Theoretical Computer Science Lab Session 8

March 25, 2021

nnoborie

Agenda

- ► Turing Machine:
 - ▶ formal definition;
 - example;
 - exercises.

Turing Machine.

Turing Machine

Formal Definition

A Turing Machine (TM) with k-tapes is a tuple

$$T = \langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$$

where

Q is a finite set of states; I is the input language; Γ is the memory alphabet; δ is the transition function; $q_0 \in Q$ is the initial state; $Z_0 \in \Gamma$ is the initial memory symbol; $F \subseteq Q$ is the set of final states.

Transition Function

The transition function is defined as

$$\delta: (Q-F)\times (I\cup\{_\})\times (\Gamma\cup\{_\})^k \to Q\times (\Gamma\cup\{_\})^k\times \{R,L,S\}^{k+1}$$

where elements of $\{R, L, S\}$ indicate "directions" of the head of the TM:

R: move the head one position to the right;

L: move the head one position to the left;

S: stand still.

Remarks:

- the transition function can be partial;
- no transition outgoing from the final states;
- ▶ the symbol $_{-} \notin \Gamma \cup I$ is a special blank symbol on the tapes.

Moves

Moves are based on

- one symbol read from the input tape,
- k symbols, one for each memory tape,
- state of the control device.

Actions

- Change state.
- Write a symbol replacing the one read on each memory tape.
- ▶ Move the k+1 heads.

Moves: Graphically

- ▶ $q \in Q F$ and $q' \in Q$
- ▶ i is the input symbol,
- ▶ A_j is the symbol read from the j^{th} memory tape,
- \triangleright A'_i is the symbol replacing A_j ,
- $ightharpoonup M_0$ is the direction of the head of the input tape,
- ▶ M_j is the direction of the head of the j^{th} memory tape.

where $1 \le j \le k$

Configuration

A configuration (a snapshot) c of a TM with k memory tapes is the following (k+2)-tuple:

$$c = \langle q, x \uparrow y, \alpha_1 \uparrow \beta_1, \dots, \alpha_k \uparrow \beta_k \rangle$$

where

- $ightharpoonup q \in Q$
- ► $x \in (I \cup \{ _ \})^*$, $y = y' \cdot _$ with $y' \in I^*$
- ▶ $\alpha_r \in (\Gamma \cup \{_\})^*$ and ${\beta'}_r = {\beta'}_r \cdot _$ with ${\beta'}_r \in \Gamma^*$ and $1 \le r \le k$
- ↑∉ I ∪ Γ

Acceptance Condition

If $T = \langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$ is a TM and $s \in I^*$, s is accepted by T if

$$c_0 \vdash^* c_F$$

where

- 1. c_0 is an initial configuration defined as $c_0 = \langle q_0, \uparrow s, \uparrow Z_0, \dots, \uparrow Z_0 \rangle$ where
 - $x = \epsilon$
 - $y = s_{-}$
 - $ightharpoonup \alpha_r = \epsilon$, $\beta_r = Z_0$, for any $1 \le r \le k$.
- 2. c_F is a final configuration defined as $c_F = \langle q, s' \uparrow y, \alpha_1 \uparrow \beta_1, \dots, \alpha_k \uparrow \beta_k \rangle$ where
 - p q ∈ F
 - $\rightarrow x = s'$

$$L(T) = \{ s \in I^* \mid x \text{ is accepted by } T \}$$

A TM T that recognises the language $A^nB^nC^n = \{a^nb^nc^n \mid n > 0\}$

A TM T that recognises the language $A^nB^nC^n = \{a^nb^nc^n \mid n > 0\}$

Is the string *aabbcc* recognised by *T*?

Initial Configuration:

$$\langle q_0, \uparrow aabbcc, \uparrow Z_0 \rangle$$

$$\langle q_0, \uparrow aabbcc, \uparrow Z_0 \rangle \vdash$$

$$\langle q_0, \uparrow aabbcc, \uparrow Z_0 \rangle \vdash \langle q_1, \uparrow aabbcc, Z_0 \uparrow \rangle$$

$$\ldots \vdash \langle q_1, \uparrow aabbcc, Z_0 \uparrow \rangle \vdash$$

$$\ldots \vdash \langle \mathit{q}_1, \uparrow \mathit{aabbcc}, \mathit{Z}_0 \uparrow \rangle \vdash \langle \mathit{q}_1, \mathit{a} \uparrow \mathit{abbcc}, \mathit{Z}_0 \mathit{M} \uparrow \rangle$$

$$\ldots \vdash \langle q_1, a \uparrow abbcc, Z_0 M \uparrow \rangle$$

$$\ldots \vdash \langle q_1, a \uparrow abbcc, Z_0 M \uparrow \rangle \vdash \langle q_1, aa \uparrow bbcc, Z_0 M M \uparrow \rangle$$

$$\ldots \vdash \langle q_1, aa \uparrow bbcc, Z_0 MM \uparrow \rangle$$

$$\ldots \vdash \langle q_1, aa \uparrow bbcc, Z_0 M M \uparrow \rangle \vdash \langle q_2, aa \uparrow bbcc, Z_0 M \uparrow M \rangle$$

$$\ldots \vdash \langle q_2, aa \uparrow bbcc, Z_0 M \uparrow M \rangle$$

$$\ldots \vdash \langle q_2, aa \uparrow bbcc, Z_0 M \uparrow M \rangle \vdash \langle q_2, aab \uparrow bcc, Z_0 \uparrow M M \rangle$$

$$\ldots \vdash \langle q_2, aab \uparrow bcc, Z_0 \uparrow MM \rangle$$

$$\ldots \vdash \langle q_2, aab \uparrow bcc, Z_0 \uparrow MM \rangle \vdash \langle q_2, aabb \uparrow cc, \uparrow Z_0 MM \rangle$$

$$\ldots \vdash \langle q_2, aabb \uparrow cc, \uparrow Z_0 MM \rangle$$

$$\ldots \vdash \langle q_2, aabb\uparrow cc, \uparrow Z_0MM \rangle \vdash \langle q_3, aabb\uparrow cc, Z_0 \uparrow MM \rangle$$

$$\ldots \vdash \langle q_3, aabb \uparrow cc, Z_0 \uparrow MM \rangle$$

$$\ldots \vdash \langle q_3, aabb\uparrow cc, Z_0 \uparrow MM \rangle \vdash \langle q_3, aabbc\uparrow c, Z_0 M \uparrow M \rangle$$

$$\ldots \vdash \langle \mathit{q}_3, \mathit{aabbc} {\uparrow} \mathit{c}, \mathit{Z}_0 \mathit{M} {\uparrow} \mathit{M} \rangle$$

$$\ldots \vdash \langle q_3, aabbc\uparrow c, Z_0M\uparrow M \rangle \vdash \langle q_3, aabbcc\uparrow, Z_0MM\uparrow \rangle$$

$$\ldots \vdash \langle q_3, aabbcc\uparrow, Z_0MM\uparrow \rangle$$

$$\ldots \vdash \langle q_3, aabbcc\uparrow, Z_0MM\uparrow \rangle \vdash \langle q_F, aabbcc\uparrow, Z_0MM\uparrow \rangle$$

Is the string *aabbcc* recognised by *T*? Yes, we found:

$$\langle q_0, \uparrow aabbcc, \uparrow Z_0 \rangle \vdash^* \langle q_F, aabbcc \uparrow, Z_0 MM \uparrow \rangle$$

Turing Machine in JFLAP

Formal Definition

In JFLAP a Turing Machine is single-taped

$$T = \langle Q, I, \Gamma, \delta, q_0, \square, F \rangle$$

where

Q is a finite set of states; I is the input alphabet; Γ is the tape alphabet (I is always a subset of of Γ); δ is the transition function; $q_0 \in Q$ is the initial state; Γ is the blank symbol; $\Gamma \subseteq Q$ is the set of final states.

R: move the head one position to the right;L: move the head one position to the left.

Example in JFLAP: Language AⁿBⁿCⁿ

Exercises

Build TMs that recognise the following languages:

- ► $L_1 = \{wcw \mid w \in \{a, b\}^+\}$
- ▶ $L_2 = \{wcw^R \mid w \in \{a, b\}^+\}$, where w^R is the reversed string w.
- ▶ $L_3 = \{w \mid w \in \{a, b\}^*\}$, where w is a palindrome (Construct a 1-tape TM for this task).
- $L_4 = \{a^n b^n | n \ge 0\} \cup \{a^n b^{2n} | n \ge 0\}$

Solution (1)

TM that recognises the language $L_1 = \{wcw \mid w \in \{a, b\}^+\}$

Solution (1)

TM that recognises the language $L_1 = \{wcw \mid w \in \{a, b\}^+\}$

Is the string abbcabb recognised by the TM above?

Is the string *abbcabb* recognised by the TM?

```
\langle q_0, \uparrow abbcabb, \uparrow Z_0 \rangle \vdash
\langle q_1, \uparrow abbcabb, Z_0 \uparrow \rangle \vdash
\langle q_1, a \uparrow bbcabb, Z_0 A \uparrow \rangle \vdash
\langle q_1, ab \uparrow bcabb, Z_0 AB \uparrow \rangle \vdash
\langle q_1, abb\uparrow cabb, Z_0ABB\uparrow \rangle \vdash
\langle q_1, abb \uparrow cabb, Z_0 AB \uparrow B \rangle \vdash
\langle q_1, abb \uparrow cabb, Z_0 A \uparrow BB \rangle \vdash
\langle q_1, abb \uparrow cabb, Z_0 \uparrow ABB \rangle \vdash
\langle q_1, abb \uparrow cabb, \uparrow Z_0 ABB \rangle \vdash
\langle q_2, abbc \uparrow abb, Z_0 \uparrow ABB \rangle \vdash
\langle q_2, abbca \uparrow bb, Z_0 A \uparrow BB \rangle \vdash
\langle q_2, abbcab \uparrow b, Z_0 AB \uparrow B \rangle \vdash
\langle g_2, abbcabb\uparrow, Z_0ABB\uparrow\rangle \vdash
\langle q_F, abbcabb\uparrow, Z_0ABB\uparrow \rangle
```

Solution (2)

TM that recognises the language $L_2 = \{wcw^R \mid w \in \{a, b\}^+\}$, where w^R is the reversed string w.

Solution (2)

TM that recognises the language $L_2 = \{wcw^R \mid w \in \{a, b\}^+\}$, where w^R is the reversed string w.

Is the string abbcbba recognised by the TM above?

Is the string abbcbba recognised by the TM?

```
\langle q_0, \uparrow abbcbba, \uparrow Z_0 \rangle \vdash
\langle q_1,\uparrow abbcbba,Z_0\uparrow\rangle \vdash
\langle q_1, a \uparrow bbcbba, Z_0 A \uparrow \rangle \vdash
\langle q_1, ab\uparrow bcbba, Z_0AB\uparrow \rangle \vdash
\langle q_1, abb\uparrow cbba, Z_0ABB\uparrow \rangle \vdash
\langle q_2, abbc \uparrow bba, Z_0 AB \uparrow B \rangle \vdash
\langle q_2, abbcb\uparrow ba, Z_0A\uparrow BB\rangle \vdash
\langle q_2, abbcbb\uparrow a, Z_0\uparrow ABB\rangle \vdash
\langle q_2, abbcbba\uparrow, \uparrow Z_0ABB \rangle \vdash
\langle q_F, abbcbba\uparrow, \uparrow Z_0 ABB \rangle
```

Solution (3): ab Palindrome

Solution (4)

TM TT that recognises the language $L_4 = \{a^n b^n | n \ge 0\} \cup \{a^n b^{2n} | n \ge 0\}$

Homework Exercises

Build TMs that recognise the following languages:

- ► $L_5 = \{(ab)^n, n \ge 0\}$
- $ightharpoonup L_6 = \{a^n b^{2n} c^{3n}, n \ge 0\}$