





|                                  | Comparing ML models (i |              |                        |                                 |
|----------------------------------|------------------------|--------------|------------------------|---------------------------------|
| Comparing different ML<br>models |                        |              |                        |                                 |
| Algorithm                        | Parametrization        | Memory size  | Data quantity required | Overfitting risk                |
| Linear Regression                | Simple                 | Small ~      | Small ~                | None (excluding regularization) |
| Logistic Regression              | Simple                 | Small ~      | Small ~                | None (excluding regularization) |
| KNN                              | Strong                 | Small ~      | Small v                | Minimal                         |
| Decision Trees                   | Simple/Intuitive       | Large ~      | Large v                | Some                            |
| Random Forests                   | Simple/Intuitive       | Very large ~ | Large v                | Some                            |

## Performance metrics of ML models

In a context of a binary classification, here are the main metrics that are important to track to assess the performance of the model.

Confusion matrix – The confusion matrix is used to have a more complete picture when assessing the performance of a model. It is defined as follows:

|              |   | Fredicted class                 |                                  |
|--------------|---|---------------------------------|----------------------------------|
|              |   | +                               | _                                |
| Actual class | + | TP True Positives               | FN False Negatives Type II error |
|              | - | FP False Positives Type I error | TN True Negatives                |

□ AUC - The area under the receiving operating curve, also noted AUC or AUROC, is the area below the ROC as shown in the following figure:



| Metric                | Formula                                                                                   | Interpretation                              |
|-----------------------|-------------------------------------------------------------------------------------------|---------------------------------------------|
| Accuracy              | $\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$ | Overall performance of model                |
| Precision             | $\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$                                           | How accurate the positive predictions are   |
| Recall<br>Sensitivity | $\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$                                           | Coverage of actual positive sample          |
| Specificity           | $\frac{\mathrm{TN}}{\mathrm{TN} + \mathrm{FP}}$                                           | Coverage of actual negative sample          |
| F1 score              | $\frac{2\text{TP}}{2\text{TP} + \text{FP} + \text{FN}}$                                   | Hybrid metric useful for unbalanced classes |

Different versions of models, benchmarks and training/validation and testing experiments can be tracked, logged and set for production using MLOps in MLflow framework for example

## MLFlow main use cases

|                                                                                                                       | Log                                                                                                                               | Load                                                                                  |  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| log_param Log a parameter under the current run                                                                       | mlflow.log_param("learning_rate", 0.01)                                                                                           | run_id = '5f871c4f04e04dc295f5c77' mlflow.get run(run id=f'{run_id}').                |  |
| log_params Logs multiple params under the current run  mlflow.log_params({"learning_rate", 0.01, "n_estimators": 10}) |                                                                                                                                   | to_dictionary()['data']['params']                                                     |  |
| log_metric Log a metric under the current run                                                                         | mlflow.log_metric("mse", 2500.00)                                                                                                 | run_id = '5f871c4f04e04dc295f5c77'                                                    |  |
| log_metrics Logs multiple metrics under the current run                                                               | mlflow.log_metrics({"mse": 2500.00, "rmse": 50.00})                                                                               | <pre>mlflow.get_run(run_id=f'{run_id}').      to_dictionary()['data']['metrics]</pre> |  |
| Log_artifact Log a local file as an artifact of the current run                                                       | mlflow.log_artifact("features.txt")                                                                                               | N/A                                                                                   |  |
| log_artifact: Log contents of a local folder as artifacts of the current run                                          | mlflow.log artifacts("demo",                                                                                                      | N/A                                                                                   |  |
| Log_dict Log a JSON/YAML- serializable object as an artifact                                                          | <pre>mlflow.log_dict({"k": "v"}, "data.json")</pre>                                                                               | mlflow.artifacts.load_dict( 'runs:/5f871c4f04e04dc295f5c77/data.json')                |  |
| log_text Log text as an artifact                                                                                      | mlflow.log_text("text1", "file1.txt")                                                                                             | mlflow.artifacts.load_text( 'runs:/5f871c4f04e04dc295f5c77/file1.txt')                |  |
| log_figure Log a figure as an artifact                                                                                | <pre>import matplotlib.pyplot as plt  fig, ax = plt.subplots() ax.plot([0, 1], [2, 3]) mlflow.log_figure(fig, "figure.png")</pre> | mlflow.artifacts.load_image( 'runs:/5f871c4f04e04dc295f5c77/figure.png')              |  |
| Log_image Log an image as an artifact                                                                                 | from PIL import Image  image = Image.new("RGB", (100, 100))  log_image(image, "image.png")                                        | mlflow.artifacts.load_image( 'runs:/5f871c4f04e04dc295f5c77/image.png')               |  |