

PHYS 2211 K

Week 2, Lecture 1
2022/01/18
Dr Alicea (ealicea@gatech.edu)

6 clicker questions today

On today's class...

- 1. Momentum and Forces
- 2. Newton's 2nd Law (The Momentum Principle)
- 3. Constant velocity motion
- 4. Constant force motion

Last week: Vectors!

$$\vec{r} = < r_x, r_y, r_z > -$$
 Component form

$$\hat{r} = \frac{\vec{r}}{|\vec{r}|} = \frac{< r_x, r_y, r_z>}{\sqrt{r_x^2 + r_y^2 + r_z^2}} \longleftarrow \text{Unit vector}$$

Last week: Vectors!

CLICKER 1: Choose your chosen one

Position, Displacement, Velocity

$$ullet$$
 Position $ec{r}=< r_x, r_y, r_z>$

• Displacement
$$\Delta \vec{r} = \vec{r}_f - \vec{r}_i$$

• Instantaneous velocity (at a single point) $\vec{v} = \frac{d\vec{r}}{dt}$

• Average velocity $ec{v}_{
m avg} \equiv rac{\Delta}{\Lambda}$

Instantaneous vs Average Velocity

As Δt gets smaller, $ec{v}_{ m avg}$ gets closer to $ec{v}$

CLICKER 2: The position of an object as a function of time is given by: $\vec{r}=< at^2, bt+2, c/t^3>$

What is the instantaneous velocity of this object as a function of time? (note that "a", "b", and "c" are constants)

A.
$$\vec{v} = <2at, b+2, -3ct^{-2}>$$

B.
$$\vec{v} = <2at, b, -3ct^{-4}>$$

c.
$$\vec{v} = < a/t, bt, 3c/t^2 > 0$$

p.
$$\vec{v}=$$

The Position Update Formula

 Measuring two positions (at two different times) allows us to determine the average velocity for that object during that time interval

$$ec{v}_{\mathrm{avg}} = rac{\Delta ec{r}}{\Delta t} = rac{ec{r}_f - ec{r}_i}{t_f - t_i}$$

• If we know the initial position and the average velocity, we can predict the final position of the object at a future time

$$ec{v}_{\mathrm{avg}} = rac{ec{r}_f - ec{r}_i}{\Delta t}$$
 $ec{r}_f = ec{r}_i + ec{v}_{\mathrm{avg}} \Delta t$

(smaller deltat = more accurate)

Example: An object is moving in a straight line at constant speed. At t=0, the object is located at position <2,4,0> m. At t=0.5 sec, the object is located at position <3,3.5,0> m. How much time will pass, from this moment, until the object reaches the ground, at y=0?

Solution:

Start by calculating the average velocity

Example: An object is moving in a straight line at constant speed. At t=0, the object is located at position <2,4,0> m.

At t=0.5 sec, the object is located at position <3,3.5,0> m. How much time will pass, from this moment, until the object reaches the ground, at y=0?

Solution:

Then use the position update formula, in the y-component only, to find deltat

Momentum

• The momentum of an object contains information about how easy or difficult it is to change the motion of the object (think: stopping a baseball vs stopping a train)

At low speeds, momentum is defined as

ullet Note that this means that $ec{v}=rac{p}{m}$

Units of momentum: kg m/s

Relativistic Momentum

 When an object moves close to the speed of light, the momentum needs a relativistic correction (Lorentz factor; "gamma")

$$ec{p}=\gamma m ec{v}$$
 where $\gamma=rac{1}{\sqrt{1-(v^2/c^2)}}$

ullet The (exact!) speed of light is $\,c=299792458\,$ m/s

but you can just use $\,c=3 imes10^8\,$ m/s in all calculations

(note that $3x10^8$ can also be written as 3e8)

Relativistic Momentum

When do you need relativistic momentum?
 Answer: Only at very VERY high speeds!

v	v /c	γ
0	0	1
3	1e-8	1.0000
300	1e-6	1.0000
3e6	1e-2	1.0001
3e7	0.1	1.005
1.5e8	0.5	1.1547
2.997e8	0.999	22.36
2.9997e8	0.9999	70.7124
3e8	1	∞

Newton's 2nd = The Momentum Principle

 Relates the net interaction between system and surroundings to the observed motion (changes in momentum) of the system

$$\vec{F}_{
m net} = rac{d\vec{p}}{dt}$$

without derivatives,
$$ec{F}_{
m net} = rac{\Delta p}{\Delta t}$$

But isn't Newton's 2nd law $\vec{F}=m\vec{a}$???

$$\vec{F}_{\mathrm{net}} = \frac{ap}{dt}$$

The Momentum Update Formula

Start here:
$$\vec{F}_{\mathrm{net}} = \frac{d\vec{p}}{dt}$$

The Velocity Update Formula

Start here:

$$\vec{p}_f = \vec{p}_i + \vec{F}_{\rm net} \Delta t$$

The Net Force

- The vector sum of all the forces acting on the system
- ullet $F_{
 m net}=0$ means that all the forces acting on the system cancel out
 - System is in equilibrium
 - Results in constant velocity motion
 - Does not necessarily mean there are NO FORCES AT ALL acting on the system!
 (velocity)

$$ec{v}_f = ec{v}_i + (ec{F}_{
m net}/m) \Delta t$$
 (velocity update formula)

CLICKER 3: You push a book across a table. In order to keep the book moving with constant velocity, you have to keep pushing with a constant force. Which of these statements explains this?

- A. A net force is necessary to keep an object moving
- B. To make the net force on the book zero, you must push with a force equal and opposite to the friction force on the book
- C. The force you exert must be slightly larger than the friction force or the book will stop moving

The Net Force: Force Diagrams

- Represent system as a point, and put it at the origin of the coordinate system
- Represent each force with an arrow, pointing in the direction of the force (angles are important!
- The relative lengths of the arrows represent the relative strengths of the forces

CLICKER 4: An object is acted on by these three forces: $F_1 = 8.3 \text{ N pointing down (-yhat)},$ $F_2 = <2,4,0> \text{ N, and}$ $F_3 = 1 \text{ N pointing left (-xhat)}.$

What is the net force on the object?

- A. Fnet = 0
- B. Fnet = <10.3, 5, 0 > N
- C. Fnet = <1, -4.3, 0 > N
- D. Fnet = <9.3, 4, 0 > N
- E. Fnet = <-3, 4.3, 0 > N

Applying Newton's 2nd Law

- 1. Chose your system
 - Everything else belongs in the surroundings and exerts forces
- 2. Draw a force diagram and find the net force
 - All forces must be due to interactions with surroundings.
- 3. Chose your time interval
 - Given in the problem or estimated from motion data
- 4. Substitute known values and solve for the unknowns
 - You usually need to update the velocity, then update the position, then update the net force again if needed (iteration)
- 5. Check the units and reasonableness of your answer
 - Does your answer pass the sniff test?

Applying Newton's 2nd Computationally

- 1. Divide the total time into smaller timesteps
- 2. At each timestep (meaning, inside the while loop):
 - Compute the net force: **Fnet**
 - Update the velocity:
 ball.vel = ball.vel + (Fnet/ball.m)*deltat
 - Update the position:
 ball.pos = ball.pos + ball.vel*deltat
 - Update time: t = t + deltat
- 3. Repeat!

CLICKER 5: Given a net force of <1,0,3> N and an initial velocity of <0,-2,1> m/s, determine the final velocity after 0.3 sec for an object of mass 10 kg.

A.
$$\vec{v}_f = \langle 0.03, -2, 1.09 \rangle$$
 m/s

B.
$$\vec{v}_f = \langle 0.3, -2, 1.9 \rangle$$
 m/s

C.
$$\vec{v}_f = <-0.03, 2, 0.1 > \text{m/s}$$

D.
$$\vec{v}_f = \langle 1.1, -2, 1.3 \rangle$$
 m/s

E.
$$\vec{v}_f = \langle 0.3, -2, 1.3 \rangle$$
 m/s

Given a net force of <1,0,3> N and an initial velocity of <0,-2,1> m/s, determine the final velocity after 0.3 sec for an object of mass 10 kg.

Estimating $ec{v}_{ m avg}$ for non-zero net force

$$\vec{v}_f = \vec{v}_i + (\vec{F}_{\rm net}/m)\Delta t$$
 $\vec{r}_f = \vec{r}_i + (\vec{v}_{\rm avg}\Delta t)$

- When $ec{F}_{
 m net}$ is constant, we can approximate $ec{v}_{
 m avg}$ as: $ec{v}_{
 m avg} = \dfrac{ec{v}_i + ec{v}_f}{2}$
 - When $ec{F}_{
 m net}$ is not constant, we approximate $ec{v}_{
 m avg}$ as: $ec{v}_{
 m avg}pprox ec{v}_f$

We'll come back to this next week when we first encounter a non-constant force (springs)

Example of a constant force: Gravity near the surface of Earth ("weight")

$$\vec{F}_g = <0, -mg, 0>$$

- g is the acceleration due to gravity at the surface of Earth
- $g = 9.8 \text{ m/s}^2$
- Gravity at the surface of Earth
 is a constant force, and always
 points down (towards the ground)

CLICKER 6: An object of mass m falls from rest straight down from a height h. Determine the object's velocity when it reaches the ground t seconds later.

A.
$$ec{v}_f = gt$$

B.
$$ec{v}_f = -gt$$

c.
$$\vec{v}_f = <0, gt, 0>$$

D.
$$\vec{v}_f = <0, -gt, 0>0$$

What if the problem instead was:

An object of mass m falls from rest straight down from a height h. Determine the object's velocity when it reaches the ground.

We don't know the time! What now??

$$y_f = y_i + v_{iy}\Delta t - (1/2)g(\Delta t)^2$$

We can derive this from Newton's 2nd law and the position update formula

$$\vec{v}_f = \vec{v}_i + (\vec{F}_{\rm net}/m)\Delta t$$

$$\vec{r}_f = \vec{r}_i + \vec{v}_{\rm avg} \Delta t$$

Back to the problem:

An object of mass m falls from rest straight down from a height h. Determine the object's velocity when it reaches the ground.

Solution:

First find the time (kinematic), then find the velocity (Newton's 2nd)

Back to the problem:

An object of mass m falls from rest straight down from a height h. Determine the object's velocity when it reaches the ground.

Solution:

First find the time (kinematic), then find the velocity (Newton's 2nd)

Let's stop here!

On Thursday:

Problems!
Lots and lots of problems!!

