Лекции по суперматематике

Оганес М. Худавердян

1 марта 2021 г.

Это конспект лекций на 20 февраля 2021 ИППИ, ИТМФ МГУ, мехмат МГУ

Содержание

1	Двойственное описание для точек и отображений	1
2	Отображения	3
3	Суперпространство	6

Очень грубо говоря, суперматематика, это наука в которой используются коммутирующие и антикоммутирующие переменные.

Обычные (коммутирующие) переменные $\{x^i\} = \{x^1, x^2, \dots, x^m\}$ принимают значения в числах, им можно сопоставить $moч\kappa u$.

Антикоммутирующие переменные $\{\theta^a\} = \{\theta^1, \theta^2, \dots, \theta^n\}$ это символы, такие что

$$\theta^a \theta^b = -\theta^b \theta^a, \quad (x^i x^j = x^j x^i, x^i \theta^a = \theta^a x^i)$$

Им трудно сопоставить точки 1 Чтоб работать в суперматематике, нам надо освоить двойственый язык.

1 Двойственное описание для точек и отображений

1.1 Точки

Пусть \mathbf{R}^p - p-мерное аффинное пространство, (множество точек). Обозначим $A = C^{\infty}(\mathbf{R}^m)$ алгебру гладких функций на \mathbf{R}^m .

Мы иногда будем использовать алгебру $C(\mathbf{R}^m)$ алгебру непрерывных функций на \mathbf{R}^m .

Определение 1. каждой **точке** $P \in \mathbf{R}^p$ сопоставим гомоморфизм σ_P , такой, который сопоставляет каждой функции f её значение в этой точке:

$$\mathbf{R}^m \ni P \mapsto \sigma_P \colon \sigma_P(f) = f(P) .$$

Понятно, что это гомоморфизм алгебры функций в числа, менее очевидно, что верно и обратное:

Теорема 1. Пусть D-область в \mathbf{R}^m , пусть σ_D произвольный ненулевой гомоморфизм алгебры функций $C^{\infty}(D)$ в \mathbf{R} :

$$\sigma_D \not\equiv 0$$
, $\sigma_D(f+g) = \sigma_D(f) + \sigma_D(g)$, $\sigma_D(fg) = \sigma_D(f)\sigma_D(g)$.

Тогда существует такая точка $P \in D$, что для любой функции $f \in C^{\infty}(D)$

$$\sigma_D(f) = f(P)$$
.

Иными словами множество точек области D= множеству гомоморфизмов из алгебры функций на D в вещественные числа.

Эта теорема позволяет реконструировать точки по алгебре функций $A=C^{\infty}(D)$. Заметим также, что она позволяет восстановить значение функции в точке. Если точка, это гомоморфизм σ алгебры функций в числа, то значение данной функции $f\in A$ на данной точке σ равно значемию 'точки' σ на элементе f.

 $^{^{1}}$ мы это сделаем в дальнейшем, используя язык так называемых Λ -точек.

Докажем эту теорему.

Доказательство теоремы.

Для простоты рассмотрим случай области D = (0, 1).

Пусть σ гомоморфизм алгебры $A=C^{\infty}(0,1)$ в **R**. Пусть значение этого гомоморфизма на функции f=x равно s: $\sigma(x)=s$. Покажем, что число $s\in(0,1)$. Действительно, если $s\not\in(0,1)$, то функция $h=\frac{1}{x-s}$ хорошо определена и $\sigma(x-s)=0$. Мы видим, что

$$\sigma\left((x-s)\frac{1}{x-s}\right) = \sigma(x-s)\sigma\left(\frac{1}{x-s}\right) = 0$$

и с другой стороны

$$\sigma\left(\left(x-s\right)\frac{1}{x-s}\right) = 1.$$

Противоречие, значит $s \in [0, 1]$.

Теперь покажем. что для произвольной гладкой функции $g \in C^{\infty}(0,1)$, выполняется условие $\sigma(q) = q(s)$. Пусть $\sigma(q) = t$. Мы хотим показать, что t = q(s). Рассмотрим функцию

$$r = (x - s)^2 + (g - t)^2$$
.

Легко понять, что $\sigma(r)=0$, значит функция r необратима, (так как функция $\frac{1}{r}$ не существует). Мы приходим к выводу, что функция r() обращается в нуль, хотя бы в одной из точек интервала (0,1). Но если функция r(x) обращается в нуль, то это может быть лишь точка x=s. Значит g(s)=t.

Exercise 1

Пройдет ли предыдущее доказательство, если алгебру гладких функций в $C^{\infty}(0,1)$ заменить на алгебру непрерывных функций $C^{0}(0,1)$.

Exercise 2

Пройдёт ли предыдущее доказательство если алгебру гладких функций в $C^{\infty}([0,1])$ заменить на произвольную алгебру функций, которые *разделяют* точки отрезка [0,1].

Exercise 3

Найти и обсудить 'дырку' в следующем рассуждении

Пусть σ гомоморфизм, такой, что $\sigma(x) = s \in \mathbf{R}$. Тогда очевидно, что $\sigma(x^2) = s^2$ и для любого натурального $n, \, \sigma(x^n) = s^n$. Значит для любого многочлена $P(x), \, \sigma(P(x)) = P(s)$. Теперь теорема Вейерштрасса об апроксимации гладкой функцией полиномами даёт, что для любой гладкой функции $g(x), \, \sigma(g(x)) = g(s)$.

2 Отображения

Пусть снова \mathbf{R}^p - p-мерное аффинное пространство, (множество точек). Обозначим также $A = C^{\infty}(\mathbf{R}^m)$ алгебру гладких функций на \mathbf{R}^m .

Определение 2. каждому отображению $F: \mathbf{R}^m \to \mathbf{R}^n$ сопоставим гомоморфизм τ_F , такой, который сопоставляет каждой гладкой функции на \mathbf{R}^m ($f \in C^{\infty}(\mathbf{R}^n)$) гладкую функцию ма \mathbf{R}^n ($\tau_F(f) \in C^{\infty}(\mathbf{R}^n)$) такую, что значение функции $\tau_F(f)$ на произвольной точке $P \in \mathbf{R}^m$ равно значению функции f на точке Q = F(P):

$$\tau_F(f)(P) = f(F(P)) .$$

Замечание 1. Правило 'против шёрстки' Отображения F и гомоморфизм функций τ_F идут в противоположных нзоравлениях ('против шёрстки').

Замечание 2. Гомоморфизм (2) построенный по отображению F обозначают F^* ,

Так же как и в случае точек верно и обратное

Теорема 2. Пусть U-область в \mathbf{R}^m и V-область в \mathbf{R}^n , и τ гомоморфизм (против 'шёрстки') алгебры $C^{\infty}(V)$ в алгебру $C^{\infty}(U)$. Тогда существует отображение $F \colon \mathbf{R}^m \to \mathbf{R}^n$ такое, что

$$au=F^*$$
 , то есть для любой функции $f\in C^\infty(D)$ $au(f)=f(F(P))$.

Иными словами множество отображений = множеству гомоморфизмов из алгебры функций на V в алгебру функций на U.

Докажем эту теорему.

Доказательство теоремы.

Пусть P произвольная точка на U. Возьмём произвольную гладкую функцию f на V. Значение образа этой функции под действием гомоморфизма τ на данной точке P зада- ёт гомоморфизм алгебры гладких функций на V в вещественные числа, то есть согласно теореме 2 мы приходим к точке Q такой что

$$\tau(f)(P) = f(Q)$$

Это равенство приводит к определению точки Q=F(P). Она задаёт гомоморфизм алгебры гладких функций

Пример 2.1. Пусть φ отображение пространств

$$\varphi \quad \mathbf{R}^2 \mapsto \mathbf{R}^2 \colon \begin{cases} x = u \\ y = \frac{v}{u} \end{cases} \tag{1}$$

Что тут написано? Мы 'привыкли' 'читать эту формулу так точке с координатами (u,v) сопоставляется точка с координатами (x,y)

Однако другой читатель скажет:

Формула определяет гомоморфизм гладких функций на плоскости ${\bf R}^2$, зависящих от x,y в гладкие функции на плоскости ${\bf R}^2$, зависящие от u,v. Гомоморфизм задан на образующих: Функция x переходит в функцию u и функция y переходит в функцию $\frac{v}{u}$; любая гладкая функция f(x,y) переходит в гладкую функцию $f(x,y)\big|_{x=u,y=\frac{v}{u}}$.

Кто прав? Оба правы. Формулу можно читать по разному!

Пример 2.2. Пусть φ отображение пространств

$$\varphi \quad \mathbf{R}^1 \mapsto \mathbf{R}^2 \colon \begin{cases} x = \cos t \\ y = \sin t \end{cases}$$
(2)

Что тут написано?

Мы 'привыкли' 'читать эту формулу так

точке t на прямой сопоставляется точка с координатами

$$\begin{cases} x = \cos t \\ y = \sin t \end{cases}$$

Другой скажет: в этой формуле определяется гомоморфизм функций на плоскости ${f R}^2$ в функции на ${f R}$. Формулы задают значения гомоморфизма на образующих: функция x переходит в функцию $\cos t$ и функция y переходит в функцию $\sin t$. Конечно, закон определяет образ любой (гладкой) функции. Например, функция $\frac{e^{-2xy}}{x^4+y^4}$ перейдет в функцию

$$\frac{e^{-2\cos t \sin t}}{\cos^4 t + \sin^4 t} = \frac{e^{-\sin 2t}}{1 - \frac{1}{2}\sin 2t} \,,$$

и для любой гладкой функции f = f(x, y)

$$\sigma(f) = f(x, y)x = \cos t, y = \sin t$$

И в заключение

задача-шутка

Рассмотрим набор разных простых чисел $\{p_i\}, i = 1, \dots, N, p_i \neq p_j$; также рассмотрим набор матуральных чисел, $\{i\}$, $i=1,\ldots,N$, так что каждое a_i меньше p_i . Найти число K, которое при делении на простое число p_i даст остаток a_i .

Вы скажете: это китайская теорема об остатках. Какое отношение она имеет к курсу? Указание к решению

Используя идеи двойственности можно свести эту задачу к задаче построения интерполяционного многочлена Лагранжа.

n различных точек на прямой — n различных простых

$$\{x_1, x_2, \dots, x_n\}$$
 $\{p_1, p_2, \dots, p_n\}$

Если полином P(x) равен y_i в точке x_i то многочлен

$$ch1P(x) = \sum_{i} y_i h_i(x), \qquad (3)$$

удовлетворяет соотношению $P(x_i) = y_i$, то есть этот многочлен доставвляет решение задачи о построении интерполяционного многочлена Лагранжа.

если многочлен $h_i(x)$ такой, что

$$h_m(x_j) = \delta_{mj}$$
, то есть $h_m(x) = \begin{cases} 1 \text{ если } x = x_m \\ 0 \text{ если } x = x_j \text{ при любом } j \neq m \end{cases}$, (4)

Построим многочлен (4), затем построим аналогичный объект в числах, затем переведите формулу (??) из многочленов в числа.

Рассмотрим многочлен $Q(x) = (x - x_1) \dots (x - x_n)$. Этот многочлен зануляется во всех точках $\{x_1,\ldots,x_n\}$, а вот многочлен $H_i(x)=\frac{Q(x)}{x-x_i}$ зануляется во всех точках $\{x_1,\ldots,x_n\}$, кроме быть может точки x_i и в этой точке он равен

$$H_i(x_i) = \frac{Q(x)}{x - x_i} \Big|_{x_i} = \frac{Q(x) - Q(x_i)}{x - x_i} = Q'(x_i)$$
 (5)

Замечание 3. Обратим внимание, что мы в формуле (6) определили 'производную' в кольце целых чисел.

Теперь ясно, что в (4)

$$h_m(x) = \frac{H_m(x)}{H'_m(x_m)} = \frac{\prod_{i \neq m} (x - x_i)}{\prod_{i \neq m} (x_m - x_i)} = \begin{cases} 1 \text{ если } x = x_m \\ 0 \text{ если } x = x_j \text{ при любом } j \neq m \end{cases} , \tag{6}$$

пр

Это искомый базисмый многочлен. Его легко перевести в числа.

Например кубический многочлен, который равен y_i в точке x_i (i=1,2,3 и $x_1 \neq x_2 \neq x_3 \neq x_1)$ равен

$$P(x) = \sum y_m \frac{\prod_{i \neq i} (x - x_i)}{\prod_{i \neq i} (x_m - x_i)} = y_1 \frac{(x - x_2)(x - x_3)(x - x_4)}{(x_1 - x_2)(x_1 - x_3)(x_1 - x_4)} + y_2 \frac{(x - x_1)(x - x_3)(x - x_4)}{(x_2 - x_1)(x_2 - x_3)(x_2 - x_4)} + y_3 \frac{(x - x_1)(x - x_2)(x - x_4)}{(x_3 - x_1)(x_3 - x_3)(x_3 - x_4)} + y_4 \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_4 - x_1)(x_4 - x_2)(x_4 - x_3)}$$
(7)

Перепишем эту формулу для чисел получим

$$P = \sum a_m \prod_{i \neq m} p_i \left[\prod_{i \neq m} p_i \right]_{mpdulop_m}^{-1}$$
(8)

Например, $p_i = 2, 3, 5, 7$

$$= a_{1}3 \cdot 5 \cdot 7 \left[3 \cdot 5 \cdot 7\right]_{modulo2}^{-1} + a_{2}2 \cdot 5 \cdot 7 \left[2 \cdot 5 \cdot 7\right]_{modulo3}^{-1} + a_{3}2 \cdot 3 \cdot 7 \left[2 \cdot 3 \cdot 7\right]_{modulo5}^{-1} + a_{4}2 \cdot 3 \cdot 5 \left[2 \cdot 3 \cdot 5\right]_{modulo5}^{-1} + a_{1}105 \left[105\right] - 1_{modulo2} + a_{2}70 \left[70\right]_{modulo3}^{-1} + a_{3}42 \left[42\right]_{modulo5}^{-1} + a_{4}30 \left[30\right]_{modulo7}^{-1} = a_{1} \cdot 105 \cdot 1 + a_{2} \cdot 70 \cdot 1 + a_{3} \cdot 42 \cdot 3 + a_{4} \cdot 30 \cdot 4 = 105a_{1} + 70a_{2} + 126a_{3} + 120a_{4}$$

Это число при делении на 2 даст остаток $_1$ при делении на 3 даст остаток $_2$ при делении на 5 даст остаток $_3$ и при делении на 7 даст остаток $_4$.

Лекция 20 февраля

3 Суперпространство

Немного забегая вперед дадим определение в духе идей двойственности ---:

Определение 3. Алгебра гладких функций $\mathbf{R}(x,\xi)$ от коммутирующих переменных x^1,\dots,x^p и антикоммутирующих переменных ξ^1,\dots,ξ^q это алгебра функций на p|q-мерном линейном пространстве $\mathbf{R}^{p|q}$.

Вместо того чтоб определять пространство мы определяем алгебру функций на нём. Например вместо

 \mathbf{R}^p рассматривается алгебра гладких функций от $x^1,\ldots,x^p.$

Перейдём к разъяснению.

3.1 Алгебра Грассмана

Обозначим символом Λ_q алгебру Грассмана с q антикоммутирующими свободными переменными $\theta^1, \ldots, \theta^q$, то есть

$$\theta^i \theta^k + \theta^k \theta^i = 0, \tag{9}$$

и любое другое соотношение на θ^i является следствием этих соотношений 2

Произвольный элемент λ алгебры Λ^q может быть записан в виде

$$\lambda = \sum_{0 \le k \le q} a_{\alpha_1 \dots \alpha_k} \theta^{\alpha_1} \dots \theta^{\alpha_k},$$

где коэффициенты антисимметричны при перестановке индексов.

Элемент = $a_{\alpha_1...\alpha_k}\theta^{\alpha_1}...\theta^{\alpha_k}$ имеет чётность $p(s)=(-1)^k$.

Всякий элемент алгебры Грассмана можно однозначно представить в виде суммы чётного и нечётного элементов этой алгебры.

Для всякого элемента λ алгебры Грассмана Λ^q ,

$$\lambda = m(\lambda) + n(\lambda) \,,$$

где $m(\lambda)$ -обычное число и $n(\lambda)$ -нильпотент.

Exercise Назовём элемент алгебры Грассмана *целым* если все коэффициенты в разложении (3.1) целые.

Доказать, что если λ целый нильпотентный элемент алгебры Грассмана, то для любого натурального $n, \frac{\lambda^n}{n!}$ тоже цел и нильпотентен.

Наряду с алгеброй Грассмана Λ^q мы будем рассматривать также алгебру $\Lambda_{p|q}$ как алгебру функций от p коммутирующих переменных x^1,\ldots,x^p и q антикоммутирующих переменных θ^1,\ldots,θ^q . Каждый элемент алгебры $\Lambda_{p|q}$ (мы будем эту алгебру называть алгеброй Березина) может быть представлен в виде (3.1), где коэффициенты $a_{\alpha_{i_1...i_k}}$ являются гладкими функциями от переменных x^1,\ldots,x^p : для любого $w\in\Lambda_{p|q}$

$$\lambda = \sum_{0 \le k \le q} a_{\alpha_1 \dots \alpha_k}(x^1, \dots, x^p) \theta^{\alpha_1} \dots \theta^{\alpha_k}.$$

 $^{^{2}}$ то есть для любого многочлена P такого, что P=0, mnogohlen P принадлежит идеалу тензорной алгебры с образующими θ^{i} , образованному левыми частями соотношений (9).

Чётность вводится естественным образом.

Отметим, что выражение осмысленно при любой замене переменных, сохраняющих чётность.

Exercise Как преобразуется функция $g = \cos x$ при замене координат $x = x' + \varepsilon^1 \varepsilon^2$. Мы снова возвращаемся к определению суперпространства:

Определение 4. Алгебра гладких функций $\mathbf{R}(x,\xi)$ от коммутирующих переменных x^1, \ldots, x^p и антикоммутирующих переменных $\theta^1, \ldots, \theta^q$, то есть алгебра Березина $\Lambda_{p|q}$, это алгебра функций на p|q-мерном линейном пространстве $\mathbf{R}^{p|q}$.

3.2 Дифференцирование и интегрирование

Мы подсчитаем для

3.2.1 Взятие производной.

Пусть $\theta^1, \dots, \theta^q$ набор антикоммутирующих переменных в алгебре Березина $\Lambda_{p|q}$. Выберем любую из этих переменных, например переменную θ^{i_0} .

Легко понять, что для любой функции $f = f(x^i, \theta^{\alpha}) \in \mathcal{L}_{p|q}$

$$f(x^i, \theta^\alpha) = \theta^{\beta_0} g + h$$

где функции g и h не зависят от θ^{i_0} . Таким образом мы приходим к естественному определению частной производной по антикоммутирующей переменной.

$$\frac{\partial}{\partial \theta^{i_0}} f(x^i, \theta^\alpha) = g,.$$

Соблюдается правило Лейбница (со знаком)

$$\frac{\partial}{\partial \theta^a} (fg) = \frac{\partial f}{\partial z^a} g + (-1)^p (fg) f \frac{\partial g}{\partial z^a}. \tag{10}$$

Замечание 4. Пусть u какой нибудь элемент из множества $(x^1, \ldots, x^n, \theta^1, \ldots, \theta^q)$ и какой нибудь другой элемент из множества $(x^1, \ldots, x^n, \theta^1, \ldots, \theta^q)$.

Exersize Показать, что

$$\frac{\partial}{\partial u}\frac{\partial}{\partial v} = (-1)^{p(u)p(v)}\frac{\partial}{\partial v}\frac{\partial}{\partial u}$$

Exercise Пусть $f(x,\theta)$ -элемент алгебры Березина, гладкая функция он , θ . Написать формулу Тэйлора.

Взятие производной композиции функций.

3.3 Интегрирование

Что такое интеграл?

Определение 5. Пусть ∂ операция взятия производной. Тогда интегрирование это линейная операция которая зануляется на образе ∂ :

$$I(\partial f = 0)$$

Очевидно, что интеграл как мы его учили тому свойству удовлетворяет. Можно показать, что на пространстве функций с компактным носителем, это определение приводит к обычному.

Хороший пример, это интеграл Коши от аналитической функции.

В итоге мы приходим к

Определение 6. Для антикоммутирующей переменной θ

$$\int \theta d\theta = 0.$$

Лекция 1 марта

3.4 Отображения и замены переменных

Мы вернёмся к интегралу, прежде поговорив немножко об отображениях и заменах переменных...

Напомним, что алгебра Березина $\Lambda_{r|s}$ это алгебра $C^{\infty}(\mathbf{R}^{r|s})$ гладких функций на $\mathbf{R}^{r|s}$. Каждый элемент алгебры Березина $\Lambda_{r|s}$ представим в виде

$$f(x,\theta) = a_{\emptyset}(x) + a_i(x)\theta^i + \dots = \sum_{0 \le k \le q} a_{\alpha_1 \dots \alpha_k}(x^1, \dots, x^r)\theta^{\alpha_1} \dots \theta^{\alpha_k},$$

где $\{\theta^1,\ldots,\theta^s\}$, это набор антикоммутирующих переменных и $\{x^1,\ldots,x^s\}$ это стандартные координаты 3 в \mathbf{R}^s и коэффициентные функции это гладкие функции от координат $\{x^1,\ldots,x^s\}$.

Замечание 5. Напомнить определение чётного и нечётного элементов

Замечание 6. Введённые выше координаты алгебры Березина, мы иногда будем называть *образующими* этой алгебры.

³например, в качестве таковых можно рассмотреть координаты $x^i(a^1, \dots a^n) = a^i$, где \mathbf{R}^r рассматривается как множество s-ок действительных чисел.

Мы сейчас определим гладкое отображение Φ суперпространства $\mathbf{R}^{m|n}$ в суперпространство $\mathbf{R}^{p|q}$, которое согласно нашей философии определяется 'против шёрстки'— гомоморфизмом алгебры $\Lambda_{p|q}$ в алгебру $\Lambda_{m|n}$.

Теорема 3. Пусть $\{f^a(x,\theta)\}$, $a=1,\ldots p$ произвольный упорядоченный набор чётных функций алгебры $\Lambda_{m|n}$ в количестве p штук и пусть $\{\varphi^\alpha(x,\theta)\}$, $\alpha=1,\ldots q$ произвольный набор нечётных функций алгебры $\Lambda_{m|n}$ в количестве q штук.

Тогда существует гомоморфизм $\alpha \colon \Lambda_{p|q} \mapsto \Lambda_{m|n}$ такой, что

$$\begin{cases} \alpha(y^a) = f^a(x,\theta) \ (a=1,\ldots,p) \\ \alpha(\eta^\mu) = \phi^\mu(x,\theta) \ (\mu=1,\ldots,p) \end{cases}$$
(11)

и этот гомоморфизм единственен.

Значение этого гомоморфизма на любой функции $f \in \Lambda_{p|q}$ равно

$$\alpha [f] = \alpha \left[f = \sum_{0 \le k \le q} a_{\mu_1 \dots \mu_k} (y^1, \dots, y^p) \eta^{\mu_1} \dots \eta^{\mu_k} \right] = \alpha \left[f = a_{\emptyset}(y) + a_{\mu\nu}(y) \eta^{\nu} \eta^{\mu} + \dots \right] =$$

$$a_{\emptyset} \left(f_{\emptyset}^a(x) + f_{\alpha\beta}^a(x) \theta^{\beta} \theta^{\alpha} + \dots \right) +$$

$$+ a_{\mu\nu} \left(f_{\emptyset}^a(x) + f_{\alpha\beta}^a \theta^{\beta} \theta^{\alpha} + \dots \right) \left[\Phi_{\alpha}^{\mu}(x) \theta^{\alpha} + \dots \right] \left[\Phi_{\beta}^{\nu}(x) \theta^{\alpha} + \dots \right] + \dots$$

Замечание 7. Эта теорема позволяет определить отображение Φ суперпространства $\mathbf{R}^{m|n}$ в суперпространство $\mathbf{R}^{p|q}$ с помощью упорядоченного набора чётных гладких функций $\{\{f^a(x,\theta)\}\}, a=1,\ldots p$ и нечётных гладких функций $\{\{\phi^a(x,\theta)\}\}, a=1,\ldots q$

Отображение Φ определяется с помощью гомоморфизма (11).

Замечание 8. Сформулированная выше Теорема3 даёт право отождествлять стандартные координаты на $\mathbf{R}^{r|s}$ и образующими алгебры Березина $\Lambda_{r|s}$.

Определение 7. Мы будем называть иногда $\mathbf{R}^{p|q}$ p|q-мерным аффинным суперпространством

Пусть $\{x^i, \theta^\alpha\}$, $i=1,\ldots,r$, $\alpha=1,\ldots,s$ стандартные координаты на $\mathbf{R}^{r|s}=$ образующие алгебры Березина $\Lambda_{r|s}$; каждый элемент $\Lambda_{r|s}$ представим в виде

$$f(x,\theta) = a_{\emptyset}(x) + a_i(x)\theta^i + \dots = \sum_{0 \le k \le q} a_{\alpha_1 \dots \alpha_k}(x^1, \dots, x^p)\theta^{\alpha_1} \dots \theta^{\alpha_k}.$$

Чтобы определить замену переменных в суперпространстве мы следуя нашей философии дуальности определим *обратимое отображение* алгебры функций на себя.

Рассмотрим отображение

$$\begin{cases} x^{i'} = f^{i'}(x,\theta), i = 1, \dots, r \\ \theta^{i'} = \varphi^{i'}(x,\theta), i = 1, \dots, s \end{cases}$$
 (12)

Каково условие, что оно обратимо?

Имеет место следующая теорема

Теорема 4. Произвольное преобразование переменных (12) обратимо если и только если выполняются следующие условия:

 \bullet отображение $\mathbf{R}^r \to \mathbf{R}^r$ задаваемое формулами (12)

$$x^{i'}\big|_{\theta=0} = f^{i'}(x,\theta)\big|_{\theta=0}$$
 обратимо (13)

• $s \times s$ -матрица

$$\frac{\partial \theta^{i'}}{\partial \theta^{j}}\big|_{\theta=0} = \frac{\partial \varphi^{i'}(x,\theta)}{\partial \theta^{j}}\big|_{\theta=0}$$

обратима

Замечание 9. Мы рассматриваем только гладкие функции. Это неявно используется в формулировках теорем.

Пример 3.1. Рассмотрим аффинное суперпространство $\mathbf{R}^{1|3}$. Ему соответствует алгебра гладких функций на прямой со значениями в Грассмановой алгебре. Λ_2 (Это то же, что алгебра Березина $\Lambda_{1|2}$) Рассмотрим гладкую замену переменных:

$$x' = x + \theta^1 \theta^2$$

$$\theta^{1'} = \theta^1 + \sin x \theta^1 \theta^2 \theta^3$$

$$\theta^{2'} = 2\theta^2$$

$$\theta^{3'} = \theta^3$$
(14)

Вначале отметим, что условия теоремы соблюдаются: отображение

$$x'\big|_{\theta=0} = (x + \theta^1 \theta^2)\big|_{\theta=0} = x$$

поэтому условие (13) очевидно соблюдается; второе условие легко проверить: матрица (4) имеет вид

$$\frac{\partial \theta^{i'}}{\partial \theta^{j}}\Big|_{\theta=0} = \begin{pmatrix} \frac{\partial \theta^{1'}}{\partial \theta^{1}} \frac{\partial \theta^{2'}}{\partial \theta^{1}} \frac{\partial \theta^{3'}}{\partial \theta^{1}} \\ \frac{\partial \theta^{1'}}{\partial \theta^{2}} \frac{\partial \theta^{2'}}{\partial \theta^{2}} \frac{\partial \theta^{3'}}{\partial \theta^{2}} \\ \frac{\partial \theta^{1'}}{\partial \theta^{3}} \frac{\partial \theta^{2'}}{\partial \theta^{2}} \frac{\partial \theta^{3'}}{\partial \theta^{3}} \end{pmatrix}\Big|_{\theta^{i}=0} = \begin{pmatrix} 1 + \sin x\theta^{2}\theta^{3} & 0 & 0 \\ 1 - \sin x\theta^{1}\theta^{3} & 2 & 0 \\ 1 + \sin x\theta^{1}\theta^{2} & 0 & 1 \end{pmatrix}\Big|_{\theta^{i}=0} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}\Big|_{\theta^{i}=0} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}\Big|_{\theta^{i}=0} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}\Big|_{\theta^{i}=0} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}\Big|_{\theta^{i}=0} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}\Big|_{\theta^{i}=0} = \begin{pmatrix} 1 & 0 & 0 \\$$

и очевидно обратима.

Проверим, что замена (14) обратима. Нам удобно обозначить $\theta^1 \to \theta, \; \theta^2 \to \eta, \; \theta^3 \to \xi.$ Имеем

$$\begin{cases} x' = x + \theta \eta \\ \theta' = \theta + \sin x \theta \eta \xi \\ \eta' = 2\eta \\ \xi' = \xi \end{cases}$$

Имеем

$$\xi = \xi', \eta = \frac{1}{2}\eta', \theta = \theta' - \sin x\theta\eta\xi =$$

$$\theta' - \frac{1}{2}\sin x\theta\eta'\xi' = \theta' - \frac{1}{2}\sin x\left[\theta' - \sin x\theta\eta\xi\right]\eta'\xi' = \theta' - \frac{1}{2}\sin x\left[\theta' - \frac{1}{2}x^3\theta'\eta'\xi'\right]\eta'\xi' = \theta' - \frac{1}{2}\sin x\theta'\eta'\xi'$$

$$x = x' - \theta\eta = x' - \left[\theta' - \frac{1}{2}\sin x\theta'\eta'\xi'\right]\frac{1}{2}\eta' = x' - \frac{1}{2}\theta'\eta'$$

3.5 Интегрирование функции на суперпространстве $\mathbf{R}^{p|q}$

Снова вернёмся к интегрированию.

Мы определим интеграл от быстроубывающей функции по пространству $\mathbf{R}^{p|q}$.

Определение 8. Пусть $\{x^i,\theta^\alpha\}$. $i=1,\ldots,p,\ \alpha=1,\ldots,q$ координаты афинного суперпространства ${\bf R}^{p|q}$. Пусть

$$f(x,\theta) = \sum_{0 \le k \le q} a_{\alpha_1 \dots \alpha_k}(x^1, \dots, x^p) \theta^{\alpha_1} \dots \theta^{\alpha_k} = a_{\emptyset}(x) + \theta^i(x) a_i(x) + \dots + \theta^1 \dots \theta^n a_{[1\dots n]}(x) \quad (15)$$

произвольная быстроубывающая функция на $\mathbf{R}^{p|q}$, то есть функция, то есть любая пр:оизводная этой функции убывает быстрее чем любая степень x:

$$\lim_{x \to \infty} x^n D^m f = 0.$$

Тогда

$$\int_{\mathbf{R}^{p|q}} D(x,\theta) f = \int_{\mathbf{R}^{p|q}} D(x,\theta) \theta^1 \dots \theta^n a_{[1\dots n]}(x) = (-1)^s \int_{\mathbf{R}^p} dx^1 \dots dx^n a_{[1\dots n]}(x) =$$

Замечание 10. Мы немного странно пишем разложение (15)

Exersize

Доказать, что условие быстрого убывания не зависит от системы координат. $(x^i,\theta^\alpha),\ i=1,\ldots,p,\ \alpha=1,\ldots,q$ и $(x^{i'},\theta^{\alpha'}),\ i'=1,\ldots,p,\ \alpha'=1,\ldots,q$ пара двух координатных систем на афинном суперпространстве $\mathbf{R}^{p|q},$

3.6 Березиниан

На прошлой неделе мы сформулировали идею интеграла (см. 6). Однако затем, мы остановились на замене переменных и только потом снова перешли к интегрированию. Почему?

Пусть $(x^i, \theta^{\alpha}), i = 1, \ldots, p, \alpha = 1, \ldots, q$ и $(x^{i'}, \theta^{\alpha'}), i' = 1, \ldots, p, \alpha' = 1, \ldots, q$ пара двух координатных систем на афинном суперпространстве $\mathbf{R}^{p|q}$.

Пусть f быстроубывающая функция на $\mathbf{R}^{p|q}$.

Вычислим интеграл Березина в системах координат (x^i, θ^{α}) и $(x^{i'}, \theta^{\alpha'})$:

$$\int_{\mathbf{R}^{p|q}} D(x,\theta) f(x,\theta) = \int_{\mathbf{R}^{p|q}} \frac{D(x,\theta)}{D(x',\theta')} D(x',\theta') f\left(x\left(x',\theta'\right),\theta\left(x',\theta'\right)\right) = \text{up to a sign}$$

$$\int_{\mathbf{R}^{p|q}} D(x',\theta') f'(x',\theta') \text{Ber}\left(\frac{\partial\left(x,\theta\right)}{\partial\left(x,\theta\right)}\right)$$

Таким образом мы пришли к Березиниану.

3.6.1 Один интеграл

Пусть $||B_{ik}||$ антисимметрическая $q \times q$ матрица. Рассмотрим функцию

$$f = e^{B_{ik}\theta^i\theta^k} .$$

Вычислить интеграл от этой функции по ${f R}^{0|q}$.