TD 3 — Correction & explications

Étapes

- 1. Importer le workfile et estimer l'équation MCO.
- 2. **Tester** l'homoscédasticité :
 - Breusch-Pagan-Godfrey (BP) : (BP = N R^2 ^2(K-1))
 - White: (W ^2) avec carrés & interactions des X
 - Goldfeld-Quandt: test de ratio de variances (F)
- 3. Conclure (H0: homoscédasticité).
- 4. Corriger si nécessaire :
 - Matrice de covariance robuste de White (erreurs robustes)
 - ou Moindres Carrés Généralisés (MCG) si une forme de variance est modélisable.

Interprétation type

- Si BP < 2_{K-1} et White < 2_{ddl} aux seuils usuels \rightarrow ne pas rejeter H0 \rightarrow homoscédasticité.
- Sinon → hétéroscédasticité: préférer erreurs robustes (White) pour les tests t/F, ou MCG.

Procédure EViews (rappel)

- View → Residual Diagnostics → Heteroskedasticity Tests (choisir Breusch-Pagan-Godfrey ou White)
- $View \rightarrow Coefficients\ Diagnostics \rightarrow Scaled\ coefficients\ pour\ l'importance\ économique$
- Pour un Wald/F-test conjoint :
 - View \rightarrow Coefficient Diagnostics \rightarrow Wald test (ex. c(3)=0, c(5)=0)
 - -ou calcul manuel : $(F = \frac{SCR_r SCR_{nr}}{SCR_{nr}} \times \frac{N-p}{q})$

Notes pédagogiques

- Normalité des résidus, espérance nulle, indépendance sérielle, orthogonalité aux X sont des hypothèses classiques utiles pour l'inférence.
- Une **significativité statistique** n'implique pas forcément une **importance économique** : interpréter les **ordres de grandeur** (forme linéaire, log-log).

Conclusion type

Dans l'exemple fourni, les statistiques **Breusch–Pagan** et **White** sont **inférieures** aux valeurs tabulées à $5\% \to \mathbf{homosc\acute{e}dasticit\acute{e}}$. Aucune correction nécessaire ; à défaut, choisir des **erreurs robustes** (White) pour préserver la validité des tests.