Econometria

Parte 2

Prof. Adalto Acir Althaus Junior oe

Sumário

- Regressão Multivariada
- Erros Heteroscedasticos versus Homoscedasticos
- Testes de hipóteses
- Significância econômica versus estatística

O modelo multivariado

- Regressão múltipla: permite a inclusão de diversos fatores para explicar a variável y, o que aproxima o efeito de cada variável da hipótese de ceteris paribus.
- MQO
- Forma geral com k variáveis explicativas:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

O modelo multivariado

- θ_0 continua sendo o intercepto da função e cada θ_j é o parâmetro de inclinação associado a variável x_j .
- u: termo de erro que reúne os fatores relevantes para explicar y, exceto $x_1, x_2, ..., x_k$.
- Repare que, não importa quantos x incluímos no modelo, haverá sempre fatores não considerados, ou seja, u continua existindo.
- Salário/h e educação
- Nota escolar e nº de alunos em sala de aula
- Consumo e renda

 A principal hipótese aqui é uma extensão da média condicional zero do modelo de regressão simples:

$$E(u \mid x_1, x_2, ..., x_k) = E(u) = 0$$

- Isto significa que a distribuição de u é independente da distribuição conjunta de $(x_1, x_2, ..., x_k)$.
- Neste caso, esta hipótese tem uma implicação ainda mais forte: implica que acertamos a forma funcional que relaciona as k variáveis independentes a y.

- Obteremos os estimadores dos β's novamente pelo método dos mínimos quadrado ordinários.
- Sabemos que este método é o que nos dá estimativas de β's que minimizam a seguinte função:

$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_k x_{ik})^2$$

• A diferença é que agora devemos escolher k + 1 estimadores que minimizem conjuntamente esta função.

- Neste caso, o problema de minimização gera as k + 1 condições de primeira ordem a seguir.
 - ✓ Lembrando que:

$$E(u) = 0, E(x_1u) = 0, ..., E(x_ku) = 0$$

✓ Então

$$E(y-\beta_0-\beta_1x-\cdots-\beta_kx_k) = 0$$

$$E[x_1(y-\beta_0-\beta_1x-\cdots-\beta_kx_k)] = 0$$

$$E[x_2(y-\beta_0-\beta_1x-\cdots-\beta_kx_k)] = 0$$

$$\vdots$$

$$E[x_k(y-\beta_0-\beta_1x-\cdots-\beta_kx_k)] = 0$$

 Portanto, os dados amostrais podem ser utilizados para solucionar o problema

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{1i} - \dots - \hat{\beta}_k x_{ki}) = 0$$

$$\frac{1}{n} \sum_{i=1}^{n} x_{1i} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{1i} - \dots - \hat{\beta}_k x_{ki}) = 0$$

$$\frac{1}{n} \sum_{i=1}^{n} x_{2i} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{1i} - \dots - \hat{\beta}_k x_{ki}) = 0$$

$$\frac{1}{n} \sum_{i=1}^{n} x_{3i} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{1i} - \dots - \hat{\beta}_k x_{ki}) = 0$$

$$\vdots$$

$$\frac{1}{n} \sum_{i=1}^{n} x_{ki} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{1i} - \dots - \hat{\beta}_k x_{ki}) = 0$$

Simplificando, o problema de minimização das k + 1 condições
 de primeira ordem fica como seguir

$$\sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \dots - \hat{\beta}_{k}x_{ik})^{2} = 0$$

$$\sum_{i=1}^{n} x_{i1}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \dots - \hat{\beta}_{k}x_{ik})^{2} = 0$$

$$\sum_{i=1}^{n} x_{i2}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \dots - \hat{\beta}_{k}x_{ik})^{2} = 0$$

$$\sum_{i=1}^{n} x_{ik} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_k x_{ik})^2 = 0$$

Repare que estas condições são análogas às condições que usamos para encontrar os estimadores no modelo simples, mas estendendo a cada x_k :

$$E(u) = 0$$

$$E(u | x_1, x_2, ..., x_k) = E(u) = 0$$

A correlação entre o erro e as variáveis

explicativas é NULA!

- O estimador de MQO para o modelo multivariado, passa a ser um **vetor** de dimensão $(k + 1) \times 1$ que resolve unicamente este sistema de equações.
- Explicitar a fórmula destes estimadores exige elementos de álgebra matricial. $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_k X_{ki} + \varepsilon_i$

Indivíduo	Υ	X_1	X_2		X_k
1	Y_1	X_{11}	X_{21}		X_{k1}
2	Y_2	X_{12}	X_{22}		X_{k2}
3	Y_3	X_{13}	X_{23}	•••	X_{k3}
	•				
n	Y_n	X_{1n}	X_{2n}		X_{kn}

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + \varepsilon_i$$

onde,

 β_0 : o valor médio da variável resposta (Y) quando $X_1, X_2, ..., X_k$ forem nulos;

 β_1 : variação no valor médio da variável resposta (Y) no acréscimo de 1 unidade na variável X_1 fixadas as demais;

 β_2 : variação no valor médio da variável resposta (Y) no acréscimo de 1 unidade na variável X_2 fixadas a demais;

...

 β_k : variação no valor médio da variável resposta (Y) no acréscimo de 1 unidade na variável X_k fixadas a demais;

 ε_i : erro aleatório em Y para a i-ésima observação, decorrente da influência de variáveis não consideradas no modelo.

Mínimos Quadrados Ordinários

Da mesma forma que na regressão linear simples os estimadores

$$\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_k$$

são chamados de estimadores de mínimos quadrados e podem ser estimados por meio da minimização da soma do quadrado dos resíduos:

$$\sum_{i=1}^{n} \hat{u}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{1i} - \dots - \hat{\beta}_{k} x_{ki})^{2}$$

As condições de primeira ordem são

$$\sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{1i} - \dots - \hat{\beta}_{k}x_{ki}) = 0$$

$$\sum_{i=1}^{n} x_{1i}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{1i} - \dots - \hat{\beta}_{k}x_{ki}) = 0$$

$$\vdots$$

$$\sum_{i=1}^{n} x_{ki}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{1i} - \dots - \hat{\beta}_{k}x_{ki}) = 0$$

- Voltando ao problema...
- Suponha que os parâmetros do modelo de regressão linear simples são estimados de forma a tornar a soma dos quadrados dos resíduos $\sum_{i=1}^{n} \hat{u}_{i}^{2} = \sum_{i=1}^{n} (y_{i} \hat{\beta}_{0} \hat{\beta}_{1}x_{1i} \dots \hat{\beta}_{k}x_{ki})^{2}$

o menor possível.

- $S(b) = S(\hat{\beta}_0, \dots, \hat{\beta}_n)$
- A solução é obtida ao derivarS(b) em relação aos b

$$\frac{\partial S}{\partial \hat{\beta}_{is}} = -2X'y + 2X'Xb = 0$$

$$b = (X'X)^{-1}X'y$$

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{21} & \dots & x_{k1} \\ 1 & x_{12} & x_{22} & \dots & x_{k2} \\ 1 & x_{13} & x_{23} & \dots & x_{k3} \\ 1 & x_{14} & x_{24} & \dots & x_{k4} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_{1n} & x_{2n} & \dots & x_{kn} \end{pmatrix} \times \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ \dots \\ b_k \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ \dots \\ e_n \end{pmatrix}$$

A solução é

$$b = (X'X)^{-1}X'y$$

- Cada estimador de θ_k tem aqui a mesma interpretação que no modelo simples, com apenas uma diferença:
 - ✓ mede o efeito de x_k sobre y supondo que fixos os **fatores não-observáveis** (u) e também as **demais variáveis explicativas** que não x_k .
- Assim, nos aproximamos mais do efeito ceteris paribus de x_k , pois agora estamos, de fato, fixando parte dos demais fatores associados a y.

Regressão Múltipla

Interpretação Revisitada

Considere um modelo com apenas duas variáveis explicativas.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

Portanto,

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

• O estimador do parâmetro β_1 pode ser escrito como

$$\hat{\beta}_{1} = \sum_{i=1}^{n} \hat{r}_{1i} y_{i}$$

$$\sum_{i=1}^{n} \hat{r}_{1i}^{2}$$

- onde r_{1i} são os distúrbios (erros) da regressão de x_1 contra x_2 .
- Qual a interpretação para o coeficiente β_1 ?

Regressão Múltipla

Interpretação Revisitada

- Ou seja, podemos obter a estimativa θ_1 por MQO pelo seguinte procedimento:
 - estimamos uma regressão simples de x_1 contra x_2 e obtemos seu resíduo ($x_1 = \alpha_0 + \alpha_1 x_2 + w$), isto é, a parte de x_1 não associada a x_2 .
 - \checkmark então regredimos um modelo simples de y contra este resíduo (r) e obtemos o mesmo θ_1 da regressão múltipla de y contra x_1 e x_2 .
- Esta fórmula está nos mostrando, agora matematicamente, que θ_1 do modelo múltiplo nos dá a associação entre $y \in x_1$, descontado (partialled out) os efeitos de x_2 .

Com apenas duas variáveis

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

- Outra forma de interpretar...
- Para o caso de um modelo com 2 variáveis explicativas, temos, em termos de variações:

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x_1 + \hat{\beta}_2 \Delta x_2 + \Delta u$$

■ Já mantendo u fixo (Δu =0):

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x_1 + \hat{\beta}_2 \Delta x_2$$

• Se mantivermos x_1 fixo (Δx_1 =0), temos: β_2 =

$$\hat{\beta}_2 = \frac{\Delta y}{\Delta x_2}$$

- Perceba que podemos interpretar θ_k como sendo o efeito de x_k mantendo os demais fatores fixos mesmo sem, de fato, ter coletados informações fixas para estes fatores.
- É por esta razão que a regressão múltipla é uma poderosa ferramenta para estabelecer relações de *ceteris paribus* entre fenômenos econômicos mesmo com dados não experimentais.

Qualidade do Ajuste

- Define-se
 - Soma total dos quadrados (SST Total Sum of Squares)

$$SST \equiv \sum_{i=1}^{n} (y_i - \overline{y})^2$$

Soma dos quadrados ajustados/explicados (SSE – Explained Sum of Squares)

$$SSE \equiv \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

Soma dos quadrados dos resíduos (SSR – Residual Sum of Squares)

$$SSR \equiv \sum_{i=1}^{n} \hat{u}_i^2$$

Qualidade do Ajuste

Pela definição de SST, SSE e SSR, chega-se a seguinte relação

$$SST = SSE + SSR$$

■ Como na regressão simples pode-se definir o coeficiente de determinação ou R^2 $R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$

$$R^{2} = \frac{\left(\sum_{i=1}^{n} (y_{i} - \overline{y})(\hat{y}_{i} - \overline{\hat{y}})\right)^{2}}{\left(\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}\right)\left(\sum_{i=1}^{n} (\hat{y}_{i} - \overline{\hat{y}})^{2}\right)}$$

• ATENÇÃO: a medida que novas variáveis são incluídas no modelo de regressão linear múltipla o valor do R² nunca decresce!

Qualidade do ajustamento

- A análise da qualidade de ajustamento usando R² em modelo de regressão múltipla é igual a de modelos simples.
- Com notação mais simples, podemos definir R² da mesma forma:

$$R^2 \equiv \frac{SQE}{SQT}$$
 ou

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

Qualidade do ajustamento

- No caso da regressão múltipla é preciso ressaltar a seguinte propriedade algébrica do R^2 :
 - ✓ ele sempre aumenta quando se inclui uma nova variável explicativa, mesmo que tal variável não tenha poder explicativo sobre y.
- Assim, quando adicionamos uma variável explicativa ao modelo e o R² se eleva, devemos tomar cuidado ao interpretar este aumento como uma melhora ajustamento de um modelo devido a inclusão desta nova variável.

Propriedades Estatísticas dos Estimadores

- Algumas hipóteses importantes:
 - (H1) Modelo populacional é linear

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

– (H2) Uma amostra aleatória de tamanho n

$$\{(x_{1i}, x_{2i}, \dots, x_{ki}y_i): i = 1, \dots, n\}$$

pode ser construída a partir do modelo populacional.

$$E(u | x_1, x_2, ..., x_k) = E(u) = 0$$

Propriedades Estatísticas dos Estimadores

- Algumas hipóteses importantes continuação:
 - (H3) Média condicional nula

$$E(u | x_1, x_2, ..., x_k) = E(u) = 0$$

- (H4) Não existe colinearidade perfeita entre as variáveis explicativas
 - Nenhuma variável é constante e não há relação linear entre as variáveis
- (H5) Homocedasticidade

$$|\operatorname{Var}(u \mid x) = \sigma^2|$$

Propriedades Estatísticas dos Estimadores

 Teorema 1: sob as hipóteses (H1) - (H4) os estimadores de mínimos quadrados ordinários são não-tendenciosos, isto é

$$E(\hat{\beta}_0) = \beta_0$$

$$E(\hat{\beta}_1) = \beta_1$$

$$E(\hat{\beta}_2) = \beta_2$$

$$\vdots$$

$$E(\hat{\beta}_k) = \beta_k$$

Propriedades Estatísticas dos Estimadores

- O que acontece quando variáveis <u>irrelevantes</u> são incluídas no modelo?
 - Considere que o modelo abaixo tenha sido especificado

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$

– Considere ainda que o efeito de x_3 em y, após a inclusão de x_1 e x_2 no modelo, seja nulo. Isto é,

$$\beta_3 = 0 \Rightarrow E(y \mid x_1, x_2, x_3) = E(y \mid x_1, x_2)$$

$$E(y \mid x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

– Mas na prática não se sabe *a priori* que β_3 =0. O que acontecerá com os estimadores?

Propriedades Estatísticas dos Estimadores

- O que acontece quando variáveis <u>relevantes</u> não são incluídas no modelo?
 - Os estimadores serão viesados (tendenciosos).
 - O viés é geralmente chamado de viés de variáveis omitidas.
 - Considere o seguinte modelo populacional

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

Agora, suponha que no modelo estimado a variável x_2 não foi incluída

$$\widetilde{y} = \widetilde{\beta}_0 + \widetilde{\beta}_1 x_1$$

$$\downarrow \downarrow$$

$$\widetilde{\beta}_1 = \frac{\sum_{i=1}^n (x_{1i} - \overline{x}_1) y_i}{\sum_{i=1}^n (x_{1i} - \overline{x}_1)^2}$$

Propriedades Estatísticas dos Estimadores

- Viés de variáveis omitidas (continuação)
 - Pode-se mostrar que

$$E(\widetilde{\beta}_1) = \beta_1 + \beta_2 \widetilde{\delta}_1$$

onde

$$\widetilde{\delta}_{1} = \frac{\sum_{i=1}^{n} (x_{1i} - \overline{x}_{1}) x_{2i}}{\sum_{i=1}^{n} (x_{1i} - \overline{x}_{1})^{2}}$$

- Na grande maioria dos casos, o θ_j estimado por regressão simples gera estimativas diferentes daquele estimado por regressão múltipla, após a inclusão de outras variáveis explicativas
- Mas há dois casos em que as estimativa são as iguais.

 Para enxergar estes casos, consideremos novamente um modelo com duas variáveis explicativas:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

• Considere agora um modelo simples que inclua apenas x_1 :

$$\widetilde{y} = \widetilde{\beta}_0 + \widetilde{\beta}_1 x_1$$

É possível estabelecer a seguinte relação entre as duas estimativas:

$$\widetilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \widetilde{\delta}_1$$

- Em que δ_1 é o coeficiente da regressão entre x_2 e x_1 .
- A partir desta relação podemos concluir as duas situações em que as estimativas dos dois modelos são iguais:
 - ✓ Quando não há relação parcial entre x_2 e y, isto é:

$$\hat{\beta}_2 = 0$$

✓ Quando não há relação parcial entre x_2 e x_1 , ou seja:

$$\widetilde{\delta}_1 = 0$$

Nestes casos: $\hat{eta}_1 = \widetilde{eta}_1$

- Estendendo esta análise para um modelo de k variáveis temos as estimativas de θ_1 serão iguais entre modelos simples e múltiplo:
 - ✓ Se x_1 for não correlacionado com as demais variáveis explicativas x_2 , ..., x_k .
 - ✓ Se cada variável $x_2, ..., x_k$ for não correlacionada com y.
- Nestas situações é possível dizer que não há qualquer ganho em se usar um modelo de regressão múltipla para estimar θ_1 .

Variância dos Estimadores

Teorema 2: sob as hipóteses (H1) - (H5) a variância dos

estimadores é dada por

•

onde

$$SST_{j} = \sum_{i=1}^{n} (x_{ji} - \bar{x}_{j})^{2}$$

$$Var(\beta_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}$$

 σ^2 é a variância do erro da regressão, u

$$R_{j}^{2} = \frac{SSE_{j}}{SST_{j}} = \frac{\sum_{i=1}^{n} (\hat{x}_{ji} - \overline{x}_{j})^{2}}{\sum_{i=1}^{n} (x_{ji} - \overline{x}_{j})^{2}}$$

Variância dos Estimadores

- Três fatores influenciam a variância dos estimadores
 - Variância do erro
 - Variação de x_i
 - Grau de relação linear entre as variáveis explicativas

Variância do Erro

Como estimar σ²?

$$\hat{\sigma}^2 = \frac{1}{(n-k-1)} \sum_{i=1}^{n} \hat{u}_i^2 = \frac{SSR}{(n-k-1)}$$

Teorema 3: sob as hipótese (H1) - (H5)

$$E(\hat{\sigma}^2) = \sigma^2$$

Teorema de Gauss-Markov

 Teorema 4: sob as hipóteses (H1) - (H5) os estimadores de MQO são BLUE (best linear unbiased estimators), isto é, são os melhores estimadores, no sentido de possuírem menor variância (maior eficiência), dentro da classe dos estimadores lineares e não-viesados.

- Antes de chegar ao teste de hipóteses, o que nos permite dizer algo como "nossa estimativa é estatisticamente significativa", é útil primeiro analisar a variância do OLS
- Entender isso e as suposições feitas para obtê-lo podem nos ajudar a obter os erros padrão corretos para nossos testes de hipóteses posteriores

Variância dos Estimadores OLS

- Homocedasticidade implica $Var(u \mid x) = \sigma^2$
 - \checkmark A variância dos erros, u, não depende do nível do x observado
- Heteroscedasticidade implica $Var(u \mid x) = f(x)$
 - \checkmark A variância dos erros, u, depende do nível de x de alguma forma

Variância visualmente....

Homoskedasticity

Heteroskedasticity

Variância visualmente....

$$Var(u \mid x) = \sigma^2$$

O que é mais realista?

Numa regressão sobre a variável investimentos, o que é mais realista, Homocedasticidade ou Heteroscedasticidade?

$$Investment = \alpha + \beta Q + u$$

Resposta: A heterocedasticidade parece ser uma suposição muito mais segura de se fazer; Não é difícil chegar a histórias sobre como a homoscedasticidade pode ser violada

Heteroscedastidade e viés

A existência de heteroscedasticidade causa viés?

$$Investment = \alpha + \beta Q + u$$

Não! E(u|x)=0 (que é o que precisamos para estimativas consistentes)

Isso é muito diferente. Heteroscedasticidade afeta somente os Erros Padrões (*Standard Errors*, SEs)

Heteroscedasticidade significa apenas que a estimação OLS pode não ser o mais eficiente (preciso) estimador linear

Heteroscedastidade e viés

- Por que se preocupar com heteroscedasticidade?
- Erros padrão estimados por programas como o Stata assumem o HOMOSCEDASTICIDADE
- Se os erros padrão forem heterocedásticos, as inferências estatísticas feitas a partir desses erros padrão podem estar incorretas...
- Como corrigimos isso?

Erros Padrão Robustos

- Use a opção "robust" para obter erros padrão (para testes de hipóteses) que são robustos à heterocedasticidade
- Tipicamente aumenta o SE, mas geralmente não traz maiores complicações na prática
- Se os erros padrão diminuírem, poderá ter problemas; use os erros padrão maiores!
- Erros padrão (ou SE standard erros) : é uma estimativa do desvio padrão

$$t = \frac{\overline{x} - \mu_0}{\sqrt{n}} \qquad t_j = \frac{\beta_j}{\frac{u'u}{n - (k+1)} \cdot \sqrt{a_{jj}}} \quad \text{, onde } a_{jj} \text{\'e o j-\'e simo termo da diagonal } (X'X)^{-1}$$

Usando WLS para lidar com Hek

- Mínimos Quadrados Ponderados (WLS) às vezes são usados quando estamos preocupados com a heterocedasticidade
- WLS basicamente pondera a observação de x usando uma estimativa da variância para esse valor de x
- Feito corretamente, pode melhorar a precisão das estimativas

WLS uma recomendação de uso...

- Recomendação de Angrist-Pischke [Veja a Seção 3.4.1]:
 - √ não se incomode com o WLS
- OLS é consistente, então por que se incomodar? Pode apenas usar erros padrão robustos
- Propriedades de amostra finitas podem ser ruins [e pode não ser mais eficiente]
- Mais difícil para interpretar do que apenas usando OLS [que ainda é melhor aprox. linear do CEF]
- Se a forma funcional do CEF estiver errada, erros padrão e tstats estarão errados

- Você já deve ter ouvido um tipo de frase comum: "A estimativa, β , é estatisticamente significativa"
- O que isso significa?

Resposta = "Significância estatística" geralmente significa que uma estimativa é estatisticamente diferente de zero

Mas, de onde vem isso?

- Quando pensamos em significância, é útil lembrar algumas coisas...
- Estimativas de β 1, β 2, etc. são funções de variáveis aleatórias; assim, eles são variáveis aleatórias com variâncias e covariâncias entre si
- Estas variações e covariâncias podem ser estimadas [Ver livros didáticos para várias derivações]
- O erro padrão é apenas a raiz quadrada da variância estimada de uma estimativa ($\sqrt{\sigma^2} = \sigma$)

- A estatística t (t-stat) informada está nos dizendo quantos desvios padrão nossa estimativa de amostra, $\hat{\beta}$, está longe de zero
- Isto é, está testando a hipótese nula: β = 0
- p-valor é apenas a probabilidade de obtermos uma estimativa $\hat{\beta}$ que esteja, por sorte, tantos desvios-padrão longe de zero no caso de que seja verdade que β = 0

- Veja livros didáticos para mais detalhes sobre como fazer outros testes de hipóteses; Por exemplo.
- $\beta 1 = \beta 2 = \beta 3 = 0$
- Dado que estes são geralmente feitos facilmente em programas como o Stata, eu não quero gastar muito tempo revisando a matemática
- TIP: Dê uma olhada nas opções de postestimation do Stata

Considere o modelo

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

- Como testar hipóteses sobre o parâmetro β_i ?
 - Por exemplo:
 - H_0 : $\beta_j = 0$?
- Sob as hipóteses do modelo

erro padrão
$$\frac{\hat{\beta}_{j} - \beta_{j}}{\operatorname{se}(\hat{\beta}_{j})} \sim t_{n-k-1} \qquad t_{j} = \frac{\beta_{j}}{\frac{u'u}{n - (k+1)} \cdot \sqrt{a}}$$

Testes de Hipóteses Sobre um Único Parâmetro

Um exemplo (saída do E-Views)

Dependent Variable: LOG(WAGE)

Method: Least Squares Date: 04/15/02 Time: 07:23

Sample: 1 526

Included observations: 526

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.284360	0.104190	2.729230	0.0066
EDUC	0.092029	0.007330	12.55525	0.0000
EXPER	0.004121	0.001723	2.391437	0.0171
TENURE	0.022067	0.003094	7.133070	0.0000
R-squared	0.316013	Mean dependent var		1.623268
Adjusted R-squared	0.312082	S.D. dependent var		0.531538
S.E. of regression	0.440862	Akaike info criterion		1.207406
Sum squared resid	101.4556	Schwarz criterion		1.239842
Log likelihood	-313.5478	F-statistic		80.39092
Durbin-Watson stat	1.768805	Prob(F-statistic)		0.000000

Testes de Hipóteses Sobre um Único Parâmetro

- Qual é a regra para rejeição de H₀?
 - Depende da hipótese alternativa e do nível de significância do teste!
 - Considere H_1 : $\beta_i > 0$ e o nível de significância $\alpha = 5\%$ (mais utilizado)

- Regra de rejeição: $\left|t_{\hat{eta}_{i}}>c
ight|$

Testes de Hipóteses Sobre um Único Parâmetro

- Quando o número de graus de liberdade é grande, a distribuição t pode ser aproximada pela distribuição normal padrão.
- Exemplo no E-Views

Dependent Variable: LOG(WAGE)

Method: Least Squares

Date: 04/15/02 Time: 07:23

Sample: 1 526

Included observations 526

Graus	de	lib.	=	526	3-4=	522
-------	----	------	---	-----	------	-----

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.284360	0.104190	2.729230	0.0066
EDUC	0.092029	0.007330	12.55525	0.0000
EXPER	0.004121	0.001723	2.391437	0.0171
TENURE	0.022067	0.003094	7.133070	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.316013	Mean dependent var		1.623268
	0.312082	S.D. dependent var		0.531538
	0.440862	Akaike info criterion		1.207406
	101.4556	Schwarz criterion		1.239842
	-313.5478	F-statistic		80.39092
	1.768805	Prob(F-statistic)		0.000000

Testes de Hipóteses Sobre um Único Parâmetro

• Considere H_1 : β_j < 0 e o nível de significância α = 5%

Regra de rejeição:

$$t_{\hat{\beta}_j} < -c$$

Testes de Hipóteses Sobre um Único Parâmetro

• Considere H_1 : $\beta_j \neq 0$ e o nível de significância $\alpha = 5\%$

Regra de rejeição:

$$\left|t_{\hat{\beta}_{j}}\right| > c$$

Testes de Hipóteses Sobre um Único Parâmetro

- Dado o valor da estatística *t*, qual o menor nível de significância para o qual a hipótese nula é rejeitada?
 - Este nível de significância é conhecido como o p-valor do teste e é definido por

$$\boxed{\Pr(|T| > |t|)}$$

onde T é uma variável aleatória com distribuição t e n-k-1 graus de liberdade e t é o valor numérico observado da estatística de teste.

Exemplo no E-Views

Dependent Variable: LOG(WAGE)

Method: Least Squares Date: 04/15/02 Time: 07:23

Sample: 1 526

Included observations: 526

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.284360	0.104190	2.729230	0.0066
EDUC	0.092029	0.007330	12.55525	0.0000
EXPER	0.004121	0.001723	2.391437	0.0171
TENURE	0.022067	0.003094	7.133070	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.316013	Mean dependent var		1.623268
	0.312082	S.D. dependent var		0.531538
	0.440862	Akaike info criterion		1.207406
	101.4556	Schwarz criterion		1.239842
	-313.5478	F-statistic		80.39092
	1.768805	Prob(F-statistic)		0.000000

$$\boxed{\Pr(|T| > |t|)}$$

Vimos que sob as hipóteses clássicas do modelo de regressão linear

$$\frac{\hat{\beta}_{j} - \beta_{j}}{\operatorname{se}(\hat{\beta}_{j})} \sim t_{n-k-1}$$

• Desta forma podem ser criados intervalos de confiança para os parâmetros estimados, definidos por $\hat{\beta}_i \pm c \cdot \text{se}(\hat{\beta}_i)$

onde c é o percentil adequado da distribuição t com n -k -1 graus de liberdade.

 Por exemplo: se o intervalo de confiança for de 95% e o número de graus de liberdade for igual à 25, então c vale 2,06.

Intervalos de Confiança

• Se o nível de confiança do teste for 1- α , então c é o percentil da distribuição t referente à $\alpha/2$.

• Um exemplo no E-Views

Dependent Variable: LOG(WAGE)

Method: Least Squares

Date: 04/15/02 Time: 07:23

Sample: 1 526

Included observations 526

Graus de lib. = 526-4=522 A distribuição t é aproximadamente igual à distribuição normal padronizada

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.284360	0.104190	2.729230	0.0066
EDUC	0.092029	0.007330	12.55525	0.0000
EXPER	0.004121	0.001723	2.391437	0.0171
TENURE	0.022067	0.003094	7.133070	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.316013	Mean dependent var		1.623268
	0.312082	S.D. dependent var		0.531538
	0.440862	Akaike info criterion		1.207406
	101.4556	Schwarz criterion		1.239842
	-313.5478	F-statistic		80.39092
	1.768805	Prob(F-statistic)		0.000000

Intervalos de 95%

$$\hat{\beta}_{0} = 0,284360 \pm 1,96 \cdot 0,104190$$

$$\hat{\beta}_{1} = 0,092029 \pm 1,96 \cdot 0,007330$$

$$\hat{\beta}_{2} = 0,004121 \pm 1,96 \cdot 0,001723$$

$$\hat{\beta}_{3} = 0,022067 \pm 1,96 \cdot 0,003094$$

Significância Estatística vs Econômica

- Isto não é a mesma coisa!
- O coeficiente pode ser estatisticamente significativo, mas economicamente pequeno
- Você pode obter isso em grandes amostras, ou quando você tem muita variação em x (ou outliers)
- O coeficiente pode ser economicamente grande, mas estatisticamente insignificante
- Pode ser apenas um pequeno tamanho de amostra ou pouca variação em x para obter uma estimativa precisa

Significância Estatística vs Econômica

- Você deve sempre verificar a significância econômica dos coeficientes
- Por exemplo: Quão grande é a mudança implícita em y para uma mudança do tamanho de um desvio padrão em x?
- E importante, isso é plausível? Se não, você pode ter um problema de especificação

Outras Questões