Digital Logic & Circuit Design

Boolean Algebra and Logic Gates

Prepared by:

Nilesh Patidar and Shiraz Husain

Logic Gates

INPUT		OUTPUT
Α	В	OUIPUI
0	0	0
1	0	0
0	1	0
1	1	1

INPUT		OUTPUT
Α	В	001701
0	0	0
1	0	1
0	1	1
1	1	1

XOR	
$\exists \Box$	>

INPUT		CUITDUIT
Α	В	OUTPUT
0	0	0
1	0	1
0	1	1
1	1	0

INPUT		OUTPUT
Α	В	OUIFUI
0	0	1
1	0	1
0	1	1
1	1	0

INPUT		OUTPUT
Α	В	OUIPUI
0	0	1
1	0	0
0	1	0
1	1	0

INPUT		OUTPUT
Α	В	OUIFUI
0	0	1
1	0	0
0	1	0
1	1	1

Boolean Postulates and Laws

Identity: X + 0 = X Dual: $X \cdot 1 = X$

Null: X + 1 = 1 Dual: $X \cdot 0 = 0$

Idempotent: X + X = X Dual: $X \bullet X = X$

Involution: (X')' = X

Complementarity: X + X' = 1 Dual: $X \cdot X' = 0$

Commutative: X + Y = Y + X Dual: $X \bullet Y = Y \bullet X$

Associative: (X+Y)+Z=X+(Y+Z) Dual: $(X \bullet Y) \bullet Z=X \bullet (Y \bullet Z)$

Distributive: $X \bullet (Y+Z) = (X \bullet Y) + (X \bullet Z)$ Dual: $X + (Y \bullet Z) = (X+Y) \bullet (X+Z)$

Uniting: $X \bullet Y + X \bullet Y' = X$ Dual: $(X+Y) \bullet (X+Y') = X$

Boolean Postulates and Laws(Cont..)

Absorption: $X+X \bullet Y=X$ Dual: $X \bullet (X+Y)=X$

Absorption(#2): $(X+Y') \bullet Y = X \bullet Y$ Dual: $(X \bullet Y') + Y = X + Y$

De-Morgan's: (X+Y+...)'=X'•Y'•... Dual: (X•Y•...)'=X'+Y'+...

Duality: $(X+Y+...)^D=X\bullet Y\bullet...$ Dual: $(X\bullet Y\bullet...)^D=X+Y+...$

Multiplying and factoring :(X+Y) \bullet (X'+Z)=X \bullet Z+X' \bullet Y

Dual: $X \bullet Y + X' \bullet Z = (X + Z) \bullet (X' + Y)$

Consensus: $(X \bullet Y) + (Y \bullet Z) + (X' \bullet Z) = X \bullet Y + X' \bullet Z$

Dual: $(X+Y) \bullet (Y+Z) \bullet (X'+Z) = (X+Y) \bullet (X'+Z)$

Summary

	Property	Dual Property
Identity	x + 0 = x	$x \cdot 1 = x$
Complement	x + x' = 1	$x \cdot x' = 0$
Null	x + 1 = 1	$x \cdot 0 = 0$
Idempotence	x + x = x	$x \cdot x = x$
Involution	(x')' = x	
Commutative	x + y = y + x	x y = y x
Associative	(x+y)+z=x+(y+z)	(x y) z = x (y z)
Distributive	$x\left(y+z\right) = xy + xz$	x + yz = (x + y)(x + z)
Absorption	x + xy = x	x(x+y) = x
Simplification	x + x'y = x + y	x(x'+y) = xy
De Morgan	(x+y)' = x'y'	(x y)' = x' + y'

Proving theorems

Example 1: Prove the uniting theorem-- X•Y+X•Y'=X

Distributive
$$=X \bullet Y + X \bullet Y' = X \bullet (Y + Y')$$

Complementary $=X \bullet (1)$

Identity = X

Example 2: Prove the absorption theorem-- X+X•Y=X

Identity
$$X+X \bullet Y = (X \bullet 1) + (X \bullet Y)$$

Distributive $= X \bullet (1+Y)$

Null $= X \bullet (1)$

Identity $= X$

Proving theorems

Example 3: Prove the consensus theorem (XY)+(YZ)+(X'Z)= XY+X'Z

Solution:

$$\triangleright$$
 Complementarity $XY+YZ+X'Z=XY+(X+X')YZ+X'Z$

Use absorption {AB+A=A}

$$= XY+X'YZ+X'Z$$

$$\triangleright$$
 Rearrange terms = XY+X'ZY+X'Z

Use absorption {AB+A=A}

$$= XY + X'Z$$

Example: Simplification

$$Z = A'BC + AB'C' + AB'C + ABC' + ABC'$$

 $= A'BC + AB'(C' + C) + AB(C' + C)$ distributive
 $= A'BC + AB' + AB$ complementary
 $= A'BC + A(B' + B)$ distributive
 $= A'BC + A$ complementary
 $= BC + A$ absorption

Reduce the Expression-
$$A + B (AC + (B + \overline{C})D)$$

x+0=x
x + x'=1
x + x = x
x+1=1
(x')' = x
x + y = y + x
x + (y+z) = (x+y) + z
x+yz = (x+y)(x+z)
(x+y)'=x'y'
x + xy = x
x + x'y = x + y
xy + x'z +yz = xy + x'z

Simplify the Expression-
$$(B + BC)(B + \bar{B}C)(B + D)$$

1. Identity Element	x + 0 =x
2. Complementation	x+x'=1
3. Idem potency	x + x = x
4. Null Law	x+1=1
5. Involution	(x')' = x
6. Commutative	x+y=y+x
7. Associative	x + (y+z) = (x+y) + z
8. Distributive	x+yz=(x+y)(x+z)
9. De Morgan	(x+y)'=x'y'
10. Absorption	x + xy = x
11. Simplification	x + x'y = x + y
12. Consensus	xy + x'z +yz = xy + x'z

Simplify the Expression-
$$(B + BC)(B + \bar{B}C)(B + D)$$

1. Identity Element	x + 0 =x
2. Complementation	x+x'=1
3. Idem potency	x + x = x
4. Null Law	x+1=1
5. Involution	(x')' = x
6. Commutative	x+y=y+x
7. Associative	x + (y+z) = (x+y) + z
8. Distributive	x+yz=(x+y)(x+z)
9. De Morgan	(x+y)'=x'y'
10. Absorption	x + xy = x
11. Simplification	x + x'y = x + y
12. Consensus	xy + x'z +yz = xy + x'z

Simplify the Expression-

$$F = A'B(C'D' + C'D) + AB(C'D' + C'D) + AB'C'D$$

1. Identity Element	x + 0 =x
2. Complementation	x + x'=1
3. Idem potency	x + x = x
4. Null Law	x+1=1
5. Involution	(x')' = x
6. Commutative	x + y = y + x
7. Associative	x + (y+z) = (x+y) + z
8. Distributive	x+yz=(x+y)(x+z)
9. De Morgan	(x+y)'=x'y'
10. Absorption	x + xy = x
11. Simplification	x + x'y = x + y
12. Consensus	xy + x'z +yz = xy + x'z

Implement the following function using logic gates-

$$F = \overline{AB} + AC + \overline{B}$$

- Implement the following function using logic gates-
- F = (P'Q' + PQ)'R + (P'Q+PQ')R'

Minimize the following Boolean Function & also draw the simplified logic diagram

$$Y = (AB+C)(AB+D)$$

 Minimize the following Boolean Function & also draw the simplified logic diagram

Obtain the Boolean expression

Simplify the given logic diagram.

Duality

- It states that in a two valued Boolean algebra, the dual of an algebraic expression can be obtained simply by interchanging OR and AND operators and by replacing 1's by 0's and 0's by 1's.
- Find the dual of the following Boolean expressions:
 - i. A+AB=A
 - ii. A + A'B = A + B
 - iii. A + A' = 1
 - iv. (A+B)(A+C) = A+BC

Universal Gate: NAND Gate

Universal Gate: NOR gate

Bubble Pushing Method- NOR Gate

- Step 1: Implement the given Boolean expression in AOI form.
- Step 2: Add a bubble at input of each AND gate and output of each OR gate.
- Step 3: Connect a NOT gate on each wire where a bubble is added in Step 2.
- Step 4: Cancel out 2 NOT gates that are connected in series.
- Step 5: Replace NOT gate with NOR gate equivalent.
- Step 6: Replace bubbled AND with NOR gate.

Implementation using NOR Gate

- Implement the following function using NOR gates only
- \blacksquare A(B'+C) + (BC)

Implementation using NOR Gate

- Implement the following function using NOR gates only
- $\blacksquare \quad F = (A'+B+C)(A+B)D$

Implementation using NOR Gate

- Implement the following function using NOR gates only
- *F*= (*C*+*BD*′).(*B*′*CA*+*CD*)

Bubble Pushing Method- NAND Gate

- Step 1: Implement the given Boolean expression in AOI form.
- Step 2: Add a bubble at output of each AND gate and input of each OR gate.
- Step 3: Connect a NOT gate on each wire where a bubble is added in Step 2.
- Step 4: Cancel out 2 NOT gates that are connected in series.
- Step 5: Replace NOT gate with NAND gate equivalent.
- Step 6: Replace bubbled OR with NAND gate.

Implementation using NAND Gate

- Implement the following function using NAND gates only
- \blacksquare Y = AB' + BC

Implementation using NAND Gate

- Implement the following function using NAND gates only
- F= AB (C+D) + E

Standard Form (SOP & POS)

Standard SOP form

- \triangleright Y = ABC + AB'C' + A'BC
- ➤ Each product term consists of all the literals in the complemented or uncomplemented form
- Standard POS form
 - > Y = (A+B+C')(A+B'+C)(A'+B'+C')
 - ➤ Each sum term consists of all the literals in the complemented or uncomplemented form

Canonical Form (SOP & POS)

			Minterms	Maxterms
X	Y	Z	Product Terms	Sum Terms
0	0	0	$m_0 = \overline{X} \cdot \overline{Y} \cdot \overline{Z} = \min(\overline{X}, \overline{Y}, \overline{Z})$	$M_0 = X + Y + Z = \max(X, Y, Z)$
	0	1	$m_0 = \overline{X} \cdot \overline{Y} \cdot Z = \min(\overline{X}, \overline{Y}, Z)$ $m_1 = \overline{X} \cdot \overline{Y} \cdot Z = \min(\overline{X}, \overline{Y}, Z)$	$M_1 = X + Y + \overline{Z} = \max(X, Y, \overline{Z})$
0		0	$m_1 = \overline{X} \cdot Y \cdot \overline{Z} = \min(\overline{X}, Y, \overline{Z})$	$M_2 = X + \overline{Y} + Z = \max(X, \overline{Y}, Z)$
**	1	1	$m_3 = \overline{X} \cdot Y \cdot Z = \min(\overline{X}, Y, Z)$	$M_3 = X + \overline{Y} + \overline{Z} = \max(X, \overline{Y}, \overline{Z})$
39	0	0	$m_4 = X \cdot \overline{Y} \cdot \overline{Z} = \min(X, \overline{Y}, \overline{Z})$	$M_4 = \overline{X} + Y + Z = \max(\overline{X}, Y, Z)$
1	0	1	$m_{5} = X \cdot \overline{Y} \cdot Z = \min(X, \overline{Y}, Z)$	$M_{\delta} = \overline{X} + Y + \overline{Z} = \max(\overline{X}, Y, \overline{Z})$
1	1	0	$m_6 = X \cdot Y \cdot \overline{Z} = \min(X, Y, \overline{Z})$	$M_6 = \overline{X} + \overline{Y} + Z = \max(\overline{X}, \overline{Y}, Z)$
1	1	1	$m_7 = X \cdot Y \cdot Z = \min(X, Y, Z)$	$M_7 = \overline{X} + \overline{Y} + \overline{Z} = \max(\overline{X}, \overline{Y}, \overline{Z})$

- SOP Form $Y = \sum m(0,3,4,5)$
- POS Form $Y = \prod M(1,2,5,6)$

Canonical Form (SOP & POS)

Convert the following expressions into their standard SOP form.

$$\triangleright$$
 Y = AB + AC + BC

Examples

Convert the following expressions into their standard SOP form.

$$>$$
 Y = AB + AC + BC

Examples

Convert the following expressions into their standard POS form.

$$\rightarrow$$
 Y = (A+B)(B'+C)

Examples

Convert the following expressions into their standard SOP form.

$$>$$
 Y = A + BC + ABC

Karnaugh Maps (K-Maps)

- Simplification of logic expression using Boolean algebra is awkward because:
 - it lacks specific rules to predict the most suitable next step in the simplification process
 - it is difficult to determine whether the simplest form has been achieved.
- K-MAPS
 - A visual way to simplify logic expressions
 - It gives the most simplified form of the expression

Rules to obtain the most simplified expression

- A Karnaugh map is a graphical method used to obtained the most simplified form of an expression in a standard form (Sum-of-Products or Product-of-Sums).
- The simplest form of an expression is the one that has the minimum number of terms with the least number of literals (variables) in each term.
- By simplifying an expression to the one that uses the minimum number of terms, we ensure that the function will be implemented with the minimum number of gates.
- By simplifying an expression to the one that uses the least number of literals for each terms, we ensure that the function will be implemented with gates that have the minimum number of inputs.

K-maps

1-variable K-map 2¹ = 2 cells

2-variable K-map 2² = 4 cells

3-variable K-map $2^3 = 8$ cells

4-variable K-map 24 = 16 cells

2 Variable K-map

3 Variable K-map

4 Variable K-map

Three-Variable K-Maps Examples

$$f = \sum (0,4) = \overline{B} \overline{C}$$

$$f = \sum (4,5) = A \overline{B}$$

$$f = \sum (0,1,4,5) = \overline{B}$$

$$f = \sum (0,1,2,3) = \overline{A}$$

$$f = \sum (0,4) = \overline{A} C$$

$$f = \sum (4,6) = A \overline{C}$$

$$f = \sum (0,2) = \overline{A} \overline{C}$$

$$f = \sum (0,2,4,6) = \overline{C}$$

Three-Variable K-Map Examples

Minimize the expression

$$\rightarrow$$
 Y = AB'C + A'B'C + A'BC + AB'C' + A'B'C

Four-Variable K-Maps

$$f = \sum (0,8) = \overline{B} \bullet \overline{C} \bullet \overline{D}$$

$$f = \sum (5,13) = B \bullet \overline{C} \bullet D$$

$$f = \sum (13,15) = A \bullet B \bullet D$$

$$f = \sum (4,6) = \overline{A} \bullet B \bullet \overline{D}$$

$$f = \sum (2,3,6,7) = \overline{A} \bullet C$$

$$f = \sum (4,6,12,14) = B \bullet \overline{D}$$

$$f = \sum (2,3,10,11) = \overline{B} \cdot C$$

$$f = \sum (0,2,8,10) = \overline{B} \bullet \overline{D}$$

Four-Variable K-Maps

$$f = \sum (4, 5, 6, 7) = \overline{A} \bullet B$$

$$f = \sum (3,7,11,15) = C \bullet D$$

$$f = \sum (0,3,5,6,9,10,12,15)$$

$$f = A \otimes B \otimes C \otimes D$$

$$f = \sum (1, 2, 4, 7, 8, 11, 13, 14)$$

$$f = A \oplus B \oplus C \oplus D$$

√ CD										
AB	00	01	11	10						
00	0	1	1	0						
01	0	1	1	0						
11	0	1	1	0						
10	0	1	1	0						

$$f = \sum (1,3,5,7,9,11,13,15)$$

f = D

$$f = \sum_{n} (0,2,4,6,8,10,12,14)$$

 $f = \overline{D}$

$$f = \sum (4,5,6,7,12,13,14,15)$$

$$f = B$$

$$f = \sum (0,1,2,3,8,9,10,11)$$

 $f = \overline{B}$

Special Case

Find the Boolean expression.

Four-Variable K-Maps Examples

∖ CD										
AB	00	01	11	10						
00	1	1		1						
01	1	1		1						
11	1	1		1						
10	1	1								

< CD										
AB	00	01	11	10						
00	1	1		1						
01				1						
11										
10	1	1		1						

√ CD											
AB	00	01	11	10							
00											
01	1	1	1								
11	1	1		1							
10	1										

< CD											
AB	00	01	11	10							
00		1	1								
01	1	1	1	1							
11	1		1	1							
10			1								

Four-Variable K-Maps don't care

 $Y = \sum m(1,4,8,12,13,15) + d(3,14)$

Four-Variable K-Maps don't care

 $Y = \sum m(1,3,7,11,15) + d(0,2,5)$

Four-Variable K-Maps don't care

 $Y = \sum m (1,3,7,10,11,15) + d(0,2,5,8,14)$

K-maps

- Obtain the expression in POS form
- $F = \prod M(2,3,7)$

$$3$$
-variable K-map $2^3 = 8$ cells

K-maps

- Obtain the expression in POS form
- $F = \prod M(0,2,3,5,7)$

$$3$$
-variable K-map $2^3 = 8$ cells

	V=0									
WX	00	01	11	10						
00	m ₀	m ₁	m ₃	m ₂						
01	m ₄	m ₅	m ₇	m ₆						
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄						
10	m ₈	m ₉	m ₁₁	m ₁₀						

	V=1									
WX YZ	00	01	11	10						
00	m ₁₆	m ₁₇	m ₁₉	m ₁₈						
01	m ₂₀	m ₂₁	m ₂₃	m ₂₂						
11	m ₂₈	m ₂₉	m ₃₁	m ₃₀						
10	m ₂₄	m ₂₅	m ₂₇	m ₂₆						

■ $F(A,B,C,D,E) = \sum m(0,2,4,6,9,11,13,15,17,21,25,27,29,31)$

■ $F(A,B,C,D,E) = \sum m(0,1,7,9,11,13,15,16,17,23,25,27)$

■ $F(A,B,C,D,E) = \sum m(0,1,3,4,6,8,9,1,,13,14,16,19,20,21,22,24,25) + \sum d(5,7,12,15,17,23)$

CI	000	001	011	010	110	111	101	100
AB 00	0	1	З	2	9	7	5	4
01	8	9	11	10	14	15	13	12
11	24	25	27	26	30	31	29	28
10	16	17	19	18	22	23	21	20

Six variable K-map

Quine-McCluskey Tabular Method

- Quine-McCluskey tabular method is a method based on the concept of prime implicants. We know that prime implicant is a product or sum term, which can't be further reduced by combining with any other product or sum terms of the given Boolean function.
- This tabular method is useful to get the prime implicants by repeatedly using the following Boolean identity.

•
$$xy + xy' = xy + y' = x.1 = x$$

Quine-McCluskey Tabular Method

- Step 1 Arrange the given min terms in an ascending order and make the groups based on the number of ones present in their binary representations. So, there will be at most 'n+1' groups if there are 'n' Boolean variables in a Boolean function or 'n' bits in the binary equivalent of min terms.
- Step 2 Compare the min terms present in successive groups. If there is a change in only one-bit position, then take the pair of those two min terms. Place this symbol '_' in the differed bit position and keep the remaining bits as it is.
- Step 3 Repeat step2 with newly formed terms till we get all prime implicants.
- Step 4 Formulate the prime implicant table. It consists of set of rows and columns. Prime implicants can be placed in row wise and min terms can be placed in column wise. Place '1' in the cells corresponding to the min terms that are covered in each prime implicant.
- Step 5 Find the essential prime implicants by observing each column. If the min term is covered only by one prime implicant, then it is essential prime implicant. Those essential prime implicants will be part of the simplified Boolean function.
- Step 6 Reduce the prime implicant table by removing the row of each essential prime implicant and the columns corresponding to the min terms that are covered in that essential prime implicant. Repeat step 5 for Reduced prime implicant table. Stop this process when all min terms of given Boolean function are over.

■ Simplify- $f(a,b,c,d)=\sum m(0,1,2,5,6,7,8,9,10,14)$

	Column I	Column	ı II	Column III	
group 0	0 0000 🗸	0, 1	000- ✓	0, 1, 8, 9	-00-
[1 0001 🗸	0, 2	00–0 ✓	0, 2, 8, 10	-0-0
group 1	2 0010 🗸	0, 8	-000 ✓	0, 8, 1, 9	-00 -
L	8 1000 🗸	1, 5	0-01	0, 8, 2, 10	-0-0
ſ	5 0101 🗸	1, 9	-001 ✓	2, 6, 10, 14	10
_	6 0110 🗸	2, 6	0-10 🗸	2, 10, 6, 14	 10
group 2	9 1001 🗸	2, 10	-010 ✓		
Į	10 1010 🗸	8, 9	100- 🗸		
_ ∫	7 0111 🗸	8, 10	10–0 ✓		
group 3	14 1110 🗸	5, 7	01–1		
		6, 7	011-		
		6, 14	-110 ✓		
		10, 14	1–10 ✓		

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$

$$(1,5) (5,7) (6,7) (0,1,8,9) (0,2,8,10) (2,6,10,14)$$

Prime Implicant Table-

	Given Minterms										
PI	PI corresponds to PI	0	1	2	5	6	7	8	9	10	14
a'c'd	1, 5										
a'bd	5, 7										
a'bc	6, 7										
b'c'	0, 1, 8, 9										
b'd'	0, 2, 8, 10										
cd'	2, 6, 10,14										

Prime Implicant Table-

	Minterms	Given Minterms									
PI	PI corresponds to PI	0	1	2	5	6	7	8	9	10	14
a'c'd	1, 5		X		X						
a'bd	5, 7				X		Χ				
a'bc	6, 7					X	X				
b'c'	0, 1, 8, 9	X	X					Χ	X		
b'd'	0, 2, 8, 10	X		X				Χ		X	
cd'	2, 6, 10,14			X		X				Χ	X

$$f = a'bd + b'c' + cd'$$

■ Find the minimal SOP expression for the given Boolean function- $f(a,b,c,d)=\sum m(1,3,4,5,9,10,11) + \sum d(6,8)$

	Colu	mn-l	Colu	ımn-II	Column-III		
Group	Minterms	Binary (abcd)	Minterm Pairs	Binary (abcd)	Minterm Pairs	Binary (abcd)	
	1	0001	1-3	00-1 *	1-3-9-11	-0-1	
Group 0	4	0100	1-5	0-01	1-9-3-11	-0-1	
	8	1000	1-9	-001 *	8-9-10-11	10	
	3	0011	4-5	010-	8-10-9-11	10	
	5	0101	4-6	01-0			
Group 1	6	0110	8-9	100- *			
	9	1001	8-10	10-0 *			
	10	1010	3-11	-011 *			
Group 2	11	1011	9-11	10-1 *			
_			10-11	101- *			

- f = a'c'd + a'bc' + a'bd' + b'd + ab'(1,5) (4,5) (4,6) (1,3,9,11) (8,9,10,11)
- Prime Implicant Table-

Prime Implicants (PI)	Minterms corresponds to PI	Given Minterms						
		1	3	4	5	9	10	11
a'c'd	1, 5							
a'bc'	4, 5							
a'bd'	4, 6							
b'd	1, 3, 9, 11							
ab'	8, 9, 10, 11							

Prime Implicant Table-

PI	Minterms corresponds to PI	Given Minterms							
		1	3	4	5	9	10	11	
a'c'd	1, 5	X			X				
a'bc'	4, 5			X	X				
a'bd'	4, 6			X					
b'd	1, 3, 9, 11	X	X			X		Х	
ab'	8, 9, 10, 11					X	X	Х	

$$f = ab' + b'd + a'bc'$$

Essential Prime Implicants

Thank You

