# MATH-517: Assignment 2

Valerio Viscovo

#### Theoretical exercise

#### 1) Proof of the Weighted Least Squares Solution

Let's prove that the solution to the minimization problem

$$\begin{split} \hat{\beta}\left(x\right) &= (\hat{\beta}_0(x), \hat{\beta}_1(x)) = \underset{\beta \in \mathbb{R}^2}{\operatorname{argmin}} \sum_{i=1}^n \{Y_i - \beta_0 - \beta_1(X_i - x)\}^2 K\left(\frac{X_i - x}{h}\right) \\ &= \underset{\beta \in \mathbb{R}^2}{\operatorname{argmin}} \left( (\mathbf{Y} - \mathbf{X}\beta)^T \mathbf{W} (\mathbf{Y} - \mathbf{X}\beta) \right) \end{split}$$

is given by the weighted least squares estimator:

$$\hat{\beta} = (\mathbf{X}^t \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^t \mathbf{W} \mathbf{Y},$$

where the matrices and vectors are defined as:

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} \in \mathbb{R}^{n \times 1}, \quad \mathbf{X} = \begin{pmatrix} 1 & X_1 - x \\ \vdots & \vdots \\ 1 & X_n - x \end{pmatrix} \in \mathbb{R}^{n \times 2},$$

$$\mathbf{W} = \operatorname{diag}\left(K\left(\frac{X_1 - x}{h}\right), \dots, K\left(\frac{X_n - x}{h}\right)\right) \in \mathbb{R}^{n \times n}.$$

The objective function in matrix form is:

$$L(\beta) = (\mathbf{Y} - \mathbf{X}\beta)^t \mathbf{W} (\mathbf{Y} - \mathbf{X}\beta)$$

Expanding the quadratic form yields:

$$L(\beta) = \mathbf{Y}^t \mathbf{W} \mathbf{Y} - \beta^t \mathbf{X}^t \mathbf{W} \mathbf{Y} - \mathbf{Y}^t \mathbf{W} \mathbf{X} \beta + \beta^t \mathbf{X}^t \mathbf{W} \mathbf{X} \beta$$

Since  $\mathbf{W}^t = \mathbf{W}$  (as it is a diagonal matrix) and the middle two terms are scalars which are transposes of each other  $(\mathbf{Y}^t \mathbf{W} \mathbf{X} \beta)^t = \beta^t \mathbf{X}^t \mathbf{W} \mathbf{Y}$ ), the function simplifies to:

$$L(\beta) = \mathbf{Y}^t \mathbf{W} \mathbf{Y} - 2 \mathbf{X}^t \mathbf{W} \mathbf{Y} \beta + \beta^t \mathbf{X}^t \mathbf{W} \mathbf{X} \beta$$

Taking the derivative with respect to  $\beta$  and setting it to zero (the first-order condition):

$$\frac{\partial L}{\partial \boldsymbol{\beta}} = -2\mathbf{X}^t\mathbf{W}\mathbf{Y} + 2\mathbf{X}^t\mathbf{W}\mathbf{X}\boldsymbol{\beta} = \mathbf{0}$$

Solving for  $\hat{\beta}$ :

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^t \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^t \mathbf{W} \mathbf{Y}$$

The second derivative is  $\frac{\partial^2 L}{\partial \beta^2} = 2\mathbf{X}^t \mathbf{W} \mathbf{X}$ , which is positive definite (since **W** is positive definite due to the kernel function), confirming that  $\hat{\beta}$  is a minimum.

The estimator  $\hat{m}(x)$  is the first component of  $\hat{\beta}$ , so  $\hat{m}(x) = \hat{\beta}_0(x)$ . Denoting the first row of  $(\mathbf{X}^t\mathbf{W}\mathbf{X})^{-1}\mathbf{X}^t\mathbf{W}$  as  $(w_{n,1},\dots,w_{n,n})$ , we have:

$$\hat{\beta}_0 = \sum_{i=1}^n w_{n,i} Y_i$$

Thus, the Local Linear Regression is a Linear Smoother.

#### 2) Derivation of the Explicit Expression for the Weights

As demonstrated:

$$\begin{pmatrix} \hat{\beta}_0(x) \\ \hat{\beta}_1(x) \end{pmatrix} = (\mathbf{X}^t \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^t \mathbf{W} \mathbf{Y}$$

We compute  $\mathbf{X}^t \mathbf{W} \mathbf{X}$ :

$$\mathbf{X}^t\mathbf{W}\mathbf{X} = \begin{pmatrix} 1 & \dots & 1 \\ X_1 - x & \dots & X_n - x \end{pmatrix} \mathbf{W} \begin{pmatrix} 1 & X_1 - x \\ \vdots & \vdots \\ 1 & X_n - x \end{pmatrix}$$

Multiplying the first two matrices  $(\mathbf{X}^t\mathbf{W})$ :

$$= \left(\begin{pmatrix} K\left(\frac{X_1-x}{h}\right) & \dots & K\left(\frac{X_n-x}{h}\right) \\ (X_1-x)K\left(\frac{X_1-x}{h}\right) & \dots & (X_n-x)K\left(\frac{X_n-x}{h}\right) \end{pmatrix} \begin{pmatrix} 1 & X_1-x \\ \vdots & \vdots \\ 1 & X_n-x \end{pmatrix}\right)$$

Carrying out the final matrix multiplication:

$$= \begin{pmatrix} \sum_{i=1}^n K\left(\frac{X_i-x}{h}\right) & \sum_{i=1}^n (X_i-x)K\left(\frac{X_i-x}{h}\right) \\ \sum_{i=1}^n (X_i-x)K\left(\frac{X_i-x}{h}\right) & \sum_{i=1}^n (X_i-x)^2K\left(\frac{X_i-x}{h}\right) \end{pmatrix}$$

Using the notation  $S_{n,k} = \frac{1}{nh} \sum_{i=1}^n (X_i - x)^k K\left(\frac{X_i - x}{h}\right)$  we have:

$$\mathbf{X}^{t}\mathbf{W}\mathbf{X} = nh \begin{pmatrix} S_{n,0} & S_{n,1} \\ S_{n,1} & S_{n,2} \end{pmatrix}$$

The inverse of  $\mathbf{X}^t \mathbf{W} \mathbf{X}$  is:

$$(\mathbf{X}^t\mathbf{W}\mathbf{X})^{-1} = \frac{1}{nh} \begin{pmatrix} S_{n,0} & S_{n,1} \\ S_{n,1} & S_{n,2} \end{pmatrix}^{-1} = \frac{1}{nh(S_{n,0}S_{n,2} - S_{n,1}^2)} \begin{pmatrix} S_{n,2} & -S_{n,1} \\ -S_{n,1} & S_{n,0} \end{pmatrix}$$

Therfore,

$$\begin{split} (\mathbf{X}^t\mathbf{W}\mathbf{X})^{-1}\mathbf{X}^t\mathbf{W} &= \frac{1}{nh(S_{n,0}S_{n,2} - S_{n,1}^2)} \begin{pmatrix} S_{n,2} & -S_{n,1} \\ -S_{n,1} & S_{n,0} \end{pmatrix} \\ &\cdot \begin{pmatrix} K\left(\frac{X_1 - x}{h}\right) & \dots & K\left(\frac{X_n - x}{h}\right) \\ (X_1 - x)K\left(\frac{X_1 - x}{h}\right) & \dots & (X_n - x)K\left(\frac{X_n - x}{h}\right) \end{pmatrix} \end{split}$$

The estimator  $\hat{\beta}_0(x)$  is found by taking the dot product of the first row of the matrix  $(\mathbf{X}^t\mathbf{W}\mathbf{X})^{-1}\mathbf{X}^t\mathbf{W}$  with the vector  $\mathbf{Y}$ . Hence, the weights  $w_{n,i}(x)$  are the entries of the first row of  $(\mathbf{X}^t\mathbf{W}\mathbf{X})^{-1}\mathbf{X}^t\mathbf{W}$ :

$$\begin{split} w_{n,i}(x) &= \frac{1}{nh(S_{n,0}S_{n,2} - S_{n,1}^2)} \left[ S_{n,2}K\left(\frac{X_i - x}{h}\right) - S_{n,1}(X_i - x)K\left(\frac{X_i - x}{h}\right) \right] \\ &= \frac{S_{n,2} - S_{n,1}(X_i - x)}{nh(S_{n,0}S_{n,2} - S_{n,1}^2)} K\left(\frac{X_i - x}{h}\right) \end{split}$$

## 3) Proof that the Weights Satisfy $\sum_{i=1}^n w_{n,i}(x) = 1$

The sum of the weights is:

$$\sum_{i=1}^n w_{n,i}(x) = \sum_{i=1}^n \left( \frac{S_{n,2} - S_{n,1}(X_i - x)}{nh(S_{n,0}S_{n,2} - S_{n,1}^2)} K\left(\frac{X_i - x}{h}\right) \right)$$

Factoring out the common terms:

$$= \frac{1}{nh(S_{n,0}S_{n,2} - S_{n,1}^2)} \sum_{i=1}^n \left[ S_{n,2} K\left(\frac{X_i - x}{h}\right) - S_{n,1}(X_i - x) K\left(\frac{X_i - x}{h}\right) \right]$$

Separating the summation:

$$=\frac{1}{nh(S_{n,0}S_{n,2}-S_{n,1}^2)}\left[S_{n,2}\sum_{i=1}^nK\left(\frac{X_i-x}{h}\right)-S_{n,1}\sum_{i=1}^n(X_i-x)K\left(\frac{X_i-x}{h}\right)\right]$$

Using the definitions of  $S_{n,0}$  and  $S_{n,1}$ :

$$\sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right) = nhS_{n,0}$$

$$\sum_{i=1}^n (X_i-x)K\left(\frac{X_i-x}{h}\right)=nhS_{n,1}$$

Substituting these back into the expression:

$$\begin{split} \sum_{i=1}^n w_{n,i}(x) &= \frac{1}{nh(S_{n,0}S_{n,2} - S_{n,1}^2)} \left[ S_{n,2}(nhS_{n,0}) - S_{n,1}(nhS_{n,1}) \right] \\ &= \frac{nh(S_{n,0}S_{n,2} - S_{n,1}^2)}{nh(S_{n,0}S_{n,2} - S_{n,1}^2)} = 1 \end{split}$$

This proves that the weights satisfy the necessary property:  $\sum_{i=1}^{n} w_{n,i}(x) = 1$ .

### Practical exercise: Local Linear Regression Bandwidth Estimation

The goal of this practical exercise is to study the **Plug-in method** for estimating the asymptotically optimal bandwidth  $(\hat{h}_{\text{AMISE}})$  in **Local Linear Regression (LLR)**. This method relies on estimating the residual variance  $(\sigma^2)$  and the second derivative integral  $(\theta_{22} = \int (m''(x))^2 f(x) dx)$  using a block-wise polynomial fit, with the number of blocks (N) determined by the Mallows'  $C_p$  criterion.

#### **Description of the Simulation Study**

The estimation procedure  $\hat{h}_{\text{AMISE}}$  was tested through three distinct experiments, based on data generated from the model  $Y = m(X) + \epsilon$ , where  $m(x) = \sin(1/(x/3 + 0.1))$  and X follows a Beta distribution. The error term  $\epsilon$  is  $N(0, \sigma^2 = 1^2)$ . R = 50 repetitions were used for all estimates.

#### Plug-in Method and $C_p$ Criterion

The estimated optimal bandwidth is given by the formula for the quartic kernel:

$$\hat{h}_{\text{AMISE}} = n^{-1/5} \left( \frac{35\hat{\sigma}^2}{\hat{\theta}_2} \right)^{1/5},$$

where  $\hat{\sigma}^2$  and  $\hat{\theta}_2$  are estimated using a piecewise 4th-degree polynomial fit over N blocks. The optimal number of blocks  $N_{\text{opt}}$  is chosen by minimizing Mallows'  $C_p$ :

$$C_p(N) = \frac{RSS(N)}{\frac{RSS(N_{\rm max})}{(n-5N_{\rm max})}} - (n-10N), \label{eq:cp}$$

where  $RSS(N) = \sum_{i=1}^n \sum_{j=1}^N \left\{Y_i - \hat{m}^j(X_i)\right\}^2 \mathbf{1}_{X_i \in X_j},$  and

$$N_{\max} = \max \left\{ \min \left( \left\lfloor \frac{n}{20} \right\rfloor, 5 \right), 1 \right\}.$$

## 3.1 Impact of the Number of Blocks (N)

This experiment investigates the sensitivity of the  $C_p$  criterion and  $\hat{h}_{\text{AMISE}}$  to the choice of the number of blocks N. A large sample size of n=2000 was used with  $X \sim \text{Beta}(1,1)$  (Uniform) to stabilize the estimates.

#### **Analysis of Results**

Figure 1 shows the trend of the average  $\hat{h}_{\rm AMISE}$  as N increases, while Figure 2 displays the corresponding Mallows'  $C_p$  values.



Figure 1: Mean  $\hat{h}_{\rm AMISE}$  as a function of the number of blocks N (n = 2000).



Figure 2: Mean Mallows'  $C_p(N)$  criterion as a function of the number of blocks N (n=2000).

The analysis reveals that:

- The minimum of the  $C_p(N)$  curve occurs at  $N_{\mathrm{opt}}=2.$
- The optimal bandwidth estimate chosen by the  $C_p$  criterion is  $\hat{h}_{\rm AMISE}(N_{\rm opt}=2)\approx {\bf 0.0585}.$

It is noted that  $\hat{h}_{\rm AMISE}$  consistently **decreases as** N increases. This is expected because a higher number of blocks (N) allows the piecewise polynomial model to better capture the function's high-frequency curvature (higher  $\hat{\theta}_2$ ), thus requiring a smaller bandwidth  $(\hat{h}_{\rm AMISE} \propto 1/\hat{\theta}_2^{1/5})$ . However, the  $C_p$  criterion selects  $N_{\rm opt}=2$  as the optimal complexity, balancing the reduction in bias (lower  $\hat{h}$ ) against the increased variance associated with having too many blocks.

## 3.2 Impact of the Sample Size (n)

This experiment examines how  $\hat{h}_{\text{AMISE}}$  scales with the sample size n, using  $X \sim \text{Beta}(1,1)$  and fixing  $N = N_{\text{opt}}$  (implicitly, by using the  $C_p$  selection). The theoretical scaling for the LLR bandwidth is  $h \propto n^{-1/5}$ , implying a slope of -0.200 in the  $\log(h)$  vs  $\log(n)$  plot.

#### **Analysis of Results**

Figure 3 shows the log-log plot of the mean  $\hat{h}_{\text{AMISE}}$  against the sample size n.



Figure 3: Log-log plot of  $\hat{h}_{\rm AMISE}$  vs sample size n. The slope represents the decay rate.

- The regression line fitted to the observed data points yields an estimated slope of approximately -0.232.
- This estimated slope is extremely close to the theoretical value of -0.200 predicted by the  $\mathcal{O}(n^{-1/5})$  rate of convergence for the optimal bandwidth of Local Linear Regression.
- This validates the entire  $\hat{h}_{\text{AMISE}}$  estimation procedure, demonstrating that it correctly captures the asymptotic decay rate with respect to the sample size n.

#### 3.3 Impact of Covariate Density Shape

In this final experiment, we fix the sample size at n = 2000 and use a fixed number of blocks N = 5. We investigate the influence of the covariate density f(x), by sampling X from five different Beta distributions.

#### **Analysis of Results**

Figure 4 compares the mean  $\hat{h}_{\rm AMISE}$  estimates across the different density shapes.



Figure 4: Mean  $\hat{h}_{\text{AMISE}}$  for different Beta covariate densities  $(n=2000,\,N=5).$ 

The results clearly show that the covariate density significantly influences the optimal bandwidth:

- Largest  $\hat{h}_{AMISE}$  (Least Smoothing): The Uniform (Beta(1,1)) distribution yields the highest bandwidth (0.0442). This reflects its low overall curvature variation.
- Smallest  $\hat{h}_{AMISE}$  (Most Smoothing): The Skewed Left (Beta(2,5)) distribution results in the lowest bandwidth (0.0271). This is driven by the severe sparsity left in the critical high-curvature region near x = 0.
- Non-Uniform Cluster: All non-uniform distributions (Skewed Left, Skewed Right, Symmetric Center, U-Shaped) are tightly clustered between 0.0271 and 0.0299, confirming that non-uniform data density generally requires \*\*more aggressive smoothing\*\* (smaller  $\hat{h}_{\text{AMISE}}$ ) compared to the Uniform case.