

Table 4-2

	Example			
	9	10	11	12
<u>Component (X)</u>	XA-2	XA-2	XA-2	XA-2
<u>Component (H)</u>	H-1	H-2	H-3	H-4
<u>Development</u>	○	○	○	○
<u>Soldering-heat resistance</u>	○	○	○	○
<u>Flexibility</u>	○	○	○	○
<u>Heat-deterioration resistance</u>	○	○	○	○
<u>Nonelectrolytic gold-plating resistance</u>	○	○	○	○

Table 4-3

	Example			
	13	14	15	16
<u>Component (X)</u>	XA-3	XA-3	XA-3	XA-3
<u>Component (H)</u>	H-1	H-2	H-3	H-4
<u>Development</u>	○	○	○	○
<u>Soldering-heat resistance</u>	○	○	○	○
<u>Flexibility</u>	○	○	○	○
<u>Heat-deterioration resistance</u>	○	○	○	○
<u>Nonelectrolytic gold-plating resistance</u>	○	○	○	○

Table 4-4

	Example			
	17	18	19	20
<u>Component (X)</u>	XA-4	XA-4	XA-4	XA-4
<u>Component (H)</u>	H-1	H-2	H-3	H-4
<u>Development</u>	○	○	○	○
<u>Soldering-heat resistance</u>	○	○	○	○
<u>Flexibility</u>	○	○	○	○
<u>Heat-deterioration resistance</u>	○	○	○	○
<u>Nonelectrolytic gold-plating resistance</u>	○	○	○	○

Table 4-5

	Comparative Example			
	2	3	4	5
<u>Component (X)</u>	XX-1	XX-1	XX-1	XX-1
<u>Component (H)</u>	H-1	H-2	H-3	H-4
<u>Development</u>	○	○	○	○
<u>Soldering-heat resistance</u>	○	○	○	○
<u>Flexibility</u>	△	△	×	×
<u>Heat-deterioration resistance</u>	△	△	×	×
<u>Nonelectrolytic gold-plating resistance</u>	○	○	○	○

The results of Example 5-20 and Comparative Example 2-5

reveal that the resin compositions of the present invention allow a good alkali development and can provide a cured membrane that is excellent in soldering-heat resistance, flexibility, heat-deterioration resistance, and nonelectrolytic gold-plating.

Example 21 and Comparative Example 6

(XA-5) and (XX-2) were each applied to a polyethylene terephthalate films having a thickness of 25 μm uniformly and dried to remove solvent. The dried photosensitive layers had a thickness of 50 μm . Then, each of the photosensitive layers was covered with a polyethylene film for the protective film to prepare a photosensitive laminated product.

A substrate for FPC (Trade name:F30VC125RC11, made by Nikkan Kogyo KK) obtained by laminating a 35 μm thick copper foil on a polyimide base material was polished with a whetting brush, washed with water, and dried. The said photosensitive film was laminated on the above substrate (23°C) by a vacuum laminator.

The sample thus obtained was exposed to light at 200mJ/cm² by using the Stoffer's step tablet of 21 steps and a straight line of negative film having a line/space of 150 μm /150 μm , and was left at a room temperature for 30 minutes. The sample was