AERIAL IMAGE RETRIEVAL

•••

Juhi Deshpande A20430435 Sonali Deshpande A20428066 Monishaa Arulalan A20432700

CONTENTS

- 1. Goal
- 2. Bing Maps Tile System
- 3. Algorithm
- 4. Approach
- 5. Result
- 6. References

GOAL

Our aim is to automatically download the aerial imagery with high resolution for given latitude and longitude using Bing Maps Tile System.

BING MAPS TILE SYSTEM

- Bing Maps provides a world map that users can directly manipulate to pan and zoom.
- To make this interaction as fast and responsive as possible, we chose to pre-render the map at many different levels of detail, and to cut each map into tiles for quick retrieval and display.
- Bing Maps makes use of Mercator projection which significantly distorts scale and area (particularly near the poles), but it has two important properties: conformal projection and cylindrical projection.

• To optimize the performance of map retrieval and display, the rendered map is cut into tiles of 256 x 256 pixels each. As the number of pixels differs at each level of detail, so does the number of tiles:

map width = map height = 2 level tiles

 Given a pair of pixel XY coordinates, you can easily determine the tile XY coordinates of the tile containing that pixel:

tileX = floor(pixelX / 256)
tileY = floor(pixelY / 256)

(0,0)	(1,0)	(2,0)	(3,0)	(4,0)	(5,0)	(6,0)	(7,0)
(0,1)	(1,1)	(2,1)	(3,1)	(4,1)	(5,1)	(6,1)	(7,1)
(0,2)	(1,2)	(2,2)	(3,2)	(4,2)	(5,2)	(6,2)	(7,2)
(0,3)	(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	(6,3)	(7,3)
(0,4)	(1,4)	(2,4)	(3,4)	(4,4)	(5,4)	(6,4)	(7,4)
(0,5)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)
(0,6)	(1,6)	(2,6)	(3,6)	(4,6)	(5,6)	(6,6)	(7,6)
(0,7)	(1,7)	(2,7)	(3,7)	(4,7)	(5,7)	(6,7)	(7,7)

- To optimize the indexing and storage of tiles, the two-dimensional tile XY coordinates are combined into one-dimensional strings called quadtree keys, or "quadkeys" for short.
- Each quadkey uniquely identifies a single tile at a particular level of detail, and it can be used as an key in common database B-tree indexes.
- To convert tile coordinates into a quadkey, the bits of the Y and X coordinates are interleaved, and the result is interpreted as a base-4 number (with leading zeros maintained) and converted into a string.

• Our key:

 $Akk7WP-w0TJrlJV0Kl5JO9gutSR1_ox5BEqIgs3iDdFdp4KZB7UlJp5FcEo2BTMW$

ALGORITHM

- 1. Determine the lowest acceptable level by all bounding box area within one tile.
- 2. Determine the final best level by filtering out from fine to coarse iteratively.
- 3. Query each tile image and paste.
 - i. Convert lat/lon to pixel coordinates.
 - ii. Convert pixel coordinates to tile coordinates.
 - iii. Query tile image from Bing Server.
- 4. Refine and crop the generated image by pixel granularity.

APPROACH

Given below are the steps followed to obtain the aerial image:

- 1. Obtaining the queried aerial tile image from the Bing Map Tile System.
- 2. Creating bounding box of the aerial image.
 - a. Create a "Base" tile
 - b. Create "finest" tile.
 - c. Crop the finest tile to obtain the required aerial image.

STEP 1 : Query an image tile from Bing Maps tile system

- → Use the Bing Map license key to access the Bing map API.
 - ♦ Key used : Akk7WP-w0TJrlJV0Kl5JO9gutSR1_ox5BEqIgs3iDdFdp4KZB7UlJp5FcEo2BTMW
- Create a URL to query the required image
 - http://ho.ortho.tiles.virtualearth.net/tiles/h#quadkey.jpeg?g=131&key=#license_key
 - **Quadkey:** is obtained by converting a pair of latitude and longitude which is taken as input from the user.
 - *license key:* is the key mentioned in the previous step.
- Using this extract the required tile image from Bing maps tile system.

STEP 2.A: CREATE THE BASE TILE

- → After obtaining the image from Bing Map tile system, we find the smallest tile that boundes everything in this tile.
- → Obtain the input of pair of latitudes and longitude : latitudeOne (x1), longitudeOne (y1), latitudeTwo (x2), longitudeTwo (y2)
- → Using the MaximumResolution set to 23. Search from level 1 to 23 if :
 - $|x_1 x_2| \le 1$ and $|y_1 y_2| \le 1$
 - ◆ We obtain our base tile.
- → Output : Return this tile which is obtained after the iteration.

STEP 2B : CREATE THE FINEST TILE

- \rightarrow Using the inputs of tile coordinates : x1, y1, x2, y2 and tile level.
- → Parsing from level 23 (MaximumResolution) to base tile level (previous step coordinates):
 - ◆ If we can query all tile images in this level using the common zoom levels,
 - Return all tile images inside base tile.
- → Stitch tile images obtained together to generate "finest" tile image.
- → Output : Return finest tile image.

STEP 2C: CROPPING TO OBTAIN AERIAL IMAGE

- → Input : Using the finest tile image and the input pair of latitude and longitude.
- → Converting these points into pixels coordinates of the finest image obtained in the previous step.
- → Using the pixel coordinates of the finest tile image, crop them and obtain the required bounding box of aerial image.
- → Output : Return the bounding box image obtained in the last step.

RESULTS

1) IIT Campus

Top Left Corner:

Latitude: 41.839341

Longitude: -87.629504

Bottom Right Corner:

Latitude: 41.831092

Longitude: -87.623239

```
Command Prompt
C:\Users\Juhi Deshpande\Downloads>python aerial image.py 41.839341 -87.629504 41.831092 -87.623239
The lowest acceptable level is:
Check quality in level:
Finally at level: 19
Image successfully generated.
Image successfully cropped.
C:\Users\Juhi Deshpande\Downloads>
```

2) *Cloud Gate*

Top Left Corner:

Latitude: 41.882981

Longitude: -87.623496

Bottom Right Corner:

Latitude: 41.882397

Longitude: -87.623076

```
Command Prompt
C:\Users\Juhi Deshpande\Downloads>python aerial_image.py 41.882981 -87.623496 41.882397 -87.623076
The lowest acceptable level is:
Check quality in level:
can't find tile:
(2152528, 3117660)
at the level:
Check quality in level:
can't find tile:
(1076264, 1558830)
at the level:
Check quality in level:
can't find tile:
(538132, 779415)
at the level:
Check quality in level:
Finally at level: 20
Image successfully generated.
Image successfully cropped.
C:\Users\Juhi Deshpande\Downloads>_
```

REFERENCES

- 1. Rbrundritt. (n.d.). Bing Maps Tile System Bing Maps. Retrieved from http://msdn.microsoft.com/en-us/library/bb259689.aspx
- 2. Rbrundritt. (n.d.). Getting a Bing Maps Key Bing Maps. Retrieved from https://docs.microsoft.com/en-us/bingmaps/getting-started/bing-maps-dev-center-help/getting-a-bing-maps-key
- 3. Rbrundritt. (n.d.). Bing Maps Tile System Bing Maps. Retrieved from https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system

THANK YOU!