APLC Design Summary

 $\qquad \qquad \texttt{D5_USORT_N128_FPM400M0150_IWA0390_OWA01400_C10_BW20_Nlam5_LS_IDc_ID0_OD_OD0_ls_90_ovsamp16_fits}$

Instrument	USORT
nPup	128 x 128 pixels
Coronagraphic throughput (transmitted energy)	0.1001
Core throughput (encircled energy)	0.0869
Lyot stop inner diamater (% of inscribed circle)	0.0
Lyot stop outer diameter (% of inscribed circle)	0.99
Bandpass	20.0%
# wavelengths	5
FPM radius (grayscale)	4.θ λ/D
пЕРМ	150 pixels
IWA — OWA	3.9—14.0 \(\lambda/D\)
Contrast constraint	10-10
Lyot Stop alignment tolerance	θ pixels
Input Files:	
> Pupil file: USORT/TeIAp_USORT_offaxis_ovsamp16_N0128.fits	
> Lyot stop file: USORT/LS_USORT_circ_ID0000_OD0990_ovsamp16_N0128.fits	
Solution File:	

Fri Oct 27 23:15:37 2023

On – axis PSF in log irradiance, normalized to the peak irradiance value.

Radial intensity profile for the broadband APLC design at 11 simulated wavelengthscentered around λ_0/D and equally spatially sampled over the 20.0% bandpass. The black curve shows the average intensity across the 11 wavelength samples. The dashed red vertical lines delimitthe high-contrast dark zone (between 3.9 and 14.0 λ_0/D). The blue dotted line delimits the FPM radius, set to 4.0 λ_0/D .

Analysis Summary

Pupil core throughput: Lyot stop core throughput: Maximum core throughput: Maximum core throughput w.r.t. pupil core throughput:

Maximum core throughput w.r.t. Lyot stop core throughput:

Inner working angle:

0.6163835963822561 0.444429515374317 0.0535833956621406 0.08693189756612268 0.1205666901241031 $4.223643555158457 \lambda_0/D$

Broadband normalized irradiance for four representative levels of residual pointing jitter.

Azimuthally averaged raw contrast for four representative levels of rms residual pointing jitter.