Performance

Without ECC

- Length 4, 1 bit difference for different message.
- Min inner product: $N(4-2\times 1)=2N$.

With ECC

- Length 7, at least 3 bit differences for different message.
- Min inner product: $N(7-2\times 3)=N$.

Expand the Alphabet

From
$$|\mathcal{A}| = 2$$
 to $|\mathcal{A}'| = 4$.

- Less typical.
- Equivalent to increase length in capacity.
- But different in modulation.

Trellis Codes

 $1010 \Rightarrow 0001 \ 1100 \ 1111 \ 1110$

Trellis-coded Modulation

- Summing L symbols (watermarking keys).
 - Zero correction: random in high dimensional space.
- Expand the alphabet to $2^4 = 16$ symbols.
 - Negative correction: uniformly distribute 16 points on a sphere.

Convolutional Coding

- Trellis code is a special convolutional code.
 - Not blocks of message+parity.
 - A sequence of parity.
 - Message is reconstructed from the parity in a slicing window.
 - The windows are overlapped.
 - Each time, slide one bit.

Illustration of Convolutional Code

Illustration of Convolutional Code

Viterbi Decoding

- Find most closest code (most-likely path).
 - dynamic programming (not exhausting search).
 - Add branch metric B into path metric P. Add branch metric B into path metric P. Add branch metric B into path metric B. Add branch metric B into path B into path B into path B into path metric B into path B into path B into path B into path metric B into path B int

Trellis Diagram in Book

Performance of E_TRELLIS_8/D_TRELLIS_8

The same to E_SIMPLE_8/D_SIMPLE_8:

- 8-bit message instead of 4-bit.
 - Pad two more zero at the end: 10-bit indeed.
 - More redundancy: a priory for accuracy.
- 6 integers in each of 2000 images.

Much better accuracy

 \bullet 1 out of 12000 is wrong.

4.3 Detecting Multisymbol Watermarks

False Positive

If there is no watermark

- Direct message encoding
 - The most likely one is still poor in correction.
- Multisymbol system:
 - The corrections for all the symbols are not good enough.
 - How to define "good". Trell's code 州議功形总设长水即 也资本水印。

Valid Messages

An intelligible message or a garbage.

- Checksum for verification
 - 16-bits message: m.
 - 9-bits checksum: c = m[1:8] + m[9:16].
 - 25-bits watermarking: (m,c).
- Detector
 - Extractor 25-bits watermarking (m,c). Then treal is pade
 - Compare c and m[1:8] + m[9:16].
- False positive probability: $P_{fp} = \frac{1}{2^9}$.

Individual Symbols 1

All symbols are reliable (high correlated).

Watermark presence.

2-bit system in linear correlation.

Individual Symbols 2

False positive probability

- Single reference mark: P_{fp0} .
- In each index/position/order
 - If one mark in A

$$P_{fp1} \approx |\mathcal{A}| P_{fp0}$$
.

- ullet For the whole length L sequence.
 - All of them is high

$$P_{fp} = (P_{fp1})^L pprox (|\mathcal{A}|P_{fp0})^L.$$

Normalized Correlation 1

- Multiple-symbol embedding りまれる
 - \mathbf{w}_{ri} orthogonal to each other and unit.

$$\mathbf{v}_L = \mathbf{v}_o + \sum_{i=1}^L \mathbf{w}_{ri}, \quad \|\mathbf{v}_L\| pprox \sqrt{L}.$$
 The \mathbf{v}_L

- Linear correlation: independent of L خلیجی $z_{lc}(\mathbf{v}_L,\mathbf{w}_{r1})=\mathbf{v}_o\cdot\mathbf{w}_{r1}+\mathbf{w}_{r1}\cdot\mathbf{w}_{r1}=\varepsilon+1.$
- Normalized correlation: difficult for larger L

$$z_{nc}(\mathbf{v}_L, \mathbf{w}_{r1}) = rac{\mathbf{v}_L}{\|\mathbf{v}_L\|} \cdot \mathbf{w}_{r1} = rac{arepsilon + 1}{\sqrt{L}} rac{\mathbf{z}_L \mathbf{z}_L \mathbf{z}_L}{\sqrt{L}}.$$

Normalized Correlation 2

Less distinguishable.

- Large threshold: none is correlated enough, no symbol found.
- Small threshold: High false positive probability.

Geometric Interpretation

Large threshold: no overlap for the cones.

No detectable 2-bit message.

Reencode

- 电子和 Extract message m. 发达了现代验。(有他们可能作品).
- ② Reencode m into mark \mathbf{v}_m . 重新 encode . 再加基本
- $oldsymbol{3}$ Test the presence of ${f v}_m$

False Positive Probability

When the detection regions for the different messages do not overlap,

$$P_{fp} = |\mathcal{M}| P_{fp0}.$$

E_BLK_8/D_BLK_8

8-bit message:

- Trellis code with two padding 0 at the end.
 - A sequence of 10 symbols drawn from a 16-symbol alphabet.
- Reference marks:
 - \bullet 8 × 8 (block): low dimensional mark space.
 - \bullet So choose seed to reduce max correlation (0.73).
- Embedding strength $\alpha = 2$.
- $\tau_{cc} = 0.65$: false positive probability 10^{-6} .

Performance

- 2000 unwatermarked images (dashed line).
 - No false positive found.
- 12000 watermarked images (solid line).
 - 6 messages $\times 2000$ images.
 - 109 fail: effectiveness 99%.

Project: System 6

E_BLK_8/D_BLK_8

- Marking space: 8 × 8 block.
- 8-bit message.
- ECC: hamming or optional.
- Reencode check.
- \circ z_{cc} .

Presentation: 7.6 Analysis of Normalized Correlation

Approximate Gaussian Method

- False Positive Analysis
- False Negative Analysis