```
In [1]: # Load libraries
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import statsmodels.formula.api as smf
        from sklearn import linear model
        from sklearn.model_selection import train_test_split, KFold, cross_val_s
        core
        from sklearn.preprocessing import StandardScaler
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.naive bayes import GaussianNB
        from sklearn.svm import SVC
        from scipy.cluster.hierarchy import linkage, fcluster
        from sklearn.cluster import KMeans, DBSCAN
        from sklearn import metrics
```

```
In [2]: # Load dataset
    data = pd.read_csv('merged_train.csv')
    data.head()
```

Out[2]:

	State	County	FIPS	Total Population	Percent White, not Hispanic or Latino	Percent Black, not Hispanic or Latino	Percent Hispanic or Latino	Percent Foreign Born	Percent Female	P€ A I
0	AZ	apache	4001	72346	18.571863	0.486551	5.947806	1.719515	50.598513	45.8
1	AZ	cochise	4003	128177	56.299492	3.714395	34.403208	11.458374	49.069646	37.9
2	AZ	coconino	4005	138064	54.619597	1.342855	13.711033	4.825298	50.581614	48.9
3	AZ	gila	4007	53179	63.222325	0.552850	18.548675	4.249798	50.296170	32.2
4	AZ	graham	4009	37529	51.461536	1.811932	32.097844	4.385942	46.313518	46.3

```
In [3]: #1. Partition the merged dataset into a training set and a validation se
        t using the holdout method or the cross-validation method.
        # Democratic
        X_train, X_test, Y_train, Y_test = train_test_split(data[['FIPS', 'Total
        Population', 'Percent White, not Hispanic or Latino', 'Percent Black, no
        t Hispanic or Latino', 'Percent Hispanic or Latino', 'Percent Foreign Bo
        rn', 'Percent Female', 'Percent Age 29 and Under', 'Percent Age 65 and 0
        lder', 'Median Household Income', 'Percent Unemployed', 'Percent Less th
        an High School Degree', "Percent Less than Bachelor's Degree", 'Percent
         Rural', 'Party']], data['Democratic'], test_size = 0.25,train_size = 0.
        75, random state = 0)
        X_train, X_vals, Y_train, Y_vals = train_test_split(X_train, Y_train, te
        st_size = 0.25, train_size = 0.75, random_state = 0)
        # Republican
        X train2, X test2, Y train2, Y test2 = train test split(data[['FIPS', 'T
        otal Population', 'Percent White, not Hispanic or Latino', 'Percent Blac
        k, not Hispanic or Latino', 'Percent Hispanic or Latino', 'Percent Forei
        gn Born', 'Percent Female', 'Percent Age 29 and Under', 'Percent Age 65
         and Older', 'Median Household Income', 'Percent Unemployed', 'Percent L
        ess than High School Degree', "Percent Less than Bachelor's Degree", 'Pe
        rcent Rural', 'Party']], data['Republican'], test_size = 0.25,train_size
        = 0.75, random_state = 0)
        X train2, X vals2, Y train2, Y vals2 = train test split(X train2, Y trai
        n2, test size = 0.25, train size = 0.75, random state = 0)
```

```
In [4]: #2. Standardize the training set and the validation set.
# Democratic
scaler = StandardScaler()
scaler.fit(X_train)
x_train_scaled = scaler.transform(X_train)
x_vals_scaled = scaler.transform(X_vals)

# Republican
scaler2 = StandardScaler()
scaler2.fit(X_train2)
x_train_scaled2 = scaler2.transform(X_train2)
x_vals_scaled2 = scaler2.transform(X_vals2)
```

```
In [5]: #3. Build a linear regression model to predict the number of votes cast
    for the Democratic party in each county.
    model = linear_model.LinearRegression().fit(X = x_train_scaled[:, [1, 7, 10]], y = Y_train)

# Compute evaluation metrics for the validation set and report your results.
Rsqr_val = model.score(X = x_vals_scaled[:, [1, 7, 10]], y = Y_vals)
    print(Rsqr_val)
```

0.9513600795496906

0.5156182047170289

```
In [7]: #4. Party (Partition)
    X_train3, X_test3, Y_train3, Y_test3 = train_test_split(data[['Total Pop ulation', 'Percent White, not Hispanic or Latino', 'Percent Black, not H ispanic or Latino', 'Percent Unemployed',
    'Percent Less than High School Degree', 'Percent Rural']], data['Party'], test_size = 0.25,train_size = 0.75,random_state = 0)
    X_train3, X_vals3, Y_train3, Y_vals3 = train_test_split(X_train3, Y_train3, test_size = 0.25, train_size = 0.75, random_state = 0)

#4. Party (Standardize)
    scaler3 = StandardScaler()
    scaler3.fit(X_train3)
    x_train_scaled3 = scaler3.transform(X_train3)
    x_vals_scaled3 = scaler3.transform(X_vals3)
```



```
In [9]: #4. Compute evaluation metrics for the validation set and report your re
    sults.
    accuracy = metrics.accuracy_score(Y_vals3, y_pred)
    error = 1 - metrics.accuracy_score(Y_vals3, y_pred)
    precision = metrics.precision_score(Y_vals3, y_pred, average = None)
    recall = metrics.recall_score(Y_vals3, y_pred, average = None)
    F1_score = metrics.f1_score(Y_vals3, y_pred, average = None)
    print([accuracy, error, precision, recall, F1_score])
```

[0.8125, 0.1875, array([0.83522727, 0.72916667]), array([0.91875, 0.546875]), array([0.875, 0.625])]


```
In [11]: #4. Compute evaluation metrics for the validation set and report your re
    sults.
    accuracy = metrics.accuracy_score(Y_vals3, y_pred)
    error = 1 - metrics.accuracy_score(Y_vals3, y_pred)
    precision = metrics.precision_score(Y_vals3, y_pred, average = None)
    recall = metrics.recall_score(Y_vals3, y_pred, average = None)
    F1_score = metrics.f1_score(Y_vals3, y_pred, average = None)
    print([accuracy, error, precision, recall, F1_score])
```



```
In [13]: #4. Compute evaluation metrics for the validation set and report your re
    sults.
    accuracy = metrics.accuracy_score(Y_vals3, y_pred)
    error = 1 - metrics.accuracy_score(Y_vals3, y_pred)
    precision = metrics.precision_score(Y_vals3, y_pred, average = None)
    recall = metrics.recall_score(Y_vals3, y_pred, average = None)
    F1_score = metrics.f1_score(Y_vals3, y_pred, average = None)
    print([accuracy, error, precision, recall, F1_score])
```

[0.7455357142857143, 0.2544642857142857, array([0.77540107, 0.5945945
9]), array([0.90625, 0.34375]), array([0.83573487, 0.43564356])]


```
In [15]: #4. Compute evaluation metrics for the validation set and report your re
    sults.
    accuracy = metrics.accuracy_score(Y_vals3, y_pred)
    error = 1 - metrics.accuracy_score(Y_vals3, y_pred)
    precision = metrics.precision_score(Y_vals3, y_pred, average = None)
    recall = metrics.recall_score(Y_vals3, y_pred, average = None)
    F1_score = metrics.f1_score(Y_vals3, y_pred, average = None)
    print([accuracy, error, precision, recall, F1_score])
```

[0.7946428571428571, 0.2053571428571429, array([0.77941176, 0.95]), array([0.99375, 0.296875]), array([0.87362637, 0.45238095])]

```
In [16]: #5. Party (Partition)
   X = data[['Total Population']]
   Y = data['Party']

#5. Party (Standardize)
   scaler5 = StandardScaler()
   scaler5.fit(X)
   X_scaled = scaler5.transform(X)
```

```
In [17]: #5. Build a clustering model to cluster the counties (Hierarchical Clust ering)
    clustering = linkage(X_scaled, method = "single", metric = "euclidean")
    clusters = fcluster(clustering, 2, criterion = "maxclust")

cont_matrix = metrics.cluster.contingency_matrix(Y, clusters)
    sns.heatmap(cont_matrix, annot = True, fmt = ".3f", square = True, cmap
    = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Contingency matrix')
    plt.tight_layout()
```



```
In [18]: #5. Compute unsupervised and supervised evaluation metrics
# for the validation set with the party of the counties (Democratic or
Republican) as the
# true cluster and report your results.
adjusted_rand_index = metrics.adjusted_rand_score(Y, clusters)
silhouette_coefficient = metrics.silhouette_score(X_scaled, clusters, me
tric = "euclidean")
print([adjusted_rand_index, silhouette_coefficient])
```

[0.005608925119335567, 0.9531008389502824]

0.4204042955856235

```
In [20]: #5 K-Means Clustering
    clustering2 = KMeans(n_clusters = 3, init = 'random', n_init = 1, random
    _state = 2).fit(X_scaled)
    clusters2 = clustering2.labels_

# Plot contingency matrix
    cont_matrix2 = metrics.cluster.contingency_matrix(Y, clusters2)
    sns.heatmap(cont_matrix2, annot = True, fmt = ".3f", square = True, cmap
    = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Contingency matrix')
    plt.tight_layout()
```


In [21]: #5. Compute unsupervised and supervised evaluation metrics
for the validation set with the party of the counties (Democratic or
Republican) as the
true cluster and report your results.
adjusted_rand_index2 = metrics.adjusted_rand_score(Y, clusters2)
silhouette_coefficient2 = metrics.silhouette_score(X_scaled, clusters2,
metric = "euclidean")
print([adjusted_rand_index2, silhouette_coefficient2])

[0.1745654800126557, 0.8700304559768228]

```
In [22]: #5 DBSCAN Clustering
    clustering3 = DBSCAN(eps = 3, min_samples = 5, metric = "euclidean").fit
    (X_scaled)
    clusters3 = clustering3.labels_

# Plot contingency matrix
    cont_matrix3 = metrics.cluster.contingency_matrix(Y, clusters3)
    sns.heatmap(cont_matrix, annot = True, fmt = ".3f", square = True, cmap
    = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Contingency matrix')
    plt.tight_layout()
```


In [23]: #5. Compute unsupervised and supervised evaluation metrics # for the validation set with the party of the counties (Democratic or Republican) as the # true cluster and report your results. adjusted_rand_index3 = metrics.adjusted_rand_score(Y, clusters3) silhouette_coefficient3 = metrics.silhouette_score(X_scaled, clusters3, metric = "euclidean") print([adjusted_rand_index3, silhouette_coefficient3])

[0.005608925119335567, 0.9531008389502824]

```
In [24]: #6. Create a map of Democratic counties and Republican counties using th
         e counties' FIPS codes and Python's Plotly library (plot.ly/python/count
         y-choropleth/).
         # [OLD]
         import plotly.figure_factory as ff
         fips = data['FIPS'].tolist()
         values = data['Party'].tolist()
         colorscale = [
              'rgb(0, 0, 255)',
             'rgb(255, 0, 0)',
         fig = ff.create_choropleth(fips=fips, values=values, colorscale=colorsca
         le,
               county outline={'color': 'rgb(255,255,255)', 'width': 0.5}, legend
         _title='Party by County',
               title='Democratic counties v Republican counties [OLD]')
         fig.layout.template = None
```

```
In [25]: #6. Show map [OLD]
fig.show()
```

Democratic counties v Republican counties

In [26]: #6. Create a map of Democratic counties and Republican counties using th e counties' FIPS codes and Python's Plotly library (plot.ly/python/count y-choropleth/). # [NEW] classifier = DecisionTreeClassifier(criterion = "entropy", random_state classifier.fit(x_train_scaled3, Y_train3) #6. Standardize X = data[['Total Population', 'Percent White, not Hispanic or Latino', 'Percent Black, not Hispanic or Latino', 'Percent Hispanic or Latino', 'Percent Unemployed', 'Percent Less than High School Degree', 'Percent R ural']] scaler = StandardScaler() scaler.fit(X) x_scaled = scaler.transform(X) party pred = classifier.predict(x scaled) # import plotly.figure factory as ff fips = data['FIPS'].tolist() values = party_pred.tolist() colorscale = ['rgb(0, 0, 255)', 'rgb(255, 0, 0)', fig = ff.create choropleth(fips=fips, values=values, colorscale=colorsca le, county outline={'color': 'rgb(255,255,255)', 'width': 0.5}, legend title='Party by County', title='Democratic counties v Republican counties [NEW]') fig.layout.template = None

In [27]: #6. Show map [NEW]
fig.show()

Democratic counties v Republican counties


```
In [28]: #7. Load dataset
data2 = pd.read_csv('demographics_test.csv')
data2.head()
```

Out[28]:

	State	County	FIPS	Total Population	Percent White, not Hispanic or Latino	Percent Black, not Hispanic or Latino	Percent Hispanic or Latino	Percent Foreign Born	Percent Female	P
0	NV	eureka	32011	1730	98.265896	0.057803	0.462428	0.346821	51.156069	27.1
1	TX	zavala	48507	12107	5.798299	0.594697	93.326175	9.193029	49.723301	49.3
2	VA	king george	51099	25260	73.804434	16.722090	4.441805	2.505938	50.166271	40.1
3	ОН	hamilton	39061	805965	66.354867	25.654340	2.890944	5.086945	51.870615	40.7
4	TX	austin	48015	29107	63.809393	8.479060	25.502456	9.946061	50.671660	37.3

```
In [29]: #7. Standardize
         # Democratic
         X = data2[['Total Population', 'Percent Age 29 and Under', 'Percent Unem
         ployed']]
         scaler = StandardScaler()
         scaler.fit(X)
         x_scaled = scaler.transform(X)
         # Republican
         Y = data2[['Total Population', 'Percent White, not Hispanic or Latino',
         'Percent Female', 'Percent Age 29 and Under', 'Median Household Income',
         'Percent Unemployed', "Percent Less than Bachelor's Degree", 'Percent Ru
         ral']]
         scaler = StandardScaler()
         scaler.fit(Y)
         y_scaled = scaler.transform(Y)
         # Party
         Z = data2[['Total Population', 'Percent White, not Hispanic or Latino',
         'Percent Black, not Hispanic or Latino', 'Percent Hispanic or Latino',
         'Percent Unemployed', 'Percent Less than High School Degree', 'Percent R
         ural']]
         scaler = StandardScaler()
         scaler.fit(Z)
         z_scaled = scaler.transform(Z)
```

```
In [30]: #7. Use your best performing regression and classification models to pre
         dict the
            number of votes cast for the Democratic party in each county for the
         test dataset (demographics test.csv).
         import numpy as np
         def convert(x):
             y = int(round(x))
             if (y > 0):
                 return y
             else:
                 return 0
         democratic = model.predict(X = x_scaled)
         d = np.array(democratic)
         data2['Democratic'] = np.array([convert(xi) for xi in d])
         #7. Use your best performing regression and classification models to pre
         dict the number of votes cast
             for the Republican party in each county for the test dataset (demogr
         aphics test.csv).
         republican = model2.predict(X = y scaled)
         r = np.array(republican)
         data2['Republican'] = np.array([convert(xi) for xi in r])
         #7. Use your best performing regression and classification models to pre
         dict the party (Democratic or Republican) of
         # each county for the test dataset (demographics test.csv).
         classifier = DecisionTreeClassifier(criterion = "entropy", random state
         = 0)
         classifier.fit(x_train_scaled3, Y_train3)
         party = classifier.predict(z scaled)
         data2['Party'] = party
         data2.head(10)
```

Out[30]:

	State	County	FIPS	Total Population	Percent White, not Hispanic or Latino	Percent Black, not Hispanic or Latino	Percent Hispanic or Latino	Percent Foreign Born	Percent Female	ı
0	NV	eureka	32011	1730	98.265896	0.057803	0.462428	0.346821	51.156069	27.
1	TX	zavala	48507	12107	5.798299	0.594697	93.326175	9.193029	49.723301	49.
2	VA	king george	51099	25260	73.804434	16.722090	4.441805	2.505938	50.166271	40.
3	ОН	hamilton	39061	805965	66.354867	25.654340	2.890944	5.086945	51.870615	40.
4	TX	austin	48015	29107	63.809393	8.479060	25.502456	9.946061	50.671660	37.
5	MI	barry	26015	59316	94.832760	0.475420	2.576033	1.459977	49.686425	35.
6	NM	valencia	35061	75993	34.159725	1.027726	59.655495	8.202071	49.761162	39.
7	TX	ellis	48139	160225	63.367140	9.053518	25.048526	8.468716	50.679357	42.
8	NJ	mercer	34021	371101	51.655749	19.702992	16.432723	21.813738	51.053217	39.
9	PA	cambria	42021	137762	93.053963	3.179396	1.525820	1.169408	50.736052	33.

In []: