

TalkingData AdTracking Fraud Detection Challenge

Contents Table

- 0. Overview
- 1. Data Exploration
- 2. Data Preprocessing
- 3. Target Variable Prediction
- 4. Conclusion

0. Overview

Description

TalkingData, China's largest independent big data service platform, covers over 70% of active mobile device s nationwide. They handle 3 billion clicks per day, of which 90% are potentially fraudulent. The goal of the competition is to create an algorithm that predicts whether a user will download an app after clicking a mobile app ad.

Evalution

Submissions are evaluated on <u>area under the ROC curve</u> between the predicted probability and the observed target.

0. overview

variables

app : app id for marketing

device : device type id of user mobile phone

os version id of user mobile phone

channel : channel id of mobile ad publisher

click_time : timestamp of click (UTC)

* attributed_time: if user download the app for after clicking an ad, this is the time of the app download

❖ is_attributed : the target that is to be predicted, indicating the app was download

1. Data Exploration

Explore 100,000 data

device : 100000 non-null int64

click_time : 100000 non-null datetime64

attributed_time : 227 non-null object

is_attributed : 100000 non-null int64

Check download frequency

⋄ 0 : 99773

1 : 227

download proportion: 0.00227

1. Data Exploration

Check the number of download by click time

Train all data

preprocessing

Train sample data

preprocessing

Make derived variables

Create derived variables in each train all dataset and train sample dataset.

A total of 14 derived variables are created.

hour : hour from click time

Train all data

preprocessing

Train sample data

preprocessing

Make derived variables

#: download proportion

app_attr_prop : # by app

device_attr_prop : # by device

os_attr_prop : # by os

channel_attr_prop : # by channel

hour_attr_prop : # by hour

tot_attr_ptop : the sum of the above 6 variables

Train all data

preprocessing

Train sample data

preprocessing

Make derived variables

: download proportion

❖ ip_channel_prop : # by ip and channel

hour_app_prop : # by hour and app

hour_channel_prop : # by hour and channel

tot_vv_prop : the sum of the above 5 variables

Train all data

preprocessing

Train sample data

preprocessing

Check correlation

device_attr_prop : 0.201987

* os_attr_prop : 0.226293

channel_attr_prop : 0.389942

hour_attr_prop : 0.008851

❖ tot_attr_ptop : 0.532482

Train all data

preprocessing

Train sample data

preprocessing

Check correlation

ip_channel_prop : 0.715354

♦ hour_app_prop : 0.457047

hour_channel_prop : 0.416602

❖ tot_vv_prop : 0.739013

Train all data

Test data

preprocessing

Preprocess test data

Based on train all dataset except 'hour' variable, 13 derived variables are created in the test dataset.

Because train all dataset is the most data, the value of the test dataset can be filled without as many blanks as possible, thus creating derived variables in the test dataset using train all dataset.

Create features to use a model

- feat1 = ip_attr_prop, app_attr_prop, device_attr_prop, os_attr_prop, channel_attr_prop, hour_attr_prop, tot_attr_prop
- feat2 = ip_hour_prop, ip_app_prop, ip_channel_prop, hour_app_prop, hour_channel_prop, tot_vv_prop
- feat3 = feat1 + feat2
- feat4 = ip_attr_prop, app_attr_prop, channel_attr_prop, tot_attr_prop
- feat5 = feat4 + feat2
- feat6 = app_attr_prop, channel_attr_prop, hour_app_prop, hour_channel_prop

Predict target variable

- Linear Regression
- Ridge
- Logistic Regression
- Decision Tree
- Random Forest
- Gradient Boosting
- K-Nearest Neighbors
- Support Vector machines
- LightGBM

Skip because it takes too long

Predict target variable

Linear Regression

samples features	10m	20m	30m
feat1	0.9336475	0.3937085	0.9396936
feat2	0.7903207	0.7990348	0.8090254
feat3	0.6832881	0.6891693	0.6870306
feat4	0.9394377	0.9393066	0.9394337
feat5	0.6786381	0.6730954	0.6829231
feat6	0.9467690	0.9468087	0.9466697

Predict target variable

Logistic Regression

samples C	10m	20m	30m
0.01	0.9518560	0.9518226	0.9518260
0.1	0.9517896	0.9518113	0.9517822
1	0.9517904	0.9517846	0.9517540
10	0.9517882	0.9517830	0.9517553

✓ feature : feat6

Predict target variable

Decision Tree

samples max_depth	10m	20m	30m
3	0.9039194	0.9039806	0.9040380
4	0.9068583	0.9065484	
5	0.9379549	0.9245333	0.9310434

✓ feature : feat6

Predict target variable

Random Forest

n_estimators max_depth	30	50	70
3	0.9117286	0.9325352	0.9325768
4	0.9446114	0.9444698	0.9481182
5	0.9511519	0.9506940	0.9506489

✓ feature : feat6

✓ sample : 10m

✓ max_features : 1

Predict target variable

Gradient Boosting

n_estimators max_depth	30	50
3	0.9058254	0.9069254
4	0.9426463	0.9432340
5	0.9477711	0.9486383

✓ feature : feat6

✓ sample : 10m

✓ learning_rate : 0.01

Predict target variable

LightGBM

samples features	10m	20m	30m
feat1	0.9426481	0.9411704	0.9398357
feat2	0.8694790	0.8232350	0.8775217
feat3	0.8694790	0.8467034	0.8577380
feat4	0.9410401	0.9413678	0.9411245
feat5	0.8921562	0.8471011	0.8415991
feat6	0.9514271	0.9528658	0.9526517

4. Conclusion

Result

- Variables related to app and channel were important.
- * The best score : 0.9666069

Realization

It was more important to know which variables to use than which model to use.

Details

https://github.com/FlowerSuNa/Ad_Tracking_Project/blob/master/README.md

Thank you.