Optimization

Lusine Poghosyan

AUA

March 18, 2019

Nonlinear Constrained Optimization

minimize
$$f(x)$$
 subject to $x \in \Omega$, (1)

where $f: \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$. Here, we are going to consider minimization problems, for which the constraint set Ω is given by

$$\Omega = \left\{ x \in \mathbb{R}^n : \, h_i(x) = 0, \, \text{for} \, i = 1, \dots m, \, g_j(x) \leq 0, \, \text{for} \, j = 1, \dots p \right\},$$

where $h_i : \mathbb{R}^n \to \mathbb{R}$ for $i = 1, ..., m, m \le n$ and $g_j : \mathbb{R}^n \to \mathbb{R}$ for j = 1, ..., p are given functions.

minimize
$$f(x)$$

subject to $h_i(x) = 0, \quad i = 1, \dots m,$
 $g_j(x) \le 0, \quad j = 1, \dots p$

or

minimize
$$f(x)$$

subject to $h(x) = 0$,
 $g(x) \le 0$,

where $h: \mathbb{R}^n \to \mathbb{R}^m$, $m \le n$ and $g: \mathbb{R}^n \to \mathbb{R}^p$.

Consider the following optimization problem:

minimize
$$(x_1 - 1)^2 + x_2 - 2$$

subject to $x_2 - x_1 = 1$,
 $x_1 + x_2 \le 2$.

Problems with equality constraints

minimize
$$f(x)$$

subject to $h_i(x) = 0$, $i = 1, ... m$.

We will assume that f, h_i for i = 1, ..., m are continuously differentiable functions on \mathbb{R}^n .

Definition

A point x^* satisfying the constraints $h_i(x^*) = 0$, $i = 1, \ldots m$ is said to be a regular point of the constraints, if the gradient vectors $\nabla h_1(x^*), \ldots, \nabla h_1(x^*)$ are linearly independent. When m = 1, this means $\nabla h_1(x^*) \neq 0$

Consider following constraints $h_1(x) = x_1$ and $h_2(x) = x_2 - x_3^2$ on \mathbb{R}^3 . Show that all feasible points are regular points.

Theorem (Lagrange's Theorem, First Order Necessary Condition)

Let x^* be a local minimizer (maximizer) of $f: \mathbb{R}^n \to \mathbb{R}$ subject to $h_i(x) = 0$, $h_i: \mathbb{R}^n \to \mathbb{R}$, $i = 1, \ldots m$, $m \le n$. Assume f, h_i for $i = 1, \ldots m$ are continuously differentiable functions and x^* is a regular point. Then, there exists $\lambda^* \in \mathbb{R}^m$ such that

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) = 0.$$

We refer to the vector λ^* as the Lagrange multiplier vector, and its components as Lagrange multipliers.

It's convenient to introduce the Lagrangian function $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$, given by

$$\mathcal{L}(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x).$$

The necessary condition for x^* to be a local minimizer will be

$$\nabla \mathcal{L}(\mathbf{x}^*, \lambda^*) = \mathbf{0}$$

for some $\lambda^* \in \mathbb{R}^m$.

Consider the following optimization problem:

minimize
$$f(x)$$

subject to $h(x) = 0$,
where $f(x) = x$ and $h(x) = \begin{cases} x^2 & \text{if } x < 0, \\ 0 & \text{if } 0 \le x \le 1, \\ (x-1)^2 & \text{if } x > 1. \end{cases}$

Assume we want to find the extremum points of $f(x_1, x_2) = x_1 + x_2$ subject to $x_1^2 + x_2^2 = 2$. Use Lagrange's theorem to find all possible local extremum points.

Theorem (Second Order Necessary Condition SONC)

Let x^* be a local minimizer (maximizer) of $f: \mathbb{R}^n \to \mathbb{R}$ subject to $h_i(x) = 0$, $h_i: \mathbb{R}^n \to \mathbb{R}$, $i = 1, \ldots m$, $m \le n$. Assume f, h_i for $i = 1, \ldots m$ are twice continuously differentiable functions and x^* is a regular point. Then, there exists $\lambda^* \in \mathbb{R}^m$ such that:

- $\nabla f(x^*) + \sum_{j=1}^m \lambda_j^* \nabla h_j(x^*) = 0$ or $\nabla \mathcal{L}(x^*, \lambda^*) = 0$,
- if $TS(x^*) = \{y \in \mathbb{R}^n : y^T \nabla h_i(x^*) = 0, \text{ for } i = 1, \dots, m\}$, then for all $y \in TS(x^*)$ we have that $y^T \nabla^2 \mathcal{L}(x^*, \lambda^*) y \geq 0$ $(y^T \nabla^2 \mathcal{L}(x^*, \lambda^*) y \leq 0)$.

Consider the following optimization problem:

maximize
$$-x_2(x_1 + x_3)$$

subject to $x_1 + x_2 = 0$,
 $x_2 + x_3 = 0$.

Is it possible that $x^* = [0, 0, 0]^T$ is a maximum point of the problem.

Theorem (Second Order Sufficient Condition SOSC)

Suppose f, h_i , for i = 1, ..., m are twice continuously differentiable functions on \mathbb{R}^n and there exists a point $x^* \in \mathbb{R}^n$ satisfying $h_i(x^*) = 0$, i = 1, ..., m and $\lambda^* \in \mathbb{R}^m$ such that:

- $\frac{\partial \mathcal{L}}{\partial x_i}(x^*, \lambda^*) = 0$ for $i = 1, \dots n$,
- for all $y \in TS(x^*)$, $y \neq 0$ we have that $y^T \nabla^2 \mathcal{L}(x^*, \lambda^*) y > 0$ $(y^T \nabla^2 \mathcal{L}(x^*, \lambda^*) y < 0)$, i.e. $\nabla^2 \mathcal{L}(x^*, \lambda^*)$ is a positive (negative) definite matrix on the tangent spaceS $TS(x^*)$,

then x^* is a strict local minimizer (maximizer) of f subject to $h_i(x) = 0$, i = 1, ..., m.

Note: If $\nabla^2 \mathcal{L}(x^*, \lambda^*)$ is a positive (negative) definite matrix, then you don't need to consider the tangent space $TS(x^*)$.

Find the minimizers and maximizers of the function

$$f(x_1, x_2, x_3) = \left(a^T x\right) \left(b^T x\right),$$

subject to

$$x_1+x_2=0,$$

$$x_2+x_3=0,$$

where

$$a = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 and $b = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.