

Introduction aux Probabilités

Diana Nurbakova 2023/2024

Introduction

Notion de hazard, chance

Introduction

Science de hazard, risque

WWW.ANDERTOONS.COM PROBABLY

Plan

- 1. Rappels d'analyse combinatoire
- 2. Fondements de la Théorie des Probabilités
- 3. Variables aléatoires réelles
 - 3.1. discrètes
 - 3.2. continues
- 4. Moments d'une variable aléatoire
- 5. Couple de variables aléatoires réelles et Indépendance
- 6. Vecterus aléatoires
- 7. Théorèmes limites
- 8. Chaînes de Markov discrètes

Analyse combinatoire

Dénombrements (Counting) : Motivation

Combien de combinaisons possibles ?

Dénombrements (Counting) : Motivation

Dénombrements (Counting) : Motivation

Une main au Poker: 5 cartes

La paire (one-pair) : 2 cartes de même rang + 3 autres cartes quelconques dont le rang est différent de la paire (sinon c'est un brelan) et différent entre elles (sinon c'est une double paire)

La probabilité d'avoir une paire est :

$$(A) < 5\%$$

$$(E) > 40\%$$

Sans répétition

Permutations

Arrangements

Combinaisons

Avec répétition

Une permutation (permutation) de n éléments est toute disposition ordonnée de ces n éléments.

Une permutation (permutation) de n éléments est toute disposition **ordonnée** de ces n éléments.

$$E = \{ \ \ \, \blacklozenge \ \ \, \blacklozenge \ \ \}$$

$$permutation_1(E) = \{ \ \ \, \blacklozenge \ \ \, \blacklozenge \ \ \, \blacklozenge \ \}$$

$$permutation_2(E) = \{ \ \ \, \spadesuit \ \ \, \blacklozenge \ \ \, \blacklozenge \ \}$$

Une permutation (permutation) de n éléments est toute disposition ordonnée de ces *n* éléments.

Une permutation (permutation) de n éléments est toute disposition ordonnée de ces n éléments.

Une permutation (permutation) de n éléments est toute disposition ordonnée de ces n éléments.

Une permutation (permutation) de n éléments est toute disposition ordonnée de ces n éléments.

Une permutation (permutation) de n éléments est toute disposition ordonnée de ces n éléments.

Une permutation (permutation) de n éléments est toute disposition ordonnée de ces n éléments.

- Les éléments des permutations du même ensemble *E* sont les mêmes
- Le nombre de permutations d'un ensemble à n éléments est :

n!

Sans répétition

Permutations

Arrangements

Combinaisons

Avec répétition

4 personnes participent au Cross de l'INSA :

Karine, Michel, Kevin, Amélie

Combien de possibilités existe-t-il pour définir la 1ère et la 2ème place de la

compétition?

4 personnes participent au Cross de l'INSA : Karine, Michel, Kevin, Amélie

Combien de possibilités existe-t-il pour définir la 1ère et la 2ème place de la compétition ?

1^{ère} place

Karine

4 personnes participent au Cross de l'INSA : Karine, Michel, Kevin, Amélie

Combien de possibilités existe-t-il pour définir la 1ère et la 2ème place de la compétition ?

1^{ère} place

Karine

Quelles sont les possibilités pour la 2^{ème} place une fois que nous savons la 1^{ère} ?

2^{ème} place

4 personnes participent au Cross de l'INSA : Karine, Michel, Kevin, Amélie

Combien de possibilités existe-t-il pour définir la 1ère et la 2ème place de la compétition ?

1ère place Karine

2ème place Michel Kevin Amélie

4 personnes participent au Cross de l'INSA : Karine, Michel, Kevin, Amélie

Combien de possibilités existe-t-il pour définir la 1ère et la 2ème place de la compétition ?

1ère place

Karine

2ème place

Michel Kevin Amélie

Choix parmi les 3 options restantes

4 personnes participent au Cross de l'INSA : Karine, Michel, Kevin, Amélie

Combien de possibilités existe-t-il pour définir la 1ère et la 2ème place de la compétition ?

1ère place

Karine

Michel

2ème place

Michel Kevin Amélie

Karine Kevin Amélie

4 personnes participent au Cross de l'INSA : Karine, Michel, Kevin, Amélie

Combien de possibilités existe-t-il pour définir la 1ère et la 2ème place de la compétition ?

1ère place

Karine

Michel

2ème place

Michel Kevin Amélie

Karine Kevin Amélie

Les gens (éléments) sont les mêmes mais l'ordre est différent ⇒ pas la même chose (arrangement)

4 personnes participent au Cross de l'INSA : Karine, Michel, Kevin, Amélie

Combien de possibilités existe-t-il pour définir la 1ère et la 2ème place de la compétition ?

4 personnes participent au Cross de l'INSA : Karine, Michel, Kevin, Amélie

27

Combien de possibilités existe-t-il pour définir la 1ère et la 2ème place de la compétition ?

4 personnes participent au Cross de l'INSA : Karine, Michel, Kevin, Amélie

Combien de possibilités existe-t-il pour définir la 1^{ère} et la 2^{ème} pla compétition ?

4 possibilités pour la 1^{ère} place

4 personnes participent au Cross de l'INSA : Karine, Michel, Kevin, Amélie

4 personnes participent au Cross de l'INSA : Karine, Michel, Kevin, Amélie

Un arrangement sans répétition (k-permutation) de k éléments parmi les n de l'ensemble E est toute disposition **ordonnée** de k éléments.

Un arrangement sans répétition (k-permutation) de k éléments parmi les n de l'ensemble E est toute disposition ordonnée de k éléments.

• Un arrangement sans répétition de n éléments pris parmi n éléments est une permutation

Un arrangement sans répétition (k-permutation) de k éléments parmi les n de l'ensemble E est toute disposition ordonnée de k éléments.

$$E = \{a, b, c, d\}$$

Tous les arrangements de 3 éléments :

Un arrangement sans répétition (k-permutation) de k éléments parmi les n de l'ensemble E est toute disposition ordonnée de k éléments.

$$E = \{a, b, c, d\}$$

Tous les arrangements de 3 éléments :

Un arrangement sans répétition (k-permutation) de k éléments parmi les n de l'ensemble E est toute disposition ordonnée de k éléments.

$$E = \{a, b, c, d\}$$

Tous les arrangements de 3 éléments :

abc abd acb acd adb adc bac bad bca bcd bda bdc cba cbd cab cad cdb cda dbc dbc dbc dca dab dac

Un arrangement sans répétition (k-permutation) de k éléments parmi les n de l'ensemble E est toute disposition ordonnée de k éléments.

Un arrangement sans répétition (k-permutation) de k éléments parmi les n de l'ensemble E est toute disposition ordonnée de k éléments.

abc abd acb acd adb adc bac bad bca bcd bda bdc cba cbd cab cad cdb cda dbc dba dcb dca dab dac

Un arrangement sans répétition (k-permutation) de k éléments parmi les n de l'ensemble E est toute disposition ordonnée de k éléments.

abc abd acb acd adb adc bac bad bca bcd bda bdc cba cbd cab cad cdb cda dbc dba dcb dca dab dac

Un arrangement sans répétition (k-permutation) de k éléments parmi les n de l'ensemble E est toute disposition ordonnée de k éléments.

Un arrangement sans répétition (k-permutation) de k éléments parmi les n de l'ensemble E est toute disposition ordonnée de k éléments.

- Un arrangement sans répétition de n éléments pris parmi n éléments est une permutation
- Le nombre d'arrangements sans répétition de k éléments parmi n éléments est :

$$A_n^k = \frac{n!}{(n-k)!} = n \times (n-1) \times \dots \times (n-k+1)$$

Sans répétition

Permutations

Arrangements

Combinaisons

Avec répétition

Parmi les 4 personnes qui ont participé au Cross de l'INSA :

Karine, Michel, Kevin, Amélie

2 ont reçu un t-shirt blanc à la fin de la course. Combien de possibilités de donner

un t-shirt blanc à 2 participant.e.s?

Parmi les 4 personnes qui ont participé au Cross de l'INSA : Karine, Michel, Kevin, Amélie

2 ont reçu un t-shirt blanc à la fin de la course. Combien de possibilités de donner un t-shirt blanc à 2 participant.e.s ?

L'ordre ne compte pas

Karine + Michel = Michel + Karine

Karine + Amélie = Amélie + Karine

Parmi les 4 personnes qui ont participé au Cross de l'INSA :

Karine, Michel, Kevin, Amélie

2 ont reçu un t-shirt blanc à la fin de la course. Combien de possibilités de donner un t-shirt blanc à 2 participant.e.s ?

Toutes les paires :

Karine Michel

Karine Kevin

Karine Amélie

Michel Kevin

Michel Amélie

Kevin Amélie

Parmi les 4 personnes qui ont participé au Cross de l'INSA :

Karine, Michel, Kevin, Amélie

2 ont reçu un t-shirt blanc à la fin de la course. Combien de possibilités de donner un t-shirt blanc à 2 participant.e.s ?

Toutes les paires :

Karine Michel Karine Kevin Karine Amélie Michel Kevin Michel Amélie Kevin Amélie

6 options

Parmi les 4 personnes qui ont participé au Cross de l'INSA :

Karine, Michel, Kevin, Amélie

2 ont reçu un t-shirt blanc à la fin de la course. Combien de possibilités de donner un t-shirt blanc à 2 participant.e.s ?

Toutes les paires :

Karine Michel Karine Kevin Karine Amélie Michel Kevin Michel Amélie Kevin Amélie

6 options vs. 12 arrangements

Une combinaison (combination) sans répétition de p éléments parmi les n éléments de l'ensemble E est toute disposition **non ordonnée** de ces p éléments.

Une combinaison (combination) sans répétition de p éléments parmi les n éléments de l'ensemble E est toute disposition **non ordonnée** de ces p éléments.

 Deux combinaisons sont différentes si elles contiennent au moins un élément différent

L'ordre ne compte pas

Une combinaison (combination) sans répétition de p éléments parmi les n éléments de l'ensemble E est toute disposition non ordonnée de ces p éléments.

$$E = \{a, b, c, d\}$$

$$abc \neq abd$$

$$abc = cba$$

Une combinaison (combination) sans répétition de p éléments parmi les n éléments de l'ensemble E est toute disposition non ordonnée de ces p éléments.

 Deux combinaisons sont différentes si elles contiennent au moins un élément différent

$$E = \{a, b, c, d\}$$

Toutes les combinaisons de 3 éléments sans répétition :

Une combinaison (combination) sans répétition de p éléments parmi les n éléments de l'ensemble E est toute disposition non ordonnée de ces p éléments.

 Deux combinaisons sont différentes si elles contiennent au moins un élément différent

$$E = \{a, b, c, d\}$$

Toutes les combinaisons de 3 éléments sans répétition :

abc abd acd bcd

Une combinaison (combination) sans répétition de p éléments parmi les n éléments de l'ensemble E est toute disposition **non ordonnée** de ces p éléments.

$$E = \{a, b, c, d\}$$

arrangements	combinaisons
abc abd acb acd adb adc	abc
bac bad bca bcd bda bdc	abd
cba cbd cab cad cdb cda	acd
dbc dba dcb dca dab dac	bcd

Une combinaison (combination) sans répétition de p éléments parmi les n éléments de l'ensemble E est toute disposition **non ordonnée** de ces p éléments.

$$E = \{a, b, c, d\}$$

arrangements	combinaisons
abc abd acb acd adb adc	abc
bac bad bca bcd bda bdc	abd
cba cbd cab cad cdb cda	acd
dbc dba dcb dca dab dac	bcd

Une combinaison (combination) sans répétition de p éléments parmi les n éléments de l'ensemble E est toute disposition non ordonnée de ces p éléments.

$$E = \{a, b, c, d\}$$

arrangements	combinaisons
abc abd acb acd adb adc	abc
bac bad bca bcd bda bdc	abd
cha chd cab cad cdb cda	acd
dbc dba dcb dca dab dac	bcd

Une combinaison (combination) sans répétition de p éléments parmi les n éléments de l'ensemble E est toute disposition **non ordonnée** de ces p éléments.

Deux co Permutations de p = 3éléments pour chaque combinaison:

$$p! = 3 \times 2 \times 1 = 6$$

abc abd ach acd adh adc bac bad bca bcd bda bdc cha chd cab cad cdb cda dhe dha deh dea dah dae contiennent au moins un élément

c,d

combinaisons

abc a.hd. a.c.d. bcd

$$A_4^3 = 4 \times 3 \times 2 = 24$$

Une combinaison (combination) sans répétition de p éléments parmi les n éléments de l'ensemble E est toute disposition non ordonnée de ces p éléments.

- Deux combinaisons sont différentes si elles contiennent au moins un élément différent
- Le nombre de combinaisons sans répétition de p éléments parmi n éléments est :

$$C_n^p = {n \choose p} = \frac{n!}{p! (n-p)!} = \frac{A_n^p}{p!} = \frac{n \times (n-1) \times \dots \times (n-p+1)}{p!}$$

$$C_n^p = {n \choose p} = \frac{n!}{p! (n-p)!} = \frac{A_n^p}{p!} = \frac{n \times (n-1) \times \dots \times (n-p+1)}{p!}$$

Propriétés:

(1)
$$C_n^{n-p} = \frac{n!}{(n-p)! (n-(n-p))!} = \frac{n!}{(n-p)! p!} = \frac{n!}{p! (n-p)!} = C_n^p$$

$$C_n^p = {n \choose p} = \frac{n!}{p! (n-p)!} = \frac{A_n^p}{p!} = \frac{n \times (n-1) \times \dots \times (n-p+1)}{p!}$$

Propriétés:

(1)
$$C_n^{n-p} = \frac{n!}{(n-p)! (n-(n-p))!} = \frac{n!}{(n-p)! p!} = \frac{n!}{p! (n-p)!} = C_n^p$$

Le nombre de choix possibles d'un élément parmi n:

(2)
$$C_n^1 = \binom{n}{1} = \binom{n}{n-1} = C_n^{n-1} = n$$

$$C_n^p = {n \choose p} = \frac{n!}{p! (n-p)!} = \frac{A_n^p}{p!} = \frac{n \times (n-1) \times \dots \times (n-p+1)}{p!}$$

Propriétés:

(3)
$$C_n^p = C_{n-1}^{p-1} + C_{n-1}^p$$

$$C_{n}^{p} = C_{n-1}^{p-1} + C_{n-1}^{p}$$

$$C_{n-1}^{p-1} = \frac{(n-1)!}{(p-1)!((n-1)-(p-1))!} = \frac{(n-1)!}{(p-1)!(n-p)!}$$

$$C_{n-1}^{p} = \frac{(n-1)!}{(p)!((n-1)-p)!} = \frac{(n-1)!}{p!(n-p-1)!}$$

$$C_{n-1}^{p-1} + C_{n-1}^{p} = \frac{(n-1)!}{(p-1)!(n-p)!} + \frac{(n-1)!}{p!(n-p-1)!} = \frac{(n-1)!}{(p-1)!(n-p-1)!} \left(\frac{1}{n-p} + \frac{1}{p}\right)$$

$$= \frac{(n-1)!}{(p-1)!(n-p-1)!} \left(\frac{p}{p(n-p)} + \frac{n-p}{p(n-p)}\right) = \frac{(n-1)!}{(p-1)!(n-p-1)!} \times \frac{p+n-p}{p(n-p)}$$

$$= \frac{(n-1)! \times n}{((p-1)! \times p) \times ((n-p-1)! \times (n-p))} = \frac{n!}{p!(n-p)!} = C_{n}^{p}$$

$$C_n^p = {n \choose p} = \frac{n!}{p! (n-p)!} = \frac{A_n^p}{p!} = \frac{n \times (n-1) \times \dots \times (n-p+1)}{p!}$$

Propriétés :

(4)
$$C_n^p + C_n^{p+1} = \binom{n}{p} + \binom{n}{p+1} = \binom{n+1}{p+1} = C_{n+1}^{p+1}$$

$$C_n^p + C_n^{p+1} = \binom{n}{p} + \binom{n}{p+1} = \binom{n+1}{p+1} = C_{n+1}^{p+1}$$

$$C_n^p + C_n^{p+1} = \frac{n!}{p! (n-p)!} + \frac{n!}{(p+1)! (n-(p+1))!} = \frac{n!}{p! (n-p-1)!} \left(\frac{1}{n-p} + \frac{1}{p+1}\right)$$

$$= \frac{n!}{p! (n-p-1)!} \left(\frac{p+1}{(n-p)(p+1)} + \frac{n-p}{(n-p)(p+1)} \right) = \frac{n!}{p! (n-p-1)!} \times \frac{p+1+n-p}{(n-p)(p+1)}$$

$$=\frac{n!\times(n+1)}{(p!\times(p+1))((n-p-1)!\times(n-p))}=\frac{(n+1)!}{(p+1)!(n-p)!}=\frac{(n+1)!}{(p+1)!((n+1)-(p+1))!}=C_{n+1}^{p+1}$$

$$C_n^p = {n \choose p} = \frac{n!}{p! (n-p)!} = \frac{A_n^p}{p!} = \frac{n \times (n-1) \times \dots \times (n-p+1)}{p!}$$

Propriétés :

Formule du binôme : $\forall (a, b) \in \mathbb{R}^2$ (ensemble des couples de nombres réels),

 $\forall n \in \mathbb{N}$:

(5)
$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

Coefficient binomial

$$C_n^p = {n \choose p} = \frac{n!}{p! (n-p)!} = \frac{A_n^p}{p!} = \frac{n \times (n-1) \times \dots \times (n-p+1)}{p!}$$

Propriétés :

Formule du binôme : $\forall (a, b) \in \mathbb{R}^2$ (ensemble des couples de nombres réels),

 $\forall n \in \mathbb{N}:$

(5)
$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

Ex:
$$(a+b)^2 = C_2^0 a^0 b^{2-0} + C_2^1 a^1 b^{2-1} + C_2^2 a^2 b^{2-2}$$

$$= \frac{2!}{0! (2-0)!} \times b^2 + \frac{2!}{1! (2-1)!} ab + \frac{2!}{2! (2-2)!} \times a^2 = b^2 + 2ab + a^2$$

Pour créer un robot, nous avons besoin de 2 moteurs et 2 modules de relais. Nous avons le choix parmi 8 moteurs et 5 modules de relais. Combien de combinaisons existe-t-il ?

Pour créer un robot, nous avons besoin de 2 moteurs et 2 modules de relais. Nous avons le choix parmi 8 moteurs et 5 modules de relais. Combien de combinaisons existe-t-il ?

L'ordre n'a pas d'importance ⇒ combinaisons

Pour créer un robot, nous avons besoin de 2 moteurs et 2 modules de relais. Nous avons le choix parmi 8 moteurs et 5 modules de relais. Combien de combinaisons existe-t-il ?

Moteurs

$$C_n^p = \binom{n}{p} = \frac{n!}{p! (n-p)!}$$

Pour créer un robot, nous avons besoin de 2 moteurs et 2 modules de relais. Nous avons le choix parmi 8 moteurs et 5 modules de relais. Combien de combinaisons existe-t-il ?

Moteurs

$$n = 8$$
 $p = 2$

$$C_n^p = {n \choose p} = \frac{n!}{p!(n-p)!}$$

$$n = 5$$
$$p = 2$$

$$C_8^2 = {8 \choose 2} = \frac{8!}{2!(8-2)!} = \frac{8!}{2!6!}$$

= $\frac{8 \cdot 7}{2} = 28$

$$C_5^2 = {5 \choose 2} = \frac{5!}{2!(5-2)!} = \frac{5!}{2!3!}$$

= $\frac{5 \cdot 4}{2} = 10$

Pour créer un robot, nous avons besoin de 2 moteurs et 2 modules de relais. Nous avons le choix parmi 8 moteurs et 5 modules de relais. Combien de combinaisons existe-t-il ?

Moteurs

n = 8p = 2

$$C_n^p = {n \choose p} = \frac{n!}{p! (n-p)!}$$

$$n = 5$$
$$p = 2$$

$$C_8^2 = {8 \choose 2} = \frac{8!}{2!(8-2)!} = \frac{8!}{2!6!}$$

= $\frac{8 \cdot 7}{2} = 28$

Événement 1,
$$E_1$$

$$C_5^2 = {5 \choose 2} = \frac{5!}{2! (5-2)!} = \frac{5!}{2! 3!}$$

= $\frac{5 \cdot 4}{2} = 10$
Événement 2, E_2

Pour créer un robot, nous avons besoin de 2 moteurs et 2 modules de relais. Nous avons le choix parmi 8 moteurs et 5 modules de relais. Combien de combinaisons existe-t-il ?

Moteurs

n = 8p = 2

$$28 \times 10 = 280$$

$$p = 5$$

 $p = 2$

$$C_8^2 = {8 \choose 2} = \frac{8!}{2! (8-2)!} = \frac{8!}{2! 6!}$$

= $\frac{8 \cdot 7}{2} = 28$
Événement 1, E_1

$$C_5^2 = {5 \choose 2} = \frac{5!}{2!(5-2)!} = \frac{5!}{2!3!}$$

= $\frac{5 \cdot 4}{2} = 10$
Événement 2, E_2

Sans répétition

Permutations

Arrangements

Combinaisons

Avec répétition

Arrangements avec répétition

Nous cherchons à trouver le code composé de 7 chiffres. Nous savons que les trois premiers chiffres sont 116. Combien de codes possibles existe-t-il?

Nous cherchons à trouver le code composé de 7 chiffres. Nous savons que les trois premiers chiffres sont 116. Combien de codes possibles existe-t-il?

Est-ce que l'ordre est important ?

Nous cherchons à trouver le code composé de 7 chiffres. Nous savons que les trois premiers chiffres sont 116. Combien de codes possibles existe-t-il?

Est-ce que l'ordre est important ?

116 3542
116 5423 Pas le même code
$$\Rightarrow$$
 l'ordre joue

arrangements

Nous cherchons à trouver le code composé de 7 chiffres. Nous savons que les trois premiers chiffres sont 116. Combien de codes possibles existe-t-il?

Est-ce que l'ordre est important ?

 $\begin{array}{c}
116 \ 3542 \\
116 \ 5423
\end{array}$ Pas le même code \Rightarrow l'ordre joue

arrangements

Nous cherchons à trouver le code composé de 7 chiffres. Nous savons que les trois premiers chiffres sont 116. Combien de codes possibles existe-t-il?

Nous cherchons à trouver le code composé de 7 chiffres. Nous savons que les trois premiers chiffres sont 116. Combien de codes possibles existe-t-il?

Nous cherchons à trouver le code composé de 7 chiffres. Nous savons que les trois premiers chiffres sont 116. Combien de codes possibles existe-t-il?

Nous cherchons à trouver le code composé de 7 chiffres. Nous savons que les trois premiers chiffres sont 116. Combien de codes possibles existe-t-il?

4ème 5ème 6ème 7ème

10 10 10 10

Nous cherchons à trouver le code composé de 7 chiffres. Nous savons que les trois premiers chiffres sont 116. Combien de codes possibles existe-t-il?

4^{ème} 5^{ème} 6^{ème} 7^{ème}

$$10 \times 10 \times 10 \times 10 = 10^4 = 10,000$$

Nous cherchons à trouver le code composé de 7 chiffres. Nous savons que les trois premiers chiffres sont 116. Combien de codes possibles existe-t-il?

4ème 5ème 6ème 7ème

$$10 \times 10 \times 10 \times 10 = 10^4 = 10,000$$

Nous **NE** retirons **PAS** les éléments (les options restent disponibles)

Un arrangement avec répétition de k éléments parmi les n de l'ensemble E est toute disposition ordonnée de k éléments, non nécessairement distincts.

• Le nombre d'arrangements avec répétition de k éléments parmi n éléments est :

Sans répétition

Permutations

Arrangements

Combinaisons

Avec répétition

Chaque personne reçoit un vaccin, possiblement du même type. Quel est le nombre de configurations possibles ?

4 types de vaccin

Choisir 3 éléments parmi 6 :

$$C_6^3 = \frac{6!}{3! (6-3)!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2) \times (3 \times 2)!}$$
$$= 5 \times 4 = 20 = C_{4+3-1}^3$$

$$= 5 \times 4 = 20 = C_{4+3-1}^3$$

4 types de vaccin

Répartir 3 personnes en 4 groupes, si les groupes peuvent rester vides et/ou contenir plusieurs éléments

4 types de vaccin

Répartir 3 personnes en 4 groupes, si les groupes peuvent rester vides et/ou contenir plusieurs éléments

Où sont les frontières des urnes (groupes)?

Graphiquement, il suffit d'utiliser 3 séparateurs pour distinguer selon type parmi 4 (définir les frontières entre les groupes)

4 types de vaccin

3 patients à répartir + 3 séparateurs = 6 positions (éléments possibles) possibles qui font une configuration : en sachant les positions des patients, nous allons savoir une configuration

Graphiquement, il suffit d'utiliser 3 séparateurs pour distinguer selon type parmi 4 (définir les frontières entre les groupes)

4 types de vaccin

3 patients à répartir + 3 séparateurs = 6 positions (éléments possibles) possibles qui font une configuration : en sachant les positions des patients, nous allons savoir une configuration

Choisir 3 éléments (positions) parmi 6 :

$$C_6^3 = \frac{6!}{3!(6-3)!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2) \times (3 \times 2)!}$$
$$= 5 \times 4 = 20 = C_{4+3-1}^3$$

1 2 3 4 5

Graphiquement, il suffit d'utiliser 3 séparateurs pour distinguer selon type parmi 4 (définir les frontières entre les groupes)

Une combinaison avec répétition de p éléments parmi les n éléments de l'ensemble E est toute disposition non ordonnée de ces p éléments, non nécessairement distincts.

• Le nombre de combinaisons avec répétition de p éléments parmi n éléments est :

$$C_{n+p-1}^p = {n+p-1 \choose p} = \frac{(n+p-1)!}{p!(n-1)!}$$

Sans répétition

Permutations

Arrangements

Combinaisons

Avec répétition

4 types de vaccin

10 doses en total

Quel est le nombre de possibilités à mettre 10 vaccins répartis en 4 types à 10 personnes qui font la queue ?

4 types de vaccin

10 doses en total

On s'intéresse à l'ordre

Les éléments du même type ne sont pas distincts

Quel est le nombre de possibilités à mettre 10 vaccins répartis en 4 types à 10 personnes qui font la queue ?

4 types de vaccin

10 doses en total

Choisir 10 éléments parmi 10 en tenant compte de l'ordre \Rightarrow permutations : n! = 10!

> unasicante de cota

4 types de vaccin

10 doses en total

Choisir 10 éléments parmi 10 en tenant compte de l'ordre \Rightarrow permutations : n! = 10!

Prendre en compte les permutations parmi les éléments du même type :

$$n_1! = 2!$$

$$n_2! = 3!$$

$$n_3! = 4!$$

$$n_4! = 1!$$

Permutations avec répétition

4 types de vaccin

10 doses en total

Le nombre total des permutations : 10!

$$\frac{2! \times 3! \times 4! \times 1!}{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} = \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(2 \times 1) \times (3 \times 2 \times 1) \times (4 \times 3 \times 2 \times 1) \times 1!} = 10 \times 9 \times 4 \times 7 \times 5 = 12,600$$

Choisir 10 éléments parmi 10 en tenant compte de l'ordre \Rightarrow permutations : n! = 10!

Prendre en compte les permutations parmi les éléments du même type :

$$n_1! = 2!$$

$$n_2! = 3!$$

$$n_3! = 4!$$

$$n_4! = 1!$$

Permutations avec répétition

Soit il existe l catégories, les éléments de l'ensemble E se répartissent en ces catégories de la façon que $n_1+n_2+\cdots+n_l=n$, où n_i est les nombre d'éléments dans la catégorié i.

Une permutation avec répétition de n éléments répartis en l catégories est toute disposition ordonnée de n éléments qui contient n_i éléments de chaque catégories i.

 « Répétition » au niveau de catégories (types) : un type d'élément peut être présent plusieurs fois

Permutations avec répétition

Soit il existe l catégories, les éléments de l'ensemble E se répartissent en ces catégories de la façon que $n_1+n_2+\cdots+n_l=n$, où n_i est les nombre d'éléments dans la catégorié i.

Une permutation avec répétition de n éléments répartis en l catégories est toute disposition ordonnée de n éléments qui contient n_i éléments de chaque catégories i.

- « Répétition » au niveau de catégories (types) : un type d'élément peut être présent plusieurs fois
- Le nombre de permutations avec répétition :

$$\frac{n!}{n_1! \times n_2! \times ... \times n_l!}$$

Dénombrements (Counting) : Bilan

	Sans répétition (remise)	Avec répétition (remise)
Avec ordre	$A_n^p = \frac{n!}{(n-p)!}$	n^p
Sans ordre	$C_n^p = \frac{n!}{p! (n-p)!}$	$C_{n+p-1}^{p} = \frac{(n+p-1)!}{p!(n-1)!}$

Une main au Poker: 5 cartes

La paire (one-pair) : 2 cartes de même rang + 3 autres cartes quelconques dont le rang est différent de la paire (sinon c'est un brelan) et différent entre elles (sinon c'est une double paire)

La probabilité d'avoir une paire est :

$$(A) < 5\%$$

$$(E) > 40\%$$

Soit:

n=13 le nombre de valeurs (cartes de la même couleur / enseigne)

Alors:

 $4n = 4 \cdot 13 = 52$ le nombre de carte dans le paquet

Soit:

n=13 le nombre de valeurs (cartes de la même couleur / enseigne)

Alors:

 $4n = 4 \cdot 13 = 52$ le nombre de carte dans le paquet

Le nombre de combinaisons pour choisir 5 cartes (une main) parmi 52 (4n):

$$\binom{52}{5} = 2,598,960$$

Option 1

Une paire est déterminée par sa Valeur et la Couleur de ses cartes :

Option 1

Une paire est déterminée par sa Valeur et la Couleur de ses cartes :

Concernant la Couleur : choisir 2 couleurs parmi 4

$$\binom{4}{2} = 6$$

Toutes les combinaisons de couleurs dans une paire : (l'ordre ne compte pas)

Option 1

9**♣** 9♥ V♠ 6♦ 2♣

Une paire est déterminée par sa Valeur et la Couleur de ses cartes :

Une paire est déterminée par sa Valeur : choisir 1 valeur parmi n=13

$$\binom{n}{1} = n = 13$$

8

4 7

K 6

D | 5

V 4

10 3

9 2

Option 1

9♣ 9♥ V♠ 6♦ 2♣

Une paire est déterminée par sa Valeur et la Couleur de ses cartes :

$$\binom{n}{1} \times \binom{4}{2} = 6n = 6 \times 13 = 78$$

8

\ | 7

K 6

D | 5

V 4

10 3

9 2

Option 1

Une paire \neq autres mains

- les valeurs différentes entre elles
- les valeurs différentes de celle de la paire
- les couleurs sont libres

Option 1

Une paire ≠ autres mains

- les valeurs différentes entre elles
- les valeurs différentes de celle de la paire \Rightarrow le choix parmi n-1=12
- les couleurs sont libres

Option 1

Une paire ≠ autres mains

↓

- les valeurs différentes entre elles ⇒ choisir 3 parmi 12
- les valeurs différentes de celle de la paire \Rightarrow le choix parmi n-1=12
- les couleurs sont libres

$$\binom{12}{3} = \frac{12!}{3!(12-3)!} = \frac{12!}{3!9!} = \frac{12 \times 11 \times 10}{6} = 220$$

Option 1

Une paire ≠ autres mains

↓

- les valeurs différentes entre elles ⇒ choisir 3 parmi 12
- les valeurs différentes de celle de la paire \Rightarrow le choix parmi n-1=12
- les couleurs sont libres \Rightarrow choisir 1 parmi 4 pour chacune des cartes libres

$$\binom{4}{1}\binom{4}{1}\binom{4}{1} = 4^3 = 64$$

Option 1

Une paire ≠ **autres mains**↓

- les valeurs différentes entre elles ⇒ choisir 3 parmi 12
- les valeurs différentes de celle de la paire \Rightarrow le choix parmi n-1=12
- les couleurs sont libres \Rightarrow choisir 1 parmi 4 pour chacune des cartes libres

$$\binom{12}{3} \cdot 4^3 = 220 \cdot 64 = 14,080$$

Option 1

9.

2*

Une paire est déterminée par sa Valeur et la Couleur $\binom{13}{1} \times \binom{4}{2} = 78$ de ses cartes:

$$\binom{13}{1} \times \binom{4}{2} = 78$$

les **3 cartes libres**:
$$\binom{12}{3} \times 4^3 = 220 \times 64 = 14,080$$

Option 1

9.

2*

Une paire est déterminée par sa Valeur et la Couleur $\binom{13}{1} \times \binom{4}{2} = 78$ de ses cartes:

$$\binom{13}{1} \times \binom{4}{2} = 78$$

les **3 cartes libres**:
$$\binom{12}{3} \times 4^3 = 220 \times 64 = 14,080$$

Le nombre de combinaisons pour avoir une main avec une paire parmi 52 cartes :

$$78 \times 14,080 = 1,098,240$$

Option 1

Le nombre de combinaisons pour avoir une main avec une paire parmi 52 cartes :

$$\binom{13}{1} \times \binom{4}{2} \times \binom{12}{3} \times 4^3 = 1,098,240$$

Toutes les combinaisons :
$$\binom{52}{5} = 2,598,960$$

P(une main avec une paire) =
$$\frac{1,098,240}{2,598,960} \approx 42.46\%$$

Option 2

Nombre total de cartes : 52

Option 2

Nombre total de cartes: 52

Combien de choix pour définir la **1**ère **carte** de la main qui va faire partie de la paire ?

52

Option 2

Nombre total de cartes : 52

Combien de choix pour définir la **1**ère **carte** de la main qui va faire partie de la paire ?

52

Attention: Dans cette réflexion, on introduit la notion d'ordre de cartes dans la main qu'il faudra enlever par la suite

Option 2

Nombre total de cartes: 52

Combien de choix pour définir la **1**ère **carte** de la main qui va faire partie de la paire ?

52

Combien de choix pour définir la **2**ème **carte** de la main qui va faire partie de la paire ?

3

9.

Option 2

Nombre total de cartes : 52

Combien de choix pour définir la **1**ère **carte** de la main qui va faire partie de la paire ?

52

Combien de choix pour définir la **2**^{ème} **carte** paire ?

3

Option 2

9.

9♦

9 .

9

Nombre total de cartes : 52

Combien de choix pour définir la **1**ère **carte** de la main qui va faire partie de la paire ?

52

Combien de la paire ? L'ordre n'est **PAS** important ⇒ introduction d'une pénalité correspondante au nombre de permutations de 2 cartes formant la paire

Option 2

Nombre total de cartes: 52

Une valeur parmi 13 est prise par la paire. Toutes les valeurs de 3 cartes restantes doivent être distinctes

Option 2

Nombre total de cartes : 52

Une valeur parmi 13 est prise par la paire. Toutes les valeurs de 3 cartes restantes doivent être distinctes

Combien de choix pour définir la **1**ère **carte** de la main qui NE va PAS faire partie de la paire ?

$$52 - 4 = 48$$

(ici on soustrait 4 cartes du rang de la paire)

Option 2

Nombre total de cartes : 52

Une valeur parmi 13 est prise par la paire. Toutes les valeurs de 3 cartes restantes doivent être distinctes

Combien de choix pour définir la **1**ère **carte** de la main qui NE va PAS faire partie de la paire ?

$$52 - 4 = 48$$

(ici on soustrait 4 cartes du rang de la paire)

Attention : Dans cette réflexion, on introduit la notion d'ordre de cartes dans la main qu'il faudra enlever par la suite

Nombre total de cartes: 52

Une valeur parmi 13 est prise par la paire. Toutes les valeurs de 3 cartes restantes doivent être distinctes

Combien de choix pour définir la **2**^{ème} **carte** de la main qui NE va PAS faire partie de la paire ?

$$52 - 4 - 4 = 44$$

(ici on soustrait 4 cartes du rang de la paire et 4 cartes du rang de la 3ème carte de la main)

Option 2

Nombre total de cartes : 52

Une valeur parmi 13 est prise par la paire. Toutes les valeurs de 3 cartes restantes doivent être distinctes

Combien de choix pour définir la **3**ème **carte** de la main qui NE va PAS faire partie de la paire ?

$$52 - 4 - 4 - 4 = 40$$

(ici on soustrait 4 cartes du rang de la paire, 4 cartes du rang de la 3ème carte de la main et 4 cartes de la 4ème carte de la main)

Option 2

Nombre total de cartes : 52

Une valeur parmi 13 est prise par la paire. Toutes les valeurs de 3 cartes restantes doivent être distinctes

$$\frac{48 \times 44 \times 40}{3!} = \frac{48 \times 44 \times 40}{3 \times 2 \times 1} = 14,080$$

Option 2

Nombre total de cartes : 52

Une valeur parmi 13 est prise par la paire. Toutes les valeurs de 3 cartes restantes doivent être distinctes

$$\frac{48 \times 44 \times 40}{3!} = \frac{10 \times 11 \times 10}{\text{L'ordre n'est PAS important}} \Rightarrow 0$$
introduction d'une pénalité correspondante au nombre de permutations de 2 cartes
NE formant PAS la paire

Option 2

Nombre total de cartes : 52

Nombre de possibilités d'obtenir une main de la paire :

$$78 \times 14,080 = 1,098,240$$

Option 2

Nombre total de cartes : 52

Nombre de possibilités d'obtenir une main de la paire :

$$78 \times 14,080 = 1,098,240$$

$$P(une\ main\ avec\ une\ paire) = \frac{1,098,240}{2,598,960} \approx 42.46\%$$

Une main au Poker: 5 cartes

La paire (one-pair) : 2 cartes de même rang + 3 autres cartes quelconques dont le rang est différent de la paire (sinon c'est un brelan) et différent entre elles (sinon c'est une double paire)

La probabilité d'avoir une paire est :

(A) < 5%

(C) entre 10% et 20%

(E) > 40%

(B) entre 5% et 10%

(D) entre 20% et 40%