KC Housing Dataset

Regression Analysis of Kansas City Housing with Price as the Target

Price vs Square Footage of House (apart from basement)

Price vs Sq. Ft. Above 2

- P score of 0 indicating linear relationship
- Highly predictive coefficient to follow trend
- R-squared value of 0.294306 so not the best fit
- Some signs of heteroscedasticity

Price vs Living Space (amongst nearest 15 neighbors)

Price vs Living Space 2

- R-squared value of 0.295098 meaning not a good fit
- Still highly predictive of the trend in price
- P score of 0
- Some signs of heteroscedasticity and therefore non normal

Price vs Number of Bathrooms

Price vs Number of Bathrooms 2

- R-squared score of 0.208114 again meaning not the best fit
- Yet still an excellent predictor of the direction of price
- P score of 0
- Clear linear and positive relationship
- Again signs of heteroscedasticity

Model Performance

OLS Regression Results			
Dep. Variable:	price	R-squared:	0.639
Model:	OLS	Adj. R-squared:	0.638
Method:	Least Squares	F-statistic:	517.3
Date:	Thu, 22 Aug 2019	Prob (F-statistic):	0.00
Time:	15:45:53	Log-Likelihood:	-2.9400e+05
No. Observations:	21420	AIC:	5.881e+05
Df Residuals:	21346	BIC:	5.887e+05
Df Model:	73		
Covariance Type:	nonrobust		

- R-squared score is low but much higher when considering all the parameters
- Coefficients include the previous 3 mentioned as well as categorical values for all the Zip Codes as well as Condition and Number of Bedrooms

Test - Training Model


```
[price
          4.402329e+10
dtype: float64, price
                         4.518984e+10
dtype: float64, price
                         4.873215e+10
dtype: float64, price
                         4.899870e+10
dtype: float64, price
                         4.705336e+10
dtype: float641
[price
          5.847043e+10
dtype: float64, price
                         5.389784e+10
dtype: float64, price
                         3.965527e+10
dtype: float64, price
                         3.858774e+10
dtype: float64, price
                         4.665075e+10
dtype: float64]
```

- Train Mean Squared Error: 45336513948.13085
- Test Mean Squared Error: 53244315653.16054
- Model is fairly predictive and not a huge difference in train/test splits
- Bottom image is residual results for training and testing K-fold crossvalidation test