

第三章 多维随机变量及其分布

张志超

数理学院, 信息与计算科学系

Email: zhichao@ustb.edu.cn

上讲主要内容

- 二维连续型随机变量的概率密度和分布函数
- ●二维随机变量的边缘分布函数

$$F_X(x) = F(x,+\infty)$$

二维离散型随机变量的边缘分布律

$$F_X(x) = F(x, +\infty) = \sum_{x_i \le x} \sum_{j=1}^{\infty} p_{ij} P_{i.} = P(X = x_i) = \sum_{j=1}^{\infty} p_{ij}, i = 1, 2 \cdots$$

二维连续型随机变量的边缘概率密度

$$F_X(x) = F(x, +\infty) = \int_{-\infty}^x \left[\int_{-\infty}^{+\infty} f(x, y) dy \right] dx$$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

边缘分布

结论

二维正态分布的两个边缘分布均是一维正态分布,并且都不依赖于参数 ρ ,亦即对于给定的 $\mu_1, \mu_2, \sigma_1, \sigma_2$,不同的 ρ 对应不同的二维正态分布,但它们的边缘分布却都是一样的

从而可得出:由X和Y的边缘分布一般是不能确定X和Y的联合分布的.

不一定

联合分布

边缘分布

唯一确定

本章主要内容

- ●二维随机变量及其联合分布函数
- ●边缘分布
- 条件分布
- ●相互独立的随机变量
- ●两个随机变量函数分布

问题的提出

在第一章中已经介绍了条件概率的概念,即 在事件B发生的条件下事件A发生的条件概率:

$$P(A \mid B) = \frac{P(AB)}{P(B)}$$

现设有两个随机变量 X, Y, 若问:在给定 Y 取某个或某些值的条件下, 求随机变量 X 的概率分布.

这个分布就是条件分布.

例如: 考虑某大学的全体学生, 从其中随机抽取一个 学生,分别以X和Y表示其体重和身高.则X 和Y都是随机变量,它们都有一定的概率分布.

体重**X**

身高Y

0.1 60 80

身高Y

体重X

的分布

的分布

现在若限制 1.7 < Y < 1.8 (米), 这个条件

求:X的条件分布

这就意味着要从该校的学生中把身高在1.7米 和1.8 米之间的那些人都挑出来,然后在挑出的学生中求其 体重的分布.

显然:

这个分布与不加这个条件时的分布会很不一样.

例如:

在条件分布中体重取大值的概率会显著增加.

一. 离散型随机变量的条件分布

1. 定义: 若 (X,Y) 是二维随机变量,其联合分布律为

$$P(X = x_i, Y = y_j) = p_{ij}, i, j = 1, 2, \dots, (X, Y)$$

关于 X 和 Y 的边缘分布律为 $P(X = x_i) = P_i$,

$$P(Y = y_j) = P_{.j}, \exists P_{i.} > 0, P_{.j} > 0$$

则在事件 $\{Y = y_j\}$ 已发生的条件下事件 $\{X = x_i\}$

发生的概率为:

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{P_{.j}}$$
 $i = 1, 2 \cdots$

亦称为X 在 $\{Y = y_j\}$ 下的条件分布律.

同理可定义: y 在条件 $X = x_i$ 下的条件分布律为:

$$P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)} = \frac{p_{ij}}{P_{i}}$$
 $j = 1, 2, \cdots$

2. 性质:

$$\mathbf{1}_{\cdot}^{0} P(X = x_{i} | Y = y_{j}) \geq \mathbf{0}$$

$$2^{0} \sum_{i=1}^{\infty} P(X = x_{i} | Y = y_{j}) = \sum_{i=1}^{\infty} \frac{p_{ij}}{P_{.j}} = \frac{1}{P_{.j}} \sum_{i=1}^{\infty} p_{ij} = \frac{1}{P_{.j}} \cdot P_{.j} = 1$$

3°.
$$\sum_{i=1}^{\infty} P(Y = y_j | X = x_i) = 1$$

例1. 设随机变量 X 在 1, 2, 3, 4 四个整数中等可能地取值;另一随机变量 Y 在 1~X 中等可能地取一整数

求:条件分布律 $P(X = x_i | Y = y_j)$ 及 $P(Y = y_j | X = x_i)$

解:: X的取值有1,2,3,4; Y的取值有1,2,3,4

· 相应的分布律有16个,现分别计算两个:

V	1	2	3	4	P_{i} .	P(X = 1/2) = 1/2 = 1
1	1/4	0	0	0	14	
2	1 8	1 8	0	0	1/4	$= \frac{P(X = 1, Y = 1)}{P(\overline{Y} = 1)P(Y = 1)}$
3	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	0	1 4	1/ 1/
4	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	1 4	$=\frac{\cancel{4}}{25\cancel{5}}=\frac{\cancel{2}\cancel{5}}{\cancel{2}\cancel{5}}=\frac{\cancel{6}}{25}$
$\overline{P_{ij}}$	25 48	13 48	7 48	3 48		48 748

多维随机变 量及其分布

条件分布

_						L •	
_	1	14	0	0	0	14	
	2	1 4 1 8	1 8	0	•	<u>1</u>	
	3	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	0	<u>1</u>	
	4	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	<u>1</u> 4	
•	$P_{.j}$	25 48	13 48	7 48	3 48		
P(Y	= 1	X = 1) =	$\frac{X=1,}{P(X=$	$\frac{Y=1)}{=1)}$	$=\frac{\frac{1}{4}}{\frac{1}{4}}$	= 1
P(Y		X = 1	$=\frac{P(2)}{2}$	X = 1, X $P(X = 1)$	$\frac{Y=2}{=1}$	$=\frac{\stackrel{/}{0}}{\stackrel{1}{1}}{\stackrel{=}{4}}$	= 0

2 3 4

其它的留作课后同学自己去完成

二. 连续型随机变量的条件分布

引言

- ightharpoonup 在<mark>离散型</mark>中,条件分布律是由条件概率引出的,其中对任意的 P(X=x)>0, P(Y=y)>0
 - ➤ 注意到: 对于连续型随机变量而言P(X=x)=0, P(Y=y)=0。
 - ▶ 因此,对于连续型随机变量就无法用条件概率去引出条件分布的概念了,所以必须从分布函数着手。

在条件Y=y下, X的条件分布函数

$$F_{X|Y}(x|y) = P(X \le x|Y = y)$$

加以极限的方法引出条件分布的概念.

定义1.

给定 y, 设对于任意的正数
$$\varepsilon > 0$$
, $P(y - \varepsilon < Y \le y + \varepsilon) > 0$

且对任意实数 x, 极限 $\lim_{\varepsilon \to 0^+} P(X \le x | y - \varepsilon < Y \le y + \varepsilon)$

$$= \lim_{\varepsilon \to 0^+} \frac{P(X \le x, y - \varepsilon < Y \le y + \varepsilon)}{P(y - \varepsilon < Y \le y + \varepsilon)}$$
 存在.

则称此极限为在条件 Y = y 下, X 的条件分布函数。 记为: $F_{X|Y}(x|y) = P(X \le x|Y = y)$

同理:

$$F_{Y|X}(y|x) = P(Y \le y|X = x)$$
为条件 $X = x$ 下Y的

条件分布函数

讲一步推导条件概率密度:

$$F_{X|Y}(x|y) = P(X \le x|Y = y)$$

$$= \lim_{\varepsilon \to 0^{+}} P(X \le x|y - \varepsilon < Y \le y + \varepsilon)$$

$$=\lim_{arepsilon o 0^+}$$

由分布函 数性质

$$= \lim_{\varepsilon \to 0^{+}} \frac{F(x, y + \varepsilon) - F(x, y - \varepsilon)}{F_{Y}(y + \varepsilon) - F_{Y}(y - \varepsilon)}$$

分子分母
同乘
$$\frac{1}{2\varepsilon}$$

$$=\lim_{\varepsilon \to 0}$$

分子分母
$$= \lim_{\varepsilon \to 0^+} \frac{[F(x, y + \varepsilon) - F(x, y - \varepsilon)]/2\varepsilon}{[F_y(y + \varepsilon) - F_y(y - \varepsilon)]/2\varepsilon}$$

多维随机变 量及其分布

条件分布

分子是由二元 偏导数定义;分 母是由一元导 数定义

分子是由分布函数定义;分母是由分布函数与概率分布函数与概率密度关系.

对 y求偏导后只含 x 的积分

$$= \frac{\partial F(x,y)}{\partial y} / \frac{dF_Y(y)}{dy}$$

$$= \frac{\frac{\partial}{\partial y} \left[\int_{-\infty}^{x} \int_{-\infty}^{y} f(x, y) dx dy \right]}{f_{Y}(y)}$$

$$= \frac{\int_{-\infty}^{x} f(x,y)dx}{f_Y(y)} = \int_{-\infty}^{x} \frac{f(x,y)}{f_Y(y)}dx$$

$$F_{X|Y}(x|y) = P(X \le x|Y = y) = \int_{-\infty}^{x} \frac{f(x,y)}{f_{Y}(y)} dx$$

又因为由定义:
$$F_{X|Y}(x|y) = \int_{-\infty}^{x} f_{X|Y}(x|y) dx$$

所以得:
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

同理得:
$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

定义2:

若 (X,Y) 的联合分布函数为 F(x,y) , 概率密度为 f(x,y) 。若在点 (x,y) 处 f(x,y) 连续,边缘概率密度 $f_Y(y)$ 连续,且 $f_Y(y)>0$ 则: $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$ 为在条件 Y=y 下 X 的条件密度函数

同理
$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$
 为在条件 $X = x$ 下

Y的条件密度函数

例2. 设随机变量 (X,Y) 的分布密度为:

$$f(x,y) = \begin{cases} 3x & 0 < x < 1, \ 0 < y < x \\ 0 & (x,y) \text{ 在其它域} \end{cases}$$

求: (1) X,Y 的边缘分布密度.

(2) X,Y 的条件分布密度.

解: (1) 由已知的f(x,y)可知:

当
$$0 < x < 1$$
时

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy = \int_0^x 3x \, dy = 3x^2$$

当
$$x \le 0$$
 或 $x \ge 1$ 时 $f_x(x) = 0$

: X的边缘概率密度为:

$$f_X(x) = \begin{cases} 3x^2 & 0 < x < 1 \\ 0 & \sharp \ \stackrel{\sim}{\Sigma} \end{cases}$$

同理, 当 0 < y < 1 时

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{y}^{1} 3x dx = \frac{3}{2} (1 - y^{2})$$

当
$$y \le 0$$
 或 $y \ge 1$ 时 $f_Y(y) = 0$

:. Y 的边缘概率密度为:

$$f_{Y}(y) = \begin{cases} \frac{3}{2}(1 - y^{2}) & 0 < y < 1 \\ 0 & \text{# } \dot{\Sigma} \end{cases}$$

(2). 依条件概率密度的定义可知:

对于使 $f(x,y), f_x(x), f_y(y)$ 为非零值的区域有:

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_{Y}(y)} = \frac{3x}{3/2(1-y^2)} = \frac{2x}{1-y^2}$$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_{X}(x)} = \frac{3x}{3/2} = \frac{1}{x}$$

$$\therefore f_{X|Y}(x|y) = \begin{cases} \frac{2x}{1 - y^2} & y < x < 1, \ 0 < y < 1 \\ 0 & x \le y \text{ } x \ge 1 \end{cases}$$

$$\therefore f_{Y|X}(y|x) = \begin{cases} \frac{1}{x} & 0 < y < x, \ 0 < x < 1 \\ 0 & y \le 0 \text{ } \end{cases} \quad y \ge x$$

例3. 设 (X,Y) 的概率密度为:

$$f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}}-2\rho\frac{(x-\mu_{1})(x-\mu_{2})}{\sigma_{1}\sigma_{2}}+\frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right]}$$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}, f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}}$$

(即均服从正态分布)

求:
$$f_{X|Y}(x|y)$$

解: 因为:
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

$$=\frac{1}{\sqrt{2\pi}\sigma_{1}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\frac{x-\mu_{1}}{\sigma_{1}}-\rho\frac{y-\mu_{2}}{\sigma_{2}}\right]^{2}}$$

显然它也是服从正态分布:

$$N(\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(y - \mu_2), (1 - \rho^2)\sigma_1^2)$$

结论:

正态分布的边缘分布及条件分布仍服从正态分布.

例 4. 设 (X, Y) 的概率密度为:

$$f(x,y) = \begin{cases} \frac{e^{-x/y}e^{-y}}{y} & 0 < x < \infty, 0 < y < \infty \\ 0 &$$
其它

x: P(X>1 | Y=y)

解: $P(X>1|Y=y) = \int_{1}^{\infty} f_{X|Y}(x|y)dx$

为此,需求出 $f_{X|Y}(x|y)$

由于

$$f_{Y}(y) = \int_{0}^{\infty} \frac{e^{-x/y}e^{-y}}{y} dx = \frac{e^{-y}}{y} [-ye^{-x/y}]_{0}^{\infty} = e^{-y},$$
于是对 $y > 0$

$$f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)} = \frac{e^{-x/y}}{y}, \qquad x > 0$$

故对 *y* > 0

$$P(X>1 \mid Y=y) = \int_{1}^{\infty} \frac{e^{-x/y}}{y} dx = -e^{-x/y} \Big|_{1}^{\infty} = e^{-1/y}$$

例5. 设(X,Y)服从单位圆上的均匀分布,概率 密度为:

$$f(x,y) = \begin{cases} \frac{1}{\pi} & x^2 + y^2 \le 1 \\ 0 &$$
 其它

解: X的边缘概率密度为:

$$f_{X}(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$= \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{1}{\pi} dy = \begin{cases} \frac{2}{\pi} \sqrt{1-x^{2}} & |x| \leq 1\\ 0 & |x| > 1 \end{cases}$$

当 | x | < 1 时,有:

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{1/\pi}{(2/\pi)\sqrt{1-x^2}} = \frac{1}{2\sqrt{1-x^2}},$$

$$-\sqrt{1-x^2} \le y \le \sqrt{1-x^2}$$

即 当 | x | < 1 时,有:

$$f_{Y|X}(y \mid x) = \begin{cases} \frac{1}{2\sqrt{1-x^2}} & -\sqrt{1-x^2} \le y \le \sqrt{1-x^2} \\ 0 & y$$
 取其它值

本章主要内容

- ●二维随机变量及其联合分布函数
- ●边缘分布
- ●条件分布
- 相互独立的随机变量
- ●两个随机变量函数分布

回顾事件的独立性

两事件A, B 相互独立: 若 P(AB) = P(A) P(B), 则称事件 A, B 相互独立

直观上是X与Y各在什么范围内取值是毫无关系的

X与Y相互独立

事件($X \le x$)与事件($Y \le y$)相互独立($\forall x, y \in R$)

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$$

$$F(x,y) = F_X(x)F_Y(y)$$

一. 随机变量相互独立的定义

→ 设 (X,Y) 的 联合分布函数及边缘分布函数 为F(x,y)及 $F_X(x)$, $F_Y(y)$. 若对任意的 x, y都有: $P(X \le x, Y \le y) = P(X \le x) \cdot P(Y \le y)$

$$P(X \le x, Y \le y) = P(X \le x) \cdot P(Y \le y)$$

即 $F(x,y) = F_{\nu}(x) \cdot F_{\nu}(y)$

则称随机变量 X 和 Y是相互独立的.

注意: 在独立的条件下,二维随机变量(X,Y)的联合 分布函数F(x,y)可由边缘分布 $F_X(x)$ 和 $F_Y(y)$ 唯 一确定。

$$P\{x_1 < X \le x_2, y_1 < Y \le y_2\} = P\{x_1 < X \le x_2\}P\{y_1 < Y \le y_2\}$$

问题:

用分布函数来判断离散型随机变量和连续型随机变量的独立性,方便吗?

离散型随机变量可否用分布律,连续型用概率密度?

二. 当 (X,Y) 为离散型随机变量

X和Y相互独立
$$\longleftrightarrow$$
 $F(x,y) = F_X(x) \cdot F_Y(y)$

$$\longrightarrow \sum_{x_i \leq x} \sum_{y_j \leq y} p_{ij} = \sum_{x_i \leq x} P_{i} \cdot \sum_{y_i \leq y} P_{.j} (\forall x, y \in R)$$

依次取 $x = x_1, x_2 \dots, y = y_1, y_2 \dots,$

$$p_{ij} = P_i P_{.j}$$
 (∀ i,j 成立)

$$P(X = x_i, Y = y_j) = P(X = x_i) \cdot P(Y = y_j)$$

定义:

设(X,Y)为二维离散型随机变量,如果对于(X,Y)的所有取值 x_i,y_i ,有

$$P(X = x_i, Y = y_i) = P(X = x_i) \cdot P(Y = y_i)$$

则,称随机变量X和Y是相互独立的。

例1. 设 X,Y 相互独立,它们的分布律分别为:

	0					
P	<u>2</u> <u>3</u>	1	P	1	2	1
	3	3		4	4	4

求: (X,Y) 的联合分布律.

$$p_{ij} = P(X = x_i, Y = y_j) = P(X = x_i) \cdot P(Y = y_j)$$

从而:
$$p_{01} = P(X = 0, Y = 1) = P(X = 0) \cdot P(Y = 1)$$

$$= \frac{2}{3} \times \frac{1}{4} = \frac{2}{12}$$

$$p_{11} = P(X = 1, Y = 1) = P(X = 1) \cdot P(Y = 1)$$

$$= \frac{1}{3} \times \frac{1}{4} = \frac{1}{12}$$

$$p_{02} = \frac{4}{12}$$
, $p_{12} = \frac{2}{12}$, $p_{03} = \frac{2}{12}$, $p_{13} = \frac{1}{12}$

可得 (X,Y) 的联合分布律为:

对离散型随机变量而言,已知联合分布律可求出其相应的边缘分布律,但很多时候,反之则不然。

但从此例可得出:一旦知道 X,Y 相互独立条件后,则可由边缘分布律直接求得其联合分布律。

连续型随机变量及其分布

例2:设随机变量X与Y的分布律如下,问X与Y是否

独立?

解:逐点验证

$$P(X = x_i, Y = y_i)$$

$$= P(X = x_i) \cdot P(Y = y_j)$$

XY	X Y 2		$P(X=x_i)$				
0	1/3	1/3	2/3				
3	1/6	1/6	1/3				
$P(Y=y_i)$	1/2	1/2	1				

$$P(X = 0, Y = 2) = 1/3 = P(X = 0) \cdot P(Y = 2)$$

$$P(X = 0, Y = 5) = 1/3 = P(X = 0) \cdot P(Y = 5)$$

$$P(X = 3, Y = 2) = 1/6 = P(X = 3) \cdot P(Y = 2)$$

$$P(X = 3, Y = 5) = 1/6 = P(X = 3) \cdot P(Y = 5)$$

连续型随机变量及其分布

例3:设随机变量X与Y独立,下面是X与Y的联合分布律和边缘分布律,请补上所缺数值。

Y	3	4	5	$P(X=x_i)$
1	1/24	1/8	1/12	1/4
2	1/8	3/8	1/4	3/4
$P(Y=y_i)$	1/6	1/2	1/3	1

连续型随机变量及其分布

考研真题

(2013年)设随机变量X与Y相互独立,且X与Y的概率

分布分别如下,则P(X+Y=2)=()

Α.	1	/1	2
	_		_

B. 1/8

★ C. 1/6

D. 1/2

\boldsymbol{X}	0	1	2	3
P	1 2	1 4	1 8	1 8
Y	-1	0	1	
	1	1	<u> </u>	

三. 当 (X,Y) 为连续型随机变量

设(X,Y)是二维连续型随机变量, $f(x,y),f_X(x),f_Y(y)$ 分别为(X,Y)的联合概率密度和边缘概率密度,

若X和Y相互独立, $F(x,y) = F_X(x) \cdot F_Y(y)$

则在函数f(x,y), $f_X(x)$, $f_Y(y)$ 的连续点有

$$\frac{\partial^2 F(x,y)}{\partial x \partial y} = \frac{\partial^2 F_X(x) \cdot F_Y(y)}{\partial x \partial y} \exists \exists f(x,y) = f_X(x) \cdot f_Y(y)$$

则X和Y是相互独立的随机变量。

注: X, Y相互独立, 要求上式几乎处处成立即可。 同事件的独立性, 类似有:

例2. 设(X,Y)服从正态分布,其边缘分布密度为:

$$f_X(x) = \frac{1}{\sqrt{2\pi} \sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}, f_Y(y) = \frac{1}{\sqrt{2\pi} \sigma_2} e^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}}$$

$$-\infty < x < +\infty$$

$$-\infty < y < +\infty$$

问: X 和 Y 相互独立的充分必要条件是什么?

问: X 和 Y 相互独立的充分必要条件是什么?
解:
$$f_X(x) \cdot f_Y(y) = \frac{1}{2\pi\sigma_1\sigma_2} e^{-\frac{1}{2}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]}$$

$$= \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}}-2\rho\frac{(x-\mu_{1})(x-\mu_{2})}{\sigma_{1}\sigma_{2}}+\frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right]}$$

当
$$\rho = 0$$
时

当
$$\rho = 0$$
时 有 $f(x,y) = f_X(x) \cdot f_Y(y)$

则X和Y相互独立

反过来, 若X和Y相互独立,则 $f(x,y)=f_x(x)\cdot f_v(y)$

$$\Leftrightarrow x = \mu_1 \quad y = \mu_2$$

$$\Rightarrow x = \mu_1 \quad y = \mu_2$$

$$f_X(x) \cdot f_Y(y) = \frac{1}{2\pi\sigma_1\sigma_2}$$

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

得到
$$\rho = 0$$

访访

