Ch 27.2- Protein synthesis

- 1) Assembling the machinery and overview
 - Ribosomes: RNP, structure and properties
 - Aminoacyl-tRNA: structure and recognition
 - Basic mechanisms and architecture
- 2) A stepwise process
 - Initiation: steps up to formation of 1st peptide bond
 - **Elongation**: synthesis of the 1st bond to addition of the last amino acid
 - Termination: release completed polypeptide chain
 - Ribosome recycling: disassembly of the ribosome for next use

Components of bacterial vs eukaryotic ribosome

16S rRNA conserved secondary structures

Structure of the *T. thermophilus* 70S ribosome

Yusupov (Noller) Science 2001

RNA-only active site

Structure of the *T. thermophilus* 70S ribosome

Yusupov (Noller) Science 2001

General cloverleaf secondary structure of tRNAs

Cytosolic/bacterial tRNA: archaea and organelles can exhibit differences

Extensive tertiary interactions in tRNA structure

Figure 27-18
Lehninger Principles of Biochemistry, Sixth Edition

© 2013 W. H. Freeman and Company

Aminoacyl-tRNA synthetases (aaRS) charge tRNAs

Nomenclature:

- tRNAs: Arg-tRNA^{Arg}, Lys-tRNA^{Val} - synthetases: ArgRS, GlyRS, etc

Properties:

- Form an ester-linked amino acid at 3'-end of tRNA
- One aaRS per amino acid (mostly)
- Two classes (Class I and Class II) structurally distinct but same catalytic activity arose independently in evolution

Mechanism:

© 2013 W. H. Freeman and Company

- Aminoacyl-adenylate
- nucleophilic attack on activated carbonyl

Prototypical aaRS from two different classes

E. coli GlnRS (class I) Yeast AspRS (Class II) tRNA ATP (a) (b) Figure 27-22 Lebninger Principles of Blochemistry, Sixth Edition

The central dogma: fidelity of gene expression

Lewin's Essential Genes

Fidelity of aminoacylation by aaRS

The problem: many similar-looking substrates for aaRS

Use of "identity elements": defined sequences that specify a certain amino acid

- determinants and antideterminants
- test: necessary and sufficient for recognition

"A 2nd genetic code"...

tRNA^{Ala} identity elements- conserved G-U base pair

Fidelity of aminoacylation by aaRS

The problem: many similar-looking substrates for aaRS

Additional strategies used by some aaRS:

- 1) Kinetic mechanism:
 - aminoacylation is faster with cognate tRNA than non-cognate
- 2) Chemical proofreading:
 - hydrolyze incorrect aa-tRNA combinations

Fidelity of aminoacylation by aaRS

Chemical proofreading (editing)

- tRNA not always required
- aaRS-specific
- "Double sieve" mechanism Ex. IleRS:
 - 1st: size for aa-AMP formation, Leu won't fit
 2nd: size for editing site,
 Val fits, lle doesn't

Two types of editing (depending on aaRS):

- 1) hydrolyze non-cognate aa-AMP (pre-transfer)
- 2) hydrolyze mischarged aa-tRNA (post-transfer)