6612-18

Serial No.: 10/669,436 Filed: September 25, 2003

LISTING OF THE CLAIMS

The present listing of the claims supersedes any previous listing of the claims.

1.	(Cancel)
2-4.	(Previously Canceled)
5-6.	(Cancel)
7.	(Currently amended) A stress sensor comprising:
	a first electrode;
	at least one other electrode; and
	a dielectric layer disposed in relation to the first and the at least one other electrode
for the	e electrodes to supply an electric field (E) to the dielectric layer, wherein the dielectric
layer o	comprises a diamond-like carbon film that exhibits a change in conductivity when
expos	ed to an electric field (E) at a level above a critical electric field (E*), wherein the
<u>critica</u>	l electric field (E*) of the diamond-like film shifts under an applied stress, and [The
stress	sensor of claim 5,] wherein the critical electric field (E*) comprises about $2x10^5$ V/cm.
8-10 (Cancel)
11.	(Currently Amended) A stress sensor comprising:
	a first electrode:
	at least one other electrode; and
	a dielectric layer disposed in relation to the first and the at least one other electrode
for the	electrodes to supply an electric field (E) to the dielectric layer, wherein the dielectric
layer o	comprises a diamond-like carbon film that exhibits a change in conductivity when
expose	ed to an electric field (E) at a level above a critical electric field (E*), wherein the
<u>critica</u>	l electric field (E*) of the diamond-like film shifts under an applied stress, and [The
stress	sensor of claim 5,] wherein compressive forces on the diamond-like carbon film lowers
the val	lue of the critical electric field (E*) and wherein tensile forces on the diamond-like
carbor	film increases the value of the critical electric field (E*).

6612-18 Serial No.: 10/669,436 Filed: September 25, 2003

22-23 (Cancel)

18. (Currently amended) A stress sensor comprising:
a first electrode;
at least one other electrode; and
a dielectric layer disposed in relation to the first and the at least one other electrode
for the electrodes to supply an electric field (E) to the dielectric layer, wherein the dielectric
layer comprises a diamond-like carbon film that exhibits a change in conductivity when
exposed to an electric field (E) at a level above a critical electric field (E*), wherein the
critical electric field (E*) of the diamond-like film shifts under an applied stress, and [The
stress sensor of claim 17,] wherein the diamond-like carbon film has a thickness and the
electrodes are disposed laterally with respect to each other a distance no greater than the
thickness of the diamond-like carbon film.
19-20 (Cancel) 21. (Currently amended) A stress sensor comprising:
a first electrode;
a plurality of other electrodes; and
a dielectric layer disposed in relation to the first and the at least one other electrode
for the electrodes to supply an electric field (E) to the dielectric layer, wherein the dielectric
layer comprises a diamond-like carbon film that exhibits a change in conductivity when
exposed to an electric field (E) at a level above a critical electric field (E*), wherein the
critical electric field (E*) of the diamond-like film shifts under an applied stress, and [The
stress sensor of claim 5, comprising a plurality of the other electrodes,] wherein the diamond
like carbon film is deposited onto a surface of a structure being measured for stress as a
continuous layer to serve as a sensing layer for the plurality of the other electrodes.

6612-18

Serial No.: 10/669,436

Filed: September 25, 2003

applying an electric field (E) with the first electrode and the at least one other electrode to the dielectric layer;

monitoring the conductivity of the dielectric layer; and determining whether the particular level of stress has been applied to the structure

based on a change in the conductivity of the dielectric layer.

- 25. (Previously Presented) The method of claim 24, comprising determining whether the particular level of stress has been applied based on a shift in the critical electric field (E*) of the dielectric layer resulting from the applied stress.
- 26. (Previously Presented) The method of claim 25, comprising applying an electric field (E) at a level less than the critical electric field (E*) and determining whether a particular compressive stress has been applied to the structure based on a change in the conductivity of the dielectric layer which results from a shift in the critical electric field (E*) of the dielectric layer as a result of the compressive stress.
- 27. (Previously Presented) The method of claim 26, comprising determining whether a particular compressive stress has been applied to the structure based on a change in conductivity of the dielectric layer which results from a shift in the critical electric field (E*) of the dielectric layer to that less than the electric field (E) applied.

6612-18

Serial No.: 10/669,436

Filed: September 25, 2003

28. (Previously Presented) The method of claim 25, comprising applying an electric field (E) at a level greater than the critical electric field (E*) and determining whether a particular tensile stress has been applied to the structure based on a change in the conductivity of the dielectric layer which results from a shift in the critical electric field (E*) of the dielectric layer as a result of the tensile stress.

29. (Previously Presented) The method of claim 28, comprising determining whether a particular tensile stress has been applied to the structure based on a change in conductivity of the dielectric layer which results from a shift in the critical electric field (E*) of the dielectric layer to that greater than the electric field (E) applied.