Variables bidimensionales discretas

Sean X e Y dos variables aleatorias discretas. Su comportamiento puede ser descripto por la función de probabilidad conjunta

$$p_{X,Y}(x,y) = P(X = x, Y = y) \qquad x \in \mathcal{R}_X, y \in \mathcal{R}_Y. \tag{1}$$

La funciones de probabilidad marginales pueden ser obtenidas como

$$p_X(x) = P(X = x) = \sum_{y \in \mathcal{R}_Y} p_{X,Y}(x,y) \qquad x \in \mathcal{R}_X,$$
 (2)

$$p_Y(y) = P(Y = y) = \sum_{x \in \mathcal{R}_X} p_{X,Y}(x,y) \qquad y \in \mathcal{R}_Y.$$
 (3)

Las variables aleatorias son independientes sii

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$
 $x \in \mathcal{R}_X, y \in \mathcal{R}_Y.$ (4)

Es fácil ver que, en este caso,

$$P((X,Y) \in [a,b] \times \in [c,d]) = P(X \in [a,b], Y \in [c,d]) = P(X \in [a,b]) \cdot P(Y \in [c,d]),$$

para todo par de intervalos $[a, b], [c, d] \subset \mathbb{R}$.

El valor esperado de una función h de ambas variables aleatorias $(h : \mathbb{R}^2 \to \mathbb{R})$ viene dado por

$$E\left[h(X,Y)\right] = \sum_{(x,y)\in\mathcal{R}_X\times\mathcal{R}_Y} h(x,y)p_{X,Y}(x,y) = \sum_{x\in\mathcal{R}_X} \sum_{y\in\mathcal{R}_Y} h(x,y)p_{X,Y}(x,y). \tag{5}$$

Sean dos funciones $k, m : \mathbb{R} \to \mathbb{R}$. Luego, si X e Y son variables aleatorias independientes,

$$E\left[k(X)m(Y)\right] = \sum_{x \in \mathcal{R}_X} \sum_{y \in \mathcal{R}_Y} k(X)m(Y)p_X(x)p_Y(y) = E\left[k(X)\right]E\left[m(Y)\right]. \tag{6}$$

Variables bidimensionales continuas

El comportamiento de dos variables aleatorias continuas X e Y suele se descripto por una **densidad de probabilidad conjunta** $f_{X,Y}: \mathbb{R}^2 \to \mathbb{R}^{\geq 0}$. A partir de ésta, pueden calcularse todas las probabilidades relacionadas a ambas variables como

$$P((X,Y) \in B) = \iint_{(x,y)\in B} f_{X,Y}(x,y) \, dxdy \qquad B \subseteq \mathbb{R}^2.$$
 (7)

Allí donde las derivadas tienen sentido, la densidad conjunta puede escribirse como

$$f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} P(X \le x, Y \le y). \tag{8}$$

La densidades de probabilidad marginales pueden ser obtenidas como

$$f_X(x) = \int_{\mathbb{R}} f_{X,Y}(x,y) \, dy, \qquad f_Y(y) = \int_{\mathbb{R}} f_{X,Y}(x,y) \, dx.$$
 (9)

Variables bidimensionales continuas (continuado)

Las variables aleatorias son independientes sii

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
 $(x,y) \in \mathbb{R}^2$. (10)

Es fácil ver que, en este caso,

$$P((X,Y) \in [a,b] \times \in [c,d]) = P(X \in [a,b], Y \in [c,d]) = P(X \in [a,b]) \cdot P(Y \in [c,d]),$$

para todo par de intervalos $[a, b], [c, d] \subset \mathbb{R}$.

El valor esperado de una función h de ambas variables aleatorias $(h : \mathbb{R}^2 \to \mathbb{R})$ viene dado por

$$E[h(X,Y)] = \iint_{\mathbb{R}^2} h(x,y) f_{X,Y}(x,y) \, dx dy.$$
 (11)

Sean dos funciones $k, m : \mathbb{R} \to \mathbb{R}$. Luego, si $X \in Y$ son variables aleatorias independientes,

$$E[k(X)m(Y)] = \iint_{\mathbb{R}^2} k(x)m(y)f_X(x)f_Y(y) \, dxdy = E[k(X)] \, E[m(Y)] \,. \tag{12}$$

Covarianza y correlación

La **covarianza** de dos variables aleatorias está definida por

$$Cov[X,Y] = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y].$$
(13)

Es fácil ver que, si X e Y son variables aleatorias independientes, entonces Cov[X,Y] = 0. Sin embargo, el hecho que Cov[X,Y] = 0 no implica que X e Y sean independientes. El **coeficiente de correlación** de dos variables aleatorias está definido como

$$\rho(X,Y) = \frac{\operatorname{Cov}[X,Y]}{\sqrt{\operatorname{Var}[X]\operatorname{Var}[Y]}}.$$
(14)

Se puede demostrar que $\rho(X,Y)=\pm 1$ sii $\exists a,b\in\mathbb{R}$ tales que

$$P(Y = aX + b) = 1.$$
 (15)

Es decir, $\rho(X,Y) = \pm 1$ sii existe una relación lineal entre ambas variables aleatorias. Más aún, sign $(a) = \text{sign}(\rho(X,Y))$.

Suma de dos variables aleatorias

Sean X e Y dos variables aleatorias. Luego,

$$\begin{split} E\left[X+Y\right] &= E\left[X\right] + E\left[Y\right] \\ E\left[\left(X+Y\right)^2\right] &= E\left[X^2\right] + 2E\left[XY\right] + E\left[Y^2\right], \end{split}$$

siempre que los momentos en los lados derechos estén definidos. A partir de estas ecuaciones, es fácil ver que

$$Var[X + Y] = Var[X] + 2Cov[X, Y] + Var[Y].$$

$$(16)$$

En el caso particular de variables independientes, tenemos

$$Var[X + Y] = Var[X] + Var[Y]. \tag{17}$$

Si X e Y son variables aleatorias discretas, entonces

$$P(X+Y=z) = \sum_{\{(x,y)\in\mathcal{R}_X\times\mathcal{R}_Y: x+y=z\}} p_{X,Y}(x,y).$$
(18)

En el caso particular en que X e Y independientes,

$$P(X+Y=z) = \sum_{x \in \mathcal{R}_X} p_X(x)p_Y(z-x) = \sum_{y \in \mathcal{R}_Y} p_Y(y)p_X(z-y).$$
 (19)

De manera análoga, si X e Y son variables aleatorias continuas e independientes, tenemos

$$f_{X+Y}(z) = \int_{\mathbb{R}} f_X(x) f_Y(z-x) \, dx = \int_{\mathbb{R}} f_Y(y) f_X(z-y) \, dy.$$
 (20)

Problema 13 de la guía 5

Considere la siguiente tabla de la función de probabilidad conjunta de las variables aleatorias discretas X e Y:

$\mathbf{Y} ackslash \mathbf{X}$	0	1	2	3	4	5
0	0	0.01	0.03	0.05	0.07	0.09
1	0.01	0.02	0.04	0.05	0.06	0.08
2	0.01	0.03	0.05	0.05	0.05	0.06
3	0.01	0.02	0.04	0.06	0.06	0.05

Obtener:

- 1. las distribuciones de probabilidad marginales;
- 2. la distribución de probabilidades de X + Y y XY;
- 3. el valor esperado y la varianza de X + Y y de XY;
- 4. la covarianza Cov[X, Y].

Respuesta:

Distribuciones marginales: Es sencillo calcular las distribuciones marginales sumando las filas (marginal de Y) y las columnas (marginal de X) de la tabla:

$\mathbf{Y} \backslash \mathbf{X}$	0	1	2	3	4	5	p_Y
0	0.00	0.01	0.03	0.05	0.07	0.09	0.25
1	0.01	0.02	0.04	0.05	0.06	0.08	0.26
2	0.01	0.03	0.05	0.05	0.05	0.06	0.25
3	0.01	0.02	0.04	0.06	0.06	0.05	0.24
p_X	0.03	0.08	0.16	0.21	0.24	0.28	

A partir de esta tabla, es fácil ver que las variables no son independientes. En efecto, tenemos, por ejemplo,

$$p_{X,Y}(0,0) = 0 \neq 0.03 \times 0.25 = p_X(0)p_Y(0). \tag{21}$$

Los valores esperados de cada variable aleatoria se pueden calcular como

$$E[X] = \sum_{x=0}^{5} x p_X(x) = 3.39,$$
(22)

$$E[X] = \sum_{y=0}^{3} y p_Y(y) = 1.48,$$
(23)

$$E[X^{2}] = \sum_{x=0}^{5} x^{2} p_{X}(x) = 13.45,$$
(24)

$$E[Y^2] = \sum_{x=0}^{3} y^2 p_Y(y) = 3.42,$$
(25)

$$Var[X] = (13.45) - (3.39)^2 = 1.9579 \Rightarrow \sigma_X \approx 1.8412,$$
(26)

$$Var[Y] = (3.42) - (1.48)^2 = 1.2296 \Rightarrow \sigma_Y \approx 1.3569.$$
(27)

Distribución de XY:

Llamemos W = XY. Luego, $\mathcal{R}_Z = \{0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15\}$. Para calcular la función de probabilidad de W, es conveniente superponer a la tabla de probabilidades conjuntas la siguiente tabla con los valores de W:

$\mathbf{Y} \backslash \mathbf{X}$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	6	8	10
3	0	3	6	9	12	15

Marcando con distintos colores los distintos casos que nos interesan de la tabla de probabilidades conjuntas:

$\mathbf{Y} \backslash \mathbf{X}$	0	1	2	3	4	5
0	0.00	0.01	0.03	0.05	0.07	0.09
1	0.01	0.02	0.04	0.05	0.06	0.08
2	0.01	0.03	0.05	0.05	0.05	0.06
3	0.01	0.02	0.04	0.06	0.06	0.05

Luego,

w	0	1	2	3	4	5	6	8	9	10	12	15
p_W	0.28	0.02	0.07	0.07	0.11	0.08	0.09	0.05	0.06	0.06	0.06	0.05

Los momentos de W:

$$E[W] = \sum_{w \in \mathcal{R}_W} w p_W(w) = 4.76,$$

$$E[W^2] = \sum_{w \in \mathcal{R}_W} w^2 p_W(w) = 41.88,$$

$$Var[W] = (41.88) - (4.76)^2 = 19.2224 \Rightarrow \sigma_W \approx 4.3843.$$

A partir de los resultados hasta aquí obtenidos, podemos calcular la covarianza de las variables X e Y:

$$Cov[X, Y] = E[XY] - E[X]E[Y] = -0.2572.$$
(28)

El coeficiente de correlación es:

$$\rho(X,Y) = \frac{\text{Cov}[X,Y]}{\sigma_X \sigma_Y} \approx -0.1658. \tag{29}$$

 $Distribuci\'on\ de\ X+Y$:

Definamos Z=X+Y. Luego, $\mathcal{R}_Z=\{0,1,2,\cdots,8\}$. La función de probabilidad de Z se puede encontrar sumando los valores en las anti-diagonales de la tabla de probabilidades conjuntas, escritas con distintos colores:

$\mathbf{Y} \backslash \mathbf{X}$	0	1	2	3	4	5
0	0.00	0.01	0.03	0.05	0.07	0.09
1	0.01	0.02	0.04	0.05	0.06	0.08
2	0.01	0.03	0.05	0.05	0.05	0.06
3	0.01	0.02	0.04	0.06	0.06	0.05

Por tanto,

z	0	1	2	3	4	5	6	7	8
p_Z	0.00	0.02	0.06	0.13	0.19	0.24	0.19	0.12	0.05

Ahora podemos calcular los momentos de Z:

$$E[Z] = \sum_{z=0}^{8} z p_Z(z) = 4.87,$$

$$E[Z^2] = \sum_{z=0}^{8} z^2 p_Z(z) = 26.39,$$

$$Var[Z] = (26.39) - (4.87)^2 = 2.6731 \Rightarrow \sigma_Z \approx 1.6350.$$

Obsérvese que:

$$E[X] + E[Y] = 3.39 + 1.48 = 4.87 = E[Z],$$

$$Var[X] + 2Cov[X, Y] + Var[Y] = 1.9579 + 2(-0.2572) + 1.2296 = 2.5731 = Var[Z]$$
.

Ejercicio 24 de la guía 5

La función de densidad de probabilidad conjunta de (X, Y) es

$$f_{X,Y}(x,y) = \begin{cases} a(x+y) & 0 < x < 3, \ 0 < y < 3 \\ 0 & x \notin (0,3) \times (0,3) \end{cases}$$

- 1. Calcular P(1 < X < 2, 1 < Y < 2)
- 2. Calcular E[X], E[Y], σ_X y σ_Y .

Respuesta:

Primero debemos calcular la constante a. Para ello, notemos que

$$1 = \iint_{\mathbb{R}^2} f_{X,Y}(x,y) \, dx dy = \int_0^3 \int_0^3 a(x+y) \, dx dy = \int_0^3 a\left(\frac{x^2}{2} + xy\right) \Big|_{x=0}^{x=3} \, dy$$
$$= \int_0^3 a\left(\frac{9}{2} + 3y\right) \, dy = a\left(\frac{9}{2}y + \frac{3}{2}y^2\right) \Big|_{y=0}^{y=3}$$
$$= 27a \Rightarrow a = \frac{1}{27}.$$

La probabilidad solicitada se puede calcular como:

$$P(1 < X < 2, 1 < Y < 2) = \int_{1}^{2} \int_{1}^{2} \frac{1}{27} (x + y) \, dx dy = \int_{1}^{2} \frac{1}{27} \left(\frac{x^{2}}{2} + xy \right) \Big|_{x=1}^{x=2} \, dy$$

$$= \int_{1}^{2} \frac{1}{27} \left(\frac{3}{2} + y \right) \, dy = \frac{1}{27} \left(\frac{3}{2}y + \frac{1}{2}y^{2} \right) \Big|_{y=1}^{y=2}$$

$$= \frac{1}{9}.$$

También podemos calcular

$$\begin{split} E\left[XY\right] &= \int\limits_{0}^{3} \int\limits_{0}^{3} xy \frac{1}{27} (x+y) \, dx dy = \int\limits_{0}^{3} \left. \frac{1}{27} \left(\frac{x^3}{3} y + \frac{1}{2} x^2 y^2 \right) \right|_{x=0}^{x=3} \, dy \\ &= \int\limits_{0}^{3} \frac{1}{27} \left(9y + \frac{9}{2} y^2 \right) \, dy = \left. \frac{1}{27} \left(\frac{9}{2} y^2 + \frac{1}{6} y^3 \right) \right|_{y=0}^{y=3} \\ &= \frac{5}{3}. \end{split}$$

Densidades marginales:

Las densidad marginal $f_X(x)$ para $x \in (0,3)$ es:

$$f_X(x) = \int_{\mathbb{R}} f_{X,Y}(x,y) \, dy = \int_0^3 \frac{1}{27} (x+y) \, dy = \frac{1}{27} \left(xy + \frac{1}{2} y^2 \right) \Big|_{y=0}^{y=3}$$
$$= \frac{1}{6} + \frac{x}{9}.$$

Por tanto, tenemos que

$$f_X(x) = \begin{cases} \frac{1}{6} + \frac{x}{9} & x \in (0,3) \\ 0 & x \notin (0,3) \end{cases}$$
 (30)

Es fácil ver que Y tiene la misma densidad que X. Es decir, X e Y están igualmente distribuidas. Por otro lado,

$$f_{X,Y}(1,1) = \frac{1}{27}(1+1) = \frac{2}{27} \neq \left(\frac{1}{6} + \frac{1}{9}\right)\left(\frac{1}{6} + \frac{1}{9}\right) = f_X(1)f_Y(1),$$
 (31)

por lo que X e Y no son independientes.

Los valores esperados son:

$$E[Y] = E[X] = \int_0^3 x \left(\frac{1}{6} + \frac{x}{9}\right) dx = \left(\frac{x^2}{12} + \frac{x^3}{27}\right)\Big|_{x=0}^{x=3}$$

$$= \frac{7}{4},$$

$$E[Y^2] = E[X^2] = \int_0^3 x^2 \left(\frac{1}{6} + \frac{x}{9}\right) dx = \left(\frac{x^3}{18} + \frac{x^4}{36}\right)\Big|_{x=0}^{x=3}$$

$$= \frac{15}{4},$$

$$Var[Y] = Var[X] = \frac{15}{4} - \left(\frac{7}{4}\right)^2 = \frac{11}{16} \Rightarrow \sigma_Y = \sigma_X \approx 0.8292.$$

Con estos resultados, podemos calcular la covarianza de X e Y:

$$Cov[X,Y] = E[XY] - E[X]E[Y] = \frac{5}{3} - \frac{7}{4} \cdot \frac{7}{4} = -\frac{67}{48}.$$
 (32)

Dado que la covarianza es distinta de cero, podemos afirmar que las variables aleatorias no son independientes.