

Preliminary Technical Information

TrenchT2[™] Power MOSFET

IXTA170N075T2 IXTP170N075T2

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T _. = 25°C to 175°C	75	V	
V _{DGR}	$T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}, R_{gs} = 1\text{M}\Omega$	75	V	
V _{GSM}	Transient	± 20	V	
I _{D25}	T _C = 25°C	170	A	
LRMS	Lead Current Limit, RMS	75	Α	
I _{DM}	$T_{_{\rm C}}$ = 25°C, pulse width limited by $T_{_{\rm JM}}$	510	Α	
I _{AR}	T _C = 25°C	85	А	
E _{AS}	$T_{c} = 25^{\circ}C$	600	mJ	
P _D	T _C = 25°C	360	W	
T _J		-55 +175	°C	
T _{JM}		175	°C	
T _{stg}		-55 +175	°C	
T,	1.6mm (0.062in.) from case for 10s	300	°C	
T _{sold}	Plastic body for 10 seconds	260	°C	
M _d	Mounting torque (TO-220)	1.13 / 10	Nm/lb.in.	
Weight	TO-263 TO-220	2.5 3.0	g g	

Symbol	Test Conditions	Cha	Characteristic Values		
(T _J = 25°C unless otherwise specified)		Min.	Тур.	Max.	
BV _{DSS}	$V_{GS} = 0V$, $I_D = 250\mu A$	75			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	2.0		4.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}$			5	μΑ
	$V_{GS} = 0V$ $T_{J} = 15$	50°C		100	μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 50A, Notes 1, 2$			5.4	mΩ

 $V_{DSS} = 75V$ $I_{D25} = 170A$ $R_{DS(on)} \le 5.4m\Omega$

TO-263 (IXTA)

TO-220 (IXTP)

G = Gate S = Source D = Drain TAB = Drain

Features

- International standard packages
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
- 175°C Operating Temperature
- High current handling capability
- ROHS Compliant
- High performance Trench
 Technology for extremely low R_{DS(on)}

Advantages

- Easy to mount
- Space savings
- High power density
- Synchronous

Applications

- Synchronous Buck Converters
- High Current Switching Power Supplies
- Battery Powered Electric Motors
- Resonant-mode power supplies
- Electronics Ballast Application
- Class D Audio Amplifiers

Symbol		Test Conditions		Characteristic Values		
$(T_{J} = 2)$	5°C, ι	unless otherwise specified)	Min.	Тур.	Max.	
g_{fs}		$V_{DS} = 10V, I_{D} = 60A, \text{ Note 1}$	40	70	S	
C _{iss})	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		6860	pF	
C_{oss}	}			810	pF	
C _{rss}	J			148	pF	
t _{d(on)})	Resistive Switching Times		19	ns	
t _r		$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		11	ns	
t _{d(off)}		$R_{G} = 3.3\Omega$ (External)		25	ns	
t _f)			19	ns	
$\mathbf{Q}_{g(on)}$)			109	nC	
Q_{gs}	$V_{GS} =$	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		37	nC	
\mathbf{Q}_{gd}				25	nC	
R _{thJC}					0.42 °C/W	
R _{thCH}		TO-220		0.50	°C/W	

Source-Drain Diode

Symbol	Test Conditions (hara	racteristic Values			
$(T_J = 25^{\circ}C, t)$	unless otherwise specified)	lin.	Тур.	Max.		
I _s	$V_{GS} = 0V$			170	Α	
I _{SM}	Repetitive, Pulse width limited by $\rm T_{\rm JM}$			680	Α	
V _{SD}	$I_F = 50A, V_{GS} = 0V, \text{ Note 1}$			1.0	V	
t _{rr}	$I_{\rm F} = 85 {\rm A}, \ V_{\rm GS} = 0 {\rm V}$		63		ns	
I _{RM}	$-di/dt = 100A/\mu s$		4.8		Α	
Q _{RM}	$V_R = 37V$		150		nC	

Notes: 1. Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

2. On through-hole packages, $R_{\mathrm{DS(on)}}$ Kelvin test contact location must be 5mm or less from the package body.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 150°C

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 85A$ Value vs. Drain Current

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 85A Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 8. Transconductance 110 $T_{,J} = -40^{\circ}C$ 100 90 80 25°C g_{fs}-Siemens 70 150°C 60 50 40 30 20 10 20 40 60 100 120 160 200 0 80 140 180 I_D - Amperes

Fig. 9. Forward Voltage Drop of **Intrinsic Diode** 280 240 200 ls - Amperes 160 120 T_J = 150°C 80 $T_{,J} = 25^{\circ}C$ 40 0 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 V_{SD} - Volts

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 18. Resistive Turn-off
Switching Times vs. Gate Resistance

Fig. 19. Maximum Transient Thermal Impedance