PROJECT ON INVENTORY CONTROL AND MANAGEMENT DATABASE SYSTEM

MADE BY: MOHIT TALREJA

ROLL NO.: 177237

COURSE/YEAR: B.TECH 2/4 CSE

GUIDED BY: DR. T. RAMAKRISHNUDU

SUBJECT: DATABASE MANAGEMENT SYSTEMS

ACKNOWLEDGEMENT

This project wouldn't have been made possible without the consistence guidance and support of my professor Dr. T. Ramakrishnudu, with whose help I was able to develop a strong foundation in the DBMS course.

I would also like to thank my college NIT Warangal for providing me the desired environment for learning. Lastly, I would like to thank my parents for making me the person I am today.

PROBLEM STATEMENT

PROBLEM STATEMENT

The aim of the inventory control and management database is to enable small and large enterprises to keep a track of the stock of goods, so that based on the **Economic Order Quantity(EOQ)** the company can minimize the cost of holding the inventory and hence maximize the profit.

The system also enables the enterprise to store:

- Location of the warehouses for the goods
- Employee information and their bank details to transfer salary to
- Details of suppliers and retailers
- Tax on goods
- *Transactions taken place with suppliers (orders) and retailers (sales).

ECONOMIC ORDER QUANTITY

Economic order quantity (EOQ) is the ideal order quantity a company should purchase for its inventory given a set cost of production, a certain demand rate, and other variables. This is done to minimize inventory holding costs and order-related costs

$$Q = \sqrt{\frac{2DS}{H}}$$

Q = EOQ units

D = demand in units (typically on annual basis)

S = order cost (per purchase order)

H = holding costs (per unit, per year)

ER MODEL

ASSUMPTIONS

- An employee can work at only one warehouse.
- An employee can have only one bank account in which the salary is credited.
- It is mandatory for an order to be authorized by any one employee.
- *Many orders are permissible for 1 supplier but not vice versa. Same rule applies for sales invoices and retailers.
- *There is only 1 tax & discount for 1 item, but the same tax & discount may be applicable to many items in the inventory.

CONVERSION TO RELATIONAL MODEL

NORMALIZATION

BCNF AND 3NF

- All the tables are in Boyce-Codd Normal Form BCNF and hence in 3rd Normal Form since all the non-key attributes are fully dependent on the primary key and the only functional dependencies are the ones between the primary key and the non-key attributes. Hence all determinants are candidate keys, thus satisfying the condition for BCNF.
- For example, in the inventory table, the functional dependencies are:

ItemID -> {ItemName, Class, ShelfLife}
These do no violate BCNF, hence table Inventory is in BCNF and 3NF.

CREATION OF TABLES

WAREHOUSES

create table warehouses(
w_code int primary key,
w_name varchar2(20),
city varchar2(20),
w_state varchar2(20),
street varchar2(20),
country varchar2(20)
);

	₩_CODE	₩_NAM	ΙE	♦ CITY	₩_STATE		♦ STREET		♦ COUNTRY
1	101	alpha	old	warangal	telanga	na	hunte	r road	India
2	102	alpha	new	hyderabad	telanga	na	jubil	ee	India
3	103	beta	old	bengaluru	karnata	.ka	tumku:	r	India
4	104	beta	new	indore	madhya	pradesh	abc c	olony	India

insert into warehouses values(101,'alpha old','warangal','telangana','hunter road','India'); insert into warehouses values(102,'alpha new','hyderabad','telangana','jubilee','India'); insert into warehouses values(103,'beta old','bengaluru','karnataka','tumkur','India'); insert into warehouses values(104,'beta new','indore','madhya pradesh','abc colony','India');

EMPLOYEE

create table employee(
eid int primary key,
firstName varchar2(20),
lastName varchar2(20),
phoneNumber varchar2(20),
department varchar2(20),
AnnualSalary int,
Designation varchar2(20),
w code int,

	∯ EID	♦ FIRSTNAME		♦ PHONENUMBER			♦ DESIGNATION	
1	201	mahendra	dhoni	1234567890	sales	10000	manager	101
2	202	virat	kohli	9234567890	HR	100000	manager	101
3	203	sachin	tendulkar	1235867890	sales	1023400	manager	102
4	204	ricky	ponting	3675867890	HR	982000	manager	102
5	205	jonny	bairstow	6758367890	IT	9820000	project lead	103
6	206	david	warner	5867889790	Accounts	90082000	manager	103
7	207	Ravi	Ashwin	3675807890	Law	87600	Trainee	104
8	208	Rishabh	Pant	9675867890	IT	94382000	Lead	104

foreign key (w_code) references warehouses

insert into employee values(201, 'mahendra', 'dhoni', '1234567890', 'sales', 10000, 'manager', 101); insert into employee values(202, 'virat', 'kohli', '9234567890', 'HR', 100000, 'manager', 101); insert into employee values(203, 'sachin', 'tendulkar', '1235867890', 'sales', 1023400, 'manager', 102); insert into employee values(204, 'ricky', 'ponting', '3675867890', 'HR', 982000, 'manager', 102); insert into employee values(205, 'jonny', 'bairstow', '6758367890', 'IT', 9820000, 'project lead', 103); insert into employee values(206, 'david', 'warner', '5867889790', 'Accounts', 90082000, 'manager', 103); insert into employee values(207, 'Ravi', 'Ashwin', '3675807890', 'Law', 87600, 'Trainee', 104); insert into employee values(208, 'Rishabh', 'Pant', '9675867890', 'IT', 94382000, 'Lead', 104);

BANKACCOUNT

```
create table BankAccount(
    AccNo int primary key,
    BranchCode varchar2(10),
    BankName varchar2(20),
    eid int,
    foreign key (eid) references employee
);
```

	⊕ ACCNO	⊕ BRANCHCODE	♦ BANKNAME	⊕ EID
1	1003007895040	98321	SBI	201
2	1002007885040	98391	PNB	202
3	9003007895040	98326	SBI	203
4	4003007895040	68321	BOB	204
5	8003007895040	28321	SBI	205
6	1003007854040	78321	SBI	206
7	2003009995040	48321	BOB	207
8	8003007895239	18321	ICICI	208

insert into bankaccount values(1003007895040,98321,'SBI',201); insert into bankaccount values(1002007885040,98391,'PNB',202); insert into bankaccount values(9003007895040,98326,'SBI',203); insert into bankaccount values(4003007895040,68321,'BOB',204); insert into bankaccount values(8003007895040,28321,'SBI',205); insert into bankaccount values(1003007854040,78321,'SBI',206); insert into bankaccount values(2003009995040,48321,'BOB',207); insert into bankaccount values(8003007895239,18321,'ICICI',208);

INVENTORY

create table inventory(
ItemId int primary key,
itemName varchar2(20),
item_class varchar2(20),
shelfLife numeric(10,2)
);

1	dyeing agent	В	2
2	clorox	A	10
3	cotton balls	C	0.5
4	oxidising agent	A	2
5	reducing agent	В	4
	1 2 3 4		1 dyeing agent B 2 clorox A

insert into inventory values(1,'dyeing agent','B',2); insert into inventory values(2,'clorox','A',10); insert into inventory values(3,'cotton balls','C',0.5); insert into inventory values(4,'oxidising agent','A',2); insert into inventory values(5,'reducing agent','B',4);

ITEM_LOCATION

```
create table item location(
  w code int,
  itemId int,
  primary key (w_code,itemId),
  foreign key (w_code) references warehouses,
  foreign key (itemId) references inventory
insert into item_location values(101,1);
insert into item location values(102,1);
insert into item location values (103,2);
insert into item location values(101,2);
insert into item location values(101,3);
insert into item_location values(104,4);
insert into item_location values(101,4);
insert into item_location values(102,4);
insert into item_location values(103,4);
insert into item_location values(101,5);
```

	⊕ W_CODE	∯ ITEMID
1	101	1
2	102	1
3	103	2
4	101	2
5	101	3
6	104	4
7	101	4
8	102	4
9	103	4
10	101	5

TAX

```
create table Tax(
  cgst numeric(4,2),
  sgst numeric (4,2),
  vat numeric (4,2),
  itemId int,
  primary key (cgst,sgst,vat,itemId),
  foreign key (itemId) references inventory
);
insert into tax values(15,7,2,1);
insert into tax values(18,9,2,2);
insert into tax values(5,3,3,3);
insert into tax values (5,7,2,4);
insert into tax values(15,9,4,5);
```

	_			
			∜ VAT	
1	15	7	2	1
2	18	9	2	2
3	5	3	3	3
4	5	7	2	4
5	15	9	4	5

DISCOUNTS

```
create table discounts(
season varchar2(20),
percentage numeric(4,2),
itemId int,
primary key (season,itemId),
foreign key (itemId) references inventory
);
insert into discounts values('summer',25,1);
insert into discounts values('winter',40,2);
```

insert into discounts values ('summer', 20,4);

		♦ PERCENTAGE	
1	summer	25	1
2	winter	40	2
3	summer	20	4

SUPPLIERS

```
create table suppliers(
scode int primary key,
country varchar2(20),
sname varchar2(20)
):
```

		♦ COUNTRY	♦ SNAME		
1	301	India	Simmba	Ltd	
2	303	USA	Oracl	Ltd	
3	305	UK	Dairy	Milk	Ltd

insert into suppliers values (301, 'India', 'Simmba Ltd'); insert into suppliers values (303, 'USA', 'Oracl Ltd'); insert into suppliers values (305, 'UK', 'Dairy Milk Ltd');

ORDERS

```
create table orders(
orderld int primary key,
eid int,
scode int,
foreign key (eid) references employee,
foreign key (scode) references suppliers
):
```

1 21301 201 301 2 21302 204 303			⊕ EID	
	1	21301	201	301
0 01000 007 005	2	21302	204	303
3 21303 207 305	3	21303	207	305

insert into orders values(21301,201,301); insert into orders values(21302,204,303); insert into orders values(21303,207,305);

ITEM_ORDERED

```
create table item_ordered(
orderld int,
itemId int,
quantity int,
pricePerUnit numeric(10,2),
primary key (orderld,ItemId),
foreign key (itemId) references inventory,
foreign key (orderld) references orders
):
```

	♦ ORDERID			♦ PRICEPERUNIT
1	21301	1	100	30
2	21301	3	200	50
3	21302	2	10	30
4	21303	1	100	35
5	21303	2	100	32

insert into item_ordered values(21301,1,100,30); insert into item_ordered values(21301,3,200,50); insert into item_ordered values(21302,2,10,30); insert into item_ordered values(21303,1,100,35); insert into item_ordered values(21303,2,100,32);

ECONOMICORDER

```
create table EconomicOrder(
    HoldingCost numeric(10,2),
    itemId int,
    primary key (itemId,HoldingCost),
    foreign key (itemId) references inventory
);
```

insert into economicorder values(200,1); insert into economicorder values(20,2); insert into economicorder values(3200,3); insert into economicorder values(1200,4); insert into economicorder values(7,5);

	♦ HOLDINGCOST	
1	200	1
2	20	2
3	3200	3
4	1200	4
5	7	5

RETAILERS

create table retailers(
rcode int primary key,
employeeName varchar2(20),
contactNo varchar2(20),
Rname varchar2(20),
country varchar2(20)

	∯ RCODE			♦ RNAME	
1	501	hasan	9786987698788	Adidas	USA
2	502	pathan	86987698788	GAP	USA
3	503	rohan	67887698788	Myntra	India

insert into retailers values (501, 'hasan', '9786987698788', 'Adidas', 'USA'); insert into retailers values (502, 'pathan', '86987698788', 'GAP', 'USA'); insert into retailers values (503, 'rohan', '67887698788', 'Myntra', 'India');

SALESINVOICE

create table salesInvoice(
invoiceNo int primary key,
saleTime timestamp,
rcode int,
foreign key (rcode) references retailers

MM-DD HH24:MI:SS.FF'),501);

		SALETIME		RCODE
1	102301	01-JUN-14	06.20.00.742000000	501
2	102302	03-NOV-18	17.20.00.742000000	502
3	102303	04-FEB-19	22.10.00.742000000	503

insert into salesinvoice values(102301,TO_TIMESTAMP('2014-06-01 06:20:00.742000000', 'YYYY-

insert into salesinvoice values(102302,TO_TIMESTAMP('2018-11-03 17:20:00.742000000', 'YYYY-MM-DD HH24:MI:SS.FF'),502);

insert into salesinvoice values(102303,TO_TIMESTAMP('2019-02-04 22:10:00.742000000', 'YYYY-MM-DD HH24:MI:SS.FF'),503);

ITEMS_SOLD

```
create table Items_sold(
    invoiceNo int,
    itemId int,
    primary key(invoiceNo,itemId),
    foreign key (invoiceNo) references salesInvoice,
    foreign key (itemId) references inventory
);
```

		∯ ITEMID	SALEPRICE	
1	102301	1	12.34	100
2	102301	2	30.65	10
3	102301	3	12.12	45
4	102302	3	98	22
5	102302	5	99.99	11
6	102303	4	76.45	5

insert into items_sold values(102301,1,12.34,100); insert into items_sold values(102301,2,30.65,10); insert into items_sold values(102301,3,12.12,45); insert into items_sold values(102302,3,98,22); insert into items_sold values(102302,5,99.99,11); insert into items_sold values(102303,4,76.45,5);

REFERENCES

REFERENCES

- Oracle SQL developer
- Database System Concepts by Silberschatz, Korth, Sudarshan
- ERD Plus online
- Investopedia.com