維基百科

PID控制器

维基百科,自由的百科全书

PID控制器(比例-积分-微分<u>控制器</u>),由<u>比例</u>单元(**P**roportional)、<u>积分</u>单元(Integral)和<u>微</u>分单元(**D**erivative)组成^[1]。可以透過調整這三個單元的增益 K_p , K_i 和 K_d 來調定其特性。PID 控制器主要适用于基本上线性,且动态特性不随时间变化的系统。

PID控制器是一个在工业控制应用中常见的反馈回路部件。这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。PID控制器可以根据历史数据和差别的出现率来调整输入值,使系统更加准确而稳定。

PID控制器的比例单元(P)、积分单元(I)和微分单元(D)分別對應目前誤差、過去累計誤差及未來誤差。若是不知道受控系統的特性,一般認

PID控制器的方塊圖

為PID控制器是最適用的控制器^[2]。藉由調整PID控制器的三個參數,可以調整控制系統,設法滿足設計需求。控制器的響應可以用控制器對誤差的反應快慢、控制器過衝的程度及系統震盪的程度來表示。不過使用PID控制器不一定保證可達到系統的最佳控制,也不保證系統穩定性。

有些應用只需要PID控制器的部份單元,可以將不需要單元的參數設為零即可。因此PID控制器可以變成PI控制器、PD控制器、P控制器或I控制器。其中又以PI控制器比較常用,因為D控制器對回授雜訊十分敏感,而若沒有I控制器的話,系統不會回到參考值,會存在一個誤差量。

目录

反馈回路基础

歷史及應用

理论

比例控制項

穩態誤差

積分控制項

微分控制項

參數調試

穩定性

最佳性能

各方法的簡介

人工調整

齊格勒一尼科爾斯方法

PID調試軟體

PID控制的限制

線性

雜訊對微分器的影響

PID演算法的修改

積分飽和

PI控制器

不動作區

設定值的步階變化

前饋控制

無衝擊運轉

串級PID控制器

其他PID的形式及其表示法

理想的PID及標準形PID

倒數增益

只針對過程變數進行微分控制

只針對過程變數進行微分及比例控制

PID控制器的拉氏轉換

PID的極零點對消

串級型或交互型

離散化的控制器

伪代码

参见

注释

参考文献

外部链接

反馈回路基础

PID回路是要自动实现一个操作人员用量具和控制旋钮進行的工作,这个操作人员会用量具测系统输出的结果,然后用控制旋钮来调整这个系统的输入,直到系统的输出在量具上显示稳定的需求的结果,在旧的控制文档里,这个过程叫做"复位"行为,量具被称为"测量",需要的结果被称为"設定值"而設定值和测量之间的差别被称为"误差"。

- 一个控制回路包括三个部分:
- 1. 系统的传感器得到的测量结果
- 2. 控制器作出决定
- 3. 通过一个输出设备来作出反应

控制器从传感器得到测量结果,然后用需求结果减去测量结果来得到误差。然后用误差来计算出一个对系统的纠正值来作为输入结果,这样系统就可以从它的输出结果中消除误差。

在一个PID回路中,这个纠正值有三种算法,消除目前的误差,平均过去的误差,和透過误差的 改变来预测将来的误差。

比如说,假如利用水箱在为植物提供水,水箱的水需要保持在一定的高度。可以用传感器来检查水箱里水的高度,这样就得到了测量结果。控制器会有一个固定的用户输入值来表示水箱需要的水面高度,假设这个值是保持65%的水量。控制器的输出设备会连在由马达控制的水阀门上。打开阀门就会给水箱注水,关上阀门就会让水箱里的水量下降。这个阀门的控制信号就是控制变量。

PID控制器可以用来控制任何可被测量及可被控制变量。比如,它可以用来控制温度、<u>压强</u>、流量、化学成分、速度等等。汽车上的巡航定速功能就是一个例子。

一些控制系统把数个PID控制器<u>串联</u>起来,或是连成网络。这样的话,一个主控制器可能会为其他控制输出结果。一个常见的例子是马达的控制。控制系統會需要马达有一个受控的速度,最後停在一个确定的位置。可由一個子控制器用来管理速度,但是这个子控制器的速度是由控制马达位置的主控制器来管理的。

歷史及應用

PID控制器可以追溯到1890年代的调速器設計^{[2][3]}。PID控制器是在船舶自动操作系統中漸漸發展。1911年Elmer Sperry開發的控制器是最早期PID型控制器的其中之一^[4],而第一個發表PID控制器理論分析論文的是俄裔美国工程師尼古拉斯·米诺尔斯基(Minorsky 1922)。米诺尔斯基當時在設計美國海軍的自动操作系統,他的設計是基於對舵手的觀察,控制船舶不只是依目前的誤差,也考慮過去的誤差以及誤差的變化趨勢^[5],後來米诺尔斯基也用數學的方式加以推導^[6]。他的目的是在於穩定性,而不是泛用的控制,因此大幅的簡化了問題。比例控制可以在小的擾動下有穩定性,但無法消除穩態誤差,因此加入了積分項,後來也加入了微分項。

PID控制理論是由觀察<u>舵手</u>的動作而來

當時在新墨西哥號戰艦上進行測試,利用控制器控制 $<u>舵</u>的角速度,利用PI控制器可以角度誤差維持在<math>\pm 2^{\circ}$ 以內,若加上D控制,角度誤差維持在 $\pm 1/6^{\circ}$,比最好的舵手還要好 $^{[7]}$ 。

不過因為海軍人員的抗拒,海軍那時候未使用這套系統,在1930年代也有其他人作出類似的研究。

在自動控制發展的早期,用機械設備來實現PID控制,是由<u>槓桿、彈簧、阻尼</u>及質量組成,多半會用壓縮氣體驅動。氣動控制器還一度是工業上的標準。

電子的類比控制器可以用電晶體、真空管、電容器及電阻器組成。許多複雜的電子系統中常會包括PID控制,例如磁碟的讀寫頭定位、電源供應器的電源條件、甚至是現代地震儀的運動偵測線路。現代電子控制器已大幅的被這些利用單晶片或FPGA來實現的數位控制器所取代。

現代工業使用的PID控制器多半會用PLC或有安装面板的數位控制器來實現。軟體實現的好處是相對低廉,配合PID實現方式調整的靈敏度很大。在工業鍋爐、塑膠射出機械、烫金机及包裝行業中都會用到PID控制。

變化的電壓輸出可以用PWM來實現,也就是固定週期,依要輸出的量去調整週期中輸出高電位的時間。對於數位系統,其時間比例有可能是離散的,例如週期是二秒,高電位時間設定單位為0.1秒,表示可以分為20格,精度5%,因此存在一<u>量化誤差</u>,但只要時間解析度夠高,就會有不錯的效果。

理论

PID是以它的三种纠正算法而命名。受控變數是三种算法(比例、積分、微分)相加後的結果,即為其輸出,其輸入為误差值(設定值減去测量值後的結果)或是由误差值衍生的信號。若定義u(t)為控制輸出,PID演算法可以用下式表示:

$$\mathrm{u}(t) = \mathrm{MV}(t) = K_p e(t) + K_i \int_0^t e(au) \, d au + K_d rac{d}{dt} e(t)$$

其中

 K_p : 比例增益,是調適參數 K_i : 積分增益,也是調適參數

 K_d : 微分增益,也是調適參數

e: 誤差=設定值(SP)-回授值(PV)

t: 目前時間

au: 積分變數,數值從0到目前時間t

用更专业的话来讲,PID控制器可以視為是<u>频域</u>系统的<u>滤波器</u>。在计算控制器最终是否会达到稳定结果时,此性質很有用。如果数值挑选不当,控制系统的输入值会反复振盪,这导致系统可能永远无法达到预设值。

PID控制器的一般转移函数是:

$$H(s) = rac{K_d s^2 + K_p s + K_i}{s + C},$$

其中C是一个取决于系统带宽的常数。

比例控制項

比例控制考慮当前誤差,误差值和一个正值的常数 K_p (表示比例)相乘。 K_p 只是在控制器的输出和系统的误差成比例的时候成立。比如说,一个电热器控制器是在目標溫度和實際溫度差 10° C時有100%的輸出,而其目標值是 25° C。那么它在 15° C的时候会输出100%,在 20° C的时候会输出50%,在 24° C的时候输出10%,注意在误差是0的时候,控制器的输出也是0。

比例控制的輸出如下:

$$P_{
m out} = K_p \, e(t)$$

若比例增益大,在相同誤差量下,會有較大的輸出,但若比例增益太大,會使系統不穩定。

相反的,若比例增益小,若在相同誤差量下, 其輸出較小,因此控制器會較不敏感的。若比例增益太小,當有干擾出現時,其控制信號可能不 夠大,無法修正干擾的影響。

不同比例增益 K_p 下,受控變數對時間的變化(K_i 和 K_d 維持定值)

穩態誤差

比例控制在誤差為0時,其輸出也會為0。若要讓受控輸出為非零的數值,就需要產生一個穩態誤 差或偏移量[<u>a</u>]。

積分控制項

 \underline{R} 拉制考慮过去誤差,將误差值过去一段时间和(误差和)乘以一个正值的常数 K_i 。 K_i 从过去的平均误差值来找到系统的输出结果和预定值的平均误差。一个简单的比例系统会震盪,会在预定值的附近来回变化,因为系统无法消除多余的纠正。通过加上负的平均误差值,平均系统误差值就会漸漸减少。所以,最终这个PID回路系统会在設定值稳定下来。

積分控制的輸出如下:

$$I_{
m out} = K_i \int_0^t e(au) \, d au$$

積分控制會加速系統趨近設定值的過程,並且 消除純比例控制器會出現的穩態誤差。積分增 益越大,趨近設定值的速度越快,不過因為積 分控制會累計過去所有的誤差,可能會使回授 值出現過衝的情形。

持定值)

微分控制項

微分控制考慮将来誤差, 计算误差的一阶导, 并和一个正值的常数Kd相乘。这个导数的控制 会对系统的改变作出反应。导数的结果越大, 那么控制系统就对输出结果作出更快速的反 应。这个 K_d 参数也是PID被称为可预测的控制 器的原因。Ka参数对减少控制器短期的改变很 有帮助。一些实际中的速度缓慢的系统可以不 需要Kd参数。

微分控制的輸出如下:

$$D_{
m out} = K_d rac{d}{dt} e(t)$$

微分控制可以提昇整定時間及系統穩定 性[8][9]。不過因為純微分器不是因果系统,因 此在PID系統實現時,一般會為微分控制加上

一個低通濾波器以限制高頻增益及雜訊[10]。實际上較少用到微分控制,估計PID控制器中只有約 20%有用到微分控制[10]。

數調試

PID的參數調試是指透過調整控制參數(比例增益、積分增益/時間、微分增益/時間)讓系統達到 最佳的控制效果。穩定性(不會有發散性的震盪)是首要條件,此外,不同系統有不同的行為, 不同的應用其需求也不同,而且這些需求還可能會互相衝突。

PID只有三個參數,在原理上容易說明,但PID參數調試是一個困難的工作,因為要符合一些特別 的準則,而且PID控制有其限制存在。歷史上有許多不同的PID參數調試方式,包括齊格勒-尼科 爾斯方法等,其中也有一些已申請專利。

PID控制器的設計及調試在概念上很直覺,但若有多個(且互相衝突)的目標(例如高穩定性及快速的暫態時間)都要達到的話,在實際上很難完成。PID控制器的參數若仔細的調試,會有很好的效果,相反的,若調適不當,效果會很差。一般初始設計常需要不斷的電腦模擬,並且修改參數,一直達到理想的性能或是可接受的妥協為止。

有些系統有非線性的特性,若在無載下調試的參數可能無法在滿載下動作,可以利用<u>增益規劃</u>的 方式進行修正(在不同的條件下選用不同的數值)。

穩定性

若PID控制器的參數未挑選妥當,其控制器輸出可能是不穩定的,也就是其輸出發散,過程中可能有震盪,也可能沒有震盪,且其輸出只受飽和或是機械損壞等原因所限制。不穩定一般是因為過大增益造成,特別是針對延遲時間很長的系統。

一般而言,PID控制器會要求響應的穩定,不論程序條件及設定值如何組合,都不能出現大幅振盪的情形,不過有時可以接受臨界穩定的情形。

最佳性能

PID控制器的最佳性能可能和針對過程變化或是設定值變化有關,也會隨應用而不同。

兩個基本的需求是調整能力(regulation,干擾拒絕,使系統維持在設定值)及命令追隨 (設定值 變化下,控制器輸出追隨設定值的反應速度)。有關命令追隨的一些準則包括有上昇時間及整定 時間。有些應用可能因為安全考量,不允許輸出超過設定值,也有些應用要求在到達設定值過程 中的能量可以最小化。

各方法的簡介

有許多種調試PID控制器參數的方法,最有效的方式多半是建立某種程序,再依不同參數下的動態特性來調試參數。相對而言人工調試其效率較差,若是系統的響應時間到數分鐘以上,更可以看出人工調試效率的不佳。

調試方法的選擇和是否可以暫時將控制迴路「離線」有關,也和系統的響應時間有關。離線是指一個和實際使用有些不同的條件(例如不加負載),而且控制器的輸出只需考慮理論情況,不需考慮實際應用。在線調試是在實際應用的條件,控制器的輸出需考慮實際的系統。若控制迴路可以離線,最好的調試方法是對系統給一個步階輸入,量測其輸出對時間的關係,再用其響應來決定參數。

選擇調試方式

方法	優點	缺點	
人工調試	不需要數學,可以在線調試	需要有經驗的工程師	
齊格勒-尼科 爾斯方法	被證實有效的方法,可以在線調試	會影響製程,需要試誤, 得到的參數可能使響應太 快	
軟體工具	調適的一致性,可以在線調試或離線調試,可以配合 <u>计算机自动设</u> <u>计</u> ,包括閥及感測器的分析,可以在下載前進行模擬,可以支援非穩 態(NSS)的調試	需要成本或是訓練 ^[11]	
Cohen-Coon	好的程序模型	需要一些數學,需離線調 試,只對一階系統有良好 效果	

人工調整

若需在系統仍有負載的情形進行調試(線上調試),有一種作法是先將 K_i 及 K_d 設為零,增加 K_p 一直到迴路輸出震盪為止,之後再將 K_p 設定為「1/4振幅衰減」(使系統第二次過衝量是第一次的1/4)增益的一半,然後增加 K_i 直到一定時間後的穩態誤差可被修正為止。不過若 K_i 可能會造成不穩定,最後若有需要,可以增加 K_d ,並確認在負載變動後迴路可以夠快的回到其設定值,不過若 K_d 太大會造成響應太快及過衝。一般而言快速反應的PID應該會有輕微的過衝,只是有些系統不允許過衝。因此需要將回授系統調整為過阻尼系統,而 K_p 比造成震盪 K_p 的一半還要小很多。

調整PID參數對系統的影響如下

調整PID參數對其步階響應的影響

調整方式	(on) 上升时间	超调量	安定时间	稳态误差	稳定性 ^[10]
↑ K _p	減少↓	增加↑	小幅增加 /	減少↓	變差↓
↑ K _i	小幅減少 💪	增加↑	增加↑	大幅減少↓↓	變差↓
↑ K _d	小幅減少 🛚	減少↓	減少↓	變動不大→	變好↑

齊格勒一尼科爾斯方法

齊格勒-尼科爾斯方法是另一種啟發式的調試方式,由John G. Ziegler和Nathaniel B. Nichols在 1940年代導入,一開始也是將 K_i 及 K_d 設定為零,增加比例增益直到系統開始等振幅振盪為止,當時的增益稱為 K_u ,而振盪週期為 P_u ,即可用以下的方式計算增益:

齊格勒一尼科爾斯方法

控制器種類	K_p	K_i	K_d
P	$0.50K_u$	-	-
PI	$0.45K_u$	$1.2K_p/P_u$	-
PID	$0.60K_u$	$2K_p/P_u$	$K_p P_u/8$

PID調試軟體

大部份現代的工業設備不再用上述人工計算的方式調試,而是用PID調試及最佳化軟體來達到一致的效果。軟體會收集資料,建立模型,並提供最佳的調試結果,有些軟體甚至可以用參考命令的變化來進行調試。

數學的PID調試會將脈衝加入系統,再用受控系統的頻率響應來設計PID的參數。若是響應時間要數分鐘的系統,建議用數學PID調試,因為用試誤法可能要花上幾天才能找到可讓系統穩定的參數。最佳解不太容易找到,有些數位的迴路控制器有自我調試的程序,利用微小的參考命令來計算最佳的調試值。

也有其他調試的公式,是依不同的性能準則所產生。許多有專利的公式已嵌入在PID調試軟體及 硬體模組中^[12]。

一些先進的PID調試軟體也可以在動態的情況下用演算法調整PID迴路,這類軟體會先將程序建模,給微擾量,再根據響應計算參數。

PID控制的限制

PID控制可以應用在許多控制問題,多半在大略調整參數後就有不錯的效果,不過有些應用下可能反而會有差的效果,而且一般無法提供最佳控制。PID控制的主要問題是在於其為回授控制,係數為定值,不知道受控系統的資訊,因此其整体性能常常是妥協下的結果。在沒有受控系統模型的條件下,PID控制最佳的控制器^[2],但若配合系統模型,可以有進一步的提昇。

當PID控制器單獨使用時,若因應用需求,需調整PID迴路增益使控制系統不會<u>過衝</u>,其效果有可能很差。PID控制器的缺點還包括無法處理受控系統的非線性、需在反應時間及调整率之間妥協、無法針對參數的變動而反應(例如系統在暖機後特性會改變)、以及大擾動下的波形落後。

PID控制器最顯著的提昇是配合前饋控制,加入有關系統的資訊,只用PID控制器來控制誤差。另外,PID控制器也有一些小幅的改善方式,例如調整參數(增益規劃或是依性能進行適應性的調整)、提昇性能(提高取樣率、精度及準度,若有需要加入低波濾波器),或是用多個串接的PID控制器。

線性

PID控制器常見的問題是在於其線性且對稱的特性,若應用在一些非線性的系統,其效果可能會有變化。以暖通空調中常見的溫度控制,可能是採用主動加熱(用加熱器加熱),但冷卻是使用被動冷卻(不加熱,自然冷卻),其冷卻速度比加熱速度慢很多,輸出若有過衝,下降速度很慢,因此PID控制需調整為不會過衝的過阻尼,以減少或避免過衝,但這也延長了整定時間,使性能變差。

雜訊對微分器的影響

微分器的問題在於對量測或程序產生的高頻雜訊會有放大效果,因此會對輸出造成大幅的變動。因此真實的控制器不會有理想的微分器,只有一個有限頻寬的微分器或<u>高通濾波器</u>。一般為了移除高頻的雜訊,會在量測時加入低通濾波器,若低通濾波器和微分器對消,濾波效果也就受限了,因此低雜訊的量測設備相當重要。實務上可以使用<u>中值滤波器</u>,調昇濾波效率及實際上的性能[13]。有時可以將微分器關閉,對控制性能的影響不大,此時稱為PI控制器。

PID演算法的修改

基本的PID演算法在一些控制應用的條件下有些不足,需進行小幅的修改。

積分飽和

積分飽和是理想PID演算法實現時常見的問題。若設定值有大的變動,其積分量會有大幅的變化,大到輸出值被上下限限制而飽和,因此系統會有過衝,而且即使誤差量符號改變,積分量變小,但輸出值仍被上下限限制,維持在上限(或下限),因此輸出看似沒有變化,系統仍會持續的過衝,一直要到輸出值落在上下限的範圍內,系統的回授量才會開始下降。此問題可以用以下方式處理:

- 在程序變數離開可控制範圍時,暫停積分。
- 讓積分值限制在一個較小的上下範圍內。
- 重新計算積分項,使控制器輸出維持上下限之間的範圍內[14]。

PI控制器

PI控制器(比例-積分控制器)是不用微分單元的 PID控制器。

控制器的輸出為

$$K_P \Delta + K_I \int \Delta \, dt$$

PI控制器的方塊圖

其中 Δ 為設定值SP和量測值PV的誤差:

$$\Delta = SP - PV.$$

PI控制器可以用<u>Simulink</u>或<u>Xcos</u>之類的軟體進行建模,方式是使用「flow chart」圖框,其中用以下的拉氏運算子:

$$C = rac{G(1+ au s)}{ au s}$$

其中

$$G = K_P =$$
 比例增益 $G/\tau = K_T =$ 積分增益

G值的選擇需在減少過衝以及增加安定時間之間取捨。

微分單元對輸入中的高頻信號格外敏感,PI控制器因為沒有微分單元,在訊號雜訊大時,在穩態時會更加穩定。但對狀態快速變化的反應較慢,因此相較於調適到最佳值的PID控制器,PI控制器會較慢到達設定值,受干擾後也比較慢恢復到正常值。

 $\underline{PDF控制}$ (pseudo-derivative feedback control)可以視為是 \underline{PIP} 控制器的變體,比例控制器的輸入由誤差值改為回授值 $\underline{[15]}$ 。

不動作區

許多PID迴路是控制機械元件(例如閥)。機械保養是一筆可觀的費用,磨損會使得機械在有輸入信號時出現靜摩擦或是不動作區,都會導致控制性能的下降。機械損耗的速度主要和設備多常改變其狀態有關。若磨損是主要考量的話,PID迴路可以有輸出的遲滯現象以減少輸出狀態的改變。若變化小,仍在不動作區內,讓控制器的輸出維持上一次的值。變化要大到超過不動作區,實際的狀態才會隨之變化。

設定值的步階變化

若系統的設定值有步階變化,比例單元和微分單元也會有對應的變化,特別是微分單元對於步階 變化的輸出特別的大,因此有些PID演算法會配合以下的修改來處理設定值的變化。

設定值斜坡變化

此修改方式下,設定值會用線性或是一階濾波的方式,由原始值變到新的值,避免因為步階變化 產生的不連續。

只對程序變數(回授量)微分

此修改下,PID控制器只針對量測的程序變數(PV)微分,不對誤差微分。程序變數是實際的物理量,較不易有瞬間的變化,而誤差可能因為設定值的步階變化而有瞬間變化。這也是一種簡單的設定值加權法。

設定值加權

設定值加權分別調整在比例單元及微分單元中的誤差量,誤差量的設定值乘以一個0到1之間的加權,積分單元的誤差量需使用真實的設定值,以避免<u>穩態誤差</u>。這兩個參數不影響對負載變化及量測雜訊的響應,可以提昇對設定點變化的響應。

前饋控制

PID控制器若再配合前饋控制(開迴路控制),可以再提昇其控制性能。在前饋控制中考慮系統的已知資訊(例如理想加速度或是慣量),再將輸出加到PID控制器的控制輸出,以提昇整體的系統性能。前饋量可能是控制輸出主要的部份,而PID控制器只用來補償目標值和開迴路控制器輸出之間的誤差。因為前饋輸出不會受到回授的影響,因此也不會造成系統的振盪,可以在不影響穩定性的條件下提昇系統的響應。前饋可以依目標值及其他量測到的干擾量來產生,目標值加權是一種簡單的前饋控制方式。

例如,在大部份的運動控制系統中,為了要使機械負載加速,致動器要產生更大的力。若用速度 環的PID控制器來控制負載速度,比較理想的方式是先得到理想的瞬間加速度值,適量調整加權 後再加到PID的輸出中。因此控制器輸出中有一部份是不隨機械速度而改變的輸出,再用PID根據 實際輸出和目標的差異去增加或是減少輸出。這類有前饋控制的PID控制器可以加快控制系統的 反應速度。

無衝擊運轉

有時PID控制器會規劃為無衝擊(bumpless)的特性,在參數變化時重新計算適當的積分累計值,使輸出不會因參數變化有不連續的改變^[16]。

串級PID控制器

二個PID控制器可以組合在一起,得到較佳的效果,這稱為串級PID控制。以兩個PID控制器組成的串級PID控制為例,其中一個PID控制器在外迴路,控制像液面高度或是速度等主要的物理量,另一個PID控制器是內迴路,以外迴路PID控制器的輸出做為其目標值,一般是控制較快速變化的參數,例如流量或加速度等。若利用串級PID控制,可以增加控制器的工作頻率,並降低其時間常數。

例如一個溫控的循環水浴設備有二個串級的PID控制器,分別有各自的熱電偶溫度感測器。外迴路的控制器控制水溫,其感測器距加熱器很遠,直接量測整體水溫,其誤差量是理想水溫及整體水溫的差值。外迴路PID控制器的输出即為內迴路控制器的目標值,內迴路控制器控制加熱器,其感測器是在加熱器上,其誤差量是加熱器的理想溫度及量測到溫度的差值,其輸出會使加熱器維持在設定值附近。

內外迴路控制器的參數可能會差很多,外迴路的PID控制器有較長的時間常數,對應所有的水加 熱或是冷卻需要的時間。內迴路的PID控制器反應會比較快。每個控制器可以調整到符合其真正 控制的系統,例如水槽中所有的水,或是加熱器本身。

其他PID的形式及其表示法

理想的PID及標準形PID

工業上常看到PID控制器,而許多工業相關資料中看到的都是「標準形」的PID,其中比例增益 K_p 也作用在 $I_{
m out}$ 及 $D_{
m out}$ 两項,和上述「理論」段落看到的形式不同。「標準形」的PID為:

$$ext{MV(t)} = K_p \left(\, e(t) + rac{1}{T_i} \int_0^t e(au) \, d au + T_d rac{d}{dt} e(t)
ight)$$

其中

 T_i 為積分時間

 T_d 為微分時間

在標準形中,每一個參數有其明確的物理意義,輸出是根據現在誤差、過去誤差及未來誤差而決定,加上微分項可以預測若控制系統不改變的話, T_d 時間後的誤差,而積分項是用過去所有誤差的和來調整輸出,希望在 T_i 時間後可以完全消除誤差,而輸出的值會再乘以單一的增益 K_n 。

在理想的平行式PID中,其方程如下:

$$ext{MV(t)} = K_p e(t) + K_i \int_0^t e(au) \, d au + K_d rac{d}{dt} e(t)$$

其中的增益和標準形PID係數的關係是: $K_i=rac{K_p}{T_i}$ 及 $K_d=K_pT_d$ 。平行式PID中的參數都視為單純的增益,最泛用,靈活性也最高,但較沒有物理意義,因此只用在PID的理論處理中,標準形PID雖在數學上比較複雜,在工業中較常使用。

倒數增益

許多情形下,PID控制器處理的變數是無因次的量,是某個最大值的比例,介於0到100%之間,而轉換為實際物理量(如泵浦速率或是水加熱的功率)是在PID控制器外,而這些控制變數是有因次的物理量(例如溫度)。此時 K_p 增益多半不會表示為「每變化一度的輸出」,而會以溫度的形式 $1/K_p$ 表示,代表「100%輸出下的溫度(變化)」,代表輸出由0變到1(0%變為100%)下的溫度變化。

只針對過程變數進行微分控制

在大部份的商業控制系統中,是用過程變數取代誤差作為微分項的輸入,其原因是當目標值有不連續變化時,微分控制會產生很大的突波,若目標值不變,改變過程變數的效果和改變誤差相同,因此有些PID控制器會用過程變數作為微分項的輸入,不會影響控制器控制過程變數,抗雜訊的能力。

$$ext{MV(t)} = K_p \left(\, e(t) + rac{1}{T_i} \int_0^t e(au) \, d au - T_d rac{d}{dt} PV(t)
ight)$$

只針對過程變數進行微分及比例控制

大部份的商業控制系統也提供選擇,讓過程變數作為微分控制及比例控制的輸入,因此誤差只作 為積分控制的輸入,這也不會影響控制器控制過程變數,抗雜訊的能力。

上述的修改可以避免目標值有不連續變化時,輸出值有對應不連續的變化,若目標值有步階變化,這項調整就相當重要。

$$ext{MV(t)} = K_p \left(-PV(t) + rac{1}{T_i} \int_0^t e(au) \, d au - T_d rac{d}{dt} PV(t)
ight)$$

也有些雙自由度(2-DoF)PID控制架構除了一般的PID控制外,再加上只針對過程變數進行的微分及比例控制,再分別用增益進行調整,目標是同時對目標步階響應以及雜訊抑制都有良好的性能[17]。

PID控制器的拉氏轉換

有關會將PID控制器進行拉氏轉換:

$$G(s) = K_p + rac{K_i}{s} + K_d s = rac{K_d s^2 + K_p s + K_i}{s}$$

PID控制器的拉氏轉換也代表著控制器的傳遞函數,因此可以確認整體系統的傳遞函數。

PID的極零點對消

PID控制器可以寫成以下的形式

$$G(s) = K_d rac{s^2 + rac{K_p}{K_d} s + rac{K_i}{K_d}}{s}$$

若受控設備的傳遞函數如下:

$$H(s)=rac{1}{s^2+2\zeta\omega_0s+\omega_0^2}$$

又令

$$rac{K_i}{K_d}=\omega_0^2 \ rac{K_p}{K_d}=2\zeta\omega_0$$

則

$$G(s)H(s)=rac{K_d}{s}$$

因此若受控設備有不穩定的極點,看似可以用此方式消除,不過實際上有些差異,由干擾到輸出的閉迴路傳遞函數中仍有不穩定的極點,因此仍可能會發散。

串級型或交互型

另一種PID控制器的表示法為串級型(series)或稱為交互型(interacting)

$$G(s) = K_c rac{(au_i s + 1)}{ au_i s} (au_d s + 1)$$

其中參數和標準型的參數有以下的關係

$$K_p = K_c \cdot lpha, T_i = au_i \cdot lpha \ T_d = rac{ au_d}{lpha}$$

而

$$lpha = 1 + rac{ au_d}{ au_i}$$

上述作法可表示為二個串級的PD控制器及PI控制器,在早期類比電路的時代較容易實現,雖然控制器已經數位化,不過仍有些維持此形式。

離散化的控制器

若要在微處理機(MCU)或是 \underline{FPGA} 中實現 \underline{PID} 控制或是分析其性能,就需要將控制器離散化 $\underline{I18}$ 。一階微分可以用後向 \underline{A} 有限差分表示,積分項也離散化,若取樣時間為 \underline{A} \underline{C} ,積分項可以用下式近似

$$\int_0^{t_k} e(au) \, d au = \sum_{i=1}^k e(t_i) \Delta t$$

微分項可近似為

$$rac{de(t_k)}{dt} = rac{e(t_k) - e(t_{k-1})}{\Delta t}$$

因此PID控制器的離散化可以將u(t)微分,再用一階導數及二階導數的定義求得 $u(t_k)$,可以得到

$$u(t_k) = u(t_{k-1}) + K_p\left[\left(1 + rac{\Delta t}{T_i} + rac{T_d}{\Delta t}
ight)e(t_k) + \left(-1 - rac{2T_d}{\Delta t}
ight)e(t_{k-1}) + rac{T_d}{\Delta t}e(t_{k-2})
ight]$$

其中 $T_i = K_p/K_i, T_d = K_d/K_p$

伪代码

以下是一段實現PID演算法的伪代码: [19]

```
previous_error = 0
integral = 0
start:
  error = setpoint - measured_value
  integral = integral + error*dt
  derivative = (error - previous_error)/dt
  output = Kp*error + Ki*integral + Kd*derivative
  previous_error = error
  wait(dt)
  goto start
```

此例中有兩個變數在<u>迴圈</u>前需<u>初始化</u>為0,然後開始迴圈。目前的誤差(error)是用目前目標值(setpoint)減去系统反馈值(measured_value)而得,然後再進行<u>積分和微分</u>運算,比例項、積分項及微分項乘以各自參數後得到輸出(output)。在實際系統中,這會透過數位類比轉換器轉

換為類比訊號,作為受控系統的控制量。目前的誤差量及積分會儲存,以便下次計算微分及積分時使用,程式會等待dt秒後開始,迴圈繼續進行,透過<u>類比數位轉換器</u>讀取新的系统反馈值及目標值,再計算誤差量及輸出^[19]。

参见

- 控制理论
- 反馈
- 不穩定
- 振荡

注释

a. 唯一的例外是目標值恰好是比例增益等於0時的受控輸出。

参考文献

- 1. Li, Y., Ang, K.H., and Chong, G.C.Y. (2006) Patents, software and hardware for PID control: an overview and analysis of the current art. *IEEE Control Systems Magazine*, 26 (1). pp. 42-54. ISSN 0272-1708 (doi:10.1109/MCS.2006.1580153) (http://eprints.gla.ac.uk/38 16/1/IEEE2pdf.pdf,)
- 2. Bennett, Stuart. A history of control engineering, 1930-1955. IET. 1993: p. 48. ISBN 978-0-86341-299-8.
- 3. Bennett, Stuart. Nicholas Minorsky and the automatic steering of ships (PDF). IEEE Control Systems Magazine. November 1984, **4** (4): 10–15. ISSN 0272-1708. doi:10.1109/MCS.1984.1104827. (原始内容 (PDF)存档于2011-06-08).
- 4. A Brief Building Automation History. [2011-04-04]. (原始内容存档于2011-07-08).
- 5. (Bennett 1993, p. 67 (http://books.google.com/books?id=VD b81J3yFoC&pg=PA67))
- 6. Bennett, Stuart. A brief history of automatic control (PDF). IEEE Control Systems Magazine (IEEE). 1996, **16** (3): 17–25 [2014-12-24]. (原始内容 (PDF)存档于2016-08-09).
- 7. Bennett, Stuart. A history of control engineering, 1800-1930. IET. June 1986: $\underline{142-148}$. ISBN 978-0-86341-047-5.
- 8. <u>Introduction: PID Controller Design.</u> University of Michigan. [2014-12-28]. (原始内容存档于 2012-10-23).
- 9. Tim Wescott. <u>PID without a PhD</u> (PDF). EE Times-India. October 2000 [2014-12-28]. (原始内容 (PDF)存档于2010-11-22).
- 10. Ang, K.H., Chong, G.C.Y., and Li, Y. (2005). PID control system analysis, design, and technology, *IEEE Trans Control Systems Tech*, 13(4), pp.559-576.

 http://eprints.gla.ac.uk/3817/1/IEEE3.pdf (页面存档备份 (https://web.archive.org/web/20131 213200556/http://eprints.gla.ac.uk/3817/1/IEEE3.pdf), 存于互联网档案馆)
- 11. Li, Y., et al. (2004) CAutoCSD Evolutionary search and optimisation enabled computer automated control system design, Int J Automation and Computing, vol. 1, No. 1, pp. 76-88. ISSN 1751-8520. http://userweb.eng.gla.ac.uk/yun.li/ga_demo/ (页面存档备份 (https://web.

- archive.org/web/20160507233728/http://userweb.eng.gla.ac.uk/yun.li/ga_demo/),存于互联网档案馆)
- 12. Y Li, KH Ang, GCY Chong, Patents, software, and hardware for PID control: An overview and analysis of the current art, Control Systems, IEEE, 26 (1), 42-54.

 http://eprints.gla.ac.uk/3816/1/IEEE2pdf.pdf (页面存档备份 (https://web.archive.org/web/201 30228143859/http://eprints.gla.ac.uk/3816/1/IEEE2pdf.pdf), 存于互联网档案馆)
- 13. Li, Y. and Ang, K.H. and Chong, G.C.Y. (2006) PID control system analysis and design Problems, remedies, and future directions. IEEE Control Systems Magazine, 26 (1). pp. 32-41. ISSN 0272-1708 (PDF). [2014-02-02]. (原始内容存档 (PDF)于2014-03-27).
- 14. Cooper, Douglas. Integral (Reset) Windup, Jacketing Logic and the Velocity PI Form. [2014-02-18]. (原始内容存档于2013-06-29).
- 15. PID and PDFF Compensators for Motion Control (PDF). [2016-10-01]. (原始内容 (PDF)存档 于2012-09-01).
- 16. Cooper, Douglas. <u>PI Control of the Heat Exchanger</u>. Practical Process Control by Control Guru. [2014-02-27]. (原始内容存档于2014-02-28).
- 17. Two-Degree-of-Freedom PID Controllers Mituhiko Araki and Hidefumi Taguchi (PDF). [2016-09-29]. (原始内容存档 (PDF)于2016-09-10).
- 18. Discrete PI and PID Controller Design and Analysis for Digital Implementation. Scribd.com. [2011-04-04]. (原始内容存档于2012-01-11).
- 19. PID process control, a "Cruise Control" example. CodeProject. 2009 [4 November 2012]. (原始内容存档于2014-12-24).
 - Minorsky, Nicolas. Directional stability of automatically steered bodies. J. Amer. Soc. Naval Eng. 1922, 34 (2): 280–309. doi:10.1111/j.1559-3584.1922.tb04958.x.

外部链接

- 改善PID微分和积分的方法及其它控制系统的计算机自动设计CAutoD (https://web.archive.or g/web/20160507233728/http://userweb.eng.gla.ac.uk/yun.li/ga_demo/)
- 学习PID和其他系统调试是如何工作的 (https://www.bin95.com/PID_Process_Control_Saint-Louis.htm) (页面存档备份 (https://web.archive.org/web/20060418002540/http://www.bin95.com/PID_Process_Control_Saint-Louis.htm),存于互联网档案馆)
- PID控制器实验室,PID调试的Java applets (http://www.pidlab.com)(页面存档备份 (https://web.archive.org/web/20100804233607/http://www.pidlab.com/),存于互联网档案馆)
- 一系列的PID调试的Java Applets (https://web.archive.org/web/20060327160331/http://ae.tut.f i/~juke/java/pidtuning/)
- PID调试的问答 (https://web.archive.org/web/20050206113949/http://www.tcnj.edu/~rgraham/PID-tuning.html)
- PID控制系统算法的信息和教程 (https://web.archive.org/web/20060417151518/http://www.jashaw.com/pid/)
- 用Excel模拟基本的PID (https://web.archive.org/web/20060413081016/http://www.htservices.com/Applications/Process/PID2.htm)

- 如果用电子部件制作一个PID控制器 (https://web.archive.org/web/20060417114838/http://asl.epfl.ch/research/projects/VtolIndoorFlying/rapports/rapportSemStauffer.pdf)查看22页
- 关于PID控制器的文章,教材 (http://www.expertune.com/r2.asp?f=Wikipedia&l=articles.html)
- 一个控制系统的一部分 (https://web.archive.org/web/20060417135557/http://www.industrial-e lectricity.com/open-and-closed-loop-feedback-systems-2-Parts-Typical-Control-System.html)
- PID定速控制應用 (http://4rdp.blogspot.com/2008/05/pid-speed-control.html)(页面存档备份 (https://web.archive.org/web/20111112044727/http://4rdp.blogspot.com/2008/05/pid-speed-c ontrol.html),存于互联网档案馆)
- PID馬達定速與定角控制公式比較 (http://4rdp.blogspot.com/2008/12/apply-pid-to-control-lego -nxts-speed.html) (页面存档备份 (https://web.archive.org/web/20120809002746/http://4rdp.blogspot.com/2008/12/apply-pid-to-control-lego-nxts-speed.html),存于互联网档案馆)
- Ang, K.H., Chong, G.C.Y., and Li, Y. (2005), **PID control system analysis, design, and technology**. *IEEE Transactions on Control Systems Technology*, 13 (4). pp. 559-576. ISSN 1063-6536 (http://eprints.gla.ac.uk/3817/1/IEEE3.pdf) (页面存档备份 (https://web.archive.org/web/20131213200556/http://eprints.gla.ac.uk/3817/1/IEEE3.pdf), 存于互联网档案馆)
- Understanding Servo Tune(其中包括PID調整方法範例) (http://www.ni.com/product-document ation/2923/en/) (页面存档备份 (https://web.archive.org/web/20150123063127/http://www.ni.com/product-documentation/2923/en/),存于互联网档案馆)
- LabView360技術文章 PID (http://labview360.com/article/info.asp?TID=10149&FID=165)
 (页面存档备份 (https://web.archive.org/web/20151222142820/http://labview360.com/article/info.asp?TID=10149&FID=165),存于互联网档案馆)

取自"https://zh.wikipedia.org/w/index.php?title=PID控制器&oldid=74890794"

本页面最后修订于2022年12月3日 (星期六) 08:39。

本站的全部文字在知识共享署名-相同方式共享3.0协议之条款下提供,附加条款亦可能应用。(请参阅使用条款)Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。 维基媒体基金会是按美国国內稅收法501(c)(3)登记的非营利慈善机构。