## ECE 447/547 (Semiconductor Devices) Southern Illinois University at Carbondale

## Homework 05

Q1.  $(E_g \text{ characterization: 25 points})$ 

Intrinsic carrier concentration,  $n_i$ , of a semiconductor sample is given by:

$$n_i = \sqrt{N_C N_V} \exp\left(-\frac{E_g}{2kT}\right).$$

The  $\log(n_i)$  vs.  $\frac{1000}{T}$  characteristic of

Si, Ge, and GaAs are shown in the Figure. Extract the bandgap for these materials.

Given: kT = 0.026 eV (at T = 300 K).



**Q2.** Silicon at T = 300 K is doped with arsenic atoms such that the concentration of electrons is  $n_0 = 5 \times 10^{17}$  cm<sup>-3</sup>. (a) Find  $E_c$  - $E_F$ . (b) Determine  $E_F$ - $E_v$ . (c) Calculate  $p_0$ . (d) Which carrier is the minority carrier? (e) Find  $E_F$ - $E_i$ .

**Q3.** Consider a sample of silicon doped at  $N_a = 0$  and  $N_d = 10^{15}$  cm<sup>-3</sup>. Using an suitable programming/graphing toolkit, plot the majority carrier concentration versus temperature over the range  $100 \le T \le 600 K$ .

**Q4.** A new semiconductor material is to be "designed." The semiconductor is to be p type and doped with  $5 \times 10^{15}$  cm<sup>-3</sup> acceptor atoms. Assume complete ionization and assume  $N_d = 0$ . The effective density of states functions are  $N_c = 1.2 \times 10^{19}$  cm<sup>-3</sup> and  $N_v = 1.8 \times 10^{19}$  cm<sup>-3</sup> at T = 300 K and vary as  $T^2$ . A special semiconductor device fabricated with this material requires that the hole concentration be no greater than  $5.08 \times 10^{15}$  cm<sup>-3</sup> at T = 350 K. What is the minimum bandgap energy required in this new material?