Presentación

Metodología de la Programación Paralela Jesús Sánchez Cuadrado (jesusc@um.es) Curso 2020/21

Profesorado

- Jesús Sánchez Cuadrado
 - jesusc@um.es
 - Teoría (Miércoles 9.00 a 11.00)
 - Tutorías: Correo electrónico
- Jesús Cámara Moreno
 - jcamara@um.es
 - Prácticas (Miércoles 11.20 13.00)
 - Tutorías: Correo electrónico
- José Matías Cutillas Lozano
 - josematias.cutillas@um.es
 - Prácticas Grupo 1.2 (Jueves 10.40 12.20)
 - Tutorías: Correo electrónico

Temario

- Introducción
 - Arquitecturas paralelas
 - Modelos de programación
- Programación en memoria compartida: OpenMP
- Programación por paso de mensajes: MPI
- Análisis de algoritmos paralelos
- Esquemas algorítmicos paralelos
- Programación en memoria compartida: Java

Organización

- A través de GitHub
 - http://github.com/jesusc/mpp-2020-21
- También se usará el Aula Virtual
- Recursos
 - Presentaciones
 - Manuales de la asignatura
 - Prácticas
 - Ejercicios
- Foro
 - Slack?
- Mensajes al profesorado
 - No olvidar hacer click en enviar copia a e-mail

Horarios

- Teoría:
 - Miércoles
 - 9.00 11.00
- Prácticas
 - Grupo 1.1
 - Miércoles
 - 11.20 13.00
 - Grupo 1.2
 - Jueves
 - 10.40 12.20

Los grupos deben estar balanceados para poder atender a todos correctamente.

Evaluación continua

- Ejercicios semanales (10%)
 - La fecha límite de entrega
- Examen teórico-práctico (30%)
 - Preguntas teóricas sobre conceptos de la asignatura
 - Ejercicios prácticos para implementar o completar programas paralelos
 - Según la evolución sanitaria se decidirá exactamente cómo realizarlo
- Prácticas de laboratorio (30%)
- Práctica individual (30%)

Evaluación NO continua

- Para los alumnos que decidan no seguir las sesiones de prácticas
- Los alumnos pueden pasar de continua a no continua cuando quieran.
- Trabajo individual.
 - No hay que entregar los trabajos semanales
 - Hay que entregar las prácticas de laboratorio
- Plazo máximo de entrega en cada convocatoria el día del calendario de exámenes
 - Examen teórico-práctico (40%)
 - Prácticas de laboratorio (30%)
 - Práctica individual (30%)

Prácticas

- Tres prácticas. Duración aproximada 3 semanas.
 - OpenMP
 - MPI
 - Java
- Realización en grupos de dos o tres personas
- Desarrollo de la clase de prácticas online
 - El profesor dará unas indicaciones al principio de la clase
 - Estará disponible durante esa hora en la sesión Zoom para consultas
 - También utilizará ese tiempo para dar indicaciones que crea necesarias a los grupos
 - Habrá salas privadas para cada grupo

Prácticas

- Seguimiento de las prácticas
 - A través de GitLab
 - Los profesores harán el seguimiento, anotando el código y añadiendo comentarios
- La nota de la práctica es individual
 - Todo el mundo debe contribuir al repositorio
 - Los profesores pueden requerir una entrevista individual si lo consideran oportuno

Recursos para las prácticas

- Cluster hetereosolar con:
 - **saturno**: NUMA con 24 cores (4 hexacores), con hyperthreading + GPU Kepler con 2496 cores.
 - marte y mercurio: hexacores, con GPU gforce de 512 cores.
 - jupiter, 2 hexacores con hyperthreading, y 6 GPUs, tesla $(2 \times 448 \text{ cores})$ y gforce $(4 \times 512 \text{ cores})$.
 - venus, 2 hexacores, 2 Xeon Phi (57 cores cada una) y GPU gforce de 384 cores.
 - luna: Quadcore virtualizado, se usa para acceder.
 - luna.inf.um.es

- GitLab
 - Cada alumno debe crear una cuenta y enviar un correo su profesor

Cluster Heterosolar

Prácticas - criterios de calidad

- Se considerará sólo el código que,
 - Compile
 - Legible
 - Comentar las funciones no triviales, ¿por qué se ha implementado? ¿cuál es su propósito?
 Ejemplos de uso de la función.
 - Usa la memoria adecuadamente
 - Usar Valgrind
 - Sin fallos de ejecución
 - Ej., Violación de segmento
 - Sea código paralelo
 - ¡Estamos en una asignatura de Programación Paralela!

Organización de las prácticas (tentativo)

Fecha	Práctica	Valoración
7-8 Octubre	Práctica 0: Herramientas	-
14-15 Octubre	Práctica 1: OpenMP	
21-22 Octubre	Práctica 1: OpenMP	
28-29 Octubre	Práctica 1: OpenMP	
3-4 Noviembre	Entrega Práctica 1	10%
4-5 Noviembre	Práctica 2: MPI	
11-12 Noviembre	Práctica 2: MPI	
18-19 Noviembre	Práctica 2: MPI	
25-26 Noviembre	Entrega Práctica 2	10%
25-26 Noviembre	Práctica 3: Java	
2-3 Diciembre	Práctica 3: Java	
9-10 Diciembre	Práctica 3: Java	
15-16 Diciembre	Entrega Práctica 3	10%

Total prácticas (30%)

Práctica individual (30%)

Examen teórico práctico

- Dos partes:
 - Preguntas cortas y/o tipo tests
 - Ejercicios
- Diferentes tipos de ejercicios:
 - Dado un programa paralelo con errores, corregirlos
 - Dado un algoritmo secuencial, escribir su versión paralela
 - Dado un programa paralelo, cómo mejorar su rendimiento
- Valoración 30%

Práctica individual

• Implementación en OpenMP, MPI y Java, y análisis experimental (speed-up, eficiencia, escalabilidad) para el problema presentado. Trabajo individual, a entregar hasta el día fijado como fecha de examen de la asignatura, con revisión posterior.

Valoración 30%

• Los alumnos interesados en algún problema concreto pueden consultar con el profesor si quieren sustituir el problema del trabajo final.

Trabajos Fin de Grado

- Trabajos sobre paralelismo, lenguajes, etc.
- Análisis de código, etc.
- Cualquier otro tema interesante

- También grupo de investigación de programación paralela
 - https://www.um.es/pcgum/