

**WHAT IS CLAIMED IS:**

1        1. A decoding system for receiving and decoding data from an optical disk,  
2 comprising:

3              a demodulator for receiving and demodulating data from the disk to  
4 generate an ECC (Error Correction Code) block that comprises main data, a PI(Parity of  
5 Inner-code), and a PO(Parity of Outer-code);

6              a syndrome generator for generating a PI syndrome and a PO syndrome;

7              a memory that connects with said syndrome generator to store the data of  
8 said PO syndrome during said syndrome generator generating said PO syndrome;

9              a data buffer for storing said main data, said PI syndrome and said PO  
10 syndrome;

11              an ECC decoder for performing error correction decoding of said ECC  
block;

12              a de-scrambler and EDC(Error Detection Code) check for de-scrambling  
13 said main data stored in said data buffer and checking whether errors in said main  
14 data being corrected; and

15              an ATAPI(Advanced Technology Attachment Packet Interface) for  
16 reading said main data stored in said data buffer, then de-scrambling and  
17 transmitting said main data to the host.

18        2. The decoding system as claimed in claim 1 further comprising a data room  
19 that connects with said ECC decoder to store said PI syndrome and said PO syndrome.

20        3. The decoding system as claimed in claim 2 wherein said syndrome  
21 generator reads said ECC block from said demodulator, then transfers said main data to  
22 said data buffer; further said ECC decoder reads said PI syndrome and said PO syndrome  
23 from said data buffer to said data room to perform the error correction decoding, then  
24 corrects said PI syndrome and said PO syndrome in said data room and writes the  
25 corrected part of said main data into said data buffer.

26        4. The decoding system as claimed in claim 1 wherein said demodulator  
27 converts M bit code words into N bit data symbols ( $M > N$ ).

1           5. A decoding method for receiving and decoding data from an optical disk,  
2 comprising the steps of:

3                 (a) transmitting the data from the disk to a demodulator, wherein said  
4 demodulator demodulates the data to generate an ECC (Error Correction Code) block that  
5 comprises main data, a PI(Parity of Inner-code), and a PO(Parity of Outer-code);

6                 (b) transmitting said ECC block to a syndrome generator and writing said  
7 main data into a data buffer;

8                 (c) calculating a PI syndrome and a PO syndrome and storing the data of  
9 said PO syndrome to a memory during calculating said PO syndrome;

10                 (d) writing said PI syndrome and said PO syndrome into said data buffer;

11                 (e) reading said PI syndrome from said data buffer to an ECC decoder and  
12 transmitting said PI syndrome to a data room to perform the error correction decoding of  
13 the PI direction,;

14                 (f) correcting said PI syndrome in said data room, correcting said PO  
15 syndrome in said data buffer and writing the corrected part of said main data into said data  
16 buffer ;

17                 (g) writing said PO syndrome from said data buffer into said data room;

18                 (h) reading said PO syndrome from said data room to said ECC decoder to  
19 perform the error correction decoding of the PO direction;

20                 (g) correcting said PI syndrome and said PO syndrome stored in said data  
21 room, and writing the corrected part of said main data into said data buffer;

22                 (h) reading said main data from said data buffer to a de-scrambler and  
23 EDC check to de-scramble said main data and check whether errors in said main data  
24 being corrected; and

25                 (j) reading said main data from said data buffer to an ATAPI to  
26 de-scramble said main data and transmit to the host.

1           6. The decoding system as claimed in claim 5 wherein said demodulator  
2 converts M bit code words into N bit data symbols ( $M > N$ ).

1           7. A decoding system for receiving and decoding data from an optical disk,  
2 comprising:

3                   a demodulator for receiving and demodulating data from the disk to  
4 generate an ECC (Error Correction Code) block that comprises main data, a PI(Parity of  
5 Inner-code), and a PO(Parity of Outer-code);

6                   a syndrome generator for generating a PI syndrome;

7                   a data buffer for storing said main data, said PI syndrome and said PO;

8                   an ECC decoder for performing the error correction decoding of said ECC  
9 block;

10                  a de-scrambler and EDC(Error Detection Code) check for de-scrambling  
11 said main data stored in said data buffer and checking whether errors in said main  
12 data being corrected; and

13                  an ATAPI(Advanced Technology Attachment Packet Interface) for  
14 reading said main data stored in said data buffer, de-scrambling and transmitting  
15 said main data to the host.

8.         The decoding system as claimed in claim 7 further comprising a memory  
that connects with said ECC decoder to store a PO syndrome generated by said ECC  
decoder.

9.         The decoding system as claimed in claim 8 wherein said syndrome  
generator reads said ECC block from said demodulator, then transfers said main data, said  
PO and said PI syndrome to said data buffer; further said ECC decoder reads said main  
data and said PO from said data buffer to calculate said PO syndrome and perform the  
error correction decoding of the PO direction, then writes said PO syndrome into said  
memory and corrects said PI syndrome in said data buffer and writes the corrected part of  
said main data into said data buffer, then reads said PI syndrome from said data buffer to  
perform the error correction of the PI direction, afterward corrects said PI syndrome in  
said data buffer and corrects said PO syndrome in said data room and writes the corrected  
part of said main data into said data buffer.

10.      The decoding system as claimed in claim 7 wherein said demodulator  
converts M bit code words into N bit data symbols ( $M > N$ ).

11.      A decoding method for receiving and decoding data from an optical disk,  
comprising the steps of:

3                         (a) transmitting the data from the disk to a demodulator, wherein said  
4                         demodulator demodulates the data to generate an ECC (Error Correction Code) block that  
5                         comprises main data, a PI(Parity of Inner-code), and a PO(Parity of Outer-code);

6                         (b) transmitting said ECC block to a syndrome generator to calculate a PI  
7                         syndrome;

8                         (c) writing said PI syndrome, said main data and said PO into a data  
9                         buffer;

10                         (d) reading said main data and said PO from said data buffer to an ECC  
11                         decoder to calculate a PO syndrome;

12                         (e) writing said PO syndrome to a memory and performing the error  
13                         correction decoding of the PO direction;

14                         (f) correcting said PO syndrome in said memory, correcting said PI  
15                         syndrome in said data buffer and writing the corrected part of said main data into said data  
16                         buffer;

17                         (g) reading said PI syndrome from said data buffer to said ECC decoder to  
18                         perform the error correction decoding of the PI direction;

19                         (h) correcting said PO syndrome in said memory, correcting said PI  
20                         syndrome in said data buffer and writing the corrected part of said main data into said data  
21                         buffer;

22                         (i) reading said main data from said data buffer to a de-scrambler and  
23                         EDC check to de-scramble said main data and to check whether errors in said main data  
24                         being corrected; and

25                         (j) reading said main data from said data buffer to an ATAPI to  
26                         de-scramble said main data and transmit to the host.

1                         12. The decoding system as claimed in claim 11 wherein said demodulator  
2                         converts M bit code words into N bit data symbols (M>N).

1                         13. A decoding system for receiving and decoding data from an optical disk,  
2                         comprising:

3                         a demodulator for receiving and demodulating data from the disk to  
4                         generate an ECC (Error Correction Code) block that comprises main data, a PI(Parity of  
5                         Inner-code), and a PO(Parity of Outer-code);

6                         a syndrome generator for generating a PI syndrome;

7           a data buffer for storing said main data , said PI syndrome and said PO;  
8           a first de-scrambler and EDC(Error Detection Code) check for  
9           de-scrambling said main data stored in said data buffer and checking whether errors  
10          in said main data being corrected;  
11          an ECC decoder for performing the error correction decoding of said ECC  
12          block;  
13          a memory that connects with said ECC decoder to store a PO syndrome;  
14          a second de-scrambler and EDC check for de-scrambling said main data  
15          which EDC checking is not finished yet and then checking again whether errors in  
16          said main data being corrected; and  
17          an ATAPI(Advanced Technology Attachment Packet Interface) for  
18          reading said main data stored in said data buffer, then de-scrambling and  
19          transmitting said main data to the host.

Q       14. The decoding system as claimed in claim 13 wherein said syndrome  
G       generator reads said ECC block from said demodulator, then generates said PI syndrome  
E       and transfers said main data, said PO and said PI syndrome to said data buffer, meanwhile  
2       said main data is also transferred to said first de-scrambler and EDC check.

3       15. The decoding system as claimed in claim 13 wherein said ECC decoder  
2       reads said PI syndrome from said data buffer to perform the error correction decoding of  
3       the PI direction, meanwhile transfers the error to said second de-scrambler and EDC  
4       check to get the EDC check of the PI direction, then corrects said PI syndrome and said  
5       PO in said data buffer and writes the corrected part of said main data into said data buffer,  
6       afterward said ECC decoder reads said main data and said PO from said data buffer to  
7       generate said PO syndrome and writes said PO syndrome into said memory to perform  
8       the error correction decoding of the PO direction, then corrects said PO syndrome in said  
9       memory and corrects said PI syndrome in said data buffer, meanwhile writes the  
10      corrected part of said main data into said data buffer.

1       16. The decoding system as claimed in claim 13 wherein said demodulator  
2       converts M bit code words into N bit data symbols (M>N)

1       17. A decoding method for receiving and decoding data from an optical disk,  
2       comprising the steps of:

Sub  
al

3                         (a) transmitting the data from the disk to a demodulator, wherein said  
4 demodulator demodulates the data to generate an ECC (Error Correction Code) block that  
5 comprises main data, a PI(Parity of Inner-code), and a PO(Parity of Outer-code);

6                         (b) transmitting said ECC block to a syndrome generator to calculate a PI  
7 syndrome;

8                         (c) writing said PI syndrome, said main data and said PO into a data buffer,  
9 and transmitting said main data to a first de-scrambler and EDC check to de-scramble  
10 said main data and check whether errors in said main data being corrected ;

11                         (d) reading said PI syndrome from said data buffer to an ECC decoder to  
12 perform the error correction decoding of the PI direction, and transmitting the error to a  
13 second de-scrambler and EDC check to get the EDC check of the PI direction;

14                         (e) correcting said PI syndrome and said PO in said data buffer and  
15 writing the corrected part of said main data into said data buffer;

16                         (f) reading said main data and said PO from said data buffer to said ECC  
decoder to calculate a PO syndrome;

17                         (g) writing said PO syndrome into a memory to perform the error  
correction decoding of the PO direction;

18                         (h) correcting said PO syndrome in said memory and correcting said PI  
syndrome in said data buffer, and writing the corrected part of said main data into said  
data buffer;

19                         (i) reading said main data from said data buffer to a second de-scrambler  
and EDC check to de-scramble said main data which EDC checking is not finished yet  
and to check again whether errors in said main data being corrected; and

20                         (j) reading said main data from said data buffer to an ATAPI to  
de-scramble said main data and transmit to the host.

21                         18. The decoding system as claimed in claim 17 wherein said demodulator  
converts M bit code words into N bit data symbols ( $M > N$ ).

22                         19. The decoding system as claimed in claim 17 wherein said ECC decoder  
can be a RSPC(Reed Solomon Product Code)structure.

23                         20. The decoding system as claimed in claim 17 wherein said data buffer and  
said memory include EDO-RAM、SRAM、DRAM、SL-DRAM、DR-DRAM、  
EDO-DRAM、SDRAM、DDR-SDRAM、VC-SDRAM, etc.