DSP IC Final Project FIR Filter optimization 111061642 王煒翔

1. 介紹

在作業 4 中,我設計的 FIR 為 32-Tap Transposed Form, critical path 為一個加法器跟一個乘法器,以下是我下的 constraints:

CONSTRAINTS

INPUT DELAY	Clock*0.05 ns
OUTPUT DELAY	Clock*0.05 ns
WIRE LOAD MODE	Тор
INPUT DRIVE	1.5
OUTPUT LOAD	slow/CLKBUFX20/A
CONDITIONS	slow

優化方向:可以發現說我們的係數成對稱性,所以乘法器第一步可以省一半,由 於上課講到說最好的切法為 Fine-Grain 的方式,不過 RTL 做不到,所以我們切 pipeline 把 critical path 變成一個乘法器,讓我們的 clock speed 上升,但由於切 的沒有很好,導致一些效能沒有提升得很明顯,最後就是使用我在網路上找到 的 paper,Multiple Constant Multiplication(MCM) [1],去優化我們乘法的部分, 最終提升的效能會在模擬有所介紹

2. Floating Point Simulation

由於這次只有優化硬體的部分,所以在 MATLAB 上的模擬跟作業 4 的相同下圖為展示使用 matlab 所達成的濾波效果

下圖為找 input word length 的模擬,這裡的 input 訊號是加了雜訊的訊號, snr 設為 30,可看出 wordlength 到 8bit 的時候達到飽和

下圖為 mac wordlength 的模擬,注意的是這裡的 input 並沒有加雜訊,而是根據上一次模擬,找到 input wordlength 為 8 的情況下,再對 input 做一次 quantize,來去看看累加所造成的影響,也就是說這裡的 input 訊號做了兩次 quantize

最終找到的 wordlength 為 8bit 不過整數位元再加上符號位元,最終得到 input bit 為 11bit,output bit 為 22bit

3. Optimization

第一個優化方向就是切 pipeline,由上圖所示,在加法器跟乘法器中間加一個 register,但這裡注意的是,在 b31 這裡,由於這裡沒有加法器存在,所以這裡必須浪費一個 register,這是一個小缺點第二個優化方向為優化乘法,由下圖可見

係數成對稱性,可以省去一半的乘法器,接下來就是使用 MCM 的方式, MCM 就是指利用右移就是乘 2 的特性,去減少乘法器的硬體,以下是實現 的例子

 $47x=32+8+4+2+1=(2^5+2^3+2^2+2^1+1)x=(x<<5)+(x<<3)+(x<<2)+(x<<1)+x$ $103x=64+32+4+2+1=(2^6+2^5+2^2+2^1+1)x=(x<<6)+(x<<5)+(x<<5)+(x<<2)+(x<<1)+x$ 還可以實現硬體共享,進而減少數量

4. Simulation

```
Correct_Answer: 26214, OUT_DATA: 26214

Correct_Answer: -9700, OUT_DATA: -9700

Correct_Answer: -9700, OUT_DATA: -9700

Correct_Answer: -63970, OUT_DATA: -63970

Correct_Answer: -63970, OUT_DATA: -9700

Correct_Answer: -9700, OUT_DATA: -9700

Correct_Answer: -9900

Correct_Answer: -9900

Correct_Answer: -9900

Correct_Answer: -9900

Correct_A
```

本次使用的模擬為 vcs, 合成使用 Synopsys, 使用 TSMC 90nm 製成, 均會在檔案中附上 log 檔, 以方便檢視

上圖的模擬是 gate-level 的模擬,看的出來合成出來的結果相符,以下是 performance 比較

FIR BEFORE (使用 TSMC 90NM 進行合成)

CLOCK SPEED (PERIOD)	5.16ns
THROUGHPUT	1 signal/clock cycle
AREA	24885.100363
NUMBER OF COMBINATIONAL CELLS	1850
NUMBER OF SEQUENTIAL CELLS	707
PWOER	2.3162 mW

FIR AFTER (使用 TSMC 90NM 進行合成)

	- 11 11 11 11 11 11 11 11 11 11 11 11 11
CLOCK SPEED (PERIOD)	4.58ns
THROUGHPUT	1 signal/clock cycle
AREA	27344.821954
NUMBER OF COMBINATIONAL CELLS	1793
NUMBER OF SEQUENTIAL CELLS	856
PWOER	2.7764 mW

Clock speed 提升了 12%, 並且對比在同樣速度下的 power, 可以發現 power 還是比原來的高,原因是因為 pipeline 沒有切得很好, 導致 register 大幅增加, speed 沒有跟 register 數量成線性增加,所以會造成 power 變高,也可以發現,因為切 pipeline 後, area 上升,但因為係數對稱性,乘法器少一半,以及使用MCM 方法,組合電路比之前的少,但又因為切 pipeline 的關係, register 數量增加,導致 sequential 數量變多,但可以發現,總 cell 數比優化前的多

5. Conclusion

可以發現,此次優化 clock speed 提升 12%,但捨棄的是 power 跟 area 的上升,原因是因為 pipeline 沒有切得很好,造成 power 跟 area 沒有成線性的優化

6. Reference

[1] Optimization Of Fir Filters Using Mcm And Cse Techniques Pankaj Gupta, Mandeep Kaur