

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: PCC-CS 403/PCC-CS403/PCC-CSBS401/PCCCS403 Formal Language & Automata Theory UPID: 004423

Time Allotted: 3 Hours Full Marks:70

The Figures in the margin indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

		croup referry energy representations	
1. Answer any ten of the following :			[1 x 10 = 10]
	(1)	NFA, in its name has 'non-deterministic' because of	
	(II)	The non- Kleene Star operation accepts the following string of finite length over set $A = \{0,1\}$ we contains even number of 0 and 1	here string s
	(III)	Language of finite automata is of which type?	
	(IV)	The concept of FSA is much used inpart of the compiler	
	(V)	FSM can recognize	
	(VI)	Consider the following language, L = {anbn n = 1} L is	
	(VII)	Set of regular languages over a given alphabet set is closed under	
		Consider the grammar: S -> ABCc Abc BA -> AB Bb -> bb Ab -> ab Aa -> aa Write the sentences can be derived by this grammar?	-
	(IX)	Consider the following grammar S> Ax / By A> By/Cw B> x / Bw C> y Write the regular expressions describe the same set of strings as the grammar.	
	(X)	Let $S = \{a, b, c, d, e\}$. The number of strings isin $S*$ of length 4 symbol is used more than once in a string	such that no
	(XI)	Given a grammar G, a production of G with a dot at some position of the right side is called	
	(XII)	Number of states of the FSM required to simulate behaviour of a computer with a memory capa "m" words, each of length 'n' is	able of storing
		Group-B (Short Answer Type Question)	
		Answer any three of the following :	[5 x 3 = 15]
2.	Desi	gn a DFA where every string either starts with 01 or ends with 01 over the alphabet set {0,1}.	[5]
3.		te the regular expression for the language $L=\{a^n \mid n>0\}$.	[5]
	Construct an NFA for the regular expression [5		
4.	4. Construct an NFA for the regular expression $(0+1)*00(0+1)*$		
5.	· · · · · · · · · · · · · · · · · · ·		
_			
6.	CON	vert the following NPA to DPA.	[5]

Group-C (Long Answer Type Question)

Answer any three of the following: $[15 \times 3 = 45]$

- 7. (a) Design a DFA where each and every string end with '001' over the alphabet set {0,1}. [5]
 - (b) Obtain the regular expression for the following DFA. [5]

(c) Consider the following e-NFA: [5]

Compute the e-closure of each state. Convert the NFA to DFA.

- 8. (a) Define Chomsky normal form and convert the following CFG to CNF. $S \rightarrow aSb|ab|Aa, A \rightarrow aab$
 - (b) What is useless production? Eliminate ∈ , unit and useless production from following grammar. [9]

 $A \! o \! bA|Bba|aa,B \! o \! aba|b|D,C \! o \! CA|AC|B,D \! o \! a| \in$

- 9. (a) Define Deterministic PDA and Non-deterministic PDA. [6]
 - (b) Construct a PDA for the grammar S o aAA, A o aS|bS|a
- 10. (a) State the Pumping lemma for the Regular Language (RL). [4]
 - (b) State the Pumping lemma for the Context Free Language (CFL). [4]
 - (c) Prove that the given language is not regular. [7] $L=\{a^nb^n>=0\}$
- 11. Transform the CFG into GNF, given G = ($\{A_1,A_2,A_3\}$, $\{a,b\}$, P, A_1) and production P as, [15] $A_1 \rightarrow A_2A_3, A_2 \rightarrow A_3A_1|b,A_3 \rightarrow A_1A_2|a$

*** END OF PAPER ***