

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS Instituto de Ciências Exatas e de Informática

Experimentos com Caminhos Disjuntos: Teoria dos Grafos e Computabilidade

Luiz Fernando Oliveira Maciel¹ Vinicius Ferreira de Souza²

Resumo

Este artigo tem como objetivo apresentar o algoritmo desenvolvido para encontrar caminhos disjuntos em grafos e analisar o comportamento desse algoritmo em diferentes tipos de grafos. Artigo feito como parte do Trabalho Prático 2 da matéria Teoria dos Grafos e Computabilidade, do 4º período do curso de Ciência da Computação da PUC Minas PPL.

Palavras-chave: Teoria dos Grafos e Computabilidade. Caminhos Disjuntos.

¹Aluno do Programa de Graduação em Ciência da Computação, Brasil – lfomaciel@sga.pucminas.br.

²Aluno do Programa de Graduação em Ciência da Computação, Brasil – vfsouza@sga.pucminas.br.

1 INTRODUÇÃO

Um caminho simples em um grafo direciado é um caminho sem repetição de vértices. Ou seja, um caminho simples é uma sequência de vértices e arestas sem repetir o mesmo vértice mais de uma vez.

No gráfico acima, as sequências de vértices A, B, E, F e a sequência A, D, C, F são caminhos simples. Essas duas sequências também são caminhos disjuntos em arestas, pois não possuem arestas iguais entre si.

O problema de achar os caminhos disjuntos em arestas em um grafo possui vários usos em diversas áreas. Para isso, nós implementamos um algoritmo capaz de achar quantos e quais caminhos disjuntos existem em um grafo gerado de forma automática.

2 RESOLUÇÃO

Para resolvermos o problema, inicialmente assumimos que todas as arestas no grafo possuem capacidade de fluxo unitária. Considerando que um grafo possua um número k máximo de caminhos disjuntos de um vértice s à um vértice t, podemos dizer que o fluxo máximo do vértice s ao vértice t será k (já que a capacidade de fluxo é unitária em todos as arestas). (WAYNE, 2001) Para encontrarmos o número máximo de caminhos disjuntos precisamos, portanto, apenas encontrar o fluxo máximo do grafo, e a partir do corte das arestas que possuem fluxo maior que 0 utilizarmos força bruta para encontrar um conjunto de caminhos disjuntos que possua o mesmo número de elementos que o valor máximo encontrado.

3 IMPLEMENTAÇÃO

Nosso algoritmo foi desenvolvido em Python devido à sua alta abstração e consequente facilidade de implementação. Link do código-fonte: https://github.com/lfnand0/Grafos-TP2

Os grafos foram representados como matrizes de adjacência, onde a coluna representa o vértice de saída e a fileira o vértice de entrada, e o valor nessa posição é 1 caso exista uma aresta

e 0 caso contrário. Para encontrar o fluxo máximo, utilizamos o algoritmo de Edmonds-Karp (GOLDREICH et al., 2006). Ao fim da execução do algoritmo, temos uma matriz com o fluxo residual - como precisamos apenas do corte onde existe fluxo, comparamos a matriz do grafo com o fluxo residual e geramos uma nova matriz (chamada de dif) seguindo as seguintes regras: para cada posição em uma matriz n x n: caso o valor seja 0 nessa posição na matriz do grafo, o elemento na posição na matriz dif será 0; caso seja 1, o elemento na matriz dif receberá o resultado da operação xor entre 1 e o elemento na matriz do fluxo residual. Visualização:

Figura 1 - Um grafo direcionado qualquer e sua matriz de adjacência

Figura 2 – A matriz do fluxo residual do vértice 0 ao 6 encontrado após a execução do algoritmo de Edmonds-Karp

Figura 3 - A matriz "dif"encontrada após as operações explicadas acima

Partindo dessa nova matriz "dif", realizamos primeiramente uma busca em profundidade, encontrando todos os caminhos do vértice origem ao destino e os salvando em uma lista. Depois criamos uma lista vazia chamada "disjuntos" para os caminhos disjuntos e "visitadas" para todas as arestas visitadas, e executamos o seguinte código:

Algoritmo 1 - Encontrar conjunto de caminhos disjuntos

Algorithm 1: Encontrar conjunto de caminhos disjuntos

```
1: Preenche o vetor de attributes.size + 1 atributos com os valores dos atributos, sendo a
   primeira posição do vetor preenchida com o valor 1
2: hidden\_layer\_size = attributes.size * 2 + 1;
3: for caminhoA in caminhos do
4:
      disjuntos[] = [].append(caminhoA);
      visitadas = [].extend(caminhoA);
5:
      for caminhoB en caminhos - caminhoA do
6:
7:
         if nenhumaarestadecaminhoB em visitadas then
8:
           disjuntos.append(caminhoB);
9:
           visitadas.extend(caminhoB);
10:
         end if
11:
      end for
12:
      if disjuntos.length == maxflow then
         return disjuntos;
13:
14:
      end if
15: end for
```

Após a execução desse algoritmo, temos a lista com o conjunto de caminhos disjuntos.

4 UTILIZAÇÃO DO CÓDIGO

Para utilizar o código, é necessário ter instalado o Python em uma versão igual ou superior à 3. Nosso código apresenta diversas flags para chamada inline, para que o usuário consiga utilizar da maneira que deseja. O usuário pode utilizar quantas e quais flags quiser. As flags que podem ser utilizadas são as seguintes:

4.1 -prob [float]

A probabilidade que dois vértices tenham uma aresta em comum na geração de grafos aleatórios. Caso não seja utilizado a probabilidade será 0.3.

Exemplo: python tp2.py -prob 0.1

4.2 -arq [string]

Diretório de um arquivo txt com a matriz de adjacência de um grafo.

Exemplo: python tp2.py -arq "./grafos cíclicos/50.txt"

4.3 -ver [int]

Número de vértices a ser usado na geração de grafo. Caso não seja utilizado o número

de vértices será 10.

Exemplo: python tp2.py -ver 100

4.4 -ori [int]

Vértice de origem. Caso não seja utilizado, o vértice de origem será 0.

Exemplo: python tp2.py -ori 1

4.5 -des [int]

Vértice de destino. Caso não seja utilizado, o vértice de destino será n - 1.

Exemplo: python tp2.py -des 9

4.6 -cam [string]

Diretório para salvar os caminhos disjuntos encontrados. Caso não seja utilizado, os

caminhos serão salvos em "./disjuntos.txt"

Exemplo: python tp2.py -cam "./out/disj.txt"

4.7 -w [string]

Diretório para salvar o grafo gerado. Caso não seja utilizado o grafo gerado não será

salvo

Exemplo: python tp2.py -w "./grafos simples/50.txt"

4.8 -ciclo

Gera um grafo cíclico.

Exemplo: python tp2.py -ciclo

Belo Horizonte, p. 01-11, dez. 2022

5

4.9 -completo

Gera um grafo completo

Exemplo: python tp2.py -completo

5 GERAÇÃO DE GRAFOS ALEATÓRIOS

Nosso algoritmo também é capaz de gerar grafos cíclicos, simples e completos de forma automática para serem testados pelo nosso método de busca de caminhos disjuntos em arestas.

Para a geração de grafos simples, utilizamos o Modelo Erdős–Rényi, que adiciona arestas ao grafo a partir de uma probabilidade definida.(ERDÖS; RÉNYI, 1959). Para grafos completos, chamamos a função que gera grafos simples, porém passando uma probabilidade de 1 (100%) - ou seja, existe uma aresta saíndo de cada vértice do grafo para todos os outros. Para grafos cíclicos, apenas adicionamos uma aresta saíndo de um vértice e indo para seu sucessor, e ao chegar no maior índice retornamos ao primeiro vértice.

6 EXPERIMENTOS COM CAMINHOS DISJUNTOS

6.1 Resultados Obtidos

Apresentação dos resultados obtidos em cada tipo de grafo com tamanhos diferentes. Cada tabela possui qual tipo de grafo que testamos bem como o número de vértices e o tempo de execução.

Grafos Completos			
Tamanho do grafo	Tempo de execução	Número de Caminhos Disjuntos	
50 vértices	215,8ms	49	
100 vértices	287,8ms	99	
250 vértices	1304,5ms	249	
1000 vértices	69181,17ms	999	

Grafos Cíclicos			
Tamanho do grafo	Tempo de execução	Número de Caminhos Disjuntos	
50 vértices	18,6ms	1	
100 vértices	230,48ms	1	
250 vértices	311,75ms	1	
1000 vértices	4658ms	1	

Grafos Simples			
Tamanho do grafo	Tempo de execução	Número de Caminhos Disjuntos	
50 vértices	163,72ms	31	
100 vértices	275,34ms	47	
250 vértices	765,37ms	94	
1000 vértices	27985,30ms	382	

Para comparar de forma melhor, segue abaixo um gráfico com a comparação de tempo entre os diferentes tipos de grafos com mil vértices.

6.2 Regressão

Figura 4 – Grafo do nº de vértices x tempo de execução (ms)

A figura acima representa um gráfico do número de vértices pelo tempo de execução. Para encontrarmos a complexidade de tempo do programa, realizamos o teste com vários grafos

simples de tamanhos diferentes. Geramos os grafos com tamanhos incrementais de 10 a 10, gerando de tamanho 10 à 990, com a probabilidade de existir aresta entre dois vértices quaisquer igual à 50%. A função encontrada na regressão para o tempo de execução (em milisegundos) de acordo com o número de vértices foi de $T(n)=0.04293861x^2-17.17452933x$, com um coeficiente muito preciso de $R^2=0.995024467$. Com isso, podemos dizer que nosso programa possui complexidade de tempo quadrática.

6.3 Conclusão

O programa roda com uma complexidade de $O(n^2)$. Por utilizarmos o corte do grafo encontrado com o algoritmo de Edmonds-Karp, a complexidade é reduzida em um grau de magnitude - o pior caso é em grafos completos, onde o número de arestas é reduzido de n*(n-1)/2 para 2n-3. Por conseguirmos parar a execução do método de força-bruta ao encontrarmos um conjunto de caminhos disjuntos com o mesmo valor do fluxo máximo, o algoritmo também é mais rápido em casos médios.

REFERÊNCIAS

ERDÖS, P; RÉNYI, A. On random graphs i. **Publicationes Mathematicae Debrecen**, v. 6, p. 290–297, 1959. Disponível em: https://www.renyi.hu/~p_erdos/1959-11.pdf>.

GOLDREICH, Oded; ROSENBERG, Arnold L.; SELMAN, Alan L. (Ed.). **Theoretical Computer Science: Essays in Memory of Shimon Even**. Berlin, Heidelberg: Springer-Verlag, 2006. ISBN 3540328807.

WAYNE, Kevin. **Maximum Flow Applications**. Princeton University, 2001. Disponível em: https://www.cs.princeton.edu/ wayne/cs423/lectures/max-flow-applications/>. Acesso em: 11 de dez. 2022. Disponível em: https://www.cs.princeton.edu/~wayne/cs423/lectures/max-flow-applications>.