Question de cours Quel algorithme utiliser pour calculer les composantes fortement connexes d'un graphe orienté? Expliquez-le et donnez sa complexité.

Exercice 1 (Graphes Hamiltoniens) On dit qu'un graphe est *Hamiltonien* (resp. *Semi-Hamiltonien*) si il possède un cycle (resp. un chemin) qui passe une unique fois par chacun des sommets du graphe.

Un exemple ? Soient $n \in \mathbb{N}$ et $G = (\{1, ..., n\}, \{\{i, j\}, i \land j = 1\})$ un graphe. G est-il Hamiltonien ?

Un lemme de Ore Soit G = (S, A) un graphe. On note n = |S|. On souhaite montrer que si

$$\forall u \in S, \ \forall v \notin \mathcal{N}(u), \ d(u) + d(v) \ge n \tag{1}$$

alors G est Hamiltonien.

Question 1 On raisonne par contraposée en supposant G non-Hamiltonien maximal (i.e l'ajout de n'importe quelle arête rendrait G Hamiltonien). Montrer que G possède un chemin Hamiltonien.

Question 2 On note $(x_0, x_1, ..., x_n)$ la suite des sommets d'un tel chemin Hamiltonien et on considère les paires d'éventuelles arêtes $a_i = \{x_0, x_{i+1}\}$ et $b_i = \{x_n, x_i\}$. Montrer que pour tout $i \in \{0, ..., n-1\}$ G ne peut contenir à la fois a_i et b_i .

Question 3 Conclure.

Exercice 2 (Graphes critiques) Étant donné un graphe G, on note n son nombre de sommets et $\chi(G)$ le nombre minimum de couleurs nécessaires pour le colorer. On dit que G est k-critique si $\chi(G) = k$ et pour chaque sous graphe propre H de G, $\chi(H) \leq k - 1$.

Question 1 Montrer que tout graphe G tel que $\chi(G) = k$ contient un sous graphe k-critique.

Question 2 Montrer que chaque sommet d'un graphe k-critique est un degré d'au moins k-1.

Question 3 Montrer qu'un graphe k-critique possède au moins $\frac{k-1}{2}n$ arêtes.