

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENT

1a. REPORT SECURITY CLASSIFICATION

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY

ELECTE

JUN 11 1992

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER

6a. NAME OF PERFORMING ORGANIZATION

University of New Orleans

6b. OFFICE SYMBOL
(If applicable)

6c. ADDRESS (City, State, and ZIP Code)

University of New Orleans
New Orleans, LA 70148

10. RESTRICTIVE MARKINGS

3. DISTRIBUTION/AVAILABILITY OF REPORT

Distribution unlimited.

5. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

Office of Naval Research

7b. ADDRESS (City, State, and ZIP Code)

Department of the Navy
Arlington, VA 22217

8a. NAME OF FUNDING/SPONSORING ORGANIZATION

Office of Naval Research

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014-91-J-1758

8c. ADDRESS (City, State, and ZIP Code)

Department of the Navy
Arlington, VA 22217

10. SOURCE OF FUNDING NUMBERS

PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO	WORK UNIT ACCESSION NO.
---------------------	-------------	---------	-------------------------

11. TITLE (Include Security Classification)

Pyrromethene-BF₂ Complexes as Laser Dyes: 2

12. PERSONAL AUTHOR(S)

J. H. Boyer, A. M. Haag, G. Sathyamoorthi, M.-L. Soong, K. Thangaraj, and T. Pavlopoulos

13a. TYPE OF REPORT

Technical

13b. TIME COVERED

FROM _____ TO _____

14. DATE OF REPORT (Year, Month, Day)

June 2, 1992

15. PAGE COUNT

16. SUPPLEMENTARY NOTATION

Submitted to Heteroatom Chemistry

COSATI CODES		
FIELD	GROUP	SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Laser dyes, pyrromethene-BF₂, complexes, pyrromethene syntheses, structure-activity correlation.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

See attached

92-15267

92 6 10 061

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

 UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL

Joseph H. Boyer

22b. TELEPHONE (Include Area Code)

(504)286-7225

22c. OFFICE SYMBOL

OFFICE OF NAVAL RESEARCH

Contract N00014-91-J-1758

R&T Code 4135026---01

Technical Report No. 2

Pyrromethene-BF₂ Complexes as Laser Dyes: 2

by

J. H. Boyer, A. M. Haag, G. Sathyamoorthi, M.-L. Soong,
K. Thangaraj, and T. G. Pavlopoulos

Submitted to

Heteroatom Chemistry

Department of Chemistry
University of New Orleans
New Orleans, LA 70148-2820

and

Accession For	
NTIS	GRANT
DTAC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/	
Availability Codes	
Dist	Avail and/or Special
A-1	

U.S. Naval Ocean Systems Center
San Diego, CA 92152

June 2, 1992

Reproduction in whole or in part is permitted for any purpose
of the United States Government

This document has been approved for public release and sale;
its distribution is unlimited

Pyrromethene-BF₂ Complexes as Laser Dyes: 2

Pyrromethene-BF₂ complexes (P-BF₂) **7** were obtained from α -unsubstituted pyrroles **5** by acylation and condensation to give intermediate pyrromethene hydrohalides **6** followed by treatment with boron trifluoride etherate. Conversion of ethyl α -pyrrolecarboxylates **4** to α -unsubstituted pyrroles **5** was brought about by thermolysis in phosphoric acid at 160 °C, or by saponification followed by decarboxylation in ethanolamine at 180 °C, or as unisolated intermediates in the conversion of esters **4** to pyrromethene hydrobromides **6** by heating in a mixture of formic and hydrobromic acids. Addition of hydrogen cyanide followed by dehydrogenation by treatment with bromine converted 3,5,3',5'-tetramethyl-4,4'-diethylpyrromethene hydrobromide **9** to 3,5,3',5'-tetramethyl-4,4'-diethyl-6-cyanopyrromethene hydrobromide **6bb**, confirmed by the further conversion to 1,3,5,7-tetramethyl-2,6-diethyl-8-cyanopyrromethene-BF₂ complex **7bb** on treatment with boron trifluoride etherate.

An alteration effect in the relative efficiency (RE) of laser activity in 1,3,5,7,8-pentamethyl-2,6-di-n-alkylpyrromethene-BF₂ dyes depended on the number of methylene units in the n-alkyl substituent, $-(CH_2)_nH$, to give RE ≥ 100 when $n = 0, 2, 4$ and RE 65, 85 when $n = 1, 3$. (RE 100 arbitrarily assigned to the dye rhodamine-6G). The absence of fluorescence and laser activity in 1,3,5,7-tetramethyl-2,6-diethyl-8-isopropylpyrromethene-BF₂ complex **7p** and a markedly diminished fluorescence quantum yield (Φ 0.23) and lack of laser activity in 1,3,5,7-tetramethyl-2,6-diethyl-8-cyclohexylpyrromethene-BF₂ complex **7q** were attributed to molecular nonplanarity brought about by the steric interference between each of the two bulky 8-substituents with the 1,7-dimethyl substituents. An atypically low RE 20 for a peralkylated dye without steric interference was observed for 1,2,6,7-bistrimethylene-3,5,8-trimethylpyrromethene-BF₂ complex **7j**. Comparisons with peralkylated dyes revealed a major reduction in RE for the six dyes **7u-z** lacking substitution at the 8-position.

Low laser activity RE was brought about by functional group (polar) substitution in the 2,6-diphenyl derivative **7l**, RE 20, and the 2,6-diacetamido derivative **7m**, RE 5, of 1,3,5,7,8-pentamethylpyrromethene-BF₂ complex (PMP-BF₂) **7a** and in 1,7-dimethoxy-2,3,5,6,8-pentamethylpyrromethene-BF₂ complex **7n**, RE 30. Diethyl 1,3,5,7-tetramethyl-8-cyanopyrromethene-2,6-dicarboxylate-BF₂ complex **7aa**, and 1,3,5,7-tetramethyl-2,6-diethyl-8-cyanopyrromethene-BF₂ complex **7bb**, offered examples of P-BF₂ dyes with electron withdrawing substituents at the 8-position. The dye **7aa**, λ_{las} 617 nm, showed nearly twice the power efficiency that was obtained from rhodamine B, λ_{las} 611 nm.

4 R = $\text{CO}_2\text{CH}_2\text{CH}_3$

5 R = H

4l X = CH_3 , R = $\text{CO}_2\text{C}_2\text{H}_5$

5h X = R = H

5l X = CH_3 , R = H

<u>4.5</u>	<u>X</u>	<u>Y</u>
a	CH_3	H
b	CH_3	CH_3
c	CH_3	CH_2CH_3
d	CH_3	$(\text{CH}_2)_2\text{CH}_3$
e	CH_3	$(\text{CH}_2)_3\text{CH}_3$
f	CH_3	$\text{CH}(\text{CH}_3)_2$
g	CH_3	$\text{C}(\text{CH}_3)_3$
k	CH_2CH_3	CH_2CH_3
o	C_6H_5	CH_2CH_3
p	C_6H_5	C_6H_5
q	C_6H_5	COCH_3

4j R = $\text{CO}_2\text{C}_2\text{H}_5$

5j R = H

<u>5</u>	<u>X</u>	<u>Y</u>
l	CH_3	C_6H_5
m	CH_3	NHCOCH_3
n	OCH_3	CH_3

Br^-

6

7

<u>6,7</u>	W	X	Y	Z	A
a	CH ₃	CH ₃	H	CH ₃	Cl
b	CH ₃	CH ₃	CH ₃	CH ₃	Cl
c	CH ₃	CH ₃	CH ₂ CH ₃	CH ₃	Cl
d	CH ₃	CH ₃	(CH ₂) ₂ CH ₃	CH ₃	Cl
e	CH ₃	CH ₃	(CH ₂) ₃ CH ₃	CH ₃	Cl
f	CH ₃	CH ₃	CH(CH ₃) ₂	CH ₃	Cl
g	CH ₃	CH ₃	C(CH ₃) ₃	CH ₃	Cl
h	CH ₃	H	—(CH ₂) ₄ —		Cl
i	CH ₃	CH ₃	—(CH ₂) ₄ —		Cl
j	CH ₃	—(CH ₂) ₃ —		CH ₃	Cl
k	CH ₃	CH ₂ CH ₃	CH ₂ CH ₃	CH ₃	Cl
l	CH ₃	CH ₃	C ₆ H ₅	CH ₃	Cl
m	CH ₃	CH ₃	NHCOCH ₃	CH ₃	Cl
n	CH ₃	OCH ₃	CH ₃	CH ₃	Cl
o	CH ₂ CH ₃	CH ₃	CH ₂ CH ₃	CH ₃	Cl
p	CH(CH ₃) ₂	CH ₃	CH ₂ CH ₃	CH ₃	Cl
q	c-C ₆ H ₁₁	CH ₃	CH ₂ CH ₃	CH ₃	Cl
r	CH ₂ OCOCH ₃	CH ₃	CH ₂ CH ₃	CH ₃	Cl
s	p-(CH ₃) ₂ NC ₆ H ₅	CH ₃	CH ₂ CH ₃	CH ₃	Cl
t	p-CH ₃ OC ₆ H ₅	CH ₃	H	CH ₃	Cl
u	H	C ₆ H ₅	CH ₂ CH ₃	CH ₃	Br
v	H	C ₆ H ₅	C ₆ H ₅	CH ₃	Br
w	H	C ₆ H ₅	H	CH ₃	Br
x	H	CH ₃	C(CH ₃) ₃	CH ₃	Br
y	H	CH ₂ CH ₃	CH ₂ CH ₃	CH ₃	Br
z	H	CH ₃	CH ₃	CH ₃	Br
aa	CN	CH ₃	CO ₂ CH ₂ CH ₃	CH ₃	Br
bb	CN	CH ₃	CH ₂ CH ₃	CH ₃	Br