〈글로벌 기후변화와 에너지 문제〉 강의자료

3. 기후변화 현상과 영향

제3주차 강의 (비대면)

담당교수 강승진

강의순서

가. 기후변화 현상

나. 온실가스-기후변화 원인 물질

지난시간 학습내용 요약

- 에너지사용의 유용한 점
 - 산업혁명 시기에 화석연료를 사용하면서 대량생산이 가능해짐
 - 에너지의 사용은 인류에게 물질적 풍요와 편리한 생활을 가능하게 함
- 에너지사용의 문제점
 - 환경문제: 대기오염과 미세먼지 문제
 - 3대 대기오염물질: SOx, NOx, PM
 - 기후변화문제: 지구 기온의 상승으로 인한 전지구적 환경문제
 - 화석연료 사용으로 인한 온실가스(CO₂ 등) 배출
 - 에너지 시설에 대한 주민 수용성 문제
 - 님비 현상(NIMBY: Not In My Back Yard): 에너지 시설에 대한 기피
 - 기타 문제
 - 자원고갈 및 에너지안보, 사고 및 안전문제

- 기후변화(Climate Change)
 - 여러가지 요인에 의해 지구 기온이 상승하는 현상
 - 지구온난화(Global Warming)라고도 함
- 기후변화의 원인
 - 자연적인 원인
 - 태양 복사에너지의 변화
 - 지구 공전궤도의 변화
 - 화산활동, 지각활동 등 자연변화
 - 기후시스템의 자연 변동
 - 인위적인 원인
 - 온실가스와 에어러졸의 농도 증가: 온실효과
 - 삼림 파괴 및 환경변화
 - * 문제점: 인위적인 원인이 자연적인 균형을 깨고 있음

- 온실효과(Greenhouse Effect)
 - 태양 복사열의 일부가 대기중에 흡수되어 기온이 올라가는 현상
 - * 마치 겨울에 온실 안의 기온이 외부보다 높게 나타나는 현상
 - 자연적 온실효과
 - 태양 복사열의 일부는 자연상태의 대기에 흡수되어 대기 온도를 적절하게 유지시키는 역할을 함: 지구기온을 온화하게 하여 생물 성장에 적합
 - * 자연적 온실효과: 기온 33℃ 상승시킴 → 지구 평균기온 15℃ 유지
 - 인위적(Anthropogenic) 온실효과
 - 자연적인 온실효과 이외에 화석에너지 사용 증대에 따른 온실가스 증가로 추가적으로 기후가 변화하는 현상
 - 즉, 인류가 추가적으로 야기하는 온실효과임 → 전지구적 문제

온실효과

그림 1. 지구 대기에 섞여있는 온실가스는 대기와 같은 온도를 가지고 있고, 대기는 지표면보다 일반적으로 춥기때문에, 온실가스가 방출하는 빛은 지표면이 방출하는 빛보다 적은 강도를 가지게 된다.(출처: 한국기상학회)

* 자료: 네이버 지식백과

6

- 전 지구적인 기후변화: 이상기후 현상 증가
 - 지난 130여년(1880-2012년) 간 지구 평균기온 0.85℃ 상승
 - 지구 평균 해수면은 19cm 상승: IPCC 제5차 평가보고서(2013년)
 - * IPCC: Intergovernmental Panel on Climate Change
 - 기후변화에 관한 정부간 패널(IPCC): 기후변화에 대한 과학적 연구를 수행함
 - 1988년 유엔환경계획(UNEP)과 세계기상기구(WMO)가 공동으로 설립
 - 전세계 각국의 기상학자, 생태학자, 경제학자 등 약 7,000여명이 참여
 - 1990년 기후변화에 관한 제1차 평가보고서(AR1) 발간 후 2013년까지 총 5차례 평가보고서 발간
 - 2018년의 경우 전 지구 평균기온은 19세기 후반보다 1.0℃ 상승
 - 특히, 최근의 기온 상승폭이 높음
 - 북극해 빙하면적 감소로 인한 한파와 폭설 가능성 증가
 - 1979년 이래 9월 기준 북극의 해빙면적이 지속적으로 감소 추세
 - 이로 인해 유럽, 북미, 동아시아 등에 한파 및 폭설 유발

자연적 요인과 인위적 요인이 기후변화에 미친 영향 비교

- 한국의 기후변화 (정부, 제2차 기후변화대응 기본계획, 2019)
 - 지난 106년간 평균기온 1.8℃ 상승, 폭염.한파 등 기상이변 증가
 - (기온) 1912년(6대 지점 관측) 대비 매 10년마다 0.18℃ 상승
 - 계절적으로 겨울 +0.25℃/10년, 봄 +0.24℃ 기온상승이 큼
 - 2018년 여름평균기온 25.4℃로 역사상 가장 높음(서울 최고기온 39.6℃)
 - (강수량) 지난 106년 동안 연간 강수량 16.3mm/10년 증가
 - 연간 강수일은 변화가 없음 > 특히 여름철 폭우가 자주 발생함
 - (계절) 과거 30년과 최근 30년 비교 시 여름이 길어지고 겨울이 짧아지는 지구온난화 현상 발생
 - 여름 기간 +19일, 겨울 기간 -18일)

[그림 1-1] 우리나라 이상기후 현상

우리나라 계절길이 변화(과거 30년 vs 최근 30년)

처 한반도 100년의 기후변화(국립기상과학원, 2018)

^{*} 자료: 대한민국정부, "지속가능한 녹색사회 실현을 위한 대한민국 2050 탄소중립 전략", 2020.12.

- 온실가스(Greenhouse Gases: GHG)
 - 지구온난화를 유발하는 인위적인 온실가스
 - 태양 복사열을 흡수하여 대기 기온을 상승시킴
 - 대기 중에 배출되면 오랫동안 머물러 있음(100년 이상 체류)
 - 주요 인위적인 온실가스와 배출원
 - 이산화탄소(CO2): 화석연료 연소, 산림벌채, 시멘트 생산 등
 - 메탄(CH4): 논농사(쌀 경작), 가축(되새김동물) 사육, 폐기물 매립, 연료 연소
 - 아산화질소(N₂O): 질소비료 사용, 화학공장, 연료연소(일부)
 - 수소불화탄소(HFCs): 냉매 사용(냉장고, 에어컨)
 - 과불화탄소(PFCs): 반도체 제조공정(식각공정)
 - 육불화황(SF₆): 절연제(고압전류 차단기), 반도체 공정
 - 이러한 온실가스는 경제활동과정에서 배출됨
 - 석탄, 석유, 천연가스 등 화석연료 사용으로 CO₂ 가 대량으로 배출됨

• 온실가스의 종류와 특징

구 분	이산화탄소	메탄	아산화질소	F 가스
	(CO ₂)	(CH ₄)	(N₂O)	(HFCs, PFCs, SF ₆)
대기체류기간	5-200년	12년	114년	45-260년
배출원	화석연료 연소,	쌀경작, 가축사육,	질소비료 사용,	냉매, 반도체
	산림벌채	폐기물 매립	화학공정	제조공정, 절연제
산업혁명 이전 농도	275 ppm	722 ppb	270 ppb	0
2011년 농도	391 ppm	1,803 ppb	324 ppb	_
(증가율)	(40%)	(150%)	(20%)	
지구온난화지수 (GWP, 100년간)	1	23	296	1,100-22,200

자료: IPCC, Climate Change 2013, WG-1 Technical Summary

- 주요 온실가스 배출 과정
 - 이산화탄소(CO₂): 가장 많은 온실가스(전체의 약 65%)
 - 석유, 석탄, 천연가스 등 화석연료 연소과정에서 발생 → 연료속의 탄소 연소
 - 산림벌채: 광합성으로 이산화탄소를 흡수하여 저장하는 나무를 베어 버림
 - 시멘트 생산: 석회석을 가열하여 분해하는 과정에서 이산화탄소 발생
 - * CaCO₃(석회석) → 가열 분해 → CaO(시멘트 원료) + CO₂(이산화탄소)
 - 메탄(CH₄): 두번째로 많은 온실가스(전체의 약 15%)
 - 논농사: 논바닥이 물에 잠기면, 흙 속의 유기물이 공기(산소)가 없는 상태에서 분해되면서(혐기성 발효) 메탄이 발생
 - 소 되새김질: 소가 먹은 풀이 소화되기 쉽게 하려고 첫째 위에서 메탄발효가 일어남. 이를 되새김질 하려고 입으로 토해낼 때 다량의 메탄 배출
 - 쓰레기 매립: 땅속에서 공기가 없는 상태에서 유기물이 분해될 때 메탄 발생
 - 석유, 천연가스, 석탄 등의 생산과정에서 소량의 메탄 방출(탈루성)

- 주요 온실가스 배출 과정(계속)
 - 아산화질소(N₂O)
 - 질소비료 사용: 질소비료의 암모니아 성분이 분해되면서 발생
 - 화학공정: 암모니아 및 질산 생산 공정에서 발생
 - 수소불화탄소(HFCs)
 - 에어컨, 냉장고의 냉매로 사용됨 → 냉매가 대기중에 누출될 때 발생
 - 과불화탄소(PFCs)
 - 반도체 및 디스플레이 패널 정밀가공을 위한 웨이퍼 식각공정에서 사용됨
 - 육불화황(SF₆)
 - 고압전기를 다룰 때 자기장을 약화시키므로 내부에 육불화황 가스로 채운 고 압전기 차단기를 사용함. 최근 반도체 제조공정에서도 사용됨
 - ※ 기타 온실가스 (국내에서 규제되지 않는 가스)
 - NF₃(삼불화질소): 디스플레이, 반도체 제조공정에서 사용됨. 국내 온실가스 통계에는 비반영
 - CFCs(프레온가스): 과거에 냉매로 사용, 오존층 파괴물질로 밝혀져 1996년부터 점차 사용이 금지됨

- 미래의 기후변화 진행은?
 - IPCC 제5차 평가보고서(2013년) 전망: 2100년에 예상되는 시나리오
 - 이산화탄소 농도: 현재(2013년) 391 ppm -> 490 ~ 1260ppm 예상
 - * 2018년 CO₂ 농도: 연평균 407.8ppm (세계기상기구, WMO)
 - 지구 평균기온 상승: 현재(2013년) 0.85℃ → 2.6 ~ 4.8℃
 - * 기온 상승은 인간의 건강에 나쁜 영향을 줌: 열사병, 열대 풍토병 등
 - 해수면 상승: 현재(2013년) 19 cm → 45 ~ 82cm
 - * 해수면 상승으로 저지대 범람, 소규모 도서국가 국도 상실(예, 투발루)
 - 해수 산성화 진행: PH 지수 현재 8.2 → 7.8
 - * 해수 산성화가 진행되면 해양 동식물의 생육 조건에 나쁜 영향을 줌

- 기후변화의 영향은 기상, 환경, 경제 등 모든 분야에 영향을 미침
 - 기후변화의 예상되는 피해
 - 폭염: 기온상승으로 열사병 증대, 고온 기후로 대규모 산불 발생
 - 인간의 건강에 나쁜 영향
 - 열대 폭풍우 증가: 태풍의 빈발, 세력이 강해짐
 - 강수 유형 변화: 지역에 따라 폭우, 가뭄(사막화) 발생
 - 빙하 감소: 북극지방과 육상(고산지대)의 빙하 감소
 - 해수면 상승: 빙하가 녹고, 수온 상승으로 발생 → 저지대 침수, 해안 침식
 - 해수 산성화: 해양 생물 생육 조건 변화 > 일부 생물 멸종 가능성
 - 생태계 변화: 기온상승으로 동식물 서식조건 변화
 - 육상 생태계 변화 → 농작물 재배 환경 변화 → 식량 문제 발생 우려
 - 해양 동물 이동 → 어획량 변화

- 세계 기상이변과 피해
 - 유럽.아시아 등 전 세계적으로 이상고온, 한파 발생
 - 폭염.산불: 유럽과 동아시아 지역의 기록적인 폭염현상 발생 * 2017년 여름 스페인, 포르투갈 최고기온 40℃ 기록
 - 2019년 아마존 유역 및 호주 등에서 대규모 산불 발생
 - 한파.폭설: 2018년 미국, 캐나다에서 100년만의 최강 한파와 폭설 발생
 - * 2021년 2월초: 미국 중부지역에 북극한파 닥침, 텍사스 지역 기온 -20℃ 기록
 - 사회.경제적 피해
 - 기상이변으로 인한 폭풍, 홍수, 이상고온 현상으로 수많은 인명피해 발생
 - 1998-2017년간 세계 기후재해 피해액 2,245억 달러로 추산*
 - * 자료: 국제재해경감전략기구, "경제적 손실, 빈곤 및 재해" > "제2차 기후변화대응 기본계획" (2019.10)에서 재인용함
 - 인명, 시설 피해도 크지만, 농업, 관광업, 서비스업 등 유관산업에 연쇄적으로 부정적인 영향을 미쳐 경제적 피해 더욱 증가

- 한국의 기상이변과 피해
 - 한반도에 강한 한파와 기록적인 폭염 등 발생
 - 한파: 2018년 1월말-2월초 전국 평균기온은 1973년 이후 두번째로 낮았고, 국내 상층의 찬 공기가 지속 유입되면서 한파가 지속
 - * 한파의 원인: 지구 북반구의 제트기류가 약해지면서 북극한파가 확산됨
 - 폭염: 2018년 여름철 전국 평균기온은 1973년 이후로 가장 높았고, 전국적 무더위가 이어지면서 낮에는 폭염, 밤에는 열대야가 발생
 - 우리나라 사회.경제적 피해
 - 기후변화로 인한 호우, 태풍, 대설 등으로 재산 및 인명피해 발생
 - 최근 10년간 기상재해로 152명의 인명피해 및 약 20만 명의 이재민 발생,
 재산피해와 복구에 따른 경제적 손실은 10조 7천억원 발생
 - 특히, 태풍과 호우로 인한 피해액이 전체 피해규모의 88%에 달하여 기상재 해 원인 중 가장 큰 비중을 차지함

• 기온상승에 따른 기후변화의 영향 분석

온도 상승	물	식량	건강	토지	환경	급격한 변화
1℃	5천만 명의 물 공급 위협	온대 지역에서 곡물 생산이 약간 상승	최소 30만 명이 기후와 관련된 질병으로 사망 (설사,말라리아, 영양실조 등)	영구동토가 녹아 캐나다와 러시아 등의 지역에서 건물과 도로 파괴	적어도 10%의 육상생물이 멸종 위기 80%의 산호가 표백	대서양의 열 염분 순환이 약해지기 시작
2℃	몇몇 지역에서는 물 사용 가능성이 20-30% 감소 가능성	열대 지역에서 곡물 생산이 급격하게 감소	아프리카에서 4- 6천만 이상의 사람들이 말라리아에 노출	매해 천만 명에 이르는 사람들이 해안침수 겪음	15-40%의 생물 멸종 위기 북극곰 등 북극 생물 멸종 위기	그린란드 빙상이 녹기 시작하여 해수면 상승, 최종적으로
3℃	남유럽에서는 10년마다 극심한 가뭄 발생 10-40억 이상의 사람들이 물 부족으로 고통	1억 5천- 5억5천만 이상의 사람들이 굶주릴 위험 고위도 지역에서 농산물 생산량 정점 도달	1-3백만 이상의 사람들이 영양실조로 사망	매해 최대 1억 7천만 명 까지 해안침수 겪음	20-50%의 생물 멸종 위기 아마존 열대우림 파괴	7m까지 상승 모순 등 대기 순환에 급격한 변화가 발생할 위험 상승

자료: Nicolas Stern, "스턴보고서: 기후변화의 경제학", 2006. (환경부 홈페이지 번역본 참조)

• 기온상승에 따른 기후변화의 영향 분석(계속)

온도 상승	물	식량	건강	토지	환경	급격한 변화	
4℃	남아프리카와 지중해 지역에서 물 사용 가능성 30-50% 감소 가능성	아프리카에서 농산물 생산량 15-35% 감소	아프리카에서 8천만 명에 이르는 사람들이 말라리아에 노출	매해 최대 3억 명까지 해안침수 겪음	북극 툰트라 절반 정도 상실 절반 이상의 자연보호구역 이제 기능 상실	서남극 빙상의 붕괴 위험 상승 대서양의 열	
5℃	히말라야 빙하가 사라져서 중국과 인도의 수많은 사람에게 영향을 미칠 가능성	해양 산성화가 계속되어 해양 생태계가 심각하게 파괴		해수면 상승이 군소도서국과 저지대(플로리다), 그리고 뉴욕, 런던, 도쿄 등 세계의 주요 도시들을 위협		염분 순환 (THC)이 완전히 붕괴될 위험 상승	
5℃ 이상	/aullf						

자료: Nicolas Stern, "스턴보고서: 기후변화의 경제학", 2006. (환경부 홈페이지 번역본 참조)

수고하셨습니다.