3蒸散发的基本原理

3.1 物理基础

3.1.1 气化潜热

气化潜热 λ : 单位质量的液体, 气化所需要吸收的热量, MJ/kg。

$$\lambda = 2.5 \text{ MJ kg}^{-1}$$
 (3.1)

根据气化潜热 λ 的定义,可以得到潜热LE:

$$LE = \lambda \Delta m_v = \lambda \Delta \rho_v V \tag{3.2}$$

其中, Δm_v 是蒸发导致的水汽质量的变化,LE是蒸发所需的能量, ρ_v 水汽的密度。你可以这样引用公式 3.2。

3.1.2 比热容

根据比热容 c_p 的定义,可以得到温度变化引起的感热H:

$$H = c_p \rho V \Delta T \tag{3.3}$$

其中, ρ: 空气密度, V: 空气体积。

小试牛刀:

1. $R_n = 100Wm^{-2}$,能量全部转换为潜热,1天的总能量为多少?对应的蒸发量是多少 mm? 考察点: 汽化潜热

LE =
$$100Wm^{-2} \times 86400s = 8.64 \text{ MJ}$$

 $E = \frac{\text{LE}}{\lambda} = \frac{8.64 \text{ MJ}}{2.5 \text{ MJ kg}^{-1}} = 3.456 \text{ kg}$

2. $1m^3$ 的空气,温度升高 1° 、需要吸收多少能量?<mark>考察点:比热容</mark>空气的比热容 $c_p=1103J/({\rm kg}~{}^{\circ}{}^{\circ})$,空气的密度 $\rho=1.2~{\rm kg}~/m^3$ 。

$$m=\rho V=1.2\times 1=1.2~{\rm kg}$$

$$H=1103J/({\rm kg~^{\circ}C})\times 1.2{\rm kg}\times 1{^{\circ}C}=1323.6J$$

3.2 如何使用

3.2.1 图件

图 3.1. Penman 1948 水面蒸发示意图。

3.2.2 表格

表 3.1. 土壤类型、K、与Klat_{factor}值。表格出自 Fan et al. (2007) Table 2。

编号	土壤类型	\boldsymbol{K}	$K \mathrm{lat}_{\mathrm{factor}}$
1	sand	15.2064	2
1	sand	15.2064	2
2	loamy sand	13.5043	3
3	sandy loam	2.9981	4
4	silt loam	0.6221	10
5	loam	0.6048	12
6	sandy clay loam	0.5443	14
7	silty clay loam	0.1210	20
8	clay loam	0.2160	24
9	sandy clay	0.1901	28
10	silty clay	0.0864	40
11	clay	0.1123	48
12	peat	0.6912	2

3.2.3 代码

```
function Fourier(y::AbstractVector{FT}, P::FT=length(y);
                                                                                  [julia]
      threshold=0.95) where {FT<:Real}</pre>
2
3
      N = length(y)
     \Delta t = P / N
5
      t = 0.0:\Delta t:(P-\Delta t) # lenght(t) == N
6
      # freq = 1 ./ t
7
     freq = fftfreq(N, 1 / \Delta t)
8
     ## 快速傅里叶变化
9
     len = N \div 2
      Fy = fft(y)[1:len]
10
      ak = 2 / N * real.(Fy)
11
      bk = -2 / N * imag.(Fy) # fft sign convention
12
13
      ak[1] = ak[1] / 2
14
15 end
```

3.2.4 参考文献

图件源自(Monteith et al., 2013) Figure 3.4。

几种不同格式的参考文献:

- gb-7714-2005-numeric: China National Standard GB/T 7714-2005 (numeric, 中文)
- gb-7714-2015-author-date: China National Standard GB/T 7714-2015 (author-date, 中文)
- gb-7714-2015-note: China National Standard GB/T 7714-2015 (note, 中文)
- gb-7714-2015-numeric: China National Standard GB/T 7714-2015 (numeric, 中文)

参考文献

MONTEITH J, UNSWORTH M, 2013. Principles of environmental physics: plants, animals, and the atmosphere[M]Academic press