CS 229 - MACHINE LEARNING

Xiangliang Zhang

Computer Science (CS)/Statistics (STAT) Program

Computer, Electrical and Mathematical Sciences & Engineering (CEMSE) Division King Abdullah University of Science and Technology (KAUST)

Homework X: Reinforcement Learning

Henrique Aparecido Laureano

Spring Semester 2018

Contents

Question	1:	Op	timal	val	lues	and	po.	licy
----------	----	----	-------	-----	------	-----	-----	------

2

Question 2: A change on the gird world

7

Question 1: [70 points] Optimal values and policy

Given the grid world in Figure 1, there are 4 deterministic actions: *up*, *down*, *left* and *right*. The goal is to reach the G, starting at S.

Figure 1: Grid world.

The reward on reaching on the goal (G) is 100. The reward on actions that would take the agent off the grid is -1 (agent stays still in this case). The reward on other actions is 0. The discount factor $\gamma = 0.9$.

Use Q learning to learn the optimal values of $Q^*(s, a)$. Please submit your own code on calculating the $Q^*(s, a)$.

Figure 2: Attributing numbers (names) to the states.

By the rewards previously defined we can build the R matrix, given by the following code and presented in Table 1.

```
# <r code> ============ #
R <- matrix(</pre>
 c(-1, 0, -1, -1, -1, 0, rep(-1, 14), # ------ 1
   0, -1, 0, -1, -1, -1, 0, rep(-1, 13), # ------ 2
  -1, 0, -1, 0, -1, -1, -1, 0, rep(-1, 12), # ------- 3
  -1, -1, 0, -1, 0, -1, -1, -1,
                       0, rep(-1, 11), # ----- 4
                            0, rep(-1, 10), # ----- 5
  -1, -1, -1, 0, -1, -1, -1, -1,
                       -1, -1, 0, rep(-1, 9), # ----- 6
   0, -1, -1, -1, -1, -1, 0, -1,
                        -1, -1, -1, 0, rep(-1, 8), # ----- 7
  -1, 0, -1, -1, -1, 0, -1, 0,
  -1, -1, 0, -1, -1, -1, 0, -1,
                        0, -1, -1, -1, 0, rep(-1, 7), # ------ 8
  -1, -1, -1, 0, -1, -1, -1, 0,
                        -1, 0, -1, -1, -1, 0, rep(-1, 6), # --- 9
  rep(-1, 4), 0, -1, -1, -1, 0,
                        -1, -1, -1, -1, -1, 0, rep(-1, 5), \# -- 10
  rep(-1, 5), 0, -1, -1, -1, -1,
                        -1, 0, -1, -1, -1, 0, rep(-1, 4), # -- 11
  rep(-1, 6), 0, -1, -1, -1, 0, -1, 0, -1, -1, -1, 0, -1, -1, -1, # -- 12
  rep(-1, 7), 0, -1, -1, -1, 0,
                        -1,
                           0, -1, -1, -1, 0, -1, -1, # ----- 13
  rep(-1, 8), 0, -1, -1, -1, 0, -1, 0, -1, -1, -1, 0, -1, # ----- 14
  rep(-1, 9), 0, -1, -1, -1, 0, -1, -1, -1, -1, 100, # ------ 15
  rep(-1, 11), 0, -1, -1, -1, 0, -1, 0, -1, # ------ 17
  rep(-1, 14), 0, -1, -1, -1, 0, 100), nrow = 20, byrow = TRUE) # ----- 20
# </r code> ========= #
```

Table 1: Reward table. In the rows we have the states, in the columns we have the actions.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
$\overline{2}$	0	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
3	-1	0	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
4	-1	-1	0	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
5	-1	-1	-1	0	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
6	0	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1
7	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1
8	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1
9	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1
10	-1	-1	-1	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1
11	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	-1	-1	-1
12	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1	-1	-1
13	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1	-1
14	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1
15	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	100
16	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	0	-1	-1	-1
17	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1
18	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1
19	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	100
20	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	100

Implementing Q learning

```
# <r code> =================== #
q.learn <- function(R, iter, gamma, goal) {</pre>
 # this algorithm is build for one or two goal states ----- #
 # if we have only one, replicate the goal state ----- #
 # below, in the while loop break out criterion you can see the why ------ #
 if (length(goal) == 1) goal[2] = 1
 # initialize Q to be zero matrix, same size as R ------ #
 Q = matrix(rep(0, length(R)), nrow = nrow(R))
 # initial state is 1, S, as previously defined ----- #
 # cs: current state ----- #
 cs = 1
 # loop over episodes ----- #
 for (i in 1:iter) {
  # iterate until we get to the goal state ----- #
  while (1) {
    # choose next state from possible actions at current state ----- #
    next.states = which(R[cs, ] > -1)
    # if only one possible action, then choose it ----- #
    if (length(next.states) == 1)
     ns = next.states
    # otherwise, choose one at random ----- #
    else
     ns = sample(next.states, 1)
    # updating ----- #
    Q[cs, ns] = R[cs, ns] + gamma * max(Q[ns, which(R[ns,] > -1)])
    # break out of while loop if goal state is reached ------ #
    if (ns == goal[1] \mid ns == goal[2]) break
    # otherwise, set next.state as current state and repeat ----- #
    cs = ns
  }
  # for each episode, choose an initial state at random ----- #
   cs = sample(1:nrow(R), 1)
 return(100 * Q / max(Q)) # return resulting Q normalized by max value ----- #
}
# </r code> ============ #
```

(50pts) What is the $Q^*(s, a)$ for each pair of s and a?

Running two thousand, 2e3, iterations:

The $Q^*(s, a)$ for each pair of s and a is given by the code above and presented in the following Table 2.

Table 2: Q* matrix/table. In the rows we have the states, in the columns we have the actions.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	52	0	0	0	52	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	47	0	59	0	0	0	59	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	53	0	66	0	0	0	66	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	59	0	73	0	0	0	73	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	66	0	0	0	0	0	81	0	0	0	0	0	0	0	0	0	0
6	47	0	0	0	0	0	59	0	0	0	59	0	0	0	0	0	0	0	0	0
7	0	53	0	0	0	53	0	66	0	0	0	66	0	0	0	0	0	0	0	0
8	0	0	59	0	0	0	59	0	73	0	0	0	73	0	0	0	0	0	0	0
9	0	0	0	66	0	0	0	66	0	81	0	0	0	81	0	0	0	0	0	0
10	0	0	0	0	73	0	0	0	73	0	0	0	0	0	90	0	0	0	0	0
11	0	0	0	0	0	53	0	0	0	0	0	66	0	0	0	66	0	0	0	0
12	0	0	0	0	0	0	59	0	0	0	59	0	73	0	0	0	73	0	0	0
13	0	0	0	0	0	0	0	66	0	0	0	66	0	81	0	0	0	81	0	0
14	0	0	0	0	0	0	0	0	73	0	0	0	73	0	90	0	0	0	90	0
15	0	0	0	0	0	0	0	0	0	81	0	0	0	81	0	0	0	0	0	100
16	0	0	0	0	0	0	0	0	0	0	59	0	0	0	0	0	73	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	66	0	0	0	66	0	81	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	73	0	0	0	73	0	90	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	81	0	0	0	81	0	100
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	90	0	0	0	90	100

(10pts) What is the $V^*(s)$ for each s?

The optimal policies $V^*(s)$ is defined by

$$V^*(s) = \max_{a \in A(s)} Q^*(s).$$

Therefore, looking to $Q^*(s)$ presented in Table 2 we easily see the $V^*(s)$ for each state s. We present this in the following Table 3.

Table 3: $V^*(s)$ for each s.

s:	1	2	3	4	5	6	7	8	9	10
a:	2 or 6	3 or 7	4 or 8	5 or 9	10	7 or 11	8 or 12	9 or 13	10 or 14	15
$V^*(s)$:	52	59	66	73	81	59	66	73	81	90
s:	11	12	13	14	15	16	17	18	19	20
a:	12 or 16	13 or 17	14 or 18	15 or 19	20	17	18	19	20	20
$V^*(s)$:	66	73	81	90	100	73	81	90	100	100

We can see that for several states the $\max_{a \in A(s)} Q^*(s)$ is reached with two states, in this situations one of both can be chosen randomly.

(10pts) What are the actions of optimal policy?

Starting in S, represented as state 1, the maximum Q values suggest two alternatives: go to state 2 or 6. Suppose we arbitrarily choose to go to 2.

From state 2 the maximum Q values suggest two alternatives: go to state 3 or 7. Suppose we arbitrarily choose to go to 7.

From state 7 the maximum Q values suggest two alternatives: go to state 8 or 12. Suppose we arbitrarily choose to go to 8.

From state 8 the maximum Q values suggest two alternatives: go to state 9 or 13. Suppose we arbitrarily choose to go to 13.

From state 13 the maximum Q values suggest two alternatives: go to state 14 or 18. Suppose we arbitrarily choose to go to 14.

From state 14 the maximum Q values suggest two alternatives: go to state 15 or 19. Suppose we arbitrarily choose to go to 19.

From state 19 the maximum Q values suggests the action to go to state 20.

Thus, here the sequence is: 1 (S) - 2 - 7 - 8 - 13 - 14 - 19 - 20 (G). A representation is given below in Figure 3.

<u>s</u> –	2-7-8	3 – 13 –	14 – 19	- G
16	17	18	19	G
11	12	13	14	15
6	7	8	9	10
S	2	3	4	5

Figure 3: Representation of the actions for the optimal policy.

Question 2: [30pts] A change on the gird world

(15pts) Add another goal state to the lower-right corner.

Figure 4: Attributing numbers (names) to the states.

How does the optimal policy change?

Now we add a reward of 100 on reaching on the (new) goal state 5. The new R matrix is given by the following code and presented in Table 4.

```
# <r code> =========
R <- matrix(</pre>
            -1, -1, 0, rep(-1, 14), # ------ 1
            -1, -1, -1, 0, rep(-1, 13), # ----- 2
            0, -1, -1, -1, 0, rep(-1, 12), # ----- 3
   -1, 0, -1,
            -1, 100, -1, -1, -1, 0, rep(-1, 11), # ------ 4
            0, 100, -1, -1, -1, -1, 0, rep(-1, 10), # ------ 5
   -1, -1, -1,
            -1, -1, -1, 0, -1, -1, 0, rep(-1, 9), # ------ 6
   -1, 0, -1,
            -1, -1, 0, -1, 0, -1, -1, -1, 0, rep(-1, 8), # ------ 7
            -1, -1, -1, 0, -1,
                            0, -1, -1, -1, 0, rep(-1, 7), \# ----- 8
   -1, -1, -1,
               -1, -1, -1, 0,
                            -1, 0, -1, -1, -1, 0, rep(-1, 6), \# - 9
   rep(-1, 4), 100, -1, -1, -1, 0, -1, -1, -1, -1, 0, rep(-1, 5), # 10
               -1, -1, -1, -1,
   rep(-1, 5),
             0,
                            -1, 0, -1, -1, -1, 0, rep(-1, 4), # 11
   rep(-1, 6),
             0, -1, -1, -1, 0, -1, 0, -1, -1, -1, 0, -1, -1, +12
   rep(-1, 7),
            0, -1, -1, -1, 0, -1, 0, -1, -1, -1, 0, -1, -1, # ---- 13
             0, -1, -1, -1, 0, -1,
                               0, -1, -1, -1,
                                             0, -1, # ----- 14
   rep(-1, 8),
             0, -1, -1, -1, 0, -1, -1, -1, -1, 100, # ------ 15
   rep(-1, 9),
   rep(-1, 10), 0, -1, -1, -1, -1, 0, -1, -1, # ------ 16
   0, -1, # ------ 18
   rep(-1, 12), 0, -1, -1, -1, 0, -1,
   rep(-1, 13), 0, -1, -1, -1, 0, -1, 100, # ------ 19
   rep(-1, 14), 0, -1, -1, -1, 0, 100), nrow = 20, byrow = TRUE) # ----- 20
# </r code> ========= #
```

Table 4: Reward table. In the rows we have the states, in the columns we have the actions.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
2	0	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
3	-1	0	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
4	-1	-1	0	-1	100	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
5	-1	-1	-1	0	100	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
6	0	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1
7	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1
8	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1
9	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1
10	-1	-1	-1	-1	100	-1	-1	-1	0	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1
11	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	-1	-1	-1
12	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1	-1	-1
13	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1	-1
_14	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1
15	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	100
16	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	0	-1	-1	-1
_17	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1
18	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1
19	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	100
20	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	100

Running the Q learning algorithm two thousand, 2e3, iterations:

The $Q^*(s, a)$ for each pair of s and a is given by the code above and presented in the following Table 5. Through Table 5 we are able to see which is the new optimal policy.

Starting in S, represented as state 1, the maximum Q values suggests the action to go to state 2.

From state 2 the maximum Q values suggests the action to go to state 3.

From state 3 the maximum Q values suggests the action to fo to state 4.

From state 4 the maximum Q values suggests the action to go to state 5, a goal state.

Thus, here the sequence is: 1 (S) - 2 - 3 - 4 - 5 (G2). A representation is given in the left hand side of the Figure 5.

Table 5: Q* matrix/table. In the rows we have the states, in the columns we have the actions.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	73	0	0	0	59	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	66	0	81	0	0	0	65	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	73	0	90	0	0	0	73	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	81	0	100	0	0	0	81	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	89	99	0	0	0	0	90	0	0	0	0	0	0	0	0	0	0
6	65	0	0	0	0	0	66	0	0	0	59	0	0	0	0	0	0	0	0	0
7	0	73	0	0	0	59	0	72	0	0	0	65	0	0	0	0	0	0	0	0
8	0	0	81	0	0	0	65	0	81	0	0	0	73	0	0	0	0	0	0	0
9	0	0	0	90	0	0	0	73	0	90	0	0	0	81	0	0	0	0	0	0
10	0	0	0	0	100	0	0	0	81	0	0	0	0	0	90	0	0	0	0	0
11	0	0	0	0	0	59	0	0	0	0	0	65	0	0	0	65	0	0	0	0
12	0	0	0	0	0	0	65	0	0	0	59	0	73	0	0	0	73	0	0	0
13	0	0	0	0	0	0	0	73	0	0	0	65	0	81	0	0	0	81	0	0
14	0	0	0	0	0	0	0	0	81	0	0	0	73	0	90	0	0	0	90	0
15	0	0	0	0	0	0	0	0	0	90	0	0	0	81	0	0	0	0	0	100
16	0	0	0	0	0	0	0	0	0	0	59	0	0	0	0	0	73	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	65	0	0	0	65	0	81	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	73	0	0	0	73	0	90	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	81	0	0	0	81	0	100
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	90	0	0	0	90	99

Following the maximum Q values, to reach the goal state 20 (**G1**) we need/have to start from the state 11 or above (12, 13, ...). Starting from a state smaller than this we reach the state 5.

To ilustrate we have Figure 5. In the left we start in **S** (but we reach **G2** starting by any other state ≤ 10). In the right we start in 11 (but we reach **G1** starting by any state > 10).

	S – 2	-3-4	– G2	→
16	17	18	19	G1
11	12	13	14	15
6	7	8	9	10
S	2	3	4	G2

Figure 5: Representation of the actions for the optimal policy with two examples. In the left we start from a state ≤ 10 , in the right we start from a state > 10.

(15pts) If a state of reward -100 (a very bad state) is defined in the lower-right corner. How does the optimal policy change?

First we modify the last R matrix putting a minus in the reward of the lower-right corner state. The new R matrix is given by the following code and presented in Table 6.

```
# <r code> ============ #
R <- matrix(</pre>
                   -1, 0, rep(-1, 14), # ----- 1
 c(-1, 0, -1,
                   -1, -1, 0, rep(-1, 13), # ----- 2
    0, -1, 0,
              -1,
                   -1, -1, -1, 0, rep(-1, 12), # ----- 3
   -1, 0, -1,
              0,
              -1, -100, -1, -1, -1, 0, rep(-1, 11), # ------ 4
   -1, -1, 0,
   -1, -1, -1,
              0, -100, -1, -1, -1, -1,
                                      0, rep(-1, 10), # ----- 5
                                    -1, 0, rep(-1, 9), # ----- 6
   0, -1, -1,
                   -1, -1, 0, -1,
                                -1,
                                    -1, -1, 0, rep(-1, 8), # ----- 7
   -1, 0, -1,
                                -1,
                                0, -1, -1, -1, 0, rep(-1, 7), # ---- 8
   -1. -1. 0.
              -1,
                   -1, -1, 0, -1,
   -1, -1, -1,
               0,
                   -1, -1, -1, 0,
                                -1,
                                     0, -1, -1, -1, 0, rep(-1, 6), # 9
   rep(-1, 4), -100,
                   -1, -1, -1, 0,
                                    -1, -1, -1, -1, 0, rep(-1, 5), #10
                                -1,
   rep(-1, 5),
               0,
                   -1, -1, -1, -1,
                                -1,
                                    0, -1, -1, -1, 0, rep(-1, 4), #11
   rep(-1, 6),
                   -1, -1, -1, 0, -1,
                                    0, -1, -1, -1, 0, -1, -1, +12
               0,
   rep(-1, 7),
               0,
                  -1, -1, -1, 0,
                                -1,
                                     0, -1, -1, -1, 0, -1, -1, # -- 13
                   -1, -1, -1, 0, -1,
   rep(-1, 8),
               0,
                                     0, -1, -1, -1, 0, -1, # ----- 14
                   -1, -1, -1, 0, -1, -1, -1, -1, 100, # ------ 15
   rep(-1, 9),
               0,
                                    0, -1, -1, # ----- 16
   rep(-1, 10),
                   -1, -1, -1, -1, -1,
               0,
                                    0, -1, -1, # ----- 17
   rep(-1, 11),
                   -1, -1, -1, 0, -1,
               0,
                                     0, -1, # ----- 18
   rep(-1, 12),
               0,
                   -1, -1, -1, 0, -1,
   rep(-1, 13),
                   -1, -1, -1, 0, -1, 100, # ------ 19
               0,
                  -1, -1, -1, 0, 100), nrow = 20, byrow = TRUE) # ----- 20
   rep(-1, 14),
               0,
# </r code> =======
```

Running the Q learning algorithm two thousand, 2e3, iterations:

The $Q^*(s, a)$ for each pair of s and a is given by the code above and presented in the following Table 7. Through Table 7 we are able to see which is the new optimal policy.

With a reward of -100 we'll never have the suggestion of go to the state 5 (G2), given by the maximum Q values. i.e., defining a very bad state, a long term is like if this state doesn't exist. Therefore, the optimal policy here is exactly the same that the one obtained in Table 2, Table 3 and Figure 3 (i.e., considering only one goal state).

The obtained $Q^*(s, a)$ for this state with high and negative reward are all zeros, as we can see in Table 7. A representation of the optimal policy is, therefore, the same that the one presented in Figure 3.

Table 6: Reward table. In the rows we have the states, in the columns we have the actions.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	_		_				-	_	_											$\overline{}$
1	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
2	0	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
3	-1	0	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
4	-1	-1	0	-1	-100	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
5	-1	-1	-1	0	-100	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
6	0	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1
7	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1
8	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1
9	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	-1
10	-1	-1	-1	-1	-100	-1	-1	-1	0	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1
11	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	-1	-1	-1
12	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1	-1	-1
13	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1	-1
14	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1	-1	0	-1
15	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	-1	-1	-1	-1	100
16	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	0	-1	-1	-1
17	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1	-1
18	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	0	-1
19	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	-1	100
20	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	0	100

Table 7: Q^* matrix/table. In the rows we have the states, in the columns we have the actions.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	53	0	0	0	53	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	48	0	59	0	0	0	59	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	53	0	66	0	0	0	66	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	59	0	0	0	0	0	73	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	65	0	0	0	0	0	81	0	0	0	0	0	0	0	0	0	0
6	48	0	0	0	0	0	59	0	0	0	59	0	0	0	0	0	0	0	0	0
7	0	53	0	0	0	53	0	66	0	0	0	66	0	0	0	0	0	0	0	0
8	0	0	59	0	0	0	59	0	73	0	0	0	73	0	0	0	0	0	0	0
9	0	0	0	66	0	0	0	66	0	81	0	0	0	81	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	73	0	0	0	0	0	90	0	0	0	0	0
11	0	0	0	0	0	53	0	0	0	0	0	65	0	0	0	65	0	0	0	0
12	0	0	0	0	0	0	59	0	0	0	59	0	73	0	0	0	73	0	0	0
13	0	0	0	0	0	0	0	66	0	0	0	66	0	81	0	0	0	81	0	0
14	0	0	0	0	0	0	0	0	73	0	0	0	73	0	90	0	0	0	90	0
15	0	0	0	0	0	0	0	0	0	81	0	0	0	81	0	0	0	0	0	100
16	0	0	0	0	0	0	0	0	0	0	59	0	0	0	0	0	73	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	66	0	0	0	65	0	81	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	73	0	0	0	73	0	90	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	81	0	0	0	81	0	100
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	90	0	0	0	90	100