



387623 78 12 20 U20

Office of Naval Research

Contract N-00014-75-C-1024 Technical Report No. 78-1

Organosilane Polymers, II: Copolymers of
Ethylmethyl- and Methylpropylsilylenes With Dimethylsilylene

by

J.P. Wesson and T.C. Williams

Union Carbide Corporation Tarrytown, New York 10591

December 1978

### INTRODUCTION

Poly(diorganosilylene) higher polymers have received previous attention only as by-product poly(dimethylsilylene) which was found useful as an intermediate in the preparation of cyclic dimethylsilylenes  $^{(1,2,3)}$  and more recently as linear higher polymers of dimethylsilylene $^{(4)}$ . The poly(dimethylsilylene) higher polymers are high melting and largely crystalline. They are only soluble at temperatures above about  $200^{\circ}$ C and are not thermoformable below their decomposition temperatures.

Since one of our goals has been to obtain tractable silylene polymers that are conveniently soluble or thermoformable, we have examined various kinds of copolymers of dimethylsilylene with other diorganosilylenes. This approach stemmed in part from the observation that in some crystalline or crystallizable polymers, the introduction of a few bulky side groups can interfere with chain packing processes thereby depressing crystallization rates and enhancing solubility and thermoforming qualities (5-12). We report here on the effects of replacing methyl groups with ethyl and propyl groups in random copolymers of dimethylsilylene with ethyl methyl- and methylpropylsilylenes.



#### EXPERIMENTAL

#### Monomers

Dimethyldichlorosilane (DMDCS) monomer was purified by treatment with diethyl ether and distillation as described earlier (4). Ethylmethyldichlorosilane (EMDCS) and methyl-propyldichlorosilane (MPDCS) were fractionally distilled under dry nitrogen through a vacuum jacketed column (2.0 x 45.cm) packed with perforated lime glass beads (0.4 cm diam.). Distillation rate was 60 mL hr<sup>-1</sup> with about 20:1 reflux ratio. Foreruns up to 100°C for EMDCS and up to 125°C for MPDCS were discarded. Product cuts distilling at 100-100.5°C (EMDCS) and 125-125.5°C (MPDCS) were collected and stored under dry nitrogen. After distillation the EMDCS and MPDCS monomers were found to be chromatographically pure.

### Copolymers

Random copolymers were prepared by sodium metal dechlorination of mixtures of DMDCS with EMDCS or MPDCS using the methods and precautions previously described (4). Monomer charges and copolymer yields for typical polymerizations are given in Table I. Copolymers of DMDCS and EMDCS were insoluble in the octane reaction solvent and were recovered directly by filtration. Copolymers of DMDCS and MPDCS ranged from partially to completely soluble in the reaction solvent and were recovered in three fractions:

- a) copolymer insoluble in the octane reaction solvent was isolated by filtration,
- b) copolymer soluble in octane was stripped of solvent, taken up in THF (100mL) and precipitated by dropwise addition to acetone (300 mL) and dried,
- c) copolymer which remained soluble in THFacetone was solvent stripped to yield viscous oil.

#### Analytical Methods

Infra-red absorption spectra on the various polymers were obtained with equipment and methods described earlier $^{(4)}$ . Spectra for ethylmethyl- and methylpropylsilylene homopolymers are given for reference in Figures 1 and 2, and absorption band assignments are shown in Tables 2 and 3. Copolymer spectra appeared as typical combinations of the spectra for dimethyl-. ethylmethyl- and methylpropylsilylene homopolymers. Copolymer compositions were calculated from infra-red spectra using absorbances of the  $1245 \text{cm}^{-1}$  (CH<sub>3</sub>Si),  $1455 \text{cm}^{-1}$  (C<sub>2</sub>H<sub>5</sub>Si) and  $1460 \text{cm}^{-1}$  (n-C<sub>3</sub>H<sub>6</sub>Si) bands (13,14). Solubilization and precipitation temperatures of the copolymers in perhydrofluorene were determined as described earlier (4). Molecular weights of polymers insoluble at moderate temperatures were obtained by infra-red methods (4). Molecular weights of conveniently soluble copolymers were obtained on toluene solutions with a Knauer Vapor Pressure Osmometer at 35 and 65°C; toluene solutions of dodecamethylcyclohexasilane were used as molecular weight references.

#### RESULTS AND DISCUSSION

Copolymerizations were done by adding chlorosilane monomer mixtures dropwise to sodium metal dispersed in hot, stirred n-octane. The reactions are fast and very exothermic. Suitable precautions are essential to maintain a controlled reaction sequence (4). The two series of copolymers behave differently during the reaction period. DMS-EMS copolymers were all readily recovered by filtration and worked up to finely divided white powders. With the DMS-MPS system, copolymer solubility in the reaction solvent increased with MPS concentration and it became necessary to recover the products in fractions as described in the Experimental Section. As EMDCS concentration in the monomer mixture is increased, the total yield of copolymer drops steadily to a minimum at about 80 mole-% and then increases somewhat thereafter, Figure 3. In contrast, DMS-MPS copolymer yields are relatively steady at about 65-75% across the composition range. Increased reaction times do not significantly increase yields and part of the sodium metal remains unreacted. Visual inspection of the residual metal suggests that some part of the copolymer coats the metal surface and may then inhibit further reaction. High shear agitation that could scour the metal surface might alter this situation but has not yet been tried. Plots of monomer vs copolymer composition (Figures 4 and 5) indicate that both EMDCS and MPDCS react more slowly than DMDCS particularly at concentrations above about 20 mole %.

Molecular weights were measured as described on the various total polymers and fractions but no significant trends against composition or other experimental variables were noted. In general,  $\bar{\mathbf{M}}_n$  for the higher polymers varied over the range of 25,000 to 50,000 except for the EMS homopolymer which appeared to be in excess of 100,000.

Solubilization tests were made on octane insoluble copolymers in which the temperatures for complete solution (T<sub>s</sub>) and precipitation  $(T_p)$  were measured for 2 wt % solutions of copolymer in perhydrofluorene, one of the best solvents for the parent DMS homopolymer so far encountered. Solution and precipitation of the copolymers occurs rather sharply and is generally reproducible within two or three degrees. In the DMS-EMS system, solution temperature (T<sub>s</sub>) (Figure 6) decreases rapidly as EMS in the copolymer increases up to about 25 mole % and thereafter decreases slowly to a minimum at about 65 mole %. With DMS-MPS copolymers, the decrease in  $T_s$  is also initially very rapid and the extent of depression even more pronounced. At MPS concentrations above about 10 mole %, the copolymers become soluble at ambient temperatures and below and these compositions also become quite soluble in common solvents such as toluene, Figure 7. Thus, silylene copolymers that are soluble at convenient temperatures can be obtained by modifying the parent poly(dimethylsilylene) with relatively small proportions of EMS or MPS units. However, the lack of any significant increase in the solution-precipitation temperature difference  $(T_s-T_p)$  suggests that neither the ethyl or propyl group has had any substantial effect on crystallization of the copolymers. This is further borne out in the observation that the copolymers precipitate abruptly from the cooling solution as fine powders with no appreciable tendency for coherent film formation.

To obtain further insight on the effects of structural modifications on copolymer solubility and crystallization a number of block copolymers and short chain branched copolymers are being examined and will be described in future reports.

This work was supported in part by the Office of Naval Research.

### REFERENCES

- 1. H. Gilman, R.A. Tomasi, J. Org. Chem., 28, 1651 (1963)
- 2. M. Kumada, K. Tames, Adv. Organometal. Chem., <u>6</u>, 49, 65 (1968)
- 3. E. Carberry, R. West, J. Amer. Chem. Soc., <u>91</u>, 5440 (1969)
- 4. J.P. Wesson, T.C. Williams, J. Polym. Sci., Polym. Chem. Ed., in press
- 5. D.J. Fischer, J. Appl. Polym. Sci., 5, 436 (1961)
- 6. M.J. Richardson, P.J. Flory, J.B. Jackson, Polymer,  $\underline{4}$ , 221 (1963)
- 7. J.B. Jackson, P.J. Flory, Polymer, 5, 159 (1964)
- 8. S.N. Borisov, V.A. Marei, Kauchuk i Rezina, 23, 1 (1964)
- 9. N. Ueda, Kobunshi Kagaku, <u>22</u>, 1 (1965)
- 10. S.N. Borisov, Kauchuk i Rezina, 25, 3 (1966)
- 11. Godovskii, Y.K., Vyskomol. Soedin., Ser. A, <u>11</u>, 2129 (1969)
- 12. Marei, A.I., Petrova, G.P., Novikova, G.E., Kuryland, S.K., Fiz. Svoistva Elastomerov, 77, 132 (1975)
  CA 84:75376v

- 13. A.L. Smith, Spectrochim. Acta, <u>16</u>, 87 (1960)
- 14. L.J. Bellamy, Infra-Red Spectra of Complex Molecules, 3rd. Ed., Chapman and Hall, London (1975)

Table 1 Dimethylsilylene Copolymers

Table 2 Infra-Red Absorptions of Poly(ethylmethylsilylene)

Table 3 Infra-Red Absorptions of Poly(propylmethylsilylene)

| Figure | 1 | <pre>Infra-Red Absorption Spectrum Poly(dimethyl-co- ethylmethylsilylene)</pre>                                          |
|--------|---|--------------------------------------------------------------------------------------------------------------------------|
| Figure | 2 | <pre>Infra-Red Absorption Spectrum Poly(dimethyl-co- methylpropylsilylene)</pre>                                         |
| Figure | 3 | Poly(dimethyl-co-ethylmethylsilylene) Copolymer Yields                                                                   |
| Figure | 4 | Monomer-Copolymer Composition Poly(dimethyl-co-ethylmethylsilylene)                                                      |
| Figure | 5 | Monomer-Copolymer Composition Poly(dimethyl-co-propylmethylsilylene)                                                     |
| Figure | 6 | Solution and Precipitation Temperatures of Poly(dimethyl-co-ethylmethylsilylene) in Perhydrofluorene (2 wt % Solutions)  |
| Figure | 7 | Solution and Precipitation Temperatures of Poly(dimethyl-co-methylpropylsilylene) in Perhydrofluorene (2 wt % Solutions) |

TABLE 1
DIMETHYLSILYLENE COPOLYMERS

| Monomer<br>Charged<br>(Mole-%) | Copolymer Yield (wt-%) | Copolymer Composition (Mole-%) |
|--------------------------------|------------------------|--------------------------------|
| EMDCS:                         |                        | EMS:                           |
| 20                             | 74                     | 17                             |
| 30                             | 67                     | 22                             |
| 45                             | 48                     | 24                             |
| 60                             | 44                     | 27                             |
| 80                             | 23                     | 66                             |
| 100                            | 74                     | 100                            |
|                                |                        |                                |
| MPDCS:                         |                        | MPS:                           |
| 10                             | 73                     | 8                              |
| 30                             | 66                     | 20                             |
| 50                             | 67                     | 41                             |
| 80                             | 46 <sup>(1)</sup>      | 58                             |
| 100                            | 78                     | 100                            |
|                                |                        |                                |

<sup>1.</sup> Accidental Losses in Work-Up

TABLE 2

INFRA-RED ABSORPTIONS OF

POLY(ETHYLMETHYLSILYENE)

| Absorption (cm <sup>-1</sup> ) | Assignment                           |
|--------------------------------|--------------------------------------|
| (3450)                         | (H <sub>2</sub> O Stretch)           |
| 2950                           |                                      |
| 2930                           | CH Stretch                           |
| 2890 (                         |                                      |
| 2870                           |                                      |
| 1455                           | $CH_3$ —(-C) Deformation (a)         |
| 1420                           | CH <sub>3</sub> (Si) Deformation (a) |
| 1375                           | CH <sub>3</sub> (C) Deformation (s)  |
| 1245                           | CH <sub>3</sub> ISi) Deformation (s) |
| 1065                           | SiOSi                                |
| 1005                           | SiCH2CH3                             |
| 935                            | SiCH2CH3                             |
| 775 (                          | SiC Stretch                          |
| 740 (                          | 510 5010001                          |
| 690 )                          | CH <sub>2</sub> Rocking              |
| 670 \$                         | 0.12 0.1.1.2                         |
| 650 (                          | EtMeSi Rocking                       |
| 610 \                          |                                      |

TABLE 3

INFRA-RED ABSORPTIONS OF

POLY(PROPYLMETHYLSILYLENE)

| Absorption (cm <sup>-1</sup> ) | Assignment                             |
|--------------------------------|----------------------------------------|
| (3450)                         | (H <sub>2</sub> O Stretch)             |
| 2950                           |                                        |
| 2920 (<br>2890 (               | CH Stretch                             |
| 2870                           |                                        |
| (1630)                         | (H <sub>2</sub> 0 Overtone)            |
| 1460                           | $-CE_2$ , (C) Deformation (a)          |
| 1450                           | $CH_3$ -(C) Deformation (a)            |
| 1415                           | $CH_3 \rightarrow Si)$ Deformation (a) |
| 1375                           | CH <sub>3</sub> (C) Deformation (s)    |
| 1325                           | $CH_2$ -(C) Deformation (s)            |
| 1245                           | CH <sub>3</sub> (Si) Deformation (s)   |
| 1065 (s)                       | SiOSi                                  |
| 1060                           | CH3CH2CH2Si                            |
| 985                            | CH3CH2CH2Si                            |
| 790                            | SiC Stretch                            |
| 745)                           |                                        |
| 710                            | CH <sub>2</sub> Rocking                |
| 660                            | MePrSi Rocking                         |

(s) Shoulder



Figure 1.

INFRA-RED ABSORPTION SPECTRUM

POLY (DIMETHYL-Co-ETHYLMETHYLSILYLENE)



Figure 2.

INFRA-RED ABSORPTION SPECTRUM

POLY (DIMETHYL-Co-METHYLPROPYLSILYLENE)



Figure 3.

POLY (DIMETHYL-Co-ETHYLMETHYLSILYLENE)

COPOLYMER YIELDS



Figure 4.

MONOMER-COPOLYMER COMPOSITION
POLY (DIMETHYL-Co-ETHYLMETHYLSILYLENE)



Figure 5.

MONOMER-COPOLYMER COMPOSITION
POLY (DIMETHYL-Co-PROPYLMETHYLSILYLENE)



Figure 6.

SOLUTION AND PRECIPITATION TEMPERATURES
OF POLY (DIMETHYL-Co-ETHYLMETHYLSILYLENE)
IN PERHYDROFLUORENE (2 WT % SOLUTIONS)



Figure 7.

SOLUTION AND PRECIPITATION TEMPERATURES
OF POLY (DIMETHYL-Co-METHYLPROPYLSILYLENE)
IN PERHYDROFLUORENE (2 WT % SOLUTIONS)

# TECHNICAL REPORT DISTRIBUTION LIST, GEN

|                                      | No.<br>Copies |                                            | No.<br>Copies |
|--------------------------------------|---------------|--------------------------------------------|---------------|
|                                      |               |                                            |               |
| Office of Naval Research             |               | Defense Documentation Center               |               |
| 800 North Quincy Street              |               | Building 5, Cameron Station                |               |
| Arlington, Virginia 22217            |               | Alexandria, Virginia 22314                 | 12            |
| Attn: Code 472                       | 2             |                                            |               |
|                                      |               | U.S. Army Research Office                  |               |
| ONR Branch Office                    |               | P.O. Box 1211                              |               |
| 536 S. Clark Street                  |               | Research Triangle Park, N.C. 27709         |               |
| Chicago, Illinois 60605              |               | Attn: CRD-AA-IP                            | 1             |
| Attn: Dr. George Sandoz              | 1             |                                            |               |
|                                      |               | Naval Ocean Systems Center                 |               |
| ONR Branch Office                    |               | San Diego, California 92152                |               |
| 715 Broadway                         |               | Attn: Mr. Joe McCartney                    | 1             |
| New York, New York 10003             |               |                                            |               |
| Attn: Scientific Dept.               | 1             | Naval Weapons Center                       |               |
|                                      |               | China Lake, California 93555               |               |
| ONR Branch Office                    |               | Attn: Dr. A. B. Amster                     |               |
| 1030 East Green Street               |               | Chemistry Division                         | ì             |
| Pasadena, California 91106           |               |                                            |               |
| Attn: Dr. R. J. Marcus               | 1             | Naval Civil Engineering Laboratory         |               |
| Accii. Dev iii or iiicoco            |               | Port Hueneme, California 93401             |               |
| ONR Area Office                      |               | Attn: Dr. R. W. Drisko                     | 1             |
| One Hallidie Plaza, Suite 601        |               |                                            |               |
| San Francisco, California 94102      |               | Professor K. E. Woehler                    |               |
| Attn: Dr. P. A. Miller               | 1             | Department of Physics & Chemistry          |               |
| Acti. Str. it in incl.               |               | Naval Postgraduate School                  |               |
| ONR Branch Office                    |               | Monterey, California 93940                 | 1             |
| Building 114, Section D              |               |                                            |               |
| 666 Summer Street                    |               | Dr. A. L. Slafkosky                        |               |
| Boston, Massachusetts 02210          |               | Scientific Advisor                         |               |
| Attn: Dr. L. H. Peebles              | 1             | Commandant of the Marine Corps (Code RD-1) |               |
| Director, Naval Research Laboratory  |               | Washington, D.C. 20380                     | 1             |
| Washington, D.C. 20390               |               |                                            |               |
| Attn: Code 6100                      | 1             | Office of Naval Research .                 |               |
| Accii. Gode 0.00                     |               | 800 N. Quincy Street                       |               |
| The Assistant Secretary              |               | Arlington, Virginia 22217                  |               |
| of the Navy (R,E&S)                  |               | Attn: Dr. Richard S. Miller                | 1             |
| Department of the Navy               |               |                                            |               |
| Room 4E736, Pentagon                 |               | Naval Ship Research and Development        |               |
| Washington, D.C. 20350               | 1             | Center .                                   |               |
| #45#11#6COM, 2101 20050              |               | Annapolis, Maryland 21401                  |               |
| Commander, Naval Air Systems Command | 1             | Attn: Dr. G. Bosmajian                     |               |
| Department of the Navy               |               | Applied Chemistry Division                 | 1             |
| Washir.gton, D.C. 20360              |               |                                            |               |
| Attn: Code 310C (H. Rosenwasser)     | 1             | Naval Ocean Systems Center                 |               |
|                                      |               | San Diego, California 91232                |               |
|                                      |               | Attn: Dr. S. Yamamoto, Marine              |               |
|                                      |               | Sciences Division                          | 1             |
|                                      |               |                                            |               |

## TECHNICAL REPORT DISTRIBUTION LIST, 356B

|                                               | No.<br>Copies |                                                           | No.<br>Copies |
|-----------------------------------------------|---------------|-----------------------------------------------------------|---------------|
| Dr. T. C. Williams                            |               | Douglas Aircraft Company                                  |               |
| Union Carbide Corporation                     |               | 3855 Lakewood Boulevard                                   |               |
| Chemical and Plastics                         |               | Long Beach, California 90846                              |               |
| Tarrytoyn Technical Center                    | 1             | Attn: Technical Library                                   |               |
| Tarry own, New York                           |               | C1 290/36-84<br>AUTO-Sutton                               | 1             |
| Dr. R. Soulen                                 |               | AUTO-SULLON                                               | •             |
| Contract Research Department                  |               | NASA-Lewis Research Center                                |               |
| Pennwalt Corportion                           |               | 21000 Brookpark Road                                      |               |
| 900 First Avenue                              |               | Cleveland, Ohio 44135                                     |               |
| King of Prussia, Pennsylvania 19406           | 1             | Attn: Dr. T. T. Serafini, MS 49-1                         | 1             |
| Dr. A. G. MacDiarmid                          |               | Dr. J. Griffith                                           |               |
| University of Pennsylvania                    |               | Naval Research Laboratory                                 |               |
| Department of Chemistry                       |               | Chemistry Section, Code 6120                              |               |
| Philadelphia, Pennsylvania 19174              | 1             | Washington, D.C. 20375                                    | 1             |
| Dr. C. Pittman                                |               | D 0 0 1                                                   |               |
|                                               |               | Dr. G. Goodman                                            |               |
| University of Alabama Department of Chemistry |               | Globe-Union Incorporated                                  |               |
| University, Alabama 35486                     | 1             | 5757 North Green Bay Avenue<br>Milwaukee, Wisconsin 53201 | 1             |
|                                               |               | miradace, wisconsin 33201                                 |               |
| Dr. H. Allcock                                |               | Dr. E. Fischer, Code 2853                                 |               |
| Pennsylvania State University                 |               | Naval Ship Research and                                   |               |
| Department of Chemistry                       |               | Development Center                                        |               |
| University Park, Pennsylvania 16802           | 1             | Annapolis Division                                        |               |
| Dr. M. Kenney                                 |               | Annapolis, Maryland 21402                                 | 1             |
| Case-Western University                       |               | Dr. Martin H. Kaufman, Head                               |               |
| Department of Chemistry                       |               | Materials Research Branch (Code 454)                      | 2)            |
| Cleveland, Ohio 44106                         | 1             | Naval Weapons Center                                      |               |
|                                               |               | China Lake, California 93555                              | 1             |
| Dr. R. Lenz                                   |               |                                                           |               |
| University of Massachusetts                   |               | Dr. J. Magill .                                           |               |
| Department of Chemistry                       |               | University of Pittsburg                                   |               |
| Amherst, Massachusetts 01002                  | 1             | Metallurgical and Materials                               |               |
| Dr. M. David Curtis                           |               | Engineering                                               |               |
| University of Michigan                        |               | Pittsburg, Pennsylvania 22230                             | 1             |
| Department of Chemistry                       |               | Dr. C. Allen                                              |               |
| Ann Arbor, Michigan 48105                     | 1             | University of Vermont                                     |               |
|                                               |               | Department of Chemistry                                   |               |
| Dr. M. Good                                   |               | Burlington, Vermont 05401                                 | 1             |
| University of New Orleans                     |               |                                                           |               |
| Department of Chemistry                       |               | Dr. D. Bergbreiter                                        |               |
| Lakefront                                     |               | Texas A&M University                                      |               |
| New Crleans, Louisiana 70122                  | 1             | Department of Chemistry                                   |               |
|                                               |               | College Station, Texas 77843                              | 1             |

# TECHNICAL REPORT DISTRIBUTION LAST, 356B

## No. Copies

Professor R. Drago
Department of Chemistry
University of Illinois
Urbana, Illinois 61801

1

Dr. F. Brinkman
Chemical Stability & Corrosion
Division
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

1