# Quantifying the presence of <u>air</u> <u>pollutants</u> over a <u>road network</u> in high spatio-temporal resolution

Matteo Böhm (Sapienza University of Rome) Mirco Nanni (ISTI-CNR, Pisa) Luca Pappalardo (ISTI-CNR, Pisa)



# **Motivation**

Health

**Environment** 

## **Motivation**

#### Health

#### **Environment**

"Greenhouse gas (GHG) emissions from the transport sector have more than doubled since 1970 [...]. Around 80% of this increase has come from road vehicles." <sup>2</sup>

<sup>&</sup>lt;sup>2</sup> "<u>Transportation</u>" (Ch. 8) in "Climate Change 2014: Mitigation of Climate Change", Working Group III Contribution to the IPCC Fifth Assessment Report (2014)

## **Motivation**

#### Health

"Air pollution is the <u>principal environmental factor driving disease</u>, with around 400 000 premature deaths attributed to ambient air pollution annually in the EU." <sup>1</sup>

#### **Environment**

"Greenhouse gas (GHG) emissions from the transport sector have more than doubled since 1970 [...]. Around 80% of this increase has come from road vehicles." <sup>2</sup>

<sup>&</sup>lt;sup>1</sup> "Healthy environment, healthy lives: how the environment influences health and well-being in Europe", European Environment Agency (8 Sept. 2020).

<sup>&</sup>lt;sup>2</sup> "<u>Transportation</u>" (Ch. 8) in "Climate Change 2014: Mitigation of Climate Change", Working Group III Contribution to the IPCC Fifth Assessment Report (2014)

## **Data**





| traj_ | id timestamp               | lat lon   |           |
|-------|----------------------------|-----------|-----------|
| 1     | 2019-01-01 08:00:00.000000 | 46.397461 | 11.829286 |
| 1     | 2019-01-01 08:58:07.838255 | 46.479001 | 11.807456 |
| 1     | 2019-01-01 10:23:02.268305 | 46.479001 | 11.807456 |
| 1     | 2019-01-01 17:21:08.304837 | 46.506604 | 11.782809 |
| 1     | 2019-01-01 19:34:35.687601 | 46.515593 | 11.783268 |

**Figure 1**. Raw **GPS trajectories of vehicles** moving in the area of the municipality of **Rome**. Each color represents a **single trajectory**.





# Filtering, speed and acceleration

Extraction of **sub-trajectories** with  $dist(p_i, p_{i+1}) < t$ .

Estimate instantaneous **speed** and **acceleration** in each point.

Filter points based on values of speed and acceleration.



# Filtering, speed and acceleration

Map matching

Extraction of **sub-trajectories** with  $dist(p_i, p_{i+1}) < t$ .

Estimate instantaneous **speed** and **acceleration** in each point.

Filter points based on values of speed and acceleration.

The geolocalized points are mapped to the edges of the **road network**.



#### Filtering, speed and acceleration

Extraction of **sub-trajectories** with  $dist(p_i, p_{i+1}) < t$ .

Estimate instantaneous speed and acceleration in each point.

Filter points based on values of speed and acceleration.

#### Map matching

The geolocalized points are mapped to the edges of the road network.

#### **Emissions model**

Microscopic emissions model to compute the instantaneous emissions of four pollutants:

CO<sub>2</sub>, NO<sub>x</sub>, PM, VOC.



# Filtering, speed and acceleration

Extraction of **sub-trajectories** with  $dist(p_i, p_{i+1}) < t$ .

Estimate instantaneous **speed** and **acceleration** in each point.

Filter points based on values of speed and acceleration.

#### Map matching

The geolocalized points are mapped to the edges of the **road network**.

#### **Emissions model**

Microscopic emissions model to compute the instantaneous **emissions** of four pollutants: CO<sub>2</sub>, NO<sub>x</sub>, PM, VOC.



# The spread of air pollution across the network



Figure 2. Road networks of Rome and London: share of CO<sub>2</sub> emitted in <u>each road</u> in January 2017. There are ~6.7K vehicles moving in Rome and ~2.5K in London.



Figure 3. Road networks of E.U.R. area and 1st Municipality in Rome: quantity of CO<sub>2</sub> (in grams) emitted in each road.

# Air pollution distribution

#### Power-law distribution:

- a few vehicles are responsible for a great quantity of emissions [GBP94], [HOZ18];
- a few roads have the greatest share of emissions in the network.

Figure 4. The loglog distribution of the share of emissions of CO<sub>2</sub>

<u>per road</u> for Rome and London.



Distribution of emissions of CO 2 per road link

### Fitting the distributions of air pollution per road

For both the cities, the distribution of the quantity of  $CO_2$ ,  $NO_x$  and PM emitted per road are well approximated by a <u>truncated power-law</u>.



**Figure 5.** The **complementary CDF** of the data, its best **power-law**, and **truncated power-law** fits.

# Ongoing and future work

Discovering which are the **features** of **roads and road networks** that are more related with **high quantities of air pollution**.



**Figure 6**. Roads' **slope** in Potosi (Bolivia), from flat (**violet**) to steep (**red**).

## That' all... for now.

Many thanks for your attention!



## Main references

[GBP94] P.L. Guenther, G.A. Bishop, J.E. Peterson, D.H. Stedman, <u>Emissions from 200 000 vehicles: a remote sensing study</u>, Science of The Total Environment, Volumes 146–147, 1994

[HOZ18] Y. Huang, B. Organ, J.L. Zhou, N.C. Surawski, G. Hong, E.F.C. Chan, Y.S. Yam, <u>Remote sensing of on-road vehicle emissions: Mechanism, applications and a case study from Hong Kong</u>, Atmospheric Environment, Volume 182, 2018

[NSK16] M. Nyhan, S. Sobolevsky, C. Kang, P. Robinson, A. Corti, M. Szell, D. Streets, Z. Lu, R. Britter, S.R.H. Barrett, C. Ratti, <u>Predicting vehicular emissions in high spatial resolution using pervasively measured transportation data and microscopic emissions model</u>, Atmospheric Environment, Volume 140, 2016

[LHC19] J. Liu, K. Han, X.(Michael) Chen, G.P. Ong, <u>Spatial-temporal inference of urban traffic emissions based on taxi trajectories and multi-source urban data</u>, Transportation Research Part C: Emerging Technologies, Volume 106, 2019