Block-distributed Gradient Boosted Trees

Theodore Vasiloudis^{1,3}, Hyunsu Cho², Henrik Boström³

¹ Research Institutes of Sweden, ² Amazon Web Services, ³ KTH Royal Institute of Technology.

Summary

We introduce block-distributed training for gradient boosted trees (GBT), enhancing their scalability.

Our contributions are the following:

- The first algorithm for data-and-feature parallel training of GBTs.
- We achieve orders of magnitude improved communication cost by taking advantage of data sparsity.

Introduction

Gradient Boosted Trees: One of the most widely used algorithms in IR tasks like learningto-rank and CTR prediction.

Why it's important:

- We need highly scalable algorithms for enterprise scale, high-dimensional data.
- Training on such data is done in clusters, where network communication is the main bottleneck.

Why it's difficult:

- All systems only use row distribution, and for feature parallel training, assume all data fit into the memory of each worker.
- In addition, they use dense communication, leading to redundant network traffic.

Gradient Boosted Trees

Block-distributed data

Quickscorer

Uses bitstrings to quickly determine exit leaf.

Block-distributed Quickscorer

- Use Quickscorer at each worker locally.
- Communicate bitstrings to get exit leaf.

Gradient Histograms

- The most computationally intensive part of GBT training is gradient histogram calculation.
- We use gradient histograms to calculate the potential accuracy gain of splitting a leaf.

Gradient Histograms are Sparse

(a) Local gradient histogram for Worker 1.

(b) Local gradient histogram for Worker 2.

Dense Communication

Sparse Communication

We create sparse matrices for the histograms, and communicate those, using the Parameter Server.

$$\begin{vmatrix}
0 & 0 & 0 & 0 \\
5 & 8 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 6 & 0 & 0
\end{vmatrix} = IA = [5, 8, 3, 6]$$

$$IA = [0, 0, 2, 3, 4]$$

$$JA = [0, 1, 2, 1]$$

Using a sparse format we can significantly shrink the number of values being communicated.

Results

(a) Byte size of histograms being communicated for block (light blue) and row (dark blue) distributed approach.

(b) Time for histogram creation, including computation and communication.

Conclusions

- Several orders of magnitude communication savings are possible for highly sparse data.
- More work needed to offset the computational overhead of the sparse data structures.

Contact

• Email: tvas@kth.se

- Twitter: @thvasilo

URL:

