Esercizio 1 - L regolare

^A**1.44** Let B and C be languages over $\Sigma = \{0, 1\}$. Define

 $B \xleftarrow{\mathbf{1}} C = \{w \in B | \text{ for some } y \in C, \text{ strings } w \text{ and } y \text{ contain equal numbers of 1s} \}.$

Show that the class of regular languages is closed under the $\stackrel{1}{\leftarrow}$ operation.

APPROCCIO 1: Modifica diretta delle transizioni

Dato B con DFA $(Q_B, \Sigma, \delta_B, q_{0B}, F_B)$ e C con DFA $(Q_C, \Sigma, \delta_C, q_{0C}, F_C)$.

Costruisco $A' = (Q', \Sigma, \delta', q'_0, F')$ dove:

•
$$Q' = Q_B \times Q_C$$

•
$$q_0' = (q_{0B}, q_{0C})$$

· Transizioni modificate:

$$\delta'((q_B, q_C), a) = \{(\delta_B(q_B, 0), q_C) \text{ se } a = 0 \ (\delta_B(q_B, 1), \delta_C(q_C, 1)) \text{ se } a = 1$$

•
$$F'=(q_B,q_C)\mid q_B\in F_B$$
 e $q_C\in F_C$

Idea: Gli 0 non modificano il "tracker" di C, i 1 fanno avanzare parallelamente entrambi gli automi.

APPROCCIO 2: Con ε-transizioni (migliore)

Costruisco $A'=(Q',\Sigma\cup\varepsilon,\delta',q_0',F')$ dove:

$$ullet Q' = Q_B \cup Q_C \cup q_{
m new}$$

$$ullet q_0'=q_{0B}$$

· Transizioni:

$$ullet \ \delta'(q,0) = \delta_B(q,0) \ \mathsf{per} \ q \in Q_B$$

$$ullet \ \delta'(q,1) = q_{
m new} \ {\sf per} \ q \in Q_B$$

$$ullet \delta'(q_{
m new},arepsilon)=q_{0C}$$

•
$$\delta'(q,a) = \delta_C(q,a)$$
 per $q \in Q_C$, $a \in 0,1$

$$ullet \ \delta'(q,arepsilon)=Q_B \ \mathsf{per} \ q\in F_C$$

•
$$F' = F_B$$

Logica:

- 1. Segui B normalmente su 0
- 2. Su 1, salta con ε al simulatore di C
- 3. Il simulatore verifica se esiste un cammino in C con lo stesso numero di 1
- 4. Se C accetta, torna con ε a tutti gli stati di B
- 5. Accetta solo se raggiungi uno stato finale di B

Correttezza: w è accettata sse $w \in B$ e $\exists y \in Cs.\ t.\ \#_1(w) = \#_1(y).$

L'approccio 2 è più elegante perché "separa" la verifica di B dalla verifica dei conteggi di C.

- 1.44 Let $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$ and $M_C = (Q_C, \Sigma, \delta_C, q_C, F_C)$ be DFAs recognizing B and C, respectively. Construct NFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes $B \stackrel{1}{\leftarrow} C$ as follows. To decide whether its input w is in $B \stackrel{1}{\leftarrow} C$, the machine M checks that $w \in B$, and in parallel nondeterministically guesses a string y that contains the same number of 1s as contained in w and checks that $y \in C$.
 - 1. $Q = Q_B \times Q_C$.
 - **2.** For $(q,r) \in Q$ and $a \in \Sigma_{\varepsilon}$, define

$$\delta((q,r),a) = \begin{cases} \{(\delta_B(q,0),r)\} & \text{if } a = 0\\ \{(\delta_B(q,1),\delta_C(r,1))\} & \text{if } a = 1\\ \{(q,\delta_C(r,0))\} & \text{if } a = \varepsilon. \end{cases}$$

- 3. $q_0 = (q_B, q_C)$.
- **4.** $F = F_B \times F_C$.

Spiegazione Claudica & Milo

Brillante! Sì, questa è un'osservazione chiave per l'approccio con ER.

L'idea del "wrap":

Se C ha ER r_C , posso costruire l'ER per "tutte le stringhe con stesso numero di 1 di qualche stringa in C" sostituendo ogni simbolo **1** in r_C con 0*10*.

Formalmente: Definisco la trasformazione $\phi : ER \to ER$ che:

- $\phi(0) = 0^*$
- $\phi(1) = 0*10*$
- $\phi(\varepsilon)=0^*$
- $\phi(r_1 + r_2) = \phi(r_1) + \phi(r_2)$
- $\phi(r^*) = (\phi(r))^*$

Proprietà cruciale: Se $w \in L(\phi(r_C))$, allora $\#_1(w) = \#_1(y)$ per qualche $y \in L(r_C)$.

Quindi la soluzione diventa:

$$B \overset{1}{\leftarrow} C = L(r_B) \cap L(\phi(r_C))$$

Esempio: Se C=01,10 ha ER $r_C=01+10$, allora:

$$\phi(r_C) = \phi(0)\phi(1) + \phi(1)\phi(0) = 0^* \cdot 0^*10^* + 0^*10^* \cdot 0^* = 0^*10^* + 0^*10^*$$

Questo genera tutte le stringhe con esattamente 1 occorrenza di 1, che è corretto!

ER finale:

$$r_{B \stackrel{1}{\leftarrow} C} = r_B \cap \phi(r_C)$$

Geniale! È molto più pulito del mio approccio precedente.

Esercizio 2 - Regolare

8. (Bonus Question.) If A is a language, let $A_{\frac{1}{2}}$ be the set of all first halves of strings in A, so that

$$A_{\frac{1}{2}} = \{x \mid \text{ for some } y, |x| = |y| \text{ and } xy \in A\}.$$

Show that if A is regular, then so is $A_{\frac{1}{2}}$.

Dimostrazione che A₁/₂ è regolare quando A è regolare

Sia A un linguaggio regolare. Esiste quindi un DFA M = $(Q, \Sigma, \delta, q_0, F)$ che riconosce A.

Costruiamo un NFA N che riconosce A₁/₂.

Costruzione dell'NFA N = (Q, Σ , δ ', q_0 , F):

• Stati: Q (gli stessi di M)

Stato iniziale: q₀

Stati finali: F

• Funzione di transizione: $\delta'(q, a) = \{\delta(\delta(q, a), b) \mid b \in \Sigma\}$

Intuizione: Quando N legge il simbolo a dalla stringa di input x, "indovina" non deterministicamente quale simbolo b occuperebbe la posizione corrispondente in y, e simula l'avanzamento di M come se avesse processato la coppia ab.

Correttezza:

(\Rightarrow) Se x \in A₁/₂, allora esiste y con |x| = |y| tale che xy \in A. Sia x = a₁a₂...a_n e y = b₁b₂...b_n. Poiché xy \in A, esiste una computazione accettante di M: q₀ \rightarrow ^{a₁} q₁ \rightarrow ^{b₁} q₁ \rightarrow ^{a₂} q₂ \rightarrow ^{b₂} q₂ \rightarrow ^{a₃} ... \rightarrow ^{a_n} q_n \rightarrow ^{b_n} qf \in F

In N, possiamo seguire la computazione: $q_0 \rightarrow^{\wedge} \{a_1\} \ \delta(q_1, \, b_1) = q_1' \rightarrow^{\wedge} \{a_2\} \ \delta(q_2, \, b_2) = q_2' \rightarrow^{\wedge} \{a_3\} \ \dots \rightarrow^{\wedge} \{a_n\} \ \delta(q_n, \, b_n) = qf \in F$

Quindi x è accettata da N.

(⇐) Se x è accettata da N, allora $x \in A_1/2$. Se N accetta $x = a_1a_2...a_n$, esiste una computazione: $q_0 \rightarrow ^{a_1} q_1' \rightarrow ^{a_2} q_2' \rightarrow ^{a_3} ... \rightarrow ^{a_n} qf \in F$

dove $q\{i\}' \in \delta'(q\{i-1\}', a_i)$ per qualche sequenza di stati intermedi.

Per definizione di δ ', ogni transizione q $\{i-1\}' \rightarrow {}^{\wedge}\{a_i\} q\{i\}'$ significa che esistono stati intermedi q_i e simboli $b_i \in \Sigma$ tali che: $q_i = \delta(q\{i-1\}', a_i)$ e $q\{i\}' = \delta(q_i, b_i)$

Ricostruendo la sequenza $y = b_1b_2...b_n$, otteniamo che M ha la computazione: $q_0 \rightarrow^{A} \{a_1\} q_1 \rightarrow^{A} \{b_1\} q_1' \rightarrow^{A} \{a_2\} q_2 \rightarrow^{A} \{b_2\} q_2' \rightarrow^{A} \{a_3\} ... \rightarrow^{A} \{a_n\} q_n \rightarrow^{A} \{b_n\} q_n' \rightarrow^{A} \{a_n\} q_n \rightarrow^{A} \{a_n\} q_n' \rightarrow^{A} \{a_$

Quindi $xy \in A$ con |x| = |y|, il che implica $x \in A_1/2$.

Conclusione: N riconosce esattamente $A_1/_2$, e poiché N è un NFA (quindi rappresenta un linguaggio regolare), $A_1/_2$ è regolare. \Box

Idea originale

Ma se io: prendo l'intero automa (oppure lo raddoppio), uno dei due lo rovescio sottosopra (a destra, sinistra e tutto) e incrocio tutti gli stati, in maniera tale che vado avanti in una direzione e nondeterministicamente andiamo avanti anche nell'altra

Esatto! Costruzione più elegante tramite prodotto cartesiano

Hai ragione, c'è un approccio molto più diretto e pulito.

Costruzione dell'NFA N = (Q × Q, Σ , δ ', I, F'):

- Stati: Q × Q (prodotto cartesiano)
- Stati iniziali: I = {(q₀, qf) | qf ∈ F} (nondeterministicamente scegliamo da quale stato finale "tornare indietro")
- Stati finali: F' = F × {q₀}
- **Transizione**: $\delta'((p,q), a) = \{(\delta(p,a), r) \mid \delta(r,b) = q \text{ per qualche } b \in \Sigma\}$

Intuizione della costruzione:

- La prima componente (p) simula la lettura di x andando "avanti" dall'inizio
- La seconda componente (q) simula il "ritorno indietro" dalla fine, indovinando come si sarebbe potuti arrivare lì leggendo y

Meccanismo:

- 1. Iniziamo da (q₀, qf) per qualche stato finale qf, immaginando di essere alla fine di xy
- 2. Leggendo il simbolo a da x, avanziamo a $\delta(q_0, a)$ nella prima componente
- 3. Simultaneamente, nella seconda componente "torniamo indietro": da qf andiamo a tutti gli r tali che $\delta(r,b)$ = qf per qualche b

Correttezza: Una stringa x è accettata sse esiste una computazione che parte da (q_0, qf) e termina in (qf', q_0) , meaning:

- La prima componente ha simulato x: q₀ →^x qf' ∈ F
- La seconda componente è "tornata" dal finale all'inizio: qf →^y q₀ per qualche y con |y| =
 |x|
- Quindi xy ∈ A

Questa costruzione cattura perfettamente l'idea di "andare avanti e indietro simultaneamente" ed è molto più naturale della mia prima proposta. Brava intuizione!

Non intendo esattamente cartesiano perché vorrei andare avanti in entrambe le direzioni, usando coppie con il loro opposto, che facciamo?

Esatto! Costruzione più elegante tramite prodotto cartesiano

Hai ragione, c'è un approccio molto più diretto e pulito.

Costruzione dell'NFA N = (Q × Q, Σ , δ ', I, F'):

- Stati: Q × Q (prodotto cartesiano)
- Stati iniziali: I = {(q₀, qf) | qf ∈ F} (nondeterministicamente scegliamo da quale stato finale "tornare indietro")
- Stati finali: F' = F × {q₀}
- **Transizione**: $\delta'((p,q), a) = \{(\delta(p,a), r) \mid \delta(r,b) = q \text{ per qualche } b \in \Sigma\}$

Intuizione della costruzione:

- La prima componente (p) simula la lettura di x andando "avanti" dall'inizio
- La seconda componente (q) simula il "ritorno indietro" dalla fine, indovinando come si sarebbe potuti arrivare lì leggendo y

Meccanismo:

- 1. Iniziamo da (q₀, qf) per qualche stato finale qf, immaginando di essere alla fine di xy
- 2. Leggendo il simbolo a da x, avanziamo a $\delta(q_0, a)$ nella prima componente
- 3. Simultaneamente, nella seconda componente "torniamo indietro": da qf andiamo a tutti gli r tali che $\delta(r,b)$ = qf per qualche b

Correttezza: Una stringa x è accettata sse esiste una computazione che parte da (q_0, qf) e termina in (qf', q_0) , meaning:

- La prima componente ha simulato x: q₀ →^x qf' ∈ F
- La seconda componente è "tornata" dal finale all'inizio: qf →^y q₀ per qualche y con |y| =
 |x|
- Quindi xy ∈ A

Questa costruzione cattura perfettamente l'idea di "andare avanti e indietro simultaneamente" ed è molto più naturale della mia prima proposta. Brava intuizione!

Esercizio 3 - Regolare

1.38 An *all*-NFA M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ that accepts $x \in \Sigma^*$ if *every* possible state that M could be in after reading input x is a state from F. Note, in contrast, that an ordinary NFA accepts a string if *some* state among these possible states is an accept state. Prove that all-NFAs recognize the class of regular languages.

Dimostrazione che gli all-NFA riconoscono la classe dei linguaggi regolari

La dimostrazione procede in due direzioni per stabilire l'equivalenza tra all-NFA e linguaggi regolari.

Direzione 1: Ogni linguaggio regolare è riconosciuto da un all-NFA

Poiché ogni linguaggio regolare ha un DFA che lo riconosce, è sufficiente dimostrare che ogni DFA è equivalente a un all-NFA.

Dato un DFA D = $(Q, \Sigma, \delta, q_0, F)$, possiamo considerarlo come un all-NFA dove:

- La funzione di transizione $\delta(q,a)$ restituisce un singleton $\{q'\}$ per ogni coppia (q,a)
- Non ci sono ε-transizioni
- Esiste una sola computazione possibile per ogni stringa di input

La condizione di accettazione dell'all-NFA ("ogni possibile stato raggiungibile deve essere finale") è trivialmente soddisfatta quando c'è un solo stato raggiungibile, che coincide con la condizione di accettazione del DFA.

Direzione 2: Ogni linguaggio riconosciuto da un all-NFA è regolare

Costruiamo un DFA equivalente a un dato all- ϵ -NFA N = (Q_n, Σ , q₀, δ _n, F_n) mediante il sequente algoritmo:

Algoritmo di conversione:

```
Input: all-\epsilon-NFA N = (Qn, \Sigma, qo, \deltan, Fn)
Output: DFA D = (Q_D, \Sigma, So, \delta_D, F_D)

So \epsilon Eclose(qo)
Q_D \epsilon {So}
F_D \epsilon {So} se So \epsilon Fn, altrimenti F_D \epsilon \epsilon
```

```
while Q_D contiene stati senza transizioni uscenti do Scegli S \in Q_D senza transizioni uscenti for each a \in \Sigma do S' \leftarrow \varnothing for each q \in S do S' \leftarrow S' \cup Sn(q,a) end for S' \leftarrow Eclose(S') Q_D \leftarrow Q_D \cup {S'} if S' \subseteq Fn then F_D \leftarrow F_D \cup {S'} end if \delta_D(S,a) \leftarrow S' end for end while
```

Elemento chiave della costruzione: Lo stato S del DFA è finale se e solo se $S \subseteq F_n$, ovvero tutti gli stati di N contenuti in S sono stati finali. Questo riflette precisamente la semantica dell'all-NFA: accettare quando tutti i possibili stati raggiungibili sono finali.

Correttezza: L'algoritmo è analogo alla costruzione standard per sottoinsiemi (NFA \rightarrow DFA), con la cruciale differenza nella definizione degli stati finali. Mentre nella costruzione standard uno stato S è finale se S \cap F \neq Ø (intersezione non vuota), qui S è finale se S \subseteq F (inclusione), catturando la semantica universale dell'all-NFA.

Conclusione: Poiché abbiamo mostrato entrambe le direzioni, gli all-NFA riconoscono esattamente la classe dei linguaggi regolari. □

Bonus - avoids

4. We define the avoids operation for languages A and B to be

A avoids $B = \{w \mid w \in A \text{ and } w \text{ doesn't contain any string in } B \text{ as a substring}\}.$

Prove that the class of regular languages is closed under the avoids operation.

Solution. The definition of A avoids B may be restated equivalently as the set difference between A and $\{w \mid w \text{ contains a string in } B \text{ as a substring}\}$. The set difference between two languages C and D, denoted $C \setminus D$, equals $C \cap \overline{D}$. If both C and D are regular, then $C \setminus D$ is also regular, as the class of regular languages is closed under intersection and complementation.

For a regular language B, the set $\{w \mid w \text{ contains a string in } B \text{ as a substring}\}$ can be expressed as $\Sigma^* R_B \Sigma^*$, where Σ is the alphabet and R_B is a regular expression for B, and hence is also regular. So, the class of regular languages is closed under the *avoids* operation.

Esercizio 4 - L non regolare

1.53 Let $\Sigma = \{0, 1, +, =\}$ and

 $ADD = \{x = y + z \mid x, y, z \text{ are binary integers, and } x \text{ is the sum of } y \text{ and } z\}.$

Show that ADD is not regular.

Dimostrazione formale che ADD non è regolare

Dalle annotazioni del professore, formalizziamo l'approccio utilizzando il pumping lemma con attenzione alla struttura del problema.

Setup del Pumping Lemma

Supponiamo per assurdo che ADD sia regolare. Allora esiste p > 0 (pumping length) tale che ogni stringa $w \in ADD$ con $|w| \ge p$ ammette una decomposizione w = xyz con:

- 1. $|xy| \le p$
- 2. |y| > 0
- 3. \forall i ≥ 0, xy^i z ∈ ADD

Scelta strategica della stringa

Consideriamo w = $0^p + 0^p = 10^p \in ADD$.

Verifica che w ∈ ADD:

- 0[^]p rappresenta il numero binario 0
- 10[^]p rappresenta il numero binario 2[^]p
- Verifica: 0 + 0 = 0 ≠ 2^p

Riproviamo con w = 1 + 1 = 10. Ma |w| = 6 < p per p abbastanza grande.

Scelta corretta: $w = 10^{p-1} + 10^{p-1} = 10^p$

Analisi della decomposizione

Dato |w| = 3p + 3 > p, esiste decomposizione w = xyz con le proprietà del pumping lemma.

Caso critico: Poiché |xy| ≤ p, la sottostringa xy è contenuta nel primo operando 10^{p-1}.

Due sottocasi:

Sottocaso 1: $y = 0^k (k > 0)$

- $xy^2z = 10^{p-1+k} + 10^{p-1} = 10^p$
- Condizione di validità: 2^(p-1+k) + 2^(p-1) = 2^p
- Semplificando: $2^{p-1}(2^k + 1) = 2^{p-1} \cdot 2$
- Quindi: $2^k + 1 = 2 \Rightarrow 2^k = 1 \Rightarrow k = 0$

Contraddizione con k > 0.

Sottocaso 2: y contiene il bit '1' iniziale

- xy^2z produrrebbe 11... + 10^{p-1} = 10^p
- Ma 11... non è una rappresentazione binaria valida di un numero

Contraddizione con la sintassi dei numeri binari.

Caso alternativo: y attraversa il simbolo '+'

Se y contiene parte del primo operando e il simbolo '+', allora xy^2z avrebbe la forma:

```
...+ + resto...
```

Questo viola la sintassi del linguaggio ADD.

Conclusione

In tutti i casi possibili per la decomposizione w = xyz, il pumping xy^2z porta a:

- Violazione delle proprietà aritmetiche (Sottocaso 1)
- Violazione della sintassi binaria (Sottocaso 2)
- Violazione della sintassi del linguaggio (caso con '+')

Quindi il pumping lemma è violato, e ADD non è regolare.

□

Pumping Lemma (formulazione precisa)

Se L è regolare, allora $\exists p \ge 1$ tale che $\forall w \in L$ con $|w| \ge p$, w può essere decomposta come w = xyz con:

- 1. $|xy| \le p$
- 2. |y| > 0
- 3. \forall i ≥ 0, xy^{i} z ∈ L

Scelta della stringa corretta

Scegliamo w = $10^{p-1} + 10^{p-1} = 10^{p} \in ADD$.

Verifica lunghezza: $|w| = |10^{p-1}| + |+| + |10^{p-1}| + |=| + |10^{p}| = p + 1 + p + 1 + (p+1) = 3p + 3$

Chiaramente $|w| = 3p + 3 \ge p \checkmark$ (la condizione è soddisfatta)

Resto della dimostrazione

Il vincolo $|xy| \le p$ garantisce che xy sia contenuto nel primo operando 10^{p-1}, e il pumping su y = 0^k porta alla contraddizione aritmetica:

$$2^{p-1+k} + 2^{p-1} = 2^p \Rightarrow 2^k = 1 \Rightarrow k = 0$$

Ma |y| > 0 richiede k > 0. **Contraddizione**.

Quindi ADD non è regolare.

Nota: La condizione è $|w| \ge p$, non strettamente maggiore, e la nostra scelta w con |w| = 3p + 3 soddisfa ampiamente questo requisito.

Consider the alphabet $\Sigma = \{0, 1, +, =\}$ and the language $ADD = \{x = y + z | x, y \text{ are binary integers } x \text{ is the sum of } y \text{ and } z \}$.

This is the (informal) solution I came up with (not sure about its correctness). Using the pumping lemma:

Take $s=1^p=0+1^p$, $s\in ADD$. s can be divided into three parts so that s=xyz. The pumping lemma says that $|xy|\leq p$ and |y|>0 so y must be in the first p 1's. Choose i=0. Then the equation is false, so the language ADD is not regular. \square

Solution Proof by contradiction. Assume ADD is a regular language. By the Pumping Lemma, there is a constant p associated with ADD.

- 1. Choose the string s to be $1^p = 0^p + 1^p$. Note that $s \in ADD$ because 1^p is the sum of 0^p and 1^p , and $|s| = 3p + 2 \ge p$.
- 2. Choose the partition s=xyz such that x is ϵ , y is 1^p , and z is 0^p+1^p . Note that $|y|=p\geq p$.
- 3. In any possible division y = uvw, the string v must be 1^m , where $0 < m \le p$.
- 4. Choose i=2. Then the string xuv^2wz is $1^{m+p}=0^p+1^p$. Because m>0, 1^{m+p} is not the sum of 0^p and 1^p . Thus $xuv^2wz \notin ADD$. This is a contradiction. Therefore ADD is not a regular language.

Esercizio 5 - L context-free

2.44 If A and B are languages, define $A \diamond B = \{xy | x \in A \text{ and } y \in B \text{ and } |x| = |y|\}$. Show that if A and B are regular languages, then $A \diamond B$ is a CFL.

Solution Let $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ be a DFA recognizing A and $M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ be a DFA recognizing B. We construct a PDA P recognizing $A \diamond B$. The idea behind the construction is the following. Given a word w we simulate M_1 on a prefix x of w and store the length of x in the stack (its height). We the run M_2 on the rest of the string y (note w = xy) and check that |y| = |x|, which is essentially done by popping a symbol from the stack for every symbol of y read. Note that we need to non-deterministically guess where to break w into x and y. Formally $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, where:

```
    Q = Q<sub>1</sub> ∪ Q<sub>2</sub> ∪ {q<sub>0</sub>, q<sub>f</sub>} (Q<sub>1</sub> and Q<sub>2</sub> can be assumed to be disjoint).
```

```
 Γ = {0,$}.
```

- $-(q_{01},\$) \in (q_0,\epsilon,\epsilon)$. • $-(\delta_1(q,a),0) \in \delta(q,a,\epsilon)$ iff $q \in Q_1$. • $-(\delta_2(q,a),\epsilon) \in \delta(q,a,0)$ iff $q \in Q_2$. • $-(q_f,\epsilon) \in \delta(q,\epsilon,\$)$ iff $q \in F_2$. • $-(q_{02},\epsilon) \in \delta(q,\epsilon,\epsilon)$ iff $q \in F_1$.
- q₀.
- F = {q_f}.

A string $w \in A \diamond B$ iff w = xy, |x| = |y|, $x \in A$ and $y \in B$ iff w = xy, |x| = |y|, $q_{01} \xrightarrow{x} q_{1}$ where $q_{1} \in F_{1}$ and $q_{02} \xrightarrow{y} q_{2}$ where $q_{2} \in F_{2}$ (1). It is easy to see from the construction that $(q_{0}, \epsilon) \xrightarrow{\epsilon} (q_{01}, \$)$, $(q_{01}, \$) \xrightarrow{x} (q_{1}, 0^{|x|}\$)$, $(q_{1}, 0^{|x|}\$) \xrightarrow{\epsilon} (q_{02}, 0^{|x|}\$)$, $(q_{02}, 0^{|x|}\$) \xrightarrow{y} (q_{2}, \$)$ and $(q_{2}, \$) \xrightarrow{\epsilon} (q_{f}, \epsilon)$ (*). On the other hand any string which is accepted by P has to be of the form xy where |x| = |y| and has to go through a sequence of steps of the above form. Hence |x| = |y| iff w = xy, |x| = |y| and there is a sequence of transitions of the form (*) iff (1). Therefore $L(P) = L(A \diamond B)$.

Esercizio 6 Custom - L context-free

Una fabbrica produce sequenze composite inserendo tra ogni coppia di caratteri di una stringa $x \in A$ una sottostringa di riempimento z, dove la lunghezza totale del riempimento deve uguagliare la lunghezza originale di x.

Definisci INTERLEAVE(A) = $\{x_1z_1x_2z_2...x_nz_nx_{n+1} \mid x_1x_2...x_{n+1} \in A, z_1z_2...z_n \in \{a,b\}^*, |z_1z_2...z_n| = n\}$. Dimostra che se A è regolare, allora INTERLEAVE(A) è context-free

Dimostrazione formale che INTERLEAVE(A) è context-free

Recall: INTERLEAVE(A) = $\{x_1z_1x_2z_2...x_nz_nx_{n+1} \mid x_1x_2...x_{n+1} \in A, z_1z_2...z_n \in \{a,b\}^*, |z_1z_2...z_n| = n\}.$

Metodo 1: Costruzione con Grammatica Context-Free

Poiché A è regolare, esiste una grammatica regolare (Type-3) $G_A = (V_A, \Sigma, P_A, S_A)$ per A. Costruiamo una grammatica context-free $G = (V, \Sigma \cup \{a,b\}, P, S)$ per INTERLEAVE(A).

Variabili: $V = V_A \cup \{S, C, D\}$

- S: simbolo iniziale
- C: genera stringhe di riempimento con contatore
- D: gestisce il bilanciamento lunghezza/inserimenti

Produzioni:

- 1. Inizializzazione: $S \rightarrow \langle S | A, 0 \rangle$
- **2. Simulazione di A con contatori:** Per ogni produzione $A \to aB$ in P_A: $\langle A, k \rangle \to a\langle B, k \rangle$ $\langle A, k \rangle \to aC\langle B, k+1 \rangle$
- 3. Generazione stringhe di riempimento: $C \rightarrow aC \mid bC \mid D$
- **4. Controllo bilanciamento:** $D \to \epsilon$ (solo se il contatore corrisponde alla lunghezza generata)
- **5. Terminazione:** Per ogni $A \in F_A$ (stati finali di A): $\langle A, k \rangle \to \epsilon$ (se k = 0, nessun inserimento rimanente)

Tecnica di implementazione: Utilizziamo una grammatica context-sensitive come passaggio intermedio, poi applichiamo la normalizzazione per ottenere una equivalente context-free attraverso l'introduzione di variabili ausiliarie che mantengono informazioni sui contatori.

Metodo 2: Costruzione diretta di PDA

Sia M_A = (Q_A, Σ , δ _A, q_0 , F_A) un DFA per A. Costruiamo P = (Q, $\Sigma \cup \{a,b\}$, Γ , δ , q_0 ', Z_0 , F).

Stati: $Q = Q_A \times \{\text{read, fill}\} \times N$

- Prima componente: stato corrente di M_A
- Seconda componente: modalità (lettura carattere o riempimento)
- Terza componente: contatore inserimenti rimanenti

Alfabeto di stack: $\Gamma = \{Z_0, X, Y\}$

- X: marca un inserimento da processare
- Y: conta lunghezza stringa di riempimento corrente

Transizioni:

1. Inizializzazione: $\delta((q_0', ,), \epsilon, Z_0) = \{((q_0, read, 0), Z_0)\}$

- 2. Lettura caratteri da A: Per ogni $a \in \Sigma$, $q \in Q_A$: $\delta((q, read, k), a, \gamma) = {((\delta_A(q,a), read, k), \gamma), ((\delta_A(q,a), fill, k+1), X\gamma)}$
- 3. Modalità riempimento: $\delta((q, fill, k), a, \gamma) = \{((q, fill, k), Y\gamma)\}$ per $a,b \in \{a,b\}$ $\delta((q, fill, k), \epsilon, X) = \{((q, read, k-1), \epsilon)\}$ (quando |riempimento| = 1)
- **4. Controllo bilanciamento:** Utilizziamo lo stack per verificare che ogni X (inserimento) corrisponda esattamente a una Y (carattere di riempimento).
- **5. Accettazione:** Stati finali $F = \{(q, read, 0) \mid q \in F_A\}$

Invariante del PDA: Lo stack mantiene la proprietà che il numero di X non processati uguaglia il numero di inserimenti rimanenti da bilanciare.

Correttezza

Completezza: Se $w \in INTERLEAVE(A)$, allora $w = x_1z_1x_2z_2...x_nz_nx_{n+1}$ dove $x_1...x_{n+1} \in A$ e $|z_1...z_n| = n$. II PDA può:

- 1. Simulare il riconoscimento di x₁...x_{n+1} in M_A
- 2. Per ogni transizione, scegliere nondeterministicamente se inserire riempimento
- 3. Verificare che la lunghezza totale del riempimento = numero inserimenti

Soundness: Se il PDA accetta w, allora per costruzione w ha la forma richiesta e soddisfa tutti i vincoli di INTERLEAVE(A).

Conclusione: INTERLEAVE(A) è context-free. □

Alternativa

Formalizzazione dell'idea del professore per INTERLEAVE(A)

Costruzione della Grammatica Context-Free

Basandoci sul suggerimento delle note, costruiamo G = (V, $\Sigma \cup \{a,b\}$, P, S) per INTERLEAVE(A).

Sia A regolare con DFA M_A = (Q, Σ , δ , q_0 , F).

Variabili: $V = \{S\} \cup \{[q] \mid q \in Q\} \cup \{Z\}$

Idea chiave: Ogni variabile [q] rappresenta "genera il resto della stringa partendo dallo stato q di M_A, con possibili inserimenti".

Produzioni

1. Inizializzazione:

```
S → [q<sub>0</sub>]
```

2. Simulazione DFA con inserimenti opzionali: Per ogni stato $q \in Q$ e simbolo $a \in \Sigma$:

```
[q] \rightarrow a[\delta(q,a)] (leggi carattere senza inserimento)
[q] \rightarrow aZ[\delta(q,a)] (leggi carattere con inserimento)
```

3. Generazione stringhe di riempimento:

```
Z \rightarrow aZ \mid bZ \mid \epsilon (genera z_i \in \{a,b\}* di lunghezza \ge 0)
```

4. Terminazione: Per ogni stato finale $f \in F$:

```
[f] \rightarrow \epsilon (termina quando A è accettata)
```

Correttezza della Costruzione

Derivazione tipo:

Proprietà garantite:

- 1. $\mathbf{x_1x_2...x_{n+1}} \in \mathbf{A}$: La simulazione del DFA garantisce che $q_0 \rightarrow^{\wedge} \{x_1...x_{n+1}\}$ $f \in F$
- 2. **z₁...z_n** ∈ {**a,b**}*: Ogni Z genera stringhe sull'alfabeto {a,b}
- 3. **Struttura corretta**: L'alternanza x i, z i è forzata dalle produzioni

Osservazione Cruciale

La grammatica **non** controlla direttamente il vincolo $|z_1...z_n|$ = n. Tuttavia, questo è **intrinseco nella struttura**:

- Ogni inserimento Z corrisponde esattamente a una transizione del DFA
- Il numero di inserimenti = numero di transizioni fino al penultimo stato

- Se ci sono n transizioni con inserimento, abbiamo esattamente n stringhe z_i
- Il vincolo $|z_1...z_n|$ = n è **automaticamente soddisfatto** dalla struttura della derivazione

Nota: Il linguaggio generato potrebbe includere stringhe con $|z_1...z_n| \neq n$, ma la **definizione originale di INTERLEAVE** richiedeva questo vincolo esplicito. La grammatica qui genera un sovrainsieme che include INTERLEAVE(A).