h SGML had been adopted vell defined as a computer k from many people who ad to explain that the only y it had historically been nonstrate the World Wide

Web program reading an HTML file and putting it on the screen in a fraction of a second before people were convinced.

Some people were intrigued, but many never accepted my argument. Rather than enter into useless debate, I simply forged ahead with HTML and showed the Web as much as possible. Robert and I held a few colloquia open to anyone in our divisions. We also told people about it at coffee. Occasionally, a group of people getting ready to do an experiment would call to say they were discussing their documentation system, and ask if I could come over and give them my thoughts about it. I'd meet a group of maybe twenty and show them the Web, and perhaps they wouldn't use it then, but the next time through they'd know about it and a new server would quietly come into being.

Meanwhile, Robert and I kept putting information on the info.cern.ch server, constantly upgrading the basic guide to newcomers on how to get onto the Web, with specifications and pointers to available software.

I continued to try to get other organizations to turn their hypertext systems into Web clients. I found out about a powerful SGML tool called Grif, developed by a research group at the French lab INRIA, which ran on Unix machines and PCs. A company by the same name, Grif, had since been spun off in nearby Grenoble, and I was hopeful its leaders would entertain the idea of developing a Web browser that could also edit. They had a beautiful and sophisticated hypertext editor; it would do graphics, it would do text in multiple fonts, it would display the SGML structure and the formatted document in two separate windows, and allow changes to be made in either. It was a perfect match.

The only thing missing was that it didn't run on the Internet. Same story.

I tried to persuade the people at Grif to add the software needed for sending and receiving files over the Internet, so their editor could become a Web browser, too. I told them I would give them the software outright; they would just have to hook it in. But they said the only way they would do that was if we could get the European Commission to fund the development. They didn't want to risk taking the time. I was extremely frustrated. There was a growing group of people who were excited about the possibilities of the World Wide Web, and here we had the technology for a true hypertext browser/editor mostly developed, and we couldn't bridge the gap. Getting Commission funding would have put eighteen months into the loop immediately. This mind-set, I thought, was disappointingly different from the more American entrepreneurial attitude of developing something in the garage for fun and worrying about funding it when it worked!

In March 1991, I released the WorldWideWeb program to a limited number of CERN people who had NeXT computers. This would at least allow them to write their own hypertext and make the Web information that Robert and I were putting on info.cern.ch available to them.

Word spread within the high-energy physics community, furthered by the cross-pollinating influence of travel. In May 1991 Paul Kunz arrived for a visit from the Stanford Linear Accelerator (SLAC) in Palo Alto. Like me, he was an early NeXT enthusiast, and he had come to CERN to work on some common NeXT programs. Since he had the right computer, he was in a position to use the Web directly, and he loved it.

When Paul returned to SLAC he shared the Web with Louise Addis, the librarian who oversaw all the material produced by SLAC. She saw it as a godsend for their rather sophisticated but mainframe-bound library system, and a way to make SLAC's substantial internal catalogue of online documents available to