LISTA DE EXERCÍCIOS REFERENTE À 1ª UNIDADE

QUESTÕES

1^a) Resolva cada um dos seguintes sistemas por eliminação de Gauss-Jordan.

$$x1 + x2 + 2x3 = 8$$

a) $-x1 - 2x2 + 3x3 = 1$

$$2x1 + 2x2 + 2x3 = 0$$

b) $-2x1 + 5x2 + 2x3 = 1$

$$3x1 - 7x2 + 4x3 = 10$$

$$8x1 + x2 + 4x3 = -1$$

$$-2b +3c = 1$$
c) $3a +6b -3c = -6$
 $6a +6b +3c = 5$

2^a) Considere as matrizes:

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix} \quad D = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix} \quad E = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

Calcule os seguintes (quando possível).

- a) AB
- b) $(DA)^T$
- c) $B^{T}(CC^{T} A^{T}A)$
- d) BA
- e) (3E)D

3^a) Expresse a equação matricial como um sistema de equações lineares.

$$\begin{bmatrix} 3 & -1 & 2 \\ 4 & 3 & 7 \\ -2 & 1 & 5 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$$

4^a) Determine a inversa da matriz A, onde $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}$ usando operações sobre linhas para

encontrar A^{-1} . Ou seja, produzir a matriz da forma [A/I], até determinar $[I/A^{-1}]$.

5^a) Sejam as matrizes:

$$A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & -3 \\ 4 & 4 \end{bmatrix} \text{ e } C = \begin{bmatrix} 6 & 4 \\ -2 & -1 \end{bmatrix}. \text{ Verificar que } (ABC)^{-1} = C^{-1}B^{-1}A^{-1}$$

6^a) Resolva a equação matricial em X.

$$X \begin{bmatrix} -1 & 0 & 1 \\ 1 & 1 & 0 \\ 3 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ -3 & 1 & 5 \end{bmatrix}$$

7ª) Calcule o determinante das matrizes dadas reduzindo a matriz à forma escalonada por linhas.

$$a) \begin{bmatrix} 3 & 6 & -9 \\ 0 & 0 & -2 \\ -2 & 1 & 5 \end{bmatrix} \qquad b) \begin{bmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

8^a) Seja

$$A = \begin{bmatrix} 4 & -1 & 1 & 6 \\ 0 & 0 & -3 & 3 \\ 4 & 1 & 0 & 14 \\ 4 & 1 & 3 & 2 \end{bmatrix}$$
 Encontre a) M_{13} e C_{13} b) M_{21} e C_{21}

9ª) Calcule det(A) usando uma expansão em co-fatores ao longo de alguma linha ou coluna de sua preferência.

$$A = \begin{bmatrix} 3 & 3 & 0 & 5 \\ 2 & 2 & 0 & -2 \\ 4 & 1 & -3 & 0 \\ 2 & 10 & 3 & 2 \end{bmatrix}$$

10^a) Resolva o sistema de equações abaixo usando a regra de Cramer.

$$x -4y +z = 6$$

$$4x -y +2z = -1$$

$$2x +2y -3z = -20$$

11^a) Encontre a inversa da matriz abaixo usando a matriz adjunta.

$$A = \begin{bmatrix} 2 & 5 & 5 \\ -1 & -1 & 0 \\ 2 & 4 & 3 \end{bmatrix}$$

Esboce os seguintes vetores com ponto inicial na origem:

(a)
$$\mathbf{v}_1 = (3, 6)$$

(b)
$$\mathbf{v}_2 = (-4, -8)$$

(c)
$$\mathbf{v}_3 = (-4, -3)$$

(d)
$$\mathbf{v}_4 = (5, -4)$$

(e)
$$\mathbf{v}_5 = (3, 0)$$

(f)
$$\mathbf{v}_6 = (0, -7)$$

(g)
$$\mathbf{v}_7 = (3, 4, 5)$$

(h)
$$\mathbf{v}_8 = (3, 3, 0)$$

(i)
$$\mathbf{v}_9 = (0, 0, -3)$$

Encontre os componentes do vetor de ponto inicial P_1 e ponto final P_2 .

(a)
$$P_1(4, 8), P_2(3, 7)$$

(b)
$$P_1(3,-5)$$
, $P_2(-4,-7)$

(c)
$$P_1(-5,0)$$
, $P_2(-3,1)$

(d)
$$P_1(0,0), P_2(a,b)$$

(e)
$$P_1(3, -7, 2), P_2(-2, 5, -4)$$

(f)
$$P_1(-1,0,2)$$
, $P_2(0,-1,0)$

Sejam $\mathbf{u} = (-3, 1, 2), \mathbf{v} = (4, 0, -8) \mathbf{e} \mathbf{w} = (6, -1, -4)$. Encontre os componentes de

(a)
$$\mathbf{v} - \mathbf{v}$$

(b)
$$6u + 2v$$

(c)
$$-\mathbf{v} + \mathbf{u}$$

(d)
$$5(v - 4u)$$

(a)
$$v - w$$
 (b) $6u + 2v$ (c) $-v + u$ (d) $5(v - 4u)$ (e) $-3(v - 8w)$

(f)
$$(2u - 7w) - (8v + u)$$

Encontre a norma de v.

(a)
$$\mathbf{v} = (4, -3)$$

(b)
$$v = (2, 3)$$

(c)
$$\mathbf{v} = (-5, 0)$$

(d)
$$\mathbf{v} = (2, 2, 2)$$

(e)
$$\mathbf{v} = (-7, 2, -1)$$

(f)
$$\mathbf{v} = (0, 6, 0)$$

Encontre a distância entre P_1 e P_2 .

(a)
$$P_1(3,4), P_2(5,7)$$

(b)
$$P_1(-3, 6), P_2(-1, -4)$$

(c)
$$P_1(7, -5, 1), P_2(-7, -2, -1)$$

(d)
$$P_1(3,3,3), P_2(6,0,3)$$

Sejam $\mathbf{u} = (2, -2, 3)$, $\mathbf{v} = (1, -3, 4)$ e $\mathbf{w} = (3, 6, -4)$. Em cada parte calcule a expressão dada.

(a)
$$\| {\bf u} + {\bf v} \|$$

(b)
$$\|\mathbf{u}\| + \|\mathbf{v}\|$$

(c)
$$\|-2\mathbf{u}\| + 2\|\mathbf{u}\|$$

(d)
$$\|3\mathbf{u} - 5\mathbf{v} + \mathbf{w}\|$$
 (e) $\frac{1}{\|\mathbf{w}\|}\mathbf{w}$ (f) $\|\frac{1}{\|\mathbf{w}\|}\mathbf{w}\|$

(e)
$$\frac{1}{\|\mathbf{w}\|}\mathbf{w}$$

$$(f) \left\| \frac{1}{\|\mathbf{w}\|} \mathbf{w} \right\|$$