ANÁLISE DE MEDIDAS REPETIDAS NO TEMPO USANDO O SAS

Euclides Braga MALHEIROS*

Medidas repetidas no tempo: medidas tomadas em uma seqüência de tempos, em uma mesma unidade experimental.

Os experimentos com medidas repetidas no tempo envolvem geralmente 2 fatores: tratamentos e tempos, e são freqüentes em experimentos com animais, plantas, humanos, etc. O objetivo principal desse tipo de experimento é examinar e comparar as tendências dos tratamentos ao longo do tempo. Isto pode envolver comparações entre tratamentos dentro de cada tempo, ou comparações de tempos dentro de cada tratamento.

Considere o exemplo:

Cinco variedades de uma cultura (tratamentos) avaliadas ao longo do tempo (0, 30, 60, 90, 120 e 150 dias), em um experimento inteiramente casualizado, com 3 repetições.

Os dados observados são apresentados a seguir:

Tabela 1. Dados de porcentagem de açúcar na cana, em pol%, obtidos em um DIC com 3 repetições, envolvendo 5 variedades de cana, observados em 6 tempos de desenvolvimento da cultura.

descrivorimento da curtura.								
Variedades	Rep.	Tempo em dias						
varicuates	κτρ.	0	30	60	90	120	150	
	1	11,82	14,86	13,84	15,53	15,49	15,82	
V1	2	12,07	14,44	13,92	15,47	16,34	18,64	
	3	12,45	14,18	13,76	14,35	15,93	16,52	
	1	12,47	15,19	15,02	15,54	18,53	15,76	
V2	2	11,07	13,38	14,61	14,07	17,84	16,91	
	3	10,66	14,22	13,54	15,93	15,94	16,81	
	1	12,92	14,49	13,40	13,68	16,26	14,78	
V3	2	10,29	14,42	14,62	15,84	16,29	15,62	
	3	12,83	13,92	15,69	15,12	14,91	17,22	
	1	11,96	14,71	14,98	15,25	16,21	15,53	
V4	2	13,38	15,07	13,62	15,39	15,77	16,51	
	3	10,37	15,78	13,33	14,50	16,66	16,34	
	1	11,05	13,18	14,61	14,88	16,51	16,36	
V5	2	10,63	13,14	14,53	14,21	16,57	15,24	
	3	13,43	14,08	14,23	14,11	15,86	17,50	

Fonte: Nogueira (1995)

Como se sabe, nas análise usuais do SAS (enfoque univariado) no SAS-DATA-SET as colunas são as variáveis e as linhas os registros, e assim sendo, os dados devem ser organizados na forma apresentada a seguir:

^{*} Departamento de Ciências Exatas – FCAV/UNESP, Campus de Jaboticabal. 14870-000 Jaboticabal SP

Dados na forma univariada:

Variedade		Tempo	Repetição	Y
	1	0	1	11.82
	1	0	2	12.07
	1	0	3	12.45
	1	30	1	14.86
	 5	3	 150	 17.50

Para um tipo de análise de medidas repetidas no tempo (enfoque multivariado) o SAS-DATA-SET deve conter uma variável (coluna) para cada tempo.

Dados na forma multivariada:

Variedade	Repetição	T1	T2		T6
1	1	11.82	14.86	•••	15.82
1	2	12.07	14.44	•••	18.64
1	3	12.45	14.18	•••	16.52
2	1	12.47	15.19	•••	15.76
•••	•••	•••	•••	•••	•••
5	150	13.43	14.08	•••	17.50

Passos para a análise desses dados:

Passo 1: Criar os SAS-DATA-SET multivariado quando os dados estão digitados da forma univariada (MRT1U.TXT), ou vice-versa.

```
/* CRIACAO DO SAS-DATA-SET MULTIVARIADO A PARTIR DO UNIVARIADO */
OPTIONS LS=78 PS=64;
LIBNAME PASTA "C:\MEUS DOCUMENTOS\MRT";
DATA PASTA.MRT1U;
INFILE "A:\MRT1U.TXT";
INPUT VR TP RP Y;
*PROC PRINT;
RUN;
PROC SORT DATA=PASTA.MRT1U; BY VR RP;
PROC TRANSPOSE OUT=PASTA.MRT1UM(RENAME=(_0=T1 _30=T2 _60=T3 _90=T4 _120=T5 _150=T6));
BY VR RP;
ID TP;
PROC PRINT;
PROC PRINT;
```

Passo 2: Representar graficamente os perfis médios 5 tratamentos (Variedades), ao longo do tempo.

```
/* REPRESENTACAO GRAFICA DA TENDENCIA DOS TRATAMENTOS AO LONGO DO TEMPO */
OPTIONS LS=78 PS=64;
LIBNAME PASTA "C:\MEUS DOCUMENTOS\MRT";
DATA MRT1U; SET PASTA.MRT1U;
*PROC PRINT;
RUN;
PROC SORT; BY VR TP RP; RUN;
PROC MEANS MEAN NOPRINT;
OUTPUT OUT=MRT1G;
BY VR TP;
VAR Y;
```

```
*PROC PRINT;
RUN;
DATA MRT1G; SET MRT1G;
IF _STAT_^="MEAN" THEN DELETE;
KEEP VR TP Y;
*PROC PRINT;
RUN;
PROC SORT DATA=MRT1G; BY TP;
PROC TRANSPOSE OUT=MRT1G(RENAME=(_1=V1 _2=V2 _3=V3 _4=V4 _5=V5));
BY TP;
ID VR;
PROC PRINT;
RUN;
PROC GPLOT;
PLOT V1*TP V2*TP V3*TP V4*TP V5*TP/OVERLAY LEGEND HAXIS=0 TO 150 BY 30;
SYMBOL1 COLOR=RED INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL2 COLOR=BLUE INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL3 COLOR=GREEN INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL4 COLOR=BLACK INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL5 COLOR=ORANGE INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
TITLE HEIGHT=1.4 "TENDENCIA DOS TRAT. AO LONGO DO TEMPO";
RUN;
```

TENDENCIA DOS TRAT. AO LONGO DO TEMPO

MÉTODOS PARA ANALISAR MEDIDAS REPETIDAS NO TEMPO

1. Análise como parcelas subdivididas.

Historicamente, o método mais utilizado para análise de medidas repetidas no tempo é a análise univariada num esquema em parcelas subdivididas, tendo o tempo como subparcelas. Referenciado na literatura como parcelas subdivididas no tempo.

O problema deste método de análise é que o delineamento em parcelas subdivididas a matriz de covariâncias é do tipo homogênea (condição suficiente para que os testes F sejam exatos), ou seja:

Se a matriz de variâncias e covariâncias é:

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1t} \\ \sigma_{21} & \sigma_{2}^2 & \dots & \sigma_{2t} \\ \dots & \dots & \dots & \dots \\ \sigma_{t1} & \sigma_{t2} & \dots & \sigma_{t}^2 \end{bmatrix},$$

onde σ_i^2 é a variância no tempo i, e σ_{ij} é a covariância entre os tempos i e j, na estrutura homogênea $\sigma_i^2 = \sigma^2$, $\forall i \ e \ \sigma_{ij} = \rho$, $\forall i \neq j$.

Essa é a considerada na análise em parcelas subdivididas.

O que se encontra na literatura é que as medidas repetidas em uma mesma unidade experimental (animal, plantas ou humanos) são correlacionadas e que medidas em tempos mais próximos apresentam correlações mais altas que em tempos mais distantes. Uma estrutura que tem sido estudada é a autoregressiva.

Segundo Huynh & Feldt (1970) uma condição necessária e suficiente para que os testes F sejam exatos, mais geral da forma de Σ , é que:

$$\sigma_{kk'} = \frac{(\sigma_k^2 + \sigma_{k'}^2)}{2} - \lambda \quad , k \neq k'.$$

 $\sigma_{kk'} = \frac{(\sigma_k^2 + \sigma_{k'}^2)}{2} - \lambda \quad , \, k \neq k'.$ λ é a diferença entre as médias das variâncias e as medias das

Esta condição, denominada condição H-F ou condição de esfericidade (ou circularidade) da matriz Σ , equivale a especificar que as variâncias das diferenças entre pares de tempos sejam todas iguais, ou seja:

$$\sigma_{Y_k-Y_{k'}}^2=c, \forall k\neq k'$$

Para exemplificar, verifique se a matriz abaixo satisfaz a condição de esfericidade:

$$\Sigma = \begin{bmatrix} 5,0 & 2,5 & 5,0 & 7,5 \\ 2,5 & 10,0 & 7,5 & 10,0 \\ 5,0 & 7,5 & 15,0 & 12,5 \\ 7,5 & 10,0 & 12,5 & 20,0 \end{bmatrix}.$$

Observe que

$$\lambda = \frac{(5,0+10,0+15,0+20,0)}{4} - \frac{(2,5+5,0+7,5+7,5+10,0+12,5)}{6} = 5,0$$

e
$$\sigma_{12} = \frac{(5,0+10,0)}{2} - 5,0 = 2,5,$$
 $\sigma_{13} = \frac{(5,0+15,0)}{2} - 5,0 = 5,0;$ e assim por diante.

Ainda mais:

$$\sigma_{Y_1-Y_2}^2 = \sigma_1^2 + \sigma_2^2 - 2\sigma_{12} = 5.0 + 10.0 - 2(2.5) = 10.0$$
;

$$\sigma_{Y_1 - Y_3}^2 = \sigma_1^2 + \sigma_3^2 - 2\sigma_{13} = 5.0 + 15.0 - 2(5.0) = 10.0$$
; e assim por diante.

Logo a matriz satisfaz a condição de esfericidade.

Passo 3 (opcional): Fazer um programa SAS para obter a matriz de covariâncias entre os tempos dos dados da Tabela 1.

```
/* OBTENÇÃO DA MATRIZ DE COVARIÂNIAS ENTRE TEMPOS */
OPTIONS LS=78 PS=64;
LIBNAME PASTA "C:\MEUS DOCUMENTOS\MRT";
DATA MRT1M; SET PASTA.MRT1M;
*PROC PRINT;
RUN;
PROC CORR COV NOPRINT OUTP=MVC;
VAR T1-T6;
RUN;
DATA MVC; SET MVC;
IF _TYPE_^="COV" THEN DELETE;
RUN;
PROC PRINT DATA=MVC;
RUN;
```

Observando a matriz de covariâncias resultante, observa-se que não é fácil visualizar se a condição de esfericidade é satisfeita.

Murchly (1940) apresenta um teste para a condição de esfericidade.

Segundo Box (1954), Geisser & Greenhouse (1958), Greenhouse & Geisser (1959) e Huynh & Feldt (1976), ainda que a matriz Σ não satisfaça a condição de esfericidade, a distribuição F central poderá ser usada), de maneira aproximada, para sub-parcelas (S) e para a interação entre parcelas e sub-parcelas (P*S), se forem efetuadas correções nos graus de liberdade dessas fontes de variação (multiplicando os originais por um fator ε , (t-1)⁻¹ $\leq \varepsilon$ \leq 1, onde t é o número de tempos).

Em 1984 o comando REPEATED foi incluído no PROC GLM do SAS. Este comando executa análises uni e multivariadas, incluindo o teste de esfericidade de Σ e as correções de graus de liberdade sugeridas na literatura.

3. Análise usando o comando REPEATED do PROC GLM.

Para este tipo de análise os dados devem estar na forma multivariada (uma coluna para cada tempo).

A sintaxe para o uso desse procedimento é:

```
Sintaxe:

PROC GLM <opções 1>;

CLASS <fator Tra.>;

MODEL <Lista Var.Tempo>=<fator Trat.>/<opções 2>;

REPEATED <fator tempo> <nº níveis fator tempo> [<(valores níveis fator tempo)>]

<tipo de contrastes>/<opções 3>;

RUN;
```

Uma das possíveis *<opções 1>* é:

• **DATA=<SDS>** - especifica o SAS-DATA-SET a ser usado.

Uma das possíveis <opções 2> é:

NOUNI – não executa as análises unidimensionais, dentro de cada tempo.

Alguns dos possíveis <tipos de contrastes> são:

- CONTRAST [(nível referencial)] gera contrastes entre cada nível do fator tempo com o nível referencial. Quando o nível referencial não for especificado, considera o último.
- **POLYNOMIAL** gera contrastes de polinômios ortogonais para os níveis do fator tempo.
- **HELMERT** gera contrastes entre cada nível do fator tempo com a média dos subsequentes.
- **MEAN** (**nível referencial**) gera contrastes entre o cada nível (exceto o referencial) com a média dos outros.
- **PROFILE** gera contrastes entre níveis adjacentes do fator tempo.

Algumas das *<opções 3>* são:

- CANONICAL executa uma análise canônica das matrizes H e E.
- HTYPE=n especifica o tipo da soma de quadrados a ser usado.
- NOM Não executa a análise multivariada.
- NOUNI Não executa as análises univariadas.
- **PRINT**|**E**|**H**|**M**|**V** Imprime a matriz especificada:
 - **E** matriz da soma de quadrados dos produtos cruzados (SS&CP) para erros. Com a opção PRINTE o SAS apresenta o teste de esfericidade da matriz de covariâncias.
 - H matriz da soma de quadrados dos produtos cruzados (SS&CP) para a Hipótese.
 - M matriz dos contrates.
 - V matriz dos auto-valores e auto-vetores associada ao teste.
- **SUMMARY** apresenta a tabela da análise da variância dos contrastes para o fator tempo.

Passo 4: Fazer um programa SAS obter a análise usando o comando REPEATED do PROC GLM, para os dados da Tabela 1.

```
/* Análise usando o comando REPEATED do PROC GLM */
OPTIONS LS=78 PS=64;
LIBNAME PASTA "C:\MEUS DOCUMENTOS\MRT";
DATA M2; SET PASTA.MRT1U;
PROC SORT; BY VR RP;
PROC TRANSPOSE OUT=MRT3(RENAME=(_0=T1 _30=T2 _60=T3 _90=T4 _120=T5 _150=T6));
BY VR RP;
ID TP;
*PROC PRINT;
RUN;
PROC GLM DATA=MRT3;
CLASS VR;
MODEL T1-T6=VR/NOUNI;
REPEATED TP 6 POLYNOMIAL/PRINTE SUMMARY;
RUN;
```

INTERPRETAÇÃO DOS RESULTADOS:

a) Teste de esfericidade.

```
Test for Sphericity: Mauchly's Criterion = 0.1956602
Chisquare Approximation = 13.214144 with 14 df Prob > Chisquare = 0.5097

Applied to Orthogonal Components:
Test for Sphericity: Mauchly's Criterion = 0.1956602
Chisquare Approximation = 13.214144 with 14 df Prob > Chisquare = 0.5097
```

O SAS apresenta 2 testes de esfericidade. O primeiro depende do tipo de contrastes solicitado e o segundo é válido para qualquer conjunto de contrastes ortogonais. Observa-se com esses resultados que a condição de esfericidade da matriz não deve ser rejeitada. Assim sendo os testes envolvidos na análise anterior (Parcelas subdivididas) são exatos.

```
Passo 5: Fazer a análise como medidas repetidas no tempo.
```

```
/* Análise univariada como parcelas subdivididas */
OPTIONS LS=76 PS=64;
LIBNAME PASTA "C:\MEUS DOCUMENTOS\MRT";
DATA M; SET PASTA.MRT1U;
PROC GLM;
CLASS VR TP RP;
MODEL Y= VR RP(VR) TP VR*TP/SS3;
TEST H=VR E=RP(VR);
MEANS VR/TUKEY E=RP(VR);
MEANS TP/TUKEY;
RUN;
```

Resultado da análise:

Tabela 3: Valores de F, com respectivas probabilidades, Coeficiente de Variação (CV), e médias obtidas na análise da variância.

ESTATÍSTICAS	Variável Y
F p/ Tratam.(Tr)	0,56(0,6969)
F p/ Tempo (Tp)	54,24(0,0001)
F p/ int. Tr x Tp	0,84(0,6546)
CV% - Parcelas	6,25%
CV% - Subparcelas	6,02%

O problema deste método de análise é que o delineamento em parcelas subdivididas a matriz de covariâncias é do tipo homogênea (condição suficiente para que os testes F sejam exatos), ou seja:

Exemplo 2: Fazer os passos descritos anteriormente para os dados da Tabela 4.

Tabela 4. Dados de IAF de cinco genótipos de leguminosas, avaliados em 7 épocas (dias), obtidos em um DBC.

		Número de dias						
Genótipo	Bloco -	88	104	120	137,5	153,5	181,5	209,5
1	1	0,13	0,39	0,46	0,52	1,18	0,87	0,51
1	2	0,31	0,25	1,07	0,44	1,11	1,41	1,08
1	3	0,22	0,40	0,53	3,61	1,11	0,98	0,78
1	4	0,08	0,17	0,97	1,11	1,70	0,92	0,74
2	1	0,13	0,36	0,89	0,62	1,64	1,61	1,42
2	2	0,27	0,10	0,53	0,60	1,52	1,01	1,09
2	3	0,13	0,41	1,03	3,60	1,92	0,56	1,09
2	4	0,08	0,55	0,62	1,04	2,47	1,45	1,12
3	1	0,84	1,44	2,31	6,07	3,90	3,42	2,00
3	2	0,45	1,18	2,66	3,88	4,03	3,09	0,99
3	3	0,67	2,39	4,25	6,33	4,13	3,46	0,96
3	4	1,28	3,45	5,04	5,57	3,87	0,36	0,77
4	1	0,42	0,80	0,72	1,07	1,20	1,08	1,26
4	2	0,15	0,40	0,42	0,85	0,66	0,85	0,71
4	3	0,22	0,30	0,77	0,94	1,44	1,49	0,62
4	4	0,28	0,36	0,74	0,73	1,62	1,84	1,36
5	1	0,67	1,77	2,09	3,27	3,92	2,36	2,72
5	2	0,66	1,07	2,39	4,19	4,89	1,86	1,61
5	3	1,41	2,55	3,87	4,62	3,62	3,87	0,02
5	4	1,30	2,16	5,78	8,62	7,92	0,26	0,26

Fonte: Castro (1999)

Os dados estão digitados na forma multivariada (MRT2M.txt)

Entrada de dados e criação de um SDS na forma univariada

```
OPTIONS LS=78 PS=64;
LIBNAME PASTA "C:\MEUS DOCUMENTOS\MRT";
DATA PASTA.MRT2M (KEEP=GN BL T1-T7)
     PASTA.MRT2U (KEEP=GN BL TP Y);
INFILE "A:\MRT2M.TXT";
INPUT GN BL T1-T7;
OUTPUT PASTA.MRT2M;
TP=88; Y=T1; OUTPUT PASTA.MRT2U;
TP=104; Y=T2; OUTPUT PASTA.MRT2U;
TP=120; Y=T3; OUTPUT PASTA.MRT2U;
TP=137.5; Y=T4; OUTPUT PASTA.MRT2U;
TP=153.5; Y=T5; OUTPUT PASTA.MRT2U;
TP=181.5; Y=T6; OUTPUT PASTA.MRT2U;
TP=209.5; Y=T7; OUTPUT PASTA.MRT2U;
PROC PRINT DATA=PASTA.MRT2M;
PROC PRINT DATA=PASTA.MRT2U;
RUN;
```

```
/* REPRESENTAÇÃO GRÁFICA */
DATA UNI ; SET PASTA.MRT2U;
PROC SORT; BY GN TP BL; RUN;
PROC MEANS MEAN NOPRINT;
OUTPUT OUT=UNIM MEAN=YM;
BY GN TP;
VAR Y;
*PROC PRINT;
RUN;
PROC SORT DATA=UNIM; BY TP;
PROC TRANSPOSE OUT=UNIMT(RENAME=(_1=GN1 _2=GN2 _3=GN3 _4=GN4 _5=GN5));
BY TP;
ID GN;
VAR=YM;
*PROC PRINT;
RUN;
PROC GPLOT;
PLOT GN1*TP GN2*TP GN3*TP GN4*TP GN5*TP/OVERLAY LEGEND;
SYMBOL1 COLOR=RED INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL2 COLOR=BLUE INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL3 COLOR=GREEN INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL4 COLOR=BLACK INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL5 COLOR=ORANGE INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
TITLE HEIGHT=1.4 "TENDENCIA DOS TRAT. AO LONGO DO TEMPO";
RUN;
```

Representação gráfica:

TENDENCIA DOS TRAT. AO LONGO DO TEMPO

Teste de esfericidade da matrix

```
/* Análise usando o comando REPEATED do PROC GLM */
PROC GLM DATA=PASTA.MRT2M;
CLASS BL GN;
MODEL T1-T7=GN/NOUNI;
REPEATED TP 6 POLYNOMIAL/PRINTE SUMMARY;
RUN;
```

Interpretação dos resultados:

a) Resultados do teste de esfericidade.

```
Test for Sphericity: Mauchly's Criterion = 0.0027667
Chisquare Approximation = 75.262197 with 20 df Prob > Chisquare = 0.0000

Applied to Orthogonal Components:

Test for Sphericity: Mauchly's Criterion = 0.0027667
Chisquare Approximation = 75.262197 with 20 df Prob > Chisquare = 0.0000
```

Observa-se com esses resultados que a condição de esfericidade da matriz deve ser rejeitada. Assim sendo os testes da análise em parcelas subdivididas não são exatos.