

Pre-Requisites

1: Week 10's Coursera Lab Environment

2: SQL, node.js and HTML Files. These are where all the code snippets are contained.

```
SQL: load-data.sql, initiate-data-tables.sql, ingest-data.sql
Node.js: web-app-intro.js, express-and-mysql.js
HTML: index.html
```


Pre-Requisites

3: Relational Schema + MySQL Export Tools

Drawing Tool: https://dbdiagram.io Shared Diagram: https://dbdiagram.io/d/619f3eae02cf5d186b678a5d

4: Entity-Relationship Diagram Drawing Tool

5: MS Team Shared Files

Folder URL: https://mymailsimedu.sharepoint.com/:f:/r/sites/DatabasesAdvDataTech2021-22SemesterOct-Mar/Shared%20Documents/General/clf-crime-watch?csf=1&web=1&e=ATRYyK

Setting a Context: Crime Watch Use Case

- We are part of Volunteer Group in San Francisco. The initiative is to make the public more inform about safety and crime within the community.
- We are tasked to utilise public datasets and create a data-driven application that can inform the public on various crime related aspects.
 - These can include, but not limited to, crime rates, types of crime, crime hotspots and police performance in resolving the crimes.

Setting a Context: Crime Watch Use Case (cont.)

The project roadmap contains 2 deliverables:

- 1. PoC of data-driven application (which is the scope of our Mid-Term Assignment)
 - The PoC application is to base on 10-year historical crime data (*static CSV data*) occurred in San Francisco.
 - The focus of this development phase is on
 - 1. Data Exploration (Completeness of the Open Data)
 - 2. Database Design (ER diagram and Relational Schema)
 - 3. Underlying Data Tables (Populated with the Historical Data)
 - 4. SQL queries (Data Insights or Statistics)
 - 5. Web App (with Database Connection and Simple Information Retrieval)

Setting a Context: Crime Watch Use Case (cont.)

- 2. Initial Release Web App (not in the scope of this assignment)
 - The application is to base live (near real-time) data accessible through *APIs* or daily published *CSV files*, which is to be ingested into our underly database.
 - The release is to be more complete and visually appealing.

Setting a Context: Crime Watch Use Case (cont.)

- What kind of data do we need for the PoC? (Our expectation on the data)
 - Crime Location and Date & Time
 - Granularity: Block, Street, Hour
 - Nature of Crimes
 - Granularity: Type
 - Resolutions
 - Granularity: Type

These will be used to justify if your data is complete or not.

Before We Start

Step 1: cd Launch Coursera Lab Environment for our Mid-Term assignment.

Step 2: On the bash terminal, create new directories called 'mid-term' and 'clf-crime-watch', where 'clf-crime-watch' is a subdirectory of 'mid-term'.

```
$ mkdir mid-term
$ mkdir mid-term/clf-crime-watch
```

> OPEN EDITORS

> PROJECT

> mid-term / clf-crime-watch

Step 3: cd into the new directory.

```
$ cd mid-term/clf-crime-watch
```


3rd Normal Form

Relational Schemas

https://dbdiagram.io

MySQL in Coursera Lab Environment

Step 1: Open a terminal and launch MySQL console

```
$ mysql
```

Step 2: Create a new database called 'clf crime data' and use the newly created database.

```
> CREATE DATABASE clf_crime_data;
> USE clf crime data;
```

Step 3: Create a database user called 'francis' and grant access to 'clf_crime_data' database.

```
> CREATE USER 'francis'@'%' IDENTIFIED WITH mysql_native_password BY 'california';
> GRANT ALL ON clf_crime_data.* TO 'francis'@'%';
```


Table Creation

CREATE TABLE districts (
 district_id int PRIMARY KEY AUTO_INCREMENT,
 district_name varchar(32) UNIQUE NOT NULL
);

```
CREATE TABLE locations (
   location_id int PRIMARY KEY AUTO_INCREMENT,
   spot varchar(32) NOT NULL,
   street_id int NOT NULL,
   latitude float NOT NULL,
   longitude float NOT NULL
   CONSTRAINT uc_location UNIQUE(spot, street_id, latitude, longitude)
);
ALTER TABLE locations ADD FOREIGN KEY (street_id) REFERENCES streets (street_id);
```



```
CREATE TABLE streets (
   street_id int PRIMARY KEY AUTO_INCREMENT,
   street_name varchar(32) NOT NULL,
   district_id int NOT NULL,
   CONSTRAINT uc_street_district UNIQUE(street_name, district_id)
);
ALTER TABLE streets ADD FOREIGN KEY (district_id) REFERENCES districts (district_id);
```


Table Creation (cont.)


```
CREATE TABLE incidences (
    incidence_id int PRIMARY KEY AUTO_INCREMENT,
    timestamp datetime NOT NULL,
    location_id int NOT NULL,
    description varchar(255) NOT NULL,
    CONSTRAINT uc_incidence UNIQUE(timestamp, location_id, description)
);
ALTER TABLE incidences ADD FOREIGN KEY (location_id) REFERENCES locations (location_id);
```


Table Creation (cont.)

```
CREATE TABLE offence_categories (
   category_id int PRIMARY KEY AUTO_INCREMENT,
   category_type varchar(64) UNIQUE NOT NULL
);
```



```
CREATE TABLE offences (
   incidence_id int NOT NULL,
   category_id int NOT NULL,
   PRIMARY KEY (incidence_id, category_id)
);
ALTER TABLE offences ADD FOREIGN KEY (incidence_id) REFERENCES incidences (incidence_id);
ALTER TABLE offences ADD FOREIGN KEY (category_id) REFERENCES offence_categories (category_id)
```


Table Creation (cont.)


```
CREATE TABLE resolutions (
   incidence_id int,
   resolution_type_id int,
   PRIMARY KEY (incidence_id, resolution_type_id)
);
ALTER TABLE resolutions ADD FOREIGN KEY (incidence_id) REFERENCES incidences (incidence_id);
ALTER TABLE resolutions ADD FOREIGN KEY (resolution_type_id) REFERENCES resolution_types (resolution_type_id);
```


Data Loading: 'raw_data' Table

```
In [1]: import pandas as pd
        # load a csv file to Pandas' dataframe for initial exploration and formating
        df = pd.read_csv('sf_crime_data.csv')
        df.head()
Out[1]:
                                                         Descript DayOfWeek PdDistrict
                                                                                                                  Address
                   Dates
                                                                                           Resolution
                                 Category
                2015-05-13
                               WARRANTS
                                                 WARRANT ARREST Wednesday NORTHERN
                                                                                                        OAK ST / LAGUNA ST -122.425892 37.774599
                  23:53:00
                                                                                             BOOKED
                2015-05-13
                                  OTHER
                                                TRAFFIC VIOLATION
                                                                  Wednesday NORTHERN
                                                                                                        OAK ST / LAGUNA ST -122.425892 37.774599
                  23:53:00
                               OFFENSES
                                                         ARREST
                                                                                             BOOKED
                2015-05-13
                                  OTHER
                                                TRAFFIC VIOLATION
                                                                                             ARREST,
                                                                  Wednesday NORTHERN
                                                                                                                          -122.424363 37.800414
                  23:33:00
                               OFFENSES
                                                                                             BOOKED
                                                                                                            GREENWICH ST
                                                GRAND THEFT FROM
                2015-05-13
                                                                                                                          -122.426995 37.800873
                           LARCENY/THEFT
                                                                  Wednesday NORTHERN
                  23:30:00
                                                     LOCKED AUTO
                                               GRAND THEFT FROM
                           LARCENY/THEFT
                                                                                 PARK
                                                                                                                          -122.438738 37.771541
                  23:30:00
                                                     LOCKED AUTO
In [2]: # remove ',' from the column values, 'Category' and 'Resolution' in particular, and replace it with '/' character
        # if a column value contains ',', then MySQL will fail to load the data.
        # MySQL cannot distinguish between ',' contained in the column and the one used to separate the columns.
        df['Resolution'] = df['Resolution'].apply(lambda x: x.replace(',', '/'))
        df['Descript'] = df['Descript'].apply(lambda x: x.replace(',', '/'))
        # add index column
        df['RowNum'] = range(len(df))
        # preview re-formatted data
        df.head()
Out[2]:
                               Category
                                                    Descript DayOfWeek PdDistrict
                                                                                     Resolution
                                                                                                         Address
                                                                                                                         х
                                                                                                                                   Y RowNum
              2015-05-13
                                                                                      ARREST/
                             WARRANTS
                                            WARRANT ARREST Wednesday NORTHERN
                                                                                                OAK ST / LAGUNA ST -122.425892 37.774599
                                                                                      BOOKED
                23:53:00
              2015-05-13
                                OTHER
                                                                                      ARREST/
                                                             Wednesday NORTHERN
                                                                                                OAK ST / LAGUNA ST -122.425892 37.774599
                23:53:00
                              OFFENSES
                                                    ARREST
                                                                                      BOOKED
                                OTHER
                                                                                      ARREST/
              2015-05-13
                                           TRAFFIC VIOLATION
                                                             Wednesday NORTHERN
                                                                                                                 -122.424363 37.800414
                             OFFENSES
                                                                                                   GREENWICH ST
                23:33:00
                                                    ARREST
                                                                                      BOOKED
               2015-05-13
                                          GRAND THEFT FROM
                          LARCENY/THEFT
                                                             Wednesday NORTHERN
                                                                                        NONE
                                                                                                                  -122.426995 37.800873
                23:30:00
                                               LOCKED AUTO
                                                                                                     LOMBARD ST
              2015-05-13
                                          GRAND THEFT FROM
                                                                                                       100 Block of
                         LARCENY/THEFT
                                                                                                                 -122.438738 37.771541
                                                                            PARK
                23:30:00
                                               LOCKED AUTO
                                                                                                    BRODERICK ST
In [3]: # export formatted data to a csv file, sf-crime-data.csv
        df.to_csv('sql-loadable-clf-crime-data.csv', index=False)
        # create a subset of data, e.g. 1st 1,000 rows, for development and testing of SQL codes
        df.iloc[:1000].to csv('tiny-clf-crime-data.csv', index=False)
```


Load Data Into Coursera Lab Environment

Step 1: Ensure that we are inside the 'mid-term/clf-crime-watch/' folder.

```
$ pwd

coder@db76968d0f6e:~/project/mid-term/clf-crime-watch$ pwd
/home/coder/project/mid-term/clf-crime-watch
```

Step 2: Create a new directory called 'data', the folder will be a subdirectory under 'mid-term/clf-crime-watch/'.

\$ mkdir data

Step 3: Using mouse to drag the csv file, e.g. tiny-clf-crime-data.csv, from our local directory and drop inside our Coursera Lab Environment.

Data Loading: 'raw_data' Table

LOAD DATA INFILE '/home/coder/project/mid-term/clf-crime-watch/data/tiny-clf-crime-data.csv'
INTO TABLE clf_crime_data.raw_data
FIELDS TERMINATED BY ','
ENCLOSED BY ''
LINES TERMINATED BY '\n'

```
CREATE TABLE raw_data (
   timestamp datetime,
   category varchar(64),
   description varchar(255),
   day_of_week varchar(16),
   district varchar(32),
   resolution varchar(64),
   address varchar(128),
   latitude float,
   longitude float,
   row_num int
);
```

IGNORE 1 LINES;

 $mysql> SELECT * FROM raw_data LIMIT 10;$

timestamp	category	description	day_of_week	district	resolution	address	latitude	longitude	row_num
2015-05-13 23:53:00	WARRANTS	WARRANT ARREST	Wednesday	NORTHERN	ARREST/ BOOKED	CAK ST / LAGUNA ST	-122.426	37.7746	e I
	OTHER OFFENSES	TRAFFIC VIOLATION ARREST	Wednesday	NORTHERN	ARREST/ BOOKED	CAK ST / LAGUNA ST	-122.426	37.7746	1
2015-05-13 23:33:00	OTHER OFFENSES	TRAFFIC VIOLATION ARREST	Wednesday	NORTHERN	ARREST/ BOCKED	VANNESS AV / GREENWICH ST	-122.424	37.8004	2
2015-05-13 23:30:00	LARCENY/THEFT	GRAND THEFT FROM LOCKED AUTO	Wednesday	NORTHERN	NONE	1500 Block of LOMBARD ST	-122.427	37.8009	3
2015-05-13 23:30:00	LARCENY/THEFT	GRAND THEFT FROM LOCKED AUTO	Wednesday	PARK	NONE	100 Block of BRODERICK ST	-122.439	37.7715	4
2015-05-13 23:30:00	LARCENY/THEFT	GRAND THEFT FROM UNLOCKED AUTO	Wednesday	INGLESIDE	NONE	0 Block of TEDDY AV	-122.403	37.7134	5
2015-05-13 23:30:00	VEHICLE THEFT	STOLEN AUTOMOBILE	Wednesday	INGLESIDE	NONE	AVALON AV / PERU AV	-122.423	37.7251	6
2015-05-13 23:30:00	VEHICLE THEFT	STOLEN AUTOMOBILE	Wednesday	BAYVIEW	NONE	KIRKWOOD AV / DONAHUE ST	-122.371	37.7276	7
2015-05-13 23:00:00	LARCENY/THEFT	GRAND THEFT FROM LOCKED AUTO	Wednesday	RICHMOND	NONE	600 Block of 47TH AV	-122.508	37.7766	8
2015-05-13 23:00:00	LARCENY/THEFT	GRAND THEFT FROM LOCKED AUTO	Wednesday	CENTRAL	NONE	JEFFERSON ST / LEAVENWORTH ST	-122.419	37.8078	9
10 nows in set (0.02 see	+			·	+	+	+		++

10 rows in set (0.02 sec)

Data Cleaning: 'denorm_table' Table

```
CREATE TABLE dnorm data
 AS ( WITH tbl AS ( SELECT row num + 1 AS row num,
                            timestamp,
                            SUBSTRING INDEX(SUBSTRING INDEX(address, ' / ', 1), ' Block of ', 1) AS spot,
                            SUBSTRING_INDEX(SUBSTRING_INDEX(address, ' / ', -1), ' Block of ', -1) AS street,
                            district,
                            latitude,
                            longitude,
                            REPLACE(category, '/', ' ') AS category,
                           REPLACE(resolution, '/', '') AS resolution,
                           REPLACE(description, '/', ' /') AS description
                    FROM raw data
       SELECT b.*, q.latitude, q.longitude,
       FROM ( SELECT row num, imestamp, spot, street, district, category, resolution, description
              FROM tbl
       ) b
      LEFT JOIN ( SELECT spot, street, district, AVG(latitude) AS latitude, AVG(longitude) AS longitude
                   FROM tbl
                  GROUP BY spot, street, district
       ) g
      ON b.spot = g.spot
      AND b.street = g.street
      AND b.district = q.district
);
```


Data Cleaning: 'dnorm_data' Table

mysql> SELECT * FROM dnorm_data LIMIT 25;

row_num	timestamp	spot	street	district	latitude	longitude	category	resolution	description
1	2015-05-13 23:53:00	CAK ST	LAGUNA ST	NORTHERN	-122.42588806152344	37.77459716796875	WARRANTS	ARREST BOOKED	WARRANT ARREST
2	2015-05-13 23:53:00	CAK ST	LAGUNA ST	NORTHERN	-122.42588806152344	37.77459716796875	OTHER OFFENSES	ARREST BOOKED	TRAFFIC VIOLATION ARREST
3	2015-05-13 23:33:00	VANNESS AV	GREENWICH ST	NORTHERN	-122.42436218261719	37.8004150390625	OTHER OFFENSES	ARREST BOOKED	TRAFFIC VIOLATION ARREST
4	2015-05-13 23:30:00	1500	LOMBARD ST	NORTHERN	-122.42699432373047	37.800872802734375	LARCENY THEFT	NONE	GRAND THEFT FROM LOCKED AUTO
5	2015-05-13 23:30:00	100	BRODERICK ST	PARK	-122.43873596191406	37.771541595458984	LARCENY THEFT	NONE	GRAND THEFT FROM LOCKED AUTO
6	2015-05-13 23:30:00	0	TEDDY AV	INGLESIDE	-122.40325164794922	37.71343231201172	LARCENY THEFT	NONE	GRAND THEFT FROM UNLOCKED AUTO
7	2015-05-13 23:30:00	AVALON AV	PERU AV	INGLESIDE	-122.42332458496094	37.72513961791992	VEHICLE THEFT	NONE	STOLEN AUTOMOBILE
8	2015-05-13 23:30:00	KIRKWOOD AV	DONAHUE ST	BAYVIEW	-122.37127685546875	37.72756576538086	VEHICLE THEFT	NONE	STOLEN AUTOMOBILE
9	2015-05-13 23:00:00	600	47TH AV	RICHMOND	-122.50819396972656	37.7765998840332	LARCENY THEFT	NONE	GRAND THEFT FROM LOCKED AUTO
10	2015-05-13 23:00:00	JEFFERSON ST	LEAVENWORTH ST	CENTRAL	-122.4190902709961	37.80780029296875	LARCENY THEFT	NONE	GRAND THEFT FROM LOCKED AUTO
11	2015-05-13 22:58:00	JEFFERSON ST	LEAVENWORTH ST	CENTRAL	-122.4190902709961	37.80780029296875	LARCENY THEFT	NONE	PETTY THEFT FROM LOCKED AUTO
12	2015-05-13 22:30:00	0	ESCOLTA WY	TARAVAL	-122.48798370361328	37.737667083740234	OTHER OFFENSES	NONE	MISCELLANEOUS INVESTIGATION
13	2015-05-13 22:30:00	TURK ST	JONES ST	TENDERLOIN	-122.41241455078125	37.78300476074219	VANDALISM	NONE	MALICIOUS MISCHIEF / VANDALISM OF VEHIC
14	2015-05-13 22:06:00	FILLMORE ST	GEARY BL	NORTHERN	-122.43291473388672	37.78435516357422	LARCENY THEFT	NONE	GRAND THEFT FROM LOCKED AUTO
15	2015-05-13 22:00:00	200	WILLIAMS AV	BAYVIEW	-122.39774322509766	37.72993469238281	NON-CRIMINAL	NONE	FOUND PROPERTY
16	2015-05-13 22:00:00	0	MENDELL ST	BAYVIEW	-122.3836898803711	37.74319076538086	NON-CRIMINAL	NONE	FOUND PROPERTY
17	2015-05-13 22:00:00	EDDY ST	JONES ST	TENDERLOIN	-122.41259765625	37.783931732177734	ROBBERY	NONE	ROBBERY / ARMED WITH A KNIFE
18	2015-05-13 21:55:00	GODEUS ST	MISSION ST	INGLESIDE	-122.42168426513672	37.742820739746094	ASSAULT	NONE	AGGRAVATED ASSAULT WITH BODILY FORCE
19	2015-05-13 21:40:00	MENDELL ST	HUDSON AV	BAYVIEW	-122.38639831542969	37.738983154296875	OTHER OFFENSES	ARREST BOOKED	TRAFFIC VIOLATION
20	2015-05-13 21:30:00	100	JONES ST	TENDERLOIN	-122.41224670410156	37.782554626464844	NON-CRIMINAL	NONE	FOUND PROPERTY
21	2015-05-13 21:30:00	200	EVELYN WY	INGLESIDE	-122.44938659667969	37.74266815185547	LARCENY THEFT	NONE	GRAND THEFT FROM LOCKED AUTO
22	2015-05-13 21:17:00	1600	VALENCIA ST	INGLESIDE	-122.42027282714844	37.74733352661133	ROBBERY	NONE	ROBBERY / BODILY FORCE
23	2015-05-13 21:11:00	100	JONES ST	TENDERLOIN	-122.41224670410156	37.782554626464844	WARRANTS	NONE	WARRANT ARREST
24	2015-05-13 21:11:00	100	JONES ST	TENDERLOIN	-122.41224670410156	37.782554626464844	NON-CRIMINAL	NONE	STAY AWAY OR COURT ORDER / NON-DV RELAT
25	2015-05-13 21:10:00	FILLMORE ST	LOMBARD ST	NORTHERN	-122.43605041503906	37.799842834472656	LARCENY THEFT	NONE	GRAND THEFT FROM LOCKED AUTO

25 rows in set (0.00 sec)

20

Data Ingestion: 'districts' Table

INSERT INTO districts (district_name)
SELECT DISTINCT district
FROM dnorm_data;

Data Ingestion: 'streets' Table

mysql> SELECT * FROM streets LIMIT 25;

+	+	++
street_id	street_name	district_id
324	10TH AV	7
42	10TH ST	10
201	11TH AV	5
168	11TH AV	7
276	11TH ST	10
231	14TH AV	5
34	14TH AV	7
282	14TH ST	2
215	14TH ST	9
268	15TH AV	5
291	15TH ST	9
69	16TH ST	2
263	16TH ST	9
251	17TH AV	5
192	17TH AV	7
395	17TH ST	2
158	17TH ST	9
52	18TH ST	2
200	18TH ST	9
359	19TH AV	7
334	19TH ST	9
313	1ST ST	10
253	20TH AV	5
228	20TH AV	7
68	20TH ST	4
+	+	++

25 rows in set (0.02 sec)

Data Ingestion: 'locations' Table


```
mysql> SELECT * FROM locations LIMIT 10;
  location id | spot | street id | latitude | longitude
                             5 -122.403
                                             37.7134
          10
                            10 | -122.488
                                             37.7377
          14 | 0
                            14 -122.384
                                             37,7432
                            19 -122.406
                                             37.7867
         166 | 0
                            27 | -122.403 |
                                             37.7873
          35 | 0
                            30 -122.432
                                             37.7108
          55 | 0
                            31 | -122.395 |
                                             37.7941
          38 | 0
                            32 | -122.406
                                              37.786
          41 | 0
                            33 -122.424
                                             37.7352
          53 | 0
                            43 -122.401
                                             37.7907
10 rows in set (0.02 sec)
```


Data Ingestion: 'incidences' Table

Data Ingestion: 'incidences' Table

my	sql>	SELECT	*	FROM	incidences	LIMIT	25;	
----	------	--------	---	------	------------	-------	-----	--

incidence_id	timestamp	location_id	description
1	2015-05-13 23:53:00	1	WARRANT ARREST
2	2015-05-13 23:53:00	1	TRAFFIC VIOLATION ARREST
3	2015-05-13 23:33:00	2	TRAFFIC VIOLATION ARREST
4	2015-05-13 23:30:00	3	GRAND THEFT FROM LOCKED AUTO
5	2015-05-13 23:30:00	4	GRAND THEFT FROM LOCKED AUTO
6	2015-05-13 23:30:00	5	GRAND THEFT FROM UNLOCKED AUTO
7	2015-05-13 23:30:00	6	STOLEN AUTOMOBILE
8	2015-05-13 23:30:00	7	STOLEN AUTOMOBILE
9	2015-05-13 23:00:00	8	GRAND THEFT FROM LOCKED AUTO
10	2015-05-13 23:00:00	9	GRAND THEFT FROM LOCKED AUTO
11	2015-05-13 22:58:00	9	PETTY THEFT FROM LOCKED AUTO
12	2015-05-13 22:30:00	10	MISCELLANEOUS INVESTIGATION
13	2015-05-13 22:30:00	11	MALICIOUS MISCHIEF / VANDALISM OF VEHICLES
14	2015-05-13 22:06:00	12	GRAND THEFT FROM LOCKED AUTO
15	2015-05-13 22:00:00	13	FOUND PROPERTY
16	2015-05-13 22:00:00	14	FOUND PROPERTY
17	2015-05-13 22:00:00	15	ROBBERY / ARMED WITH A KNIFE
18	2015-05-13 21:55:00	16	AGGRAVATED ASSAULT WITH BODILY FORCE
19	2015-05-13 21:40:00	17	TRAFFIC VIOLATION
20	2015-05-13 21:30:00	18	FOUND PROPERTY
21	2015-05-13 21:30:00	19	GRAND THEFT FROM LOCKED AUTO
22	2015-05-13 21:17:00	20	ROBBERY / BODILY FORCE
23	2015-05-13 21:11:00	18	WARRANT ARREST
24	2015-05-13 21:11:00	18	STAY AWAY OR COURT ORDER / NON-DV RELATED
25	2015-05-13 21:10:00	21	GRAND THEFT FROM LOCKED AUTO

25 rows in set (0.02 sec)

25

Data Ingestion: 'offence_categories' Table


```
INSERT INTO offence_categories (category_type)
  SELECT DISTINCT category
 FROM dnorm_data;
```


27 rows in set (0.02 sec)

Data Ingestion: 'offences' Table


```
INSERT INTO offences (incidence_id, category_id)
   SELECT dt.row_num, o.category_id
   FROM dnorm_data dt
   LEFT JOIN offence_categories o
   ON dt.category = o.category_type;
```

25 rows in set (0.00 sec)

Data Ingestion: 'resolution_types' Table


```
INSERT INTO resolution_types (resolution_type)
   SELECT DISTINCT resolution
   FROM dnorm_data
   WHERE LOWER(resolution) NOT LIKE '%none%';
```


Data Ingestion: 'resolutions' Table


```
INSERT INTO resolutions (incidence id, resolution type id)
  SELECT dt.row_num, r.resolution_type_id
 FROM ( SELECT row num, resolution
         FROM dnorm_data
         WHERE LOWER(resolution) NOT LIKE '%none%'
  ) dt
 LEFT JOIN resolution_types r
 ON dt.resolution = r.resolution_type;
```


25 rows in set (0.01 sec)

Entity-Relationship (ER) Diagram

https://erdplus.com

Express: Web App Introduction

Step 1: Create new directories called 'mid-term' and 'clf-crime-watch', where 'clf-crime-watch' is a subdirectory of 'mid-term'.

```
$ mkdir mid-term
$ mkdir mid-term/clf-crime-watch
```

Step 2: cd into the new directory.

Skip steps '1' & '2' if the folders have already been created.

```
$ cd mid-term/clf-crime-watch
```

Step 3: Inside clf-crime-watch, create a new file called 'app.js'. the new directory.

```
$ touch app.js
```


Express: Web App Introduction (cont.)

```
Step 4: Initialise npm with 'app.js' as start point by setting package name and entry point to 'clf-crime-watch' and 'app.js', respectively.
```

```
$ npm init
```

Step 5: Install 'express' to be used with our 'clif-crime-watch' node.js Web App.

```
$ npm install express
```

Step 6: 'express' is now added as 'clf-crime-watch' package dependencies. Open 'package.json' in the editor and look for the following lines:

```
"dependencies": {
    "express": "^4.17.1"
}
```


Express: Web App Introduction (Cont.)

Step 7: Edit 'app.js' file with the following content: (codes are in the shared 'web-app-intro.js' file.)

```
Js app.js > ...
1    const express = require('express');
2    const app = express();
3    const port = 3000;
4
5    app.get('/', function (req, res) {
6        res.send('<h1>Hello, World!</h1>');
7    })
8
9    app.listen(port, function () {
10        console.log('The app is listening at http://localhost:${port}.')
11    })
12
```


Express: Web App Introduction (cont.)

Step 8: Run our Web App using the following command: (to exit type Ctrl+C)

```
$ node app.js
```

Step 9: Open Coursera Lab's web browser, located on the *side* menu bar and enter the following URL:

localhost:3000

Step 10: We should be able to see a H1 text 'Hello, World!' being rendered to the browser.

Express + MySQL

Step 1: Install 'mysql' to be used with our 'clif-crime-watch' node.js Web App.

```
$ npm install mysql
$ npm install body-parser
$ npm install mustache-express
$ npm install yallist
```

Step 2: 'mysql', 'body-parser', 'mustache-express' and 'yallist' are now added as 'clf-crime-watch' package dependencies. Open 'package.json' in the editor and look for the following lines:

```
"dependencies": {
    "body-parser": "^1.19.0",
    "express": "^4.17.1",
    "mustache-express": "^1.3.2",
    "mysql": "^2.18.1",
    "yallist": "^4.0.0"
}
```


Express + MySQL (Cont.)

Step 3: Create a new directory called 'templates', where 'templeates' is a subdirectory of 'clf_crime_watch'.

```
$ mkdir templates
```

Step 4: cd into the new directory.

```
$ cd templates
```

Step 5: Inside templates, create a new file called 'index.html'. the new directory.

```
$ touch index.html
```


Express + MySQL (Cont.)

Step 6: Edit 'index.html' file with the following content:

```
<!DOCTYPE html>
<html lang="en">
   <meta charset="utf-8" />
   <title>Districts in San Francisco</title>
      {{#data}}
          {td>{{district_id}}}
          {{district_name}}
      {{/data}}
```


Express + MySQL (Cont.)

Step 7: Edit 'app.js' file with the following content: (codes are in the shared 'express-mysql.js' file.)

```
const express = require('express');
const bodyParser = require('body-parser');
const mysql = require('mysql');
const mustacheExpress = require('mustache-express');

const app = express();
const port = 3000;

app.engine('html', mustacheExpress());
app.set('view engine', 'html');
app.set('view engine', 'html');
app.use(bodyParser.urlencoded({ extended: true }));

var dbcon = mysql.createConnection({
    host: 'localhost',
    user: 'francis',
    password: 'california',
    database: 'clf_crime_data'
}
```


Express + MySQL (cont.)

Step 8: Run our Web App using the following command: (to exit type Ctrl+C)

Step 9: Open Coursera Lab's web browser, located on the *side* menu bar and enter the following URL:

localhost:3000

Step 10: We should be able to see a list of districts contained in our 'districts' data table being rendered to the browser.

Appendix

Normalising a Table

normalizing a Table

Princess Ruruna and Cain learned about normalization, the process of tabulating data from the real world for a relational database. It is necessary to normalize data in order to properly manage a relational database. Normalization is summarized here (the shaded fields are primary keys).

UNNORMALIZED FORM

Report code	destination		Product code	Unit price	Quantity
	code	name			

FIRST NORMAL FORM

Report code	Date	Export destination code	Export destination name
-------------	------	-------------------------	-------------------------

Report code	Product code	Product name	Unit price	Quantity	
-------------	--------------	--------------	------------	----------	--

SECOND NORMAL FORM

Report code	Date	Export destination code	Export destination name
-------------	------	-------------------------	-------------------------

Report code	Product code	Quantity
-------------	--------------	----------

Product code Product name Unit price
--

THIRD NORMAL FORM

Report code Date Export destination code	Report code	Date	Export destination code
--	-------------	------	-------------------------

Export destination code	Export destination name
-------------------------	-------------------------

Product code	Product name	Unit price
--------------	--------------	------------

The unnormalized form is a table in which items that appear more than once have not been removed. We've seen that you cannot manage data well using this kind of table for a relational database. Consequently, you need to divide the table.

The first normal form refers to a simple, two-dimensional table resulting from division of the original, unnormalized table. You can consider it to be a table with one item in each cell. The table is divided so that no items will appear more than once.

The second normal form refers to a table in which a key that can identify data determines values in other columns. Here, it is the *primary key* that determines values in other columns.

In a relational database, a value is called *functionally dependent* if that value determines values in other columns. In the second normal form, the table is divided so that values in other columns are functionally dependent on the primary key.

In the third normal form, a table is divided so that a value is not determined by any non-primary key. In a relational database, a value is called transitively dependent if that value determines values in other columns indirectly, which is part of functionally dependent operation. In the third normal form, the table is divided so that transitively dependent values are removed.

Normalising a Table: Examples

Q8

The following table represents an order-receiving system. Normalize it to the third normal form. However, process one customer per order-taking code. You can process multiple products based on one order-taking code. In addition, one order-taking code should correspond to only one representative.

Order-	Date	Customer	Customer	Product	Product	Unit	Represen-	Represen-	Quantity
taking		code	name	code	name	price	tative code	tative name	
code									

Order-taking code	Date	Customer code	Representative code
-------------------	------	---------------	---------------------

Customer code Customer name

Order-taking code Product code Quantity

Product code Product name Unit price

Representative code Representative name

Q9

The following table represents an order-receiving system. Normalize it to the third normal form. Assume that products are classified by product code.

Order-	Date	Customer	Customer	Product	Product	Unit	Product	Product	Quantity
taking		code	name	code	name	price	classification	classification	
code							code	name	

Order-taking code Date Customer code

Customer code Customer name

Order-taking code Product code Quantity

Product code Product classification code Product name Unit price

Product classification code Product classification name