CS 229, Winter 2023 Section #1 Solutions: Linear Algebra, Least Squares, and Logistic Regression

1. Least Squares Regression

Many supervised machine learning problems can be cast as optimization problems in which we either define a cost function that we attempt to minimize or a likelihood function we attempt to maximize. These functions are often called *Objective Functions*. Assuming you successfully defined an objective function that is either convex (to minimize) or concave (to maximize), you can find the optimal point with either of the following approaches:

- (a) Find a closed form solution for setting the gradient equal to 0 (i.e. $\nabla_{\theta} J(\theta) = 0$)
- (b) Find the gradient of the objective function w.r.t. the parameters and do gradient descent.

Most of the time, finding a closed form solution for $\nabla_{\theta} J(\theta) = 0$ is impossible, so we attempt to use gradient descent instead.

(a) Here, let us consider the original least-squared regression problem:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$= \frac{1}{2} (X\theta - \vec{y})^{T} (X\theta - \vec{y})$$

where X is the design matrix with each row as a example in our data, θ are the parameters, and \vec{y} is the vector of ground truth values we want to predict. Here are some useful formulas:

$$\frac{\partial x^T A x}{\partial x} = (A + A^T) x$$
$$\frac{\partial x^T y}{\partial x} = \frac{\partial y^T x}{\partial x} = y$$

i. Derive the gradient $\nabla_{\theta} J(\theta)$

Answer:

$$J(\theta) = \frac{1}{2}(X\theta - \vec{y})^T(X\theta - \vec{y})$$

$$= \frac{1}{2}(\theta^T X^T - \vec{y}^T)(X\theta - \vec{y})$$

$$= \frac{1}{2}(\theta^T X^T X \theta - \vec{y}^T X \theta - \theta^T X^T \vec{y} - \vec{y}^T \vec{y})$$

$$= \frac{1}{2}(\theta^T X^T X \theta - 2\theta^T X^T \vec{y} - \vec{y}^T \vec{y})$$

$$\nabla_{\theta} J(\theta) = \frac{1}{2}[(X^T X + X^T X)\theta - 2X^T \vec{y}]$$

$$= \frac{1}{2}[2X^T X \theta - 2X^T \vec{y}]$$

$$= X^T X \theta - X^T \vec{y}$$

This solution may be used to perform gradient descent on the least squares objective with the formula

$$\theta^{(t+1)} := \theta^{(t)} - \alpha \nabla_{\theta} J(\theta)$$

or to find a closed form solution (see part ii).

ii. Find a closed form solution for θ^* (the parameters that minimize the loss function). You may assume that X^TX is invertible.

Answer:

$$\nabla_{\theta} J(\theta) = 0$$

$$X^{T} X \theta^{*} - X^{T} y = 0$$

$$X^{T} X \theta^{*} = X^{T} y$$

$$\theta^{*} = (X^{T} X)^{-1} X^{T} y$$

(Optional) As mentioned in lecture, X^TX is invertible if and only if X is both full rank and $n \geq d$ (X is "skinny"). This is not the point of our discussion of least squares so you may assume that X^TX is invertible if you are not familiar with this terminology.

2. MLE Estimation of Gaussian Covariance Matrices

The aim of this problem is to 1) practice taking the gradient of functions with respect to matrices and 2) consider a particular gradient that you will encounter later in the course with topics like Gaussian Discriminant Analysis and Gaussian Mixture Models. We would like to estimate the parameters of a Gaussian distribution:

$$p(x) = \frac{1}{(2\pi)^{\frac{k}{2}} |\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$$

In particular, we will consider the maximum liklihood estimation of the covariance matrix Σ given some data points $\{x^{(1)},...,x^{(n)}\}.$

(a) Let's begin by practicing the process of taking the gradient of a function with respect to a matrix. Derive an expression (in vectorized form) for $\nabla_X a^T X b$

Answer: Recall that the gradient of a function $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ is defined as

$$\nabla_{A}f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \dots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \dots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \dots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

i.e., an $m \times n$ matrix with

$$(\nabla_A f(A))_{ij} = \frac{\partial f(A)}{\partial A_{ij}}.$$

To find $\nabla_X a^T X b$, we first find an expression for $\frac{\partial}{\partial X_{ij}} a^T X b$

$$\frac{\partial}{\partial X_{ij}} a^T X b = \frac{\partial}{\partial X_{ij}} \sum_{i=1}^n \sum_{j=1}^d a_i b_j X_{ij}$$
$$= a_i b_j$$

Thus
$$(\nabla_X a^T X b)_{ij} = a_i b_j$$
 so $\nabla_X a^T X b = a b^T$

To compute the maximum likelihood estimate of Σ , we will consider the log-likelihood function

$$\ell = \sum_{i=1}^{n} \log p(x^{(i)}) = \sum_{i=1}^{n} -\frac{k}{2} \log(2\pi) - \frac{1}{2} \log(|\Sigma|) - \frac{1}{2} (x^{(i)} - \mu)^{T} \Sigma^{-1} (x^{(i)} - \mu)$$

In order to compute the maximum likelihood estimate, we will consider a change of variables $S = \Sigma^{-1}$. This function happens to be concave in $S = \Sigma^{-1}$, so by making this substitution we can maximize the log-likelihood of S by finding $\nabla_S \ell$ and setting it equal to 0. We can then recover the optimal Σ as $\Sigma = S^{-1}$ because our change of variables transformation $f(A) = A^{-1}$ is bijective and thus invertible.

Note: analyzing the convexity of this function with respect to Σ is NOT expected for this

class and this step can be taken as a given. The goal is to practice taking gradients with respect to matrices and to see the MLE estimate of the covariance matrix of a Gaussian.

With the change of variables, we have that

$$\ell = \sum_{i=1}^{n} -\frac{k}{2}\log(2\pi) + \frac{1}{2}\log(|S|) - \frac{1}{2}(x^{(i)} - \mu)^{T}S(x^{(i)} - \mu)$$

This follows from the identity $|X^{-1}| = \frac{1}{|X|}$ for invertible X.

(b) Compute $\nabla_S \ell$ and set it equal to 0 to find a closed form solution for the maximum likelihood estimate of S. Then invert this estimate to find the maximum likelihood estimate of Σ .

Hint: The following identities (and the identity from (a)) will prove useful:

$$\nabla_X |X| = |X|(X^{-1})^T$$
$$(X^{-1})^T = (X^T)^{-1}$$

Answer:

$$\nabla_{S}\ell = 0$$

$$\nabla_{S}(\sum_{i=1}^{n} -\frac{k}{2}\log(2\pi) + \frac{1}{2}\log(|S|) - \frac{1}{2}(x^{(i)} - \mu)^{T}S(x^{(i)} - \mu)) = 0$$

$$\frac{1}{2}\sum_{i=1}^{n} \frac{1}{|S|}|S|(S^{-1})^{T} - (x^{(i)} - \mu)(x^{(i)} - \mu)^{T} = 0$$

$$\frac{1}{2}\sum_{i=1}^{n} (S^{-1} - (x^{(i)} - \mu)(x^{(i)} - \mu)^{T}) = 0$$

Simplifying this expression yields

$$S = \left(\frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu)(x^{(i)} - \mu)^{T}\right)^{-1}$$

and thus, since $S = \Sigma^{-1}$,

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu)(x^{(i)} - \mu)^{T}$$

3. Basic probability review

Bayes rule is defined as follows:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Show the following is true:

$$P(Y|X,E) = \frac{P(X,Y|E)}{P(X|E)}$$

Answer:

$$P(Y|X, E) = \frac{P(Y, X, E)}{P(X, E)}$$

$$= \frac{P(Y, X|E)P(E)}{P(X|E)P(E)}$$

$$= \frac{P(Y, X|E)}{P(X|E)}$$

$$= \frac{P(Y, X|E)}{P(X|E)}$$

$$= \frac{P(X|Y, E)P(Y|E)}{P(X|E)}$$