Lecture 3: Overview of Deep Learning System **CSE599W: Spring 2018**

The Deep Learning Systems Juggle

We won't focus on a specific one, but will discuss the common and useful elements of these systems

Typical Deep Learning System Stack

User API

Programming API

High level Packages

Gradient Calculation (Differentiation API)

System Components

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

Architecture

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

We will have lectures on each of the parts!

Typical Deep Learning System Stack

User API

Programming API

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

Example: Logistic Regression

Data

Fully Connected Layer

Softmax

$$h_k = w_k^T x_i$$

$$h_k = w_k^T x_i$$

$$P(y_i = k | x_i) = \frac{\exp(h_k)}{\sum_{j=1}^{10} \exp(h_i)}$$


```
import numpy as np
from tinyflow.datasets import get mnist
def softmax(x):
  x = x - np.max(x, axis=1, keepdims=True)
  x = np.exp(x)
  x = x / np.sum(x, axis=1, keepdims=True)
   return x
# get the mnist dataset
mnist = get mnist(flatten=True, onehot=True)
learning rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
  batch xs, batch ys = mnist.train.next batch(100)
   # forward
  y = softmax(np.dot(batch_xs, W))
   # backward
  y grad = y - batch ys
  W grad = np.dot(batch xs.T, y grad)
  # update
  W = W - learning rate * W grad
```

Forward computation: Compute probability of each class y given input

- Matrix multiplication
 - np.dot(batch_xs, W)
- Softmax transform the result
 - o softmax(np.dot(batch_xs, W))

```
import numpy as np
from tinyflow.datasets import get mnist
def softmax(x):
  x = x - np.max(x, axis=1, keepdims=True)
  x = np.exp(x)
  x = x / np.sum(x, axis=1, keepdims=True)
  return x
# get the mnist dataset
mnist = get_mnist(flatten=True, onehot=True)
learning rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
  batch xs, batch ys = mnist.train.next batch(100)
   # forward
  y = softmax(np.dot(batch xs, W))
   # backward
  y grad = y - batch vs
  W grad = np.dot(batch xs.T, y grad)
  # update
  W = W - learning_rate * W_grad
```

Manually calculate the gradient of weight with respect to the log-likelihood loss.

Exercise: Try to derive the gradient rule by yourself.

y: 100*784 784*10 = 100*10W_grad: 784*100 100*10 784*10


```
import numpy as np
from tinyflow.datasets import get mnist
def softmax(x):
  x = x - np.max(x, axis=1, keepdims=True)
  x = np.exp(x)
  x = x / np.sum(x, axis=1, keepdims=True)
   return x
# get the mnist dataset
mnist = get mnist(flatten=True, onehot=True)
learning rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
  batch xs, batch ys = mnist.train.next batch(100)
  # forward
  y = softmax(np.dot(batch xs, W))
  # backward
  y grad = y - batch ys
  W_grad = np.dot(batch_xs.T, y_grad)
   # update
   W = W - learning rate * W grad
```

Weight Update via SGD

$$w \leftarrow w - \eta \nabla_w L(w)$$

Discussion: Numpy based Program

```
import numpy as np
from tinyflow.datasets import get mnist
def softmax(x):
  x = x - np.max(x, axis=1, keepdims=True)
  x = np.exp(x)
  x = x / np.sum(x, axis=1, keepdims=True)
   return x
# get the mnist dataset
mnist = get mnist(flatten=True, onehot=True)
learning rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
  batch xs, batch ys = mnist.train.next batch(100)
   # forward
  y = softmax(np.dot(batch xs, W))
   # backward
  y grad = y - batch ys
  W grad = np.dot(batch xs.T, y grad)
  # update
  W = W - learning_rate * W_grad
```

- Talk to your neighbors 2-3 person:)
- What do we need to do to support deeper neural networks
- What are the complications

- Computation in Tensor Algebra
 - o softmax(np.dot(batch_xs, W))
- Manually calculate the gradient
 - o y_grad = y batch_ys
 - o W_grad = np.dot(batch_xs.T, y_grad)
- SGD Update Rule
 - O W = W learning_rate * W_grad

Logistic Regression in TinyFlow (TensorFlow like API)

```
import tinvflow as tf
from tinyflow.datasets import get mnist
                                                                                  Forward Computation Declaration
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
v = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y = tf.placeholder(tf.float32, [None, 10])
cross entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))
# Update rule
learning rate = 0.5
W grad = tf.gradients(cross entropy, [W])[0]
train step = tf.assign(W, W - learning rate * W grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize all variables())
mnist = get mnist(flatten=True, onehot=True)
for i in range(1000):
   batch xs, batch ys = mnist.train.next batch(100)
   sess.run(train step, feed dict={x: batch xs, y :batch ys})
```

```
import tinvflow as tf
from tinyflow.datasets import get mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning rate = 0.5
W grad = tf.gradients(cross entropy, [W])[0]
train step = tf.assign(W, W - learning rate * W grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize all variables())
mnist = get mnist(flatten=True, onehot=True)
for i in range(1000):
   batch xs, batch ys = mnist.train.next batch(100)
   sess.run(train step, feed dict={x: batch xs, y :batch ys})
```

Loss function **Declaration**

$$\begin{split} P\big(\text{label} &= k\big) = y_k \\ L(y) &= \sum_{k=1}^{10} I(\text{label} = k) \log(y_i) \end{split}$$

```
import tinvflow as tf
from tinyflow.datasets import get mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y = tf.placeholder(tf.float32, [None, 10])
cross entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))
# Update rule
learning rate = 0.5
W grad = tf.gradients(cross entropy, [W])[0]
train step = tf.assign(W, W - learning rate * W grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize all variables())
mnist = get mnist(flatten=True, onehot=True)
for i in range(1000):
   batch xs, batch ys = mnist.train.next batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

Automatic Differentiation: Details in next lecture!

```
import tinvflow as tf
from tinyflow.datasets import get mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y = tf.placeholder(tf.float32, [None, 10])
cross entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))
# Update rule
learning rate = 0.5
W grad = tf.gradients(cross entropy, [W])[0]
                                                                                                 SGD update rule
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize all variables())
mnist = get mnist(flatten=True, onehot=True)
for i in range(1000):
   batch xs, batch ys = mnist.train.next batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

```
import tinvflow as tf
from tinyflow.datasets import get mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y = tf.placeholder(tf.float32, [None, 10])
cross entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))
# Update rule
learning rate = 0.5
W grad = tf.gradients(cross entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize all variables())
mnist = get mnist(flatten=True, onehot=True)
for i in range(1000):
   batch xs, batch ys = mnist.train.next batch(100)
   sess.run(train step, feed dict={x: batch xs, y :batch ys})
```

Real execution happens here!

The Declarative Language: Computation Graph

- Nodes represents the computation (operation)
- Edge represents the data dependency between operations

Computational Graph for a * b +3

Computational Graph Construction by Step

```
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
```


Computational Graph by Steps

```
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

784, 10
None, 10
None, 10
None, 784
None, 784
```

Computational Graph Construction by Step

W_grad = tf.gradients(cross_entropy, [W])[0]

Automatic Differentiation, detail in next lecture!

Computational Graph Construction by Step

train_step = tf.assign(W, W - learning_rate * W_grad)

Execution only Touches the Needed Subgraph

```
sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```


Discussion: Computational Graph

- What is the benefit of computational graph?
- How can we deploy the model to mobile devices?

Discussion: Numpy vs TF Program

What is the benefit/drawback of the TF model vs Numpy Model

```
import numpy as np
from tinyflow.datasets import get mnist
def softmax(x):
  x = x - np.max(x, axis=1, keepdims=True)
   x = np.exp(x)
  x = x / np.sum(x, axis=1, keepdims=True)
   return x
# get the mnist dataset
mnist = get mnist(flatten=True, onehot=True)
learning rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   # forward
  y = softmax(np.dot(batch_xs, W))
   # backward
   y_grad = y - batch_ys
   W_grad = np.dot(batch_xs.T, y_grad)
   # update
   W = W - learning_rate * W_grad
```

```
import tinyflow as tf
from tinyflow.datasets import get mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y = tf.placeholder(tf.float32, [None, 10])
cross entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))
# Update rule
learning rate = 0.5
W grad = tf.gradients(cross entropy, [W])[0]
train step = tf.assign(W, W - learning rate * W grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize all variables())
mnist = get mnist(flatten=True, onehot=True)
for i in range(1000):
   batch xs, batch ys = mnist.train.next batch(100)
   sess.run(train step, feed dict={x: batch xs, y :batch ys})
```

Typical Deep Learning System Stack

Programming API

Gradient Calculation (Differentiation API

System Components

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

Computation Graph Optimization

- E.g. Deadcode elimination
- Memory planning and optimization
- What other possible optimization can we do given a computational graph?

Parallel Scheduling

- Code need to run parallel on multiple devices and worker threads
- Detect and schedule parallelizable patterns
- Detail lecture on later

MXNet Example

```
>>> import mxnet as mx
>>> A = mx.nd.ones((2,2)) *2
>>> C = A + 2
>>> B = A + 1
>>> D = B * C
```


Typical Deep Learning System Stack

Programming API

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

Architecture

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

GPU Acceleration

- Most existing deep learning programs runs on GPUs
- Modern GPU have Teraflops of computing power

Typical Deep Learning System Stack

Not a comprehensive list of elements The systems are still rapidly evolving:)

User API

Programming API

Gradient Calculation (Differentiation API)

System Components

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

Architecture

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

Supporting More Hardware backends

Each Hardware backend requires a software stack

Programming API

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

The fastest and most-used math library for Intel®-based systems1. Accelerate math processing routines, increase application performance, and reduce development time

CUDA Library

MKL Library

TPU Library

ARM Library

JS Library

Hardware

New Trend: Compiler based Approach

Programming API

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

High level operator description

Tensor Compiler Stack

Links

- TinyFlow: 2K lines of code to build a TensorFlow like API
 - https://github.com/dlsys-course/tinyflow
- The source code used in the slide
 - https://github.com/dlsys-course/examples/tree/master/lecture3