17TH ANNUAL GLOBAL DERIVATIVES TRADING & RISK MANAGEMENT 2011 ICBI

Strategies for Overcoming Challenges in Energy Risk Management

Ehud I. Ronn Professor of Finance University of Texas at Austin¹

Paris, April 13, 2011

eronn@mail.utexas.edu

OVERVIEW

• The Relationship between

Risk Premia in Energy
(aka Commodity Market Price of Risk)

and

- Risk-Management from a *Corporate* Perspective
- Using the Richness of Energy Markets' Derivative Structures
- Pricing Derivatives in Incomplete/Low-Liquidity Markets: E.g., Interruptible Contracts, Load-Following Services
- The Challenge of *Extrapolation:* Asset Valuation beyond the Liquidity Tenor of Traded Futures and Options Contracts

We Are More than Replicators — "The Analysis of Ketchup Economists"

- Financial economists "have shown that two quart bottles of ketchup invariably sell for twice as much as one quart bottles of ketchup"
 - Lawrence H. Summers, "On Economics and Finance," *Journal of Finance*, Vol. 40, No. 3, July 1985, pp. 633 635
- There are different ways of refuting/addressing Summers' critique:
 - 1. Quantifying the risk premium, in commodity markets as well as the traditional equity markets
 - 2. Provide guidance to firms regarding their *hedging* policies

Forward Prices and Forecast Prices in Energy — The Risk Premium in Energy Markets

• Notation:

 F_T = Futures contract price for maturity T

 $E(S_T) = \text{Expected spot price at maturity } T$

 $\mu = \text{Expected rate of return on the futures contract}$

 σ = Volatility of return on the futures contract

 $\lambda = \frac{\mu}{\sigma}$ = Commodity Market Price of Risk, the expected return compensation per unit standard deviation

- Finance theory relates forecast and forward prices: $E(S_T) = F_T \exp \{\mu T\}$
- Motivation (Why do we care?)
 - 1. Understanding the relationship between energy markets and other physical and financial markets
 - 2. Making informed informed hedging decisions based on the trade-off between risk and return
 - 3. Many firms' economic/structural desks produce estimates of long-term expected, or forecast, prices. Properly splicing short-term futures contracts with long-dated forecast prices requires recognizing that forward prices are not unbiased predictors of future expected prices.

• Questions:

- 1. What is the magnitude, and indeed the sign, of λ ?
- 2. Does it differ for a domestically produced electricity/natgas from an international commodity such as oil?
- 3. For power/natgas, does it vary by season?
- 4. Does it depend on the asset's covariability with the stock market (à la financial economists' Capital Asset Pricing Model, CAPM), or by the participants in the futures markets?
- With respect to energy-markets' volatility,
 - 1. What is the Commodity Market Price of Volatility Risk?
 - 2. Equivalently, what is the relationship between (options') *implied* and *realized* volatilities?

Estimates of the Market Price of Risk using Energy Futures Contracts

Table 1 — Description of Data

Market	Contracts	Trading Dates
PJM	5/99 - 5/03	3/99 - 10/01
Cinergy	5/99 - 5/03	1/99 - 10/01
EEX monthly	8/02 - 4/04	7/02 - 10/03
EEX quarterly	$\mathrm{IV}/02-\mathrm{III}/05$	7/02 - 10/03
EEX yearly	2003 - 2006	7/02 - 10/03
Gas	6/90 - 9/07	4/90 - 12/02
Oil	4/99 - 12/2009	3/99 - 1/05

• For futures contracts, estimation of Market Price of Risk requires modeling of the "Term Structure of Volatility" (TSOV):

$$dF = \mu_t F dt + \sigma_t F dz = \lambda \sigma_t F dt + \sigma_t F dz \tag{1}$$

• Using maximum likelihood estimation, the estimator for the Market Price of Risk λ is given by:

$$\hat{\lambda} = \frac{\overline{\Delta \ln F_{\gamma}}}{\Delta t} \frac{1}{\hat{\sigma}} + \frac{\hat{\sigma}\overline{\gamma}}{2} \tag{2}$$

where

$$\overline{\Delta \ln F_{\gamma}} = \frac{1}{n} \sum_{i} \frac{\Delta \ln F_{i}}{\gamma_{i}}$$

$$\sigma_{\tau} = \sigma \gamma_{\tau}$$

$$\gamma_{\tau} = \begin{cases}
1 \\
e^{-\kappa \tau} \\
\sqrt{e^{-2\kappa \tau} + \xi^{2}}
\end{cases}$$

$$\widehat{\sigma} = \sqrt{2 \frac{\sqrt{1 + \operatorname{Var}(\gamma) \operatorname{Var}(\Delta \ln F_{\gamma})} - 1}{\Delta t \operatorname{Var}(\gamma)}}$$

• Note interpretation of (2): The Market Price of Risk $\hat{\lambda}$ is given by the ratio of the TSOV-adjusted average returns $\bar{p}_{\gamma} \equiv \Delta \ln F_{\gamma}$ to the estimator of volatility $\hat{\sigma}$, adjusted for the annualized time interval Δt and the Ito's Lemma-induced correction $\sigma \bar{\gamma}/2$.

Empirical Estimates of the Market Price of Risk using Energy Futures Contracts

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Market	Model	Winter	Spring	Summer	Fall	All
Oil 1 Factor (0.11, 0.26) (0.13, 0.35) (0.13, 0.33) (0.13, 0.34) (0.09, 0.98) Long Term (0.11, 0.26) (0.13, 0.35) (0.13, 0.33) (0.13, 0.34) (0.06, 0.03) Short Term (0.15, 0.36) (0.24, 0.63) (0.32, 0.74) (0.34, 0.75) (0.11, 0.54) Short Term (0.56, 1.37) (0.32, 0.50) (0.63, 1.47) (0.65, 1.44) (0.29, 1.34) Const vol (0.34) 0.26 0.44 0.34 0.35 0.34 0.29 Gas 1 Factor (0.39) 0.35 0.47 0.39 0.40 Long Term (0.60) 0.19 0.51 0.39 0.40 Long Term (0.30, 0.60) (0.34, 0.71) (0.24, 0.47) (0.23, 0.54) (0.12, 0.45) Short Term (0.30, 0.60) (0.34, 0.71) (0.38, 0.75) (0.32, 0.54) (0.12, 0.45) Long Term (0.23, 0.93) (0.23, 0.93) (0.23, 0.93) (0.36, 1.00) (0.31, 1.19) (0.15, 0.97) EEX 1 Factor 2.76		Q 1	0.88	0.93	0.96	1. 05	0.95
Oil 1 Factor 0.91 (0.11,0.26) (0.13,0.35) (0.13,0.33) (0.13,0.34) (0.06,0.30) 0.075 (0.06,0.30) (0.06,0.30) 0.075 (0.06,0.30) (0.06,0.30) 0.075 (0.06,0.30) (0.06,0.30) 0.075 (0.06,0.30) (0.075 (0.04,0.75) (0.034,0.75) (0.011,0.54) 0.059 (0.11,0.24) (0.11,0.24) (0.11,0.24) (0.06,51.44) (0.29,1.34) 0.56 (0.56,1.37) (0.32,0.50) (0.63,1.47) (0.65,1.44) (0.29,1.34) 0.34 (0.26) (0.11,0.24) (0.11,0.24) (0.11,0.24) (0.06,0.23) (0.06,0.23) 0.34 (0.26) (0.11,0.24) (0.11,0.24) (0.11,0.24) (0.06,0.23) (0.06,0.24) (0.06,0.23) (0.06,0.24) (0.06,0.23) (0.06,0.24) (0.06,0.23) (0.06,0.24) (0.06,0.23) (0.06,0.24) (0.06,0.23) (0.06,0.24) (0.06,0.23) (0.06,0.24) (0.06,0.23) (0.06,0.24) (0.06,0.23) (0.06,0.24) (0.06,0.23) (0.06,0.24) (0.06,0.23) (0.06,0.24) (0.06,0.23) (0.06,0.24) (0.06,0.25) (0.06,0.24) (0.06,0.25) (0.06,0.24) (0.06,0.25) (0.06,0.24) (0.06,0.25) (0.06,0.24) (0.06,0.25) (0.06,0.24) (0.06,0.25) (0.06,0.24) (0.06,0.25) (0		Const vol	(0.11, 0.26)	(0.13, 0.35)	(0.13, 0.33)	(0.13, 0.34)	(0.06, 0.30)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.11	1 D /		0.97	0.99		, , , , , , , , , , , , , , , , , , , ,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Oil	1 Factor	(0.11, 0.26)	(0.13, 0.35)	(0.13, 0.33)	(0.13, 0.34)	(0.06, 0.30)
Short Term		T CD	0.71	0.83	0.87	0.60	0.75
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Long Term	(0.15, 0.36)	(0.24, 0.63)	(0.32, 0.74)	(0.34, 0.75)	(0.11, 0.54)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Chant Town	0.59	0.44	0.33	0.95	0.56
Gas Const vol 0.39 1 Factor (0.11, 0.24) (0.11, 0.24) (0.22, 0.46) (0.33, 0.47) (0.33, 0.71) (0.33, 0.73) (0.33, 0.73) (0.33, 0.73) (0.34, 0.73) (0.34, 0.72) (0.34, 1.23) (0.34, 1.24) (0.34, 1.24		Snort 1erm	(0.56, 1.37)	(0.32, 0.50)	(0.63, 1.47)	(0.65, 1.44)	(0.29, 1.34)
Gas 1 Factor 0.39 0.35 0.47 0.39 0.40 (0.00, 0.23) (0.01, 0.24) (0.011, 0.24) (0.011, 0.24) (0.011, 0.24) (0.011, 0.24) (0.011, 0.24) (0.006, 0.23) (0.06, 0.23) (0.06, 0.23) (0.06, 0.23) (0.06, 0.23) (0.06, 0.23) (0.06, 0.23) (0.06, 0.23) (0.06, 0.24) (0.011, 0.24) (0.06, 0.23) (0.06, 0.23) (0.06, 0.24) (0.24, 0.47) (0.26, 0.54) (0.12, 0.45) (0.12, 0.45) (0.08 0.70 0.53 0.59 0.46 (0.30, 0.60) (0.34, 0.71) (0.38, 0.75) (0.32, 0.67) (0.17, 0.64) (0.23, 0.93) (0.23, 0.93) (0.36, 1.00) (0.30, 1.18) (0.15, 0.97) (0.23, 0.93) (0.23, 0.93) (0.36, 1.00) (0.30, 1.18) (0.15, 0.97) (0.23, 0.93) (0.23, 0.93) (0.36, 1.00) (0.31, 1.19) (0.15, 0.97) (0.25, 0.23) (0.23, 0.93) (0.36, 1.00) (0.31, 1.19) (0.15, 0.97) (0.25, 0.23) (0.26, 0.23) (0.26, 0.23) (0.26, 0.23) (0.26, 0.23) (0.26, 0.23) (0.26, 0.23) (0.26, 0.23) (0.26, 0.23) (0.26, 0.23) (0.26, 0.23) (0.26, 0.23) (0.26, 0.23) (0.26, 0.23) (0.26, 0.23) (0.26, 0.23) (0.26, 0.24) (0.28, 0.24) (0.28, 0.24) (0.28, 0.24) (0.28, 0.24) (0.28, 0.24) (0.28, 0.24) (0.28, 0.24) (0.28, 0.24) (0.28, 0.24) (0.28, 0.24) (0.28, 0.24) (0.28, 0.24) (0.28, 0.24) (0.29, 0.51) (0.28, 0.51) (0.15, 0.45) (0.15, 0.45) (0.28, 0.49) (0.32, 0.52) (0.30, 0.51) (0.28, 0.51) (0.15, 0.45) (0.15, 0.45) (0.28, 0.24) (0.28, 0.24) (0.32, 0.52) (0.30, 0.51) (0.28, 0.51) (0.15, 0.45) (0.15, 0.45) (0.28, 0.24) (0.32, 0.25) (0.30, 0.51) (0.28, 0.51) (0.15, 0.45) (0.15, 0.45) (0.28, 0.24) (0.30, 0.51) (0.30, 0.51) (0.30, 0.51) (0.30, 0.51) (0.30, 0.51) (0.30, 0.51) (0.30, 0.51) (0.30, 0.51) (0.30, 0.51) (0.30, 0.51) (0.30, 0.51) (0.30, 0.51) (0.30, 0.51) (0.30, 0.52) (0.30, 0.52) (0.31, 0.55) (0.15, 0.48) (0.30, 0.51) (0.31, 0.55) (0.31, 0.55) (0.15, 0.48) (0.30, 0.51) (0.31, 0.54) (0.31, 0.52) (0.31, 0.55) (0.15, 0.48) (0.30, 0.51) (0.31, 0.54) (0.31, 0.52) (0.31, 0.55) (0.15, 0.48) (0.30, 0.51) (0.31, 0.54) (0.31, 0.52) (0.31, 0.55) (0.15, 0.48) (0.30, 0.51) (0.31, 0.54) (0.31, 0.52) (0.31, 0.55) (0.15, 0.48) (0.30, 0.51) (0.31, 0.54) (0.31, 0.52) (0.31, 0.55) (0.15, 0.48) (0.30, 0.30, 0.30, 0.30, 0.30, 0.30, 0		Const vol	0.34	0.26	0.44	0.34	0.35
Cas		Collst voi	(0.11, 0.24)	(0.11, 0.24)	(0.11, 0.24)	(0.11, 0.24)	(0.06, 0.23)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cos	1 Faston	0.39	0.35	0.47	0.39	0.40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gas	1 ractor	(0.11, 0.24)	(0.11, 0.24)	(0.11, 0.24)	(0.11, 0.24)	(0.06, 0.23)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Long Torm	0.60	0.19	0.51	0.30	0.40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Long Term	(0.23, 0.47)	(0.22, 0.46)	(0.24, 0.47)	(0.26, 0.54)	(0.12, 0.45)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Short Torm	0.08	0.70	0.53		0.46
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Short Term	(0.30, 0.60)	(0.34, 0.71)	(0.38, 0.75)	(0.32, 0.67)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Const vol		2.51		3.08	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Collst voi	(0.23, 0.93)		(0.36, 1.00)	(0.30, 1.18)	(0.15, 0.97)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EEX	1 Factor					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DEA	1 1 40001				, , ,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Long Term	_				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Long Term	, , ,		, , ,	' '	. ,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Short Term					
Cinergy I Factor $(0.28, 0.49)$ $(0.32, 0.51)$ $(0.29, 0.51)$ $(0.28, 0.51)$ $(0.15, 0.45)$ 0.09 0.53 0.15 -0.12 0.14 $(0.28, 0.49)$ $(0.28, 0.49)$ $(0.32, 0.52)$ $(0.30, 0.51)$ $(0.28, 0.51)$ $(0.28, 0.51)$ $(0.15, 0.45)$ 1.04 0.72 0.45 1.09 0.70 $(1.67, 2.26)$ $(0.54, 0.79)$ $(0.40, 0.67)$ $(0.82, 1.36)$ $(0.32, 0.89)$ -2.28 1.17 -2.18 -1.69 -1.45 $(2.48, 3.36)$ $(1.89, 2.76)$ $(1.26, 2.12)$ $(1.17, 1.96)$ $(0.75, 2.12)$ 0.16 0.22 0.49 0.44 0.33 0.30 0.30 $0.51)$ $0.31, 0.53)$ $0.31, 0.52)$ $0.31, 0.55)$ 0.38 0.38 0.38 0.39		SHOTE TOTAL	` '				,
Cinergy 1 Factor $\begin{pmatrix} (0.28, 0.49) & (0.32, 0.51) & (0.29, 0.51) & (0.28, 0.51) & (0.15, 0.45) \\ 0.09 & 0.53 & 0.15 & -0.12 & 0.14 \\ (0.28, 0.49) & (0.32, 0.52) & (0.30, 0.51) & (0.28, 0.51) & (0.15, 0.45) \\ Long Term & 1.04 & 0.72 & 0.45 & 1.09 & 0.70 \\ (1.67, 2.26) & (0.54, 0.79) & (0.40, 0.67) & (0.82, 1.36) & (0.32, 0.89) \\ -2.28 & 1.17 & -2.18 & -1.69 & -1.45 \\ (2.48, 3.36) & (1.89, 2.76) & (1.26, 2.12) & (1.17, 1.96) & (0.75, 2.12) \end{pmatrix}$ $\begin{array}{c} C_{Onst \ vol} & 0.16 & 0.22 & 0.49 & 0.44 & 0.33 \\ (0.30, 0.51) & (0.31, 0.53) & (0.31, 0.52) & (0.31, 0.55) & (0.15, 0.48) \\ 0.23 & 0.20 & 0.49 & 0.58 & 0.38 \\ (0.31, 0.51) & (0.31, 0.54) & (0.31, 0.52) & (0.31, 0.55) & (0.15, 0.48) \\ Long Term & (0.66, 1.16) & (0.46, 0.77) & (0.44, 0.74) & (0.59, 0.95) & (0.26, 0.81) \\ -1.81 & 1.02 & -0.30 & -1.19 & -0.70 \\ (1.40, 2.43) & (2.29, 3.84) & (1.01, 1.69) & (1.07, 1.72) & (0.65, 2.00) \\ \end{array}$ $\begin{array}{c} Day-Ahead \ \mathrm{MLE} & -6.13 (0.56) & 0.54 (0.56) & -1.64 (0.63) & -1.51 (0.57) & -1.82 (0.57) \\ \end{array}$		Const. vol					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Collst voi	, ,		, , ,	, , ,	' '
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cinergy	1 Factor					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01110183	1 1 00001	, ,	, ,	, , ,	' '	' '
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Long Term					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	, ,	, ,	, , ,	, , ,	. ,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Short Term					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, , , , , , , , , , , , , , , , , , , ,		,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Const vol					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, , ,		, , ,	, , ,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PJM	1 Factor					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Short Term		Long Term					
Short Term (1.40, 2.43)		~	, ,			' '	, , ,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Short Term					
			(1.40, 2.43)	(2.29, 3.84)	(1.01, 1.09)	(1.07, 1.72)	(0.05, 2.00)
	Day-Ahead	MLE	- 6 13 (0 56)	0 54 (0 56)	-1 64 (0 63)	-1 51 (0 57)	-1 82 (0 57)
		MM	-6.13 (1.40)	0.55 (0.33)	-1.63 (1.07)	-1.50(1.21)	-1.82 (0.59)

 $\underline{\text{Note:}}$ Numbers in brackets denote low and high estimates of standard errors

TABLE 3 Estimates of the intra-day MPR for electricity forward prices.

(a) Market price of risk: EEX forward prices from August 2002 to September 2007

	$r_{ m Mean}$	r_{SD}	MPR_A	MPR_B	MPR_C	MPR_D
Working days						
EEX (continuous - auction) base	-0.009***	0.065	-9.457	-12.490***	-17.168***	-12.505***
Monday	-0.016***	0.038	-38.016***	-39.797***	-38.901***	-40.415***
Tuesday-Friday	-0.007***	0.069	-6.648	-9.859**	-13.230***	-9.873***
EEX (continuous - auction) peak	-0.015***	0.078	-14.475**	-18.110***	-29.848***	-18.125***
Monday	-0.020***	0.045	-39.282***	-41.407***	-40.639***	-42.795***
Tuesday-Friday	-0.014***	0.082	-12.110	-15.967***	-27.250***	-15.991***
Non-working days						
EEX (continuous - auction) base	-0.006	0.075	-3.814	-7.344	6.935	-10.284
Saturday	0.000	0.053	2.896	0.430	17.921	0.481
Sunday	0.003	0.054	8.078	5.552	4.771	6.664

Motivation for Corporate Risk-Management

- Smith and Stulz (1985), Froot, Scharfstein and Stein (1993) and Grinblatt and Titman (2001) have identified several reasons for corporate risk-management:
 - Reducing the costs of financial distress
 - Allowing firms to better plan for their future capital needs
 - Improving the quality of managerial decisions
 - Improving the design of management compensation contracts
 - Decreasing the firm's expected tax payments
- In particular, Froot, Scharfstein and Stein find:
 - 1. The firm's value function is concave in internal wealth, which is equivalent to risk aversion
 - 2. They also find "Options effectively create the possibility for hedge ratios to be 'customized' on a state-by-state basis"
- In applying theory,
 - 1. Using mean-variance efficiency for hedging with *futures* contracts
 - 2. Using downside risk-aversion to motivate optimal hedging strategies involving options

A Mean-Variance Hedging Optimization using Futures Contracts

 \bullet Letting V be firm value from cash flows at time 1/2 and 1,

$$\Delta V = \sum_{t=1/2}^{1} \frac{\left(Q_t - n_t\right) \Delta \widetilde{F}_t}{\left(1 + r\right)^t} \tag{3}$$

where n_t is the quantity of (short) futures contracts for date t

• The relevant two first moments, $E(\Delta V)$ and $Var(\Delta V)$, are:

$$E(\Delta V) = \sum_{t=1/2}^{1} \frac{(Q_t - n_t) F_{0t}}{(1+r)^t} E\left(\frac{\Delta \widetilde{F}_t}{F_{0t}}\right)$$

$$= \lambda \left[\frac{(Q_{0.5} - n_{0.5}) F_{0.0.5}}{(1+r)^{0.5}} 0.5 \sigma_{0.5} + \frac{(Q_1 - n_1) F_{01}}{1+r} \sigma_1\right]$$
(4)

where

 μ_{Ft} = Expected return on futures contract with maturity t λ = Market Price of Risk for this commodity

 $\sigma_t = \text{Annualized volatility for date } t$

$$\operatorname{Var} (\Delta V) = \left[\frac{(Q_{0.5} - n_{0.5}) F_{0,0.5}}{(1+r)^{0.5}} \right]^{2} 0.5 \sigma_{0.5}^{2} + \left[\frac{(Q_{1} - n_{1}) F_{0,1}}{(1+r)} \right]^{2} \sigma_{1}^{2} + 2 \left[\frac{(Q_{0.5} - n_{0.5}) F_{0,0.5}}{(1+r)^{0.5}} \frac{(Q_{1} - n_{1}) F_{0,1}}{(1+r)} \right] \rho_{0.5,1} \sqrt{0.5} \sigma_{0.5} \sigma_{1}$$
(5)

Definition of Earnings for Corporations Short or Long Price Exposure

• Definition of Earnings (for a Corporation *Short* Prices):

$$\widetilde{E} = -\widetilde{P}\widetilde{Q} + n_F \left(\widetilde{P} - F\right) + n_C \max\left\{0, \ \widetilde{P} - K\right\} - n_C \left(1 + r\right)^T C\left(K\right)$$
(3)

where

Notation	Definition
$E\left(\widetilde{P}\right)$	Current expectation of average price for month T
$E\left(\widetilde{Q}\right)$	Current expectation of total quantity consumed in month ${\cal T}$
σ_Q,σ_P	Proportional volatility for \widetilde{Q} and \widetilde{P}
$ ho_{P,Q}$	Correlation coefficient between $\ln P$ and $\ln Q$
F	Forward price for month T
$C\left(K\right)$	Call option with given strike price K
T	Time to expiration
r	Riskfree rate of interest

• For a corporation *long* prices, the analogous earnings statement is

$$\widetilde{E} = \widetilde{P}\widetilde{Q} - n_F(\widetilde{P} - F) + n_{\text{Put}} \max\{0, K - \widetilde{P}\} - n_{\text{Put}}(1 + r)^T \text{Put}(K)$$
(4)

Implementing Corporate-Level Price Risk Management Policy Using Futures or Options

• For a Corporation short or long price exposure, define the objective function as:²

$$E\left(\widetilde{E}\right) + \alpha E_{\text{Lower Percentile}}$$
 (5)

- Properties of optimal solution:
 - The greater is α , the more concerned is the decision-maker with the *lower* side of the earnings distribution \implies the more hedging he/she will undertake.
 - Varying α from 0 (risk-neutrality) to ∞ (in practice, α of 1 or 2 will suffice) will provide the entire range of earnings-distribution alternatives
- Main Result. There exits a systematic pattern to optimal hedging: As α , the degree of risk aversion, increases from zero to positive values, the company's optimal hedge proceeds from
 - No-hedging, to
 - Acquiring call options (up to 100% of expected quantity), to
 - Replacing call options with futures contracts
- Managerial Decision is taken upon consideration of the Expected Earnings $E\left(\widetilde{E}\right)$ and the lower percentile $E_{\text{Lower Percentile}}$

An alternative intuitive objective function, which gives rise to the same optimal solution, is Downside- $Risk\ Minimization$, based on the semi-variance criterion $E\left(\widetilde{E}\right) - \alpha\sqrt{E\left(\max\left\{\left[E\left(\widetilde{E}\right) - \widetilde{E}\right], 0\right\}\right)^2}$.

Call and Future Cost

Call and Future Cost

Structured Energy Derivative Products

• Linear Instruments

Tradition	al	Exotic
 Forward/Futures of Exchange of future ("EFP") Swaps: Fixed for ing for floating 	es for physicals	 Load-Following Services Cross-Currency Swaps (e.g., Yen WTI Swap) Proxy Swaps on Illiquid Indices (e.g., Japan Crude-Oil Cocktail)
 Non-Linear Structure Traditional 	etures	Exotic
 Conventional American and European call and put options Option Collars Average options Capped swaps; Extendible swaps; Cancellable swaps; Contingent- premium structures 	of a Future Prices; Swa 4. Packaged P 5. Spread opti – Electricity); C gas – Natural g	ncy Exposure es of Average Options: Average Value es Contract; Average Value of Spot eption Products: Three-Ways, Participating ions: Transportation; Basis; Spark (Natural gas Crack (Crude oil – Crude products); Frac (Natural gas liquids); Storage otions, with/without "ruthless" exer-

Pricing Derivatives in Incomplete/Low-Liquidity Markets

• Problems:

- 1. Price-spiking behavior gives rise to so-called "incomplete markets," where no-arbitrage pricing no longer feasible
- 2. Quantity (volumetric) uncertainty not hedgable.

 (Are/will weather derivatives provide an answer? Note that due to the impact of a non-zero market price of risk, weather derivatives should *not* be actuarially fair.)
- 3. Other uncerainties: Credit risk, operational risk (outages), regulatory risk

• Example — Electricity Full Requirement/Load-Following:

- 1. At the retail level, does *not* entail optionality
- 2. In the absence of credit/operational risk, and if markets were complete, value is the riskfree rate-discounted present value of $E^*(P_T \cdot Q_T)$, where $E^*(\cdot)$ is the risk-neutral expectation
- 3. Questions:
 - (a) Would we accept joint LogNormality's

$$E^* (P \cdot Q) = F \cdot E^* (Q) \exp \{\rho \sigma_F \sigma_Q T\}?$$

- (b) What do we do about the market price of risk for volumetric uncertainty $E^*(Q) \neq E(Q)$?
- (c) How do we handle the non-rectangular block intra-day load?
- (d) What if long-dated futures prices F are illiquid?
- Other Examples: Interruptible contracts, swing options

<HELP> for explanation, <MENU> for similar functions.

ComdtyCCRV

Australia 61 2 9777 8600 Brazil 5511 3048 4500 Europe 44 20 7330 7500 Germany 49 69 9204 1210 Hong Kong 852 2977 6000 Japan 81 3 3201 8900 Singapore 65 6212 1000 U.S. 1 212 318 2000 Copyright 2011 Bloomberg Finance L.P. SN 664875 G653-932-0 29-Mar-2011 16:00:01

<HELP> for explanation.

P233 Comdty**OVDV**

96) Se	ettings	- 97)	Refresh	9	8) Asset			Co	mmodity	/ Volatil	ity Surfa	ce
CLA Com	dty	11/01/1	0	Blo	omberg	Surface				w Money		
WTI CRU	DE FUTU	JRE	As of (08:00 (0	MT-4:00)			=	Strikes	Spread	
Contract	80.0%	90.0%	95.0%	97.5%	100.0%	102.5%	105.0%	110.0%	120.0%	150.0%	200.0%	
Mar-13	28.85	27.58	27.00	26.72	26.45	26,20	25.98	25.62	25.20	25.65	28.19	ш
Apr-13	28.58	27.36	26.82	26.57	26.32	26.10	25.90	25.57	25.19	25.62	28.13	Ш
May-13	28.31	27.14	26.64	26.41	26.19	25.99	25.82	25.53	25.19	25.60	28.07	
Jun-13	28.07	26.95	26.49	26.28	26.08	25.90	25.75	25.49	25.19	25.58	28.01	
Jul-13	27.81	26.75	26.32	26.13	25.96	25.81	25.67	25.45	25.19	25.56	27.94	Ш
Aug-13	27.58	26.56	26.17	26.00	25.85	25.72	25.60	25.41	25.18	25.54	27.86	Ш
Sep-13	27.36	26.39	26.03	25.88	25.75	25.63	25.53	25.36	25.16	25.51	27.77	ш
0ct-13	27.11	26.20	25.87	25.73	25.62	25.53	25.44	25.30	25.13	25.46	27.66	Ш
Nov-13	26.88	26.02	25.72	25.60	25.51	25.42	25.35	25.23	25.08	25.41	27.53	ш
Dec-13	26.68	25.87	25.59	25.48	25.39	25.32	25.26	25.15	25.02	25.35	27.40	н
Jun-14	25.41	24.88	24.72	24.67	24.63	24.60	24.57	24.54	24.50	24.83	26.36	
Dec-14	24.33	24.07	24.00	23.98	23.96	23.96	23.95	23.95	23.99	24.33	25.46	
Jun-15	23.48	23.48	23.48	23.48	23.47	23.47	23.48	23.49	23.56	23.97	25.05	1111
Dec-15	22.85	23.04	23.08	23.09	23.10	23.10	23.10	23.12	23.20	23.64	24.58	
Dec-16	22.80	22.73	22.72	22.73	22.74	22.75	22.76	22.79	22.83	22.96	23.12	
Dec-17	21.03	21.38	21.60	21.73	21.86	22.00	22.12	22.33	22.62	22.41	21.04	H,
						444	**					

90) Launch OVML Extrapolated

100%

Australia 61 2 9777 8600 Brazil 5511 3048 4500 Europe 44 20 7330 7500 Germany 49 69 9204 1210 Hong Kong 852 2977 6000 Japan 81 3 3201 8900 Singapore 65 6212 1000 U.S. 1 212 318 2000 Copyright 2010 Bloomberg Finance L.P. SN 763196 H353-898-0 01-Nov-2010 08:28:48

¹⁾ Vol Table 2) 3D Surface 3) Term Analysis 4) Skew Analysis 6) Prices

<HELP> for explanation, <MENU> for similar functions.

ComdtyCCRV

<HELP> for explanation.

P233 ComdtyOVDV

96) Se	ettings	97)	Refresh	9	8) Asset	•		Co	mmodity	/ Volatil	ity Surfa	ce
NGA Com	dty	11/01/1	.0	Blo	omberg	Surface			Sho	w Money	ness	×
NATURAL	GAS FU	TR	As of	08:00 (0	MT-4:00)				Strikes	Spread	
Contract	80.0%	90.0%	95.0%	97.5%	100.0%	102.5%	105.0%	110.0%	120.0%	150.0%	200.0%	
Aug-13	20.51	20.53	20.55	20.56	20.57	20.58	20.59	20.62	20.68	21.02	21.57	
Sep-13	21.00	21.06	21.08	21.10	21.11	21.13	21.14	21.17	21.24	21.49	21.57	
Dec-13	19.32	19.48	19.58	19.64	19.70	19.77	19.83	19.97	20.28	21.32	23.19	
Mar-14	18.57	18.72	18.82	18.88	18.94	19.00	19.07	19.20	19.50	20.50	23.25	
Jun-14	17.94	18.09	18.19	18.25	18.30	18.36	18.43	18.56	18.85	19.82	23.12	
Jan-15	17.00	17.18	17.28	17.34	17.40	17.46	17.53	17.66	17.94	18.85	22.39	
Feb-15	16.93	17.11	17.22	17.28	17.34	17.40	17.47	17.60	17.88	18.79	22.24	
Mar-15	16.88	17.07	17.18	17.24	17.31	17.37	17.44	17.57	17.85	18.76	22.11	
Apr-15	16.85	17.04	17.16	17.22	17.29	17.35	17.42	17.56	17.84	18.74	21.96	
May-15	16.83	17.04	17.16	17.22	17.29	17.36	17.43	17.56	17.85	18.75	21.80	
Jun-15	16.83	17.05	17.18	17.24	17.31	17.38	17.45	17.59	17.88	18.77	21.64	
Jul-15	16.85	17.08	17.21	17.28	17.35	17.42	17.49	17.64	17.93	18.82	21.49	
Aug-15	16.89	17.13	17.27	17.34	17.42	17.49	17.56	17.71	18.01	18.90	21.31	111
0ct-15	17.01	17.29	17.44	17.52	17.59	17.67	17.75	17.91	18.21	19.10	20.99	1
Nov-15	17.10	17.40	17.56	17.64	17.72	17.80	17.88	18.04	18.35	19.24	20.81	
Dec-15	17.19	17.51	17.67	17.76	17.84	17.93	18.01	18.17	18.49	19.38	20.66	
						444	44					

Launch OVML Extrapolated

100%

¹⁾ Vol Table 2) 3D Surface 3) Term Analysis 4) Skew Analysis 6) Prices

Calibrating the Two-Factor Schwartz-Smith Model

1. Under the two-factor Schwartz-Smith model, each futures contract price F_T satisfies³

$$d \ln F_T = \exp \{-\kappa T\} dz_{\chi} + dz_{\xi}$$

$$\ln F_T = \xi_0 + e^{-\kappa T} \chi_0 + (1 - e^{-\kappa T}) \chi_1 + \mu_{\xi} T + \frac{1}{2} \sigma_T^2 T \qquad (6)$$

$$\sigma_T^2 T = (1 - e^{-2\kappa T}) \frac{\sigma_{\chi}^2}{2\kappa} + \sigma_{\xi}^2 T + 2 (1 - e^{-\kappa T}) \frac{\rho_{\chi\xi} \sigma_{\chi} \sigma_{\xi}}{\kappa} \qquad (7)$$

2. Letting c_T be prices of ATM-Forward (call or put) options, the eight parameters we would like to calibrate are

$$\mathbf{x} \equiv \{ \kappa, \, \xi_0, \, \chi_0, \, \chi_1, \, \mu_{\xi}, \, \sigma_{\chi}, \, \sigma_{\xi}, \, \rho_{\chi\xi} \} .$$

On any given day use Solver (say) to perform the minimization:

$$\min_{\{\mathbf{x}\}} \left[\sum_{T=1/12}^{60/12} \left(\ln F_T - \ln \widehat{F}_T \right)^2 + \sum_{T=1/12}^{16/12} \left(\ln c_T - \ln \widehat{c}_T \right)^2 \right]$$

where \widehat{F}_T and \widehat{c}_T are the data on any given day

³The expression $\frac{1}{2}\sigma_T^2T$ in eq. (6) follows from the property of the LogNormal distribution: If $\ln x \sim N(\mu, \sigma^2)$, then the log expectations of x is given by $\ln E(x) = \mu + \frac{1}{2}\sigma^2$.

	Free Parameters	Adjustment
К	0.630876762	0
X_0	1.776136537	0
X_1	1.910689368	0
μ_{ξ}	-0.025761377	0
σ_χ	0.534684723	0
σ_{ξ}	0.182279128	0
$\rho_{X\xi}$	-0.8	0
q	0	0
ξ_0	2.273408843	0

1/31/2007

Current Date

Time Period - Yrs	5
Abs or Squared	Squared
β	1
quadratic (y/n)	у

SUMMARY: Challenges in Risk Management

- Risk-Management from a Corporate Perspective:
 - How to Model, How to Estimate, and When to Use Risk Premia
 - Implementing a Corporate-Level Risk-Management Policy
 - Motivation for Structured Products in Energy
- Pricing Derivatives in Incomplete/Low-Liquidity Markets
- Valuation of Long-Dated Assets: The Challenge of Extrapolation