Глубинное обучение Лекция 6: Нейросети в задачах обработки текстов

Лектор: Антон Осокин

ФКН ВШЭ, 2020

- Очень сильно упрощаем: текст последовательность токенов
- Классификация последовательностей
 - Примеры: определение темы, sentiment analysis
 - Учитывать последовательность или нет?
 - Bag-of-words, RNN, transformer

- Очень сильно упрощаем: текст последовательность токенов
- Классификация последовательностей
 - Примеры: определение темы, sentiment analysis
 - Учитывать последовательность или нет?
 - Bag-of-words, RNN, transformer
- Разметка последовательности
 - Примеры: определение частей речи, chunking
 - Локальный классификатор, RNN, CRF, RNN-CRF (BiLSTM-CRF)

- Очень сильно упрощаем: текст последовательность токенов
- Классификация последовательностей
 - Примеры: определение темы, sentiment analysis
 - Учитывать последовательность или нет?
 - Bag-of-words, RNN, transformer
- Разметка последовательности
 - Примеры: определение частей речи, chunking
 - Локальный классификатор, RNN, CRF, RNN-CRF (BiLSTM-CRF)
- Последовательности в последовательность (разной длины!)
 - Примеры: машинный перевод, аннотация (summarization), диалоги
 - Авторегрессионные модели: seq2seq (+attention), ByteNet, transformer и т.д.
 - Неавторегрессионные модели

- Очень сильно упрощаем: текст последовательность токенов
- Классификация последовательностей
 - Примеры: определение темы, sentiment analysis
 - Учитывать последовательность или нет?
 - Bag-of-words, RNN, transformer
- Разметка последовательности
 - Примеры: определение частей речи, chunking
 - Локальный классификатор, RNN, CRF, RNN-CRF (BiLSTM-CRF)
- Последовательности в последовательность (разной длины!)
- Примеры: машинный перевод, аннотация (summarization), диалоги
- Авторегрессионные модели: seq2seq (+attention), ByteNet, transformer и т.д.
- Неавторегрессионные модели
- Генерация последовательностей
 - Примеры: описание изображения (captioning)
 - Авторегрессионные и неавторегрессионные модели

План лекции

- Непрерывные представления слов (embedding)
 - word2vec, FastText
- Обработка последовательностей
 - Seq2seq
 - Seq2seq + attention
 - Transformer
- Контекстно-зависимые представления (предобучение)
 - ELMo, BERT и его друзья

Как вставить текст в нейросеть?

Непрерывные представления слов (word embeddings)

- Позволяют строить непрерывные представления дискретных объектов
- Непрерывные представления это способ поместить текст в нейросеть
- Представление вектор по индексу (токена: слова, символы, n-граммы)
- Представления могут обучаться совместно с моделью

Непрерывные представления слов (word embeddings)

- Позволяют строить непрерывные представления дискретных объектов
- Непрерывные представления это способ поместить текст в нейросеть
- Представление вектор по индексу (токена: слова, символы, n-граммы)
- Представления могут обучаться совместно с моделью
- Предобученные представления
 - Обучены на больших корпусах текстов
 - Обучены без ручной разметки (self-supervision)
 - Freeze, fine-tune, train from scratch?

[Mikolov et al., 2013]

- Обучение на предсказании контекста по слову
 - Обучение на корпусе текстов без разметки (self supervision)
- Вспомогательная задача:
 - Предсказываем каждое слово из контекста отдельно

[Mikolov et al., 2013]

- Обучение на предсказании контекста по слову
 - Обучение на корпусе текстов без разметки
- Предсказываем каждое слово из контекста отдельно
 - Текущее слово w; слово из контекста v
 - Для каждого слова 2 представления (in, out)
 - Совместимость скалярное произведение $\operatorname{in}_w^T\operatorname{out}_v$
 - Полезные представления in
 - Модель с softmax $P(v \mid w, \theta) = \frac{\exp(\operatorname{in}_w^T \operatorname{out}_v)}{\sum_{v'} \exp(\operatorname{in}_w^T \operatorname{out}_{v'})}$
 - Медленная нормировка
 - Обычное решение Noise Contrastive Estimation (NCE)

$$loss(w, v) = log(1 + exp(-in_w^T out_v)) + \sum_{random\ v'} log(1 + exp(in_w^T out_{v'}))$$

[Mikolov et al., 2013]

- Обучение на предсказании контекста по слову
- Обучение на корпусе текстов без разметки
- Предсказываем каждое слово из контекста отдельно
 - Используются представления *in*
- Достоинства
 - Ближайшие соседи (cosine distance = норм. скал. произв., корпус GoogleNews)
 - university: student, teacher, teaching, students, schools
 - Putin: Medvedev, Vladimir_Putin, President_Vladimir_Putin,
 Prime_Minister_Vladimir_Putin, Kremlin
 - putin: lol, mr, don't, obama, Hahaha
 - obama: dems, americans, washington, america, libs

Source: http://bionlpwww.utu.fi/wv_demo/

[Mikolov et al., 2013]

- Обучение на предсказании контекста по слову
 - Обучение на корпусе текстов без разметки
- Предсказываем каждое слово из контекста отдельно
 - Используются представления in
- Достоинства
 - Ближайшие соседи (cosine distance = норм. скал. произв., корпус GoogleNews)
 - Арифметика над представлениями
 - king man + woman = queen

Source: [Mikolov et al., 2013]

• Популярные представления — GloVe [Pennington et al., 2014]

Представления fastText (skipgram)

[Bojanowski et al., 2017]

Как в word2vec:

- Обучение на предсказании контекста по слову
 - Обучение на корпусе текстов без разметки
- Предсказываем каждое слово из контекста отдельно

Новая идея:

• Добавить информацию о символах слова (через n-граммы)

- Важно использовать длинные n-граммы (n ≤ 6)
- Достоинства:
 - Близость по написанию
 - Слова вне словаря, опечатки и т.д.

Код и данные на fasttext.cc

Mодель seq2seq [Sutskever et al., 2014]

• Модели для предсказания последовательностей разной длины

Входы, память, выходы Входы – представления входов Память — слои RNN Выходы – шансы слов из словаря (logits, идут в logsoftmax) Авторегрессионные связи (→) передают решение о текущем слове На входы → подаются представления выходного алфавита

image credit: Andrej Karpathy

Последовательное предсказание

• Пример:

Если не фиксирована длина выхода, то используют символ EOS (с барьером)

Обучение авторегрессионных моделей

• Обычный способ – метод максимального правдоподобия

$$P(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{\theta}) = P(y_1 \mid \boldsymbol{x}, \boldsymbol{\theta}) P(y_2 \mid y_1, \boldsymbol{x}, \boldsymbol{\theta}) P(y_3 \mid y_2, y_1, \boldsymbol{x}, \boldsymbol{\theta}) \dots$$

- На каждом шаге декодировщика softmax и log-loss
- Teacher forcing на вход декодировщику подаются правильные ответы
- Проблема:
 - Модель видит только правильные траектории
 - Не знает, что делать при ошибке
 - Как исследовать траектории (exploration)?
 - Связь с обучением с подкреплением (RL)

Mодель seq2seq [Sutskever et al., 2014]

• Модели для предсказания последовательностей разной длины

Модель encoder-decoder

– представление всего входа

Модель плохо работает для длинных последовательностей

Причина: представление входа вектор фиксированной размерности (не может представить весь язык)

Решение: механизм внимания

image credit: Andrej Karpathy (attention)

Модель seq2seq с вниманием

[Bahdanau et al., 2015]

• Модели для предсказания последовательностей разной длины

image credit: Andrej Karpathy

Внимание «выбирает релевантные элементы памяти»

Модель внимания:

$$egin{aligned} ullet & \mathsf{peлeBahthoctb} \ s_i := \mathrm{score}(x_i, z) = egin{cases} x_i^T z & \mathsf{W-} \mathsf{параметры} \ W[x_i; z] & \mathsf{модели} \end{cases} \end{aligned}$$

вероятности

$$a_1, a_2, \cdots := \operatorname{softmax}(s_1, s_2, \dots)$$

контекст

$$c := \sum_{i} a_i x_i$$

- $c := \sum_i a_i x_i$ новые признаки $ilde{z} := [c;z]$
- soft-argmax

Transformer

[Vaswani et al., 2017]

Output

- Статья Attention Is All You Need!
- Архитектура:
 - Scaled multi-head self attention

(Q = query, K = key, V = value, d = dimension = 64, k = 8)

$$\begin{split} \text{Attention}(Q, K, V) &= \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V \\ \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{split}$$

- 2-layer NN with ReLu
- Encoding: token and positional
 - Positional sin и cos от длины
- В декодере –маска будущего!
- SOTA в переводе и др.!
- Поиск архитектуры [So et al., 2019]
- Ускорение: Reformer, Linformer (review: [Tay et al, 2020])

Словарь из Byte Pair Encoding (BPE)

[Sennrich et al., 2015]

- Размер словаря важный параметр!
 - Большой => мало слов на редкие позиции, медленно, память
 - Маленький => много слов вне словаря
- Построение словаря ВРЕ итеративно
 - Инициализация из токенов символов (unicode осторожно)
 - Итеративное склеивание самых частых пар
 - Пересечение границ слов?
 - Символы типа знаков препинания?
- Позволяет делать представления любого слова
- Размер словаря контролируемый параметр

Предобученые представления слов – из языковых моделей!

ELMo

[Peters et al., 2018; AllenNLP] https://github.com/allenai/allennlp

- ELMo = Embeddings from Language Models
- Контекстно зависимые представления!
- Архитектура:
 - Представления слов = свертки поверх представлений символов
 - Легко обрабатывать слова вне словаря
 - 2 модели поверх forward и backward (2-layer LSTM + skip con.)
 - Итоговое представление линейная комбинация представлений слоев!

• Обучение:

- Forward след. слово
- Backward пред. слово

BERT

[Devlin et al., 2018; Google]

- BERT = Bidirectional Encoder Representations from Transformers
- Очень большой трансформер:
- L глубина, H размерность внутри, A число голов multi-head attention
- BERT_{BASE}: L=12, H=768, A=12, Total Parameters=110M
- BERT_{LARGE}: L=24, H=1024, A=16, Total Parameters=340M
- Обучение:
 - Masked LM: 15% tokens
 - 80% [MASK]
 - 10% исходное слово
 - 10% случайное слово
 - Next sentence

BERT friends: RoBERTa, ALBERT, T5, GPT-3

- Тренд: увеличение моделей и данных
- Обучение очень сложное и дорогое
- Высокая чувствительность к гиперпараметрам
- RoBERTa: BERT был существенно недообучен
 - Можно стать SOTA изменив параметры и обучая дольше
 - Большой батч, byte-level (а не character-level, unicode!) BPE, динамические маски для предложений, etc.
- Можно (часто нужно!) использовать готовые модели!
- GPT-3 175В параметров (хайп OpenAI!), обучение стоит миллионы \$
 - Может работать для предсказания во few-shot режиме без fine-tuning
 - но не доступна
- Отличная библиотека:
 - https://github.com/huggingface/transformers

[Liu et al., 2019; Facebook] [Lan et al., 2019; Google] [Raffel et al., 2019; Google] [Brown et al., 2020; OpenAI]

Заключение

- Обработка языка активно использует нейросети
- Очень большая область много задач
 - Есть успехи!
- Представления, Seq2seq, внимание, transformer, BERT, etc.
- Понимание смысла очень сложная задача!