STAT 448 HW #2

Tianqi Wu

2018/9/19

Problem 1.(a)

Here is the code that produces the table:

```
proc sort data = politics;
by descending ind_con;
run;

title 'Candidates swinging from other parties';
proc print data = politics;
where swingstate = 1 and party = 'OTH';
run;
```

From the table, "Khoury Anton" with total individual contribution of \$30,590.00 turns out to be the candidate with the highest contributions who are in swing state from political parties other than the Democratic and Republican parties. His candidate office state is Florida and his office is from Senate. For the political campaign platform, he said that he is willing to pay additional taxes to support the state and wants to be a independent candidate with no party affiliated. Khoury also supports an open primary system that allows more independent voters to participate. Finally, he supports Donald Trump to lead the nation since the president is a successful business man.

	Candidates swinging from other parties									
Obs	can_off	can_nam	can_off_sta	can_status	ind_con	party	swingstate	contributiongroup		
249	s	KHOURY, ANTON	FL	С	\$30,590.00	ОТН	1	low		
251	s	GUMINA, TONY DR	NV	0	\$29,907.00	ОТН	1	low		
270	s	ANDERSON, PHILLIP NORMAN	WI	С	\$19,301.00	ОТН	1	low		
276	S	WILLIAMS, LILY TANG	СО	С	\$17,611.00	ОТН	1	low		
278	S	STANTON, PAUL ANTHONY	FL	С	\$15,769.00	ОТН	1	low		
280	Н	SUMMERELL, JOSEPH JOHN MR.	NC	С	\$15,571.00	ОТН	1	low		
288	S	MENCONI, ARNOLD MICHAEL	СО	С	\$13,328.00	ОТН	1	low		
305	S	INVICTUS, AUGUSTUS SOL	FL	С	\$9,094.00	ОТН	1	low		
320	S	DEMARE, JOSEPH ROSARIO	ОН	С	\$5,996.00	ОТН	1	low		
343	S	NATHAN, BRUCE	FL	С	\$2,971.00	ОТН	1	low		
350	Н	CRAIG, ANDY	WI	С	\$1,910.00	ОТН	1	low		
353	s	LUICK-THRAMS, ALIZA MICHAEL DR	IA	С	\$1,696.00	ОТН	1	low		
360	s	CONNORS, THOMAS WILLIAM	ОН	С	\$1,050.55	ОТН	1	low		
365	S	WILLIAMS, JARROD M.	NV	0	\$901.00	ОТН	1	low		
366	S	HUDOCK, BRANDON GENE	PA	С	\$835.00	ОТН	1	low		
373	S	STERN, EVERETT ALEXANDER	PA	С	\$500.00	ОТН	1	low		
380	S	GUTHRIE, SEAN PATRICK	FL	С	\$235.00	ОТН	1	low		
381	S	JONES, THOMAS FRANKLIN	NV	0	\$215.00	ОТН	1	low		
394	Н	SCHREY, ELIZABETH ANNE	FL	0	\$15.00	ОТН	1	low		

Problem 1.(b)

Here is the code that produces the bar plot of the contributions group among the political parties:

```
title 'Bar plot of the contributions group among the
political parties';
proc sgplot data = politics;
  vbar contributiongroup / group = party
groupdisplay=cluster;
run;
```

From the bar plot, nearly 230 of 396 candidates are from low contribution group. Among the contribution groups, there are more candidates from Republican than Democratic and other political parties. There is no candidate from other political parties classifying as high contribution group.

Problem 1.(c)

Here is the code that produces the bar plot of the contributions group among the candidate's status:

```
title 'Bar plot of the contributions group among the
candidate's status';
proc sgplot data = politics;
  vbar contributiongroup / group = can_status
groupdisplay=cluster;
run;
```

From the bar plot, nearly 220 of 396 candidates are from low contribution group and 160 of them are challenger. There are approximately same number of candidates from high and mid contribution group and most of them are incumbent.

Problem 1.(d)

Here is the code that constructs the contingency table with the swing states and political office variables:

```
proc freq data = politics;
  tables swingstate*can_off / expected riskdiff;
run;
```

From the risk difference test, for both column 1 and column 2 risk estimates, the confidence interval includes 0. It indicates that there is **no** strong evidence showing that there is a difference between the probability of Senatorial and House candidates going to swing states.

The FREQ Procedure Frequency Table of swingstate by can_off Expected can_off Percent **Row Pct** swingstate Н S Total Col Pct 127 130 257 128.5 128.5 32.07 32.83 64.90 49.42 50.58 64.14 65.66 68 139 69.5 69.5 17.93 17.17 35.10 51.08 48.92 35.86 34.34 Total 198 198 50.00 50.00 100.00

(problem d-f shares the table above)

		Column	1 Risk Est	imates		
	Risk	ASE	95 Confiden			t 95% ce Limits
Row 1	0.4942	0.0312	0.4330	0.5553	0.4315	0.5570
Row 2	0.5108	0.0424	0.4277	0.5939	0.4247	0.5965
Total	0.5000	0.0251	0.4508	0.5492	0.4497	0.5503
Difference	-0.0166	0.0526	-0.1198	0.0865		
Difference is (Row 1 - Row 2)						
		Difference	e is (Row 1	- Row 2)		
		Differenc	e is (Row 1	- Row 2)		
			e is (Row 1 n 2 Risk Est	•		
	Risk		`	timates	Exact Confiden	
Row 1		Column	2 Risk Est	timates		
Row 1 Row 2	Risk	Column	2 Risk Est 95 Confidence	imates % ce Limits	Confiden	ce Limits
	Risk 0.5058	ASE 0.0312	95 Confidence	imates % ce Limits 0.5670	Confiden 0.4430	0.5685

Sample Size = 396

Problem 1.(e)

Here is the code that constructs the contingency table with the swing states and political office variables:

```
proc freq data = politics;
  tables swingstate*can_off / expected or(cl=wald);
run;
```

From the odds ratio test, the odds ratio is 0.9356. It means that the odds of House candidates having swing state = 0 is 0.9356 times the odds of them having swing state = 1. The confidence interval includes 1 and it indicates that the variables can off and swing state are **independent**.

Problem 1.(f)

Here is the code that constructs the contingency table with the swing states and political office variables:

```
proc freq data = politics;
  tables swingstate*can_off / expected chisq;
run;
```

From the table, the chi-square value is 0.0998(small) with probability 0.7521(>0.05). Hence, there is no strong evidence to reject the null hypothesis that there is no association between the variables political office and swing states. Phi, Contingency and Cramer's V coefficients are -0.0159, 0.0159 and -0.0159. The small coefficients indicate that there is nearly **no** association between the variables.

Continuity Adj. Chi-Square	1 1 1	0.0998	0.7521
	<u> </u>	0.0998	
Continuity Adj. Chi-Square Mantel-Haenszel Chi-Square	1	3.0000	0.7521
Mantel-Haenszel Chi-Square		0.0443	0.8332
	1	0.0995	0.7524
Phi Coefficient		-0.0159	
Contingency Coefficient		0.0159	
Cramer's V		-0.0159	
Fisher's Exa		-	
Cell (1,1) Frequenc	v (E)	127	
Left-sided Pr <= F		0.4166	
Right-sided Pr >= F	:	0.6631	
Table Probability (F	P)	0.0798	
Two-sided Pr <= P		0.8333	

Problem 1.(g)

Here is the code that constructs a contingency table with the political office and contribution group variables:

```
proc freq data = politics;
  tables can_off*contributiongroup / expected chisq;
run;
```

From the table, the chi-square has value 39.5612 with p-value <.0001. It means the there is strong evidence to reject the null that there is no association between the variables political office and contribution group. Since the table is not 2*2, using the chi-square test is appropriate here. Phi, Contingency and Cramer's V coefficients are 0.3161, 0.3014, 0.3161. It indicates that there is some **weak** association between the variables.

Expected Percent Row Pct Col Pct			con	tribu	Table of can_off by contributiongroup						
COLPCI	can_off	high		low	mic	I Tota					
	Н	19 41	1	117 13.5 9.55	62 43.5 15.66	5					
		4.80 9.60 23.17	59	9.55 9.09 1.54	31.31 71.26						
	S	63 41	1	110 13.5	25 43.5	5					
		15.91 31.82 76.83	55	7.78 5.56 3.46	6.31 12.63 28.74	3					
	Total	82 20.71		227 7.32	87 21.97						
Statistics f	or Table of	can_of	f by o		ibutior Value	ngroup Prob					
Chi-Square			2	39	.5612	<.0001					
Likelihood F	Ratio Chi-So	uare	2	41	.3618	<.0001					
Mantel-Haer	nszel Chi-So	quare	1	38	.7389	<.0001					
Phi Coefficio	ent			0	.3161						
Contingency	y Coefficien	ıt		0	.3014						
Contingency											

Problem 1.(h)

Here is the code that produces a one-way ANOVA for the total individual contributions as a function of the political office:

```
proc anova data = politics;
  class can_off;
  model ind_con = can_off;
  means can_off / hovtest welch;
run;

proc npar1way data = politics;
  class can_off;
  var ind_con;
  ods select KruskalWallisTest;
run;
```

From the box plot given by the parametric one-way anova, the mean and median differ significantly and the distribution is not symmetric with a lot of outliers for the Senate candidates. Also, the assumption of equal variance is violated since the p-value for Levene's and Welch's test is <.0001 which rejects the null of equal variance. Hence, the assumptions of normality and equal variance are violated and the nonparametric one-way anova is used.

From the Kruskal-Wallis Test result, the chi-square has value 0.0009 with p-value 0.9758(>0.05). Hence, there is **no** strong evidence to reject the null hypothesis that the group means for the main effect are equal.

Levene's Test for Homogeneity of ind_con Variance ANOVA of Squared Deviations from Group Means								
Source	DF	Sum of Squares		Mean Square		F Value	Pr > F	
can_off	1	1.768E28		1.76	8E28	25.86	<.0001	
Error	394	2.694E29		6.83	6.838E26			
		Welc	h's ANO\	/A for ind_	con			
		Welc Source	h's ANO\	/A for ind_ F Value	con Pr>	·F	I	
						-		

The NPAR1WAY Procedure

Kruskal-Wallis Test				
Chi-Square	0.0009			
DF	1			
Pr > Chi-Square	0.9758			

Problem 1.(i)

Here is the code that produces a one-way ANOVA for the total individual contributions as a function of swing state:

```
proc anova data = politics;
  class swingstate;
  model ind_con = swingstate;
  means swingstate / hovtest welch;
run;

proc nparlway data = politics;
  class swingstate;
  var ind_con;
  ods select KruskalWallisTest;
run;
```

From the box plot given by the parametric one-way anova, the mean and median differ significantly and the distribution is not symmetric with a lot of outliers for both levels of swing state. Also, the assumption of equal variance is violated since the p-value for Levene's and Welch's test is <0.05 which rejects the null of equal variance. Hence, the assumptions of normality and equal variance are violated and the nonparametric one-way anova is used. From the Kruskal-Wallis Test result, the chi-square has value .08002 with p-value 0.3710(>0.05). Hence, there is **no** strong evidence to reject the null hypothesis that the group means for the main effect are equal.

Levene's Test for Homogeneity of ind_con Variance ANOVA of Squared Deviations from Group Means								
Source	DF	Sum of	Squares	Mean Sq	uare	F Value	Pr > F	
swingstate	1	9.402E27		9.402E27		11.49	0.0008	
Error	394	4 3.224E29		8.183E26				
			.224220	0.100	5E26			
				for ind_co				
	So					F		
		Welch	's ANOVA	for ind_co	on	-		

The NPAR1WAY Procedure

Kruskal-Wallis Test				
Chi-Square	0.8002			
DF	1			
Pr > Chi-Square	0.3710			

Problem 1.(j)

Here is the code that performs log transformation of total individual contribution and one-way anova test:

```
data log_politics;
  set politics;
  log_ind_con = log(ind_con);
run;

proc anova data = log_politics;
  class can_off;
  model log_ind_con = can_off;
  means can_off / hovtest welch;
run;
```

After the log transformation, there is not enough strong evidence to rule the data as not being normal since the mean and median do not differ much and the distribution can be roughly seen as symmetric with no outliers for both levels of candidate office. Since the p-value of Levene's test is <.0001, there is evidence that the equal variance assumption may be violated.

Overall, the normality of the distribution can be assumed but the equal variance assumption may be violated. Hence, using a log transformation of total individual contributions **allows** for a parametric one-way ANOVA with Welch correction to be done for the total individual contributions as a function of the political office.

