

Modelling Green Energy Conversion Networks for Generating Hydrogen Electric Vehicle Fuel

Lucas Ng

University of Cambridge

31 July 2023

What are we modelling?

The goal is to turn solar energy into hydrogen fuel to be used in HEVs. Here is a simple linear system for this:

$$\underbrace{ \begin{array}{c} \mathsf{Sun} & \longrightarrow \\ \bullet & \mathsf{PV} \ \mathsf{cells} \end{array} }_{\mathsf{PV} \ \mathsf{cells}} \underbrace{ \begin{array}{c} \mathsf{Battery} \\ \bullet \\ \mathsf{Electrolyser}, \ \mathsf{Compressor} \end{array} }_{\mathsf{Electrolyser}, \ \mathsf{Compressor}} \underbrace{ \begin{array}{c} H_2 \ \mathsf{fuelling} \ \mathsf{station} \\ \bullet \\ \mathsf{Electrolyser}, \end{array} }_{\mathsf{Electrolyser}, \ \mathsf{Compressor}}$$

Observe:

- ▶ The Sun, battery and H_2 fuelling station are energy stores.
- The PV cells and electrolyser are energy converters.

We can abstract this into a graph with:

- Vertices representing energy stores.
- **Edges** representing energy converters.

A more complex example

If this sort of generalised, extensible and extendable approach is consistently taken, it is more useful for future investigation.

Theory

Begin with some definitions:

- lacksquare $\mathcal V$ is the set of vertices mapped to energy stores
- $ightharpoonup \mathcal{E}$ is the set of edges mapped to energy converters
- $\blacktriangleright \ G \triangleq (\mathcal{V}, \mathcal{E}) \ni \mathcal{E} \subseteq \left\{ (x, y) : (x, y) \in \mathcal{V}^2 \text{ and } x \neq y \right\}$
- ightharpoonup N is the cardinality of \mathcal{V} .
- $\underline{\underline{A_w}} \ni \forall v_i \in \mathcal{V}, \nexists j: \left[\sum_{k=1}^N \left(\underline{\underline{A_w}} + \underline{\underline{A_w}}^\top \right)^k \right]_{ij} = 0 \text{ is } G \text{'s weighted adjacency matrix.}$

Hence the graph G is defined to be simple, directed and weakly connected. Normalised edge weights $\in [0,1]$ are used to proportion power transfer ratios.

Non-simple networks can be modelled by edge subdivisions or adjusting edge weights.

Ideal behaviour

Consider a single vertex with energy value u_i .

$$\xrightarrow[\text{Net power in}]{u_i} \xrightarrow[\text{Net power out}]{}$$

Ignoring all constraints causes immediate energy propagation to and from all neighbours.

During time-step Δt :

$$\Delta u_i = -\sum_{j=1}^N \underbrace{\underline{A_w}}_{ij} u_i + \underbrace{\sum_{j=1}^N \underline{\underline{A_w}}_{ji} u_j}_{\text{energy in}}$$

 $\forall \underline{\underline{A_w}}, \forall \underline{u}: \sum_{i=1}^N \Delta u_i = 0$... this operator conserves energy.

Non-ideal behaviour

We have the following non-idealities:

- ▶ Vertex maximum capacity: $u_{i_{max}} \ni 0 \le u_i \le u_{i_{max}}$.
- ▶ Edge maximum power transfer: $\underline{\underline{P}}_{ij}$ $\ni \underline{\underline{Aw}}_{ij} u_i \leq \underline{\underline{P}}_{ij} \Delta t$ where $\underline{\underline{P}}_{ij}$ is the maximum power transfer from i to j.
- ▶ Vertex self-discharge: loss of energy stored over time.
- **Edge process inefficiency**: losses during power conversion.

Ignore the last two for now. We can then apply the remaining constraints to the previous equation:

$$\Delta u_{i} = \min \begin{pmatrix} -\sum_{j=1}^{N} \min(\underline{\underline{A}_{w}}_{ij} u_{i}, \underline{\underline{P}}_{ij} \Delta t) \\ u_{i_{\max}} - u_{i}, & \\ +\sum_{j=1}^{N} \min(\underline{\underline{A}_{w}}_{ji} u_{j}, \underline{\underline{P}}_{ji} \Delta t) \end{pmatrix}$$

What about power losses?

Consider an arbitrary energy conversion p_{xy} with efficiency η_p .

$$\begin{array}{ccc}
 & & p_{xy}, & \eta_p = 1 & y \\
 & & & & & \bullet
\end{array}$$

If p is not, in fact, ideal, then we can model this by partitioning some power off into an energy wastage sink. Let's suppose it is 70% efficient:

To handle self-discharge losses, increase the weight of the edges connecting vertices to the sink.

Demo: a simple linear system

Studying the simple linear system from earlier to demonstrate the model:

$$\underbrace{ \begin{array}{c} \mathsf{Sun} \\ \bullet \end{array} }_{\mathsf{PV}} \underbrace{ \begin{array}{c} \mathsf{Battery} \\ \bullet \end{array} }_{\mathsf{Electrolyser, Compressor} } \underbrace{ \begin{array}{c} H_2 \text{ fuelling station} \\ \bullet \end{array} }_{\mathsf{Electrolyser, Compressor} }$$

Reasonable assumptions about component behaviour and economics and solar power input over the course of a representative year were used.

Geography-dependent data was sampled for Cyprus.

Results: minimum budget to support HEVs

L-BFGS-B optimisation was used to minimise the total budget required to sustain the system:

# HEVs	Min. budget (€)	Solution η	PV capacity (kW)
1	70.8k	0.55	4.6
10	715k	0.55	46
100	6800k	0.55	460

It was not possible to simulate 1000 HEVs due to constraints from the PV data API.

Results: optimising given budget

For $\in 1M$, use **L-BFGS-B optimisation** to find the optimal budget allocation that maximises the number of HEVs supported:

PV (€)	Battery (€)	Electrolyser (€)	H_2 station (\in)
645k	244k	107k	3.90k

Results: optimising given budget (cont.)

Future potential

- More accurate modelling of component behaviour, e.g. using characterisations dependent on more parameters.
- Expand components into sub-networks to give a more detailed analysis.
- Investigate larger networks, e.g. a potential national PV-HEV grid.