EA044A - Planejamento e Análise de Sistemas de Produção

10. Semestre de 2009 - Prova 3 - Prof. Vinícius A.Armentano

Questão 1

$$y_i = \left\{ \begin{array}{ll} 1 & \text{se o lingote } i \text{ \'e selecionado} \\ 0 & \text{caso contr\'ario} \end{array} \right.$$

$$x_{ij} = \left\{ \begin{array}{ll} 1 & \text{se o lingote } i \text{ \'e usado para o produto } j \\ 0 & \text{caso contr\'ario} \end{array} \right.$$

$$\min \sum_{i=1}^{600} \sum_{j=1}^{130} c_{ij} x_{ij}$$

$$\sum_{i=1}^{600} y_i = 6$$

$$\sum_{i=1}^{600} x_{ij} = 1 \quad j = 1, \dots, 130$$

$$x_{ij} \leq y_i, \quad i = 1, \dots, 130; \ j = 1, \dots, 600$$

$$x_{ij}, y_i \in \{0, 1\}, \ \forall i, j$$

Questão 3

$$\begin{aligned} y_i &= \left\{ \begin{array}{ll} 1 & \text{se a máquina } i \ \text{\'e alugada} \\ 0 & \text{caso contrário} \end{array} \right. \\ x_i &= \text{ número de produtos do tipo } i \text{ produzidos} \\ \max{12x_1 + 8x_2 + 15x_3} - \left[4x_1 + 6x_2 + 8x_3 + 200y_1 + 150y_2 + 100y_2 \right] \\ 3x_1 + 2x_2 + 6x_3 &\leq 150 \\ 4x_1 + 3x_2 + 4x_3 &\leq 300 \\ x_1 &\leq 50y_1 & \min\{150/3, 300/4\} = 50 \\ x_2 &\leq 75y_2 & \min\{150/2, 300/3\} = 75 \\ x_3 &\leq 25y_3 & \min\{150/6, 300/4\} = 25 \\ y_i &\in \{0,1\}, \ x_i \in Z_+, \ i = 1, 2, 3 \end{aligned}$$

Questão 2

 $f_t(d)$ = probabilidade máxima que o sistema 3, 2, 1 funcione de \$d está disponível para gastar na compra de sobressalentes

 $x_t(d)$ = número de sobressalentes para atingir $f_t(d)$

$$f_3(500) = f_3(400) = 0,98$$
 $x_3(500) = x_3(400) = 2$
 $f_3(300) = f_3(200) = 0,90$ $x_3(300) = x_3(200) = 1$
 $f_3(100) = f_3(0) = 0,70$ $x_3(100) = x_3(0) = 0$

$$f_2(500) = \max \left\{ \begin{array}{ll} 0,60f_3(500) = 0,588 & \text{(adicione 0 sobressalente)} \\ 0,85f_3(200) = 0,765^* & \text{(adicione 1 sobressalente)} \end{array} \right.$$

$$f_2(400) = \max \left\{ \begin{array}{ll} 0,60f_3(400) = 0,588 & \text{(adicione 0 sobressalente)} \\ 0,85f_3(100) = 0,595^* & \text{(adicione 1 sobressalente)} \end{array} \right.$$

$$f_2(300) = \max \left\{ \begin{array}{ll} 0,60f_3(300) = 0,54 & \text{(adicione 0 sobressalente)} \\ 0,85f_3(0) = 0,595^* & \text{(adicione 1 sobressalente)} \end{array} \right.$$

$$f_1(500) = \max \left\{ \begin{array}{ll} 0,85f_2(500) = 0,650^* & \text{(adicione 0 sobressalente)} \\ 0,90f_2(400) = 0,535 & \text{(adicione 1 sobressalente)} \\ 0,95f_2(300) = 0,565 & \text{(adicione 2 sobressalente)} \end{array} \right.$$

Portanto, adicione $x_1(500) = 0$ sobressalente ao sistema 1, $x_2(500 - 0) = 1$ sobressalente ao sistema 2, e $x_3(500 - 300) = 1$ sobressalente ao sistema 3. A probabilidade que os três sistemas funcionem é 0,650.

Questão 4

a) [limitante inferior, limitante superior] = $[-\infty,11]$

O limitante inferior corresponde à melhor solução inteira encontrada até então. Como não há soluções inteiras, este limitante é $-\infty$. Como os coeficientes da função objetivo são inteiros, então o limitante superior dentre os nós ativos é 11.

b) [limitante inferior, limitante superior] = [9,11]

Melhor solução inteira no nó 5, com z=9, e podemos afirmar que a solução ótima será no mínimo 9.

c)

Nó	Limitante Superior	Limitante Inferior
1	11	$-\infty$
2	11	$-\infty$
3	11	$-\infty$
4	11	$-\infty$
5	11	9
6	11	9
7	11	9
2 3 4 5 6 7 8 9	11	9
9	11	9
10	11	9
11	11	10
12	11	10
13	11	11
14	11	11
15	11	11

- d) Porque neste nó todas as variáveis têm valor inteiro.
- e) Porque nestes nós o valor da relaxação linear era \leq ao valor da melhor solução inteira (limitante inferior):
 - Nó 7 : Limitante inferior = 9, encontrado no nó 5.
 - Nó 15: Limitante inferior = 11, encontrado no nó 13.
 - f) Porque nenhum dos critérios de eliminação se aplica a este nó:
 - Otimalidade: não é solução inteira.
 - Factibilidade: a solução é factível.
 - Qualidade: limitante superior deste nó é 10 e é maior que o limitante inferior global atual: nó 5, z = 9.

Portanto, o nó 10 pode gerar soluções inteiras de melhor qualidade.