Союз Советских Социалистических Республик

Государственный комитет CCCP по делам изобретений и открытий

ПИСАНИЕ ЗОБРЕТЕНИ

АВТОРСКОМУ. СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву --

(22) Заявлено 09.04.79 (21) 2751227/22-03

с присоединением заявки № ---

(23) Приоритэт —

Опубликовано 30.08.81. Бюллетень № 32

Дата опубликования описания 05.09.81

(51) М. Кл.³

E 21 B 17/042

(11)859596

(53) УДК 622.24. .05 (088.8)

(72) Авторы изобретения Г. М. Файн, В. М. Воронов, Б. С. Баркан, В. Ф. Кузнецов; С. М. Данелянц, Н. Н. Борзов и Т. Г.

Бунят**вебсоюзная**

HATEHTHO-

(71) Заявитель

Всесоюзный научно-исследовательский институт разражния ская и эксплуатации нефтепромысловых

груб БИБЛИОТЕКА

(54) РЕЗЬБОВОЕ СОЕДИНЕНИЕ ТРУБ

Изобретение относится к бурению и касается соединений труб, предпочтительно из алюминиевых сплавов со стальными зам-

Известно высокопрочное коническое резыбовое соединение труб с коническими стабилизирующими поясками, содержащее охватываемую и охватывающую детали, соединяемые между собой с помощью резьбы и имеющие сопряжение по коническим поверхностям [1].

Наиболее близким к предлагаемому является резьбовое соединение, состоящее из охватываемой (ниппеля) и охватывающей (муфты) деталей, соединяемых друг с другом с помощью конической резьбы и имеющее стопорное кольцо, сопрягаемое с трубой по концентричной поверхности, а с охватывающей деталью по цилиндрической или конической поверхности [2].

Однако известные соединения не обеспечивают надежное предотвращение соединяемых деталей от доворота, что имеет особенно большое значение для соединения деталей, прочностные характеристики которых существенно различны. Так, прочностные характеристики замка в сборной конструк-

ции легкосплавных бурильных труб (АБТ) в значительной мере превышают свойства материала труб — сплава на основе алюминия. Особенное значение предотвращения соединяемых деталей от доворота имеет место в условиях действия высоких температур, экстремальных статических и вибрационных нагрузок, которые способны вызвать быструю релаксацию напряжений монтажной затяжки резьбовой пары путем ползучести или виброползучести менее прочного ее материала.

Цель изобретения — повышение надежности резьбового соединения труб, особенно

Поставленная цель достигается тем, что часть внутренней поверхности кольца выполнена эксцентричной, а труба имеет ответный ей участок.

Кроме того, резьбовое соединение снабжено установленным между торцами муфты и кольца предохранительным кольцом, выполненным из эластичного износостойкого материала.

На фиг. 1 изображено резьбовое соединение труб; на фиг. 2 — то же, с протектором.

3

Резьбовое соединение содержит ниппель 1, выполненный, например, из алюминиевого сплава, муфту 2, например, из стали, коническую резьбу 3, стабилизирующий поясок 4 муфты 2 и стопорное кольцо 5, выполненное из высокомодульного релаксационностойкого материала, например из стали, с модулем сдвига большим, чем у материала ниппеля 1. Оно имеет на внутренней поверхности концентричный и эксцентричный участки и закреплено на ниппеле 1 за зоной сбега его резьбы 3 по ответным концентричной 6 и эксцентричной 7 проточкам с помощью горячей прессовой посадки. Стопорное кольцо 5 снабжено коническим пояском 8, ответно и контактно взаимодействующим со стабилизирующим пояском 4 муф- 15 ты 2. Поверхности поясков 4 и 8 образуют, таким образом, релаксационностойкую фрикционную пару, надежно стопорящую и стабилизирующую резьбовое соединение.

Порядок изготовления и сборки следующий.

Сначала на ниппельном конце трубы выполняется коническая заточка под резьбу 3 и проточки 6 и 7. Затем горячей прессовой посадкой ответными поверхностями закрепляется заготовка стопорного кольца 5. С одной установки на ниппеле выполняется резьба 3 и стабилизирующие пояски. После чего вручную наворачивается и горячей прессовой посадкой закрепляется муфта 2, при этом обеспечивается необходимый диаметральный натяг как по резьбе, так и по пояскам. Таким образом, при бурении достигается высокий эффект стопорения резьбы в условиях релаксации напряжений монтажной затяжки резьбы.

Для снижения крутящего момента и разгрузки резьбовых соединений бурильной колонны при роторном бурении, а также снижения абразивного износа наружной поверх-

ности муфт и обсадных колонн между торцами муфты 2 и стопорного кольца 5 может быть укреплено, например клеем, предохранительное кольцо, выполненное из эластичного износостойкого материала, такого как полиуретан, наружный диаметр кольца больше диаметра муфты и стопорного кольца. В некоторых случаях, например, при эксплуатации бурильных труб в особо тяжелых условиях после горячей сборки резьбового соединения может оказаться целесообразным обеспечить неразъемное соединение муфты со стопорным кольцом, например, нахлесточным сварным, либо паяным швом.

Формула изобретения

1. Резьбовое соединение труб, преимущественно из разнородных материалов, состоящее из ниппеля и высокопрочной муфты, свинченных между собой на конической резьбе, и стопорного кольца, сопрягаемого с трубой по концентричной поверхности, а с муфтой по коническому стабилизирующему пояску, отличающееся тем, что, с целью повышения надежности соединения за счет предотвращения доворота, часть внутренней поверхности стопорного кольца выполнена эксцентричной, а труба имеет ответный ей участок.

2. Резьбовое соединение труб по п. 1, отличающееся тем, что оно снабжено установленным между торцами муфты и стопорного кольца предохранительным кольцом, выполненным из эластичного износостойкого материала.

Источники информации, принятые во внимание при экспертизе 1. Авторское свидетельство СССР № 262796, кл. Е 21 В 17/02, 1964. 2. Патент США № 2539057, кл. 285—115, опублик. 1951.

QU2.7

Quz. 2

Редактор М. Янович Заказ 7499/50

Составитель В. Жаров
Техред А. Бойкас Корректор Ю. Макаренко
Тираж 627 Подписное
ВНИИПИ Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж.—35, Раушская наб., д. 4/5
Филиал ППП «Патент», г. Ужгород, ул. Проектиая, 4