Machine Learning HW3 Report

學號:B03901015 系級: 電機四 姓名:梅希聖

1. (1%) 請說明你實作的 CNN model, 其模型架構、訓練參數和準確率為何? (Collaborators: 自己、keras 的 VGG16/19)

架構與準確率:

參考 VGG16 的架構,每 2~3 層 convolution 層搭配一層 pooling,共 3 次,之後將 convolution 層之結果壓平後連接 2 層全連接層,再透過 softmax 輸出得到最後分類結果。 其中有插入數層的 batch normalization 與 dropout 層調整模型。

Layer (type)	Output Shape	Paran	n#
conv2d_129 (Conv2	(None, 48,	48, 32)	320
conv2d_130 (Conv2	(None, 48,	48, 32)	9248
batch_normalization	n_49 (Batc (None, 48	3, 48, 32)	128
dropout_30 (Dropou	it) (None, 48, 4	8, 32)	0
max_pooling2d_49	(MaxPooling (None	, 24, 24, 32	2) 0
conv2d_131 (Conv2	(None, 24,	24, 64)	18496
conv2d_132 (Conv2	(None, 24,	24, 64)	36928
conv2d_133 (Conv2	(None, 24,	24, 64)	36928
batch_normalization	n_50 (Batc (None, 24	1, 24, 64)	256
dropout_31 (Dropou	it) (None, 24, 2	4, 64)	0
max_pooling2d_50	(MaxPooling (None	, 12, 12, 64	4) 0
conv2d_134 (Conv2	(None, 12,	12, 128)	73856
conv2d_135 (Conv2	(None, 12,	12, 128)	147584
conv2d_136 (Conv2	(None, 12,	12, 128)	147584
batch_normalization	n_51 (Batc (None, 12	2, 12, 128)	512
dropout_32 (Dropou	(None, 12, 1	2, 128)	0
max_pooling2d_51	(MaxPooling (None	, 6, 6, 128)	0
flatten_17 (Flatten)	(None, 4608)	0	
dense_41 (Dense)	(None, 64)	2949	976
p_re_lu_18 (PReLU	(None, 64)	64	4
dropout_33 (Dropou	(None, 64)	0	
dense_42 (Dense)	(None, 64)	4160	0
p_re_lu_19 (PReLU	(None, 64)	64	4
dropout_34 (Dropou	(None, 64)	0	
dense_43 (Dense)	(None, 7)	455	
Total params: 771,5 Trainable params: 7 Non-trainable paran	71,111		

然而,使用單一個 CNN model 訓練的準確度最高只有達到 0.673(public) / 0.661(private), 因此採用 ensemble 的方式,將 6~7 個類似架構的 CNN model 之預測結果進行平均,最 後最高的分數到達 0.713(public) / 0.707(private)。

參數:

convolution layer 的 size 分別是 32, 64, 128,使用 relu 作為激化函數。 每個 CNN model 有些許不同,隨機選取 1/10 或 2/10 的 data 作為 validation,全連接層有部分 model 使用 prelu(比 relu 多了一個學習的參數),其他一樣使用 relu, batch_size = 128,train epoch = 200 or 250。

- 2~5 題之實作皆採用自己的最好的單個 CNN model 進行測試(非 ensemble model)
- 2. (1%) 請嘗試 data normalization, data augmentation,說明實行方法並且說明對準確率有什麼樣的影響?

(Collaborators: 自己)

data normalization:

使用 sklearn 的 StandardScaler 套件實作 normalization, 調整至 mean=0, std=1。

```
# image data stored in X
X = X.ravel() # reshape to 1D
scaler = StandardScaler()
scaler.fit(X)
X = scaler.transform(X)
X.reshape((7178,48*48))
```

	Private	Public	Average
With normalization	0.63750	0.64892	0.64321
Without normalization	0.64196	0.64892	0.64544

結果顯示,有無做 normalization 對我的 model 結果影響差異不大。

data augmentation:

使用 keras 的 ImageDataGenerator 套件實作 augmentation,套件會將圖片作旋轉、左右平移、水平翻轉、拉近拉遠等。

	Private	Public	Average
With augmentation	0.63750	0.64892	0.64321
Without augmentation	0.59431	0.59403	0.59417

結果顯示,使用 augmentation 會讓準確率提升許多,我的最佳 model 中也有使用 augmentation。

3. (1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion matrix 分析] (Collaborators: 自己)

從資料中取出 10%作為 validation, 其餘進行 training。

結果顯示此模型在類別 3 (高興) 有最高的準確率(91%), 在類別 2 (恐懼) 的準確率最低(43%), 容易被誤認為其他類別,可能是我的 model 沒辦法擷取到恐懼圖片中之共同特徵。另外,類別 4 (難過)的資料有 24%的機率被誤認成類別 6 (中立), 也是這個 model 的弱點。

4. (1%) 從(1)(2)可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型 在做 classification 時,是 focus 在圖片的哪些部份?

(Collaborators: 自己、keras-vis)

本題使用上題 validation set 中的其中一張圖片作測試,左為 saliency map,中為原始圖片,右為經過 filter 後的圖片。可發現梯度在人臉的部分較大,而在背景或是頭髮的部分較低,推測模型是正確地根據人臉的部分進行表情辨識。

5. (1%) 承(4) 利用上課所提到的 gradient ascent 方法,觀察特定層的 filter 最容易被哪種圖 片 activate 與觀察 filter 的 output。

(Collaborators: https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html)

model 之架構已在問題 1 呈述。

由左至右分別是 conv2d_130, conv2d_133, conv2d_136 之結果,3 個 layer 分別是 3 組 convolution filter 之最後一層。

上排為 input noise 後 filter 之結果,下排為 input image+noise 之結果。 觀察結果可發現,愈上層之 filter 所濾出的應是較大面積的特徵,愈下層的 layer, output 圖片愈細緻,應代表愈深層的 filter 可以看出更細節的東西。

