Linear

Model specifica

Estimation

Goodness of

Inference on

One factor All

2-way ANOVA

Normal Linear Models

Bertrand Servin bertrand.servin@inrae.fr

UE Méthodes Numériques 2023-2024

2 Linear Regression Model specification Estimation Goodness of fit Inference on the model parameters

3 ANalysis Of VAriance (ANOVA) One factor ANOVA 2-way ANOVA

Linear Regression

1 Introduction

Inference on the model parameter

ANOV.

One factor ANOVA

2 Linear Regression Model specification Estimation Goodness of fit Inference on the model of

3 ANalysis Of VAriance (ANOVA) One factor ANOVA 2-way ANOVA

Regression

Model specificati

Estimation
Goodness of fit
Inference on the

ANOVA

One factor ANOVA

Statistical Model A statistical model is a mean to describe the relationships between **response variables** (Y) and **explanatory variables** (X). A model is a formal representation of a theory (set of hypotheses).

Linear Models A **linear** model is a statistical model where Y are modelled as a linear combination of the model parameters :

$$\mathbf{Y} = \mathbf{X}_1 \cdot \beta_1 + \mathbf{X}_2 \cdot \beta_2 + ... + \mathbf{e}$$

 $\mathbf{Y} = \mathbf{E}(\mathbf{Y}) + \mathbf{e}$

Effets The model parameters β_1, β_2, \ldots are the effects of the explanatory variables.

Résidus Part of the responses ${f Y}$ is not explained by the predictors ${f X}$: the errors ${f e}$ of the model (${f E}(e)=0$).

Regression

Model specification

Estimation

Goodness of f

Inference on th

ANOVA

One factor ANOVA

2-way ANOVA

Classes of Linear Models

Response	Predictors	Model
Continuous	Binary	t-test
Unique	Categorical	ANOVA
	Continue	Regression (can be multiple)
	${\sf Categorical} + {\sf continue}$	multiple regression

Linear Regression

Model specificat
Estimation

Goodness of t

model parameter

ANOVA

One factor ANOVA 2-way ANOVA

General Approach to statistical modeling

Can be decomposed as:

- Model specification: setting up hypotheses, sometimes following initial explanatory data analyses (e.g. PCA)
- **2 Parameter Estimation** using statistical analysis software (e.g. R)
- Check model fit to the data
- 4 Statistical inference : hypothesis testing, confidence intervals ...

Linear Regression

del specification 1 Introduction

Inference on the model parameter

One factor ANOVA

One factor ANOVA

Linear Regression
 Model specification
 Estimation
 Goodness of fit
 Inference on the model parameters

3 ANalysis Of VAriance (ANOVA) One factor ANOVA 2-way ANOVA

Linear Regression Model specification

1 Introduction

Goodness of fit Inference on the model parameters

> 2 Linear Regression Model specification

> > Estimation
> > Goodness of fit
> > Inference on the model paral

3 ANalysis Of VAriance (ANOVA)

One factor ANOVA 2-way ANOVA

Regression

Model specification

Estimation

Goodness of

Inference on the

....

ANOVA

ANOVA

One factor ANOVA

Example: blood pressure and age

- n = 29 data points (samples)
- n measures of blood pressure $y_1, ..., y_i, ..., y_n$
- n values $x_1, ..., x_i, ..., x_n$ for the age at measurement

Model specification

Goodness of fit Inference on the

model paramete

One factor ANOVA

Linear relationship between y et x

The general equation of a line is :

$$y \approx \beta_1 + \beta_2 x$$

leads to the simple regression model :

$$y_i = \beta_1 + \beta_2 x_i + e_i$$

we want the errors e_i to be as small as possible (minimize $Var(e_i) = \sigma^2$).

1 Introduction Estimation

2 Linear Regression

Model specification

Estimation

3 ANalysis Of VAriance (ANOVA)

Parameter estimation: least squares

• Compute estimates $\hat{\beta}$ of parameters s β That minimize the sum of squared differences between observations and fitted values:

$$\min_{\hat{\beta}_1, \hat{\beta}_2} \sum_{i=1}^n (y_i - \hat{\beta}_1 - \hat{\beta}_2 x_i)^2$$

• The estimate $\hat{\sigma}^2$ of σ^2 is simply

$$\hat{\sigma}^2 = \frac{\sum_{i} (y_i - \hat{\beta}_1 - \hat{\beta}_2 x_i)^2}{n - 2}$$

Regression Model specification

Model specification

Inference on the model parameters

ANOV

One factor ANOVA 2-way ANOVA

Parameter estimation: maximum likelihood

- Principle: Find parameter values that make the observations the most likely. Requires to speicify the joint pdf of the observations
- $\hat{\beta}$ and $\hat{\sigma}^2$ such that $\max(\log) f(y; \beta, \sigma^2)$ seen as a function of the parameters :

$$\max L(\beta, \sigma^2; y)$$

L is the likelihood function.

• It can be shown that the least square estimates of β is the same as the Maximum Likelihood Estimates (MLE)

$$f(y_i; \beta_1, \beta_2, \sigma^2) = \frac{1}{\sqrt{(2\pi)\sigma}} \exp\left\{-\frac{1}{2\sigma^2}(y_i - \beta_1 - \beta_2 x_i)^2\right\}$$

Results of model fit

Estimates of the parameters $\,\hat{\beta},\,\hat{\sigma}^2$ of $\,\beta$ and $\,\sigma^2$ resp.

fitted values of the observations $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$ Residuals (calculated) $\hat{e}_i = y_i - \hat{y}_i$ All of these are only function of the data y_i and x_i

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \mu \\ \beta \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ \vdots \\ e_n \end{bmatrix}$$

$$\mathbf{Y} = \mathbf{X}\beta + \mathbf{e}$$

Results of model fit.

Estimates of the parameters $\hat{\beta}$, $\hat{\sigma}^2$ of β and σ^2 resp.

fitted values of the observations $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$ Residuals (calculated) $\hat{e}_i = y_i - \hat{y}_i$ All of these are only function of the data y_i and x_i

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \mu \\ \beta \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ \vdots \\ e_n \end{bmatrix}$$

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

$$\hat{\beta} = (\mathbf{X}^{\mathbf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathbf{T}}\mathbf{Y}$$

Estimation

Estimates of the parameters $\hat{\beta}$, $\hat{\sigma}^2$ of β and σ^2 resp.

fitted values of the observations $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$ Residuals (calculated) $\hat{e}_i = y_i - \hat{y}_i$

All of these are only function of the data y_i and x_i

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \mu \\ \beta \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ \vdots \\ e_n \end{bmatrix}$$

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

$$\hat{\beta} = (\mathbf{X}^{\mathbf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathbf{T}}\mathbf{Y}$$

$$\widehat{\mathbf{Y}} = \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X} (\mathbf{X}^{\mathbf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathbf{T}} \mathbf{Y}$$

Regression

Estimation

Goodness of fit

Inference on the model parameters

One factor ANOVA

Estimates of the parameters $\hat{\beta}$, $\hat{\sigma}^2$ of β and σ^2 resp.

fitted values of the observations $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$ Residuals (calculated) $\hat{e}_i = y_i - \hat{y}_i$

All of these are only function of the data y_i and x_i

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \\ \vdots \\ \mathbf{y}_n \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{x}_1 \\ \vdots & \vdots \\ 1 & \mathbf{x}_n \end{bmatrix} \begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{\beta} \end{bmatrix} + \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \\ \vdots \\ \mathbf{e}_n \end{bmatrix}$$

$$\mathbf{Y} = \mathbf{X}\beta + \mathbf{e}$$

$$\hat{\beta} = (\mathbf{X}^{\mathbf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathbf{T}}\mathbf{Y}$$

$$\widehat{\mathbf{Y}} = \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X} (\mathbf{X}^{\mathbf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathbf{T}} \mathbf{Y}$$

$$\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$$

H Hat matrix (puts a hat on Y)

Estimation

Estimates of the parameters $\hat{\beta}$, $\hat{\sigma}^2$ of β and σ^2 resp.

fitted values of the observations $\hat{\mathbf{y}}_i = \hat{\beta}_1 + \hat{\beta}_2 \mathbf{x}_i$ Residuals (calculated) $\hat{e}_i = y_i - \hat{y}_i$

All of these are only function of the data y_i and x_i

The matrix $\mathbf{X}^{T}\mathbf{X}$ must be invertible.

When the number of covariates is very large (multiple regression), colinearity beween covriates can lead to un-invertible matrices. This leads to problems in parameter estimates (invalid values, very large standard errors) ...

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \mu \\ \beta \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ \vdots \\ e_n \end{bmatrix}$$

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

$$\hat{\beta} = (\mathbf{X}^{\mathbf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathbf{T}}\mathbf{Y}$$

$$\widehat{\mathbf{Y}} = \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X} (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{Y}$$

$$\widehat{\boldsymbol{Y}} = \boldsymbol{H}\boldsymbol{Y}$$

H Hat matrix (puts a hat on Y)

Regression

Model specificati

Estimation

Goodness of fit Inference on the

model parameters

ANOVA

One factor ANOVA

```
Fitting a linear regression with R
```

```
> reg=lm(pressure~age)
```

> reg

Call:

lm(formula = pressure ~ age)

Coefficients:

(Intercept) age 97.0771 0.9493

Regression

Goodness of fit

Inference on the model parameter

ANOVA

One factor ANOVA

1 Introduction

2 Linear Regression

Model specification Estimation

Goodness of fit

Inference on the model parameters

3 ANalysis Of VAriance (ANOVA)

One factor ANOVA 2-wav ANOVA Linear Regression

Model specifica

Goodness of fit

Inference on the

model parameter

One factor ANOVA

2-way ANOVA

Criteria

- Inference is only valid if the linear model hypotheses hold :
 - Errors are Gaussian and homogeneous
 - Absence of outliers = datapoints that lie outside of the typical range of values and have a strong influence on the results
- Before making inference on the model parameters, goodness of fit of the model must be assessed

Errors are Gaussian

For a normal linear model, the error (stochastic part) is assumed to be normaly distributed

$$e_i \sim \mathcal{N}(0, \sigma^2)$$

It is also approximately true for the residuals (predictions of the errors \hat{e}).

For a Gaussian LM, the errors are **independent** and **of same variance**

A diagnostic plot consists of looking at the residuals as a function of the fitted values.

plot(fitted(reg),rstandard(reg))
abline(h=0,col=2,lwd=2)
abline(h=-1.96,col=2,lwd=2,lty=2)
abline(h=1.96,col=2,lwd=2,lty=2)

Homogeneity

Blood pressure data

Homogeneity

For a Gaussian LM, the errors are **independent** and **of same variance**

A diagnostic plot consists of looking at the residuals as a function of the fitted values.

plot(fitted(reg),rstandard(reg))
abline(h=0,col=2,lwd=2)
abline(h=-1.96,col=2,lwd=2,lty=2)
abline(h=1.96,col=2,lwd=2,lty=2)

A pathological case : quadratic term missing

Homogeneity

For a Gaussian LM, the errors are **independant** and **of same variance**

A diagnostic plot consists of looking at the residuals as a function of the fitted values.

Heterogeneous variances

One factor ANOVA

Ina linear regression, isolated points located at the extremities of the observed range of values (for a covariate) can have a strong influence on the estimation of the associated parameter: this is called the **leverage**.

The leverage score of a datapoint i is its associated entry in the hat matrix \mathbf{H} :

$$h_{ii} = (\mathbf{H})_{ii}$$

Outliers: leverage

ANOVA

One factor ANOVA 2-way ANOVA

Outliers: residual analysis

- Residuals are predictions of the errors : $Var(e_i) = \sigma^2$ but $Var(\hat{e}_i) = \sigma^2(1 h_{ii})$
- Stadardized residuals (R rstandard):

$$r_i = \frac{\hat{\mathsf{e}}_i}{\hat{\sigma}\sqrt{(1-h_{ii})}}$$

Studentized residuals (R rstudent):

$$t_i = \frac{\hat{\mathbf{e}}_i}{\hat{\sigma}_{(i)}\sqrt{(1-h_{ii})}} \sim t_{n-3}$$

where $\hat{\sigma}_{(i)}$ is an estimation of σ not using the ith data point.

The outlier status of a datapoint can therefore be formally tested $H_0: t_i \sim t_{n-3}$

Regression

Model specification Estimation

Goodness of fit

Inference on the

model parameter

One factor ANOVA

Goodness of fit: recap

most of these diagnostics are available in R, using the plot function on an R object created with the lm function (e.g. plot(reg, which=1:6))

Inference on the

model parameters

Introduction

2 Linear Regression

Model specification

Inference on the model parameters

3 ANalysis Of VAriance (ANOVA)

Inference on the model parameters

Properties of the estimators

In a normal linear models, the estimators $\hat{\beta}$ are Gaussian and unbiases $(E(\hat{\beta}) = \beta)$. Then:

$$rac{\hat{eta}-eta}{\sqrt{\widehat{Var}(\hat{eta})}}\sim t_{n-2}$$

A student's t-distribution with (n-p) degrees of freedom, where p is the number of parameters in the model. This can be used to test the hypothesis $H_0: \beta = 0$, and construct confidence intervals for β (the parameter) :

$$\left[\hat{eta} \pm t_{lpha/2; extit{n}-2} \, \sqrt(\hat{ extit{Var}}(\hat{eta}))
ight]$$

ANOVA

One factor ANOVA 2-way ANOVA

Hypothesis testing

- Test $H_0: \beta_2 = 0$ (slope is null); or $H_0: \beta_1 = 0$ (intercept is zero)
- Test statistic $\frac{\hat{\beta}}{\sqrt{(\hat{V}ar(\hat{\beta}))}}$ which under H_0 follows a t_{n-2} distribution
- Equivalent to asking whether the confidence interval around β for a given type I error includes 0.
- For categorical variables (ANOVA, we'll get to it in a moment), the test is a compound of multiple hypothesis and the Fisher test is used.

Inference on the model parameters

> summary(reg)

Call:

lm(formula = pressure ~ age)

Residuals:

10 Median 30 Min Max -19.354 -4.797 1.254 4.747 21.153

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 97.0771 5.5276 17.562 2.67e-16 *** age 0.9493 0.1161 8.174 8.88e-09 ***

Residual standard error: 9.563 on 27 degrees of freedom Multiple R-squared: 0.7122, Adjusted R-squared: 0.7015 F-statistic: 66.81 on 1 and 27 DF, p-value: 8.876e-09

> confint(reg)

2.5 % 97.5 % (Intercept) 85.7354850 108.418684 0.7110137 1.187631 age

ANOVA

- - Model specification
- 3 ANalysis Of VAriance (ANOVA) One factor ANOVA 2-way ANOVA

Model specification

ANOVA

Classes of Linear Models

Response	Predictors	Model
Continuous	Binary	t-test
Unique	Categorical	ANOVA
	Continue	Regression (can be multiple)
	Categorical + continue	multiple regression

One factor ANOVA

1 Introduction

2 Linear Regression

Model specification

3 ANalysis Of VAriance (ANOVA) One factor ANOVA

Example : expression of gene BMP15 in ovarian cells

- response variable : expression level (RNA transcription)
- Cofactor: cellular developmentalstage (successively PD, PM, SC, SA)
- For each stage i, we have n_i observations $y_{i,1}, y_{i,2}, ... y_{i,n_i}$

One factor ANOVA

Modèle

$$y_{ij} = \mu_i + e_{ij}$$

 $j = 1, ... n_i$ within-cell index i = 1, ...p cell index (level of the cofactor) p = 4 for BMP15 data Nomral linear model hypothesis = errors are i.i.d :

$$e_{ij} \sim N(0, \sigma^2)$$

> table(bmp15\$stade) PD PM SC SA 8 8

Consider the following model:

$$y_{ij} = \beta_1 x_{ij}^1 + \dots + \beta_6 x_{ij}^6 + e_{ij}$$

where

- $x_{ii}^s = 1$ if i = s (data is observed at stage s)
- $x_{ii}^s = 0$ otherwise.

measures the mean expression level in stage s.

It is a multiple regression model, where β_s

L'ANOVA shares with the multiple regression model

- Estimation procedures (least squares, ML)
- Goodness-of-fit diagnostics

stade expression PD 0.71448438 PD 0.70767961 PD 0.09622651 PM 0.95497190 PM 1.48774379 PM 1.76053135

	stadePD	stadePM	stadeSC	stadeSA
1	1	0	0	0
2	1	0	0	0
3	1	0	0	0
4	0	1	0	0
5	0	1	0	0
6	0	1	0	0

. . .

. . .

B. Servin

Model fitting in R

> head(model.matrix(anov.1))

One factor ANOVA

Coefficients:

> summary(anov.1)

Estimate Std. Error t value Pr(>|t|)

stadeSC

stadeSA

. . .

(Intercept) 0.2879 stadePM

0.6549

0.8674

> anov.1=lm(expression~stade,data=bmp15)

0.3177

0.9928 0.3177

This is the default parameterization in R.

Paramétrisation avec une cellule de référence

0.2320

0.3177

1.241

2.061

2.730

• μ_1 mean of observations in a reference cell (control level)

3,125

0.00422 **

0.22532

0.04902 *

0.01101 *

 $\mu_i = \mu_1 + a_i$

• $a_i = \mu_i - \mu_1$ difference between mean of cell i to the reference cell (for i > 1)

. . .

←□ → ←□ → ← = → ← = →

(Intercept) stadePM stadeSC stadeSA

0

0

0

Introduction

Regression

Estimation

Goodness of fit

Inference on the model parameters

One factor ANOVA

One factor ANOVA

. . .

Another possible parameterization

Une moyenne par niveau : $\mu_1, ..., \mu_p$

```
> anov.2=lm(expression ~ -1 + stade,data=bmp15)
> ## also anov.2=lm(expression ~ 0 + stade,data=bmp15)
> summary(anov.2)
. . .
Coefficients:
        Estimate Std. Error t value Pr(>|t|)
stadePD
         0.2879
                     0.2320
                            1.241 0.225317
stadePM
         0.9428
                     0.2170
                            4.344 0.000177 ***
stadeSC
        1.1553
                     0.2170
                            5.323 1.28e-05 ***
stadeSA
          1.2807
                     0.2170
                              5.901 2.75e-06 ***
```

$$y_{ij} = \mu_i + e_{ij}$$

Introduction

Linear

Model specificat

Goodness of

Inference on the model parameter

ANOV

One factor ANOVA

2-way ANOVA

Parameter estimation

- Least squares or maximum likelihood
- $\hat{\mu}_i = \bar{y}_{i\bullet}$ mean of observations in cell i
- $Var(\hat{\mu}_i) = \sigma^2/n_i$: the variance in the estimate of μ is inversely proportional to the number of observations in cell i. (= the *precision* is proportional to n_i).

One factor ANOVA

Testing the cofactor effect: Fisher test

- Involves testing the global hypothesis : $H_0: \mu_1 = \dots = \mu_p$ ou $H_0: a_2 = ... = a_p = 0$, all levels have the same mean
- $H_1:?$
- Adding a cofactor effect involves a decomposition of the totale variance $\sum (y_{ii} - \bar{y})^2$ into
 - variance due to differences between level means : " $\sum (a_i - \mu)^2$ "
 - Variation within levels :

"
$$\sum (y_{ij} - a_i)^2$$
"


```
> sum((expression-mean(expression))^2)
[1] 14,44973
```

> anova(anov.1) Analysis of Variance Table

Response: expression

Sum Sq Mean Sq F value Pr(>F) 4.2756 1.42519 3.7822 0.02189 stade

Residuals 27 10.1741 0.37682

Testing level means : the Tukey HSD test

- Another possible approach : perform all possible pairwise comparisons between factor levels
- Test $\mu_i = \mu_j \forall (i,j)$
- Tukey's Honestly Significant Difference Test
- Corrects for multiple testing
- Usually associated with Compact Letter Display to highlight significant differences

Black dots represent raw data. Red dots and error bars represent (estimated marginal) means ± 95% confidence interval per group. Means not sharing any letter are significantly different by the Tukev-test at the 5% level of significance.

1 Introduction

2 Linear Regression

Model specification

3 ANalysis Of VAriance (ANOVA)

2-way ANOVA

	Facteur 2				
Facteur 1	1		j		p
1					
i			${y_{ijk}}_{k=1,\dots n_{ij}}$		
а					

 n_{ij} observations for levels i of the first factor and jof the second factor (cell)ij).

2-way ANOVA

Example accouting for cell type (Granulosa, Oocyte)

$$y_{ijk} = \mu_{ij} + e_{ijk}$$

 $e_{iik} \sim N(0, \sigma^2)$ iid

$$i = 1, ..., p$$

$$j = 1, ..., q$$

$$k = 1, ..., n_{ij}$$

			α_1
	μ_{ij}		α_i
			α_{p}
β_1	β_i	$\beta_{\mathbf{q}}$	

$$\mu_{ij} = \alpha_i + \beta_i : p + q$$
 parameters

Additive Model

> anova(anov.2) Analysis of Variance Table

Response: expression

Df Sum Sq Mean Sq F value Pr(>F) stade 3 4.2756 1.4252 9.4494 0.0002144

6.2527 41.4571 8.017e-07 type 1 6.2527

Residuals 26 3.9214 0.1508 Estimation

Goodness of fit

Inference on the model parameters

ANOVA

One factor ANOVA

2-way ANOVA

Interaction Model

$$y_{ijk} = \mu_{ij} + e_{ijk}$$

 $e_{ijk} \sim N(0, \sigma^2)$ iid
 $i = 1, ..., p$
 $j = 1, ..., q$
 $k = 1, ..., n_{ij}$

			α_1
	μ_{ij}		α_i
			α_{p}
β_1	β_j	β_q	

$$\mu_{ij} = \alpha_i + \beta_j + \gamma_{ij} : p \times q$$
 paramètres

> anova(anov.3)
Analysis of Variance Table

Response: expression

Df Sum Sq Mean Sq F value Pr(>F)
stade 3 4.2756 1.4252 10.517 0.0001502
type 1 6.2527 6.2527 46.140 6.293e-07
stade:type 3 0.8045 0.2682 1.979 0.14524

Residuals 23 3.1169 0.1355

Type I, II and III sums of squares

When the data are unbalanced, there are different ways to compute sums of squares, and therefore test for the effect of a factor :

Type I "Sequential" sums of squares

The results depend on the order the factors appear in the model

- SS(A) for factor A , SS(B|A) for factor B, SS(AB|A,B) for interaction AB
- Default in R.

Linear Regression

Model specification Estimation Goodness of fit

Inference on the model parameters

ANOVA

One factor ANOVA

2-way ANOVA

Type I, II and III sums of squares

When the data are unbalanced, there are different ways to compute sums of squares, and therefore test for the effect of a factor :

Type II conditional, no interaction

Tests for each main effect after the other factor

- SS(A|B) for factor A SS(B|A) for factor B
- ullet Assumes no interaction so should only be used if SS(AB|A,B) is not significant
 - Default in python statsmodel

ANOVA

2-way ANOVA

Type I, II and III sums of squares

When the data are unbalanced, there are different ways to compute sums of squares, and therefore test for the effect of a factor :

Type III, conditional, with interaction

Tests for the presence of a main effect after the other factor and the interaction

- SS(A|B,AB) for factor A, SS(B|A,AB) for factor B
- If interactions are not significant, use type II, otherwise type III.
- Default in SAS

B. Servin

Introduction

Linear Regression

Model specification Estimation

Goodness of f

Inference on the

model parameters

One factor ANOVA

One factor ANOVA

2-way ANOVA

```
Type I, II and III sums of squares
```

```
> anov.tvpeI.1 = lm(expression ~stade*tvpe, data=bmp15)
> anova(anov.tvpeI.1)
                                                              > options(contrasts=c("contr.sum", "contr.poly"))
          Df Sum Sq Mean Sq F value
                                                              > anov.typeIII = lm(expression ~stade*type, data=bmp15)
           3 4.2756 1.4252 10.517 0.0001502 ***
stade
                                                              > drop1(anov.typeIII,.~., test='F')
           1 6.2527 6.2527 46.140 6.293e-07 ***
type
                                                              Single term deletions
stade:type 3 0.8045 0.2682
                              1.979 0.1452498
Residuals 23 3.1169 0.1355
                                                              Model:
                                                              expression ~ stade * type
> anov.typeI.2 = lm(expression ~type*stade, data=bmp15)
                                                                         Df Sum of Sa
                                                                                                 AIC F value
                                                                                                                Pr(>F)
                                                                                         RSS
> anova(anov.typeI.2)
                                                                                      3.1169 -55.212
                                                              <none>
          Df Sum Sg Mean Sg F value
                                                                               3.9752 7.0921 -35.725 9.7778 0.0002387 ***
                                                              stade
           1 6.8262 6.8262 50.3720 3.138e-07 ***
type
                                                                               5.9715 9.0884 -24.037 44.0650 8.996e-07 ***
                                                              type
           3 3.7021 1.2340 9.1061 0.0003698 ***
stade
type:stade 3 0.8045 0.2682 1.9790 0.1452498
                                                              stade:type 3
                                                                               0.8045 3.9214 -54.094 1.9790 0.1452498
Residuals 23 3.1169 0.1355
```