

Stochastic Gradient Descent (500) 2
Approximate the boss gradieix using justs one donta instance
before: dL(w) = 1 = dl(fw(an), yn) dw = N = dw
With SDG
dL(w) a dl(fw(ne), yr) dw dw
$\Rightarrow \omega^{(\tau+1)} = \omega^{(\tau)} - \lambda dl(f\omega(n\epsilon), y\epsilon)$
where $T = current$ iteration $(n_T, y_+) = (n_n, y_n) & current$ iteration

Mini-batch

Ests sonewhere in between carred Mini-batching

MB updates w/ approximate descent of B data instances

{(x_b, y_b), y_b, 1 ½ b ½ β g_T, ω(ere β λ N) * ω(τ+1) = ω^(τ) - λ g Z dl(fw(x_b), y_b)

dω

under the model using the loss gradient from this batch

- Dit is a single layer NN
- (2) Only wortes for binary classification
- 3 Perception will fail for non-lineary Seperable classes
- (4) Optimization of model paras based on gradient Descent