Postsynaptic Potentials (PSPs)

- Explain postsynaptic potentials (PSPs).
- Distinguish between excitatory and inhibitory PSPs.
- Describe the summation of PSPs.
- Describe where and how action potentials are generated.

Learning Goals

Next question: What can affect the resting membrane potential?

When a neurotransmitter molecule binds to a postsynaptic receptor, it can have one of two localized effects:

- 1. Depolarize the membrane (e.g., decrease membrane potential from -70 to -67).
- 2. Hyperpolarize the membrane (e.g., increase the membrane potential from -70 to -72).

- When a neurotransmitter molecule binds to a postsynaptic receptor, it can have one of two localized effects:
- 1. Depolarize the membrane = Excitatory postsynaptic potential (EPSP).
- 2. Hyperpolarize the membrane = Inhibitory postsynaptic potential (IPSP).

- When a neurotransmitter molecule binds to a postsynaptic receptor, it can have one of two localized effects:
- 1. Depolarize the membrane = EPSP = Increase likelihood that the postsynaptic neuron will fire an action potential (AP).
- 2. Hyperpolarize the membrane = IPSP = Decrease the likelihood that the postsynaptic neuron will fire an AP.

- When a neurotransmitter molecule binds to a postsynaptic receptor, it can have one of two localized effects:
- 1. Depolarize the membrane = EPSP = Increase likelihood that the postsynaptic neuron will fire an action potential (AP).
- 2. Hyperpolarize the membrane = IPSP = Decrease the likelihood that the postsynaptic neuron will fire an AP.

The transmission of postsynaptic potentials (PSPs) is graded, rapid and decremental: PSPs travel like an electrical signal along an uninsulated wire.

Once the membrane potential reaches a certain threshold, an action potential can be generated.

Spatial Summation

EPSPs and IPSPs sum both spatially and temporally.

Temporal Summation

AP Generation

If the sum of the EPSPs and IPSPs that reaches the axon initial segment is sufficient to depolarize the membrane there above its threshold of excitation (e.g., -65 mV) then an action potential (AP) is generated.

The AP is a massive momentary reversal of the membrane potential (e.g., from -70 to +55 mV).

Types of Potentials

	PSP	AP
Graded	Yes	No
Decremental	Yes	No
Rapid	Yes	Less so