→ Bài tập về nhà 4

Môn: Linear Algebra

```
import numpy as np
from scipy import linalg
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
```

▼ Bài tâp 1

Cho dữ liệu về lưu lượng giao thông đo được tại một nút giao thông trong 24 giờ liên tiếp:

x	0	1	2	3	4	5	6	7		8	9	10	11
y	416	212	121	17	12	132	44	5 14	112	1322	1121	925	823
\boldsymbol{x}	12	13	14	15	1	6	17	18	19	20	21	22	23
											429		

Biến đổi của lưu lượng giao thông được mô tả bởi sự chồng chất 3 hàm Lorentz:

$$y = a_0 + rac{a_1}{b_1^2 + (x - 3.5)^2} + rac{a_2}{b_2^2 + (x - 7.5)^2} + rac{a_3}{b_3^2 + (x - 15.5)^2}$$

- Trường hợp cố định các tham số $b_1=b_2=2,\ b_3=3$: Mô hình lưu lượng giao thông là tuyến tính. Sử dung kĩ thuật hồi quy tuyến tính để xác định các tham số còn lại của mô hình.
- Mô hình lưu lượng giao thông dạng đầy đủ thực chất là mô hình phi tuyến. Sử dụng hàm curve_fit trong scipy.optimize để xác định các tham số của mô hình phù hợp với dữ liệu.

▼ Bài tập 2

Sử dụng dữ liệu trong file sample.csv để xác định các tham số của mô hình hồi quy dưới dạng sau đây:

$$y = \frac{1}{a + b. \exp(-cx)}$$

Tải dữ liệu từ file vào mảng sử dụng thư viện pandas

```
import pandas as pd
data=pd.read_csv("sample.csv")
x=data["x"].values
y=data["y"].values
```

