#### Análisis Demográfico

Dr. Víctor Manuel García Guerrero vmgarcia@colmex.mx

"Procesos de decremento múltiple"

Licenciatura en Actuaría VI semestre, 2025-2



Facultad de Ciencias



# Procesos de decremento múltiple

- Recordemos que los procesos de decremento simple son aquellos en los cuales los individuos tienen solo una forma de salida de un estado determinado.
- En los procesos de decremento múltiple los individuos tienen más de una forma de salida.
- Los procesos de decremento múltiple son mucho más comunes en demografía que los procesos de decremento simple.
- Cuando existen múltiples causas posibles de salida, también se habla de riesgos en competencia.
  - En fecundidad: riesgos de embarazo y uso de anticonceptivos.
  - En migración: riesgo de migrar a diferentes lugares.
  - En nupcialidad: riesgos de divorcio y viudez.

# Funciones en decremento múltiple

 $_{n}d_{x}^{i}=$  número de decrementos por la causa i entre x a x+n

 $_{n}q_{x}^{i}=$  probabilidad de salida por i entre x y x+n si alcanzó la edad x =  $_{n}d_{x}^{i}/l_{x}$ 

 $_nm_x^i=$  tasa de decremento por causa i en el intervalo de edad x a x+n  $={_nd_x^i}/{_nL_x}\approx {_nD_x^i}/{_n\bar{N}_x}$ 

 $l_x^i = {\it n\'umero}$  de personas que alcanzan la edad x y eventualmente sucumbirán a la causa i

$$=\sum_{a=x}^{\infty} {}_{n}d_{a}^{i}$$

 $l_x^i/l_x = {
m proporci\'on}$  de personas en edad x que eventualmente saldrán por i

## Funciones en decremento múltiple

Sumados para todas las causas i los decrementos deben equivaler al número total de salidas del estado definido:

$$\sum_{i} {}_{n}d_{x}^{i} = {}_{n}d_{x}$$

Por nuestras fórmulas para  ${}_nm_x^i$  y  ${}_nq_x^i$ , estas deben sumar a la función equivalente en la tabla de vida para todas las causas:

$$\sum_{i} {}_n m_x^i = \sum_{i} \frac{{}_n d_x^i}{{}_n L_x} = \frac{{}_n d_x}{{}_n L_x} = {}_n m_x$$

$$\mathbf{y}$$

$$\sum_{i} {}_n q_x^i = \sum_{i} \frac{{}_n d_x^i}{{}_l x} = \frac{{}_n d_x}{{}_l x} = {}_n q_x$$

## Funciones en decremento múltiple

Además, dado que:

$$l_x^i = \sum_{a=x}^{\infty} {}_n d_a^i$$

$$\sum_i l_x^i = \sum_i \sum_{a=x}^{\infty} {}_n d_a^i = \sum_{a=x}^{\infty} {}_n d_a = l_x$$

La relación anterior establece que:

Todos los sobrevivientes a la edad x en la cohorte deben abandonar el estado definido por una u otra causa reconocida de decremento por encima de dicha edad.

#### Ej: Líneas de vida para una cohorte de 10 nacimientos



## Tabla de vida para la cohorte hipotética

| x  | $l_x$ | $_{n}d_{x}^{\mathrm{D}}$ | $_{n}d_{x}^{\mathrm{U}}$ | $_{n}d_{x}$ | $_{n}q_{x}^{\mathrm{D}}$ | $_{n}q_{x}^{\mathrm{U}}$ | $n q_x$ | $l_x^{\mathrm{D}}$ | $l_x^{\mathrm{U}}$ | $L_x$ |
|----|-------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|---------|--------------------|--------------------|-------|
| 0  | 10    | 1                        | 0                        | 1           | 1/10                     | 0                        | 1/10    | 4                  | 6                  | 9.07  |
| 1  | 9     | 1                        | 0                        | 1           | 1/9                      | 0                        | 1/9     | 3                  | 6                  | 32.22 |
| 5  | 8     | 0                        | 0                        | 0           | 0                        | 0                        | 0       | 2                  | 6                  | 40.00 |
| 10 | 8     | 1                        | 3                        | 4           | 1/8                      | 3/8                      | 4/8     | 2                  | 6                  | 70.88 |
| 20 | 4     | 0                        | 3                        | 3           | 0                        | 3/4                      | 3/4     | 1                  | 3                  | 23.36 |
| 30 | 1     | 0                        | 0                        | 0           | 0                        | 0                        | 0       | 1                  | 0                  | 10.00 |
| 40 | 1     | 0                        | 0                        | 0           | 0                        | 0                        | 0       | 1                  | 0                  | 10.00 |
| 50 | 1     | 1                        | 0                        | 1           | 1/1                      | 0                        | 1/1     | 1                  | 0                  | 9.60  |
| 60 | 0     |                          |                          |             |                          |                          |         | 0                  | 0                  |       |
|    |       |                          |                          |             |                          |                          |         |                    |                    |       |

En donde: 
$${}_nd_x={}_nd_x^{\mathrm{D}}+{}_nd_x^{\mathrm{U}}$$
 y  ${}_nq_x={}_nq_x^{\mathrm{D}}+{}_nq_x^{\mathrm{U}}$ 

## Tablas de Vida de Decrementos Múltiples de Período

- El problema básico consiste en convertir las tasas observadas  ${}_nM_x^i$  en las probabilidades de salir de la tabla por diversas causas.
- Para realizar esta conversión, debemos referirnos a la relación fundamental entre tasas de decremento y probabilidades de decremento en una cohorte.

$$_{n}m_{x}^{i}=rac{nd_{x}^{n}}{nL_{x}}$$
 y  $_{n}q_{x}^{i}=rac{nd_{x}^{i}}{l_{x}}$ 

• Nótese que los numeradores de  $m_x^i$  y  $q_x^i$  son los mismos, mientras que el denominador de la primera es  ${}_nL_x$  y el de la segunda es  $l_x$ .

## Tablas de Vida de Decrementos Múltiples de Período

• Podemos utilizar la relación entre  $l_x$  y  $_nL_x$  derivada del capítulo anterior para desarrollar una fórmula de conversión. Sustituyendo  $(_nL_x + (n - _na_x)_nd_x)/n$  por  $l_x$  en la expresión para  $q_x^i$  obtenemos:

$$_{n}q_{x}^{i} = \frac{n \cdot _{n}m_{x}^{i}}{1 + \left(n - _{n}a_{x}\right)_{n}m_{x}}$$

• Es común denotar la tasa de decremento por causas distintas a i en el intervalo de edad de x a x+n como  ${}_nm_x^{-i}$ . Por lo tanto,  ${}_nm_x={}_nm_x^i+{}_nm_x^{-i}$ . Al insertar esta relación en la fórmula anterior:

$$_{n}q_{x}^{i} = \frac{n \cdot _{n}m_{x}^{i}}{1 + (n - _{n}a_{x})\left( _{n}m_{x}^{i} + _{n}m_{x}^{-i} \right)}$$

Ahora la naturaleza competitiva de los múltiples decrementos se hace evidente. Manteniendo constante  ${}_nm_x^i$ , cuanto mayor sea  ${}_nm_x^{-i}$ , menor será  ${}_nq_x^i$ . Es decir, cuando  ${}_nm_x^{-i}$  es mayor, más de los potenciales afectados por cáncer -por ejemplo- serán eliminados por otras causas en el intervalo de edad. Debido a esta dependencia, a  ${}_nq_x^i$  se le conoce comúnmente como "probabilidad dependiente".

## Tablas de Vida de Decrementos Múltiples de Período

Nótese que, al dividir  $_nq_x^i$  entre  $_nq_x$ , obtenemos:

$$\frac{nq_x^i}{nq_x} = \frac{nd_x^i}{nd_x} = \frac{nm_x^i}{nm_x} \approx \frac{nD_x^i}{nD_x}$$

Por lo tanto:

$${}_nq_x^i = {}_nq_x \cdot \frac{{}_nd_x^i}{{}_nd_x} = {}_nq_x \cdot \frac{{}_nm_x^i}{{}_nm_x}$$

Una vez que hemos calculado la tabla de vida para todas las causas combinadas, podemos simplemente tomar el vector  ${}_nq_x$  de esa tabla y distribuirlo entre varias causas de decremento según sus tasas relativas de decremento, ya que las probabilidades guardan la misma proporción que las tasas, o los decrementos registrados mismos.

#### Pasos para construir una TVDM de período

• Cálculo de una tabla de vida para todas las causas de decremento combinadas. El componente básico en esta tabla es:

$$_{n}m_{x}=\sum_{i}{_{n}m_{x}^{i}}$$

El procedimiento habitual consiste en asumir para cada causa que  ${}_{n}M_{x}^{i}={}_{n}m_{x}^{i}$  (lo que también implica  ${}_{n}M_{x}={}_{n}m_{x}$ ). Esto debe convertirse a  ${}_{n}q_{x}^{i}$  como se describió en el capítulo anterior.

② Calcular la probabilidad de salida por causa i en el intervalo de edad x a x+n como:

$$_{n}q_{x}^{i} = _{n}q_{x} \cdot \frac{_{n}m_{x}^{i}}{_{n}m_{x}}$$

$$_{n}q_{x}^{i} = _{n}q_{x} \cdot \frac{_{n}M_{x}^{i}}{_{n}M_{x}} = _{n}q_{x} \cdot \frac{_{n}D_{x}^{i}}{_{n}D_{x}}$$

## Pasos para construir una TVDM de período

**3** Cálculo del número de decrementos por causa i en el intervalo de edad x a x+n

$$_{n}d_{x}^{i}=l_{x}\cdot _{n}q_{x}^{i}$$

• Cálculo del número de personas de edad  $x^*$  que eventualmente saldrán de la tabla por la causa i:

$$l_{x^*}^i = \sum_{x=x^*}^{\infty} {}_n d_x^i$$

# Ej: TVDM de período

|           | n       | $_{n}D_{x}^{i}$ |         |
|-----------|---------|-----------------|---------|
| $Edad\ x$ | Muertes | Muertes por     | $l_x$   |
|           | totales | neoplasma       |         |
| 0         | 15,758  | 63              | 100,000 |
| 1         | 3,169   | 275             | 99,217  |
| 5         | 1,634   | 268             | 99,050  |
| 10        | 1,573   | 217             | 98,959  |
| 15        | 3,955   | 318             | 98,870  |
| 20        | 4,948   | 467             | 98,637  |
| 25        | 6,491   | 856             | 98,379  |
| 30        | 9,428   | 1,924           | 98,070  |
| 35        | 12,027  | 3,532           | 97,653  |
| 40        | 15,543  | 5,958           | 97,083  |
| 45        | 19,264  | 8,434           | 96,289  |
| 50        | 25,384  | 11,673          | 95,008  |
| 55        | 37,211  | 17,078          | 93,018  |
| 60        | 59,431  | 25,263          | 89,882  |
| 65        | 88,087  | 33,534          | 85,249  |
| 70        | 114,693 | 36,695          | 78,711  |
| 75        | 143,554 | 36,571          | 69,618  |
| 80        | 164,986 | 30,220          | 57,486  |
| 85        | 320,578 | 32,739          | 41,756  |
|           |         |                 |         |