NOM:	Composition n°1 de mathématiques Calculatrice autorisée	Lundi 11 décembre 2017
2D	Calculati ice autorisee	Durée : 2h00

Exercice 1:

ABCD est un rectangle tel que : $AB=\sqrt{18}-\sqrt{8}$ et $BC=\sqrt{50}-\sqrt{32}$ Ce rectangle est-il un carré ? Justifier en détaillant les étapes de calcul.

Exercice 2:

On considère les deux algorithmes suivants :

Algorithme A
Variables : X, Y, Z, T
Saisir X
Y prend la valeur $X + 4$
Z prend la valeur $Y \times Y$
T prend la valeur $Z-3$
Afficher T

Algorithme B
Variables: X, YSaisir XAffecter à Y la valeur $X \times X$ Affecter à X la valeur $X \times X$

1/ Indiquer ce qu'affiche chacun des deux algorithmes lorsqu'on saisit X=-2 ? Qu'observez-vous ? 2/ Cette observation est-elle vérifiée quelle que soit la valeur de X saisie ? Justifier.

Exercice 3:

Agnès (A), Boris (B) et Carine (C) sont assis à une table selon le schéma ci-dessous. Il y a trois consignes :

- 1) Boris est assis entre Agnès et Isabelle (I)
- 2) Carine est assise entre Jules (J) et Agnès
- 3) La position de Kim (K) vérifie : $\overrightarrow{BK} = \overrightarrow{BC} + \overrightarrow{BI}$

<u>Règle</u>: Lorsqu'une personne (P) est assise entre deux personnes (L) et (N), alors P est le milieu de [LN]

- a) Placer Isabelle, Jules et Kim sur le plan de table schématisé ci-dessous
- b) Traduire les consignes 1 et 2 par une égalité vectorielle
- c) Montrer que ACKB est un parallélogramme.

Exercice 4:

ABC est un triangle quelconque. I, J et K sont les milieux respectivement de [AB], [BC] et [AC].

- 1) Montrer que AIJK est un parallélogramme
- 2) Montrer que : $\overrightarrow{AJ} + \overrightarrow{BK} + \overrightarrow{CI} = \overrightarrow{0}$

Exercice 5:

Soit *h* la fonction définie par : $h(x) = \frac{x-1}{2x+1}$

- 1) Déterminer l'ensemble de définition de h
- 2) Les points suivants appartiennent-ils à C_h la courbe représentative de h ?

$$A(-2;1); B(-\frac{1}{2};-2); C(\sqrt{2};0,1)$$

3) Déterminer algébriquement les antécédents éventuels de $\sqrt{3}$ et de $\frac{1}{2}$.

Exercice 6:

La fonction f est définie sur \mathbb{R} par : $f(x) = x^3 + x^2 - 4x - 4$.

- 1) Montrer que pour tout x de \mathbb{R} , $f(x) = (x^2 4)(x + 1)$.

 Dans la suite de cet exercice, on travaillera sur $D_f = [-3; 3]$.
- 2) Etablir le tableau de valeurs de f sur l'intervalle [-3;3] avec un pas de 0,5.
- 3) Tracer la courbe représentative de f, notée C_f , sur [-3;3] dans un repère orthogonal $(0;\vec{\iota};\vec{\jmath})$. On choisira 2 cm pour unité en abscisse et 0,5 cm pour unité en ordonnée.
- 4) Déterminer graphiquement les antécédents éventuels de 0 par f sur [-3;3].
- 5) Résoudre sur [-3;3] l'équation : (E_1) : f(x) = 0. Cela confirme-t-il les valeurs trouvées à la question 4 ?
- 6) Déterminer graphiquement les solutions de (I_1) : f(x) > 0 sur [-3;3].
- 7) On donne la fonction g définie sur [-3;3] par g(x)=2x-4. Tracer la courbe représentative de g_a notée C_a .
- 8) Résoudre graphiquement et algébriquement (E_2) : f(x) = g(x) sur [-3;3].
- 9) Résoudre graphiquement : (I_2) : f(x) > g(x) sur [-3;3].

Barème probable :

Ex1: 2,5 points Ex2: 2,5 points Ex3: 2,5 points Ex4: 2,5 points Ex5: 3 points Ex6: 7 points

Nom :			
2ndes	Devoir Surveillé de mathématiques n°2	Durée : 2 h	
14 nov 2017		Pas de calculatrice	

Exercice I (3,5 points): Calculer les expressions suivantes. On donnera le résultat sous la forme la plus simple possible :

$$A = (5\sqrt{2} + 2)^2 - 3\sqrt{2}(4 - \sqrt{2})$$
 et $B = \frac{(\sqrt{7} + 2)^2}{2\sqrt{7} - 2}$

Exercice 2 (2 points):

Soient a, b, c et d des nombres réels. Dans chaque cas ci-dessous, compléter directement la colonne de droite par : $P \Rightarrow Q$; $Q \Rightarrow P$ ou $P \Leftrightarrow Q$

P	Q	$P \Rightarrow Q; Q \Rightarrow P \text{ ou } P \Leftrightarrow Q$
$\overrightarrow{AB} = \overrightarrow{CD}$	AB = CD	
$\overrightarrow{AB} = 2\overrightarrow{AI}$	I milieu de [AB]	
<i>x</i> > −1	$x \ge 0$	
C appartient au cercle de diamètre [AB]	ABC est rectangle en C	
Je vis en Espagne	Je vis à Madrid	
$a^2 = b^2$	a = b	
$x \in [-1; 3,5] \cup [\sqrt{3}; 7]$	<i>x</i> ≤ 7	
a + c = b + d	a = b et $c = d$	

Exercice 3 (5.5 points): Pour tout nombre x réel, on pose :

$$A(x) = 3(x-2)^2 - x^2 + 4 + (x-1)(x+2)$$

$$B(x) = (4-2x)^2 - (x+3)^2 + (3x-1)^2$$

- 1) Développer, réduire et ordonner les expressions précédentes.
- 2) Montrer que pour tout x réel, $B(x) = 12\left[\left(x \frac{7}{6}\right)^2 \frac{25}{36}\right]$
- 3) Factoriser B(x).
- 4) Résoudre dans \mathbb{R} les équations suivantes : (On choisira la forme de A(x) et B(x) la plus adaptée)

$$(E_1)$$
: $A(x) = 14$; (E_2) : $B(x) = \frac{25}{3}$ et (E_3) : $B(x) = 0$

Exercice 4 (4 points):

Soit ABC un triangle non aplati.

- 1) Construire le point D tel que $\overrightarrow{AD} = 3 \overrightarrow{BA}$.
- 2) Soit le point E tel que $3 \overrightarrow{CE} = 2 \overrightarrow{BE} + 3 \overrightarrow{AB}$. Montrer que $\overrightarrow{CE} = 2 \overrightarrow{BC} + 3 \overrightarrow{AB}$, et construire le point E.
- 3) Soit le point F tel que 3 $\overrightarrow{FC} = 2 \overrightarrow{FB}$. Exprimer \overrightarrow{FC} en fonction de \overrightarrow{CB} et construire le point F.
- 4) Que peut-on en conclure pour le quadrilatère AEFD? Justifier.

Exercice 5 (3 points):

Soit ABCD un quadrilatère quelconque.

- 1) Démontrer que $\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AD} + \overrightarrow{CB}$
- 2) On appelle I le milieu de [AC], J celui de [BD]. Démontrer que $\overrightarrow{IB} + \overrightarrow{ID} = 2 \overrightarrow{IJ}$
- 3) En déduire que $\overrightarrow{AB} + \overrightarrow{CD} = 2 \overrightarrow{IJ}$

Exercice 6 (2 points):

5 adultes et 6 enfants déjeunent au restaurant et commandent chacun un menu. Les adultes commandent également une bouteille de vin à 7 euros. La note s'élève à 143,50 euros. Sachant que le prix d'un menu enfant est le tiers du prix d'un menu adulte, déterminer le prix d'un menu enfant.

I) Soient A, B, C et D quatre points du plan distincts deux à deux.

Compléter ci-dessous la colonne « réponse » avec l'un des choix suivants : $P \Rightarrow Q$; $Q \Rightarrow P$; $P \Leftrightarrow Q$

P	Q	Réponse
$\overrightarrow{AB} = -2\overrightarrow{AC}$	A, B et C sont alignés	
AB = 2AC	$\overrightarrow{AB} = 2 \overrightarrow{AC}$	
C est l'image de D par la translation de vecteur \overrightarrow{AB}	ABCD est un parallélogramme	
Il existe un réel k non nul tel que $\overrightarrow{AB} = k \overrightarrow{CD}$	(AB) // (CD)	
I est le milieu de [AB]	$\overrightarrow{AI} = \overrightarrow{IB}$	
ABCD est un carré	ABCD est un losange	
AI = IB	I est le milieu de [AB]	
x> 0	$x \ge 0$	

II) Soit ABCD un parallélogramme et soit I le milieu de [CD].

- 1) Construire les points M et N tels que : $\overline{AM} = \frac{3}{2} \overline{AB}$ et $\overline{AN} = 3 \overline{AD}$.
- 2) Exprimer \overline{MN} et \overline{BI} en fonction de \overline{AB} et \overline{AD} .
- 3) Que peut-on dire des droites (MN) et (BI) ?
- 4) Exprimer \overline{CM} et \overline{CN} en fonction de \overline{AB} et \overline{AD} .
- 5) Que peut-on en déduire pour les points C, M et N?

III) Soit ABC un triangle et I le milieu de [AC]

- 1) Construire les points R et S tels que : $\overrightarrow{BR} = -\frac{1}{4}\overrightarrow{CB}$ et $\overrightarrow{AS} = \frac{3}{2}\overrightarrow{AB}$.
- 2) Montrer que *R* est le milieu de [*SI*].

IV) On considère la fonction f définie sur \mathbb{R} par $f(x)=x^2-6x-3$

- 1) Montrer que pour tout réel x, $f(x)=(x-3)^2-12$
- 2) En déduire, pour tout réel x, une forme factorisée de f(x).
- 3) Utiliser la forme adéquate de l'expression f(x) pour résoudre algébriquement dans $\mathbb R$ les équations suivantes : (E_1) : f(x) = -12 $(E_2): f(x)=0$ $(E_3): f(x)=-15$

V) Résoudre dans IR les équations suivantes :

$$(E_4): (1+x)^2 = 1-x^2$$

 $(E_5): \frac{3}{x+2} = \frac{2}{x+3}$

$$(E_6): \frac{x^2-2}{(x-1)(x-2)} - \frac{1}{x-1} + \frac{1}{x-2} = 0$$

$$(E_7): \frac{x^2+4x+4}{x-2} = x+6+\frac{16}{x-2}$$

$$(E_8): (1-2x)^2+4x^2-1=6x-3$$