Introducción a la Lógica y la Computación

Mariana Badano Héctor Gramaglia Pedro Sánchez Terraf Mauricio Tellechea Guido Ivetta

FaMAF, 1 de octubre de 2021

Contenidos estimados para hoy

- Completitud de la lógica proposicional
 - Relación entre verdad y demostrabilidad
 - Estrategia de prueba de Completitud
 - Consistencia
 - Conjuntos consistentes maximales
 - Teorema de existencia de modelos

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

Semántica	Cálculo
Tautologías (valuar 1)	Teoremas (derivable)
=	⊢
Asignaciones (modelo)	Derivaciones (pruebas formales)

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

Semántica	Cálculo
Tautologías (valuar 1)	Teoremas (derivable)
=	
Asignaciones (modelo)	Derivaciones (pruebas formales)

Completitud y Corrección de la Lógica Proposicional

Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

Semántica	Cálculo
Tautologías (valuar 1)	Teoremas (derivable)
=	⊢
Asignaciones (modelo)	Derivaciones (pruebas formales)

Completitud y Corrección de la Lógica Proposicional

Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

Hoy vamos por la implicación (\Rightarrow) : **Completitud**.

$$\Gamma \not\vdash \varphi \implies \Gamma \not\vdash \varphi \tag{1}$$

$$\Gamma \nvdash \varphi \implies \Gamma \nvDash \varphi \tag{1}$$

$$\Gamma \nvdash \varphi \implies \exists \nu : (\forall \psi \in \Gamma. \ \llbracket \psi \rrbracket_{\nu} = 1) \& \ \llbracket \varphi \rrbracket_{\nu} = 0$$
 (2)

$$\Gamma \not\vdash \varphi \implies \Gamma \not\vDash \varphi \tag{1}$$

$$\Gamma \nvdash \varphi \implies \exists v : (\forall \psi \in \Gamma. \ \llbracket \psi \rrbracket_v = 1) \& \ \llbracket \varphi \rrbracket_v = 0 \tag{2}$$

$$\Gamma \nvdash \varphi \implies \exists v : \llbracket \Gamma \rrbracket_v = 1 \& \llbracket \neg \varphi \rrbracket_v = 1 \tag{3}$$

$$\Gamma \not\vdash \varphi \implies \Gamma \not\vDash \varphi \tag{1}$$

$$\Gamma \nvdash \varphi \implies \exists v : (\forall \psi \in \Gamma. \ \llbracket \psi \rrbracket_v = 1) \& \ \llbracket \varphi \rrbracket_v = 0 \tag{2}$$

$$\Gamma \nvdash \varphi \implies \exists \nu : \llbracket \Gamma \rrbracket_{\nu} = 1 \& \llbracket \neg \varphi \rrbracket_{\nu} = 1 \tag{3}$$

$$\Gamma \nvdash \varphi \implies \exists v : \llbracket \Gamma \cup \{\neg \varphi\} \rrbracket_v = 1 \tag{4}$$

Vamos por la contrarrecíproca.

$$\Gamma \not\vdash \varphi \implies \Gamma \not\vDash \varphi \tag{1}$$

$$\Gamma \nvdash \varphi \implies \exists v : (\forall \psi \in \Gamma. \llbracket \psi \rrbracket_v = 1) \& \llbracket \varphi \rrbracket_v = 0 \tag{2}$$

$$\Gamma \nvdash \varphi \implies \exists v : \llbracket \Gamma \rrbracket_v = 1 \& \llbracket \neg \varphi \rrbracket_v = 1 \tag{3}$$

$$\Gamma \nvdash \varphi \implies \exists v : \llbracket \Gamma \cup \{ \neg \varphi \} \rrbracket_v = 1 \tag{4}$$

El foco estará en construir asignaciones ("modelos") que validen ciertos conjuntos.

Vamos por la contrarrecíproca.

$$\Gamma \not\vdash \varphi \implies \Gamma \not\vDash \varphi \tag{1}$$

$$\Gamma \nvdash \varphi \implies \exists v : (\forall \psi \in \Gamma. \ \llbracket \psi \rrbracket_v = 1) \& \ \llbracket \varphi \rrbracket_v = 0 \tag{2}$$

$$\Gamma \nvdash \varphi \implies \exists v : \llbracket \Gamma \rrbracket_v = 1 \& \llbracket \neg \varphi \rrbracket_v = 1 \tag{3}$$

$$\Gamma \nvdash \varphi \implies \exists v : \llbracket \Gamma \cup \{ \neg \varphi \} \rrbracket_v = 1 \tag{4}$$

El foco estará en construir asignaciones ("modelos") que validen ciertos conjuntos.

Veremos:

$$\Gamma \nvdash \varphi \iff \Gamma \cup \{\neg \varphi\} \nvdash \bot.$$

Vamos por la contrarrecíproca.

$$\Gamma \not\vdash \varphi \implies \Gamma \not\vDash \varphi \tag{1}$$

$$\Gamma \nvdash \varphi \implies \exists v : (\forall \psi \in \Gamma. \llbracket \psi \rrbracket_v = 1) \& \llbracket \varphi \rrbracket_v = 0 \tag{2}$$

$$\Gamma \nvdash \varphi \implies \exists \nu : \llbracket \Gamma \rrbracket_{\nu} = 1 \& \llbracket \neg \varphi \rrbracket_{\nu} = 1 \tag{3}$$

$$\Gamma \nvdash \varphi \implies \exists v : \llbracket \Gamma \cup \{ \neg \varphi \} \rrbracket_v = 1 \tag{4}$$

El foco estará en construir asignaciones ("modelos") que validen ciertos conjuntos.

Veremos:

$$\Gamma \nvdash \varphi \iff \Gamma \cup \{\neg \varphi\} \nvdash \bot.$$

$$\Gamma \cup \{\neg \varphi\} \nvdash \bot \implies \exists \nu : \llbracket \Gamma \cup \{\neg \varphi\} \rrbracket_{\nu} = 1 \tag{5}$$

Vamos por la contrarrecíproca.

$$\Gamma \nvdash \varphi \implies \Gamma \nvdash \varphi \tag{1}$$

$$\Gamma \nvdash \varphi \implies \exists \nu : (\forall \psi \in \Gamma. \ \llbracket \psi \rrbracket_{\nu} = 1) \& \ \llbracket \varphi \rrbracket_{\nu} = 0 \tag{2}$$

$$\Gamma \nvdash \varphi \implies \exists v : \llbracket \Gamma \rrbracket_v = 1 \& \llbracket \neg \varphi \rrbracket_v = 1 \tag{3}$$

$$\Gamma \nvdash \varphi \implies \exists \nu : \llbracket \Gamma \cup \{ \neg \varphi \} \rrbracket_{\nu} = 1 \tag{4}$$

El foco estará en construir asignaciones ("modelos") que validen ciertos conjuntos.

Veremos:

$$\Gamma \nvdash \varphi \iff \Gamma \cup \{\neg \varphi\} \nvdash \bot.$$

$$\Gamma \cup \{\neg \varphi\} \not\vdash \bot \implies \exists \nu : \llbracket \Gamma \cup \{\neg \varphi\} \rrbracket_{\nu} = 1$$
(5)

Teorema (Existencia de modelos)

$$\Gamma' \nvdash \bot \implies \exists v : \llbracket \Gamma' \rrbracket_v = 1$$

$$\blacksquare \Gamma' \nvdash \bot \implies \exists v : \llbracket \Gamma' \rrbracket_v = 1$$

$$\blacksquare \Gamma' \nvdash \bot \implies \exists v : \llbracket \Gamma' \rrbracket_v = 1$$

Damos nombre a la noción del antecedente.

Damos nombre a la noción del antecedente.

Definición

 $\Gamma \subseteq PROP$ es inconsistente $\iff \Gamma \vdash \bot$.

Damos nombre a la noción del antecedente.

Definición

 $\Gamma \subseteq PROP$ es inconsistente $\iff \Gamma \vdash \bot$.

 $\Gamma \subseteq PROP$ es **consistente** $\iff \Gamma \nvdash \bot$ (¡negación de lo anterior!).

$$\blacksquare \Gamma' \nvdash \bot \implies \exists \nu : \llbracket \Gamma' \rrbracket_{\nu} = 1$$

Damos nombre a la noción del antecedente.

Definición

 $\Gamma \subseteq PROP$ es inconsistente $\iff \Gamma \vdash \bot$.

 $\Gamma \subseteq PROP$ es **consistente** $\iff \Gamma \nvdash \bot$ (¡negación de lo anterior!).

Ahora veremos $\Gamma \nvdash \varphi \iff \Gamma \cup \{\neg \varphi\} \nvdash \bot$ (negando ambos lados).

$$\blacksquare \Gamma' \nvdash \bot \implies \exists \nu : \llbracket \Gamma' \rrbracket_{\nu} = 1$$

Damos nombre a la noción del antecedente.

Definición

 $\Gamma \subseteq PROP$ es inconsistente $\iff \Gamma \vdash \bot$.

 $\Gamma \subseteq PROP$ es **consistente** $\iff \Gamma \nvdash \bot$ (¡negación de lo anterior!).

Ahora veremos $\Gamma \nvdash \varphi \iff \Gamma \cup \{\neg \varphi\} \nvdash \bot$ (negando ambos lados).

Lema

 $\Gamma \vdash \varphi \iff \Gamma \cup \{\neg \varphi\}$ es inconsistente.

$$\blacksquare \Gamma' \nvdash \bot \implies \exists \nu : \llbracket \Gamma' \rrbracket_{\nu} = 1$$

Damos nombre a la noción del antecedente.

Definición

 $\Gamma \subseteq PROP$ es inconsistente $\iff \Gamma \vdash \bot$.

 $\Gamma \subseteq PROP$ es **consistente** $\iff \Gamma \nvdash \bot$ (¡negación de lo anterior!).

Ahora veremos $\Gamma \nvdash \varphi \iff \Gamma \cup \{\neg \varphi\} \nvdash \bot$ (negando ambos lados).

Lema

 $\Gamma \vdash \varphi \iff \Gamma \cup \{\neg \varphi\}$ es inconsistente.

Demostración.

Tomamos $D\in \mathcal{D}$ que atestigüe un lado y la usamos para construir $D'\in \mathcal{D}$ que atesigüe el otro.

 \blacksquare $\Gamma \vdash \varphi \implies \Gamma \cup \{\neg \varphi\}$ es inconsistente.

 \blacksquare $\Gamma \cup \{\neg \varphi\}$ es inconsistente $\implies \Gamma \vdash \varphi$.

$$\blacksquare \Gamma \nvdash \bot \implies \exists v : \llbracket \Gamma \rrbracket_v = 1$$

$$\blacksquare \Gamma \nvdash \bot \implies \exists v : \llbracket \Gamma \rrbracket_v = 1$$

Para construir una asignación v, pensemos cómo son los conjuntos validados por alguna v.

$$\blacksquare \Gamma \nvdash \bot \implies \exists v : \llbracket \Gamma \rrbracket_v = 1$$

Para construir una asignación v, pensemos cómo son los conjuntos validados por alguna v.

Lema (Criterio de Consistencia)

Si existe v que valide Γ , entonces Γ es consistente.

$$\blacksquare \Gamma \nvdash \bot \implies \exists v : \llbracket \Gamma \rrbracket_v = 1$$

Para construir una asignación v, pensemos cómo son los conjuntos validados por alguna v.

Lema (Criterio de Consistencia)

Si existe v que valide Γ , entonces Γ es consistente.

Ejemplo

Sea
$$v$$
 asignación y $Th(v) := \{ \varphi \in PROP : \llbracket \varphi \rrbracket_v = 1 \}.$

$$\blacksquare \Gamma \nvdash \bot \implies \exists v : \llbracket \Gamma \rrbracket_v = 1$$

Para construir una asignación v, pensemos cómo son los conjuntos validados por alguna v.

Lema (Criterio de Consistencia)

Si existe v que valide Γ , entonces Γ es consistente.

Ejemplo

Sea v asignación y $\operatorname{Th}(v):=\{\varphi\in PROP: [\![\varphi]\!]_v=1\}$. Por el Criterio de Consistencia, $\operatorname{Th}(v)$ es consistente.

$$\blacksquare \Gamma \nvdash \bot \implies \exists v : \llbracket \Gamma \rrbracket_v = 1$$

Para construir una asignación v, pensemos cómo son los conjuntos validados por alguna v.

Lema (Criterio de Consistencia)

Si existe v que valide Γ , entonces Γ es consistente.

Ejemplo

Sea v asignación y $\operatorname{Th}(v):=\{\varphi\in PROP: \llbracket\varphi\rrbracket_v=1\}$. Por el Criterio de Consistencia, $\operatorname{Th}(v)$ es consistente. Pero además no hay conjunto más grande que aún sea consistente.

$$\blacksquare \Gamma \nvdash \bot \implies \exists v : \llbracket \Gamma \rrbracket_v = 1$$

Para construir una asignación v, pensemos cómo son los conjuntos validados por alguna v.

Lema (Criterio de Consistencia)

Si existe v que valide Γ , entonces Γ es consistente.

Ejemplo

Sea v asignación y $\operatorname{Th}(v):=\{\varphi\in PROP: \llbracket\varphi\rrbracket_v=1\}$. Por el Criterio de Consistencia, $\operatorname{Th}(v)$ es consistente. Pero además no hay conjunto más grande que aún sea consistente.

Definición

 Γ es **consistente maximal** si es consistente y $\Gamma \subsetneq \Delta \subseteq PROP$ implica que Δ no lo es.

■ Γ es **consistente maximal** si es maximal en el poset (Conjuntos consistentes, \subseteq).

■ Γ es **consistente maximal** si es maximal en el poset (Conjuntos consistentes, \subseteq).

Teorema

 Γ consistente \implies existe Γ^* consistente maximal tal que $\Gamma \subseteq \Gamma^*$.

 $\ \ \Gamma$ es **consistente maximal** si es maximal en el poset (Conjuntos consistentes, \subseteq).

Teorema

 Γ consistente \implies existe Γ^* consistente maximal tal que $\Gamma \subseteq \Gamma^*$.

Demostración.

■ El conjunto de **todas** las proposiciones se puede enumerar: $PROP = \{\varphi_0, \varphi_1, \varphi_2, \dots\}.$

 $\ \ \Gamma$ es **consistente maximal** si es maximal en el poset (Conjuntos consistentes, \subseteq).

Teorema

 Γ consistente \implies existe Γ^* consistente maximal tal que $\Gamma \subseteq \Gamma^*$.

Demostración.

- El conjunto de **todas** las proposiciones se puede enumerar: $PROP = \{\varphi_0, \varphi_1, \varphi_2, \dots\}.$
- lacktriangle Empezando con Γ , vamos agregándole proposiciones de una cuidando que no se vuelva inconsistente.

■ El conjunto de **todas** las proposiciones se puede enumerar: $PROP = \{\varphi_0, \varphi_1, \varphi_2, \dots\}.$

lacksquare Γ consistente \Longrightarrow existe Γ^* consistente maximal tal que $\Gamma\subseteq\Gamma^*$.

Empezando con Γ , vamos agregándole proposiciones de una cuidando que

no se vuelva inconsistente.

$$\Gamma_0 := \Gamma$$

$$\Gamma_n := \Gamma$$

lacksquare Γ consistente \Longrightarrow existe Γ^* consistente maximal tal que $\Gamma\subseteq\Gamma^*$.

Empezando con Γ , vamos agregándole proposiciones de una cuidando que no se vuelva inconsistente.

Realización de conectivos

Lema (Consistentes maximales son cerrado por derivaciones)

 Γ consistente maximal y $\Gamma \vdash \varphi$ implica $\varphi \in \Gamma$.

Realización de conectivos

Lema (Consistentes maximales son cerrado por derivaciones)

 Γ consistente maximal y $\Gamma \vdash \varphi$ implica $\varphi \in \Gamma$.

Realización de conectivos

Lema (Consistentes maximales son cerrado por derivaciones)

 Γ consistente maximal y $\Gamma \vdash \varphi$ implica $\varphi \in \Gamma$.

→ en el apunte

Lema (Consistentes maximales realizan conectivos)

Sea Γ consistente maximal. Para todas $\varphi, \psi \in PROP$,

- \blacksquare Γ consistente maximal y $\Gamma \vdash \varphi$ implica $\varphi \in \Gamma$.
- $\blacksquare \neg \varphi \in \Gamma \iff [\mathsf{no} \ \varphi \in \Gamma].$

$$(\Rightarrow) \neg \varphi \in \Gamma \Leftrightarrow [no \varphi \in \Gamma].$$

$$(\Rightarrow) \neg \varphi \in \Gamma , \forall \varphi \in \Gamma \Rightarrow D := \frac{(\varphi \neg \varphi)}{\bot} \neq E$$

$$(\Rightarrow) \neg \varphi \in \Gamma , \forall \varphi \in \Gamma \Rightarrow D := \frac{(\varphi \neg \varphi)}{\bot} \neq E$$

$$(\Rightarrow) \neg \varphi \in \Gamma , \forall \varphi \in \Gamma \Rightarrow D := \frac{(\varphi \neg \varphi)}{\bot} \neq E$$

$$(\Rightarrow) \neg \varphi \in \Gamma , \forall \varphi \in \Gamma \Rightarrow D := \frac{(\varphi \neg \varphi)}{\bot} \neq E$$

$$(\Rightarrow) \neg \varphi \in \Gamma , \forall \varphi \in \Gamma \Rightarrow D := \frac{(\varphi \neg \varphi)}{\bot} \neq E$$

$$(\Rightarrow) \neg \varphi \in \Gamma , \forall \varphi \in \Gamma \Rightarrow D := \frac{(\varphi \neg \varphi)}{\bot} \neq E$$

$$(\Rightarrow) \neg \varphi \in \Gamma , \forall \varphi \in \Gamma \Rightarrow D := \frac{(\varphi \neg \varphi)}{\bot} \neq E$$

$$(\Rightarrow) \neg \varphi \in \Gamma , \forall \varphi \in \Gamma \Rightarrow \Gamma , \forall \varphi \in \Gamma , \forall \varphi \in \Gamma \Rightarrow \Gamma , \forall \varphi \in \Gamma$$

- \blacksquare Γ consistente maximal y $\Gamma \vdash \varphi$ implica $\varphi \in \Gamma$.
- $\neg \varphi \in \Gamma \iff [\mathsf{no} \ \varphi \in \Gamma].$
- $\blacksquare (\varphi \to \psi) \in \Gamma \iff [\varphi \in \Gamma \text{ implica } \psi \in \Gamma].$

(=)
$$(\varphi \rightarrow \psi) \in \Gamma$$
. Sup. $\varphi \in \Gamma$. $D := \frac{\varphi \not \varphi \rightarrow \psi}{\psi} \neq \overline{\psi}$
 $(\varphi \rightarrow \psi) \in \Gamma$. Sup. $\varphi \in \Gamma$. $\varphi \mapsto \overline{\psi}$

Lema (Consistentes maximales realizan conectivos)

Sea Γ consistente maximal. Para todas $\varphi, \psi \in PROP$,

Lema (Consistentes maximales realizan conectivos)

Sea Γ consistente maximal. Para todas $\varphi, \psi \in PROP$,

Teorema (Existencia de modelos)

 Γ es consistente \implies existe asignación v que valida Γ .

Lema (Consistentes maximales realizan conectivos)

Sea Γ consistente maximal. Para todas $\varphi, \psi \in PROP$,

Teorema (Existencia de modelos)

 Γ es consistente \implies existe asignación v que valida Γ .

Demostración.

Sea $\Gamma^* \supseteq \Gamma$ consistente maximal.

Lema (Consistentes maximales realizan conectivos)

Sea Γ consistente maximal. Para todas $\varphi, \psi \in PROP$,

Teorema (Existencia de modelos)

 Γ es consistente \implies existe asignación v que valida Γ .

Demostración.

Sea $\Gamma^* \supseteq \Gamma$ consistente maximal. Definimos asignación: $\nu(p_n) := 1 \iff p_n \in \Gamma^*$.

Lema (Consistentes maximales realizan conectivos)

Sea Γ consistente maximal. Para todas $\varphi, \psi \in PROP$,

Teorema (Existencia de modelos)

 Γ es consistente \implies existe asignación v que valida Γ .

Demostración.

Sea $\Gamma^*\supseteq \Gamma$ consistente maximal. Definimos asignación:

$$v(p_n) := 1 \iff p_n \in \Gamma^*.$$

Probaremos por inducción en φ que $\varphi \in \Gamma^* \iff [\![\varphi]\!]_v = 1$.

Lema (Consistentes maximales realizan conectivos)

Sea Γ consistente maximal. Para todas $\varphi, \psi \in PROP$,

Teorema (Existencia de modelos)

 Γ es consistente \implies existe asignación v que valida Γ .

Demostración.

Sea $\Gamma^*\supseteq \Gamma$ consistente maximal. Definimos asignación:

$$v(p_n) := 1 \iff p_n \in \Gamma^*.$$

Probaremos por inducción en φ que $\varphi \in \Gamma^* \iff \llbracket \varphi \rrbracket_{\nu} = 1$.

En particular, v valida a Γ .

- $\Gamma^* \supseteq \Gamma$ consistente maximal.
- Hemos definido $v(p_n) := 1 \iff p_n \in \Gamma^*$.
- $\blacksquare \neg \varphi \in \Gamma * \iff [\mathsf{no} \ \varphi \in \Gamma^*].$

$$\varphi \in \Gamma^* \iff \llbracket \varphi \rrbracket_v = 1$$

$$\varphi \in At$$

- $\Gamma^* \supseteq \Gamma$ consistente maximal.
- Hemos definido $v(p_n) := 1 \iff p_n \in \Gamma^*$.
- $\blacksquare \neg \varphi \in \Gamma * \iff [\mathsf{no} \ \varphi \in \Gamma^*].$
- $\blacksquare \ (\varphi \to \psi) \in \Gamma \iff [\varphi \in \Gamma^* \text{ implica } \psi \in \Gamma^*].$