

Programming GPUs with CUDA Thrust

~ A Rapid Development Framework for GPU ~

Baruch College MFE "Big Data in Finance" Course 4th February 2015

What is "Thrust?"

Library modeled on the Standard Template Library (STL) of C++

Provides a layer of abstraction on top of CUDA

Improves programmer productivity (both skilled & unskilled)

Retains high-performance

Production ready

What does it contain?

Vectors

Iterators

Algorithms

(Tip: The header files reveal all.)

Start using Thrust

Uses existing CUDA tool chain

If you are set up to develop with CUDA, you can develop with Thrust

Download Thrust code

#include in .cu files

No separate build, or library to link with

Thrust code example

Code example key points

More compact than CUDA runtime or driver API code

Code on host and device is similar

Parallelism and housekeeping hidden from the programmer

Thrust functionality

Iterators and static dispatching

Transformations

Reductions

Prefix-sums (scan operations)

Reordering

Sorting

Thrust functionality (cont.)

Fancy iterators

```
constant_iterator

counting_iterator

transform_iterator

permutation_iterator

zip_iterator
```


Code organization: includes

Functionality split across a large number of header files

Well named

Reading the source is informative (getting into the mind of the author)

Thrust namespace members

Typedefs

Functions

(Remember, only two containers:

host_vector

and

device_vector)