Spatial Data to Predict Demand

Generating Synthetic Geospatial Data

Manish Bilore M.Tech IIT B

Objective

- Analyze and predict urban rideshare demand
- Use spatial and temporal models
- Leverage
 - Spatial Autocorrelation,
 - Random Forest techniques

Step 01 Data Loading and Preprocessing

Step 02 Predictive Model Development

Step 03 Visualization and Interpretability

Input: Raw urban Point data.

Process:

- Load datasets for rideshare demand
- Data cleaning:
- Feature engineering:
 - a. Add time-related features (hour, day, etc.) and
 - b. Spatial features (H3 grid encoding).

Output: Cleaned and feature-enriched dataset.

Input: Preprocessed dataset
Process:

- Split data into training, validation, and test sets
- Train predictive models
- Hyperparameter tuning for optimal model performance
- Evaluate model performance using metrics

Output: Trained and validated predictive models.

Input: Model predictions and dataset **Process:**

- Spatial visualizations of demand
- Interactive H3 grids
- Feature importance visualizations
- Build heatmap of temporal trend

Output: Interactive and static visualizations, actionable insights.

Methodology - Overall workflow

Random Forest Analysis

Using Spatial data to Predict Bike Rideshare demand

Single Decision Tree from Random Forest

OOB Error vs. Number of Trees

Predictive Model using Random Forest

RMSE of Predictions: 0.1323

Key Challenge

- Data availability
- Solution Generation of Synthetic Data

Generating Synthetic Geospatial Data

Synthetic != Fake

Step 1 Setup and Preparation	Step 2 Generate KDE	Step 3 Spatial Autocorrelation	Step 4 Generate Trip Data	Step 5 Validation and Output
Load district polygon and Point of Interest (POI) layers (e.g., bus	Combine Influence Points by merging POI layers into a single	Calculate Moran's I Use K-nearest	On synthetic points perform KDE and normalise the values	Verify Spatial Autocorrelation
stops, shops). Clean and dissolve	influence layer Generate Kernel	neighbors for spatial weights	Define trip start and end points based on	Calculate Moran's I for start and end points
duplicate POIs.	Density Estimation (KDE) to create spatial	Assess spatial autocorrelation of	KDE weights	Export synthetic trip data as CSV
Transform layers to a common CRS (UTM	influence weights.	sampled points	Avoid self-loops (start = end)	
Zone 43N).	Normalize KDE values for probabilistic sampling		Add travel times and timestamps	

Synthetic Data generation workflow

Random Points populated within Bandra

Legend

Random Points

Buffer Zones Around Bus Stops in Bandra

Visualization of 235-meter buffer zones around bus stops

Points within buffer receive additional weight simulating higher activity/influence

Legend Buffer

Bus Stops

Selected points based on the weighted KDE probabilities Generated points from the KDE surface using a Poisson point process 19.09°N 19.08°N 19.07°N 19.06°N Legend Selected Points 19.05°N

1000 m

Create a clustered pattern around high KDE regions

72.820°E 72.825°E 72.830°E 72.835°E 72.840°E

Longitude

Latitude

19.04°N

Nature of Generated Data

Spatial Autocorrelation

Relationship between spatial locations and their attribute values

Moran's I is a measure used to assess spatial autocorrelation

Positive spatial autocorrelation:

Nearby locations have similar values

clustered patterns like high-high or low-low

Negative spatial autocorrelation:

Nearby locations have dissimilar values

high-low or low-high patterns

No spatial autocorrelation

Values are randomly distributed across space

Moran's I statistic for the generated data			
standard deviate	4.3842		
p-value	5.82e-06		
alternative hypothesis	greater		
Moran I statistic	0.0943549750		
Expectation	-0.0010482180		
Variance	0.0004735254		

Summary

- Realistic Data Generation:
 - KDE weighting ensured trip aligned with urban hotspots
- Spatially Informed Modeling:
 - Spatial models captured influence of spatial lag
 - ML predictions based on spatial and temporal features
- Validation and Insights:
 - Moran's I metrics confirmed the reliability of model

Future work

- Scale the operation from one day to one year:
 - Add weather data and compare with field data
- Compare other ML models
 - Identify best performing model

