3 部分群

G を群, e を G の単位元とする. G の部分集合 H が次の条件 (i)-(iii) を満たすとき, H は G の部分群と呼ばれる:

- (i) 任意の $x, y \in H$ について, $xy \in H$,
- (ii) $e \in H$,
- (iii) 任意の $x \in H$ について $x^{-1} \in H$.

平たくいえば, G の部分集合のうち, G と同じ演算で群になっているものを部分群と呼ぶわけである. G がどのような群であれ, G 自身と単位元のみの集合 $\{e\}$ は必ず G の部分群となる (これを自明な部分群と呼ぶ). なお, H が G の部分群であることを $H \leq G$ (または H < G) と表すことがある.

問題 3.1 G を群, H を G の部分集合とする. H が G の部分群であることと, 次の (i')(ii') を満たすことが同値であることを示せ:

- (i') *H* は空集合でない、
- (ii') 任意の $x, y \in H$ について, $x^{-1}y \in H$.

問題 ${\bf 3.2}~G$ を群, H,K を G の部分群とするとき, $H\cap K$ も G の部分群になることを示せ.

問題 3.3 G を群, H, K を G の部分群とする. 次を示せ.

- (1) $H \cup K$ が G の部分群 $\Leftrightarrow H \subset K$ または $K \subset H$.
- (2) HK が G の部分群 \Leftrightarrow HK = KH. (ここで, $HK = \{hk \mid h \in H, k \in K\}$.)

問題 3.4 実数全体 $\mathbb R$ は加法 + に関して群となる. この群 $(\mathbb R,+)$ について、次の問題に答えよ.

- (1) \mathbb{R} には $\{0\}$ 以外の有限部分群が存在しないことを証明せよ.
- (2) H を $\mathbb R$ の部分群とする. もし $H \neq \mathbb R$ ならば, H はいかなる開区間も含まないことを示せ.

 $^{{}^1\}pi-\Delta ^\bullet-\mathcal{Y} \text{ http://www.math.tsukuba.ac.jp/$\tilde{}^amano/lec2012-2/e-algebra-ex/index.html}$