Функциональные исследования внешнего дыхания

Часть 2 — Бодиплетизмография.

Исследование диффузионной способности легких

Кирюхина Лариса Дмитриевна, к.м.н., руководитель направления клиническая физиология, заведующая отделением функциональной диагностики СПб НИИ фтизиопульмонологии

СОДЕРЖАНИЕ

- Бодиплетизмография, принцип измерения
- Показания к бодиплетизмографии
- Противопоказания
- Условия проведения
- Методика исследования
- Основные показатели, оцениваемые при проведении бодиплетизмографии
- Оценка результатов бодиплетизмографии
- Интерпретация результатов бодиплетизмографии
- Исследование диффузионной способности легких
- Показания к проведению исследования диффузионной способности легких
- Противопоказания к проведению исследования диффузионной способности легких
- Условия проведения исследования диффузионной способности легких
- Методы исследования диффузионной способности легких
- Основные показатели
- Оценка результатов
- Заключение
- Рекомендуемая литература

БОДИПЛЕТИЗМОГРАФИЯ, ПРИНЦИП ИЗМЕРЕНИЯ

Одним из методов исследования вентиляционной функции легких является бодиплетизмография (БПГ) или общая плетизмография тела. Бодиплетизиграфическое определение объемов легких, основанное на принципе взаимосвязи между давлением и объемом фиксированного количества газа при постоянной температуре, впервые было проведено в XIX веке (Gad, 1881; Pfluger, 1882). Современная методика, основанная на том же принципе, была разработана A.B.Dubois и соавторами в 1956 г.

Методом общей плетизмографии измеряют сопротивление дыхательных путей (R_{аw}), являющееся прямой объективной характеристикой их просвета и статические легочные объемы, которые нельзя определить с помощью спирометрии.

Измерение бронхиального сопротивления (R_{aw})

Общая плетизмография

Измерение общей емкости легких (ОЕЛ) и ее структуры

Метод БПГ основан на законе Бойля-Мариотта, который гласит, что объем определенного количества газа при постоянной температуре изменяется обратно пропорционально давлению. Таким образом, произведение давления газа на его объем при постоянной температуре есть величина постоянная:

$$P \times V = const$$

Измерения проводятся при дыхании испытуемым через пневмотахографическую трубку в герметизированной кабине бодиплетизмографа после выравнивания давления внутри кабины с окружающим (атмосферным). Непосредственно измеряются поток воздуха (V¢), ротовое давление (P_m) и давление в камере (P_{box}).

Измерение бронхиального сопротивления (R_{aw} – resistance of airways)

R_{аw} измеряют при спокойном дыхании.

R_{аw} определяется как отношение альвеолярного давления (Р_A) к объемной скорости движения (потоку) воздуха у рта:

$$R_{aw} = P_A / V \phi$$

При дыхании в герметичной кабине возникающие в ней колебания давления P_{box} пропорциональны P_A . При вдохе объем легких увеличивается, P_A уменьшается, а так как количество воздуха в кабине постоянно, происходит его компрессия и P_{box} растет. При этом на экране дисплея в координатах V¢- P_{box} регистрируются "петли" бронхиального сопротивления, наклон которых к оси давления характеризует величину R_{aw} .

«Петля» бронхиального сопротивления \mathbf{R}_{aw}

Одновременно регистрируется пневмотахограмма и колебания P_{box} . Запись имеет вид петли, наклоненной к оси давления, угол наклона которой характеризует величину R_{aw}

Измерение внутригрудного объема (ВГО)

Измерение Р_т и Р_{ьох} при перекрытой дыхательной трубке позволяет определить также внутригрудной объем воздуха, так как образуются два замкнутых объема объем воздуха в легких (незначительным объемом газа в желудочно-кишечном тракте пренебрегают и оставшийся объем камеры. По закону Бойля-Мариотта произведение давления на объем при постоянной температуре величина постоянная. Регистрируя колебаний Р_м и Р_{ьох}, а также зная объем камеры, прибор автоматически рассчитывает объем воздуха, находящийся в легких на уровне спокойного выдоха - ВГО.

ПОКАЗАНИЯ К ПРОВЕДЕНИЮ БОДИПЛЕТИЗМОГРАФИИ

- 1. Определение варианта нарушений механики дыхания (обструктивный, рестриктивный, смешанный).
- 2. Определение уровня и характера обструкции.
- 3. Определение наличия и степени гиперинфляции.
- 4. Оценка прогноза заболевания.
- 5. Предоперационная оценка при проведении оперативных вмешательств на легких.
- 6. Мониторинг течения заболевания и эффективности терапии.

ПРОТИВОПОКАЗАНИЯ

- Отсутствие контакта с пациентом (нежелание сотрудничества, дети младшего возраста, умственно неполноценные лица, наличие языкового барьера, и др.).
- ✓ Заболевания, при которых невозможно или противопоказано выполнение дыхательных маневров с максимальной амплитудой (переломы ребер, межреберная невралгия, миастения, центральные и периферические параличи с поражением дыхательных мышц, тяжелая легочно-сердечная недостаточность, послеоперационный период и т.п.).
- Травмы и заболевания челюстно-лицевого аппарата
- Ø Острые респираторные заболевания (относительное).
- Клаустрофобия
- Изичие приборов, устройств или физическое состояние пациента, при котором невозможно герметичное закрытие кабины (например, при непрерывном введении лекарств)
- Постоянная кислородотерапия (во время исследования пациент не должен дышать через канюли или маску).

УСЛОВИЯ ПРОВЕДЕНИЯ БОДИПЛЕТИЗМОГРАФИИ

Отмена бронхолитической терапии:

b₂-агонистов короткого действия — накануне или за 6 –8 часов до исследования;
 b₂-агонистов пролонгированного действия — за 12 часов до исследования;
 пролонгированных теофиллинов — за 24 часа до исследования

В случае несоблюдения этого в протоколе должны быть указаны препараты и время их последнего приема

ЧИсследование проводится до или не менее чем через 7 дней после *бронхоскопии* (исключение – необходимость обследования непосредственно перед операцией на легких).

Пациенту рекомендуется воздержаться от обильной еды не менее, чем за 2 часа до исследования, крепкого чая, кофе.

МЕТОДИКА ИССЛЕДОВАНИЯ

- 1. Пациента усаживают в специальную кабину с постоянным объемом воздуха и герметично закрывают.
- 2. Пациенту предлагают закрыть нос зажимом, плотно обхватить губами и зубами загубник и спокойно дышать через загубник. На измерения оказывают влияние дряблость щек, губ, полости рта, в связи с чем пациент обязательно должен плотно придерживать руками щеки и подбородок. Вялость губ может быть вызвана удалением зубных протезов, поэтому не рекомендуется снимать их перед исследованием.
- 3.Во время исследования с помощью пневмотахографа регистрируется вдыхаемый и выдыхаемый пациентом поток воздуха. С помощью сенсора давления фиксируется изменение давления воздуха в камере (P_{box}), так как движение грудной клетки во время дыхания вызывает в камере колебания давления. Кроме того, измеряется давление в ротовой полости (P_m).

4. В конце одного из выдохов, на уровне спокойного выдоха, дыхание пациента кратковременно прерывается путем закрытия дыхательной трубки специальным клапаном. При закрытой дыхательной трубке пациент "дышит" поверхностно и часто (приблизительно 60 дыханий в 1 мин). При этом воздух, содержащийся в легких пациента, на выдохе сжимается, а на вдохе разрежается. В это время производятся измерения P_m (эквивалент альвеолярного давления P_A) и P_{box} (колебания P_{box} являются отображением изменения ВГО). Во время перекрытия потока в координатах (P_m, P_{hox}) регистрируется кривая давления перекрытия.

ОСНОВНЫЕ ПОКАЗАТЕЛИ, ОЦЕНИВАЕМЫЕ ПРИ ПРОВЕДЕНИИ БОДИПЛЕТИЗМОГРАФИИ Схема структуры общей емкости легких

-----институт фтизиопульмонологии» Минздрава России

Параметры БПГ, которые получают путем измерения:

- Внутригрудной объем легких -ВГО,
- Жизненная емкость легких -ЖЕЛ,
- Резервный объем выдоха РОвыд,
- Емкость вдоха Евд,
- Бронхиальное сопротивление общее Raw или Rtot,
- Бронхиальное сопротивление вдоха Rin,
- Бронхиальное сопротивление выдоха Rex.

Параметры БПГ, которые получают путем вычисления:

• общая емкость легких - ОЕЛ

OEЛ = BГOcp + Евд макс;

• остаточный объем легких - ООЛ

OOЛ = OEЛ - ЖЕЛмакс;

• ООЛ/ОЕЛ.

ОЦЕНКА РЕЗУЛЬТАТОВ БОДИПЛЕТИЗМОГРАФИИ

Для выявления нарушений и оценки их выраженности полученные данные сопоставляют с должными величинами, полученными для популяции здоровых лиц. Должные определяются полом, возрастом и ростом обследованного. В настоящее время общепринятой является система должных величин Европейского общества угля и стали (European Communnity for Steel and Coal, 1993).

.

Целесообразно оценивать попадание фактических значений ВГО, ОЕЛ, ООЛ, ЖЕЛ (полученных при исследовании) в диапазон значений нижняя граница нормы (НГН) — верхняя граница нормы (ВГН):

 $H\Gamma H = должное$ значение — 1,645 × σ ,

ВГН = должное значение + 1,645 \times σ ,

где σ – стандартное отклонение от среднего.

Вариант градаций отклонения от нормы

Показатели	Единицы	Границы	Условная	ИЗМЕНЕНИЯ		
	измерения	нормы	норма	умеренные	значительные	резкие
ОЕЛ	% долж.	< 115 >85	116 -125 85-81	126 -135 80-71	136 -145 70-60	> 145 <60
ООЛ	% долж.	<130 >85	>130<140 <85≥80	141 -190 <80≥70	191 -230 <70≥50	> 230 <50
ООЛ/ОЕЛ	% долж.	≥ 130	>130<140	141-170	171-210	>210
ВГО	% долж.	<130 >85	>130<140 <85≥80	141 -190 <80≥70	191 -230 <70≥50	> 230 <50
R _{aw}	кПа/л/с	< 0,30	>0,30≤0,40	>0,41≤0,60	>0,60≤0,80	> 0,80

ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ БОДИПЛЕТИЗМОГРАФИИ

R_{аw} зависит от количества, длины и площади поперечного сечения трубок, проводящих воздух в легкие. При прочих равных условиях трубки с меньшим внутренним диаметром создают большее сопротивление потоку воздуха.

Качественная характеристика изменений проходимости дыхательных путей на основе формы петель R_{aw}

Строение легкого, модель «Дыхательной трубки» по Weibel

Диагностика уровня нарушений проходимости дыхательных путей (НП ДП)

Варианты перестройки ОЕЛ

Комплексное исследование ФВД

Бодиплетизмо графия

Диагностика вариантов нарушений Вентиляции

> Уточнение характера обструкции

(обструктивный, рестриктивный, смешанный)

Диффузионтест

Предположение о наличии рестрикции

Измерение ЖЕЛ

Спирометрия

Диагностика

нарушений

проходимости

ДП и оценка

их выраженности

ИССЛЕДОВАНИЕ ДИФФУЗИОННОЙ СПОСОБНОСТИ ЛЕГКИХ (ДСЛ)

Одним из способов оценки легочного газообмена является исследование ДСЛ. Процесс проникновения газов через альвеолярно-капиллярную мембрану из области с высокой концентрацией в область с низкой концентрацией называется диффузией.

В настоящее время общепризнанно, что газообмен - обмен кислорода и углекислого газа в легких между воздухом и кровью- происходит пассивно за счет разницы между парциальным давлением газов в альвеолярном воздухе и их напряжением в крови.

Обмен газов осуществляется в организме непрерывно, нарушение этого процесса приводит к развитию гипоксии. Поэтому изучение условий диффузии и механизмов ее нарушения должно дополнять оценку вентиляционной способности легких.

Диффузия газов протекает по закону Фика, который можно выразить формулой:

 $Vr/t \sim S \times D \times (P1 - P2)/d$

где: Vr / t – скорость диффузии,

Vr – количество диффундирующего газа,

t – время,

S – площадь диффузии,

D – константа диффузии,

P1-P2 – разница парциальных давлений по обе стороны диффузионного барьера,

d – расстояние между точками диффузии.

Согласно уравнению, скорость диффузии прямо пропорциональна площади диффузии, константе диффузии, разнице между парциальным давлением газа в альвеолах и его напряжением в крови легочных капилляров и обратно пропорционально толщине слоя, который требуется преодолеть молекулам газа.

Константа диффузии отражает особенности диффундирующего газа: **D** ~ **a** / Ö**MM**,

где: а – растворимость газа,

ММ – молекулярная масса газа.

Для оценки условий диффузии газов в легких принято использовать величину, названную **диффузионной способностью легких (ДСЛ)** (diffusing capacity of the lung, DL).

Она определяется количеством миллилитров газа, проходящим через альвеолярно-капиллярную мембрану в 1 мин при разнице парциальных давлений газа по обе стороны мембраны в 1 мм рт. ст. (мл-мин-1-мм рт. ст. -1 или ммоль-мин—1-кПа—1 в единицах измерения в системе СИ).

За рубежом чаще используют термин трансфер-фактор или фактор переноса (transfer factor, TL), так как перемещение кислорода лимитирует не только процесс диффузии.

ПОКАЗАНИЯ ДЛЯ ИССЛЕДОВАНИЯ ДИФФУЗИОННОЙ СПОСОБНОСТИ ЛЕГКИХ

- •подозрение на интерстициальные заболевания легких, легочные васкулиты, облитерацию легочных сосудов вследствие хронической тромбэмболической болезни легких или других причин;
- •дифференциальная диагностика заболеваний легких;
- •оценка состояния легочного газообмена при различных хронических заболеваниях органов дыхания;
- •динамическое наблюдение эффективности терапии;
- •мониторинг токсичности химиотерапии;
- •предоперационная оценка при хирургическом лечении рака легких, эмфиземы;
- •экспертиза трудоспособности.

ПРОТИВОПОКАЗАНИЯ ДЛЯ ИССЛЕДОВАНИЯ ДИФФУЗИОННОЙ СПОСОБНОСТИ ЛЕГКИХ

- Ø Отсутствие контакта с пациентом (нежелание сотрудничества, дети младшего возраста, умственно неполноценные лица, наличие языкового барьера, и др.).
- ✓ Заболевания, при которых невозможно или противопоказано выполнение маневра форсированного выдоха (переломы ребер, межреберная невралгия, миастения, центральные и периферические параличи с поражением дыхательных мышц, тяжелая легочно-сердечная недостаточность, послеоперационный период и т.п.).
- Травмы и заболевания челюстно-лицевого аппарата.
- Острые респираторные заболевания (относительное). В случае инфекции верхних дыхательных путей исследование рекомендуется проводить не ранее, чем через 15 дней после исчезновения симптомов, при поражении нижних дыхательных путей − через 30 дней.
- О Снижение жизненной емкости легких менее 1,3-1,5 л (при проведении методики с одиночным вдохом).

УСЛОВИЯ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЯ ДИФФУЗИОННОЙ СПОСОБНОСТИ ЛЕГКИХ

- пациенту рекомендуется воздержаться от обильной еды не менее, чем за 2 часа до исследования;
- от курения не менее, чем за 2 часа до исследования, так как угарный газ, находящийся в табачном дыме, образует соединение с гемоглобином карбоксигемоглобин, что приведет к занижению реальной величины ДЛ;
- от приема алкоголя за 4 часа до исследования;
- от тяжелой физической нагрузки не менее 1 часа перед тестированием;
- у пациентов, получающих кислородотерапию, она должна быть отменена не менее, чем за 15 мин до исследования и во время его проведения.

МЕТОДЫ ИССЛЕДОВАНИЯ ДИФФУЗИОННОЙ СПОСОБНОСТИ ЛЕГКИХ

Определение диффузионной способности по кислороду из-за значительной сложности методики в клинической практике не применяется. Для оценки ДЛ лучше всего подходит окись углерода (CO). Окись углерода является единственным газом, обмен которого протекает по тем же законам, что и обмен кислорода, но CO обладает в 220 раз большим сродством к гемоглобину, чем O2.

Благодаря высокому сродству к гемоглобину молекулы окиси углерода, попадая в кровь, мгновенно связываются и напряжение СО в плазме крови остается равным нулю (при условии, что концентрация СО во вдыхаемом воздухе невелика и время контакта непродолжительно). По мере продвижения эритроцита по легочному капилляру напряжение СО в крови не возрастает и молекулы СО продолжают с большой скоростью пересекать альвеолярную стенку.

Таким образом, перенос СО ограничен не скоростью кровотока, а свойствами диффузионного барьера. Поэтому оценка диффузионной способности легких по угарному газу (ДЛСО, синоним TLCO, DLCO) широко используется в лабораториях, исследующих функциональные возможности легких. Малая концентрация и кратковременность экспозиции исключают его токсическое влияние на обследуемого.

- Существует несколько методов исследования ДСЛ с применением окиси углерода:
- определение ДСЛ при одиночном вдохе и выдохе с задержкой дыхания – single-breath method (ДЛСО_{3Д}, , TLCO_{SB}, DLCO_{SB});
- определение ДЛ в устойчивом состоянии дыхания steadystate method (ДЛСО_{уС}, TLCO_{ss}, DLCO_{ss});
- опеределение ДЛ при возвратном дыхании rebreathing (ДЛСО_{вд}, TLCO_{RB}, DLCO_{RB}).
- Наиболее широко распространена методика исследования ДСЛ методом одиночного вдоха с задержкой дыхания. При исследовании ДЛСО_{3Д} пациент вдыхает тестовую газовую смесь, содержащую 0,2-0,3% СО, 8-10% инертного газа (чаще гелия), остальное искусственный воздух.

Методика исследования ДСЛ методом одиночного вдоха с задержкой дыхания

Последовательность дыхательных маневров:

- исследование проводится при вертикальном положении грудной клетки, в положении сидя, пациенту перекрывают нос специальным зажимом и предлагают дышать через мундштук, подсоединенный к прибору;
- после нескольких спокойных дыхательных циклов комнатным воздухом пациента просят медленно выдохнуть до уровня остаточного объема легких;
- затем по команде оператора пациент должен быстро полностью вдохнуть до уровня общей емкости легких, с началом вдоха автоматически открывается клапан, и пациент вдыхает тестовую газовую смесь;
- задерживает дыхание ориентировочно на 10 с, время задержки дыхания устанавливается предварительно исходя из тяжести состояния пациента (8-11с);
- по истечению времени задержки дыхания, клапан выдоха автоматически открывается и пациенту предлагают быстро полностью выдохнуть.

- Повторное измерение возможно не ранее, чем через 4 минуты, для пациентов со значительными обструктивными нарушениями время ожидания увеличивается до 10 мин.
- Не рекомендуется повторять вдыхание тестового газа более 4х раз за один визит в связи с накоплением карбоксигемоглобина.
- Для анализа достаточно двух технически приемлемых попыток, результаты которых варьируют в пределах не более 10% (3 мл·мин-1·мм рт. ст. -1 или 1 ммоль·мин–1·кПа–1), для итогового заключения рассчитывается средняя величина.
- У пациентов с ЖЕЛ менее 1,5 л или крайне резко выраженными эмфизематозными изменениями, приводящими к раннему экспираторному закрытию дыхательных путей и значительному замедлению выдоха, проведение теста с задержкой дыхания может быть не выполнимо.

Измеряются актуальное время задержки дыхания (t), включающее 2/3 времени вдоха, задержку дыхания и время выдоха до середины объема контрольной пробы, ЖЕЛ вдоха, концентрации СО и Не на вдохе и выдохе, рассчитываются альвеолярные концентрации СО (FACO) и Не (FAHe). Инертный газ (гелий или метан) не проходят через альвеолярный барьер, следовательно, знание вдыхаемого объема, концентрации при вдохе и выдохе позволяет рассчитать объем газа в легких, смешанного с вдыхаемым газом — альвеолярный объем (VA):

 $VA = \mathcal{K}E\Pi / (FIHe/ FEHe),$

где FIHe – концентрация гелия на вдохе, FEHe – концентрация гелия на выдохе.

Однако VA, измеренный методом ДЛСОЗД, не включает зоны легких, не участвующие в вентиляции. Поэтому разница между альвеолярным объемом, измеренным при задержке дыхания, и общей емкостью легких, измеренной бодиплетизмографическим методом, позволяет оценить объем воздуха в легких, не участвующий в вентиляции.

ДЛСОзд рассчитывается из следующего уравнения:

ДЛСО_{3Д} = $(VA/t) \times In [FACO(0)/ FACO(t)],$

где VA – альвеолярный объем,

t – время задержки дыхания,

FACO(0) – альвеолярная концентрация СО в начале задержки дыхания,

FACO(t) – альвеолярная концентрация СО в начале задержки дыхания

Так как концентрация гемоглобина в крови влияет на величину ДЛСО, необходимо учитывать его значение при проведении исследования.

«Стандартным» считается значение Hb 14,6 г/дл у взрослых мужчин и подростков и 13,4 г/дл у взрослых женщин и детей младше 15 лет.

При отклонении реальных значений гемоглобина от «стандартных» необходимо проводить коррекцию полученных результатов по гемоглобину. Формулы для мужчин и подростков

ДЛСО_{3Д}, Hb = ДЛСОЗД × (1,7Hb/(10,22 + Hb)),

для женщин и детей

ДЛСО_{3Д}, Hb = ДЛСОЗД × (1,7Hb/(9,38 + Hb)),

где Hb выражен в г/дл.

ОСНОВНЫЕ ПАРАМЕТРЫ

ДЛСО (DLCO)	- ДСЛ или трансфер фактор
ДЛСО Нb	-ДСЛ с поправкой на гемоглобин
VA	- Альвеолярный объем
КСО (ДЛ СО/ VA)	- Фактор Кроффа (трансфер-оэффициент окиси углерода)

ОЦЕНКА РЕЗУЛЬТАТОВ

Для выявления нарушений и оценки их выраженности полученные данные сопоставляют с должными величинами, полученными для популяции здоровых лиц. Должные определяются полом, возрастом и ростом обследованного. В настоящее время общепринятой является система должных величин Европейского общества угля и стали (European Communnity for Steel and Coal, 1993).

Степень тяжести	ДЛСО, % должной величины
Умеренная	60% и < НГН*
Значительная	40-60%
Резкая	< 40%
* НГН — нижняя граница	

ФГБУ «Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии» Минздрава России

нормы

Снижение диффузионной способности легких

Интерстициальные Обструктивные заболевания заболевания легких: легких: снижение ДСЛ возникает на фоне уже имеющейся обструкции и свидетельствует о тяжести заболевания снижение ДСЛ является первым признаком заболевания

Принцип интерпретации комплексного исследования

ЖЕЛ снижена (спирометрия)

ДЛСО снижена (диффузионтест)

V _A /ОЕЛ в норме <i>(рестрикция)</i>			, ,	V _A /ОЕЛ снижено <i>(обструкция)</i>		
KCO ↑↑		KCO ↓↓	ксо ↓	КСО ↑	KCO - N	
Легочная ткань не изменена Внелегочные Редукция причины легких		Диффузное альвеолярное повреждение	Эмфизема	Бронхоэктазы	Астма	

Комплексное исследование ФВД

графия

Оценка газообмена

Нейро респираторный драйв

Диагностика нарушений проходимости ДП и оценка их выраженности

Спирометрия

вариантов нарушений вентиляции (обструктивный, рестриктивный, смешанный

Оценка механизма снижения диффузионной способности легких

Диффузионтест

Кардиопульмональный нагрузочный тест

Измерение ЖЕЛ Предположение о наличии рестрикции

Уточнение характера обструкции

Оценка альвеолярных ШУНТОВ

Полисомнография

Бодиплетизмо

Диагностика

ФГБУ «Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии» Минздрава России

Оценка силы дыхательных МЫШЦ

Рекомендуемая литература

- 1. Гриппи М.А. Патофизиология легких. / Пер. с англ. под ред. Ю.В.Наточина /М.: БИНОМ, 2005. с. 27-48.
- 2. Мэскел Н., Миллар А. Руководство по респираторной медицине. / Пер. с англ. под ред. С.Н.Авдеева / М.: ГЭОТАР-Медиа, 2014. с. 21-51.
- 3. Неклюдова Г.В., Черняк А.В. Клиническое значение исследования диффузионной способности легких // Атмосфера. Пульмонология и аллергология, 2013.- №4. с. 54-59.
- 4. Савушкина О.И. Бодиплетизмография: принцип и возможности метода. Подходы к интерпретации результатов исследования // Функциональная диагностика. 2013; 3: 48-53
- 5. Савушкина О.И., Черняк А.В. Клиническое приложение метода бодиплетизмографии // Атмосфера. Пульмонология и аллергология. 2013;2 (49): 38-41
- 6. Функциональная диагностика в пульмонологии. Практическое руководство / Под ред. А.Г. Чучалина. М., 2009.
- 7. Уэст Д.Б. Физиология дыхания. Основы. / Пер. с англ. под ред. А.М.Генина / М.: Мир, 1988. с. 27-36.
- 8. Уэст Д.Б. Патофизиология органов дыхания / Пер. с англ. под ред. А.И. Синопальникова. М.: БИНОМ, 2008. с. 44-48.
- 9. MacIntyre N., Crapo R. O., Viegi G. et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung // Eur. Respir. J. 2005. Vol. 26. P. 720-735.
- 10. Pellegrino R., Viegi G., Brusasco V. et al. Interpretative strategies for lung function tests // Eur. Respir. J. 2005. –Vol. 26. P.948-968.
- 11. Wanger J., Clausen J. L., Coates A. et al. Standardisation of the measurement of lung volumes // Eur. Respir. J. 2005. Vol. 26. P. 511-522.

Отделение функциональной диагностики СПб НИИ фтизиопульмонологии Кирюхина Лариса Дмитриевна

kld@spbniif.ru

+79219215680

