Práctico 5

- 1. Hallar la aproximación lineal de $f(x,y)=\sqrt{20-x^2-7y^2}$ en (2,1) y usarla para calcular de manera aproximada f(1.95, 1.08).
- 2. Calcular el campo gradiente de las siguientes funciones. Cuando sea posible, representar gráficamente.
 - a) f(x,y) = x y, b) $f(x,y) = \ln(x^2 + y^2)$, c) $f(x,y) = x \operatorname{sen}(y) + 1$, d) $f(x,y) = \operatorname{sen}(x^2 y^2)$
 - e) f(x, y, z) = 2x + y 3z, f) $f(x, y, z) = x^2 y^2 + z^2$, g) $f(x, y, z) = e^{x+y} z$
 - h) $f(x, y, z) = x \cos(y)$, i) $f(x_1, \dots, x_n) = x_1 + \dots + x_n$ j) $f(x_1, \dots, x_n) = x_1^2 + \dots + x_n^2$.
- 3. Hallar el espacio tangente, dando su dirección perpendicular, de los siguientes conjuntos de nivel en los puntos indicados:
 - a) x y = 1 en (1,0), b) $2x^2 + y^2 = 3$ en (1,1), c) $\ln(x^2 + y^2) = 0$ en $(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$,
 - d) $x \operatorname{sen}(y) + 1 = 3$ en $(2, \frac{\pi}{2})$, e) $1 = \operatorname{sen}(x^2 y^2)$ en $(\sqrt{\frac{\pi}{2}}, 0)$, f) $x^2 + y^2 + z^2 = 6$ en (1, 1, 2), g) $x^2 3y^2 + z^2 = 2$ en (1, 1, 2) h) $e^{xy} \cos(z) = 0$ en $(0, 1, \frac{\pi}{2})$, i) $x_1^2 + \dots + x_n^2 = n$ en $(1, \dots, 1)$, j) $x_1x_4 x_2x_3x_1 + x_3x_2 = 1$ en (1, 1, 1, 1).
- 4. Si (x_0, y_0, z_0) es un punto de la superficie z = xy, las dos rectas $z = y_0x$, $y = y_0$, $y = x_0y$, $x = x_0$, se cortan en (x_0, y_0, z_0) . Comprobar que el plano tangente a esta superficie en el punto (x_0, y_0, z_0) contiene a esas dos rectas.
- 5. Hallar la ecuación de la recta que es tangente en el punto (1,1,1) a las dos superficies $x^2 + y^2 +$ $2z^2 = 4$ y $z = e^{x-y}$.
- a) Hallar un vector V(x,y,z) normal a la superficie $z=\sqrt{x^2+y^2}+(x^2+y^2)^{3/2}$ en un punto cualquiera $(x, y, z) \neq (0, 0, 0)$ de la superficie.
 - b) Hallar el coseno del ángulo θ formado por el vector V(x,y,z) y el eje z, y determinar el límite de $\cos \theta$ cuando $(x, y, z) \rightarrow (0, 0, 0)$.
- 7. Calcular la derivada direccional de $f(x,y,z)=x^2+y^2-z^2$ en (3,4,5) a lo largo de la curva de intersección de las dos superficies $2x^2+2y^2-z^2=25$ y $x^2+y^2=z^2$.
- 8. Si $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^1 y f(0) = 0, probar que existen $g_i: \mathbb{R}^n \to \mathbb{R}$ continuas tales que $f(x) = \sum_{i=1}^{n} x_i g_i(x).$
 - Sugerencia: si $h_x(t) = f(tx)$, entonces $f(x) = \int_0^1 h'_x(t)dt$.
- 9. En cada caso, calcular la matriz Jacobiana de las funciones f y g en cada punto de sus respectivos dominios. Hallar la función compuesta $h = f \circ g$ y su matriz Jacobiana en los puntos indicados:
 - a) $f(x,y) = (e^{x+2y}, \sin(y+2x)), y g(u,v,w) = (u+2v^2+3w^3, 2v-u^2).$ Hallar Jh(1,-1,1).

- b) $f(x,y,z) = (x^2 + y + z, 2x + y + z^2)$, y $g(u,v,w) = (uv^2w^2, w^2 \operatorname{sen} v, u^2e^v)$. Hallar Jh(u,0,w).
- 10. Determinar la solución de la ecuación en derivadas parciales $4f_x+3f_y=0$ que satisfaga la condición $f(x,0)=\sin x$ para todo x.