Problem Setup: Portfolio \mathcal{P} of risky assets with prices p_i and availability $a_i \in \{0, 1\}$. Allocate budget B to maximize portfolio utility.

Utility Function: Cobb-Douglas utility measures investor satisfaction:

$$U(n_1,\ldots,n_P)=\kappa(\gamma)\prod_{i\in\mathcal{P}}n_i^{\gamma_i}$$

where γ_i is the preference for asset i (output of a preference model), $\kappa(\gamma)$ scales the function, and n_i is the number of shares (what we compute).

Investor preference model: The γ_i preference coefficients can reflect market conditions, sentiment, and other asset-specific information through a feature vector $\mathbf{x}_i \in \mathbb{R}^m$:

$$\gamma_i = \sigma\left(\mathbf{x}_i^{\top} \theta_i\right) \quad \forall i \in \mathcal{P}$$

where $\sigma: \mathbb{R} \to \mathbb{R}$ is an activation function $\sigma_{\theta}(x) \in [-1,1]$, and $\theta_i \in \mathbb{R}^p$ (p=m+1) denotes the feature weights (and bias), learned from data or set based on subjective beliefs.

Allocate investment budget B across portfolio assets, where p_i is the price of asset i. The optimal portfolio is the solution of the utility maximization problem:

$$\begin{array}{ll} \underset{n_{1},...,n_{P}}{\mathsf{maximize}} & \kappa(\gamma) \prod_{i \in \mathcal{P}} n_{i}^{\gamma_{i}} \\ \\ \mathsf{subject to} & B = \sum_{i \in \mathcal{P}} n_{i} \; p_{i} \\ \\ \epsilon \; a_{i} \leq n_{i} \leq a_{i} \left(\frac{B}{p_{i}}\right) \quad \forall i \in \mathcal{P} \\ \\ a_{i} \in \{0,1\} \quad \forall i \in \mathcal{P} \\ \\ \epsilon \in \mathbb{R}_{+} \quad (\mathsf{hyperparameter}) \end{array}$$

where $a_i = \{0, 1\}$ indicates asset availability (bandit arm)

The share optimization problem has an **analytical solution**. Let $S = \{i \mid a_i = 1\}$ be the available assets; $S_+ = \{i \mid \gamma_i > 0\}$ the preferred ones, $S_- = \{i \mid \gamma_i < 0\}$ the non-preferred. The optimal shares n_i^* are:

$$n_i^{\star} = \begin{cases} \left(rac{\gamma_i}{\sum_{j \in S_+} \gamma_j}
ight) rac{B - \epsilon \sum_{k \in S_-} p_k}{p_i} & orall i \in S_+ \\ \epsilon & orall i \in S_- \end{cases}$$

Here, n_i^* is the optimal number of shares for asset i, balancing preferences and budget constraints.

Portfolio simulations for the bandit investor model. **A**: Example K = 10 asset portfolio with random fill prices and $\lambda=1.0$. The bandit portfolio (red) is near the efficient frontier, but not on it. **B**: Efficient frontiers for different λ values, showing trade-offs between risk and return. Out-of-sample performance over 182 trading days (2025), comparing bandit, maximum Sharpe ratio, and SPY index portfolios (K=20) at varying risk aversion: no risk ($\lambda=0$, **C**), moderate ($\lambda=1.0$, **D**), high ($\lambda=2.0$, **E**).