Presentation for mini-project

Yuanyuan ZHENG

Pipeline

Model architecture and implementation

Input token (char) + positional embedding

Decoder-Only Architecture used by GPT-2.

Feed forward

Project structure

Model.py

Costum_dataset.py

util.py

Main.ipynb

pretrain_model_generate.ipynb

Learning rate decay

• Learning rate decay: using learning rate scheduler (MultiStepLR), with milestones of each 50 steps.

Using same random seed

Without learning rate decay

With learning rate decay

Generated text comparison (4000 epochs without learning rate decay)

- I saw a cat jumping onto the table, he
- falles our wife's and crows, thou art head of theirful tawn.
- GLOUCESTER:
- But to him again, and for all truth:
- We make men, what is a blottled from me?
- Why looks chamberly from a crubb his holy?
- NORTHUMBERLAND:
- Not I, my lord?

- I saw a cat jumping onto the table, wins s hiss yPe bot arins chechy:
- Ghifor.
- Thuerang, gealal tavo
- xouthy, at bulcacereapndothed owirushed hy ORCENI oded atoprlourowoul pr wnd we hass hounes t s, thertidr,
- I hed ord o,
- Yod, mad fousht, wat hard nchaTHhed thedetilend pe; bus t there's, ilis'EUSesst eal's, hef my.
- g nd

Without Ir decay

With Ir decay

Backup

torch.nn.Embedding(num_embeddings, embedding_dim)

- **num_embeddings** (<u>int</u>) size of the dictionary of embeddings
- **embedding_dim** (<u>int</u>) the size of each embedding vector

torch.nn.Linear(in_features, out_features, bias=True)

- in_features (<u>int</u>) size of each input sample
- out_features (<u>int</u>) size of each output sample

Torch.nn.CrossEntropyLoss

- Input: Shape (C), (N,C) or (N,C,d1,d2,...,dK) with $1 \ge K \ge 1$ in the case of K-dimensional loss. (C: # of class, N: batch size)
- Target: If containing class indices, shape (),(N) or (N,d1,d2,...,dK) with 1K≥1 in the case of K-dimensional loss where each value should be between [0,C). If containing class probabilities, same shape as the input and each value should be between [0,1].
- Output: If reduction is 'none', shape (), (N) or(N,d1,d2,...,dK) with 1K≥1 in the case of K-dimensional loss, depending on the shape of the input. Otherwise, scalar.