Econ720 - TA Session 6

Yanran Guo

UNC-Chapel Hill

2019. 10. 4

1. The Growth Model: Discrete Time

Transversality Condition (P13)

$$\lim_{t\to\infty}\beta^t u'(c_t)k_{t+1}=0$$

- Best treatments: Kamihigashi (2001, 2002, 2008)
- Intuition
 - Capital should not grow too fast compared to marginal utility
 - If I save too much or spend too little, I'm not behaving optimally
- → TVC prevents capital from exploding

1. The Growth Model: Discrete Time

Transversality Condition (P13) In infinite horizon problem, when defining the solution to planner or household problem, always remember to write boundary conditions: initial condition + TVC (P13, P17)

Why there is no TVC in OLG model?

2. The Growth Model: Discrete Time - Dynamic Programming

Solve the model using

- Sequence language
 - Lagrangean: FOC, EE
- Recursive formulation/structure
 - (DP) Bellman equation (P9): VF, PF, state/control var., FOC, EC, EE
 - state variable: everything that is relevant at time t, but cannot be changed anymore is a state

3. The Growth Model: Discrete Time - Competitive Equilibrium

- *(P5) How to define solution when using
 - sequence language
 - DP/ recursive formulation

CE vs. Recursive CE

	CE	Recursive CE
HH	DP or Lagrangean	DP (P15)
Firm	without/with t (P6)	agg. state var. (P16)
Equilibrium	Same as before (P8)	RCE (P17)

3. The Growth Model: Discrete Time - Competitive Equilibrium

Recursive Competitive Equilibrium

Key feature: aggregate state

 HH optimal decision depends on private state and aggregate state

$$k' = h(k, K)$$

 Firm optimal input depends on price which depends on aggregate state

$$q(K)$$
, $w(K)$

