EE2101 Control Systems Question 43

Srijith Reddy Pakala EE19BTECH11041 Dept. of Electrical Engg., IIT Hyderabad.

September 8, 2020

Problem

2 Solution

Problem Statement

The motor whose torque-speed characteristics are shown in Figure 1 drives the load shown in the diagram. Some of the gears have inertia. Find the transfer function, $G(s) = \theta_2(s)/E_a(s)$.

Figure 1

First we need to find the Mechanical constants J_m, D_m in the equation (3.1)

$$\frac{\theta_m(s)}{E_a} = \frac{K_t/R_a J_m}{s[s + \frac{1}{J_m}(D_m + \frac{K_t K_b}{R_a})]}$$
(3.1)

The total inertia at the armature of the motor is

$$J_m = J_1 + (J_2 + J_3) \left(\frac{N_1}{N_2}\right)^2 + J_4 \left(\frac{N_1 N_3}{N_2 N_4}\right)^2$$
 (3.2)

The total damping at the armature of the motor is

$$D_m = D \left(\frac{N_1 N_3}{N_2 N_4} \right)^2 \tag{3.3}$$

Now we will find the electrical constants, K_t/R_a and K_b . From the torque-speed curve of Figure 2.

$$T_{stall}{=}5$$
 $\omega_{no-load}=rac{600}{\pi}$
 $e_a{=}5$

Hence the electrical constants are

$$\frac{K_t}{R_a} = \frac{T_{stall}}{e_a} = \frac{5}{5} = 1$$

and

$$K_b = \frac{e_a}{\omega_{no-load}} = \frac{5}{\frac{600}{\pi} \frac{2\pi}{60}} = \frac{1}{4}$$

The above equations are derived in the text book "Norman.Nise control systems engineering chapter 2.8"

Given N₁ = 10, N₂ = 20, N₃ = 10, N₄ = 20 and J₁ = 1kg -
$$m^2$$
, J₂ = 2kg - m^2 , J₃ = 2kg - m^2 , J₄ = 16kg - m^2 , and D = 32N - m - s/rad

By substituting above values in equations (3.2), (3.3) we get

$$J_m = 1 + (2+2)\left(\frac{1}{2}\right)^2 + 16\left(\frac{1}{4}\right)^2 = 3$$

$$D_m = 32\left(\frac{1}{4}\right)^2 = 2$$

Finally substituting all the variables in equation (3.1)

$$\frac{\theta_m(s)}{E_a} = \frac{\frac{1}{3}}{s \left[s + \frac{1}{3} \left(2 + \frac{1}{4} \right) \right]} = \frac{1}{3s \left[s + 0.75 \right]}$$

Since

$$\theta_2(s) = \frac{1}{4}\theta_m(s)$$

Thus

$$G(s) = \frac{\theta_2(s)}{E_a} = \frac{1}{12s[s+0.75]}$$

The code for the above calculations can be seen here

