第2章 运算方法和运算器a

2.1 数据与文字的表示方法

数据编码与表示

- ■计算机中的数据
 - ◆整数、浮点数、字符(串)、逻辑值
 - ◆需要编码进行表示
- ■编码原则
 - ◆使用少量简单的基本符号
 - ◆一定的规则
 - ◆表示大量复杂的信息

- ■二进制码0、1
 - ◆符号个数最少,物理上容易实现
 - ◆与二值逻辑的"真""假"两个值对应
 - ◆用二进制码表示数值数据运算规则简单

无符号数和有符号数

- 无符号数指的是不带符号位的数,例如: 1个16位二进制数,表示范围为0~65535 在C语言中,用unsigned short int类型进行声明
- ■有符号数指的是带符号位的数,最左边的位用作符号位,用"0"表示正,"1"表示负,例如有符号数+0001001 000000000,表示为0x0900有符号数-0001001 000000000,表示为0x8900在C语言中,用short int类型进行声明

注: 在32位机上, int类型通常为32位

计算机中常用的数据表示格式

- ■定点格式:数值范围有限,处理简单
 - ◆机器中所有数据的小数点位置固定不变
 - ◆不使用记号"."来表示小数点
 - ◆定点数表示成纯小数或纯整数
- ■浮点格式:数值范围很大,处理过程复杂
- ■十进制数格式
 - ◆非压缩BCD
 - ◆压缩BCD

定点数的表示方法

- ■纯小数
- $X_0 X_1 X_2 \dots X_{n-1} X_n$
- ◆x₀表示数的<u>符号</u>,数值0和1分别表示正号和负号,其余为代表数的量值
- ◆小数点位于 x_0 和 x_1 之间.
- ◆表示范围为0≤ | x | ≤1-2-n
- ■纯整数

3.7			
X_0	$X_1 X_2$	X _{n-1}	\mathbf{x}_{n}

- ◆x₀表示数的<u>符号</u>,数值0和1分别表示正号和负号,其余为代 表数的量值
- ◆小数点位于最低位xn的右边
- ◆表示范围为0≤ | x | ≤2n-1

真值与机器数

真值是机器数代表的实际的值机器数是真值在机器中的表示

数的机器码表示

- 为了方便数的运算操作,在计算机中通常将数的符号位和数值位一起编码
- ■小数点: 隐含存储
 - ◆定点数事先约定,浮点数按规则浮动
- 为了区别带有符号表示的数和机器中把符号"数字化"的数,通常将前者称为真值,后者称为机器数或机器码
- ■常用的(有符号数)机器码包括
 - ◆原码、补码、反码、移码

原码表示法(1)

- ■定点小数
 - ◆定义

◆举例

$$x=+0.1001$$
 \longrightarrow $[x]_{\mathbb{F}}=0.1001$ $x=-0.1001$ \longrightarrow $[x]_{\mathbb{F}}=1.1001$ **机器码**

原码表示法(2)

◆定义

◆举例

$$x = +0111001 \longrightarrow [x]_{\mathbb{R}} = 00111001$$

 $x = -0111001 \longrightarrow [x]_{\mathbb{R}} = 10111001$

原码表示法(3)

- 0的原码
 - **◆[+0]**_原=00000000
 - **◆[-0]**_原=10000000
- 正数的原码符号位为0,数值位不变;负数的原码符号位为1,数值位不变

原码的特点

- ■简单、直观:采用原码表示法简单明了,易于和真 值转换
- ■原码用做加法是会出现以下问题

数1	数2	实际操作	结果符号
正	正	加	正(正)
正	负	减	可正可负(负)
负	正	减	可正可负(负)
负	负	加	负(正)

■基于原码的减法运算

如果能找到一个与负 数等价的正数,来代 替这个负数,就可使 减法变为加法

补码表示法

将时钟从7点钟调到4点种,有两种调法:

减法可转换为加法!

补码表示法

- ■补数:一个负数加上"模"即得该负数的补数
- ■一个正数和一个负数互为补数时,它们的绝对值之和即为模数

补码表示法(1)

- ■定点小数
 - ◆定义

$$[x]_{n} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x = 2 - |x| & 0 \ge x \ge -1 \end{cases} \pmod{2}$$

◆举例

$$x=+0.1011 \longrightarrow [x]_{\frac{1}{2}}=0.1011$$
 $x=-0.1011 \longrightarrow [x]_{\frac{1}{2}}=10+x=10-0.1011=1.0101$

补码表示法(2)

◆定义

$$[x]_{\text{th}} = \begin{cases} x & 2^{n} > x \ge 0 \\ 2^{n+1} + x = 2^{n+1} - |x| & 0 \ge x \ge -2^{n} \end{cases} \pmod{2^{n+1}}$$

$$x = +0111001 \longrightarrow [x]_{\uparrow \uparrow} = 00111001$$

 $x = -0111001 \longrightarrow$

 $[x]_{x} = 100000000 + x = 1000000000 - 0111001 = 11000111$

补码表示法(3)

■0的补码

$$[+0]_{\nmid k} = [-0]_{\nmid k} = 00000000 \pmod{2}$$

- 采用补码进行减法运算就比原码方便,减法运算可变 成加法运算
- ■基于补码的减法运算

反码表示法(1)

■反码就是二进制数的各位数码0变为1,1变为0。

即: $若x_i=1$,则反码 $x_i=\underline{0}$ 若 $x_i=0$,则反码 $x_i=1$

37

反码表示法(2)

■定点小数

$$X_0 \mid X_1 \mid X_2 \mid \dots \mid X_{n-1} \mid X_n$$

◆定义

$$[x]_{\text{x}} = \begin{cases} x & 1 > x \ge 0\\ (2 - 2^{-n}) + x & 0 \ge x > -1 \end{cases}$$

◆举例

$$x = +0.1011 \longrightarrow [x]_{\mathbb{K}} = 0.1011$$

$$x = -0.1011 \longrightarrow [x]_{\mathbb{Z}} = 1.0100$$

反码表示法(3)

- ■定点小数
 - ◆负数求补码和反码公式的比较

$$[x]_{\text{R}} = (2 - 2^{-n}) + x$$

 $[x]_{\text{R}} = 2 + x = [x]_{\text{R}} + 2^{-n}$

- ◆结论:对一个负数求补码,其方法是符号位置为1,其余各位求反,然后在最末位上加1。也就是说,负数的补码等于其反码加1。
- ■0的反码
 - **◆**[+0]_反=00000000
 - **◆**[**-0**]_反**=11111111**

反码表示法(4)

■定点整数

$$X_0 \mid X_1 \mid X_2 \mid \dots \mid X_{n-1} \mid X_n$$

◆定义

$$[x]_{\mathbb{R}} = \begin{cases} x & 2^n > x \ge 0\\ (2^{n+1} - 1) + x & 0 \ge x > -2^n \end{cases}$$

◆举例

$$x = +0111001 \longrightarrow [x]_{\mathbb{K}} = 00111001$$

 $x = -0111001 \longrightarrow [x]_{\mathbb{K}} = 11000110$

移码表示法

- ■移码是在真值X上加一个常数偏移值bias,通常为 2^n
 - ◆移码通常用于表示浮点数的阶码(指数),便于比较大小
- ■假设阶码是个n位的整数,定点整数移码的定义为:

■举例(假设阶码数字部分为5位)

$$x = +10101 \longrightarrow [x]_{8} = 10101$$

$$x = -10101 \longrightarrow [x]_{1/2} = 2^5 + x = 2^5 - 10101 = 0.01011$$

移码中用的逗号 不是小数点

移码和补码尾数相同,符号为相反

8位无符号数和有符号数的表示

8位二进制数(其中1位为符号位),用其分别代表无符号数、原码、补码和反码,对应的真值范围如下表

二进制代码	无符号数	原码对应	补码对应	反码对应
	对应的真值	的真值	的真值	的真值
0000000	0	+0	±0	+0
0000001	1	+1	+1	+1
00000010	2	+2	+2	+2
00000010	: 127	÷127	÷127	÷127
10000000 10000001	128	-0	-128	-127
	129	-1	-127	-126
:	•	•	•	•
11111101	253	-125	-3	-2
111111110	254	-126	-2	-1
111111111	255	-127	-1	-0

原码、反码、补码和移码比较(1)

- ■四种码制主要是解决<u>有符号数</u>在机器中的表示与运算 问题
- ■若X为正数,则 $[X]_{\mathbb{P}}=[X]_{\mathbb{P}}=[X]_{\mathbb{P}}=X$
- ■最高位为符号位:
 - ◆[X]_原、[X]_反、[X]_补用"0"表示正号,用"1"表示负号;
 - ◆[X]₈用"1"表示正号,用"0"表示负号。

原码、反码、补码和移码比较(2)

- [0]_补、[0]_移有唯一编码, [0]_原、[0]_反有两种编码。
- ■移码与补码的尾码相同,只是符号位相反。
- ■补码、反码和移码的符号位在加减运算时可以当作为数值看待,但原码的符号位必须单独处理

数据的表示

例1

设机器字长16位,定点表示,尾数15位,数符1位,问:

- (1)定点原码整数表示时,最大正数、最小负数各是多少?
- (2)定点原码小数表示时,最大正数、最小负数各是多少?

解:

(1)定点原码整数表示

最大正数值=
$$(2^{15}-1)_{10}$$
= $(+32767)_{10}$
最小负数值= $-(2^{15}-1)_{10}$ = $(-32767)_{10}$

(2)定点原码小数表示

最大正数值=
$$(1-2^{-15})_{10}$$
= $(+0.111...11)_2$
最小负数值= $-(1-2^{-15})_{10}$ = $(-0.111...11)_2$

32位现代计算机中

C语言
 编译
 机器数
 0x00000064
 int y = -100
 0xFFFFFF9C
 补码

unsigned short int x=65534;

OxFFFE

数据表示

C Data Type	Typical 32-bit	Intel IA32	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	4	8
long long	8	8	8
float	4	4	4
double	8	8	8
long double	8	10/12	10/16
pointer	4	4	8

符号位扩展

■ 将n位的有符号整数x转换为n+k位,并保持值不变


```
short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;
```

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	1111111 1111111 11000100 10010011

例2

- 一个C语言程序在一台32位机器上运行。程序中定义了三个变量x、y、z,其中x和z是int型,y为short型。当x=127,y=-9时,执行赋值语句z=x+y后,x、y、z的值分别是
- A. x=0000007FH, y=FFF9H, z=00000076H
- B. x=0000007FH, y=FFF9H, z=FFFF0076H
- C. x=0000007FH, y=FFF7H, z=FFFF0076H
- D. x=0000007FH, y=FFF7H, z=00000076H

移位操作

- ■机器中的移位操作是一种运算
 - ◆左移1位 绝对值扩大,即:×2
 - ◆右移1位 绝对值缩小,即:÷2
- ■在计算机中,移位与加减配合,能够实现乘除运算
- ■算术移位的法则(有符号数的移位法则)
 - ◆符号位保持不动
 - ◆正数:原码、补码、反码均补0
 - ◆负数
 - □原码: 补0
 - □补码: 左移补0; 右移补1
 - □ 反码: 补1

移位操作举例(1)

■例:机器字长为8位,x=-50,对其进行左移位和 右移位,结果如下:

$$[x]_{\mathbb{R}} = 10110010$$

$$[x]_{k} = 11001110$$

$$[x]_{\mathbb{R}} = 11100100$$

$$[x]_{\bar{\mathbb{R}}} = 10011001$$

$$-25$$

-100

-100

-25

移位操作举例(2)

$$[x]_{\Xi} = 11001101$$

$$[x]_{\mathbb{R}} = 11100100 - 100$$

$$[x]_{\mathbb{R}} = 10011001 - 25$$

例子

- 某字长为 8位的计算机中,已知整型变量 x、y的机器数分别为 $[x]_{h}=1$ 1110100, $[y]_{h}=1$ 0110000。若整型变量 z=2* x+y/2 ,则 z的机器数为
 - A. 1 100 0000
 - B. 0 010 0100
 - C. 1 010 1010
 - D. 溢出

浮点数的表示方法

■定点数的局限性

小张的财富 -2786

(2字节定点整数 short类型即可表示)

马云的财富 307446894372

(4字节定点整数 int类型也不能表示) (只能用8字节 long类型表示)

换一种货币: 1人民币 ≈ 10¹⁰津巴布韦币 (8字节long型也表示不了)

定点数可表示的数据范围有限,但我们不能无限制的增长数据的长度

如何在位数不变的情况下,增加数据表达范围?

浮点数的表示方法

■科学计数法

浮点数的表示方法(1)

■任意一个十进制数N可以表示成

$$N = M \times 10^{E}$$

■一个任意进制数N可以表示成

$$N = M \times R^{E}$$

其中,M称为浮点数的尾数,是一个纯小数,E是比例因子的指数,称为浮点数的指数,是一个整数,R为比例因子的基数,在二进制机器中通常规定R为2,8或16

■数的小数点位置随比例因子的不同而在一定范围内可以自由浮动,这种表示法称为浮点表示法

浮点数的表示方法(2)

- ■机器浮点数的组成
 - ◆尾数通常为纯小数,常用原码或补码表示。尾数的有效数字 的位数决定了浮点数的表示精度
 - ◆指数为定点整数,称为阶码,常用移码或补码表示,阶码的 位数决定了浮点数的表示范围

若尾数和阶码均采用原码,非规格化表示方式,则:

最大正数 (1 - 2⁻ⁿ)×2^{2^m-1}

最小正数 2⁻ⁿ×2^{-(2m-1)}

最大负数 - 2 -n×2-(2^m-1)

最小负数 - (1 - 2⁻ⁿ)×2^{2^m-1}

浮点数的表示方法(3)

- ■浮点数的规格化形式
 - ◆为了充分利用尾数的有效位数、提高运算精度
 - □1.01×2³可以写成0.101×2⁴、0.0101×2⁵
 - ◆对任何一个浮点数其规格化形式是唯一的
 - ◆对于阶码基数为R的规格化浮点数,定义其尾数的绝对值范围: $1/R \le |M| < 1$
 - ◆如果R=2,则:

$$1/2 \le |\mathbf{M}| < 1$$

当尾数用原码表示时,尾数的最高位总等于1

因此,最小正数 2 -n×2-(2^m-1) 规格化形式为 2 -1×2-(2^m-1)

最大负数 - $2^{-n} \times 2^{-(2^{m}-1)}$ 规格化形式为 - $2^{-1} \times 2^{-(2^{m}-1)}$

例2

某浮点数字长32位,其中阶码8位,以2为底,补码表示; 尾数为纯小数,24位(含1位数符),补码表示。现有一浮点数为C18F1234,求它所表示的二进制真值是多少?

解:展开C18F1234,得:

1100 0001 1000 1111 0001 0010 0011 0100

阶码原码: 1011 1111, 十进制: -63

尾数原码: 1.111 0000 1110 1101 1100 1100

二进制真值:-0.11100001110110111001100×2 -63

IEEE 754浮点数标准

S: 浮点数的符号位, 0表示正数, 1表示负数

Frac: 小数字段, 用原码表示, 小数点放在尾数域的最前面。规

格化数中: M=1+Frac, 即: 隐含最高位1 Exp: 阶码, 用移码来表示 Bias: 偏移值 { 127 (单精度) 1023 (双精度)

阶的移码表示

- IEEE 754中,浮点数的阶E采用移码表示
- ■移码: 规格化数,在真正的阶e上加一个规定的值
 - ◆对单精度浮点数: E = e + Bias = e + 127
 - ◆ 对双精度浮点数: E = e + Bias = e + 1023
- ■最小的阶: 00000012
- ■最大的阶: 11111110,

1₁₀

25410 (单精度)

■例如:1.0 * 2-1 在机器中的表示如下:

0 0111 1110 0000 0000 0000 0000 0000 000

真值计算: (-1)^S * (1 + Frac) * 2^(E - Bias)

小数字段Frac

- ■尾数用原码表示
- ■规格化数表示,隐含最高位1
 - \bullet M = 1 + Frac, 1 \le M < 2
- ■非规格化数表示
 - $\bullet M = Frac, 0 \le M < 1$
- 单精度为: 1 + 23 位, 双精度为 1 + 52 位
- ■含义:
 - ◆十进制: $1.6732 = (1x10^0) + (6x10^{-1}) + (7x10^{-2}) + (3x10^{-3}) + (2x10^{-4})$
 - ◆二进制: $1.1001 = (1x2^0) + (1x2^{-1}) + (0x2^{-2}) + (0x2^{-3}) + (1x2^{-4})$

规格化数表示的数值范围(单精度)

- ■最小正数a: M=1.00...₂, E=1
 - \bullet a = 1.0... $_2$ * 2^{1-127} = 2^{-126}
- ■最大正数b: M=1.1...11₂, E=254

♦
$$b = 1.1 ... 11_2 * 2^{254-127}$$

= $0.11...11_2 * 2^{128}$
= $(1-2^{-24}) * 2^{128}$

浮点数的二→十进制转换

若32位浮点数x在计算机中存储的数为(41360000)₁₆, 求其十进制值

解: 首先将十六进制数展开,得到二进制格式

$$x=(-1)^{S} \times 1.Frac \times 2^{E-127}$$

 $x=(-1)^{0} \times (1.011011) \times 2^{10000010-01111111}$
 $x=+(1.011011) \times 2^{3}=+1011.011$
 $=11+0 \times 2^{-1}+1 \times 2^{-2}+1 \times 2^{-3}$
 $=11.375$

浮点数十→二进制转换(1)

- ■把纯小数化为分数后,如果分母是2的整数次方,则转换结果是准确的:否则转换结果是近似的。
- ■如: -0.75的二进制
 - \bullet -0.75 = -3/4 \longrightarrow -11₂/100₂ = -0.11₂
 - ◆规格化为: -1.1₂ × 2⁻¹
 - \bullet (-1)¹ × (1 + .100 0000 ... 0000) × 2⁻¹

1 0111 1110 1000 0000 0000 0000 0000 000

浮点数十→二进制转换(2)

- 将小数化为分数,若分母不是2的整数倍,转换方法为:
 - ◆求出足够多的有效位
 - ◆根据精度要求截断多余的位。
 - ◆按标准要求给出符号位、阶和尾数。
- 如: 求-2.15的二进制

- **10.00100110011001100110011001**
- 规格化 1.000100110011001100110011001...×2¹
- 阶 $1+127=128=10000000_2$

1 10000000 0001 0011 0011 0011 0011 001

特殊的浮点数值

■ IEEE浮点标准中, 阶码0、阶码(2⁸-1)或(2¹¹-1)被保留, 用作特殊用途

特殊值	阶	小数(尾数)
+/- 0	00000000	0
非规格化数	00000000	非0
NaN (Not a Number)	11111111	非0
+/- ∞	11111111	0

非规格化小数: $\mp (0.xxx)_2 \times 2^{-126}$

隐含最高位变为0

阶码真值固定视为-126

如: 0/0, $\infty - \infty$ 等非法运算的结果就是NaN

非规格化数表示范围(单精度)

非规格化数 ⇒ E=0

- ■M=Frac,没有隐含的前导1
- e = 1 Bias = 1 127 = -126,注:不是-127,保证了非规格化值到规格化值的平滑过渡
- ■最小的正数: M=0.00...1₂

$$a' = 0.0...1_2 * 2^{1-127}$$

$$= 2^{-23} * 2^{-126}$$

$$= 2^{-149}$$

■最大的正数: M=0.11...1₂

♦ b'=
$$0.11...1_2$$
 * 2^{1-127} = $0.11...1_2$ * 2^{-126} = $(1 - 2^{-23})$ * 2^{-126}

浮点数表示的数值范围

IEEE 754 32位浮点数 小结

对32位浮点数N:

- 若0 < E < 255,则 $N = (-1)^s \times 1.M \times 2^{E-127}$,规格化数表示
- 若E = 0且M = 0,则 $N = (-1)^s 0$,机器+0、-0表示
- 若E = 0且 $M \neq 0$,则 $N = (-1)^s \times 0.M \times 2^{1-127}$,非规格化数表示
- 若E=255且M=0,则 $N=(-1)^s\infty$ (正无穷大,负无穷大)
- 若E = 255且 $M \neq 0$,则 N = NaN,非数NaN (Not a Number)

例3(1)

■假设由S,E和M三个域组成的一个32位二进制数(E与M分别为8位和23位),所表示的非零规格化浮点数 x,真值表示为(注:不是IEEE754格式): $x = (-1)^s \times (1.M) \times 2^{E-128}$

问:它所表示的规格化的最大正数、最小正数、最大负数、最小负数是多少?

(1)最大正数

$$x = [1 + (1 - 2^{-23})] \times 2^{127}$$

例3(2)

(2)最小正数

000 000 000000 000 000 000 000 000 000 00

$$x = 1.0 \times 2^{-128}$$

(3)最小负数

$$x = -[1+(1-2^{-23})] \times 2^{127}$$

(4)最大负数

$$x = -1.0 \times 2^{-128}$$

例4

float型整数据常用IEEE754单精度浮点格式表示,假设两个float型变量x和y分别在32为寄存器f1和f2中,若(f1)=CC900000H,(f2)=B0C00000H,则x和y之间的关系为:

- A x<y且符号相同
- B x<y且符号不同
- C x>y且符号相同
- D x>y且符号不同

十进制数表示方法

- ■字符串形式: 一个字节存放一个十进制的数位或符号位
- ■压缩的十进制数:一个字节存放两个十进制的数位
 - ◆用四位二进制表示一位十进制,16个编码状态选用其中的10个编码
 - ◆有多种BCD方案
 - □8421码
 - □余3码
 - □循环码

842	21	余3码	循环码	
0	0000	0011	0000	
1	0001	0100	0001	
2	0010	0101	0011	
3	0011	0110	0010	
4	0100	0111	0110	
5	0101	1000	1110	
6	0110	1001	1010	
7	0111	1010	1000	
8	1000	1011	1100	有权码
9	1001	1100	0100	无权码

2.1.3 字符的表示方法

字符型数据的表示(ASCII码)

字符型数据的表示(ASCII码)

	_							_						_	_
0	NUL	16	DLE	32	SPC	48	0	64	@	80	Р	96	•	112	р
1	SOH	17	DC1	33	!	49	1	65	Α	81	Q	97	а	113	q
2	STX	18	DC2	34	**	50	2	66	В	82	R	98	b	114	r
3	ETX	19	DC3	35	#	51	3	67	С	83	S	99	С	115	S
4	EOT	20	DC4	36	\$	52	4	68	D	84	Т	100	d	116	t
5	ENQ	21	NAK	37	%	53	5	69	Е	85	U	101	е	117	u
6	ACK	22	SYN	38	&	54	6	70	F	86	٧	102	f	118	V
7	BEL	23	ETB	39		55	7	71	G	87	W	103	g	119	w
8	BS	24	CAN	40	(56	8	72	Н	88	X	104	h	120	х
9	HT	25	EM	41)	57	9	73	1	89	Υ	105	i	121	У
10	LF	26	SUB	42	*	58	:	74	J	90	Z	106	j	122	Z
11	VT	27	ESC	43	+	59	;	75	K	91	[107	k	123	{
12	FF	28	FS	44	,	60	<	76	L	92	1	108	1	124	
13	CR	29	GS	45	-	61	=	77	М	93]	109	m	125	}
14	so	30	RS	46		62	>	78	N	94	۸	110	n	126	~
15	SI	31	US	47	/	63	?	79	0	95	_	111	0	127	DEL

可印刷字符: 32~126, 其余为控制、通信字符

数字: 48 (0011 0000) ~ 57 (0011 1001)

大写字母: 65 (0100 0001) ~90 (0101 1010)

小写字母: 97 (0110 0001) ~122 (0111 1010)

汉字编码

计算机处理汉字信息的过程:

- 1.汉字输入到计算机 汉字输入码
- 2.计算机内部的表示和存储 汉字内码
- 3.计算机向外部显示和打印—汉字字形(字模)码

汉字的表示方法(1)

- ■汉字输入码(外码)
 - ◆为了通过键盘字符把汉字输入计算机而设计的一种编码。 汉字输入方案有很多,大致可分为以下4种类型
 - □音码:如全拼、双拼、微软拼音等
 - □形码: 如五笔字型、郑码、表形码等
 - □音形码:如智能ABC、自然码等
 - □数字码:如区位码、电报码等

汉字的表示方法(2)

- 国标码GB 2312-1980
 - ◆ 共7445个字符(6763个汉字+682个图形字符)
 - ◆区位码

94个区 94个位置

用所在的区和位来对汉字进行编码,称为区位码。这个码是唯一的,不会有重码字

汉字的表示方法(3)

- ■汉字机内码(内码)
 - ◆用于在计算机内部存储和传输汉字而设计的一种2字节编码。
 - ◆是否可以用国标码作为机器内码?
 - ◆为了避免ASCII码和国标码一起使用时产生二义性问题, 把国标码每个字节的最高位置1,用以区别7位ASCII码,

汉學祝闪河、村国杂鸠和区位码三者之间的关系为:

区位码(十六进制)的两个字节分别加20H(32)得到对应的国标码; 汉字交换码(国标码)的两个字节分别加80H(128)得到对应的机内码;

汉字的表示方法(4)

- ■汉字字模码(输出码)
 - ◆用于把机内码转成能显示和打印的一种汉字编码,即用点 阵表示的汉字代码

校验码

- ■在数据存储、传输过程中,附加在数据中的可以用来检查和纠正因元件故障、噪声干扰等因素导致数据错误的编码
- ■数据校验原理

信息位 (k位)

校验码 (r位)

- ■分类
 - ◆检错码,如奇偶校验码、海明码、循环冗余校验码
 - ◆纠错码,如海明码、BCH码、RS码

奇偶校验码

设
$$X = (x_0 x_1 \dots x_{n-1})$$

- ■奇校验
 - ◆加上检验位后,传输的位组中,"1"的个数一定为奇数; 否则就发生了错误
 - ◆奇校验位C= x₀⊕x₁ ⊕ ... ⊕ x_{n-1}
- ■偶校验
 - ◆加上检验位后,传输的位组中,"1"的个数一定为偶数; 否则就发生了错误
 - ◆偶校验位C= x₀⊕x₁ ⊕ ... ⊕ x_{n-1}
- 奇/偶校验
 - $◆x_0$ '⊕ x_1 '⊕ ... ⊕ x_{n-1} '⊕C',结果为1/0说明出错/没出错

实例

数据	偶校验编码	奇校验编码
10101010	10101010 <mark>0</mark>	10101010 <mark>1</mark>
01010100	01010100 <mark>1</mark>	01010100 <mark>0</mark>
00000000	00000000	00000000 1
11111111	11111111 <mark>0</mark>	11111111 <mark>1</mark>

 $101010100 \longrightarrow 101010110$ 1

→ 101010<mark>01</mark> 0 **○**

奇偶校验能检测奇数个错误,无法检测偶数个错误。

数据在存储器中的表示

- ■按字节寻址的存储器可视为 一个很大的字节数组,数组 下标为存储器地址,数组元 素的值即为存储器存储的内 容
- ■连续存放的32位或64位的字 数据的地址差值为4或8
- 多字节的字数据在存储器中 是如何存放的?

32-bit Words		Bytes	Addr.
data1			0000
Addr			0001
0000	data1		0002
	Addr		0003
data2	0000		0004
Addr _			0005
0004			0006
			0007
data3			0008
Addr _	data2		0009
0008	Addr		0010
	=		0011
data4	0008		0012
Addr _			0013
0012			0014
			0015

存储器中的字节序

- ■小端方式Little Endian
 - ◆低字节存放在小地址处,即低字节在前高字节后
 - ◆x86处理器
- ■大端方式Big Endian
 - ◆低字节存放在大地址处,即高字节在前低字节后
 - ◆SPARC处理器, IBM Power处理器

例 不同处理器存储整数的字节序

十进制: 211306

二进制: 0011 0011 1001 0110 1010

十六进制: 3 3 9 6 A

int A = 211306;

int B = -211306;

2.2 定点加法、减法运算

加法与减法运算

■补码加法公式

整数
$$[x]_{i}+[y]_{i}=[x+y]_{i}$$
 (mod 2^{n+1})

小数
$$[x]_{\stackrel{}{\nmid \downarrow}} + [y]_{\stackrel{}{\nmid \downarrow}} = [x+y]_{\stackrel{}{\nmid \downarrow}}$$
 (mod 2)

■补码减法公式

整数
$$[x]_{\stackrel{}{N}} - [y]_{\stackrel{}{N}} = [x]_{\stackrel{}{N}} + [-y]_{\stackrel{}{N}} = [x-y]_{\stackrel{}{N}} \pmod{2^{n+1}}$$

小数
$$[x]_{\lambda}-[y]_{\lambda}=[x]_{\lambda}+[-y]_{\lambda}=[x-y]_{\lambda}$$
 (mod 2)

举例

■
$$x = 0.1001$$
, $y = 0.0101$, $x + y$
 $x = 0.1001$, $y = 0.0101$, $y = 0.0101$

所以
$$x + y = +0.1110$$

举例

$$[x]_{\slashed{\uparrow}}$$
 0.1011
+ $[y]_{\slashed{\uparrow}}$ 1.1011
 $[x+y]_{\slashed{\uparrow}}$ 10.0110

所以
$$x + y = +0.0110$$

补码加法:符号位要作为数的一部分参与运算,进行模2的加法

证明 $[x]_{-}[y]_{-}[x-y]_{-}$

补码减法的公式
$$[x]_{\dot{\gamma}} - [y]_{\dot{\gamma}} \stackrel{?}{=} [x-y]_{\dot{\gamma}} = [x]_{\dot{\gamma}} + [-y]_{\dot{\gamma}}$$

(mod 2)

证明上述公式成立的关键是 $[-y]_{\lambda} = -[y]_{\lambda}$

证明 $[-y]_{\stackrel{}{h}} = -[y]_{\stackrel{}{h}}$

证:

$$[x+y]_{\dot{\uparrow}}=[x]_{\dot{\uparrow}}+[y]_{\dot{\uparrow}}=[-y]_{\dot{\uparrow}}+[y]_{\dot{\uparrow}}$$

又

$$[x+y]_{\lambda} = [-y+y]_{\lambda} = [0]_{\lambda} = 0$$

故

$$[-y]_{\lambda}+[y]_{\lambda}=0$$

也即

$$[-y]_{\not \uparrow h} = -[y]_{\not \uparrow h}$$

[-y]_补求补法则

■补码减法

$$[\mathbf{x}]_{\dot{\mathbf{y}}} - [\mathbf{y}]_{\dot{\mathbf{y}}} = [\mathbf{x}]_{\dot{\mathbf{y}}} + [-\mathbf{y}]_{\dot{\mathbf{y}}} = [\mathbf{x} - \mathbf{y}]_{\dot{\mathbf{y}}}$$

- 在进行补码减法前,需从[y]_补求出[-y]_补。最简单的方法是:对[y]_补各位(包括符号位)"求反且末位加1",即可得到[-y]_补
- 写成运算表达式,则为 $[-y]_{\dot{\gamma}} = -[y]_{\dot{\gamma}} + 2^{-n}$ 符号 "一"表示对 $[-y]_{\dot{\gamma}}$ 作包括符号位在内的求反操作

举例

$$x_1 = -0.1110$$
, $x_2 = 0.1101$, $\Re[x_1]_{\frac{1}{7}}$, $[-x_1]_{\frac{1}{7}}$, $[x_2]_{\frac{1}{7}}$, $[-x_2]_{\frac{1}{7}}$, $[-x_2]_{\frac{1}{7}}$, $[-x_1]_{\frac{1}{7}}$, $[-x_1]_{\frac{1}$

举例

$$x = +0.1101, y = +0.0110, 求 x - y$$
解: $[x]_{*|} = 0.1101$

$$[y]_{*|} = 0.0110, [-y]_{*|} = 1.1010$$

$$[x]_{*|} = 0.1101$$

$$+ [-y]_{*|} = 1.1010$$

$$[x - y]_{*|} = 1.1010$$

所以
$$x - y = +0.0111$$

在模2的意义下相加,即超过2的进位要丢掉

溢出概念

- ■无论是定点小数还是定点整数,在运算过程中会出现超出机器表示范围的现象,称之为"溢出"
- ■正溢:运算结果为正,且超出机器所能表示的范围
- ■负溢:运算结果为负,且超出机器所能表示的范围

- ■上溢:结果的绝对值大于机器所能表示的最大绝对值($+\infty$, $-\infty$)(overflow)
- ■下溢:结果的绝对值小于机器所能表示的最小绝对值(机器零)(underflow)

实例

$$x = +0.1011, y = +0.1001, \Re x$$
 $x = -0.1101, y = -0.1011, \Re x + y?$

解:
$$[x]_{\dot{\uparrow}}=0.1011$$
, $[y]_{\dot{\uparrow}}=0.1001$

两个正数相加的结果成为负数?

$$\begin{vmatrix} x = -0.1101, y = -0.1011, 求 \\ x + y? \\ 解: [x]_{*}=1.0011, [y]_{*}=1.0101$$

两个负数相加的结果成为正数?

检测方法

- 1. 采用双符号位法,即"变形补码"或"模4补码"
- 2. 采用单符号位法

1. 双符号位法(1)

●变形补码的定义

小数:
$$[x]_{\uparrow h} = \begin{cases} x & 2 > x \ge 0 \\ 4 + x & 0 > x \ge -2 \end{cases}$$
整数:
$$[x]_{\uparrow h} = 2^{n+2} + x$$
 (mod 2^{n+2})

◆下式也同样成立

$$[x]_{\nmid h} + [y]_{\nmid h} = [x+y]_{\nmid h} \pmod{2}$$

- ◆注意事项
 - □两个符号位均参加运算
 - □最高符号位上产生的进位要丢掉

1. 双符号位法(2)

- ■溢出检测规则
 - ◆两数相加后,结果的符号位出现"01"或"10"两种情况时, 表示发生溢出
 - ◆最高符号位永远表示结果的正确符号
- ■溢出的逻辑表达式为

$$V=S_{f1}\oplus S_{f2}$$

举例

$$x = +1100$$

 $y = +1000$,求 $x + y$
解: $[x]_{*+} = 001100$
 $[y]_{*+} = 001000$

两个符号位为"01",表示已 经溢出

最高有效位产生进位而符号位无进位

$$x = -1100$$

 $y = -1000$, 求 $x + y$
解:[x]_补 = 110100
[y]_补 = 111000

两个符号位为"10",表示已经 溢出

最高有效位无进位而符号位有进位

2. 单符号位法

■溢出的逻辑表达式为

$$V = C_f \oplus C_0$$

 C_f 为符号位产生的进位, C_0 为最高有效位产生的进位

例子

- ■若x=103, y=-25, 采用8位定点补码运算时, 会发生溢出的是:
- $\mathbf{A} \mathbf{x} + \mathbf{y}$
- $\blacksquare B -x+y$
- \mathbf{C} \mathbf{C}
- $\mathbf{D} \mathbf{x} \mathbf{y}$

2.2.4 基本的二进制加法 / 减法器

1位全加器FA(1)

$$S_{i} = \overline{A}_{i} \overline{B}_{i} C_{i} + \overline{A}_{i} B_{i} \overline{C}_{i}$$

$$+ A_{i} \overline{B}_{i} \overline{C}_{i} + A_{i} B_{i} C_{i}$$

$$= A_{i} \oplus B_{i} \oplus C_{i}$$

$$C_{i+1} = \overline{A}_{i} B_{i} C_{i} + A_{i} \overline{B}_{i} C_{i}$$

$$+ A_{i} B_{i} \overline{C}_{i} + A_{i} B_{i} C_{i}$$

$$= A_{i} B_{i} + B_{i} C_{i} + C_{i} A_{i}$$

$$= A_{i} B_{i} + (A_{i} \oplus B_{i}) C_{i}$$

一位全加器真值表

输入			输出	
$\mathbf{A_{i}}$	$\mathbf{B}_{\mathbf{i}}$	C_{i}	S_{i}	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

1位全加器FA(2)

4位加法器设计 0 FA FA FA FA 0 0 最低位 C_{i+1} Si 进位为0 低位的进位输 出是高位的进 位输入 A_i

n位行波进位的补码加法器

 $[\mathbf{A}]_{\grave{\mathbf{A}}} - [\mathbf{B}]_{\grave{\mathbf{A}}} = [\mathbf{A}]_{\grave{\mathbf{A}}} + [-\mathbf{B}]_{\grave{\mathbf{A}}}$

n位行波进位加法器的时间延迟

■考虑溢出检测,n位的行波进位加法器的时间延迟

$$n = 2$$
时
 $t_a = 3T + 3T + 2T + 2T + 3T$
 $= 6T + 2 \cdot 2T + 3T$

n位时: $t_a = 3T + 3T + n \cdot 2T + 3T = (2n + 9)T$ 其中T为单级逻辑电路的单位门延迟,每级异或门延迟3T

■不考虑溢出检测时,n位的行波进位加法器的时间延迟

$$t_a = 3T + 3T + 2T + 3T$$
 (n=2时)
 $t_a = 3T + 3T + (n-1)2T + 3T = 2(n-1)T + 9T$ (n位时)

改进 分析进位链逻辑

■加法器进位链的基本逻辑关系

$$C_{i+1} = A_i B_i + (A_i \oplus B_i) C_i$$

■ 令 $G_i = A_i B_i$ 为进位产生函数(本地进位)

 $P_i = A_i \oplus B_i$ 为进位传递函数(进位条件)

即: P_iC_i为传送进位或条件进位

于是, $C_{i+1} = G_i + P_i C_i$

- 只有当 $A_i = B_i = 1$ 时,本位才向高位进位
- ■传送进位和本地进位不可能同时为1

进位产生和传递函数

$$C_{i+1} = G_i + P_iC_i = G_i + P_i(G_{i-1} + P_{i-1}C_{i-1})$$

$$C_1 = G_0 + P_0C_0$$

$$C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_0$$

$$C_3 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$$

- ■依此公式递推,所有进位均可从最低进位C₀直接求得而无需等待低一位进位
- ■对任意i,均可得到只含 G_k 、 P_k (k=0~i)以及 C_0 的 C_{i+1} 的表达式
- ■先行进位逻辑的总时间延迟为5T = (3T+2T) 每级与门或或门的延迟为T,每级异或门延迟3T

4位先行进位部件CLA

$$C1 = G0 + P0C0$$

$$C2 = G1 + P1G0 + P1P0C0$$

$$C3 = G2 + P2G1 + P2P1G0 + P2P1P0C0$$

$$C4 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0$$

延迟时间: 2T (不含求Pi的时间)

CLA: Carry Look Ahead

16位单级分组先行进位并行加法器

分成4个进位组,组内并行进位, _S15 组间串行进位。延迟时间:

•先行进位部件:

$$2T \times 4 = 8T$$

- •进位产生/传播部件: 3T
- ·求和部件: 3T
- •加法器的总延迟时间:

$$t=3T+4\times 2T+3T=14T$$

比较:

- ·串行进位16位加法器的 总延迟时间:
- t = 9T + 2(n-1)T
- $= 9T + 2 \times 15T = 39T$