are optimized for cost-sensitive applications requiring low-power, USB/Ethernet connectivity, and up to 256 KB of embedded SRAM. These devices share the comprehensive enablement and scalability of the Kinetis family.

This product offers:

- Run power consumption down to 250 μA/MHz. Static power consumption down to 5.8 μA with full state retention and 5 μs wakeup. Lowest Static mode down to 339 nA
- USB LS/FS OTG 2.0 with embedded 3.3 V, 120 mA LDO Vreg, with USB device crystal-less operation
- 10/100 Mbit/s Ethernet MAC with MII and RMII interfaces

MK64FN1M0Vxx12 MK64FX512Vxx12

Performance

 Up to 120 MHz ARM® Cortex®-M4 core with DSP instructions and floating point unit

Memories and memory interfaces

- Up to 1 MB program flash memory and 256 KB RAM
- Upto 128 KB FlexNVM and 4 KB FlexRAM on devices with FlexMemory
- · FlexBus external bus interface

System peripherals

- Multiple low-power modes, low-leakage wake-up unit
- Memory protection unit with multi-master protection
- 16-channel DMA controller
- · External watchdog monitor and software watchdog

Security and integrity modules

- · Hardware CRC module
- · Hardware random-number generator
- Hardware encryption supporting DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms
- 128-bit unique identification (ID) number per chip

Analog modules

- Two 16-bit SAR ADCs
- Two 12-bit DACs
- Three analog comparators (CMP)
- · Voltage reference

Communication interfaces

- · Ethernet controller with MII and RMII interface
- USB full-/low-speed On-the-Go controller
- Controller Area Network (CAN) module
- Three SPI modules
- Three I2C modules. Support for up to 1 Mbit/s
- Six UART modules
- Secure Digital Host Controller (SDHC)
- I2S module

Timers

- Two 8-channel Flex-Timers (PWM/Motor control)
- Two 2-channel FlexTimers (PWM/Quad decoder)
- IEEE 1588 timers
- 32-bit PITs and 16-bit low-power timers
- · Real-time clock
- Programmable delay block

Clocks

- 3 to 32 MHz and 32 kHz crystal oscillator
- PLL, FLL, and multiple internal oscillators
- 48 MHz Internal Reference Clock (IRC48M)

Operating Characteristics

- Voltage range: 1.71 to 3.6 V
- Flash write voltage range: 1.71 to 3.6 V
- Temperature range (ambient): -40 to 105°C

Ordering Information ¹

Part Number	Me	Memory	
	Flash	SRAM (KB)	
MK64FX512VLL12	512 KB	256	66
MK64FN1M0VLL12	1 MB	256	66
MK64FX512VDC12	512 KB	256	83
MK64FN1M0VDC12	1 MB	256	83
MK64FX512VLQ12	512 KB	256	100
MK64FN1M0VLQ12	1 MB	256	100
MK64FX512VMD12	512 KB	256	100
MK64FN1M0VMD12	1 MB	256	100

^{1.} To confirm current availability of ordererable part numbers, go to http://www.freescale.com and perform a part number search.

Related Resources

Туре	Description	Resource
Selector Guide	The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Solution Advisor
Product Brief	The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.	K60PB ¹
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	K64P144M120SF5RM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	K64P144M120SF5 ¹
Package drawing	Package dimensions are provided in package drawings.	 MAPBGA 144-pin: 98ASA00222D¹ LQFP 144-pin: 98ASS23177W¹ LQFP 100-pin: 98ASS23308W¹ XFBGA 121-pin: 98ASA00595D¹

1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.

Kinetis K64 Family

Figure 1. K64 block diagram

Table of Contents

1 Rat	ings5	3.6.4 Voltage reference electrical specifications	49
1.1	Thermal handling ratings5	3.7 Timers	50
1.2	Moisture handling ratings5	3.8 Communication interfaces	50
1.3	ESD handling ratings5	3.8.1 Ethernet switching specifications	51
1.4	Voltage and current operating ratings5	3.8.2 USB electrical specifications	53
2 Ge	neral6	3.8.3 USB DCD electrical specifications	53
2.1	AC electrical characteristics6	3.8.4 USB VREG electrical specifications	54
2.2	Nonswitching electrical specifications6	3.8.5 CAN switching specifications	54
	2.2.1 Voltage and current operating requirements6	3.8.6 DSPI switching specifications (limited voltage	
	2.2.2 LVD and POR operating requirements 8	range)	54
	2.2.3 Voltage and current operating behaviors 8	3.8.7 DSPI switching specifications (full voltage	
	2.2.4 Power mode transition operating behaviors10	range)	56
	2.2.5 Power consumption operating behaviors11	3.8.8 Inter-Integrated Circuit Interface (I2C) timing	58
	2.2.6 EMC radiated emissions operating behaviors16	3.8.9 UART switching specifications	59
	2.2.7 Designing with radiated emissions in mind 17	3.8.10 SDHC specifications	60
	2.2.8 Capacitance attributes	3.8.11 I2S switching specifications	60
2.3	Switching specifications17	4 Dimensions	66
	2.3.1 Device clock specifications	4.1 Obtaining package dimensions	66
	2.3.2 General switching specifications	5 Pinout	67
2.4	Thermal specifications19	5.1 K64 Signal Multiplexing and Pin Assignments	67
	2.4.1 Thermal operating requirements19	5.2 Unused analog interfaces	74
	2.4.2 Thermal attributes	5.3 K64 Pinouts	74
3 Per	ipheral operating requirements and behaviors21	6 Ordering parts	78
3.1	Core modules21	6.1 Determining valid orderable parts	78
	3.1.1 Debug trace timing specifications	7 Part identification	79
	3.1.2 JTAG electricals22	7.1 Description	79
3.2	System modules	7.2 Format	79
3.3	Clock modules25	7.3 Fields	79
	3.3.1 MCG specifications25	7.4 Example	80
	3.3.2 IRC48M specifications	8 Terminology and guidelines	80
	3.3.3 Oscillator electrical specifications	8.1 Definition: Operating requirement	80
	3.3.4 32 kHz oscillator electrical characteristics30	8.2 Definition: Operating behavior	81
3.4	Memories and memory interfaces31	8.3 Definition: Attribute	81
	3.4.1 Flash (FTFE) electrical specifications31	8.4 Definition: Rating	82
	3.4.2 EzPort switching specifications36	8.5 Result of exceeding a rating	82
	3.4.3 Flexbus switching specifications	8.6 Relationship between ratings and operating	
3.5	Security and integrity modules	requirements	82
3.6	Analog	8.7 Guidelines for ratings and operating requirements	83
	3.6.1 ADC electrical specifications40	8.8 Definition: Typical value	83
	3.6.2 CMP and 6-bit DAC electrical specifications44	8.9 Typical value conditions	84
	3.6.3 12-bit DAC electrical characteristics	9 Revision History	85

1 Ratings

1.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2
	Solder temperature, leaded	_	245		

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

 Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V_{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	3

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

1.4 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	_	185	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3	5.5	V
V _{DRTC_WAKEU}	RTC Wakeup input voltage	-0.3	V _{BAT} + 0.3	V
P				
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
I _D	Maximum current single pin limit (applies to all digital pins)	<i>–</i> 25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{USB0_DP}	USB0_DP input voltage	-0.3	3.63	V
V _{USB0_DM}	USB0_DM input voltage	-0.3	3.63	V
V _{REGIN}	USB regulator input	-0.3	6.0	V
V _{BAT}	RTC battery supply voltage	-0.3	3.8	V

^{1.} Analog pins are defined as pins that do not have an associated general purpose I/O port function.

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

Figure 2. Input signal measurement reference

2.2 Nonswitching electrical specifications

2.2.1 Voltage and current operating requirements

Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V_{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
V _{SS} – V _{SSA}	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{BAT}	RTC battery supply voltage	1.71	3.6	V	
V _{IH}	Input high voltage				
	• 2.7 V ≤ V _{DD} ≤ 3.6 V	$0.7 \times V_{DD}$	_	V	
	• 1.7 V ≤ V _{DD} ≤ 2.7 V	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				
	• 2.7 V ≤ V _{DD} ≤ 3.6 V	_	$0.35 \times V_{DD}$	V	
	• 1.7 V ≤ V _{DD} ≤ 2.7 V	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	_	V	
I _{ICDIO}	Digital pin negative DC injection current — single pin				1
	• V _{IN} < V _{SS} -0.3V	-5	_	mA	
I _{ICAIO}	Analog ² , EXTAL, and XTAL pin DC injection current — single pin			_	3
	V _{IN} < V _{SS} -0.3V (Negative current injection)	-5	_	mA	
	• V _{IN} > V _{DD} +0.3V (Positive current injection)	_	+5		
			10		
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of				
	positive injection currents of 16 contiguous pins				
	Negative current injection	-25	_	mA	
	Positive current injection	_	+25		
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	4
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	_	V	
V _{RFVBAT}	V _{BAT} voltage required to retain the VBAT register file	V _{POR_VBAT}	_	V	

- All 5 V tolerant digital I/O pins are internally clamped to V_{SS} through an ESD protection diode. There is no diode connection to V_{DD}. If V_{IN} is less than V_{DIO_MIN}, a current limiting resistor is required. If V_{IN} greater than V_{DIO_MIN} (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. The negative DC injection current limiting resistor is calculated as R=(V_{DIO_MIN}-V_{IN})/II_{ICDIO}I.
- 2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and XTAL are analog pins.
- 3. All analog pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is less than V_{AIO_MIN} or greater than V_{AIO_MAX}, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICAIO}I. The positive injection current limiting resistor is calculated as R=(V_{IN}-V_{AIO_MAX})/II_{ICAIO}I. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.
- 4. Open drain outputs must be pulled to VDD.

2.2.2 LVD and POR operating requirements

Table 2. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
	Low-voltage warning thresholds — high range					1
V _{LVW1H}	Level 1 falling (LVWV=00)	2.62	2.70	2.78	V	
V _{LVW2H}	Level 2 falling (LVWV=01)	2.72	2.80	2.88	V	
V _{LVW3H}	Level 3 falling (LVWV=10)	2.82	2.90	2.98	V	
V_{LVW4H}	Level 4 falling (LVWV=11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	80	_	mV	
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
	Low-voltage warning thresholds — low range					1
V_{LVW1L}	Level 1 falling (LVWV=00)	1.74	1.80	1.86	V	
V_{LVW2L}	Level 2 falling (LVWV=01)	1.84	1.90	1.96	V	
Λ^{LVM3L}	Level 3 falling (LVWV=10)	1.94	2.00	2.06	V	
V_{LVW4L}	Level 4 falling (LVWV=11)	2.04	2.10	2.16	V	
V_{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	60	_	mV	
V_{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

^{1.} Rising threshold is the sum of falling threshold and hysteresis voltage

Table 3. VBAT power operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR_VBAT}	Falling VBAT supply POR detect voltage	0.8	1.1	1.5	V	

2.2.3 Voltage and current operating behaviors

Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength				

Table 4. Voltage and current operating behaviors (continued)

Symbol	Description	Min.	Max.	Unit	Notes
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -8 \text{mA}$	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -3mA	$V_{DD} - 0.5$	_	V	
	Output high voltage — low drive strength				
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -2\text{mA}$	$V_{DD} - 0.5$	_	V	
	• $1.71 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}, \text{I}_{OH} = -0.6 \text{mA}$	V _{DD} – 0.5	_	V	
I _{OHT}	Output high current total for all ports	_	100	mA	
V _{OH_RTC_WA}	Output high voltage — high drive strength	$V_{BAT} - 0.5$	_	V	
KEUP	• $2.7 \text{ V} \le \text{V}_{BAT} \le 3.6 \text{ V}, \text{I}_{OH} = -10 \text{mA}$	V _{BAT} – 0.5	_	V	
	• 1.71 V \leq V _{BAT} \leq 2.7 V, I _{OH} = -3mA				
	Output high voltage — low drive strength	V _{BAT} – 0.5	_	V	
	• $2.7 \text{ V} \le \text{V}_{BAT} \le 3.6 \text{ V}, \text{I}_{OH} = -2\text{mA}$	V _{BAT} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{BAT} \le 2.7 \text{ V}, I_{OH} = -0.6 \text{mA}$				
I _{OH_RTC_WAK}	Output high current total for RTC_WAKEUP pins	_	100	mA	
V _{OL}	Output low voltage — high drive strength				
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = 9\text{mA}$	_	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 3mA	_	0.5	V	
	Output low voltage — low drive strength				
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, I_{OL} = 2\text{mA}$	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}, \text{I}_{OL} = 0.6 \text{mA}$	_	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
V _{OL_RTC_WA}	Output low voltage — high drive strength	_	0.5	V	
KEUP	• $2.7 \text{ V} \le \text{V}_{BAT} \le 3.6 \text{ V}, I_{OL} = 10 \text{mA}$	_	0.5	V	
	• 1.71 V \leq V _{BAT} \leq 2.7 V, I _{OL} = 3mA				
	Output low voltage — low drive strength	_	0.5	V	
	• $2.7 \text{ V} \le \text{V}_{BAT} \le 3.6 \text{ V}, I_{OL} = 2\text{mA}$	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{BAT} \le 2.7 \text{ V}, I_{OL} = 0.6 \text{mA}$				
I _{OL_RTC_WAK}	Output low current total for RTC_WAKEUP pins	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μA	1
I _{IN}	Input leakage current (per pin) at 25°C		0.025	μΑ	1
I _{IN_RTC_WAK} EUP	Input leakage current (per RTC_WAKEUP pin) for full temperature range	_	1	μA	
I _{IN_RTC_WAK}	Input leakage current (per RTC_WAKEUP pin) at 25°C	_	0.025	μA	

Table 4. Voltage and current operating behaviors (continued)

Symbol	Description	Min.	Max.	Unit	Notes
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	0.25	μA	
I _{OZ_RTC_WAK}	Hi-Z (off-state) leakage current (per RTC_WAKEUP pin)	_	0.25	μА	
R _{PU}	Internal pullup resistors (except RTC_WAKEUP pins)	20	50	kΩ	2
R _{PD}	Internal pulldown resistors (except RTC_WAKEUP pins)	20	50	kΩ	3

^{1.} Measured at VDD=3.6V

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 100 MHz
- Bus clock = 50 MHz
- FlexBus clock = 50 MHz
- Flash clock = 25 MHz

Table 5. Power mode transition operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip.	_	300	μs	
	VLLS0 → RUN	_	156	μs	
	• VLLS1 → RUN	_	156	μs	
	VLLS2 → RUN	_	78	μs	
	VLLS3 → RUN	_	78	μs	
	• LLS → RUN	_	4.8	μs	
	• VLPS → RUN	_	4.5	μs	
	• STOP → RUN		4.5	μs	

^{2.} Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

^{3.} Measured at V_{DD} supply voltage = V_{DD} min and V_{DD} in a voltage = V_{DD}

2.2.5 Power consumption operating behaviors NOTE

The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

Table 6. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	_	See note	mA	1
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash					2
	• @ 1.8V	_	31.1	42.2	mA	
	• @ 3.0V	_	31	42.5	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash • @ 1.8V	_	42.7	54	mA	3, 4
	• @ 3.0V					
	• @ 25°C	_	42.6	41.60	mA	
	• @ 105°C	_	48.33	51.50	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled	_	17.9	_	mA	2
I _{DD_WAIT}	Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled	_	6.9	_	mA	5
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks disabled	_	1.0	_	mA	6
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled	_	1.7	_	mA	7
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled	_	0.678	_	mA	8
I _{DD_STOP}	Stop mode current at 3.0 V					
	• @ -40 to 25°C	_	0.49	0.67	mA	
	• @ 70°C	_	1.18	2.11	mA	
	• @ 105°C	_	3.0	5.74	mA	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	• @ -40 to 25°C	_	57	139.31	μΑ	
	• @ 70°C	_	291	679.33	μΑ	
	• @ 105°C	_	927.3	1869.85	μΑ	
I _{DD_LLS}	Low leakage stop mode current at 3.0 V					9

Table 6. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• @ -40 to 25°C	_	5.8	10.48	μΑ	
	• @ 70°C	_	26.7	47.99	μΑ	
	• @ 105°C	_	114.9	196.49	μΑ	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					
	• @ -40 to 25°C	_	4.4	5.54	μΑ	
	• @ 70°C	_	21	36.46	μΑ	
	• @ 105°C	_	90.2	150.17	μΑ	
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V					
	• @ -40 to 25°C	_	2.1	2.34	μA	
	• @ 70°C	_	6.84	10.36	μΑ	
	• @ 105°C	_	29.4	46.74	μΑ	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V					
	• @ -40 to 25°C	_	0.817	0.86	μΑ	
	• @ 70°C	_	3.97	5.77	μA	
	• @ 105°C	_	21.3	33.99	μΑ	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled					
	• @ –40 to 25°C	_	0.520	0.60	μA	
	• @ 70°C	_	3.67	5.52	μA	
	• @ 105°C	_	21.2	33.68	μΑ	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit disabled					
	• @ -40 to 25°C	_	0.339	0.412	μΑ	
	• @ 70°C	_	3.36	4.2	μΑ	
	• @ 105°C	_	20.3	29.9	μA	
I _{DD_VBAT}	Average current with RTC and 32 kHz disabled					
	• @ 1.8 V					
	• @ -40 to 25°C	_	0.16	0.19	μΑ	
	• @ 70°C		0.16	0.19	μΑ	
	• @ 105°C		2.5	3.68		
	• @ 3.0 V				μΑ	
	• @ -40 to 25°C	_	0.18	0.21	μΑ	
	• @ 70°C	_	0.66	0.86	μΑ	
	• @ 105°C	_	2.92	4.30	μΑ	

Table 6. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VBAT}	Average current when CPU is not accessing RTC registers					10
	• @ 1.8 V					
	• @ -40 to 25°C	_	0.59	0.70	μΑ	
	• @ 70°C	_	1.0	1.30	μA	
	• @ 105°C	_	3.0	4.42	μA	
	• @ 3.0 V					
	• @ -40 to 25°C	_	0.71	0.84	μΑ	
	• @ 70°C	_	1.22	1.59	μΑ	
	• @ 105°C	_	3.5	5.15	μΑ	

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 120 MHz core and system clock, 60 MHz bus, 30 Mhz FlexBus clock, and 20 MHz flash clock. MCG configured for PEE mode. All peripheral clocks disabled.
- 3. 120 MHz core and system clock, 60 MHz bus clock, 30 MHz Flexbus clock, and 20 MHz flash clock. MCG configured for PEE mode. All peripheral clocks enabled.
- 4. Max values are measured with CPU executing DSP instructions.
- 5. 25 MHz core and system clock, 25 MHz bus clock, and 25 MHz FlexBus and flash clock. MCG configured for FEI mode.
- 6. 4 MHz core, system, FlexBus, and bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
- 7. 4 MHz core, system, FlexBus, and bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.
- 8. 4 MHz core, system, FlexBus, and bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- 9. Data reflects devices with 256 KB of RAM.
- 10. Includes 32kHz oscillator current and RTC operation.

Table 7. Low power mode peripheral adders — typical value

Symbol	Description		7	Tempera	ature (°C			Unit
		-40	25	50	70	85	105	
IREFSTEN4MHz	4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.	56	56	56	56	56	56	μΑ
IREFSTEN32KHz	32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled.	52	52	52	52	52	52	μA
I _{EREFSTEN4MHz}	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	228	237	245	251	258	uA
lerefsten32kHz	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by							

Table 7. Low power mode peripheral adders — typical value (continued)

Symbol	Description		7	Tempera	ature (°C	C)		Unit
		-40	25	50	70	85	105	
	entering all modes with the crystal enabled.	440	400	E40	560	570	590	
	VLLS1	440	490 490	540 540	560	570	580 580	
	VLLS3	440						~ Λ
	LLS	490	490	540	560	570 610	680 680	nA
	VLPS	510	560	560	560			
	STOP	510	560	560	560	610	680	
I _{48MIRC}	48 Mhz internal reference clock	350	350	350	350	350	350	μA
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μА
Іятс	RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.	432	357	388	475	532	810	nA
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. MCGIRCLK (4 MHz internal reference	66	66	66	66	66	66	μΑ
	clock)							
	OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode.	45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combining the measured values at V _{DD} and V _{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	42	42	42	42	42	42	μА

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFE

Figure 3. Run mode supply current vs. core frequency

Figure 4. VLPR mode supply current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors Table 8. EMC radiated emissions operating behaviors

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
			144 LQFP		
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	16	dΒμV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50-150	22	dΒμV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	21	dΒμV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	16	dΒμV	
V _{RE_IEC}	IEC level	0.15-1000	L	_	2, 3

^{1.} Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and

Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = 12 MHz (crystal), f_{SYS} = 96 MHz, f_{BUS} = 48MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 9. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	_	7	pF
C _{IN_D}	Input capacitance: digital pins	_	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 10. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mode	е	-	-	
f _{SYS}	System and core clock	_	120	MHz	
	System and core clock when Full Speed USB in operation	20	_	MHz	
f _{ENET}	System and core clock when ethernet in operation			MHz	
	• 10 Mbps	5	_		
	• 100 Mbps	50	_		
f _{BUS}	Bus clock	_	60	MHz	
FB_CLK	FlexBus clock	_	50	MHz	
f _{FLASH}	Flash clock	_	25	MHz	

Table 10. Device clock specifications (continued)

Symbol	Description	Min.	Max.	Unit	Notes
f _{LPTMR}	LPTMR clock	_	25	MHz	
	VLPR mode ¹	•		•	
f _{SYS}	System and core clock	_	4	MHz	
f _{BUS}	Bus clock	_	4	MHz	
FB_CLK	FlexBus clock	_	4	MHz	
f _{FLASH}	Flash clock	_	0.8	MHz	
f _{ERCLK}	External reference clock	_	16	MHz	
f _{LPTMR_pin}	LPTMR clock	_	25	MHz	
f _{LPTMR_ERCLK}	LPTMR external reference clock	_	16	MHz	
f _{FlexCAN_ERCLK}	FlexCAN external reference clock	_	8	MHz	
f _{I2S_MCLK}	I2S master clock	_	12.5	MHz	
f _{I2S_BCLK}	I2S bit clock	_	4	MHz	

^{1.} The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

2.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, IEEE 1588 timer, timers, and I²C signals.

Table 11. General switching specifications

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path	100	_	ns	3
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path	50	_	ns	3
	External reset pulse width (digital glitch filter disabled)	100	_	ns	3
	Mode select (EZP_CS) hold time after reset deassertion	2	_	Bus clock cycles	
	Port rise and fall time (high drive strength) - 3 V				4
	Slew disabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	8	ns	
	• 2.7 ≤ V _{DD} ≤ 3.6V	_	6	ns	
	Slew enabled				
		_	18	ns	

Table 11. General switching specifications (continued)

Symbol	Description	Min.	Max.	Unit	Notes
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	12	ns	
	• $2.7 \le V_{DD} \le 3.6V$				
	Port rise and fall time (high drive strength) - 5 V				4
	Slew disabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	6	ns	
	• 2.7 ≤ V _{DD} ≤ 3.6V	_	4	ns	
	Slew enabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	24	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	14	ns	
	Port rise and fall time (low drive strength) - 3 V				5
	Slew disabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	12	ns	
	• 2.7 ≤ V _{DD} ≤ 3.6V	_	6	ns	
	Slew enabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	24	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	16	ns	
	Port rise and fall time (low drive strength) - 5 V				5
	Slew disabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	17	ns	
	• 2.7 ≤ V _{DD} ≤ 3.6V	_	10	ns	
	Slew enabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	20	ns	
				1	

^{1.} This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.

2.4 Thermal specifications

^{2.} The greater synchronous and asynchronous timing must be met.

^{3.} This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.

^{4. 25} pF load

^{5. 15} pF load

2.4.1 Thermal operating requirements

Table 12. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

2.4.2 Thermal attributes

Table 13. Thermal attributes

Board type	Symbol	Descriptio n	144 LQFP	144 MAPBGA	121 XFBGA	100 LQFP	Unit	Notes
Single-layer (1s)	R _{eJA}	Thermal resistance, junction to ambient (natural convection)	51	38.1	33.3	51	°C/W	1
Four-layer (2s2p)	R _{eJA}	Thermal resistance, junction to ambient (natural convection)	43	21.6	21.1	39	°C/W	1
Single-layer (1s)	R _{еЈМА}	Thermal resistance, junction to ambient (200 ft./min. air speed)	42	30.8	26.2	41	°C/W	1
Four-layer (2s2p)	R _{өЈМА}	Thermal resistance, junction to ambient (200 ft./min. air speed)	36	18	17.8	32	°C/W	1
_	$R_{\theta JB}$	Thermal resistance, junction to board	30	16.5	16.3	24	°C/W	2
_	$R_{ heta JC}$	Thermal resistance, junction to case	11	8.9	12	11	°C/W	3
_	$\Psi_{ m JT}$	Thermal characteriza	2	0.9	0.2	2	°C/W	4

Table 13. Thermal attributes

Board type	Symbol	Descriptio n	144 LQFP	144 MAPBGA	121 XFBGA	100 LQFP	Unit	Notes
		tion parameter, junction to package top outside center (natural convection)						

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, *Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board*.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, *Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air)*.

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 Debug trace timing specifications

Table 14. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
T _{cyc}	Clock period	Frequency	MHz	
T _{wl}	Low pulse width	2	_	ns
T _{wh}	High pulse width	2	_	ns
T _r	Clock and data rise time	_	3	ns
T _f	Clock and data fall time	_	3	ns
T _s	Data setup	1.5	_	ns
T _h	Data hold	1	_	ns

Figure 5. TRACE_CLKOUT specifications

Figure 6. Trace data specifications

3.1.2 JTAG electricals

Table 15. JTAG limited voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	25	
	Serial Wire Debug	0	50	
J2	TCLK cycle period	1/J1	_	ns
J3	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	JTAG and CJTAG	20	_	ns
	Serial Wire Debug	10	_	ns
J4	TCLK rise and fall times	_	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	_	ns
J6	Boundary scan input data hold time after TCLK rise	2.6	_	ns
J7	TCLK low to boundary scan output data valid	_	25	ns
J8	TCLK low to boundary scan output high-Z	_	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	_	ns
J10	TMS, TDI input data hold time after TCLK rise	1	_	ns

Table 15. JTAG limited voltage range electricals (continued)

Symbol	Description	Min.	Max.	Unit
J11	TCLK low to TDO data valid	_	17	ns
J12	TCLK low to TDO high-Z	_	17	ns
J13	TRST assert time	100	_	ns
J14	TRST setup time (negation) to TCLK high	8	_	ns

Table 16. JTAG full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	20	
	Serial Wire Debug	0	40	
J2	TCLK cycle period	1/J1	_	ns
J3	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	JTAG and CJTAG	25	_	ns
	Serial Wire Debug	12.5	_	ns
J4	TCLK rise and fall times	_	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	_	ns
J6	Boundary scan input data hold time after TCLK rise	0	_	ns
J7	TCLK low to boundary scan output data valid	_	25	ns
J8	TCLK low to boundary scan output high-Z	_	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	_	ns
J10	TMS, TDI input data hold time after TCLK rise	2.9	_	ns
J11	TCLK low to TDO data valid	_	22.1	ns
J12	TCLK low to TDO high-Z	_	22.1	ns
J13	TRST assert time	100	_	ns
J14	TRST setup time (negation) to TCLK high	8	_	ns

Figure 7. Test clock input timing

Figure 8. Boundary scan (JTAG) timing

Figure 9. Test Access Port timing

Figure 10. TRST timing

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG specifications

Table 17. MCG specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C	_	32.768	_	kHz	
f _{ints_t}	Internal reference frequency (slow clock) — user trimmed	31.25	_	39.0625	kHz	
I _{ints}	Internal reference (slow clock) current	_	20	_	μΑ	
$\Delta_{fdco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
Δf _{dco_res_t}	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only	_	± 0.2	± 0.5	%f _{dco}	1
Δf_{dco_t}	Total deviation of trimmed average DCO output frequency over voltage and temperature	_	± 0.5	± 2	%f _{dco}	1,2
Δf _{dco_t}	Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C	_	± 0.3	± 1	%f _{dco}	1
f _{intf_ft}	Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C	_	4	_	MHz	
f _{intf_t}	Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C	3	_	5	MHz	
I _{intf}	Internal reference (fast clock) current	_	25	_	μA	

Table 17. MCG specifications (continued)

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{loc_low}	Loss of external o	clock minimum frequency —	(3/5) x f _{ints_t}	_	_	kHz	
f _{loc_high}	Loss of external of RANGE = 01, 10,	clock minimum frequency — or 11	(16/5) x f _{ints_t}	_	_	kHz	
		FI	LL				
f _{fII_ref}	FLL reference fre	quency range	31.25		39.0625	kHz	
f _{dco}	DCO output	Low range (DRS=00)	20	20.97	25	MHz	3, 4
400	frequency range	640 × f _{fll_ref}					
		Mid range (DRS=01) $1280 \times f_{fll_ref}$	40	41.94	50	MHz	
		Mid-high range (DRS=10) $1920 \times f_{fil_ref}$	60	62.91	75	MHz	
		High range (DRS=11) 2560 × f _{fll_ref}	80	83.89	100	MHz	
f _{dco_t_DMX3} 2	DCO output frequency	Low range (DRS=00) $732 \times f_{\text{fil_ref}}$	_	23.99	_	MHz	5, ⁶
		Mid range (DRS=01) 1464 × f _{fll ref}	_	47.97	_	MHz	
		Mid-high range (DRS=10) $2197 \times f_{fil} \text{ ref}$	_	71.99	_	MHz	
		High range (DRS=11) 2929 × f _{fll_ref}	_	95.98	_	MHz	
J _{cyc_fll}	FLL period jitter	_		180		ps	
. –	 f_{DCO} = 48 N f_{DCO} = 98 N 		_	150	_		
t _{fll_acquire}		ncy acquisition time	_	_	1	ms	7
_ 1-	<u> </u>	P	LL		1		1
f _{vco}	VCO operating fre	equency	48.0	_	120	MHz	
I _{pll}	PLL operating cui		_	1060	_	μΑ	8
I _{pll}	PLL operating cui • PLL @ 48 N = 2 MHz, V	_	600	_	μΑ	8	
f _{pll_ref}	PLL reference fre	quency range	2.0	_	4.0	MHz	
J _{cyc_pll}	PLL period jitter (RMS)					9
	• f _{vco} = 48 MH	Hz	_	120		ps	
	• f _{vco} = 120 N	_	80	_	ps		
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					9

Table 17. MCG specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• f _{vco} = 48 MHz	_	1350	_	ps	
	• f _{vco} = 120 MHz	_	600	_	ps	
D _{lock}	Lock entry frequency tolerance	± 1.49	_	± 2.98	%	
D _{unl}	Lock exit frequency tolerance	± 4.47	_	± 5.97	%	
t _{pll_lock}	Lock detector detection time	_	_	150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	10

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. 2 V <= VDD <= 3.6 V.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco t}) over voltage and temperature should be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.3.2 IRC48M specifications

Table 18. IRC48M specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	_	3.6	V	
I _{DD48M}	Supply current	_	400	500	μA	
f _{irc48m}	Internal reference frequency	_	48	_	MHz	
Δf _{irc48m_ol_lv}	Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over temperature • Regulator disable (USB_CLK_RECOVER_IRC_EN[REG_EN]=0) • Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1)	_ _	± 0.5 ± 0.5	± 1.5 ± 2.0	%f _{irc48m}	
Δf _{irc48m_ol_hv}	Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over temperature • Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1)	_	± 0.5	± 1.5	%f _{irc48m}	
Δf _{irc48m_cl}	Closed loop total deviation of IRC48M frequency over voltage and temperature		_	± 0.1	%f _{host}	1

Table 18. IRC48M specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
J _{cyc_irc48m}	Period Jitter (RMS)		35	150	ps	
t _{irc48mst}	Startup time		2	3	μs	2

- 1. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation. It is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover function (USB_CLK_RECOVER_IRC_CTRL[CLOCK_RECOVER_EN]=1, USB_CLK_RECOVER_IRC_EN[IRC_EN]=1).
- 2. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the clock by setting USB_CLK_RECOVER_IRC_EN[IRC_EN]=1.

3.3.3 Oscillator electrical specifications

3.3.3.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	_	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μΑ	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μΑ	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	
I _{DDOSC}	Supply current — high-gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μΑ	
	• 4 MHz	_	400	_	μΑ	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance	_	_	_		2, 3
Су	XTAL load capacitance	_	_	_		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	_	ΜΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10	_	ΜΩ	

Table 19. Oscillator DC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Feedback resistor — high-frequency, low-power mode (HGO=0)	_	_	_	ΜΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	_	ΜΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	_	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x and C_y can be provided by using either integrated capacitors or external components.
- 4. When low-power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device.

3.3.3.2 Oscillator frequency specifications Table 20. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low-frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8		32	MHz	

Table 20. Oscillator frequency specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	50	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)		250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)		0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL
- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

3.3.4 32 kHz oscillator electrical characteristics

3.3.4.1 32 kHz oscillator DC electrical specifications Table 21. 32kHz oscillator DC electrical specifications

Symbol	Description		Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.71	_	3.6	V
R _F	Internal feedback resistor	_	100	_	ΜΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32		5	7	pF
V _{pp} ¹	V _{pp} ¹ Peak-to-peak amplitude of oscillation		0.6	_	V

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.4.2 32 kHz oscillator frequency specifications Table 22. 32 kHz oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal	_	32.768	_	kHz	
t _{start}	Crystal start-up time	_	1000	_	ms	1
f _{ec_extal32}	Externally provided input clock frequency	_	32.768	_	kHz	2
V _{ec_extal32}	Externally provided input clock amplitude	700	_	V_{BAT}	mV	2, 3

- 1. Proper PC board layout procedures must be followed to achieve specifications.
- 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.
- 3. The parameter specified is a peak-to-peak value and V_{IL} and V_{IL} specifications do not apply. The voltage of the applied clock must be within the range of V_{SS} to V_{BAT} .

3.4 Memories and memory interfaces

3.4.1 Flash (FTFE) electrical specifications

This section describes the electrical characteristics of the FTFE module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Table 23. NVM program/erase timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm8}	Program Phrase high-voltage time		7.5	18	μs	
t _{hversscr}	Erase Flash Sector high-voltage time	_	13	113	ms	1
t _{hversblk128k}	28k Erase Flash Block high-voltage time for 128 KB		104	904	ms	1
t _{hversblk512k}	Erase Flash Block high-voltage time for 512 KB	_	416	3616	ms	1

1. Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 24. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					
t _{rd1blk128k}		_	_	0.5	ms	

Table 24. Flash command timing specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1blk512k}	128 KB data flash	_	_	1.8	ms	
	512 KB program flash					
t _{rd1sec4k}	Read 1s Section execution time (4 KB flash)	_	_	100	μs	1
t _{pgmchk}	Program Check execution time	_	_	95	μs	1
t _{rdrsrc}	Read Resource execution time	_	_	40	μs	1
t _{pgm8}	Program Phrase execution time	_	90	150	μs	
	Erase Flash Block execution time					2
t _{ersblk128k}	128 KB data flash		110	925	ms	
t _{ersblk512k}	512 KB program flash	_	435	3700	ms	
t _{ersscr}	Erase Flash Sector execution time	_	15	115	ms	2
t _{pgmsec1k}	Program Section execution time (1KB flash)	_	5	_	ms	
	Read 1s All Blocks execution time					
t _{rd1allx}	FlexNVM devices	_	_	2.2	ms	
t _{rd1alln}			_	3.4	ms	
t _{rdonce}	Read Once execution time	_	_	30	μs	1
t _{pgmonce}	Program Once execution time	_	70	_	μs	
t _{ersall}	Erase All Blocks execution time	_	870	7400	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	30	μs	1
	Swap Control execution time					
t _{swapx01}	control code 0x01	_	200	_	μs	
t _{swapx02}	control code 0x02	_	70	150	μs	
t _{swapx04}	 control code 0x04 	_	70	150	μs	
t _{swapx08}	control code 0x08	_	_	30	μs	
	Program Partition for EEPROM execution time					
t _{pgmpart32k}	32 KB FlexNVM	_	70	_	ms	
t _{pgmpart128k}	• 128 KB FlexNVM	_	75	_	ms	
	Set FlexRAM Function execution time:					
t _{setramff}	Control Code 0xFF	_	70	_	μs	
t _{setram32k}	32 KB EEPROM backup	_	0.8	1.2	ms	
t _{setram64k}	64 KB EEPROM backup	_	1.3	1.9	ms	
t _{setram128k}	128 KB EEPROM backup	_	2.4	3.1	ms	
t _{eewr8bers}	Byte-write to erased FlexRAM location execution time	_	175	275	μs	3
	Byte-write to FlexRAM execution time:					
t _{eewr8b32k}	32 KB EEPROM backup	–	385	1700	μs	

Table 24. Flash command timing specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{eewr8b64k}	64 KB EEPROM backup	_	475	2000	μs	
t _{eewr8b128k}	128 KB EEPROM backup	_	650	2350	μs	
t _{eewr16bers}	16-bit write to erased FlexRAM location execution time	1	175	275	μs	
	16-bit write to FlexRAM execution time:					
t _{eewr16b32k}	32 KB EEPROM backup	_	385	1700	μs	
t _{eewr16b64k}	64 KB EEPROM backup	_	475	2000	μs	
t _{eewr16b128k}	128 KB EEPROM backup	_	650	2350	μs	
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time	_	360	550	μs	
	32-bit write to FlexRAM execution time:					
t _{eewr32b32k}	32 KB EEPROM backup	_	630	2000	μs	
t _{eewr32b64k}	64 KB EEPROM backup	_	810	2250	μs	
t _{eewr32b128k}	128 KB EEPROM backup	_	1200	2650	μs	

- 1. Assumes 25MHz or greater flash clock frequency.
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- 3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.

3.4.1.3 Flash high voltage current behaviors Table 25. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	_	3.5	7.5	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	_	1.5	4.0	mA

3.4.1.4 Reliability specifications

Table 26. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
Program Flash						
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years	

Table 26. NVM reliability specifications (continued)

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2
Data Flash						
t _{nvmretd10k}	Data retention after up to 10 K cycles	5	50	_	years	
t _{nvmretd1k}	Data retention after up to 1 K cycles	20	100		years	
n _{nvmcycd}	Cycling endurance	10 K	50 K	_	cycles	2
FlexRAM as EEPROM						
t _{nvmretee100}	Data retention up to 100% of write endurance	5	50	_	years	
t _{nvmretee10}	Data retention up to 10% of write endurance	20	100	_	years	
n _{nvmcycee}	Cycling endurance for EEPROM backup	20 K	50 K	_	cycles	2
	Write endurance					3
n _{nvmwree16}	EEPROM backup to FlexRAM ratio = 16	70 K	175 K	_	writes	
n _{nvmwree128}	EEPROM backup to FlexRAM ratio = 128	630 K	1.6 M	_	writes	
n _{nvmwree512}	EEPROM backup to FlexRAM ratio = 512	2.5 M	6.4 M	_	writes	
n _{nvmwree2k}	EEPROM backup to FlexRAM ratio = 2,048	10 M	25 M	_	writes	
n _{nvmwree4k}	EEPROM backup to FlexRAM ratio = 4,096	20 M	50 M	_	writes	

Typical data retention values are based on measured response accelerated at high temperature and derated to a
constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
Engineering Bulletin EB619.

3.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.

The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFE to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

Cycling endurance represents number of program/erase cycles at -40°C ≤ T_i ≤ 125°C.

^{3.} Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM.

Writes_subsystem =
$$\frac{\text{EEPROM} - 2 \times \text{EEESPLIT} \times \text{EEESIZE}}{\text{EEESPLIT} \times \text{EEESIZE}} \times \text{Write_efficiency} \times n_{\text{nvmcycee}}$$

where

- Writes_subsystem minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance)
- EEPROM allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with the Program Partition command
- EEESPLIT FlexRAM split factor for subsystem; entered with the Program Partition command
- EEESIZE allocated FlexRAM based on DEPART; entered with the Program Partition command
- Write_efficiency
 - 0.25 for 8-bit writes to FlexRAM
 - 0.50 for 16-bit or 32-bit writes to FlexRAM
- $n_{nvmcycee}$ EEPROM-backup cycling endurance

Figure 11. EEPROM backup writes to FlexRAM

3.4.2 EzPort switching specifications

Table 27. EzPort switching specifications

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
EP1	EZP_CK frequency of operation (all commands except READ)	_	f _{SYS} /2	MHz
EP1a	EZP_CK frequency of operation (READ command)	_	f _{SYS} /8	MHz
EP2	EZP_CS negation to next EZP_CS assertion	2 x t _{EZP_CK}	_	ns
EP3	EZP_CS input valid to EZP_CK high (setup)	5	_	ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	5	_	ns
EP5	EZP_D input valid to EZP_CK high (setup)	2	_	ns
EP6	EZP_CK high to EZP_D input invalid (hold)	5	_	ns
EP7	EZP_CK low to EZP_Q output valid		18	ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	0	_	ns
EP9	EZP_CS negation to EZP_Q tri-state	_	12	ns

Figure 12. EzPort Timing Diagram

3.4.3 Flexbus switching specifications

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation		FB_CLK	MHz	
FB1	Clock period	20	_	ns	
FB2	Address, data, and control output valid		11.5	ns	1
FB3	Address, data, and control output hold	0.5	_	ns	1
FB4	Data and FB_TA input setup	8.5	_	ns	2
FB5	Data and FB TA input hold	0.5	_	ne	2

Table 28. Flexbus limited voltage range switching specifications

^{2.} Specification is valid for all FB_AD[31:0] and FB_TA.

Table 29.	Flexbus ful	l voltage range	switchina	specifications
I UDIO EUI	I IOANGO IGI	i voitago iaiigo	011110111119	opoomoutiono

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	
	Frequency of operation	_	FB_CLK	MHz	
FB1	Clock period	1/FB_CLK	_	ns	
FB2	Address, data, and control output valid	_	13.5	ns	1
FB3	Address, data, and control output hold	0	_	ns	1
FB4	Data and FB_TA input setup	15.5	_	ns	2
FB5	Data and FB_TA input hold	0.5	_	ns	2

^{1.} Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

^{1.} Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

^{2.} Specification is valid for all FB_AD[31:0] and FB_TA.

Figure 13. FlexBus read timing diagram

Figure 14. FlexBus write timing diagram

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

3.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 30 and Table 31 are achievable on the differential pins ADCx_DP0, ADCx_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

3.6.1.1 16-bit ADC operating conditions Table 30. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V_{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	_
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA})	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V_{DDA}	V_{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage		V _{REFL}	_	V _{REFH}	V	_
C _{ADIN}	Input	16-bit mode	_	8	10	pF	_
	capacitance	8-bit / 10-bit / 12-bit modes	_	4	5		
R _{ADIN}	Input series resistance		_	2	5	kΩ	_
R _{AS}	Analog source resistance (external)	13-bit / 12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0	_	18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	_	12.0	MHz	4
C _{rate}	ADC conversion	≤ 13-bit modes					5
	rate	No ADC hardware averaging	20.000	_	818.330	Ksps	
		Continuous conversions enabled, subsequent conversion time					
C _{rate}	ADC conversion	16-bit mode					5
	rate	No ADC hardware averaging	37.037	_	461.467	Ksps	
		Continuous conversions enabled, subsequent conversion time					

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.</p>
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Figure 15. ADC input impedance equivalency diagram

3.6.1.2 16-bit ADC electrical characteristics

Table 31. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} =
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	1/f _{ADACK}
f _{ADACK}	Sicon course	• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter for sample times					

Table 31. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

		4					1
Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
TUE	Total	12-bit modes	_	±4	±6.8	LSB ⁴	5
	unadjusted error	• <12-bit modes	_	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	_	±0.7	−1.1 to +1.9	LSB ⁴	5
	,	<12-bit modes	_	±0.2	-0.3 to		
INL	Integral non- linearity	12-bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5
	incurty	<12-bit modes	_	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	V _{ADIN} =
		 <12-bit modes 	_	-1.4	-1.8		V _{DDA} ⁵
EQ	Quantization	16-bit modes	_	-1 to 0	_	LSB ⁴	
	error	• ≤13-bit modes	_	_	±0.5		
ENOB	Effective	16-bit differential mode				bits	6
	number of bits	• Avg = 32	12.8	14.5		bits	
		• Avg = 4	11.9	13.8	_		
					_	bits	
		16-bit single-ended mode				bits	
		• Avg = 32	12.2	13.9	_		
		• Avg = 4	11.4	13.1	_		
SINAD	Signal-to-noise plus distortion	See ENOB	6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode				dB	7
	distortion	• Avg = 32	_	-94	_	dB	
		16-bit single-ended mode		0.5			
		• Avg = 32	_	-85	_		
SFDR	Spurious free	16-bit differential mode	00	0.5		dB	7
	dynamic range	• Avg = 32	82	95		٩D	
		16-bit single-ended mode	78	90	_	dB	
		• Avg = 32	/6	90			
	land the land	7.11g - 32					
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage

Table 31. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
							and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

- 1. All accuracy numbers assume the ADC is calibrated with $V_{\text{REFH}} = V_{\text{DDA}}$
- Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. $1 LSB = (V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

Figure 16. Typical ENOB vs. ADC_CLK for 16-bit differential mode

Figure 17. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

3.6.2 CMP and 6-bit DAC electrical specifications

Table 32. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V_{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	200	μΑ
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	_	20	μΑ
V_{AIN}	Analog input voltage	V _{SS} - 0.3		V_{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	• CR0[HYSTCTR] = 11	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} - 0.5	_	_	V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μΑ
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

- 1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.
- 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
- 3. $1 LSB = V_{reference}/64$

Figure 18. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

Figure 19. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

3.6.3 12-bit DAC electrical characteristics

3.6.3.1 12-bit DAC operating requirements Table 33. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V_{DDA}	Supply voltage	1.71	3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
C _L	Output load capacitance	_	100	pF	2
ΙL	Output load current	_	1	mA	

^{1.} The DAC reference can be selected to be V_{DDA} or V_{REFH} .

^{2.} A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

3.6.3.2 12-bit DAC operating behaviors Table 34. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL} P	Supply current — low-power mode		_	150	μΑ	
I _{DDA_DACH}	Supply current — high-speed mode	_	_	700	μΑ	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode		15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000		_	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	_	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode		_	±8	LSB	2
DNL	Differential non-linearity error — $V_{DACR} > 2$ V	_	_	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT		_	±1	LSB	4
V _{OFFSET}	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, V _{DDA} ≥ 2.4 V	60	_	90	dB	
T _{CO}	Temperature coefficient offset voltage	_	3.7	_	μV/C	6
T _{GE}	Temperature coefficient gain error	_	0.000421	_	%FSR/C	
A _C	Offset aging coefficient	_	_	100	μV/yr	
Rop	Output resistance (load = $3 \text{ k}\Omega$)	_	_	250	Ω	
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	_		
	• Low power (SP _{LP})	0.05	0.12	_		
CT	Channel to channel cross talk	_	_	-80	dB	
BW	3dB bandwidth				kHz	
	• High power (SP _{HP})	550	_	_		
	• Low power (SP _{LP})	40	_	_		

- 1. Settling within ±1 LSB

- The INL is measured for 0 + 100 mV to V_{DACR} -100 mV
 The DNL is measured for 0 + 100 mV to V_{DACR} -100 mV
 The DNL is measured for 0 + 100 mV to V_{DACR} -100 mV with V_{DDA} > 2.4 V
 Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} 100 mV

Peripheral operating requirements and behaviors

6. $V_{DDA} = 3.0 \text{ V}$, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

Figure 20. Typical INL error vs. digital code

Figure 21. Offset at half scale vs. temperature

3.6.4 Voltage reference electrical specifications

Table 35. VREF full-range operating requirements

Symbol	Description	Min. Max.		Unit	Notes
V_{DDA}	Supply voltage	1.71 3.6		V	_
T _A	Temperature		emperature he device	°C	_
C _L	Output load capacitance	100		nF	1, 2

- 1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.
- 2. The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Table 36. VREF full-range operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V _{DDA} and temperature= 25 °C	1.192	1.195	1.198	V	1
V _{out}	Voltage reference output with user trim at nominal V _{DDA} and temperature= 25 °C	1.1945	1.195	1.1955	V	1
V _{step}	Voltage reference trim step	_	0.5	_	mV	1
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	_	2	15	mV	1
I _{bg}	Bandgap only current	_	60	80	μA	1
I _{Ip}	Low-power buffer current	_	180	360	uA	1
I _{hp}	High-power buffer current	_	480	960	mA	1
ΔV_{LOAD}	Load regulation				μV	1, 2
	• current = ± 1.0 mA	_	200	_		
T _{stup}	Buffer startup time	_	_	100	μs	_
T _{chop_osc_st}	Internal bandgap start-up delay with chop oscillator enabled			35	ms	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	_	0.5	2	mV	1

^{1.} See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

Table 37. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	_

Table 38. VREF limited-range operating behaviors

	Symbol	Description	Min.	Max.	Unit	Notes
Ī	V_{out}	Voltage reference output with factory trim	1.173	1.225	V	_

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

^{2.} Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

3.8.1 Ethernet switching specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

3.8.1.1 MII signal switching specifications

The following timing specs meet the requirements for MII style interfaces for a range of transceiver devices.

Symbol	Description	Min.	Max.	Unit
_	RXCLK frequency	_	25	MHz
MII1	RXCLK pulse width high	35%	65%	RXCLK
				period
MII2	RXCLK pulse width low	35%	65%	RXCLK
				period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5	_	ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5	_	ns
_	TXCLK frequency	_	25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK
				period
MII6	TXCLK pulse width low	35%	65%	TXCLK
				period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2	_	ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	_	25	ns

Table 39. MII signal switching specifications

Figure 22. RMII/MII transmit signal timing diagram

Figure 23. RMII/MII receive signal timing diagram

3.8.1.2 RMII signal switching specifications

The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices.

Table 40. RMII signal switching specifications

Num	Description	Min.	Max.	Unit
_	EXTAL frequency (RMII input clock RMII_CLK)	_	50	MHz
RMII1	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	_	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2	_	ns
RMII7	RMII_CLK to TXD[1:0], TXEN invalid	4	_	ns
RMII8	RMII_CLK to TXD[1:0], TXEN valid	_	15	ns

3.8.1.3 MDIO serial management timing specifications Table 41. MDIO serial management channel signal timing

Num	Characteristic	Symbol	Min	Max	Unit
E10	MDC cycle time	t _{MDC}	400	_	ns
E11	MDC pulse width		40	60	% t _{MDC}
E12	MDC to MDIO output valid		_	375	ns
E13	MDC to MDIO output invalid		25	_	ns
E14	MDIO input to MDC setup		10	_	ns
E15	MDIO input to MDC hold		0	_	ns

Figure 24. MDIO serial management channel timing diagram

3.8.2 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit **usb.org**.

NOTE

The MCGPLLCLK meets the USB jitter specifications for certification with the use of an external clock/crystal for both Device and Host modes.

The MCGFLLCLK does not meet the USB jitter specifications for certification.

The IRC48M meets the USB jitter specifications for certification in Device mode when the USB clock recovery mode is enabled. It does not meet the USB jitter specifications for certification in Host mode operation.

3.8.3 USB DCD electrical specifications

Table 42. USB0 DCD electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DP_SRC}	USB_DP source voltage (up to 250 μA)	0.5	_	0.7	V
V _{LGC}	Threshold voltage for logic high	0.8	_	2.0	V
I _{DP_SRC}	USB_DP source current	7	10	13	μΑ
I _{DM_SINK}	USB_DM sink current	50	100	150	μA

Table 42. USB0 DCD electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
R _{DM_DWN}	D- pulldown resistance for data pin contact detect	14.25	_	24.8	kΩ
V _{DAT_REF}	Data detect voltage	0.25	0.33	0.4	V

3.8.4 USB VREG electrical specifications

Table 43. USB VREG electrical specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
VREGIN	Input supply voltage	2.7	_	5.5	V	
I _{DDon}	Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V	_	125	186	μА	
I _{DDstby}	Quiescent current — Standby mode, load current equal zero	_	1.1	10	μА	
I _{DDoff}	Quiescent current — Shutdown mode • VREGIN = 5.0 V and temperature=25 °C	_	650	4	nΑ μΑ	
	Across operating voltage and temperature			·	·	
ILOADrun	Maximum load current — Run mode	_	_	120	mA	
I _{LOADstby}	Maximum load current — Standby mode	_	_	1	mA	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) > 3.6 V					
	Run mode	3	3.3	3.6	V	
	Standby mode	2.1	2.8	3.6	V	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode	2.1	_	3.6	V	2
C _{OUT}	External output capacitor	1.76	2.2	8.16	μF	
ESR	External output capacitor equivalent series resistance	1		100	mΩ	
I _{LIM}	Short circuit current	_	290	_	mA	

^{1.} Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.

3.8.5 CAN switching specifications

See General switching specifications.

^{2.} Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to I_{Load}.

3.8.6 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

		• (•	0 ,	
Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	_	30	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	_	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) –	_	ns	1
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) –	_	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	_	8.5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-2	_	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	15	_	ns	
DS8	DSPL SCK to DSPL SIN input hold	0	_	ns	

Table 44. Master mode DSPI timing (limited voltage range)

- 1. The delay is programmable in SPIx CTARn[PSSCK] and SPIx CTARn[CSSCK].
- 2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 25. DSPI classic SPI timing — master mode

Table 45. Slave mode DSPI timing (limited voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		15	MHz

Table 45.	Slave mode DSPI timing	(limited vol	ltage range) ((continued)

Num	Description	Min.	Max.	Unit
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	_	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid	_	10	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	_	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	_	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	_	ns
DS15	DSPI_SS active to DSPI_SOUT driven	_	14	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	_	14	ns

Figure 26. DSPI classic SPI timing — slave mode

3.8.7 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Table 46. Master mode DSPI timing (full voltage range)

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	_	15	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	_	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	

Table 46. Master mode DSPI timing (full voltage range) (continued)

Num	Description	Min.	Max.	Unit	Notes
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	_	10	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-4.5	_	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	21	_	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	

- 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.
- 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
- 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 27. DSPI classic SPI timing — master mode

Table 47. Slave mode DSPI timing (full voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
	Frequency of operation	_	7.5	MHz
DS9	DSPI_SCK input cycle time	8 x t _{BUS}	_	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns
DS11	DSPI_SCK to DSPI_SOUT valid	_	23.5	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	_	ns
DS13	DSPI_SIN to DSPI_SCK input setup	4	_	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	_	ns
DS15	DSPI_SS active to DSPI_SOUT driven	_	21	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	_	19	ns

Figure 28. DSPI classic SPI timing — slave mode

3.8.8 Inter-Integrated Circuit Interface (I²C) timing Table 48. I²C timing

Characteristic	Symbol	Standard Mode		Fast	Mode	Unit
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	_	μs
LOW period of the SCL clock	t _{LOW}	4.7	_	1.3	_	μs
HIGH period of the SCL clock	t _{HIGH}	4	_	0.6	_	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	_	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	01	3.45 ²	0 ³	0.9 ¹	μs
Data set-up time	t _{SU} ; DAT	250 ⁴	_	100 ²⁵	_	ns
Rise time of SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁶	300	ns
Fall time of SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁵	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
 lines.
- 2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 3. Input signal Slew = 10 ns and Output Load = 50 pF
- 4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 5. A Fast mode I^2C bus device can be used in a Standard mode I^2C bus system, but the requirement $t_{SU; DAT} \ge 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such

a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{rmax} + t_{SU}$; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I^2C bus specification) before the SCL line is released.

6. $C_b = total$ capacitance of the one bus line in pF.

Characteristic	Symbol	Minimum	Maximum	Unit
SCL Clock Frequency	f _{SCL}	0	1	MHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	0.26	_	μs
LOW period of the SCL clock	t _{LOW}	0.5	_	μs
HIGH period of the SCL clock	t _{HIGH}	0.26	_	μs
Set-up time for a repeated START condition	t _{SU} ; STA	0.26	_	μs
Data hold time for I ₂ C bus devices	t _{HD} ; DAT	0	_	μs
Data set-up time	t _{SU} ; DAT	50	_	ns
Rise time of SDA and SCL signals	t _r	20 +0.1C _b ¹	120	ns
Fall time of SDA and SCL signals	t _f	20 +0.1C _b ²	120	ns
Set-up time for STOP condition	t _{SU} ; STO	0.26	_	μs
Bus free time between STOP and START condition	t _{BUF}	0.5	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	0	50	ns

- 1. $C_b = total$ capacitance of the one bus line in pF.
- 2. A Fast mode I^2C bus device can be used in a Standard mode I^2C bus system, but the requirement $t_{SU; DAT} \ge 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard mode I^2C bus specification) before the SCL line is released.

Figure 29. Timing definition for fast and standard mode devices on the I²C bus

3.8.9 UART switching specifications

See General switching specifications.

3.8.10 SDHC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

Num	Symbol	Description	Min.	Max.	Unit
		Operating voltage	1.71	3.6	V
		Card input clock	•		
SD1	fpp	Clock frequency (low speed)	0	400	kHz
	fpp	Clock frequency (SD\SDIO full speed\high speed)	0	25\50	MHz
	fpp	Clock frequency (MMC full speed\high speed)	0	20\50	MHz
	f _{OD}	Clock frequency (identification mode)	0	400	kHz
SD2	t _{WL}	Clock low time	7	_	ns
SD3	t _{WH}	Clock high time	7	_	ns
SD4	t _{TLH}	Clock rise time	_	3	ns
SD5	t _{THL}	Clock fall time	_	3	ns
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)	
SD6	t _{OD}	SDHC output delay (output valid)	-5	8.3	ns
		SDHC input / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)	
SD7	t _{ISU}	SDHC input setup time	5.5	_	ns
SD8	t _{IH}	SDHC input hold time	0	_	ns

Table 50. SDHC switching specifications

Figure 30. SDHC timing

3.8.11 I²S switching specifications

This section provides the AC timings for the I²S in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync (I2S_FS) shown in the figures below.

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S1	I2S_MCLK cycle time	40	_	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_BCLK cycle time	80	_	ns
S4	I2S_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_BCLK to I2S_FS output valid	_	15	ns
S6	I2S_BCLK to I2S_FS output invalid	0	_	ns
S7	I2S_BCLK to I2S_TXD valid	_	15	ns
S8	I2S_BCLK to I2S_TXD invalid	0	_	ns
S9	I2S_RXD/I2S_FS input setup before I2S_BCLK	17	_	ns
S10	I2S_RXD/I2S_FS input hold after I2S_BCLK	0	_	ns

Table 51. I²S master mode timing

Figure 31. I²S timing — master mode

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S11	I2S_BCLK cycle time (input)	80	_	ns
S12	I2S_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_FS input setup before I2S_BCLK	5	_	ns
S14	I2S_FS input hold after I2S_BCLK	2	_	ns
S15	I2S_BCLK to I2S_TXD/I2S_FS output valid	_	19.5	ns
S16	I2S_BCLK to I2S_TXD/I2S_FS output invalid	0	_	ns
S17	I2S_RXD setup before I2S_BCLK	5	_	ns
S18	I2S_RXD hold after I2S_BCLK	2	_	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹		21	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 32. I²S timing — slave modes

3.8.11.1 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

Table 53. I2S/SAI master mode timing

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	40	_	ns
S2	I2S_MCLK (as an input) pulse width high/low	45%	55%	MCLK period

Table 53. I2S/SAI master mode timing (continued)

Num.	Characteristic	Min.	Max.	Unit
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	80	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	15	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	-1	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	_	15	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	22.5	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Figure 33. I2S/SAI timing — master modes

Table 54. I2S/SAI slave mode timing

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	_	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	7	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	_	ns

Table 54.	12S/SAI slave	mode timing	(continued)
-----------	---------------	-------------	-------------

Num.	Characteristic	Min.	Max.	Unit
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	_	25.5	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	3	_	ns
S17	I2S_RXD setup before I2S_RX_BCLK	5.8	_	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	_	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid1	_	25	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 34. I2S/SAI timing — slave modes

3.8.11.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 55. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	_	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period

Table 55. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	_	45	ns
S8	I2S_TX_BCLK to I2S_TXD invalid		_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	45	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Figure 35. I2S/SAI timing — master modes

Table 56. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250	_	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	30	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	11	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	_		ns

Table 56. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	_	ns
S17	I2S_RXD setup before I2S_RX_BCLK	30	_	ns
S18	I2S_RXD hold after I2S_RX_BCLK	11	_	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	_	72	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 36. I2S/SAI timing — slave modes

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
100-pin LQFP	98ASS23308W
121-pin XFBGA	98ASA00595D
144-pin LQFP	98ASS23177W
144-pin MAPBGA	98ASA00222D

5 Pinout

5.1 K64 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

144 LQFP	144 MAP	121 XFB	100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
_	BGA L5	GA L7	-	RTC_ WAKEUP_	RTC_ WAKEUP_	RTC_ WAKEUP_								
				В	В	В								
_	ı	B11	-	PTB12	DISABLED		PTB12	UART3_ RTS_b	FTM1_CH0	FTM0_CH4		FTM1_QD_ PHA		
_	ı	C11	1	PTB13	DISABLED		PTB13	UART3_ CTS_b	FTM1_CH1	FTM0_CH5		FTM1_QD_ PHB		
_	_	A11	_	NC	NC	NC								
_	M5	_	_	NC	NC	NC								
_	A10	-	_	NC	NC	NC								
_	B10	K3	_	NC	NC	NC								
_	C10	H4	_	NC	NC	NC								
1	D3	E4	1	PTE0	ADC1_ SE4a	ADC1_ SE4a	PTE0	SPI1_ PCS1	UART1_TX	SDHC0_D1	TRACE_ CLKOUT	I2C1_SDA	RTC_ CLKOUT	
2	D2	E3	2	PTE1/ LLWU_P0	ADC1_ SE5a	ADC1_ SE5a	PTE1/ LLWU_P0	SPI1_ SOUT	UART1_RX	SDHC0_D0	TRACE_D3	I2C1_SCL	SPI1_SIN	
3	D1	E2	3	PTE2/ LLWU_P1	ADC0_ DP2/ ADC1_ SE6a	ADC0_ DP2/ ADC1_ SE6a	PTE2/ LLWU_P1	SPI1_SCK	UART1_ CTS_b	SDHC0_ DCLK	TRACE_D2			
4	E4	F4	4	PTE3	ADC0_ DM2/ ADC1_ SE7a	ADC0_ DM2/ ADC1_ SE7a	PTE3	SPI1_SIN	UART1_ RTS_b	SDHC0_ CMD	TRACE_D1		SPI1_ SOUT	
5	E5	E7	ı	VDD	VDD	VDD								
6	F6	F7	-	VSS	VSS	VSS								
7	E3	H7	5	PTE4/ LLWU_P2	DISABLED		PTE4/ LLWU_P2	SPI1_ PCS0	UART3_TX	SDHC0_D3	TRACE_D0			
8	E2	G4	6	PTE5	DISABLED		PTE5	SPI1_ PCS2	UART3_RX	SDHC0_D2		FTM3_CH0		
9	E1	F3	7	PTE6	DISABLED		PTE6	SPI1_ PCS3	UART3_ CTS_b	I2SO_ MCLK		FTM3_CH1	USB_SOF_ OUT	

Pinout

144 LQFP	144 MAP	121 XFB	100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
10	BGA F4	GA —	1	PTE7	DISABLED		PTE7		UART3_ RTS_b	12S0_RXD0		FTM3_CH2		
11	F3	-	-	PTE8	DISABLED		PTE8	12S0_RXD1	UART5_TX	I2S0_RX_ FS		FTM3_CH3		
12	F2	-	_	PTE9	DISABLED		PTE9	12S0_TXD1	UART5_RX	I2S0_RX_ BCLK		FTM3_CH4		
13	F1	-	1	PTE10	DISABLED		PTE10		UART5_ CTS_b	I2S0_TXD0		FTM3_CH5		
14	G4	-	-	PTE11	DISABLED		PTE11		UART5_ RTS_b	I2S0_TX_ FS		FTM3_CH6		
15	G3	_	ı	PTE12	DISABLED		PTE12			I2S0_TX_ BCLK		FTM3_CH7		
16	E6	E6	8	VDD	VDD	VDD								
17	F7	G7	9	VSS	VSS	VSS								
18	H3	L6	_	VSS	VSS	VSS								
19	H1	F1	10	USB0_DP	USB0_DP	USB0_DP								
20	H2	F2	11	USB0_DM	USB0_DM	USB0_DM								
21	G1	G1	12	VOUT33	VOUT33	VOUT33								
22	G2	G2	13	VREGIN	VREGIN	VREGIN								
23	J1	H1	14	ADC0_DP1	ADC0_DP1	ADC0_DP1								
24	J2	H2	15	ADC0_ DM1	ADC0_ DM1	ADC0_ DM1								
25	K1	J1	16	ADC1_DP1	ADC1_DP1	ADC1_DP1								
26	K2	J2	17	ADC1_ DM1	ADC1_ DM1	ADC1_ DM1								
27	L1	K1	18	ADC0_ DP0/ ADC1_DP3	ADC0_ DP0/ ADC1_DP3	ADC0_ DP0/ ADC1_DP3								
28	L2	K2	19	ADC0_ DM0/ ADC1_ DM3	ADC0_ DM0/ ADC1_ DM3	ADC0_ DM0/ ADC1_ DM3								
29	M1	L1	20	ADC1_ DP0/ ADC0_DP3	ADC1_ DP0/ ADC0_DP3	ADC1_ DP0/ ADC0_DP3								
30	M2	L2	21	ADC1_ DM0/ ADC0_ DM3	ADC1_ DM0/ ADC0_ DM3	ADC1_ DM0/ ADC0_ DM3								
31	H5	F5	22	VDDA	VDDA	VDDA								
32	G5	G5	23	VREFH	VREFH	VREFH								
33	G6	G6	24	VREFL	VREFL	VREFL								
34	H6	F6	25	VSSA	VSSA	VSSA								

144 LQFP	144 MAP BGA	121 XFB GA	100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
35	K3	J3	1	ADC1_ SE16/ CMP2_IN2/ ADC0_ SE22	ADC1_ SE16/ CMP2_IN2/ ADC0_ SE22	ADC1_ SE16/ CMP2_IN2/ ADC0_ SE22								
36	J3	Н3	_	ADC0_ SE16/ CMP1_IN2/ ADC0_ SE21	ADC0_ SE16/ CMP1_IN2/ ADC0_ SE21	ADC0_ SE16/ CMP1_IN2/ ADC0_ SE21								
37	М3	L3	26	VREF_ OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_ SE18	VREF_ OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_ SE18	VREF_ OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_ SE18								
38	L3	K5	27	DACO_ OUT/ CMP1_IN3/ ADCO_ SE23	DACO_ OUT/ CMP1_IN3/ ADCO_ SE23	DACO_ OUT/ CMP1_IN3/ ADCO_ SE23								
39	L4	K4	ı	DAC1_ OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_ SE23	DAC1_ OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_ SE23	DAC1_ OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_ SE23								
40	M7	L4	28	XTAL32	XTAL32	XTAL32								
41	M6	L5	29	EXTAL32	EXTAL32	EXTAL32								
42	L6	K6	30	VBAT	VBAT	VBAT								
43	_	-	_	VDD	VDD	VDD								
44	_	1	-	VSS	VSS	VSS								
45	M4	H5	31	PTE24	ADC0_ SE17	ADC0_ SE17	PTE24		UART4_TX		I2C0_SCL	EWM_ OUT_b		
46	K5	J5	32	PTE25	ADC0_ SE18	ADC0_ SE18	PTE25		UART4_RX		I2CO_SDA	EWM_IN		
47	K4	H6	33	PTE26	DISABLED		PTE26	ENET_ 1588_ CLKIN	UART4_ CTS_b			RTC_ CLKOUT	USB_ CLKIN	
48	J4	_	_	PTE27	DISABLED		PTE27		UART4_ RTS_b					
49	H4	1	ı	PTE28	DISABLED		PTE28							
50	J5	J6	34	PTA0	JTAG_ TCLK/ SWD_CLK/ EZP_CLK		PTA0	UART0_ CTS_b/ UART0_ COL_b	FTM0_CH5				JTAG_ TCLK/ SWD_CLK	EZP_CLK
51	J6	H8	35	PTA1	JTAG_TDI/ EZP_DI		PTA1	UARTO_RX	FTM0_CH6				JTAG_TDI	EZP_DI

144 LQFP	144 MAP BGA	121 XFB GA	100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
52	K6	J7	36	PTA2	JTAG_ TDO/ TRACE_ SWO/ EZP_DO		PTA2	UARTO_TX	FTM0_CH7				JTAG_ TDO/ TRACE_ SWO	EZP_DO
53	K7	H9	37	PTA3	JTAG_ TMS/ SWD_DIO		PTA3	UARTO_ RTS_b	FTM0_CH0				JTAG_ TMS/ SWD_DIO	
54	L7	J8	38	PTA4/ LLWU_P3	NMI_b/ EZP_CS_b		PTA4/ LLWU_P3		FTM0_CH1				NMI_b	EZP_CS_b
55	M8	K7	39	PTA5	DISABLED		PTA5	USB_ CLKIN	FTM0_CH2	RMII0_ RXER/ MII0_RXER	CMP2_ OUT	I2SO_TX_ BCLK	JTAG_ TRST_b	
56	E7	E5	40	VDD	VDD	VDD								
57	G7	G3	41	VSS	VSS	VSS								
58	J7	-	-	PTA6	DISABLED		PTA6		FTM0_CH3		CLKOUT		TRACE_ CLKOUT	
59	J8	1	_	PTA7	ADC0_ SE10	ADC0_ SE10	PTA7		FTM0_CH4				TRACE_D3	
60	K8	_	-	PTA8	ADC0_ SE11	ADC0_ SE11	PTA8		FTM1_CH0			FTM1_QD_ PHA	TRACE_D2	
61	L8	_	-	PTA9	DISABLED		PTA9		FTM1_CH1	MIIO_RXD3		FTM1_QD_ PHB	TRACE_D1	
62	M9	J9	_	PTA10	DISABLED		PTA10		FTM2_CH0	MII0_RXD2		FTM2_QD_ PHA	TRACE_D0	
63	L9	J4	-	PTA11	DISABLED		PTA11		FTM2_CH1	MIIO_ RXCLK	I2C2_SDA	FTM2_QD_ PHB		
64	K9	K8	42	PTA12	CMP2_IN0	CMP2_IN0	PTA12	CAN0_TX	FTM1_CH0	RMII0_ RXD1/ MII0_RXD1	I2C2_SCL	12S0_TXD0	FTM1_QD_ PHA	
65	J9	L8	43	PTA13/ LLWU_P4	CMP2_IN1	CMP2_IN1	PTA13/ LLWU_P4	CAN0_RX	FTM1_CH1	RMII0_ RXD0/ MII0_RXD0	I2C2_SDA	I2S0_TX_ FS	FTM1_QD_ PHB	
66	L10	K9	44	PTA14	DISABLED		PTA14	SPIO_ PCS0	UARTO_TX	RMIIO_ CRS_DV/ MIIO_RXDV	I2C2_SCL	I2S0_RX_ BCLK	12S0_TXD1	
67	L11	L9	45	PTA15	DISABLED		PTA15	SPI0_SCK	UARTO_RX	RMIIO_ TXEN/ MIIO_TXEN		12S0_RXD0		
68	K10	J10	46	PTA16	DISABLED		PTA16	SPI0_ SOUT	UARTO_ CTS_b/ UARTO_ COL_b	RMIIO_ TXDO/ MIIO_TXDO		I2S0_RX_ FS	I2S0_RXD1	
69	K11	H10	47	PTA17	ADC1_ SE17	ADC1_ SE17	PTA17	SPI0_SIN	UARTO_ RTS_b	RMIIO_ TXD1/ MIIO_TXD1		I2SO_ MCLK		
70	E8	L10	48	VDD	VDD	VDD								

144	144	121	100	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
LQFP	MAP BGA	XFB GA	LQFP											
71	G8	K10	49	VSS	VSS	VSS								
72	M12	L11	50	PTA18	EXTAL0	EXTAL0	PTA18		FTM0_ FLT2	FTM_ CLKIN0				
73	M11	K11	51	PTA19	XTAL0	XTAL0	PTA19		FTM1_ FLT0	FTM_ CLKIN1		LPTMR0_ ALT1		
74	L12	J11	52	RESET_b	RESET_b	RESET_b								
75	K12	_	_	PTA24	DISABLED		PTA24			MII0_TXD2		FB_A29		
76	J12	-	_	PTA25	DISABLED		PTA25			MIIO_ TXCLK		FB_A28		
77	J11	_	_	PTA26	DISABLED		PTA26			MII0_TXD3		FB_A27		
78	J10	_	_	PTA27	DISABLED		PTA27			MII0_CRS		FB_A26		
79	H12	_	_	PTA28	DISABLED		PTA28			MII0_TXER		FB_A25		
80	H11	H11	_	PTA29	DISABLED		PTA29			MII0_COL		FB_A24		
81	H10	G11	53	PTB0/ LLWU_P5	ADC0_ SE8/ ADC1_SE8	ADC0_ SE8/ ADC1_SE8	PTB0/ LLWU_P5	I2CO_SCL	FTM1_CH0	RMIIO_ MDIO/ MIIO_MDIO		FTM1_QD_ PHA		
82	H9	G10	54	PTB1	ADC0_ SE9/ ADC1_SE9	ADC0_ SE9/ ADC1_SE9	PTB1	I2C0_SDA	FTM1_CH1	RMIIO_ MDC/ MIIO_MDC		FTM1_QD_ PHB		
83	G12	G9	55	PTB2	ADC0_ SE12	ADC0_ SE12	PTB2	I2CO_SCL	UARTO_ RTS_b	ENET0_ 1588_ TMR0		FTM0_ FLT3		
84	G11	G8	56	PTB3	ADC0_ SE13	ADC0_ SE13	PTB3	I2C0_SDA	UARTO_ CTS_b/ UARTO_ COL_b	ENET0_ 1588_ TMR1		FTM0_ FLT0		
85	G10	-	ı	PTB4	ADC1_ SE10	ADC1_ SE10	PTB4			ENET0_ 1588_ TMR2		FTM1_ FLT0		
86	G9	-	_	PTB5	ADC1_ SE11	ADC1_ SE11	PTB5			ENET0_ 1588_ TMR3		FTM2_ FLT0		
87	F12	F11	_	PTB6	ADC1_ SE12	ADC1_ SE12	PTB6				FB_AD23			
88	F11	E11	-	PTB7	ADC1_ SE13	ADC1_ SE13	PTB7				FB_AD22			
89	F10	D11	-	PTB8	DISABLED		PTB8		UART3_ RTS_b		FB_AD21			
90	F9	E10	57	PTB9	DISABLED		PTB9	SPI1_ PCS1	UART3_ CTS_b		FB_AD20			
91	E12	D10	58	PTB10	ADC1_ SE14	ADC1_ SE14	PTB10	SPI1_ PCS0	UART3_RX		FB_AD19	FTM0_ FLT1		
92	E11	C10	59	PTB11	ADC1_ SE15	ADC1_ SE15	PTB11	SPI1_SCK	UART3_TX		FB_AD18	FTM0_ FLT2		
93	H7	_	60	VSS	VSS	VSS								

144 LQFP	144 MAP BGA	121 XFB GA	100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
94	F5	-	61	VDD	VDD	VDD								
95	E10	B10	62	PTB16	DISABLED		PTB16	SPI1_ SOUT	UARTO_RX	FTM_ CLKIN0	FB_AD17	EWM_IN		
96	E9	E9	63	PTB17	DISABLED		PTB17	SPI1_SIN	UARTO_TX	FTM_ CLKIN1	FB_AD16	EWM_ OUT_b		
97	D12	D9	64	PTB18	DISABLED		PTB18	CANO_TX	FTM2_CH0	I2S0_TX_ BCLK	FB_AD15	FTM2_QD_ PHA		
98	D11	C9	65	PTB19	DISABLED		PTB19	CANO_RX	FTM2_CH1	I2S0_TX_ FS	FB_OE_b	FTM2_QD_ PHB		
99	D10	F10	66	PTB20	DISABLED		PTB20	SPI2_ PCS0			FB_AD31	CMP0_ OUT		
100	D9	F9	67	PTB21	DISABLED		PTB21	SPI2_SCK			FB_AD30	CMP1_ OUT		
101	C12	F8	68	PTB22	DISABLED		PTB22	SPI2_ SOUT			FB_AD29	CMP2_ OUT		
102	C11	E8	69	PTB23	DISABLED		PTB23	SPI2_SIN	SPIO_ PCS5		FB_AD28			
103	B12	В9	70	PTC0	ADC0_ SE14	ADC0_ SE14	PTC0	SPIO_ PCS4	PDB0_ EXTRG	USB_SOF_ OUT	FB_AD14	I2S0_TXD1		
104	B11	D8	71	PTC1/ LLWU_P6	ADC0_ SE15	ADC0_ SE15	PTC1/ LLWU_P6	SPIO_ PCS3	UART1_ RTS_b	FTM0_CH0	FB_AD13	I2S0_TXD0		
105	A12	C8	72	PTC2	ADC0_ SE4b/ CMP1_IN0	ADC0_ SE4b/ CMP1_IN0	PTC2	SPI0_ PCS2	UART1_ CTS_b	FTM0_CH1	FB_AD12	12S0_TX_ FS		
106	A11	B8	73	PTC3/ LLWU_P7	CMP1_IN1	CMP1_IN1	PTC3/ LLWU_P7	SPI0_ PCS1	UART1_RX	FTM0_CH2	CLKOUT	I2S0_TX_ BCLK		
107	H8	_	74	VSS	VSS	VSS								
108	_	_	75	VDD	VDD	VDD								
109	A9	A8	76	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPIO_ PCS0	UART1_TX	FTM0_CH3	FB_AD11	CMP1_ OUT		
110	D8	D7	77	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2	I2S0_RXD0	FB_AD10	CMP0_ OUT	FTM0_CH2	
111	C8	C7	78	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_ SOUT	PDB0_ EXTRG	I2S0_RX_ BCLK	FB_AD9	I2SO_ MCLK		
112	B8	В7	79	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_SIN	USB_SOF_ OUT	I2S0_RX_ FS	FB_AD8			
113	A8	A7	80	PTC8	ADC1_ SE4b/ CMP0_IN2	ADC1_ SE4b/ CMP0_IN2	PTC8		FTM3_CH4	I2SO_ MCLK	FB_AD7			
114	D7	D6	81	PTC9	ADC1_ SE5b/ CMP0_IN3	ADC1_ SE5b/ CMP0_IN3	PTC9		FTM3_CH5	I2SO_RX_ BCLK	FB_AD6	FTM2_ FLT0		
115	C7	C6	82	PTC10	ADC1_ SE6b	ADC1_ SE6b	PTC10	I2C1_SCL	FTM3_CH6	12S0_RX_ FS	FB_AD5			
116	В7	C5	83	PTC11/ LLWU_P11	ADC1_ SE7b	ADC1_ SE7b	PTC11/ LLWU_P11	I2C1_SDA	FTM3_CH7	12S0_RXD1	FB_RW_b			

144 LQFP	144 MAP BGA	121 XFB GA	100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
117	A7	B6	84	PTC12	DISABLED		PTC12		UART4_ RTS_b		FB_AD27	FTM3_ FLT0		
118	D6	A6	85	PTC13	DISABLED		PTC13		UART4_ CTS_b		FB_AD26			
119	C6	A5	86	PTC14	DISABLED		PTC14		UART4_RX		FB_AD25			
120	В6	B5	87	PTC15	DISABLED		PTC15		UART4_TX		FB_AD24			
121	_	_	88	VSS	VSS	VSS								
122	_	_	89	VDD	VDD	VDD								
123	A6	D5	90	PTC16	DISABLED		PTC16		UART3_RX	ENETO_ 1588_ TMR0	FB_CS5_b/ FB_TSIZ1/ FB_BE23_ 16_BLS15_ 8_b			
124	D5	C4	91	PTC17	DISABLED		PTC17		UART3_TX	ENETO_ 1588_ TMR1	FB_CS4_b/ FB_TSIZ0/ FB_BE31_ 24_BLS7_ 0_b			
125	C5	B4	92	PTC18	DISABLED		PTC18		UART3_ RTS_b	ENETO_ 1588_ TMR2	FB_TBST_ b/ FB_CS2_b/ FB_BE15_ 8_BLS23_ 16_b			
126	B5	A4	ı	PTC19	DISABLED		PTC19		UART3_ CTS_b	ENET0_ 1588_ TMR3	FB_CS3_b/ FB_BE7_ 0_BLS31_ 24_b	FB_TA_b		
127	A5	D4	93	PTD0/ LLWU_P12	DISABLED		PTD0/ LLWU_P12	SPIO_ PCS0	UART2_ RTS_b	FTM3_CH0	FB_ALE/ FB_CS1_b/ FB_TS_b			
128	D4	D3	94	PTD1	ADC0_ SE5b	ADC0_ SE5b	PTD1	SPI0_SCK	UART2_ CTS_b	FTM3_CH1	FB_CS0_b			
129	C4	C3	95	PTD2/ LLWU_P13	DISABLED		PTD2/ LLWU_P13	SPI0_ SOUT	UART2_RX	FTM3_CH2	FB_AD4		I2C0_SCL	
130	B4	В3	96	PTD3	DISABLED		PTD3	SPI0_SIN	UART2_TX	FTM3_CH3	FB_AD3		I2C0_SDA	
131	A4	A3	97	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI0_ PCS1	UARTO_ RTS_b	FTM0_CH4	FB_AD2	EWM_IN	SPI1_ PCS0	
132	A3	A2	98	PTD5	ADC0_ SE6b	ADC0_ SE6b	PTD5	SPI0_ PCS2	UARTO_ CTS_b/ UARTO_ COL_b	FTM0_CH5	FB_AD1	EWM_ OUT_b	SPI1_SCK	
133	A2	B2	99	PTD6/ LLWU_P15	ADC0_ SE7b	ADC0_ SE7b	PTD6/ LLWU_P15	SPI0_ PCS3	UARTO_RX	FTM0_CH6	FB_AD0	FTM0_ FLT0	SPI1_ SOUT	
134	M10	-	-	VSS	VSS	VSS								
135	F8	-	-	VDD	VDD	VDD								

Pinout

144 LQFP	144 MAP	121 XFB	100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
136	A1	GA A1	100	PTD7	DISABLED		PTD7	CMT_IRO	UART0_TX	FTM0_CH7		FTM0_ FLT1	SPI1_SIN	
137	C9	A10	_	PTD8	DISABLED		PTD8	I2C0_SCL	UART5_RX			FB_A16		
138	В9	A9	_	PTD9	DISABLED		PTD9	I2CO_SDA	UART5_TX			FB_A17		
139	В3	B1	_	PTD10	DISABLED		PTD10		UART5_ RTS_b			FB_A18		
140	B2	C2	-	PTD11	DISABLED		PTD11	SPI2_ PCS0	UART5_ CTS_b	SDHC0_ CLKIN		FB_A19		
141	B1	C1	_	PTD12	DISABLED		PTD12	SPI2_SCK	FTM3_ FLT0	SDHC0_D4		FB_A20		
142	C3	D2	-	PTD13	DISABLED		PTD13	SPI2_ SOUT		SDHC0_D5		FB_A21		
143	C2	D1	_	PTD14	DISABLED		PTD14	SPI2_SIN		SDHC0_D6		FB_A22		
144	C1	E1	_	PTD15	DISABLED		PTD15	SPI2_ PCS1		SDHC0_D7		FB_A23		

5.2 Unused analog interfaces

Table 57. Unused analog interfaces

Module name	Pins	Recommendation if unused
ADC	ADC0_DP1, ADC0_DM1, ADC1_DP1, ADC1_DM1, ADC0_DP0/ADC1_DP3, ADC0_DM0/ADC1_DM3, ADC1_DP0/ ADC0_DP3, ADC1_DM0/ADC0_DM3, ADC1_SE16/ADC0_SE22, ADC0_SE16/ADC0_SE21, ADC1_SE18	Ground
DAC ¹	DAC0_OUT, DAC1_OUT	Float
USB	VREGIN, USB0_GND, VOUT33 ²	Connect VREGIN and VOUT33 together and tie to ground through a 10 $k\Omega$ resistor. Do not tie directly to ground, as this causes a latch-up risk.
	USB0_DM, USB0_DP	Float

^{1.} Unused DAC signals do not apply to all parts. See the Pinout section for details.

5.3 K64 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

^{2.} USB0_VBUS and USB0_GND are board level signals

Figure 37. 144 LQFP Pinout Diagram

	1	2	3	4	5	6	7	8	9	10	11	12	
A	PTD7	PTD6/ LLWU_P15	PTD5	PTD4/ LLWU_P14	PTD0/ LLWU_P12	PTC16	PTC12	PTC8	PTC4/ LLWU_P8	NC	PTC3/ LLWU_P7	PTC2	A
В	PTD12	PTD11	PTD10	PTD3	PTC19	PTC15	PTC11/ LLWU_P11	PTC7	PTD9	NC	PTC1/ LLWU_P6	PTC0	В
С	PTD15	PTD14	PTD13	PTD2/ LLWU_P13	PTC18	PTC14	PTC10	PTC6/ LLWU_P10	PTD8	NC	PTB23	PTB22	С
D	PTE2/ LLWU_P1	PTE1/ LLWU_P0	PTE0	PTD1	PTC17	PTC13	PTC9	PTC5/ LLWU_P9	PTB21	PTB20	PTB19	PTB18	D
E	PTE6	PTE5	PTE4/ LLWU_P2	PTE3	VDD	VDD	VDD	VDD	PTB17	PTB16	PTB11	PTB10	E
F	PTE10	PTE9	PTE8	PTE7	VDD	VSS	VSS	VDD	РТВ9	PTB8	РТВ7	PTB6	F
G	VOUT33	VREGIN	PTE12	PTE11	VREFH	VREFL	VSS	vss	PTB5	PTB4	РТВ3	PTB2	G
н	USB0_DP	USB0_DM	VSS	PTE28	VDDA	VSSA	VSS	vss	PTB1	PTB0/ LLWU_P5	PTA29	PTA28	н
J	ADC0_DP1	ADC0_DM1	ADC0_SE16/ CMP1_IN2/ ADC0_SE21	PTE27	PTA0	PTA1	PTA6	РТА7	PTA13/ LLWU_P4	PTA27	PTA26	PTA25	J
к	ADC1_DP1	ADC1_DM1	ADC1_SE16/ CMP2_IN2/ ADC0_SE22	PTE26	PTE25	PTA2	PTA3	PTA8	PTA12	PTA16	PTA17	PTA24	ĸ
L	ADC0_DP0/ ADC1_DP3	ADC0_DM0/ ADC1_DM3	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23	RTC_ WAKEUP_B	VBAT	PTA4/ LLWU_P3	РТА9	PTA11	PTA14	PTA15	RESET_b	L
М	ADC1_DP0/ ADC0_DP3	ADC1_DM0/ ADC0_DM3	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	PTE24	NC	EXTAL32	XTAL32	PTA5	PTA10	VSS	PTA19	PTA18	м
	1	2	3	4	5	6	7	8	9	10	11	12	

Figure 38. 144 MAPBGA Pinout Diagram

	1	2	3	4	5	6	7	8	9	10	11	
Α	PTD7	PTD5	PTD4/ LLWU_P14	PTC19	PTC14	PTC13	PTC8	PTC4/ LLWU_P8	PTD9	PTD8	NC	А
В	PTD10	PTD6/ LLWU_P15	PTD3	PTC18	PTC15	PTC12	PTC7	PTC3/ LLWU_P7	PTC0	PTB16	PTB12	В
С	PTD12	PTD11	PTD2/ LLWU_P13	PTC17	PTC11/ LLWU_P11	PTC10	PTC6/ LLWU_P10	PTC2	PTB19	PTB11	PTB13	С
D	PTD14	PTD13	PTD1	PTD0/ LLWU_P12	PTC16	PTC9	PTC5/ LLWU_P9	PTC1/ LLWU_P6	PTB18	PTB10	PTB8	D
E	PTD15	PTE2/ LLWU_P1	PTE1/ LLWU_P0	PTE0	VDD	VDD	VDD	PTB23	PTB17	PTB9	PTB7	Е
F	USB0_DP	USB0_DM	PTE6	PTE3	VDDA	VSSA	vss	PTB22	PTB21	PTB20	PTB6	F
G	VOUT33	VREGIN	VSS	PTE5	VREFH	VREFL	vss	PTB3	PTB2	PTB1	PTB0/ LLWU_P5	G
Н	ADC0_DP1	ADC0_DM1	ADC0_SE16, CMP1_IN2/ ADC0_SE21	NC	PTE24	PTE26	PTE4/ LLWU_P2	PTA1	PTA3	PTA17	PTA29	н
J	ADC1_DP1	ADC1_DM1	ADC1_SE16, CMP2_IN2/ ADC0_SE22	PTA11	PTE25	PTA0	PTA2	PTA4/ LLWU_P3	PTA10	PTA16	RESET_b	J
К		ADC0_DM0/ ADC1_DM3		CMP0_IN4/	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	\/DAT	PTA5	PTA12	PTA14	VSS	PTA19	к
L	ADC1_DP0/ ADC0_DP3	ADC1_DM0/ ADC0_DM3	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	XTAL32	EXTAL32	VSS	RTC_ WAKEUP_B	PTA13/ LLWU_P4	PTA15	VDD	PTA18	L
	1	2	3	4	5	6	7	8	9	10	11	1

Figure 39. 121 XFBGA Pinout Diagram

Figure 40. 100 LQFP Pinout Diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK64 and MK64

7 Part identification

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	M = Fully qualified, general market flow P = Prequalification
K##	Kinetis family	K64 = Ethernet with high RAM density
А	Key attribute	 D = Cortex-M4 w/ DSP F = Cortex-M4 w/ DSP and FPU
М	Flash memory type	 N = Program flash only X = Program flash and FlexMemory
FFF	Program flash memory size	 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB 2M0 = 2 MB

Table continues on the next page...

Terminology and guidelines

Field	Description	Values
R	Silicon revision	 Z = Initial (Blank) = Main A = Revision after main
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LK = 80 LQFP (12 mm x 12 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) DC = 121 XFBGA (8 mm x 8 mm x 0.5 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm)
CC	Maximum CPU frequency (MHz)	 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz 16 = 168 MHz 18 = 180 MHz
N	Packaging type	R = Tape and reel(Blank) = Trays

7.4 Example

This is an example part number:

MK64FN1M0VMD12

8 Terminology and guidelines

8.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

8.1.1 Example

This is an example of an operating requirement:

	Symbol	Description	Min.	Max.	Unit
١	/ _{DD}	1.0 V core supply voltage	0.9	1.1	V

8.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

8.2.1 Example

This is an example of an operating behavior:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μΑ

8.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

8.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	_	7	pF

8.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- Handling ratings apply when the chip is not powered.

8.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V_{DD}	1.0 V core supply voltage	-0.3	1.2	V

8.5 Result of exceeding a rating

8.6 Relationship between ratings and operating requirements

8.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8.8 Definition: Typical value

A typical value is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

8.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

8.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

8.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	°C
V_{DD}	3.3 V supply voltage	3.3	V

9 Revision History

The following table provides a revision history for this document.

Table 58. Revision History

Rev. No.	Date	Substantial Changes	
2	01/2014	Initial public release.	
3	04/2014	 Format changes Updated Table 23 "Flash command timing specifications." 	
4	09/2014	 Updated Table 6 "Power consumption operating behavior." Updated Table 17 "IRC48M specifications Updated Table 35 "VREF full-range operating behavior" 	
5	12/2014	 Updated Table 6 "Power consumption operating behavior." Added a note to the section "Power consumption operating behaviors." 	

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2014-2015 Freescale Semiconductor, Inc.

Document number K64P144M120SF5 Revision 5, 12/2014

