Kalman Filters

Hidden Markov Models

Kalman Filtering

Suppose $x_0=0,\ x_{t+1}\sim Ux_t+\mathcal{N}(0,Q),\ \mathrm{and}\ y_t\sim Ox_t+\mathcal{N}(0,R),\ \mathrm{for}\ 0\leq t< T,\ \mathrm{with\ all\ 2T}$ noise values independent. Based on U,Q,O,R and on a sequence of observations $\mathfrak{y}_\tau=(y_t:0\leq t<\tau),$ we estimate \mathfrak{y}_τ by $K(\vec{y}),$ hoping to minimize the expectation of $\|\mathfrak{y}_\tau-K(\vec{y}_\tau)\|^2.$

Well, writing μ_{τ} , C_{τ} for the mean and variance of x_{τ} conditioned on \mathfrak{y}_{τ} , we have $\mu_0=0,\ C_0=0$ and

$$\begin{split} &C_{\tau+1}^{-1}(z-\mu_{\tau+1},z-\mu_{\tau+1}) = \\ &(UC_{\tau}U^{-1}+Q)^{-1}(z-U\mu_{\tau},z-U\mu_{\tau}) + \\ &R^{-1}(z-y_{\tau},Oz-y_{\tau}) + \mathrm{const} \end{split}$$

and

$$C_{tau+1} =$$

Estimating Parameters

Example