APPLICATION FOR CERTIFICATION On Behalf of

TZT USA INDUSTRIES INC.

2.4G RF CHALKBOARD

Model Number: CB-06-01V

Prepared for: TZT USA INDUSTRIES INC.

17526 VON KARMAN AVE. IRVINE CA 92614

U.S.A.

Prepared By: Audix Technology (Shenzhen) Co., Ltd.

No. 6, Ke Feng Rd., 52 Block, Shenzhen Science & Industrial Park, Nantou, Shenzhen, Guangdong, China

Tel: (0755) 26639496

Report Number : ACS-F06315

Date of Test : Jun.05~20, 2006

Date of Report : Jul.03, 2006

TABLE OF CONTENTS

	•	. •
1000	arin	tian
Des	CHII	11()11
-	OIIP	

APPENDIX II

(19 pages)

Page FCC Test Report for Declaration of Conformity 1. GENERAL INFORMATION4 1.1. Tested Supporting System Details5 1.2. 1.3. 1.4. POWER LINE CONDUCTED EMISSION TEST......2-1 Test Equipment 2-1 2.1. Block Diagram of Test Setup......2-1 2.2. 2.3. Power Line Conducted Emission Test Limits.....2-1 2.4. Operating Condition of EUT......2-2 2.5. 2.6. Test Procedure 2-2 2.7. 3. RADIATED EMISSION TEST......3-1 Test Equipment 3-1 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. Test Procedure 3-3 3.7. Radiated Emission Test Result. BAND EDGES MEASUREMENT......4-1 Test Equipment4-1 4.1. Block Diagram of Test Setup4-1 4.2. 4.3. Test Standard 4-1 4.4. Bandwidth Limit4-1 4.5. Test Procedure 4-1 DEVIATION TO TEST SPECIFICATIONS5-1 5. 6. Photos of Power Line Conducted Emission Test......6-1 6.1. Photos of Radiated Emission Test (In Anechoic Chamber)......6-2 6.2. 6.3. Photos of Bandwidth Test 6-2 APPENDIX I (7 pages)

TEST REPORT DECLARATION

TZT USA INDUSTRIES INC.

TZT USA INDUSTRIES INC.

The device described above is tested by AUDIX TECHNOLOGY (SHENZHEN) CO., LTD. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both radiated and

CB-06-01V

(C) POWER SUPPLY: DC 5V Adaptor Input AC 120V/60Hz

N/A

2.4G RF CHALKBOARD

(A) MODEL NO.

(B) SERIAL NO.

FCC Rules and Regulations Part 15 Subpart C Feb, 2006

Applicant

Manufacturer

EUT Description

Test Procedure Used:

conducted emissions.

without written approval of A	unit of the sample only. This report shall not be reproduced to the sample only. This report shall not be reproduced to the sample only. This report shall not be reproduced to the sample only.
This report must not be used be any agency of the U.S. Govern	by the applicant to claim product endorsement by NVLA iment.
Date of Test :	Jun.05~20, 2006
Prepared by:	selma lin.
	Selina Liu / Assistant
Reviewer:	Sero lian of
	Seco Liang / Supervisor
	(IIII)(A) 信事務故(深圳)州北山。
	Audix Technology (Shouzhen) Co., Ltd.
	EMC部門報告專用章
	Stamp only for EMC Dept. Report
Approved & Authorized Sign	er: Signature:
	Sean Xing / Assistant Manager
Name of the Representative o	of the Responsible Party :
	1970/Am. 197

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

Description : 2.4G RF CHALKBOARD

Model Number : CB-06-01V

Applicant : TZT USA INDUSTRIES INC.

17526 VON KARMAN AVE. IRVINE CA 92614

U.S.A.

Manufacturer : TZT USA INDUSTRIES INC.

17526 VON KARMAN AVE. IRVINE CA 92614

U.S.A.

Power Adapter : Manufacturer: DVE M/N: DSA-5P-05

Date of Test : Jun.05~20, 2006

1.2. Tested Supporting System Details

1.2.1.PERSONAL COMPUTER

 EMC CODE
 : Test PC C

 M/N
 : Dell 2400

 S/N
 : 3X13Q1X

Manufacturer : Dell

Power cord : Unshielded, detachabled, 1.8m

FCC ID : By DoC BSMI ID : N/A

1.2.2.MONITOR

EMC CODE : Test Monitor A

M/N : E772F

S/N : CN-02W486-64180-3CE-00L9

Manufacturer : Dell

Data Cable : Shielded, Undetachabled, 1.8m Power cord : Unshielded, detachabled, 1.8m

FCC ID : By DoC BSMI ID : N/A

1.2.3.KEYBOARD

EMC CODE : ACS-EMC-K01TA

M/N : JME-7152 Manufacturer : JINGMODE

Data Cable : Shielded, Undetachabled, 1.5m

FCC ID : By DoC BSMI ID : N/A

1.2.4.MOUSE

EMC CODE : ACS-EMC-M02TB

M/N : M056UO S/N : 512024320

Manufacturer : Dell

Data Cable : Shielded, Undetachabled, 1.8m

FCC ID : By DoC BSMI ID : R41108

1.3.Test Facility

Site Description

3m Anechoic Chamber : Certificated by FCC, USA

Registration Number: 90454

Aug. 15, 2003

3m & 10m Anechoic Chamber : Certificated by FCC, USA

Registration Number: 794232

Mar. 15, 2004

EMC Lab. : Certificated by DATech, German

Registration Number: DAT-P-091/99-01

Feb. 02, 2004

Certificated by NVLAP, USA NVLAP Code: 200372-0

Apr.01, 2006

Certificated by Nemko, Norway

Aut. No.: ELA135 April. 22, 2004

Name of Firm : Audix Technology (Shenzhen) Co., Ltd.

Site Location : No. 6, Ke Feng Rd., 52 Block,

Shenzhen Science & Industrial Park, Nantou, Shenzhen, Guangdong, China

1.4. Measurement Uncertainty

No.	Item	Uncertainty	Remark
1.	Uncertainty for Conducted Emission Test	1.22dB	
2.	Uncertainty for Radiated Emission Test	3.14dB	3m Chamber
3.	Uncertainty for Radiated Emission Test	3.18dB	10m Chamber
4.	Uncertainty for Power Clamp Test	1.38dB	

2. POWER LINE CONDUCTED EMISSION TEST

2.1.Test Equipment

The following test equipments are used during the power line conducted emission test:

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Test Receiver	Rohde & Schwarz	ESHS20	836600/006	May 15, 06	1 Year
2	L.I.S.N.#1	Rohde & Schwarz	ENV4200	100041	May 15, 06	1 Year
3	L.I.S.N.#2	Kyoritsu	KNW-407	8-1628-5	May 15, 06	1 Year
4	Terminator	Hubersuhner	50Ω	No. 1	May 15, 06	1 Year
5	RF Cable	Fujikura	RG-55/U	LISN Cable 2#	Jan. 30, 06	1/2 Year
6	Coaxial Switch	Anritsu	MP59B	6200298346	Jan. 30, 06	1/2 Year
7	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100341	Jan. 30, 06	1/2 Year

2.2.Block Diagram of Test Setup

2.2.1.Block diagram of connection between the EUT and simulators

(EUT: 2.4G RF CHALKBOARD)

2.3. Power Line Conducted Emission Test Limits

	Maximum RF Line Voltage			
Frequency	Quasi-Peak Level	Average Level		
	dB(µV)	$dB(\mu V)$		
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*		
500kHz ~ 5MHz	56	46		
5MHz ~ 30MHz	60	50		

Notes: 1. * Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

2.4. Configuration of EUT on Test

The following equipment are installed on Power Line Conducted Emission Test to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

2.4.1.2.4G RF CHALKBOARD (EUT)

Model Number : CB-06-01V

Serial Number : N/A

Manufacturer : TZT USA INDUSTRIES INC.

2.4.2.Support Equipment: As Tested Supporting System Detail, in Section 1.2..

2.5. Operating Condition of EUT

2.5.1. Setup the EUT and simulator as shown as Section 2.2.

- 2.5.2.Turn on the power of all equipment.
- 2.5.3.Let the EUT work in test mode (TX Mode) and measure it.

2.6.Test Procedure

The EUT is connected to the power mains through a line impedance stabilization network (L.I.S.N.#1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). This provides a 50 ohm coupling impedance for the EUT. Please refer the block diagram of the test setup and photographs. Power on the PC and let it work normally, we use a keyboard test soft ware, let EUT working in test mode, then test it. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.4-2003 on Conducted Emission Test.

The bandwidth of test receiver (R & S ESHS20) is set at 10kHz.

The frequency range from 150kHz to 30MHz is checked.

The test result are reported on Section 2.7., all the scanning waveforms for Conducted Emission Test are attached in Appendix I. Emission Test are attached in Appendix I.

2.7.Power Line Conducted Emission Test Results **PASS.**

The frequency range from 150kHz to 30 MHz is investigated. All emissions not reported below are too low against the prescribed limits.

Date of Test : Jun.05, 2006 Temperature : 23°C

EUT : 2.4G RF CHALKBOARD Humidity : 50%

Model No. : CB-06-01V Test Mode : TX Mode

Test Engineer : Qiyuang

Frequency		Reading	Limit					
	V.	A	VI	3	(dB	(dBµV)		
(MHz)	Quasi-Peak	Average	Quasi-Peak	Average	Quasi-Peak	Average		
0.210	44.15	*	42.28	*	63.22	53.22		
0.389	39.65	*	N/A	N/A	58.09	48.09		
0.449	N/A	N/A	41.60	*	56.90	46.90		
0.538	41.27	*	N/A	N/A	56.00	46.00		
0.986	37.60	*	N/A	N/A	56.00	46.00		
1.016	N/A	N/A	34.72	*	56.00	46.00		
1.583	37.52	*	34.66	*	56.00	46.00		
2.090	N/A	N/A	33.37	*	56.00	46.00		
7.553	N/A	N/A	35.76	*	60.00	50.00		
11.135	40.91	*	N/A	N/A	60.00	50.00		

Remark: 1) If the data table appeared symbol of "N/A" means the value was too low to be measured.

2) If the data table appeared symbol of "*" means the Q.P. value is under the limit for average, so, the average value had been omitted.

Reviewed by: Sero L'an

3. RADIATED EMISSION TEST

3.1.Test Equipment

The following test equipments are used during the radiated emission test:

3.1.1.For Anechoic Chamber

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EMI Spectrum	HP	85422E	3625A00181	May 15, 06	1 Year
2.	Test Receiver	Rohde & Schwarz	ESVS20	830350/005	May 15, 06	1 Year
3.	Amplifier	HP	8447D	2944A07794	Mar.13, 06	1/2 Year
4.	Bilog Antenna	Schaffner	CBL6111C	2598	Jan. 11, 06	1 Year
5.	RF Cable	MIYAZAKI	5D-2W	3# Chamber No.1	Jan. 28, 06	1/2 Year
6.	RF Cable	MIYAZAKI	5D-2W	3# Chamber No.2	Jan. 28, 06	1/2 Year
7.	RF Cable	FUJIKURA	RG-55/U	3# Chamber No.3	Jan. 28, 06	1/2 Year
8.	RF Cable	FUJIKURA	RG-55/U	3# Chamber No.4	Jan. 28, 06	1/2 Year
9.	Coaxial Switch	Anritsu	MP59B	M73989	Jan. 28, 06	1/2 Year

3.1.2. For Anechoic Chamber (Above 1000MHz)

1.	Coaxial Switch	Anritsu	MP59B	M73989	Jan. 28, 06	1/2 Year
2.	Spectrum	Agilent	E4407B	MY41440292	May 15, 06	1 Year
3.	Amp	HP	8449B	3008A00863	May 15, 06	1 Year
4.	Antenna	EMCO	3115	9607-4877	Jun. 05, 05	1.5 Year

3.2.Block Diagram of Test Setup

3.2.1.Block diagram of connection between the EUT and simulators

(EUT: 2.4G RF CHALKBOARD)

3.2.2.In Anechoic Chamber

ANTENNA TOWER

GROUND PLANE

3.3. Radiated Emission Limit

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT		
MHz	Meters	μV/m	$dB(\mu V)/m$	
30 ~ 88	3	100	40.0	
88 ~ 216	3	150	43.5	
216 ~ 960	3	200	46.0	
960 ~ 1000	3	500	54.0	
Above 1000	3	Fundamental:		
		114.0 dB(μ'	V)/m (Peak)	
		$94.0 \text{ dB}(\mu\text{V})/\text{m} \text{ (Average)}$		
		Other:		
		74.0 dB(μV)/m (Peak)		
		54.0 dB(µV	/)/m (Average)	

Remark : (1) Emission level (dB) μ V = 20 log Emission level μ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

3.4.EUT Configuration on Test

The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

3.4.1.2.4G RF CHALKBOARD (EUT)

Model Number : CB-06-01V

Serial Number : N/A

Manufacturer : TZT USA INDUSTRIES INC.

3.4.2. Support Equipment: As Tested Supporting System Detail, in Section 1.2.

3.5. Operating Condition of EUT

1. Setup the EUT as shown in Section 3.2..

2. Let the EUT work in test mode (TX Mode/TX 2.408GHz/TX 2.444GHz/ TX 2.474GHz) and test it.

3.6.Test Procedure

EUT and its simulators are placed on a turn table, which is 0.8 meter high above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. Power on the EUT and let it work normally, we use a keyboard test soft ware, let EUT working in test mode, then test it. EUT is set 3 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna are set on test.

The bandwidth of the EMI test receiver (R&S ESVS20) is set at 120kHz.

The frequency range from 30MHz to 24000MHz is checked.

The test mode (TX Mode/TX 2.408GHz/TX 2.444GHz/ TX 2.474GHz) is tested in Anechoic Chamber, and all the scanning waveforms are attached in Appendix I.

3.7. Radiated Emission Test Result

PASS.

The frequency range from 30MHz to 24000MHz is investigated. Please see the following pages.

Date of Test:	Jun.20, 2006	Temperature	:	23 ℃
EUT :	2.4G RF CHALKBOARD	Humidity	:	54%
Model No. :	CB-06-01V	Test Mode	:	TX Mode
Test Engineer:	Iceman			

Frequency	Antenna	Cable	Meter Reading	Emission Level	Over	Limits
	Factor	Loss	Horizontal	Horizontal	Limits	
MHz	dB/m	dB	dΒμV	$dB\mu V/m$	dB	$dB\mu V/m \\$
38.73	14.94	1.24	13.35	29.53	-10.47	40.00
123.12	11.83	2.23	18.52	32.58	-10.92	43.50
183.26	9.34	3.06	15.54	27.94	-15.56	43.50
247.28	12.55	3.59	16.96	33.10	-12.90	46.00
271.53	13.48	3.77	15.21	32.46	-13.54	46.00
482.99	18.00	5.22	11.01	34.23	-11.77	46.00

Remark: 1. All readings are Quasi-Peak values.

- 2. Emission Level = Antenna Factor + Cable Loss + Meter Reading
- 3. The worst emission was detected at 38.74MHz with corrected signal level of $29.53 dB\mu V/m (Limit~is~40.00~dB\mu V/m)$ when the antenna was at horizontal polarization and at 1.5m high and the turn table was at 179 $\,^{\circ}\,$.
- 4. 0 $\,^{\circ}$ was the table front facing the antenna. Degree is calculated from 0 $\,^{\circ}$ clockwise facing the antenna.

Reviewed by: Coro L'm

Date of Test:	Jun.20, 2006	Temperature	:	23°C
EUT :	2.4G RF CHALKBOARD	Humidity	:	54%
Model No. :	CB-06-01V	Test Mode	:	TX Mode
Test Engineer:	Iceman			

Frequency	Antenna	Cable	Meter Reading	Emission Level	Over	Limits
	Factor	Loss	Vertical	Vertical	Limits	
MHz	dB/m	dB	dΒμV	$dB\mu V/m$	dB	$dB\mu V/m$
51.34	7.19	1.51	20.51	29.21	-10.79	40.00
92.08	9.88	2.02	12.78	24.68	-18.82	43.50
121.18	11.97	2.29	24.33	38.59	-4.91	43.50
220.12	10.90	3.26	10.10	24.26	-21.74	46.00
235.64	11.53	3.48	13.64	28.65	-17.35	46.00
482.99	17.70	5.22	6.31	29.23	-16.77	46.00

Remark: 1. All readings are Quasi-Peak values.

- 2. Emission Level = Antenna Factor + Cable Loss + Meter Reading
- 3. The worst emission was detected at 121.18MHz with corrected signal level of $38.59 dB\mu V/m$ (Limit is $43.50 dB\mu V/m$) when the antenna was at horizontal polarization and at 1.8m high and the turn table was at 330 $^{\circ}$.
- 4. 0 $\,^{\circ}$ was the table front facing the antenna. Degree is calculated from 0 $\,^{\circ}$ clockwise facing the antenna.

Reviewed by: Geno Lim

Date of Test	t :		Jun	1.20, 2006	Temperatur	e :	23°€	
EUT	:	2.4	4G RF (CHALKBOARD	Humidity	:	54%	
Model No.	:		CE	3-06-01V	Test Mode	:	TX Mod	le
Test Engine	er:]	Iceman	Memo	:	TX 2.4080	SHz
Frequency	Pr	obe	Cable	Meter Reading	Emission Level	Over	Limits	Remark
	Fa	ctor	Loss	Horizontal	Horizontal	Limits		
MHz	dF	3/m	dB	dΒμV	$dB\mu V/m$	$dB\mu V/r$	n dBµV/m	
2408.600	29	0.03	6.20	44.55	79.78	-34.22	2 114.00	Peak

- 2. Emission Level = Probe Factor + Meter Reading +Cable Loss
- 3. The bandwidth of the VBW is set at 1MHz and RBW is set at 1MHz for measurement above 1GHz.

Frequency	Probe	Cable	Meter Reading	Emission Level	Over	Limits	Remark
	Factor	Loss	Horizontal	Horizontal	Limits		
MHz	dB/m	dB	dΒμV	$dB\mu V/m$	$dB\mu V/m \\$	$dB\mu V/m \\$	
2408.600	29.03	6.20	29.55	64.78	-29.22	94.00	Average

Remark: 1. All readings are Average and Peak values.

- 2. Emission Level = Probe Factor + Meter Reading + Cable Loss
- 3. The bandwidth of the VBW is set at 1MHz and RBW is set at 1MHz for measurement above 1GHz.

Reviewed by: Sero L'm

Date of Test:	Jun.20, 2006	Temperature:	23°C
EUT :	2.4G RF CHALKBOARD	Humidity :	54%
Model No. :	CB-06-01V	Test Mode :	TX Mode
Test Engineer:	Iceman	Memo :	TX 2.408GHz

Frequency	Probe	Cable	Meter Reading	Emission Level	Over	Limits	Remark
	Factor	Loss	Vertical	Vertical	Limits		
MHz	dB/m	dB	$dB\mu V$	$dB\mu V/m$	$dB\mu V/m \\$	$dB\mu V/m \\$	
2408.600	29.03	6.20	50.65	85.88	-28.12	114.00	Peak

- 2. Emission Level = Antenna Factor + Meter Reading + Cable Loss
- 3. The bandwidth of the VBW is set at 1MHz and RBW is set at 1MHz for measurement above 1GHz.

Frequency	Probe	Cable	Meter Reading	Emission Level	Over	Limits	Remark
	Factor	Loss	Vertical	Vertical	Limits		
MHz	dB/m	dB	$dB\mu V$	$dB\mu V/m$	$dB\mu V/m \\$	$dB\mu V/m \\$	
2408.600	29.03	6.20	32.65	67.88	-26.12	94.00	Average

Remark: 1. All readings are Average and Peak values.

- 2. Emission Level = Antenna Factor + Meter Reading + Cable Loss
- 3. The bandwidth of the VBW is set at 1MHz and RBW is set at 1MHz for measurement above 1GHz.

Reviewed by: Sero L'm

Date of Test:	Jun.20, 2006	Temperature:	$23^{\circ}\!\mathrm{C}$
EUT :	2.4G RF CHALKBOARD	Humidity :	54%
Model No. :	CB-06-01V	Test Mode :	TX Mode
Test Engineer:	Iceman	Memo :	TX 2.444GHz

Frequency	Probe	Cable	Meter Reading	Emission Level	Over	Limits	Remark
	Factor	Loss	Horizontal	Horizontal	Limits		
MHz	dB/m	dB	dΒμV	$dB\mu V/m$	$dB\mu V/m \\$	$dB\mu V/m \\$	
1459.000	25.30	4.56	13.29	43.15	-30.85	74.00	Peak
2444.000	29.11	6.25	38.84	74.20	-39.80	114.00	Peak

- 2. Emission Level = Probe Factor + Meter Reading + Cable Loss
- 3. The bandwidth of the VBW is set at 1MHz and RBW is set at 1MHz for measurement above 1GHz.

Frequency	Probe	Cable	Meter Reading	Emission Level	Over	Limits	Remark
	Factor	Loss	Horizontal	Horizontal	Limits		
MHz	dB/m	dB	dΒμV	$dB\mu V/m$	$dB\mu V/m \\$	$dB\mu V/m \\$	
1459.000	25.30	4.56	8.29	38.15	-15.85	54.00	Average
2444.000	29.11	6.25	28.84	64.20	-29.80	94.00	Average

Remark: 1. All readings are Average and Peak values.

- 2. Emission Level = Probe Factor + Meter Reading +Cable Loss
- 3. The bandwidth of the VBW is set at 1MHz and RBW is set at 1MHz for measurement above 1GHz.

Reviewed by: Sero L'ang

Date of Test:	Jjun.20, 2006	Temperature :	23°C
EUT :	2.4G RF CHALKBOARD	Humidity :	54%
Model No. :	CB-06-01V	Test Mode :	TX Mode
Test Engineer:	Iceman	Memo :	TX 2.444GHz

Frequency	Probe	Cable	Meter Reading	Emission Level	Over	Limits	Remark
	Factor	Loss	Vertical	Vertical	Limits		
MHz	dB/m	dB	$dB\mu V$	$dB\mu V/m$	$dB\mu V/m$	$dB\mu V/m \\$	
2444.600	29.11	6.25	45.27	80.63	-33.37	114.00	Peak

- 2. Emission Level = Antenna Factor + Meter Reading + Cable Loss
- 3. The bandwidth of the VBW is set at 1MHz and RBW is set at 1MHz for measurement above 1GHz.

Frequency	Probe	Cable	Meter Reading	Emission Level	Over	Limits	Remark
	Factor	Loss	Vertical	Vertical	Limits		
MHz	dB/m	dB	$dB\mu V$	$dB\mu V/m$	$dB\mu V/m \\$	$dB\mu V/m \\$	
2444.000	29.11	6.25	33.27	68.63	-25.37	94.00	Average

Remark: 1. All readings are Average and Peak values.

- 2. Emission Level = Antenna Factor + Meter Reading + Cable Loss
- 3. The bandwidth of the VBW is set at 1MHz and RBW is set at 1MHz for measurement above 1GHz.

Reviewed by: Sero L'and

Date of Test:	Jun.20, 2006	Temperature	:	23°C
EUT :	2.4G RF CHALKBOARD	Humidity	: _	54%
Model No. :	CB-06-01V	Test Mode	:	TX Mode
Test Engineer:	Iceman	Memo	:_	TX 2.474GHz

Frequency	Probe	Cable	Meter Reading	Emission Level	Over	Limits	Remark
	Factor	Loss	Horizontal	Horizontal	Limits		
MHz	dB/m	dB	dBμV	$dB\mu V/m$	$dB\mu V/m \\$	$dB\mu V/m \\$	
1884.000	27.43	5.38	17.94	50.75	-23.25	74.00	Peak
2474.400	29.19	6.30	46.70	82.19	-31.81	114.00	Peak

- 2. Emission Level = Probe Factor + Meter Reading + Cable Loss
- 3. The bandwidth of the VBW is set at 1MHz and RBW is set at 1MHz for measurement above 1GHz.

Frequency	Probe	Cable	Meter Reading	Emission Level	Over	Limits	Remark
	Factor	Loss	Horizontal	Horizontal	Limits		
MHz	dB/m	dB	dΒμV	$dB\mu V/m$	$dB\mu V/m \\$	$dB\mu V/m \\$	
1884.000	27.43	5.38	8.94	41.75	-12.25	54.00	Average
2474.400	29.19	6.30	32.70	68.19	-25.81	94.00	Average

Remark: 1. All readings are Average and Peak values.

- 2. Emission Level = Probe Factor + Meter Reading + Cable Loss
- 3. The bandwidth of the VBW is set at 1MHz and RBW is set at 1MHz for measurement above 1GHz.

Reviewed by: Sero L'm

Date of Test:	Jun.20, 2006	Temperature	:	23°C
EUT :	2.4G RF CHALKBOARD	Humidity	: _	54%
Model No. :	CB-06-01V	Test Mode	:	TX Mode
Test Engineer:	Iceman	Memo	:_	TX 2.474GHz

Frequency	Probe	Cable	Meter Reading	Emission Level	Over	Limits	Remark
	Factor	Loss	Vertical	Vertical	Limits		
MHz	dB/m	dB	$dB\mu V$	$dB\mu V/m$	$dB\mu V/m$	$dB\mu V/m \\$	
2474.400	29.19	6.30	46.33	81.82	-32.18	114.00	Peak

- 2. Emission Level = Antenna Factor + Meter Reading + Cable Loss
- 3. The bandwidth of the VBW is set at 1MHz and RBW is set at 1MHz for measurement above 1GHz.

Frequency	Probe	Cable	Meter Reading	Emission Level	Over	Limits	Remark
	Factor	Loss	Vertical	Vertical	Limits		
MHz	dB/m	dB	$dB\mu V$	$dB\mu V/m$	$dB\mu V/m \\$	$dB\mu V/m \\$	
2474.400	29.19	6.30	31.33	66.82	-27.18	94.00	Average

Remark: 1. All readings are Average and Peak values.

- 2. Emission Level = Antenna Factor + Meter Reading + Cable Loss
- 3. The bandwidth of the VBW is set at 1MHz and RBW is set at 1MHz for measurement above 1GHz.

Reviewed by: Sero L'm

No.6 Ke Feng Road Block 52, Nan shan Science@Industry shen zhen Guangdong http://www.audiz.com.cn

Site :3# Chamber

Condition FCC PART 15B 3m 2598FACTOR HORIZONTAL

EUT 2.43 RF CHALKBOARD

M/N CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor Input AC 120V/60Hz

Test Engineer iceman

Comment Temp:23°C Humi:54%

	Freq	Level	Over Limit	Linit Line		Antenna Factor	Cable Loss
	HHz	dBuV/n	dB	dBuV/a	dBuV	dB/n	dB
1 2 3 4 5	38.73 123.12 183.26 247.28 271.53 482.99	32.58 27.94 33.10 32.46	-10.47 -10.92 -15.56 -12.90 -13.54 -11.77	40.00 43.50 43.50 46.00 46.00	13.35 18.52 15.54 16.96 15.21 11.01	9.34 12.55 13.48	1.24 2.23 3.06 3.59 3.77 5.22

No.6 Ke Feng Road Block 52, Nan shan Science@Industry shen zhen Guangdong http://www.audiz.com.cn

Site 3# Chamber

Condition FCC PART 15B 3m 2598FACTOR VERTICAL

EUT 2.43 RF CHALKBOARD

M/N CB-06-01V OP Condition TX mode

Test Spec : DC 5V Adaptor Input AC 120V/60Hz

Test Engineer iceman

Comment Temp-23°C Humi: 54%

Committee	- suppassor s	9 (48) N. P. A. L. C.	140000000	- CP 0000	1000	2000/00/00 10:00	10402020
	Freq	Level	Limit			Antenna Factor	Loss
	HHz	dBuV/R	dB	dBuV/a	dBuV	dB/n	dB
1 2 3 4 5 6	51.34 92.08 121.18 220.12 235.64 482.99	24.68 38.59 24.26 28.65	-10.79 -18.82 -4.91 -21.74 -17.35 -16.77	40.00 43.50 43.50 46.00 46.00 46.00	20.51 12.78 24.33 10.10 13.64 6.31	9.88 11.97 10.90 11.53	1.51 2.02 2.29 3.26 3.48 5.22

Data#: 22 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 PEAK 2.4 3m 3115 FACTOR HORIZONTAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor Input AC 120V/60Hz

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.408GHz Comment

Memo

Over Limit Read Probe Freq Level Limit Line Level Factor Loss Remark 10% dBuV/n dB dBuV/m dBuV dB dB

1 2408.600 79.78 -34.22 114.00 44.55 29.03 6.20 Peak

Data#: 23 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 AV 2.4 3m 3115 FACTOR HORIZONTAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor Input AC 120V/60Hz

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.408GHz Comment

Memo

Over Limit Read Probe Freq Level Limit Line Level Factor Loss Remark 19fz dBuV/n dB dBuV/m dBuV dB dB

1 2408.600 64.78 -29.22 94.00 29.55 29.03 6.20 Rverage

Data#: 25 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 PEAK 2.4 3m 3115 FACTOR VERTICAL

1 2408.600 85.88 -28.12 114.00 50.65 29.03

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor bout AC 120V/60Hz

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.408GHz Comment

Memo

Over Limit Read Probe Freq Level Limit Line Level Factor Loss Remark 10% dBuV/n dB dBuV/m dBuV dB dB

6.20 Peak

Data#: 26 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

: FCC PART 15 AV 2.4 3m 3115 FACTOR VERTICAL Condition

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

: DC 5V Adaptor bout AC 120V/60Hz Test Spec

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.408GHz Comment

Memo

Over Limit Read Probe Freq Level Limit Line Level Factor Loss Remark 19fz dBuV/n dB dBuV/m dBuV dB dB

1 2408.600 67.88 -26.12 94.00 32.65 29.03 6.20 Rverage

Data#: 2 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

: 1# Chamber Site

Condition : FCC PART 15 PEAK 2.4 3m 3115 FACTOR HORIZONTAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor bout AC 120V/60Hz

Test Engineer : Iceman

2

: Temp:23°C Humi:54% : TX 2.444GHz Comment

Memo

	Freq	Level.		Limit Line		_ Vi 65 A 50 TO	2000000	
-	ME	d≱u∀/n	dB	dBuV/m	d₽u¥	dB	dB	
	1459.000	43.15	-30.85	74.00	13.29	25.30	4.56	Peak
	2444.600	74.20	-39.80	114.00	38.84	29.11	6.25	Peak

Data#: 3 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 AV 2.4 3m 3115 FACTOR HORIZONTAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor Input AC 120V/60Hz

Test Engineer : Iceman

Comment : Temp:23°C Humi:54%

Memo : TX 2.444GHz

Over Limit Read Probe Cable
Lovel Limit Lime Level Factor Loss Remark

19% dBuV/m dB dBuV/m dBuV dB dB

1 1459.000 38.15 -15.85 54.00 8.29 25.30 4.56 Rverage
2 2444.600 64.20 -29.80 94.00 28.84 29.11 6.25 Rverage

Data#: 5 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 PEAK 2.4 3m 3115 FACTOR VERTICAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor bout AC 120V/60Hz

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.444GHz Comment

Memo

Over Limit Read Probe Freq Level Limit Line Level Factor Loss Remark 10% dBuV/n dB dBuV/m dBuV dB dB

1 2444.600 80.63 -33.37 114.00 45.27 29.11 6.25 Peak

Data#: 6 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 AV 2.4 3m 3115 FACTOR VERTICAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor bout AC 120V/60Hz

Test Engineer : Iceman

Comment : Temp:23°C Humi:54%

Memo : TX 2.444 GHz

Freq Level Limit Line Level Factor Loss Remark

10% dBuV/n dB dBuV/m dBuV dB dB

1 2444.600 68.63 -25.37 94.00 33.27 29.11 6.25 Rverage

-6-

Data#: 15 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

: 1# Chamber Site

Condition : FCC PART 15 PEAK 2.4 3m 3115 FACTOR HORIZONTAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor bout AC 120V/60Hz

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.474GHz Comment

Memo

	Freq	Level		Limit Line	LA CONTRACTOR		2000	
)O(z	d≱u∀/n	dB	dBuV/m	dBu¥	dB	dB	
1	1884.000	50.75	-23.25	74.00	17.94	27.43	5.38	Peak
2	2474.400	\$2.19	-31.81	114.00	46.70	29.19	6.30	Peak

Data#: 16 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

: 1# Chamber Site

: FCC PART 15 AV 2.4 3m 3115 FACTOR HORIZONTAL Condition

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor biput AC 120V/60Hz

Test Engineer : Iceman

Comment : Temp:23°C Humi:54% Memo : TX 2.474GHz

	Freq	Level		Limit Line	LUCTURE TO STORY		2000	
-	10(z	d≱u∀/n	dB	dBuV/m	dBu¥	dB	dB	
1	1884.000	41.75	-12.25	54.00	8.94	27.43	5.38	Average
2	2474.400	68.19	-25.81	94.00	32.70	29.19	6.30	Average

Data#: 12 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 PEAK 2.4 3m 3115 FACTOR VERTICAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor Input AC 120V/60Hz

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.474GHz Comment

Memo

Over Limit Read Probe Freq Level Limit Line Level Factor Loss Remark 10% dBuV/n dB dBuV/m dBuV dB dB

1 2474.400 81.82 -32.18 114.00 46.33 29.19 6.30 Peak

Data#: 13 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

: FCC PART 15 AV 2.4 3m 3115 FACTOR VERTICAL Condition

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

: DC 5V Adaptor bout AC 120V/60Hz Test Spec

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.474GHz Comment

Memo

Over Limit Read Probe Freq Level Limit Line Level Factor Loss Remark 196z dBuV/n dB dBuV/m dBuV dB dB

1 2474.400 66.82 -27.18 94.00 31.33 29.19 6.30 Rverage

4. BAND EDGES MEASUREMENT

4.1.Test Equipment

The following test equipment were used during the Emission Bandwidth Test:

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Spectrum	Agilent	E4407B	MY41440292	May 15, 06	1 Year
2	Amp	HP	8449B	3008A00863	May 15, 06	1 Year
3	Antenna	EMCO	3115	9607-4877	Jun. 05, 05	1.5 Year
4	HF Cable	Hubersuhne	Sucoflex 104	-	May 15, 06	1 Year

4.2.Block Diagram of Test Setup

(EUT: 2.4G RF CHALKBOARD)

4.3.Test Standard

The test completeness FCC 15C (249).

4.4.Bandwidth Limit

200kHz wide centered on the operation frequency.

4.5.Test Procedure

PASS.

The testing data was attached in the next pages.

Data#: 30 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber Condition : 3m 3115 FACTOR EUT : 2.4G RF CHALKBOARD

M/N 1 CB-06-01 V OP Condition : TX mode

Test Spec : DC 5V Adaptor bout AC 120V/60Hz

Test Engineer : Iceman

: Temp:23'C Humi:54% : TX 2.408GHz Comment

Memo

eares L								
	Freq	Level		Limit Line	LATER STORY		2000	
	10(z	d≱u∀/n	dB	dBuV/m	dBuV	dB	dB	
1	2399.900	42.26			36.06	0.00	6.20	Peak
2	2400.000	42.06			35.86	0.00	6.20	Peak
3	2408,600	63.08			56.88	0.00	6.20	Peak

Data#: 9 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber Condition : 3m 3115 FACTOR EUT : 2.4G RF CHALKBOARD

M/N 1 CB-06-01 V OP Condition : TX mode

Test Spec : DC 5V Adaptor biput AC 120V/60Hz

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.444GHz Comment

	Freq	Level		Limit Line			20000	
	ME	d≱u∀/n	dB	dBuV/m	dBuY	dB	dB	
1	2399.900	42.42			36.22	0.00	6.20	Peak
2	2400.000	42.50			36.38	0.00	6.20	Peak
3	2444 600	64.52			58.27	0.00	6.25	Peak

Data#: 19 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber Condition : 3m 3115 FACTOR EUT : 2.4G RF CHALKBOARD

M/N 1 CB-06-01 V OP Condition : TX mode

Test Spec : DC 5V Adaptor Input AC 120V/60Hz

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.474GHz Comment

			12.000	Limit	The state of the s		200000000000000000000000000000000000000	
		Level dBu∀/n		Idne dBuV/m			dB	Remark.
1	2399.900	42.70			36.50	0.00	6.20	Peak
2	2400.000	42.85			36.65	0.00	6.20	Peak
3	2474 400	66.57			60.27	0.00	6.30	Peak

Data#: 29 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber Condition : 3m 3115 FACTOR EUT : 2.4G RF CHALKBOARD

M/N 1 CB-06-01 V OP Condition : TX mode

Test Spec : DC 5V Adaptor Input AC 120V/60Hz

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.408GHz Comment

		Level	Limit	Limit Lime dBuV/m	Level	Factor	7 1700 7 17	
-								
1	2408.600	62.97			56.77	0.00	6.20	Peak
2	2483.500	42.53			36.23	0.00	6.30	Peak
2	2492 600	42.55			26 25	0 00	6 30	Beak

Data#: 10 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber Condition : 3m 3115 FACTOR EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor bout AC 120V/60Hz

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.444GHz Comment

	Freq	Level	Level Limit	Line	LUCION TO SERVICE SERV		2000	Remark.
)9(z	d≱u∀/n	dB	dBuV/m	d₽u¥	dB	dB	
1	2444.600	61.92			55.67	0.00	6.25	Peak
2	2483.500	43.02			36.72	0.00	6.30	Peak
3	2483.600	43.05			36.75	0.00	6.30	Feak.

Data#: 20 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : site

Condition : 3m 3115 FACTOR EUT : 2.4G RF CHALKBOARD

M/N 1 CB-06-01 V OP Condition : TX mode

Test Spec : DC 5V Adaptor biput AC 120V/60Hz

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.474GHz Comment

	Freq	Level		Limit Line	LUCION TO SERVICE SERV	0.500	7 1700 7 17	
-	ME	d≱u∀/n	dB	dBuV/m	dBuY	dB	dB	
1	2474.400	64.26			57.96	0.00	6.30	Peak
2	2483.500	43.24			36.94	0.00	6.30	Peak
3	2492 600	43.25			26.95	0 00	6 30	Beak

5. DEVIATION TO TEST SPECIFICATIONS

[NONE]

APPENDIX I

NO.6, Ke Feng Road, Block 52 Shenzhen Science & Industry Park, Guangdong, China Tel:+86-755-26639495-7 Fax:+86-755-26632877 Postcode:518057

Site :2# Conduction site Condition :FCC PART 15B KNW-407 VA

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V

Power :DC 5V Adaptor Input AC 120V/60Hz

Test Hode :TX MODE Test Engineer:Qiyuang

Comment :Temp:23' Humi::50%

Hemo :

NO.6, Ke Feng Road, Block 52 Shenzhen Science & Industry Park, Guangdong, China Tel:+86-755-26639495-7 Fax:+86-755-26632877 Postcode:518057

Site :2# Conduction site Condition :FCC PART 15B KHW-407 VB

EUT : 2.46 RF CHALKBOARD

H/H : CB-06-01V

Power :DC 5V Adapter Input AC 120V/60Hz

Test Mode :TX MODE Test Engineer:Qiyuang

Comment :Temp:23' Humi::50%

Hemo :

APPENDIX II

No.6 Ke Feng Road Block 52, Nan shan Science@Industry shen zhen Guangdong http://www.audiz.com.cn

Site 3# Chamber

Condition FCC PART 15B 3m 2598FACTOR HORIZONTAL

EUT 2.4G RF CHALKBOARD

M/N CB-06-01V OP Condition TX mode

Test Spec : DC 5V Adaptor Input AC 120V/60Hz

Test Engineer iceman

Comment Temp:23°C Humi:54%

No.6 Ke Feng Road Block 52, Nan shan Science@Industry shen zhen Guangdong http://www.audiz.com.cn

Site 3# Chamber

Condition FCC PART 15B 3m 2598FACTOR VERTICAL

EUT 2.4G RF CHALKBOARD

M/N CB-06-01V OP Condition TX mode

Test Spec : DC 5V Adaptor Input AC 120V/60Hz

Test Engineer iceman

Comment Temp:23°C Humi:54%

Data#: 21 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 PEAK 2.4 3m 3115 FACTOR HORIZONTAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor biput AC 120V/60Hz

Test Engineer : Iceman

Comment : Temp:23°C Humi:54% Memo : TX 2.408 GHz

Data#: 24 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 PEAK 2.4 3m 3115 FACTOR VERTICAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor bout AC 120V/60Hz

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.408 GHz Comment

Data#: 1 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 PEAK 2.4 3m 3115 FACTOR HORIZONTAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor bout AC 120V/60Hz

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.444GHz Comment

Data#: 4 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 PEAK 2.4 3m 3115 FACTOR VERTICAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor bout AC 120V/60Hz

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.444GHz Comment

Data#: 14 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 PEAK 2.4 3m 3115 FACTOR HORIZONTAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor bout AC 120V/60Hz

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.474GHz Comment

Data#: 11 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 PEAK 2.4 3m 3115 FACTOR VERTICAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor bout AC 120V/60Hz

Test Engineer : Iceman

: Temp:23°C Humi:54% : TX 2.474GHz Comment

Data#: 27 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 PEAK 2.4 3m 3115FACTOR HORIZONTAL

EUT : 2.4G RF CHALKBOARD

M/N : JME-8210 OP Condition : TX mode

Test Spec : DC 5V Adaptor biput AC 120V/60Hz

Test Engineer : Iceman

Comment : Temp:23' Humi:50% Memo : TX 2.408GHz

Data#: 28 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 PEAK 2.4 3m 3115FACTOR VERTICAL

EUT : 2.4G RF CHALKBOARD

M/N : JME-8210 OP Condition : TX mode

Test Spec : DC 5V Adaptor biput AC 120V/60Hz

Test Engineer : TX Mode

Comment : Temp:23' Humi:50% Memo : TX 2.408GHz

Data#: 7 File#: D:\1# test data\2006 Report Data\T\TZT\ACS6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 PEAK 2.4 3m 3115FACTOR HORIZONTAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor biput AC 120V/60Hz

Test Engineer : Iceman

Comment : Temp:23' Humi:50% Memo : TX 2.444GHz

Data#: 8 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 PEAK 2.4 3m 3115FACTOR VERTICAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX mode

Test Spec : DC 5V Adaptor biput AC 120V/60Hz

Test Engineer : TX Mode

Comment : Temp:23' Humi:50% Memo : TX 2.444GHz

Data#: 17 File#: D:\1# test data\2006 Report Data\T\TZT\ACS6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 PEAK 2.4 3m 3115FACTOR HORIZONTAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX Mode

Test Spec : DC 5V Adaptor biput AC 120V/60Hz

Test Engineer : Iceman

Comment : Temp:23' Humi:50% Memo : TX 2.474GHz

Data#: 18 File#: D:\1# test data\2006 Report Data\T\TZT\AC\$6Q578.EMI

Site : 1# Chamber

Condition : FCC PART 15 PEAK 2.4 3m 3115FACTOR VERTICAL

EUT : 2.4G RF CHALKBOARD

M/N : CB-06-01V OP Condition : TX Mode

Test Spec : DC 5V Adaptor bout AC 120V/60Hz

Test Engineer : Iceman

Comment : Temp:23' Humi:50% Memo : TX 2.474GHz