California State University Sacramento - Math 101 $\mathbf{Quiz} \ \# \mathbf{6}$

Name: _____

- 1) Let $X = \{1, 2, \dots, 13, 14\}.$
- (a) Find the number of 2-combinations of X. Simplify your answer as much as possible. (1 point)
- (b) Find the number of 5-combinations of X that do not contain a pair of consecutive integers. Write your answer as a binomial coefficient. (1 point)

(a)
$$\binom{14}{2} = \frac{14.13}{2} = 7.13 = 91$$

$$\begin{pmatrix} b \end{pmatrix} \begin{pmatrix} 14-5+1 \\ 5 \end{pmatrix} = \begin{pmatrix} 10 \\ 5 \end{pmatrix}$$

2) Find the number of 13-digit binary sequences with nine 0's and four 1's such that no two 1's are adjacent. (2 points)

Choose four positions for the 1's such that no positions are adjacent.

$$\begin{pmatrix} 13 - 4 + 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \end{pmatrix}$$

- 3) (a) Let $X = \{\{1\}, y\}$. Find all elements of $\mathcal{P}(X)$ (the power set of X). (1 point)
- (b) If Y is a set with 6 elements, how many elements are in $\mathcal{P}(Y)$? (1 point)

4) Find the number of shortest routes from O to P that pass through the street AB. (2 points)

$$\begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 2 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$

- 5) Suppose that k and n are positive integers with $3 \le k \le n$ and that $a_1, \ldots, a_n, b_1, \ldots, b_n$ are 2n distinct elements. Form the n pairs $\{a_1, b_1\}, \{a_2, b_2\}, \ldots, \{a_n, b_n\}$.
- (a) Find the number of subsets of $\{a_1, \ldots, a_n, b_1, \ldots, b_n\}$ of size k that contain two elements from the same pair. (1 point)
- (b) Find the number of subsets of $\{a_1, \ldots, a_n, b_1, \ldots, b_n\}$ of size k that contain exactly one of the pairs. (1 point)

(b)
$$\binom{n}{k-2}$$
 2^{k-2}

chaose choose choose one one paor $k-2$ poirs from of the so have two people

two people