An Investigation of Charm Quark Jet Spectra and Shape Modifications in Au+Au Collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Diptanil Roy, Matthew Kelsey For the STAR Collaboration

October 29, 2021

1 Abstract

- ¹ Partons (quarks/gluons) interact strongly with the QGP, and hence have their energy and
- shower structure modified compared to those in vacuum, e.g., those produced in proton-
- proton collisions. Theoretical calculations also predict that radiative energy loss, which is
- the dominant mode of energy loss for gluons and light quarks in the QGP, is suppressed for
- beavy quarks (such as charm and bottom) at low transverse momenta (p_T) . A measurement
- of the $D^0(c\bar{u})$ meson radial profile in jets from the CMS experiment hints at a low $p_{\rm T}$
- 7 modification in the medium at LHC energies, that is qualitatively different from that of
- 8 the light flavor hadrons. The precise tracking by the Heavy Flavor Tracker detector in
- ⁹ the STAR experiment at RHIC enables a low background and high statistics sample of D^0
- mesons, especially at low $p_{\rm T}$, making STAR ideal for similar measurements.
- We will report the first measurements of the D^0 -meson tagged $p_{\rm T,jet}$ spectra and D^0 meson
- radial profile in anti- $k_{\rm T}$ jets from Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV at RHIC, collected
- by the STAR experiment in 2014, and comparisons to PYTHIA-8 predictions at $\sqrt{s} = 200$
- GeV. We will also report the nuclear modification factor $R_{\rm CP}$ for these D^0 -meson tagged
- jets. Such measurements are expected to shed light on parton flavor and mass dependencies
- of jet quenching, and constrain theoretical models.