EXERCICE 2 (6 points)

Cet exercice porte sur la récursivité.

Au rugby, une équipe peut marquer, pour simplifier :

- soit 3 points (pénalité);
- soit 5 points (essai non transformé);
- soit 7 points (essai transformé).

Partie A

On souhaite savoir s'il est possible d'obtenir un score donné avec uniquement des pénalités, c'est-à-dire avec une succession de "coups" à 3 points.

1. Écrire une fonction possible_avec_penalites_seules qui prend en paramètre un score et qui renvoie True si le score passé en paramètre peut être marqué uniquement avec des pénalités.

Exemple:

```
>>> possible_avec_penalites_seules(15)
True
>>> possible_avec_penalites_seules(10)
False
```

- 2. Recopier et compléter le tableau suivant qui précise, pour les scores de 0 à 10, les évolutions du score menant à un total donné et le nombre de façons différentes d'obtenir ce total. Par exemple, pour obtenir un score de 8, en partant de 0, il y a 2 possibilités :
- Soit l'équipe marque un essai non transformé, atteignant 5 points, puis une pénalité, atteignant 8 points ;
- Soit l'équipe marque une pénalité, atteignant 3 points, puis un essai non transformé, atteignant 8 points.

score	liste des solutions	nombre de solutions
0	[0]	1
1	[]	0
2		
3		
4		
5		
6		
7		
8	[0, 5, 8], [0, 3, 8]	2
9		1
10	[0,3,10]	3

24-NSIJ1PO1 Page: 6 / 11

En notant f(n) le nombre de possibilités d'obtenir le score n, on admet que pour n > 6 on a la relation suivante :

$$f(n) = f(n-3) + f(n-5) + f(n-7)$$

3. Vérifier cette relation pour n = 10 à l'aide du tableau établi à la question 2.

On veut écrire une fonction récursive nb_solutions, qui prend en paramètre un entier positif quelconque correspondant à un score, et qui renvoie le nombre de façons d'obtenir ce score donné.

- 4. Déterminer tous les cas de base, pour chaque entier n de 0 à 6, de cette fonction récursive.
- 5. Écrire la fonction récursive nb_solutions, qui prend en paramètre un entier positif quelconque correspondant à un score, et qui renvoie le nombre de possibilités d'obtenir ce score donné.
- 6. Lors de l'appel de nb_solutions(score), on se rend compte que le nombre d'appels récursif augmente très rapidement lorsque score augmente. Nommer une méthode algorithmique optimisant le nombre d'appels récursifs.

On veut écrire une fonction récursive solutions_possibles, qui prend en paramètre un entier positif quelconque correspondant à un score, et qui renvoie la liste composée de toutes les listes représentant les possibilités d'obtenir ce score.

Par exemple :

```
>>> solutions_possibles(8)
[[0, 5, 8], [0, 3, 8]]
```

- 7. Déterminer quelles lignes du tableau permettent de construire rapidement la liste renvoyée par l'appel solutions_possibles(11).
- 8. Recopier et compléter la fonction solutions_possibles suivante, qui prend en paramètre un score et qui renvoie la liste des possibilités d'obtenir ce score :

24-NSIJ1PO1 Page: 7 / 11