

Interrogación 2

 ${\it 3 \ de \ octubre \ de \ 2019}$ Profesores: Gabriel Diéguez - Fernando Suárez

Instrucciones

- Use lápiz pasta. Por el uso de lápiz mina usted pierde el derecho a recorreción.
- Rellene sus datos en cada hoja de respuesta que utilice.
- Cada pregunta debe responderse en hojas separadas.
- Entregue al menos una hoja por pregunta.
 - Si entrega la pregunta **completamente en blanco**, tiene nota mínima 1.5 en vez de 1.0 en la pregunta entregada.

Pregunta 1

a) (4 pts) Demuestre que si S es una partición cualquiera de un conjunto A, entonces la relación

$$x \sim y \Leftrightarrow \exists X \in \mathcal{S} \text{ tal que } \{x, y\} \subseteq X$$

es una relación de equivalencia sobre A.

- b) (1 pt) Demuestre que existe un único conjunto vacío.
- c) (1 pt) Demuestre que para todo conjunto A se tiene que $\varnothing \subseteq A$.

Solución

- a) Reflexividad: Dado $x \in A$, sabemos que $x \in X$ para algún $X \in \mathcal{S}$, pues \mathcal{S} es una partición de A. Luego, $\{x\} \subseteq X$, y por axioma de extensión $\{x, x\} \subseteq X$. Aplicando la definición de la relación \sim , concluimos que $x \sim x$ y por lo tanto la relación es refleja.
 - Simetría: Dados $x, y \in A$ tales que $x \sim y$, por definición de \sim sabemos que existe $X \in \mathcal{S}$ tal que $\{x, y\} \subseteq X$. Por axioma de extensión, se cumple que $\{y, x\} \subseteq X$, y por definición de \sim concluimos que $y \sim x$. Por lo tanto, la relación es simétrica.

- Transitividad: Dados $x, y, z \in A$ tales que $x \sim y$ e $y \sim z$, por definición de \sim sabemos que existen $X_1, X_2 \in \mathcal{S}$ tales que $\{x, y\} \subseteq X_1$ y $\{y, z\} \subseteq X_2$. Notemos que $X_1 \cap X_2 \neq \emptyset$, y por lo tanto como \mathcal{S} es una partición de A, necesariamente $X_1 = X_2$. Luego, se cumple que $\{x, y\} \subseteq X_2$, y entonces $\{x, z\} \subseteq X_2$. Finalmente, aplicando la definición de \sim , tenemos que $x \sim z$, con lo que concluimos que la relación es transitiva.
- b) Por contradicción, supongamos que existen dos conjuntos vacíos distintos: $\emptyset_1 \neq \emptyset_2$. Dado que todo conjunto tiene como subconjunto al vacío, y como \emptyset_1 y \emptyset_2 son conjuntos, tenemos que $\emptyset_1 \subseteq \emptyset_2$, ya que estamos suponiendo que \emptyset_1 es vacío. Recíprocamente, se tiene que $\emptyset_2 \subseteq \emptyset_1$. Entonces, tenemos que $\emptyset_1 \subseteq \emptyset_2$ y $\emptyset_2 \subseteq \emptyset_1$, de donde se concluye que $\emptyset_1 = \emptyset_2$, lo que contradice nuestra suposición incial de que existen dos conjuntos vacíos distintos.
- c) Aplicando la definición de subconjunto, debemos demostrar que $\forall x, x \in \emptyset \Rightarrow x \in A$. Como no existe ningún elemento que pertenezca al conjunto vacío, la propiedad se cumple trivialmente, y luego $\emptyset \subseteq A$.

Pauta (6 pts.)

- a) 1 pto. por caso reflexividad.
 - 1 pto. por simetría.
 - 2 ptos. por transitividad.
- b) 1 pto.
- c) 1 pto.

Soluciones alternativas y puntajes intermedios a criterio del corrector.

Pregunta 2 [Relaciones de equivalencia]

- a) Sea R una relación simétrica y transitiva sobre un conjunto A. Demuestre que si para cada $a \in A$ existe un $b \in A$ tal que $(a, b) \in R$, entonces R es una relación de equivalencia.
- b) Sea R una relación refleja y transitiva sobre un conjunto A. Sea T una relación sobre A definida como

$$(a,b) \in T$$
si y sólo si $\{(a,b),(b,a)\} \subseteq R$

Demuestre que T es transitiva.

c) Diremos que una relación R sobre un conjunto A es **circular** si

$$\forall x \forall y \forall z (xRy \land yRz \to zRx).$$

Demuestre que R es una relación de equivalencia si y sólo si es refleja y circular.

Solución

- a) Dado que la relación es simétrica y transitiva, basta con demostrar que es refleja. Suponemos que para cada $a \in A$ existe un $b \in B$ tal que $(a,b) \in R$. Sea $a \in A$, por hipótesis existe $b \in A$ tal que $(a,b) \in R$. Como R es simétrica, se tiene que $(b,a) \in R$. Además, como R es transitiva y $(a,b) \in R$ y $(b,a) \in R$, obtenemos que $(a,a) \in R$. Finalmente podemos concluir que $(a,a) \in R$, $\forall a \in A$.
- b) Sea $(a,b) \in T$ y $(b,c) \in T$. Por definición, sabemos que $(a,b) \in R$, $(b,a) \in R$ y $(b,c) \in R$, $(c,b) \in R$. Como R es transitiva, obtenemos que $(a,c) \in R$ y $(c,a) \in R$. Luego, por definición de T obtenemos que $(a,c) \in T$. Finalmente, como a,b y c son arbitrarios, podemos concluir que T es transitiva.
- c) (\Rightarrow) Sea R una relación de equivalencia. Dado que R es refleja, sólo debemos mostrar que es circular. Sean $(a,b) \in R$ y $(b,c) \in R$. Como R es transitiva obtenemos que $(a,c) \in R$. Luego, como R es simétrica se tiene que $(c,a) \in R$. Finalmente, como a,b y c son arbitrarios, concluimos que R es circular.
 - (\Leftarrow) Sea R una relación refleja y circular. Mostraremos que es simétrica y transitiva.
 - Simetría: Sea $(a, b) \in R$. Como R es refleja sabemos que $(b, b) \in R$. Además, como es circular obtenemos que $(b, a) \in R$. Por lo tanto, podemos concluir que R es simétrica.
 - <u>Transitividad</u>: Sea $(a,b) \in R$ y $(b,c) \in R$. Como R es circular, obtenemos que $(c,a) \in R$. Luego, dado que R es simétrica tenemos que $(a,c) \in R$. Finalmente, como a,b y c son arbitrarios concluimos que R es transitiva.

Pauta (6 pts.)

- a) 2 ptos.
- b) 2 ptos.
- c) 1 pto. por (\Rightarrow) .
 - 1 pto. por (*⇐*).

Puntajes intermedios y soluciones alternativas a criterio del corrector.

Pregunta 3 [Relaciones de orden]

- a) Sea (A, \preceq) un orden total, y $S \subseteq A$ tal que S es finito y no vacío. Demuestre que sup(S) e inf(S) existen y pertenecen a S.
 - Hint: use inducción.
- b) Sea (A, \preceq) un orden total, y $S_1 \subseteq A$ tal que tiene supremo. Suponga ahora que existe $S_2 \subsetneq S_1$ tal que para todo $x \in S_1$ existe $y \in S_2$ tal que $x \preceq y$. Demuestre que S_2 tiene supremo, y que $sup(S_2) = sup(S_1)$.

Solución

- a) Sea $S \subseteq A$ con n elementos. Mostraremos que sup(S) e inf(S) existen y pertenecen a S por inducción simple sobre n.
 - **BI:** Sea n = 1. En este caso $S = \{s\}$, con $s \in A$. Por un lado, dado que (A, \preceq) es un orden total, obtenemos que $s \preceq s$, y como s es el único elemento de S, se tiene que es cota inferior y superior. Por otro lado, dada una cota superior c, como $s \in S$ se tiene que $s \preceq c$ y por lo tanto s = sup(S). De manera análoga podemos concluir que s = inf(S).
 - **HI:** Suponemos que para todo $S \subseteq A$ con n elementos, tanto sup(S) como inf(S) existen y pertenecen a S.
 - **TI:** Sea $S \subseteq A$ con n+1 elementos: $A = \{s_1, \ldots, s_n, s_{n+1}\}$. Sea $A' = \{s_1, \ldots, s_n\}$, el cual tiene n elementos. Por HI A' está acotado y $sup(A'), inf(A') \in A'$. Sin pérdida de generalidad, asumimos que $inf(A') = s_1$ y $sup(A') = s_n$. Tenemos 2 casos:
 - I) Si $s_n \leq s_{n+1}$ entonces $s_i \leq s_{n+1}$ para todo $i \in 1 \dots n$ (dado que $s_n = sup(A')$). Además, como $s_{n+1} \leq s_{n+1}$ obtenemos que s_{n+1} es cota superior de A. Por otro lado, como $s_{n+1} \in A$ concluimos que $s_{n+1} = sup(A)$.
 - II) Si $s_{n+1} \leq s_n$ entonces $s_i \leq s_n$ para todo $i \in 1 \dots n+1$. Por lo tanto, s_n es cota superior de A y como $s_n \in A$ se tiene que $s_n = sup(A)$.

De manera análoga se puede mostrar el resultado para el ínfimo de A.

- b) Debemos mostrar que el supremo de S_1 es también supremo de S_2 . Para esto mostraremos que $sup(S_1)$ es cota superior de S_2 (I) y que para toda cota superior c de S_2 se tiene que $sup(S_1) \leq c$ (II).
 - I) Sea c una cota superior de S_1 . Para todo $x \in S_1$ se cumple que $x \leq c$. Como $S_2 \subsetneq S_1$, si $x' \in S_2$ entonces $x \in S_1$, y por lo tanto $x' \leq c$. Luego, toda cota superior de S_1 es también una cota superior de S_2 . En particular, $sup(S_1)$ es una cota superior de S_1 , y por ende también lo debe ser para S_2 .
 - II) Por contradicción, sea c una cota superior de S_2 tal que $c \leq sup(S_1)$. Luego, c no puede ser cota superior de S_1 ya que es menor que su supremo. Entonces, debe existir un $x \in S_1$ tal que $c \leq x$. Luego, por la propiedad del conjunto S_2 , debe existir un $y \in S_2$ tal que $x \leq y$. Finalmente, por transitividad obtenemos que $c \leq y$ lo que contradice el hecho de que c es cota superior de S_2 . Concluimos que $sup(S_2) = sup(S_1)$.

Pauta (6 pts.)

- a) 1 pto por BI.
 - 0.5 ptos por HI.

- 1.5 ptos por TI.
- b) 1 pto por i).
 - 2 ptos por ii).

Puntajes intermedios y soluciones alternativas a criterio del corrector.

Pregunta 4 [Funciones y cardinalidad]

- a) Sean A y B conjuntos. Demuestre que si $A \approx B$ entonces $\mathcal{P}(A) \approx \mathcal{P}(B)$.
- b) Sean $a, b, c, d \in \mathbb{R}$ tales que a < b y c < d. Demuestre que $[a, b] \approx [c, d]$.

Solución

a) Como $A \approx B$, sabemos que existe $f: A \to B$ biyectiva. Considere la función

$$g: \mathcal{P}(A) \to \mathcal{P}(B)$$
 definida como

$$g(X) = \{b \in B \mid \exists a \in X \text{ tal que } f(a) = b\}, \forall X \in \mathcal{P}(A).$$

Es decir, la función g asigna a cada subconjunto X de A el conjunto de las imágenes de los elementos de X bajo la función f. Demostraremos que g es una función biyectiva entre $\mathcal{P}(A)$ y $\mathcal{P}(B)$, con lo que quedará demostrado que $\mathcal{P}(A) \approx \mathcal{P}(B)$.

- Inyectiva: Sean $X_1, X_2 \in \mathcal{P}(A)$ tales que $g(X_1) = g(X_2)$. Queremos demostrar que $X_1 = X_2$, y lo haremos usando la definición de igualdad de conjuntos.
 - $X_1 \subseteq X_2$: Sea $a \in X_1$. Por definición de g, sabemos que $f(a) \in g(X_1)$. Como $g(X_1) = g(X_2)$, se tiene que $f(a) \in g(X_2)$, y entonces por definición de g sabemos que existe $a' \in X_2$ tal que f(a) = f(a'). Ahora, como f es biyectiva, es inyectiva, y por lo tanto a = a', de donde obtenemos que $a \in X_2$.
 - $X_2 \subseteq X_1$: Sea $a \in X_2$. Por definición de g, sabemos que $f(a) \in g(X_2)$. Como $g(X_1) = g(X_2)$, se tiene que $f(a) \in g(X_1)$, y entonces por definición de g sabemos que existe $a' \in X_1$ tal que f(a) = f(a'). Ahora, como f es biyectiva, es inyectiva, y por lo tanto a = a', de donde obtenemos que $a \in X_1$.
- Sobreyectiva: Sea $Y \in \mathcal{P}(B)$. Como f es biyectiva, es invertible, y por lo tanto podemos tomar el conjunto

$$X = \{ a \in A \mid \exists b \in Y \text{ tal que } f^{-1}(b) = a \}.$$

Es decir, X es el conjunto de las preimágenes de los elementos en Y bajo f. Demostraremos que Y = g(X), con lo que se concluye que g es sobreyectiva.

• $Y \subseteq g(X)$: Sea $b \in Y$. Por definición de X, sabemos que $f^{-1}(b) \in X$. Entonces, por definición de g, tenemos que $f(f^{-1}(b)) \in g(X)$, y por lo tanto $b \in g(X)$.

- $g(X) \subseteq Y$: Sea $b \in g(X)$. Por definición de g, sabemos que existe $a \in X$ tal que f(a) = b. Ahora, por definición de X, sabemos que existe $b' \in Y$ tal que $f^{-1}(b') = a$. Entonces, tenemos que $b = f(a) = f(f^{-1}(b')) = b'$, y por lo tanto $b \in Y$.
- b) Queremos construir una función $f:[a,b] \to [c,d]$ que sea biyectiva. Una posibilidad es mapear a a c y b a d, y mapear los puntos intermedios linealmente. En otras palabras, podemos tomar una recta que pase entre los puntos (a,c) y (b,d) del plano real:

$$f(x) = \frac{d-c}{b-a} \cdot (x-a) + c$$

Esta función está bien definida, pues como a < b se tiene que $b - a \neq 0$. Por otro lado, como c < d, esta función es claramente biyectiva. Lo demostraremos a continuación:

• Inyectiva: Sean $x_1, x_2 \in [a, b]$ tales que $f(x_1) = f(x_2)$. Por definición de f,

$$\frac{d-c}{b-a}\cdot(x_1-a)+c=\frac{d-c}{b-a}\cdot(x_2-a)+c,$$

de donde es evidente que $x_1 = x_2$ luego de despejar todas las constantes.

- Sobreyectiva: Sea $y \in [c, d]$. Esto quiere decir que

Tenemos entonces un $x \in [a, b]$ definido como

$$x = \frac{b-a}{d-c}(y-c) + a.$$

Es claro que f(x) = y, con lo que demostramos que f es sobreyectiva.

Pauta (6 pts.)

- a) 1 pto. por dar la biyección.
 - 1 pto. por demostrar inyectividad.
 - $\bullet~1$ pto. por demostrar sobreyectividad.
- b) 1.5 ptos. por dar la biyección.
 - 0.75 ptos. por demostrar invectividad.
 - 0.75 ptos. por demostrar sobreyectividad.

Puntajes intermedios y soluciones alternativas a criterio del corrector.