

Runge-Kutta (R-K) Methods for Numerical Differentiation

In the **Modified Euler's method**, after calculating y_{i+1} through the equation,

$$y_{i+1} = y_i + f(x_i, y_i)h$$
(1)

its value is modified iteratively through the equation,

$$y_{i+1}^{(n+1)} = y_i + \left(\frac{h}{2}\right) \left[f(x_i, y_i) + f(x_{i+1}, y_{i+1}^{(n)})\right] \qquad (2)$$

when,
$$h=x_{i+1}-x_i$$
(3)

Figure- 7.1

Euler's metod is less efficient in practical problems since it requires 'h' to be small for obtaining reasonable accuracy.

The *Runge-Kutta* (*R*-*K*) *methods* are designed to obtain greater accuracy.

The modified Euler's method as presented through the equation (1) and (2) can be combined and rewritten as,

$$y_{i+1} = y_i + \left(\frac{1}{2}\right) \left[hf(x_i, y_i) + hf(x_i + h, y_i + hf(x_i, y_i)) \right]$$

$$y_{i+1} = y_i + \left(\frac{h}{2}\right) \left[f_i + f(x_i + h, y_i + hf_i) \right] \qquad (4)$$

where, $f_i = f(x_i, y_i)$

Now let, $k_1 = f_i$ and $k_2 = f(x_i + h, y_i + hk_1)$ then, equation (4) can be expressed as,

$$y_{i+1} = y_i + \left(\frac{h}{2}\right)(k_1 + k_2)$$
(5)

Equation (5) presents the formula for the 2nd **order R-K method.**

The formula presented in equation (5) ca be generalized as,

$$y_{i+1} = y_i + h(w_1 k_1 + w_2 k_2)$$
 (6)

Where, $w_1 = w_2 = \frac{1}{2}$

The 2nd order R-K method has been modified further to achieve more accuracy through the **4**th **order R-K method**. The formula is,

$$y_{i+1} = y_i + h(w_1 k_1 + w_2 k_2 + w_3 k_3 + w_4 k_4) \qquad (7)$$

Where,
$$w_1 = w_4 = \frac{1}{6}$$
 and $w_2 = w_3 = \frac{1}{3}$

Equation (7) is expressed as,

$$y_{i+1} = y_i + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$
(8)

Where,
$$k_1 = f(x_i, y_i)$$
(8a)

$$k_2 = f\left(x_i + \frac{h}{2}, y_i + \frac{hk_1}{2}\right)$$
 (8b)

$$k_3 = f\left(x_i + \frac{h}{2}, y_i + \frac{hk_2}{2}\right)$$
(8c)
 $k_4 = f\left(x_i + h, y_i + hk_3\right)$ (8d)

Example-1:

Find 'y' at x=1.0 by solving the initial value problem expressed by the differential equation, $\frac{dy}{dx} = -2xy^2$ with initial condition, y(0)=1 by applying the fourth order Runge-Kutta method. Take step size h=0.2. Also, compare the result with the exact solution.

Solution:

$$\overline{y_{i+1}} = y_i + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$
Where, $k_1 = f(x_i, y_i)$, $k_2 = f\left(x_i + \frac{h}{2}, y_i + \frac{hk_1}{2}\right)$, $k_3 = f\left(x_i + \frac{h}{2}, y_i + \frac{hk_2}{2}\right)$ and $k_4 = f\left(x_i + h, y_i + hk_3\right)$
Given, $\frac{dy}{dx} = f(x, y) = -2xy^2$ and $h = 0.2$.

Step (i)	Xi	y_i	$k_{\scriptscriptstyle 1}$	k_2	k_3	$k_{\scriptscriptstyle 4}$	y_{i+1}
0	0	1	0	f(0.1,1) = -0.2	f(0.1,0.98) = -0.192080	f(0.2,0.9616) = -0.369858	0.961533
1	0.2	0.961533	f(0.2,0.961533) = -0.369818	f(0.3,0.92455) = -0.512877	f(0.3,0.91024) = -0.497128	f(0.4,0.8621) = -0.594583	0.862052
2	0.4	0.862052	f(0.4,0.862052) = -0.594508	f(0.5,0.8026) = -0.644170	f(0.5,0.79763) = -0.636222	f(0.6,0.73481) = -0.647931	0.735278
3	0.6	0.735278	f(0.6,0.735278) = -0.648761	f(0.7,0.6704) = -0.629215	f(0.7,0.67235) = -0.632889	f(0.8,0.6087) = -0.592826	0.609752
4	0.8	0.609752	f(0.8,0.609752) = -0.594876	f(0.9,0.55026) = -0.545023	f(0.9,0.55525) = -0.554944	f(1.0,0.49876) = -0.497529	0.500007

Hence, we get y(1)=0.500007

Exact solution:

$$\frac{dy}{dx} = f(x, y) = -2xy^{2}$$

$$\int \frac{dy}{y^{2}} = -2\int x dx$$

$$-\frac{1}{y} = -x^{2} + c$$

Putting the given initial condition, y(0)=1 we get, c=-1

Therefore, we obtain,
$$y = \frac{1}{1+x^2}$$

Hence, **the exact solution**, y(1)=0.5

Assignments

Problem 1:

Given the differential equation, $\frac{dy}{dx} = -y$ subject to the initial condition: y(0)=1 compute y(0.05) by using the 4th order Runge-Kutta method. Take a step size h=0.025. Compare the result with the exact solution.

Problem 2:

Using the 4th order Runge-Kutta method, find out the solution of the equation $\frac{df}{dx} = \frac{y-x}{y+x}$ with y(0)=1, at x=2 by taking step size, h=0.5.

Note: You can present the solution by tabular form only.