Mock Olympiad #3

- 1. Let $n \in \mathbb{N}$. Find the number of permutations (a_1, a_2, \ldots, a_n) of $\{1, 2, \ldots, n\}$ for which $k \mid 2(a_1 + a_2 + \ldots + a_k)$, for every $1 \leq k \leq n$.
- 2. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that for any $x, y, z \in \mathbb{R}^+$ with $x + y \geq z$,

$$f(x+y-z) + f(2\sqrt{xz}) + f(2\sqrt{yz}) = f(x+y+z).$$

3. (IMO Short list 2001, N4) Let $p \ge 5$ be a prime number. Prove that there exists an integer a with $1 \le a \le p-2$ such that neither $a^{p-1}-1$ nor $(a+1)^{p-1}-1$ is divisible by p^2 .