Introduction to Deep Learning

Olivier Augereau

Maugereau@enib.fr

Basic principles of Convolutional Neural Networks

CNN

For computer vision

Not fully connected but <u>locally connected</u>

Special layers

- Convolution (extract local features)
- Max-Pooling (reduce the size / down sampling)

fully connected locally connected

Convolution

Convolution: Sobel

Convolution

- Local patterns are translation invariant
- Learn spatial hierarchies (edge -> corner -> object parts)

Convolution (extract local patterns)

Convolution layer

Max-Pooling (reduce the size)

5	5	4	5
7	6	5	3
3	5	6	5
3	4	8	6

CNN basic architecture

Some famous CNN architechtures:

LeNet-5, AlexNet, VGGNet, GoogLeNet, ResNet

LeNet-5 (1998)

It has 2 convolutional and 3 fully-connected layers (hence "5") This architecture has about 60,000 parameters.

AlexNet (2012)

It has 5 convolutional and 3 fully-connected layers This architecture has about 60M parameters.

Implement ReLUs as activation functions

VGG-16 (2014)

It has 13 convolutional and 3 fully-connected layers This architecture has about 138M parameters.

ResNet-50 (2015)

skip connections batch normalisation This architecture has about 26M parameters.

References

- Lex Friedman, MIT
- François Chollet, Google
- Andrew Ng, Coursera / Standford
- Fei Fei Li, Standford
- Geoffrey Hinton, Yoshua Bengio, Yann Le Cun