VGGish embeddings and perceptual features

for Singing Voice Detection

Shayenne Moura - (shayenne .moura@usp.br) - Computer Music Research Group, Universidade de São Paulo

1. Objective

Explore results using learned representations against perceptually-motivated features

Classify polyphonic audio segments as singing/non-singing

2. VGGish

- 128-dimensional audio features extracted at 1Hz
- VGG-inspired acoustic model in Hershey et. al. (2017)
- Trained on a preliminary version of YouTube-8M

3. Dataset

- 61 songs containing singing voice from MedleyDB
- 10 splits for train/test: 70%/30%
- Artist conditional split

4. Method

Comparing singing voice classification using VGGish versus using perceptually-motivated features

- Target Sources: female and male singer, vocalists, and choir
- Features: VGGish versus MFCC, VV, Fluct, SF, and SC
- Classifiers: Random Forest
- Outputs: Original, Majority Vote, and Optimal Binarization
- Evaluation: quantitative and qualitative

5. Results

Metrics related to the optimal binarization output for each genre on test set

genre	Classical	Jazz	Musical Theatre	Pop	Rock	Singer/ Songwriter	World/ Folk
	Perceptual features models						
ACC	0.94	0.94	0.93	0.83	0.83	0.80	0.97
P	0.97	0.93	0.94	0.86	0.84	0.86	0.99
R	0.94	0.98	0.99	0.93	0.88	0.87	0.97
F1	0.95	0.95	0.96	0.89	0.86	0.85	0.98
	VGGish embeddings models						
ACC	0.92	0.97	0.88	0.88	0.86	0.84	0.99
P	0.96	0.97	0.97	0.92	0.90	0.90	0.99
R	0.94	0.98	0.91	0.91	0.87	0.87	0.99
F1	0.95	0.98	0.93	0.92	0.88	0.88	0.99

6. Conclusions

VGGish features have comparable classification accuracy relative to perceptual features without specialization for voice recognition

Future directions:

• Add a pitch recognition phase to perform singing voice transcription

The author acknowledges the support of CNPq and the WiMIR participation grant.