Название организации

«»	2016 г
	ФИО зав. кафедрой
зав. кафедрой	
Диссертация допу	ищена к защите

ДИССЕРТАЦИЯ на соискание ученой степени МАГИСТРА

Тема: Тема диссертации

Направление:	11111 – Название направления
Магистерская программа:	11111 – Название программы
Выполнил студент гр. 111	⁷ 1 ФИО автора
Научный руководитель, д. фм. н., ст. н. с.	ФИО руководителя
Рецензент, д. фм. н., в. н. с.	ФИО рецензента
Консультант по вопросам	
охраны труда,	
к. т. н., доц.	ФИО консультанта

Оглавление

Введение	3
Глава 1. Картирование с прямой и обратной моделью сенсора .	4
1.1. Картирование с обратной моделью сенсора	4
Заключение	7
Список литературы	8
Приложение А. Заголовок приложения	Q

Введение

Глава 1

Картирование с прямой и обратной моделью сенсора

В этой главе рассматриваются 2 классических метода построения карт проходимости. TODO

1.1. Картирование с обратной моделью сенсора

Пусть m_i - клетка карты проходимости m. Будем считать, что каждая клетка m_i - бинарная случайная величина, принимающая два значения: {свободная, занятая}. Наблюдением сенсора z_t будем называть измерение и позу датчика в момент времени t, где это измерение было сделано. Вместо того, чтобы напрямую решать задачу картирования, будем искать вероятность занятости некоторой карты m при наблюдениях $z_1, ..., z_T$

$$p(m|z_1,...,z_T) \equiv p(m|z_{1,T})$$

Основная проблема в том, что карта проходимости m принадлежит пространству большой размерности. Чтобы обойти эту проблему при оценке $p(m|z_{1,T})$, вводится предположение о том, что клетки карты m_i - случайные, независимые величины. Тогда

$$p(m|z_{1,T}) = \prod_{i} p(m_i|z_{1,T})$$

Таким образом, достаточно понять, как можно оценить вероятность занятости клетки i при известных наблюдениях $z_{1,T}$. Разложим $p(m_i|z_t)$ по правилу Баеса:

$$p(m_i|z_{1,t}) = \frac{p(z_t|m_i, z_{1,t-1})p(m_i|z_{1,t-1})}{p(z_t|z_{1,t-1})}$$
(1.1)

В предположении статичности окружения, ясно, что наблюдение z_t не зависит от предыдущих наблюдений, при условии заданной карты проходимости m:

$$p(z_t|m, z_{1,t-1}) = p(z_t|m)$$

Это действительно верно в предположении о статичности окружения. Однако, в этом методе делается более сильное утверждение (не всегда применимое): наблюдение z_t не зависит от предыдущих измерений при заданном состоянии клетки m_i , в независимости от состояний соседних клеток.

$$p(z_t|m_i, z_{1,t-1}) = p(z_t|m_i)$$
(1.2)

Подставив в (1.1) формулу выше, снова воспользуемся правилом Баеса

$$p(m_i|z_{1,t}) = \frac{p(z_t|m_i)p(m_i|z_{1,t-1})}{p(z_t|z_{1,t-1})} = \frac{p(m_i|z_t)p(z_t)p(m_i|z_{1,t-1})}{p(m_i)p(z_t|z_{1,t-1})}$$
(1.3)

Напомним, что эта формула написана для случая, когда m_i занята. Похожую формулу можно получить для свободной m_i :

$$p(\overline{m_i}|z_{1,t}) = \frac{p(\overline{m_i}|z_t)p(z_t)p(\overline{m_i}|z_{1,t-1})}{p(\overline{m_i})p(z_t|z_{1,t-1})}$$
(1.4)

Поделив (1.3) на (1.4) получим

$$\frac{p(m_i|z_{1,t})}{p(\overline{m_i}|z_{1,t})} = \frac{p(z_t|m_i)}{p(\overline{m_i}|z_t)} \frac{p(\overline{m_i})}{p(m_i)} \frac{p(m_i|z_{1,t-1})}{p(\overline{m_i}|z_{1,t-1})}$$
(1.5)

Заметим, что $p(\overline{m_i})=1-p(m_i)$. Поэтому, переписав (1.5) в виде log-odds $l(p(m_i))=\log \frac{p(m_i)}{1-p(m_i)}$, окончательно получаем формулу позволяющую рекурсивно вычислять $l(m_i|z_{1,t})$

$$l(m_i|z_{1,t}) = l(z_t|m_i) - l(m_i) + l(m_i|z_{1,t-1})$$
(1.6)

Алгоритм 1: Картирование с обратной моделью сенсора

Инициализация

for all
$$m_i$$
 in m do
$$l_i = \log \frac{p(m_i)}{1 - p(m_i)}$$

end

Pекурсивное обновление log-odds

for all
$$z_t$$
 do

end

Получение вероятностей из log-odds

for all
$$m_i$$
 in m do
$$p(m_i|z_{1,T}) = 1 - e^{-l_i}$$

end

Заключение

Список литературы

Приложение А

Заголовок приложения