5.1 EXERCISES

1. Is
$$\lambda = 2$$
 an eigenvalue of $\begin{bmatrix} 3 & 2 \\ 3 & 8 \end{bmatrix}$? Why or why not?

2. Is
$$\lambda = -2$$
 an eigenvalue of $\begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix}$? Why or why not?

3. Is
$$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$$
 an eigenvector of $\begin{bmatrix} -3 & 1 \\ -3 & 8 \end{bmatrix}$? If so, find the eigen-

4. Is
$$\begin{bmatrix} -1 + \sqrt{2} \\ 1 \end{bmatrix}$$
 an eigenvector of $\begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$? If so, find the eigenvalue.

5. Is
$$\begin{bmatrix} 4 \\ -3 \\ 1 \end{bmatrix}$$
 an eigenvector of $\begin{bmatrix} 3 & 7 & 9 \\ -4 & -5 & 1 \\ 2 & 4 & 4 \end{bmatrix}$? If so, find the eigenvalue.

6. Is
$$\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
 an eigenvector of $\begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix}$? If so, find the eigenvalue.

7. Is
$$\lambda = 4$$
 an eigenvalue of $\begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{bmatrix}$? If so, find one corresponding eigenvector.

8. Is
$$\lambda = 3$$
 an eigenvalue of $\begin{bmatrix} 1 & 2 & 2 \\ 3 & -2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$? If so, find one corresponding eigenvector.

In Exercises 9–16, find a basis for the eigenspace corresponding to each listed eigenvalue.

9.
$$A = \begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix}, \lambda = 1, 5$$

10.
$$A = \begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}, \lambda = 4$$

11.
$$A = \begin{bmatrix} 4 & -2 \\ -3 & 9 \end{bmatrix}, \lambda = 10$$

12.
$$A = \begin{bmatrix} 7 & 4 \\ -3 & -1 \end{bmatrix}, \lambda = 1, 5$$

13.
$$A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}, \lambda = 1, 2, 3$$

14.
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -3 & 0 \\ 4 & -13 & 1 \end{bmatrix}, \lambda = -2$$

15.
$$A = \begin{bmatrix} 4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{bmatrix}, \lambda = 3$$

16.
$$A = \begin{bmatrix} 3 & 0 & 2 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}, \lambda = 4$$

Find the eigenvalues of the matrices in Exercises 17 and 18.

17.
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 5 \\ 0 & 0 & -1 \end{bmatrix}$$
 18.
$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & -3 \end{bmatrix}$$

19. For
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$
, find one eigenvalue, with no calculation. Justify your answer.

20. Without calculation, find one eigenvalue and two linearly independent eigenvectors of $A = \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}$. Justify vour answer.

In Exercises 21 and 22, A is an $n \times n$ matrix. Mark each statement True or False. Justify each answer.

- 21. a. If $Ax = \lambda x$ for some vector x, then λ is an eigenvalue of
 - b. A matrix A is not invertible if and only if 0 is an eigenvalue of A.
 - c. A number c is an eigenvalue of A if and only if the equation $(A - cI)\mathbf{x} = \mathbf{0}$ has a nontrivial solution.

- d. Finding an eigenvector of A may be difficult, but check. ing whether a given vector is in fact an eigenvector is easy.
- e. To find the eigenvalues of A, reduce A to echelon form
- **22.** a. If $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ , then \mathbf{x} is an eigenvector
 - b. If \mathbf{v}_1 and \mathbf{v}_2 are linearly independent eigenvectors, then they correspond to distinct eigenvalues.
 - c. A steady-state vector for a stochastic matrix is actually an eigenvector.
 - d. The eigenvalues of a matrix are on its main diagonal
 - e. An eigenspace of A is a null space of a certain matrix.
- 23. Explain why a 2×2 matrix can have at most two distinct eigenvalues. Explain why an $n \times n$ matrix can have at most n distinct eigenvalues.
- **24.** Construct an example of a 2×2 matrix with only one distinct eigenvalue.
- **25.** Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1} . [Hint: Suppose a nonzero x satisfies $A\mathbf{x} = \lambda \mathbf{x}$.
- **26.** Show that if A^2 is the zero matrix, then the only eigenvalue of A is 0.
- 27. Show that λ is an eigenvalue of A if and only if λ is an eigenvalue of A^T . [Hint: Find out how $A - \lambda I$ and $A^T - \lambda I$ are related.]
- 28. Use Exercise 27 to complete the proof of Theorem 1 for the case when A is lower triangular.
- **29.** Consider an $n \times n$ matrix A with the property that the row sums all equal the same number s. Show that s is an eigenvalue of A. [Hint: Find an eigenvector.]
- **30.** Consider an $n \times n$ matrix A with the property that the column sums all equal the same number s. Show that s is an eigenvalue of A. [Hint: Use Exercises 27 and 29.]

In Exercises 31 and 32, let A be the matrix of the linear transformation T. Without writing A, find an eigenvalue of A and describe the eigenspace.

- **31.** T is the transformation on \mathbb{R}^2 that reflects points across some line through the origin.
- **32.** T is the transformation on \mathbb{R}^3 that rotates points about some line through the origin.
- 33. Let \mathbf{u} and \mathbf{v} be eigenvectors of a matrix A, with corresponding eigenvalues λ and μ , and let c_1 and c_2 be scalars. Define

$$\mathbf{x}_k = c_1 \lambda^k \mathbf{u} + c_2 \mu^k \mathbf{v} \quad (k = 0, 1, 2, \ldots)$$

- a. What is \mathbf{x}_{k+1} , by definition?
- b. Compute $A\mathbf{x}_k$ from the formula for \mathbf{x}_k , and show that $A\mathbf{x}_k = \mathbf{x}_{k+1}$. This calculation will prove that the sequence $\{x_k\}$ defined above satisfies the difference equation $\mathbf{x}_{k+1} = A\mathbf{x}_k \ (k = 0, 1, 2, ...).$

35. Let \mathbf{u} and \mathbf{v} be the vectors shown in the figure, and suppose \mathbf{u} and \mathbf{v} are eigenvectors of a 2×2 matrix A that correspond to eigenvalues 2 and 3, respectively. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by $T(\mathbf{x}) = A\mathbf{x}$ for each \mathbf{x} in \mathbb{R}^2 , and let $\mathbf{w} = \mathbf{u} + \mathbf{v}$. Make a copy of the figure, and on the same coordinate system, carefully plot the vectors $T(\mathbf{u})$, $T(\mathbf{v})$, and $T(\mathbf{w})$.

36. Repeat Exercise 35, assuming \mathbf{u} and \mathbf{v} are eigenvectors of A that correspond to eigenvalues -1 and 3, respectively.

[M] In Exercises 37–40, use a matrix program to find the eigenvalues of the matrix. Then use the method of Example 4 with a row reduction routine to produce a basis for each eigenspace.

37.
$$\begin{bmatrix} 8 & -10 & -5 \\ 2 & 17 & 2 \\ -9 & -18 & 4 \end{bmatrix}$$

38.
$$\begin{bmatrix} 9 & -4 & -2 & -4 \\ -56 & 32 & -28 & 44 \\ -14 & -14 & 6 & -14 \\ 42 & -33 & 21 & -45 \end{bmatrix}$$

39.
$$\begin{bmatrix} 4 & -9 & -7 & 8 & 2 \\ -7 & -9 & 0 & 7 & 14 \\ 5 & 10 & 5 & -5 & -10 \\ -2 & 3 & 7 & 0 & 4 \\ -3 & -13 & -7 & 10 & 11 \end{bmatrix}$$

40.
$$\begin{bmatrix} -4 & -4 & 20 & -8 & -1 \\ 14 & 12 & 46 & 18 & 2 \\ 6 & 4 & -18 & 8 & 1 \\ 11 & 7 & -37 & 17 & 2 \\ 18 & 12 & -60 & 24 & 5 \end{bmatrix}$$

SOLUTIONS TO PRACTICE PROBLEMS

1. The number 5 is an eigenvalue of A if and only if the equation $(A - 5I)\mathbf{x} = \mathbf{0}$ has a nontrivial solution. Form

$$A - 5I = \begin{bmatrix} 6 & -3 & 1 \\ 3 & 0 & 5 \\ 2 & 2 & 6 \end{bmatrix} - \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 1 \\ 3 & -5 & 5 \\ 2 & 2 & 1 \end{bmatrix}$$

and row reduce the augmented matrix:

$$\begin{bmatrix} 1 & -3 & 1 & 0 \\ 3 & -5 & 5 & 0 \\ 2 & 2 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 8 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 0 & -5 & 0 \end{bmatrix}$$

At this point, it is clear that the homogeneous system has no free variables. Thus A - 5I is an invertible matrix, which means that 5 is *not* an eigenvalue of A.

2. If x is an eigenvector of A corresponding to λ , then $Ax = \lambda x$ and so

$$A^2\mathbf{x} = A(\lambda \mathbf{x}) = \lambda A\mathbf{x} = \lambda^2 \mathbf{x}$$

Again, A^3 **x** = $A(A^2$ **x**) = $A(\lambda^2$ **x**) = $\lambda^2 A$ **x** = λ^3 **x**. The general pattern, A^k **x** = λ^k **x**, is proved by induction.

3. Yes. Suppose $c_1\mathbf{b}_1 + c_2\mathbf{b}_2 + (c_3\mathbf{b}_3 + c_4\mathbf{b}_4) = \mathbf{0}$. Since any linear combination of eigenvectors corresponding to the same eigenvalue is in the eigenspace for that eigenvalue, $c_3\mathbf{b}_3 + c_4\mathbf{b}_4$ is either $\mathbf{0}$ or an eigenvector for λ_3 . If $c_3\mathbf{b}_3 + c_4\mathbf{b}_4$ were an eigenvector for λ_3 , then by Theorem 2, $\{\mathbf{b}_1, \mathbf{b}_2, c_3\mathbf{b}_3 + c_4\mathbf{b}_4\}$ would be a linearly independent set, which would force $c_1 = c_2 = 0$ and $c_3\mathbf{b}_3 + c_4\mathbf{b}_4 = \mathbf{0}$, contradicting that $c_3\mathbf{b}_3 + c_4\mathbf{b}_4$ is an eigenvector. Thus $c_3\mathbf{b}_3 + c_4\mathbf{b}_4$ must be $\mathbf{0}$, implying that $c_1\mathbf{b}_1 + c_2\mathbf{b}_2 = \mathbf{0}$ also. By Theorem 2, $\{\mathbf{b}_1, \mathbf{b}_2\}$ is a linearly independent set so $c_1 = c_2 = 0$. Moreover, $\{\mathbf{b}_3, \mathbf{b}_4\}$ is a linearly independent set so $c_3 = c_4 = 0$. Since all of the coefficients c_1, c_2, c_3 , and c_4 must be zero, it follows that $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4\}$ is a linearly independent set.