Zadanie: PAD

Parking 2 – zadanie trudniejsze

Laboratorium z ASD, egzamin. Dostępna pamięć: 128 MB.

24.01.2015, 10:00-13:00

Bajtazar pracuje przy obsłudze parkingu w głównej siedzibie firmy ByteSoft. Jest to ten sam parking, który występuje w treści zadania prostszego – szczegóły można znaleźć w sekcji *Opis parkingu*.

Przy niektórych miejscach parkingowych znajdują się wyjazdy z parkingu. Samochód może wyjechać danym wyjazdem, tylko jeśli na drodze od jego miejsca parkingowego do wyjazdu nie jest zaparkowany żaden inny samochód (a zatem także i miejsce parkingowe, przy którym znajduje się wyjazd, musi być puste).

Każdego dnia po południu do Bajtazara zgłaszają się kolejni pracownicy firmy, pytając, czy mogą swoimi samochodami wyjechać z parkingu przez wybrane przez siebie wyjazdy. Jeśli Bajtazar odpowiada pracownikowi twierdząco, pracownik wyjeżdża z parkingu – tak więc nie ma go już na parkingu, gdy zadawane są kolejne zapytania pracowników. Pomóż Bajtazarowi w udzielaniu odpowiedzi na pytania pracowników.

Wejście

Pierwszy wiersz wejścia zawiera dwie liczby całkowite n oraz m ($2 \le n \le 500\,000, 1 \le m \le 500\,000$) oznaczające liczbę miejsc parkingowych i liczbę połączeń.

Drugi wiersz wejścia zawiera ciąg bitów b_1, \ldots, b_n , pooddzielanych pojedynczymi odstępami. Bit b_i oznacza, czy na miejscu parkingowym numer i znajduje się jakiś samochód (bit 1), czy też nie (bit 0). Możesz założyć, że co najmniej jeden bit w ciągu jest równy 1. W przeciwieństwie do zadania prostszego, nie występuje tu dodatkowe założenie, że $b_1 = 0$.

Każdy z kolejnych m wierszy zawiera dwie liczby całkowite u_j oraz v_j $(1 \le u_j, v_j \le n, u_j \ne v_j)$, oznaczające połączenie biegnące między miejscami parkingowymi u_j i v_j .

Kolejny wiersz wejścia zawiera jedną liczbę całkowitą q ($1 \le q \le 500\,000$), oznaczającą liczbę zapytań. Każdy z kolejnych q wierszy zawiera dwie liczby całkowite m_k , w_k ($1 \le m_k$, $w_k \le n$, $m_k \ne w_k$) oznaczające zapytanie pracownika parkującego na miejscu m_k , który pyta o możliwość opuszczenia parkingu z użyciem wyjazdu znajdującego się przy miejscu parkingowym numer w_k . Możesz założyć, że przy takim zapytaniu rzeczywiście zachodzi $b_{m_k} = 1$.

Wyjście

Twój program powinien wypisać na wyjście q wierszy z odpowiedziami Bajtazara, z których każda to TAK lub NIE.

Przykład

Dla danych wejściowych:	poprawnym wynikiem jest:
6 7	NIE
0 0 1 1 1 0	NIE
1 2	TAK
2 3	NIE
2 4	TAK
1 4	TAK
4 5	
5 6	
6 4	
6	
3 6	
5 1	
3 1	
4 5	
4 6	
5 1	