Álgebra Lineal I

Tarea 01

Profesor: Rivera Torres Francisco de Jesús Ayudante: Samayoa Donado Víctor Augusto

Febrero 01, 2020

- 1. ¿Es verdadera o falsa cada una de las siguientes afirmaciones acerca de cualquier espacio vectorial V? Justifica tu respuesta.
 - (a) Si para algún vector $x \in V$ se cumple que ax = bx, entonces se tiene que a = b.
 - (b) Si para todo escalar a se cumple que ax = ay con $x, y \in V$, entonces x = y.
- 2. Sea V un espacio vectorial sobre un campo K. Demuestre que:
 - (a) El neutro aditivo en V es único.
 - (b) Para cada vector $x \in V$ su invierso aditivo es único.
- 3. Sean V un espacio vectorial, $x, y \in V$ y $a, b \in K$. Demuestre que (a+b)(x+y) = ax + ay + bx + by.
- 4. Demuestre que el conjunto de las funciones pares en \mathbb{R} :

$$\mathscr{E}(\mathbb{R}, \mathbb{R}) = \{ f : \mathbb{R} \longrightarrow \mathbb{R} | f(x) = f(-x), \forall x \in \mathbb{R} \}$$

junto con la suma de funciones y el producto por escalar usuales forman un espacio vectorial.

¿Qué se puede decir del conjunto de las funciones impares, forman o no un espacio vectorial? Justifique su respuesta.

- 5. Considere el espacio vectorial $\mathscr{F}(S,\mathbb{R})$ y $f,g,h\in\mathscr{F}(S,\mathbb{R})$ definidos como $f(s)=2s+1,g(s)=1+4s-2s^2$ y $h(t)=5^t+1.$
 - (a) Demuestre que las tres funciones son diferentes cuando $S = \mathbb{R}$.
 - (b) Demuestre que f = g y f + g = h cuando $S = \{0, 1\}$
- 6. Demuestre o de un contraejemplo para las siguinetes afirmaciones:

- (a) La intersección de dos subespacioes vectoriales es un subespacio vectorial
- (b) La suma de dos subespacios vectoriales forma un subespacio vectorial.
- (c) La suma de dos subconjuntos de un espacio vectorial siempre es un subespacio vectorial
- (d) El conjunto $\{f \in \mathcal{E} | f(1) = 1\}$ es un subespacio vectorial de \mathcal{E} .
- 7. ¿Es posible expresar al vector (5,1,-5) como combinación lineal de elementos en $S = \{(1,-2,-3),(-2,3,-4)\}.$
- 8. ¿Es el vector $6x^3 3x^2 + x + 2$ una combinación lineal de los vectores $x^3 x^2 + 2x + 3$ y $2x^3 3x + 3$. (Recuerde que los polinomios $\mathbb{P}[x]$ forman un espacio vectorial sobre \mathbb{R} con la suma y producto por un escalar usuales).
- 9. Considera el espacio vectorial de las matrices simétricas de 2×2 . Exhiba una base para este espacio vectorial y justifique su respuesta.
- 10. Sean V un espacio vectorial y $S, T \subset V$ tales que $S \subseteq T$. Si S es linealmente independiente ξ es T linealmente independiente?
- 11. Sean V un espacio vectorial y $S,T\subset V$ tales que $S\subseteq T$. Si T es linealmente dependiente ; es S linealmente dependiente?
- 12. Sean V un espacio vectorial y $x, y \in V$. Demuestre que el conjunto $\{x, y\}$ es un conjunto linealmente dependiente si y sólo si uno es múltiplo del otro.
- 13. Considere espacios vectoriales V y W sobre un campo K y una transformación lineal $T:V\longrightarrow W$. Demuestre que:
 - (a) $T(0_v) = 0_w$.
 - (b) T es una transformación lineal si y sólo si T(ax + y) = aT(x) + T(y) para cualesquiera $x, y \in V$ y $a \in K$.
 - (c) Para cualesquiera $x, y \in V$ se cumple que T(x-y) = T(x) T(y).
 - (d) T es una transformación lineal si y sólo si $T\left(\sum_{i=1}^{n}a_{i}x_{i}\right)=\sum_{i=1}^{n}a_{i}T(x_{i})$, para cualesquiera $x_{1},\ldots,x_{n}\in V$ y $a_{1},\ldots,a_{n}\in K$.