72 (30 на хор). Определение решётки и дискретного подмножества. Любая дискретная подгруппа \mathbb{R}^n является решёткой.

Опр Пусть $(e_1, ..., e_k)$ — набор линейно независимых векторов в \mathbb{R}^n . Тогда дискретная абелева группа в \mathbb{R}^n , порождённая $\{e_i\}$, называется решёткой, а набор $(e_1, ..., e_k)$ называется базисом решётки. Иными словами, решётка есть множество $\Lambda = \{a_1e_1 + ... + a_ke_k\}, a_i \in \mathbb{Z}$

Опр Подмножество X пространства \mathbb{R}^n называется дискретным, если для любой точки $x \in X$ существует окрестность этой точки, не содержащая других точек множества X.

Теорема. Любая дискретная подгруппа \mathbb{R}^n является решёткой.

- \blacktriangle 1. Дискретное множество в \mathbb{R}^n является множеством изолированных точек: действительно, рассматриваем произвольную точку, принадлежащую множеству; по определению дискретности, она является изолированной точкой этого множества.
- 2. По определению группы, выполняется ассоциативность, наличие нейтрального элемента и наличие обратного элемента. ∃ нейтральный элемент: это начало координат.
- 3. Мы выбрали начало координат. Возьмём расстояния всех точек до начала координат. Существует inf расстояний, отличный от нуля (так как иначе в любой эпсилон-окрестности начала координат существует точка из нашего множества), inf > 0
- 4. Докажем, что inf достигается. Предположим противное тогда в любой эпсилон окрестности infinum'а существует бесконечное количество точек с радиусом, большим чем он. Но тогда обязательно найдутся две точки, расстояние между которыми меньше inf ⇒ в силу бытия подгруппой мы можем отложить это расстояние от нуля и получить противоречие тому, что мы выбрали inf. Значит, inf достигается.
- 5. Выбираем этот inf и так последовательно формируем базис: получаем базис размера k, получаем линейные подпространства размерности k, находим расстояние между ними, это и есть искомый вектор базиса, получаем базис размерности k+1.
- 6. Этот процесс должен оставиться не позднее, чем n. Почему так? Предположим противное. Тогда ∃ точка в фундаментальной области, которая не была получена. Но она же находится в фундаментальной области, граничащей с нулём, в силу того, что это группа ⇒ противоречие тому, что мы всегда выбирали минимальные расстояния (мы нашли точку с меньшим расстоянием). ■

Доказательство 2:

- 1) В любом компакте содержится лишь конечное число точек из G
- 2) Будем рассматривать линейное пространство, порождённое нашей подгруппой G.
- 3) Выберем базис (в подпространстве) $e_1,...,e_k$ среди элементов нашей группы, и рассмотрим подгруппу $G_0=Ze_1+..+Ze_k\subset G$.
- 4) Так как G дискретная, в G/G_0 содержится конечное количество элементов (по пункту 1), пусть $[G:G_0]=q$.
 - 5) G содержится в $1/qG_0$, и поэтому является решёткой.