Алгебра и геометрия Лекция 8

Определение

Отображение f плоскости P в плоскость R — это правило, по которому каждой точке $A \in P$ ставится в соответствие некоторая единственная точка $B \in R$.

Обозначения

 $f: P \to R$ или $P \stackrel{f}{\to} R; B = f(A)$

(при этом B называется образом A, а A — прообразом B).

такая ситуация возможна

такая ситуация невозможна

Замечание

Совершенно не обязательно каждая точка плоскости R является образом какой-то точки.

Определение

Если P и R совпадают, то отображение $P \xrightarrow{f} P$ называется преобразованием плоскости P.

Примеры

1. Рассмотрим в пространстве две плоскости P, R и $f: P \to R$ такое, что $\forall M \in P$ ставится в соответствие основание перпендикуляра M_1 , опущенного из M на R (если $P \cap R = l$, то каждой точке l ставится в соответствие она сама).

Такое отображение называется ортогональным проектированием.

Примеры

1. Если $P \downarrow R$, то каждая точка плоскости R имеет единственный прообраз, а в случае $P \perp R$ не каждая точка в R имеет прообраз, а только точки $\in l$. У этих точек бесконечно много прообразов.

Примеры

2. Известные из школьного курса геометрии параллельный перенос, поворот, осевая симметрия и гомотетия являются преобразованиями плоскости.

Примеры

3. Пусть на плоскости задана прямая p. Зафиксируем число $\lambda > 0$. Из $\forall M \notin p$ опустим перпендикуляр на p с основанием N.

Примеры

 $f \colon \overline{Nf(M)} = \lambda \overline{NM}$ и f(M) = M для $M \in p$ называется сжатием к прямой p с коэффициентом λ (если $\lambda > 1$, то это преобразование можно назвать растяжением).

Примеры

4. Зададим на плоскости P ПДСК (O, \vec{e}) , а на плоскости R — ПДСК $(O^*, \overrightarrow{e^*})$.

Пусть отображение $f: P \to R$ таково, что $M(x,y) \to M^*(x^*,y^*)$, причем $x^* = x^2 - y^2$, $y^* = 2xy$.

Тогда любая точка плоскости R имеет ровно два прообраза, за исключением начала координат O^* , которое имеет один прообраз — O.

Отображения и преобразования Примеры

5. Рассмотрим $f: P \to P$ такое, что $\forall M \in P \ f(M) = M$.

Такое преобразование называется тождественным и обозначается e.

Определение

Отображение $f: P \to R$ называется взаимно однозначным, если каждая точка плоскости R имеет прообраз и притом только один.

Отображения из примеров 2 и 3 взаимно однозначны, а из примера 4 — нет.

Произведение отображений

Определение

Пусть даны отображения $g: P \to R$ и $f: R \to S$. Отображение $h: \forall A \in P \to f \big(g(A) \big) \in S$ называется произведением отображений f и g.

Обозначение

fg (то отображение, которое выполняется первым, пишется справа).

Произведение отображений

Замечание

Если определены gf и fg, то не всегда gf=fg.

Пример

$$T_{\vec{a}}R_O^{\varphi} \neq R_O^{\varphi}T_{\vec{a}}$$

1.
$$\forall f, g, h$$
: $(fg)h = f(gh)$ (ассоциативность)

Доказательство

$$orall A \ f \ g$$
 переводит $h(A)$ в $f\left(gig(h(A)ig)ig)$, а f переводит $gig(h(A)ig)$ в ту же точку $f\left(gig(h(A)ig)ig)$.

2.
$$\forall f : fe = ef = f$$

Это сразу следует из определения тождественного преобразования.

3. Пусть $f: P \to P \ \forall A \in P \to f(A)$.
Преобразование $f^{-1}: P \to P \ \forall f(A) \to A$ (если оно \exists) называется обратным для преобразования f.

Из определений следует, что $\exists f^{-1} \Leftrightarrow f -$ взаимно однозначно. Раз $f^{-1}(f(A)) = A$, то $f^{-1}f = e$.

4.
$$ff^{-1} = e$$
 . Действительно,
$$f\left(f^{-1}(f(A))\right) = f(A) \text{ или } f\left(f^{-1}(B)\right) = B$$
 $\forall B \in P$.

5. f^{-1} имеет обратное, причем $(f^{-1})^{-1} = f$. (Следует из 4.)

6. Пусть преобразования f и g плоскости P взаимно однозначны. Тогда fg взаимно однозначно, причем $(fg)^{-1} = g^{-1}f^{-1}$.

Доказательство

$$\exists \ f^{-1}$$
 и g^{-1} (по условию) $\Rightarrow \exists (fg)(g^{-1}f^{-1}) =$ $= f(gg^{-1})f^{-1} = fef^{-1} = ff^{-1} = e \Rightarrow$ $(fg)^{-1} = g^{-1}f^{-1}.$ $\exists (fg)^{-1} \Leftrightarrow fg$ — взаимно однозначно.

Координатная запись отображений

Пусть задано отображение $f: P \to R$. На плоскости P рассмотрим ОДСК (O, \vec{e}) , а на плоскости $R - (Q, \vec{g})$.

Если $A^* = f(A)$, то A определена парой чисел (x,y), а точка A^* — парой чисел (x^*,y^*) . Следовательно, при выбранных ОДСК f сопоставляет паре чисел (x,y) пару чисел (x^*,y^*) .

Координатная запись отображений

То есть задать отображение при выбранных ОДСК все равно, что задать две функции от двух переменных:

$$x^* = \varphi(x, y),$$
$$y^* = \psi(x, y)$$

Координатной записью было задано отображение в примере 4.

$$(x^* = x^2 - y^2, y^* = 2xy)$$

Произведение отображений

Замечание

- 1. При координатной записи преобразования достаточно выбрать одну ОДСК.
- 2. Системы $(0, \vec{e})$ и (Q, \vec{g}) не обязаны быть связанными между собой отображением $f: Q \neq f(0), \overrightarrow{g_i} \neq f(\overrightarrow{e_i}), i = 1,2.$

Определение

Преобразование f называется ортогональным, если $\forall A$ и $B\colon |AB| = |f(A)f(B)|$.

Рассмотрим ПДСК (O, \vec{e}) и ортогональное преобразование f:

Выразим (x^*, y^*) через (x, y).

$$\overrightarrow{OM} = x\overrightarrow{OA} + y\overrightarrow{OB} \Rightarrow \overrightarrow{O^*M^*} = x\overrightarrow{O^*A^*} + y\overrightarrow{O^*B^*},$$

$$\overrightarrow{OM^*} = \overrightarrow{OO^*} + \overrightarrow{O^*M^*} = \overrightarrow{OO^*} + x\overrightarrow{O^*A^*} + y\overrightarrow{O^*B^*}.$$

Пусть $\varphi = \angle \left(\overrightarrow{O^*A^*}, \overrightarrow{e_1} \right)$. Так как $\left| \overrightarrow{O^*A^*} \right| = 1$, то его координаты в базисе \overrightarrow{e} равны $(\cos \varphi, \sin \varphi)$. Тогда $\overrightarrow{O^*B^*} = (\mp \sin \varphi, \pm \cos \varphi)$. Верхние знаки берутся, если пара $(\overrightarrow{O^*A^*}, \overrightarrow{O^*B^*})$ ориентирована так же, как пара $(\overrightarrow{OA}, \overrightarrow{OB})$.

Обозначим координаты O^* через (c_1, c_2)

Разложим все члены равенства

$$\overrightarrow{OM^*} = \overrightarrow{OO^*} + \overrightarrow{O^*M^*} = \overrightarrow{OO^*} + x\overrightarrow{O^*A^*} + y\overrightarrow{O^*B^*}$$

по базису
$$\vec{e}$$
: $x^* = x \cos \varphi \mp y \sin \varphi + c_1$ $y^* = x \sin \varphi \pm y \cos \varphi + c_2$

Это координатные формулы ортогонального преобразования.

Примеры

1.
$$T_{\vec{c}} : M(x,y) \to M^* (x^*,y^*)$$
, где $x^* = x + c_1 \qquad y^* = y + c_2 \qquad \vec{c} = (c_1,c_2)$

2.
$$R_0^{\varphi}: M(x,y) \to M^* \ (x^*,y^*),$$
 при этом $O = O^* \Leftrightarrow c_1 = c_2 = 0$. Знаки верхние. $x^* = x \cos \varphi - y \sin \varphi \quad y^* = x \sin \varphi + y \cos \varphi$

3.
$$S_{Ox}: x^* = x, y^* = -y$$
 3десь $c_1 = c_2 = 0, \varphi = 0$ и знаки нижние.

Определение

Преобразование f плоскости P называется линейным, если на P \exists ОДСК, в которой f может быть задана координатными формулами

$$\begin{cases} x^* = a_1 x + b_1 y + c_1 \\ y^* = a_2 x + b_2 y + c_2 \end{cases}$$
 (*)

Замечание

Линейное преобразование не обязано быть взаимно однозначным.

Определение

Взаимно однозначное линейное преобразование называется аффинным.

Теорема 13.1

$$f$$
 – аффинное $\Leftrightarrow \delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0$

Доказательство

$$\begin{cases} x^* = a_1 x + b_1 y + c_1 \\ y^* = a_2 x + b_2 y + c_2 \end{cases}$$
 (*)

На (*) можно смотреть как на линейную систему относительно x и y. По правилу Крамера эта система имеет единственное решение $\Leftrightarrow \delta \neq 0$. Единственность решения \Leftrightarrow взаимной однозначности f, заданного формулами (*).

Примеры

- 1. Из координатной записи ортогональных преобразований видно, что они линейны и аффинны ($\delta=\pm 1\neq 0$).
- 2. Сжатие к прямой аффинное преобразование. (Пусть эта прямая ось Ox ПДСК, тогда

$$x^* = x$$
, $y^* = \lambda y$, $\delta = \begin{vmatrix} 1 & 0 \\ 0 & \lambda \end{vmatrix} = \lambda > 0$.)

Примеры

3. Формулы $x^* = \lambda x$, $y^* = \lambda y$, где $\lambda \neq 0$ задают гомотетию с центром в начале ОДСК и коэффициентом λ .

$$\delta = \begin{vmatrix} \lambda & 0 \\ 0 & \lambda \end{vmatrix} = \lambda^2 > 0 \quad \Rightarrow$$

⇒ гомотетия — аффинное преобразование.

Примеры

4. Сопоставим каждой точке плоскости одну и ту же точку с координатами (c_1, c_2) . Тогда $x^* = c_1, \ y^* = c_2, \ \delta = 0$. Преобразование линейное, но не аффинное.

Замечание

Определение линейного преобразования содержит упоминание о ДСК. Если хотим перейти к другой ДСК, то вид формул

$$\begin{cases} x^* = a_1 x + b_1 y + c_1 \\ y^* = a_2 x + b_2 y + c_2 \end{cases}$$

не изменится, так как формулы перехода от одной ДСК к другой линейны.

Утверждение 13.1

Произведение линейных преобразований линейно, а аффинных – аффинно.

Доказательство

Первая часть утверждения следует из того, что мы подставляем линейные выражения в линейные, а вторая - из того, что произведение взаимно однозначных преобразований взаимно однозначно.

Утверждение 13.2

Преобразование, обратное аффинному преобразованию аффинно.

Доказательство

Смотрите доказательство Теоремы 13.1

Образ вектора при линейном преобразовании

Теорема 13.2

При линейном преобразовании равные векторы переходят в равные векторы. Координаты α_1^* , α_2^* образа вектора выражаются через его координаты так:

$$\left| egin{array}{l} lpha_1^* = a_1 lpha_1 + b_1 lpha_2 \ lpha_2^* = a_2 lpha_1 + b_2 lpha_2 \end{array}
ight|$$
 , если

линейное преобразование задано формулами

$$\begin{cases} x^* = a_1 x + b_1 y + c_1 \\ y^* = a_2 x + b_2 y + c_2 \end{cases}$$

Доказательство

Рассмотрим $\overline{M_1M_2}$ в некоторой ОДСК, где $M_1(x_1,y_1), \ M_2(x_2,y_2).$ Тогда

$$\overrightarrow{M_1M_2} = (\underbrace{x_2 - x_1}, \underbrace{y_2 - y_1}).$$

$$x_2^* = a_1 x_2 + b_1 y_2 + c_1, \ x_1^* = a_1 x_1 + b_1 y_1 + c_1 \Rightarrow$$

$$\Rightarrow x_2^* - x_1^* = a_1 \alpha_2 + b_1 \alpha_2$$

$$\Rightarrow \underbrace{x_2^* - x_1^*}_{\alpha_1^*} = a_1 \alpha_2 + b_1 \alpha_2$$

Аналогично для α_2^*

Доказательство (продолжение)

Заметим, что координаты $\overline{M_1^*, M_2^*}$ выражаются через координаты $\overline{M_1M_2}$, а не через координаты точек M_1 , и M_2 .

Два равных вектора имеют одинаковые координаты ⇒ перейдут в векторы, которые также имеют равные координаты.

Замечание

Говорить об образе вектора при преобразовании f не совсем правильно. Точнее надо было сказать, что f порождает преобразование $ilde{f}$ множества векторов. Но указанная неточная терминология является общепринятой, и мы будем говорить, что преобразование f переводит \vec{a} в $\overrightarrow{a^*}$ и обозначать последний через $f(\vec{a})$.

Следствия из теоремы 13.2

1. \forall линейного преобразования $f \ \forall \ \vec{a}, \vec{b} \ \forall \lambda$

$$f(\vec{a} + \vec{b}) = f(\vec{a}) + f(\vec{b})$$
$$f(\lambda \vec{a}) = \lambda f(\vec{a})$$

2. При линейном преобразовании f линейно зависимые векторы переходят в линейно зависимые, а при аффинном преобразовании линейно независимые векторы переходят в линейно независимые.

Доказательство

1. Пусть
$$\gamma_1^*$$
 и γ_2^* - координаты вектора $f(\vec{a} + \vec{b})$, $\vec{a} = (\alpha_1, \alpha_2)$, $\vec{b} = (\beta_1, \beta_2)$. Тогда
$$\gamma_1^* = a_1(\alpha_1 + \beta_1) + b_1(\alpha_2 + \beta_2) \\ \gamma_2^* = a_2(\alpha_1 + \beta_1) + b_2(\alpha_2 + \beta_2) \Rightarrow$$

$$\gamma_1^* = (a_1\alpha_1 + b_1\alpha_2) + (a_1\beta_1 + b_1\beta_2) = \alpha_1^* + \beta_1^*$$

$$\Rightarrow \gamma_2^* = (a_2\alpha_1 + b_2\alpha_2) + (a_2\beta_1 + b_2\beta_2) = \alpha_2^* + \beta_2^*$$

Второе равенство также легко проверить в координатах

Доказательство

2. Из 1. следует, что любое равенство вида

$$\lambda \vec{a} + \mu \vec{b} = \vec{0}$$

влечет $\lambda f(\vec{a}) + \mu f(\vec{b}) = f(\vec{0}) = \vec{0}.$

Вторая часть доказываемого утверждения следует из того, что в противном случае из

$$\lambda f(\vec{a}) + \mu f(\vec{b}) = \vec{0}, \ \lambda^2 + \mu^2 \neq 0$$

при обратном преобразовании получается

$$\lambda \vec{a} + \mu \vec{b} = \vec{0}$$

Утверждение 13.3

Пусть линейное преобразование f задано в ОДСК $(0, \vec{e})$ формулами

$$\begin{cases} x^* = a_1 x + b_1 y + c_1 \\ y^* = a_2 x + b_2 y + c_2 \end{cases}$$

Тогда c_1 и c_2 - координаты точки f(0), а (a_1,a_2) и (b_1,b_2) – координаты векторов $f(\overrightarrow{e_1})$ и $f(\overrightarrow{e_2})$ в базисе \overrightarrow{e} .

Доказательство

Подставим x=0 и y=0 (координаты точки O) в

$$\begin{cases} x^* = a_1 x + b_1 y + c_1 \\ y^* = a_2 x + b_2 y + c_2 \end{cases}$$

Тогда $x^* = c_1$ и $y^* = c_2$, а это — координаты точки f(0).

Доказательство (продолжение)

Подставим в формулы
$$lpha_1^* = a_1 lpha_1 + b_1 lpha_2 \ lpha_2^* = a_2 lpha_1 + b_2 lpha_2$$

координаты
$$\overrightarrow{e_1}$$
 : $\alpha_1=1$ и $\alpha_2=0$

Получим
$$\alpha_1^* = a_1$$
, $\alpha_2^* = a_2$.

Поэтому $f(\overrightarrow{e_1})$ имеет координаты a_1 и a_2 .

Аналогично для $f(\overrightarrow{e_2})$.

Замечание

Доказанное утверждение устанавливает геометрический смысл коэффициентов в формулах

$$\begin{cases} x^* = a_1 x + b_1 y + c_1 \\ y^* = a_2 x + b_2 y + c_2 \end{cases}$$

Утверждение 13.4

 \forall точек L, M, N , не лежащих на одной прямой, и \forall точек L^*, M^*, N^* \exists ровно одно линейное преобразование f:

$$L^* = f(L), M^* = f(M), N^* = f(N)$$

Это преобразование аффинно $\Leftrightarrow L^*, M^*, N^*$ не лежат на одной прямой.

Доказательство

$$\overrightarrow{LM} \nparallel \overrightarrow{LN} \Longrightarrow (L, \overrightarrow{LM}, \overrightarrow{LN})$$
 – ОДСК. Пусть в ней $L^*(c_1, c_2), (a_1, a_2)$ и (b_1, b_2) - координаты $\overrightarrow{L^*M^*}$ и $\overrightarrow{L^*N^*}$ соответственно.

Формулы
$$x^* = a_1 x + b_1 y + c_1$$

 $y^* = a_2 x + b_2 y + c_2$

определяют нужное линейное преобразование,

причем из Утверждения 13.3 следует единственность коэффициентов в этих формулах.

Доказательство (продолжение)

Условие
$$\delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0$$
,

(которое \Leftrightarrow аффинности f)

 $\Leftrightarrow \overrightarrow{L^*M^*} \nparallel \overrightarrow{L^*N^*} \Leftrightarrow L^*, M^*$ и N^* не лежат на одной прямой.

Утверждение 13.5

При аффинном преобразовании f образ M^* точки M в ОДСК $(f(O), f(\overrightarrow{e_1}), f(\overrightarrow{e_2}))$ имеет те же координаты, что и точка M в ОДСК $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$.

Доказательство

$$\overrightarrow{OM} = x\overrightarrow{e_1} + y\overrightarrow{e_2}$$

Подействуем преобразованием на обе части этого равенства:

$$\overrightarrow{f(O)f(M)} = xf(\overrightarrow{e_1}) + yf(\overrightarrow{e_2})$$

Соглашение

Всюду ниже f — аффинное преобразование, заданное формулами

$$x^* = a_1 x + b_1 y + c_1, y^* = a_2 x + b_2 y + c_2$$
 (*)

при
$$\delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0.$$

Теорема 13.3

При аффинном преобразовании

- 1. Прямая переходит в прямую,
- 2. Отрезок переходит в отрезок,
- 3. Параллельные прямые переходят в параллельные прямые.

Доказательство

1. Рассмотрим прямую $\vec{r} = \vec{r_0} + \vec{a}t$.

$$\overrightarrow{r^*} = \overrightarrow{OM^*} = \overrightarrow{Of(O)} + \overrightarrow{f(O)M^*} = \overrightarrow{c} + f(\overrightarrow{r}),$$

где \vec{c} — постоянный вектор,

 \vec{r} — радиус-вектор точки M,

 $\overrightarrow{r^*}$ — радиус-вектор точки $M^*=f(M)$.

$$f(\vec{r}) = f(\vec{r_0}) + f(\vec{a})t \Rightarrow$$

$$\overrightarrow{r^*} = \overrightarrow{c} + f(\overrightarrow{r_0}) + f(\overrightarrow{a})t$$
 — это прямая.

Доказательство (продолжение)

f определяет взаимно однозначное отображение одной прямой на другую.

При сделанном выборе начальных точек и направляющих векторов точка M^* имеет на второй прямой то же значение параметра t, что и точка M на первой прямой.

Доказательство

2. Это следует из 1 и того, что для отрезка $t_1 \leq t \leq t_2.$

3. Это следует из того, что коллинеарные векторы переходят в коллинеарные (см. следствие 2 из теоремы об образе вектора).

Теорема 13.4

При аффинном преобразовании отношение длин параллельных отрезков (или отрезков, лежащих на одной прямой) не изменяется.

Доказательство

Из условия \Rightarrow $\exists \lambda$: $\overrightarrow{AB} = \lambda \overrightarrow{CD}$. Тогда для образов получаем

$$\overrightarrow{A^*B^*} = \lambda \overrightarrow{C^*D^*} \Rightarrow \frac{|\overrightarrow{AB}|}{|\overrightarrow{CD}|} = \frac{|\overrightarrow{A^*B^*}|}{|\overrightarrow{C^*D^*}|} = |\lambda|.$$

Следствие

Если точка C делит [AB] в отношении λ , то её образ C^* делит $[A^*B^*]$ (образ [AB]) в том же отношении λ .

В ОДСК
$$(O, \vec{e})$$
 $\vec{p} = (p_1, p_2), \ \vec{q} = (q_1, q_2).$

Ранее мы доказывали, что $S_{\pm} = S_{\pm}(\vec{p},\vec{q}) =$

$$= \begin{vmatrix} p_1 & q_1 \\ p_2 & q_2 \end{vmatrix} \cdot S_{\pm}(\overrightarrow{e_1}, \overrightarrow{e_2}).$$

$$f\left(\begin{array}{c} \vec{q} \\ S_{\pm} \\ \vec{p} \end{array}\right) = \overrightarrow{q^*} \left(\begin{array}{c} S_{\pm}^* \\ \overrightarrow{p^*} \end{array}\right)$$

$$S_{\pm}^* = S_{\pm}(f(\vec{p}), f(\vec{q})) =$$

$$= (p_1 q_2 - p_2 q_1) S_{\pm}(f(\vec{e_1}), f(\vec{e_2}))$$

Координаты $f(\overrightarrow{e_1})$ и $f(\overrightarrow{e_2})$ равны (a_1,a_2) и (b_1,b_2) соответственно (Утв. 13.3). \Rightarrow

$$S_{\pm}^* = (p_1 q_2 - p_2 q_1) \underbrace{(a_1 b_2 - a_2 b_1)}_{\delta} \cdot S_{\pm}(\overrightarrow{e_1}, \overrightarrow{e_2}) \Rightarrow$$

$$\Rightarrow \frac{S_{\pm}^*}{S_{\pm}} = \delta.$$

Следствия

- 1. δ не зависит от выбора ОДСК, хотя и вычисляется по коэффициентам, зависящим от ОДСК. Поэтому δ инвариант аффинного преобразования.
- 2. Для неориентированных площадей S и S^{*}

$$\frac{S^*}{S} = |\delta|.$$

Следствия

3. Если $\delta > 0$, то ориентации всех ориентированных параллелограммов сохраняются при аффинном преобразовании, а при $\delta < 0$ ориентация образа противоположна ориентации прообраза.

II. \forall треугольник можно дополнить до параллелограмма вдвое большей площади. Поэтому для площади S треугольника и площади S^* его образа при аффинном преобразовании справедлива та же формула

$$\frac{S^*}{S} = |\delta|.$$

III. У многоугольник можно триангулировать (разбить на треугольники). Поэтому снова

$$\frac{S^*}{S} = |\delta|.$$

IV. Оказывается, что если фигура имеет площадь, то формула

$$\frac{S^*}{S} = |\delta|.$$

также справедлива (без доказательства).

Теорема 13.5

Аффинное преобразование переводит алгебраическую линию в алгебраическую линию того же порядка.

Доказательство

Образы всех точек линии L порядка p имеют в ОДСК $(f(O), f(\vec{e}))$ те же координаты, что и их прообразы в ОДСК (O, \vec{e}) (см. Утв. 13.5) \Rightarrow координаты образов в $(f(O), f(\vec{e}))$ удовлетворяют тому же алгебраическому уравнению порядка p, что и L в (O, \vec{e}) .

Следствие

Линия второго порядка при аффинном преобразовании переходит в линию второго порядка.

Вспомним, что у нас есть девять классов линий второго порядка, два из которых пусты. Остальные семь классов линий назовем аффинными классами.

Теорема 13.6

Линия второго порядка из одного аффинного класса при любом аффинном преобразовании может перейти только в линию из того же класса.

Каждую линию второго порядка аффинным преобразованием можно перевести в любую другую линию из того же класса.

Доказательство

Эллипс — ограниченная линия (содержится в некотором параллелограмме) ⇒ может перейти только в ограниченную линию.

Кроме эллипсов ограничены только пары мнимых пересекающихся прямых, состоящие из одной точки.

Но эллипс состоит более, чем из одной точки ⇒ эллипс → эллипс.

Доказательство

 У гиперболы ∃ прямая, не пересекающая ее, но пересекающая некоторые ее хорды.

Кроме гипербол этим свойством обладают пары параллельных прямых.

Но ветви гиперболы не прямые линии ⇒ гипербола → гипербола.

Доказательство

 Парабола — неограниченная линия, состоящая из одного непрямолинейного куска. Больше ни одной такой линии второго порядка нет ⇒ парабола → парабола.

Доказательство

4. Все остальные линии второго порядка — точки или прямые.

Из свойств аффинного преобразования (образ точки, образ прямой, образ параллельных прямых) ⇒ каждая из этих линий не может перейти в линию другого класса.

Образы линий второго порядка при аффинном преобразовании

Доказательство

Докажем вторую часть теоремы. Канонические уравнения линий второго порядка записываются в ПДСК и содержат параметры.

Для эллипса замена координат $x' = \frac{x}{a}$, $y' = \frac{y}{b}$ дает уравнение ${x'}^2 + {y'}^2 = 1$

Если затем "снять" штрихи, — то уравнение

$$x^2 + y^2 = 1$$

Образы линий второго порядка при аффинном преобразовании

Доказательство

1.
$$x^2 + y^2 = 1$$
.

Аналогичные действия приводят остальные уравнения к следующим видам:

$$2. x^2 + y^2 = 0,$$

5.
$$y^2 = 2x$$
,

$$3. x^2 - y^2 = 1$$

6.
$$y^2 - 1 = 0$$
,

$$4. x^2 - y^2 = 0,$$

7.
$$y^2 = 0$$
.

Образы линий второго порядка при аффинном преобразовании

Соответствующую ОДСК назовем аффинной канонической.

Из Утв. 13.5 ⇒ аффинное преобразование, совмещающее аффинные канонические системы координат двух линий одного аффинного класса, совмещает и сами линии.

Лемма

∀ аффинного преобразования ∃ две взаимно перпендикулярные прямые, которые переходят в две взаимно перпендикулярные прямые.

Доказательство

Возьмем окружность ω . При аффинном преобразовании f она перейдет в эллипс Э. Каждая ось Э — множество середин хорд, параллельных другой оси. При аффинном преобразовании f:

- 1. хорда \rightarrow хорда,
- 2. ∥ хорды → ∥ хорды,
- 3. середина хорды → → середина хорды

Доказательство

Поэтому прообразы осей эллипса — отрезки, являющиеся множествами середин хорд окружности, параллельных другому отрезку.

А это взаимно перпендикулярные диаметры.

Определение

Указанные две взаимно перпендикулярные прямые называются главными (или сингулярными) направлениями аффинного преобразования.

Теорема 13.7

Каждое аффинное преобразование может быть представлено (разложено) в виде произведения ортогонального преобразования и двух сжатий к взаимно перпендикулярным прямым.

Доказательство

Возьмем равнобедренный прямоугольный $\triangle ABC$ с катетами AB и AC, лежащими на главных направлениях аффинного преобразования f.

Доказательство

Сделаем ортогональное преобразование g:

(этого легко можно добиться параллельным переносом, поворотом и осевой симметрией).

Доказательство

Сжатие p_1 к прямой A^*C^* с коэффициентом λ_1 : $g(B) \to p_1 \big(g(B) \big) = B^*$ и не сдвинет точек A^* и g(C).

Доказательство

Аналогично, сжатие p_2 к прямой A^*B^* с коэффициентом λ_2 :

 $g(C) o p_2 ig(g(C) ig) = C^*$ и не сдвинет точек прямой A^*B^* .

То есть $p_2p_1g: A \to A^*$, $B \to B^*$, $C \to C^*$.

Но и $f: A \to A^*$, $B \to B^*$, $C \to C^* \Rightarrow f = p_2 p_1 g$ (Утв. 13.4).