WHAT IS CLAIMED IS:

1	1.	A method for treating a substrate surface, comprising the steps of:
2		coiling one or more substrates into one or more coils in such a way that a

- coiling one or more substrates into one or more coils in such a way that adjacent
- 3 turns of the coils do not touch one another;
- 4 placing the one or more coiled substrates in a treatment chamber; and
- 5 in the treatment chamber, treating substantially an entire surface of the one or
- 6 more coiled substrates with a surface treatment process.
- 2. 1 The method of claim 1 wherein the surface treatment process includes one or
- 2 more atomic layer deposition (ALD) reactions.
- 1 3. The method of claim 2 wherein the one or more ALD reactions include exposing
- 2 the surface of the coiled substrate to a reactant vapor of the type MCl_x, where M is
- 3 a metal and x is an integer from one to four.
- 1 4. The method of claim 3, wherein the one or more ALD reactions include exposing
- 2 the surface of the coiled substrate to water vapor.
- 1 5. The method of claim 3 wherein MCl_x is TiCl₄.
- 1 6. The method of claim 1 wherein the surface treatment process includes
- 2 anodization.
- 1 7. The method of claim 1 wherein the surface treatment process includes drying.
- 1 8. The method of claim 1 wherein the surface treatment process includes annealing.
- 9. 1 The method of claim 1 wherein the surface treatment process includes exposure to
- 2 reactive gas or vapor.
- 1 10. The method of claim 9 wherein the exposure to reactive gas or vapor includes
- 2 selenization.
- 1 11. The method of claim 1 where the surface treatment includes anodization.
- 1 12. The method of claim 1 where the surface treatment includes electrodeposition.
- 1 13. The method of claim 1 where the surface treatment includes electropolishing.

3

1

2

23.

substrate.

1	14.	The method of claim 1 wherein coiling the substrate includes attaching an end of a
2		roll of substrate material to a carousel, rotating the carousel while unrolling the
3		substrate material from the roll to coil the substrate around the carousel, and
4		placing one or more spacers between adjacent layers of the coiled substrate before
5		the carousel completes a turn.
1	15.	The method of claim 14 wherein each spacer touches a back surface of the
2		substrate but not a front surface of the substrate.
1	16.	The method of claim 14 wherein placing one or more spacers includes stacking
2		one or more spacers on top of one another.
1	17.	The method of claim 1 wherein coiling the substrate includes attaching an end of a
2		roll of substrate material to a carousel, moving the roll of substrate material
3		around the carousel while unrolling the substrate material from the roll to coil the
4		substrate around the carousel, and placing spacers between adjacent layers of the
5		coiled substrate before the roll completes a turn about the carousel.
1	18.	The method of claim 1 wherein the one or more substrates include two or more
2		substrates coiled side-by-side on a carousel.
1	19.	The method of claim 1 wherein coiling one or more substrates into one or more
2		coils in such a way that adjacent turns of the coils do not touch one another
3		includes placing a spacer tape between adjacent turns of the substrate.
1	20.	The method of claim 19 wherein the spacer tape is orientated substantially parallel
2		to a length of the substrate.
1	21.	The method of claim 19 wherein the spacer tape includes one or more passages
2		running substantially along a width of the spacer tape.
1	22.	The method of claim 1 wherein coiling one or more substrates includes attaching
2		two substrates together back-to-back to form a dual substrate and coiling the dual

they have been treated in the treatment chamber.

The method of claim 22, further comprising separating the two substrates after

1	24.	A substrate surface treatment system, comprising:
2		a surface treatment chamber;
3		a carousel adapted to receive a flexible substrate material as a coil, the carousel
4		being sized to be received within the chamber with the substrate material coiled
5		around the carousel in one or more turns;
6		a winding mechanism configured to coil the substrate material about the carousel
7		to form a coiled substrate; and
8		one or more spacers, the spacers being configured to space apart adjacent turns of
9		the coiled substrate in such a way that the adjacent turns of the coiled substrate do
10		not touch one another; and
11		a mechanism adapted to place one or more of the spacers between adjacent layers
12		of the coiled substrate before the winding mechanism winds a full turn of the
13		substrate material about the carousel.
1	25.	The contem of claim 22 further constitution
2	23.	The system of claim 22, further comprising one or more sources of reactant gas
3		coupled to the chamber, the reactant gas being of a type suitable for performing
3		atomic layer deposition.
1	26.	The system of claim 22, wherein the chamber is an anodization chamber.
1	27.	The system of claim 22, wherein the carousel is in the shape of a polygonal
2		cylinder.
*		
1	28.	The system of claim 25 wherein the carousel is in the shape of a hexagonal
2		cylinder.
1	29.	The system of claim 22 wherein the spacers can be secured in place with respect
2		to the carousel.
1	30.	The system of claim 22 wherein the spacers can stack on top of one another.
1	31.	The system of claim 22, wherein the spacers include one or more spacer tapes.
1	32.	The system of claim 29 wherein the spacer tapes run substantially parallel to a
2	<i></i>	length of the substrate.

- 1 33. The system of claim 29 wherein at least one spacer tapes is located proximate a
- 2 side of the substrate.