Praktikum Theoretische Informatik

Aufgabenblatt 3: NEA, NEA/ε

Aufgabe 1

Gegeben sind die folgenden Automaten A1 und A2:

A1:

δ	0	1
z0	{z0, z1}	{z0}
z1	Ø	{z2}
z2/E	Ø	Ø

A2:

δ	0	1
$\overline{z0}$	{z0}	$\{z0, z1\}$
z 1	$\{z2\}$	Ø
z2	Ø	{ <i>z</i> 3}
z3/E	{z3}	{z3}

a)

Warum sind A1 und A2 keine DEAs?

b)

Geben Sie für A1 und A2 jeweils den Automatengraphen an.

c)

Bestimmen Sie L_{NEA} (A1) und L_{NEA} (A2) an.

d)

Konstruieren Sie für A1 und A2 jeweils äquivalente DEAs und geben Sie für diese Automaten jeweils die Automatengraphen an (Hinweis: Nicht erreichbare Zustände gleich weglassen!)

Aufgabe 2

Gegeben ist die folgende Sprache $L = \{aa^nb^m \mid n, m \ge 0\}.$

- a) Geben Sie für diese Sprache einen NEA/ ϵ an, der einen ϵ Übergang hat.
- b) Überführen Sie diesen NEA/ε in einen NEA und diesen NEA in einen DEA.