T1:	Arq	uitectura de Computadores I - 2002/03	Exame 1ª chamada – 13.Jan.03		
T2:	NO	ME:	Nº:		
T3:		TEÓRICA			
T5: T6: T7: T:	As questões devem ser respondidas na própria folha do enunciado. As questões 1 a 4 são de escolha múltipla, e apenas uma das respostas está correcta, valendo 1 valor. Uma resposta errada desconta 1/3 de valor. As questões 5 e 6 valem 2 valores cada. A questão 7 (4 valores) só deve ser respondida pelos alunos que, justificadamente, não fizeram a componente teórico-prática.				
	1.	A estrutura da grande maioria dos compu hierarquização dos barramentos. Esta surge porqu			
		Os controladores de periféricos mais lentos não rápidos, pois não são capazes de acompanhar a su			
		A utilização de barramentos mais lentos permite re	eduzir os custos da máquina.		
		A existência de diferentes barramentos, com diferentes si, isola o tráfego entre diferentes concontenções no acesso aos barramentos, pero comprimento dos barramentos mais rápidos.	mponentes do sistema diminuindo		
		Diferentes controladores são desenhados especifica a máquina deve ter vários barramentos diferentes grande diversidade de controladores.			
	2.	O MIPS (Milhões de Instruções Por Segund publicitada pelos fabricantes de máquinas para and CPUs. Qual das seguintes afirmações é verdadeira	unciar o desempenho dos respectivos		
		O MIPS nativo pode ser usado para avaliar o de Instruction Sets.			
		O MIPS nativo pode ser usado para comparar o dois CPUs com o mesmo <i>Instruction Set</i> e diferente			
		O MIPS de pico é uma medida confiável do más do utilizador atingem numa máquina.	ximo desempenho que os programas		
		O MIPS nativo pode ser usado para avaliar diferentes no mesmo CPU.			
	3.	Considere o datapath single cycle do MIPS. Podemos	-		
	Ц	Esta solução é promissora do ponto de vista do o levam apenas um ciclo a completar (CPI=1).	desempenho, pois todas as instruções		
		Um dos grandes inconvenientes desta abordage deve ser tão longo como a instrução mais demoradores.	· · ·		
		Esta solução obriga ao desenho de um <i>control po</i> extremamente complexos.	ath e respectiva unidade de controlo		
		Esta solução permite uma grande economia de cutilizado várias vezes durante o mesmo ciclo do r			
	4.	mesma instrução. Considere uma máquina com um espaço de endo 256 Kbytes, linhas de 16 <i>palavras</i> , palavras de 4 distribuição dos <i>bits</i> do endereço para seleccionar	bytes e mapeamento directo. Qual a		
		Tag = 14; Índice = 11; Block Offset = 4; Byte Offset =	· ·		
		Tag = 14; Índice = 13; Block Offset = 3; Byte Offset =	= 2		
		Tag = 14; Índice = 12; Block Offset = 4; Byte Offset =	= 2		

☐ Tag = 15; Índice = 11; Block Offset = 4; Byte Offset = 2

NC	ME: N°:
5.	Diga o que entende por localidade nos acessos à memória e discuta de que forma este propriedade é responsável pelo sucesso da utilização de <i>caches</i> na redução do tempo da acesso à memória.

NOME:

N°:_____

6.	Comente a seguinte afirmação de um engenheiro responsável pela concepção do conjunto de instruções de uma nova família de processadores, indicando se é verdadeira ou não: "Devemos conceber um conjunto de instruções tão simples e reduzido quanto possível, permitindo o desenho de processadores com um CPI médio extremamente baixo, pois assim conseguiremos reduzir o tempo de execução de qualquer programa."

Apenas para os alunos que, justificadamente, não fizeram a componente teórico-prática.

7.	Os conjuntos de instruções de processadores com arquitecturas RISC diferem daqueles apresentados por arquitecturas CISC em vários aspectos. Indique quais as principais diferenças, quais as razões que justificam estas 2 abordagens diametralmente opostas e de que forma estas diferenças se reflectem no código <i>assembly</i> gerado pelos compiladores. Use como exemplos o <i>assembly</i> do IA32 e do MIPS.

NOME:

PRÁTICA

As questões práticas devem ser respondidas em folha separada. A questão 1 vale 4 valores, as questões 2 e 3 valem 2 valores cada.

- Considere que o código assembly IA32 (sem optimização) obtido após compilar a função da tabela seguinte é o que se apresenta na coluna direita da mesma tabela.
- a) Identifique a funcionalidade dos blocos 1 a 6 de instruções etiquetados.
- b) Sugira uma optimização no bloco 3 e outra no bloco 7.

```
typedef struct {
  int num;
                                                    pushl %ebp
                                                    movl %esp, %ebp
pushl %ebx
subl $8, %esp
   char v;
                                                                                       # B 1
   } dType;
                                                                                          # B 1
char somar (
                                                    movl 12(%ebp), %eax # B 2 cmpl 16(%ebp), %eax # B 2
   dType *lst, int min,int max )
                                                                                           # B 2
                                                     je .L3
   int med;
   char r;

      movl
      12(%ebp), %edx
      # B 3

      movl
      16(%ebp), %eax
      # B 3

      subl
      %edx, %eax
      # B 3

      sarl
      $1, %eax
      # B 3

   if (min != max)
            d = (max-min) >> 1;
= somar(lst, min, med)+
    somar(lst, med+1, max);
      med = (max-min) >> 1;
r = somar(lst, min, med)+
                                                    movl %eax, -8(%ebp) # B 3
                                                     subl $4, %esp
      }
                                                     pushl -8(%ebp)
   else
                                                     pushl 12(%ebp)
    r = lst[min].v;
                                                     pushl 8(%ebp)
   return (r);
                                                     call somar
addl $16, %esp # B 7
movb %al, %bl # B 7
subl $4, %esp # B 7
                                                     pushl 16(%ebp) # B 4
movl -8(%ebp), %eax # B 4
incl %eax # B 4
pushl %eax # C **
                                                     pushl %eax # B 4
pushl 8(%ebp) # B 4
                                                                                          # B 4
                                                     call somar
                                                     addl $16, %esp
                                                     movb %al, %al
                                                     leal (%eax, %ebx), %eax # B 5
                                                     movb %al, -9(%ebp) # B 5
jmp .L4 # B 5
                                                  .L3:
                                                     movl 12(%ebp), %eax # B 6 imull $8, %eax, %edx # B 6 movl 8(%ebp), %eax # B 6
                                                     movb 4(%eax,%edx), %al # B 6
                                                     movb %al, -9(%ebp)
                                                                                           # B 6
                                                     movsbl -9(%ebp), %eax
                                                     movl %eax, %eax
                                                     movl -4(%ebp), %ebx
                                                     leave
                                                     ret
```

NOME: ______ N°:_____

 Escreva em assembly do MIPS o código correspondente à seguinte linha de código

r = lst[min].v;

Assuma que:

- o registo **\$s0** contém a variável **r** (tipo char)
- o registo \$t1 contém o apontador para a variável estruturada Ist
- o registo \$t2 contém a variável inteira min
- 2. Considere o seguinte programa, escrito em assembly do MIPS:

```
li $t0, 0x40000
ciclo:
    subi $t0, $t0, 1
    bne $t0, $ao, ciclo
```

- a) Identifique as pseudo-instruções e reescreva o código usando apenas instruções nativas.
- b) Converta o *assembly* para o nível máquina, apresentando os resultados finais em hexadecimal. Apresente também todos os passos intermédios.
- 3. A máquina M, com uma frequência de 1 GHz, apresenta um CPI global de 5 ciclos/instrução ao executar o programa P, cuja distribuição de tipos de instrução se apresenta na tabela. Para este programa a máquina apresenta uma *miss rate* de instruções de 5% e uma *miss rate* de dados de 10%. O CPI_{CPU} é de 1.5 ciclos/instrução.

Tipo Instrução	Num.
Inteiros	3*10 ⁷
Vírg. Flutuante	2*10 ⁷
Acesso à memória	5*10 ⁷

- a) Calcule a *miss penalty* exibida por esta máquina. Apresente o resultado em nanosegundos.
- b) Suponha que a frequência da máquina M aumenta para 1,333 GHz. Qual deverá ser a *miss penalty* (em nanosegundos) desta versão de M para que o CPI global se mantenha em 5 ciclos/instrução, sabendo que todos os outros parâmetros da máquina e do programa se mantêm?
- c) Porque é que um aumento na frequência do relógio pode implicar um aumento do CPI e que consequências é que este facto tem no tempo de execução dos programas?