Alkalmazott statisztika

Kétmintás t-próba és ANOVA

2016. szeptember 28.

Kétmintás t-próba

Legyenek ξ és η független normális eloszlású valószínűségi változók, melyeknek megegyezik a szórásuk: $\xi \sim N(\mu_1, \sigma^2)$, $\eta \sim N(\mu_2, \sigma^2)$. A következő hipotéziseket vizsgáljuk:

$$H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$$

Döntés konfidencia intervallum alapján

A nullhipotézist nem utasítjuk el, ha a konfidencia intervallum tartalmazza a 0-t. Tehát nem tudunk szignifikáns különbséget kimutatni a várható értékek között α szinten.

A nullhipotézist elvetjük, ha a konfidencia intervallum NEM tartalmazza a 0-t. Tehát a várható értékek közötti különbség szignifikáns α szinten.

Döntés tesztstatisztika alapján

Legyen
$$t = \frac{E_{n_1}(\xi) - E_{n_2}(\eta)}{\sqrt{(n_1 - 1)V_{n_1}^*(\xi) + (n_2 - 1)V_{n_2}^*(\eta)}} \sqrt{\frac{n_1 n_2 (n_1 + n_2 - 2)}{n_1 + n_2}}$$
 tesztstatisztika, mely egy $n_1 + n_2 - 2$ szabadsági fokú Student-eloszlás.

A hozzá tartozó kritikus érték: $t_{\alpha} = \Phi_{n_1+n_2-2}^{-1}(1-\alpha/2)$.

A nullhipotézist nem utasítjuk el, ha $|t| < t_{\alpha}$. Tehát nem tudunk szignifikáns különbséget kimutatni a várható értékek között α szinten. Különben a nullhipotézist elvetjük. Tehát a várható értékek közötti különbség szignifikáns α szinten.

Döntés p érték alapján

A null-hipotézist nem utasítjuk el, ha $\alpha < p$. Tehát nem tudunk szignifikáns különbséget kimutatni a várható értékek között α szinten. Különben a nullhipotézist elvetjük. Tehát a várható értékek közötti különbség szignifikáns α szinten.

Varianciák tesztelés: F-próba

Legyenek ξ és η független normális eloszlású valószínűségi változók: $\xi \sim N(\mu_1, \sigma_1^2)$, $\eta \sim N(\mu_2, \sigma_2^2)$, ahol $\mu_1, \sigma_1, \mu_2, \sigma_2$ ismeretlenek. A következő hipotéziseket vizsgáljuk:

$$H_0: \frac{\sigma_1}{\sigma_2} = 1, \ H_1: \frac{\sigma_1}{\sigma_2} \neq 1$$

Döntés

A nullhipotézist nem utasítjuk el, ha a konfidencia intervallum tartalmazza az 1-et. Tehát nem tudunk szignifikáns különbséget kimutatni a varaniák között α szinten.

A nullhipotézist elvetjük, ha a konfidencia intervallum NEM tartalmazza az 1-et. Tehát a varianciák közötti különbség szignifikáns α szinten.

A null-hipotézist nem utasítjuk el, ha $\alpha < p$. Tehát nem tudunk szignifikáns különbséget kimutatni a varianciák között α szinten. Különben a nullhipotézist elvetjük. Tehát a varianciák közötti különbség szignifikáns α szinten.

Egyszempontos varianciaanalízis (ANOVA)

Legyenek ξ_1 , ξ_2 , ..., ξ_n független normális eloszlású valószínűségi változók, melyeknek megegyezik a szórásuk. A következő hipotézist vizsgáljuk:

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_n$$

Döntés p érték alapján

A null-hipotézist nem utasítjuk el, ha $\alpha < p$. Tehát nem tudunk szignifikáns különbséget kimutatni a várható értékek között α szinten. Különben a nullhipotézist elvetjük. Tehát a várható értékek közötti különbség szignifikáns α szinten.