৬ নম্বর প্লো

৬.১ সংখ্যা আমাদের কিছু বলে

? নিচের চিত্রের সংখ্যাগুলো আমাদের কী বলে?

ষষ্ঠ শ্রেণীর গণিতের পাঠ্যপুস্তকের বাচ্চাদের কথা মনে আছে? এখন, তারা একটি ভিন্ন নিয়ম ব্যবহার করে সংখ্যাগুলিকে ডাকে।

? তুমি কি মনে করো এই সংখ্যাগুলোর অর্থ কী?

বাচ্চারা নিজেদের পুনর্বিন্যাস করে এবং প্রত্যেকে একটি সংখ্যা বলে। নতুন ব্যবস্থার উপর ভিত্তি করে।

🌏 এই সংখ্যাগুলো কী বোঝায়, তা কি তুমি বুঝতে পারছো? পর্যবেক্ষণ করো এবং জানার চেষ্টা করো।

নিয়মটি হল — প্রতিটি শিশু তাদের সামনে তাদের চেয়ে লম্বা শিশুদের সংখ্যাটি উচ্চারণ করবে। প্রতিটি শিশু যে সংখ্যাটি বলেছে তা উভয় ব্যবস্থায় এই নিয়মের সাথে মেলে কিনা তা পরীক্ষা করে দেখুন।

নীচে দেখানো বিন্যাসের জন্য এই নিয়মের উপর ভিত্তি করে প্রতিটি শিশুর যে সংখ্যাটি বলা উচিত তা লিখুন।

? বের করো

- ১. বইয়ের শেষে দেওয়া স্টিক ফিগার কাটআউটগুলি সাজান অথবা উচ্চতার একটি বিন্যাস আঁকুন যাতে ক্রমটি পড়ে:
 - (ক) ০, ১, ১, ২, ৪, ১, ৫
 - (খ) ০, ০, ০, ০, ০, ০, ০, ০
 - (গ) ০, ১, ২, ৩, ৪, ৫, ৬
 - (ঘ) ০, ১, ০, ১, ০, ১, ০
 - (%) 0, 5, 5, 5, 5, 5, 5
 - (চ) ০, ০, ০, ৩, ৩, ৩, ৩
- ২. নীচের প্রতিটি বিবৃতির জন্য, চিন্তা করুন এবং চিহ্নিত করুন যে এটি সর্বদা সত্য, কেবল কখনও কখনও সত্য, নাকি কখনও সত্য নয়। আপনার যুক্তি শেয়ার করুন।
 - (ক) যদি কোন ব্যক্তি '0' বলে, তাহলে সে দলের মধ্যে সবচেয়ে লম্বা।
 - (খ) যদি কোন ব্যক্তি সবচেয়ে লম্বা হয়, তাহলে তার সংখ্যা '0'।
 - (গ) প্রথম ব্যক্তির সংখ্যা '০'।
 - (ঘ) যদি কোন ব্যক্তি লাইনে প্রথম বা শেষ না থাকে (অর্থাৎ, যদি তারা মাঝখানে কোথাও দাঁড়িয়ে থাকে), তাহলে তারা '0' বলতে পারবে না।
 - (ঙ) যে ব্যক্তি সবচেয়ে বড় সংখ্যাটি উচ্চারণ করে সে সবচেয়ে ছোট।
 - (চ) ৮ জনের একটি দলের মধ্যে সম্ভাব্য বৃহত্তম সংখ্যা কত?

৬.২ সমতা বাছাই

কিশোরের কিছু নম্বর কার্ড আছে এবং সে একটি ধাঁধা নিয়ে কাজ করছে: ৫টি বাক্স আছে, এবং প্রতিটি বাক্সে ঠিক ১টি নম্বর কার্ড থাকা উচিত। বাক্সগুলির সংখ্যাগুলি ৩০ হওয়া উচিত। আপনি কি তাকে এটি করার উপায় খুঁজে পেতে সাহায্য করতে পারেন?

তুমি কি বের করতে পারো কোন ৫টি কার্ড ৩০ এর সাথে যোগ করে? এটা কি সম্ভব? এই সংগ্রহ থেকে ৫টি কার্ড বেছে নেওয়ার অনেক উপায় আছে। সব সম্ভাবনা যাচাই না করেই কি সমাধান খুঁজে বের করার কোন উপায় আছে? আসুন জেনে নেওয়া যাক।

কয়েকটি জোড় সংখ্যা যোগ করো। তুমি কোন ধরণের সংখ্যা পাবে? কত সংখ্যা যোগ করা হয়েছে তাতে কি কিছু আসে যায়?

যেকোনো জোড় সংখ্যাকে জোড়ায় সাজানো যেতে পারে, কোন অবশিষ্টাংশ ছাড়াই। এখানে কিছু জোড় সংখ্যা জোড়ায় সাজানো দেখানো হয়েছে।

চিত্রে আমরা দেখতে পাচ্ছি, যেকোনো সংখ্যার জোড় সংখ্যা যোগ করলে

এর ফলে এমন একটি সংখ্যা তৈরি হবে যা এখনও জোড়ায় সাজানো যেতে পারে, কোনও অবশিষ্টাংশ ছাড়াই। অন্য কথায়, যোগফল সর্বদা একটি জোড় সংখ্যা হবে।

্বি এবার, কয়েকটি বিজোড় সংখ্যা একসাথে যোগ করুন। আপনি কোন ধরণের সংখ্যা পাবেন? কতগুলি বিজোড় সংখ্যা যোগ করা হয়েছে তা কি গুরুত্বপূর্ণ?

বিজোড় সংখ্যা জোড়ায় সাজানো যায় না। একটি বিজোড় সংখ্যা জোড়ার সমষ্টির চেয়ে এক বেশি। কিছু বিজোড় সংখ্যা নীচে দেখানো হল:

আমরা কি একটি বিজোড় সংখ্যাকে জোড়ার সমষ্টির চেয়ে এক কম ভাবতে পারি?

এই চিত্রটি দেখায় যে দুটি বিজোড় সংখ্যার যোগফল সর্বদা জোড় হতে হবে! এটি এবং এখানে অন্যান্য চিত্রগুলি প্রমাণের আরও উদাহরণ !

- 🕐 ৩টি বিজোড় সংখ্যা যোগ করলে কী হবে? ফলে প্রাপ্ত যোগফল কি জোড়ায় জোড়ায় সাজানো যাবে? না।
- (a) 4টি বিজোড় সংখ্যা, (b) 5টি বিজোড় সংখ্যা এবং (c) 6টি বিজোড় সংখ্যার যোগফলের কী হয় তা অন্বেষণ করুন।

কিশোর যে ধাঁধাটি সমাধান করার চেষ্টা করছিল তাতে ফিরে যাওয়া যাক। ৫টি খালি বাক্স আছে। তার মানে তার কাছে বিজোড় সংখ্যক বাক্স আছে। সমস্ত নম্বর কার্ডে বিজোড় সংখ্যা রয়েছে।

তাদের ৩০ যোগ করা উচিত, যা একটি জোড় সংখ্যা। যেহেতু ৫টি বিজোড় সংখ্যা যোগ করলে কখনোই জোড় সংখ্যা তৈরি হবে না, তাই কিশোর এই কার্ডগুলিকে বাক্সে ৩০ পর্যন্ত যোগ করার জন্য সাজাতে পারবে না।

্বি দুই ভাইবোন, মার্টিন এবং মারিয়া, ঠিক এক বছরের ব্যবধানে জন্মগ্রহণ করেছিল। আজ তারা তাদের জন্মদিন উদযাপন করছে। মারিয়া চিৎকার করে বলে যে তাদের বয়সের যোগফল ১১২। এটা কি সম্ভব? কেন অথবা কেন নয়?

যেহেতু তাদের জন্মের সময় এক বছরের ব্যবধান ছিল, তাই তাদের বয়স হবে (দুটি) ধারাবাহিক সংখ্যা। তাদের বয়স কি 51 এবং 52 হতে পারে? 51 + 52 = 103। আরও কিছু ধারাবাহিক সংখ্যা চেষ্টা করে দেখুন এবং দেখুন তাদের যোগফল 112 কিনা।

১, ২, ৩, ৪, ৫, ... সংখ্যাগুলো জোড় এবং বিজোড় সংখ্যার মধ্যে পর্যায়ক্রমে গণনা করা হয়। যেকোনো দুটি ধারাবাহিক সংখ্যার মধ্যে, একটি সর্বদা জোড় এবং অন্যটি সর্বদা বিজোড় হবে!

একটি জোড় সংখ্যা এবং একটি বিজোড় সংখ্যার যোগফল কত হবে? আমরা দেখতে পাচ্ছি যে তাদের যোগফল জোড়ায় সাজানো যাবে না এবং তাই এটি একটি বিজোড সংখ্যা হবে।

যেহেতু ১১২ একটি জোড় সংখ্যা, এবং মার্টিন এবং মারিয়ার বয়স পরপর সংখ্যা, তাই তাদের যোগফল ১১২ হতে পারে না।

আমরা "প্যারিটি" শব্দটি ব্যবহার করি জোড় বা বিজোড় হওয়ার বৈশিষ্ট্য বোঝাতে। উদাহরণস্বরূপ, যেকোনো দুটি ধারাবাহিক সংখ্যার যোগফলের সমতা বিজোড়। একইভাবে, যেকোনো দুটি বিজোড় সংখ্যার যোগফলের সমতা জোড়।

বের করো

- ১. জোড় এবং বিজোড় সংখ্যার চিত্রগত উপস্থাপনা সম্পর্কে আপনার ধারণা ব্যবহার করে, নিম্নলিখিত যোগফলের সমতা নির্ণয় করুন:
 - (ক) ২টি জোড় সংখ্যা এবং ২টি বিজোড় সংখ্যার যোগফল (যেমন, জোড় + জোড় + বিজোড় + বিজোড়)
 - (খ) ২টি বিজোড় সংখ্যা এবং ৩টি জোড় সংখ্যার যোগফল
 - (গ) ৫টি জোড় সংখ্যার যোগফল
 - (d) ৮টি বিজোড় সংখ্যার যোগফল
- ২. লাকপার পিগি ব্যাংকে বিজোড় সংখ্যক ₹১ মুদ্রা, বিজোড় সংখ্যক ₹৫ মুদ্রা এবং জোড় সংখ্যক ₹১০ মুদ্রা আছে। সে মোট হিসাব করে ২০৫ টাকা পেয়েছে। সে কি ভুল করেছে? যদি ভুল করে থাকে, তাহলে ব্যাখ্যা করো কেন। যদি না করে থাকে, তাহলে প্রতিটি ধরণের কতগুলি মুদ্রা তার কাছে থাকতে পারে?
- ৩. আমরা জানি যে:
 - (ক) জোড় + জোড় = জোড়
 - (খ) বিজোড় + বিজোড় = জোড়
 - (গ) জোড় + বিজোড় = বিজোড়

একইভাবে, নীচের পরিস্থিতিগুলির জন্য সমতা খুঁজে বের করুন:

- (d) জোড় জোড় =

 (ঙ) বিজোড় বিজোড় = (চ)

 জোড় বিজোড় = (ছ) বিজোড়
- জোড় =

গ্রিডে ছোট বর্গক্ষেত্র

৩ × ৩ গ্রিডে ৯টি ছোট বর্গক্ষেত্র থাকে, যা একটি বিজোড় সংখ্যা। অন্যদিকে, ৩ × ৪ গ্রিডে ১২টি ছোট বর্গক্ষেত্র থাকে, যা একটি জোড় সংখ্যা।

একটি গ্রিডের মাত্রা বিবেচনা করে, আপনি কি গুণফল গণনা না করেই ছোট বর্গক্ষেত্রের সংখ্যার সমতা বলতে পারবেন?

- এই গ্রিডগুলিতে ছোট বর্গক্ষেত্রের সংখ্যার সমতা নির্ণয় করো:
 - (ক) ২৭ × ১৩
 - (খ) 8২ × 9৮
 - (গ) ১৩৫ × ৬৫৪

অভিব্যক্তির সমতা

বীজগণিতীয় রাশিটি বিবেচনা করুন: 3n + 4। n এর বিভিন্ন মানের জন্য, রাশিটির বিভিন্ন সমতা রয়েছে:

এন	3n + 4 এর মান	মূল্যের সমতা
৩	১৩	অদ্ভুত
Ъ	২৮	এমনকি
১০	ს 8	এমনকি

🕐 এমন একটি অভিব্যক্তি তৈরি করো যার সর্বদা সমান সমতা থাকে।

কিছু উদাহরণ হল: ১০০পি এবং ৪৮ওয়াট – ২। আরও খোঁজার চেষ্টা করুন

- 🕐 এমন কিছু রাশি তৈরি করো যার সবসময় বিজোড় সমতা থাকে।
- 🕐 অন্যান্য রাশি তৈরি করো, যেমন 3n + 4, যার হয় বিজোড় অথবা জোড় সমতা থাকতে পারে।
- ? 6k + 2 রাশিটি 8, 14, 20,... (k = 1, 2, 3,... এর জন্য) অনেক জোড় সংখ্যা অনুপস্থিত।
- থমন কোন রাশি আছে কি যার সাহায্যে আমরা সকল জোড় সংখ্যা তালিকাভুক্ত করতে পারি?
 ইঙ্গিত: সকল জোড় সংখ্যারই একটি গুণনীয়ক 2 থাকে।
- থমন কোন রাশি আছে কি যার সাহায্যে আমরা সমস্ত বিজোড় সংখ্যা তালিকাভুক্ত করতে পারি?

আমরা আগে দেখেছি কিভাবে 4 এর গুণিতকের ক্রমের n তম পদ প্রকাশ করতে হয়, যেখানে n হল অক্ষর-সংখ্যা যা ক্রমের একটি অবস্থান নির্দেশ করে (যেমন, প্রথম, তেইশতম, শততম এবং সপ্তদশতম, ইত্যাদি)।

🕐 ২ এর গুণিতকের nতম পদ কত হবে ? অথবা, nতম জোড় সংখ্যাটি কত?

আসুন বিজোড় সংখ্যা বিবেচনা করি।

? ১০০তম বিজোড় সংখ্যাটি কত?

এই প্রশ্নের উত্তর দিতে, নিম্নলিখিত প্রশ্নটি বিবেচনা করুন:

?

১০০তম জোড় সংখ্যাটি কত?

এটি ২ × ১০০ = ২০০।

এটি কি ১০০তম বিজোড় সংখ্যাটি খুঁজে পেতে সাহায্য করে? আসুন তুলনা করা যাক পর্যায়ক্রমে জোড় এবং বিজোড়ের ক্রম।

জোড় সংখ্যা: ২, ৪, ৬, ৮, ১০, ১২,...

বিজোড় সংখ্যা: ১, ৩, ৫, ৭, ৯, ১১,...

আমরা দেখতে পাই যে যেকোনো অবস্থানে, বিজোড় সংখ্যা ক্রমের মান জোড় সংখ্যা ক্রমের মান অপেক্ষা এক কম। সুতরাং, ১০০তম বিজোড় সংখ্যাটি হল ২০০ – ১ = ১৯৯।

nতম বিজোড় সংখ্যাটি বের করার জন্য একটি সূত্র লিখ ।

প্রথমে আমরা যে পদ্ধতিতে বিজোড় খুঁজে বের করতে শিখেছি তা বর্ণনা করা যাক একটি নির্দিষ্ট অবস্থানে সংখ্যা:

> (ক) ওই অবস্থানে জোড় সংখ্যাটি নির্ণয় করো। এটি অবস্থান সংখ্যার ২ গুণ। (খ) তারপর জোড় সংখ্যা থেকে ১ বিয়োগ করো।

এটিকে রাশিতে লিখলে আমরা পাবো

(ক) 2n

(খ) ২ন - ১

সুতরাং, 2n হল n তম জোড় সংখ্যা প্রদানকারী সূত্র , এবং 2n – 1 হল n তম বিজোড় সংখ্যা প্রদানকারী সূত্র ।

৬.৩ গ্রিডের কিছু অন্বেষণ

এই ৩ × ৩ গ্রিডটি লক্ষ্য করুন। এটি একটি সহজ নিয়ম অনুসরণ করে পূরণ করা হয়েছে - ১ থেকে ৯ পর্যন্ত সংখ্যাগুলি ব্যবহার করুন, কোনওটির পুনরাবৃত্তি না করে। গ্রিডের বাইরে বৃত্তাকার সংখ্যা রয়েছে।

বৃত্তাকার সংখ্যাগুলো কী বোঝায়, তা কি তুমি দেখতে পাচ্ছ?

হলুদ বৃত্তের সংখ্যাগুলি সংশ্লিষ্ট সারি এবং কলামের যোগফল।

উপরে উল্লিখিত নিয়মের উপর ভিত্তি করে নীচের গ্রিডগুলি পূরণ করুন:

🥐 এই ধরণের কয়েকটি প্রশ্ন নিজে তৈরি করুন এবং আপনার সমবয়সীদের চ্যালেঞ্জ করুন।

নিচের সমস্যাটি সমাধানের চেষ্টা করুন।

্বিত্ত তুমি হয়তো বুঝতে পেরেছো যে এই গ্রিডের সমাধান খুঁজে পাওয়া সম্ভব নয়। কেন এমনটা হচ্ছে?

সম্ভাব্য ক্ষুদ্রতম যোগফল হল 6 = 1 + 2 + 3। সম্ভাব্য বৃহত্তম যোগফল হল 24 = 9 + 8 + 7। স্পষ্টতই, একটি বৃত্তের যেকোনো সংখ্যা 6 এর কম বা 24 এর বেশি হতে পারে না। গ্রিডে 5 এবং 26 যোগফল রয়েছে।

আমরা যে আগের গ্রিডগুলি সমাধান করেছি, কিশোর লক্ষ্য করেছেন যে বৃত্তের সমস্ত সংখ্যার যোগফল সর্বদা 90 ছিল। এছাড়াও, বিদ্যা লক্ষ্য করেছেন যে তিনটি সারির জন্য, অথবা তিনটি কলামের জন্য, বৃত্তাকার সংখ্যার যোগফল সর্বদা 45 ছিল। আপনার সমাধান করা পূর্ববর্তী গ্রিডগুলিতে এটি সত্য কিনা তা পরীক্ষা করুন।

এই গ্রিড থেকে আমরা দেখতে পাচ্ছি যে, একসাথে যোগ করা সমস্ত সারির যোগফল ১ – ৯ সংখ্যার যোগফলের সমান হবে। কলামের যোগফলের ক্ষেত্রেও এটি দেখা যাবে। ১ – ৯ সংখ্যার যোগফল হল

সংখ্যার একটি বর্গাকার গ্রিডকে ম্যাজিক বর্গ বলা হয় যদি প্রতিটি সারি, প্রতিটি কলাম এবং প্রতিটি কর্ণের যোগফল একই

এই সংখ্যাটিকে জাদুকরী যোগফল বলা হয় । ছবিতে কর্ণগুলি দেখানো হয়েছে।

এলোমেলোভাবে সংখ্যা দিয়ে গ্রিড পূরণ করে একটি জাদুকরী বর্গ তৈরি করার চেষ্টা করা কঠিন হতে পারে! কারণ পুনরাবৃত্তি ছাড়াই ১ - ৯ সংখ্যা ব্যবহার করে ৩ × ৩ গ্রিড পূরণ করার অনেক উপায় রয়েছে। বাস্তবে, এটি দেখা যাবে যে ঠিক ৩,৬২,৮৮০টি উপায় রয়েছে।

আশ্চর্যজনকভাবে, গ্রিড পূরণ করার কতগুলি উপায় আছে, সেগুলির সবগুলি তালিকাভুক্ত না করেই আমরা পরবর্তী বছরগুলিতে দেখব কীভাবে এটি করা যায়।

পরিবর্তে, আমাদের একটি জাদুকরী বর্গক্ষেত্র তৈরির জন্য পদ্ধতিগতভাবে এগিয়ে যাওয়া উচিত। এর জন্য, আসুন আমরা নিজেদেরকে কিছু প্রশ্ন করি।

১. জাদুকরী যোগফল কত হতে পারে? এটি কি যেকোনো সংখ্যা হতে পারে?

আপাতত, কেবল সারির যোগফলের উপর মনোযোগ দেওয়া যাক। আমরা দেখেছি যে ১ - ৯ সংখ্যা বিশিষ্ট ৩ × ৩ গ্রিডে, সারির যোগফলের মোট পরিমাণ সর্বদা ৪৫ হবে। যেহেতু একটি ম্যাজিক স্কোয়ারে সারির যোগফল সমান এবং তাদের যোগফল ৪৫ পর্যন্ত হয়, তাই তাদের প্রতিটি ১৫ হতে হবে। সুতরাং, আমাদের নিম্নলিখিত পর্যবেক্ষণটি হল।

পর্যবেক্ষণ ১: ১ – ৯ সংখ্যা ব্যবহার করে তৈরি একটি জাদুকরী বর্গক্ষেত্রে, ম্যাজিক যোগফল অবশ্যই ১৫ হতে হবে।

2. একটি জাদুকরী বর্গক্ষেত্রের কেন্দ্রে সম্ভাব্য সংখ্যাগুলি কী কী হতে পারে?

আসুন আমরা একে একে সম্ভাবনাগুলো বিবেচনা করি। কেন্দ্রীয় সংখ্যাটি কি 9 হতে পারে? যদি হাাঁ হয়, তাহলে 8 অবশ্যই অন্য যেকোনো একটি বর্গক্ষেত্রে আসবে। উদাহরণস্বরূপ,

এতে, আমাদের অবশ্যই 8 + 9 + অন্যান্য সংখ্যা = 15 থাকতে হবে। কিন্তু এটা সম্ভব নয়! আমরা যেখানেই ৮ রাখি না কেন, একই সমস্যা দেখা দেবে।

তাহলে, ৯ কেন্দ্রে থাকতে পারে না। কেন্দ্রীয় সংখ্যাটি কি ১ হতে পারে?

যদি হাাঁ হয়, তাহলে 2 অন্য যেকোনো বর্গক্ষেত্রে আসা উচিত।

এখানে, আমাদের অবশ্যই 2 + 1 + অন্য সংখ্যা = 15 থাকতে হবে। কিন্তু এটা সম্ভব নয় কারণ আমরা কেবল ১ - ৯ সংখ্যা ব্যবহার করছি। ১ যেখানেই রাখি না কেন, একই সমস্যা দেখা দেবে।

সুতরাং, ১ও কেন্দ্রে থাকতে পারে না।

এই যুক্তি ব্যবহার করে, খুঁজে বের করো যে কেন্দ্রে অন্য কোন সংখ্যা ১ - ৯ থাকতে পারে না।

এই অন্বেষণ আমাদের নিম্নলিখিত আকর্ষণীয় পর্যবেক্ষণের দিকে নিয়ে যাবে।

পর্যবেক্ষণ ২: ১ – ৯ ব্যবহার করে পূর্ণ করা একটি জাদুকরী বর্গক্ষেত্রের কেন্দ্রে অবস্থিত সংখ্যাটি অবশ্যই ৫ হতে হবে।

এবার দেখা যাক, একটি জাদুকরী বর্গক্ষেত্রে সবচেয়ে ছোট সংখ্যা ১ এবং বৃহত্তম সংখ্যা ৯ কোথায় আসবে। আমাদের দ্বিতীয় পর্যবেক্ষণ আমাদের বলে যে, তাদের সীমানা অবস্থানের যেকোনো একটিতে আসতে হবে। আসুন আমরা এই অবস্থানগুলিকে দুটি শ্রেণীতে ভাগ করি:

১ কি কোণাকার অবস্থানে ঘটতে পারে? উদাহরণস্বরূপ, এটি কি নিম্নরূপে স্থাপন করা যেতে পারে?

থি হাঁ হয়, তাহলে 1 এর সাথে আরও দুটি সংখ্যা যোগ করে 15 পাওয়ার তিনটি উপায় থাকা উচিত।

আমাদের কাছে ১ + ৫ + ৯ = ১ + ৬ + ৮ = ১৫ আছে। অন্য কোন সমন্বয় সম্ভব?

থকইভাবে, 9 কি কোণার অবস্থানে স্থাপন করা যেতে পারে?

পর্যবেক্ষণ ৩: ১ এবং ৯ সংখ্যা দুটি কোনও কোণে থাকতে পারে না, তাই এগুলি মধ্যবর্তী অবস্থানগুলির মধ্যে একটিতে থাকা উচিত।

🕐 ১ এবং ৯ এর জন্য অন্যান্য সম্ভাব্য পদগুলি কি আপনি খুঁজে পেতে পারেন?

٥	Œ	৯

এখন, আমাদের কাছে ম্যাজিক স্কোয়ারের একটি পূর্ণ সারি বা কলাম আছে! এটি সম্পূর্ণ করার চেষ্টা করুন!

[ইঙ্গিত: প্রথমে ১ এবং ৯ ধারণকারী সারি বা কলামগুলি পূরণ করুন]

? বের করো

- ১. ব্যবহার করে কতগুলি ভিন্ন ভিন্ন জাদু বর্গ তৈরি করা যেতে পারে সংখ্যা ১ - ৯?
- ২. ২ ১০ সংখ্যা ব্যবহার করে একটি জাদু বর্গ তৈরি করুন। এর জন্য আপনি কোন কৌশল ব্যবহার করবেন? ১ - ৯ ব্যবহার করে তৈরি জাদু বর্গের সাথে এটির তুলনা করুন।

৩. একটি জাদুকরী বর্গ নিন, এবং (ক)

প্রতিটি সংখ্যা ১ দ্বারা বৃদ্ধি করুন।

(খ) প্রতিটি সংখ্যা দ্বিগুণ করুন

প্রতিটি ক্ষেত্রে, ফলে তৈরি গ্রিডটি কি একটি জাদু বর্গক্ষেত্র? প্রতিটি ক্ষেত্রে জাদু যোগফল কীভাবে পরিবর্তিত হয়?

- 8. আরেকটি ম্যাজিক স্কোয়ার তৈরির জন্য একটি ম্যাজিক স্কোয়ারে আর কোন কোন অপারেশন করা যেতে পারে?
- ৫. ৯টি ধারাবাহিক সংখ্যার (যেমন ২ ১০, ৩ ১১, ৯ ১৭, ইত্যাদি) যেকোনো সেট ব্যবহার করে একটি জাদুকরী বর্গ তৈরির উপায়গুলি আলোচনা করো।

৩ × ৩ ম্যাজিক স্কোয়ারের সাধারণীকরণ

আমরা বর্ণনা করতে পারি কিভাবে ম্যাজিক স্কোয়ারের মধ্যে সংখ্যাগুলি একে অপরের সাথে সম্পর্কিত, অর্থাৎ, ম্যাজিক স্কোয়ারের গঠন।

নম্বর প্লে

এখন পর্যন্ত আপনার তৈরি যেকোনো জাদুর বর্গক্ষেত্র বেছে নিন। পরপর সংখ্যা ব্যবহার করে। যদি m কেন্দ্রে সংখ্যাটির অক্ষর-সংখ্যা হয়, তাহলে অন্যান্য সংখ্যাগুলি m-এর সাথে কীভাবে সম্পর্কিত , m- এর চেয়ে কত বেশি বা কম তা প্রকাশ করুন।

[ইঙ্গিত: মনে রাখবেন, বীজগণিতীয় রাশির অধ্যায়ে আমরা একটি ক্যালেন্ডার মাসের 2 × 2 গ্রিড কীভাবে বর্ণনা করেছি।।

সাধারণীকৃত ফর্মটি পাওয়ার পর, আপনার পর্যবেক্ষণগুলি ভাগ করুন।
ক্লাসের সাথে।

- ১. এই সাধারণ রূপ ব্যবহার করে, যদি কেন্দ্র সংখ্যা ২৫ হয় তাহলে একটি জাদুকরী বর্গক্ষেত্র খুঁজুন।
- 2. যেকোনো সারি, কলাম বা কর্ণের 3টি পদ যোগ করলে কত রাশি পাওয়া যায়?
- ৩. প্রাপ্ত ফলাফল লেখ—
 - (ক) সাধারণীকৃত আকারে প্রতিটি পদের সাথে ১ যোগ করা।
 - (খ) প্রতিটি পদকে সাধারণীকরণ আকারে দ্বিগুণ করা
- ৪. একটি জাদুকরী বর্গ তৈরি করুন যার জাদুকরী যোগফল ৬০।
- ৫. নয়টি ভরাট করে কি একটি জাদুকরী বর্গক্ষেত্র পাওয়া সম্ভব? অ-পরপর সংখ্যা?

প্রথমবারের মতো ৪ × ৪ ম্যাজিক স্কয়ার

ভারতের খাজুরাহোর পাশ্বনাথ জৈন মন্দিরে দশম শতাব্দীর একটি শিলালিপিতে প্রথম রেকর্ড করা ৪ × ৪ জাদুকরী বর্গক্ষেত্র পাওয়া যায় এবং এটি চৌতিসা যন্ত্র নামে পরিচিত।

৭ ১	২১১৪	3	
২ ১	৩৮১	>	
১৬ দ	১১০ ৫		
৯ ৬	১৫ ৪		

ভারতের খাজুরাহোতে প্রথম রেকর্ডকৃত ৪ × ৪ **জাদুর বর্গক্ষেত্র,** চৌতিসা যন্ত্র

চৌতিস মানে ৩৪। তোমার কি মনে হয় তারা কেন এটিকে চৌতিসা যন্ত্র বলে ডাকত? এই ম্যাজিক স্কোয়ারের প্রতিটি সারি, কলাম এবং কর্ণ যোগ করলে ৩৪টি পর্যন্ত যোগ হয়। বর্গক্ষেত্রে 34 পর্যন্ত যোগ করা চারটি সংখ্যার অন্য কোন প্যাটার্ন খুঁজে পেতে পারেন?

ইতিহাস ও সংস্কৃতিতে ম্যাজিক স্কোয়ার

প্রথম জাদুকরী বর্গক্ষেত্র, লো শু বর্গক্ষেত্র, প্রাচীন চীনে ২০০০ বছরেরও বেশি সময় ধরে রেকর্ড করা হয়েছে। কিংবদন্তি অনুসারে, লো নদীতে এক ভয়াবহ বন্যা হয়েছিল, যে সময় দেবতারা মানুষকে বাঁচাতে একটি কচ্ছপ পাঠিয়েছিলেন। কচ্ছপটির পিঠে ৩ × ৩ গ্রিড ছিল, যেখানে ১ থেকে ৯ সংখ্যাগুলি একটি জাদুকরী প্যাটার্নে সাজানো ছিল।

২ ৭	৬	
৯ ৫	٥	
৪ ৩	Ъ	

ভারত, জাপান, মধ্য এশিয়া এবং ইউরোপ সহ বিশ্বের বিভিন্ন স্থানে বিভিন্ন সময়ে জাদুর বর্গক্ষেত্র নিয়ে গবেষণা করা হয়েছে।

ভারতীয় গণিতবিদরা জাদুকরী বর্গক্ষেত্র তৈরির সাধারণ পদ্ধতি বর্ণনা করে ব্যাপকভাবে কাজ করেছেন।

ভারতীয় গণিতবিদদের কাজ কেবল ৩ × ৩ এবং ৪ × ৪ গ্রিডের মধ্যেই সীমাবদ্ধ ছিল না, যা আমরা উপরে আলোচনা করেছি, বরং ৫ × ৫ এবং অন্যান্য বৃহত্তর বর্গাকার গ্রিডেও বিস্তৃত ছিল। আমরা পরবর্তী গ্রেডগুলিতে এ সম্পর্কে আরও জানব।

জাদুকরী বর্গক্ষেত্রের ঘটনা কেবল পণ্ডিতদের গাণিতিক কাজের মধ্যেই সীমাবদ্ধ নয়, ভারতের অনেক জায়গায় এগুলি পাওয়া যায়। ডানদিকের ছবিটি তামিলনাড়ুর পালানির একটি মন্দিরের স্তম্ভের উপর পাওয়া ৩ × ৩ মাপের একটি জাদুকরী বর্গক্ষেত্রের। মন্দিরটি ৮ম শতাব্দীর।

Mercury 9 4 11 10 8 6 5 12 7	Venus 11 6 13 12 10 8 7 14 9	Moon 7 2 9 8 6 4 3 10 5
Jupiter 10 5 12 11 9 7 6 13 8	Sun 6 1 8 7 5 3 2 9 4	8 3 10 9 7 5 4 11 6
Ketu 14 9 16 15 13 11 19 17 12	Saturn 12 7 14 13 11 9 8 15 10	Rahu 13 8 15 14 12 10 9 16 11

লক্ষ্য করুন যে প্রতিটি গ্রহের সাথে একটি ভিন্ন জাদুকরী যোগফল যুক্ত । A কুবের যন্ত্রের ছবি নিচে দেখানো হল:

৬.৪ প্রকৃতির প্রিয় ধারাবাহিকতা: বীরাংশক– ফিবোনাচ্চি সংখ্যা!

১, ২, ৩, ৫, ৮, ১৩, ২১, ৩৪, ... (বিরহঙ্ক-ফিবোনাচ্চ সংখ্যা) এই ক্রমটি গণিতের সবচেয়ে বিখ্যাত ক্রমগুলির মধ্যে একটি - এটি শিল্প, বিজ্ঞান এবং গণিতের জগতে দেখা যায়। যদিও এই সংখ্যাগুলি বিজ্ঞানে খুব ঘন ঘন পাওয়া যায়, তবে এটি লক্ষণীয় যে এই সংখ্যাগুলি প্রথম শিল্পের (বিশেষ করে কবিতার) প্রেক্ষাপটে আবিষ্কৃত হয়েছিল!

এইভাবে বীরঙ্ক -ফিবোনাচ্চি সংখ্যাগুলি শিল্প, বিজ্ঞান এবং গণিতের মধ্যে ঘনিষ্ঠ সম্পর্কের একটি সুন্দর চিত্র তুলে ধরে।

বিরহঙ্ক সংখ্যা আবিষ্কার

হাজার হাজার বছর আগে সংস্কৃত ও প্রাকৃত ভাষাবিদদের কবিতা অধ্যয়নের সময় বিরহঙ্ক সংখ্যা প্রথম উঠে আসে!

প্রাকৃত, সংস্কৃত, মারাঠি, মালায়ালাম, তামিল এবং তেলেগু সহ অনেক ভারতীয় ভাষার কবিতায় প্রতিটি শব্দাংশকে দীর্ঘ বা সংক্ষিপ্ত হিসাবে শ্রেণীবদ্ধ করা হয়েছে।

একটি দীর্ঘ উচ্চারণ একটি ছোট উচ্চারণের চেয়ে দীর্ঘ সময় ধরে উচ্চারিত হয় - আসলে, ঠিক দ্বিগুণ সময় ধরে। এই ধরনের কবিতা গাওয়ার সময়, একটি ছোট উচ্চারণ এক বিট সময় স্থায়ী হয়, এবং একটি দীর্ঘ উচ্চারণ দুটি বিট সময় স্থায়ী হয়।

এর ফলে অসংখ্য গাণিতিক প্রশ্নের উদ্ভব হয়, যা এই ভাষাগুলির প্রাচীন কবিরা ব্যাপকভাবে বিবেচনা করতেন। কবিতা সম্পর্কে এই প্রশ্নগুলি জিজ্ঞাসা এবং উত্তর দেওয়ার প্রক্রিয়ায় বেশ কয়েকটি গুরুত্বপূর্ণ গাণিতিক আবিষ্কার করা হয়েছিল।

এই বিশেষ গুরুত্বপূর্ণ প্রশ্নগুলির মধ্যে একটি ছিল নিম্নলিখিত।

৮টি ছন্দের মধ্যে কতটি ছন্দ আছে যার মধ্যে ছোট সিলেবল (১টি বিট) এবং দীর্ঘ সিলেবল (২টি বিট) রয়েছে? অর্থাৎ, কত উপায়ে একজন

৮টি বিট ছোট এবং দীর্ঘ সিলেবল দিয়ে পূরণ করুন, যেখানে একটি ছোট সিলেবলের জন্য এক বিট সময় লাগে এবং একটি দীর্ঘ সিলেবলের জন্য দুটি বিট সময় লাগে।

এখানে কিছু সম্ভাবনা আছে: দীর্ঘ দীর্ঘ

দীর্ঘ দীর্ঘ ছোট

ছোট লম্বা লম্বা ছোট লম্বা দীর্ঘ দীর্ঘ সংক্ষিপ্ত সংক্ষিপ্ত দীর্ঘ

:

অন্যদের খুঁজে পাও?

আরও গাণিতিকভাবে বাক্যাংশ: একজন কতগুলি ভিন্ন উপায়ে

১ এবং ২ এর যোগফল হিসেবে একটি সংখ্যা লিখো, ধরো ৮?

উদাহরণস্বরূপ, আমাদের আছে:

তুমি কি অন্য কোন উপায় দেখতে পাও?

১, ২, ৩ এবং ৪ সংখ্যাগুলিকে ১ এবং ২ এর যোগফল হিসেবে লেখার সমস্ত উপায় এখানে দেওয়া হল।

	বিভিন্ন উপায় উপায়ের সং	খ্যা
n = ง	٥	٥
n = 2	\(\begin{align*} \begin{align*} & \display \\ & \dingle \din \\ & \display \\ & \display \\ & \display \\ & \display \\	Ŋ
n = 3	5 + 5 + 5 5 + 2 2 + 5	৩
n = 4	5 + 5 + 5 + 5 5 + 5 + 2 5 + 2 + 5 2 + 5 + 5 2 + 2	Œ

তোমার নোটবুকে সম্ভাব্য সকল উপায়ে ৫ সংখ্যাটিকে ১ এবং ২ এর যোগফল হিসেবে লেখার চেষ্টা করো ! তুমি কতগুলি উপায় খুঁজে পেয়েছ? (তোমার ৮টি ভিন্ন উপায় খুঁজে বের করা উচিত!) তুমি কি সব সম্ভাবনা তালিকাভুক্ত না করে উত্তরটি বের করতে পারো? তুমি কি n = ৮ এর জন্য চেষ্টা করে দেখতে পারো?

৫টি বিট বিশিষ্ট ছোট এবং দীর্ঘ সিলেবলের সকল ছন্দ লেখার একটি পদ্ধতিগত উপায় এখানে দেওয়া হল। ৪টি বিট বিশিষ্ট সকল ছন্দের সামনে '১+' লিখুন, এবং তারপর ৩টি বিট বিশিষ্ট সকল ছন্দের সামনে '২+' লিখুন। এর ফলে আমরা ৫টি বিট বিশিষ্ট সকল ছন্দ পাই:

_		
n = 5	5+5+5+5+5	\(\dagger) + \(\dagger) + \(\dagger) + \(\dagger) + \(\dagger) + \(\dagger) \)
	5+5+5+2	২+১+ ২
	5+5+2+5	২ + ২ + ১
	5+ 2 + 5 + 5	
	5+ \ + \ \	

সূতরাং, ৫টি বিট সহ ৮টি ছন্দ আছে!

এই পদ্ধতিটি কাজ করার কারণ হল প্রতিটি 5-বীট ছন্দ '1+' অথবা '2+' দিয়ে শুরু হতে হবে। যদি এটি '1+' দিয়ে শুরু হয়, তাহলে বাকি সংখ্যাগুলি অবশ্যই 4-বীট ছন্দ দেবে, এবং আমরা সেগুলি সব লিখে রাখতে পারি।

যদি এটি 2+ দিয়ে শুরু হয়, তাহলে অবশিষ্ট সংখ্যাটি অবশ্যই 3-বিটের ছন্দ দেবে, এবং আমরা সেগুলি সব লিখে রাখতে পারি। অতএব, 5-বিটের ছন্দের সংখ্যা হল 4-বিটের ছন্দের সংখ্যা, এবং 3-বিটের ছন্দের সংখ্যা।

৬-বিট ছন্দের সংখ্যা কত? একই যুক্তি অনুসারে, ৫-বিট ছন্দের সংখ্যা এবং ৪-বিট ছন্দের সংখ্যা হবে, অর্থাৎ ৮ + ৫ = ১৩। সুতরাং, ৬টি বিট বিশিষ্ট ১৩টি ছন্দ আছে।

পদ্ধতিগত পদ্ধতি ব্যবহার করে সমস্ত 6-বীট ছন্দ লিখুন, অর্থাৎ, সম্ভাব্য সকল উপায়ে 1 এবং 2 এর যোগফল হিসাবে 6 লিখুন। আপনি কি 13 টি উপায় পেয়েছেন?

ছোট সিলেবল এবং দীর্ঘ সিলেবলের সকল ছন্দ গণনার এই সুন্দর পদ্ধতিটি সর্বপ্রথম ৭০০ খ্রিস্টান্দের দিকে মহান প্রাকৃত পণ্ডিত বীরাহঙ্ক দ্বারা প্রদত্ত হয়েছিল। তিনি তার পদ্ধতিটি একটি প্রাকৃত কবিতার আকারে দিয়েছিলেন! এই কারণে, ১, ২, ৩, ৫, ৮, ১৩, ২১, ৩৪, ... এই ক্রমটিকে বীরাহঙ্ক ক্রম বলা হয় এবং এই ক্রম অনুসারে সংখ্যাগুলিকে বীরাহঙ্ক সংখ্যা বলা হয়।

ইতিহাসে বীরঙ্কই প্রথম ব্যক্তি যিনি এই গুরুত্বপূর্ণ সংখ্যাগুলি স্পষ্টভাবে বিবেচনা করেছিলেন এবং তাদের গঠনের নিয়ম লিখেছিলেন।

ভারতের অন্যান্য পণ্ডিতরাও এই সংখ্যাগুলিকে একই কাব্যিক প্রেক্ষাপটে বিবেচনা করেছিলেন। বীরঙ্ক কিংবদন্তি সংস্কৃত পণ্ডিত পিঙ্গলের পূর্ববর্তী রচনা দ্বারা অনুপ্রাণিত হয়েছিলেন, যিনি প্রায় ৩০০ খ্রিস্টপূর্বাব্দে বসবাস করতেন। বীরঙ্কের পরে, এই সংখ্যাগুলি গোপাল (আনুমানিক ১১৩৫ খ্রিস্টাব্দ) এবং তারপরে হেমচন্দ্র (আনুমানিক ১১৫০ খ্রিস্টাব্দ) দ্বারাও লেখা হয়েছিল।

পশ্চিমা বিশ্বে, এই সংখ্যাগুলিকে ফিবোনাচ্চি সংখ্যা নামে পরিচিত করা হয়েছে, যা ইতালীয় গণিতবিদ ১২০২ খ্রিস্টাব্দে - বিরাংকের প্রায় ৫০০ বছর পরে লিখেছিলেন। আমরা দেখতে পাচ্ছি, ফিবোনাচ্চি এই সংখ্যাগুলি সম্পর্কে লেখার জন্য প্রথম, দ্বিতীয়, এমনকি তৃতীয় ব্যক্তিও ছিলেন না! কখনও কখনও "বিরাংক-ফিবোনাচ্চি সংখ্যা" শব্দটি ব্যবহার করা হয় যাতে সবাই বুঝতে পারে যে কী বলা হচ্ছে।

তাহলে, ছোট এবং দীর্ঘ সিলেবলের কতগুলি ছন্দ আছে? ৮টি বিট? আমরা কেবল বিরহঙ্ক ক্রমের ৮ম উপাদানটি নিই: ১, ২, ৩, ৫, ৮, ১৩, ২১, ৩৪<mark>, ৫</mark>৫, ... সুতরাং, ৮টি বিট সহ ৩৪টি ছন্দ রয়েছে।

৫৫ এর পরের ক্রমানুসারে পরবর্তী সংখ্যাটি লিখ। আমরা দেখেছি যে ক্রমের পরবর্তী সংখ্যাটি পূর্ববর্তী দুটি সংখ্যা যোগ করে দেওয়া হয়েছে। উপরে প্রদত্ত সংখ্যাগুলির জন্য এটি সত্য কিনা তা পরীক্ষা করুন। পরবর্তী সংখ্যাটি হল 34 + 55 = 89।

ক্রমানুসারে পরবর্তী 3টি সংখ্যা লিখুন: ১, ২, ৩, ৫, ৮, ১৩, ২১, ৩৪, ৫৫, ৮৯, ____, ___, ___, ..._

> উপরের ক্রমানুসারে যদি আপনাকে আরও একটি সংখ্যা লিখতে হয়, তাহলে আপনি কি বলতে পারবেন যে এটি একটি বিজোড় সংখ্যা হবে নাকি একটি জোড় সংখ্যা (পূর্ববর্তী দুটি সংখ্যা যোগ না করে)?

🕐 ক্রমের প্রতিটি সংখ্যার সমতা কত? সমতার ক্রমটিতে কি আপনি কোন প্যাটার্ন লক্ষ্য করেছেন?

আজ, বিরাংক-ফিবোনাচ্চি সংখ্যাগুলি কবিতা থেকে শুরু করে ঢোল বাজানো, দৃশ্য শিল্প ও স্থাপত্য, বিজ্ঞান পর্যন্ত অনেক গাণিতিক এবং শৈল্পিক তত্ত্বের ভিত্তি তৈরি করে। সম্ভবত এই সংখ্যাগুলির মধ্যে সবচেয়ে আশ্চর্যজনক ঘটনা প্রকৃতিতে ঘটে। উদাহরণস্বরূপ, একটি ডেইজিতে পাপড়ির সংখ্যা সাধারণত একটি বিরাংক সংখ্যা।

এই ফুলগুলোর প্রতিটিতে কয়টি করে পাপড়ি দেখতে পাচ্ছ?

১৩টি পাপড়ি বিশিষ্ট একটি ডেইজি

২১টি পাপড়ি বিশিষ্ট একটি ডেইজি

৩৪টি পাপড়ি বিশিষ্ট একটি ডেইজি

বীরঙ্কের আরও অনেক উল্লেখযোগ্য গাণিতিক বৈশিষ্ট্য রয়েছে-

ফিবোনাচ্চি সংখ্যা যা আমরা পরে দেখব, গণিতের পাশাপাশি অন্যান্য বিষয়েও।

এই সংখ্যাগুলি সত্যিই শিল্প, বিজ্ঞান এবং গণিতের মধ্যে ঘনিষ্ঠ সংযোগের উদাহরণ দেয়।

ছদ্মবেশে ৬.৫ সংখ্যা

তুমি সংখ্যা দিয়ে গাণিতিক কাজ করেছো। বর্ণ দিয়েও একই কাজ করলে কেমন হয়?

নিচের গণনাগুলিতে, সংখ্যাগুলি অক্ষর দ্বারা প্রতিস্থাপিত হয়েছে। প্রতিটি অক্ষর একটি নির্দিষ্ট সংখ্যা (0 - 9) বোঝায়। আপনাকে প্রতিটি অক্ষর কোন সংখ্যার প্রতিনিধিত্ব করে তা বের করতে হবে।

এখানে, আমাদের কাছে একটি এক-অঙ্কের সংখ্যা আছে, যা দুবার যোগ করলে 2-অঙ্কের যোগফল পাওয়া যায়। যোগফলের একক সংখ্যা এবং যোগ করা একক সংখ্যা একই।

? U এবং T কি হতে পারে? T কি 2 হতে পারে? এটা কি 3 হতে পারে?

যোগফলের দশকের স্থান এবং এককের স্থান উভয়েরই অঙ্ক একই।

? H সম্পর্কে কী? এটা কি 2 হতে পারে? এটা কি 3 হতে পারে?

এই ধরণের প্রশ্নগুলি সমাধান করা আকর্ষণীয় এবং মজাদার হতে পারে! এখানে আপনার চেষ্টা করার জন্য এই ধরণের আরও কিছু প্রশ্ন রয়েছে। প্রতিটি অক্ষর কী বোঝায় তা খুঁজে বের করুন।

প্রতিটি প্রশ্ন সম্পর্কে তুমি কেমন চিন্তা করেছো তা তোমার সহপাঠীদের সাথে ভাগ করে নাও; তুমি কিছু নতুন পদ্ধতি খুঁজে পেতে পারো।

এই ধরণের প্রশ্নগুলিকে 'ক্রিপ্টারিথম' বা 'বর্ণমালা' বলা হয়।

? বের করো

 একটি বাল্ব চালু আছে। দর্জি ৭৭ বার তার সুইচটি টগল করে। বাল্ব জ্বলবে নাকি বন্ধ হবে? কেন?

- ২. লিসউইনির একটি বিশাল পুরাতন বিশ্বকোষ আছে। যখন সে এটি খুলল, তখন সেখান থেকে বেশ কয়েকটি খোলা পৃষ্ঠা পড়ে গেল। সে মোট ৫০টি পাতা গুনল, প্রতিটি পাতা উভয় পাশে মুদ্রিত ছিল। খোলা পাতার পৃষ্ঠা সংখ্যার যোগফল কি ৬০০০ হতে পারে? কেন বা কেন নয়?
- ৩. এখানে ২ × ৩ গ্রিড আছে। প্রতিটি সারি এবং কলামের জন্য, বৃত্তে যোগফলের সমতা লেখা আছে; জোড়ের জন্য 'e' এবং বিজোড়ের জন্য 'o'। সারি এবং কলামের যোগফলের সমতা পূরণ করতে 6টি বাক্সে 3টি বিজোড় সংখ্যা ('o') এবং 3টি জোড় সংখ্যা ('e') পূরণ করুন।

- ৪. ০ কে ম্যাজিক যোগফল হিসেবে রেখে ৩ × ৩ ম্যাজিক বর্গ তৈরি করুন। সকল সংখ্যা শূন্য হতে পারে না। প্রয়োজনে ঋণাত্মক সংখ্যা ব্যবহার করুন।
- ৫. 'বিজোড়' বা 'জোড়' দিয়ে নিম্নলিখিত শূন্যস্থান পূরণ করুন:
 - (ক) একটি বিজোড় সংখ্যার জোড় সংখ্যার যোগফল হল
 - (খ) একটি জোড় সংখ্যার বিজোড় সংখ্যার যোগফল হল (গ) একটি জোড় সংখ্যার বিজোড় সংখ্যার যোগফল হল (ঘ) একটি বিজোড় সংখ্যার বিজোড় সংখ্যার যোগফল হল
- ৬. ১ থেকে ১০০ পর্যন্ত সংখ্যাগুলোর যোগফলের সমতা কত?
- ৭. বিরাংক ক্রমের দুটি পরপর সংখ্যা হল ৯৮৭ এবং ১৫৯৭। ক্রমের পরবর্তী দুটি সংখ্যা কী কী? ক্রমের পূর্ববর্তী দুটি সংখ্যা কী কী?
- ৮. আঙ্গান ৮ ধাপের সিঁড়ি বেয়ে উঠতে চায়। তার খেলাধুলার নিয়ম হলো সে একবারে ১ ধাপ অথবা ২ ধাপ যেতে পারে। উদাহরণস্বরূপ, তার পথের একটি হল ১, ২, ২, ১, ২। সে কতগুলি ভিন্ন উপায়ে শীর্ষে পৌঁছাতে পারে?
- ৯. বিরহঙ্ক অনুক্রমের ২০তম পদের সমতা কত?
- ১০. সত্য বিবৃতিগুলি চিহ্নিত করুন।
 - (ক) 4m 1 রাশিটি সর্বদা বিজোড় সংখ্যা দেয়।
 - (খ) সকল জোড় সংখ্যাকে 6j 4 হিসেবে প্রকাশ করা যেতে পারে।
 - (c) 2p + 1 এবং 2q 1 উভয় রাশিই সমস্ত বিজোড় সংখ্যা বর্ণনা করে।
 - (d) 2f + 3 রাশিটি জোড় এবং বিজোড় উভয় সংখ্যাই প্রদান করে।
- ১১. এই ক্রিপ্টারিথমটি সমাধান করুন:

সারসংক্ষেপ

এই অধ্যায়ে, আমরা নিম্নলিখিত বিষয়গুলি অন্বেষণ করেছি:

- প্রথম কার্যকলাপে, আমরা দেখেছি কিভাবে সংখ্যার ক্রম (যেমন, উচ্চতার পরিমাপ) সাজানো হয়, প্রকৃত সংখ্যা না জেনেও সে সম্পর্কে তথ্য উপস্থাপন করতে হয়।
- আমরা সমতার ধারণাটি শিখেছি জোড়ায় সাজানো যায় এমন সংখ্যা (জোড় সংখ্যা) এবং জোড়ায় সাজানো যায় না এমন সংখ্যা (বিজোড় সংখ্যা)।
- আমরা শিখেছি কিভাবে রাশি এবং পণ্যের সমতা নির্ধারণ করতে হয়।
- গ্রিডে যোগফল অন্বেষণ করার সময়, সারি এবং কলামের যোগফল দেখে আমরা নির্ধারণ করতে পারি যে একটি গ্রিড পূরণ করা অসম্ভব কিনা। আমরা এটিকে ম্যাজিক স্কোয়ার তৈরিতে প্রসারিত করেছি।
- আমরা দেখেছি কিভাবে ইতিহাসে প্রথম বিরাংক সংখ্যাগুলি শিল্পকলার মাধ্যমে আবিষ্কৃত হয়েছিল। বিরাংক ক্রম হল ১, ২, ৩, ৫, ৮, ১৩, ২১, ৩৪, ৫৫, ...
- আমরা ক্রিপ্টারিথমের মাধ্যমে গণিত-গোয়েন্দা হয়ে উঠলাম, যেখানে সংখ্যাগুলি অক্ষর দ্বারা প্রতিস্থাপিত হয়।

