Algebra und Zahlentheorie SS 2019

Dozent: Prof. Dr. Arno Fehm

26. April 2019

In halts verzeichnis

Ι	Körper		
	1	Körpererweiterungen	3
	2	Algebraische Körpererweiterungen	6
	3	Wurzelkörper und Zerfällungskörper	10
	4	Der algebraische Abschluss	14
	5	Die transzendente Erweiterung	17
	6	Die separable Erweiterung	19

Vorwort

Kapitel I

Körper

1. Körpererweiterungen

Sei K, L, M Körper.

▶ Bemerkung 1.1

In diesem Kapitel bedeutet "Ring" <u>immer</u> kommutativer Ring mit Einselement, und ein Ringhomomorphismus bildet stets das Einselement auf das Einselement ab. Insbesondere gibt es für jeden Ring einen eindeutig bestimmten Ringhomomorphismus : $\mathbb{Z} \to R$.

▶ Bemerkung 1.2

- (a) Ein Körper ist ein Ring R, in dem eine der folgenden äquivalenten Bedingungen gilt:
 - 1) $0 \neq 1$ und jedes $0 \neq x \in R$ ist invertierbar
 - $2) \ R^{\times} = R \setminus \{0\}$
 - 3) R hat genau zwei Hauptideale (nämlich (0) und (1))
 - 4) (0) ist ein maximales Ideal von R
 - 5) (0) ist das einzige echte Ideal von R
 - 6) (0) ist das einzige Primideal von R
- (b) Insbesondere sind Körper nullteilerfrei, weshalb $\operatorname{Ker}(\mathbb{Z} \to K)$ prim ist.
- (c) Aus (5) folgt: Jeder Ringhomomorphismus $K \to L$ ist injektiv
- (d) Der Durchschnitt einer Familie von Teilkörpern von K ist wieder ein Teilkörper von K.

Definition 1.3 (Charakteristik)

Die Charakteristik von K, char(K), ist das $p \in \{0, 2, 3, 5, 7, \ldots\}$ mit $\operatorname{Ker}(\mathbb{Z} \to K) = (p)$.

■ Beispiel 1.4

- (a) $\mathrm{char}(\mathbb{Q})=0$ und $\mathrm{char}(\mathbb{F}_p)=(p)$ $(p=\mathrm{Primzahl}),$ wobei $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$
- (b) Ist $K_0 \subseteq K$ Teilkörper, so ist $char(K_0) = char(K)$.

Definition 1.5 (Primkörper)

Der <u>Primkörper</u> von K ist der kleinste Teilkörper von K. (existiert nach Bemerkung 1.2(d))

Satz 1.6

Sei \mathbb{F} der Primkörper von K.

- (a) $char(K) = 0 \Leftrightarrow \mathbb{F} \cong \mathbb{Q}$
- (b) $\operatorname{char}(K) = p > 0 \Leftrightarrow \mathbb{F} \cong \mathbb{F}_p$

Beweis. "⇐": Beispiel 1.4

" \Rightarrow ": $\operatorname{Im}(\mathbb{Z} \to K) \subseteq \mathbb{F}$ und $\operatorname{Im}(\mathbb{Z} \to K) \cong \mathbb{Z}/\operatorname{Ker}(\mathbb{Z} \to K)$

- (a) $\operatorname{Im}(\mathbb{Z} \to K) \cong \mathbb{Z}/(0) \cong \mathbb{Z} \Rightarrow \mathbb{F} = \operatorname{Quot}(\operatorname{Im}(\mathbb{Z} \to K)) \cong \operatorname{Quot}(\mathbb{Z}) \cong \mathbb{Q}$
- (b) $\operatorname{Im}(\mathbb{Z} \to K) \cong \mathbb{Z}/(p) \cong \mathbb{F}_p$ ist Teilkörper von $K \Rightarrow \mathbb{F} = \operatorname{Im}(\mathbb{Z} \to K) \cong \mathbb{F}_p$

Definition 1.7 (Körpererweiterung)

Ist K ein Teilkörper von L, so nennt man L eine Köpererweiterung von K, auch geschrieben $L \mid K$.

Definition 1.8 (K-Homomorphismus)

Seien $L_1 \mid K$ und $L_2 \mid K$ Körpererweiterungen.

- (a) Ein Ringhomomorphismus $\varphi \colon L_1 \to L_2$ ist ein K-Homomorphismus, wenn $\varphi|_K = \mathrm{id}_K$ (i.Z. $\varphi \colon L_1 \to L_2$)
- (b) $\operatorname{Hom}_K(L_1, L_2) = \{ \varphi \mid \varphi : L_1 \to L_2 \text{ ist } K\text{-Homomorphismus} \}$
- (c) L_1 und L_2 sind K-isomorph (i.Z. $L_1 \cong L_2$), wenn es einen Isomorphismus: $\varphi \in \text{Hom}_K(L_1, L_2)$ gibt.

▶ Bemerkung 1.9

 $L \mid K$ eine Körpererweiterung, so wird L durch Einschränkung der Multiplikation zu einem K-Vektorraum.

Definition 1.10 (Körpergrad)

 $[L:K] := \dim_k(L) \in \mathbb{N} \cup \{\infty\}$, der Körpergrad der Körpererweiterungen $L \mid K$.

■ Beispiel 1.11

- (a) [K:K] = 1
- (b) $[\mathbb{C}:\mathbb{R}] = 2$ (Basis (1,i)) (aber $(\mathbb{C}:\mathbb{R}) = \infty$)
- (c) $[\mathbb{R} : \mathbb{Q}] = \infty$ (mit Abzählarbarkeitsargument oder siehe §2)
- (d) $[K(x):K] = \infty$ (K(x) = Quot(K[x]) (vgl. GEO II.8)

Satz 1.12

Für $K \subseteq L \subseteq M$ Körper ist $[M:K] = [M:L] \cdot [L:K]$ ("Körpergrad ist multiplikativ")

Beweis. Behauptung: Sei $x_1, \ldots, x_n \in L$ K-linear unabhängig und $y_1, \ldots, y_m \in M$ L-linear unabhängig $\Rightarrow x_i y_j, i \in \{1, \ldots, n\}, j \in \{1, \ldots, m\}$ K-linear unabhängig.

Beweis: $\sum_{i,j} \lambda_{ij} x_i y_j = 0$ mit $\lambda_{ij} \in K$

$$\Rightarrow \sum_{j} \underbrace{\left(\sum_{i} \lambda_{ij} x_{i}\right)}_{\in L} y_{j} = 0 \xrightarrow{y_{j} L\text{-l.u.}} \sum_{i} \lambda_{ij} x_{i} = 0 \quad \forall j \xrightarrow{y_{j} K\text{-l.u.}} \lambda_{ij} = 0 \quad \forall i, \forall j$$

- $[L:K] = \infty$ oder $[M:L] = \infty \Rightarrow [M:K] = \infty$
- $[L:K]=n, [M:L]=m<\infty$ (x_1,\ldots,x_n) Basis des K-Vektorraum L und (y_1,\ldots,y_m) Basis des L-Vektorraums M $\Rightarrow \{x_iy_j\colon i=1,\ldots,n; j=1,\ldots,m\}$ K-linear unabhängig und $\sum_{i,j}Kx_iy_j=\sum_j\left(\sum_i\lambda_{ij}x_i\right)y_j=M,$ also ist $\{x_iy_j\colon i=1,\ldots,n; j=1,\ldots,m\}$ Basis von M

Definition 1.13 (Körpergrad endlich)

 $L \mid K \text{ endlich } :\Leftrightarrow [L : K] < \infty.$

Definition 1.14 (Unterring, Teilkörper)

Sei $L \mid K$ eine Körpererweiterung $a_1, a_2, \ldots, a_n \in L$.

- (a) $K[a_1, \ldots, a_n]$ ist kleinster <u>Unterring</u> von L, der $K \cup \{a_1, \ldots, a_n\}$ enthält (" a_1, \ldots, a_n über K erzeugt")
- (b) $K[a_1, \ldots, a_n]$ ist kleinster <u>Teilkörper</u> von L, der $K \cup \{a_1, \ldots, a_n\}$ enthält ("von " a_1, \ldots, a_n " über K erzeugte", " a_1, \ldots, a_n " zu K adjungieren)
- (c) L|K ist endlich erzeugt $\Leftrightarrow a_1, \ldots, a_n \in L : L = K(a_1, \ldots, a_n)$
- (d) L|K ist einfach : \Leftrightarrow existiert $a \in L : L = K(a)$

▶ Bemerkung 1.15

- (a) $L \mid K$ endlich $\Rightarrow L \mid K$ endlich erzeugt.
- (b) $K[a_1, \ldots, a_n]$ ist das Bild des Homomorphismus

$$\begin{cases} K[x_1, \dots, x_n] & \to L \\ f & \mapsto f(a_1, \dots, a_n) \end{cases}$$

und $K(a_1, \ldots, a_n) = \{\alpha\beta : \alpha, \beta \in K[a_1, \ldots, a_n], \beta \neq 0\} \cong \text{Quot}(K[a_1, \ldots, a_n])$

2. Algebraische Körpererweiterungen

Sei $L \mid K$ eine Körpererweiterung.

Definition 2.1 (algebraisch, transzendent)

Sei $\alpha \in L$. Gibt es ein $0 \neq f \in K$ mit $f(\alpha) = 0$, so heißt α <u>algebraisch</u> über K, andernfalls transzendent über K.

■ Beispiel 2.2

- (a) $\alpha \in K \Rightarrow \alpha$ ist algebraisch über K (denn $f(\alpha) = 0$ für $f = X \alpha \in K$)
- (b) $\sqrt{-1} \in \mathbb{Q}(\sqrt{-1})$ ist algebraisch über \mathbb{Q} (denn $f(\sqrt{-1}) = 0$ für $f = X^2 + 1 \in \mathbb{Q}$) $\sqrt{-1} \in \mathbb{C}$ ist algebraisch über \mathbb{R}

▶ Bemerkung 2.3

Sind $K \subseteq L \subseteq M$ Körper und $\alpha \in M$ algebraisch über K, so auch über L.

Lemma 2.4

Genau dann ist $\alpha \in L$ algebraisch über K, wenn $1, \alpha, \alpha^2, \ldots K$ -linear abhängig sind.

Beweis. Für $\lambda_0, \lambda_1, \dots \in K$, fast alle gleich Null, so ist

$$\sum_{i=0}^{\infty} \lambda_i \alpha^i : \Leftrightarrow f(\alpha) = 0 \text{ für } f = \sum_{i=0}^{\infty} \lambda_i X^i \in K$$

Lemma 2.5

Betrachte den Epimorphismus

$$\varphi_{\alpha}: \begin{cases} K[x] & \to K[\alpha] \\ f & \mapsto f(\alpha). \end{cases}$$

Genau dann ist α algebraisch über K, wenn $\operatorname{Ker}(\varphi_{\alpha}) \neq (0)$. In diesem Fall ist $\operatorname{Ker}(\varphi_{\alpha}) = (f_{\alpha})$ mit einem eindeutig bestimmten irreduziblen, normierten $f_{\alpha} \in K$.

Beweis. K Hauptidealring \Rightarrow Ker $(\varphi_{\alpha}) = (f_{\alpha}), f_{\alpha} \in K$, o.E. sei f_{α} normiert. Aus $K[\alpha] \subseteq L$ nullteilerfrei folgt, dass Ker (φ_{α}) prim ist. Somit ist f_{α} prim und im Hauptidealring also auch irreduzibel.

Definition 2.6 (Minimal polynom, Grad)

Sei $\alpha \in L$ algebraisch über K, $\operatorname{Ker}(\varphi_{\alpha}) = (f_{\alpha})$ mit $f_{\alpha} \in K$ normiert und irreduzibel.

- (a) $\operatorname{MinPol}(\alpha \mid K) := f_{\alpha}$, das $\operatorname{\underline{Minimal polynom}}$ von α über K.
- (b) $deg(\alpha \mid K) : \Leftrightarrow deg(f_{\alpha})$, der Grad von α über K.

Satz 2.7

Sei $\alpha \in L$.

- (a) α transzendent über K $\Rightarrow K[\alpha] \cong K, K(\alpha) \cong_K K(X), [K(\alpha) : K] = \infty.$
- (b) α algebraisch über K $\Rightarrow K[\alpha] = K(\alpha) \cong K/\operatorname{MinPol}(\alpha \mid K)$, $[K(\alpha) \colon K)] = \deg(\alpha \mid K) < \infty$ und $1, \alpha, \dots, \alpha^{\deg(\alpha \mid K) - 1}$ ist K-Basis von $K(\alpha)$.

$$\begin{array}{ll} Beweis. & \text{(a) } \operatorname{Ker}(\varphi_{\alpha}) = (0) \Rightarrow \varphi_{\alpha} \text{ ist Isomorphismus (da zusätzlich injektiv)} \\ \Rightarrow K(\alpha) \cong_{K} \operatorname{Quot}(K[\alpha]) \cong_{K} \operatorname{Quot}(K) = K(X) \\ \Rightarrow [K(\alpha) \colon K] = [K(x) \colon K] = \infty \end{array}$$

- (b) Sei $f = f_{\alpha} = \text{MinPol}(\alpha \mid K), n = \text{deg}(\alpha \mid K) = \text{deg}(f).$
 - $f \text{ irreduzibel} \Rightarrow (f) \neq (0) \text{ prim} \xrightarrow{\text{GEO II.4.7}} (f) \text{ ist maximal}$ $\Rightarrow K[\alpha] \cong K/(f) \text{ ist K\"{o}rper} \Rightarrow K[\alpha] = K(\alpha)$
 - $1, \alpha, \dots, \alpha^{n-1}$ sind K-linear unabhängig:

$$\sum_{i=0}^{n-1} \lambda_i \alpha^i = 0 \Rightarrow \sum_{i=0}^{n-1} \lambda_i X^i \in (f) \quad \xrightarrow{\deg f = n} \quad \lambda_i = 0 \ \forall i$$

 $1, \alpha, \dots, \alpha^{n-1}$ ist Erzeugendensystem: Für $g \in K$ ist

$$g = qf + r \text{ mit } q, r \in K \text{ und } \deg(r) < \deg(f) = n$$

und

$$g(\alpha) = q(\alpha)\underbrace{f(\alpha)}_{=0} + r(\alpha) = r(\alpha)$$

somit
$$K = \operatorname{Im}(\varphi_{\alpha}) = \{g(\alpha) : g \in K\} = \{r(\alpha) : r \in K, \deg(r) < n\} = \sum_{i=0}^{n-1} K \cdot \alpha^i$$

■ Beispiel 2.8

- (a) $p \in \mathbb{Z}$ prim $\Rightarrow \sqrt{p} \in \mathbb{C}$ ist algebraisch über \mathbb{Q} . Da $f(X) = X^2 - p$ irreduzibel in \mathbb{Q} ist (GEO II.7.3), ist MinPol $(\sqrt{p} : \mathbb{Q}) = X^2 - p$, $[\mathbb{Q}(\sqrt{p}) : \mathbb{Q}] = 2$.
- (b) Sei $\zeta_p = e^{\frac{2\pi i}{p}} \in \mathbb{C}$ $(p \in \mathbb{N} \text{ prim})$. Da $\Phi_p = \frac{X^p 1}{X 1} = X^{p-1} + X^{p-2} + \dots + X + 1 \in \mathbb{Q}$ irreduzibel in \mathbb{Q} ist (GEO II.7.9), ist MinPol $(\zeta_p \mid \mathbb{Q}) = \Phi_p$, $[\mathbb{Q}(\zeta_p) : \mathbb{Q}] = p 1$. Daraus folgt schließlich $[\mathbb{C} : \mathbb{Q} \geq [\mathbb{Q}(\zeta_p) : \mathbb{Q}] = p 1 \ \forall p \Rightarrow [\mathbb{C} : \mathbb{Q}] = \infty \Rightarrow [R : \mathbb{Q}] = \infty$.
- (c) $e \in \mathbb{R}$ ist transzendent über \mathbb{Q} (Hermite 1873), $\pi \in \mathbb{R}$ ist transzendent über \mathbb{Q} (Lindemann 1882).

Daraus folgt: $[R:\mathbb{Q}] \geq [\mathbb{Q}(\pi):\mathbb{Q}] = \infty$. Jedoch ist unbekannt, ob z.B. $\pi + e$ transzendent ist.

Definition 2.9

 $L \mid K$ ist algebraisch : \Leftrightarrow jedes $\alpha \in L$ ist algebraisch über K.

Satz 2.10

 $L \mid K$ endlich $\Rightarrow L \mid K$ algebraisch.

Beweis. $\alpha \in L$, $[L:K] = n \Rightarrow 1, \alpha, \dots, \alpha^n$ K-linear abhängig $\stackrel{2.4}{\Longrightarrow} \alpha$ algebraisch über K.

Folgerung 2.11

Ist $L = K(\alpha_1, \ldots, \alpha_n)$ mit $\alpha_1, \ldots, \alpha_n$ algebraisch über K, so ist $L \mid K$ endlich, insbesondere algebraisch.

Beweis. Induktion nach n:

- n=0: \checkmark
- n > 0: $K_1 := K(\alpha_1, \dots, \alpha_{n-1})$ $\Rightarrow L = K_1(\alpha_n), \ \alpha_n \ \text{algebraisch ""uber } K_1 \ \text{(Bemerkung 2.3)}$ $\Rightarrow [L:K] = \underbrace{[K_1(\alpha_n):K_1]}_{<\infty \ \text{nach Satz 2.7}} \cdot \underbrace{[K_1:K]}_{<\infty \ \text{nach IH}}$

Folgerung 2.12

Es sind äquivalent:

- (a) $L \mid K$ ist endlich.
- (b) $L \mid K$ ist endlich erzeugt und algebraisch.
- (c) $L = K(\alpha_1, \dots, \alpha_n)$ mit $\alpha_1, \dots, \alpha_n$ algebraisch über K.

Beweis. • $(1) \Rightarrow (2)$: Bemerkung 1.15 und Satz 2.10

- $(2) \Rightarrow (3)$: trivial
- $(3) \Rightarrow (1)$: Folgerung 2.11

▶ Bemerkung 2.13

Nach Satz 2.7 ist

$$\alpha$$
 algebraisch über $K :\Leftrightarrow K[\alpha] = K(\alpha)$

Direkter Beweis für (\Rightarrow) :

Sei $0 \neq \beta \in K[\alpha]$. Daraus folgt, dass $f(\beta) = 0$ für ein irreduzibles $0 \neq f = \sum_{i=0}^{n} a_i X^i \in K$. Durch Einsetzen von β und Division durch β erhält man (auch wegen der aus der Irreduzibilität

$$\stackrel{a_0 \neq 0}{\Longrightarrow} \beta^{-1} = -a_0^{-1}(a_1 + a_2\beta + \dots + a_n\beta^{n-1}) \in K[\beta] \subseteq K[\alpha]$$

Satz 2.14

Seien $K \subseteq L \subseteq M$ Körper. Dann gilt:

 $M \mid K$ algebraisch $\Leftrightarrow M \mid L$ algebraisch und $L \mid K$ algebraisch

Beweis. (\Rightarrow) klar, siehe Bemerkung 2.3.

(
$$\Leftarrow$$
) Sei $\alpha \in M$. Schreibe $f = \text{MinPol}(\alpha \mid L) = \sum_{i=0}^{n} a_i x^i$, $L_0 := K(a_0, \dots, a_n)$
 $\Rightarrow f \in L_0[x]$

$$\begin{split} &\Rightarrow [L_0(\alpha):L_0] \leq \deg(f) \leq \infty \\ &\Rightarrow [K(\alpha:K)] \leq [K(a_0,\ldots,a_n,\alpha):K] = \underbrace{[L_0(\alpha):L_0]}_{<\infty} \underbrace{[L_0:K]}_{<\mathrm{nach}\ 2.7} \\ &\Rightarrow \alpha \ \mathrm{algebraisch} \ \mathrm{\ddot{u}ber} \ K \\ &\stackrel{\alpha \ \mathrm{bel.}}{\Rightarrow} M \mid K \ \mathrm{algebraisch}. \end{split}$$

Folgerung 2.15

 $\tilde{K} = \{ \alpha \in L : \alpha \text{ algebraisch """} \text{über } K \}$ ist ein Körper, und ist $\alpha \in L$ algebraisch """ ber \tilde{K} , so ist schon $\alpha \in \tilde{K}$.

Beweis. • $\alpha, \beta \in \tilde{K}$:

- $\Rightarrow K(\alpha,\beta) \mid K$ endlich, insbesondere algebraisch
- $\Rightarrow \alpha + \beta, \alpha \beta, \alpha \cdot \beta, \alpha^{-1} \in K(\alpha, \beta)$ alle algebraisch über K, also $K(\alpha, \beta) \subseteq \tilde{K}$.
- $\alpha \in L$ algebraisch über \tilde{K} :
 - $\Rightarrow \tilde{K}(\alpha) \mid \tilde{K}$ algebraisch
 - $\Rightarrow \tilde{K} \mid K$ algebraisch $\stackrel{2.14}{\Rightarrow} \tilde{K}(\alpha \mid K)$ algebraisch, insbesondere $\alpha \in \tilde{K}$.

Definition 2.16 (relative algebraische Abschluss)

 $\tilde{K} = \{ \alpha \in L : \alpha \text{ algebraisch "über } K \}$ heißt der relative algebraische Abschluss von K in L.

■ Beispiel 2.17

 $\tilde{\mathbb{Q}} = \{ \alpha \in \mathbb{C} : \alpha \text{ algebraisch über } K \}$ ist ein Körper, der Körper der algebraischen Zahlen. Es ist $[\tilde{\mathbb{Q}}, \mathbb{Q}] = \infty$, z.B. da $[\mathbb{Q}(\zeta_p) : \mathbb{Q}] = p-1$ für jedes p prim. (algebraische Erweiterung die nicht endlich ist.)

3. Wurzelkörper und Zerfällungskörper

Sei K ein Körper, $f \in K[X]$ mit $n = \deg(f) > 0$.

■ Beispiel 3.1

Sei $K = \mathbb{Q}$. Dann hat f eine Nullstelle ("Wurzel") $\alpha \in \mathbb{C}$, und $L := K(\alpha) = K[\alpha]$ ist die kleinste Erweiterung von \mathbb{Q} in \mathbb{C} , die diese Nullstelle enthält.

Definition 3.2 (Wurzelkörper)

Ein Wurzelkörper von f ist eine Körpererweiterung $L \mid K$ der Form $L = K(\alpha)$ mit $f(\alpha) = 0$.

Lemma 3.3

Sei $L = K(\alpha)$ mit $f(\alpha) = 0$ ein Wurzelkörper von f. Dann ist $[L:K] \leq n$. Ist f irreduzibel, so ist [L:K] = n und $g \mapsto g(\alpha)$ induziert einen Isomorphismus $K[X]/(f) \xrightarrow{\cong}_K L$.

Beweis. Sei zunächst f irreduzibel, $f_{\alpha} = \text{MinPol}(\alpha \mid K)$. Dann ist $f = cf_{\alpha}$, die Behauptung folgt somit aus Satz 2.7b). Für $f \in K[X]$ beliebig, schreibe $f = f_1 \cdots f_r$ mit $f_i \in K[X]$ irreduzibel

$$f(\alpha) = 0 \Rightarrow \text{OE } f_1(\alpha) = 0 \Rightarrow [L:K] = \deg(f_1) \le \deg(f) = n$$

Lemma 3.4

Sei f irreduzibel. Dann ist L := K[X]/(f) ein Wurzelkörper von f.

Beweis. Betrachte den Epimorphismus $\pi = \pi_f : K[X] \to K[X]/(f) = L$, setze $\alpha = \pi(X)$

- K Körper $\Rightarrow \pi_{|K}$ injektiv \Rightarrow können K mit Teilkörper von L identifizieren, sodass $\pi_{|K}=\mathrm{id}_K$
- (f) irreduzibel \Rightarrow prim $\xrightarrow{\text{GEO II.4.7}} (f)$ maximal $\Rightarrow L = K[X]/(f)$ ist Körper
- $f(\alpha) = f(\pi(X)) \stackrel{(*)}{=} \pi(f(X)) = 0$ $f(X) \in \text{Ker}(\pi)$ (* gilt, da $f = \sum a_i x^i = \pi(f) = \sum \pi(a_i)\pi(x)^i = \sum a_i \pi(x)^i = f(\pi(x))$)
- $L = \pi(K[X]) = K[\pi(X)] = k[\alpha] \stackrel{\text{a alg.}}{=} K(\alpha)$

Satz 3.5

Sei f irreduzibel. Ein Wurzelkörper von f existiert und ist eindeutig in folgendem Sinn: Sind $L_1 = K(\alpha_1), L_2 = K(\alpha_2)$ mit $f(\alpha_1) = 0 = f(\alpha_2)$, so existiert genau ein K-Isomorphismus $\varphi: L_1 \to L_2$ mit $\varphi(\alpha_1) = \alpha_2$.

Beweis.

- Existenz gibt Lemma 3.4
- Lemma 3.3 liefert Isomorphismus

$$\begin{cases}
L_1 \stackrel{\cong}{\leftarrow} & K[X]/(f) & \xrightarrow{\cong} L_2 \\
\alpha_1 \leftarrow & X + (f) & \mapsto \alpha_2
\end{cases} \Rightarrow \varphi_2 \circ \varphi_1 : L_1 \xrightarrow{\cong}_K L_2 \text{ mit } \alpha_1 \mapsto \alpha_2$$

Umgekehrt ist jeder K-Isomorphismus $\varphi: L_1 \to_K L_2$ wegen $L_1 = K(\alpha_1)$ schon durch $\varphi(\alpha_1)$ festgelegt. \square

Folgerung 3.6

f hat einen Wurzelkörper.

Beweis. Schreibe $f = f_1 \cdots f_r, f_1, \dots, f_r \in K[X]$ irreduzibel, nehme einen Wurzelkörper von f_1 .

Folgerung 3.7

Es gibt eine Erweiterung $L \mid K$, über der f in Linearfaktoren zerfällt, also $f = c \prod_{i=0}^{n} (x - \alpha_i)$ mit $c \in K^{\times}, \alpha, \ldots, \alpha_n \in L$.

Beweis. Schreibe $f = c \cdot f_0$ mit $c \in K^{\times}, f_0 \in K[X]$ normiert. Induktion nach n:

- n = 1 : f = x a, nehme L = K.
- n > 1: Nach Folgerung 3.6 existiert $L_1 \mid K, \alpha_1 \in L_1$ mit $f_0(\alpha_1) = 0$ $\Rightarrow f_0 = (x - \alpha_1) \cdot f_1$ mit $f_1 \in L_1[X]$ normiert $\stackrel{\text{(IH)}}{\Longrightarrow}$ existiert $L \mid L_1, \alpha_1, \dots, \alpha_n \in L$ mit $f_1 = \prod_{i=2}^n (x - \alpha_i)$ $\Rightarrow f = c \cdot f_0 = c \cdot (x - \alpha_1) \cdot f_1 = c \prod_{i=1}^n (x - \alpha_i)$

Definition 3.8 (Zerfällungskörper)

Ein Zerfällungskörper von K ist eine Erweiterung $L \mid K$ der Form $L = K(\alpha_1, \ldots, \alpha_n)$ mit $f = c \cdot \prod_{i=1}^n (x - \alpha_i)$ mit $c \in K^{\times}$.

Satz 3.9

Ein Zerfällungskörper von f existiert.

Beweis. Ist $L \mid K$ wie in Folgerung 3.7, ist $K(\alpha_1, \ldots, \alpha_n)$ ein Zerfällungskörper von f.

Lemma 3.10

Ist $L \mid K$ ein Zerfällungskörper vpn f, so ist $[L:K] \leq n!$

Beweis. Sei $L = K(\alpha_1, \dots, \alpha_n), f = c \prod_{i=1}^n (x - \alpha_i)$. Induktion nach n:

- n = 1 : L = K, [K : K] = 1
- $n > 1: L_1 = K(\alpha_1)$ ist Wurzelkörper von $f \stackrel{3.3}{\Longrightarrow} [L_1:K] \le n$ und schreibe $f = c \cdot (x \alpha_1) \cdot f_1, f_1 = \prod_{i=2}^n (x \alpha_i) \in L_1[X]$ $\Rightarrow L = K(\alpha_1, \dots, \alpha_n) = L_1(\alpha_1, \dots, \alpha_n)$ ist Zerfällungskörper von f_1 (über L_1) $\stackrel{\text{IH}}{\Longrightarrow} [L:L_1] \le \deg(f_1)! = (n-1)!$ $\Rightarrow [L:K] = [L:L_1][L_1:K] = (n-1)!n = n!$

■ Beispiel 3.11

- (a) Ist n=2, so ist jeder Wurzelkörper L von f, schon ein Zerfällungskörper: $[L:K] \leq 2$.
- (b) Ist n=3, f irreduzibel. Schreibe $L_1=K(\alpha)$, $f=c(x-\alpha_1)f_1$ mit $f_1\in L_1[X]$
 - f_1 reduzibel: L_1 ist schon Zerfällungskörper von $f, [L_1:K]=3$
 - f_1 irreduzibel: L_1 ist kein Zerfällungskörper von f. Ist L Wurzelkörper von f_1 , so ist L Zerfällungskörper von f, [L:K]=3!=6

■ Beispiel

Sei $f = x^3 - 2 \in \mathbb{Q}[X]$, dann sind die Nullstellen von $f: \sqrt[2]{2} \in \mathbb{R}, \zeta_3\sqrt[2]{2}, \zeta_3^2\sqrt[2]{2}$

• $\mathbb{Q}(\sqrt[3]{2})$ ist Wurzelkörper von f. $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{R}, \zeta_3\sqrt[3]{2}, \zeta_3^2\sqrt[3]{2} \notin \mathbb{R}$, aber kein Zerfällungskörper. Der Zerfällungskörper von f ist

$$\mathbb{Q}(\sqrt[3]{2}, \zeta_3\sqrt[3]{2}, \zeta_3^2\sqrt[3]{2}) = \mathbb{Q}(\sqrt[3]{2}, \zeta_3^2\sqrt[3]{2})$$

Mathematica/WolframAlpha-Befehle

Will man die Nullstellen von $f = X^3 - 2 \in \mathbb{Q}[X]$ finden, dann bietet Mathematica folgende Funktion:

der letzte Parameter lässt einem den Körper wählen, in dem Mathematica suchen soll. Es gibt zur Auswahl Integers, Rationals, Reals, Complexes. Für das Beispiel erhält man folgenden Output:

$$\left\{x \to -(-2)^{(1/3)}, x \to 2^{(1/3)}, x \to (-1)^{(2/3)}2^{(1/3)}\right\}.$$

Dabei müsste man die Einheitswurzeln identifizieren:

$$\left\{ x \to \zeta_3 \sqrt[3]{2}, x \to \sqrt[3]{2}, x \to \zeta_3^2 \sqrt[3]{2} \right\}$$

Anmerkung

Wenn f irreduzibel $\Rightarrow K[X]/(f)$ ist Wurzelkörper.

Lemma 3.12

Sei $f = \sum_{i=0}^{n} a_i x^i$ irreduzibel und sei $L = K(\alpha)$ mit $f(\alpha)$ ein Wurzelkörper von f. Sei $\tilde{L} \mid \tilde{K}$ eine weitere Körpererweiterung und $\varphi \in \text{Hom}(K, \tilde{K})$. Ist $\sigma \in \text{Hom}(L, \tilde{L})$ eine Fortsetzung von φ (d.h. $\sigma_{\mid K} = \varphi$), so ist $\sigma(\alpha)$ eine Nullstelle von $f^{\varphi} = \sum_{i=0}^{n} \varphi(\alpha_i) x^i \in K[X]$. Ist umgekehrt $\beta \in L'$ eine Nullstelle von f^{φ} , so gibt es genau eine Fortsetzung $\sigma \in \text{Hom}(L, \tilde{L})$ von φ mit $\sigma(\alpha) = \beta$.

$$\begin{array}{c} L \stackrel{\sigma}{\longrightarrow} L' \\ \uparrow & \uparrow \\ K \stackrel{\varphi}{\longrightarrow} K' \end{array}$$

Beweis (was für die Prüfung!). • $f(\alpha) = 0 \Rightarrow 0 = \sigma(0) = \sigma(f(\alpha)) = \sigma(\sum_{i=0}^{n} a_i \alpha_i) = \sum_{i=0}^{n} \varphi(a_i) \sigma(\alpha)^i = f^{\varphi}(\sigma(\alpha))$

- Eindeutigkeit klar, da $L = K(\alpha)$
- Existenz: Betrachte

$$\eta: \begin{cases} K[X] & \to L \\ g & \mapsto g(\alpha) \end{cases} \quad \psi: \begin{cases} K[X] & \to L' \\ g & \to g^{\varphi}(\beta) \end{cases} \quad \to \text{ sind Homomorphismen nach univer. Eigenschaft}$$

(Bemerke: η surjektiv: $\eta_{|K} = \mathrm{id} \to K \in \mathrm{Im}(\eta)$ mit $\eta(x) = \alpha \to \alpha \in \mathrm{Im}(\eta)$)

 $Ker(\eta)=(f)$ ist Isomorphismus und $\bar{\eta}:K[X]/(f)\stackrel{\cong}{\to} L$ und $f\in Ker(\psi)\Rightarrow Ker(\psi)=(f)$ ist Homomorphismus $\bar{\psi}:K[X]/(f)\to L'$ $\sigma:=\bar{\psi}\circ\bar{\eta}^{-1}:L\to L'$ ist eine Fortsetzung von ψ und

$$\sigma(\alpha) = \bar{\psi}(x + (f)) = \beta \qquad \Box$$

Satz 3.13

Der Zerfällungskörper von f ist eindeutig bestimmt bis auf K-Isomorphie.

Beweis. Behauptung: Ist $\varphi: K \to K'$ ein Isomorphismus, L ein Zerfällungskörper, L' ein Zerfällungskörper von f^{φ} , so setzt sich φ zu einem Isomorphismus $L \to L'$ fort.

Beweis: Induktion nach $n = \deg(f)$

(IA)
$$n = 1: L = K \xrightarrow{\cong}_{\varphi} K' = L' \checkmark$$

(IS) n>1: Schreibe $f=cg_1\cdots g_r$ mit $g_i\in K[x]$ normiert und irreduzibel, $c\in K^\times$ $\Rightarrow f^\varphi=c^\varphi g_1^\varphi\cdots g_r^\varphi$ mit $c^\varphi\in (K')^\varphi$ und $g_i^\varphi\in K'[X]$ normiert und irreduzibel (weil φ Isomorphismus ist). Sei $\alpha_1\in L$ mit $g_1(\alpha_1)=0,\alpha_1'\in L'$ mit $g_1^\varphi(\alpha_1')=0$ $\xrightarrow{3.12}\varphi$ setzt man zu einem Isomorphismus

$$\sigma: K_1 := K(\alpha_1) \to K'(\alpha_1') \text{ mit } \sigma(\alpha_1) = \alpha_1'$$

fort. Schreibe $f = (x - \alpha_1) \cdot f_1^{\sigma}$ mit $f_1 \in K_1[X]$ $\Rightarrow f^{\varphi} = (x - \underbrace{\sigma(\alpha_1)}_{\alpha'_1}) \cdot f_1^{\sigma}$ mit $f_1^{\sigma} \in K'_1[X]$. L ist Zerfällungskörper von f_1, L' ist Zerfällungskörper von f_1^{σ}

 $\Rightarrow \sigma$ setzt sich fort zu einem Isomorphismus $L \to L'$

Die Behauptung im Fall $\varphi = \mathrm{id}_K$ ist genau die Aussage von Satz 3.13.

▶ Bemerkung 3.14

Ist $M \mid K$ eine Erweiterung, die einem Zerfällungskörper l von f enthält, dann ist dieser nicht nur bis auf die Isomorphie sondern als Teilkörper eindeutig bestimmt $L = K(\alpha_1, \ldots, \alpha_n)$, wobei $\alpha_1, \ldots, \alpha_n$ genau die n Nullstellen von f in M sind.

4. Der algebraische Abschluss

Sei $L \mid K$ eine Körpererweiterung.

Definition 4.1 (algebraisch abgeschlossen)

K ist algebraisch abgeschlossen \iff jedes $f \in K[X]$ mit $\deg(f) > 0$ hat eine Nullstelle in K.

Lemma 4.2

Es ist äquivalent:

- (a) K ist algebraisch abgeschlossen.
- (b) Jedes $0 \neq f \in K[X]$ zerfällt über K in Linearfaktoren.
- (c) K hat keine echte algebraische Erweiterung.

Beweis. (a) (a) \Rightarrow (b): Induktion nach deg(f) (siehe LAAG)

- (b) (b) \Rightarrow (c): Sei $L \mid K$ algebraisch, $\alpha \in L$. Schreibe $f = \text{MinPol}(\alpha \mid K)$. Nach (b) zerfällt f in Linearfaktoren über $K \Rightarrow \alpha \in K$
- (c) (c) \Rightarrow (a): Sei $f \in K[X], \deg(f) > 0$. Nach Satz 3.9 existiert ein Zerfällungskörper L von f. Da $L \stackrel{(*)}{=} K$ nach (c) hat f Nullstellen in K.
 - $((*) L \text{ ist Erweiterung} \rightarrow \text{die nach (c) trivial ist)}$

Definition 4.3 (algebraisch Abgeschlossen)

L ist algebraischer Abschluss von $K:\iff L$ ist algebraisch abgeschlossen und $L\mid K$ algebraisch.

Lemma 4.4

Ist L algebraischer Abschluss, so ist der relative algebraische Abschluss \tilde{K} ein algebraischer Abschluss von K.

Beweis. • \tilde{K} ist Körper: Folgerung 2.15

- $\tilde{K} \mid K$ ist algebraisch: Definition
- \tilde{K} ist algebraisch abgeschlossen: Sei $f \in \tilde{K}[X]$ mit $\deg(f) > 0$. L algebraisch abgeschlossen \Rightarrow existiert $\alpha \in L$ mit $f(\alpha) = 0$ und $f(\alpha) = 0 \Rightarrow \alpha$ algebraisch über $\tilde{K} \stackrel{2.15}{\Longrightarrow} \alpha \in \tilde{K}$.

■ Beispiel 4.5

- (a) C ist algebraisch abgeschlossen (Fundamentalsatz der Algebra, \nearrow II.)
- (b) \mathbb{C} ist algebraischer Abschluss von \mathbb{R} .
- (c) $\tilde{\mathbb{Q}} := \{ \alpha \in \mathbb{C} \mid \alpha \text{ algebraisch ""uber Q"} \}$ ist nach Lemma 4.4 ein algebraischer Abschluss von Q.

Lemma 4.6

Sei $L \mid K$ algebraisch, E ein algebraisch abgeschlossener Körper und $\varphi \in \text{Hom}(K, E)$. Dann existiert eine Fortsetzung von φ auf L, d.h. ein $\sigma \in \text{Hom}(L, E)$ mit $\sigma_{|K} = \varphi$.

Beweis. Definiere Halbordnung.

$$\mathfrak{X} := \big\{ (M,\sigma) : K \subseteq M \subseteq L \text{ Zwischenk\"orper}, \ \sigma \in \operatorname{Hom}(M,E), \sigma_{|K} = \varphi \big\}$$
$$(M,\sigma) \subseteq (M',\sigma') :\Leftrightarrow m \subset M' \text{ und } \sigma'_{|M} = \sigma$$

- $\mathfrak{X} \neq \varnothing$: $(K, \varphi) \in \mathfrak{X}$
- Ist $(M,\sigma)_{i\in I}$ eine Kette in \mathfrak{X} , so definieren wir $M:=\bigcup_{i\in I}M_i$ und $\sigma:M\to E$ durch $\sigma(x)=\sigma_i(x)$ falls $x\in M_i$. Dann ist $(M,\sigma)\in\mathfrak{X}$ eine obere Schranke der Kette $(M_i,\sigma_i)_{i\in I}$. Nach Lemma von ZORN existiert (M,σ) maximal. Es ist M=L: Sei $\alpha\in L, f=\mathrm{MinPol}(\alpha\mid M).$ $f\in E[X]$ hat Nullstelle $\beta\in E$, da E algebraisch abgeschlossen ist. $\stackrel{3.12}{\Longrightarrow}$ existiert Fortsetzung $\sigma'\in\mathrm{Hom}(M(\alpha),E)$ von σ

$$(M,\sigma) \leq (M(\alpha,\sigma')) \in \mathfrak{X} \xrightarrow{(M(\alpha),\sigma) \text{ max.}} M = M(\alpha), \alpha \in M.$$

Theorem 4.7 (Steinitz, 1910)

Jeder Körper K besitzt einen bis auf K-Isomorphie eindeutig bestimmten algebraischen Abschluss.

Beweis.

• Eindeutigkeit:

Seien L_1,L_2 algebraische Abschlüsse von K $L_1\mid K,L_2$ algebraisch abgeschlossen $\stackrel{4.6}{\Longrightarrow}$ existiert $\sigma\in \mathrm{Hom}(L_1,L_2)$

$$\begin{cases} L_1 \text{ algebraisch abgeschlossen } \Rightarrow \sigma(L_1) \cong L_1 \text{ algebraisch abgeschlossen} \\ L_2 \mid K \text{ algebraisch } \Rightarrow L_2 \mid \sigma(L_1) \text{ algebraisch} \end{cases} \stackrel{4.2}{\Longrightarrow} L_2 = \sigma(L_1).$$

Somit ist $\sigma: L_1 \to L_2$ ein K-Isomorphismus.

- Existenz: Seien
 - (a) $\mathscr{F} = \{ f \in K[X] : \deg(f) > 0 \}$
 - (b) $\mathfrak{X} = (X_f)_{f \in \mathscr{F}}$ Familie von Variablen
 - (c) $R := K[\mathfrak{X}]$ Polynomring in den Variablen X_f $(f \in mathscr F)$
 - (d) $I := (f(X_f): f \in \mathscr{F}) \trianglelefteq R$
 - (a) Behauptung 1: Es gilt $I \not\subseteq R$.

Beweis (Behauptung 1). Angenommen I=R. Dann existieren $f_1,\ldots,f_n\in\mathscr{F}$ und $g_1,\ldots,g_n\in R$ mit $\sum_{i=1}^n g_i\cdot f_i(X_ff_i)=1$. Sei L ein Zerfällungskörper von f_1,\ldots,f_n . Dann existieren $\alpha_1,\ldots,\alpha_n\in L$ mit $f_i(\alpha_i)=0$ für alle i. Sei $\varphi:R\to L$ der Einsetzungshomomorphismus gegeben durch

$$\varphi_{|K} = \mathrm{id}_{K} \quad \varphi(X_{f_{i}}) = \alpha_{i} \quad \varphi(X_{f}) = 0 \text{ für } f \in \mathscr{F}/\{f_{1}, \dots, f_{n}\}$$

$$\implies 1 = \varphi(1) = \sum_{i=1}^{n} \varphi(g_{i}) \cdot \varphi(f_{i}(X_{f}))$$

$$= \sum_{i=1}^{n} \varphi(g_{i}) \cdot f_{i}(\underbrace{\varphi(X_{f})}_{=\alpha_{i}}) = \sum_{i=1}^{n} \varphi(g_{i}) \cdot \underbrace{f_{i}(\alpha_{i})}_{=0} = 0$$

Jedes echte Ideal ist in einem maximalen Ideal von R enthalten (GEO II 2.13) \implies existiert maximales Ideal $m \le R$ mit $I \subseteq m$. $L_1 := R/m$ ist Körpererweiterung von K, und jedes $f \in \mathscr{F}$ hat eine Nullstelle in

 L_1 , nämlich $f(X_f + m) = f(X_f) + m = 0 + m$. Iteriere dies und erhalte eine Kette von Körpern

$$K := L_0 \subseteq L_1 \subseteq L_2 \subseteq \cdots$$

wobei jedes $f \in L_i[X], \deg(f) > 0$ eine Nullstelle in L_{i+1} hat. Setze nun $L = \bigcup_{i=1}^{\infty}$

(a) Behauptung 2: L ist algebraisch abgeschlossen.

Beweis (Behauptung 2). Sei $f \in L[X], \deg(f) > 0 \implies f \in L_i[X]$ für ein $i \implies f$ hat eine Nullstelle in $L_{i+1} \subseteq L$

Nach Lemma 4.4 ist somit $\tilde{K} = \{\alpha \in L : \alpha \text{ algebraisch "über } K\}$ ein abgeschlossener Abschluss von K. \square

Definition 4.8 (algebraischer Abschluss)

Mit \bar{K} bezeichnen wir den (bis auf K-Isomorphie eindeutig bestimmten) <u>algebraischen Abschluss</u> von K.

Definition 4.9 (Automorphismengruppe)

 $\operatorname{Aut}(L \mid K) := \{ \sigma \in \operatorname{Hom}_K(L, L) : \sigma \text{ Isomorphismus} \}, \text{ die Automorphismengruppe von } L \mid K.$

▶ Bemerkung 4.10

 $\operatorname{Aut}(L \mid K)$ ist Gruppe unter $\sigma \cdot \sigma' = \sigma' \circ \sigma$ und wirkt auf L durch $x^{\sigma} := \sigma(x)$.

Satz 4.11

Sei $K \subseteq L \subseteq \bar{K}$ ein Zwischenkörper. Jedes $\varphi \in Hom_K(L, \bar{K})$ lässt sich zu einem $\sigma \in Aut(\bar{K} \mid K)$ fortsetzen.

Beweis. Sei $\bar{K}\mid K$ algebraisch abgeschlossen und \bar{K} algebraisch abgeschlossen

 $\stackrel{\text{4.6}}{\Longrightarrow}$ existiert Fortsetzung $\sigma \in \text{Hom}_K(\bar{K}, \bar{K})$ von ϖ

 \bar{K} algebraisch abgeschlossen $\implies \sigma(\bar{K})$ algebraisch abgeschlossen

 $\bar{K} \mid K$ algebraisch ist $\implies \bar{K} \mid \sigma(\bar{K})$ algebraisch $(\bar{K} = \sigma(\bar{K}))$ somsit ist $\sigma \in Aut(\bar{K}, K)$.

Definition 4.12 (konjugiert)

 $\alpha, \beta \in \overline{K}$ sind K-konjugiert \iff existiert $\sigma \in \operatorname{Aut}(\overline{K}, K)$ mit $\sigma(\alpha) = \beta$.

▶ Bemerkung 4.13

K-Konjugiertheit ist eine Äquivalenzrelation auf \bar{K} .

Folgerung 4.14

 $\alpha, \beta \in \overline{K}$ sind K-konjugiert \Leftrightarrow MinPol $(\alpha \mid K) =$ MinPol $(\beta \mid K)$.

Beweis.

- \Rightarrow : $\sigma(\alpha) = \beta$ mit $\sigma \in \operatorname{Aut}(\bar{K} \mid K), f \in K[X], f(\alpha) = 0 \implies 0 = \sigma(0) = \sigma(f(\alpha)) = f(\sigma(\alpha)) = f(\beta)$
- \Leftarrow : MinPol($\alpha \mid K$) = MinPol($\beta \mid K$)
 - $\stackrel{3.5}{\Longrightarrow}$ existiert K-Isomorphismus $\varphi:K(\alpha)\to K(\beta)$ mit $\varphi(\alpha)=\beta$
 - $\stackrel{4.11}{\Longrightarrow}$ existiert Fortsetzung $\sigma \in \operatorname{Aut}(\bar{K}, K)$ von φ .

■ Beispiel 4.15

- $i, -i \in \tilde{\mathbb{Q}}$ sind \mathbb{Q} -konjugiert: komplex Konjugation (eingeschränkt auf $\tilde{\mathbb{Q}}$)
- $\sqrt{2}$, $-\sqrt{2} \in \tilde{\mathbb{Q}}$ sind \mathbb{Q} -konjugiert: $\operatorname{MinPol}(\sqrt{2} \mid \mathbb{Q}) = x^2 2 = \operatorname{MinPol}(-\sqrt{2} \mid \mathbb{Q})$

5. Die transzendente Erweiterung

Sei $L \mid K$ eine Körpererweiterung.

Definition 5.1 (algebraisch abhängig)

- (a) $a_1, \ldots, a_n \in L$ <u>algebraisch abhängig</u> über $K :\Leftrightarrow$ existiert $0 \neq f \in K(X_1, \ldots, X_n) : f(a_1, \ldots, a_n) = 0$
- (b) $(a_i)_{i\in I}$ ist <u>algebraisch abhängig</u> über $K:\Leftrightarrow$ existiert $J\subseteq I$ endlich: $(a_i)_{i\in I}$ algebraisch abhängig über K

■ Beispiel

Betrachte die reellen Zahlen $\sqrt{\pi}$ und $2\pi + 1$, beide sind transzendent über \mathbb{Q} . Die Singletons $\{\sqrt{\pi}\}$ und $\{2\pi + 1\}$ sind algebraisch unabhängig über \mathbb{Q} . Aber die Vereinigung $\{\sqrt{\pi}, 2\pi + 1\}$ ist nicht algebraisch unabhängig in \mathbb{Q} , da

$$P(x,y) = 2x^2 - y + 1 = 0$$

ist, wenn $x = \sqrt{\pi}$ und $y = 2\pi + 1$ gesetzt sind.

▶ Bemerkung 5.2

- (a) (a) ist algebraisch abhängig über $K \Leftrightarrow a$ ist algebraisch über K
- (b) $L = K(X_1, ..., X_n) = \text{Quot}(K([X_1, ..., X_n])) \implies X_1, ..., X_n$ sind algebraisch unabhängig über K
- (c) Sind π , e unabhängig über \mathbb{Q} ? Falls "Ja", wäre z.B. $\pi + e$ transzendent über \mathbb{Q}

Definition 5.3 (rein transzendent)

 $L \mid K$ rein transzendent : $\Leftrightarrow L = K(\mathfrak{X})$ mit $\mathfrak{X} = (a_i)_{i \in I}$ algebraisch unabhängig über K.

Lemma 5.4

 $\mathfrak{X} = (a_i)_{i \in I}$ algebraisch unabhängig über $K \implies K(\mathfrak{X}) \cong_K K(X_i : i \in I) = \operatorname{Quot}(K[X_i : i \in I]).$

Beweis. Betrachte K-Isomorphismus

$$\varphi = \begin{cases} K[X_i \colon I \in I] & \to K[a_i \colon i \in I] \\ f & \mapsto f(\mathfrak{X}) \end{cases}$$

 $(a_i \text{ für } x_i \text{ einsetzen.})$ Da \mathfrak{X} algebraisch unabhängig über K, ist $\text{Ker}(\varphi) = (0)$ $\implies K(\mathfrak{X}) = \text{Quot}(K[\mathfrak{X}]) \cong_K \text{Quot}(K[X_i : i \in I]).$

Satz 5.5

 $L \mid K$ rein transzendent $\implies \tilde{K} = K$.

Beweis. Nach Lemma 5.4 o.E. $L = K(X_i : i \in I)$. Weiter o. E. $I = \{1, ..., n\}$ endlich. Sei $\alpha \in L$ algebraisch über K. Definiere $f = \text{MinPol}(\alpha \mid K)$.

f irreduzibel in $K[X] \xrightarrow{\text{Gauss}} f$ irreduzibel in $K[X_1, \dots, X_n][X]$ $\xrightarrow{\text{Gauss}} f \text{ irreduzibel } K(X_1, \dots, X_n)[X]$

$$\implies \deg(f) = 1$$

 $\implies \alpha \in K.$

6. Die separable Erweiterung

Index

algebraisch, 6, 7	Minimalpolynom, 6
algebraisch Abgeschlossen, 14 algebraisch abhängig, 17	Primkörper, 3
algebraischen Abschluss, 16	rein transzendent, 17
Charakteristik, 3	relative algebraische Abschluss, 9
einfach, 5 endlich erzeugt, 5	Teilkörper, 5 transzendent, 6
Grad , 6	Unterring, 5
Köpererweiterung, 4	Wurzelkörper, 10
Körpergrad, 4	Zerfällungskörper, 11