Association for Cyber Security (ACS)

Empowering Protectors of the Cyber World

Session BY: Harmanpreet Singh Date: 1st July 2024

Introduction of ACS

Internship Introduction

Benefits of Internship

Intern Responsibilities

Show Commitment!

Complete your assigned duties.

Participation: Workshops, events.

Deliverables: Reports, presentations.

What is Cybersecurity?

DEFINITION (what does it even mean?!)

(Is it same as "Ethical Hacking"?)

Types of Cyber Threats:-

- Malware (viruses, worms, Trojans, ransomware)
- Phishing attacks
- Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks
- Man-in-the-Middle (MitM) attacks
- SQL Injection
- Zero-day exploits

What is Cybersecurity?

Common Cyber Security Measures:-

- Firewalls
- Antivirus and Anti-malware software
- Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS)
- Encryption (data at rest and in transit)
- Multi-factor authentication (MFA)
- Regular software updates and patch management

HISTORICAL CONTEXT

Early Cyber Threats

Initial Viruses:

- Creeper Virus (1971)
- Elk Cloner (1982)

Initial Hacks:

- Morris Worm (1988)
- Legion of Doom vs. Masters of Deception (1980s-1990s)

HISTORICAL CONTEXT

Major Incidents

Yahoo Data Breach (2013-2014)

- **Description:** Over 3 billion accounts compromised.
- Impact: Exposure of personal information, decreased trust, and significant financial loss.

Target Data Breach (2013)

- **Description:** 40 million credit and debit card accounts affected.
- Impact: Financial losses, customer trust erosion, and legal consequences.

Sony Pictures Hack (2014)

- **Description:** Release of confidential data, including employee information and unreleased films.
- Impact: Operational disruption, reputational damage, and significant financial cost.

WannaCry Ransomware Attack (2017)

- **Description:** Global ransomware attack affecting 230,000 computers in over 150 countries.
- Impact: Major operational disruptions, especially in healthcare and public services.

Threat, Vulnerability and Risk

Types of Hackers

Cyber Tools and Techniques

Firewalls

Antivirus

Cryptography/Encryption

IDS/IPS

Penetration Testing

Cyber Security Frameworks

Objectives

Adaptable, flexible, and scalable Improve
Organization's
readiness for
managing
cybersecurity risk

Flexible, repeatable, and performance based Cost-effective

Leverage standards, methodologies and processes Promote technology innovation Actionable across the enterprisefocus on outcomes

Famous Cyber Frameworks

The Role of a CyberSec Professional

Responsibilities

- Protect Data:
 - Secure Information: Implement measures to safeguard sensitive data from unauthorized access.
 - **Example**: Use encryption, firewalls, and access controls.
- Monitor:
 - Watch for Threats: Continuously monitor systems and networks for suspicious activity.
 - Example: Use intrusion detection systems (IDS) and security information and event management (SIEM) tools.
- Respond:
 - Handle Incidents: Respond to and manage security incidents, mitigate damage, and restore normal operations.
 - **Example**: Incident response planning, forensics, and recovery.

The Role of a CyberSec Professional

Skills

- o Technical
- o Problem-Solving
- o Communication
- o Continuous Learning

Career Path

- Entry-Level Roles:
 - Security Analyst
 - IT Auditor
- Mid-Level Roles:
 - Security Engineer
 - Incident Responder
 - Penetration Tester
- O Advanced Roles:
 - Security Architect
 - Cybersecurity Manager
 - Chief Information Security Officer (CISO)

Current Trends

- Artificial Intelligence (AI) and Machine Learning (ML) in Cyber Security:
 - **Application**: Automating threat detection and response, analyzing vast amounts of data to identify patterns and anomalies.
 - Example: AI-driven threat intelligence platforms that predict and neutralize potential threats.
- Cloud Security:
 - Importance: With increasing cloud adoption, securing cloud environments becomes crucial.
 - Focus Areas: Data protection, access management, and compliance in cloud services.
 - **Example**: Implementing cloud-specific security measures like encryption, identity and access management (IAM), and secure APIs.
- Zero-Trust Security Model:
 - Concept: Never trust, always verify. Every access request is verified, regardless of its origin.
 - Implementation: Micro-segmentation, continuous monitoring, and strict access controls.
 - **Example**: Multi-factor authentication (MFA) and least privilege access.

Future Directions

Emerging Threats:

- New Risks: Anticipating sophisticated cyber attacks such as AI-powered attacks, quantum computing threats, and advanced persistent threats (APTs).
- **Example**: AI-generated phishing emails that are more convincing and harder to detect.

Advancements in Defenses:

- New Defenses: Development of innovative technologies and strategies to counteract emerging threats.
- **Example**: Quantum cryptography for securing communications against quantum computing threats, advanced behavioral analytics for detecting insider threats.

Q&A Session

