Mathematical Analysis Vol.1

@Souez3

22.11.2024

1 Билет 1

1.1 Последовательность

f(n) - последовательность задана на множестве N Когда каждому $n \in N$ поставлено в соответствие некоторого закона $a(n) \in R$, тогда говорят, что задана числовая последовательность a_n^{\inf}

Примеры: n-ный член арифметической прогрессии: $a_n = a_1 + \alpha(n-1)$ геометрическая прогрессия: $b_n = b_1 * q^(n-1)$

1.2 Предел числовой последовательности

Определение: Число A называют пределом числовой последовательности X_n , если $\forall \epsilon > 0 \exists N(\epsilon)$: $\forall n > N(\epsilon)$ выполняется $|X_n - A| < \epsilon$

Определение: Сходящаяся последовательность - последовательность, которая имеет конечный предел

Определение: Расходящаяся последовательность - последовательность, которая имеет бесконечный предел либо предела не существует.

Последовательноть ограничена, если $\exists M>0: \forall n\in N$ выполняется $a_n <= M$ (существует такое число M, что для любого номера последовательности все члены последовательности не превосходят это число по модулю.

2 Билет 2

2.1 Теорема о единственности предела последовательности

Теорема: Если у последовательности есть предел, то он единственный **Доказательство:** Докажем от противного. Допустим существует 2 предела.

$$\exists \lim_{x\to\infty} X_n = A \ \exists \lim_{x\to\infty} X_n = B$$
, при этом $B! = A$ (1)

Тогда возьмем
$$\epsilon = (B-A)/3 > 0, \ (\epsilon_A \cap \epsilon_B! = 0)$$

Следовательно

$$n>=N$$
 $\exists N_1: \forall n>N$ выполняется $|X_n-A|<\epsilon$ (2)

 $\exists N_2 \forall_n >= N_2$ и тоже выполняется, что $|X_n - B| < \epsilon$ (3)

Тогда $|a-b|=|a-X_n+X_n-b|<=|X_n-A|+X_n-B|<\epsilon+\epsilon=2\epsilon=\frac{2*|A-B|}{3},$ тогда получим $|A-B|<=\frac{2}{3}*|B-A|$ Получим противорчие

3 Билет 3

Определение: Последовательность ограничена, если $\exists M>0: \forall b\in N$ выполняется $|a_n|<=M$ Теорема об ограниченности сходящейся последовательности: Всякая сходящаяся последовательность ограничена!

Доказательство: $\Box A = \lim_{n \to \infty} X_n \in R$, тогда и только тогда, когда $\forall \epsilon > 0 \exists N(\epsilon) \in mathdsN$ такое что $\forall n \in mathdsN : n > N(\epsilon)$ выполняется $|X_n - A| < \epsilon \forall n > N(\epsilon)X_n \in (A - \epsilon; A + \epsilon)$ содержит конечное число $\mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_k \Box m = minX^-; A - \epsilon M = maxA - \epsilon; x^+$ Тогда на отрезке [m; M] находятся $\mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_k (A - \epsilon; A + \epsilon)[m; M] \mathbf{x}_n, \forall n \in mathdsN \mathbf{x}_n <= m\mathbf{x}_n >= M$ Примеры:

1)

 $1_{\overline{n^2=1;\frac{1}{4},\frac{1}{4};\frac{1}{9};\frac{1}{16}...}}$ $\lim \frac{1}{n^2}=0$ - ограничена сверху 2) $\frac{n^2}{n+1}=\frac{1}{2};\frac{4}{3};\frac{9}{4};\frac{16}{5};...$ $\lim \frac{n^2}{n+1}>=\frac{1}{2}$ - ограничена снизу (4)

4 Билет 4

Арифметические операции над сходящимися последовательностями

 $\Box X_n; Y_n$ - две сходящиеся последовательности. Тогда $\exists \lim_{n \to \infty} X_n = A; \lim_{n \to \infty} Y_n = B$ Свойства 1) $X_n + = Y_n; X_n * Y_n; \frac{X_n}{Y_n}$ - тоже сходящиеся последовательности. 2) $\lim_{n \to \infty} (X_n + Y_n) = A + B$ 3) $\lim_{n \to \infty} (X_n - Y_n) = A - B$ 4) $\lim_{n \to \infty} (X_n * Y_n) = A * B$ 5) $\lim_{n \to \infty} \frac{X_n}{Y_n} = \frac{A}{B}$ Доказательство: 1) $\forall N > 0_0$: $\forall n > N_0$ выполняется $|X_n - A| < \frac{\epsilon}{2}() \exists N_1$: $\forall n > N_1$ выполняется $|Y_n - B| < \frac{\epsilon}{2}$ Пусть $N = \max(N_2; N_1), n > N \forall n > N | (X_n + Y_n) - (A + B) | = |X_n - A + Y_n - B| < = |X_n - A| + |Y_n - B| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

5 Билет 5

5.1 Понятие функции через последовательность

Если каждому $x \in X$ по некоторому закону поставлен в соответствии единственный у, то говорят что на множестве X задана функция f

 $\forall x \in X \exists ! y \in R : f(x) = y$ (5)

5.2 Предел функции в точке

Определение по Гейне: $\supset f(x)$ - определена в некоторой проколотой окрестности точки х

 $\lim_{x\to x_0} f(x) = A$ если $\forall x_n \exists \mathring{U}_{x0} > 0$ $\lim_{x\to x_0} f(x) - g(x) > 0 => f(x) - g(x) > 0$ по теореме если f(x) имеет предел A и в окрестности (а) принимает значения больше нуля, то A>=0 (6)

5.3 Теорема о единственности предела

Если функция имеет предел в точке, то он единственнй.

Доказательство от противного: $\exists X_n = \lim_{n \to \infty} X_n = A$ и $\lim_{n \to \infty} X_n = B$, A! = B; $A, B \in R$ Возьмем $\epsilon_n \cap \epsilon_b! =$, тогда $|f(x) - A| < \frac{\epsilon}{2}; |f(x) - B| < \frac{\epsilon}{2} |A - B| = |A - B + f(x) - f(x)| = |A - f(x) + f(x) - B| < = |A - f(x)| + |B - f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ То есть получили $\forall \epsilon > 0 - > |A - B| < \epsilon$

6 Билет 6

6.1 Ограниченная функция

Определение: Функция ограничена, если $\exists M>0: \forall x\in X$ выполняется |f(x)|<=M

Определение: Функция называется ограниченной сверху на х если $\exists M: \forall x \in X$ выполняется F(x) < M

Определение: Функция называется ограниченной снизу на х если $\exists M: \forall x \in X$ выполняется F(x) > M

6.1.1 Теорема об ограниченности функции, имеющей предел (конечный)

Если функция f(x) определена в точке x_0 и имеет в точке конечный предел, то она ограничена в некоторой окрестности этой точки.

$$\exists \lim_{x \to x_0} f(x) = A \iff \forall \varepsilon > 0 \,\exists \delta > 0 : \forall x \in \dot{U}(\delta),$$
$$|x - x_0| < \delta \implies |f(x) - A| < \varepsilon.$$

 $|x-x_0| < b \longrightarrow |f(x)|$ Пусть $\varepsilon = 1$, тогда $\forall x \in \dot{U}(\delta)$:

$$|f(x) - A| < 1,$$

раскрыв модуль:

$$-1 < f(x) - A < 1.$$

Отсюда:

$$A-1 < f(x) < A+1 \implies f(x)$$
 ограничена.

7 Билет 7

7.1 Арифметические действия с пределами функции

$$\lim_{x \to x_0} f(x) = A \quad \text{if} \quad \lim_{x \to x_0} \varphi(x) = B.$$

Тогда:

1.

$$\lim_{x \to x_0} (f(x) + \varphi(x)) = A + B.$$

2.

$$\lim_{x \to x_0} C \cdot f(x) = C \cdot A, \quad \text{где } C = \text{const.}$$

3.

$$\lim_{x \to x_0} (f(x) \cdot \varphi(x)) = A \cdot B.$$

4. Если $B \neq 0$, то:

$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \frac{A}{B}.$$

Условие: $\forall x \in \text{Dom}(\varphi) \quad \varphi(x) \neq 0$.

Доказательство: Арифметическое свойство предела (Сумма)

Условие

$$\lim_{x\to x_0} f(x) = A \quad \text{if} \quad \lim_{x\to x_0} \varphi(x) = B.$$

Доказательство

По определению предела:

$$\lim_{x \to x_0} f(x) = A \iff \forall \varepsilon_1 > 0 \,\exists \delta_1 > 0 : \forall x \in \dot{U}(\delta_1),$$
$$|x - x_0| < \delta_1 \implies |f(x) - A| < \varepsilon_1.$$

$$\lim_{x \to x_0} \varphi(x) = B \iff \forall \varepsilon_2 > 0 \,\exists \delta_2 > 0 : \forall x \in \dot{U}(\delta_2),$$
$$|x - x_0| < \delta_2 \implies |\varphi(x) - B| < \varepsilon_2.$$

Пусть $\varepsilon = \varepsilon_1 + \varepsilon_2$, и $\delta = \min(\delta_1, \delta_2)$. Тогда:

$$|f(x) + \varphi(x) - (A+B)| = |f(x) - A + \varphi(x) - B| \le |f(x) - A| + |\varphi(x) - B|.$$

Из условий следует:

$$|f(x) - A| < \varepsilon_1$$
 и $|\varphi(x) - B| < \varepsilon_2$.

Таким образом:

$$|f(x) + \varphi(x) - (A+B)| < \varepsilon_1 + \varepsilon_2 = \varepsilon.$$

Вывод

$$\lim_{x \to x_0} (f(x) + \varphi(x)) = A + B.$$

Теорема о суперпозиции

- 1) f(x) u g(x) : F(x) = F(f(g(x)))
 - $2) \lim_{x \to x_0} g(x) = A$
 - $3) \lim_{x \to x_0} f(x) = B$

Следовательно:

$$\lim_{x \to x_0} F(f(g(x))) = B$$

Доказательство: $\exists x = Dom(g); y = Dom(f)$ Тогда по определению предела $\lim_{x \to x_0} g(x) = A \iff \forall \varepsilon_1 > 0 \exists \delta_1 > 0 : \forall x \in \dot{U}(\delta_1) \ |g(x) - A| < \varepsilon \lim_{y \to A} f(y) = B \iff \forall \varepsilon_2 > 0 \exists \varepsilon_1 > 0 : \forall y \in \dot{U}(A) \ |f(y) - B| < \varepsilon_2$ Следовательно: $\forall \varepsilon_2 > 0 \exists \dot{U}_\delta(x_0) > 0 : \forall x \in \dot{U}_\delta(x_0) \implies f(g(x)) \in \dot{U}_{\varepsilon_2}(B) \implies B = \lim_{x \to x_0} f(g(x)) \ |f(g(x)) - B| < \varepsilon_2 \implies B = \lim_{x \to x_0} f(g(x))$

8 Билет 8

Теоремы о пределах функции: о предельном переходе в неравенство

Рассмотрим неравенство:

$$a_n \le b_n$$

Пусть $\lim_{n\to\infty}a_n=A$ и $\lim_{n\to\infty}b_n=B$. Тогда, если $a_n\leq b_n$ для всех n, то по свойству пределов:

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$$

Следовательно:

$$A \le B$$

Доказательство от противного: $\Box A>B$ Тогда $\lim_{x\to x_0}(f(x)-g(x))=A-B>0$ Из арифметических свойств пределов следует: $f(x)-g(x)>0 \implies f(x)>g(x)$ Это противоречит условию f(x)<=g(x)

Теорема о сжатой функции

Теорема о сжатой функции

Пусть f(x), g(x) и h(x) — функции, определенные на множестве $E \subset \mathbb{R}$ и выполняется неравенство

$$f(x) \le h(x) \le g(x),$$

и при этом

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = b,$$

то

$$\lim_{x \to a} h(x) = b.$$

Доказательство:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = C \tag{7}$$

Тогда:

$$\forall \varepsilon_1 > 0 \exists \dot{U}_f(x_0) : \forall x \in \dot{U}_f(x_0) \tag{8}$$

$$|f(x) - C| < \varepsilon_1 \implies -\varepsilon_1 < f(x) - C < \varepsilon_1 \implies C - \varepsilon_1 < f(x) < \varepsilon_1 + C \tag{9}$$

$$\lim_{x \to x_0} h(x) = C \tag{10}$$

$$\forall \varepsilon_2 > 0 \exists \dot{U}_h(x_0) : \forall x \in \dot{U}_h(x_0) \tag{11}$$

$$|h(x) - C| < \varepsilon_2 \implies -\varepsilon_2 < h(x) - C < \varepsilon_2 \implies C - \varepsilon_2 < h(x) < \varepsilon_2 + C$$
 (12)

$$f(x) \le g(x) \le h(x) \implies C - \varepsilon_1 < f(x) \le g(x) \le h(x) < \varepsilon_2 + C \tag{13}$$

Отсюда:

$$-\varepsilon_1 < g(x) < \varepsilon_2 + C - \varepsilon_1 < g(x) - C < \varepsilon_2 \tag{14}$$

Пересечём окрестности ε_1 и ε_2 и возьмем $min(-\varepsilon_2; \varepsilon_2)$ Тогда

$$-\varepsilon_2 < g(x) - < \varepsilon_2 \implies |g(x) - C| < \varepsilon_2 \implies \lim_{x \to x_0} g(x) = C$$
 (15)

1 замечательный предел

Рассмотрим предел:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Доказательство:

Рассмотрим односторонние пределы и докажем, что они равны 1. Рассмотрим случай $x \to +0$. Отложим этот угол на единичной окружности так, чтобы его вершина совпадала с началом координат, а одна сторона совпадала с осью OX. Пусть A — точка пересечения второй стороны угла с единичной окружностью, а точка B — с касательной к этой окружности в точке A. Точка C — проекция точки A на ось OX. Очевидно, что:

$$S_{\triangle OAC} < S_{\text{сектора }OAC} < S_{\triangle OAB}$$

где S — площадь. Поскольку $|OC| = \cos x$, $|AC| = \sin x$, $|AB| = \tan x$, то:

$$\frac{\sin x}{2} < \frac{x}{2} < \frac{\tan x}{2}$$

Так как при $x \to +0$: $\sin x > 0$, x > 0, $\tan x > 0$:

$$\frac{1}{\tan x} < \frac{1}{x} < \frac{1}{\sin x}$$

Умножаем на $\sin x$:

$$\cos x \le \frac{\sin x}{x} \le 1$$

Переходя к пределу:

$$\lim_{x\to +0}\cos x \leq \lim_{x\to +0}\frac{\sin x}{x} \leq 1$$

Так как $\lim_{x\to+0}\cos x=1$, то:

$$\lim_{x \to +0} \frac{\sin x}{x} = 1$$

Аналогично доказывается для $x \to -0$. Следовательно:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

9 Билет 9

Предел функции на бесконечности

Определение: Число A называется пределом функции f(x) при $x \to \infty$ если $\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0$: $\forall x \in Dom(f)$ из $|x| > \Rightarrow |f(x) - A| < \varepsilon$.

10 Билет 10

Бесконечно большие функции.

Функция f(x) называется бесконечно большой при $x \to x_0$, если

$$\forall M>0\,\exists \delta>0$$
 такое, что $0<|x-x_0|<\delta\Rightarrow |f(x)|>M$

Пример: Функция $f(x) = \frac{1}{x}$ является бесконечно большой при $x \to 0$.

11 Билет 20

Устойчивость знака непрерывной функции

Теорема: Пусть f — непрерывная функция на множестве $D \subset \mathbb{R}$, и пусть $c \in D$ такая точка, что $f(c) \neq 0$. Тогда существует окрестность U(c) точки c, такая что для всех $x \in U(c) \cap D$ выполняется $f(x) \neq 0$ и знак функции f на $U(c) \cap D$ совпадает со знаком f(c).

12 Билет 21

1. Алгебраические функции

Алгебраические функции — это функции, которые могут быть выражены с использованием конечного числа операций сложения, вычитания, умножения, деления и извлечения корней. Примеры:

- линейная функция: f(x) = ax + b, где $a, b \in \mathbb{R}$;
- квадратичная функция: $f(x) = ax^2 + bx + c$, где $a, b, c \in \mathbb{R}$;
- корневая функция: $f(x) = \sqrt[n]{x}$, где $n \in \mathbb{N}$, $n \ge 2$.

2. Трансцендентные функции

Трансцендентные функции не могут быть выражены в виде конечных комбинаций алгебраических операций. Они включают:

- экспоненциальные функции, например, $f(x) = a^x$, где $a > 0, a \neq 1$;
- логарифмические функции, например, $f(x) = \ln(x)$ или $f(x) = \log_a(x)$;
- тригонометрические функции: $\sin(x)$, $\cos(x)$, $\tan(x)$ и т.д.;
- обратные тригонометрические функции: $\arcsin(x)$, $\arccos(x)$ и т.д.;
- гиперболические функции: sinh(x), cosh(x) и т.д.

3. Непрерывность элементарных функций

Элементарные функции являются непрерывными на своих областях определения. Это означает, что если функция определена в некоторой точке x_0 и в её окрестности, то:

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Примеры:

- Линейные и квадратичные функции непрерывны на всей числовой прямой $\mathbb{R}.$
- Тригонометрические функции $\sin(x)$ и $\cos(x)$ непрерывны на \mathbb{R} , а $\tan(x)$ на множестве $\mathbb{R} \setminus \left\{ x = \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}$.

13 Билет 22

Операции над непрерывными функциями и переход к пределу под знаком непрерывной функции

Операции над непрерывными функциями

Пусть f и g — функции, непрерывные в точке x=a. Тогда следующие функции также непрерывны в точке a:

• Cymma: f(x) + g(x)

• Разность: f(x) - g(x)

• Произведение: $f(x) \cdot g(x)$

• Частное: $\frac{f(x)}{g(x)}$, если $g(a) \neq 0$

Переход к пределу под знаком непрерывной функции

Пусть f — непрерывная функция в точке a, и пусть $\lim_{x\to a} g(x) = L$. Тогда:

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) = f(L)$$

Доказательство: Так как f непрерывна в точке L, то по определению непрерывности для любого $\epsilon>0$ существует $\delta>0$ такое, что для всех y, удовлетворяющих условию $|y-L|<\delta$, выполняется $|f(y)-f(L)|<\epsilon$. Поскольку $\lim_{x\to a}g(x)=L$, существует такое $\delta'>0$, что для всех x, удовлетворяющих условию $|x-a|<\delta'$, выполняется $|g(x)-L|<\delta$. Следовательно, для таких x имеем:

$$|f(g(x)) - f(L)| < \epsilon$$

Таким образом, $\lim_{x\to a} f(g(x)) = f(L)$.

14 Билет 23

Теорема о непрерывности сложной функции

Теорема: Пусть f непрерывна в точке a, и g непрерывна в точке b = f(a). Тогда сложная функция h(x) = g(f(x)) непрерывна в точке a.

Доказательство: Так как f непрерывна в точке a, то для любого $\epsilon > 0$ существует $\delta_1 > 0$ такое, что если $|x - a| < \delta_1$, то $|f(x) - f(a)| < \delta_2$, где δ_2 будет определено далее.

Поскольку g непрерывна в точке b=f(a), то для любого $\epsilon>0$ существует $\delta_2>0$ такое, что если $|y-f(a)|<\delta_2$, то $|g(y)-g(f(a))|<\epsilon$.

Теперь, выберем $\delta = \delta_1$. Тогда, если $|x-a| < \delta$, то $|f(x)-f(a)| < \delta_2$, и, следовательно, $|g(f(x))-g(f(a))| < \epsilon$.

Таким образом, $|h(x) - h(a)| = |g(f(x)) - g(f(a))| < \epsilon$, что доказывает непрерывность h(x) в точке a.

15 Билет 24

Первый замечательный предел

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Следствия:

Следствия:

$$\lim_{x \to 0} \frac{\tan x}{x} = 1, \quad \lim_{x \to 0} \frac{\arcsin x}{x} = 1, \quad \lim_{x \to 0} \frac{\arctan x}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2/2} = 1$$

Второй замечательный предел

$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$$

$$\lim_{x\to0} (1+x)^{1/x} = e$$

$$\lim_{k\to+\infty} \left(1+\frac{1}{k}\right)^k = e$$

$$\lim_{x\to0} \ln(1+x) = 1$$

$$\lim_{x\to0} \frac{e^x-1}{x} = 1$$

$$\lim_{x\to0} \frac{a^x-1}{x} = \ln(a) \quad \text{для} \quad a>0, \, a\neq1$$

$$\lim_{x\to0} \frac{\ln(1+ax)}{ax} = 1$$

16 Билет 25

Точки разрыва функции и их классификация

Точки разрыва первого и второго рода

Точка разрыва первого рода

Точка x=a называется точкой разрыва первого рода, если существуют конечные односторонние пределы, но они не равны:

$$\lim_{x\to a^-} f(x) \neq \lim_{x\to a^+} f(x)$$

Пример: Функция $f(x) = \begin{cases} 1, & x < 0 \\ 2, & x \ge 0 \end{cases}$ имеет точку разрыва первого рода в x = 0.

Точка разрыва второго рода

Точка x=a называется точкой разрыва второго рода, если хотя бы один из односторонних пределов равен $\pm \infty$ или не существует:

$$\lim_{x o a^-} f(x) = \pm \infty$$
 или $\lim_{x o a^+} f(x) = \pm \infty$

Пример: Функция $f(x) = \frac{1}{x}$ имеет точку разрыва второго рода в x = 0.

Точки устранимого и неустранимого разрыва

Точка устранимого разрыва

Точка x=a называется точкой устранимого разрыва, если существует конечный предел, но функция не определена в этой точке или её значение не равно пределу:

$$\lim_{x \to a} f(x)$$
 существует, но $f(a) \neq \lim_{x \to a} f(x)$ или $f(a)$ не определена

Пример: Функция
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 имеет устранимый разрыв в $x = 0$, так как $\lim_{x \to 0} \frac{\sin x}{x} = 1$

Точка неустранимого разрыва

Точка x=a называется точкой неустранимого разрыва, если невозможно сделать функцию непрерывной в этой точке ни одним способом:

$$\lim_{x\to a^-}f(x)\neq \lim_{x\to a^+}f(x)$$
или хотя бы один из этих пределов не существует

Пример: Функция
$$f(x) = \begin{cases} 1, & x < 0 \\ 2, & x \ge 0 \end{cases}$$
 имеет неустранимый разрыв в $x = 0.$

17 Билет 26

Непрерывность функции на интервале и на отрезке

Непрерывность на интервале

Функция f(x) непрерывна на интервале (a,b), если она непрерывна в каждой точке этого интервала.

Непрерывность на отрезке

Функция f(x) непрерывна на отрезке [a,b], если она непрерывна на интервале (a,b) и в точках a и b с учетом односторонних пределов:

$$\lim_{x \to a^+} f(x) = f(a)$$

$$\lim_{x \to b^{-}} f(x) = f(b)$$

Кусочно-непрерывные функции на отрезке

Функция называется кусочно-непрерывной на отрезке, если она непрерывна на каждом подотрезке, на который можно разбить исходный отрезок, за исключением, возможно, конечного числа точек разрыва первого рода.

18 Билет 27

Теоремы Больцано — Коши

Первая теорема Больцано — Коши (о существовании корня)

Теорема: Если функция f непрерывна на отрезке [a,b] и $f(a) \cdot f(b) < 0$, то существует точка $c \in (a,b)$, такая что f(c) = 0.

Доказательство: Поскольку f непрерывна на [a,b], то по теореме Вейерштрасса она достигает на этом отрезке своих максимума и минимума. Пусть f(a) < 0 и f(b) > 0 (случай f(a) > 0 и f(b) < 0 рассматривается аналогично).

Рассмотрим множество $A = \{x \in [a,b] \mid f(x) \leq 0\}$. Множество A непусто, так как $a \in A$, и ограничено сверху, так как $b \notin A$. Пусть $c = \sup A$. Тогда $a \leq c \leq b$.

Поскольку f непрерывна, то:

$$\lim_{x \to c^{-}} f(x) = f(c) = \lim_{x \to c^{+}} f(x)$$

Если f(c)=0, то теорема доказана. Если $f(c)\neq 0$, то возможны два случая: 1. f(c)>0. Тогда для достаточно малых $\epsilon>0$ имеем $f(c-\epsilon)<0$, что противоречит определению c как точной верхней грани множества A. 2. f(c)<0. Тогда для достаточно малых $\epsilon>0$ имеем $f(c+\epsilon)>0$, что также противоречит определению c.

Следовательно, f(c) = 0.

19 Билет 28

Вторая теорема Больцано — Коши (о промежуточном значении непрерывной функции)

Теорема: Если функция f непрерывна на отрезке [a,b] и $f(a) \neq f(b)$, то для любого числа y между f(a) и f(b) существует точка $c \in (a,b)$, такая что f(c) = y.

Доказательство: Без ограничения общности предположим, что f(a) < y < f(b) (случай f(a) > y > f(b) рассматривается аналогично).

Рассмотрим функцию g(x) = f(x) - y. Функция g непрерывна на [a,b], и g(a) = f(a) - y < 0 и g(b) = f(b) - y > 0.

По первой теореме Больцано — Коши существует точка $c \in (a,b)$, такая что g(c)=0, то есть f(c)=y.

Теоремы Вейерштрасса

Первая теорема Вейерштрасса (об ограниченности непрерывной функции)

Теорема: Всякая функция, непрерывная на отрезке [a,b], ограничена на этом отрезке.

Доказательство: Пусть f непрерывна на [a,b]. Предположим противное, что f не ограничена на [a,b]. Тогда для любого $n \in \mathbb{N}$ существует $x_n \in [a,b]$, такое что $|f(x_n)| > n$. Последовательность $\{x_n\}$ ограничена, поэтому по теореме Больцано-Вейерштрасса из неё можно выделить сходящуюся подпоследовательность $\{x_{n_k}\}$, сходящуюся к некоторому $c \in [a,b]$.

Так как f непрерывна в точке c, то $f(x_{n_k}) \to f(c)$ при $k \to \infty$. Но $|f(x_{n_k})| > n_k$, что стремится к бесконечности при $k \to \infty$. Это противоречие доказывает, что f ограничена на [a,b].

Вторая теорема Вейерштрасса (о наибольшем и наименьшем значении функции на отрезке)

Теорема: Всякая функция, непрерывная на отрезке [a,b], достигает на этом отрезке своих наибольшего и наименьшего значений.

Доказательство: Пусть f непрерывна на [a,b]. По первой теореме Вейерштрасса f ограничена на [a,b], то есть существует M>0 такое, что $|f(x)|\leq M$ для всех $x\in [a,b]$.

Рассмотрим множество $A = \{f(x) \mid x \in [a,b]\}$. Множество A ограничено и по теореме Вейерштрасса о супремуме и инфимуме существует $\sup A$ и $\inf A$. Пусть $\sup A = M$ и $\inf A = m$.

Так как M — точная верхняя грань множества A, то существует последовательность $\{x_n\} \subset [a,b]$, такая что $f(x_n) \to M$ при $n \to \infty$. Последовательность $\{x_n\}$ ограничена, поэтому по

теореме Больцано-Вейерштрасса из неё можно выделить сходящуюся подпоследовательность $\{x_{n_k}\}$, сходящуюся к некоторому $c \in [a,b]$.

Так как f непрерывна в точке c, то $f(x_{n_k}) \to f(c)$ при $k \to \infty$. Следовательно, f(c) = M, то есть f достигает своего наибольшего значения M в точке c.

Аналогично доказывается, что f достигает своего наименьшего значения m в некоторой точке $d \in [a,b].$

20 Билет 29

Монотонные и строго монотонные функции

Монотонная функция

Функция f(x) называется монотонной на промежутке I, если она либо не убывает, либо не возрастает на этом промежутке.

Неубывающая функция

Функция f(x) называется неубывающей на промежутке I, если для любых $x_1, x_2 \in I$ таких, что $x_1 < x_2$, выполняется неравенство:

$$f(x_1) \le f(x_2)$$

Невозрастающая функция

Функция f(x) называется невозрастающей на промежутке I, если для любых $x_1, x_2 \in I$ таких, что $x_1 < x_2$, выполняется неравенство:

$$f(x_1) \geq f(x_2)$$

Строго монотонная функция

Функция f(x) называется строго монотонной на промежутке I, если она либо строго возрастает, либо строго убывает на этом промежутке.

Строго возрастающая функция

Функция f(x) называется строго возрастающей на промежутке I, если для любых $x_1, x_2 \in I$ таких, что $x_1 < x_2$, выполняется неравенство:

$$f(x_1) < f(x_2)$$

Строго убывающая функция

Функция f(x) называется строго убывающей на промежутке I, если для любых $x_1, x_2 \in I$ таких, что $x_1 < x_2$, выполняется неравенство:

$$f(x_1) > f(x_2)$$

Теорема о непрерывности обратной функции

Теорема: Пусть функция f(x) определена, строго возрастает (убывает) и непрерывна на отрезке [a,b]. Тогда обратная функция $f^{-1}(y)$ определена, однозначна, строго возрастает (убывает) и непрерывна на отрезке с концами в точках f(a) и f(b).