SFDS/DAE

SFDS/DAE

University of the Witwatersrand

2025

SFDS/DAE

• Compute $\binom{10}{4}$

Revision Problem

SFDS/DAE

• A coin is flipped five times and comes up heads all five times. Perform a two sided hypothesis test to see if the coin is fair.

SFDS/DAE

• Review Question

- Review Question
- Review of Beta as a conjugate prior

- Review Question
- Review of Beta as a conjugate prior
- Some other conjugate prior distributions

- Review Question
- Review of Beta as a conjugate prior
- Some other conjugate prior distributions
- Multivariate distributions Discrete

- Review Question
- Review of Beta as a conjugate prior
- Some other conjugate prior distributions
- Multivariate distributions Discrete
- Multivariate distributions Continuous

- Review Question
- Review of Beta as a conjugate prior
- Some other conjugate prior distributions
- Multivariate distributions Discrete
- Multivariate distributions Continuous
- Riddle

SFDS/DAE

• Compute $\binom{10}{4}$

- Compute $\binom{10}{4}$
- Compute $\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1}$

- Compute $\binom{10}{4}$
- Compute $\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1}$
- Compute $\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2}$

- \bullet Compute $\binom{10}{4}$
- Compute $\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1}$
- Compute $\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2}$
- Compute $\frac{10 \times 9 \times 7}{3}$

- \bullet Compute $\binom{10}{4}$
- Compute $\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1}$
- Compute $\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2}$
- Compute $\frac{10 \times 9 \times 7}{3}$
- $\bullet \ \ Compute \ 10 \times 3 \times 7$

- \bullet Compute $\binom{10}{4}$
- Compute $\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1}$
- Compute $\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2}$
- Compute $\frac{10 \times 9 \times 7}{3}$
- $\bullet \ \ Compute \ 10 \times 3 \times 7 \\$
- 210

SFDS/DAE

 We have a coin which has some unknown probability p of coming up heads. That is it's associated to a bernoulli distribution.

- We have a coin which has some unknown probability p of coming up heads. That is it's associated to a bernoulli distribution.
- We start out thinking that p is distributed $Beta(\alpha, \beta)$. Commonly Beta(1,1) which is the uniform.

- We have a coin which has some unknown probability p of coming up heads. That is it's associated to a bernoulli distribution.
- We start out thinking that p is distributed $Beta(\alpha, \beta)$. Commonly Beta(1,1) which is the uniform.
- Then some data comes in. That is we flip the coin *n* times and get *k* heads.

- We have a coin which has some unknown probability p of coming up heads. That is it's associated to a bernoulli distribution.
- We start out thinking that p is distributed $Beta(\alpha, \beta)$. Commonly Beta(1, 1) which is the uniform.
- Then some data comes in. That is we flip the coin *n* times and get *k* heads.
- Out posterior distribution on p is $Beta(\alpha + n k, \beta + k)$.

- We have a coin which has some unknown probability p of coming up heads. That is it's associated to a bernoulli distribution.
- We start out thinking that p is distributed $Beta(\alpha, \beta)$. Commonly Beta(1, 1) which is the uniform.
- Then some data comes in. That is we flip the coin n times and get k heads.
- Out posterior distribution on p is $Beta(\alpha + n k, \beta + k)$.
- This is because the Beta distribution is a conjugate prior to the bernoulli.

Other conjugate Priors

Likelihood	Prior (Conjugate)	Posterior
$X \sim Binomial(n, \theta)$	$ heta \sim Beta(lpha,eta)$	$\theta \mid X \sim \text{Beta}(\alpha + x, \beta + x)$
		(n-x)
$X \sim Poisson(\lambda)$	$\lambda \sim Gamma(lpha,eta)$	$\lambda \mid X \sim Gamma(\alpha +$
		$(x, \beta + 1)$
		$\mu \mid X \sim \mathcal{N}(\mu_n, \tau_n^2)$
$egin{aligned} X \sim \mathcal{N}(\mu, \sigma^2) \ ext{(known)} \end{aligned}$	$\mu \sim \mathcal{N}(\mu_0, au^2)$	$\tau_n^2 = \left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)^{-1}$
σ^{-})		$\mu_n = \tau_n^2 \left(\frac{n\bar{x}}{\sigma^2} + \frac{\mu_0}{\tau^2} \right)$

Other conjugate Priors

Likelihood	Prior (Conjugate)	Posterior
$X \sim Exponential(\lambda)$	$\lambda \sim Gamma(lpha,eta)$	$\lambda \mid X \sim Gamma(lpha +$
		$n, \beta + \sum x_i$
$X \sim Multinomial(n, \theta)$	$oldsymbol{ heta}\sim Dirichlet(oldsymbol{lpha})$	$\mid heta \mid extsf{X} \sim extsf{Dirichlet}(lpha +$
		X)

SFDS/DAE

• A multivariate discrete distribution describes a vector of random variables (X_1, \ldots, X_d) taking values jointly.

- A multivariate discrete distribution describes a vector of random variables (X_1, \dots, X_d) taking values jointly.
- For example the probability mass function (PMF) of two zero-one random variables could be given as:

	$X_2 = 0$	$X_2 = 1$
$X_1 = 0$	0.3	0.4
$X_1 = 1$	0.2	0.1

- A multivariate discrete distribution describes a vector of random variables (X_1, \ldots, X_d) taking values jointly.
- For example the probability mass function (PMF) of two zero-one random variables could be given as:

$$\begin{array}{c|cc} X_2 = 0 & X_2 = 1 \\ \hline X_1 = 0 & 0.3 & 0.4 \\ X_1 = 1 & 0.2 & 0.1 \\ \end{array}$$

$$X_2=0$$
 $X_2=1$ Or more generally by: $X_1=0$ p_{00} p_{01} p_{11} p_{10} p_{11}

SFDS/DAE

• It doesn't need to be binomial of course

SFDS/DAE

 One of the things we may wish to do here is to calculate the distribution of X or Y. This is called the Marginal Distribution of X or Y.

- One of the things we may wish to do here is to calculate the distribution of X or Y. This is called the Marginal Distribution of X or Y.
- This is done by summing probabilities for specific values.
 In the above table.

SFDS/DAE

- One of the things we may wish to do here is to calculate the distribution of X or Y. This is called the Marginal Distribution of X or Y.
- This is done by summing probabilities for specific values.
 In the above table.

•

$$P(X = x) = \begin{cases} 0.32, & x = 1, \\ 0.12, & x = 2, \\ 0.12, & x = 3, \\ 0.12, & x = 4, \\ 0.32, & x = 5, \\ 0, & \text{otherwise.} \end{cases}$$

SFDS/DAE

Similarly for Y.

SFDS/DAE

Similarly for Y.

•

$$P(Y = y) = \begin{cases} 0.12, & y = 1, \\ 0.24, & y = 2, \\ 0.24, & y = 3, \\ 0.4, & y = 4, \\ 0, & \text{otherwise.} \end{cases}$$

$$occurrent cov(X,Y) = \mathbb{E}[(X-\mu_X)(Y-\mu_Y)]$$

- $cov(X, Y) = \mathbb{E}[(X \mu_X)(Y \mu_Y)]$
- \bullet Turns out to be equal to $\mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$

- $cov(X, Y) = \mathbb{E}[(X \mu_X)(Y \mu_Y)]$
- ullet Turns out to be equal to $\mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- Inourexample $\mathbb{E}[XY] = 2*0.12 + 4*0.2 + 6*0.12 + 6*0.12 + 12*0.12 + 5*0.12 + 20*0.2 = 8.52$

- $\bullet \ cov(X,Y) = \mathbb{E}[(X \mu_X)(Y \mu_Y)]$
- Turns out to be equal to $\mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- Inourexample $\mathbb{E}[XY] = 2*0.12 + 4*0.2 + 6*0.12 + 6*0.12 + 12*0.12 + 5*0.12 + 20*0.2 = 8.52$
- ullet $\mathbb{E}[X]=3$ and $\mathbb{E}[Y]=2.92$

Covariance

$$\bullet \ cov(X,Y) = \mathbb{E}[(X-\mu_X)(Y-\mu_Y)]$$

- Turns out to be equal to $\mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- Inourexample $\mathbb{E}[XY] = 2*0.12 + 4*0.2 + 6*0.12 + 6*0.12 + 12*0.12 + 5*0.12 + 20*0.2 = 8.52$
- $\mathbb{E}[X] = 3$ and $\mathbb{E}[Y] = 2.92$
- $Cov(X, Y) = 8.52 3 \times 2.92 = -0.24$

Covariance

$$\bullet \ cov(X,Y) = \mathbb{E}[(X-\mu_X)(Y-\mu_Y)]$$

- Turns out to be equal to $\mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- Inourexample $\mathbb{E}[XY] = 2*0.12 + 4*0.2 + 6*0.12 + 6*0.12 + 12*0.12 + 5*0.12 + 20*0.2 = 8.52$
- $\mathbb{E}[X] = 3$ and $\mathbb{E}[Y] = 2.92$
- $Cov(X, Y) = 8.52 3 \times 2.92 = -0.24$
- Note that $Cor(X,Y) = \frac{Cov(X,Y)}{\sqrt{(}V(X)V(Y)}$ and is between -1 and 1

SFDS/DAE

- We also care about conditional distributions.
- That is the distribution of Y given that X takes on a particular value or visa versa. For example

•

$$P(Y = y | X = 1) = \begin{cases} 0.625, & y = 2, \\ 0.375, & y = 4, \\ 0, & \text{otherwise.} \end{cases}$$

SFDS/DAE

• Consider the distribution:

$$f_{X,Y}(x,y) = \begin{cases} x+y, & 0 \le x \le 1, & 0 \le y \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

SFDS/DAE

• Consider the distribution:

$$f_{X,Y}(x,y) = \begin{cases} x+y, & 0 \le x \le 1, & 0 \le y \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

• Let's check that it is a distribution first!

SFDS/DAE

• Consider the distribution:

$$f_{X,Y}(x,y) = \begin{cases} x+y, & 0 \le x \le 1, & 0 \le y \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

- Let's check that it is a distribution first!
- It's always positive.

$$\iint_{\mathbb{R}^2} f_{X,Y}(x,y) \, dx \, dy = \int_0^1 \int_0^1 (x+y) \, dx \, dy$$

$$= \int_0^1 \left[\underbrace{\int_0^1 x \, dx}_{\frac{1}{2}} + \underbrace{\int_0^1 y \, dx}_y \right] \, dy$$

$$= \int_0^1 \left(\frac{1}{2} + y \right) \, dy$$

$$= \left[\frac{1}{2} y + \frac{1}{2} y^2 \right]_0^1 = \frac{1}{2} + \frac{1}{2} = 1.$$

SFDS/DAE

۵

$$\iint_{\mathbb{R}^2} f_{X,Y}(x,y) \, dx \, dy = \int_0^1 \int_0^1 (x+y) \, dx \, dy$$

$$= \int_0^1 \left[\underbrace{\int_0^1 x \, dx}_{\frac{1}{2}} + \underbrace{\int_0^1 y \, dx}_y \right] \, dy$$

$$= \int_0^1 \left(\frac{1}{2} + y \right) \, dy$$

$$= \left[\frac{1}{2} y + \frac{1}{2} y^2 \right]_0^1 = \frac{1}{2} + \frac{1}{2} = 1.$$

• It is indeed a distribution!

Marginal Distribution of X

SFDS/DAE

ullet Once again, we might be interested in the dstrbution of X.

Marginal Distribution of X

- ullet Once again, we might be interested in the dstrbution of X.
- ullet To get this we integrate out Y.

SFDS/DAE

- Once again, we might be interested in the dstrbution of X.
 - To get this we integrate out Y.

•

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$
$$= \int_{0}^{1} (x+y) \, dy$$
$$= \left[xy + \frac{1}{2}y^2 \right]_{0}^{1}$$
$$= x + \frac{1}{2},$$

Marginal Distribution of X

SFDS/DAE

- ullet Once again, we might be interested in the dstrbution of X.
- To get this we integrate out Y.

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$
$$= \int_{-\infty}^{1} (x+y) \, dy$$

$$= \int_0^1 (x+y) \, dy$$
$$= \left[xy + \frac{1}{2}y^2 \right]_0^1$$
$$= x + \frac{1}{2},$$

So

$$f_X(x) = \begin{cases} x + \frac{1}{2}, & 0 \le x \le 1\\ 0, & \text{otherwise.} \end{cases}$$

Conditional Distributions

SFDS/DAE

$$f_{Y|X}(y \mid X = 0.5) = \frac{f_{X,Y}(0.5,y)}{f_X(0.5)} = \frac{0.5 + y}{0.5 + \frac{1}{2}} = 0.5 + y,$$
 $0 \le y \le 1,$
 $f_{Y|X}(y \mid X = 0.5) = 0$ otherwise.

Conditional Distributions

SFDS/DAE

$$f_{Y|X}(y \mid X = 0.5) = \frac{f_{X,Y}(0.5,y)}{f_X(0.5)} = \frac{0.5 + y}{0.5 + \frac{1}{2}} = 0.5 + y,$$

 $0 \le y \le 1,$

 $f_{Y|X}(y \mid X = 0.5) = 0$ otherwise.

$$f_{Y|X}(y \mid X = 0.7) = \frac{f_{X,Y}(0.7,y)}{f_X(0.7)} = \frac{0.7 + y}{0.7 + \frac{1}{2}} = \frac{0.7 + y}{1.2},$$

 $0 < y < 1,$

$$f_{Y|X}(y \mid X = 0.7) = 0$$
 otherwise.

 $\mathsf{SFDS}/\mathsf{DAE}$

 We want to do binary classification. Cat or Dog, Red or Blue, Boy or Girl.

- We want to do binary classification. Cat or Dog, Red or Blue, Boy or Girl.
- We have a bunch of classifiers. They all suck.

- We want to do binary classification. Cat or Dog, Red or Blue, Boy or Girl.
- We have a bunch of classifiers. They all suck.
- More technically they all predict things correctly with probability "slightly" over a half. Weak predictors

- We want to do binary classification. Cat or Dog, Red or Blue, Boy or Girl.
- We have a bunch of classifiers. They all suck.
- More technically they all predict things correctly with probability "slightly" over a half. Weak predictors
- We'd really like to have a single good predictor Can we combine them into a good predictor? Usually we can!

SFDS/DAE

 We have a training set and three predictors who each get things right with probability sixty-percent.

- We have a training set and three predictors who each get things right with probability sixty-percent.
- How good a performance could we maximally get?

- We have a training set and three predictors who each get things right with probability sixty-percent.
- How good a performance could we maximally get?
- Well, if we set X + i as the number of correct votes in sample i, then $\mathbb{E}[X_i] = 3 \times 0.6 = 1.8$

- We have a training set and three predictors who each get things right with probability sixty-percent.
- How good a performance could we maximally get?
- Well, if we set X + i as the number of correct votes in sample i, then $\mathbb{E}[X_i] = 3 \times 0.6 = 1.8$
- To get a correct prediction we'd need two out of three votes.

- We have a training set and three predictors who each get things right with probability sixty-percent.
- How good a performance could we maximally get?
- Well, if we set X + i as the number of correct votes in sample i, then $\mathbb{E}[X_i] = 3 \times 0.6 = 1.8$
- To get a correct prediction we'd need two out of three votes.
- We should distribute the average of 1.8 as two votes over ninety percent of the space.

- We have a training set and three predictors who each get things right with probability sixty-percent.
- How good a performance could we maximally get?
- Well, if we set X + i as the number of correct votes in sample i, then $\mathbb{E}[X_i] = 3 \times 0.6 = 1.8$
- To get a correct prediction we'd need two out of three votes.
- We should distribute the average of 1.8 as two votes over ninety percent of the space.
- This can in fact be constructed. So we can get 0.9 a huge boost in performance

SFDS/DAE

 We have a training set and three predictors who each get things right with probability sixty-percent.

- We have a training set and three predictors who each get things right with probability sixty-percent.
- How bad could performance be?

- We have a training set and three predictors who each get things right with probability sixty-percent.
- How bad could performance be?
- Again if we set X + i as the number of correct votes in sample i, then $\mathbb{E}[X_i] = 3 \times 0.6 = 1.8$

- We have a training set and three predictors who each get things right with probability sixty-percent.
- How bad could performance be?
- Again if we set X + i as the number of correct votes in sample i, then $\mathbb{E}[X_i] = 3 \times 0.6 = 1.8$
- To get a wrong prediction we'd need at most one out of three votes.

- We have a training set and three predictors who each get things right with probability sixty-percent.
- How bad could performance be?
- Again if we set X + i as the number of correct votes in sample i, then $\mathbb{E}[X_i] = 3 \times 0.6 = 1.8$
- To get a wrong prediction we'd need at most one out of three votes.
- Worst case is as much as possible in the one case and the rest getting all three.

- We have a training set and three predictors who each get things right with probability sixty-percent.
- How bad could performance be?
- Again if we set X + i as the number of correct votes in sample i, then $\mathbb{E}[X_i] = 3 \times 0.6 = 1.8$
- To get a wrong prediction we'd need at most one out of three votes.
- Worst case is as much as possible in the one case and the rest getting all three.
- So $1.8 = 3 \times p + 1 \times (1p)$ which solves to p = 0.4. This is again easy enough to construct.

SFDS/DAE

• Having more weak predictors helps.

- Having more weak predictors helps.
- We'd like our weak predictors to be anti-correlated, or at least not correlated.

- Having more weak predictors helps.
- We'd like our weak predictors to be anti-correlated, or at least not correlated.
- Notion of weighting classifiers! After all they're not all going to eb the same all the time!

- Having more weak predictors helps.
- We'd like our weak predictors to be anti-correlated, or at least not correlated.
- Notion of weighting classifiers! After all they're not all going to eb the same all the time!
- So we can think of voting as taking $sign(h_1 + h_2 + h_3 + ... + h_n)$

- Having more weak predictors helps.
- We'd like our weak predictors to be anti-correlated, or at least not correlated.
- Notion of weighting classifiers! After all they're not all going to eb the same all the time!
- So we can think of voting as taking $sign(h_1 + h_2 + h_3 + ... + h_n)$
- Weighting looks like $sign(w_1h_1 + w_2h_2 + w_3h_3 + ... + w_nh_n)$

SFDS/DAE

Let P(x) be a polynomial with nonnegative integer coefficients:

$$P(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n, \qquad a_i \in \mathbb{Z}_{\geq 0}.$$

You must determine all of its coefficients a_0, a_1, \ldots, a_n . You may ask queries of the form

"What is
$$P(r)$$
?"

where r is any rational number of your choosing. After a finite number of such queries, you must reconstruct the entire polynomial. How many guesses does this take

SFDS/DAE

• 2, first guess P(1) which gives you the sum of the coefficients.

- 2, first guess P(1) which gives you the sum of the coefficients.
- This is an upper bound on coefficient size (as the coefficients are positive.

- 2, first guess P(1) which gives you the sum of the coefficients.
- This is an upper bound on coefficient size (as the coefficients are positive.
- Then ask for anything larger than P(1), powers of 10 are convient. For example, if $P(x) = 12x^2 + 45x1$, then P(100) = 124501