CAN207 Continuous and Discrete Time Signals and Systems

Lecture-13
Unilateral Laplace Transform

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Content

- 1. Unilateral Laplace Transform
 - Definition of Unilateral Laplace transform
 - Initial- and final-value theorems
 - Differentiation property
 - Solution of differential equations
- 2. Analysis of LTIC systems using LT
 - Impulse response h(t), LCCDE y(t)...x(t) and system transfer function H(s)
 - System behavior VS system transfer function
- 3. System function algebra and block diagram representations
 - Interconnections
 - Block diagrams

1.1 Definition of Unilateral Laplace Transform

• Recall:

$$X(s) = \mathcal{L}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$
 bilateral LT

- the bilateral Laplace transform is used to analyze both causal and noncausal LTIC systems;
- In signal processing, most physical systems and signals are causal.
- Applying the causality condition, the bilateral LT reduces to

$$\mathcal{X}(s) = \mathcal{UL}\{x(t)\} = \int_{0^{-}}^{\infty} x(t)e^{-st}dt$$
 unilateral LT

 Important in analyzing *causal* systems and, particularly, systems specified by LCCDE with *nonzero initial conditions*.

- denoted as ULT pair: $x(t) \stackrel{\mathcal{UL}}{\longleftrightarrow} \mathcal{X}(s) = \mathcal{UL}\{x(t)\}$

1.1 Some properties

- The lower limit of the integration is set to be 0^- , which is to include functions like $\delta(t)$ that is concentrated at t = 0.
- $\mathcal{UL}\{x(t)\}\$ and $\mathcal{L}\{x(t)\}\$ are the same if x(t)=0 for t<0.

- The ROC of $UL\{x(t)\}$ is always a right-half plane.
- The evaluation of the inverse unilateral Laplace transforms is the same as for bilateral transforms.

1.1 Examples of ULT

• 1. Calculate the BLT and ULT for

$$x_1(t) = e^{-a(t+1)}u(t+1)$$

$$x_2(t) = \delta(t) + 2u(t) + e^t u(t)$$

• 2. Consider the ULT

$$\mathcal{X}(s) = \frac{1}{(s+1)(s+2)}$$

Find its inverse transform x(t).

1.2 Differentiation Property

• Recall (in BLT), the pair $x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s)$ gives:

$$\frac{dx(t)}{dt} \stackrel{\mathcal{L}}{\longleftrightarrow} sX(s)$$

• In ULT, consider the pair $x(t) \stackrel{\mathcal{UL}}{\longleftrightarrow} \mathcal{X}(s)$, the ULT of $\frac{dx(t)}{dt}$ is $\frac{dx(t)}{dt} \stackrel{\mathcal{UL}}{\longleftrightarrow} s\mathcal{X}(s) - x(0^{-})$

• Similarly, the second order derivative leads to:

$$\frac{d^2x(t)}{dt^2} \stackrel{\mathcal{UL}}{\longleftrightarrow} s^2 \mathcal{X}(s) - sx(0^-) - x'(0^-)$$

- $x'(0^-)$ denotes the derivative of x(t) evaluated at $t = 0^-$.

1.3 Initial- and final- value theorem

- For CAUSAL signal x(t):
- The initial-value $x(0^+)$ of x(t) can be found using the Laplace Transform as follows:

$$x(0^+) = \lim_{s \to \infty} s \mathcal{X}(s)$$

- -x(t) contains no impulses or higher order singularities at the origin;
- X(s) should be a proper rational function of s.
- The steady-state value $x(\infty)$ can be found by:

$$x(\infty) = \lim_{s \to 0} s \mathcal{X}(s)$$

all poles on left-side of s-plane.

Example 1

• Calculate the initial and final values of the functions $x_1(t)$, $x_2(t)$, and $x_3(t)$, whose Laplace transforms are specified below:

(i)
$$X_1(s) = \frac{s+3}{s(s+1)(s+2)}$$
 with ROC R_1 : Re $\{s\} > 0$;

(ii)
$$X_2(s) = \frac{s+5}{s^3+5s^2+17s+13}$$
 with ROC R_2 : Re $\{s\} > -1$;

(iii)
$$X_3(s) = \frac{5}{s^2 + 25}$$
 with ROC R_3 : Re $\{s\} > 0$.

- In Lecture 12, we used a time-domain approach to obtain the zero-input, zero-state, and overall solution of differential equations.
- In this section, we discuss an alternative approach based on the Laplace transform.
- Lecture 12, Example 1

$$\frac{dy}{dt} + 4y(t) = \frac{dx}{dt}$$

- initial condition $y(0^-) = 2V$;
- a sinusoidal voltage x(t) = sin(2t)u(t) is applied as the input.
- Find the zero-input, zero-state and overall responses.

- Solution 1: zero-input response
 - Assume the input x(t) = 0, i.e.

$$\frac{dy}{dt} + 4y(t) = 0$$

- Taking the ULT of the above equation and substituting:

$$s\mathcal{Y}_{zi}(s) - y(0^{-}) + 4\mathcal{Y}_{zi}(s) = 0$$

which reduces to

$$\mathcal{Y}_{zi}(s) = \frac{2}{s+4}$$

– Performing the inverse ULT results:

$$y_{zi}(t) = 2e^{-4t}u(t)$$

- Solution 1: zero-state response
 - Assume the initial condition $y(0^-) = 0$.
 - Taking the ULT of the above equation and substituting:

$$s\mathcal{Y}_{zs}(s) - y(0^{-}) + 4\mathcal{Y}_{zs}(s) = s\mathcal{X}(s) - x(0^{-})$$

which reduces to

$$\mathcal{Y}_{zs}(s) = \frac{2s}{(s+4)(s^2+4)}$$

– Using PFE to perform the inverset ULT, get:

$$y_{zs}(t) = [-0.4e^{-4t} + 0.4\cos 2t + 0.2\sin 2t]u(t)$$

Overall response

$$y(t) = y_{zi}(t) + y_{zs}(t) = [1.6e^{-4t} + 0.4\cos 2t + 0.2\sin 2t]u(t)$$

- Solution 2: find overall response directly
 - Apply the ULT to both sides of the DE, get:

$$sY(s) - y(0^{-}) + 4Y(s) = sX(s) - x(0^{-})$$

= 2 = $\frac{2}{s^{2} + 4}$

- Rearranging it get:

$$\mathcal{Y}(s) = \frac{2s^2 + 2s + 8}{(s+4)(s^2+4)}$$

– Using PFE to perform the inverset ULT, get:

$$y(t) = [1.6e^{-4t} + 0.4\cos 2t + 0.2\sin 2t]u(t)$$

Quiz 1

• The following differential equation was used to model a RLC series circuit.

$$\frac{\mathrm{d}^2 w}{\mathrm{d}t^2} + 7\frac{\mathrm{d}w}{\mathrm{d}t} + 12w(t) = 12x(t)$$

• Determine the zero-input, zero-state, and overall response of the system produced by the input $x(t) = 2e^{-t}u(t)$ given the initial conditions, $w(0^-) = 5 V$ and $w'(0^-) = 0$.

2.1 System's representation

- Recall: in time domain, the input-output relationship can be expressed in two ways:
 - Impulse response h(t)

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

- when input $x(t) = \delta(t)$, output $y(t) = \delta(t) * h(t) = h(t)$
- LCCDE

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$

2.1 System's representation

- Apply LT to both expressions:
 - Impulse response h(t)

$$y(t) = x(t) * h(t)$$

$$Y(s) = X(s) \cdot H(s) \implies H(s) = \frac{Y(s)}{X(s)}$$

- verify: $\delta(t) \stackrel{\mathcal{L}}{\longleftrightarrow} 1$, so $Y(s) = 1 \cdot H(s) = H(s)$
- LCCDE

transfer function of the system or "system function"

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$

$$\sum_{k=0}^{N} a_k s^k Y(s) = \sum_{k=0}^{M} b_k s^k X(s) \implies H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{M} b_k s^k}{\sum_{k=0}^{N} a_k s^k}$$

Example 2

• Suppose we know that if the input to an LTI system is $x(t) = e^{-3t}u(t)$

then the output is

$$y(t) = [e^{-t} - e^{-2t}] u(t)$$

• Find the impulse response and LCCDE defining this system.

Example 3

- Suppose that we are given the following information about an LTI system:
 - 1. The system is causal;
 - 2. The system function is rational and has only two poles, at s = -2 and s = 4;
 - 3. If x(t) = 1, then y(t) = 0;
 - 4. The value of the impulse response at $t = 0^+$ is 4.
- Find the transfer function of the system.

Quiz 2

- Consider a stable and causal system with impulse response h(t) and system function H(s). Suppose H(s) is rational, contains a pole at s = -2, and does not have a zero at the origin. The location of all other poles and zeros is unknown.
- Determine whether the following statements are true, false or insufficient information to determine:
 - 1. $\mathcal{F}\{h(t)e^{3t}\}\$ converges;
 - $2. \int_{-\infty}^{\infty} h(t)dt = 0;$
 - 3. t h(t) is the impulse response of a causal and stable system;
 - 4. $\frac{dh(t)}{dt}$ contains at least one pole in its Laplace transform;
 - 5. h(t) has finite duration;
 - 6. H(s) = H(-s);
 - 7. $\lim_{s\to\infty} H(s) = 2.$

3.1 System Functions for Interconnections

- TD differential equation $\stackrel{\mathcal{L}}{\longleftrightarrow}$ algebraic equation
 - It's convinient for analyzing LTIC system
 - Also important in analyzing interconnections of LTI systems and synthesizing systems as interconnections of elementary system building blocks
 - 1. Series connection

$$H(s) = H_1(s) \cdot H_2(s)$$

2. Parallel connection

$$H(s) = H_1(s) + H_2(s)$$

3.1 System Functions for Interconnections

• 3. Feedback connection

$$\frac{Y(s)}{X(s)} = H(s) = \frac{H_1(s)}{1 + H_1(s)H_2(s)}.$$

3.2 Examples

• Determine the transfer function of the interconnected systems.

Quiz 3

• A causal LTI system S has the block diagram representation shown below. Determine a differential equation relating the input x(t) to the output y(t) of this system.

For Assignment 1: Filters

- An ideal frequency-selective filter is a system that passes a prespecified range of frequency components without any attenuation but completely rejects the remaining frequency components.
- Four types of CT filters

Low-pass

Band-pass

$$H_{LP}(\Omega) = \begin{cases} 1, & \Omega_{c1} \le |\Omega| \le \Omega_{c2} \\ 0, & \text{others} \end{cases}$$

(d)

Band-stop

High-pass

 $H_{\mathrm{ihp}}(\Omega) \qquad H_{HP}(\Omega) = egin{cases} 1, & |\Omega| \geq \Omega_c \\ 0, & |\Omega| < \Omega_c \end{cases}$

$$H_{LP}(\Omega) = \begin{cases} 1, & \text{others} \\ 0, & \Omega_{c1} \leq |\Omega| \leq \Omega_{c2} \end{cases}$$

others

For Assignment 1: Characteristic equation

• Characteristic equation of a system

$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{j=0}^{M} b_{j} s^{j}}{\sum_{i=0}^{N} a_{i} s^{i}} \longrightarrow Y(s) \sum_{j=0}^{N} a_{j} s^{j} = X(s) \sum_{i=0}^{M} b_{i} s^{i}$$

$$\longrightarrow \sum_{i=0}^{N} a_{i} \frac{d^{i} y(t)}{dt^{i}} = \sum_{i=0}^{M} b_{j} \frac{d^{j} x(t)}{dt^{j}}$$

- Time Domain: to solve the DE, considering the zero-input and $y(t) = Ae^{st}$, the equation about s is the *characteristic equation*:

$$\sum_{i=0}^{N} a_{i} \frac{d^{i} A e^{st}}{dt^{i}} = A e^{st} \sum_{i=0}^{N} a_{i} s^{i} = 0 \implies \sum_{i=0}^{N} a_{i} s^{i} = 0$$

- which is the same as the denominator polynomial of H(s).
- Frequency Domain: the denominator polynomial of *s* decides the pole locations, i.e. the stability of the system.

Next ...

- Dr. Qing Liu
 - Email: qing.liu@xjtlu.edu.cn
 - Room: SC340

