

Tutorium Hardware- und Systemgrundlagen

Gruppe 1Raum F109

Mirko Bay
[mirko.bay@htwg-konstanz.de]

Gruppe 2Raum F110

Michael Bernhardt

[michael.bernhardt@htwg-konstanz.de]

Boole'sche Algebra II

Schaltalgebra Huntington'sche Axiome

Schaltfunktionen & Schaltnetze Funktionstabellen

Aussagenlogik Strukturbäume

Min- / Max-Terme Disjunktive / Konjunktive Normalform

Shannonscher Entwicklungssatz (& Binärbäume) Multiplexer-Bausteine

Logik-Gatter [de.wikipedia.org/wiki/Logikgatter]

NICHT UND	NAND	A — & O— Y	NAND x ₂ x ₁ f ₁₄ 0 0 1 0 1 1 1 0 1 1 1 0
NICHT ODER	NOR	A — ≥1 B — O—Y	NOR X ₂
ANTIVALENZ	XOR	A — =1 B — Y	$\begin{array}{c ccccc} & & & & & \\ \hline X_2 & X_1 & f_6 & & \\ \hline 0 & 0 & 0 & \\ 0 & 1 & 1 & \\ 1 & 0 & 1 & \\ 1 & 1 & 0 & \\ \end{array}$
ÄQUIVALENZ	XNOR	A — = B — Y	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Aufgabe 1: Gegeben sei die folgende boole'sche Funktion:

$$y = \overline{\overline{x_2 \cdot (x_2 \nleftrightarrow x_3)} \cdot \overline{\overline{x_3} \cdot (\overline{x_2 \nleftrightarrow x_3)}} \lor ((\overline{\overline{x_2} \lor \overline{x_3}}) \nleftrightarrow 1)$$

Formen Sie die gegebene Funktion y durch Anwendung boole'scher Operationen derart um, dass die Funktion y nur durch ein einziges Gatter realisiert werden kann.

Zeichnen Sie das resultierende Gatter mit seinen Eingangsvariablen.

(Testat SS 07)

$$y = \overline{x_2 \cdot (x_2 \nleftrightarrow x_3)} \cdot \overline{x_3 \cdot (x_2 \nleftrightarrow x_3)} \lor ((\overline{x_2} \lor \overline{x_3}) \nleftrightarrow 1)$$

$$y = x_2 \cdot (x_2 \nleftrightarrow x_3) \lor \overline{x_3} \cdot (x_2 \nleftrightarrow x_3) \lor (x_2 \cdot x_3) \cdot 1$$

$$y = x_2 \cdot (\overline{x_2} \cdot x_3 \lor x_2 \cdot \overline{x_3}) \lor \overline{x_3} \cdot (x_2 \cdot x_3 \lor \overline{x_2} \cdot \overline{x_3}) \lor (\overline{x_2} \lor \overline{x_3})$$

$$y = x_2 \cdot \overline{x_2} \cdot x_3 \lor x_2 \cdot \overline{x_3} \lor \overline{x_3} \cdot x_2 \cdot x_3 \lor \overline{x_3} \cdot \overline{x_2} \cdot \overline{x_3} \lor (\overline{x_2} \lor \overline{x_3})$$

$$y = x_2 \cdot \overline{x_3} \lor \overline{x_2} \cdot \overline{x_3} \lor \overline{x_2} \lor \overline{x_3}$$

$$y = x_2 \cdot \overline{x_3} \lor \overline{x_2} \cdot \overline{x_3} \lor \overline{x_2} \lor \overline{x_3}$$

$$y = \overline{x_2} \lor \overline{x_3}$$

Aufgabe 2: Gegeben ist das folgende Schaltnetz:

Stellen Sie die Schaltfunktion $y = f(x_3, x_2, x_1)$ als boole'schen Ausdruck so dar, dass die Struktur des boole'schen Ausdrucks die Struktur der gezeigten Schaltung wiedergibt.

(Testat WS 03/04)

$$y = [(x_1 \vee \overline{x_2}) \leftrightarrow \overline{(\overline{x_2} \wedge x_3)}] \wedge (\overline{\overline{x_2} \vee \overline{x_3}})$$

Aufgabe 3:

Zeigen Sie durch schaltalgebraische Umformungen, dass die Schaltfunktion Z = f (c, b, a) durch ein einziges Gatter realisiert werden kann. Formen Sie dazu den Ausdruck Z solange um, bis er die geeignete Form hat.

$$Z = [((a \leftrightarrow b) \lor c) \nleftrightarrow b] \cdot c$$

Zeichnen Sie das Gatter und geben Sie die entsprechenden Eingangsvariablen an.

(Testat SS 07 WDH)

$$\begin{split} z &= \left[\left(\left(a \cdot b \vee \overline{a} \cdot \overline{b} \right) \vee c \right) \not\leftrightarrow b \right] \cdot c \\ z &= \left[\left[\left(\left(\overline{a} \cdot b \vee c \right) \vee \left(\overline{a} \cdot \overline{b} \vee c \right) \right) \right] \cdot b \vee \left[\left(a \cdot b \vee c \right) \vee \left(\overline{a} \cdot \overline{b} \vee c \right) \right] \cdot \overline{b} \right] \cdot c \\ z &= \left[b \cdot \left(\overline{a} \cdot \overline{c} \vee \overline{b} \cdot \overline{c} \right) \vee b \cdot \left(\overline{a} \cdot c \vee b \cdot \overline{c} \right) \right] \vee \left[\overline{a \cdot b \cdot \overline{b}} \vee \overline{b} \cdot c \vee \overline{a} \cdot \overline{b} \vee \overline{b} \vee \overline{c} \right] \\ z &= \left[\overline{a \cdot b \cdot \overline{c}} \vee \overline{a} \cdot b \cdot c \vee b \cdot \overline{c} \vee b \cdot \overline{c} \vee \overline{a} \cdot \overline{b} \right] \cdot c \\ z &= \left[b \cdot \overline{c} \vee \overline{a} \cdot \overline{b} \right] \cdot c \\ z &= \overline{a \cdot \overline{b} \cdot c} \\ z &= \overline{a \cdot \overline{b} \cdot c} \end{split}$$

Gatter:

Aufgabe 4: Gegeben ist das folgende Schaltnetz:

- a) Geben Sie die Funktionstabelle für $y = f(x_3, x_2, x_1)$ an.
- b) Geben Sie die Schaltfunktion (boole'scher Ausdruck) an, die durch dieses Schaltnetz implementiert wird.

(Testat WS 10/11)

$$y = [(x_1 \land \overline{x_2}) \leftrightarrow (\overline{x_2} \lor x_3)] \lor (\overline{x_2} \nleftrightarrow x_3)$$

$$1 = (x_1 \land \overline{x_2})$$

$$2 = (\overline{x_2} \lor x_3)$$

$$3 = \leftrightarrow$$

$$4 = (\overline{x_2} \nleftrightarrow x_3)$$

$$5 = \lor$$

Aufgabe 5: Gegeben sei folgende boole'sche Funktion:

$$y = [\overline{x_2 \vee \overline{x_1}} \cdot \overline{x_2} \vee (x_2 \leftrightarrow x_1) \vee (\overline{x_2 \vee x_1} \vee (1 \leftrightarrow \overline{x_2}))] \leftrightarrow 0$$

Diese Funktion soll durch Anwendung boole'scher Operationen so umgeformt werden, dass y mit einem <u>einzigen Gatterbaustein</u> realisiert werden kann.

Ermitteln Sie, um welchen Gatterbaustein es sich handelt und mit welchen Variablen die Eingänge dieses Gatters beschaltet werden müssen.

(Klausur WS 04/05)

$$y = [\overline{x_2 \vee \overline{x_1}} \cdot \overline{x_2} \vee (x_2 \leftrightarrow x_1) \vee (\overline{x_2 \vee x_1} \vee (1 \nleftrightarrow \overline{x_2}))] \nleftrightarrow 0$$

$$y = x_2 \vee \overline{x_1} \vee x_2 \vee x_2 \vee x_2 \cdot x_1 \vee \overline{x_2} \cdot \overline{x_1} \vee x_2$$

$$y = x_2 \vee \overline{x_1}$$

Gatter:

Aufgabe 6: Gegeben ist das folgende Schaltnetz:

- a) Stellen Sie die Schaltunktion $y = f(x_3, x_2, x_1)$ als boole'schen Ausdruck so dar, dass die Struktur des boole'schen Ausdrucks die Struktur der gezeigten Schaltung wieder gibt.
 - b) Stellen Sie die Funktionstabelle für $y = f(x_3, x_2, x_1)$ auf.

(Testat SS 04)

$$y = [(x_1 \leftrightarrow \overline{x_2}) \lor (\overline{x_2} \lor x_3)] \land (\overline{x_2} \leftrightarrow \overline{x_3})$$

$$1 = (x_1 \leftrightarrow \overline{x_2})$$

$$2 = (\overline{x_2} \lor x_3)$$

$$3 = \lor$$

$$4 = (\overline{x_2} \leftrightarrow \overline{x_3})$$

×3×2×1	X2	0	(2)	3	<u>×3</u>	9	4
000	1	0	00	0	1	1	6
010	0	0	1	1	1	00	0
0 1 1	0	1	10	1	0	0	0
101	1	0	0	o	0	0	0
1111	0	1	0	1	0	1	1

Aufgabe 7: Gegeben sei die folgende boole'sche Funktion:

$$y = \overline{x_3 \cdot x_2 \cdot (x_2 \nleftrightarrow x_1)} \vee x_2 \cdot (x_3 \leftrightarrow x_1)$$

Diese Funktion soll durch ein einziges UND-Gatter realisiert werden.

Ermitteln Sie durch Anwendung boole'scher Operationen, mit welchen Eingangsvariablen das UND-Gatter beschaltet werden muss.

(Testat SS 02)

$$y = \overline{x_3 \cdot x_2 \cdot (\overline{x_2} \cdot x_1)} \vee x_2 \cdot (x_3 \cdot x_1 \vee \overline{x_3} \cdot \overline{x_1})$$

$$y = \overline{x_3 \cdot x_2 \cdot \overline{x_2} \cdot x_1} \vee \overline{x_3 \cdot x_2 \cdot \overline{x_1}} \vee x_3 \cdot x_2 \cdot x_1 \vee \overline{x_3} \cdot x_2 \cdot \overline{x_1}$$

$$y = \overline{x_3} \vee \overline{x_2} \vee x_1 \vee \overline{x_3} \cdot x_2 \cdot \overline{x_1} \vee \overline{x_3} \cdot x_2 \cdot \overline{x_1}$$

$$y = x_3 \cdot x_2 \cdot \overline{x_1}$$

Gatter:

