Estimation of flow trajectories in a multiple lines network

Experiments with *transports publics de la région lausannoise* (tl) data

Guillaume Guex Romain Loup François Bavaud

University of Lausanne

Table of contents

- 1. Introduction
- 2. The single line problem
- 3. Iterative proportial fitting
- 4. The multiple lines problem
- 5. Results (demo)
- 6. Conclusion

Introduction

Context

The **tl dataset**, exploited by Romain Loup for his PhD:

- 1 year of data (2019).
- 115 millions of passengers.
- 42 bus and subway lines.
- 1361 stops and 497 "superstops".
- Every journey data: traveling time, waiting time, embarking and disembarking passengers at each stops, etc.

Context

```
##
    stop_id stop_name line_id direction order embarkment disembarkment
## 1 MALAD_N Maladière
                                    Α
                                               164558
                                                                0
## 2 MTOIE E Montoie
                                              136236
                                                             12705
## 3 BATEL E Batelière
                                   Α
                                               203045
                                                            13409
## 4 RTCOU_E Riant-Cour
                                            156015
                                                             24909
##
     stop_id stop_name line_id direction order embarkment disembarkment
## 42 RTCOU O Riant-Cour
                                     R
                                         19
                                                 23634
                                                             132201
## 43 BATEL_O Batelière
                                               13707
                                         20
                                                           168884
## 44 MTOIE_O Montoie
                                     R.
                                         21
                                                 4259
                                                           128255
## 45 MALAD_N Maladière
                                         22
                                                    0
                                                            146798
```


The multiple lines network

Having only lines data, the structure is a **disconnected oriented graph**.

In addition to **line edges**, it is possible to construct **transfer edges** to make the graph connected, by using, e.g.,

- Superstops names,
- Pedestrian time.
- Euclidean distance.

With transfer edges, we have a unilaterally connected graph.

Problematic

This dataset offers multiple axes of research. In this presentation, we focus on one question:

Knowing (1) the network structure and (2) the number of passengers embarking and disembarking at each stop, can we deduce trajectories of the passengers in the network?

Short answer: No.

Thank you for your attention! Questions?

(just kidding)

Problematic

Exact trajectories are impossible to know, but, with additional assumptions, we can produce **estimations** of them.

We divide this problematic into two parts:

- Estimation of trajectories on a single line.
- Estimation of trajectories on the multiple lines network.

The single line problem

Formal problem definition

Let a line (in one direction), which have n stops, indexed regarding line order. Let $\rho_{\rm in}=(\rho_s^{\rm in})$ and $\rho_{\rm out}=(\rho_t^{\rm out})$ be two vectors representing, respectively, the passengers entering and leaving the line at each stop.

We search a $(n \times n)$ origin-destination matrix $N = (n_{st})$ where components represents

 $n_{st} =$ "the number of passengers entering line at s and leaving at t".

These components must verify

- 1. $n_{st} \geq 0$,
- 2. $n_{s\bullet} = \rho_s^{\text{in}}$,
- 3. $n_{\bullet t} = \rho_t^{\text{out}}$.
- (• indicates a sum on the replaced index)

Formal problem definition

It reads

$$\mathbf{N} = \begin{bmatrix} \rho_1^{\text{out}} & \rho_2^{\text{out}} & \cdots & \rho_{n-1}^{\text{out}} & \rho_n^{\text{out}} \\ \rho_1^{\text{in}} & n_{11} & n_{12} & \cdots & n_{1,n-1} & n_{1n} \\ \rho_2^{\text{in}} & n_{21} & n_{22} & \cdots & n_{2,n-1} & n_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \rho_{n-1}^{\text{in}} & n_{n-1,1} & n_{n-1,2} & \cdots & n_{n-1,n-1} & n_{n-1,n} \\ \rho_n^{\text{in}} & n_{n,1} & n_{n,2} & \cdots & n_{n,n-1} & n_{n,n} \end{bmatrix}$$

In fact, we already know that some components are null

$$\mathbf{N} = \begin{bmatrix} \mathbf{0} & \rho_2^{\text{out}} & \cdots & \rho_{n-1}^{\text{out}} & \rho_n^{\text{out}} \\ \rho_1^{\text{in}} & \mathbf{0} & n_{12} & \cdots & n_{1,n-1} & n_{1n} \\ \mathbf{0} & \mathbf{0} & \ddots & \ddots & n_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \rho_{n-1}^{\text{in}} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & n_{n-1,n} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Formal problem definition

In this form, the problem is **ill posed**, because it has multiple acceptable solutions. An exemple of solution is to make passengers follow a **first in**, **first out (FIFO)** scheme.

A principle of mathematical modeling is to find the solution which makes the **least assumptions about passenger behavior**, in other words the **maximum entropy solution**.

In this case, it translates by supposing that there is the same probability of leaving the line for every passenger which have traveled at least one stop.

Solution with Markov chain modeling

We can then model passenger flow with a Markov chain:

with
$$ho_i^{ ext{in}} = rac{
ho_i^{ ext{in}}}{
ho_{ullet}^{ ext{in}}}$$
 and $ho_i^{ ext{out}} = rac{
ho_i^{ ext{out}}}{\sum_{1 \leq k \leq (i-1)} (
ho_k^{ ext{in}} -
ho_k^{ ext{out}})}.$

Solution with Markov chain modeling

Solution with Markov chain modeling

Iterative proportial fitting

Iterative proportional fitting

The same solution can be obtained with the **iterative proportional fitting (IPF)** algorithm [Bishop et al., 1975]. Let

- 1. $\mathbf{P} = (p_{ij})$ a $(n \times m)$ matrix,
- 2. $\mathbf{u} = (u_i)$ a n-length vector, and
- 3. $\mathbf{v} = (v_i)$ a m-length vector,

all of them with strictly positive components. We can find two vectors $\mathbf{a}=(a_i)$ and $\mathbf{b}=(b_i)$ such that the matrix $\mathbf{Q}=(q_{ij})$, defined with

$$q_{ij}=a_ib_jp_{ij},$$

verifies

- $q_{i\bullet} = u_i$,
- $q_{\bullet j} = v_j$,
- $K(\mathbf{Q}|\mathbf{P}) := \sum_{ij} \frac{q_{ij}}{q_{\bullet \bullet}} \log \left(\frac{q_{ij}/q_{\bullet \bullet}}{p_{ij}/p_{\bullet \bullet}} \right)$ is minimum.

Solution with iterative proportional fitting

In our context, it means that if we define an **origin-destination affinity** $\mathbf{S} = (s_{st})$ with

$$\mathbf{S} = \begin{pmatrix} 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

we can find the same maximum entropy solution with iterative proportional fitting, i.e., we can find $\mathbf{a} = (a_s)$ and $\mathbf{b} = (b_t)$, such that $n_{ij} = a_s b_t s_{st}$ verifies

- 1. $n_{s\bullet} = \rho_s^{\text{in}}$,
- 2. $n_{\bullet t} = \rho_t^{\text{out}}$,
- 3. K(N|S) is minimum.

(a small number ϵ has to be added on null components).

Solution with iterative proportional fitting

By decreasing (resp. increasing) s_{st} , we reduce (resp. expand) the resulting number of passengers going from s to t obtained with IPF.

Thus, this approach is more **flexible**, because we could give a **specific affinity matrix S** = (s_{st}) , based on other data (additional assumptions).

The relationship $n_{st} = a_s b_t s_{st}$ can be seen as a **gravity model** (still to investigate).

The multiple lines problem

The multiple lines problem

In this problem, the whole multiple lines network is used. Let us recall that it is composed of **line edges** and **transfer edges**.

It is not possible to use a Markov chain modeling in this case, but the **iterative proportional fitting** approach is still valid. However, there are **additional difficulties**.

Flow behavior

The first difficulty is that there are generally multiple routes to go from node s to t. This can be solved by making a new assumption.

In the multiple lines network, we suppose that passengers take **shortest-paths** in order to reach node t from node s.

If multiple shortest-paths exists between s and t, the passenger flow is divided equally among them.

Flow behavior

This assumption unlocks a very useful property. If we have an origin-destination matrix $\mathbf{N} = (n_{st})$, we can compute the $(n \times n)$ flow matrix on edges $\mathbf{X} = (x_{ij})$.

$$\mathbf{N} = \begin{pmatrix} 0 & 13055 & 243 & \cdots & 144 \\ 3498 & 0 & 24429 & \cdots & 7523 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1508 & & \cdots & 0 & 5093 \\ 8903 & 6343 & \cdots & 53 & 0 \end{pmatrix} \rightarrow$$

A second problem is that we have to distinguish between

- The passengers entering and leaving lines at each stop, represented by vectors ρ_{in} and ρ_{out} , which are measured, and
- The passengers entering and leaving the network at each stop, represented by vectors σ_{in} and σ_{out} , which are unknown.

At each stop i, we have

$$\begin{split} \rho_i^{\text{in}} &= \sigma_i^{\text{in}} + x_{\bullet i}^{\text{B}}, \\ \rho_i^{\text{out}} &= \sigma_i^{\text{out}} + x_{i \bullet}^{\text{B}}, \end{split}$$

where

- $x_{\bullet i}^{B}$ is the transfer flow entering the node i and
- $x_{i\bullet}^{B}$ is the transfer flow leaving the node i.

If we know transfer flow on edges, i.e. $\mathbf{X}_{B} = (x_{ij}^{B})$, we can compute the flow entering/leaving the network, σ_{in} and σ_{in} .

The flow entering/leaving the lines, ρ_i^{in} and ρ_i^{out} , acts as **constraints on** the in/out transfer flow, $x_{\bullet i}^{\text{B}}$ and $x_{i\bullet}^{\text{B}}$.

When there are no transfers on i, we have $\sigma_i^{\rm in}=\rho_i^{\rm in}$ and $\sigma_i^{\rm out}=\rho_i^{\rm out}$.

Algorithm outline

Let us make an outline for the **iterative Algorithm**. There are **4 steps** at each iteration:

$$\begin{array}{c} \text{OD affinity matrix S} \\ \text{Flow in the network } \boldsymbol{\sigma}_{\text{in}} \\ \text{Flow out the network } \boldsymbol{\sigma}_{\text{out}} \end{array} \end{array} \begin{array}{c} \stackrel{IPF}{\longrightarrow} \text{OD matrix N} \\ \text{OD matrix N} & \stackrel{SP}{\longrightarrow} \text{Transfer flow } \mathbf{X}_{\text{B}} \\ \text{Flow in lines } \boldsymbol{\rho}_{\text{in}} \\ \text{Flow out lines } \boldsymbol{\rho}_{\text{out}} \end{array} \end{array} \begin{array}{c} \overset{SP}{\longrightarrow} \text{Transfer flow } \mathbf{X}_{\text{B}} \\ \text{Flow in the network } \boldsymbol{\sigma}_{\text{in}} \\ \text{Flow out the network } \boldsymbol{\sigma}_{\text{out}} \end{array} \tag{3}$$

$$\begin{array}{c} \text{Transfer flow } \mathbf{X}_{\text{B}} \\ \text{Allowed transfer flow } \mathbf{X}_{\text{B}} \end{array} \end{array} \end{array} \begin{array}{c} \text{Affinity update} \\ \text{OD affinity matrix S} \end{array} \tag{4}$$

Step 1: iterative proportional fitting

At the beginning of the algorithm, we have to set

- ullet An initial flow in the network . We can set it to $\sigma_{ ext{in}}^{ ext{init}}=
 ho_{ ext{in}},$
- ullet An initial flow out the network . We can set it to $\sigma_{ ext{out}}^{ ext{init}} =
 ho_{ ext{out}},$
- An initial affinity matrix between origin-destination, Sinit.

The initial affinity matrix $\mathbf{S}^{\text{init}} = (s_{st}^{\text{init}})$ is crafted in order to have

- s_{st}^{init} = 1, if going from s to t is a valid trajectory for using the network,
- $s_{st}^{\text{init}} = 0$, otherwise.

It now possible to obtain a first origin-destination matrix ${\bf N}$ with iterative proportional fitting.

Step 2: shortest-paths flow

In this step, we use the assumption that passengers use **shortest-paths** in the network to obtain flow on edges, and in particular, **flow on transfer edges**:

$$\textbf{N} \longrightarrow \textbf{X}_{B}$$

$$\mathbf{N} = \begin{pmatrix} 0 & 13055 & 243 & \cdots & 144 \\ 3498 & 0 & 24429 & \cdots & 7523 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1508 & \cdots & 0 & 5093 \\ 8903 & 6343 & \cdots & 53 & 0 \end{pmatrix} \rightarrow$$

Step 3: corrected transfer flow

This transfer flow X_B could be used to update $\sigma_{\sf in}$ and $\sigma_{\sf out}$, with

$$\sigma_i^{\text{in}} = \rho_i^{\text{in}} - x_{\bullet i}^{\text{B}},$$

$$\sigma_i^{\text{out}} = \rho_i^{\text{out}} - x_{i\bullet}^{\text{B}}.$$

However, there is no guarantee that the transfer flow do not exceed limits given by ρ_{in} and ρ_{in} .

Step 3: allowed transfer flow

For each x_{ij}^{B} , we use ρ_i^{out} and ρ_j^{in} in order to compute a **allowed transfer** flow $\widetilde{x}_{ij}^{\mathrm{B}}$, with $\widetilde{x}_{ij}^{\mathrm{B}} \leq x_{ij}^{\mathrm{B}}$. There are multiple choices:

- 1. Constraint thresholds could be reachable.
- We can set a percentage limit for the transfer flow among the flow in/out of the lines.
- We can set a soft limit to the transfer flow, with, e.g., an exponential law.

When this allowed flow is computed, $\sigma_{\rm in}$ and $\sigma_{\rm out}$ can be updated with

$$\begin{split} \sigma_i^{\text{in}} &= \rho_i^{\text{in}} - \widetilde{x}_{\bullet i}^{\text{B}}, \\ \sigma_i^{\text{out}} &= \rho_i^{\text{out}} - \widetilde{x}_{i\bullet}^{\text{B}}. \end{split}$$

Step 4: Affinity update

What about the excess flow on transfer edges, i.e., $x_{ij}^{B} - \tilde{x}_{ij}^{B}$?

Note that we only updated margins distribution, but we also need a way to reduce dependencies between particular s and t.

Having flow following shortest-paths, we know which couples s, t are "responsible" for the excess flow on edge (i,j).

Step 4: Affinity update

On each transfer edge, we can compute the **proportion of allowed flow**:

$$p_{ij}^{\text{allowed}} = \frac{\widetilde{X}_{ij}^{\text{B}}}{X_{ij}^{\text{B}}}$$

Each transfer edge (i,j) transmits this proportion p_{ij}^{allowed} to all couples s,t that use this edge. Each couple s,t receiving a reduced proportion have to reduce its affinity s_{st} .

Each couple s, t receives a **list of proportion of allowed flow**, from all transfer edges on its shortest-path. The **update factor for the affinity** s_{st} is constructed by using the minimum allowed flow received.

$$s_{\mathit{st}}^{\mathsf{new}} = \min\{p_{i_1, j_1}^{\mathsf{allowed}}, \dots, p_{i_k, j_k}^{\mathsf{allowed}}\} \cdot s_{\mathit{st}}^{\mathsf{old}}$$

Step 4: Affinity update

In this example, $s_{st}^{\text{new}} = 0.3 \cdot s_{st}^{\text{old}}$

Results (demo)

Conclusion

Conclusion

As it is still a work in progress, the conclusion takes the form of a to-do list:

- Optimizing speed/memory (almost done).
- Running the algorithm on all lines.
- Testing multiple initial conditions and hyperparameter values.
- Finding applications.
- Making links with gravity model, transportation problem, ...
- Using carefully crafted **OD** affinities.
- Finding proof/conditions of convergence.
- Adapting the algorithm to closely related problems.

Thank you for your attention! Questions?

(for real this time)