

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

LESSON 14

SPECTRUM ANALYSIS OF CONTINUOUS SIGNALS

PhD. Nguyen Hong Quang

Assoc. Prof. Trinh Van Loan

PhD. Doan Phong Tung

Computer Engineering Department

□ CONTENT

- 1. Signal representation in the frequency domain.
- 2. Spectral analysis of a continuous cyclic signal.
- 3. Spectral analysis of a continuous non-periodic signal.

□ Lesson Objectives

After completing this lesson, you will be able to understand the following topics:

- Signal representation in the frequency domain.
- Spectral analysis of a continuous periodic signal.
- Spectral analysis of a continuous non-periodic signal.

1. Signal representation in the frequency domain

Analysis of white light (sunlight) using a prism:

- Prism is used to analyze white light into monochromatic light
- Color range created : spectrum [Isaac Newton]

The idea of signal analysis in the frequency domain

- To study the response of a linear system to any signal x(n):
 - First we need to decompose the signal x(n) into a linear combination of simple signals.

$$x(n) = a_1 x_1(n) + a_2 x_2(n) + ...$$

- Simple signals $\delta(n)$; $\cos(\omega n + \varphi)$; $e^{j\omega n}$
- Frequency analysis of a signal is the breakdown of the signal into its frequency (sinusoidal) components.
- The role of the prism will be performed by analytical tools:
 - Fourier series
 - Fourier transform

Some terms

- Spectrum: refers to the frequency content of the signal.
- Frequency analysis / spectrum analysis: is the process of obtaining the spectrum of a signal using mathematical tools.
- Spectral evaluation: is the process of determining the spectrum of a signal in practice, based on the actual measurement of the signal.
- Spectrum analyzer: is a hardware device or software program used to determine

the signal spectrum

2. Spectral analysis of cyclic continuous signal

- x(t) cyclic with period T_p , frequency $F_0 = 1/T_p$, $\omega_0 = \frac{2\pi}{T_p}$
- Basic function: $e^{j\omega_k t} = e^{j2\pi k F_0 t} v \acute{\sigma} i \omega_k = k\omega_0 = \frac{k2\pi}{T_p}$
- Fourier series for periodic signals:

Synthetic equation

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k F_0 t}$$

Analytical Equation

$$c_k = \frac{1}{T_p} \int_{T_p} x(t) e^{-j2\pi k F_0 t} dt$$

Dirichlet's conditions

- The signal x(t) must have an absolute integral in one period.
- The signal x(t) contains a finite number of maximums and minimums in a period.
- The signal x(t) has a finite number of discontinuities in one period.

$$\frac{1}{T_p} \int_{T_p} |x(t)| \, dt < \infty$$

Real cyclic signal

• c_k and c_{-k} are conjugate complex numbers : $c_k = |c_k| e^{j\theta_k}$, $c_{-k} = |c_k| e^{-j\theta_k}$

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k F_0 t}$$

$$x(t) = c_0 + 2\sum_{k=1}^{\infty} |c_k| \cos(2\pi k F_0 t + \theta_k)$$

$$\begin{aligned} a_0 &= c_0 \\ a_k &= 2|c_k|cos\theta_k \end{aligned} \qquad x(t) = a_0 + \sum_{k=1}^{\infty} (a_k\cos 2\pi k F_0\,t\, - b_k\sin 2\pi k\, F_0 t\,) \\ b_k &= 2|c_k|sin\theta_k \end{aligned}$$

Example: spectrum analysis of a square pulse signal

• Square pulse signal continuously cyclic period T_p , pulse width τ :

- Determine the Fourier series:
 - The frequencies $\omega_{
 m k}$
 - Amplitude A_k and phase angle φ_k corresponding to frequency ω_k
- Plot amplitude and phase spectrum

Solution

$$\omega_k = k\omega_0 = \frac{k2\pi}{T_p}$$

$$c_0 = \frac{A\tau}{T_p}$$

$$c_0 = \frac{A\tau}{T_p} \qquad c_k = \frac{A_\tau}{T_p} \frac{\sin \pi k F_0 \tau}{\pi k F_0 \tau}$$

$$k=\pm 1,\pm 2,...$$

$$c_{k} = \frac{1}{T_{p}} \int_{T_{p}}^{T_{p}} x(t) e^{-j2\pi k F_{0}t} dt$$

$$= \frac{1}{T_{p}} \int_{-\tau/2}^{\tau/2} e^{-j2\pi k F_{0}t} dt$$

$$= \frac{1}{T_{p}} \left[\frac{e^{-j2\pi k F_{0}t}}{-j2\pi k F_{0}t} \right]_{-\tau/2}^{\tau/2}$$

 c_k are samples of the function $\frac{\sin\phi}{a}$

Comment

- Comment:
 - Line spectrum
 - x(t) even $\rightarrow c_k$ are the real values \rightarrow phase spectrum is zero or equal to π
- ullet So instead of plotting the amplitude and phase spectra separately, just plot c_k on a graph

Fixed T_p , changed τ

- The effect of reducing τ : spread the signal power over the frequency range
- The distance between two adjacent spectral lines is $F_0 = {}^1\!/_{T_p}$ Hz , independent of the value of pulse width τ .

Fix τ and change the period T_p

- ullet The distance between spectral lines decreases with increasing $T_{\rm p}$.
- The amplitude of the spectral lines decrease
- When $T_p \to \infty$:
 - The signal becomes acyclic
 - The distance between the spectral lingradually approaches 0, so the spectromes a continuous function

The spectrum of a non-periodic signal is the envelope of the spectral lines of the corresponding periodic signal

3. Spectral analysis of a non-periodic continuous signal

s t

Determine the spectrum of x(t) from the spectrum of $x_p(t)$ by calculating the limit $T_p \to \infty$

Synthetic Equation (Inverse Fourier Transform)

$$x(t) = \int_{-\infty}^{\infty} X(F)e^{j2\pi Ft}dF$$

Analytical Equation (Forward Fourier Transform)

$$X(F) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi Ft}dt$$

Example

$$x(t) = \begin{cases} A, & |t| \le \tau/2 \\ 0, & |t| > \tau/2 \end{cases}$$

$$X(F) = \int_{-\tau/2}^{\tau/2} Ae^{-j2\pi Ft} dt = A\tau \frac{\sin \pi F\tau}{\pi F\tau}$$

- The spectrum of a rectangular signal is the envelope of the line spectrum (Fourier coefficients) of the periodic square pulse signal.
- The zero crossings of X(F) occur at an integer multiple of $^1\!/_{\tau}$

Effect of rectangular pulse width τ

 As the pulse width \(\tau\) increases, the frequency domain representation is compressed.

And vice versa, when the pulse width
 τ decreases, the representation on
 the frequency will be stretched, the
 energy will gradually shift to high
 frequencies.

4. Summary

- Signals can be analyzed into or synthesized from frequency components using Fourier's analysis tools.
- The spectrum of a continuous cyclic signal is a discrete spectrum (line spectrum), while a non-periodic continuous signal has a continuous spectrum.
- The Fourier synthesis and analysis equation for a non-periodic continuous signal can be derived from a periodic signal with period T_p when considering $T_p \to \infty$

5. Exercise

- Exercise 1
 - \Box Given the signal $x_a(t)$ as shown below:

- a. Determine the Fourier series c_k of this signal knowing $T_p=0.25$ seconds, $au=0.2T_p$
- b. Draw the function c_k in the cases $\tau = 0.2T_p$, $\tau = 0.1T_p$, $\tau = 0.05T_p$, thereby commenting on the change of the signal spectrum shape when reducing the rectangular pulse width τ .

Homework

• Exercise 2

- a) Determine and plot the spectrum of the rectangular pulse with τ = 0.25 seconds.
- b) Determine and plot the spectrum of the rectangular pulse with τ = 0.125 seconds. From there, comment on the change of signal spectrum shape when reducing rectangular pulse width τ .

Next lesson. Lesson

SPECTRUM ANALYSIS OF DISCRETE SIGNALS

References:

- Nguyễn Quốc Trung (2008), Xử lý tín hiệu và lọc số, Tập 1, Nhà xuất bản Khoa học và Kỹ thuật, Chương 1 Tín hiệu và hệ thống rời rạc.
- J.G. Proakis, D.G. Manolakis (2007), Digital Signal Processing, Principles, Algorithms, and Applications, 4th Ed, Prentice Hall, Chapter 1 Introduction.

Wish you all good study!