# 資料科學

## **Data Science**

### 作業五 HW5

電機所 R11921038 江讀晉 2022/12/9

# Problem 1. Decision Tree split by Gini Index

# 1. Every Gini index of candidates

| Depth | Feature    | Feature value      |                            | Gini index |
|-------|------------|--------------------|----------------------------|------------|
| 0     | Car Type   | Family             | Sports, Luxury             | 0.2769     |
|       | Shirt Size | Small, Medium      | Extra Large, Large         | 0.3542     |
|       | Car Type   | Sports             | Family, Luxury             | 0.3690     |
|       | Shirt Size | Extra Large        | Small, Medium, Large       | 0.3938     |
|       | Shirt Size | Medium             | Small, Large, Extra Large  | 0.4198     |
|       | Gender     | M                  | F                          | 0.45       |
|       | Shirt Size | Small, Extra Large | Medium, Large              | 0.4727     |
|       | Shirt Size | Large              | Small, Medium, Extra Large | 0.4750     |
|       | Car Type   | Luxury             | Family, Sports             | 0.4791     |
|       | Shirt Size | Small              | Medium, Large, Extra Large | 0.48       |
|       | Shirt Size | Small, Large       | Medium, Extra Large        | 0.4949     |
| 1     | Shirt Size | Large, Extra Large | Small, Medium              | 0.1231     |
|       | Shirt Size | Extra Large        | Small, Medium, Large       | 0.2517     |
|       | Shirt Size | Medium             | Small, Large, Extra Large  | 0.3077     |
|       | Shirt Size | Large              | Small, Medium, Extra Large | 0.3487     |
|       | Shirt size | Small              | Medium, Large, Extra Large | 0.3692     |
|       | Car Type   | Sports             | Luxury                     | 0.3919     |
|       | Gender     | M                  | F                          | 0.4154     |
|       | Shirt Size | Small, Extra Large | Medium, Large              | 0.4154     |
|       | Shirt Size | Small, Large       | Medium, Extra Large        | 0.4249     |
| 2     | Car Type   | Sports             | Luxury                     | 0.2        |
|       | Gender     | М                  | F                          | 0.2667     |
|       | Shirt Size | Large              | Extra Large                | 0.2667     |
| 3     | Shirt Size | Large              | Extra Large                | 0          |

Table 1. Gini index of each candidate. The bold texts are the selected rules at each step.

#### 2. Decision tree



Fig. 1 Decision tree with node information

## 3. The programming implementation

```
class DecisionTree:
2
        def __init__(self, data, columns = None, depth = 0, max_depth = 10):
            self.data = data
4
5
6
            self.columns = columns
            self.depth = depth
            self.max_depth = max_depth
7
8
            self.left = None
            self.right = None
9
            self.gini_candidates = {'Feature': [], 'Value': [], 'Gini Index': []}
            self.best gini = None
11
            self.split_feature = None
            self.split value = None
12
13
            self.target = None
14
            self.build_tree()
16
        def build_tree(self):
17
18
            if self.data.empty:
19
20
21
22
23
24
            if len(self.data[self.columns[-1]].unique()) == 1:
               self.target = self.data[self.columns[-1]].unique()[0]
               return
25
26
            if self.depth >= self.max_depth:
28
               self.target = self.data[self.columns[-1]].value_counts().idxmax()
29
30
31
            self.best_gini, self.split_feature, self.split_value = self.get_best_split()
33
34
            # Split the data
35
            left data = self.data[self.data[self.split feature].isin(self.split value)]
36
            right_data = self.data[~self.data[self.split_feature].isin(self.split_value)]
37
38
            # Display the decision tree
39
            self.display_tree(left_data, right_data)
40
41
            left_data.to_csv(f'left_node_{self.depth}.csv', index = False)
42
43
            right_data.to_csv(f'right_node_{self.depth}.csv', index = False)
44
46
            self.left = DecisionTree(left_data, self.columns, self.depth + 1, self.max_depth)
47
            self.right = DecisionTree(right_data, self.columns, self.depth + 1, self.max_depth)
48
49
        def display_tree(self, left_data, right_data):
50
            print('Depth:', self.depth)
52
53
            candidates = pd.DataFrame(self.gini candidates)
54
            candidates = candidates.sort_values(by = 'Gini Index', ascending = True)
55
            print(f'Gini candidates:\n{candidates}')
56
57
            split = pd.DataFrame()
58
            split['Split Feature'] = [self.split feature]
59
            split['Split Value'] = [self.split_value]
            split['Gini Index'] = [self.best_gini]
60
61
62
            print(f'Split parameter:\n{split}')
            print(f'Left node:\n{left_data}')
63
64
            print(f'Right node:\n{right_data}\n')
65
66
        def get_best_split(self):
            # Get the best split feature and value
```

```
best_split_feature = None
69
             best split value = None
70
             best_gini = 1.0
71
72
73
             for feature in self.columns[1:-1]:
74
75
                 values = self.data[feature].unique()
76
77
78
                 # Build up the combination of the values
79
                 new_values = []
                 for i in range(len(values) // 2):
80
81
                     new values.extend(list(combinations(values, i + 1)))
82
83
84
                 for value in new_values:
85
                     # Split the data
86
                     left_data = self.data[self.data[feature].isin(value)]
87
                     right_data = self.data[~(self.data[feature].isin(value))]
88
                    # Calculate the gini index
gini = self.get_gini(left_data, right_data)
self.gini_candidates['Feature'].append(feature)
self.gini_candidates['Value'].append(value)
89
90
91
92
93
                     self.gini_candidates['Gini Index'].append(round(gini, 4))
94
95
96
                     if gini < best_gini:</pre>
                        best_gini = round(gini, 4)
best_split_feature = feature
97
98
                        best_split_value = value
99
100
101
102
             return best_gini, best_split_feature, best_split_value
103
104
         def get_gini(self, left_data, right_data):
105
106
             gini_left = 0.0
107
             gini right = 0.0
108
             # Get the target categories
109
110
             target = self.data[self.columns[-1]].unique()
111
112
             if len(left_data) > 0:
113
114
                 for t in target:
115
                     gini_left += (len(left_data[left_data[self.columns[-1]] == t]) /
      len(left data)) ** 2
             gini_left = 1 - gini_left
116
117
118
             if len(right_data) > 0:
119
                 for t in target:
120
                     gini_right += (len(right_data[right_data[self.columns[-1]] == t]) /
      len(right_data)) ** 2
121
             gini_right = 1 - gini_right
122
             gini = (len(left_data) / len(self.data)) * gini_left + (len(right_data) /
123
      len(self.data)) * gini_right
124
125
             return gini
126
     if __name__ == '__main__':
    # Read in the data
127
128
129
         df = pd.read_csv('data.csv')
130
         print(df)
131
```

```
# Get the column names
columns = df.columns
print(columns)

# Get the unique feature categories and the target categories
gender = df[columns[1]].unique()
car = df[columns[2]].unique()
shirt = df[columns[3]].unique()
target = df[columns[4]].unique()
# Build the decision tree
tree = DecisionTree(df, columns)
```

# Problem 2. Naïve Bayes Classifier

Given tuple: (Gender=M, Car Type=Sports, Shirt Size=Medium)

A: features of Gender, Car Type and Shirt Size

$$P(A|C0) = P(Gender|C0) \cdot P(Car\ Type|C0) \cdot P(Shirt\ Size|C0) = \frac{7}{11} \cdot \frac{1}{11} \cdot \frac{2}{11} = \frac{14}{1331} = 0.0105$$

$$P(A|C1) = P(Gender|C1) \cdot P(Car\ Type|C1) \cdot P(Shirt\ Size|C1) = \frac{3}{9} \cdot \frac{5}{9} \cdot \frac{5}{9} = \frac{25}{243} = 0.1029$$

$$P(A|C0)P(C0) = \frac{14}{1331} \cdot \frac{11}{20} = 0.0058$$

$$P(A|C1)P(C1) = \frac{25}{243} \cdot \frac{9}{20} = 0.0463$$

As P(A|C0)P(C0) < P(A|C1)P(C1), the tuple (Gender=M, Car Type=Sports, Shirt Size=Medium) should be classified into class C1.

## Problem 3. SVM (Support Vector Machine)

```
Positive samples, y = 1: (4, 3), (4, 8), (7, 2)
Negative samples, y = -1: (-1, -2), (-1, 3), (2, -1), (2, 1)
```

### 1. Objectives and constraints

The objective with the constraint is to

$$\begin{aligned} & \text{maximize } \frac{2}{\|w\|^2} \\ & \text{subject to } y_i(w^Tx_i+b)-1 \ \geq 0, \forall x_i \end{aligned}$$

Hence, the hinge loss with the regularization of the weights is used.

$$J = \lambda ||w||^2 + \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i(w \cdot x_i + b))$$

### 2. Support vectors

The two support vectors are (4, 3) and (2, 1). These two support vectors are highlighted in the Fig. 3.

### 3. Computing progress

Based on the loss function, the gradient of weight and bias can be computed.

$$if \ y_i(w \cdot x_i + b) \ge 1, then \ J_i = \lambda ||w||^2 \quad \therefore \frac{\partial J_i}{\partial w_k} = 2\lambda w_k$$

$$else \ J_i = \lambda ||w||^2 + 1 - y_i(w \cdot x_i + b) \quad \therefore \begin{cases} \frac{\partial J_i}{\partial w_k} = 2\lambda w_k - y_i \cdot x_i \\ \frac{\partial J_i}{\partial b} = -y_i \end{cases}$$

The following is my programming implementation.

```
class LinearSVM:
        def __init__(self, learning_rate=0.001, lambda_param=0.1, n_iters=1000):
            self.lr = learning_rate
            self.lambda_param = lambda_param
           self.n_iters = n_iters
           self.w = None
           self.b = None
           self.w_list = []
self.b_list = []
10
11
        def fit(self, x, y):
12
            self.w = np.zeros(x.shape[1])
            self.b = 0
            self.w_list = [list(self.w)]
            self.b_list = [self.b]
            for _ in range(self.n_iters):
               for i in range(x.shape[0]):
                   if y[i] * (np.dot(x[i], self.w) + self.b) >= 1:
20
                      self.w -= self.lr * (2 * self.lambda_param * self.w)
21
22
23
                      self.w -= self.lr * (2 * self.lambda_param * self.w - np.dot(x[i], y[i]))
                      self.b -= self.lr * (-y[i])
25
26
               if np.linalg.norm(self.w - self.w_list[-1]) < 1e-4:</pre>
                   break
27
28
               else:
                   self.w_list.append(list(self.w))
29
                   self.b_list.append(self.b)
30
    if __name__ == '__main__':
    # Construct the data
        data = np.array([[4, 3], [4, 8], [7, 2], [-1, -2], [-1, 3], [2, -1], [2, 1]])
34
        target = np.array([1, 1, 1, -1, -1, -1, -1])
        # Train the model
        svm = LinearSVM(n_iters=10000)
38
        svm.fit(data, target)
```

### 4. Weight, bias and hyperplane

Based the codes above, the weight and the bias are converged to

$$w = \begin{bmatrix} 0.4999023 \\ 0.5003976 \end{bmatrix}$$
,  $b = -2.5039999$ 

If the weight and the bias are round to 1 decimal place, then

$$w = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}, b = -2.5$$

The curves of the weight and the bias in every iteration are shown in the Fig. 2.



Fig. 2 The evolution of the weight and the bias

The decision boundary or hyperplane is

$$y = w^{T}x + b$$

$$= w_{1}x_{1} + w_{2}x_{2} + b$$

$$= 0.5x_{1} + 0.5x_{2} - 2.5$$

To illustrate the results, the data points with labels, hyperplane (decision boundary), two boundaries of margin and support vectors are manifested in the Fig. 3.

Note that HW5-P3 is a hard SVM and there are exactly two support vectors on the boundaries of margin.



Fig. 3 The result of the SVM classifier