Vorlesing M

F. 168 Raw. Sat & S (Hm x Hm) x Hm

[2.71. (D: Hm x Hn -> Hm, ([a]m, [6]m) +> [a.6]m it would definint, d.L. (D int r.e., d.h.:

 $\forall (([a]_n, [b]_m), [a \cdot b]_n), (([a']_n, [b']_n), [a' \cdot b']_m) \in \emptyset$

 $([a]_n, (b]_n) = ([a']_n, (b']_n) \longrightarrow (a b)_m = [a' \cdot b']_n$

Sien $((Ca)_m,Cb)_m)_m(a\cdot b)_m)_m((Ca')_m,Cb')_m)_m(a'\cdot b')_m) \in \mathbb{Z}$.

For getter ($(a)_n$, $(b)_n$) = $(a')_n$, $(b')_n$.

[2,7: (a.6)m=(a'-6')n, dil: a.6 = a'-6', dil:

m | a'.6'- a.6, d.4.:

Jc & Z: m·c = a.6-a.6]

Nach Vor. gilt: [a]n = [a']n ud (6)n = [6']m.

D.L. a = a' ad b = b', dh .:

m/a/-a ul m/6/-6, dis.

es es. c', c" & 2 nit

(T)
$$m \cdot c' = a' - a$$
 und (II) $m \cdot c'' = b' - b$.

(a) $a' = a \cdot m \cdot c'$

(b) $b' = b + m \cdot c''$

Multiplikation de Gol. (I) und (I) liefet: a'.6' = (a+m.c') (6+m.c') = ab + mc"a+mc'b+m²c'c" =>

(II) m (c"a+c'b+mc'c") = mc"a+mc'b+mc'c" = a'b'-ab.Site $c:=c"a+c'b+mc'c" \in H$. Es gilt wit (II):

m·c = m·(c"a+c'b+nc'c") = (b'-ab.

F. Mo Pen. Sate

O [a]n Θ [b]n = [a+b]n = [b+a]n=[b]n Θ [a]n

O - Θ and Θ busises.

F. 173

$$[a]_n \oplus x = [b]_n \quad | \oplus [a]_m$$

$$(a+(-a)]_{n} \oplus x = [[+(-a)]_{n}$$

$$(=)$$
 $[0]_n \oplus x = [6-a]_n$

$$(=)$$
 $k = [1-a]_n$

$$[5]_{6} \oplus x = [2]_{6}$$

$$Ls_{3}: x = [2-5]_{6} = [-3]_{6} = [3]_{6}$$

F. 183

O [1.7.: Hair Gh: a'oa=e=] a oa=e]

Sim a,a'c G. Es geller a'oa=e.

Nach (G4) ex. ein a"cG mit a'oa'=e.

Es gilt:

(3) CZZ: Here' & G: e, e' num. El. =) Z=e')

Sin e, e' & G. Es geth: e, e' sid num. El.

Es gill: e = e o e' = e'.

- © [2.7: Ha & G: (a-1)-1 = a]

 Si: a & G. Es gilli

 (a) oa = e und a oa = e

 Nad G gill: (a-1)-1 = a,

 (a) [2.7: Haile G: (a o b)-1 = b-1 oa-1]

 Siin a 6 o G. Es gilli

$$(b^{-1} \circ a^{-1}) \circ (a \circ b) = b^{-1} \circ (a^{-1} \circ a) \circ b$$

= $b^{-1} \circ e \circ b = b^{-1} \circ b = e$
(47) (47)

6

und

Nad (G) gilt: 6'0a' = (aob)-1.

F. 174 Dw. Sch 1

Si (h,0) in associative alge, Shockher - (GA, G2)

[2.7.1 (63) Ld (64) => Cit & and @ and @]

=>": Es quh: (G) ~ (G4).

Da Grappe it, besitt Grein entreles El. e&G & Ø.

[1.1: Habe G 3 x, x, t G: a o x = b x x, o a = b] Sin $a_1b \in G$. State $x_n := a^{-1}ob \in G$ where $x_2 := b \circ a^{-1} \in G$. Expilling $a \circ x_1 = a \circ (a^{-1}ob) = (a \circ a^{-1}) \circ b$ $a \circ x_1 = a \circ b = b$

3

und

 $x_{2}\circ\alpha=(b\circ\dot{\alpha})\circ\alpha=b\circ(\dot{\alpha}\circ\alpha)$ $=b\circ e=b.$ $\in {}^{4}$ uidah Vl.