Homework 1 - Introduction to Probabilistic Graphical Models

kipngeno koech - bkoech

February 6, 2025

1 Bayesian Networks

- 1. Consider a simple Markov Chain structure $X \to Y \to Z$, where all variables are binary. You are required to:
 - (a) Write a code (using your preferred programming language) that generates a distribution (not necessarily a valid BN one) over the 3 variables.

[in the notebook]

(b) Write a code that verifies whether a distribution is a valid BN distribution.

[in the notebook]

(c) Using your code, generate 10000 distributions and compute the fraction of distributions that are valid BN distributions.

[in the notebook]

2. Given the following Bayesian Network

Figure 1: A Bayesian network

Figure 1: Bayesian Network

(a) Propose a topological ordering of this graph In Figure 2, the topological ordering is:

i.
$$A \to B \to C \to D \to E \to F \to G \to H \to I$$

ii.
$$A \to B \to C \to E \to D \to F \to G \to I \to H$$

(b) Let X be a random vector that is Markov with respect to the graph. We assume that the random variables X, are binary. Write all the local conditional independence

 X_A has no parents, so no independence condition applies here.

 X_B has no parents, so no independence condition applies here.

 X_C is conditionally independent of all other nodes given its parent X_A :

$$X_C \perp \{X_B, X_D, X_E, X_F, X_G, X_H, X_I\} \mid X_A$$

 X_D is conditionally independent of all other nodes given its parent X_A :

$$X_D \perp \{X_B, X_C, X_E, X_F, X_G, X_H, X_I\} \mid X_A$$

 X_E is conditionally independent of all other nodes given its parents X_C and X_D :

$$X_E \perp \{X_A, X_B, X_F, X_G, X_H, X_I\} \mid \{X_C, X_D\}$$

 X_F is conditionally independent of all other nodes given its parent X_B :

$$X_F \perp \{X_A, X_C, X_D, X_E, X_G, X_H, X_I\} \mid X_B$$

 X_G is conditionally independent of all other nodes given its parents X_E and X_F :

$$X_G \perp \{X_A, X_B, X_C, X_D, X_H, X_I\} \mid \{X_E, X_F\}$$

 X_H is conditionally independent of all other nodes given its parent X_D :

$$X_H \perp \{X_A, X_B, X_C, X_E, X_F, X_G, X_I\} \mid X_D$$

 X_I is conditionally independent of all other nodes given its parents X_G and X_H :

$$X_{I} \perp \{X_{A}, X_{B}, X_{C}, X_{D}, X_{E}, X_{F}\} \mid \{X_{G}, X_{H}\}$$

Figure 2: Bayesian Network

- 3. State True or False, and briefly justify your answer within 3 lines. The statements are either direct consequences of theorems in Koller and Friedman (2009, Ch. 3), or have a short proof. In the follows, P is a distribution and G is a BN structure.
 - (a) If $A \perp B \mid C$ and $A \perp C \mid B$, then $A \perp B$ and $A \perp C$. (Suppose the joint distribution of A, B, C is positive.) (This is a general probability question not related to BNs.)
 - False. Conditional independence does not imply marginal independence. For example, A and B can be dependent but become independent given C.

Figure 2: A Bayesian network.

Figure 3: Bayesian Network

- (b) In Figure 2, $E \perp C \mid B$
- (c) in Figure 2, $A \perp E \mid C$

In figure 3, Recall the definitions of local and global independences of G and independences of P.

$$I_l(G) = \{ (X \perp \text{NonDescendants}_G(X) \mid \text{Parents}_G(X)) \}$$
 (1)

$$I(G) = \{ (X \perp Y \mid Z) : \text{d-separated}_G(X, Y \mid Z) \}$$
 (2)

$$I(P) = \{ (X \perp Y \mid Z) : P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z) \}$$
(3)

- (d) In Figure 3, relation 1 is true.
- (e) In Figure 3, relation 2 is true.
- (f) In Figure 3, relation 3 is true.
- (g) If G is an I-map for P, then P may have extra conditional independencies than G.
- (h) Two BN structures G_1 and G_2 are I-equivalent if they have the same skeleton and the same set of v-structures.

Figure 3: Some relations in Bayesian networks.

- (i) If G_1 is an I-map of distribution P, and G_1 has fewer edges than G_2 , then G_2 is not a minimal I-map of P.
- (j) The P-map of a distribution, if it exists, is unique.