

Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA MECÂNICA

ES664 - Laboratório de Eletrônica para Automação Industrial

Relatório - Simulação 5 Acionamento de motor de indução

Nome:
Daniel Dello Russo Oliveira
Marcelli Tiemi Kian

RA101918
117892

1 Objetivos

Essa simulação tem como objetivo o estudo dos motores de indução assíncrono trifásico e seu acionamento através da estratégia de controle V-Hz.

2 Simualações

Utilizamos o bloco AC2 do Simulink para simular a estratégia de controle V-Hz para um motor AC. Ajustamos os parâmetros do motor de acordo com o roteiro e conectamos a saída de medição da corrente em uma fase do estator a um bloco PLL para medição de frequência, afim de determinar a frequência síncrona do motor e consequentemente o slip. A entrada do bloco AC2 foi uma velocidade de referência constante de 1500rpm e um degrau no torque de referência que varia de 1 para $5.5N\cdot m$ no segundo 6. O esquema da simulação está apresentado na figura 1.

Figura 1: Esquemático da primeira simulação

Para o cálculo do slip do motor sabemos que:

$$s = \frac{n_s - n_r}{ns} \tag{1}$$

Onde n_s é a velocidade síncrona (velocidade do campo magnético) e n_r é a velocidade do rotor. Sabemos também que:

$$n_s = \frac{2f}{p} \tag{2}$$

Onde p é o número de pólos e f é a frequência da corrente elétrica passando pelo estator (devemos lembrar que essa não é a mesma frequência de nossa fonte pois no controle V-Hz utilizamos um inversor de frequência). Encontramos então f medindo a frequência da corrente de uma fase no estator através de um bloco

PLL (ao comparar a curva de saída do PLL e a curva de referência em frequência do controlador vimos que as duas são praticamente idênticas então acreditamos que o bloco está configurado corretamente).

Simulamos nosso sistema e encontramos as curvas de corrente na fase A no estator, torque eletromagnético e velocidade no rotor (comparando com o sinal de referência de entrada e do controlador) e a curva que relaciona o torque eletromagnético com o escorregamento, conforme pode ser visto na figura 2

Figura 2: Curvas de resposta para primeira simulação

Podemos ver que o controle apresentou um resultado não muito agradável. Ao controlar isoladamente a velocidade do motor conseguimos atingir o valor desejado em aproximadamente 4 segundos, nessa marca também ajustamos o torque para que ele se aproxime do torque desejado. Porém ao mudar a referência de torque, nosso controlador não foi capaz de manter a curva de velocidade no valor desejado enquanto perseguia o degrau no torque. Devemos levar em

consideração que o controlador apresentado não foi dimensionado para o motor simulado, fator que afeta sua performance, uma vez que alteramos os parâmetros do motor sem mexer no controlador.

Mudamos então os sinais de referência para uma rampa que se inicializa no segundo 1 e vai de 0 a 1500rpm em 3 segundos para a velocidade e um degrau de vai de 0 para $1N \cdot m$ no segundo 6 para o torque, conforme apresentado na figura 3.

Figura 3: Esquemático da segunda simulação

Simulamos nosso sistema e encontramos as curvas de corrente na fase A no estator, torque eletromagnético e velocidade no rotor (comparando com o sinal de referência de entrada e do controlador) e a curva que relaciona o torque eletromagnético com o escorregamento, conforme pode ser visto na figura 4

Figura 4: Curvas de resposta para segunda simulação

Podemos ver que nosso controlador seguiu perfeitamente a rampa de velocidade, porém a curva de torque não foi muito respeitada. Durante o período de aceleração o torque está longe do desejado o controle só passa a fazer efeito quando a velocidade está estável, nesses momentos nosso controlador apresentou um erro estacionário de aproximadamente $1N\cdot m$.

3 Questões

3.1 Efeito do campo girante em máquinas de indução assíncronas trifásicas

Conforme detalhado em [IMAJEY, 2013], a corrente passando pelas bobinas do estator gera um campo magnético, cada fase do nosso sistema trifásico gera en-

tão um campo magnético que varia com o tempo. O campo magnético resultante da soma de todas as fases é um campo de intensidade constante mas orientação variável (cuja velocidade de rotação é chamada de frequência síncrona), o chamado campo girante. O campo girante provoca por sua vez o surgimento de uma corrente no rotor. Essa corrente induzida no rotor gera um fluxo no entreferro, que gira com a mesma velocidade do rotor, e a interação entre os fluxos causa o torque no sistema. Caso a velocidade do rotor e o fluxo gerado pelo estator possuíssem a mesma frequência, não existiria corrente induzida, logo a velocidade do rotor sempre seria menor do que a frequência síncrona. A diferença entre as velocidades do fluxo gerado no estator e a velocidade do rotor é chamada de escorregamento.

- 3.2 Diagrama de blocos da estratégia de controle V-Hz
- 3.3 Controle escalar vantagens e desvantagens
- 3.4 Controle vetorial

4 Referências

[IMAJEY, 2013] IMAJEY, 2013. Learn engineering: Understanding rotating magnetic field synchronous speed. http://www.learnengineering.org/2013/08/rotating-magnetic-field-synchronous-speed.html.