Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

In [2]:

df=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs(Dataset)\madrid_2002.
df

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	Р
0	2002- 04-01 01:00:00	NaN	1.39	NaN	NaN	NaN	145.100006	352.100006	NaN	6.54	41.990
1	2002- 04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85	20.980
2	2002- 04-01 01:00:00	NaN	0.80	NaN	NaN	NaN	103.699997	134.000000	NaN	13.01	28.440
3	2002- 04-01 01:00:00	NaN	1.61	NaN	NaN	NaN	97.599998	268.000000	NaN	5.12	42.180
4	2002- 04-01 01:00:00	NaN	1.90	NaN	NaN	NaN	92.089996	237.199997	NaN	7.28	76.330
217291	2002- 11-01 00:00:00	4.16	1.14	NaN	NaN	NaN	81.080002	265.700012	NaN	7.21	36.750
217292	2002- 11-01 00:00:00	3.67	1.73	2.89	NaN	0.38	113.900002	373.100006	NaN	5.66	63.389
217293	2002- 11-01 00:00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11	9.640
217294	2002- 11-01 00:00:00	4.51	0.91	4.83	10.99	NaN	149.800003	202.199997	1.00	5.75	I
217295	2002- 11-01 00:00:00	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38	29.240
217296 rows × 16 columns											
217290 Tows * 10 Columns											

Data Cleaning and Data Preprocessing

In [3]:

df=df.dropna()

In [4]:

```
df.columns
```

```
Out[4]:
```

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 32381 entries, 1 to 217295
Data columns (total 16 columns):
             Non-Null Count Dtype
    Column
    -----
             -----
---
                             ----
0
    date
             32381 non-null object
 1
    BEN
             32381 non-null float64
 2
    CO
             32381 non-null float64
 3
    EBE
             32381 non-null float64
 4
             32381 non-null float64
    MXY
 5
             32381 non-null float64
    NMHC
 6
    NO_2
             32381 non-null float64
 7
    NOx
             32381 non-null float64
 8
    OXY
             32381 non-null float64
 9
    0 3
             32381 non-null float64
 10
    PM10
             32381 non-null float64
 11
    PXY
             32381 non-null float64
 12
    S0_2
             32381 non-null float64
 13
    TCH
             32381 non-null float64
 14
             32381 non-null float64
    TOL
15 station 32381 non-null int64
dtypes: float64(14), int64(1), object(1)
memory usage: 4.2+ MB
```

In [11]:

```
data=df[['BEN', 'TOL', 'PXY']]
data
```

Out[11]:

	BEN	TOL	PXY	
1	1.93	10.98	2.53	
5	3.19	15.60	2.98	
22	2.02	7.32	1.48	
24	3.02	11.42	2.18	
26	2.02	10.60	2.45	
217269	1.24	4.45	0.94	
217271	3.13	15.10	3.40	
217273	2.50	16.65	3.60	
217293	1.37	4.33	0.94	
217295	3.11	15.51	3.35	

32381 rows × 3 columns

Line chart

In [12]:

```
data.plot.line(subplots=True)
```

Out[12]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

In [13]:

data.plot.line()

Out[13]:

<AxesSubplot:>

Bar chart

In [14]:

b=data[0:50]

In [15]:

b.plot.bar()

Out[15]:

<AxesSubplot:>

Histogram

In [16]:

data.plot.hist()

Out[16]:

<AxesSubplot:ylabel='Frequency'>

Area chart

In [17]:

data.plot.area()

Out[17]:

<AxesSubplot:>

Box chart

In [18]:

data.plot.box()

Out[18]:

<AxesSubplot:>

Pie chart

In [20]:

b.plot.pie(y='BEN')

Out[20]:

<AxesSubplot:ylabel='BEN'>

Scatter chart

In [22]:

```
data.plot.scatter(x='TOL' ,y='BEN')
```

Out[22]:

<AxesSubplot:xlabel='TOL', ylabel='BEN'>

In [23]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 32381 entries, 1 to 217295 Data columns (total 16 columns): Column # Non-Null Count Dtype _____ _____ object 0 date 32381 non-null 1 BEN 32381 non-null float64 2 CO 32381 non-null float64 3 EBE 32381 non-null float64 4 MXY 32381 non-null float64 5 NMHC 32381 non-null float64

6 NO 2 32381 non-null float64 7 NOx32381 non-null float64 8 0XY 32381 non-null float64 9 0_3 32381 non-null float64 10 PM10 32381 non-null float64 11 PXY 32381 non-null float64 float64 12 SO 2 32381 non-null 13 TCH 32381 non-null float64 14 TOL 32381 non-null float64

dtypes: float64(14), int64(1), object(1)

int64

station 32381 non-null

memory usage: 4.2+ MB

```
In [24]:
```

```
df.describe()
```

Out[24]:

	BEN	СО	EBE	MXY	NMHC	NO_2
count	32381.000000	32381.000000	32381.000000	32381.000000	32381.000000	32381.000000
mean	2.479155	0.787323	2.914004	7.013636	0.155827	58.936796
std	2.280959	0.610810	2.667881	6.774365	0.135731	31.472733
min	0.180000	0.000000	0.180000	0.190000	0.000000	0.890000
25%	0.970000	0.420000	1.140000	2.420000	0.080000	35.660000
50%	1.840000	0.620000	2.130000	5.140000	0.130000	57.160000
75%	3.250000	0.980000	3.830000	9.420000	0.200000	78.769997
max	32.660000	8.460000	41.740002	99.879997	2.700000	263.600006
4						>

In [25]:

EDA AND VISUALIZATION

In [26]:

sns.pairplot(df1[0:50])

Out[26]:

<seaborn.axisgrid.PairGrid at 0x11456bcdd30>

In [27]:

```
sns.distplot(df1['station'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[27]:

<AxesSubplot:xlabel='station', ylabel='Density'>

In [28]:

sns.heatmap(df1.corr())

Out[28]:

<AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

```
In [29]:
```

```
In [30]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

In [31]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[31]:

LinearRegression()

In [32]:

```
lr.intercept_
```

Out[32]:

28078991.39595005

In [33]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[33]:

	Co-efficient
BEN	1.974642
СО	-13.144500
EBE	-12.590009
MXY	4.183719
NMHC	80.220883
NO_2	0.254409
NOx	-0.094810
OXY	-4.793770
O_3	-0.039461
PM10	-0.114979
PXY	8.165716
SO_2	0.551567
тсн	41.115474
TOL	-1.451087

In [34]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[34]:

<matplotlib.collections.PathCollection at 0x11467f38940>

ACCURACY

```
In [35]:
lr.score(x_test,y_test)
Out[35]:
0.19727401561681268
In [36]:
lr.score(x_train,y_train)
Out[36]:
0.19864042035800789
Ridge and Lasso
In [37]:
from sklearn.linear_model import Ridge,Lasso
In [38]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[38]:
Ridge(alpha=10)
Accuracy(Ridge)
In [39]:
rr.score(x_test,y_test)
Out[39]:
0.1961181197383136
In [40]:
rr.score(x_train,y_train)
Out[40]:
0.1984498616765833
In [41]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[41]:
Lasso(alpha=10)
```

```
In [42]:
```

```
la.score(x_train,y_train)
```

Out[42]:

0.059286006322965545

Accuracy(Lasso)

```
In [43]:
la.score(x_test,y_test)
Out[43]:
0.05399322398318607
```

Accuracy(Elastic Net)

```
In [44]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
```

Out[44]:

ElasticNet()

```
In [45]:
```

```
en.coef_
```

Out[45]:

```
array([ 0.90807009, 0. , -3.03778728, 1.50214494, 0.18520451, 0.23397266, -0.0264939 , -2.25820265, -0.03191645, 0.00659687, 2.32046868, 0.36749735, 1.03444336, -1.15987874])
```

In [46]:

```
en.intercept_
```

Out[46]:

28079038.682628848

In [47]:

```
prediction=en.predict(x_test)
```

```
In [48]:
en.score(x_test,y_test)
Out[48]:
0.09587022840432957
```

Evaluation Metrics

```
In [49]:
```

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
28.716055972336175
```

28.716055972336175 1131.179666418981 33.633014530650996

Logistic Regression

```
In [52]:
feature_matrix.shape
Out[52]:
(32381, 14)
In [53]:
target_vector.shape
```

```
Out[53]:
(32381,)
In [54]:
```

from sklearn.preprocessing import StandardScaler

```
In [55]:
fs=StandardScaler().fit_transform(feature_matrix)
In [56]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[56]:
LogisticRegression(max_iter=10000)
In [57]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [58]:
prediction=logr.predict(observation)
print(prediction)
[28079035]
In [59]:
logr.classes_
Out[59]:
array([28079006, 28079024, 28079035, 28079099], dtype=int64)
In [60]:
logr.score(fs,target_vector)
Out[60]:
0.8480899292795158
In [61]:
logr.predict_proba(observation)[0][0]
Out[61]:
2.5638972732451705e-10
In [62]:
logr.predict_proba(observation)
Out[62]:
```

array([[2.56389727e-10, 3.44199742e-71, 1.00000000e+00, 1.43898646e-13]])

Random Forest

```
In [63]:
```

```
from sklearn.ensemble import RandomForestClassifier
```

```
In [64]:
```

```
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[64]:

RandomForestClassifier()

In [65]:

In [66]:

```
from sklearn.model_selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
```

Out[66]:

In [67]:

```
grid_search.best_score_
```

Out[67]:

0.7753022147710227

In [68]:

```
rfc_best=grid_search.best_estimator_
```

In [69]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d'],f
```

Out[69]:

```
[Text(2241.3, 1993.2, 'SO 2 <= 5.785\ngini = 0.749\nsamples = 14384\nvalue</pre>
= [5027, 5726, 5882, 6031]\nclass = d'),
 Text(1190.4, 1630.800000000002, 'OXY <= 1.005\ngini = 0.15\nsamples = 33
58\nvalue = [167, 4891, 0, 258]\nclass = b'),
 Text(595.2, 1268.4, 'OXY <= 0.805\ngini = 0.046\nsamples = 2132\nvalue =
[21, 3300, 0, 59]\nclass = b'),
  Text(297.6, 906.0, 'PM10 <= 7.23\ngini = 0.013\nsamples = 1235\nvalue =
[7, 1960, 0, 6] \setminus class = b'),
 Text(148.8, 543.599999999999, 'SO 2 <= 4.52\ngini = 0.048\nsamples = 250
\nvalue = [4, 398, 0, 6] \setminus ass = b'),
 Text(74.4, 181.1999999999982, 'gini = 0.005\nsamples = 223\nvalue = [1,
362, 0, 0] \nclass = b'),
  Text(223.2000000000000, 181.199999999982, 'gini = 0.338\nsamples = 27
\nvalue = [3, 36, 0, 6] \setminus class = b'),
  samples = 985\nvalue = [3, 1562, 0, 0]\nclass = b'),
 Text(372.0, 181.1999999999982, 'gini = 0.185\nsamples = 15\nvalue = [3,
26, 0, 0]\nclass = b'),
 Text(520.800000000001, 181.1999999999982, 'gini = 0.0\nsamples = 970\nv
alue = [0, 1536, 0, 0] \setminus nclass = b'),
  Text(892.8000000000001, 906.0, 'SO_2 <= 4.7\ngini = 0.091\nsamples = 897
\nvalue = [14, 1340, 0, 53]\nclass = b'),
 Text(744.0, 543.599999999999, 'CO <= 0.095\ngini = 0.002\nsamples = 761
\nvalue = [1, 1189, 0, 0] \setminus class = b'),
 Text(669.6, 181.199999999999, 'gini = 0.095\nsamples = 15\nvalue = [1,
19, 0, 0]\nclass = b'),
 Text(818.400000000001, 181.1999999999982, 'gini = 0.0\nsamples = 746\nv
alue = [0, 1170, 0, 0] \setminus class = b'),
  Text(1041.60000000000001, 543.599999999999, 'CO <= 0.295 \setminus 100 = 0.453 \setminus 100
amples = 136\nvalue = [13, 151, 0, 53]\nclass = b'),
 Text(967.2, 181.19999999999999, 'gini = 0.525 \nsamples = 54 \nvalue = [9, ]
22, 0, 52]\nclass = d'),
 Text(1116.0, 181.199999999999, 'gini = 0.072\nsamples = 82\nvalue = [4,
129, 0, 1]\nclass = b'),
  Text(1785.600000000001, 1268.4, 'TCH <= 1.255\ngini = 0.308\nsamples = 1
226\nvalue = [146, 1591, 0, 199]\nclass = b'),
  Text(1488.0, 906.0, 'TCH <= 1.205\ngini = 0.617\nsamples = 197\nvalue =
[144, 49, 0, 126]\nclass = a'),
 0\nvalue = [126, 9, 0, 15]\nclass = a'),
 Text(1264.8000000000002, 181.1999999999982, 'gini = 0.0\nsamples = 75\nv
alue = [125, 0, 0, 0] \setminus nclass = a'),
  Text(1413.600000000001, 181.199999999982, 'gini = 0.509\nsamples = 15
\nvalue = [1, 9, 0, 15]\nclass = d'),
 \nsamples = 107 \cdot nvalue = [18, 40, 0, 111] \cdot nclass = d'),
 Text(1562.4, 181.199999999999, 'gini = 0.0\nsamples = 16\nvalue = [0, 3
0, 0, 0]\nclass = b'),
  Text(1711.2, 181.199999999999, 'gini = 0.34\nsamples = 91\nvalue = [18,
10, 0, 111]\nclass = d'),
  Text(2083.2000000000003, 906.0, 'NMHC <= 0.075 \setminus ini = 0.089 \setminus ini = 10.089 \setminus ini = 10.089
029\nvalue = [2, 1542, 0, 73]\nclass = b'),
 Text(1934.4, 543.59999999999, 'EBE <= 1.095\ngini = 0.511\nsamples = 35
\nvalue = [2, 22, 0, 34]\nclass = d'),
 Text(1860.0000000000000, 181.1999999999999, 'gini = 0.219 \nsamples = 17
\nvalue = [0, 3, 0, 21] \setminus class = d'),
 Text(2008.800000000000, 181.1999999999982, 'gini = 0.538\nsamples = 18

    | value = [2, 19, 0, 13] \\
    | value = [2, 19, 0, 13]
  Text(2232.0, 543.59999999999, 'CO <= 0.395\ngini = 0.049\nsamples = 994
\nvalue = [0, 1520, 0, 39] \setminus class = b'),
  Text(2157.600000000004, 181.199999999982, 'gini = 0.185\nsamples = 203
```

```
\nvalue = [0, 287, 0, 33]\nclass = b'),
Text(2306.4, 181.199999999999, 'gini = 0.01\nsamples = 791\nvalue = [0,
1233, 0, 6]\nclass = b'),
Text(3292.200000000003, 1630.800000000000, 'BEN <= 2.605\ngini = 0.694
\nsamples = 11026\nvalue = [4860, 835, 5882, 5773]\nclass = c'),
Text(2715.6000000000000, 1268.4, 'EBE <= 0.785\ngini = 0.668\nsamples = 6
282\nvalue = [1654, 581, 3692, 3978]\nclass = d'),
Text(2455.2000000000003, 906.0, 'NO_2 <= 10.235\ngini = 0.354\nsamples =
458\nvalu = [5, 44, 580, 107\nclass = c'),
Text(2380.8, 543.599999999999) 'gini = 0.432\nsamples = 21\nvalue = [0,
23, 7, 2]\nclass = b'),
samples = 437 \text{ nvalue} = [5, 21, 573, 105] \text{ nclass} = c'),
Text(2455.2000000000003, 181.1999999999982, 'gini = 0.147\nsamples = 275
\nvalue = [4, 8, 403, 22]\nclass = c ),
Text(2604.0, 181.1999999999999, 'gini = 0.496\nsamples = 162\nvalue =
Text(2976.0, 906.0, '0_3 <= 10.365\ngini = 0.671\nsamples = 5824\nvalue =
[1649, 537, 3112, 3871]\nclass = d'),
Text(2827.200000000003, 543.59999999999, 'BEN <= 1.565\ngini = 0.606\n
 amples = 866\nvalue = [131, 206, 791, 250]\nclass = c'),
0, 64, 294, 35]\nclass = c'),
Text(2901.600000000004, 181.199999999982, 'gini = 0.65\nsamples = 600
 58\nvalue = [1518, 331, 2321, 3621]\nclass = d'),
Linear Regression:0.19864042035800789gini = 0.642\nsamples = 1851\nvalue =
[321, 225, 995, 1389] \setminus (1385 = d'),
Text(3199.200000000003, 181.1999999999982, 'gini = 0.654\nsamples = 310
Ridge_{Regression}, 0.059286096322965545_{class} = d'),
Text(3868.8, 1268.4, 'OXY <= 4.465\ngini = 0.669\nsamples = 4744\nvalue =
Lasso, Redression: 0.05359322398318607),
Text(3571.2000000000003, 906.0, 'NMHC <= 0.165\ngini = 0.684\nsamples = 1
872\nvalue = [615, 170, 960, 1142]\nclass = d'), 

Elastic Net Regression: 0.09587022840432957 <= 2.925\ngini = 0.62\nsamples = 739
\nvalue = [430, 14, 546, 171]\nclass = c'),
Lberstie 348g Pession 00848089929249979899999982, 'gini = 0.546\nsamples = 203
\nvalue = [31, 9, 193, 82]\nclass = c'),
samples = 1133\nvalue = [185, 156, 414, 971]\nclass = d'),
Legistic Requessionois suitable for this 2 dataset = 0.049 \ nsamples = 59
\nvalue = [0, 78, 2, 0] \setminus class = b'),
Text(3794.4, 181.199999999999, 'gini = 0.574\nsamples = 1074\nvalue =
[185, 78, 412, 971]\nclass = d'),
Text(4166.400000000001, 906.0, 'SO_2 <= 36.375\ngini = 0.583\nsamples = 2
872\nvalue = [2591, 84, 1230, 653]\nclass = a'),
Text(4017.600000000004, 543.59999999999, 'NMHC <= 0.155\ngini = 0.602
\n = 2473 \quad = [2117, 84, 1185, 565] \quad = a'),
Text(3943.200000000003. 181.1999999999982. 'gini = 0.425\nsamples = 697
```