

hands on particle physics

LNF, 15 marzo 2017

Le basi del Modello Standard

Vincenzo Barone

Il Modello Standard: una teoria quantistica di campo di tre delle quattro interazioni fondamentali, basata su simmetrie

Particelle di forza (fotoni, W, Z, gluoni)

Particelle di materia (quark e leptoni)

Termine di massa per le particelle di materia

Termine di massa per le particelle di forza Rottura spontanea

Un precedente: la teoria di Maxwell dell'elettromagnetismo

Lagrangiana: campo em + materia

$$\mathcal{L}_{\mathcal{EM}} = -\frac{1}{4}F_{\mu\nu}F_{\mu\nu} + \frac{1}{c}j_{\mu}A_{\mu}$$

- Una sola interazione (em)
- Equazioni lineari
- Campi classici

Cronologia del Modello Standard

- 1930-40: Interazioni subatomiche, forte e debole
- 1949-50: Elettrodinamica quantistica, QED (Feynman, Schwinger, Tomonaga, Dyson)
- 1954: Teorie di gauge (Yang e Mills)
- 1961: Teoria elettrodebole (Glashow)
- 1964: Meccanismo di Higgs (Higgs, Brout e Englert)
- 1967: Modello Standard elettrodebole (Salam, Weinberg)
- 1973: Cromodinamica quantistica (Fritzsch, Gell-Mann, Gross, Wilczek, Politzer)
- 1973: Correnti deboli neutre
- 1983: Bosoni W e Z
- 2012: Bosone di Higgs

Meccanica quantistica

Le particelle sono onde, di lunghezza d'onda (de Broglie)

$$\lambda = \frac{h}{p} \approx \frac{hc}{E}$$

Possiamo usare le particelle di alta energia per esplorare lo spazio La risoluzione è proporzionale all'energia

Per esempio:

1 GeV \rightarrow 10⁻¹⁵ metri = 1 fermi (raggio del protone) 10 TeV \rightarrow 10⁻¹⁹ metri (attuale limite osservativo)

Relatività speciale

La massa è energia (Einstein)

Possiamo convertire l'energia cinetica in energia di massa e produrre particelle

Per esempio:

 $p + p \rightarrow p + p + \bar{p} + p$ (produzione dell'antiprotone)

Gli acceleratori di particelle come microscopi quantistici e fabbriche relativistiche

Esplorano lo spazio (e l'interno della materia) e producono particelle, e sono tanto più efficaci quanto più alta è la loro energia

L'equazione di Dirac

$$i\gamma \cdot \partial \psi = m\psi$$

Spin dell'elettrone e antiparticelle (positroni)

$$E = \pm \sqrt{p^2 c^2 + m^2 c^4}$$

Annichilazione e creazione di coppie elettrone-positrone

Per la conservazione della quantità di moto e dell'energia, l'annichilazione deve produrre due fotoni reali

Viceversa, due fotoni reali possono produrre una coppia e+e-

Meccanica quantistica + Relatività speciale = Teoria quantistica dei campi

Una particella si propaga da 1 a 2

Una coppia particella-antiparticella si crea in 2 e si annichila in 1

Il numero di particelle non è conservato: una «meccanica» quantistica e relativistica non basta

Esempio: decadimento del neutrone

Processo governato dall'interazione debole In cui sono creati un elettrone e un antineutrino

Fermi (1934): prima teoria dell'interazione debole (e

prima teoria di campo di

un processo fisico)

ANNO IV - VOL. II - N. 12

QUINDICINAL

31 DICEMBRE 1933 - XIII

LA RICERCA SCIENTIFICA

ED IL PROGRESSO TECNICO NELL'ECONOMIA NAZIONALE

Tentativo di una teoria dell'emissione dei raggi "beta"

Note del prof. ENRICO FERMI

Riassunto: Teoria della emissione dei raggi B delle sostanze radioattive, fondata sull'ipotesi che gli elettroni emessi dai tutclei non esistano prima della disintegrazione ma vengano formati, insieme ad un neutrino, in modo analogo alla formazione di un quanto di luce che accompagna un salto quantico di un atomo. Confronto della teoria con l'esperienza.

Che cos'è un campo quantistico

Un insieme di infiniti oscillatori quantizzati

Quando tutti gli oscillatori sono nello stato fondamentale si ha il vuoto (L'energia di punto zero del vuoto può generare forze)

Quando un oscillatore salta in uno stato eccitato si crea una particella Le particelle sono eccitazioni dei campi quantistici che si propagano

Superamento del dualismo particelle-campi

Il vuoto quantistico

Non è «vuoto», possiede un'energia, può non essere unico

I collisori di particelle come eccitatori del vuoto (Touschek)

 $e^+e^- \rightarrow fotone virtuale \rightarrow ???$

AdA 1961

Le entità fisiche

Le quattro interazioni fondamentali

Interazione	Intensità	Mediatori	Raggio
Forte	1	Gluoni	10 ⁻¹⁵ m
Elettromagnetica	10 ⁻²	Fotone	∞
Debole	10 ⁻⁵	Bosoni W, Z	10 ⁻¹⁸ m
Gravitazionale	10-38	Gravitone	∞

«Interazione» vs «Forza»

Fisica elementare:

Forza come grandezza che causa una variazione dello stato di moto

Manteniamo questa accezione ristretta e usiamo il termine *interazione* per indicare qualcosa di più generale

Un'*interazione* può manifestarsi in vari modi:

- → Forza tra particelle (processi d'urto, stati legati, ecc.)
- → Trasformazioni e decadimenti di particelle
- → Creazione e distruzione di particelle

Interazione come scambio di particelle

Poiché le particelle di materia sono fermioni e devono preservare questa loro proprietà nell'interazione, le particelle di forza devono essere bosoni

Il numero e le proprietà delle particelle di forza sono determinati dalle simmetrie

Raggio di interazione

Scambio di una particella virtuale di massa *M*

Violazione della conservazione dell'energia al vertice: $\Delta E \geq Mc^2$

permessa per un tempo $\tau \sim \hbar/\Delta E \sim \hbar/Mc^2$

Lunghezza d'onda Compton della particella scambiata

 $R = c\tau \sim \hbar/Mc$

la particella scambiata si propaga per una distanza massima

Raggio dell'interazione inversamente proporzionale alla massa della particella scambiata

$$R = \hbar/Mc$$

Cariche: sorgenti dell'interazione

Per es.: i quark hanno carica elettrica, debole e forte i neutrini hanno solo carica debole

Le cariche sono quantizzate, additive e conservate

Costanti di accoppiamento: misurano l'intensità dell'interazione

Interazione elettromagnetica

Struttura atomica e molecolare

Emissione e assorbimento della radiazione

Urti tra particelle cariche: es. $e^- + \mu^- \rightarrow e^- + \mu^-$

Produzione e annichilazione di coppie $e^- + e^- \leftrightarrow 2\gamma$

Decadimenti: es. $\pi^0 \leftrightarrow 2\gamma$

La particella di forza dell'elettromagnetismo è il fotone, di massa nulla Il raggio di interazione è infinito

Le cariche elettriche in unità di e sono intere (leptoni, ± 1) o frazionarie (quark, $+\frac{2}{3}$, $-\frac{1}{3}$)

$$V_{em}(r) \sim (\hbar c) \alpha_{em} \frac{q_1 q_2}{r}$$

$$\alpha_{em} = \frac{e^2}{\hbar c} \approx 0.007$$

Interazione debole

Non è una forza di legame

Decadimenti: es.

$$n \rightarrow p + e^- + \bar{\nu}_e$$

$$\mu^- \rightarrow \nu_\mu + e^- + \bar{\nu}_e$$

Decadimento beta

Processi con neutrini: es.

Le particelle di forza dell'interazione debole sono i bosoni W^+, W^-, Z^0

Masse
$$M_W = 80 \; GeV/c^2$$
 $M_Z = 91 \; GeV/c^2$

Raggio di interazione $R_w \sim 0.002 fm$

La carica debole è la terza componente dell'isospin debole I

Costante di accoppiamento $\alpha_w \approx 0.004$

$$V_w(r) \sim (\hbar c) \alpha_w \frac{I_1 I_2}{r} e^{-\frac{r}{R_w}}$$

La novità rispetto al caso elettromagnetico è che anche le particelle di forza hanno carica debole, quindi possono interagire tra loro

A basse energie le lunghezze d'onda di de Broglie $\hbar c/E$ delle particelle interagenti sono molto più grandi del raggio di interazione

→ L'interazione appare puntiforme

L'interazione appare debole perché la sua costante di accoppiamento è divisa per la grande massa dei bosoni scambiati

Interazione forte

Struttura nucleare e adronica (barioni, qqq, mesoni, $q\bar{q}$)

Interazioni adroniche: es. $\pi^- + p \rightarrow \pi^+ + n$

Decadimenti: es. $\rho^0 \rightarrow \pi^+ + \pi^-$

Le particelle di forza dell'interazione forte sono i gluoni (8), di massa nulla

Il raggio di interazione è infinito, ma quark e gluoni sono confinati

$$V(r) \sim (\hbar c) \alpha_s \frac{\boldsymbol{c}_1 \cdot \boldsymbol{c}_2}{r} + k r$$

Effetto del confinamento

Il raggio effettivo dell'interazione è di circa 1 fm, la tipica scala adronica

Costante di accoppiamento $\alpha_s \approx 1$

A «grandi» distanze l'interazione è modellizzata dallo scambio di mesoni

La carica forte è il «colore», espresso matematicamente da due quantità numeriche, e indicato discorsivamente con rosso, verde, blu

Vertici a tre e quattro gluoni

Il caso dell'interazione gravitazionale

$$V_g(r) \sim (\hbar c) \alpha_g \frac{g_1 g_2}{r}$$

«carica gravitazionale»
$$g = \frac{massa\ della\ particella}{massa\ di\ riferimento}$$

Prendendo come massa di riferimento quella del protone $m = 1 \text{ GeV}/c^2$

$$\alpha_g = \frac{Gm^2}{\hbar c} = \frac{m^2}{M^2} \approx 10^{-38}$$
 Decine di ordini di grandezza più debole delle altre tre interazioni

Massa di Planck
$$M=\sqrt{\frac{\hbar c}{G}}=10^{19}~{
m GeV}/c^2$$

L'andamento delle forze

Simmetrie

Simmetria = Invarianza rispetto a una trasformazione

delle leggi fisiche spazio-temporale o interna

Le trasformazioni di simmetria sono trasformazioni che lasciano inalterati i fenomeni fisici

Dal punto di vista matematico, le trasformazioni di simmetria formano dei gruppi

Le simmetrie implicano delle leggi di conservazione (simmetrie continue - teorema di Noether)

Le simmetrie fondamentali dell'universo

Simmetrie esatte

- Simmetria di Poincaré
 - → La più generale simmetria dello spazio-tempo (piatto)
- Simmetria CPT
- Simmetrie di gauge elettromagnetica e di colore (forte)

Simmetrie rotte

- Simmetrie P (parità), T (inversione temporale), C (coniugazione di carica)
 - → Sono violate dalle interazioni deboli

Simmetrie "nascoste", o "spontaneamente rotte"

- Simmetria di gauge elettrodebole
 - → Meccanismo di Brout-Englert-Higgs

Simmetrie discrete

Lee Yang

Nel 1956 C.N. Yang e T.D. Lee ipotizzano che la simmetria di parità sia rotta nei processi governati dalla forza debole

Esperimento di Madame Wu (1957)

Solo l'immagine di destra si realizza in natura

L'interazione debole distingue tra destra e sinistra (violazione di P)

Non è possibile che la destra per le particelle sia equivalente alla sinistra per le antiparticelle (simmetria CP)?

La risposta è no. Anche la simmetria CP è violata

Esperimenti di Fitch e Cronin sui kaoni neutri (1964)

Se la simmetria CPT è esatta, e CP è violata, anche T è violata

I fenomeni deboli non sono invarianti rispetto all'inversione temporale

Esiste una freccia microscopica del tempo (non ha niente a che vedere con quella macroscopica, che è un fenomeno statistico)

Simmetrie come principi delle teorie: Relatività generale

Simmetria generale delle coordinate

(Invarianza rispetto a una generica trasformazione delle coordinate)

Equazione di Einstein (Relatività generale)

caso particolare

La rivoluzione einsteiniana: un nuovo livello di comprensione della Natura

I principi di simmetria danno struttura e coerenza alle leggi della natura proprio come le leggi della natura danno struttura e coerenza alla serie degli eventi (E. Wigner)

La simmetria di gauge

Hermann Weyl (1929)

Simmetria di "gauge"

Interazione elettromagnetica

E' una simmetria interna e locale che determina direttamente l'interazione

La trasformazione di gauge è una rotazione della funzione d'onda, o del campo, nel piano complesso

Gruppo di simmetria U(1)

Globale vs. Locale

GLOBALE Trasformazione uguale in tutti i punti

LOCALE
Trasformazione diversa
da punto a punto

Una simmetria locale richiede la presenza di un campo di gauge che compensi le diverse trasformazioni nei vari punti dello spazio-tempo

L'idea di Yang e Mills

(Yang e Mills, 1954)

Una simmetria di gauge (interna e locale) per determinare completamente le leggi dell'interazione forte e di quella debole

Il gruppo di simmetria deve essere più ampio di quello dell'elettromagnetismo, del tipo SU(n)

Le particelle appartengono a rappresentazioni di questo gruppo

Le teorie di gauge prevedono l'esistenza di un certo numero di particelle (i bosoni di gauge) che mediano le forze

Ma c'è un problema: i bosoni di gauge hanno massa nulla e quindi generano forze di raggio infinito

→ Rottura spontanea della simmetria

Simmetrie nascoste (o spontaneamente rotte)

E' possibile che le leggi fisiche siano simmetriche, ma che lo stato fondamentale dell'universo (il "vuoto") non lo sia (rottura spontanea di simmetria)

Le orbite planetarie

La "trave di Eulero"

La Terra a forma di pera

Anderson, Nambu, Jona-Lasinio, Goldstone (1960-61)

La simmetria è spontaneamente rotta da un campo di valore non nullo che riempie il vuoto

Nel 1961 Goldstone mostra che se si rompe spontaneamente una simmetria globale, le eccitazioni quantistiche del campo che riempie il vuoto sono particelle di spin zero (bosoni) e massa nulla

Ma non si conoscono particelle di spin zero e massa nulla

Nel 1964 Brout e Englert, e indipendentemente Higgs, scoprono che se la simmetria rotta spontaneamente è una simmetria di gauge (locale), le particelle di gauge acquistano massa e le eccitazioni quantistiche del campo del vuoto sono bosoni di massa non nulla

Risolto il problema delle teorie di gauge Possono descrivere forze a corto raggio Prevista una nuova particella: il "bosone di Higgs"

Modello standard: settore elettrodebole

(Glashow, Weinberg, Salam, 1961-67)

Interazione elettromagnetica e interazione debole descritte e unificate sotto una simmetria di gauge

Simmetria di isospin debole

Simmetria di ipercarica debole

Particelle sinistrorse:
$$\begin{pmatrix} v_e \\ e \end{pmatrix}_L \begin{pmatrix} u \\ d' \end{pmatrix}_L$$

$$\begin{pmatrix} v_e \\ e \end{pmatrix}_L \begin{pmatrix} u \\ d' \end{pmatrix}_L$$

Le trasformazioni di U(1)_Y ruotano i campi nel piano complesso

Particelle destrorse: singoletti di SU(2), I=0

Le trasformazioni di SU(2) mescolano le componenti dei doppietti

Il campo di Higgs $\phi(x)$ si accoppia ai bosoni di gauge e ai campi di materia

L'autointerazione fa sì che il campo di Higgs abbia un valore non nullo nel vuoto, $\phi = v$, e rompa spontaneamente la simmetria di gauge

$$Z^{0} = \cos \theta_{W} W^{0} - \sin \theta_{W} B$$

$$A = \sin \theta_{W} W^{0} + \cos \theta_{W} B$$
 (angolo di Weinberg)

 W^+, W^-, Z^0 acquistano massa, A (fotone) rimane privo di massa

 $SU(2) \times U(1)_Y$ è spontaneamente rotta in $U(1)_{em}$

Emerge la carica elettrica
$$Q = I + \frac{Y}{2}$$

Le particelle di materia acquistano una massa m = gv

1

Costante di accoppiamento con l'Higgs

Tre parametri indipendenti: α_{em} , α_w , v (oppure M_Z)

Altri parametri: massa dell'Higgs, costanti di accoppiamento, ecc.

Modello standard: settore forte

L'interazione forte è descritta da una teoria di gauge, la QCD (cromodinamica quantistica), basata sulla simmetria SU(3) di colore

La QCD prevede l'esistenza di 8 particelle di forza, i gluoni

La simmetria di colore è esatta

La QCD è completamente priva di parametri arbitrari; è totalmente determinata dalla simmetria

L'origine della massa

Il bosone di Higgs dà massa alle particelle elementari (quark e leptoni)

Ma le masse di queste particelle rappresentano appena l'1% della massa della materia ordinaria (costituita prevalentemente da protoni e neutroni)

Da dove viene il 99% della massa?

Dall'energia dei quark e dei gluoni

Tuttavia il contributo dell'Higgs è determinante perché, per esempio, fa sì che il protone sia appena più leggero del neutrone e quindi stabile, il che permette l'esistenza dell'idrogeno

Un altro ingrediente del Modello Standard: il mescolamento dei sapori

I quark d, s, b si mescolano tra loro per accoppiarsi a u, c, t (Meccanismo CKM, Cabibbo – Kobayashi – Maskawa)

Un parametro nella matrice CKM produce una violazione di CP

Il Modello Standard funziona alla perfezione ma non può essere la fine della storia

«Una teoria davvero razionale deve derivare le particelle, non porle in partenza» (A. Einstein)

Il MS è una teoria «poco razionale» nel senso einsteiniano del termine, perché le proprietà delle particelle non sono predette

- Molti parametri arbitrari
- Non dà conto delle masse dei neutrini
- Non ha candidati per la materia oscura
- Prevede un'insufficiente violazione di CP
- Non incorpora la gravità

Il MS è probabilmente un'approssimazione di «bassa energia» di una teoria più generale

Le costanti di accoppiamento delle tre interazioni variano con l'energia e tendono a convergere a energie molto elevate

Segnale di una grande unificazione

Backup Slides

increasing mass ----

5 bosons (+1 opposite charged W)

Il Modello Standard: le particelle

Quarks

Leptons

Il problema della massa

La scoperta del bosone di Higgs (CMS, ATLAS, 2012)

Una particella *sui generis*: massa 126 GeV, spin zero

