C5309 TUTORIAL-Z

Anjali Dilepkuman 5515£

Roll No: 12

(1) Find the eccentricity of all ventices in graph G given below and also mark the center, nadius and diameter of G.

Ansi-

Ecuntricity (e) = maximum distance of one ventex from other ventex. e (a)

$$(a_1b)=1$$
, $(a_1c)=1$, $(a_1d)=1$, $(a_1e)=2$, $(a_1e)=2$, $(a_1e)=3$

esp3 e(n) = 3

$$\frac{e(b)}{(b,n)=1}$$
, $\frac{(b,c)=2}{(b,d)=2}$, $\frac{(b,d)=2}{(b,e)=1}$, $\frac{(b,f)=3}{(b,f)=3}$

$$e(c)$$

 $(6,a)=1$, $(c,b)=2$, $(c,d)=2$, $(c,e)=3$, $(c,f)=1$, $(gg)=2$
 $e(c)=3$

$$e(d)$$

 $(d,a) = 1$, $(d,b) = 2$, $(d,c) = 2$, $(d,e) = 1$, $(d,f) = 1$, $(d,g) = 2$
 $e(d) = 3$

$$e(e)$$

 $e(a) = 2$, $e(b) = 1$, $e(c) = 3$, $e(a) = 1$, $e(a) = 2$, $e(a) = 1$
 $e(e) = 3$

$$e(f)$$

 $f(a) = 2, f(b) = 3, f(c) = 1, f(d) = 1, f(e) = 2, f(g) = 1$
 $e(f) = 3$

$$e(g)$$

 $(g_10) = 3, (g_1b) = 2, (g_1c) = 2, (g_1f) = 1$
 $e(f) = 3$

- = Lenter of graph = ventius whose excentricity minimum = {d}
- Reading. Diameter = maximum distance blo pair of vertices

 = 3
 - > Radins: minimum eventricity, r(a)=2

Find the Geometric dual (G*) of the graph a given below.

Anss-

4* (grometric dual)

(3) Obtain cut set matrix for the following graph.

Ang;

- (8) {e1,e3,e4}
- (9){e2,e6}

cutsets

- (1) { e10}
- (2) {eq,eq,e10}
 - (3) {eq, eg}
 - (A) { eq, e8}
 - (5) {e4,e5,e4}
 - (6) { e6, e3, e5, e8}
- (10) {e1, e2} (7) {e4, e3, e6}

es es ez es ea elo e_1 es CA cutset matrix = O O O 0 0 1 0 O 0 0 0 0 0 0 0 0