Sistem AM

	Materi Pembelajaran	Capaian Pembelajaran	
PLO5-CLO2	1. Pemahaman arti dan fungsi Modulasi dan Demodulasi	1. Memahami konsep Sistem Modulasi Amplituda (AM): modulator,	
CPMK-3 Sistem	2. Modulator AM-DSB-SC: Modulator dan Demodulator (Blok,	demodulator, bentuk sinyal, spektrum frekuensi	
AM	persamaan), Gambar spektral, bandwidth, perhitungan daya. 2. Memahami konsep translasi frekuensi		
	3. Konsep translasi frekuensi.	3. Mengetahui jenis-jenis modulasi amplituda dan sifat dari tiap	
	4. AM-SSB: Modulator-demodulator, Gambar spektral,	jenisnya	
	bandwidth, perhitungan daya	4. Dapat melakukan perhitungan-perhitungan yang terkait dengan	
	5. AM-DSB-FC : Modulator-demodulator, persamaan, indeks	modulasi AM (indeks modulasi, bandwidth, daya)	
	modulasi, konstanta modulasi, Detektor selubung, Gambar	5. Memahami konsep superheterodyne, IF, RF dan penerapannya	
	spektral, bandwidth, perhitungan daya	dalammodulasi AM	

Definisi:

Modulasi merupakan proses perubahan parameter (amplitude, frekuensi dan fasa) pada sinyal pembawa sesuai dengan sinyal baseband (sinyal informasi).

$$c(t) = V_c \cos \left(2\pi f_c t + \theta_c\right)$$

Keterangan:

c(t): sinyal pembawa (carrier signal)

 V_c : Amplituda sinyal pembawa

 f_c : frekuensi sinyal pembawa

 θ_c : fasa sinyal pembawa

Pada modulasi Amplituda, terjadi penumpangan sinyal informasi pada amplitude sinyal pembawa.

Tipe Modulasi Amplituda:

- 1. AM-DSB-FC (Amplitude modulation-double sideband-full carrier)
- 2. AM-DSB-SC (Amplitude modulation-double sideband-supressed carrier)
- 3. AM-SSB (Amplitude modulation-single sideband)

Perbandingan 3 Tipe AM

	AM-DSB-FC	AM-DSB-SC	AM-SSB
Rangkaian modulator	m(t) ka $m(t)$ $m(t)$ = sinyal informasi	$ \begin{array}{c} & \text{M(t)} \\ & \text{X} \\ & \text{S}_{\text{AM-DSB-SC}}(t) \end{array} $	m(t) X(t) BPF S _{AM-SSB} (t)
Persamaan sinyal AM	$S_{AM\ DSB\ FC}(t) = \left[1 + \mu \cos(2\pi f_m t)\right] V_c \cos(2\pi f_c t)$	$S_{AM\ DSB\ SC}(t) = \frac{V_m V_c}{2} \left[\cos 2\pi \left(f_c - f_m \right) t + \cos 2\pi \left(f_c + f_m \right) t \right]$	$s_{AM SSB-USB}(t) = \frac{V_c V_m}{2} \cos[2\pi (f_c + f_m)t]$ $s_{AM SSB-LSB}(t) = \frac{V_c V_m}{2} \cos[2\pi (f_c - f_m)t]$
,	$S_{AMDSBFC}(t) = V_C \cos(2\pi f_C t) + \frac{V_C \mu}{2} \left\{ \cos[2\pi (f_C - f_m) t] + \cos[2\pi (f_C + f_m) t] \right\}$	$+\cos 2\pi \left(f_c + f_m\right)t$	$s_{AM SSB-LSB}(t) = \frac{V_c V_m}{2} \cos[2\pi (f_c - f_m)t]$
Indeks	$\mu = k_a V_m$		
modulasi (μ)	k_a = sensitivitas modulator V_m = amplitude sinyal informasi $0 < \mu \le 1$		
Sinyal AM	34 32-880-WV IBMUS -2 -4 -6 -8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	15 10 10 10 10 10 10 10 10 10 10 10 10 10	8 6 4 4 (85') 88S'WV Praise - 8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LINDA MEYLANI 2

LINDA MEYLANI 3

Contoh soal:

1. Sinyal AM-DSB-FC memiliki persamaan:

$$s(t) = [20 + 2\cos(3000\pi t) + 10\cos(6000\pi t)]\cos(2\pi f_c t)$$

Dengan $f_c = 1$ MHz, beban 1Ω .

- a. Gambarkan spektrum tegangan-nya! (dalam pita satu sisi)!
- b. Tentukan daya komponen carrier, daya pada sideband-nya dan daya total!
- c. Gambarkan bentuk gelombang AM tersebut!

Jawab:

a. Spektrum tegangan (pita satu sisi)SinyalAM DSB FC dinyatakan dengan persamaan:

$$S_{AMDSBFC}(t) = V_C[1 + \mu \cos(2\pi f_m t)] \cos(2\pi f_c t)$$

$$s(t) = [20 + 2\cos(3000\pi t) + 10\cos(6000\pi t)]\cos(2\pi f_c t)$$

Sinyal carrier dari persamaan diatas dinyatakan dengan:

$$c(t) = 20\cos 2\pi f_c t$$

Sinyal sideband yang dinyatakan dinyatakan dengan persamaan:

$$sideband = [2\cos 3000\pi t + 10\cos 6000\pi t]\cos(2\pi f_c t)$$

LINDA MEYLANI 4

b. Daya komponen carrier $P_c = \frac{{V_c}^2}{2R} = 200 \text{Watt}$

Daya komponen sideband $P_{LSB} = P_{USB} = \frac{1^2}{2} + \frac{5^2}{2} = 13 \; Watt$

Daya total sinyal AM DSB FC diatas adalah: Pc + 2.P sideband = 226Watt

c. Gambar bentuk gelombang AM

2. Perhatikan gambar **Transmitter** berikut:

Two stage SSB modulator ditunjukkan pada gambar di atas. Sinyal input m(t) merupakan sinyal voice dengan range frekuensi 0-4 kHz. Frekuensi osilator pertama f₁ = 455 kHz dan frekuensi oscillator kedua f₂ = 10 MHz, passband BPF₁ (455 - 459)kHz. Bila diinginkan sinyal keluaran BPF₂ adalah sinyal AM-SSB-USB maka:

- a. Gambarkan spektrum m(t) dan keluaran: mixer, BPF1!
- b. Gambarkan spektrum keluaran: mixer2, BPF2 dan Tentukan frekuensi carrier sinyal AM-SSB-USB, yang merupakan keluaran modulator two stage dan passband BPF2!
- c. Bila range passband **BPF**₁ diganti (451 455) kHz. Maka dengan bantuan spektrum sinyal tentukan frekuensi carrier sinyal **AM-SSB-USB** dioutput modulator dan tentukan passband **BPF**₂.

Jawab:

a. Gambar spektrum:

Sinval m(t):

Output mixer 1

Output BPF 1

b. Gambar spektrum

Keluaran mixer 2

Keluaran BPF2

Frekuensi carrier sinyal AM SSB USB output BPF2 adalah 10455 kHz

Passband BPF 2: 10455kHz- 10459kHz

c. Bila range passband BPF 1 diganti (451-455)kHz maka:

Output BPF1

Output mixer 2

Output BPF2

