The QCD Strong Coupling from Hadronic τ decays A PhD Defense

Dirk Hornung

Universitat Autònoma de Barcelona Departamiento de Física

17th July 2019

The Strong Coupling α_s

$$\mathcal{L}_{QCD}(x) = -\frac{1}{4} G^{a}_{\mu\nu}(x) G^{\mu\nu,a}(x)
+ \left[\sum_{A} \frac{i}{2} \overline{q}^{A}(x) \gamma^{\mu} \overleftrightarrow{D}_{\mu} q^{A}(x) - m \overline{q}^{A}(x) q^{A}(x) \right], \tag{1}$$

with $D_{\mu} = \partial_{\mu} - ig \frac{\lambda^a}{2} B_{\mu}^a$

The Strong Coupling α_s

$$\mathcal{L}_{QCD}(x) = -\frac{1}{4} G^{a}_{\mu\nu}(x) G^{\mu\nu,a}(x)
+ \left[\sum_{A} \frac{i}{2} \overline{q}^{A}(x) \gamma^{\mu} \overleftrightarrow{D}_{\mu} q^{A}(x) - m \overline{q}^{A}(x) q^{A}(x) \right], \tag{1}$$

with $D_{\mu} = \partial_{\mu} - ig \frac{\lambda^a}{2} B_{\mu}^a$

$$\mathcal{L}_{QCD}^{QG-Int}(x) = \sqrt{\pi \alpha_s} \, \overline{q}(x) \lambda \gamma_{\mu} q(x) G(x) \quad \Rightarrow \quad (2)$$

The Running of the Strong Coupling

$$\alpha_s(m_\tau^2) \approx 0.33$$
 $\alpha_s(m_Z^2) \approx 1.12$ (3)

$$m_{\tau} = 1776.86(12) \,\text{MeV}^1$$

 $m_{Z} = 91.1876(21) \,\text{GeV}^1$ (4)

Figure: Taken from Deur, Brodsky, and Teramond, "The QCD Running Coupling", 2016

¹Tanabashi et al., "Review of Particle Physics", 2018

Hadronic τ decays

Hadronic τ decays

$$R_{\tau} = \frac{\Gamma[\tau^{-} \to \nu_{\tau} + \text{hadrons}]}{\Gamma[\tau^{-} \to \nu_{\tau} e^{-} \overline{\nu}_{e}]} \tag{5}$$

Hadronic τ decays

Nan	e Symbol		Quark content	Rest mass		
Pior	1	π^-	ud	139.570 61(24) MeV		
Pior	ı	π^0	$(uu - dd)/\sqrt{2}$	134.9770(5) MeV		

(5)

Duality

Table of Contents

- 1. Introduction
- 2. Theoretical Framework
 - Perturbative Contributions
 - Non-Perturbative Contributions
 - Duality Violations
 - Weights
- 3. Experiment
- 4. Fits
 - Pinched Weights without a Monomial term x
 - Single Pinched Monomial Weights
 - Pinched Weights with a Monomial Term x
 - Comparison
- 5. Results

Theoretical Framework

Inclusive τ decay ratio

$$R_{\tau} = 12\pi |V_{ud}|^{2} S_{EW} \int_{0}^{m_{\tau}} \frac{ds}{m_{\tau}^{2}} \left(1 - \frac{s}{m_{\tau}^{2}}\right) \times \left[\left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \operatorname{Im} \Pi_{V/A}^{(1)}(s) + \operatorname{Im} \Pi_{V/A}^{(0)}(s)\right]$$
(6)

Theoretical Framework

Inclusive τ decay ratio

$$R_{\tau} = 12\pi |V_{ud}|^2 S_{EW} \int_0^{m_{\tau}} \frac{\mathrm{d}s}{m_{\tau}^2} \left(1 - \frac{s}{m_{\tau}^2} \right) \times \left[\left(1 + 2\frac{s}{m_{\tau}^2} \right) \operatorname{Im} \Pi_{V/A}^{(1)}(s) + \operatorname{Im} \Pi_{V/A}^{(0)}(s) \right]$$
(6)

Two-Point Function:

$$\Pi_{V/A}^{\mu\nu}(q^2) \equiv i \int d^4 x e^{iqx} \langle 0 | T \left\{ J_{V/A}^{\mu}(x) J_{V/A}^{\nu}(0) \right\} | 0 \rangle
= (q^{\mu} q^{\nu} - q^2 g^{\mu\nu}) \Pi_{V/A}^{(1)}(q^2) + q^{\mu} q^{\nu} \Pi_{V/A}^{(0)}(q^2)$$
(7)

where $J_V^{\mu} = \overline{u} \gamma^{\mu} d$ and $J_A^{\mu} = \overline{u} \gamma^{\mu} \gamma_5 d$

Adler Function:

$$D(s) \equiv s \frac{d}{ds} \Pi(s) \tag{8}$$

$$D^{(1+0)}(s) \equiv -s \frac{d}{ds} \Pi^{(1+0)}(s), \qquad D^{(0)}(s) \equiv \frac{s}{m_{\tau}^2} \frac{d}{ds} \left(s \Pi^{(0)}(s) \right)$$
 (9)

Adler Function:

$$D(s) \equiv s \frac{d}{ds} \Pi(s) \tag{8}$$

$$D^{(1+0)}(s) \equiv -s \frac{d}{ds} \Pi^{(1+0)}(s), \qquad D^{(0)}(s) \equiv \frac{s}{m_{\tau}^2} \frac{d}{ds} \left(s \Pi^{(0)}(s) \right)$$
(9)

Inclusive Tau Decay Ratio:

$$R_{\tau} = -\pi i \oint_{|s|=m_{\tau}^2} \frac{\mathrm{d}x}{x} (1-x)^3 \left[3(1+x)D^{(1+0)}(m_{\tau}^2 x) + 4D^{(0)}(m_{\tau}^2 x) \right]$$
(10)

with
$$x \equiv \frac{s}{m_{\tau}^2}$$

$$\Pi_V^{(1+0)}(s) = -\frac{N_c}{12\pi^2} \sum_{n=0}^{\infty} a_{\mu}^n \sum_{k=0}^{n+1} c_{n,k} L^k \quad \text{with} \quad L \equiv \log \frac{-s}{\mu^2}$$
 (11)

$$\Pi_V^{(1+0)}(s) = -\frac{N_c}{12\pi^2} \sum_{n=0}^{\infty} a_n^n \sum_{k=0}^{n+1} c_{n,k} L^k \quad \text{with} \quad L \equiv \log \frac{-s}{\mu^2}$$
 (11)

$$D_V^{(1+0)} = \frac{N_c}{12\pi^2} \sum_{n=0}^{\infty} a_n^n \sum_{k=1}^{n+1} k \, c_{n,k} L^{k-1}$$
 (12)

$$\Pi_V^{(1+0)}(s) = -\frac{N_c}{12\pi^2} \sum_{n=0}^{\infty} a_n^n \sum_{k=0}^{n+1} c_{n,k} L^k \quad \text{with} \quad L \equiv \log \frac{-s}{\mu^2}$$
 (11)

$$D_V^{(1+0)} = \frac{N_c}{12\pi^2} \sum_{n=0}^{\infty} a_n^n \sum_{k=1}^{n+1} k \, c_{n,k} L^{k-1}$$
 (12)

Adler Function Coefficients

RGE:

$$\mu \frac{d}{d\mu} R(q, a_s, m) = \left[\mu \frac{\partial}{\partial \mu} + \mu \frac{da_s}{d\mu} \frac{\partial}{\partial a_s} + \mu \frac{dm}{d\mu} \frac{\partial}{\partial m} \right] R(q, a_s, m) = 0 \quad (13)$$

$$\left(2\frac{\partial}{\partial L} + \beta \frac{\partial}{\partial a_s}\right) D_V^{(1+0)} = 0$$
(14)

$$c_{0,0} = -\frac{5}{3}, \quad c_{0,1} = 1$$

$$c_{2,1} = \frac{365}{24} - 11\zeta_3 - \left(\frac{11}{12} - \frac{2}{3}\zeta_3\right) N_f,$$

$$c_{3,1} = \frac{87029}{288} - \frac{1103}{4}\zeta_3 + \frac{275}{6}\zeta_5,$$

$$-\left(\frac{7847}{216} - \frac{262}{9}\zeta_3 + \frac{25}{9}\zeta_5\right) N_f + \left(\frac{151}{162} - \frac{19}{27}\zeta_3\right) N_f^2,$$

$$c_{4,1} = \frac{78631453}{20736} - \frac{1704247}{432}\zeta_3 + \frac{4185}{8}\zeta_3^2 + \frac{34165}{96}\zeta_5 - \frac{1995}{16}\zeta_7,$$

$$c_{5,1} = 283$$
(15)

QCD Sum Rules

with
$$s \equiv -q^2$$

QCD Sum Rules

with
$$s \equiv -q^2$$

$$\int_0^{s_0} \omega(s) \rho(s) = \frac{-1}{2\pi i} \oint_{|s|=s_0} \omega(s) \Pi_{OPE}(s) \, \mathrm{d}s \tag{16}$$

$$R_{\tau,V/A} = \frac{N_c}{2} \left(1 + \delta_{pt} + \delta_{npt} \right) \tag{17}$$

FOPT

$$\delta_{pt} = \sum_{n=1}^{\infty} a_{\mu}^{n} \sum_{k=1}^{n} k \, c_{n,k} \frac{1}{2\pi i} \oint_{|x|=1} \frac{\mathrm{d}x}{x} (1-x)^{3} (1+x) \log \left(\frac{-m_{\tau}^{2} x}{\mu^{2}}\right)^{k-1}$$
(18)

$$\delta_{FOPT}^{(0)} = \sum_{n=1}^{\infty} a(m_{\tau}^2)^n \sum_{k=1}^n k \, c_{n,k} J_{k-1} \tag{19}$$

$$J_{l} \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1-x)^{3} (1+x) \log^{l}(-x)$$
 (20)

CIPT

$$\delta_{CIPT}^{(0)} = \sum_{n=1}^{\infty} c_{n,1} J_n^a(m_{\tau}^2)$$
 (21)

$$J_n^a(m_\tau^2) \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{\mathrm{d}x}{x} (1-x)^3 (1+x) a^n (-m_\tau^2 x)$$
 (22)

FOPT vs CIPT

$$\delta_{FOPT}^{(0)} = 0.1082 + 0.0609 + 0.0334 + 0.0174(+0.0088) = 0.2200(0.2288)$$
(23)
$$\delta_{CIPT}^{(0)} = 0.1479 + 0.0297 + 0.0122 + 0.0086(+0.0038) = 0.1984(0.2021).$$
(24)

 α_s^2 α_s^2 α_s^3 α_s^4

Borel Summation

Borel integral

$$A \equiv \int_0^\infty dt e^{-t} \sum_{n=0}^\infty \frac{a_k}{n!} t^n, \tag{25}$$

Borel transform

$$B[A](t) = \sum_{n=0}^{\infty} \frac{a_k}{n!} t^n.$$
 (26)

$$\frac{12\pi^2}{N_c}D_V^{1+0}(s) \equiv 1 + \widehat{D}(s) \equiv 1 + \sum_{n=0}^{\infty} r_n \alpha_s (\sqrt{(s)})^{n+1}.$$
 (27)

Borel Model

$$B[\widehat{D}](u) = B[\widehat{D}_1^{UV}](u) + B[\widehat{D}_2^{IR}](u) + B[\widehat{D}_3^{IR}](u) + d_0^{PO} + d_1^{PO}u, \quad \ \ (28)$$

$$B[\widehat{D}_{p}^{IR}](u) \equiv \frac{d_{p}^{IR}}{(p-u)^{1+\gamma}} \left[1 + b_{1}(p-u) + b_{2}(p-u)^{2} + \dots \right]$$
 (29)

$$B[\widehat{D}_{p}^{UV}](u) \equiv \frac{d_{p}^{UV}}{(p+u)^{1+\gamma}} \left[1 + b_{1}(p+u) + b_{2}(p+u)^{2} \right], \tag{30}$$

Beneke and Jamin, " α_s and the τ hadronic width: fixed-order, contour-improved and higher-order perturbation theory", 2008

NPT Contributions

OPE

$$\lim_{x \to y} A(x)B(y) = \sum_{n} C_n(x - y)\mathcal{O}_n(x)$$
(31)

$$\Pi_{OPE}(q^2) = -\frac{1}{3q^2} \sum_{n} \langle \Omega | \mathcal{O}_n(0) | \Omega \rangle \int d^4 x e^{iqx} C_n(x)$$
 (32)

$$\Pi_{V/A}^{OPE}(s) = \sum_{D=0,2,4,...} \frac{C^{(D)} \langle \Omega | \mathcal{O}^{(D)}(x) | \Omega \rangle}{(-q^2)^{D/2}}$$
(33)

Dimension Four Corrections

$$D_{ij}^{(1+0)}(s)\Big|_{D=4} = \frac{1}{s^2} \sum_{n} \Omega^{(1+0)}(s/\mu^2) a^n, \tag{34}$$

where the $\Omega^{(1+0)}(s/\mu^2)$ is given by

$$\begin{split} \Omega_{n}^{(1+0)}(s/\mu^{2}) &= \frac{1}{6} \langle aGG \rangle p_{n}^{(1+0)}(s/\mu^{2}) + \sum_{k} m_{k} \langle q_{k}q_{k} \rangle r_{n}^{(1+0)}(s/\mu^{2}) \\ &+ 2 \langle m_{i}q_{i}q_{i} + m_{j}q_{j}q_{j} \rangle q_{n}^{(1+0)}(s/\mu^{2}) \pm \frac{8}{3} \langle m_{j}q_{i}q_{i} + m_{i}q_{j}q_{j} \rangle t_{n}^{(1+0)} \\ &- \frac{3}{\pi^{2}} (m_{i}^{4} + m_{j}^{4}) h_{n}^{(1+0)}(s/\mu^{2}) \mp \frac{5}{\pi^{2}} m_{i}m_{j} (m_{i}^{2} + m_{j}^{2}) k_{n}^{(1+0)}(s/\mu^{2}) \\ &+ \frac{3}{\pi^{2}} m_{i}^{2} m_{j}^{2} g_{n}^{(1+0)}(s/\mu^{2}) + \sum_{k} m_{k}^{4} j_{n}^{(1+0)}(s/\mu^{2}) + 2 \sum_{k \neq l} m_{k}^{2} m_{n}^{2} m_{n$$

(35)

Dimension Six and Eight Corrections

$$D_{ij,V/A}^{(1+0)}\Big|_{D=8} = 4 \frac{\rho_{V/A}^{(8)}}{s^4}$$

$$D_{ij,V/A}^{(1+0)}\Big|_{D=10} = 5 \frac{\rho_{V/A}^{(10)}}{s^5}$$

$$D_{ij,V/A}^{(1+0)}\Big|_{D=12} = 6 \frac{\rho_{V/A}^{(12)}}{s^6}$$
(36)

Duality Violations

$$R_{\tau,V/A}^{\omega} = \frac{N_c}{2} S_{EW} |V_{ud}|^2 \left(1 + \delta_{pt}^{\omega} + \delta_{npt}^{\omega} + \delta_{DV}^{\omega}\right) \tag{37}$$

$$\rho_{V/A}^{DV}(s) = e^{-(\delta_{V/A} + \gamma_{V/A} s)} \sin(\alpha_{V/A} + \beta_{V/A} s)$$
(38)

$$D_{\omega}(m_{\tau}^2) = -12\pi^2 \int_{m_{\tau}^2}^{\infty} \frac{\mathrm{d}s}{m_{\tau}^2} \omega(s) \rho_{V/A}^{DV}$$
(39)

Weights

$$\omega(x) \equiv \sum_{i} a_{i} x^{i} \tag{40}$$

kinematic weights

$$\omega_{\tau} \equiv (1 - \frac{s}{m_{\tau}^2})^2 (1 + 2\frac{s}{m_{\tau}^2}) \tag{41}$$

Pinched Weights

$$\omega(s) = \left(1 - \frac{s}{m_{\tau}^2}\right)^k \tag{42}$$

Weighting OPE Contributions

$$\oint_C x^k \, \mathrm{d}x = i \int_0^{2\pi} \left(e^{i\theta} \right)^{k+1} \, \mathrm{d}\theta = \begin{cases} 2\pi i & \text{if } k = -1, \\ 0 & \text{otherwise} \end{cases}$$
(43)

$$R(x)|_{D=0,2,4,...} = \oint_{|x|=1} dx \, x^{k-D/2} C^{(D)}$$
 (44)

active dimension

$$D = 2(k+1) \tag{45}$$

monomial:							
dimension:	$D^{(2)}$	$D^{(4)}$	$D^{(6)}$	$D^{(8)}$	$D^{(10)}$	$D^{(12)}$	$D^{(14)}$

Table: List of monomial and their corresponding "active" dimensions in the OPE. Note that the perturbative contributions of the OPE are always present.

ALEPH data

$$R_{\tau,V/A} = \frac{\mathcal{B}_{V/A}}{\mathcal{B}_e} = \int_0^{m_\tau^2} \mathrm{d}s \frac{\mathrm{sfm2}_{V/A}(s)}{100\mathcal{B}_e} \tag{46}$$

$$I_{\exp,V/A}^{\omega}(s_0) = \frac{s_{\tau}}{100\mathcal{B}_e s_0} \sum_{i=1}^{N(s_0)} \frac{\omega\left(\frac{s_i}{s_0}\right)}{\omega_{\tau}\left(\mathsf{sfm2}_{V/A}(s_i)\right)} \tag{47}$$

$$\chi^{2} = (I_{i}^{exp} - I_{i}^{th}(\vec{\alpha}))C_{ij}^{-1}(I_{j}^{exp} - I_{j}^{th}(\vec{\alpha}))$$
(48)

$$C_{ij} = \operatorname{cov}(I_i^{\text{exp}}, I_j^{\text{exp}}) \tag{49}$$

$$\chi^2 \approx 1 \tag{50}$$

	Symbol	Term	Expansion	${\tt OPE} \ {\sf Contributions}$
Pinched	$\omega_{ au}$ ω_{cube} $\omega_{quartic}$	$(1-x)^{2}(1+2x) (1-x)^{3}(1+3x) (1-x)^{4}(1+3x)$	$ \begin{array}{r} 1 - 3x^2 + 2x^3 \\ 1 - 6x^2 + 8x^3 - 3x^4 \\ 1 - 10x^2 + 20x^3 - 15x^4 + 4x^5 \end{array} $	D6, D8 D6, D8, D10 D6, D8, D10, D12
Monomial	ω _{M2} ω _{M3} ω _{M4}	$ 1-x^2 $ $ 1-x^3 $ $ 1-x^4 $	1-x2 1-x3 1-x4	D6 D8 D10
Pinched +x	$\omega_{1,0} \\ \omega_{2,0} \\ \omega_{3,0} \\ \omega_{4,0}$	$ \begin{array}{c} (1-x) \\ (1-x)^2 \\ (1-x)^3 \\ (1-x)^4 \end{array} $	$ \begin{array}{r} 1 - x \\ 1 - 2x + x^2 \\ 1 - 3x + 3x^2 - x^3 \\ 1 - 4x + 6x^2 - 4x^3 + x^4 \end{array} $	D4 D4, D6 D4, D6, D8 D4, D6, D8, D10

Kinematic Weight: $\omega_{\tau}(x) \equiv (1-x)^2(1+2x)$

	S _{min}	# <i>s</i> ₀ s	$lpha_s(\mathit{m}_{ au}^2)$	$\rho^{(6)}$	$ ho^{(8)}$	χ^2/dof	
BS	2.200	7	0.3274(42)	-0.82(21)	-1.08(40)	0.21	
	2.100	8	0.3256(38)	-0.43(15)	-0.25(28)	1.30	
H	2.200	7	0.3308(44)	-0.72(20)	-0.85(38)	0.19	
FOPT	2.300	6	0.3304(52)	-0.69(25)	-0.80(50)	0.25	
Ē	2.400	5	0.3339(70)	-0.91(39)	-1.29(83)	0.10	
	2.600	4	0.3398(15)	-1.3(1.0)	-2.3(2.5)	0.01	

Cubic Weight: $\omega_{cube}(x) \equiv (1-x)^3(1+3x)$

S _{min}	# <i>s</i> ₀ s	$\alpha_s(m_{ au}^2)$	ρ ⁽⁶⁾	ρ ⁽⁸⁾	ρ ⁽¹⁰⁾	χ^2/dof
2.000	9	0.3228(26)	-0.196(27)	0.075(28)	0.420(56)	1.96
2.100	8	0.3302(40)	-0.52(11)	-0.58(22)	-1.00(45)	0.43
2.200	7	0.3312(43)	-0.56(12)	-0.68(23)	-1.23(50)	0.55
2.300	6	0.336(11)	-0.78(47)	-1.17(98)	-2.38(22)	0.29
2.400	5	0.3330(96)	-0.63(47)	-0.82(10)	-1.51(26)	0.48

Quartic Weight: $\omega(x) \equiv (1-x)^4(1+4x)$

$$\begin{split} \alpha_s(\textit{m}_\tau^2) &= 0.3290(11), \quad \rho^{(6)} = -0.3030(46), \quad \rho^{(8)} = -0.1874(28), \\ \rho^{(10)} &= 0.3678(45) \quad \text{and} \quad \rho_{(12)} = -0.4071(77). \end{split} \tag{51}$$

$$\omega_{M2}(x) \equiv 1 - x^2$$

S _{min}	# <i>s</i> ₀ s	$lpha_s(\mathit{m}_{ au}^2)$	$\rho^{(6)}$	χ^2/dof
2.100	8	0.3179(47)	-0.42(17)	1.62
2.200	7	0.3248(52)	-0.77(22)	0.38
2.300	6	0.3260(60)	-0.85(28)	0.43

$$\omega_{M3}(x) \equiv 1 - x^3$$

Smin	# <i>s</i> ₀ s	$lpha_s(\mathit{m}_{ au}^2)$	$\rho^{(8)}$	χ^2/dof
2.100	8	0.3147(44)	-0.27(29)	1.71
2.200	7	0.3214(49)	-1.01(39)	0.41
2.300	6	0.3227(57)	-1.18(54)	0.46
2.400	5	0.3257(67)	-1.58(74)	0.39
2.600	4	0.325(10)	-1.54(1.53)	0.58
2.800	3	0.326(21)	-1.69(4.03)	1.17

Fourth Power Monomial: $\omega_{M4}(x) \equiv 1 - x^4$

S _{min}	# <i>s</i> ₀ s	$lpha_s(\mathit{m}_{ au}^2)$	$\rho^{(10)}$	χ^2/dof
2.100	8	0.3136(43)	-0.07(54)	1.75
2.200	7	0.3203(48)	-1.64(77)	0.42
2.300	6	0.3216(56)	-2.01(1.13)	0.47
2.400	5	0.3247(66)	-2.98(1.62)	0.39
2.600	4	0.324(10)	-2.86(3.69)	0.58
2.800	3	0.325(20)	-3.43(10.74)	1.17

$$\omega_{1,0}\equiv (1-x)$$

	S _{min}	# <i>s</i> ₀ s	$lpha_s(\mathit{m}_{ au}^2)$	$\langle aGG \rangle_I$	χ^2/dof
	2.100	8	0.3176(47)	-0.0134(48)	1.62
$_{\rm BS}$	2.200	7	0.3246(52)	-0.2262(59)	0.38
	2.300	6	0.3260(60)	-0.2453(73)	0.43
-	2.100	8	0.357(12)	-0.072(23)	0.95
FOPT	2.200	7	0.3593(97)	-0.079(19)	0.2
Ĕ.	2.300	6	0.3589(99)	-0.078(20)	0.24

$$\omega_{2,0} \equiv (1-x)^2$$

	S _{min}	# <i>s</i> ₀ s	$lpha_s(\mathit{m}_{ au}^2)$	$\langle aGG angle_I$	$\rho^{(6)}$	χ^2/dof
	2.100	8	0.3207(48)	-0.0170(50)	-0.45(17)	1.90
$_{ m BS}$	2.200	7	0.3270(54)	-0.0254(61)	-0.77(21)	0.74
	2.300	6	0.3253(63)	-0.0232(75)	-0.69(27)	0.9
- I	2.100	8	0.3331(54)	-0.0108(45)	0.361(76)	1.9
FOPT	2.200	7	0.3401(57)	-0.0185(52)	0.220(88)	0.73
<u> </u>	2.300	6	0.3383(68)	-0.0165(67)	0.26(12)	0.89

$$\omega_{3,0} \equiv (1-x)^3$$

	S _{min}	# <i>s</i> ₀ s	$\alpha_s(m_{ au}^2)$	$\langle aGG \rangle_I$	ρ ⁽⁶⁾	ρ ⁽⁸⁾	χ^2/dof
	2.000	9	0.3169(20)	-0.0123(34)	-0.29(12)	-0.05(24)	2.0
$_{ m BS}$	2.100	8	0.3239(40)	-0.0212(42)	-0.63(15)	-0.74(29)	0.46
	2.200	7	0.3251(17)	-0.02283(56)	-0.689(12)	-0.879(33)	0.56
	2.000	9	0.33985(81)	-0.01124(43)	0.002(10)	-0.242(26)	1.59
FOPT	2.100	8	0.3480(47)	-0.0201(36)	-0.264(89)	-1.03(28)	0.31
Ĕ	2.200	7	0.3483(23)	-0.0204(41)	-0.27(15)	-1.05(40)	0.41

$$\omega_{4,0} \equiv (1-x)^4$$

	S _{min}	# <i>s</i> ₀ s	$\alpha_s(m_{ au}^2)$	aGGInv	ρ ⁽⁶⁾	ρ ⁽⁸⁾	$\rho^{(10)}$	χ^2/dof
	1.950	10	0.31711(67)	-0.012432(24)	-0.30013(73)	-0.06785(16)	0.26104(50)	1.09
BS	2.000	9	0.3206(24)	-0.0167(14)	-0.455(38)	-0.373(67)	-0.36(14)	0.83
	2.100	8	0.3248(21)	-0.02230(47)	-0.6724(63)	-0.834(14)	-1.352(28)	0.23
PT	1.950	10	0.3416(14)	-0.01306(83)	-0.050(22)	-0.390(59)	-0.50(19)	1.71
FO	2.100	8	0.3480(25)	-0.0201(27)	-0.264(91)	-1.02(23)	-339.00(20)	0.41

Comparison

	weight	Smin	$\alpha_s(m_{ au}^2)$	$\langle aGG \rangle_I$	ρ ⁽⁶⁾	ρ ⁽⁸⁾	$\rho^{(10)}$	χ^2/dof
	$\omega_{ au}$	2.2	0.3308(44)	-	-0.72(20)	-0.85(38)	-	0.19
PT	$\omega_{\it cube}$	2.1	0.3302(40)	-	-0.52(11)	-0.58(22)	-1.00(45)	0.43
FOPT	ω_{M2}	2.2	0.3248(52)	-	-0.77(22)	-	-	0.38
	ω_{M3}	2.2	0.3214(49)	-	-	-1.01(39)	-	0.41
	ω _{1,0}	2.2	0.3246(52)	-0.2262(59)	-	-	-	0.38
BS	$\omega_{2,0}$	2.2	0.3270(54)	-0.0254(61)	-0.77(21)	-	-	0.74
	$\omega_{3,0}$	2.1	0.3239(40)	-0.0212(42)	-0.63(15)	-0.74(29)	-	0.46

Results

$$lpha_s(m_{ au}^2) = 0.3261 \pm 0.0050$$

Results

$$lpha_s(m_{\tau}^2) = 0.3261 \pm 0.0050$$

$$\rho^{(6)} = -0.68 \pm 0.2$$

$$ho^{(8)} = -0.80 \pm 0.38$$

- DV not present if using single pinched weights in the V+A channel
- FOPT more valid than CIPT

Thank you

- Beneke, Martin and Matthias Jamin. " α_s and the τ hadronic width: fixed-order, contour-improved and higher-order perturbation theory". In: *JHEP* 09 (2008), p. 044. DOI: 10.1088/1126-6708/2008/09/044. arXiv: 0806.3156 [hep-ph].
- Deur, Alexandre, Stanley J. Brodsky, and Guy F. de Teramond. "The QCD Running Coupling". In: *Prog. Part. Nucl. Phys.* 90 (2016), pp. 1–74.

 DOI: 10.1016/j.ppnp.2016.04.003. arXiv: 1604.08082 [hep-ph].
- Tanabashi, M. et al. "Review of Particle Physics". In: *Phys. Rev.* D98.3 (2018), p. 030001. DOI: 10.1103/PhysRevD.98.030001.