Trær, Binære Søketrær og AVL-trær

IN2010 – Algoritmer og Datastrukturer

Lars Tveito

Institutt for informatikk, Universitetet i Oslo larstvei@ifi.uio.no

Høsten 2023

Oversikt uke 35

Oversikt uke 35

- Vi skal lære om binære søketrær
 - En datastruktur for raskt oppslag
- Vi skal lære om AVL-trær, som er selvbalanserende varianter av binære søketrær
 - Vi skal nevne rød-svarte trær, som er et alternativ til AVL-trær

1

Trær

- Det er to store kategorier med anvendelser av trær:
 - Det du jobber med har en iboende hierarkisk struktur
 - Effektiv implementasjon for datasamlinger (eksempelvis mengder og ordbøker)
- Dere kjenner allerede til lister, som er definert som
 - en tom liste ofte representert med null eller
 - en node som består av en peker til et element og en peker til en liste
- Alle lister *er trær*, men ikke alle trær er lister
- Vi kan se på trær som en enkel utvidelse av lister
 - der vi tillater at en node har flere neste-pekere

Trær – eksempler

- Syntaksen i programmeringspråk utgjør trær
 - Det første en kompilator gjør, er å gjøre koden din om til et abstrakt syntakstre
- HTML er et filformat som lar deg uttrykke trær
 - Så en nettside kan ses på som en bestemt måte å vise frem et tre
- Filsystemer er trær
- Alle mulige sjakkpartier kan representeres som et (enormt) tre

Trær – definisjon

- Et tre er definert som
 - det tomme treet ofte representert med null eller
 - en node v med en peker til
 - et element
 - 0 eller flere pekere til barnenoder, og
 - nøyaktig én foreldernode (med mindre *v* er roten)
 - Et tre kan ikke inneholde sykler
 - Altså: fra en node *v* kan du ikke nå *v* ved å følge pekere fra *v*
- Merk: Boka tillater ikke tomme trær

Dette er et tre, hver v_i er en node

 v_1 er roten av treet

 v_2 , v_3 og v_4 er barn av v_1

 v_1 er forelder til v_2 , v_3 og v_4

 v_2 , v_3 og v_4 er søsken

 v_{11}, \ldots, v_{16} er *løvnoder*, eller *eksterne* noder

Nodene v_1, \ldots, v_{10} er ikke løvnoder, eller *interne* noder

 v_3 , v_7 , v_8 , v_{13} og v_{14} utgjør et subtre, hvor v_3 er roten

 v_1, v_3, v_8 og v_{14} er forfedre av v_{14}

 v_1, v_3, v_8 og v_{14} er etterkommere av v_1

Sekvensen v_1, v_3, v_8, v_{14} kalles en sti

Trær - Datastruktur

- **null** representerer et tomt tre
- Anta at ver en node, da gir
 - v.element dataen som er lagret i noden
 - v.parent foreldrenoden til v
 - v.children barnenodene til v

Trær – dybde

- Dybden til en node er én mer enn foreldrenoden
- Roten har dybde 0
- Siden vi tillater et tomt tre gir vi det dybde -1

ALGORITHM: FINN DYBDEN AV EN GITT NODE

```
Input: En node v
Output: Dybden av noden
Procedure Depth(v)

if v = null then
return -1
return 1 + Depth(v.parent)
```

Trær – høyde

- Høyden av et tre er gitt av den høyeste avstanden til en etterkommer
- Det vil si dybden av den dypeste *løvnoden*

ALGORITHM: FINN HØYDEN AV EN GITT NODE

```
Input: En node v
Output: Høyden av noden

Procedure height(v)

h \leftarrow -1

if v = \text{null then}

return h

for c \in v.children do

h \leftarrow \text{Max}(h, \text{height}(c))

return 1 + h
```

Trær - traversering

- Vi har måter for å systematisk gå gjennom (traversere) et tre på
- Underveis har vi en operasjon vi ønsker å utføre
- For mange operasjoner har rekkefølgen vi utfører operasjonen i en betydning
 - preorder utfører operasjonen på seg selv først, og barna etterpå
 - postorder utfører operasjonen på barna først, og seg selv etterpå
- For å kopiere et tre kan man bruke *preorder*, men ikke *postorder*
- For å slette et tre kan man bruke *postorder*, men ikke *preorder*

Trær – preorder og postorder

ALGORITHM: PREORDER TRAVERSERING

Input: En node *v* (som ikke er **null**)

Output: Utfør en operasjon på v først og barna til v etterpå

1 Procedure Preorder(v)

Operate on *v*

for $c \in v$.children do
Preorder(c)

Preorder(c

ALGORITHM: POSTORDER TRAVERSERING

Input: En node *v* (som ikke er **null**)

Output: Utfør en operasjon på barna til v først og v etterpå

 ${\bf 1} \ \ {\bf Procedure} \ {\bf Postorder}({\it v})$

for $c \in v$.children **do**

Postorder(c)

Operate on *v*

Binære søketrær

Binære trær

- Et binærtre er et tre hvor hver node har maksimalt to barn
- I binære trær referer vi til *venstre* og *høyre* barn
- Hvis v er en node i et binærtre, så gir
 - v.element dataen som er lagret i noden
 - v.left venstre barn av v
 - v.right høyre barn av v

Binære søketrær

- Et binært søketre er et binærtre som oppfyller følgende egenskap
 - For hver node v så er v.element
 - større enn alle elementer i venstre subtre, og
 - mindre enn alle elementer i høyre subtre
- Merk at vi kan si større eller lik dersom vi ønsker å tillate duplikater
- For at vi skal kunne bruke binære søketrær må elementene være sammenlignbare
- Binære trær er spesielt gode når de er balanserte

Sammenheng mellom binærsøk og binære søketrær

- Idéen bak binærsøk er å *halvere søkerommet* hver gang vi gjør en sammenligning, som gir O(log(n)) tid på oppslag
- Det fungerer strålende, men det forutsetter at vi jobbber på et sortert array
- Et problem oppstår når vi trenger en dynamisk struktur
 - En datastruktur hvor vi stadig legger til og fjerner elementer
- Et binært søketre er en datastruktur
 - som gjør binærsøk enkelt
 - støtter effektiv innsetting og sletting

Innsetting

ALGORITHM: INNSETTING I ET BINÆRT SØKETRE

```
Input: En node v og et element x
Output: En oppdatert node v der en node som inneholder x er en etterkommer av v
Procedure Insert(v, x)
if v = null then
v ← new Node(x)
else if x < v.element then
v.left ← Insert(v.left, x)
else if x > v.element then
v.right ← Insert(v.right, x)
return v
```

- Denne algoritmen har kompleksitet $\mathcal{O}(h)$
 - der *h* er høyden på treet
- Dersom n er antall noder i treet har vi $\mathcal{O}(n)$ i verste tilfelle
 - men hvis treet er balansert,
 - så er kompleksiteten $\mathcal{O}(log(n))$

Oppslag

ALGORITHM: OPPSLAG I ET BINÆRT SØKETRE

Oppslag i et binærtre har samme kompleksitet som innsetting

Sletting

- Sletting fra et binærtre er litt vanskeligere enn innsetting og oppslag
 - men har samme kompleksitet!
- Vi må passe på å tette eventuelle «hull»
- Vi skiller mellom tre tilfeller
 - Noden vi vil slette har ingen barn
 - Noden vi vil slette har ett barn
 - Noden vi vil slette har to barn

Sletting – ingen barn

• Når det ikke er noen barn er det tilstrekkelig å fjerne pekeren til x

Sletting – ett barn (venstre)

• Når noden har ett barn på venstre side, erstatt x med T_2

Sletting – ett barn (høyre)

• Helt tilsvarende, når noden har ett barn på høyre side, erstatt \times med T_2

Sletting – to barn

• Når noden har to barn, erstatt x med det minste elementet y i høyre subtre

Finn minste

• For sletting trenger vi en prosedyre for å finne minste element

ALGORITHM: FINN MINSTE NODE

Input: En node *v*

Output: Returner noden som inneholder den minste etterkommeren av *v*

 ${\bf 1} \ \, {\bf Procedure} \ \, {\bf FindMin}({\it v})$

Etterlatt som øvelse!

Sletting

ALGORITHM: SLETT EN NODE I ET BINÆRT SØKETRE

```
Input: En node v og et element x
  Output: Dersom x forekommer i en node u som en etterkommer av v, fiern u.
1 Procedure Remove(v, x)
       if v = \text{null then}
            return null
       if x < v.element then</pre>
            v.left \leftarrow Remove(v.left, x)
           return v
       if x > v.element then
            v.right \leftarrow Remove(v.right, x)
            return v
       if v.left = null then
           return v.right
11
       if v.right = null then
12
            return v.left
13
       u \leftarrow FindMin(v.right)
14
       v.element \leftarrow u.element
15
       v.right ← Remove(v.right, u.element)
       return v
17
```


AVL-trær

- AVL-trær oppfyller de samme egenskapene som ordinære binære søketrær
- I tillegg må de oppfyle følgende egenskap:
 - $\bullet\,$ for hver node i et AVL-tre, så må høydeforskjellen på venstre og høyre subtre være mindre eller lik 1
- Denne invarianten må opprettholdes ved innsetting og sletting
 - (oppslag er helt uforandret)

Høyde

- Fordi vi ofte vil referere til høyden i treet, utvider vi nodene i treet
- Hvis v er en node i et AVL-tre, så gir
 - v.element dataen som er lagret i noden
 - v.left venstre barn av v
 - v.right høyre barn av v
 - v.height høyden til v
- Husk at høyden til et tomt tre er definert som -1
 - og at høyden til en node er én mer enn sitt høyeste subtre
- Ved innsetting og sletting må vi vedlikeholde høydene
- Vi antar at vi har en prosedyre Height som:
 - returnerer −1 dersom den får null som input
 - returnerer v.height for alle noder v

Overordnet idé

- Vi bruker metodene for sletting og innsetting fra ordinære binære søketrær
- Etter operasjonen er utført, balanserer vi hver node lokalt fra der operasjonen ble utført og opp til roten (hvis det er nødvendig)
 - Vi balanserer når høydeforskjellen mellom venstre og høyre subtre er mer enn 1
- For å balansere en node, vil vi anvende rotasjoner
- Underveis må vi passe på å oppdatere høydene
- Husk at AVL innsetting og sletting bare fungerer på AVL-trær!
 - Altså kan vi anta at treet ikke har høydeforskjeller større enn 1
 - Ved én innsetting eller sletting i et AVL-tre vil vi bare forårsake en midlertidig høydeforskjell på 2

Rotasjoner – venstrerotasjon

ALGORITHM: VENSTREROTASJON AV ET BINÆRTRE

```
Input: En node z
Output: Roter treet til venstre, slik at y blir den nye roten

Procedure LeftRotate(z)

y \leftarrow z.right

T_1 \leftarrow y.left

y.left \leftarrow z
z.right \leftarrow T_1

z.height \leftarrow 1 + \text{Max}(\text{Height}(z.\text{left}), \text{Height}(z.\text{right}))
y.height \leftarrow 1 + \text{Max}(\text{Height}(y.\text{left}), \text{Height}(y.\text{right}))
```

return v

8

Rotasjoner – høyrerotasjon

ALGORITHM: HØYREROTASJON AV ET BINÆRTRE

```
Input: En node z
Output: Roter treet til høyre, slik at y blir den nye roten

Procedure RightRotate(z)

y \leftarrow z.left

T_2 \leftarrow y.right

y.right \leftarrow z
z.left \leftarrow T_2

z.height \leftarrow 1 + \text{Max}(\text{Height}(z.\text{left}), \text{Height}(z.\text{right}))
y.height \leftarrow 1 + \text{Max}(\text{Height}(y.\text{left}), \text{Height}(y.\text{right}))}

return y
```

Rotasjoner – doble rotasjoner

Rotasjoner – doble rotasjoner

Balansefaktor

ALGORITHM: BALANSEFAKTOREN AV EN NODE

```
Input: En node v
Output: Returner høydeforskjellen på v sitt venstre- og høyrebarn
Procedure BalanceFactor(v)
if v = null then
return 0
return Height(v.left) - Height(v.right)
```

- En hjelpeprosedyre som sier hvor vestre- eller høyretungt *v* er
- 0 betyr at *v* er balansert
- Et positivt tall betyr at treet er venstretungt
- Et negativt tall betyr at treet er høyretungt

Balansering

ALGORITHM: BALANSERING AV ET AVL-TRE Input: En node v Output: En balansert node Procedure Balance(v) if BalanceFactor(v) < -1 then if BalanceFactor(v.right) > 0 then v.right = RightRotate(v.right) return LeftRotate(v) if BalanceFactor(v) > 1 then if BalanceFactor(v.left) < 0 then v.left = LeftRotate(v.left) return RightRotate(v) return v

Innsetting

ALGORITHM: INNSETTING I ET AVL-TRE

```
Input: En node v og et element x
Output: En oppdatert node v der en node som inneholder x er en etterkommer av v

Procedure Insert(v, x)

if v = null then

v ← new Node(x)

else if x < v.element then

v.left ← Insert(v.left, x)

else if x > v.element then

v.right ← Insert(v.right, x)

v.height ← 1 + Max(Height(v.left), Height(v.right))

return Balance(v)
```

Sletting

ALGORITHM: SLETTING I ET AVL-TRE

```
Input: En node v og et element x
  Output: Dersom \times forekommer i en node u som en etterkommer av v, fjern u.
1 Procedure Remove(v, x)
       if v = \text{null then}
            return null
       if x < v.element then</pre>
            v.left \leftarrow Remove(v.left, x)
       else if x > v.element then
            v.right \leftarrow Remove(v.right, x)
       else if vleft = null then
            v \leftarrow v.right
       else if v.right = null then
10
            v \leftarrow v \cdot left
11
       else
12
            u \leftarrow FindMin(v.right)
13
            v.element \leftarrow u.element
14
            v.right ← Remove(v.right, u.element)
15
       v.height \leftarrow 1 + Max(Height(v.left), Height(v.right))
16
       return Balance(v)
17
```


Rød-svarte trær

- Rød-svarte trær er, i likhet med AVL-trær, balanserte binære søketrær
- Likhetene mellom rød-svarte- og AVL-trær er:
 - De er begge selvbalanserende binære søketrær
 - De har begge O(log(n)) på innsetting, sletting og oppslag
 - De anvender begge rotasjoner for å bevare et krav om balanse
- De store forskjellene mellom rød-svarte- og AVL-trær er:
 - Rød-svarte trær har svakere krav om balanse enn AVL-trær
 - Rød-svarte trær bruker mindre minne, siden vi ikke trenger å lagre høydene
 - Rød-svarte trær bruker færre rotasjoner

HVEM ER BEST!?

- Rød-svarte trær er raskere enn AVL-trær når innsetting og sletting forekommer ofte, til sammenligning med oppslag
 - Dette er fordi rød-svarte trær trenger færre rotasjoner
- AVL-trær er raskere enn rød-svarte trær når oppslag forekommer ofte, til sammenligning med innsetting og sletting
 - Dette er fordi AVL-trær er mer balanserte

Invarianter for rød-svarte trær

- 1. Hver node fargelegges *rød* eller *svart* (derav navnet)
- 2. Roten til treet er svart
- 3. En rød node kan ikke ha et rødt barn
- 4. Hver gren fra roten til et tomt tre (eller **null**) inneholder *like mange svarte noder*

Intuisjon

- Verste tilfellet (med hensyn til balanse) for et rødsvart tre er at vi har
 - en gren med bare svarte noder
 - en annen gren med annenhver svarte og røde noder
- Da har vi en gren som er dobbelt så lang som en annen!
 - Men dobbelt så langt er ikke så mye lenger
 - Så vi bevarer $\mathcal{O}(\log(n))$ på innsetting, sletting og oppslag