Electronic Devices

Lecture 15
Bipolar Junction Transistor

Dr. Roaa Mubarak

AC Analysis of BJT

- AC analysis of BJT included the large signal and small signal.
- Here we deal with small signal (large signal used power amplifiers).
- The analysis is complex so, we use a small signal model to replace the BJT.
- The total response = the dc response + the AC response.
- A model is an equivalent circuit that represents the AC characteristics of the transistor.
- A model uses circuit elements that approximate the behavior of the transistor.
- There are two models commonly used in small signal AC analysis of a transistor:
- re model
- Hybrid model

BJT Modeling

The ac equivalent of a transistor network is obtained by:

- 1- Setting all dc sources to zero and replacing them by a short-circuit equivalent
- 2- Replacing all capacitors by a short-circuit equivalent
- 3- Removing all elements bypassed by the short-circuit equivalents introduced by steps 1 and 2
- 4- Redrawing the network in a more convenient and logical form

BJT small signal Modeling

- 5- replacing the BJT with appropriate model
- re transistor model
- Hybrid model

Hybrid model

• The hybrid π model is most useful for analysis of high-frequency transistor applications.

• At lower frequencies the hybrid π model closely approximate the reparameters, and can be replaced by them.

Hybrid π model

Voltage Controlled Current Source "VCCS"

$$g_m = \frac{I_C}{V_T}$$
$$r_{\pi} = \frac{V_T}{I_B}$$

Current Controlled Current Source "CCCS"

$$r_{\mathbf{\pi}} = \frac{\mathbf{\beta}}{g_m}$$

<u>Hybrid T model</u>

Voltage Controlled Current Source "VCCS"

Current Controlled Current Source "CCCS"

The steps for solving AC analysis of BJT

First DC Analysis

Using the DC analysis to calculate the parameters of small signal model g_m , r_{π} and r_e .

Second AC Analysis

- 1- Replace all the capacitors by short circuits, the inductors by open circuits.
- 2-replace the voltage Dc source by short circuit, and replace the current DC source by open circuit.
- 3- replace the BJT with one of small signal models.
- 4- Analyze the circuit to determine the amplifier gain.

BJT Configurations

Common Emitter

Common Base

Common Collector

Determine the gain of the following amplifier as β = 100

Solution

1- Using the DC analysis to determine the Q point

Assuming Active mode

By KVL in input loop:

$$-3 + 100I_B + 0.7 = 0$$

$$I_B = \frac{3-0.7}{100} = 0.023$$
mA

$$I_C = \beta I_B = 2.3 \text{mA}$$

$$I_E = I_C + I_B = 2.323mA$$

$$V_o = V_c = V_{cc} - I_C R_c = 10 - (2.3)(3)=3.1$$
V

 $V_c > 0.7$ then our assumption is true

1- Using the DC analysis to determine the Q point

Assuming Active mode

By KVL in input loop:

$$-3 + 100I_B + 0.7 = 0$$

$$I_B = \frac{3-0.7}{100} = 0.023 \text{mA}$$

$$I_C = \beta I_C = 2.3 \text{mA}$$

$$I_E = I_C + I_B = 2.323 mA$$

$$V_o = V_c = V_{cc} - I_c R_c = 10 - (2.3)(3) = 3.1V$$

 $V_c > 0.7$ then our assumption is true

3 V

Solution

2- Determine the AC parameters.

$$g_m = \frac{I_C}{V_T} = \frac{2.3mA}{26mv} = 88\text{mA/v}$$

$$r_{\pi} = \frac{V_T}{I_B} = \frac{26mv}{0.023mA} = 1.13\text{k}\Omega$$

3- Draw the circuit with AC model (π Model)

Note: short circuit the DC voltage source and open circuit the DC current source

Solution

4- Analyze the small signal equivalent circuit

$$v_{o} = -g_{m}v_{be}R_{C}$$

$$v_{be} = \left(\frac{r_{\pi}}{R_{BB} + r_{\pi}}\right)v_{i} = \left(\frac{1.13}{101.13}\right)v_{i} = 0.011v_{i}$$

$$v_{o} = -(88)(0.011) v_{i}(3) = -2.94 v_{i}$$

$$A_{v} = \frac{v_{o}}{v_{i}} = |-2.94| = 2.94$$

 $R_{\mathcal{C}}$

Uo

 R_{BB}

Early Effect

• The early effect is the variation in the width of the base in a bipolar transistor due to a variation in the applied base-to-collector voltage, and this causes the I_C depends not only on I_B but also on V_{CE} .

Early Effect

Early effect can be assigned in the ac signal model as an output resistance to the controlled source in the hybrid π model.

Hybrid π Model with Early Effect

• Ac equivalent circuit

$$R = R_C // R_3 = 4.3 \text{ k}\Omega // 100 \text{ k}\Omega = 4.12 \text{K}\Omega$$

Terminal voltage gain

between base and collector is:

$$A_{vt} = \frac{v_c}{v_b} = \frac{v_o}{v_{be}} = -g_m R_L$$

Overall voltage gain from source v_i to output voltage across R_3 is:

$$A_{v} = \frac{v_{o}}{v_{i}} = \left(\frac{v_{o}}{v_{be}}\right) \left(\frac{v_{be}}{v_{i}}\right) = A_{vt} \left(\frac{v_{be}}{v_{i}}\right)$$

$$\therefore A_{v} = -g_{m} R_{L} \left[\frac{R_{B} \|r_{\pi}}{R_{I} + \left(R_{B} \|r_{\pi}\right)}\right]$$

•
$$R_L = r_o // R_C // R_3$$

Input Resistance

The total resistance looking into the amplifier at coupling capacitor C_1 represents total resistance of the amplifier presented to signal source

$$\mathbf{v}_{\mathbf{x}} = \mathbf{i}_{\mathbf{x}} (R_B \| r_{\pi})$$

$$R_{\mathbf{in}} = \frac{\mathbf{v}_{\mathbf{x}}}{\mathbf{i}_{\mathbf{x}}} = R_B \| r_{\pi} = R_1 \| R_2 \| r_{\pi}$$

Output Resistance

 Output resistance is the total equivalent resistance looking into the output of the amplifier at coupling capacitor C₃

 To find R_{out}, input source is set to 0 and test source is applied at output

$$i_X = \frac{v_X}{R_C} + \frac{v_X}{r_o} + g_m v_{be}$$
 But $v_{be} = 0$.

$$\therefore R_{\text{out}} = \frac{\mathbf{v}_{\mathbf{X}}}{\mathbf{i}_{\mathbf{x}}} = R_C \| r_o \cong R_C \text{ As } r_o >> R_C.$$

 $R_B = R_1 // R_2 = 160 \text{k}\Omega //300 \text{k}\Omega = 104 \text{K}\Omega$

 $R_L = R_7 // R_3 = 100 \text{k}\Omega // 22 \text{k}\Omega = 18 \text{K}\Omega$

AC equivalent:

A resistor exists at the emitter of the ac equivalent circuit

Also called *emitter degenerated*CE amplifier

Overall voltage gain from v_i to v_o can be expressed as:

$$A_{v} = \frac{v_{o}}{v_{i}} = \left(\frac{v_{o}}{v_{b}}\right) \left(\frac{v_{b}}{v_{i}}\right)$$

Define terminal voltage gain as:

$$A_{vt} \equiv \frac{v_o}{v_b}$$

And it can be observed that:

$$v_b = \frac{R_B}{R_I + R_B} v_i$$

Use hybrid- π model (neglecting r_o):

$$v_b = ir_{\pi} + (\beta + 1)iR_E$$
$$= i(r_{\pi} + (\beta + 1)R_E)$$

$$v_o = -\beta i R_L$$

$$A_{vt} = \frac{v_o}{v_b} = -\frac{\beta R_L}{r_{\pi} + (\beta + 1)R_E}$$

Using $r_{\pi}g_{m} = \beta$, we have

$$A_{vt} = -\frac{g_{m}r_{\pi}R_{L}}{r_{\pi} + (g_{m}r_{\pi} + 1)R_{E}} = -\frac{g_{m}R_{L}}{1 + g_{m}R_{E}}$$
for $g_{m}r_{\pi} = \beta >> 1$

Effect of R_E:

- For $R_E = 0$, $A_{vt} \cong -g_m R_L$
 - Upper limit of A_{vt}
- For $g_m R_E >> 1$, $A_{vt} = -R_L/R_E$
 - A_{vt} becomes less dependent on g_m which varies widely
- Increasing R_E decreases voltage gain!

Input Resistance

To find $R_{in} \rightarrow to find V_b/i$:

$$v_b = i(r_\pi + (\beta + 1)R_E)$$

$$R_{in} = \frac{b}{i} = r_{\pi} + (\beta + 1)R_{E}$$

$$= r_{\pi} + (g_{m}r_{\pi} + 1)R_{E}$$

$$= r_{\pi}(1 + g_{m}R_{E})$$

for
$$g_m r_{\pi} = \beta >> 1$$

Increasing R_F increases input resistance!

Output Resistance

To find R_{out}:

- Set v_i to zero
- Apply a test source at output
- $R_{out} = v_x/i_x$

$$v_e = (\beta + 1)iR_E$$

KVL at left mesh:

$$i(R_{th} + r_{\pi}) + v_e = 0$$

$$\frac{v_e}{(\beta+1)R_E}(R_{th}+r_\pi)+v_e=0$$

$$\Rightarrow v_e = 0$$

$$i = 0 \Rightarrow i_x = \beta i = 0$$

Output Resistance

Now, we also include r_o in our analysis:

KVL along loop 1:

$$v_x = v_r + v_e = (i_x - \beta i)r_o + v_e$$

Voltage at E:

$$v_e = i_x \left(\left(\frac{R_{th} + r_{\pi}}{th} \right) / R_E \right)$$

$$i = -i_{x} \frac{R_{E}}{R_{E} + R_{th} + r_{\pi}}$$

Current division at Emitter:

Put 2nd and 3rd equations into 1st equation:

$$\therefore v_x = r_o \left(i_x + \beta i_x \frac{R_E}{R_E + R_{th} + r_{\pi}} \right) + i_x \left(\left(R_{th} + r_{\pi} \right) / / R_E \right)$$

$$\therefore R_{out} = \frac{v_x}{i_x} \approx r_o \left(1 + \frac{\beta R_E}{R_E + R_{th} + r_{\pi}} \right) \quad \text{for large value of } r_o$$