Aprendizado de Máquina Aprendizado Supervisionado e Não Supervisionado Validação de Agrupamento

Inteligência Artificial – 2020/1

Validação de agrupamento

• A maioria dos algoritmos de agrupamento impõem uma estrutura de agrupamento ao conjunto de dados X.

IA 2020

Validação de agrupamento

• A maioria dos algoritmos de agrupamento impõem uma estrutura de agrupamento ao conjunto de dados X.

- ullet Entretanto, X pode não possuir uma estrutura de agrupamento.
 - Assim torna-se necessário fazer a avaliação dos resultados obtidos pelo agrupamento.
 - Validação de Clusters: tarefa que avalia quantitativamente os resultados de um algoritmo de agrupamento para verificar se os clusters são significativos

Abordagens para validação de agrupamento

Critérios externos

- Usa uma medida externa que mede o grau de correspondência entre um agrupamento C produzido por um algoritmo com uma partição

 construída independentemente de C
- Classes de objetos são conhecidas

Critérios internos

- Usa uma medida interna que avalia o agrupamento C produzido por um algoritmo com base nos dados e na matriz de proximidade
- Geralmente avaliam se os grupos são compactos e bem separados

Abordagens para validação de agrupamento

Critérios relativos:

- O agrupamento é avaliado por comparação com outras estruturas de agrupamento, resultantes da aplicação:
 - do mesmo algoritmo de agrupamento com diferentes parâmetros ou
 - de outros algoritmos de agrupamento

Índices de validação

- Um índice de validação é uma estatística pela qual a validade de um agrupamento é testada
- Índices podem ser:
- Externos avaliam o agrupamento comparando a partição resultante de um algoritmo com uma partição já conhecida
- Internos avaliam o agrupamento com base apenas na matriz de dados ou na matriz de similaridade

• OBS- A validação relativa pode utilizar os dois tipos de índices

Índices de validação externos

- Agrupamento obtido $C = \{C_1, C_2, ..., C_m\}$
- Agrupamento conhecido $P = \{P_1, P_2, ..., P_s\},$
 - O número de grupos em C não precisa ser igual ao número de grupos em P

Índice Rand – validação externa

Mede a similaridade entre dois agrupamentos

$$R = \frac{a+d}{M}$$

- a: o número de pares de objetos de X em que os dois objetos pertencem ao mesmo grupo em C e em P
- d: o número de pares de objetos de X em que os dois objetos pertencem a grupos diferentes em C e em P
- M = todos os pares de objetos
- Mede a fração do número total de pares considerados "acertos"
- Valores entre 0 e 1
- Para atingir o valor máximo, é necessário que as partições tenham o mesmo número de grupos.

Índice Rand corrigido – validação externa

Ajusted Rand Index (ARI)

Ajustado para garantir um valor próximo de zero para agrupamentos aleatórios independente do número de clusters e instâncias e valor 1 para agrupamentos idênticos.

$$RC = \frac{R - E[R]}{\max(R) - E[R]}$$

- Vantagens:
 - Agrupamentos aleatórios (grupos não válidos) tem um valor perto de zero independente do número de clusters ou de instâncias
 - Valores entre -1 e 1

Índices de validação internos

 A própria função de erro quadrático, otimizada no processo do Kmeans, pode ser usada como uma métrica de validação do agrupamento

$$err2(E,C) = \sum_{i=1}^{\kappa} \sum_{j=1}^{n_j} ||x_i^{(j)} - c_j||^2$$

IA 2020

Execução e validação de agrupamento em Python

K-Means em Python

• Importar a biblioteca e o objeto Kmeans

from sklearn.cluster import Kmeans

- Parâmetros
 - n_clusters número de clusters que o algoritmo vai gerar (padrão: 8)
 - Init modo como o algoritmo será inicializado:
 - *k-means++*: método padrão, favorece a convergência.
 - random: Inicializa os centróides de forma aleatória
 - *ndarray*: Especifica um array de valores indicando qual seriam os centróides a serem usados para a inicialização.
 - max_iter: número máximo de iterações (padrão: 300)
 - algorithm: especifica a versão do algoritmo K-Means a ser utilizada. A versão clássica é executada através do valor full.

K-Means em Python

• Inicializar o K-means utilizando 3 clusters e método de inicialização random.

```
kmeans = KMeans(n_clusters = 3, init = 'random')
```

 Executar o método fit() para executar o algoritmo e agrupar os dados. O método fit() recebe como parâmetro os dados a serem agrupados

```
kmeans.fit(X)
```

Exibir os centroides gerados pelo atributo cluster_centers_.

```
kmeans.cluster centers
```

K-Means em Python

- Tabela de distâncias fit_transform():
 - executa o K-means para agrupar os dados e retorna uma tabela de distâncias.

```
distance = kmeans.fit_transform(X)
distance
```

• Atributo labels_: retorna os labels para cada instância, ou seja, o número do cluster a que a instância de dados foi atribuída.

```
labels = kmeans.labels labels
```

• sklearn.metrics.adjusted_rand_score(labels_true, labels_pred)

Parâmetros:

•

- labels_true : int array, formato = [n_samples]
- Rótulos dos grupos conhecidos usados como referência
- labels_pred : array, formato = [n_samples]
- Rótulos dos clusters obtidos no agrupamento

• Retorna:

- ari : float
- Índice de similaridade entre -1.0 and 1.0.

#Calcular o RC para o conjunto definido

from sklearn import metrics

labels_true = [0, 0, 0, 1, 1, 1]

labels_pred = [0, 0, 1, 1, 2, 2]

metrics.adjusted_rand_score(labels_true, labels_pred)

0.242424242424246

#Calcular o RC para o conjunto definido- gerado com make_blobs

#gerando grupos com tamanhos diferentes e definindo o desvio padrão

 $X, y = make_blobs(n_samples=[150,200,150])$

plt.scatter(X[:,0], X[:,1], c=y)

plt.title("Grupos com tamanhos diferentes")

plt.xlabel("x1")

plt.ylabel("x2")

HAC

#Agrupar com Kmeans

```
km = KMeans(n_clusters = 3)
 km.fit(X)
 plt.scatter(X[:,0], X[:,1], c=km.labels_)
                                                              Grupos obtidos com KMeans
 plt.title("Grupos obtidos com KMeans")
 plt.xlabel("x1")
 plt.ylabel("x2")
                                                Z
                                                        -10
HAC
                                                                                            18
                                            IA 20
```

#Calcular RC

metrics.adjusted_rand_score(km.labels_,y)

1.0

Neste exemplo, os agrupamentos são iguais

Índices de validação interno em Python

- A própria função de erro quadrático, otimizada no processo do Kmeans, pode ser usada como uma métrica de validação do agrupamento
- O algoritmo Kmeans em Python tem um atributo:
 - inertia_ : float
 - Soma do quadrado das distâncias das instâncias para o centro de cluster mais próximo

- Método do "cotovelo"
 - Definir um intervalo de valores para o número de grupos [k_min, k_max]
 - Escolher um índice de validação (soma do quadrado das distâncias, silhueta, davis-bouldin,...)
 - Executar o algoritmo Kmeans para cada um dos valores de k (número de grupos)
 - Criar um gráfico com as coordenadas número de grupos "versus" índice
 - Encontrar o ponto do gráfico em que a melhora no valor do índice não é significativa (cotovelo)

#Importações

import pandas as pd

import matplotlib.pyplot as plt

import sklearn.metrics as sm

from sklearn.preprocessing import MinMaxScaler

from sklearn.cluster import KMeans

#Usar a função read_csv da biblioteca pandas para ler o conjunto de dados #Mostrar as primeiras cinco linhas com a função head()

data = pd.read_csv('Wholesale customers data.csv')
data.head()

	Channel	Region	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicassen
0	2	3	12669	9656	7561	214	2674	1338
1	2	3	7057	9810	9568	1762	3293	1776
2	2	3	6353	8808	7684	2405	3516	7844
3	1	3	13265	1196	4221	6404	507	1788
4	2	3	22615	5410	7198	3915	1777	5185

#Definir a lista de atributos categóricos e atributos contínuos #Criar as estatísticas com a função describe

categorical_features = ['Channel', 'Region']
continuous_features = ['Fresh', 'Milk', 'Grocery', 'Frozen', 'Detergents_Paper', 'Delicassen']
data[continuous_features].describe()

	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicassen
count	440.000000	440.000000	440.000000	440.000000	440.000000	440.000000
mean	12000.297727	5796.265909	7951.277273	3071.931818	2881.493182	1524.870455
std	12647.328865	7380.377175	9503.162829	4854.673333	4767.854448	2820.105937
min	3.000000	55.000000	3.000000	25.000000	3.000000	3.000000
25%	3127.750000	1533.000000	2153.000000	742.250000	256.750000	408.250000
50%	8504.000000	3627.000000	4755.500000	1526.000000	816.500000	965.500000
75%	16933.750000	7190.250000	10655.750000	3554.250000	3922.000000	1820.250000
max	112151.000000	73498.000000	92780.000000	60869.000000	40827.000000	47943.000000

#Transformar atributos categóricos em binários

```
for col in categorical_features:
    dummies = pd.get_dummies(data[col], prefix=col)
    data = pd.concat([data, dummies], axis=1)
    data.drop(col, axis=1, inplace=True)

data.head()
```

	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicassen	Channel_1	Channel_2	Region_1	Region_2	Region_3
0	12669	9656	7561	214	2674	1338	0	1	0	0	1
1	7057	9810	9568	1762	3293	1776	0	1	0	0	1
2	6353	8808	7684	2405	3516	7844	0	1	0	0	1
3	13265	1196	4221	6404	507	1788	1	0	0	0	1
4	22615	5410	7198	3915	1777	5185	0	1	0	0	1

#Normalizar os atributos contínuos

```
#escalar os atributos contínuos

mms = MinMaxScaler()

mms.fit(data)

data_transformed = mms.transform(data)
```

```
# Fazer o agrupamento para cada quantidade de grupo no intervalo definido
Sum_of_squared_distances = []
K = range(1,15)
for k in K:
    km = KMeans(n_clusters=k)
    km = km.fit(data_transformed)
Sum_of_squared_distances.append(km.inertia_)
```

#Construir o gráfico número de clusters X índice

```
plt.plot(K, Sum_of_squared_distances, 'bx-')
plt.xlabel('k')
plt.ylabel('Soma dos quadrados das distâncias')
plt.title('Método do Cotovelo para encontrar melhor valor de k')
plt.show()
                                                                       Método do Cotovelo para encontrar melhor valor de k
                                                                   175
                                                                 Soma dos quadrados das distâncias
                                                                   125
```

25

IA 2

12