SPRINT 1

TEAM ID: PNT2022TMID39460

```
import numpy as np
import tensorflow #open source used for both ML and DL for computation
from tensorflow.keras.datasets import mnist #mnist dataset
from tensorflow.keras.models import Sequential #it is a plain stack of layers
from tensorflow.keras import layers #A Layer consists of a tensor- in tensor-out computat
from tensorflow.keras.layers import Dense, Flatten #Dense-Dense Layer is the regular deepl
#faltten -used fot flattening the input or change the dimension
from tensorflow.keras.layers import Conv2D #onvoLutiona l Layer
from keras.optimizers import Adam #opt imizer
from keras. utils import np_utils #used for one-hot encoding
import matplotlib.pyplot as plt #used for data visualization
```

LOAD DATA

```
(x_train, y_train), (x_test, y_test)=mnist.load_data () #splitting the mnist data into tra
print (x_train.shape) #shape is used for give the dimens ion values #60000-rows 28x28-pix
print (x_test.shape)

(60000, 28, 28)
  (10000, 28, 28)
```

x_train[0]

```
0,
            0,
                  0,
                              0,
                                    0,
                                          0,
                                                      0,
                                                            0,
                                                                  0,
                                                                               0,
                                                                                     0,
array([[
                        0,
                                                                         0,
            0,
                  0,
                                    0,
                                                0,
                        0,
                              0,
                                          0,
                                                      0,
                                                            0,
                                                                  0,
                                                                               0,
                                                                                     0,
                                                                         0,
            0,
                  0],
            0,
                  0,
                        0,
                              0,
                                    0,
                                          0,
                                                0,
                                                      0,
                                                            0,
                                                                  0,
                                                                         0,
                                                                               0,
                                                                                     0,
            0,
                  0,
                        0,
                              0,
                                    0,
                                          0,
                                                      0,
                                                            0,
            0,
                  0],
                                                            0,
                                                                              0,
                                          0,
                                                                  0,
                                                                         0,
                                                                                     0,
            0,
                  0,
                        0,
                              0,
                                    0,
                                                0,
                                                      0,
                                    0,
                                          0,
                                                0,
                                                      0,
                                                            0,
                                                                  0,
            0,
                  0,
                        0,
                              0,
                                                                                     0,
                  0],
            0,
                              0,
                                                      0,
                                    0,
            0,
                  0,
                        0,
                                          0,
                                                0,
                                                            0,
                                                                  0,
                                                                         0,
                                                                               0,
                                                                                     0,
            0,
                  0,
                  0],
            0,
            0,
                  0,
                        0,
                              0,
                                    0,
                                          0,
                                                0,
                                                      0,
                                                            0,
                                                                  0,
                                                                         0,
                                                                                     0,
                                    0,
            0,
                  0,
                        0,
                              0,
                                          0,
                                                0,
                                                      0,
                                                            0,
                                                                  0,
                                                                                     0,
            0,
                  0],
            0,
                  0,
                        0,
                              0,
                                    0,
                                          0,
                                                0,
                                                      0,
                                                            0.
                                               26, 166, 255, 247, 127,
           18,
                       18, 126, 136, 175,
            0,
                  0],
            0,
                              0,
                                    0,
                                          0,
                                                0,
                                                      0, 30,
                                                                 36,
                                                                       94, 154, 170,
         253, 253, 253, 253, 253, 225, 172, 253, 242, 195,
                                                                       64,
                  0],
                                                0,
                                                     49, 238, 253, 253, 253, 253,
                              0,
                                    0,
                                          0,
            0,
                                                     82,
         253, 253, 253, 253, 251,
                                         93,
                                               82,
                                                           56,
                                                                 39,
```

	٥,	ָן פ								•			
[0,	0,		0,	0,	0,	0,	18,	219,	253,	253,	253,	253,
_							0,					0,	
	0,	0]	,										
[0,	0,	0,	0,	0,	0,	0,	0,	80,	156,	107,	253,	253,
	205,	11,	0,	43,	154,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0]	,										
[0,	0,	0,	0,	0,	0,	0,	0,	0,	14,	1,	154,	253,
	90,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0]											
_	0,	0,			0,		_	_	-	-	-	-	253,
	190,		0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0]											
_	0,						0,			0,		-	190,
		70,		0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
_	0,	0]											
[0,						0,			-	0,	-	-
		225,		108,	1,	0,	0,	0,	0,	0,	0,	0,	0,
_	0,	0]											
L	0,				0,			-	_	-	-	-	-
		240,		253,	119,	25,	0,	0,	0,	0,	0,	0,	0,
_	0,	0]		•	0	•	0	•	•	•	•	•	0
L	0,						0,	0,					-
	0,			253,	253,	150,	27,	0,	0,	0,	0,	0,	0,
г	0,	0]		0	0	0	0,	0,	0	0,	0,	0	0
[0, 0,	-	-	-	-	-	187,	-	-				
	0,	0, 0]		93,	232,	233,	10/,	0,	0,	0,	0,	0,	0,
[a	a	a	0,	0,	0,	0,	0,	0,	0,
L	0,						249,			0,		0,	0,
	0,	0, 0]		٠,	210,	233,	210,	01,	٠,	٠,	٠,	٠,	٠,
[-	0,		9.	9.	۵.	0,	0,	0,	0,	0,	0,	0,
	0,						207,		-	0,			0,
	0,	-0, 0],	-				_0,,	ر _	٠,	٠,	٠,	٠,	٠,
Γ	0,			0.	0.	0.	0,	0,	0,	0,	0,	0,	39,
	1/Ω				252			a	a	a	0	a	a

plt.imshow(x_train[6000]) #ploting the index=image

np.argmax(y_train[6000])

0

Reshaping Dataset

```
#Reshaping to format which CNN expects (batch, height, width, channels)
x_train=x_train.reshape (60000, 28, 28, 1).astype('float32')
x_test=x_test.reshape (10000, 28, 28, 1).astype ('float32')
```

Applying One Hot Encoding

```
number_of_classes = 10 #storing the no of classes in a variable
```

```
y_train = np_utils.to_categorical (y_train, number_of_classes) #converts the output in bin
y_test = np_utils.to_categorical (y_test, number_of_classes)
```

Colab paid products - Cancel contracts here

✓ 0s completed at 8:02 PM

×