https://github.com/savthe/discrete_math

План семинарских занятий по дискретной математике. Часть 2

Семинар 1. Повторение: кольца и поля. Кольцо многочленов, определение сложения и умножения. Деление с остатком. Теорема Безу, ее следствия. Примеры однозначного и неоднозначного разложения на множители над кольцом.

Семинар 2. Связь многочленов и функций. Многочлен Лагранжа. Задачи на построение многочлена Лагранжа. Кольцо многочленов от нескольких переменных.

Семинар 3. Булевы функции. Многочлен Жегалкина. Отрицание, конъюнкция, дизъюнкция, импликация. Способы задания булевых функций: вектор значений, носитель, таблица истинности, булев куб, карта Карно.

Семинар 4. Свойства булева куба, количество граней размерности k. СДНФ, СокрДНФ, ТДНФ, их геометрический смысл. Задача о минимизации.

Семинар 5. Минимизация Б Φ на булевом кубе, карте Карно, метод Квайна-Макласки. Схема из функциональных элементов.

Семинар 6. Полнота системы булевых функций. Замкнутые классы булевых функций.

Семинар 7. Теорема Поста. Решение задачи из ТР.

Семинар 8. Графы. Основные определения и примеры. Матрица смежности и матрица инциденций. Ориентированные и неориентированные графы, цикл, паспорт графа. Теорема о рукопожатиях. Задача о компании из 6 человек и другие задачи, которые можно свести к исследованию графа.

Семинар 9. Поиск в графе. Поиск в ширину, поиск в глубину. Нахождение кратчайшего пути в нагруженном графе.

Семинар 10. Изоморфизм и автоморфизм графа. Некоторые инварианты графа (паспорт, цикломатическое число, обхват и диаметр). Группа автоморфизмов. Задачи на определение порядка группы автоморфизмов.

Семинар 11. Теорема Кёнига. Планарность. Эйлерова характеристика для сферы и тора. Развертка тора. Доказательство непланарности графов V_5 и

 $V_{3,3}$. Укладка графов V_5 , V_6 , $V_{3,3}$ на торе. Теорема Понтрягина-Куратовского. Теорема Вагнера. Непланарность графа Петерсена. Задачи на планарность.

Семинар 12. Теорема Кэли о количестве деревьев. Перечисление деревьев с небольшим ($n \le 7$) количеством вершин. Понятие остовного дерева. Матроиды (примеры, матроид Фано).

Семинар 13. Алгоритм нахождения минимального остовного дерева в нагруженном графе. Понятие потока на графе.

Семинар 14. Пространство потоков, его размерность и базис. Решение задач на задание потока на графе и разложение его по базису пространства потоков. Градиент. Пример (с обоснованием) ортогональности потока и градиента.

Семинар 15. Прием типового расчета и программ.

Семинар 16. Прием типового расчета и программ.

Основные алгоритмы

- 1. Деление многочленов в кольце $\mathbb{F}_{p}[x]$.
- 2. Построить многочлен Лагранжа по заданным точкам в \mathbb{F}_p .
- 3. Построить многочлен Жегалкина по заданному вектору значений булевой функции.
- 4. Поиск в ширину.
- 5. Поиск в глубину.
- 6. Поиск кратчайшего пути в нагруженном графе.
- 7. Поиск минимального остовного дерева.