Assignment 1

Indranil Chakrabarty

March 2021

1 Solve the following questions:

- 1. Consider the following settings of sequential Stern-Gerlachs, tell what will be the final outputs with proper reasons
 - (a) $S_x \to S_y \to S_x \to S_y$ (-, -, rays are blocked sequentially).
 - (b) $S_z \to S_z \to S_x$ (-, + rays are blocked sequentially)
 - (c) $S_x \to S_y \to S_z \to S_y$ (+, +, + rays are blocked sequentially).
- 2. Describe an experiment to argue that quantum determinism is different from classical determinism.
- 3. Show that all the Pauli Matrices σ_i are Unitary and Hermitian. Find all $\sigma_i \otimes \sigma_j$. Find out whether $\sigma_i \otimes \sigma_j$ are Hermitian and Unitary or not?
- 4. Consider the four bipartite quantum states given below. Some of them are density matrices, while some of them are state vectors.
 - (a) $\psi_1 = |00\rangle$
 - (b) $\psi_3 = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$

For each of the state vectors above find the density matrices.

- 5. Find out which of the followings are pure states and mixed states?
 - (a) $\rho_1 = \frac{1}{2}(|00\rangle\langle 00| + |01\rangle\langle 11||11\rangle\langle 00| + |11\rangle\langle 11|)$
 - (b) $\rho_2 = \frac{1}{4}|00\rangle\langle 00| + \frac{1}{4}|01\rangle\langle 01| + \frac{1}{4}|10\rangle\langle 10| + \frac{1}{4}|11\rangle\langle 11|$
 - (c) $\rho_3 = \frac{1}{2}(|00\rangle\langle 00| + |11\rangle\langle 11|)$
 - (d) $\rho_4 = p \times I + (1 p) \times \rho_1$
- 6. Show the following:
 - (a) Find out whether projection operators are positive operators or not.
 - (b) Orthonormalize the following set of vectors $|0\rangle + 2|1\rangle$, $8|0\rangle + 1|1\rangle 6|2\rangle, |2\rangle$.
- (c) Find the tensor products of following matrices: (i) ρ_1 and ρ_3 , (ii) ρ_2 and ρ_4 and (iii) ρ_1 , ρ_3 and ρ_4 (ρ_i are from Prob 5).