Topological transport in Weyl semimetal

Banasree Sadhukhan

KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden

I

About myself:

"To be yourself in a world that is constantly trying to make you something else is the greatest accomplishment." —Ralph Waldo Emerson

Banasree Sadhukhan, PhD

banasree.sadhukhan@gmail.com,
 b.sadhukhan@ifw-dresden.de, banasree@kth.se

Education

PhD: Condensed matter Physics Presidency University 2018
Thesis title: "Study of electronic structure, optical and magnetic response of disordered solids"

M. Sc.: Physics University of Calcutta 2011

B. Sc.: Physics University of Calcutta 2009

Research Experience after PhD:

Researcher at KTH Royal institute of Technology, Stockholm, Sweden (September, 2022 - Present) (C)

Postdoctoral researcher at KTH Royal institute of Technology, Stockholm, Sweden (September, 2020 - August, 2022) (C)

Scientist at Institute for Solid State and Materials Research, IFW Dresden, Germany (March, 2019 - February, 2020) (B)

Postdoctoral researcher at Institute for Solid State and Materials
Research, IFW Dresden, Germany (March, 2018 - February, 2019) (A)

Current research areas

Energy harvesting modern
(A) technologies

(B) Quantum materials and Topological transport

Light-matter interaction (C) in Skyrmion

Overview:

Theory and computation behind transport

Results and discussions on current research

Linear transport

npj Quantum Materials 7, 19 (2022) [Tunable chirality of noncentrosymmetric magnetic Weyl semimetals in rare-earth carbides]

Phys. Rev. B 107 (8), L081110 (2023) [Effect of chirality imbalances on Hall transport of PrRhC2]

Non-Linear transport

Phys. Rev. B 104, 245122 (2021) [Electronic structure and unconventional nonlinear response in double Weyl semimetal SrSi₂]

Phys. Rev. B 103, 144308 (2021) [Role of time reversal symmetry and tilting in circular photogalvanic responses]

Topological Materials for Low-energy Electronics:

Ordinary Insulator

Topological Insulator

New mechanisms for electronic conduction without dissipation at room temperature

 Need new technology with capacity to switch at lower energy than silicon device ★ Geometric properties (such as curvature) are local properties, but integral over local geometric properties give global topology

Birth of topological materials:

Bloch's theorem : $\psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{\mathbf{k}}(\mathbf{r})$

David J. Thouless F. Duncan M. Haldane J. Michael Kosterlitz

Quantized Hall effect in 2D electron gas (Klaus von Klitzing, Nobel Laureate 1985)

The Nobel Prize in 2016

TKNN Theory (1982):

The Chern Insulator and the birth of "topological materials"

Energy band can be characterized by a topological number

Berry phase :
$$e^{i\Phi_B(\Gamma)} = \exp\left(i\oint_{\Gamma}dk_a\mathcal{A}_n(m{k})
ight)$$

Berry curvature

$$F_n = \sum_{l \neq n} \nabla_{\mathbf{k}} \times \langle u_n(\mathbf{k}) | i \nabla_{\mathbf{k}} | u_l(\mathbf{k}) \rangle$$

Topological invariant : Chern number

$$c_n = rac{e^2}{\hbar} \sum_{\substack{ ext{occupied} \ ext{bands}}} \int_{BZ} rac{d^2 \mathbf{k}}{(2\pi)^2} F_n$$

Normal insulator

 $c_n \neq 0$

Topological Chern insulator

Phys. Rev. Lett. 49, 405 (1982)

First realisation of topological material: CdTe/HgTe Quantum well

Science 314, 1757 (2006) [Theory]; Science 318, 766 (2007) [Experiment]

Trivial insulator:

$$E_{\Gamma_6} > E_{\Gamma_8}$$

Topological insulator : HgTe

Nontrivial insulator:

 $E_{\Gamma_6} < E_{\Gamma_8}$

HgTe layer is thick and bands get inverted

Various topological semimetals :

New realm of topological materials : WSMs

Weyl point : Monopole of Berry curvature

Low energy Weyl Hamiltonian : $H_{\mathrm{Weyl}}(\mathbf{q}) = \hbar v_t q_t \sigma_0 + \hbar v_F \mathbf{q} \cdot \sigma$

 $|v_t/v_f| < 1$

Point like Fermi surface

TaAs, Tap, NbAS, NbP

$$|v_t/v_f| > 1$$

Pocket like Fermi surface

Type-II Weyl semimetal WTe2

Experimental setup for ARPES

Different symmetries in WSMs :

Inversion symmetry $(x \rightarrow -x, y \rightarrow -y, z \rightarrow -z)$

Dirac semimetal: ZrTe5

CoSi, RhSi, SrSi2

Weyl Semimetals like TaAs, MoTe2

Different symmetries in WSMs:

Classical Picture:

Time reversal symmetry

And, applying the time-reversal operator:

$$\hat{\mathcal{T}}I = -I \quad \Rightarrow \hat{\mathcal{T}}\vec{\mu} = -\vec{\mu} \quad \overrightarrow{-\vec{\mu}}$$

Which is the same as applying $\hat{\mathcal{T}}=i\sigma^y\hat{\mathcal{K}}$ to the spin.

Therefore, for a ferromagnet:

$$\hat{\mathcal{T}}\{$$

Canting magnetization axis

Semi-classical framework of linear response:

The semiclassical equations of motion

$$\sqrt{B} \ll \mu$$

• Charge current $\mathbf{J} = \int \frac{d^3k}{(2\pi)^3} D_{\mathbf{k},\mathbf{r},t}$

$$\dot{\mathbf{r}} = D(\mathbf{B}, \mathbf{\Omega_k})[\mathbf{v_k} + \underbrace{e(\mathbf{E} \times \mathbf{\Omega_k})}_{\mathbf{AV}} + \underbrace{e(\mathbf{v_k} \cdot \mathbf{\Omega_k})\mathbf{B}}_{\mathbf{CME}}],$$

$$\dot{\mathbf{k}} = D(\mathbf{B}, \mathbf{\Omega_k})[e\mathbf{E} + e(\mathbf{v_k} \times \mathbf{B}) + \underbrace{e^2(\mathbf{E} \cdot \mathbf{B})\mathbf{\Omega_k}}_{CA}]$$

$$\mathbf{J} = \mathbf{J}_{\mathrm{D}} + \mathbf{J}_{\mathrm{AH}} + \mathbf{J}_{\mathrm{CA/CME}}$$
 For $\mathit{CA}: (\mathbf{B} . \mathbf{E})$ For $\mathit{CME}: \mathbf{E} = \mathbf{0}$
$$\mathbf{J}_{\mathrm{D}} \approx \int \frac{d^3k}{(2\pi)^3} \mathbf{v}_{\mathbf{k}} f_{\mathbf{k},\mathbf{r},t}$$

$$\mathbf{J}_{\mathrm{AH}} \approx \mathbf{E} \times \int \frac{d^3k}{(2\pi)^3} \mathbf{\Omega}_{\mathbf{k}} f_{\mathbf{k},\mathbf{r},t}$$

$$\mathbf{J}_{\mathrm{CA/CME}} \approx \mathbf{B} \int \frac{d^3k}{(2\pi)^3} (\mathbf{v}_{\mathbf{k}} \cdot \mathbf{\Omega}_{\mathbf{k}}) f_{\mathbf{k},\mathbf{r},t}$$
 Berry curvature
$$\mathbf{Chiral\ contribution}$$

Semi-classical framework of linear response :

Drift current

$$\mathbf{J}_{\mathrm{D}} pprox \int rac{d^3k}{(2\pi)^3} \mathbf{v}_{\mathbf{k}} f_{\mathbf{k},\mathbf{r},t}$$

Anomalous Hall current

$$\mathbf{J}_{\mathrm{AH}} pprox \mathbf{E} imes \int rac{d^3k}{(2\pi)^3} \mathbf{\Omega}_{\mathbf{k}} f_{\mathbf{k},\mathbf{r},t}$$

Chiral current

$$\mathbf{J}_{\mathrm{CA/CME}} pprox \mathbf{B} \int rac{d^3k}{(2\pi)^3} (\mathbf{v_k} \cdot \mathbf{\Omega_k}) f_{\mathbf{k},\mathbf{r},t}$$

"Chiral magnetic effect" works if Weyl points appear at different energy levels.

Semi-classical framework of linear response in WSM:

- KTH
- Magneto-conductivity: $J_i = \alpha_{ij} B_j$ $\alpha = -\frac{e^2}{\hbar} \sum_n \int d^3 \mathbf{k}/(2\pi)^3 f_{\mathbf{k}\mathbf{n}} \left(\mathbf{v}_{\mathbf{k}n} \cdot \Omega_{\mathbf{k}n}\right)$ Fermi surface integral and integrating by parts for the term $f_{\mathbf{k}\mathbf{n}} \left(\mathbf{v}_{\mathbf{k}n} \cdot \Omega_{\mathbf{k}n}\right)$ and putting $\frac{\delta f^0}{\delta \mathbf{k}} = -\hat{\mathbf{v}}_{\mathbf{f}} \delta^3 (\mathbf{k} \mathbf{k}_f)$ with $\hat{\mathbf{v}}_{\mathbf{f}}$ the FS normal at $\mathbf{k}_{\mathbf{f}}$, and introduce the Chern number $C_{na} = (1/2\pi) \int_{S_{na}} dS(\hat{\mathbf{v}}_F \cdot \Omega_{\mathbf{k}n})$ of the ath Fermi sheet S_{na} in band n
- ullet Magneto-conductivity for CME : $lpha^{
 m CME} = -(e^2/h^2) \sum_{n,a} \mu_{na} C_{na}$ with $J_{CME} = lpha_{CME} B$

For $\mathbf{E} = \mathbf{0}$, chiral magnetic effect (CME): $J_{CME} = -\frac{e^2}{\hbar^2} \sum_{m\alpha} \mu_{m\alpha} C_{m\alpha}$

$$\mu_R=\mu_L=\mu$$
 C- C+ Chiral chemical potential = $\mu_R-\mu_L$ $J_{CME}=(e^2/h^2){f B}(\mu_{f R}-\mu_{f L})={f 0}$

 $J_{CME} = (e^2/h^2)\mathbf{B}(\mu_{\mathbf{R}} - \mu_{\mathbf{L}}) \neq \mathbf{0}$

For non-zero chiral chemical potential

Computational framework and Wannier functions:

Bloch wave functions: $\psi_{\boldsymbol{k}n}(\boldsymbol{r}) = e^{i\boldsymbol{k}\cdot\boldsymbol{r}}u_{\boldsymbol{k}n}(\boldsymbol{r})$

· Bloch functions are extended and delocalized

 Localized wave functions in real space offer more microscopic insights into the underlying physics.

Wannier function :
$$W_{{m R}n}({m r})=rac{1}{N}\sum_{{m k}}e^{-i{m k}\cdot{m R}}\psi_{{m k}n}({m r})$$

Computational framework and Wannier Interpolation:

DFT on coarse mesh (e.g., 8³ **k**-points)

|

DFT packages : VASP, FPLO, WIEN2K, Quantum Expresso

maximally localized Wannier functions

(Developed transport code)

much finer sampling (e.g., 2003 **q**-points)

Berry curvature, Transport

New family of WSM: Rare earth carbides

Amm² space group (SG no 38)

RMC (R= Rare earth and M= transition materials)

I: inversion symmetry T: time reversal symmetry

Class II	Class III	Class IV
T - broken I - symmetric	T - broken I - broken	Insulators
GdRuC2	PrRhC2, NdRhC2 GdCoC2, GdNiC2	LaRhC2
	T - broken I - symmetric	T - broken I - symmetric GdRuC2 T - broken I - broken PrRhC2, NdRhC2

Why pickup materials where both I and T symmetries are broken?

Interplay between topology and magnetism : tuning degeneracy of WNs

Crystal symmetry : $\{E, m(x), m(y), C2(z)\}$

m(x): mirror along x

m(y): mirror along y

c2(z): rotation along z

T is time reversal symmetry

Magnetization ax	cis Symmetry	Degeneracy of Weyl nodes
Principle axis say, [001]	{ E, m(x)T, m(y)T, C2(z))} 4
Face diagonal say [011]	(E, m(x)T }	2
Body diagonal say [111]	', {E}	1
	Breaks all symmetries	All Weyl nodes are non-degenerate

NdRhC2

Chiral anomaly (E.B)

Continuity equation: $\frac{\partial n_i}{\partial t} + \nabla \cdot \mathbf{J}_i = \frac{C_i}{4\pi^2} \mathbf{B} \cdot \mathbf{E}$

$$T \ll \sqrt{B} \ll \mu$$
 $\mathbf{B} = B \cos \gamma \hat{y} + B \sin \gamma \hat{z}, \ \mathbf{E} = E \hat{y}$

$$\sigma_{zy} \simeq e^2 \int \frac{d^3k}{(2\pi)^3} D\tau \left(-\frac{\partial f_0}{\partial \epsilon} \right) \left[\left(v_z + \frac{eB\sin\gamma}{\hbar} (\mathbf{\Omega_k} \cdot \mathbf{v_k}) \right) \right]$$
$$\left(v_y + \frac{eB\cos\gamma}{\hbar} (\mathbf{\Omega_k} \cdot \mathbf{v_k}) \right) \right]$$

Planar Hall conductivity

Longitudinal magneto conductivity

$$\sigma_{zy} \propto sin\gamma cos\gamma$$

$$\sigma_{yy} \propto cos^2 \gamma$$

Phys. Rev. lett. 109, 181602 (2012) Phys. Rev. lett. 119, 176804 (2017)

Enhancement of planar Hall effect in PrRhC2:

B. Sadhukhan et al. Phys. Rev. B 107 (8), L081110 (2023)

Experimental findings

Phys. Rev. B 98, 121108(R) (2018) -14 T 14 T T=2 K 600 ZrTe5 average 400 ρ^{planar} (μΩ cm) 200 -200 -400 360 270 90 180 φ (degrees)

Some Highlights on "Circular Photovoltaic effect":

$$\frac{dJ_a}{dt} = \beta_{ab}(\omega) [\mathbf{E}(\omega) \times \mathbf{E}^*(\omega)]_b$$

CPG tensor

Chiral WSMs without having symmetry and inversion symmetry show quantized CPGE response

$$\beta_{ij}(\omega) = \frac{\pi e^3}{\hbar V} \epsilon_{jkl} \sum_{\mathbf{k},n,m} f_{nm}^{\mathbf{k}} \Delta_{\mathbf{k},nm}^i r_{\mathbf{k},nm}^k r_{\mathbf{k},mn}^l \delta(\hbar \omega - E_{\mathbf{k},mn})$$

$${
m Tr}[eta(\omega)] = i\pi rac{e^3}{h^2} C_L \equiv ieta_0$$

• Nat. Commun. 8, 15995 (2017)

Some experimental findings from other group

(Nature Communications 12, 154 (2021))

Chiral Weyl semimetal : SrSi2

Space group P4332 (212) with the lattice constant 6.563 Å

-[111] view is mirror+flipped view of [111]. Structural chirality generates a distinct handedness which affect topological properties

Chiral WSM <u>SrSi2</u> = Breaking of (Inversion+mirror) symmetries

Quantised Circular Photovoltaic effect in SrSi2:

KTH

TABLE I. Positions, Chern numbers, and energies of the WNs with SOC $(W_{1,2})$ and without SOC $(V_{1,2})$.

WP	Position $[(k_x, k_y, k_z)]$ in $(\frac{2\pi}{a}, \frac{2\pi}{b}, \frac{2\pi}{a})$	c	E (meV)
V_1	$(\pm 0.2001, 0, 0)$	+1	-34.4
V_2	$(\pm 0.3691, 0, 0)$	-1	82.3
\mathbf{W}_1	$(\pm 0.2003, 0, 0)$	+2	-26.3
\mathbf{W}_2	$(\pm 0.3696, 0, 0)$	-2	88.2

B. Sadhukhan et al. Phys. Rev. B 104, 245122 (2021)

Effect of time reversal symmetry on CPGE quantization:

KTH VITINSKAP

Chiral WSM

Why CPGE get quantized at one of WN, not other WN for SrSi2?

(a)

0

26

Time reversal symmetry broken

 ${\rm Tr}[\beta]/{\rm i}\beta_0$

Key message:

CPGE quantization = anti symmetric behaviour at opposite WNs

Calculated CPGE response at two opposite WNs

$$\frac{dJ_i}{dt} = \beta_{ij}(\omega)[\mathbf{E}(\omega) \times \mathbf{E}^*(\omega)]_j$$

$$\beta_{ij}(\omega) = \frac{\pi e^3}{\hbar V} \epsilon_{jkl} \sum_{k,n,m} \Delta f_{k,nm} \Delta v_{k,nm}^i r_{k,nm}^k r_{k,nm}^l \times \delta(\hbar \omega - E_{k,mn}),$$

$$\operatorname{Tr}[\beta(\omega)] = \frac{i\pi e^3}{\hbar^2 V} \sum_{k} \Delta f_{k,12} \partial_{k_i} E_{k,12} \Omega_{i,k} \delta(\hbar\omega - E_{k,12})$$
$$= \frac{i\pi e^3}{\hbar^2 V} \sum_{k} \Delta f_{k,12} \Delta v_{i,12} \Omega_{i,k} \delta(\hbar\omega - E_{k,12}).$$

Time reversal symmetry invariant

 ω (eV)

 $-\mu = -0.8$

 $-\mu = -0.75$

 $-\mu = -0.5$

 $-\mu = -0.3$

 $-\mu = 0.8$

 $-\mu=0.0$ $-\mu=0.3$ $-\mu=0.5$ $-\mu=0.75$

> CPGE quantization ≠ anti symmetric behaviour at opposite WNs

B. Sadhukhan et al. Phys. Rev. B 103, 144308 (2021)

My Research domain :

Photovoltaic

B. Sadhukhan et al. Phys. Rev. Mat 4, 064602 (2020) Sadhukhan et al. J. Appl. Phys. 129, 084106 (2021)

Topology, Quantum Electronic structure and materials crystal symmetry DFT + model Hamiltonian study Magnetism and Optoelectronics, Spin-lattice dynamics Photovoltaic and Transport Energy harvesting Energy source Photovoltaic Light Quantum materials, topology Heat Thermoelectric

Quantum materials and topological transport

- (1) "Effect of chirality imbalance on Hall transport of PrRhC2" <u>B. Sadhukhan</u>, T. Nag, Physical Review B **107** (8), L081110 (2023)
- (2) "Tunable chirality of noncentrosymmetric magnetic Weyl semimetals in rare-earth carbides" R. Ray, <u>B. Sadhukhan</u>, M. Richter, J.I. Facio, J. van den Brink, npj Quantum Materials **7**, 19 (2022)
- (3) "Electronic structure and unconventional nonlinear response in double Weyl semimetal SrSi2" B. Sadhukhan, T. Nag Phys. Rev. B 104, 245122 (2021)
- (4) "Role of time reversal symmetry and tilting in circular photogalvanic responses" <u>B.</u>
 Sadhukhan, T. Nag Phys. Rev. B 103, 144308
 (2021)

Bulk Photovoltaic and sustainable energy

- (1) "A new topological quantum material ZnGeSb2 with pressure-driven tunable properties in chalcopyrite series" S. Sadhukhan, B. Sadhukhan, S. Kanungo, Phys. Rev. B 106 (12), 125112 (2022)
- (2) "Bulk photovoltaic effect in BaTiO3-based ferroelectric oxides: An experimental and theoretical study" S. Pal, S. Muthukrishnan, B. Sadhukhan, S. NV, D. Murali, P. Murugavel J. Appl. Phys. 129, 084106 (2021)
- (3) "First-principles calculation of shift current in chalcopyrite semiconductor ZnSnP2" B. Sadhukhan, Y. Zhang, R. Ray, J. van den Brink Phys. Rev. Mat 4, 064602 (2020)
- (4) "Electronic, magnetic, optical and thermoelectric properties of Ca 2 Cr 1- x Ni x OsO 6 double perovskites" B. Sadhukhan et al. RSC Advances 10 (27), 16179-16186 (2020).

Light-matter interaction in topological materials

- (1) "Effect of spin-lattice couplings on a Skyrmion multilayers Pd/Fe/Ir(111)" B. Sadhukhan, A. Bergman, J. Hellsvik, A. Delin (Manuscript under preparation)
- (2) "Topological magnon in kagome spin spiral of YMn6Sn6" B. Sadhukhan, A. Bergman, P. Thunström, M. Pereiro, O. Eriksson, A. Delin (Manuscript under preparation)
- (3) "Spin-lattice couplings in two-dimensional CrI3 from first-principles computations" B. Sadhukhan, A. Bergman, Y. O. Kvashnin, J. Hellsvik, A. Delin Phys. Rev. B 105, 104418 (2022)
- (4) Developing "UppASD package" code for atomistic spin-lattice simulation (https://gitlab.com/UppASD/UppASD)

Thankful to all my supervisors, collaborators, parents and family

Thank you for your attention!!

