Finite Elements: examples 2

Colin Cotter

March 7, 2016

1. Let $(T_1, P_k, \mathcal{N}_{k,1})$ and $(T_2, P_k, \mathcal{N}_{k,2})$ be degree k Lagrange elements defined on two different triangles T_1 and T_2 . Show that there exists an affine (translation plus linear transformation) map $g:T_1\to T_2$ such that $g^*N_{i,2} = N_{i,1}$ where $N_{i,1} \in \mathcal{N}_{k,1}$ and $N_{i,2} \in \mathcal{N}_{k,2}$ are corresponding pairs of dual basis functions and

$$(g^*N_{i,2})[u(x)] = N_{i,2}[u(g(x))].$$

Solution: For any triangle K, define barycentric coordinates (b_1, b_2, b_3) defined by $b_i(x, y) = \phi_i(x, y)$ where ϕ_i is the ith linear Lagrange basis function (equal to perpendicular distance from the edge opposite vertex i). We have $b_1 + b_2 + b_3 = 1$ for any point in the triangle. The mapping $(x,y) \to (b_1,b_2,b_3)$ is an affine map from the triangle to

$${b \in [0,1]^3 : b_1 + b_2 + b_3 = 1}.$$

Hence, we can define an affine mapping between two triangles by tranforming from T_1 to barycentric coordinates, then from barycentric coordinates to T_2 .

For degree k Lagrange elements, pick nodes with barycentric coordinates

$$\left(\frac{i}{k}, \frac{j}{k}, \frac{l}{k}\right), \quad 0 \le i, j, l \le k, \quad i+j+l=k.$$

The dual basis functions represent function evaluate at these nodes after transformation to barycentric coordinates.

2. Suppose that Ω is any bounded domain, k, m > 0 integers with $k \leq m$, and $1 \leq p < \infty$. Show that $W_p^m(\Omega) \subset W_p^k(\Omega).$ Solution: If $f \in W_p^m(\Omega)$ then

$$||f||_{W_p^m(\Omega)}^p = \sum_{|\alpha| \le m} ||D_w^{\alpha} f||_{L^p}^p \le \infty.$$

Since, $m \geq k$, we have

$$||f||_{W_p^k(\Omega)}^p = \sum_{|\alpha| \le k} ||D_w^{\alpha} f||_{L^p}^p \le \sum_{|\alpha| \le m} ||D_w^{\alpha} f||_{L^p}^p \le \infty,$$

so $f \in W_n^k(\Omega)$.

3. Suppose that Ω is any bounded domain, k>0 an integer, and $1\leq p_0\leq p_1\leq\infty$ are integers. Show that

 $W_{p_1}^{k}(\Omega) \subset W_{p_0}^{k}(\Omega).$ Solution: If $f \in W_{p_1}^{k}$ then $D_w^{\alpha}f \in L^{p_1}$ for $\alpha \leq k$. Using Hölder's inequality with $p = p_1/p_0 > 1$, $q = p_1/(p_1 - p_0) > 1$, we get

$$\|D_w^{\alpha} f\|_{L^{p_0}(\Omega)} = \|1 \times |D_w^{\alpha} f|^{p_0}\|_{L^1(\Omega)} \le \||D_w^{\alpha} f|^{p_0}\|_{L^{p_1/p_0}(\Omega)} \|1\|_{L^{\frac{p_1}{p_1-p_0}}(\Omega)} \le \|D_w^{\alpha} f\|_{L^{p_1}(\Omega)} \le \infty,$$

for all $|\alpha| \leq k$, therefore $f \in W_{p_0}^k$.

4. Let α be an arbitrary multi-index, $\psi \in C^{|\alpha|}(\Omega)$. Show that $D_m^{\alpha}\psi = D^{\alpha}\psi$. **Solution:** Taking $\phi \in C_0^{\infty}(\Omega)$, we have

$$\int_{\Omega} \phi D^{\alpha} \psi \, \mathrm{d} x = (-1)^{|\alpha|} \int_{\Omega} D^{\alpha} \phi \psi \, \mathrm{d} x,$$
$$= (-1)^{|\alpha|} \int_{\Omega} D^{\alpha}_{w} \phi \psi \, \mathrm{d} x,$$

for all test functions ϕ . Further, since $D_w^{\alpha}\phi$ is continuous, it is bounded in all closed domains K contained in the interior of Ω , i.e. $D_w^{\alpha}\phi\in L^1_{loc}(\Omega)$ as required.

5. Let Δ be the triangle with vertices (x_i, y_j) , (x_{i+1}, y_j) , (x_i, y_{j+1}) , with $x_i = hi$, $y_j = hj$. Define a transformation g from the reference element K with vertices (0,0), (1,0) and (0,1) to K, and show that

$$\int_{\Delta} \left| \frac{\partial}{\partial x} (u - \mathcal{I}_{\Delta} u) \right|^2 \mathrm{d}\, x \, \mathrm{d}\, y = \int_{K} \left| \frac{\partial \bar{u}}{\partial \xi} - \bar{u}(0,0) + \bar{u}(1,0) \right|^2 \mathrm{d}\, \xi \, \mathrm{d}\, \eta,$$

where $\bar{u} = u \circ g$, ξ and η are the coordinates on K, and \mathcal{I}_{Δ} is the interpolation operator from $H^2(\Delta)$ onto linear polynomials defined on Δ .

Solution: The mapping is defined by

$$x = x_i + \xi h, \quad y = y_i + \eta h.$$

Defining $\bar{u}(\xi, \eta) = u(x, y)$, we have

$$\frac{\partial \bar{u}}{\partial \xi} = \frac{1}{h} \frac{\partial u}{\partial x}, \quad \frac{\partial \bar{u}}{\partial \eta} = \frac{1}{h} \frac{\partial u}{\partial y},$$

and the Jacobian of the mapping is

$$|J| = \left| \frac{\partial(x,y)}{\partial(\xi,\eta)} \right| = h^2.$$

We have

$$\mathcal{I}_{\Delta}u \circ g = (1 - \xi - \eta)\bar{u}(0, 0) + \xi\bar{u}(1, 0) + \eta\bar{u}(0, 1).$$

Hence

$$\left(\frac{\partial}{\partial x}\mathcal{I}_{\Delta}u\right)\circ g=\frac{-\bar{u}(0,0)+\bar{u}(1,0)}{h}.$$

Substitution gives the result.

6. From the previous question, apply integration by parts repeatedly and use the Schwarz inequality to obtain

$$\int_{\Delta} \left| \frac{\partial}{\partial x} (u - \mathcal{I}_{\Delta} u) \right|^2 dx dy \le C \int_{K} \left| \frac{\partial^2 \bar{u}}{\partial \xi^2} \right|^2 + \left| \frac{\partial^2 \bar{u}}{\partial \xi \partial \eta} \right|^2 d\xi d\eta.$$

Solution:

$$\begin{split} \int_{K} \left| \frac{\partial \bar{u}}{\partial \xi} - \bar{u}(0,0) + \bar{u}(1,0) \right|^{2} \mathrm{d}\xi \, \mathrm{d}\eta & \leq \int_{K} \left| \frac{\partial \bar{u}}{\partial \xi}(\xi,\eta) - \int_{0}^{1} \frac{\partial \bar{u}}{\partial \xi}(\sigma,0) \, \mathrm{d}\sigma \right|^{2} \mathrm{d}\xi \, \mathrm{d}\eta \\ & = \int_{\xi=0}^{1} \int_{\eta=0}^{\xi} \left| \int_{0}^{1} \left(\frac{\partial \bar{u}}{\partial \xi}(\xi,\eta) - \frac{\partial \bar{u}}{\partial \xi}(\sigma,\eta) \right) \, \mathrm{d}\sigma \right|^{2} \mathrm{d}\eta \, \mathrm{d}\xi \\ & + \int_{0}^{1} \left(\frac{\partial \bar{u}}{\partial \xi}(\sigma,\eta) - \frac{\partial \bar{u}}{\partial \xi}(\sigma,0) \right) \, \mathrm{d}\sigma \right|^{2} \mathrm{d}\eta \, \mathrm{d}\xi \\ & = \int_{\xi=0}^{1} \int_{\eta=0}^{\xi} \left| \int_{0}^{1} \int_{\sigma}^{\xi} \frac{\partial^{2} \bar{u}}{\partial \xi^{2}}(\gamma,\eta) \, \mathrm{d}\gamma \, \mathrm{d}\sigma \right|^{2} \mathrm{d}\eta \, \mathrm{d}\xi \\ & \leq \int_{\xi=0}^{1} \int_{\eta=0}^{\xi} \left(\int_{0}^{1} \left| \int_{\sigma}^{\xi} \frac{\partial^{2} \bar{u}}{\partial \xi^{2}}(\gamma,\eta) \, \mathrm{d}\gamma \right|^{2} \mathrm{d}\sigma \\ & + \int_{0}^{1} \left| \int_{0}^{\eta} \frac{\partial^{2} \bar{u}}{\partial \xi \partial \eta}(\sigma,\alpha) \, \mathrm{d}\alpha \, \mathrm{d}\alpha \right|^{2} \mathrm{d}\sigma \right) \mathrm{d}\eta \, \mathrm{d}\xi \\ & \leq \int_{\xi=0}^{1} \int_{\eta=0}^{\xi} \left(\int_{0}^{1} \left| \xi - \sigma \right| \int_{\sigma}^{\xi} \left| \frac{\partial^{2} \bar{u}}{\partial \xi^{2}}(\gamma,\eta) \right|^{2} \mathrm{d}\gamma \, \mathrm{d}\sigma \\ & + \int_{0}^{1} \left| \eta \right| \int_{0}^{\eta} \left| \frac{\partial^{2} \bar{u}}{\partial \xi \partial \eta}(\sigma,\alpha) \right|^{2} \mathrm{d}\alpha \, \mathrm{d}\sigma \right) \mathrm{d}\eta \, \mathrm{d}\xi \end{split}$$

$$\leq C \int_{K} \left| \frac{\partial^{2} \bar{u}}{\partial \xi^{2}} \right|^{2} + \left| \frac{\partial^{2} \bar{u}}{\partial \xi \partial \eta} \right|^{2} d\xi d\eta.$$

Hence show that

$$\int_{\Delta} \left| \frac{\partial}{\partial x} (u - \mathcal{I}_{\Delta} u) \right|^2 dx dy \le Ch^2 \int_{\Delta} \left| \frac{\partial^2 u}{\partial \xi^2} \right|^2 + \left| \frac{\partial^2 u}{\partial \xi \partial \eta} \right|^2 d\xi d\eta.$$

Solution: We take the previous result and change variables back, so that e.g. $\frac{\partial^2 \bar{u}}{\partial \xi^2}$ becomes $\frac{\partial^2 u}{\partial x^2}$. Hence, the second derivatives produce factors of h^2 that get squared, and we divide by h^2 from the Jacobian factor, leaving a factor of h^2 .

7. Consider a triangulation \mathcal{T} of points x_i and y_j arranged in squares as above, with each square subdivided into two right-angled triangles. Explain how to use this result to obtain

$$||u - \mathcal{I}_{\mathcal{T}}||_E \le ch|u|_{H^2(\Omega)},$$

where

$$||f||_E = \int_{\Omega} \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 dx dy, \quad |u|_{H^2(\Omega)}^2 = \int_{\Omega} \left(\frac{\partial^2 u}{\partial x^2}\right)^2 + \left(\frac{\partial^2 u}{\partial xy}\right)^2 + \left(\frac{\partial^2 u}{\partial y^2}\right)^2 dx dy.$$

Solution: All right-angled triangles can be transformed to the reference element by the transformation given above, plus a rotation. Hence, the estimate of the previous section applies to any triangle in the mesh. Summing over elements and taking square roots gives the result with $c = \sqrt{C}$.

8. Let \mathcal{T} be a triangulation of a polygonal domain $\Omega \in \mathbb{R}^2$. Let f be a P_k Lagrange finite element function on \mathcal{T} . Show that the weak first derivatives of f exist.

Solution: We claim that the weak first derivative of f is given by $g \in L^1_{loc}(\Omega)$ with

$$g|_e(x) = D^{\alpha} f|_e(x),$$

for each element e, where $\alpha = (0,1)$ or (1,0), and $|_e$ indicates the restriction of functions to e. To check this, we take $\phi \in C_0^{\infty}(\Omega)$, and calculate,

$$\begin{split} \int_{\Omega} \phi g \, \mathrm{d} \, x &= \sum_{e} \int_{e} \phi D^{\alpha} f|_{e}(x), \\ &= \sum_{e} \left(-\int_{e} \left(D^{\alpha} \phi \right) f \, \mathrm{d} \, x + \int_{\partial e} \phi(n \cdot \alpha) f \, \mathrm{d} \, S \right), \\ &= -\int_{\Omega} \left(D^{\alpha} \phi \right) f \, \mathrm{d} \, x, \end{split}$$

where n is the unit outward normal to ∂e . The surface integrals cancel since $(n \cdot \alpha)$ takes the same value with opposite sign on each side of ∂e , whilst ϕf is continuous.