

#### Introduction to Data Management

Practical Data Management

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

#### Announcements

- Midterm exam
  - In-class on Wednesday
  - 1 double-sided page of notes, printed if you wish
  - Covers all material up until last Wednesday (Yes E/R diagrams and functional dependencies. No BCNF decomp.)
- Practice exams (only for material we've covered):
  - Last quarter's exam and solutions
     https://sites.google.com/cs.washington.edu/cse344-2019sp/home
  - 414 exam from last autumn
     https://courses.cs.washington.edu/courses/cse414/18au/exams.html
  - You can use other past tests for reference but they may not represent what's on our exam. We've also found errors in previous pdfs that were never fixed!

## Goals for Today

- Finish design theory content on BCNF
- Talk about the fuzzy stuff in data management
  - Data cleaning
  - Private data and ethics

#### Outline

- Data Cleaning
  - ETL
  - Data wrangling on GCP Dataprep (Trifacta)
- Data Management Ethics and Best Practices

## Where is my data coming from?

#### Mainly two possible sources:

- You generate the data
  - Output data that is easy to use
- External sources or preexisting data
  - Sometimes doesn't fit your application needs
  - Need to translate the data into a usable form

#### Extract Transform Load (ETL)

"I know exactly what operations need to be done to get from data format A to data format B"

- Extract
  - Read relevant data
- Transform
  - Push data through mapping functions until done
    - Aggregations
    - Normalization
    - •
- Load
  - Write to destination

## Extract Transform Load (ETL)



### Data Wrangling

- "I have no clue what's going on with my data"
- Essentially ETL but with data exploration
- Interactivity is important
  - Visualizations
  - Suggestions

#### **Pivot**

- Create a "summary table"
  - Generally used for reports to draw attention to interesting values
  - Able to make values into columns
- "Skinny and tall" → "short and wide"

| Name       | Year | GDP |
|------------|------|-----|
| Angola     | 2015 | 100 |
| Luxembourg | 2015 | 50  |
| Angola     | 2016 | 110 |
| Angola     | 2018 | 115 |
| Luxembourg | 2017 | 55  |
| Luxembourg | 2018 | 65  |

#### **Pivot**

- Create a "summary table"
  - Generally used for reports to draw attention to interesting values
  - Able to make values into columns
- "Skinny and tall" > "short and wide"

#### GDP relation:

| Name       | 2015 | 2016 | 2017 | 2018 |
|------------|------|------|------|------|
| Angola     | 100  | 110  |      | 115  |
| Luxembourg | 50   |      | 55   | 65   |

#### Unpivot

- Usually we want to store unpivoted data
  - Easier to manage
- "Short and wide" → "skinny and tall"

#### GDP relation:

| Name       | 2015 | 2016 | 2017 | 2018 |
|------------|------|------|------|------|
| Angola     | 100  | 110  |      | 115  |
| Luxembourg | 50   |      | 55   | 65   |

### Data Wrangling







**TIBC**™ Clarity

alteryx

#### Now what?

You can get data but what are you doing with it?

### Existing Laws and Regulations

- FERPA (Family Education Rights and Privacy Act)
- Mandatory for education institutions
  - Requires written consent to disclose academic info
  - Allows the release of directory information



### Existing Laws and Regulations

- HIPAA (Health Information Portability and Accountability Act)
- Mandatory for healthcare and health insurance institutions
  - Privacy Rule to protect Protected Health Information
  - Security Rule to ensure administrative, physical, and technical safeguards

## Existing Laws and Regulations

- GDPR (General Data Protection Regulation)
- Recently became law in the EU
  - Requires disclosure by companies on how they use user information
  - Last year all of the US tried to become compliant..
     almost everyone waited until the deadline

Extremely important to follow these protocols!

#### Sensitive Information

- Personal identifiers
  - Names
  - Student ID
  - Social security number
  - License number
- Protected data (for legal and/or ethical reasons)
  - Academic records (FERPA)
  - Protected Health Information (HIPAA)
- Passwords

#### **Access Control**

- Block people who shouldn't have access
  - Most large companies have a tiered-access hierarchy
- Databases usually have built-in access control:

```
GRANT <permissions>
  [ON ]
  TO <user/role>
```

GRANT SELECT, INSERT
ON MySecureTable
TO PUBLIC

Allow anyone who can connect to read and add data to MySecureTable

#### Permissions:

- Table-level operations (SELECT, DELETE, ...)
- DB-level operations (CREATE TABLE, GRANT, ...) User/Role:
- Users like a user on your computer
- Roles (groups) can be predefined or created

#### **Access Control**

- SQL Injection → application input acts as code
  - · Union attack, tautology attack, illegal queries
  - Only possible if there is a place to inject code
  - Consistently one of the top web-based attacks
    - People simply don't realize its an issue or...
    - People know it's an issue and never get around to fixing it
- Considered a "solved" problem
  - Parameterize queries with prepared statements

#### **Access Control**

#### Other common techniques to limit access:

- Limit the number of rows that can be seen
  - Leaking a few tuples is better than leaking all of them
- Only allow aggregations
  - Grouping implicitly eliminates identification info
- Don't store data you don't need!

#### **Anonymize Data**

#### **FERPA** Deidentification

- ID to anonymous ID mapping should be secret
- Aggregate data (minimum n-size)
  - Suppression → Don't provide data ⊗
    - Necessary for very small groups
  - Rounding → Bucket data or introduce noise ©
    - · More people means you can be more specific

- FERPA allows institutions to disclose "directory information" without consent (institution policies can be stronger)
  - Name
  - Email
  - Photographs
  - Phone Number
- If users can derive sensitive information like grades, it violates FERPA

"Hey, can you give me the directory information for students with a GPA of 3.5?"

"Hey, can you give me the directory information for students with a GPA of 3.5?"

Reveals sensitive information by context

```
SELECT D.*
FROM Directory AS D, Grades AS G
WHERE D.id = G.id AND
G.gpa = 3.5
```

#### Re-identification of Mass. Governor William Weld

- Public voter data
  - Name
  - ZIP code
  - Sex
  - Birth date
  - •
- Anonymous insurance data
  - ZIP code
  - Sex
  - Birth date
  - Prescription
  - Diagnosis
  - •

#### Cambridge, MA Voter Data (\$20)

| Name    | ZIP   | Se<br>x | Bday   |
|---------|-------|---------|--------|
| •••     | •••   | •••     | •••    |
| W. Weld | 12345 | M       | Feb 30 |
| •••     | •••   | •••     | •••    |

#### Anon. Insurance Data for Researchers

| ZIP   | Se<br>x | Bday   | MedInfo   |
|-------|---------|--------|-----------|
| •••   | •••     | •••    | •••       |
| 12345 | M       | Feb 30 | Affluenza |
| •••   | •••     | •••    | •••       |

6 matches on ZIP 3 matches on Sex 1 match on Bday

| Name    | ••• | MedInfo   |
|---------|-----|-----------|
| •••     | ••• | •••       |
| W. Weld | ••• | Affluenza |
| •••     | ••• | •••       |

Cambridge, MA Voter Data (\$20)

| Name    | ZIP   | Se<br>x | Bday   |
|---------|-------|---------|--------|
| •••     |       | •••     |        |
| W. Weld | 12345 | M       | Feb 30 |
| •••     | •••   | •••     | •••    |

Anon. Insurance Data for Researchers

| ZIP   | Se<br>x | Bday   | MedInfo   |
|-------|---------|--------|-----------|
| •••   | •••     | •••    |           |
| 12345 | M       | Feb 30 | Affluenza |
| •••   | •••     | •••    | •••       |

6 matches on ZIP 3 matches on Sex 1 match on Bday

| Name    | ••• | MedInfo   |
|---------|-----|-----------|
| •••     | ••• | •••       |
| W. Weld | ••• | Affluenza |
|         |     |           |

#### Cambridge, MA Voter Data (\$20)

| Name    | ZIP   | Se<br>x | Bday   |
|---------|-------|---------|--------|
| •••     | •••   | •••     | •••    |
| W. Weld | 12345 | M       | Feb 30 |
| •••     | •••   | •••     | •••    |



| ZIP   | Se<br>x | Bday                       | MedInfo  |
|-------|---------|----------------------------|----------|
| •••   | •••     | •••                        | •••      |
| 12345 | M       | Feb 30                     | Afluenza |
|       | Leg     | jal in 1997<br>Il since 20 | 7        |

6 matches on ZIP 3 matches on Sex 1 match on Bday

| Name    | ••• | MedInfo  |
|---------|-----|----------|
| •••     | ••• | •••      |
| W. Weld | ••• | Afluenza |
| •••     | ••• | •••      |

- Passwords are special
  - High potential for additional security compromises
  - Only operation that should be done is equality comparison

(bobtheninja246, password)

If you do this, Ted Codd will start rolling in his grave.

| Username                | Password   |
|-------------------------|------------|
| bobtheninja246          | password   |
| x Xx Dragon Slayer x Xx | password   |
| 420_E-Sports_Masta      | qwertyuiop |

- Quick overview of hashing
  - Hash(input) → hash value
  - Hashing is <u>deterministic</u>
  - Ideally hashing is noninverible
  - Ideally hash values are uniformly spread out

Hash it!

(bobtheninja246, hash(password)) (bobtheninja246, FCgJFI9ryz)



Hash it!

(bobtheninja246, hash(password))

(bobtheninja246, FCgJFI9ryz)



- Hashing functions have precomputed "rainbow tables"
- Some hashing functions are fast so brute forcing attacks can happen
- Patterns can occur for the same passwords

| Username           | Hash       |
|--------------------|------------|
| bobtheninja246     | FCgJFl9ryz |
| xXxDragonSlayerxX  | FCgJFl9ryz |
| X                  |            |
| 420_E-Sports_Masta | p8mel6usIF |

Salt it and hash it!

(bobtheninja246, slowhash(password \* random salt), random salt)

(bobtheninja246, slowhash(password \* stored salt))



| Username               | Hash       | Salt       |
|------------------------|------------|------------|
| bobtheninja246         | HHxrd5o7Cn | WUKhhIFBLc |
| xXxDragonSlayerxX<br>x | 7rYFQlowpW | mq5rFL6JzF |
| 420_E-Sports_Masta     | cQF4DdSFfn | S8e0zpATNR |

Salt it and hash it!

(bobtheninja246, slowhash(password \* random salt), random salt)

These are just the fundamentals!

Many companies outsource password management because it can get very complicated.

In real applications never roll your own protocol!

stored salt))

| Username               | Hash       | Salt       |
|------------------------|------------|------------|
| bobtheninja246         | HHxrd5o7Cn | WUKhhIFBLc |
| xXxDragonSlayerxX<br>x | 7rYFQlowpW | mq5rFL6JzF |
| 420_E-Sports_Masta     | cQF4DdSFfn | S8e0zpATNR |

## Data Quality

- Quality is not only about cleanness
- Quality may also involve significance
  - Are certain groups large enough to draw meaningful aggregates?
  - If my data is a sample of a population, does it accurately depict that population?

### Worlds Shortest Intro to Machine Learning

- Training data → Prediction program
  - Prediction program believes that the training data is representative of a population and covers all cases