

0. EXTRAKCE PARAMETRŮ MOSFET

Cvičení na počítači

Vilém Kledrowetz

LS 2025

Zadání úlohy

Simulacemi zjistěte tyto parametry tranzistorů NMOS a PMOS:

- 1) Transkonduktanční parametr KP při $W/L = (5/1) \mu m$ při $I_D = 10 \mu A$
- 2) Prahového napětí U_{TH0} pro dvě různé řady rozměrů tranzistorů
 - a) konstantní poměr W/L = 5 L = 0.18u, 0.3u, 0.5u, 0.8u, 1u, 2u, 3u, 5u, 10u(W = 0.9u, 1.5u, 2.5u, 4u, 5u, 10u, 15u, 25u, 50u)
 - b) ruzne poměry: W/L = 0.22u/0.18u, 1u/0.5u, 2u/0.5u, 2u/1u, 5u/1u, 5u/2u, 10u/5u, 10u/10u, 40u/10u
- 3) Vliv napětí U_{SB}/U_{BS} na prahové napětí U_{TH} (bulk efekt) hodnoty prahového napětí U_{TH} pro napětí U_{SB} (NMOS) resp. U_{BS} (PMOS) v rozsahu 0 V až 1 V s krokem 100 mV
- Závislost parametru modulace délky kanálu (λ) na délce kanálu (L)
 pro délku L v rozmezí 0,18 μm až 10 μm

ad 1) Transkonduktanční parametr KP při W/L = (5/1) µm

Transkonduktanční parametr KP je technologický parametr platný pro režim saturace, který je daný jako součin vodivosti μ_0 a kapacity oxidové vrstvy $C_{\rm OX}$.

$$KP = \mu_0 \cdot C_{OX}$$

Pro jednoduchý model (Shichman & Hodges, tj. LEVEL =1) platí:

$$g_{m} \cong \sqrt{2 \cdot KP \cdot \frac{W}{L} \cdot |I_{D}|} \Rightarrow KP = \frac{g_{m}^{2} \cdot L}{2 \cdot |I_{D}| \cdot W}$$

$$g_{m} = \frac{\delta I_{D}}{\delta U_{GS}}$$

ad 1) Transkonduktanční parametr KP při W/L = (5/1) µm

10.20346µA

9.7185077µA

-484.95187nA

0.000140798

Jak nastavit simulaci?

- lacktriangle U_{DS} = konst. napětí o takové velikosti, aby tranzistor byl v saturaci (např. U_{CC})
- rozmítání napětí $U_{\rm GS}$ v rozmezí, kdy tranzistorem poteče proud $I_{\rm D}$ > 10 µA (ideálně bude v polovině rozsahu osy Y).

ad 1) Transkonduktanční parametr KP při W/L = (5/1) µm

Výpočet KP_n

$$KP_n = \frac{g_m^2 \cdot L}{2 \cdot |I_D| \cdot W} = \frac{(140.8\mu)^2 \cdot 1\mu}{2 \cdot 10\mu \cdot 5\mu} \cong 200 \ \mu A \cdot V^{-2}$$

Obdobně postupujte u tranzistoru PMOS

očekávané KP_p cca 50 μA·V⁻²

Co je prahové napětí?

 Prahové napětí je napětí mezi gate a source, při kterém dochází k vytvoření vodivého kanálu mezi elektrodami source a drain.

Údaje v dokumentaci technologie TSMC 180 nm

	W (μm)	L (µm)	Unit	NI	IOS	PM	ios	Definition		
$\Delta L (xl + /-dxl)$			um	-0.015±0.0115		-0.015=	±0.0115			
$\Delta W(xw+/-dxw)$			um	0±0	.014	0±0	.014			
Electrical_ Tox		.0.	Å	39.81	±0.800	40.6±	-0.800			
Vt_gm	10	10	v	0.442		0.432				
				0.030	-0.030	0.031	-0.031			
	10	0.18		0.:	514	0.511		Vg @Vd=0.1V, Vs=Vb=0		
				0.050	-0.050	0.059	-0.060	V S-V 0-0		
	0.22	0.18		0.455		0.489				
		0.22		0.090	-0.090	0.090	-0.090			
Vt_lin	10	10	10 1	10	10	0.3	364	0.436		
		10		0.030	-0.030	0.030	-0.030	Vg @Vd=0.1V		
	10	0.18		0.4	140	0.4	194	Vs=Vb=0		
		0.18	v	0.048	-0.043	0.059	-0.056	Vt_lin=Vg@Id=		
	0.22	0.18	0.18	0.342		0.472		1E-7*W/L		
		0.18		0.084	-0.077	0.083	-0.090	1		
	10	10		0.3	361	0.4	133	Vg @Vd=Vdd,		
Vt_sat	10	0.18	V	0.3	393	0.4	153	Vs=Vb=0		
	0.22	0.18		0	301	0.4	139	Vt_lin=Vg@Id= 1E-7*W/L		

.dc VGS 0 1 1m VDS list 100m 1.8

lineární extrapolační metoda vos metody s konstantním proudem

ad a) konstantní poměr W/L = 5 a L = 0.18u, 0.3u, 0.5u, 0.8u, 1u, 2u, 3u, 5u, 10u Jak simulací zjistit $U_{\text{TH0}}(\text{sat})$ (dále jen U_{TH0}):

- 1) Držet konstantní $U_{\rm D}$
- 2) Rozmítat U_{GS} v dostatečném rozsahu
- 3) Odečíst z výstupního grafu napětí při I_D = 5e-7 A
- 4) Opakovat pro všechny zadané rozměry tranzistoru 🖰

Pro výrazné urychlení simulace bez přenastavování rozměrů tranzistoru a následného odečítání, lze využít dostupné funkce Ltspice:

- funkci TABLE pro automatické přepínání rozměrů tranzistoru
- funkci MEAS pro automatické odečítání U_{TH0}

Stačí spustit jednu simulaci a hodnoty U_{TH0} pro všechny $W\!/L$ budou dostupné ve Spice Output Log

Jak použít funkci TABLE:

- nastavil W a L tranzistoru jako parametr (např. Wtab a Ltab)
- definovat parametr s využitím TABLE, např.

.param Wtab = table(n,1,0.9u, 2,1.5u)
$$\rightarrow$$
 význam: table(n, n1,n1hodnota, n2, n2hodnota) .param Ltab = table(n,1,0.18u, 2,0.3u)

- rozmítat proměnnou n
 - .step param n 1 2 1
- simulace proběhne pro n=1 a n=2

n	Wtab	Ltab
1	0.9u	0.18u
2	1.5u	0.3u

.param Wtab=table(n,1,0.9u, 2,1.5u, 3,2.5u, 4,4u, 5,5u, 6,10u, 7,15u, 8,25u, 9,50u)
.param Ltab=table(n,1,0.18u, 2,0.3u, 3,0.5u, 4,0.8u, 5,1u, 6,2u, 7,3u, 8,5u, 9,10u)
.step param n 1 9 1
.meas DC VTH FIND V(VG) WHEN Id(m1)=1e-7*{Wtab/Ltab}

SPICE Output Log

Measurement:	VTH	
step	V (VG)	at
1	0.387049336617	0.387049341265
2	0.416570362158	0.416570360919
3	0.407157842027	0.407157838814
4	0.387258215936	0.387258217048
5	0.379088867536	0.379088860573
6	0.363291725366	0.363291723638
7	0.358849832796	0.358849833485
8	0.355574911208	0.355574912205
9	0.352900920387	0.352900933893

Pomocí RMC lze vybraný soubor zobrazit v grafu

Obdobně s PMOS. Pozor na správné odečtení $U_{\rm GS}!$

.param Wtab=table(n,1,0.9u, 2,1.5u, 3,2.5u, 4,4u, 5,5u, 6,10u, 7,15u, 8,25u, 9,50u) .param Ltab=table(n,1,0.18u, 2,0.3u, 3,0.5u, 4,0.8u, 5,1u, 6,2u, 7,3u, 8,5u, 9,10u) .step param n 0 9 1

.meas DC VTH FIND V(VG) WHEN Is(m1)=1e-7*{Wtab/Ltab}

.meas DC VTH FIND '1.8-V(VGP)' WHEN Is(m1)=1e-7*{Wtab/Ltab}

Pozor! Zde musí být ls!

SPICE Output Log

Measurement: VTH		
step	V (VG)	at
1	0.450782025725	0.450782024408
2	0.450782025725	0.450782024408
3	0.44991541778	0.449915428612
4	0.446554663628	0.446554660994
5	0.439248777624	0.439248770336
6	0.435497297158	0.435497301177
7	0.426509431517	0.42650943903
8	0.423538470951	0.423538470016
9	0.421493920722	0.421493923266
10	0.420672776737	0.420672778462

Pomocí RMC lze vybraný soubor zobrazit v grafu

ad b) různé poměry W/L

- stejný postup jako v předchozím případě, pouze s jinými hodnotami W/L
- TIP: pro pohodlnější zápis doporučuji vytvořit TABLE matici např. ve Wordu a následně ji zkopírovat do LTspice.

ad 3) Závislost prahového napětí $U_{\rm TH}$ na $U_{\rm SB}/U_{\rm BS}$ (bulk efekt)

Co je bulk efekt?

Pokud není source na stejném potenciálu jako bulk ($U_{\rm GS} \neq 0$), dochází ke změně prahového napětí ($U_{\rm TH} \neq U_{\rm TH0}$)

ad 3) Závislost prahového napětí $U_{\rm TH}$ na $U_{\rm SB}/U_{\rm BS}$ (bulk efekt)

Změna U_{TH} vlivem rozdílného napětí U_{GS} , proč se tím zabývat?

- substrát (tj. elektroda B) jednoho typu tranzistorů, nejčastěji NMOS, jsou na waferu zkratovány
- pokud jsou (NMOS) tranzistory "nad sebou" (např. v kaskodách, dif. párech atd.), u vrchního tranzistoru není spojený bulk a source a dochází ke změně jeho $U_{\text{TH}} \neq U_{\text{TH0}}$
- možným řešení je umístění tranzistoru do deep-nwell, což však s sebou nese některé nevýhody (větší plocha, horší souběh atd.) bulk source gate drain

ad 3) Závislost prahového napětí $U_{\rm TH}$ na $U_{\rm SB}/U_{\rm BS}$ (bulk efekt)

- Simulace bude opět hledat $U_{\rm TH(sat)}$, kdy bude rozmítáno napětí $U_{\rm SB}$ ($U_{\rm BS}$) do kladných hodnot.
- Pozor, na správné odečítání napětí U_{GS}!
- Primárně bude rozmítáno napětí U_{GS} , sekundárně U_{SB} .
- $U_{\rm DS}$ je konstantní s hodnotou $U_{\rm CC}$.

.inc cmos018.txt .dc VGS 0 0.8 1m VBS 0 1 0.1 VGP M1 nch l=1u w=5u VBS VBS

.meas DC VTH FIND V(VG) WHEN Id(m1)=1e-7*5

.inc cmos018.txt .dc VGS 0 0.8 1m VBS 0 1 0.1

.meas DC VTH FIND V(VG) WHEN Is(m1)=1e-7*5

- Lambda efekt se při výpočtech většinou zanedbává,
- Nutno jej však uvažovat v některých obvodech jako je zesilovač s aktivní zátěží, kde by při jeho zanedbání vycházelo zesílení nekonečno!
- Příčina: vlivem rostoucího napětí U_D , klesá přepětí kanálu na straně drain, až dojde k přerušení kanálu.
- Tranzistor se pak chová jakoby měl kratší délku $L \rightarrow$ se zvyšujícím $U_{\rm D}$ roste proud $I_{\rm D}$

Jak nastavit simulaci a co odečítat?

• Parametr λ lze spočítat z hodnoty odporu mezi drain-source (r_{ds}) v režimu saturace a to:

$$r_{ds} = \frac{1}{\lambda \cdot I_D} \Longrightarrow \lambda = \frac{1}{r_{ds} \cdot I_D}$$

• Odpor r_{ds} lze odečíst z výstupní charakteristiky tranzistoru stejně jako proud I_{D} .

Automatické odečítání v LTspice pomocí MEAS

.meas DC ID2 FIND Id(M1) WHEN V(VD)=1.3

.meas DC ID0 FIND Id(M1) WHEN V(VD)=0.9

.meas DC ID1 FIND Id(M1) WHEN V(VD)=0.5

.meas rds param (1.3-0.5)/(ID2-ID1)

.meas lambda param 1/(ID0*rds)

$$\lambda = \frac{1}{r_{ds} \cdot I_D}$$

Automatické odečítání v LTspice pomocí MEAS

- .param lset=1u
- .lib cmos018.txt
- .dc VDS 0 1.8 1m
- .step param lset 0.2u 10u 0.1u
- .meas DC ID1 FIND Id(M1) WHEN V(VD)=0.5
- .meas DC ID2 FIND Id(M1) WHEN V(VD)=1.3
- .meas DC ID0 FIND Id(M1) WHEN V(VD)=0.9
- .meas rout param (1.3-0.5)/(ID2-ID1)
- .meas lambda param 1/(ID0*rout)

Measurement:	lambda
step	1/(ID0*rout)
1	0.315536361347
2	0.190693276177
3	0.141448480002
4	0.118405121261
5	0.104443395387
6	0.0943791180176
7	0.0864604274806
8	0.0799398914848
9	0.0744184016625
10	0.0696483975425
11	Ი Ი Ნ5₫Ნ3Დ62₫1በ2

Obdobným způsobem získat výsledky pro tranzistor PMOS