Heuristic

Informed (heuristic) search: one that uses problem-specific knowledge to guide search.

Heuristic function: A rule of thumb, simplification, or educated guess that reduces or limits the search for solutions in domains that are difficult and poorly understood

g(n): cost function (the cost of a path from A to n)

g(F) = 2 because all operators have cost = 1

h(n): heuristic funcion → function that estimates the cost of a node n to a GOAL node.

It means there is an estimation that the cost of the optimal path from **F** to **GOAL** is 8 (8 moves or operators because all operators have the same cost = 1)

Heuristic

In summary ...

In summary

It always holds $\forall n \ h(n) \le h^*(n)$

h(n) is called an admissible heuristic

Reminder

we know that if

it always holds $\forall n \ h(n) \le h^*(n)$

h(n) is called an admissible heuristic

$$f(n) = g(n) + h(n)$$

A algorithm

if h(n) is admissible

A* algorithm

guarantees OPTIMAL SOLUTION

Node-Selection Heuristic

- Suppose we're searching a tree in which each edge (s,s') has a cost c(s,s')
 - If p is a path, let c(p) = sum of the edge costs
 - For classical planning, this is the length of p
- For every state s, let
 - $-g(s) = \cos t$ of the path from s_0 to s
 - $-h^*(s)$ = least cost of all paths from s to goal nodes
 - $f^*(s) = g(s) + h^*(s) =$ least cost of all paths from s_0 to goal nodes that go through s
- Suppose h(s) is an estimate of $h^*(s)$
 - $\operatorname{Let} f(s) = g(s) + h(s)$
 - f(s) is an estimate of $f^*(s)$
 - h is admissible if for every state s, 0 ≤ h(s) ≤ h*(s)
 - If h is admissible then f is a lower bound on f^*

The A* Algorithm

A* on trees:

loop

choose the leaf node s such that f(s) is smallest if s is a solution then return it and exit expand it (generate its children)

- On graphs, A* is more complicated
 - additional machinery to deal with multiple paths to the same node
- If a solution exists (and certain other conditions are satisfied), then:
 - If h(s) is admissible, then A* is guaranteed to find an optimal solution
 - The more "informed" the heuristic is (i.e., the closer it is to h^*), the smaller the number of nodes A^* expands
 - If h(s) is within c of being admissible, then A* is guaranteed to find a solution that's within c of optimal

- Use a heuristic function similar to $h(s) = \Delta^g(s,g)$
 - Some ways to improve it (I'll skip the details)
- Don't want an A*-style search (takes too much memory)
- Instead, use a greedy procedure:

- Use a heuristic function h(s) = relaxed plan
- Don't want an A*-style search (takes too much memory)
- Instead, use a greedy procedure:

- Use a heuristic function h(s) = relaxed plan
- Don't want an A*-style search (takes too much memory)
- Instead, use a greedy procedure:

```
until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest
(i.e., the child we think is closest to a solution)
```


- Use a heuristic function h(s) = relaxed plan
- Don't want an A*-style search (takes too much memory)
- Instead, use a greedy procedure:

- Use a heuristic function similar to h(s) = relaxed plan
- Don't want an A*-style search (takes too much memory)
- Instead, use a greedy procedure:

- There are some ways FF improves on this
 - e.g. a way to escape from local minima
 - breadth-first search, stopping when a node with lower cost is found
- Can't guarantee how fast it will find a solution, or how good a solution it will find
 - However, it works pretty well on many problems

