Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2020/2021 Corso di Laurea in Ingegneria Fisica Secondo appello di Analisi 3, 3/2/2021 – Prof. I. FRAGALÀ

TEST 1. (8 punti) Stabilire quali delle seguenti affermazioni sono vere per la funzione di variabile complessa

$$f(z) = \frac{z^2}{\cosh z \sinh z}.$$

a. Tutte le singolarità isolate di f sono poli semplici.

FALSO. L'origine è una singolarità eliminabile.

b. Tutte le singolarità isolate di f sono sull'asse reale.

FALSO. Tutte le singolarità isolate di f sono sull'asse immaginario (vedi sotto).

c. Tutte le singolarità isolate di f sono sull'asse immaginario.

VERO. Scrivendo $f(z) = \frac{2z^2}{\sinh(2z)}$, vediamo che le singolarità isolate di f sono i punti z tali che $\sinh(2z) = 0$ ovvero $e^{2z} = e^{-2z}$ ovvero $4z = 2k\pi i$, ovvero $z = \frac{k}{2}\pi i$, al variare di $k \in \mathbb{Z}$.

d. La restrizione di f all'asse reale appartiene a $L^1(\mathbb{R})$.

VERO. Dato che l'origine è una singolarità eliminabile, f resta limitata vicino all'origine. Pertanto l'unica cosa da controllare è che f sia integrabile in un intorno di $\pm \infty$. Ci possiamo concentrare su $+\infty$, visto che f è dispari. Si ha $f(x) = 2x^2/(e^{2x} - e^{-2x})$. Pertanto in un intorno di $+\infty$ si ha che f è positiva e $f \sim 2x^2e^{-2x}$, da cui f è integrabile per il decadimento esponenziale del fattore e^{-2x} .

TEST 2. (8 punti) Sia φ una funzione fissata in $L^p(\mathbb{R})$, con $p \in (1, +\infty)$, e φ non identicamente nulla. Sia:

$$f_n(x) := \arctan(n|x|)\varphi(x), \qquad g_n(x) := n^{\frac{1}{p}}\varphi(nx).$$

Stabilire quali delle seguenti affermazioni sono vere:

e. $f_n \to \varphi$ puntualmente q.o. su \mathbb{R} ;

FALSO $f_n \to \frac{\pi}{2} \varphi$ puntualmente q.o. su \mathbb{R}

f. f_n ammette limite in $L^p(\mathbb{R})$;

VERO. Segue dal fatto che $f_n \to \frac{\pi}{2} \varphi$ puntualmente q.o. su \mathbb{R} , applicando il teorema di convergenza dominata, in quanto $|f_n - \frac{\pi}{2} \varphi|^p = |\varphi|^p |\arctan(n|x|) - \frac{\pi}{2}| \le C|\varphi|^p \in L^1(\mathbb{R})$.

g. g_n è una successione limitata in $L^p(\mathbb{R})$;

VERO. Infatti con il cambio di variabile nx = y, si vede che, per ogni n, $||g_n||_{L^p} = ||\varphi||_{L^p}$.

h. g_n converge a zero in $L^p(\mathbb{R})$.

FALSO. Infatti $||g_n||_{L^p} = ||\varphi||_{L^p} \not\to 0$.

ESERCIZIO (10 punti) Determinare la soluzione $u \in L^2(\mathbb{R})$ dell'equazione integrale:

$$u(x) - \frac{1}{4} \int_{-\infty}^{+\infty} e^{-|x-y|} u(y) \, dy = xe^{-|x|}.$$

Soluzione. L'equazione può essere riscritta come

$$u(x) - \frac{1}{4}e^{-|x|} * u(x) = xe^{-|x|}.$$

Applicando la trasformata di Fourier ad ambo i membri, si ottiene

$$\widehat{u}(\xi) - \frac{1}{4} \frac{2}{1 + \xi^2} \widehat{u}(\xi) = i \frac{d}{d\xi} \left(\frac{2}{1 + \xi^2} \right) = -\frac{4\xi i}{(1 + \xi^2)^2}$$

dove si sono sfruttate le seguenti proprietà della trasformata di Fourier:

$$\mathcal{F}(u*w) = \mathcal{F}(u) \mathcal{F}(w), \qquad \mathcal{F}(e^{-|x|}) = \frac{2}{1+\xi^2}, \qquad \mathcal{F}(xu) = i\frac{d}{d\xi} \mathcal{F}(u).$$

Ricaviamo quindi

$$\widehat{u}(\xi) = -\frac{8\xi i}{(1+\xi^2)(1+2\xi^2)} = -8i\xi \left[-\frac{1}{1+\xi^2} + \frac{2}{1+2\xi^2} \right] \in L^2(\mathbb{R}).$$

Per antitrasformare, ricordando che $\mathcal{F}(u'(x))(\xi) = i\xi \widehat{u}(\xi)$, deduciamo

$$u(x) = -8\frac{d}{dx} \left[-\frac{1}{2} e^{-|x|} + \frac{1}{\sqrt{2}} e^{-\frac{|x|}{\sqrt{2}}} \right] = 4\operatorname{sign}(x) \left(e^{-\frac{|x|}{\sqrt{2}}} - e^{-|x|} \right) \in L^2(\mathbb{R}).$$

Nota: si poteva arrivare alla stessa conclusione anche applicando il teorema dei residui.

TEORIA (6 punti)

i. Si mostri che, se $\{T_n\} \subset \mathcal{D}'(\mathbb{R})$ è una successione di distribuzioni tale che $T_n \to 0$ in $\mathcal{D}'(\mathbb{R})$, allora $D^kT_n \to 0$ in $\mathcal{D}'(\mathbb{R})$ per ogni $k \in \mathbb{N}$.

Soluzione. Data una qualsiasi funzione test $\varphi \in \mathcal{D}(\mathbb{R})$, dobbiamo mostrare che $\langle D^k T, \varphi \rangle \to 0$. Per definizione di derivata distribuzionale, si ha

$$\langle D^k T, \varphi \rangle = (-1)^k \langle T, D^k \varphi \rangle$$

e quindi basta osservare che, per ipotesi, dato che $D^k \varphi$ è una funzione test in $\mathcal{D}(\mathbb{R})$, si ha $\langle T, D^k \varphi \rangle \to 0$.

ii. Si mostri un esempio in cui la disuguaglianza di Bessel in uno spazio di Hilbert di dimensione infinita è soddisfatta con disuguaglianza stretta.

Soluzione. Prendiamo ad esempio lo spazio $H = \ell^2$, e il sistema ortonormale formato dalla sola successione

$$u_1 = (1, 0, 0, \dots, 0, 0, \dots).$$

Dato qualsiasi elemento in H, ad esempio

$$u = (1, 1, 0, \dots, 0, 0, \dots),$$

si ha

$$\sum_{n} (u, u_n)^2 = (u, u_1)^2 = 1 < 2 = ||u||^2.$$