Electrónica Digital 1

Lógica combinacional -tiempos de propagación

Ferney Alberto Beltrán Molina

Marzo 2020

Contacto

Nombre: Ferney Alberto Beltrán Molina, Ing, MSc, PhD(c)

Email: fabeltranm@unal.edu.co

oficina: Centro de Investigación e Innovación

Contenido

Recordando

ejemplo comparador 1bit

Mapas de karnaugh

Tiempos de propagación

Multiplexores / demultiplexores

Índice

Recordando

ejemplo comparador 1bit

Mapas de karnaugh

Tiempos de propagación

Multiplexores / demultiplexores

Tipos de circuitos digitales

Circuitos combinacionales

Las salidas del circuito en cada instante de tiempo dependen única de los valores de entrada. combina los valores de entrada en un intante de tiempo para calcular la salida

Circuitos secuenciales.

Las salidas del circuito secuencial dependen tanto de los valores actuales como de los anteriores de las entradas; en otras palabras, depende de la secuencia de entrada.

Tipos de circuitos digitales

Álgebra de Boole propiedades

- 1 Elemento inverso, $\overline{0} = 1$, $\overline{1} = 0$
- 2 Idempotencia, a+a=a, $a\cdot a=a$
- 3 Involución, $\overline{a} = a$
- 4 Asociatividad, a+(b+c)=(a+b)+c, $a\cdot(b.c)=(a.b).c$
- 5 Absorción, a + a.b = a, $a \cdot (a + b) = a$
- 6 (sin nombre), $a + \overline{a}b = a + b$, $a \cdot (\overline{a} + b) = a.b$
- 7 de Morgan, $(\overline{a+b}) = \overline{a}.\overline{b}, \quad \overline{a.b} = \overline{a} + \overline{b}$
- 8 de Morgan generalizada, $(\overline{a_1 + a_2 + ... + a_n}) = \overline{a_1}.\overline{a_2}...\overline{a_n}$, $\overline{a_1.a_2...a_n} = \overline{a_1} + \overline{a_2} + ... + \overline{a_n}$

Álgebra de Boole propiedades

Funciones Booleanas - Resumiendo

► DescripciónFuncional ► TabladeVerdad ► función(s)Booleana(s) ► CircuitoDigital

$$\begin{split} s &<= x_1 + y_1 + c_1; \\ \text{if } s &= 0 \text{ then } z_i <= 0; c_o = 0; \\ \text{elsif } s &= 1 \text{ then } z_i <= 1; c_o <= 0; \\ \text{elsif } s &= 2 \text{ then } z_i <= 0; c_o <= 1; \\ \text{else } z_i <= 1; c_o <= 1; \\ \text{end if;} \end{split}$$

end if;

x_i	y_i	c_i	c_o	z_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$\begin{split} c_o &= y.\,c_i + x.\,c_i + x.\,y\\ z &= \bar{x}.\,\bar{y}.\,c_i + \bar{x}.\,y.\,\bar{c_i} + x.\,\bar{y}.\,\bar{c_i} + x.\,y.\,c_i \end{split}$$

respuesta - Ejemplo BCD2SSEG

$$b = \overline{x_2} + \overline{x_1} * \overline{x_0} + x_1 * x_0$$

$$c = \overline{x_1} + x_0 + x_2$$

$$\bullet \ \mathsf{e} = \overline{x_2} * \overline{x_0} + \overline{x_0} * x_1$$

$$f = \overline{x_0} * \overline{x_1} + \overline{x_1} * x_2 + x_2 * \overline{x_0} + x_3$$

Índice

Recordando

ejemplo comparador 1bit

Mapas de karnaugh

Tiempos de propagación

Multiplexores / demultiplexores

Comparador 1bit


```
if X > Y then G <= 1;
    elsif X < Y then L <= 1;
    else E <= 1;
    end if;
end if;</pre>
```

Comparador 1bit

Comparador 1bit

Comparador 1bit resultado de G_i

G_{i+I}	L_{i+1}	x_i	y_i	G_i	L_i
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	х	х	0	1
1	0	х	х	1	0
1	1	х	х	х	х

Comparador 1bit resultado de L_i

G_{i+1}	L_{i+1}	x_i	y_i	G_i	L_i
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	х	х	0	1
1	0	х	х	1	0
1	1	х	х	х	х

Comparador 1bit puertas lógicas

Índice

Recordando

ejemplo comparador 1bit

Mapas de karnaugh

Tiempos de propagación

Multiplexores / demultiplexores

Gi	Li	Xi	Xo	Yi	Yo	Go	Lo
0	0	0	0	0	0	0	0
0	0	0	0	1	х	0	1
0	0	0	0	х	1	0	1
0	0	0	1	0	0	1	0
0	0	0	1	0	1	0	0
0	0	0	1	1	х	0	1
0	0	1	0	0	х	1	0
0	0	1	0	1	0	0	0
0	0	1	0	1	1	0	1
0	0	1	1	0	х	1	0
0	0	1	1	х	0	1	0
0	0	1	1	1	1	0	0
0	1	х	х	х	х	0	1
1	0	х	х	х	х	1	0
1	1	v	v	v	v	v	v

Gi	Li	Xi	Xo	Yi	Yo	Go	Lo
0	0	0	0	0	0	0	0
0	0	0	0	1	х	0	1
0	0	0	0	х	1	0	1
0	0	0	1	0	0	1	0
0	0	0	1	0	1	0	0
0	0	0	1	1	х	0	1
0	0	1	0	0	х	1	0
0	0	1	0	1	0	0	0
0	0	1	0	1	1	0	1
0	0	1	1	0	х	1	0
0	0	1	1	х	0	1	0
0	0	1	1	1	1	0	0
0	1	х	х	х	Х	0	1
1	0	х	х	х	х	1	0
1	1	х	х	х	Х	Х	х

G		Хо	0	0	0	0	1	1	1	1	
		Υi	0	0	1	1	1	1	0	0	
			Yο	0	1	1	0	0	1	1	0
Gi	Ξ	Χi									
0	0	0									1
0	0	1		1	1			1		1	1
0	1	1									
0	1	0									
1	1	0		X	X	х	х	X	X	X	X
1	1	1		X	X	X	х	X	X	X	X
1	0	1		1	1	1	1	1	1	1	1
1	0	0		1	1	1	1	1	1	1	1

_		Хо	0	0	0	0	1	1	1	1	
G			Υi	0	0	1	1	1	1	0	0
			Yο	0	1	1	0	0	1	1	0
Gi	Li	Χi									
0	0	0									1
0	0	1		1	1			1		1	1
0	1	1									
0	1	0									
1	1	0		X	х	х	х	х	X	х	X
1	1	1		X	X	х	Х	х	X	х	x
1	0	1		1	1	1	1	1	1	1	1
1	0	0		1	1	1	1	1	1	1	1

	_		Χo	0	0	0	0	1	1	1	1
	G			0	0	1	1	1	1	0	0
			Υo	0	1	1	0	0	1	1	0
Gi	Li	Χi									
0	0	0									1
0	0	1		1	1			1		1	1
0	1	1									
0	1	0									
1	1	0		X	Х	х	х	х	Х	Х	Х
1	1	1		X	X	X	х	Х	X	X	X
1	0	1		1	1	1	1	1	1	1	1
1	0	0		1	1	1	1	1	1	1	1

$$G_o =$$

L			Χo	0	0	0	0	1	1	1	1
			Yi	0	0	1	1	1	1	0	0
			Υo	0	1	1	0	0	1	1	0
Gi	Li	Χi									
0	0	0			1	1	1	1	1		
0	0	1				1					
0	1	1		1	1	1	1	1	1	1	1
0	1	0		1	1	1	1	1	1	1	1
1	1	0		X	X	Х	X	X	X	X	X
1	1	1		Х	X	Х	X	X	X	X	X
1	0	1									
1	0	0									

$$L_o =$$

Resultado

Comparativa de puertas

Número de puertas por cada implementación

Comparador de 1 bit

Comparador de 2 bit

mapas K - Ejemplo BCD2SSEG

comparativa de tiempos

Tiempo de propagación en cada implementación ?

Comparador de 1 bit

Comparador de 2 bit

Índice

Recordando

ejemplo comparador 1bit

Mapas de karnaugh

Tiempos de propagación

Multiplexores / demultiplexores

Tiempos de propagación

El tiempo de propagación es el tiempo que tarda un cambio en una entrada de una puerta para verse reflejado a la salida.

- 1. El retraso generalmente se mide al 50 % con respecto a los niveles de voltaje de salida H y L.
- 2. La señal de salida de alto a bajo (t_{PLH}) y de bajo a alto (t_{PLH}) . los cambios pueden tener diferentes retrasos de propagación.
- 3. Los cambio de alto a bajo (HL) y de bajo a alto (LH) son definido con respecto a la salida, no a la entrada.

Ejercicio: Tiempos de propagación

Cuál es el tiempo de propagación de 4 inversores idénticos según la gráfica ?

Tiempos de propagación

1. Toda puerta lógica tiene un tiempo de retraso en la salida respecto a la entrada

Tiempos de propagación

comparativa de tiempos

Tiempo de propagación en cada implementación ?

Comparador de 1 bit

Comparador de 2 bit

Ejercicio

Índice

Recordando

ejemplo comparador 1bit

Mapas de karnaugh

Tiempos de propagación

Multiplexores / demultiplexores

descripción

Son una conexiones directas punto a punto entre puertas

- multiplexor Enrutar una de muchas entradas a una sola salida
- demultiplexor Enrutar una sola entrada a una de las muchas salidas

conmutación

Son una conexiones directas punto a punto entre puertas Se puede usar para hacer redes de conmutación de tamaño arbitrario: se usa para implementar interconexión de múltiples fuentes / múltiples destinos

concepto general

- 2ⁿ entradas de datos, n entradas de control (llamadas "selección"), 1 salida
- Se usa para conectar 2^n puntos a un solo punto
- El patrón de señal de control forma un índice binario de entrada conectada a la salida

concepto general

implementación con puertas

Tablas de verdad

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(A,B,C) = m0 + m2 + m6 + m7$$

$$= A'B'C' + A'BC' + ABC' + ABC$$

$$= A'B'(C') + A'B(C') + AB'(0) + AB(1)$$

Tablas de verdad

Toda función booleana puede implementarse con multiplexores 2-a-1 de 1 bit utilizando reiteradamente la siguiente regla (Ley de Shannon)

$$f(x_0, x_1, ...x_n) = \overline{x_0} * f(0, x_1, ...x_n) + x_0 * f(1, x_1, ...x_n)$$

.

Tablas de verdad

x2	x1	x0	y1 y0
0	0	0	0 0
0	0	1	0 1
0	1	0	0 1
0	1	1	1 0
1	0	0	0 1
1	0	1	1 0
1	1	0	1 0
1	1	1	1 1

look Uo Table

Decodificador/demultiplexor

- n entradas
- ightharpoonup m=2'm salidas

Decodificador/demultiplexor

$x_I x_\theta$	$y_0 y_1 y_2 y_3$	
0 0	1000	
0 1	0100	
1 0	0010	
1 1	l nn n 1 l	

$$y_0 = \bar{x}_1.\bar{x}_0 = m_0; \ y_1 = \bar{x}_1.x_0 = m_1$$

 $y_2 = x_1.\bar{x}_0 = m_2; \ y_3 = x_1.x_0 = m_3$

Decodificador con puertas lógicas

1:2 Decoders

2:4 Decoders

Bidireccional

PREGUNTAS