Competitive Programming Reference

TryOmar's Algorithm Collection

A comprehensive collection of algorithms, data structures, and templates

August 5, 2025

Contents

1	Introduction			
	1.1	How to	o Use This Reference	
2	Data Structures			
	2.1	STL E	Basics	
		2.1.1	Important STL Concepts	
		2.1.2	Common STL Operations	
		2.1.3	Performance Considerations	
		2.1.4	Memory Management	
		2.1.5	Vectors and Arrays	
		2.1.6	Sets and Maps	
		2.1.7	Priority Queue and Heaps	
		2.1.8	Stack and Queue	
		2.1.9	Bitset	
	2.2	Advan	ced Data Structures	
		2.2.1	Segment Tree (Iterative)	
		2.2.2	Disjoint Set Union (DSU)	
3	Gra	nph Alg	gorithms	
	3.1		-First Search (DFS)	
		3.1.1	DFS Notes	
		3.1.2	Connected Components Notes	
	3.2	Breadt	th-First Search (BFS)	
		3.2.1	BFS Notes	
		3.2.2	Distance BFS Notes	
	3.3	Diikst	ra's Algorithm	
		3.3.1	Dijkstra Notes	
		3.3.2	Path Reconstruction Notes	
	3.4	Floyd-	Warshall Algorithm	
	3.1	3.4.1	Floyd-Warshall Notes	
	3.5		ogical Sort	
	0.0	3.5.1	DFS Topological Sort Notes	
		3.5.2	Kahn's Algorithm Notes	
	3.6		Detection	
	0.0	3.6.1	Undirected Cycle Detection Notes	
		3.6.2	Directed Cycle Detection Notes	
	3.7		tant Notes	
	0.1	3.7.1	Graph Representation	
		3.7.1 $3.7.2$	Algorithm Complexities	
		$\frac{3.1.2}{3.7.3}$	Usage Tins	

1 Introduction

This document contains a comprehensive collection of algorithms, data structures, and templates for competitive programming. Each section includes implementation details, time complexity analysis, and usage examples.

1.1 How to Use This Reference

- Code Templates: Ready-to-use implementations
- Complexity Analysis: Time and space complexity for each algorithm
- Usage Examples: Practical examples and edge cases
- Notes: Important implementation details and optimizations

2 Data Structures

2.1 STL Basics

This section covers the essential C++ Standard Template Library (STL) data structures commonly used in competitive programming.

2.1.1 Important STL Concepts

- Containers: Data structures that hold objects (vector, set, map, etc.)
- Iterators: Objects that point to elements in containers
- Algorithms: Functions that operate on containers (sort, find, etc.)
- Function Objects: Objects that can be called like functions
- Allocators: Manage memory allocation for containers

2.1.2 Common STL Operations

- Insertion: insert(), push_back(), emplace()
- Deletion: erase(), pop_back(), clear()
- Access: at(), operator[], front(), back()
- Size: size(), empty(), capacity()
- Iteration: Range-based for loops, iterators, begin(), end()

2.1.3 Performance Considerations

- Vector: O(1) amortized insertion at end, O(n) insertion in middle
- Set/Map: O(log n) for insert, delete, search (Red-Black tree)
- Unordered Set/Map: O(1) average case, O(n) worst case (hash table)
- Stack/Queue: O(1) for push/pop operations
- **Priority Queue**: O(log n) for push/pop operations

2.1.4 Memory Management

- Vector: Automatically grows, use reserve() to pre-allocate
- Set/Map: Memory allocated per node, efficient for sparse data
- Unordered: Memory allocated in buckets, good for dense data
- Stack/Queue: Memory allocated as needed, efficient for LIFO/FIFO

2.1.5 Vectors and Arrays

1: Basic Vector Operations

```
1 // Vector initialization
 vector<int> v;
                              // Empty vector
 vector < int > v(5);
                              // Size 5, initialized with Os
                        // Size 5, initialized with 2s
 vector < int > v(5, 2);
5 vector < int > v = {1, 2, 3};
                              // Direct initialization
7 // Basic operations
                              // Add element to end
 v.push_back(4);
                              // Remove last element
9 v.pop_back();
                              // Get current size
10 v.size();
11 v.empty();
                              // Check if empty
12 v.front();
                              // First element
13 v.back();
                              // Last element
                              // Remove all elements
14 v.clear();
16 // Access and iteration
17 for(int i = 0; i < v.size(); i++) {</pre>
     18
19 }
20 for(int x : v) {
                              // Range-based for loop
     cout << x << " ";
21
22
```

2: 2D Vector Operations

```
1 // 2D vector initialization
 vector<vector<int>> grid = {
                                         // Direct init
    {1, 2, 3},
    {4, 5, 6},
    {7, 8, 9}
 };
 // Access elements
 10 grid[i][j] = value;
13 // Common operations
14 for(int i = 0; i < grid.size(); i++) {
    for(int j = 0; j < grid[i].size(); j++) {</pre>
15
        cout << grid[i][j] << " ";</pre>
16
17
    cout << "\n";
18
19 }
```

2.1.6 Sets and Maps

3: Set and Unordered Set

```
// Set (ordered)
 set <int> s;
                            // Ordered unique elements
3 s.insert(5);
                             // O(log n) insertion
4 s.erase(5);
                            // O(log n) deletion
5 auto it = s.find(5);
                            // O(log n) search
auto it = s.lower_bound(5); // First element >= 5
 auto it = s.upper_bound(5); // First element > 5
9 // Unordered Set (hash table)
unordered_set <int > us; // Unordered unique elements
us.insert(5);
                            // O(1) average case
12 us.erase(5);
                          // O(1) average case
                         // O(1) average case
auto it = us.find(5);
```

4: Map and Unordered Map

5: Multiset and Multimap Operations

2.1.7 Priority Queue and Heaps

Priority queues in C++ use comparators with reversed logic. By default, priority_queue<int> creates a max-heap.

6: Basic Priority Queue

```
1 // Max heap (default)
 priority_queue < int > maxHeap;
3 // Min heap using greater <int>
 priority_queue<int, vector<int>, greater<int>> minHeap;
 // Custom comparator for complex types
 struct Compare {
      bool operator()(const Point& a, const Point& b) {
          // Note: reversed logic compared to set/map
          if (a.x != b.x) return a.x > b.x;
9
          return a.y > b.y;
10
      }
11
12 };
priority_queue < Point, vector < Point >, Compare > pq;
```

2.1.8 Stack and Queue

7: Stack and Queue Operations

```
1 // Stack (LIFO)
stack<int> s;
                               // Add element
3 s.push(5);
                               // Remove top element
4 s.pop();
5 s.top();
                               // Access top element
6 s.empty();
                              // Check if empty
7 s.size();
                               // Get size
 // Queue (FIFO)
 queue < int > q;
                               // Add element
10 q.push(5);
                               // Remove front element
11 q.pop();
12 q.front();
                               // Access front element
13 q.back();
                               // Access back element
                               // Check if empty
14 q.empty();
15 q.size();
                               // Get size
16 // Deque (double-ended queue)
17 deque < int > dq;
dq.push_front(5);
                               // Add to front
dq.push_back(5);
                               // Add to back
                              // Remove from front
20 dq.pop_front();
21 dq.pop_back();
                              // Remove from back
22 dq.front();
                              // Access front
23 dq.back();
                              // Access back
```

2.1.9 Bitset

Bitset provides space-efficient storage for boolean values.

8: Bitset Operations

```
1 // Bitset initialization
bitset <32> bs;
                              // 32-bit bitset
                            // S2-bit bitset
// From binary string
3 bitset <32> bs("1010");
4 bitset <32> bs(42);
                              // From integer
6 // Basic operations
7 bs.set(5);
                              // Set bit at position 5
8 bs.reset(5);
                              // Reset bit at position 5
9 bs.flip(5);
                              // Flip bit at position 5
10 bs.test(5);
                              // Check if bit is set
                              // Count set bits
11 bs.count();
                              // Total number of bits
12 bs.size();
13
14 // Bitwise operations
15 bitset <32 > a("1010"), b("1100");
16 auto c = a & b;
                            // AND
17 auto d = a | b;
                              // OR
                              // XOR
18 auto e = a ^ b;
                              // NOT
19 auto f = ~a;
21 // Useful for competitive programming
                        // Set all bits
22 bs.set();
bs.reset();
                              // Reset all bits
24 bs.flip();
                             // Flip all bits
```

2.2 Advanced Data Structures

2.2.1 Segment Tree (Iterative)

Efficient range query data structure supporting point updates and range queries.

9: Segment Tree for Range Sum

```
struct SegmentTree {
      int n;
2
3
      vector < int > tree;
4
      SegmentTree(const vector<int>& v) {
5
           n = v.size();
6
           tree.resize(n << 1);</pre>
7
           for (int i = 0; i < n; i++)</pre>
                tree[i + n] = v[i];
           for (int i = n - 1; i > 0; i--)
10
                tree[i] = tree[i << 1] + tree[i << 1 | 1];</pre>
11
      }
12
13
      void update(int pos, int value) {
14
           tree[pos += n] = value;
15
           for (pos >>= 1; pos > 0; pos >>= 1)
16
                tree[pos] = tree[pos << 1] + tree[pos << 1 | 1];</pre>
17
      }
18
19
      int query(int 1, int r) { // inclusive range [1, r]
20
           int res = 0;
21
           for (1 += n, r += n + 1; 1 < r; 1 >>= 1, r >>= 1) {
22
                if (1 & 1) res += tree[1++];
23
                if (r & 1) res += tree[--r];
24
           }
25
           return res;
26
      }
^{27}
^{28}
  };
```

10: Segment Tree Example Usage

```
int main() {
    vector < int > a = {2, 1, 5, 3, 4};
    SegmentTree st(a);

cout << st.query(1, 3) << "\n"; // 1 + 5 + 3 = 9
    st.update(2, 0);
    cout << st.query(1, 3) << "\n"; // 1 + 0 + 3 = 4
}</pre>
```

11: Segment Tree for Range Maximum

```
struct SegmentTree {
2
      int n;
3
      vector<int> tree;
4
5
      SegmentTree(const vector<int>& v) {
6
           n = v.size();
           tree.resize(n << 1);</pre>
7
           for (int i = 0; i < n; i++)</pre>
8
                tree[i + n] = v[i];
9
           for (int i = n - 1; i > 0; i--)
10
                tree[i] = max(tree[i << 1], tree[i << 1 | 1]);</pre>
11
      }
12
13
      void update(int pos, int value) {
14
           tree[pos += n] = value;
15
           for (pos >>= 1; pos > 0; pos >>= 1)
16
                tree[pos] = max(tree[pos << 1], tree[pos << 1 | 1]);</pre>
17
      }
18
19
      int query(int 1, int r) { // inclusive range [1, r]
20
           int res = INT_MIN;
21
           for (1 += n, r += n + 1; 1 < r; 1 >>= 1, r >>= 1) {
22
               if (1 & 1) res = max(res, tree[1++]);
23
               if (r & 1) res = max(res, tree[--r]);
24
25
           return res;
26
27
      }
28 };
```

12: Segment Tree Max Example Usage

2.2.2 Disjoint Set Union (DSU)

Optimized union-find data structure with path compression and union by size.

13: DSU with Vector

```
struct DSU {
2
      vector<int> parent, size;
3
      DSU(int n) {
4
           parent.resize(n);
5
           size.resize(n);
6
           for (int i = 0; i < n; i++) {</pre>
7
8
               parent[i] = i;
                size[i] = 1;
9
           }
10
      }
11
12
      int findParent(int x) {
13
           if (parent[x] == x) return x;
14
           return parent[x] = findParent(parent[x]);
15
      }
16
17
      bool sameGroup(int x, int y) {
18
           return findParent(x) == findParent(y);
19
20
21
      void merge(int x, int y) {
22
           int rootX = findParent(x);
           int rootY = findParent(y);
24
           if (rootX == rootY) return;
25
           if (size[rootX] < size[rootY]) swap(rootX, rootY);</pre>
26
           parent[rootY] = rootX;
27
           size[rootX] += size[rootY];
28
      }
29
30
  };
```

14: DSU Example Usage

```
int main() {
      DSU dsu(10);
2
3
      dsu.merge(1, 2);
4
      dsu.merge(2, 3);
5
      dsu.merge(4, 5);
6
7
      cout << (dsu.sameGroup(1, 3)) << "\n"; // 1 (true)
8
      cout << (dsu.sameGroup(1, 5)) << "\n"; // 0 (false)
9
10 }
```

15: DSU with Unordered Map

```
struct DSUMap {
2
      unordered_map<int, int> parent, size;
3
      void makeSet(int x) {
4
5
           if (!parent.count(x)) {
               parent[x] = x;
6
7
               size[x] = 1;
           }
8
      }
9
10
      int findParent(int x) {
11
           makeSet(x);
12
           if (parent[x] == x) return x;
13
           return parent[x] = findParent(parent[x]);
14
      }
15
16
      bool sameGroup(int x, int y) {
17
           return findParent(x) == findParent(y);
18
19
20
      void merge(int x, int y) {
21
           int rootX = findParent(x);
22
           int rootY = findParent(y);
23
           if (rootX == rootY) return;
24
           if (size[rootX] < size[rootY]) swap(rootX, rootY);</pre>
25
           parent[rootY] = rootX;
26
           size[rootX] += size[rootY];
27
      }
28
 };
29
```

16: DSU Map Example Usage

```
int main() {
    DSUMap dsu;
    dsu.merge(100, 200);
    dsu.merge(200, 300);
    dsu.merge(400, 500);

cout << dsu.sameGroup(100, 300) << "\n"; // 1 (true)
    cout << dsu.sameGroup(100, 500) << "\n"; // 0 (false)
}</pre>
```

3 Graph Algorithms

3.1 Depth-First Search (DFS)

Depth-First Search is a graph traversal algorithm that explores as far as possible along each branch before backtracking.

17: DFS Implementation

```
// Adjacency list
  vector < vector < int >> graph;
  vector < bool > visited;
3
  void dfs(int node) {
      visited[node] = true;
5
      cout << node << " "; // Process node</pre>
6
7
      for (int neighbor : graph[node]) {
8
           if (!visited[neighbor]) {
9
               dfs(neighbor);
10
           }
11
      }
12
13
14
  // Initialize and run DFS
  void runDFS(int start, int n) {
16
      graph.resize(n);
17
      visited.resize(n, false);
18
      dfs(start);
19
20
  }
```

3.1.1 DFS Notes

- Time Complexity: O(V + E) where V = vertices, E = edges
- Space Complexity: O(V) for recursion stack
- Use Cases: Exploring all possibilities, backtracking, connected components
- Recursive Nature: Uses recursion, can cause stack overflow for very deep graphs

18: DFS with Connected Components

```
vector < vector < int >> graph;
  vector < bool > visited;
3
  void dfs(int node) {
       visited[node] = true;
5
6
       for (int neighbor : graph[node]) {
7
           if (!visited[neighbor]) {
8
                dfs(neighbor);
9
10
       }
11
12
  }
13
  int countComponents(int n) {
14
       visited.resize(n, false);
15
       int components = 0;
16
17
       for (int i = 0; i < n; i++) {</pre>
18
           if (!visited[i]) {
19
                dfs(i);
20
                components++;
21
           }
22
       }
23
24
       return components;
25
```

3.1.2 Connected Components Notes

- Application: Finding number of disconnected subgraphs
- Algorithm: Run DFS from each unvisited node
- Result: Each DFS call discovers one connected component
- Complexity: Still O(V + E) as each node/edge visited once

3.2 Breadth-First Search (BFS)

Breadth-First Search explores all vertices at the present depth before moving to vertices at the next depth level.

19: BFS Implementation

```
// Adjacency list
  vector < vector < int >> graph;
  vector < bool > visited;
3
  void bfs(int start) {
5
      queue < int > q;
6
      q.push(start);
      visited[start] = true;
7
      while (!q.empty()) {
9
           int node = q.front();
10
           q.pop();
11
           cout << node << " "; // Process node</pre>
12
13
           for (int neighbor : graph[node]) {
14
                if (!visited[neighbor]) {
15
                    visited[neighbor] = true;
16
                    q.push(neighbor);
17
               }
18
           }
19
      }
20
21
22
  // Initialize and run BFS
23
  void runBFS(int start, int n) {
24
      graph.resize(n);
25
      visited.resize(n, false);
26
      bfs(start);
27
  }
```

3.2.1 BFS Notes

- Time Complexity: O(V + E) where V = vertices, E = edges
- Space Complexity: O(V) for queue
- Use Cases: Shortest path in unweighted graphs, level-order traversal
- Queue-based: Uses queue, explores level by level

20: BFS with Distance Calculation

```
vector < vector < int >> graph;
  vector < int > distance;
3
  void bfsWithDistance(int start, int n) {
5
      queue < int > q;
      distance.resize(n, -1);
6
7
      q.push(start);
8
      distance[start] = 0;
9
10
      while (!q.empty()) {
11
           int node = q.front();
12
           q.pop();
13
14
           for (int neighbor : graph[node]) {
15
                if (distance[neighbor] == -1) {
16
                    distance[neighbor] = distance[node] + 1;
17
                    q.push(neighbor);
18
               }
19
           }
20
      }
21
  }
22
```

3.2.2 Distance BFS Notes

- Shortest Path: Guarantees shortest path in unweighted graphs
- Distance Array: Stores minimum distance from start to each node
- Level Order: Nodes at same distance processed together
- Application: Network routing, social network analysis

3.3 Dijkstra's Algorithm

Dijkstra's algorithm finds the shortest path from a source vertex to all other vertices in a weighted graph.

21: Dijkstra's Algorithm

```
vector < vector < pair < int , int >>> graph; // {neighbor , weight}
  vector<int> distance;
3
  void dijkstra(int start, int n) {
      priority_queue <pair < int , int > , vector <pair < int , int >> , greater <pair < int ,</pre>
5
           int>>> pq;
      distance.resize(n, INT_MAX);
6
      distance[start] = 0;
8
      pq.push({0, start});
9
10
      while (!pq.empty()) {
11
           int dist = pq.top().first;
12
           int node = pq.top().second;
13
14
           pq.pop();
15
           if (dist > distance[node]) continue;
16
17
           for (auto [neighbor, weight] : graph[node]) {
18
                if (distance[node] + weight < distance[neighbor]) {</pre>
19
                    distance[neighbor] = distance[node] + weight;
20
                    pq.push({distance[neighbor], neighbor});
21
               }
22
           }
23
      }
24
25
```

3.3.1 Dijkstra Notes

- Time Complexity: $O((V + E) \log V)$ with priority queue
- Space Complexity: O(V) for distance array and priority queue
- Requirement: All edge weights must be non-negative
- Greedy Algorithm: Always picks the closest unvisited node

22: Dijkstra with Path Reconstruction

```
vector < vector < pair < int , int >>> graph;
  vector<int> distance, parent;
3
  void dijkstraWithPath(int start, int n) {
      priority_queue <pair < int , int > , vector <pair < int , int > > , greater <pair < int ,</pre>
5
           int>>> pq;
      distance.resize(n, INT_MAX);
      parent.resize(n, -1);
7
8
      distance[start] = 0;
9
      pq.push({0, start});
10
11
      while (!pq.empty()) {
12
           int dist = pq.top().first;
13
           int node = pq.top().second;
14
15
           pq.pop();
16
           if (dist > distance[node]) continue;
17
18
           for (auto [neighbor, weight] : graph[node]) {
19
                if (distance[node] + weight < distance[neighbor]) {</pre>
20
                    distance[neighbor] = distance[node] + weight;
21
                    parent[neighbor] = node;
22
                    pq.push({distance[neighbor], neighbor});
23
               }
24
           }
25
26
      }
27
28
  vector < int > getPath(int end) {
29
30
      vector < int > path;
      for (int node = end; node != -1; node = parent[node]) {
31
           path.push_back(node);
32
33
      reverse(path.begin(), path.end());
34
      return path;
35
36
```

3.3.2 Path Reconstruction Notes

- Parent Array: Stores predecessor of each node in shortest path
- Path Recovery: Backtrack from destination to source
- Reverse Order: Path is built backwards, then reversed
- Application: Navigation systems, network routing

3.4 Floyd-Warshall Algorithm

Floyd-Warshall finds shortest paths between all pairs of vertices in a weighted graph.

23: Floyd-Warshall Algorithm

```
// Distance matrix
  vector < vector < int >> dist;
2
  int n;
3
  void floydWarshall() {
      // Initialize distance matrix
5
      for (int i = 0; i < n; i++) {</pre>
           for (int j = 0; j < n; j++) {
7
8
                if (i == j) dist[i][j] = 0;
                else dist[i][j] = INT_MAX;
9
           }
10
      }
11
12
      // Add edges
13
      // dist[u][v] = weight; // Add your edges here
14
15
      // Floyd-Warshall algorithm
16
      for (int k = 0; k < n; k++) {
17
           for (int i = 0; i < n; i++) {</pre>
18
                for (int j = 0; j < n; j++) {
19
                    if (dist[i][k] != INT_MAX && dist[k][j] != INT_MAX) {
20
                        dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);
21
                    }
22
23
               }
           }
24
      }
25
^{26}
```

3.4.1 Floyd-Warshall Notes

- Time Complexity: O(V3) cubic time complexity
- Space Complexity: $O(V^2)$ for distance matrix
- All Pairs: Finds shortest path between every pair of vertices
- Handles Negatives: Can detect negative cycles

3.5 Topological Sort

Topological sort orders vertices in a directed acyclic graph (DAG) so that all edges point forward.

24: Topological Sort with DFS

```
vector < vector < int >> graph;
  vector < bool > visited;
  vector < int > topoOrder;
3
  void dfs(int node) {
5
      visited[node] = true;
7
8
      for (int neighbor : graph[node]) {
           if (!visited[neighbor]) {
9
                dfs(neighbor);
10
           }
11
      }
12
13
       topoOrder.push_back(node);
14
  }
15
16
  vector < int > topologicalSort(int n) {
17
      visited.resize(n, false);
18
      topoOrder.clear();
19
20
      for (int i = 0; i < n; i++) {</pre>
21
           if (!visited[i]) {
22
                dfs(i);
23
           }
24
      }
25
26
      reverse(topoOrder.begin(), topoOrder.end());
27
28
       return topoOrder;
29
```

3.5.1 DFS Topological Sort Notes

- Post-order DFS: Add node after visiting all neighbors
- Reverse Result: Final order is reversed DFS post-order
- Requirement: Graph must be a DAG (no cycles)
- Application: Build order, dependency resolution

25: Topological Sort with Kahn's Algorithm

```
vector < vector < int >> graph;
  vector<int> inDegree;
2
3
  vector<int> kahnTopologicalSort(int n) {
      queue < int > q;
5
      vector < int > result;
6
7
       // Calculate in-degrees
8
       inDegree.resize(n, 0);
9
      for (int i = 0; i < n; i++) {</pre>
10
           for (int neighbor : graph[i]) {
11
12
                inDegree[neighbor]++;
           }
13
      }
14
15
16
       // Add nodes with in-degree 0
      for (int i = 0; i < n; i++) {</pre>
17
           if (inDegree[i] == 0) {
18
19
                q.push(i);
           }
20
      }
21
22
23
       while (!q.empty()) {
           int node = q.front();
24
           q.pop();
25
           result.push_back(node);
26
27
           for (int neighbor : graph[node]) {
28
                inDegree[neighbor] --;
29
                if (inDegree[neighbor] == 0) {
30
31
                     q.push(neighbor);
32
           }
33
      }
34
35
      return result;
36
  }
37
```

3.5.2 Kahn's Algorithm Notes

- In-degree Tracking: Count incoming edges for each node
- Queue-based: Process nodes with zero in-degree
- Multiple Orders: Can have multiple valid topological orders
- Cycle Detection: If result size < n, graph has cycle

3.6 Cycle Detection

Detecting cycles in directed and undirected graphs.

26: Cycle Detection in Undirected Graph

```
vector < vector < int >> graph;
  vector < bool > visited;
3
  bool hasCycleUndirected(int node, int parent) {
      visited[node] = true;
5
6
7
      for (int neighbor : graph[node]) {
           if (!visited[neighbor]) {
8
                if (hasCycleUndirected(neighbor, node)) {
9
                    return true;
10
               }
11
           } else if (neighbor != parent) {
12
               return true;
13
14
      }
15
      return false;
16
  }
17
18
  bool detectCycleUndirected(int n) {
19
      visited.resize(n, false);
20
21
      for (int i = 0; i < n; i++) {</pre>
22
           if (!visited[i]) {
23
                if (hasCycleUndirected(i, -1)) {
24
                    return true;
25
26
           }
27
      }
28
29
      return false;
30
  }
```

3.6.1 Undirected Cycle Detection Notes

- Parent Tracking: Avoid revisiting parent node
- Back Edge: Cycle if neighbor is visited but not parent
- **DFS-based**: Uses DFS to explore graph
- Application: Validating trees, network topology

27: Cycle Detection in Directed Graph

```
vector < vector < int >> graph;
  vector < bool > visited, recStack;
3
  bool hasCycleDirected(int node) {
      visited[node] = true;
5
      recStack[node] = true;
6
7
      for (int neighbor : graph[node]) {
8
           if (!visited[neighbor]) {
9
                if (hasCycleDirected(neighbor)) {
10
                    return true;
11
               }
12
           } else if (recStack[neighbor]) {
13
               return true;
14
           }
15
      }
16
17
      recStack[node] = false;
18
      return false;
19
20
21
  bool detectCycleDirected(int n) {
22
      visited.resize(n, false);
23
      recStack.resize(n, false);
24
25
      for (int i = 0; i < n; i++) {</pre>
26
           if (!visited[i]) {
27
               if (hasCycleDirected(i)) {
28
                    return true;
29
               }
30
           }
31
32
      }
      return false;
33
34
```

3.6.2 Directed Cycle Detection Notes

- Recursion Stack: Track nodes in current recursion path
- Back Edge: Cycle if neighbor is in recursion stack
- Two Arrays: visited for all nodes, recStack for current path
- Application: Deadlock detection, DAG validation

3.7 Important Notes

3.7.1 Graph Representation

- Adjacency List: Space O(V + E), good for sparse graphs
- Adjacency Matrix: Space $O(V^2)$, good for dense graphs
- Edge List: Space O(E), useful for some algorithms

3.7.2 Algorithm Complexities

- DFS/BFS: Time O(V + E), Space O(V)
- Dijkstra: Time $O((V + E) \log V)$, Space O(V)
- Floyd-Warshall: Time $O(V^3)$, Space $O(V^2)$
- Topological Sort: Time O(V + E), Space O(V)
- Cycle Detection: Time O(V + E), Space O(V)

3.7.3 Usage Tips

- Use DFS for exploring all possibilities, backtracking problems
- Use BFS for shortest path in unweighted graphs, level-order traversal
- Use Dijkstra for shortest path in weighted graphs with positive weights
- Use Floyd-Warshall for all-pairs shortest path or detecting negative cycles
- Use Topological Sort for dependency resolution, build order problems
- Use Cycle Detection for validating DAGs, detecting deadlocks