

Übungen zur Einführung in die Differentialgeometrie (Sommersemester 2024)

Prof. Dr. Madeleine Jotz*
Dr. Spyridon Kakaroumpas[†]

Übungsblatt 1

15.04.2024

Präsenzaufgabe 1-1:

Sei $F: \mathbb{R}^2 \to \mathbb{R}^2$ eine Isometrie der euklidischen Ebene \mathbb{R}^2 , die keine Translation ist. Beweisen Sie folgende Aussagen:

- (a) Ist F orientierungserhaltend, so existiert genau ein Punkt $p \in \mathbb{R}^2$ mit F(p) = p. Ferner ist F eine Drehung um p.
- (b) Ist F orientierungsumkehrend, so gilt genau eines von beiden:
 - (1) Es existiert genau eine Gerade $g \subseteq \mathbb{R}^2$, sodass F eine Spiegelung an g ist.
 - (2) Es existiert eine Gerade $g \subseteq \mathbb{R}^2$ derart, dass F eine Spiegelung an g, gefolgt von einer Translation um einen vom Nullvektor verschiedenen Vektor ist, der parallel zur Gerade g ist. (Man spricht in dem Fall von einer Gleitspiegelung an g.) Ferner ist g die einzige Gerade auf dem \mathbb{R}^2 mit F(g) = g.

Präsenzaufgabe 1-2:

Sei $F: \mathbb{R}^3 \to \mathbb{R}^3$ eine orientierungserhaltende Isometrie des euklidischen dreidimensionalen Raums \mathbb{R}^3 , die keine Translation ist. Zeigen Sie, dass genau eines von beiden gilt:

(a) Es existiert genau eine Gerade (*Drehachse*) $g \subseteq \mathbb{R}^3$, sodass F eine Drehung um g ist.

^{*}madeleine.jotz@uni-wuerzburg.de

[†]spyridon.kakaroumpas@uni-wuerzburg.de

(b)	Es existiert eine Gerade $g\subseteq\mathbb{R}^3$ derart, dass F eine Drehung um g , gefolgt von einer Translation um einen vom Nullvektor verschiedenen Vektor ist, der parallel zu g ist. (Man spricht von einer Schraubung um g .) Ferner ist g die einzige Gerade im \mathbb{R}^3 mit $F(g)=g$.

Peer-Review Aufgabe 1: (Differentiation von bilinearen Abbildungen)

Seien U,V,W endlich-dimensionale Vektorräume über $\mathbb R$ und sei $B\colon U\times V\to W$ eine $\mathbb R$ -bilineare Abbildung. Ferner sei $I\subseteq \mathbb R$ ein nicht-triviales Interval und seien $f\colon I\to U$ und $g\colon I\to V$ stetig differenzierbare Abbildungen. Betrachten Sie die Abbildung $B(f,g)\colon I\to W$, die folgendermaßen definiert ist:

$$B(f,g)(t) := B(f(t),g(t)), \quad t \in I.$$

Zeigen Sie: Die Abbildung $B(f,g):I\to W$ ist ebenfalls stetig differenzierbar, und es gilt die Produktregel

$$B(f,g)'(t) = B(f'(t),g(t)) + B(f(t),g'(t)), \quad \forall t \in I.$$

Abgabe auf WueCampus bis 22.04.2024, 10:00 Uhr.

Hausaufgabe 1-1: (Matrixdarstellung von Bilinearformen)

In dieser Aufgabe befassen wir uns mit der *Matrixdarstellung* von Bilinearformen. (Im Anhang zum Vorlesungsskript findet man einen kurzen Überblick über einige Grundlagen zu Matrizen.)

Seien V,W endlich-dimensionale Vektorräume über einem Körper K mit $\dim_K V=m>0$ und $\dim_K W=n>0$. Ferner sei $E:V\times W\to K$ eine Bilinearform.

i.) Sei $\mathcal B$ bzw. $\mathcal C$ eine (geordnete) Basis für V bzw. W. Zeigen Sie, dass es eine eindeutige $(m \times n)$ Matrix A mit Einträgen aus K gibt, sodass

$$E(v, w) = ([v]_{\mathcal{B}})^{t} A[w]_{\mathcal{C}}, \text{ für alle } v \in V \text{ und } w \in W.$$

Geben Sie explizit die Einträge von A an in Abhängigkeit von E sowie \mathcal{B} und \mathcal{C} . Wir bezeichnen $[E]_{\mathcal{B},\mathcal{C}} := A$.

ii.) Seien $\mathcal{B}_1, \mathcal{B}_2$ Basen für V und seien $\mathcal{C}_1, \mathcal{C}_2$ Basen für W. Zeigen Sie, dass

$$[E]_{\mathcal{B}_1,\mathcal{C}_1} = ([\mathrm{id}_V]_{\mathcal{B}_1}^{\mathcal{B}_2})^t [E]_{\mathcal{B}_2,\mathcal{C}_2} [\mathrm{id}_W]_{\mathcal{C}_1}^{\mathcal{C}_2}.$$

Hier bezeichne $[\mathrm{id}_V]_{\mathfrak{B}_1}^{\mathfrak{B}_2}$ bzw. $[\mathrm{id}_W]_{\mathfrak{C}_1}^{\mathfrak{C}_2}$ die Basiswechselmatrix für den Basiswechsel von \mathfrak{B}_1 nach \mathfrak{B}_2 bzw. von \mathfrak{C}_1 nach \mathfrak{C}_2 .

- iii.) Sei V = W. Sei \mathcal{B} eine Basis für V. Zeigen Sie, dass die Bilinearform $E: V \times V \to K$ genau dann symmetrisch ist (d.h. die Eigenschaft E(v, w) = E(w, v), für alle $v, w \in V$ besitzt), wenn die $(n \times n)$ -Matrix $[E]_{\mathcal{B},\mathcal{B}}$ symmetrisch ist.
- iv.) Sei $K = \mathbb{R}$ und $V = W = \mathbb{R}^n$. Ferner sei \mathcal{B} die Standardbasis für \mathbb{R}^n . Zeigen Sie, dass die Matrix $[E]_{\mathcal{B},\mathcal{B}}$ genau dann die $(n \times n)$ -Einheitsmatrix ist, wenn E mit dem üblichen (euklidischen) Skalarprodukt auf dem \mathbb{R}^n übereinstimmt.

Hausaufgabe 1-2:

Sei $I \subseteq \mathbb{R}$ ein nicht-triviales Interval und sei $r: I \to \mathbb{R}^n$ eine differenzierbare Funktion mit $r(t) \neq 0$, für alle $t \in I$, wobei n eine positive ganze Zahl ist. Zeigen Sie, dass die Funktion $||r||: I \to \mathbb{R}$, die durch

$$||r||(t) := ||r(t)||, t \in I$$

angegeben wird, ebenfalls differenzierbar ist mit

$$\frac{\mathrm{d}}{\mathrm{d}t} ||r||(t) = \frac{r(t) \cdot r'(t)}{||r(t)||}, \quad \forall t \in I.$$

Hausaufgabe 1-3:

i.) Beweisen Sie den sog. $Gra\beta mannschen Entwicklungssatz$ für das Kreuzprodukt auf dem \mathbb{R}^3 :

$$(a \times b) \times c = (a \cdot c)b - (b \cdot c)a, \quad \forall a, b, c \in \mathbb{R}^3.$$

ii.) Zeigen Sie folgende Identität:

$$(a \times b) \cdot (c \times d) = (a \cdot c)(b \cdot d) - (a \cdot d)(b \cdot c), \quad \forall a, b, c, d \in \mathbb{R}^3.$$