FALL 2024

• •

Design and Development of a Blind Person Assistant

Team 6
Andy Lau
Emily Lai

Jeremy Mark Tubongbanua

Natasha Naorem

Advisor: Dr. Khalid Hafeez

Problem Statement

Major Concerns of Independent Navigation

Safety

Reliable obstacle detection

Efficiency

Reasonable travel time

Orientation

Self direction to detect surroundings and decide where to go

Existing Solutions

1 3D Sound Systems

2 Ultrasonic Sensors •••

3 Smartphone Solutions

4 Map-based Systems

Survey Conclusion

Compared to outdoor solutions, there is a gap in the market for development of suitable indoor orientation/ navigation systems.

Problem Statement

Current indoor navigation systems do not have a focus on usercentered design

Current Solution

Traditional Aids

- White Cane
- Guide Dog
- Sighted Guide

Orientation & Navigation

Mobile Applications

- Be My Eyes
- Google Maps
- Lazarillo
- Voice Vista

White Cane

Limitation:

Obstacle interaction is required to detect obstacles.

Guide Dog

Accessibility barrier: not all places welcome dogs or are accessible to dogs.

Ease of Use Barrier: 2 years to train and a formal application process

Lowest Borda Scoring Rule according to one study

Type of Assistance	Visually Impaired People		Sighted People	
	BSR	Ranking	BSR	Ranking
Sighted Guide	109	<u>1</u>	49	2
White Cane	76	2	63	<u>1</u>
Tactile Map	9	3	13	3
Guide Dog	6	4	13	3

Sighted Guide

•••

.

Be My Eyes Groups For friends and family members

Limitation: Availability

Mobile Apps

Limitations

- Hindrance to use
- Few apps for indoor environments
- Not reliable at object detection

Google Maps

"Google Maps" by Google

- "Detailed voice guidance" → already includes solutions for the visually impaired
- Gives directions out loud
- Dynamically changes to known obstacles; such as construction
- Only good for broad Safety and Orientation

Stakeholder Discussion: Low Vision Student on Campus

Limitation: Disruptive Navigation

Project Objectives

- -> Increase detection range
- -> Detect overhanging obstacles
- -> Support the white cane

- -> Reduce reliance on simultaneous use of navigation tools
- -> Improve navigation efficiency

Solution Design

Summary of our brainstorming iterations

+ Brainstorming Process

Individual Brainstorming

• Each member brainstormed at least 5 possible solutions

Group Brainstorming

- Each member presented their top 3 solutions to the group
- Solutions were workshopped: doubts clarified, similar ideas combined

Combined Voting

- Each member had 3 votes that they could distribute among project ideas
- Final vote results: Smart Headwear, Modified White Cane

Top 5 Ideas	votes	
- white cane modification	1111	
- glasses	111	
- driving wheel interface	11	
- smart headwear	111	
- robot guide dog		

Brainstorming Session 1

Smart Headwear

- Main considerations:
 - Wearability and comfort: weight, texture
 - Interaction methods: speech, buttons, etc.
 - Which elements should be included on the headwear (Raspberry Pi, speaker, battery)
- Inspiration: Meta-Ray Ban Smart Glasses

White Cane Modifications

- Main considerations:
 - Keeping the traditional white cane structure
 - Keeping the traditional white cane movement
 - O User interactions: buttons, haptic feedback
 - Placement of various elements

Prototype

Mobile App - Settings - View last location by connecting to cloud server

Solution Architecture

The architecture of our solution

Overall Architecture

User interfaces with system through smart cane and receives feedback from speaker and haptic feedback

Two components connected with bluetooth:

- Smart Headset
- Smart Cane

Headset Architecture

- Raspberry Pi powered by power bank
- Luxonis Oak-D Lite Depth Al Camera transmits object depth data and object detection and classification data to Raspberry Pi.
 - O A model is trained specifically for our use case- to detect certain indoor objects
- Raspberry Pi controls speaker via USB

White Cane Architecture

Smart Cane

- Raspberry Pi Zero acts as a secondary to the Raspberry Pi 5 connected to the camera and USB speaker. It is "dumb" in that it will only forward button events and receive instructions
- Haptic Feedback Motors DC
 3.3V motors
- Tactile Buttons simple electrical switches
- Power Bank for powering the system

What a Hero Use Case Looks Like

The camera detects an object

What a Hero Use Case Looks Like

The user presses the "narrate" button

The button event is forwarded to the master pi

What a Hero Use Case Looks Like

The Master Pi (headset) will use TTS (text-to-speech) to announce the objects to the user through the USB speaker and instruct the cane to vibrate.

Training the Model

Model training process for object detection and classification

160 training images 40 testing images

Collect Data

Draw Bounding Boxes Manually

Train Model using Yolov6n

Conver to '.blob' format

Luxonis Oak-D Lite (Depth Al Camera)

Real-time Object Detection and Classification

Unsuccessful Model

Trained with parameters:

- 10 epochs
- YOLOv6n base model
- 40 training images

Successful Model

Trained with parameters:

- 50 epochs
- YOLOv6n base model
- 160 training images

+ 0

Luxonis Oak-D Lite uses two monochrome cameras spaced 7.5cm apart.

Mimics human binocular vision to estimate depth.

VPU generates a depth map.

Oak-D Lite comes with limitation of depth perception range of [40cm, 8m]

Depth Perception

Examples for calculating the depth value, using the OAK-D (7.5cm baseline):

```
Python

1  # For OAK-D @ 400P mono cameras and disparity of eg. 50 pixels
2  depth = 441.25 * 7.5 / 50 = 66.19 # cm

3  # For OAK-D @ 800P mono cameras and disparity of eg. 10 pixels
5  depth = 882.5 * 7.5 / 10 = 661.88 # cm

Note the value of disparity depth data is stored in uint16, where O is a special value, meaning that distance is unknown.
```

Theoretical calculations

- 441.25 \rightarrow focal length in pixels (comes from calibration)
- 7.5 \rightarrow base line in centimeters
- 50 → disparity in centimeters

• •

UA Walkthrough

CAD Prototype of Smart Cane Housing

Test Results

Evaluation results and analysis

Test 1: Spot Doors, Columns, Signs, and Trash Cans

 Camera spotting Doors, Columns, and Trash Cans should create a bounding box around the object

Test 2:

Estimate Distance to Obstacle

 Camera can tell the distance between it and objects it has been taught to spot

