

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

Отчет по лабораторной работе №1 на тему:

"Методы численного решения обыкновенных дифференциальных уравнений"

Студент	ФН2-61Б		М. А. Каган
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Студент	ФН2-61Б		И.А. Яковлев
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Проверил			
проверил		(Подпись, дата)	(И.О. Фамилия)

Оглавление

Контрольные вопросы	 		•										3
Дополнительные вопросы	 									 			7

Контрольные вопросы

1. Сформулируйте условия существования и единственности решения задачи Коши для обыкновенных дифференциальных уравнений. Выполнены ли они для вашего варианта задания?

Ответ:

Рассмотрим векторную функцию $u:I\subseteq\mathbb{R}\to\mathbb{R}^n$, где $t\in\mathbb{R}$. Рассмотрим задачу Коши:

$$\begin{cases} u' = f(t, u) \\ u(t_0) = u_0 \end{cases}$$

(a) Пусть функция f(t, u) определена и непрерывна в прямоугольнике:

$$D = \{(t, u) : |t - t_0| \leqslant a; |u_i - u_{0,i}| \leqslant b\}.$$

Выберем M > 0, такую что $|f_i| < M$.

(b) Пусть функция f(t,u) липшиц-непрерывна с постоянной L по переменным u_1, u_2, \ldots, u_n :

$$|f(t, u^{(1)}) - f(t, u^{(2)})| \le L \sum_{i=1}^{n} |u^{(1)} - u^{(2)}|$$

Тогда решение задачи Коши существует и единственно на участке

$$|t-t_0| \leqslant \min a, b/M, 1/L$$

2. Что такое фазовое пространство? Что называют фазовой траекторией? Что называют интегральной кривой?

Ответ:

Решение дифференциального уравнения (или системы дифференциальных уравнений) X = X(t) можно интерпретировать геометрически как кривую в евклидовом пространстве (t, x_1, \ldots, x_n) , где t — координата времени, x_k — координаты n-мерного пространства. Такая кривая называется интегральной кривой. Пространство (x_1, \ldots, x_n) называют фазовым пространством, кривую X = X(t) — фазовой траекторией.

3. Каким порядком аппроксимации и точности обладают методы, рассмотренные в лабораторной работе?

Ответ:

(а) Метод Эйлера:

Порядок точности: $O(\tau)$

Порядок Аппроксимации: $O(\tau)$

(b) Метод Рунге – Кутты:

Порядок точности: $O(\tau^4)$

Порядок Аппроксимации: $O(\tau^4)$

Замечание: порядок точности метода Рунге – Кутты совпадает с его порядком аппроксимации

(с) Метод Адамса – Башфорта:

Порядок точности: $O(\tau^4)$

Порядок Аппроксимации: $O(\tau^4)$

Замечание: для обеспечения порядка аппроксимации порядка p должны выполнятся p+1 уравнений

$$\sum_{k=0}^{m} \frac{1}{\tau} a_k = 0, \quad \sum_{k=0}^{m} k^{l-1} (b_k + a_k \frac{k}{l}) = 0, \quad l = 1, 2, \dots, p$$

и условие нормировки

$$\sum_{k=0}^{m} b_k = 1$$

где линейный т-шаговый разностный метод:

$$\frac{a_0y_n + a_1y_{n-1} + \ldots + a_my_{n-m}}{\tau} = b_0f_n + b_1f_{n-1} + \ldots + b_mf_{n-m}$$

(d) Метод «предиктор – корректор»:

Порядок точности: $O(\tau^4)$

Порядок Аппроксимации: $O(\tau^4)$

4. Какие задачи называются жесткими? Какие методы предпочтительны для их решения? Какие из рассмотренных методов можно использовать для решения жестких задач?

Ответ:

Система обыкновенных дифференциальных уравнений u' = Au с постоянной матрицей A размерности n называется жесткой, если:

- (а) все собственные значения матрицы A имеют отрицательную действительную часть $Re \ \lambda_i < 0, \ i = \overline{1, \ n}$
- (b) число жесткости S системы велико, $S = \frac{\max|Re \lambda_i|}{\min|Re \lambda_i|} \gg 1.$

Особенность жестких задач состоит в том, что искомая функция изменяется достаточно медленно, и при увеличении шага возникает быстрое накопление погрешности. Поэтому необходимо использовать устойчивые методы, по отношению к жестким задачам А-устойчивые или $A(\alpha)$ —устойчивые, т.е. устойчивые в левой полуплоскоти $Re\ \mu < 0$ или ее секторе α .

К таким методам относятся, например, неявный метод Эйлера и симметричная схема, а также метод Гира.

5. Как найти $\vec{y_1}$, $\vec{y_2}$, $\vec{y_3}$, чтобы реализовать алгоритм прогноза и коррекции (1.18)?

Ответ:

- (a) Воспользоваться одношаговым явным методом, например, Рунге Кутты 4-го порядка для нахождения первых 3 значений *у*.
- (b) Разложить искомую функцию в ряд Тейлора в точке t_0 или экстраполировать каким либо другим способом.
- 6. Какой из рассмотренных алгоритмов является менее трудоемким? Какой из рассмотренных алгоритмов позволяет достигнуть заданную точность, используя наибольший шаг интегрирования? Какие достоинства и недостатки рассмотренных алгоритмов вы можете указать?

Omeem:

явный метод Эйлера является наименее трудоемким: на одной итерации требуется вызывать всего лишь один раз функцию правой части. Также обладает несложной реализацией. Однако имеет лишь первый порядок точности и не подходит для решения жестких задач.

Неявный метод Эйлера также имеет первый порядок точности, но подходит для решения жестких задач. Однако в общем случае на каждом шаге необходимо решать систему нелинейных уравнений, что повышает трудоемкость.

Симметричная схема является модификацией неявного метода Эйлера, повышающей порядок с первого до второго.

Метод Рунге-Кутты 4 порядка обладает четвертым порядком сходимости и позволяет достигнуть наибольшую точность, используя наибольший шаг интегрирования, однако не подходит для решения жестких задач и трудоемок по

количеству операций: на каждом шаге функция правой части вычисляется 4 раза.

Метод Адамса имеет тот же порядок сходимости, что и метод Рунге-Кутты 4 порядка и при этом на одном шаге требует лишь один раз вычислять функцию правой части, однако также не подходит для решения жестких задач и требует реализации дополнительного метода решения ОДУ на первых трех шагах.

Метод «предиктора-корректора» имеет 4 порядок точности, вычисляет функцию правой части 2 раза, но так как он основан на методе простой итерации, от функции требуются дополнительные условия для сходимости. Также требует реализации дополнительного метода решения ОДУ на первых трех шагах.

7. Какие алгоритмы, помимо правила Рунге, можно использовать для автоматического выбора шага?

Ответ:

- (а) На каждые k шагов линеаризовывать систему ДУ, оценивая сверху или численно находя собственное значение. Зная диапазон $\lambda \geqslant \max_i \lambda_i$, где λ_i собственные значения линеаризованной системы, будем выбирать шаг $\tau = \frac{1}{\lambda}$
- (b) Для методов Рунге Кутты можно построить такие таблицы коэффициентов как на рис. 1, чтобы один из двух методов обладал порядком

Рис. 1. Таблица

точности на 1 больше. Таким образом, из полученных значений y_n и $\tilde{y_n}$

можно получить оценку погрешности аппроксимации, основываясь на которой необходимо увеличить или уменьшить шаг.

Дополнительные вопросы

1. Определение непрерывности, L-непрерывности, непрерывной дифференцированности

Omeem:

Пусть f = f(x) векторная функция определенная в области $D \subset \mathbb{R}^n$, где $x = (x_1, \dots, x_n)^{\mathrm{T}}, f = (f_1(x), f_k(x))^{\mathrm{T}}.$

(a) Функция f(x) называют непрерывной в области $U \subset D$, если:

$$\forall x_0 \in U \exists \lim_{x \to x_0} f(x) = a \in \mathbb{R}^k$$

(b) Функция f(x) называют липшиц-непрерывной в области $U \subset D$, если:

$$\exists L > 0 \ \forall x_0, x_1 \in U : ||f(x_0) - f(x_1)|| \le L||x_0 - x_1||$$

- (c) Функция f(x) называют непрерывно дифференцируемой в области $U \subset D$, если существуют непрерывные частные производные в области $U \subset D$ $\frac{\partial f(x)}{\partial x_i}$, где $i=1,\ldots,n$.
- 2. Вывод порядка сходимости методов Эйлера (явного и неявного) и симметричной схемы

Om eem:

Будем рассматривать схемы с постоянным шагом τ , длина отрезка интегрирования $C=n\tau$, где $n\in\mathbb{N}$. Тогда $n\approx\frac{C}{\tau}=O(\tau^{-1})$. Пусть некоторый метод допускает на каждом шагу ошибку порядка $O(\tau^{k+1})$, тогда порядок метода будет равен $O(\tau^k)$. В общем виде задачу на n-ом шаге можно записать в следующем виде:

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(\xi, y(\xi)) d\xi$$

(а) Метод Эйлера (явный):

$$f(t_n, y(t_n)) \approx y'(t_n) - O(\tau)$$

$$\int_{t_n}^{t_{n+1}} f(\xi, y(\xi)) d\xi \approx \tau y'(t_n) - O(\tau^2)$$

$$y(t_{n+1}) \approx y(t_n) + \tau y'(t_n) + O(\tau^2)$$

$$y(t_n) + \tau y(t_n) + O(\tau^2) - y(t_n) - \tau y'(t_n) + O(\tau^2) = O(\tau^2)$$

Т.е. явный метод Эйлера — метод первого порядка.

(b) Метод Эйлера (неявный):

$$f(t_n, y(t_n)) \approx y'(t_{n+1}) - O(\tau)$$

$$\int_{t_n}^{t_{n+1}} f(\xi, y(\xi)) d\xi \approx \tau y'(t_{n+1}) - O(\tau^2)$$

$$y(t_n) \approx y(t_{n+1}) - \tau y'(t_{n+1}) - O(\tau^2)$$

$$y(t_{n+1}) - y(t_{n+1}) + \tau y(t_{n+1}) + O(\tau^2) - \tau y(t_{n_1}) + O(\tau^2) = O(\tau^2)$$

Т.е. неявный метод Эйлера — метод первого порядка.

(с) Симметричная схема:

$$f(t_{n}, y(t_{n})) \approx y'(t_{n+1/2}) - \frac{\tau}{2}y''(t_{n+1/2}) + \frac{\tau^{2}}{12}y'''(t_{n+1/2}) + O(\tau^{3})$$

$$f(t_{n+1}, y(t_{n+1})) \approx y'(t_{n+1/2}) + \frac{\tau}{2}y''(t_{n+1/2}) + \frac{\tau^{2}}{12}y'''(t_{n+1/2}) + O(\tau^{3})$$

$$\frac{f(t_{n}, y(t_{n})) + f(t_{n+1}, y(t_{n+1}))}{2} \approx y'(t_{n+1/2}) + O(\tau^{2}) \approx f(t_{n+1/2}, y(t_{n+1/2}))$$

$$\int_{t_{n}}^{t_{n+1}} f(\xi, y(\xi))d\xi \approx \tau y'(t_{n+1/2}) + O(\tau^{3}) = I^{*}$$

$$y(t_{n}) \approx y(t_{n+1/2}) - \frac{\tau}{2}y'(t_{n+1/2}) + \frac{\tau^{2}}{12}y''(t_{n+1/2}) + O(\tau^{3}) = y^{*}(t_{n})$$

$$y(t_{n+1}) \approx y(t_{n+1/2}) + \frac{\tau}{2}y'(t_{n+1/2}) + \frac{\tau^{2}}{12}y''(t_{n+1/2}) + O(\tau^{3}) = y^{*}(t_{n+1})$$

$$y^{*}(t_{n+1}) - y^{*}(t_{n}) - I^{*} \approx O(\tau^{3})$$

Т.е. симметричная схема — метод второго порядка.

3. Выполняются ли условия существования и единственности решения задачи Коши в заданных вариантах.

Ответ: (Устно)

4. Исследование системы на устойчивость.

Ответ: (Устно)

5. Является ли неявный метод Эйлера А-устойчивым?

Ответ: Рассмотрим тестовое дифференциальное уравнение: $u'(t) = \lambda u(t)$. Воспользуемся неявным методом Эйлера:

$$y_{n+1} - y_n - \tau \lambda y_n + 1 = 0$$

 $(1 - \mu)y_{n+1} = y_n$

Чтобы разностный метод был устойчивый, корни его характеристического уравнения должны меньше единицы по модулю:

$$(1 - \mu)q = 1$$
$$\frac{1}{|1 - \mu|} \leqslant 1$$
$$|\mu - 1| \geqslant 1$$

T.е. метод устойчив при $\mathrm{Re}\,\mu < 0$

Колонка 1	Колонка 2						
Данные 1	Данные 2						

Таблица 1. таблицы с подписью, выровненной по правому краю.