

TEMA 3.5: DIAGRAMAS DE ESTADO

Índice

- Diagramas de estado
 - Representación gráfica
 - Elementos
 - Tipos de eventos
 - Tipos de estados

- Los diagramas de estado se utilizan para modelar el comportamiento de un único objeto, están orientados a eventos
- Muestran cómo las partes de un modelo UML cambian con el tiempo
- Al pasar el tiempo y según suceden los acontecimientos hay cambios que afectan los objetos que nos rodean
- Las interacciones de un sistema con los usuarios y con otros sistemas provocan una serie de cambios en los objetos que lo conforman

- El diagrama de estados en UML captura los cambios
- Presenta los estados en los que puede encontrarse un objeto
- También incluye las transiciones entre estados
- Muestra los puntos inicial y final de una secuencia de cambios de estado
- Los diagramas vistos hasta ahora modelan el comportamiento del sistema o de un grupo de clases u objetos.
- El diagrama de estados muestra las condiciones de un único objeto

- Representan autómatas de estados finitos, desde el punto de vista de los estados y las transiciones
- Son útiles sólo para los objetos con un comportamiento significativo
- El resto de objetos se puede considerar que tienen un único estado

- Cada objeto está en un estado en cierto instante
- El estado está caracterizado parcialmente por los valores de los atributos del objeto
- El estado en el que se encuentra un objeto determina su comportamiento
- Cada objeto sigue el comportamiento descrito en el Diagrama de Estados asociado a su clase

Relación con otros diagramas

Diagramas de interacción

 Modelan el comportamiento de una sociedad de objetos, mientras que la máquina de estados modela el comportamiento de un objeto individual

Diagramas de actividades

- Se centran en el flujo de control entre actividades, no en el flujo de control entre estados.
 - El evento para pasar de una actividad a otra es la finalización de la anterior actividad

Representación gráfica

- Un estado se representa como un rectángulo con bordes redondeados
- Las flechas indican una transición de estado
- La punta de flecha apunta hacia el estado donde se hará la transición
- El estado inicial se representa como un círculo relleno
- El estado final se representa como un círculo relleno con borde

Representación gráfica

- En el diagrama de clases una clase tenía tres áreas: nombre de la clase, atributos y métodos.
- En el diagrama de estados un estado también puede tener tres áreas: nombre del estado, variables de estado y actividades

Nombre
Variables de estado
Actividades

Envio de fax

Fecha = Fecha en curso

Hora = Hora de inicio del fax

Talefone - Numero talefonico del propio

Telefono = Numero telefonico del propietario

Propietario = Nombre del propietario

entrada/marcar el numero de fax salida/finalizar transmision hacer/agregar impresion de fecha hacer/agregar impresion de tiempo hacer/agregar numero de telefono hacer/agregar propietario hacer/jalar hojas hacer/paginar

Representación gráfica: Actividades internas

 Se puede especificar el hacer una acción como consecuencia de entrar, salir o estar en un estado:

estado A

entry: acción por entrar

exit: acción por salir

do: acción mientras en estado

Representación gráfica: Actividades internas

 Se puede especificar el hacer una acción cuando ocurre en dicho estado un evento que no conlleva salir del estado:

estado A

on evento_activador(arg1)[condición]: acción por evento

Elementos: Estados

- Un estado es una situación en la vida de un objeto caracterizada por satisfacer una condición: esperar un evento (estática) o realizar una actividad (dinámica)
- Cada estado tiene un nombre
- El estado de un objeto está relacionado con los valores de sus atributos, los enlaces con otros objetos y las actividades que esté realizando

Elementos: Eventos

- Un evento representa la ocurrencia de un suceso, dentro o fuera del objeto, que provoca un cambio de estado en el objeto (dispara una transición)
 - La sucesión de transiciones marca el "camino" seguido por el objeto entre los estados

- Una transición es una relación entre dos estados: indica que cuando ocurre un evento, el objeto pasa de un estado a otro
- Un estado tiene duración, una transición es inmediata
- Una transición puede tener varios eventos vinculados

- Una transición tiene tres partes opcionales:
 - Evento: suceso en el tiempo
 - Condición o guarda: autoriza la transición si se cumple la condición
 - Acción: operación atómica que se ejecuta antes de que la transición alcance el nuevo estado
- Se representan mediante la siguiente notación:
 - Evento[condición]/acción

• La transición puede depender de que se cumplan ciertas condiciones:

 Podemos especificar la ejecución de una acción como consecuencia de la transición:

 Podemos especificar el envío de un evento a otro objeto como consecuencia de la transición:

Ejemplo: estados, transiciones y eventos

Diagrama de clases

Diagrama de estados

Simple

Sin estructura interna

Compuesto

- Tiene estructura interna con varios estados interiores (subestados)
- Estado ortogonal (subestados concurrentes)
 - Se divide en dos o más regiones
 - Cuando el estado está activo significa que lo es uno de los subestados de cada región
- Estado no ortogonal (subestados secuenciales
 - Contiene uno o más subestados directos
 - Cuando el estado está activo significa que lo está uno y solo uno de los subestados

Estado inicial

 Indica el punto de comienzo por defecto para la máquina de estados o para el subestado

Estado final

- Indica que la ejecución de la máquina de estados o estado que lo contiene, ha finalizado
- Si la máquina tiene uso infinito, puede no tener estado final (pero siempre tendrá estado inicial)

- Un subestado es un estado anidado dentro de un estado compuesto
 - Los subestados dentro de un estado compuesto pueden ser concurrentes (estado compuesto ortogonal) o secuenciales (estado compuesto no ortogonal)
- Una transición desde fuera de un estado compuesto puede apuntar a:
 - El estado compuesto (la máquina de estados anidada debe incluir un estado inicial, al cual pasa el control al entrar al estado compuesto)
 - Un subestado anidado (el control pasa directamente a él)

- Ejemplo subestados secuenciales:
 - Cajero automático

Subestados concurrentes

- Las regiones ortogonales permiten especificar dos o más máquinas de estados anidadas que se ejecutan en paralelo en el contexto del objeto que las contiene
- El estado compuesto acaba mediante una sincronización de las regiones ortogonales: las regiones que alcanzan sus estados finales quedan a la espera hasta que todas las regiones acaban, y entonces concluye el estado compuesto
- Cada región ortogonal puede tener un estado inicial, un estado final y un estado de historia (estado histórico).

- Un estado histórico indica que un estado compuesto recordará el último subestado activo cuando el objeto salga y vuelva al estado compuesto
- Ejemplo: Cuando se desactiva el protector de pantalla por el movimiento del ratón, la pantalla no vuelve a su estado inicial como si se reiniciara el PC, sino que se mostrará tal y como se dejó antes de que se activara el protector de pantalla

Ejemplo: Protector de pantalla

• Subestado concurrente: Operación

 Estado histórico dentro del estado concurrente Operación

Transición de División (Fork)

- El control pasa de un estado simple a varios estados ortogonales,
 cada uno de una región ortogonal diferente
- Las regiones para las que no se especifica subestado destino toman como tal, por defecto, el estado inicial de la región

Transición de Unión (Join)

- Varias entradas, cada una de un subestado de una región ortogonal diferente, pasan el control a un único estado simple
- Puede tener un evento disparador
- La transición ocurre si todos los subestados origen están activos
- El control sale de todas las regiones ortogonales, no solo de las que tienen subestado de entrada a la unión

- Ejemplo subestados concurrentes:
 - Cajero automático

Destrucción del Objeto

Destrucción de objetos

- La destrucción de un objeto es efectiva cuando el flujo de control del autómata alcanza un estado final no anidado.
- La llegada a un estado final anidado implica la "subida" al superestado asociado, no el fin del objeto.

Destrucción del Objeto

Ejercicio

- Una cuenta bancaria puede estar activa, suspendida o cerrada.
- Cuando está activa puede estar en azul (si el saldo es positivo) o en rojo (si el saldo es negativo)
- Realizar el diagrama de estados

Ejercicio

 Modelar el comportamiento de una cadena de música. Esta puede estar encendida (ON) o apagada (Standby). La cadena tiene reproductor de CD, Radio y Cinta. Se cambia de uno a otro con el botón "mode". Cuando se enciende la cadena se recuerda el último estado en el que estuvo.