

INF 638 Cryptography & Cryptosystems

Section 8: RSA Asymmetrical Cryptography

Dr. Bertrand Cambou

Professor of Practice NAU, Cybersecurity
School of Informatics, Computing, and Cyber-Systems
Bertrand.cambou@nau.edu

INF 633: Cryptography & Cryptosystems

- 1- Motivation & Definitions
- 2- Elements of Number theory
- 3- Early Cryptographic methods
- 4- Symmetrical Cryptography: DES
- 5- Symmetrical Cryptography: AES
- 6- Quantum Cryptography: Key distribution
- 7- Elements of Asymmetrical Cryptography
- **8-** Asymmetrical Cryptography: RSA
- 9- ECC Key Distribution
- **❖ 10-** PKI & Digital Signatures
- 11- Hash Functions
- 12- Smartcards

RSA Cryptography

- Pick two prime numbers p, and q
- $Arr N = p \times q \rightarrow \Phi(N)$
- Find e, a coprime of Φ (N)
- Find d, the inverse of e
- Encrypt/decrypt

<u>Mathematics</u>

Euler

Euclidian

Extended Euclidian

Fermat-Euler

Fast multiply modulo

8-RSA Cryptography

- 8-1 Number theory
 - Euclidian algorithms
 - Extended Euclidian algorithms
 - Euler-Fermat theorems
- ❖ 8-2 RSA protocol
- ❖ 8-3 Fast multiply modulo

Reminder

Construction of the finite field \mathbb{Z}_m , with modulo m

1- The set
$$\mathbb{Z}_m = \{0, 1, 2, ..., m-1\}$$

2- The two operations "+" and "x" for all of a and b $\in \mathbb{Z}_m$ are "closed":

$$a + b \equiv c \mod m$$
; then $c \in \mathbb{Z}_m$

$$a \times b \equiv d \mod m$$
; then $d \in \mathbb{Z}_m$

3- Associativity for all of a, b, $c \in \mathbb{Z}_m$:

$$a + (b + c) \equiv (a + b) + c \mod m$$

$$a x (b x c) \equiv (a x b) x c mod m$$

Reminder

Construction of the finite field \mathbb{Z}_m , with modulo m

4- There is a "O" for "+", and "1" for "x" for all elements a of \mathbb{Z}_m : $a + 0 \equiv a \mod m$ $a \times 1 \equiv a \mod m$

5- The negative inverse exist for the addition (not in \mathbb{Z}_m) such as: $a + (-a) \equiv 0 \mod m$

6- The negative inverse exist for the multiplication within \mathbb{Z}_m :

$$a \times a^{-1} \equiv 1 \mod m$$

Only if $gcd(a, m) = 1$

Find gcd(m,n) greater common denominator

Prime factorization does not work for large numbers

Find a_1 , a_2 , ..., a_f prime numbers of $m = a_1^{e_1} a_2^{e_2} \dots a_f^{e_f}$

Find b_1 , b_2 , ..., b_k prime numbers of $n = b_1^{g_1} b_2^{g_2} \dots b_f^{g_k}$

Example find

gcd(5040,2100); gcd(2366,1456); gcd(11319,7623)

Euclidian Algorithm (EA) - Method to find gcd How to simplify prime factorization

The gcd of integers
$$r_0$$
 and r_1 is: $g = gcd(r_0, r_1)$

if
$$r_0 > r_1$$
 $r_0 \equiv r_2 \mod r_1$ \rightarrow $g = \gcd(r_1, r_2)$

Euclidian Algorithm (EA) - Method to find gcd

i	ri	r i+1	ri+2 =ri — k (ri+1)				
0	ro =	r1 =	r2 =				
1	r1 =	r2 =	r3 =				
2	r2 =	<i>r</i> 3 =	r4 =				
3	r3 =	r4 =	r5 =				
i	r i =	$r_{i+1} = g r_i$	ri+2 = 0				
i+1	<i>r</i> i+1 = <i>g</i>						
i+2	ri+2 = 0						

When
$$r_{i+2} = 0 \rightarrow g = r_{i+1}$$

Example#1 of the use of EA: Find g = gcd (973, 301)

i	ri	r i+1	ri+2 =ri — k (ri+1)		
0	<i>ro</i> = 973	<i>r</i> ₁ = 301	r2 =		
1	<i>r</i> ₁ = 301	r2 =	r3 =		
2	r2 =	r3 =	r4 =		
3	r3 =	r4 =	r5 =		
4	r4 =				
5	<i>r</i> 5 =				

Example#2 of the use of EA: Find g = gcd (1131, 481)

i	ri	r i+1	ri+2 =ri — k (ri+1)		
0	<i>ro</i> = 1131	r1 = 481	r2 =		
1	r1 = 481	r2 =	r3 =		
2	r2 =	<i>r</i> 3 =	r4 =		
3	r3 =	r4 =	<i>r</i> 5 =		
4	r4 =	<i>r</i> 5 =	r6 =		
5	<i>r</i> 5 =				
6	r6 =				

Homework – 6: Use EA to find:

gcd(5040,2100) gcd(2366,1456)

gcd(11319,7623)

i	r i	r i+1	ri+2 =ri – k (ri+1)
0	ro =	r1 =	r2 =
1	<i>r</i> 1 =	r2 =	r3 =
2	r2 =	r3 =	r4 =
3	r3 =	r4 =	<i>r</i> 5 =
4	r4 =	<i>r</i> 5 =	r6 =
5	<i>r</i> 5 =	r6 =	<i>r</i> 7 =
6	r6 =	<i>r</i> 7 =	r8 =

RSA Cryptography

- 1- Number theory
 - Euclidian algorithms
 - Extended Euclidian algorithms
 - Euler-Fermat theorems
- 2- RSA protocol
- 3- Fast multiply modulo

Extended Euclidian Algorithm (EEA) Diophantine equation

Assuming
$$g = gcd(r_0, r_1)$$
 with $r_0 > r_1$

it exist *s* and *t* such as

$$g = sr_0 + tr_1$$

Extended Euclidian Algorithm (EEA)

Method to find an inverse

Diophantine equation

 $; t_0 = 0$

Assuming $g = gcd(r_0, r_1)$ with $r_0 > r_1 =$ it exist s and t such as $g = sr_0 + tr_1$

$$r_0 = s_0 r_0 + t_0 r_1 \rightarrow s_0 = 1$$

$$r_1 = s_1 r_0 + t_1 r_1 \rightarrow s_1 = 0$$
 ; $t_1 = 1$

$$r_0 = q_1 r_1 + r_2$$
 $r_2 = s_2 r_0 + t_2 r_1$ $\rightarrow s_2 = 1$; $t_2 = -q_1$

$$r_1 = q_2 r_2 + r_3$$
 $r_3 = s_3 r_0 + t_3 r_1$ $\rightarrow s_3 = -q_2$; $t_3 = 1 + q_1 q_2$

$$r_{i-2} = q_{i-1}r_{i-1} + r_i$$
 $r_i = s_i r_0 + t_i r_1$ $\Rightarrow s_i = s_{i-2} - q_{i-1} s_{i-1}$; $t_i = t_{i-2} - q_{i-1} t_{i-1}$

$$r_{i-1} = q_i r_i + r_{i+1}$$

The iteration stops when r_{i+1} = 0 $\Rightarrow r_{i-1}$ = $q_i r_i$ r_i divide all terms $r_0, r_1, ..., r_{i-1}$

$$\rightarrow r_i = g$$
; $s = s_i$; $t = t_i$

Extended Euclidian Algorithm (EEA): how to find s and t?

Serie	R R_i	$oldsymbol{Q}_i$	S <i>S i</i>	T_i	Euclidian Algorithm (EA) $R_i = Q_{i+1} R_{i+1} + R_{i+2}$	EEA: S $S_i = S_{i-2} - Q_{i-1} S_{i-1}$	EEA: T $T_i = T_{i-2} - Q_{i-1} T_{i-1}$
0	$R_0 =$	-	$S_0 = 1$	$T_0 = 0$	R0 = Q1 R1 + R2		
1	R ₁ =	<i>Q</i> ₁ =	$S_1 = 0$	$T_1 = 1$	R1 = Q2 R2 + R3		
2	R ₂ =	Q ₂ =	S ₂ =	<i>T</i> ₂ =	R2 = Q3 R3 + R4	S2 = S0 - Q1 S1	T2 = T0 - Q1 T1
3	R ₃ =	Q ₃ =	S ₃ =	<i>T</i> ₃ =	R3 = Q4 R4 + R5	S3 = S1 – Q2 S2	T3 = T1 – Q2 T2
4	R ₄ =	Q ₄ =	S ₄ =	$T_4 =$	R4 = Q5 R5 + R6	S4 = S2 – Q3 S3	T4 = T2 – Q3 T3
5	R ₅ =	Q ₅ =	S ₅ =	<i>T</i> ₅ =	R5 = Q6 R6 + R7	S5 = S3 – Q4 S4	T5 = T3 – Q4 T4
i-1	$R_{i-1} =$	Q_{i-1} =	$S_{i-1} =$	T_{i-1} =	Ri-1 = Q7 Ri + 0	Si-1 = Si-3 — Qi-2 Si-2	Ti-1 = Ti-3 — Qi-2 T1-2
i	$R_i = g$	$Q_i =$	$S_i = s$	$T_i = t$	Stop	Si = Si-2 — Qi-1 Si-1	Ti = Ti-2 — Qi-1 T1-1
i+1	<i>r</i> i-1 = 0						

Example: \underline{s} and \underline{t} for gcd(973, 301) = s(973) + t(301)

	R R_i	$oldsymbol{Q}_i$	S <i>S</i> _i	T T_i	Euclidian Algorithm (EA) $R_i = Q_{i+1} R_{i+1} + R_{i+2}$	EEA: S $S_i = S_{i-2} - Q_{i-1} S_{i-1}$	EEA: T $T_i = T_{i-2} - Q_{i-1} T_{i-1}$
0	$R_0 = 973$	-	$S_0 = 1$	$T_0 = 0$	R0 = Q1 R1 + R2		
1	$R_1 = 301$	<i>Q</i> ₁ =	$S_1 = 0$	$T_1 = 1$	R1 = Q2 R2 + R3		
2	R ₂ =	Q ₂ =	S ₂ =	<i>T</i> ₂ =	R2 = Q3 R3 + R4	S2 = S0 - Q1 S1	T2 = T0 - Q1 T1
3	R ₃ =	Q ₃ =	S ₃ =	<i>T</i> ₃ =	R3 = Q4 R4 + R5	S3 = S1 - Q2 S2 -4 = 0 - 4 x 1	T3 = T1 – Q2 T2
4	R ₄ =	Q ₄ =	S ₄ =	$T_4 =$		S4 = S2 – Q3 S3	T4 = T2 – Q3 T3
5	R ₅ =						

Example: s and t for gcd(11200, 3533)= s (11200) + t (3533)

Serie i	$oldsymbol{R}_i$	$oldsymbol{Q}_i$	$oldsymbol{S}_i$	$oldsymbol{T}_{t}$	Euclidian Algorithm (EA) $R_i = Q_{i+1} R_{i+1} + R_{i+2}$	EEA: S $S_i = S_{i-2} - Q_{i-1} S_{i-1}$	EEA: T $T_i = T_{i-2} - Q_{i-1} T_{i-1}$
0	$R_0 = 11200$	-	$S_0 = 1$	$T_0 = 0$	R0 = Q1 R1 + R2		
1	<i>R</i> ₁ = 3533	<i>Q</i> ₁ =	$S_1 = 0$	<i>t</i> ₁ = 1	R1 = Q2 R2 + R3		
2	<i>R</i> ₂ =	<i>Q</i> ₂ =	<i>S</i> ₂ =	<i>T</i> ₂ =	R2 = Q3 R3 + R4	S2 = S0 - Q1 S1	T2 = T0 – Q1 T1
3	R_3 =	<i>Q</i> ₃ =	<i>S</i> ₃ =	<i>T</i> ₃ =	R3 = Q4 R4 + R5	S3 = S1 – Q2 S2	T3 = T1 – Q2 T2
4	R_4 =	<i>Q</i> ₄ =	<i>S</i> ₄ =	$T_4 =$	R4 = Q5 R5 + R6	S4 = S2 – Q3 S3	T4 = T2 – Q3 T3
5	<i>R</i> ₅ =	<i>Q</i> ₅ =	<i>S</i> ₅ =	<i>T</i> ₅ =	R5 = Q6 R6 + R7	S5 = S3 – Q4 S4	T5 = T3 – Q4 T4
6	<i>R</i> ₆ =	<i>Q</i> ₆ =	<i>S</i> ₆ =	<i>T</i> ₆ =	R6 = Q7 R7 + R8	S6 = S4 – Q5 S5	T6 = T4 – Q5 T5
7	R ₇ =	Q ₇ =	<i>S</i> ₇ =	<i>T</i> ₇ =	R7 = Q8 R8 + 0	S7 = S5 – Q6 S6	T7 = T5 – Q6 T6
8	<i>r</i> =	Q ₈ =	<i>s</i> =	<i>t</i> =		S8 = S6 – Q7 S7	T8 = T6 – Q7 T7

Homework 7: EEA: how to find s and t for gcd(12345, 3473)

Serie i	R R_i	$egin{array}{c} oldsymbol{Q}_i \end{array}$	S <i>S i</i>	T T_i	Euclidian Algorithm (EA) $R_i = Q_{i+1} R_{i+1} + R_{i+2}$	EEA: S $S_i = S_{i-2} - Q_{i-1} S_{i-1}$	EEA: T $T_i = T_{i-2} - Q_{i-1} T_{i-1}$
0	$R_0 =$	-	$S_0 = 1$	$T_0 = 0$	R0 = Q1 R1 + R2		
1	$R_1 =$	<i>Q</i> ₁ =	$S_1 = 0$	$T_1 = 1$	R1 = Q2 R2 + R3		
2	R ₂ =	Q ₂ =	<i>S</i> ₂ =	<i>T</i> ₂ =	R2 = Q3 R3 + R4	S2 = S0 - Q1 S1	T2 = T0 – Q1 T1
3	$R_3 =$	Q ₃ =	<i>S</i> ₃ =	$T_3 =$	R3 = Q4 R4 + R5	S3 = S1 – Q2 S2	T3 = T1 – Q2 T2
4	R ₄ =	Q ₄ =	S ₄ =	$T_4 =$	R4 = Q5 R5 + R6	S4 = S2 – Q3 S3	T4 = T2 – Q3 T3
5	R ₅ =	Q ₅ =	S ₅ =	<i>T</i> ₅ =	R5 = Q6 R6 + R7	S5 = S3 – Q4 S4	T5 = T3 – Q4 T4
6	R ₆ =	Q ₆ =	S ₆ =	<i>T</i> ₆ =	R6 = Q7 R7 + R8	S6 = S4 – Q5 S5	T6 = T4 – Q5 T5
7	R ₇ =	Q ₇ =	S ₇ =	<i>T</i> ₇ =	R7 = Q8 R8 + R9	S7 = S5 – Q6 S6	T7 = T5 – Q6 T6
8	R ₈ =	Q ₈ =	S ₈ =	T ₈ =	R8 = Q9 R9 + R10	S8 = S6 – Q7 S7	T8 = T6 – Q7 T7

RSA Cryptography

- 1- Number theory
 - Eucledian algorithms
 - Extented Eucledian algorithms
 - Euler-Fermat theorems
- 2- RSA protocol
- 3- Fast multiply modulo

Reminder

Little Fermat theorem

Theorem (little Fermat Theorem)

Let *n* be prime, a < n, a and *n* relatively primes, then: $a^{n-1} mod(n) = 1$

Other form: $a^n \mod (n) = a$

General form: $a^{k(n-1)} \mod (n) = 1$

Little Fermat theorem

Example #1:

$$8^7 \mod 7 = ?$$

Example #2:

$$2^{43} \mod 43 = ?$$

Euler's phi function

For integer $n>0 \in \mathbb{Z}_n = \{0, 1, 2, ..., n\}$ we define: $\phi(n)$ = number of positive integer lower than n relatively prime to n. [Ex: n=15, $\phi(15)=8$ (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)]

 \rightarrow If n is prime: $\phi(n)=(n-1)$

Theorem

If p, q are primes and $n=p \times q$ then: $\phi(n)=\phi(p) \times \phi(q)=(p-1) \times (q-1)$

Generalization

Assuming that n is the multiplication of m prime numbers: $n=p_1^{e_1}p_2^{e_2}\dots p_i^{e_i}\dots p_m^{e_m}$

$$\Phi$$
 (n) = $\prod_{i=1}^{m} (p_i^{e_i} - p_i^{e_{i-1}})$

Euler – Fermat theorem

<u>Theorem</u>

Let a < n, a and n relatively primes, then: $a^{\phi(n)} mod(n) = 1$

General form: $a^{k\phi(n)}mod(n) = 1$

Euler – Fermat theorem

Example

$$n = 12$$
 and $a = 5 = 0$ $(12) = 4$

$$5^5 \mod 12 = ?$$

$$5^{17} \mod 12 = ?$$

RSA Cryptography

- 1- Number theory
 - Eucledian algorithms
 - Extented Eucledian algorithms
 - Euler-Fermat theorems
- 2- RSA protocol
- 3- Fast multiply modulo

RSA: Key generation & encryption

1- Prepare n, e, d

1- Select p, q (large numbers, typ. = 1000bits) p and q are prime, $p \neq q$

2- Calculate n: $n = p \times q$

3- Calculate $\phi(n)$: $\phi(n) = (p-1)(q-1)$

4- Select integer $e: \gcd(\phi(n), e) = 1; e \in \{1, 2, ..., \phi(n) - 1\}$ Use EA

5- Calculate d: $dxe = 1 \mod \phi(n)$ Use EEA

Public Key \rightarrow $Kpub = \{e, n\}$ Private Key \rightarrow $Kpriv = \{d, n\}$ \rightarrow $\phi(n)$ is kept secret

RSA: Key generation & encryption

2- Encryption & decryption

6- Encryption $P \in \mathbb{Z}_n$ {0, 1, ..., n-1} - Two methods for C and C':

Plaintext: P < n

Cypher text C: $C = P^e \mod n$

Cypher text C': $C' = P^d \mod n$

7- Decryption C or $C' \in \mathbb{Z}_n$ {0, 1, ..., n-1}

Cypher text: Cor C'

Plaintext $P: P = C^d \mod n$

 $P = C'^e \mod n$

First example of RSA:

1)p = 3 and q = 11
2)n = 33
3)
$$\varphi$$
 (33) = 2 x 10 = 20
4)Let us pick e = 3
5)d = 3⁻¹ mod 20 = ?
if P=4

6)C = ?7)P = ?

Second example of RSA:

1)p = 101 and q = 113
2)n = 101 x 113 = 11413
3)
$$\varphi$$
 (11413) = 100 x 112 = 11200
4)Let us pick e = 3533
5)d = 3533⁻¹ mod 11200 = ?

if P=9726 (use exponent modulo calculator)

6)C =
$$9726^e \mod 11413 = ?$$

7)P = $C^d \mod 11413 = ?$

PKI with RSA Key exchange

RSA Cryptography

- 1- Number theory
 - Eucledian algorithms
 - Extented Eucledian algorithms
 - Euler-Fermat theorems
- 2- RSA protocol
- 3- Fast multiply modulo

Fast Exponentiation algorithm: square-multiply

X^8 : 7 multiplications vs 3

$$X^1 \times X = X^2$$
 $X^1 \times X^1 = X^{10}$

$$X^2 \times X = X^3$$
 $X^{10} \times X^{10} = X^{100}$

$$X^3 \times X = X^4$$
 $X^{100} \times X^{100} = X^{1000}$

$$X^4 \times X = X^5$$

$$X^5 \times X = X^6$$

$$X^6 \times X = X^7$$

$$X^7 \times X = X^8$$

X^{26} : 25 multiplications vs 6

 $X^1 \times X^1 = X^{10}$

 $X^{10} \times X^1 = X^{11}$

 $X^{11} \times X^{11} = X^{110}$

 X^{110} x X^{110} = X^{1100}

 $X^{1100} \times X^1 = X^{1101}$

 X^{1101} X^{1101} $= X^{11010}$

Square: add 0 on the right

Mult: add 1 on the right

O Square: add 0 on the right

Square: add 0 on the right

Mult: add 1 on the right

• Square: add 0 On the right

26 = 11010

8 = 1000

Fast Exponentiation – power analysis

5321 = 1010011001001

10		1	0	0	,	1		l	0	0			0	0	,	1
S	S	М	S	S	S	М	S	М	S	S	S	М	S	S	S	M
1	Ţ	1	1	1	Ţ	T	1	1	1	1	1	1	1	Ţ	1	↓
M	#W										<u> </u>					
ן יז י <i>ו</i> ן 	/ '	V "	Mili	Milh	/' ' 	<i>/</i> "	111	V"	Wit	N. I. A	/' '	V "	Mar.	Will	/' !	/" N

Optional Homework 7A: Fast Exponentiation 3473

		-	 	-				

QUESTIONS?

Dr. Bertrand Cambou

Professor of Practice NAU, Cybersecurity
School of Informatics, Computing, and Cyber-Systems
Bertrand.cambou@nau.edu