Leonardo and the Substring

Leonardo loves puzzles involving strings, but he's just found a problem that has him stumped! Help him solve the following challenge:

Given a binary string, \$S\$, composed of only \$0\$'s and \$1\$'s, find and print the total number of substrings of \$S\$ which *do not contain* a \$00\$ or \$11\$.

Input Format

The first line contains an integer, \$T\$ (the number of test cases).

The \$T\$ subsequent lines of test cases each contain a string, \$S\$, composed only of \$0\$'s and \$1\$'s.

Constraints

- \$1 \le T \le 100\$
- \$1 \le |S| \le 10^{5}\$

Output Format

For each test case, print the total number of substrings of \$S\$ having no consecutive zeroes or ones (i.e.: not containing \$00\$ or \$11\$).

Sample Input

```
4
1010
100
0000
11111
```

Sample Output

```
10
4
4
5
```

Explanation

Test Case 0: \$S 0 = 1010\$

Our set of substrings $= \{\{1\}, \{0\}, \{1\}, \{0\}, \{10\}, \{10\}, \{10\}, \{101\}, \{1010\}$

Test Case 1: \$S 1 = 100\$

Our set of substrings $= \{\{1\}, \{0\}, \{0\}, \{10\}, \{100\}, \{100\}\}\}$

There are \$6\$ possible substrings, but \$2\$ of them ($\{00\}$ and $\{100\}$) have consecutive zeroes.

Thus, we print the result of \$6-2\$, which is \$4\$, on a new line.