Weekly Challenge 15: Matching in Bipartite Graphs

CS/MATH 113 Discrete Mathematics

Spring 2024

1. *n*-doku (10 points)

Let us define an n-doku as an $n \times n$ grid which contains all the numbers from 1 to n inclusive in the following manner.

- Each number appears exactly n times in the grid.
- Each number appears exactly once in each row of the grid.
- Each number appears exactly once in each column of the grid.

For example here is a 4-doku.

4	3	1	2
3	4	2	1
2	1	4	3
1	2	3	4

(a) 2 points Below is a partially completed 5-doku.

1	2	5	3	4
3	5	2	4	1
5	1	4	2	3

Copy and complete the 5-doku.

Solution:

1	2	5	3	4
3	5	2	4	1
5	1	4	2	3
4	3	1	5	2
2	4	3	1	5

(b) 4 points Show that filling in the next row of an *n*-doku is equivalent to finding a matching in some 2n-vertex bipartite graph.

Solution:

Proof. Consider a bipartite graph G = (V, E) where there are two disjoint sets of vertices in V, $A = \{a_1, a_2, \ldots, a_n\}$ and $B = \{b_1, b_2, \ldots, a_n\}$ such that |A| = |B|.

For each $i \in \{1, 2, \dots, n\}$, there is an edge between a_i and b_j if and only if the ith column of the n-doku is missing the number j. Then, finding a matching in this bipartite graph is equivalent to filling in the next row of the n-doku. Therefore, filling in the next row of an n-doku is equivalent to finding a matching in some 2n-vertex bipartite graph.

(c) 4 points Prove that a matching must exist in this bipartite graph and, consequently, that an incomplete n-doku can always be completed.

Solution:

Proof. Applying Hall's Marriage Theorem to the bipartite graph defined in part(b): Let $S \subseteq A$. We need to show that $|N(S)| \ge |S|$ for every subset S of A.

Consider any subset S of A. Each mumber in S needs to be placed in a different position in B to satisfy the rules.

Since teach position in B can only be occupied by one number, the neighbourhood N(S) contains at least |S| distict positions i.e. $|N(S)| \ge |S|$.

This satisfies the theorem implying that a perfect matching is guaranteed. This perfect matching corresponds to a valid completion of the *n*-doku.

Therefore, an incomplete n-doku can always be completed in this manner. \Box