The quantitative rules

Proof of 2.19

Credit to atwwgb

Continuing to get 2.19 from 2.18:

We have then G(x,y)G(y,z)=P(x,z). Pick any fixed z. Denote P(x,z)=A(x) and G(y,z)=B(y). Then $G(x,y)=\frac{A(x)}{B(y)}$ [and $G(y,z)=\frac{A(y)}{B(z)}$].

Plug this in to G(x,y)G(y,z)=P(x,z) to get $\frac{A(x)A(y)}{B(y)B(z)}=P(x,z)$. So A(y)/B(y) is independent of y, so is constant equal to r. This means

$$G(x,y) = \frac{A(x)}{B(y)} = \frac{A(x)A(y)}{A(y)B(y)} = r\frac{A(x)}{A(y)}$$

Brief explanation of the overall line of reasoning on from 2.45 to 2.58

TODO

Proof of Equation 2.50

Source: stackexchange, I've reworded it and added detail to (hopefully) make it clearer.

We will use the Taylor series approximation, which is an approximation of f(t) around the point a:

$$f(t) = f(a) + f'(a)(t - a) + O((t - a)^2)$$

Big O notation is described on Wikipedia.

The proof:

Letting $\delta = e^{-q}$, we have from (2.48):

$$S(y) = S\left[\frac{S(x)}{1-\delta}\right]$$

We then use a Taylor series approximation of the function $f(\delta) = \frac{1}{1-\delta}$ around with a = 0.

$$S(y) = S[S(x)(1 + \delta + O(\delta^2))]$$

$$S(y) = S[S(x) + S(x)\delta + S(x)O(\delta^{2})]$$

Now we want to get rid of the S[] surrounding the equation, so we will use another Taylor approximation of the function S(t). We approximate around the point a = S(x).

This gives us the approximation of S(t) as:

$$S(t) = S[S(x)] + S'[S(x)](t - S(x)) + O((t - S(x))^{2})$$

Letting $t = S(x) + S(x)\delta + S(x)O(\delta^2)$

$$S[S(x) + S(x)\delta + S(x)O(\delta^{2})] = S[S(x)] + S'[S(x)](S(x)\delta + S(x)O(\delta^{2})) + O((S(x)\delta + S(x)O(\delta^{2}))^{2})$$

$$S[S(x) + S(x)\delta + S(x)O(\delta^{2})] = S[S(x)] + S'[S(x)]S(x)\delta + S'[S(x)]S(x)O(\delta^{2}) + O((S(x)\delta + S(x)O(\delta^{2}))^{2})$$

With big O notation we can get rid of constant factors:

$$S[S(x) + S(x)\delta + S(x)O(\delta^2)] = S[S(x)] + S'[S(x)]S(x)\delta + O(\delta^2) + O((\delta + O(\delta^2))^2)$$

With big O notation we can also get rid terms that drop asymptotically faster than the largest term.

$$S[S(x) + S(x)\delta + S(x)O(\delta^{2})] = S[S(x)] + S'[S(x)]S(x)\delta + O(\delta^{2})$$

Explanation of 2.52, 2.53

TODO

Proof of 2.57

TODO

Proof of 2.58

Exercise 2.1

I think this problem is ambiguous and can be interpreted in multiple ways, see here for a different interpretation. But I think the following interpretation makes more sense.

With X representing any background information:

$$\begin{split} p(C|(A+B)X) &= \frac{p(A+B|CX)p(C|X)}{p(A+B|X)} \\ &= \frac{(p(A|CX) + p(B|CX) - p(AB|CX))p(C|X)}{p(A|X) + p(B|X) - p(AB|X)} \\ &= \frac{p(AC|X) + p(BC|X) - p(ABC|X)}{p(A|X) + p(B|X) - p(AB|X)} \end{split}$$

Exercise 2.2

TODO

Exercise 2.3

TODO