TREE BASED MODELS

Roberto Cerminara

Daniele Florio

Lorenzo Piattoli

DATASET

Student Performance Factors

Insights into Student Performance and Contributing Factors

Data Card Code (203) Discussion (1) Suggestions (1)

About Dataset

Description

This dataset provides a comprehensive overview of various factors affecting student performance in exams. It includes information on study habits, attendance, parental involvement, and other aspects influencing academic success.

Usability ①

10.00

License

CC0: Public Domain

Expected update frequency

	Hours_Studied <int></int>		Parental_Involvement <fctr></fctr>	Access_to_Resources <fctr></fctr>	Extracurricular_Activities <fctr></fctr>	Sleep_Hours Pr <int></int>	evious_Scores Motivation_Level
1	23	84	Low	High	No	7	73 Low
2	19	64	Low	Medium	No	8	59 Low
3	24	98	Medium	Medium	Yes	7	91 Medium
4	29	89	Low	Medium	Yes	8	98 Medium
5	19	92	Medium	Medium	Yes	6	65 Medium
6	19	88	Medium	Medium	Yes	8	89 Medium

Link: https://www.kaggle.com/datasets/lainguyn123/student-performance-factors

DATASET

Sono stati generati due dataset con raggruppamenti diversi della variabile Exam Score (target):

Random Forest - Errore OOB per classe Out of Bag Error Quasi-Sufficiente 0.7 Medio 9.0 Medio-Alto 0.5 4.0 0.3 15 200 800 1000 trees Accuratezza per classe (Test set) Variable importance 0.8 9.0 4.0 0.2 Quasi-Sufficiente Basso Medio-Basso Medio Medio-Alto 0 100 200 500 MeanDecreaseGini

RANDOM FOREST

Vediamo i risultati principali del modello

RANDOM FOREST - WEIGHTED

Comparazione del modello con classi pesate in base all'errore Out-ofbag e all'accuratezza sui dati di test

Random Forest – Errori OOB per classe

RANDOM FOREST SUL DATASET AUGMENTED

Distribuzione ottenuta dai dati aumentati

BOOSTING

CONCLUSIONI

Variable importance: Le variabili utilizzate con maggiore frequenza dagli algoritmi sono: le ore di studio settimanali, la percentuale di frequenza alle lezioni e i punteggi degli esami precedenti.

Performance dei modelli Random Forest: Senza pesi, il modello fatica a riconoscere le classi meno rappresentate, l'uso dei pesi riduce l'errore di queste ultime ma non porta a un miglioramento sostanziale. La classificazione in quattro fasce stabilizza il modello e ne aumenta l'accuratezza, mentre l'utilizzo dell'algoritmo SMOTE peggiora le prestazioni.

Altri modelli a confronto: Il modello CART è semplice ma meno efficace, con tendenza a sottostimare le classi estreme. Il Boosting, invece, si distingue per l'accuratezza (80% test) e la buona generalizzazione post-ottimizzazione.

Considerazioni: limitazioni legate alle dipendenze tra variabili, in particolare, modelli come CART soffrono quando si tratta di catturare relazioni lineari o prossime alla linearità, come evidenziato nel nostro caso di studio.