Annals of Mathematics

Finite Subgroups and Isogenies of One-Parameter Formal Lie Groups

Author(s): Jonathan Lubin

Source: The Annals of Mathematics, Second Series, Vol. 85, No. 2 (Mar., 1967), pp. 296-302

Published by: Annals of Mathematics

Stable URL: http://www.jstor.org/stable/1970443

Accessed: 23/02/2011 15:13

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=annals.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to *The Annals of Mathematics*.

Finite subgroups and isogenies of one-parameter formal Lie groups*

By Jonathan Lubin

The purpose of this paper is to tie up certain loose ends from [2]; to prove the conjectures of the last section there, and to complete the proofs promised in the correction-note [3]. The objects under study here are the same as in [2], namely one-parameter formal Lie groups F defined over the ring of integers o in a finite extension of the field \mathbf{Q}_p of p-adic numbers. However the point of view is somewhat different here for we now make essential use of the analytic group structure which the power series F furnishes to the maximal ideal in any complete local o-algebra.

The relationship between lattices in the Tate vector space V(F) and formal groups isogenous to F is an example of a phenomenon which seems to be well known, at least in the parallel case of abelian varieties, but I was first made aware of this relationship by a remark in a letter of J-P. Serre to J. Tate. The same letter contains an outline of a proof of Lemma 1.3 which is somewhat better than my own proof, and which I have made use of here.

For definitions the reader is referred to [2]; as there, I use here the expression group law as abbreviation for one-parameter commutative formal Lie group.

1. Generalities: finite subgroups of a formal group

1.0. Let p be a prime number. The completion of the field of rational numbers with respect to the p-adic valuation will be denoted \mathbf{Q}_p , and its ring of integers \mathbf{Z}_p . If K is a field which is algebraic over \mathbf{Q}_p , the integral closure of \mathbf{Z}_p in K will be denoted I(K). The algebraic closure of a field K will be called K and, if K is normal over K, the Galois group will be called Aut K0. Local rings will not necessarily be noetherian; and, if K1 is a local ring, K1 will denote its maximal ideal.

Throughout this paper, k will be a finite (algebraic) extension of \mathbf{Q}_p . We will be concerned with group laws F defined over $\mathfrak{o}=I(k)$, and the *height* of F will be the height of its reduction modulo $M(\mathfrak{o})$. If K is any finite extension of k, with $\mathfrak{O}=I(K)$, then the set $M(\mathfrak{O})$ has a group structure given by F: for α , $\beta \in M(\mathfrak{O})$, $\alpha +_F \beta = F(\alpha, \beta)$; the identity element is 0 and the inverse of α is $[-1]_F(\alpha)$. These series converge because \mathfrak{O} is complete. This group, which

^{*} This work was supported in part by a grant from the Research Corporation, and in part by NSF Grant #GP-5098.

is also an $\operatorname{End}_{\mathfrak{o}}(F)$ -module, will be denoted $F(\mathfrak{O})$. Even though $\overline{\mathfrak{o}}=I(\overline{k})$ is not complete, $+_F$ is defined in $M(\overline{\mathfrak{o}})$ because any two elements of \overline{k} are in some finite extension K of k, and consequently we can speak of $F(\overline{\mathfrak{o}})$.

We see immediately that if F is a group law defined over \mathfrak{o} , then every finite subgroup of $F(\bar{\mathfrak{o}})$ is a p-group, because if $[mp^n]_F(\alpha) = 0$ for $\alpha \in M(\bar{\mathfrak{o}})$ and m prime to p, then $[m^{-1}]_F \in \operatorname{End}_0(F)$ and $[p^n]_F(\alpha) = 0$.

The following form of the abstract Weierstrass preparation theorem, essentially as found in [1, p. 72], is quoted here without proof.

LEMMA 1.1. Let A be a complete noetherian local domain. Let $f(x) \in A[[x]]$ have first unit coefficient in degree d. Then there is a monic polynomial $P(x) \in A[x]$ of degree d with all lower degree coefficients in M(A) and a power series $u(x) \in A[[x]]$ with $u(0) \notin M(A)$ such that f = Pu.

The number d will be called the Weierstrass degree of f, wideg (f), as in [1].

1.2. Suppose now that F and G are group laws over $\mathfrak o$ with F of finite height, and that $0 \neq f \in \operatorname{Hom}_{\mathfrak o}(F,G)$. We can see now that $f\colon F(\overline{\mathfrak o}) \to G(\overline{\mathfrak o})$ is onto and has finite kernel. Let $\beta \in M(\overline{\mathfrak o})$, so $\beta \in M(\mathfrak O)$ for $\mathfrak O = I(K)$, K being some finite extension of k. Then $f(x) - \beta \in \mathfrak O[[x]]$ is not zero modulo $M(\mathfrak O)$, in view of $[2, \operatorname{Lem. 2.3.1}]$, so $1 \leq \operatorname{wideg}(f-\beta) < \infty$, and so $f-\beta$ has roots in $M(\overline{\mathfrak o})$. Let us call F_1 the derivative of F with respect to the lefthand argument. It has constant term 1, so that for $\gamma \in M(\overline{\mathfrak o})$, $F_1(0, \gamma)$ is a unit in $\overline{\mathfrak o}$. Then if $f(\alpha) = \beta$, α is a simple root of $f(x) - \beta$ because on differentiating the identity $F(f(x), \beta) = f(F(x, \alpha))$ and setting x = 0 we get $F_1(0, \beta)c(f) = f'(\alpha)F_1(0, \alpha)$ so that $f'(\alpha) \neq 0$ because $[2, \operatorname{Lem. 2.1.1}] \ c(f) \neq 0$. Thus $f(x) - \beta$ has wideg (f) roots, and in particular the kernel of $[p^n]_F$ has p^{hn} elements if h is the height of F.

The rest of this section is devoted to showing the converse, that every finite subgroup of $F(\bar{v})$ arises as the kernel of some $f: F(\bar{v}) \to G(\bar{v})$, and that the kernel has certain functorial properties.

LEMMA 1.3. Let A be a power series ring over $\mathfrak o$, in finitely many variables. Let F be a group law defined over $\mathfrak o$, and Γ a finite subgroup of $F(\mathfrak o)$. Let the group Γ operate on A[[x]] by: for $\gamma \in \Gamma$ and $f(x) \in A[[x]]$, $f^{\gamma}(x) = f(F(x, \gamma))$. Then the subring of A[[x]] of fixed elements is $A[[\xi]]$, where $\xi = \prod_{\gamma \in \Gamma} F(x, \gamma)$.

PROOF. Let $B=A[[\xi]]$ and C=A[[x]] have the fraction fields K and L respectively. One checks that Γ acts as a group of automorphisms of C. This action extends to L, and we can see that K is the fixed field. The power series $-\xi + \prod_{\gamma \in \Gamma} F(X, \gamma) \in B[[X]]$ has Weierstrass degree $p^s = \text{order of } \Gamma$, since wideg $(F(X, \gamma)) = 1$. Lemma 1.1 shows that this power series can be written

P(X)u(X) where P is a monic polynomial over B of degree p^s . Since x generates L over K, and x is a root of P, $[L:K] \leq p^s$. But K is contained in the fixed field of Γ , over which L is of degree p^s , so that K is the fixed field; and $B = K \cap C$ because C is a free B-module, a basis being $\{1, x, \dots, x^{p^s-1}\}$.

THEOREM 1.4. Let K be a finite extension of k, and $\mathfrak O=I(K)$. Let F be a group law defined over $\mathfrak O$, and Γ a finite subgroup of $F(\mathfrak O)$. Then there is a group law G defined over $\mathfrak O$ and an $f\in \operatorname{Hom}_{\mathfrak O}(F,G)$ with $\ker(f)=\Gamma$. Furthermore, if Γ is stable under the action of $\operatorname{Aut}(\overline{k}/k)$, then G and f can be defined over $\mathfrak O$.

PROOF. We set $f(x) = \prod_{\gamma \in \Gamma} F(x, \gamma) \in \mathbb{O}[[x]]$ so that $f(F(x, y)) = \prod_{\gamma \in \Gamma} F(F(x, y), \gamma) \in \mathbb{O}[[x, y]]$. We can apply Lemma 1.3 to f(F(x, y)) by taking $A = \mathbb{O}[[x]]$ and $A = \mathbb{O}[[f(y)]]$ in turn to see that $f(F(x, y)) \in \mathbb{O}[[f(x), f(y)]]$; i.e., there is $G(x, y) \in \mathbb{O}[[x, y]]$ such that f(F(x, y)) = G(fx, fy). Since $G(x, y) = f(F(f^{-1}x, f^{-1}y))$, G is a group law and $f \in \operatorname{Hom}_{\mathbb{O}}(F, G)$. By our construction, $\ker(f) = \Gamma$. If Γ is stable under the action of $\operatorname{Aut}(\overline{k}/k)$, then f is clearly fixed under the action of $\operatorname{Aut}(\overline{k}/k)$ on $\mathbb{O}[[x]]$, so $f \in \mathfrak{o}[[x]]$, and consequently G is defined over $\mathfrak o$ as well.

THEOREM 1.5. Let F, G_1 , G_2 be group laws defined over $\mathfrak o$ with F of finite height, $f_i \in \operatorname{Hom}_{\mathfrak o}(F, G_i)$, (i=1, 2), $f_1 \neq 0$, and suppose that f_2 vanishes on $\ker(f_1) \subset F(\overline{\mathfrak o})$. Then there is a unique $g \in \operatorname{Hom}_{\mathfrak o}(G_1, G_2)$ such that $g \circ f_1 = f_2$.

PROOF. Let $\mathfrak{D}=I(K)$ for K a finite extension of k large enough for $\ker(f_1)$ to be contained in $F(\mathfrak{D})$. We apply Lemma 1.3 to f_1 and f_2 with $\Gamma=\ker(f_1)$ and $A=\mathfrak{D}$ to find $\varphi_i\in\mathfrak{D}[[x]]$ such that $f_i=\varphi_i\circ\psi$ where $\psi(x)=\prod_{\gamma\in\Gamma}F(x,\gamma)\in\mathfrak{D}[[x]]$. Now observe first that φ_i has no constant term because neither f_i nor ψ does, and second that wideg $(\varphi_1)=1$ because (by virtue of 1.3) wideg $(f_1)=\operatorname{wideg}(\psi)$. Thus φ_1 has an inverse in $\mathfrak{D}[[x]]$ and, if we set $g=\varphi_2\circ\varphi_1^{-1}\in\mathfrak{D}[[x]]$, we see that the relation $g=f_2\circ f_1^{-1}\in k[[x]]$ implies that g is unique and that $g\in\operatorname{Hom}_0(G_1,G_2)$.

1.6. In particular, if $0 \neq f \in \operatorname{Hom}_{0}(F, G)$ and $\ker(f)$ has p^{s} elements, then $[p^{s}]_{F}$ vanishes on $\ker(f)$, so if F is of finite height there is $g \in \operatorname{Hom}_{0}(G, F)$ such that $g \circ f = [p^{s}]_{F}$ (and $f \circ g = [p^{s}]_{g}$). Thus a non-zero homomorphism defined on a group law of finite height is an isogeny in the sense of [2, 5.3.1].

2. The Tate groups

2.0. In this section we define the Tate groups and use them for classifying isogenies. If F is a group law defined over \mathfrak{o} , let us call $\Lambda(F)$ the set of all elements of $F(\bar{\mathfrak{o}})$ of finite order. Then $\Lambda(F)$ is the union of all ker $[p^n]_F$. We define the $Tate\ group$ of F, T(F), to be the set of all sequences $a = (a_0, a_1, \cdots)$

for which $a_0 = 0$ and, for each $i \ge 1$, $a_i \in \Lambda(F)$ and $[p]_F(a_i) = a_{i-1}$. Addition is defined coordinatewise, and if G is another group law defined over o, coordinatewise application of $f \in \text{Hom}_p(F, G)$ gives $f : T(F) \to T(G)$. If F is of finite height, one sees immediately, because of surjectivity of $[p]_F: \Lambda(F) \to \Lambda(F)$ that $a \mapsto a_n$ is a surjection of T(F) on ker $[p^n]_F$, and that $a \in p^n T(F)$ if and only if $a_n = 0$. If $0 \neq f \in \operatorname{Hom}_0(F, G)$ then $f: T(F) \to T(G)$ is an injection because: $\ker(f) \subset \ker[p^s]_F$ for some s, and so, if $f(a_{n+s}) = 0$ for all n, we have $[p^s]_F(a_{n+s})=0$ for all n, and a=0. We thus see that T(F) is a torsion-free module over $\operatorname{End}_{\mathfrak o}(F)$ and over $\mathbf Z_p$. If F is of height $h<\infty$, then T(F)/pT(F)is a vector space of dimension h over $\mathbb{Z}/p\mathbb{Z}$ and, since only 0 is in every $p^nT(F)$, T(F) is a free \mathbb{Z}_p -module of rank h. Let us define V(F) as the set of all sequences $a=(a_0,a_1,\cdots)$ such that for each $i \geq 1$, $a_i \in \Lambda(F)$ and $[p]_F(a_i)=$ a_{i-1} . Clearly $V(F) \cong T(F) \bigotimes_{\mathbf{Z}_p} \mathbf{Q}_p$ so that V(F) is an h-dimensional \mathbf{Q}_p -vector space. We can associate to each $a \in V(F)$ its initial coordinate $a_0 \in \Lambda(F)$ to get a homomorphism which is surjective because each element of $\Lambda(F)$ is, for some n, the n^{th} coordinate of some element of T(F). Thus $\Lambda(F)\cong V(F)/T(F)$.

2.1. We saw in § 1 that, if F is a group law of height $h < \infty$ defined over \mathfrak{o} , finite subgroups of $\Lambda(F)$ classify isogenies (i.e. non-zero homomorphisms) defined on F; if Γ is such a subgroup, Γ is the kernel of some isogeny; and if $\Gamma_1 \subset \Gamma_2 \subset \Lambda(F)$ with $\Gamma_i = \ker(f_i)$, then there is a unique g such that $g \circ f_1 = f_2$. In particular, if $\Gamma_1 = \Gamma_2$ then this g is an isomorphism. We now examine the relation between group laws isogenous with F and lattices in V(F); i.e., free \mathbb{Z}_p -submodules of V(F) which are of rank $h = \dim(V(F))$.

Theorem 2.2. Let F be a group law of finite height defined over $\mathfrak o,$ and L a lattice in V(F) such that $p^rT(F) \subset L \subset p^{-s}T(F)$, for non-negative r and s. Let Γ be the group of all elements of $\Lambda(F)$ which appear as r-coordinates of elements of L, and let K be a finite extension of k such that $\Gamma \subset \mathfrak O = I(K)$. Then there is a group law G defined over $\mathfrak O, f \in \operatorname{Hom}_{\mathfrak O}(F,G)$ with $\ker(f) = \Gamma$, and $g \in \operatorname{Hom}_{\mathfrak O}(G,F)$ with $g \circ f = [p^{r+s}]_F$. If L is stable under the action of $\operatorname{Aut}(\overline{k}/k)$ on V(F), then G, f, and g may be defined over $\mathfrak o$. Finally, if L_1 and L_2 are two such lattices with $L_1 \subset L_2$ where L_i gives rise to G_i , f_i , and g_i , then there is a unique $\varphi \colon G_1 \to G_2$ such that $\varphi \circ f_1 = f_2$ and $g_2 \circ \varphi = g_1$.

PROOF. The case r > 0 follows from the case r = 0.

The isomorphism of $\Lambda(F)$ with V(F)/T(F) induces a one-to-one inclusion-preserving correspondence between finite subgroups of $\Lambda(F)$ and lattices in V(F) which contain T(F), and such a lattice is stable under the action of $\operatorname{Aut}(\bar{k}/k)$ if and only if the corresponding finite subgroup is stable also. Notice that if $s \geq 0$, then $p^{-s}T(F)$ is a lattice in V(F) containing T(F) which corresponds to $\ker [p^s]_F$. Thus the case r=0 follows from the parallel facts about finite subgroups of $\Lambda(F)$, namely Theorems 1.4 and 1.5.

2.3. Theorem 2.2 shows that lattices containing T(F) correspond to equivalence classes of isogenies defined on F and sublattices of T(F) correspond to equivalence classes of isogenies into F, two such isogenies being considered equivalent if the homomorphism φ above is an isomorphism. Let us notice that if $L \subset T(F)$ and L gives rise to $g: G \to F$, then in fact L = g(T(G)). To see this, let $p^rT(F) \subset L \subset T(F)$, so that we get an $f: F \to G$ whose kernel consists of all r-coordinates of elements of L, and such that $f \circ g = [p^r]_G$. Let $b \in T(G)$: then the r-coordinate of g(b) is $g(b_r)$ which is annihilated by f, so that g(b) and some element of L have the same r-coordinate, and their difference then is in $p^rT(F) \subset L$. Consequently $g(T(G)) \subset L$. On the other hand, if $a \in L$, the r-coordinate of f(a) is zero, so $f(a) \in p^rT(G)$ and $a \in g(T(G))$.

3. Applications

3.0. We now have in T(F) a tool for investigating the endomorphism rings of group laws. For instance, if F and G are group laws of finite height over $\mathfrak o$ which are isogenous over $\mathfrak o$, then the rings $c(\operatorname{End}_{\mathfrak o}(F))$ and $c(\operatorname{End}_{\mathfrak o}(G))$ have the same fraction field. Indeed, if $0 \neq f \in \operatorname{Hom}_{\mathfrak o}(F,G)$, then there is r such that $p^rT(G) \subset f(T(F))$; and so if $[\zeta]_g \in \operatorname{End}_{\mathfrak o}(G)$, then $[p^r\zeta]_g(T(G)) \subset f(T(F))$. Then the lattice inclusion $([p^r\zeta]_g \circ f)(T(F)) \subset f(T(F)) \subset T(G)$ implies existence of $\varphi \in \operatorname{End}_{\mathfrak o}(F)$ such that $f \circ \varphi = [p^r\zeta]_g \circ f$, and φ is necessarily $[p^r\zeta]_F$. Thus $p^rc(\operatorname{End}_{\mathfrak o}(G)) \subset c(\operatorname{End}_{\mathfrak o}(F))$ and symmetrically $p^sc(\operatorname{End}_{\mathfrak o}(F)) \subset c(\operatorname{End}_{\mathfrak o}(G))$ for some s.

Suppose that F is a group law of finite height defined over $\mathfrak o$ and that Σ is the fraction field of $c(\operatorname{End}_{\mathfrak o}(F))$. Since V(F) is an $\operatorname{End}_{\mathfrak o}(F)$ -module, it is also a Σ -module: for $\zeta \in \Sigma$ and $a \in V(F)$, ζa is $p^{-n}[p^n\zeta]_F(a)$ for large enough n. If F and G are both defined over $\mathfrak o$ and isogenous over $\mathfrak o$, then Σ operates on both V(F) and V(G), and any $f \in \operatorname{Hom}_{\mathfrak o}(F,G)$ induces a Σ -linear map $f \colon V(F) \to V(G)$.

THEOREM 3.1. Let F be a group law of finite height defined over o, and L an Aut (\overline{k}/k) -stable lattice in V(F) giving rise to a group law G defined over o. Let Σ be the fraction field of $c(\operatorname{End}_o(F))$. Then $\zeta \in c(\operatorname{End}_o(G))$ if and only if $\zeta \in \Sigma$ and $\zeta L \subset L$.

PROOF. First, in case L = T(F), suppose $\zeta \in \Sigma$ and $\zeta T(F) \subset T(F)$. Then for n so large that $p^n \zeta \in c(\operatorname{End}_{\mathfrak{o}}(F))$, we have $[p^n \zeta]_F(T(F)) \subset [p^n]_F(T(F))$ which means that there is $\varphi \in \operatorname{End}_{\mathfrak{o}}(F)$ with $[p^n]_F \circ \varphi = [p^n \zeta]_F$. But φ is necessarily $[\zeta]_F$. The converse is immediate.

The case of general L comes down immediately to the case $L \subset T(F)$, when $L = g(T(G)), g: G \to F$. Since g is a Σ -isomorphism of V(G) onto V(F), $\zeta g(T(G)) \subset g(T(G))$ if and only if $\zeta T(G) \subset T(G)$. q.e.d.

3.2. We can now prove the conjectures 5.3.1 and 5.3.2 of [2]. We use the fact from [2, paragraph 2.3.3] that, if K is an extension of k with $\mathfrak{D} = I(K)$ and F is defined over \mathfrak{o} , then $c(\operatorname{End}_{\mathfrak{D}}(F)) = \mathfrak{D} \cap c(\operatorname{End}(F))$.

If R is an order in $\mathfrak o$, there is a group law G whose absolute endomorphism ring $\operatorname{End}(G)$ is isomorphic to R. To construct G, we start with a full group law F defined over $\mathfrak o$ such that $c(\operatorname{End}(F)) = \mathfrak o$. The best construction of such F is found in $[4, \operatorname{Th}. 1]$. Now T(F) is a free $\mathbf Z_p$ -module of rank $h = [k \colon \mathbf Q_p]$ so that T(F) is a free $\operatorname{End}(F)$ -module of rank one. Let a basis element be b. Then since R is a free $\mathbf Z_p$ -module of rank h, Rb is a lattice in T(F) which will be $\operatorname{Aut}(\overline{k}/K)$ -stable for K a suitable finite extension of k, and Rb gives rise to a group law G defined over $\mathfrak O = I(K)$. Then $c(\operatorname{End}_{\mathfrak O}(G)) = R$, by Theorem 3.1, and $\operatorname{End}_{\mathfrak O}(G) = \operatorname{End}(G)$ because $c(\operatorname{End}(G)) \subset \mathfrak o \subset \mathfrak O$. (An argument like the proof of Theorem 3.3 below shows that it is impossible to take K = k.)

Another consequence of Theorem 3.1 is that any group law F of finite height defined over $\mathfrak o$ is $\mathfrak o$ -isogenous to a group law G defined over $\mathfrak o$ with $\operatorname{End}_{\mathfrak o}(G)$ integrally closed. To see this we call Σ the fraction field of $c(\operatorname{End}_{\mathfrak o}(F))$ and form $L=I(\Sigma)T(F)$ which is a lattice in V(F), clearly $\operatorname{Aut}(\overline{k}/k)$ -stable. Certainly if $\zeta\in I(\Sigma)$, we have $\zeta L\subset L$. In particular every almost full group law is isogenous to a full one.

Finally we have the partial replacement of the incorrect Theorem 3.3.1 of [2]. The proof below, more perspicuous than the original proof, as outlined in [3], was suggested by the referee.

THEOREM 3.3. Let k be unramified over Q_p and v = I(k). If F is a group law of finite height defined over v, then the absolute endomorphism ring End (F) is integrally closed in its fraction field.

PROOF. The Eisenstein criterion shows that $[p]_F(x)/x$ is irreducible in o[[x]], so that (0) is the only proper Aut (\overline{k}/k) -submodule of ker $[p]_F$. In view of the exact sequence of Galois modules $0 \to pT(F) \to T(F) \to \ker [p]_F \to 0$, there are no proper sublattices L of T(F) containing pT(F) properly, which are stable under Aut (\overline{k}/k) . Now consider the absolute endomorphism ring End (F) and its maximal ideal M. They are both Aut (\overline{k}/k) -stable, as is MT(F), and

 $pT(F) \subset MT(F) \subset T(F)$ where the second inclusion is proper, since T(F) is finitely generated and non-trivial, and End (F) is noetherian. Thus MT(F) = pT(F), so $p^{-1}MT(F) = T(F)$. But by Theorem 3.1, if $c \in p^{-1}M$, then $c \in \text{End }(F)$. Thus M = p End (F), so that End (F) is a discrete valuation ring and so integrally closed. q.e.d.

This proof shows again [2, Cor. 3.3.2] that the fraction field of End (F) is unramified over \mathbf{Q}_p , if k is unramified over \mathbf{Q}_p .

BOWDOIN COLLEGE

REFERENCES

- 1. S. S. ABHYANKAR, Local Analytic Geometry, Academic Press, New York, 1964.
- Jonathan Lubin, One-parameter formal Lie groups over p-adic integer rings, Ann. of Math., 80 (1964), 464-484.
- 3. —, Correction, Ann. of Math., 84 (1966), 372.
- 4. ——— and JOHN TATE, Formal complex multiplication in local fields, Ann. of Math., 81 (1965), 380-387.

(Received June 8, 1966)