STRUCTURED TOTAL LEAST SQUARES

Ivan Markovsky, Sabine Van Huffel, and Bart De Moor Katholieke Universiteit Leuven, ESAT/SCD

Overview

 Least Squares
 Gauss
 1820

 Total Least Squares
 Golub and Van Loam
 1980

 Structured Total Least Squares
 Abatzoglou, De Moor
 1990

Structured Total Least Squares:

 $\min_{\Delta A, \Delta B, X} \left\| \left[\Delta A \ \Delta B \right] \right\|_{\mathrm{F}}^2 \qquad \text{s.t.} \qquad (A - \Delta A) X = B - \Delta B \quad \text{and} \quad$ $[\Delta A \ \Delta B]$ has the same structure as $[A \ B]$

(Abatzoglou *et al.*, 1991) (De Moor, 1993) CTLS constraint TLS RiSVD Riemannian SVD STLN structured total least norm (Rosen et al., 1996)

Types of structure:

 $\begin{array}{ll} {\rm nonlinear} & {\rm (Rosen~\it{et~al.}, 1998; Lemmerling~\it{et~al.}, 2002)} \\ {\rm affine} & {\rm CTLS, RiSVD, STLN} \\ {\rm Toeplitz/Hankel~\it{all}~methods} \end{array}$

 $\begin{array}{l} d \geq 1 \;\; \text{multivariate problems} \quad \text{(Van Huffel et al., 1996)} \\ d = 1 \;\; \text{univariate problems} \qquad \text{all methods} \end{array}$

Efficiency of the algorithms:

affine structure $O(m^3)$ CTLS, RiSVD, STLN Toeplitz/Hankel $O(m^2)$ STLN Toeplitz/Hankel O(m) (Mastronardi $et\ al.,\ 2000;$ Lemmerling $et\ al.,\ 2000)$

direction of arrival (DOA) nuclear magnetic resonance (NMR) image deblurring system identification

(De Moor and Roorda, 1994)

No software available

New results

STLS problem:
$$\min_{\Delta p, X} ||\Delta p||^2$$
 s.t. $S(p - \Delta p) \begin{bmatrix} X \\ -I_d \end{bmatrix} = 0$

 \mathcal{S} —structure specification, e.g., affine $\mathcal{S}(p) = S_0 + \sum_{i=1}^{n_p} S_i p_i$

Define $X_{\text{ext}} := \begin{bmatrix} X \\ -I \end{bmatrix}$, $r := \text{vec} \left(\left(\begin{bmatrix} A & B \end{bmatrix} X_{\text{ext}} \right)^{\top} \right)$, and $G := \left[\text{vec} \left(\left(S_{1} X_{\text{ext}} \right)^{\top} \right) \cdots \text{vec} \left(\left(S_{n_{p}} X_{\text{ext}} \right)^{\top} \right) \right]$.

Equivalent problem:

 $\min_{\mathbf{V}} r(X) \Gamma^{-1}(X) r(X), \qquad \text{where} \quad \Gamma(X) := G(X) G^\top(X) \qquad (*)$

Theorem: Under the assumption that

$$C = \left[C^{(1)} \ \cdots \ C^{(q)}\right], \quad \text{where } C^{(i)} \text{ is } \begin{cases} \text{block-Hankel/Toeplitz,} \\ \text{unstructured, or} \\ \text{exact} \end{cases}$$

 Γ is block-Toeplitz and block-banded with block size dK, where K is the row dimension of a block in block-Hankel/Toeplitz structured block $C^{(\ell)}$ and with half block bandwidth, the maximum number of block columns in a block-Hankel/Toeplitz structured block $C^{(\ell)}$.

the structure of Γ allows computation of $f_0(X)$ and $f_0'(X)$ in O(m) flops ⇒ fast algorithms for (*)

software: http://www.esat.kuleuven.ac.be/~imarkovs/stls.html

Application for MIMO system

Approximate modeling problems

(low complexity) approximating model - (high complexity) "true" model

observed general response observed impulse respons

Kernel subproblem: find a block-Hankel rank deficient matrix $\mathcal{H}(\hat{w})$ approximating a given full rank matrix $\mathcal{H}(w)$

Non-iterative methods like balanced model reduction, subspace identification, Kung's algorithm solve the kernel problem via SVD, which is suboptimal with respect to $\|w-\hat{w}\|_{\ell_2}^2$.

 $\mathcal{L}_{m,l}$ — the set of all LTI systems with m inputs and lag at most l (m and l specify the complexity of the model class $\mathcal{L}_{m,l}$)

 $\text{Identification problem:} \quad \min_{\mathcal{B} \in \mathcal{L}_{mi}} \left(\min_{\hat{w}} \ \| w - \hat{w} \|_{\ell_2}^2 \ \text{ s.t. } \ \hat{w} \in \mathcal{B} \right)$

STLS problem:
$$\min_{X} \left(\min_{\hat{w}} \|w - \hat{w}\|_{\ell_{2}}^{2} \text{ s.t. } S(\hat{w}) \begin{bmatrix} X \\ -I \end{bmatrix} = 0 \right)$$

Theorem: Assume that $\mathcal{B} \in \mathcal{L}_{m,l}$ admits a kernel representation

$$\mathcal{B} = \ker \left(\sum_{i=0}^{l} R_i \sigma^i \right), \quad \text{ with } \quad R_l =: \left[Q_l \ P_l \right], \quad \quad P_l \in \mathbb{R}^{p \times p} \text{ full rank}$$

and let $X^{\top} := -P_l^{-1} [R_0 \cdots R_{l-1} Q_l]$

$$X^{+} := -P_{l}^{-1} \left[R_{0} \cdots R_{l-1} Q_{l} \right].$$
 Then
$$w \in \mathcal{B}|_{[1,T]} \iff \mathcal{H}_{l+1}^{\top}(w) \begin{bmatrix} X \\ -I \end{bmatrix} = 0.$$

The extensions of the identification problem: multiple time series

latent inputs model reduction

and the special identification problems: noisy realization autonomous systems identification

are also solved as STLS problems.

Results on data sets from DAISY

DAISY (DAta base for Identification of SYstems), (De Moor, 1998)

Compared methods

 subid
 — robust combined subspace algorithm

 detss
 — deterministic balanced subspace algorithm

 pem
 — the prediction error method of the Identification Toolbox

 stls
 — the proposed method based on STLS

The order specified for the methods $\mathtt{subid}, \mathtt{detss},$ and \mathtt{pem} is n=pl. $\hat{\mathcal{B}}$ for \mathtt{detss} and \mathtt{pem} is the $\underline{\mathtt{deterministic}}$ part of the identified system.

		parameters				scaled misfit			
#	Data set name	T	m	p	l	subid	detss	pem	
1	Destillation column	90	5	3	1	2.8	9.6	15.9	
2	Destillation column n10	90	5	3	1	2.8	9.6	15.9	
3	Destillation column n20	90		3		8.3	2.3	36.1	
4	Destillation column n30	90	5	3	1	7.8	3.3	132.2	
5	Glass furnace (Philips)	1247	3	6	1	2.9	2.5	2.7	
6	120 MW power plant	200	5	3	2	7.2	3.4	28.5	
7	pH process	2001	2	1	6	1.3	1.3	3.0	
8	Hair dryer	1000	1	1	5	1.2	1.2	1.0	
9	Winding process	2500	5	2	2	1.5	1.4	2.8	
10	Ball-and-beam setup	1000	1	1	2	1.0	10.6	1.0	
11	Industrial dryer	867	3	3	1	1.2	1.1	1.1	
12	CD-player arm	2048	2	2	1	1.2	1.1	1.4	
13	Wing flutter	1024	1	1	5	1.6	1.7	2.8	
14	Robot arm	1024	1	1	4	2.7	18.7	26.0	
15	Lake Erie	57	5	2	1	1.5	2.3	23.1	
16	Lake Erie n10	57	5	2	1	2.1	2.2	8.4	
17	Lake Erie n20	57	5	2	1	2.2	2.4	9.8	
18	Lake Erie n30	57	5	2	1	2.4	1.6	5.6	
19	Heat flow density	1680	2	1	2	1.8	1.3	9.8	
20	Heating system	801	1	1	2	1.3	1.2	1.3	
21	Steam heat exchanger	4000	1	1	2	1.8	1.8	8.1	
22	Industrial evaporator	6305	3	3	1	1.5	1.1	1.6	
23	Tank reactor	7500	1	2	1	2.3	2.1	52.9	
24	Steam generator	9600	4	4	1	2.4	3.1	3.3	

Comparison of the execution time scaled by $M(w, \hat{B}_{subid})$.

Destillation column 90 5 3 1 33 64 11.1	comparison of the execution time scaled by M (at, Dsubla).									
Destillation column 90 5 3 33 64 111			parameters				scaled exec. time			
2 Destillation column n10						l	detss	stls		
3 Destillation column n20	1	Destillation column	90	5	3	1	3.3	6.4	11.1	
A Destillation column n30	2	Destillation column n10	90	5	3	1	7.3	12.5	23.1	
5 Glass furnace (Philips) 1247 3 6 1 13.5 361.2 373.3 6 12 0 373.3 6 12 0 373.3 6 12 0 373.3 6 12 0 373.3 6 12 0 373.3 2 6.3 15.5 273.3 7 14 5 273.3 2 16 2 1 5 2 73.3 8 Hair dryer 1000 1 1 5 5 15.5 5.8 36.4 9 Winding process 2500 5 2 2 4 4.4 37.1 74.8 1000 1 1 2 19.9 4.1 7.2 1 1.5 15.5 5.8 36.4 3 3 1 6.6 25.5 27.3 1 1 1 2 19.9 4.1 7.2 1 1 74.1 74.8 1 1 1 2 19.9 4.1 7.2 1 1 7 4.7 33.5 1 1 7 4.7 33.5 1 1 7 4.7 3.3 3 0.7 17 4.7 3.3 1 1 8 3.8 30.7 1 1 4 6.1 19.5 4 94.1 1 1 1 2 1 4 1.8 3.8 30.7 3 0.7 17 4.7 3.5 1 1 4 6.7 1.4 4 6.1 1.4 1 1 1 2 1 4 1.8 3.8 30.7 1 1 1 2 1 4 1.8 3.8 30.7 1 1 1 2 1 4 1.8 3.8 30.7 1 1 1 2 1 4 1.8 3.8 30.7 1 1 1 2 1 4 1.8 3.8 30.7 1 1 1 2 1 4 1.8 3.8 30.7 1 1 1 2 1 4 1.8 3.8 30.7 1 1 1 2 1 4 1.8 3.8 30.7 1 1 1 2 1 4 1.8 3.8 30.7 1 1 1 2 1 4 1.8 3.8 30.7 1 1 1 2 1 4 1.8 3.8 30.7 1 1 1 2 1 4 1.8 3.8 30.7 1 1 1 2 1 4 1.8 3.8 30.7 1 1 1 2 1 4 1.8 3.8 30.7 1 1 1 2 1 4 1.8 3.8 30.7 1 1 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	3	Destillation column n20	90	5	3	1	7.2	12.8		
6 120 MW power plant 7 pH process 8 Hair dryer 9 Winding process 12 000 1 2 1 6 2.9 7.4 32.3 8 Hair dryer 19 Winding process 12 000 5 2 2 4.4 37.1 74.8 10 Ball-and-beam setup 11 Industrial dryer 12 CD-player arm 12 Wing flutter 12 Lize brie 20 13 Wing flutter 1024 1 1 1 5 1.7 4.7 33.1 14 Robot arm 1024 1 1 4 18 3.8 30.7 15 Lake Erie 10 16 Lake Erie 10 17 Lake Erie 10 18 Lake Erie 6 5 7 5 2 1 1.4 4.6 11.4 17 Lake Erie 10 19 Heating system 19 Heating system 19 Heating system 22 Industrial evaporator 22 Industrial evaporator 33 1 1 105 599 131.4 23 Tank reactor 7500 1 2 1 1.1 1.0 25.2 146.0	4	Destillation column n30	90	5	3	1	7.0	12.1	7.2	
T pH process	5	Glass furnace (Philips)	1247	3	6	1	13.5	361.2	373.3	
8 Hair dryer 1000 1 1 5 1.5 5.8 36.4 9 Winding process 2500 5 2 2 4.4 37.1 74.8 10 Ball-and-beam setup 11 Industrial dryer 867 3 3 1 6.6 25.5 27.3 11 Industrial dryer 2048 2 2 1 1.7 4.7 33.5 13 Wing flutter 1024 1 1 5 1.7 4.7 33.5 14 Robot arm 1024 1 1 4 1.8 3.8 30.7 15 Lake Erie 57 5 2 1 1.4 4.6 1.0 16 Lake Erie n10 57 5 2 1 1.4 4.6 1.1 18 Lake Erie n20 57 5 2 1 1.7 4.8 9.1 19 Heat flow density 1680 2 1 2 2.6 6.3 39.7 20 Heating system 24 1 1 2 4.3 8.4 31.1 21 Industrial evaporator 603 3 3 1 10.5 5.99 13.4 23 Tank reactor 7500 <td>6</td> <td>120 MW power plant</td> <td>200</td> <td>5</td> <td>3</td> <td>2</td> <td>6.3</td> <td>15.5</td> <td>27.3</td>	6	120 MW power plant	200	5	3	2	6.3	15.5	27.3	
9 Winding process 2500 5 2 2 4.4 37.1 7.48 10 Ball-and-beam setup 1000 1 1 2 1.9 4.1 7.2 11 Industrial dryer 867 3 3 1 66 25.5 27.3 12 CD-player arm 2048 2 2 1 64 19.5 49.4 13 Wing flutter 1024 1 1 4 18 3.8 30.7 14 Robot arm 1024 1 1 4 18 3.8 30.7 15 Lake Erie 57 5 2 1 1.4 4.6 7.0 16 Lake Erie n20 57 5 2 1 1.4 4.6 11.4 12 Lake Erie n30 57 5 2 1 1.6 4.8 9.1 19 Heat flow density 1680 2 1 2 2.6 6.3 39.7 20 Heating system 20 1 1 2 4.3 8.4 31.1 21 Tank reactor 700 1 2 1 1.10 2 9.9 13.4 2.5 14.6	7	pH process	2001	2	1	6	2.9	7.4	32.3	
10 Ball-and-beam setup 1000 11 2 199 41 72 11 11 11 12 199 41 72 12 12 12 12 14 14 15 14 13 13 16 16 15 14 13 13 13 16 16 15 14 13 13 13 15 14 15 14 14 15 14 15 14 15 14 15 15	8	Hair dryer	1000	1	1	5	1.5	5.8	36.4	
11 Industrial dryer	9	Winding process	2500	5	2	2	4.4	37.1	74.8	
12 CD-player arm 2048 2 2 1 6.4 19.5 49.4 19.5 17. 47 33.5 14 Robot arm 1024 1 1 5 17. 4.7 33.5 14 Robot arm 1024 1 1 4 18 3.8 30.7 15 Lake Eric 10 57 5 2 1 1.4 4.6 11.4 17 Lake Eric n20 57 5 2 1 1.6 4.8 9.1 18 Lake Eric n30 57 5 2 1 1.7 4.8 7.0 19 Heat flow density 1800 2 1 2 2.6 6.3 39.7 20 Heating system 801 1 1 2 1.7 3.7 12.4 21 22 Industrial evaporator 305 3 31 105 599 134.4 32 Tank reactor 305 1 21 11.0 252 146.0 32 Tank reactor 305 1 21 11.0 252 14.6 32 33 34 34 34 34 34 34	10	Ball-and-beam setup	1000	1	1	2	1.9	4.1	7.2	
13 Wing flutter 1024 1 1 1 5 1.7 4.7 33.5 14 Robot arm 1024 1 1 4 1.8 38 30.7 15 Lake Erie 5 7 5 2 1 1.4 4.6 1.7 16 Lake Erie n10 57 5 2 1 1.4 4.6 1.1 18 Lake Erie n20 57 5 2 1 1.7 4.8 9.1 19 Heat flow density 1680 2 1 2 2.6 3.9.7 20 Heating system 21 1 1 2 1.7 3.7 12.4 21 Industrial evaporator 630 3 3 3 3.3 3.8 3.1 3.5 5.99 3.4 3.1 3.5 5.99 3.4 3.1 3.5 5.99 3.4 3.1 3.5 5.99 3.4 3.1 3.5 3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.5 3.8 3.2 3.8 3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3	11	Industrial dryer	867	3	3	1	6.6	25.5	27.3	
14 Robot arm 1024 1 1 4 1.8 3.8 30.7 15 Lake Erie 10 57 5 2 1 1.4 46 7.0 16 Lake Erie n20 57 5 2 1 1.6 4.8 9.1 15 Lake Erie n30 57 5 2 1 1.6 4.8 9.1 19 Heat flow density 1800 2 1 2 2.6 6.3 39.7 20 Heating system 801 1 1 2 2 2 6.3 34. 31. 22 Industrial evaporator 600 1 2 1 2 4.3 8.4 31. 23 Tank reactor 700 1 2 1 11.0 252 146.	12	CD-player arm	2048	2	2	1	6.4	19.5	49.4	
15 Lake Erie 57 5 2 1 1.4 4.6 7.0 16 Lake Erie n10 57 5 2 1 1.4 4.6 11.4 17 Lake Erie n20 57 5 2 1 1.6 4.8 9.1 18 Lake Erie n30 57 5 2 1 1.7 4.8 7.0 19 Heat flow density 1680 2 1 2 2.6 6.3 39.7 20 Heating system 801 1 1 2 1.7 3.7 12.4 21 Steam heat exchanger 4000 1 1 2 1.4 3 8.4 31.1 22 Industrial evaporator 6305 3 3 1 10.5 59.9 134.4 23 Tank reactor 7500 1 2 1 11.0 25.2 146.0	13	Wing flutter	1024	1	1	5	1.7	4.7	33.5	
16 Lake Erie n10 57 5 2 1 1.4 4.6 1.4 17 Lake Erie n20 57 5 2 1 1.6 4.8 9.1 18 Lake Erie n30 57 5 2 1 1.7 4.8 7.0 19 Heat flow density 1680 2 1.2 2.6 6.3 39.7 20 Heating system 80 1 1 2 3 4.4 3.1 21 Steam heat exchanger 4000 1 1 2 4.3 8.4 3.1 22 Indivistrial evaporator 7500 1 2 1 1.0 2 2.1 1.0 2 2.1 1.0 2 2.1 1.0 2 2.1 1.0 2 2.1 1.0 2 2.1 1.0 2 2.1 1.0 2 2.1 1.0 2 2.1 1.0 2 2.1 1.0 2 2.1 1.0 2 2 2.1 1.0 2 2 2 1.0 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	14	Robot arm	1024	1	1	4	1.8	3.8	30.7	
17 Lake Erie n20 57 5 2 1 1.6 4.8 9.1 18 Lake Erie n30 57 5 2 1 1.7 4.8 7.0 19 Heat flow density 180 2 1 2 2.6 6.3 3.7 12.4 20 Heating system 801 1 1 2 1.7 3.7 12.4 21 Steam heat exchanger 400 1 1 2 4.3 8.4 3.1 22 Industrial evaporator 630 3 3 1 10.5 59.9 13.4 23 Tank reactor 7500 1 2 1 11.0 25.2 1460	15	Lake Erie	57	5	2	1	1.4	4.6	7.0	
18 Lake Erie n30 57 5 2 1 1.7 4.8 7.0 19 Heat flow density 1680 2 1.2 2.6 6.3 39.7 20 Heating system 80 1 1 2 1.7 3.7 12.4 21 Steam heat exchanger 4000 1 1 1 2 4.3 3.4 3.1 22 Industrial evaporator 7500 1 2 1 1.0 2 2 1.0	16	Lake Erie n10	57	5	2	1	1.4	4.6	11.4	
19 Heat flow density 1680 2 1 2 2.6 6.3 39.7 20 Heating system 801 1 1 2 1.7 37 12.4 21 Steam heat exchanger 400 1 1 2 4.3 8.4 31.1 22 Industrial evaporator 6305 3 3 1 10.5 5.99 134.4 23 Tank reactor 7500 1 2 1 11.0 25.2 146.0	17	Lake Erie n20	57	5	2	1	1.6	4.8	9.1	
20 Heating system 801 1 1 2 1.7 3.7 12.4 21 Steam heat exchanger 4000 1 1 2 4.3 8.4 31.1 22 Industrial evaporator 6305 3 3 1 10.5 59.9 134.4 23 Tank reactor 7500 1 2 1 11.0 25.2 146.0	18	Lake Erie n30	57	5	2	1	1.7	4.8	7.0	
21 Steam heat exchanger 4000 1 1 2 4.3 8.4 31.1 22 Industrial evaporator 6305 3 3 1 10.5 59.9 134.4 23 Tank reactor 7500 1 2 1 11.0 25.2 146.0	19	Heat flow density	1680	2	1	2	2.6	6.3	39.7	
22 Industrial evaporator 6305 3 3 1 10.5 59.9 134.4 23 Tank reactor 7500 1 2 1 11.0 25.2 146.0	20	Heating system	801	1	1	2	1.7	3.7	12.4	
23 Tank reactor 7500 1 2 1 11.0 25.2 146.0	21	Steam heat exchanger	4000	1	1	2	4.3	8.4	31.1	
	22	Industrial evaporator	6305	3	3	1	10.5	59.9	134.4	
24 Steam generator 9600 4 4 1 13.6 192.0 220.1	23	Tank reactor	7500	1	2	1	11.0	25.2	146.0	
	24	Steam generator	9600	4	4	1	13.6	192.0	220.1	

References

Abatzoglou, T., J. Mendel and G. Harada (1991). The constrained total least squares technique and its application to harmonic superresolution. IEEE Trans. on Signal Proc. 39, 1070–1087

De Moor, B. (1993). Structured total least squares and L_2 approximation problems. Lin. Alg. and Its Appl. 188–189, 163–207

De Moor, B. (1998). Daisy: Database for the identification of systems. Department of Electrical Engineering, ESAT/SISTA, K.U.Leuven, Belgium

URL: http://www.esat.kuleuven.ac.be/sista/daisy/.

De Moor, B. and B. Roorda (1994). L₂-optimal linear system identification structured total least squares for SISO systems. In: In the proceedings of the CDC, pp. 2874–2879.

emmerling, P., N. Mastronardi and S. Van Huffel (2000). Fast algorithm for solving the Hankel/Toeplitz structured total least squares problem. Numerical Algorithms 23, 371–392. emmerling, P., S. Van Huffel and B. De Moor (2002). The structured total least squares approach for nonlinearly structured matrices. Numerical Linear Algebra with Applications 9(1-4), 321-332.

Markovsky, I., S. Van Huffel and R. Pintelon (2003). Software for structured total least squares estimation: User's guide. Technical Report 03–136. Dept. EE, K.U. Leuver

Mastronardi, N., P. Lemmerling and S. Van Huffel (2000). Fast structured total least squares algorithm for solving the basic deconvolution problem. SIAM J. Matrix Anal. 22, 533-553.

Rosen, J. B., H. Park and J. Glick (1996). Total least norm formulation and solution of structured problems. SIAM J. Matrix Anal. 17, 110–128. Rosen, J. B., H. Park and J. Glick (1998). Structured total least norm for nonlinear problems. SIAM J. Matrix Anal. 20(1), 14–30.

Van Huffel, S., H. Park and J. B. Rosen (1996). Formulation and solution of structured total least norm problems for parameter estimation. IEEE Trans. on Signal Proc. 44(10), 2464–2474.