1

0.1 Exercices chapitre 7 : statistiques à deux variables

Exercice 1. Le tableau suivant donne l'évolution des ventes de lait, en hectolitres, dans une région pendant cinq années consécutives.

Rang de l'année : x_i	1	2	3	4	5
Volume des ventes en hectolitres : y_i	114671	114772	114394	115621	116321

- 1. Déterminer à l'aide de la calculatrice, par la méthode des moindres carrés, une équation de la droite de régression de y en x sous la forme y = ax + b. Les coefficients a et b sont à arrondir à 10^{-1} .
- A l'aide de l'équation précédente, estimer le volume des ventes l'année de rang 6. Arrondir à l'unité.

Exercice 2. Le tableau suivant donne l'évolution du nombre de clients d'une entreprise de vente par internet pendant cinq années consécutives.

Rang de l'année : x_i	1	2	3	4	5
Nombre de clients : y_i	2463	5817	11210	20620	34900

- 1. Déterminer à l'aide de la calculatrice, par la méthode des moindres carrés, une équation de la droite de régression de y en x sous la forme y = ax + b. Les coefficients a et b sont à arrondir à 10^{-1} .
- 2. A l'aide de l'équation précédente, estimer le volume des ventes l'année de rang 7. Arrondir à l'unité.

Exercice 3. Le tableau suivant donne les résultats obtenues à partir de 10 essais de laboratoire concernant la charge de rupture d'un acier en fonction de sa teneur en carbone.

Teneur en carbone : x_i	70	60	68	64	66	64	62	70	74	62
Charge de rupture (en kg) : y_i	87	71	79	74	79	80	75	86	95	70

- 1. Représenter graphiquement le nuage de points de coordonnées $(x_i; y_i)$. On prendra en abscisse 1 carreau pour une unité en représentant les abscisses à partir de la valeur 60. On prendra en ordonnées 1 carreau pour 2kg, en représentant les ordonnées à partir de 70.
- 2. Calculer les coordonnées du point moyen de ce nuage.
- 3. Déterminer la valeur approchée (arrondie à 10^{-3}) du coefficient de corrélation linéaire de la série statistique de variables x et y.
- 4. Déterminer à l'aide de la calculatrice, par la méthode des moindres carrés, une équation de la droite de régression \mathcal{D} de y en x sous la forme y=ax+b. Les coefficients a et b sont à arrondir à 10^{-3} .
- 5. Tracer la droite \mathcal{D} sur le graphique.
- 6. Un acier a une teneur en carbone de 77. Donner une estimation de sa charge de rupture.

Exercice 4. On donne une série statistique double dans le tableau suivant.

x_i	1	3	4	6	8	9	11	14
y_i	1	2	4	4	5	7	8	9

- 1. Déterminer les coordonnées du point moyen.
- 2. (a) Déterminer à l'aide de la calculatrice, par la méthode des moindres carrés, une équation de la droite de régression \mathcal{D} de y en x sous la forme y = ax + b. Les coefficients a et b sont à arrondir à 10^{-2} .
 - (b) A l'aide de l'équation précédente, estimer la valeur de y pour x=12. Arrondir à l'unité.
- 3. (a) Déterminer à l'aide de la calculatrice, par la méthode des moindres carrés, une équation de la droite de régression \mathcal{D}' de x en y sous la forme x = a'y + b'. Les coefficients a' et b' sont à arrondir à 10^{-2} .
 - (b) A l'aide de l'équation précédente, estimer la valeur de x pour y = 10. Arrondir à l'unité.
 - (c) A l'aide de l'équation de \mathcal{D}' , obtenir une expression de y en fonction de x sous la forme y = mx + p. Arrondir m et p à 10^{-3} . Obtient-on la même équation que la droite \mathcal{D} ?

Exercice 5. Dans cet exercice, tous les résultats seront données par leur valeur approchée arrondie à 10^{-3} .

On a étudié la durée de vie d'un certain nombre d'équipement mécaniques identiques. Dans le tableau suivant, t_i , représente la durée de vie (exprimée en heures) et $R(t_i)$ est le pourcentage d'équipements encore en service à la date t_i . Par exemple, pour $t_i = 100$, il reste 80% des équipements en service puisque $R(t_i) = 0,80$.

t_i	100	200	300	400	500	600	750	1000	1500
$R(t_i)$	0,80	0,64	0,52	0,40	0,32	0,28	0,20	0,12	0,04

- 1. Représenter graphiquement le nuage de points de coordonnées $(t_i; R(t_i))$ dans un repère. Quelle forme prend le nuage de points? Est-ce pertinent de faire de la régression linéaire? Calculer tout de même le coefficient de corrélation linéaire de cette série.
- 2. Posons $y_i = \ln R(t_i)$ (on ne conservera que 2 chiffres après la virgule). Représenter graphiquement le nuage de points de coordonnées $(t_i; y_i)$ dans un repère. Comparer avec la question précédente.
- 3. Calculer le coefficient linéaire de la série statistique de variable t et y et comparer avec celui obtenu à la première question.
- 4. Déterminer à l'aide de la calculatrice, par la méthode des moindres carrés, une équation de la droite de régression \mathcal{D} de y en t sous la forme y=at+b.
- 5. En déduire qu'il existe deux nombres réels positifs k et λ tels que, pour tout élément $t \in [100; 1\,500]\ R(t) = ke^{-\lambda t}$.
- 6. Dans cette équation, on prend k = 1 et $\lambda = 0,002$. Déterminer le pourcentage d'équipement encore au service au bout de 900 heures de fonctionnement.

Exercice 6. La bibliothèque du comité d'entreprise d'une grande société a établi le bilan de ses activités pour les quatre dernières années. Le tableau suivant donne (en milliers) pour chaque année :

- l'augmentation du nombre des prêts de livres x_i ;
- le nombre de nouveau lecteurs inscrits : y_i ;
- le nombre de nouveautés achetées : z_i .

Rang de l'année	1	2	3	4
x_i	3	7	1	5
y_i	0,3	1,4	0,1	0,4
z_i	0,9	3,2	2,1	2,8

- 1. Représenter graphiquement le nuage de points de coordonnées $(x_i; y_i)$. Dans un repère distinct, représenter graphiquement le nuage de points de coordonnées $(x_i; z_i)$. Pour chacun des graphiques, prendre un repère orthnoromé, d'unité 2 carreau.
- 2. Déterminer la valeur approchée (arrondie à 10^{-3}) du coefficient de corrélation linéaire de chacune des deux séries statistiques.
- 3. Que peut-on en conclure?