Package 'mediterraneancalculations'

February 16, 2023

1 Cordary 10, 2025
Type Package
Version 0.2-2
Date 2023-01-10
Title Mediterranean Calculations
Author Sergio M. Vicente-Serrano [aut], Fergus Reig-Gracia [aut, cre]
Maintainer Fergus Reig-Gracia <fergusrg@gmail.com></fergusrg@gmail.com>
Depends R (>= 2.10)
Imports chron, sf, SpatialTools, Imom, SPEI, RobustLinearReg, hydroGOF, snowfall, Kendall, stats
Description .
License GPL (>= 3)
URL https://lcsc.csic.es
LazyLoad no
Encoding UTF-8
Suggests MASS, rmarkdown, knitr, testthat (>= 3.0.0)
NeedsCompilation no
RoxygenNote 7.2.3
VignetteBuilder knitr
Collate 'functions-mediterranean-calculations.r' 'mediterranean-calculations.r' 'mediterraneancalculations.R' 'mediterraneancalculationsNews.R'
R topics documented:
mediterraneancalculations-package

25

Index

apply_ecdf	5
apply_ecdf_month	5
calculate_reconstruction_statistics	6
calculate_statistics	6
calculate_statistics_data	7
calc_data_year	7
calc_data_year_month_station	8
calc_mkTrend_pval	8
calc_mkTrend_slp	9
calc_percentage	9
ClimIndNews	10
coef_var	10
delete_zero	11
delete_zones	11
dry_spell_trend	12
fill_one_series	12
fill_series 1	13
fill_unfillable_station	13
main_mediterranean_calculations	14
main_mediterranean_calculations	15
mediterranean_calculations	15
mkTrend	16
mobile_trends	16
near_correlations	17
near_estations	17
order_data	18
overlap_station	18
overlap_station_no_0	19
percentage_of_zeros	19
quality_control	20
read_data	20
read_years	21
save_csvs	21
save_data	22
save_delete_data	22
second_data_fill	23
second_data_fill_data	23
select_data	24
sum_no_nas	24

mediterraneancalculations-package

mediterraneancalculations: Mediterranean Calculations

Description

.

Details

Info

See Also

Useful links:

• https://lcsc.csic.es

alexanderson_homogenize

Test de Alexanderson para todos los ficheros disponibles (que han pasado el segundo relleno con éxito)

Description

Test de Alexanderson para todos los ficheros disponibles (que han pasado el segundo relleno con éxito)

Usage

```
alexanderson_homogenize(data, folder)
```

Arguments

data data y coor

folder directorio para guardar los datos de salida

Value

data y coor

alexanderson_homogenize_data

Homogeneizar test de Alexanderson Lousamos code_web_maps/snht_functions.R Existe también librería snht de R - Serie de referencia, compara y corrige Para cada base de datos (1870, 1900...) Elegimos las 5 series más correlacionadas usandos las serie de diferencias Con las 5 hacemos una media ponderada, (correlación * dato1 + ...) / sum(correlaciones) y será la serie de referencia Alexanderson nos dará un punto de ruptura y un valor ratio por el que multiplicar la parte antigua... iterar mientras de puntos de ruptura Guardar estadísticos de inhomogeneidades. Básicamente número de datos cambiados en cada series y momento de la inhomogeneidad. CSV con número de datos cambiados y CSV con punto de inhomogeneidad - todo x 12 meses

Description

Homogeneizar - test de Alexanderson Lo usamos en code_web_maps/snht_functions.R Existe también librería snht de R – Serie de referencia, compara y corrige Para cada base de datos (1870, 1900...) Elegimos las 5 series más correlacionadas usandos las serie de diferencias Con las 5 hacemos una media ponderada, (correlación * dato1 + ...) / sum(correlaciones) y será la serie de referencia Alexanderson nos dará un punto de ruptura y un valor ratio por el que multiplicar la parte antigua... iterar mientras de puntos de ruptura Guardar estadísticos de inhomogeneidades. Básicamente número de datos cambiados en cada series y momento de la inhomogeneidad. CSV con número de datos cambiados y CSV con punto de inhomogeneidad - todo x 12 meses

Usage

```
alexanderson_homogenize_data(file_data, no_use_series = c())
```

Arguments

file_data ruta del fichero de datos

no_use_series series que no se homogeneizarán

Value

None

apply_ecdf 5

apply_ecdf

Anomalías de los datos mensuales

Description

Anomalías de los datos mensuales

Usage

```
apply_ecdf(data)
```

Arguments

data

datos mensuales

Value

anomalías de los datos

apply_ecdf_month

Anomalías de los datos

Description

Anomalías de los datos

Usage

```
apply_ecdf_month(data)
```

Arguments

data

datos mensuales

Value

anomalías de los datos

6 calculate_statistics

calculate_reconstruction_statistics

Calcular estadísticos de la reconstrucción - hydroGOF – estadísitico por estación - D / MAE / PBIAS / RMSE - por estación y mes

Description

Calcular estadísticos de la reconstrucción - hydroGOF – estadísitico por estación - D / MAE / PBIAS / RMSE - por estación y mes

Usage

```
calculate_reconstruction_statistics(sim, obs)
```

Arguments

sim datos rellenados obs datos iniciales

Value

datos eliminados y datos de entrada por estación

calculate_statistics Salida final con todos los estadíticos, serie regional promedio, tendencias, SPI...

Description

Salida final con todos los estadíticos, serie regional promedio, tendencias, SPI...

Usage

```
calculate_statistics(data, data_ori)
```

Arguments

data data y coor data_ori data original

Value

data and coor

calculate_statistics_data

calculate_statistics_data

Calcula estadísticos de los datos Tendencia mensual, estacional y anual, paquete Trend, función sens.slope Sumar 1 a todo para evitar 0s Significación, paquete modifiedmk, funsión bbsmk Serie promedio de todo el país SPI a escalas 3, 12, y 24 de cada serie, importante que sea imposible invertir las operaciones Código Sergio para generar arrays y hacer figuras de tendencia

Description

Calcula estadísticos de los datos Tendencia mensual, estacional y anual, paquete Trend, función sens.slope Sumar 1 a todo para evitar 0s Significación, paquete modifiedmk, funsión bbsmk Serie promedio de todo el país SPI a escalas 3, 12, y 24 de cada serie, importante que sea imposible invertir las operaciones Código Sergio para generar arrays y hacer figuras de tendencia

Usage

```
calculate_statistics_data(file_data, data_ori)
```

Arguments

file_data datos y coordenadas data_ori datos originales

Value

None

calc_data_year

Suma los datos de cada año, para devolver un solo dato anual

Description

Suma los datos de cada año, para devolver un solo dato anual

Usage

```
calc_data_year(data)
```

Arguments

data matriz de datos

Value

un dato por año

8 calc_mkTrend_pval

```
calc\_data\_year\_month\_station
```

Devuelve el slope z por años y estaciones

Description

Devuelve el slope z por años y estaciones

Usage

```
calc_data_year_month_station(data, calc_function)
```

Arguments

data datos de las estaciones

calc_function función a utilizar

Value

lista de resultados

calc_mkTrend_pval

Devuelve el pval calculado por mkTrend o el pval0 si el pval era NA

Description

Devuelve el pval calculado por mkTrend o el pval0 si el pval era NA

Usage

```
calc_mkTrend_pval(data)
```

Arguments

data

matriz de datos

Value

pval

calc_mkTrend_slp 9

calc_mkTrend_slp

regresión lineal de los datos contra los años

Description

regresión lineal de los datos contra los años

Usage

```
calc_mkTrend_slp(data)
```

Arguments

data

index

Value

lm

calc_percentage

Diferencia en porcentaje

Description

Diferencia en porcentaje

Usage

```
calc_percentage(datos, years = NA)
```

Arguments

datos datos years años

Value

percentage

10 coef_var

ClimIndNews

mediterrane an calculations News

Description

Show the NEWS file of the mediterraneancalculations package.

Usage

ClimIndNews()

Details

(See description)

coef_var

Coeficientes de variación, desviación https://fhernanb.github.io/Manual-de-R/varia.html estándar

Description

Coeficientes de variación, desviación estándar https://fhernanb.github.io/Manual-de-R/varia.html

Usage

```
coef_var(x, na.rm = FALSE)
```

Arguments

x datos

na.rm Ignorara NAs

Value

percentage

delete_zero 11

delete_zero Elimina datos si tenemos 5 meses o más seguidos de 0s, si uno de los meses implicados tiene menos del 70 por ciento de ceros

Description

Elimina datos si tenemos 5 meses o más seguidos de 0s, si uno de los meses implicados tiene menos del 70 por ciento de ceros

Usage

```
delete_zero(data)
```

Arguments

data

datos

Value

datos con los grupos de 0s eliminados

delete_zones

Por debajo de 28 grados norte, eliminar estaciones

Description

Por debajo de 28 grados norte, eliminar estaciones

Usage

```
delete_zones(data)
```

Arguments

data

data y coor

Value

data and coor

fill_one_series

dry_spell_trend esta función calcula la tendencia. Hay que definirle un objeto de años (years) con el año correspondiente a cada caso.	ı J
--	-----

Description

esta función calcula la tendencia. Hay que definirle un objeto de años (years) con el año correspondiente a cada caso.

Usage

```
dry_spell_trend(index, threshold)
```

Arguments

index index threshold threshold

Value

output

fill_one_series Rellena

Rellena la serie recibida utilizando las otras en el orden en el que están en other_series

Description

Rellena la serie recibida utilizando las otras en el orden en el que están en other_series

Usage

```
fill_one_series(series, other_series)
```

Arguments

series serie de datos a completar

other_series series de datos con las que completar en el orden en el que se tienen que utilizar

Value

serie de datosd rellena

fill_series 13

fill_series

Rellenado mensual de las series Usamos estaciones a menos de 200km con correlación por encima de 0.7 Para junio, julio y agosto, rellenamos con la más cercana Utilizar el método que mejor correlaciona con la serie original

Description

Rellenado mensual de las series Usamos estaciones a menos de 200km con correlación por encima de 0.7 Para junio, julio y agosto, rellenamos con la más cercana Utilizar el método que mejor correlaciona con la serie original

Usage

```
fill_series(control_data, min_correlation, max_dist)
```

Arguments

control_data datos de las estacio

datos de las estaciones y sus coordenadas

min_correlation

Correlación mínima para usar el dato en el relleno

max_dist distancia máxima entre las series a utilizar

Value

data y coor con los datos que no pasan el control eliminados

fill_unfillable_station

En los países que no salgan series, vamos a permitir que hasta tres años de datos se rellenen con la media. Es decir, pongamos que si para un periodo concreto 1900-2020 no salen series pero saldrían porque hay un máximo de tres años de datos (es decir 36 meses), rellenamos esos datos con el promedio de los 15 datos más cercanos en el tiempo. Por ejemplo, si es 1900, pues con la media de 1900-1915, si es 1915, pues con la media de 1907 a 1922. Siempre y cuando esos cinco años no estén entre 2015 y 2020 o en los cinco primeros años de las series, que entonces tiramos la serie pues podría afectar a las tendencias. Si las series son las de 1981-2020, lo mismo, pero dejamos solamente dos años de datos perdidos.

Description

En los países que no salgan series, vamos a permitir que hasta tres años de datos se rellenen con la media. Es decir, pongamos que si para un periodo concreto 1900-2020 no salen series pero saldrían porque hay un máximo de tres años de datos (es decir 36 meses), rellenamos esos datos con el promedio de los 15 datos más cercanos en el tiempo. Por ejemplo, si es 1900, pues con la media de 1900-1915, si es 1915, pues con la media de 1907 a 1922. Siempre y cuando esos cinco años no estén entre 2015 y 2020 o en los cinco primeros años de las series, que entonces tiramos la serie pues podría afectar a las tendencias. Si las series son las de 1981-2020, lo mismo, pero dejamos solamente dos años de datos perdidos.

Usage

```
fill_unfillable_station(data, fillable_years)
```

Arguments

data datos de las estaciones que se intentarán rellenar fillable_years años rellenables con la media mensual de la propia estación

Value

None

main_mediterranean_calculations

Lee los ficheros de precipitación, calcula estadísticos y guarda los resultados Los ficheros de entrada son 2 CSVs uno de coordenadas en grados (filas las estaciones y columnas lat y lon y otro de datos mensuales con fechas en filas y las estaciones en las columnas)

Description

Lee los ficheros de precipitación, calcula estadísticos y guarda los resultados Los ficheros de entrada son 2 CSVs uno de coordenadas en grados (filas las estaciones y columnas lat y lon y otro de datos mensuales con fechas en filas y las estaciones en las columnas)

Usage

```
main_mediterranean_calculations(file_data, file_coor)
```

Arguments

file_data ruta del fichero de datos

file_coor ruta del fichero de coordenadas

Value

None

main_mediterranean_calculations_

Calcula los estadísticos para un país

Description

Calcula los estadísticos para un país

Usage

```
main_mediterranean_calculations_(read_all_data, folder, pb = NULL)
```

Arguments

read_all_data datos de entrada

folder carpeta donde guarda ficheros

pb barra de progreso

Value

None

mediterranean_calculations

Hace el control de calidad Control de calidad: Se estaciones con menos de 20 años de datos y usando las 10 más correlacionadas a menos de 200 km, se desechan los datos con un percentil de diferencia de más de 0.6.

Description

Hace el control de calidad Control de calidad: Se estaciones con menos de 20 años de datos y usando las 10 más correlacionadas a menos de 200 km, se desechan los datos con un percentil de diferencia de más de 0.6.

Usage

```
mediterranean_calculations(data, max_dist_eval)
```

Arguments

data ruta del fichero de datos

max_dist_eval máxima distancia entre 2 estaciones para usar una para evaluar una con la otra

Value

data y coor con los datos que no pasan el control eliminados

16 mobile_trends

mkTrend

Calcula pval (a veces no da resultado por temas de iteración) entonces coger pval0.

Description

Calcula pval (a veces no da resultado por temas de iteración) entonces coger pval0.

Usage

```
mkTrend(x, ci = 0.95)
```

Arguments

x x ci ci

Value

list

mobile_trends

esto te calcula unas tendencias móviles de una serie, en este caso que empieza en 1851 y termina en 2018,. Habría que hacerlo para cada base de datos y estación.

Description

esto te calcula unas tendencias móviles de una serie, en este caso que empieza en 1851 y termina en 2018,. Habría que hacerlo para cada base de datos y estación.

Usage

```
mobile_trends(datos)
```

Arguments

datos

datos

Value

list

near_correlations 17

near_correlations	Devuelve la correlación entre las estaciones Sin tener en cuenta las que están a más de 200 km (NA en esos casos)

Description

Devuelve la correlación entre las estaciones Sin tener en cuenta las que están a más de 200 km (NA en esos casos)

Usage

```
near_correlations(data, coor, max_dist)
```

Arguments

data datos mensuales

coor coordenadas de las estaciones que corresponden con data

max_dist distancia máxima entre las series a utilizar

Value

correlación entre las estaciones

near_estations	Devuelve las estaciones por orden de cercanía Sin tener en cuenta las
	que están a más de 200 km (NA en esos casos)

Description

Devuelve las estaciones por orden de cercanía Sin tener en cuenta las que están a más de 200 km (NA en esos casos)

Usage

```
near_estations(data, coor, max_dist)
```

Arguments

data datos mensuales

coor coordenadas de las estaciones que corresponden con data

max_dist distancia máxima entre las series a utilizar

Value

correlación entre las estaciones

18 overlap_station

order_data

Ordena los datos y devuelve una lista con el orden

Description

Ordena los datos y devuelve una lista con el orden

Usage

```
order_data(data)
```

Arguments

data

datos

Value

list

 $overlap_station$

Calcula el tiempo de solape existente entre cada par de series

Description

Calcula el tiempo de solape existente entre cada par de series

Usage

```
overlap_station(control_data)
```

Arguments

```
control_data datos de las estaciones y sus coordenadas
```

Value

matriz con los meses que se solapan las estaciones entre si

overlap_station_no_0

overlap_station_no_0 Calcula el tiempo de solape existente entre cada par de series sin contar Os

Description

Calcula el tiempo de solape existente entre cada par de series sin contar 0s

Usage

```
overlap_station_no_0(control_data)
```

Arguments

control_data datos de las estaciones y sus coordenadas

Value

matriz con los meses que se solapan las estaciones entre si

 $percentage_of_zeros$ D

Devuelve el procentage de datos válidos que son 0s

Description

Devuelve el procentage de datos válidos que son 0s

Usage

```
percentage_of_zeros(data)
```

Arguments

data

datos

Value

percentage

20 read_data

Control de calidad Estaciones con menos de 20 años de datos retirar Usando las 10 más cercanas a menos de 200 km, desechar si promedio de percentil se diferencia en más de 0.6 o en más de 0.5 para datos 0

Description

Control de calidad Estaciones con menos de 20 años de datos retirar Usando las 10 más cercanas a menos de 200 km, desechar si promedio de percentil se diferencia en más de 0.6 o en más de 0.5 para datos 0

Usage

```
quality_control(data, coor, max_dist, max_diff_anomaly, max_diff_anomaly_0)
```

Arguments

data datos

coor coordenadas

max_dist máxima distancia entre 2 estaciones para usar una para evaluar o completar la

otra

max_diff_anomaly

máxima diferencia de anomalías para mantener dato en el control

max_diff_anomaly_0

máxima diferencia de anomalías para mantener dato en el control, si el dato es 0

Value

data y coor con los datos que no pasan el control eliminados

read_data	Leemos los datos desde los CSVs con el formato acordado Los ficheros
	de entrada son 2 CSVs uno de coordenadas en grados (filas las estaciones y columnas lat y lon y otro de datos mensuales con fechas en filas y las estaciones en las columnas)

Description

Leemos los datos desde los CSVs con el formato acordado Los ficheros de entrada son 2 CSVs uno de coordenadas en grados (filas las estaciones y columnas lat y lon y otro de datos mensuales con fechas en filas y las estaciones en las columnas)

Usage

```
read_data(file_data, file_coor)
```

read_years 21

Arguments

file_data ruta del fichero de datos

file_coor ruta del fichero de coordenadas

Value

datos originales, datos de interes y coordenadas de las estaciones leidas

read_years

Lee los años de cadenas de texto que terminan con los años

Description

Lee los años de cadenas de texto que terminan con los años

Usage

```
read_years(txt)
```

Arguments

txt texto o vector de textos

Value

list

save_csvs

Guardamos los datos en CSVs

Description

Guardamos los datos en CSVs

Usage

```
save_csvs(i_ini, folder_name, data_save, coor_save)
```

Arguments

i_ini identificador de los ficheros

folder_name carpeta en la que guardar el fichero data_save datos de las estaciones a guardar coor_save datos de coordenadas a guardar

Value

None

22 save_delete_data

save_data

Guarda la salida en 5 fichero con los datos 5 ficheros que indican si cada datos es original o rellenado (1 dato no alterado, 0 dato alterado) y 5 ficheros de coordenadas para las estaciones de cada fichero de datos, que son: - 1870 a 2020 con más de 80 años originales - 1900 a 2020 con más de 80 años originales - 1930 a 2020 con más de 60 años originales - 1950 a 2020 con más de 40 años originales - 1990 a 2020 con más de 30 años originales

Description

Guarda la salida en 5 fichero con los datos 5 ficheros que indican si cada datos es original o rellenado (1 dato no alterado, 0 dato alterado) y 5 ficheros de coordenadas para las estaciones de cada fichero de datos, que son: - 1870 a 2020 con más de 80 años originales - 1900 a 2020 con más de 80 años originales - 1930 a 2020 con más de 60 años originales - 1950 a 2020 con más de 40 años originales - 1990 a 2020 con más de 30 años originales

Usage

```
save_data(data_ori, control_data)
```

Arguments

data_ori datos originales leidos de los ficheros CSV control_data datos de las estaciones y sus coordenadas

Value

data y coor con los datos que no pasan el control eliminados

save_delete_data

Para cada estación guardar, número de datos de entrada y de datos eliminados

Description

Para cada estación guardar, número de datos de entrada y de datos eliminados

Usage

```
save_delete_data(ori_data, process_data, folder)
```

Arguments

ori_data datos iniciales process_data datos procesados

folder carpeta en la que se guarda el fichero resultante

23 second_data_fill

Value

datos eliminados y datos de entrada por estación

second_data_fill

Realiza un segundo relleno Para cada base de datos (1870, 1900...) Estaciones con más del 90 o 95 Ordenamos las estaciones por correlación (mínima 0.5) y rellenamos usando los 10 métodos... Las estaciones sin relleno total las tiramos

Description

Realiza un segundo relleno Para cada base de datos (1870, 1900...) Estaciones con más del 90 o 95 Ordenamos las estaciones por correlación (mínima 0.5) y rellenamos usando los 10 métodos... Las estaciones sin relleno total las tiramos

Usage

```
second_data_fill(data, max_dist_eval = NA)
```

Arguments

data data y coor

max_dist_eval maxima distancia para el relleno

Value

data y coor

second_data_fill_data Realiza un segundo relleno Para cada base de datos (1870, 1900...) Estaciones con más del 90 o 95 Ordenamos las estaciones por correlación (mínima 0.5) y rellenamos usando los 10 métodos... Las estaciones sin relleno total las tiramos

Description

Realiza un segundo relleno Para cada base de datos (1870, 1900...) Estaciones con más del 90 o 95 Ordenamos las estaciones por correlación (mínima 0.5) y rellenamos usando los 10 métodos... Las estaciones sin relleno total las tiramos

Usage

```
second_data_fill_data(file_data, fillable_years = 36, max_dist = NA)
```

24 sum_no_nas

Arguments

file_data ruta del fichero de datos

fillable_years años rellenables con la media mensual de la propia estación

max_dist máxima distancia permitida para el relleno

Value

None

select_data

Primeros datos válidos (no NAs)

Description

Primeros datos válidos (no NAs)

Usage

```
select_data(data, n_reference_stations)
```

Arguments

 $\begin{array}{ccc} \text{data} & \text{datos} \\ \text{n_reference_stations} \end{array}$

numero de datos a devolver

Value

primeros datos distintos de NA

sum_no_nas

Número de datos distintos de NA

Description

Número de datos distintos de NA

Usage

```
sum_no_nas(data)
```

Arguments

data datos

Value

número de datos no NAs

Index

```
alexanderson_homogenize, 3
                                               percentage_of_zeros, 19
alexanderson_homogenize_data, 4
                                               quality_control, 20
apply_ecdf, 5
apply_ecdf_month, 5
                                                read_data, 20
                                                read_years, 21
calc_data_year, 7
calc_data_year_month_station, 8
                                                save_csvs, 21
calc_mkTrend_pval, 8
                                                save_data, 22
calc_mkTrend_slp, 9
                                                save_delete_data, 22
calc_percentage, 9
                                                second_data_fill, 23
calculate_reconstruction_statistics, 6
                                                second_data_fill_data, 23
calculate_statistics, 6
                                                select_data, 24
calculate_statistics_data, 7
                                                sum_no_nas, 24
ClimIndNews, 10
coef_var, 10
delete_zero, 11
delete_zones, 11
dry_spell_trend, 12
fill_one_series, 12
fill_series, 13
fill_unfillable_station, 13
main_mediterranean_calculations, 14
main_mediterranean_calculations_, 15
mediterranean_calculations, 15
mediterraneancalculations
        (mediterraneancalculations-package),
mediterraneancalculations-package, 3
mkTrend, 16
mobile_trends, 16
near_correlations, 17
near_estations, 17
order_data, 18
overlap_station, 18
overlap_station_no_0, 19
```