eupec

IGBT-Module IGBT-Modules

approved by: Robert Severin

BSM50GP120

Elektrische Eigenschaften / Electrical properties

Höchstzulässige Werte / Maximum rated values

Periodische Rückw. Spitzensperrspannung repetitive peak reverse voltage		V_{RRM}	1600	V
Durchlaßstrom Grenzeffektivwert RMS forward current per chip		I _{FRMSM}	40	А
Dauergleichstrom DC forward current	T _C = 80°C	l _d	50	А
Stoßstrom Grenzwert	$t_P = 10 \text{ ms}, T_{vj} = 25^{\circ}\text{C}$	I _{FSM}	500	Α
surge forward current	$t_P = 10 \text{ ms}, T_{vj} = 150^{\circ}\text{C}$		400	Α
Grenzlastintegral	$t_P = 10 \text{ ms}, T_{vj} = 25^{\circ}\text{C}$	I ² t	1250	A ² s
² t - value	$t_P = 10 \text{ ms}, T_{vj} = 150^{\circ}\text{C}$		800	A ² s
Transistor Wechselrichter/ Transistor Inve	erter			
Kollektor-Emitter-Sperrspannung collector-emitter voltage		V _{CES}	1200	V
Kollektor-Dauergleichstrom	Tc = 80 °C	I _{C,nom.}	50	Α
DC-collector current	T _C = 25 °C	I _C	80	Α
Periodischer Kollektor Spitzenstrom repetitive peak collector current	$t_P = 1 \text{ ms},$ $T_C = 80 ^{\circ}\text{C}$	I _{CRM}	100	A
Gesamt-Verlustleistung total power dissipation	T _C = 25°C	P _{tot}	360	W
Gate-Emitter-Spitzenspannung gate-emitter peak voltage		V _{GES}	+/- 20V	V
Diode Wechselrichter/ Diode Inverter				
Dauergleichstrom DC forward current	Tc = 80 °C	l _F	50	А
Periodischer Spitzenstrom repetitive peak forw. current	t _P = 1 ms	I _{FRM}	100	А
Grenzlastintegral ² t - value	$V_R = 0V$, $t_p = 10$ ms, $T_{vj} = 125$ °C	l ² t	1.200	A ² s
Transistor Brems-Chopper/ Transistor Bra	ake-Chopper			
Kollektor-Emitter-Sperrspannung collector-emitter voltage		V _{CES}	1200	V
Kollektor-Dauergleichstrom	T _C = 80 °C	I _{C,nom.}	25	Α
DC-collector current	T _C = 25 °C	Ic	45	Α
Periodischer Kollektor Spitzenstrom repetitive peak collector current	t_P = 1 ms, T_C = 80°C	I _{CRM}	50	А
Gesamt-Verlustleistung otal power dissipation	T _C = 25°C	P _{tot}	230	W
Gate-Emitter-Spitzenspannung gate-emitter peak voltage		V _{GES}	+/- 20V	V
Diode Brems-Chopper/ Diode Brake-Chop	pper			
Dauergleichstrom DC forward current	Tc = 80 °C	l _F	15	A
Periodischer Spitzenstrom repetitive peak forw. current	t _P = 1 ms	I _{FRM}	30	А
prepared by: Andreas Schulz	date of publication:12.06.2003			
	-			

BSM50GP120

NA - deal	11-4:/	Manada da	11-4:
woaui	Isolation/	woaute	isolation

IGBT-Module

IGBT-Modules

Isolations-Prüfspannung	RMS, f = 50 Hz, t = 1 min.	V	2.5	kV
insulation test voltage	NTC connected to Baseplate	V _{ISOL}	2,5	ΚV

Elektrische Eigenschaften / Electrical properties

Charakteristische Werte / Characteristic values

Diode Gleichrichter/ Diode Rectifier Durchlaßspannung								
forward voltage	T _{vj} = 150°C,	I _F =	50 A	V _F	-	1,05	-	V
Schleusenspannung threshold voltage	T _{vj} = 150°C			V _(TO)	-	-	0,8	V
Ersatzwiderstand slope resistance	T _{vj} = 150°C			r _T	-	-	6,5	mΩ
Sperrstrom reverse current	T _{vj} = 150°C,	V _R =	1600 V	I _R	-	3	-	mA
Modul Leitungswiderstand, Anschlüsse-Chip lead resistance, terminals-chip	T _C = 25°C			R _{AA'+CC'}	-	4	-	mΩ
Transistor Wechselrichter/ Transistor Inve	rter				min.	typ.	max.	
Kollektor-Emitter Sättigungsspannung	$V_{GE} = 15V, T_{vj} = 25$	5°C, I _C =	50 A	V _{CE sat}	-	2,2	2,55	V
collector-emitter saturation voltage	V _{GE} = 15V, T _{vj} = 125	5°C, I _C =	50 A		-	2,5	-	V
Gate-Schwellenspannung gate threshold voltage	$V_{CE} = V_{GE}, T_{vj} = 25$			V _{GE(TO)}	4,5	5,5	6,5	V
Eingangskapazität input capacitance	$f = 1MHz, T_{vj} = 25^{\circ}C$ $V_{CE} = 25 V, V_{GE} = 0 V$	/		C _{ies}	-	3,3	-	nF
Kollektor-Emitter Reststrom	$V_{GE} = 0V$, $T_{vj} = 25^{\circ}$	C, V _{CE} =	1200 V	I _{CES}	-	3,0	500	μΑ
collector-emitter cut-off current	$V_{GE} = 0V, T_{vj} = 125^{\circ}$		1200 V		-	4,0	-	mA
Gate-Emitter Reststrom gate-emitter leakage current	V _{CE} = 0V, V _{GE} =20V,	T _{vj} =25°C		I _{GES}	-	-	300	nA
Einschaltverzögerungszeit (ind. Last)	I _C = I _{Nenn} ,	V _{CC} =	600 V					
turn on delay time (inductive load)	$V_{GE} = \pm 15V, T_{vi} = 25$	5°C, R _G =	15 Ohm	t _{d.on}	-	65	-	ns
	V _{GE} = ±15V, T _{vj} = 125	5°C, R _G =	15 Ohm		-	60	-	ns
Anstiegszeit (induktive Last)	I _C = I _{Nenn} ,	V _{CC} =	600 V					
rise time (inductive load)	$V_{GF} = \pm 15V, T_{vi} = 25$	5°C, R _G =	15 Ohm	t _r	-	45	-	ns
	V _{GE} = ±15V, T _{vi} = 125	5°C, R _G =	15 Ohm		-	45	-	ns
Abschaltverzögerungszeit (ind. Last)	I _C = I _{Nenn} ,	V _{CC} =	600 V				 	
turn off delay time (inductive load)	$V_{GE} = \pm 15V, T_{vi} = 25$		15 Ohm	$t_{d,off}$	_	380	_	ns
•	$V_{GE} = \pm 15V, T_{vi} = 125$	-	15 Ohm	_,	-	400	-	ns
Fallzeit (induktive Last)	$I_{\rm C} = I_{\rm Nenn}$	V _{CC} =	600 V					
fall time (inductive load)	$V_{GE} = \pm 15V, T_{vi} = 25$		15 Ohm	t _f	_	10	_	ns
,	$V_{GE} = \pm 15V, T_{vj} = 125$		15 Ohm		_	30	_	ns
Einschaltverlustenergie pro Puls	$I_{C} = I_{Nenn}$	V _{CC} =	600 V					
turn-on energy loss per pulse	$V_{GE} = \pm 15V, T_{vj} = 125$		15 Ohm	Eon	_	6,5	_	mWs
	SE, -vj	L _s =	50 nH	-011		_,,		
Abschaltverlustenergie pro Puls	I _C = I _{Nenn} ,	V _{CC} =	600 V					
turn-off energy loss per pulse	$V_{GE} = \pm 15V, T_{vi} = 125$		15 Ohm	E _{off}	_	6	_	mWs
	GL = 1.7.1, 1.vj	L _S =	50 nH	-011				
Kurzschlußverhalten	t _P ≤ 10μs, V _{GE} ≤ 15\		15 Ohm					
SC Data	T _{vi} ≤125°C,	$V_{CC} =$	720 V	l		300		Α
OO Data	1 _{Vj} =123 U,			I _{SC}	-	300	-	A
		dI/dt =	4000 A/μs					

IGBT-Module IGBT-Modules

BSM50GP120

Elektrische Eigenschaften / Electrical properties

Charakteristische Werte / Characteristic values

			min.	typ.	max.	
Modulinduktivität stray inductance module		L_{\sigmaCE}	-	-	100	nH
Modul Leitungswiderstand, Anschlüsse-Chip lead resistance, terminals-chip	T _C = 25°C	R _{CC'+EE'}	-	7	-	mΩ
Diode Wechselrichter/ Diode Inverter			min.	typ.	max.	
Durchlaßspannung	$V_{GE} = 0V$, $T_{vj} = 25$ °C, $I_F = 50$ A	V _F	-	1,75	2,2	V
forward voltage	$V_{GE} = 0V$, $T_{vj} = 125$ °C, $I_F = 50$ A		-	1,7	-	V
Rückstromspitze	$I_F = I_{Nenn}$, $- di_F/dt = 1600A/L$	ıs				
peak reverse recovery current	$V_{GE} = -10V$, $T_{vi} = 25^{\circ}C$, $V_{R} = 600 V$	I _{RM}	-	75	-	Α
	$V_{GE} = -10V$, $T_{vj} = 125$ °C, $V_{R} = 600 \text{ V}$		-	85	-	Α
Sperrverzögerungsladung	$I_F = I_{Nenn}$ $- di_F/dt = 1600A/L$	ıs		***************************************		
recovered charge	$V_{GE} = -10V$, $T_{vi} = 25^{\circ}C$, $V_{R} = 600 V$	Qr	-	5,5	-	μAs
	$V_{GE} = -10V$, $T_{vi} = 125$ °C, $V_{R} = 600 \text{ V}$		-	12	-	μAs
Abschaltenergie pro Puls	$I_{F}=I_{Nenn}$, $-di_{F}/dt = 1600A/I_{F}$	ıs				
reverse recovery energy	$V_{GE} = -10V$, $T_{vi} = 25$ °C, $V_{R} = 600 \text{ V}$	E _{RO}	_	1,6	_	mWs
, 3,	$V_{GE} = -10V$, $T_{vi} = 125^{\circ}C$, $V_{R} = 600 V$, Ku	_	4	_	mWs
T			min.	typ.	max.	
Transistor Brems-Chopper/ Transistor Bra	$V_{GE} = 15V$, $T_{vi} = 25^{\circ}C$, $I_{C} = 25,0 A$	V		2,2	2,55	V
Kollektor-Emitter Sättigungsspannung collector-emitter saturation voltage	$V_{GE} = 15V$, $T_{vj} = 25$ °C, $I_{C} = 25.0$ A $V_{GE} = 15V$, $T_{vj} = 125$ °C, $I_{C} = 25.0$ A	V _{CE sat}	_	2,2	2,55	V
Gate-Schwellenspannung		V				
gate threshold voltage	$V_{CE} = V_{GE}$, $T_{vj} = 25^{\circ}C$, $I_C = 1mA$	$V_{GE(TO)}$	4,5	5,5	6,5	V
Eingangskapazität	f = 1MHz, T _{vj} = 25°C		_	4.5		
input capacitance	V _{CE} = 25 V, V _{GE} = 0 V	C _{ies}	-	1,5	-	nF
Kollektor-Emitter Reststrom	$V_{GE} = 0V$, $T_{vj} = 25^{\circ}C$, $V_{CE} = 1200 V$	I _{CES}	-	1,5	500	μA
collector-emitter cut-off current	$V_{GE} = 0V$, $T_{vi} = 125^{\circ}C$, $V_{CE} = 1200 V$		-	2,0	-	mA
Gate-Emitter Reststrom	V 0V V 00V T 0500			····		
gate-emitter leakage current	$V_{CE} = 0V, V_{GE} = 20V, T_{vj} = 25^{\circ}C$	I _{GES}	-	-	300	nA
Diode Brems-Chopper/ Diode Brake-Chop	per		min.	typ.	max.	
Durchlaßspannung	$T_{vi} = 25^{\circ}C$, $I_F = 25,0 A$	V _F	-	2,1	2,4	V
forward voltage	$T_{vi} = 125^{\circ}C$, $I_F = 25.0 \text{ A}$		-	2	-	V
NTC-Widerstand/ NTC-Thermistor	1 1		min.	typ.	max.	
Nennwiderstand		_				
rated resistance	T _C = 25°C	R ₂₅	-	5	-	kΩ
Abweichung von R ₁₀₀						
deviation of R ₁₀₀	$T_C = 100^{\circ}C, R_{100} = 493 \Omega$	ΔR/R	-5		5	%
Verlustleistung	T _C = 25°C	P ₂₅			20	mW
power dissipation	-	20				
B-Wert B-value	$R_2 = R_1 \exp [B(1/T_2 - 1/T_1)]$	B _{25/50}		3375	посторино	K

IGBT-Module IGBT-Modules

Thermische Eigenschaften / Thermal properties

				min.	typ.	max.	
Innerer Wärmewiderstand	Gleichr. Diode/ Rectif. Diode		R_{thJC}	-	-	0,65	K/W
thermal resistance, junction to case	Trans. Wechsr./ Trans. Inverter			-	-	0,35	K/W
	Diode Wechsr./ Diode Inverter			-	-	0,55	K/W
	Trans. Bremse/ Trans. Brake			-	-	0,55	K/W
	Diode Bremse/ Diode Brake			-	-	1,2	K/W
Übergangs-Wärmewiderstand	Gleichr. Diode/ Rectif. Diode λ _P	⊳ _{aste} =1W/m*K	R _{thCK}	-	0,04	-	K/W
thermal resistance, case to heatsink	Trans. Wechsr./ Trans. Inverter λ_g	grease=1W/m*K		-	0,02	-	K/W
	Diode Wechsr./ Diode Inverter			-	0,04	-	K/W
Höchstzulässige Sperrschichttemperatur maximum junction temperature			T_{vj}	-	-	150	°C
Betriebstemperatur operation temperature			T _{op}	-40	-	125	°C
Lagertemperatur storage temperature			T _{stg}	-40	_	125	°C

Mechanische Eigenschaften / Mechanical properties

Innere Isolation internal insulation		Al_2O_3	
CTI comperative tracking index		225	,
Anzugsdrehmoment f. mech. Befestigung mounting torque	М	3 ±10%	Nm
Gewicht weight	G	300	g

IGBT-Module IGBT-Modules

BSM50GP120

Ausgangskennlinienfeld Wechselr. (typisch) $d = f(V_{CE})$ Output characteristic Inverter (typical) $V_{GE} = 15 \text{ V}$

Ausgangskennlinienfeld Wechselr. (typisch) $d = f(V_{CE})$ Output characteristic Inverter (typical) $T_{v_i} = 125^{\circ}C$

IGBT-Module IGBT-Modules

BSM50GP120

Durchlaßkennlinie der Freilaufdiode Wechselr. (typisch) $del{f} = f(V_F)$ Forward characteristic of FWD Inverter (typical)

IGBT-Module IGBT-Modules

BSM50GP120

Schaltverluste Wechselr. (typisch) $E_{on} = f(I_C)$, $E_{off} = f(I_C)$, $E_{rec} = f(I_C)$ $V_{cc} = 600 \text{ V}$ Switching losses Inverter (typical) $T_j = 125^{\circ}\text{C}$, $V_{GE} = \pm 15 \text{ V}$, $R_{Gon} = R_{Goff} = 15 \text{ Ohm}$

IGBT-Module IGBT-Modules

BSM50GP120

Transienter Wärmewiderstand Wechselr. $Z_{thJC} = f(t)$ Transient thermal impedance Inverter

IGBT-Module IGBT-Modules

BSM50GP120

Ausgangskennlinienfeld Brems-Chopper-IGBT (typisch) $d = f(V_{CE})$ Output characteristic brake-chopper-IGBT (typical) $V_{GE} = 15 \text{ V}$

Durchlaßkennlinie der Brems-Chopper-Diode (typisch) delta = f (V_F) Forward characteristic of brake-chopper-FWD (typical)

IGBT-Module IGBT-Modules

BSM50GP120

Durchlaßkennlinie der Gleichrichterdiode (typisch) $\mu = f(V_F)$ Forward characteristic of Rectifier Diode (typical)

NTC- Temperaturkennlinie (typisch) R = f (T) NTC- temperature characteristic (typical)

IGBT-Module IGBT-Modules

BSM50GP120

Schaltplan/ Circuit diagram

Gehäuseabmessungen/ Package outlines

Mit dieser technischen Information werden Halbleiterbauelemente spezifiziert, jedoch keine Eigenschaften zugesichert. Sie gilt in Verbindung mit den zugehörigen Technischen Erläuterungen.

This technical information specifies semiconductor devices but promises no characteristics. It is valid in combination with the belonging technical notes.