PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy: 170 minut

Instrukcja dla zdajacego

- 1. Sprawdź, czy arkusz zawiera 10 stron.
- 2. W zadaniach od 1. do 25. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa. Wybierz tylko jedna odpowiedź.
- 3. Rozwiązania zadań od 26. do 33. zapisz starannie i czytelnie w wyznaczonych miejscach. Przedstaw swój tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora. Błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegaja ocenie.
- 7. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać łącznie **50 punktów**.

JOPERON

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON na wzór arkuszy opublikowanych przez Centralną Komisję Egzaminacyjną

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Zadanie 1. (*1 pkt*)

Liczba $a = \left(\sqrt{4 + \sqrt{7}} - \sqrt{4 - \sqrt{7}}\right)^2$ jest równa: **A.** 2 **B.** 5

A. 2

C.8

D.14

Zadanie 2. (1 pkt)

Do przedziału $\left(\frac{23}{25}, \frac{24}{25}\right)$ należy liczba:

B. $\frac{47}{50}$

 $\mathbf{C}.\frac{48}{50}$

D. $\frac{49}{50}$

Zadanie 3. (1 pkt)

Liczba $a = \log_3 6 - \log_3 15 + \log_3 5$ jest równa:

 $\mathbf{A} \cdot \log_3 \frac{6}{20}$

B. $\log_3 \frac{30}{15}$

 $C. \log_{3} \frac{6}{75}$

D. $\log_3 \frac{11}{15}$

Zadanie 4. (1 pkt)

Odległość liczby x od liczby (-7) na osi liczbowej jest równa:

A. |x-7|

B. |x + 7|

 \mathbf{C} . |7x|

D. |x| + 7

Zadanie 5. (*1 pkt*)

Cenę kurtki zimowej obniżono wiosną najpierw o 20%, a potem jeszcze o 15%. Po tych dwóch obniżkach kurtka kosztowała 408 zł. Wynika z tego, że pierwotna cena kurtki to:

A. 530, 4

B. 550, 8

D. 627,7

Zadanie 6. (*1 pkt*)

Jeśli $x \in R \setminus \{-2, 2\}$, to wyrażenie $W = \frac{3}{x-2}$ jest równoważne wyrażeniu: **A.** $\frac{3x-6}{x^2-4}$ **B.** $\frac{3x+6}{x^2-4}$ **C.** $\frac{3x+6}{(x-2)^2}$

D. $\frac{3x-6}{x^2+4}$

Zadanie 7. (*1 pkt*)

Jeśli $x = \sqrt{2} + 1$, $y = 2 - \sqrt{2}$, to liczba $\frac{x + y}{x - y}$ jest równa:

A. $\frac{6\sqrt{2}+3}{7}$

B. $\frac{6\sqrt{2}-3}{7}$ **C.** $\frac{6\sqrt{2}+3}{8}$

D.-3

Zadanie 8. (*1 pkt*)

Liczba rozwiązań równania $(x^2 + 25)(x + 1) = 0$ to: **A.** 0 **B.** 1

D. 3

Zadanie 9. (*1 pkt*)

Jacek ma 16 lat, a jego tata ma o 32 lata więcej. Wynika stąd, że tata ma od syna:

A. 2 razy więcej lat

B. o 50% więcej lat

C. 3 razy więcej lat

D. o 100% więcej lat

Zadanie 10. (*1 pkt*)

Dziedziną funkcji $f(x) = \sqrt{x+3}\sqrt{x-7}$ jest zbiór:

A.(-3,7)

 $\mathbf{B}_{\bullet}(-\infty,-3) \cup (7,+\infty)$ $\mathbf{C}_{\bullet}(-3,+\infty)$

 $\mathbf{D} \cdot (7, +\infty)$

Zadanie 11. (*1 pkt*)

Liczba miejsc zerowych funkcji $f(x) = \frac{(x-2)(x-1)(x+1)}{x^2-4}$ jest równa:

A. 0

$$\mathbf{C}^2 - \mathbf{4}$$

Zadanie 12. (*1 pkt*)

Funkcja $f(x) = x^2 - 4x + 1$ jest rosnąca w przedziale: $\mathbf{A} \cdot (-\infty, 2)$ $\mathbf{B} \cdot (-\infty, -3)$ $\mathbf{C} \cdot (-3, +\infty)$ $\mathbf{D} \cdot (2, +\infty)$

$$\mathbf{A} \cdot (-\infty, 2)$$

$$\mathbf{B} \cdot (-\infty, -3)$$

$$\mathbf{C} \cdot (-3, +\infty)$$

$$\mathbf{D}.(2,+\infty)$$

Zadanie 13. (*1 pkt*)

Dane są dwie funkcje liniowe określone wzorami f(x) = 3x + 5, g(x) = ax - 1, $a \ne 0$. Funkcje te mają wspólne miejsce zerowe. Wynika stąd, że:

A.
$$a = \frac{5}{3}$$

B.
$$a = -\frac{5}{3}$$

C.
$$a = \frac{3}{5}$$

C.
$$a = \frac{3}{5}$$
 D. $a = -\frac{3}{5}$

Zadanie 14. (*1 pkt*)

Wykres funkcji $f(x) = \frac{2}{x+5}$ powstaje przez przesunięcie wykresu funkcji $y = \frac{2}{x}$ o 5 jednostek: **A.** w lewo **B.** w prawo **C.** w górę **D.** w dół

Zadanie 15. (1 *pkt*)

Wartością funkcji $f(x) = 2^x$ jest liczba: **A.** –8

Zadanie 16. (*1 pkt*)

Do dziedziny funkcji $f(x) = \log(x^2 - 9)$ nie należy liczba: **A.** -5 **B.** $-\sqrt{10}$ **C.** $\sqrt{5}$

$$A. -5$$

B.
$$-\sqrt{10}$$

$$\mathbf{C}.\sqrt{5}$$

Zadanie 17. (1 pkt)

Dany jest ciąg (a_n) o wyrazie ogólnym $a_n = (-2)^n \cdot n$. Różnica wyrazu czwartego i piątego tego ciągu jest równa:

Zadanie 18. (*1 pkt*)

Jeśli trzeci wyraz ciągu geometrycznego jest równy 4, a czwarty wyraz tego ciągu jest równy (-2), to drugi wyraz jest równy:

$$\mathbf{A} \cdot -2$$

$$C. -8$$

Zadanie 19. (*1 pkt*)

Ciąg arytmetyczny tworzą liczby:

B.
$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{1}{4}$

$$C.\sqrt{2},\sqrt{5},\sqrt{8}$$

$$\mathbf{D}_{\bullet} - 5, -3, -1$$

Zadanie 20. (*1 pkt*)

Jeśli α jest kątem ostrym i sin $\alpha = \frac{1}{6}$, to: **A.** $\alpha < 30^{\circ}$ **B.** $30^{\circ} < \alpha < 45^{\circ}$

$$\mathbf{A} \cdot \boldsymbol{\alpha} < 30^{\circ}$$

B.
$$30^{\circ} < \alpha < 45$$

$$C.45^{\circ} < \alpha < 60^{\circ}$$

$$\mathbf{D}. \alpha > 60^{\circ}$$

Zadanie 21. (*1 pkt*)

Jeśli α jest kątem ostrym i $\sin \alpha \cos \alpha = \frac{1}{7}$, to suma $\sin \alpha + \cos \alpha$ jest równa:

A.
$$\frac{9}{7}$$

B.
$$\frac{8}{7}$$

C.
$$\frac{3\sqrt{7}}{7}$$

D.
$$\frac{2\sqrt{14}}{7}$$

Zadanie 22. (*1 pkt*)

Dany jest czworokąt ABCD wpisany w okrąg o środku O. Wówczas, jeśli $|\angle ABC|$ = 142°, to miara kąta AOC jest równa:

A. 38°

B. 66°

C. 76°

D.114°

Zadanie 23. (1 pkt)

Do trójkąta o bokach długości 6, 9, 12 jest podobny trójkąt o bokach:

A. 9, 12, 15

 $\mathbf{B} \cdot \sqrt{6}, \sqrt{9}, \sqrt{12}$

C. 6, 8, 4

D. $\frac{1}{6}$, $\frac{1}{9}$, $\frac{1}{12}$

Zadanie 24. (*1 pkt*)

Medianą danych 2, 3, 3, 4, 6, 7, 7, 7 jest liczba:

A. 4

C. 6

D. 7

Zadanie 25. (*1 pkt*)

Z talii 52 kart losujemy jedną. Prawdopodobieństwo tego, że wylosujemy kartę trefl lub asa lub damę, jest równe:

A. $\frac{17}{52}$

B. $\frac{16}{52}$

C. $\frac{19}{52}$ **D.** $\frac{3}{52}$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 33. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. (2 *pkt*)

Pierwszy wyraz ciągu arytmetycznego jest równy (-5), a suma dwudziestu początkowych wyrazów tego ciągu jest równa 1230. Wyznacz różnicę tego ciągu.

Zadanie 27. (2 *pkt*)

Podstawą trójkąta równoramiennego *ABC* jest średnica *AB* okręgu, którego środkiem jest punkt *O*. Punkty *D*, *E* są punktami przecięcia ramion *AC*, *BC* trójkąta z okręgiem. Miara kąta *DOE* jest równa 140°. Wykaż, że miara kąta *ACB* jest równa 20°.

Zadanie 28. (2 *pkt*)

Rozwiąż nierówność $-20x^2 - x + 1 > 0$.

Zadanie 29. (2 *pkt*)

Wykaż, że reszta z dzielenia sumy kwadratów trzech kolejnych liczb naturalnych przez 3 jest równa 2.

Zadanie 30. (2 *pkt*)

Dwa okręgi są styczne zewnętrznie, a odległość ich środków jest równa 19. Gdyby te okręgi były styczne wewnętrznie, to ta odległość wynosiłaby 5. Wyznacz długości promieni tych okręgów.

Zadanie 31. (*4 pkt*)

Liczba 3 jest pierwiastkiem wielomianu $W(x) = x^3 - 4x^2 - mx + 36$. Wyznacz parametr m i pozostałe pierwiastki tego wielomianu.

Zadanie 32. (5 *pkt*)

Okrąg przechodzi przez punkty A = (0,3), B = (4,5), a jego środek należy do prostej o równaniu y = x - 2. Wyznacz równanie tego okręgu.

Zadanie 33. (6 *pkt*)

Podstawą ostrosłupa jest trójkąt równoboczny ABC, a wierzchołkiem punkt S. Spodek wysokości S' jest środkiem krawędzi AC. Najdłuższa krawędź boczna SB ma długość $10\sqrt{2}$ i tworzy z płaszczyzną podstawy kąt 45° .

- a) Oblicz objętość ostrosłupa.
- b) Oblicz kąt nachylenia krawędzi SA do płaszczyzny podstawy ostrosłupa.

