

<u>ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ ГОРОДА</u> МОСКВЫ

Северо-Западный административный округ

Государственное бюджетное общеобразовательное учреждение города Москвы «Школа № 1298 «Профиль Куркино»

Командный кейс №6 "Система управления доступом на закрытую территорию"

Автор: команда «Анкап»

Состав команды: Белоусов Николай, Крайнов Григорий,

Мишин Георгий, Певнев Игорь

Ученики 9 класса

Руководитель: Лукашевич Маргарита Николаевна

учитель физики

Оглавление

1.	Цель и						
	задачи	4					
2.	2. Описание						
	команды	4					
3.	Роли, обязанности и						
	функции	4					
4.	Общее описание						
	функций	5					
5. Описание используемых							
	инструментов	6					
	5.1 Аппаратные узлы	6					
	5.2 Модули	6					
	5.3 Программные узлы	6					
	5.4 Фреймворки, библиотеки	6					
6.	UML-диаграммы	8					
	6.1 Диаграмма пользовательского взаимодействия с системой	8					
	6.2Диаграмма автомата	9					

	6.3Диаграмма последовательности	10
7.	Диаграммы компонентов в виде схем электрических принципиа	льных
	устройств	11
	7.1 Схема Arduino MEGA	11
	7.2 Схема символьного дисплея	12
	7.3 Схема сервопривода	12
	7.4 Схема драйвера двигателя L298n	13
	7.5 Схема RFID	13
	7.6 Схема клавиатуры	14
	7.7 Схема датчика гидролокатора	14
	7.8 Схема соленоида	15
	7.9 Кинематическая схема сервопривода	
8.	Рисунки	16
	8.1 Рисунок 3D-модели ворот	16
	8.2 Рисунок 3D-модели адаптера №1	17
	8.3 Рисунок 3D-модели адаптера №2	17
	8.4 Рисунок 3D-модели адаптера №3	18
	8.5 Рисунок 3D-модели адаптера №4	18
	8.6 Рисунок 3D-модели калитки	19.
	8.7 Рисунок 3D-модели опоры	19
	8.8 Рисунок 3D-модели дверной ручки	20
	8.9 Рисунок 3D-модели дверного адаптера сервопривода	20

8.10 Рисунок 3D-модели дверного сервопривода №1	
8.11 Рисунок 3D-модели дверного сервопривода №2	21
8.12 Рисунок 3D-модели упорной палки №1	22
8.13 Рисунок 3D-модели упорной палки №2	22
9. Алгоритм работы разработанного программного обеспечения	22
9.1 Схема алгоритма работы кода для Arduino UNO	23
9.2 Схема алгоритма работы кода на Python	24
10. Монтажная схема	24
11.Заключение	25
12.Список источников	25

Цель

Разработать программно-аппаратный комплекс управления доступом на закрытую территорию через RFID метки с обновляемой базой данных пользователей на головном пункте управления. Управление доступом через пин-код и RFID. Пин-код должен содержать осуществляется постоянную комбинацию при введении которых будет клавиш, осуществляться проход на закрытую территорию через калитку. RFID сканирует поднесённую к нему RFID метку и сверяет полученный код с базой данных. При положительном ответе будет доступен проезд через ворота. В создании стационарного программно-аппаратного комплекса будут использоваться готовые аппаратные модули и детали, изготовленные с помощью 3D-печати.

Задачи

Анализ задания; проектирование устройства, моделей, программного обеспечения; разработка систем устройства и тестирование.

Описание команды

Команда состоит из четырёх учащихся 9-ого класса "И" ГБОУ школы №1298

Роли, обязанности и функции

- Игорь Певнев капитан, проектирование 3D-моделей, проектирование устройства, сборка, тестирование и отладка, проектирование систем, программирование.
- Николай Белоусов проектирование 3D-моделей, проектирование устройства, проектирование систем, тестирование и отладка, сборка.
- Григорий Крайнов проектирование 3D-моделей, программирование, создание блок-схем, сборка, тестирование и отладка, проектирование систем.

• Георгий Мишин - подготовка документации, проектирование устройства, тестирование и отладка, сборка, проектирование систем.

Общее описание функций(всех)

Программно-аппаратный комплекс предоставляет возможность управлять доступом на закрытую территорию. Предусмотрен как проход с помощью калитки для пешего человека, так и проезд с помощью ворот для автомобиля. Для получения возможности пройти через калитку нужно ввести правильный код на клавиатуре. При введении верного кода калитка автоматически откроется и на дисплее будет отображена надпись, сообщая о разрешении пройти. Автомобилисту нужно приложить **RFID** метку RFID считывателю. RFID считыватель сравнивает полученный код и дату с имеющейся базой данных. При получении положительного ответа дисплей выводит сообщение, сообщающее Ворота 0 разрешении проезда. автоматически открываются и предоставляется возможность проезда.

Описание используемых аппаратных и программных узлов, модулей, фреймворков и других инструментов.

Аппаратные узлы:

- 1. светодиоды
- 2. Резисторы
- 3. Пьезоэлемент
- 4. Соленоид

Модули:

- 1. L298N
- 2. LCD1602
- 3. LMC 1602 I2C
- 4. MicroServo Sg90
- 5. RFID-RC522
- 6. Arduino Uno
- 7. Raspberry Pi 3

Программные узлы:

- 1. Arduino IDE
- 2. PyCharm Community Edition
- 3. AutoDesk Fusion 360
- 4. EasyEDA STD
- 5. Draw io
- 6. UltiMaker Cura
- 7. Fritzing
- 8. TinkerCad
- 9. Linkage

Фреймворки, библиотеки:

- 1. C++
- 2. SPI

- 3. MFRC522
- 4. Wire
- 5. LiquidCrystal_I2C
- 6. Python
- 7. Pandas
- 8. Openpyxl
- 9. Numpy
- 10. Pyserial
- 11. XlsxWriter

UML-диаграммы

На диаграмме 1 приведена диаграмма вариантов пользовательского взаимодействия с системой.

Диаграмма 1

На диаграмме 2 представлена диаграмма автомата.

Диаграмма 2

На диаграмме 3 представлена диаграмма последовательности.

Диаграмма 3

Диаграммы компонентов в виде схем электрических принципиальных устройств

На схеме 1 представлена схема Arduino MEGA.

Схема 1

На схеме 2 представлена схема символьного дисплея LCD1602.

Схема 2

На схеме 3 представлена схема сервопривода.

Схема 3

На схеме 4 представлена схема драйвера двигателя L298n.

Схема 4

На схеме 5 представлена схема RFID.

Схема 5

На схеме 6 представлена схема клавиатуры.

Схема 6

На схеме 7 представлена схема датчика гидролокатора.

Схема 7

На схеме 8 представлена схема соленоида.

Схема 8

Схема кинематической системы сервопривода.

На схеме 9 представлена схема кинематической системы сервопривода.

3D-модели

На рисунке 1 представлена 3D-модель ворот.

Рисунок 1

На рисунке 2 представлена 3D-модель адаптера №1.

Рисунок 2 На рисунке 3 представлена 3D-модель адаптера №2.

Рисунок 3 На рисунке 4 представлена 3D-модель адаптера №3.

Рисунок 4 На рисунке 5 представлена 3D-модель адаптера №4.

Рисунок 5 На рисунке 6 представлена 3D-модель калитки.

Рисунок 6 На рисунке 7 представлена 3D-модель опоры.

Рисунок 7 На рисунке 8 представлена 3D-модель дверной ручки.

Рисунок 9 На рисунке 10 представлена 3D-модель дверного сервопривода №1.

Рисунок 10 На рисунке 11 представлена 3D-модель дверного сервопривода №2.

Рисунок 11 На рисунке 12 представлена 3D-модель упорной палки №1.

Рисунок 12 На рисунке 13 представлена 3D-модель упорной палки №2.

Рисунок 13

Алгоритм работы разработанного программного обеспечения в виде блок-схем.

Ha схеме 10 представлена схема алгоритма работы кода для Arduino UNO.

Схема 10

На схеме 11 представлена схема алгоритма работы кода, написанного на Python и используемого самой системой.

Схема 11

Монтажная схема

Монтажная схема представлена на схеме 12.

Заключение

Нам удалось достигнуть основной цели - создание программно-аппаратного комплекса управления доступом на закрытую территорию и выполнения всех задач. Данный проект, представляющий из себя программно-аппаратный комплекс основан на основе реальных систем, которыми многие люди пользуются почти ежедневно. Подобные системы незаменимы в управлении доступом на закрытую территорию. Системы такого характера будут постоянно улучшаться с развитием технологий, поэтому такой проект очень сильно актуален. Наша система полностью рабочая и может быть использована как реальная модель настоящего программно-аппаратного комплекса управления доступом на закрытую территорию. Несмотря на полную работоспособность, данное устройство может быть улучшено иными методами идентификации личности: дактилоскопия, идентификация по геометрии лица, голосовая идентификация и так далее. К тому же, проект можно улучшить добавлением искусственного интеллекта, способного облегчить процесс идентификации. Можно использовать мобильное приложение для возможности обеспечения доступа на территорию удалённо.

Список источников

Все источники использовались только для получения информации командой с целью изучения материала на страницах, поэтому раннее в документации они не упоминались и были использованы для самообучения.

[1]

[2]

[3]

[4]

<u>[5]</u>

<u>[6]</u>

[7]

[8]

<u>[9]</u>

[10]

[11]

[12]

[13]

[14]

[15]

[16]

<u>[17]</u>

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

<u>[50]</u>

[51]

[52]

[53]

[54]

[55]

[56]

[57]