Géographie des pratiques spatiales hospitalières

dans la région Nord – Pas-de-Calais: un modèle gravitaire de calculs d'aires d'attractions hospitalirères.

PLAN

I) Problématique, Hypothèse et Objectifs

II) Notre processus de modélisation en 4 phases

III) Discussion

IV) Perspectives de recherche

Problématique

• Est-ce que le recours aux soins est fonction de la géographie et donc des lois connues sur les distances à parcourir?

• Peut-on détecter, à travers notre étude des pratiques spatiales, le ou les déterminants de la pratique spatiale pour se rendre à l'hôpital?

Hypothèse

- Il existe un lien entre le recours aux soins et la distance d'accès aux soins en Km et/ou en temps, la «loi du moindre effort » devrait être vérifiée d'après le concept d'interaction pour :
- les établissements de soins hospitaliers périphériques (hors CHRU).

Si l'hypothèse est vérifiée, nous pouvons proposer **un modèle gravitaire**, faisant analogie à la loi de Newton, et l'appliquer dans le cadre de notre processus de modélisation.

Objectifs

- Nous cherchons à valider notre modèle gravitaire à travers les pratiques spatiales hospitalières
- Nous cherchons à élaborer un modèle théorique, objectif, permettant de simuler l'attraction hospitalière par spécialité et pôle hospitalier. Les simulations montrent des création ou fermeture de pôles hospitaliers.
- Outil d'aménagement du territoire sanitaire proposé au vue des pratiques spatiales hospitalières existantes et probables (demandes et offres de soins) pour une meilleure qualité de soins

Loi Universelle : l'attraction entre deux corps est inversement proportionnelle au carré de la distance qui les sépare

• Formule : modèle déductif

$$I_{ij} = \frac{M_i * M_j}{d_{ij}^2}$$

Où

- i et j deux indices
 représentatifs de deux
 corps,
- I i j est l'interaction
 entre les corps i et j
- M_i et M_j les masses des deux corps,
- d_{ij} la distance qui les sépare.

Formule de Reilly

$$d_{ix} = \frac{d_{ij}}{\left(1 + \sqrt{\frac{M_j}{M_i}}\right)}$$

Où

- d_{ix} = "point d'équilibre" appelé aussi "point d'égale attraction" entre deux établissements hospitaliers.
- Notre modèle = affinement de la formule de Reilly par pondérations observée (expertise géographique) et théorique (mathématique)

Notre modèle pondéré

1- Point d'équilibre pondéré observé : basé sur l'expertise géographique à partir de la BD régionale 1999 hospitalière

$$d(H_i, bo_{(i,j)}) = \frac{d(H_i, H_{j(x,y)})}{1 + \sqrt{\frac{M_j * Po_j}{M_i * Po_i}}}$$

Où

 $d(H_i, b_o(i,j)) = \text{distance}$ d'égale attraction de H_i , au point d'équilibre $b_o(i,j)$

x, y coordonnées des établissements H sur une carte rapportée à 1 repère orthonormé classique

 $d(H_i, H_j(x,y))$ distance euclidienne entre H_i et H_j .

M = effectif des lits d'un établissement H

Po = population démographique de H issue des cantons ou BP attirés par H et **rapportée** à la population régionale.

2- Point d'équilibre pondéré théorique : basé sur le calcul mathématique.

$$d(H_{i}, be_{(i,j)}) = \frac{d(H_{i}, H_{j(x,y)})}{1 + \sqrt{\frac{M_{j} * Pej}{M_{i} * Pe_{i}}}}$$

Où

 $d(H_i, b_{e(i,j)}) =$ distance d'égale $attraction de H_i$, au point d'équilibre $b_{e(i,i)}$

démographique de H
calculée d'après les
Voisins Relatifs ou KMeans et rapportée à la
population régionale.

Modèle théorique prévu pour la simulation à condition que notre hypothèse est validée... 'loi du moindre effort '

Algorithmes (distances euclidiennes)

- Pondération Pe
- 1) Les groupements hiérarchiques, agglomératifs et séquentiels
- Exemple de groupement par les Voisins Relatifs
- 2) Les groupements non hiérarchiques :
- Exemple la méthode de MacQueen (1967): K-Means ou méthode de Diday (1971) des Nuées Dynamiques

METHODE : Processus de modélisation des pratiques spatiales hospitalières

Présentation de deux applications à travers deux spécialités médico-chirurgicales aux caractéristiques différentes

en région NPDC

1- L'Hématologie clinique adulte

(Cartographie : maille des cantons '157')

2- La traumato-orthopédie, GHM 295 - Prothèse Totale de Hanche (PTH)

(Cartographie: maille des BP PMSI '387')

Processus de modélisation en 4 phases

- Phase 1: observation de l'attraction hospitalière régions Nord Pas-de-Calais et Picardie : cartographie aux mailles des cantons et bureaux postaux PMSI,
- Phase 2: modèle mathématico-géographique pondéré de calcul d'aire d'attraction par pôle et spécialité,
- Phase 3: comparative entre l'attraction observée et l'attraction issue du modèle théorique,
- Phase 4: simulation par création ou fermeture d'un service et prédiction de l'évolution des pratiques spatiales hospitalières par spécialité.

Modélisation phase 1 :observation de l'attraction

Recherche d'une attraction de proximité par pôle, dont la majorité des cantons ou BP attirés, doivent être contigus entre-eux. Seuils empiriques (95% patients), **Dunkerque** (90% unités administratives et les séjours) 100% des cantons Vérification de la loi du moindre 100% des patients effort **Valenciennes** 91.11% des cantons

98.70 % des patients¹³

Modélisation phase 2 : équation pondérée

- Distance euclidienne $d(H_i, H_j(x,y))$
- Centre de gravité $\mathbf{g}_{(i,j)}$

Modèle observé

Point d'équilibre b_{o(i,j)}
 pondération observée

Modèle théorique

• Point d'équilibre beant pondération **estimée**

Modélisation phase 3 : validation du modèle par l'observation

Comparaison par superposition des cartes de l'attraction observée et du dessin de modèle observé construit d'après l'équation

Ce tracé (bleu) calculé à partir des points d 'équilibre observés bo(i,j) permettra ensuite le calcul du coefficient d 'attraction avec le tracé théorique (jaune)

Modélisation phase 3 : validation du modèle théorique en rapport au modèle observé

Les différences entre les distances observées et estimées au point d'équilibre déterminent un coefficient dit d'attraction, '+';'-' ou '='

- Si $d(H_{i bo(i,j)}) > d(H_{i be(i,j)})$ alors l'attraction observée est plus forte que celle prévue.
- Si $d(H_i)_{bo(i,j)} < d(H_i)_{be(i,j)}$ alors l'attraction observée est moins forte que celle prévue.
- Si $d(H_i)_{bo(i,j)} = d(H_i)_{be(i,j)}$ alors l'attraction observée est équivalente à celle prévue.

16

Modélisation phase 4 : simulation par création ou suppression de pôles hospitaliers

- Phase de simulation entraîne le calcul de distance estimée au point d'équilibre pondéré estimé be(1,1) dans le cadre d'une création (données fictives)
- on ajoute ou l 'on supprime un ou plusieurs pôles : ce qui entraîne de réitérer les calculs des distances d 'équilibre estimées fermeture d'un pôle hospitalier et/ou service

RESULTATS EN HEMATOLOGIE CLINIQUE

PHASES 1 à 4

Tableaux d'effectifs des individus géographiques, des séjours et patients issus des bases de données en Hématologie clinique

poles	polelib	Lits	ETS	Cantons	sejours	patients	P	CANTONS Z	% cantons
1	Dunkerque	10	1	13	907	284	300393	13	100,00
2	Lille	63+8	2	140 et 56	5949+1006	919+449	5842588	XX	#VALEUR!
3	Roubaix	8	1	35	1984	326 303	1345841	13	92,86
4	Valenciennes	18	1	45	1910	307	1201189	41	91,11
5	Lens	10	1	54	1372	250	1283048	51	94,44
6	Boulogne sur Mer	12	1	24	809	267	690943	20	83,33
poles	polelib	ATIENTS	% patient	POP Z	CANTONS HZPATIENTS HZ		POP HZ		
1	Dunkerque	284	100,00	300393	0	0	0		
2	Lille	XX	#VALEUR!	XX	XX	XX	XXX		
3	Roubaix	303	100,66	419850	1	2	42260		
4	Valenciennes	303	98,70	1026320	4	4	174869		
5	Lens	246	98,40	1202307	3	4	80741		
6	Boulogne sur Mer	263	98,50	402506	4	4	277464		

Phase 1: d'observation

Phase 1: d'observation

Modèle théorique

$$d(\boldsymbol{H}_{i}, b\boldsymbol{e}_{(i,j)}) = \frac{d(\boldsymbol{H}_{i}, \boldsymbol{H}_{j(x,y)})}{1 + \sqrt{\frac{\boldsymbol{M}_{j} * \mathrm{Pe}_{i}}{\boldsymbol{M}_{i} * \mathrm{Pe}_{i}}}}$$

Modèle observé $d(H_i, bo_{(i,j)}) = \frac{d(H_i, H_{j(x,y)})}{1 + \sqrt{\frac{M_j * Po_j}{M_i * Po_i}}}$

Phase 2: modélisation

modèles mathématiques pondérés

comparaison des modeles entre eux et du modele observé à l'attraction observée

Phase 3 : coefficients d'attraction entre les modèles observés et estimés

Coefficie	ent d'attra	ection						
d(Hi,bo(i,j)) / d(Hi,be(i,j))								
Indices			j	j	j	j	j	j
	Insee cne		59183	59350	59350	59606	62160	62498
		Service	D	L	ST	V	В	LE
i	59183	Dunkerque	0	0.640	0.727	0.739	0.739	0.852
i	59350	Lille M	1.068	0	0	1.017	0.992	1.063
i	59350	St Ph -St Vincent	1.190	0	0	1.028	0.972	1.141
i	59606	ch Valenciennes	1.151	0.948	0.977	0	0.958	1.103
i	62160	ch Boulogne	1.304	1.049	1.047	1.085	0	1.232
i	62498	Lens M	1.083	0.810	0.886	0.901	0.888	0
i	59512	Roubaix	1.211	1.015	1.019	1.049	0.986	1.166

Boulogne sur Mer par rapport à Dunkerque
$$CA = \frac{d(Hi, bo(i,j))}{d(Hi, be(i,j))} = \frac{38,69}{29.67} = 1.304$$

Il faut lire une attraction du **modèle observé** supérieure à celle prévue par le **modèle théorique** pour le pôle de Boulogne-sur-Mer.

Phase 4 : simulation par création d'un service ou pôle hospitalier à Calais

Phase 4 : simulation par création d'un service ou pôle hospitalier à Calais

RESULTATS EN TRAUMATO-ORTHOPEDIE GHM 295 (PTH)

PHASES 1 à 4

18 pôles hospitaliers publics pour 19 établissements

Phase 2 : modélisation modèles mathématiques pondérés

Phase 2 : modélisation modèles mathématiques pondérés

validation du modèle par l'observati

Modélisation phase 3: validation du modèle par l'observation

Modélisation phase 3 : comparaison des modèles entre eux

Modélisation phase 4 : simulation par fermeture de service sur Hazebrouck -- zone étriquée

Discussion 1

Notre modèle gravitaire apparaît fiable robuste et prédictif. Il est validé pour la région Nord - Pasde-Calais sur deux spécialités différentes gràce à :

- 1) l'attraction de proximité observée pour les pôles hors CHRU
- 2) par comparaison et la bonne adéquation trouvée du modèle théorique au modèle observé

l'hématologie clinique) est moins fréquente et lourde et la (traumato-orthopédie PTH

est plus fréquente en actes et lourde.

- 1 'intérêt du tracé observé, permet avec le tracé théorique le calcul du coefficient d'attraction
- la nouveauté est la simulation proposée par création ou fermeture de pôle hospitalier avec Calais (Hématologie clinique) et Hazebrouck (Traumato-orthopédie, GHM 295)

<u>Discussion 2</u>: études préalables des pratiques spatiales hospitalières

Modèle de Reilly utilisé à partir de base de données réelles dans le domaine de la santé.

- **1er découpage** : les secteurs sanitaires de la région Nord Pas-de-Calais. *E. Vigneron Rapport DRASS*
- **2ème découpage** : les bassins de santé de la région Languedoc-Roussillon (« Géographie de la santé en France » E. Vigneron et F. Tonnellier).

Jusqu'à présent modèles de Reilly basé sur l'observation (BD hospitalières) et il n'y avait pas de simulation par fermeture ou création de pôles

Limites de notre modèle

- Distance euclidienne non adaptée à des régions à relief : on préférera des distances basées sur le temps de parcours
- **Région frontalière**: intérêt d'explorer l'influence des frontières sur l'attraction hospitalière
- La simulation ne porte que sur 2 simples paramètres (le nombre de lits et la population démographique)
- si un pôle hospitalier attire plus que prévu par le modèle théorique : il faudrait chercher des facteurs explicatifs. (hématologie clinique ==>pathologies lourdes organisation exceptionnelle entraînerait une plus forte attraction qu'une attraction de courte distance)

Perspectives de recherche

Identifier les covariables des coefficients d'attraction, élaborer un coefficient correcteur expérimental à partir de facteurs d'attraction internes et externes. Déterminer un coefficient d'attraction spécifique d'une spécialité? D'une hiérarchie hospitalière?

Réitérer le processus de modélisation : en analyse verticale (périodes d'étude différentes),

- vérifier la stabilité des aires de proximité par spécialité et par pôle hospitalier -- isoligne--contour des zones attirées et tests statistiques.
- les indices de mesures de contiguïté seraient à mettre en œuvre pour délimiter les zones de proximité et contiguës autour du pôle

Perspectives de recherche

Réitérer le processus de modélisation : en analyse horizontale

- appliquer le modèle sur des régions géographiques physiques différentes ==> essai de distances voire création de nouvelles distances.. Travailler à partir de BD isochrone.(temps de parcour).
- intégrer l'ensemble des établissements dans le même modèle (public, privé et PSPH)

Conclusion

Modèle pouvant permettre une meilleure organisation en réseau et prise en charge des patients (prise en compte de leurs pratiques spatiales..). Outil d'aide à la planification sanitaire.

Remerciements

Aux membres du Jury

Aux membres du COREDIM de la Région Nord - Pas-de-Calais, du GTIM et de 1'ARH.

Aux membres du CERIM et du DIM du CHRU de Lille.