Proposition 7.6 Consider the problem (7.2), $x^* \in X$ is stationary point if and only if

$$x^* = [x^* - \alpha \nabla f(x^*)]^+$$
. $\forall \alpha > 0$

Proof. • For the forward direction, the stationarity of x^* is equivalent to

$$\langle \nabla f(x^*), (x - x^*) \rangle \ge 0, \quad \forall x \in X$$
 (7.5)

Let $z := x^* - \alpha \nabla f(x^*)$, and consider

$$\min_{x} \|x - z\|^2 = \|x - x^* + \alpha \nabla f(x^*)\|^2$$
(7.6a)

$$= \|x - x^*\|^2 + 2\alpha \langle \nabla f(x^*), (x - x^*) \rangle + \alpha^2 \|\nabla f(x^*)\|^2$$
 (7.6b)

$$\geq \alpha^2 \|\nabla f(x^*)\|^2,\tag{7.6c}$$

which implies the minimum point for (7.6) is x^* , i.e., $x^* = [z]^+$.

• For the reverse direction, assume x^* is not the stationary point, i.e., $\exists x^0 \in X$ such that $\langle \nabla f(x^*), (x^0 - x^*) \rangle < 0$. We set $d^0 = x^0 - x^*$. For fixed $\alpha > 0$, we construct $x^1 \in X$ such that

$$d^{1} := x^{1} - x^{*} := \frac{-\alpha \langle \nabla f(x^{*}), d^{0} \rangle}{\|d^{0}\|_{2}^{2}} d^{0}$$

Substituting x^1 into the problem (7.6), we have

$$\begin{split} \|x^{1} - z\|^{2} &= \|d^{1}\|^{2} + 2\alpha \langle \nabla f(x^{*}), d^{1} \rangle + \alpha^{2} \|\nabla f(x^{*})\|^{2} \\ &= \left[\frac{\alpha^{2} \langle \nabla f(x^{*}), d^{0} \rangle^{2}}{\|d^{0}\|^{4}} \right] \|d^{0}\|^{2} + 2\alpha \cdot \frac{-\alpha \langle \nabla f(x^{*}), d^{0} \rangle}{\|d^{0}\|_{2}^{2}} \langle \nabla f(x^{*}), d^{0} \rangle + \alpha^{2} \|\nabla f(x^{*})\|^{2} \\ &= -\frac{\alpha^{2} \langle \nabla f(x^{*}), d^{0} \rangle^{2}}{\|d^{0}\|^{2}} + \alpha^{2} \|\nabla f(x^{*})\|^{2} \\ &< \alpha^{2} \|\nabla f(x^{*})\|^{2} = \|x^{*} - z\|^{2}, \end{split}$$

i.e., x^* cannot be the minimizer of problem(7.6), which contradicts to the fact that $x^* = [z]^+$.