CS 321 HW - 6

1. Show that the family of context-free languages is closed under reversal.

Answer:

According with Chomsky Normal Form L(S)

If a language is $L = \{a^n b^n\}$ the production of grammar P will be:

 $S \rightarrow AB$;

 $A \rightarrow a$;

 $B \rightarrow b$;

And grammar $G = \{V, T, P, S\}$, where $V = \{S, A, B\}$, $T = \{a, b\}$, $S = \{S\}$;

After reversal operation we will get the language $L^R = \{b^n a^n\}$;

The grammar will be: $G' = \{V', T', P', S'\}$, where $V' = \{S, A, B\}$, $T' = \{a, b\}$, $S' = \{S^R\}$;

With the production P':

 $S \rightarrow BA$;

 $A \rightarrow a$;

 $B \rightarrow b$;

In result the family of CFL closed under reversal.

2. Show that the family of context-free languages is not closed under difference.

Answer:

If we have L_1 and L_2 languages and $\overline{\overline{L_1}} \cup \overline{L_2} = L_3$;

Since the context-free language is closed under union. If the difference is context-free L_3 , is the context-free. Then we can write is as $\overline{L_1} \cup L_2 = L_3$.

However, the context-free language is not under compliment.

We need to prove that complement is not context-free:

- $L_i = a^n b^n c^m \& L_j = a^m b^m c^n;$
- $\overline{\overline{L_i} \cup \overline{L_j}} = L_i \cap L_j = a^n b^n c^n;$

 L_1 - L_2 = \overline{L}_3 - is not necessary context-free!

For problems 3-5, use the pumping lemma for context-free languages to prove that L is not a CFL.

3.
$$L_1 = \{a^n b^m : n = 2^m\}.$$

Answer:

$$w = a^{2^m} b^m$$
; $w = u v^i x y^i z$; $|vy| \ge 1$; $|vxy| \le m$;

 $uv^ixy^iz \in L \text{ for all } i \geq 0$;

Case 1: vxy is within a^k ; $w_2 = a^{2^{m+k}} b^m$;

Since: $2^m + k < 2^{m+1} w_2 \notin L$;

Case 2: $vxy = b^k$; $w_2 = a^{2^m} b^{m+k}$;

Since: $2^m < (2^{m+1} = 2 \cdot 2^m) w_2 \notin L$;

Case 3: $v = a^k$; $y = b^t$; $k, t \ge 1, w_2 = a^{2^m + k} b^{m+t}$;

Since: $(2^m + k) < (2^{m+1}), w_2 \notin L$;

Because $2^{m+1} = 2^m + 2^m$, and 2^m large than k;

Case 4: Either v or y contain both a's and b's.

 W_2 = the a's and b's are "out of order",

In all cases we obtained a contradiction. Therefore $L_1 = \{a^n \ b^m : n = 2^m\}$ is context-free must be wrong.

4.
$$L_2 = \{ a^n b^n c^j : n \le j \}.$$

Answer:

$$w = a^m b^m c^{m+1}$$
; $w = u v^i x v^i z$; $|vv| > 1$; $|vxy| < m$;

 $uv^ixy^iz \in L \text{ for all } i \ge 0;$

Case 1: vxy is within a^k ; $w_2 = a^{m+k} b^m c^{m+1}$;

Since: m + k > m $w_2 \notin L$;

Case 2: $vxy = b^k$; $w_2 = a^m b^{m+k} c^{m+1}$;

Since: m + k > m $w_2 \notin L$;

Case 3:
$$vxy = c^k$$
; $w_0 = a^m b^m c^{m+1-k}$;

$$n_c \geq n_b \text{ or } n_a; n_b = n_a;$$

If $n_c = n_a$ or n_b – is not a context – free language because L₂ will contain more than 2 depended loops.

If $n_c < n_a$ or n_b , j < n since m + 1 - k, $w_0 \notin L$;

Case 4:
$$v = a^k$$
; $y = b^t$; $k, t \ge 1, w_2 = a^{m+k} b^{m+t} c^{m+1}$;

If
$$k = t$$
, n_a or $n_b \ge n_c$, $m + k \ge m + 1$;

If
$$k \neq t$$
, $n_a \neq n_b$;

Case 5:
$$v = b^k$$
; $y = c^t$; $k, t \ge 1, w_2 = a^m b^{m+k} c^{m+t+1}$;

$$n_a < n_b$$
, Since m + k > m;

In all cases we obtained a contradiction. Therefore $L_2 = \{ a^n b^n c^j : n \le j \}$. Is context-free must be wrong.

5.
$$L_3 = \{ w: w \in \{a,b,c\}^* \text{ and } n_a(w) \le n_b(w) \le n_c(w) \}.$$

Answer:

Assume that $L_3 = \{ w: w \in \{a,b,c\}^* \text{ and } n_a(w) \le n_b(w) \le n_c(w) \}$. Is context-free language

$$w = a^{m-1} b^m c^{m+1}$$
; $w = u v^i x v^i z$; $|vv| \ge 1$; $|vxy| \le m$;

$$uv^{i}xy^{i}z \in L \text{ for all } i \geq 0;$$

Case 1: vxy is within a^k ; $w_2 = a^{m-1+k} b^m c^{m+1}$;

Since:
$$n_a > n_b$$
, $w_2 \notin L$;

Case 2:
$$vxy = b^k$$
; $w_2 = a^{m-1} b^{m+k} c^{m+1}$;

Since:
$$m + k \ge m + 1$$
, $w_2 \notin L$;

Case 3:
$$vxy = c^k$$
; $w_0 = a^{m-1} b^m c^{m+1-k}$;

$$m+1-k \leq m, w_0 \notin L;$$

Case 4:
$$v = a^k$$
; $y = b^t$; $k, t \ge 1, w_2 = a^{m-1+k} b^{m+t} c^{m+1}$;

$$n_b \ge n_c$$
, m + t \ge m + 1;

Case 5:
$$v = b^k$$
; $y = c^t$; $k, t \ge 1$, $w_0 = a^{m-1} b^{m-k} c^{m-t+1}$;

$$n_a > n_b$$
, $m - k \le m - 1$; $w_0 \notin L$;

There are no different cases to consider.

Since $|vxy| \le m$, string vxy can't overlap a^m , b^m , c^m at the same time.

In all cases we obtained a contradiction. Therefore $L_3 = \{ w: w \in \{a,b,c\}^* \text{ and } n_a(w) \le n_b(w) \le n_c(w) \}$. Is context-free must be wrong.