

הנדסת תוכנה

Software Engineering

תרגיל 3 להגשה בתכנון וניתוח אלגוריתמים (קורס מס׳ 10120)

מרצים: ד"ר ראובן חוטובלי ד"ר מריה ארטישצ'ב

תאריך הגשה: 25.5.2021 . העבודה בזוגות. עליכם למלא את הטבלה בקובץ WORD המצורף תרגיל ולהגיש את הקובץ עם הטבלה בלבד.

התיאור המובא להלן מתייחס לשאלות 1 עד 4 כולל.

התשובה הנכונה עבור ביטוי (2) לעיל היא:

עץ⁄יער פורש BFS.

.DFS ד. עץ/יער פורש

א. גרף העל.

נתון גרף פשוט מכוון G=(V,E) שאינו בהכרח קשיר. לפניך אלגוריתם יעיל ככל האפשר ה

המדפיס את רשימת כל הקדקודים השייכים למעגל כלשהו שאיננו לולאה.	
<u>תיאור אלגוריתם</u>	
. G נריץ את האלגוריתם בגרף (1)	<u>:1 צעד</u>
. G1 - נבנה את (2) ואותו נסמן ב	: 2 צעד
(3) :בעבור כל קדקוד C בעבור כל קדקוד	<u>: 3 צעד</u>
באלגוריתם הנ״ל חסרים <u>שלושה</u> ביטויים המסומנים במספרים בין סוגריים עגולים.	
התשובה הנכונה עבור כל אחד מהביטויים החסרים מופיעים בשאלות הבאות:	
	<u>שאלה 1</u>
: התשובה הנכונה עבור ביטוי (1) לעיל היא	
למצוא את הרק״חים.	м.
מיון טופולוגי	ב.
.BFS	.λ
DFS	٦.
	<u>שאלה 2</u>

רשימה ממוינת בסדר עולה של קדקודי הגרף לפי זמן סיום הטיפול בהם.

שאלה 3

: התשובה הנכונה עבור ביטוי (3) לעיל היא

- א. הדפס את כל הקדקודים הנמצאים ב-C.
- ב. אם הוא מכיל לפחות שני קדקודים השייכים ל-G אז הדפס את כל ב. C. הקדקודים השייכים ל-G ונמצאים ב-G הקדקודים השייכים ל-
- G-ג אם C בעל דרגה גדולה מ-0 אז הדפס את כל הקדקודים השייכים ל-C ג . . C בעל דרגה גדולה מ-0. . C. ונמצאים ב-C .
- G-אין קדקוד מקדים אז הדפס את כל הקדקודים השייכים ל-C או אם ל- C. ונמצאים ב-C .

שאלה 4

סבוכיות זמן הריצה של האלגוריתם הנתון הינה:

- א. ריבועית כפונקציה של גודל הקלט.
- ב. לינארית כפונקציה של גודל הקלט.
- ג. מעריכית כפונקציה של גודל הקלט.
- ד. אף אחת מבין התשובות הנתונות איננה נכונה.

התיאור המובא להלן מתייחס לשאלות 5 עד 15 כולל.

שורש בגרף מכוון הוא צומת ממנו יש מסלול (מכוון) לכל צומת אחר בגרף.

או מודיע ב- או מודיע שורש ב- G=(V,E) או מכוון מקבל אשר אייל שורש ב- לפניך אלגוריתם איין כזה.

<u>אלגוריתם-שורש</u>

. נריץ את האלגוריתם (1) אשר מחזיר עץ או יער מכוון. נעד $rac{1}{2}$
נסמן ב- ${ m s}$ את השורש של העץ האחרון בעץ או יער, כלומר הקדקוד עם זמן הסיום (זמן ${ m s}$
זיימוותיי) הגדול ביותר.
<u>(3)</u> החל מ(3) החל מ(3)
<u>צעד 4:</u>
(FALSE) אם קיים– (4), אזי נכריז כי בגרף אין קדקוד שורש ונחזיר
$\sim G$ הינו קדקוד שורש של s \sim הינו קדקוד שורש

באלגוריתם הזה חסרים ארבעה ביטויים המסומנים במספרים בין סוגריים עגולים. התשובה הנכונה עבור כל אחד מהביטויים החסרים מופיעים בשאלות הבאות:

<u>שאלה 5</u>

התשובה הנכונה עבור ביטוי (1) לעיל היא:

- על G או. DFS על G א.
- ב. מיון טופולוגי על G החל מקדקוד בעל דרגת כניסה ס.
- על מקדקוד כלשהו. DAG-SHORTEST-PATHS G על
 - ד. למצוא את הרק״חים.

שאלה 6

התשובה הנכונה עבור ביטוי (2) לעיל היא:

- .DFS א.
- G ב. מיון טופולוגי על
- על מקדקוד כלשהו. DAG-SHORTEST-PATHS על G
 - ד. למצוא את הרקייחים.

שאלה 7

התשובה הנכונה עבור ביטוי (3) לעיל היא:

- א. מקדקוד בעל דרגת כניסה 0
 - $v \in V$ ב. מקדקוד כלשהו
 - .s .λ
- .s-מקדקוד כלשהו $v \in V$ השונה מ-

8 שאלה

: התשובה הנכונה עבור ביטוי (4) לעיל היא

- א. יותר ממסלול קצר אחד.
- ב. לפחות קדקוד אחד בעל דרגת כניסה 0.
 - ג. יותר מעץ פורש אחד ביער פורש.
- ד. אף אחת מהתשובות הנתונות אינה נכונה.

<u>שאלה 9</u>

קבעו האם הטענה שלהלן נכונה או לא נכונה:

בהרצת אלגוריתם \mathfrak{u} החל מקדקוד \mathfrak{u} באעד 3 מתקבל עץ יחיד אםיים החל בהרצת אלגוריתם של הגרף.

<u>שאלה 10</u>

סבוכיות זמן הריצה של האלגוריתם הנתון, המופעל על גרף קשיר, הינה:

- $O(|E|\log|V|)$.א
 - O(ig|Vig|*ig|Eig|) ב.
 - $O(\left|E\right|^2)$.
 - $O(\left|V\right|+\left|E\right|)$.T

עתה לפניך אלגוריתם 2 יעיל אלגוריתם-שורשים אשר מקבל גרף מכוון G=(V,E) ומוצא את כל עתה לפניך אלגוריתם 2 יעיל אלגוריתם מודיע שאין כזה.

u ל-u הינו שורש, אם ורק אם ורק אם הינו שורש אזי קדקוד u הינו שורש, אזי קדקוד או צומת v

<u>אלגוריתם-שורשים</u>

<u>: צעד</u>

נריץ את האלגוריתם ____(5)___ ואת הערך המוחזר של האלגוריתם הזה נשמור ____ במשתנה F.

יים! אין ארשים בגרף וסיים! אדע אט אט אין שורשים א בעד בעד בער ישורש צעד ביים!

אחרת, יהא r השורש שנמצא.

G' = (V', E') בהינתן הגרף (בנה ממנו גרף נבנה G = (V, E) בהינתן בהינתן ב

$$V'=V$$
 $E'=$ _____(6) ____ : באופן הבא

 $.\,r$ -מ-(7) החל מ- בעד .r נריץ את האלגוריתם

G של r של r של r של בדיוק שורשי (8) כל בייוק שורשי

באלגוריתם הזה חסרים <u>ארבעה</u> ביטויים המסומנים במספרים בין סוגריים עגולים. התשובה הנכונה עבור כל אחד מהביטויים החסרים מופיעים בשאלות הבאות:

<u>שאלה 11</u>

התשובה הנכונה עבור ביטוי (5) לעיל היא:

- DFS א.
- ב. מיון טופולוגי
 - נ. BFS
- ד. אלגוריתם-שורש.

שאלה 12

התשובה הנכונה עבור ביטוי (6) לעיל היא:

$$E^{T} = \{(u, v)/(v, u) \in E\}$$
 .N

- E . \Box
- $E \{(r, v)/v \in V\} \{(v, r)/v \in V\}$ λ
 - $E + \{(p, v) \cup (v, p) / p \notin V\} \qquad . \mathsf{T}$

שאלה 13

התשובה הנכונה עבור ביטוי (7) לעיל היא:

- DFS ×
- ב. מיון טופולוגי
- ג. מציאת סגור טרנזיטיבי.
 - ד. אלגוריתם-שורש.

שאלה 14

: התשובה הנכונה עבור ביטוי (8) לעיל היא

- א. בניו
- ב. צאצאיו
- ג. אבות הקדמונים שלו
- ד. הקדקודים הנמצאים במעגל יחד עם הקדקוד ד.

<u>שאלה 15</u>

סבוכיות זמן הריצה של האלגוריתם הנתון , המופעל על גרף קשיר, הינה :

- $O(\left|E\left|\log\left|V\right|\right|)$ א.
 - O(|V|+|E|) .2
 - $O(\left|E\right|^2)$.
 - O(ig|Vig|*ig|Eig|) .ד

התיאור המובא להלן מתייחס לשאלות 16 עד 20 (כולל)

יהי G=(V, E) גרף מכוון. תהי $u\in V$ צומת כלשהי בגרף. לפניך אלגוריתם יעיל המדפיס את G=(V, E) אורך המעגל האי זוגי הקצר ביותר ש-u משתתף בו. אם לא קיים מעגל כזה—יש להודיע על כך.

האלגוריתם

: באופן הבא $G^* = (V^*, E^*)$ נבנה גרף חדש G = (V, E) באופן באינתן

$$V^* = V \cup V' \qquad V' = \{v' \mid v \in V\}$$

$$E^* = \{\underline{\qquad}(1) \underline{\qquad} \mid (u \to v) \in E\}$$

 $_{\rm u}$ את אלגוריתם אלגוריתם (2) את אלגוריתם פודקודקו (2) את אלגוריתם .____(3) .____

<u>: 3 צעד</u>

, (4) הסתיים ולא הגענו ל- (2) הסתיים ולא הגענו ל- (4) נודיע שלא קיים מעגל כנדרש.

באלגוריתם הנ"ל חסרים ארבעה ביטויים המסומנים במספרים בין סוגריים עגולים.

: התשובות הנכונות עבור כל אחד מהביטויים החסרים מופיעות בשאלות הבאות

<u>שאלה 16</u>

התשובה הנכונה עבור ביטוי (1) לעיל היא:

$$(u \rightarrow v'), (u' \rightarrow v)$$
 .8

$$(u' \rightarrow v')$$
 .

$$(v \rightarrow u')$$
 .

$$(u \rightarrow v'), (v' \rightarrow u)$$
.

שאלה 17

: התשובה הנכונה עבור ביטוי (2) לעיל היא

- DFS א.
- BFS .z
- ג. מיון טופולוגי
- ד. אשר מוצא מעגל

<u>שאלה 18</u>

התשובה הנכונה עבור ביטוי (3) לעיל היא:

- . ונסיים d[u], ונסיים את את ונחזיר בכל מקרה את
- . ונסיים d[u] אזי נחזיר את של נגיע ל-u, ונסיים ב.
- . ונסיים ,d[u'] אזי נחזיר את ,u'-טיים, ונסיים ג. ותוך כדי הריצה אם נגיע ל
 - ד. ונחזיר בכל מקרה את [u'], ונסיים.

<u>שאלה 19</u>

: התשובה הנכונה עבור ביטוי (4) לעיל היא

- u א. לשכן כלשהו של
- u' ב. לשכן כלשהו של
 - u .১
 - u' .T

<u>שאלה 20</u>

: סיבוכיות זמן הריצה של האלגוריתם הנתון הינה

- O(|V||E|) .א
- $O(|V|^2|E|)$. د.
 - $O(|V|^2)$.
- O(|V|+|E|) ד.

בהצלחה!