Chapter 7 Flip-Flops and Related Devices

触发器以及相关设备

- Logic circuits
 - Combinational Circuits(组合电路)
 - Sequential Circuits(时序电路)

Objectives

- o Latches (锁存器)
- o Edge-triggered Flip-Flops(边沿触发器)
 - S-R FF
 - DFF
 - J-K FF
 - TFF

7.1 Latches(锁存器)

- The *latch* is a type of temporary device that has two stable states (*bistable*) and is normally placed in a category separate from that of *flip-flops*.
- The difference between latches and flip-flops is the method used for changing their states.

Latches

- S-R (Set-Reset) Latch (SR锁存器)
- Gated S-R Latch (门控锁存器)
- Gated D (Data) Latch

7.1.1 S-R (Set-Reset) Latch

(a) Active-HIGH input S-R latch

(b) Active-LOW input S-R latch

Active-LOW input S-R latch

(b) Active-LOW input S-R latch

Latch starts out RESET (Q = 0).

Latch starts out SET (Q = 1).

(a) Two possibilities for the SET operation

Latch starts out SET (Q = 1).

Latch starts out RESET (Q = 0).

(b) Two possibilities for the RESET operation

(c) No-change condition

Truth Table(真值表)

Inputs		Outputs			
S	\overline{R}	Q	$\overline{\varrho}$	Comments	
1	1	NC	NC	No change. Latch remains in present state	
0	1	1	0	Latch SET.	
1	0	0	1	Latch RESET.	
0	0	1*	1*	Invalid condition	

Timing diagram

Memory Function

$$S=1; \ R=0; \begin{cases} Q=0 \\ \hline Q=1 \end{cases} \text{ "0", remember "0"}$$

$$S=0; \ R=1; \begin{cases} Q=1 \\ \hline Q=0 \end{cases} \text{ "1", remember "1"}$$

Bi-stable

Used to store 1 bit binary number

Active-HIGH input S-R latch

R	S	Q
0	0	$Q_0 \;\; \overline{Q_0}$
0	1	1 0
1	0	0 1
1	1	0* 0*

Logic Symbol

(a) Active-HIGH input S-R latch

(b) Active-LOW input S-R latch

Application Example

(b) Contact-bounce eliminator circuit

74LS279

(a) Logic diagram

7.1.2 The Gated S-R Latch (门控S-R锁存器)

EN: control the time when the inputs S and R can control the output. (Level-triggered)

Comparison

(0)	Logic	diagran
(a)	LUZIC	uiagian

(b) Logic symbol

R	S	Q \overline{Q}
0	0	$Q_0 \overline{Q_0}$
0	1	1 0
1	0	0 1
1	1	1*71*

Е	R	S	Q \overline{Q}
0	X	X	Q_0 $\overline{Q_0}$
1	0	0	Q_0 $\overline{Q_0}$
1	0	1	1 0
1	1	0	0 1
1	1	1	1* 1*

Gated S-R Latch Waveform

7.1.3 The Gated D Latch

Gated D Latch Waveform

74LS75

1		-110711000	
(2)	0010	cum	hal
(a)	Logic	SYIII	oo_1
1	0	-	

INPUTS	OUTPUTS	
D EN	$Q = \overline{Q}$	COMMENTS
0 1 1 1 X 0	$\begin{array}{c c} 0 & 1 \\ 1 & 0 \\ Q_0 & \overline{Q}_0 \end{array}$	RESET SET No change

Note: Q_0 is the prior output level before the indicated input conditions were established.

(b) Truth table (each latch)

Application example: Latches for temporary data storage

