

XXXV Simpósio Brasileiro de Informática na Educação (SBIE 2024)

(T4S4_A3) - SBIE 2024 - Trilha 4 - [05/11/2024 - Terça-feira - 15:00 - 15:15]

Classificação de Interações com Indicadores de Engajamento dos Estudantes no Aprendizado On-line

Autores:

Aluisio

José Pereira (CIn, UFPE) [ajp3@cin.ufpe.br]

Alex

Sandro Gomes (CIn, UFPE)

Tiago

Thompsen Primo (CEng, UFPel)

Roteiro

Introdução

- Temática
- Pergunta
- Objetivo

Método

- Contexto
- Procedimentos
- Técnicas

Resultados

- Combinações
- Classificadores

Considerações

- Conclusões
- Limitações
- Estudos futuros

Tutores humanos

Página 03

Sistemas Inteligente

São aplicações da Inteligência Artificial na Educação (IAEd)

[CIEB Notas Técnicas v16, p.11]

Engajamento estudantil

Indicadores de engajamento no aprendizado on-line

- Interatividade: elemento-chave do engajamento no aprendizado on-line
- Participação: participação ativa em discussões, atividades e tarefas
- Motivação: envolvimento no processo de aprendizado
- Feedback: tutor-instrutor-estudante níveis de engajamento e ajustes
- Regulação: autonomia no processo de engajamento, perda de atenção
- Desempenho e recompensa: avaliações, práticas somativas, e estímulos
- Personalidade: adaptando-se às necessidades, objetivos, capacidades, diversidades

(OGUNYEMI; QUAICOE; BAUTERS, 2022)

Algoritmos de classificação

Algoritmos de classificação no aprendizado de máquina

Combinar algoritmos como:

- K-Vizinhos Mais Próximos K-Nearest Neighbors (KNN)
- Máquina de Vetores de Suporte Support Vector Machine (SVM)
- Árvore de Decisão Decision Tree (DT) e
- Rede Neural Artificial Artificial Neural Network (ANN)

Pergunta

"Quais as melhores combinações de estratégias de aprendizagem de máquina para classificar interações dos estudantes no aprendizado on-line?"

Objetivo

Encontrar a combinação adequada de diferentes modelos fracos para melhoria do desempenho do modelo final de classificação de indicadores de engajamento estudantil no contexto do aprendizado on-line.

Comitês/Ensembles de classificadores

Modelos de ensembles avaliados:

- Boosting: modelos sequenciais, onde cada novo modelo corrige os erros do anterior, focando em reduzir o viés. (utilizou: SVM, DT)
- Stacking: meta-modelo para combinar as previsões de modelos-base, aprendendo a melhor maneira de combinar essas previsões. (utilizou: KNN, SVM, DT e ANN)
- Voting: combina previsões de modelos de forma simples (ex: votação majoritária ou média), sem modificar os modelos subjacentes. (utilizou: KNN, SVM, DT e ANN)

(Muhlbaier; Topalis; Polikar, 2008) e (Wang et al., 2011)

Procedimentos de preparação e análise dos dados com os ensembles

Base de Dados

contexto de aprendizado mediado on-line mediado pela

Interações de: 12 tutores | 90 professores | **963** estudantes

- **504** estudantes do Ensino Fundamental (EF), anos finais do 6º ao 9º ano.
- 459 estudantes do Ensino Médio (EM), do 1º ao 3º ano.

Variáveis observadas:

VAR01: quantidade total de amigos do estudante

VARO2: quantidade de amigos do estudante que também são estudantes

VAR03: quantidade de colegas diferentes para quem o estudante enviou mensagens

VARO4: quantidade total de mensagens enviadas pelo estudante

VAR05: quantidade de mensagens enviadas pelo estudante para outros estudantes

VAR06: quantidade de mensagens enviadas pelo estudante para professores

VAR07: quantidade de exercícios realizados pelo estudante VAR08: quantidade de pedidos de ajuda feitos pelo estudante VAR09: quantidade de comentários realizados pelo estudante

VAR10: quantidade total de respostas às postagens recebidas pelo estudante

VAR11: turno do dia em que o estudante fez mais comentários

Comparações Prévias dos Classificadores

Variações dos modelos experimentados

- KNN K-Vizinhos Mais Próximos
 - número k: {3, 5, 7, 9, 11, 13}
- DT Árvore de Decisão
 - o critério: {"gini", "entropy", "log_loss"}
 - o profundidade da árvore: [2, 3, 5, 7, 10]
 - o mínimo de amostras para dividir um nó interno: [2, 3, 4, 5, 10, 15]
 - mínimo de amostras para um nó folha: [2, 5, 10, 15, 20]

• SVM - Máquina de Vetores de Suporte

- regularização: {1, 10, 100 e 1000}
- kernel: {"linear", "poly", "rbf", "sigmoid"}
- para o kernel: "rbf"
 - coeficientes [0.001, 0.0001]

ANN - Rede Neural Artificial

- função de ativação: ['identity', 'logistic', 'tanh', 'relu']
- L2 alpha: [0.0001, 0.001, 0.01, 0.1, 1.0]
- tolerância para otimização: [0.001, 0.01, 0.1]

Resultados

Resultados das Avaliações Prévias dos Classificadores

Resultados

Avaliação das combinações dos Classificadores

acurácia	Algoritmos	Classificado r	Bagging	Boosting	Stacking	Voting	µа		Nota:			
	KNN	0,91	0,9		0,92	0,89	0,91		μma - média macro;			
	SVM	0,92	0,89	0,92	0,93	0,89	0,91		μp - média ponderada;			
	DT	0,89	0,9	0,95	0,9	0,88	0,9		μm - média dos modelos;			
	ANN	0,84	0,82	1442	0,89	0,89	0,86		μα - médic	a - média dos algoritmos		
	μm	0,89	0,88	0,94	0,91	0,89	0,9					
precision	Algoritmos	Classificador		Bagging		Boosting		Stacking		Voting		
		ита	μр	µma	μр	ита	μр	ита	μр	ита	μр	μа
	KNN	0,93	0,91	0,93	0,91			0,91	0,92	0,92	0,9	0,92
	SVM	0,93	0,92	0,9	0,89	0.94	0.93	0.92	0.93	0,92	0,9	0,92
	DT	0,89	0,89	0,89	0,9	0.95	0.35	0,89	0,9	0,92	0,89	0,91
	ANN	0,56	0,78	0,55	0,76	- 		0,9	0,9	0,92	0,9	0,78
	μm	0,85		0,84		0,94		0,91		0,91		0,89
recall	KNN	0,75	0,91	0,8	0,9	100 8	C70	0,87	0,92	0,8	0,89	0,86
	SVM	0,91	0,92	0,85	0,89	0,87	0,92	0,89	0,93	0,78	0,89	0,89
	DT	0,74	0,89	0,84	0,9	0,89	0,95	0,85	0,9	0,77	0,88	0,86
	ANN	0,61	0,84	0,59	0,82	- 228	- 12 <u>12</u>	0,84	0,89	0,8	0,89	0,79
	μm	0,82		0,82		0,91		0,89		0,84		0,86
f1-score	KNN	0,79	0,9	0,84	0,9		3.55	0,89	0,92	0,84	0,89	0,87
	SVM	0,91	0,92	0,87	0,89	0,9	0,92	0,9	0,93	0,82	0,88	0,89
	DT	0,78	0,88	0,86	0,9	0,91	0,95	0,87	0,9	0,81	0,88	0,87
	ANN	0,58	8,0	0,57	0,79	24		0,86	0,89	0,84	0,89	0,78
	μm	0,82		0,83		0,92		0,9		0,86		0.86

Boosting: melhor desempenho. **Stacking**: bom desempenho utilizando todos os algoritmos.

Ensembles heterogêneos (**Stacking** e **Voting**) superam ensembles homogêneos (**Bagging** e **Boosting**) em 1% de desempenho médio.

SVM: apesar de destaque, tem perdas de 1% a 9% em *f1-score* quando combinado em comitês.

Melhores combinações: **Boosting**, **SVM** e **DT** usados em análise de indicadores de interação.

Resultados

Aplicação das combinações dos Classificadores

- Classificação de interações permite recomendar pares de ajuda entre estudantes.
- Lista atualizada de estudantes por níveis de interação é visível aos tutores.
- Tutores acompanham três perfis: mais, esporadicamente e raramente interagem.
- Acompanham interações para prevenir desengajamento, evasão e abandono.
- Visualização dos indicadores de engajamento facilita o entendimento das interações.
- Pares de ajuda são formados para melhorar o engajamento de estudantes com baixa interação.

Página 15

Considerações

O estudo permitiu:

- identificar o melhor algoritmo de AM para classificar indicadores de engajamento em aprendizado on-line.
- além de avaliar os algoritmos (KNN, SVM, DT e ANN) e as combinações de ensembles (Stacking, Voting, Bagging, Boosting).
- observou os melhores desempenhos com *ensembles* heterogêneos em algumas métricas.
- **Boosting** (com SVM e DT) apresentou o melhor desempenho geral.

As combinações de estratégias de AM melhora a classificação do nível de interação dos estudantes e a aplicação prática possibilita apresentar os padrões de engajamento para apoiar as tutorias.

Considerações

Limitações

- Não explorar exaustivamente os modelos de Aprendizagem de Máquinas
- Indicadores limitados nas funcionalidades do AVA adotado
- Não considerar outros papéis (tutores, professores)

Estudos futuros

Analisar as implicações da classificação dos padrões de interação para o engajamento dos estudantes.

Adoção dos modelos em diferentes contextos educacionais e Sistemas de Tutoria Inteligente (STI)

Aluisio

ajp3@cin.ufpe.br

Alex

asg@cin.ufpe.br

Tiago

tiago.primo@inf.ufpel.edu.br

REALIZAÇÃO

ORGANIZAÇÃO

FOMENTOS

AGÊNCIA OFICIAL

APOIO

ITBC
INSTITUTO BENJAMIN CONSTANT

De 04 a 08 de novembro

"O papel das tecnologias digitais na Educação Inclusiva"

cbie.sbc.org.br/2024/ O 6 @cbie_ceie

Referências

- 1. Buono, P. et al. Assessing student engagement from facial behavior in on-line learning. **Multimedia Tools and Applications**, p. 1-19. 2022. https://doi.org/10.1007/s11042-022-14048-8
- 2. Chi, M. T. et al. (2001). Learning from human tutoring. **Cognitive science**, 25(4), 471-533. https://doi.org/10.1207/s15516709cog2504_1
- 3. Chang, c. et al. An ensemble model using face and body tracking for engagement detection. In: **Proceedings of the 20th ACM international conference on multimodal interaction**. p. 616-622. 2018. https://doi.org/10.1145/3242969.3264986
- 4. Martin, M. et al. (2023). Knowing what matters: Short introductory texts support pre-service teachers 'professional vision of tutoring interactions. **Teaching and Teacher Education**, 124(1), p. 104-114. https://doi.org/10.1016/j.tate.2023.104014
- 5. Muhlbaier, M. D.; Topalis, A.; Polikar, R. Learn, N. C. Combining Ensemble of Classifiers With Dynamically Weighted Consult-and-Vote for Efficient Incremental Learning of New Classes. **IEEE transactions on neural networks**, v. 20, n. 1, p. 152-168, 2008. https://doi.org/10.1109/TNN.2008.2008326
- 6. Ogunyemi, A. A.; Quaicoe, J. S.; Bauters, M. Indicators for enhancing learners' engagement in massive open online courses: A systematic review. **Computers and Education Open**. 2022. https://doi.org/10.1016/j.caeo.2022.100088
- 7. Reinsch, S. et al. (2023). Socialization, Professional Identity Formation and Training for Uncertainty: Comparison of Student-and Clinician-Lead Problem Based Learning Groups in the First Year of Medical Education. Journal of Problem Based Learning in Higher Education, 11(1), p. 60-78. https://doi.org/10.54337/ojs.jpblhe.v11i1.7372
- 8. Wang, G. et al. A comparative assessment of ensemble learning for credit scoring. **Expert systems with applications**, v. 38, n. 1, p. 223-230, 2011. https://doi.org/10.1016/j.eswa.2010.06.048