CS144 An Introduction to Computer Networks

Packet Switching

Queue models

Outline

- 1. Simple deterministic queue model
- 2. Small packets reduce end to end delay
- 3. Statistical multiplexing

HIDE Simple model of a router queue

Properties of A(t), D(t):

- A(t), D(t) are non-decreasing
- -A(t) >= D(t)

Simple model of a router queue

Cumulative number of bytes arrived up until time *t*.

Cumulative number of bytes departed up until time *t*.

Properties of A(t), D(t):

- A(t), D(t) are non-decreasing
- A(t) >= D(t)

Cumulative number of bytes arrived up until time *t*.

Cumulative number of bytes departed up until time *t*.

Queue occupancy: Q(t) = A(t) - D(t).

Queueing delay, d(t), is the time spent in the queue by a byte that arrived at time t, assuming the queue is served first-come-first-served (FCFS).

Example

Every second, a 100 bit packet arrives to a queue at rate 1000b/s. The maximum departure rate is 500b/s. What is the average occupancy of the queue?

Solution: During each repeating 1s cycle, the queue fills at rate 500b/s for 0.1s, then drains at rate 500b/s for 0.1s. Over the first 0.2s, the average queue occupancy is therefore $0.5 \times (0.1 \times 500) = 25$ bits.

The queue is empty for 0.8s every cycle, and so average queue occupancy: $\bar{Q}(t) = (0.2 \times 25) + (0.8 \times 0) = 5$

Outline

- 1. Simple deterministic queue model
- 2. Small packets reduce end to end delay
- 3. Statistical multiplexing

Packet Switching

Why not send the entire message in one packet?

End-to-end delay,
$$t = \sum_{i} \left(\frac{p}{r_i} + \frac{l_i}{c} \right) + \frac{M}{p} r_3$$

Breaking message into packets allows parallel transmission across all links, reducing end to end latency.

Outline

- 1. Simple deterministic queue model
- 2. Small packets reduce end to end delay
- 3. Statistical multiplexing

Statistical Multiplexing

Basic idea

Packet Switching

Statistical Multiplexing

- \clubsuit Because the buffer absorbs temporary bursts, the egress link need not operate at rate N.R.
- \bullet But the buffer has finite size, B, so losses will occur.

Packet Switching

Statistical Multiplexing

Packets for one output

- Statistical multiplexing means the egress link need not run at rate NR.
- The buffer absorbs brief periods when the aggregate rate exceeds R.
- Because the buffer has finite size losses can occur.

Statistical Multiplexing

Statistical Multiplexing Gain

Statistical multiplexing gain = 2C/R

Summary

Often, we can use a simple deterministic model of a queue to understand the packet dynamics in a network.

We break messages into packets because it lets us pipeline the transfer, and reduce end to end delay.

Statistical multiplexing lets us carry many flows efficiently on a single link.

<end>