# Capture-Recapture Example (Tutorial)

#### Leah South

Our running example is about the capture and recapture of the bird species called the European Dipper (*Cinclus cinclus*). Marzolin (1988) collected the data based on the capture and recapture of this species over six years.



Below are the R packages we'll be using in this document.

```
library(MASS) # multivariate normal
library(coda) # assessing convergence and sample quality
library(psych) # bivariate plots
```

## The MCMC Algorithm

We'll be looking at MALA (asymptotically un-baised) and ULA (biased) approaches for inference on our example. The focus is on post-processing and bias rather than implementation of algorithms. You can find the relevant code for MALA and ULA implementations for reference.

```
source('MCMC_fn.R')
source('ULA_fn.R')
```

#### The Statistical Model

The parameters for the model are  $\phi_i$  and  $p_k$  where i = 1, ..., 6 and k = 2, ..., 7.  $\phi_i$  represents the probability of survival from year i to year i + 1 and  $p_k$  represents the probability of being captured in year k.

The likelihood for the model is given below, and based on data  $D_i$  for the number of birds released in year i and  $y_{ik}$  for the number of animals caught in year k out of the number released in year i. Here  $d_i = D_i - \sum_{k=i+1}^7 y_{ik}$  is the number released in year i that are never caught. The corresponding probability of a bird being released in year i and never being caught is  $\chi_i = 1 - \sum_{k=i+1}^7 \phi_i p_k \prod_{m=i+1}^{k-1} \phi_m (1-p_m)$ , which is a function of the model parameters. The likelihood is given by

$$f(y|\theta) \propto \prod_{i=1}^{6} \chi_i^{d_i} \prod_{k=i+1}^{7} \left[ \phi_i p_k \prod_{m=i+1}^{k-1} \phi_m (1-p_m) \right]^{y_{ik}},$$

where  $\theta = (\phi, p)$ ,  $\phi = (\phi_1, ..., \phi_6)$ ,  $p = (p_2, ..., p_7)$  and  $y = \{y_{ik} : i = 1, ..., 6, k = 2, ..., 7\}$ . Due to parameter identifiability issues, the parameters  $\phi_6$  and  $\phi_7$  are combined as  $\phi_6 \phi_7$  leading to a total of eleven parameters.

The prior for each component of  $\theta$  is set to be  $\mathcal{U}(0,1)$ , and all components are independent a priori. For the RW proposal, the j-th parameter  $\theta[j]$  is transformed using  $\tilde{\theta}[j] = \log(\theta[j]/(1-\theta[j]))$  for  $j = 1, \ldots, 11$ . The implied prior density for  $\tilde{\theta}[j]$  is then  $e^{\tilde{\theta}[j]}/(1+e^{\tilde{\theta}[j]})^2$ , for  $j = 1, \ldots, 11$ .

Read in the liklihood functions and tuning parameters for algorithms

```
load("recapture_ULA_bettertuning.RData")
load("recapture_MALA_tuning.RData")

# Names of the 11 variables
varNames <- pasteO("theta",1:11) #### FIX-LATER</pre>
```

## **Multiple Chains**

#### Getting the samples

Let's run 10 chains with a common starting point

```
initial \leftarrow c(0.35, -0.66, -1.74, 2.5, -0.67, -0.59, 2.38, 2.52, 1.2, 5.08,
1.3)
set.seed(2)
n_reps <- 10 # number of chains</pre>
its <- 500 # number of MCMC iterations
chains_ULA <- chains_MALA <- samples_ULA <- samples_MALA <- list()</pre>
for (i in 1:n_reps){
  # Running MALA
  single_chain_mala <- MALA_fn(d = 11, initial = initial, covmala = cov_rw, h = h_mala,
                             iters = its,der_loglike = der_loglike,
                             der_logprior = der_logprior,
                             options = options, varNames = varNames)
  chains_MALA[[i]] <- single_chain_mala</pre>
  samples_MALA[[i]] <- single_chain_mala$samples</pre>
  # Running ULA
  single_chain_ula <- ULA_fn(d = 11, initial = initial, cov_ULA = cov_ula, h = h_ula,
                             iters = its,der_loglike = der_loglike,
                             der_logprior = der_logprior,
                             options = options, varNames = varNames)
  chains_ULA[[i]] <- single_chain_ula</pre>
  samples_ULA[[i]] <- single_chain_ula$samples</pre>
}
ula noburnin <- as.mcmc.list(samples ULA)</pre>
mala noburnin <- as.mcmc.list(samples MALA)</pre>
save(ula_noburnin,mala_noburnin,chains_MALA,chains_ULA, file = "ten_chains.RData") # For future reuse
```

#### Compare the KSD

Sourcing in the KSD code and load the KSD package

```
source('KSD.R')
library(KSD)
```

## Warning: package 'KSD' was built under R version 4.0.5

Evaluate the KSD on each of the chains for MALA and ULA.

```
KSD_MALA_gaussian <- KSD_ULA_gaussian <- rep(NaN,n_reps)
KSD_MALA_imq <- KSD_ULA_imq <- rep(NaN,n_reps)
for (i in 1:n_reps){
    samples <- as.matrix(chains_MALA[[i]]$samples)
    gradients <- chains_MALA[[i]]$der_loglike + chains_MALA[[i]]$der_logprior

    KSD_MALA_gaussian[i] <- KSD(samples, gradients)$ksd
    KSD_MALA_imq[i] <- imqKSD(samples, gradients)

samples <- as.matrix(chains_ULA[[i]]$samples)</pre>
```

```
gradients <- chains_ULA[[i]]$der_loglike + chains_ULA[[i]]$der_logprior

KSD_ULA_gaussian[i] <- KSD(samples, gradients)$ksd

KSD_ULA_imq[i] <- imqKSD(samples, gradients)
}
save(KSD_MALA_gaussian, KSD_ULA_gaussian, KSD_MALA_imq, KSD_ULA_imq, file = "ksd_ten_chains.RData")
boxplot(KSD_MALA_gaussian, KSD_ULA_gaussian)</pre>
```



boxplot(KSD\_MALA\_imq,KSD\_ULA\_imq)



#### Estimating expectations with control variates

Now we'll estimate the posterior expectation of our parameters. The parameters are transformed using  $\tilde{\theta}[j] = \log(\theta[j]/(1-\theta[j]))$  for  $j=1,\ldots,11$ . To transform back  $\tilde{\theta}[j]$  we use  $e^{\tilde{\theta}[j]}/(1+e^{\tilde{\theta}[j]})^2$ , for  $j=1,\ldots,11$ . library(ZVCV)

```
## Warning: package 'ZVCV' was built under R version 4.0.4
Vanilla_MALA <- ZV1_MALA <- CF_MALA <- SECF_MALA <- matrix(NaN,nrow=n_reps,ncol=d)
Vanilla_ULA <- ZV1_ULA <- CF_ULA <- SECF_ULA <- matrix(NaN, nrow=n_reps, ncol=d)
for (i in 1:n_reps){
  samples <- as.matrix(chains_MALA[[i]]$samples)</pre>
  gradients <- chains_MALA[[i]]$der_loglike + chains_MALA[[i]]$der_logprior</pre>
  integrand <- 1/(1+exp(-samples))</pre>
  # In order: vanilla estimate, zero-variance control variates
  # with a first order polynomila, control functionals and
  # semi-exact control functionals with a first order polynomial
  Vanilla_MALA[i,] <- colMeans(integrand)</pre>
  ZV1_MALA[i,] <- zvcv(integrand, samples, gradients,</pre>
                        options = list(polyorder = 1, regul_reg = FALSE))$expectation
  CF_MALA[i,] <- CF_crossval(integrand, samples, gradients, kernel_function = "RQ",
                              sigma_list = list(0.001,0.01,0.1,1,10), folds = 2)$expectation
  SECF_MALA[i,] <- SECF_crossval(integrand, samples, gradients, polyorder = 1, kernel_function = "RQ",
                                  sigma_list = list(0.001, 0.01, 0.1, 1, 1, 10), folds = 2)$expectation
```

```
# In order: vanilla estimate, zero-variance control variates
  # with a first order polynomila, control functionals and
  # semi-exact control functionals with a first order polynomial
  samples <- as.matrix(chains_ULA[[i]]$samples)</pre>
  gradients <- chains_ULA[[i]]$der_loglike + chains_ULA[[i]]$der_logprior</pre>
  integrand <- 1/(1+exp(-samples))</pre>
  Vanilla_ULA[i,] <- colMeans(integrand)</pre>
  ZV1_ULA[i,] <- zvcv(integrand, samples, gradients,</pre>
                       options = list(polyorder = 1, regul_reg = FALSE))$expectation
  CF_ULA[i,] <- CF_crossval(integrand, samples, gradients, kernel_function = "RQ",</pre>
                             sigma_list = list(0.001, 0.01, 0.1, 1, 1, 10), folds = 2)$expectation
  SECF_ULA[i,] <- SECF_crossval(integrand, samples, gradients, polyorder = 1, kernel_function = "RQ",
                                 sigma_list = list(0.001, 0.01, 0.1, 1, 1, 10), folds = 2)$expectation
load("Recapture_goldstandard.RData")
# Boxplots of the estimates
for (j in 1:11){
  boxplot(Vanilla_MALA[,j],ZV1_MALA[,j],CF_MALA[,j],SECF_MALA[,j],
          Vanilla_ULA[,j],ZV1_ULA[,j],CF_ULA[,j],SECF_ULA[,j])
  abline(h=gold_standard[j])
}
```























#### Investigate tuning parameter for ULA

Try increasing and decreasing the parameter h\_ula.

```
set.seed(2)
h_value <- 0.5
# Running ULA
single_chain_ula <- ULA_fn(d = 11, initial = initial, cov_ULA = cov_ula, h = h_value,
                             iters = its,der_loglike = der_loglike,
                             der_logprior = der_logprior,
                             options = options, varNames = varNames)
samples <- as.matrix(single_chain_ula$samples)</pre>
gradients <- single_chain_ula$der_loglike + single_chain_ula$der_logprior</pre>
KSD(samples, gradients)$ksd
## [1] 2.943607
imqKSD(samples, gradients)
## [1] 1.710645
h_value <- 1
# Running ULA
single_chain_ula <- ULA_fn(d = 11, initial = initial, cov_ULA = cov_ula, h = h_value,</pre>
                             iters = its,der_loglike = der_loglike,
                             der_logprior = der_logprior,
                             options = options, varNames = varNames)
```

```
samples <- as.matrix(single_chain_ula$samples)</pre>
gradients <- single_chain_ula$der_loglike + single_chain_ula$der_logprior</pre>
KSD(samples, gradients)$ksd
## [1] 0.4114754
imqKSD(samples, gradients)
## [1] 0.7582476
h value <- 1.6
# Running ULA
single_chain_ula <- ULA_fn(d = 11, initial = initial, cov_ULA = cov_ula, h = h_value,</pre>
                             iters = its,der_loglike = der_loglike,
                             der_logprior = der_logprior,
                             options = options, varNames = varNames)
samples <- as.matrix(single_chain_ula$samples)</pre>
gradients <- single_chain_ula$der_loglike + single_chain_ula$der_logprior</pre>
KSD(samples, gradients)$ksd
## [1] 6.967222
imqKSD(samples, gradients)
## [1] 1.599452
```

#### Investigate convergence for MALA

Try alternative initialisation points you may use the following to simulate from the prior:

```
initial <- recapture_simprior(1, options)</pre>
```

```
set.seed(2)
n_reps <- 10 # number of chains</pre>
its <- 500 # number of MCMC iterations
chains_ULA <- chains_MALA <- samples_ULA <-</pre>
  samples MALA <- list()</pre>
for (i in 1:n reps){
  initial <- recapture_simprior(1, options)</pre>
  # Running MALA
  single_chain_mala <- MALA_fn(d = 11, initial = initial, covmala = cov_rw, h = h_mala,
                              iters = its,der_loglike = der_loglike,
                              der_logprior = der_logprior,
                              options = options, varNames = varNames)
  chains_MALA[[i]] <- single_chain_mala</pre>
  samples_MALA[[i]] <- single_chain_mala$samples</pre>
  # Running ULA
  single_chain_ula <- ULA_fn(d = 11, initial = initial, cov_ULA = cov_ula, h = h_ula,
                              iters = its,der_loglike = der_loglike,
                              der_logprior = der_logprior,
                              options = options, varNames = varNames)
  chains_ULA[[i]] <- single_chain_ula</pre>
  samples_ULA[[i]] <- single_chain_ula$samples</pre>
```

```
}
ula_noburnin <- as.mcmc.list(samples_ULA)
mala_noburnin <- as.mcmc.list(samples_MALA)</pre>
```

Investigate the convergence using multiple chains and Gelman & Rubin's  $\hat{R}$  diagnostic. Work out a good burnin and investigate control variates on the burnin chain.

plot(mala\_noburnin,smooth=FALSE)

#### Trace of theta1



#### Density of theta1



#### Trace of theta2



#### Density of theta2



#### Trace of theta3







## Density of theta4



#### Trace of theta5



## Density of theta5



#### Trace of theta6







## Density of theta7



#### Trace of theta8



## Density of theta8



#### Trace of theta9







#### Density of theta10



#### Trace of theta11



#### Density of theta11



#### Rhat

## ## 1.57

The  $\hat{R}$  diagnostic is not < 1.1 for all dimensions, so we have evidence of non-convergence. gelman.diag(mala\_noburnin,autoburnin=FALSE)

## Potential scale reduction factors: ## ## Point est. Upper C.I. 1.03 1.04 ## theta1 ## theta2 1.02 1.04 theta3 1.11 1.22 ## theta4 1.80 5.48 ## ## theta5 1.70 3.80 ## theta6 1.02 1.03 ## theta7 1.01 1.02 ## theta8 1.01 1.03 ## theta9 1.17 1.33 ## theta10 1.31 1.62 ## theta11 1.12 1.24 ## ## Multivariate psrf

## Removing Burn-In

Let's see if we still have evidence of non-convergence if we remove the first 500 samples as burn-in.

```
# Removing burn-in
burnin <- 300
its <- 500
mala_burnin <- list()
for (i in 1:n_reps){
   mala_burnin[[i]] <- mcmc(mala_noburnin[[i]]]((burnin+1):(its),])
}
mala_burnin <- as.mcmc.list(mala_burnin)

# Plotting chains
plot(mala_burnin, smooth=FALSE)</pre>
```

#### Trace of theta1



#### Density of theta1



#### Trace of theta2



#### Density of theta2



#### Trace of theta3







## Density of theta4



#### Trace of theta5



## Density of theta5



#### Trace of theta6







## Density of theta7



#### Trace of theta8



## Density of theta8



#### Trace of theta9







#### Density of theta10



#### Trace of theta11



#### Density of theta11



#### # Calculating Rhat

gelman.diag(mala\_burnin,autoburnin=FALSE)

```
## Potential scale reduction factors:
##
##
           Point est. Upper C.I.
                  1.09
## theta1
                             1.19
## theta2
                  1.03
                             1.06
## theta3
                  1.02
                             1.05
                  1.03
## theta4
                             1.07
## theta5
                  1.04
                             1.08
## theta6
                  1.04
                             1.07
## theta7
                  1.03
                             1.05
## theta8
                  1.02
                             1.04
                  1.03
                             1.06
## theta9
## theta10
                  1.02
                             1.05
                  1.01
## theta11
                             1.03
##
## Multivariate psrf
##
## 1.09
```

Investigate the KSD without bias:

```
burnin <- 300
KSD_MALA_gaussian <- KSD_ULA_gaussian <- rep(NaN,n_reps)
KSD_MALA_imq <- KSD_ULA_imq <- rep(NaN,n_reps)</pre>
```

```
for (i in 1:n_reps){
    samples <- as.matrix(chains_MALA[[i]]$samples[(burnin+1):(its),])
    gradients <- chains_MALA[[i]]$der_loglike[(burnin+1):(its),] + chains_MALA[[i]]$der_logprior[(burnin+
    KSD_MALA_gaussian[i] <- KSD(samples, gradients)$ksd
    KSD_MALA_imq[i] <- imqKSD(samples, gradients)

    samples <- as.matrix(chains_ULA[[i]]$samples[(burnin+1):(its),])
    gradients <- chains_ULA[[i]]$der_loglike[(burnin+1):(its),] + chains_ULA[[i]]$der_logprior[(burnin+1)

    KSD_ULA_gaussian[i] <- KSD(samples, gradients)$ksd
    KSD_ULA_imq[i] <- imqKSD(samples, gradients)
}
boxplot(KSD_MALA_gaussian,KSD_ULA_gaussian)</pre>
```



boxplot(KSD\_MALA\_imq,KSD\_ULA\_imq)

