

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Câmpus de Marília

ALLAN FERREIRA

Interoperabilidade em saúde com dados do prontuário eletrônico do paciente

ALLAN FERREIRA

Interoperabilidade em saúde com dados do prontuário eletrônico do paciente

Trabalho Final apresentado para a disciplina de Métodos de Pesquisa Aplicados à Ciência da Informação do Programa de Pós Graduação em Ciência da Informação da Faculdade de Filosofia e Ciências, da Universidade Estadual Paulista – UNESP – Campus de Marília.

Área de Concentração: Informação, Tecnologia e

Linha de Pesquisa: Informação e Tecnologia

Orientador: Dr. Leonardo Castro Botega

Prof. da Disciplina: Dr. Marta L. P. Valentim e Dr.

Oswaldo F. de Almeida Júnior

Marília 2022

Conhecimento

LISTA DE ILUSTRAÇÕES

Figura 1- Mapa conceitual do ambiente informacional de um prontuário eletro	ônico e
sua semântica.	11
Figura 2 Mapa conceitual da estrutura FHIR.	12

LISTA DE ABREVIATURAS E SIGLAS

EMR Eletronic Medical Records

EBM Evidence Based Medicine

FHIR Fast Healthcare Interoperability Resources

ERP Enterprise Resource Planning

SUMÁRIO

INTRODUÇÃO	4
1.1 OBJETIVOS	8
1.1.1 Objetivos Específicos	8
2 PROCEDIMENTOS METODOLÓGICOS	9
2.1 NATUREZA E TIPO DA PESQUISA	9
2.2 MÉTODO DE PESQUISA	9
2.3 TÉCNICA DE COLETA DE DADOS	10
2.3 INSTRUMENTOS DE COLETA DE DADOS	10
2.4 TÉCNICAS E INSTRUMENTOS DE ANÁLISES DE DADOS	10
CONSIDERAÇÕES FINAIS	12
REFERÊNCIAS	14

1. INTRODUÇÃO

Com a evolução e popularização dos microcomputadores, o desenvolvimento de aplicações que permitem a transposição de registros físicos para meios eletrônicos tem crescido em número em todas as áreas, e em particular na década de 60, houve um crescimento exponencial de aplicações de informática na área de saúde, onde começaram a surgir os primeiros sistemas de informação hospitalar (MIRANDA et.al.,2015). Não somente o número, mas também a importância dos Registros Médicos Eletrônicos (EMR) cresceu, e de acordo com Tierney (2013) influenciam diretamente a maneira como os profissionais ministram os cuidados aos pacientes de várias maneiras, impactando os fluxos de trabalho e auxiliando o pensamento clínico crítico.

Um dos grandes desafios dos EMR é alcançar a interoperabilidade dos dados de saúde, que por definição é a capacidade de dois ou mais sistemas cooperarem apesar das diferenças de linguagem, estruturas ou plataforma de execução (WEGNER, 1996). O número de itens que compõem o desafio é grande, mas destaca-se entre eles o problema da representação da informação para manipulação computacional, devido ao fato de que o escopo da saúde é muito complexo e fornece uma dificuldade natural na busca por representação informatizada dos seus conceitos. Além disso, outro fator a ser considerado é o grande volume de padrões existentes, que acarreta na dificuldade da escolha que gerará melhor custo-benefício para cada tipo de instituição (PETRY et al, 2008).

Os dados clínicos de pacientes são fundamentais desde o início do contato assistencial, a começar pela identificação correta da patologia que possibilita a eleição adequada de tratamento, medicações e procedimentos. A escolha assertiva do tratamento pode não só diminuir o tempo de duração da patologia, como interferir diretamente na prevenção de óbitos, dado que "o erro de diagnóstico pode ser a maior preocupação de segurança do paciente não tratada nos Estados Unidos, responsável por cerca de 40.000 a 80.000 mortes anualmente", como afirma Graber (2017).

A extensão dos dados de saúde é grande e contempla toda a abrangência de dados clínicos, desde informações de origem exclusiva dos pacientes, como tipo

sanguíneo e etnia, até os dados provenientes de contatos assistenciais, como resultado de exames, anamneses, evoluções e receituários. Para ajudar na etapa de identificação e monitoramento das patologias são utilizados também resultados de exames, que subsidiam os profissionais nas tomadas de decisões de diagnósticos quanto nas evoluções posteriores, mediante a medicações e procedimentos. Atualmente, existem mais de 4000 testes de laboratório selecionáveis, e um número comparativamente desconcertante de opções de imagem como afirma Graber (2017).

Ainda como ferramenta de extensão, na área da saúde, a interoperabilidade de dados vem crescendo para permitir a troca de dados entre os diferentes sistemas e ferramentas utilizadas, gerando mais informações valiosas no cuidado do paciente. Ela aumenta a capacidade de organização e recuperação dos dados, e, portanto, gera uma série de benefícios para as organizações de saúde, como cuidado mais eficaz ao paciente e insumos para pesquisas de caráter preditivo, pois habilita a possibilidade de se recuperar informação de diferentes fontes que estão distribuídas e armazenadas em ambientes heterogêneos (Nardon, 2003). Além disso, o compartilhamento do conhecimento dos dados de cuidado de saúde favorece a medicina baseada em evidências (EBM - Evidence Based Medicine), que é, de fato, o novo paradigma para a prática médica, que destaca a importância dos resultados de grandes ensaios clínicos na construção de novos tratamentos individuais e remove a ênfase da intuição como base para fazer decisões clínicas (LEWIS, 2004).

Pine (2019) afirma que "pesquisas sobre interoperabilidade e troca de informações entre sistemas de tecnologia da informação destacam o uso de dados secundários para uma variedade de propósitos, incluindo pesquisa, gestão, melhoria da qualidade e prestação de contas". Dentre os principais benefícios que a interoperabilidade traz ao setor da saúde, pode-se destacar: Troca de informações na gestão de consultórios, clínicas e hospitais atuando em todos os níveis de atenção ao paciente, permitindo o rastreio clínico do indivíduo nos serviços utilizados; Compartilhamento de dados do prontuário eletrônico do paciente PEP (Prontuário Eletrônico do Paciente) com segurança para aumento de evidências que subsidiam decisões clínicas; Disponibilização de resultados de exames laboratoriais e de radiologia, permitindo emitir e obter laudos com maior agilidade.

O modelo em que se baseia a interoperabilidade, permite que a assistência à saúde seja feita com maior segurança e eficiência, dado que ele traz visão integral da saúde, reunindo, compartilhando e utilizando as diferentes informações de um mesmo paciente. Além da perspectiva clínica existem os ganhos nos processos e redução de custos, visto que a interoperabilidade evita desde procedimentos duplicados — pois permite a comunicação mais ágil e transparente entre todos os profissionais que cuidam do paciente — até gastos desnecessários com exames duplicados.

Entretanto, as atividades e recursos envolvidos no processo de interoperabilidade são complexos, devido desde a própria heterogeneidade das diversas fontes de dados, que apresentam diferenças estruturais e semânticas, até os modelos de troca de informação entre as instituições de saúde. As diferenças estruturais podem ser observadas no modo como os sistemas organizam e armazenam seus dados, como quantidade de tabelas, tipagem de dados e escolha por texto livre ou informações tabuladas.

Já as diferenças semânticas podem ser percebidas desde a escolha de vocabulários adotados por cada instituição, que apesar de possuir essencialmente o mesmo significado são identificados por códigos e descrições divergentes. Para que as instituições possam trocar informações de forma precisa e automática, os documentos clínicos eletrônicos devem fazer uso de códigos clínicos estabelecidos, também chamados de vocabulários controlados, como aqueles de SNOMED-CT, LOINC e ICD-9 CM. No entanto, não existe um esquema de codificação universalmente aceito que encapsula todas as informações clínicas, como afirma Hamm (2007).

Atualmente existem várias propostas de soluções e caminhos a serem adotados para realizar a interoperabilidade, que se complementam, padrões para trocas de informações, como o TISS e o padrão FHIR.

O TISS é um modelo padrão para troca de informações entre os agentes de saúde suplementar e planos de saúde que tem por objetivo a uniformização de ações tanto clínicas quanto administrativas e financeiras e permite o acompanhamento financeiro das operadoras de convênios médicos.

O padrão FHIR é desenvolvido pela HL7® International e é um protocolo internacional para envio e recebimento de dados na área da saúde que contempla

informações clínicas e administrativas e vem de encontro com a crescente necessidade de integração de dados na área da saúde para otimizar a pesquisa e desenvolvimento, como afirma NOUMEIR(2019)

Portanto, a adoção de interoperabilidade de dados de saúde traz às instituições a possibilidade de oferecer um tratamento mais cuidadoso e eficiente ao paciente ao mesmo tempo que otimiza a utilização de seus recursos, aumentando a eficiência nos processos e redução de custos.

Nestes termos, o estudo da interoperabilidade na saúde justifica-se pois é um objeto de estudo em que a ciência da informação tem muito a contribuir, pois além de os dados de cuidados de saúde primários serem a fonte mais rica de dados de saúde de rotina (Thiru et. al., 2003), ao realizar o compartilhamento de dados de saúde, busca-se obter a integração de dados e equivalência semântica de diversas fontes heterogêneas, assegurando a fidedignidade da informação, simplificando e unificando a pesquisa e recuperação das informações. Inclusive no Brasil, há uma preocupação com a interoperabilidade de sistemas médicos ficou evidente por meio da portaria nº 2.073 de 2011 do Ministério da Saúde, sendo uma das recomendações desta adotar ontologias e terminologias para lidar com as questões de interoperabilidade de Sistemas de Informação. (BRASIL, 2011).

Considerando o contexto supracitado, são formuladas as seguintes perguntas de pesquisa para este projeto:

- 1. Quais os desafios dos processos de habilitação das instituições para permitir a interoperabilidade dos dados?
- 2. Como os fluxos informacionais e padrões atuais, presente em instituições de saúde, podem ser melhorados através de análises e ferramentas providas pelo viés da ciência da informação?

Diante do exposto, a próxima seção detalha os objetivos que norteiam o desenvolvimento deste trabalho.

1.1 OBJETIVOS

Este trabalho tem como objetivo geral fornecer subsídios tecnológicos para a criação de um modelo informacional que promova a integração dos dados observacionais contidos em prontuários eletrônicos.

1.1.1 Objetivos Específicos

Para atender o objetivo geral deste trabalho, foram estabelecidos os seguintes objetivos específicos:

- Propor um fluxo de transformações e mapeamentos dos dados primitivos contidos nos prontuários eletrônicos, a princípio utilizando o padrão FHIR, utilizando IA como ferramenta de apoio;
- Analisar e identificar como estão sendo realizadas as integrações de dados de saúde através dos modelos atuais;
- Compreender o impacto da informação, bem como suas limitações
- Identificar oportunidades no fluxo informacional para o emprego de processos tecnológicos como a representação semântica utilizando, a princípio, Inteligência Artificial e o padrão FHIR, a fim de contribuir para uma melhor eficiência na identificação, conversão e representação dos dados.

Para alcançar os objetivos elucidados, faz-se necessário realizar uma proposição de métodos científicos que garantam o rigor e a relevância da pesquisa. Para tanto, a próxima seção apresenta os procedimentos metodológicos que serão aplicados durante a execução desta pesquisa e, na sequência, é apresentado as considerações finais desta etapa.

2 PROCEDIMENTOS METODOLÓGICOS

A condução de métodos de pesquisa adequados é um dos pré-requisitos apontado por Dresch, Lacerda e Júnior (2015) para a construção de um conhecimento científico, assim como, a aplicação de métodos diversificados aos diferentes problemas da pesquisa também podem contribuir para o avanço do conhecimento e são considerados fatores preponderantes para chegar ao rigor necessário, portanto, foram articuladas escolhas teóricas e metodológicas que possibilitam sistematizar e viabilizar a execução desta pesquisa.

Com o intuito de detalhar os procedimentos metodológicos a serem utilizados no desenvolvimento desta pesquisa, esta seção foi dividida nos seguintes tópicos: natureza e tipo da pesquisa, método de pesquisa, técnica de coleta de dados, instrumentos de coleta de dados e técnicas de análise de dados.

2.1 NATUREZA E TIPO DA PESQUISA

Quanto à sua natureza, a pesquisa caracteriza-se como qualitativa. Quanto ao tipo, pode ser caracterizada como documental, pois irá utilizar dados que constam no ERP do Hospital das Clínicas de Marília/SP e exploratória, porque realiza-se uma revisão bibliográfica visando compreender melhor os temas: interoperabilidade de dados, dados de saúde, FHIR – buscando informações relacionadas com os assuntos com foco no problema, para encontrar possíveis soluções (Cervo e Bervian, 2003) .

2.2 MÉTODO DE PESQUISA

A pesquisa se propõe a realizar um levantamento de processos e experimentos relacionados à adequação de dados de saúde para a habilitação à interoperabilidade, por isso, o método de pesquisa aplicado para este estudo usa Estudo de Caso Único, por caracterizar uma exploração de um sistema limitado, envolvendo uma coleta de dados de forma profunda e com variedades de fontes de informação dentro do seu contexto (Bedrettin et al., 2016).

2.3 TÉCNICA DE COLETA DE DADOS

As técnicas aplicadas na pesquisa serão: observação estruturada, onde o observador sabe o que procura e se utiliza de instrumentos para a coleta de dados mediante a objetivos anteriormente definidos e observação não participante, onde o observador toma contato com o contexto, mas sem integrar-se a ele (MAZUCATO et al., 2018), tendo as seguintes fontes de evidência:

- Dados dos RES que constam no banco de dados do ERP do Hospital das Clínicas de Marília (SP)
- Vocabulários padronizados utilizados em cada contexto hospitalar e a estrutura de armazenamento dos dados.

2.3 INSTRUMENTOS DE COLETA DE DADOS

Esta pesquisa será conduzida utilizando os seguintes instrumentos para coleta de dados: roteiro de observação (dados que constam no ERP) sobre diagnóstico, tratamentos/procedimentos, riscos e resultados clínicos e mapeamento de termos (vocabulário) por meio de conceitos e definições e definição de conceitos padronizados.

2.4 TÉCNICAS E INSTRUMENTOS DE ANÁLISES DE DADOS

Como técnica de análise de dados, a pesquisa se utilizará de Mapas Conceituais, que no contexto da informação tem se demonstrado efetiva para múltiplas atribuições, a começar por sua definição de organizar e representar o conhecimento (Rodrigues e Cervantes, 2014).

Abaixo, na figura 1 é apresentado um exemplo de mapa conceitual do contexto informacional do ambiente de prontuário eletrônico e sua representação semântica:

Figura 1- Mapa conceitual do ambiente informacional de um prontuário eletrônico e sua semântica.

Fonte: Elaborado pelo autor.

Na próxima figura é demonstrado o mapa conceitual da arquitetura do padrão FHIR:

Figura 2 Mapa conceitual da estrutura FHIR.

Fonte: Elaborado pelo autor

Como instrumentos de análises de dados serão utilizados:

- Técnicas de programação
- Data Science
- Machine Learning

CONSIDERAÇÕES FINAIS

Acredita-se que com a produção deste estudo haja uma contribuição com o processo de interoperabilidade de dados de saúde no que diz respeito às etapas de mapeamento de dados brutos contidos no EMR, a princípio para o padrão FHIR, para o qual constatou-se que há uma demanda e produção emergente nos últimos anos, por meio da articulação entre as áreas Ciência da Informação e Ciência da Computação.

Diante do arcabouço estabelecido, esta pesquisa se beneficiará com a aplicação de mapas conceituais, como principal artefato, considerando que este método permite sintetizar, representar e organizar os conceitos relacionados ao conhecimento que está em estudo.

A presente pesquisa encontra-se em um ponto de partida e ainda requer aprofundamentos que poderão proporcionar reflexões mais abrangentes acerca dos problemas e questões de pesquisa elencados, podendo inclusive, identificar novas questões de pesquisa, assim como, aprimorar os procedimentos metodológicos e as técnicas de coleta e análise de dados a serem utilizadas.

REFERÊNCIAS

BARBOSA, D. M.; BAX, M. A Design Science como metodologia para a criação de um modelo de Gestão da Informação para o contexto da avaliação de cursos de graduação. **Revista Ibero-Americana de Ciência da Informação**, v. 10, n. 1, p. 32–48, 2017.

CERVO, A. L.; BERVIAN, P. A. **Metodologia científica.** 5. ed. São Paulo: Prentice Hall, 2003.

DRESCH, A.; LACERDA, D. P.; JÚNIOR, J. A. V. A. **Design Science Research: método de pesquisa para avanço da ciência e tecnologia**. Porto Alegre: Bookman, 2015

Graber ML, Byrne C, Johnston D. **The impact of electronic health records on diagnosis. Diagnosis** (Berl). 2017 Nov 27;4(4):211-223. doi: 10.1515/dx-2017-0012. PMID: 29536944.

Grüne S. Anamnese und körperliche Untersuchung [Anamnesis and clinical examination]. Dtsch Med Wochenschr. 2016 Jan;141(1):24-7. German. doi: 10.1055/s-0041-106337. Epub 2015 Dec 28. PMID: 26710199.

Hamm RA, Knoop SE, Schwarz P, Block AD, Davis WL 4th. **Harmonizing clinical terminologies: driving interoperability in healthcare**. Stud Health Technol Inform. 2007;129(Pt 1):660-3. PMID: 17911799.

Lewis SJ, Orland BI. **The importance and impact of evidence-based medicine**. J Manag Care Pharm. 2004 Sep;10(5 Suppl A):S3-5. doi: 10.18553/jmcp.2004.10.S5-A.S3. PMID: 15369418.

MAZUCATO, Thiago et al. **Metodologia da pesquisa e do trabalho** científico. Penápolis: Funepe, 2018.

MIRANDA, Nelson Júlio de Oliveira; PINTO, Virgínia Bentes. **Prontuário eletrônico do paciente: padronização e interoperabilidade**. In: Encontro Nacional de Pesquisa em Ciência da Informação, 16., 2015, João Pessoa. Anais... João Pessoa: ANCIB, 2015.

NARDON, Fabiane Bizinella; MOURA JUNIOR, Lincoln de Assis. **Compartilhamento de conhecimento em saúde utilizando ontologias e bancos de dados dedutivos**. 2003.Universidade de São Paulo, São Paulo, 2003

NOUMEIR, R. **Active Learning of the HL7 Medical Standard**. J Digit Imaging 32, 354–361 (2019). https://doi.org/10.1007/s10278-018-0134-3

Pine KH. The qualculative dimension of healthcare data interoperability. Health Informatics J. 2019 Sep;25(3):536-548. doi: 10.1177/1460458219833095. Epub 2019 Apr 19. PMID: 31002277.

THIRU, Krish; HASSEY, Alan; SULLIVAN, Frank. **Systematic review of scope and quality of electronic patient record data in primary care**. Bmj, v. 326, n. 7398, p. 1070, 2003.

Tierney MJ, Pageler NM, Kahana M, Pantaleoni JL, Longhurst CA. **Medical education** in the electronic medical record (EMR) era: benefits, challenges, and future directions. Acad Med. 2013 Jun;88(6):748-52. doi: 10.1097/ACM.0b013e3182905ceb. PMID: 23619078.

PRODANOV, Cleber Cristiano; DE FREITAS, Ernani Cesar. **Metodologia do trabalho científico: métodos e técnicas da pesquisa e do trabalho acadêmico-2ª Edição**. Editora Feevale, 2013.

RODRIGUES, M. R.; CERVANTES, B. M. N. Organização e representação do conhecimento por meio de mapas conceituais. **Ciência da Informação**, Brasília, v.43, n.1, p.154-169, jan./abr.2014. Disponível em: http://revista.ibict.br/ciinf/article/view/1425/1603

STAN, Ovidiu; MICLEA, Liviu. Local EHR management based on FHIR. In: 2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). IEEE, 2018. p. 1-5

YAZAN, Bedrettin et al. **Três abordagens do método de estudo de caso em educação: Yin, Merriam e Stake.** Revista Meta: Avaliação, v. 8, n. 22, p. 149-182, 2016.