

Eigen Decomposition & Singular Value Decomposition

Dr. Chun-Hsiang Chan
Department of Geography
National Taiwan Normal University

Outlines

- Eigen Decomposition
- Singular Value Decomposition

Definition

Spectral Decomposition (also called Eigen Decomposition) is a mathematical method used to decompose a square matrix into its eigenvalues and eigenvectors. It is primarily applied to symmetric matrices and plays a fundamental role in linear algebra, PCA, and machine learning.

Mathematics

For a **symmetric matrix** *A*, the **spectral decomposition** states that:

$$A = V \Lambda V^T$$

where:

A is a $n \times n$ real symmetric matrix.

V is an **orthogonal matrix** whose columns are **eigenvectors** of A.

 Λ is a **diagonal matrix** whose diagonal elements are the **eigenvalues** of A.

Mathematics

• Since V is orthogonal ($V^TV=I$), we can rewrite: $A=V\Lambda V^T$ $AV=V\Lambda$

 This means A transforms each eigenvector into a scalar multiple of itself (eigenvalue).

Limitation

- A matrix A has a spectral decomposition if it is:
 - Square matrix $(n \times n)$.
 - Symmetric matrix $(A = A^T)$ ensures real eigenvalues and orthogonal eigenvectors.
 - For a non-symmetric matrix, we use <u>Singular Value</u>
 <u>Decomposition (SVD)</u> instead.

Summary

Spectral decomposition factorizes a symmetric matrix into eigenvectors and eigenvalues.

Used in PCA, quantum mechanics, and linear transformations.

Exists only for **symmetric** matrices (otherwise, use SVD).

Definition

Singular Value Decomposition (SVD) is a powerful matrix factorization technique used in linear algebra, PCA, machine learning, and numerical computing. It decomposes any $m \times n$ matrix A into three simpler matrices.

Mathematics

• For any real $m \times n$ matrix A, the **SVD** is:

$$A = U\Sigma V^T$$

where $U^TU = I, V^TV = I$

 $A (m \times n)$ is an any **real matrix**.

 $U(m \times m)$ contains left singular vectors (eigenvectors of AA^{T}).

 Σ $(m \times n)$ is a diagonal matrix with singular values.

 $V(n \times n)$ contains right singular vectors (eigenvectors of A^TA).

Mathematics

where:

$$U^T U = I$$
$$V^T V = I$$

U and *V* are orthogonal \rightarrow their columns form an orthonormal basis.

 Σ contains singular values (which determine how much variance is along each principal axis).

The meaning of U, Σ , and V

Columns of U: Eigenvectors of AA^T (span the row space of A).

Columns of V: Eigenvectors of A^TA (span the column space of A).

Diagonal values of Σ : Square roots of eigenvalues of A^TA or AA^T .

• If A has rank r:

The first r singular values are **nonzero**.

The last (m-r) or (n-r) singular values are **zero**.

Mathematical derivation of A^TA

Why V contains the eigenvectors of A^TA ?

∵ apply SVD

$$A^T A = (U \Sigma V^T)^T (U \Sigma V^T)$$

: transpose property

 $A^T A = V \Sigma^T U^T \cdot U \Sigma V^T$ Since *U* is orthogonal $(U^T U = I)$

 $A^TA = V\Sigma^T\Sigma V^T = V\Sigma^2 V^T$ Since $\Sigma^T\Sigma$ is a diagonal matrix of squared singular values (please refer to Eigen Decomposition)

$$A^TAV = V\Sigma^2$$

 $\therefore V$ is the eigenvector of A^TA with eigenvalues given by $\Sigma^T\Sigma$

Mathematical derivation of AA^T

Why U contains the eigenvectors of AA^{T} ?

$$\therefore apply SVD AA^T = (U\Sigma V^T)(U\Sigma V^T)^T$$

: transpose property

$$AA^T = U\Sigma V^T \cdot V\Sigma^T U^T$$
 Since V is orthogonal $(V^TV = I)$

 $AA^T = U\Sigma^T\Sigma U^T = U\Sigma^2 U^T$ Since $\Sigma^T\Sigma$ is a diagonal matrix of squared singular values (please refer to Eigen Decomposition)

$$AA^TU = U\Sigma^2$$

 $\therefore U$ is the eigenvector of AA^T with eigenvalues given by $\Sigma^T\Sigma$

IIhe End

Thank you for your attention!

Email: chchan@ntnu.edu.tw

Website: https://toodou.github.io/

