Proof of Step 2.3

2.3. Assume: $j \in \{0, 1\}$

Prove: $InCS(j)' \lor (pc'[j] = \text{``e2''}) \Rightarrow x'[j]$

Remember that $Inv, i \in \{0,1\}$, and e2(i) hold by the step 2 assumption.

2.3.1. Case: $j \neq i$

PROOF: The third conjunct of Inv and the 2.3 assumption imply $InCS(j) \lor (pc[j] = \text{``e2''}) \Rightarrow x[j]$; and e2(i) and the case assumption imply that InCS(j), pc[j], and x[j] are unchanged.

2.3.2. Case: j = i

2.3.2.1. pc[i] = ``e2''

PROOF: By e2(i), since pc[i] = ``e2'' is the enabling condition of action e2(i).

2.3.2.2. x[i]

PROOF: By 2.3.2.1, the third conjunct of Inv, and $i \in \{0,1\}$.

2.3.2.3. x'[i]

PROOF: By 2.3.2.2 and e2(i), which implies x[i] is unchanged.

2.3.2.4. Q.E.D.

PROOF: 2.3.2.3 and the 2.3.2 case assumption imply x'[j] (which implies $P \Rightarrow x'[j]$ for any P).

2.3.3. Q.E.D.

PROOF: By 2.3.1 and 2.3.2.