Section 8

```
library(coda)
library(MASS)
library(tidyverse)
```

Metropolis Algorithm

To generate sample s + 1 of a Metropolis MCMC sampler given (possibly) unnormalized density $p(\theta)$:

- 1. Propose a new sample θ_{*} given the old sample θ_{s} from a symmetric distribution
- 2. If $p(\theta_*) > p(\theta_s)$, then set θ_{s+1} equal to θ_* and go to the next iteration
- 3. If $p(\theta_*) < p(\theta_s)$, then
 - a. Generate a random number r from uniform(0, 1)
 - b. If $r < \frac{p(\theta_*)}{p(\theta_s)}$, set θ_{s+1} equal to θ_* and go to the next iteration
 - c. Otherwise set θ_{s+1} equal to θ_s

Little wheels

Assume you are given the following (incredibly inefficient) code and told to use it to sample from a normal distribution

```
# pdf we want to sample
p = function(theta) {
  dnorm(theta, 1.0, 2.0)
metropolis = function(theta_s) {
  # Function should return the next state
     in the Markov chain given the current state, theta_s!
  theta_p = rnorm(1, theta_s, 1.0)
  if(p(theta_p) > p(theta_s)) {
    return(theta_p)
  } else {
    r = runif(1)
    if(r < p(theta_p) / p(theta_s)) {</pre>
      return(theta_p)
    } else {
      return(theta_s)
  }
}
N = 10000
samples = rep(0, N)
samples[1] = 10.0
for(i in 1:(length(samples) - 1)) {
```

```
Samples[i + 1] = metropolis(samples[i])
}
```

We can look at our traceplots and effective sample size estimates with the coda package:

```
plot(as.mcmc(samples))
effectiveSize(samples)
```

Medium wheels

Using the un-logged densities is numerically unstable. As an example of what can happen, compare the outputs of:

```
print(1.0e-100 * 1e-100, format = "e", digits = 20)
## [1] 9.9999999999999999999921e-201
print(1.0e-200 * 1e-200, format = "e", digits = 20)
## [1] 0
```

It is really common to need to evaluate numbers this small in a probabilistic model. For instance, a term like 0.36^{300} might come up when evaluating a binomial pmf that models a basketball player's yearly shooting percentage. If we extend that to maybe three years worth of shots-made, (0.36^{900}) , we'll see that evaluates to zero. The trick to avoid this is working on the log scale.

We want our metropolis algorithm to work on a log scale too. Because log is a monotonic increasing function, we can just take the log of the conditions in steps 2 and 3 above and get our new algorithm:

2. If $\log p(\theta_*) > \log p(\theta_s)$, then set θ_{s+1} equal to θ_* and go to the next iteration 3. If $\log p(\theta_*) < \log p(\theta_s)$, then a. Generate a random number r from uniform(0, 1) b. If $\log(r) < \log p(\theta_*) - \log p(\theta_s)$, set θ_{s+1} equal to θ_* and go to the next iteration c. Otherwise set θ_{s+1} equal to θ_s

Rewrite the code above to work on the log scale and convince yourself it is working.

```
logp = function(theta) {
  dnorm(theta, 1.0, 2.0, log = TRUE)
metropolis = function(theta_s) {
  # Use logp, *not* log(p(...))
  theta_p = rnorm(1, theta_s, 1.0)
  if(logp(theta_p) > logp(theta_s)) {
    return(theta_p)
  } else {
    r = runif(1)
    if(log(r) < logp(theta_p) - logp(theta_s)) {</pre>
      return(theta_p)
    } else {
      return(theta s)
    }
  }
N = 10000
samples = rep(0, N)
```

```
samples[1] = 100.0
for(i in 1:(length(samples) - 1)) {
  samples[i + 1] = metropolis(samples[i])
}
```

Big wheels

Because you are enterprising young statisticians, you want to sample a multidimensional distribution. You can use the function myrnorm to sample from a multivariate proposal distribution like so:

```
library(MASS)
mvrnorm(1, c(1.0, 2.0), matrix(c(1.0, 0.5, 0.5, 2.0), nrow = 2))
```

[1] 1.817168 2.727315

This is a sample from:

$$N\left(\begin{bmatrix}1\\2\end{bmatrix},\begin{bmatrix}1&0.5\\0.5&2\end{bmatrix}\right)$$

Because you are enterprising young software engineers, you want to write a function that does the Metropolis sampling for you, handles the burnin, and makes it easy to try different proposal covariances.

Because this is PSTAT115, you get to do that now:

```
logp = function(theta) {
  sum(dnorm(theta, c(1.0, 2.0), c(2.0, 3.0), log = TRUE))
}
metropolis = function(theta_s, cov) {
  # Note: theta_s is a vector now!
  theta_p = mvrnorm(1, theta_s, cov)
  if(logp(theta_p) > logp(theta_s)) {
    return(theta_p)
  } else {
    r = runif(1)
    if(log(r) < logp(theta_p) - logp(theta_s)) {</pre>
      return(theta_p)
    } else {
      return(theta_s)
  }
}
# theta_0 is your initial parameter guess
# burnin is number of burnin samples
# maxit are the number of samples you generate (post burnin)
# cov is the proposal covariance matrix
rw_metrop_multi = function(theta_0, burnin, maxit, cov) {
  samples = matrix(0, ncol = length(theta_0), nrow = burnin + maxit)
  samples[1,] = theta_0
  for(i in 1:(nrow(samples) - 1)) {
    samples[i + 1,] = metropolis(samples[i,], cov)
  samples[burnin:(burnin + maxit),]
```

```
}
samples = rw_metrop_multi(c(10.0, 10.0), 1000, 10000, matrix(c(1.0, 0.0, 0.0, 2.0), nrow = 2))
```

Check that the sampler is producing results you trust, because we are about to work on a non-trivial problem!

Model and Simulated data

Let us consider a model of the speed of cars and the distances taken to stop. Assuming the true model is

$$dist = -8 + 3.5 * speed + \epsilon$$
, where $\epsilon \sim N(0, 15^2)$

And now we generate simulated data from the true model and try to estimate the parameters using the Bayesian approach.

Simulated Data from the True Model

Now we try to propose a simple linear model and estimate the parameters using Metroplis-Hastings algorithm.

Our model is

```
dist = \beta_0 + \beta_1 * speed + \epsilon, where \epsilon \sim N(0, 15^2).
```

Notice that here we assume we know the variance for the error term, so we can focus on the estimation of β_0 and β_1 .

Function for log_posterior

From the lecture materials we know it is often more stable working with log-scale. So here we write a function for the log_posterior. You only need to consider the log for the essential parts in the posterior distribution.

```
logp <- function(beta){
  return(sum(dnorm(y - beta[1] - beta[2] * x, mean = 0, sd = 15, log = TRUE)))
}</pre>
```

Call our Metropolis sampler

```
samples <- rw_metrop_multi(c(0, 0), 1000, 20000, cov = matrix(c(30.0, 0.0, 0.0, 1.0), nrow=2))
plot(samples[,1], samples[,2])</pre>
```

Covariance Matrix for the Proposal Distribution

We can actually play around with the covariance matrix in the proposal distribution. Negative correlation between β_0 and β_1 tend to provide better sampling results.