ASSIGNMENT - 2

GROUP - 5

Premnath N CS14B022 R Hemanth Reddy CS14B024 M.Uday Theja CS14B044

Perceptron Classifier:

- It is a binary classifier i.e it determines whether the input represented feature vector belongs to a particular class or not .
- The function maps an input **x** with an output value **f(x)** which is a single binary value .

$$f(x) = 1 \text{ if w.x + b > 0}$$

= 0 otherwise

Here ${\bf w}$ and ${\bf x}$ are vectors and ${\bf w}.{\bf x}$ denotes the dot product between them and ${\bf b}$ is the bias .

Weight update equation :

$$w_i(t+1) = w_i(t) + (d_j - y_j(t)) * x_{j,i}$$
 for all features 0 <= i <= d.

Where,
$$y_j(t) = f[w(t).x_j]$$

 $d_i = desired output$

Perceptron(One vs One) for Linearly Separable Data

- Train *K* (*K* 1) / 2 binary classifiers for a *K*-way multiclass problem.
- Each receives the samples of a pair of classes from the original training set, and learns to distinguish these two classes.
- At prediction time, all K (K 1) / 2 classifiers are applied to an unseen sample and the class that gets the highest number of "+1" predictions gets predicted by the combined classifier.

Nature of decision surface:

- Decision surfaces are hyperplanes.
- The equation of hyperplane is w.x + b = 0

Multilayer Feed Forward Neural Networks:

- Artificial neural networks are networks of simple processing elements called neurons that operate on their local data and communicate with other similar elements.
- A typical feed forward neural network consists of an input layer, an output layer and one or more hidden layers.
- The connection between the ith and jth neuron is given by the weight \mathbf{w}_{ij} and the ith neuron by the threshold \mathbf{v}_i . The weight function determines the degree of importance of that articular connection in the neural network .

The output of i^{th} neuron \mathbf{x}_i is given by

$$x_i = f(\xi_i)$$
 and

$$\xi_i = \upsilon_i + \Sigma_{\text{over } j} \mathbf{w}_{ij} \mathbf{x}_j$$

where ξ_i is the potential of the i^{th} neuron and f is the trAccuracyfer function .

It holds that

$$f(\xi) = 1/(1 + \exp(-\xi))$$

 We vary the thresholds and weights to minimise the difference between the computed and the required output values. Thus, the objective function E is minimised.

$$E = \Sigma_{\text{over outputs}} \ 0.5 * (x_o - x_o^{\land})^2$$

where \mathbf{x}_o and \mathbf{x}^{\wedge}_o are the computed and required values of the output neurons and summation runs over all the output neurons \mathbf{o} .

Feed Forward Neural Networks:

Transfer Function: Hyperbolic tangent sigmoid transfer function

Tan-Sigmoid Transfer Function

DataDivision: Index (divideind)

Training : Scaled Conjugate Gradient (trainscg)

Performance: Cross-Entropy (crossentropy)

Calculations : MEX

Linearly Separable Data

Epoch = 35 Iterations

Performance = 0.000105

Gradient = 0.000241

Validation Checks = 6

Best Validation Performance is 0.00041847 at epoch 29

Non Linearly Separable Data

Two Hidden Layers:

Epoch = 139 Iterations
Performance = 0.000278
Gradient = 0.00138
Validation Checks = 6

Best Validation Performance is 0.0020838 at epoch 133

Single Hidden Layer

Epoch = 123 Iterations
Performance = 0.000529
Gradient = 0.000630
Validation Checks = 6

Best Validation Performance is 0.0017486 at epoch 117

Overlapping Data

Epoch = 35 Iterations
Performance = 0.0705
Gradient = 0.00568
Validation Checks = 6

Best Validation Performance is 0.061296 at epoch 29

48 Dimension

Epoch = 3500 Iterations Performance = 0.0388 Gradient = 0.0718

Best Validation Performance is 0.14379 at epoch 2237

Dimensionality Reduction

Data Preprocessing (Feature Scaling / Mean Normalisation):

- Scale the features to have comparable range of values.
- Standardisation of data:

If we are given n data points with d features each, then for every feature, we calculate the Mean(μ) and Sigma (sqrt(variance)) and transform each data point using the formula:

 $X = X - \mu / Sigma$.

Principal Component Analysis (PCA) Algorithm

- Performs a linear mapping of the data to a lower-dimensional space in such a
 way that the variance of the data in the low-dimensional representation is
 maximized.
- Compute Covariance matrix (Sigma).
- Compute the **Eigenvectors** of matrix Sigma.

[U,S,V] = svd(Sigma) (svd: Singular Valued Decomposition) The columns of U matrix are the eigenvectors.

• Choose the first k eigenvectors and reconstruct the data.

Choosing number of Principal Components k

- Average Squared projection error = 1/N Σ || x⁽ⁱ⁾ x⁽ⁱ⁾_{approx} ||²
- Total variation in data = $1/N \Sigma || x^{(i)} ||^2$
- Choose k to be smallest such that:

Average Squared projection error / Total variation in data <= 0.01 99% variance is retained.

26 Dimensions 90% Variance Retained

GMM

Confusion Matrix : Validation Data							
1	121	0	0	0	0	100%	
	53.1%	0.0%	0.0%	0.0%	0.0%	0.0%	
2	9	12	0	1	1	52.2%	
	3.9%	5.3%	0.0%	0.4%	0.4%	47.8%	
Output Class	9	0	20	0	0	69.0%	
	3.9%	0.0%	8.8%	0.0%	0.0%	31.0%	
Indtho 4	9	2	0	18	3	56.3%	
	3.9%	0.9%	0.0%	7.9%	1.3%	43.8%	
5	12 5.3%	1 0.4%	0 0.0%	3 1.3%	7 3.1%	30.4% 69.6%	
	75.6%	80.0%	100%	81.8%	63.6%	78.1%	
	24.4%	20.0%	0.0%	18.2%	36.4%	21.9%	
·	1	2	3 Target	4 Class	5		

		Confu	ision Ma	trix : Tes	t Data	
1	118 52.7%	0 0.0%	0 0.0%	1 0.4%	0 0.0%	99.2% 0.8%
2	1	20	0	1	0	90.9%
	0.4%	8.9%	0.0%	0.4%	0.0%	9.1%
Output Class	4	0	24	0	0	85.7%
	1.8%	0.0%	10.7%	0.0%	0.0%	14.3%
IndthO	3	1	0	26	2	81.3%
	1.3%	0.4%	0.0%	11.6%	0.9%	18.8%
5	7	0	0	1	15	65.2%
	3.1%	0.0%	0.0%	0.4%	6.7%	34.8%
	88.7%	95.2%	100%	89.7%	88.2%	90.6%
	11.3%	4.8%	0.0%	10.3%	11.8%	9.4%
	1	2	3 Target	4 Class	5	

MLFFNN

Epoch = 487 Iterations Performance = 0.0613 Gradient = 9.04e-08

Best Validation Performance is 0.1418 at epoch 255

33 Dimensions 95% Variance Retained

GMM

		Confusio	n Matrix	: Valida	tion Data	
1	120 52.6%	0 0.0%	0 0.0%	0 0.0%	1 0.4%	99.2% 0.8%
2	5	10	0	7	1	43.5%
	2.2%	4.4%	0.0%	3.1%	0.4%	56.5%
Output Class	8	0	21	0	0	72.4%
	3.5%	0.0%	9.2%	0.0%	0.0%	27.6%
outpul	13	0	0	17	2	53.1%
4	5.7%	0.0%	0.0%	7.5%	0.9%	46.9%
5	10	0	0	7	6	26.1%
	4.4%	0.0%	0.0%	3.1%	2.6%	73.9%
	76.9%	100%	100%	54.8%	60.0%	76.3%
	23.1%	0.0%	0.0%	45.2%	40.0%	23.7%
	1	2	3 Target	4 Class	5	

	Confusion Matrix : Test Data								
1	119 53.1%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	100% 0.0%			
2	2 0.9%	19 8.5%	0 0.0%	1 0.4%	0 0.0%	86.4% 13.6%			
Class	1 0.4%	0 0.0%	27 12.1%	0 0.0%	0 0.0%	96.4% 3.6%			
Output Class	5 2.2%	0 0.0%	0 0.0%	27 12.1%	0 0.0%	84.4% 15.6%			
5	3 1.3%	0 0.0%	0 0.0%	6 2.7%	14 6.3%	60.9% 39.1%			
	91.5% 8.5%	100% 0.0%	100% 0.0%	79.4% 20.6%	100% 0.0%	92.0% 8.0%			
,	1	2	3 Target	4 Class	5				

MLFFNN

Epoch = 452 Iterations

Performance = 0.0630 Gradient = 9.45e-07

Best Validation Performance is 0.155 at epoch 245

43 Dimensions 99% Variance Retained

GMM

		Confusio	n Matrix	: Valida	tion Data	
1	121	0	0	0	0	100%
	53.1%	0.0%	0.0%	0.0%	0.0%	0.0%
2	7	12	0	4	0	52.2%
	3.1%	5.3%	0.0%	1.8%	0.0%	47.8%
Output Class	4	0	25	0	0	86.2%
	1.8%	0.0%	11.0%	0.0%	0.0%	13.8%
ontput	12 5.3%	0	0	19	1	59.4%
4		0.0%	0.0%	8.3%	0.4%	40.6%
5	15 6.6%	0 0.0%	0 0.0%	0 0.0%	8 3.5%	34.8% 65.2%
	76.1%	100%	100%	82.6%	88.9%	81.1%
	23.9%	0.0%	0.0%	17.4%	11.1%	18.9%
	1	2	3 Target	4 Class	5	

1.79		Confu	ision Ma	trix : Tes	t Data	
1	119	0	0	0	0	100%
	53.1%	0.0%	0.0%	0.0%	0.0%	0.0%
2	3 1.3%	19 8.5%	0 0.0%	0 0.0%	0 0.0%	86.4% 13.6%
Output Class	1	0	27	0	0	96.4%
	0.4%	0.0%	12.1%	0.0%	0.0%	3.6%
IndthO	1	0	0	31	0	96.9%
	0.4%	0.0%	0.0%	13.8%	0.0%	3.1%
5	3	0	0	1	19	82.6%
	1.3%	0.0%	0.0%	0.4%	8.5%	17.4%
	93.7%	100%	100%	96.9%	100%	96.0%
	6.3%	0.0%	0.0%	3.1%	0.0%	4.0%
	1	2	3 Target	4 Class	5	

MLFFNN

Epoch = 400 Iterations Performance = 0.0596 Gradient = 8.92e-07

Best Validation Performance is 0.15478 at epoch 231

48 Dimensions Original Dataset

GMM

		Confusio	n Matrix	: Valida	tion Data	
1	121	0	0	0	0	100%
	53.1%	0.0%	0.0%	0.0%	0.0%	0.0%
2	8	15	0	0	0	65.2%
	3.5%	6.6%	0.0%	0.0%	0.0%	34.8%
Output Class	3	0	26	0	0	89.7%
	1.3%	0.0%	11.4%	0.0%	0.0%	10.3%
IndthO	4	0	0	28	0	87.5%
	1.8%	0.0%	0.0%	12.3%	0.0%	12.5%
5	5	0	0	0	18	78.3%
	2.2%	0.0%	0.0%	0.0%	7.9%	21.7%
	85.8%	100%	100%	100%	100%	91.2%
	14.2%	0.0%	0.0%	0.0%	0.0%	8.8%
•	1	2	3 Target	4 Class	5	

	Confusion Matrix : Test Data								
1	119 53.1%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	100% 0.0%			
2	3	18	0	1	0	81.8%			
	1.3%	8.0%	0.0%	0.4%	0.0%	18.2%			
Output Class	0	0	28	0	0	100%			
	0.0%	0.0%	12.5%	0.0%	0.0%	0.0%			
Output	0	0	0	32	0	100%			
4	0.0%	0.0%	0.0%	14.3%	0.0%	0.0%			
5	1	0	0	0	22	95.7%			
	0.4%	0.0%	0.0%	0.0%	9.8%	4.3%			
	96.7%	100%	100%	97.0%	100%	97.8%			
	3.3%	0.0%	0.0%	3.0%	0.0%	2.2%			
1 2 3 4 5 Target Class									

Data-set 1

Linear C-SVM on Linearly Separable Data

Decision Surface takes form of Hyper-planes

Polynomial Kernel

Degree = 3 Cost = 64

RBFGamma = 0.25 Cost = 0.125

Overlapping Data

Polynomial Function

Degree=2 C=64 Coeff=1

Training Data : Accuracy = 89.6% (896/1000) (classification)
Validation Data : Accuracy = 91.3333% (548/600) (classification)

Test Data Accuracy = 91.25% (365/400) (classification)

		Cor	nfusion Ma	ntrix	
1	141 4 23.5% 0.7%		11 1.8%		
2	4 0.7%	136 22.7%	1 0.2%	7 1.2%	91.9% 8.1%
Output Class	1 0.2%	5 0.8%	138 1 23.0% 0.2%		95.2% 4.8%
4	4 0.7%	5 0.8%	0 0.0%	133 22.2%	93.7% 6.3%
	94.0% 6.0%	90.7% 9.3%	92.0% 8.0%	88.7% 11.3%	91.3% 8.7%
	1	2 T	3 arget Clas	4 S	

Confusion Matrix For Validation Data

Confusion Matrix								
1	93 23.3%	2 0.5% 6 1.5%		9 2.3%	84.5% 15.5%			
2	1	91	1	2	95.8%			
	0.3%	22.8%	0.3%	0.5%	4.2%			
Output Class	5	3	93	1	91.2%			
	1.3%	0.8%	23.3%	0.3%	8.8%			
4	1	4	0	88	94.6%			
	0.3%	1.0%	0.0%	22.0%	5.4%			
	93.0%	91.0%	93.0%	88.0%	91.3%			
	7.0%	9.0%	7.0%	12.0%	8.8%			
	1	2 T	arget Clas	4 S				

Confusion Matrix for Testing Data

RBF

Gamma = 128 Cost = 16

Training Data Accuracy = 93.6% (936/1000) (classification)(To check for Over-fitting)

Validation Data Accuracy = 88.1667% (529/600) (classification)

Testing Data Accuracy = 87.25% (349/400) (classification)

Gamma = 16 Cost = 0.25

Training Data Accuracy = 89.7% (897/1000) (classification)(To check for Over-fiting)

Validation Data Accuracy = 91.5% (549/600) (classification)

Testing Data Accuracy = 91.5% (366/400) (classification)

		Coi	nfusion Ma	ntrix	
1	141 23.5%	4 12 0.7% 2.0%		10 1.7%	84.4% 15.6%
2	4 0.7%	1000		7 1.2%	92.6% 7.4%
Output Class	1 0.2%	5 0.8%	138 0 23.0% 0.0%		95.8% 4.2%
Ō 4	4 0.7%	4 0.7%	0 0.0%	133 22.2%	94.3% 5.7%
	94.0% 6.0%	91.3% 8.7%	92.0% 8.0%	88.7% 11.3%	91.5% 8.5%
'	1	2 T	arget Clas	4 S	

Confusion Matrix for Validation Data

		Coi	nfusion Ma	atrix	
1	93	2	6	8	85.3%
	23.3%	0.5%	1.5%	2.0%	14.7%
2	1	92	2	3	93.9%
s	0.3%	23.0%	0.5%	0.8%	6.1%
Output Class	5	2	92	0	92.9%
	1.3%	0.5%	23.0%	0.0%	7.1%
ō 4	1	4	0	89	94.7%
	0.3%	1.0%	0.0%	22.3%	5.3%
	93.0%	92.0%	92.0%	89.0%	91.5%
	7.0%	8.0%	8.0%	11.0%	8.5%
	1	2 T	3 arget Clas	4 S	

Confusion Matrix for Testing Data

Non-Linearly Separable Data

Polynomial Kernel Function

Degree=7 Cost =1024

Training Data: Accuracy = 74.3865% (970/1304) (classification)(Given to

check for over-fitting)

Validation Data: Accuracy = 71.867% (562/782) (classification)
Testing Data: Accuracy = 73.2692% (381/520) (classification)

Confusion Matrix for Validation Data

Confusion Matrix For Testing Data

RBF

Real World Datasets

Image Classification

5-fold Cross Validation employed after Data Distribution to avoid Over-fitting

C-SVM using RBF Kernel

Original

48 Dimensional Feature Vector

Gamma = 4 c = 64

Accuracy = 100%

Reduced:

43 Dimensional Feature Vector

Gamma = 2 Cost = 128

Accuracy = 100 %

33 Dimensional Feature Vector

Gamma = 1 Cost = 256

Accuracy = 100 %

33 Dimensional Feature Vector

Gamma = 1 Cost = 512

Accuracy = 100 %

C-SVM using polynomial Kernel

Original

48 Dimensional Feature Vector Degree =2 ,Cost = 180000 Accuracy= 100 %

Reduced

43 Dimensional Feature Vector Degree = 2 , Cost = 280000 Accuracy= 100 %

33 Dimensional Feature Vector Degree =2 Cost= 430000 Accuracy= 100 %

26 Dimensional Feature Vector Degree=2 Cost= 970000 Accuracy= 100 %

Confusion Matrix								
1	160 53.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	100% 0.0%		
2	0	30	0	0	0	100%		
	0.0%	9.9%	0.0%	0.0%	0.0%	0.0%		
Class	0	0	38	0	0	100%		
	0.0%	0.0%	12.6%	0.0%	0.0%	0.0%		
Output Class	0	0	0	43	0	100%		
	0.0%	0.0%	0.0%	14.2%	0.0%	0.0%		
5	0	0	0	0	31	100%		
	0.0%	0.0%	0.0%	0.0%	10.3%	0.0%		
	100%	100%	100%	100%	100%	100%		
	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%		
1 2 3 4 5 Target Class								