Context Free Grammars

Shakir Ullah Shah

Total language tree

- For a given CFG, a tree with the start symbol S as its root and whose nodes are working strings of terminals and nonterminals.
- The descendants of each node are all possible results of applying every production to the working string. This tree is called **total language tree**. Following is an example of total language tree

- Consider the following CFG
- · S aa bX aXX
- X ab|b, then the total language tree for the given CFG may be

Example continued ...

- It may be observed from the previous total language tree that dropping the repeated words, the language generated by the given CFG is
- {aa, bab, bb, aabab, aabb, abab, abb}

$$S \rightarrow aX \mid Xa \mid aXbXa$$

 $X \rightarrow ba \mid ab$ This CFG has total language tree as follows:

The CFL is finite.

- Consider the following CFG
- $S \boxtimes X | b$, $X \boxtimes aX$
- then following will be the total language tree of the above CFG

Consider the following CFG

 $S \subseteq X \mid b$, $X \subseteq aX$

then following will be the total language

tree of the above CFG

- Consider the following CFG
- \cdot S \boxtimes X b , X \boxtimes aX
- then following will be the total language tree of the above CFG

- Note: It is to be noted
- that the only word in
- this language is **b**.

Semi Word

- For a given CFG, semiword is a string of terminals (may be none) concatenated with with exactly one non-terminal (on the right).
- · In general semiword has the shape
- (terminal) (terminal)....(terminal) (Non-Terminal)
- · e.g. aaaX abcY bbY

A word is a string of terminals only (zero or more terminals) Λ is also a word.

Regular Grammar

Given an FA, there is a CFG that generates exactly the language accepted by the FA.

- In other words, all regular languages are CFLs

Creating a CFG from an FA

Step-1 The Non-terminals in CFG will be all names of the states in the FA with the start state renamed S.

Step-2 For every edge

Create productions X ay or X ax Do the same for b-edges

Step-3 For every final-state X, create the production

S aM
S bS
M aX
M bS
X aX
X bX
X

Note: It is not necessary that each CFG has a corresponding FA. But each FA has an equivalent CFG.

Theorem

- If every production in a CFG is one of the following forms
 - Nonterminal semiword
 - 2. Nonterminal word then the language generated by that CFG is regular.

Regular grammar

Definition:

A CFG is said to be a **regular grammar** if it generates the regular language *i.e.* a CFG is said to be a **regular grammar** in which each production is one of the two forms

Nonterminal semiword

Nonterminal word

- The CFG S aaS | bbS | Λ is a regular grammar. It may be observed that the above CFG generates the language of strings expressed by the RE (aa+bb)*.
- The CFG S aA|bB, A aS|a, B bS|b is a regular grammar. It may be observed that the above CFG generates the language of strings expressed by RE (aa+bb)+.
- Following is a method of building TG corresponding to the regular grammar.

TG for Regular Grammar

- For every regular grammar there exists a TG corresponding to the regular grammar. Following is the method to build a TG from the given regular grammar.
 - Define the states, of the required TG, equal in number to that of nonterminals of the given regular grammar. An additional state is also defined to be the final state. The initial state should correspond to the nonterminal S.
 - For every production of the given regular grammar, there are two possibilities for the transitions of the required TG as follows

Method continued ...

(i)

If the production is of the form nonterminal semiword, then transition of the required TG would start from the state corresponding to the nonterminal on the left side of the production and would end in the state corresponding to the nonterminal on the right side of the production, labeled by string of terminals in semiword.

Method continued ...

(ii)

If the production is of the form nonterminal word, then transition of the TG would start from the state corresponding to nonterminal on the left side of the production and would end on the final state of the TG, labeled by the word. Following is an example in this regard

The TG accepting the language generated by the above CFG is given below

The corresponding RE may be (aa+bb)*.

Consider the following CFG

S ■ aA | bB

A **S** aS a

B S bS b

then the corresponding TG will be

- Consider the following CFG
- S ■ aaS | bbS | abX | baX | Λ
- X aaX | bbX | abS | baS

then the corresponding TG will be

FA Conversion to Regular grammar

 Accepts the language of all words with a double a:

FA Conversion to Regular grammar

· Example

The language of all words with an even number of a's is accepted by the FA:

$$S \rightarrow aM l bS$$

 $M \rightarrow bM | aF$
 $F \rightarrow aF l bF | \lambda$

Remarks

- We have seen that some regular languages can be generated by CFGs, and some non-regular languages can also be generated by CFGs.
- · ALL regular languages can be generated by CFGs.
- There is some non-regular language that cannot be generated by any CFG.
- Thus, the set of languages generated by CFGs is properly larger than the set of regular languages, but properly smaller than the set of all possible languages.