§2. Множества на комплексной плоскости. Последовательности и ряды комплексных чисел.

 $\mathbb C$ как множество упорядоченных пар совпадает с $\mathbb R^2$

Точки
$$M_1\left(x_1,y_1\right);\,M_2\left(x_2,y_2\right)\in\mathbb{R}^2$$
 $ho\left(M_1,M_2\right)=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}$ $z_1=x_1+y_1i,\,z_2=x_2+y_2i\in\mathbb{C}$ $|z_1-z_2|=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}=dist\,(z_1,z_2)$ $U_\delta\left(z_0\right)=\{z\in\mathbb{C}\mid|z-z_0|<\delta\}$ - дельта-окрестность $\delta>0,\,z_0\in\mathbb{C}$ $\mathring{U}_\delta\left(z_0\right)=U_\delta\left(z_0\right)\setminus\{z_0\}=\{z\in\mathbb{C}\mid0<|z-z_0|<\delta\}$ - проколотая дельта-окрестность

<u>Опр.1</u> Точка $z_0\in E\subset \mathbb{C}$ называется внутренней точкой множества E, если $\exists \delta>0\ U_\delta\left(z_0\right)\subset E$

Множество E называется открытым, если все его точки - внутренние.

Окрестностью точки $z_0 \ U \left(z_0 \right)$ называется любое открытое множество, содержащее точку z_0

Окрестностью множества $E\subset \mathbb{C}$ называется любое открытое множество, содержащее E.

<u>Лемма 1</u> (О числе Лебега). Пусть $m \in \mathbb{N}$, $K \subset \mathbb{R}^m$, K - ограничено и замкнутое в \mathbb{R}^m : $K \subset \bigcup V_j$, где $j \in J$, V_j - открытое множество \mathbb{R}^m , J - множество индексов Тогда $\exists d > 0$: $\forall Q \subset K \ (diam Q < d \implies \exists j_0 \in J \ Q \subset V_{j_0})$ d - число Лебега.

 Δ :

Предположим противное $\forall n\in\mathbb{N}\;\exists Q_n\subset K\;diamQ_n<rac{1}{n},$ а Q_n не содержится целиком ни в одном $V_j\;(Q_n
eq\emptyset)$

Рассмотрим точку $M_n \in Q_n o \{M_n\} \subset K$ - ограниченное и замкнутое.

$$\Longrightarrow \{M_n\}_{n\in\mathbb{N}}$$
 - orp. $\Longrightarrow \exists \{M_{n_k}\} \ \exists M_0 \in \mathbb{R}^m \ M_{n_k} o M_0 \in K, \ k o \infty$ $\Longrightarrow \exists j_0 \in J \ (M_0 \in V_{j_0} \implies \exists \delta > 0 U_\delta \ (M_0) \subset V_{j_0})$ $\exists N \in \mathbb{N} \ orall k > N \ (diam Q_{n_k} < rac{\delta}{2} \land
ho \ (M_0, M_{n_k}) < rac{\delta}{2})$

Рассмотрим $orall M \in Q_{n_k}$ справедливо

$$ho\left(M,M_{0}
ight) \leq
ho\left(M,M_{n_{k}}
ight) +
ho\left(M_{n_{k}},M_{0}
ight) < rac{\delta}{2} + rac{\delta}{2} = \delta$$

T.e.
$$Q_{n_{k}}\subset U_{\delta}\left(M_{0}
ight)\subset V_{j_{0}}$$

Противоречие.

<u>Лемма 2</u> (Гейне-Бореля)

Пусть $K\subset \mathbb{R}^m$, K - ограниченное, замкнутое множество в \mathbb{R}^m и $K\subset \bigcup V_j$, где V_j - открытое множество в \mathbb{R}^m

Тогда
$$\exists\,\{j_1,\ldots,j_n\}\subset J\ K\subset igcup_{k=1}^n V_{j_k}$$

 Δ :

Пусть d>0 из Леммы 1. K - ограниченное множество.

 Π - куб в \mathbb{R}^m со сторонами, параллельными осям координат и равными a.

$$rac{a}{N} \leq rac{d}{2\sqrt{m}}$$
, $n = N^m$ частичных кубиков.

$$igcup_{k=1}^n\Pi_k=\Pi,\, diam\Pi_k\leq rac{d}{2};\, K\subset\Pi,\, Q_k=K\cap\Pi_k\implies K=igcup_{k=1}^NQ_k$$

$$orall k = 1, \ldots, n \; ig(diam Q_k \leq diam \Pi_k \leq rac{d}{2} < d ig)$$

$$\forall k=1,\ldots,n\;\exists V_{j_k}\supset Q_k\implies K=\bigcup_{k=1}^nQ_k\subset\bigcup_{k=1}^nV_{j_k}$$

<u>Опр.2</u>

Пусть $K\subset \mathbb{R}^m$, $\{V_j\}_{j\in J}$ - система открытых множеств в \mathbb{R}^m называется (открытым) покрытием множества K, если $K\subset \bigcup V_j$

Компактом K в \mathbb{R}^m называется множество, из любого покрытия которого открытыми множествами V_j можно выбрать (извлечь) конечное подпокрытие, т.е. $\exists \, \{j_1,\ldots,j_n\} \subset J$ $K \subset \bigcup_{k=1}^n V_{j_k}$

<u>Т1</u> (Критерий компактности в \mathbb{R}^m)

Пусть $K\subset\mathbb{R}^m$, $m\in\mathbb{N}$ (K - компакт в $\mathbb{R}^m)\iff (K$ - ограниченно и замкнуто в $\mathbb{R}^m)$

 Δ :

← смотри Лемму Гейне-Бореля

$$\Longrightarrow orall M \in K \; U_{\delta}\left(M
ight)$$
, где $\delta=1,\, U_{1}\left(M
ight)$

$$K \subset \bigcup_{M \in K} U_1(M) \implies \exists \{M_1, \dots, M_n\} \subset K$$
:

 $K \subset \bigcup_{k=1}^{n} U_{1}\left(M_{k}\right)$ - ограниченное множество, как объединение конечного числа ограниченных множеств

Докажем замкнутость $K = \bar{K} \iff (\mathbb{R}^m \setminus K$ - открыто)

$$\forall M_0 \in (\mathbb{R}^m \setminus K) \; \exists U (M_0) \subset (\mathbb{R}^m \setminus K) \; (U (M_0) \cap K \neq \emptyset)$$

 $orall M\in K$ рассмотрим $V_M=\left\{P\in\mathbb{R}^m\mid
ho\left(P,M
ight)<rac{1}{2}
ho\left(M,M_0
ight)
ight\}$ - открытое множество

$$K \subset \bigcup_{M \in K} V_M \implies \exists M_1, \dots, M_n \in K : K \subset \bigcup_{k=1}^n V_{M_k} = W$$

точка $M_0 \in \overline{V_{M_k}} \implies (\mathbb{R}^m \setminus W)$ - открытое, как дополнение к замкнутому

$$\implies \exists U_{\delta}\left(M_{0}
ight)\subset\left(\mathbb{R}^{m}\setminus W
ight)U_{\delta}\left(M_{0}
ight)\cap K
eq\emptyset$$

Последовательности и ряды комплексных чисел. Расширенная комплексная плоскость.

$$egin{aligned} orall n \in \mathbb{N} &
ightarrow z_n \in \mathbb{C}, \, \{z_n\}_{n=1}^{\infty}, \, \{z_n\}_{n \in \mathbb{N}}, \, \{z_n\} \ z_n = x_n + i y_n, \, \{x_n\}, \, \{y_n\} \end{aligned}$$

Опр.3

Пусть
$$\{z_n\}_{n\in\mathbb{N}},\,z_0\in\mathbb{C}.$$
 Говорят, что $\{z_n\}$ стремится к z_0 при $n\to\infty$, если $orall \epsilon>0$ $\exists N\in\mathbb{N}\ \forall n\in\mathbb{N}\ (n\geq N\implies |z_n-z_0|<\epsilon)$ $\lim_{n\to\infty}z_n=z_0;\,z_n\to z_0,\,n\to\infty$ $M_0\left(x_0,y_0\right),\,M_n\left(x_n,y_n\right),\,\rho\left(M_n,M_0\right)=|z_n-z_0|$ $(z_n\to z_0,\,n\to\infty)\iff (\rho(M_n,M_0)\to 0,\,n\to\infty)\iff (x_n\to x_0\land y_n\to y_0,\,n\to\infty)$ $\max(|x_n-x_0|,\,|y_n-y_0|)\leq |z_n-z_0|\leq |x_n-x_0|+|y_n-y_0|$

Арифметические свойства.

$$z_n o z_0, \, w_n o w_0, \, n o \infty$$

1.
$$\exists \lim_{n o \infty} (z_n + w_n) = z_0 + w_0; \, orall lpha \in \mathbb{C} \ \exists \lim_{n o \infty} (lpha \cdot z_n)$$

2.
$$\exists \lim_{n \to \infty} (z_n \cdot w_n) = z_0 \cdot w_0$$

3. Если
$$orall n \in \mathbb{N} \cup \{0\} \ w_n
eq 0$$
, то $\exists \lim_{n o \infty} rac{z_n}{w_n} = rac{z_0}{w_0}$

Опр.4

 $\{z_n\}$ называется ограниченной, если $\exists c>0 \ orall n\in \mathbb{N} \ |z_n|\leq c$

<u>Т2</u> (Больцано-Вейерштрасса)

Если последовательность комплексных чисел $\{z_n\}$ ограничена, то из нее можно извлечь сходящуюся подпоследовательность.

Опр.5

$$\{z_n\}\subset\mathbb{C}$$
 называется фундаментальной, если $orall \epsilon>0\ \exists N\in\mathbb{N}\ orall n,p\in\mathbb{N}$ $(n\geq N\implies |z_{n+p}-z_n|<\epsilon)$