Державний університет інтелектуальних технологій та зв'язку Кафедра прикладної фізики та наноматеріалів

ВИВЧЕННЯ СТРУКТУРНОЇ СХЕМИ СИСТЕМИ ЕЛЕКТРОЗВ'ЯЗКУ

Методичні вказівки до лабораторної роботи 1.0 із дисципліни **"Теорія інформації та кодування"**

Укладач Іващенко П.В.

Затверджено на засіданні кафедри для використання на заняттях. 31.08.2023 р., протокол № 2. ______ зав. каф. Ірха В.І.

1 Мета роботи

- 1.1 Вивчення основних принципів побудови системи електричного зв'язку.
- 1.2 Дослідження точності роботи системи електричного зв'язку.

2 Ключові положення

1. Система електрозв'язку — це впорядкована сукупність взаємодіючих технічних засобів, середовищ поширення сигналів, що утворюють єдине ціле й забезпечують передачу повідомлень на відстань за допомогою електричних сигналів.

Повідомлення — матеріальна форма подання інформації (відомостей про події, процеси, об'єкти тощо).

Переносниками (носіями) повідомлень на відстань ϵ сигнали. У сучасних системах зв'язку повідомлення передаються електричними або оптичними сигналами.

У процесі передачі над сигналами провадяться різні перетворення, типові для різних систем зв'язку, незалежно від призначення системи й характеру повідомлень. Узагальнена структурна схема системи електрозв'язку наведена на рис. 1.

Рисунок 1 – Узагальнена схема системи електричного зв'язку

2. Центральне місце в системі займає **канал зв'язку** — сукупність технічних засобів, що забезпечують передавання електричного сигналу на відстань від пункту А до пункту Б. У сучасних системах електрозв'язку канали зв'язку цифрові, тобто, дозволяють передавати цифрові сигнали b(t) (рис. 2). **Цифровий первинний сигнал** b(t) є двійковим і являє собою послідовність імпульсів, що ідуть із інтервалом T_6 (рис. 2). Імпульси відповідають двійковим символам "1" і "0". Двійкові символи називають бітами. Інтервал T_6 — час, затрачуваний на передавання одного біта. Основним параметром первинного цифрового сигналу є швидкість цифрового сигналу

$$R = 1/T_{6}$$
.

Розмірність швидкості цифрового сигналу – біт/с. Вона показує, скільки двійкових символів передається за секунду.

3. Від джерела повідомлень надходить повідомлення a(t). Якщо повідомлення неелектричне (звукове, текст, зображення), то за допомогою відповідного датчика воно перетвориться у вихідний електричний сигнал. В інших випадках повідомленням може бути електричний сигнал (файл даних від комп'ютера, від пристрою пам'яті), цей сигнал також є вихідним. У кодері джерела вихідний електричний сигнал перетвориться у двійковий цифровий сигнал b(t). Це перетворення називається кодуванням — окремим елементам вихідного електричного сигналу ставляться у відповідність кодові комбінації двійкових символів. Зворотне перетворення називається декодуванням. Правила кодування й декодування задаються кодом. На рис. З показано приклад кодування й декодування: тут А, Б, В, ... — елементи вихідного електричного сигналу, у центрі малюнка показано код.

Рисунок 2 – Цифровий сигнал

Рисунок 3 — Ілюстрація кодування і декодування

4. Канал зв'язку може бути побудований на основі однієї системи передавання (СП) (рис. 4,a) або на основі двох або більше СП (рис. $4,\delta$). Другий випадок має місце при побудові каналу на основі елементів мережі зв'язку. **Мережа зв'язку** — комплекс технічних засобів, призначених для комутації, маршрутизації й передавання сигналів між кінцевим устаткуванням великої кількості територіально рознесених користувачів (пунктів). Комутація й маршрутизація сигналів виконуються у вузлах комутації (ВК). На рис. $4,\delta$ показано фрагмент мережі, що використовується для побудови розглянутого каналу зв'язку між пунктами A и Б.

Рисунок 4 – Побудова каналу зв'язку

5. Система передавання – комплекс технічних засобів, призначених для передавання сигналів між вузлами комутації або між кінцевими користувачами, якщо вузли комутації не використовуються. На рис. 5 наведена схема системи передавання.

Рисунок 5 – Схема системи передавання

Система передавання будується на основі лінії передавання. **Лінія передавання** — фізичний ланцюг (кабель, мідний або оптичний) або вільний простір (у радіозв'язку), використовувані для передавання сигналу на відстань.

Модулятор перетворює первинний сигнал у вторинний (модульований) сигнал, що добре підходить для передавання по лінії. Інакше кажучи, модулятор узгоджує характеристики сигналу на вході лінії з характеристиками лінії передавання, зокрема, по смузі частот. Якщо лінія зв'язку — смугова система, що пропускає коливання частот від f_{\min} до f_{\max} , то для узгодження з лінією передавання первинний сигнал перетворюється у вторинний сигнал, спектр якого зосереджений у смузі частот від f_{\min} до f_{\max} або займає частину цієї смуги. Смуга частот вторинного сигналу повинна попадати в смугу пропускання лінії зв'язку — у цьому й полягає задача узгодження. Описане перетворення називається модуляцією. Існує велика кількість видів модуляції. Найпростіший вид модуляції — АМ-2 — двійкова амплітудна модуляція: модульований сигнал являє собою послідовність радіоімпульсів, що відрізняються амплітудами (рис. 6).

Демодулятор відновлює первинний сигнал з модульованого сигналу. Відновлений

Рисунок 6 – Сигнал АМ-2

з модульованого сигналу. ыдновлении сигнал позначається $\hat{b}(t)$.

6. При передаванні по лінії

6. При передаванні по ліні передаванні на сигнал s(t) накладається завада (шум) n(t), і сигнал на виході лінії зв'язку записується

$$z(t) = s(t) + n(t).$$

Завада утрудняє роботу демодулятора – при відновленні первинного цифрового сигналу

виникають помилки: після подачі на вхід системи передавання символу "1" на виході системи одержують символ "0" або навпаки. Імовірність помилки символу характеризує точність роботи системи.

Таким чином, дія завади в лінії передавання проявляється на виході системи передавання у вигляді помилок — неправильних рішень демодулятора й, відповідно, після декодування виникають помилки в прийнятих повідомленнях. Імовірність помилки на виході демодулятора залежить від виду модуляції й відношення сигнал/шум (скорочено — с/ш). Під відношенням сигнал/шум звичайно розуміють відношення середніх потужностей сигналу й шуму.

3 Ключові питання

- 3.1 Дайте визначення понять "інформація", "повідомлення", "сигнал".
- 3.2 Дайте визначення понять "мережа зв'язку", "система електрозв'язку", "канал зв'язку", "система передавання".
- 3.3 Якими пристроями перетворюються повідомлення в первинні сигнали електрозв'язку? Приведіть приклади.
 - 3.4 Поясніть, що таке кодування, код у системах електрозв'язку.
 - 3.5 Поясніть, що таке цифровий первинний сигнал.
 - 3.6 Поясніть, з якою метою використовується модуляція.
 - 3.7 Поясніть призначення демодулятора в системі передавання.
 - 3.8 Як оцінюють точність роботи системи електрозв'язку?
 - 3.9 Від чого залежить точність роботи системи електрозв'язку?

4 Домашнє завдання

- 4.1 Вивчити розділ "Загальні відомості про системи електрозв'язку" по конспекту лекцій і посібнику [1, розд. 1].
- 4.2 Закодувати перші три букви Вашого прізвища кодом МТК-2. Таблиця коду наведена в Додатку.
 - 4.3 Підготуватися до відповідей на ключові питання.

5 Лабораторне завдання

- 5.1 *Ознайомлення з макетом ЛР на робочому місці*. Для цього необхідно запустити програму, використовуючи іконку "Лабораторні роботи" на робочому столі, а потім папку ТЕЗ. Варто вивчити структурну схему віртуального макета по його опису в розд. 6 і освоїти введення параметрів.
- 5.2 Дослідження перетворень повідомлень і сигналів при передаванні їх системою електрозв'язку. Ввести повідомлення, що використовувалося при виконанні домашнього завдання. Шум вимкнути. Запустити макет на виконання. У звіті привести:
 - передане повідомлення;
 - первинний сигнал;
 - модульований сигнал;
 - сигнал на виході лінії передавання;
 - сигнал на виході демодулятора;
 - прийняте повідомлення.

Переконатися, що одержувачеві повідомлень надходить неспотворене передане повідомлення.

Обчислити швидкість цифрового сигналу R, визначивши попередньо за допомогою масштабу по осі t тривалість двійкового символу T_6 .

5.3 Дослідження перетворень повідомлень і сигналів при передаванні їх системою електрозв'язку із шумом.

Увімкнути шум. Установити ослаблення атенюатора 3 дБ. Описати, які зміни спостерігаються на виходах окремих блоків системи передавання при наявності шуму.

Запускаючи програму на виконання після зміни ослаблення атенюатора, визначте те найменше відношення сигнал/шум на виході лінії передавання, за якого на виході демодулятора у відновленому сигналі (і, відповідно, повідомленні) будуть спостерігатися помилки (одна або більше). Оскільки помилки виникають випадково, то при кожному значенні відношення сигнал/шум необхідно провести кілька (3...5) запусків програми, щоб фіксувати наявність або відсутність помилок.

6 Коротка характеристика досліджуваних пристроїв і процесів

Лабораторна робота виконується на комп'ютері з використанням віртуального макета, реалізованого в середовищі Delphi. Структурна схема макета показана на рис. 7.

Макет відображає систему електрозв'язку на основі одної системи передавання й містить:

- 1."Джерело повідомлень», де можна ввести три букви алфавіту.
- 2 «Кодер джерела». У цьому блоці провадиться кодування уведених букв кодом МТК-2. Формується первинний цифровий сигнал зі швидкістю 1000 біт/с.
- 3 «Модулятор» формує сигнал двійкової амплітудної модуляції (АМ-2). «Генератор несівного коливання» виробляє гармонійне коливання, необхідне для роботи модулятора.
 - 4 «Лінія передавання» формує суму сигналу й шуму.
- 5 «Генератор шуму» виробляє шум, кнопки «вкл.» і «викл.» управляють роботою генератора. Середня потужність шуму n(t) дорівнює середній потужності сигналу на виході модулятора s(t).
- 6 «Атенюатор» включений у ланцюзі шуму від генератора, він забезпечує ослаблення шуму, величину якого можна встановлювати від 0 дБ до 9 дБ із кроком 1 дБ 1 . У макеті відношення середніх потужностей сигналу й шуму на виході лінії передачі дорівнює ослабленню атенюатора.
 - 7 «Демодулятор» відновлює первинний цифровий сигнал.
- 8 «Декодер джерела» провадить декодування відновленого первинного цифрового сигналу.
 - 9 «Осцилографи»: вісь абсцис час, числовий масштаб у мілісекундах.

На багатьох блоках ϵ значок \sim . Після клацання по ньому можна спостерігати вихідну напругу відповідного блоку.

Кнопка «Старт» запускає макет на виконання.

Кнопка «Вихід» забезпечує закриття програми.

7 Вимоги до звіту

- 7.1 Назва лабораторної роботи.
- 7.2 Мета лабораторної роботи.
- 7.3 Результати виконання домашнього завдання.
- 7.4 Структурна схема досліджень.
- 7.5 Результати виконання пп. 5.1, 5.2 і 5.3 лабораторного завдання (осцилограми й числові значення).
- 7.6 Висновки по кожному пункту лабораторного завдання, у яких дати аналіз отриманих результатів збіг теоретичних й експериментальних даних, числові дані і їх обговорення.
- 7.7 Підпис студента про виконання ЛР, віза викладача про захист ЛР із оцінкою в 100бальній шкалі, дата.

¹ На практиці і в теорії відношення деяких величин зручно подавати в відносних одиницях — децибелах (коротко дБ). Відношення в децибелах розраховується як 10 десяткових логарифмів відношення потужностей або 20 десяткових логарифмів відношення напруг.

Література

1. **Іващенко П.В.** Теорія зв'язку: Модуль 1. Сигнали електрозв'язку: навч. посіб. [для студ., що навчаються за напрямом вищої освіти 6.050903 — Телекомунікації]/ П. В. Іващенко, І. С. Перекрестов. — Одеса: ОНАЗ ім. О. С. Попова, 2013. - 145 с.

Рисунок 7 – Структурна схема макету

Додаток

Таблиця 1 – Міжнародний телеграфний код № 2 (МТК-2)

				I	1			T	1
Номер комбінації	Код. комб.	Регістр лат. букв	Регістр укр. букв	Регістр цифр	Номер комбінації	Код. комб.	Регістр лат. букв	Регістр укр. букв	Регістр цифр
1	11000	A	A	_	17	11101	Q	Я	1
2	10011	В	Б	?	18	01010	R	P	4
3	01110	C	Ц	•	19	10100	S	C	' (апф.)
4	10010	D	Д	Хто там?	20	00001	T	T	5
5	10000	Е	Е	3	21	11100	U	У	7
6	10110	F	Φ	Э	22	01111	V	Ж	=
7	01011	G	Γ	Ш	23	11001	W	В	2
8	00101	Н	X	Щ	24	10111	X	Ь	/
9	01100	I	И	8 (Дзв.)	25	10101	Y	Ы	6
10	11010	J	Й	Ю	26	10001	Z	3	+
11	11110	K	К	(27	00010	Повернення каретки		
12	01001	L	Л)	28	01000	Продовження рядка		
13	00111	M	M	. (крапка)	29	11111	Регістр лат. букв		
14	00110	N	Н	, (кома)	30	11011	Регістр цифр		
15	00011	О	О	9	31	00100	Пропуск		
16	01101	P	П	0	32	00000	Регістр укр. букв		