Práctica 3

Parte Extra

Planificacion multinivel con realimentación

En esta práctica debéis implementar una política de planificación basada en Round Robin pero con quanto dinámico. Para ello incluiremos el fichero de política sched_RRdynQ.c y rellenaremos los métodos.

En dicha política se definen las siguientes variables globales y estructura:

Al igual que en Round Robin, es necesario reservar espacio para una estructura de tipo RR_dynQ_data para cada tarea. Los campos de esta estructura contendrán el número de ticks que restan antes de finalizar el quanto (como en Round Robin), y el número de ticks que se asignaron a la tarea al ser extraída de la runqueue. Este último parámetro, current_slice, toma un valor inicial igual a dynq_rr_quantum pero podrá ser modificado dentro de la rutina task_tick_rrdynQ en las siguientes circunstancias:

- Si a la tarea se ha terminado el quando y necesita más ticks para finalizar la ráfaga de CPU, current_slice decrementará en uno (saturando en global_min_slice).
 Se pueden consultar el número de ticks que faltan para terminar la ráfaga en el campo runnable_ticks_left de la tarea.
- Si la tarea finaliza la r\u00e1faga y el quando a la vez, task_tick_rrdynQ se mantendr\u00e1 constante.
- Si la tarea finaliza la ráfaga y todavía disponía de más ticks para finalizar el quanto, task_tick_rrdynQ se incrementará en uno (saturando en global_max_slice).

Recuerda: Debéis modificar el Makefile para incluir el nuevo fichero (sched_rr_dq.c) en la compilación y también el fichero de cabecera sched.h para que esté disponible.

Ejemplo

Ejemplo de simulación con el siguiente fichero:

T1 1 0 3 1 7 1 3 T2 1 0 2 1 2 1 1 1 6 1 T3 1 0 7 1 3

Una sola CPU:

./schedsim -s RR_DYNQ -i ./examples/example_RR_dynQ.txt

Ejemplo de simulación con dos CPUs:

./schedsim -n 2 -s RR_DYNQ -i ./examples/example_RR_dynQ.txt

