

Aprendizagem 2023

Lab 4: Linear Regression and kNN

Prof. Rui Henriques

Practical exercises

I. Lazy learning

1. Consider the following data:

	input		output	
	У1	У2	Уз	У4
\mathbf{X}_1	1	1	Α	1.4
\mathbf{x}_2	2	1	В	0.5
X 3	2	3	В	2
\mathbf{x}_4	3	3	В	2.2
X 5	2	2	Α	0.7
\mathbf{x}_6	1	2	Α	1.2

Assuming a k-nearest neighbor with k=3 applied within a leave-one-out schema:

a) Let y_3 be the output variable (*categoric*). Considering an Euclidean (*l*2) distance, provide the classification estimates for x_1 .

$$\frac{\|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{2}}{x_{1}} = \frac{x_{1}}{x_{2}} = \frac{x_{2}}{x_{3}} = \frac{x_{4}}{x_{5}} = \frac{x_{5}}{x_{5}}$$

$$\hat{z}_{1} = mode(B, A, A) = A$$

b) Let y_4 be the output variable (*numeric*). Considering cosine similarity, provide the mean regression estimate for x_1 .

- c) Consider a weighted-distance k-nearest neighbor with Manhattan (l_1) distance, identify the:
 - i. weighted mode estimate of \boldsymbol{x}_1 for \boldsymbol{y}_3 outcome

$$\hat{z}_1 = weighted_mode\left(\frac{1}{1}B, \left(\frac{1}{2} + \frac{1}{1}\right)A\right) = weighted_mode(1 \times B, 1.5 \times A) = A$$

ii. weighted mean estimate of x_1 for y_4 outcome

$$\hat{z}_1 = \frac{\frac{1}{1}0.5 + \frac{1}{2}0.7 + \frac{1}{1}1.2}{\frac{1}{1} + \frac{1}{2} + \frac{1}{1}} = 0.82$$

II. Linear regression

1. Considering the following data to learn a model $z=w_1y_1+w_2y_2+\varepsilon$, where $\varepsilon\sim N(0,0.1)$ Compare:

	У1	У2	output
<i>x</i> ₁	3	-1	2
χ_2	4	2	1
χ_3	2	2	1

- a) $\mathbf{w} = [w_1 \ w_2]^T$ using the maximum likelihood approach

 Maximum likelihood can be given by (proof on the slides): $\mathbf{w} = (X^T X)^{-1} \ X^T \ Z$ Solve exercise similarly as previous ones.
- b) ${\it w}$ using the Bayesian approach, assuming $p({\it w}) = N\left({\it w} \mid {\it u} = [0 \ 0], {\it \sigma} = \begin{bmatrix} 0.2 & 0 \\ 0 & 0.2 \end{bmatrix}\right)$ Maximum posterior is given by (proof on the slides): ${\it w} = (X^TX + \lambda \ I)^{-1} \ X^T \ Z$ $\lambda = \frac{\sigma_{posterior}^2}{\sigma_{prior}^2} = \frac{0.1^2}{0.2^2}$. Solve exercise similarly as 1.f).