- 1. Consider the universal relation $R = \{a, b, c, d, E\}$ and the set of functional dependencies $FD = \{\{a\} \rightarrow \{b,c\}, \{b\} \rightarrow \{d\}\} \text{ and MVD} = \{\{b\} \twoheadrightarrow \{c,d\}$
 - 1. (1) Write all the candidate keys for R.

(AEIT) CAREIT (A, E)E)+ (A, E)E)+

2. (6) What schema(s) would be produced by the 4NF decomposition algorithm?

A. R1(a,d), R2(b,c), R3(a,b), R4(a,E)

B. R1(b,d), R2(b,c), R3(a,b), R4(a,E)

C. both options are correct

D. both options are wrong

- 2. Consider the universal relation R = {a, b, c, d, E} and the set of functional dependencies $FD = \{\{a,b\} \rightarrow \{E\}, \{a\} \rightarrow \{d\}\} \text{ and the set of MVDs} = \{\{a\} \twoheadrightarrow \{b\}, \{a,b\} \twoheadrightarrow \{c\}\}.$
 - 1. (1) Write all the candidate keys for R.

(a,b,c)+ (A,B,C,E)+ (A,B,C,D)+

- 2. (4) What schema(s) would be produced by the 4NF decomposition algorithm?
- \bigcirc R1={a,b}, R2={a,d}, R3={a,c,E}
 - B. $R1=\{a,b\},R2=\{a,E\},R3=\{a,c\},R4=\{a,d\}$
 - C. $R1=\{a,b\},R2=\{a,d,E\},R3=\{a,c\}$
- \bigcirc R1={a,b,E},R2={a,b}, R3={a,c}, R4={a,d}

- 3. Consider the universal relation $R = \{a, b, c, d, E\}$ and the set of functional dependencies $FD = \{\{a\} \rightarrow \{b\}, \{b\} \rightarrow \{ce\}\} \text{ and the set of MVDs} = \{\{b\} \twoheadrightarrow \{d\}.$
 - 1. (1) Write all the candidate keys for R.

R1= { a,b} R2= { a,c,e} R3= { a,d}

RI= { a, b} R2= { a, b} R3= { a, c, e} R4= { b, d}

A	В	C	D
a1	bl	c1	d1
a1	b2	c1	d1
a1	b2	c2	d2
a1	b1	c2	d2
a2	b3	c1	d2

1. (4) Does the above table have a non-trivial MVD that is not a FD? If so , identify the MVD. You just have to identify one MVD.

A->C

2. (2) Identify one candidate key.

(BD)+

18	A	В	C	D
	a1	b1	c1	d1
1	a1	bl	c2	d2
٦,	al	b2	cl	d1
	a1	b3	c2	d2
	a2	b2	c1	d1

BJA

- 1. (3) What functional dependencies would be satisfied by inserting the tuples (a1,b1,c2,d1) and (a1,b1,c1,d2) in the table:
 - A. A B
- B A D
 - C. $B \rightarrow A$
- (D. B D
- E. none of the above
- 2. (3) What functional dependencies would be satisfied by inserting the tuples (a1,b2,c2,d2) and (a1,b3,c1,d1) in the table:
 - $(A) A \rightarrow B$
 - (B) A D
 - C. $B \rightarrow D$
 - D. D -- A
 - E. none of the above
- 3. (3) What functional dependencies would be satisfied by inserting the tuples (a1,b1,c1,d2), (a1,b2,c1,d2), (a1,b1,c2,d1) and (a1,b3,c2,d1) in the table:
 - $A. A \rightarrow B$
 - B. A → D
 - (C.) D \rightarrow B
 - D. B A
 - E. none of the above
- 4. (3) What functional dependencies would be satisfied by inserting the tuple (a2,b1,c1,d1) in the table:
 - $A. B \rightarrow A$
 - B. A → D
 - C. $D \rightarrow B$
 - D. $D \rightarrow A$
- E. none of the above

- 5. Consider the relation R = {a, b, c, d, E} and the set of functional dependencies $FD = \{\{b\} \rightarrow \{c\}\}\}$ and the set of MVDs = $\{\{a\} \rightarrow \{b\}\{c\} \rightarrow \{d\}\}\}$.
 - 1. (1) Write all the candidate keys for R.

2. (3) Decompose the relation R into 4NF relations.

RI=
$$\{b,d\}$$
 R2= $\{a,c\}$ R3= $\{a,b\}$ R3= $\{a,b\}$ R4= $\{b,c\}$ R1= $\{b,d\}$ R2= $\{a,c\}$ R3= $\{a,d\}$ R3= $\{a,d\}$

6. (6) Consider a relation R(A,B,C,D) that satisfies A → B and A → C. Prove that A → BC using some of the MVD rules I went over in class.

According to rule #7 in the notes A+8B, A-9C = A+9BC Since if

a,	1	107	de
9,	bi	C2	de
a,	12	C,	da
9,	be 1	67	4

 $a_1 < b_2$ $a_1 < c_2$ $b_2 < c_1$ $b_2 < c_2$ $b_2 < c_3$ $b_4 < c_4$ $b_4 < c_5$ $b_5 < c_4$ $b_6 < c_5$ $b_6 < c_5$ $b_7 < c_8$ $b_8 < c_8$