1. Рубежный контроль №1

Наинг Ко Ко Линн, группа ИУ5-21М.Вариант №3, набор данных №2.

1.1. Задание

In [5]: data.head()

0	1	data	.head()										
₽		age	workclass	fnlwgt	education	education- num	marital-status	occupation	relationship	race	sex	capital- gain	capital- loss
	0	39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0
	1	50	Self-emp-not- inc	83311	Bachelors	13	Married-civ- spouse	Exec-managerial	Husband	White	Male	0	0
	2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0
	3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0
	4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof-specialty	Wife	Black	Female	0	0

Для заданного набора данных произведите масштабирование данных (для одного признака) и преобразование категориальных признаков в количественные двумя способами (label encoding, one hot encoding) для одного признака. Какие методы Вы использовали для решения задачи и почему?

1.2. Решение

1.2.1. Загрузка и предобработка данных

In [6]: data.isnull().sum()

₽		age	sex	fnlwgt
	0	39	Male	77516
	1	50	Male	83311
	2	38	Male	215646
	3	53	Male	234721
	4	28	Female	338409

In [9]: d.shape

```
[ ] 1 d.shape
```

[→ (32561, 3)

1.2.2. Масштабирование данных

In [10]: sns.distplot(d[["fnlwgt"]]);

In [11]: from sklearn.preprocessing import MinMaxScaler
 sc = MinMaxScaler()
 sc_data = sc.fit_transform(d[["fnlwgt"]])
 sns.distplot(sc_data)

```
from sklearn.preprocessing import MinMaxScaler
     1
     2
                    sc = MinMaxScaler()
                    sc_data = sc.fit_transform(d[["fnlwgt"]])
     3
                   sns.distplot(sc_data)
     4
     5
    <matplotlib.axes._subplots.AxesSubplot at 0x7fe6cb386668>
₽
     7
     6
     5
     4 -
     3
     2
     1
                 0.2
                          0.4
                                  0.6
                                          0.8
                                                  1.0
```

```
In [12]: d["APPEARANCES_SCALED"] = sc_data
```

1.2.3. Преобразование категориальных признаков

In [14]: le = LabelEncoder()

In [13]: from sklearn.preprocessing import LabelEncoder, OneHotEncoder

Label encoding

```
sex_ohe.todense()[0:10]
      matrix([[0., 1.],
              [0., 1.],
               [0., 1.],
               [0., 1.],
              [1., 0.],
              [1., 0.],
               [1., 0.],
               [0., 1.],
              [1., 0.],
              [0., 1.]])
In [20]: d["sex"].head(10)
           d["sex"].head(10)
             Male
      0
             Male
      1
      2
             Male
      3
             Male
      4
          Female
      5
           Female
      6
           Female
      7
             Male
      8
           Female
             Male
      Name: sex, dtype: object
In [21]: ohe_names = ohe.get_feature_names()
ohe names
           ohe_names = ohe.get_feature_names()
       1
       2
           ohe_names
      array(['x0_Female', 'x0_Male'], dtype=object)
In [22]: for idx, name in enumerate(ohe names):
  d[name] = sex_ohe[:, idx].todense()
```

In [19]: sex_ohe.todense()[0:10]

1.2.4. Получившийся набор данных

In [23]: d.head(10)

				•				
0	1	d.h	nead(10)					
₽		age	sex	fnlwgt	fnlwgt_SCALED	sex_INDEX	x0_Female	x0_Male
	0	39	Male	77516	0.044302	1	0.0	1.0
	1	50	Male	83311	0.048238	1	0.0	1.0
	2	38	Male	215646	0.138113	1	0.0	1.0
	3	53	Male	234721	0.151068	1	0.0	1.0
	4	28	Female	338409	0.221488	0	1.0	0.0
	5	37	Female	284582	0.184932	0	1.0	0.0
	6	49	Female	160187	0.100448	0	1.0	0.0
	7	52	Male	209642	0.134036	1	0.0	1.0
	8	31	Female	45781	0.022749	0	1.0	0.0
	9	42	Male	159449	0.099947	1	0.0	1.0