

Christian-Albrechts-Universität zu Kiel

### 05\_nichtparametrische\_tests

Hypothesentests, Kolmogorov-Smirnov, Mann-Whitney-U



Induktive oder Inferenzstatistik

Christian-Albrechts-Universität zu Kiel

### Dient zur Ableitung von Eigenschaften der Grundgesamtheit aus einer Stichprobe

Die Ergebnisse sind immer statistisch ;-)

d.h., alle Aussagen treffen mit einer bestimmten Wahrscheinlichkeit zu, können aber auch mit einer bestimmten Wahrscheinlichkeit falsch sein.

Grundlage ist die Wahrscheinlichkeitstheorie (Stochastik)



Grundgesamtheit und Stichprobe [1]

### CAIU

Christian-Albrechts-Universität zu Kiel

#### Zur Wiederholung:

#### Grundgesamtheit

Menge aller Merkmalsträger, die für die Untersuchung relevant sind.

#### **Stichprobe**

Auswahl von Merkmalsträgern nach bestimmten Kriterien (z.B. Repräsentativität), die an Stelle der Grundgesamtheit untersucht werden Arithm. Mittel, Median, Modus

#### Den Unterschied sollte man sich immer bewußt halten

Archäologen arbeiten (fast) nie mit der Grundgesamtheit



Grundgesamtheit und Stichprobe [2]

### Eigenschaften der Grundgesamtheit: Parameter

Parameter gibt es immer, sie sind feste Werte, aber sie sind unbekannt, meist auch nicht überprüfbar

Bsp:  $\mu$ : Arithm. Mittel der Grundgesamtheit  $\bar{x}$ : Arithm. Mittel der Stichprobe

σ: Standardabweichung der Grundgesamtheit s: Standardabweichung der Stichprobe

In statistischen Tests können immer nur die Eigenschaften der Stichprobe geprüft werden. Daher hängt die Qualität der Aussage immer von der Wahl der Stichprobe ab (Repräsentativität)





Christian-Albrechts-Universität zu Kiel

Hypothesen-Test

#### Überprüfung von Annahmen über die Grundgesamtheit

Es wird eine Annahme (Hypothese) über die Grundgesamtheit aufgestellt und dann anhand der Stichprobe auf ihre Wahrscheinlichkeit getestet.

#### Gängige Fragen:

Wie hoch ist die Wahrscheinlichkeit, das zwei oder mehr Stichproben von unterschiedlichen Grundgesamtheiten stammen? (Ist die Ausstattungssitte mit Grabbeigaben zwischen Männern und Frauen so unterschiedlich, das sich hier zwei unterschiedliche gesellschaftliche Gruppen zeigen?)

Wie hoch ist die Wahrscheinlichkeit das eine gegebene Stichprobe von einer Grundgesamtheit mit bestimmten Eigenschaften stammt? (Ist die Anzahl der Grabbeigaben zufällig oder gibt es ein Muster?)



Null-Hypothese [1]

Christian-Albrechts-Universität zu Kiel

#### Validierung durch Falsifikation

In statistischen Tests prüft man meist nicht die Aussage, die man erwartet, sondern versucht, die Aussage zu wiederlegen, die man nicht erwartet: Null-Hypothese. Diese sagt meist aus, das ein Zusammenhang oder ein Unterschied **nicht** besteht und die Verteilung der Beobachtungen lediglich zufällig sind.

Bsp: Wir wollen, ob die Beigabenverteilung zwischen Männern und Frauen unterschiedlich ist.

 $H_0$ : Die Beigabenverteilung ist gleich  $H_1$ : Die Beigabenverteilung ist unterschiedlich

#### Grund:

- 1. Es ist (technisch) leichter, zu beweisen, das etwas nicht stimmt, als zu beweisen, das etwas stimmt.
- 2. Eine Nullhypothese ist oft einfacher zu formulieren (Wie genau ist denn die Beigabenverteilung unterschiedlich?). Sie sagt noch nichts über die Natur des Zusammenhangs/Unterschiedes aus.



Christian-Albrechts-Universität zu Kiel

Null-Hypothese [2]

#### **Ablauf eines Statistischen Testes**

#### Aufstellen einer Alternativhypothese:

Die Beigabenverteilung zwischen Männern und Frauen ist unterschiedlich

#### Aufstellen der Nullhypothese:

Die Beigabenverteilung zwischen Männern und Frauen ist gleich

#### **Testen der Nullhypothese**

#### Wenn Ergebniss des Testes signifikant:

Ablehnen der Nullhypothese, Wahl der Alternativhypothese Die Beigabenverteilung zwischen Männern und Frauen ist unterschiedlich

#### Wenn Ergebniss des Testes nicht signifikant:

Die Nullhypothese kann nicht abgelehnt werden Es kann nicht gesagt werden, ob die Beigabenverteilung zwischen Männern und Frauen unterschiedlich ist



Einseitige/zweiseitige Fragestellung

### CAU

Christian-Albrechts-Universität zu Kiel

#### one-tailed oder two-tailed

Je nach Frage können sich unterschiedliche Alternativ-Hypothesenanzahlen ergeben

#### Bsp:

Ist die Beigabenanzahl bei Frauen höher als bei Männern? Einseitige Frage, nur ja oder nein (one-tailed).

Ist die Beigabenanzahl bei Frauen anders als bei Männern? Zweiseitige Frage, kleiner – gleich – größer möglich (two-tailed).

Daher werden bei Stat. Tests oft zwei Signifikanzen angegeben.





Quelle: http://www.statistics4u.info/fundstat\_germ/cc\_test\_one\_two\_sided.html



Christian-Albrechts-Universität zu Kiel

#### Stat. Signifikanz

#### Wie wahr ist wahr?

Statistische Signifikanz ist im Grunde ein Maß dafür, wie wahrscheinlich ein Irrtum ist.

Auf Basis der Signifikanz wird die Null-Hypothese verworfen und die Alternativ-Hypothese gewählt... oder auch nicht.

Es gibt klassische Grenzwerte für Signifikanz (Signifikanzniveaus):

0.05: statistisch signifikant, mit 95% Wahrscheinlichkeit ist die Entscheidung korrekt

0.01: sehr signifikant, mit 99% Wahrscheinlichkeit ist die Entscheidung korrekt

0.001: hochsignifikant, mit 99,9% Wahrscheinlichkeit ist die Entscheidung korrekt

Meist mit α oder p-Wert (p-value) bezeichnet



Christian-Albrechts-Universität zu Kiel

 $\alpha$ - und  $\beta$ -Fehler [1]

#### Wenn die Statistik mal nicht stimmt

Es gibt zwei Arten von möglichen Fehlern:

### Die Nullhypothese wird abgelehnt, obwohl sie wahr ist Fehler 1. Art, falsch positiv oder $\alpha$ -Fehler

Das Ergebnis eines Schwangerschaftstests ist falsch positiv, wenn er eine Schwangerschaft anzeigt, obwohl keine Schwangerschaft vorliegt.

### Die Nullhypothese nicht wird abgelehnt, obwohl sie falsch ist Fehler 2. Art, negativ falsch oder $\beta$ -Fehler

Das Ergebnis eines Schwangerschaftstests ist falsch negativ, wenn er keine Schwangerschaft anzeigt, obwohl eine Schwangerschaft vorliegt.

|                                                                      | Wahrer Sachverhalt: H0<br>(Es gibt keinen<br>Unterschied) | Wahrer Sachverhalt: H1<br>(Es gibt einen<br>Unterschied) |
|----------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|
| durch einen statistischen<br>Test fällt eine<br>Entscheidung für: H0 | richtige Entscheidung                                     | Fehler 2. Art                                            |
| durch einen statistischen                                            | Fehler 1. Art                                             | richtige Entscheidung                                    |
| Test fällt eine<br>Entscheidung für: H1                              |                                                           | Quelle                                                   |



Christian-Albrechts-Universität zu Kiel

 $\alpha$ - und  $\beta$ -Fehler [1]

#### **Tests und Fehler**

Statistische Tests sollten beide Fehlerarten vermeiden Gradwanderung (zu streng/nicht streng genug)

Generell sind Fehler 1. Art meist schwerwiegender als Fehler 2. Art Dies führt meist zu falschen Annahmen, da bei einem Fehler 2. Art die Null-Hypothese nicht als bewiesen gilt, bei einem Fehler 1. Art die Alternativhypothese hingegen schon.

#### Teststärke (Power)

Ein Test ist um so stärker (hat mehr Power), umso mehr er Fehler 2. Art vermeidet, ohne Fehler 1. Art zu begehen.

Ein stärkerer Test hilft, Sachverhalte besser zu klären.



Nichtparametrische Tests

#### CAIU

Christian-Albrechts-Universität zu Kiel

#### parametrisch vs. nicht-parametrisch/parameterfrei:

**parametrisch**: Werte müssen bestimmter Verteilung folgen (z. B. Normalverteilung); Grundannahmen zur Verteilung sind notwendig

**nicht-parametrisch**: Annahmen zur Werteverteilung entfallen; keine Grundannahmen notwendig

#### Nicht-parametrische Tests, Vorteile - Nachteile:

**Vorteil**: Sind auch anwendbar, wenn keine Aussage über die Verteilung möglich ist oder die Verteilung nicht den für parametrische Tests gegebenen Anforderungen entspricht.

Es können auch relativ kleine Stichproben getestet werden.

Nachteil: Haben meist eine geringere Power (Teststärke),











**Test** 

Kolmogorov-Smirnov-Test [1]

#### CAIU

Christian-Albrechts-Universität zu Kiel

#### Test auf Differenz zweier Verteilungen

**Voraussetzung**: mindestens 1 ordinalskalierte Variable (bei einer Stichprobe) und 1 nominalskalierte Gruppierungsvariable (bei 2 Stichproben)

Vorgehensweise bei einer Stichprobe: die kumulative prozentuale Häufigkeit der Stichprobe wird mit einer Standardverteilung (meist Normalverteilung) verglichen

**Vorgehensweise bei 2 Stichproben**: die kumulativen prozentualen Häufigkeiten der Stichproben werden miteinander verglichen (nach Müller-Scheeßel)



Christian-Albrechts-Universität zu Kiel

#### Kolmogorov-Smirnov-Test [2]

#### **Beispiel (nach Shennan)**

Weibliche bronzezeitliche Bestattungen auf einem Gräberfeld nach Altersklassen

| Alter zum Zeitpunkt<br>des Todes | Reichtumskategorie<br>Reich | Arm |
|----------------------------------|-----------------------------|-----|
| Infans I                         | 6                           | 23  |
| Infans II                        | 8                           | 21  |
| Juvenil                          | 11                          | 25  |
| Adult                            | 29                          | 36  |
| Matur                            | 19                          | 27  |
| Senil                            | 3                           | 4   |
| Gesamt                           | 76                          | 136 |

Frage: Unterschieden sich die Lebensbedingungen so, daß ein unterschiedliches Alter erreicht wurde?



Christian-Albrechts-Universität zu Kiel

#### Kolmogorov-Smirnov-Test [3]

#### Voraussetzungen

H<sub>0</sub>: Es gibt keinen Unterschied zwischen reichen und armen Gräbern hinsichtlich des Sterbealters

H<sub>1</sub>: Es gibt einen Unterschied zwischen reichen und armen Gräbern hinsichtlich des Sterbealters

Zweiseitiger Test.

Signifikanzniveau: 0.05

#### Variablen:

- Ordinal skalierte Altersklassen
- 2. mindestens nominal (ordinal) skalierte Reichtumsklassen



Christian-Albrechts-Universität zu Kiel

Kolmogorov-Smirnov-Test [4]

#### Vorgehen: Berechnen der prozentualen Häufigkeit

Teilen jeder Zelle der Spalte durch die Summe der Spalte

| Alter zum Zeitpunkt des Todes | Reichtumskategorie |       |     |       |
|-------------------------------|--------------------|-------|-----|-------|
|                               | Reich              |       | Arm |       |
| Infans I                      | 6                  | 0.079 | 23  | 0.169 |
| Infans II                     | 8                  | 0.105 | 21  | 0.154 |
| Juvenil                       | 11                 | 0.145 | 25  | 0.184 |
| Adult                         | 29                 | 0.382 | 36  | 0.265 |
| Matur                         | 19                 | 0.250 | 27  | 0.199 |
| Senil                         | 3                  | 0.039 | 4   | 0.029 |
| Gesamt                        | 76                 | 1.000 | 136 | 1.000 |



Christian-Albrechts-Universität zu Kiel

Kolmogorov-Smirnov-Test [5]

#### Vorgehen: Berechnen der kulmulativen prozentualen Häufigkeit

Addieren jeder prozentualen Häufigkeit mit den darunter liegenden Häufigkeiten der Ordinalen Variable

| Alter zum              | Reichtums | skategorie |       |     |       |       |
|------------------------|-----------|------------|-------|-----|-------|-------|
| Zeitpunkt<br>des Todes | Reich     |            |       | Arm |       |       |
| Infans I               | 6         | 0.079      | 0.079 | 23  | 0.169 | 0.169 |
| Infans II              | 8         | 0.105      | 0.184 | 21  | 0.154 | 0.323 |
| Juvenil                | 11        | 0.145      | 0.329 | 25  | 0.184 | 0.507 |
| Adult                  | 29        | 0.382      | 0.711 | 36  | 0.265 | 0.772 |
| Matur                  | 19        | 0.250      | 0.961 | 27  | 0.199 | 0.971 |
| Senil                  | 3         | 0.039      | 1.000 | 4   | 0.029 | 1.000 |
| Gesamt                 | 76        | 1.000      |       | 136 | 1.000 |       |



Christian-Albrechts-Universität zu Kiel

Kolmogorov-Smirnov-Test [6]

### Vorgehen: Berechnen der Differenz der kulmulativen prozentualen Häufigkeiten

Subtrahieren der kulmulativen prozentualen Häufigkeiten voneinander, bilden des Absolut-Wertes

| Alter zum<br>Zeitpunkt des<br>Todes | Reichtum | nskategorie | Differenz |         |
|-------------------------------------|----------|-------------|-----------|---------|
|                                     | Reich    | Arm         |           |         |
| Infans I                            | 0.079    | 0.169       | 0.090     | Größte  |
| Infans II                           | 0.184    | 0.323       | 0.139     | Differe |
| Juvenil                             | 0.329    | 0.507       | 0.178     |         |
| Adult                               | 0.711    | 0.772       | 0.061     |         |
| Matur                               | 0.961    | 0.971       | 0.010     |         |
| Senil                               | 1.000    | 1.000       | 0.000     |         |
|                                     |          |             |           |         |



Christian-Albrechts-Universität zu Kiel

#### Kolmogorov-Smirnov-Test [7]

### Vergleich der maximalen Differenz mit einem Schwellenwert, der sich aus den Gesamtanzahlen berechnet

Formel:

Schwellenwert KS-Test = Faktor  $f * \sqrt{\frac{n_1 + n_2}{n_1 n_2}}$ 

Gesamtanzahl Reich: 76

Gesamtanzahl Arm: 136

Differenz max. (D<sub>max</sub>): 0.178

Signifikanzniveau: 0.05

Faktor f:

Signifikanzniveau 0.05: 1.36 Signifikanzniveau 0.01: 1.63 Signifikanzniveau 0.001: 1.95

**Daher:** Schwellenwert KS – Test =  $1.36 * \sqrt{\frac{76 + 136}{76136}} = 0.195$ 

Dmax < Schwellenwert, kein signifikanter Unterschied feststellbar

Das heißt aber nicht, dass die Verteilungen gleich sind, sondern nur, dass sie sich nicht signifikant unterscheiden.



### Kolmogorov-Smirnov-Test [8]

#### **KS-Test in R**

```
> graeberbrz<-read.csv2("graeberbrz.csv",row.names=1)</pre>
> table(graeberbrz)
     reichtum
alter arm reich
        6
             21
       11
       29
       19
> alter<-graeberbrz$alter
> reichtum<-graeberbrz$reichtum
> ks.test(alter[reichtum=="arm"],alter[reichtum=="reich"])
      Two-sample Kolmogorov-Smirnov test
data: alter[reichtum == "arm"] and alter[reichtum == "reich"]
D = 0.1784, p-value = 0.08977
alternative hypothesis: two-sided
Warning message:
In ks.test(alter[reichtum == "arm"], alter[reichtum == "reich"]) :
  kann bei Bindungen nicht die korrekten p-Werte berechnen
```





Kolmogorov-Smirnov-Test Aufgabe

Christian-Albrechts-Universität zu Kiel

### Tassen aus relativ geschlossenen spätneolithischen Inventaren (Müller 2001)

Stellen Sie mittels des Kolmogorov-Smirnov-Tests fest, ob sich die Höhen der ein- und zweigliedrigen Tassen signifikant auf einem 0.05-Niveau unterscheiden.

Datei: mueller2001.csv



#### Kolmogorov-Smirnov-Test Lösung

### Tassen aus relativ geschlossenen spätneolithischen Inventaren (Müller 2001)

Stellen Sie mittels des Kolmogorov-Smirnov-Tests fest, ob sich die Höhen der ein- und zweigliedrigen Tassen signifikant auf einem 0.05-Niveau unterscheiden.

Datei: mueller2001.csv

- > mueller<-read.csv2("mueller2001.csv")
- > tassentyp<-mueller\$tassentyp
- > hoehe<-mueller\$hoehe
- > ks.test(hoehe[tassentyp=="eingliedrig"],hoehe[tassentyp=="zweigliedrig"])

**Two-sample Kolmogorov-Smirnov test** 

data: hoehe[tassentyp == "eingliedrig"] and hoehe[tassentyp == "zweigliedrig"]

D = 0.2519, p-value = 0.1020

alternative hypothesis: two-sided

Warning message:

In ks.test(hoehe[tassentyp == "eingliedrig"], hoehe[tassentyp == : kann bei Bindungen nicht die korrekten p-Werte berechnen









**Test** 

Mann-Whitney-U-Test [1] (=Wilcoxon-Rangsummentest)

#### Test auf Differenz zweier Verteilungen

**Voraussetzung**: mindestens 1 intervall- oder ordinalskalierte Variable und 1 nominalskalierte Gruppierungsvariable

**Vorgehensweise**: die Daten werden in eine Rangfolge gebracht und für jede Gruppe werden die Rangplätze verglichen





Christian-Albrechts-Universität zu Kiel

Mann-Whitney-U-Test [2]

#### Beispiel (nach Müller-Scheeßel)

Kammergrößen von eisenzeitlichen Kammergrößen mit Angabe des

Geschlechtes

| Kammergröße | Geschlecht |
|-------------|------------|
| 11,7        | m          |
| 4,4         | W          |
| 35,9        | m          |
| 8,0         | w          |
| 23,0        | m          |
| 5,1         | w          |
| 9,2         | m          |
| 15,8        | w          |
| 26,1        | m          |
| 7,3         | W          |

Frage: Unterscheidet sich die Größe der Gräber abhängig vom Geschlecht?



Christian-Albrechts-Universität zu Kiel

Mann-Whitney-U-Test [3]

#### Vorgehen

Bestimmen des Rangplatzes der Gräber nach der Größe

| Kammergröße | Geschlecht | Rang |
|-------------|------------|------|
| 11,7        | m          | 5    |
| 4,4         | W          | 10   |
| 35,9        | m          | 1    |
| 8,0         | W          | 7    |
| 23,0        | m          | 3    |
| 5,1         | W          | 9    |
| 9,2         | m          | 6    |
| 15,8        | W          | 4    |
| 26,1        | m          | 2    |
| 7,3         | W          | 8    |



Mann-Whitney-U-Test [4]

### CAIU

Christian-Albrechts-Universität zu Kiel

#### Vorgehen

#### Sortieren nach Rängen

| Kammergröße | Geschlecht | Rang |
|-------------|------------|------|
| 35,9        | m          | 1    |
| 26,1        | m          | 2    |
| 23,0        | m          | 3    |
| 15,8        | W          | 4    |
| 11,7        | m          | 5    |
| 9,2         | m          | 6    |
| 8,0         | W          | 7    |
| 7,3         | W          | 8    |
| 5,1         | W          | 9    |
| 4,4         | W          | 10   |



Christian-Albrechts-Universität zu Kiel

Mann-Whitney-U-Test [5]

#### Vorgehen

Zählen, wie viele Werte der jeweils anderen Kategorie unterhalb der einzelnen Werte liegen

| Kammergröße | Geschlecht | Rang | M unterhalb | F unterhalb |  |
|-------------|------------|------|-------------|-------------|--|
| 35,9        | m          | 1    |             | 5           |  |
| 26,1        | m          | 2    |             | 5           |  |
| 23,0        | m          | 3    |             | 5           |  |
| 15,8        | w          | 4    | 2           | <u> </u>    |  |
| 11,7        | m          | 5    | 2           | 4           |  |
|             |            | 6    |             | 4           |  |
| 9,2         | m<br>      | 7    |             | 4           |  |
| 8,0         | W          |      |             |             |  |
| 7,3         | W          | 8    |             |             |  |
| 5,1         | W          | 9    |             |             |  |
| 4,4         | W          | 10   |             |             |  |
| Summe       |            |      | 2           | 23          |  |



Mann-Whitney-U-Test [6]

#### Vorgehen

Zahl der männlichen Bestattungen: 5
Zahl der weiblichen Bestattungen: 5
Summe der Ränge männliche Bestattungen: 23
Summe der Ränge weibliche Bestattungen: 2

5\*5=25=23+2

Der kleinere Wert wird ausgewertet: 2

Nachschlagen in Tabelle (z.B. Shennan 1997, Tabelle B): Schwellenwert für Signifikanz 0.05 bei n1=5 und n2=5: 2

Die Kammergrößen unterscheiden sich signifikant voneinander.





Mann-Whitney-U-Test [7]

#### Mann-Whitney-U-Test in R

```
> kammergroesse<-read.csv2("kammergroesse_mueller-scheessel.csv")
```

#### > kammergroesse

```
      kammergroesse
      geschlecht

      1
      35.9
      m

      2
      26.1
      m

      3
      23.0
      m

      4
      15.8
      w

      5
      11.7
      m

      6
      9.2
      m

      7
      8.0
      w

      8
      7.3
      w

      9
      5.1
      w

      10
      4.4
      w
```

> wilcox.test(kammergroesse\$kammergroesse ~
kammergroesse\$geschlecht)

Wilcoxon rank sum test

data: kammergroesse\$kammergroesse by kammergroesse\$geschlecht W = 23, p-value = 0.03175 alternative hypothesis: true location shift is not equal to 0





Mann-Whitney-U-Test Aufgabe

### Längen von Randleistenbeilen der Typen Bikun und Cegun (Cullberg 1968)

Stellen Sie mittels des Mann-Whitney-U-Test fest, ob sich die Längen der Randleistenbeile vom Typ Bikun und Cegun signifikant auf einem 0.05-Niveau unterscheiden.

Datei: cullberg1968.csv





### Mann-Whitney-U-Test Lösung

### Längen von Randleistenbeilen der Typen Bikun und Cegun (Cullberg 1968)

Stellen Sie mittels des Mann-Whitney-U-Test fest, ob sich die Längen der Randleistenbeile vom Typ Bikun und Cegun signifikant auf einem 0.05-Niveau unterscheiden.

Datei: cullberg1968.csv





Interpretation von Signifikanztests

\_\_\_

Christian-Albrechts-Universität zu Kiel

#### Vorsicht, auch wenn die Statistik klar scheint

Nach dem Test wie vor dem Test: Die Interpretation entscheidet über das Ergebnis!

Statistische Signifikant ≠ Archäologischer Signifikanz!

Statistische Ergebnisse bleiben statistisch: Signifikanz ist Wahrscheinlichkeit, dass das Ergebniss stimmt, aber es bleibt immer eine Restmöglichkeit, dass Zufall im Spiel ist!

