JSPM UNIVERSITY PUNE

Faculty of Science and Technology School of Computational Sciences

Lab Practical File FY Master of Computer Application

Academic year 2024-25 Semester-I

Course Name: Introduction to Artificial Intelligence and Machine Learning Lab

Course Code: 240GCAM41_01

Submit By: Submit To:

Index

Sr. No		Prog	Date	Page No	Sign		
1	Write a python of write code for the Print • Change • Apper • Insert • Sort the	t					
2	 dictionary write Print of Access Change Add n 	program to cr a code to: dictionary items as an element of a ge any element of new element to th ve any element f					
3		ving Data Frame alespersons in IN es as row labels.	1				
	Kapil	205	177	189			
	Kamini	165	175	190			
	Shikhar	206	157	179			
	Mohini	198	183	169			
	 Create the DataFrame. Display the row labels of Sales. Display the column labels of Sales. Display the data types of each column of Sales. Display the dimensions, shape, size and values of Sales. 						
4	Plot the following data on a line chart and customize the chart according to the below-given instructions:						

		1							
	Month	January	February	March	April	May			
	Sales	510	350	475	580	600			
	 Write th Write co Display Use the 	e appropriate ode to Display blue color for line style – da	the line	the axes	eport"				
5	Observe	following			ording to g	iven instructi	ons:	8	
	Batsman	2017		2018	2019	2020			
	Virat Kol	nli 2501		1855	2203	1223			
	Steve Sm	ith 2340		2250	2003	1153			
	Babar Az	am 1750		2147	1896	1008			
	Rohit Sha	arma 1463		1985	1854	1638			
	Kane	1256		1785	1874	1974			
	Williams			10.55		1155			
	Jos Butle	r 1125		1853	1769	1436			
6	Write a python program to create a 3*3 numpy array with all the elements as per the user choice and print sum of all elements of the array Create a bar chart to display data of Virat Kohli & Rohit Sharma Customize the chart in this manner							10	
		Use differe							
				rapracant	different	pare cooro			
				•	different y				
					is and chart				
	6	Show lege	nds. Creat	e a bar	chart to d	isplay data	of Steve		
	William	son & Jos	Butler.						
	1		rt as per yo all players		ecific year.				
7	Using LINEAR REGRESSION technique, write a python code to predict Housing price if area is given. Consider a Houseprices.csv file as below:								
8	predict I		rice if area			rite a python e given. Con			

9	Implement Polynomial Regression algorithm by employee_position.csv (position,level,salary) dataset.		
10	Implement KMeans algorithm by Elbow method using cust_data (income,spending) dataset.		
11	Implement KMeans algorithm by Elbow method using student clustering.csv dataset.		
12	Implement KMeans algorithm by Silhoutte method using. Mall_Customers.csv dataset.		
13	Implement Principal Component Analysis Algorithm by using dataframe		

Q1 : Basic Programs –Python Variables and Data Types. Write a python code to create a list of the items. After creating the list write code for the below operations:

- Print the list of items.
- Change any single element in the list.
- Append the item at the end of the list.
- Insert an element at a specified index.
- Remove an element from list.
- Sort the elements.

Ans \rightarrow

```
# Create a list of items
my_list = ["apple", "banana", "cherry", "date", "elderberry"]
# Print the list of items
print("Original list:", my_list)
# Change the second element (index 1)
my_list[1] = "blueberry"
# Append an item to the end of the list
my_list.append("fig")
# Insert an item at index 2
my_list.insert(2, "grape")
# Remove the item at index 3
my_list.pop(3)
# Sort the list alphabetically
my_list.sort()
# Print the modified list
print("Modified list:", my_list)
```

```
Original list: ['apple', 'banana', 'cherry', 'date', 'elderberry']
Modified list: ['apple', 'blueberry', 'date', 'elderberry', 'fig', 'grape']
```

Q2: Write a python program to create a dictionary. After creating the dictionary write a code to:

- Print dictionary items.
- Access an element of the dictionary.
- Change any element of the dictionary.
- Add new element to the dictionary.
- Remove any element from dictionary.

Ans →

```
# Create a dictionary
my_dict = {
  "name": "Alice",
  "age": 30,
  "city": "New York"
}
# Print all items in the dictionary
print("Dictionary items:")
for key, value in my_dict.items():
  print(f"{key}: {value}")
# Access an element (e.g., age)
age = my_dict["age"]
print("Age:", age)
# Change an element (e.g., city)
my_dict["city"] = "Los Angeles"
# Add a new element (e.g., country)
my_dict["country"] = "USA"
# Remove an element (e.g., age)
del my_dict["age"]
```

Print the modified dictionary

```
print("Modified dictionary:")
for key, value in my_dict.items():
    print(f"{key}: {value}")
```

```
Dictionary items:
name: Alice
age: 30
city: New York
Age: 30
Modified dictionary:
name: Alice
city: Los Angeles
country: USA
```

Q3 : Create the following DataFrame Sales containing year wise sales figures for five salespersons in INR. Use the years as column labels, and salesperson names as row labels

Name	2019	2020	2021
Kapil	205	177	189
Kamini	165	175	190
Shikhar	206	157	179
mohini	198	183	169

- create the Data Frame.
- Display the row labels of Sales.
- Display the column labels of Sales.
- Display the data types of each column of Sales.
- Display the dimensions, Shape, Size and values of Sales.

```
import pandas as pd
# Create the DataFrame
sales_data = {
  '2019': [205, 165, 206, 198],
  '2020': [177, 175, 157, 183],
 '2021': [189, 190, 179, 169]
}
sales = pd.DataFrame(sales_data, index=['Kapil', 'Kamini', 'Shikhar', 'Mohini'])
# Display row labels
print("Row Labels:")
print(sales.index)
# Display column labels
print("\nColumn Labels:")
print(sales.columns)
# Display data types of each column
print("\nData Types:")
print(sales.dtypes)
# Display dimensions, shape, size, and values
print("\nDimensions:", sales.ndim)
print("\nShape:", sales.shape)
print("\nSize:", sales.size)
print("\nValues:")
```

print(sales.values)

Output →

```
Row Labels:
Index(['Kapil', 'Kamini', 'Shikhar', 'Mohini'], dtype='object')
Column Labels:
Index(['2019', '2020', '2021'], dtype='object')
Data Types:
2019
      int64
       int64
2020
      int64
2021
dtype: object
Dimensions: 2
Shape: (4, 3)
Size: 12
Values:
[[205 177 189]
[165 175 190]
 [206 157 179]
 [198 183 169]]
```

Q4 : Plot the following data on a line chart and customize the chart according to the below-given instructions:

Monthly Sales Report

Month	January	February	March	April	May
sales	510	350	475	580	600

- write a title for the chart "The Monthly Sales Report "
- Write the appropriate titles of both the axes
- Write code to Display legends
- Display blue color for the line Use the line style dashed

• Display diamond style markers on data points

Ans →

```
import matplotlib.pyplot as plt
# Data for the chart
months = ['January', 'February', 'March', 'April', 'May']
sales = [510, 350, 475, 580, 600]
# Create the line chart
plt.plot(months, sales, color='blue', linestyle='dashed', marker='d')
# Customize the chart
plt.title('The Monthly Sales Report')
plt.xlabel('Month')
plt.ylabel('Sales')
# Display legend
plt.legend(['Sales'])
# Show the chart
plt.show()
```


Q5: Observe following data and plot data according to given instructions:

Batsman	2017	2018	2019	2020
Virat Kohli	2501	1855	2203	1223
Steve Smith	2340	2250	2003	1153
Baber Azam	1750	2147	1896	1008
Rohit Sharma	1463	1989	1854	1638
Kane Williamson	1256	1785	1874	1974
Jos Butler	1125	1853	1769	1436

import matplotlib.pyplot as plt

import pandas as pd

Create a DataFrame from the data

data = {'Batsman': ['Virat Kohli', 'Steve Smith', 'Baber Azam', 'Rohit Sharma', 'Kane Williamson', 'Jos Butler'],

```
'2017': [2501, 2340, 1750, 1463, 1256, 1125],
   '2018': [1855, 2250, 2147, 1985, 1785, 1853],
    '2019': [2203, 2003, 1896, 1854, 1874, 1769],
   '2020': [1223, 1153, 1008, 1638, 1974, 1436]}
df = pd.DataFrame(data)
# Set the index to 'Batsman'
df.set_index('Batsman', inplace=True)
# Plot the data
df.plot(figsize=(12, 6))
# Customize the plot
plt.title('Batsman Performance Over the Years')
plt.xlabel('Year')
plt.ylabel('Runs Scored')
plt.legend(title='Batsman')
plt.grid(True)
# Show the plot
plt.show()
output →
```


Q6: WAP to create a 3*3 numpy array with all the elements as per the user choice and print sum of all elements of the array

- create a bar chart to display data of Virat Kohli & Rohit Sharma.
- Customize the chart in this manner
- Use different widths
- Use different colors to represent different years score
- Display appropriate titles for axis and chart
- Show legends. Create a bar chart to display data of Steve Smith, Kane
 Williamson & Jos Butler
- Customize Chart as per your wish.
- Display data of all players for the specific year

Ans →

import numpy as np

import matplotlib.pyplot as plt

Create a 3x3 numpy array with user input

array = np.zeros((3, 3), dtype=int)

for i in range(3):

```
for j in range(3):
    array[i][j] = int(input(f"Enter element at position ({i+1}, {j+1}): "))
# Calculate and print the sum of all elements
array_sum = np.sum(array)
print("Sum of all elements:", array_sum)
# Data for Virat Kohli and Rohit Sharma
kohli_scores = [500, 600, 700]
rohit_scores = [450, 550, 650]
years = [2020, 2021, 2022]
# Create a bar chart
plt.bar(years, kohli_scores, width=0.3, label='Virat Kohli', color='blue')
plt.bar(np.array(years) + 0.3, rohit_scores, width=0.3, label='Rohit Sharma', color='orange')
# Customize the chart
plt.xlabel('Year')
plt.ylabel('Runs Scored')
plt.title('Comparison of Virat Kohli and Rohit Sharma')
plt.xticks(years)
plt.legend()
plt.show()
# Data for Steve Smith, Kane Williamson, and Jos Buttler
smith_scores = [400, 500, 600]
```

```
williamson_scores = [350, 450, 550]
buttler_scores = [300, 400, 500]
# Create a bar chart
plt.bar(years, smith_scores, label='Steve Smith', color='green')
plt.bar(years, williamson_scores, bottom=smith_scores, label='Kane Williamson',
color='red')
plt.bar(years, buttler_scores, bottom=[x+y for x, y in zip(smith_scores, williamson_scores)],
label='Jos Buttler', color='purple')
# Customize the chart
plt.xlabel('Year')
plt.ylabel('Runs Scored')
plt.title('Comparison of Top Batsmen')
plt.xticks(years)
plt.legend()
plt.show()
# Display data for a specific year
year_to_display = int(input("Enter the year to display: "))
print(f"Scores for {year_to_display}:")
print("Virat Kohli:", kohli_scores[year_to_display - 2020])
print("Rohit Sharma:", rohit_scores[year_to_display - 2020])
print("Steve Smith:", smith_scores[year_to_display - 2020])
print("Kane Williamson:", williamson_scores[year_to_display - 2020])
print("Jos Buttler:", buttler scores[year to display - 2020])
```

```
Enter element at position (1, 1): 1
Enter element at position (1, 2): 4
Enter element at position (1, 3): 6
Enter element at position (2, 1): 3
Enter element at position (2, 2): 9
Enter element at position (2, 3): 3
Enter element at position (3, 1): 2
Enter element at position (3, 2): 8
Enter element at position (3, 3): 6
Sum of all elements: 42
```


Enter the year to display: 2019
Scores for 2019:
Virat Kohli: 700
Rohit Sharma: 650
Steve Smith: 600
Kane Williamson: 550
Jos Buttler: 500

Q7: Using LINEAR REGRESSION technique, write a python code to predict Housing prices if area is given. Consider a Houseprices.csv file as below:

Ans →

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# Read the data from the CSV file
data = pd.read_csv('House_Price.csv')

# Extract features (area) and target variable (price)
X = data['Area'].values.reshape(-1, 1) # Reshape to 2D array
y = data['Price'].values
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

```
# Create a linear regression model
model = LinearRegression()
# Train the model on the training data
model.fit(X_train, y_train)
# Make predictions on the testing data
y_pred = model.predict(X_test)
# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
# Visualize the data and the regression line
plt.scatter(X, y, color='blue')
plt.plot(X_test, y_pred, color='red', linewidth=2)
plt.xlabel('Area (sq ft)')
plt.ylabel('Price (Rs)')
plt.title('Housing Price Prediction')
plt.show()
# Predict the price of a house with a given area
area = int(input("Enter the area of the house in square feet: "))
predicted_price = model.predict([[area]])
print("Predicted price:", predicted_price[0])
```


Enter the area of the house in square feet: 345
Predicted price: 255795.56074766358

Q8: Using Multi LINEAR REGRESSION technique, write a python code to predict Housing price if area, no rooms, age are given. Consider a Houseprices MLR.csv file.

Ans →

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

Load the data from the CSV file
data = pd.read_csv("Houseprices_MLR.csv")

Define the features (independent variables) and the target variable (dependent variable)

```
X = data[['area', 'no_rooms', 'age']]
y = data['price']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create a linear regression model
model = LinearRegression()
# Train the model on the training data
model.fit(X_train, y_train)
# Make predictions on the testing data
y_pred = model.predict(X_test)
# Evaluate the model's performance
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
# Visualize the results (optional)
plt.scatter(y_test, y_pred)
plt.xlabel("Actual Prices")
plt.ylabel("Predicted Prices")
plt.title("Actual vs. Predicted House Prices")
plt.show()
```

Mean Squared Error: 20966217648493.62

Q9: Implement Polynomial Regression algorithm by employee_position.csv (position,level,salary) dataset.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection im

from sklearn.model_selection import train_test_split from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error

Load the data
data = pd.read_csv('employee_position.csv')

Prepare the data
X = data[['level']]

y = data['salary']

Create polynomial features

```
polynomial_features = PolynomialFeatures(degree=2) # Adjust the degree as needed
X_poly = polynomial_features.fit_transform(X)
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X_poly, y, test_size=0.2, random_state=0)
# Create and train the model
model = LinearRegression()
model.fit(X_train, y_train)
# Make predictions
y_pred = model.predict(X_test)
# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
# Visualize the results
plt.scatter(X, y, color='red')
plt.plot(X, model.predict(X_poly), color='blue')
plt.title('Polynomial Regression')
plt.xlabel('Position Level')
plt.ylabel('Salary')
plt.show()
Output →
```

Mean Squared Error: 1328407877.7737198

Q10: Implement KMeans algorithm by Elbow method using cust_data (income,spending) dataset.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

from sklearn.preprocessing import StandardScaler

Load the data

data = pd.read_csv('cust_data.csv')

```
# Preprocess the data
X = data[['income', 'spending']]
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Determine the optimal number of clusters using the Elbow Method
wcss = []
for i in range(1, 11):
 kmeans = KMeans(n_clusters=i, init='k-means++', random_state=42)
 kmeans.fit(X_scaled)
 wcss.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss)
plt.title('Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
# Based on the Elbow Method, choose the optimal number of clusters (e.g., 3)
kmeans = KMeans(n_clusters=3, init='k-means++', random_state=42)
y_kmeans = kmeans.fit_predict(X_scaled)
# Visualize the clusters
plt.scatter(X_scaled[y_kmeans == 0, 0], X_scaled[y_kmeans == 0, 1], s=100, c='red',
label='Cluster 1')
```

```
plt.scatter(X_scaled[y_kmeans == 1, 0], X_scaled[y_kmeans == 1, 1], s=100, c='blue', label='Cluster 2')

plt.scatter(X_scaled[y_kmeans == 2, 0], X_scaled[y_kmeans == 2, 1], s=100, c='green', label='Cluster 3')

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=300, c='yellow', label='Centroids')

plt.title('Clusters of Customers')

plt.xlabel('Annual Income (k$)')

plt.ylabel('Spending Score (1-100)')

plt.legend()

plt.show()
```


Q11: Implement KMeans algorithm by Elbow method using student clustering.csv dataset.

Ans→

```
import pandas as pd

df= pd.read_csv('student_clustering.csv')
print("shape of data is", df.shape)
print(df)
from sklearn.cluster import KMeans
wcss= []
for i in range (1,11):
    km=KMeans(n_clusters=i)
    km.fit_predict(df)
    wcss.append(km.inertia_)
import matplotlib.pyplot as plt
plt.plot(range(1,11),wcss)
```

```
from sklearn.cluster import KMeans
km=KMeans(n_clusters=4)
km.fit(df)
pred=km.predict(df)
pred
df['cluster']=pd.DataFrame(pred,columns=['cluster'])
df
import seaborn as seb
seb.lmplot(x='cgpa',y='iq',data=df,hue='cluster')
plt.show()
```

```
shape of data is (200, 2)
               cgpa
                      iq
                5.13
                     88
                5.90 113
                8.36
               8.27
               5.45 110
           195 4.68
                     89
               8.57
                     118
                     112
           198 6.23
           [200 rows x 2 columns]
Output →
```


Q12: Implement KMeans algorithm by Silhoutte method using. Mall_Customers.csv dataset.

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import numpy as np

from sklearn.cluster import KMeans

```
from scipy import stats
mall_data = pd.read_csv('Mall_Customers.csv')
mall_data.head()
X_numerics = mall_data[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']] # subset
with numeric variables only
from yellowbrick.cluster import KElbowVisualizer
model = KMeans(random_state=1)
visualizer = KElbowVisualizer(model, k=(2,10))
visualizer.fit(X_numerics)
visualizer.show()
plt.show()
KM_5_clusters = KMeans(n_clusters=5, init='k-means++').fit(X_numerics) # initialise and fit
K-Means model
KM5_clustered = X_numerics.copy()
KM5_clustered.loc[:,'Cluster'] = KM_5_clusters.labels_ # append labels to points
fig1, (axes) = plt.subplots(1,2,figsize=(12,5))
scat_1 = sns.scatterplot(x='Annual Income (k$)', y='Spending Score (1-100)',
data=KM5 clustered,
       hue='Cluster', ax=axes[0], palette='Set1', legend='full')
sns.scatterplot(x='Age', y='Spending Score (1-100)', data=KM5_clustered,
       hue='Cluster', palette='Set1', ax=axes[1], legend='full')
```

axes[0].scatter(KM_5_clusters.cluster_centers_[:,1],KM_5_clusters.cluster_centers_[:,2], marker='s', s=40, c="blue")

 $axes[1].scatter(KM_5_cluster_centers_[:,0], KM_5_cluster_centers_[:,2], \\ marker='s', s=40, c="blue")$

plt.show()

Q13: Implement Principal Component Analysis Algorithm by using dataframe

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

Load the data

data = pd.read_csv('fileee.csv')

Preprocess the data

X = data.drop('IQ', axis=1) # Replace 'target_column' with your target variable
scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

```
# Apply PCA
pca = PCA(n_components=2) # Adjust the number of components as needed
X_pca = pca.fit_transform(X_scaled)
# Create a new DataFrame with the PCA components
pca_df = pd.DataFrame(data=X_pca, columns=['PC1', 'PC2'])
# Visualize the data in the reduced dimension
plt.scatter(pca_df['PC1'], pca_df['PC2'])
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('PCA Visualization')
plt.show()
# Print the explained variance ratio
print(pca.explained_variance_ratio_)
```

[0.68564232 0.31435768]

