

昭63-149629

@Int Cl.

識別記号

庁内整理番号

母公開 昭和63年(1988)6月22日

G 03 B 3/00 G 02 B · 7/11

17/12

A-7403-2H

P - 7403 - 2H

A - 7610 - 2H審査請求 未請求 発明の数 1 (全13頁)

⇔発明の名称

G 03 B

焦点距離切り換え式カメラ

20特 頤 昭61-298522

❷出 願 昭61(1986)12月15日

仓発 明 者 秋 Щ. 和 洋

差

埼玉県大宮市植竹町1丁目324番地 富士写真光機株式会

社内

母発 明 H 老

畀

埼玉県大宮市植竹町1丁目324番地 富士写真光袋株式会

社内

①発 明 者 東海林 正 夫 埼玉県大宮市植竹町1丁目324番地 富士写真光楼株式会

社内

印出 頣 人

富士写真光樹株式会社

埼玉県大宮市植竹町1丁目324番地

神奈川県南足柄市中沼210番地

富士写真フィルム株式 包出 頸 人

会社

む代 理 人 弁理士 小林 和慧

最終頁に続く

1. 発明の名称

焦点距離切り換え式カメラ

- 2. 特許請求の範囲
 - (1) オートフォーカス装置を内蔵し、少なくとも第 1あるいは第2の焦点距離で撮影が可能であると ともに、前記第2の焦点距離のもとで近接撮影が できるようにした焦点距離切り換え式カメラにお

「撮影レンスの少なくとも一部を保持した移動筒 と、この移動筒を前記第1あるいは第2の焦点距 離に対応する位置に移動させるためにモータによ って駆動される移動機構と、移動筒が前記第2の 焦点距離に対応する位置に移動された後、前記モ **マタの駆動により攝影レンズの少なくとも一部を** 移動筒内でさらに光軸方向に移動させて近接撮影 位置にセットする近接撮影セット機構と、この近 接膜影セット機構の作動に連動し、前記オートフ ォーカス装置の測距範囲を近接撮影範囲に切り換 える測距範囲切り換え機構とを備えたことを特徴

とする焦点距離切り換え式カメラ。

- (2) 前記第2の焦点距離は、第1の焦点距離よりも 長いことを特徴とする特許請求の範囲第1項記載 の焦点距離切り換え式カメラ。
- 3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は、オートフォーカス装置による自動合 焦機能を備え、異なる2つの焦点距離で撮影が可 能であるとともに、近接撮影(マクロ撮影)もで きるようにした焦点距離切り換え式カメラに関す るものである。

〔従来の技術〕

レンズシャッタ式のコンパクトカメラにおいて、 例えば焦点距離3.5 mm程度のワイド撮影(広角 撮影)と、焦点距離70mm程度のテレ撮影(望 **遠撮影)とを切り換えて使用できるようにした焦** 点距離切り換え式のカメラが公知である。このよ うなカメラでは、一般に光軸内に付加レンスを出 、入りさせるようにしておき、ワイド撮影時には付 加レンズを光路外に退避させ、テレ提影時にはメ

インレンズを前方に長 と同時に、付加レンズを光路内に挿入して焦点距離を切り換え、しかも焦点調節に関しては光電式のオートフォーカス 装置を共通に用いるようにしている。

[発明が解決しようとする問題点]

また、オートフォーカス装置によって撮影レンズを近接撮影位置まで扱り出すようにした場合に

移動させて焦点距離の切り換えを行い、近接撮影時には、前記移動筒内で撮影レンズの少なくとも一部を、前記モータによって駆動される近接撮影セット機構により移動させて近接撮影位置にセットするようにしている。そして、この近接撮影セットを構の作動時には、これに連動してオートフォーカス 装置の側距範囲を近接撮影範囲に切り換えるようにしたものである。

以下、本発明の一変施例について図面を参照しながら説明する。

(実施例)

本発明を用いたカメラの外限を示す第2図において、ボディーの前面には極いないでは移動に移動自住を対して、移動自体である。 さらに、移動自己をないである。 ではいる。 ではいる。

は、無限 違距 超 近接 撮影 距離 までの間を、 所 定数のレンズセット位置で分割することに 特になる ため、レンズセット位置が相くなりやすい。 特に、 焦点深度のほが担 最 影 距離 面間で のレンズ 最 影 取 の 最 の 最 の は の は な る 。 さ ら に 、 無 取 む の は り 出 面 は で の は で の に 、 無 取 む の は り 出 で の は で の に な る 。 で の 時間が延長される とい う に なる 。 で の 時間が延長される とい う に なる 。 で な る 。

本発明はこのような技術的背景に鑑みてなされたもので、共通のオートフェーカス装置を併用しながら、通常撮影時はもとより、近接撮影時にも良好な焦点調節ができるようにした焦点距離切り 換え式カメラを提供することを目的とする。

(問題点を解決するための手段)

本発明は上記目的を達成するために、摄影レンズの少なくとも一部を保持した移動筒を、モータによって駆動される移動機構を介して光軸方向に

タが内蔵され、銀筒 6 は可動ユニット 5 に対して 光軸方向に移動自在となっている。

ワイドモードにセットされている状態からモードボタン7を押すど、第3図(B)に示したように、移動筒3の移動によりマスターレンズ4が前

方に移動し、さらにファード時には罹災とが挿し、さらにファーションと12が挿でンズ4とはでいたコングマスターレンズ4とココ成立によりマスが構成点とないでは、望遠撮影に通したテレモードはといったというにはある。そして関連にでは、ロードはと同様に関連を表して、レリーで表面が作りを使いて、ロード時と同様に関連を表して、ロースターとができる。その領域にある。その領域に対して、ロースターとは、ロースターを動きれた後にシャック11が開する。

テレモード状態からは、第3図(C)に示した ように近接撮影に適したマクロモードに移行させ ることができる。すなわち、詳しくは後述するように、マクロモード時には可動ユニット5をとい モード時よりもさらに前方に移動させることして、近距離側の撮影範囲を広げるようにしい る。そして、レリースボタン3の押圧に置調節が行 われる。

なお第2図において、符号13はストロポの発

2 を介して頻简 2 0 が回動し、これが図示のように光軸 P 内に挿入される。また、移動筒 3 が後退するときには鏡筒 2 0 は光軸 P から退避する。

前記移動筒3及び可動ユニット5の移動段構の 概略を示す第1図において、移動筒3の後端には 長孔3aが形成され、この長孔3aには繰り出し 光部を示し、ワード時にはこれがボディートに自動的に没入し、発光部13の前面に固定された拡散板14とボディーに固定された拡散板15との両者によって配光特性が決められる。また、テレモード時及びマクロモード時には、発光部13は図示のようにボップアップし、拡散板14のみで配光特性が決められるようになる。

録簡部分の要部断面を示す第4図において、固定筒2には一対のガイドバー19が設けられ、移動筒3はこれに沿って光軸方向に進退する。移動筒3は前進したテレモード位置と、後退したワイド位置との2位置をとり、その位置決めは移動筒3の当接面3bあるいは3cが固定筒2の内壁受け面に当接することによって行われる。

移動筒 3 には、コンパージョンレンス 1 2 を保持した鏡筒 2 0 が軸 2 1 を中心として回動自在に設けられている。鏡筒 2 0 にはピン 2 2 が突設されており、その先端は固定筒 2 の内壁に形成されたカム溝 2 a に係合している。そして移動筒 3 が前方に移動されるときには、カム溝 2 a . ピン 2

レバー35の自由端に植設されたピン36が係合している。繰り出しレバー35はバネ性をもしたがらなけるは、触37を介し扱いなり、触37を介し扱いなどがられている。繰り口では、略U字状の成立にように、基孔40が形成は、41が係合しレバー35のピン41は、軸40に対している。このになる。そしている。このに近43に突設されている。そしてもに回転後43に突殺されている。このに近43に突殺されている。このに近43に突殺されている。そしてもに回動です。よっても42とともに回動される。

前記軸 4 2 を支軸として、マクロレバー 4 6 が 回動自在に取り付けられている。マクロレバー 4 6 には突起 4 6 a が設けられ、回転板 4 3 が反時 計方向に一定量回動すると、回転板 4 3 の係合片 4 3 a に押されてマクロレバー 4 6 が回動する。 マクロレバー 4 6 に極設されたピン 4 7 は、リン クレバー 4 8 の L 字状のスロット 4 8 a に挿通さ れている。このリンクレバー 4 8 は、固定筒 2 の

リンクレバー48には一体に押圧片51が形成されている。そして、リンクレバー48が時計方向に回動したときには、第4図にも示したように、前記押圧片51は可動ユニット5の後端に極設され、移動筒3の隔壁を貫通しているピン52を押圧するようになる。

軸42に固定されたギャ55の回転は、カム板56が固着されたギャ57に伝達される。カム板56が回転すると、そのカム面をトレースするよ

うに設けられた
レバー 5 8 が回動する。この
カムレバー 5 8 の回動は、切り換えレバー 6 0 を
介してスライド板 6 1 に伝達される。すなわち、
切り換えレバー 6 0 が回動することによって、ス
ライド板 6 1 はピン 6 0 a 及び長孔 6 1 a を介し
て左右方向に移動される。なおスライド板 6 1 に
は、パネ 6 2 により左方への付勢力が与えられて
いる。

スライド板 6 1 には、さらに配曲部分をもった スロット 6 1 b に 突起 6 1 c が形される。前記 に、たっト 6 1 b には、レバー 6 4 に 値設されたいる。前記 スロット 6 1 b には、レバー 6 4 に 値設されたいる。レバー 6 4 に が は ボディンには なった 0 は ボディンに 0 は ボディンに 0 は ボディン 0 は ボディン 0 は で 3 を保持した レバー 6 7 で 3 を保持した レバー 6 7 で 3 で 3 で 3 で 3 で 4 に 4 に 4 に 4 に 4 に 5 で 5 で 6 で 5 で 6 で 7 で 8 を 7 で 8 で 8 で 8 で 8 で 9 の スロット 6 9 a に 係合して いる。 なお

ファインダ光学系は前記 C 1. C 2 レンズの他、ボディ 1 に対して固定された C 3. C 4 レンズ 7 0. 7 1 及びレチクル 7 2 を含んでいる。 C 3 レンズ 7 0 の前面にはハーフコートが施されており、レチクル 7 2 の視野枠像は C 4 レンズ 7 1 を通して観察することができる。

前記スライド板61の移動に連動してレバー61 4 が回動すると、ピン64bを介してレバー61 は触67aを中心として回動される。なおものである。ないでは、として回動される。ないでは、いてのでは、いてのでは、いてのでは、では、長孔69aを介している。とないで、それでは、といって、ラーのでは、いて、カーのでは、いて、カーのでは、いて、カーのでは、いて、カーのでは、いて、カーのでは、いて、カーのでは、いて、カーのでは、いて、カーのでは、いて、カーのでは、いて、カーのでは、いて、カーのでは、いて、カーのでは、いて、カーのでは、いて、カーのでは、いて、カーのでは、いて、カーのでは、いて、カーのでは、カーので

スライド板 6 1 に固定されたアーム 6 3 の先端には、テーパ 6 3 a が形成されている。このテーパ 6 3 a は、スライド板 6 1 が右方にスライドしたときに、ボディーに固定された板パネ 7 5 を下方に押し下げるように作用する。この板パネ 7 5 の先端は、投光レンス 7 7 を保持している。このホル

カム板 5 6 が固著されたギャ 5 7 には、これと 一体に回転するコード板 8 8 が設けられている。

ーチャートを参照して説明する。まず、第1図に示したテレモード状態のままで撮影を行う場合には、そのままファインダで被写体を捉えてレリーズボタン9を押せばよい。この場合のファインダ光学系は、第1図及び第7図(B)に示したように、G2レンズ68、G3レンズ70、G4レンズ71とから構成され、テレモードに通したファインダ倍率が得られるようになっている。

テレモードにセットされているときには、T.Wモード検出回路100からマイクロプロセッサユニット101(以下、MPUl0lという)にはテレモード信号が入力されている。この状態でレリーズボタン9を築1段押圧すると、この押圧信号がレリーズ検出回路103を介してMPUl0lに入力され、選択されたモードの確認の後、測距装置が作動する。

測距装置が作動すると、第8図に示したように 投光レンズ77を介して発光素子85からの光ピームが被写体に同けて照射される。そして、被写体からの反射光は、受光レンズ104を通って測 コード板 8 8 0 には、パターン化した接点板 8 9 が固著されており、この接点板 8 9 に接片 9 0 を間接させておくことによって、モータ 4 5 の回転位 立てわちワイドモード位 置。テレモード位 置のいずれの位 できてもが回転されたかを検出することができる。

モータ45によって駆動されるギャ92には、 ピン92aが突設されている。このギャ92は、 ストロボの発光部13の昇降に利用される。すな わち、ギャ92が図示から反時計方向に回転して ゆくと、ピン92aが発光部13を保持した昇降 レバー93を、バネ94に抗して押し下げるから、 これにより発光部13は拡散板15の背後に格納 され、また発光部13がこの格納位置にあると にギャ92が逆転されると、発光部13は上昇位 置にポップアップする。

以上のように構成されたカメラの作用について、 さらに第5回の回路プロック図及び第6回のフロ

距センサー105に入射する。側距センサー105に入射する。側距センサー105に入射する。側距センサー105は、微少の受光素子を基線長方向に配列して構成されたもので、被写体距離に応じてその別が傾位では受光素子105aに入射し、K、位置に被写体がある場合には、受光素子105bに入射するようになる。したがって、受光素の位置に被写体からの反射光が入射しているかを検出することによって、被写体距離を測定することができる。

被写体からの反射光が入射した受光素子の位面信号は、測距信号としてMPU101に入力される。MPU101は、この測距信号が適性範囲内であるときには、しED表示部106が作動し、例えばファイング内に通正測距が行われたことが表示され、レリーズボクン9の第2段押丘がの流距信号はT.WMAFテープル107に記憶される。そして、レリーズボクン9が

上述したテレモード状態において、例えば K: 位置 (第8図) に被写体があるときには、被写体 からの反射光は受光素子105 c に入射するよう になる。この受光素子105 c は、テレモード時 におけるレンはますなわち第3図(B)で示した撮影光学系のもとで、カム版28の回転だけではピントを合致させ得ないことを検出するために設けられている。第9図は、この様子を摂出するはので、超軸はフィルム面上における時間、円の径6、機軸は撮影距離を表している。またよってマスターレンズ4を段階的に位置決めしたとまれてマスターレンズ4とコンバージョンレンズ12との最適合集距離を示している。

最小指乱円、すなわち合焦状態とみなすことのできる指乱円を 6 。としたときには、 測距を 5 できるでは、 3 m~1 . 8 mの 範囲を たってみめられる最適合生 2 できる。 ところができる。 ところができる。 とこんができる。 とこんができる。 とこんができる。 とこんができる。 ことがなりも 近距離 倒で は 時 乱円が 5 。 とくなり、 合焦させることができなくなり、 6 は 会には、 前述したように 受光素子 1 0 5 c に 後 写

ところで、上述のようにリンクレバー 4 8 を回動させるためには、回転版 4 3 が回動されることになるが、テレモードにおいては移動筒 3 が最も続り出された位置にあり、移動筒 3 は固定筒 2 に当接して移動できない状態となっており、回転板

上述のように、移動筒3がそのままの位置に保持されてリンクレバー48が反時計方向に回動すると、リンクレバー48の他端に形成された押圧片51が、可動ユニット5の後端のピン52を介して可動ユニット5を前方へと押し出す。こうして撮影レンズがテレモードからマクロモードに移

行されるのと並行し 57が反時計方向に回 転し、カムレバー58. 切り換えレバー60を介してスライド板61は右方に移動する。

スライド版 6 1 が右方に移動すると、突起 6 1 c が 口 が 6 8 a の 下に入り込み、第 7 図(C)に示したように、C 2 レンズ 6 8 を x だ 対 年 に で と が 光 社 を 下 に ひ が 光 社 を 正 さ れ に な う に に を 正 さ れ に な る よ う に な を 正 さ れ に な る よ う に な を な た で た を な た て な た で を な か で た な か で を な か で た な か で た な と は は す な た て 、 役 光 中 心 に ち を 図 に ひ は な で 示 し に よ り 第 8 図 に ひ サー 1 0 5 例 に s だ け ン ズ 7 1 は 測 距 セ ン サー 1 0 5 例 に s た け ン ト さ れ る よ う に な る ・

以上のように、可動ユニット5が繰り出され、ファインタのC2レンズ68が上方にシフトされ、さらに投光レンズ77が遡距センサー105側にシフトされると、この時点で接片90によって検出される接点は、テレ用接点89aからマクロ用

このように、テレモード時の最短最適合無位置 N。と、マクロモード時の最遠最適合焦位置 N 1。とをオーバーラップさせておくと、例えばテレモードで 0.8 mに近い被写体距離の場合、測距センサー105の誤差などによって至近警告が出このカードに切り換わったとしても、このマクロモードでも被写体を焦点深度内に促えるのとができるようになる。また、テレモード時の測

接点 8 9 b (図) に切り換わる。この切り換え信号がデコーダ 1 0 9を介して M P U 1 0 1 に入力されると、モーダ駆動回路 1 0 2 に駆動停止信号が供出され、モーダ 4 5 の駆動が停止してマクロモードへのセットが完了する。

すなわち、第9図のテレモード状態における最も近距離圏の最適合焦位置N。はさらに近距離側にシフトする。そして、例えば最適合焦位置の段数N。が20段まであるときには、第10図に示したように、この最遠の最適合焦位置N:・がマク

距によって至近雲告が発生してマクロモードに切り換わった後、手振れによって若干の撮影距離の変動があっても、そのままマクロモード下での撮影ができるようになる。

こうけんでは、 こうけんでは、 こうけんでは、 こうけんでは、 こうでは、 ででなが行われる。ででなり、 ででなが行われる。ででなり、 ででなが行われる。での反列をは、 でのがには、 でのがいないでは、 でのがは、 でのがは、 でのがいないでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでいる。 でのでいる。 でのでいる。 でのでいないでは、 でのでいる。 でいる。

レリースポタンタが第2段押圧されると、レリ

ース検出回路 J 0 3 か 信号によって、ステッピングモータ 2 7 が認距信号に応じた角度位置まで回転し、マスターレンズ 4 を保持した鎖筒 6 の位置決めがなされる。その後さらにステッピングモータ 2 7 が一定角度回転してシャッタ 1 1 を開閉し、マクロモードでの撮影が行われる。

マクロモードへの切り換え途中あるいは切り換え中に、例えば手振れなどによって測距位置がずれると、マクロモードでの測距の結果、第8図にし、位置で示したように、近接撮影ではピントが合わせられない状態、すなわち第10図における最適合無位置N:・の焦点深度内に被写体を描足できない状態となる。

この場合には、測距センサー105の受光素子105 eに被写体からの反射光が入射する。このときの信号は、近接撮影では合焦し得ない違距離を意味する警告信号、すなわち過遠信号としてMPU101に過遠信号が入力されたときには、レリーズボタン9の第2段押圧が阻止されたままとなるとともに、ブザ

のカンシンでは、 2 2 2 では、 3 2 では、 4 3 では、 4 3 では、 5 では、 5

こうして移動筒3がワイドモード位置に移行することに連動し、スライド版61は第1図に示した位置から左方へと移動する。これにより、スロット61b及びピン64aとの係合によってレバー64が時計方向に回動する。すると、C2レン

ーなどの整告表 1.12が作動し、以降の作動が禁止されるようになっている。この場合には、レリーズボタン9の第1段押圧も解除して、初期状態に戻すようにする。

こうしてレリーズボタン9の第1段押圧も解除されると、マクロモードの解除が行われる。すなわち、接片90によってテレ用接点89aが検出されるまでモータ45が逆転して停止する。これにより、可動ユニット5は第1図あるいは第4図に示したテレモード位置に復帰されるものである。

テレモードにセットされている状態で、モードボタンフを押圧すると、T、Wモード検出回路100からワイドモード信号がMPUI01に入力される。MPU101にワイドモード信号が入力されると、モータ駆動回路102によってモータ45が駆動され、ギャ55を時計方向に回転されることによって、回転版43も同方向に回動する結果、繰り出しバー35を介して移動筒3は後退する。

移動筒3が固定筒2内で後退すると、固定筒2

ズを保持に持ちる。 C 1 以前には持ているのでは、 C 1 以前のでは、 C 2 がいません。 C 3 がいません。 C 3

上述のように、撮影光学系及びファインダ光学系の両者がワイドモード状態にセットされた後、レリーズボタン9を第1段押圧すると、テレモード時と同様に、T.W用AFテーブル107を参照して測距が行われ、レリーズボタン9の第2段

押圧によって測距、 セット、シャッタの順、 に作動してワイド撮影が行われることになる。

、また、ワイドモード状態からモードボタン7を 押圧操作すると、モード検出回路100からテレ モード信号がMPU101に入力され、モータ駆 動回路102が作動する。そして、モータ45が ギャ 5 5 を介して回転板 4 3 を反時計方向に回動 させ、よって移動筒3は繰り出しレバー36によ って前方に繰り出される。この繰り出しの終端で は、モータ45が停止される前に移動筒3の当接 面3bが固定筒2の受け面に押し当てられる。し たがって、モータ45の余剰回転によってピン4 1が繰り出しレバー35の長孔40の周囲部分を 変形させ、この繰り出しレバー35の反発付勢力 で移動筒3はテレモード位置に保持されることに なる。また、この動作に進動して、ファインダ光 学系は第7図(A)の状態から、同図(B)に示 したテレモード状態に切り換えられ、レリーズボ タン9が押圧操作された以降の作動については、 すでに述べたとおりである。

ができる。

4. 図面の簡単な説明

第1図は本発明の一実施例を示す要部分解斜視 図である。

第2図は本発明を用いたカメラの外観図である。 第3図は撮影光学系の切り換えを模式的に示す 説明図である。

第4図は第2図に示したカメラの領管部の要部 断面図である。

第5図は本発明のカメラに用いられる回路構成の一例を示すプロック図である。

第6図は本発明を用いたカメラのシーケンスフローチャートである。

第7図はファインダ光学系の切り換えを模式的 に示す説明図である。

第8図は本発明に用いられるオートフォーカス 装置の原理図である。

第9図はワイドモード及びテレモード時における合焦位置と増乱円との関係を表す説明図である。 第10図はマクロモード時における合焦位置と 以上、図示 変施例にしたがって説明して記明してに でマクロモードに切り換えるに しては、投光レンズ 1 7 をシフトさせるりに ひ光レンズ 1 0 4 を投光部 1 0 a 側にシフトさせ るようにしてもよい。また、テレモードからって でマニュアルボタンを操作し、この操作信号によってモータ 4 5 を駆動するようにしてもよい。 (発明の効果)

錯乱円との関係を表す説明図である。

2 · · · 固定筒

3・・・移動筒

4 ・・・マスターレンズ

5・・・可動ユニット

6 ・・・鏡筒 (マスターレンズ用)

1 ・・・モードボタン

12・・コンパージョンレンズ

35・・繰り出しレバー

46・・マクロレバー

48・・リンクレバー

6 1・・スライド板

. 11・・投光レンズ・ ...

88・・コード板。

第5図

第8図

M

9 8

第一〇図

第1頁の続き

⑦発 明 者 吉 利

埼玉県大宮市植竹町1丁目324番地 富土写真光偿株式会

社内

埼玉県大宮市植竹町1丁目324番地 正 社内