Section ____

Estimating Derivative of a Function

Recall there are three ways to estimate the derivative (or the rate of change) of a given function f(x) when we ONLY know a table of values of f(x). We have the:

Forward Difference formula

Backward Difference formula

Central Difference formula

Consider a particle moving on a straight line. Its displacement s(t) from a fixed point O on the straight line is given by the table of values below

	t	0	0.5	1.0	2.0	2.5	3.0	3.5
ĺ	s(t)	-4.0	-2.0	-1.0	0	1.2	1.8	2.2

a. Give all possible estimates for the instantaneous velocity at t = 0.5. State which estimate you apply.

Forward Difference Estimate:
$$\frac{f(1.0) - f(0.5)}{1.0 - 0.5} = \frac{-1.0 + 2.0}{0.5} = \frac{1.0}{0.5} = 2.0$$

Backward Difference Estimate:
$$\frac{f(0.5) - f(0)}{0.5 - 0} = \frac{-2.0 + 4.0}{0.5} = \frac{2.0}{0.5} = 4.0$$

Central Difference Estimate:
$$\frac{f(1.0) - f(0)}{1.0 - 0} = \frac{-1.0 + 4.0}{1.0} = 3.0$$

Caution: Note that the Central Difference Estimate is only the average of the forwards and backwards estimates if your time intervals are evenly spaced.

b. Give all possible estimates for the instantaneous velocity at t = 3.5. How does your conclusion differ from Part (a).

Backwards Difference Estimate:
$$\frac{f(3.5) - f(3)}{3.5 - 3} = \frac{2.2 - 1.8}{0.5} = \frac{0.4}{0.5} = 0.8$$

We can't make every estimate in this case because we have no values of s(t) in the table for t > 3.5. These values are needed to make a Forward Difference Estimate and a Central Difference Estimate.

c. Give all possible estimates for the instantaneous velocity at t = 0. How does your conclusion differ from Parts (a) and (b).

Forward Difference Estimate:
$$\frac{f(0.5) - f(0)}{0.5 - 0} = \frac{-2.0 + 4.0}{0.5} = \frac{2.0}{0.5} = 4.0$$

Note this is the same as the Backward Difference Estimate we used for t = 0.5. We can't make Backward or Central Estimates in this case because we have no data for t < 0.

Section

- 1. The graph of the function g(x) is given above.
- (a) What is the value of g(3)? Answer: g(3)=2
- (b) What is the **instantaneous** rate of change of g(x) at x = 3? Answer: g'(3) = -1 (Simply find the slope of the tangent line drawn in the picture.)
- (c) Find the slope of the graph of $f(x) = \frac{e^{g(x)-2}}{x+1}$ at x=3.

Solution: We first compute f'(x), noting that we need to apply both quotient rule and chain rule.

$$f'(x) = \frac{(x+1)e^{g(x)-2}g'(x) - e^{g(x)-2} \cdot 1}{(x+1)^2}$$

Next, we plug in x = 3 and use our answers from parts (a) and (b) to find f'(3):

$$f'(3) = \frac{4e^{g(3)-2}g'(3) - e^{g(3)-2} \cdot 1}{(4)^2}$$
$$= \frac{4e^0 \cdot (-1) - e^0 \cdot 1}{16}$$
$$= -\frac{5}{16}.$$

Section

2. Consider a particle P moving **counterclockwise** around the ellipse

$$x^2 + 4y^2 = 5.$$

Fill in below the sign (> 0 or < 0) of $\frac{dx}{dt}$ and $\frac{dy}{dt}$ in quadrants of the xy-plane.

2a.
$$\frac{dx}{dt}$$
 < **0** and $\frac{dy}{dt}$ > **0** when P is in Quadrant I.

2b.
$$\frac{dx}{dt} < \mathbf{0}$$
 and $\frac{dy}{dt} < \mathbf{0}$ when P is in Quadrant II.

2c.
$$\frac{dx}{dt} \ge \mathbf{0}$$
 and $\frac{dy}{dt} \le \mathbf{0}$ when P is in Quadrant III.

2d.
$$\frac{dx}{dt} > \mathbf{0}$$
 and $\frac{dy}{dt} > \mathbf{0}$ when P is in Quadrant IV.

2e. For the same Particle P above, find $\frac{dx}{dt}$ at (1,-1) if $\frac{dy}{dt}=2$ units per second.

Solution: Remember that x and y are both functions of t. To stress this point, we can rewrite the equation of our ellipse as $(x(t))^2 + 4(y(t))^2 = 5$. We take the derivative of both sides with respect to t:

$$\frac{d}{dt} \left[(x(t))^2 + 4(y(t))^2 \right] = \frac{d}{dt} [5]$$
$$2x \cdot \frac{dx}{dt} + 8y \cdot \frac{dy}{dt} = 0$$
$$x \cdot \frac{dx}{dt} + 4y \cdot \frac{dy}{dt} = 0$$

We plug in the values x = 1, y = -1, and $\frac{dy}{dt} = 2$, and solve for $\frac{dx}{dt}$.

$$1 \cdot \frac{dx}{dt} + 4(-1)(2) = 0 \Rightarrow \boxed{\frac{dx}{dt} = 8 \text{ units/second}}$$

Name		
	Castian	

3. A huge spherical snowball is melting such that its radius is **reducing** at a constant rate of 2 cm per minute. At what rate is the volume changing at the instant when the radius of the snowball is 10 cm? (You may leave your answers in terms of π and use the formula $V = \frac{4}{3}\pi r^3$.)

Solution: We need to find $\frac{dV}{dt}$ when the radius r=10 cm. We are given that the radius is decreasing at a (constant) rate of 2 cm per minute, that is, $\frac{dr}{dt}=-2$ cm/min. We take the derivative of $V=\frac{4}{3}\pi r^3$ with respect to time.

$$\frac{dV}{dt} = 4\pi r^2 \cdot \frac{dr}{dt}$$

Finally, we evaluate the above when r = 10.

$$\frac{dV}{dt}\Big|_{r=10} = 4\pi (10 \text{ cm})^2 \cdot (-2\text{cm/min})$$
$$= \boxed{-800\pi \text{ cm}^3/\text{min}}$$

Section

4. Consider the curve given by $x^2y^2 - x^4 = 6e^{y-2} - 3$.

4a. Find $\frac{dy}{dx}$.

Solution: Note that now we are considering y to be a function of x. We differentiate both sides of the equation above with respect to x and then solve for $\frac{dy}{dx}$.

$$\frac{d}{dx} \left[x^2 (y(x))^2 - x^4 \right] = \frac{d}{dx} \left[6e^{y(x)-2} - 3 \right]$$

$$x^2 \cdot 2y \frac{dy}{dx} + 2xy^2 - 4x^3 = 6e^{y-2} \frac{dy}{dx}$$

$$2x^2 y \frac{dy}{dx} - 6e^{y-2} \frac{dy}{dx} = 4x^3 - 2xy^2$$

$$(2x^2 y - 6e^{y-2}) \frac{dy}{dx} = 4x^3 - 2xy^2$$

$$\frac{dy}{dx} = \frac{4x^3 - 2xy^2}{2x^2 y - 6e^{y-2}}$$

$$\frac{dy}{dx} = \frac{2x^3 - xy^2}{x^2 y - 3e^{y-2}}$$

4b. Find the equation of the tangent line to the curve given by $x^2y^2 - x^4 = 6e^{y-2} - 3$ at the point (-1,2).

Solution: We first need to find the slope of the tangent line. This is the derivative of the function at the point P = (-1, 2), that is

Slope =
$$\frac{dy}{dx} \Big|_{(-1,2)} = \frac{2(-1)^3 - (-1)(2)^2}{(-1)^2(2) - 3e^{2-2}}$$

= $\frac{-2+4}{2-3}$
= $2/(-1)$
= -2 .

Using point-slope form, we find the equation of the tangent line to the curve at the point (-1,2).

$$y - 2 = -2(x+1) = -2x - 2$$
$$y = -2x$$