Aufgabe 1: Meissner-Effekt im Supraleiter (5 Punkte)

Die Stromdichte $\mathbf{j}(\mathbf{x})$ in einem Supraleiter hängt für stationäre Ströme mit dem Vektorpotential $\mathbf{A}(\mathbf{x})$ über die London-Gleichung

$$\mathbf{j}(\mathbf{x}) = -\frac{n_s e^2}{m_e c} \mathbf{A}(\mathbf{x}) \qquad (\nabla \cdot \mathbf{A} = 0)$$

zusammen. Dabei ist n_s die superfluide Dichte der Ladungsträger, e die Elementarladung und m_e die Elektronenmasse.

- Leiten Sie aus dem Ampère'schen Gesetz unter Verwendung von rot rot = grad div $-\nabla^2$ eine Differentialgleichung für das statische Magnetfeld $\mathbf{B}(\mathbf{x})$ in einem Supraleiter ab.
- b) Lösen Sie die Differentialgleichung für die z-Komponente des Magnetfeldes für einen Supraleiter im Halbraum x > 0, mit der Randbedingung, dass im angrenzenden Vakuum x < 0 ein homogenes Magnetfeld $\mathbf{B}_0 = (0,0,B_0)$ vorhanden sei. Bestimmen Sie die charakteristische Eindringtiefe λ des Feldes als Funktion der superfluiden Dichte n_s und berechnen Sie λ konkret für $n_s = 10^{23}$ cm⁻³ $(e^2/m_ec^2 = 2.8 \cdot 10^{-13}$ cm).

Aufgabe 2: TEM-Moden in einem Koaxial-Leiter (8 Punkte)

Betrachten Sie einen Koaxial-Leiter mit zwei unendlich langen, perfekt leitenden Zylinderfächen (s. Skizze). Eine elektromagnetische Welle im Vakuum zwischen den beiden Zylinderfächen, die sich entlang der z-Achse ausbreitet, wird beschrieben durch den Ansatz

$$\begin{cases} \mathbf{E}(\mathbf{x},t) \\ \mathbf{B}(\mathbf{x},t) \end{cases} = \begin{cases} \mathbf{E}(x,y) \\ \mathbf{B}(x,y) \end{cases} \exp i \left(kz - \omega(k)t\right).$$

- Berechnen Sie die Dispersion $\omega(k)$ von TEM-Moden, also Moden in denen $E_z = B_z \equiv 0$, aus den xund y-Komponenten der Maxwell-Gleichungen $\nabla \wedge \mathbf{E} = -\partial_t \mathbf{B}/c$ und $\nabla \wedge \mathbf{B} = \partial_t \mathbf{E}/c$ im Vakuum. Hinweis: $(\nabla \wedge \mathbf{E})_x = \partial_y E_z - \partial_z E_y$ und $(\nabla \wedge \mathbf{E})_y = \partial_z E_x - \partial_x E_z$
- \bowtie Zeigen Sic, dass die Felder $\mathbf{E}(x,y)$ und $\mathbf{B}(x,y)$ aufeinander senkrecht stehen und denselben Betrag haben.

c) Berechnen Sie $\mathbf{E}(x,y)$ und $\mathbf{B}(x,y)$ explizit in Polarkoordinaten s,φ unter der Annahme, dass die Felder unabhängig vom Winkel φ sind, aus den Gleichungen $\nabla \cdot \mathbf{E} = \nabla \cdot \mathbf{B} = 0$.

Hinweis: Die Richtung der Felder ist durch die Randbedingungen bei s=a und s=b festgelegt. Die Divergenz in Polarkoordinaten hat die Form

$$\nabla \cdot \mathbf{E} = \frac{1}{s} \frac{\partial}{\partial s} \left(s E_s \right) + \frac{1}{s} \frac{\partial E_{\varphi}}{\partial \varphi} \,.$$

Aufgabe 3: Retardiertes Potential (7 Punkte)

In einem unendlich langen geraden Draht entlang der z-Achse werde zur Zeit t=0 ein konstanter Strom mit Stärke I_0 eingeschaltet, d.h. $\mathbf{I}(t)=I_0\theta(t)\cdot\mathbf{e}_z$, wobei $\theta(t)$ gleich Eins ist für t>0 und Null für $t\leq 0$. Das resultierende Vektorpotential

$$\mathbf{A}(\mathbf{x},t) = \frac{1}{c} \int dz \, \frac{\mathbf{I}(t_r)}{|\mathbf{x} - \mathbf{x}'|}$$

ist bestimmt durch den Strom zur retardierten Zeit $t_r = t - |\mathbf{x} - \mathbf{x}'|/c$ und den Abstand $|\mathbf{x} - \mathbf{x}'| = \sqrt{s^2 + z^2}$ des Beobachtungspunkts im Abstand s > 0 vom Draht von dem Punkt z, von dem aus sich das elektromagnetische Feld ausbreitet (das Problem ist zylindersymmetrisch um die z-Achse, d.h. $\mathbf{A}(\mathbf{x}, t)$ hängt nur ab von s und der Zeit t > 0).

- Zeigen Sie, dass das Vektorpotential für Abstände $s \ge ct$ identisch verschwindet und dass für s < ct nur der Bereich $|z| < \sqrt{(ct)^2 s^2}$ zum Integral beiträgt.
- Berechnen Sie das Vektorpotential A explizit als Funktion des Abstands s und der Zeit t. Hinweis: $\int dz/\sqrt{s^2+z^2} = \ln{(\sqrt{s^2+z^2}+z)}$.
- c) Bestimmen Sie das elektrische Feld $\mathbf{E}(s,t) = -\partial_t \mathbf{A}(s,t)/c$ und das magnetische Feld $\mathbf{B}(s,t) = \nabla \wedge \mathbf{A}(s,t)$ und verifizieren Sie, dass sich im Grenzfall $t \to \infty$ die bekannten statischen Felder eines (neutralen) stromdurchflossenen Drahts ergeben.

Hinweis: Für A = A(s, t) gilt in Zylinderkoordinaten s, φ, z

$$\nabla \wedge \mathbf{A} = -\frac{\partial A_z}{\partial s} \cdot \mathbf{e}_{\varphi} + \frac{1}{s} \frac{\partial}{\partial s} (s A_{\varphi}) \cdot \mathbf{c}_{\mathbf{z}}.$$