Zerocash:

addressing Bitcoin's privacy problem

Madars Virza

based on joint works with

Eli Ben-Sasson

Matthew Green

Alessandro Chiesa

Ian Miers

Christina Garman

🝁 Eran Tromer

1. Bitcoin's privacy problem

- 1. Bitcoin's privacy problem
- 2. Zerocash: privacy-preserving decentralized currency

- 1. Bitcoin's privacy problem
- 2. Zerocash: privacy-preserving decentralized currency
- 3. Zcash: deploying Zerocash in practice...

"Sweet! What about the fine print?"

"Sweet! What about the fine print?"

"Every payment you make,

"Sweet! What about the fine print?"

"Sweet! What about the fine print?"

"Every payment you make, we will publicly broadcast it.

Sender	Recipient	Amount	Time	Location
Madars	Starbucks	\$10	March 24, 10:05 am	Cambridge, MA

"Sweet! What about the fine print?"

"Every payment you make, we will publicly broadcast it.

Sender	Recipient	Amount	Time	Location
Madars	Starbucks	\$10	March 24, 10:05 am	Cambridge, MA
Madars	Whole Foods	\$50	March 25, 1:23 pm	Boston, MA

"Sweet! What about the fine print?"

"Every payment you make, we will publicly broadcast it.

Sender	Recipient	Amount	Time	Location
Madars	Starbucks	\$10	March 24, 10:05 am	Cambridge, MA
Madars	Whole Foods	\$50	March 25, 1:23 pm	Boston, MA
•••		•••	•••	

"Sweet! What about the fine print?"

Sender	Recipient	Amount	Time	Location
Madars	Starbucks	\$10	March 24, 10:05 am	Cambridge, MA
Madars	Whole Foods	\$50	March 25, 1:23 pm	Boston, MA
		•••	•••	•••

Personal medical information (e.g. therapist choices, prescriptions)

Personal medical information (e.g. therapist choices, prescriptions)

→ denied coverage in future?

Personal medical information (e.g. therapist choices, prescriptions)

→ denied coverage in future?

Merchant cash flow

Personal medical information (e.g. therapist choices, prescriptions)

→ denied coverage in future?

Merchant cash flow

→ exposed to competitors

Personal medical information (e.g. therapist choices, prescriptions)

→ denied coverage in future?

Merchant cash flow

→ exposed to competitors

Current location and travel patterns

Personal medical information (e.g. therapist choices, prescriptions)

→ denied coverage in future?

Merchant cash flow

→ exposed to competitors

Current location and travel patterns

→ a gold mine for stalkers

Federal privacy laws mandate opt-out from data sharing

Federal privacy laws mandate opt-out from data sharing Gramm-Leach-Bliley Act: up to \$100k fine per violation

Federal privacy laws mandate opt-out from data sharing Gramm-Leach-Bliley Act: up to \$100k fine per violation

But what about Bitcoin?

Federal privacy laws mandate opt-out from data sharing Gramm-Leach-Bliley Act: up to \$100k fine per violation

But what about Bitcoin?

Federal privacy laws mandate opt-out from data sharing Gramm-Leach-Bliley Act: up to \$100k fine per violation

But what about Bitcoin?

Federal privacy laws mandate opt-out from data sharing Gramm-Leach-Bliley Act: up to \$100k fine per violation

But what about Bitcoin?

Sender	Recipient
14	1b
f7	38

Federal privacy laws mandate opt-out from data sharing Gramm-Leach-Bliley Act: up to \$100k fine per violation

But what about Bitcoin?

Sender	Recipient	Amount
14	1b	0.1
f7	38	2 ₿
	•••	

Federal privacy laws mandate opt-out from data sharing Gramm-Leach-Bliley Act: up to \$100k fine per violation

But what about Bitcoin?

Sender	Recipient	Amount	Time
14	1b	0.1	March 24, 10:05 am
f7	38	2 🚯	March 25, 1:23 pm
•••	•••	•••	•••

Federal privacy laws mandate opt-out from data sharing Gramm-Leach-Bliley Act: up to \$100k fine per violation

But what about Bitcoin?

There is no opt-out on the blockchain:

Sender	Recipient	Amount	Time
14	1b	0.1	March 24, 10:05 am
f7	38	2 🚯	March 25, 1:23 pm
	•••	•••	•••

"This is not the same! Those are just addresses!"

... that are known by people you interact with

... that are known by people you interact with

... that are known by people you interact with

... that are known by people you interact with

... that are known by people you interact with

... that are known by people you interact with

... that are known by people you interact with

... that are known by people you interact with

... that are known by people you interact with

... and anyone else can analyze the ledger

Fuse with **external databases!**

... that are known by people you interact with

... and anyone else can analyze the ledger

Fuse with external databases! 2016: IRS subpoenas Coinbase

... that are known by people you interact with

... and anyone else can analyze the ledger

Fuse with external databases! 2016: IRS subpoenas Coinbase

... that are known by people you interact with ... and anyone else can analyze the ledger

Fuse with external databases! 2016: IRS subpoenas Coinbase

In practice: academics, FBI Silk Road investigations, ...

• Use fresh addresses

- Use fresh addresses
- Mix coins together in a "tumbler"/"laundry"

- Use fresh addresses
- Mix coins together in a "tumbler"/"laundry"

1ab... •

323...

1a3...

...

129...

- Use fresh addresses
- Mix coins together in a "tumbler"/"laundry"

- Use fresh addresses
- Mix coins together in a "tumbler"/"laundry"

- Use fresh addresses
- Mix coins together in a "tumbler"/"laundry"

- Use fresh addresses
- Mix coins together in a "tumbler"/"laundry"

"Seems" harder to analyze, but tracks remain.

- Use fresh addresses
- Mix coins together in a "tumbler"/"laundry"

"Seems" harder to analyze, but tracks remain. Methods of analysis only get stronger.

- Use fresh addresses
- Mix coins together in a "tumbler"/"laundry"

"Seems" harder to analyze, but tracks remain.

Methods of analysis only get stronger.

Your Bitcoin history is publicly saved forever.

Fungibility = "dollar is a dollar, no matter history"

Fungibility = "dollar is a dollar, no matter history" (Crawfurd v. The Royal Bank, 1749)

Fungibility = "dollar is a dollar, no matter history"
(Crawfurd v. The Royal Bank, 1749)

Not so for cryptocurrencies! Bad coins taint good ones.

Fungibility = "dollar is a dollar, no matter history" (Crawfurd v. The Royal Bank, 1749)

Not so for cryptocurrencies! Bad coins taint good ones.

Ex.: Exchanges reject funds involved in DAO hack

Fungibility = "dollar is a dollar, no matter history" (Crawfurd v. The Royal Bank, 1749)

Not so for cryptocurrencies! Bad coins taint good ones.

Ex.: Exchanges reject funds involved in DAO hack Startups selling "fresh" coins at premium prices

Fungibility = "dollar is a dollar, no matter history" (Crawfurd v. The Royal Bank, 1749)

Not so for cryptocurrencies! Bad coins taint good ones.

Ex.: Exchanges reject funds involved in DAO hack Startups selling "fresh" coins at premium prices

Consequences:

Fungibility = "dollar is a dollar, no matter history" (Crawfurd v. The Royal Bank, 1749)

Not so for cryptocurrencies! Bad coins taint good ones.

Ex.: Exchanges reject funds involved in DAO hack Startups selling "fresh" coins at premium prices

Consequences:

Recipients can devalue your coins when accepting

Fungibility = "dollar is a dollar, no matter history"
(Crawfurd v. The Royal Bank, 1749)

Not so for cryptocurrencies! Bad coins taint good ones.

Ex.: Exchanges reject funds involved in DAO hack Startups selling "fresh" coins at premium prices

Consequences:

Recipients can devalue your coins when accepting
 Only way to know value: ask a central party?!

Fungibility = "dollar is a dollar, no matter history" (Crawfurd v. The Royal Bank, 1749)

Not so for cryptocurrencies! Bad coins taint good ones.

Ex.: Exchanges reject funds involved in DAO hack Startups selling "fresh" coins at premium prices

Consequences:

- Recipients can devalue your coins when accepting
 Only way to know value: ask a central party?!
- Price discrimination.

Fungibility = "dollar is a dollar, no matter history" (Crawfurd v. The Royal Bank, 1749)

Not so for cryptocurrencies! Bad coins taint good ones.

Ex.: Exchanges reject funds involved in DAO hack Startups selling "fresh" coins at premium prices

Consequences:

- Recipients can devalue your coins when accepting
 Only way to know value: ask a central party?!
- Price discrimination. Get a raise and get a rent hike?

Fungibility and trust in Bitcoin economy

Fungibility = "dollar is a dollar, no matter history" (Crawfurd v. The Royal Bank, 1749)

Not so for cryptocurrencies! Bad coins taint good ones.

Ex.: Exchanges reject funds involved in DAO hack Startups selling "fresh" coins at premium prices

Consequences:

- Recipients can devalue your coins when accepting
 Only way to know value: ask a central party?!
- Price discrimination. Get a raise and get a rent hike?
- Censorship.

Fungibility and trust in Bitcoin economy

Fungibility = "dollar is a dollar, no matter history"
(Crawfurd v. The Royal Bank, 1749)

Not so for cryptocurrencies! Bad coins taint good ones.

Ex.: Exchanges reject funds involved in DAO hack Startups selling "fresh" coins at premium prices

Consequences:

- Recipients can devalue your coins when accepting
 Only way to know value: ask a central party?!
- Price discrimination. Get a raise and get a rent hike?
- Censorship. Miners could pick-and-choose transactions

Q: If privacy is important, why isn't Bitcoin private?

From: Tadge

To: Madars

Amnt: 1 🕖

From: Tadge

To: Madars

Amnt: 1 🕖

From: Neha

To: Ale

Amnt: 2 🕖

From: Tadge
To: Madars
Amnt: 1 (3)

From: Neha
To: Ale
Amnt: 2 (3)

From: Tadge To: Madars
To: Madars
Amnt: 1 (3)
From: Neha
To: Ale
Amnt: 2 (3)
From: Madars
To: Silvio
Amnt: 1 (3)

What if we encrypted the blockchain?

What if we encrypted the blockchain?

What if we encrypted the blockchain?

Privacy is fundamentally at odds with correctness.

Outline

- 1. Bitcoin's privacy problem
- 2. Zerocash: privacy-preserving decentralized currency
- 3. Zcash: deploying Zerocash in practice...

A cryptocurrency with following properties:

A cryptocurrency with following properties:

Decentralized

Designed to sit on top of any ledger-based currency

A cryptocurrency with following properties:

Decentralized

Designed to sit on top of any ledger-based currency

Privacy-preserving

Provably hides tx origin, destination and amount

A cryptocurrency with following properties:

Decentralized

Designed to sit on top of any ledger-based currency

Privacy-preserving

Provably hides tx origin, destination and amount

Efficient

Tx: 1 KB in size, <1 min to produce, <6 ms to verify

Decentralized Anonymous Payments

Decentralized Anonymous Payments

Decentralized Anonymous Payments

Algorithms:

Decentralized Anonymous Payments

Algorithms: Setup CreateAddress Mint Send VerifyTransaction Receive

Decentralized Anonymous Payments

Algorithms: Setup CreateAddress Mint Send VerifyTransaction Receive Security requirements:

Decentralized Anonymous Payments

Algorithms: Setup CreateAddress Mint Send VerifyTransaction Receive

Security requirements:

Ledger indistinguishability

Nothing revealed besides public information, even by chosen-transaction adversary.

Decentralized Anonymous Payments

Algorithms: Setup CreateAddress Mint Send VerifyTransaction Receive

Security requirements:

Ledger indistinguishability

Nothing revealed besides public information, even by chosen-transaction adversary.

Balance

Can't spend more money than received or minted.

Decentralized Anonymous Payments

Algorithms: Setup CreateAddress Mint Send VerifyTransaction Receive

Security requirements:

Ledger indistinguishability

Nothing revealed besides public information, even by chosen-transaction adversary.

Balance

Can't spend more money than received or minted.

Transaction non-malleability

Cannot manipulate transactions en route to ledger.

proof

zero knowledge

proof

zero knowledge

non-interactive proof

zero knowledge succinct non-interactive proof

zero knowledge succinct non-interactive proof of knowledge

zero knowledge succinct non-interactive argument of knowledge

zero knowledge succinct <(zk)SNARK</pre> **n**on-interactive argument of knowledge

Public currency ledger (e.g. Bitcoin):

Public currency ledger (e.g. Bitcoin):

Two new transaction types:

Public currency ledger (e.g. Bitcoin):

Two new transaction types:

Mint

Spend

Public currency ledger (e.g. Bitcoin):

Two new transaction types:

- Mint Consumes (and destroys) Bitcoin
 - Creates private coin

Spend

Public currency ledger (e.g. Bitcoin):

Two new transaction types:

- Mint Consumes (and destroys) Bitcoin
 - Creates private coin
- **Spend** Consumes (and destroys) a private coin
 - Creates Bitcoin

Minting:

I hereby spend 1 BTC to create sn

Minting:

Legend:

I hereby spend 1 BTC to create sn

 sn_1

 sn_2

 sn_3

sn₄

sn₅,

sn₆

 sn_7

sn₈

I hereby spend 1 BTC to create sn Minting: I'm using up a coin with (unique) sn Spending: sn (serial number) Legend: In public ledger

 sn_1 sn_2 sn_3 sn_4 sn_5 sn_6 sn_7

sna

I hereby spend 1 BTC to create sn Minting: I'm using up a coin with (unique) sn Spending: sn (serial number) Legend: In public ledger

 $\begin{array}{c} \operatorname{sn}_1 \\ \operatorname{sn}_2 \\ \operatorname{sn}_3 \\ \end{array}$ $\begin{array}{c} \operatorname{sn}_4 \\ \operatorname{sn}_6 \\ \end{array}$

sna

[Sander Ta-Shma 1999]

[Sander Ta-Shma 1999]

Minting:

Legend:

I hereby spend 1 BTC to create cm

Legend:

[Sander Ta-Shma 1999]

cm_{1,}

 cm_2

 cm_3

 cm_{4}

 cm_5

cm₆

cm_{7,}

cm₈

In public ledger

[Sander Ta-Shma 1999]

hereby spend 1 BTC to create cm Minting: cm. I'm using up a coin with (unique) sn, Spending: and here are its cm and r. cm_2 cm_3 cm cm (coin commitment) cm₅ cm_{6} commit cm_7 (commitment randomness) cm_{8} sn Legend: (serial number) In private wallet

[Sander Ta-Shma 1999]

hereby spend 1 BTC to create cm Minting: cm. I'm using up a coin with (unique) sn, Spending: and here are its cm and r. cm_2 cm_3 cm cm (coin commitment) cm₅ cm_{6} commit cm_7 (commitment randomness) cm_{8} sn Legend: (serial number) In private wallet In public ledger

[Sander Ta-Shma 1999]

hereby spend 1 BTC to create cm Minting: cm. I'm using up a coin with (unique) sn, Spending: and here are its cm and r. cm_2 cm_3 cm cm, root (coin commitment) cm₅ cm_{6} commit cm-(commitment randomness) cm_{g} sn Legend: (serial number) In private wallet In public ledger

[Sander Ta-Shma 1999]

I hereby spend 1 BTC to create cm Minting: cm. I'm using up a coin with (unique) sn, and Spending: cm_2 I know r, and a cm in the tree with root, that match sn. cm_3 cm cm, root (coin commitment) cm₅ cm_6 commit cm-(commitment randomness) cm_{g} sn Legend: (serial number) In private wallet In public ledger Proved to be known 20

Adding variable denomination

Adding variable denomination

Minting:

I hereby spend v BTC to create cm, and here is k, r' to prove consistency.

Adding variable denomination

Minting:

I hereby spend v BTC to create cm, and here is k, r' to prove consistency.

Spending:

I'm using up a coin with value v (unique) sn, and I know r', r'' that are consistent with cm.

CreateAddress: recipient creates a_{pk} , a_{sk}

CreateAddress: recipient creates a_{pk} , a_{sk} I'm using up a coin with value v (unique) sn, and Minting, spending I know r', r'', ρ, a_{pk} that are consistent with cm. analogous to above.

CreateAddress: recipient creates a_{pk} , a_{sk} I'm using up a coin with value v (unique) sn, and Minting, spending I know r', r'', ρ, a_{pk} that are consistent with cm. analogous to above. to sender Sending? cm (serial number) (coin commitment) **PRF** commit commit (value) a_{pk} (serial number randomness)

- 1. Create coin using a_{pk} of recipient.
- 2. Send coin secrets (v, ρ, r', r'') to recipient out of band, or encrypted to recipients's public key.

- 1. Create coin using $a_{
 m pk}$ of recipient.
- 2. Send coin secrets (v, ρ, r', r'') to recipient out of band, or encrypted to recipients's public key.

- 1. Create coin using $a_{
 m pk}$ of recipient.
- 2. Send coin secrets (v, ρ, r', r'') to recipient out of band, or encrypted to recipients's public key.

- 1. Create coin using $a_{\rm pk}$ of recipient.
- 2. Send coin secrets (v, ρ, r', r'') to recipient out of band, or encrypted to recipients's public key.

Single transaction type capturing:

Sending payments

Making change

Exchanging into BTC

Transaction fees

Pour

Single transaction type capturing:

Sending payments

Making change

Exchanging into BTC

Transaction fees

Single transaction type capturing:

Sending payments

Making change

Exchanging into BTC

Transaction fees

Single transaction type capturing: Sending payments Making change **Exchanging into BTC** Transaction fees v_1 v_2 $dest_1$ $dest_2$ v_{pub} old private coin new private coin new private coin old private coin Pour public Bitcoins

Single transaction type capturing: Sending payments

Making change

Exchanging into BTC

Single transaction type capturing: Sending payments Making change **Exchanging into BTC** Transaction fees v_1 v_2 $dest_1$ $dest_2$ v_{pub} old private coin new private coin value v_1 to dest₁ new private coin old private coin Pour value v_2 to dest₂ public Bitcoins of value v_{pub} the old coins were **valid**, and values of old coins = $v_1 + v_2 + v_{pub}$

Single transaction type capturing: Sending payments Making change **Exchanging into BTC** Transaction fees v_1 v_2 dest_1 dest_2 v_{pub} old private coin new private coin value v_1 to dest₁ new private coin old private coin Pour value v_2 to dest₂ public Bitcoins of value $v_{
m pub}$ proof sn_2 cm_2 sn_1 cm_1 the old coins were valid, and values of old coins = $v_1 + v_2 + v_{pub}$

Outline

- 1. Bitcoin's privacy problem
- 2. Zerocash: privacy-preserving decentralized currency
- 3. Zcash: deploying Zerocash in practice...

Proof-of-concept implementation

Proof-of-concept implementation

Setup <2 min,

896MB params

Mint $23 \mu s$

72B tx

Pour 46 s, 1KB tx

VerifyTx <9 ms/tx</pre>

Receive <2 ms/tx

Zcash startup: 2+ years of extensive research & development

Zcash startup: 2+ years of extensive research & development

Zcash startup: 2+ years of extensive research & development

Lots of work to bridge the gap:

Thorough analysis and vetting

Zcash startup: 2+ years of extensive research & development

Lots of work to bridge the gap:

Thorough analysis and vetting
 Uncovered completeness bugs in the protocol ©

Zcash startup: 2+ years of extensive research & development

- Thorough analysis and vetting
 Uncovered completeness bugs in the protocol ©
- External security audits (NCC Group, Coinspect, Solar Designer)

Zcash startup: 2+ years of extensive research & development

- Thorough analysis and vetting
 Uncovered completeness bugs in the protocol ©
- External security audits (NCC Group, Coinspect, Solar Designer)
- Efficiency improvements, protocol changes

Zcash startup: 2+ years of extensive research & development

- Thorough analysis and vetting
 Uncovered completeness bugs in the protocol ©
- External security audits (NCC Group, Coinspect, Solar Designer)
- Efficiency improvements, protocol changes
- Creation of clients, integration with wallets & exchanges

Non-interactive zero-knowledge

Non-interactive zero-knowledge

Thm: Impossible for NP (without any help)

[GMR85, GO94]

Non-interactive zero-knowledge

Thm: Impossible for NP (without any help)

[GMR85, GO94]

Thm: Possible for NP with help of CRS.

[BFM88, NY90, BDMP91]

Non-interactive zero-knowledge

Thm: Impossible for NP (without any help)

[GMR85, GO94]

Thm: Possible for NP with help of CRS.

[BFM88, NY90, BDMP91]

Non-interactive zero-knowledge

Thm: Impossible for NP (without any help)

[GMR85, GO94]

Thm: Possible for NP with help of CRS.

[BFM88, NY90, BDMP91]

Deploying NIZKs

Deploying NIZKs

Deploying NIZKs CRS_L

Q: In practice, who generates the CRS?

Ideal world

[BCGTV15]

Ideal world

[BCGTV15]

Ideal world

Real world

[BCGTV15]

[BCGTV15]

[BCGTV15]

(October 21-23 2016)

• Used a tailored & optimized version of [BCGTV15] protocol

- Used a tailored & optimized version of [BCGTV15] protocol
- Ceremony design required extensive threat modelling and security engineering (paper upcoming)

- Used a tailored & optimized version of [BCGTV15] protocol
- Ceremony design required extensive threat modelling and security engineering (paper upcoming)

- Used a tailored & optimized version of [BCGTV15] protocol
- Ceremony design required extensive threat modelling and security engineering (paper upcoming)

6 geographically distributed participants

Destruction of the compute nodes

Destruction of the compute nodes

Destruction of the compute nodes

Publicly verifiable audit trail

Beyond privacy and fungibility:

= "I'm using unspent coins of my own. My transaction preserves balance.

= "I'm using unspent coins of my own. My transaction preserves balance.

But I'm not telling recipient or amount."

= "I'm using unspent coins of my own.

My transaction preserves balance.

But I'm not telling recipient or amount."

= "I'm using unspent coins of my own.

My transaction preserves balance.

But I'm not telling recipient or amount."

The money went to a 501 (c) non-profit!

= "I'm using unspent coins of my own.

My transaction preserves balance.

But I'm not telling recipient or amount."

The money went to a **501** (c) non-profit! But I'm not telling anyone which one.

= "I'm using unspent coins of my own.

My transaction preserves balance.

But I'm not telling recipient or amount."

The money went to a **501** (c) non-profit! But I'm not telling anyone which one.

or

= "I'm using unspent coins of my own.

My transaction preserves balance.

But I'm not telling recipient or amount."

The money went to a **501** (c) non-profit! But I'm not telling anyone which one.

or

Proof of solvency.

= "I'm using unspent coins of my own.

My transaction preserves balance.

But I'm not telling recipient or amount."

The money went to a **501 (c) non-profit!** But I'm not telling anyone which one.

or

Proof of solvency. My private keys control 50 000 BTC, but I won't tell you my address.

= "I'm using unspent coins of my own.

My transaction preserves balance.

But I'm not telling recipient or amount."

The money went to a **501** (c) non-profit! But I'm not telling anyone which one.

or

Proof of solvency. My private keys control 50 000 BTC, but I won't tell you my address.

Q: Which policies are desirable/feasible?

Thank you!

www.zerocash-project.org