2021 September 1 Shift 2

EE24BTECH11020 - Ellanti Rohith

1) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Then,

$$\lim_{x \to \frac{\pi}{4}} \frac{\frac{\pi}{4} \int_{2}^{\sec^{2} x} f(x) \, dx}{x^{2} - \frac{\pi^{2}}{16}}$$
 is equal to:

a) f(2)

- b) 2f(2)
- c) $2f(\sqrt{2})$
- d) 4f(2)
- 2) $\cos^{-1}(\cos(-5)) + \sin^{-1}(\sin(6)) \tan^{-1}(\tan(12))$ is equal to:
 - a) $3\pi 11$

c) $4\pi - 11$

b) $4\pi - 9$

- d) $3\pi + 1$
- 3) Consider the system of linear equations:

$$-x + y + 2z = 0$$

$$3x - ay + 5z = 1$$

$$2x - 2y - az = 7$$

Let S_1 be the set of all $a \in \mathbb{R}$ for which the system is inconsistent, and S_2 the set for infinitely many solutions. Then:

a)
$$n(S_1) = 2$$
, $n(S_2) = 2$

c)
$$n(S_1) = 2$$
, $n(S_2) = 0$

b)
$$n(S_1) = 1$$
, $n(S_2) = 0$

d)
$$n(S_1) = 0$$
, $n(S_2) = 2$

4) Let the acute angle bisector of the two planes

$$x - 2y - 2z + 1 = 0$$

$$2x - 3y - 6z + 1 = 0$$

be the plane P. Then which of the following points lies on P?

a)
$$(3, 1, -\frac{1}{2})$$

c)
$$\left(-2, 0, -\frac{1}{2}\right)$$

b)
$$(0, 2, -4)$$

d)
$$(4, 0, -2)$$

- 5) Which of the following is equivalent to the Boolean expression $p \land \neg q$?
 - a) $\sim (q \rightarrow p)$
- b) $\sim p \rightarrow \sim q$ c) $\sim (p \rightarrow \sim q)$ d) $\sim (p \rightarrow q)$

6) Two squares are chosen at random on a chessboard (see figure). The probability that they have a side in common is:

(1)

a) $\frac{2}{7}$

c) $\frac{1}{7}$

b) $\frac{1}{18}$

d) $\frac{1}{9}$

7) If y = y(x) is the solution curve of the differential equation

$$x^2 \frac{dy}{dx} + y - \frac{1}{x} = 0$$

with x > 0 and y(1) = 1, then $y(\frac{1}{2})$ is equal to:

a) $\frac{3}{2} - \frac{1}{\sqrt{e}}$

c) $3 + \frac{1}{\sqrt{e}}$

b) 3 + e

d) 3 - e

8) If n is the number of solutions of the equation.

$$2\cos x \left(4\sin\left(\frac{\pi}{4} + x\right)\sin\left(\frac{\pi}{4} - x\right) - 1\right) = 1,$$

 $x \in [0, \pi]$ and S sum of all these solutions, Then ordered pair (n, S) is:

a)
$$(3, \frac{13\pi}{9})$$

b)
$$(2, \frac{2\pi}{3})$$

c)
$$(2, \frac{8\pi}{9})$$

d) $(3, \frac{5\pi}{3})$

9) The function $f(x) = x^3 - 6x^2 + ax + b$ satisfies f(2) = f(4) = 0. Consider two statements:

- (S_1) There exist $x_1, x_2 \in (2, 4)$ with $x_1 < x_2$, such that $f'(x_1) = -1$ and $f'(x_2) = 0$.
- (S₂) There exist $x_3, x_4 \in (2, 4)$ with $x_3 < x_4$, such that f is decreasing in $(2, x_4)$, increasing in $(x_4, 4)$, and $2f'(x_3) = \sqrt{3}f'(x_4)$. Which of the following is correct?
- a) Both (S_1) and (S_2) are true

c) Both (S_1) and (S_2) are false

b) (S_1) is false and (S_2) is true

d) (S_1) is true and (S_2) is false

10)

Let
$$J_{n,m} = \int_0^{\frac{1}{2}} \frac{x^n}{x^m - 1} dx$$
, $\forall n > m \text{ and } n, m \in \mathbb{N}$.

Consider a matrix $A = [a_{ij}]_{3\times 3}$ where $a_{ij} = \begin{cases} J_{6+i,3} - J_{i+3,3} & i \leq j, \\ 0 & i > j. \end{cases}$ Then $\left| \operatorname{adj} A^{-1} \right|$ is:

`	(1.5)	2	242
a)	(15))^ X	242

c)
$$(105)^2 \times 238$$

b)
$$(15)^2 \times 234$$

d)
$$(105)^2 \times 236$$

11) The area enclosed by the curves $y = \sin x - \cos x$ and $y = |\cos x - \sin x|$ between x = 0 and $x = \frac{\pi}{2}$ is:

a)
$$2\sqrt{2}(\sqrt{2}-1)$$

c)
$$4\sqrt{2}(\sqrt{2}-1)$$

b)
$$2\sqrt{2}(1+\sqrt{2})$$

d)
$$2\sqrt{2}(2+\sqrt{2})$$

12) The distance from the line 3y - 2z - 1 = 0 = 3x - z + 4 to the point (2, -1, 6) is:

a)
$$2\sqrt{6}$$

c)
$$4\sqrt{2}$$

b)
$$2\sqrt{5}$$

d)
$$\sqrt{26}$$

13) Consider the parabola with vertex $(\frac{1}{2}, \frac{3}{4})$ and directrix $y = \frac{1}{2}$. Let P be the point where the parabola meets the line $x = -\frac{1}{2}$. If the normal to the parabola at P intersects it again at the point Q, then $(PQ)^2$ is equal to:

a)
$$\frac{75}{8}$$

c)
$$\frac{25}{2}$$

b)
$$\frac{125}{16}$$

d)
$$\frac{15}{2}$$

14) The number of pairs (a, b) of real numbers such that whenever α is a root of the equation $x^2 + ax + b = 0$, $\alpha^2 - 2$ is also a root is:

d) 8

15) Let $S_n = 1 \cdot (n-1) + 2 \cdot (n-2) + 3 \cdot (n-3) + \dots + (n-1) \cdot 1$, for $n \ge 4$.

The sum $\sum_{n=4}^{\infty} \left(\frac{2S_n}{n!} - \frac{1}{(n-2)!} \right)$ is equal to:

a)
$$\frac{e-1}{3}$$

c)
$$\frac{e}{3}$$

b)
$$\frac{e-2}{6}$$

d) $\frac{e}{6}$