ITHPC 2014 - raport

Kacper Siora

25 kwietnia 2014

1 Opis zadania

W ramach laboratorium z przedmiotu Introduction to High Performance Computing zrealizowane zostało zadanie 3-cie, czyli mnożenie macierzy przez macierz. Zostały przygotowane trzy wersje programu: sekwencyjna, OpenMP oraz OpenMP dla Xeon Phi. Wszystkie programy i skrypty użyte do rozwiązania zadania można znaleźć w repozytorium https://github.com/Siorski/usa.

2 Rozwiązanie

Stworzone rozwiązania oraz zastosowane w nich kluczowe funkcje:

- program generujący macierze, wypełniający je losowo liczbami z zakresu od 0 do 100 oraz zapisujący macierze do pliku
- program mnożący macierze, które zapisane w plikach podawane są jako parametry uruchumieniowe
- skrypt automatyzujący uruchamianie kolejnych mnożeń
- dynamiczna alokacja pamięci dla macierzy
- mierzenie czasu wykonania całego programu, oraz jego kluczowych punktów, tj.
 - wczytywanie danych
 - główne obliczenia
 - zapis wyniku

2.1 Mierzenie czasu

W wersji równoległej do mierzenia czasu została użyta biblioteka time.h oraz zawarta w niej funkcja $clock_gettime(CLOCK_MONOTONIC)$. Natomiast w wersjach równoległych wykorzystana została biblioteka omp.h i zawarta w niej funkcja omp_get_wtime .

2.2 Wersje równoległe

Stworzenie równoległej wersji rozwiązania sprowadziło się do zrównoleglenia głównej części, w której macierze są mnożone:

```
#pragma omp parallel shared(macierzA, macierzB, macierzC) private(i,j,k)
{
    #pragma omp for schedule (static)
    for(i=0; i<ilosc_wierszy_A; i++){
        for(j=0; j<ilosc_kolumn_B; j++){
            for(k=0; k<ilosc_wierszy_B; k++){
                  macierzC[i][j] += macierzA[i][k] * macierzB[k][j];
            }
        }
     }
}</pre>
```

Wszelkie próby zrównoleglenia fragmentu programu, w którym macierze są wczytywane z, bądź zapisywane do plików przynosiły niestety efekt odwrotny do pożądanego. Program OpenMP uruchamiany był na sigmie, gdzie korzystał on z 8 wątków.

2.3 Dane testowe

Do testów działania programu zotało wygenerowanych 6 par macierzy o rozmiarach:

```
Para 1 5 x 5 * 5 x 5

Para 2 517 x 740 * 740 x 493

Para 3 1029 x 1475 * 1475 x 981

Para 4 1541 x 2210 * 2210 x 1469

Para 5 2053 x 2945 * 2945 x 1957

Para 6 2565 x 3680 * 3680 x 2447
```

3 Porównanie czasów

3.1 Tabele

Wszystkie czasy w tabelach podane są w sekundach.

	5x5 * 5x5		
	Sekwencyjny	OpenMP	XEON PHI
Czas wczytywania danych	0,001477	0,001588	0,000627
Czas obliczeń	0,000002	0,000229	0,255085
Czas zapisu danych	0,001506	0,00099	0,000653
Czas trwania całego programu	0,003097	0,002898	0,256662

	517x740 * 740x493		
	Sekwencyjny	OpenMP	XEON PHI
Czas wczytywania danych	0,085524	0,090966	0,875284
Czas obliczeń	1,913065	0,357867	0,26042
Czas zapisu danych	0,074895	0,079641	0,426752
Czas trwania całego programu	2,074703	0,529671	1,565948

	1029x1475 * 1475x981		
	Sekwencyjny	OpenMP	XEON PHI
Czas wczytywania danych	0,332428	0,336021	3,481636
Czas obliczeń	18,193035	3,220273	0,292785
Czas zapisu danych	0,307626	0,322421	1,273766
Czas trwania całego programu	18,838361	3,884008	5,060543

	1541x2210 * 2210x1469		
	Sekwencyjny	OpenMP	XEON PHI
Czas wczytywania danych	0,750734	0,752672	7,78231
Czas obliczeń	64,640528	10,916685	0,384762
Czas zapisu danych	0,649202	0,687393	2,69992
Czas trwania całego programu	66,053089	12,368927	10,892418

	2053x2945*2945x1957		
	Sekwencyjny	OpenMP	XEON PHI
Czas wczytywania danych	1,365159	1,308095	13,808813
Czas obliczeń	175,745871	29,156601	0,583053
Czas zapisu danych	1,155145	1,204566	4,947509
Czas trwania całego programu	178,28793	31,691602	19,382112

	2565x3680 * 3680x2447		
	Sekwencyjny	OpenMP	XEON PHI
Czas wczytywania danych	2,042326	2,037463	21,647846
Czas obliczeń	346,049103	59,394568	0,922356
Czas zapisu danych	1,741209	1,863713	7,723572
Czas trwania całego programu	349,253795	60,331661	30,358427

3.2 Wykresy

Wykres z czasami wykonania programu sekwencyjnego.

Wykres z czasami wykonania programu OpenMP.

Wykres z czasami wykonania programu na Xeon Phi.

4 Wnioski

Z wykresów oraz tabel, można jednoznaczenie odczytać, iż programy wykonywane na Xeonie Phi działają najszybciej, co nie jest oczywiście żadnym zaskoczeniem. Dla małych macierzy różnice są jeszcze niezbyt znaczące, natomiast już dla największych macierzy jakie zostały przetestowane przyspieszenie jest widoczne - 2-krotnie szybciej niż program OpenMP oraz ponad 11-krotnie szybciej niż program sekwencyjny. Dwóm pierwszym programom najwięcej czasu zajmują główne obliczenia (ponad 90 % czasu). Xeon Phi natomiast na same obliczenia poświęca najmniej uwagi - zaledwie 3%. Zdecydowanie bardziej zajmujące dla procesora Intel jest wczytywanie danych oraz w mniejszym, ale nadal znacznym stopniu ich zapisywanie. Zatem sytuacja ma się zupełnie odwrotnie w przypadku programu sekwencyjnego oraz OpenMP w porównaniu do programu uruchamianego na procesorze Xeon Phi.