

Introduction to Natural Language Processing

Natural Language Processing with Disaster Tweets

Predict which Tweets are about real disasters & which ones are not

Data Description

Size: ~11K Tweets

(70% Training + 30% Test)

Evaluation Metric

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

Set **Beta** = **0.5**

(Precision is *more important* than **R**ecall)

Data Analysis

Data Preprocessing

Applying Models

Evaluation

Features of Interest

BEFORE

URL

Punctuation

Hashtag

Mention

count per

Tweet

Most common

Hashtags

Keywords

Locations

Named entity types

AFTER

Character

Word

Unique word

Average word length

count per

Tweet

Unigrams
Most Bigrams

common Trigrams

Fourgrams

Transformation

Remove URLs, HTML tags, Emojis, punctuation marks

Apply Wordnet lemmatizer

Adding Potential Indicators

From most common N-grams to Disaster/Non-Disaster N-gram count

The greater the number N, the more disaster-relevant/irrelevant the most common N-grams in Disaster/Non-Disaster Tweets become, but also the less frequent they are.

Problem

Is having any of the most common N-grams in Disaster Tweets suitable as a potential indicator?

No, as for large N, many Disaster Tweets will be flagged as *No*.

Solution

Create two lists of disaster-relevant & -irrelevant [N]-grams from the most common [N+2]-grams in Disaster & Non-Disaster Tweets

Stratified Cross Validation

Embedders

	Implementation	Vector Dimension
Bag-of- Words	Use sklearn.CountVectorizer to embed Tweets	Vocabulary size
TF-IDF	Use sklearn. Tfidf Vectorizer to embed Tweets	Vocabulary size
GloVe	 Download the pretrained corpus model glove.twitter.27B.50d.txt Embed words then Tweets by using the model 	50
Word2Vec	 Download the pretrained corpus model word2vec-google-news-300 Embed words then Tweets by using the model 	300
Sentence- BERT	 Continue training the fine-tuned model paraphrase-MiniLM-L6-v2 on labeled pairs of Disaster & Non-Disaster Tweets Use the continue-trained model to embed Tweets 	384

Classifiers

Logistic Regression

L2 Regularization

Inverse of regularization strength

C = 1.0

Multilayer Perceptron **ReLU** activation One hidden layer (100 neurons) Max #Iterations 200 **Constant** learning rate **0.001**

100 Decision Trees

Gini Impurity as split criteria

Build trees with Bootstrapping

Results

Discussion

PROBLEM	OPTIMIZATION
Human error during labeling test set	→ Label test set with a gold standard model
No hyperparameter tuning for Logistic Regression Classifier	Hyperparameter Optimization with Random Search & Grid Search
Only one training epoch for Sentence-BERT Embedder	→ Increase the number of training epochs
Inaccurate & incomplete training samples for Sentence-BERT Embedder	→ Preprocess samples before training
Possibility of added potential indicators being insignificant	Treat potential indicator choices as hyperparameters during fine-tuning
Possibility of overfitting data and inadequately cleaned Tweets	Apply stronger regularization and stricter data cleaning