

Large-displacement 3D Object Tracking with Hybrid Non-local Optimization

Xuhui Tian, Xinran Lin, Fan Zhong, Xueying Qin Shandong University, China

Introduction

Motivation:

- ➤ Most previous optimization-based 3D object tracking methods only search for the local minima of cost function and thus are sensitive to large inter-frame displacements.
- ➤ We decompose the rotation as in-plane rotation and out-of-plane rotation and find that most tracking failures in previous methods are caused by out-of-plane rotations.

Contribution:

- ➤ We proposed a hybrid non-local tracking method to handle large displacements and can run in real-time with only CPU.
- An improved contour-based local tracking method with long pre-computed search lines and multiple candidate correspondences is proposed.
- ➤ We proposed an efficient non-local optimization only for the out-of-plane rotation

Method

A fast local pose optimization method that is more adaptive to frame displacements are proposed, with long search lines that can be precomputed for acceleration.

Left: the contour-based tracking model. Right: the exemplar search lines and correspondences

Non-local search is applied only for out-of-plane rotation, which only requires to do sampling and conduct grid search in a 2D space. We also propose grid pre-termination, path pre-termination and near-to-far search for further acceleration.

Left: The parameterized 2D sampling space of out-of-plane rotation. Right: Converge paths of grid search in the 2D space.

Experiments

Comparison for different frame steps on RBOT. Frame step means the interval between 2 tracked frames. Previous methods' accuracies decrease rapidly with larger displacements while ours can still maintain high accuracies.

	naive	+GP	+PP	+GP&PP	+GP&PP&N2F	$local(\mathit{Ours}^{\text{-}})$
UpdateItrs	1085	718	823	578	468	59
Time	$47.7 \mathrm{ms}$	$34.0 \mathrm{ms}$	$37.9 \mathrm{ms}$	$27.6 \mathrm{ms}$	$22.3 \mathrm{ms}$	$9.7 \mathrm{ms}$
Accuracy	85.1	83.5	84.6	82.7	81.7	30.7

The ablation studies to the acceleration strategies. Using them all can reduce more than half of the time with only about 3% sacrifice in accuracy compared with naïve grid search.

Visual examples and comparisons of large displacements (frame step = 8). Our non-local method can still successfully track the object while SRT3D fails.

