Trabalho Prático Laboratorial Identificação de condutor

Laboratórios Integrados 2

José Henrique Brito

1. Introdução

Figura 1 – Reconhecimento do condutor

A indústria automóvel procura constantemente novas formas de adaptar o funcionamento dos seus produtos às conveniências e conforto do cliente. O objectivo final deste projecto é o desenvolvimento e implementação de um sistema que permita que um automóvel reconheça a identidade do seu condutor, o que permitirá o ajuste automático de parâmetros do interior do automóvel (posição do banco, volume do rádio, etc.) às preferências do condutor que estiver a conduzi-lo em cada momento.

A verificação da identidade do condutor será efectuada através de visão por computador, com recurso a imagens obtidas por uma câmara apontada à face deste, tipicamente montada junto ao retrovisor do automóvel. O módulo de processamento de imagem deverá comparar a face presente na imagem com faces de referência existentes numa base de dados com os condutores previamente introduzidos no sistema. O processamento de imagem será implementado em PC. A comunicação entre o PC e os restantes dispositivos do automóvel será efectuada através do barramento CAN, um standard de comunicação comum nos automóveis actuais.

Este trabalho compreende portanto o desenvolvimento de um sistema integrado que engloba projecto de *hardware* e *software*. Neste projecto, a aplicação que correr no PC implementa funções de processamento e análise de imagem e comunica com um dispositivo através de USB, que por sua vez permite a comunicação com uma rede industrial CAN. O esquema global do sistema é o da Figura 2.

Figura 2 – Arquitectura do Sistema

1.1. Áreas de conhecimento

- Visão por computador.
- Sistemas embebidos.
- Redes industriais.
- Projecto, desenho e montagem de placas de circuito impresso.

1.2. Grupos

- Devem ser formados grupos de 4 elementos
 - o 2 elementos para o bloco de software
 - o 2 elementos para o bloco de hardware

1.3. Duração

- 30 Horas de contacto
- 160 Horas de trabalho

2. Descrição e requisitos dos módulos do sistema

O sistema é constituído por dois blocos principais. O primeiro bloco, baseado em *software*, é responsável pelo interface com o utilizador, gestão dos dados e configuração do sistema, processamento e análise de imagem e comunicação dos dados através de USB. O segundo bloco, baseado em sistemas embebidos, é responsável pela comunicação, através de uma rede industrial CAN, dos dados obtidos no módulo de *software*.

O bloco de software deverá ser constituído por:

- Módulo de interface gráfico com o utilizador
- Módulo de aquisição de imagem, obtida por uma câmara, detecção e reconhecimento de faces na imagem
- Módulo de comunicação de dados por protocolo série através de USB.

O bloco baseado em sistemas embebidos incluirá o desenvolvimento de dois tipos módulos de hardware:

- Módulo Master, que estará ligado ao PC por USB, responsável pela gestão e transmissão dos dados resultantes da aplicação de processamento e análise de imagem, através de uma rede de comunicação industrial baseada no protocolo CAN BUS.
- Módulo de expansão I/O, que estará ligado ao barramento CAN, traduzirá nas suas saídas os dados resultantes da análise de imagem, transmitidos pelo módulo master.

2.1. Módulo Master CAN (hardware)

Este módulo de hardware será utilizado para realizar a interface entre o PC a rede CAN.

Figura 3 – Módulo Master

Para tal, no projecto deverão ser consideradas as seguintes características:

Alimentação por fonte externa 12/24 V DC;

- Ligação ao PC por USB deverá para isso incorporar um conversor USB/RS232 (FT232R ou similar);
- Transmissão de dados através do protocolo CAN deverá para isso integrar um microcontrolador (Atmel 328), que comunicará com o PC através do protocolo RS232, e com um controlador Stand-Alone CAN (MCP2515) através da interface SPI.
- Regularização dos níveis de tensão para rede CAN através de um driver CAN (MCP2551SN);
- Disponibilização de um conjunto de 6 entradas (por opto-acoplador LTV-356T ou similar) e 2 saídas (por relé de estado sólido - CPC1002N ou similar), com indicação luminosa do estado.

2.2. Módulo de expansão I/O CAN (hardware)

Este módulo de hardware será utilizado como módulo de expansão da rede CAN.

Figura 4 – Módulo de expansão I/O

No projecto deverão ser consideradas as seguintes características:

- Alimentação por fonte externa 12/24 V DC;
- Implementação do protocolo CAN através de um bloco expansor de entradas e saídas MCP25020 ou MCP25050. A regularização dos níveis de tensão para rede CAN deverá ser estabelecida através de um driver CAN (MCP2551SN);
- Disponibilização de um conjunto de 2 entradas (por opto-acoplador LTV-356T ou similar) e 6 saídas (por relé de estado sólido - CPC1002N ou similar) com indicação luminosa do estado.

2.3. Módulo de Comunicação PC <-> Módulo Master CAN (*software*)

É necessário definir um protocolo de comunicação, entre o PC e o módulo Master, que permita:

Mestrado em Engenharia Electrónica e de Computadores

- Enviar, do PC para o Módulo Master, o resultado da identificação de faces, com identificação de quais os módulos de expansão I/O para onde deve ser enviado
- Enviar, do PC para o Módulo Master, um pedido de identificação de todos os módulos de expansão I/O ligados à rede CAN.
- Enviar, do Módulo Master para o PC, um pedido de criação/alteração de registo de face na base de dados. Quando uma das entradas do módulo Master é activada, a posição correspondente da base de dados deve passar a referir-se à face detectada nesse momento (caso alguma face esteja a ser detectada).

2.4. Módulo de Comunicação Módulo Master CAN <-> Módulo de expansão I/O CAN (software/firmware)

É necessário definir um módulo de comunicação no módulo Master e a configuração do módulo de expansão, que permita:

- Configurar os registos do controlador Stand-Alone CAN para que este funcione no modo pretendido;
- Converter as mensagens recebidas do PC no protocolo CAN;
- Transmitir as mensagens através da rede CAN;
- Consultar o código de identificação de todos os módulos de expansão I/O ligados à rede
 CAN.

Para programar os registos do módulo de expansão pode ser utilizado o *software* MCP250xxProgrammer.exe. Recomenda-se a utilização do programador PICKit 2.

2.5. Módulo de processamento de imagem: identificação e reconhecimento de faces

As principais tarefas associadas ao processamento de imagem são:

- 1) Identificar o melhor setup para aquisição da imagem (câmara, iluminação, óptica, etc);
- 2) Calibrar a distorção radial e tangencial provocada pela lente;
- 3) Detectar a(s) face(s) na imagem, escolhendo a principal
- 4) Segmentar a face
- 5) Efectuar uma extracção de características da face detectada
 - a) Definir quais as características relevantes a extrair

 Comparar características da face detectada com características de faces existentes na base de dados

Os dados a enviar para a rede CAN são:

- Se foi identificada uma face
- A identidade da face identificada;

2.6. Módulo de interface com o utilizador

Deverá ser desenvolvida uma interface com o utilizador que permita uma fácil e intuitiva interação com o sistema. Esta deverá respeitar os seguintes requisitos:

- O interface deverá indicar o estado da ligação ao Módulo Master
- O interface deverá poder listar todos os módulos ligados à rede CAN
- A imagem da câmara deverá aparecer em tempo real no ecrã o PC
- A detecção de faces deverá ser assinalada na imagem
- A <u>identificação</u> de faces deverá ser assinada na imagem
- A <u>não detecção</u> de faces deverá ser assinada numa ou mais saídas digitais de um ou mais módulos de expansão I/O; a(s) saída(s) dos módulos a activar deverão ser configuráveis
- A identificação de faces deverá ser assinada numa ou mais saídas digitais de um ou mais módulos de expansão I/O; a(s) saída(s) dos módulos a activar deverão ser configuráveis
- A detecção de faces sem identificação deverá ser assinada numa ou mais saídas digitais de um ou mais módulos de expansão I/O; a(s) saída(s) dos módulos a activar deverão ser configuráveis
- O interface deverá permitir a criação, edição e remoção de registos de faces na base de dados; para cada face deverá ser possível configurar quais as saídas de quais módulos de expansão I/O deverão ser activados/desactivados
- O interface deverá permitir a recepção de pedidos de criação de novo registo de face na base de dados provenientes do módulo master, com a face identificada no momento;

3. Desenvolvimento

Durante o desenvolvimento do projecto, todos os documentos, desenhos, esquemáticos, código fonte, etc., deverão ser geridos através de um sistema de gestão de versões, do tipo Git. O servidor na *cloud* a utilizar poderá ser o GitHub, ou uma alternativa que suporte repositórios privados como o Gitlab ou o BitBucket.

Os componentes a utilizar no desenvolvimento dos PCBs podem ser do tipo through-hole ou SMD. O desenvolvimento do *hardware* deverá começar pela realização de um protótipo em *breadboard* e só depois pelo desenho e implementação de uma placa PCB. Para o desenho do esquemático e edição do *layout* sugere-se a utilização do *software* EAGLE.

A(s) linguagem(ns) de programação, as ferramentas de desenvolvimento e as bibliotecas externas são livres.

3.1. Principais componentes e equipamentos

- PC
- Câmaras Ethernet ou USB
- Sistemas de iluminação: dome, back light, array de leds, anel de leds.
- Ópticas, Filtros
- Microcontrolador Atmel 328 ou similar
- Controlador Stand-Alone CAN MCP2515
- CAN I/O expander MCP25020 ou MCP25050
- Driver CAN MCP2551SN
- Optoacoplador LTV-356T ou similar
- Relé de estado sólido DC CPC1002N ou similar
- Conversor USB/RS232 FT232R
- Varistor
- Regulador de tensão
- Ferrite bead BK0603HS330-T

4. Avaliação

A avaliação é individual e incluirá uma defesa oral. Ao longo do projecto serão avaliados os seguintes items:

- Trabalho preparatório (obrigatório) e performance do aluno no decorrer das aulas;
 (10%)
- Funcionamento individual de cada um dos módulos desenvolvidos e do sistema na sua globalidade:
 - o Módulo de interface com o utilizador (software);
 - Módulo Master CAN (hardware/software);
 - o Módulo de expansão I/O CAN (hardware/software);
 - o Módulo de comunicação PC <-> Módulo Master CAN (software);
 - Módulo de comunicação Módulo Master CAN <-> Módulo de expansão I/O CAN (software);
 - o Módulo de Processamento e análise de imagem;
 - o Relatório Final;
 - Apresentação oral;

5. Bibliografia

- Tutorial Eagle: https://www.youtube.com/playlist?list=PLA3877F8BF4576577
- Datasheet Microcontrolador Atmel 328
- Datasheet CAN I/O expander MCP25020.
- Datasheet Controlador Stand-Alone CAN com interface SPI (Serial Peripheral Interface) MCP2515
- Datasheet Driver CAN MCP2551SN
- Datasheet Conversor USB/RS232 FT232R
- Datasheet Optoacoplador LTV-356T ou similar
- Datasheet Relé de estado sólido DC CPC1002N ou similar
- Burning the Bootloader Atmega328:
 http://arduino.cc/en/Tutorial/ArduinoToBreadboard
- USB FTDI hardware guide:
 http://www.ftdichip.com/Support/Documents/AppNotes/AN_146_USB_Hardware
 Design Guidelines for FTDI ICs.pdf
- CAN + Arduino area network: http://modelrail.otenko.com/arduino/arduino/arduino-controller-area-network-can
- CAN bus shield: http://www.seeedstudio.com/wiki/CAN-BUS_Shield
- Programação MCP250xx: http://liionbms.com/php/programming MCP250xx.php
- Instalação do OpenCV em Windows:
 http://docs.opencv.org/3.1.0/d3/d52/tutorial_windows_install.html#gsc.tab=0