

Técnicas e Análise de Algoritmos Programação Dinâmica - Parte 03

Professor: Jeremias Moreira Gomes

E-mail: jeremias.gomes@idp.edu.br

Introdução

Problema do Troco

Problema do Troco

- ullet Seja $C=\{c_1,c_2,\ldots,c_N\}$ uma sequência ordenada de N inteiros positivos distintos e M um inteiro positivo
 - \circ O problema do troco consiste em determinar um vetor de inteiros não negativos $X=\{x_1,x_2,\ldots,x_N\}$ tal que

$$M = \sum\limits_{i=1}^N x_i c_i$$
 e que a soma $S = \sum\limits_{i=1}^N x_i$ seja mínima

Problema do Troco

- O conjunto C é chamado de conjunto de moedas
- M é o valor de um troco
- A versão informal da leitura do problema é:
 - "Qual a menor quantidade de moedas para dar o troco M?"
- Se c1 = 1, sempre há solução para qualquer valor de M
- Se C é o conjunto de moedas do sistema financeiro de algum país,
 esse problema pode ser resolvido por um algoritmo guloso

- Os tipos de moedas encontram-se ordenados
- Da maior para a menor, verifica a maior moeda que é menor ou igual do M (moeda ck)
 - Atribuí-se ao resultado M / c_k, subtraí-se de M o valor x_k * c_k
- Algoritmo continua até M == 0
- Tipos de moedas c_i cujo o valor não foi maior do que o M,
 resolvem-se como x_i = 0

i	C _i	X _i
5	50	
4	25	
3	10	
2	5	
1	1	

$$M = 74$$

i	C _i	X _i
5	50	1
4	25	
3	10	
2	5	
1	1	

$$M = 24$$

i	C _i	X _i
5	50	1
4	25	0
3	10	
2	5	
1	1	

$$M = 24$$

i	C _i	X _i
5	50	1
4	25	0
3	10	2
2	5	
1	1	

$$M = 4$$

i	C _i	X _i
5	50	1
4	25	0
3	10	2
2	5	0
1	1	

$$M = 4$$

i	C _i	X _i
5	50	1
4	25	0
3	10	2
2	5	0
1	1	4

$$M = 0$$

Problema do Troco - Versão gulosa

```
vector<pair<int,int>> troco(int M)
   vector<pair<int, int>> X;
   for (int i = 0; i < 5; i++) {
        if (moedas[i] <= M) {</pre>
            X.push_back({moedas[i], M / moedas[i]});
            M %= moedas[i];
   return X;
```


Problema com o Algoritmo Guloso

 No caso do problema do troco, o algoritmo guloso nem sempre produz a solução correta, dependendo do conjunto de moedas

$$\circ$$
 C = {6, 5, 1}, M = 10

Incorretude do Algoritmo Guloso

 No caso do problema do troco, o algoritmo guloso nem sempre produz a solução correta, dependendo do conjunto de moedas

$$\circ$$
 C = {6, 5, 1}, M = 10

- Algoritmo guloso: $X = \{(6, 1), (1, 4)\} \Rightarrow 5 \text{ moedas}$
- Solução ótima: $X = \{(5, 2)\} \Rightarrow 2 \text{ moedas}$
- Para uma solução correta, seguir soluções locais não leva a um ótimo global e é necessário verificar as diferentes combinações

Bases Canônicas

- Mas por que o problema acontece?
 - As bases de moedas para as quais a resolução gulosa funciona, são chamadas de "bases canônicas"
 - Exemplo: qualquer base C = {1, c₂} é canônica
- Quando as bases de moedas são canônicas, a resolução do problema pode ser feita em tempo linear (O(N)), enquanto o contrário existe um algoritmo de programação dinâmica (O(NM))
- Descobrir se uma base é canônica ou não já é <u>outro problema</u> de computação para ser resolvido (não tratarei nesta disciplina)

Problema do Troco (Programação Dinâmica)

- Para resolver o problema utilizando programação dinâmica
 - Seja c(m) o mínimo de moedas para um troco m
 - Se m = 0, nesse caso c(0) == 0 (caso base)
 - Caso c_k ≤ m, então (chamado de transição de estado):
 - $c(m) = min(c(m c_{k1}), c(m c_{k2}), ..., c(m c_{kr})) + 1$
 - Escolhe-se a moeda que gera a menor solução
 - M estados distintos e N transições, a complexidade O(MN)

Problema do Troco - Versão PD (top-down)

```
int troco(int m)
    if (m == 0) return 0;
    if (pd[m] != -1) return pd[m];
    int ans = oo;
    for (int i = 0; i < 3; i++) {
        if (moedas[i] <= m) {</pre>
            ans = min(ans, troco(m - moedas[i]) + 1);
        }
    }
    pd[m] = ans;
    return ans;
```


Problema do Troco (Programação Dinâmica)

- Já uma versão bottom-up para a solução do problema pode ser feita da seguinte forma:
 - A partir da versão top-down, o normal seria avaliar, para cada
 M, todas as moedas
 - Mas é possível inverter e montar o vetor a partir de cada moeda, avaliando todos os trocos possíveis
 - Melhora um pouco a performance essa inversão

Problema do Troco - Versão PD (bottom-up)

```
int troco(int M)
    for (int i = 0; i <= M; i++) pd[i] = oo;
    pd[0] = 0;
    for (int i = 0; i < 3; i++) {
        for (int m = moedas[i]; m <= M; m++) {</pre>
            pd[m] = min(pd[m], pd[m - moedas[i]] + 1);
        }
    return pd[M];
```


Maior Subsequência Crescente (LIS)

Problema da Maior Subsequência Crescente

- Considere a sequência a = {a₁, a₂, ..., a_N}
- Uma subsequência

$$b = \{b_1, b_2, ..., b_k\} = \{a_{i1}, a_{i2}, ..., a_{ik}\}$$

de a é a maior subsequência crescente (LIS) se vale o seguinte:

- o i₁ < i₂ < ... < i_k
- o b_i < b_j se i < j, e</p>
- k é máximo

LIS - Características

- O problema da maior subsequência crescente tem solução para qualquer sequência a, dado que qualquer subsequência composta por um único elemento é uma subsequência crescente
- Exemplo: a = {6, 3, 7, 1, 9, 2}
 - {6} é uma subsequência crescente
 - {6, 7} e {3, 7, 9} são subsequências crescentes
 - {7, 9, 2} é uma subsequência, mas não é crescente

LIS - Características

- O conjunto a pode ser de qualquer tipo
 - Desde que o operador < esteja definido
- Exemplo de sequência: a = {4, 1, 5, 2, 6, 3}
 - A solução (3) possui várias subsequências crescentes de mesmo tamanho: {4, 5, 6}, {1, 2, 3}, {1, 5, 6}, {1, 2, 6}, etc

Solução Quadrática para a LIS

- Uma sequência $a = \{a_1, a_2, ..., a_N\}$ tem 2^N subsequências distintas
 - Busca completa só é válida para N pequeno
- O problema que pode ser resolvido com programação dinâmica:
 - Seja LIS(i) o tamanho da maior subsequência de a onde o último elemento é a_i
 - Se i = 1, então LIS(1) = 1 (caso base)

Solução Quadrática para a LIS

- O problema que pode ser resolvido com programação dinâmica:
 - Se i = 1, então LIS(1) = 1 (caso base)
 - A transição avalia todas as subsequências anteriores de a;
 - LIS(i) = $\max\{1, LIS(a_k) + 1\}$
 - para todo $k \in [1, i)$ tal que $a_k < a_i$
- Cada transição tem custo O(N) e existem O(N) estados distintos,
 logo a complexidade é O(N²)

LIS - Solução Quadrática com PD

```
int solver(vector<int>& V)
   int N = V.size();
   vector<int> pd(N, 1);
   for (int i = 1; i < N; i++) {
       for (int j = i - 1; j >= 0; j--) {
            if (V[i] > V[j]) {
                pd[i] = max(pd[i], pd[j] + 1);
        }
   return *max_element(pd.begin(), pd.end());
```


- A solução quadrática ainda não é a melhor solução para o problema da LIS
- É possível programar os estados de uma forma diferente:
 - Seja LIS(k, i) o menor elemento que finaliza uma subsequência crescente de tamanho k
- Agora o caso base acontece quando i = 0, ou seja, não há elementos na subsequência

- Agora, para cada i, apenas LIS(k, i) é atualizado

 - \circ LIS(0, 0) = 0
- Cabe ressaltar que os elementos da sequência LIS(1, i), LIS(2, i), ...,
 encontram-se em ordem crescente
 - Assim, pode-se utilizar uma busca binária para identificar o primeiro índice j tal que LIS(j, i - 1) seja maior que a;
 - Então, LIS(j, i) = a_i
- O tamanho da LIS será igual ao maior índice j tal que LIS(j, N) < oo

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i =$

$$lis =$$

∞ ∞ ∞	∞ ∞	∞ ∞ ∞	∞
----------------------------	-------------------	----------------------------	----------

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 1$

$$lis =$$

| ∞ |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| | | | | | | | | |

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 1$

$$lis =$$

$egin{array}{ c c c c c c c c c c c c c c c c c c c$
--

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 2$

1 2 3 4 5 6 7 8 9

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 2$

$$lis =$$

4	
-	

 ∞

 ∞

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 3$

1 2 3 4 5 6 7 8

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 3$

1 2

ŝ

$$lis =$$

1	7	∞	∞	8	8	∞	∞	∞
---	---	----------	----------	---	---	----------	----------	----------

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 4$

1 2 3 4 5 6 7 8 9

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 4$

1 2 3 4 5 6

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 5$

1 2 3 4 5 6 7 8

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 5$

1 2 3 4 5 6

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 6$

1 2 3 4 5 6

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 6$

1 2 3 4 5

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 7$

1

2

3

4

5

6

7

8

9

$$lis =$$

1	
1	4

9

 ∞

 ∞

 ∞

 ∞

 ∞

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 7$

2

3

4

5

6

7

R

9

$$lis =$$

L

6

 ∞

 ∞

 ∞

 ∞

 ∞

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 8$

1 2 3 4 5

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 8$

1

2

3

4

5

6

7

8

9

$$lis =$$

1	6
1	4

5

 ∞

 ∞

 ∞

 ∞

 ∞

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 9$

2

3

4

5

6

7

8

9

$$lis =$$

1

2

5

 ∞

 ∞

 ∞

 ∞

 ∞

$$a = \{4, 7, 1, 9, 3, 2, 6, 5, 8\}$$

 $i = 9$

8

5 6

$$lis =$$

5

 ∞

 ∞

 ∞

 ∞

LIS - Solução Linearítimica com PD

```
int solver(vector<int>& V)
   int N = V.size();
   vector<int> pd(N, 1);
   for (int i = 1; i < N; i++) {
       for (int j = i - 1; j >= 0; j--) {
            if (V[i] > V[j]) {
                pd[i] = max(pd[i], pd[j] + 1);
        }
   return *max_element(pd.begin(), pd.end());
```


Conclusão