

Vilniaus universitetas

Atliko:

Darbo vadovas: Dr. Saulius Minkevičius

Lukas Milašauskas

Pagrindiniai komunikavimo integracijų mikroservisų architektūrose tipai ir jų analizė

Vilniaus universitetas

PROBLEMA

Kokį integracijų tipą rinktis mikroservisų architektūrose, norint įgyvendinti komunikaciją tarp skirtingų tarnybų (angl. "service")?

DARBO TIKSLAS

Palyginti skirtingus komunikacijų tipus, apžvelgti jų pranašumus ir trūkumus. Pateikti situacijų, kur vieni tipai yra pranašesni už kitus, pavyzdžių ir technologijų, šiems tipams realizuoti.

UŽDAVINIAI TIKSLUI PASIEKTI

- 1. Remiantis literatūra apibūdinti, kas yra mikroservisai, kuo jie ypatingi, kaip jie projektuojami.
- 2. Išskirti pagrindinius integracijų ir komunikavimo tipus ir jų savybes.
- 3. Palyginti skirtingus komunikavimo būdus mikroservisų architektūrose.
- 4. Pateikti konkrečius komunikavimo integracijų ir technologijų pavyzdžius.
- 5. Pateikti rekomendacijas, kokiais atvejais, kokius tipus būtų geriau naudoti.

MIKROSERVISŲ SISTEMOS VIDINIŲ INTEGRACIJŲ TIPAI

- 1. Tarnybų jungimas per duomenų bazę
- 2. Sinchroninės užklausos/atsakymo (angl. "request/response") integracijos.
- 3. Asinchroninės įvykiais paremtos (angl. "event-based") integracijos.

KOMUNIKAVIMAS PER DUOMENŲ BAZĘ

MODELINĖ SITUACIJA

Egzistuoja universiteto informacinė sistema, kuri yra suprojektuota mikroservisų architektūriniu stiliumi.

Šioje sistemoje yra atskiros tarnybos:

- studentų resursų tarnyba
- dokumentų generavimo tarnyba
- elektroninių laiškų siuntimo tarnyba
- tvarkaraščių tarnyba

Pastaba: be šių tarnybų sistema turėtų turėti ir kitos paskirties mikroservisų.

SINCHRONINĖS (ANGL. "SYNCHRONOUS") INTEGRACIJOS MODELINĖJE SITUACIJOJE

ASINCHRONINĖS (ANGL. "ASYNCHRONOUS") INTEGRACIJOS MODELINĖJE SITUACIJOJE

PALYGINIMO KRITERIJAI

- Silpnas sujungimas ir stipri sanglauda (angl. "Loose Coupling and High Cohesion")
- Efektyvumas
- Implementacijos kompleksiškumas
- Veiksmų istorija
- Įvykių sekos užtikrinimas
- Tarnybų kompozicija

Vilniaus universitetas

KOMUNIKAVIMO TIPŲ PRANAŠUMAI

Asinchroninis komunikavimas	Sinchroninis komunikavimas
Silpnas sujungimas ir stiprus sanglauda	Implementacijos kompleksiškumas
Efektyvumas	Įvykių sekos užtikrinimas
Veiksmų istorija	Tarnybų kompozicija

REZULTATAI

- 1. Remiantis šaltiniais apibūdinta, kas yra mikroservisai, kuo jie ypatingi, kaip jie projektuojami.
- 2. Išskirti pagrindiniai integracijų ir komunikavimo tipai ir jų savybės.
- 3. Remiantis šaltiniais išdėstyti trūkumai ir privalumai apibrėžtuose kriterijuose.
- 4. Palyginti skirtingi komunikavimo būdai mikroservisų architektūrose.
- 5. Pateiktos rekomendacijas ir scenarijai, kokiomis aplinkybėmis kokį tipą geriausia naudoti.

IŠVADOS

- Mikroservisų architektūrose pasirinkimas tarp skirtingų komunikavimo tipų yra labai svarbus, nes tai lemia sistemos veikimo stilių ir daug kitų aspektų.
- Sinchroninės integracijos yra paprastesnės ir legviau įgyvendinamos. Jos pranašesnės siekiant greitai gauti rezultatus, be kurių, nebūtų galima vykdyti sekančių veiksmų informacinėje sistemoje.
- Asinchroninės integracijos žymiai geriau atitinka pagrindinius mikroservisų aspektus, tokius kaip: silpnas sujungimas ir stiprus sąryšis.
- Asinchroninės integracijos yra efektyvesnės už sinchronines integracijas, dėl savo lygiagretinimo savybių.

IŠVADOS

- Asinchroninės komunikacijos gali įgyvendinti įvykiais paremtas architektūras, kuriose nereikėtų papildomų pastangų, siekiant gauti informacinės sistemos veiksmų istoriją.
- Sinchroninis komunikavimas yra sklandesnis ir paprastesnis, dėl to paliekama mažiau vietos klaidoms.
- Sinchroninis tarnybų komunikavimas suteikia lankstesnes galimybes tarnybų kompozicijai, perpanaudojimui.

Vilniaus universitetas

AČIŪ UŽ DĖMESĮ