AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1 - 52. (canceled)

53. (new) A matching method for a switch arrangement comprising number N of first elements, each first element arranged to at least provide ingress to the switch arrangement, each of the first N elements comprising a number L₁ of first sub-elements, the switch arrangement having a number ML₂ of second sub-elements arranged to at least provide egress from said switch arrangement, and wherein each of the first L₁ sub-elements is capable of conveying a service request for at least one of said second sub-elements ML₂, wherein the ML₂ sub-elements are grouped into M aggregations of L₂ sub-elements, and the method comprises:

firstly, for every one of the N first elements, aggregating service requests from all L₁ first sub-elements to each of the M aggregations of L₂ second sub-elements, and

secondly, resolving contention for said service requests from all N first elements to one or more of said M aggregations pf L₂ second sub-elements, and

thirdly, for each first element, resolving contention between the L_1 sub-elements and said M aggregations of L_2 second sub-elements.

54. (new) A matching method as claimed in claim 53, wherein the matching method comprises the following steps:

performing a first matching across the switch fabric for each of the plurality of N input elements and the ML_2 sub-elements by performing the steps of:

summing a number of requests from each of the L₁ sub-elements of the input element;

generating a first N x ML2 request matrix;

HILL et al

U.S. National Phase of PCT/GB2004/004159

matching the first request matrix to generate a first matrix of accepted requests; and

performing a second matching across the switch fabric for each of the N input elements by performing the steps of:

generating N asymmetric second $L_1 \times ML_2$ matrices, one for each of the N input elements; and

matching each of the N asymmetric second matrices to generate N second matrices of accepted requests; and

generating a $NL_1 \times ML_2$ matrix of accepted requests from the first $N \times ML_2$ matrix of accepted requests and the N second $L_1 \times ML_2$ accepted request matrices.

- 55. (new) A matching method as claimed in claim 54, wherein the $NL_1 \times ML_2$ matrix of requests is symmetric.
- 56. (new) A matching method as claimed in claim 54, wherein L_1 is equal to L_2 and N is equal to M.
- 57. (new) A matching method as claimed in 54, wherein a said sub-element comprise one of the following:
 - a port of a switch;
 - a port of a switching network;
 - a wavelength channel in an optical network;
 - a node in an optical ring network;
 - a terminal in an un-amplified passive optical network;
 - a terminal in an amplified passive optical network.
- 58. (new) A matching method as claimed in claim 54, wherein the subelements comprise ports, and the matching method updates the pointers to input ports according to the following rule:

U.S. National Phase of PCT/GB2004/004159

$$p_{out} = 1 + [(LN - P_{in} + k)_{mod LN}]$$
 and

the output ports are updated according to the following rule:

$$p_{in} = 1 + [(LN - P_{out} + k)_{mod L}].$$

59. (new) A matching method as claimed in claim 54, wherein the subelements comprise ports, and the matching method updates the pointers to input ports according to the following rule:

$$p_{out} = 1 + [(LN - P_{in} + k)_{modLN}]$$
 and

the output ports are updated according to the following rule:

$$p_{in} = 1 + [(m - (m - P_{out} + K)_{modL}]$$

- 60. (new) A matching method as claimed in claim 53, wherein the ML_2 output sub-elements are grouped first into M groups pf L_2 sub-elements, and matching is performed first at the group level between the N groups of L_1 input sub-elements and the M groups of L_2 output sub-elements, and then, for each of the N groups of L_1 input sub-elements, between the L_1 individual input sub-elements and the M groups of L_2 output sub-elements.
- 61. (new) A method as claimed in claim 53, wherein said first sub-elements and said second sub-elements are bi-directional.
- 62. (new) A matching method as claimed in claim 53, wherein the step of resolving contention between the L₁ sub-elements and said second ML₂ sub-elements is performed in parallel for each said first element.
- 63. (new) A matching method as claimed in claim 60, wherein said first and second sub-elements comprise ports in the switch arrangement, said first elements comprise aggregations of said first sub-elements and said second elements comprise aggregations of said second sub-elements.
- 64. (new) A matching method as claimed in claim 53, wherein said switch arrangement comprises an input queued cell switch arrangement and said service

U.S. National Phase of PCT/GB2004/004159

requests comprise requests for transmitting a service information rate from one of said first sub-elements to at least one of said second sub-elements.

- 65. (new) A matching method as claimed in claim 53, wherein said switch arrangement comprises an input queued cell switch and said service requests comprise requests for transmitting at least one cell from one of said first sub-elements to at least one of said second sub-elements.
- 66. (new) A method as claimed in claim 53, wherein said switch arrangement comprises a circuit based switch and said service request comprises a request for at least one of the following:
 - a connection in the circuit-based switch;
 - a wavelength channel in the circuit-base J switch
 - a bandwidth in the circuit-based switch;
 - a service information rate in the circuit-based switch;
 - a bit rate in the circuit-based switch.
- 67. (new) A method as claimed in claim 53, wherein the switch arrangement comprises a network, and wherein said elements comprise aggregations of network terminals or nodes and said sub-elements comprise network terminals or nodes.
- 68. (new) A method as claimed in claim 53, wherein the switch arrangement comprises an arrangement of inter-connectable sub-networks, where said elements comprise sub-networks and said sub-elements comprise network terminals or nodes.
- 69. (new) A method as claimed in claim 53, wherein the method of matching comprises:
- firstly, aggregating service requests to a highest level of a matching hierarchy, and

secondly, resolving contention for said service requests at the highest level of the matching hierarchy, and

HILL et al U.S. National Phase of PCT/GB2004/004159

thirdly, resolving contention in turn down through the matching levels to the lowest level of matching.

70. (new) A matching method for a multi-stage switch arrangement having a plurality of logically associated inputs and a plurality of outputs, wherein the matching method comprises the steps of:

for each logical association of inputs, aggregating service requests from every one of the inputs which form said logical association;

resolving contention for said aggregated service requests between all of the logical associations to the outputs of the switch arrangement; and

repeating the above steps in the matching method within each logical association for a subset of the inputs forming each said logical association until contention is resolved between the individual inputs of the switch arrangement and the outputs of the switch arrangement.

- 71. (new) A matching method as claimed in claim 70, wherein in each repetition, the number of inputs forming the logical association is reduced until each logical association of a sub-set comprises a single input to the switch arrangement, said aggregated service requests comprise a single service request, whereby contention is resolved between each input of the switch arrangement and each output of the switch arrangement.
- 72. (new) A method as claimed in claim 70, wherein each step resolving contention between the outputs of the switch arrangement comprises resolving contention between a logical association of inputs and a logical association of outputs having the same number of inputs.
- 73. (new) A matching method as claimed in claim 70, wherein said multistage switch arrangement comprises a plurality of switching stages, at least one switching stage comprising:

a plurality of switches which logically associated into different sets of switches, each set of switches being logically associated With one of said logical associations of inputs of the switch arrangement, wherein each set of logically associated switches operate only on the inputs of the switch arrangement with which they are logically associated, the switch arrangement further comprising a global spatial switching stage arranged to receive traffic derived from any of the inputs of the switch arrangement via any logically adjacent sets of said switches.

74. (new) A matching method as claimed in claim 70, wherein said multistage switch arrangement comprises a plurality of switching stages, at least one switching stage comprising:

a plurality of switches which logically associated into different sets of switches, each set of switches being logically associated with one of said logical associations of outputs of the switch arrangement, wherein each set of logically associated switches operate only to provide output to the outputs of the switch arrangement with which they are logically associated.

75. (new) A multi-stage switch arrangement arranged to switch time-slotted traffic segments, the switch arrangement comprising:

a plurality of switching stages including spatial switching stage arranged to receive traffic which has been switched by at least one switching stage logically adjacent to the input of spatial switching stage, the spatial switching stage being further arranged to output to at least one switching stage logically adjacent to its output,

each of said at least one switching stage logically adjacent to the input of the spatial switching stage comprises a plurality of input aggregation switching stages, each aggregation switching stage being logically associated with a subset of the inputs of the switch arrangement,

each of said at least one switching stage logically adjacent to the output of the spatial switching stage comprises a plurality of output aggregation switching stages,

U.S. National Phase of PCT/GB2004/004159

each output aggregation switching stage being logically associated with a subset of the outputs of the switch arrangement,

the multi-stage switch being further arranged to implement suitable control means to enable the time-slotted traffic to be matched according to the matching method as claimed in claim 70.

76. (new) A switch arrangement, the switch arrangement having number N of first elements, each first element arranged to at least provide ingress to a switch arrangement, each of the first N elements comprising a number L₁ of first sub-elements, the switch arrangement having a number ML₂ of second sub-elements arranged to at least provide egress from said switch arrangement, and wherein each of the first L₁ sub-elements is capable of conveying a service request for at least one of said second sub-elements ML₂, wherein said service requests are conveyed by performing a matching method which comprises:

for each of the N first elements, aggregating service requests from all L₁ first subelements to each of the ML₂ second sub-elements, and

resolving contention for said service requests from all N first elements to one or more of said second ML₂ sub-elements, and

for each of the N first elements, resolving contention between the L_1 sub-elements and said second ML_2 sub-elements.

- 77. (new) A network including a switch arrangement as claimed in claim 70.
- 78. (new) A suite of at least one computer programs arranged when executed to implement steps in a method according to claim 53.
- 79. (new) A suite of at least one computer programs as claimed in claim 78, wherein at least one program is arranged to be implemented by software running on a suitable computational device.
- 80. (new) A scheduler for a switching arrangement, the scheduler arranged to perform a scheduling process, the scheduling process comprising:

HILL et al U.S. National Phase of PCT/GB2004/004159

a matching method as claimed in claim 53; and a channel assignment process.