Supervised vs unsupervised learning

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn function to map

 $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, etc.

Unsupervised Learning

Data: x

x is data, no labels!

Goal: Learn some hidden or underlying structure of the data

Examples: Clustering, feature or dimensionality reduction, etc.

Supervised vs unsupervised learning

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn function to map

 $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, etc.

Unsupervised Learning

Data: x

x is data, no labels!

Goal: Learn some hidden or underlying structure of the data

Examples: Clustering, feature or dimensionality reduction, etc.

Generative modeling

Goal: Take as input training samples from some distribution and learn a model that represents that distribution

Density Estimation

Sample Generation

Input samples

Training data $\sim P_{data}(x)$

Generated samples

Generated $\sim P_{model}(x)$

How can we learn $P_{model}(x)$ similar to $P_{data}(x)$?

Why generative models? Debiasing

Capable of uncovering underlying latent variables in a dataset

VS

Homogeneous skin color, pose

Diverse skin color, pose, illumination

How can we use latent distributions to create fair and representative datasets?

Why generative models? Outlier detection

 Problem: How can we detect when we encounter something new or rare?

 Strategy: Leverage generative models, detect outliers in the distribution

 Use outliers during training to improve even more!

95% of Driving Data:

(1) sunny, (2) highway, (3) straight road

Detect outliers to avoid unpredictable behavior when training

Edge Cases

Harsh Weather

Pedestrians

Latent variable models

What is a latent variable?

Myth of the Cave

What is a latent variable?

Can we learn the true explanatory factors, e.g. latent variables, from only observed data?

Autoencoders

Unsupervised approach for learning a **lower-dimensional** feature representation from unlabeled training data

Why do we care about a low-dimensional z?

"Encoder" learns mapping from the data, x, to a low-dimensional latent space, z

How can we learn this latent space?

Train the model to use these features to **reconstruct the original data**

"Decoder" learns mapping back from latent, z, to a reconstructed observation, \hat{x}

How can we learn this latent space?

Train the model to use these features to **reconstruct the original data**

$$\mathcal{L}(x,\hat{x}) = \|x - \hat{x}\|^2$$

Loss function doesn't use any labels!!

How can we learn this latent space?

Train the model to use these features to **reconstruct the original data**

$$\mathcal{L}(x,\hat{x}) = \|x - \hat{x}\|^2$$

Loss function doesn't use any labels!!

Dimensionality of latent space > reconstruction quality

Autoencoding is a form of compression!

Smaller latent space will force a larger training bottleneck

2D latent space

5D latent space

Ground Truth

Autoencoders for representation learning

Bottleneck hidden layer forces network to learn a compressed latent representation

Reconstruction loss forces the latent representation to capture (or encode) as much "information" about the data as possible

Autoencoding = **Auto**matically **encoding** data

