

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

(IVII 13 MM. II.3. DayMaha)			
ФАКУЛЬТЕТ	«Информатика и системы управления»		
КАФЕДРА	«Компьютерные системы и сети (ИУ6)»		
НАПРАВЛЕНИЕ ПОДГОТОВКИ _	«09.03.04 Программная инженерия»		
Рубежный контроль			
по курс	су «Архитектура ЭВМ»		
«Диаграмма	а работы FPM DRAM памяти»		

Студент:	<u>ИУ7-53Б</u>		М. Д. Маслова
	(группа)	(подпись, дата)	(И. О. Фамилия)
Преподаватель:			А. Ю. Попов
		(подпись, дата)	(И. О. Фамилия)

FPM DRAM (Fast Page Mode Dynamic Random Access Memory) — динамическая память с быстрым постраничным доступом. Принцип её работы основан на предположении о том, что при обращении к какой-то ячейке, следующее обращении будет, скорее всего, происходить к соседней ячейке, расположенной в пределах той же строки. Опишем диаграмму работы FPM DRAM памяти.

Рассмотрим диаграмму работы FPM DRAM памяти, представленную на рисунке 1, в сравнении с DRAM памятью, представленную на рисунке 2. Так мы сможем в большей мере оценить достоинства и недостатки FPM DRAM памяти.

Рисунок 1 – Диаграмма работы FPM DRAM памяти

Рисунок 2 – Диаграмма работы DRAM памяти

На рисунках 1-2 представлены верменные диаграммы следующих сигналов: RAS — синхронизация обработки адреса строки; CAS — синхронизация обработки адреса столбца; WE — сигнал разрешения записи, — и следующих линий: A — линия адреса; D — линия данных.

И так, в начале работы по сбросу сигнала \overline{RAS} происходит открытие и усиленная регенерация строки, на это требуется время t_{RCD} , после завершения этого процесса проиходит сбос сигнала \overline{CAS} и чтения адреса столбца, и далее данных.

Далее наблюдаются различия в диаграммах. FPM DRAM память поддерживает сокращенные адреса, то есть, если запрашиваемая ячейка памяти находится в той же самой строке, что и предыдущая повторная передача адреса строки уже не требуется. Таким образом, если в DRAM памяти происходит восстановление \overline{RAS} и последующее повторение операции открытия и усиленной регенерации строки с затратой на это дополнительного времени t_{RAS} , то в FPM DRAM памяти этот сигнал остается быть равным 0, сообщая системе о том, что следующая ячейка находится в той же строке и операция открытия и усиленной регенерации не требуется, таким образом, на диаграмме FMP DRAM памяти происходит только переадча адреса столбца, восстановлением и повторным сбросом сигнала CAS.

Таким образом, получается, что на последовательную выборку данных из FPM DRAM памяти затрачивается меньшее, чем $t_{RCD}+r_{CAC}$ время, которое затрачивалось в DRAM памяти. Это дает выигрыш по скорости примерно в 2 раза. При этом при обращении к разным строкам, FPM DRAM память работает полностью аналагично DRAM памяти и не дает никакого выигрыша. Однако, так как по экспериментальные данные доказывают, что наиболее часто происходит обращение к последовательным адресам, FPM DRAM память работает эффективнее.