Combinatorics

October 8, 2018

C	ONTENTS	2
C	Contents	
0	Introduction	3
1	Set Systems	4

3

0 Introduction

In this course we'll discuss three main aspects:

- Set systems;
- \bullet Isoperimetric Inequalities;
- Projections (combinatorics in continuous settings).

References:

Combinatorics, Bocabas, Cambridge University Press, 1986 (chapter 1,2); Combinatorics and finite sets, Anderson, Oxford University Press, 1987 (chapter 1).

1 SET SYSTEMS 4

1 Set Systems

Let X be a set. A set system on X (or family of subsets of X) is a family $A \subset \mathbb{P}(X)$.

For example, we define $X^{(r)} = \{A \subset X : |A| = r\}$.

Unless otherwise stated, $X=[n]=\{1,2,...,n\}$. For example, $|X^{(r)}|=\binom{n}{r}$ (assume finiteness). So $[4]^{(2)}=\{12,13,14,23,24,34\}$.

We often make $\mathbb{P}(x)$ into a graph, called Q_n , by joining A to B if $|A \triangle B| = 1$ (symmetric difference).

(examples of Q_3, Q_n)

If we identify a set $A \subset X$ with a 0-1 sequence of length n via $A \leftrightarrow 1_A$ (characteristic function), then Q_3 acn be thought of as a cube. In general, Q_n is an n-dimensional cube (hypercube/discretecube/n-cube/...).

1.1 Chains and antichains

A family $A \subset \mathbb{P}(X)$ is a *chain* if $\forall A, B \in A, A \subset B$ or $B \subset A$. It is an antichain if $\forall A \neq B \in A, A \notin B$.

Obviously the maximum size of a chain in X is n+1.

For antichains, we can take $X^{\lfloor \frac{n}{2} \rfloor}$, which has size $\binom{n}{\lfloor n/2 \rfloor}$. The result is that wee can't beat this, but the proof is not trivial.