Definiton 1. In the following the term k-variety always means a separated, integral scheme of finite type over a field k. Denote by \mathcal{V}_k the category of k-varieties.

Definiton 2. Let k be a Field. Consider the group of formal linear combinations of isomorphism-classes in \mathcal{V}_k . Setting $[X] \times [Y] := [X \times Y]$ makes this into a ring. The *Grothendieck ring of varieties* $K_0[\mathcal{V}_k]$ is then obtained by modding out relations of the form

$$[X] - [Y] = [X \setminus Y]$$

Where Y is closed in X.