This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

POLYESTER EXCELLENT IN MOLDABILITY AND ITS PRODUCTION

Patent Number:

JP10324741

Publication date:

1998-12-08

Inventor(s):

AOYAMA MASATOSHI;; TSUTSUMI KENICHI;; UCHIDA MINORU

Applicant(s):

TORAY IND INC

Requested Patent:

JP10324741

Application Number: JP19980074504 19980323

Priority Number(s):

IPC Classification:

C08G63/84; C08G63/86; D01F1/10; D01F6/62; D01F6/92

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide a polyester excellent in moldability and solving problems such as the staining of spinnerets, the rise of filtration pressures and the breakage of fibers on the production of molded products such as fibers, films and bottles, and to provide a method for producing the same. SOLUTION: This polyester contains an organic aluminum compound of the formula: Al[OR1]I [OR2]m IOR3 In IR4 lo IR1 . R2 . R3 are each an alkyl, an aryl, an acyl; R4 is an alkylacetoacetate ion, acetylacetone ion; wherein R1, R2, R3 are each simultaneously not H or acetyl; (I), (m), (n) and (o) are each 0 or a positive number wherein (I)+(m)+(n)+(o)=3] in an amount of 5-500 ppm (converted into aluminum atom) based on the polymer, and a cobalt compound in an aluminum atom/cobalt atom (AI/Co) molar ratio of 0.5-20.

Data supplied from the esp@cenet database - 12

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-324741

(43)公開日 平成10年(1998)12月8日

(51) Int.Cl. ⁶	識別記号		FΙ
C 0 8 G 63/84			C 0 8 G 63/84
63/86 D01F 1/10			63/86 D 0 1 F 1/10
6/62	3 0 6		6/62 3 0 6 E 3 0 6 F
		審査請求	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(21)出願番号	特顯平10-74504		(71) 出願人 000003159
(22) 出願日	平成10年(1998) 3 月23日	·	東レ株式会社 東京都中央区日本橋室町2丁目2番1号 (72)発明者 青山 雅俊
(31)優先権主張番号			静岡県三島市4845番地 東レ株式会社三島 工場内
(32)優先日 (33)優先権主張国	平 9 (1997) 3 月25日 日本(JP)		(72)発明者 堤 賢一
			静岡県三島市4845番地 東レ株式会社三島 工場内
			(72)発明者 内田 実 静岡県三島市4845番地 東レ株式会社三島
			工場内

(54) 【発明の名称】 成形加工性に優れたポリエステルおよびその製造方法

(57)【要約】

【課題】成形加工性に優れ、繊維用、フイルム用、ボトル用等の成形体の製造において口金汚れ、沪圧上昇、糸切れなどの問題が解消されたポリエステル及びその製造方法を提供する。

【解決手段】式(1)で示されるアルミニウム有機化合

A1 (OR_1) 1 (OR_2) m (OR_3) n (R_4) 0 ... (1)

(但し、式中 R_1 、 R_2 、 R_3 はアルキル基、アリール基、アシル基、 R_4 はアルキルアセトアセテートイオン、アセチルアセトンイオンを表し、 R_1 、 R_2 及び R_3

物を、アルミニウム原子換算でポリマーに対して5~5 00ppmかつ、コバルト化合物を、アルミニウム原子 とコバルト原子のモル比が0.5~20(A1/Co) となるように添加してなることを特徴とするポリエステ ル。

は同時に水素、アセチル基ではない。また 1 , m , n , oはそれぞれ 0 または正数でかつ 1+m+n+o=3である。)

【特許請求の範囲】

【請求項1】式(1)で示されるアルミニウム有機化合 物を、アルミニウム原子換算でポリマーに対して5~5 〇〇ppmかつ、コバルト化合物を、アルミニウム原子

A1 $[OR_1]$ 1 $[OR_2]$ m $[OR_3]$ n $[R_4]$ 0 ...(1)

(但し、式中R₁、R₂、R₃はアルキル基、アリール 基、アシル基、水素、R4はアルキルアセトアセテート イオン、アセチルアセトンイオンを表し、R₁、R₂、R₃ は同時に水素、アセチル基ではない。但し、 R_1 、 R_2 、 R₃、R₄のうち水素でないものが少なくとも一つ存在す る。また1, m, n, oはそれぞれ0または正数でかつ

【請求項2】アルミニウム有機化合物が、アルミニウム アルコレート、アルミニウムキレート及びカルボン酸ア ルミニウム塩からなる群から選ばれる少なくとも一種で あることを特徴とする請求項1記載のポリエステル。

【請求項3】アンチモン原子を含有し、かつその含有量 がアルミニウム原子の含有量よりも少なく、かつアンチ モン原子としてポリマーに対して50ppm以下である ことを特徴とする請求項1または2記載のポリエステ

A1 $[OR_1]$ 1 $[OR_2]$ m $[OR_3]$ n $[R_4]$ 0 ...(1)

(但し、式中R₁、R₂、R₃はアルキル基、アリール 基、アシル基、水素、R4はアルキルアセトアセテート イオン、アセチルアセトンイオンを表し、R₁、R₂ R₃ は同時に水素、アセチル基ではない。但し、R1、R2、 R3、R4のうち水素でないものが少なくとも一つ存在す る。また I, m, n, oはそれぞれ Oまたは正数でかつ 1+m+n+o=3 である。)

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は成形加工性に優れる ポリエステル及びその製造方法に関する。さらに詳しく は成形加工性及びポリマー色調に優れるポリエステル及 びその製造方法に関する。

[0002]

【従来の技術】ポリエステルは、その優れた性質のゆえ に、繊維用、フィルム用、ボトル用をはじめ広く種々の 分野で用いられている。 なかでもポリエチレンテレフタ レートは機械的強度、化学特性、寸法安定性などに優 れ、好適に使用されている。

【0003】一般にポリエチレンテレフタレートは、テ レフタル酸またはそのエステル形成性誘導体とエチレン グリコールから製造されるが、高分子量のポリマーを製 造する商業的なプロセスでは、重縮合触媒としてアンチ モン化合物が広く用いられている。しかしながら、アン チモン化合物を含有するポリマーは以下に述べるような 幾つかの好ましくない特性を有している。

【0004】例えば、アンチモン触媒を使用して得られ たポリエステルを溶融紡糸して繊維とするときに、アン チモン触媒の残査が口金孔周りに堆積することが知られ

【請求項4】ポリエステルが主としてポリエチレンテレ フタレートからなるポリマーであることを特徴とする請

求項1~3いずれか1項記載のポリエステル。

とコバルト原子のモル比が0.5~20(A1/Co)

となるように添加してなることを特徴とするポリエステ

【請求項5】繊維用途に用いることを特徴とする請求項 1~4のいずれか1項記載のポリエステル。

【請求項6】芳香族ジカルボン酸またはそのエステル形 成性誘導体及びジオール、または低分子量ポリエステル オリゴマーを出発原料とするボリエステルを製造する方 法において、該出発原料に対して、式(1)で示される アルミニウム有機化合物を、アルミニウム原子換算でポ リマーに対して5~500ppm、かつコバルト化合物 を、アルミニウム原子とコバルト原子のモル比が0.5 ~20 (A1/Co)となるように添加してなることを 特徴とするポリエステルの製造方法。

ている。この堆積が進行するとフィラメントに欠点が生 じる原因となるため、適時除去する必要が生じる。アン チモン触媒残査の堆積が生じるのは、アンチモンがポリ マー中でアンチモングリコレートの形で存在しており、 これが口金温度近傍で変成を受け、一部が気化、散逸し た後、アンチモンを主体とする成分が口金に残るためで あると考えられている。

【0005】また、ポリマー中のアンチモン触媒残差は 比較的大きな粒子状となりやすく、異物となって成形加 工時のフィルターの沪圧上昇、紡糸の糸切れあるいは製 膜時のフィルム破れの原因になるなどの好ましくない特 性を有している。

【0006】上記のような背景からアンチモン含有量が 極めて少ないか、あるいは含有しないポリエステルが求 められている。

【〇〇〇7】このような課題に対して、例えばUSP 5,512,340やUSP5,596,069等では、塩 化アルミニウムや水酸化塩化アルミニウム等の特定のア ルミニウム化合物をコバルト化合物と併用することが提 案されている。しかしながら、これらのアルミニウム化 合物はハロゲンを含有するため、その活性のために比較 的多量に含有される場合、ポリマーの耐熱性が悪化し、 長時間溶融保持されるような成形条件では着色しやすい という問題や、ポリエステル中で不溶性異物を形成し、 該異物に起因した紡糸の糸切れやフイルム破れを発生 し、依然としてアンチモンの問題を十分に回避できない という問題があった。

[8000]

【発明が解決しようとする課題】本発明の目的は上記の

アンチモン化合物を含有するポリエステルの欠点を解消 した、アルミニウム有機化合物及びコバルト化合物を添 加してなるポリエステルおよびその製造方法を提供する ものである。

[0009]

【課題を解決するための手段】前記した本発明の目的 は、式(1)で示されるアルミニウム有機化合物を、ア

A1 $\{OR_1\}$ 1 $\{OR_2\}$ m $\{OR_3\}$ n $\{R_4\}$ 0 ... (1)

(但し、式中R₁、R₂、R₃はアルキル基、アリール 基、アシル基、水素、R4はアルキルアセトアセテート イオン、アセチルアセトンイオンを表し、R₁、R₂、R aは同時に水素、アセチル基ではない。但し、R₁、 R_2 、 R_3 、 R_4 、のうち水素でないものが少なくとも一 つ存在する。また 1, m, n, oはそれぞれ 0 または正 数でかつ1+m+n+o=3である。)

[0011]

【発明の実施の形態】本発明のポリエステルはジカルボ ン酸またはそのエステル形成性誘導体とジオールから合 成されるポリマーであって、繊維、フィルム、ボトル等 の成形品として用いることが可能なものであれば特に限 定はない。

【0012】このようなポリエステルとして具体的に・ は、例えばポリエチレンテレフタレート、ポリテトラメ チレンテレフタレート、ポリシクロヘキシレンジメチレ ンテレフタレート、ポリエチレン-2,6-ナフタレン ジカルボキシレート、ポリエチレンー1,2ービス(2

AI $(OR_1)I (OR_2)m (OR_3)n (R_4)o \cdots (1)$

(但し、式中R₁、R₂、R₃はアルキル基、アリール 基、アシル基、水素、R4はアルキルアセトアセテート イオン、アセチルアセトンイオンを表し、R₁、R₂及び R₃は同時に水素、アセチル基ではない。但し、R₁、R $_2$ 、 R_3 、 R_4 のうち水素でないものが少なくとも一つ存 在する。また1, m, n, oはそれぞれOまたは正数で かつ1+m+n+o=3である。) 式(1) で表される 化合物のなかでも、特にアルミニウムアルコレート、ア ルミニウムキレート、カルボン酸アルミニウム塩が反応 性、コストの点で好ましい。

【0016】アルミニウムアルコレートはアルコールの 水酸基の水素をアルミニウム元素で置き換えた構造の化 合物である。具体的には、アルミニウムエチレート、ア ルミニウムイソプロピレート、アルミニウムトリーn-ブチレート、アルミニウムトリーsec-ブチレート、 アルミニウムトリーtertーブチレート、モノーse cーブトキシアルミニウムジイソプロピレート等が挙げ

【0017】アルミニウムキレートはアルミニウムアル コレートのアルコキシ基の一部または全部をアルキルア セト酢酸エステルやアセチルアセトン等のキレート化剤 で置換した化合物であり、具体的には、エチルアセトア セテートアルミニウムジイソプロピレート、アルミニウ

ルミニウム原子換算でポリマーに対して5~500pp mかつ、コバルト化合物を、アルミニウム原子とコバル ト原子のモル比が0.5~20(A1/Co)となるよ うに添加してなることを特徴とするポリエステルにより 達成される。

[0010]

ークロロフェノキシ) エタンー4,4' ージカルボキシ レートなどが挙げられる。本発明は、なかでも最も汎用 的に用いられているポリエチレンテレフタレートまたは 主としてポリエチレンテレフタレートからなるポリエス テル共重合体において好適である。

【0013】また、これらのポリエステルには、共重合 成分としてアジピン酸、イソフタル酸、セバシン酸、フ タル酸、4,4'ージフェニルジカルボン酸などのジカ ルボン酸およびそのエステル形成性誘導体、ポリエチレ ングリコール、ジエチレングリコール、ヘキサメチレン グリコール、ネオペンチルグリコール、ポリプロピレン グリコールなどのジオキシ化合物、p-(β-オキシエ トキシ) 安息香酸などのオキシカルボン酸およびそのエ ステル形成性誘導体などを共重合してもよい。

【0014】本発明におけるアルミニウム有機化合物 は、式(1)で示される。

[0015]

ムトリス (エチルアセトアセテート)、アルキルアセト アセテートアルミニウムジイソプロピレート、アルミニ ウムモノアセチルアセテートピス (エチルアセトアセテ ート)、アルミニウムトリス(アセチルアセテート)、 アルミニウムモノイソプロポキシモノオレオキシエチル アセトアセテート、アルミニウムアセチルアセトネート 等が挙げられる。

【0018】カルボン酸アルミニウム塩としては、安息 香酸アルミニウム、乳酸アルミニウム、ラウリン酸アル ミニウム、ステアリン酸アルミニウム等が挙げられる。 但し、式(1)において、 R_1 、 R_2 、 R_3 が全てアセチ ル基である酢酸アルミニウムはポリエステル中での不溶 性異物を形成しやすく、好ましくない。

【0019】本発明のアルミニウム有機化合物は、アル ミニウム原子換算でポリマーに対して重量で5~500 ppm添加含有させることが必要である。添加量が5p pmより少ないと触媒活性が不十分で、結果として得ら れるポリマーの分子量が低く成形物の強度が不十分とな る。また500ppmを越える量添加すると、異物が生 成し、成形時の沪圧上昇が顕著になったり、ポリマー色 調が悪化する。より好ましくは10~200ppm、さ らに好ましくは10~100ppmである。

【0020】本発明においては上記アルミニウム有機化

合物と併せてコバルト化合物を用いる。

【0021】コバルト化合物としては特に限定はないが、具体的には例えば、酢酸コバルト4水塩、硝酸コバルト、塩化コバルト、コバルトアセチルアセトネート、ナフテン酸コバルト等が挙げられる。

【0022】該コバルト化合物の添加量は、アルミニウム原子とコバルト原子のモル比(A1/Co)で0.5~20とすることが必要である。該モル比範囲であると、重合活性の向上効果が高くかつポリマー色調が向上するため好ましい。より好ましくは1~15、さらに好ましくは2~10である。モル比が0.5未満であると得られるポリマーのカルボキシル末端基量が増大し、ポリマーの耐熱性等が悪化するため好ましくない。モル比が20を越えると、得られるポリマーの色調、特にハンターのb値で表される黄色味が悪化するため、繊維等の製品の色調が悪化し好ましくない。

【0023】また本発明のポリエステルはアンチモン原子の含有量がポリマーに対して50ppm以下であると、繊維の紡糸時の糸切れや、フィルム製膜時の破れが抑制され、ボトル等では透明性が良好となり好ましい。より好ましくは30ppm以下、さらに好ましくは10ppm以下である。

【 O O 2 4 】 本発明のポリエステルの製造方法について、ポリエチレンテレフタレートの例で説明する。

【0025】繊維やフィルム等に使用する高分子量ポリ エチレンテレフタレートは通常、次のいずれかのプロセ スで製造される。すなわち、(1)テレフタル酸とエチ レングリコールを原料とし、直接エステル化反応によっ て低分子量のポリエチレンテレフタレートを得、さらに その後の重縮合反応によって高分子量ポリマーを得るプ ロセス、(2)ジメチルテレフタレート(DMT)とエ チレングリコールを原料とし、エステル交換反応によっ て低分子量体を得、さらにその後の重縮合反応によって 高分子量ポリマーを得るプロセスである。ここでエステ ル交換反応は無触媒反応で進行するが、エステル交換反 応においては、通常、マンガン、カルシウム、マグネシ ウム、亜鉛、リチウム等の化合物を触媒に用いて進行さ せ、またエステル交換反応が実質的に完結した後に、該 反応に用いた触媒を不活性化する目的で、リン化合物を 添加することが行われる。

【0026】本発明の製造方法は、(1)または(2)のプロセスの初期またはプロセス前半で得られた低重合体に、本発明の特定のアルミニウム有機化合物およびコバルト化合物を添加し、該化合物の触媒活性を利用して、後半の重縮合反応を進行させ、高分子量のポリエチレンテレフタレートを得るというものである。

【0027】ここで反応系へのアルミニウム有機化合物 及びコバルト化合物の添加は、化合物をそのまま添加し ても良いが、作業性がより良好となるように、エチレン グリコールや水あるいはその他の低沸点の有機溶媒に溶 解あるいは分散した状態で添加することが好ましい。 【0028】

【実施例】以下実施例により本発明をさらに詳細に説明する。なお、実施例中の物性値は以下に述べる方法で測定した。

【0029】(1)ポリマーの固有粘度 [ヵ] オルソクロロフェノールを溶媒として25℃で測定した。

【0030】(2) ポリマー中の金属含有量 蛍光X線により求めた。

【0031】(3)ポリマーの色調

スガ試験機(株)社製の色差計(SMカラーコンピュータ型式SM-3)を用いて、ハンター値(L、a、b値)として測定した。

【0032】特にb値に着目し、b値が9以下を合格とした。

【0033】(4)ポリマーのジエチレングリコール (DEG)含有量

ポリマーをアルカリ分解した後、ガスクロマトグラフィーを用いて定量した。

【0034】(5)ポリマーのカルボキシル末端基量 Mauriceらの方法[Anal. Chim. Acta, 22, p363(1960)]によった。カルボキシル末端基が40当量/ton未満を合格とした。

【0035】(6)繊維の強伸度

東洋ボールドウイン (株) 社製テンシロン引張り試験器 により、試長250mm、引張り速度300mm/分で S-S曲線を求め強伸度を算出した。

【0036】実施例1

高純度テレフタル酸とエチレングリコールから常法に従って製造した、触媒を含有しないオリゴマーを250℃で溶融し、該溶融物にアルミニウムアセチルアセトナト及び酢酸コバルトを分散したエチレングリコールを加えた。化合物は最終的に得られるポリマー中の含有量として、アルミニウム原子60ppm、コバルト原子15ppmとなる量とした。その後、低重合体を30rpmで攪拌しながら、反応系を250℃から285℃まで徐々に昇温するとともに、圧力を40Paまで下げた。最終温度、最終圧力到達までの時間はともに60分とした。所定の攪拌トルクとなった時点で反応系を窒素パージし常圧に戻し重縮合反応を停止し、冷水にストランド状に吐出、直ちにカッティングしてポリエステルのペレットを得た。

【0037】得られたポリマーの固有粘度は0.67、ジエチレングリコール(DEG)含有量0.90重量%、カルボキシル末端基量24当量/ton-ポリマー、色調はL=63、a=0.7、b=6.0であった。また蛍光X線で分析し、金属成分含有量がA1=60ppm、Co=15ppmであることを確認した。【0038】このペレットを乾燥した後、エクストルー

ダ型紡糸機に供給し、紡糸温度295℃で溶融紡糸した。このときフィルターとして絶対沪過精度15μmの金属不織布を使用し、口金は0.6mmφの丸孔を用いた。口金から吐出した糸を長さ30cm、内径25cmφ、温度300℃の加熱筒で徐冷後、チムニー冷却風を当てて冷却固化し、給油した後、引き取り速度550m/分で引き取った。この未延伸糸を延伸温度95℃で延伸糸の伸度が14~15%となるように適宜延伸倍率を変更しながら延伸した後、熱処理温度220℃、リラックス率2.0%で熱処理し延伸糸を得た。

【0039】上記のとおりポリマー特性は問題なく、色調も良好であった。また、溶融紡糸工程においても、紡糸時の沪圧上昇もほとんど認められず、また延伸時の糸切れもほとんどなく成形加工性の良好なポリマーであっ

た。

【0040】実施例2~6、比較例1~5 金属化合物の種類、量を変更する以外は実施例1と同様 にしてポリマーを重合し、溶融紡糸を行った。結果を表 1及び表2に示した。

【0041】本発明の特許請求の範囲にあるものはポリマー物性及び溶融紡糸工程とも良好に推移したが、三酸化アンチモン単独で重合したものや本発明の特許請求の範囲外のものは溶融紡糸工程において沪圧上昇が顕著となったり、糸切れが多く発生し成形加工性に劣るものであった。

[0042]

【表1】

	金属	化合物		重縮合反応時		ボ	ŋ マ -	特	性		製	糸 性
	化合物種	ポリマ - 中 含有量(ppm)	Al/Co	問	固有 粘度	DEG (重量%)	が †沙末端 基(当量/10m)	L值	8値	b値	渡 圧	糸切れ
実施例 1	アルミニウムタセテルタセトナト 及び酢酸コパルト	Al=60 Co=15	4	3:20	0. 67	0.9	2 4	63	0.7	6.0	良好	良好
実施例 2	アルミニウムーtertープチ レート及び酢酸コパルト	A]=30 Co=45	0. 7	3:10	0. 67	1. 1	3 5	6 1	1, 5	5. 0	良好	良好
実施例 3	アルミニウムーsec-フ・チレ - ト及び音・酸コハ ルト	Al=120 Co= 2 0	6	3:00	0. 70	0. 9	2 2	62	-1. 8	8. 5	良好	良好
奥 族 例 4	エチルフセトブセテートブルミニウ・ ムシ、イソフ、ロと、レート 及び酢酸コハ、ルト	Al= 4 5 Co= 2 5	1. 8	3:40	0. 70	1. 2	29	55	1. 2	5. 5	良好	良好
実施例 5	安息香酸がミウム 酢酸コパルト 及び三酸化アンチモン	Al = 8 0 Co = 5 Sb = 1 0	16	3:00	0. 68	0. 9	19	5 7	0. 3	9. 5	a)	ь)
実施例 6	安息香酸7/ミゴム。 酢酸20、1/1 及び三酸化7/フチモン	AJ = 8 0 Ca = 5 Sb = 7 0	16	3:00	0. 72	0.8	2 0	5 5	0, 1	9. 5	c)	d)

- a)若干減圧上昇が認められるが許容範囲。 b)若干糸切れが発生したが許容範囲。
- c) 許容範囲であるが実施例5に比べ補圧上昇大きい。 d) 許容範囲であるが実施例5に比べ糸切れ回数多い。

【表2】

	金冠化合物			武縮合 ポリマー 特性					製糸性			
	化合物種	\$* iy- 中 含有量(ppm)	A1/Co	反応時 間	固有 粘度	DEG (重量%)	114、131末端 基(当量/10n)	L値	a (di	b値	遊圧	糸切れ
比較例 1	三酸化汀ンチモン	Sb= 2 0 0	_	3:30	0. 66	0. 8	18	4 6	-0. 7	4. 5	建压上 异烟若	
比較例 2	アルミニウムブセテルアセトナト 酢酸コパールト	Al= 1 0 Co= 6 0	0. 2	3:00	0. 58	0.9	4 5	6 1	1. 2	5. 5	ほぼ 良好	ほぼ 良好
比較例 3	プルミニウムー ter1ープ チ レート	A1=30		4:30	0. 65	0.9	3 0	6 1	-0. 2	8.0	良好	良好
比較例 4	アルミニウム-sec-ブチレ -ト及び酢酸コバルト	Al = 1 2 0 Co = 5	2 4	3:00	0. 70	0.9	2 2	62	-1. B	12.0	良好	良好
比較例 5	酢酸アルミニウム 酢酸コパルト	A(= 1 2 0 Co= 2 0	6	3:20	0. 56	1. i	3 7	60	1.4	5. 5	遍压上 昇顕著	

[0043]

【発明の効果】本発明のポリエステルは成形加工性に優れ、繊維用、フイルム用、ボトル用等の成形体の製造に

おいて口金汚れ、沪圧上昇、糸切れなどの問題が解消される。

フロントページの	続き
----------	----

(51) Int. Cl.6		識別記号	. FI		
D01F	6/92	301	D O 1 F	6/92	301R
// C08K	5/05		C 0 8 K	5/05	
	5/09			5/09	
C08L	67/00		C08L	67/00	