高等数学 B2 模拟试题二

		1,4,4,294,4	= 0000000		
-,	填空题(每空3分,共1	5分):			
1,	将 xOy 面上的曲线 $x^2 = 3y$ 绕 y 轴旋转一周,所生成的旋转曲面的方程为				
2,	设二元函数 $z = \sin(xy)$,则二阶偏导数 $z_{xx} =$				
3,	设区域 $D: x^2 + y^2 \le a^2$, $x \ge 0$, 则由二重积分的性质得 $\iint_{D} 2d\sigma =$				
4、	函数 $f(x) = \frac{1}{2-x}$ 展开成	成关于 x 的幂级数是			
5、	微分方程 y"-2y'+5y=	0的通解是	·		
二、	单项选择题(请把下列各题答案的序号填入括号内,每空3分,共15分):				
1,	若 x 轴上的点 A 到两点 A	$M(1, 0, 2) \not \!\!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	0) 的距离相等,则 A 点	的坐标为【	1.
	(A) (4, 0, 0);	(<i>B</i>) (3, 0, 0);	(C)(2,0,0);	(D) (2)	1, 0, 0).
2,	曲面 $x^2 + y^2 + z^2 - xyz =$	= 5 在点(0,1,2)处的	切平面方程是【 】	١.	
	(A) $x+y+2z-5=0$;	(B) $x - y - 2z - 5 =$	0; (C) $x-y-2z+5$	S=0; (D) x	+y+2z+5=0
3,	将二次积分 $\int_0^1 dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f$	f(x, y)dx交换积分次	、序,正确的是【 】	l.	
	(A) $\int_0^1 dx \int_0^{\sqrt{1-x^2}} f(x, y) dx$	y;	$(B) \int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f$	f(x,y)dy;	
	$(C) \int_0^1 dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f(x, y) dx$	dy;	$(D) \int_{-1}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(x) dx$	(x,y)dy.	
4、	如果幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收	金金金金金金金金金金金金金金金金金金金金金金金金金金金金金金金金金金金金金金	数在下列区间内必收敛的	的是【 】	۱.
	(A) (-3,3];	(B)(-3,3);	(C)[-3,3);	(D) [-3, 3].
5、	5、微分方程 $y'' - 5y' + 6y = e^{2x}$ 的特解形式是 $y^* = \mathbb{I}$ 】.				
	$(A) e^{2x};$	(B) ae^{2x} ;	(C) axe^{2x} ;	(1	$O) ax^2 e^{2x}.$
三((9 分)、设二元函数 z = z	$g(x,y)$ 由方程 $x^2 - 3xy$	y + z³ = z 所确定,求 值	壽导数 $\frac{\partial z}{\partial x}$, $\frac{\partial}{\partial x}$	z 及全微分
四 (9 分)、求二元函数 $f(x, y) = y^3 + 3x^2(1 + y^2) - 3y$ 的极值.					
五(9 分)、计算二重积分 $\iint_D (x+y)d\sigma$,其中积分区域 D 由 x 轴、 y 轴及 $x^2+y^2=9$ 所围成的图形位于					
	第一象限内的部分.				

六 (9 分)、求曲线 $x = t^3$, $y = e^{2t}$, $z = \ln(1+t)$ 在对应于 t = 1 的点处的切线和法平面方程.

七(9 分)、将函数 $f(x) = \frac{1}{(x+1)(x+3)}$ 展开为关于 x 的幂级数,并指出其收敛区间.

八(10 分)、设有幂级数 $\sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} x^n$,(1)求其收敛半径;(2)指出其收敛区间;(3)讨论幂级数 在收敛区间端点处的敛散性,并确定其收敛域.

九(10分)、求一阶非齐次线性微分方程 $y'+3y=e^{-3x}$ 的通解.

十(5分)、设
$$z = xy + xF(u)$$
,而 $u = \frac{x}{y}$,其中 $F(u)$ 为可导函数,证明: $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z + xy$.