

ApeGNN: Node-Wise Adaptive Aggregation in GNNs for Recommendation

Dan Zhang¹, Yifan Zhu¹, Yuxiao Dong¹, Yuandong Wang¹, Wenzheng Feng¹, Evgeny Kharlamov², and Jie Tang¹

¹Department of Computer Science and Technology Tsinghua University

²Bosch Center for Al

Code & Data: https://github.com/THUDM/ApeGNN

ApeGNN

Background

- ➤ User-item interactions can be constructed as a bipartite graph.
- ➤ Graph neural networks (GNNs) have been widely used and produced remarkable performance in recommender system.
- > GNNs perform the message passing to iteratively aggregate neighborhood information.

Dan Zhang, Yifan Zhu, Yuxiao Dong, Yuandong Wang, Wenzheng Feng, Evgeny Kharlamov, and Jie Tang. ApeGNN: Node-Wise Adaptive Aggregation in GNNs for Recommendation. WWW'23.

Why is **ApeGNN**?

Motivation

- ➤ Node types are not distinguished, GNNs-based models equally treat user and item type
- ➤ Do not differentiate the local diverse pattern of each node

A motivating example. Local structures of users are diverse and node-wise aggregation is important in GNNs-based recommendation scenario.

Models	Explicit Degree Info.	Linear Propagation	Node-wise
GAT [33] ^[1]	×	×	✓
LightGCN [9]	✓	✓	×
ADC [47] ^[3]	✓	✓	×
ApeGNN	✓	✓	✓

- [1] Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[J]. arXiv preprint arXiv:1710.10903, 2017.
- [2] He X, Deng K, Wang X, et al. Lightgcn: Simplifying and powering graph convolution network for recommendation[C]//SIGIR. 2020: 639-648.
- $\hbox{\cite{thm:properties} I3] Zhao\ J,\ Dong\ Y,\ Ding\ M,\ et\ al.\ Adaptive\ diffusion\ in\ graph\ neural\ networks \cite{thm:properties}.}\ NeurIPS,\ 2021,\ 34:\ 23321-23333.$

Node-wise Adaptive Aggregation

Dan Zhang, Yifan Zhu, Yuxiao Dong, Yuandong Wang, Wenzheng Feng, Evgeny Kharlamov, and Jie Tang. ApeGNN: Node-Wise Adaptive Aggregation in GNNs for Recommendation. WWW'23.

What is ApeGNN?

Node-wise Adaptive Aggregation

Method

- ➤ Develop node-wise adaptive diffusion mechanism
 - ➤ Assign unique weight for each node to all neighborhoods
 - ➤ Differentiate information of different GNN layers

What is **ApeGNN?**Node-wise Adaptive Aggregation

- Diffusion mechanism
 - ➤ The heat kernel.
 - ➤ Personalized PageRank (PPR).

$$\theta_{(t_{u_i}^{(l)})}^{HT} = \frac{t_{u_i}^l e^{-t_{u_i}}}{l!}.$$

$$\theta_{(t_{u_i}^{(l)})}^{PPR} = t_{u_i}^{(l)} (1 - t_{u_i}^{(l)})^l.$$

• Centrality importance *t*

$$t_{u_i}^{(0)} = \varphi(D(u_i)) = \sigma(\log(D(u_i) + \epsilon)),$$

- Propagation process
 - ➤ Adding each embedding layer to propagation layers to mine higher-order connectivity information.
- Pooling & Optimization
 - ➤ Modeling the hop-wise semantic differences and optimizing the ApeGNN via BPR loss.

How is **ApeGNN?**Node-wise Adaptive Aggregation

- Overall results
 - ApeGNN outperforms SOTA GNNs-based methods on six datasets

Dataset	A	li	Ama	azon	AM	liner	Gov	walla	Movi	ieLens	Yelp	2018
Metrics	Recall	NDCG	Recall	NDCG	Recall	NDCG	Recall	NDCG	Recall	NDCG	Recall	NDCG
BPR-MF	1.03	0.46	1.65	0.76	18.42	9.38	14.17	12.04	8.20	10.75	4.72	3.84
NeuMF	0.87	0.37	1.51	0.58	16.84	8.65	13.97	11.63	7.05	9.31	3.88	3.14
Mult-VAE	2.60	0.78	2.30	0.82	17.89	9.81	15.49	11.98	6.18	5.23	5.94	4.64
GF-CF	4.20	1.84	2.38	1.08	18.77	9.81	17.80	14.61	8.23	11.52	6.32	5.16
NGCF	4.26	1.97	2.94	1.23	17.66	9.11	14.22	11.88	9.31	11.37	5.77	4.69
LightGCN	6.13	2.86	4.11	1.86	19.69	9.87	17.75	<u>15.22</u>	9.41	11.36	6.61	5.39
ApeGNN_HK	8.80	4.29	4.98	2.36	21.20	10.69	18.32	15.35	9.73	11.91	6.75	5.56
%Improv.	43.56%	50.00%	21.17%	26.88%	7.67%	8.31%	3.21%	0.85%	3.40%	4.84	7.48%	7.96%
ApeGNN_PPR	9.13	4.41	5.10	2.33	20.88	10.29	<u>17.88</u>	15.17	9.77	12.09	6.59	5.44
%Improv.	48.94%	54.20%	24.09%	25.27%	6.04%	4.26%	0.73%	-	3.83%	6.43%	-	0.93%

How is **ApeGNN?**Node-wise Adaptive Aggregation

- Ablation study
 - It demonstrates the importance and effectiveness of node-wise aggregation mechanism

Thanks & QA!

ApeGNN: Node-Wise Adaptive Aggregation in GNNs for Recommendation

Dan Zhang, Yifan Zhu, Yuxiao Dong, Yuandong Wang, Wenzheng Feng, Evgeny Kharlamov, and Jie Tang. ApeGNN: Node-Wise Adaptive Aggregation in GNNs for Recommendation. In Proceedings of the th TheWebConf (WWW'23).

Code & Data https://github.com/THUDM/ApeGNN

Contact: zd18@tsinghua.org.cn