Midlern medium 35/50 P1:15, Pa:15, P3:10, P4:10

Last time: if E Banach, L(E) = L(E,E) Banach and MAR M = MARMBH, A,B & L(E).

set of bounded linear composition

operator from E>E

L(E) ir a banuch Alyebon. (Not really going into this).

 $\epsilon_{\underline{x}}$ and $\epsilon^{\underline{A}} = \sum_{n=0}^{\infty} \frac{1}{n!} A^n$ $\frac{1}{2}$ A ϵ $\chi(\epsilon)$ if $A \in \chi(\epsilon)$.

I Invent of opening

- Def: let E, F be normed vector space. An operator $A \in L(E,F)$ is invertible if $B \in L(F,E)$ s.t. $AB = I_F$ and $BA = I_E$ identity in F identity on E.

Note: B must be bounded/continuour, and must be left & right inverse to A.

- If such B exists, then B is unique. It is the lower of A, denoted A-1.

Remarks If A:E+F is one-to-one and onto ie bijulting. Then there exists an inverse in the set-theorem.

The question is bumbedness.

The (Inverse Mapping Theorem)

If E,F Banuch space, A & D(E,F) ir, one-to-one and orto, then A-1 invene and linear,

ir bounded linuar operator.

will not prove in this course.

Ex: Consider shift operator: S on La(R).

 $S(x) = S(x_1, x_2, ...)$, $x \in L^2(\mathbb{R})$.

= (0, X, X, ...) c shifted over 1

This is known, Se L(l2). In fact, $\| S_x \|_{L^2} = \| x \|_{L^2} < \infty$ by membership in L^2 .

This is hot "onto". So S^{-1} does not exist.

Questo what is the set of invertible operators from L(E,F)? (Since not every operator is invertible).

The let E Banach space. Take A & L(E). If $\|A\| < 1$, then I-A is invertible.

And $(I-A)^{-1} = \sum_{n=0}^{\infty} A^n$ in L(E).

When n=0, $A^0 = I$ E. Convergence it in L(E). $(I-A)^{-1} = \lim_{n \to \infty} \sum_{n=0}^{N} A^n$.

litition thank 1-2. Then $(1-2)^{-1} = \frac{1}{(-7)^{-2}}$ is well defined if |Z| < 1.

Also $\frac{1}{1-7} = \sum_{n=0}^{\infty} 2^n r_n$ that i where the serier corner out. $(reglax \ Z \ W/A)$.

Prof WTS $\left(\sum_{n=0}^{\infty}A^{n}\right)\left(I-A\right)^{-1}=I$. First need to show $\sum_{n=0}^{\infty}A^{n}$ well defined.

Consider partial sum. $S_N = \sum_{n=1}^N A^n$. Show $(S_N)_{n=1}^N$ candly $\|S_N - S_N\|_{\mathcal{L}} = \|\sum_{n=N+1}^M A^n\| \leq \sum_{n=N+1}^M \|A\|^n = \frac{\|A\|^{N+1}}{1 - \|A\|} \quad \text{(assume M7N)}$ $\|S_N - S_N\|_{\mathcal{L}} = \|\sum_{n=N+1}^M A^n\| \leq \sum_{n=N+1}^M \|A\|^n = \frac{\|A\|^{N+1}}{1 - \|A\|} \quad \text{(assume M7N)}$

So SN canaly. I limit EAR & L(E) by complete ness.

To show this is the inverse.

$$(I-A) \circ \sum_{n=1}^{\infty} A^n = \sum_{n=1}^{\infty} A^n - \sum_{n=1}^{\infty} A^{n-1} = I$$

Similar) = 2 .

Corollary: If E Banuch, then the set of invertible operators on E is open in ME).

(1e. If E invertible, nearly operators are invertible).

Proof: suppose $A \in d(E)$ invertible. Consider $B \in d(E)$, and $\|B-A\| < \frac{1}{\|A^{-1}\|}$. We claim B invertible.

Frr, +, consider || (B-A)(A-1) || < ||B-A) | ||A-1 || < 1.

Then, $I + (\beta - A)(A^{-1}) = I + \beta A^{-1} - I = \beta A^{-1}$ is invertible (by previous result).

Then B = (BA-1) A is invertible.

Ex: let K be an integral operator on L2 (0,1).

$$(kf)(t) = \int_0^1 k(t,s) f(s) ds$$
, $f \in L^2(0,t)$

and k(tis) is continuon on [0,1) x (0,1).

we should (last lura) flut

$$\|K\| \leq \int_{0}^{1} \int_{0}^{1} |K(t',t)|_{s} dt \leq 1$$

classes problem are went to solve

Then we want to solve

ant ho solve
$$f = kf = y \qquad \left(\Rightarrow (I - k) f = y \Rightarrow A f = y \right)$$

Then $f(t) - \int_0^1 k(t,s) f(s) ds = g(t)$

not easy to solve

But we can solve this as:

f(t)= (I-k)-1 g = \(\sum_{k} \) \(\text{y} \) and convergence is glummhed.

MIDTERM

PI: nach to show its not complete. Want to find limit that is not continuous.

Find (f_n) cancely in $L^2(\cdot,0,1)$ and $f_n \rightarrow f \in L^2(0,1)$ but $f \in C((0,1))$.

that's the norm we wied

for continuour.

If no follow = S' | for fould de ir small.

84. A = { , x > 7

Il for flip o ar now. limit should be fe l'([0,7])

But no continus faction h = f are

Pa: Use fact that unit builtin so din will not be compact.

Mischaelm H., H=MOM1. þ 3

x o EM 1 x = y o + d x o.) need to pro that for any ZEM+, Z=dXo

Pt: Horphonse.