IN THE CLAIMS:

Kindly amend claims 1-2 and 4-8 as follows:

1. (Currently Amended) A phosphorylcholine group-containing chemical compound represented by the following formula (1):

(1)

wherein, m denotes 2-6 and n denotes 1-4,

 X_1 , X_2 , and X_3 , independent of each other, denote a methoxy group, ethoxy group, or halogen;

up to two of X_1 , X_2 , and X_3 can be any of the following groups: a methyl group, ethyl group, propyl group, isopropyl group, butyl group, or isobutyl group; and

R is <u>represented by one of the structures in the following formula (3)</u> formulas (2) (4) (the chemical compound of formula (1) in the <u>structures</u> of the following <u>formula (3)</u> formulas (2) (4) is expressed as A-R-B):

 $\frac{(2)}{(2)}$

(3)

(4)

wherein, in formula (3) formulas (2) (4), L is 1-6, and P is 1-3.

2. (Currently Amended) A phosphorylcholine group-containing chemical compound represented by the following formula (5) or (6):

(5)

$$X_{2}$$
 X_{3} S_{i} C_{i} C_{i

(6)

wherein, in these formulas, m denotes 2-6; n denotes 1-4[[.]]; X_1 , X_2 , and X_3 , independent of each other, denote a methoxy group, ethoxy group, or halogen; and up to two of X_1 , X_2 , and X_3 can be any of the following groups: a methyl group, ethyl group, propyl group, isopropyl group, butyl group, or isobutyl group.

- 3. (Previously Presented) A surface modifier consisting of the phosphorylcholine groupcontaining chemical compound of claim 1.
- 4. (Currently Amended) A method of manufacturing the compound represented by said formula (6) of claim 2, wherein:

a compound having a phosphorylcholine group and a carboxyl group is synthesized by means of an oxidation reaction of glycerophosphorylcholine using sodium periodate and ruthenium trichloride; and

synthesis is carried out by using a condensation agent on an organic silane compound having an amino group and the compound having a phosphorylcholine group and a carboxyl group.

- 5. (Currently Amended) Modified powder <u>having phosphorylcholine groups on a surface</u>
 thereof, said phosphorylcholine groups introduced to the surface by treatment of the modified
 powder treated with the surface modifier of claim 3.
- 6. (Currently Amended) A chromatography packing consisting of a modified carrier having phosphorylcholine groups on a surface thereof, said phosphorylcholine groups introduced to the surface by treatment of the modified carrier treated with the surface modifier of claim 3.

DOCKET NO. TOS-165-USA-PCT

- 7. (Currently Amended) A modified filter <u>having phosphorylcholine groups on a surface</u>

 thereof, said phosphorylcholine groups introduced to the surface by treatment of the surface

 treated with the surface modifier of claim 3.
- 8. (Currently Amended) A glass experimental device [[whose]] having phosphorylcholine groups on a surface thereof, said phosphorylcholine groups introduced to the surface by treatment of the surface is treated with the surface modifier of claim 3.
- 9. (Previously Presented) A surface modifier consisting of the phosphorylcholine groupcontaining chemical compound of claim 2.