

Физтех-школа аэрокосмических технологий 29 марта 2024 года

Лабораторная работа 2.4.1

ОПРЕДЕЛЕНИЕ ТЕПЛОТЫ ИСПАРЕНИЯ ЖИДКОСТИ Зайцев Александр Б03-305

Цель работы: измерение давления насыщенного пара жидкости при разной температуре; вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона—Клаузиуса.

В работе используются: термостат; герметический сосуд, заполненный исследуемой жидкостью; отсчетный микроскоп.

Теория.

В работе для определения теплоты испарения применен косвенный метод, основанный на формуле Клапейрона–Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)} \tag{1}$$

Здесь P — давление насыщенного пара жидкости при температуре T, T — абсолютная температура жидкости и пара, L — теплота испарения жидкости, V_2 — объем пара, V_1 — объем жидкости. Найдя из опыта dP/dT, T, V_2 и V_1 , можно определить L путем расчета. В нашем приборе измерения производятся при давлениях ниже атмосферного. В этом случае задача существенно упрощается.

При нашей точности опытов величиной $V_{_1}$ в (1) можно пренебречь.

Обратимся теперь к V_2 , которое в дальнейшем будем обозначать просто V .

Объем V связан с давлением и температурой уравнением Ван-дер-Ваальса:

$$(P + \frac{a}{V^2})(V - b) = RT \tag{2}$$

Из табличных данных следует, что b одного порядка с V_1 . В уравнении Ван-дер-Ваальса величиной b следует пренебречь. Пренебрежение членом a/V_2 по сравнению с P вносит ошибку менее 3%. При давлении ниже атмосферного ошибки становятся еще меньше.

Таким образом, при давлениях ниже атмосферного уравнение Ван-дер-Ваальса для насыщенного пара мало отличается от уравнения Клапейрона. Положим поэтому

$$V = \frac{RT}{P} \tag{3}$$

Подставляя (3) в (1), пренебрегая V_1 и разрешая уравнение относительно L, найдем

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)} \tag{4}$$

Экспериментальная установка.

Рис. 1 Экспериментальная установка

Установка включает термостат А, экспериментальный прибор В и отсчетный микроскоп С. Экспериментальный прибор В представляет собой емкость 12, заполненную водой. В нее погружен запаянный прибор 13 с исследуемой жидкостью 14. Перед заполнением исследуемой

жидкости воздух из запаянного прибора был удален, так что над жидкостью находится только её насыщенный пар. Давление пара определяется по ртутному манометру 15, соединенному с емкостью 13. Численная величина давления измеряется по разности показаний отсчетного микроскопа 16, настраиваемого последовательно на нижний и верхний уровни столбика ртути манометра. Показания микроскопа снимаются по шкале 17. Описание прибора указывает на второе важное преимущество предложенного косвенного метода измерения L перед прямым. При непосредственном измерении теплоты испарения опыты нужно проводить при неизменном давлении, и прибор не может быть запаян. При этом невозможно обеспечить такую чистоту и неизменность экспериментальных условий, как при нашей постановке опыта.

Ход работы.

Таблица 1. Результаты измерений нагревания.

No	T, K	Δh, см	ΔР, Па
1	297,06±0,01	1,800±0,005	2401,49±0,01
2	298,01±0,01	1,900±0,005	2534,9±0,01
3	299,08±0,01	2,100±0,005	2801,74±0,01
4	300,05±0,01	2,100±0,005	2801,74±0,01
5	301,03±0,01	2,300±0,005	3068,57±0,01
6	302,01±0,01	$2,500\pm0,005$	3335,40±0,01
7	303,02±0,01	2,600±0,005	3468,82±0,01
8	304,04±0,01	$2,900\pm0,005$	3869,06±0,01
9	305,04±0,01	3,100±0,005	4135,90±0,01
10	306,01±0,01	$3,200\pm0,005$	4269,31±0,01
11	307,03±0,01	3,500±0,005	4669,56±0,01
12	308,01±0,01	$3,800\pm0,005$	5069,81±0,01
13	309,03±0,01	4,000±0,005	5336,64±0,01
14	310,04±0,01	4,200±0,005	5603,47±0,01
15	311,03±0,01	4,400±0,005	5870,30±0,01
16	312,04±0,01	4,700±0,005	6270,55±0,01
17	313,04±0,01	4,900±0,005	6537,38±0,01

Таблица 2. Результаты измерений охлаждения.

No	T, K	Δh, см	ΔР, Па
1	311,01±0,01	$4,600\pm0,005$	6137,14±0,01
2	308,97±0,01	4,100±0,005	5470,06±0,01
3	306,98±0,01	$3,800\pm0,005$	5069,81±0,01
4	304,96±0,01	3,300±0,005	4402,73±0,01
5	302,92±0,01	$2,900\pm0,005$	3869,06±0,01
6	301,06±0,01	2,600±0,005	3468,82±0,01
7	299,05±0,01	2,200±0,005	2935,15±0,01
8	297,06±0,01	1,900±0,005	2534,90±0,01

График зависимости давления от температуры изображен на рисунке 2.

Рис. 2 График зависимости

Данные точки не аппроксимируются прямой, поэтому прямых или каких-либо других кривых на графике нет.

График зависимости $\ln P$ от T^{-1} изображен на рисунке 3.

Рис. 3 График зависимости

График аппроксимируется прямой $lnP = k \cdot \frac{1}{T} + b$, при помощи метода наименьших квадратов определяются угловые коэффициенты обеих прямых $k = \frac{dlnP}{d(1/T)}$.

Погрешность каждого из угловых коэффициентов определяется по формуле:

$$\sigma_{k} = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^{2} \rangle - \langle y \rangle^{2}}{\langle x^{2} \rangle - \langle x \rangle^{2}} - k^{2}}$$

В результате получились следующие угловые коэффициенты:

• при нагревании
$$k_{\text{наг}} = -6028,27 \pm 90,66 \text{ K} \qquad \epsilon = 1\%$$

• при охлаждении
$$k_{\text{охл}} = -5849,67 \pm 155.92 \text{ K}$$
 $\epsilon = 2\%$

Погрешность молярной теплоты испарения жидкости определяется формулой:

$$\sigma_L = L \cdot \frac{\sigma_k}{k}$$

Молярная теплота испарения жидкости определяется формулой (4):

$$L_{\text{наг}} = -R \cdot k_{\text{наг}} = 50,09 \pm 0,50 \frac{\text{кДж}}{\text{моль}}$$
 $L_{\text{охл}} = -R \cdot k_{\text{охл}} = 48,61 \pm 0,97 \frac{\text{кДж}}{\text{моль}}$

Табличное значение молярной теплоты испарения воды

$$L = 41,39\frac{\kappa Дж}{моль}$$

Вывод.

Значение, полученное в ходе эксперимента, расходится с табличным примерно на 15%. На расхождение по большей степени влияет человеческий фактор, так как измерение разницы давления проводятся, настраивая отсчетный микроскоп вручную, ровно также, как и не совсем точные измерения этой разницы штангенциркулем (человеческая ошибка). Тем не менее, эксперимент по определению молярной теплоты парообразования воды позволил получить результаты, которые, несмотря на некоторые расхождения с табличными данными, в целом соответствуют ожиданиям. Полученные результаты могут быть использованы для оценки молярной теплоты парообразования воды с учетом предполагаемых ограничений и описанных предположений.