

HPCA 2025 Tutorial

Topic 4. QuFEM: Fast and Accurate Quantum Readout Calibration Using the Finite Element Method

Speaker: Kaiwen Zhou

College of Computer Science and Technology Zhejiang University (ZJU)

https://janusq.github.io/HPCA_2025_Tutorial/

Outline of Presentation

Background and challenges

- Overview of QuFEM
- QuFEM characterization and calibration
- Experiment
- API of QuFEM

Background

Quantum readout is an operation to read the information from quantum bits to classical bits.

Readout error is significant on current quantum hardware.

Noise on 127-qubit IBM Sherbrooke quantum device

Noise on 10-qubit Tianmu quantum device

Background

Implementation of readout on superconducting qubits

Source of readout error

from 1 to 0

Relaxation error

from 0 to 1

Excitation error

from 1/0 to 0/1

Crosstalk

e.g. Das, et al. JigSaw: Boosting Fidelity of NISQ Programs via Measurement Subsetting. MICRO 2021

State-dependent Readout Error

Readout errors vary in different combinations of measured qubits due to crosstalk.

Crosstalk has different frequencies when Q2 is measured 0, 1 or not measured

Example of state-dependent and readoutdependent noises on the IBMQ Perth quantum device.

state of q_3

The readout output of qubits has correlations similar to the entanglement, making the calibration difficult.

Basic Matrix-based readout calibration

Ideal readout

0.6 0.2 0.1

Ideal distribution State vector (ideal program output)

Readout with noise

0.5 0.1 0.09 0.31

Noisy distribution (noisy program output)

Matrix-based readout error calibration

Noise

matrix

0.09 0.31

Noisy

distribution

0.6

0.1

Calibrated distribution

The size exponentially increases!

Calibration matrix of a 5-qubit readout

 $2^5 \times 2^5$

Basic Matrix-based readout calibration

Step 1. Matrix characterization

Prepares qubits to different basis states and apply measurement.

Fill in a noise matrix.

$$M = \begin{bmatrix} 0.6 & 0.1 & 0.2 & 0.1 \\ 0 & 0.7 & & & \\ 0.2 & 0.2 & 0.6 & 0 \\ 0 & 0.1 & 0.1 & 0.8 \end{bmatrix}$$

Inverse the noise matrix

$$M^{-1} =$$

Basic Matrix-based Readout Calibration

Step 1. Matrix characterization

Prepares qubits to different basis states and apply measurement.

Fill in a noise matrix.

$$M = \begin{bmatrix} 0.6 & 0.1 & 0.2 & 0.1 \\ 0 & 0.7 & & & \\ 0.2 & 0.2 & 0.6 & 0 \\ 0 & 0.1 & 0.1 & 0.8 \end{bmatrix}$$

Inverse the noise matrix

$$M^{-1} =$$

Calibration matrix

Step 2. Calibration for any input

Represent the measured distribution as a vector.

Apply matrix-vector multiplication.

$$\begin{bmatrix} 0.6 & 0.1 & 0.2 & 0.1 \\ 0 & 0.7 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.6 & 0 \\ 0 & 0.1 & 0.1 & 0.8 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 0.6 \\ 0.1 \\ 0.2 \\ 0.1 \end{bmatrix} = \begin{bmatrix} 0.8 \\ 0.1 \\ 0 \\ 0.1 \end{bmatrix}$$

Complexity Analysis

Step 1. Matrix characterization

Prepares qubits to different basis states and apply measurement.

 2^N circuits are executed to measure qubits on all basis states.

Fill in a noise matrix.

The size of the noise matrix is $2^N \times 2^N$.

Inverse the noise matrix

Calcauting the inverse has $O(4^N)$ complexity.

Step 2. Calibration for any input

Represent the measured distribution as a vector.

The transformation has linear complexity.

Apply matrix-vector multiplication.

The multiplication has $O(4^N)$ complexity.

8.8 TB and 10 hours for a 32-qubit calibration on a server with AMD EPYC 2.25GHz 64-core CPUs

Limitations of Current Methods

IBU (Google Science 2021) Realizing topologically ordered states on a quantum processor.

Crosstalk makes the matrix not simple tensor-product result.

Real calibration matrix

Single-qubit matrix

Use tensor product of a series of single-qubit metamatrices

Fail to calibrate on 80qubit readout output

#qubit

Fast but not accurate: ignore the qubit interactions.

M3 (IBM PRA 2021): Scalable mitigation of measurement errors on quantum computers

Before pruning Pruning based on After pruning program output

Use a sparsity-aware method to prune on the matrix under a threshold of Hamming distance

Require 16PB to calibrate a 85-qubit result. (4 times the Fugaku supercomputer)

qubit

Accurate but not fast: many matrix elements cannot be ignored

Outline of Presentation

- Background and challenges
- Overview of QuFEM
- QuFEM characterization and calibration
- Experiment
- API of QuFEM

Calibration based on Finite Element method (FEM)

Classical Finite Element Method

- ① partitions the sponge into lattices
- ② analyzes the state of each lattice independently
- 3 simulate the interaction
- (4) update the state of sponge

Quantum Finite Element Method

- 1 partitions qubits into groups
- ② analyze the noise in each group independently
- ③ simulate the interaction
- 4 update the calibration result of qubits

A divide-and-conquer strategy to calibrate measured distribution

Calibration formulation

QuFEM reformulates the calibration as an iterative process with a series of sub-noise matrices.

- Reason for fast: adopt finite element method
- Reason for accurate: dynamically generate noise matrices for different measured qubits

Input:

measured qubits

measured distribution

Iteration 1:

grouping scheme

formulation

Iteration 2:

grouping scheme

formulation

Input:

measured qubits

measured distribution

Input:

measured qubits

measured distribution

Iteration 1:

grouping scheme

formulation

Matrices are generated according to the measured qubits.

Since crosstalk varies in different combinations of measured qubits

Input:

measured qubits

measured distribution

Iteration 1:

grouping scheme

formulation

Iteration 2:

grouping scheme

formulation

Outline of Presentation

- Background and challenges
- Overview of QuFEM
- QuFEM characterization and calibration
- Experiment
- API of QuFEM

Technique 1: determine the grouping scheme

Data collection

Run benchmarking circuits.

Possible states of a qubit in a benchmarking circuit:

- 0: qubit is set 0 and measured
- 1: qubit is set 1 and measured
- 2: qubit is set 0 or 1 and not measured

Not all qubits are measured to maximize the variety.

Technique 1: determine the grouping scheme

Data collection

Run benchmarking circuits.

Possible states of a qubit in a benchmarking circuit:

- 1: qubit is set 0 and measured
- 2: qubit is set 1 and measured
- 3: qubit is set 0 or 1 and not measured

Not all qubits are measured to maximize the variety.

Qubit partition

Characterize the **interaction** from one qubit to another qubit under different states:

$$interact(q_i. state = x \rightarrow q_i. state = x)$$

=
$$|P(q_j. error = 1 | C1, C2) - P(q_j. error = 1 | C2)|$$

error rate of q_i under C1, C2

average error rate of qzi

C1:
$$q_i$$
. state = x, C2: q_j . state = y

C2:
$$q_i$$
. state = y

Technique 1: determine the grouping scheme

Qubit partition

Construct a weighted qubit graph:

Partitions with a **MAX-CUT solver**:

try to comprehensively capture the interactions between qubits

An Example

Prior knowledge of hardware helps grouping

Readout resonator 1

Readout resonator 2

18-qubit topology

overlapping frequency shift region

- demonstrated in the results from other quantum devices
- can be used as prior knowledge to facilitate the partition.

Technique 2: sub-noise matrix generation

Perform matrix-vector multiplication

Iter. i:
$$P_{i+1} = (M_{i,1} \otimes M_{i,2} \otimes \cdots M_{i,k})^{-1} P_i$$

Matrix generation

Noise matrix formulates the transformation probability from the ideal state to measured state.

								set state			
								00	01	10	11
[0.6	0	0.1	0]				00	0.6	0	0.1	0
$\begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix}$		0.2 0.6	$\begin{bmatrix} 0.1 \\ 0.1 \end{bmatrix}$	=	read state	J	01	0.1	0.7	0.2	0.1
$\begin{bmatrix} 0.2 \\ 0.1 \end{bmatrix}$		0.0	$\begin{bmatrix} 0.1 \\ 0.8 \end{bmatrix}$		state		01	0.2	0.2	0.6	0.1
_						l	11	0.1	0.1	0.1	0.8

Technique 2: sub-noise matrix generation

Perform matrix-vector multiplication

Iter. i:
$$P_{i+1} = (M_{i,1} \otimes M_{i,2} \otimes \cdots M_{i,k})^{-1} P_i$$

Matrix generation

Noise matrix formulates the transformation probability from the ideal state to measured state.

Sub-noise matrices of QuFEM formulates the transformation probability of states inside the qubit groups.

$$M[x][y] = P({q_2, q_3}. read = x | {q_2, q_3}. set = y, q_1 = 2)$$

Transformation probability when q_1 is not measured

Put all together

Characterization

Iteration 1. Run benchmarking circuits.

Iteration 1. Calibrate.

Iteration 2. Partition qubits.

Iteration 2. Calibrate.

distributions, grouping scheme of iteration 2.

Calibration

Input. measured qubits measured distribution

Iteration 1. Generate sub-noise matrices.

Iteration 1. Calibrate.

Iteration 2. Generate sub-noise matrices.

Iteration 2. Calibrate.

Sparse Tensor-Product Engine

Observation

A large number of sparse intermediate vectors is

Implementation

Use a key-value table to store sparse vector

Calculate the tensor product

Aggregate the tensorproduct result

generated in the tensor-product.

 $\otimes \blacksquare \otimes \blacksquare \otimes \blacksquare)$.

X	prob.	1		value	2		value	
$P_1(000)$	0.47	→	00	0.50	\otimes	0	0.99	- 0.47=
$P_1(011)$	0.53		01	-0.02		1	0.01	
	,	•	10	0.01				
			11	0.01			3	$value < \beta$
								' '

For each basis states

- ① calculate the matrix-vector multiplication
- ② calculate the tensor-product
- ③ prune intermediate values
- ④ sum intermediate values to obtain output.

	value	<u>4</u>	X	prob.
000	0.49] → ∑] →	$P_2(000)$	0.48
001	0.01	<u> </u>	$P_2(001)$	6×10 ⁻³
010	-0.01		$P_2(010)$	6×10 ⁻³
100	0.01		$P_2(011)$	0.50
101	10-4		$P_2(111)$	6×10 ⁻³
110	10-4	1		

Prune values < threshold (e.g., 10⁻⁵)

Compute the tensor-product of other basis states

Outline of Presentation

- Background and challenges
- Overview of QuFEM
- QuFEM characterization and calibration
- Experiment
- API of QuFEM

Experiment

Setup

Platform	#Qubits	1-q fidelity	2-q fidelity	Instructions	
Overfor	136	94.6±3.1%	94.6±3.0%	ID,RX,RY,RZ,H,CX	
Quafu	18	95.9±1.3%	95.9±1.3%	ID,RX,RY,RZ,H,CX	
Rigetti	79	99.5±1.1%	90.0±6.4%	CPHASE,XY	
Self-developed	36	99.9±0.1%	98.7±0.8%	U3,CZ	
IBMQ	7	99.9±0.1%	99.2±0.1%	CX,ID,RZ,SX,X	

Evaluated hardware

IBU: KJ Satzinger, et al. Realizing topologically ordered states on a quantum processor. Science 2021

CTMP: Sergey, et al. Mitigating measurement errors in multiqubit experiments. PRA 2021.

M3: Paul D Nation, et al. Scalable mitigation of measurement errors on quantum computers. PRX Quantum 2021.

Q-BEEP: Nathan Wiebe, et al. QBEEP: Quantum Bayesian error mitigation employing Poisson modeling over the hamming spectrum. ISCA 2023.

Baselines

Result

QuFEM reduces the calibration time of the 136-qubit program output from 119.44 hours (IBU) to 169.65 seconds (119.44 \times reduction).

QuFEM shows an average improvement in relative fidelity of 1.003×, 1.2×, and 1.4× compared to M3, CTMP, and IBU, respectively.

Conclusion

- 1. Limitations of prior matrix-based calibration methods: slow and inaccurate
- 2. Finite element method: a divide and conquer strategy
- 3. Detailed techniques to partition qubits and generate noise matrix
- 4. Sparse tensor product engine to speed up the computation

before pressing iter. 2 iter. 3 after pressing after pressing Classical Finite Element Method before pressing lattice group lattices in sponge pressing

Outline of Presentation

- Background and challenges
- Overview of QuFEM
- QuFEM characterization and calibration
- Experiment
- API of QuFEM

API of QuFEM

File:

- JanusQ/examples/ipynb/4_1_readout_calibration_simulator.ipynb
- JanusQ/examples/ipynb/4_2_readout_calibration_realqc.ipynb
- https://janusq.github.io/tutorials/demo/4_1_readout_calibration_simulator
- https://janusq.github.io/tutorials/demo/4_2_readout_calibration_realqc

```
from janusq.calibration.readout_mitigation.qufem import Mitigator
from janusq.calibration.readout_mitigation.qufem.tools import npformat_to_statuscnt

construct mitigator

mitigator = Mitigator(n_qubits=8, n_iters=2)
scores = mitigator.init(benchmark_circuits_and_results, group_size=2,
multi_process=False, draw_grouping=True)

calibrate output of
GHZ circuit

n_qubits = 4
outout_ideal = { '1'*n_qubits: 0.5, '0'*n_qubits: 0.5 }
output_fem = mitigator.mitigate(ghz_error[0], [_ for _ in range(n_qubits) ], cho = 1)
output_fem = npformat_to_statuscnt(output_fem)
```


Thanks for listening

QuFEM: Fast and Accurate Quantum Readout Calibration Using the Finite Element Method

Siwei Tan, Liqiang Lu*, Hanyu Zhang, Jia Yu, Congliang Lang, Yongheng Shang, Xinkui Zhao, Mingshuai Chen, Yun Liang, and Jianwei Yin*