

ROBT206 - Microcontrollers with Lab

Lecture 24 - A Simple Computer

19 April, 2018

Topics

Today's Topics

- A Simple Computer
 - Instruction Set Architecture (ISA)
 - Single-Cycle Hardwired Control
 - PC Function
 - Instruction Decoder
 - Example Instruction Execution

Control Units

- In real computers, the datapath actions are determined by the program that's loaded and running.
- A control unit is responsible for generating the correct control signals for a datapath, based on the program code.

Block Diagram of a Processor

- The control unit connects programs with the datapath.
 - It converts program instructions into control words for the datapath, including signals WR, DA, AA, BA, MB, FS, MW, MD.
 - It executes program instructions in the correct sequence.
 - It generates the "constant" input for the datapath.
- The datapath also sends information back to the control unit. For instance, the ALU status bits V, C, N, Z can be inspected by branch instructions to alter a program's control flow.

Where Does the Program Go?

- We'll use a Harvard architecture, which includes two memory units.
 - An instruction memory holds the program.
 - A separate data memory is used for computations.
 - The advantage is that we can read an instruction and load or store data in the same clock cycle.
- For simplicity, our diagrams do not show any WR or DATA inputs to the instruction memory.

- Caches in modern CPUs often feature a Harvard architecture like this.
- However, there is usually a single main memory that holds both program instructions and data, in a Von Neumann architecture.

Program Counter

- A program counter or PC addresses the instruction memory, to keep track of the instruction currently being executed.
- On each clock cycle, the counter does one of two things.
 - If Load = 0, the PC increments, so the next instruction in memory will be executed.
 - If Load = I, the PC is updated with Data, which represents some address specified in a jump or branch instruction.

- The instruction decoder is a combinational circuit that takes a machine language instruction and produces the matching control signals for the datapath.
- These signals tell the datapath which registers or memory locations to access, and what ALU operations to perform.

Jumps and Branches

- Finally, the branch control unit decides what the PC's next value should be.
 - For jumps, the PC should be loaded with the target address specified in the instruction.
 - should be loaded with the target address only if the corresponding status bit is true.
 - For all other instructions, the PC should just increment.

That's It!

- This is the basic control unit. On each clock cycle:
 - I. An instruction is read from the instruction memory.
 - 2. The instruction decoder generates the matching datapath control word.
 - 3. Datapath registers are read and sent to the ALU or the data memory.
 - 4. ALU or RAM outputs are written back to the register file.
 - 5. The PC is incremented, or reloaded for branches and jumps.

The Whole Processor

Instruction Set Architecture (ISA) for Simple Computer

- A programmable system uses a sequence of *instructions* to control its operation
- A typical instruction specifies:
 - Operation to be performed
 - Operands to use, and
 - Where to place the result, or
 - Which instruction to execute next
- Instructions are stored in RAM or ROM as a program
- The addresses for instructions in a computer are provided by a **program** counter (PC) that can
 - ► Count up
 - Load a new address based on an instruction and, optionally, status information
- Executing an instruction activating the necessary sequence of operations specified by the instruction

ISA: Storage Resources

- The storage resources are "visible" to the programmer at the lowest software level (typically, machine or assembly language)
- Storage resources for the simple computer =>
- Separate instruction and data memories imply "Harvard architecture"
- Done to permit use of single clock cycle per instruction implementation
- Due to use of "cache" in modern computer architectures, is a fairly realistic model

Instruction memory 2¹⁵ x 16

Data memory 2¹⁵ X 16 Program counter (PC)

Register file 8 x 16

- An instruction consists of a bit vector
- The fields of an instruction are subvectors representing specific functions and having specific binary codes
- The format of an instruction defines the subvectors and their function
- An ISA usually contains multiple formats
- The simple computer (SC) ISA contains the three formats presented on the next slide

(c) Jump and Branch

- The three formats are: Register, Immediate, and Jump and Branch
- All formats contain an Opcode field in bits 9 through 15.
- The Opcode specifies the operation to be performed
- More details on each format are provided on the next three slides

- This format supports instructions represented by:
 - R1 ← R2 + R3
 - R1 ← sl R2
- There are three 3-bit register fields:
 - DR specifies destination register (R1 in the examples)
 - SA specifies the A source register (R2 in the first example)
 - SB specifies the B source register (R3 in the first example and R2 in the second example)
- Why is R2 in the second example SB instead of SA?
 - The source for the shifter in our datapath to be used in implementation is Bus B rather than Bus A

- This format supports instructions described by:
 - RI ← R2 + 3
- The B Source Register field is replaced by an Operand field OP which specifies a constant.
- The Operand:
 - 3-bit constant
 - Values from 0 to 7
- The constant:
 - Zero-fill (on the left of) the Operand to form 16-bit constant
 - 16-bit representation for values 0 through 7

(c) Jump and Branch

- This instruction supports changes in the sequence of instruction execution by adding an extended, 6-bit, signed 2s-complement address offset to the PC value
- ▶ The 6-bit Address (AD) field replaces the DR and SB fields
 - Example: Suppose that a jump is specified by the Opcode and the PC contains 45 (0...0101101) and Address contains 12 (110100). Then the new PC value will be:
 - 0...0101101 + (1...110100) = 0...0100001 (45 + (-12) = 33)
- The SA field is retained to permit jumps and branches on N or Z based on the contents of Source register A

ISA: Instruction Specifications

- The specifications provide:
 - ▶ The name of the instruction
 - The instruction's opcode
 - A shorthand name for the opcode called a *mnemonic*
 - A specification for the instruction format
 - A register transfer description of the instruction, and
 - A listing of the status bits that are meaningful during an instruction's execution (not used in the architectures defined in this chapter)

ISA: Instruction Specifications

Instruction	Opcode	Mne- monic	Format	Description	Status Bits
Move A	0000000	MOVA	RD, RA	$R[DR] \leftarrow R[SA]^*$	N, Z
Increment	0000001	INC	RD, RA	$R[DR] \leftarrow R[SA] + 1*$	N, Z
Add	0000010	ADD	RD, RA, RB	$R[DR] \leftarrow R[SA] + R[SB]^*$	N, Z
Subtract	0000101	SUB	RD, RA, RB	$R[DR] \leftarrow R[SA] - R[SB]^*$	N, Z
Decrement	0000110	DEC	RD, RA	$R[DR] \leftarrow R[SA] - 1*$	N, Z
AND	0001000	AND	RD, RA, RB	$R[DR] \leftarrow R[SA] \wedge R[SB]^*$	N, Z
OR	0001001	OR		$R[DR] \leftarrow R[SA] \vee R[SB]^*$	N, Z
Exclusive OR	0001010	XOR		$R[DR] \leftarrow R[SA] \oplus R[SB]^*$	N, Z
NOT	0001011	NOT	RD, RA	$R[DR] \leftarrow \overline{R[SA]} *$	N, Z
Move B	0001100	MOVB	RD, RB	$R[DR] \leftarrow R[SB]^*$	

For all of these instructions, PC←PC+I is also executed to prepare for the next cycle.

ISA: Instruction Specifications

Instruction	Opcode	Mne- monic	Format	Description	Status Bits
Shift Right	0001101	SHR	RD, RB	$R[DR] \leftarrow sr R[SB]^*$	
Shift Left	0001110	SHL	RD, RB	$R[DR] \leftarrow sl R[SB]^*$	
Load Immediate	1001100	LDI	RD, OP	$R[DR] \leftarrow zf OP^*$	
Add Immediate	1000010	ADI	RD, RA, OP	$R[DR] \leftarrow R[SA] + zf OP^*$	N, Z
Load	0010000	LD	RD, RA	$R[DR] \leftarrow M[SA]^*$	
Store	0100000	ST	RA, RB	$M[SA] \leftarrow R[SB]^*$	
Branch on Zero	1100000	BRZ	RA, AD	if $(R[SA] = 0) PC \leftarrow PC + se AD$,	N, Z
				if $(R[SA] \neq 0) PC \leftarrow PC + 1$	
Branch on	1100001	BRN	RA, AD	if $(R[SA] < 0) PC \leftarrow PC + se AD$,	N, Z
Negative				if $(R[SA] \ge 0) PC \leftarrow PC + 1$	
Jump	1110000	JMP	RA	$PC \leftarrow R[SA]$	
The state of the s					

For all of these instructions, PC←PC+I is also executed to prepare for the next cycle.

ISA: Example Instructions and Data in Memory

Decimal Address	Memory Contents	Decimal Opcode	Other Fields	Operation
25	0000101 001 010 011	5 (Subtract)	DR:1, SA:2, SB:3	$R1 \leftarrow R2 - R3$
35	0100000 000 100 101	32 (Store)	SA:4, SB:5	4 = 70, R5 = 80 $M[R4] \leftarrow R5$
45	1000010 010 111 011	66 (Add Immediate)	DR:2, SA:7, OP:3	$R2 \leftarrow R7 + 3$
55	1100000 101 110 100	96 (Branch on Zero)	AD: 44, SA:6	If $R6 = 0$, $PC \leftarrow PC - 20$
70	00000000011000000	Data = 192. A Data = 80.	After execution of ins	struction in 35,

Single-Cycle Hardwired Control

- Based on the ISA defined, design a computer architecture to support the ISA
- The architecture is to fetch and execute each instruction in a single clock cycle
- A similar datapath to the one covered in the previous lecture will be used
- The control unit will be defined as a part of the design
- The block diagram is shown on the next slide

The Control Unit

- The Data Memory has been attached to the Address Out and Data Out and Data In lines of the Datapath.
- The MW input to the Data Memory is the Memory Write signal from the Control Unit.
- For convenience, the Instruction Memory, which is not usually a part of the Control Unit is shown within it.
- The Instruction Memory address input is provided by the PC and its instruction output feeds the Instruction Decoder.
- Zero-filled IR(2:0) becomes Constant In
- \blacktriangleright Extended IR(8:6) | IR(2:0) and Bus A are address inputs to the PC.
- The PC is controlled by Branch Control logic

PC Function

PC function is based on instruction specifications involving jumps and branches:

```
Branch on Zero BRZ if (R[SA] = 0) PC \leftarrow PC + seAD Branch on Negative BRN if (R[SA] < 0) PC \leftarrow PC + seAD Jump JMP PC \leftarrow R[SA]
```

- In addition to the above register transfers, the PC must also implement: PC ← PC + I
- The first two transfers above require addition to the PC of: Address Offset = Extended IR(8:6) || IR(2:0)
- The third transfer requires that the PC be loaded with: Jump Address = Bus A = R[SA]
- The counting function of the PC requires addition to the PC of I

PC Function

- Branch Control determines the PC transfers based on five of its inputs defined as follows:
 - N,Z − negative and zero status bits
 - ▶ PL load enable for the PC
 - ▶ JB Jump/Branch select: If JB = 1, Jump, else Branch
 - BC Branch Condition select: If BC = I, branch for N = I, else branch for Z = I.
- The above is summarized by the following table:

PC Operation	PL	JB	BC
Count Up	0	X	X
Jump	1	1	X
Branch on Negative (else Count Up)	1	0	1
Branch on Zero (else Count Up)	1	0	0

Sufficient information is provided here to design the PC

- The combinational instruction decoder converts the instruction into the signals necessary to control all parts of the computer during the single cycle execution
- The input is the 16-bit Instruction
- The outputs are control signals:
 - Register file addresses DA, AA, and BA,
 - Function Unit Select FS
 - Multiplexer Select Controls MB and MD,
 - Register file and Data Memory Write Controls RW and MW, and
 - PC Controls PL, JB, and BC
- The register file outputs are simply pass-through signals:
 DA = DR, AA = SA, and BA = SB
 - Determination of the remaining signals is more complex.

- The remaining control signals do not depend on the addresses, so must be a function of IR(13:9)
- Formulation requires examining relationships between the outputs and the opcodes
- \triangleright Observe that for other than branches and jumps, FS = IR(12:9)
- This implies that the other control signals should depend as much as possible on IR(15:13) (which actually were assigned with decoding in mind!)
- To make some sense of this, we divide instructions into types as shown in the table on the next page

☐ TABLE 9-10
Truth Table for Instruction Decoder Logic

	Instruction Bits				Control Word Bits						
Instruction Function Type		14	13	9	МВ	MD	RW	MW	PL	JB	вс
Function-unit operations using registers	0	0	0	X	0	0	1	0	0	X	Χ
Memory read	0	0	1	Χ	0	1	1	0	0	X	X
Memory write	0	1	0	X	0	Χ	0	1	0	Χ	Χ
Function-unit operations using register and constant	1	0	0	Χ	1	0	1	0	0	X	Χ
Conditional branch on zero (Z)	1	1	0	0	X	Χ	0	0	1	0	0
Conditional branch on negative (N)	1	1	0	1	Χ	X	0	0	1	0	1
Unconditional jump	1	1	1	X	X	X	0	0	1	1	X

- The types are based on the blocks controlled and the seven signals to be generated; types can be divided into two groups:
 - Datapath and Memory Control (First 4 types)
 - PC Control (Last 3 types)
- In Datapath and Memory Control blocks controlled are considered:
 - Mux B (1st and 4th types)
 - Memory and Mux D (2nd and 3rd types)
 - By assigning codes with no or only one I for these, implementation of MB, MD, RW and MW are simplified.
- In Control Unit more of a bit setting approach was used:
 - Bit 15 = Bit 14 = 1 were assigned to generate PL
 - Bit 13 values were assigned to generate JB.
 - Bit 9 was use as BC which contradicts FS = 0000 needed for branches. To force FS(6) to 0 for branches, Bit 9 into FS(6) is disabled by PL.
- Also, useful bit correlations between values in the two groups were exploited in assigning the codes.

- The end result by use of the types, careful assignment of codes, and use of don't cares, yields very simple logic:
- This completes the design of most of the essential parts of the single-cycle simple computer

Example Instruction Execution

☐ TABLE 9-11
Six Instructions for the Single-Cycle Computer

Operation Code	Symbolic Name	Format	Description	Function	МВ	MD	RW	MW	PL	JB	вс
1000010	ADI	Immediate	Add immediate operand	$R[DR] \leftarrow R[SA] + zf I(2:0)$	1	0	1	0	0	0	0
0010000	LD	Register	Load memory content into register	$R[DR] \leftarrow M[R[SA]]$	0	1	1	0	0	1	0
0100000	ST	Register	Store register content in memory	$M[R[SA]] \leftarrow R[SB]$	0	1	0	1	0	0	0
0001110	SL	Register	Shift left	$R[DR] \leftarrow \operatorname{sl} R[SB]$	0	0	1	0	0	1	0
0001011	NOT	Register	Complement	$R[DR] \leftarrow \overline{R[SA]}$	0	0	1	0	0	0	1
1100000	BRZ	Jump/Branch	If $R[SA] = 0$, branch to $PC + \sec AD$	If $R[SA] = 0$, $PC \leftarrow PC + \text{se AD}$ If $R[SA] \neq 0$, $PC \leftarrow PC + 1$	1	0	0	0	1	0	0

Decoding, control inputs and paths shown for ADI, RD and BRZ on next 6 slides

Decoding for ADI

Decoding for LD

Decoding for BRZ

Any Questions?

