Exam 1, Mathematics 102

Prof. Cristian D. Popescu February 3, 2012

Name: Student ID: Section Number:

Note: There are 3 problems on this exam. You will not receive credit unless you show all your work. No books, calculators, notes or tables are permitted.

I. (40 points)

(1) Write down a system of 3 linear equations in 3 variables whose solution set in \mathbb{R}^3 coincides with the position vectors of the points lying on the unique line $\mathcal L$ which passes through the point $P_0(1,2,0)$ and has direction vector

$$\vec{d} := \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
.

(2) Solve the system of linear equations you wrote down in part (i) by the method of row reduction.

method of row reduction.

(1) The equation for
$$\mathcal{L}$$
 is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, which gives $z = t$, $y = 2$, $z = 1 + t = 1 + 2$

x = 1 + t = 1 + 2

One of many possible answers is

$$\begin{cases} x-2=1\\ y=2\\ x+y-z=3 \end{cases}$$

Row 1 gives:
$$X - 2 = 1$$

So $X = 2 + 1 = t + 1$

$$X = 1 + t$$

 $Y = 2 = 0$
 $Z = t$

Solution to linear equations

is
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
,

1 0 -1 | i | 2 | 0 0 | 0 | J

free variable

II. (20 points)

- (1) Write down the equation of the unique plane Π in \mathbb{R}^3 which contains the points $P_1(1,0,0)$, $P_2(0,1,0)$ and $P_3(0,0,1)$.
- (2) Find the intersection between the plane Π and the line which is perpendicular on Π and contains the point $\mathcal{O}(0,0,0)$.

(1) The set of points which satisfies
$$ax + by + cz = d$$
 for some a, b, c, d
Plug in P_1 : $a \cdot 1 + b \cdot 0 + c \cdot 0 = d \Rightarrow a = d$

so egt'n for
$$TT$$
 is $dx + dy + dz = d$
 $d \neq 0$, so can multiply by d ,
 $get \mid x + y + 2 = 1$

so direction vector for f = normal vectorfor T = [7]

2 contains
$$(0,0,0) \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
is the equation for \mathcal{L}

To find where J and T intersect, we suppose a point in J, $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} t \\ t \end{bmatrix}$ Satisfies X + y + 2 = 1 $\Rightarrow (t) + (t) + (t) = 1 \Rightarrow 3t = 1$ $\Rightarrow t = \frac{1}{3}$ If thence, $\begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$ is a point which satisfies X + y + 2 = 1 and is on the line J,

so it is the intersection.

III. (40 points)

- (1) Let $A \in M_{m \times n}(\mathbb{R})$ and $B \in M_{n \times r}(\mathbb{R})$, for some natural numbers m, n, r. Prove that if the rows of A (viewed as vectors in \mathbb{R}^n) are linearly dependent, then the columns of $(B^t \cdot A^t)$ (viewed as vectors in \mathbb{R}^r) are linearly dependent.
- (2) Without using determinants decide whether the rows of the matrix

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 3 & 4 \\ 2 & 2 & 3 \end{bmatrix}$$

are linearly independent or not. Justify your answer.

(1) Let $\Gamma_{i}(A)$ denote the $i^{\frac{14}{4}}$ row of A. If $\{\Gamma_{i}(A)\}$ are linearly dependent, then there is some row volve $\overline{I_0} \in \mathbb{R}^{m}$, $\overline{I_0} \neq \overline{0}'$, with $\overline{I_0}' = \overline{I_0}(A) = 0$; that is, $\overline{I_0} = 0$.

Now the columns of $\overline{I_0} = \overline{I_0}(A) = 0$.

Now the columns of $\overline{I_0} = \overline{I_0}(A) = \overline{I_0}(A) = \overline{I_0}(A)$ so it suffices to find a nonzero $\overline{I_0} = \overline{I_0}(A) = 0$.

(because then the columns vous of $\overline{I_0} = \overline{I_0}(A) = 0$.

But the $\overline{I_0} = \overline{I_0}$ works, as $\overline{I_0}' = \overline{I_0}(A) = \overline{I_0}(A) = 0$.

(2) Ran reduce! $\begin{bmatrix}
10 & 1 \\
3 & 4 \\
2 & 2 & 3
\end{bmatrix}$ $\begin{bmatrix}
1 & 0 & 1 \\
2 & 2 & 3
\end{bmatrix}$ $\begin{bmatrix}
1 & 0 & 1 \\
2 & 2 & 3
\end{bmatrix}$ $\begin{bmatrix}
1 & 0 & 1 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{bmatrix}$

Since this square mothis his echelon form with no nowzero rows, it is invertible

dependent.