- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

21 luglio 2011

																									L							
(Cognome)													1)	Vor	ne)				(Nu	me	ro c	li n	nati	ico	la)						

1	
2	
3	0000
4	0000
5	00000
6	00000
7	00000
8	
9	0000
10	

- 1. Data $f(x) = x^{(\log(x))}$. Allora f'(e) è uguale a A: N.A. B: e^2 C: 1 D: $\log(2e)$ E: $3e^3$
- 2. Modulo e argomento del numero complesso $z=\left(1+i\right)^{-4}$ sono A: (4,0) B: N.A. C: $(1/4,\pi/2)$ D: $(4,\pi/2)$ E: $(1/4,\pi)$
- 3. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(e^{\frac{x}{x-1}} - e)$$

- A: N.E. B: -e C: $\frac{e}{2}$ D: 0 E: e
- 4. Una soluzione dell'equazione differenziale $y'(x) = x^3 e^{x^4}$ è
 - A: N.E. B: N.A. C: $e^x e^{-x}$ D: $\frac{1}{\cos(x)}$ E: $\frac{e^{x^4} + \log_3(\log_3(e^{3^3}))}{4}$
- 5. Si consideri la seguente serie

$$\sum_{n=1}^{\infty} (-1)^n \sin(\frac{1}{n})$$

- Dire quale delle seguenti affermazione è vera
- A: La serie è convergente B: La serie è non convergente C: La serie è a termini positivi D: N.A. E: La serie è assolutamente convergente
- 6. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} 1 & \text{per } x < 1/2 \\ a & \text{per } x \ge 1/2. \end{cases}$
 - Allora i valori di $a \in \mathbb{R}$ per cui $f(x) = \int_0^x g(t) dt$ è continua sono
 - A: N.A. B: $a \le 1$ C: 0 < a < 1 D: $a \in \mathbb{R}$ E: a = 1
- 7. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale

A:
$$x-1$$
 B: $1+\frac{x-1}{4\sqrt{2}}$ C: $\frac{\sin(\log(x))}{x}$ D: N.A. E: $1+x$

8. Dire quali sono inf, min, sup e max del seguente insieme

$$A = \{x \in \mathbb{Q} : x^2 - 2 \le 0\}$$

A: N.A. B:
$$\{-\sqrt{2}, N.E., \sqrt{2}, N.E.\}$$
 C: $\{-\sqrt{2}, -\sqrt{2}, \sqrt{2}, \sqrt{2}\}$ D: $\{N.E., -\sqrt{2}, N.E., \sqrt{2}\}$ E: $\{-2, N.E., N.E., 2\}$

9. Dire quanto vale il seguente integrale

$$\int_{\pi/4}^{\pi/2} \frac{\cos x}{\sin x} \, dx$$

A:
$$\log(\frac{\sqrt{3}}{2})$$
 B: 1 C: $\frac{\log(2)}{2}$ D: $\log(\pi)$ E: N.A.

10. Dire per quali valori di $\alpha \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^4} = \alpha$$

A: $\alpha \in [0,1]$ B: Nessun valore di α C: $\alpha \in \mathbb{R}$ D: $\alpha \in (0,+\infty)$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

21 luglio 2011

			(Cc	gno	me)							(No	me)				(Nı	ume	ero (di m	atric	ola)

A	В	\mathbf{C}	D	\mathbf{E}	
		_			

1	0000
2	0000
3	0000
4	0000
5	00000
6	00000
7	00000
8	0000
9	0000
10	00000

1. Dire quanto vale il seguente integrale

$$\int_{\pi/4}^{\pi/2} \frac{\cos x}{\sin x} \, dx$$

A: $\log(\frac{\sqrt{3}}{2})$ B: N.A. C: 1 D: $\frac{\log(2)}{2}$ E: $\log(\pi)$

2. Si consideri la seguente serie

$$\sum_{n=1}^{\infty} (-1)^n \sin(\frac{1}{n})$$

Dire quale delle seguenti affermazione è vera

A: La serie è convergente B: La serie è a termini positivi C: La serie è non convergente D: La serie è assolutamente convergente E: N.A.

3. Una soluzione dell'equazione differenziale $y'(x) = x^3 e^{x^4}$ è

A:
$$e^x - e^{-x}$$
 B: $\frac{e^{x^4} + \log_3(\log_3(e^{3^3}))}{4}$ C: N.A. D: $\frac{1}{\cos(x)}$ E: N.E.

4. Dire quali sono inf, min, sup e max del seguente insieme

$$A = \{x \in \mathbb{Q} : x^2 - 2 \le 0\}$$

A:
$$\{-\sqrt{2}, N.E., \sqrt{2}, N.E.\}$$
 B: $\{N.E., -\sqrt{2}, N.E., \sqrt{2}\}$ C: $\{-\sqrt{2}, -\sqrt{2}, \sqrt{2}, \sqrt{2}\}$ D: N.A. E: $\{-2, N.E., N.E., 2\}$

5. Dire per quali valori di $\alpha \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^4} = \alpha$$

A: Nessun valore di α B: $\alpha \in [0,1]$ C: $\alpha \in \mathbb{R}$ D: $\alpha \in (0,+\infty)$ E: N.A.

6. Modulo e argomento del numero complesso $z = \left(1+i\right)^{-4}$ sono

A: N.A. B: (4,0) C: $(1/4,\pi)$ D: $(1/4,\pi/2)$ E: $(4,\pi/2)$

7. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} 1 & \text{per } x < 1/2 \\ a & \text{per } x \ge 1/2. \end{cases}$

Allora i valori di $a \in \mathbb{R}$ per cui $f(x) = \int_0^x g(t) dt$ è continua sono

A: N.A. B:
$$0 < a < 1$$
 C: $a = 1$ D: $a \in \mathbb{R}$ E: $a \le 1$

8. Data $f(x) = x^{(\log(x))}.$ Allora $f'(\mathbf{e})$ è uguale a

A: N.A. B: e^2 C: $3e^3$ D: $\log(2e)$ E: 1

9. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale

A:
$$\frac{\sin(\log(x))}{x}$$
 B: $1 + \frac{x-1}{4\sqrt{2}}$ C: $x - 1$ D: $1 + x$ E: N.A.

10. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(e^{\frac{x}{x-1}} - e)$$

A: N.E. B: e C: -e D: 0 E: $\frac{e}{2}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

21 luglio 2011

(Cognome)	(Nome)	(Numero di matricola)

A	В	\mathbf{C}	D	\mathbf{E}	
		_			

1	0000
2	0000
3	0000
4	0000
5	00000
6	
7	
8	0000
9	0000
10	

1. Dire quali sono inf, min, sup e max del seguente insieme

$$A = \{ x \in \mathbb{Q} : \ x^2 - 2 \le 0 \}$$

A: $\{-\sqrt{2}, -\sqrt{2}, \sqrt{2}, \sqrt{2}\}$ B: $\{N.E., -\sqrt{2}, N.E., \sqrt{2}\}$ C: $\{-\sqrt{2}, N.E., \sqrt{2}, N.E.\}$ D: $\{-2, N.E., N.E., 2\}$ E: N.A.

2. Si consideri la seguente serie

$$\sum_{n=1}^{\infty} (-1)^n \sin(\frac{1}{n})$$

Dire quale delle seguenti affermazione è vera

A: N.A. B: La serie è assolutamente convergente C: La serie è non convergente D: La serie è convergente E: La serie è a termini positivi

3. Dire quanto vale il seguente integrale

$$\int_{\pi/4}^{\pi/2} \frac{\cos x}{\sin x} \, dx$$

A: $\frac{\log(2)}{2}$ B: 1 C: $\log(\pi)$ D: $\log(\frac{\sqrt{3}}{2})$ E: N.A.

4. Dire per quali valori di $\alpha \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^4} = \alpha$$

A: $\alpha \in [0,1]$ B: Nessun valore di α C: $\alpha \in (0,+\infty)$ D: $\alpha \in \mathbb{R}$ E: N.A.

5. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(e^{\frac{x}{x-1}} - e)$$

A: N.E. B: 0 C: e D: -e E: $\frac{e}{2}$

6. Una soluzione dell'equazione differenziale $y'(x) = x^3 e^{x^4}$ è

A: N.E. B: N.A. C:
$$e^x - e^{-x}$$
 D: $\frac{e^{x^4 + \log_3(\log_3(e^{3^3}))}}{4}$ E: $\frac{1}{\cos(x)}$

7. Modulo e argomento del numero complesso $z = (1+i)^{-4}$ sono

A:
$$(1/4, \pi)$$
 B: N.A. C: $(1/4, \pi/2)$ D: $(4, \pi/2)$ E: $(4, 0)$

8. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} 1 & \text{per } x < 1/2 \\ a & \text{per } x \ge 1/2. \end{cases}$

Allora i valori di $a \in \mathbb{R}$ per cui $f(x) = \int_0^x g(t) dt$ è continua sono

A:
$$a=1$$
 B: $0 < a < 1$ C: N.A. D: $a \le 1$ E: $a \in \mathbb{R}$

9. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale

A:
$$x-1$$
 B: $\frac{\sin(\log(x))}{x}$ C: $1 + \frac{x-1}{4\sqrt{2}}$ D: $1+x$ E: N.A.

10. Data $f(x) = x^{(\log(x))}$. Allora f'(e) è uguale a

A: N.A. B: 1 C:
$$3e^3$$
 D: $log(2e)$ E: e^2

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

21 luglio 2011

			(Co	gno	me)							(No	ome)				(N	um	ero	o di	ma	trico	la)

 ${\rm CODICE} = 061063$

A	В	\mathbf{C}	D	Ε	

1	0000
2	00000
3	
4	
5	
6	
7	
8	
9	
10	0000

1. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} 1 & \text{per } x < 1/2 \\ a & \text{per } x \ge 1/2. \end{cases}$

Allora i valori di $a \in \mathbb{R}$ per cui $f(x) = \int_0^x g(t) dt$ è continua sono

A: N.A. B: a = 1 C: $a \in \mathbb{R}$ D: $a \le 1$ E: 0 < a < 1

2. Una soluzione dell'equazione differenziale $y'(x) = x^3 e^{x^4}$ è

A: N.E. B: N.A. C: $\frac{1}{\cos(x)}$ D: $\frac{e^{x^4} + \log_3(\log_3(e^{3^3}))}{4}$ E: $e^x - e^{-x}$

3. Data $f(x) = x^{(\log(x))}$. Allora f'(e) è uguale a

A: e^2 B: log(2e) C: N.A. D: 1 E: $3e^3$

4. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale

A: N.A. B: x - 1 C: 1 + x D: $\frac{\sin(\log(x))}{x}$ E: $1 + \frac{x-1}{4\sqrt{2}}$

5. Dire quanto vale il seguente integrale

 $\int_{\pi/4}^{\pi/2} \frac{\cos x}{\sin x} \, dx$

A: N.A. B: 1 C: $\frac{\log(2)}{2}$ D: $\log(\frac{\sqrt{3}}{2})$ E: $\log(\pi)$

6. Dire quali sono inf, min, sup e max del seguente insieme

 $A = \{x \in \mathbb{Q} : x^2 - 2 \le 0\}$

A: N.A. B: $\{-2, N.E., N.E., 2\}$ C: $\{N.E., -\sqrt{2}, N.E., \sqrt{2}\}$ D: $\{-\sqrt{2}, N.E., \sqrt{2}, N.E.\}$ E: $\{-\sqrt{2}, -\sqrt{2}, \sqrt{2}, \sqrt{2}\}$

7. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(e^{\frac{x}{x-1}} - e)$$

A: N.E. B: $\frac{e}{2}$ C: 0 D: -e E: e

- 8. Modulo e argomento del numero complesso $z=\left(1+i\right)^{-4}$ sono A: $(4,\pi/2)$ B: $(1/4,\pi/2)$ C: N.A. D: $(1/4,\pi)$ E: (4,0)
- 9. Si consideri la seguente serie

$$\sum_{n=1}^{\infty} (-1)^n \sin(\frac{1}{n})$$

Dire quale delle seguenti affermazione è vera

A: La serie è assolutamente convergente B: La serie è convergente C: La serie è a termini positivi D: La serie è non convergente E: N.A.

10. Dire per quali valori di $\alpha \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^4} = \alpha$$

A: N.A. B: $\alpha \in \mathbb{R}$ C: $\alpha \in (0, +\infty)$ D: Nessun valore di α E: $\alpha \in [0, 1]$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

21 luglio 2011

(Cognome)	(Nome)	(Numero di matricola)

CODICE = 558268

A	В	С	D	\mathbf{E}	

2 3 4 5 6 7 8 9 10	1	
4	2	00000
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	00000
6	4	0000
7	5	0000
8 0 0 0 0	6	
9	7	00000
	8	
10	9	00000
	10	

1. Dire quali sono inf, min, sup e max del seguente insieme

$$A = \{x \in \mathbb{Q} : x^2 - 2 \le 0\}$$

A: $\{-\sqrt{2}, -\sqrt{2}, \sqrt{2}, \sqrt{2}\}$ B: $\{-\sqrt{2}, N.E., \sqrt{2}, N.E.\}$ C: $\{-2, N.E., N.E., 2\}$ D: $\{N.E., -\sqrt{2}, N.E., \sqrt{2}\}$ E: N.A.

2. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale

A: 1+x B: $\frac{\sin(\log(x))}{x}$ C: N.A. D: x-1 E: $1+\frac{x-1}{4\sqrt{2}}$

3. Modulo e argomento del numero complesso $z = (1+i)^{-4}$ sono

A: N.A. B: $(1/4, \pi)$ C: $(1/4, \pi/2)$ D: (4, 0) E: $(4, \pi/2)$

4. Dire per quali valori di $\alpha \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

 $e^{-x^4} = \alpha$

A: Nessun valore di α B: $\alpha \in [0,1]$ C: $\alpha \in \mathbb{R}$ D: N.A. E: $\alpha \in (0,+\infty)$

5. Dire quanto vale il seguente integrale

 $\int_{\pi/4}^{\pi/2} \frac{\cos x}{\sin x} \, dx$

A: $\log(\frac{\sqrt{3}}{2})$ B: $\frac{\log(2)}{2}$ C: N.A. D: $\log(\pi)$ E: 1

6. Una soluzione dell'equazione differenziale $y'(x) = x^3 e^{x^4}$ è

A: $\frac{e^{x^4} + \log_3(\log_3(e^{3^3}))}{4}$ B: $\frac{1}{\cos(x)}$ C: $e^x - e^{-x}$ D: N.A. E: N.E.

7. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(e^{\frac{x}{x-1}} - e)$$

A: e B: 0 C: $\frac{e}{2}$ D: -e E: N.E.

8. Si consideri la seguente serie

$$\sum_{n=1}^{\infty} (-1)^n \sin(\frac{1}{n})$$

Dire quale delle seguenti affermazione è vera

A: N.A. B: La serie è a termini positivi C: La serie è assolutamente convergente D: La serie è convergente E: La serie è non convergente

9. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} 1 & \text{per } x < 1/2 \\ a & \text{per } x \ge 1/2. \end{cases}$

Allora i valori di $a \in \mathbb{R}$ per cui $f(x) = \int_0^x g(t) dt$ è continua sono

A: N.A. B: $a \in \mathbb{R}$ C: a = 1 D: $a \le 1$ E: 0 < a < 1

10. Data $f(x) = x^{(\log(x))}$. Allora f'(e) è uguale a

A: 1 B: e^2 C: $3e^3$ D: N.A. E: $\log(2e)$

21 luglio 2011

(Cognome)											(No	me)			_	(N	ume	ro d	i ma	trice	ola)						

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

21 luglio 2011

 (Cognome)								_			(No	me)			_	ume	i ma	tric	ola)							

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

21 luglio 2011

(Cognome)	(Nome)	(Numero di matricola)

A	В	С	D	\mathbf{E}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

21 luglio 2011

(Cognome)	(Nome)	(Numero di matricola)					

CODICE = 061063

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

21 luglio 2011

(Cognome)											((No	me)			_		$um\epsilon$	ro d	li m	atric	ola)							

21 luglio 2011

PARTE B

1. Studiare, al variare del parametro $\lambda \in \mathbb{R}$, il grafico della funzione

$$f(x) = \frac{x^3}{(x-\lambda)^2}, \qquad x \neq \lambda.$$

Soluzione: La funzione f risulta continua per ogni $x \neq \lambda$. Inoltre, qualsiasi sia $\lambda \in \mathbb{R}$ sia ha

$$\lim_{x \to +\infty} f(x) = +\infty \qquad \lim_{x \to -\infty} f(x) = -\infty.$$

Inoltre

$$\lim_{x \to \lambda} f(x) = +\infty \quad \text{se } \lambda > 0$$

$$\lim_{x \to \lambda} f(x) = -\infty \quad \text{se } \lambda < 0$$

Osserviamo che nel caso $\lambda=0$ la funzione è semplicemente f(x)=x, definita per $x\neq 0.$ Passando alla derivata prima si ha

$$f'(x) = \frac{x^2 (x - 3\lambda)}{(x - \lambda)^3}$$

e quindi la funzione è derivabile per $x \neq \lambda$.

Per $\lambda > 0$ la funzione risulta crescente per $\{x < \lambda\} \cup \{x > 3\lambda\}$ e pertanto si ha un minimo relativo per $x = 3\lambda$.

Viceversa per $\lambda < 0$ la funzione risulta crescente per $\{x < 3\lambda\} \cup \{x > \lambda\}$ e pertanto si ha un massimo relativo per $x = 3\lambda$.

La derivata seconda

$$f''(x) = \frac{6 x \lambda^2}{(x - \lambda)^4}$$

risulta maggiore o uguale di zero per $x \ge 0$ e minore o uguale di zero per $x \le 0$. Il grafico risulta quindi (eccetto il caso banale di $\lambda = 0$) il seguente

Figura 1: $\lambda > 0$

Figura 2: $\lambda > 0$

2. Trovare la soluzione del problema di Cauchy

$$\begin{cases} y''(t) + y(t) = \sin(t) e^t \\ y(0) = 1 \\ y'(0) = 0. \end{cases}$$

Soluzione. Il problema omogeneo ha come soluzione $Y(t) = A\cos(t) + B\sin(t)$, non c'è risonanza e la soluzione del non-omogeneo va cercata della forma

$$y_f(t) = [\alpha \cos(t) + \beta(\sin(t))]e^t.$$

Con semplici calcoli si arriva alla soluzione

$$y(t) = \frac{(7 - 2e^t)\cos(t) + (1 + e^t)\sin(t)}{5}$$

3. Studiare la convergenza della serie

$$\sum_{n=0}^{+\infty} \sin(x)^{2n}.$$

Chiamata $f(x) = \sum_{n=0}^{+\infty} \sin(x)^{2n}$ per gli x dove converge, se possibile, calcolare $f'(\pi/4)$.

Soluzione. Dato che $\sin^{2n}(x) = [\sin^2(x)]^n$ si tratta di una serie a termini non negativi. Per ogni x fissato si tratta di una serie geometrica di argomento $\sin^2(x)$, che converge se $0 \le \sin^2(x) < 1$, quindi per $x \ne \frac{\pi}{2} + k\pi$. Inoltre per $x = \frac{\pi}{2} + k\pi$ la serie diverge perchè $\sin^2(x) = 1$ per tali x. Per ogni x dove la serie converge si ha

$$\sum_{n=0}^{+\infty} \sin(x)^{2n} = \frac{1}{1 - \sin^2(x)} = \frac{1}{\cos^2(x)},$$

e la convergenza è uniforme in ogni intervallo chiuso contenuto in $\mathbb{R}\setminus(2k+1)\frac{\pi}{2}$. Pertanto $f'(x)=2\frac{\sin(x)}{\cos^3(x)}$ e quindi $f'(\pi/4)=4$.

4. Sia y la soluzione del problema di Cauchy

$$y'(t) = (y(t) + e)\log(y(t) + e)$$

$$y(0) = a \ge 0.$$

Dimostrare che $\lim_{t\to+\infty} y(t) = +\infty$ e che y(t) cresce più rapidamente di t^{2011} . (Sugg. Risolvere esplicitamente l'equazione)

Soluzione. Si tratta di una equazione a variabili separabili e scrivendola della forma

$$\frac{y'(t)}{(y(t) + \mathbf{e})\log(y(t) + \mathbf{e})} = 1,$$

con una integrazione si ha che l'integrale generale è dato da

$$\log(\log(e+y)) = t + c$$

e quindi imponendo le condizioni iniziali la soluzione risulta essere

$$y(t) = -\mathbf{e} + (a + \mathbf{e})^{\mathbf{e}^t},$$

che cresce come un doppio esponenziale e quindi più in fretta di ogni potenza di t.