Combinaciones con repetición Una combinación con repetición de orden r de los n elementes de A corresponde a los elementes que pueden repetivse pertenecionles a una selección no ardenada. Par la tanto, aquellos elementos de A con repetición son presentados por una solución: $X_1 + X_2 + \cdots + X_n = r$ Donde XI corresponde únicamente a las soluciones positivas A su vez, cada solvoión xi corresponde a una cadena de r¹⁵ y n-1 barras distribuidas de la siguiente forma De tal forma, se busca el número de alternativos de colocar n-1 barras en n+1-1 posiciones. Obteniendo: $\begin{pmatrix} n+r-1 \\ n-1 \end{pmatrix} = \begin{pmatrix} n+r-1 \\ r \end{pmatrix}$ Siendo así, la combinación se ve representada de la siguiente forma.

C,	=	per	P	qcić	ulae ín (r)·	ln+	(-1) Uta	eión	(n-1)	Ξ	 (n+	r - 1)) <u>(</u>			
alm v													Duiv	η	, е	lene	rtce	5