Credit Card Fraud
Detection Using Machine
Learning and Deploying
Model in Streamlit App

Al Mahmud Siam 1902062

MD. Mostafizur Rahman 1902073

Outline

- 1. Introduction
- 2. Objective
- 3. Data description
- 4. Framework of Project
- 5. Balancing Data
- 6. Streamlit App Interface
- 7. Input Section For each Model
- 8. Problems and Future Work

Dataset Description and Visualization

- European cardholder's two-day transactions in September 2013
- 31 features (30 are independent, and the remaining one is a dependent feature).
- Highly imbalanced dataset
- Total Transactions: 284,807
- Fraudulent Transactions: 492 (0.17%)

Framework of this Project

Balancing dataset

- With only 0.17% of transactions being fraudulent, models struggle to effectively learn patterns from the minority class.
- Undersampling Approach:
- Balanced the dataset by reducing it to 492 non-fraudulent and 492 fraudulent transactions to prevent bias.
- Reduces computational cost by working with a smaller dataset.
- Provides balanced classes to improve model sensitivity to fraud cases.

Remove correlated features

- Applied Pearson correlation to detect multicollinearity.
- Removed features with a correlation above a certain threshold (0.95) to reduce highly correlated features.
- Helps focus on the most informative features, improving model performance.
- Simplifies the model.

Normalization

- Scaled features to a range of [0, 1] to ensure uniformity.
- X is the original value,
- Xscaled is the normalized value,
- Xmin is the minimum value in the feature,
- Xmax is the maximum value in the feature.

Benefits:

Prevents features with larger ranges from dominating the model training process.

 x_{scaled}

 $rac{x-x_{min}}{x_{max}-x_{min}}$

• Improves model performance by ensuring all features contribute equally.

Input Section for Each Model(1)

Classification Report and Confusion Martix for Logistic Regression

Fig. 4.3 Classification Report for Logistic Regression

Fig. 4.4 Confusion Matrix for Logistic Regression

ROC curve for Logistic Regression

Fig. 4.9 ROC Curve for Logistic Regression

Input Section for Each Model(2)

Classification Report and Confusion Martix for Random Forest

Fig. 4.4 Classification Report for Random Forest

Fig. 4.7 Confusion Matrix for Random Forest

ROC curve for Random Forest

Fig. 4.10 ROC Curve for random Forest

Input Section for Each Model(3)

Classification Report and Confusion Martix for Decision Tree

Fig. 4.3 Classification Report for Decision Tree

Fig. 4.8 Confusion Matrix for Decision Tree

ROC curve for Decision Tree

Fig. 4.11 ROC Curve for Decision Tree

Comparison of our Algorithm Based on Accuracy

```
Credit Card Fraud Detection
Different Algorithms

Model Comparison

Model Accuracy Scores:

( "Logistic Regression": 0.9593908629441624
 "Random Forest": 0.9593908629441624
 "Decision Tree": 0.9137055837563451
}

Logistic Regressionmodel has the best accuracy among these models.
```


Problems and Future Work

Problems we Faced

- Time Consuming
- Handling Dataset
- Missing Values
- Model Overfitting and Underfitting
- Visualization Limitations:

Future Work

- Add more Algorithm
- Detect Frauds with Real Time
- Model Interpretability
- Expanding Visualization
- Applying project to Real life

Thank YOU