Recent Polarization Observable Results in η - and η' -photoproduction off the proton

Master thesis for the CBELSA/TAPS collaboration

Jakob Krause

▼ krause@hiskp.uni-bonn.de | **೧** krausejm

Supervisor: Jun. Prof. Dr. Annika Thiel

▼ thiel@hiskp.uni-bonn.de

30th March 2022

Setting the scene

The Standard Model of Particle Physics

- ▶ matter consists of 12 (anti-)fermions
- ightharpoonup quarks interact via $strong\ interaction$
- ▶ form bound states: mesons $(q\bar{q})$ and baryons (qqq)

baryon spectroscopy (photoproduction) gives insight in strong interaction

Setting the scene

Observe resonances N^*/Δ^* in the cross sections $\sigma(\gamma p \to pM)$

Total cross section $\sigma(\gamma p \to p\pi^0)$ [Wunderlich et al. 2017]

→goal: (help to) identify contributing resonances as strong bound states!

1. Theoretical basics

2. Experimental Setup

3. Preliminary results

4. Conclusion

Theoretical basics

- ► resonances are broad, overlapping, require complicated partial-wave-analysis (PWA)
- ▶ constraints for the analysis can be derived from polarization observables
- ▶ ultimate goal: "complete experiment"; unambiguous, model-independent PWA solution → several single and double polarization observables needed

Beam-target polarization observables

	target polarization			
photon		x	y	z
unpolarized	σ_0	-	T	-
linearly polarized	$-\Sigma$	H	-P	-G
circularly polarized	-	F	-	-E

[Sandorfi et al. 2011]

Theoretical basics

Beam asymmetry Σ

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(E_{\gamma},\cos\theta,\varphi) = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_0}(E_{\gamma},\cos\theta) \cdot \left[1 - p_{\gamma}^{\mathrm{lin}}\Sigma\cos(2\varphi)\right]$$

polarization angle φ , polarization degree $p_{\gamma}^{\mathrm{lin}}$

[Sandorfi et al. 2011]

Definition of the polarization angle

CBELSA/TAPS experiment

- $\begin{tabular}{l} \hline & generate photon beam \\ from accelerated \\ electrons via \\ bremsstrahlung, with \\ E_{\gamma} \leq 3.2 \, {\rm GeV} \\ \hline \end{tabular}$
- ▶ photon beam impinges on liquid hydrogen target: $\gamma p \rightarrow pM \rightarrow pX$
- ► measure decay products X of different final states: $M = \pi^0/\eta/\eta'/\ldots$
- ► data set: July-October 2013, 1065 h beam time

Overview of the experimental area, adapted from [Walther 2022]

Event selection of the $\eta' \to \gamma \gamma$ final state

Analysis performed in 2x6 bins of $(E_{\gamma}, \cos \theta_{\eta'}^{\text{CMS}}), E_{\gamma} \in [1400, 1800] \text{ MeV}$

- ➤ 3 detector hits, 2 uncharged, 1 charged
- ▶ coincident detector hits
- kinematic cuts derived from energy-momentum conservation $p_{\gamma} + p_{p} = p'_{p} + p_{p'}$
- ► additional cuts to reduce background contributions

total: $\sim 11000 \ \eta' \rightarrow \gamma \gamma$ events

Extraction method for $\Sigma_{\eta'}$

- \blacktriangleright measure in 2 distinct orthogonal polarization settings \bot , \parallel
- \triangleright χ^2 -fit to event yield asymmetries

$$A(E_{\gamma}, \theta, \phi) = \frac{N^{\perp}(E_{\gamma}, \theta, \phi) - N^{\parallel}(E_{\gamma}, \theta, \phi)}{p_{\gamma}^{\parallel} N^{\perp}(E_{\gamma}, \theta, \phi) + p_{\gamma}^{\perp} N^{\parallel}(E_{\gamma}, \theta, \phi)} = \Sigma(E_{\gamma}, \theta) \cos\left(2\left(\alpha^{\parallel} - \phi\right)\right)$$

▶ fit from $\sim 800 \ \eta' \rightarrow \gamma \gamma$ events

Preliminary results for $\Sigma_{\eta'}$

Beam asymmetry $\Sigma_{\eta'}$ for all energy and angle bins, compared with results of [Collins et al. 2017]

Confirming pre-published results of Σ_{η}

Preliminary results (η)

Event selection (η)

analysis performed in 11x12 bins of $(E_{\gamma}, \cos \theta)$ by [Afzal et al. 2020]

Method

- ▶ fit to event yield asymmetries using BAYESIAN inference
- ▶ Bayes' theorem: $p(\theta|y) \propto \mathcal{L}(y|\theta) \cdot \pi(\theta)$
 - marginal posteriors: $p(\theta_j|y) = \prod_{i \neq j} \int d\theta_i p(\theta|y)$
 - b obtained using Markov-chain-Monte-Carlo (MCMC)

sampling algorithms: STAN

[Stan development team 2022]

(marginal) posteriors
$$p(\Sigma|y) \leftrightarrow \Sigma_{\chi^2} \pm \Delta(\Sigma_{\chi^2})$$

Preliminary results (η)

Beam asymmetry Σ for all energy and angle bins

Preliminary results (η)

Beam asymmetry Σ for one energy and all angle bins

Additional advantage: sample only in physically allowed parameter space

Conclusion

Summary

- $ightharpoonup \Sigma$ extracted for η and η' final state
- \blacktriangleright η results obtained with BAYESIAN fit agree with previous results
- $\blacktriangleright \eta'$ results agree with previous results

Outlook

- extract Σ using unbinned maximum likelihood fit for η/η'
- ► apply BAYESIAN approach to above method
- \blacktriangleright consider bkg contaminations in results of $\Sigma_{n'}$

BACKUP & REFERENCES

Additional theoretical basics

Unpolarized differential cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{4}\rho \sum_{\mathrm{spins}} |\langle f|\mathcal{F}|i\rangle|^2,$$

where

$$\mathcal{F} = i(\vec{\sigma} \cdot \vec{\epsilon})F_1 + (\vec{\sigma} \cdot \hat{q})(\vec{\sigma} \cdot (\hat{k} \times \vec{\epsilon}))F_2 + i(\vec{\sigma} \cdot \hat{k})(\hat{q} \cdot \vec{\epsilon})F_3 + i(\vec{\sigma} \cdot \hat{q})(\hat{q} \cdot \vec{\epsilon})F_4$$

 F_i : complex CGLN Amplitudes

[Chew et al. 1957]

 $\frac{d\sigma}{d\Omega} \in \mathbb{R}$, not sufficient do determine \mathcal{F} unambiguously

 \rightarrow Polarization Observables can be related to F_i

Background estimation using Monte-Carlo simulations

Background estimation using Monte-Carlo simulations

 $2\pi^0/\pi^0\eta$ events pass event selection, because $E_{\gamma_i} \lesssim 20$ MeV, or $\theta_{\gamma_i} \approx \theta_{\gamma_j}$

Background reducing cuts

- ▶ p in MT for $E_{\gamma} < 1500$ MeV
- ▶ $E_{\gamma_i} < 1500 \text{ MeV}$
- ▶ 1 PED/Cluster for γ_i
- ightharpoonup Clustersize(p) < 6
- ightharpoonup Clustersize(γ_i) in FW

bkg contamination $\sim 13\%$

Diagnostics of a BAYESIAN fit

- \triangleright \hat{R} : measure of convergence for chains
- ▶ Monte-Carlo-Standard-Error: measure for adequate sample size
- ▶ posterior predictive checks: "goodness of fit"

References I

- Afzal, F. et al. (Oct. 2020). 'Observation of the $p\eta'$ Cusp in the New Precise Beam Asymmetry Σ Data for $\gamma p \to p\eta$ '. In: Phys. Rev. Lett. 125 (15), p. 152002. DOI: 10.1103/PhysRevLett.125.152002. URL: https://link.aps.org/doi/10.1103/PhysRevLett.125.152002.
- Chew, G. F. et al. (June 1957). 'Relativistic Dispersion Relation Approach to Photomeson Production'. In: Phys. Rev. 106 (6), pp. 1345–1355. DOI: 10.1103/PhysRev.106.1345. URL: https://link.aps.org/doi/10.1103/PhysRev.106.1345.
- Collins, P. et al. (2017). 'Photon beam asymmetry Σ for η and η' photoproduction from the proton'. In: *Phys. Lett. B* 771, pp. 213–221. DOI: 10.1016/j.physletb.2017.05.045. arXiv: 1703.00433 [nucl-ex].

References II

- Sandorfi, A. M. et al. (Apr. 2011). 'Determining pseudoscalar meson photoproduction amplitudes from complete experiments'. In: *Journal of Physics G: Nuclear and Particle Physics* 38.5, p. 053001. ISSN: 1361-6471. DOI: 10.1088/0954-3899/38/5/053001. URL: http://dx.doi.org/10.1088/0954-3899/38/5/053001.
- Stan development team (2022). Stan Modeling Language Users Guide and Reference Manual. Vol. 2.29. URL: https://mc-stan.org.
- Walther, Dieter (2022). Crystal Barrel. A 4π photon spectrometer. URL: https://www.cb.uni-bonn.de (visited on 09/03/2022).
- Wunderlich, Y. et al. (May 2017). 'Determining the dominant partial wave contributions from angular distributions of single- and double-polarization observables in pseudoscalar meson photoproduction'. In: *The European Physical Journal A* 53.5. ISSN: 1434-601X. DOI: 10.1140/epja/i2017-12255-0. URL: http://dx.doi.org/10.1140/epja/i2017-12255-0.