Limite et continuité

Généralités sur les fonctions

Exercice 1 [00501] [Correction]

Soit f une fonction croissante de [0;1] dans [0;1].

- (a) Montrer que s'il existe $x \in [0;1]$ et $k \in \mathbb{N}^*$ tels que $f^k(x) = x$ alors x est un point fixe pour f.
- (b) Montrer que f admet un point fixe.

Exercice 2 [05026] [Correction]

Déterminer une fonction $f \colon \mathbb{R} \to \mathbb{R}$ telle f ne présente ni minimum ni maximum sur aucun intervalle [a;b] avec $a < b \in \mathbb{R}$.

Calcul de limites

Exercice 3 [01784] [Correction]

Déterminer les limites suivantes, lorsque celles-ci existent :

- (a) $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$ (c) $\lim_{x\to 0+} x^x$ (e) $\lim_{x\to 0} (1+x)^{1/x}$ (b) $\lim_{x\to +\infty} \frac{x-\sqrt{x}}{\ln x+x}$ (d) $\lim_{x\to 1+} \ln x \cdot \ln(\ln x)$ (f) $\lim_{x\to 1} \frac{1-x}{\arccos x}$

Exercice 4 [01785] [Correction]

Déterminer les limites suivantes, lorsque celles-ci existent :

- (a) $\lim_{x\to 0} x \cdot \sin\left(\frac{1}{x}\right)$ (c) $\lim_{x\to +\infty} e^{x-\sin x}$ (e) $\lim_{x\to 0} x \lfloor 1/x \rfloor$ (b) $\lim_{x\to +\infty} \frac{x\cos e^x}{x^2+1}$ (d) $\lim_{x\to +\infty} \frac{x+\arctan x}{x}$ (f) $\lim_{x\to +\infty} x \lfloor 1/x \rfloor$

Exercice 5 [01786] [Correction]

Déterminer les limites suivantes :

- (a) $\lim_{x\to 0+} |1/x|$
- (b) $\lim_{x\to 0} x |1/x|$
- (c) $\lim_{x\to 0} x^2 |1/x|$

Propriétés des limites

Exercice 6 [01789] [Correction]

- (a) Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction périodique convergeant en $+\infty$. Montrer que gest constante.
- (b) Soient $f, g: \mathbb{R} \to \mathbb{R}$ telles que f converge en $+\infty$, g périodique et f+gcroissante.

Montrer que g est constante.

Exercice 7 [01787] [Correction]

Soient $a < b \in \mathbb{R}$ et $f: [a; b] \to \mathbb{R}$ une fonction croissante. Montrer que l'application $x \mapsto \lim_{x^+} f$ est croissante.

Étude de continuité

Exercice 8 [01793] [Correction]

Étudier la continuité sur \mathbb{R} de l'application

$$f \colon x \mapsto \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor}.$$

Exercice 9 [01795] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{sinon.} \end{cases}$$

Montrer que f est totalement discontinue.

Exercice 10 [00240] [Correction]

Étudier la continuité de la fonction $f: [0; +\infty] \to \mathbb{R}$ définie par

$$f(x) = \sup_{n \in \mathbb{N}} \frac{x^n}{n!}.$$

Théorème des valeurs intérmédiaires

Exercice 11 [01803] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $\lim_{-\infty} f = -1$ et $\lim_{+\infty} f = 1$. Montrer que f s'annule.

Exercice 12 [01800] [Correction]

Soit $f: [0;1] \to [0;1]$ continue. Montrer que f admet un point fixe.

Exercice 13 [01806] [Correction]

Soit $f \colon \mathbb{R} \to \mathbb{R}$ continue et décroissante.

Montrer que f admet un unique point fixe.

Exercice 14 [01807] [Correction]

Soit $f: [0; +\infty[\rightarrow \mathbb{R} \text{ continue, positive et telle que}]$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \ell < 1.$$

Montrer qu'il existe $\alpha \in [0; +\infty[$ tel que $f(\alpha) = \alpha$.

Exercice 15 [01801] [Correction]

Montrer que les seules applications continues de $\mathbb R$ vers $\mathbb Z$ sont les fonctions constantes.

Exercice 16 [01804] [Correction]

Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ deux fonctions continues telles que

$$\forall x \in I, |f(x)| = |g(x)| \neq 0.$$

Montrer que f = g ou f = -g.

Exercice 17 [01809] [Correction]

Soit $f: [0; +\infty[\to \mathbb{R} \text{ continue. On suppose que } |f| \xrightarrow[+\infty]{} +\infty.$ Montrer que $f \xrightarrow[+\infty]{} +\infty$ ou $f \xrightarrow[+\infty]{} -\infty.$

Exercice 18 [01802] [Correction]

Soient $f: [a; b] \to \mathbb{R}$ continue et $p, q \in \mathbb{R}_+$.

Montrer qu'il existe $c \in [a; b]$ tel que

$$p.f(a) + q.f(b) = (p+q).f(c).$$

Exercice 19 [01808] [Correction]

Notre objectif dans cet exercice est d'établir la proposition :

Toute fonction $f: I \to \mathbb{R}$ continue et injective est strictement monotone.

Pour cela on raisonne par l'absurde et on suppose :

 $\exists (x_1, y_1) \in I^2, x_1 < y_1 \text{ et } f(x_1) \ge f(y_1) \text{ et } \exists (x_2, y_2) \in I^2, x_2 < y_2 \text{ et } f(x_2) \le f(y_2)$

Montrer que la fonction $\varphi \colon [0;1] \to \mathbb{R}$ définie par

$$\varphi(t) = f((1-t)x_1 + tx_2) - f((1-t)y_1 + ty_2)$$

s'annule. Conclure.

Exercice 20 [03350] [Correction]

Montrer la surjectivité de l'application

$$z \in \mathbb{C} \mapsto z \exp(z) \in \mathbb{C}$$
.

Exercice 21 [05018] [Correction]

Soient $f: \mathbb{R} \to \mathbb{R}$ une fonction continue et $n \in \mathbb{N}^*$. On note f^n l'itéré de composition d'ordre n de la fonction f:

$$f^n = f \circ f \circ \cdots \circ f$$
 (n facteurs)

On suppose que f^n admet un point fixe, montrer que f admet aussi un point fixe.

Théorème des bornes atteintes

Exercice 22 [01813] [Correction]

Montrer qu'une fonction continue et périodique définie sur \mathbb{R} est bornée.

Exercice 23 [01812] [Correction]

Soient $f: \mathbb{R} \to \mathbb{R}$ bornée et $g: \mathbb{R} \to \mathbb{R}$ continue. Montrer que $g \circ f$ et $f \circ g$ sont bornées.

Exercice 24 [01810] [Correction]

Soient $f, g: [a;b] \to \mathbb{R}$ continues telles que

$$\forall x \in [a; b], f(x) < g(x).$$

Montrer qu'il existe $\alpha > 0$ tel que

$$\forall x \in [a; b], f(x) \le g(x) - \alpha.$$

Exercice 25 [01811] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que

$$\lim_{+\infty} f = \lim_{-\infty} f = +\infty.$$

Montrer que f admet un minimum absolu.

Exercice 26 [01815] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue. On suppose que chaque $y \in \mathbb{R}$ admet au plus deux antécédents par f.

Montrer qu'il existe un $y \in \mathbb{R}$ possédant exactement un antécédent.

Bijection continue

Exercice 27 [01816] [Correction]

Soit $f \colon \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \frac{x}{1+|x|}.$$

- (a) Montrer que f réalise une bijection de $\mathbb R$ vers]-1;1[.
- (b) Déterminer, pour $y \in]-1;1[$ une expression de $f^{-1}(y)$ analogue à celle de f(x).

Exercice 28 [01817] [Correction]

Soient $a < b \in \mathbb{R}$ et $f:]a; b[\to \mathbb{R}$ une fonction strictement croissante. Montrer que f est continue si, et seulement si, $f(]a; b[) =]\lim_a f; \lim_b f[$. Exercice 29 [03105] [Correction]

Soit α un réel compris au sens large entre 0 et 1/e.

(a) Démontrer l'existence d'une fonction $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ vérifiant

$$\forall x \in \mathbb{R}, f'(x) = \alpha f(x+1).$$

(b) Si $\alpha=1/e$, déterminer deux fonctions linéairement indépendantes vérifiant la relation précédente.

Exercice 30 [03401] [Correction]

Soit $f: [0; +\infty[\to [0; +\infty[$ continue vérifiant

$$f \circ f = \mathrm{Id}$$
.

Déterminer f.

Continuité et équation fonctionnelle

Exercice 31 [01791] [Correction]

Soit $f\colon \mathbb{R} \to \mathbb{R}$ une fonction continue en 0 et en 1 telle que

$$\forall x \in \mathbb{R}, f(x) = f(x^2).$$

Montrer que f est constante.

Exercice 32 [00244] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $\forall x \in \mathbb{R}$,

$$f\left(\frac{x+1}{2}\right) = f(x).$$

Montrer que f est constante.

Exercice 33 [01792] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue et prenant la valeur 1 en 0. On suppose que

$$\forall x \in \mathbb{R}, f(2x) = f(x) \cos x.$$

Déterminer f.

Exercice 34 [01798] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que

$$\forall x, y \in \mathbb{R}, f(x+y) = f(x) + f(y).$$

- (a) Calculer f(0) et montrer que pour tout $x \in \mathbb{R}$, f(-x) = -f(x).
- (b) Justifier que pour tout $n \in \mathbb{Z}$ et tout $x \in \mathbb{R}$, f(nx) = nf(x).
- (c) Établir que pour tout $r \in \mathbb{Q}$, f(r) = ar avec a = f(1).
- (d) Conclure que pour tout $x \in \mathbb{R}$, f(x) = ax.

Exercice 35 [00243] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ telle que pour tout $x, y \in \mathbb{R}$,

$$f(x+y) = f(x) + f(y).$$

On suppose en outre que la fonction f est continue en un point $x_0 \in \mathbb{R}$. Déterminer la fonction f.

Exercice 36 [01799] [Correction]

On cherche les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues telles que

$$\forall x, y \in \mathbb{R}, f\left(\frac{x+y}{2}\right) = \frac{1}{2}(f(x) + f(y)).$$

(a) On suppose f solution et f(0) = f(1) = 0. Montrer que f est périodique et que

$$\forall x \in \mathbb{R}, 2f(x) = f(2x).$$

En déduire que f est nulle.

(b) Déterminer toutes les fonctions f solutions.

Exercice 37 [03721] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que

$$\forall x, y \in \mathbb{R}, f\left(\frac{x+y}{2}\right) = \frac{1}{2}(f(x) + f(y)).$$

(a) On suppose f(0) = 0. Vérifier

$$\forall x, y \in \mathbb{R}, f(x+y) = f(x) + f(y).$$

(b) On revient au cas général, déterminer f.

Fonctions lipshitziennes

Exercice 38 [01781] [Correction]

On rappelle que pour tout $x \in \mathbb{R}$, on a $|\sin x| \le |x|$.

Montrer que la fonction $x \mapsto \sin x$ est 1 lipschitzienne.

Exercice 39 [01782] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction k lipschitzienne (avec $k \in [0; 1[)$ telle que f(0) = 0. Soient $a \in \mathbb{R}$ et (u_n) la suite réelle déterminée par

$$u_0 = a \text{ et } \forall n \in \mathbb{N}, u_{n+1} = f(u_n).$$

Montrer que $u_n \to 0$.

Exercice 40 [01814] [Correction]

Soient $f, g: [0;1] \to \mathbb{R}$ continue.

On pose

$$\varphi(t) = \sup_{x \in [0;1]} (f(x) + tg(x)).$$

Montrer que φ est bien définie sur \mathbb{R} et qu'elle y est lipschitzienne.

Corrections

Exercice 1 : [énoncé]

(a) Si f(x) > x alors par croissance de f,

$$f^k(x) \ge f^{k-1}(x) \ge \dots \ge f(x) > x$$

ce qui est absurde. Une étude analogue contredit f(x) < x.

(b) On a $f(0) \ge 0$ et $f(1) \le 1$. Par dichotomie, on peut construire deux suites (a_n) et (b_n) vérifiant

$$f(a_n) \ge a_n$$
 et $f(b_n) \le b_n$.

On initie les suites (a_n) et (b_n) en posant $a_0 = 0$ et $b_0 = 1$.

Une fois les termes a_n et b_n déterminés, on introduit $m = (a_n + b_n)/2$.

Si $f(m) \ge m$ on pose $a_{n+1} = m$ et $b_{n+1} = b_n$.

Sinon, on pose $a_{n+1} = a_n$ et $b_{n+1} = m$.

Les suites (a_n) et (b_n) ainsi déterminées sont adjacentes et convergent donc vers une limite commune c. Puisque $a_n \le c \le b_n$, on a par croissance

$$f(a_n) \le f(c) \le f(b_n)$$

et donc

$$a_n \le f(c) \le b_n$$
.

Or (a_n) et (b_n) convergent vers c donc par encadrement

$$f(c) = c$$
.

On peut aussi décrire un point fixe de f en considérant

$$c = \sup\{x \in [0; 1], f(x) \ge x\}.$$

Les deux questions de cet oral ne semblent pas être liées.

Exercice 2: [énoncé]

Tout nombre décimal s'écrit

$$x = \frac{p}{10^k}$$
 avec $p \in \mathbb{Z}$ et $k \in \mathbb{N}$

De plus, cette écriture est unique si l'on impose que p n'est pas un multiple de 10. Considérons alors la fonction f définie par f(x) = 0 si x n'est pas un nombre décimal et

$$f(x) = (-1)^p \left(1 - \frac{1}{10^k}\right)$$

si x est un nombre décimal s'écrivant $p/10^k$ avec $p \in \mathbb{Z}$ qui n'est pas divisible par 10 et $k \in \mathbb{N}$.

Sur tout segment [a;b] avec a < b, la fonction f prend ses valeurs dans]-1;1[et prend des valeurs arbitrairement proches de 1 et de -1: elle n'y présente ni minimum ni maximum.

Exercice 3: [énoncé]

(a) Quand $x \to 0$,

$$\frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \frac{1+x - (1-x)}{x(\sqrt{1+x} + \sqrt{1-x})} = \frac{2}{\sqrt{1+x} + \sqrt{1-x}} \to 1.$$

(b) Quand $x \to +\infty$,

$$\frac{x - \sqrt{x}}{\ln x + x} = \frac{1 - 1/\sqrt{x}}{\frac{\ln x}{x} + 1} \to 1.$$

(c) Quand $x \to 0^+$,

$$x^x = e^{x \ln x} = e^X$$

avec $X = x \ln x \to 0$ donc $x^x \to 1$.

(d) Quand $x \to 1^+$,

$$\ln x. \ln(\ln x) = X \ln X$$

avec $X = \ln x \to 0$ donc $\ln x \cdot \ln(\ln x) \to 0$

(e) Quand $x \to 0$,

$$(1+x)^{1/x} = e^{\frac{1}{x}\ln(1+x)} = e^X$$

avec $X = \frac{\ln(1+x)}{x} \to 1 \text{ donc } (1+x)^{1/x} \to e$.

(f) Quand $x \to 1$,

$$\frac{1-x}{\arccos x} = \frac{1-\cos y}{y} = \frac{2\sin^2(y/2)}{y} = \sin(y/2)\frac{\sin(y/2)}{y/2}$$

avec $y = \arccos x \to 0$ donc $\sin y/2 \to 0$ et $\frac{\sin y/2}{y/2} \to 1$ puis $\frac{1-x}{\arccos x} \to 0$.

Exercice 4: [énoncé]

(a) Quand $x \to 0$,

$$\left| x \sin \frac{1}{x} \right| \le |x| \to 0.$$

(b) Quand $x \to +\infty$,

$$\left| \frac{x \cos e^x}{x^2 + 1} \right| \le \frac{x}{x^2 + 1} \to 0.$$

(c) Quand $x \to +\infty$,

$$e^{x-\sin x} \ge e^{x-1} \to +\infty.$$

(d) Quand $x \to +\infty$,

$$\left| \frac{x + \arctan x}{x} - 1 \right| \le \frac{\arctan x}{x} \le \frac{\pi}{2x} \to 0.$$

(e) Quand $x \to 0$,

$$1/x - 1 \le |1/x| \le 1/x$$

donc

$$\left| \lfloor 1/x \rfloor - 1/x \right| \le 1$$

puis

$$|x\lfloor 1/x\rfloor - 1| \le |x| \to 0.$$

(f) Quand $x \to +\infty$, $1/x \to 0$ donc |1/x| = 0 puis $x|1/x| = 0 \to 0$.

Exercice 5 : [énoncé]

(a) Quand $x \to 0^+$,

$$E\lfloor 1/x\rfloor \ge \frac{1}{x} - 1 \to +\infty.$$

(b) Quand $x \to 0^+$,

$$1/x - 1 \le \lfloor 1/x \rfloor \le 1/x$$

donne

$$1 - x \le x \lfloor 1/x \rfloor \le 1$$

puis $x\lfloor 1/x\rfloor \to 1$.

Quand $x \to 0^-$,

$$1/x - 1 \le \lfloor 1/x \rfloor \le 1/x$$

donne

$$1 \le \lfloor 1/x \rfloor \le 1 - x$$

puis à nouveau $x|1/x| \to 1$.

(c) Quand $x \to 0^+$,

$$\left| x^2 \lfloor 1/x \rfloor \right| \le \frac{x^2}{x} \to 0$$

via

$$0 \le |1/x| \le 1/x$$

et quand $x \to 0^-$,

$$\left|x^{2}\lfloor 1/x\rfloor\right| \leq x^{2}\left(1-\frac{1}{x}\right) \to 0$$

via

$$\frac{1}{x} - 1 \le \lfloor 1/x \rfloor \le 0.$$

Exercice 6: [énoncé]

Notons T une période strictement positive de g.

(a) Notons ℓ la limite de g en $+\infty$.

 $\forall x \in \mathbb{R}, g(x) = g(x + nT) \xrightarrow[n \to +\infty]{} \ell$ donc par unicité de la limite : $g(x) = \ell$.

Ainsi g est constante.

(b) Notons ℓ la limite de f en $+\infty$.

Puisque f + g est croissante $f + g \xrightarrow[+\infty]{} \ell' \in \mathbb{R} \cup \{+\infty\}.$

Si $\ell'=+\infty$ alors $g\xrightarrow[x\to+\infty]{}+\infty$. La démarche du a., montre l'impossibilité de ceci.

Si $\ell' \in \mathbb{R}$ alors la démarche du a., permet de conclure.

Exercice 7 : [énoncé]

L'application $x\mapsto \lim_{x^+} f$ est bien définie car f est croissante ce qui assure l'existence de $\lim_{x^+} f$.

Soient $x, y \in]a; b[$ tels que x < y.

Pour $t \in]x; y[$, on a $f(t) \leq f(y)$. Quand $t \to x^+$, on obtient $\lim_{x^+} f \leq f(y)$ or $f(y) \leq \lim_{y^+} f$ donc $\lim_{x^+} f \leq \lim_{y^+} f$.

Exercice 8 : [énoncé]

Par opération f est continue sur chaque $I_k = [k; k+1]$ avec $k \in \mathbb{Z}$.

Il reste à étudier la continuité en $a \in \mathbb{Z}$.

Quand $x \to a^+ : f(x) = \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor} \to a = f(a) \text{ car } E(x) \to a.$

Quand $x \to a^-$: $f(x) = \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor} \to a - 1 + 1 = a = f(a)$ car $\lfloor x \rfloor \to a - 1$.

Par continuité à droite et à gauche, f est continue en a.

Finalement f est continue sur \mathbb{R} .

Exercice 9: [énoncé]

Soit $a \in \mathbb{R}$.

Il existe une suite (u_n) de nombre rationnels et une suite (v_n) de nombres irrationnels telles que $u_n, v_n \to a$.

On a $f(u_n) = 1 \to 1$ et $f(v_n) = 0 \to 0$ donc f n'a pas de limite en a et est donc discontinue en a.

Exercice 10: [énoncé]

Commençons par vérifier la bonne définition de la fonction f. Pour tout x réel, on peut affirmer par croissance comparée que la suite $(u_n(x))$ donnée par

$$u_n(x) = \frac{x^n}{n!}$$

tend vers 0. Cette suite est donc bornée ce qui autorise l'introduction de la borne supérieure définissant la valeur de f(x).

On étude la monotonie de la suite $(u_n(x))$ afin d'exprimer la valeur de la borne supérieure.

Lorsque x est non nul,

$$\frac{u_{n+1}(x)}{u_n(x)} = \frac{x}{n+1}.$$

Pour $n \ge \lfloor x \rfloor$, on a n+1 > x ce qui entraı̂ne $u_{n+1}(x) \le u_n(x)$. En revanche, pour $n < \lfloor x \rfloor$, on a $n+1 \le x$ et donc $u_{n+1}(x) \ge u_n(x)$. La suite $(u_n(x))$ est alors croissante jusqu'au terme d'indice |x| puis décroissante ensuite. On en déduit

$$f(x) = \sup_{n \in \mathbb{N}} \frac{x^n}{n!} = u_{\lfloor x \rfloor}(x) = \frac{x^{\lfloor x \rfloor}}{\lfloor x \rfloor!}.$$

Cette formule est aussi valable pour x = 0 car $0^0 = 1$ et 0! = 1.

Étudions ensuite la continuité de f en chaque a de \mathbb{R}_+ .

 $Cas: a \notin \mathbb{N}.$ Au voisinage de a, la partie entière de x est constante égale à $\lfloor a \rfloor$ et donc

$$f(x) = \frac{x^{\lfloor a \rfloor}}{|a|!} \xrightarrow[x \to a]{} \frac{a^{\lfloor a \rfloor}}{|a|!} = f(a).$$

Cas: $a \in \mathbb{N}$. On raisonne par continuité à droite et continuité à gauche (dans ce dernier cas, uniquement si a n'est pas nul)

Quand x tend vers a par valeurs supérieures, la partie entière de x constante égale à a et l'étude est très semblable à la précédente.

Quand x tend vers a par valeurs inférieures, la partie entière de x vaut a-1 et

$$f(x) = \frac{x^{a-1}}{(a-1)!} \to \frac{a^{a-1}}{(a-1)!} = \frac{a}{a} \cdot \frac{a^{a-1}}{(a-1)!} = \frac{a^a}{a!} = f(a).$$

Finalement, f est continue en tout point de $[0; +\infty[$.

Exercice 11 : [énoncé]

Puisque $\lim_{-\infty} f = -1$, f prend des valeurs négatives, puisque $\lim_{+\infty} f = 1$, f prend des valeurs positives.

En appliquant le théorème des valeurs intermédiaires entre celles-ci, f s'annule.

Exercice 12 : [énoncé]

Soit $\varphi \colon [0;1] \to \mathbb{R}$ définie par $\varphi(x) = f(x) - x$. Un point fixe de f est une valeur d'annulation de φ .

 φ est continue, $\varphi(0)=f(0)\geq 0$ et $\varphi(1)=f(1)-1\leq 0$ donc, par le théorème des valeurs intermédiaires, φ s'annule.

Exercice 13: [énoncé]

Unicité : Soit $g: x \mapsto f(x) - x$. g est strictement décroissante donc injective et ne peut donc s'annuler qu'au plus une fois.

Existence : Par l'absurde, puisque g est continue, si elle ne s'annule pas elle est strictement positive ou négative.

Si $\forall x \in \mathbb{R}, g(x) > 0$ alors $f(x) > x \xrightarrow[x \to +\infty]{} +\infty$ ce qui est absurde puisque

 $\lim_{+\infty} f = \inf_{\mathbb{R}} f.$

Si $\forall x \in \mathbb{R}, g(x) < 0$ alors $f(x) < x \xrightarrow[x \to -\infty]{} -\infty$ ce qui est absurde puisque $\lim_{x \to -\infty} f = \sup_{x \to \infty} f$.

Exercice 14: [énoncé]

Si f(0) = 0 alors $\alpha = 0$ convient.

Sinon, considérons

$$g \colon x \mapsto \frac{f(x)}{x}$$
.

La fonction g est définie et continue sur \mathbb{R}_+^* .

Puisque f(0) > 0, par opérations sur les limites $\lim_{x\to 0} g(x) = +\infty$.

De plus $\lim_{x\to+\infty} g(x) = \ell$.

Puisque g est continue et qu'elle prend des valeurs inférieures et supérieures à 1, on peut affirmer par le théorème des valeurs intermédiaires qu'il existe $\alpha \in \mathbb{R}_+^*$ tel que $g(\alpha) = 1$ d'où $f(\alpha) = \alpha$.

Exercice 15: [énoncé]

Soit $f: \mathbb{R} \to \mathbb{Z}$ continue.

Par l'absurde : Si f n'est pas constante alors il existe a < b tel que $f(a) \neq f(b)$. Soit y un nombre non entier compris entre f(a) et f(b).

Par le théorème des valeurs intermédiaires, il existe $x \in \mathbb{R}$ tel que y = f(x) et donc f n'est pas à valeurs entière. Absurde.

Exercice 16: [énoncé]

Posons $\varphi \colon I \to \mathbb{R}$ définie par

$$\varphi(x) = f(x)/g(x)$$

 φ est continue et

$$\forall x \in I, |\varphi(x)| = 1.$$

Montrons que φ est constante égale à 1 ou -1 ce qui permet de conclure. Par l'absurde, si φ n'est pas constante égale à 1 ni à -1 alors il existe $a,b\in I$ tel que $\varphi(a)=1\geq 0$ et $\varphi(b)=-1\leq 0$. Par le théorème des valeurs intermédiaires, φ s'annule. Absurde.

Exercice 17: [énoncé]

Pour a assez grand, $|f(x)| \ge 1$ sur $[a; +\infty[$ donc f ne s'annule pas sur $[a; +\infty[$. Étant continue, f est alors de signe constant sur $[a; +\infty[$ et la relation $f = \pm |f|$ permet alors de conclure.

Exercice 18: [énoncé]

Si p = q = 0, n'importe quel c fait l'affaire.

Sinon posons

$$y = \frac{pf(a) + qf(b)}{p + q}.$$

Si $f(a) \leq f(b)$ alors

$$f(a) = \frac{pf(a) + qf(a)}{p+q} \le y \le \frac{pf(b) + qf(b)}{p+q} = f(b).$$

Si $f(b) \le f(a)$ alors, comme ci-dessus $f(b) \le y \le f(a)$.

Dans les deux cas, y est une valeur intermédiaire à f(a) et f(b) donc par le théorème des valeurs intermédiaires, il existe $c \in [a;b]$ tel que y = f(c).

Exercice 19: [énoncé]

La fonction φ est continue, $\varphi(0) = f(x_1) - f(y_1) \ge 0$ et $\varphi(1) = f(x_2) - f(y_2) \le 0$ donc par le théorème des valeurs intermédiaires, φ s'annule en un certain t. Posons $x_0 = (1-t)x_1 + tx_2$ et $y_0 = (1-t)y_1 + ty_2$. $\varphi(t) = 0$ donne $f(x_0) = f(y_0)$ or $x_0 < y_0$ donc f n'est pas injective. Absurde.

Exercice 20 : [énoncé]

Soit $Z \in \mathbb{C}$. On recherche $z \in \mathbb{C}$ tel que $z \exp(z) = Z$. Si Z = 0, on observe simplement que z = 0 est solution.

On suppose désormais $Z \neq 0$ et on écrit $Z = Re^{i\theta}$ avec R > 0 et $\theta \in \mathbb{R}$. On recherche alors $z \in \mathbb{C}$ solution de l'équation $z \exp(z) = Z$ de la forme $z = re^{i\alpha}$ avec r > 0 et $\alpha \in \mathbb{R}$. Puisque

$$z \exp(z) = r e^{i\alpha} e^{r \cos(\alpha) + ir \sin(\alpha)} = r e^{r \cos(\alpha)} e^{i(\alpha + r \sin(\alpha))}$$

l'identification du module et d'un argument conduit à l'étude du système

$$\begin{cases} re^{r\cos(\alpha)} = R\\ \alpha + r\sin(\alpha) \equiv \theta \ [2\pi] \end{cases}$$
 (1)

dont on recherche une solution.

La deuxième équation du système permet d'exprimer r en fonction de α sous réserve de pouvoir diviser par $\sin(\alpha)$.

On recherche une solution (r, α) au système (??) avec $\alpha \in]0; \pi[$.

Soit $\alpha \in]0; \pi[$. On pose

$$r = \frac{\theta + 2k\pi - \alpha}{\sin(\alpha)}$$

avec $k \in \mathbb{Z}$ suffisamment grand afin que r soit un réel strictement positif (par exemple, k tel que $\theta + 2k\pi > \pi$). Par ce choix de r, la deuxième équation du système est assurément vérifiée tandis que la première l'est si, et seulement si, $f(\alpha) = R$ avec f la fonction définie sur $[0; \pi[$ par

$$f(\alpha) = \frac{\theta + 2k\pi - \alpha}{\sin(\alpha)} \exp\left(\frac{\theta + 2k\pi - \alpha}{\sin(\alpha)}\cos(\alpha)\right).$$

Une étude complète de la fonction f n'est pas utile : sa continuité et ses limites en 0 et π suffisent à pouvoir affirmer que f prend la valeur R.

Par opérations sur les fonctions, on peut affirmer que f est continue sur $[0;\pi[$.

Lorsque α tend vers 0 par valeurs supérieures,

$$\frac{\theta + 2k\pi - \alpha}{\sin(\alpha)} \to +\infty \quad \text{car} \quad \sin(\alpha) \to 0^+ \text{ et } \theta + 2k\pi > 0$$

 $_{
m et}$

$$\exp\left(\frac{\theta + 2k\pi - \alpha}{\sin(\alpha)}\cos(\alpha)\right) \to +\infty \quad \text{car} \quad \cos(\alpha) \to 1.$$

Parallèlement, lorsque α tend vers π par valeurs inférieures,

$$\frac{\theta + 2k\pi - \alpha}{\sin(\alpha)} \to +\infty \quad \text{et} \quad \exp\left(\frac{\theta + 2k\pi - \alpha}{\sin(\alpha)}\cos(\alpha)\right) \to 0 \quad \text{car} \quad \cos(\alpha) \to -1.$$

Ceci conduit à la résolution d'une forme indéterminée « $(+\infty) \times 0$ ». On raisonne par comparaison. Pour $\alpha \in [2\pi/3; \pi[$, on a $\cos(\alpha) \le -1/2$ et donc

$$\exp\left(\frac{\theta + 2k\pi - \alpha}{\sin(\alpha)}\cos(\alpha)\right) \le \exp\left(-\frac{1}{2} \cdot \frac{\theta + 2k\pi - \alpha}{\sin(\alpha)}\right)$$

puis

$$0 \le f(\alpha) \le 2X \exp(-X)$$
 avec $X = \frac{1}{2} \cdot \frac{\theta + 2k\pi - \alpha}{\sin(\alpha)} \to +\infty.$

Par encadrement, on peut affirmer que f tend vers 0 en π par valeurs inférieures. Ainsi, f est continue sur $]0\,;\pi[$ et a pour limites 0 et $+\infty$ en les extrémités de cet intervalle. Par le théorème des valeurs intermédiaires généralisé, on peut affirmer que f prend la prend valeur R et qu'il existe donc α appartenant à $]0\,;\pi[$ solution de l'équation $f(\alpha)=R$.

Finalement, on a prouvé l'existence d'un couple (r, α) solution du système (??) et donc l'existence d'un complexe z tel que $ze^z = Z$.

Exercice 21 : [énoncé]

Introduisons $c \in \mathbb{R}$ un point fixe de f^n et considérons la fonction continue $\varphi \colon \mathbb{R} \to \mathbb{R}$ définie par $\varphi(x) = f(x) - x$ pour tout $x \in \mathbb{R}$.

La fonction φ ne peut conserver un signe strict sur les éléments c, f(c), ..., $f^{n-1}(c)$.

Par télescopage, on observe

$$\varphi(c) + \varphi(f(c)) + \dots + \varphi(f^{n-1}(c))$$

$$= (f(c) - c) + (f^{2}(c) - f(c)) + \dots + (f^{n}(c) - f^{n-1}(c))$$

$$= f^{n}(c) - c = 0$$

Les réels $\varphi(c), \varphi(f(c)), \ldots, \varphi(f^{(n-1)}(c))$ ne peuvent alors être tous strictement positifs ni tous strictement négatifs. La fonction φ prend donc des valeurs positives et négatives (au sens large). En rappelant qu'il s'agit d'une fonction réelle continue sur un intervalle, le théorème des valeurs intermédiaires assure que la fonction φ s'annule : ceci détermine un point fixe de f.

Exercice 22: [énoncé]

Soit T > 0 une période de f.

Sur [0;T], f est bornée par un certain M car f est continue sur un segment.

Pour tout $x \in \mathbb{R}$, $x - nT \in [0; T]$ pour n = E(x/T) donc

 $|f(x)| = |f(x - nT)| \le M.$

Ainsi f est bornée par M sur \mathbb{R} .

Exercice 23: [énoncé]

Soit $M \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}, |f(x)| \le M.$$

Pour tout $x \in \mathbb{R}$, $|f(g(x))| \leq M$ donc $f \circ g$ est bornée.

Puisque la fonction g est continue sur le segment [-M; M], elle y est bornée par un certain M'.

Pour tout $x \in \mathbb{R}$, $|g(f(x))| \le M'$ car $f(x) \in [-M; M]$ ainsi $g \circ f$ est bornée.

Exercice 24: [énoncé]

Posons $\varphi \colon [a;b] \to \mathbb{R}$ définie par

$$\varphi(x) = g(x) - f(x)$$

 φ est continue sur le segment $[a\,;b]$ donc y admet un minimum en un certain $c\in[a\,;b].$

Posons $\alpha = \varphi(c) = g(c) - f(c) > 0$. Pour tout $x \in [a; b], \varphi(x) \ge \alpha$ donc $f(x) \le g(x) - \alpha$.

Exercice 25 : [énoncé]

Posons M = f(0) + 1.

Puisque $\lim_{+\infty} f = \lim_{-\infty} f = +\infty$, il existe $A, B \in \mathbb{R}$ tels que

$$\forall x \leq A, f(x) \geq M \text{ et } \forall x \geq B, f(x) \geq M.$$

On a $A \le 0 \le B$ car f(0) < M.

Sur [A;B], f admet un minimum en un point $a\in [A;B]$ car continue sur un segment.

On a $f(a) \le f(0)$ car $0 \in [A; B]$ donc $f(a) \le M$.

Pour tout $x \in [A; B]$, on a $f(x) \ge f(a)$ et pour tout $x \in]-\infty; A] \cup [B; +\infty[$, $f(x) \ge M \ge f(a)$.

Ainsi f admet un minimum absolu en a.

Exercice 26: [énoncé]

Soit y une valeur prise par f. Si celle-ci n'a qu'un antécédent, c'est fini. Sinon, soit a < b les deux seuls antécédents de y.

f est continue sur [a;b] donc y admet un minimum en c et un maximum en d, l'un au moins n'étant pas en une extrémité de [a;b]. Supposons que cela soit c. Si f(c) possède un autre antécédent c' que c.

Si $c' \in [a; b]$ alors f ne peut être constante entre c et c' et une valeur strictement comprise entre f(c) = f(c') et $\max_{[c:c']} f$ possède au moins 3 antécédents.

Si $c' \notin [a;b]$ alors une valeur strictement intermédiaire à y et f(c) possède au moins 3 antécédents. Impossible.

Exercice 27: [énoncé]

(a) Sur $[0; +\infty[$,

$$f(x) = \frac{x}{1+x} = 1 - \frac{1}{1+x}$$

est continue et strictement croissante, f(0) = 0 et $\lim_{+\infty} f = 1$. Ainsi f réalise une bijection de $[0; +\infty[$ vers [0; 1[. Sur $]-\infty; 0[$,

$$f(x) = \frac{x}{1-x} = -1 + \frac{1}{1-x}$$

est continue et strictement croissante, $\lim_0 f = 0$ et $\lim_{-\infty} f = -1$. Ainsi f réalise une bijection de $]-\infty$; [0] vers]-1; [0].

Finalement, f réalise une bijection de \mathbb{R} vers]-1;1[.

(b) Pour $y \in [0; 1]$, son antécédent $x = f^{-1}(y)$ appartient à $[0; +\infty[$.

$$y = f(x) \iff y = \frac{x}{1+x} \iff x = \frac{y}{1-y}.$$

Pour $y \in [-1; 0[$, son antécédent $x = f^{-1}(y)$ appartient à $]-\infty; 0[$.

$$y = f(x) \iff y = \frac{x}{1-x} \iff x = \frac{y}{1+y}.$$

Finalement,

$$\forall y \in]-1; 1[, f^{-1}(y) = \frac{y}{1 - |y|}.$$

Exercice 28 : [énoncé]

Notons que $\lim_a f$ et $\lim_b f$ existent car f est croissante.

 (\Longrightarrow) Supposons f continue.

Puisque f est continue et strictement croissante, f réalise une bijection de]a;b[sur $]\lim_a f;\lim_b f[$ d'où le résultat.

 (\Leftarrow) Supposons $f(a;b) = \lim_a f ; \lim_b f[.$

Soit $x_0 \in]a; b[$. On a $\lim_a f < f(x_0) < \lim_b f$.

Pour tout $\varepsilon > 0$, soit $y^+ \in]f(x_0); f(x_0) + \varepsilon] \cap]\lim_a f; \lim_b f[$. Il existe $x^+ \in]a; b[$ tel que $f(x^+) = y^+$.

Soit $y^- \in [f(x_0) - \varepsilon; f(x_0)[\cap] \lim_a f; \lim_b f[$. Il existe $x^- \in]a; b[$ tel que $f(x^-) = y^-$.

Puisque f est croissante, $x^- < x_0 < x^+$. Posons $\alpha = \min(x^+ - x_0, x_0 - x^-) > 0$. Pour tout $x \in]a; b[$, si $|x - x_0| \le \alpha$ alors $x^- \le x \le x^+$ donc $y^- \le f(x) \le y^+$ d'où $|f(x) - f(x_0)| \le \varepsilon$.

Ainsi f est continue en x_0 puis f continue sur a; b[.

Exercice 29 : [énoncé]

(a) Cherchons f de la forme

$$f(x) = e^{\beta x}$$
.

Après calculs, si $\alpha = \beta e^{-\beta}$ alors f est solution.

En étudiant les variations de la fonction $\beta \mapsto \beta e^{-\beta}$, on peut affirmer que pour tout $\alpha \in [0; 1/e]$, il existe $\beta \in \mathbb{R}_+$ tel que $\beta e^{-\beta} = \alpha$ et donc il existe une fonction f vérifiant la relation précédente.

(b) Pour $\alpha=1/e$, les fonctions $x\mapsto e^x$ et $x\mapsto xe^x$ sont solutions. Notons que pour $\alpha\in]0\,;1/e[$ il existe aussi deux solutions linéairement indépendantes car l'équation $\beta e^{-\beta}=\alpha$ admet deux solutions, une inférieure à 1 et l'autre supérieure à 1

Exercice 30 : [énoncé]

La fonction f est bijective et continue donc strictement monotone. Elle ne peut être décroissante car alors elle ne serait pas surjective sur $[0; +\infty[$, elle est donc strictement croissante.

S'il existe un $x \in [0;1]$ tel que f(x) < x alors, par stricte croissance

et donc f(f(x)) < x ce qui contredit $f \circ f = \text{Id}$. De même f(x) > x est impossible et donc f = Id.

Exercice 31 : [énoncé]

$$\forall x \in \mathbb{R}, f(-x) = f((-x)^2) = f(x^2) = f(x)$$

donc f est paire.

Pour tout x > 0, $x^{1/2^n} \xrightarrow[n \to \infty]{} 1$ donc $f(x^{1/2^n}) \xrightarrow[n \to \infty]{} f(1)$ par continuité de f en 1.

Or

$$f(x^{1/2^n}) = f(x^{1/2^{n-1}}) = \dots = f(x)$$

donc f(x) = f(1) pour tout x > 0 puis pour tout $x \in \mathbb{R}^*$ par parité. De plus $f(0) = \lim_{x \to 0^+} f(x) = f(1)$ donc

$$\forall x \in \mathbb{R}, f(x) = f(1).$$

Exercice 32: [énoncé]

Soient $x \in \mathbb{R}$ et (u_n) définie par $u_0 = x$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \frac{u_n + 1}{2}.$$

Si $x \ge 1$ alors on montre par récurrence que (u_n) est décroissante et supérieure à 1.

Si $x \le 1$ alors on montre par récurrence que (u_n) est croissante et inférieure à 1. Dans les deux cas la suite (u_n) converge vers 1.

Or pour tout $n \in \mathbb{N}$, $f(x) = f(u_n)$ donc à la limite f(x) = f(1).

Exercice 33: [énoncé]

Soit f solution.

$$f(x) = f\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) = f\left(\frac{x}{4}\right)\cos\left(\frac{x}{4}\right)\cos\left(\frac{x}{2}\right) = \dots = f\left(\frac{x}{2^n}\right)\cos\left(\frac{x}{2^n}\right)\dots\cos\left(\frac{x}{2}\right).$$

Or

$$\sin\left(\frac{x}{2^n}\right)\cos\left(\frac{x}{2^n}\right)\ldots\cos\left(\frac{x}{2}\right) = \frac{1}{2^n}\sin x$$

donc

$$\sin\left(\frac{x}{2^n}\right)f(x) = \frac{\sin x}{2^n}f\left(\frac{x}{2^n}\right).$$

Pour $x \neq 0$, quand $n \to +\infty$, on a $\sin\left(\frac{x}{2^n}\right) \neq 0$ puis

$$f(x) = \frac{\sin x}{2^n \sin(\frac{x}{2^n})} f\left(\frac{x}{2^n}\right) \to \frac{\sin x}{x} f(0).$$

Ainsi

$$\forall x \in \mathbb{R}, f(x) = \frac{\sin x}{x}$$

(avec prolongement par continuité par 1 en 0).

Vérification : ok.

Exercice 34: [énoncé]

- (a) Pour x = y = 0, la relation donne f(0) = 2f(0) donc f(0) = 0. Pour y = -x, la relation donne f(0) = f(x) + f(-x) donc f(-x) = -f(x).
- (b) Par récurrence, on montre pour $n \in \mathbb{N}$: f(nx) = nf(x). Pour $n \in \mathbb{Z}^-$, on écrit n = -p avec $p \in \mathbb{N}$. On a alors f(nx) = -f(px) = -pf(x) = nf(x).
- (c) Soit $r \in \mathbb{Q}$. On peut écrire r = p/q avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$. $f(r) = pf(1/q) = \frac{p}{q}qf(1/q) = \frac{p}{q}f(1) = ar$.
- (d) Pour tout $x \in \mathbb{R}$ il existe une suite (u_n) telle que $u_n \to x$ et $u_n \in \mathbb{Q}$. Par continuité $f(u_n) \to f(x)$ or puisque $u_n \in \mathbb{Q}$ $f(u_n) = au_n \to ax$ donc par unicité de la limite f(x) = ax.

Exercice 35: [énoncé]

La relation fonctionnelle f(x+y) = f(x) + f(y) permet d'établir

$$\forall r \in \mathbb{Q}, f(r) = rf(1).$$

Pour cela on commence par établir

$$\forall a \in \mathbb{R}, \forall n \in \mathbb{Z}, f(na) = nf(a).$$

On commence par établir le résultat pour n=0 en exploitant

$$f(0) = f(0) + f(0)$$

ce qui entraı̂ne f(0) = 0.

On étend ensuite le résultat à $n \in \mathbb{N}$ en raisonnant par récurrence et en exploitant

$$f((n+1)a) = f(na) + f(a).$$

On étend enfin le résultat à $n \in \mathbb{Z}$ en exploitant la propriété de symétrie f(-x) = -f(x) issu de

$$f(x) + f(-x) = f(0) = 0.$$

Considérons alors $r = p/q \in \mathbb{Q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$, on peut écrire

$$f(r) = f\left(p \times \frac{1}{q}\right) = pf\left(\frac{1}{q}\right) \text{ et } f(1) = f\left(q \times \frac{1}{q}\right) = qf\left(\frac{1}{q}\right)$$

donc

$$f(r) = \frac{p}{q}f(1) = rf(1).$$

Nous allons étendre cette propriété à $x \in \mathbb{R}$ par un argument de continuité. Soit $x \in \mathbb{R}$. On peut affirmer qu'il existe une suite $(x_n) \in \mathbb{Q}^{\mathbb{N}}$ telle que $x_n \to x$. Pour celle-ci, on a $x_n + x_0 - x \to x_0$ et donc par continuité de f en x_0

$$f(x_n + x_0 - x) \to f(x_0).$$

Or on a aussi

$$f(x_n + x_0 - x) = f(x_0) + (f(x_n) - f(x))$$

donc

$$f(x_n) - f(x) \to 0.$$

Ainsi

$$f(x) = \lim_{n \to +\infty} f(x_n) = xf(1).$$

Finalement, la fonction f est linéaire.

Exercice 36: [énoncé]

(a) f(2-x) + f(x) = 0 et f(-x) + f(x) = 0 donc f(x) = f(x+2) donc f est périodique.

f(x/2) = f(x)/2 donc f(2x) = 2f(x).

Puisque f est continue et périodique, f est bornée. Or la relation f(2x) = 2f(x) implique que f n'est pas bornée dès qu'elle prend une valeur non nulle. Par suite f est nulle.

(b) Pour a = f(1) - f(0) et b = f(0), on observe que g(x) = f(x) - (ax + b) est solution du problème posé et s'annule en 0 et 1 donc g est nulle et f affine. La réciproque est immédiate.

Exercice 37: [énoncé]

(a) On a

$$\forall x \in \mathbb{R}, f\left(\frac{x}{2}\right) = f\left(\frac{x+0}{2}\right) = \frac{1}{2}(f(x) + f(0)) = \frac{1}{2}f(x)$$

donc

$$\forall x, y \in \mathbb{R}, f\left(\frac{x+y}{2}\right) = \frac{1}{2}f(x+y).$$

On en déduit

$$\forall x, y \in \mathbb{R}, f(x+y) = f(x) + f(y).$$

(b) Sachant f continue, on peut alors classiquement conclure que dans le cas précédent f est de la forme $x \mapsto ax$.

Dans le cas général, il suffit de considérer $x \mapsto f(x) - f(0)$ et de vérifier que cette nouvelle fonction satisfait toujours la propriété initiale tout en s'annulant en 0.

On peut donc conclure que dans le cas général f est affine : $x \mapsto ax + b$

Exercice 38: [énoncé]

Par formule de factorisation

$$\left|\sin x - \sin y\right| = \left|2\sin\frac{x-y}{2}\cos\frac{x+y}{2}\right| \le 2\left|\sin\frac{x-y}{2}\right| \le 2\frac{|x-y|}{2} = |x-y|$$

donc sin est 1 lipschitzienne.

Exercice 39: [énoncé]

Montrons par récurrence sur $n \in \mathbb{N}$ que $|u_n| \leq k^n |a|$.

Pour n = 0: ok

Supposons la propriété établie au rang $n \ge 0$.

$$|u_{n+1}| = |f(u_n) - f(0)| \le k|u_n - 0| = k|u_n| \le \frac{k}{HR} k^{n+1}|a|.$$

Récurrence établie.

Puisque $k \in [0;1[,k^n \to 0 \text{ et donc } u_n \to 0]$

Exercice 40: [énoncé]

L'application $x \mapsto f(x) + tg(x)$ est définie et continue sur le segment [0;1] elle y est donc bornée et atteint ses bornes. Par suite $\varphi(t)$ est bien définie et plus précisément, il existe $x_t \in [0;1]$ tel que $\varphi(t) = f(x_t) + tg(x_t)$.

Puisque g est continue sur $[0\,;1]$ elle y est bornée par un certain M : On a

$$\varphi(t) - \varphi(\tau) = f(x_t) + tq(x_t) - (f(x_\tau) + \tau q(x_\tau))$$

or

$$f(x_t) + \tau g(x_t) \le f(x_\tau) + \tau g(x_\tau)$$

donc

$$\varphi(t) - \varphi(\tau) \le tg(x_t) - \tau g(x_t) = (t - \tau)g(x_t) \le M|t - \tau|.$$

De même

$$\varphi(\tau) - \varphi(t) \le M|t - \tau|$$

et finalement φ est M lipschitzienne.