Squeezing of quantum noise

Jinyuan Wu

Introduction

Even when the system is isolated from the environment ...

There are still uncertainty: quantum noise

Visualize quantum noise

$$H = \int d^3 \mathbf{r} \left(\frac{1}{2} \epsilon \mathbf{E}^2 + \frac{1}{2\mu} \mathbf{B}^2 \right) = \sum_k \omega_k \left(a_k^{\dagger} a_k + \frac{1}{2} \right)$$

Consider only one mode

$$W(x,p) = \frac{1}{\pi\hbar} \int_{-\infty}^{\infty} \langle x - y | \rho | x + y \rangle e^{-2\mathrm{i}py/\hbar} \mathrm{d}y$$
 So that

$$a = \frac{1}{\sqrt{2}}(X + iP), \quad a^{\dagger} = \frac{1}{\sqrt{2}}(X - iP).$$

$$\left\langle O\left(a,a^{\dagger}
ight)
ight
angle =\int\mathrm{d}^{2}lpha\overline{W\left(lpha,lpha^{st}
ight)O\left(lpha,lpha^{st}
ight)}$$

Ordering: $(a^{\dagger}a + aa^{\dagger})/2$

Visualize quantum noise

To find these Wigner functions: use QuantumOptics.jl

Mach-Zehnder interferometer

The origin of quantum noise

suppressed by φ factor

almost zero

 a_1 can be treated classically

$$\Delta n_{b_2} \approx \varphi \Delta (\alpha^* a_2 - \alpha a_2^{\dagger})$$

= $2\varphi |\alpha| \Delta (-\sin \varphi \operatorname{Re} a_2 + \cos \varphi \operatorname{Im} a_2)$

If a_2 is in ordinary vacuum: standard quantum limit

$$\Delta n_{b_2} = \varphi |\alpha|$$

$$rac{\Delta n_{b_2}}{n_{b_2}} = rac{1}{|lpha|arphi} \sim rac{1}{\sqrt{N}}$$

Squeezing the quantum noise

To reduce the quantum noise:

Squeezing the quantum noise

Unfortunately, if we squeeze the vacuum too much ...

 $\cos^2 arphi a_2^\dagger a_2^\dagger$ can no longer be ignored

Discussion

Even better interferometry designs?

Standard quantum limit	Heisenberg limit	"Nonlinear measurement"	
$1/\sqrt{N}$	1/N	$1/N^{3/2}$	