Terminale Enseignement de Spécialité

AP n 5

Exercice 1: QCM

Cocher la ou les bonnes réponses à chaque proposition. Il y a au minimum une bonne réponse par question.

1. La concentration en mollL des ions oxonium dans une solution aqueuse de pH = 9,0 est de :

□ 9,0·10⁻⁵

□ 1,0·10⁻⁵

□ 9,0·10⁻⁹

□ 1,0·10⁻⁹

□ 5,0·10⁻⁹

2. Le coefficient d'extinction molaire d'une molécule donnée dépend de :

☐ la longueur d'onde

☐ l'intensité lumineuse

☐ la largeur de la cuve

☐ la concentration

3. L'iodure d'azote se décompose totalement en cas de choc selon l'équation bilan : $2 NI_{3 (S)} \rightarrow N_{2 (g)} + 3 I_{2 (g)}$ La quantité d'iodure d'azote à faire réagir pour produire 6,0 L de gaz si le volume molaire est de 24,0 L/mol est :

□ 0,125 *mol*

□ 0,25 *mol*

□ 0,50 *mol*

 \square 2 mol

 \square 5 mol

4. La température de 0,03 mole d'un gaz parfait occupant un volume d'un litre à 1013 hPa avec R = 8,314 SI est :

□ 406 °C

□ 46 °C

□ 133 °*C*

□ -227 °C

□ 4,6 °C

5. L'unité ou les unités faisant partie du système international (SI) sont :

 \square km

 $\square K$

 $\Box kg$

 $\Box L$

 \square °C

 $\Box hPa$

 $\Box g$

6. Une solution ionique est traversée par une intensité de 200 *mA* lorsqu'elle est branchée aux bornes d'un générateur de 12 *V*. Sa conductance est donc de :

☐ impossible à calculer

 \Box 60 S

 \square 60 S/m

 \Box 0,017 *mS*

 \Box 0,017 *mS/m*

7. Les deux produits obtenus lors de la réaction acido-basique entre HCOOH et NH₃ sont :

☐ HCOO et NH₄

☐ COOH et NH₄

☐ HCOO et NH,

☐ H₂COOH et NH₂

8. L'unité de G dans la relation $v = \sqrt{G \cdot \frac{M_S}{R}}$ est :

 $\square kg \cdot m^3 \cdot s$

 $\square m^3 \cdot kg^{-1} \cdot s^{-2}$

 $\square m \cdot kg^{-1} \cdot s^{-2}$

 $\square kg \cdot s^{-2} \cdot m^{-3}$

 $\square kg \cdot s^{-1} \cdot m^{-1}$

9. L'unité de la grandeur k dans l'expression suivante $\frac{d^2x^2}{dt^2} + \frac{1}{k} \times x = 0$ est :

 $\prod s^2$

 $\square s \cdot m^{-1}$

 $\square m \cdot s^{-1}$

 $\square m \cdot s^{-2}$

 $\Box s^2 \cdot m^{-1}$

10. La valeur du quotient de réaction si $[Ag^{\dagger}] = [Cu^{2\dagger}] = 0,020 \ moll L$ pour la réaction 2 Ag + $Cu^{2\dagger} \rightarrow 2 \ Ag^{\dagger} + Cu$ est :

 \square $Q_R = 1.0$

 $\Box Q_{R} = 0,0040$

 $\square Q_{\mathsf{R}} = 20$

 $\Box Q_{R} = 0.020$

 $\square Q_{\mathsf{R}} = 50$

Exercice 2:

Un enfant lance en A une petite voiture de masse m=20~g sur une piste ayant le profile ci-contre. Il lâche la voiture avec une vitesse v_A de 1,0 m/s. Toutes les forces de frottements sont négligées et on prendra g=10~N/kg.

- 1. A l'aide de la figure ci-contre, déterminer l'expression littérale de l'altitude z_B de la voiture au point B en fonction de v_A , v_B , z_A et g.
- 2. Calculer la vitesse v_C de la voiture au point C.

On considère une caisse de masse m=20~kg tirée à vitesse constante v=2,0~m/s par une corde inextensible le long d'un plan incliné du point B au point H avec BH = 10 m. La caisse frotte sur la surface avec une force notée \vec{f} . La force exercée par la corde sur la caisse est notée \vec{T} . On donne g=10~N/kg.

1. Faire un bilan des forces exercées par l'extérieur sur la caisse sachant qu'on négligera toutes les forces dues à l'air.

- 2. Citer une force parmi les quatre considérées qui a un travail moteur.
- 3. Donner l'expression littérale du travail du poids en fonction de m, g, BH et θ .
- 4. Lors du trajet de B à H, le travail du poids $W_{BH}(\overrightarrow{P})$ est de 1000 J. A l'aide du théorème de l'énergie cinétique, calculer la valeur de T sachant que f=50~N.

Exercice 4:

On considère un condensateur constitué de deux plaques métalliques séparées de 10 $\it cm$ et entre lesquelles on a établie une différence de potentielles de 60 $\it V$.

- 1. Quelle est l'armature positive. Justifier rigoureusement.
- 2. Déterminer la valeur du champ électrique *E* existant entre ces deux électrodes.
- 3. On place un électron à l'intérieur de ce condensateur. Donner l'expression des coordonnées du vecteur force électrique $\overrightarrow{F_{\ell l}}$ qui apparaît sur l'électron dans le repère ci-contre en fonction de la charge élémentaire e et du champ E.

