加密密钥产生的过程(ntru_crypto_ntru_encrypt_keygen)

- 1. 初始化三个值 dF_1, dF_2, dF_3 (其实是预先给定的) 分别代表三个系数在 $\{-1,0,1\}$ 之间的 $(Z/qZ)[X]/(X^N-1)$ 意义下的多项式 f_1, f_2, f_3 中 1、-1 的个数
- 2. 利用 drbg 产生 -1、1 在多项式中的索引,由此初始化多项式 f_1, f_2, f_3 并计算 $F = f_1 * f_2 + f_3$
- 3. 计算 f = 1 + pF
- 4. 计算 f_a^{-1} :
 - o 首先计算 f_2^{-1}
 - \circ 再计算 f_q^{-1} (其中 $q=2^t$)
- 5. 初始化 d_g (其实是预先给定的) 代表多项式 $g + \{1, -1\}$ 的个数
- 6. 与上述 2 相同方法产生多项式 g
- 7. 计算 $h = p * (f_q^{-1} * g)$

需要注意的地方:

- 代码中多次用位运算代替取模运算,即 a&(b-1)=a%b if $b=2^k$
- 代码中交换 a, b 用到了三次异或操作:

```
a \wedge = b; b \wedge = a; a \wedge = b;
```

- 一些需要关注的函数及其作用:
 - o ntru_gen_poly 产生多项式(系数的索引)
 - o *ntru_ring_mult_indices* 计算多项式 a, b 的乘法 (其中多项式 b 的系数属于-1, 0, 1)
 - $ntru_ring_mult_product_indices$ 计算多项式 a,b 的乘法(其中多项式 $b=b_1*b_2+b_3$) 并且 b_i $i\in[1,3]$ 的系数属于 -1,0,1)
 - o *ntru_ring_inv* 计算多项式 *mod* 2 意义下的逆多项式,此处用到了扩展的欧几里得算法,具体可参见 Extended Euclidean algorithm
 - $ntru_ring_lift_inv_pow2_product$ 计算多项式 $mod\ q\ (q=2^k)$ 意义下的逆多项式
- 代码中将密钥存储在 keyblob 中的过程应该可以省略

加密过程(ntru_crypto_ntru_encrypt)

- 1. 根据 dr 生成多项式 r
- 2. 计算多项式 R = h * r (h) 为公钥)
- 3. 后面对多项式 R 和对明文多项式 m 的预处理操作 (可参见论文)
- 4. 计算密文 e = R + m'

解密过程(ntru_crypto_ntru_decrypt)

- 1. 计算 F * e (其中 $F = f_1 * f_2 + f_3$ 为私钥)
- 2. 计算多项式 $A = e(1 + pF) = e + epF \mod q$
- 3. 将 A 的系数中心化,使其系数的范围在 [-q/2, q/2)
- 4. $a = A = m'(1 + pF) = cm' \mod p$
- 5. 根据 cm' 解出 m (可参见论文)