Quine – McCluskey Logic Optimization

William Van Orman Quine 1908 - 2000

Edward J. McCluskey 1929 - 2016

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

1/45

Quine – McCluskey Logic Optimization

$$A \cdot B + A \cdot \overline{B} = A \cdot (B + \overline{B}) = A$$

Institute of Computer Technology

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

- Literals: variables, uncomplemented and complemented
- Minterm, Maxterm
- Implicant: A product term for which f=1
- Prime implicant: An implicant, that cannot be reduced
- Essential prime implicant: A prime implicant, which is the only prime implicant that covers a specific minterm
- Cover: A set of implicants that account for all valuations for which f=1
- Cost: Cost(gate) = 1+ # of inputs

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

3/45

QM - Example 1

min term m	Α	В	Υ
m0	0	0	0
m1	0	1	0
m2	1	0	1
m3	1	1	1

Logic Expression	min-term	binary representation
$A \cdot \overline{B}$	m2	10
$A \cdot B$	m3	11

Logic Expression	min-term	binary representation
$A \cdot \overline{B}$	m2	10
$A \cdot B$	m3 🙎	11
A	(m2, m3)	1-

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

QM - Example 2

$$Y = A \cdot B \cdot C + A \cdot \overline{B} \cdot C$$

$$Y = m7 + m5$$

Logic Expression	min-term	binary representation
$A \cdot B \cdot C$	m7 🥋	1 1 1
$A \cdot \overline{B} \cdot C$	m5 ∠	1 0 1
$A \cdot C$	(m5,m7)	1-1

$$Y = A \cdot C$$

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

5/45

QM – Example 2

$$Y = A \cdot B \cdot C + A \cdot \overline{B} \cdot C$$

$$Y = A \cdot C$$

¬ (C			(C	
0	0		1	1	0	¬ B
0	0		1		0	В
¬ A		Α			¬ A	

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

QM - Example 3

 $Y = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D + \overline{A} \cdot B \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot B \cdot \overline{C} \cdot D$

Logic Term	min term	binary representation	Numbers of '1's
$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$	m0	0000	0
$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D$	m1	0001	1
$\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}$	m4	0100	1
$\overline{A} \cdot B \cdot \overline{C} \cdot D$	m5	0101	2

	¬ D		D		
¬ A<	1	1	1	1	> <
_	0	0	0	0	٦.
A	0	0	0	0	_
¬ A	0	0	0	0	С
	¬ B	В		¬ B	

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

7/45

QM – Example 3

Logic Term	min term	binary representation	Numbers of '1's
$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$	m0	0000 K K	0
$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D$	m1	0001 🗸) 🤘	1
$\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}$	m4	0100	1
$\overline{A} \cdot B \cdot \overline{C} \cdot D$	m5	0101 ZZ	2

Logic Term	min term	binary representation	Numbers of '1's
$\overline{A} \cdot \overline{B} \cdot \overline{C}$	(m0,m1)	000-	0
$\overline{A} \cdot \overline{C} \cdot \overline{D}$	(m0, m4)	0-00	0
$\overline{A} \cdot \overline{C} \cdot D$	(m1,m5)	0-01	1
$\overline{A} \cdot B \cdot \overline{C}$	(m4,m5)	010-	1

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

QM – Example 3

Logic Term	min term	binary representation	Numbers of '1's
$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$	m0	0000	0
$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D$	m1	0001 🗸) 🤘	1
$\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}$	m4	0100	1
$\overline{A} \cdot B \cdot \overline{C} \cdot D$	m5	0101	2

Logic Term	min term	binary representa	ation	Numbers of '1's
$\overline{A} \cdot \overline{B} \cdot \overline{C}$	(m0,m1)	000-		0
$\overline{A} \cdot \overline{C} \cdot \overline{D}$	(m0,m4)	0-00	K	0
$\overline{A} \cdot \overline{C} \cdot D$	(m1,m5)	0-01	2	1
$\overline{A} \cdot B \cdot \overline{C}$	(m4,m5)	010-		1
$\overline{A} \cdot \overline{C}$	(m0, m1, m4, m5)	0-0-		0
$\overline{A} \cdot \overline{C}$	(m0, m4, m1, m5)	0-0-		0

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

9/45

QM – Merging of Terms

Terms that can be combined must meet these criteria:

- They differ by **only one** bit
- They contain the same domain of variables

Institute of Computer Technology

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

- Terms with n number of 1's can only be combined with terms with n+1 number of 1's
 - Resulting terms will have n number of 1's
- Merged terms must have the '-' aligned (Same domain)

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

QM - Example 4

 $Y = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D + \overline{A} \cdot B \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot B \cdot \overline{C} \cdot D + \overline{A} \cdot B \cdot C \cdot D + A \cdot \overline{B} \cdot C \cdot D$

$$Y = m0 + m1 + m4 + m5 + m7 + m11$$

Logic Term	min term	binary representation	Numbers of '1's
$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$	m0	0000 🤨 🤘	0
$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D$	m1	0001	1
$\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}$	m4	0100	1
$\overline{A} \cdot B \cdot \overline{C} \cdot D$	m5	0101	2
$\overline{A} \cdot B \cdot C \cdot D$	m7	0111	3
$A \cdot \overline{B} \cdot C \cdot D$	m11	1011	3

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

QM – Example 4

Logic Term	min term	binary representation	Numbers of '1's
$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$	m0	0000 🤨 🤘	0
$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D$	m1	0001	1
$\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}$	m4	0100	1
$\overline{A} \cdot B \cdot \overline{C} \cdot D$	m5	0101 挨 🛂	2
$\overline{A} \cdot B \cdot C \cdot D$	m7	0111	3
$A \cdot \overline{B} \cdot C \cdot D^*$	m11*	1011	3
$\overline{A} \cdot \overline{B} \cdot \overline{C}$	(m0, m1)	000-	0
$\overline{A} \cdot \overline{C} \cdot \overline{D}$	(m0, m4)	0-00	0
$\overline{A} \cdot \overline{C} \cdot D$	(m1, m5)	0-01	1
$\overline{A} \cdot B \cdot \overline{C}$	(m4, m5)	010-	1
$\overline{A} \cdot B \cdot D$	(m5, m7)	01-1	2

Institute of Computer Technology

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

13/45

QM – Example 4

Logic Term	min term	binary representation	Numbers of '1's
$\overline{A} \cdot \overline{B} \cdot \overline{C}$	(m0, m1)	000-	0
$\overline{A} \cdot \overline{C} \cdot \overline{D}$	(m0, m4)	0-00	0
$\overline{A} \cdot \overline{C} \cdot D$	(m1, m5)	0-01	1
$\overline{A} \cdot B \cdot \overline{C}$	(m4, m5)	010-	1
$\overline{A} \cdot B \cdot D^*$	$(m5, m7)^*$	01-1	2
$\overline{A} \cdot \overline{C}$	(m0, m1, m4, m5)	0-0-	0
$\overline{A} \cdot \overline{C}$	(m0, m4, m1, m5)	0-0-	0

Institute of Computer Technology

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

QM - Example 4

	m0	m1	m4	m5	m7	m11
$A \cdot \overline{B} \cdot C \cdot D^*$						Χ
$\overline{A} \cdot B \cdot D^*$				Χ	Χ	
$\overline{A} \cdot \overline{C}$	Χ	Χ	Χ	Χ		

Optimized: $Y=\overline{A}\cdot\overline{C}+\overline{A}\cdot B\cdot D+A\cdot\overline{B}\cdot C\cdot D$

Original:

 $Y = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D + \overline{A} \cdot B \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot B \cdot \overline{C} \cdot D + \overline{A} \cdot B \cdot C \cdot D + A \cdot \overline{B} \cdot C \cdot D$

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

15/45

QM – Example 5: With Don't cares

	A	B	C	Y
d0	0	0	0	Χ
m1	0	0	1	0
m2	0	1	0	0
m3	0	1	1	0
m4	1	0	0	1
m5	1	0	1	1
d6	1	1	0	Χ
m7	1	1	1	1

¬ C				
X	1	1	0	¬ B
0	Х	1	0	В
¬ A	A		¬ A	

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

QM – Example 5: With Don't cares

Logic Term	min term	binary representation	Numbers of '1's
$\overline{A} \cdot \overline{B} \cdot \overline{C}$	d0	000 🦟	0
$A \cdot \overline{B} \cdot \overline{C}$	m4	100	1
$A \cdot \overline{B} \cdot C$	m5	101 2	2
$A \cdot B \cdot \overline{C}$	d6	110	2
$A \cdot B \cdot C$	m7	111	3
$\overline{B} \cdot \overline{C}$	(d0, m4)	-00	0
$A \cdot \overline{B}$	(m4, m5)	10-	1
$A \cdot \overline{C}$	(m4, d6)	1-0	1
$A \cdot C$	(m5, m7)	1-1	2
$A \cdot B$	(d6, m7)	11-	2

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

17/45

QM – Example 5: With Don't cares

Logic Term	min term	binary representation	Numbers of '1's
$\overline{B} \cdot \overline{C}^*$	$(d0, m4)^*$	-00	0
$A \cdot \overline{B}$	(m4, m5)	10-	1
$A \cdot \overline{C}$	(m4, d6)	1-0	1
$A \cdot C$	(m5, m7)	1-1	2
$A \cdot B$	(d6, m7)	11-	2
A	(m4, m5, d6, m7)	1–	1
A	(m4, d6, m5, m7)	1-	1

Institute of Computer Technology

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

QM – Example 5: With Don't cares

Table of essential terms:

	m4	m5	m7
$\overline{B} \cdot \overline{C}$	Χ		
A	Χ	Χ	Χ

- Only onset terms are included, not don't cares;
- m5 and m7 are covered only by the term A, which means that A is compulsory;
- All essential minterms are covered by A (m4,m5, d6,m7) so no other terms are needed;
- d6 is used, but not d0, because $B \wedge C(d0,m4)$ is not needed

Computer Technology

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

19/45

QM – Example 6: Multiple Solutions

		Α	В	С	D	Υ
	m0	0	0	0	0	0
	m1	0	0	0	1	0
	m2	0	0	1	0	0
	m3	0	0	1	1	0
	m4	0	1	0	0	1
	m5	0	1	0	1	0
	m6	0	1	1	0	0
	m7	0	1	1	1	0
	m8	1	0	0	0	1
	m9	1	0	0	1	x
	m10	1	0	1	0	1
	m11	1	0	1	1	1
	m12	1	1	0	0	1
	m13	1	1	0	1	0
	m14	1	1	1	0	x
T	m15	1	1	1	1	1

www.ict.tuwien.ac.at

QM – Example 6: Multiple Solutions

 $f_{A,B,C,D} = A'BC'D' + AB'C'D' + AB'CD' + AB'CD + ABC'D' + ABCL$

Number of 1s	Minterm	Binary Representation
1	m4	0100
I	m8	1000
	m9	1001
2	m10	1010
	m12	1100
2	m11	1011
3	m14	1110
4	m15	1111

Institute of Computer Technology

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

21/45

QM – Example 6: Multiple Solutions

Number of 1s	Minterm	0-Cube	Size 2 Implicants	Size 4 Implicants
	m4	0100	m(4,12) -100*	m(8,9,10,11) 10*
1	m8	1000	m(8,9) 100-	m(8,10,12,14) 10*
			m(8,10) 10-0	
			m(8,12) 1-00	
	m9	1001	m(9,11) 10-1	m(10,11,14,15) 1-1-*
	m10	1010	m(10,11) 101-	
2			m(10,14) 1-10	
	m12	1100	m(12,14) 11-0	
2	m11	1011	m(11,15) 1-11	
3	m14	1110	m(14,15) 111-	
4	m15	1111		

WIEN Computer Technology

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

QM – Example 6: Multiple Solutions

Prime Implicant Cover Table

	m4	m8	m10	m11	m12	m15
m(4,12)	Х				Х	
m(8,9,10,11)		Х	Х	Х		
m(8,10,12,14)		Х	Х		Х	
m(10,11,14,15)			Х	Х		Х

Rows: Prime Implicants Columns: On-Set terms

X: A term is covered by a prime implicant

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

23/45

Prime Implicant Cover Table

QM – Example 6: Multiple Solutions

Prime Implicant Cover Table

Find minimum set of rows that cover the remaining columns.

27/45

QM – Example 6: Multiple Solutions

Prime Implicant Cover Table

	m4	m8	m10	m11	m12	m15
m(4,12) *	Х				Х	
m(8,9,10,11)		Х	Х	Х		
m(8,10,12,14)		х	Х		Х	
m(10,11,14,15) *			Х	Х		Х

Optimized: $f_{A,B,C,D} = BC'D' + AB' + AC$

Original:

 $f_{A,B,C,D} = A'BC'D' + AB'C'D' + AB'CD' + AB'CD + ABC'D' + ABCD$

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

28/45

www.ict.tuwien.ac.at

QM – Example 7: Multiple Solutions

Α	В	С	Υ
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Institute of Computer Technology

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

29/45

QM - Example 7: Multiple Solutions

Institute of Computer Technology

Digitale Integrierte Schaltungen 384.086, Axel Jantsch

QM – Example 7: Multiple Solutions

Logic Term	min term	binary representation	Numbers of '1's
$\overline{A} \cdot \overline{B} \cdot \overline{C}$	m0	000	0
$\overline{A} \cdot B \cdot \overline{C}$	m2	010	1
$A \cdot \overline{B} \cdot \overline{C}$	m4	100	1
$\overline{A} \cdot B \cdot C$	m3	011	2
$A \cdot \overline{B} \cdot C$	m5	101	2
$A \cdot B \cdot C$	m7	111	3
$\overline{A} \cdot \overline{C}$	(m0, m2)	0-0	0
$\overline{B} \cdot \overline{C}$	(m0, m4)	-00	0
$\overline{A} \cdot B$	(m2, m3)	01-	1
$A \cdot \overline{B}$	(m4, m5)	10-	1
$B \cdot C$	(m3, m7)	-11	2
$A \cdot C$	(m5, m7)	1-1	2

QM – Example 7: Multiple Solutions

	m0	m2	m3	m4	m5	m7
$\overline{A} \cdot \overline{C}$	X	X				
$\overline{B} \cdot \overline{C}$	Χ			Χ		
$\overline{A} \cdot B$		Χ	Χ			
$A \cdot \overline{B}$				X	X	
$B \cdot C$			X			X
$A \cdot C$					Χ	X

Some possible solutions: $Y = \overline{B} \cdot \overline{C} + A \cdot C + \overline{A} \cdot B$

$$Y = \overline{A} \cdot \overline{C} + B \cdot C + A \cdot \overline{B}$$

$$Y = \overline{A} \cdot \overline{C} + \overline{A} \cdot B + A \cdot \overline{B} + A \cdot C$$

Institute of

Computer Technology

2/45

16

www.ict.tuwien.ac.at

Minimal Cover

- 1. Identification of Essential Primes
- Removing essential primes and covered minterms
- 3. a) Elimination of dominated rows
 - b) Elimination of dominating columns
- Selection of remaining primes for a minimal cover

33/45

Example 8

$$f = \overline{x_1 x_2 x_3 x_4} \\ + \overline{x_1} x_2 \overline{x_3} x_4 + x_1 \overline{x_2} x_3 \overline{x_4} \\ + x_1 \overline{x_2} x_3 \overline{x_4} + x_1 \overline{x_2} x_3 x_4 \\ + x_1 x_2 \overline{x_3} x_4 + x_1 x_2 \overline{x_3} x_4 \\ + x_1 x_2 x_3 x_4$$

x ₁	x ₂	X ₃	X ₄	f	
0	0	0	0	1	m0
0	0	0	1	0	m1
0	0	1	0	0	m2
0	0	1	1	0	m3
0	1	0	0	1	m4
0	1	0	1	0	m5
0	1	1	0	0	m6
0	1	1	1	0	m7
1	0	0	0	1	m8
1	0	0	1	0	m9
1	0	1	0	1	m10
1	0	1	1	1	m11
1	1	0	0	1	m12
1	1	0	1	1	m13
1	1	1	0	0	m14
1	1	1	1	1	m15

Institute of Computer Technology

.

Cover: $C = \{p_2, p_5, p_6\} = \{101x, 11x1, xx00\}$

$$f = x_1 \overline{x_2} x_3 + x_1 x_2 x_4 + \overline{x_3} \ \overline{x_4}$$

original function:

$$f = \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} + \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} + x_1 \overline{x_2$$

37/45

Example 9 with Don't Cares

$$f = \sum m(0,2,5,6,7,8,9,13) + D(1,12,15)$$

x ₁	x ₂	x ₃	X ₄	f	n.ac
0	0	0	0	1	m0
0	0	0	1	d	m1
0	0	1	0	1	m2
0	0	1	1	0	m3
0	1	0	0	0	m4
0	1	0	1	1	m5
0	1	1	0	1	m6
0	1	1	1	1	m7
1	0	0	0	1	m8
1	0	0	1	1	m9
1	0	1	0	0	m10
1	0	1	1	0	m11
1	1	0	0	d	m12
1	1	0	1	1	m13
1	1	1	0	0	m14
1	1	1	1	d	m15
					38/45

Institute of Computer Technology

$$f = \overline{x_1} x_3 \overline{x_4} + \overline{x_2} \overline{x_3} + x_2 x_4$$

41/45

Example 10

$$f = \sum m(0,3,10,15) + D(1,2,7,8,11,14)$$

Prime implicants P = $\{00xx, x0x0, x01x, xx11, 1x1x\}$ = $\{p_1, p_2, p_3, p_4, p_5\}$

x ₁	x ₂	x ₃	X ₄	f	n.ac
0	0	0	0	1	m0
0	0	0	1	d	m1
0	0	1	0	d	m2
0	0	1	1	1	m3
0	1	0	0	0	m4
0	1	0	1	0	m5
0	1	1	0	0	m6
0	1	1	1	d	m7
1	0	0	0	d	m8
1	0	0	1	0	m9
1	0	1	0	1	m10
1	0	1	1	d	m11
1	1	0	0	0	m12
1	1	0	1	0	m13
1	1	1	0	d	m14
1	1	1	1	1	m15

Institute of Computer Technology

Prime implicant	0	Min 3	term 10	15
$p_1 = 0 \ 0 \ x \ x$	√	✓		
$P_2 = \mathbf{x} \ 0 \ \mathbf{x} \ 0$	✓		\checkmark	
$p_3 = x \ 0 \ 1 \ x$		\checkmark	\checkmark	
$P_4 = \mathbf{x} \ \mathbf{x} \ 1 \ 1$		\checkmark		\checkmark
$p_5 = 1 \times 1 \times$			\checkmark	\checkmark

Initial implicant cover table

No essential primes; No dominating rows; No dominating columns;

Branching	with	P_3
-----------	------	-------

Prime implicant	Minterm 0 15
p_1	✓
p_2	✓
p_4	✓
p_5	✓

After including p_3

Prime		Min	term	
implicant	0	3	10	15
p_1	V	V		
p_2	✓		✓	
p_4		\checkmark		✓
p_5			\checkmark	✓

After excluding p_3

43/45

Alternatives:

- $A_1 = \{P_1, P_3, P_4\}$; cost = 3+3+3+4 = 13
- $A_2 = \{P_1, P_3, P_5\}$; cost = 3+3+3+4 = 13
- $A_3 = \{P_2, P_3, P_4\}$; cost = 3+3+3+4 = 13
- $A_4 = \{P_2, P_3, P_5\}$; cost = 3+3+3+4 = 13
- $A_5 = \{P_1, P_5\}$; cost = 3+3+3 = 9
- $A_6 = \{P_2, P_4\}$; cost = 3+3+3 = 9

We choose the cover with minimal cost

Summary of Quine-McCluskey

- 1. Start with a list of minterms for which f=1 or f=x;
- 2. Generate prime implicants by pairwise comparison of the cubes:
- 3. Derive a cover table;
- 4. Include the essential prime implicants;
- 5. Use the concept of row and column dominance;
- 6. Repeat steps 4 and 5 until table is empty or no further reduction is possible;
- If table is not empty use a branching approach to determine the remaining prime implicants at minimal cost.

