FT II - Anotações: Coeficientes de difusão

Felipe B. Pinto 61387 – MIEQB

24 de julho de 2024

Conteúdo

Τ	Coefficiente de Difusão	2	5 2 em sondos	ΖŪ
Ex	templo 1	8	Exemplo 4	24
2	Variação ${\mathscr D}$ com a temperatura	10	6 Difusão superficial	26
3	Difusão em mistura de gases	11	7 Condensação capilar	27
Ex	templo 2	12	8 Peneiros moleculares	28
4	${\mathscr D}$ em líquidos	13	9 Dif por meios não poros e sem parti-	
Ex	xemplo 3	18	ção de soluto	29
			10 Solubilização	30

Coeficiente de Difusão

$$\mathscr{D} = f(P,T, ext{natureza do componente}) \ J_A = -\mathscr{D}_{A,B} \; oldsymbol{
abla} c_A$$

Valores típicos

Gases
$$(1 \rightarrow 10) E^{-5}$$

Líquidos
$$(0.5 \rightarrow 2) E^{-9}$$

Sólidos
$$1 E^{-24} \rightarrow 1 E^{-12}$$

Constante de proporcionalidade entre fluxo e força motriz

$$\dim \mathscr{D}_{A,B} = \dim rac{-J_{A,z}}{rac{\mathrm{d} c_A}{\mathrm{d} z}} = rac{M}{L^2 \, T} rac{1}{(M/L^3)/L} = rac{L^2}{T}$$

1.1 Teoria cinética de Chapman-Enskog

Misturas gasosas a baixa pressão: coeficientes de transporte são função da energia potencial de interação entre um par de moléculas no gás

$$U(r) = 4\,arepsilon \left(\left(rac{\sigma}{r}
ight)^{12} - \left(rac{\sigma}{r}
ight)^6
ight)$$

- U(r) Potencial de energina intramolecular de Lennard–Jones
- ε Energia de interação, diretamente relacinada com a força de interação entre as particulas ou sua ligação
- \cdot σ Diâmetro de colisão

$$\mathscr{D}_{A,B} = 1.858*10^{-3}\,rac{T^{3/2}\,\sqrt{M_A^{-1}+M_B^{-1}}}{P\,\sigma_{A,B}^2\,\Omega_D}$$

 $\underline{\dim \mathscr{D} = \operatorname{cm}^2 \operatorname{s}^{-1}}$ Coeficiente de difusão da espécie A na espécie B

 $\dim M_X = \mathsf{g}_X \operatorname{mol}_X^{-1}$ Massa molecular da substância gasosa X

 $\dim P = \operatorname{atm}$ Pressão total

 $\dim \sigma_X = \mathring{A}$ Diâmetro de colizão de X

 $\dim \sigma_{A,B} = \mathring{A}$ Distância limite

 $\dim T = K$ Temperatura

 $\dim \Omega = 0$ Integral de colisão

Valores seguintes se encontram tabelados

Diametro de colizão

Energia de interação

Integral de colisão

$$\sigma_{A,B} = rac{\sigma_A + \sigma_B}{2}$$

$$arepsilon_{A,B} = \sqrt{arepsilon_A \, arepsilon_B}$$

$$\Omega_D = f(k_B\, T\, arepsilon_{A,B}^{-1})$$

Nota: $k_B = 1.380649 \,\mathrm{E}^{-23} \,\mathrm{J}\,\mathrm{K}^{-1}$ Constante de boltzman

1.3 Tabela Lennard–Jones Parametros de potencial

Substance		$\sigma(ext{Å})$	$\varepsilon/k(^{\circ}{ m K})$
Ar	Argon	3.542	93.3
Не	Helium	2.551	10.22
Kr	Krypton	3.655	178.9
Ne	Neon	2.820	32.8
Xe	Xenon	4.047	231.0
Air	Air	3.711	78.6
Br_2	Bromine	4.296	507.9
CCl_4	Carbon tetrachloride	5.947	322.7
CF_4	Carbon tetrafluoride	4.662	134.0
$CHCl_3$	Chloroform	5.389	340.2
CH_2Cl_2	Methylene chloride	4.898	356.3
CH₃Br	Methyl bromide	4.118	449.2
CH ₃ Cl	Methyl chloride	4.182	350.0
CH₃OH	Methanol	3.626	481.8
$\mathrm{CH_4}$	Methane	3.758	148.6
CO	Carbon monoxide	3.690	91.7
CO_2	Carbon dioxide	3.941	195.2
CS ₂	Carbon disulfide	4.483	467.0
C_2H_2	Acetylene	4.033	231.8
C_2H_4	Ethylene	4.163	224.7
C_2H_6	Ethane	4.443	215.7
C_2H_5Cl	Ethyl chloride	4.898	300.0
C_2H_5OH	Ethanol	4.530	362.6
CH_3OCH_3	Methyl ether	4.307	395.0
CH ₂ CHCH ₃	Propylene	4.678	298.9
CH₃CCH	Methylacetylene	4.761	251.8
C_3H_6	Cyclopropane	4.807	248.9
C_3H_8	Propane	5.118	237.1
$n-C_3H_7OH$	n-Propyl alcohol	4.549	576.7
CH_3COCH_3	Acetone	4.600	560.2
CH ₃ COOCH ₃	Methyl acetate	4.936	469.8
$n-C_4H_{10}$	n-Butane	4.687	531.4
$iso-C_4H_{10}$	Isobutanc	5.278	330.1
$C_2H_5OC_2H_5$	Ethyl ether	5.678	313.8
$CH_3COOC_2H_5$	Ethyl acetate	5.205	521.3

Tabela 1: Lennard–jones potential parameters found from viscosities

1.4 The collision integral

$k_B T/\varepsilon$	Ω	$k_B T/arepsilon$	Ω	$k_B T/\varepsilon$	Ω
0.30	2.6620	1.65	1.1530	4.0	0.8836
0.35	2.4760	1.70	1.1400	4.1	0.8788
0.40	2.3180	1.75	1.1280	4.2	0.8740
0.45	2.1840	1.80	1.1160	4.3	0.8694
0.50	2.0660	1.85	1.1050	4.4	0.8652
0.55	1.9660	1.90	1.0940	4.5	0.8610
0.60	1.8770	1.95	1.0840	4.6	0.8568
0.65	1.7980	2.00	1.0750	4.7	0.8530
0.70	1.7290	2.10	1.0570	4.8	0.8492
0.75	1.6670	2.20	1.0410	4.9	0.8456
0.80	1.6120	2.30	1.0260	5.0	0.8422
0.85	1.5620	2.40	1.0120	6	0.8124
0.90	1.5170	2.50	0.9996	7	0.7896
0.95	1.4760	2.60	0.9878	8	0.7712
1.00	1.4390	2.70	0.9770	9	0.7556
1.05	1.4060	2.80	0.9672	10	0.7424
1.10	1.3750	2.90	0.9576	20	0.6640
1.15	1.3460	3.00	0.9490	30	0.6232
1.20	1.3200	3.10	0.9406	40	0.5960
1.25	1.2960	3.20	0.9328	50	0.5756
1.30	1.2730	3.30	0.9256	60	0.5596
1.35	1.2530	3.40	0.9186	70	0.5464
1.40	1.2330	3.50	0.9120	80	0.5352
1.45	1.2150	3.60	0.9058	90	0.5256
1.50	1.1980	3.70	0.8998	100	0.5130
1.55	1.1820	3.80	0.8942	200	0.4644
1.60	1.1670	3.90	0.8888	300	0.4360

Tabela 2: The collision integral, Data from Hirschfelder et al. (1954)

Exemplo 1

Faça uma estimativa do coeficiente de difusão do dióxido de carbono em ar a $20\,^\circ\text{C}$ e à pressão atmosférica, utilizando a equação de Hirschfelder

Dados

•
$$M_{ar} = 28.965 \, \text{g/mol}$$

Resposta

$$\mathcal{D}_{\text{CO}_2,ar} = 1.858 \,\text{E}^{-3} \, \frac{T^{3/2} \, \sqrt{M_{\text{CO}_2}^{-1} + M_{ar}^{-1}}}{P \, \sigma_{\text{CO}_2,ar}^2 \, \Omega_D} =$$

$$= 1.858 \,\text{E}^{-3} \, \frac{T^{3/2} \, \sqrt{M_{\text{CO}_2}^{-1} + M_{ar}^{-1}}}{P \, (0.5 * (\sigma_{\text{CO}_2} + \sigma_{ar}))^2 \, f(k \, T/\varepsilon_{\text{CO}_2,ar})} =$$

$$= 1.858 \,\text{E}^{-3} \, \frac{(20 + 273.15)^{3/2} \, \sqrt{(44)^{-1} + (28.965)^{-1}}}{1 * (0.5 * (3.941 + 3.711))^2 * 1.008} \cong$$

$$\cong 151.246 \,\text{E}^{-3} \, \text{cm}^2/\text{s};$$

$$f(kT/\varepsilon_{\text{CO}_2,ar}) = f\left(kT\left(\varepsilon_{\text{CO}_2}\varepsilon_{ar}\right)^{-1/2}\right) = f\left(T\left(\frac{\varepsilon_{\text{CO}_2}}{k}\frac{\varepsilon_{ar}}{k}\right)^{-1/2}\right) \cong$$

$$\cong f\left((20 + 273.15) (195.2 * 78.6)^{-1/2}\right) \cong f(2.367) \implies$$

$$\Longrightarrow \frac{f(2.367) - f(2.30)}{2.367 - 2.30} = \frac{f(2.40) - f(2.30)}{2.40 - 2.30} \implies$$

$$\Longrightarrow f(2.367) = \frac{f(2.40) - f(2.30)}{2.40 - 2.30} (2.367 - 2.30) + f(2.30) \cong$$

$$\cong \frac{1.0120 - 0.9996}{2.40 - 2.30} (2.367 - 2.30) + 0.9996 \cong$$

$$\cong 1.008$$

1.5 Equação de Fuller

$$\mathscr{D}_{A,B} = rac{1 \, \mathrm{E}^{-3} \, T^{1.75} \, \sqrt{M_A^{-1} + M_B^{-1}}}{P \, \left(\left(\sum v
ight)_A^{1/3} + \left(\sum v
ight)_B^{1/3}
ight)^2}$$

• v volumes de difusão, tabelados

$$\mathscr{D}_{A,B,T_2,P_2} = \mathscr{D}_{A,B,T_1,P_1} rac{P_1}{P_2} \left(rac{T_2}{T_1}
ight)^{3/2} rac{\Omega_{D,T_1}}{\Omega_{D,T_2}}$$

$$D \propto T^{3/2} \, \Omega \wedge D \propto P^{-1}$$

$$\frac{\mathscr{D}_{A,B,T_{2},P_{2}}}{\mathscr{D}_{A,B,T_{1},P_{1}}} = \frac{1.858 * 10^{-3} \frac{T_{2}^{3/2}}{P_{2} \sigma_{A,B}^{2} \Omega_{D,T_{2}}} \sqrt{M_{A}^{-1} + M_{B}^{-1}}}{1.858 * 10^{-3} \frac{T_{1}^{3/2}}{P_{1} \sigma_{A,B}^{2} \Omega_{D,T_{1}}} \sqrt{M_{A}^{-1} + M_{B}^{-1}}} = \frac{\left(\frac{T_{2}^{3/2}}{P_{2} \Omega_{D,T_{2}}}\right)}{\left(\frac{T_{1}^{3/2}}{P_{1} \Omega_{D,T_{1}}}\right)} = \frac{P_{1}}{P_{2}} \left(\frac{T_{2}}{T_{1}}\right)^{3/2} \frac{\Omega_{D,T_{1}}}{\Omega_{D,T_{1}}}$$

 $\mathscr{D}_{1,m} = \left(\sum_{i=2}^n rac{y_{1,i}'}{\mathscr{D}_{1,i}}
ight)^{-1} = \left(\sum_{i=2}^n rac{rac{y_i}{\sum_{j=2}^n y_j}}{\mathscr{D}_{1,i}}
ight)^{-1} = rac{\sum_{j=2}^n y_j}{\sum_{i=2}^n y_i/\mathscr{D}_{1,i}}.$

Exemplo 2

Determine o coeficiente de difusão do CO numa mistura gasosa cuja composição é:

y_{O_2}	$y_{ m N_2}$	yco
0.20	0.70	0.10

- A mistura está à temperatura de 298 K e à pressão de 2 atm
- · Os coeficientes de difusão do CO em oxigênio e azoto são:

-
$$\mathscr{D}_{\text{CO,O}_2} = 0.185 \,\mathrm{E}^{-4} \,\mathrm{m}^2 \,\mathrm{s}^{-1}$$
 273 K, 1 atm

$$-\mathscr{D}_{\text{CO,N}_2} = 0.192\,\mathrm{E}^{-4}\,\mathrm{m}^2\,\mathrm{s}^{-1}$$
 288 K, 1 atm

Resposta

Coeff de Dif de CO na mistura :

$$\mathscr{D}_{\text{CO},M} = \frac{\sum_{j=2}^{n} y_j}{\sum_{i=2}^{n} y_i / \mathscr{D}_{\text{CO},i}} = \frac{0.9}{\begin{pmatrix} 0.20 / \mathscr{D}_{\text{CO},O_2,298 \text{ K},2 \text{ atm}} & + \\ +0.70 / \mathscr{D}_{\text{CO},N_2,298 \text{ K},2 \text{ atm}} & + \end{pmatrix}} \cong \frac{0.9}{\begin{pmatrix} 0.20 / 1.055 \text{ E}^{-3} & + \\ +0.70 / 1.010 \text{ E}^{-3} & + \end{pmatrix}} \cong 1.020 \text{ E}^{-3} \text{ m}^2 \text{ s}^{-1};$$

Coeff de Difuão do CO:

$$\mathscr{D}_{\text{CO,O}_2,298 \text{ K,2 atm}} = \mathscr{D}_{\text{CO,O}_2,273 \text{ K,1 atm}} \frac{1}{2} \left(\frac{298}{273}\right)^{3/2} =$$

$$= 0.185 \text{ E}^{-4} \frac{1}{2} \left(\frac{298}{273}\right)^{3/2} \cong 1.055 \text{ E}^{-3} \text{ m}^2/\text{s};$$

Coeff de Difs do NO

$$\mathscr{D}_{\text{CO,N}_2,298 \text{ K},2 \text{ atm}} = \mathscr{D}_{\text{CO,N}_2,288 \text{ K},1 \text{ atm}} \frac{1}{2} \left(\frac{298}{288}\right)^{3/2} =$$

$$= 0.192 * 10^{-4} \frac{1}{2} \left(\frac{298}{288}\right)^{3/2} \cong 1.010 \text{ E}^{-3} \text{ m}^2/\text{s}$$

Stokes-Einstein

$$\mathscr{D}_A = rac{k_B \, T}{6 \, \pi \, \mu \, R_A}$$

 u_A Mobilidade da partícula

 k_B Constante de boltsman: (1.380 649 $\mathrm{E}^{-23}\,\mathrm{J}\,\mathrm{K}^{-1}$)

Constante de boltsman

$$k_B = \frac{R}{N_A} \cong \frac{8.314462618 \,\mathrm{J \, mol}^{-1} \,\mathrm{K}^{-1}}{6.02214076 \,\mathrm{E}^{23} \,\mathrm{mol}^{-1}} \cong$$
 $\cong 1.380648999974554 \,\mathrm{E}^{-23} \,\mathrm{J \, K}^{-1}$
 $k_B = 1.380649 \,\mathrm{E}^{-23} \,\mathrm{J \, K}^{-1}$

Transforma a lei dos gases perfeitos numa verão por molécula

Casos especificos

Prolate ellipsoid

$$\mathscr{D} = rac{k_B \, T}{6 \, \pi \, \mu \left(rac{\sqrt{a^2 - b^2}}{\ln \left(rac{a + \sqrt{a^2 - b^2}}{b}
ight)}
ight)}$$

Oblate ellipsoid

$$\mathscr{D}=rac{k_B\,T}{6\,\pi\,\mu\left(rac{\sqrt{a^2-b^2}}{ an^{-1}\,\sqrt{rac{a^2-b^2}{b^2}}}
ight)}$$

4.1 Correlação de Wilke-Chang

$$rac{\mathscr{D}_{A,B}\,\mu_B}{T} = rac{7.4*10^{-8}\,\sqrt{\Phi_B\,M_B}}{V_A^{0.6}}$$

Soluções diluidas

 $\dim \mathcal{D} = \text{cm}^3/\text{s}$ Coeficiente de difusão

 $\dim M_B = g(B)/\text{mol}$ Peso molecular do solvente B

 $\dim \mu_B = cP = 0.1 \, cPa \, s \, Viscosidade do solvente B$

 $\mu_B = \epsilon_1 = 0.1 \epsilon_1 \mu_0$ viscosidade do soivelite i

 $\dim \Phi_B = 0$ parametro de associação

• 2.26 → Água

• 1.90 \rightarrow Metanol

• $1.50 \rightarrow Etanol$

Volume molar do soluto A no seu ponto de vaporização normal

• 1.00 → Benzeno, éter...

(não associados / polares)

4.2 Diluição Infinita (Hayduk–Ludie)

$$\mathscr{D}_{A,B} = 13.26 * 10^{-5} \, \mu_B^{-1.14} \, V_A^{-0.589}$$

 $\dim \mu_B = cP = 0.1 \, cPa \, s \, Viscosidade do solvente B$

 $\dim V_A = \operatorname{cm}^3 \operatorname{mol}^{-1}$ Volume molar do soluto A no seu ponto de vaporização normal

Equação de Sheibel

$$\mathscr{D}_{A,B}\,\mu_B$$

Scheibel elimina o parametro de associação Φ_B

 $8.2*10^{-8} \left(1 + (3 \, V_B/V_A)^{2/3}
ight)$

4.4 Tabela de volumes moleculares

		Molecular
Compound		volume,
		cm³/g mol
Hydrogen,	H_2	14.3
Oxygen,	O_2	25.6
Nitrogen,	N_2	31.2
Air		29.9
Carbon monoxide,	CO	30.7
Carbon dioxide,	CO_2	34.0
Carbonyl sulfide,	COS	51.5
Sulfur dioxide,	SO_2	44.8
Nitric oxide,	NO	23.6
Nitrous oxide,	N_2O	36.4
Ammonia,	NH_3	25.8
Water,	H_2O	18.9
Hydrogen sulfide,	H_2S	32.9
Bromine,	Br_2	53.2
Chlorine,	Cl_2	48.4
Iodine,	I_2	71.5

Exemplo 3

Determine o valor do coeficiente de difusão do oxigénio em água à temperatura de $25\,^\circ\text{C}$ utilizando as correlações de Wilke-Chang e Scheibel e compare com o valor experimental

Dados:

•
$$\mu_{aqua} = 1 \, \text{cP}$$

Resposta

Wilke-Chang

$$\frac{\mathscr{D}_{oxigenio,agua} \mu_B}{T} = \frac{7.4 \,\mathrm{E}^{-8} (\Phi_B \, M_B)^{1/2}}{V_A^{0.6}} \Longrightarrow$$

$$\Longrightarrow \mathscr{D}_{oxigenio,agua} = \frac{T}{\mu_B} \frac{7.4 \,\mathrm{E}^{-8} (\Phi_B \, M_B)^{1/2}}{V_A^{0.6}} = \frac{273.15 + 25}{1} \frac{7.4 \,\mathrm{E}^{-8} (2.26 * 18)^{1/2}}{25.6^{0.6}} \cong$$

$$\cong 2.011 \,\mathrm{E}^{-5} \,\mathrm{cm}^2/\mathrm{s};$$

Scheibel

$$\frac{\mathscr{D}_{A,B}\,\mu_{B}}{T} = \frac{8.2\,\mathrm{E}^{-8}\,\left(1 + (3\,V_{B}/V_{A})^{2/3}\right)}{V_{A}^{1/3}} \Longrightarrow$$

$$\Longrightarrow \mathscr{D}_{A,B} = \frac{T}{\mu_{B}}\,\frac{8.2\,\mathrm{E}^{-8}\,\left(1 + (3\,V_{B}/V_{A})^{2/3}\right)}{V_{A}^{1/3}} =$$

$$= \frac{273.15 + 25}{1}\,\frac{8.2\,\mathrm{E}^{-8}\,\left(1 + (3*18.9/25.6)^{2/3}\right)}{25.6^{1/3}} \cong$$

$$\cong 2.239\,\mathrm{E}^{-5}\,\mathrm{cm}^{2}/\mathrm{s}$$

Difusão através de

Meios porosos

• não porosos (densos) compósitos

Aplicação meios porosos e não porosos

- Processos catalíticos (CatHet)
- Processos membranas (permeação de gases e vapores)
- Permeação através de embalagens
- · Liberação controlada de farmacos, agroquímicos,...

5.1 Difusão em meios porosos

Defin. IUPAC

5.2 Difusão de Knudsen

Considere uma difusão de baixa densidade por poros capilares bem pequenos onde o diametro dos póros são menores que a distancia média de colisão entre moléculas, estas vao colidir mais com os poros do que consigo próprias.

$$K_n = \lambda/d_{poro}$$

 λ Distancia média percorrida livremente pelas partículas (sem colisão) d_{poro} diametro do poro

Mede a influencia desse tipo de difusão no evento

 $0.1 < K_n < 1\;$ A difusão de Knudsen tem parte mesurável porem moderada na difusão geral

 $1 < K_n$ A dif de K é importante

 $10 < K_n$ A dif de K domina

λ Distancia média percorrida livremente pelas partículas (sem colisão)

$$\lambda = rac{k_B\,T}{\sqrt{2}\,\pi\,d_{LI}^2\,P}$$

 $\dim P = \text{Pa Pressão do lado da alimentação}$

 $\dim d_{LJ}=\mathrm{m}\,$ Diametro de Lennard–Jones, colisão entre gases que se difundem (tabelado)

 $k_B = 1.380\,649\,\mathrm{E}^{-23}\,\mathrm{J/K}$ Constante de Boltzmann

$$\mathscr{D}_{kn,eff,i} = rac{arepsilon\,\mathscr{D}_{kn,i}}{ au} = rac{arepsilon\,d_{LJ}}{ au\,3}\,\sqrt{rac{8\,R\,T}{\pi\,M\,W_i}}$$

$$egin{aligned} \mathscr{D}_{kn,i} \propto (M \ W_i)^{-1/2}; & \mathscr{D}_{kn,i} \propto T^{1/2} \ \mathscr{D}_{kn,i} \propto P \end{aligned}$$

 $\dim \mathscr{D}_{kn,i} = \mathrm{m}^2\,\mathrm{s}^{-1}$ Coeficiente de difusão de Kn do gás i

 $\dim \mathscr{D}_{kn,eff,i} = \mathrm{m}^2 \, \mathrm{s}^{-1} \,$ Coeff de diff de Kn efetivo do gás i

 $\dim \varepsilon = 0$ Porosidade do meio poroso

 $\dim \tau = 0$ tortuosidade do meio poroso

 $\dim d_{LJ} = m$ diametro de Lennard-Jones (tabelado)

Condições para considerarmos difusão de Knudsen

$d_{poro}/{ m nm}$	$< 10^{3}$	$< 10^{2}$	< 10	< 2
p/bar	0.1	1	10	50
			$K_n > 1 \wedge \lambda$	$\overline{>d_{poro}}$

Seletividade de sep da \mathscr{D}_{kn}

$$lpha = \sqrt{rac{M\,W_j}{M\,W_i}}$$

Diametros de Lennard-Jones

	 Diametro	 Diametro de
Gás	cinético	Lennard–Jones
	$d_k/ ext{\AA}$	$d_{LJ}/ ext{Å}$
Не	2.60	2.551
H_2	2.89	2.827
O_2	3.46	3.467
N_2	3.64	3.798
CO	3.76	3.690
CO_2	3.30	3.941
$\mathrm{CH_4}$	3.80	3.758
C_2H_6		4.443
C_2H_4	3.90	4.163
C_3H_8	4.30	5.118
C_3H_6	4.50	4.678
$n-C_4H_{10}$	4.30	4.971
$i-C_4H_{10}$	5.00	5.278
H_2O	2.65	2.641
H ₂ S	3.60	3.623

Exemplo 4

Considerando o transporte de O_2 e de CO_2 através de uma rolha de cortiça natural numa garrafa de vinho a $23\,^{\circ}\text{C}$ e a $1\,\text{bar}$:

Dados:

•
$$d_{O_2} = 3.467 \,\text{Å}$$

•
$$k_B = 1.380\,649\,\mathrm{E}^{-23}\,\mathrm{J/K}$$
 • $d_{poro} = 40\,\mathrm{nm}$

•
$$d_{\text{CO}_2} = 3.941 \,\text{Å}$$

• 1 bar =
$$E^5$$
 Pa

$$\lambda = \frac{k_B T}{\sqrt{2} \pi d_{soluto}^2 P}$$

E4 a)

calcule o livre percurso médio para os gases O2 e de CO2.

Resposta

$$\lambda_{\text{O}_2} = \frac{k_B T}{\sqrt{2} \pi \, \text{O}_2^2 P} \cong \frac{1.381 \, \text{E}^{-23} * (23 + 273.15)}{\sqrt{2} \pi * (3.467 \, \text{E}^{-10})^2 * 10^5} \cong 76.564 \, \text{nm};$$

$$\lambda_{\text{CO}_2} = \frac{k_B T}{\sqrt{2} \pi \, \text{O}_2^2 P} \cong \frac{1.381 \, \text{E}^{-23} * (23 + 273.15)}{\sqrt{2} \pi * (3.941 \, \text{E}^{-10})^2 * 10^5} \cong 59.254 \, \text{nm}$$

E4 b)

Calcule o numero de Knudsen.

Resposta

$$Kn_{\mathbf{O}_2} = \frac{\lambda_{\mathbf{O}_2}}{d_{LJ,\mathbf{O}_2}} \cong \frac{76.564}{40} \cong 1.914;$$

$$Kn_{\text{CO}_2} = \frac{\lambda_{\text{CO}_2}}{d_{LJ,\text{CO}_2}} \cong \frac{59.254}{40} \cong 1.481$$

E4 c)

Será que este transporte segue um comportamento difusivo de Knudsen?

Resposta

$$\begin{cases}
Kn_{O_2} > Kn_{CO_2} > 1 \\
\lambda_{O_2} > \lambda_{CO_2} > d_{poro} \\
d_{poro} < 10^2 \land P = 1 \text{ bar}
\end{cases}$$

∴ Ambos seguem o comportamento difusivo de knudsen

6 Difusão superficial

- $1 \, \text{nm} < d_{LB} < 4 \, \text{nm}$
- · Molec de gas adsv nas paredes do poro
- · relacionada com a mobilidade das moléculas à superficie
- rela. c a natureza química do gás e do mat poroso ($CO_2 > CH_4 > N_2 > H_2 > He$)
- Referente a misturas gasosas e vapores
- depende fortemente de *T*

Condensação capilar

- $0.6 \, \text{nm} < d_{LB} < 6 \, \text{nm}$
- Moléculas de gás ou vapor condensam denro dos poros e movem-se como líquidos
- elevada seletividade para gases ou vapores que condensam
- relacionado com a nat quimica do soluto

8 Peneiros moleculares

- $0.2 \, \text{nm} < d_{LB} < 1 \, \text{nm}$
- · Tamanho dos poros comparaveis com o tamanho do gás alvo
- elevada seletividade
- · relaciondado com o tamanho do soluto
- referente a mistuas gasosas e vapores

9 Dif por meios não poros e sem partição de soluto

1^a lei de fick

$$J_i = -\mathscr{D}_i rac{\mathrm{d} c_i}{\mathrm{d} z}$$

• estrutura do meior é considerada homogenea e tratada como "blackbox"

9.1 Transporte de massa através do filme

$$J_i = rac{\mathscr{D}_i}{\delta} \; \Delta c_i; \qquad J_i = rac{\mathscr{D}_i}{\delta} \; \Delta p_i$$

10 Solubilização

Difusão depende de

- · Tamanho do soluto que permeia
- · natureza do material e meio sólido
- pode ser necessário considerar resistencias externas ao transporte do soluto (transf de massa externa)

Difusão em meios compósitos para esferas

$$egin{aligned} rac{\mathscr{D}_{eff}-\mathscr{D}}{\mathscr{D}_{eff}+2\,\mathscr{D}} &= \phi_s\,rac{\mathscr{D}_s-\mathscr{D}}{\mathscr{D}_s+2\,\mathscr{D}} &\iff rac{\mathscr{D}_{eff}}{\mathscr{D}} &= rac{rac{2}{\mathscr{D}_s}+rac{1}{\mathscr{D}}-2\,\phi_s\left(rac{1}{\mathscr{D}_s}-rac{1}{\mathscr{D}}
ight)}{rac{2}{\mathscr{D}_s}+rac{1}{\mathscr{D}}+\,\phi_s\left(rac{1}{\mathscr{D}_s}-rac{1}{\mathscr{D}}
ight)} &= \ &= rac{2\,\mathscr{D}+\mathscr{D}_s-2\,\phi_s\left(\mathscr{D}-\mathscr{D}_s
ight)}{2\,\mathscr{D}+\mathscr{D}_s+\,\phi_s\left(\mathscr{D}-\mathscr{D}_s
ight)} \end{aligned}$$

- ϕ_S fração de volume das esferas do material compósito
- Coef de dif na fase continua
- \mathcal{D}_S Coef de dif da através das esferas (fase dispersa)
 - · Depende apenas da fração de volume das esferas (não do tamanho)
 - · A forma da equação depende da geometria

Casos permeabilidade das esferas

$$\mathscr{D}_S = 0$$
 (Esferas impermeáveis) $\Longrightarrow \frac{\mathscr{D}_{eff}}{\mathscr{D}} = \frac{2(1 - \phi_S)}{2 + \phi_S}$
 $\mathscr{D}_s \to \infty$ (Esferas muito permeáveis) $\Longrightarrow \frac{\mathscr{D}_{eff}}{\mathscr{D}} = \frac{1 + 2\,\phi_s}{1 - \phi_s}$