A10

Ein Würfel werde zweimal geworfen. Die beiden Ergebnisse seien die ZV X_1 und X_2 . Wir betrachten die beiden ZV $S=X_1+X_2$ und $P=X_1\times X_2$, die die Summe bzw. das Produkt der beiden Würfe angeben. Bestimmen Sie die Verteilung von S und P (also die Werte der W.Funktionen dieser beiden Zufallsvariablen für alle Elemente ihrer Definitionsbereiche).

Für beide Zufallsvariablen wird derselbe W.Raum $[\Omega,P]$ mit

$$\Omega = \{\{1, 2, 3, 4, 5, 6\}^2\}$$

und

$$P(\omega) = \frac{1}{6^2}$$

für alle $\omega \in \Omega$ angenommen.

Zufallsvariable S

Die W.Funktion für S ist folgendermaßen definiert:

$$f_S(k) = \frac{|\{(n_1, n_2)|n_1 + n_2 = k\}|}{|\Omega|}$$

und führt zu folgender Verteilung P_S :

k	2	3	4	5	6	7	8	9	10	11	12	\sum
$f_S(k) \times \Omega $	1	2	3	4	5	6	5	4	3	2	1	36

Zufallsvariable P

Die W.Funktion für P ist folgendermaßen definiert:

$$f_P(k) = \frac{|\{(n_1, n_2)|n_1 \times n_2 = k\}|}{|\Omega|}$$

und führt zu folgender Verteilung P_P :

k	1	2	3	4	5	6	8	9	10	12
$f_S(k) \times \Omega $	1	2	2	3	2	4	2	1	2	4

15	16	18	20	24	25	30	36	\sum
2	1	2	2	2	1	2	1	36