

UNSUPERVISED LEARNING IN PYTHON

Unsupervised learning

Unsupervised learning

- Unsupervised learning finds patterns in data
- E.g. clustering customers by their purchases
- Compressing the data using purchase patterns (dimension reduction)

Supervised vs unsupervised learning

- Supervised learning finds patterns for a prediction task
- E.g. classify tumors as benign or cancerous (labels)
- Unsupervised learning finds patterns in data
- ... but without a specific prediction task in mind

Iris dataset

- Measurements of many iris plants
- 3 species of iris: setosa, versicolor, virginica
- Petal length, petal width, sepal length, sepal width (the features of the dataset)

Arrays, features & samples

- 2D NumPy array
- Columns are measurements (the features)
- Rows represent iris plants (the samples)

Iris data is 4-dimensional

- Iris samples are points in 4 dimensional space
- Dimension = number of features
- Dimension too high to visualize!
- ... but unsupervised learning gives insight

k-means clustering

- Finds clusters of samples
- Number of clusters must be specified
- Implemented in sklearn ("scikit-learn")

k-means clustering with scikit-learn

```
In [1]: print(samples)
[[ 5. 3.3 1.4 0.2]
 [ 5. 3.5 1.3 0.3]
 [ 4.9 2.4 3.3 1. ]
 [ 6.3 2.8 5.1 1.5]
 [ 7.2 3.2 6. 1.8]]
In [2]: from sklearn.cluster import KMeans
In [3]: model = KMeans(n_clusters=3)
In [4]: model.fit(samples)
Out[4]: KMeans(algorithm='auto', ...)
In [5]: labels = model.predict(samples)
In [6]: print(labels)
[0 0 1 1 0 1 2 1 0 1 ...]
```


Cluster labels for new samples

- New samples can be assigned to existing clusters
- k-means remembers the mean of each cluster (the "centroids")
- Finds the nearest centroid to each new sample

Cluster labels for new samples

```
In [7]: print(new_samples)
[[ 5.7     4.4     1.5     0.4]
     [ 6.5     3.      5.5     1.8]
     [ 5.8     2.7     5.1     1.9]]
In [8]: new_labels = model.predict(new_samples)
In [9]: print(new_labels)
[0     2     1]
```


Scatter plots

- Scatter plot of sepal length vs petal length
- Each point represents an iris sample
- Color points by cluster labels
- PyPlot (matplotlib.pyplot)

Scatter plots

```
In [1]: import matplotlib.pyplot as plt
In [2]: xs = samples[:,0]
In [3]: ys = samples[:,2]
In [4]: plt.scatter(xs, ys, c=labels)
In [5]: plt.show()
```


PYTHON UNSUPERVISED LEARNING

Let's practice!

UNSUPERVISED LEARNING IN PYTHON

Evaluating a clustering

Evaluating a clustering

- Can check correspondence with e.g. iris species
- ... but what if there are no species to check against?
- Measure quality of a clustering
- Informs choice of how many clusters to look for

Iris: clusters vs species

- k-means found 3 clusters amongst the iris samples
- Do the clusters correspond to the species?

sp	ecies	setosa	versicolor	virginica		
la	species setosa versicolor virginica labels					
0		0	2	36		
1		50	0	0		
2		0	48	14		

Cross tabulation with pandas

- Clusters vs species is a "cross-tabulation"
- Use the pandas library
- Given the species of each sample as a list species

```
In [1]: print(species)
['setosa', 'setosa', 'versicolor', 'virginica', ...]
```


Aligning labels and species

Crosstab of labels and species

How to evaluate a clustering, if there were no species information?

Measuring clustering quality

- Using only samples and their cluster labels
- A good clustering has tight clusters
- ... and samples in each cluster bunched together

Inertia measures clustering quality

- Measures how spread out the clusters are (lower is better)
- Distance from each sample to centroid of its cluster
- After fit(), available as attribute inertia_
- k-means attempts to minimize the inertia when choosing clusters

```
In [1]: from sklearn.cluster import KMeans
In [2]: model = KMeans(n_clusters=3)
In [3]: model.fit(samples)
In [4]: print(model.inertia_)
78.9408414261
```


The number of clusters

- Clusterings of the iris dataset with different numbers of clusters
- More clusters means lower inertia
- What is the best number of clusters?

How many clusters to choose?

- A good clustering has tight clusters (so low inertia)
- ... but not too many clusters!
- Choose an "elbow" in the inertia plot
- Where inertia begins to decrease more slowly
- E.g. for iris dataset, 3 is a good choice

UNSUPERVISED LEARNING IN PYTHON

Let's practice!

UNSUPERVISED LEARNING IN PYTHON

Transforming features for better clusterings

Piedmont wines dataset

- 178 samples from 3 distinct varieties of red wine: Barolo,
 Grignolino and Barbera
- Features measure chemical composition e.g. alcohol content
- ... also visual properties like "color intensity"

Clustering the wines

```
In [1]: from sklearn.cluster import KMeans
In [2]: model = KMeans(n_clusters=3)
In [3]: labels = model.fit_predict(samples)
```


Clusters vs. varieties

Feature variances

- The wine features have very different variances!
- Variance of a feature measures spread of its values

feature	variance
alcohol	0.65
malic_acid	1.24
od280	0.50
proline	99166.71

StandardScaler

- In kmeans: feature variance = feature influence
- StandardScaler transforms each feature to have mean o and variance 1
- Features are said to be "standardized"

sklearn StandardScaler

```
In [1]: from sklearn.preprocessing import StandardScaler
In [2]: scaler = StandardScaler()
In [3]: scaler.fit(samples)
Out[3]: StandardScaler(copy=True, with_mean=True, with_std=True)
In [4]: samples_scaled = scaler.transform(samples)
```


Similar methods

- StandardScaler and KMeans have similar methods
- Use fit() / transform() with StandardScaler
- Use fit() / predict() with KMeans

StandardScaler, then KMeans

- Need to perform two steps: StandardScaler, then KMeans
- Use sklearn pipeline to combine multiple steps
- Data flows from one step into the next

Pipelines combine multiple steps

```
In [1]: from sklearn.preprocessing import StandardScaler
In [2]: from sklearn.cluster import KMeans
In [3]: scaler = StandardScaler()
In [4]: kmeans = KMeans(n_clusters=3)
In [5]: from sklearn.pipeline import make_pipeline
In [6]: pipeline = make_pipeline(scaler, kmeans)
  [7]: pipeline.fit(samples)
Out[7]: Pipeline(steps=...)
In [8]: labels = pipeline.predict(samples)
```


Feature standardization improves clustering

Without feature standardization was very bad:

varieties labels	Barbera	Barolo	Grignolino	
0	29	13	20	
1	0	46	1	
2	19	0	50	

sklearn preprocessing steps

- StandardScaler is a "preprocessing" step
- MaxAbsScaler and Normalizer are other examples

UNSUPERVISED LEARNING IN PYTHON

Let's practice!