2019-EDA 🗹 Exámenes

Exámenes

Tema 5 - S1: Cuestiones sobre Heaps

Volver a la Lista de Exámenes

Parte 1 de 2 - Propiedades de los Heaps (1)

8.0/8.0 Puntos

Indica cuál de las dos organizaciones de datos jerárquicas con N nodos (Árbol Binario o Montículo Binario) hacen ciertas las afirmaciones siguientes:

Preguntas 1 de 12

1.0/ 1.0 Puntos

De los siguientes tipos de árboles,

¿En cuál o cuáles la longitud de cualquier camino desde su raíz a una de sus hojas es, como mucho, el logaritmo de su tamaño N (logN)?

PISTA: Un Árbol Binario de Búsqueda (ABB) es un Árbol Binario que NO tiene por qué ser NI Completo NI Lleno.

~	Árbol Binario Completo	Comentarios: En un Arbol Binario Completo, por definición, todas las hojas se encuentran, como mucho, a una distancia logN de su raíz. Lo mismo sucede con un Heap que, por definición, es un Árbol Binario Completo.
		Un Árbol Binario cualquiera o un Árbol Binario de Búsqueda puede tener hojas en cualquiera de sus niveles, por lo que los caminos desde la raíz hasta ellas pueden tener una longitud entre 0 y N-1.
~	Montículo Binario (Heap)	Comentarios: En un Arbol Binario Completo, por definición, todas las hojas se encuentran, como mucho, a una distancia logN de su raíz. Lo mismo sucede con un Heap que, por definición, es un Árbol Binario Completo.
		Un Árbol Binario cualquiera o un Árbol Binario de Búsqueda puede tener hojas en cualquiera de sus niveles, por lo que los caminos desde la raíz hasta ellas pueden tener una longitud entre 0 y N-1.
	Árbol Binario Árbol Binario Árbol Binario de Búsqueda	

Respuesta correcta: A, B

Preguntas 2 de 12

1.0/ 1.0 Puntos

De los siguientes tipos de árboles,

¿En cuál o cuáles contar el número de hojas tiene un coste lineal con su tamaño N?

PISTA: Un Árbol Binario de Búsqueda (ABB) es un Árbol Binario que NO tiene por qué ser NI Completo NI Lleno.

~	Árbol Binario	Comentarios: Un Árbol Binario Completo, por definición, siempre tiene 1+N/2 hojas; un Heap también porque, por definición, es un Árbol Binario Completo. Sin embargo, un Árbol Binario cualquiera y un Árbol Binario de Búsqueda pueden tener entre 1 y 1+N/2 hojas, por lo que para saber cuántas tienen exactamente hay que recorrer sus N nodos.
✓	Árbol Binario de Búsqueda	Comentarios: Un Árbol Binario Completo, por definición, siempre tiene 1+N/2 hojas; un Heap también porque, por definición, es un Árbol Binario Completo. Sin embargo, un Árbol Binario cualquiera y un Árbol Binario de Búsqueda pueden tener entre 1 y 1+N/2 hojas, por lo que para saber cuántas tienen exactamente hay que recorrer sus N nodos.
	Montículo Binario (Heap) Árbol Binario Completo	

Respuesta correcta: A, B

Preguntas 3 de 12

1.0/ 1.0 Puntos

De los siguientes tipos de árboles,

¿En cuál o cuáles contar el número de hojas tiene un coste del orden de una constante, independiente de su tamaño N?

PISTA: Un Árbol Binario de Búsqueda (ABB) es un Árbol Binario que NO tiene por qué ser NI Completo NI Lleno.

Árbol Binario	
✓ Árbol Binario Completo	Comentarios: Un Árbol Binario o un Árbol Binario de Búsqueda pueden tener entre 1 y 1+N/2 hojas. Sin embargo, cualquier tipo de Árbol Binario Completo, Heap incluido, siempre tiene 1+N/2 hojas (por definción).
Árbol Binario de Búsqueda	
✓ Montículo Binario (Heap)	Comentarios: Un Árbol Binario o un Árbol Binario de Búsqueda pueden tener entre 1 y 1+N/2 hojas. Sin embargo, cualquier tipo de Árbol Binario Completo, Heap incluido, siempre tiene 1+N/2 hojas (por definción).

Respuesta correcta:B, D

Preguntas 4 de 12

1.0/ 1.0 Puntos

De los siguientes tipos de árboles,

¿En cuál de ellos encontrar el mínimo tiene un coste del orden de una constante, independiente de su tamaño N?

PISTA: En un Árbol Binario de Búsqueda el mínimo es su hijo más a la izquierda.

- Arbol Binario Completo
- **Arbol Binario de Búsqueda**
- Árbol Binario
- Montículo Binario (Heap)

Comentarios:

Por la propiedad de orden de un Montículo Binario, el mínimo está en su raíz y, por tanto, se puede acceder a él en tiempo constante. Sin embargo,

-en un Árbol Binario o en un Árbol Binario Completo, el mínimo puede estar en cualquier lugar y, por tanto, encontrarlo requiere un coste lineal con su tamaño N;

-en un Árbol Binario de Búsqueda el mínimo es su hijo más a la izquierda y, por tanto, alcanzarlo requiere un tiempo lineal con la altura H del árbol.

Respuesta correcta:D

Preguntas 5 de 12

1.0/ 1.0 Puntos

De los siguientes tipos de árboles,

¿En cuál o cuáles encontrar el máximo tiene un coste lineal con su tamaño N?

Comentarios: La propiedad de orden de un Montículo Binario NO permite acceder directamente al máximo, aunque asegura que se encuentra en una hoja; así, aunque la búsqueda se puede restringir Completo a esta zona del array (de tamaño aprox. N/2), el coste asintótico es lineal con N, al igual que en un Árbol Binario o en un Árbol Binario Completo (donde el máximo puede estar en cualquier lugar).

∕Árbol

Binario

Comentarios:

La propiedad de orden de un Montículo Binario NO permite acceder directamente al máximo, aunque asegura que se encuentra en una hoja; así, aunque la búsqueda se puede restringir a esta zona del array (de tamaño aprox. N/2), el coste asintótico es lineal con N, al igual que en un Árbol Binario o en un Árbol Binario Completo (donde el máximo puede estar en cualquier lugar).

Comentarios:

Montículo La propiedad de orden de un Montículo Binario NO permite acceder directamente al máximo, aunque asegura que se encuentra en una hoja; así, aunque la búsqueda se puede restringir a esta Binario zona del array (de tamaño aprox. N/2), el coste asintótico es lineal con N, al igual que en un Árbol (Heap) Binario o en un Árbol Binario Completo (donde el máximo puede estar en cualquier lugar).

Respuesta correcta: A, B, C

Preguntas 6 de 12

1.0/ 1.0 Puntos

De los siguientes tipos de árboles,

¿En cuál o cuáles la altura puede llegar a ser proporcional a su tamaño N? **PISTA:** Un Árbol Binario de Búsqueda (ABB) es un Árbol Binario que NO tiene por qué ser NI Completo NI Lleno.

tiono poi q	ac ser i i i comprete i i i ziene.
Árbol Binario Completo	
✓ Árbol Binario de Búsqueda	Comentarios: Las alturas de un Árbol Binario Completo y un Heap están acotadas, por definición, por logN; sin embargo, la de un Árbol Binario o Árbol Binario de Búsqueda pueden variar entre logN y N.
Montículo Binario (Heap)	varial charcing type.
✓ Árbol Binario	Comentarios: Las alturas de un Árbol Binario Completo y un Heap están acotadas, por definición, por logN; sin embargo, la de un Árbol Binario o Árbol Binario de Búsqueda pueden variar entre logN y N.
Respuesta corre	cta:B, D
Preguntas 7 de 1	2 1.0/ 1.0 Puntos
¿En cuál de	los siguientes tipos de árboles cualquier camino desde la raíz a
-	una secuencia ordenada?
	ario Completo
• OÁrbol Bina	ario de Búsqueda
• OÁrbol Bina	ario
• Montío	culo Binario (Heap)
Comentarios	: Por su propiedad de orden, solo en un Heap cualquier camino desde la raíz hasta las hojas es una

Respuesta correcta:D

secuencia ordenada.

Preguntas 8 de 12

1.0/ 1.0 Puntos

De los siguientes tipos de árboles,

¿Cuál de ellos se puede recorrer In-Orden para obtener sus datos ordenados?

PISTA: Obtén la respuesta correcta por descarte.

- **Árbol Binario Completo**
- 🗸 🔾 Árbol Binario de Búsqueda

Comentarios: Por su propiedad de orden, más "fuerte" que la de un Heap, sólo un Árbol Binario de Búsqueda se puede recorrer In-Orden para obtener sus datos ordenados.

- Montículo Binario
- **Árbol Binario**

Respuesta correcta:B

Parte 2 de 2 - Propiedades de los Heaps (2)

4.0/4.0 Puntos

Preguntas 9 de 12

1.0/ 1.0 Puntos

Pulse para ver instrucciones adicionales

¿Cuántas hojas tiene un Heap de 15 elementos? 🗸 8

Respuesta correcta:8

Preguntas 10 de 12

1.0/ 1.0 Puntos

Pulse para ver instrucciones adicionales

¿Cuál es el número mínimo de hojas que puede tener un Árbol Binario de 15 nodos? 🗸 1

Respuesta correcta:1

Preguntas 11 de 12

1.0/ 1.0 Puntos

Pulse para ver instrucciones adicionales

¿Cuál es el número máximo de hojas que puede tener un Árbol Binario de 15 nodos? 2

Respuesta correcta:8

Preguntas 12 de 12

1.0/ 1.0 Puntos

¿Un Montículo Binario es un ABB?

- Falso
- Verdadero

Respuesta correcta:A

- PoliformaT
- UPV
- Powered by Sakai
- Copyright 2003-2020 The Sakai Foundation. All rights reserved. Portions of Sakai are copyrighted by other parties as described in the Acknowledgments screen.