Annexes

Annexe 1. Constantes usuelles et approximations de calcul.

Constante de Faraday : $\mathcal{F} \approx 10^5 \text{ C} \cdot \text{mol}^{-1}$.

Constante d'Avogadro : $\mathcal{N}_A \approx 6.10^{23} \text{ mol}^{-1}$.

On considèrera $\sqrt{3} \approx \frac{7}{4}$, $\pi \approx 3$.

Annexe 2. Données numériques.

Numéros atomiques : C(Z = 12), Ru(Z = 44).

Longueur de la liaison C-C dans le graphite ou le graphène : $I_{C-C} = 0,14$ nm.

Distance entre deux feuillets de graphène dans le graphite : d = 0.34 nm.

Masse volumique de l'eau à 298 K : $\rho_{eau} = 10^3 \text{ kg} \cdot \text{m}^{-3}$.

Rayon atomique du lithium : $r_{Li} = 0.15$ nm, rayon ionique du lithium : $r_{Li} = 0.08$ nm

Annexe 3. Données thermodynamiques.

Enthalpies standard de liaison à 298 K : $D_{C-H} = 410$ et $D_{H-H} = 430$ en kJ·mol⁻¹.

Enthalpie standard de sublimation du graphène : $\Delta_s H^{\circ}(C_{graphène}) = 720 \text{ kJ·mol}^{-1}$.

Annexe 4. Potentiels standards.

 $E^{9}(Sn^{4+}/Sn^{2+}) = 0.14 \text{ V}$

 $E(MnO_4/MnO_2) = 1,51 \text{ V}$

Annexe 5. Diagrammes de phase des systèmes C-Ni et C-Cu.11

¹¹ M. Singleton, P. Nash, *Bull. Alloy Phase Diagr.* **1989**, *10*, 121–126. G. A. López, E. J. Mittemeijer, *Scripta Materialia* **2004**, *51*, 1–5.

Annexe 6. Orbitales frontalières simplifiées, énergies (en eV) et coefficients du cyclopentadiène et de l'acrylate de méthyle.

	Cyclopentadiène		Acrylate de méthyle			
	Perspective	Vue dessus	Energie (eV)	Perspective	Vue dessus	Energie (eV)
BV		-0,37 0,60 -0,37 0,60	0,48	OMe	OMe -0,53 0,40 -0,29	-0,01
НО		-0,37 -0,60 0,60	-9,08	OMe	OMe 0,01 -0,57 0,59 -0,57	-11,07

Annexe 7. RMN ¹H (gamme de déplacements chimiques). ¹²

Proton	δ (ppm)	
H	0,8–1,3	
H	1,5–2,4	
	2,3–2,9	
H → OH	1,9–2,8	
H^N R	2,3–3,7	
H^0′	3,4-4,2	
H	4,5–7,2	
H	6,5–9,0	
R → H	9,0–10,5	
R N R'	6–10	
ROH	10–12	

¹² E. Prestsch, P. Bühlmann, M. Badertscher, *Structure Determination of Organic Compounds*, Springer-Verlag, Berlin, Heidelberg, 4 edn. 2009.