CS 321 HW 5 – 25 points

1. (5 pts) Convert the grammar below to CNF.

G = (V,T,S,P) where
V = { S, A, B, C, D}
T = { 0, 1, 2 }
and P is given below.
S
$$\rightarrow$$
 A | ABD | 0BB
A \rightarrow 0 | BAA
B \rightarrow BB | 1 | 2 | λ
C \rightarrow CD | 0
D \rightarrow D1 | DD

2. (5 pts) Consider the CNF grammar G = (V,T,S,P) where

$$V = \{S, A, B, C, D\}, T = \{a, b, c\}, S = S \text{ and } P \text{ is given below.}$$

$$S \rightarrow AB \mid AD \mid AC$$

$$A \rightarrow AA \mid a$$

$$B \rightarrow BB \mid AB \mid b$$

$$C \rightarrow AC \mid DC \mid c$$

$$D \rightarrow DD \mid b \mid c$$

Use the CYK algorithm to determine if the strings w_1 = babbc and w_2 = aaaabb are in the language L(G). Show the DP table. If the string is in L(G) construct the parse tree.

3. (15 pts) Construct npda's that accept the following languages on $\Sigma = \{a, b, c\}$. Give both a verbal explanation on how your npda works and the formal definition including the transition function and/or transition graph. **You must use JFLAP**. Submit the transition graph in the HW pdf and the JFLAP code file for each problem.

a)
$$L = \{ a^n b^{2n} : n \ge 0 \}$$

b) $L = \{ w : n_a(w) = 2n_b(w) \}$
c) $L = \{ wcw^R : w \in \{a,b\}^* \}$