

Università degli Studi di Genova

Fondamenti di Ingegneria del Software

Lorenzo Vaccarecci

Indice

1	Mod	delli di processo di sviluppo software
	1.1	Introduzione
		1.1.1 Processo prescrittivo e adattivo
	1.2	Modelli di processo
	1.3	Code and Fix
	1.4	Modello a cascata
		1.4.1 Studio di fattibilità
		1.4.2 Varianti del modello a cascata
	1.5	Modelli evolutivi
		1.5.1 Modelli a Prototyping
		1.5.2 Modelli Iterativi-Incrementali
	1.6	Modello a spirale
	1.7	Unified Process
		1.7.1 Le iterazioni
		1.7.2 Le fasi
	1.8	Sviluppo basato sui componenti
	1.9	Metodi Plan-Driven e Agili
		1.9.1 Come scegliere?
	1.10	DevOps
		1.10.1 Continuous Integration
2	Inge	egneria dei requisiti
	2.1	Introduzione
	2.2	Classificazione dei requisiti
		2.2.1 Esempio: Bancomat
	2.3	Requirements Engineering
		2.3.1 Scopo
		2.3.2 Processo iterativo
	2.4	Proprietà dei requisiti
	2.5	Template/Schema dei requisiti
	2.6	Analista software
		2.6.1 Consigli per un'intervista
		2.6.2 Importanza della comunicazione
	2.7	Consigli finali

Capitolo 1

Modelli di processo di sviluppo software

1.1 Introduzione

Processo: insieme strutturato e organizzato di attività che si svolgono per ottenere un risultato.

Perchè modellare il processo? Per dare ordine, controllo e ripetibilità con l'intenzione di migliorare la produttività e la qualità del prodotto.

1.1.1 Processo prescrittivo e adattivo

- Processo prescrittivo: un processo che segue un modello predefinito e rigido, con passaggi specifici e ben definiti.
- Processo adattivo: un processo che permette modifiche e adattamenti durante il suo svolgimento.

Perchè studiare i modelli di processo? Perchè uno dei compiti dei manager aziendali è quello di decidere il modello di processo da adottare considerando la tipologia del software da progettare e il personale disponibile.

1.2 Modelli di processo

1.3 Code and Fix

- Si arriva al codice finale "per tentativi"
- Non adatto per progetti grandi con tanti sviluppatori
- Non è un modello di processo vero e proprio

1.4 Modello a cascata

- Storicamente il primo modello del processo di sviluppo software
- Ogni fase produce un prodotto che è l'input della fase successiva
- Con il modello waterfall abbiamo il passaggio dalla dimensione artigianale alla produzione industriale del software
- Molto rigido: non si può tornare indietro

Vantaggi	Svantaggi
Enfasi su aspetti come l'analisi dei requisiti e	Lineare, rigido, monolitico: no feedback tra fasi,
il progetto di sistema trascurati nell'approccio	no parallelismo, unica data di consegna
code & fix	
Pospone l'implementazione dopo avere capito i	La consegna avviene dopo anni, intanto i requi-
bisogni del cliente	siti cambiano o si chiariscono: così viene conse-
	gnato software obsoleto
Introduce disciplina e pianificazione	Viene prodotta troppa documentazione poco
	chiara: l'utente spesso non conosce tutti i re-
	quisiti all'inizio dello sviluppo
E' applicabile se i requisiti sono chiari e stabili	Alcuni difetti superati da modello waterfall con
	feedback e iterazioni

1.4.1 Studio di fattibilità

- Fase che precede lo sviluppo vero e proprio
- Viene analizzata la fattiblità e convenienza del progetto
- Stima dei costi
- Si valuta il Return Of Investment (ROI)

1.4.2 Varianti del modello a cascata

- Cascata con prototipazione: prima di iniziare lo sviluppo si costruisce un prototipo "usa e getta" con il solo scopo di fornire agli utenti una base concreta per meglio definire i requisiti.
- Cascata con feedback e iterazioni: posso tornare a una fase precedente.

• V-Model:

- Enfasi sulle fasi di testing
- Evidenzia come le attività di testing (parte destra della V) sono collegate a quelle di analisi e progettazione (parte sinistra della V)
- Ogni controllo fatto a destra che non dia buon esito porta a un rifacimento/modifica di quanto fatto a sinistra
- Parallelismo: creazione dei test e una volta che ho il codice li eseguo
- Problemi (anche per Waterfall):
 - * Versione funzionante solo alla fine!
 - * Errore in fase iniziale può avere conseguenze disastrose

1.5 Modelli evolutivi

Idea: sviluppare un implementazione iniziale, esporla agli utenti e raffinarla attraverso successivi rilasci del SW (release)

Sottocategorie:

- Prototyping
- Modelli incrementali
- Modelli iterativi

1.5.1 Modelli a Prototyping

- Realizzazione di un prototipo funzionante del sistema, su cui validare i requisiti (o l'architettura)
- Il prototipo ha meno funzionalità ed è meno efficiente

Vantaggi	Svantaggi
Permette di raffinare requisiti definiti in termini	Il prototipo è un meccanismo per identificare i
di obiettivi generali e troppo vaghi	requisiti, spesso da "buttare": problema econo-
	mico e psicologico, il rischio è di non farlo e così
	scelte non ideali diventano parte integrante del
	sistema
Rilevazione precoce di errori di interpretazione	

1.5.2 Modelli Iterativi-Incrementali

- Sviluppo di varie release, di cui solo l'ultima è completa
- Dopo la prima release, si procede in parallelo
- Le fasi di sviluppo vengono percorse più volte

Modelli Incrementali

- Ogni release aggiunge nuove funzionalità
- Nella fase di pianificazione si decide il requisito/funzionalità da includere nella release successiva.
- Si trattano per prime le funzionalità ad alto rischio
- Si cerca di massimizzare il valore per gli utenti

Modelli Iterativi

• Da subito sono presenti tutte (o buona parte) delle funzionalità che sono via via raffinate, migliorate

1.6 Modello a spirale

- Sistemi di grandi dimensioni
- Approccio "evolutivo" con interazioni continue fra cliente e developer
- Modello "risk-driver": tutte le scelte sono basate sui risultati dell'analisi dei rischi
- 'Meta-modello': dà un'idea generale ma quando si inizia a lavorare bisogna scegliere un modello esistente
 - Requisiti chiari e stabili \rightarrow modello a cascata
 - Requisiti confusi \rightarrow prototipo

Rischio: circostanza potenzialmente avversa in grado di pregiudicare lo sviluppo e la qualità del software

Ogni scelta/decisione ha un rischio associato, due caratteristiche importanti nella valutazione di un rischio sono:

- Gravità delle conseguenze
- Probabilità che si verifichi la circostanza

- Planning: determinazione di obbiettivi, alternative, vincoli
- Risk Analysis: analisi delle alternative e identificazione/risoluzione dei rischi
- Engineering: sviluppo del prodotto di successivo livello
- Customer Evaluation: valutazione dei risultati dell'engineering dal punto di vista del cliente

Vantaggi	Svantaggi
Adatto allo sviluppo di sistemi complessi	Non è un rimedio universale (panacea)
Primo approccio che considera il rischio (risk-	Necessita competenze di alto livello per la stima
driver)	dei rischi
	Richiede un'opportuna personalizzazione ed
	esperienza di utilizzo
	Se un rischio rilevante non viene scoperto o te-
	nuto a bada si inizia da zero

1.7 Unified Process

- Specifico per sistemi ad oggetti, con uso di notazione UML per tutto il processo
- Guidato dagli Use Case
- Incorpora molte delle idee 'buone' dal modello a spirale
- Meta-modello
- Supportato da tool(visuali) in ogni fase
- Processo prescrittivo per eccellenza

1.7.1 Le iterazioni

- Possibili diverse iterazioni che terminano con il rilascio del prodotto
- Ogni iterazione consiste di quattro fasi (anche ripetute più volte) che terminano con una milestone (= rilascio di artefatti soggetti a controllo)
- Ogni fase è costituita da diverse attività:
 - Requisiti (R)
 - Analisi (A)
 - Design (D)
 - Codifica (C)
 - Testing (T)

1.7.2 Le fasi

- Inception: studio di fattibilità, requisiti essenziali del sistema, risk analysis
- Elaboration: sviluppa la comprensione del dominio e del problema, gli Use Case della release da rilasciare, l'architettura del sistema
- Construction: Design (in UML), codifica e testing del Sistema
- Transition: Messa in esercizio della release nel suo ambiente (deploy), training e testing da parte di utenti fidati

1.8 Sviluppo basato sui componenti

Modello che va nella direzione del riutilizzo del software

Vantaggi	Svantaggi
Riduce la quantità di software da scrivere	Sono necessari dei compromessi: requisiti inizia-
	li potrebbero differire da quelli che si possono
	soddisfare con le componenti disponibili
Riduce i costi totali di sviluppo e i rischi	Integrazione non sempre facile
Consegne più veloci	Spesso i componenti usati sono fatti evolvere
	dalla ditta produttrice senza controllo di chi li
	usa

1.9 Metodi Plan-Driven e Agili

Plan-Driven	Agile
Seguono un approccio classico dell'ingegneria	Rispondere ai cambiamenti dei requisiti in modo
dei sistemi fondato su processi ben definiti e ocn	veloce
passi standard	
	Filosofia del programmare come "arte" piutto-
	sto che processo industriale
	Cosa più importante soddisfare il cliente e non
	seguire un piano (contratto)

Figura 1.1: The Agile Manifesto

1.9.1 Come scegliere?

Metodi plan-driven:

- Sistemi grandi e comploessi, safety-critical o con forti richieste di affidabilità
- Requisiti stabili e ambiente predicibile

Metodi agili:

- Sistemi e team piccoli, clienti e utenti disponibili, ambiente e requisiti volatili
- Team con molta esperienza
- Tempi di consegna rapidi

1.10 DevOps

Metodo di sviluppo evolutivo

Figura 1.2: DevOps

1.10.1 Continuous Integration

La Continuos Integration (CI), o Integrazione Continua, è una pratica di sviluppo software in cui i programmatori integrano frequentemente il proprio lavoro (codice) nel repository condiviso del progetto, in genere diverse volte al giorno.

Capitolo 2

Ingegneria dei requisiti

2.1 Introduzione

Descrivere 'qualcosa' che il sistema dovrà fare (una funzionalità) o un vincolo a cui deve sottostare

- Diversi livelli di astrazione:
 - Descrizione astratta ed imprecisa del sistema
 - Descrizione dettagliata e matematica dello stesso

Che cosa il sistema farà e non come!

E' importante definire i requisiti in modo da evitare difetti in fasi avanzate del progetto, infatti i difetti dovrebbero essere scoperti il più presto possibile, ovvero a livello dei requisiti.

2.2 Classificazione dei requisiti

- Requisiti utente: descrizione in linguaggio naturale delle funzionalità che il sistema dovrà fornire e dei vincoli operativi (sono scritti per (e con) il cliente)
- Requisiti di sistema: descrive in modo dettagliato le funzionalità che il sistema dovrà fornire (sono scritti per gli sviluppatori)
- Requisiti funzionali: descrivono ciò che il sistema dovrà fare, non come ma cosa
- Requisiti non-funzionali: definiscono vincoli sul sistema e sullo sviluppo del sistema, in generale riguardano la scelta di linguaggi, piattaaforme, strumenti, tecniche d'implementazione, ma anche: prestazioni, questioni etiche, ...

Un requisito etico può essere ad esempio che nella realizzazione dell'applicazione verranno utilizzato solo strumenti e servizi 'non proprietari' (es. no Microsoft)

2.2.1 Esempio: Bancomat

In rosso i requisiti funzionali, in blu i requisiti non funzionali

- Il sistema deve mettere a disposizione le funzioni di prelievo, saldo e estratto conto
- Il sistema deve essere disponibile a persone portatori di Handicap, deve garantire un tempo di risposta inferiore al minuto, e deve essere sviluppato su architettura X86 con sistema operativo compatibile con quello della Banca

- Le operazioni di prelievo devono richiedere autenticazione tramite un codice segreto memorizzato sulla carta
- Il sistema deve essere facilmente espandibile, e adattabile alle future esigenze bancare

2.3 Requirements Engineering

E' il termine usato per descrivere le attività necessarie per raccogliere, documentare e tenere aggiornato l'insieme dei requisiti di un sistema software.

2.3.1 Scopo

Lo scopo primario del RE è la produzione di un documento (il requirement document) che definisca le funzionalità e i servizi offerti dal sistema da realizzare (anche tenerlo aggiornato)

2.3.2 Processo iterativo

• Elicitation:

- Ottenere, estrarre, ricavare, tirar fuori i requisiti dal cliente e da altri partecipanti
- Il primo passo è identificare gli stakeholders¹
- Intervise, osservazioni sul luogo di lavoro, questionari, analisi dei prodotti dei competitors, workshop (brainstorming)
- Studio/analisi di leggi e regolamenti, help-desk reports, 'change requests' di prodotti analoghi, 'lessons learned' in progetti simili, ...

• Analisi dei requisiti:

- I bisogni (user needs) degli stakeholders raccolti durante la fase di elicitation sono analizzati e raffinati
- Si cerca di capire se i requisiti sono corretti
- Si cercano di identificare i "missing requirements"
- Si identificano requisiti poco chiari
- Si risolvono i requisiti "contradditori o in conflitto"

¹Stakeholder: persona veramente interessata allo sviluppo del progetto

- Viene stabilità la priorità (prioritizzazione):
 - * Per sapere cosa "tagliare" se non tutti potranno essere realizzati
 - * Scala numerica
 - * Scala MoSCoW:
 - · Must have: requisiti obbligatori
 - · Should have: requisiti importanti ma non indispensabili
 - · Could have: requisiti desiderabili ma non necessari

• Definizione e specifica:

- Definizione dei requisiti utente: costituisce un contratto fra le parti
- Specifica dei requisiti di sistema: costituisce "starting point" per la fase di design

• Validazione:

- Esame della definizione/specifica dei requisiti per valutarne la qualità
- Di solito la convalida o validazione si effettua mediante 'formal peer reviewes'
- Scrivere dei casi di test a partire dai requisiti
- Sviluppare un prototipo

• Requirements Management:

- Approvazione di alcune richieste di cambio dei requisiti
- Negoziazione con il cliente
- Impact analysis per i cambi richiesti
- Tenere allineati i requisiti e il codice (e casi di test)
- Tracciare il progresso di un progetto

2.4 Proprietà dei requisiti

- Validità-correttezza
- Consistenza: non ci sono requisiti contradditori
- Completezza: tutti gli aspetti che il cliente vuole sono coperti nei requisiti (in teoria)
- Realismo: non si chiede l'impossibile
- Inequivocabilità (Unambiguos): ogni requisito dovrebbe avere solo un interpretazione
- Verificabilità: i requisiti vanno espressi in modo che siano testabili
- Tracciabilità:
 - Ogni funzionalità implementata nel sistema deve poter essere fatta risalire a dei requisiti in modo semplice
 - Ogni requisito nella requirement specification deve corrispondere ad uno nella requirement definition

2.5 Template/Schema dei requisiti

Conviene attenersi a questo Schema

<id>il <sistema> deve <funzione>

Es. R1. Il sistema deve gestire tutti i regitratori di cassa del negozio (non più di 20)

2.6 Analista software

L'analista software o di sistema è la persona che:

- si occupa dell'elicitazione dei requisiti
- analizza i requisiti
- scrive il documento dei requisiti (definizione e/o specifica)
- Comunica/spiega i requisiti a sviluppatori e altri stakeholder

Alcune competenze che un analista dovrebbe avere:

- Arte della negoziazione
- Stabilire una strategia (problem solving)
- Giusta capacità di imporsi
- Ascoltare attentantemente
- Dono della sintesi
- Padronanza del linguaggio naturale
- Buona conoscenza del dominio (ad esempio in ambito medico o automobilistico)

2.6.1 Consigli per un'intervista

- 1. Fare molte domande
- 2. Ascoltare bene
- 3. Mettere in discussione i quantificatori universali: 'tutto, ogni, sempre, ...'
- 4. Annotare tutte le risposte

2.6.2 Importanza della comunicazione

- Elicitation = Attività molto delicata perchè mette in comunicazione due o più persone di realtà anche molto diverse
- Frequenti incomprensioni, che si ripercuotono sulla qualità dei requisiti

Occore fare molta attenzione a:

- Diversità di significato che si attribuisce ai termini \rightarrow possibile soluzione definizione del glossario:
 - Per la spiegazione dei termini tecnici
 - Per ridurre l'ambiguità dei termini usati
 - Per "espandere" gli acronimi
- Assunzioni nascoste (Hidden assumptions)
- Verbosità (= sovrabbondanza di parole)
- Mancanza di chiarezza/precisione

2.7 Consigli finali

- Riuso di (parte di) requisiti
- Utilizzo di un glossario comune tra clienti, utenti e analisti
- Utilizzo di un 'buon' template/form
- Utilizzo di un software per la geitone/raccolta e analisi dei requisiti