ECES-352 Winter 2019 Homework #9

Reading: Chapter 10 on IIR Filters

PROBLEM 9.1*:

Determine the z-transforms of the following. Express your answer as the ratio of polynomials in z^{-1} by placing all terms over a common denominator.

(a)
$$x_a[n] = 2(-0.8)^n u[n]$$
.

(b)
$$x_b[n] = 3(\frac{1}{3})^n u[n] + 3(-\frac{1}{3})^n u[n].$$

(c)
$$x_c[n] = -\delta[n] + u[n-1].$$

PROBLEM 9.2*:

Determine the inverse z-transforms of the following:

(a)
$$H_a(z) = \frac{1+z^{-2}}{1-0.8z^{-1}}$$
.

(b)
$$H_b(z) = \frac{2 - 0.8z^{-1}}{1 - 0.8z^{-1} + 0.64z^{-2}} = \frac{1}{1 - 0.8e^{j\pi/3}z^{-1}} + \frac{1}{1 - 0.8e^{-j\pi/3}z^{-1}}.$$

(c)
$$H_c(z) = \frac{0.6 + z^{-1}}{1 + 0.6z^{-1}}$$
.

PROBLEM 9.3*:

For each of the difference equations below, determine the poles and zeros of the corresponding system function, H(z). Plot the poles (X) and zeros (O) in the complex z-plane.

$$S_1$$
: $y[n] = 0.4y[n-1] + x[n] + x[n-1]$

$$S_2$$
: $y[n] = -0.75y[n-1] + x[n] - x[n-1]$

$$S_3$$
: $y[n] = -0.25y[n-2] + x[n] + x[n-2]$

$$S_4: y[n] = x[n] + \frac{3}{4}x[n-1] - \frac{1}{4}x[n-2]$$

PROBLEM 9.4*:

The system function H(z) and the impulse response h[n] are two ways to define a LTI system. Use z-transforms to answer the following:¹

- (a) Find the system function for h_a[n] = u[n] u[n 6].
 Use the z-transform of u[n] to express your answer as a ratio of polynomials in z⁻¹. Then simplify to get a polynomial in z⁻¹ (i.e., no denominator). Is this an FIR or IIR filter?
- (b) Find the system function for h_b[n] = (1/3)ⁿu[n] + (-1/3)ⁿu[n]. Express your answer as: (1) a sum of two first-order rational functions; and (2) a ratio of polynomials in z⁻¹ (one numerator over one denominator).
- (c) Determine the impulse response when the system function is: $H_c(z) = \frac{1 z^{-2}}{1 + 0.5z^{-1}}$.
- (d) Determine the impulse response when $H_d(z) = \frac{1-z^{-1}}{(1+\frac{1}{2}z^{-1})(1+0.7z^{-1})}$. Hint: write $H_d(z)$ as a sum of first-order rational functions.
- (e) Determine the impulse response when $H_{\epsilon}(z) = 1 2z^{-2} + 3z^{-4} 4z^{-6} 5z^{-8}$.

¹A rational function is the ratio of two polynomials. For example, $H(z) = \frac{1-z^{-1}+z^{-2}}{1+0.3z^{-1}+0.4z^{-2}}$.

PROBLEM 9.5*:

An LTI system has the following system function:

$$H(z) = \frac{1 + z^{-2}}{1 + 0.5z^{-1}}.$$

The following questions cover most of the ways available for analyzing IIR discrete-time systems.

- (a) Plot the poles and zeros of H(z) in the z-plane.
- (b) Determine the difference equation that is satisfied by the general input x[n] and the corresponding output y[n] of the system.
- (c) Use z-transforms to determine the impulse response h[n] of the system; i.e., the output of the system when the input is x[n] = δ[n].
- (d) Determine an expression for the frequency response $H(e^{j\hat{\omega}})$ of the system.
- (e) Use the frequency response function to determine the output $y_1[n]$ of the system when the input is

$$x_1[n] = 2\cos(0.5\pi n) \qquad -\infty < n < \infty.$$

(f) Use the z-transform to determine the output y₂[n] when the input is

$$x_2[n] = 2\cos(0.5\pi n)u[n].$$

PROBLEM 9.6:

This problem has been given before on exams. It is a good review.

For each of the impulse-response plots (J, K, L, M, N, O), determine which one of the following systems² (specified by either an H(z) or a difference equation) matches the impulse response. In addition, derive a formula for the impulse response, h[n], for S_1 and S_4 .

$$S_1: y[n] = 0.4y[n-1] + x[n] + x[n-1]$$

$$\mathcal{S}_2: \qquad H(z) = \frac{1+z^{-1}}{1-0.75z^{-1}}$$

$$S_3: y[n] = -0.75y[n-1] + x[n] - x[n-1]$$

$$S_4$$
: $H(z) = \frac{1 - z^{-1}}{1 - 0.75z^{-1}}$

$$S_5: y[n] = x[n] - x[n-1] + x[n-2]$$

$$\mathcal{S}_6: \qquad H(z) = 1 - z^{-1} + z^{-2} - z^{-3}$$

$$S_7: y[n] = x[n] + \frac{1}{4}x[n-1] - \frac{3}{4}x[n-2]$$

$$S_8: H(z) = \frac{1}{3}(1-z^{-1})^3$$

 $^{^2}$ These 8 systems are exactly the same as for the next problem.

PROBLEM 9.7:

This problem has also been given before on exams. It is a good review.

For each of the frequency response plots (A, B, C, D, E, F), determine which one of the following systems (specified by either an H(z) or a difference equation) matches the frequency response (magnitude only) and write an expression for the magnitude of the frequency response. NOTE: the frequency axis is <u>normalized</u>; it is $\hat{\omega}/\pi$.

$$S_1$$
: $y[n] = 0.4y[n-1] + x[n] + x[n-1]$

$$S_2: H(z) = \frac{1+z^{-1}}{1-0.75z^{-1}}$$

$$S_3$$
: $y[n] = -0.75y[n-1] + x[n] - x[n-1]$

$$\mathcal{S}_4: \quad \ H(z) = \frac{1-z^{-1}}{1-0.75z^{-1}}$$

$$\mathcal{S}_5: \qquad y[n] = x[n] - x[n-1] + x[n-2]$$

$$S_6$$
: $H(z) = 1 - z^{-1} + z^{-2} - z^{-3}$

$$S_7: y[n] = x[n] + \frac{1}{4}x[n-1] - \frac{3}{4}x[n-2]$$

$$S_8: H(z) = \frac{1}{3}(1-z^{-1})^3$$