REAL ESTATE ANALYTICS

COMPREHENSIVE PROJECT REPORT

TABLE OF CONTENTS

1.	Project Overview
2.	Technical Specifications
3.	Project Architecture
4.	Data Pipeline
5.	Machine Learning Pipeline
6.	Implementation Phases
7.	File Structure
8.	Results & Performance
9.	Deployment Strategy
10.	Future Enhancements

11.

PROJECT OVERVIEW

Objective

This project demonstrates a complete Machine Learning Development Life Cycle (MLDLC) implementation for real estate price prediction and recommendation systems. The primary goal is to gain practical knowledge by applying theoretical concepts in a real-world scenario.

Problem Statement

- Predict property prices accurately using historical data
- Provide property recommendations based on user preferences
- Analyze market trends and property characteristics
- Build a scalable system for real estate analytics

Business Value

- Accurate price predictions for buyers and sellers
- Intelligent property recommendations
- Market trend analysis and insights

Data-driven decision making for real estate investments

TECHNICAL SPECIFICATIONS

Programming Language

Python 3.8+

Jupyter Notebook

Data Format: CSV, Pickle

Core Technologies

Data Processing: Pandas, NumPy, Scipy

Machine Learning: Scikit-learn, XGBoost, Category Encoders

Visualization: Matplotlib, Seaborn, Plotly Statistical Analysis: Statsmodels, Scipy

Web Tools: Requests, BeautifulSoup4, Selenium

Utilities: Pickle, TQDM

System Requirements

OS: Windows / Linux / macOS

Python: 3.8 or higher

Memory: 8GB+ RAM

Storage: 2GB+ free space

CDI I:

CPU: Multi-core recommended

PROJECT ARCHITECTURE

High-Level Architecture

Data Sources

Data Collection

Data Preprocessing

Feature Engineering

Model Training

Model Evaluation

Deployment

User Interface

Component Overview

- Data Layer Raw and processed datasets
- 2.

 Processing Layer Data cleaning and feature engineering
- Model Layer Machine learning algorithms
- 4. Application Layer Prediction and recommendation services
- Interface Layer User interaction and visualization

DATA PIPELINE

Data Sources

- Property listings (flats, houses)
- Location and amenity information
- Market pricing and feature data

Data Processing Flow

- 1. Data Collection
- 2. Data Cleaning
- 3. Data Transformation
- 4. Feature Engineering
- 5. Data Validation

Data Quality Measures

- Missing value imputation
- Outlier detection and treatment

•

Duplicate removal

MACHINE LEARNING PIPELINE

Model Development

Model Selection

7. Model Deployment

Algorithms Implemented

Linear Regression, Ridge Regression, LASSO, SVR, Decision Tree, Random Forest, Extra Trees, Gradient Boosting, AdaBoost, XGBoost, MLP

Evaluation Metrics

•

R² Score

•

Mean Absolute Error

•

Root Mean Square Error

•

10-Fold Cross Validation

IMPLEMENTATION PHASES

Phase 1: Project Planning & Roadmap

Objective: Define scope, roadmap, and technical architecture.

Deliverables: Project plan, architecture diagram, setup environment.

Phase 2: Data Gathering & Initial Preprocessing

Objective: Collect and clean raw property data.

Files: data-preprocessing-flats.ipynb, data-preprocessing-houses.ipynb, merge-flats-and-

house.ipynb

Phase 3: Exploratory Data Analysis (EDA)

Objective: Explore data distributions and relationships.

Files: eda-univariate-analysis.ipynb, eda-multivariate-analysis.ipynb

Phase 4: Feature Engineering

Objective: Create meaningful, performance-improving features.

Files: feature-engineering.ipynb, feature-selection-and-feature-engineering.ipynb

Phase 5: Outlier Detection & Treatment

Objective: Identify and treat data anomalies.

Files: outlier-treatment.ipynb

Phase 6: Missing Value Imputation

Objective: Handle missing data using statistical and domain methods.

Files: missing-value-imputation.ipynb

Phase 7: Feature Selection

Objective: Select the most relevant features for modeling.

Files: feature-selection.ipynb

Phase 8: Model Building (Price Prediction)

Objective: Develop and optimize predictive models. Files: baseline model.ipynb, model-selection.ipynb

Phase 9: Analysis & Insights Module

Objective: Extract and visualize actionable insights. Files: insights-module.ipynb, output_report.html

Phase 10: Recommendation System Development

Objective: Build a property recommendation system using TF-IDF and cosine similarity.

Files: recommender-system.ipynb, appartments.csv, latlong.csv

Phase 11: Deployment & Integration

Objective: Prepared the system for full deployment with model serialization and integration using Streamlit for real-time analytics and recommendations.

Files Used: pipeline.pkl (model pipeline), df.pkl (feature dataset), run_app.py (Streamlit app), run_app.bat (startup file), requirements.txt (dependencies), app/ (Streamlit application folder)

Phase 12: Documentation

Objective: Create technical documentation and user guides.

FILE STRUCTURE

Data Files

Data/ Naw Data, Cleaned Data, Processed Data

Analysis Notebooks

Notebooks/ $\ \ \ \$ Data Preprocessing, EDA, Feature Engineering, Data Quality, ML, BI, Recommendation System

Model Files

Models/ 🛭 pipeline.pkl, df.pkl

Reports

Reports/

output_report.html

Supporting Data

RESULTS & PERFORMANCE

Model Performance

R² Score: 0.865

Mean Absolute Error: Optimized with cross-validation

Consistent model performance across folds

Business Impact

Accurate price predictions

Effective property recommendations

•

Actionable market insights

Scalable architecture

Achievements

- Implemented 11 ML algorithms
- Built full feature engineering and EDA pipelines
- Created production-ready recommender system
- Deployed on Streamlit

DEPLOYMENT STRATEGY

Model Deployment

- Model serialization using Pickle
- 2. Streamlit web app integration
- 3. Docker-based deployment pipeline
- 4. Cloud-ready architecture

Architecture Layers

Frontend (Streamlit)

Backend (APIs)

Model Layer (Pickle)

Database (Artifacts)

Production Considerations

- Model versioning
- A/B testing
- Real-time monitoring
- Scalable infrastructure

FUTURE ENHANCEMENTS

Technical Improvements: Real-time data, automated retraining, deep learning, advanced visualization

Business Features: ROI prediction, trend forecasting, risk evaluation

System Enhancements: Microservices, real-time streaming, enhanced security, mobile interface

CONCLUSION

This project demonstrates a complete Machine Learning Development Life Cycle (MLDLC) implementation for real estate analytics — from data collection to deployment. It bridges theoretical learning and practical application, delivering predictive insights, recommendation capabilities, and interactive visualization through Streamlit.

The modular design ensures scalability, maintainability, and ease of future enhancement. This report serves as a reference for full-cycle ML project implementation in real-world data-

driven environments.

Project Status: Completed Last Updated: 23/10/2025

Version: 1.0

Maintainer: Samarth A. Jadhav