

Pentatic Mathematics Competition X

Евоок

Kata Pengantar

Pentatic Mathematics Competiton merupakan salah satu ajang kompetisi kecil-kecilan yang diadakan setiap bulan untuk siswa-siswi yang ada di Indonesia, terutama untuk siswa SD dan SMP. Kompetisi ini bertujuan untuk mengisi waktu luang siswa-siswi dalam masa pandemi dan menggunakan luang waktunya dengan berlatih soal yang setingkat dengan Kompetisi Sains Nasional (KSN) jenjang SMP/MTs Sederajat. Tingkat kesulitan soal bervariasi dari tingkat kota/kabupaten hingga tingkat nasional. Setelah kompetisi berakhir, soal dan pembahasan beserta hasil kompetisi akan dibagikan kepada masing-masing peserta secara gratis!

Kompetisi ini awalnya diselenggarakan khusus untuk siswa SMP/MTs Sederajat. Namun, pada Pentatic Mathematics Competition II mulai dibuka untuk siswa jenjang SD/MI Sederajat. Kemudian, pada Pentatic Mathematics Competition III mulai dibuka untuk kalangan umum, baik SD/MI Sederajat, SMP/MTs Sederajat, SMA/MA Sederajat, dan Umum.

Pentatic Mathematics Competition X merupakan ajang kompetisi terakhir sekaligus penutup. Pentatic Mathematics Competition X diadakan sedikit berbeda, dengan menyediakan hadiah bagi tiga peringkat teratas untuk memeriahkan pentutup dari Pentatic Mathematics Competition.

Kami memohon maaf apabila ada rasa tidak nyaman kepada para peserta dan semoga kompetisi ini dapat memberikan manfaat dan semangat kepada siswa-siswi di Indonesia.

Penyelenggara

Wildan Bagus Wicaksono

Daftar Isi

Kata Pengantar	ı
Daftar Isi	ii
I Lembar Soal Babak Penyisihan	1
1 Pilihan Ganda	3
2 Isian Singkat	9
II Lembar Soal Babak Final	11
III Soal dan Pembahasan Babak Penyisihan	14
1 Pilihan Ganda	15
2 Isian Singkat	39
IV Soal dan Pembahasan Babak Final	51
V Hasil Babak Penvisihan dan Babak Final	70

Lembar Soal Babak Penyisihan

PETUNJUK

- 1. Kerjakan soal-soal berikut dengan jujur agar mendapatkan manfaat yang maksimal.
- 2. Peserta disarankan untuk:
 - (a). Mengerjakan dengan menggunakan laptop atau komputer,
 - (b). Jika menggunakan handphone, disarankan untuk mendownload soal dan mengerjakan dengan mode *landscape* di google form agar dapat terbaca dengan baik.
 - (c). Menuliskan jawaban terlebih dahulu di lembar kertas. Hal ini untuk menghindari halaman google form yang tiba-tiba hilang atau refresh secara otomatis ketika jaringan tidak stabil. Sehingga di google form hanya perlu memindahkan jawaban dari lembar kertas.
- 3. Waktu pengerjaan soal pada tanggal 20 Desember 2020 dari pukul 08 : 00 WIB sampai pukul 23 : 59 WIB.
- 4. Setiap peserta hanya diperbolehkan mengumpulkan jawaban sebanyak satu kali. Jika terdapat peserta yang mengumpulkan jawaban lebih dari satu kali, maka jawaban yang dinilai adalah yang pertama kali dikumpulkan.
- 5. Dilarang menggunakan alat bantu hitung seperti, kalkulator, busur, maupun alat bantu hitung lainnya.
- 6. Terdiri dari 2 bagian: pilihan ganda dan isian singkat.
- 7. Untuk pilihan ganda:
 - (a). Terdiri dari 30 soal pilihan ganda dan masing-masing soal terdiri dari empat pilihan: A, B, C, atau D,
 - (b). Setiap soal hanya diperbolehkan memilih maksimal satu pilihan,
 - (c). Untuk soal yang dijawab **benar**, mendapat 2 (dua) poin,
 - (d). Untuk soal yang dijawab salah atau kosong (tidak dijawab), mendapat 0 (nol) poin.
- 8. Untuk isian singkat:
 - (a). Terdiri dari 10 soal isian singkat,
 - (b). Jawaban setiap soal dipastikan bilangan cacah (0, 1, 2, 3, 4, dan seterusnya),
 - (c). Tuliskan jawaban akhirnya saja tanpa menuliskan satuan, koma (,), titik (.), dan lain-lain,
 - (d). Untuk soal yang dijawab benar, mendapat 7 (tujuh) poin,
 - (e). Untuk soal yang dijawab salah atau kosong (tidak dijawab), mendapat 0 (nol) poin.
- 9. Selamat mengerjakan!

Pilihan Ganda

Jawablah soal-soal berikut dengan memilih maksimal satu pilihan dari empat pilihan yang tersedia: A, B, C, atau D! Setiap soal yang dijawab benar bernilai 2 poin dan tidak ada pengurangan untuk soal yang dijawab salah atau kosong (tidak dijawab).

1.	Wildan menyelesaikan suatu pekerjaan dalam waktu 12 jam. Dengan pekerjaan yang
	sama, Bagus menyelesaikan pekerjaan tersebut dalam waktu 4 jam, sedangkan Koko
	menyelesaikan pekerjaannya dalam waktu 8 jam. Jika Wildan, Bagus, dan Koko bekerja
	sama, maka pekerjaan tersebut akan selesai dalam waktu menit.

	A. $22\frac{1}{2}$	B. $65\frac{5}{11}$	C. $78\frac{2}{11}$	D. $130\frac{1}{1}$
--	--------------------	---------------------	---------------------	---------------------

2. Diberikan himpunan semesta $S=\{1,2,3,4,5,\cdots,20\}$. Terdapat himpunan bagian dari S, yaitu A,B, dan C dimana

 $A = \{$ Bilangan asli yang habis dibagi 3 atau 4 $\}$ $B = \{$ Bilangan ganjil yang tidak lebih dari 15 $\}$ $C = \{$ Bilangan prima $\}$

Misalkan $X = A \cup (B^c \cap C)$. Maka $n(X) = \dots$

3. Titik berikut yang tidak dilalui oleh garis 2x+3y=6adalah

A.
$$(300, -198)$$
 B. $(57, -36)$ C. $(672, -446)$ D. $(2019, -1346)$

4. Diketahui bahwa parabola $y=ax^2+bx+c$ melalui titik $(0,-1)\,,(1,2),$ dan(2,9). Nilai dari $a\times b-c$ adalah

5. Diketahui bahwa suku ke-6 dan suku ke-14 barisan aritmetika berturut-turut adalah 8 dan 32. Maka suku ke-20 dari barisan aritmetika tersebut adalah

6. Misalkan $f(x) = a^x$. Maka $f(x^2)$ senilai dengan

A.
$$(f(x))^{f(x)}$$
 B. $(f(x))^a$ C. $(f(x))^x$ D. $(f(x))^{x-1}$

7. Nilai dari $\frac{2}{1+\sqrt{3}} + \frac{7}{1-2\sqrt{2}} + \frac{5}{2\sqrt{2}+\sqrt{3}}$

A. -2

B. -1

C. 1

D. 2

8. Suatu lingkaran dibagi menjadi empat bagian. Luas bagian pertama besarnya dua kali dari luas bagian kedua. Luas bagian ketiga besarnya setengah dari luas bagian keempat. Jumlah luas dari bagian pertama dan luas bagian kedua sama dengan sepertiga dari luas lingkaran. Maka luas dari bagian kedua besarnya sama dengan . . . kali dari luas bagian keempat.

A. seperempat

B. setengah

C. dua

D. empat

9. Rata-rata ulangan harian dari 20 siswa adalah 78. Sub Zero dan Scorpion mengikuti ulangan harian susulan dimana Sub Zero mendapatkan nilai 56 sedangkan Scorpion mendapatkan nilai 34. Nilai rata-rata ulangan harian setelah mereka mengikuti ulangan susulan adalah

A. 75

B. 80

C. 72

D. 74

10. Seekor semut berada di titik A ingin mengambil makanan yang berada di titik B dengan melalui garis-garis hitam tersebut seperti gambar di bawah.

Banyak cara semut menuju titik B dengan rute perjalanan terpendek (tercepat) adalah . .

A. 7

B. 9

C. 11

D. 18

11. Misalkan A menyatakan jumlah 2021 bilangan ganjil positif pertama dan B menyatakan jumlah 2020 bilangan genap positif pertama. Nilai dari A-B adalah

A. 2019

B. 2020

C. 2021

D. 2022

12. Nilai

$$\frac{1}{2} + \frac{1+2}{3} + \frac{1+2+3}{4} + \dots + \frac{1+2+3+4+\dots+99}{100}$$

adalah

A. 5000

B. 4950

C. 2500

D. 2475

13. Kitty ingin pergi mencari ikan di beberapa pasar. Terdapat pasar A, pasar B, pasar C, dan pasar D. Kitty sedang berada di pasar A. Untuk menuju pasar C, Kitty harus melalui pasar B terlebih dahulu. Untuk menuju pasar D, Kitty dapat melalui pasar C terlebih dahulu atau dapat menuju langsung ke pasar D dari pasar B. Sedangkan, dari pasar A Kitty tidak bisa menuju pasar C atau pasar D. Jika banyak jalan dari pasar A menuju pasar B ada 4 jalan, banyak jalan dari pasar B menuju pasar B menuju

	A. 24	B. 44	C. 62	D. 120	
14.	Segitiga ABC sebangur 13, 14, dan 15. Jika lus segitiga XYZ adalah .	as segitiga XYZ dua			
	A. 84	B. 64	C. $42\sqrt{2}$	D. $36\sqrt{2}$	
15.	Misalkan $\omega = 22^{2020} + 88^{2020}.$ Angka satuan dari ω^{2020} adalah				
	A. 2	B. 4	C. 6	D. 8	
16.	Diberikan fungsi $f(x)$ o	$\operatorname{dan} g(x)$ yang memenu	ıhi		
		g(x) = g(-x) dan	$f(x) = x \times g(x)$		
	Nilai dari $f(-5) + f(-5)$	$4) + f(-3) + \cdots + f(3)$	(3) + f(4) + f(5) adalah	1	
	A. 0	B. $-g(1)$	C. $2g(-2)$	D1	
17. Diberikan persegi $ABCD$ dengan panjang sisi 6 cm. Titik M dan N berturut terletak pada sisi DA dan BC sehingga panjang $DM = MA$ dan $NC = 1$ cm. T merupakan titik tengah dari MN . Panjang BO adalah					
	A. 5 cm	B. $2\sqrt{6}$ cm	C. $3\sqrt{3}$ cm	D. 6 cm	
18.	Diberikan $f(x) = ax^2 +$ terjadi ketika $x = 2$. Ba adalah				
	A. 24	B. 25	C. 40	D. 41	
19.	Untuk setiap bilangan asli n , didefinisikan				
	$n! = 1 \times 2 \times 3 \times \dots \times n$				
	Sebagai contoh, $1! = 1, 4! = 1 \times 2 \times 3 \times 4$, dan $7! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7$.				
	Bilangan asli n terkecil sehingga terdapat bilangan asli $a_1, a_2, a_3, \cdots, a_n$ yang memenuhi				
	$a_1! + a_2! + a_3! + a_4! + \dots + a_n! = 2020$				
	adalah				
	A. 10	B. 11	C. 12	D. 13	
20.	Pada sebuah papan tuli	s, dituliskan sebanyak 9	99 bilangan positif berb	eda yang membentuk	

barisan geometri. Bilangan-bilangan tersebut diurutkan dari yang terkecil hingga yang terbesar. Misalkan Q_1, Q_2 , dan Q_3 berturut-turut menyatakan kuartil pertama, kuartil kedua, dan kuartil ketiga pada kumpulan bilangan tersebut. Misalkan r adalah rasio dari barisan geometri tersebut dimana r<1. Jika suku kedua dari barisan geometri tersebut adalah $\frac{1}{r^{31}}$ dan

$$Q_1 + Q_2 + Q_3 = r^a + r^b + r^c$$

Nilai dari a + b + c adalah

A. $5! \times 7!$

A. 48
B. 51
C. 54
D. 57
Diberikan segitiga ABC dengan panjang AC = 2020 cm dan BC = 2021 cm serta ∠BCA = 120°. Garis bagi sudut dalam ∠BCA memotong lingkaran luar segitiga ABC di titik D. Panjang dari CD adalah . . . cm.
A. 3022
B. 3974
C. 4041
D. 4088
Sebanyak 5 orang dari SMP SnK dan sebanyak 7 orang dari SMP Colossal akan melaksanakan konversi meja bundar. Mereka duduk melingkar dan siswa yang berasal dari sekolah sama harus duduk berdekatan. Banyak kemungkinan posisi duduk mereka adalah

Catatan: n! menyatakan perkalian bilangan asli dari 1 sampai n, yaitu

B. $2! \times 5! \times 7!$

 $n! = 1 \times 2 \times 3 \times \cdots \times n$

C. $2! \times 4! \times 6!$

D. $4! \times 6!$

23. Diketahui grafik $y=px^2+1$ dan grafik y=mx+c bersinggungan di titik (2,5). Nilai dari $p\times m\times c$ adalah

A. 9 B. 2 C. -8 D. -12

24. Misalkan $\frac{1}{S_n} = \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \dots + \frac{1}{n \times (n+2)}$

untuk setiap bilangan asli n. Jika $n \in \{1, 2, 3, 4, \dots, 2020\}$, peluang bahwa S_n bilangan bulat adalah

A. $\frac{1}{2020}$ B. $\frac{1}{1010}$ C. $\frac{1}{505}$ D. $\frac{3}{1010}$

25. Diberikan sebuah bola merah, sebuah bola kuning, sebuah bola hitam, dan lima bola putih yang identik (sama). Bola-bola tersebut diletakkan secara berjajar (memanjang). Banyak cara menyusun bola-bola tersebut jika tidak dua bola dari bola merah, bola kuning, dan bola hitam yang terletak berdekatan (bersebelahan) adalah

A. 20 B. 40 C. 80 D. 120

26. Diberikan fungsi f(x) yang terdefinisi untuk setiap bilangan asli x dan

$$f(x) = \begin{cases} \frac{x}{2}, & \text{jika } x \text{ bilangan genap} \\ 3x + 1, & \text{jika } x \text{ bilangan ganjil} \end{cases}$$

Nilai dari

$$\underbrace{f(f(f(f(\cdots(f(2020)))))))}_{f \text{ sebanyak } 2020^{2020}}$$

adalah

A. 1

B. 2

C. 4

- D. 8
- 27. Diberikan setengah lingkaran dengan diameter AB dengan jari-jari lingkaran adalah 10 cm. Titik P,Q,R,S terletak pada busur setengah lingkaran sehingga AB,PQ,RS ketiganya saling sejajar. Jika panjang $PQ=10\sqrt{2}$ cm dan panjang RS=10 cm, maka luas daerah yang diarsir adalah . . . cm².

- A. $\frac{25\pi 75\sqrt{3} + 150}{3}$
- B. $\frac{25\pi 75\sqrt{3} + 150}{6}$

- C. $\frac{25\pi + 75\sqrt{3} 150}{3}$
- D. $\frac{25\pi + 75\sqrt{3} 150}{6}$
- 28. Untuk setiap bilangan asli n, didefinisikan

$$S_n = 1 - 2 + 3 - 4 + 5 - 6 + \dots + (-1)^{n+1} \times n$$

Nilai dari

$$2020 \times S_1 + 2019 \times S_2 + 2018 \times S_3 + 2017 \times S_4 + \dots + 2 \times S_{2019} + 1 \times S_{2020}$$

adalah

- A. 1011×505
- B. 1009×499
- C. 1009×505
- D. 1013×495
- 29. Diberikan segitiga ABC dengan BZ dan CY merupakan garis beratnya. Panjang dari BZ adalah 12 satuan dan panjang dari CY adalah 9 satuan. Titik X merupakan titik tengah dari sisi BC. Jika panjang dari XZ = t satuan dan panjang dari XY = s satuan, selisih dari t^2 dan s^2 adalah
 - A. 32

B. 21

- C. 25
- D. 12

- 30. Untuk setiap bilangan real x, didefinisikan:
 - $\lfloor x \rfloor$ menyatakan bilangan bulat terbesar yang lebih kecil dari atau sama dengan x. Sebagai contoh, $\lfloor 4 \rfloor = 4$; $\lfloor \sqrt{5} \rfloor = 2$; dan $\lfloor -\pi \rfloor = -4$.
 - $\lceil x \rceil$ menyatakan bilangan bulat terkecil yang lebih besar dari atau sama dengan x. Sebagai contoh, $\lceil 4 \rceil = 4$; $\lceil \sqrt{5} \rceil = 3$; dan $\lceil -\pi \rceil = -3$.

Diberikan fungsi f dimana f(0)=0. Untuk setiap bilangan real x dimana $x\neq 0$, berlaku

$$f(\lfloor x \rfloor) + f\left(\left\lceil \frac{1}{x} \right\rceil\right) = 2x$$

Maka kemungkinan nilai dari f(2020) adalah

A.
$$\frac{1}{1010} \le f(2020) < \frac{3}{1010}$$
 atau $4040 \le f(2020) < \frac{4041}{2}$

B.
$$\frac{1}{1010} < f(2020) \le \frac{1}{1009}$$
 atau $2020 \le f(2020) < 2021$

C.
$$\frac{1}{1010} \le f(2020) < \frac{2}{2019}$$
 atau $4039 \le f(2020) < 4041$

D.
$$\frac{1}{1010} < f(2020) \le \frac{1}{1009}$$
 atau $4039 \le f(2020) < 4041$

2 Isian Singkat

Jawablah soal-soal berikut dengan menuliskan jawaban akhirnya saja! Jawaban ditulis cukup menggunakan bilangan, tanpa menggunakan satuan, koma(,), titik (.), dan lain-lain. Jawaban dipastikan bilangan cacah! Setiap soal yang dijawab benar bernilai 7 poin dan tidak ada pengurangan untuk soal yang dijawab salah atau kosong (tidak dijawab).

- 1. Tadika Mesra sedang mengadakan ujian akhir semester (UAS). Diketahui bahwa rata-rata dari hasil UAS pada kelas Upin adalah 82. Setelah dicek kembali, ternyata Bu Jasmin salah menghitung nilai UAS dari Upin. Nilai UAS dari Upin setelah pembenaran berubah dari 35 menjadi 95. Jika rata-rata dari hasil UAS dari kelas Upin sekarang menjadi 84, banyak siswa pada kelas Upin adalah
- 2. Jika x adalah bilangan positif yang memenuhi $x^2 + \frac{1}{x^2} = 7$, maka nilai dari $x^3 + \frac{1}{x^3}$ adalah
- 3. Fungsi $f^{-1}(x)$ merupakan fungsi invers dari f(x), dimana f(x) = c jika dan hanya jika $f^{-1}(c) = x$. Diberikan fungsi p(x) dan fungsi q(x) yang memenuhi

$$p(x) + q^{-1}(x) = 3x + 11$$
$$3q^{-1}(x) - 2p(x) = 13 - x$$

untuk setiap bilangan real x. Nilai a yang memenuhi $2p^{-1}(a) + q(a) = 9$ adalah

- 4. Diberikan sebuah lingkaran berjari-jari 5 satuan dan berdiameter AB. Titik C terletak pada busur lingkaran AB sehingga panjang BC=6 satuan. Titik D terletak pada sisi AC (diantara titik A dan C) sehingga segitiga ABD merupakan segitiga sama kaki. Jika panjang dari BD adalah s satuan, nilai dari 100s adalah ...
- 5. Misalkan a dan b adalah dua bilangan yang berbeda yang memenuhi

$$a^2 + 1 = a$$
$$b^2 + 1 = b$$

Nilai dari

$$a^{4040} + b^{4040} - a^{2020} - b^{2020} + 2020$$

adalah

- 6. Titik E merupakan titik tengah sisi AD pada persegi ABCD. Titik F terletak pada sisi AB sehingga perbandingan panjang AF:FB=1:2. Titik G merupakan perpotongan BE dengan CF. Misalkan t adalah panjang dari CG dan s adalah panjang dari EG. Jika perbandingan dari $t^4:s^4=a:b$ dimana a dan b bilangan asli dan FPB(a,b)=1, nilai dari $a\times b$ adalah
- 7. Diberikan \mathbb{R} merupakan himpunan bilangan real. Suatu fungsi $f: \mathbb{R} \to \mathbb{R}$ yang memenuhi

$$f(x) + x \times f(1-x) = 2x$$

untuk setiap bilangan real x. Banyak bilangan bulat ω sehingga $f(\omega)$ merupakan bilangan bulat adalah

- 8. Diberikan 30 buah manik-manik: tiga buah manik-manik berwarna hitam (manik-manik hitam identik) dan sisanya manik-manik berwarna putih (manik-manik putih identik). Manik-manik tersebut digunakan untuk membuat kalung dengan menyusun manik-manik tersebut dalam bentuk melingkar. Jika manik-manik berwarna hitam harus tidak bersebelahan, banyak macam kalung berbeda yang dapat dibuat adalah
- 9. Untuk setiap bilangan real a dan b, didefinisikan

$$a * b = \frac{\sqrt{b^4 + ab(b^2 + 1) + ab^2 + a + b - 1}}{b^2 + b + 1}$$

Untuk setiap bilangan asli $n \geq 2$, didefinisikan

$$f(n) = 1 * (2 * (3 * (4 * \cdots ((n-1) * n)))$$

$$g(n) = f(n) \times f(n)$$

dan g(1) = 1. Sisa pembagian

$$441g(1) + 441g(2) + 441g(3) + 441g(4) + 441g(5) + \dots + 441g(2020)$$

jika dibagi 1000 adalah

10. Diberikan segitiga ABC dan dibuat lingkaran Γ yang melalui titik A dan B. Lingkaran Γ memotong sisi BC dan AC berturut-turut di titik X dan Y. AX dan BY berpotongan di titik M dan N merupakan titik tengah AB. Sinar \overline{MN} memotong lingkaran luar segitiga AMB di titik O. Titik P merupakan titik tengah AO dan perpanjangan PN memotong MB di titik Q. Titik R dan S berturut-turut merupakan perpotongan BP dengan OQ dan OM. Diketahui bahwa $\angle BYX = \angle YCX = 50^\circ$ dan $\angle YAX = 20^\circ$. Jika perbandingan panjang SR: PB = a: b dimana a dan b bilangan asli serta FPB(a,b) = 1, nilai dari A0 dan A1 adalah

Lembar Soal Babak Final

PETUNJUK

- 1. Kerjakan soal-soal berikut dengan jujur agar mendapatkan manfaat yang maksimal.
- 2. Peserta disarankan untuk:
 - (a). Mengerjakan dengan menggunakan laptop atau komputer,
 - (b). Jika menggunakan handphone, disarankan untuk mendownload soal dan mengerjakan dengan mode *landscape* di google form agar dapat terbaca dengan baik.
- 3. Waktu pengerjaan soal pada tanggal 27 Desember 2020 dari pukul 07 : 30 WIB sampai pukul 11 : 30 WIB.
- 4. Peserta diberikan waktu tambahan sebanyak 15 menit untuk memfoto atau me-scan jawaban dan mengirimkannya dengan format nomor peserta-nomor soal. Peserta disarankan untuk menggunakan cam scanner untuk memfoto atau me-scan jawaban dan dikirim dengan format .pdf agar jawaban dapat dibaca dengan jelas. Jika menggunakan foto biasa, diusahakan untuk memfoto jawaban dengan jelas dan tidak buram.
- 5. Dilarang menggunakan alat bantu hitung seperti, kalkulator, busur, maupun alat bantu hitung lainnya.
- 6. Terdiri dari 4 soal uraian dengan soal nomor 1 berbobot 10 poin, soal nomor 2 berbobot 15 poin, soal nomor 3 berbobot 20 poin, dan soal nomor 4 berbobot 25 poin.
- 7. Tidak ada pengurangan nilai untuk soal yang dijawab salah atau tidak dijawab (kosong).
- 8. Tuliskan semua argumen pengerjaan (cara pengerjaan) dari awal hingga hasil akhir pada masing-masing jawaban pada soal dengan jelas dan runtut.
- 9. Jawaban dari setiap soal dituliskan pada lembar kertas F4 atau A4.
- 10. Tuliskan nama lengkap peserta pada pojok kanan pada masing-masing lembar jawaban.
- 11. Jawaban harus ditulis menggunakan bolpoin hitam dengan jelas dan dapat dibaca. Jawaban yang tidak dapat dibaca dengan jelas akan memengaruhi poin yang didapat.
- 12. Peserta dilarang menggunakan Tipe-X, tetapi diperbolehkan menggunakan stipo atau dicoret.
- 13. Selamat mengerjakan!

Soal 1. Diberikan lingkaran Γ dengan AB sebagai diameternya dan panjang AB=4 satuan. Dibuat lingkaran ω dengan titik pusat B. Lingkaran ω memotong lingkaran Γ di titik X dan Y serta memotong AB di titik Z. Jika $\angle XZB=75^\circ$, tentukan luas irisan dari lingkaran Γ dan lingkaran ω .

(10 poin)

Soal 2. Diberikan x, y, dan z bilangan real. Buktikan bahwa

$$-1 \le \frac{x}{x^2 - x + 1} + \frac{y}{y^2 - y + 1} + \frac{z}{z^2 - z + 1} \le 3$$

Tentukan juga semua pasangan (x, y, z) sehingga kesamaan dapat terjadi, yaitu ketika f(x, y, z) = 3 dan f(x, y, z) = -1 dimana

$$f(x,y,z) = \frac{x}{x^2 - x + 1} + \frac{y}{y^2 - y + 1} + \frac{z}{z^2 - z + 1}$$
(15 poin)

Soal 3. Misalkan p(n) banyak segitiga lancip yang dapat dibentuk dengan menggunakan titik-titik sudut pada segi-2n beraturan untuk setiap bilangan asli $n \geq 2$. Tentukan sisa pembagian

$$p(2) + p(3) + p(4) + p(5) + \cdots + p(100)$$

jika dibagi 1000.

(20 poin)

Soal 4. Tentukan semua bilangan asli (a, b, p, q) dimana p dan q bilangan prima sehingga

$$2a(a+1)(a+5) = 7p^bq + 3(a+1)(a-1)$$

(25 poin)

Soal dan Pembahasan Babak Penyisihan

Pilihan Ganda

Jawablah soal-soal berikut dengan memilih maksimal satu pilihan dari empat pilihan yang tersedia: A, B, C, atau D! Setiap soal yang dijawab benar bernilai 2 poin dan tidak ada pengurangan untuk soal yang dijawab salah atau kosong (tidak dijawab).

1. Wildan menyelesaikan suatu pekerjaan dalam waktu 12 jam. Dengan pekerjaan yang sama, Bagus menyelesaikan pekerjaan tersebut dalam waktu 4 jam, sedangkan Koko menyelesaikan pekerjaannya dalam waktu 8 jam. Jika Wildan, Bagus, dan Koko bekerja sama, maka pekerjaan tersebut akan selesai dalam waktu . . . menit.

A.
$$22\frac{1}{2}$$

B.
$$65\frac{5}{11}$$

C.
$$78\frac{2}{11}$$

B.
$$65\frac{5}{11}$$
 C. $78\frac{2}{11}$ D. $130\frac{10}{11}$

Pembahasan.

Misalkan t jam adalah waktu yang dibutuhkan mereka untuk bekerja sama menyelesaikan pekerjaan tersebut. Maka

$$\frac{1}{t} = \frac{1}{12} + \frac{1}{4} + \frac{1}{8} = \frac{2+6+3}{24} = \frac{11}{24}$$

yang berarti $t = \frac{24}{11}$ jam. Maka waktu yang dibutuhkan dalam menit adalah

$$t = \frac{24}{11} \times 60 \text{ menit} = \frac{1440}{11} \text{ menit} = 130\frac{10}{11} \text{ menit}$$

Jadi, pekerjaan tersebut akan selesai dalam waktu $130\frac{10}{11}$ menit.

2. Diberikan himpunan semesta $S = \{1, 2, 3, 4, 5, \dots, 20\}$. Terdapat himpunan bagian dari S, yaitu A, B, dan C dimana

 $A = \{ \text{Bilangan asli yang habis dibagi 3 atau 4} \}$

 $B = \{ Bilangan ganjil yang tidak lebih dari 15 \}$

 $C = \{ Bilangan prima \}$

Misalkan $X = A \cup (B^c \cap C)$. Maka $n(X) = \dots$

A. 10

B. 11

D. 13

Pembahasan.

Dari informasi soal, maka

$$A = \{3,4,6,8,9,12,15,16,18,20\}$$

$$B = \{1, 3, 5, 7, 9, 13, 15\}$$

$$C = \{2, 3, 5, 7, 11, 13, 17, 19\}$$

Demikian $B^c = \{17, 19\}$ yang berarti $B^c \cap C = \{17, 19\}$. Kita dapatkan

$$X = A \cup (B^c \cap C) = \{3, 4, 6, 8, 9, 12, 15, 16, 17, 18, 19, 20\}$$

yang berarti $n(X) = \boxed{12}$.

.....

3. Titik berikut yang tidak dilalui oleh garis 2x + 3y = 6 adalah

A.
$$(300, -198)$$

B.
$$(57, -36)$$

C.
$$(672, -446)$$

$$(2019, -1346)$$

Pembahasan.

Kita hanya perlu mengecek masing-masing pilihan dari nilai x, y yang memenuhi 2x + 3y = 6.

• Jika (x, y) = (300, -198), maka

$$2x + 3y = 2(300) + 3(-198) = 600 - 594 = 6$$

Memenuhi.

• Jika (x, y) = (57, -36), maka

$$2x + 3y = 2(57) + 3(-36) = 114 - 108 = 6$$

Memenuhi.

• Jika (x, y) = (672, -446), maka

$$2x + 3y = 2(672) + 3(-446) = 1344 - 1338 = 6$$

Memenuhi.

• Jika (x, y) = (2019, -1346), maka

$$2x + 3y = 2(2019) + 3(-1346) = 4038 - 4038 = 0$$

Tidak memenuhi.

Jadi, titik yang tidak dilalui adalah (2019, -1346)

.....

4. Diketahui bahwa parabola $y=ax^2+bx+c$ melalui titik (0,-1), (1,2), dan (2,9). Nilai dari $a\times b-c$ adalah

A. 4

(B.)3

C. 2

D. 1

Pembahasan.

Dari informasi soal, kita dapatkan

$$-1 = a(0)^{2} + b(0) + c \iff -1 = c$$

$$2 = a(1)^{2} + b(1) + c \iff 2 = a + b + c$$

$$9 = a(2)^{2} + b(2) + c \iff 9 = 4a + 2b + c$$

Subtitusikan nilai c. Kita dapatkan

$$2 = a + b + c = a + b - 1 \Longleftrightarrow a + b = 3 \tag{1}$$

Dan juga

$$9 = 4a + 2b + c = 4a + 2b - 1 \iff 4a + 2b = 10 \tag{2}$$

Eliminasi kedua persamaan yang didapatkan. Dengan $4 \times (1) - (2)$:

$$4a + 4b = 12$$

$$4a + 2b = 10$$

$$2b = 2$$

$$b = 1$$

Subtitusikan nilai b,

$$3 = a + b = a + 1 \iff a = 2$$

Demikian a = 2, b = 1, c = -1. Maka $a \times b - c = 2 \times 1 - (-1) = 2 + 1 = 3$.

.....

- 5. Diketahui bahwa suku ke-6 dan suku ke-14 barisan aritmetika berturut-turut adalah 8 dan 32. Maka suku ke-20 dari barisan aritmetika tersebut adalah
 - A. 56
- B. 53
- (C.)50
- D. 47

Pembahasan.

Misalkan suku ke-n barisan aritmetika tersebut adalah $U_n = a + (n-1)b$. Karena $U_6 = 8$ dan $U_{14} = 32$, maka

$$a + 5b = 8$$
 dan $a + 13b = 32$

Dengan mengurangi kedua persamaan tersebut,

$$a + 13b - (a + 5b) = 32 - 8$$

 $a + 13b - a - 5b = 24$
 $8b = 24$
 $b = 3$

Subtitusikan, maka

$$8 = a + 5b = a + 5(3) = a + 15 \iff a = -7$$

Maka suku ke-20 barisan aritmetika tersebut adalah

$$U_{20} = a + 19b = -7 + 19(3) = -7 + 57 = 50$$

Jadi, suku ke-20 barisan tersebut adalah 50.

.....

6. Misalkan $f(x) = a^x$. Maka $f(x^2)$ senilai dengan

A. $(f(x))^{f(x)}$

B. $(f(x))^a$

 $C.(f(x))^x$

D. $(f(x))^{x-1}$

Pembahasan.

$$f(x^{2}) = a^{x^{2}}$$

$$= a^{x \times x}$$

$$= (a^{x})^{x}$$

$$= (f(x))^{x}$$

Jadi, $f(x^2) = (f(x))^x$.

.....

7. Nilai dari

$$\frac{2}{1+\sqrt{3}} + \frac{7}{1-2\sqrt{2}} + \frac{5}{2\sqrt{2}+\sqrt{3}}$$

adalah

(A.) -2

B. -1

C. 1

D. 2

Pembahasan.

Rasionalkan masing-masing pecahan.

$$\frac{2}{1+\sqrt{3}} = \frac{2}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1} = \frac{2(\sqrt{3}-1)}{3-1} = \sqrt{3}-1$$

$$\frac{7}{1-2\sqrt{2}} = \frac{7}{1-2\sqrt{2}} \times \frac{1+2\sqrt{2}}{1+2\sqrt{2}} = \frac{7(1+2\sqrt{2})}{1-8} = \frac{7(1+2\sqrt{2})}{-7} = -1-2\sqrt{2}$$

$$\frac{5}{2\sqrt{2}+\sqrt{3}} = \frac{5}{2\sqrt{2}+\sqrt{3}} \times \frac{2\sqrt{2}-\sqrt{3}}{2\sqrt{2}-\sqrt{3}} = \frac{5(2\sqrt{2}-\sqrt{3})}{5} = 2\sqrt{2}-\sqrt{3}$$

Jumlahkan, sehingga didapatkan

$$\sqrt{3} - 1 - 1 - 2\sqrt{2} + 2\sqrt{2} - \sqrt{3} = -2$$

Jadi, nilai dari $\frac{2}{1+\sqrt{3}} + \frac{7}{1-2\sqrt{2}} + \frac{5}{2\sqrt{2}+\sqrt{3}}$ adalah $\boxed{-2}$

.....

8. Suatu lingkaran dibagi menjadi empat bagian. Luas bagian pertama besarnya dua kali dari luas bagian kedua. Luas bagian ketiga besarnya setengah dari luas bagian keempat. Jumlah luas dari bagian pertama dan luas bagian kedua sama dengan sepertiga dari luas lingkaran. Maka luas dari bagian kedua besarnya sama dengan . . . kali dari luas bagian keempat.

A. seperempat

- B. setengah
- C. dua
- D. empat

Pembahasan.

Misalkan L_1 menyatakan luas bagian pertama, L_2 menyatakan luas bagian kedua, L_3 menyatakan luas bagian ketiga, L_4 menyatakan luas bagian keempat, dan L menyatakan luas lingkaran. Maka $L=L_1+L_2+L_3+L_4$.

(a). Luas bagian pertama besarnya dua kali dari luas bagian kedua, maka $L_1 = 2L_2$.

- (b). Luas bagian ketiga besarnya setengah dari luas bagian keempat, maka $L_3 = \frac{1}{2}L_4$.
- (c). Jumlah luas dari bagian pertama dan luas bagian kedua sama dengan sepertiga dari luas lingkaran. Maka

$$L_{1} + L_{2} = \frac{1}{3}L$$

$$2L_{2} + L_{2} = \frac{1}{3}(L_{1} + L_{2} + L_{3} + L_{4})$$

$$3L_{2} = \frac{1}{3}\left(2L_{2} + L_{2} + \frac{1}{2}L_{4} + L_{4}\right)$$

$$3 \times 3L_{2} = 3L_{2} + \frac{3}{2}L_{4}$$

$$9L_{2} - 3L_{2} = \frac{3}{2}L_{4}$$

$$6L_{2} = \frac{3}{2}L_{4}$$

$$L_{2} = \frac{1}{6} \times \frac{3}{2}L_{4}$$

$$L_{2} = \frac{1}{4}L_{4}$$

Jadi, luas bagian kedua sama besarnya sama dengan seperempat luas bagian keempat.

- 9. Rata-rata ulangan harian dari 20 siswa adalah 78. Sub Zero dan Scorpion mengikuti ulangan harian susulan dimana Sub Zero mendapatkan nilai 56 sedangkan Scorpion mendapatkan nilai 34. Nilai rata-rata ulangan harian setelah mereka mengikuti ulangan susulan adalah
 - A. 75
- B. 80

- C. 72
- D. 74

Pembahasan.

Misalkan nilai ulangan harian 20 siswa tersebut adalah $n_1, n_2, n_3, \dots, n_{20}$. Diketahui rata-ratanya adalah 78. Maka

$$\frac{n_1 + n_2 + n_3 + \dots + n_{20}}{20} = 78$$

$$n_1 + n_2 + n_3 + \dots + n_{20} = 78 \times 20$$

$$n_1 + n_2 + n_3 + \dots + n_{20} = 1560$$

Sub Zero mendapatkan nilai u=56 dan Scorpion mendapatkan nilai i=34. Maka rata-rata ulangan harian setelah mengikuti ulangan susulan adalah

$$\frac{n_1 + n_2 + n_3 + \dots + n_{20} + u + i}{22} = \frac{1560 + 56 + 34}{22} = \frac{1650}{22} = 75$$

Jadi, rata-ratanya adalah [75].

10. Seekor semut berada di titik A ingin mengambil makanan yang berada di titik B dengan melalui garis-garis hitam tersebut seperti gambar di bawah.

Banyak cara semut menuju titik B dengan rute perjalanan terpendek (tercepat) adalah . .

. .

A. 7

B.)9

C. 11

D. 18

Pembahasan.

Karena yang diminta adalah rute terpendek, maka semut tersebut harus melalui CD (warna merah) dan berjalah ke kanan atau ke atas. Karena harus melalui CD, maka kita perlu mencari banyak rute dari titik $A \to C$, $C \to D$, dan $D \to B$.

- (a). Untuk $A \to C$, ada 2 langkah ke kanan dan 1 langkah ke atas. Maka banyak rute $A \to C$ ada $\frac{(2+1)!}{2!1!} = \frac{3!}{2!1!} = \frac{6}{2 \times 1} = 3$.
- (b). Untuk $C \to D$ hanya ada 1 kemungkinan.
- (c). Untuk $D \to B$, ada 2 langkah ke kanan dan 1 langkah ke atas. Maka banyak rute $D \to B \text{ ada } \frac{(2+1)!}{2!1!} = \frac{3!}{2!1!} = \frac{6}{2\times 1} = 3.$

Maka total semua kemungkinan rute semut tersebut adalah $3 \times 1 \times 3 = 9$.

Jadi, banyak cara semut menuju titik B dengan rute perjalanan terpendek (tercepat) adalah $\boxed{9}$.

.....

11. Misalkan A menyatakan jumlah 2021 bilangan ganjil positif pertama dan B menyatakan jumlah 2020 bilangan genap positif pertama. Nilai dari A-B adalah

A. 2019

B. 2020

C.)2021

D. 2022

Pembahasan.

Perhatikan bahwa

$$A = 1 + 3 + 5 + 7 + \dots + 4039 + 4041$$

$$B = 2 + 4 + 6 + 8 + \dots + 4040$$

Maka didapatkan

$$A - B = (1 - 2) + (3 - 4) + (5 - 6) + (7 - 8) + \dots + (4039 - 4040) + 4041$$

$$= \underbrace{(-1) + (-1) + (-1) + (-1) + \dots + (-1)}_{\text{sebanyak 2020}} + 4041$$

$$= 2021$$

Jadi, nilai dari A-B adalah 2021

.....

12. Nilai

$$\frac{1}{2} + \frac{1+2}{3} + \frac{1+2+3}{4} + \dots + \frac{1+2+3+4+\dots+99}{100}$$

adalah

A. 5000

B. 4950

C. 2500

(D.) 2475

Pembahasan.

Teorema 1.0.1 (Deret $1 + 2 + 3 + \cdots + n$)

Untuk setiap bilangan asli n,

$$1+2+3+\cdots+n = \frac{n(n+1)}{2}$$

Perhatikan bahwa

$$\frac{1+2+3+\dots+n}{n+1} = \frac{\frac{n(n+1)}{2}}{n+1} = \frac{n}{2}$$

Demikian

$$= \frac{1}{2} + \frac{1+2}{3} + \frac{1+2+3}{4} + \dots + \frac{1+2+3+4+\dots+99}{100}$$

$$= \frac{1}{2} + \frac{2}{2} + \frac{3}{2} + \dots + \frac{99}{2}$$

$$= \frac{1+2+3+\dots+99}{2}$$

$$= \frac{\frac{99\times100}{2}}{2}$$

$$= 99\times25$$

$$= 2475$$

Jadi, hasil yang diminta adalah $\boxed{2475}$

.....

13. Kitty ingin pergi mencari ikan di beberapa pasar. Terdapat pasar A, pasar B, pasar C, dan pasar D. Kitty sedang berada di pasar A. Untuk menuju pasar C, Kitty harus melalui pasar B terlebih dahulu. Untuk menuju pasar D, Kitty dapat melalui pasar C terlebih dahulu atau dapat menuju langsung ke pasar D dari pasar B. Sedangkan, dari pasar A Kitty tidak bisa menuju pasar C atau pasar D. Jika banyak jalan dari pasar A menuju pasar B ada 4 jalan, banyak jalan dari pasar B menuju pasar B menuju

A. 24

(B.)44

C. 62

D. 120

Pembahasan.

Perhatikan ilustrasi berikut.

Maka Kitty dapat mengambil rute $A \to B \to D$ atau $A \to B \to C \to D$.

- (a). Untuk $A \to B \to D$. Banyak jalan $A \to B$ ada 4 dan banyak jalan $B \to D$ ada 5. Maka banyak rute Kitty untuk berpergian adalah $4 \times 5 = 20$.
- (b). Untuk $A \to B \to C \to D$. Banyak jalan $A \to B$ ada 4, banyak jalan $B \to C$ ada 3, banyak jalan $C \to D$ ada 2. Maka banyak rute Kitty untuk berpergian adalah $4 \times 3 \times 2 = 24$.

Sehingga total banyak rute Kitty berpergian adalah 20 + 24 = 44.

Jadi, banyak rute Kitty berpergian dari pasar A ke pasar D adalah 44.

......

14. Segitiga ABC sebangun dengan segitiga XYZ dimana panjang sisi segitiga ABC adalah 13,14, dan 15. Jika luas segitiga XYZ dua kali luas segitiga ABC, maka keliling dari segitiga XYZ adalah

A. 84

B. 64

 $C. 42\sqrt{2}$

D. $36\sqrt{2}$

Pembahasan.

Karena dua segitiga tersebut sebangun, maka perbandingan luasnya sama dengan perbandingan kuadrat dari sisi-sisi yang bersesuaian. Misalkan panjang sisi segitiga XYZ adalah x,y,z. Maka

$$\left(\frac{x}{13}\right)^2 = \left(\frac{y}{14}\right)^2 = \left(\frac{z}{15}\right)^2 = \frac{L_{\triangle XYZ}}{L_{\triangle ABC}} = 2$$

Maka kita dapatkan $x=13\sqrt{2},y=14\sqrt{2},$ dan $z=15\sqrt{2}.$ Sehingga keliling segitiga XYZ adalah

$$x + y + z = 13\sqrt{2} + 14\sqrt{2} + 15\sqrt{2} = 42\sqrt{2}$$

Jadi, keliling dari segitiga XYZ adalah $\boxed{42\sqrt{2}}$

.....

15. Misalkan $\omega = 22^{2020} + 88^{2020}.$ Angka satuan dari ω^{2020} adalah

A. 2

B. 4

(C.)6

D. 8

Pembahasan.

Karena yang ditanyakan angka satuan, angka satuan dari 22^{2020} sama dengan angka satuan dari 8^{2020} dan angka satuan dari 8^{2020} sama dengan angka satuan dari 8^{2020} .

Perhatikan bahwa

$$2^{1} = 2$$
 $2^{2} = 4$
 $2^{3} = 8$
 $2^{4} = 16$
 $2^{5} = 32$ (Berulang)

Pola tersebut berulang setelah 4 pola. Karena 2020 habis dibagi 4, maka angka satuan dari 2^{2020} sama dengan angka satuan dari 2^4 , yaitu 6. Maka angka satuan dari 22^{2020} adalah 6.

Perhatikan bahwa

$$8^{1} = 8$$
 $8^{2} = 64$
 $8^{3} = 512$
 $8^{4} = 4.096$
 $8^{5} = 32.768$ (Berulang)

Pola tersebut berulang setelah 4 pola. Karena 2020 habis dibagi 4, maka angka satuan dari 8^{2020} sama dengan angka satuan dari 2^8 , yaitu 6. Maka angka satuan dari 88^{2020} adalah 6.

Sehingga angka satuan dari $22^{2020} + 88^{2020}$ sama dengan angka satuan dari 6 + 6 = 12, yaitu 2. Demikian angka satuan dari ω adalah 2. Maka angka satuan dari ω^{2020} sama dengan angka satuan dari 2^{2020} . Dengan cara yang sama, angka satuan dari 2^{2020} adalah 6. Jadi, angka satuan dari ω^{2020} adalah 6.

.....

16. Diberikan fungsi f(x) dan g(x) yang memenuhi

$$g(x) = g(-x)$$
 dan $f(x) = x \times g(x)$

Nilai dari $f(-5) + f(-4) + f(-3) + \cdots + f(3) + f(4) + f(5)$ adalah

(A.)0

B. -g(1)

C. 2g(-2)

D. -1

Pembahasan.

Perhatikan bahwa

$$f(-x) + f(x) = (-x) \times g(-x) + x \times g(x)$$
$$= -xg(-x) + xg(x)$$
$$= -xg(x) + xg(x)$$
$$= 0$$

Maka

$$f(-5) + f(5) = 0$$

$$f(-4) + f(4) = 0$$

$$f(-3) + f(3) = 0$$

$$f(-2) + f(2) = 0$$

$$f(-1) + f(1) = 0$$

$$f(0) = 0 \times g(0) = 0$$

Dengan menjumlahkan semuanya, maka diperoleh

$$f(-5) + f(-4) + f(-3) + \dots + f(3) + f(4) + f(5) = 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0$$

Jadi, nilai dari $f(-5) + f(-4) + f(-3) + \dots + f(3) + f(4) + f(5)$ adalah $\boxed{0}$.

- 17. Diberikan persegi ABCD dengan panjang sisi 6 cm. Titik M dan N berturut-turut terletak pada sisi DA dan BC sehingga panjang DM = MA dan NC = 1 cm. Titik O merupakan titik tengah dari MN. Panjang BO adalah
 - (A.)5 cm
- B. $2\sqrt{6}$ cm
- C. $3\sqrt{3}$ cm
- D. 6 cm

Pembahasan.

Tarik garis tinggi dari titik M ke sisi BC dengan memotong di titik X dan tarik garis sejajar CB dari titik O ke AB. Karena $\angle ABC = 90^{\circ}$, maka $\angle AYO = 90^{\circ}$. Perhatikan bahwa ABXM merupakan persegi panjang.

Misalkan MX dan OY berpotongan di K. Perhatikan bahwa OY sejajar dengan BN. Maka OK juga sejajar dengan BN. Sehingga $\triangle MKO$ dan $\triangle MXN$ sebangun. Maka

$$\frac{MK}{MX} = \frac{OK}{NX} = \frac{MO}{MN} = \frac{1}{2}$$

Karena panjang XB = MA = 3 cm, maka panjang XN = 2 cm. Dan juga panjang MX = AB = 6 cm. Sehingga kita peroleh bahwa panjang MK = KX = 3 cm dan OK = 1 cm. Karena panjang YK = MA = 3 cm, maka panjang OY = 4 cm. Dari $\triangle BYO$, dengan pythagoras:

$$BO = \sqrt{BY^2 + OY^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \text{ cm}$$

Jadi, panjang BO adalah $\boxed{5~\mathrm{cm}}$

Solusi Alternatif. Dari $\triangle ABM$, dengan phythagoras:

$$BM = \sqrt{AM^2 + AB^2} = \sqrt{3^2 + 6^2} = \sqrt{45} = 3\sqrt{5} \text{ cm}$$

Misalkan panjang MO = ON = x.

Teorema 1.0.2 (Teorema Stewart)

Diberikan segitiga ABC dan D pada sisi AB. Maka

$$CD^2 \times AB = BC^2 \times AD + AC^2 \times BD - AD \times DB \times AB$$

Dari Teorema Stewart pada $\triangle BMN$:

$$BO^{2} \times MN = BN^{2} \times MO + BM^{2} \times ON - MO \times ON \times MN$$

$$BO^{2} \times 2x = 5^{2} \times x + \left(\sqrt{45}\right)^{2} \times x - x \times x \times 2x$$

$$2x \times BO^{2} = 25x + 45x - 2x^{3}$$

$$= 70x - 2x^{3}$$

$$BO^{2} = \frac{2x(35 - x^{2})}{2x}$$

$$BO^{2} = 35 - x^{2}$$

Dengan phythagoras dari $\triangle MXN$:

$$MN = \sqrt{MX^2 + NX^2} = \sqrt{6^2 + 2^2} = \sqrt{36 + 4} = \sqrt{40} = 2\sqrt{10}$$
 cm

Karena MN = 2x, maka $2x = 2\sqrt{10}$ cm yang berarti $x = \sqrt{10}$ cm. Sehingga

$$BO^2 = 35 - x^2 = 35 - \left(\sqrt{10}\right)^2 = 35 - 10 = 25$$

yang berarti $BO = \boxed{5 \text{ cm}}$

.....

- 18. Diberikan $f(x) = ax^2 + bx + c$ dimana a < 0. Nilai maksimum dari f(x) adalah 36 yang terjadi ketika x = 2. Banyak pasangan bilangan bulat (a, b, c) dimana $-100 \le a, b, c \le 100$ adalah
 - A. 24
- (B.) 25

- C. 40
- D. 41

Pembahasan.

Teorema 1.0.3 (Titik Balik)

Titik balik pada $f(x) = ax^2 + bx + c$ adalah

$$(x,y) = \left(\frac{-b}{2a}, \frac{4ac - b^2}{4a}\right)$$

Dengan kata lain, jika a>0, maka f(x) memiliki nilai minimum $\frac{4ac-b^2}{4a}$ yang terjadi ketika $x=\frac{-b}{2a}$. Sedangkan, jika a<0, maka f(x) memiliki nilai maksimum $\frac{4ac-b^2}{4a}$ yang terjadi ketika $x=\frac{-b}{2a}$.

Dari informasi pada soal, kita punya

$$\frac{-b}{2a} = 2$$
 dan $\frac{4ac - b^2}{4a} = 36$

Sehingga kita peroleh b = -4a. Subtitusikan.

$$\frac{4ac - b^2}{4a} = 36$$

$$\frac{4ac - (-4a)^2}{4a} = 36$$

$$\frac{4ac - 16a^2}{4a} = 36$$

$$\frac{4a(c - 4a)}{4a} = 36$$

$$c - 4a = 36$$

$$c = 36 + 4a$$

Demikian kita punya (a,b,c)=(a,-4a,4a+36). Karena a<0, kita cukup mempertimbangkan $-100\leq a<0$. Karena $-100\leq b,c\leq 100$, maka

$$-100 \le -4a \le 100$$
 dan $-100 \le 4a + 36 \le 100$

yang berarti $-25 \le a \le 25$ dan $-34 \le a \le 16$. Dari ketiga syarat tersebut, maka dapat disimpulkan bahwa $-25 \le a < 0$. Demikian $a = -1, -2, -3, \dots, -25$ yang berarti ada 25 kemungkinan. Karena nilai b, c ditentukan oleh nilai a, maka banyak pasangan (a, b, c) sama dengan banyak kemungkinan a, yaitu 25.

Jadi, banyak pasangan bilangan bulat (a, b, c) adalah 25.

.....

19. Untuk setiap bilangan asli n, didefinisikan

$$n! = 1 \times 2 \times 3 \times \cdots \times n$$

Sebagai contoh, $1! = 1, 4! = 1 \times 2 \times 3 \times 4$, dan $7! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7$.

Bilangan asli n terkecil sehingga terdapat bilangan asli $a_1, a_2, a_3, \cdots, a_n$ yang memenuhi

$$a_1! + a_2! + a_3! + a_4! + \dots + a_n! = 2020$$

adalah

A. 10 B. 11

C.)12

D. 13

Pembahasan.

Agar n bernilai sekecil mungkin, maka $a_1, a_2, a_3, \dots, a_n$ harus bernilai semaksimum mungkin. Perhatikan bahwa

$$1! = 1$$
, $2! = 2$, $3! = 6$, $4! = 24$, $5! = 120$, $6! = 720$, $7! = 5040$

Maka jelas tidak mungkin $a_n \ge 7$. Ambil $a_1 = a_2 = 6$, maka $a_1! + a_2! = 720 + 720 = 1440$. Maka

$$a_3! + a_4! + a_5! + \cdots + a_n! = 2020 - 1440 = 580$$

Ambil $a_3 = a_4 = a_5 = a_6 = 5$, maka $a_3! + a_4! + a_5! + a_6! = 120 + 120 + 120 + 120 = 480$. Maka

$$a_7! + a_8! + a_9! + \dots + a_n! = 580 - 480 = 100$$

Ambil $a_7 = a_8 = a_9 = a_{10} = 4$, maka $a_7! + a_8! + a_9! + a_{10}! = 24 + 24 + 24 + 24 = 96$. Maka $a_{11}! + a_{12}! + a_{13}! + \dots + a_n! = 100 - 96 = 4$

Ambil $a_{11}=a_{12}=2$, maka $a_{11}!+a_{12}!=2!+2!=4$. Maka untuk n=12 dapat terpenuhi $a_1!+a_2!+a_3!+\cdots+a_{12}!=2020$

dengan $a_1 = a_2 = 6$, $a_3 = a_4 = a_5 = a_6 = 5$, $a_7 = a_8 = a_9 = a_{10} = 4$, $a_{11} = a_{12} = 2$ (atau permutasinya) memenuhi persamaan tersebut.

Jadi, bilangan asli terkecil n adalah $\boxed{12}$

.....

20. Pada sebuah papan tulis, dituliskan sebanyak 99 bilangan positif berbeda yang membentuk barisan geometri. Bilangan-bilangan tersebut diurutkan dari yang terkecil hingga yang terbesar. Misalkan Q_1, Q_2 , dan Q_3 berturut-turut menyatakan kuartil pertama, kuartil kedua, dan kuartil ketiga pada kumpulan bilangan tersebut. Misalkan r adalah rasio dari barisan geometri tersebut dimana r < 1. Jika suku kedua dari barisan geometri tersebut adalah $\frac{1}{r^{31}}$ dan

$$Q_1 + Q_2 + Q_3 = r^a + r^b + r^c$$

Nilai dari a + b + c adalah

A. 48

(B.) 51

C. 54

D. 57

Pembahasan.

Misalkan suku ke-n dari barisan geometri tersebut adalah $U_n = ar^{n-1}$ dimana a menyatakan suku pertama dari barisan geometri tersebut (dengan kata lain $U_1 = a$). Karena suku kedua dari barisan geometri tersebut adalah $\frac{1}{x^{31}}$, maka

$$\frac{1}{r^{31}} = U_2 = ar^{2-1} = ar^1 \iff a = \frac{1}{r^{31}} \times \frac{1}{r} = \frac{1}{r^{32}}$$

Teorema 1.0.4 (Kuartil Suatu Data)

Misalkan Q_1, Q_2 , dan Q_3 berturut-turut menyatakan kuartil pertama, kuartil kedua, dan kuartil ketiga pada data $U_1, U_2, U_3, \cdots, U_t$. Jika t+1 habis dibagi 4, maka

$$Q_1 = U_{\frac{t+1}{4}}, \quad Q_2 = U_{\frac{2(t+1)}{4}}, \quad Q_3 = U_{\frac{3(t+1)}{4}}$$

Banyak bilangan ada t = 99, maka

$$Q_1 = U_{\frac{t+1}{4}} = U_{25}, \quad Q_2 = U_{\frac{2(t+1)}{4}} = U_{50}, \quad \text{dan } Q_3 = U_{\frac{3(t+1)}{4}} = U_{75}$$

Maka

$$r^{a} + r^{b} + r^{c} = Q_{1} + Q_{2} + Q_{3}$$

$$= U_{25} + U_{50} + U_{75}$$

$$= ar^{24} + ar^{49} + ar^{74}$$

$$= \frac{1}{r^{32}} \times r^{24} + \frac{1}{r^{32}} \times r^{49} + \frac{1}{r^{32}} \times r^{74}$$

$$= r^{24-32} + r^{49-32} + r^{74-32}$$

$$= r^{-8} + r^{17} + r^{42}$$

Berarti $\{a, b, c\} = \{-8, 17, 42\}$ yang berarti a + b + c = (-8) + 17 + 42 = 51. Jadi, nilai dari a + b + c adalah 51.

......

21. Diberikan segitiga ABC dengan panjang AC=2020 cm dan BC=2021 cm serta $\angle BCA=120^\circ$. Garis bagi sudut dalam $\angle BCA$ memotong lingkaran luar segitiga ABC di titik D. Panjang dari CD adalah . . . cm.

A. 3022

B. 3974

C.)4041

D. 4088

Pembahasan.

Karena CD garis bagi $\angle BCA$, maka $\angle BCD = \angle ACD = 60^{\circ}$. Dari hubungan sudut keliling-sudut keliling, maka

$$\angle BAD = \angle BCD = 60^{\circ}$$
 dan $\angle ABD = \angle ACD = 60^{\circ}$

Maka kita dapatkan $\angle ADB=180^\circ-\angle DAB-\angle ABD=60^\circ$. Maka segitiga ADB merupakan segitiga sama sisi.

Misalkan panjang AD = DB = BA = s.

Teorema 1.0.5 (Teorema Ptolemy)

Jika ABCD merupakan segiempat talibusur, maka

$$AB \times CD + BC \times DA = AC \times BD$$

Dari Teorema Ptolemy pada ADBC, maka

$$AD \times BC + DB \times AC = AB \times CD$$
$$s \times 2021 + s \times 2020 = s \times CD$$
$$2021s + 2020s = s \times CD$$
$$4041s = s \times CD$$
$$4041 = CD$$

Jadi, panjang CD adalah $\boxed{4041}$ cm.

.....

22. Sebanyak 5 orang dari SMP SnK dan sebanyak 7 orang dari SMP Colossal akan melaksanakan konversi meja bundar. Mereka duduk melingkar dan siswa yang berasal dari sekolah sama harus duduk berdekatan. Banyak kemungkinan posisi duduk mereka adalah

$$(A.)$$
5! × 7!

B.
$$2! \times 5! \times 7!$$

C.
$$2! \times 4! \times 6!$$

D.
$$4! \times 6!$$

Catatan: n! menyatakan perkalian bilangan asli dari 1 sampai n, yaitu

$$n! = 1 \times 2 \times 3 \times \cdots \times n$$

Pembahasan.

Teorema 1.0.6 (Permutasi Siklis)

Jika sebanyak n objek disusun melingkar (siklis), maka banyak cara mengatur posisi n objek tersebut adalah (n-1)!.

Misalkan 5 orang dari SMP SnK sebagai satu ikatan yaitu X, sedangkan 7 orang dari SMP Colossal sebagai satu ikatan yaitu Y. Banyak cara mengatur duduk XY dalam meja bundar adalah (2-1)!=1!=1. Sedangkan, 5 orang dari SMP SnK dapat kita permutasi tempat duduknya, yaitu sebanyak 5!. Dan 7 orang dari SMP Colossal dapat kita permutasi juga, yaitu sebanyak 7!. Sehingga banyak kemungkinan posisi duduk mereka adalah $1 \times 5! \times 7! = 5! \times 7!$.

Jadi, banyak kemungkinan posisi duduk mereka adalah $5! \times 7!$

.....

23. Diketahui grafik $y=px^2+1$ dan grafik y=mx+c bersinggungan di titik (2,5). Nilai dari $p\times m\times c$ adalah

C.
$$-8$$

$$(D.) - 12$$

Pembahasan.

Karena $y = px^2 + 1$ melalui (2, 5), maka

$$5 = p(2)^2 + 1 = 4p + 1 \iff 4p = 4$$

sehingga p=1. Demikian $y=x^2+1$. Karena y=mx+c melalui (2,5), maka 5=2m+c sehingga c=5-2m. Perhatikan bahwa $y=x^2+1$ dan y=mx+c karena saling bersinggungan (berpotongan di satu titik), maka

$$x^{2} + 1 = mx + c$$
$$x^{2} - mx + (1 - c) = 0$$

Karena bersinggungan, maka diskriminaan dari $x^2 - mx + (1-c)$ haruslah sama dengan 0. Maka

$$(-m)^{2} - 4(1)(1 - c) = 0$$

$$m^{2} - 4(1 - [5 - 2m]) = 0$$

$$m^{2} - 4(1 - 5 + 2m) = 0$$

$$m^{2} - 4(2m - 4) = 0$$

$$m^{2} - 8m + 16 = 0$$

$$(m - 4)^{2} = 0$$

$$m = 4$$

Subtitusikan, maka

$$c = 5 - 2m = 5 - 2(4) = 5 - 8 = -3$$

Demikian $p \times m \times c = 1 \times 4 \times (-3) = \boxed{-12}$.

.....

24. Misalkan

$$\frac{1}{S_n} = \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \dots + \frac{1}{n \times (n+2)}$$

untuk setiap bilangan asli n. Jika $n \in \{1, 2, 3, 4, \cdots, 2020\}$, peluang bahwa S_n bilangan bulat adalah

$$A. \frac{1}{2020}$$

B.
$$\frac{1}{1010}$$

C.
$$\frac{1}{505}$$

D.
$$\frac{3}{1010}$$

Pembahasan.

Perhatikan bahwa

$$\frac{1}{n \times (n+2)} = \frac{1}{2} \left(\frac{2}{n \times (n+2)} \right) = \frac{1}{2} \left(\frac{(n+2) - n}{n \times (n+2)} \right) = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right)$$

Maka

$$\frac{1}{S_n} = \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \dots + \frac{1}{n \times (n+2)}$$

$$= \frac{1}{2} \left(\frac{1}{1} - \frac{1}{3} \right) + \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} \right) + \frac{1}{2} \left(\frac{1}{5} - \frac{1}{7} \right) + \dots + \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{1} - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \frac{1}{5} - \frac{1}{7} + \dots + \frac{1}{n} - \frac{1}{n+2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{1} - \frac{1}{n+2} \right)$$

$$= \frac{1}{2} \times \frac{n+2-1}{n+2}$$

$$= \frac{1}{2} \times \frac{n+1}{n+2}$$

$$= \frac{n+1}{2n+4}$$

$$S_n = \frac{2n+4}{n+1}$$

$$= \frac{2(n+1)+2}{n+1}$$

$$= 2 + \frac{2}{n+1}$$

Agar S_n bilangan bulat, maka $\frac{2}{n+1}$ harus bilangan bulat. Sehingga n+1 merupakan faktor positif dari 2 karena n+1 merupakan bilangan asli. Faktor positif dari 2 yaitu 1 dan 2. Maka n+1=1 atau n+1=2 sehingga n=0 atau n=1. Karena n bilangan asli, maka n=1 yang berarti ada 1 kemungkinan. Karena terdapat 2020 kemungkinan untuk nilai n dari himpunan $\{1,2,3,4,\cdots,2020\}$, maka peluang bahwa S_n bilangan bulat adalah $\frac{1}{2020}$.

Jadi, peluang bahwa S_n bilangan bulat adalah 2020

25. Diberikan sebuah bola merah, sebuah bola kuning, sebuah bola hitam, dan lima bola putih yang identik (sama). Bola-bola tersebut diletakkan secara berjajar (memanjang). Banyak cara menyusun bola-bola tersebut jika tidak dua bola dari bola merah, bola kuning, dan bola hitam yang terletak berdekatan (bersebelahan) adalah

A. 20

B. 40

C. 80

D.)120

Pembahasan.

Misalkan K menyatakan bola kuning, H menyatakan bola hitam, M menyatakan bola merah, dan P menyatakan bola putih. Misalkan susunan bola tersebut dengan

$$\underbrace{P \quad P \quad \cdots \quad P}_{x_1 \text{ bola}} \quad M \quad \underbrace{P \quad P \quad \cdots P}_{x_2 \text{ bola}} \quad K \quad \underbrace{P \quad P \quad \cdots \quad P}_{x_3 \text{ bola}} \quad H \quad \underbrace{P \quad P \quad \cdots \quad P}_{x_4 \text{ bola}}$$

Banyak bola putih ada 5, maka $x_1+x_2+x_3+x_4=5$ dimana $x_1\geq 0, x_2\geq 1, x_3\geq 1,$ dan $x_4 \ge 0$. Misalkan $x_2 = y_2 + 1$ dan $x_3 = y_3 + 1$ dimana $y_2, y_3 \ge 0$. Maka

$$x_1 + x_2 + x_3 + x_4 = 5$$
$$x_1 + y_2 + 1 + y_3 + 1 + x_4 = 5$$
$$x_1 + y_2 + y_3 + x_4 = 3$$

Teorema 1.0.7 (Star and Bar Theorem)

Banyak pasangan bilangan cacah $(a_1, a_2, a_3, \dots, a_n)$ dan

$$a_1 + a_2 + a_3 + \dots + a_n = k$$

adalah C(n + k - 1, n - 1).

Banyak pasangan bilangan asli (a_1,a_2,a_3,\cdots,a_n) dan

$$a_1 + a_2 + a_3 + \dots + a_n = k$$

 $a_1 + a_2 + a_3 + \dots + a_n = k$ adalah C(k-1,n-1) dimana $n \geq k.$

Dari Star and Bar Theorem, maka banyak pasangan (x_1, y_2, y_3, x_4) adalah

$$C(3+4-1,4-1) = C(6,3) = \frac{6!}{3!3!} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20$$

Perhatikan bahwa posisi bola K, P, H dapat ditukar-tukar (permutasi), yaitu sebanyak 3! = 6. Maka banyak cara seluruhnya adalah $20 \times 6 = |120|$

26. Diberikan fungsi f(x) yang terdefinisi untuk setiap bilangan asli x dan

$$f(x) = \begin{cases} \frac{x}{2}, & \text{jika } x \text{ bilangan genap} \\ 3x + 1, & \text{jika } x \text{ bilangan ganjil} \end{cases}$$

Nilai dari

$$\underbrace{f(f(f(f(\cdots(f(2020)))))))}_{f \text{ sebanyak } 2020^{2020}}$$

adalah

A. 1

B. 2

D. 8

Pembahasan.

Misalkan

$$f^{n}(x) = \underbrace{f(f(f(f(\cdots(f(x))))))}_{f \text{ sebanyak } n}$$

Dengan menguli (menghitung manual satu per satu), akan didapat

$$f^{60}(2020) = 8$$
, $f^{61}(2020) = 4$, $f^{62}(2020) = 2$, $f^{63}(2020) = 1$

Kemudian,

$$f^{64}(2020) = 4$$
, $f^{65}(2020) = 2$, $f^{66}(2020) = 1$, $f^{67}(2020) = 4$, ...

Perhatikan bahwa pola tersebut berulang di $4, 2, 1, 4, 2, 1, \cdots$. Maka dapat disimpulkan untuk setiap bilangan asli $n \geq 61$, maka

$$f^{n}(2020) = \begin{cases} 4, & \text{jika} \quad n = 3k + 61\\ 2, & \text{jika} \quad n = 3k + 62\\ 1, & \text{jika} \quad n = 3k + 63 \end{cases}$$

dengan k bilangan cacah. Atau dapat kita tuliskan bahwa untuk setiap bilangan asli $n \ge 61$, maka

$$f^{n}(2020) = \begin{cases} 4, & \text{jika} \quad n \equiv 1 \pmod{3} \\ 2, & \text{jika} \quad n \equiv 2 \pmod{3} \\ 1, & \text{jika} \quad n \equiv 0 \pmod{3} \end{cases}$$

 Jelas bahwa $n=2020^{2020} \geq 61.$ Kita ingin tinja
u $2020^{2020} \pmod{3}.$ Karena $2020 \equiv 1$ (mod 3), maka

$$n = 2020^{2020} \equiv 1^{2020} \equiv 1 \pmod{3}$$

Karena $n \equiv 1 \pmod{3}$, maka $f^n(2020) = 4$.

Jadi, nilai dari
$$\underbrace{f(f(f(f(\cdots(f(2020)))))))}_{f \text{ sebanyak } 2020^{2020}}$$
 adalah 4.

27. Diberikan setengah lingkaran dengan diameter AB dengan jari-jari lingkaran adalah 10 cm. Titik P, Q, R, S terletak pada busur setengah lingkaran sehingga AB, PQ, RS ketiganya saling sejajar. Jika panjang $PQ = 10\sqrt{2}$ cm dan panjang RS = 10 cm, maka luas daerah yang diarsir adalah . . . cm^2 .

A.
$$\frac{25\pi - 75\sqrt{3} - 150}{3}$$

C.
$$\frac{25\pi + 75\sqrt{3} - 150}{3}$$

B.
$$\frac{25\pi - 75\sqrt{3} - 150}{6}$$

D.
$$\frac{25\pi + 75\sqrt{3} - 150}{6}$$

Pembahasan.

Misalkan O merupakan pusat setengah lingkaran tersebut. Tarik garis tinggi dari titik O ke sisi PQ dan RS, misalkan OX dan OY.

Perhatikan bahwa panjang OP=OQ=OR=OS=10 cm karena merupakan jari-jari. Karena panjang OQ=OP, maka panjang $PX=XQ=5\sqrt{2}$ cm. Maka dari Teorema Pythagoras pada $\triangle OXQ$:

$$OX = \sqrt{OQ^2 - XQ^2} = \sqrt{10^2 - (5\sqrt{2})^2} = \sqrt{100 - 50} = \sqrt{50} = 5\sqrt{2} \text{ cm}$$

Karena panjang OX = XQ, maka OXQ merupakan segitiga sama kaki dengan $\angle XOQ = \angle XQO = t$. Karena

$$180^{\circ} = \angle XOQ + \angle OXQ + \angle XQO = t + 90^{\circ} + t = 2t + 90^{\circ}$$

sehingga $t=45^\circ$ yang berarti $\angle QOX=45^\circ$. Dengan cara yang sama, diperoleh $\angle POX=45^\circ$. Maka

$$\angle POO = \angle POX + \angle OOX = 45^{\circ} + 45^{\circ} = 90^{\circ}$$

Sehingga luas juring POQ adalah

$$L_{\text{juring }POQ} = \frac{90^{\circ}}{360^{\circ}} \pi r^2 = \frac{1}{4} \pi \times 10^2 = \frac{1}{4} \pi \times 100 = 25\pi$$

Karena panjang OR = OS, maka panjang YS = YR = 5 cm. Dari Teorema Pythagoras pada segitiga OYS:

$$OY = \sqrt{OS^2 - YS^2} = \sqrt{10^2 - 5^2} = \sqrt{100 - 25} = \sqrt{75} = 5\sqrt{3}$$

Dari sifat segitiga dengan sudut $30^{\circ} - 60^{\circ} - 90^{\circ}$, maka $\angle SOY = 30^{\circ}$. Dengan cara yang sama, diperoleh $\angle ROY = 30^{\circ}$. Maka

$$\angle ROS = \angle ROY + \angle SOY = 30^{\circ} + 30^{\circ} = 60^{\circ}$$

Sehingga luas juring ROS:

$$L_{\text{juring }ROS} = \frac{60^{\circ}}{360^{\circ}} \pi r^2 = \frac{1}{6} \pi \times 10^2 = \frac{50}{3} \pi$$

Luas segitiga POQ:

$$[POQ] = \frac{1}{2} \times PQ \times OX = \frac{1}{2} \times 10\sqrt{2} \times 5\sqrt{2} = 50$$

Dan juga luas segitiga ROS:

$$[ROS] = \frac{1}{2} \times RS \times YO = \frac{1}{2} \times 10 \times 5\sqrt{3} = 25\sqrt{3}$$

Sehingga luas yang diarsir adalah:

$$L_{\text{arsir}} = L_{\text{juring }POQ} - (L_{\text{juring }ROS} - [ROS]) - [POQ]$$

$$= 25\pi - \left(\frac{50}{3}\pi - 25\sqrt{3}\right) - 50$$

$$= \frac{(75 - 50)\pi + 75\sqrt{3} - 150}{3}$$

$$= \frac{25\pi + 75\sqrt{3} - 150}{3}$$

Jadi, luas daerah yang diarsir adalah $\boxed{\frac{25\pi+75\sqrt{3}-150}{3}}$ cm².

.....

28. Untuk setiap bilangan asli n, didefinisikan

$$S_n = 1 - 2 + 3 - 4 + 5 - 6 + \dots + (-1)^{n+1} \times n$$

Nilai dari

$$2020 \times S_1 + 2019 \times S_2 + 2018 \times S_3 + 2017 \times S_4 + \dots + 2 \times S_{2019} + 1 \times S_{2020}$$
adalah

$$(A.)$$
 1011 × 505

B.
$$1009 \times 499$$

C.
$$1009 \times 505$$

D.
$$1013 \times 495$$

Jika n genap, misalkan n = 2k dengan k bilangan asli. Maka

$$S_{2k} = 1 - 2 + 3 - 4 + 5 - 6 \cdots + (2k - 1) - 2k$$

$$= \underbrace{(-1) + (-1) + (-1) + \cdots + (-1)}_{\text{sebanyak } k}$$

$$= (-1) \times k$$

$$= -k$$

Jika n ganjil, misalkan n = 2k - 1 dengan k bilangan asli. Maka

$$S_{2k-1} = 1 - 2 + 3 - 4 + 5 - 6 + \dots + (2k - 3) - (2k - 2) + (2k - 1)$$

$$= \underbrace{(-1) + (-1) + (-1) + \dots + (-1)}_{\text{sebanyak } k-1} + 2k - 1$$

$$= (-1)(k - 1) + 2k - 1$$

$$= -k + 1 + 2k - 1$$

$$= k$$

Misalkan $T_n = S_1 + S_2 + S_3 + \cdots + S_n$ untuk setiap bilangan asli n. Perhatikan bahwa

$$2020 \times S_1 + 2019 \times S_2 + 2018 \times S_3 + 2017 \times S_4 + \dots + 2 \times S_{2019} + 1 \times S_{2020}$$

senilai dengan $T_1 + T_2 + T_3 + \cdots + T_{2020}$. Perhatikan bahwa $S_{2i-1} + S_{2i} = i + (-i) = 0$ untuk setiap bilangan asli i.

(a). Jika n genap, misalkan n = 2k dengan k bilangan asli, maka

$$T_{2k} = S_1 + S_2 + S_3 + S_4 + \dots + S_{2k-1} + S_{2k}$$

$$= (S_1 + S_2) + (S_3 + S_4) + \dots + (S_{2k-1} + S_{2k})$$

$$= 0 + 0 + \dots + 0$$

$$T_{2k} = 0$$

(b). Jika n ganjil, misalkan n = 2k - 1 dengan k bilangan asli, maka

$$T_{2k-1} = S_1 + S_2 + S_3 + S_4 + \dots + S_{2k-3} + S_{2k-2} + S_{2k-1}$$

$$= (S_1 + S_2) + (S_3 + S_4) + \dots + (S_{2k-3} + S_{2k-2}) + S_{2k-1}$$

$$= 0 + 0 + \dots + 0 + k$$

$$= k$$

Sehingga kita peroleh bahwa

$$= T_1 + T_2 + T_3 + T_4 + T_5 + T_6 + \dots + T_{2019} + T_{2020}$$

$$= 1 + 0 + 2 + 0 + 3 + 0 + \dots + 1010 + 0$$

$$= 1 + 2 + 3 + \dots + 1010$$

$$= \frac{1010 \times 1011}{2}$$

$$= 505 \times 1011$$

Jadi, nilai dari

$$2020 \times S_1 + 2019 \times S_2 + 2018 \times S_3 + 2017 \times S_4 + \dots + 2 \times S_{2019} + 1 \times S_{2020}$$
adalah $\boxed{1011 \times 505}$.

29. Diberikan segitiga ABC dengan BZ dan CY merupakan garis beratnya. Panjang dari BZ adalah 12 satuan dan panjang dari CY adalah 9 satuan. Titik X merupakan titik tengah dari sisi BC. Jika panjang dari XZ = t satuan dan panjang dari XY = s satuan, selisih dari t^2 dan s^2 adalah

Pembahasan.

Misalkan AX dan CY berpotongan di titik G. Karena G perpotongan dari garis berat, maka titik G membagi AX dan CY dalam perbandingan 2:1. Maka AG:GX=2:1 dan CG:GY=2:1. Karena panjang AX=12 satuan dan panjang CY=9 satuan, maka

$$AG = \frac{2}{2+1} \times 12 = \frac{2}{3} \times 12 = 8 \text{ satuan}$$

 $CG = \frac{2}{2+1} \times 9 = \frac{2}{3} \times 9 = 6 \text{ satuan}$

Maka panjang GX=4 satuan dan GY=3 satuan. Misalkan BZ merupakan garis berat segitiga ABC dari titik B. Maka AG:GX=2:1, misalkan panjang GX=m satuan sehingga panjang AG=2m satuan. Misalkan panjang AB=c dan AC=b, maka panjang

$$AY = YB = \frac{c}{2} \operatorname{dan} AZ = ZC = \frac{b}{2}.$$

Dengan Teorema Stewart pada segitiga ABG, maka

$$GY^{2} \times AB = AG^{2} \times BY + GB^{2} \times AY - AY \times YB \times AB$$
$$3^{2} \times c = (2m)^{2} \times \frac{c}{2} + 8^{2} \times \frac{c}{2} - \frac{c}{2} \times \frac{c}{2} \times c$$
$$9c = 4m^{2} \times \frac{c}{2} + 64 \times \frac{c}{2} - \frac{c^{3}}{4}$$
$$9c = 2m^{2}c + 32c - \frac{c^{3}}{4}$$

Kalikan kedua ruas $\frac{4}{c}$, maka

$$36 = 8m^2 + 128 - c^2$$

$$92 = c^2 - 8m^2$$
(1)

Dengan Teorema Stewart pada segitiga AGC, maka

$$GZ^{2} \times AC = AG^{2} \times CZ + CG^{2} \times ZA - CZ \times ZA \times CA$$

$$4^{2} \times b = (2m)^{2} \times \frac{b}{2} + 6^{2} \times \frac{b}{2} - \frac{b}{2} \times \frac{b}{2} \times b$$

$$16b = 4m^{2} \times \frac{b}{2} + 36 \times \frac{b}{2} - \frac{b^{3}}{4}$$

$$16b = 2m^{2}b + 18b - \frac{b^{3}}{4}$$

Kalikan kedua dengan $\frac{4}{b}$, maka

$$64 = 8m^2 + 72 - b^2$$

$$8 = b^2 - 8m^2$$
(2)

Kurangkan persamaan (1) dan (2) dengan (1) - (2),

$$92 - 8 = c^{2} - 8m^{2} - (b^{2} - 8m^{2})$$
$$84 = c^{2} - 8m^{2} - b^{2} + 8m^{2}$$
$$84 = c^{2} - b^{2}$$

Perhatikan bahwa X, Y, Z merupakan titik tengah berturut-turut pada sisi BC, AB, CA sehingga XZ sejajar dengan AB dan XY sejajar dengan AC. Maka segitiga XZC sebangun dengan segitiga ABC dan segitiga BYX sebangun dengan segitiga ABC. Sehingga

$$\frac{XZ}{AB} = \frac{ZC}{AC} = \frac{1}{2}$$
 dan $\frac{XY}{AC} = \frac{BY}{BA} = \frac{1}{2}$

Maka $t=\frac{c}{2}$ dan $s=\frac{b}{2}.$ Maka selisih dari t^2 dan s^2 adalah

$$\left|t^2 - s^2\right| = \left|\frac{c^2}{4} - \frac{b^2}{4}\right| = \left|\frac{c^2 - b^2}{4}\right| = \left|\frac{84}{4}\right| = 21$$

Jadi, selisih dari t^2 dan s^2 adalah $\boxed{21}$

- 30. Untuk setiap bilangan real x, didefinisikan:
 - $\lfloor x \rfloor$ menyatakan bilangan bulat terbesar yang lebih kecil dari atau sama dengan x. Sebagai contoh, $\lfloor 4 \rfloor = 4$; $\lfloor \sqrt{5} \rfloor = 2$; dan $\lfloor -\pi \rfloor = -4$.
 - $\lceil x \rceil$ menyatakan bilangan bulat terkecil yang lebih besar dari atau sama dengan x. Sebagai contoh, $\lceil 4 \rceil = 4$; $\lceil \sqrt{5} \rceil = 3$; dan $\lceil -\pi \rceil = -3$.

Diberikan fungsi f dimana f(0) = 0. Untuk setiap bilangan real x dimana $x \neq 0$, berlaku

$$f\left(\lfloor x\rfloor\right)+f\left(\left\lceil\frac{1}{x}\right\rceil\right)=2x$$

Maka kemungkinan nilai dari f(2020) adalah

A.
$$\frac{1}{1010} \le f(2020) < \frac{3}{1010}$$
 atau $4040 \le f(2020) < \frac{4041}{2}$

B.
$$\frac{1}{1010} < f(2020) \le \frac{1}{1009}$$
 atau $2020 \le f(2020) < 2021$

C.
$$\frac{1}{1010} \le f(2020) < \frac{2}{2019}$$
 atau $4039 \le f(2020) < 4041$

D.
$$\frac{1}{1010} < f(2020) \le \frac{1}{1009}$$
 atau $4039 \le f(2020) < 4041$

Pembahasan. Tinjau untuk x = 1, maka

$$f(\lfloor 1 \rfloor) + f\left(\lceil \frac{1}{1} \rceil\right) = 2(1)$$
$$f(1) + f(1) = 2$$
$$2f(1) = 2$$
$$f(1) = 1$$

Perhatikan bahwa jika x<0, maka $\lfloor x\rfloor<0$ dan $\left\lceil\frac{1}{x}\right\rceil\leq 0$. Karena kita ingin mencari nilai f(2020) dimana 2020 positif, maka kita cukup tinjau untuk x>0.

Kita bagi menjadi dua kasus.

Kasus 1: x > 1

Maka $0 < \frac{1}{x} < 1$ sehingga $\left\lceil \frac{1}{x} \right\rceil = 1$. Maka

$$2x = f(\lfloor x \rfloor) + f(1) = f(\lfloor x \rfloor) + 1 \Longleftrightarrow f(\lfloor x \rfloor) = 2x - 1$$

Dengan $\lfloor x \rfloor = 2020$, maka $2020 \le x < 2021$. Sehingga

$$2 \times 2020 - 1 \le f(|x|) < 2 \times 2021 - 1 \iff 4039 \le f(2020) < 4041$$

Kasus 2:0 < x < 1

Sehingga $\lfloor x \rfloor = 0$ dan $\frac{1}{x} > 1$. Maka

$$2x = f(0) + f\left(\left\lceil \frac{1}{x}\right\rceil\right) = 0 + f\left(\left\lceil \frac{1}{x}\right\rceil\right) \Longleftrightarrow f\left(\left\lceil \frac{1}{x}\right\rceil\right) = 2x$$

Dengan $\left\lceil \frac{1}{x} \right\rceil = 2020$, maka

$$2019 < \frac{1}{x} \le 2020 \Longleftrightarrow \frac{1}{2019} > x \ge \frac{1}{2020}$$

Sehingga

$$\frac{2}{2019} > f\left(\left\lceil\frac{1}{x}\right\rceil\right) \geq \frac{2}{2020} \Longleftrightarrow \frac{2}{2019} > f(2020) \geq \frac{1}{1010}$$

Jadi, kemungkinan nilai f(2020) adalah

$$\boxed{\frac{1}{1010} \le f(2020) < \frac{2}{2019} \text{ atau } 4039 \le f(2020) < 4041}$$

2 Isian Singkat

Jawablah soal-soal berikut dengan menuliskan jawaban akhirnya saja! Jawaban ditulis cukup menggunakan bilangan, tanpa menggunakan satuan, koma(,), titik (.), dan lain-lain. Jawaban dipastikan bilangan cacah! Setiap soal yang dijawab benar bernilai 7 poin dan tidak ada pengurangan untuk soal yang dijawab salah atau kosong (tidak dijawab).

1. Tadika Mesra sedang mengadakan ujian akhir semester (UAS). Diketahui bahwa rata-rata dari hasil UAS pada kelas Upin adalah 82. Setelah dicek kembali, ternyata Bu Jasmin salah menghitung nilai UAS dari Upin. Nilai UAS dari Upin setelah pembenaran berubah dari 35 menjadi 95. Jika rata-rata dari hasil UAS dari kelas Upin sekarang menjadi 84, banyak siswa pada kelas Upin adalah

Jawab: 30

Misalkan terdapat n siswa, dimana nilai Upin adalah u dan nilai (n-1) siswa sisanya adalah $a_1, a_2, a_3, \dots, a_{n-1}$. Diketahui rata-rata pada kelas tersebut adalah 82, maka

$$\frac{u + a_1 + a_2 + a_3 + \dots + a_{n-1}}{n} = 82$$

$$u + a_1 + a_2 + a_3 + \dots + a_{n-1} = 82n$$
(1)

Diketahui bahwa nilai Upin berubah dari 35 menjadi 95, maka u'=u+95-35=u+60. Diketahui rata-ratanya 84. Maka

$$\frac{u' + a_1 + a_2 + a_3 + \dots + a_{n-1}}{n} = 84$$

$$u' + a_1 + a_2 + a_3 + \dots + a_{n-1} = 84n$$

$$u + 60 + a_1 + a_2 + a_3 + \dots + a_{n-1} = 84n$$

$$60 + (u + a_1 + a_2 + a_3 + \dots + a_{n-1}) = 84n$$

$$60 + 82n = 84n$$

$$60 = 84n - 82n$$

$$60 = 2n$$

$$30 = n$$
(Pers. (1))

Jadi, banyak siswa di kelas Upin adalah 30

.....

2. Jika x adalah bilangan positif yang memenuhi $x^2 + \frac{1}{x^2} = 7$, maka nilai dari $x^3 + \frac{1}{x^3}$ adalah bilangan positif yang memenuhi $x^2 + \frac{1}{x^2} = 7$, maka nilai dari $x^3 + \frac{1}{x^3}$ adalah bilangan positif yang memenuhi $x^2 + \frac{1}{x^2} = 7$, maka nilai dari $x^3 + \frac{1}{x^3}$ adalah bilangan positif yang memenuhi $x^2 + \frac{1}{x^2} = 7$, maka nilai dari $x^3 + \frac{1}{x^3}$ adalah bilangan positif yang memenuhi $x^2 + \frac{1}{x^2} = 7$, maka nilai dari $x^3 + \frac{1}{x^3}$ adalah bilangan positif yang memenuhi $x^2 + \frac{1}{x^2} = 7$, maka nilai dari $x^3 + \frac{1}{x^3}$ adalah bilangan positif yang memenuhi $x^2 + \frac{1}{x^2} = 7$, maka nilai dari $x^3 + \frac{1}{x^3}$ adalah bilangan positif yang memenuhi $x^2 + \frac{1}{x^2} = 7$, maka nilai dari $x^3 + \frac{1}{x^3}$ adalah bilangan positif yang memenuhi $x^2 + \frac{1}{x^2} = 7$, maka nilai dari $x^3 + \frac{1}{x^3}$ adalah bilangan positif yang memenuhi $x^2 + \frac{1}{x^2} = 7$, maka nilai dari $x^3 + \frac{1}{x^3}$ adalah bilangan positif yang memenuhi $x^2 + \frac{1}{x^2} = 7$, maka nilai dari $x^3 + \frac{1}{x^3}$ adalah bilangan positif yang memenuhi $x^2 + \frac{1}{x^2} = 7$, maka nilai dari $x^3 + \frac{1}{x^3}$ adalah bilangan positif yang memenuhi $x^2 + \frac{1}{x^2} = 7$, maka nilai dari $x^3 + \frac{1}{x^3}$ adalah bilangan positif yang memenuhi $x^2 + \frac{1}{x^2} = 7$, maka nilai dari $x^3 + \frac{1}{x^3} = 7$

Jawab: 18

Perhatikan bahwa

$$\left(x + \frac{1}{x}\right)^2 = x^2 + \left(\frac{1}{x}\right)^2 + 2 \times x \times \frac{1}{x} = 7 + 2 = 9$$

yang berarti $x + \frac{1}{x} = 3$ atau $x + \frac{1}{x} = -3$.

Karena x positif, maka $x + \frac{1}{x} > 0$ sehingga $x + \frac{1}{x} = 3$. Maka

$$\left(x + \frac{1}{x}\right)^3 = x^3 + \left(\frac{1}{x}\right)^3 + 3 \times x \times \frac{1}{x}\left(x + \frac{1}{x}\right)$$
$$3^3 = x^3 + \frac{1}{x^3} + 3 \times 1 \times 3$$
$$27 = x^3 + \frac{1}{x^3} + 9$$
$$18 = x^3 + \frac{1}{x^3}$$

Jadi, nilai dari $x^3 + \frac{1}{x^3}$ adalah 18

.....

3. Fungsi $f^{-1}(x)$ merupakan fungsi invers dari f(x), dimana f(x) = c jika dan hanya jika $f^{-1}(c) = x$. Diberikan fungsi p(x) dan fungsi q(x) yang memenuhi

$$p(x) + q^{-1}(x) = 3x + 11$$
$$3q^{-1}(x) - 2p(x) = 13 - x$$

untuk setiap bilangan real x. Nilai a yang memenuhi $2p^{-1}(a) + q(a) = 9$ adalah

Jawab: 10

$$p(x) + q^{-1}(x) = 3x + 11 (1)$$

$$3q^{-1}(x) - 2p(x) = 13 - x (2)$$

Eliminasi kedua persamaan tersebut, dengan $2 \times (1) + (2)$:

$$2p(x) + 2q^{-1}(x) = 6x + 22$$

$$\frac{3q^{-1}(x) - 2p(x) = 13 - x}{5q^{-1}(x) = 5x + 35} +$$

$$q^{-1}(x) = \frac{5x + 35}{5}$$

$$q^{-1}(x) = x + 7$$

Subtitusikan ke persamaan (1):

$$p(x) + x + 7 = 3x + 11 \iff p(x) = 2x + 4$$

Karena $q^{-1}(x) = x + 7$, maka q(x + 7) = x. Dengan mensubtitusikan $x + 7 \to x$, maka q(x) = x - 7. Misalkan $p^{-1}(x) = k$. Maka p(k) = x yang berarti

$$2k + 4 = x \iff 2k = x - 4 \iff k = \frac{x - 4}{2}$$

Maka $p^{-1}(x) = \frac{x-4}{2}$ sehingga $2p^{-1}(x) = x-4$. Subtitsikan ke persamaan yang diminta:

$$9 = 2p^{-1}(a) + q(a) = a - 4 + a - 7 = 2a - 11 \iff 2a = 20$$

yang berarti a = 10.

Jadi, nilai dari a adalah 10

......

4. Diberikan sebuah lingkaran berjari-jari 5 satuan dan berdiameter AB. Titik C terletak pada busur lingkaran AB sehingga panjang BC = 6 satuan. Titik D terletak pada sisi AC (diantara titik A dan C) sehingga segitiga ABD merupakan segitiga sama kaki. Jika panjang dari BD adalah s satuan, nilai dari 100s adalah ...

Jawab: 625

Misalkan O adalah titik pusat lingkaran. Karena AB merupakan diameter, dari hubugan sudut pusat-sudut keliling maka

$$\angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 180^{\circ} = 90^{\circ}$$

Karena AB merupakan diameter, maka panjang AB = 10 satuan.

Dari Teorema Pythagoras pada segitiga ABC, maka

$$AC = \sqrt{AB^2 - BC^2} = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8 \text{ satuan}$$

Karena segitiga ABD sama kaki, tidak mungkin panjang AD = AB = 10 satuan karena haruslah AD < AC. Sehingga haruslah panjang AD = DB.

Perhatikan segitiga BCD. Dengan Teorema Pythagoras, maka

$$DC^{2} + CB^{2} = BD^{2}$$

$$(8-s)^{2} + 6^{2} = s^{2}$$

$$64 - 16s + s^{2} + 36 = s^{2}$$

$$100 = s^{2} + 16s - s^{2}$$

$$100 = 16s$$

$$\frac{100}{16} = s$$

$$\frac{100}{16} \times 100 = 100s$$

$$625 = 100s$$
(kalikan dengan 100)

Jadi, nilai dari 100s adalah $\boxed{625}$.

Solusi Alternatif. Karena panjang AD = DB, jika kita garis tinggi dari titik DO' ke AB, maka panjang AO' = OB'. Karena AB diameter dan O titik pusat lingkaran, maka panjang AO = OB. Sehingga O = O'. Dengan Teorema Pythagoras pada segitiga ODB, maka

$$OD = \sqrt{BD^2 - BO^2} = \sqrt{s^2 - 25}$$
 satuan

Karena $\angle BOD + \angle BCD = 180^\circ$, maka BODC merupakan segiempat tali busur. Karena panjang AC=8 satuan dan AD=BD=s satuan, maka panjang CD=8-s satuan. Perhatikan bahwa OC merupakan jari-jari, maka panjang OC=5 satuan. Dari Teorema Ptolemy, maka

$$OB \times DC + OD \times BC = OC \times BD$$

$$5 \times (8 - s) + \sqrt{s^2 - 25} \times 6 = 5 \times s$$

$$40 - 5s + 6\sqrt{s^2 - 25} = 5s$$

$$6\sqrt{s^2 - 25} = 5s + 5s - 40$$

$$6\sqrt{s^2 - 25} = 10s - 40$$
 (bagi dengan 2)
$$3\sqrt{s^2 - 25} = 5s - 20$$
 (kuadratkan)
$$9 (s^2 - 25) = 25s^2 - 200s + 400$$

$$9s^2 - 225 = 25s^2 - 200s + 400$$

$$0 = 25s^2 - 200s + 400 - 9s^2 + 225$$

$$0 = 16s^2 - 200s + 625$$

$$0 = (4s - 25)^2$$

$$0 = 4s - 25$$

$$25 = 4s$$
 (kalikan 25)
$$625 = 100s$$

Jadi, nilai dari 100s adalah $\boxed{625}$.

.....

5. Misalkan a dan b adalah dua bilangan yang berbeda yang memenuhi

$$a^2 + 1 = a$$
$$b^2 + 1 = b$$

Nilai dari

$$a^{4040} + b^{4040} - a^{2020} - b^{2020} + 2020$$

adalah

Jawab: 2020

Perhatikan bahwa a=-1 dan b=-1 tidak memenuhi $a^2+1=a$ dan $b^2+1=b$. Tinjau

$$0 = a^{2} - a + 1 \iff 0 = (a+1)(a^{2} - a + 1) = a^{3} + 1$$

yang berati $a^3 = -1$. Dengan cara yang sama, diperoleh $b^3 = -1$. Tinjau bahwa

$$= a^{4040} + b^{4040} - a^{2020} - b^{2020} + 2020$$

$$= a^2 \times (a^3)^{1346} + b^2 \times (b^3)^{1346} - a \times (a^3)^{679} - b \times (b^3)^{679} + 2020$$

$$= a^2 \times (-1)^{1346} + b^2 \times (-1)^{1346} - a \times (-1)^{673} - b \times (-1)^{673} + 2020$$

$$= a^2 + b^2 + a + b + 2020$$

$$= (a^2 + 1) + (b^2 + 1) + a + b + 2018$$

$$= a + b + a + b + 2018$$

$$= 2(a + b) + 2018$$

Dengan mengurangkan persamaan pada soal:

$$(a^{2} + 1) - (b^{2} + 1) = a - b$$

$$a^{2} + 1 - b^{2} - 1 = a - b$$

$$a^{2} - b^{2} = a - b$$

$$(a - b)(a + b) = a - b$$

Karena a dan b berbeda, maka $a-b\neq 0$. Bagi kedua ruas dengan a-b, maka a+b=1. Sehingga kita peroleh

$$a^{4040} + b^{4040} - a^{2020} - b^{2020} + 2020 = 2(a+b) + 2018 = 2(1) + 2018 = 2020$$

Jadi, nilai dari

$$a^{4040} + b^{4040} - a^{2020} - b^{2020} + 2020$$

adalah 2020.

.....

6. Titik E merupakan titik tengah sisi AD pada persegi ABCD. Titik F terletak pada sisi AB sehingga perbandingan panjang AF:FB=1:2. Titik G merupakan perpotongan BE dengan CF. Misalkan t adalah panjang dari CG dan s adalah panjang dari EG. Jika perbandingan dari $t^4:s^4=a:b$ dimana a dan b bilangan asli dan FPB(a,b)=1, nilai dari $a\times b$ adalah

Jawab: 4225

Misalkan titik X terletak pada CF sehingga EX sejajar dengan AB dan perpanjangan EX memotong BC di titik Y.

Karena AB sejajar EY, maka $\angle XYC = \angle FBC = 90^\circ$ dan Y juga merupakan titik tengah dari BC. Sehingga panjang BY = YC. Misalkan panjang AB = 6a. Karena AF : FB = 1 : 2, maka

$$AF = \frac{1}{1+2} \times AB = \frac{1}{3} \times 6a = 2a$$

sehingga panjang BF = AB - AF = 6a - 2a = 4a. Perhatikan bahwa $\angle XCY = \angle FCB$ dan $\angle CYX = \angle CBF$. Maka segitiga FBC sebangun dengan segitiga XYC. Maka

$$\frac{XY}{FB} = \frac{CX}{CF} = \frac{CY}{CB} = \frac{1}{2}$$

Sehingga $XY = \frac{1}{2}FB = 2a$. Kita dapatkan

$$EX = EY - XY = AB - XY = 6a - 2a = 4a$$

Dari Teorema Pythagoras pada segitiga FBC, maka

$$CF = \sqrt{FB^2 + BC^2} = \sqrt{(4a)^2 + (6a)^2} = \sqrt{16a^2 + 36a^2} = \sqrt{52a^2} = 2a\sqrt{13}$$

Maka $CX = \frac{1}{2}CF = a\sqrt{13}$. Karena EX sejajar FB, maka $\angle FBG = \angle XEG$ dan $\angle BFG = \angle EXG$ yang berakibat segitiga FBG sebangun dengan segitiga EXG. Maka

$$\frac{FG}{GX} = \frac{GB}{EG} = \frac{FB}{EX} = \frac{4a}{4a} = 1$$

yang berarti panjang XG = GF dan EG = GB. Tinjau

$$XF = CF - CX = 2a\sqrt{13} - a\sqrt{13} = a\sqrt{13}$$

Karena panjang XG=GF dan XF=XG+GF, maka panjang $XG=\frac{a}{2}\sqrt{13}$. Sehingga

$$CG = CX + XG = a\sqrt{13} + \frac{a}{2}\sqrt{13} = \frac{3a}{2}\sqrt{13}$$

yang berarti $t = \frac{3a}{2}\sqrt{13}$. Dengan Teorema Pythagoras pada segitiga ABE,

$$BE = \sqrt{AE^2 + AB^2} = \sqrt{(3a)^2 + (6a)^2} = \sqrt{9a^2 + 36a^2} = \sqrt{45a^2} = 3a\sqrt{5}$$

Karena panjang EG=GB dan EB=EG+GB, maka $EG=\frac{1}{2}EB=\frac{3a}{2}\sqrt{5}$. Maka $s=\frac{3a}{2}\sqrt{5}$. Kita dapatkan

$$\frac{a}{b} = \frac{t^4}{s^4} = \left(\frac{t}{s}\right)^4 = \left(\frac{\frac{3a}{2}\sqrt{13}}{\frac{3a}{2}\sqrt{5}}\right)^4 = \left(\frac{\sqrt{13}}{\sqrt{5}}\right)^4 = \frac{169}{25}$$

yang berarti a=169 dan b=25. Maka $a\times b=169\times 25=4225$. Jadi, nilai dari $a\times b$ adalah $\boxed{4225}$.

7. Diberikan \mathbb{R} merupakan himpunan bilangan real. Suatu fungsi $f: \mathbb{R} \to \mathbb{R}$ yang memenuhi

$$f(x) + x \times f(1-x) = 2x$$

untuk setiap bilangan real x. Banyak bilangan bulat ω sehingga $f(\omega)$ merupakan bilangan bulat adalah

Jawab: $\boxed{2}$

Subtitusikan $x = \omega$, maka

$$f(\omega) + \omega \times f(1 - \omega) = 2\omega \tag{1}$$

Subtitusikan $x = 1 - \omega$, maka

$$f(1-\omega) + (1-\omega) \times f(1-(1-\omega)) = 2(1-\omega) \Longleftrightarrow f(1-\omega) + (1-\omega) \times f(\omega) = 2 - 2\omega$$

Eliminasi kedua persamaan tersebut, dengan $(1) - \omega \times (2)$:

$$f(\omega) + \omega \times f(1 - \omega) - (\omega \times f(1 - \omega) + \omega(1 - \omega) \times f(\omega)) = 2\omega - \omega(2 - 2\omega)$$

$$f(\omega) + \omega \times f(1 - \omega) - \omega \times f(1 - \omega) - \omega(1 - \omega) \times f(\omega) = 2\omega - 2\omega + 2\omega^{2}$$

$$f(\omega) - \omega(1 - \omega)f(\omega) = 2\omega^{2}$$

$$f(\omega) - (\omega - \omega^{2})f(\omega) = 2\omega^{2}$$

$$(1 - \omega + \omega^{2})f(\omega) = 2\omega^{2}$$

$$f(\omega) = \frac{2\omega^{2}}{\omega^{2} - \omega + 1}$$

Agar $f(\omega)$ bilangan bulat, maka $\frac{2\omega^2}{\omega^2 - \omega + 1}$ merupakan bilangan bulat. Perhatikan bahwa $\omega = 0$ memenuhi. Kita tinjau untuk $\omega > 0$ dan $\omega < 0$. Perhatikan bahwa

$$\frac{2\omega^2}{\omega^2 - \omega + 1} = \frac{2\left(\omega^2 - \omega + 1\right) + 2\omega - 2}{\omega^2 - \omega + 1} = 2 + \frac{2\omega - 2}{\omega^2 - \omega + 1}$$

Kasus $1: \omega > 0$

Perhatikan bahwa $\omega = 1$ memenuhi. Tinjau untuk $\omega \geq 2$. Perhatikan bahwa

$$(\omega - 2)^2 + \omega - 1 > 0$$

Yang artinya

$$(\omega - 2)^2 + \omega - 1 > 0$$

$$\omega^2 - 4\omega + 4 + \omega - 1 > 0$$

$$\omega^2 - 3\omega + 3 > 0$$

$$\omega^2 - \omega + 1 > 2\omega - 2$$

sehingga tidak mungkin $\frac{2\omega-2}{\omega^2-\omega+1}$ bilangan bulat. Maka $2+\frac{2\omega-2}{\omega^2-\omega+1}$ juga bilangan bulat. Sehingga $\omega=1$ merupakan satu-satunya solusi pada kasus ini.

Kasus $2:\omega<0$

Misalkan $\omega = -k$ dimana k > 0. Maka

$$\frac{2\omega - 2}{\omega^2 - \omega + 1} = \frac{2(-k) - 2}{(-k)^2 - (-k) + 1} = \frac{-2k - 2}{k^2 + k + 1} = -\frac{2k + 2}{k^2 + k + 1}$$

Sehingga $\frac{2k+2}{k^2+k+1}$ harus bilangan bulat yang berarti 2k+2 harus habis dibagi k^2+k+1 . Karena 2k+2 dan k^2+k+1 keduanya positif, dari syarat keterbagian maka

$$k^2 + k + 1 \le 2k + 2 \iff k^2 - k - 1 \le 0$$

Padahal untuk $k \geq 2$, maka

$$k^{2} - k - 1 = k(k - 1) - 1 \ge 2(2 - 1) - 1 = 2 \times 1 - 1 = 1 \Rightarrow k^{2} - k - 1 \ge 1 > 0$$

Maka haruslah k=1, cek bahwa $k^2-k-1=1^2-1-1=-1\leq 0$ (memenuhi). Cek,

$$\frac{2k+2}{k^2+k+1} = \frac{2\times 1+2}{1^2+1+1} = \frac{2+2}{1+1+1} = \frac{4}{3}$$

yang berarti bukan bilangan bulat. Maka pada kasus ini tidak ada bilangan bulat ω yang memenuhi.

Jadi, banyak bilangan bulat ω yang memenuhi adalah $\boxed{2}$.

......

8. Diberikan 30 buah manik-manik: tiga buah manik-manik berwarna hitam (manik-manik hitam identik) dan sisanya manik-manik berwarna putih (manik-manik putih identik). Manik-manik tersebut digunakan untuk membuat kalung dengan menyusun manik-manik tersebut dalam bentuk melingkar. Jika manik-manik berwarna hitam harus tidak bersebelahan, banyak macam kalung berbeda yang dapat dibuat adalah

Jawab: 85

Misalkan a, b, dan c menyatakan banyak manik-manik putih diantara dua manik-manik hitam dimana a, b, c > 0. Maka a + b + c = 27 karena banyak manik-manik putih yang tersisa adalah 27. Perhatikan kembali bahwa jika (a, b, c) = (p, q, r), maka sembarang permutasi dari (p, q, r) yaitu

$$(a,b,c) = (p,q,r), (p,r,q), (q,r,p), (q,p,r), (r,p,q), (r,q,p)$$

akan membentuk kalung yang sama.

- (a). Jika a = b = c, maka (a, b, c) = (9, 9, 9) yang berarti ada 1 kemungkinan.
- (b). Jika diantara a, b, c terdapat dua yang sama, misalkan a = b dan $a, b \neq c$. Maka

$$27 = a + b + c = a + a + c = 2a + c$$

Maka pasangan (a, c) yang memenuhi adalah

$$(1, 25), (2, 23), (3, 21), (4, 19), (5, 17), (6, 15), (7, 13), (8, 11), (10, 7), (11, 5), (12, 3), (13, 1)$$

yang berarti ada 12 kemungkinan. Maka untuk b=c dan $b,c\neq a$ juga ada 12 kemungkinan, begitu juga dengan a=c dan $a,c\neq b$ juga ada 12 kemungkinan. Sehingga total ada 12+12+12=36 kemungkinan.

(c). Jika a,b,c semuanya berbeda. Maka hal ini sama saja dengan mengurangi semua kemungkinan a,b,c dengan kemungkinan ketika terdapat setidaknya dua dari a,b,c bernilai sama. Banyak kemungkinan seluruhnya adalah ketika a+b+c=27, dengan Star and Bar Theorem:

$$C(27-1,3-1) = C(26,2) = \frac{26 \times 25}{2} = 325$$

Banyaknya pasangan (a, b, c) ketika setidaknya dua dari a, b, c sama dengan jumlah kemungkinan pada kasus (a) dan (b), yaitu sebanyak 1 + 36 = 37 kemungkinan. Maka banyak kemungkinannya adalah 325 - 37 = 288. Karena permutasi dari (a, b, c) = (p, q, r) dihitung sekali, maka kita perlu membaginya dengan 6. Maka banyak kemungkinan kalung yang dibuat adalah 288 : 6 = 48 kalung.

Sehingga banyak kalung yang dapat dibuat adalah 1 + 36 + 48 = 85.

Jadi, banyak macam kalung berbeda yang dapat dibuat adalah 85.

.....

9. Untuk setiap bilangan real a dan b, didefinisikan

$$a * b = \frac{\sqrt{b^4 + ab(b^2 + 1) + ab^2 + a + b - 1}}{b^2 + b + 1}$$

Untuk setiap bilangan asli $n \geq 2$, didefinisikan

$$f(n) = 1 * (2 * (3 * (4 * \cdots ((n-1) * n))))$$

$$g(n) = f(n) \times f(n)$$

serta g(1) = 1. Sisa pembagian

$$441g(1) + 441g(2) + 441g(3) + 441g(4) + 441g(5) + \cdots + 441g(2020)$$

jika dibagi 1000 adalah

Jawab: 139

Perhatikan bahwa jika a = 2,

$$2 * b = \frac{\sqrt{b^4 + 2b(b^2 + 1) + 2b^2 + 2 + b - 1}}{b^2 + b + 1}$$

$$= \frac{\sqrt{b^4 + 2b^3 + 2b + 2b^2 + b + 1}}{b^2 + b + 1}$$

$$= \frac{\sqrt{b^4 + 2b^3 + 3b + 2b^2 + 1}}{b^2 + b + 1}$$

$$= \frac{\sqrt{(b^2 + b + 1)^2}}{b^2 + b + 1}$$

Jika b positif, maka $b^2 + b + 1$ positif yang berarti

$$2*b = \frac{\sqrt{(b^2 + b + 1)}}{b^2 + b + 1} = \frac{b^2 + b + 1}{b^2 + b + 1} = 1$$

Sehingga untuk setiap bilangan asli $n \geq 3$, maka

$$f(n) = 1 * (2 * (3 * (4 * \cdots ((n-1) * n)))$$

$$= 1 * 1$$

$$= \frac{\sqrt{1^4 + 1 \times 1(1^2 + 1) + 1 \times 1^2 + 1 + 1 - 1}}{1^2 + 1 + 1}$$

$$= \frac{\sqrt{1 + 2 + 1 + 1 + 1 - 1}}{3}$$

$$= \frac{\sqrt{5}}{3}$$

Sehingga untuk setiap bilangan asli $n \geq 3$ maka

$$g(n) = f(n) \times f(n) = \frac{\sqrt{5}}{3} \times \frac{\sqrt{5}}{3} = \frac{5}{9}$$

Sedangkan, untuk f(2):

$$f(2) = 1 * 2$$

$$= \frac{\sqrt{2^4 + 1 \times 2(2^2 + 1) + 1 \times 2^2 + 1 + 2 - 1}}{2^2 + 2 + 1}$$

$$= \frac{\sqrt{16 + 2 \times 5 + 4 + 1 + 2 - 1}}{4 + 2 + 1}$$

$$= \frac{\sqrt{16 + 10 + 4 + 1 + 2 - 1}}{7}$$

$$= \frac{\sqrt{32}}{7}$$

Sehingga

$$g(2) = f(2) \times f(2) = \frac{\sqrt{32}}{7} \times \frac{\sqrt{32}}{7} = \frac{32}{49}$$

Tinjau bahwa

$$= 441g(1) + 441g(2) + 441g(3) + 441g(4) + 441g(5) + \dots + 441g(2020)$$

$$= 441 \times 1 + 441 \times \frac{32}{49} + \underbrace{441 \times \frac{5}{9} + 441 \times \frac{5}{9} + 441 \times \frac{5}{9} + \dots + 441 \times \frac{5}{9}}_{\text{sebanyak 2018}}$$

$$= 441 + 288 + 2018 \times 441 \times \frac{5}{9}$$

$$= 729 + 2018 \times 245$$

$$\equiv 729 + 18 \times 245 \pmod{1000}$$

$$\equiv 720 + 4410 \pmod{1000}$$

$$\equiv 5139 \pmod{1000}$$

$$\equiv 139 \pmod{1000}$$

Jadi, sisa pembagian $441g(1) + 441g(2) + 441g(3) + 441g(4) + 441g(5) + \cdots + 441g(2020)$ oleh 1000 adalah $\boxed{139}$.

10. Diberikan segitiga ABC dan dibuat lingkaran Γ yang melalui titik A dan B. Lingkaran Γ memotong sisi BC dan AC berturut-turut di titik X dan Y. AX dan BY berpotongan di titik M dan N merupakan titik tengah AB. Sinar \overline{MN} memotong lingkaran luar segitiga AMB di titik O. Titik P merupakan titik tengah AO dan perpanjangan PN memotong MB di titik Q. Titik R dan S berturut-turut merupakan perpotongan BP dengan OQ dan OM. Diketahui bahwa $\angle BYX = \angle YCX = 50^\circ$ dan $\angle YAX = 20^\circ$. Jika perbandingan panjang SR: PB = a: b dimana a dan b bilangan asli serta FPB(a,b) = 1, nilai dari AB0 dalah

Jawab: 16

Perhatikan bahwa ABXY segiempat tali busur. Dari hubungan sudut keliling-sudut keliling, maka $\angle BAX = \angle BYX = 50^{\circ}$. Selain itu, juga berakibat

$$\angle CXY = \angle BAY = \angle YAX + \angle BAX = 20^{\circ} + 50^{\circ} = 70^{\circ}$$

Dan juga

$$\angle ABX = \angle XYC = 180^{\circ} - \angle YCX - \angle CXY = 180^{\circ} - 50^{\circ} - 70^{\circ} = 60^{\circ}$$

Dari hubungan sudut keliling-sudut keliling, maka $\angle YBX = \angle YAX = 20^{\circ}$. Sehingga

$$/ABM = /ABX - /YBX = 60^{\circ} - 20^{\circ} = 40^{\circ}$$

Pada segitiga ABM, maka

$$\angle AMB = 180^{\circ} - \angle ABM - \angle BAM = 180^{\circ} - 40^{\circ} - 50^{\circ} = 90^{\circ}$$

Karena AMBO segiempat tali busur, maka

$$180^{\circ} = \angle AMB + \angle AOB = 90^{\circ} + \angle AOB \iff \angle AOB = 90^{\circ}$$

Perhatikan bahwa karena $\angle AMB = \angle AOB = 90^{\circ}$, dari hubungan sudut pusat-sudut keliling sehingga AB merupakan diameter lingkaran luar segitiga AMB. Sehingga N merupakan titik pusat lingkaran luar segitiga AMB. Maka panjang AN = NB = NM = NO. Karena panjang AN = NM, maka $\angle AMN = \angle MAN = 50^{\circ}$. Sehingga

$$\angle BNO = \angle ANM = 180^{\circ} - \angle AMN - \angle MAN = 180^{\circ} - 50^{\circ} - 50^{\circ} = 80^{\circ}$$

Perhatikan bahwa N merupakan titik tengah dari MO dan P merupakan titik tengah dari AO, maka PN sejajar dengan AM sehingga $\angle PNO = \angle AMO = 50^{\circ}$. Maka

$$\angle BNO = 180^{\circ} - \angle PNO - \angle BNO = 180^{\circ} - 50^{\circ} - 80^{\circ} = 50^{\circ}$$

Karena $\angle NBQ = NBM = 40^{\circ}$, maka

$$\angle NQB = 180^{\circ} - \angle QNB - \angle NBQ = 180^{\circ} - 50^{\circ} - 40^{\circ} = 90^{\circ}$$

Karena AOBM segiempat tali busur, dari hubugnan sudut keliling-sudut keliling, maka

$$\angle MBO = \angle ABO + \angle ABM = \angle AMO + 40^{\circ} = 50^{\circ} + 40^{\circ} = 90^{\circ}$$

Maka POBQ merupakan persegi panjang. Maka OQ dan BP merupakan diagonal persegi panjang serta R merupakan titik potongnya. Akibatnya, panjang PR = RB. Karena BM sejajar dengan OP, maka $\angle BMS = \angle POS$ dan $\angle MBS = \angle PSO$. Sehingga segitiga MBS sebangun dengan OPS. Maka

$$\frac{BS}{SP} = \frac{BM}{PO} = 2$$

Sehingga BS = 2SP. Misalkan panjang SP = 2a. Maka panjang BS = 4a dan panjang

$$BP = SP + BS = 2a + 4a = 6a$$

Karena panjang PR = RB dan PR + RB = BP = 6a, maka PR = RB = 3a. Sehingga

$$SR = BS - BR = 4a - 3a = a$$

yang berarti

$$\frac{SR}{BP} = \frac{a}{6a} = \frac{1}{6}$$

sehingga a = 1 dan b = 6. Maka $10a + b = 10 \times 1 + 6 = 10 + 6 = 16$.

Jadi, nilai dari 10a + b adalah $\boxed{16}$.

Soal dan Pembahasan Babak Final

Soal 1. Diberikan lingkaran Γ dengan AB sebagai diameternya dan panjang AB=4 satuan. Dibuat lingkaran ω dengan titik pusat B. Lingkaran ω memotong lingkaran Γ di titik X dan Y serta memotong AB di titik Z. Jika $\angle XZB=75^\circ$, tentukan luas irisan dari lingkaran Γ dan lingkaran ω .

Jawab:
$$\sqrt{\frac{14}{3}\pi - 2\sqrt{3}}$$
 satuan luas

Misalkan O pusat lingkaran Γ dan misalkan M perpotongan AB dan XY. Tarik garis tinggi dari titik O ke sisi BX dan perpotongannya di T.

Perhatikan bahwa BX dan BZ merupakan jari-jari lingkaran ω . Maka panjang BX = BZ. Sehingga $\angle ZXB = \angle XZB = 75^{\circ}$. Maka

$$\angle XBZ = 180^{\circ} - \angle XZB - \angle ZXB = 180^{\circ} - 75^{\circ} - 75^{\circ} = 30^{\circ}$$

Perhatikan bahwa panjang BY = BX, BO = BO, dan YO = OX. Maka segitiga BOY kongruen dengan segitiga BOX (sisi-sisi-sisi). Akibatnya, $\angle OBY = \angle OBX = 30^{\circ}$. Perhatikan bahwa panjang YO = OB. Maka $\angle OYB = \angle OBY$. Sehingga

$$\angle YOZ = \angle 180^{\circ} - \angle YOB = \angle OYB + \angle OBY = 2\angle OBY = 2 \times 30^{\circ} = 60^{\circ}$$

Dengan cara sama, kita dapatkan $\angle ZOX = 60^{\circ}$. Karena $\angle ZOX = \angle ZOY$, panjang XO = OY, dan panjang OZ = OZ, maka segitiga OYZ kongruen dengan segitiga OXZ (sisi-sudut-sisi). Jika YM_1 dan XM_2 merupakan garis tinggi ke sisi ZO, karena segitiga ZOY dan ZOX kongruen berakibat panjang $YM_1 = YM_2$. Sehingga dengan Teorema Pythagoras, maka

$$OM_1 = \sqrt{OX^2 - XM_1^2} = \sqrt{4 - XM_1^2} = \sqrt{4 - YM_2^2} = OM_2$$

yang menyimpulkan $M_1=M_2$. Artinya, X,M_1,Y segaris. Dapat disimpulkan bahwa $M_1=M$. Tinjau $\angle TBO=30^\circ$ sehingga $\angle BOT=60^\circ$. Dari sifat segitiga dengan sudut $30^\circ:60^\circ:90^\circ$, maka $TO:TB:OB=1:\sqrt{3}:2$. Karena panjang OB=2 satuan, maka panjang TO=1 satuan dan $TB=\sqrt{3}$ satuan. Tinjau panjang BO=OX dan OT tegak lurus BX, maka panjang $TX=TB=\sqrt{3}$ satuan. Maka panjang $TX=TB=\sqrt{3}$ satuan. Maka panjang $TX=TB=\sqrt{3}$ satuan. Karena $ZYOZ=ZXOZ=60^\circ$, maka $ZBOY=ZBOX=120^\circ$. Maka luas irisan dari lingkaran Γ dan lingkaran ω adalah

$$L_{\text{irisan}} = L_{\text{minor } XBY} - L_{\triangle BOX} - L_{\triangle BOY} + L_{\text{minor } BOX} + L_{\text{minor } BOY}$$

Karena segitiga BOX kongruen dengan segitiga BOY, maka $L_{\triangle BOX} = L_{\triangle BOY}$. Sehingga

$$\begin{split} L_{\text{irisan}} &= L_{\text{minor } XBY} - L_{\triangle BOX} - L_{\triangle BOY} + L_{\text{mayor } YOX} \\ &= \frac{60^{\circ}}{360^{\circ}} \pi \left(2\sqrt{3}\right)^{2} - 2L_{\triangle BOX} + \frac{240^{\circ}}{360^{\circ}} \pi \times 2^{2} \\ &= \frac{1}{6} \pi \times 12 - 2 \times \frac{1}{2} \times OT \times BX + \frac{2}{3} \pi \times 2^{2} \\ &= 2\pi - 1 \times 1 \times 2\sqrt{3} + \frac{8}{3} \pi \\ &= \frac{14}{3} \pi - 2\sqrt{3} \end{split}$$

Jadi, luas irisannya adalah $\boxed{\frac{14}{3}\pi - 2\sqrt{3} \text{ satuan luas}}$

Soal 2. Diberikan x, y, dan z bilangan real. Buktikan bahwa

$$-1 \le \frac{x}{x^2 - x + 1} + \frac{y}{y^2 - y + 1} + \frac{z}{z^2 - z + 1} \le 3$$

Tentukan juga semua solusi (x, y, z) sehingga kesamaan dapat terjadi, yaitu ketika f(x, y, z) = 3 dan f(x, y, z) = -1 dimana

$$f(x,y,z) = \frac{x}{x^2 - x + 1} + \frac{y}{y^2 - y + 1} + \frac{z}{z^2 - z + 1}$$

Bukti.

Misalkan

$$\frac{x}{x^2 - x + 1} = k \Longleftrightarrow x = k\left(x^2 - x + 1\right) = kx^2 - kx + k$$

yang setara dengan

$$0 = kx^2 - kx + k - x = kx^2 - (k+1)x + k$$

Karena x bilangan real, maka diskriminannya adalah $\Delta \geq 0$. Maka

$$(-[k+1])^{2} - 4(k)(k) \ge 0$$

$$k^{2} + 2k + 1 - 4k^{2} \ge 0$$

$$-3k^{2} + 2k + 1 \ge 0$$

$$3k^{2} - 2k - 1 \le 0$$

$$(3k+1)(k-1) \le 0$$
(kalikan -1)

Sehingga titik pemecahnya adalah $k = -\frac{1}{3}$ dan k = 1.

• Jika $k \le -\frac{1}{3}$, uji untuk k = -1. Maka $(3k+1)(k-1) = (3 \times (-1) + 1)(-1-1) = (-3-1)(-2) = (-4)(-2) = 8$

• Jika
$$-\frac{1}{3} \le k \le 1$$
, uji $k = 0$. Maka
$$(3k+1)(k-1) = (3 \times 0 + 1)(0-1) = (0+1)(-1) = (1)(-1) = -1$$

• Jika $k \ge 1$, uji untuk k = 2. Maka

$$(3k+1)(k-1) = (3 \times 2 + 1)(2-1) = (6+1)(1) = (7)(1) = 7$$

Karena yang diminta adalah ≤ 0 , maka $-\frac{1}{3} \leq k \leq 1$. Maka kita peroleh

$$-\frac{1}{3} \le \frac{x}{x^2 - x + 1}, \quad \frac{y}{y^2 - y + 1}, \quad \frac{z}{z^2 - z + 1} \le 1$$

Sehingga kita peroleh

$$-\frac{1}{3} + \left(-\frac{1}{3}\right) + \left(-\frac{1}{3}\right) \le \frac{x}{x^2 - x + 1} + \frac{y}{y^2 - y + 1} + \frac{z}{z^2 - z + 1} \le 1 + 1 + 1$$

yang memberikan

$$-1 \le \frac{x}{x^2 - x + 1} + \frac{y}{y^2 - y + 1} + \frac{z}{z^2 - z + 1} \le 3$$

(a). Jika f(x, y, z) = 3, maka haruslah k = 1. Sehingga

$$\frac{x}{x^2 - x + 1} = 1 \Longleftrightarrow x = x^2 - x + 1$$

yang berarti

$$0 = x^{2} - x + 1 - x = x^{2} - 2x + 1 = (x - 1)^{2} \iff x = 1$$

Dengan cara yang sama, kita peroleh y = 1 dan z = 1. Demikian (x, y, z) = (1, 1, 1).

(b). Jika f(x, y, z) = -1, maka haruslah $k = -\frac{1}{3}$. Sehingga

$$\frac{x}{x^2 - x + 1} = -\frac{1}{3} \Longleftrightarrow -3x = x^2 - x + 1$$

yang berarti

$$0 = x^{2} - x + 1 + 3x = x^{2} + 2x + 1 = (x+1)^{2} \iff x = -1$$

Dengan cara yang sama, diperoleh y=-1 dan z=-1. Demikian (x,y,z)=(-1,-1,-1).

Jadi,
$$f(x, y, z) = 3$$
 jika $(x, y, z) = \boxed{(1, 1, 1)}$ dan $f(x, y, z) = -1$ jika $(x, y, z) = \boxed{(-1, -1, -1)}$.

Soal 3. Misalkan p(n) banyak segitiga lancip yang dapat dibentuk dengan menggunakan titik-titik sudut pada segi-2n beraturan untuk setiap bilangan asli $n \geq 2$. Tentukan sisa pembagian

$$p(2) + p(3) + p(4) + p(5) + \dots + p(100)$$

jika dibagi 1000.

Jawab: | 850

Perhatikan bahwa pada segi-2n beraturan, kita dapat membuat lingkaran luar yang melalui titik sudut pada segi-2n beraturan. Karena banyak titik sudut sebanyak genap, maka terdapat dua pasang titik pada segi-2n yang merupakan diameter lingkaran luarnya. Misalkan titik-titik sudutnya adalah $A_1, A_2, A_3, \dots, A_{2n}$. Misalkan O sebagai pusat lingkaran luarnya.

Banyak segitiga yang dapat dibentuk dengan menggunakan 2n titik sudut adalah C(2n,3). Misalkan s(n) menyatakan banyak segitiga siku-siku dan t(n) menyatakan banyak segitiga tumpul yang dapat dibuat dengan titik-titik sudut pada segi-2n. Maka

$$s(n) + p(n) + t(n) = C(2n,3) = \frac{(2n)!}{3!(2n-3)!} = \frac{2n(2n-1)(2n-2)}{3 \times 2 \times 1} = \frac{4n^3 - 6n^2 + 2n}{3}$$

Maka

$$p(n) = \frac{4n^3 - 6n + 2n}{3} - s(n) - t(n)$$

(a). Untuk s(n). Perhatikan gambar tersebut ketika A_2A_{n+2} menjadi diameter. Misalkan A_2A_{n+2} menjadi salah satu sisi segitiga siku-siku yang ingin dibentuk. Maka kemungkinan satu titik yang lain adalah $A_1, A_3, A_4, A_5, \cdots, A_{n+1}, A_{n+3}, A_{n+4}, \cdots, A_{2n}$ yang berarti ada 2n-2 kemungkinan. Sedangkan, banyak diameter yang dapat dibentuk dari segi-2n tersebut adalah $\frac{2n}{2}=n$ diameter. Sehingga

$$s(n) = n(2n - 2) = 2n^2 - 2n$$

- (b). Untuk t(n). Andaikan A_iA_j merupakan diameter lingkaran luar segi-2n beraturan dimana $i \neq j$. Misalkan kita ingin membentuk sebuah segitiga tumpul dengan salah satu titik sudutnya adalah A_i . Agar segitiga yang dapat terbentuk merupakan segitiga tumpul, maka dua titik sudut yang lain harus berada pada sisi yang sama terhadap diameter A_iA_j , yaitu keduanya di sebelah kanan atau keduanya di sebelah kiri diameter A_iA_j . Definisikan $P(A_iA_j)$ dengan:
 - (i). Menyatakan banyak segitiga tumpul yang dapat dibentuk dengan salah satu titik sudutnya adalah A_i , tetapi titik sudut A_i tidak dimuat dalam segitiga tersebut, dan
 - (ii). Banyak segitiga tumpul yang dapat dibuat pada sebelah kanan diameter.

Perhatikan gambar tersebut ketika A_2A_{n+2} menjadi diameter. Kita akan buat segitiga tumpul dengan dimater A_2A_{n+2} sebagai diameter. Akan kita tentukan $P(A_2A_{n+2})$. Maka kemungkinan titik sudut untuk dua titik yang lainnya adalah $A_3, A_4, A_5, \dots, A_{n+1}$ yang berarti ada n-1 kemungkinan. Maka ada

$$C(n-1,2) = \frac{(n-1)!}{2!(n-1-2)!} = \frac{(n-1)!}{2 \times 1 \times (n-3)!} = \frac{(n-1)(n-2)}{2} = \frac{n^2 - 3n + 2}{2}$$

Sedangkan, perhitungan untuk

$$P(A_1A_{n+1}), P(A_2A_{n+2}), \cdots, P(A_{n-1}A_{2n}), P(A_{n+1}A_1), P(A_{n+2}A_2), \cdots, P(A_{2n}A_{n-1})$$
 (*)

masing-masing memiliki nilai yang sama dengan $P(A_2A_{n+2})$. Pada (*) ada 2n, maka

$$t(n) = 2n \times \frac{n^2 - 3n + 2}{2} = n^3 - 3n^2 + 2n$$

Maka kita peroleh

$$p(n) = \frac{4n^3 - 6n^2 + 2n}{3} - (2n^2 - 2n) - (n^3 - 3n^2 + 2n)$$

$$= \frac{4n^3 - 6n^2 + 2n - 3(2n^2 - 2n) - 3(n^3 - 3n^2 + 2n)}{3}$$

$$= \frac{4n^3 - 6n^2 + 2n - 6n^2 + 6n - 3n^3 + 9n^2 - 6n}{3}$$

$$= \frac{n^3 - 3n^2 + 2n}{3}$$

Sehingga kita dapatkan

$$= p(2) + p(3) + p(4) + \dots + p(100)$$

$$= \frac{2^3 - 3 \times 2^2 + 2 \times 2}{3} + \frac{3^3 - 3 \times 3^2 + 2 \times 3}{3} + \frac{4^3 - 3 \times 4^2 + 2 \times 4}{3} + \dots + \frac{100^3 - 3 \times 100^2 + 2 \times 100}{3}$$

$$= \frac{1}{3} \left(\left[2^3 + 3^3 + 4^3 + \dots + 100^3 \right] - 3 \left[2^2 + 3^2 + 4^2 + \dots + 100^2 \right] + 2 \left[2 + 3 + 4 + \dots + 100 \right] \right)$$

Misalkan $X = p(2) + p(3) + p(4) + \cdots + p(100)$. Maka

$$3X = \left[2^3 + 3^3 + 4^3 + \dots + 100^3\right] - 3\left[2^2 + 3^2 + 4^2 + \dots + 100^2\right] + 2\left[2 + 3 + 4 + \dots + 100\right]$$

Akan kita tentukan nilai dari masing-masing

$$2^3 + 3^3 + 4^3 + \dots + 100^3$$
, $2^2 + 3^2 + 4^2 + \dots + 100^2$, $2 + 3 + 4 + \dots + 100$

Teorema 2.0.1 (Deret $1^k + 2^k + 3^k + \cdots + n^k$)

Untuk setiap bilangan asli n, maka

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

Perhatikan bahwa

$$1^{3} + 2^{3} + 3^{3} + 4^{3} + \dots + 100^{3} = \left(\frac{100 \times 101}{2}\right)^{2}$$
$$2^{3} + 3^{3} + 4^{3} + \dots + 100^{3} = (50 \times 101)^{2} - 1^{3}$$
$$2^{3} + 3^{3} + 4^{3} + \dots + 100^{3} = 5050^{2} - 1$$

Dengan cara yang sama, diperoleh

$$2^{2} + 3^{2} + 4^{2} + \dots + 100^{2} = \frac{100 \times 101 \times 201}{6} - 1 = 5050 \times 67 - 1$$
$$2 + 3 + 4 + \dots + 100 = 5050 - 1 = 5049$$

Sehingga

$$3X = 5050^{2} - 1 - 3(5050 \times 67 - 1) + 2 \times (5049)$$

$$\equiv 50^{2} - 1 - 3(50 \times 67 - 1) + 2(5049) \pmod{1000}$$

$$\equiv 2500 - 1 - 3(3350 - 1) + 2 \times 49 \pmod{1000}$$

$$\equiv 500 - 1 - 3(350 - 1) + 98 \pmod{1000}$$

$$\equiv 499 - 3(349) + 98 \pmod{1000}$$

$$\equiv 499 - 1047 + 98 \pmod{1000}$$

$$\equiv 499 - 47 + 98 \pmod{1000}$$

$$\equiv 550 \pmod{1000}$$

$$\equiv 550 + 2000 \pmod{1000}$$

$$\equiv 2550 \pmod{1000}$$

Teorema 2.0.2

Jika $ac \equiv bc \pmod{m}$, maka

$$a \equiv b \left(\text{mod } \frac{m}{FPB(c, m)} \right)$$

Karena $3X \equiv 2550 \pmod{1000}$ atau setara dengan $3X \equiv 850 \times 3 \pmod{1000}$, maka

$$X \equiv 850 \left(\bmod \frac{1000}{FPB(3, 1000)} \right) \Longrightarrow X \equiv 850 \pmod{1000}$$

Maka $X = p(2) + p(3) + p(4) + \cdots + p(100)$ jika dibagi 1000 bersisa 850. Jadi, sisa $p(2) + p(3) + p(4) + \cdots + p(100)$ jika dibagi 1000 adalah 850.

Soal 4. Tentukan semua bilangan asli (a, b, p, q) dimana p dan q bilangan prima sehingga

$$2a(a+1)(a+5) = 7p^bq + 3(a+1)(a-1)$$

Jawab: (3,3,2,3),(4,2,3,5),(6,2,3,13)

Dengan membongkar persamaan pada soal,

$$2a(a+1)(a+5) = 7p^bq + 3(a+1)(a-1)$$

$$2a(a^2+6a+5) = 7p^bq + 3(a^2-1)$$

$$2a^3+12a^2+10a = 7p^bq + 3a^2 - 3$$

$$2a^3+9a^2+10a+3 = 7p^bq$$

$$(a+1)(a+3)(2a+1) = 7p^bq$$

Perhatikan bahwa

$$(a+1)(a+3)(2a+1) = 7p^bq \equiv 0 \pmod{7} \Longrightarrow (a+1)(a+3)(2a+1) \equiv 0 \pmod{7}$$

Demikian haruslah

$$a+1 \equiv 0 \pmod{7}$$
, $a+3 \equiv 0 \pmod{7}$, $2a+1 \equiv 0 \pmod{7}$

yang memberikan $a \equiv 3, 4, 6 \pmod{7}$. Maka dapat dituliskan dengan a = 7k + 3, a = 7k + 4, atau a = 7k + 6 dengan k bilangan bulat tak negatif.

Kasus 1: a = 7k + 3

Subtitusikan pada persamaan, maka

$$(7k+3+1)(7k+3+3)(2[7k+3]+1) = 7p^bq$$

$$(7k+4)(7k+6)(14k+6+1) = 7p^bq$$

$$(7k+4)(7k+6)(14k+7) = 7p^bq$$

$$(7k+4)(7k+6) \times 7(2k+1) = 7p^bq$$

$$(7k+4)(7k+6)(2k+1) = p^bq$$

Maka kemungkinannya

$$\begin{cases} 7k + 4 = p^{x}q \\ 7k + 6 = p^{y} \\ 2k + 1 = p^{z} \end{cases} \text{ atau } \begin{cases} 7k + 4 = p^{x} \\ 7k + 6 = p^{y}q \\ 2k + 1 = p^{z} \end{cases} \text{ atau } \begin{cases} 7k + 4 = p^{x} \\ 7k + 6 = p^{y} \\ 2k + 1 = p^{z}q \end{cases}$$

dengan x + y + z = b serta x, y, z bilangan bulat tak negatif.

Subkasus 1.1.

Untuk

$$7k + 4 = p^x q \tag{1}$$

$$7k + 6 = p^y \tag{2}$$

$$2k + 1 = p^z \tag{3}$$

Tinjau bahwa 7k + 6 > 2k + 1 sehingga berakibat y > z. Eliminasi persamaan (2) dan (3), dengan $7 \times (3) - 2 \times (2)$. Diperoleh

$$7p^{z} - 2p^{y} = 7(2k+1) - 2(7k+6)$$
$$7p^{z} - 2p^{y} = 14k + 7 - 14k - 12$$
$$p^{z} (7 - 2p^{y-z}) = -5$$
$$p^{z} (2p^{y-z} - 7) = 5$$

Maka p^z harus habis membagi 5, yang berarti $p^z = 1$ atau $p^z = 5$. Namun,

$$p^{z} = 2k + 1 \ge 2(0) + 1 = 1 \Longrightarrow p^{z} \ge 1$$

Sehingga tidak mungkin $p^z=1$. Demikian $p^z=5$. Sehingga p=5 dan z=1, maka $2p^{y-z}-7=1$. Sehingga

$$2p^{y-z} = 8 \iff 5^{y-1} = 4$$

yang jelas tidak mungkin.

Maka pada subkasus ini tidak mungkin ada pasangan (a, b, p, q) yang memenuhi.

Subkasus 1.2.

Untuk

$$7k + 4 = p^x \tag{1}$$

$$7k + 6 = p^y q \tag{2}$$

$$2k + 1 = p^z \tag{3}$$

Tinjau bahwa 7k + 4 > 2k + 1 yang berarti x > z. Eliminasi persamaan (1) dan (3), dengan $2 \times (1) - 7 \times (3)$. Diperoleh

$$2p^{x} - 7p^{z} = 2(7k + 4) - 7(2k + 1)$$
$$p^{z} (2p^{x-z} - 7) = 14k + 8 - 14k - 7$$
$$p^{z} (2p^{x-z} - 7) = 1$$

Sehingga p^z harus merupakan faktor dari 1. Maka $p^z=1 \iff z=0$. Kita peroleh bahwa $2p^{x-z}-7=1$ yang berarti

$$2p^{x-z} = 8 \iff p^x = 4$$

yang memberikan p=2 dan x=2. Subtitusikan pada persamaan (3), maka

$$2k + 1 = p^z = 2^0 = 1 \iff k = 0$$

Subtitusikan nilai k pada persamaan (2), diperoleh

$$p^{y}q = 7k + 6 = 7(0) + 6 = 6 = 2 \cdot 3 \iff 2^{y}q = 2 \cdot 3$$

yang memberikan y=1 dan q=3. Kita peroleh juga a=7k+3=7(0)+3=3. Kita dapatkan juga b=x+y+z=2+1+0=3. Jadi, (a,b,p,q)=(3,3,2,3). Mudah dicek bahwa pasangan ini memenuhi.

Subkasus 1.3.

Untuk

$$7k + 4 = p^x \tag{1}$$

$$7k + 6 = p^y (2)$$

$$2k + 1 = p^z q \tag{3}$$

Tinjau bahwa 7k + 6 > 7k + 4 yang berarti y > x. Eliminasi persamaan (1) dan (2), dengan (2) - (1),

$$p^{y} - p^{x} = 7k + 6 - (7k + 4)$$
$$p^{x} (p^{y-x} - 1) = 7k + 6 - 7k - 4$$
$$p^{x} (p^{y-x} - 1) = 2$$

Maka p^x harus merupakan faktor dari 2, sehingga $p^x = 1$ atau $p^x = 2$. Namun,

$$p^{x} = 7k + 4 > 7(0) + 4 = 4 \Longrightarrow p^{x} > 4$$

Kontradiksi.

Sehingga dari ketiga subkasus tersebut hanya pasangan (a, b, p, q) = (3, 3, 2, 3) yang memenuhi.

Kasus 2: a = 7k + 4

Subtitusikan pada persamaan, maka

$$(7k+4+1)(7k+4+3)(2[7k+4]+1) = 7p^{b}q$$

$$(7k+5)(7k+7)(14k+8+1) = 7p^{b}q$$

$$(7k+5) \times 7(k+1)(14k+9) = 7p^{b}q$$

$$(7k+5)(k+1)(14k+9) = p^{b}q$$

Maka kemungkinannya

$$\begin{cases} 7k+5 = p^x q \\ k+1 = p^y \\ 14k+9 = p^z \end{cases} \text{ atau } \begin{cases} 7k+5 = p^x \\ k+1 = p^y q \\ 14k+9 = p^z \end{cases} \text{ atau } \begin{cases} 7k+5 = p^x \\ k+1 = p^y \\ 14k+9 = p^z q \end{cases}$$

dengan b = x + y + z dengan x, y, z bilangan bulat tak negatif.

Subkasus 2.1.

Untuk

$$7k + 5 = p^x q \tag{1}$$

$$k + 1 = p^y \tag{2}$$

$$14k + 9 = p^z \tag{3}$$

Tinjau 14k+9>k+1 sehingga z>y. Eliminasi persamaan (2) dan (3) dengan $14\times(1)-(3)$, maka diperoleh

$$14p^{y} - p^{z} = 14(k+1) - (14k+9)$$
$$p^{y} (14 - p^{z-y}) = 14k + 14 - 14k - 9$$
$$p^{y} (14 - p^{z-y}) = 5$$

Maka p^y harus merupakan faktor daari 5, sehingga $p^y = 1$ atau $p^y = 5$.

• Jika $p^y = 1 \iff y = 0$, maka $14 - p^{z-y} = 5$. Kita dapatkan

$$p^{z-y} = 9 \iff p^z = 3^2$$

yang berarti p=3 dan z=2. Subtitusikan pada persamaan (2), maka

$$k + 1 = 2^y = 2^0 = 1 \iff k = 0$$

Subtitusikan pada persamaan (1), maka

$$p^{x}q = 7k + 5 = 7(0) + 5 = 0 + 5 = 5 \iff 5^{x}q = 5$$

Jika x > 0, maka haruslah x = 1 sehingga q = 1. Kontradiksi bahwa q bilangan prima. Sehingga haruslah x = 0. Kita peroleh q = 5. Demikian b = x + y + z = 0 + 0 + 2 = 2 dan n = 7k + 4 = 7(0) + 4 = 4. Sehingga (a, b, p, q) = (4, 2, 3, 5). Mudah dicek bahwa pasangan tersebut memenuhi.

• Jika $p^y = 5 \iff p = 5$ dan y = 1, maka $14 - p^{z-y} = 1$. Kita dapatkan

$$p^{z-y} = 13 \iff 5^{z-1} = 13$$

yang jelas tidak mungkin.

Demikian pada subkasus ini hanya dipenuhi pasangan (a, b, p, q) = (4, 2, 3, 5).

Subkasus 2.2.

Untuk

$$7k + 5 = p^x \tag{1}$$

$$k + 1 = p^y q \tag{2}$$

$$14k + 9 = p^z \tag{3}$$

Tinjau bahwa 14k + 9 > 7k + 5 yang berarti z > x. Eliminasi persamaan (1) dan (3), dengan $2 \times (1) - (3)$,

$$2p^{x} - p^{z} = 2(7k+5) - (14k+9)$$
$$p^{x} (2 - p^{z-x}) = 14k + 10 - 14k - 9$$
$$p^{x} (2 - p^{z-x}) = 1$$

Maka p^x harus merupakan faktor dari 1 sehingga $p^x = 1$. Namun,

$$p^x = 7k + 5 \ge 7(0) + 5 = 5 \Rightarrow p^x \ge 5$$

sehingga tidak mungkin $p^x = 1$. Maka pada subkasus ini tidak ada pasangan (a, b, p, q) yang memenuhi.

Subkasus 2.3.

Untuk

$$7k + 5 = p^x \tag{1}$$

$$k + 1 = p^y \tag{2}$$

$$14k + 9 = p^z q \tag{3}$$

Tinjau bahwa 7k + 5 > k + 1 yang berarti x > y. Eliminasi persamaan (1) dan (2), dengan $7 \times (2) - (1)$ sehingga

$$7p^{y} - p^{x} = 7(k+1) - (7k+5)$$
$$p^{y} (7 - p^{x-y}) = 7k + 7 - 7k - 5$$
$$p^{y} (7 - p^{x-y}) = 2$$

Maka p^y harus merupakan faktor dari 2, maka $p^y = 1$ atau $p^y = 2$.

• Jika $p^y = 1 \iff y = 0$, maka

$$7 - p^{x-y} = 2 \iff p^x = 5$$

sehingga p = 5 dan x = 1. Subtitusikan pada persamaan (2), maka

$$k + 1 = p^y = 5^0 = 1 \iff k = 0$$

Subtitusikan pada persamaan (3), maka

$$p^{z}q = 14k + 9 = 14(0) + 9 = 9 \iff 5^{z}q = 9$$

Jika z>0, maka 5^zq habis dibagi 5 sedangkan 9 tidak habis dibagi 5. Sehingga tidak mungkin. Maka haruslah z=0 yang memberikan q=9. Kontradiksi bahwa q bilangan prima.

• Jika $p^y = 2$, maka p = 2 dan y = 1. Sehingga

$$7 - p^{x-y} = 2 \iff 2^{x-1} = 5$$

yang jelas tidak mungkin.

Maka pada subkasus ini tidak ada pasangan (a, b, p, q) yang memenuhi. Demikian pada kasus ini hanya dipenuhi pasangan (4, 2, 3, 5).

Kasus 3: a = 7k + 6

Subtitusikan pada persamaan, maka

$$(7k+6+1)(7k+6+3)(2[7k+6]+1) = 7p^{b}q$$

$$(7k+7)(7k+9)(14k+12+1) = 7p^{b}q$$

$$7(k+1)(7k+9)(14k+13) = 7p^{b}q$$

$$(k+1)(7k+9)(14k+13) = p^{b}q$$

Maka kemungkinannya

$$\begin{cases} k+1 = p^x q \\ 7k+9 = p^y \\ 14k+13 = p^z \end{cases} \text{ atau } \begin{cases} k+1 = p^x \\ 7k+9 = p^y q \\ 14k+13 = p^z \end{cases} \text{ atau } \begin{cases} k+1 = p^x \\ 7k+9 = p^y \\ 14k+13 = p^z q \end{cases}$$

dengan b = x + y + z dimana x, y, z bilangan bulat tak negatif.

Subkasus 3.1.

Untuk

$$k + 1 = p^x q \tag{1}$$

$$7k + 9 = p^y \tag{2}$$

$$14k + 13 = p^z \tag{3}$$

Tinjau bahwa 14+13>7k+9 sehingga z>y. Eliminasi persamaan (2) dan (3) dengan $2\times(2)-(3)$, maka

$$2p^{y} - p^{z} = 2(7k + 9) - (14k + 13)$$
$$p^{y} (2 - p^{z-y}) = 14k + 18 - 14k - 13$$
$$p^{y} (2 - p^{z-y}) = 5$$

Maka p^y harus merupakan faktor dari 5, demikian $p^y = 1$ atau $p^y = 5$. Namun,

$$p^y = 7k + 9 \ge 7(0) + 9 = 9 \iff p^y \ge 9$$

sehingga tidak mungkin $p^y = 1$ atau $p^y = 5$. Demikian pada subkasus ini tidak ada pasangan (a, b, p, q) yang memenuhi.

Subkasus 3.2.

Untuk

$$k + 1 = p^x \tag{1}$$

$$7k + 9 = p^y q \tag{2}$$

$$14k + 13 = p^z \tag{3}$$

Tinjau bahwa 14k + 13 > k + 1 yang berarti z > x. Eliminasi persamaan (1) dan (3) dengan $14 \times (1) - (3)$, sehingga

$$14p^{x} - p^{z} = 14(k+1) - (14k+13)$$
$$p^{x} (14 - p^{z-x}) = 14k + 14 - 14k - 13$$
$$p^{x} (14 - p^{z-x}) = 1$$

Maka p^x harus merupakan faktor dari 1, sehingga $p^x = 1 \iff x = 0$. Sehingga

$$14 - p^{z-x} = 1 \iff p^z = 13$$

yang berarti p = 13 dan z = 1. Subtitusikan pada persamaan (1), maka

$$k + 1 = p^x = 13^0 = 1 \iff k = 0$$

Subtitusikan pada persamaan (2), maka

$$p^{y}q = 7k + 9 = 7(0) + 9 = 9 \iff 13^{y}q = 9$$

Jika y > 0, maka $13^y q$ habis dibagi 13 sedangkan 9 tidak habis dibagi 13. Maka tidak mungkin $13^y q = 9$. Sehingga y = 0 yang memberikan q = 9. Kontrradiksi bahwa q bilangan prima. **Subkasus 3.3.**

Untuk

$$k + 1 = p^x \tag{1}$$

$$7k + 9 = p^y \tag{2}$$

$$14k + 13 = p^z q (3)$$

Tinjau 7k + 9 > k + 9 sehingga y > x. Eliminasi persamaan (1) dan (2) dengan (2) $- 7 \times (1)$, maka

$$p^{y} - 7p^{x} = 7k + 9 - 7(k + 1)$$
$$p^{x} (p^{y-x} - 7) = 7k + 9 - 7k - 7$$
$$p^{x} (p^{y-x} - 7) = 2$$

Maka p^x harus merupakan faktor dari 2, sehingga $p^x = 1$ atau $p^x = 2$.

• Jika $p^x = 1 \iff x = 0$, maka

$$p^{y-x} - 7 = 2 \iff p^y = 9 = 3^2$$

sehingga p=3 dan y=2. Subtitusikan,

$$k + 1 = p^x = 3^0 = 1 \iff k = 0$$

Subtitusikan pada persamaan (3), maka

$$p^{z}q = 14k + 13 = 14(0) + 13 = 13 \iff 3^{z}q = 13$$

Jika z > 0, maka $3^z q$ habis dibagi 3 sedangkan 13 tidak habis dibagi 3. Maka tidak mungkin $3^z q = 13$. Sehingga harus z = 0 yang memberikan q = 13. Kita dapatkan juga b = x + y + z = 0 + 2 + 0 = 2 dan a = 7k + 6 = 7(0) + 6 = 6. Jadi, (a, b, p, q) = (6, 2, 3, 13). Mudah dicek bahwa pasangan tersebut memenuhi.

• Jika $p^x = 2$ sehingga p = 2 dan x = 1. Sehingga

$$p^{y-x} - 7 = 1 \iff 2^{y-1} = 8 = 2^3$$

sehingga y-1=3 yang berarti y=4. Subtitusikan pada persamaan (1), maka

$$k + 1 = p^x = 2^1 = 2 \iff k = 1$$

Subtitusikan pada persamaan (3), maka

$$p^{z}q = 14k + 13 = 14(1) + 13 = 14 + 13 = 27 \iff 2^{z}q = 27$$

Jika z>0, maka 2^zq habis dibagi 2 sedangkan 27 tidak habis dibagi 2. Maka tidak mungkin $2^zq=27$. Maka haruslah z=0 yang memberikan q=27. Kontradiksi bahwa q bilangan prima.

Maka pada subkasus ini hanya dipenuhi (a, b, p, q) = (6, 2, 3, 13).

Demikian pada kasus ini hanya dipenuhi (a, b, p, q) = (6, 2, 3, 13).

Jadi, semua pasangan bilangan asli (a, b, p, q) yang memenuhi adalah (3, 3, 2, 3), (4, 2, 3, 5), (6, 2, 3, 13).

Solusi Alternatif.

Klaim 2.0.3 —
$$2a(a+1)(a+5)$$
 merupakan kelipatan 6.

Kita akan tinjau dalam modulo 6. Tinjau bahwa $5 \equiv -1 \pmod 6$ yang artinya $a+5 \equiv a-1 \pmod 6$. Maka

$$2a(a+1)(a+5) \equiv 2a(a+1)(a-1) \equiv 2(a-1)a(a+1) \pmod{6}$$

Jika kita perhatikan, bentuk (a-1)a(a+1) merupakan perkalian tiga bilangan bulat berurutan. Artinya, (a-1)a(a+1) akan habis dibagi 3! = 6. Sehingga

$$(a-1)a(a+1) \equiv 0 \pmod{6} \Longrightarrow 2a(a-1)a(a+1) \equiv 0 \pmod{6}$$

Karena

$$7p^bq + 3(a+1)(a-1) = 2a(a+1)(a+5) \equiv 0 \pmod{6}$$

Maka $7p^bq + 3(a+1)(a-1)$ harus habis dibagi 6.

Kasus 1:a bilangan genap

Maka a+1 dan a-1 keduanya merupakan bilangan ganjil. Sehingga 3(a+1)(a-1) merupakan bilangan ganjil. Karena $7p^bq + 3(a+1)(a-1)$ harus bilangan genap, maka $7p^bq$ harus bilangan ganjil.

Karena 2a(a+1)(a+5) kelipatan 6, tentu 2a(a+1)(a+5) juga kelipatan 3. Perhatikan bahwa

$$3(a+1)(a-1) \equiv 0 \pmod{3}$$
 dan $2a(a+1)(a+5) \equiv 0 \pmod{3}$

Maka dengan meninjau persamaan pada soal dalam modulo 3, maka

$$7p^bq + 3(a+1)(a-1) \equiv 2a(a+1)(a+5) \pmod{3} \Longrightarrow 1 \cdot p^bq + 0 \equiv 0 \pmod{3}$$

karena $7 \equiv 1 \pmod{3}$, yang menyimpulkan

$$p^b q \equiv 0 \pmod{3}$$

Demikian p^bq merupakan kelipatan 3. Artinya, salah satu dari p atau q harus kelipatan 3. Maka p=3 atau q=3.

Untuk p = 3. Sederhanakan persamaan soal,

$$2a(a+1)(a+5) = 7 \cdot 3^{b}q + 3(a+1)(a-1)$$

$$2a(a^{2}+6a+5) = 7 \cdot 3^{b}q + 3(a^{2}-1)$$

$$2a^{3}+12a^{2}+10a = 7 \cdot 3^{b}q + 3a^{2}-3$$

$$2a^{3}+9a^{2}+10a+3 = 7 \cdot 3^{b}q$$

$$(a+1)(a+3)(2a+1) = 7 \cdot 3^{b}q$$

Karena a bilangan genap, misalkan a = 2k dengan k bilangan asli. Maka

$$(2k+1)(2k+3)(4k+1) = 7 \cdot 3^b q$$

Notasikan $a \mid b$ dengan b habis dibagi a. Misalkan $2 \mid 4$ dan $4 \mid 12$.

• Misalkan FPB(2k+1, 2k+3) = d. Sehingga $d \mid (2k+1) \text{ dan } d \mid (2k+3)$.

Properti. Jika $x \mid a$ dan $x \mid b$, maka $x \mid (am \pm bn)$ dengan a, m, b, n, x bilangan bulat serta $x \neq 0$.

Karena $d \mid (a+1) \operatorname{dan} d \mid (a+3)$, maka

$$d \mid (2k+1) - (2k+3) = 2k+1-2k-3 \Longrightarrow d \mid -2$$

Karena d > 0, maka haruslah d = 1 atau d = 2. Jika d = 2, maka $d \mid (2k+1)$ yang berarti $2 \mid (2k+1)$. Namun, karena 2k+1 bilangan ganjil, tidak mungkin $2 \mid (2k+1)$. Sehingga d = 2 tidak mungkin. Haruslah d = 1. Artinya karena FPB(2k+1,2k+3) = 1, maka 2k+1 dan 2k+3 tidak memiliki faktor prima yang sama.

• Misalkan FPB(2k+1, 4k+1) = e, maka $e \mid (2k+1) \text{ dan } e \mid (4k+1)$. Maka

$$e \mid 2(2k+1) - (4k+1) = 4k+2-4k-1 \Longrightarrow e \mid 1$$

yang berarti haruslah e = 1. Demikian FPB(2k + 1, 4k + 1) = 1 yang berarti 2k + 1 dan 4k + 1 keduanya tidak memiliki faktor prima yang sama.

• Misalkan FPB(2k+3,4k+1) = f, maka $f \mid (2k+3) \text{ dan } f \mid (4k+1)$. Maka

$$f \mid 2(2k+3) - (4k+1) = 4k+6-4k-1 = 5 \Longrightarrow f \mid 5$$

Demikian f = 1 atau f = 5. Jika f = 5, maka 2k + 3 dan 4k + 1 masing-masing kelipatan 5. Sehingga (2k + 3)(4k + 1) merupakan kelipatan 25. Sehingga karena (2k + 1)(2k + 3)(4k + 1) kelipatan 25 dan

$$(2k+1)(2k+3)(4k+1) = 7 \cdot 3^b a$$

maka $7 \cdot 3^b q$ harus kelipatan 25. Karena FPB(7,25) = 1 dan FPB(7,3) = 1, sehingga haruslah q kelipatan 25. Hal ini tidak mungkin karena q bilangan prima. Demikian haruslah q = 1. Demikian 2k + 3 dan 4k + 1 tidak memiliki faktor prima yang sama.

Demikian bahwa setiap dua bilangan dari 2k+1, 2k+3, 4k+1 tidak memiliki faktor prima yang sama. Sehingga kemungkinannya

$$\left(2k+1,2k+3,4k+1\right) = \left(7,3^{b},q\right), \left(7,q,3^{b}\right), \left(3^{b},7,q\right), \left(3^{b},q,7\right), \left(q,3^{b},7\right), \left(q,7,3^{b}\right)$$

Dengan menyelesaikan semua kemungkinan pasangan tersebut,

• Jika $(2k+1,2k+3,4k+1)=(7,3^b,q),(7,q,3^b)$, maka 2k+1=7 sehingga k=3. Subtitusikan.

$$2k + 3 = 2 \cdot 3 + 3 = 9 = 3^2$$
 dan $4k + 1 = 4 \cdot 3 + 1 = 12 + 1 = 13$

Sehingga hal ini dipenuhi oleh k=3 dengan $3^b=3^2$ dan q=13. Dengan subtitusi pada nilai a kembali, maka

$$a = 2k = 2 \cdot 3 = 6$$

Demikian kita peroleh (a,b,p,q)=(6,2,3,13). Agar lebih meyakinkan, kita dapat cek kembali ke persamaan. Yaitu

$$2 \cdot 6(6+1)(6+5) = 7 \cdot 3^2 \cdot 13 + 3 \cdot 7 \cdot 5 \iff 924 = 819 + 105$$

yang jelas memenuhi.

• Jika $(2k+1,2k+3,4k+1) = (3^b,7,q), (q,7,3^b),$ maka 2k+3=7 sehingga k=2. Subtitusikan,

$$2k+1=2\cdot 2+1=4+1=5$$
 dan $4k+1=4\cdot 2+1=8+1=3^2$

Sehingga hal ini dipenuhi oleh k=3 dengan $3^b=3^2$ dan q=5. Subtitusikan nilai a kembali, maka

$$a = 2k = 2 \cdot 2 = 4$$

Demikian kita peroleh (a, b, p, q) = (4, 2, 3, 5). Agar lebih meyakinkan, kita dapat cek kembali ke persamaan. Yaitu

$$2 \cdot 4(4+1)(4+5) = 7 \cdot 3^2 \cdot 5 + 3 \cdot 5 \cdot 3 \iff 360 = 315 + 45$$

yang jelas memenuhi persamaan.

• Jika $(2k+1, 2k+3, 4k+1) = (q, 3^b, 7), (3^b, q, 7),$ maka 4k+1 = 7 sehingga $k = \frac{6}{4}$, tidak memenuhi.

Demikian untuk a bilangan genap terpenuhi oleh (a,b,p,q)=(6,2,3,13) dan (a,b,p,q)=(4,2,3,5).

Untuk q = 3. Maka

$$(2k+1)(2k+3)(4k+1) = 7 \cdot p^b \cdot 3 = 3 \cdot 7 \cdot p^b$$

Pada bagian sebelumnya, kita telah tinjau bahwa setiap dua bilangan dari 2k + 1, 2k + 3, dan 4k + 1 tidak mungkin memiliki faktor prima yang sama. Tinjau untuk k = 1, maka

$$3 \cdot 7 \cdot p^b = (2 \cdot 1 + 1)(2 \cdot 1 + 3)(4 \cdot 1 + 1) = 3 \cdot 5 \cdot 5$$

yang jelas tidak mungkin karena pada ruas kanan bukan kelipatan 7, sedangkan ruas kiri merupakan kelipatan 7. Sekarang kita perhatikan k > 1. Akibatnya,

$$2k+1 < 2k+3 < 4k+1$$

Demikian dapat kita simpulkan

$$2k+1=3$$
, $2k+3=7$, $4k+1=p^b$

yang jelas tidak dapat terpenuhi secara bersamaan. Demikian untuk hal ini tidak terpenuhi. Sekarang, akan kita pertimbangkan untuk a bilangan ganjil.

Untuk a bilangan ganjil

Maka misalkan a = 2k - 1 dengan k bilangan asli. Maka kita dapatkan bentuk

$$(a+1)(a+3)(2a+1) = 7 \cdot p^b q \iff (2k)(2k+2)(4k-1) = 7 \cdot p^b q$$

yang ekuivalen dengan

$$4k(k+1)(4k-1) = 7 \cdot p^b q$$

Ruas kiri habis dibagi 4, maka ruas kanan juga harus habis dibagi 4. Artinya, $7 \cdot p^b q$ harus bilangan genap. Artinya, ada dari p atau q harus bernilai genap. Karena p dan q prima, maka p=2 atau q=2.

Jika p = 2, maka

$$4k(k+1)(4k-1) = 7 \cdot 2^b q$$

(a). Jika q=2, maka diperoleh

$$4k(k+1)(4k-1) = 7 \cdot 2^b \cdot 2 \iff k(k+1)(4k-1) = 7 \cdot 2^{b-1}$$

- Karena k dan k+1 merupakan dua bilangan bulat berurutan, maka dapat dipastikan FPB(k,k+1)=1.
- Misalkan FPB(k, 4k-1) = d. Maka $d \mid k$ dan $d \mid (4k-1)$. Maka

$$d \mid 4 \cdot k - (4k - 1) = 4k - 4k + 1 \Longrightarrow d \mid 1$$

Maka d = 1 yang artinya FPB(k, 4k - 1) = 1.

• Misalkan FPB(k+1,4k-1)=e. Maka $e\mid (k+1)$ dan $e\mid (4k-1)$. Maka

$$e \mid 4(k+1) - (4k-1) = 4k + 4 - 4k + 1 = 5 \Longrightarrow e \mid 5$$

sehingga e = 1 atau e = 5. Jika e = 5, maka (k + 1) dan (4k - 1) masing-masing habis dibagi 5. Artinya, (k + 1)(4k - 1) akan habis dibagi $5 \cdot 5 = 25$. Artinya,

$$7 \cdot 2^{b-1} = k(k+1)(4k-1)$$

akan habis dibagi 25. Hal ini tidak mungkin karena $7 \cdot 2^{b-1}$ tidak mungkin kelipatan 25. Maka FPB(k+1,4k-1)=1.

Dari ketiga hal diatas, karena FPB dari setiap dua bilangan dari k, k+1, dan 4k-1 adalah 1, maka dapat dipastikan dari kedua bilangan tersebut tidak memiliki faktor prima yang sama. Artinya, k(k+1)(4k-1) setidaknya memiliki 3 faktor prima, sedangkan $7 \cdot 2^{b-1}$ hanya memiliki maksimal 2 faktor prima (memiliki 1 faktor prima ketika b=1). Maka hal ini tidak mungkin.

(b). Jika $b \geq 2$. Maka diperoleh

$$4k(k+1)(4k-1) = 7 \cdot 2^{b}q \iff k(k+1)(4k-1) = 7 \cdot 2^{b-2}q$$

Sedangkan,

$$FPB(k, 4k - 1) = 1$$
 dan $FPB(k, k + 1) = 1$

Sedangkan, FPB(k+1, 4k-1) = 1 atau FPB(k+1, 4k-1) = 5. Jika FPB(k+1, 4k-1) = 5, artinya $5 \mid (k+1)$ dan $5 \mid (4k-1)$. Sehingga (k+1)(4k-1) merupakan kelipatan 25. Artinya,

$$7 \cdot 2^{b-2}q = 4k(k+1)(4k-1)$$

juga harus kelipatan 25, yang berarti $7 \cdot 2^{b-2}q$ kelipatan 25. Tentu hal ini tidak mungkin.

Tinjau untuk FPB(k+1,4k-1)=1. Maka tiap dua bilangan dari k,k+1, dan 4k-1 tidak memiliki faktor prima yang sama. Sehingga haruslah

$$\left(k,k+1,4k-1\right) = \left(7,2^{b-2},q\right), \left(7,q,2^{b-2}\right), \left(q,7,2^{b-2}\right), \left(q,2^{b-2},7\right), \left(2^{b-2},7,q\right), \left(2^{b-2},q,7\right)$$

Dengan mencoba semua kemungkinan tersebut, hanya dipenuhi oleh pasangan

$$(k, k+1, 4k-1) = (2^{b-2}, q, 7) \Longrightarrow k = 2, q = 3, b = 3$$

Subtitusikan ke nilai a,

$$a = 2k - 1 = 2 \cdot 2 - 1 = 4 - 1 = 3$$

Kita dapatkan (a, b, p, q) = (3, 3, 2, 3). Untuk lebih meyakinkan, cek ke persamaan soal:

$$2 \cdot 3 \cdot 4 \cdot 8 = 7 \cdot 2^3 \cdot 3 + 3 \cdot 4 \cdot 2 \iff 192 = 168 + 24$$

yang berarti memenuhi.

Sekarang, kita tinjau untuk q=2. Maka

$$4k(k+1)(4k-1) = 7 \cdot p^b \cdot 2 \iff 2k(k+1)(4k-1) = 7 \cdot p^b$$

Karena 2k(k+1)(4k-1) merupakan bilangan genap, maka harus $7 \cdot p^b$ bilangan genap. Artinya haruslah p=2. Kasus ini telah kita tinjau pada bagian p=2 dan q=2. Dari hal tersebut tidak ada yang memenuhi.

Jadi, semua pasangan bilangan asli (a, b, p, q) yang memenuhi adalah (3, 3, 2, 3), (4, 2, 3, 5), (6, 2, 3, 13)

Hasil Babak Penyisihan dan Babak Final

Hasil Babak Final

Rank	Nama Lengkap	Asal Sekolah	Poin
1	Ethan Anderson	SMP Petra 1	42
2	Amara Khairunnisa D	SMPN 1 Bogor	39
3	Rafael Feng	SMPK INDRA PRASTHA	38
4	Muhammad Adi Brata Tata Negoro Saputra	MTsN 2 Kota Kediri	27
5	Sherwyn Khosim	SMP DARMA YUDHA	24
6	Galih Nur Rizqy	SMPI Al Azhar 11 Serang	21
7	Audrey Felicity Hadi Siswoyo	SMPK Bhara Widya Lumajang	15
8	Mochammad Rigan Haryono	SMPN 1 BONDOWOSO	12
9	Khairul Umam	MTsN 1 Pekanbaru	-
10	Ade Aris	SMPN 1 BAREGBEG	-

Pentatic Mathematics Competition X

Babak Penyisihan

20 Desember 2020

Pilihan Ganda (PG): Benar (B) = +2, Salah (S) = -1, Kosong (K) = 0

Isian Singkat (IS): Benar (B) = +7, Salah (S) = 0, Kosong (K) = 0

Peraih medali emas (peringkat 1 sampai 10) akan mengikuti babak final pada hari Minggu, 27 Desember 2020 dan diharapkan melakukan konfirmasi pada nomor WA 081883410657 paling lambat hari Kamis, 23 Desember 2020 pukul 17:00 WIB.

Nilai yang sama diurutkan berdasarkan kelas, kemudian tanggal lahir, kemudian berdasarkan pengumpulan tercepat.

No	Nome	Tanggal	Acal Calcalah	Volos	Drovinsi		PG			IS		Total	Association
No.	Nama	Lahir	Asal Sekolah	Kelas	Provinsi	В	S	K	В	S	K	Total	Award
1	Amara Khairunnisa D	17/11/2005	SMPN 1 Bogor	3 SMP	Jawa Barat	27	1	2	7	3	0	102	Emas
2	Galih Nur Rizqy	22/03/2005	SMPI Al Azhar 11 Serang	3 SMP	Banten	29	1	0	6	2	2	99	Emas
3	Muhammad Adi Brata Tata Negoro Saputra	07/08/2006	MTsN 2 Kota Kediri	3 SMP	Jawa Timur	24	2	4	7	3	0	95	Emas
4	RAFAEL FENG	17/12/2006	SMPK INDRA PRASTHA	2 SMP	JAWA TIMUR	27	3	0	5	5	0	86	Emas
5	Ethan Anderson	16/12/2007	SMP Petra 1	2 SMP	Jawa Timur	23	3	4	6	0	4	85	Emas
6	Audrey Felicity Hadi Siswoyo	21/10/2007	SMPK Bhara Widya Lumajang	1 SMP	Jawa Timur	25	1	4	5	4	1	84	Emas
7	Mochammad Rigan Haryono	06/05/2007	SMPN 1 BONDOWOSO	1 SMP	Jawa Timur	25	1	4	5	2	3	84	Emas
8	Sherwyn Khosim	09/09/2006	SMP DARMA YUDHA	3 SMP	Riau	20	4	5	6	4	0	78	Emas
9	Ade Aris	30/12/2007	SMPN 1 BAREGBEG	1 SMP	Jawa Barat	20	1	9	5	5	0	74	Emas
10	Khairul Umam	16/07/2005	MTsN 1 Pekanbaru	3 SMP	Riau	23	2	5	4	6	0	72	Emas
11	Halaawah Bilqis Athifah	24/07/2007	SMPIT At Taufiq Depok	2 SMP	Jawa Barat	20	4	6	5	3	2	71	Perak
12	Muhammad Irfan Rabbani	02/08/2005	SMP Negeri 3 Luwuk	3 SMP	Sulawesi Tengah	22	3	5	4	6	0	69	Perak

13	Faiq Nururrahman Hutrindo	18/02/2012	SDIT At Taufiq Depok	3 SD	Jawa Barat	18	3	9	5	1	4	68	Perak
14	Luqman Abdul Wahid	15/01/2006	MTsN 31 JAKARTA	3 SMP	DKI Jakarta	23	1	6	3	1	6	66	Perak
15	Carlisia Brindy Nugraha	05/03/2008	SMP Pius Tegal	1 SMP	Jawa Tengah	15	4	11	5	0	5	61	Perak
16	ZAHRA NADZIRA CAHYONO	28/08/2007	SMPN 2 JEMBER	2 SMP	JAWA TIMUR	23	6	1	3	3	4	61	Perak
17	putu wahyu satya wiryatama	03/07/2007	SMPN 10 DPS	2 SMP	BALI	16	4	10	4	4	2	56	Perak
18	Frederick Kamsono	27/04/2006	SMPN 1 Tapaktuan	3 SMP	Aceh	15	2	13	4	2	4	56	Perak
19	Wandy Lim	25/04/2006	SMP Unggul Sakti Jambi	3 SMP	Jambi	19	3	8	3	7	0	56	Perak
20	Noxvieta Itsary Gikasha	12/02/2006	SMP UNGGULAN AL-YA'LU	2 SMP	Jawa Timur	19	5	5	3	7	0	54	Perak
21	Jayden	01/02/2008	IPTO	1 SMP	Jakarta	17	2	11	3	1	6	53	Perak
22	Angelika Mulia	07/02/2007	SMP UNGGULAN AL-YA'LU	1 SMP	Jawa Timur	19	6	4	3	7	0	53	Perak
23	Benedict Aurelius Tjia	11/11/2006	SMP Manado Independent School	3 SMP	Sulawesi Utara	19	6	5	3	7	0	53	Perak
24	PUSPA INDAH KENCANA	16/02/2006	SMP UNGGULAN AL-YA'LU	3 SMP	JAWA TIMUR	22	8	0	2	8	0	50	Perak
25	Moses Markhesywan Ganda Ribowo	20/11/2009	SDN 2 GENTENG	5 SD	Jawa Timur	18	8	4	3	4	3	49	Perak
26	Sukma Permata Hati	11/03/2006	SMP UNGGULAN AL-YA'LU	2 SMP	Jawa Timur	17	6	6	3	7	0	49	Perunggu
27	Surya Adjie Utama	11/02/2006	SMP Negeri 1 Rawalo	3 SMP	Jawa Tengah	18	12	0	3	5	2	45	Perunggu
28	Valexa Hafsah Ghaisani	17/06/2006	Smpn 2 Pandaan	2 SMP	Jawa Timur	14	5	11	3	3	4	44	Perunggu
29	Esther Gloria Abigail Mamesah	01/02/2008	SMPN 2 Depok	1 SMP	Jawa Barat	16	3	11	2	1	7	43	Perunggu
30	Victoryo Tanaka	24/11/2006	Riau	3 SMP	Riau	12	3	15	3	7	0	42	Perunggu
31	Gustav Ian Setiabudi	01/08/2006	SMPK Plus Penabur Cirebon	3 SMP	Jawa Barat	16	5	9	2	2	6	41	Perunggu
32	Muhammad Rayhan Khayru Amri	06/02/2006	MTs Kafila	3 SMP	DKI Jakarta	15	3	12	2	0	8	41	Perunggu
33	Vhiolita almira sandionova	22/01/2008	SD Al- irsyad Al-islamiyyah jember	6 SD	Jawa Timur	18	3	9	1	2	7	40	Perunggu
34	MUHAMMAD ARKANANTA PUTRA	05/06/2008	SMPN 2 JEMBER	1 SMP	JAWA TIMUR	14	2	14	2	1	7	40	Perunggu
35	NADIAR ALYA DZAKIRA PUTRI SARTONO	20/12/2020	SMPN 1 NGORO MOJOKERTO	2 SMP	JAWA TIMUR	15	4	11	2	8	0	40	Perunggu
36	IIN RAHIMA	09/06/2009	SDN 2 GENENG JEPARA	6 SD	JAWA TENGAH	14	4	12	2	0	8	38	Perunggu

37	ARKASSYA SABRINA ATHAYA ALTHAF	12/12/2007	SMPN 3 JEMBER	1 SMP	JAWA TIMUR	13	2	15	2	8	0	38	Perunggu
38	Arseneo Fawwaz Bevin Sanfa	31/10/2007	SMPN 115 JAKARTA	1 SMP	DKI JAKARTA	13	2	15	2	0	8	38	Perunggu
39	Muhammad Aldo	31/03/2006	SMPN 1 MUARA ENIM	3 SMP	SUMATERA SELATAN	13	4	13	2	0	8	36	Perunggu
40	Hayyan Ahmad Al Ghifary	24/02/2007	MTsN 4 Jakarta	2 SMP	Jakarta	16	5	9	1	2	7	34	Perunggu
41	Ilham Ghozali	03/03/2006	Mtsn 1 surakarta	3 SMP	Jawa Tengah	16	5	9	1	4	5	34	Perunggu
42	Hakan Ghaisani Izyan Rabar Muhammad	07/10/2008	SD Muhammadiyah 21 Surabaya	6 SD	Jawa Timur	12	5	13	2	0	8	33	Perunggu
43	NABILA FACHRUNNISA HIDAYAT	30/08/2006	SMP AL HIKMAH SBY	3 SMP	JAWA TIMUR	14	16	0	3	7	0	33	Perunggu
44	Anthony Tjandra Santoso	25/04/2006	SMP UNIVERSAL DENPASAR	3 SMP	Bali	9	6	15	3	7	0	33	Perunggu
45	Angel Susanto	17/08/2009	SD Xaverius 2	6 SD	Sumatera Selatan	16	14	0	2	0	8	32	Perunggu
46	DIMAS ANUGRAH DEWA SYAH PUTRA	14/09/2006	MTsN 3 Pasuruan	2 SMP	Jawa Timur	14	5	11	1	3	6	30	Merit
47	KHOIRUNNISA' INAYAH SYAFIQOH	02/10/2007	SMPN 1 BONDOWOSO	2 SMP	JAWA TIMUR	11	8	11	2	8	0	28	Merit
48	LIVIO HARDI	05/03/2007	SMPN 1 Tanjung Redeb	2 SMP	Kalimantan Timur	11	8	11	2	8	0	28	Merit
49	Azhar Maulana	24/12/2006	SMPN 1 Karangsambung	3 SMP	Jawa Tengah	8	2	20	2	0	8	28	Merit
50	Dominique Samantha Suniadji	16/12/2006	Binus School Bekasi	3 SMP	Jawa Barat	12	3	15	1	0	9	28	Merit
51	Aisyawa Azzahra	21/06/2005	SMP N 2 KEBONAGUNG	3 SMP	Jawa Timur	12	11	7	2	3	5	27	Merit
52	Michael Archangel Susanto Yang	10/10/2011	SD Xaverius 2 Palembang	4 SD	Sumatera Selatan	16	14	0	1	1	8	25	Merit
53	Michelle Veronica Susanto	20/08/2009	SD Xaverius 2 Palembang	6 SD	Sumatera Selatan	16	14	0	1	1	8	25	Merit
54	Edellouisa Josephin	17/01/2006	SMPN 2 Depok	3 SMP	Jawa Barat	15	13	2	1	9	0	24	Merit
55	Viko Fazani	28/09/2009	SDN BEJI 6 DEPOK	5 SD	Jawa Barat	9	2	19	1	0	9	23	Merit
56	Keisha Namira Aqueena	30/10/2008	SMPN 1 Bogor	1 SMP	Jawa Barat	10	4	16	1	5	4	23	Merit
57	NI'MATUL AZIZAH	06/01/2007	MTsN 1 JEPARA	2 SMP	JAWA TENGAH	8	7	15	2	0	8	23	Merit

58	Deanthio Abel Josephin	18/05/2008	SMPN 2 Depok	1 SMP	Jawa Barat	11	10	9	1	2	7	19	Merit
59	Neisha Calya M	28/06/2008	SDN Beji 6 Depok	6 SD	Jawa Barat	6	1	23	1	-1	8	18	Merit
60	SYALSA MUTIARA HABIB PUTRI	18/05/2006	SMP NEGERI 1 LANGKAPLANCAR	3 SMP	JAWA BARAT	16	14	0	0	10	0	18	Merit
61	Lyonel indra suyitno	30/08/2010	Sd santa lorent	5 SD	Jawa timur	6	2	22	1	0	9	17	Merit
62	RIZKY ACHMAD PRAMA FANTRI	30/12/2007	SMP 1 LAMONGAN	1 SMP	JAWA TIMUR	13	17	0	1	6	3	16	Merit
63	RENATA CECILIA BR SIRAIT	10/11/2006	SMPN 3 MEDAN	3 SMP	SUMATERA UTARA	10	4	16	0	0	10	16	Merit
64	MUHAMMAD GHIFARI AL DAVI	12/05/2009	SDIT RABBANI BONE	6 SD	SULAWESI SELATAN	7	6	17	1	0	9	15	Merit
65	I Kadek Yudi Agus Pratama	30/08/2007	SMP Negeri 1 Singaraja	1 SMP	Bali	4	0	26	1	0	9	15	Merit
66	Asla Desvira Zalfa	29/12/2020	SMP Negeri 1 Cibinong	1 SMP	Jawa Barat	14	13	3	0	0	10	15	Merit
67	Rafe	10/03/2005	SMPN 2 Sukoharjo	3 SMP	Sukoharjo	11	7	12	0	10	0	15	Merit
68	Keyna Anindya	14/08/2010	SDN Malaka Jaya 08 Jakarta Timur	4 SD	DKI Jakarta	4	1	25	1	9	0	14	Merit
69	Nia Anggraini	02/05/2020	SMPN 5 Depok	3 SMP	Jawa Barat	5	3	22	1	9	0	14	Merit
70	ATMIM NURONA	12/12/2006	MTs Darul Ulum Bandungharjo	3 SMP	Jawa Tengah	7	7	16	1	6	3	14	Merit
71	Naila Rosyada Wahyudi	28/05/2009	MI At - Taqwa Bondowoso	5 SD	Jawa Timur	3	0	27	1	0	9	13	Peserta
72	madika gagas nagara	15/08/2006	SMP UNGGULAN AL-YA'LU	2 SMP	jawa timur	4	2	24	1	0	9	13	Peserta
73	Zhilaalin Zahra Khoirunnisa	08/01/2006	SMP N 1 Ungaran	3 SMP	Jawa Tengah	12	18	0	1	9	0	13	Peserta
74	ARZY SEPTYAN RAMADHAN	28/09/2008	MTsN 1 PEKANBARU	1 SMP	RIAU	10	9	11	0	10	0	11	Peserta
75	YEHEZKIEL SARAGIH	14/08/2007	SMPN 13 TANGERANG	2 SMP	BANTEN	12	13	5	0	10	0	11	Peserta
76	Mahsa Sofyan	07/09/2006	SMPN 34 PADANG	3 SMP	SUMATERA BARAT	6	1	23	0	0	10	11	Peserta
77	Dominick Steven Tlono	05/06/2010	Pelita Cemerlang School	5 SD	Kalimantan Barat	11	19	0	1	9	0	10	Peserta
78	Almira Shafa Maulida	26/02/2010	SDN Beji 6 Depok	5 SD	Jawa Barat	7	4	19	0	1	9	10	Peserta
79	MONALISA WIRAWAN	02/05/2004	SMPN 1 PURWOSARI	3 SMP	JAWA TIMUR	6	9	15	1	9	0	10	Peserta
80	SEKAR GUMILANG	25/02/2005	SMP NEGERI 27 JAKARTA	3 SMP	DKI JAKARTA	11	19	0	1	9	0	10	Peserta
81	Gibra Raka Ramadhani	09/04/2008	SMPN 1 BALEENDAH	1 SMP	JAWA BARAT	6	10	14		9	0	9	Peserta

82	ARINIL HAQQO	09/02/2007	MTs. Roudlotul Muta'abbidin	3 SMP	Jawa Timur	1	8	21	2	8	0	8	Peserta
83	DEJIS DWI DAMAYANTI	04/02/2005	MTsN 7 Nganjuk	3 SMP	Jawa Timur	6	4	20	0	3	7	8	Peserta
84	Aqsa Dwija Hearlangga	15/03/2014	SDN BLARAN	1 SD	Jawa Timur	10	20	0	1	9	0	7	Peserta
85	kian muhammad rabbani.H	04/07/2010	sdn depok baru 2	5 SD	depok	4	8	18	1	1	8	7	Peserta
86	Muh naufal adz dzaki syam	30/12/2009	SDIT AR-RAHMAH	6 SD	Sulawesi selatan	6	5	19	0	5	5	7	Peserta
87	fairuz chairunnisa chandrani	08/06/2007	smpit at-taufiq	2 SMP	jawa barat	3	13	14	2	8	0	7	Peserta
89	Edwin Dugery	21/10/2006	SMP Pelita	3 SMP	Jakarta Barat	1	2	27	1	1	8	7	Peserta
90	Ernest Laurencius	07/02/2010	SDN Beji 6 Depok	5 SD	Jawa Barat	5	11	14	1	1	8	6	Peserta
91	M.Nashwan.Arshq.A	01/08/2009	SDN Ngronggo 4	6 SD	Jawa Timur	6	7	17	0	0	10	5	Peserta
92	Daris Hilmy Widayat	20/12/2020	MTsN 4 Jakarta	1 SMP	Jawa Barat	9	20	1	1	0	9	5	Peserta
93	Firdasari Kusuma	20/12/2020	SMPN 2 DEPOK	1 SMP	JAWA BARAT	3	1	26	0	0	10	5	Peserta
94	Areta shabirah layyina	15/01/2007	SMP Maarif NU Pandaan	2 SMP	Jawa Timur	6	7	17	0	3	7	5	Peserta
95	Dhini Septya Ramadhani	26/09/2007	SMPN 58 SURABAYA	1 SMP	JAWA TIMUR	9	21	0	1	9	0	4	Peserta
96	Andes Nainggolan	27/12/2020	SMP negeri 2 pegagan hilir	3 SMP	Sumatera Utara	9	21	0	1	9	0	4	Peserta
97	Naila Hawa Dina	21/03/2006	SMPIT At-Taufiq	2 SMP	Jawa Barat	2	8	20	1	9	0	3	Peserta
98	DITA DWI DAMAYANTI	04/02/2005	MTSN 7 Nganjuk	3 SMP	Jawa Timur	4	5	21	0	3	7	3	Peserta
99	Fawwaz Mifjal Andarya	20/10/2010	SDN Cibatok 03	4 SD	Jawa Barat	1	0	29	0	0	10	2	Peserta
100	Fathan Aminullah	27/01/2007	SMP UNGGULAN AL-YA'LU	1 SMP	JAWA TIMUR	4	13	13	1	1	8	2	Peserta
101	Azzahra Nike Dwi Ramadhani	09/10/2006	SMP MAARIF NU PANDAAN	2 SMP	Jawa Timur	4	6	20	0	2	8	2	Peserta
102	Angelina Wardani	12/11/2006	SMPN 5 Kota Blitar	2 SMP	Jawa Timur	4	6	20	0	0	10	2	Peserta
103	SAFINA DWI YANTI	03/06/2007	SMP NEGERI 1 PUGER	2 SMP	JAWA TIMUR	8	22	0	1	6	3	1	Peserta
104	EVITA NUR ANGGRAINI	09/09/2006	MTSN 3 KOTA KEDIRI	2 SMP	JAWA TIMUR	10	20	0	0	0	10	0	Peserta
105	RABIAH AL ADAWIYAH	24/08/2005	MTsN 3 Bogor	3 SMP	Jawa Barat	10	20	0	0	10	0	0	Peserta
106	Arif Hidayat	12/02/2001	MTs Al Ikhlas	3 SMP	Kalimantan Timur	10	20	0	0	10	0	0	Peserta
107	Ulfa Fadila	07/07/2007	SMP NEGERI 2 BANJARNEGARA	2 SMP	Jawa Tengah	8	17	5	0	10	0	-1	Peserta
108	Fauzia Putri Alyssa	10/02/2007	SMPN 1 Painan	2 SMP	Sumatera Barat	7	23	0	1	9	0	-2	Peserta

109	MUHAMMAD ANDI RIZQI	05/09/2006	SMP NEGERI 11 BALIKPAPAN	2 SMP	KALIMANTAN TIMUR	7	23	0	1	9	0	-2	Peserta
110	NAWANG KHARISMA	08/06/2007	SMP NEGERI 2 SRAGEN	2 SMP	JAWA TENGAH	9	21	0	0	10	0	-3	Peserta
111	SHERLINIA DELA ALVIA	31/10/2006	SMP NEGERI 5 NGAWI	2 SMP	JAWA TIMUR	0	3	27	0	10	0	-3	Peserta
112	ZAKILA ANGELINA YAHYA	20/06/2006	SMP PGRI 9 SIDOARJO	2 SMP	JAWA TIMUR	9	21	0	0	10	0	-3	Peserta
113	Asep Rizal Nugraha	27/06/2006	SMP Negeri 1 Lakbok	3 SMP	Jawa Barat	9	21	0	0	10	0	-3	Peserta
114	Maribel Erlina Panjaitan	09/01/2006	SMP Santo Markus II	3 SMP	Jawa barat	9	21	0	0	1	9	-3	Peserta
115	NENGAH WIRYANTINI	02/01/2007	SMP NEGERI 1 KUBUTAMBAHAN	2 SMP	BALI	8	22	0	0	10	0	-6	Peserta
116	Angelica ceu	23/01/2006	SMP PELITA	3 SMP	DKI JAKARTA	8	22	0	0	9	1	-6	Peserta
117	Azkilla Asshayna P.W.	15/05/2008	SMPIT AL-IRSYAD AL- ISLAMIYYAH KARAWANG	1 SMP	Jawa barat	7	21	2	0	1	9	-7	Peserta
118	Lili Apriliani	14/04/2007	SMPN 2 Kutasari	2 SMP	Jawa Tengah	7	23	0	0	10	0	-9	Peserta
119	Irlan hadi	20/10/2005	SMPN 1 BAYAN	3 SMP	Nusa Tenggara Barat	7	23	0	0	10	0	-9	Peserta
120	Giofani Vinsensia Simarmata	24/11/2004	SMPN 1 Pangururan	3 SMP	Sumatra utara	7	23	0	0	10	0	-9	Peserta
121	ICHA SUCI RAMADANI	13/10/2006	SMP N 2 SRAGEN	2 SMP	Jawa Tengah	6	24	0	0	10	0	-12	Peserta
122	FIKRI DWI NOVIANTO	05/11/2005	SMPN 1 LAKBOK	3 SMP	JAWA BARAT	6	24	0	0	10	0	-12	Peserta
123	Nun Zalzabila	24/01/2007	MTs NS Wanasaba	2 SMP	Nusa Tenggara Barat	3	26	1	1	7	2	-13	Peserta
124	AYU MAGDALENA PANGARIBUAN	13/08/2006	SMP NEGERI 4 LAGUBOTI	3 SMP	SUMATERA UTARA	4	26	0	0	10	0	-18	Peserta
125	A. Nur Izzah B.	-	SMPIT Wahdah Islamiyah Putri Makassar	3 SMP	Suawesi Selatan	-	-	-	-	-	-	-	TM
126	Agus hermawan lumban gaol	-	Smp negeri 2 pegagan hilir	3 SMP	Sumatera utara	-	-	-	-	-	-	-	TM
127	Ahmad Sopian	-	MTs Wanasari	3 SMP	Jawa Barat	-	-	-	-	_	-	-	TM
128	Alifiyah Azzahrah Efendi	-	SMP Negeri 1 GIRI	3 SMP	Jawa Timur	-	-	-	_	-	-	-	TM
129	AMEL GALUH LUKHITA	-	MTs ABADIYAH	2 SMP	JAWA TENGAH	-	-	-	-	-	-	-	TM

130	Anak Agung Bagus Esa Ananta Weda	-	SMPN 4 Denpasar	2 SMP	Bali	-	-	-	-	-	-	-	TM
131	Angel Zevania Zega	-	SDN Ononamolo	4 SD	Sumatera Utara	-	-	-	-	-	-	-	TM
132	Angelika Febriyanti	-	SMP NEGERI 2 CILACAP	3 SMP	Jawa Tengah	-	-	-	-	1	-	-	TM
133	Arofah Arfaadalbar Rowasiya	-	SMP N 1 LASEM	3 SMP	Jawa tengah	-	-	-	-	-	-	-	TM
134	Askia Islamia	-	SMPN 2 CIMENYAN	1 SMP	Jawa Barat	-	-	-	-	-	-	-	TM
135	Ayu Carissa Putri	-	Sd 180 Pekanbaru	6 SD	Riau	-	-	-	-	-	-	-	TM
136	Ben Robinson	-	SMP PETRA 1	2 SMP	Jawa Timur	-	-	-	-	-	-	-	TM
137	Bunga Reza Amelia	-	MTSN 4 MALANG	1 SMP	Jawa Timur	-	-	-	-	-	-	-	TM
138	DENIS DWI DAMAYANTI	-	MTsN 7 Nganjuk	3 SMP	Jawa timur	-	-	-	-	1	-	-	TM
139	Dinda Wening Galih	-	SMPN 3 Tambun Utara	3 SMP	Jawa barat	-	-	-	-	-	-	-	TM
140	Farel Zakwan Andarya	-	SMPN 1 Cibungbulang	3 SMP	Jawa Barat	-	-	-	-	-	-	-	TM
141	Farras Ghani Boryenka	-	SMPN 1 Bogor	2 SMP	Jawa Barat	-	-	-	-	1	-	-	TM
142	Farraskanz Algibra Rachmat	-	MTsN 12 Jakarta	3 SMP	Jakarta barat	-	-	-	-	-	-	-	TM
143	Ferdi Wibowo	-	SMPN 2 LAWANG KIDUL	3 SMP	Sumsel	-	-	-	-	-	-	-	TM
144	Firdaus Ayala	-	SMPN 12 TANGERANG	2 SMP	Banten	-	-	-	-	-	-	-	TM
145	Fransiska yosabel	-	SMP N 1 Simangambat	3 SMP	Sumatera utara	-	-	-	-	-	-	-	TM
146	Haifa Aurora Hapsari	-	SD Islam Al-Azhar 23 Jatikramat	3 SD	Jawa barat	-	-	-	-	-	-	-	TM
147	Harimatul fauza hendrinov	-	MTSn 32 jakarta	1 SMP	Dki jakarta	-	-	-	-	-	-	-	TM
148	Hasha Apsarini Sakhi	-	SMP Islam Al-Azhar 8 KP	1 SMP	Jawa barat	-	-	-	-	-	-	-	TM
149	Iren Putri Grecia Zega	-	SMP N 5 GUNUNGSITOLI	1 SMP	Sumatera Utara	-	-	-	-	-	-	-	TM
150	Irhajawsa		SDN 1 ANYAR	5 SD	NTB	-	-	-	-	-	-	-	TM
151	Josua Blater L Rambe	-	SMPN 2 Rantau Utara	3 SMP	Sumatera Utara	-	-	-	-	-	-	-	TM
152	Justin Sepvian	-	SMP Kristen Kalam Kudus Pematangsiantar	2 SMP	Sumatera Utara	-	-	_	-	-	_	-	TM
153	Khadija Maryam Fathima Al Hiththa	-	SMPN 02 Jember	3 SMP	Jawa Timur	-	-	-	-	-	-	-	TM
154	Komang Intan Purnamayanti	-	SMPN 5 Singaraja	2 SMP	Bali	-	-	-	-	-	-	-	TM
155	Made Sadhu Sangananda	-	SD CIPTA DHARMA DENPASAR	6 SD	Bali	-	-	-	-	-	-	-	TM

156	Mazaya Allessya K	-	SDN Beji 6	6 SD	Depok	-	-	-	-	-	-	-	TM
157	Moh. Danish Dhiya Anam	-	MTsN 1 Pemalang	3 SMP	Jawa Tengah	-	-	-	-	-	-	-	TM
158	Muh Dzaky Abdurrahman	-	Mu'adz Bin Jabal	3 SMP	Sulawesi tenggara	-	-	-	-	-	-	-	TM
159	Muhammad Aldy rizky hutagalung	-	SMP IT KHALISHATURRAHMI	3 SMP	Sumatera Utara	-	-	-	-	-	-	-	TM
160	Muhammad Mirza Achmid Muchtar	-	SDN Serang 3	4 SD	Banten	-	-	-	-	-	-	-	TM
161	MUSTOFA HARIS MAULANA	-	MI PLUS BAHRUL ULUM	4 SD	JAWA TIMUR	-	-	-	-	-	-	-	TM
162	Nabila Pasmalia	-	SMP NEGERI 3 PALEMBANG	2 SMP	SUMATERA SELATAN	-	-	-	-	-	-	-	TM
163	NABILLA SEVIRA ENDAH PRASTIWI	-	SMPN 1 NGORO MOJOKERTO	2 SMP	Jawa Timur	-	-	-	-	-	-	-	TM
164	Naraya Putri Hatmopranoto	-	SDN Beji 6 Depok	3 SD	Jawa Barat	-	-	-	-	-	-	-	TM
165	Naufal Daffa Efendi	-	SD Negeri Model	3 SD	Jawa Timur	-	-	-	-	-	-	-	TM
166	NAUVAL AL ARIQ	-	SDN 95 MUARA BUNGO	5 SD	JAMBI	-	-	-	-	-	-	-	TM
167	Nayara Rizki Kamila	-	SMPN 20 Depok	2 SMP	Jawa Barat	-	-	-	-	-	-	-	TM
168	NAZWA NATANIA	-	SMP MUHAMMADIYAH 12 GKB GRESIK	3 SMP	JAWA TIMUR	-	-	-	-	-	-	-	TM
169	Ni Made Anggita Ary K.	-	SMPN 6 SURABAYA	3 SMP	Jawa timur	-	-	-	T -	-	-	-	TM
170	Nur Laila Dewi	-	Madrasah ibtidaiyah negri 2	4 SD	Samarinda	-	-	-	-	-	-	-	TM
171	PUTU DIVA WISNA	-	SMP NEGERI 1 SINGARAJA	3 SMP	Bali	-	-	-	-	-	-	-	TM
172	RAFEYFA ASYLA	-	MTSN 2 PRINGSEWU	3 SMP	Lampung	-	-	-	T -	-	-	-	TM
173	Raffasya Rasendrya Parviz	-	SMPN 1 Pamekasan	2 SMP	Jawa Timur	-	-	-	-	-	-	-	TM
174	Raihana Bunga Syareefa Setiawan	-	SMPUT Darul Quran Mulia	3 SMP	DKI Jakarta	-	-	-	-	-	-	-	TM
175	Romwell JS Purba	-	SMPN 41 Jakarta	3 SMP	Jawa barat	-	-	-	-	-	-	-	TM
176	Smart Titan Hawayun'Ilmi	-	MTs Hidayatul Muwaffiq	2 SMP	Jawa Timur	-	-	-	-	-	-	-	TM
177	SUTAN DAIYAN RAIFA ZAYDAN ALTAF	-	SDIT HARAPAN UMAT JEMBER	6 SD	JAWA TIMUR	-	-	-	-	_	-	-	TM
178	Vila Santamanik Membalik	-	SMPN 1 Buntao', Toraja Utara	1 SMP	Sulawesi Selatan	-	-	-	-	-	_	_	TM

179	Widyah nur romadani	-	SMPN 1 JUMAPOLO	3 SMP	Jawa tengah	-	-	-	-	-	-	-	TM
180	Wiparinee Hemsakul	1	SMP Tirta Marta BPK Penabur	1 SMP	DKI Jakarta	-	-	-	-	-	-	-	TM
181	Zakiyyah Abidah	1	Smpit yapidh bekasi jati luhur	1 SMP	Bogor	-	-	-	-	-	-	-	TM
182	Zaku zhafran pane	-	Mtsn 2 bukittinggi	2 SMP	Sumatera Barat	_	-	-	_	_		-	TM

Penyelenggara

Wildan Bagus Wicaksono