Cognome, Nome, Matricola

Architetture dei Sistemi di Elaborazione (01GOL) Esame del 28 aprile 2005

Si consideri il programma riportato in seguito, pensato per lavorare sugli elementi di due vettori X e Z e calcolare un nuovo vettore W i cui elementi sono dati dalla seguente formula

$$y(x, z) = x^3 + x^2 + z^*b$$

I vettori X, Z e W contengono 100 numeri Floating Point; i primi due sono stati salvati in precedenza nella memoria. La costante b vale 32.

Con riferimento ad un'architettura MIPS64, si assuma che:

- L'unità di moltiplicazione/divisione FP abbia una latenza pari a 4 colpi di clock
- L'unità di somma/sottrazione FP abbia una latenza pari a 2 colpi di clock
- Il branch delay slot sia pari ad 1 colpo di clock
- Il delay slot non sia abilitato
- Il data forwarding sia abilitato.

Si eseguano le seguenti operazioni:

- 1) (2 punti) Si calcoli il numero di colpi di clock richiesto da ogni istruzione e si indichi quanti colpi di clock utilizza l'intero programma.
- 2) (4 punti) Si ottimizzi il programma utilizzando tutte le tecniche di ottimizzazioni in maniera tale che il programma esegua lo stesso calcolo nel minimo numero di colpi di clock.
- 3) (2 punti) Si esegua lo stesso calcolo dei colpi di clock del punto 1 con il nuovo programma del punto 2 evidenziando il miglioramento delle prestazioni.

	.data	Commenti	Colpi di clock
vetX: .double	e "100 valori"		
vetZ: .double	e "100 valori"		
vetY: .double	e "100 spazi"		
	.text		
MAIN:	daddui R1,R0,100	R1? 100	
	daddui R2,R0,vetX	R2? Dir vetX	
	daddui R3,R0,vetZ	R3? Dir vetZ	
	daddui R4,R0,vetY	R4? Dir vetY	
	daddui R5,R0,32		
	mtc1 F11,R5		
	cvt.w.d F7,F11	F7? 32	
loop:	1.d F1,0(R2)	F1? X(n)	
	1.d F2,0(R3)	F2? Z(n)	
	mul.d F3,F1,F1	F3? X ² (n)	
	mul.d F4,F3,F1	$F4? X^3(n)$	
	mul.d F6,F7,F2	F6? Z(n)*b	
	add.d F5,F3,F4	F5? $X^3(n) + X^2(n)$	
	add.d F3,F5,F6	F3? $X^3(n) + X^2(n) + Z(n)*b$	
	s.d F3,0(R4)	Y(n) ? F3	
	daddi R2,R2,8		
	daddi R3,R3,8		
	daddi R4,R4,8		
	daddi R1,R1,-1		
	bnez R1,loop		
	halt		