第3章 概率密度函数估计

Outline:

- >引言
- **)最大似然估计**
 - √最大似然估计基本原理
 - ✓最大似然估计的求解
 - ✓正态分布的最大似然估计
- > Bayest古计与Bayes学习
 - ✓ Bayest古 汁
 - ✓ Bayes学习
 - ✓ 正态分布下的Bayes1古计
- 》概率密度估计的非参数方法
 - ✓非参数估计基本原理及直方图方法
 - ✓Parzen窗法
 - √ k_N近邻估计方法

- ightharpoonup 贝叶斯决策: 已知 $P(\omega_i)$ 和 $p(\mathbf{x} \mid \omega_i)$,对未知样本分类 (设计分类器)
- ▶实际问题: 已知一定数目的样本,对未知样本 分类(设计分类器)

- ▶怎么办? 一种很自然的想法:
 - 首先根据样本估计 $P(\omega_i)$ 和 $p(x | \omega_i)$, 记 $\hat{P}(\omega_i)$ 和 $\hat{p}(x | \omega_i)$
 - 然后用估计的概率密度设计贝叶斯分类器。
 - -----(基于样本的)两步贝叶斯决策

- > 为此,需 $\hat{p}(\mathbf{x} \mid \omega_i) \xrightarrow{N \to \infty} p(\mathbf{x} \mid \omega_i)$ $\hat{P}(\omega_i) \xrightarrow{N \to \infty} P(\omega_i)$

- ✓ 训练样本的分布能代表样本的真实分布,所谓i.i.d条件(独立同分布)
- ✓ 有充分的训练样本
- > 如何利用样本集估计概率密度函数?
- > 估计概率密度的两种基本方法:
 - ✓ 参数方法 (parametric methods)
 - ✓ 非参数方法 (nonparametric methods)

基本概念

- ➤ 参数估计(parametric estimation):
 - ✓ 已知概率密度函数的形式,只是其中几个参数未知,目标是根据样 本估计这些参数的值。
- ▶ 几个名词:
 - ✓ 统计量(statistics): 样本的某种函数,用来作为对某参数的估计
 - ✓ 参数空间(parametric space): 待估计参数的取值空间 $\theta \in \Theta$
 - ✓ 估计量(estimation): $\hat{\theta}(x_1, x_2, \dots, x_N)$

▶参数估计

- ✓ 在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性.
- ✓"似然性"和"概率"意思相近,但在统计学中,两者又有明确的区分。"概率"用于在已知一些参数的情况下,预测接下来的观测所得到的结果;而"似然性"在是用于在已知某些观测所得到的结果时,对有关事物性质的参数进行估计。

➤ 概率 (probability)和似然 (likelihood),都是指可能性,都可以被称为概率,但在统计应用中有所区别。 概率是给定某一参数值,求某一结果的可能性的函数。

例如,抛一枚匀质硬币,抛**10**次,**6**次正面向上的可能性 多大?

解读: "匀质硬币",表明参数值是0.5, "抛10次,六次正面向上"这是一个结果,概率(probability)是求这一结果的可能性。

似然是给定某一结果, 求某一参数值的可能性的函数。

例如,抛一枚硬币,抛**10**次,结果是**6**次正面向上,其是 匀质的可能性多大?

解读:"抛10次,结果是6次正面向上",这是一个给定的结果,问"匀质"的可能性,即求参数值=0.5的可能性。

Outline:

- ≥引言
- **最大似然估计**
 - √最大似然估计基本原理及求解
 - √正态分布的最大似然估计
- > Bayes话计与Bayes学习
 - ✓ Bayes1古汁
 - ✓ Bayes学习
 - ✓正态分布下的Bayes估计
- **一概率密度估计的非参数方法**
 - √非参数估计基本原理及直方图方法
 - ✓Parzen窗法
 - ✓ k_N近邻估计方法

最大似然估计(Maximum Likelihood Estimation)

假设条件:

- ✓① 参数 θ 是确定的未知量,(不是随机量)
- ✓② 各类样本集 X_i , $i = 1, \dots, c$ 中的样本都是从密度为 $p(\mathbf{x} \mid \omega_i)$ 的总体中独立抽取出来的,(独立同分布,i.i.d.)
- ✓③ $p(x \mid \omega_i)$ 具有某种确定的函数形式,只是其中参数 θ 未知
- ✓ ④ 各类样本只包含本类分布的信息

其中,参数 θ 通常是向量,比如一维正态分布 $N(\mu_i, \sigma_1^2)$,未知参数可能是 $\theta_i = \begin{bmatrix} \mu_i \\ \sigma_i^2 \end{bmatrix}$,此时 $p(\mathbf{x} \mid \omega_i)$ 可写成 $p(\mathbf{x} \mid \omega_i, \theta_i)$ 或 $p(\mathbf{x} \mid \theta_i)$ 。

最大似然估计

某一类样本集
$$K = \{x_1, x_2, ..., x_N\}$$

似然函数

$$l(\theta) = p(K \mid \theta) = p(x_1, x_2, ..., x_N \mid \theta) = \prod_{k=1}^{N} p(x_k \mid \theta)$$

对数似然函数
$$H(\theta) = \ln l(\theta) = \sum_{k=1}^{N} \ln p(x_k \mid \theta)$$

$$\hat{\theta} = \arg \max l(\theta) \qquad \nabla_{\theta} H(\theta) = 0$$

$$= \arg \max \sum_{k=1}^{N} \ln p(x_k \mid \theta)$$

最大似然估计

求得的满足方程的参数估计值有可能有多个,有的是局部最优解,需要寻找到全局最优

解!

具有局部最优解的最大似然估计

最大似然估计

▶讨论:

- ✓如果连续、可微,存在最大值,且上述必要条件方程组有唯一解,则其解就是最大似然估计量。(比如多元正态分布);
- ✓ 如果必要条件有多解,则需从中求似然函数最大者
- ✓ 若不满足条件,则无一般性方法,用何方法? (如均匀分布)

Outline:

- 言尼《
- > 最大似然估计
 - √最大似然估计基本原理及求解
 - √正态分布的最大似然估计
- > Bayest古计与Bayes学习
 - ✓ Bayes1古汁
 - ✓ Bayes学习
 - ✓正态分布下的Bayes估计
- 》概率密度估计的非参数方法
 - √非参数估计基本原理及直方图方法
 - ✓Parzen窗法
 - ✓kN近邻估计方法

多元正态分布 情况一: Σ已知,均值向量µ未知

$$p(x_k \mid \theta) = \frac{1}{(2\pi)^{d/2} \left| \sum_{k=1}^{d/2} \left| \sum_{k=1$$

对数似然函数为:

$$H(\theta) = \sum_{k=1}^{N} \ln p(x_k \mid \theta^i) = \sum_{k=1}^{N} -\frac{1}{2} \ln(2\pi)^d \cdot |\Sigma| - \frac{1}{2} (x_k - \mu)^T \sum_{k=1}^{N} (x_k - \mu)^T = \sum_{k=1}^{N} \frac{1}{2} \ln(2\pi)^d \cdot |\Sigma| = \frac{1}{2} \ln(2\pi)^d \cdot$$

$$\left. \frac{dH(\theta)}{d\mu} \right|_{\mu = \hat{\mu}} = 0$$

$$\hat{\mu} = \frac{1}{N} \sum_{k=1}^{N} x_k$$

即均值向量的最优估计值是 训练样本集中所有样本的均值

>情况二: Σ、μ均未知, 一维情形

$$\theta = [\theta_1, \theta_2]^T, \quad \theta_1 = \mu, \quad \theta_2 = \sigma^2$$

$$p(x \mid \theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2\right]$$

样本集
$$X = \{x_1, x_2, \dots, x_N\}$$

似然函数
$$l(x) = p(X \mid \theta) = \prod_{k=1}^{N} p(x_k \mid \theta)$$

对数似然函数
$$H(\theta) = \ln l(x) = \sum_{k=1}^{N} \ln P(x_k \mid \theta)$$

最大似然估计量 $\hat{\theta}$ 满足方程:

$$\nabla_{\theta} H(\theta) = \sum_{k=1}^{N} \nabla_{\theta} \ln p(x_k \mid \theta) = 0$$

而

$$\ln p(x_k \mid \theta) = -\frac{1}{2} \ln 2\pi \theta_2 - \frac{1}{2\theta_2} (x_k - \theta_1)^2$$

$$\nabla_{\theta} \ln p(x_k \mid \theta) = \begin{bmatrix} \frac{1}{\theta_2} (x_k - \theta_1) \\ -\frac{1}{2\theta_2} + \frac{1}{2\theta_2^2} (x_k - \theta_1)^2 \end{bmatrix}$$

得方程组

$$\begin{cases} \sum_{k=1}^{N} \frac{1}{\hat{\theta}_{2}} (x_{k} - \hat{\theta}_{1}) = 0 \\ -\sum_{k=1}^{N} \frac{1}{\hat{\theta}_{2}} + \sum_{k=1}^{N} \frac{(x_{k} - \hat{\theta}_{1})^{2}}{\theta_{2}^{2} \quad 15} = 0 \end{cases}$$

解得:

$$\hat{\mu} = \hat{\theta}_1 = \frac{1}{N} \sum_{k=1}^{N} x_k$$

$$\hat{\sigma}^2 = \hat{\theta}_2 = \frac{1}{N} \sum_{k=1}^{N} (x_k - \hat{\mu})^2$$

均匀分布示例

ightharpoonup 已知样本集 $K = \{x_1, x_2, ..., x_N\}$, x 在区间 $[\theta_1, \theta_2]$ 服从均匀分布,请用最大似然估计求概率分布。

$$p(x \mid \theta) = \begin{cases} \frac{1}{\theta_2 - \theta_1} & \theta_1 < x < \theta_2 \\ 0 & \text{otherwise} \end{cases}$$

$$l(\theta) = \begin{cases} \frac{1}{(\theta_2 - \theta_1)^N} & \theta_1 < x < \theta_2 \\ 0 & \text{otherwise} \end{cases}$$

$$\boldsymbol{H}(\theta) = -\boldsymbol{N} \cdot \ln(\theta_2 - \theta_1)$$

均匀分布示例

$$\frac{\partial \boldsymbol{H}}{\partial \theta_1} = \boldsymbol{N} \cdot \frac{1}{\theta_2 - \theta_1} \qquad \frac{\partial \boldsymbol{H}}{\partial \theta_2} = \boldsymbol{N} \cdot \frac{-1}{\theta_2 - \theta_1}$$

$$x' = \min\{x_1, \dots, x_N\}$$
$$x'' = \max\{x_1, \dots, x_N\}$$

$$\hat{\theta}_1 = \mathbf{x'} \qquad \hat{\theta}_2 = \mathbf{x''}$$

Outline:

- 言尼《
- > 最大似然估计
 - √最大似然估计基本原理及求解
 - √正态分布的最大似然估计
- > Bayest古计与Bayes学习
 - ✓ Bayes1古汁
 - ✓ Bayes学习
 - ✓正态分布下的Bayes估计
- **一概率密度估计的非参数方法**
 - √非参数估计基本原理及直方图方法
 - ✓kN近邻估计方法
 - ✓Parzen窗法

最大似然估计:

把待估计的参数当作未知但固定的量,要做的是根据 观测数据估计这个量的取值;

贝叶斯估计:

把待估计的参数本身也看作是随机变量,要做的是根据观测数据对参数的分布进行估计。

某一类样本集 $K = \{x_1, x_2, ..., x_N\}$

贝叶斯估计:

把未知参数 Θ 作为具有某种先验分布密度 $P(\Theta)$ 的随机变量,通过对样本的观察,使先验分布转化为后验分布 $P(\Theta | K)$,再修正原先对参数的估计。

从决策的角度研究估计问题:

贝叶斯决策:

未知参数类别 ω ,先验分布 $P(\omega)$,通过对样本的观察,使先验分布转化为后验分布 $p(\omega|x)$

损失函数: 把 θ 估计为 $\hat{\theta}$ 所造成的损失, 记为 $\lambda(\hat{\theta},\theta)$

期望风险: $R = \int_{F^d} \int_{\Theta} \lambda(\hat{\theta}, \theta) p(\mathbf{x}, \theta) d\theta d\mathbf{x}$

$$= \int_{\mathbb{R}^d} \int_{\mathcal{Q}} \lambda(\hat{\theta}, \theta) p(\theta \mid \mathbf{x}) p(\mathbf{x}) d\theta d\mathbf{x}$$

$$= \int_{\mathbb{R}^d} R(\hat{\theta} \mid \mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

其中, $x \in E^d$, $\theta \in \Theta$

条件风险: $R(\hat{\theta} \mid x) = \int_{\Theta} \lambda(\hat{\theta}, \theta) p(\theta \mid x) d\theta$ $x \in E^d$

给定条件下,估计量的期望损失

最小化期望风险 \Rightarrow 最小化条件风险 (对所有可能的x)

有限样本集下,最小化经验风险:

$$R(\hat{\theta} \mid X) = \int_{\Theta} \lambda(\hat{\theta}, \theta) p(\theta \mid X) d\theta$$

贝叶斯估计量: (在样本集 χ 下)使条件风险(经验风险)最小的估计量 $\hat{\theta}$

损失: 离散情况: 损失函数表(决策表); 连续情况: 损失函数

常用的损失函数: $\lambda(\hat{\theta}, \theta) = (\theta - \hat{\theta})^2$ (平方误差损失函数)

定理3.1

如果采用平方误差损失函数,则 θ 的贝叶斯估计量 $\hat{\theta}$ 是在给定x时 θ 的条件期望,即 $\hat{\theta} = E[\theta \mid x] = \int_{\Omega} \theta p(\theta \mid x) d\theta$

同理可得,在给定样本集X下, θ 的贝叶斯估计是:

$$\hat{\theta} = E[\theta \mid \mathcal{X}] = \int_{\Theta} \theta p(\theta \mid \mathcal{X}) d\theta$$

求贝叶斯估计的方法: (平方误差损失下)

- (1) 确定 θ 的先验分布 $p(\theta)$
- (2) 求样本集的联合分布

$$p(X \mid \theta) = \prod_{i=1}^{N} p(\mathbf{x}_i \mid \theta)$$

(3) 求 θ 的后验概率分布

$$p(\theta \mid X) = \frac{p(X \mid \theta)p(\theta)}{\int_{\Theta} p(X \mid \theta)p(\theta)d\theta}$$

(4) 求 θ 的贝叶斯估计量

$$\hat{\theta} = E[\theta \mid X] = \int_{\Theta} \theta p(\theta \mid X) d\theta$$

也可直接推断总体分布

$$p(\mathbf{x} \mid \mathbf{X}) = \int_{\Theta} p(\mathbf{x} \mid \theta) p(\theta \mid \mathbf{X}) d\theta$$

其中,
$$p(\theta \mid X) = \frac{p(X \mid \theta)p(\theta)}{\int_{\Theta} p(X \mid \theta)p(\theta)d\theta}$$

理解:参数 θ 是随机变量,它有一定的分布,而要估计的概率密度 p(x|X)就是所有可能的参数取值下的样本概率密度的加权平均,而这个加权就是在观测样本下估计出的参数 θ 的后验概率。

$$p(\mathbf{x} \mid \mathbf{X}) = \int_{\Theta} p(\mathbf{x} \mid \theta) p(\theta \mid \mathbf{X}) d\theta$$

$$p(\theta \mid X) \sim p(X \mid \theta)p(\theta)$$

设 θ 的最大似然估计为 $\hat{\theta}_l$,则在 $\theta = \hat{\theta}_l$ 处 $p(\theta \mid X)$ 很可能有一尖峰,若如此,且先验概率 $p(\theta)$ 在 $\hat{\theta}_l$ 处非零且在附近变化不大,则

$$p(\mathbf{x} \mid \mathbf{X}) \doteq p(\mathbf{x} \mid \hat{\theta}_l)$$
,

即贝叶斯估计结果与最大似然估计结果近似相等。

如 $p(\theta \mid X)$ 的峰值不尖锐,则不能用最大似然估计来代替贝叶斯估计。

Outline:

- 言尼《
- > 最大似然估计
 - ✓最大似然估计基本原理及求解
 - √正态分布的最大似然估计
- > Bayes估计与Bayes学习
 - ✓ Bayes1古计
 - ✓ Bayes学习
 - ✓正态分布下的Bayes估计
- **一概率密度估计的非参数方法**
 - √非参数估计基本原理及直方图方法
 - ✓Parzen窗法
 - ✓kN近邻估计方法

Bayes学习

考虑估计的收敛性:记学习样本个数N,样本集 $X = \{x_1, x_2, \dots, x_N\}$

$$p(\boldsymbol{X}^{N} \mid \boldsymbol{\theta}) = p(\boldsymbol{x}_{N} \mid \boldsymbol{\theta}) p(\boldsymbol{X}^{N-1} \mid \boldsymbol{\theta})$$

因此有递推后验概率公式:

$$p(\theta \mid \mathbf{X}^{N}) = \frac{p(\mathbf{x}_{N} \mid \theta) p(\theta \mid \mathbf{X}^{N-1})}{\int p(\mathbf{x}_{N} \mid \theta) p(\theta \mid \mathbf{X}^{N-1}) d\theta}$$

设
$$p(\theta \mid X^{\circ}) = p(\theta)$$
,

则随着样本数增多,可得后验概率密度函数序列:

$$p(\theta)$$
, $p(\theta \mid \mathbf{x}_1)$, $p(\theta \mid \mathbf{x}_1, \mathbf{x}_2)$,...

—— 参数估计的递推贝叶斯方法

如果此序列收敛于以真实参数值为中心的 δ 函数,则把这一性质称作贝叶斯学习。

$$p(\mathbf{x} \mid \mathbf{X}^{N \to \infty}) = p(\mathbf{x} \mid \hat{\theta} = \theta) = p(\mathbf{x})$$
.

Bayes学习

▶后验分布理解:

✓ 后验分布的意义在于综合了关于 θ 的先验信息 (反映在 在先验分布p(θ)中) 和样本X关于 θ 的信息 (反映在 样本分布p(X | θ)中)。先验分布概括了在试验前对 θ 的认识,而得到样本观测值 X之后,对 θ 的认识有了深 化,这集中反映在后验分布中。Bayes公式反映了先验 分布到后验分布的转化,即Bayes自己所说的"归纳推理"的统计方法。

Bayes统计推断的原则

▶样本X的作用

✓ 对Bayes统计而言,样本X的唯一作用在于对θ的认识 由先验分布转化成后验分布。

▶ Bayes统计推断的原则

✓ 对参数θ所作的任何推断(估计、检验等)必须基于且 只能基于θ的后验分布。

> 对原则的理解

✓一经由样本X算出了θ的后验分布,就设想我们除了 这一后验分布外,其余的东西(样本值、样本分布、 先验分布)全忘记了。这时,对θ的推断的唯一凭证 就是这一后验分布。

Outline:

- 言尼《
- > 最大似然估计
 - √最大似然估计基本原理及求解
 - √正态分布的最大似然估计
- > Bayes估计与Bayes学习
 - ✓ Bayes1古计
 - ✓ Bayes学习
 - ✓正态分布下的Bayes估计
- 〉概率密度估计的非参数方法
 - √非参数估计基本原理及直方图方法
 - ✓Parzen窗法
 - ✓kN近邻估计方法

正态分布的Bayes估计

一维, $p(x|\mu) \sim N(\mu, \sigma^2)$, σ^2 已知,估计 μ 。 假设先验分布 $p(\mu) \sim N(\mu_0, \sigma_0^2)$

结论:
$$\hat{\mu} = \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \boldsymbol{m}_N + \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 \qquad \qquad 其中 \qquad \boldsymbol{m}_N = \frac{1}{N} \sum_{i=1}^N \ \boldsymbol{x}_i$$

----- 样本信息与先验知识的线性组合

讨论:

$$N=0$$
时, $\hat{\mu}=\mu_0$; $N\to\infty$ 时, $\hat{\mu}\to m_N$ 若 $\sigma_0^2=0$, 则 $\hat{\mu}\equiv\mu_0$ (先验知识可靠,样本不起作用) 若 $\sigma_0>>\sigma$,则 $\hat{\mu}=m_N$ (先验知识十分不确定,完全依靠样本信息)

正态分布的Bayes估计

 μ 的密度:

$$p(\mu \mid X^N) = \frac{1}{\sqrt{2\pi}\sigma_N} \exp\left\{-\frac{1}{2} \left(\frac{\mu - \mu_N}{\sigma_N}\right)^2\right\} \sim N(\mu_N, \sigma_N^2)$$

$$\mu_N = \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} m_N + \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0$$

$$\sigma_N^2 = \frac{\sigma_0^2 \sigma^2}{N\sigma_0^2 + \sigma^2}$$

当
$$N \to \infty$$
时, $\sigma_N^2 \to 0$, $p(\mu \mid X) \to \delta$ 函数。

正态分布的Bayes估计

$$p(\boldsymbol{x} | \boldsymbol{X}^{N}) = \int p(\mu | \boldsymbol{X}^{N}) p(\boldsymbol{x} | \mu) d\mu$$

$$p(\mathbf{x} \mid \mathbf{X}) = \frac{1}{\sqrt{2\pi} \sqrt{\sigma^2 + \sigma_N^2}} \exp \left\{ -\frac{1}{2} \left(\frac{\mathbf{x} - \mu_N}{\sqrt{\sigma^2 + \sigma_N^2}} \right)^2 \right\} \sim N(\mu_N, \sigma^2 + \sigma_N^2)$$

均值 μ_N ,方差由 σ^2 增为 $\sigma^2 + \sigma_N^2$ ----- 由于用了 μ 的估计值而不确定性增加

Maximal Likelihood vs. Bayesian

- ➤ ML and Bayesian estimations are asymptotically equivalent and "consistent". They yield the same class-conditional densities when the size of the training data grows to infinity.
- > ML is typically computationally easier: in ML we need to do (multidimensional) differentiation and in Bayesian (multidimensional) integration.
- > ML is often easier to interpret: it returns the single best model (parameter) whereas Bayesian gives a weighted average of models.
- > But for a finite training data (and given a reliable prior)
 Bayesian is more accurate (uses more of the information).

Outline:

- 言尼《
- > 最大似然估计
 - √最大似然估计基本原理及求解
 - √正态分布的最大似然估计
- > Bayes估计与Bayes学习
 - ✓ Bayes1古计
 - ✓ Bayes学习
 - ✓正态分布下的Bayes估计
- 》概率密度估计的非参数方法
 - √非参数估计基本原理及直方图方法
 - ✓Parzen窗法
 - ✓kN近邻估计方法

概率密度估计的非参数方法

参数估计 parametric estimation 非参数估计 nonparametric estimation

给定i. i. d. 样本集: $X = \{x_1, x_2, \dots, x_l\}$

估计概率分布: $p(\mathbf{x})$

概率密度估计

▶非参数概率密度估计的核心思路:

一个向量x落在区域R中的概率P为:

$$P = \int_{R} p(\mathbf{x}) d\mathbf{x}$$

因此,可以通过统计概率P来估计概率密度函数p(x)

概率密度估计的非参数方法

直方图方法

非参数概率密度估计的最简单方法

- (1) 把 x 的每个分量分成 k 个等间隔小 窗,(若 $x \in E^d$,则形成 k^d 个小舱)
- (2) 统计落入各个小舱内的样本数 q_i

(3) 相应小舱内的概率密度为 $q_i/(NV)$ (N:样本总数, V: 小舱体积)

问题:已知样本集 $X = \{x_1, \dots, x_N\}$,其中样本均从服从p(x)的总体中独立抽取,求估计 $\hat{p}(x)$,近似p(x)。

考虑随机向量 x 落入区域 \Re 的概率 $P_R = \int_{\Re} p(x) dx$

X 中有k 个样本落入区域 \Re 的概率 $P_k = C_N^k P_{\Re}^k (1 - P_R)^{N-k}$

k 的期望值 $E[k] = NP_R$

k 的众数(概率最大的取值)为 $m = [(N+1)P_R]$

设 p(x) 连续,且 \Re 足够小, \Re 的体积为 V ,则有

$$P_R = \int_R p(x)dx = p(x)V$$
 $x \in \Re$

因此

$$\hat{p}(x) = \frac{k}{NV}$$

其中,

N: 样本总数,

V: 包含x的一个小区域的体积

k: 落在此区域中的样本数

Yun Tian Bei $\hat{p}(x)$ 为对。p(x) 在小区域内的平均值的估计。

- ➤ 当样本数量N固定时,体积V的大小对估计的效果影响很大。
 - ✓ 过大则平滑过多,不够精确;
 - ✓ 过小则可能导致在此区域内无样本点, k=0。

▶此方法的有效性取决于样本数量的多少,以及区域体积选择的合适。

➤ 收敛性问题: 样本数量N无穷大时, 估计的概率函数是否收敛到真实值?

$$\lim_{N\to\infty}\hat{p}_N\left(\mathbf{x}\right) = p\left(\mathbf{x}\right)$$

实际中, $\hat{p}(\mathbf{x})$ 越精确, 要求: $R \to 0$

实际中,N是有限的:

当 $R \to 0$ 时,绝大部分区间没有样本: $\hat{p}(\mathbf{x}) = 0$

如果侥幸存在一个样本,则: $\hat{p}(\mathbf{x}) = \infty$

▶理论结果:

设有一系列包含x 的区域 R_1 , R_2 , ..., R_n ,..., 对 R_1 采用1个样本进行估计,对 R_2 用2 个,..., R_n 包含 k_n 个样本。 V_n 为 R_n 的体积。

$$p_n\left(\mathbf{x}\right) = \frac{k_n/N}{V_n}$$

为p(x)的第n次估计

ightharpoonup 如果要求 $p_n(\mathbf{x})$ 能够收敛到 $p(\mathbf{x})$,那么必须满足:

$$\lim_{n\to\infty} V_n = 0$$

$$\lim_{n\to\infty} k_n = \infty$$

$$\lim_{n\to\infty} k_n / n = 0$$

随着样本数的增加:

小舱体积应尽可能小;

保证小舱内有充分多的样本;

每个小舱内的样本数又必须是总样本数中很少的一部分。

估计某一点处的概率密度函数有两种最基本的方法。这里,我们假设这个点位于图中所示的正方形的中心。第一行表示的方法是从一个以目标样本点为中心的较大的区域开始,根据某个函数,例如 $V_n=1/\sqrt{n}$,逐渐的缩小区域面积。第二种方法如第二行所示。这一方法缩小区域面积的方式是依赖于样本点的。例如,令区域必须包括 $k_n=\sqrt{n}$ 个样本点。这两种情况中的序列都是随机变量,它们一般会收敛,这样就能估计出测试样本点处的真正的概率密度函数

两种选择策略:

1. 选择 V_n , (比如 $V_n = \frac{1}{\sqrt{n}}$),同时对 k_n 和 $\frac{k_n}{n}$ 加限制以保证收敛

—— Parzen 窗法

使区域序列Vn以n的某个函数的关系不断缩小

2. 选择 k_n ,(比如 $k_n = \sqrt{n}$), V_n 为正好包含 x 的 k_n 个近邻 —— k_N 近邻估计 让 k_n 为n的某个函数

Outline:

- 言尼《
- > 最大似然估计
 - √最大似然估计基本原理及求解
 - √正态分布的最大似然估计
- > Bayes估计与Bayes学习
 - ✓ Bayes1古计
 - ✓ Bayes学习
 - ✓正态分布下的Bayes估计
- 》概率密度估计的非参数方法
 - √非参数估计基本原理及直方图方法
 - ✓Parzen窗法
 - ✓kN近邻估计方法

Parzen窗估计

▶ 定义窗函数:假设R_n是一个d维的超立方体。令h_n为超立方体一条边的长度,则体积:

$$V_n = h_n^d$$

立方体窗函数为:

$$\varphi(\mathbf{u}) = \begin{cases} 1 & |u_j| \le \frac{1}{2}, j = 1, \dots, d \\ 0 & otherwise \end{cases}$$

中心在原点的单位超立方体:

Parzen窗估计

落入以X为中心的立方体区域的样本数为:

$$k_n = \sum_{i=1}^n \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

X处的密度估计为:

$$\hat{p}_n(\mathbf{x}) = \frac{k_n/n}{Vn} = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

可以验证:
$$\hat{p}_n(\mathbf{x}) \ge 0$$
 $\int \hat{p}_n(\mathbf{x}) d\mathbf{x} = 1$

Parzen 窗法

- \rightarrow 估计量 $\hat{p}_n(x)$ 为密度函数的条件
- ✓非负性显然

$$\hat{p}_n(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{x - x_i}{h_n}\right)$$

窗函数的要求

▶ Parzen窗估计过程是一个内插过程,样本 x_i距离x越近,对概率密度估计的贡献越

大,越远贡献越小。

>只要满足如下条件,就可以作为窗函数:

$$\varphi(\mathbf{u}) \ge 0$$

$$\int \varphi(\mathbf{u}) d\mathbf{u} = 1$$

窗函数的形式

方窗函数

$$\varphi(u) = \begin{cases} 1, |u| \leq \frac{1}{2} & \varphi(u) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{1}{2}u^2\} & \varphi(u) = \exp\{-|u|\} \\ 0. \sharp \text{ the } \end{cases}$$

正态窗函数

$$\varphi(u) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}u^2\right\}$$

指数窗函数

$$\varphi(u) = \exp\{-\mid u\mid\}$$

其中:
$$u = \frac{\mathbf{X} - \mathbf{X}_i}{h_n}$$

窗口宽度的影响

▶ Parzen估计的性能与窗宽参数h_n紧密相关

- ✓当h_n较大时,x和中心x_i距离大小的影响程度变弱,估计的p(x)较为平滑,分辨率较差。
- ✓当h_n较小时,x和中心x_i距离大小的影响程度变强,估计的p(x)较为尖锐,分辨率较好。

窗口宽度的影响

5个样本的Parzen窗估计:

密度估计值

例:对于一个二类(ω_1 , ω_2)识别问题,随机抽取 ω_1 类的6个样本X=(x_1 , x_2 ,, x_6)

$$\omega_1 = (x_1, x_2, \dots, x_6)$$

= $(x_1 = 3.2, x_2 = 3.6, x_3 = 3, x_4 = 6, x_5 = 2.5, x_6 = 1.1)$

估计P(x|ω₁)即P_N(x)

解: 选正态窗函数 $\varphi(u) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}u^2)$

$$\therefore \phi(u) = \phi(\frac{|x - x_i|}{h_N}) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{|x - x_i|}{h_N}\right)^2\right]$$

$$\therefore$$
 x是一维的 \therefore $V_N = h_N = \frac{h_1}{\sqrt{N}}$,其中选 $h_1 = 0.5\sqrt{6}$, N

$$\therefore V_N = h_N = \frac{0.5\sqrt{6}}{\sqrt{6}} = 0.5 \qquad \text{ft.} \qquad \hat{p}_N(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^N \frac{1}{V_N} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_N}\right)$$

上式用图形表示是6个分别以3.2, 3.6, 3, 6, 2.5, 1.1为中心 的正态曲线,而P_N(x)则是这些曲线之和。

由图看出,每个 样本对估计的贡 献与样本间的距 离有关,样本越 多,P_N(x)越准 确。

例:设待估计的p(x)是个均值为0,方差为1的正态密度函数。若随机地抽取X样本中的1个、16个、256个作为学习样本 x_i ,试用窗口法估计 $P_N(x)$ 。

解:设窗口函数为正态的, $\sigma=1$, $\mu=0$

$$\varphi(\frac{|x-x_i|}{h_N}) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{|x-x_i|}{h_N}\right)^2\right]$$

$$h_{N} = \frac{h_{1}}{\sqrt{N}} \qquad V_{N} = h_{N}$$

h_N:窗长度,N为样本数,h1为选定可调节的参数。

$$P_N(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{V_N} \varphi(\frac{|x - x_i|}{h_N}) = \frac{1}{h_1 \sqrt{N}} \sum_{i=1}^{N} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{|x - x_i|}{h_1} \sqrt{N}\right)^2\right]$$

由图看出, P_N(x)随N, h₁的变化情况

- ①当N=1时,P_N(x)是一个以第一个样本为中心的正态曲线,与窗函数差不多。
- ②当N=16及N=256时

 h_1 =0.25 曲线起伏很大,噪声大

h₁=1 起伏减小

 $h_1=4$ 曲线平坦

③当N→∞时,P_N(x)收敛于一平滑的正态曲线,估计曲线较好。

例: 待估的密度函数为二项分布

解: 此为多峰情况的估计

设窗函数为正态

$$P(x) = \begin{cases} 1 & -2.5 < x < -2 \\ 0.25 & 0 < x < 2 \\ 0 & x 为其它 \end{cases}$$

P(x)

解: 此为多峰情况的估计

设窗函数为正态
$$\varphi(u) = \frac{1}{\sqrt{2\pi}} \exp[-\frac{1}{2}u^2], h_N = \frac{h_1}{\sqrt{N}}$$

NICHAR REPORTED TO THE PARTY OF THE PARTY OF

当N=1、16、256、 ∞ 时的 $P_N(x)$ 估计如图所示

- ①当N=1时, $P_N(x)$ 实际是窗函数。
- ②当N=16及N=256时

 $h_1 = 0.25$ 曲线起伏大

 $h_1=1$ 曲线起伏减小

 $h_1 = 4$ 曲线平坦

③当N→∞时,曲线较好。

Parzen窗估计

▶优点

- ✓ 由前面的例子可以看出, Parzen窗估计的优点是应用的 普遍性。对规则分布,非规则分布,单锋或多峰分布都 可用此法进行密度估计。
- ✓可以获得较为光滑且分辨率较高的密度估计,实现了光滑性和分辨率之间的一个较好平衡。

缺点

- ✓要求样本足够多,才能有较好的估计。因此使计算量, 存储量增大。
- ✓ 窗宽在整个样本空间固定不变,难以获得区域自适应的密度估计。

识别方法

- 1. 保存每个类别所有的训练样本;
- 2. 选择窗函数的形式,根据训练样本数n选择窗函数的h宽度;
- 3. 识别时,利用每个类别的训练样本计算待识别样本x的类条件概率密度:

$$p_n\left(\mathbf{x} \middle| \omega_i\right) = \frac{1}{n_i} \sum_{j=1}^{n_i} \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_j^i}{h}\right)$$

4. 采用Bayes判别准则进行分类。

▶例子:

基于Parzen估计的Bayesian分类器

较小 h_n

较大 h_n

Outline:

- 言尼《
- > 最大似然估计
 - √最大似然估计基本原理及求解
 - √正态分布的最大似然估计
- > Bayes估计与Bayes学习
 - ✓ Bayes1古计
 - ✓ Bayes学习
 - ✓正态分布下的Bayes估计
- 》概率密度估计的非参数方法
 - √非参数估计基本原理及直方图方法
 - ✓ Parzen 窗法
 - ✓kN近邻估计方法

Kn近邻估计

▶K"近邻密度估计:

固定样本数为 k_n ,在 \mathbf{x} 附近选取与之最近的 k_n 个样本,计算该 k_n 个样本分布的最小体积 V_n

在**X**处的概率密度估计值为: $\hat{p}_n(\mathbf{x}) = \frac{k_n/n}{V_n}$

渐近收敛的条件

$\hat{p}_n(\mathbf{x})$ 渐近收敛的充要条件为:

$$\lim_{n\to\infty} k_n = \infty$$

$$\lim_{n\to\infty} k_n / n = 0$$

通常选择:
$$k_n = \sqrt{n}$$

Kn近邻估计

ONICUS 1902

▶例子:

Parzen windows

k_n -nearest-neighbor

k_N-近邻法


```
function [f] = Kn(N)
%KN Kn 估计法
x=linspace(-2,2,500); % 产生-2,2 之间的 N 点行矢量
x2=randn(1,N);
             % 产生 N 个标准正态随机数
p=zeros(1,500);
for i=1:500
   Kn=sqrt(N);
   x3=sort(abs(x(i)-x2)); % 排序
            % 让体积扩张,直到包含 KN 个样本
   Vn=x3(Kn);
   p(i)=(Kn/N)/Vn;
end
plot(x,p);
end
```

Discussion

- \triangleright Nearest Neighbor Estimation 构造 k_N 序列
- ➤ Parzen Windows 构造 V_N 序列

▶非参数估计,对于样本量、计算量和 存储量的要求

Discussion

▶密度函数估计

✓有限样本下,密度函数的估计问题是一个很难的问题(不适定),比分类器设计问题甚至更难,也是一个更一般的问题。因此,通过首先估计密度函数来解决PR问题似乎不是个好主意(除非有充分的先验知识)。

> 非参数分类判别方法