Espaces préhilbertiens réels

Produits scalaires

Solution 1

1. Prouvons que $\langle \cdot | \cdot \rangle$ définit un produit scalaire.

- $\langle\cdot|\cdot\rangle$ est bilinéaire par bilinéarité du produit sur $\mathbb R$ et par linéarité de l'évaluation.
- $\langle \cdot | \cdot \rangle$ est symétrique par commutativité du produit sur \mathbb{R} .
- Soit $P \in E$. On a

$$\langle P|P\rangle = P^2(x_0) + ... + P^2(x_n) \ge 0,$$

la forme bilinéaire $\langle \cdot | \cdot \rangle$ est donc positive.

• Soit P ∈ E. Puisqu'une somme de réels positifs est nulle si et seulement si tous les termes sont nuls, on a

$$\langle \mathbf{P}|\mathbf{P}\rangle = \mathbf{P}^2(x_0) + \dots + \mathbf{P}^2(x_n) = 0$$

si et seulement si x_0, \dots, x_n sont racines de P. Puisque P est de degré inférieur à n et que les x_k sont deux à deux distincts , cette condition est équivalente à P=0. La forme bilinéaire $\langle\cdot|\cdot\rangle$ est donc définie.

- **2.** Prouvons que $\langle \cdot | \cdot \rangle$ définit un produit scalaire.
 - ⟨·|·⟩ est bilinéaire par bilinéarité du produit sur ℝ, par linéarité de la dérivation des polynômes et par linéarité de l'évaluation.
 - $\langle \cdot | \cdot \rangle$ est symétrique par commutativité du produit sur \mathbb{R} .
 - Soit $P \in E$. On a

$$\langle P|P\rangle = P^2(a_0) + ... + (P^{(n)})^2(a_n) \ge 0,$$

la forme bilinéaire $\langle \cdot | \cdot \rangle$ est donc positive.

• Soit $P \in E$ tel que

$$\langle P|P\rangle = P^2(a_0) + \dots + (P^{(n)})^2(a_n) = 0.$$

Puisqu'une somme de réels positifs est nulle si et seulement si tous les réels sont nuls, on a $(P^{(n)})^2(a_n) = 0$. Puisque P est de degré inférieur à n, $P^{(n)}$ est une constante, qui est donc nulle d'après l'égalité précédente. P est donc de degré inférieur à n-1, et puisque

$$(P^{(n-1)})^2(a_{n-1}) = 0,$$

on en déduit que la constante $P^{(n-1)}$ est nulle et donc que P est de degré inférieur à n-2. Par une récurrence descendante immédiate, on prouve que P=0. La forme bilinéaire $\langle\cdot|\cdot\rangle$ est donc définie.

- **3.** Prouvons que $\langle \cdot | \cdot \rangle$ définit un produit scalaire sur E.
 - L'application ⟨·|·⟩ est bilinéaire par linéarité du produit sur ℝ, de l'évaluation et de l'intégrale.
 - La forme bilinéaire $\langle \cdot | \cdot, \rangle$ est symétrique car le produit sur $\mathbb R$ est commutatif.
 - Soit $P \in E$. Par positivité de l'intégrale , on a

$$\langle \mathbf{P}|\mathbf{P}\rangle = \int_0^1 \mathbf{P}(t)^2 dt \geqslant 0.$$

La forme bilinéaire $\langle \cdot | \cdot \rangle$ est donc positive.

• Reprenons les notations précédentes. Puisque qu'une somme de réels positifs est nulle si et seulement si tous les termes sont nuls, l'égalité $\langle P|P\rangle = 0$ est équivalente à

$$\int_0^1 \mathbf{P}^2(t)dt = 0.$$

La fonction P^2 étant continue et positive, la condition est équivalente à P = 0. La forme bilinéaire $\langle l \rangle$ est donc définie.

4. Prouvons que $(\cdot|\cdot)$ définit un produit scalaire sur E.

• Soient A, B, $C \in E$ et $\lambda \in \mathbb{R}$. On a

$$\begin{split} \langle A|\lambda B + C \rangle &= tr(A^{\mathsf{T}}(\lambda B + C)) = tr(\lambda A^{\mathsf{T}}B + A^{\mathsf{T}}C) \\ &\quad (\text{par lin\'earit\'e de la transposition}) \\ &= \lambda tr(A^{\mathsf{T}}B) + tr(A^{\mathsf{T}}C) \\ &\quad (\text{par lin\'earit\'e de la trace}) \\ &= \lambda \langle A|B \rangle + \langle A|C \rangle \end{split}$$

L'application $(\cdot|\cdot)$ est donc linéaire à droite.

• Soient A, B \in E. On a

$$\langle B|A\rangle = tr(B^{\mathsf{T}}A) = tr((A^{\mathsf{T}}B)^{\mathsf{T}}) = tr(A^{\mathsf{T}}B) = \langle A|B\rangle$$

L'application $\langle \cdot | \cdot \rangle$ est symétrique donc linéaire à gauche puisqu'elle est linéaire à droite.

• Pour tout A = $(a_{i,j})_{1 \le i,j \le n}$ et tout indice $1 \le i \le n$,

$$(A^{\mathsf{T}}A)_{i,i} = \sum_{k=1}^{n} a_{k,i}^{2}.$$

On a donc

$$\langle \mathbf{A}|\mathbf{A}\rangle = \sum_{i=1}^{n} \sum_{k=1}^{n} \alpha_{k,i}^2 \geqslant 0.$$

La forme bilinéaire $\langle \cdot | \cdot \rangle$ est donc positive.

- Puisque sur \mathbb{R} , une somme de carrés est nulle si et seulement si tous les carrés sont nuls, on a, d'après le calcul précédent, $\langle A|A\rangle=0$ si et seulement si $\forall 1\leqslant k,i\leqslant n,\,a_{k,i}=0$, ie A=0. La forme bilinéaire $\langle\cdot|\cdot\rangle$ est donc définie.
- **5.** Prouvons que $\langle \cdot | \cdot \rangle$ définit un produit scalaire sur E.
 - L'application (·|·) est bilinéaire par linéarité du produit sur ℝ, de la dérivation et de l'intégrale.
 - La forme bilinéaire $\langle \cdot | \cdot \rangle$ est symétrique car le produit sur \mathbb{R} est commutatif.
 - Soit $f \in E$. Par positivité de l'intégrale, on a

$$(f|f) = f(1)^2 + \int_0^1 f'(t)^2 dt \ge 0.$$

La forme bilinéaire $\langle | \rangle$ est donc positive.

• Reprenons les notations précédentes. Puisque qu'une somme de réels positifs est nulle si et seulement si tous les termes sont nuls, l'égalité $\langle f|f\rangle=0$ implique

$$f(1) = 0$$
 et $\int_0^1 f'^2(t)dt = 0$.

La fonction f'^2 étant continue et positive, la deuxième condition est équivalente à f'=0, la fonction f est donc constante et finalement nulle puisque f(1)=0. La forme bilinéaire $\langle\cdot|\cdot\rangle$ est donc définie.

- **6.** Prouvons que $\langle \cdot | \cdot \rangle$ est une forme bilinéaire symétrique définie positive sur E.
 - Symétrie: pour tous f et g dans E, on a

$$\langle f|g\rangle = \int_0^1 (f(t)g(t) + f'(t)g'(t))dt$$
$$= \int_0^1 (g(t)f(t) + g'(t)f'(t))dt$$
$$= \langle g|f\rangle$$

par commutativité du produit sur le corps $(\mathbb{R}, +, \times)$.

• Linéarité : pour tous f, g et h dans E et $\lambda \in \mathbb{R}$, on a

$$\langle f + \lambda g | h \rangle = \int_0^1 ((f + \lambda g)(t)h(t) + (f + \lambda g)'(t)h'(t))dt$$

$$= \int_0^1 (f(t)h(t) + \lambda g(t)h(t) + f'(t)h'(t)$$

$$+ \lambda g'(t)h'(t))$$

$$= \int_0^1 (f(t)h(t) + f'(t)h'(t))dt$$

$$+ \lambda \int_0^1 (g(t)h(t) + g'(t)h'(t))dt$$

$$= \langle f | h \rangle + \lambda \langle g | h \rangle$$

par linéarité de la dérivation, de l'évaluation et de l'intégrale. Ainsi, $\langle \cdot | \cdot \rangle$ est linéaire à gauche donc bilinéaire sur E par symétrie.

• Positivité : pour tout f dans E, on a

$$\langle f|f \rangle = \int_0^1 (f^2(t) + (f')^2(t))dt \ge 0$$

par positivité de l'intégrale puisque $f^2 + (f')^2 \ge 0$.

• Caractère défini : pour tout f dans E, on a

$$\langle f|f\rangle = \int_0^1 (f^2(t) + (f')^2(t))dt = 0$$

si et seulement si $f^2 + (f')^2 = 0$ car l'intégrale sur un segment d'une fonction continue et positive est nulle si et seulement si cette fonction est nulle. Ceci équivaut à

$$f^2 = (f')^2 = 0$$

ie f = 0.

Inégalités

Solution 2

- **1.** Prouvons que $\langle \cdot | \cdot \rangle$ définit un produit scalaire sur E.
 - L'application $(\cdot|\cdot)$ est bilinéaire par linéarité du produit sur \mathbb{R} , de la dérivation et de l'intégrale.
 - La forme bilinéaire $\langle \cdot | \cdot \rangle$ est symétrique car le produit sur \mathbb{R} est commutatif.
 - Soit $f \in E$. Par positivité de l'intégrale, on a

$$(f|f) = f(1)^2 + \int_0^1 f'(t)^2 dt \ge 0.$$

La forme bilinéaire (|) est donc positive.

• Reprenons les notations précédentes. Puisque qu'une somme de réels positifs est nulle si et seulement si tous les termes sont nuls, l'égalité $\langle f|f\rangle=0$ implique

f(1) = 0 et $\int_0^1 f'^2(t)dt = 0$.

La fonction f'^2 étant continue et positive, la deuxième condition est équivalente à f'=0, la fonction f est donc constante et finalement nulle puisque f(1)=0. La forme bilinéaire $\langle\cdot|\cdot\rangle$ est donc définie.

2. Appliquons l'inégalité de Cauchy-Schwarz aux fonctions de E définies par

$$f \in E, g : t \in [0,1] \longmapsto t.$$

Puisque

$$\langle f|g\rangle = f(1) + \int_0^1 f'(t)dt,$$

puis

$$||f||^2 = f^2(1) + \int_0^1 f^2(t)dt$$

et finalement

$$||g||^2 = 1 + 1 = 2,$$

l'inégalité s'écrit

$$\left(f(1) + \int_0^1 f'(t)dt\right)^2 \le 2\left(f^2(1) + \int_0^1 f'^2(t)dt\right).$$

Solution 3

1. D'une part, on a:

$$\begin{split} \|f(x) - f(y)\|^2 &= \langle f(x) - f(y), f(x) - f(y) \rangle \\ &= \|f(x)\|^2 - 2\langle f(x), f(y) \rangle + \|f(y)\|^2 \\ &= \frac{1}{\|x\|^2} - 2\frac{\langle x, y \rangle}{\|x\| \|y\|} + \frac{1}{\|y\|^2}. \end{split}$$

D'autre part on a :

$$\begin{split} \left(\frac{\|x-y\|}{\|x\|\|y\|}\right)^2 &= \frac{\|x^2\| - 2\langle x, y \rangle + \|y\|^2}{\|x\|^2 \|y\|^2} \\ &= \frac{1}{\|y\|^2} - 2\frac{\langle x, y \rangle}{\|x\|\|y\|} + \frac{1}{\|x\|^2}. \end{split}$$

D'où la conclusion.

2. Remarquons tout d'abord que l'inégalité est évidente si deux des vecteurs *a*, *b*, *c*, *d* sont égaux. On les suppose maintenant deux à deux distincts. Soient *x*, *y*, *z* ∈ E \ {0}. L'inégalité triangulaire donne

$$||f(x) - f(y)|| \le ||f(x) - f(z)|| + ||f(z) - f(y)||$$

qui devient en utilisant la première question :

$$\frac{\|x-y\|}{\|x\|\|y\|} \leq \frac{\|x-z\|}{\|x\|\|z\|} + \frac{\|z-y\|}{\|z\|\|y\|}.$$

En multipliant par ||x|| ||y|| ||z||, on obtient :

$$||z|||x - y|| \le ||y||||x - z|| + ||x||||z - y||.$$

En posant x = b - a, y = d - a et z = c - a, on obtient le résultat voulu.

Solution 4

Si la famille (x_1, \dots, x_n) est liée, alors $\det_{\mathcal{B}}(x_1, \dots, x_n) = 0$ et l'inégalité est trivialement vérifiée.

Sinon, on peut orthonormaliser la famille (x_1, \dots, x_n) en une base orthonormale $\mathcal{B}' = (e_1, \dots, e_n)$ de E. Notons M la matrice de (x_1, \dots, x_n) dans la base \mathcal{B} , Q la matrice de passage de la base \mathcal{B} vers la base \mathcal{B}' et R la matrice de (x_1, \dots, x_n) dans la base \mathcal{B}' . On a donc M = QR puis $\det_{\mathcal{B}}(x_1, \dots, x_n) = \det(M) = \det(Q) \det(R)$. Puisque \mathcal{B} et \mathcal{B}' sont des bases orthonormales, Q est orthogonale et donc $\det(Q) = \pm 1$. De plus,

par procédé de Gram-Schmidt, la matrice R est triangulaire supérieure et ses coefficients diagonaux sont $\langle x_1, e_1 \rangle, ..., \langle x_n, e_n \rangle$. On en déduit que

$$\det_{\mathcal{B}}(x_1, \dots, x_n) = \prod_{i=1}^n \langle x_i, e_i \rangle$$

puis par inégalité de Cauchy-Schwarz

$$\det_{\mathcal{B}}(x_1, \dots, x_n) \le \prod_{i=1}^n \|x_i\| \|e_i\| = \prod_{i=1}^n \|x_i\|$$

Solution 5

En appliquant l'inégalité de Cauchy-Schwarz aux

$$a_k = 1 \quad , \quad b_k = \frac{1}{k},$$

on obtient

$$\sum_{k=1}^{n} \frac{1}{k} \leq \sqrt{\sum_{k=1}^{n} 1^2} \sqrt{\sum_{k=1}^{n} \frac{1}{k^2}},$$

d'où, en élevant au carré,

$$\left(\sum_{k=1}^n \frac{1}{k}\right)^2 \leqslant n \sum_{k=1}^n \frac{1}{k^2}.$$

Solution 6

En appliquant l'inégalité de Cauchy-Schwarz aux

$$a_k = \sqrt{x_k} \ , \ b_k = \frac{1}{\sqrt{x_k}},$$

on aboutit à

$$\sum_{k=1}^{n} 1 \le \sqrt{\sum_{k=1}^{n} x_k} \sqrt{\sum_{k=1}^{n} \frac{1}{x_k}},$$

d'où, en élevant au carré,

$$n^2 \leqslant \left(\sum_{k=1}^n x_k\right) \left(\sum_{k=1}^n \frac{1}{x_k}\right).$$

Solution 7

En appliquant l'inégalité de Cauchy-Schwarz aux réels

$$a_k = \sqrt{k}$$
, $b_k = \frac{\sqrt{k}}{n-k}$, $1 \le k \le n-1$,

on aboutit à

$$\sum_{k=1}^{n-1} \frac{k}{n-k} \leqslant \sqrt{\sum_{k=1}^{n-1} k} \sqrt{\sum_{k=1}^{n-1} \frac{k}{(n-k)^2}},$$

d'où, en élevant au carré,

$$\left(\sum_{k=1}^{n-1} \frac{k}{n-k}\right)^2 \leqslant \frac{n(n-1)}{2} \sum_{k=1}^{n-1} \frac{k}{(n-k)^2}$$

d'où le résultat.

Solution 8

D'après-Cauchy-Schwarz,

$$\int_a^b f(x)dx \int_a^b \frac{dx}{f(x)} \ge \left(\int_a^b \sqrt{f(x)} \frac{1}{\sqrt{f(x)}} dx\right)^2 = (b-a)^2$$

Donc la borne inférieure de l'énoncé existe. Elle est atteint si \sqrt{f} et $\frac{1}{\sqrt{f}}$ sont colinéaires : il suffit par exemple de prendre f=1 sur [a,b].

Solution 9

On a

$$\forall t \in [a, b], \ f(t) = \int_a^t f'(u)du.$$

Appliquons alors l'inégalité de Cauchy-Schwarz. On obtient

$$f^{2}(t) \leqslant \left(\int_{a}^{t} du\right) \left(\int_{a}^{t} f'^{2}(u) du\right),$$

soit

$$f^2(t) \leqslant (t-a) \int_a^t f'^2(u) du.$$

Comme $f'^2 \geqslant 0$ et $a \leqslant t \leqslant b$, on a

$$\int_{a}^{t} f'^{2}(u) du \leqslant \int_{a}^{b} f'^{2}(u) du$$

d'où

$$\forall t \in [a, b], \ f^2(t) \le (t - a) \int_a^b f'^2(u) du,$$

puis, par positivité de l'intégrale,

$$\int_a^b f^2(t)dt \leqslant \left(\int_a^b (t-a)dt\right)\int_a^b f'^2(u)du$$

et donc

$$\int_a^b f^2(u)du \leqslant \frac{(b-a)^2}{2} \int_a^b f^{'2}(u)du.$$

Bases orthonormales

Solution 10

- 1. Soit u l'endomorphisme de E tel que $u(\mathcal{B}) = \mathcal{B}'$. u transforme une base orthonormée directe en une base orthonormée directe donc u est une isométrie vectorielle directe donc det(u) = 1. Or $det(u) = det_{\mathcal{B}}(\mathcal{B}')$.
- **2.** On a $\det_{\mathcal{B}'} = \det_{\mathcal{B}}(\mathcal{B}') \det_{\mathcal{B}}$. Donc $\det_{\mathcal{B}'} = \det_{\mathcal{B}}$.

Remarque. On en déduit que le déterminant dans une base orthonormée directe ne dépend pas du choix de cette base. Le déterminant de n vecteurs u_1, \ldots, u_n dans une base orthonormée quelconque s'appelle le *produit mixte* de ces vecteurs et est noté $[x_1, \ldots, x_n]$.

- 3. Cette application est linéaire car le déterminant est linéaire par rapport à chacune de ses variables et notamment par rapport à la dernière. De plus, elle est à valeurs dans R. C'est donc une forme linéaire.
- 4. C'est tout simplement le théorème de Riesz.
- 5. Démontrons simplement la linéarité par rapport à la première variable. Soient $x_1, \ldots, x_{n-1} \in E, x_1' \in E$ et $\lambda, \mu \in \mathbb{R}$. Pour tout $x \in E$,

$$\det_{\mathcal{B}}(\lambda x_1 + \mu x_1', x_2, \dots, x_n) = \lambda \det_{\mathcal{B}}(x_1, x_2, \dots, x_n) + \mu \det_{\mathcal{B}}(x_1', x_2, \dots, x_n)$$

Notons $u = (\lambda x_1 + \mu x_1') \wedge x_2 \wedge ... \wedge x_{n-1}, \ v = x_1 \wedge x_2 \wedge ... \wedge x_{n-1}$ et $w = x_1' \wedge x_2 \wedge ... \wedge x_{n-1}$. Ainsi pour tout $x \in E$, $\langle u, x \rangle = \lambda \langle v, x \rangle + \mu \langle w, x \rangle$ i.e. $\langle u - (\lambda v + \mu w), x \rangle = 0$. Donc $u - (\lambda v + \mu w) \in E^{\perp} = \{0\}$. On a donc $u = \lambda v + \mu w$, ce qui prouve bien la linéarité par rapport à la première variable. La linéarité par rapport aux autres variables se traite de la même manière.

Soient $x_1, \dots, x_{n-1} \in E$ tels que deux vecteurs parmi ceux-ci soient égaux. On a donc $\det(x_1, \dots, x_{n-1}, x) = 0$ pour tout $x \in E$ puisque le déterminant est une forme multilinéaire alternée. Ceci signifie que $\langle x_1 \wedge \dots \wedge x_{n-1}, x \rangle = 0$ pour tout $x \in E$. Ainsi $x_1 \wedge \dots \wedge x_{n-1} = 0$. L'application de l'énoncé est bien alternée.

Solution 11

1. L'application $\langle .,. \rangle$ est clairement symétrique. Elle est bilinéaire puisque la dérivation et l'évaluation en a sont linéaires. Elle est évidemment positive. Soit enfin $P \in \mathbb{R}_n[X]$ tel que $\langle P, P \rangle = 0$. On a donc $P(a) = P'(a) = \cdots = P^{(n)}(a) = 0$. Ainsi a est une racine d'ordre au moins n+1 de P et deg $P \le n$ donc P=0.

2. La famille $((X - a)^k)_{0 \le k \le n}$ est clairement orthonormée. Puisqu'elle contient n + 1 éléments et que dim $\mathbb{R}_n[X] = n + 1$, c'est une base.

Solution 12

1. En développant $||x + y||^2$, on prouve sans peine que

$$\langle x|y\rangle = \frac{\|x+y\|^2 - \|x\|^2 - \|y\|^2}{2},$$

et l'on en déduit que

$$\forall (x, y) \in E^2, \ \langle x|y\rangle = \sum_{i=1}^n \langle x|e_i\rangle\langle y|e_i\rangle.$$

2. Soit $x \in E$. Posons

$$z = x - \sum_{i=1}^{n} \langle x | e_i \rangle e_i.$$

On a

$$\begin{split} \|z\|^2 &= \sum_{k=1}^n \langle z|e_k\rangle^2 = \sum_{k=1}^n \left\langle x - \sum_{i=1}^n \langle x|e_i\rangle e_i \middle| e_k \right\rangle^2 = \sum_{k=1}^n \left(\langle x|e_k\rangle - \sum_{i=1}^n \langle x|e_i\rangle \langle e_k|e_i\rangle \right)^2 \\ &= \sum_{k=1}^n (\langle x|e_k\rangle - \langle x|e_k\rangle)^2 = 0 \end{split}$$

Ainsi z = 0, cqfd.

3. D'après la question précédente, la famille (e_k)_{1≤k≤n} est génératrice de E. Comme n = dim(E), cette famille est une base de E. Pour tout 1 ≤ k ≤ n, on a

$$e_k = \sum_{i=1}^n \langle e_k | e_i \rangle e_i.$$

Ainsi, par identification des coordonées dans la base (e_1, \dots, e_n) ,

$$\forall 1 \leq i \leq n, \langle e_k | e_i \rangle = \delta_{k,i}.$$

Comme cela est valable pour tout $1 \le k \le n$, on en déduit que la famille (e_1, \dots, e_n) est une bon de E.

Solution 13

- **1.** Prouvons que $\langle \cdot | \cdot \rangle$ définit un produit scalaire.
 - $\langle \cdot | \cdot \rangle$ est bilinéaire par bilinéarité du produit sur $\mathbb R$ et par linéarité de l'évaluation.
 - $\langle \cdot | \cdot \rangle$ est symétrique par commutativité du produit sur \mathbb{R} .
 - Soit $P \in E$. On a $\langle P|P \rangle = P^2(-1) + P^2(0) + P^2(1) \ge 0$, la forme bilinéaire $\langle \cdot | \cdot \rangle$ est donc positive.
 - Soit P ∈ E. Puisqu'une somme de réels positifs est nulle si et seulement si tous les termes sont nuls , on a

$$\langle P|P\rangle = P^2(-1) + P^2(0) + P^2(1) = 0$$

si et seulement si 0, 1, -1 sont racines de P. Puisque P est de degré inférieur à deux , cette condition est équivalente à P = 0. La forme bilinéaire $\langle \cdot | \cdot \rangle$ est donc définie.

- 2. Orthonormalisons la base canonique de E par le procédé de Gram-Schmidt.
 - Première étape. On pose

$$\Gamma_1 = \frac{1}{\|1\|} = \frac{1}{\sqrt{3}}.$$

• Deuxième étape. Notons p_1 la projection orthogonale sur $\text{vect}(\Gamma_1)$. Posons $n_1 = X - p_1(X)$. On a

$$n_1 = X - \langle X | \Gamma_1 \rangle \Gamma_1 = X - 0\Gamma_1 = X$$

Puisque $||n_1|| = \sqrt{2}$, on complète (Γ_1) par

$$\Gamma_2 = \frac{n_1}{\|n_1\|} = \frac{X}{\sqrt{2}}.$$

• Troisième étape. Notons p_2 la projection orthogonale sur $\text{vect}(\Gamma_1, \Gamma_2)$. Posons $n_2 = X^2 - p_2(X^2)$. On a

$$\begin{split} n_2 &= \mathbf{X}^2 - \langle \mathbf{X}^2 | \Gamma_1 \rangle \cdot \Gamma_1 - \langle \mathbf{X}^2 | \Gamma_2 \rangle \cdot \Gamma_2 \\ &= \mathbf{X}^2 - \frac{2}{\sqrt{3}} \cdot \Gamma_1 - 0 \cdot \Gamma_2 \\ &= \mathbf{X}^2 - \frac{2}{3} \,. \end{split}$$

Puisque $||n_2|| = \sqrt{2/3}$, on complète (Γ_1, Γ_2) par

$$\Gamma_3 = \frac{n_2}{\|n_2\|} = \sqrt{3/2}(X^2 - 2/3).$$

La famille $(\Gamma_1, \Gamma_2, \Gamma_3)$ est une base orthonormée de E.

3. Posons

$$\label{eq:L1} L_{-1} = \frac{X(X-1)}{2} \ , \ L_1 = \frac{X(X+1)}{2} \ \ \text{et} \ \ L_0 = 1 - X^2.$$

Il s'agit des polynômes de Lagrange associés aux réels ± 1 et 0. Cette famille est clairement orthonormée pour le produit scalaire $\langle \cdot | \cdot \rangle$, elle est donc libre dans E qui est de dimension trois : il s'agit d'une base orthonormée de E.

Remarque. Le procédé d'orthonormalisation de Gram-Schmidt est lourd en calculs au-delà de trois vecteurs...Il faut parfois avoir un peu de culture – voire du flair! – mais surtout suivre les indications de l'énoncé pour trouver des bases orthonormées.

Sous-espaces orthogonaux

Solution 14

- **1.** Prouvons que $\langle \cdot | \cdot \rangle$ définit un produit scalaire sur E.
 - L'application $\langle \cdot | \cdot \rangle$ est bilinéaire par linéarité du produit sur \mathbb{R} , de l'évaluation et de l'intégrale.
 - La forme bilinéaire $\langle \cdot | \cdot \rangle$ est symétrique car le produit sur \mathbb{R} est commutatif.
 - Soit $f \in E$. Par positivité de l'intégrale, on a

$$\langle f|f\rangle = \int_0^1 f(t)^2 dt \geqslant 0.$$

La forme bilinéaire $\langle \cdot | \cdot \rangle$ est donc positive.

• Reprenons les notations précédentes. Puisque qu'une somme de réels positifs est nulle si et seulement si tous les termes sont nuls, l'égalité $\langle f|f\rangle=0$ est équivalente à

$$\int_0^1 f^2(t)dt = 0.$$

La fonction f^2 étant continue et positive la condition est équivalente à f = 0. La forme bilinéaire \langle , \rangle est donc définie.

- **2.** Calcul de F^{\perp} .
 - **a.** Soit $f \in F^{\perp}$. On a alors

$$\forall g \in F, \langle f|g \rangle = 0.$$

Comme $\forall g \in F$, on a $fg \in F$ (car (fg)(0) = 0), on en déduit que :

$$\forall g \in F, \langle f|fg \rangle = 0.$$

Puisque $\forall g \in F$,

$$0 = \langle f|fg \rangle = \int_0^1 f(t)f(t)g(t)dt = \int_0^1 f^2(t)g(t)dt$$
$$= \langle f^2|g \rangle$$

on a $f^2 \in F^{\perp}$.

b. Notons $g_0 : [0,1] \to \mathbb{R}$ définie par $g_0(t) = t$. On a clairement $g_0 \in F$. Ainsi, pour $f \in F^{\perp}$, on déduit de la question précédente que $\langle f^2, g_0 \rangle = 0$, i.e.

$$\int_0^1 t f^2(t) dt = 0.$$

Comme f^2g_0 est continue et positive, on en déduit que $f^2g_0=0$ et donc que :

$$\forall t \in [0,1], \ t f^2(t) = 0.$$

En particulier, f(t) = 0 pour tout $0 < t \le 1$. On en déduit que f(0) = 0 par continuité de f en 0. Ainsi f = 0, ce qui achève de prouver que $F^{\perp} = \{0\}$.

3. Non, car en dimension finie, on a $F^{\perp} = \{0\}$ si et seulement si F = E, ce qui n'est manifestement pas le cas.

Solution 15

s est clairement linéaire et $s^2 = \operatorname{Id}_{\mathcal{M}_n(\mathbb{R})}$ donc s est une symétrie. Soit $S \in \operatorname{Ker}(s - \operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})$ et $A \in \operatorname{Ker}(s + \operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})$. Ainsi $S^T = S$ et $A^T = -A$. Par conséquent $\langle S, A \rangle = \operatorname{tr}(S^T A) = \operatorname{tr}(SA)$ et $\langle A, S \rangle = \operatorname{tr}(A^T S) = -\operatorname{tr}(AS) = -\operatorname{tr}(SA)$. Donc $\langle S, A \rangle = 0$. Ceci signifie que $\operatorname{Ker}(s - \operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})$ et $\operatorname{Ker}(s + \operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})$ sont orthogonaux l'un à l'autre : s est une symétrie orthogonale.

Solution 16

1. Posons $A = \text{mat}_{\mathcal{B}}(f)$ et $\mathcal{B} = (e_1, \dots, e_n)$. Comme \mathcal{B} est une base orthonormale, pour tout $j \in [1, n]$, $f(e_j) = \sum_{i=1}^n \langle f(e_j), e_i \rangle e_i$. On en déduit que pour tout $(i, j) \in [1, n]^2$,

$$a_{ij} = \langle f(e_i), e_i \rangle = \langle e_i, f(e_i) \rangle = \langle f(e_i), e_i \rangle = a_{ii}$$

Ainsi A est symétrique.

2. Soit $x \in \text{Ker } f$ et $y \in \text{Im } f$. Il existe donc $z \in \text{E tel que } y = f(z)$. Ainsi

$$\langle x, y \rangle = \langle x, f(z) \rangle = \langle f(x), z \rangle = \langle 0_{\text{E}}, z \rangle 0$$

Ainsi Ker $f \subset (\operatorname{Im} f)^{\perp}$. De plus, $\dim(\operatorname{Im} f)^{\perp} = n - \dim \operatorname{Im} f = \dim \operatorname{Ker} f$ d'après le théorème du rang. Ainsi Ker $f = (\operatorname{Im} f)^{\perp}$.

Solution 17

1. Supposons $F \subset G$. Soit $x \in G^{\perp}$. Alors x est orthogonal à tout vecteur de G et a fortiori de F donc $x \in F^{\perp}$. Ainsi $G^{\perp} \subset F^{\perp}$. Supposons F et G de dimension finie et $G^{\perp} \subset F^{\perp}$. D'après ce qui précède, $(F^{\perp})^{\perp} \subset (G^{\perp})^{\perp}$. Mais F et G étant de dimension finie, $(F^{\perp})^{\perp} = F$ et $(G^{\perp})^{\perp} = G$.

2. On sait que $F \subset F + G$ donc $(F + G)^{\perp} \subset F^{\perp}$ d'après la question précédente. De même, $G \subset F + G$ donc $(F + G)^{\perp} \subset G^{\perp}$. Ainsi $(F + G)^{\perp} \subset F^{\perp} \cap G^{\perp}$.

Soit $x \in F^{\perp} \cap G^{\perp}$. Soit $y \in F + G$. Il existe donc $(u, v) \in F \times G$ tel que y = u + v. Alors $\langle x, y \rangle = \langle x, u \rangle + \langle x, v \rangle$. Or $x \in F^{\perp}$ et $u \in F$ donc $\langle x, u \rangle = 0$. De même, $x \in G^{\perp}$ et $v \in G$ donc $\langle x, v \rangle = 0$. Ainsi $\langle x, y \rangle = 0$. Ceci étant vrai pour tout $y \in F + G$, $x \in (F + G)^{\perp}$. D'où $F^{\perp} \cap G^{\perp} \subset (F + G)^{\perp}$.

Par double inclusion, $(F + G)^{\perp} = F^{\perp} \cap G^{\perp}$.

3. $F \cap G \subset F$ donc $F^{\perp} \subset (F \cap G)^{\perp}$ d'après la première question. De même, $F \cap G \subset G$ donc $G^{\perp} \subset (F \cap G)^{\perp}$. On en déduit que $F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}$.

Supposons E de dimension finie. Alors

$$\dim(F^\perp+G^\perp)=\dim F^\perp+\dim G^\perp-\dim(F^\perp\cap G^\perp)$$

Or d'après la question précédente, $F^{\perp} \cap G^{\perp} = (F + G)^{\perp}$ donc

$$\begin{split} \dim(F^{\perp}+G^{\perp}) &= \dim F^{\perp} + \dim G^{\perp} - \dim(F+G)^{\perp} \\ &= (\dim E - \dim F) + (\dim E - \dim G) - (\dim E - \dim(F+G)) \\ &= \dim E - (\dim F + \dim G - \dim(F+G)) \\ &= \dim E - \dim(F\cap G) = \dim(F\cap G)^{\perp} \end{split}$$

Puisqu'on a précédemment montré que $F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}$, on peut conclure que $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

Projecteurs orthogonaux

Solution 18

Notons p la projection orthogonale sur vect(u) et P sa matrice dans \mathcal{B} . Comme (u) est une base orthonormale de vect(u), on a, pour $x \in E$, $p(x) = \langle x, u \rangle u$. Notons X le vecteur colonne associé à un vecteur x de E. On a $PX = (U^TX)U = U(U^TX) = UU^TX$. La matrice de P dans \mathcal{B} est donc UU^t .

Solution 19

• Prouvons que $1. \Rightarrow 2$.

Lorsque p est une projection orthogonale de E, on a $\text{Im}(id_E - p) = \text{Ker}(p) = \text{Im}(p)^{\perp}$ donc, pour tout x et y dans E, $p(x) \perp y - p(y)$ ie

$$\langle p(x)|y\rangle = \langle p(x)|p(y)\rangle.$$

Cette expression étant symétrique en (x, y), on a

$$\langle p(x)|y\rangle = \langle p(x)|p(y)\rangle = \langle p(y)|p(x)\rangle = \langle p(y)|x\rangle$$

= $\langle x|p(y)\rangle$

• Prouvons que $2. \Rightarrow 3$.

Soit x dans E. Appliquons le 2. à x et y = p(x). On a

$$||p(x)||^2 = \langle p(x)|p(x)\rangle = \langle x|p(x)\rangle.$$

ainsi, d'après l'inégalité de Cauchy-Schwarz,

$$||p(x)||^2 \le ||x|| \cdot ||p(x)||.$$

Si p(x) = 0, l'inégalité 3. est banalement vérifiée. Si $p(x) \neq 0$, ||p(x)|| > 0 et en divisant membre à membre l'inégalité précédente, on aboutit à

$$||p(x)|| \leq ||x||$$
.

• Prouvons que $3. \Rightarrow 1$.

Soient $x \in \text{Im } p, y \in \text{Ker } p \text{ et } \lambda \in \mathbb{R}$. Si y = 0, alors $x \perp y$.

Supposons maintenant $y \neq 0$. D'une part,

$$||p(x + \lambda y)||^2 = ||x||^2$$

et d'autre part,

$$||x + \lambda y||^2 = ||x||^2 + 2\lambda \langle x|y \rangle + \lambda^2 ||y||^2$$

D'après 2., $2\lambda \langle x|y\rangle + \lambda^2 ||y||^2 \ge 0$ pour tout $\lambda \in \mathbb{R}$. Le discriminant de ce trinôme du second degré en λ est donc négatif, ce qui impose $\langle x|y\rangle^2 \le 0$ et donc $\langle x|y\rangle = 0$. On a donc $x \perp y$. On en déduit que Im $p \perp$ Ker p et donc que p est une projection orthogonale.

Solution 20

Commençons par établir un plan de bataille...Il nous faut calculer une base orthonormée de F afin de calculer le projecteur orthogonal *p* sur F. On commence donc par déterminer une base de F qu'il faudra ensuite orthonormaliser par le procédé de Schmidt.

• Détermination d'une base de F. Il est clair que le système d'équations définissant F est équivalent à

$$x_1 + x_3 = x_2 + x_4 = 0.$$

Un vecteur X appartient donc à F si et seulement si il est de la forme

$$X = x_1(1, 0, -1, 0) + x_2(0, 1, 0, -1)$$

où $x_1, x_2 \in \mathbb{R}$. Posons

$$u = (1, 0, -1, 0)$$
 et $v = (0, 1, 0, -1)$.

La famille (u, v) est clairement libre et génératrice de F, il s'agit d'une base de ce sous-espace de \mathbb{R}^4 .

• Détermination d'une base orthonormée de F. La base (u, v) est clairement orthogonale. Puisque l'on a $||u|| = ||v|| = \sqrt{2}$, la famille formée par

$$u' = (1/\sqrt{2}, 0, -1/\sqrt{2}, 0)$$
 et $v' = (0, 1/\sqrt{2}, 0, -1/\sqrt{2})$.

est une base orthonormée de F.

• Calcul de p. Pour tout vecteur x de E, on a

$$p(x) = (x|u')u' + (x|v')v'.$$

Ainsi, en notant $\mathcal{B} = (e_1, e_2, e_3, e_4)$ la base canonique de E, on a

$$p(e_1) = (1/2, 0, -1/2, 0)$$
, $p(e_2) = (0, 1/2, 0, -1/2)$,

puis

$$p(e_3) = (-1/2, 0, 1/2, 0)$$
 et $p(e_4) = (0, -1/2, 0, 1/2)$.

Ainsi

$$\operatorname{mat}_{\mathcal{B}}(p) = \frac{1}{2} \left(\begin{array}{cccc} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{array} \right).$$

Optimisation

Solution 21

Remarquons déjà que

$$\langle aX^2 + bX + c \mid a'X^2 + b'X + c' \rangle = aa' + bb' + cc'$$

puisque la base canonique de $\mathbb{R}_2[X]$ est orthonormale d'après l'énoncé. Pour les mêmes raisons

$$||aX^2 + bX + c||^2 = a^2 + b^2 + c^2$$

1. Pout tout $P \in E$, la formule de Taylor s'écrit

$$P = P(1) + P'(1)(X - 1) + \frac{P''(1)}{2}(X - 1)^2$$

Ainsi les polynômes $P_1 = X - 1$ et $P_2 = (X - 1)^2$ engendrent F. La famille (P_1, P_2) est clairement libre : c'est donc une base de F.

2. Première méthode

D'après le cours, la quantité $\|X - P\|$ est minimale lorsque $P = \pi_F(X)$, où π_F désigne le projecteur orthogonal sur F. Orthonormalisons la famille (P_1, P_2) par le procédé de Gram-Schmidt. Posons

$$Q_1 = \frac{P_1}{\|P_1\|} = \frac{X - 1}{\sqrt{2}}$$

Notons π_1 la projection orthogonale sur vect(P_1). Posons

$$n = (X - 1)^{2} - \pi_{1}((X - 1)^{2})$$

$$= (X - 1)^{2} - \langle (X - 1)^{2} \mid Q_{1} \rangle Q_{1}$$

$$= (X - 1)^{2} + \frac{3}{2}(X - 1)$$

$$= X^{2} - X/2 - 1/2$$

Notons ensuite

$$Q_2 = \frac{n}{\|n\|} = \sqrt{2/3}n$$

On a

$$\begin{split} \pi_{\mathrm{F}}(\mathbf{X}) &= \langle \mathbf{X} \mid \mathbf{Q}_1 \rangle \mathbf{Q}_1 + \langle \mathbf{X} \mid \mathbf{Q}_2 \rangle \mathbf{Q}_2 \\ &= \frac{\mathbf{X} - 1}{2} - \frac{1}{3} (\mathbf{X}^2 - \mathbf{X}/2 - 1/2) \\ &= -\mathbf{X}^2/3 + 2/3\mathbf{X} - 1/3 \end{split}$$

Ainsi

$$X-\pi_{\mathrm{F}}(X)=\frac{X^2+X+1}{3}$$

et

$$\delta = \|\mathbf{X} - \pi_{\mathbf{F}}(\mathbf{X})\| = \frac{1}{\sqrt{3}}$$

Deuxième méthode

On peut également remarquer que $\delta = \|\pi_{F^{\perp}}(X)\|$ où $\pi_{F^{\perp}}$ désigne le projecteur orthogonal sur F^{\perp} . En effet, F^{\perp} est une droite vectorielle et il est donc plus facile de calculer un projeté orthogonal sur F^{\perp} plutôt que sur F. Soit $Q = aX^2 + bX + c$ un vecteur directeur de F^{\perp} . Q est donc orthogonal à X - 1 et $(X - 1)^2$ ce qui donne

$$\begin{cases} b - c = 0 \\ a - 2b + c = 0 \end{cases}$$

et donc a = b = c. On peut donc prendre $Q = X^2 + X + 1$. Ainsi

$$\delta = \left| \frac{\langle Q \mid X \rangle Q}{\|Q\|} \right| = \frac{1}{\sqrt{3}}$$

Troisième méthode

Notons $Q = aX^2 + bX + c$ le projeté orthogonal de X sur F^{\perp} de sorte que $\delta = \|Q\|$. Q est orthogonal à P_1 et P_2 de sorte que

$$\begin{cases} b - c = 0 \\ a - 2b + c = 0 \end{cases}$$

et donc a = b = c. Par ailleurs, $X - Q \in F$ donc a + b + c = 1. On en déduit que $Q = \frac{X^2 + X + 1}{3}$ puis $\delta = \frac{1}{\sqrt{3}}$.

Solution 22

Soit $E = \mathcal{C}([0; \pi], \mathbb{R})$. On munit E du produit scalaire $(f, g) \mapsto \int_0^{\pi} f(x)g(x) \, dx$. On pose pour $(a, b) \in \mathbb{R}^2$

$$f_{a,b}: \left\{ \begin{array}{ccc} [0,\pi] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & ax^2 + bx \end{array} \right.$$

et

$$F = \{f_{a,b}, (a,b) \in \mathbb{R}^2\} = \text{vect}(f_1, f_2)$$

avec $f_1 = f_{0,1}$ et $f_2 = f_{1,0}$. F est un sous-espace vectoriel de E et $\phi(a,b) = \|\sin - f_{a,b}\|^2$. Le minimum de ϕ est donc atteint quand $f_{a,b}$ est la projection orthogonale de sin sur F et vaut alors $d(x, F)^2 = \|\sin - p_F(\sin)\|^2$ où p_F est la projection orthogonale sur F.

Première méthode

On utilise le procédé d'orthonormalisation de Schmidt pour orthonormaliser la famille (f_1, f_2) . On pose donc $e_1 = \frac{f_1}{\|f_1\|}$ et $e_2 = \frac{g}{\|g\|}$ avec $g = f_2 - \langle f_2, e_1 \rangle e_1$. Alors $p_F(\sin) = \langle \sin, e_1 \rangle e_1 + \langle \sin, e_2 \rangle e_2$. D'après le théorème de Pythagore,

$$\begin{split} \|\sin -p_{\mathrm{F}}(\sin)\|^2 &= \|\sin\|^2 - \|p_{\mathrm{F}}(\sin)\|^2 \\ &= \|\sin\|^2 - \langle\sin, e_1\rangle^2 - \langle\sin, e_2\rangle^2 \\ &= \|\sin\|^2 - \frac{\langle\sin, f_1\rangle^2}{\|f_1\|^2} - \frac{\langle\sin, g\rangle^2}{\|g\|^2} \\ &= \|\sin\|^2 - \frac{\langle\sin, f_1\rangle^2}{\|f_1\|^2} - \frac{(\langle\sin, f_2\rangle - \langle f_2, e_1\rangle \langle\sin, e_1\rangle)^2}{\|f_2\|^2 - \langle f_2, e_1\rangle^2} \\ &= \|\sin\|^2 - \frac{\langle\sin, f_1\rangle^2}{\|f_1\|^2} - \frac{\left(\langle\sin, f_2\rangle - \frac{\langle f_2, f_1\rangle \langle\sin, f_1\rangle}{\|f_1\|^2}\right)^2}{\|f_2\|^2 - \frac{\langle f_2, f_1\rangle \langle\sin, f_1\rangle}{\|f_1\|^2}} \\ &= \|\sin\|^2 - \frac{\langle\sin, f_1\rangle^2}{\|f_1\|^2} - \frac{\left(\|f_1\|^2 \langle\sin, f_2\rangle - \langle f_2, f_1\rangle \langle\sin, f_1\rangle\right)^2}{\|f_1\|^2 (\|f_1\|^2 \|f_2\|^2 - \langle f_2, f_1\rangle^2)} \end{split}$$

A l'aide éventuellement d'intégrations par parties, on trouve

$$\|\sin\|^2 = \frac{\pi}{2}$$

$$||f_1||^2 = \frac{\pi^3}{3}$$

$$||f_2||^2 = \frac{\pi^5}{5}$$

$$\langle f_1, f_2 \rangle = \frac{\pi^4}{4}$$

$$\langle \sin, f_1 \rangle = \pi$$

$$\|\sin\|^2 = \frac{\pi}{2} \qquad \|f_1\|^2 = \frac{\pi^3}{3} \qquad \|f_2\|^2 = \frac{\pi^5}{5} \qquad \langle f_1, f_2 \rangle = \frac{\pi^4}{4} \qquad \langle \sin, f_1 \rangle = \pi \qquad \langle \sin, f_2 \rangle = \pi^2 - 4$$

On trouve finalement

$$\min_{\mathbb{R}^2} \phi = d(x, \mathbf{F})^2 = \frac{\pi}{2} - \frac{8}{\pi} + \frac{160}{\pi^3} - \frac{1280}{\pi^5}$$

On sait qu'il existe $(a,b) \in \mathbb{R}^2$ tel que $p_F(\sin) = af_2 + bf_1$. De plus, $\sin -p_F(\sin) \in F^\perp = \operatorname{vect}(f_1,f_2)^\perp$ donc

$$\begin{cases} \langle \sin - p_{\rm F}(\sin), f_1 \rangle = 0 \\ \langle \sin - p_{\rm F}(\sin), f_2 \rangle = 0 \end{cases}$$

Ceci équivaut à

$$\begin{cases} a\langle f_2, f_1 \rangle + b \|f_1\|^2 = \langle \sin, f_1 \rangle \\ a \|f_2\|^2 + b\langle f_1, f_2 \rangle = \langle \sin, f_2 \rangle \end{cases}$$

Or on a trouvé précédemment que

$$||f_1||^2 = \frac{\pi^3}{3}$$

$$||f_2||^2 = \frac{\pi^5}{5}$$

$$||f_1||^2 = \frac{\pi^3}{3}$$
 $||f_2||^2 = \frac{\pi^5}{5}$ $\langle f_1, f_2 \rangle = \frac{\pi^4}{4}$ $\langle \sin, f_1 \rangle = \pi$ $\langle \sin, f_2 \rangle = \pi^2 - 4$

$$\langle \sin, f_1 \rangle = \pi$$

$$\langle \sin, f_2 \rangle = \pi^2 - 4$$

Ainsi

$$\begin{cases} \frac{\pi^4}{4}a + \frac{\pi^3}{3}b = \pi \\ \frac{\pi^5}{5}a + \frac{\pi^4}{4}b = \pi^2 - 4 \end{cases}$$

La résolution de ce système donne

$$a = \frac{20}{\pi^3} - \frac{320}{\pi^5} \qquad b = -\frac{12}{\pi^2} + \frac{240}{\pi^4}$$

A nouveau en vertu du théorème de Pythagore

$$\begin{split} \|\sin - p_{\mathrm{F}}(\sin)\|^2 &= \|\sin\|^2 - \|p_{\mathrm{F}}(\sin)\|^2 \\ &= \|\sin\|^2 - \|af_2 + bf_1\|^2 \\ &= \|\sin\|^2 - a^2 \|f_2\|^2 - 2ab\langle f_1, f_2\rangle - b^2 \|f_1\|^2 \\ &= \frac{\pi}{2} - \frac{8}{\pi} + \frac{160}{\pi^3} - \frac{1280}{\pi^5} \end{split}$$

Solution 23

- 1. E est une partie non vide de \mathbb{R} minorée par 0. Elle admet une borne inférieure.
- 2. Si (S) admet une solution, alors K = 0. Les pseudo-solutions de (S) sont donc les éléments X de $\mathcal{M}_{n,1}(\mathbb{R})$ tels que $\|AX B\|^2 = 0$ i.e. tels que AX B = 0. Ce sont donc les solutions de (S).

3. Première méthode

Puisque $\{AX, X \in \mathcal{M}_{n,1}(\mathbb{R})\}$ = Im A, on peut affirmer que $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si AX est la projection de B sur Im A. Or AX est la projection de B sur Im A si et seulement si AX – B est orthogonal à Im A. Or AX – B est orthogonal à Im A si et seulement si il est orthogonal à chaque colonne de A puisque les colonnes de A engendrent Im A. Ainsi $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si (\mathcal{S}) est pseudo-solution de (\mathcal{S}) est

Seconde méthode

Supposons que X soit solution de (S') i.e. $A^{T}(AX - B) = 0$. Alors pour tout $Y \in \mathcal{M}_{n,1}(\mathbb{R})$

$$\begin{split} \|AY - B\|^2 &= \|A(Y - X) + AX - B\|^2 \\ &= \|A(Y - X)\|^2 + \|AX - B\|^2 + 2\langle A(Y - X), AX - B\rangle \\ &= \|A(Y - X)\|^2 + \|AX - B\|^2 + 2(Y - X)^T A^T (AX - B) \\ &= \|A(Y - X)\|^2 + \|AX - B\|^2 \ge \|AX - B\|^2 \end{split}$$

Ainsi X est pseudo-solution de (S).

Supposons que X soit pseudo-solution de (S). Alors pour tout $\lambda \in \mathbb{R}$ et tout $Y \in \mathcal{M}_{n,1}(\mathbb{R})$,

$$||A(X + \lambda Y) - B||^2 \ge ||AX - B||^2$$

ou encore

$$\|(AX-B)+\lambda AY\|^2 \geq \|AX-B\|^2$$

ce qui donne via une identité remarquable

$$2\lambda \langle AY, AX - B \rangle + \lambda^2 ||AY||^2 \ge 0$$

Si on fixe Y, la dernière inégalité étant vraie pour tout $\lambda \in \mathbb{R}$, on a nécessairement $\langle AY, AX - B \rangle = 0$. Ainsi pour tout $Y \in \mathcal{M}_{n,1}(\mathbb{R})$, $\langle AY, AX - B \rangle = 0$ ou encore $\langle Y, A^T(AX - B) = 0$, ce qui prouve que $A^T(AX - B) = 0$ et que X est solution de (S').

- 4. Soit X ∈ Ker A. On a donc AX = 0 puis A^TAX = 0 donc X ∈ Ker A^TA. Ainsi Ker A ⊂ Ker A^TA.
 Soit maintenant X ∈ Ker A^TA. On a donc A^TAX = 0 puis X^TA^TAX = 0. Notons Y = AX. Ainsi Y^TY = 0 i.e. ||Y||² = 0 donc Y = 0 i.e. AX = 0. D'où X ∈ Ker A. Ainsi Ker A^TA ⊂ Ker A.
 Finalement, Ker A = Ker A^TA et rg A = rg A^TA via le théorème du rang.
- 5. Si rg(A) = n, alors $rg(A^TA) = n$. La matrice A^TA est une matrice carrée de taille n et de rang n le système (S') est donc de Cramer : il admet une unique solution i.e. (S) admet une unique pseudo-solution.

Solution 24

Comme E est ouvert, un minimum de f est forcément un minimum local et donc un point critique. Pour $x \in E$, $\nabla f(x) = 2\sum_{i=1}^{p} (x - x_i)$.

L'unique point critique de f sur E est donc $m=\frac{1}{p}\sum_{i=1}^p x_i$. Il suffit donc de vérifier que m est bien un minimum : il sera nécessairement unique. Pour $x\in E$

$$f(x) = \sum_{i=1}^{p} \|x - m + m - x_i\|^2$$

$$= \sum_{i=1}^{p} (\|x - m\|^2 + 2\langle x - m, m - x_i \rangle + \|m - x_i\|^2)$$

$$= p\|x - m\|^2 + f(m) + \left\langle x - m, \sum_{i=1}^{p} m - x_i \right\rangle$$

$$= p\|x - m\|^2 + f(m) \ge f(m)$$

 $\operatorname{car} \sum_{i=1}^{p} m - x_i = 0$. Ceci prouve que f atteint bien son minimum en m.

Solution 25

Pour $x \in E$,

$$f(x) = \sum_{i=1}^{p} \|x - m + m - x_i\|^2$$

$$= \sum_{i=1}^{p} (\|x - m\|^2 + 2\langle x - m, m - x_i \rangle + \|m - x_i\|^2)$$

$$= p\|x - m\|^2 + f(m) + \left\langle x - m, \sum_{i=1}^{p} m - x_i \right\rangle$$

$$= p\|x - m\|^2 + f(m) \ge f(m)$$

car $\sum_{i=1}^{p} m - x_i = 0$. Ceci prouve que f atteint bien son minimum en m.

Automorphismes orthogonaux

Solution 26

Notons

$$\vec{a} = \frac{\vec{u} + \vec{v} + \vec{w}}{\sqrt{3}}$$

un vecteur normé dirigeant l'axe de la rotation. D'après le cours, pour tout vecteur $\vec{x} \in E$,

$$f(\vec{x}) = \langle \vec{x} | \vec{a} \rangle \vec{a} + \cos\left(\frac{2\pi}{3}\right) (\vec{x} - \langle \vec{x} | \vec{a} \rangle \vec{a})$$
$$+ \sin\left(\frac{2\pi}{3}\right) \vec{a} \wedge \vec{x}$$

ie

$$f(\vec{x}) = \frac{1}{2} \langle \vec{x} | \vec{a} \rangle \vec{a} - \frac{1}{2} \vec{x} + \frac{\sqrt{3}}{2} \vec{a} \wedge \vec{x}.$$

On a donc

$$f(\vec{u}) = \vec{v}$$

puis

$$f(\vec{v}) = \vec{w}$$

et

$$f(\vec{w}) = \vec{u},$$

d'où

$$\operatorname{mat}_{\mathcal{B}}(f) = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right).$$

Remarque. L'esquisse d'un petit tétraèdre trirectangle permet de retrouver *empiriquement* le résultat démontré ci-dessus, à moins de se fendre d'une petite démonstration...

Solution 27

Puisque O(E) est un groupe, $r \circ s$ est un endomorphisme orthogonal de E. Comme

$$\det(r \circ s) = 1 \times -1 = -1,$$

 $r \circ s$ est indirect : il s'agit d'une symétrie. On a donc

$$(r \circ s)^2 = r \circ s \circ r \circ s = id_{\mathbf{E}},$$

d'où $s \circ r \circ s = r^{-1}$ et $r \circ s \circ r = s^{-1} = s$.

Solution 28

Les colonnes de la matrice M étant normées et deux à deux orthogonales, la matrice étudié est orthogonale. Une simple application de la règle de Sarrus permet de conclure que le déterminant de f vaut 1:f est donc une rotation; notons θ son angle. Déterminons son axe en résolvant le système \mathcal{S} suivant, MX = X...

$$S \sim \begin{pmatrix} -1 & 1 & \sqrt{6} \\ 1 & -1 & -\sqrt{6} \\ -\sqrt{6} & \sqrt{6} & -2 \end{pmatrix}.$$

Effectuons $L_2 \longleftarrow L_2 + L_1$, $L_3 \longleftarrow L_3 - \sqrt{6}L_1$

$$S \sim \left(\begin{array}{ccc} -1 & 1 & \sqrt{6} \\ 0 & 0 & 0 \\ 0 & 0 & -8 \end{array} \right),$$

les solutions sont donc les vecteurs colinéaires au vecteur unitaire

$$\vec{a} = \frac{e_1 + e_2}{\sqrt{2}}.$$

Le vecteur e_3 est unitaire et orthogonal à \vec{a} donc

$$\langle f(e_3)|e_3\rangle = \frac{1}{2} = \cos(\theta)$$
 et $\operatorname{Det}(a, u, f(u)) = \frac{\sqrt{3}}{2} = \sin(\theta)$,

f est donc la rotation d'axe orienté par \vec{a} et d'angle $\pi/3$.

Solution 29

• Prouvons 1) \Rightarrow 2) Soient x et y deux vecteurs non nuls de E. Comme

$$\left(\frac{x}{\|x\|} - \frac{y}{\|y\|}\right) \perp \left(\frac{x}{\|x\|} + \frac{y}{\|y\|}\right),$$

on a:

$$\left\langle \frac{x}{\|x\|} - \frac{y}{\|y\|} \middle| \frac{x}{\|x\|} + \frac{y}{\|y\|} \right\rangle = 0$$

i.e.

$$\frac{\|u(x)\|^2}{\|x\|^2} = \frac{\|u(y)\|^2}{\|y\|^2},$$

d'où, par positivité de la norme :

$$\frac{\|u(x)\|}{\|x\|} = \frac{\|u(y)\|}{\|y\|}.$$

La quantité

$$\frac{\|u(x)\|}{\|x\|}$$

est donc indépendante du vecteur $x \neq 0$. Notons-la k. On a

$$\forall x \neq 0, \ \|u(x)\| = k\|x\|.$$

Comme u(x) = 0, cette égalité est prolongeable à E :

$$\forall x \in E, \ \|u(x)\| = k\|x\|.$$

• Prouvons 2) \Rightarrow 3) Supposons que

$$\exists k \geqslant 0, \ \forall x \in E, \ \|u(x)\| = k\|x\|.$$

Si k = 0, u est la composée de n'importe quelle rotation avec l'homothétie de rapport nul. Si $k \neq 0$, alors k > 0, notons h_k l'homothétie de rapport k. On a, pour tout vecteur x de E,

$$\|((h_k)^{-1} \circ u)(x)\| = \frac{\|u(x)\|}{k} = \|x\|.$$

Ainsi l'endomorphisme $(h_k)^{-1} \circ u$ de E est une isométrie i de E et $u = h_k \circ i$.

• Prouvons 3) \Rightarrow 1) Si $u = h_k \circ i$ avec h_k homothétie de rapport $k \ge 0$ et i isométrie de E, alors, pour tous vecteurs x et y de E, on a

$$\langle u(x)|u(y)\rangle = k\langle x|y\rangle$$

et donc.

$$\langle x|y\rangle = 0 \implies \langle u(x)|u(y)\rangle = 0.$$

Solution 30

- Si H = K alors $s_H = s_K$ et s_H et s_K commutent évidemment.
- Si $H^{\perp} \subset K$, alors on a également $K^{\perp} \subset H$. Soient $a, b \in E$ tels que $H = \text{vect}(a)^{\perp}$ et $K = \text{vect}(b)^{\perp}$. On a donc $a \in K$ et $b \in H$. De plus, a et b sont orthogonaux. Enfin, $(H \cap K)^{\perp} = H^{\perp} + K^{\perp} = \text{vect}(a) \oplus \text{vect}(b)$. Soit $x \in E$. Il existe donc $u \in H \cap K$ et $\lambda, \mu \in K$ tels que $x = u + \lambda a + \mu b$. On a alors :

$$s_{H} \circ s_{K}(x) = s_{H}(u + \lambda a - \mu b) = u - \lambda a - \mu b$$

$$s_{K} \circ s_{H}(x) = s_{K}(u - \lambda a + \mu b) = u - \lambda a - \mu b$$

On a bien prouvé que s_H et s_K sommutent.

Remarque. On a même prouvé que $s_H \circ s_K = s_K \circ s_H = s_{H \cap K}$.

• Réciproquement, si s_H et s_K commutent, soit à nouvau a tel que $H = \text{vect}(a)^{\perp}$. On a donc $s_H(a) = -a$. Par conséquent, $s_H \circ s_K(a) = s_K \circ s_H(a) = -s_K(a)$. Ceci implique que $s_K(a) \in H^{\perp} = \text{vect}(a)$. Comme s_K est une isométrie, on a $s_K(a) = a$ ou $s_K(a) = -a$. Si $s_K(a) = a$ alors $a \in K$ et donc $H^{\perp} \subset K$. Si $s_K(a) = -a$ alors $a \in K^{\perp}$, c'est-à-dire que $K = \text{vect}(a)^{\perp} = H$.

Solution 31

1. Soit (i, j, k) une base orthonormée directe de E et f vérifiant la condition de l'énoncé. Alors

$$f(i) = f(j) \land f(k) \qquad \qquad f(j) = f(k) \land f(i) \qquad \qquad f(k) = f(i) \land f(j)$$

La famille (f(i), f(j), f(k)) est donc orthogonale. Par conséquent

$$||f(i)|| = ||f(j)|| ||f(k)||$$

$$||f(j)|| = ||f(k)|| ||f(i)||$$

$$||f(k)|| = ||f(i)|| ||f(j)||$$

Si l'un des vecteurs f(i), f(j), f(k) est nul alors ces 3 vecteurs sont nuls et donc f = 0. Si les 3 vecteurs sont non nuls, on tire des 3 dernières relations que :

$$||f(i)|| = ||f(j)|| = ||f(k)|| = 1$$

Comme de plus $f(i) = f(j) \land f(k)$, la famille (f(i), f(j), f(k)) est une base orthonormée directe. On a donc $f \in SO(E)$. Réciproquement, si f = 0 ou $f \in SO(E)$, alors f vérifie bien la condition de l'énoncé puisque les applications $(u, v) \mapsto f(u \land v)$ et $(u, v) \mapsto f(u) \land f(v)$ sont bilinéaires et que ces deux applications coïncident sur une base orthonormée directe. L'ensemble des endomorphismes recherché est donc $SO(E) \cup \{0\}$.

2. Tout le raisonnement précédent reste valable à l'exception près que $f(i) = -f(j) \land f(k)$ et la famille (f(i), f(j), f(k)) est donc une base orthonormée indirecte. f est donc soit l'endomorphisme nul soit une isométrie indirecte. L'ensemble recherché est donc $(O(E) \setminus SO(E)) \cup \{0\}$.

Solution 32

Notons P le plan d'équation x + 2y - 3z = 0. On a P = $\{(3z - 2y, y, z), (y, z) \in \mathbb{R}^2\}$ = vect((-2, 1, 0), (3, 0, 1)). Notons $u_1 = (-2, 1, 0)$ et $u_2 = (3, 0, 1)$. Notons s la symétrie de l'énoncé. On va déterminer les images des vecteurs de la base canonique par s. Un vecteur normal à P est $n = u_1 \wedge u_2 = (1, 2, -3)$. Le projeté orthogonal d'un vecteur u sur $P^{\perp} = \text{vect}(n)$ est donc $p(u) = \frac{\langle u, n \rangle}{\|n\|^2} n$. On a alors $s(u) = u - 2p(u) = u - 2\frac{\langle u, n \rangle}{\|n\|^2} n$. Il suffit alors d'appliquer à $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$ et $e_3 = (0, 0, 1)$. On trouve

$$s(e_1) = \frac{1}{7}(6, -2, 3)$$
 $s(e_2) = \frac{1}{7}(-2, 3, 6)$ $s(e_3) = \frac{1}{7}(3, 6, -2)$

La matrice de s dans la base canonique est donc $\frac{1}{7}$ $\begin{pmatrix} 6 & -2 & 3 \\ -2 & 3 & 6 \\ 3 & 6 & -2 \end{pmatrix}$.

Solution 33

1. Soient *s* une réflexion de E, (u, v) une base de E, et A = $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ la matrice de *s* dans la base (u, v). Recherchons l'axe de *s*.

Les vecteurs de l'axe sont les vecteurs de matrice colonne X dans la base (u, v) vérifiant AX = X. Posons $X = \begin{pmatrix} x \\ y \end{pmatrix}$. Alors

$$AX = X \iff \begin{cases} x\cos\theta + y\sin\theta = x \\ x\sin\theta - y\cos\theta = y \end{cases} \iff \begin{cases} x(\cos\theta - 1) + y\sin\theta = 0 \\ x\sin\theta - y(\cos\theta + 1) = 0 \end{cases}$$
$$\iff \begin{cases} -2x\sin^2\frac{\theta}{2} + 2y\sin\frac{\theta}{2}\cos\frac{\theta}{2} = 0 \\ 2x\sin\frac{\theta}{2}\cos\frac{\theta}{2} - 2y\cos^2\frac{\theta}{2} = 0 \end{cases} \iff x\sin\frac{\theta}{2} - y\cos\frac{\theta}{2} = 0$$

La dernière équivalence est justifiée par le fait que $\sin\frac{\theta}{2}$ et $\cos\frac{\theta}{2}$ ne peuvent être simultanément nuls. Un vecteur directeur de l'axe est donc $\cos\frac{\theta}{2}u+\sin\frac{\theta}{2}v$. On en déduit que $\frac{\theta}{2}$ est l'angle orienté de droites entre l'axe des abscisses i.e. vect(u) et l'axe de la réflexion s (modulo π puisqu'il s'agit d'un angle orienté de droites).

2. Soit s_1 et s_2 deux réflexions de E. On peut choisir une base orthonormée \mathcal{B} de E de telle sorte que la matrice de s_1 dans cette base soit $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. La matrice de s_2 dans \mathcal{B} est de la forme $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$. La matrice de s_1+s_2 dans \mathcal{B} est donc $A = \begin{pmatrix} 1+\cos \theta & \sin \theta \\ \sin \theta & -1-\cos \theta \end{pmatrix}$. s_1+s_2 est une réflexion si et seulement si la matrice A est orthogonale de déterminant -1. Ceci nous donne donc les conditions

$$\begin{cases} (1+\cos\theta)^2+\sin^2\theta=1\\ \sin^2\theta+(-1-\cos\theta)^2=1\\ (1+\cos\theta)(-1-\cos\theta)-\sin^2\theta=-1 \end{cases}$$

Un rapide calcul montre que chacune des équations de ce système équivaut à $2\cos\theta=-1$ i.e. $\theta\equiv\pm\frac{2\pi}{3}\pmod{2\pi}$. On a donc $\frac{\theta}{2}\equiv\pm\frac{\pi}{3}\pmod{\pi}$. Avec notre choix de base, l'axe de s_1 est l'axe des abscisses. A l'aide de la première question, on peut donc conclure que s_1+s_2 est une réflexion si et seulement si l'angle non orienté de droites entre l'axe de s_1 et l'axe de s_2 vaut $\frac{\pi}{3}$.

Solution 34

1. Soient $y \in \text{Im } v$ et $z \in \text{Ker } v$. Il existe donc $x \in \text{E}$ tel que y = v(x) i.e. y = x - u(x). On a également $v(z) = 0_E$ i.e. z = u(z).

$$(y|z) = (x - u(x)|z) = (x|z) - (u(x)|z) = (x|z) - (u(x)|u(z)) = 0$$

car u conserve le produit scalaire. On a donc prouvé que $\operatorname{Im} v$ et $\operatorname{Ker} v$ sont orthogonaux.

En particulier, ces deux sous-espaces vectoriels sont en somme directe. De plus, d'après le théorème du rang dim Ker $v + \dim \operatorname{Im} v = \dim E$, donc $\operatorname{Im} v$ et Ker v sont supplémentaires.

2. Une composée d'automorphismes orthogonaux est un automorphisme orthogonal.

Solution 35

- 1. L'application Φ est clairement symétrique. Elle est bilinéaire par linéarité de l'intégrale. Elle est positive par positivité de l'intégrale. Enfin, soit $f \in E$ telle que $\Phi(f, f) = 0$. On a donc $\int_0^1 f(t)^2 dt = 0$. Comme l'application f^2 est positive et continue sur [0, 1], elle est nulle sur [0, 1]. Par conséquent, f est également nulle sur [0, 1]. De plus, f est une combinaison linéaire des fonctions 1-périodiques e_1, e_2, e_3 . Donc f est aussi 1-périodique. Elle est alors nulle sur \mathbb{R} . L'application Φ est une forme bilinéaire symétrique définie positive : c'est un produit scalaire.
- 2. Les calculs sont élémentaires :

$$||e_1||^2 = 2 \int_0^1 \frac{1}{2} dt = 1$$

$$||e_2||^2 = 2 \int_0^1 \cos^2(2\pi t) dt = \int_0^1 (1 + \cos(4\pi t)) dt = 1$$

$$||e_3||^2 = 2 \int_0^1 \sin^2(2\pi t) dt = \int_0^1 (1 - \cos(4\pi t)) dt = 1$$

$$\langle e_1, e_2 \rangle = \sqrt{2} \int_0^1 \cos(2\pi t) dt = 0$$

$$\langle e_1, e_3 \rangle = \sqrt{2} \int_0^1 \sin(2\pi t) dt = 0$$

$$\langle e_2, e_3 \rangle = 2 \int_0^1 \sin(2\pi t) \cos(2\pi t) dt = \int_0^1 \sin(4\pi t) dt = 0$$

La base (e_1, e_2, e_3) est donc orthonormée.

3. a. Soient $\lambda, \mu \in \mathbb{R}$ et $f_1, f_2 \in \mathbb{E}$. $\tau_x(\lambda f_1 + \mu f_2)$ est l'application $t \mapsto (\lambda f_1 + \mu f_2)(x - t)$, c'est-à-dire l'application $t \mapsto \lambda f_1(x - t) + \mu f_2(x - t)$ i.e. l'application $\lambda \tau_x(f_1) + \mu \tau_x(f_2)$. Ainsi τ_x est linéaire. De plus, $\tau_x(e_1) = e_1$. De plus, pour $x, t \in \mathbb{R}$:

$$\cos(2\pi(x-t)) = \cos(2\pi x)\cos(2\pi t) + \sin(2\pi x)\sin(2\pi t)$$

$$\sin(2\pi(x-t)) = \sin(2\pi x)\cos(2\pi t) - \cos(2\pi x)\sin(2\pi t)$$

Autrement dit, $\tau_x(e_2) = \cos(2\pi x)e_2 + \sin(2\pi x)e_3$ et $\tau_x(e_3) = \sin(2\pi x)e_2 - \cos(2\pi x)e_3$. Donc $\tau_x(e_1)$, $\tau_x(e_2)$ et $\tau_x(e_3)$ appartiennent à vect (e_1, e_2, e_3) = E. Comme (e_1, e_2, e_3) est une famille génératrice de E, on en déduit que $\tau_x(f) \in E$ pour tout $f \in E$. Ainsi f est bien un endomorphisme de E.

- **b.** Les calculs précédents montrent que la matrice de τ_x dans la base (e_1, e_2, e_3) est $M_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(2\pi x) & \sin(2\pi x) \\ 0 & \sin(2\pi x) & -\cos(2\pi x) \end{pmatrix}$.
- c. On vérifie sans peine que M_x est orthogonale. Comme M_x est la matrice de τ_x dans une base orthonormale, on en déduit que τ_x est un automorphisme orthogonal.
- **d.** On a det M = -1 donc τ_x est une isométrie vectorielle indirecte. Comme dim E = 3, τ_x est une réflexion ou une anti-rotation.

Cherchons les vecteurs invariants par τ_x . On résout le système MX = X où $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3$.

$$MX = X \Leftrightarrow \begin{cases} x_1 = x_1 \\ x_2 \cos(2\pi x) + x_3 \sin(2\pi x) = x_2 \\ x_2 \sin(2\pi x) - x_3 \cos(2\pi x) = x_3 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_2(\cos(2\pi x) - 1) + x_3 \sin(2\pi x) = 0 \\ x_2 \sin(2\pi x) - x_3(1 + \cos(2\pi x)) = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x_2 \sin^2(\pi x) + 2x_3 \sin(\pi x) \cos(\pi x) = 0 \\ 2x_2 \sin(\pi x) \cos(\pi x) - 2x_3 \cos^2(\pi x) = 0 \end{cases}$$

$$\Leftrightarrow x_2 \sin(\pi x) - x_3 \cos(\pi x) = 0$$

Le sous-espace des vecteurs invariants par τ_x est donc le plan P_x d'équation $x_2 \sin(\pi x) - x_3 \cos(\pi x) = 0$ dans la base (e_1, e_2, e_3) . τ_x est donc une réflexion. On peut également définir P_x par $P_x = \text{vect}(e_1, \cos(\pi x)e_2 + \sin(\pi x)e_3)$.

Solution 36

Posons $g(x) = f(x) - f(0_E)$ pour tout $x \in E$. En particulier, $g(0_E) = 0 - E$. Montrons que g conserve la norme. Soit $x \in E$. Alors, d'après l'énoncé,

$$||g(x)|| = ||f(x) - f(0_{\rm E})|| = ||x - 0_{\rm E}|| = ||x||$$

Montrons que g conserve le produit scalaire. Soit $(x, y) \in E^2$. Alors

$$\langle g(x), g(y) \rangle = \frac{1}{2} (\|g(x)\|^2 + \|g(y)\|^2 - \|g(x) - g(y)\|^2)$$

$$= \frac{1}{2} (\|x\|^2 + \|y\|^2 - \|f(x) - f(y)\|^2)$$

$$= \frac{1}{2} (\|x\|^2 + \|y\|^2 - \|x - y\|^2)$$

$$= \langle x, y \rangle$$

Montrons que g est linéaire. Soient $(\lambda, \mu) \in \mathbb{R}^2$ et $(x, y) \in \mathbb{E}^2$.

$$\begin{split} \|g(\lambda x + \mu y) - \lambda g(x) - \mu g(y)\|^2 &= \|g(\lambda x + \mu y)\|^2 + \lambda^2 \|g(x)\|^2 + \mu^2 \|g(y)\|^2 \\ &- 2\lambda \langle g(\lambda x + \mu y), g(x) \rangle - 2\mu \langle g(\lambda x + \mu y), g(y) \rangle + 2\lambda \mu \langle g(x), g(y) \rangle \\ &= \|\lambda x + \mu y\|^2 + \lambda^2 \|x\|^2 + \mu^2 \|y\|^2 \\ &- 2\lambda \langle \lambda x + \mu y, x \rangle - 2\mu \langle \lambda x + \mu y, y \rangle + 2\lambda \mu \langle x, y \rangle \\ &= 0 \end{split}$$

D'où $g(\lambda x + \mu y) = \lambda g(x) + \mu g(y)$. g est donc linéaire.

g est linéaire et conserve le produit scalaire : c'est un automorphisme orthogonal. Comme $f = g + f(0_E)$, f est la composée de g par la translation de vecteur $f(0_E)$.

Solution 37

Supposons que f est une symétrie orthogonale. Alors f est un automorphisme orthogonal et donc A est orthogonale i.e. $A^TA = I_n$. De plus, f est une symétrie donc $A^2 = I_n$. On en déduit que $A^T = A$ et donc A est symétrique. Réciproquement, supposons A orthogonale et symétrique. Alors f est une automorphisme orthogonal. Or $A^TA = I_n$ et $A^T = A$ donc $A^2 = I_n$ et f est une symétrie. Il est alors classique de montrer que f est une symétrie orthogonale.

Matrices orthogonales

Solution 38

Notons C_1, \ldots, C_n les vecteurs colonnes de la matrice $|A| = (|a_{i,j}|)_{1 \le i,j \le n}$ et U le vecteur colonne de taille n dont tous les coefficients valent 1. On a

$$\sum_{1\leqslant i,j\leqslant n}|a_{i,j}|=\sum_{i=1}^n\langle \mathbf{C}_i|\mathbf{U}\rangle\leqslant \sum_{i=1}^n\|\mathbf{C}_i\|\cdot\|\mathbf{U}\|=\sum_{i=1}^n1\times\sqrt{n}=n\sqrt{n},$$

d'après l'inégalité de Cauchy-Schwarz et puisque les vecteurs C_1, \dots, C_n sont unitaires (car A est orthogonale).

Solution 39

Comme O est orthogonale, $O^TO = I_n$. On en déduit en particulier,

$$\mathbf{A}^\mathsf{T}\mathbf{A} + \mathbf{C}^\mathsf{T}\mathbf{C} = \mathbf{I}_p \qquad \qquad \mathbf{A}^\mathsf{T}\mathbf{B} + \mathbf{C}^\mathsf{T}\mathbf{D} = \mathbf{0}$$

$$\mathbf{B}^\mathsf{T}\mathbf{B} + \mathbf{D}^\mathsf{T}\mathbf{D} = \mathbf{I}_q \qquad \qquad \mathbf{B}^\mathsf{T}\mathbf{A} + \mathbf{D}^\mathsf{T}\mathbf{C} = \mathbf{0}$$

- Si $\det A = \det D = 0$, alors on a bien l'inégalité demandée.
- Si det D \neq 0, posons M = $\left(\begin{array}{c|c} A^T & C^T \\ \hline \mathbf{0} & D^T \end{array}\right)$ et N = MO = $\left(\begin{array}{c|c} I_p & \mathbf{0} \\ \hline D^TC & D^TD \end{array}\right)$. Les matrices M et N étant triangulaires par blocs, on a det M = det(A^T) det(D^T) = det A det D et det N = det I_p det(D^TD) = (det D)². De plus, det N = det(MO) = det M det O. On en déduit que (det D)² = det A det D det O. Puisque det D \neq 0, det D = det A det O et donc (det D)² = (det A)²(det O)². Or O est orthogonale donc det O = ± 1 et (det O)² = 1. On a bien l'égalité demandée.
- Si det A \neq 0, posons M = $\begin{pmatrix} A^T & \mathbf{0} \\ B^T & D^T \end{pmatrix}$ et N = MO = $\begin{pmatrix} A^TA & A^TB \\ \mathbf{0} & I_q \end{pmatrix}$. Les matrices M et N étant triangulaires par blocs, on a det M = det(A^T) det(D^T) = det A det D et det N = det(A^TA) det $I_q = (\det A)^2$. De plus, det N = det(MO) = det M det O. On en déduit que (det A)² = det A det D det O. Puisque det A \neq 0, det A = det D det O et donc (det A)² = (det D)²(det O)². On conclut comme précédemment en remarquant que (det O)² = 1.

Solution 40

On a $B = P^{-1}AP$ où P est une matrice de passage entre deux bases orthonormales. P est donc une matrice orthogonale. On a donc $P^{-1} = P^{T}$ puis $B = P^{T}AP$. Ainsi

$$tr(B^{\mathsf{T}}B) = tr(P^{\mathsf{T}}A^{\mathsf{T}}PP^{\mathsf{T}}AP = tr(P^{\mathsf{T}}A^{\mathsf{T}}AP) = tr((P^{\mathsf{T}}A^{\mathsf{T}}A)P) = tr(P(P^{\mathsf{T}}A^{\mathsf{T}}A)) = tr(A^{\mathsf{T}}A)$$

Solution 41

1. Notons $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. Alors X^TX est une matrice carrée réelle de taille 1 i.e. un réel et $X^TX = \sum_{k=1}^n x_k^2$. Ainsi $X^TX \ge 0$ puisque les x_k sont des réels et $X^TX = 0$ implique $\forall k \in [1, n], x_k = 0$ i.e. X = 0.

2. Soit $X \in \text{Ker}(I_n + M)$. On a donc $(I_n + M)X = 0$ i.e. MX = -X. Ainsi $X^TMX = -X^TX$. Mais en transposant l'égalité MX = -X, on obtient $X^TM^T = -X^T$ et donc $X^TM = X^T$ puisque $M^T = -M$. Ainsi $X^TMX = X^TX$. Par conséquent, $X^TX = -X^TX$ et donc $X^TX = 0$. D'après la question précédente, X = 0. D'où $\text{Ker}(I_n + M) = \{0\}$ et $I_n + M$ est inversible.

3. On a
$$A^{T}A = ((I_n + M)^{-1})^{T} (I_n - M)^{T} (I_n - M)(I_n + M)^{-1}$$
. Or

$$((I_n + M)^{-1})^T = ((I_n + M)^T)^{-1} = (I_n - M)^{-1}$$
 et $(I_n - M)^T = I_n + M$

Ainsi $A^T A = (I_n - M)^{-1} (I_n + M) (I_n - M) (I_n + M)^{-1}$. Or $I_n - M$ et $I_n + M$ commutent donc

$$A^{T}A = (I_n - M)^{-1}(I_n - M)(I_n + M)(I_n + M)^{-1} = I_n$$

Ainsi A est orthogonale.

Solution 42

Supposons A = 0. Alors il est clair que A = com(A) = 0.

Supposons $A \in SO(n)$. On sait que $com(A)A^T = det(A)I_n$. Puisque $A \in SO(n)$, det(A) = 1 et $A^T = A^{-1}$. Il s'ensuit que com(A) = A. Supposons maintenant A = com(A). Puisque $com(A)^TA = det(A)I_n$, $A^TA = det(A)I_n$.

- Si $\det(A) = 0$, $A^T A = 0$ et, a fortiori, $\operatorname{tr}(A^T A) = 0$ et donc A = 0 puisque $(M, N) \mapsto \operatorname{tr}(M^T N)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.
- Si $\det(A) \neq 0$, alors $\operatorname{tr}(A^T A) = \operatorname{tr}(\det(A)I_n) = n \det A$. En particulier, $\det(A) > 0$ à nouveau car $(M, N) \mapsto \operatorname{tr}(M^T N)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$. Par ailleurs, $\det(A^T A) = \det(\det(A)I_n)$ ou encore $\det(A)^2 = \det(A)^n$. Puisque $n \neq 2$ et $\det(A) > 0$, $\det(A) = 1$. Ainsi $A^T A = I_n$ et $A \in SO(n)$.

Familles de vecteurs

Solution 43

1. • Supposons que la famille $(x_1, ..., x_p)$ soit liée. Il existe donc $\lambda_1, ..., \lambda_p \in \mathbb{R}$ non tous nuls tels que $\sum_{j=1}^p \lambda_i x_i = 0_E$. On a alors pour tout $i \in [1, n]$:

$$\sum_{i=1}^{p} \lambda_j(x_i|x_j) = 0$$

Si on note $(C_1, ..., C_p)$ les colonnes de la matrice $G_p(x_1, ..., x_p)$, on a donc $\sum_{j=1}^p \lambda_j C_j = 0$. Les colonnes de la matrice $G_p(x_1, ..., x_p)$ sont liées donc det $G_p(x_1, ..., x_p) = 0$.

• Réciproquement, supposons que det G = 0. Alors les colonnes C_1, \ldots, C_p de G sont liées. Il existe donc $\lambda_1, \ldots, \lambda_p \in \mathbb{R}$ non tous nuls tels que $\sum_{i=1}^p \lambda_i C_j = 0$. On en déduit comme précédemment que pour tout $i \in [1, p]$:

$$\sum_{j=1}^{p} \lambda_j(x_i|x_j) = 0$$

Posons $z = \sum_{j=1}^p \lambda_j x_j$. L'égalité précédente signifie que $(z|x_i) = 0$ pour $1 \le i \le p$. Par linéarité, on a donc $(z|\sum_{i=1}^p \lambda_i x_i) = 0$ i.e. $||z||^2 = 0$. Donc z = 0, ce qui signifie que (x_1, \dots, x_p) est liée.

2. a. Pour $1 \le j \le p$, $x_j = \sum_{i=1}^n (x_j | e_i) e_i$ puisque \mathcal{B} est orthonormée. Donc $A = ((x_j | e_i))_{1 \le i, j \le p}$. De plus,

$$(x_i|x_j) = \sum_{k=1}^{n} (x_i|e_k)(x_j|e_k)$$

Ceci signifie que $G_p(x_1, \dots, x_p) = A^T A$.

b. On a det $G_p(x_1, \dots, x_p) = \det(A^T) \det(A) = (\det A)^2$. Comme x_1, \dots, x_p est libre, c'est une base de F et donc det $A \neq 0$. Ainsi det $G_p(x_1, \dots, x_p) > 0$.

- 3. a. Si $x \in F$, les deux déterminants sont nuls.
 - Si $x \notin F$, notons \mathcal{B} une base orthonormée de $\operatorname{vect}(x, x_1, \dots, x_p)$ et posons comme précédemment $A = \operatorname{mat}_{\mathcal{B}}(x, x_1, \dots, x_p)$. On a alors également $G_{p+1}(x, x_1, \dots, x_p) = A^T A$. Notons également $A' = \operatorname{mat}_{\mathcal{B}}(x \pi(x), x_1, \dots, x_p)$ de sorte que $G_{p+1}(x \pi(x), x_1, \dots, x_p) = (A')^T A'$.

Comme $\pi(x) \in F$ et que (x_1, \dots, x_p) est une base de F, il existe $\lambda_1, \dots, \lambda_p \in \mathbb{R}$ tel que $\pi(x) = \sum_{i=1}^p \lambda_i x_i$. Notons C, C_1, \dots, C_n les colonnes de A: la matrice A' s'obtient à partir de A en effectuant l'opération de pivot $C \leftarrow C - \sum_{i=1}^n \lambda_i C_i$. On en déduit que $\det(A') = \det(A)$ puis que $\det(G_{p+1}(x, x_1, \dots, x_p)) = \det(G_{p+1}(x, x_1, \dots, x_p))$.

b. Comme $x - \pi(x) \in F^{\perp}$, on a $x - \pi(x) \perp x_i$ pour tout $i \in [1, p]$. On en déduit que

$$G_{p+1}(x - \pi(x), x_1, \dots, x_p) = \begin{pmatrix} \|x - \pi(x)\|^2 & 0 & \dots & 0 \\ \hline 0 & & & \\ \vdots & & G_p(x_1, \dots, x_p) \\ 0 & & & \end{pmatrix}$$

On a donc det $G_{p+1}(x-\pi(x),x_1,\ldots,x_p)=\|x-\pi(x)\|^2$ det $G_p(x_1,\ldots,x_p)$. On condut en remarquant que $d(x,F)^2=\|x-\pi(x)\|^2$.

Solution 44

- **1.** On a u+v=0. Donc $\|u\|^2=-\langle u,v\rangle=-\sum_{(i,j)\in I\times J}\alpha_i\alpha_j\langle x_i,x_j\rangle$. Or pour $(i,j)\in I\times J$, $\alpha_i\alpha_j\langle x_i,x_j\rangle>0$. Ainsi si I et J sont non vides, $\|u\|^2<0$, ce qui est absurde.
- 2. Supposons que I soit non vide. Alors J est vide. On a donc v=0 puis u=0. Donc $\langle u,x_p\rangle=0$. Or $\langle u,x_p\rangle=\sum_{i\in I}\alpha_i\langle x_i,x_p\rangle$. Mais pour $i\in J$, $\alpha_i\langle x_i,x_p\rangle<0$. Comme I est non vide, $\langle u,x_p\rangle<0$. Il y a donc contradiction. Ainsi I est vide. On démontre de même que J est vide.
- 3. Comme I et J sont vides, $\alpha_i = 0$ pour tout $i \in [1, p-1]$. Ceci signifie que la famille (x_1, \dots, x_{p-1}) est libre.

Solution 45

1. On a A = $(\langle x_j, e_i \rangle)_{1 \le i \le n}$. De plus, comme \mathcal{B} est orthonormée, pour tout $(i, j) \in [1, p]^2$:

$$\langle x_i, x_j \rangle = \sum_{k=1}^n \langle x_i, e_k \rangle \langle x_j, e_k \rangle$$

Ceci signifie que $G(x_1, ..., x_p) = A^T A$.

- 2. Si $(x_1, ..., x_p)$ est liée, alors rg A < p. Par conséquent, rg $G(x_1, ..., x_p) = rg(A^T A) \le rg A < p$. Ceci signifie que $G(x_1, ..., x_p)$ est non inversible. Donc det $G(x_1, ..., x_p) = 0$. Si $(x_1, ..., x_p)$ est libre, alors A est une matrice carrée inversible. Donc det $(A) \ne 0$. Par conséquent, det $G(x_1, ..., x_p) = det(A^T A) = det(A)^2 > 0$.
- **3.** On pose x = y + z avec $y \in F$ et $z \in F^{\perp}$. On a alors :

$$\det G(x_1, ..., x_n, x) = \det G(x_1, ..., x_n, y) + \det G(x_1, ..., x_n, z)$$

Comme $y \in F$, la famille $(x_1, ..., x_p, y)$ est liée et $\det G(x_1, ..., x_p, y) = 0$. De plus, $\det G(x_1, ..., x_p, z) = ||z||^2 \det G(x_1, ..., x_p)$, le déterminant étant diagonal par blocs. On conclut en remarquant que $d(x, F)^2 = ||z||^2$.

Solution 46

1. La symétrie de φ est évidente. La bilinéarité de φ provient de la linéarité de l'intégrale. Pour $P \in \mathbb{R}_n[X]$, $\int_{-1}^1 P(t)Q(t) dt \ge 0$ donc φ est positive. Soit $P \in \mathbb{R}_n[X]$ tel que $\int_{-1}^1 P(t)Q(t) dt = 0$. Comme P^2 est continue positive qur [-1,1], on en déduit que P^2 est nulle sur [-1,1]. Le polynôme P^2 admet donc une infinité de racines : il est donc nul. Par conséquent, P est également nul. Ceci prouve que φ est définie. φ est donc un produit scalaire.

- 2. 1 et -1 sont des racines de multiplicité n de Q_n . On en déduit que $Q_n^{(k)}(-1) = Q_n^{(k)}(1) = 0$ pour k < n.
- 3. Soit $k, l \in [0, n]$ avec $k \neq l$. On peut supposer k < l. Supposons $l \geq 1$ pour se donner une idée de la marche à suivre. On utilise une intégration par parties :

$$\langle \mathbf{P}_k, \mathbf{P}_l \rangle = \int_{-1}^1 \mathbf{Q}_k^{(k)}(t) \mathbf{Q}_l^{(l)}(t) \, dt = \left[\mathbf{Q}_k^{(k)}(t) \mathbf{Q}_l^{(l-1)}(t) \right]_{-1}^1 - \int_{-1}^1 \mathbf{Q}_k^{(k+1)}(t) \mathbf{Q}_l^{(l-1)}(t) \, dt$$

Or l-1 < l donc $Q_l^{(l-1)}(-1) = Q_l^{(l-1)}(1) = 0$ d'après la question précédente. Ainsi $\langle Q_k^{(k)}, Q_l^{(l)} \rangle = -\langle Q_k^{(k+1)}, Q_l^{(l-1)} \rangle$. On peut donc prouver à l'aide d'une récurrence finie que $\langle Q_k^{(k)}, Q_l^{(l)} \rangle = (-1)^l \langle Q_k^{(k+l)}, Q_l \rangle$. Or k < l donc k+l > 2k. Puisque deg $Q_k = 2k$, $Q_k^{(k+l)} = 0$. On a donc $\langle P_k, P_l \rangle = 0$.

Les P_k sont donc orthogonaux deux à deux. La famille $(P_k)_{0 \le k \le n}$ est donc orthogonale. De plus, deg $Q_k = 2k$ donc deg $P_k = \deg Q_k^{(k)} = k$. La famille $(P_k)_{0 \le k \le n}$ est une famille de polynômes à degrés étagés : elle est donc libre. Comme elle comporte n+1 éléments et que $\dim \mathbb{R}_n[X] = n+1$, c'est une base orthogonale de $\mathbb{R}_n[X]$.

Endomorphismes remarquables

Solution 47

1. Soient $x, y, z \in E$ et $\lambda, \mu \in \mathbb{R}$.

$$\begin{split} \langle z, u(\lambda x + \mu y) \rangle &= -\langle u(z), \lambda x + \mu y \rangle & \text{par antisymétrie} \\ &= -\lambda \langle u(z), x \rangle - \mu \langle u(z), y \rangle & \text{par bilinéarité du produit scalaire} \\ &= \lambda \langle z, u(x) \rangle + \mu \langle z, u(y) \rangle & \text{par antisymétrie} \end{split}$$

On a donc $\langle z, u(\lambda x + \mu y) - \lambda u(x) - \mu(y) \rangle = 0$ pour tout $z \in E$. Comme $E^{\perp} = \{0_E\}$, $u(\lambda x + \mu y) - \lambda u(x) - \mu(y) = 0_E$. D'où la linéarité de u.

2. $(i) \Rightarrow (ii)$ Soient $x, y \in E$. Alors $\langle u(x+y), x+y \rangle = 0$. Or, par linéarité de u et bilinéarité du produit scalaire :

$$\langle u(x+y), x+y \rangle = \langle u(x), x \rangle + \langle u(x), y \rangle + \langle u(y), x \rangle + \langle u(y), y \rangle = \langle u(x), y \rangle + \langle u(y), x \rangle$$

D'où l'antisymétrie de u.

- $(ii)\Rightarrow (iii)$ On a vu dans la question précédente que u était linéaire. Soit $\mathcal{B}=(e_1,\ldots,e_n)$ une base orthonormée de E et A la matrice de u dans cette base. Comme \mathcal{B} est orthonormée, $u(e_j)=\sum_{i=1}^n \langle u(e_j),e_i\rangle e_i$ pour $1\leq j\leq n$. On en déduit que $a_{ij}=\langle u(e_j),e_i\rangle$ pour $1\leq i,j\leq n$. Or, par antisymétrie de $u,\langle u(e_j),e_i\rangle=-\langle u(e_i),e_j\rangle$ i.e. $a_{ij}=-a_{ji}$ pour $1\leq i,j\leq n$. On en déduit que A est antisymétrique.
- $(iii) \Rightarrow (i)$ u est bien linéaire par hypothèse. Soient \mathcal{B} une base orthonormale de E et A la matrice de u dans \mathcal{B} . Soit $x \in E$ et X la matrice colonne de x dans \mathcal{B} . Alors

$$\langle u(x), x \rangle = (MX)^{\mathsf{T}}X = -X^{\mathsf{T}}MX = -\langle x, u(x) \rangle$$

On en déduit que $\langle u(x), x \rangle = 0$.

3. Fixons une base orthonormée \mathcal{B} de E et considérons Φ l'isomorphisme de $\mathcal{L}(E)$ dans $\mathcal{M}_n(\mathbb{R})$ qui à un endomorphisme de E associe sa matrice dans la base \mathcal{B} . D'après la question précédente, $\Phi(A(E)) = A_n(\mathbb{R})$ où $A_n(\mathbb{R})$ est le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ constitué des matrices antisymétriques. On a donc également $A(E) = \Phi^{-1}(A_n(\mathbb{R}))$ donc A(E) est un sous-espace vectoriel de $\mathcal{L}(E)$ comme image d'un sous-espace vectoriel par une application linéaire et dim $A(E) = \dim A_n(\mathbb{R}) = \frac{n(n-1)}{2}$ car Φ est un isomorphisme.

4. Soient $x \in \text{Ker } u$ et $y \in \text{Im } u$. Il existe $z \in \text{E tel que } y = u(z)$.

$$\langle x, y \rangle = \langle x, u(z) \rangle = -\langle z, u(x) \rangle = -\langle z, 0_{\rm E} \rangle = 0$$

Ainsi $\operatorname{Im} u \subset (\operatorname{Ker} u)^{\perp}$. D'après le théorème du rang dim $\operatorname{Im} u = n - \dim \operatorname{Ker} u = \dim (\operatorname{Ker} u)^{\perp}$. Ainsi $\operatorname{Im} u = (\operatorname{Ker} u)^{\perp}$.

5. Soit F un sous-espace vectoriel stable par u. Soient $x \in F^{\perp}$. Alors, pour tout $y \in F$, $\langle u(x), y \rangle = -\langle x, u(y) \rangle = 0$ car $u(y) \in F$. Ainsi $u(x) \in F^{\perp}$, ce qui prouve que $u(F^{\perp}) \subset F^{\perp}$.

Solution 48

Soit \mathcal{B}' une base orthonormale adaptée à la décomposition en somme directe $E = \operatorname{Im} p \oplus \operatorname{Ker} p$. La matrice A' de p dans la base \mathcal{B}' est diagonale (les éléments diagonaux valent 1 ou 0). Notons P la matrice de passage de \mathcal{B} vers \mathcal{B}' . On a $A = PA'P^{-1}$. Or P est orthogonale donc $P^{-1} = P^{T}$. Ainsi $A = PA'P^{T}$ est symétrique.

Solution 49

Soit $A \in \mathcal{M}_n(\mathbb{R})$ antisymétrique. Si A est nulle, rg A = 0 et donc le rang de A est pair.

Sinon, notons u l'endomorphisme de \mathbb{R}^n canoniquement associée à A. On munit \mathbb{R}^n de son produit scalaire canonique et on se donne une base orthonormale \mathcal{B} de \mathbb{R}^n adaptée à la décomposition en somme directe $\mathbb{R}^n = S \oplus \operatorname{Ker} u$ où S est un supplémentaire de $\operatorname{Ker} u$. La matrice de

u dans cette base \mathcal{B} est de la forme $A' = \begin{pmatrix} B & 0 \\ C & 0 \end{pmatrix}$ avec B carrée de taille $p = \dim S$. Si on note P la matrice de passage de la base canonique

vers la base \mathcal{B} , P est orthogonale et $A' = P^{-1}BP = P^{\mathsf{T}}AP$. On en déduit que A' est également antisymétrique et donc B est antisymétrique et

C est nulle. On a donc $A' = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}$. On a rg A' = rg B mais comme S est un supplémentaire de Ker u, rg $A' = \dim S = p$, ce qui prouve que B est inversible. Or $\det(B^T) = \det(-B) = (-1)^p \det B$ donc p est pair sinon on aurait $\det B = 0$ et B non inversible.

Solution 50

D'après le cours sur les espaces euclidiens et le théorème du rang :

$$\dim(\operatorname{Ker}(u)^{\perp}) = \dim(\operatorname{E}) - \dim(\operatorname{Ker}(u)) = \dim(\operatorname{Im}(u)),$$

il suffit donc de prouver que

$$\operatorname{Im}(u) \subset \operatorname{Ker}(u)^{\perp}$$
.

Soit $y \in \text{Im}(u)$. Il existe $x \in E$ tel que y = u(x). Soit $x' \in \text{Ker}(u)$. On a :

$$0 = \langle u(x + x')|x + x' \rangle = \langle u(x)|x' \rangle + \langle x|u(x') \rangle$$
$$= \langle u(x)|x' \rangle + 0$$

et donc

$$\langle y|x'\rangle=0.$$

On a donc prouvé que $\operatorname{Im}(u) \subset \operatorname{Ker}(u)^{\perp}$.

Solution 51

1. L'application f est clairement un endomorphisme par linéarité à droite du produit scalaire $\langle \cdot, \cdot \rangle$. Soient x et y dans E. On a

$$\langle f(x), y \rangle = \langle \langle a, x \rangle b + \langle b, x \rangle a, y \rangle$$
$$= \langle a, x \rangle \langle b, y \rangle + \langle b, x \rangle \langle a, y \rangle$$

Comme cette expression est symétrique en (x, y), on a

$$\langle f(x), y \rangle = \langle f(y), x \rangle = \langle x, f(y) \rangle$$

par symétrie du produit scalaire $\langle \cdot, \cdot \rangle$.

2. Pour tout $x \in E$, on a $x \in Ker(f)$ si et seulement si

$$\langle a, x \rangle b + \langle b, x \rangle a = 0.$$

Comme (a, b) est libre, cela équivaut à

$$\langle a, x \rangle = \langle b, x \rangle = 0,$$

ie $x \in \text{vect}(a, b)^{\perp}$. Ainsi

$$Ker(f) = vect(a, b)^{\perp}$$

et, d'après le théorème du rang,

$$rg(f) = n - \dim(Ker(f)) = n - \dim(vect(a, b)^{\perp})$$
$$= n - (n - \dim(vect(a, b))) = \dim(vect(a, b))$$
$$= 2$$

car (a, b) est libre.

- **3.** On pose F = Im(f).
 - a. F est un sev de E en tant que noyau d'un endomorphisme de E.
 - F est stable par f: soit $y \in \text{Im}(f)$; on a alors $f(y) \in \text{Im}(f) = F$. Ainsi F est stable par f.
 - Base de F: on a clairement

$$F = Im(f) \subset vect(a, b)$$
.

Comme $\dim(F) = 2$ (d'après la question 2.), on a nécessairement

$$F = Im(f) = vect(a, b).$$

Ainsi (a, b) est une base de F car cette famille est libre.

b. Notons $\mathcal{B} = (a, b)$ et $M = \text{mat}_{\mathcal{B}}(f)$. Comme

$$\begin{cases} f(a) = \|a\|^2 b + \langle a, b \rangle a \\ f(b) = \|b\|^2 a + \langle a, b \rangle b \end{cases},$$

on a

$$\mathbf{M} = \begin{pmatrix} \langle a, b \rangle & ||b||^2 \\ ||a||^2 & \langle a, b \rangle \end{pmatrix}.$$

Solution 52

Soit

$$x \in \text{Ker}(u - id_{\text{E}}) \cap \text{Im}(u - id_{\text{E}}).$$

On a alors u(x) = x et il existe $y \in E$ tel que x = u(y) - y. Par une récurrence sans difficulté, on établit que

$$\forall n \in \mathbb{N}, \ nx = u^n(y) - y.$$

Ainsi,

$$\forall n \in \mathbb{N}^*, \ x = \frac{u^n(y) - y}{n}$$

et donc, d'après l'inégalité triangulaire,

$$\forall n \in \mathbb{N}^*, \ \|x\| \leqslant \frac{\|u^n(y)\| + \|y\|}{n}.$$

Par une récurrence immédiate, on a

$$\forall n \in \mathbb{N}, \ \|u^n(y)\| \le \|y\|$$

et ainsi

$$\forall n \in \mathbb{N}^*, \ 0 \leqslant ||x|| \leqslant \frac{2||y||}{n}.$$

En faisant tendre n vers $+\infty$, on obtient par le théorème d'encadrement, ||x|| = 0, ie x = 0. Ainsi

$$\operatorname{Ker}(u - id_{\operatorname{E}}) \cap \operatorname{Im}(u - id_{\operatorname{E}}) = \{0\}.$$

• Comme $\operatorname{Ker}(u-id_{\operatorname{E}}) \oplus \operatorname{Im}(u-id_{\operatorname{E}})$, on déduit du théorème du rang que

$$\dim(\operatorname{Ker}(u - id_{\operatorname{E}}) \oplus \operatorname{Im}(u - id_{\operatorname{E}})) = \dim(\operatorname{E})$$

et donc que

$$E = Ker(u - id_E) \oplus Im(u - id_E)$$

 $\operatorname{car} \operatorname{Ker}(u - id_{\operatorname{E}}) \oplus \operatorname{Im}(u - id_{\operatorname{E}}) \subset \operatorname{E}.$

Divers

Solution 53

La bilinéarité vient de la linéarité de la trace. De plus, pour tout M ∈ M_n(ℝ), tr(M^T) = tr(M). Par conséquent, tr(A^TB) = tr(B^TA), d'où la symétrie. De plus,

$$tr(\mathbf{A}^{\mathsf{T}}\mathbf{B}) = \sum_{1 \le i, j \le n} a_{ij} b_{ij}$$

et en particulier

$$tr(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = \sum_{1 \le i, j \le n} a_{ij}^2 \ge 0$$

Cette dernière somme ne s'annulant que si tous les a_{ij} sont nuls i.e. A = 0. L'application est donc définie positive. On vérifie sans difficulté que la base canonique de $\mathcal{M}_n(\mathbb{R})$ est orthonormée.

2. D'après l'inégalité de Cauchy-Schwarz,

$$|\operatorname{tr}(A)| = |\operatorname{tr}(I_n A)| \le ||I_n|| ||A||$$

On vérifie facilement que $\|I_n\| = \sqrt{n}$.

3. a. Soient $A \in \mathcal{A}_n(\mathbb{R})$ et $S \in \mathcal{S}_n(\mathbb{R})$.

$$(A|S) = tr(A^{\mathsf{T}}S) = -tr(AS)$$

$$(S|A) = tr(S^TA) = tr(SA)$$

Or $\operatorname{tr}(\operatorname{SA}) = \operatorname{tr}(\operatorname{AS})$ donc $(\operatorname{A}|\operatorname{S}) = 0$. Les sous-espaces vectoriels $\mathcal{A}_n(\mathbb{R})$ et $\mathcal{S}_n(\mathbb{R})$ sont donc orthogonaux. On sait également que $\mathcal{A}_n(\mathbb{R})$ et $\mathcal{S}_n(\mathbb{R})$ sont supplémentaires dans $\mathcal{A}_n(\mathbb{R})$. On en déduit donc que $\mathcal{A}_n(\mathbb{R})$ est l'orthogonal de $\mathcal{S}_n(\mathbb{R})$.

b. $d(A, S_n(\mathbb{R})) = ||A - p(A)||$ où p désigne la projection orthogonale sur $S_n(\mathbb{R})$, c'est-à-dire la projection sur $S_n(\mathbb{R})$ parallèlement à $\mathcal{A}_n(\mathbb{R})$. On trouve facilement que $p(A) = \frac{A^T + A}{2}$. Ainsi

$$\|\mathbf{A} - p(\mathbf{A})\| = \frac{1}{2} \|\mathbf{A} - \mathbf{A}^{\mathsf{T}}\| = \frac{1}{2} \sqrt{\sum_{1 \le i, j \le n} (a_{ij} - a_{ji})^2}$$

en utilisant la formule donnant le carré de la norme vue à la première question.

4. Comme $U \in \mathcal{O}_n(\mathbb{R})$, $U^TU = UU^T = I_n$.

$$\begin{aligned} \|UA\|^2 &= tr((UA)^T UA) = tr(A^T U^T UA) = tr(A^T A) = \|A\|^2 \\ \|AU\|^2 &= tr((AU)^T AU) = tr(U^T A^T AU) = tr(A^T AUU^T) = tr(A^T A) = \|A\|^2 \end{aligned}$$

5. D'après l'inégalité de Cauchy-Schwarz

$$||AB||^2 = tr(B^T A^T A B) = tr(A^T A B B^T) = tr((A^T A)^T B B^T)$$
$$= (A^T A ||BB^T|) \le ||A^T A|| ||BB^T|| = ||A^T A|| ||B^T B||$$

car $\|BB^{\mathsf{T}}\|^2 = tr(BB^{\mathsf{T}}BB^{\mathsf{T}}) = tr(B^{\mathsf{T}}BB^{\mathsf{T}}B) = \|B^{\mathsf{T}}B\|^2$. En utilisant la formule donnant le carré de la norme vue à la première question, on a :

$$\|\mathbf{A}^{\mathsf{T}}\mathbf{A}\|^2 = \sum_{1 \le i, j \le n} \left(\sum_{k=1}^n a_{ki} a_{kj}\right)^2$$

Or pour tous $i, j \in [1, n]$, on a d'après Cauchy-Schwarz dans \mathbb{R}^n ,

$$\sum_{k=1}^{n} a_{ki} a_{kj} \le \sqrt{S_i} \sqrt{S_j}$$

avec $S_i = \sum_{k=1}^n a_{ki}^2$ pour $1 \le i \le n$. Ainsi

$$\|\mathbf{A}^{\mathsf{T}}\mathbf{A}\|^{2} \le \sum_{1 \le i, j \le n} \mathbf{S}_{i} \mathbf{S}_{j} = \left(\sum_{i=1}^{n} \mathbf{S}_{i}\right) \left(\sum_{j=1}^{n} \mathbf{S}_{j}\right) = \left(\sum_{l=1}^{n} \mathbf{S}_{l}\right)^{2}$$

Par conséquent,

$$\|\mathbf{A}^{\mathsf{T}}\mathbf{A}\| \leq \sum_{1 \leq k, l \leq n} a_{kl}^2 = \|\mathbf{A}\|^2$$

On a donc également $\|B^TB\| \le \|B\|^2$, ce qui nous donne finalement l'inégalité demandée.

Solution 54

Pour simplifier, on peut supposer u_1, \ldots, u_{n+1} unitaires de sorte que pour $i, j \in [1, n+1]$ distincts, $(u_i \mid u_j) = \cos \alpha_n$.

Première méthode

Notons u_1', \dots, u_n' les projections orthogonales de u_1, \dots, u_n sur $\operatorname{vect}(u_{n+1})^{\perp}$. Pour $i \in [\![1,n]\!]$ $u_i' = u_i - (\cos \alpha_n)u_{n+1}$ et par le théorème de Pythagore, $\|u_i'\|^2 = \|u_i\|^2 - (\cos^2 \alpha_n)\|u_{n+1}\|^2 = 1 - \cos^2 \alpha_n$. Pour $i, j \in [\![1,n]\!]$ distincts

$$(u_i' \mid u_j') = (u_i \mid u_j) - \cos \alpha_n \left((u_i \mid u_{n+1}) + (u_j \mid u_{n+1}) \right) + \cos^2 \alpha_n \|u_{n+1}\|^2 = \cos \alpha_n - \cos^2 \alpha_n$$

Par conséquent,

$$\frac{(u_i' \mid u_j')}{\|u_i'\| \|u_i'\|} = \frac{\cos \alpha_n - \cos \alpha_n^2}{1 - \cos \alpha_n^2} = \frac{\cos \alpha_n}{1 + \cos \alpha_n}$$

Les vecteurs u_1', \ldots, u_n' font donc un angle constant α_{n-1} deux à deux. De plus, $\cos \alpha_{n-1} = \frac{\cos \alpha_n}{1 + \cos \alpha_n}$ i.e. $\cos \alpha_n = \frac{\cos \alpha_{n-1}}{1 - \cos \alpha_{n-1}}$. L'énoncé n'a de sens que pour $n \geq 2$. On trouve aisément $\alpha_2 = \frac{2\pi}{3}$. Posons $z_n = \frac{1}{\cos \alpha_n}$. La suite (z_n) vérifie la relation de récurrence $z_n = z_{n-1} - 1$. Puisque $z_2 = -2$, on trouve $z_n = -n$ pour tout $n \geq 2$. Ainsi $\alpha_n = \arccos\left(-\frac{1}{n}\right)$.

Deuxième méthode

Puisque dim E=n, les n+1 vecteurs u_1,\ldots,u_{n+1} forment une famille liée. Il existe donc $(\lambda_1,\ldots,\lambda_{n+1})\in\mathbb{R}^{n+1}\setminus\{(0,\ldots,0)\}$ tel que $\sum_{i=1}^{n+1}\lambda_iu_i=0_E$. Fixons $j\in[1,n+1]$. On a donc

$$\sum_{i=1}^{n+1} \lambda_i(u_i \mid u_j) = (0_{\mathbf{E}} \mid u_j) = 0$$

ou encore

$$\lambda_j + \sum_{i \neq j} \lambda_i \cos \alpha_n = 0$$

Posons $\Lambda = \sum_{i=1}^{n+1} \lambda_i$. L'égalité précédente s'écrit encore

$$\lambda_j + (\Lambda - \lambda_j) \cos \alpha_n = 0$$

ce qui équivaut à

$$\lambda_j(1-\cos\alpha_n) + \Lambda\cos\alpha_n = 0$$

En sommant ces égalités pour $i \in [1, n+1]$, on obtient

$$\Lambda(1-\cos\alpha_n) + (n+1)\Lambda\cos\alpha_n = 0$$

ou encore

$$\Lambda(1 + n\cos\alpha_n) = 0$$

Par ailleurs, il existe $j \in [1, n+1]$ tel que $\lambda_j \neq 0$ et on rapelle que $\lambda_j (1-\cos\alpha_n) + \Lambda\cos\alpha_n = 0$. Si on avait $\Lambda = 0$, on aurait donc $\cos\alpha_n = 1$, ce qui est exclu par l'énoncé. Ainsi $\Lambda \neq 0$, ce qui permet d'affirmer que $\cos\alpha_n = -\frac{1}{n}$. On cherche implicitement un angle α_n non orienté donc $\alpha_n = \arccos\left(-\frac{1}{n}\right)$.

Solution 55

Soit $X \in \text{Ker } A$. On a donc AX = 0 puis $A^TAX = 0$ donc $X \in \text{Ker } A^TA$. Ainsi $\text{Ker } A \subset \text{Ker } A^TA$.

Soit maintenant $X \in \text{Ker } A^T A$. On a donc $A^T A X = 0$ puis $X^T A^T A X = 0$. Notons Y = A X. Ainsi $Y^T Y = 0$. Or $Y^T Y$ est la somme des carrés des composantes de Y donc Y = 0 i.e. A X = 0. D'où $X \in \text{Ker } A$. Ainsi $\text{Ker } A^T A \subset \text{Ker } A$.

Finalement, $\operatorname{Ker} A = \operatorname{Ker} A^T A$ et $\operatorname{rg} A = \operatorname{rg} A^T A$ via le théorème du rang. En changeant A en A^T , on a également $\operatorname{rg} A^T = \operatorname{rg} A A^T$. Or $\operatorname{rg} A = \operatorname{rg} A^T$. Ainsi $\operatorname{rg} A^T A = \operatorname{rg} A A^T = \operatorname{rg} A$.

Solution 56

- 1. Évident.
- **2.** On va montrer que F admet pour supplémentaire la droite vectorielle $\mathbb{R}_0[X]$ dans $\mathbb{R}[X]$. Soit $P \in \mathbb{R}_0[X] \cap F$. Alors il existe $(\lambda_n) \in \mathbb{R}^{(\mathbb{N}^*)}$ tel que $P = \sum_{n=1}^{+infty} \lambda_n (1 + X^n)$. On a donc

$$P = \left(\sum_{n=1}^{+\infty} \lambda_n\right) + \sum_{n=1}^{+\infty} \lambda_n X^n$$

Mais comme deg $P \le 0$, $\lambda_n = 0$ pour tout $n \in \mathbb{N}^*$ et donc P = 0. Ainsi F et $\mathbb{R}_0[X]$ sont en somme directe.

- 3. Soit $P \in F^{\perp}$. Posons $P = \sum_{n=0}^{+\infty} a_n X^n$ avec $(a_n) \in \mathbb{R}^{(\mathbb{N})}$. Puisque $\langle P, 1 + X^n \rangle = 0$ pour tout $n \in \mathbb{N}^*$, on a $a_0 + a_n = 0$ pour tout $n \in \mathbb{N}^*$. Mais comme la suite (a_n) est nulle à partir d'un certain rang, on en déduit que $a_0 = 0$ puis que $a_n = 0$ pour tout $n \in \mathbb{N}^*$. Ainsi P = 0 puis $F^{\perp} = \{0\}$.
 - En particulier, $F \oplus F^{\perp} = F \neq \mathbb{R}[X]$ puisque F est un hyperplan de $\mathbb{R}[X]$.