MATH 390.4 / 650.2 Spring 2018 Homework #2t

Professor Adam Kapelner

Due 11:59PM Tuesday, March 6, 2018 under the door of KY604

(this document last updated Sunday $25^{\rm th}$ February, 2018 at $11:12{\rm am}$)

Instructions and Philosophy

The path to success in this class is to do many problems. Unlike other courses, exclusively doing reading(s) will not help. Coming to lecture is akin to watching workout videos; thinking about and solving problems on your own is the actual "working out." Feel free to "work out" with others; I want you to work on this in groups.

Reading is still required. For this homework set, read about all the concepts introduced in class online. This is your responsibility to supplement in-class with your own readings. There are no pop-book readings this homework so you have more time to study for the exam.

The problems below are color coded: green problems are considered *easy* and marked "[easy]"; yellow problems are considered *intermediate* and marked "[harder]", red problems are considered *difficult* and marked "[difficult]" and purple problems are extra credit. The *easy* problems are intended to be "giveaways" if you went to class. Do as much as you can of the others; I expect you to at least attempt the *difficult* problems.

This homework is worth 100 points but the point distribution will not be determined until after the due date. See syllabus for the policy on late homework.

Up to 10 points are given as a bonus if the homework is typed using LATEX. Links to instaling LATEX and program for compiling LATEX is found on the syllabus. You are encouraged to use overleaf.com. If you are handing in homework this way, read the comments in the code; there are two lines to comment out and you should replace my name with yours and write your section. The easiest way to use overleaf is to copy the raw text from hwxx.tex and preamble.tex into two new overleaf tex files with the same name. If you are asked to make drawings, you can take a picture of your handwritten drawing and insert them as figures or leave space using the "\vspace" command and draw them in after printing or attach them stapled.

The document is available with spaces for you to write your answers. If not using LATEX, print this document and write in your answers. I do not accept homeworks which are *not* on this printout. Keep this first page printed for your records.

NAME:	

Problem 1

These are questions about the SVM.

- (a) [easy] State the hypothesis set \mathcal{H} inputted into the support vector machine algorithm. Is it different than the \mathcal{H} used for $\mathcal{A}=$ perceptron learning algorithm?
- (b) [E.C.] Why is the SVM better than the perceptron? A non-technical discussion that makes sense is fine. Write it on a separate page
- (c) [difficult] Let $\mathcal{Y} = \{-1, 1\}$. Rederive the cost function whose minimization yields the SVM line in the linearly separable case.

Problem 2

These are questions are about the k nearest neighbors (KNN) algorithm.

(a) [easy] Describe how the algorithm works. Is k a "hyperparameter"?

(b) [difficult] Assuming A = KNN, describe the input \mathcal{H} as best as you can.

(e) [harder] Why is the RMSE usually a better indicator of predictive performance than \mathbb{R}^2 ? Discuss in English.

(f) [harder] R^2 is commonly interpreted as "proportion of the variance explained" and proportions are constrained to the interval [0,1]. While it is true that $R^2 \leq 1$, it is not true that $R^2 \geq 0$. Construct an explicit example $\mathbb D$ and create a linear model $g(x) = w_0 + w_1 x$ whose $R^2 < 0$. Hint: do not use the OLS line. Hint: draw a picture!

- (g) [E.C.] Prove that the OLS line always has $R^2 \in [0,1]$ on a separate page.
- (h) [difficult] You are given \mathbb{D} with n training points $\langle x_i, y_i \rangle$ but now you are also given a set of weights $[w_1 \ w_2 \ \dots \ w_n]$ which indicate how costly the error is for each of the i points. Rederive the least squares estimates b_0 and b_1 under this situation. Note that these estimates are called the weighted least squares regression estimates. This variant \mathcal{A} on OLS has a number of practical uses, especially in Economics. No need to simplify your answers like I did in class (i.e. you can leave in ugly sums.

(i) [E.C.] Interpret the ugly sums in the b_0 and b_1 you derived above and compare them to the b_0 and b_1 estimates in OLS. Does it make sense each term should be altered in this matter given your goal in the weighted least squares?