EE325 Short Notes

Aditya Byju

Course Professors: Prof. Bikash Kumar Dey & Prof. D. Manjunath Ref: Prof's video lectures Couldn't complete ©

Probability and Random Processes

September 2021

Contents

Set Theory	8
Cardinality	4
Basics of probability	4
Conditional probability	5
Borel-Cantelli Lemma	6
Probability measures	7

Set Theory

- set a collection of well-defined objects
- Russell's paradox the paradox defines the set S of all sets that are not members of themselves, but note that:
 - if S contains itself, then S must be a set that is not a member of itself by the definition of S, which is contradictory
 - if S does not contain itself, then S is one of the sets that is not a member of itself, and is thus contained in S by definition also a contradiction

this contradiction is called Russel's paradox

• De-morgan's laws:

_

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

_

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

these laws apply to any number of sets

•

$$A \subseteq B \leftrightarrow \overline{B} \subseteq \overline{A}$$

• symmetric difference:

$$A \Delta B = (A - B) \cup (B - A)$$
$$= (A \cup B) - (A \cap B)$$

• cartesian product:

$$A \times B = \{ (a,b) \mid a \in A, b \in B \}$$

- A^{∞} is the set of sequences of elements from A
- In general, A^B = set of maps of B into A
- \bullet |A| denotes the cardinality of a set
- Power set, P(A) = set of subsets of A

$$|P(A)| = 2^{|A|}$$
, where $|A|$ is finite

- A relation of A into B is a subset $R \subseteq A \times B$. If $(a,b) \in R$, then we write aRb.
- equivalence relation a relation R of A into A is called an equivalence relation if:
 - It is reflexive i.e. $(a, a) \in R \ \forall \ a \in A$
 - It is symmetric i.e. $\forall a, b \in A$, if $(a, b) \in R$ then $(a, b) \in R$
 - It is transitive i.e. $\forall a, b, c \in A$, if (a, b), $(b, c) \in R$ then $(a, c) \in R$
- equivalence class any equivalence relation partitions the set into a disjoint union of subsets, which are called equivalence classes, such that two elements are related iff they are in the same equivalence class
- Given any partition of A, i.e $P_i \subseteq A$; $i \in \mathbb{I}$ such that $\bigcup_{i \in \mathbb{I}} P_i = A \& P_i \cap P_j = \emptyset \quad \forall i, j \in \mathbb{I}, i \neq j$, one can define an equivalence relation $R((a,b) \in R)$ iff $a,b \in P_i$ for some i
- A function or mapping or map f of A into B is a relation such that $\forall a \in A, \exists a \text{ unique } b \in B$ such that $(a,b) \in f$. Here b is called the image of a, and a is called the pre-image of b.

Cardinality

- one-to-one (injective): $f: A \to B$ is said to be injective if every element in the range R has a unique pre-image
- onto (surjective): $f: A \to B$ is said to be surjective if Range, (R) = B, i.e., every element in B has a pre-image in A
- bijective: $f: A \to B$ is said to be bijective if it is both injective and surjective
- cardinality of a set: is the number of elements in the set
- Comparing cardinality of two sets:
 - two sets A and B are said to be equicardinal if there exists a bijective function from A to $B \rightarrow |A| = |B|$
 - set B has cardinality greater than or equal to set A if there exists a one-to-one function from A to $B \to |B| \ge |A|$
 - set B has cardinality strictly greater than set A if there exists a one-to-one function from A to B, but no bijective function $\rightarrow |B| > |A|$
- ullet A set is said to be countably infinite if it is equicardinal with $\mathbb N$
- A set is said to be countable if it is finite or countably infinite
- Countable union of countable sets is countable
- A set is said to be uncountable if its cardinality is strictly greater than that of $\mathbb N$
- Lemma: the set of all infinite length binary strings $\{0,1\}^{\infty}$ is uncountable. It's proof is given by Cantor's diagonalization argument.
- The sets [0,1], \mathbb{R} , $\mathbb{R}\backslash\mathbb{Q}$ are uncountable
- Dyadic rational is a rational number of the form $\frac{a}{2b}$

Basics of probability

- sample space (S or Ω) a set of outcomes of a random experiment
- If the sample space is finite or countably infinite, then we say that it is discrete
- event a subset of a sample space
- For a sample space Ω , the set Ω is called sure event and the null set (\emptyset) is called impossible event
- For discrete sample spaces we usually take $P(\Omega)$, the power set of Ω as the set of events
- If $A \cap B = \emptyset$ then A and B are called disjoint events
- Properties of events/subsets:
 - commutativity $A \cup B = B \cup A$ & AB = BA
 - associativity $(A \cup B) \cup C = A \cup (B \cup C)$ & $(A \cap B) \cap C = A \cap (B \cap C)$
 - distributivity $(A \cup B)C = AC \cup BC$ & $AB \cup C = (A \cup C)(B \cup C)$
- Let the event space denoted by \mathcal{F} . Then, a probability measure on (Ω, \mathcal{F}) is a function $P : \mathcal{F} \to [0,1]$ satisfying:

4 ADI

$$-P(\emptyset)=0, P(\Omega)=1$$

- If $A_1, A_2,...$ is a collection of disjoint events, i.e., $A_i \cup \overline{A_j} = \emptyset \quad \forall i \neq \overline{j}$, then $P(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$
- The triplet (Ω, \mathcal{F}, P) is called probability space
- Properties of probability measure P:

$$-P(\overline{A}) = 1 - P(A)$$

- If
$$B \supseteq A$$
, then $P(A) \ge P(B)$

$$- P(A \cup B) = P(A) + P(B) - P(A \cup B)$$

$$-P(\cup_{i=1}^{n} A_{i}) = \sum_{j=1}^{n} (-1)^{j-1} (\sum_{s \in [1:n], |s|=j} P(\cup_{i \in s} A_{i}))$$

- Lemma:
 - let $A_1 \subseteq A_2 \subseteq A_3 \subseteq ...$ be an increasing sequence of events and let $A = \lim_{i \to \infty} A_i = \bigcup_{i=1}^{\infty} A_i$. Then $P(A) = \lim_{i \to \infty} P(A_i)$.
 - let $B_1 \supseteq B_2 \supseteq B_3 \supseteq \dots$ be a decreasing sequence of events and let $B = \lim_{i \to \infty} B_i = \bigcap_{i=1}^{\infty} B_i$. Then $P(B) = \lim_{i \to \infty} P(B_i)$.
- inclusion-exclusion principle (inclusion-exclusion bounds) If $E_1, E_2, E_3, \ldots, E_n$ are n events. Then:

$$P_r(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n P_r(E_i) - \sum_{\{i, j\} \subseteq [1:n]} P_r(E_i E_j) + \sum_{\{i, j, k\} \subseteq [1:n]} P_r(E_i E_j E_k) - \dots - (-1)^{n-1} P_r(E_1 \dots E_n)$$

• union bound:

$$P_r(\bigcup_{i=1}^n E_i) \le \sum_{i=1}^n P_r(E_i)$$

• For random experiments that have equiprobable outcomes the probability of any event E is:

$$P_r(E) = \frac{|E|}{|\Omega|}$$

• Uniform probability measure means all outcomes are equally likely

Conditional probability

• Conditional probability is defined as:

$$P(A/B) = \frac{P(A \cap B)}{P(B)}, \quad if \ P(B) > 0$$

- For any event B, such that P(B) > 0, $P_B(A) = P(A/B) \quad \forall A \subseteq \Omega$. $P_B(A)$ is a valid probability measure, i.e., it satisfies all the properties of a probability measure.
- Multiplication rule:
 - $-P(A \cap B) = P(B)P(A/B)$
 - $-P(A \cap B \cap C) = P(B)P(A/B)P(C/A \cap B)$
 - in general $P(\cap_{i=1}^{n} A_i) = P(A_1) \prod_{i=2}^{n} P(A_i / A_1 \cap A_2 \cap ... \cap A_{i-1})$

5 ADI

• Law of total probability: let A be an event and $\{B_i, i \in \mathbb{I}\}$ be countable collection of events that partition Ω $(P(B_i) > 0, \forall i)$. Then:

$$P(A) = \sum_{i \in \mathbb{I}} P(B_i) P(A/B_i)$$

• Bayes' theorem: let A be an event and $\{B_i, i \in \mathbb{I}\}$ be countable collection of events that partition Ω $(P(B_i) > 0, \forall i)$. Then:

$$P(B_{i}/A) = \frac{P(B_{i})P(A/B_{i})}{P(A)}$$

- independence two events A and B are said to be independent (under probability measure P) if $P(A \cap B) = P(A)P(B)$
- If A, B are independent events, and P(B) > 0 then P(A/B) = P(A)
- Lemma: if A & B are independent events then $A \& \overline{B}$ are also independent events
- The events A_1, A_2, \ldots, A_n are said to be independent if for all non-empty subsets $I \in \{1, 2, 3, \ldots, n\}$ we have:

$$P(\bigcap_{I} A_{i}) = \prod_{I} A_{i}$$

- Pairwise independence does not imply independence
- conditional independence A & B are conditionally independent given C (P(C) > 0) if $P((A \cap B)/C) = P(A/C)P(B/C)$
- Conditional independence does not imply independence and vice versa

Borel-Cantelli Lemma

• Let $\{A_n\}$ be a sequence of events over a sample space Ω , and a probability measure P. Then the event $A(i.o.) = \{A_n \text{ occurs for infinitely many } n\}$ is given by:

$$A(i.o.) = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$$

• First Borel-Cantelli lemma: let $\{A_n\}$ be a sequence of events over a sample space Ω , and a probability measure P. If:

$$\sum_{n=1}^{\infty} P(A_n) < \infty$$

then P(A(i.o.)) = 0

• Second Borel-Cantelli lemma: let $\{A_n\}$ be a sequence of events over a sample space Ω , and a probability measure P. If:

$$\sum_{n=1}^{\infty} P(A_n) = \infty$$

then P(A(i.o.)) = 1

• Stirling's formula: $n! \sim \sqrt{2\pi n} (\frac{n}{\epsilon})^n$, when $n \to \infty$

Probability measures

- \nexists a uniform probability measure $\mu: P(\Omega) \to [0,1]$ that satisfies the following two conditions:
 - for $0 \le a < b \le 1$, $\mu([a, b]) = b a$
 - translational invariance: for $A \subseteq [0,1]$, and $\forall x \in [0,1]$, $\mu(A) = \mu(A \oplus x)$, where $A \oplus x = \{a + x \mid a \in A, a + x \le 1\} \cup \{a + x 1 \mid a \in A, a + x > 1\}$

Here, $P(\Omega)$ is called the Vitali set.

- Let \mathcal{F} be a collection of subsets of Ω . \mathcal{F} is said to be a σ -algebra of Ω if it satisfies:
 - if $A \in \mathcal{F}$ then $\overline{A} \in \mathcal{F}$
 - if $A_i \in \mathcal{F}$ ($i \geq 1$) is a countable sequence of sets, then $\cup_i A_i \in \mathcal{F}$
- A function $\mu: \mathcal{F} \to \mathbb{R} \cup \{-\infty, \infty\}$ is called a measure on (Ω, \mathcal{F}) if it satisfies:
 - $-\mu(A) \ge \mu(\emptyset) = 0 \quad \forall A \in \mathcal{F}$
 - if $A_i \in \mathcal{F}$ is countable sequence of disjoint sets, then $\mu(\cup_i A_i) = \sum_i \mu(A_i)$

If $\mu(\Omega) = 1$, then μ is called a probability measure

- Theorem: let μ be a measure on (Ω, \mathcal{F}) :
 - if $A \subseteq B$, then $\mu(A) \le \mu(B)$ [monotone]
 - if $A \subseteq \bigcup_{m=1}^{\infty} A_m$ than $\mu(A) \le \sum_{m=1}^{\infty} \mu(A_m)$ [subadditive]
 - if $A_i \uparrow A$, i.e., $A_1 \subset A_2 \subset \ldots$ and $\cup_i A_i = A$, then $\mu(A_i) \uparrow \mu(A)$ [continuity from below]
 - if $A_i \downarrow A$, i.e., $A_1 \supset A_2 \supset \ldots$ and $\cap_i A_i = A$, then $\mu(A_i) \downarrow \mu(A)$ [continuity from above]
- Probability mass function is a $p: \Omega \to [0,1]$ such that $\sum_{\omega \in \Omega} p(\omega) = 1$. Now $P(A) = \sum_{\omega \in A} p(\omega)$ is a probability measure.
- For any collection of σ -fields \mathcal{F}_i : $i \in \mathbb{I}$, $\cup_i \mathcal{F}_i$ is a σ -field
- In general, $\cap_i \mathcal{F}_i$ is not a σ -field
- For any $A \subset P(\Omega)$, $\sigma(A) = \bigcap_{A \subset \mathcal{F}} \mathcal{F}$ (where \mathcal{F} is a σ -field) is the smallest σ -field containing A, or the σ -field generated by A
- Borel σ -field and Borel sets: For \mathbb{R} , the σ -field \mathcal{R} generated by the open sets is called the Borel σ -field. The sets in it are the Borel sets. Similarly, for \mathbb{R}^d the σ -field \mathcal{R}^d generated by the open sets is called the Borel σ -field.
- Stieltjes measure function (SMF): let $F : \mathbb{R} \to \mathbb{R}$ be a function such that:
 - F is non-decreasing
 - F is right-continuous, i.e., $\lim_{y \downarrow x} F(y) = F(x)$
 - $-F(\infty) = \lim_{x\to\infty} = 1$, and $F(-\infty) = 0$ (For probability measure)
- **Theorem:** for every Stieltjes measure function F there is a unique measure μ on $(\mathbb{R}, \mathcal{R})$ with $\mu((a,b]) = F(b) F(a)$. If F satisfies the third property above, then μ is a probability measure.
- Lebesgue measure: this is the natural length measure on \mathbb{R} . This corresponds to F(x) = x.
- Generalization of Stieltjes measures: in \mathbb{R}^d , the three SMF conditions do not ensure a measure corresponding to the function. To ensure a measure we need an extra condition:
 - $-\Delta_A F \ge 0$ for all rectangles A, where $\Delta_A F = \sum_{v \in V} sgn(v)F(v)$
- **Theorem:** suppose $F : \mathbb{R}^d \to [0,1]$ satisfies the four SMF properties, then \exists a unique measure μ on $(\mathbb{R}^d, \mathcal{R}^d)$ so that $\mu(A) = \Delta_A F$ for all finite rectangles

7 ADI