Foundation of Cryptography (0368-4162-01), Lecture 7 MACs and Signatures

Iftach Haitner, Tel Aviv University

December 27, 2011

Section 1

Message Authentication Code (MAC)

Goal: message authentication.

Goal: message authentication.

Definition 1 (MAC)

A trippet of PPT's (Gen, Mac, Vrfy) such that

- Gen(1ⁿ) outputs a key $k \in \{0, 1\}^*$
- Mac(k, m) outputs a "tag" t
- Vrfy(k, m, t) output 1 (YES) or 0 (NO)

Goal: message authentication.

Definition 1 (MAC)

A trippet of PPT's (Gen, Mac, Vrfy) such that

- Gen(1ⁿ) outputs a key $k \in \{0, 1\}^*$
- Mac(k, m) outputs a "tag" t
- Vrfy(k, m, t) output 1 (YES) or 0 (NO)
 - Consistency: Vrfy(k, m, t) = 1 for any $k \in Supp(Gen(1^n)), m \in \{0, 1\}^n$ and t = Mac(k, m)

Goal: message authentication.

Definition 1 (MAC)

A trippet of PPT's (Gen, Mac, Vrfy) such that

- Gen(1ⁿ) outputs a key $k \in \{0, 1\}^*$
- ② Mac(k, m) outputs a "tag" t
- Vrfy(k, m, t) output 1 (YES) or 0 (NO)
 - Consistency: Vrfy(k, m, t) = 1 for any $k \in \text{Supp}(\text{Gen}(1^n)), m \in \{0, 1\}^n \text{ and } t = \text{Mac}(k, m)$
- **Unforgability:** For any oracle-aided PPT A: $\Pr[k \leftarrow \operatorname{Gen}(1^n); (m, t) \leftarrow \operatorname{A}^{\operatorname{Mac}_k, \operatorname{Vrfy}_k}(1^n):$

 $Vrfy_k(m, t) = 1 \land Mac_k$ was not asked on m] = neg(n)

where $\operatorname{Mac}_k(\cdot) := \operatorname{Mac}(k, \cdot)$ and $\operatorname{Vrfy}_k(\cdot) := \operatorname{Vrfy}(k, \cdot)$

• "Private key" definition

- "Private key" definition
- Definition too strong?

- "Private key" definition
- Definition too strong? Any message? Use of Verifier?

- "Private key" definition
- Definition too strong? Any message? Use of Verifier?
- "Replay attacks"

- "Private key" definition
- Definition too strong? Any message? Use of Verifier?
- "Replay attacks"
- Will focus on bounded length messages (specifically n), and then show how to move to any length

Bounded MACs

Definition 2 (ℓ**-time MAC)**

Same as in Definition 1, but security is only required against ℓ -query adversaries.

Zero-time MAC

Construction 3 (Zero-time MAC)

- Gen(1ⁿ): outputs $k \leftarrow \{0,1\}^n$
- $Mac_k(m) = k$
- $Vrfy_k(m, t) = 1$, iff t = k

ℓ-wise independent hash

Definition 4 (ℓ**-wise independent)**

A function family \mathcal{H} from $\{0,1\}^n$ to $\{0,1\}^m$ is ℓ -wise independent, where $\ell \in \mathbb{N}$, if for every distinct $x_1,\ldots,x_\ell \in \{0,1\}^n$ and every $y_1,\ldots,y_\ell \in \{0,1\}^m$, it holds that $\Pr_{h\leftarrow\mathcal{H}}[h(x_1)=y_1\wedge\cdots\wedge h(x_\ell)=y_\ell]=2^{-\ell m}$.

ℓ-times MAC

Construction 5 (ℓ**-time MAC**)

Let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ be an efficient $(\ell+1)$ -wise independent function family.

- Gen(1ⁿ): outputs $h \leftarrow \mathcal{H}_n$
- Mac(h, m) = h(m)
- Vrfy(h, m, t) = 1, iff t = h(m)

ℓ-times MAC

Construction 5 (ℓ**-time MAC)**

Let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ be an efficient $(\ell+1)$ -wise independent function family.

- Gen(1ⁿ): outputs $h \leftarrow \mathcal{H}_n$
- Mac(h, m) = h(m)
- Vrfy(h, m, t) = 1, iff t = h(m)

Claim 6

The above scheme is a (bounded length messages) ℓ -time MAC

ℓ-times MAC

Construction 5 (ℓ**-time MAC)**

Let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ be an efficient $(\ell+1)$ -wise independent function family.

- Gen(1ⁿ): outputs $h \leftarrow \mathcal{H}_n$
- Mac(h, m) = h(m)
- Vrfy(h, m, t) = 1, iff t = h(m)

Claim 6

The above scheme is a (bounded length messages) ℓ -time MAC

Proof: HW

$\mathsf{OWF} \Longrightarrow \mathsf{MAC}$

Construction 7

Same as Construction 5, but uses function $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ instead of \mathcal{H} .

Claim 8

Assuming that \mathcal{F} is a PRF, then Construction 7 is a MAC.

$\mathsf{OWF} \Longrightarrow \mathsf{MAC}$

Construction 7

Same as Construction 5, but uses function $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ instead of \mathcal{H} .

Claim 8

Assuming that \mathcal{F} is a PRF, then Construction 7 is a MAC.

Proof:

$\mathsf{OWF} \Longrightarrow \mathsf{MAC}$

Construction 7

Same as Construction 5, but uses function $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ instead of \mathcal{H} .

Claim 8

Assuming that \mathcal{F} is a PRF, then Construction 7 is a MAC.

Proof: Easy to prove if $\mathcal F$ is a family of random functions. Hence, also holds in case $\mathcal F$ is a PRF.

Collision Resistant Hash Family

Definition 9 (collision resistant hash family (CRH))

A function family $\mathcal{H}=\{\mathcal{H}_n\colon\{0,1\}^*\mapsto\{0,1\}^n\}$ is collision resistant, if

$$\Pr[h \leftarrow \mathcal{H}_n, (x, x') \leftarrow \mathsf{A}(1^n, h) \colon x \neq x' \in \{0, 1\}^* \\ \wedge h(x) = h(x')] = \mathsf{neg}(n)$$

for any PPT A.

Collision Resistant Hash Family

Definition 9 (collision resistant hash family (CRH))

A function family $\mathcal{H}=\{\mathcal{H}_n\colon\{0,1\}^*\mapsto\{0,1\}^n\}$ is collision resistant, if

$$\Pr[h \leftarrow \mathcal{H}_n, (x, x') \leftarrow \mathsf{A}(1^n, h) \colon x \neq x' \in \{0, 1\}^* \\ \wedge h(x) = h(x')] = \mathsf{neg}(n)$$

for any PPT A.

Not known to be implied by OWF

Length restricted MAC ⇒ **MAC**

Construction 10 (Length restricted MAC ⇒ MAC)

Let (Gen, Mac, Vrfy) be length restricted MAC with d(n) = n, and let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$ be an eff. function family.

- Gen'(1ⁿ): $k \leftarrow$ Gen(1ⁿ), $h \leftarrow \mathcal{H}_n$. Set k' = (k, h)
- $\bullet \ \operatorname{Mac}'_{k,h}(m) = \operatorname{Mac}_k(h(m))$
- $Vrfy'_{k,h}(t,m) = Vrfy_k(t,h(m))$

Length restricted MAC ⇒ **MAC**

Construction 10 (Length restricted MAC ⇒ MAC)

Let (Gen, Mac, Vrfy) be length restricted MAC with d(n) = n, and let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$ be an eff. function family.

- Gen'(1ⁿ): $k \leftarrow$ Gen(1ⁿ), $h \leftarrow \mathcal{H}_n$. Set k' = (k, h)
- $\bullet \ \mathsf{Mac}'_{k,h}(m) = \mathsf{Mac}_k(h(m))$
- $\bullet \ \mathsf{Vrfy}_{k,h}'(t,m) = \mathsf{Vrfy}_k(t,h(m))$

Claim 11

Assume \mathcal{H} is an efficient collision resistant family, then (Gen', Mac', Vrfy') is a MAC.

Length restricted MAC ⇒ **MAC**

Construction 10 (Length restricted MAC ⇒ **MAC)**

Let (Gen, Mac, Vrfy) be length restricted MAC with d(n) = n, and let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$ be an eff. function family.

- Gen'(1ⁿ): $k \leftarrow$ Gen(1ⁿ), $h \leftarrow \mathcal{H}_n$. Set k' = (k, h)
- $\bullet \ \operatorname{Mac}'_{k,h}(m) = \operatorname{Mac}_k(h(m))$
- $Vrfy'_{k,h}(t,m) = Vrfy_k(t,h(m))$

Claim 11

Assume \mathcal{H} is an efficient collision resistant family, then (Gen', Mac', Vrfy') is a MAC.

Proof: ?

Section 2

Signature Schemes

Definition 12 (Signature schemes)

A trippet of PPT's (Gen, Sign, Vrfy) such that

- Gen(1ⁿ) outputs a pair of keys $(s, v) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② Sign(s, m) outputs a "signature" $\sigma \in \{0, 1\}^*$
- 3 Vrfy(v, m, σ) outputs 1 (YES) or 0 (NO)

Definition 12 (Signature schemes)

A trippet of PPT's (Gen, Sign, Vrfy) such that

- Gen(1ⁿ) outputs a pair of keys $(s, v) \in \{0, 1\}^* \times \{0, 1\}^*$
- Sign(s, m) outputs a "signature" $\sigma \in \{0, 1\}^*$
- 3 Vrfy(v, m, σ) outputs 1 (YES) or 0 (NO)
 - Consistency: $Vrfy(v, m, \sigma) = 1$ for any $(s, v) \in Supp(Gen(1^n)), m \in \{0, 1\}^*$ and $\sigma \in Supp(Sign(s, m))$

Definition 12 (Signature schemes)

A trippet of PPT's (Gen, Sign, Vrfy) such that

- Gen(1ⁿ) outputs a pair of keys $(s, v) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② Sign(s, m) outputs a "signature" $\sigma \in \{0, 1\}^*$
- **3** Vrfy(v, m, σ) outputs 1 (YES) or 0 (NO)
 - Consistency: Vrfy $(v, m, \sigma) = 1$ for any $(s, v) \in \text{Supp}(\text{Gen}(1^n)), m \in \{0, 1\}^*$ and $\sigma \in \text{Supp}(\text{Sign}(s, m))$
 - Unforgability: For any oracle-aided PPT A
 Pr[(s, v) ← Gen(1ⁿ); (m, σ) ← A^{Sign_s}(1ⁿ, v):

$$Vrfy_{\nu}(m, \sigma) = 1 \wedge Sign_s$$
 was not asked on $m = neg(n)$

where $\operatorname{Sign}_{s}(\cdot) := \operatorname{Sign}(s, \cdot)$

Definition 12 (Signature schemes)

A trippet of PPT's (Gen, Sign, Vrfy) such that

- Gen(1ⁿ) outputs a pair of keys $(s, v) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② Sign(s, m) outputs a "signature" $\sigma \in \{0, 1\}^*$
- **3** Vrfy(v, m, σ) outputs 1 (YES) or 0 (NO)
 - Consistency: Vrfy $(v, m, \sigma) = 1$ for any $(s, v) \in \text{Supp}(\text{Gen}(1^n)), m \in \{0, 1\}^*$ and $\sigma \in \text{Supp}(\text{Sign}(s, m))$
 - Unforgability: For any oracle-aided PPT A

$$\Pr[(s,v) \leftarrow \operatorname{Gen}(1^n); (m,\sigma) \leftarrow \operatorname{A}^{\operatorname{Sign}_s}(1^n,v):$$

 $Vrfy_v(m, \sigma) = 1 \land Sign_s$ was not asked on m] = neg(n)

where $\operatorname{Sign}_s(\cdot) := \operatorname{Sign}(s, \cdot)$ (similarly $\operatorname{Vrfy}_{\nu}(\cdot) := \operatorname{Vrfy}(\nu, \cdot)$)

Definition 12 (Signature schemes)

A trippet of PPT's (Gen, Sign, Vrfy) such that

- Gen(1ⁿ) outputs a pair of keys $(s, v) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② Sign(s, m) outputs a "signature" $\sigma \in \{0, 1\}^*$
- **3** Vrfy(v, m, σ) outputs 1 (YES) or 0 (NO)
 - Consistency: Vrfy $(v, m, \sigma) = 1$ for any $(s, v) \in \text{Supp}(\text{Gen}(1^n)), m \in \{0, 1\}^*$ and $\sigma \in \text{Supp}(\text{Sign}(s, m))$
 - Unforgability: For any oracle-aided PPT A

$$\Pr[(s,v) \leftarrow \operatorname{Gen}(1^n); (m,\sigma) \leftarrow \operatorname{A}^{\operatorname{Sign}_s}(1^n,v):$$

 $Vrfy_v(m, \sigma) = 1 \land Sign_s$ was not asked on m] = neg(n)

where $\operatorname{Sign}_s(\cdot) := \operatorname{Sign}(s, \cdot)$ (similarly $\operatorname{Vrfy}_{\nu}(\cdot) := \operatorname{Vrfy}(\nu, \cdot)$)

ullet Signature \Longrightarrow MAC

- Signature ⇒ MAC
- "Harder" to construct than MACs: (even restricted forms) require OWF

- Signature ⇒ MAC
- "Harder" to construct than MACs: (even restricted forms) require OWF
- Oracle access to Vrfy is not given

- Signature \(\infty \) MAC
- "Harder" to construct than MACs: (even restricted forms) require OWF
- Oracle access to Vrfy is not given
- Strong signatures: infeasible to generate any new valid signatures (even for message for which a signature was asked)

- Signature ⇒ MAC
- "Harder" to construct than MACs: (even restricted forms) require OWF
- Oracle access to Vrfy is not given
- Strong signatures: infeasible to generate any new valid signatures (even for message for which a signature was asked)

Theorem 13

OWFs imply strong signatures.

Section 3

OWFs \Longrightarrow **Signatures**

One Time Signatures

Definition 14 (one time signatures)

Same as Definition 12, but A can only ask for a single signature.

One Time Signatures

Definition 14 (one time signatures)

Same as Definition 12, but A can only ask for a single signature.

Definition 15 (length restricted, one time signatures)

Same as Definition 14, but A can only ask for signatures of predetermined length (in our case n).

One Time Signatures

Definition 14 (one time signatures)

Same as Definition 12, but A can only ask for a single signature.

Definition 15 (length restricted, one time signatures)

Same as Definition 14, but A can only ask for signatures of predetermined length (in our case n).

OWF \Longrightarrow length restricted, One Time Signature

Construction 16 (length restricted, one time signature)

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$.

- **1** Gen(1ⁿ): $s_1^0, s_1^1, \dots, s_n^0, s_n^1 \leftarrow \{0, 1\}^n$, let $s = (s_1^0, s_1^1, \dots, s_n^0, s_n^1)$ and $v = (v_1^0 = f(s_1^0), v_1^1 = f(s_1^1), \dots, v_n^0 = f(s_n^0), v_n^1 = f(s_n^1))$
- 2 Sign(s, m): Output ($s_1^{m_1}, \ldots, s_n^{m_n}$)
- 3 Vrfy $(v, m, \sigma = (\sigma_1, \dots, \sigma_n))$ check that $f(\sigma_i) = v_{m_i}$ for all $i \in [n]$

OWF \implies length restricted, One Time Signature

Construction 16 (length restricted, one time signature)

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$.

- **1** Gen(1ⁿ): $s_1^0, s_1^1, \dots, s_n^0, s_n^1 \leftarrow \{0, 1\}^n$, let $s = (s_1^0, s_1^1, \dots, s_n^0, s_n^1)$ and $v = (v_1^0 = f(s_1^0), v_1^1 = f(s_1^1), \dots, v_n^0 = f(s_n^0), v_n^1 = f(s_n^1))$
- 2 Sign(s, m): Output ($s_1^{m_1}, \ldots, s_n^{m_n}$)
- 3 Vrfy $(v, m, \sigma = (\sigma_1, \dots, \sigma_n))$ check that $f(\sigma_i) = v_{m_i}$ for all $i \in [n]$

Lemma 17

Assume that f is a OWF, then scheme from Construction 16 is a length restricted one-time signature scheme

Proving Lemma 17

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that break the security of Construction 16, we use A to invert <math>f$.

Algorithm 18 (Inv)

Input: $y \in \{0, 1\}^n$

- Choose $(s, v) \leftarrow Gen(1^n)$ and replace $v_{j^*}^{j^*}$ for a random $i^* \in [n]$ and $j^* \in \{0, 1\}$, with y.
- If A(1ⁿ, v) asks to sign message $m \in \{0, 1\}^n$ with $m_{i^*} = j^*$ abort, otherwise use s to answer the query.
- **3** Let (m, σ) be A's output. If σ is not a valid signature for m, or $m_{i^*} \neq j^*$, abort. Otherwise, return σ_{i^*} .

Proving Lemma 17

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that break the security of Construction 16, we use A to invert <math>f$.

Algorithm 18 (Inv)

Input: $y \in \{0, 1\}^n$

- Choose $(s, v) \leftarrow Gen(1^n)$ and replace $v_{j^*}^{i^*}$ for a random $i^* \in [n]$ and $j^* \in \{0, 1\}$, with y.
- If A(1ⁿ, v) asks to sign message $m \in \{0, 1\}^n$ with $m_{i^*} = j^*$ abort, otherwise use s to answer the query.
- **3** Let (m, σ) be A's output. If σ is not a valid signature for m, or $m_{i^*} \neq j^*$, abort. Otherwise, return σ_{i^*} .

v is distributed as it is in the real "signature game" (ind. of i^* and j^*).

Proving Lemma 17

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that break the security of Construction 16, we use A to invert <math>f$.

Algorithm 18 (Inv)

Input: $y \in \{0, 1\}^n$

- Choose $(s, v) \leftarrow Gen(1^n)$ and replace $v_{j^*}^{j^*}$ for a random $i^* \in [n]$ and $j^* \in \{0, 1\}$, with y.
- ② If A(1ⁿ, v) asks to sign message $m \in \{0, 1\}^n$ with $m_{i^*} = j^*$ abort, otherwise use s to answer the query.
- **3** Let (m, σ) be A's output. If σ is not a valid signature for m, or $m_{i^*} \neq j^*$, abort. Otherwise, return σ_{i^*} .

v is distributed as it is in the real "signature game" (ind. of i^* and j^*). Therefore Inv inverts f w.p. $\frac{1}{2np(n)}$ for any $n \in \mathcal{I}$.

Stateful schemes (also known as, Memory-dependant schemes)

Definition 19 (Stateful scheme)

Same as in Definition 12, but Sign might keep state.

Stateful schemes (also known as, Memory-dependant schemes)

Definition 19 (Stateful scheme)

Same as in Definition 12, but Sign might keep state.

Make sense in many applications (e.g., , smartcards)

Stateful schemes (also known as, Memory-dependant schemes)

Definition 19 (Stateful scheme)

Same as in Definition 12, but Sign might keep state.

- Make sense in many applications (e.g., , smartcards)
- We'll use it a building block for building a stateless scheme

Naive construction

Let (Gen, Sign, Vrfy) be a one-time signature scheme.

Construction 20 (Naive construction)

- **1** Gen'(1ⁿ) outputs $(s_1, v_1) = \text{Gen}(1^n)$.
- ② Sign_s(m_i), where m_i is i'th message to sign: Let $((m_1, \sigma'_1), \ldots, (m_{i-1}, \sigma'_{i-1}))$ be the previously signed pairs of messages/signatures.
 - $\bullet \quad \mathsf{Let} \ (s_{i+1}, v_{i+1}) \leftarrow \mathsf{Gen}(1^n)$
 - 2 Let $\sigma_i = \operatorname{Sign}_{s_{i-1}}(m_i, v_{i+1})$, and output $\sigma'_i = (\sigma'_{i-1}, m_i, v_{i+1}, \sigma_i)$.
- **3** Vrfy'_v $(m, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_i, v_{i+1}, \sigma_i))$:
 - Verify $Vrfy_{v_{j-1}}((m_j, v_{j+1}), \sigma_j) = 1$ for every $j \in [i]$
 - **2** Verify $m_i = m$

- State is used for maintaining the private key (e.g., s_i) and to prevent using the same one-time signature twice.
- 2 Inefficient scheme, thought still polynomial, both running time and signature size are linear in number of signatures

- State is used for maintaining the private key (e.g., s_i) and to prevent using the same one-time signature twice.
- Inefficient scheme, thought still polynomial, both running time and signature size are linear in number of signatures
- Critically uses the fact that (Gen, Sign, Vrfy) is works for any length

Lemma 21

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful signature scheme.

Lemma 21

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful signature scheme.

Proof: Let a PPT A', $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that breaks the security of (Gen', Sign', Vrfy'), we present a PPT A that breaks the security of (Gen, Sign, Vrfy).$

Lemma 21

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful signature scheme.

Proof: Let a PPT A', $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that breaks the security of (Gen', Sign', Vrfy'), we present a PPT A that breaks the security of (Gen, Sign, Vrfy).$

 We assume for simplicity that p also bounds the query complexity of A'

Proving Lemma 21 cont.

Let the random variables

$$(m,\sigma=(m_1,v_2,\sigma_1),\ldots,(m_q,v_{q+1},\sigma_q))$$
 be the pair output by A'

Proving Lemma 21 cont.

Let the random variables

$$(m,\sigma=(m_1,v_2,\sigma_1),\ldots,(m_q,v_{q+1},\sigma_q))$$
 be the pair output by A'

Claim 22

Whenever A' succeeds, $\exists \tilde{i} = \tilde{i}(m, \sigma) \in [q]$ such that:

- Sign' was not asked by A' on m_i.
- ② Sign' was asked by A' on m_i , for every $i \in [i-1]$

Proving Lemma 21 cont.

Let the random variables

$$(\textit{m},\sigma=(\textit{m}_1,\textit{v}_2,\sigma_1),\ldots,(\textit{m}_q,\textit{v}_{q+1},\sigma_q))$$
 be the pair output by A'

Claim 22

Whenever A' succeeds, $\exists \tilde{i} = \tilde{i}(m, \sigma) \in [q]$ such that:

- **1** Sign' was not asked by A' on $m_{\tilde{l}}$.
- ② Sign' was asked by A' on m_i , for every $i \in [i-1]$

Proof:

Proving Lemma 21 cont.

Let the random variables

$$(m,\sigma=(m_1,v_2,\sigma_1),\ldots,(m_q,v_{q+1},\sigma_q))$$
 be the pair output by A'

Claim 22

Whenever A' succeeds, $\exists \tilde{i} = \tilde{i}(m, \sigma) \in [q]$ such that:

- **1** Sign' was not asked by A' on $m_{\tilde{l}}$.
- ② Sign' was asked by A' on m_i , for every $i \in [i-1]$

Proof: Let \tilde{i} be the maximal index such that condition (2) holds (cannot be q+1). \square

Proving Lemma 21 cont.

Let the random variables

$$(m,\sigma=(m_1,v_2,\sigma_1),\ldots,(m_q,v_{q+1},\sigma_q))$$
 be the pair output by A'

Claim 22

Whenever A' succeeds, $\exists \tilde{i} = \tilde{i}(m, \sigma) \in [q]$ such that:

- **1** Sign' was not asked by A' on $m_{\tilde{i}}$.
- ② Sign' was asked by A' on m_i , for every $i \in [i-1]$

Proof: Let \tilde{i} be the maximal index such that condition (2) holds (cannot be q+1). \square

• Let $\widetilde{m} = (m_{\widetilde{i}}, v_{\widetilde{i}+1})$, and let $s_{\widetilde{i}}$ be the signing key generated together with $v_{\widetilde{i}}$.

Proving Lemma 21 cont.

Let the random variables

$$(m,\sigma=(m_1,v_2,\sigma_1),\ldots,(m_q,v_{q+1},\sigma_q))$$
 be the pair output by A'

Claim 22

Whenever A' succeeds, $\exists \tilde{i} = \tilde{i}(m, \sigma) \in [q]$ such that:

- **1** Sign' was not asked by A' on $m_{\tilde{i}}$.
- ② Sign' was asked by A' on m_i , for every $i \in [i-1]$

Proof: Let \tilde{i} be the maximal index such that condition (2) holds (cannot be q+1). \square

- Let $\widetilde{m} = (m_{\widetilde{i}}, v_{\widetilde{i}+1})$, and let $s_{\widetilde{i}}$ be the signing key generated together with $v_{\widetilde{i}}$.
- Hence, $\operatorname{Sign}_{\mathbf{s}_{\tilde{i}}}(\sigma_{\tilde{i}}, \widetilde{m}) = 1$, and $\operatorname{Sign}_{\mathbf{s}_{i}}$ was not queried by $\operatorname{Sign}'_{\mathbf{s}}$ on \widetilde{m} .

Definition of A

Algorithm 23 (A)

Input: v, 1^n

Oracle: Sign_s

- Choose $i^* \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.
- Emulate a random execution of A'Sign's' with a single twist:
 - On the i^* 'th call to $\operatorname{Sign}'_{s'}$, set $v_{i^*} = v$ (rather then choosing it via Gen)
 - When need to sign using s_{i^*} , use Sign_s.
- **3** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q)) \leftarrow A'$
- Output $((m_{i^*}, v_{i^*}), \sigma_{i^*})$ (abort if $i^* > q$))

Definition of A

Algorithm 23 (A)

Input: v, 1^n

Oracle: Sign_s

- Choose $i^* \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.
- Emulate a random execution of A'Sign's' with a single twist:
 - On the i^* 'th call to $\operatorname{Sign}'_{s'}$, set $v_{i^*} = v$ (rather then choosing it via Gen)
 - When need to sign using s_{i^*} , use Sign_s.
- **3** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q)) \leftarrow A'$
- **4** Output $((m_{i^*}, v_{i^*}), \sigma_{i^*})$ (abort if $i^* > q$))
 - Sign_s is called at most once

Definition of A

Algorithm 23 (A)

Input: v, 1^n

Oracle: Signs

- Choose $i^* \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.
- Emulate a random execution of A'Sign's' with a single twist:
 - On the i^* 'th call to $\operatorname{Sign}'_{s'}$, set $v_{i^*} = v$ (rather then choosing it via Gen)
 - When need to sign using s_{i^*} , use Sign_s.
- **3** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q)) \leftarrow A'$
- **4** Output $((m_{i^*}, v_{i^*}), \sigma_{i^*})$ (abort if $i^* > q$))
 - Sign_s is called at most once
 - The emulated game A'Sign'_{s'} has the "right" distribution.

Definition of A

Algorithm 23 (A)

Input: v, 1^n

Oracle: Signs

- ① Choose $i^* \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.
- Emulate a random execution of A'Sign's' with a single twist:
 - On the i^* 'th call to $\operatorname{Sign}'_{s'}$, set $v_{i^*} = v$ (rather then choosing it via Gen)
 - When need to sign using s_{i^*} , use $Sign_s$.
- **3** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q)) \leftarrow A'$
- Output $((m_{i^*}, v_{i^*}), \sigma_{i^*})$ (abort if $i^* > q$))
 - Sign_s is called at most once
 - The emulated game $A^{Sign'_{s'}}$ has the "right" distribution.
 - A breaks (Gen, Sign, Vrfy) whenever $i^* = \tilde{i} > 1$.

Analysis of A

For any $n \in \mathcal{I}$

Pr[A(1ⁿ) breaks (Gen, Sign, Vrfy)]

$$\geq \Pr_{i^* \leftarrow [p=p(n)]}[i=\widetilde{i}]$$

$$\geq \frac{1}{p} \cdot \Pr[A' \text{ breaks (Gen', Sign', Vrfy')}] \geq \frac{1}{p(n)^2}$$

"Somewhat"-Stateful Schemes

A one-time scheme (Gen, Sign, Vrfy), and $\ell = \ell(n) \in \omega(\log n)$

Construction 24

- Gen'(1ⁿ): output $(s_{\lambda}, v_{\lambda}) \leftarrow \text{Gen}(1^n)$.
- Sign'_s(m): choose unused $\bar{r} \in \{0,1\}^{\ell}$
 - For i = 0 to $\ell 1$: if $a_{\overline{r}_1,...,i}$ was not set:
 - For both $j \in \{0, 1\}$, let $(s_{\overline{r}_1, \dots, i}, v_{\overline{r}_1, \dots, i}) \leftarrow \text{Gen}(1^n)$
 - **2** $\sigma_{\bar{r}_1,...,i} = \operatorname{Sign}_{s_{\bar{r}_4}} (a_{1,...,i} = (v_{\bar{r}_1,...,i},0}, v_{\bar{r}_1,...,i},1))$
 - $② \text{ Output } (\overline{r}, a_{\lambda}, \sigma_{\lambda}, \dots, a_{\overline{r}_{1}, \dots, \ell-1}, \sigma_{\overline{r}_{1}, \dots, \ell-1}, \sigma_{\overline{r}} = \mathsf{Sign}_{s_{\overline{r}}}(m))$
- $\operatorname{Vrfy}'_{\nu}(m, \sigma' = (\overline{r}, a_{\lambda}, \sigma_{\lambda}, \dots, a_{\overline{r}-1}, \sigma_{\overline{r}_{1,\dots,\ell-1}}, \sigma_{\overline{r}})$
 - Verify Vrfy_{$v_{\bar{r}_1,...,i}$} $(a_{\bar{r}_1,...,i}, \sigma_{\bar{r}_1,...,i}) = 1$ for every $i \in \{0,...,\ell-1\}$
 - 2 Verify Vrfy_{$v_{\bar{r}}$} $(m, \sigma_{\bar{r}}) = 1$ (where $v_{\bar{r}} = (a_{\bar{r}})_{\bar{r}[\ell]}$)

More efficient scheme

- More efficient scheme
- Sign' does not keep track of the message history.

- More efficient scheme
- Sign' does not keep track of the message history.
- Seach leaf is visited at most once.

- More efficient scheme
- Sign' does not keep track of the message history.
- Each leaf is visited at most once.
- Each one-time signature is used once.

Lemma 25

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful signature scheme.

Proof:

Lemma 25

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful signature scheme.

Proof: Let $(m, \sigma' = (\overline{r}, a_{\lambda}, \sigma_{\lambda}, \dots, a_{\overline{r}-1}, \sigma_{\overline{r}_{1,\dots,\ell-1}}, \sigma_{\overline{r}})$ be the output of a cheating A' and let $a_{\overline{r}} = m$

Lemma 25

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful signature scheme.

Proof: Let $(m, \sigma' = (\overline{r}, a_{\lambda}, \sigma_{\lambda}, \dots, a_{\overline{r}-1}, \sigma_{\overline{r}_{1,\dots,\ell-1}}, \sigma_{\overline{r}})$ be the output of a cheating A' and let $a_{\overline{r}} = m$

Claim 26

Whenever A' succeeds, $\exists \tilde{i} = \tilde{i}(m, \sigma') \in \{0, \dots, \ell\}$ such that:

- Sign'_s queried Sign_{$s_{\bar{r}_1,...,i}$} ($a_{\bar{r}_1,...,i}$) for every $i \in [i-1]$, where $s_{\bar{r}_1,...,i}$ is the value sampled by Sign' when sampling $a_{\bar{r}_1,...,i-1}$ (or s_{λ} , if i=0)
- Sign'_s did not query Sign_{$s_{\bar{r}_1}$}, $(a_{\bar{r}_1,...,i})$.

Stateless Scheme

Inefficient scheme:

Stateless Scheme

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\{0,1\}^*$ to $\{0,1\}^q$.

• Gen'(1ⁿ): let $(s, v) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $q \in$ poly is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$

Stateless Scheme

Inefficient scheme:

- Gen'(1ⁿ): let $(s, v) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $q \in$ poly is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- Sign'(1ⁿ):
 - choose $\overline{r} = \pi(0^{\ell} \circ m)_{1,...,\ell}$

Stateless Scheme

Inefficient scheme:

- Gen'(1ⁿ): let $(s, v) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $q \in$ poly is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- Sign'(1ⁿ):
 - choose $\overline{r} = \pi(0^{\ell} \circ m)_{1,...,\ell}$
 - When setting $(s_{\overline{r}_1,...,i,j}, v_{\overline{r}_1,...,i,j}) \leftarrow \text{Gen}(1^n)$, use $\pi(\overline{r}_1,...,i,j)$ as the randomness for Gen.

Stateless Scheme

Inefficient scheme:

- Gen'(1ⁿ): let $(s, v) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $q \in$ poly is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- Sign'(1ⁿ):
 - choose $\overline{r} = \pi(0^{\ell} \circ m)_{1,...,\ell}$
 - When setting $(s_{\overline{r}_1,...,i,j}, v_{\overline{r}_1,...,i,j}) \leftarrow \text{Gen}(1^n)$, use $\pi(\overline{r}_1,...,i,j)$ as the randomness for Gen.
 - Sign' keeps no state

Stateless Scheme

Inefficient scheme:

- Gen'(1ⁿ): let $(s, v) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $q \in$ poly is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- Sign'(1ⁿ):
 - choose $\overline{r} = \pi(0^{\ell} \circ m)_{1,...,\ell}$
 - When setting $(s_{\overline{r}_1,...,i,j}, v_{\overline{r}_1,...,i,j}) \leftarrow \text{Gen}(1^n)$, use $\pi(\overline{r}_1,...,i,j)$ as the randomness for Gen.
 - Sign' keeps no state
 - A single one-time signature key might be used several times, but always on the same message

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\{0,1\}^*$ to $\{0,1\}^q$.

- Gen'(1ⁿ): let $(s, v) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $q \in$ poly is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- Sign'(1ⁿ):
 - choose $\overline{r} = \pi(0^{\ell} \circ m)_{1,...,\ell}$
 - When setting $(s_{\overline{r}_1,...,i,j}, v_{\overline{r}_1,...,i,j}) \leftarrow \text{Gen}(1^n)$, use $\pi(\overline{r}_1,...,i,j)$ as the randomness for Gen.
 - Sign' keeps no state
 - A single one-time signature key might be used several times, but always on the same message

Efficient scheme:

Stateless Scheme

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\{0,1\}^*$ to $\{0,1\}^q$.

- Gen'(1ⁿ): let $(s, v) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $q \in$ poly is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- Sign'(1ⁿ):
 - choose $\overline{r} = \pi(0^{\ell} \circ m)_{1,...,\ell}$
 - When setting $(s_{\overline{r}_1,...,i,j}, v_{\overline{r}_1,...,i,j}) \leftarrow \text{Gen}(1^n)$, use $\pi(\overline{r}_1,...,i,j)$ as the randomness for Gen.
 - Sign' keeps no state
 - A single one-time signature key might be used several times, but always on the same message

Efficient scheme: use PRF

Without CRH

Definition 27 (target collision resistant (TCR))

A function family $\mathcal{H}=\{\mathcal{H}_n\}$ is target collision resistant, if any pair of PPT's A_1,A_2 :

$$\Pr[(x, a) \leftarrow \mathsf{A}_1(1^n); h \leftarrow \mathcal{H}_n; x' \leftarrow \mathsf{A}_2(a, h): \\ x \neq x' \land h(x) = h(x')] = \mathsf{neg}(n)$$

Without CRH

Definition 27 (target collision resistant (TCR))

A function family $\mathcal{H}=\{\mathcal{H}_n\}$ is target collision resistant, if any pair of PPT's A_1,A_2 :

$$\Pr[(x, a) \leftarrow \mathsf{A}_1(1^n); h \leftarrow \mathcal{H}_n; x' \leftarrow \mathsf{A}_2(a, h): \\ x \neq x' \land h(x) = h(x')] = \mathsf{neg}(n)$$

Theorem 28

OWFs imply efficient compressing TCRs.

Definition 29 (target one-time signatures)

A trippet of PPT's (Gen, Sign, Vrfy) is target one-time signatures (TOS), if

- Consistency: same as in Definition 14
- Target unforgability: for any pair of PPT's A₁, A₂

$$\begin{aligned} & \text{Pr}\big[(m,a) \leftarrow \mathsf{A}_1(1^n); (s,v) \leftarrow \mathsf{Gen}(1^n); \\ & (m',\sigma) \leftarrow \mathsf{A}(a,\mathsf{Sign}_s(m)) \colon m' \neq m \land \mathsf{Vrfy}_v(m',\sigma) = 1\big] \\ & = \mathsf{neg}(n) \end{aligned}$$

Definition 29 (target one-time signatures)

A trippet of PPT's (Gen, Sign, Vrfy) is target one-time signatures (TOS), if

- Consistency: same as in Definition 14
- Target unforgability: for any pair of PPT's A₁, A₂

$$\Pr[(m, a) \leftarrow A_1(1^n); (s, v) \leftarrow Gen(1^n); (m', \sigma) \leftarrow A(a, Sign_s(m)): m' \neq m \land Vrfy_v(m', \sigma) = 1] = neg(n)$$

Claim 30

OWFs imply target one-time signatures

Lemma 31

Assume that (Gen, Sign, Vrfy) is TOS, then (Gen', Sign', Vrfy') from Construction 24 is a stateful signature scheme.

Lemma 31

Assume that (Gen, Sign, Vrfy) is TOS, then (Gen', Sign', Vrfy') from Construction 24 is a stateful signature scheme.

Proof: ?