Scientific computation and anomaly recognition

Chen Zhang ^{1,2}

¹RTL CRI_SZ UIH @ Shenzhen, ²PMJL RUJC-CRI UIH @ Shanghai

Git URL: CubicZebra

- Scientific computation
 - Motivation: full support of algorithm
 - Significance: unveil the black box of AI
 - Supremum: reduce nonsense efforts
- 2 Anomaly recognition
 - Introduction: integration of scientific computation
 - Comprehension: concept and applicable scope
 - Applications: principles and implementations
- Summary

Essence: utilizing the valuable pattern from data

Program in CS:
 data (digital) + algorithms (business)

- Data mining: (purification, critical)
 data (conceptual) + algorithms (simplication)
- Al application: (utilization)
 data (representation) + algorithms (criterion)

Data mining

• Pattern: minimal representation of data¹

¹Pattern in high dimensional data

Al application

- Mathematical statistics:
 hypotest, ANOVA, Bayesian stats, statistical learning, . . .
- Machine learning:
 - analytical: PCA, SVM, conjugate gradient descent, . . .
 - randomness: RF, ensemble, stochastic gradient descent, ...
- Deep learning:
 - Conv+Pool (+randomness & variation, data aug & mining)
 - MLP $(p = f(x) \rightarrow f$, set criterion of regressor)

Scientific computation: base implementation of algorithms

- Signal decomposition
 - eigen and sigular value decomp.,
 - tensor decomp. & synthesis (CP, tucker, train, ring);
- Optimization
 - linear or nonlinear OLS,
 - gradient descent: (quasi-)newton iter, conjugate, stochastic,
 - stochastic process;
- Statistics
 - inference: MLE, Bayes (posteriori & prediction dis),
 - measurement: univariate/multivariate hypothesis tests,
 - sampling: MH, MCMC, stat simulation;
- Linear algebra, ODR, PDE, ...

For rational AI approaches

- Comprehension on algorithm frame
 - What: base components of scientific computation methods,
 - Why: reason of frame architecture design,
 - How: concrete computation steps of each component;
- Modification on algorithm frame
 - Parameter: inherent adaption support of frame,
 - Component: change features of frame for certain purpose;
- Creating customized frame
 - Analysis: data => concerned info => sc methods,
 - Architect: sc implements => atomic ops => pipe; UNITED

For rational AI approaches

Two suggestions in practice:

- Deep into principles: despite autonomous vehicles, a driver inside should have license at least.
- 2. **Don't against the current:** modification/design based on *concerned info* and *task objective*.

The objective-oriented methodology

- Case 1: fingerprint recognition²
 - interested info: pattern of texture
 - sc methods: spatial gabor filtering (2D)

²Determine appropriate transformation

The objective-oriented methodology

- Case 2: vessel measurement in pancreatic carcinoma study
 - interested info: space angle
 - sc methods: morphological ops + linalg computation

The objective-oriented methodology

- Case 3: brain-related study (pipe reusability in Case 1)
 - interested info: texture pattern of brain
 - sc methods: spatial gabor filtering (3D)

Motivation: full support of algorithm Significance: unveil the black box of A Supremum: reduce nonsense efforts

Primer concepts in statistics

- Why we need statistics
 - data: listing all acquired observations
 - statistics: description on data via sth. (e.g. dis)
- Samples & population
 - estimation: study on samples => conclusion on population
 - bias: diff between samples & population³

³Unbias estimation

Primer concepts in statistics

- Parametric or non-parametric⁴
 - parametric: at least info of a dis., strong assumption,
 - -diff, the statisical illusion (e.g. median/mean)

$$A = \{1, 2, 3, 4, 5\}$$
 and $B = \{1, 2, 3, 4, 5000\}$

Data does not lie. People do.

-Lee Baker, Truth, Lies & Statistics: How to Lie with Statistics

Primer concepts in statistics

- Consideration of sufficiency
 - def: $f(\mathbf{x}|\theta) = g(T(\mathbf{X}|\theta))h(\mathbf{x})$
 - design intention of StratifiedKFold in scikit-learn
 - interpretation of bootstrap (CS) in statistics (convergency)

Proposals in managing data practice

- Diagnosis on samples (assume $A \subset B \subset C$)
 - s(A) diff from s(B) => increase nums. | test variants,
 - $A \subset B \to f$ be ineffective from B to C => data aquisition;
- Applicability of algorithm
 - evaluate applicability from frame to task-objective,
 - modification | design => parameterization;
- Further works
 - cleaning, preprocessing, training, validation, etc.

- Case 4: statistics on nuclei of cancer cells
 - objective: $\mathcal{N}(\mathbf{x}, \mathbf{\Sigma})$ dis of nuclei, statistical approaches

- Case 4: statistics on nuclei of cancer cells
 - diagnosis on dis => fat-tailed & outliers

- Case 4: statistics on nuclei of cancer cells
 - +MCMC aug => params converge in prob

image after transformation

Motivation: full support of algorithm Significance: unveil the black box of A Supremum: reduce nonsense efforts

- Case 4: statistics on nuclei of cancer cells
 - ullet +MCMC aug => params converge in prob

Comb. & App. of multi sc meta implementations

- Dis-related methods (e.g. T2, Naive Bayes)
 - methematical statistics, hypothesis tests
 - linear algebra (supporting multivariate)
 - Bayes statistics and computation
- Data-related methods (e.g. neighbors)
 - data structure (CS), KDTree for query
 - optimizations, for numeric solution
 - signal decomposition
 - linear algebra as well
- Other methods...

Comb. & App. of multi sc meta implementations

- Security:
 - risky transaction, anti-fraud, ...
- Quality ensurance:
 - quality testing, mechanical fault monitoring, ...
- Networks:
 - spam recog., attack monitoring, ...
- Medical:
 - less reported

Essentials: conventional hypothesis testing

ullet One-side modeling: stats on one-class o normal/anomaly

accept/rejection regions⁵

⁵Hypothesis testing concepts and examples

Essentials: concept and applicable scope

- Anomaly detection⁶:
 - ullet stats on one-class o accept/rejection o routine/anomaly-like

⁶Anomaly and change

Essentials: concept and applicable scope

Why not binary classification?

- binary classification
 - 1. narrow vs. narrow
 - 2. large data required
 - 3. low generalization

- anomaly detection
 - 1. narrow vs. generic
 - 2. low data required
 - 3. high generalization

Source: limited capability for unknown pattern

Hotelling T2:7 multivariate student-T

- Hypothesis:
 - null: case is derived from the identical population,
 - alternative: case is not derived from the identical population;
- T2 statistic:

$$T^2 = rac{N-M}{(N+1)M} (oldsymbol{x}' - \hat{oldsymbol{\mu}})^ op \hat{oldsymbol{\Sigma}}^{-1} (oldsymbol{x}' - \hat{oldsymbol{\mu}}) \sim F(M, N-M)$$

Criterion:

$$(\mathbf{x}' - \hat{\boldsymbol{\mu}})^{\top} \hat{\mathbf{\Sigma}}^{-1} (\mathbf{x}' - \hat{\boldsymbol{\mu}}) \sim \chi^2(\mathbf{x}|M,1)$$

calculation on basis of $\chi^2(x|M,1)$

⁷Hotelling T-squared

Large margin nearest neigbors (LMNN)

• Essential concept: homeomorphism⁸

⁸Topological isomorphism

LMNN: role of Riemannian space

Euclidean (global ops) $\mathbf{x}' = f(\mathbf{x}) = \mathbf{A}\mathbf{x}$

Riemannian (local ops)

$$\mathbf{x}' = f(\mathbf{x}) = \mathbf{B}\mathbf{x}$$

• The determination of **B**?

LMNN: problem description⁹

Optimization objective:

$$\Psi(\mathbf{R}) = \frac{1}{N} \sum_{c=1}^{s} \sum_{n=1}^{N} \left[w_c \cdot \psi_1^{(n)}(\mathbf{R}) + \sum_{m \in \{c\}^C} w_m \cdot \psi_2^{(n)}(\mathbf{R}) \right]$$

Constraints:

s.t.
$$\mathbf{R} \succ 0$$

Supports:

linalg, matrix decomp., data structure, ...

⁹Empirical distribution and neighbors

LMNN: optimization & Riemannian space

$$\operatorname{\mathsf{arg}\,\mathsf{min}}\Psi(oldsymbol{R}) o oldsymbol{R}^*$$

matrix decomposition: LDLt

$$R^* = L_m \Lambda_m L_m^{\top} = L \Lambda \Lambda^{\top} L^{\top}$$
$$\therefore L' = L \Lambda$$

Cartesian to Riemannian space:

$$f(\mathbf{x}) = \mathbf{L}'\mathbf{x}$$

Anomaly detection: decoupling the AI algorithms

- As for general case:
 - normal/anomaly determination;
- As for anomaly cases:
 - expertise model for subtypes (most researchers mainly do);
- As for interested subtypes:
 - further investigation for principles/mechanisms;
- Well recognized → full utilization:
 - model to export (suggested) decision, etc.

Al algorithm in practice

• The relations between Al algorithm and scientific computation

- 1. $SC \rightarrow AI \rightarrow App$.
 - technical methods set
 - rational combination
- 2. objective \rightarrow AI frame
 - high generalization
 - expertise for problem
 - interpretability

Mottos:

- There is neither elixir for all diseases in this world, nor generic solution for all questions.¹⁰
- Invocation without coprehension is just like tree without root, stream without source.
- Scientific computation and rationality: the motivation and reason of finding the information underlying the data.

Chen Zhang

Thanks.

