Preparing for the Physics GRE: Day 3 Thermodynamics

Daniel T. Citron dtc65@cornell.edu 3/18/15

http://greprep.dtcitron.com

Heat Exchange

- Heat is <u>energy</u> exchanged between the system and the reservoir it is coupled to
 - Heat has units of energy: [Q]= J
 - Temperature is a completely different parameter
- Heat capacity is the amount of energy required to raise the system temperature: [C] = J/K
- 14. Two identical 1.0-kilogram blocks of copper metal, one initially at a temperature $T_1 = 0^{\circ}$ C and the other initially at a temperature $T_2 = 100^{\circ}$ C, are enclosed in a perfectly insulating container. The two blocks are initially separated. When the blocks are placed in contact, they come to equilibrium at a final temperature T_f . The amount of heat exchanged between the two blocks in this process is equal to which of the following? (The specific heat of copper metal is equal to 0.1 kilocalorie/kilogram ${}^{\circ}K$.)
 - (A) 50 kcal
 - (B) 25 kcal
 - (C) 10 kcal
 - (D) 5 kcal
 - (E) l kcal

1st Law of Thermodynamics

- Equivalent to Conservation of Energy:
 - Change in system internal energy is equal to the heat input minus the work done by the system:

$$dU=dQ-dW$$

- Heat exchange definition: dQ=TdS
- Work done by the system on surroundings: $dW = -\vec{J} \cdot \vec{dx}$
 - J and x are "conjugate variables" with [Jx] = Energy
 - J is generalized force, x is generalized displacement
 - Ex: P and V; μ and N; H and M
- So the 1st law becomes $dU = TdS + \vec{J} \cdot \vec{dx}$
- Example:
 - Ideal gas in contact with heat bath and particle reservoir:

$$dU=TdS+PdV+\mu dN$$

1st Law: Manipulating Differentials

- The trick for many problems is manipulating differentials
- (Probably do not need to memorize all the Maxwell relations)
- Use dimensional analysis
- Check: what are you keeping constant?
- For example, use the first law to recover the formal definition of temperature

$$dU=TdS+PdV+\mu dN$$

- 66. For a system in which the number of particles is fixed, the reciprocal of the Kelvin temperature T is given by which of the following derivatives? (Let P = pressure, V = volume, S = entropy, and U = internal energy.)
 - (A) $\left(\frac{\partial P}{\partial V}\right)_{S}$
 - (B) $\left(\frac{\partial P}{\partial S}\right)_V$
 - (C) $\left(\frac{\partial S}{\partial P}\right)_U$
 - (D) $\left(\frac{\partial V}{\partial P}\right)_U$
 - (E) $\left(\frac{\partial S}{\partial U}\right)_{V}$

1st Law: Manipulating Differentials

- Another example: what is the difference between heat capacities C_P and C_V ?
 - 14. For an ideal gas, the specific heat at constant pressure C_p is greater than the specific heat at constant volume C_p because the
 - (A) gas does work on its environment when its pressure remains constant while its temperature is increased
 - (B) heat input per degree increase in temperature is the same in processes for which either the pressure or the volume is kept constant
 - (C) pressure of the gas remains constant when its temperature remains constant
 - (D) increase in the gas's internal energy is greater when the pressure remains constant than when the volume remains constant
 - (E) heat needed is greater when the volume remains constant than when the pressure remains constant

1st Law: Manipulating Differentials

- 14. For an ideal gas, the specific heat at constant pressure C_p is greater than the specific heat at constant volume C_p because the
 - (A) gas does work on its environment when its pressure remains constant while its temperature is increased
 - (B) heat input per degree increase in temperature is the same in processes for which either the pressure or the volume is kept constant
 - (C) pressure of the gas remains constant when its temperature remains constant
 - (D) increase in the gas's internal energy is greater when the pressure remains constant than when the volume remains constant
 - (E) heat needed is greater when the volume remains constant than when the pressure remains constant

$$dU=dQ+PdV$$

$$PV=nRT$$

• Holding V constant, dV = 0

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V = \frac{\partial Q}{\partial T}$$

 Holding P constant, there's an extra term from PdV ≠ 0

$$C_{P} = \left(\frac{\partial U}{\partial T}\right)_{P} = \frac{\partial Q}{\partial T} + P \frac{\partial V}{\partial T} = C_{V} + nR > C_{V}$$

• From intuition:

(B): this would mean $C_P = C_V$

(C): ?

(D): ideal gas energy depends on T only

(E): (begging the question)

1st Law: Ideal Gas Processes

- Isotherms in P-V state space
 - Holding T constant, the Ideal Gas Law tells us PV = Constant
- Adiabats in P-V state space
 - Integrate: $nC_V dT = -PdV = nRTdV/V$
 - We use $\gamma = C_P/C_V$
 - => PV^{γ} = Constant
- An example problem:
 - 6. An ideal monatomic gas expands quasi-statically to twice its volume. If the process is isothermal, the work done by the gas is W_i . If the process is adiabatic, the work done by the gas is W_a . Which of the following is true?
 - $(A) W_i = W_a$
 - (B) $0 = W_i < W_a$
 - (C) $0 < W_i < W_a$
 - (D) $0 = W_a < W_i$
 - (E) $0 < W_a < W_i$

(An additional example)

- 73. The adiabatic expansion of an ideal gas is described by the equation $PV^{\gamma} = C$, where γ and C are constants. The work done by the gas in expanding adiabatically from the state (V_i, P_i) to (V_f, P_f) is equal to
 - (A) P_fV_f
 - (B) $\frac{(P_i + P_f)}{2} \left(V_f V_i \right)$
 - (C) $\frac{P_f V_f P_i V_i}{1 \gamma}$
 - (D) $\frac{P_i \left(V_f^{1+\gamma} V_i^{1+\gamma}\right)}{1+\gamma}$
 - (E) $\frac{P_f(V_f^{1-\gamma} V_i^{1-\gamma})}{1+\gamma}$

1st Law: Ideal Gas Processes

6. An ideal monatomic gas expands quasi-statically to twice its volume. If the process is isothermal, the work done by the gas is W_i . If the process is adiabatic, the work done by the gas is W_a . Which of the following is true?

(A)
$$W_i = W_a$$

(B)
$$0 = W_i < W_a$$

(C)
$$0 < W_i < W_a$$

(D)
$$0 = W_a < W_i$$

(E)
$$0 < W_a < W_i$$

• Isotherms: PV = Constant

$$W = \int PdV = \int \frac{nrT}{V} dV = nrT \log 2$$

• Adiabats: $PV^{\gamma} = Constant$

$$W = \int PdV = \int \frac{C}{V^{\gamma}} dV = \frac{C}{1 - \gamma} V^{\gamma} (2^{\gamma} - 1) \approx .55 nRT$$

Ideal Gas Processes PV=nRT

- Isochoric: V is constant dV = 0
- Isobaric: P is constant dP = 0
- Isothermal: T is constant dT = 0
- $C_V = \frac{\partial Q}{\partial T} \Rightarrow \Delta Q = nC_V \Delta T$
- Adiabatic: no heat exchange dQ = 0
- NB: U of an *ideal* gas depends *only* on temperature

Process	ΔQ	ΔW	ΔU=ΔQ-ΔW
Isochoric	$nC_V\Delta T$	0	$nC_V\Delta T$
Isobaric	$nC_P\Delta T$	$P\Delta V=nR\Delta T$	$nC_{P}\Delta T - nR\Delta T$ $= nC_{V}\Delta T$
Isothermal	$Q = W$ $= nRTlog(V_2/V_1)$	nRTlog(V ₂ /V ₁)	0, ΔU~ΔT
Adiabatic	0	$\Delta U = -\Delta W$ $= - nC_V \Delta T$	$nC_V\Delta T$

Entropy in Thermodynamics

• Formal definition of temperature given by the following (at equilibrium, holding all other parameters constant)

$$\frac{1}{T} = \frac{\partial S}{\partial E}$$

• Recall: relation between heat exchange and entropy

$$dQ=TdS$$

- 74. A body of mass m with specific heat C at temperature 500 K is brought into contact with an identical body at temperature 100 K, and the two are isolated from their surroundings. The change in entropy of the system is equal to
 - (A) (4/3)mC
 - (B) $mC \ln(9/5)$
 - (C) mCln(3)
 - (D) $-mC\ln(5/3)$
 - (E) 0

Entropy in Thermodynamics

• Formal definition of temperature given by the following (at equilibrium, holding all other parameters constant)

$$\frac{1}{T} = \frac{\partial S}{\partial E}$$

Recall: relation between heat exchange and entropy

$$dQ=TdS$$

- 74. A body of mass m with specific heat C at temperature 500 K is brought into contact with an identical body at temperature 100 K, and the two are isolated from their surroundings. The change in entropy of the system is equal to
 - (A) (4/3)mC
 - (B) $mC \ln(9/5)$
 - (C) mCln(3)
 - (D) $-mC\ln(5/3)$
 - (\mathbf{E}) 0

• What is the change in heat? dQ=mCdT

What is the total change in entropy?

$$dS = \int \frac{dQ}{T} = \int \frac{mCdT}{T}$$

$$dS_1 + dS_2 = \int_{100}^{300} \frac{mCdT}{T} + \int_{500}^{300} \frac{mCdT}{T}$$

$$= mC(\log 3 - \log \frac{5}{3})$$

Engine Cycles

- Imagine a box of gas subject to a series of changes in pressure, temperature, volume, etc
- Draw the series of changes as a trajectory in the P-V plane
- Gas internal energy depends on T only:
 - If it returns to original state, no net change in energy
- Work done is the area enclosed by the cycle
 - Heat exchange with environment = Work done

- 15. Suppose one mole of an ideal gas undergoes the reversible cycle ABCA shown in the P-V diagram above, where AB is an isotherm. The molar heat capacities are C_p at constant pressure and C_v at constant volume. The net heat added to the gas during the cycle is equal to
 - (A) RT_hV_2/V_1
 - (B) $-C_p(T_h-T_c)$
 - (C) $C_v(T_h-T_c)$
 - (D) $RT_h \ln V_2/V_1 C_p (T_h T_c)$
 - (E) $RT_h \ln V_2/V_1 R(T_h T_c)$

Engine Cycles

- 15. Suppose one mole of an ideal gas undergoes the reversible cycle ABCA shown in the P-V diagram above, where AB is an isotherm. The molar heat capacities are C_p at constant pressure and C_v at constant volume. The net heat added to the gas during the cycle is equal to
 - (A) RT_hV_2/V_1
 - (B) $-C_p(T_h-T_c)$
 - (C) $C_v(T_h-T_c)$
 - (D) $RT_h \ln V_2/V_1 C_p (T_h T_c)$
 - (E) $RT_h \ln V_2/V_1 R(T_h T_c)$

- Total change in energy during one cycle?
- Use 1^{st} Law: Q = W
- Area under isotherm:

$$\int_{P_{I}}^{P_{2}} P dV = \int_{V_{I}}^{V_{2}} RT_{h} \frac{dV}{V} = RT_{h} \log \frac{V_{2}}{V_{I}}$$

Area under isobar:

$$P_2(V_2-V_1)=R(T_h-T_c)$$

 Subtract to find net work done and net heat exchange

Engine Cycles - Efficiency

- 95. In the cycle shown above, KL and NM represent isotherms, while KN and LM represent reversible adiabats. A system is carried through the Carnot cycle KLMN, taking in heat Q_2 from the hot reservoir T_2 and releasing heat Q_1 to the cold reservoir T_1 . All of the following statements are true EXCEPT:
 - (A) $Q_1/T_1 = Q_2/T_2$.
 - (B) The entropy of the hot reservoir decreases.
 - (C) The entropy of the system increases.
 - (D) The work W done is equal to the net heat absorbed, $Q_2 Q_1$.
 - (E) The efficiency of the cycle is independent of the working substance.

- Engine efficiency = (work done by the system during one cycle)/(heat extracted from the hot reservoir)
 - $e = W_{cycle}/|Q_H|$
 - Carnot cycle: $e_{Carnot} = 1 T_C / T_H$
- Carnot cycle
 - Most efficient possible engine cycle
 - Zero entropy change
 - 16. An engine absorbs heat at a temperature of 727° C and exhausts heat at a temperature of 527° C. If the engine operates at maximum possible efficiency, for 2000 joules of heat input the amount of work the engine performs is most nearly
 - (A) 400 J
 - (B) 1450 J
 - (C) 1600 J
 - (D) 2000 J
 - (E) 2760 J

2nd Law of Thermodynamics

- Many ways to state:
 - Work must be done to transfer heat from a colder body to a hotter body
 - Heat energy <u>cannot</u> be converted into work with perfect efficiency
 - For any thermodynamic process, the net change in entropy must be greater than or equal to zero
 - Colloquially, "entropy always increases"

- 91. An experimenter needs to heat a small sample to 900 K, but the only available oven has a maximum temperature of 600 K. Could the experimenter heat the sample to 900 K by using a large lens to concentrate the radiation from the oven onto the sample, as shown above?
 - (A) Yes, if the volume of the oven is at least 3/2 the volume of the sample.
 - (B) Yes, if the area of the front of the oven is at least 3/2 the area of the front of the sample.
 - (C) Yes, if the sample is placed at the focal point of the lens.
 - (D) No, because it would violate conservation of energy.
 - (E) No, because it would violate the second law of thermodynamics.

3rd Law of Thermodynamics

- Cannot cool system to 0 K in a finite number of steps
- Nernst's Theorem:
 - At 0 temperature, any system's entropy is 0. We take this to be a universal constant.
 - (Experimentally verified as well)

$$\lim_{T \to 0} S(\vec{X}, T) = 0$$

Free Expansion of Ideal Gas

- N molecules of an ideal gas all occupy the left half of a thermally insulated box, while the right half is empty
- We remove the barrier and allow the gas to fill the whole box

• What happens to the gas's temperature?

• What happens to the gas's entropy?

Free Expansion of Ideal Gas

- N molecules of an ideal gas all occupy the left half of a thermally insulated box, while the right half is empty
- We remove the barrier and allow the gas to fill the whole box

- What happens to the gas's temperature?
 - Stays constant
 - Microscopically, no change in kinetic energy of the gas molecules
 - Macroscopically, U = U(T) for ideal gas, and U does not change
- What happens to the gas's entropy?
 - Increases
 - Free expansion is a spontaneous and irreversible process
 - Entropy is extensive

Van der Waals Gas

- Real gas molecules locally repel one another
- Van der Waals proposed new model that accounted for excluded volume of molecules
- New parameters:
 - a: intermolecular attraction
 - b: excluded volume
- Less accurate at lower T
 - Predicts negative dV/dP

$$\left(p + \frac{a}{V^2}\right)(V - b) = RT$$

- 79. Consider 1 mole of a real gas that obeys the van der Waals equation of state shown above. If the gas undergoes an isothermal expansion at temperature T_0 from volume V_1 to volume V_2 , which of the following gives the work done by the gas?
 - (A) 0

(B)
$$RT_0 \ln \left(\frac{V_2}{V_1} \right)$$

(C)
$$RT_0 \ln \left(\frac{V_2 - b}{V_1 - b} \right)$$

(D)
$$RT_0 \ln \left(\frac{V_2 - b}{V_1 - b} \right) + a \left(\frac{1}{V_2} - \frac{1}{V_1} \right)$$

(E)
$$RT_0 \left(\frac{1}{(V_2 - b)^2} - \frac{1}{(V_1 - b)^2} \right) + a \left(\frac{1}{V_2^3} - \frac{1}{V_1^3} \right)$$

Phase Transitions

- A qualitative change in the properties of matter
 - Liquid-solid, gas-liquid, paramagnet-ferromagnet
- (More abstractly, change in system symmetries)
- Example below
- Phase diagram for liquid-gas transition in VDW gas
 Questions 46-47

Isotherms and coexistence curves are shown in the pV diagram above for a liquid-gas system. The dashed lines are the boundaries of the labeled regions.

- 46. Which numbered curve is the critical isotherm?
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4
 - (E) 5
- 47. In which region are the liquid and the vapor in equilibrium with each other?
 - (A) A
 - (B) B
 - (C) (
 - (D) D
 - (E) E

Phase Transitions

- Some phase transitions are characterized by divergences in measurable properties
- 1st order transition:
 - Sudden discontinuous change in system properties
- 2nd order transition:
 - Continuous change in system properties
 - Discontinuity in derivative
- 95. Which of the following curves is characteristic of the specific heat Cv of a metal such as lead, tin, or aluminum in the temperature region where it becomes superconducting?

Thermodynamics Summary

- 1st Law of Thermodynamics
 - Manipulating Differentials
 - Ideal Gas Processes
 - Engine Cycles
- 2nd Law of Thermodynamics
 - Entropy
- Additional Topics
 - Thermodynamic potentials Gibbs, Enthalpy, Helmholtz
 - Engine efficiency
 - 3rd Law of Thermodynamics
 - Van der Waals Gas
 - Phase Transitions