Assignment 4 Solution

Name: Yanjun Chen, PSU ID: yfc5289

Part I: Problem 1

1.

3.

5.

Part I: Problem 2


```
CREATE TABLE Character (
Char_ID INT PRIMARY KEY,
Char_name VARCHAR(100),
Char fav food VARCHAR(100)
);
CREATE TABLE Human (
Char_ID INT PRIMARY KEY,
hairstyle VARCHAR(100),
FOREIGN KEY (Char_ID) REFERENCES Character(Char_ID)
);
CREATE TABLE CGIChar (
Char_ID INT PRIMARY KEY,
type VARCHAR(100),
FOREIGN KEY (Char_ID) REFERENCES Character(Char_ID)
);
CREATE TABLE Actor (
Emp ID INT PRIMARY KEY,
Emp_name VARCHAR(100),
 samealary DECIMAL(10, 2),
 address VARCHAR(100)
);
CREATE TABLE Plays (
Emp_ID INT,
Char_ID INT,
PRIMARY KEY (Emp_ID, Char_ID),
FOREIGN KEY (Emp_ID) REFERENCES Actor(Emp_ID),
FOREIGN KEY (Char_ID) REFERENCES Character(Char_ID)
);
CREATE TABLE Credit (
CGIChar_ID INT,
Emp_ID INT,
 Role VARCHAR (100),
PRIMARY KEY (CGIChar_ID, Emp_ID),
FOREIGN KEY (CGIChar_ID) REFERENCES CGIChar(Char_ID),
FOREIGN KEY (Emp_ID) REFERENCES Actor(Emp_ID)
);
CREATE TABLE Episode (
Episode_ID INT PRIMARY KEY
);
```

```
CREATE TABLE Consists (
Episode_ID INT,
CGIChar_ID INT,
Emp_ID INT,
PRIMARY KEY (Episode_ID, CGIChar_ID, Emp_ID),
FOREIGN KEY (Episode_ID) REFERENCES Episode (Episode_ID),
FOREIGN KEY (CGIChar_ID) REFERENCES CGIChar(Char_ID),
FOREIGN KEY (Emp_ID) REFERENCES Actor(Emp_ID)
);
CREATE TABLE Appears (
Episode_ID INT,
HumanChar_ID INT,
PRIMARY KEY (Episode_ID, HumanChar_ID),
FOREIGN KEY (HumanChar_ID) REFERENCES Human(Char_ID),
FOREIGN KEY (Episode_ID) REFERENCES Episode(Episode_ID)
);
```

Part II: Problem 1

1.

(a) For row number 1, column A, we have $A = 1 \rightarrow C = 3$; For row number 4, column A, we have $A = 1 \rightarrow C = 4$; As $3 \neq 4$, $A \rightarrow C$ does not hold.

- (b) $CD \rightarrow A$ holds, as we cannot find the exact same CD pair in the table.
- For row number 1 in column A, B and D, we have $(1,2,4) \rightarrow 1$ in column E; For row number 4 in column A, B and D, we have $(1,2,4) \rightarrow 2$ in column E; As $1 \neq 2$, $ABD \rightarrow E$ does not hold.

2.

$$A \rightarrow B$$
; $A \rightarrow D$; $A \rightarrow BD$;
 $D \rightarrow A$; $D \rightarrow B$; $D \rightarrow AB$;
 $E \rightarrow B$; $E \rightarrow C$; $E \rightarrow BC$;

Part II: Problem 2

Here is the step-by-step explaination:

Step 1: Original R(A,B,C,D,E,F) and the first FD $A \to C$. We have $\{A\}^+ = \{A,C\} \neq \{A,B,C,D,E,F\}$. Then we can break down the original R and have $R_1(A,C)$ and $R_2(A,B,D,E,F)$, which removed the C as it was $A \to C$.

Step 2: From R_2 , we have the second FD $BD \to C$. We will have $\{BD\}^+ = \{B,D,A\} \neq \{A,C,B,D,E,F\}$. Again, we can then break down the R_2 into $R_3(BD,A)$ and $R_4(B,D,E,F)$, which is what we left after removing A for the same reason as C.

Step 3: From R_4 , we have the last FD $EF \to D$. We have $\{EF\}^+ = \{E,F,D\} \neq \{A,B,C,D,E,F\}$. Then we break down R_4 for $EF \to D$ and have $R_5(E,F,D)$ and $R_6(B,E,F)$, which is what we left after we remove D for the same reason as A and C.

Part II: Problem 3

1. For all sets of attributes are closed, we can have "all implies empty set" as following: $A \to \emptyset$; $B \to \emptyset$; $C \to \emptyset$; $D \to \emptyset$;

2.
$$A \rightarrow BCD$$
; $B \rightarrow CD$ OR

$$A \to B; B \to C; C \to D; D \to A$$

3.
$$A \rightarrow D$$
; $B \rightarrow ACD$