a/ Let's say P represents our optimal data
amount processed. We can split this into subproblems
where we just look at individual days. We
will dellare variables below.
P- optimal data processed (MB)
r - days since last reboot (day)
i - day (day)
S - data to be processed (MB)
x - data processing capacity (MB) n - number of days (day) = 4
Let us formulate fore model. There are two
cases to look ati
. ` ` `
1) System rebooted yesterday. No data was processed
yesterday. We can take the maximum amount
today. Add data from two days ago.
2) System not rebooted yesterday. Add the data
processed yesterday and process the maximum
capacity to day.
Thus, we get the recurrence: 12 days ago
$P(i) = max(P(i-1) + min(x_i, s_r), P(i-2) + min(x_i, s_o)$
Not rebooted Rebooted
data Game unda dans

6/	schedure. cpp
c/	schedule_1.cpp schedule_2.cpp
a/	schedule_2pp