Lecture 3: CS677

Aug 29, 2017

#### Review

- Previous class
  - Some problems of vision
  - State-of-art examples
  - Evolution of eyes
  - Pin-hole camera model
- Today's objective
  - Derivation of projection equations
  - Homogeneous coordinates
  - Coordinate transformations

#### **Cloud Computing**

- Google has provided limited cloud computing account for class (worth \$50). Students can get a better persona account at: <a href="https://console.cloud.google.com/freetrial?\_ga=2.228461851.-722665125.1503520492&page=1">https://console.cloud.google.com/freetrial?\_ga=2.228461851.-722665125.1503520492&page=1</a>
- Will ask for credit card but see note below.
- Access to all Cloud Platform Products
- Get everything you need to build and run your apps, websites, and services, including Firebase and the Google Maps API.
- \$300 credit for free
- Sign up and get \$300 to spend on Google Cloud Platform over the next 12 months.
- No autocharge after free trial ends
- We ask you for your credit card to make sure you are not a robot. You won't be charged unless you manually upgrade to a paid account.

#### **Image Formation**

- Geometry
  - Where is the image of a point formed?
- Photometry/Colorimetry
  - How bright is the point?
  - What is its *color*?
- Ideal camera models
- Real lenses

#### Pinhole cameras

- Abstract camera model box with a small hole in it
- Note inverted image

• Pinhole cameras work in practice, ignoring diffraction



### The reason for lenses



Sharper focus, more light

### The thin lens



$$\frac{1}{z} - \frac{1}{Z} = \frac{1}{f}$$

## Thin Lens Properties

- Points at different depth focus at different positions of the image plane
  - With a fixed image plane, not all points will be in focus
  - "Depth of field", *i.e.* distance over which focus is acceptable depends on the *aperture* size
  - Larger aperture captures more light but has lower DOF
  - Defocus property can be used to infer depth
    - Limited accuracy
- Field of view: depends on imaging surface size, not lens aperture size

### Field of View (FoV)



FIGURE 1.9: The field of view of a camera. It can be defined as  $2\phi$ , where  $\phi \stackrel{\text{def}}{=} \arctan \frac{a}{2f}$ , a is the diameter of the sensor (film, CCD, or CMOS chip), and f is the focal length of the camera.

#### Lens Distortions

- Real lenses suffer from various errors/distortions
- Chromatic aberration (not all wavelengths focus at the same point)
- Geometric distortions: complex lens systems used to reduce distortion
- Usually we will assume that complex lenses behave as ideal pinhole models but without the negative effects
  - No diffraction effects, sufficient light collection, all points in focus

#### Distortion Illustrations



FIGURE 1.11: Aberrations. (a) Spherical aberration: The gray region is the paraxial zone where the rays issued from P intersect at its paraxial image p. If an image plane  $\pi$  were erected in p, the image of p in that plane would form a circle of confusion of diameter e. The focus plane yielding the circle of least confusion is indicated by a dashed line. (b) Distortion: From left to right, the nominal image of a fronto-parallel square, pincushion distortion, and barrel distortion. (c) Chromatic aberration: The index of refraction of a transparent medium depends on the wavelength (or color) of the incident light rays. Here, a prism decomposes white light into a palette of colors. Figure from US NAVY MANUAL OF BASIC OPTICS AND OPTICAL INSTRUMENTS, prepared by the Bureau of Naval Personnel, reprinted by Dover Publications, Inc. (1969).

#### The equation of projection

• Note: k-axis towards the camera (right handed coordinate system  $k = i \times j$ ).



Let 
$$P = (X, Y, Z), p = (x, y, z)$$

- We know that z=d, find values of x and y
- Op =  $\lambda$ .OP for some  $\lambda$ ,  $\lambda = d/Z$ hence:  $\begin{cases} x = d\frac{X}{Z}, \\ y = d\frac{Y}{Z} \end{cases}$

# Comments on projection equation

- Note: if X is a positive number, x will be negative since Z is negative
- If image plane is in front (virtual plane), image is not inverted; change signs of x and y.
- Some authors (e.g. RS book) assume that the z-axis points towards the object; change signs to accommodate
- How to compute image of a curve?
  - Project points along the curve
    - How many points to sample?
  - Analytical equations may be possible in some cases if the original curve has an analytical equation
- How to project a surface?
  - All points on the surface? All points may not be visible.

# Projections of Certain Shapes

- Projection of a straight line
  - Straight line
  - How to show/prove? Geometrically? Algebraically?
- Projection of a circle?
  - A conic section
  - How to show prove? Geometrically? Algebraically?
- Image of a sphere
  - A conic?
- Images of a set of parallel lines?
  - Do images remain parallel?

# **Converging Lines**





## **Back Projection**

- Given an image of an object, what can we infer about the 3-D object casting the image?
- Given a single 2-D image point?
  - A line (orientation) along which the 3-D point must lie, but we can not fix a unique distance
- Given a straight line in the image?
  - Must the object also be a straight line?
    - Not necessarily, but likely (except for accidental viewpoints)
  - Constraints on the object line?
    - Must line in a specific plane (given by pinhole or lens center and the image line)
- Back projection of an ellipse
  - Another ellipse; if we assume it is projection of a circle, we can estimate orientation of the plane
- Is back projection of more complex shapes more constrained?

## How do we see Depth in Simple Drawings?





From:

http://www.drawinghowtodraw.com/stepbystepdrawinglessons/2014/01/how-to-draw-a-house-with-easy-2-point-perspective-techniques/

- What assumptions do we make?
- 2-D properties are not accidental: parallel lines in image also parallel in 3-D; intersections are real; symmetry/simplicity of objects...
- Significant theories developed but apply only to very clean drawings as shown here; not topic of serious study at this time.
- Will color, intensity help? We will address this a bit later.

## Multiple Cameras

- Each camera specifies a line on which the 3-D point must lie
- Point must be at intersection of these rays
- Issues: How to find the corresponding points? What if camera relative positions are not known?



Figure from: http://www.eng.tau.ac.il/~nk/computer -vision/stereo/index.html

## Homogeneous Coordinates

- Add an extra coordinate
  - $(X,Y,Z) \Rightarrow (X_h, Y_h, Z_h, w) = (wX, wY, wZ, w), w$  is any constant (in the FP book, w is usually set to 1)
- Advantage: allows perspective transformation to be *linearized*, *i.e.* expressed as a matrix equation

$$\begin{bmatrix} x_h \\ y_h \\ w_h \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} X_h \\ Y_h \\ Z_h \\ w \end{bmatrix}$$

$$x_h = X_h, y_h = Y_h, w_h = 1/d*Z_h$$
  
 $x = x_h/w_h = d*X_h/Z_h = d*X/Z, y = d*Y/Z$ 

Also common to represent focal length by variable f; also to

write matrix as 
$$\begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

#### Intrinsic Camera Parameters

• Figure 1.14



- Measurement in image coordinate system may be in "pixel" units (x,y), pixels may not be rectangular, origin of image coordinate system may not be at the center of *image* (projection of lens center), axis may be *skewed*.
- *Normalized* image plane: parallel to physical retina but unit distance from lens center

#### **Normalized Coordinates**

• Figure 1.14



- *Normalized* image plane: parallel to physical retina but unit distance from lens center
- Normalized coordinates:
  - Origin at the intersection of normalized plane and the principal ray
  - Image plane axes parallel to the i and j axes

### Projection in Normalized Coordinates

• In normalized coordinate system:

$$\begin{cases} \hat{x} = \frac{X}{Z} \\ \hat{y} = \frac{Y}{Z} \end{cases} \iff \hat{p} = \frac{1}{Z} (\text{Id} \quad \mathbf{0}) \mathbf{P}$$

- Both  $\hat{P}$  and P are expressed in homogeneous coordinates with the last term being set to "1"
- If we let the last term be "w", we would not need to carry 1/Z in our equations (it would come from the homogeneous representation) but we will follow book's notation.

#### **Intrinsic Parameters**

- We can go from normalized coordinates to actual camera coordinates by a series of transformations.
- Let f be focal length, k and l be scale parameters along x and y directions  $x = kf \frac{X}{Z} = kf \hat{x},$

$$y = lf \frac{Y}{Z} = lf \hat{y}.$$

- Image coordinates commonly expressed not in meters but in pixel units; k and l take care of this unit transformation. Let  $\alpha = kf$ ,  $\beta = lf$ .
- Image center need not be at (0,0), let it be at  $c_0$ . Now,

$$x = \alpha \hat{x} + x_0,$$
  
$$y = \beta \hat{y} + y_0.$$

#### **Intrinsic Parameters**

• Let  $\theta$  be the angle between axes in image plane, then

$$x = \alpha \hat{x} - \alpha \cot \theta \hat{y} + x_0,$$
$$y = \frac{\beta}{\sin \theta} \hat{y} + y_0.$$

• In matrix form:

$$p = \mathcal{K}\hat{p}$$
, where  $p = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$  and  $\mathcal{K} \stackrel{\text{def}}{=} \begin{pmatrix} \alpha & -\alpha \cot \theta & x_0 \\ 0 & \frac{\beta}{\sin \theta} & y_0 \\ 0 & 0 & 1 \end{pmatrix}$ 

- *K* is called the *internal calibration matrix*;  $(\alpha,\beta,\theta,x_0,y_0)$  are the *intrinsic parameters*.
- Including projection from P to p,

$$p = \frac{1}{Z} \mathcal{K} (\text{Id} \quad \mathbf{0}) P = \frac{1}{Z} \mathcal{M} P, \text{ where } \mathcal{M} \stackrel{\text{def}}{=} (\mathcal{K} \quad \mathbf{0})$$

• Note: division by Z is an artifact of setting last term in p to be 1.

## Object and World Coordinate Systems

- Previous transformation matrix requires object coordinates to be expressed in the *camera* coordinate system (with origin at lens center)
  - This, in general, is not very convenient
- *Object* coordinate system
  - Aligned with some components of the object, e.g. the three sides of a rectangular solid
- World coordinate system
  - Chosen for global convenience, *e.g.* lines forming corner of a room, or earth coordinates (latitude, longitude, height)
- Coordinate transformations define relations between different coordinate systems
- Extrinsic parameters relate world coordinate system to camera coordinates

### Rigid Transformations

Notation

$$F_P$$
 Point  $P$  in Frame  $F$   $(A) = (O_A, \boldsymbol{i}_A, \boldsymbol{j}_A, \boldsymbol{k}_A)$   $(B) = (O_B, \boldsymbol{i}_B, \boldsymbol{j}_B, \boldsymbol{k}_B)$ 

- In general, two coordinate systems can be aligned by
  - Translation of origin (3 parameters)
  - Rotation
    - 3 rotations about the 3 axes (*e.g.* rotate about z-axes, then about the new y-axis, then about the new x-axis); called Euler angles
    - One direction about which rotation occurs and one angle
      - Screw representation, quaternions

#### Transformation Equations

• In non-homogeneous coordinates:

$$^{A}P = \mathcal{R}^{B}P + t$$

- Where t is translation vector (coordinates of origin of B in A); R is given by:  $\mathcal{R} \stackrel{\text{def}}{=} (^{A}i_{B}, ^{A}j_{B}, ^{A}k_{B})$
- Note that detailed matrix given in textbook, eq. 1.8 is wrong; correct answer is transpose of the given matrix

$$\mathcal{R} \stackrel{ ext{def}}{=} egin{pmatrix} (^A oldsymbol{i}_B, ^A oldsymbol{j}_B, ^A oldsymbol{k}_B) = egin{pmatrix} oldsymbol{i}_A \cdot oldsymbol{i}_B & oldsymbol{j}_A \cdot oldsymbol{i}_B & oldsymbol{k}_A \cdot oldsymbol{i}_B \ oldsymbol{i}_A \cdot oldsymbol{k}_B & oldsymbol{j}_A \cdot oldsymbol{k}_B & oldsymbol{k}_A \cdot oldsymbol{j}_B \ oldsymbol{i}_A \cdot oldsymbol{k}_B & oldsymbol{j}_A \cdot oldsymbol{k}_B & oldsymbol{k}_A \cdot oldsymbol{k}_B \end{pmatrix} oldsymbol{ ext{T}}$$

- e.g. first column should be  $(i_A.i_B, j_A.i_B, k_A.i_B)$
- In homogeneous coordinates:

$${}^{A}\boldsymbol{P} = \mathcal{T}^{B}\boldsymbol{P}, \quad \text{where} \quad \mathcal{T} = \begin{pmatrix} \mathcal{R} & t \\ \mathbf{0}^{T} & 1 \end{pmatrix}$$

# **Combined Projection Equations**

- Let (W) be a world coordinate frame, (C) a camera coordinate frame
- World to Camera coordinate transformation given by

$$^{C}P = \begin{pmatrix} \mathcal{R} & t \\ 0^{T} & 1 \end{pmatrix}^{W}P$$

In camera coordinate frame

$$p = \frac{1}{Z} \mathcal{M}^C P$$

Combining the two, we get

$$p = \frac{1}{Z} \mathcal{M} P$$
, where  $\mathcal{M} = \mathcal{K} (\mathcal{R} \ t)$ 

where P is in world coordinates, p in image coordinates.

# **Projection Equation**

- Let  $m_1^T$ ,  $m_2^T$  and  $m_3^T$  denote the 3 rows of M, then  $Z = m_3 \cdot P$
- Alternate form:

$$x = \frac{m_1 \cdot P}{m_3 \cdot P},$$
$$y = \frac{m_2 \cdot P}{m_3 \cdot P}.$$

• Let  $r_1^T$ ,  $r_2^T$ , and  $r_3^T$  denote the 3 rows of R, and  $t_1$ ,  $t_2$ ,  $t_3$  denote the three components of t, then:

$$\mathcal{M} = \begin{pmatrix} \alpha \boldsymbol{r}_1^T - \alpha \cot \theta \boldsymbol{r}_2^T + x_0 \boldsymbol{r}_3^T & \alpha t_1 - \alpha \cot \theta t_2 + x_0 t_3 \\ \frac{\beta}{\sin \theta} \boldsymbol{r}_2^T + y_0 \boldsymbol{r}_3^T & \frac{\beta}{\sin \theta} t_2 + y_0 t_3 \\ \boldsymbol{r}_3^T & t_3 \end{pmatrix}$$

## Properties of Matrix M

• Can any arbitrary 3 x 4 matrix be a perspective projection matrix (corresponding to some internal and external parameters)?

Theorem 1. Let  $\mathcal{M} = (\mathcal{A} \ b)$  be a  $3 \times 4$  matrix, and let  $a_i^T$  (i = 1, 2, 3) denote the rows of the matrix  $\mathcal{A}$  formed by the three leftmost columns of  $\mathcal{M}$ .

- A necessary and sufficient condition for  $\mathcal{M}$  to be a perspective projection matrix is that  $\text{Det}(\mathcal{A}) \neq 0$ .
- A necessary and sufficient condition for  $\mathcal{M}$  to be a zero-skew perspective projection matrix is that  $\mathrm{Det}(\mathcal{A}) \neq 0$  and

$$(a_1 \times a_3) \cdot (a_2 \times a_3) = 0.$$

• A necessary and sufficient condition for  $\mathcal{M}$  to be a perspective projection matrix with zero skew and unit aspect-ratio is that  $\text{Det}(\mathcal{A}) \neq 0$  and

$$\begin{cases} (\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3) = 0, \\ (\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_1 \times \boldsymbol{a}_3) = (\boldsymbol{a}_2 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3). \end{cases}$$

## Orthographic Projection

Assumes projection rays are parallel, and along the z-axis.



### Weak Perspective

Perspective projection but assume all points have the same z-value (object sizes small, compared to distance from camera)



Matrix form developed in next slide

#### **Next Class**

• FP: Sections 1.3, 2.1, 2.3.4, 2.4