Proj2 resolvido

March 19, 2025

1 Projeto de Regressão Logística

Neste projeto iremos trabalhar com um DataSet falso de publicidade, que indica se um utilizador específico da internet clicou ou não em publicidade. Vamos tentar criar um modelo que preveja se clicará ou não num anúncio baseado nos recursos deste utilizador.

Este DataSet contém os seguintes recursos:

- 'Daily Time Spent on Site': tempo no site em minutos.
- 'Age': idade do consumidor.
- 'Area Income': Média da renda do consumidor na região.
- 'Daily Internet Usage': Média em minutos por dia, que o consumidor está na internet.
- 'Linha do tópico do anúncio': Título do anúncio.
- 'City': Cidade do consumidor.
- 'Male': Se o consumidor era ou não masculino.
- 'Country': País do consumidor.
- 'Timestamp': hora em que o consumidor clicou no anúncio ou janela fechada.
- 'Clicked on Ad'': 0 ou 1 indicam se clicou ou não no anúncio.

1.1 Importar bibliotecas

** Importe algumas bibliotecas necessárias **

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

1.2 Obter dados

** Leia o ficheiro advertising.csv e grave-o num DataFrame com o nome ad data. **

```
[2]: ad_data = pd.read_csv('advertising.csv')
    ** Verifique o cabeçalho do ad_data **
[3]: ad_data.head()
```

```
[3]: Daily Time Spent on Site Age Area Income Daily Internet Usage \
0 68.95 35 61833.90 256.09
```

1	80.23	31	6844	1.85		19	3.77	
2	69.47	26 59785.94			236.50			
3	74.15	29 54806.18				24	15.89	
4	68.37	68.37 35 73889.99		9.99		22	25.58	
	Ad	Topic	Line		City	Male	Country	\
0	Cloned 5thgeneration or	chestr	ation	W	rightburgh	0	Tunisia	
1	Monitored national stan	dardiz	ation		West Jodi	1	Nauru	
2	Organic bottom-line s	ervice	-desk		Davidton	0	San Marino	
3	Triple-buffered reciprocal	cal time-frame Wes			Terrifurt	1	Italy	
4	Robust logistical	utiliz	ation	So	uth Manuel	0	Iceland	
	Timestamp Click	ed on	Ad					
0	2016-03-27 00:53:11		0					
1	2016-04-04 01:39:02		0					
2	2016-03-13 20:35:42		0					
3	2016-01-10 02:31:19		0					
4	2016-06-03 03:36:18		0					
	ngeIndex: 1000 entries, 0 to ta columns (total 10 columns							
#	Column	Non-l	Null Co	ount	Dtype			
0	Daily Time Spent on Site	1000	non-nu	111	float64			
1	9		non-nu		int64			
2			non-nu		float64			
3	Daily Internet Usage		non-nu		float64			
4	Ad Topic Line		non-nu		object			
5	City		non-nu		object			
6	Male		non-nu		int64			
7	Country		non-nu		object			
8	Timestamp		non-nu		object			
9	Clicked on Ad		non-nu	111	int64			
_	<pre>/pes: float64(3), int64(3), nory usage: 78.2+ KB</pre>	object	t(4)					
ac	_data.describe()							
	Daily Time Spent on Si	te		Age	Area Incom	ne \		
cc	Daily Time Spent on Si		000.000	Age	Area Incom			

[4]

[5]

[5]

mean std

min

8.785562

36.009000 55000.000080

19.000000 13996.500000

13414.634022

65.000200

15.853615

32.600000

25% 50% 75% max	51.366 68.219 78.54 91.436	35.000 7500 42.000	57012.300000 0000 65470.635000
	Daily Internet Usage	Male	Clicked on Ad
count	1000.000000	1000.000000	1000.00000
mean	180.000100	0.481000	0.50000
std	43.902339	0.499889	0.50025
min	104.780000	0.000000	0.00000
25%	138.830000	0.000000	0.00000
50%	183.130000	0.000000	0.50000
75%	218.792500	1.000000	1.00000
max	269.960000	1.000000	1.00000

1.3 Análise exploratória de dados

Vamos explorar os dados!

Tente recriar os gráficos abaixo.

** Crie um histograma de "Age", com os bins = 30 **

```
[6]: # plt.figure(figsize=(12,6))
plt.hist(ad_data['Age'], bins=50)
plt.xlabel("Age")
```

[6]: Text(0.5, 0, 'Age')

** Crie um scatter plot que mostre a "Area Income" versus "Age" **

[7]: plt.scatter(ad_data['Area Income'], ad_data['Age'])

[7]: <matplotlib.collections.PathCollection at 0x127f2e280>

** Crie um kdeplot que mostre as distribuições KDE do "Daily Time spent on Site" vs "Age". **

```
[8]: sns.kdeplot(x=ad_data['Age'], y=ad_data['Daily Time Spent on Site'], fill = ∪ →True)
```

[8]: <Axes: xlabel='Age', ylabel='Daily Time Spent on Site'>

 $\ensuremath{^{**}}$ Crie um scatter plot do 'Daily Time Spent on Site' vs. 'Daily Internet Usage'**

[9]: <matplotlib.collections.PathCollection at 0x1324f4f40>

** Finalmente, crie um pairplot com o hue definido com a coluna 'Clicked on Ad'. **

```
[10]: sns.pairplot(ad_data, hue = 'Clicked on Ad')
```

[10]: <seaborn.axisgrid.PairGrid at 0x132527280>

2 Regressão Logística

Agora dividimos os dados em treino e teste.

Defina para o X as colunas 'Daily Time Spent on Site', 'Age', 'Area Income', 'Daily Internet Usage' e 'Male'.

Defina para o Y a coluna 'Clicked on Ad'

- ** Divida os dados em conjunto de treino e conjunto de testes usando train_test_split **
- ** O test_size = 0.3 e o random_state = 42 **

```
[11]: from sklearn.model_selection import train_test_split
```

```
Y = ad_data['Clicked on Ad']
[13]: X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3,__
       →random_state = 42)
     ** Treine e ajuste um modelo de regressão logística no conjunto de treino. **
[14]: from sklearn.linear_model import LogisticRegression
[15]: # logmodel = LogisticRegression()
      logmodel = LogisticRegression(max_iter=1000)
      #logmodel = LogisticRegression(random state=0, multi class='ovr', penalty='l2',,,
       ⇔solver='liblinear', max_iter=1000)
[16]: logmodel.fit(X_train,y_train)
[16]: LogisticRegression(max iter=1000)
     2.1 Previsões e avaliações
     ** Agora preveja valores para os dados de teste. **
[17]: predictions = logmodel.predict(X_test)
     ** Crie um relatório de classificação para o modelo. **
[18]: from sklearn.metrics import classification report
[19]: print(classification_report(y_test,predictions))
                    precision
                                 recall f1-score
                                                      support
                 0
                         0.96
                                    0.97
                                              0.97
                                                          146
                 1
                         0.97
                                    0.96
                                              0.97
                                                          154
                                                          300
                                              0.97
         accuracy
                                              0.97
                                                          300
        macro avg
                         0.97
                                    0.97
     weighted avg
                         0.97
                                    0.97
                                              0.97
                                                          300
     ** Crie a Matriz de classificação para o modelo. **
[20]: from sklearn.metrics import confusion_matrix
[21]: print(confusion_matrix(y_test,predictions))
     ΓΓ142
              4]
```

[6 148]]