Inequalities and A bsolute V alues

For questions in the Q uantitative C om parison form at ("Q uantity A" and "Q uantity B" given),the answ er choices are alw ays as follow s:

- (A) Q uantity A is greater.
- (B) Q uantity B is greater.
- (C) The two quantities are equal.
- (D) The relationship cannot be determ ined from the inform ation given.

For questions follow ed by a num eric entry box ______,you are to enter your ow n answ er in the

box. For questions follow ed by fraction-style num eric entry boxes ,you are to enter your answ er in the form of a fraction. Y ou are not required to reduce fractions. For exam ple, if the answ er is 1/4, you m ay enter 25/100 or any equivalent fraction. A ll num bers used are real num bers. A ll figures are assum ed to lie in a plane unless otherw ise indicated. G eom etric figures are not necessarily draw n to scale. Y ou should assum e, how ever, that lines that appear to be straight are actually straight, points on a line are in the order show n, and all geom etric objects are in the relative positions show n.C oordinate system s, such as xy-planes and num ber lines, as w ell as graphical data presentations such as bar charts, circle graphs, and line graphs, are draw n to scale. A sym bol that appears m ore than once in a question has the sam e m eaning throughout the question.

1.

$$|3x - 18| = 9$$

Q uantity A

Q uantity **B**

Χ

6

2.If $2z + 4 \ge -18$, w hich of the follow ing m ust be true?

- (A) $z \le -11$
- (B) z≤11
- (C) $z \ge -11$
- (D) $z \ge -7$
- (E) $z \ge 7$

3.

$$7y - 3 \le 4y + 9$$

	Q uantity A		Q uantity B
4.	У		4
71.			
		$d + \frac{3}{2} < 8$	
	Q uantity A		Q uantity B
5.		$\frac{4x}{x} \leq 15 + x$	
		$\frac{4x}{7} \le 15 + x$ $2y - 1.5 > 7$	
	Q uantity A		Q uantity B
	X		У
6.		21v 41 46	
		3 <i>x</i> - 4 = 16	
Q uantity A			Q uantity B
	X		28 3
7. If $b \neq 0$ and $\frac{a}{b} > 0$, then	w hich of the fo	ollow ing m ust be true?	
$ \Box a > b $ $ \Box b > 0 $ $ \Box ab > 0 $		G	
8. If $6 < 2x - 4 < 12$, w hich of	of the follow ing	could be a value of x?	
(A) 4			
(B) 5 (C) 7			
(D) 8 (E) 9			
		X	

9.If y < 0 and 4x > y,w hich of the follow ing could be equal to y?

(A)	0 1	
(B)	4	
(C)	<u>1</u> 2	
(D) (E)		
10.	·	
	x + 6 = 3 $ 2y = 6$	
	Q uantity A	Q uantity B
	The greatest possible value for x	The least possible value for y
11.lf 4 <i>y</i> +	2 = 18,w hich of the follow ing could be the value of	y ² ?
Indic	ate <u>tw o</u> such values.	
	6 5	
12.		
	$3(x-7) \ge 0.25y-3^{\le}$	
	·	
	Q uantity A X	Q uantity B
13.lf 1 - 2	^ = 6 and 2 <i>y</i> - 6 = 10,w hich of the follow ing cou	yuld be the value of xy?
Indic	ate <u>all</u> such values.	
	14 10	
	1) ³ + 3 \leq 19, then the value of x m ust be	

3 (B) less than or equal to 3

` '	or greater than 3	
15.If 3 <i>P</i> < 51 and 5 <i>P</i> >	> 75,w hat is the value of the	integer <i>P</i> ?
(A) 15 (B) 16 (C) 24 (D) 25 (E) 26		
•		oint in the hub to equally spaced points on the rim of the wne smallest possible angle between any two spokes?
(A) 18 degrees(B) 30 degrees(C) 40 degrees(D) 60 degrees(E) 72 degrees		
17.		
	-	x ≥6
	$xy^{\angle} < 0 \text{ w h}$	ere y is an integer.
	Q uantity A	Q uantity B
	X	-4
x+4		
18.If ${2}$ > 5 and x	< 0,w hich of the follow ing coul	be the value of x?
18.If ${2}$ > 5 and x Indicate <u>all</u> such v	•	d be the value of x?
	•	d be the value of x?
Indicate <u>all</u> such v	•	d be the value of x?
Indicate <u>all</u> such v -6 -14 -18	values.	d be the value of x ? $ x < 64$
Indicate <u>all</u> such v -6 -14 -18	values.	
Indicate <u>all</u> such v -6 -14 -18	values.	³ < 64

(C) greater than or equal to -

Indicate <u>all</u> such values.

10

(E) 10

24.

x is an integer such that -x|x| > 4.

Q uantity **B**

4

Q uantity A Q uantity B

x 2

25.

|x| < 1 and y > 0

26.

x and y are positive num bers such that x + y + z < 1 and xy = 1

Q uantity A Q uantity B

27.

$$|x| > |y|$$
 and $x + y > 0$

Q uantity A

y

Q uantity B

28.

x and y are integers such that |x|(y) + 9 < 0 and $|y| \le 1$.

Q uantity A

Q uantity B

x

29. If x + y + z = 0 and z = 8, w hich of the following m ust be true?

- (A) x < 0
- (B) y < 0
- (C) x y < 0
- (D) z y > 0
- (E) x + y < 0

30.

$$p + |k| > |p| + k$$

Q uantity A Q uantity B

p

k

31.

$$|x| + |y| > |x + z|$$

Q uantity A Q uantity B

y

Z

32.

$$\frac{|a|}{b} > 1$$

a + b < 0

Q uantity A

Q uantity B

а

0

 $\frac{a}{b} > \frac{c}{d}$, w hich of the follow ing statem ents m ust be true?

Indicate all such statem ents.

34.If 2 < 0,w hich of the follow ing m ust be true? fg

- (A) f < 0
- (B) g < 0
- (C) fg < 0
- (D) fg > 0
- (E) 2 < 0 f

 $\frac{x}{35.\sqrt{96}} < x\sqrt{6}$ and $\frac{x}{\sqrt{6}} < \sqrt{6}$.If x is an integer,w hich of the follow ing is the value of x?

- (A) 2
- (B) 3
- (C)4
- (D)5
- (E)6

36.

|x|y > x|y|

Q uantity A

Q uantity **B**

 $(x+y)^2$

 $(x-y)^2$

 $4-11x \ge \frac{-2x+3}{2}$?

37.W hich of the follow ing could be the graph of all values of x that satisfy the inequality

38.If $|x^2 - 6| = x$,w hich of the follow ing could be the value of x?

- (A)-2
- (B) 0
- (C) 1
- (D)3
- (E) 5

39.

$$-1 < a < 0 < |a| < b < 1$$

$$\frac{\text{Q uantity A}}{\left(\frac{a^2\sqrt{b}}{\sqrt{a}}\right)^2} \qquad \frac{ab^5}{\left(\sqrt{b}\right)^4}$$

40.

- 41. The integers k, l, and m are consecutive even integers betw een 23 and 33. W hich of the follow ing could be the average of k, l, and m?
 - (A) 24
 - (B) 25
 - (C) 25.5
 - (D) 28
 - (E) 32

	(A) x < 1 (B) -6 < 2x < 2 (C) -9 < 3x < 6 (D) 1 < 2x < 3 (E) x > -3	
	a jam balaya cook-off, there will be x judges sitting in the follow ing could be the num bero	a single row of x chairs. If x is greater than 3 but no m ore f possible seating arrangem ents for the judges?
lı	ndicate <u>tw o</u> such num bers.	
	☐ 6 ☐ 25 ☐ 120 ☐ 500 ☐ 720	
44.lf <i>b</i>	$p \neq 0$,w hich of the follow ing inequalities m u	$\frac{a}{-3b} < c?$
	ndicate <u>all</u> such inequalities.	
	$ \frac{a}{b} > -3c $ $ \frac{a}{-3} < bc $ $ \Box a > -3bc $	
45.		
	a – 1) > a + b + c
	$\frac{\mathbf{Q} \text{ uantity } \mathbf{A}}{2b+c}$	Q uantity B $b+c$
46.		
		+ y = 10 x > 0 x < y - x
	Q uantity A	Q uantity B
	Z	10

The num ber line above represents w hich of the follow ing inequalities?

47.

$$0 < a < \frac{b}{2} < 9$$

Q uantity A

9 - a

Q uantity **B**

48.

For all values of the integer p such that 1.9 < |p| < 5.3, the function $f(p) = p^2$

Q uantity A

f(p) for the greatest value of p

Q uantity **B**

f(p) for the least value of p

$$\frac{a}{b}$$
 and $\frac{x}{y}$ are reciprocals and $\frac{a}{b}(\frac{x}{y}) < 0$ which of the following must be true?

(A) ab < 0

$$\frac{a}{b}\left(\frac{x}{y}\right) < -1$$

$$\frac{a}{b} < 1$$

$$\frac{a}{a} = -\frac{y}{a}$$

(C)
$$\frac{a}{b} < 1$$

(C) $\frac{a}{b} = -\frac{y}{x}$
(D) $\frac{y}{x} > \frac{a}{b}$

(E)
$$x = b$$

50.If $m \, n < 0$ and

,w hich of the follow ing m ust be true?

$$(A) km + ln < (m)$$

$$n)^{2}$$
 (B) $kn + lm < 1$
(C) $kn + lm > (m + lm)^{2}$ (D) $k + l > m + lm$

$$(C) kn + lm > (m)$$

$$n)^{2}$$
 (D) $k+l>m$ n

(E)
$$kn > -lm$$

51.W hich of the follow ing inequalities is equivalent to |m + 2| < 3?

(A)
$$m < 5$$

(B)
$$m < 1$$

(C)
$$-5 < m < 5$$

(D)
$$m > -1$$

(E)
$$-5 < m < 1$$

52. If the reciprocal of the negative integer X is greater than the sum of Y and Z, then W hich of the following W ust be true?

(A)
$$X > Y + Z$$

(B) Yand Z are positive

(C)
$$1 > X(Y + Z)$$

(D)
$$1 < XY + XZ$$

$$\frac{1}{X} > Z - Y$$

53. If m + n - 2p , which of the following inequalities must be true?

- (A) 5m < 3p
- (B) p > -m
- (C) 3m > 3p +
- 2n(D)p > 2
- (E) n < p

54. If u and -3v are greater than 0 and $\sqrt{u} < \sqrt{-3v}$, which of the following cannot be true?

- (A) u/3 < -v
- (B) u/v > -3

$$\sqrt{\frac{u}{-v}} < \sqrt{3}$$

- (D) u + 3v > 0
- (E) u < -3v

55.In the figure above, an equilateral triangle is inscribed in a circle. If the arc bounded by adjacent corners of the triangle is between 4 π and 6 π long, which of the following could be the diam eter of the circle?

- (A) 6.5
- (B)9
- (C) 11.9
- (D) 15
- (E) 23.5

Inequalities and A bsolute V alues A nsw ers

1.(**D**). Since 3x - 18 is inside an absolute value, it could be either positive or negative 9 to have an absolute value of 9. Thus, solve the equation twice, once as though 3x - 18 is positive and once as though it is negative.

$$|3x - 18| = 9$$

 $(3x - 18) = +9$ or $(3x - 18) = -9$
 $3x = 27$ $3x = 9$
 $x = 9$ or 3

B ecause x could be 9 or 3,x could be greater or less than 6,so the correct answ er is (D).

2.(C). Solve the inequality algebraically:

$$2z + 4 \ge -18$$
$$2z \ge -22$$
$$z \ge -11$$

3.(D). Solve the inequality algebraically:

$$7y - 3 \le 4y + 9$$
$$3y - 3 \le 9$$
$$3y \le 12$$
$$y \le 4$$

B ecause y could be equal to 4 or greater than 4,the correct answ er is (D).

4.(B). Solve the inequality algebraically:

$$\frac{3}{d+2}$$

 $d+2<8$
 $d<8-1.5$
 $d<6.5$

Q uantity A is 2d, so m ultiply both sides of the inequality by 2:

Q uantity B is equal to 13,w hile 2d is less than 13,so the correct answ er is (B).

5.(**D**).Solve algebraically for x and y:

$$\frac{4x}{7} \le 15 + x$$

$$4x \le 105 + 7x$$

$$-3x \le 105$$

$$x \ge -35$$

(R em em ber to flip the inequality sign w hen dividing by -3!)

$$2y - 1.5 > 7$$

 $2y > 8.5$
 $y > 4.25$

K now ing that $x \ge -35$ and y > 4.25 is not enough to tell w hich is greater — the two ranges have a lot of overlap. For instance, x > 4.25 is not enough to tell w hich is greater — the two ranges have a lot of overlap. For instance, x > 4.25 is not enough to tell w hich is greater — the two ranges have a lot of overlap. For instance, x > 4.25 is not enough to tell w hich is greater — the two ranges have a lot of overlap. For instance, x > 4.25 is not enough to tell w hich is greater — the two ranges have a lot of overlap. For instance, x > 4.25 is not enough to tell w hich is greater — the two ranges have a lot of overlap. For instance, x > 4.25 is not enough to tell w hich is greater — the two ranges have a lot of overlap. For instance, x > 4.25 is not enough to tell w hich is greater — the two ranges have a lot of overlap. For instance, x > 4.25 is not enough to tell w hich is greater), or x > 4.25 is not enough to tell w hich is greater).

6.(**D**). Solve the inequality by first dividing both sides by 3 to isolate the absolute value, then solving for the positive and negative possibilities of (x - 4).

$$3|x-4| = 16$$

$$|x-4| = \frac{16}{3}$$

$$(x-4) = \frac{16}{3} \quad \text{or} \quad (x-4) = -\frac{16}{3}$$

$$x-4 = \frac{16}{3} \qquad x = -\frac{16}{3} + 4$$

$$x = \frac{16}{3} + 4 \qquad x = -\frac{16}{3} + \frac{12}{3}$$

$$x = \frac{16}{3} + \frac{12}{3} \qquad x = -\frac{4}{3}$$

$$x = \frac{28}{3}$$

x could be 3 or 3, m aking the two quantities equal or Q uantity B greater, respectively. The correct answer is (D).

7.**III only.**If b, then both a and b m ust have the sam e sign. That is, a and b are either both positive or both negative. Statem ent I could be true, but is not necessarily true. The relative values of a and b are not indicated by the inequality in the question stem . Statem ent II could be true, but is not necessarily true. If a w ere negative, b could be negative. Statem ent III m ust be true, as it indicates that a and b have the sam e sign.

8.**(C)**.W hen m anipulating a "three-sided" inequality, you m ust perform the sam e operations on all "sides." Therefore, the first step to sim plify this inequality w ould be to add 4 to all sides: 10 < 2x < 16.N ext, divide all sides by 2. The result is 5 < x < 8. The only answ er choice that fits w ithin the param eters of this inequality is 7. The correct answ er is (C).

$$\frac{4x}{-}$$
 < 1

9.(A).If y is negative, then dividing both sides of the second inequality by y yields y. Rem em ber, you must sw itch the direction of the inequality sign when multiplying or dividing by a negative (whether that negative is in

 $\frac{x}{y} < \frac{1}{4}$ num ber or variable form).N ext, dividing both sides by 4 changes the inequality to $\frac{x}{y}$. The only answ er choice

less than $\frac{-}{4}$ is 0.The correct answ er is (A).

10.**(C).**Solve each inequality,rem em bering that the phrase inside an absolute value can be positive or negative,so solve for each possibility:

$$|x+6|=3$$

 $(x+6)=3$ or $(x+6)=-3$
 $x=-3$ $x+6=-3$
 $x=-9$
 $x=-3 \text{ or } -9$
 $|2y|=6$
 $(2y)=6$ or $(2y)=-6$
 $y=3$ $y=3$

The greatest possible value for x is -3.The least possible value for y is -3.The two quantities are equal, and the correct answer is (C).

11.**16,25.**Solve the inequality, rem em bering that 4y + 2 could be positive or negative, so solve for both possibilities:

$$|4y + 2| = 18$$

$$(4y + 2) = 18$$
 or $(4y + 2) = -18$
 $4y = 16$ $4y = -20$
 $y = 4$ $y = -5$

The value of y^2 could be 16 or 25.

12.(D). Solve each inequality algebraically:

$$3(x-7) \ge 9$$

 $x-7 \ge 3$
 $x \ge 10$
 $0.25y - 3 \le 1$
 $0.25y \le 4$
 $4 \le 16$

Since the ranges for x and y overlap, either quantity could be greater. For instance, x could be 11 and y could be 15 (y is greater), or x could be 1,000 and y could be -5 (x is greater). The correct answer is (D).

13.-40,-14,and 56 only. Solve each absolute value:

$$|1 - x| = 6$$

$$(1 - x) = 6$$
 or $(1 - x) = -6$
 $-x = 5$ $-x = -7$
 $x = -5$ $x = 7$

$$x = -5 \text{ or } 7$$

$$|2y - 6| = 10$$

$$(2y-6) = 10$$
 or $(2y-6) = -10$
 $2y = 16$ $2y = -4$
 $y = 8$ $y = -2$

$$y = 8 \text{ or } -2$$

Since x = -5 or 7 and y = 8 or -2, calculate all four possible combinations for xy:

$$(-5)(8) = -40$$

$$(-5)(-2) = 10$$

 $(7)(8) = 56$
 $(7)(-2) = -14$

Select -40,-14, and 56.(D o N O T pick -10, as xy could be 10, but not -10).

14.**(B).**
$$2(x-1)^3 + 3 \le 19$$

 $2(x-1)^3 \le 16$
 $(x-1)^3 \le 8$

Y ou can take the cube root of both sides of an inequality, because cubing a num ber, unlike squaring it, does not change its sign.

$$x-1 \le 2 \le 3$$

This m atches the language in answ er choice (B).

15.**(B)**.D ividing the first inequality by 3 results in P < 17.D ividing the second inequality by 5 results in P > 15. Therefore, 15 < P < 17.B ecause P is an integer, it m ust be 16.

16.(E). In this scenario, if there are n spokes, there are n angles betw een them. Thus the measure of the angle

betw een spokes is $\frac{360}{n}$. Since n < 6, you can rew rite this expression as $\frac{360}{(less than 6)}$. D ividing by a "less than" $\frac{360}{360}$

produces a "greater than" result. Therefore, $(less\ than\ 6)$ = greater than 60. The only answer that is greater than 60 is (E). To verify, note that n can be at most 5, as n is an integer. Because there are 360 degrees in a circle, a wheel 360

w ith 5 spokes w ould have (less than 6) degrees betw een adjacent spokes. The correct answ er is (E).

17.**(B).** First, solve the inequality for x, rem em bering the two cases you must consider when dealing with absolute value: -x is positive and -x is negative.

$$|-x| \ge 6$$

+(-x) \ge 6 \quad \text{or } -(-x) \ge 6
-x \ge 6 \quad x \ge 6
x \le -6

x≤-6 or x≥ 6

B ecause $xy^2 < 0$, neither x nor y equals zero. A squared term cannot be negative, so y^2 m ust be positive. For xy^2 to be negative, x m ust be negative. This rules out the $x \ge 6$ range of solutions for x. Thus, $x \le -6$ is the only range of valid solutions. Since all values less than or equal to -6 are less than -4, the correct answer is (B).

18.**III only.**Solve the absolute value inequality by first isolating the absolute value:

$$\frac{\left|x+4\right|}{2} > 5$$

$$|x+4| > 10$$

If (x + 4) is positive or zero, the absolute value bars do nothing and can be rem oved:

$$x + 4 > 10 x > 6$$

This is not a valid solution range, as the other inequality indicates that x is negative.

Then solve for negative case. N ote that |x + 4| > 10 w hen (x + 4) is m ore positive than 10 or m ore negative than -10.

$$(x + 4) < -$$
 10 $x < -14$

A Iternatively, using the identity that |a| = -a when a is negative:

$$|x + 4| > 10$$

-(x + 4) > 10 w hen (x + 4) is
negative -x - 4 > 10
-x > 14

x < -14 (flip the inequality sign when multiplying both sides by -1.)

If x < -14, only -18 is a valid answ er.

19.**(D).** First, solve the absolute value inequality, using the identity that |a| = a when a is positive or zero and |a| = -a when a is negative:

$$|x^3| < 64$$
 $+(x^3) < 64$

or

 $-(x^3) < 64$
 $x < 4$
 $x > -64$ (Flip the inequality sign when multiplying by -1.)

 $x > -4$

x could be positive, negative, or zero. If x is positive or zero, the two quantities are equal. If x is negative, Q uantity A is greater. The correct answer is (D).

20.10,20,40,50,60 only. Solve the absolute value inequality, using the identity that |a| = a when a is positive or

zero and |a| = -a when a is negative:

$$|0.1x-3| \ge 1$$

+ $(0.1x-3) \ge 1$ or $-(0.1x-3) \ge 1$
 $0.1x-3 \ge 1$ $-0.1x+3 \ge 1$
 $0.1x \ge 4$ $-0.1x \ge 2$
 $x \ge 40$ or $x \ge 4$ or $x \ge 4$

Since $x \le 20$ or $x \ge 40$, x cannot equal 30, but it can be any of the other values from the choices.

A Iternatively, plug the choices to test w hich values "w ork."

10:
$$|0.1(10) - 3| = |1 - 3| = |-2| = 2$$
,w hich is ≥ 1 . 20: $|0.1(20) - 3| = |2 - 3| = |-1| = 1$,w hich is ≥ 1 . 30: $|0.1(30) - 3| = |3 - 3| = |0| = 0$,w hich is N O T ≥ 1 . 40: $|0.1(40) - 3| = |4 - 3| = |1| = 1$,w hich is ≥ 1 . 50: $|0.1(50) - 3| = |5 - 3| = |2| = 2$,w hich is ≥ 1 . 60: $|0.1(60) - 3| = |6 - 3| = |3| = 3$,w hich is ≥ 1 .

21.**(D).**Solve $|3x + 7| \ge 2x + 12$, using the identity that |a| = a when a is positive or zero and |a| = -a when a is negative:

$$+(3x+7) \ge 2x + 12$$
 or $-(3x+7) \ge 2x + 12$
 $x+7 \ge 12$ $-3x-7 \ge 2x + 12$
 $x \ge 5$ $-7 \ge 5x + 12$
 $-19 \ge 5x$
 -19
 $5 \ge x$

22.**(B).**Solve the absolute value inequality, using the identity that |a| = a when a is positive or zero and |a| = -a when a is negative:

$$|3 + 3x| < -2x$$

 $+(3 + 3x) < -2x$ or $-(3 + 3x) < -2x$
 $3 + 5x < 0$ $-3 - 3x < -2x$
 $5x < -3$ $-3 < x$

$$-\frac{3}{5}$$

$$-\frac{3}{5}$$

Since x is betw een -3 and 5, its absolute value is betw een 5 and 3. Thus, Q uantity A is less than Q uantity B.

23.**(C).**The inequality is not strictly solvable,as it has two unknowns.How ever,any absolute value cannot be negative. Putting $0 \le |y|$ and $|y| \le -4x$ together, $0 \le -4x$. Dividing both sides by -4 and flipping the inequality sign, this im plies that $0 \ge x$.

N ow solve the absolute value equation:

$$|3x - 4| = 2x + 6$$

$$+(3x-4) = 2x+6$$
 or $-(3x-4) = 2x+6$
 $3x-4=2x+6$ $-3x+4=2x+6$
 $x-4=6$ $4=5x+6$
 $x=10$ $-2=5x$

$$x = 10 \text{ or } -2/5$$

If x = 10 or -2/5, but $0 \ge x$, then x can only be -2/5.

24.**(B).**If $-x|x| \ge 4$, -x|x| is positive.B ecause |x| is positive by definition, -x|x| is positive only when -x is also positive. This occurs when x is negative. For example, x = -2 is one solution allowed by the inequality: $-x|x| = -(-2) \times |-2| = 2 \times 2 = 4$.

So,Q uantity A can be -2,-3,-4,-5,-6,etc. The m axim um value of Q uantity A is less than 2,so Q uantity B is greater.

25.(A). The inequality |x| < 1 allow s x to be either a positive or negative fraction (or zero). Interpreting the absolute value sign, it is equivalent to -1 < x < 1. A s indicated, y is positive.

W hen x is a negative fraction,

Q uantity A : |x| + y = positive fraction + positive = positive

Q uantity B : xy = negative fraction \times positive = negative

Q uantity A is greater in these cases.

W hen x is zero,

Q uantity A : |x| + y = 0 + positive = positive

Q uantity B : $xy = 0 \times positive = 0$

Q uantity A is greater in this case.

W hen x is a positive fraction,

Q uantity A : |x| + y = positive fraction + y = greater than y

Q uantity B : $xy = positive fraction \times y = less than y$

Q uantity A is greater in these cases.

In all cases,Q uantity A is greater.

26.(B). Solve the inequality for z.

$$x + y + z < 1$$

 $z < 1 - (x + y)$

B ased on the facts that x and y are positive and xy = 1, either x and y both equal 1 or they are reciprocals (e.g., 2 and xy = 1).

,3 and $\frac{1}{3}$,4 and $\frac{1}{4}$,etc.). Thus, the m inim um value of x + y is 2. Plugging into the inequality for z.

$$z < 1 - (x + y)$$

z < 1 - (at least

2) z < at m ost -1

B ecause z cannot equal -1 (z is less than -1) Q uantity B is greater.

27.**(B).**In general, there are four cases for the signs of x and y, som e of w hich can be ruled out by the constraints of this question.

х	У	x + y > 0
pos	pos	true
pos	neg	true w hen $ x > y $
neg	pos	false w hen $ x > y $
neg	neg	false

So only the first two cases need to be considered for this question.

If x and y are both positive, |x| > |y| just m eans that x > y.

If x is positive and y is negative, x > y sim ply because positive > negative.

In both cases,x > y.Q uantity B is greater.

28.**(D).**If y is an integer and $|y| \le 1$, then y = -1,0, or 1. The other inequality can be simplified from |x|(y) + 9 < 0 to |x|(y) < -9. In words, |x|(y) is negative. Because |x| cannot be negative by definition, y must be negative, so only y = -1 is possible.

If
$$y = -1$$
, then $|x|(y) = |x|(-1) = -|x| < -9$. So, $-|x| = -10$, -11 , -12 , -13 , etc.

Thus, $x = \pm 10, \pm 11, \pm 12, \pm 13$, etc. Som e of these x values are greater than -9 and som e are less than -9.

29.(E). If x + y + z = 0 and z = 8, then x + y = -8. It is definitely true that -8 < 0, so x + y < 0 m ust be true.

A Iternatively, find a counterexam ple to disprove the other choices.

- (A) x could be positive: x = 5 and y = -13 m ake x + y = 5 + (-13) = -8.
- (B) y could be positive: x = -13 and y = 5 m ake x + y = -13 + 5 = -8.
- (C) x y could be positive: x = 5 and y = -13 m ake x y = 5 (-13) = 18 and x + y + z = 5 + (-13) + 8 = 0.
- (D) z y could be positive: z = 8 and y = -13 m ake z y = 8 (-13) = 21 and x = 5 w ould m ake the sum x + y + z = 5 + (-13) + 8 = 0.
- (E) $x + y \in A \setminus N \cap C \cap C$ be positive or zero, as $x + y + z \cap C \cap C$ when be at least 8, not equal to 0.
- 30.(A).In general, there are four cases for the signs of p and k, som e of w hich can be ruled out by the constraints of this question.

р	k	p + k > p + k
pos	pos	N ot in this case: For positive num bers, absolute value "does nothing," so both sides are equal to $p + k$.
pos	neg	True for this case: $p + (a positive absolute value)$ is greater than $p + (a negative value)$.
neg	pos	N ot in this case: $k + (a \text{ negative value})$ is less than $k + (a \text{ positive absolute value})$.
neg	neg	Possible in this case: It depends on relative values.B oth sides are a positive plus a negative.

A dditionally,check w hether *p* or *k* could be zero.

If p = 0, p + |k| > |p| + k is equivalent to |k| > k. This is true when k is negative.

If k = 0, p + |k| > |p| + k is equivalent to p > |p|. This is not true for any p value.

So, there are three possible cases for p and k values. For the second one, use the identity that |a| = -a when a is negative.

р	k	Interpret:
pos	neg	p = pos > neg = k p > k
neg	neg	p + k > p + k p + -(k) > -(p) + k p - k > -p + k 2p - k > k 2p > 2k p > k
0	neg	p = 0 > neg = k p > k

In all the cases that are valid according to the constraint inequality, p is greater than k. Q uantity A is greater.

31.**(D).**G iven only one inequality with three unknowns, solving will not be possible. Instead, test numbers with the goal of proving (D).

For exam ple, x = 2, y = 5, and z = 3.

C heck that |x|+|y|>|x+z|: |2|+|5|>|2+3| is 7>5, w hich is true.

In this case, y > z.

Try to find another exam ple such that y < z. A lw ays consider negatives in inequalities and absolute value questions.

C onsider another example: x = 2, y = -5 and z = 3.

C heck that |x|+|y|>|x+z|: |2|+|-5|>|2+3| is 7>5, which is true.

In this case,z > y.

Either statem ent could be greater. It cannot be determ ined from the inform ation given.

32.**(B).**If b is greater than 1,then it is positive.B ecause |a| is nonnegative by definition,b would have to be positive.Thus,if you cross multiply,you do not have to flip the sign of the inequality:

$$\frac{\left|a\right|}{b} > 1$$
 $\left|a\right| > b$

To sum m arize, b > 0 and |a| > b. Putting this together, |a| > b > 0.

all the constraints so far.N ote that a cannot be zero (because b in this case,not > 1) and a cannot be positive (because a + b > 0 in this case,not < 0).

Therefore, *a* < 0.Q uantity B is greater.

33.I only.

Statem ent I: TR U E .Subtract from both sides of the inequality $\frac{d}{dt} > \frac{c}{dt}$, and you will get $\frac{d}{dt} = \frac{c}{dt} > 0$. It must be true.

Statem ent II: M aybe. This is only true if b and d have opposite signs, because it is the result of m ultiplying both sides by bd and flipping the inequality sign, w hich you w ould only do w hen bd is negative.

Statem ent III: M aybe. This is only true if b and d have the same sign, because it is the result of m ultiplying both sides by bd w ithout flipping the inequality sign, w hich is only acceptable w hen bd is positive.

34.**(B).**N either nor can be zero,or 2 w ould be zero. The square of either a positive or negative base is alw ays fgfg positive, so 2 is positive. In order for fg < 0 to be true, gm ust be negative. Therefore, the correct answer is (B). A nsw er choices (A), (B), and (C) are not correct because f could be either positive or negative. A nsw er choice (E) directly contradicts the truth that 2 is positive. f

35.(D). Solve the first inequality:

$$\sqrt{96} < x\sqrt{6}$$

$$\frac{\sqrt{96}}{\sqrt{6}} < x$$

$$\sqrt{16} < x$$

$$4 < x$$

Solve the second inequality:

$$\frac{x}{\sqrt{6}} < \sqrt{6}$$

$$x < \sqrt{6}\sqrt{6}$$

$$x < \sqrt{36}$$

$$x < 6$$

C om bining the two inequalities, 4 < x < 6 so x m ust be 5. The correct answer is (D).

36.**(B).**In general, there are four cases for the signs of x and y, som e of w hich can be ruled out by the constraint in the question stem .U se the identity that |a| = a w hen a is positive or zero and |a| = -a w hen a is negative:

Х	У	x y > x y is equivalent to:	True or False?
pos	pos	xy > xy	False: $xy = xy$
pos	neg	xy > x(-y)	False: xy is negative, and -xy is positive.
neg	pos	(-x)y > xy	True: xy is negative, and -xy is positive.
neg	neg	(-x)y>x(-y)	False: $-xy = -xy$

N ote that if either x or y equals 0, that case w ould also fail the constraint.

The only valid case is when x is negative and y is positive.

Q uantity A :
$$(x + y)^2 = x^2 + 2xy + y^2$$

Q uantity B : $(x - y)^2 = x^2 - 2xy + y^2$

Ignore (or subtract) $x^2 + y^2$ as it is com m on to both quantities. Thus,

Q uantity A : 2xy = 2(negative)(positive) = negativeQ uantity B : -2xy = -2(negative)(positive) = positive

Q uantity B is greater.

$$\frac{-2x+3}{37.(A).\text{First,solve 4 - }11x \ge 2} \text{ for } x$$

$$\frac{-2x+3}{4-11x} \ge 2$$

$$8-22x \ge -2x+3$$

$$5-22 \ge -2x$$

$$5 \ge 20x$$

$$\frac{5}{20 \ge x}$$

$$\frac{1}{4 \ge x}$$

Thus, the correct choice should show the black line beginning to the right of zero (in the positive zone), and continuing indefinitely into the negative zone. Even w ithout actual values (other than zero) m arked on the graphs, only (A) m eets these criteria.

38.**(D).**W hile you could set x^2 - 6 equal to both x and -x and then solve both equations (there is a positive and negative case because of the absolute value), it is probably easier for m ost people to plug in the answ ers:

	X	x ² - 6	x ² - 6
(A)	-2	$(-2)^2$ - 6 = 4 - 6 = -2	2
(B)	0	$(0)^2$ - 6 = 0 - 6 = -6	6
(C)	1	$(1)^2 - 6 = 1 - 6 = 5$	5
(D)	3	$(3)^2 - 6 = 9 - 6 = 3$	3
(E)	5	$(5)^2$ - 6 = 25 - 6 = 19	19

N ote that only x = 3 w orks.W hile this chart show s the results of trying every choice,note that if you w ere doing this on your ow n,you could stop as soon as you got a choice that w orked.

39.(A).From -1 < a < 0< |a| < b < 1,the follow ing can be determ ined:

a is a negative fraction,

b is a positive fraction, and

b is m ore positive than a is negative.(i.e.,|b| > |a|, or b is farther from 0 on the num ber line than a is.)

U sing exponent rules, sim plify the quantities.

Q uantity A:
$$\frac{\left(\frac{a^2\sqrt{b}}{\sqrt{a}}\right)^2}{ab^5} = \frac{\left(a^2\right)^2\left(\sqrt{b}\right)^2}{\left(\sqrt{a}\right)^2} = \frac{a^4b}{a} = a^3b$$

$$ab^5 \qquad ab^5 \qquad ab^5 \qquad ab^5 \qquad ab^5$$

$$\frac{ab^5}{\left(\sqrt{b}\right)^4} = \frac{ab^5}{\left(b^{\frac{1}{2}}\right)^4} = \frac{ab^5}{b^{\frac{1}{2}\times 4}} = \frac{ab^5}{b^2} = ab^3$$
uantity B:

D ividing both quantities by b w ould be acceptable, as b is positive and doing so w on't flip the relative sizes of the

quantities. It would be nice to cancel a's, too, but it is problem atic that a is negative. D ividing both quantities by a^2 would be okay, though, as a^2 is positive.

D ivide both quantities by a^2b .

$$\frac{a^3b}{a^2b} = a$$
Quantity A : $\frac{a^3b}{a^2b}$

$$\frac{ab^3}{a^2b} = \frac{b^2}{a}$$
Quantity B: $\frac{ab^3}{a^2b}$

Just to m ake the quantities m ore sim ilar in form ,divide again by b,w hich is positive.

Quantity A :
$$\frac{a}{b}$$

Quantity B: a

B oth quantities are negative, as a and b have opposite signs. R em em ber that b is m ore positive than a is negative. (i.e., |b| > |a|, or b is farther from 0 on the num ber line than a is.) Thus, each fraction can be compared to -1.

Quantity A :
$$\frac{a}{b}$$
 is less negative than -1.That is, $\frac{a}{b}$.

Quantity B : $\frac{b}{a}$ is m ore negative than -1.That is,

$$\frac{b}{a} < -1$$
. Q uantity A is greater.

40.**(D).**G iven only a compound inequality with three unknowns, solving will not be possible. Instead, test numbers with the goal of proving (D). A lways consider negatives in inequalities and absolute value questions.

For exam ple, x = 10, y = -9, and z = 8.

C heck that x > |y| > z. 10 > |-9| > 8,w hich is true.

In this case, x + y = 10 + (-9) = 1 and |y| + z = 9 + 8 = 17. Q uantity B is greater.

Try to find another exam ple such that Q uantity A is greater.

For exam ple, x = 2, y = 1, and z = -3.

C heck that x > |y| > z: 2 > |1| > -3, w hich is true.

In this case, x + y = 2 + 1 = 3 and |y| + z = 1 + (-3) = -2. Q uantity A is greater.

Either statem ent could be greater. It cannot be determ ined from the inform ation given.

41.**(D).** The values for k,l,and m, respectively, could be any of the following three sets:

Set 1: 24,26,and 28

Set 2: 26,28,and 30

Set 3: 28,30,and 32

For evenly spaced sets w ith an odd num ber of term s, the average is the m iddle value. Therefore, the average of k, l, and m could be 26,28, or 30. Only answer choice (D) m atches one of these possibilities.

42.**(B).**The num ber line indicates a range betw een,but not including,-3 and 1.H ow ever,-3 < x < 1 is not a given option.H ow ever,answ er choice (B) gives the inequality -6 < 2x < 2.D ividing all three sides of this inequality by 2 yields -3 < x < 1.

43.**120 and 720 only.**If x is "greater than 3 but no m ore than 6," then x is 4,5,or 6.If there are 4 judges sitting in 4 seats,they can be arranged $4! = 4 \times 3 \times 2 \times 1 = 24$ w ays. If there are 5 judges sitting in 5 seats, they can be arranged $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$ w ays. If there are 6 judges sitting in 6 seats, they can be arranged $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$ w ays. Thus, 24,120, and 720 are all possible answers. Only 120 and 720 appear in the choices.

44.**I only.**For this problem ,you need to know that m ultiplying or dividing an inequality by a negative requires you to flip the inequality sign. Thus, m ultiplying or dividing an inequality by a variable should *not* be done unless you know *w hether* to flip the inequality sign (i.e., w hether the variable represents a positive or negative num ber).

Statem ent I: TR U E .M ultiply both sides of the original inequality by -3 and flip the inequality sign.

Statem ent II: M aybe.M ultiply both sides of the original inequality by b to get Statem ent II,but only if b is positive.If b is negative,the direction of the inequality sign w ould have to be changed.

Statem ent III: M aybe.M ultiplying both sides of the original inequality by -3b could lead to Statem ent III, but because the inequality sign flipped, this is only true if -3b is negative (i.e., if b is positive).

45.**(D).**There are three variables in the original question, but not all of them are relevant. Sim plify the original constraint:

So,2b+c is negative.

N ext, notice that b + c is common to both quantities, so subtracting it from both will not change their relative values:

Q uantity A: 2b + c - (b + c) = 2b + c - b - c = b

Q uantity B : b + c - (b + c) = 0

This question is really about the sign of *b*!

B ased on the constraint that 2b + c is negative, b could be positive or negative.

If b = 2 and c = -6.2b + c = 4 - 6 = -2. which is negative. In this case, Q uantity A is greater.

If b = -2 and c = 1,2b + c = -4 + 1 = -3, which is negative. In this case, Q uantity B is greater.

The correct answ er is (D).

46.(B). From z < y - x, the value of z depends on x and y. So, solve for x and y as m uch as possible. There are two cases for the absolute value equation: |x + y| = 10 m eans that $(x + y) = \pm 10$.C onsider these two cases separately

The positive case:

$$x + y = 10$$
, so $y = 10 - x$.
Substitute into $z < y - x$, getting $z < (10 - x) - x$, or $z < 10 - 2x$. B ecause x is at least zero, $10 - 2x \le 10$.
Putting the inequalities together, $z < 10 - 2x \le 10$.
Thus, $z < 10$.

The negative case:

$$x + y = -10$$
, so $y = -10 - x$.
Substitute into $z < y - x$, getting $z < (-10 - x) - x$, or $z < -10 - 2x$. B ecause x is at least zero, $-10 - 2x \le -10$.
Putting the inequalities together, $z < -10 - 2x \le -10$. Thus, $z < -10$.

In both cases, 10 is greater than z. The correct answer is (B).

47.(A). The variable a is common to both quantities, and adding it to both quantities to cancel will not change the relative values of the quantities.

Q uantity A:
$$(9 - a) + a = 9$$

Q uantity B:
$$\left(\frac{b}{2} - a\right) + a = \frac{b}{2}$$

A ccording to the given constraint, $\frac{b}{2} < 9$, so Q uantity A is greater. The correct answ er is (A).

48.(C). If p is an integer such that 1.9 < |p| < 5.3, p could be 2,3,4,or 5,as well as -2,-3,-4,-5. The greatest value

of p is 5, for which the value of $f(p) = 5^2 = 25$. The least value of p is -5, for which the value of $f(p) = (-5)^2 = 25$.

 $\frac{a}{b} \left(\frac{x}{y}\right) < 0$, then the tw o fractions have opposite signs. Therefore, by the definition of reciprocals, $\frac{a}{b}$

m ust be the negative inverse of \mathcal{Y} , no m atter w hich one of the fractions is positive. In equation form , this m eans $\frac{d}{b} = -\frac{\mathcal{Y}}{x}$, w hich is choice (D). The other choices are possible but not certain.

50.**(C)**.In order to get m and n out of the denom inators of the fractions on the left side of the inequality,m ultiply both sides of the inequality by m n. The result is $kn + lm > (m n)^2$. The direction of the inequality sign changes because m n is negative. This is an exact m atch m ith (C), m high m ust be the correct answer.

51.(E).W hen dealing with absolute values, always consider two cases.

The first case is when the expression within the absolute value signs is positive. If m + 2 > 0, then |m + 2| = m + 2, and therefore m + 2 < 3. Subtracting 2 from both sides, this inequality becomes m < 1.

The second case is when m + 2 < 0, so that |m + 2| = -(m + 2), and therefore -(m + 2) < 3. Divide both sides by -1 to get m + 2 > -3, rem embering to flip the inequality sign. Subtracting 2 from both sides, this inequality becomes m > -5

C om bining these two inequalities, the result is -5 < m < 1.

 $0>\frac{1}{X}>Y+Z$ 52.**(D).**The inequality described in the question is $X=\frac{1}{X}$.M ultiplying both sides of this inequality by X, the result is 0<1< XY+XZ. Notice that the direction of the inequality sign m ust change because X is negative.

- (A) M aybe true: true only if X equals -1.
- (B) M aybe true: either Y or Z or both can be negative.
- (C) False: the direction of the inequality sign is opposite the correct direction determined above. (D) TR U E .It is a proper rephrasing of the original inequality.
- (E) M aybe true: it is not a correct rephrasing of the original inequality.
- 53.(B). The given inequality can be sim plified as follows:

m+
$$n$$
 - $2p$ < p + n + $4m$
m- $2p$ < p + $4m$
- $3p$ < $3m$
 p > - m (R em em ber to flip the inequality sign w hen dividing by -3.)

The correct answ er is (B).

54.**(D).**W hen the GRE writes a root sign, the question writers are indicating a nonnegative root only. Therefore both sides of this inequality are positive. Thus, you can square both sides without changing the direction of the inequality

- sign.So u < -3v.N ow evaluate each answ er choice:
- (A) M ust be true.D ivide both sides of u < -3v by 3.
- (B) M ust be true. It is given that -3v > 0 and therefore, v < 0. Then, when dividing both sides of u < -3v by v, you m ust flip the inequality sign and get u/v > -3.
- (C) M ust be true. This is the result after dividing both sides of the original inequality by $\sqrt{-v}$.
- (D) CANNOT be true. Adding 3v to both sides of u < -3v results in u + 3v < 0, not u + 3v > 0.
- (E) M ust be true. This is the result of squaring both sides of the original inequality.

55.**(D).**Since each of the three arcs corresponds to one of the 60 degree angles of the equilateral triangle, each arc represents 1/3 of the circum ference of the circle. The diagram below illustrates this for just one of the three angles in the triangle:

The sam e is true for each of the three angles:

Since each of the three arcs is betw een 4π and 6π , triple these values to determ ine that the circum ference of the circle is betw een 12π and 18π . B ecause circum ference equals π tim es the diam eter, the diam eter of this circle m ust be
betw een 12 and 18.0 nly choice (D) is in this range.