

Billiard-Al

Ein intelligenter Billardtisch

Projekt 2

Studienrichtung: Informatik - Computer Perception and Virtual Reality

Autor: Lukas Seglias, Luca Ritz
Dozent: Markus Hudritsch

Experte:

Datum: 21. April 2021

Inhaltsverzeichnis

1	Zusammenfassung	1
2	Einführung	3
3	Ziele 3.0.1 Planung	5 5
4	Billiard-AI 4.1 Aufbau 4.2 Architektur 4.3 Die Suche - ein theoretisches Modell	7
5	Resultate	9
6	Weitere Arbeiten	11
7	Fazit	13
8	Anhang	23

1 Zusammenfassung

2 Einführung

3 Ziele

Ins Billard-Spiel einzusteigen ist nicht ganz einfach. Zu Beginn kann man schlecht abschätzen, welchen Weg eine Kugel wählen wird, wenn man sie anschlägt und ebenfalls hat man Mühe, den optimalen Stoss zufinden, erst recht, wenn man weiter in die Tiefe sehen will. Wenn es also wichtig wird, die Weisse nach einem Stoss für den Nächsten optimal zu platzieren.

Am Ende wird also ein System entstehen, das einem den optimalen Stoss vorschlägt, basierend auf Kriterien und einer festgelegten Tiefe.

Die Projekt-2 Arbeit hat das grundlegende Ziel der Vorbereitung auf die Bachelor-Thesis. Daher sei zu Beginn erwähnt, dass möglichst viel vorgearbeitet werden kann, auch wenn dies an dieser Stelle keine explizite Erwähnung findet.

Im Wesentlichen geht es aber vor allem um die zugrunde liegenden Basisarbeiten. Diese setzen sich aus den folgenden Teilstücken zusammen:

Aufsetzen des Projekts Dazu gehören nebst Überlegungen zur Architektur und der Implementation davon auch das Aufsetzen der Dokumentation, welche in Latex geschrieben wird.

Aufbau des Systems Dies beinhaltet die Montage der Kamera wie auch des Projektors.

Kalibrierung der Kamera Bestimme die intrinsische Transformationsmatrix, um genaue Bildanalyse betreiben zu können.

Erkennung der Kugelpositionen Die Kugeln sollen einer Position im Pixelkoordinatensystem zugewiesen werden können.

Klassifikation der Kugeln Wurden die Kugeln erkannt, sollen sie entsprechend der Farbe klassifiziert werden.

Übersetzung in internes Koordinatensystem Mittels Marker, welche am Tisch angebracht werden, sollen die auflösungsabhängigen Pixelkoordinaten in ein standardisiertes internes Koordinatensystem überführt werden.

Theoriearbeiten zur Suche eines Stosses Um einen optimalen Stoss zu finden, bedarf es zunächst einiger theoretischen Grundüberlegungen. Dies beinhaltet z.B. einen Algorithmus, um einen Stoss zu finden sowie auch physikalisch korrekt zu beschreiben.

Suche eines einfachen Stosses Sobald der theoretische Ansatz erarbeitet wurde, soll eine erste einfache Suche implementiert werden. Diese soll nur direkte Stösse berücksichtigen. Indirekte über die Bande wie auch über andere Kugeln werden vorerst nicht beachtet. Die Ausgabe soll auch nicht unbedingt über den Projektor erfolgen, eine textuelle Präsentation soll hier genügen.

Es ist weiterhin anzumerken, dass es in erster Linie um Snooker-Billard geht. Dies hat mehrere Gründe. Einerseits soll in dieser Arbeit nicht die Klassifikation der Kugeln im Zentrum stehen, sondern die Suche nach einem optimalen Stoss. Es wird angenommen, dass dies mit Snooker-Kugeln einfacher geht als mit Pool-Billard-Kugeln. Andererseits wird das Projekt zusammen mit einem Unternehmen durchgeführt, welches eventuell auch einen kommerziellen Ansatz verfolgen will. Da grössere Turniere wie Weltmeisterschaften in Snooker ausgetragen werden, kam schnell der Wunsch auf, das Hauptaugenmerk darauf zu legen. Nichtsdestotrotz wird die Anwendung so abstrakt gehalten, dass sie mit wenig Aufwand auf Pool-Billard portiert werden könnte. Dies wird aber vorläufig weder in Projekt-2 noch in der darauffolgenden Bachelor-Thesis von Relevanz sein.

3.0.1 Planung

Die Planung beinhaltet eine Auflistung der Ziele nach Deadline sowie Bearbeiter.

Ziel	Datum	Bearbeiter
Evaluation Beamer & Kamera	08.03.2021	Lukas & Luca
Überlegungen zum Aufbau	11.03.2021	Lukas & Luca
Entscheid Beamer- Kameratyp	11.03.2021	Lukas & Luca
Theorie der Kamera-Kalibrierung erarbeiten	18.03.2021	Lukas
Beschreibung Such-Algorithmus	18.03.2021	Luca
Theorie der Beamer-Kalibrierung erarbeiten	25.03.2021	Lukas & Luca
Aufbau des Systems	01.04.2021	Lukas & Luca
Definitive Kalibrierung	08.04.2021	Lukas & Luca
Kugel erkennen & Klassifikation	15.04.2021	Luca
Fine-Tuning Kugel erkennen & Klassifikation	29.04.2021	Luca
Marker - Transformation in internes Koordinatensystem	29.04.2021	Lukas
Resultate festhalten Erkennung, Klassifikation & Transformation	06.05.2021	Lukas & Luca
Einfache Suche implementieren	03.06.2021	Lukas & Luca

4 Billiard-Al

In diesem Kapitel werden die gewählte Architektur wie auch die bisher erarbeiteten theoretischen Ansätze behandelt. Weiterhin wird auf verschiedene Aspekte des Aufbaus und dessen Problematik eingegangen.

4.1 Aufbau

TODO: Beschreibung

4.2 Architektur

Die eigentliche Funktionalität wird in einer Core-Library untergebracht, welche nativ in C++ entwickelt wird. Das Endprodukt soll aber weitaus mehr zu bieten haben, wie aus den Zielen ersichtlich wird. Deswegen wird in Unity eine Interaktionsmöglichkeit geschaffen, worüber der Benutzer einerseits die Resultate visualisiert bekommt und andererseits der Core-Library seine nächsten Schritte mitteilen kann. Um dies zu erreichen, wird eine weitere native Komponente erstellt, welche die Interaktion zwischen Unity und der Core-Library ermöglicht. Es ist dies eine C/C++-Bibliothek, die ein C-Interface bereitstellt, welches in Unity geladen wird. Unity selbst erhält ebenfalls eine Abstraktionsschicht, um die Nativen auf die Applikationsmodelle zu mappen. Eine Darstellung kann in Abbildung 4.1 entnommen werden.

Abbildung 4.1: Grobarchitektur - Applikationsumgebung

4.3 Die Suche - ein theoretisches Modell

5 Resultate

6 Weitere Arbeiten

7 Fazit

Abbildungsverzeichnis

4.1	Grobarchitektur -	Applikationsumgebung.		 												7

Tabellenverzeichnis

Glossar

Versionskontrolle

Version	Datum	Beschreibung	Autor
0.1	01.03.2021	Eröffnung Dokumentation	Luca Ritz
0.2	04.03.2021	Definition Ziele	Lukas Seglias & Luca Ritz

8 Anhang