Chapter 7 Capacitors and Inductors

The Capacitor

the ideal capacitor is a passive element with circuit symbol
 i

the current-voltage relation is

$$i = C \frac{dv}{dt}$$

the capacitance C is measured in farads (F)

Some Capacitors

 capacitors can be bulky and typical values range from pF to μF

Capacitors Store Energy

Since
$$p(t) = i(t)v(t) = \left(C\frac{dv}{dt}\right)v = \frac{dw}{dt}$$

then the energy stored in a capacitor is

$$w = \frac{1}{2}Cv^2$$

Key Capacitor Behaviors

- capacitors are open circuits to dc voltages
- the voltage on a capacitor cannot jump
- capacitors store energy (iv>0) or deliver energy (iv<0)

$$\begin{array}{cccc}
\stackrel{i}{\longrightarrow} & \stackrel{C}{\longleftarrow} \\
+ & \stackrel{v}{\longrightarrow} & -
\end{array}
\qquad i = C \frac{dv}{dt}$$

Example: i-v Curves (part 1 of 2)

Find i(t) for the voltages shown, if C=2 F.

Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: i-v Curves (part 2 of 2)

Solution: apply i(t)=2dv/dt and graph:

Example: i-v Curves

Show that the following graphs are matching voltage and current graphs for a capacitor of C=5µF.

Example: Capacitor Energy

Determine the maximum energy stored in the capacitor, and plot i_R and i_C .

The Inductor

• the ideal inductor is a passive element with circuit symbol i_L

the current-voltage relation is

$$v = L \frac{di}{dt}$$

the unit of inductance L is henry (H)

Some Inductors

 inductors can be bulky and typical values range from μH to H

(a) (b) Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Inductors Store Energy

Since
$$p(t) = i(t)v(t) = \left(L\frac{di}{dt}\right)i = \frac{dw}{dt}$$

then the energy stored in a inductor is

$$w = \frac{1}{2}Li^2$$

Key Inductor Behaviors

- inductors are short circuits to dc voltages
- the current through an inductor cannot jump
- inductors store energy (iv>0) or deliver energy (iv<0)

Example: i-v Curves for L

Show that the following graphs are matching voltage and current graphs for an inductor of L=3 H.

Example: i-v Curves for L

For the same 3-H inductor, the voltages are 10 times larger when the current is ramped 10 times faster:

Example: Energy in L

Determine the maximum energy stored in the inductor, and find the energy lost to resistor from t=0 to t=6 s.

Answer: 216 J, 43.2 J

Inductors in Series

Apply KVL to show:

$$L_{eq} = L_1 + L_2 + \ldots + L_N$$

Inductors in Parallel

Apply KCL to show

$$L_{eq} = \frac{1}{1/L_1 + 1/L_2 + \dots + 1/L_N}$$

Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Capacitors in Series

Apply KVL to show:

$$C_{eq} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_N}}$$

Capacitors in Parallel

Apply KCL to show:

$$C_{eq} = C_1 + C_2 + \dots + C_N$$

Two-Element Shortcuts

Two capacitors in series:

$$C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$$

Two inductors in parallel:

$$L_{eq} = \frac{L_1 L_2}{L_1 + L_2}$$

Two resistors in parallel:

$$R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$$

Example: Simplifying LC

Show that these circuits are equivalent using series and parallel combinations.

Op Amp Integrator

Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Op Amp Differentiator

$$v_{out} = -C_1 R_f \frac{dv_s}{dt}$$