ME 460 Final Exam silitions, Fall 2009

w	1Y	Y (mag, phase)	
0	ta		12
π	=======================================	1.01, -3.1×106	-0.321
πÇ	7	1.04, -2.6×10-5	-0.166
311	37	1.10, -9,2×10-5	-0.116
41	41	1.19, -2,4×10-4	-0,0945

$$\chi(t) = \frac{1}{2} - 0.321 \, \text{Sin} \left(\pi t - 3.1 \times 10^{-6} \right) \qquad -1.78 \times 10^{-4}$$

$$- 0.166 \, \text{Sin} \left(2\pi t - 2.6 \times 10^{-5} \right) \qquad -1.49 \times 10^{-3}$$

$$- 0.116 \, \text{Sin} \left(3\pi t - 9.2 \times 10^{-5} \right) \qquad -5.27 \times 10^{-3}$$

$$- 0.0945 \, \text{Sin} \left(4\pi t - 2.4 \times 10^{-4} \right) \qquad -0.0138 \, ^{\circ}$$

(Only 4 terms requested, although 5 presented here)

Phases could alternatively be flipped by 180°, f signs are changed.

3)
$$T = \frac{1}{2} m_1 \times^2 + \frac{1}{2} m_1 v_1^2$$

Presuming $x = p$
 $U = \frac{1}{2} x_1 x^2 + \frac{1}{2} k_2 x^2 + m_1 g_1 x + m_2 h_1$

Position of unbalance

 $T_1 = (x - e \sin w t) \hat{i} + e \cos w \hat{j}$
 $\vec{v}_0 = (x - e \sin w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \sin w t) \hat{i} + e \cos w t \hat{j} + e \cos w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{i} - e w \sin w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{j} + e \cos w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{j} + e \cos w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{j} + e \cos w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{j} + e \cos w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{j} + e \cos w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{j} + e \cos w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{j} + e \cos w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{j} + e \cos w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{j} + e \cos w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{j} + e \cos w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{j} + e \cos w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{j} + e \cos w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{j} + e \cos w t \hat{j}$
 $\vec{v}_0 = (x - e \cos w t) \hat{j} + e \cos w t \hat{j$

When
$$= (2 \text{ W}_{xx} = 0)$$
 $X(x) = \sin \sigma x$ $(x(x) = 0, so \cos t)$
 $X(x) = 0 = \cos \sigma l$
 $X(x) = 0 = \cos \sigma l$
 $x = l = \frac{\pi}{3}, \frac{3\pi}{5}, \frac{5\pi}{5}, \frac{(2n-1)\pi}{2}$
 $x = \frac{(2n-1)\pi$

fm= 100×(cos 4), cos 4, cos 4" (cos 4") $\chi/t) = \sum_{n=0}^{\infty} \frac{200 \cos^{(2n-1)\pi}}{\sqrt{\left(2^{(2n-1)\pi}\right)^2 - 3^2}} \sin 3t \cos^{(2n-1)\pi}\chi$

cos 4 can be simplified since the magnitude hever changes, but sign does.