Invertible Convolutional Networks

Marc Finzi* Pavel Izmailov* Wesley Maddox* Polina Kirichenko * Andrew Gordon Wilson Cornell University

Overview

- Directly invert ordinary convolutional networks by adding circular padding, bijective activations, and invertible downsampling.
- Use lifting into a higher dimensional space to compute inverses and log determinants via real valued linear algebra.
- We apply these methods to define a simple, fully convolutional normalizing flow.

Inverse of Convolutional Layers

Convolutions can be expressed in the Fourier domain as

$$\operatorname{Conv}_{W}(x)_{i} = \sum_{j} W_{ij} \star x_{j} = \sum_{j} \mathcal{F}^{-1} \big(\mathcal{F}(W_{ij})^{*} \circ \mathcal{F}(x_{j}) \big).$$

In the Fourier basis, the (linear) Conv operation is block diagonal, where the blocks extend over channels but not spatially.

Figure 1: The overall $chw \times chw$ linear operation performed by $(X_j)_{j=1}^c \to \left(\sum_j \left((\mathcal{F}(W)^*)_{ij} \circ X_j\right)\right)_{i=1}^c$ is block diagonal, with h, w many blocks of size $c \times c$.

$$\operatorname{Conv}_{W}^{-1}(y)_{k} = \sum_{i} \mathcal{F}^{-1} \left(\left(\mathcal{F}(W)^{*} \right)_{ki}^{-1} \circ \mathcal{F}(y_{i}) \right)$$
(1)

- This representation reduces an intractable naive $O(h^3w^3c^3)$ computation time to $O(c^2hw\log(hw)+c^3hw)$).
- The existence of the inverse $(\mathcal{F}(W)^*)_{ki}^{-1}$ is guaranteed since at initialization the set of singular matrices has measure 0.

Fast Inverses and Logdets

Log determinants can also be efficiently computed, in the Fourier domain the computation decomposes into the sum over spatial locations,

$$\log|\det(\operatorname{Conv}_W)| = \sum_{h,w} \log|\det(\mathcal{F}(W)^*_{:,:,h,w})|. \tag{2}$$

- Both (1) and (2) require linear algebra routines for the collection of complex matrices $\mathcal{F}(W)^*_{:::,h,w}$.
- Many deep learning frameworks (PyTorch, MxNet, Chainer, Theano) do not support complex linear algebra.
- We compute these log determinants and inverses using only real valued linear algebra routines by lifting to a higher dimensional space.

Consider the injective ring homomorphism, $\phi: \mathbb{C}^{n\times n} \to \mathbb{R}^{2n\times 2n}$:

$$\phi(A+iB) = I \otimes A + J \otimes B = \begin{pmatrix} A & -B \\ B & A \end{pmatrix}, \quad J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad J^2 = -I.$$

Given a pair of complex matrices $C, V \in \mathbb{C}^{n \times n}$, $\phi(C)\phi(V) = \phi(CV)$. Additionally, it can be shown that

$$\log|\det(C)| = \frac{1}{2}\log|\det(\phi(C))|$$

Figure 2: Runtime of Conv operations for $bs, c, h, w = 32 \times 64 \times 8 \times 8$ sized image with a 3×3 filter as the number of channels d = c and the spatial size h, w = m, m is varied. Log-determinant and $\mathrm{Conv}_W(\cdot)$ operations are accelerated on an Nvidia 1080ti, and the $\mathrm{Conv}_W^{-1}(\cdot)$ is computed on the CPU.

Smooth Bijective Activation Function

Since ReLU is not differentiable, we replace it with a smoothed modification of LeakyReLU, SneakyReLU.

$$\sigma(x) = (x + \alpha(\sqrt{1 + x^2} - 1))/(1 + \alpha),$$

 $\alpha = \frac{1-s}{1+s}$ where s is the slope as $x \to -\infty$, and the function has a closed form inverse.

Change	Accuracy	Diff
Base Convnet (4M params, 9 layers)	94.6	_
Zero Padding → Circular Padding	94.6	0
$ReLU \rightarrow SneakyReLU$	93.0	-1.6
$MaxPool2d \rightarrow Checkerboard\ DS$	92.0	-1.0
$MaxPool2d \rightarrow iNN$	92.5	-0.5
$MaxPool2d \rightarrow iAvgPool2d$	92.6	-0.4

Table 1: Path to Invertibility (CIFAR10 classification performance).

Figure 3: SneakyRELU.

Fully Convolutional Normalizing Flow

Our adapted CNN is invertible and allows for fast log-determinants, so we can train it as a normalizing flow,

$$\log |\det(\mathbf{Df})| = \sum_{i=1}^{L} \left(\log |\det(\mathbf{Conv}_W^{(i)})| + \sum_{j,h,w} \log \sigma'(a_{j,h,w}^{(i)}) \right).$$

Method (CIFAR-10)	BPD
MADE (Germain et al)	5.67
RealNVP (Dinh et al)	3.49
Glow (Kingma et al)	3.35
i-ResNet (Behrmann et al)	3.45
i-ConvNet	4.61

Table 2: Bits per dimension

Figure 4: Latent space interpolations.