线性代数-5

主讲: 吴利苏

wulisu@sdust.edu.cn

2024年9月8日

本次课内容

1. 矩阵的定义

2. 特殊矩阵

3. 矩阵的应用

4. 矩阵的运算

矩阵

定义 (矩阵 Matrix)

由 $m \times n$ 个数 a_{ij} , $(i = 1, \dots, m; j = 1, \dots, n)$, 排成的 m 行 n 列的数表称为 m 行 n 列的矩阵, 简称 $m \times n$ 矩阵, 表示为

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \implies \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

通常可记为大写字母的 A、 $A_{m\times n}$ 、 (a_{ij}) 、 $(a_{ij})_{m\times n}$.

定义 (矩阵 Matrix)

由 $m \times n$ 个数 a_{ij} , $(i = 1, \dots, m; j = 1, \dots, n)$, 排成的 m 行 n 列的数表称为 m 行 n 列的矩阵, 简称 $m \times n$ 矩阵, 表示为

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \implies \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

通常可记为大写字母的 A、 $A_{m\times n}$ 、 (a_{ij}) 、 $(a_{ij})_{m\times n}$.

• 元素为实数的矩阵称为实矩阵; 元素为复数的矩阵称为复矩阵; 元素为 0,1 的矩阵称为 0-1 矩阵.

理解矩阵——4个视角

• 一个矩阵 $(m \times n)$ 可以被视为 1 个矩阵, mn 个数, n 个列和 m 个行.

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$
1个矩阵 6个数 2个3维列向量 3个2维行向量

图: 从四个角度理解矩阵

特殊矩阵

• 方阵.

m=n, 即行数和列数都为 n 的矩阵, 称为 n 阶方阵. 此时可记为 A_n .

$$A_3 = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

特殊矩阵

• 方阵. m=n, 即行数和列数都为 n 的矩阵, 称为 n 阶方阵. 此时可记为 A_n .

$$A_3 = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

• 行矩阵(行向量). m=1,即只有一行的矩阵,

$$A = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}$$

称为行矩阵, 也称为行向量. 为避免混肴, 行矩阵也记为

$$A=(a_1,a_2,\cdots,a_n).$$

• 列矩阵(列向量). n=1,即只有一列的矩阵.

$$A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix}$$

称为列矩阵, 也称为列向量.

列矩阵(列向量).n=1,即只有一列的矩阵.

$$A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix}$$

称为列矩阵, 也称为列向量.

• 零矩阵.

$$O = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $a_{ij} = 0, \forall i, j$, 元素全为零的矩阵. 记为 O.

● 上 (下) 三角矩阵.

 $a_{ij} = 0, i > j$, 即主对角线下方元素全为零的方阵, 称为上三角矩阵. 换句话说, 非零元只可能出现在主对角线上方.

$$A_{\perp} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{pmatrix}$$

● 上 (下) 三角矩阵.

 $a_{ij} = 0, i > j$, 即主对角线下方元素全为零的方阵, 称为上三角矩阵. 换句话说, 非零元只可能出现在主对角线上方.

$$A_{\pm} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & a_{nn} \end{pmatrix} \qquad A_{\mp} = \begin{pmatrix} a_{11} \\ a_{21} & a_{22} \\ \vdots & \vdots & \ddots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

 $a_{ij} = 0, i < j$, 即主对角线上方元素全为零的方阵, 称为下三角矩阵. 换句话说, 非零元只可能出现在主对角线下方.

• 对角矩阵.

 $a_{ij} = 0, i \neq j$, 即除对角线外的元素全为零的方阵, 称为对角矩阵.

$$oldsymbol{\wedge} = egin{pmatrix} oldsymbol{\lambda}_1 & & & & \ & oldsymbol{\lambda}_2 & & & \ & & \ddots & \ & & & oldsymbol{\lambda}_n \end{pmatrix}$$

对角阵可简记为 $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$.

• 对角矩阵.

 $a_{ij}=0, i\neq j$, 即除对角线外的元素全为零的方阵, 称为对角矩阵.

$$oldsymbol{\wedge} = egin{pmatrix} oldsymbol{\lambda}_1 & & & & \ & oldsymbol{\lambda}_2 & & & \ & & \ddots & \ & & & oldsymbol{\lambda}_n \end{pmatrix}$$

对角阵可简记为 $\Lambda = \mathsf{diag}(\pmb{\lambda}_1, \pmb{\lambda}_2, \cdots, \pmb{\lambda}_n)$.

• 单位矩阵.

$$E = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$$

即对角元全为 1 的对角阵, 称为单位阵. 记为 E_n 或 E.

• 对称矩阵.

 $a_{ij} = a_{ji}, \forall i, j$, 即沿着对角线对称元素相等的方阵, 称为对称阵.

$$A_{\not \pi f f f} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}$$

• 对称矩阵.

 $a_{ij} = a_{ji}, \forall i, j$, 即沿着对角线对称元素相等的方阵, 称为对称阵.

$$A_{\text{AHM}} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}$$

• 反对称矩阵.

 $a_{ij} = -a_{ji}, \forall i, j$, 即沿着对角线对称元素互为相反数的方阵, 称为反对称阵.

$$A_{\cancel{\uprightarpoonup}} A_{\cancel{\uprightarpoonup}} = \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ -a_{12} & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{1n} & -a_{2n} & \cdots & 0 \end{pmatrix}$$

矩阵的应用-矩阵和线性方程组

例 (线性方程组的矩阵表示)

m 个方程 n 个未知量的线性方程组

$$\begin{cases} a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots & \end{cases}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$a_{m1}x_1$$

矩阵表示

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

$$A = (a_{ij}), \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$B = (A \quad \beta) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

则线性方程组 (1) 的矩阵表示可写为 $AX = oldsymbol{eta}$.

令

$$A = (a_{ij}), \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$B = (A \quad \beta) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

则线性方程组 (1) 的矩阵表示可写为 $AX = \beta$.

● A 称为线性方程组的系数矩阵;

令

$$A = (a_{ij}), \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$B = (A \quad \beta) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

则线性方程组 (1) 的矩阵表示可写为 $AX = \boldsymbol{\beta}$.

- A 称为线性方程组的系数矩阵;
- B 称为线性方程组的增广矩阵;

令

$$A = (a_{ij}), \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$B = (A \quad \beta) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

则线性方程组 (1) 的矩阵表示可写为 $AX = \beta$.

- A 称为线性方程组的系数矩阵;
- B 称为线性方程组的增广矩阵;
- X和β分别称为线性方程组的未知量矩阵和常数项矩阵.

矩阵的应用-矩阵和线性变换

例 (线性变换和矩阵)

给定一个 n 维向量 $X = (x_1, x_2, \dots, x_n)^T$, 取线性变换如下,

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \dots \\ y_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n. \end{cases}$$
(2)

则得到 n 维向量 $Y = (y_1, y_2, \dots, y_n)^T$. 矩阵 $A = (a_{ij})_{n \times n}$ 表示上面 线性变换,则有

$$Y = AX$$
.

矩阵的应用-矩阵和线性变换

例 (线性变换和矩阵)

给定一个
$$n$$
 维向量 $X = (x_1, x_2, \dots, x_n)^T$, 取线性变换如下,

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \dots \\ y_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n. \end{cases}$$
(2)

则得到 n 维向量 $Y = (y_1, y_2, \dots, y_n)^T$. 矩阵 $A = (a_{ij})_{n \times n}$ 表示上面 线性变换,则有

$$Y = AX$$
.

线性变换和 n 阶方阵一一对应.

矩阵的应用-矩阵和图

例 (图的关联矩阵)

● 图 (Graph).

$$a_{ij} = \begin{cases} 1, & \text{if } v_i, v_j \geq 0 \text{ in } j, \\ 0, & \text{if } v_i, v_j \geq 0 \text{ in } j. \end{cases}$$

$$\begin{pmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

例 (图的矩阵表示)

• 加权图 (Weighted Graph).

$$\begin{pmatrix} 0 & w_{12} & w_{13} & 0 \\ w_{12} & 0 & w_{23} & 0 \\ w_{13} & w_{23} & 0 & w_{34} \\ 0 & 0 & w_{34} & 0 \end{pmatrix}$$

例 (图的矩阵表示)

• 有向图 (Direct Graph).

$$\begin{pmatrix}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

例 (图的矩阵表示)

• 有向加权图 (Direct Weighted Graph).

 w_{34}

矩阵的应用-矩阵和数字图像

例 (数字图像的存储和处理)

- 数字图像在计算机等电子设备中都是以矩阵的形式存储和显示的.
 - 比如,一张 1600*1000 像素的图像在计算机中就是一个 1600×1000 的矩阵.
 - 二值图像的矩阵的 a_{ij} 取值为 0 和 1;
 - 灰度图像的矩阵的 a_{ij} 取值为 0-255(即一字节 8 位二进制数的范围);
 - 彩色图像的矩阵的 a_{ij} 取值为一个三维向量 (R, G, B).
- 对图像的处理和编辑就是对矩阵的处理.
 - 算法思想一般是:用一个低阶方阵(称为模板或者算子)去改变图像矩阵的每一个像素值.

• 不同方向的二阶 Laplace 检测算子:

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4_{\triangle} & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 1 \\ 0 & -4_{\triangle} & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8_{\triangle} & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

图: 边缘提取

矩阵的运算

- \bullet A = B
- \bullet A+B
- \bullet $\lambda \cdot A$
- AB
- $A^k \& f(A)$
- \bullet A^T
- |A|
- A*
- \bullet tr(A)

矩阵的相等

设
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

• 如果 m = m', n = n', 则称 A 和 B 是同型矩阵.

矩阵的相等

谟
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

- 如果 m = m', n = n', 则称 A 和 B 是同型矩阵.
- 对于同型矩阵 A, B,

$$A = B \Leftrightarrow a_{ij} = b_{ij}, \forall i, j$$

矩阵的相等

设
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

- 如果 m = m', n = n', 则称 A 和 B 是同型矩阵.
- 对于同型矩阵 A, B,

$$A = B \Leftrightarrow a_{ij} = b_{ij}, \forall i, j$$

• 例:

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

设
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

谈
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

● 若 A, B 同型,则

$$A + B \stackrel{\Delta}{=} (a_{ij} + b_{ij})_{m \times n}$$

设
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

● 若 A, B 同型,则

$$A + B \stackrel{\Delta}{=} (a_{ij} + b_{ij})_{m \times n}$$

- 性质:
 - 交換律: A+B=B+A
 - 结合律: (A+B)+C=A+(B+C)

设
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

● 若 A, B 同型,则

$$A + B \stackrel{\Delta}{=} (a_{ij} + b_{ij})_{m \times n}$$

- 性质:
 - 交換律: A+B=B+A
 - 结合律: (A+B)+C=A+(B+C)
- 负矩阵:

$$-A \stackrel{\Delta}{=} (-a_{ij})$$

矩阵的加法

设
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

● 若 A, B 同型,则

$$A + B \stackrel{\Delta}{=} (a_{ij} + b_{ij})_{m \times n}$$

- 性质:
 - 交換律: A+B=B+A
 - 结合律: (A+B)+C=A+(B+C)
- 负矩阵:

$$-A \stackrel{\Delta}{=} (-a_{ij})$$

● 矩阵减法: A, B 同型

$$A - B \stackrel{\Delta}{=} A + (-B) = (a_{ij} - b_{ij})$$

矩阵的数乘

设
$$A = (a_{ij})_{m \times n}$$
.

矩阵的数乘

设
$$A = (a_{ij})_{m \times n}$$
.

$$\lambda A \stackrel{\Delta}{=} (\lambda a_{ij})_{m \times n}$$

矩阵的数乘

读
$$A = (a_{ij})_{m \times n}$$
.

 $\lambda A \stackrel{\triangle}{=} (\lambda a_{ij})_{m \times n}$

- 性质:
 - 结合律: $(\lambda \mu)A = \lambda(\mu A)$
 - 矩阵对数的分配律: $(\lambda + \mu)A = \lambda A + \mu A$
 - 数对矩阵的分配律: $\lambda(A+B) = \lambda A + \lambda B$

• 行向量乘同维数列向量定义为这两个向量的点积/内积.

$$\begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{k=1}^n a_kb_k$$

● 行向量乘同维数列向量定义为这两个向量的点积/内积.

$$(a_1 \ a_2 \ \cdots \ a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n = \sum_{k=1}^n a_k b_k$$

$$\begin{pmatrix} \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \end{pmatrix} \begin{pmatrix} \cdots & b_{1j} & \cdots \\ \cdots & b_{2j} & \cdots \\ \vdots & \vdots & & \vdots \end{pmatrix} = \begin{pmatrix} \cdots & \sum_{k=1}^{n} a_{ik} b_{kj} & \cdots \\ \vdots & \vdots & & \vdots \end{pmatrix}$$

设
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

设
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

• 如果 n=m', 则

$$AB \stackrel{\Delta}{=} (c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj})_{m \times n'}$$

 c_{ij} 为 A 的第 i 行与 B 的第 j 列的内积.

谈
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

• 如果 n=m',则

$$AB \stackrel{\Delta}{=} (c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj})_{m \times n'}$$

 c_{ij} 为 A 的第 i 行与 B 的第 j 列的内积.

- 性质:
 - 不满足交换律: AB 和 BA 可能不相等.
 - 结合律: (AB)C = A(BC)
 - 数乘和矩阵乘法可交换: λ(AB) = (λA)B = A(λB)
 - 分配律: A(B+C) = AB + AC, (B+C)A = BA + CA
 - EA=AE=A

• 行向量乘同阶列向量是一个数

$$\begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{k=1}^n a_kb_k$$

• 行向量乘同阶列向量是一个数

$$(a_1 \ a_2 \ \cdots \ a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{k=1}^n a_kb_k$$

• 列向量乘同阶行向量是一个任意两行(列)成比例的方阵.

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} = \begin{pmatrix} b_1 a_1 & b_1 a_2 & \cdots & b_1 a_n \\ b_2 a_1 & b_2 a_2 & \cdots & b_2 a_n \\ \vdots & \vdots & & \vdots \\ b_n a_1 & b_n a_2 & \cdots & b_n a_n \end{pmatrix}$$

• 行向量乘同阶列向量是一个数

$$(a_1 \ a_2 \ \cdots \ a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{k=1}^n a_kb_k$$

• 列向量乘同阶行向量是一个任意两行(列)成比例的方阵.

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} = \begin{pmatrix} b_1 a_1 & b_1 a_2 & \cdots & b_1 a_n \\ b_2 a_1 & b_2 a_2 & \cdots & b_2 a_n \\ \vdots & \vdots & & \vdots \\ b_n a_1 & b_n a_2 & \cdots & b_n a_n \end{pmatrix}$$

AB 和 BA 可能不同型(i.e. 不相等).

例

$$A = \begin{pmatrix} -2 & 4 \\ 1 & -2 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 4 \\ -3 & -6 \end{pmatrix}$$

求 AB和 BA.

解:

例

$$A = \begin{pmatrix} -2 & 4 \\ 1 & -2 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 4 \\ -3 & -6 \end{pmatrix}$$

求 AB和 BA.

解:

$$AB = \begin{pmatrix} -16 & -32 \\ 8 & 16 \end{pmatrix} \qquad BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

例

$$A = \begin{pmatrix} -2 & 4 \\ 1 & -2 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 4 \\ -3 & -6 \end{pmatrix}$$

求 AB和 BA.

解:

$$AB = \begin{pmatrix} -16 & -32 \\ 8 & 16 \end{pmatrix} \qquad BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

• AB 和 BA 同型当且仅当 A 和 B 是同阶方阵, 但即使同型也可能不相等.

例

$$A = \begin{pmatrix} -2 & 4 \\ 1 & -2 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 4 \\ -3 & -6 \end{pmatrix}$$

求 AB和 BA.

$$AB = \begin{pmatrix} -16 & -32 \\ 8 & 16 \end{pmatrix} \qquad BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

- AB和 BA 同型当且仅当 A和 B是同阶方阵, 但即使同型也可能不相等.
- 特别地, 对两个 n 阶方阵 A, B, 若 AB = BA, 则称方阵 A 和 B 是可交换的.

 \bullet 设 A 为 n 阶方阵,定义矩阵的幂

$$A^k = A \cdot A \cdot \cdot \cdot A \quad (k \uparrow A)$$

 \bullet 设 A 为 n 阶方阵,定义矩阵的幂

$$A^k = A \cdot A \cdots A \quad (k \uparrow A)$$

•
$$A^{k+l} = A^k A^l$$
, $(A^k)^l = A^{kl}$

 \bullet 设 A 为 n 阶方阵,定义矩阵的幂

$$A^k = A \cdot A \cdots A \quad (k \uparrow A)$$

- $A^{k+l} = A^k A^l$, $(A^k)^l = A^{kl}$
- $\operatorname{diag}(\boldsymbol{\lambda}_1,\cdots,\boldsymbol{\lambda}_n)^k=\operatorname{diag}(\boldsymbol{\lambda}_1^k,\cdots,\boldsymbol{\lambda}_n^k)$

● 设 A 为 n 阶方阵, 定义矩阵的幂

$$A^k = A \cdot A \cdot \cdot \cdot A \quad (k \uparrow A)$$

- $A^{k+l} = A^k A^l$, $(A^k)^l = A^{kl}$
- $\mathsf{diag}(\boldsymbol{\lambda}_1,\cdots,\boldsymbol{\lambda}_n)^k = \mathsf{diag}(\boldsymbol{\lambda}_1^k,\cdots,\boldsymbol{\lambda}_n^k)$

$$A=egin{pmatrix} b_1\b_2\ dots\b_n \end{pmatrix}ig(a_1\ a_2\ \cdots\ a_nig)$$
 $m{\lambda}=ig(a_1\ a_2\ \cdots\ a_nig)igg(egin{pmatrix} b_1\b_2\ dots\b_n \end{pmatrix}$,
证明 $A^k=m{\lambda}^{k-1}A$.

25/43

• 矩阵多项式: 将一元多项式

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

的 x 换为方阵 A,

$$f(A) = a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 E.$$

• 矩阵多项式: 将一元多项式

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

的 x 换为方阵 A,

$$f(A) = a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 E.$$

- $\bullet (AB)^k = A^k B^k,$
- $(A \pm B)^2 = A^2 \pm 2AB + B^2$,
- $(A+B)(A-B) = A^2 B^2$,

矩阵多项式:将一元多项式

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

的 x 换为方阵 A,

$$f(A) = a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 E.$$

- 只有 A,B 可交换时, 下面等式才成立.
 - $\bullet (AB)^k = A^k B^k,$
 - $(A \pm B)^2 = A^2 \pm 2AB + B^2$,
 - $(A+B)(A-B) = A^2 B^2$,

• 矩阵多项式: 将一元多项式

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

的 x 换为方阵 A,

$$f(A) = a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 E.$$

- 只有 A,B 可交换时, 下面等式才成立.
 - $\bullet (AB)^k = A^k B^k,$
 - $(A \pm B)^2 = A^2 \pm 2AB + B^2$
 - $(A + B)(A B) = A^2 B^2$,
- 矩阵 A 的任意两个矩阵多项式是可交换的,

$$f(A)g(A) = g(A)f(A).$$

矩阵的转置

• $\Diamond A = (a_{ij})_{m \times n}$, 定义 A 的转置

$$A^T \stackrel{\Delta}{=} (a_{ii})_{n \times m}$$

- 性质:
 - $(A^T)^T = A$ • $(A+B)^T = A^T + B^T$
 - $\bullet (\lambda A)^T = \lambda A^T$
 - $(AB)^T = B^T A^T$

计算 $(AB)^T$, 其中

$$A = \begin{pmatrix} 2 & 0 & -1 \\ 1 & 3 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 7 & -1 \\ 4 & 2 & 3 \\ 2 & 0 & 1 \end{pmatrix}$$

转置和对称矩阵

- A 为对称阵 $\Leftrightarrow A^T = A$.
- A 为反对称阵 $\Leftrightarrow A^T = -A$.

例

设
$$X = (x_1, x_2, \cdots, x_n)^T$$
, $X^T X = 1$,

$$H = E - 2XX^T.$$

证明 H 为对称阵, 且 $HH^T = E$.

证明:

方阵的行列式

- A 为 n 阶方阵,则可以给出 A 的行列式,记为 $\det A$ 或 |A|.
- 性质:
 - $|A^T| = |A|$
 - $\bullet |\lambda A| = \lambda^n |A|$
 - $\bullet |AB| = |A| \cdot |B|$
 - $\bullet |A+B| \neq |A| + |B|$

方阵的迹

• $A \rightarrow n$ 阶方阵, A 的迹 trA 定义为

$$tr A = a_{11} + a_{22} + \cdots + a_{nn}.$$

- 性质:
 - $\operatorname{tr} A^T = \operatorname{tr} A$
 - $\operatorname{tr}(\boldsymbol{\lambda} A) = \boldsymbol{\lambda} \cdot \operatorname{tr} A$

方阵的伴随矩阵

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

■ A 的伴随矩阵A* 定义为:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

其中 A_{ij} 为 a_{ij} 的代数余子式.

● 注意: A* 中的 Aii 的指标有个转置!!!

方阵的伴随

例

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix}$$

的伴随矩阵

性质

$$AA^* = A^*A = |A|E$$

小结

- \bullet A = B
- \bullet A+B
- \bullet $\lambda \cdot A$
- AB
- $A^k \& f(A)$
- \bullet A^T
- |A|
- A*
- \bullet trA

作业

• Page52-Page53. 1-(5)、2、5、6-(2)、7-(2).

附录

The Art of Linear Algebra

向量乘以向量——2个视角

点积 $(a \cdot b)$ 是一个数,用矩阵的语言可以表示为 $a^{T}b$.

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 + 2x_2 + 3x_3$$

 ab^{T} 是一个矩阵 $(ab^{T} = A)$. 如果 a, b 都 不为 0,则结果 A 是秩为 1 的矩阵.

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} x & y \\ 2x & 2y \\ 3x & 3y \end{bmatrix}$$

图: 向量乘以向量 - (v1), (v2)

矩阵乘以向量——2个视角

• 一个矩阵乘以一个向量将产生三个点积组成的向量 (Mv1) 和一种 A 的列向量的线性组合.

A 的行向量乘以向量 x 得到的 Ax, 是以点积为元素的列向量.

$$A\mathbf{x} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} (x_1 + 2x_2) \\ (3x_1 + 4x_2) \\ (5x_1 + 6x_2) \end{bmatrix}$$

乘积Ax是A的列向量的线性组合。

$$Ax = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$$

图: 矩阵乘以向量- (Mv1), (Mv2)

向量乘以矩阵——2个视角

$$\mathbf{y}A = \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} (y_1 + 3y_2 + 5y_3) & (2y_1 + 4y_2 + 6y_3) \end{bmatrix}$$

行向量y乘以A的列向量得到的yA是以点积为元素的行向量.

$$yA = \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = y_1 \begin{bmatrix} 1 & 2 \end{bmatrix} + y_2 \begin{bmatrix} 3 & 4 \end{bmatrix} + y_3 \begin{bmatrix} 5 & 6 \end{bmatrix}$$

乘积yA是A的行向量的线性组合。

图: 向量乘以矩阵 - (vM1), (vM2)

矩阵乘以矩阵——4 个视角

每个元素为行向量和列向量的点积.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = \begin{bmatrix} (x_1 + 2x_2) & (y_1 + 2y_2) \\ (3x_1 + 4x_2) & (3y_1 + 4y_2) \\ (5x_1 + 6x_2) & (5y_1 + 6y_2) \end{bmatrix}$$

乘积矩阵的每一行是第一个矩阵行的线性组合.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}_1^* \\ \boldsymbol{a}_2^* \\ \boldsymbol{a}_3^* \end{bmatrix} X = \begin{bmatrix} \boldsymbol{a}_1^* X \\ \boldsymbol{a}_2^* X \\ \boldsymbol{a}_3^* X \end{bmatrix}$$

Ax 和 Ay 是A 的列向量的线性组合。

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = A[\mathbf{x} \quad \mathbf{y}] = [A\mathbf{x} \quad A\mathbf{y}]$$

乘积矩阵 AB 是秩为 1 矩阵的和.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} \boldsymbol{a_1} & \boldsymbol{a_2} \end{bmatrix} \begin{bmatrix} \boldsymbol{b_1^*} \\ \boldsymbol{b_2^*} \end{bmatrix} = \boldsymbol{a_1} \boldsymbol{b_1^*} + \boldsymbol{a_2} \boldsymbol{b_2^*}$$

$$= \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} \begin{bmatrix} b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} \\ 3b_{11} & 3b_{12} \\ 5b_{11} & 5b_{12} \end{bmatrix} + \begin{bmatrix} 2b_{21} & 2b_{22} \\ 4b_{21} & 4b_{22} \\ 6b_{21} & 6b_{22} \end{bmatrix}$$

下面展示一些实用的模式。

Operations from the right act on the columns of the matrix. This expression can be seen as the three linear combinations in the right in one formula.

 $\begin{array}{c|c} P2 & \begin{array}{c|c} & & & \\ & & & \\ \end{array} & \begin{array}{c} 1 & \\ 2 & \\ \end{array} & \begin{array}{c} \\ 3 & \end{array} \end{array} = \begin{array}{c|c} 1 \\ 2 \\ 3 & \end{array}$

Operations from the left act on the rows of the matrix. This expression can be seen as the three linear combinations in the right in one formula.

图: 模式 1, 2 - (P1), (P1)

Applying a diagonal matrix from the right scales each column.

Applying a diagonal matrix from the left scales each row.

$$AD = \begin{bmatrix} \boldsymbol{a_1} & \boldsymbol{a_2} & \boldsymbol{a_3} \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} d_1 \boldsymbol{a_1} & d_2 \boldsymbol{a_2} & d_3 \boldsymbol{a_3} \end{bmatrix}$$

$$DB = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} \begin{bmatrix} \boldsymbol{b}_1^* \\ \boldsymbol{b}_2^* \\ \boldsymbol{b}_3^* \end{bmatrix} = \begin{bmatrix} d_1 \boldsymbol{b}_1^* \\ d_2 \boldsymbol{b}_2^* \\ d_3 \boldsymbol{b}_3^* \end{bmatrix}$$

This pattern makes another combination of columns. You will encounter this in differential/recurrence equations.

$$XDc = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = c_1 d_1 x_1 + c_2 d_2 x_2 + c_3 d_3 x_3$$

A matrix is broken down to a sum of rank 1 matrices, as in singular value/eigenvalue decomposition.

$$U\Sigma V^{\mathsf{T}} = \begin{bmatrix} \boldsymbol{u}_1 & \boldsymbol{u}_2 & \boldsymbol{u}_3 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_1^{\mathsf{T}} \\ \boldsymbol{v}_2^{\mathsf{T}} \\ \boldsymbol{v}_3^{\mathsf{T}} \end{bmatrix} = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathsf{T}} + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^{\mathsf{T}} + \sigma_3 \boldsymbol{u}_3 \boldsymbol{v}_3^{\mathsf{T}}$$

欢迎提问和讨论

吴利苏 (http://wulisu.cn)

Email: wulisu@sdust.edu.cn

2024年9月8日