Лекция 8. Проверка статистических гипотез

Проверка гипотезы о значимости выборочного коэффициента корреляции. Сравнение двух математических ожиданий. Сравнение математического ожидания с заданным значением. Сравнение вероятности с заданным значением. Критерий Пирсона.

Определение 8.1. Статистической называется гипотеза о виде распределения или о значениях его параметров.

Гипотезы будем обозначать H_0, H_1, H_2, \ldots

Различают проверяемую или основную гипотезу H_0 и альтернативную или конкурирующую H_1 , которая должна противоречить основной.

ПРИМЕР 8.1. Проверяемая гипотеза H_0 состоит в том, что математическое ожидание случайной величины ξ равно заданному значению a_0 . H_0 : $M(\xi) = a_0$. Альтернативная H_1 : $M(\xi) > a_0$.

Для проверки статистической гипотезы на основании выборки x_1, x_2, \ldots, x_n вычисляют значение критерия, зависящего от наблюдений:

$$T = T(x_1, x_2, \dots x_n).$$

Всё множество значений критерия делится на так называемую критическую область, при попадании в которую критерия проверяемая гипотеза отвергается, и область принятия гипотезы.

При принятии решения о справедливости гипотезы H_0 возможны следующие ошибки:

- гипотеза H_0 отвергается, хотя на самом деле она верна (ошибка первого рода) ;
- гипотеза H_0 принимается, хотя на самом деле она не верна, а справедлива гипотеза H_1 (ошибка второго рода) .

Наряду с этим возможны следующие правильные решения:

- гипотеза H_0 принимается и она действительно верна;
- гипотеза H_0 отвергается и на самом деле справедлива гипотеза H_1 .

Определение 8.2. Вероятность ошибки первого рода называется уровнем значимости критерия и обычно обозначается α .

Вероятность правильно отвергнуть проверяемую гипотезу называется мощностью критерия и обычно обозначается β , тогда вероятность ошибки второго рода равна $1-\beta$.

Одновременно уменьшить вероятности ошибок первого и второго рода можно только увеличив объём выборки n. При фиксированном n обычно задают допустимый уровень ошибки первого рода α и стараются минимизировать вероятность ошибки второго рода $1-\beta$, т.е. максимизировать мощность критерия β .

На практике при проверке статистической гипотезы на основании наблюдений вычисляют наблюдаемое значение критерия $T_{\rm набл}$ и по заданному уровню значимости α определяют границы критической области — критические точки.

Если критическая область правосторонняя, т.е. $(t_{\rm kp2}; +\infty)$, при выполнении условия $T_{\rm haбл} > t_{\rm kp2}$ делают вывод: проверяемая гипотеза H_0 отвергается с уровнем значимости α в пользу гипотезы H_1 ; если это условие не выполняется, т.е. $T_{\rm haбл} \leqslant t_{\rm kp2}$, делают более осторожный вывод: нет оснований для того, чтобы отвергнуть гипотезу H_0 в пользу гипотезы H_1 с уровнем значимости α .

Если критическая область левосторонняя, т.е. $(-\infty; t_{\rm kp1})$, гипотеза H_0 отвергается при выполнении условия $T_{\rm ha6n} < t_{\rm kp1}$. В случае двусторонней критической области вида $(-\infty; t_{\rm kp1}) \cup (t_{\rm kp2}; +\infty)$ гипотеза H_0 отвергается при выполнении условия $T_{\rm ha6n} < t_{\rm kp1}$ или $T_{\rm ha6n} > t_{\rm kp2}$.

8.1. Проверка гипотезы о значимости выборочного коэффициента корреляции

Пусть на основании данных корреляционной таблицы по выборке объёма n независимых наблюдений над нормально распределёнными случайными величинами найден выборочный коэффициент корреляции r_{xy}^* , который оказался отличным от нуля. Так как выборка отобрана случайно, возникает вопрос о том, будет ли отличен от нуля теоретический коэффициент корреляции $r_{\xi\zeta}$, к которому сходится выборочный коэффициент при $n\to\infty$.

Необходимо при заданном уровне значимости α проверить гипотезу $H_0: r_{\xi\zeta}=0$ при альтернативной гипотезе $H_1: r_{\xi\zeta}\neq 0$.

Если H_0 отвергается, это означает, что выборочный коэффициент корреляции значимо отличается от нуля, а случайные величины ξ и ζ

коррелированы, т.е. в той или иной степени связаны линейной зависимостью. Если H_0 принимается, это означает, что выборочный коэффициент корреляции незначимо отличается от нуля, а случайные величины ξ и ζ некоррелированы, т.е. не связаны линейной зависимостью.

В качестве критерия для проверки H_0 выбирается случайная величина

$$T = r_{xy}^* \frac{\sqrt{n-2}}{\sqrt{1 - r_{xy}^*}^2} , \qquad (8.1)$$

где r_{xy}^* вычисляется по формуле (7.21). При справедливости гипотезы H_0 величина T имеет так называемое распределение Стьюдента с n-2 степенями свободы. Критическая область для рассматриваемой гипотезы H_1 будет двусторонней, $t_{\rm kp1}=-t_{\rm kp2}$. Критическая точка $t_{\rm kp2}$ определяется по заданным уровню значимости α и числу степеней n-2 по специальным таблицам (приложение 3) или с помощью обратной к функции распределения Стьюдента, имеющейся, например, среди статистических функций Ехсеl для $\alpha/2$ и n-2 степеней свободы. По формуле (8.1) для данных наблюдений определяем значение критерия $T_{\rm набл}$.

Если $|T_{\text{набл}}| > t_{\text{кр2}}$, гипотеза H_0 отвергается с уровнем значимости α , если $|T_{\text{набл}}| \leqslant t_{\text{кр2}}$ — нет оснований отвергнуть H_0 .

8.2. Сравнение двух математических ожиданий

Пусть имеются две независимые выборки объёмов n и m из нормальных совокупностей с известными дисперсиями σ_1^2 и σ_2^2 . Требуется по найденным выборочным средним \bar{x} и \bar{y} с уровнем значимости α проверить нулевую гипотезу H_0 о равенстве теоретических математических ожиданий:

$$H_0: M(\xi) = M(\zeta).$$

Заметим, что в силу несмещённости оценок \bar{x} и \bar{y} следует, что нулевую гипотезу можно записать и так:

$$H_0: M(\bar{\xi}) = M(\bar{\zeta}).$$

Другими словами, требуется проверить значимо или нет отличаются между собой выборочные средние. В качестве критерия проверки гипотезы примем величину:

$$Z = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}}.$$
(8.2)

Для изучения её свойств рассмотрим соответствующую случайную величину:

$$Z = rac{ar{\xi} - ar{\zeta}}{\sqrt{rac{\sigma_1^2}{n} + rac{\sigma_2^2}{m}}},$$
 где $ar{\xi} = rac{\sum\limits_{i=1}^n \xi_i}{n}, \; ar{\zeta} = rac{\sum\limits_{i=1}^m \zeta_i}{m} \; .$

Если верна гипотеза H_0 , т.е. $\xi_i \sim N(a; \sigma_1), \ \zeta_i \sim N(a; \sigma_2),$ то $Z \sim N(0; 1).$

Действительно, Z является линейной комбинацией нормально распределённых случайных величин и поэтому сама распределена нормально. Её математическое ожидание и дисперсия равны:

$$M(Z) = (M(\bar{\xi}) - M(\bar{\zeta})) / \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} =$$

$$= \left(\sum_{i=1}^n M(\xi_i) / n - \sum_{i=1}^m M(\zeta_i) / m \right) / \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} =$$

$$= \left(\frac{na}{n} - \frac{ma}{m} \right) / \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} = 0,$$

$$D(Z) = \left(D(\bar{\xi}) + D(\bar{\zeta})\right) / \left(\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}\right) =$$

$$= \left(\sum_{i=1}^n D(\xi_i) / n^2 + \sum_{i=1}^m D(\zeta_i) / m^2\right) / \left(\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}\right) =$$

$$= \left(\frac{n\sigma_1^2}{n^2} + \frac{m\sigma_2^2}{m^2}\right) / \left(\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}\right) = 1.$$

Поэтому, в зависимости от конкурирующей гипотезы, решающее правило выглядит следующим образом:

• $H_0: M(\xi) = M(\zeta), H_1: M(\xi) \neq M(\zeta).$

Критическая область двусторонняя с вероятностью $\alpha/2$ попадания в каждую половину в случае справедливости H_0 . Из уравнения $F_{\rm ct}(Z_{\rm kp})=1-\alpha/2$, где $F_{\rm ct}(Z)$ — функция распределения стандартного нормального закона, находим значение $Z_{\rm kp}$, вычисляем по данным наблюдениям значение критерия $Z_{\rm haбл}$ и если $|Z_{\rm haбл}|>Z_{\rm kp}$, то отвергаем гипотезу H_0 с уровнем значимости α . Если $|Z_{\rm haбл}|\leqslant Z_{\rm kp}$, у нас нет оснований отвергнуть гипотезу H_0 в пользу данной гипотезы H_1 .

На практике уравнение $F_{\rm cr}(Z_{\rm kp})=1-\alpha/2$ решают или с помощью ЭВМ (например, Excel), или по таблице приложения 2 и уравнения (8.3) т.к.

$$F_{\text{CT}}(Z_{\text{Kp}}) = \Phi(Z_{\text{Kp}}) + 0.5 \implies F_{\text{CT}}(Z_{\text{Kp}}) = 1 - \frac{\alpha}{2} \iff$$

$$\iff \Phi(Z_{\text{Kp}}) + 0.5 = 1 - \frac{\alpha}{2} \iff$$

$$\Phi(Z_{\text{Kp}}) = \frac{1}{2} - \frac{\alpha}{2}; \tag{8.3}$$

 $H_0: M(\xi) = M(\zeta), H_2: M(\xi) > M(\zeta).$

Критическая область правосторонняя с вероятностью α попадания в неё в случае справедливости H_0 . Из уравнения $F_{\rm cr}(Z_{\rm kp})=1-\alpha$ находим значение $Z_{\rm kp}$, вычисляем по формуле (8.2) $Z_{\rm haбл}$ и если $Z_{\rm haбл}>Z_{\rm kp}$, то отвергаем гипотезу H_0 с уровнем значимости α . Если $Z_{\rm haбл}\leqslant Z_{\rm kp}$, то нет оснований отвергнуть гипотезу H_0 . На практике $Z_{\rm kp}$ находят или с помощью ЭВМ или по таблице приложения 2, из уравнения

$$F_{\text{CT}}(Z_{\text{Kp}}) = 1 - \alpha \iff \Phi(Z_{\text{Kp}}) + 0.5 = 1 - \alpha \iff$$

$$\Phi(Z_{\text{Kp}}) = \frac{1}{2} - \alpha; \tag{8.4}$$

$$H_0: M(\xi) = M(\zeta), H_3: M(\xi) < M(\zeta).$$

Критическая область левосторонняя с вероятностью α попадания в неё в случае справедливости H_0 . Из уравнения $F_{\rm CT}(Z'_{\rm Kp})=\alpha$ находим значение $Z'_{\rm Kp}$.

В силу симметрии нормального распределения относительно нуля на практике находят значение $Z_{\rm kp}$ из уравнения (8.4) и берут $Z'_{\rm kp}=-Z_{\rm kp}$. Если $Z_{\rm hafn}<-Z_{\rm kp}$, гипотезу H_0 отвергают с уровнем значимости α , если $Z_{\rm hafn}\geqslant -Z_{\rm kp}$, то нет оснований отвергнуть H_0 .

ЗАМЕЧАНИЕ 8.1. Если независимые выборки достаточно большие, указанный критерий можно применять для случая неизвестных дисперсий и не обязательно нормального распределения совокупностей. В этом случае вместо формулы (8.2) используют формулу (8.5) для вычисления критерия Крамера-Уэлча:

$$Z = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{S_1^{*^2}}{n} + \frac{S_2^{*^2}}{m}}}.$$
 (8.5)

8.3. Сравнение математического ожидания с заданным значением

Пусть имеется выборка объёма n нормальной совокупности с известной дисперсией σ^2 . Требуется по найденной выборочной средней с уровнем значимости α проверить гипотезу H_0 о равенстве неизвестного математического ожидания $M(\xi)$ заданному значению a_0 :

$$H_0: \quad M(\xi) = a_0.$$

В силу несмещённости оценки \bar{x} заключаем, что нулевую гипотезу можно записать и так:

$$H_0: M(\bar{\xi}) = a_0.$$

Другими словами, требуется проверить, значимо или нет отличается выборочное среднее от заданного значения. В качестве критерия

выберем величину

$$U = \frac{\bar{x} - a_0}{\sigma / \sqrt{n}} = \frac{\bar{x} - a_0}{\sigma} \cdot \sqrt{n}.$$
 (8.6)

Можно доказать (сделайте это самостоятельно), что соответствующая случайная величина $U=\frac{(\bar{\xi}-a_0)}{\sqrt{n}/\sigma}$ имеет стандартное нормальное распределение. Поэтому в зависимости от конкурирующей гипотезы, решающее правило будет следующим:

• $H_0: M(\xi) = a_0; H_1: M(\xi) \neq a_0.$ Из уравнения (8.3) по таблице приложения 2 (или с помощью ЭВМ) определяем $Z_{\rm кp}$, по формуле (8.6) находим $U_{\rm набл}$ для имеющихся наблюдений.

Если $|U_{\text{набл}}| > Z_{\text{кр}}$, гипотезу H_0 отвергаем с уровнем значимости α , если $|U_{\text{набл}}| \leqslant Z_{\text{кр}}$, то нет оснований отвергнуть гипотезу H_0 в пользу данной гипотезы H_1 .

- $H_0: M(\xi) = a_0; H_2: M(\xi) > a_0.$ Из уравнения (8.4) определяем $Z_{\rm kp}$, по формуле (8.6) находим $U_{\rm набл}$. Если $U_{\rm набл} > Z_{\rm kp}$, гипотезу H_0 отвергаем с уровнем значимости α , если $U_{\rm набл} \leqslant Z_{\rm kp}$, то нет оснований отвергнуть H_0 .
- $H_0: M(\xi) = a_0; H_3: M(\xi) < a_0.$ Из уравнения (8.4) определяем $Z_{\rm kp}$, по формуле (8.6) находим $U_{\rm набл}$. Если $U_{\rm набл} < -Z_{\rm kp}$, гипотезу H_0 отвергаем с уровнем значимости α , если $U_{\rm набл} \geqslant -Z_{\rm kp}$, то нет оснований отвергнуть H_0 .

Если в условиях п. 8.4 дисперсия неизвестна, в качестве критерия следует выбрать величину

$$T = \frac{\bar{x} - a_0}{S^* / \sqrt{n}} = \frac{\bar{x} - a_0}{S^*} \cdot \sqrt{n}.$$
 (8.7)

Можно доказать (мы не будем этого делать), что соответствующая случайная величина $T=(\bar{\xi}-a_0)\cdot\sqrt{n}/S^*$ имеет распределение Стьюдента с n-1 степенью свободы. Решающее правило в зависимости от конкурирующей гипотезы будет следующим:

• $H_0: M(\xi)=a_0; H_1: M(\xi)\neq a_0.$ Критическая область в данном случае будет двусторонней; критическая точка t_2 определяется по заданным α и n-1 по специальным таблицам (приложение 3) или с помощью функции, обратной к функции распределения Стьюдента, имеющейся, например, среди статистических функций Excel. По формуле (8.7) определяем $T_{\rm набл}$.

Если $|T_{\text{набл}}| > t_2$, гипотеза H_0 отвергается с уровнем значимости α , если $|T_{\text{набл}}| \leqslant t_2$, то нет оснований отвергнуть H_0 в пользу данной гипотезы H_1 .

При конкурирующих гипотезах $H_2: M(\xi) > a_0$ и $H_3: M(\xi) < a_0$ строят соответственно правостороннюю и левостороннюю критические области (см. [5]).

8.4. Сравнение вероятности с заданными значением

Пусть проведено n независимых испытаний Бернулли с неизвестной вероятностью p появления события A в каждом. По результатам испытаний найдена относительная частота m/n, где m — число появлений события A в n испытаниях. Требуется по величине m/n с уровнем значимости α проверить нулевую гипотезу H_0 о том, что неизвестная вероятность p равна заданному значению p_0 :

$$H_0: p = p_0.$$

Заметим, что в силу несмещённости оценки m/n для p нулевую гипотезу можно записать и так:

$$H_0: M\left(\frac{m}{n}\right) = p_0.$$

Другими словами, требуется проверить, значимо или нет отличается частота от значений p_0 . В качестве критерия проверки гипотезы примем величину

$$U = \frac{\frac{m}{n} - p_0}{\sqrt{p_0 q_0}} \cdot \sqrt{n},$$
 где $q_0 = 1 - p_0.$ (8.8)

Соответствующая случайная величина при справедливости гипотезы H_0 имеет стандартное нормальное распределение. При этом рассуждения аналогичны приведённым в п. 8.3 для случая известной дисперсии, с учётом того, что $M\left(\frac{m}{n}\right) = p_0$, $D\left(\frac{m}{n}\right) = \frac{p_0q_0}{n}$.

В зависимости от конкурирующей гипотезы решающее правило будет таким же, как для случая известной дисперсии, но значение $U_{\rm набл}$, конечно, следует вычислять по формуле (8.8).

8.5. Критерии согласия

Определение 8.3. *Критериями согласия называют критерии* для проверки гипотез о виде закона распределения случайной величины.

8.6. Критерий Пирсона проверки гипотезы о виде закона распределения

Пусть имеется случайная выборка, состоящая из n элементов. Требуется найти закон распределения изучаемой случайной величины ξ (или, как условились говорить, генеральной совокупности), определить его параметры и оценить согласие выборки с принятым законом распределения.

На основании статистического материала проверяется гипотеза H_0 , состоящая в том, что случайная величина ξ подчиняется некоторому закону распределения. Для того чтобы принять или отвергнуть гипотезу H_0 , рассматривается величина U — степень расхождения теоретического и статистического распределения. За U принимают сумму квадратов (с некоторыми коэффициентами) отклонений теоретических вероятностей P_i от соответствующих частот P_i^* (критерий χ^2).

Схема расчётов с помощью критерия Пирсона (критерия χ^2) следующая.

- (1) На основании выборки выбираем в качестве предполагаемого какой—то закон распределения изучаемой величины (например, с помощью вероятностной бумаги) и оцениваем его параметры, как описано выше.
- (2) Всё множество наблюдений разбиваем на s интервалов вида $(a_{j-1}; a_j]$ и подсчитываем эмпирические частоты количество наблюдений m_j , попавших в j-ый интервал (см. п. 7.3). Относительная частота наблюдений, попавших в j-ый интервал, равна $P_j^* = \frac{m_j}{n}$, $(m_1 + \ldots + m_s = n)$, сумма всех частот, очевидно, равна единице.
- (3) Определяем теоретические частоты m'_j для j-го интервала $(a_{j-1}; a_j]$:

$$m_j' = \left(F(a_j) - F(a_{j-1}) \right) \cdot n,$$

где F(x) – теоретическая функция распределения, найденная на этапе 1.

(4) Вычисляем критерий $\chi^2_{\rm набл}$ (критерий Пирсона):

$$\chi_{\text{набл}}^2 = \sum_{j=1}^S \frac{(m_j - m_j')^2}{m_j'}.$$
 (8.9)

Из этого выражения видно, что $\chi^2_{\text{набл}}$ равно нулю лишь при совпадении всех соответствующих эмпирических и теоретических частот: $m_i = m_i'$ $(i = 1, 2, \ldots, l)$. В противном случае $\chi^2_{\text{набл}}$ отлично от нуля и тем больше, чем больше расхождение между частотами. Величина χ^2 , определяемая равенством (8.9), является случайной, и (при больших n) имеет χ^2 — распределение с k степенями свободы (принимается без доказательства).

(5) Определяем число степеней свободы k случайной величины χ^2 :

$$k = s - 1 - r, (8.10)$$

где r — число параметров закона распределения (для нормального закона распределения r=2), s — число интервалов.

(6) По заданному уровню значимости α и числу степеней свободы k по таблице критических точек распределения χ^2 (таблица приложения 4) находим критическую точку $\chi^2_{\rm kp}(\alpha;k)$. Если $\chi^2_{\rm hadn} < \chi^2_{\rm kp}(\alpha;k)$ — нет оснований отвергнуть гипотезу о принятом (нормальном) законе распределения. Если $\chi^2_{\rm hadn} > \chi^2_{\rm kp}(\alpha;k)$ — гипотезу отвергают с уровнем значимости α .

ПРИМЕР 8.2. С помощью критерия Пирсона проверить гипотезу о нормальном распределении выборки: 2,98; 3,03; 3,17; 3,22; 3,57; 3,59; 3,95; 3,96; 4,03; 4,16; 4,35; 4,47; 4,54; 4,96; 5,01.

►Разобьём всё множество значений выборки на 6 интервалов, границы которых занесены во второй столбец табл. 8.1.

В третий столбец табл. 8.4 заносим количество наблюдений m_j , попавших в j-ый интервал. По формулам (7.2), (7.12), (7.5) определяем параметры нормального распределения \bar{x} и S^* для выборки из табл. 8.2:

$$\bar{x} = 3,933; \quad S^* = 0.664$$

Таблица 8.1

Решение примера 8.2				
j	a_{j}	m_j	$F(a_j)$	m'_j
0	2,5	1	0,0155	0,969
1	3,0	3	0,0800	2,659
2	3,5	4	0,2573	4,246
3	4,0	4	0,5404	3,948
4	4,5	2	0,8036	2,137
5	5,0	1	0,9460	0,673
6	5,5		0,9909	

и находим значения теоретической функции распределения $F(a_j)$. В данном примере $F(a_j) = \Phi\Big(\frac{a_j - \bar{x}}{S^*}\Big) + 0,5$. В пятый столбец заносим теоретические частоты m_j' , вычисляемые, как указано выше.

По формуле (8.9) находим значение $\chi^2_{\text{набл}}=0.228$. По таблице приложения 4 для $\alpha=0.05$ и k=6-1-2=3 находим критическую точку $\chi^2_{\text{кр}}(0.05;3)=7.8$. Поскольку $\chi^2_{\text{набл}}<\chi^2_{\text{кр}}(0.05;3)$, нет оснований отвергать гипотезу H_0 о нормальном распределении заданной выборки.