

Plano de Ensino para o Ano Letivo de 2021

IDENTIFICAÇÃO							
Disciplina:					Código da Disciplina:		
Pontes					ETC327		
Course:				Į.			
BRIDGES							
Materia:							
Periodicidade: Anual	Carga horária total:	80	Carga horária	semanal:	00 - 02 - 00		
Curso/Habilitação/Ênfase:			Séri	e: F	Período:		
Engenharia Civil			6	1	Noturno		
Engenharia Civil			5		Diurno		
Engenharia Civil			5	1	Noturno		
Professor Responsável:		Titulação - Graduaç	ão		Pós-Graduação		
Sander David Cardoso Júnior		Engenheiro Civ	il		Mestre		
Professores:		Titulação - Graduaç	ção		Pós-Graduação		
Sander David Cardoso Júnior	Engenheiro Civil			Mestre			
	MODALI	IDADE DE ENSI	NO				

Presencial: 0%

Mediada por tecnologia: 100%

* Em qualquer modalidade a entrega de atividades e trabalhos deve ser realizada segundo orientações do professor da disciplina.

ATIVIDADES DE EXTENSÃO

- Projeto: 10%

EMENTA

Introdução: evolução histórica das pontes. Sistemas estruturais e Métodos construtivos em pontes, superestrutura, mesoestrutura e infraestrutura. Tipos estruturais. Noções de concepção. Materiais de construção. Comportamento estrutural e teorias de cálculo. Pontes em viga simples e múltiplas. Estruturas de concreto protendido. Representação da protensão no projeto. Projeto de uma superestrutura em grelha com vigas protendidas. Mesoestrutura e infraestruturas de pontes. Dimensionamento de aparelhos de apoio.

SYLLABUS

evolution of bridges. Introduction: historical Structural systems Constructive methods in bridges, superstructure, and infrastructure. Structural types. Design notions. Construction Materials. Structural behavior and calculation theories. Single and multiple beam bridges. Precast concrete structures. Representation of the prestressing in the project. Design of a grid superstructure with prestressed beams. Mesostructure and infrastructures of bridges. Dimensioning of support devices.

2021-ETC327 página 1 de 8

TEMARIO

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Matemática: Conceitos de Derivada e Integral;

Física: Conceitos de estática, composição e projeção de forças;

Materiais de Construção: Características fisícas dos materiais de construção; Resistência dos Materiais: Conceito de características geométricas de seções transversais, ações externas, diagramas de esforços solicitantes e tensões; Teoria das Estruturas: Conhecimento sobre comportamento de estruturas sob ação de cargas móveis, linhas de influência, determinação de esforços solicitantes; Mecânica dos solos, Fundações e Obras de Terra: Conceitos sobre capacidade de resistência do solo, empuxos de terra, recalques de fundação;

Concreto Armado e Concreto Protendido: Conhecimento sobre deformabilidade das estruturas de concreto, dimensionamento de seções das peças e detalhes construtivos;

Estradas: Definição de larguras, superelevações, cargas móveis, gabaritos urbanos e de estradas e elementos de segurança;

Portos, Rios e Canais: Conhecimento sobre o efeito da correnteza sobre fundações dentro da água, proteção nas margens contra o efeito das ondas.

COMPETÊNCIAS DESENVOLVIDAS NA DISCIPLINA

COMPETÊNCIA 1:

- Conhecer o comportamento de estruturas sob ação de grandes solicitações;- Compreender e aplicar as normas e critérios de cálculos para obras de arte

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Conhecimentos:

- C1 Evolução histórica;
- C2 Implantação de obras de arte;
- C3 Classificação de sistemas estruturais;
- C4 Definição de partes componentes;
- C5 Características geométricas;
- C6 Tipos de superestrutura;
- C7 Tipos de meso e infraestrutura;
- C8 Normas e critérios de cálculo;
- C9 Métodos Construtivos de pontes

Habilidades:

- H1 Implantar obras de arte nas vias de comunicação para transpor os mais variados tipos de obstáculos;
- H2 Conhecer o comportamento de estruturas sob ação de grandes solicitações;
- H3 Projetar obras de arte de acordo com finalidade especifica;
- H4 Avaliar a viabilidade econômica e técnica na implantação de obras de arte. Atitudes:
- Al- Responsabilizar-se pela segurança de obras, tanto no projeto como na execução;
- A2 Buscar aperfeiçoamento tecnológico, tanto em projeto como em construção;
- A3 Preocupar-se com os impactos ambientais produzidos pela implantação de obras de arte.

2021-ETC327 página 2 de 8

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Exercício - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Project Based Learning
- Peer Instruction (Ensino por pares)

METODOLOGIA DIDÁTICA

As aulas teóricas são expositivas com utilização dos recursos de multimídia e discussão de alternativas de solução para casos concretos de projeto;
As aulas práticas são complementadas com execução de exercícios e projetos que são desenvolvidos com acompanhamento direto do professor. Visitas técnicas a obras

INSTRUMENTOS DE AVALIAÇÃO

NENHUM INSTRUMENTO DE AVALIACAO FOI ADICIONADA.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014) e CRITÉRIOS DE APROVAÇÃO

Disciplina anual, com trabalhos e provas (duas e uma substitutiva).

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0$

Peso de $MP(k_p)$: 0,7 Peso de $MT(k_p)$: 0,3

INFORMAÇÕES SOBRE INSTRUMENTOS DE AVALIAÇÃO

CONTRIBUIÇÃO DA DISCIPLINA

O projeto de pontes permite ao aluno aplicar na prática os conhecimentos adquiridos nas disciplinas de Topografia, Materiais de Construção, Resistência dos Materiais, Teoria das Estruturas, Mecânica dos Solos, Fundações, Concreto Armado e Protendido, Estruturas de Madeira, Estruturas Metálicas, Rodovias, Portos, Rios e Canais.

Contribui para o desenvolvimento da sensibilidade para o comportamento de estruturas sob ações variáveis, envolvendo esforços solicitantes e deformações de intensidades maiores que os encontrados usualmente em edificações.

BIBLIOGRAFIA

Bibliografia Básica:

FREITAS, Moacyr de. Infra-estrutura de pontes de vigas: distribuição de ações horizontais, método geral de cálculo. São Paulo, SP: IMT/Edgard Blücher, 2001. 93 p. ISBN 85-212-0290-3.

MASON, Jayme. Pontes em concreto armado e protendido: princípios do projeto e cálculo. Rio de Janeiro, RJ: LTC, 1977. 305 p.

2021-ETC327 página 3 de 8

PFEIL, Walter. Pontes em concreto armado: elementos de projeto, solicitações, dimensionamento. Rio de Janeiro, RJ: LTC, 1979. 433 p.

Bibliografia Complementar:

LEONHARDT, Fritz; MONNIG, E. Construções de concreto. Tradução de David Fridman. Rio de Janeiro, RJ: Interciência, 1977. v. 6.

VASCONCELOS, Augusto Carlos de. Pontes brasileiras: viadutos e passarelas notáveis. São Paulo, SP: Pini, 1993. 614 p. ISBN 85-7266-021-6.

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

Ftool (https://www.ftool.com.br/Ftool/)

SECC (https://www.tqs.com.br/apps/secc/lzk6uydlyx)

PCALC (https://www.tqs.com.br/apps/p-calc/ejm1se4961)

TRUSCH(https://www.tqs.com.br/apps/t-rusch/a6q52fh86z)

SCAPE (https://www.tqs.com.br/apps/scape/6ho2q2ejzy)

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

As provas serão realizadas de forma online através Open LMS

2021-ETC327 página 4 de 8

OUTRAS INFORMAÇÕES	

2021-ETC327 página 5 de 8

APROVAÇÕES

2021-ETC327 página 6 de 8

	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana	Conceudo	EAA
1 E	Programa de Recepção e Integração dos Calouros (PRINT)	
2 E	Dia não letivo - CARNAVAL	
3 E	Introdução: Evolução histórica das pontes, Sistemas Estruturais	
J 2	empregados em pontes e definição das partes componentes	
4 E	Ações em pontes e viadutos (Superestrutura)	
5 E	Linhas de Influência para obtenção de esforços máximos e mínimos	
6 E	Cálculo de esforços solicitantes devidos a cargas móveis	
7 E	Esforços solicitantes nas vigas principais devidos às cargas	
	permanentes	
8 E	Dimensionamento à flexão simples em vigas de concreto armado com	
	verificação de fadiga	
9 E	Dimensionamento cisalhamento em vigas de concreto armado com	
	verificação de fadiga	
10 E	Avaliação Escolar da P1	
11 E	Distribuição de cargas em ponte com múltiplas longarinas e	
	transversinas intermediárias	
12 E	Distribuição de cargas em ponte com múltiplas longarinas e	
	transversinas intermediárias (Exercício carga móvel)	
13 E	Distribuição de cargas em ponte com múltiplas longarinas e	
	transversinas intermediárias (Exercício carga permanente)	
14 E	Pré-dimensionamento e traçado dos cabos para longarinas	
	protendidas	
15 E	SMILE	
16 E	Cálculo das perdas de protensão (Perdas imediatas)	
17 E	Cálculo das perdas de protensão (Perdas progressivas)	
18 E	Estado limite último para seções em concreto protendido	
	(ELU-Flexão e ELU-Cisalhamento)	
19 E	Avaliação Escolar da P2 - ENG	
20 E	Avaliação Escolar da P2 - ENG	
21 E	Atendimento aos alunos	
22 E	Avaliação Escolar da PS1	
23 E	Distribuição de cargas em ponte sem múltiplas longarinas e	
	transversinas intermediárias	
24 E	Distribuição de cargas em ponte sem múltiplas longarinas e	
	transversinas intermediárias (Exercício carga móvel)	
25 E	Distribuição de cargas em ponte sem múltiplas longarinas e	
	transversinas intermediárias (Exercício carga permanente)	
26 E	Métodos simplificados para esforços em lajes devido a cargas	
	móveis (Ábacos de Homberg)	
27 E	Dia não Letivo	
28 E	Métodos simplificados para esforços em lajes devido a cargas	
	móveis (Tabelas de Rüsch)	
29 E	Avaliação Escolar da P3	
30 E	Distribuição de esforços meso e infraestrutura (Teoria)	

2021-ETC327 página 7 de 8

INSTITUTO MAUÁ DE TECNOLOGIA

31 E	Distribuição de esforços meso e infraestrutura (Exercício - Parte				
	1)				
32 E	Distribuição de esforços meso e infraestrutura (Exercício - Parte				
	2)				
33 E	Distribuição de esforços meso e infraestrutura (Exercício - Parte				
	3)				
34 E	Dimensionamento de aparelhos de apoio de elastômero fretado				
	(Teoria)				
35 E	Dia não Letivo				
36 E	Dimensionamento de aparelhos de apoio de elastômero fretado				
	(Exercício)				
37 E	Avaliação Escolar da P4				
38 E	Avaliação Escolar da P4				
39 E	Atendimento aos alunos				
40 E	Atendimento aos alunos				
41 E	Avaliação Escolar da PS2				
Legenda	Legenda: T = Teoria, E = Exercício, L = Laboratório				

2021-ETC327 página 8 de 8