Lecture 9

Time Series

Basics of time series

- Random walks
- Autoregressive series
- Moving average series
- Autocorrelation and partial autocorrelation
- Differencing
- Seasonality

Example

My cookie factory wants to predict how many cookies will be sold in a day

We have recorded the number of sales every day for one year

Random Walks

 A random walk is a process in which each step is randomly determined

• The simplest random walk is an autoregressive random walk

$$X_t = X_{t-1} + \epsilon_t$$

Autoregressive Models

 An autoregressive (AR) is a generalization of random walks in which the value at time t depends on multiple preceding values

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \epsilon$$

 AR models typically do not skip lags. A model with three lags – AR(p) – can then be written as

$$X_t = \sum_{i=1}^p \phi_i X_{t-i}$$

Moving Average Models

• A moving average model has a value that depends on the last few error terms ϵ

• Moving average models -MA(q) - have equations of the form

$$X_t = \sum_{i=1}^q \epsilon_{t-i}$$

ARMA Models

Models can have both autoregressive and moving average terms.
 These are called ARMA models and are parameterized by (p,q)

$$X_{t} = \sum_{i=1}^{p} \phi_{i} X_{t-1} + \sum_{j=1}^{q} \epsilon_{t-1} + \epsilon_{t}$$

 To select the lags p and q, we can look at the autocorrelation and partial autocorrelation

Autocorrelation & Partial Autocorrelation

```
fig = plt.figure(figsize=(12,
8))
ax1 = fig.add_subplot(211)

fig = sm.graphics.tsa.plot_acf(
sales, lags=20, ax=ax1)
ax2 = fig.add_subplot(212)

fig =
sm.graphics.tsa.plot_pacf(
sales, lags=20, ax=ax2)
```


Fitting Using Statsmodels

```
arma = sm.tsa.arima.ARIMA(data['Power'], order=(4,0,0)).fit()
arma.summary()
```

SARIMAX Results						
Dep. Variable:	у	No.	Observations:	:	 365	
Model:	ARIMA(3, 0, 0)	Log	Likelihood		-836.722	
Date:	Tue, 12 Mar 2024	AIC			1683.444	
Time:	13:40:58	BIC			1702.943	
Sample:	0	HQIC	:		1691.193	
	- 365					
Covariance Type:	opg					
coef	std err	Z	P> z	[0.025	0.975]	
const 42.1426	2.929	14.387	0.000	36.401	47.884	
ar.L1 0.7633	0.053	14.356	0.000	0.659	0.867	
ar.L2 0.3338	0.065	5.161	0.000	0.207	0.461	
ar.L3 -0.1388	0.052	-2.657	0.008	-0.241	-0.036	
sigma2 5.6971	0.453	12.564	0.000	4.808	6.586	
liung Doy (11) (0):		0 04	Jangua Dana	: /ap\.	=======	ο εΓ
Ljung-Box (L1) (Q):		0.01		(38):		0.65
Prob(Q):	\.	0.91	Prob(JB):			0.72
Heteroskedasticity (H):		Skew:			0.04
Prob(H) (two-sided):			Kurtosis:			2.81

Using the results

Short-Term Forecasting

Predict values over the next few time periods

Representative Scenarios

Create sample time series following the same patterns

Stationary and Non-Stationary Series

 ARMA models assume the time series is stationary, meaning that the distribution of values does not change as time passes

What happens if we do not have a stationary time series?

Non-Stationary Time Series

- We can check if a time series is stationary using the Augmented Dickey-Fuller (ADF or ADFuller) test
 - We won't go into details on how this is calculated, but it ends with a hypothesis test that gives a p-value. Lower p-value means more stationary

Non-Stationary Time Series

- For non-stationary time series, we can introduce one or more differences to the ARMA model creating an ARIMA model
 - An ARIMA(p,1,q) model is equivalent to an ARMA(p,q) model on the differences of the time series
- You can estimate terms for p and q using ACF/PACF plots of the difference in the time series

Non-Stationary Time Series

Seasonality

 Seasonality is when time series data follows a recurring pattern over some interval

- We can decompose seasonal data into seasonal, trend, and residual terms
 - Seasonal repeating pattern
 - Trend long-term average
 - Residual leftovers

STL Decomposition

Seasonal-Trend
 Decomposition by Loess uses smoothing estimates to generate the component time series

from statsmodels.tsa.seasonal import STL
stl = STL(df['Power'], period=24)
result = stl.fit()

STL Decomposition

 The residuals of an STL decomposition can be treated as an ARIMA series

