Communication Systems EE-351

Lecture 7

Coherent Detector (block diagram)

Non-coherent Demodulation:

$$x(t) \times \cos(2\pi F_c t + \varphi)$$

$$= A_c m(t) \cos(2\pi F_c t) \times \cos(2\pi F_c t + \varphi)$$

$$= \frac{A_c m(t)}{2} \cos\varphi + \frac{A_c m(t)}{2} \cos(4\pi F_c t + \varphi)$$

When passes through LPF, gives $\frac{A_c m(t)}{2} cos \varphi$

 $cos \varphi$ is additional factor previously absent in coherent demodulation. φ is phase offset.

• Purpose is to synchronize phase of locally generated carrier with that of incoming signal.

I-channel In-phase coherent detector

O/p of upper product modulator:

$$m(t)A_c \cos(2\pi F_c t) \times \cos(2\pi F_c t + \varphi)$$

$$= \frac{A_c m(t)}{2} \{\cos\varphi + \cos(4\pi F_c t + \varphi)\}$$

After passing through LPF, $\frac{A_c m(t)}{2} cos \varphi$

O/p of lower product modulator:

$$m(t)A_c \cos(2\pi F_c t) \times \sin(2\pi F_c t + \varphi)$$

$$= \frac{A_c m(t)}{2} \{ \sin\varphi + \sin(4\pi F_c t + \varphi) \}$$

After passing through LPF, $\frac{A_{c}m(t)}{2}sin\varphi$

• Phase discriminator (PD) o/p =
$$\frac{A_c m(t)}{2} cos \varphi \frac{A_c m(t)}{2} sin \varphi$$

= $\frac{A_c^2 m^2(t)}{4} cos \varphi sin \varphi$

$$\Rightarrow \text{If } \varphi > 0, \text{ PD} = \frac{A_c^2 m^2(t)}{4} cos\varphi sin\varphi \ge 0$$
$$\Rightarrow \text{If } \varphi < 0, \text{ PD} = \frac{A_c^2 m^2(t)}{4} cos\varphi sin\varphi < 0$$

$$\Longrightarrow$$
If $\varphi < 0$, PD = $\frac{A_c^2 m^2(t)}{4} cos \varphi sin \varphi < 0$

Thus, VCO is configured such that:

 $PD>0 \implies phase error decreases$

 $PD<0 \implies phase error increases$

⇒phase offset is eventually driven to 0

∴ phase synchronization is achieved.

O/p of upper product modulator:

$$m(t)A_c \cos(2\pi F_c t) \times \cos(2\pi F_c t + \varphi)$$

$$= \frac{A_c m(t)}{2} \{\cos\varphi + \cos(4\pi F_c t + \varphi)\}$$

After passing through LPF, $\frac{A_c m(t)}{2} cos \varphi$

O/p of lower product modulator:

$$m(t)A_c \cos(2\pi F_c t) \times \sin(2\pi F_c t + \varphi)$$

$$= \frac{A_c m(t)}{2} \{ \sin\varphi + \sin(4\pi F_c t + \varphi) \}$$

After passing through LPF, $\frac{A_{c}m(t)}{2}sin\varphi$

• Phase discriminator (PD) o/p =
$$\frac{A_c m(t)}{2} cos \varphi \frac{A_c m(t)}{2} sin \varphi$$

= $\frac{A_c^2 m^2(t)}{4} cos \varphi sin \varphi$
 \Rightarrow If φ >0, PD = $\frac{A_c^2 m^2(t)}{4} cos \varphi sin \varphi \geq 0$
 \Rightarrow If φ <0, PD = $\frac{A_c^2 m^2(t)}{4} cos \varphi sin \varphi < 0$

Thus, VCO is configured such that:

 $PD>0 \implies$ phase error decreases

 $PD<0 \implies phase error increases$

⇒phase offset is eventually driven to 0

∴ phase synchronization is achieved.

Problem 3.18, 3.23, and 3.25