$$\frac{dy}{dx} = \frac{1}{h} \left\{ Ay_0 - \frac{A^3y_0}{2} + \frac{A^3y_0}{1} - \frac{A^4y_0}{4} + \dots \right\}$$

$$\frac{d^2y}{dx^2} = \frac{1}{h^2} \left\{ A^2y_0 - A^3y_0 + \frac{11}{12} A^4y_0 + \dots \right\}$$

$$\frac{d^2y}{dx^2} = \frac{1}{h^2} \left\{ A^2y_0 - A^3y_0 + \frac{11}{12} A^4y_0 + \dots \right\}$$

$$\frac{dy}{dx} = \frac{1}{h^2} \left\{ A^2y_0 - A^3y_0 + \frac{11}{12} A^4y_0 + \dots \right\}$$

$$\frac{dy}{dx} = \frac{1}{h^2} \left\{ A \cdot 231 - \frac{1}{h^2} \left(A \cdot 231 - \frac{1}{h$$

$$= \frac{1}{0.01} \begin{cases} -0.0060 - 0.0015 + 0.0001 + 0.0002 \\ \frac{1}{2} \end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.0060 - 0.00075 + 0.000167 \\ + 0.00016\end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.00675 + 0.000334\end{cases}$$

$$= \frac{1}{0.04} \begin{cases} -0.006716\end{cases}$$

Cos (1.74) = -0.167915

ANS:

find the first & second derivatives of va at x=15 from the following data.

x	15	17	19	21	23	
$\sqrt{\chi}$	3873	4.123	4.354	4.583	4.796	

81:

Here x=15, is nearer to the beginning of the table we use Newton's forward formula. Here $x_0=15$, $x_1=17$, $x_2=19$, $x_3=21$, $x_4=23$.

Also, x=15 & h=2.

$$P = \frac{\chi - \chi_0}{h} = \frac{15 - 15}{2} = 0$$

$$\frac{dp}{dx} = \frac{dy}{dx} \left(\frac{x - x_n}{h} \right)$$

$$= \frac{1}{h} \int \frac{d}{dx} (x) - \frac{d}{dx} (x_n)^2$$

$$\frac{dp}{dx} = \frac{1}{h}.$$

$$\frac{dy}{dp} = \frac{d}{dp} (y_n) + \frac{d}{dp} (p) \nabla y_n + \frac{1}{2} \left\{ \frac{d}{dp} (p^2) + \frac{d}{dp} (p) \right\} \nabla^2 y$$

$$+ \frac{1}{6} \left\{ \frac{d}{dp} (p^3) + \frac{3}{2} \frac{d}{dp} (p^2) + \frac{2}{2} \frac{d}{dp} (p) \right\} \nabla^3 y_n$$

$$+ \frac{1}{24} \left\{ \frac{d}{dp} (p^4) + 6 \frac{d}{dp} (p^3) + 1 \frac{d}{dp} (p^2) + 6 \frac{d}{dp} (p) \right\} \nabla^4 y_n$$

$$= \nabla y_n + \frac{1}{2} \left\{ \frac{2p+1}{3} \nabla^2 y_n + \frac{1}{6} \left\{ \frac{3p^2 + 6p + 2}{3} \nabla^3 y_n + \frac{1}{24} \left\{ \frac{4p^3 + 18p^2 + 22p + 6}{3} \nabla^3 y_n + \frac{4p^3 + 18p^2 + 22p + 6}{3$$

$$\frac{dy}{dp} = \nabla y_n + \frac{2P+1}{2} \nabla^2 y_n + \frac{(3P^2+6P+2)}{6} \nabla^3 y_n + \frac{4P^3+18P^2+22P+6}{24} \nabla^3 y_n$$

becomes,

$$\frac{1}{h} \left\{ \nabla y_{n} + \frac{(2P+1)}{2} \nabla^{2} y_{n} + \frac{(3P^{2}+6P+2)}{6} \nabla^{3} y_{n} + \frac{4}{6} P^{3} + 18P^{2} + 22P + 6 \nabla^{4} y_{n} + \cdots \right\}$$

$$= \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dp} \left(\frac{dy}{dx} \right) \frac{dp}{dx}$$

table we we receive to private intespolation formula,

(a)
$$\frac{dM}{dx} = \frac{1}{h} \left\{ \Delta y_0 + \frac{(2p^2 - 1)}{2} \Delta^2 y_0 + \frac{(3p^2 - 6p + 2)}{6} \Delta^2 y_0 + \frac{(3p^2 - 6p + 2)}{6} \Delta^2 y_0 + \frac{(2p^3 - 6p + 2)}{6} \Delta^2 y_0 + \frac{(2p^3$$

To find
$$\frac{dy}{dx}$$
 at $x = x_0$

Here $P = \frac{x - x_0}{h}$

$$= \sum_{i=1}^{n} \frac{x_0 - x_0}{h}$$

ANS:

$$\frac{dy}{dx} = -0.00492; \quad \frac{d^2y}{dx^2} = 0.0575$$

\$100.8010

A) from the following data obtain the first and Second derivatives of y=logex i) at x=500, ii) x = 550.

7 500 510 520 530 540 550 Y=logex 6.2146 6.2344 6.2358 6.2729 6.2916 6.3099.

Also, calculate the actual value of the derivatives at this point.

So1.

i) Here x = 500 98 nearer to the beginning of the table we use Newton's forward formula.

Here 20 = 500, x1=510, x2=500, x3=530, x4=540,

$$\frac{dy}{dx} = \frac{1}{h} \left\{ \Delta y_0 + \frac{(2p-1)}{2} \Delta^2 y_0 + \frac{(3p^2 - 6p + 2)}{6} \Delta^3 y_0 + \frac{1}{12} \left\{ 2p^3 - 9p^2 + 11p - 3 \right\} \Delta^4 y_0 + \dots \right\}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dp} \left(\frac{dy}{dx} \right) \frac{dp}{dx}$$

$$= \frac{d}{dp} \left\{ \frac{1}{h} \left[\Delta y_{0} + (2p-1) \Delta^{2}y_{0} + (3p^{2}-6p+2) \Delta^{3}y_{0} + \frac{1}{12} \left\{ 2p^{3}-9p^{2}+11p-3 \right\} \Delta^{4}y_{0} + \dots \right\} \right\} h$$

$$= \frac{1}{h^{2}} \left\{ \frac{d}{dp} (\Delta y_{0}) + \frac{1}{2} \left\{ 2\frac{d}{dp} (p) - \frac{d}{dp} (1) \right\} \Delta^{2}y_{0} + \frac{1}{2} \left\{ 3\frac{d}{dp} (p^{2}) - 6\frac{d}{dp} (p) + \frac{d}{dp} (2) \right\} \Delta^{3}y_{0}$$

$$+ \frac{1}{12} \left\{ 2\frac{d}{dp} (p^{3}) - 9\frac{d}{dp} (p^{2}) + 11\frac{d}{dp} (p) - \frac{d}{dp} (3) \Delta^{4}y_{0} + \dots \right\}$$

-		+ (50)	J		. 11	
X	20		Drow	the y	following	table.
	3.68	3.70	3.73	5 3	54	ef.
Sol:		Aut A	a -	-	3.77	
		AIL &	-X ₂ = 0.02.1.	51 dy :	0.0008	
F	V = (0 10				
the .	lere x=s table w Here x		nearer	to th	e begini	na a
	11	e use	2 New	ton's	formal	9 06
	Here 7	0=50, x	1-51.2		Voltara	formula
-	Also, x	2 CA 0	1	2 = 52,	forward x3=53, x	4-54.
V						
	P = x-	x0 = 20	02-0			
	,		1 =0	K 15.		
_	dy 1	100	. 2 .			
	$\frac{dy}{dx} = \frac{1}{h}$	1 220 -	A 90 -	+ 43 4º -	1ty.	5
		a viewi		3	4	7-0
-	124	_			5 1 1	10-11
	daz hi	2 { D 9	0-4340	+ 11 04	40+··· z	-0
-f				,	J	
The	dibb ta	ble i	s as	follow	03	
×	4=4(x)	ΔΥ	Δ2y	€ ∆ 3 y	sty.	r g der
50	3.68	0.02	- 100	- 44	141 516	12 4
51	3.70	0.02 2 yo	0.01		Total II	15- 75
52	3.73	0.03	-0.01	-0.07	0.00	12.
53	3.75	0.02	n.	0.01	0.03 Aty	1.
	0.12		0			
54	3.77	0.02				ersH (1

$$= \frac{d}{dp} \left\{ \frac{1}{h} \left[\nabla^{4} y_{n} + \frac{2p+1}{2} \nabla^{2} y_{n} + \frac{3p+1p+1}{2} \nabla^{2} y_{n} + \cdots \right] + \frac{4p^{3}+18p^{3}+2p+6}{4p} \nabla^{4} y_{n} + \cdots \right] + \frac{1}{h^{2}} \left\{ \frac{d}{dp} \left(\nabla^{4} y_{n} \right) + \frac{1}{2} \left\{ \frac{2d}{dp} \left(P \right) + \frac{d}{dp} \left(1 \right) \right\} \nabla^{2} y_{n} + \frac{1}{h^{2}} \left\{ \frac{3d}{dp} \left(P^{2} \right) + 6 \frac{d}{dp} \left(P \right) + \frac{d}{dp} \left(2 \right) \right\} \nabla^{3} y_{n} + \frac{1}{24} \left\{ \frac{3d}{dp} \left(P^{2} \right) + 18 \frac{d}{dp} \left(P^{2} \right) + 22 \frac{d}{dp} \left(P \right) + \frac{d}{dp} \left(6 \right) \right\} \nabla^{4} y_{n} + \cdots \right\}$$

$$= \frac{1}{h^{2}} \left[0 + \frac{1}{2} \left(2 \right) \nabla^{2} y_{n} + \frac{1}{6} \left\{ \frac{5ep+6}{3} \nabla^{2} y_{n} + \frac{1}{24} \left\{ 12P^{2} + 3kP + 22 \right\} \right\} \nabla^{4} y_{n} + \cdots \right]$$

$$\Rightarrow \frac{d^{2}y}{dx^{2}} = \frac{1}{h^{2}} \left\{ \nabla^{2} y_{n} + \left(P + 1 \right) y_{0} \nabla^{3} y_{n} + \frac{1}{12} \left\{ \left(P^{2} + 18P + 11 \right)^{2} \nabla^{4} y_{n} + \cdots \right\} \right\}$$

$$\Rightarrow \frac{A^{2}y}{dx^{2}} = \frac{1}{h^{2}} \left\{ \nabla^{2} y_{n} + \left(P + 1 \right) y_{0} \nabla^{3} y_{n} + \frac{1}{12} \left\{ \left(P^{2} + 18P + 11 \right)^{2} \nabla^{4} y_{n} + \cdots \right\} \right\}$$

$$\Rightarrow \frac{A^{2}y}{dx^{2}} = \frac{1}{h^{2}} \left\{ \nabla^{2} y_{n} + \left(P + 1 \right) y_{0} \nabla^{3} y_{n} + \frac{1}{12} \left\{ \nabla^{2} y_{n} + \frac{1}{3} \nabla^{3} y_{n} + \frac{1}{4} \nabla^{4} y_{n} + \cdots \right\} \right\}$$

$$\Rightarrow \frac{A^{2}y}{dx^{2}} = \frac{1}{h^{2}} \left\{ \nabla^{2} y_{n} + \left(P + 1 \right) y_{0} \nabla^{3} y_{n} + \frac{1}{12} \left\{ \nabla^{4} y_{n} + \frac{1}{4} \nabla^{4} y_{n} + \cdots \right\} \right\}$$

$$\Rightarrow \frac{A^{2}y}{dx^{2}} = \frac{1}{h^{2}} \left\{ \nabla^{2} y_{n} + \left(P + 1 \right) y_{0} \nabla^{3} y_{n} + \frac{1}{12} \left\{ \nabla^{4} y_{n} + \frac{1}{4} \nabla^{4} y_{n} + \cdots \right\} \right\}$$

$$\Rightarrow \frac{A^{2}y}{dx^{2}} = \frac{1}{h^{2}} \left\{ \nabla^{2} y_{n} + \nabla^{3} y_{n} + \frac{1}{4} \nabla^{4} y_{n} + \cdots \right\}$$

$$\Rightarrow \frac{A^{2}y}{dx^{2}} = \frac{1}{h^{2}} \left\{ \nabla^{2} y_{n} + \nabla^{3} y_{n} + \frac{1}{4} \nabla^{4} y_{n} + \cdots \right\}$$

$$\Rightarrow \frac{A^{2}y}{dx^{2}} = \frac{1}{h^{2}} \left\{ \nabla^{2} y_{n} + \nabla^{2} y_{n} + \frac{1}{4} \nabla^{4} y_{n} + \cdots \right\}$$

$$\Rightarrow \frac{A^{2}y}{dx^{2}} = \frac{1}{h^{2}} \left\{ \nabla^{2} y_{n} + \nabla^{2} y_{n} + \frac{1}{4} \nabla^{4} y_{n} + \cdots \right\}$$

$$\Rightarrow \frac{A^{2}y}{dx^{2}} = \frac{1}{h^{2}} \left\{ \nabla^{2} y_{n} + \frac{1}{h^{2}} \nabla^{2} y_{n} + \frac{1}{h^{2}} \nabla^{4} y_{n} + \cdots \right\}$$

$$\Rightarrow \frac{A^{2}y}{dx^{2}} = \frac{1}{h^{2}} \left\{ \nabla^{2} y_{n} + \left(P + 1 \right) y_{n} \nabla^{2} y_{n} + \left(P + 1 \right) y_{n} \nabla^{2} y_{n} + \left(P + 1 \right) y_{n} \nabla^{2} y_{n} + \frac{1}{h^{2}} \nabla^{2} y_{n} + \frac{1}{h^{2}} \nabla^{2} y_{n} + \frac$$

$$\frac{dp}{dx} = \frac{d}{dx} (r) = \frac{1}{h} \frac{d}{dx} (x - x_0) = \frac{1}{h} (1)$$

$$\frac{dp}{dx} = \frac{1}{h}$$

$$\frac{dp}{dx} = \frac{d}{dx} \left\{ y_0 + P \left(\frac{y_0 + y_{y-1}}{2} \right) + \frac{p_1}{2!} V^2 y_1 + \frac{p(p^2 - 1)}{3!} \left(\frac{y_0 + y_0^2 y_{y-1}}{2} \right) + \frac{p_1^2}{4!} V^2 y_2 + \frac{p(p^2 - 1)}{3!} \left(\frac{y_0 + y_0^2 y_{y-1}}{2} \right) + \frac{1}{2} \frac{d}{dx} (p^2) \nabla^2 y_1 + \frac{1}{6} \left(\frac{d}{dx} (p^2) - \frac{d}{dx} (p^2) \right) \nabla^2 y_2 + \frac{1}{6} \left(\frac{d}{dx} (p^2) - \frac{d}{dx} (p^2) \right) \nabla^2 y_2 + \frac{1}{6} \left(\frac{dx} (p^2) \right) \nabla^2 y_2 + \frac{1}{6} \left(\frac{dx} (p^2) \right) \nabla^2 y_2 + \frac{1}{6$$

$$= \frac{1}{h^{2}} \left\{ \frac{d}{dp} \left(\frac{\Delta y_{0} + \Delta y_{-1}}{2} \right) + \frac{d}{dp} \left(\frac{D^{2}(1, 1)}{2} \right) + \frac{1}{4p} \left(\frac{D^{2}(1, 1)}{2} \right) + \frac{D^{2}(1, 1)}{2} +$$

Here $x_1 = 1.70$, $x_1 = 1.74$, $x_2 = 1.78$, $x_3 = 1.82$, $x_4 = 1.86$, h= 0.04 and x = 1.74.

Here x=1.74 is neaver to beginning of the

Here
$$x_{n-1931}$$
, x_{n-1941} , x_{n-1961} .

 $x_{n-2n-1971}$
 $f = \frac{x-x_n}{h} \cdot \frac{(1971-(16))}{10} = \frac{10}{10} = 1$.

 $f(\frac{dy}{dx} = \frac{1}{h} \left\{ \nabla y_n + \frac{3}{2} \nabla^2 y_n + \frac{11}{4} \nabla^3 y_n + \frac{25}{11} \nabla^3 y_n + \frac{25}{11} \nabla^3 y_n + \frac{1}{2} \nabla^3$

$$\frac{dy}{dx} = \frac{1}{h} \left\{ \Delta y_0 - \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} - \frac{\Delta^3 y_0}{4} + \dots \right\} - C$$

Backword

4) From the following data obtain the 1st 2 2nd derivatives of y=logex i) at x=500, ii) x=550.

table we we Newton's forward formula.

Here Xo=500, 21=510, 22=520, 23= \$30, 24:540,

Also, x = 500, helo:

the table we use Newton's backward .

$$P = \frac{x - x_0}{h} = \frac{550 - 550}{10} = 0$$

marked that is not a form to be a second or product

,	3 603. 2	Δy	434	a3y	84	1 54
500	6.2116			* y	2 7	- 5
510	6.2314	0.0198	-			
520	6.25 38	0.0194	-0.0004 Δ ³ y ₀	0.0001		
530	6.2729	0.0191	-0.0003	-0.0001	-0.0002	0.00
540	6.2916	0.0187	-0.0004	0	0.0001	0.0003
550	6-3099	0.0183	♥ ²y,			
Ans-						
	dy = 0.00	2 004	in all	C		
	$\frac{d^2y}{dx^2} = \frac{1}{100}$	-0-0004	1 -0 000	01 -11	(0.0002)	
	= 1	[-0.000	4-0.00	01 - 0.0	00018]	000AS
	dx2 = 0.0).
ii) Backu						N'S
1.	and:					00.3

where.
$$p \cdot \frac{2 \cdot 2}{h} = \frac{2 \cdot 0}{1} \cdot 2 \cdot 1$$
 $p \cdot x$
 $y(x) = y_0 + x \Delta y_0 + \frac{2(x-1)}{2} \Delta^2 y_0 + \frac{2(x-1)(x-2)}{6} \Delta^3 y_0 + \frac{2(x-1)(x-2)(x-2)}{6} \Delta^4 y_0 + \cdots$
 $\frac{dy}{dx} = \frac{1}{h} \left\{ \Delta y_0 + \frac{(2x-1)}{2} \Delta^2 y_0 + \frac{(3x^2 - 6x + 12)}{6} \Delta^3 y_0 + \frac{2x^3 - 9x^2 + 112 - 3}{12} + \cdots \right\}$

and

 $\frac{d^2y}{dx^2} = \frac{1}{h^2} \left\{ \Delta^2 y_0 + (x-1) \Delta^3 y_0 + \frac{6x^2 - 182 + 11}{12} \Delta^4 y_0 + \cdots \right\}$

The tabular column as follows:

 $x \cdot y \cdot \Delta y \cdot \Delta^2 y \cdot \Delta^3 y \cdot \Delta^4 y \cdot \Delta^5 y$
 $0 \cdot 0 \cdot y_0 \cdot 0 \cdot 2 \cdot y_0 \cdot 0 \cdot y_0 \cdot 0 \cdot 2 \cdot y_0 \cdot 0 \cdot y_0 \cdot y_0 \cdot y_0 \cdot 0 \cdot y_0 \cdot y_0$

6) A rod is rotating in a plane. The following table gives the angle o (radians) through which the rod has turned for various value, of time + (se conds).

t	0	0.2	0.4	0.6	0 . 8	1.0
0	0	0.12	0.49	1.12	2.02	3.20

calculate the angular velocity and the acceleration of the rod when t=0.6 seconds 201:

Here t=0.6 is in the middle of the table we use Stir Striling's formula to find angular velocity and acceleration.

ie) To find
$$(\frac{do}{dt})_{at}$$
 $t=0.6$ and $(\frac{d^2o}{dt^2})_{at}$ $t=0.6$
Now, $p=t-t_0$

Choose
$$t_0 = 0.6$$
 and here $h = 0.2$.

$$P = \underbrace{0.6 - 0.6}_{0}$$

W.K.T.
$$\left(\frac{d\sigma}{dt}\right)_{at} = \frac{1}{h} \left\{ \frac{\Delta y_0 + \Delta y_{-1}}{2} - \frac{\Delta^3 y_{-1} + \Delta^3 y_{-1}}{12} \right\}$$

and
$$\left(\frac{d^2o}{dt^2}\right)_{at}$$
 = $\frac{1}{h^2} \left\{ \Delta^2 y_{-1} - \Delta^4 y_{-2} + \dots \right\}$

Tangentine ber seed

= 0.25 + (0.2-1) (0.01) +
$$30^{2} \cdot 60 \times 12$$
 + $20^{2} \cdot 90^{2} \cdot 100 \times 12$
= 0.25 - $(2 \times 2 - 1)$ + $30^{2} \cdot 40 \times 12$ + $30^{2} \cdot 90^{2} \cdot 100 \times 12$
= $1 \cdot 2 \times 14 + 60^{2} \cdot 12 \times 4 + 4 + 4 \times 3 - 18 \times 4 + 22 \times - 6$
4 $4 \times 3 - 12 \times 2 \cdot 48 \times = 0$
 $4 \times 3 - 12 \times 2 \cdot 48 \times = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 - 3 \times + 2) = 0$
 $4 \times (2 \times 2 \times 3 \times + 2) = 0$
 $4 \times (2 \times 2 \times 3 \times + 2) = 0$
 $4 \times (2 \times 2 \times 3 \times + 2) = 0$
 $4 \times (2 \times 2 \times 3 \times + 2) = 0$
 $4 \times (2 \times 2 \times 3 \times + 2) = 0$
 $4 \times (2 \times 2 \times 3 \times + 2) = 0$
 $4 \times (2 \times 2 \times 3 \times + 2) = 0$
 $4 \times (2 \times 2 \times 3 \times + 2) = 0$
 $4 \times (2 \times 2 \times 3 \times + 2) = 0$
 $4 \times (2 \times 2 \times 3 \times + 2) = 0$
 $4 \times (2 \times 2 \times 3 \times + 2) = 0$
 $4 \times (2 \times 2 \times 3 \times + 2) = 0$
 $4 \times (2 \times 2 \times 3 \times + 2) = 0$
 $4 \times (2 \times 2 \times 3 \times + 2) = 0$
 $4 \times (2 \times 2 \times 3 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$
 $4 \times (2 \times 3 \times 4 \times + 2) = 0$

$$\frac{dy}{dx} = \frac{1}{100} \left[0.001819 \cdot \frac{d^2y}{dx^2} - \frac{1}{100} \left[-0.0000308 \right] \right]$$

$$\frac{d^2y}{dx^2} = \frac{1}{100} \left[-0.0000308 \right]$$

$$\frac{d^2y}{dx^2} = -0.00000308$$

$$\frac{d^2y}{dx^2} = -0.00000308$$

$$\frac{dy}{dx} = 0.002$$
, $\frac{d^2y}{dx^2} = 0.0000068$.

ii) Backward (at x=550)

$$\frac{dy}{dx} = 0.001819, \frac{d^2y}{dx^2} = -0.00000308.$$

5) The population in millions of a certain fown is shown in the following table. Find the rate of growth of the population in 1961.

Year	1931	1941	1951	1961	1971
Population (y)	40.62	60.80	79.95	103.26	13 2.65
To find	dy a	velocity)			

Here x=1961 is nearer to the begining of the table we use Newton's backward formula.

The	tabula	r col	aum n	as fo	Uews :	7338
ŧ	0	46	A ² D	A3 a	40	A50
0	0					
		0-12				
0.2	0-12		0.25	0.01		
		0.37		45	040	
0.4	0.49		0126	-	40	0
		0.63		0.019	0 400	
0.6	1.12	434			0 50	
-		0.9		U-U-		
0.8	2.02	20%	0.28	430		
		1-18	2100			
1.0	3-20					
. 0	-2 = 0.01 becom	mes,	-1 = 0 - 2 -	7, 47	9-2=0.	
(de	at t					12 + 12 + 12 + 12
		1 = -	1 0 2	.765-	0.02	
			Ex 0.76		00167]	
ns:			3.81		ians/se	
(dt)	1	=	3-82	radi	ione la	

$$\frac{1}{2} = 48 \pm \sqrt{(49)^2 - \frac{1}{2}(6)(67)}, \frac{191\sqrt{1304 - 1608}}{12}$$

$$= 48 \pm \sqrt{676} = 48 \pm 26 \cdot 4$$

$$= \frac{48 + 26 \cdot 4}{12}, \frac{48 - 26 \cdot 4}{12}$$

$$= \frac{48 + 26 \cdot 4}{12}, \frac{21 \cdot 6}{12}$$

$$= \frac{174 \cdot 4}{12}, \frac{21 \cdot 6}{12}$$

$$= \frac{174 \cdot 4}{12}, \frac{21 \cdot 6}{12}$$

$$= \frac{1}{2} + (1 \cdot 8 - 1)(-4) = 12 + 0 \cdot 8(-4) = 12 - 3 \cdot 2$$

$$= 8 \cdot 8 \cdot 20$$
ii) When $x = 6 \cdot 2$,
$$\frac{d^2y}{dx^2} = 1 \left[12 + (6 \cdot 2 - 1)(-4) \right] = 12 + 5 \cdot 2(-4) = 12 - 20 \cdot 8$$

$$= -8 \cdot 8 \cdot 20$$

$$y(x) \text{ attains maximum when } x = 1 \cdot 8 \cdot 4 \cdot 9(x)$$
attains and est when $x = 6 \cdot 2$.

The min value 1's = 58 + (1 \cdot 8)(-1 \cdot 5) + (1 \cdot 8)(1 \cdot 8 - 1)(-1)(-1)(1 \cdot 8 - 2)(-1)(-1)(1 \cdot 8 - 2)(-1)(1 \cdot 8 - 2)(1 \cdot

UNIT-4 (continution)

7 0 1 2 3 4 5 f(x) 58 43 40 45 52 60.

Here $x_0=0$, $x_1=1$, $x_2=2$, $x_3=3$, $x_4=4$ & h=1, $x_5=s$ N. K. T. Newton's forward interpolation formula

18,

where
$$p = \frac{x - x_0}{h}$$
 Here $p = \frac{x - 0}{1} = x = \sum_{i=1}^{n} p_i x_i$

: 0 becomes,

* W. K. T. Weddleg's rule is + ff(x)dx = 3h ((4.454.+ #4,+ 64,+ 94+54,) +6 4+ + 4 - + 48 + 4 44 + 40+ + 79 .. + (24n-8+54n-5+4n-4+64n-3 + 44-2 + 24-1 + 1/4)} Note For weddles rule put n=6 in newton's Cote's defor quadrature formula. Polms: 1) i) Evaluate j dx => tan'x taking h=1 using 11) Trapezoidal rule , sii) Simpson's 1/3 rd rule, iti) simpson's 3, th rule , iv) weddles rule, u) Also check up by direct integration which rule gives the value dosets to the actual value. Sel: Let y(x)=1/1+x2 => fan-1x G. 7. K=1. The tablular column is as follows.

-1- {1.5+2.7+8.27723 - 1 f12.4772} 0.69317 . 0.67 22 . iii) W. K. T. the sampson's 3th rule is, (3(x)4x = 37 (30+ 21)+ (3(2+ 24)) +3(2+2+) Jdz = 3(1) {(1.5)+3(0.8571+0.6)+ 3 (0.75 + 0.545 5) + 2 (0.6667)} = 1691.5+1.3731+3.8865+1.3331} = 14 1 (1.0712) 20.16932. 1v) \int \frac{dz}{1+x} = \int \frac{d(1+x)}{1+x} \qquad \land \land \frac{1+x}{1+x} \qquad \land \land \frac{1+x}{1+x} = [log(1+2)]! log e : 0.434; = loge 2 - loge 1 Trapezoidal rule, Error = Exact value - Approx. Simpson's 13rd rule Frior = 0.6731 - 0.6932 = - 0.0001 Simpson's 3 th rule, Error = 0.6931-06932

Let
$$y(x) = \frac{1}{1+x}$$
. Gi. T. $h = \frac{1}{6}$.

The tabular Column 18 as follows.

 $x = \frac{1}{1+x} = \frac{1$

$$\int f(x)dx = \frac{h}{2} \int (40+9h) + 2(91+92+\cdots + 4h-1)^{3}$$

$$\therefore \int \frac{dx}{1+x} = \frac{\frac{1}{2}}{2} \int (1+0.5) + 2(1+0.8571) + 0.75$$

$$+0.6667 + 0.6 + 0.5455^{3}$$

$$= \frac{1}{12} \left\{ 1.5 + 2 \left(3.4193 \right) \right\}$$

$$= \frac{1}{12} \left\{ 8.3386 \right\} = 0.69488 = 0.6949.$$

ii) Wx.7. the Simpsons 3rd rule is,
$$\int f(x)dx = \frac{h}{3} \left\{ (40+4n) + 2(42+44+...+4n-2) + 4(41+43+...+4n-1) \right\}$$

$$\int \frac{dx}{dx} = \frac{1}{3} \left\{ (1.5) + 2(0.75+0.6) + 4(0.8571) \right\}$$

Here,
$$y_{0} = 0$$
, $y_{0} = 0.2588$, $y_{0} = 0.7071$,

 $y_{0} = 0.8660$, $y_{0} = 0.7056$, $y_{0} = 1$.

Whit Simpsons y_{0} rule is,

$$\int f(x) dx = \int f(y_{0} + y_{0}) + 2(y_{0} + y_{0} + \cdots + y_{n-2})$$

$$+ 4(y_{1} + y_{3} + \cdots + y_{n-2}) f(y_{0} + y_{0}) + 2(y_{0} + y_{0} + \cdots + y_{n-2}) f(y_{0} + y_{0}) + 2(y_{0} + y_{0} + \cdots + y_{n-2}) f(y_{0} + y_{0}) + 2(y_{0} + y_{0} + \cdots + y_{n-2}) f(y_{0} + y_{0}) + 2(y_{0} + y_{0} + \cdots + y_{n-2}) f(y_{0} + y_{0}) + 2(y_{0} + y_{0} + y_{0} + \cdots + y_{n-2}) f(y_{0} + y_{0}) + 2(y_{0} + y_{0} + y_{0} + y_{0} + \cdots + y_{n-2}) f(y_{0} + y_{0} + y_{0} + y_{0} + y_{0} + y_{0} + y_{0} + y_{0}) f(y_{0} + y_{0} +$$

3) Find the minimum value of free which has or the values. Sol: Here 20=0, x1=2, x2=4, x=6 and h=6. W.K.T. Newton's fund interpolation formula is, Y(x)= 40+ PAY0+ P(P-1) A40+ P(P-1)(P-2) A340+ P(P-1)(P-2) (P-3) 44.+... dy - t { A40 + (2P-1) A+30+302-6P+32 B340+...} -0 124 = 1 5 24 + CP-1) 0340 + 6P=18P+11 0440+...} -3 where p= x-20 Here p= x-0 = x =) P=x . O becomes, y(x) = y0 + xxy0 + x2(x2-1) 0340 + x(x-1)(x-2) 0340+ $\frac{\chi(\chi-1)(\chi-2)(\chi-3)}{4}$ dy = 1 { Ayo + (2/2-1) Azyo + (3x2+6x+2) Azyo+... dy = 1 { 12 4 4 + (x-1) 13 4 + ...}

2) Evaluate find by using trapezoidal rule with 11 Coordinates. CH. T. there are 11 co-ordinates Number of intervals neco Now h= h-a 5-10 = 710 = 1/5 = 0-5 [h=0.5 Let 4(x) = 1 The tabular column is as follows. X 0 0 5 1 1+5 2 2-5 3 3-5 4 4 - Axet 0-3 0-1429 0-111 0-0105 0-017 0-0147 0-0174 0-0174 0-0425 Here y = 0.2, 4, = 0.1429, 4, = 0.1111, 4, = 0.0909. H=0.0769. 95=0.0667, 86=0.0588, 47=0.0526, 48=0.0076 1, = 0:04 35, Y10 = 0:04. WKT trapozoidal rule is. J+(x) d2 = 1 (40+44) +2 (41+42+...+44-1)} JAX+5 dy = 1 { (40+40)+= (4,+42+42+44+45+44+45

$$y_{s} = 0.0385, y_{s} = 0.0270.$$
i) W.K.T. the trapezoidal rule is,
$$\int \frac{dx}{4x^{2}} = \frac{1}{2} \left\{ (y_{0} + y_{0}) + 2(y_{1} + y_{2} + \cdots + y_{N-1}) \right\}$$

$$= \frac{1}{2} \left\{ (1 + 0.0385) + 2(0.5 + 0.2 + 0.1 + 0.0588 + 0.0387) \right\}$$

$$= 0.5 \left\{ (1.0270 + 2.08973) \right\}$$

$$= 0.5 \left\{ (2.8216) \right\}$$

$$\int \frac{dx}{1+x^{2}} = \frac{h}{3!} \left\{ (y_{0} + y_{0}) + 2(y_{2} + y_{4}) + 4(y_{1} + y_{3} + y_{5}) \right\}$$

$$= \frac{1}{3} \left\{ (1.0270 + 2.0270) + 2(0.2 + 0.0588) + 4(0.0385) \right\}$$

$$= \frac{1}{3} \left\{ (1.0270 + 2.0288) + 4(0.0385) \right\}$$

$$= \frac{1}{3} \left\{ (1.0270 + 0.5176 + 2.554) \right\}$$

$$= \frac{4.0986}{3}$$

$$\int \frac{dz}{1+z^{2}} = 1.3662.$$

iii) W.K.T. the simpsons
$$\frac{3}{8}$$
th rule is,

$$\int \frac{dz}{1+z^2} = \frac{3h}{8} \left\{ (y_0 + y_0) + 3(y_1 + y_4) + 3(y_2 + y_5) + 2y_3 \right\}$$

$$= \frac{3}{8} \left\{ (1+0.0270) + 3(0.5+0.0588) + 2(0.1) \right\}$$

$$= \frac{3}{8} \left\{ (.0.270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (.0.270 + 3(0.5588) + 3(0.2358) + 0.2 \right\}$$

$$= \frac{3}{8} \left\{ (3.6189) + (3.6189)$$

Scanned with CamScanner

Simple is
$$\frac{3}{8}$$
 pour $\frac{3}{8}$ pour $\frac{3}{8}$ pour $\frac{3}{8}$ put $\frac{3}{8}$ in $\frac{3}{8}$. The value of $\frac{3}{8}$ are $\frac{3}{8}$ and $\frac{3}{8}$ in $\frac{3}{8}$. The value of $\frac{3}{8}$ are $\frac{3}{8}$ fixed at $\frac{3}{8}$ fixed $\frac{3}{8}$ fixed

$$= \mu \left\{ \frac{3}{3 \cdot 4^{6} + 4^{1} \cdot 4^{0}} \right\}$$

|
$$\chi_{0} + 2h \chi_{0} + 2h$$
 | $\chi_{0} + 2h \chi_{0} + 2h \chi_{0} + 2h \chi_{0} = \frac{h}{2} (4.4.4.2)$

$$\chi_{ot} = \frac{\chi_{ot}}{\int_{2h}^{2h} f(x) dx} = \frac{h}{2} (42+43).$$

$$\int_{0+(n-1)h}^{\infty} f(x) dx = \frac{h}{2} (y_{n-1} + y_n)$$

Adding all these equis,

SIMPONS 1 ROLE:

Put n=2 fn 2

The values of x are xo,x,,x2-

Here all the differences of 3rd orde

smula to home as Singerise

and higher order will become zero.

$$\int_{x_0}^{x_0+x_0} f(x) dx = h \int_{x_0}^{x_0} y_0 + \frac{x_0}{h} Ay_0 + \frac{x_0$$

Substituting this value of 4. in @

$$= h y_0 + \frac{h^2}{2} y_0' + \frac{h^3}{4} y_0'' + \frac{h^4}{12} y_0''' + \dots$$

$$\Rightarrow \int_{x_0}^{x_0} y dx - n_0 = \left\{ hy_0 + \frac{h^2}{2} y_0' + \frac{h^3}{6} y_0'' + \frac{h^4}{24} y_0''' + \dots \right\}$$

$$=\frac{1}{6}-\frac{1}{4}h^3y_0"+\cdots$$

$$=\frac{-1}{12}\lambda^3\eta_0"+\cdots$$

The first in the interval
$$(x_1, x_2) \simeq -\frac{h^3}{12} y_1'' + \cdots$$

The Error in the interval
$$(x_{n-1}, x_n) \simeq -\frac{h^3}{12} y_{n-1}^{"} + ...$$

$$|E| = \left| \frac{-h^3}{12} \left\{ y_0'' + y_1'' + y_2'' + \dots + y_{n-1}^{n-1} \right\} \right| \le \frac{h^3}{12} \left\{ y_0'' + y_1'' + y_2'' + \dots + y_{n-1}^{n-1} \right\} \right| \le \frac{h^3}{12} \left\{ y_0'' + y_1'' + y_2'' + \dots + y_{n-1}^{n-1} \right\}$$

Let Mamax fy + 4 "+" M = max { you, y, 1, ..., your } 1. |E| = (1-a) +3 M ie) [IEI & (b-a) h2 m] The Error in Trapezoidal rule is of order h2. 110000 1 1 = PROBLEMS : Devaluate J dx using Trapezoidal rule with h=0.2 Hence determine the value of TT? Evaluate Trapezoidal rule by taking 5 internal $\begin{bmatrix} h = \frac{1-0}{5} = \frac{1}{5} = 0.2 \end{bmatrix}$ (10.5) (14.60) (14.60) (14.60) (14.60)Here y(x) = 1 and x = 0. 1+000 The tabular column as follows: × 0 0.2 0.4 0.6 0.8 1.0. y 1 0.9615 0.864 0.7353 0.6098 0.5 Here 4.= 1, 4, =0.9615, 42 = 0.8621, 43 = 0.7353,

$$= f(x_0) \int dx + f'(x_0) \int (x - x_0) d(x - x_0) + f''(x_0)$$

$$x_0 \qquad x_0 \qquad x_0$$

$$y_{4} = 0.6098$$
, $y_{5} = 0.5$
W.K.T. The trapezoidal rule is,

$$\int_{0}^{b} f(x) dx = \frac{h}{2} \left\{ (y_{0} + y_{0}) + 2(y_{1} + y_{2} + \dots + y_{n-1})^{2} \right\}$$

$$\therefore \int_{0}^{b} \frac{dx}{1+x^{2}} = \frac{h}{2} \left\{ (y_{0} + y_{5}) + 2(y_{1} + y_{2} + y_{3} + y_{4})^{2} \right\}$$

$$= \frac{0.2}{2} \left\{ (1+0.5) + 2(0.9615) + 0.8621 + 0.7353 + 0.6098)^{2} \right\}$$

$$= \frac{1}{10} \left\{ 1.5 + 6.3374^{2} \right\}$$

$$= \frac{1}{10} \left\{ 7.8374^{2} \right\}$$

$$= 0.7837$$

$$\int_{0}^{b} \frac{dx}{1+x^{2}} = 0.7837 \qquad 0$$

$$= \tan^{-1}(1) - \tan^{-1}(0)$$

$$= \tan^{-1}(\tan y_{4}) - \tan^{-1}(\tan 0)$$

$$= \frac{1}{10} - 0 = \frac{1}{10} \qquad 0$$
From $0 = \frac{1}{10} = 0.7837 \times 4$

$$\pi = 3.1348$$

NUMERICAL INTEGRATION

NEWTONS COTE'S QUADRATURE FORMULA

Let the function be y=f(x), let 4=f(x), y = f(xi), ... Yn = f(xn), let I = f(x) dx.

Divide the Interval [a,b] into the Subintervals Such that Do a = 20, x, = 20+h, 22=2042h, ... , xn = xo+nh where h is the length of the interval.

$$\hat{I} = \int_{X_0}^{X_0 + nh} f(x) dx - 0.$$

W. K. T. $P = \frac{\chi - \chi_0}{h} = 1$ $\chi = \chi_0 + ph$.

: dx = d(x+ph) = d(x+)+hdp=hdp

Butere xx=x0=x0=xo+ph

=> P=n W.K.T. Newtons interpolation formula Ps, A to make the first tourious will.

y(x) = y(x+ph) = y+ PAy+ P(P-1) A2y+ P(P-1)(P-2)

ic) f(20+Ph) = yo + PAyo + p2-p s2yo + P3-3p2+2p s3yo+...

O Becomes, I = S+(x+ph) hdp

Ropt worted Dept .

$$= h \int_{0}^{\infty} \left\{ y_{0} + p \Delta y_{0} + \frac{p^{2} - p}{2} \Lambda^{2} y_{0} + \cdots \right\} dp$$

$$= h \left\{ y_{0} \int_{0}^{\infty} dp + \left(\int_{0}^{p} p dp \right) \Delta y_{0} + \left(\int_{0}^{p} p^{2} dp - \int_{0}^{p} p dp \right) \frac{p}{2} y_{0} \right\}$$

$$+ \left(\int_{0}^{p} p^{2} dp - 3 \int_{0}^{p^{2}} p^{2} dp + 2 \int_{0}^{p} p dp \right) \frac{p^{2} y_{0}}{2}$$

$$= h \left\{ y_{0} \left[p \right]_{0}^{n} + \left[\frac{p^{2}}{2} \right]_{0}^{n} \Delta y_{0} + \left(\left[\frac{p^{3}}{3} \right]_{0}^{n} - \left[\frac{p^{2}}{2} \right]_{0}^{n} \right) \frac{\Delta^{3} y_{0}}{2} \right\}$$

$$+ \left(\left[\frac{p^{4}}{4} \right]_{0}^{n} - 3 \left[\frac{p^{3}}{3} \right]_{0}^{n} + 2 \left[\frac{p^{2}}{2} \right]_{0}^{n} \right) \frac{\Delta^{3} y_{0}}{2}$$

$$+ \left(\frac{p^{4}}{4} - n^{2} + n^{2} \right) \frac{\Delta^{3} y_{0}}{2} + \cdots \right\}$$

$$= \chi_{0}$$
This formula is known as Newton's Gote's

gua quadrature formula.

TRAPE ZOLDAL RULE

Put n = 1 in 3.

Derive Trapezoidal rule.

The values of x are 20, x,

Here all the differences except Ayo will