Daily-Level GAM Analysis of Monarch Butterfly Abundance

Kyle Nessen

2025-09-29

Table of contents

Introduction	2
Setup	2
Data Exploration	2
Data Structure and Summary	2
Response Variable Distribution	4
Correlation Analysis	5
Response Variable Normality Assessment	8
Temperature Patterns	14
Wind and Sun Exposure	16
Data Preparation	18
Modeling Strategy	19
Model Building and Selection	20
Model Fitting	24
Model Comparison	26
Best Model Analysis	28
Effect Visualizations	29
Wind Effect Analysis	32
Temperature Effects Analysis	34
Model Diagnostics	35
Outlier Investigation	37
Sensitivity Analysis	40
Data Structure Summary	41
Alternative Model Exploration	42
	43
Export Results	46
Conclusions	17

Introduction

This analysis investigates daily-level patterns in overwintering monarch butterfly abundance using Generalized Additive Models (GAMs). Unlike the 30-minute interval analysis, this approach aggregates data to daily summaries, examining how previous day's weather conditions affect butterfly abundance. The response variable is the 95th percentile of butterfly counts, providing a robust measure of daily peak abundance while being less sensitive to outliers than the maximum.

Setup

Load libraries and data:

```
library(tidyverse)
library(mgcv)
library(lubridate)
library(plotly)
library(knitr)
library(DT)
library(here)
library(gratia)
library(patchwork)
library(corrplot)
# Load the daily lag analysis data
daily_data <- read_csv(here("data", "monarch_daily_lag_analysis.csv"))</pre>
# Create the square root transformed response variable early for use throughout
daily_data <- daily_data %>%
    mutate(
        butterfly_diff_95th_sqrt = ifelse(butterfly_diff_95th >= 0,
                                          sqrt(butterfly_diff_95th),
                                          -sqrt(-butterfly_diff_95th))
    )
```

Data Exploration

Data Structure and Summary

```
# Basic summary statistics
cat("Dataset dimensions:", nrow(daily_data), "rows x", ncol(daily_data), "columns\n")
Dataset dimensions: 103 rows x 46 columns
cat("Number of deployments:", n_distinct(daily_data$deployment_id), "\n")
Number of deployments: 7
cat("Date range:", min(daily_data$date_t), "to", max(daily_data$date_t), "\n\n")
Date range: 19680 to 19756
# Summary of key variables
summary_vars <- daily_data %>%
   select(
       butterflies_95th_percentile_t,
       butterflies_95th_percentile_t_1,
       butterfly_diff_95th,
       temp_max_t_1,
       temp_min_t_1,
       temp_at_max_count_t_1,
       wind_max_gust_t_1,
       sum_butterflies_direct_sun_t_1
summary(summary_vars)
 butterflies_95th_percentile_t butterflies_95th_percentile_t_1
 Min. : 0.00
                              Min. : 0.0
 1st Qu.: 14.85
                              1st Qu.: 17.5
 Median : 70.05
                              Median : 77.0
 Mean :107.41
                              Mean :116.3
 3rd Qu.:166.95
                              3rd Qu.:199.5
 Max. :499.00
                              Max. :499.0
 butterfly_diff_95th temp_max_t_1
                                    temp_min_t_1
                                                    temp_at_max_count_t_1
                                                    Min. : 5.00
       :-310.000
                    Min. :14.00
                                    Min. : 3.000
 Min.
 1st Qu.: -31.000
                   1st Qu.:16.00
                                    1st Qu.: 7.000
                                                    1st Qu.:11.50
```

```
Median : -2.950
                  Median :18.00
                                 Median :10.000
                                                 Median :14.00
Mean : -8.919
                  Mean :19.43
                                 Mean
                                      : 9.573
                                                 Mean
                                                       :13.37
3rd Qu.: 18.000
                  3rd Qu.:22.00
                                 3rd Qu.:12.000
                                                 3rd Qu.:15.50
Max. : 256.600
                  Max. :37.00
                                 Max.
                                        :16.000
                                                 Max.
                                                        :25.00
wind_max_gust_t_1 sum_butterflies_direct_sun_t_1
Min. :0.000
                Min. :
                           0.00
1st Qu.:2.750
                1st Qu.:
                           2.00
Median :3.750
                Median: 19.00
Mean
     :3.718
                Mean : 94.77
3rd Qu.:4.500
                3rd Qu.: 104.00
     :7.200
                Max. :1122.00
Max.
NA's
      :3
```

Response Variable Distribution

```
library(gridExtra)
# Current day's 95th percentile
p1 <- ggplot(daily_data, aes(x = butterflies_95th_percentile_t)) +
    geom_histogram(bins = 30, fill = "steelblue", alpha = 0.7) +
   labs(
        title = "Current Day: 95th Percentile Butterfly Count",
        x = "95th Percentile Count", y = "Frequency"
    ) +
    theme_minimal()
# Previous day's 95th percentile
p2 <- ggplot(daily_data, aes(x = butterflies_95th_percentile_t_1)) +
    geom_histogram(bins = 30, fill = "orange", alpha = 0.7) +
    labs(
        title = "Previous Day: 95th Percentile Butterfly Count",
        x = "95th Percentile Count", y = "Frequency"
    ) +
    theme_minimal()
# Difference in 95th percentile
p3 <- ggplot(daily_data, aes(x = butterfly_diff_95th)) +
    geom histogram(bins = 30, fill = "purple", alpha = 0.7) +
    geom vline(xintercept = 0, linetype = "dashed", color = "red") +
    labs(
```

```
title = "Change in 95th Percentile (Current - Previous)",
    x = "Difference in 95th Percentile", y = "Frequency"
) +
    theme_minimal()

# Square root transformed difference
p4 <- ggplot(daily_data, aes(x = butterfly_diff_95th_sqrt)) +
    geom_histogram(bins = 30, fill = "darkgreen", alpha = 0.7) +
    geom_vline(xintercept = 0, linetype = "dashed", color = "red") +
    labs(
        title = "Change in 95th Percentile (Square Root Transformed)",
        x = "Difference (Square Root)", y = "Frequency"
) +
    theme_minimal()

grid.arrange(p1, p2, p3, p4, ncol = 2)</pre>
```

Current Day: 95th Percentile Butter Place Qount Day: 95th Percentile

Change in 95th Percentile (Current Change in 95th Percentile (

Correlation Analysis

```
# Select model variables
model_vars <- daily_data %>%
```

```
select(
        butterfly_diff_95th_sqrt,
        butterflies_95th_percentile_t_1,
        temp_max_t_1,
        temp_min_t_1,
        temp_at_max_count_t_1,
        wind_max_gust_t_1,
        sum_butterflies_direct_sun_t_1
    ) %>%
   na.omit()
# Correlation matrix
cor_matrix <- cor(model_vars)</pre>
# Create correlation plot
corrplot(cor_matrix,
   method = "color",
   type = "upper",
   order = "hclust",
   tl.cex = 0.8,
   tl.col = "black",
   tl.srt = 45,
   addCoef.col = "black",
   number.cex = 0.6,
   title = "Correlation Matrix: Daily Model Variables"
```

COITEIAUOII MAUIX. Daily MOUEI VAIIADIES July Just Styl Dercentile edines south personines direct. r tenp min ! butterfly_diff_95th_sqrt 0.19 -0.39 -0.07 -0.11 -0.04 0.14 wind_max_gust_t_1 <mark>-0.21</mark> -0.12 <mark>-0.33</mark> 0.21 -0.12 butterflies_95th_percentile_t_1 0 sum_butterflies_direct_sun_t_1 0.02 -0.33 0.10 temp_max_t_1 0.17 0.21 temp_min_t_1 0.6

temp_at_max_count_t

Table 1: Correlation Matrix for Daily Model Variables

butterfly_diff <u>u</u> @tot	<u>llliesqr</u> 95	tht <u>emp</u> erc	centeix haptt	m ili mpt <u>a</u> lt	_mwaixa <u>dco</u> ma	us <u>ungusbutte</u> ifflies_direct_sun_
butterfly_diff_95th_1s000	-0.389	-	-	0.145	0.193	-0.072
		0.112	0.042			
$butterflies_95th_pefc369le_t_1$	1.000	-	-	-0.132	-0.211	0.442
		0.146	0.299			
$temp_max_t_1$ -0.112	-0.146	1.000	0.173	0.215	-0.334	0.016
$temp_min_t_1$ -0.042	-0.299	0.173	1.000	0.351	0.210	-0.331
$temp_at_max_count.145_1$	-0.132	0.215	0.351	1.000	-0.116	0.098
wind_max_gust_t_01193	-0.211	-	0.210	-0.116	1.000	-0.122
		0.334				
$sum_butterflies_dir \Theta c 0 72 sun_t_1$	0.442	0.016	-	0.098	-0.122	1.000
			0.331			

Response Variable Normality Assessment

```
# First, identify all potential response variables in the dataset
# Exclude already-transformed variables to prevent double-transformation
response_candidates <- daily_data %>%
    select(contains("diff"), contains("butterfly")) %>%
    select(-contains("direct_sun"), -contains("sqrt"), -contains("cbrt"), -contains("log"))    names()

cat("Available response variable candidates:\n")
```

Available response variable candidates:

```
print(response_candidates)
                           "butterfly_diff_95th" "butterfly_diff_top3"
[1] "butterfly_diff"
# Define transformations to test
transformations <- list(</pre>
    "original" = function(x) x,
    "sqrt" = function(x) ifelse(x >= 0, sqrt(x), -sqrt(-x)), # Signed square root
    "fourth_root" = function(x) ifelse(x >= 0, x^0.25, -((-x)^0.25)), # Signed fourth root
    "arcsinh" = function(x) asinh(x), # Inverse hyperbolic sine (handles negative values)
    "yeo_johnson" = function(x) {
        # Simplified Yeo-Johnson transformation
        lambda \leftarrow 0.5
        ifelse(x >= 0,
                ((x + 1)^{lambda} - 1) / lambda,
               -(((-x) + 1)^{(2-lambda)} - 1) / (2-lambda))
    }
# Function to calculate normality statistics
assess_normality <- function(x, var_name, transform_name) {
    # Remove NA values
    x_clean <- x[!is.na(x)]</pre>
    if(length(x_clean) < 10) {
```

```
return(data.frame(
        Variable = var_name,
        Transformation = transform_name,
        N = length(x_clean),
        Mean = NA,
        SD = NA,
        Skewness = NA,
        Kurtosis = NA,
        Shapiro_p = NA,
        Anderson_p = NA,
        Normality_Score = 0
    ))
}
# Calculate statistics
mean_val <- mean(x_clean)</pre>
sd_val <- sd(x_clean)</pre>
skew_val <- moments::skewness(x_clean)</pre>
kurt_val <- moments::kurtosis(x_clean) - 3 # Excess kurtosis</pre>
# Normality tests
shapiro_p <- if(length(x_clean) <= 5000) shapiro.test(x_clean)$p.value else NA
anderson_p <- tryCatch(nortest::ad.test(x_clean)$p.value, error = function(e) NA)
# Create composite normality score (higher = more normal)
# Based on: low absolute skewness, low absolute kurtosis, high p-values
skew_score <- max(0, 1 - abs(skew_val) / 2) # Penalize skewness > 2
kurt_score <- max(0, 1 - abs(kurt_val) / 4) # Penalize excess kurtosis > 4
shapiro_score <- ifelse(is.na(shapiro_p), 0.5, shapiro_p)</pre>
anderson_score <- ifelse(is.na(anderson_p), 0.5, anderson_p)</pre>
# Weighted composite score
normality_score <- (skew_score * 0.3 + kurt_score * 0.3 +</pre>
                    shapiro_score * 0.2 + anderson_score * 0.2)
return(data.frame(
    Variable = var_name,
    Transformation = transform name,
    N = length(x_clean),
    Mean = round(mean_val, 3),
    SD = round(sd_val, 3),
    Skewness = round(skew_val, 3),
```

```
Kurtosis = round(kurt_val, 3),
        Shapiro_p = ifelse(is.na(shapiro_p), NA, round(shapiro_p, 4)),
        Anderson_p = ifelse(is.na(anderson_p), NA, round(anderson_p, 4)),
        Normality_Score = round(normality_score, 4)
    ))
}
# Load required library for moments
library(moments)
# Apply transformations and assess normality for each response variable
normality_results <- list()</pre>
for(var_name in response_candidates) {
    if(var_name %in% names(daily_data)) {
        var_data <- daily_data[[var_name]]</pre>
        for(trans_name in names(transformations)) {
            trans_func <- transformations[[trans_name]]</pre>
            # Apply transformation
            transformed_data <- tryCatch(</pre>
                trans_func(var_data),
                 error = function(e) rep(NA, length(var_data))
            )
            # Assess normality
            result <- assess_normality(transformed_data, var_name, trans_name)</pre>
            normality_results[[paste(var_name, trans_name, sep = "_")]] <- result</pre>
        }
    }
}
# Combine results
normality_df <- do.call(rbind, normality_results)</pre>
# Rank by normality score
normality_ranking <- normality_df %>%
    arrange(desc(Normality_Score)) %>%
    filter(!is.na(Normality_Score)) %>%
    mutate(Rank = row_number()) %>%
    select(Rank, Variable, Transformation, N, Mean, SD, Skewness, Kurtosis,
```

```
Shapiro_p, Anderson_p, Normality_Score)

# Display top 15 most normal distributions
cat("Top 15 most normal response variable transformations:\n\n")
```

Top 15 most normal response variable transformations:

Table 2: Response variables ranked by normality (higher score = more normal)

RankVariable Transformati	Moon	SD.	Cleann	Moneta	Shanir	A molora	Mormality Score
	onean	SD	SKewi	1622/2011 (C	osisiapii	O zi ţueis	<u>шыг</u> µпаптуэсоге
butterfly_diff_95th_squtterfly_diffrt95th 103	-	7.382	0.021	-	0.6501	0.5918	0.8102
	0.809			0.467			
butterfly_diff_top23_septtterfly_diffrttop3 103	-	7.379	0.039	-	0.6273	0.5818	0.8033
	0.751			0.436			
butterfly_diff_sq2t butterfly_diffrt 103	-	8.033	0.238	-	0.6179	0.3799	0.7552
	1.148			0.117			
butterfly_diff_top33_fouttenflyroodfofirthp3rdo03	-	2.475	0.121	-	0.0000	0.0000	0.4672
	0.236			1.527			
butterfly_diff_top53_brutsierfly_daffcstoop3 103	-	4.105	0.129	-	0.0000	0.0000	0.4636
	0.392			1.560			
butterfly_diff_956h_fouttenflycolfofur95thrdo3	-	2.470	0.168	_	0.0000	0.0000	0.4619
	0.279			1.505			
butterfly_diff_957h_brutsierfly_daffcs954th 103	-	4.101	0.179	-	0.0000	0.0000	0.4576
	0.461			1.540			
butterfly_diff_fowarthburtterfly_diffurth_rd@3	-	2.554	0.304	-	0.0000	0.0000	0.4492
	0.425			1.402			
butterfly_diff_ar@sinbutterfly_daffcsinh 103	-	4.212	0.296	-	0.0000	0.0000	0.4442
	0.701			1.485			
butterfly_diff_tdp3_brigierally_doffiginoal3 103	-	87.143	1 -	2.983	0.0000	0.0000	0.3724
	8.547		0.026				
butterfly_diff_95th_britgionally_doffig95th 103	-	86.928	3 -	2.525	0.0000	0.0000	0.3502
	8.919		0.402				
butterfly_diff_oili@inalutterfly_doffiginal 103	-	108.33	3 7 .389	5.076	0.0000	0.0000	0.2417
	10.097						
butterfly_diff_yd3_jdhutserfly_dyffo_john\$08	-	777.60	03 -	15.548	80.0000	0.0000	0.0000
	302.80)6	3.770				

```
RankVariable TransformNatioNdean SD Skewn&surtosShapiroAmpdersoNormality_Score

butterfly_diff_95th_breatejoflynsdynffo_95thm$68 - 614.021 - 11.6490.0000 0.0000 0.0000

240.895 3.329

butterfly_diff_tdp53_breatejoflynsdynffo_tjopl3n$68 - 576.143 - 9.279 0.0000 0.0000 0.0000

235.162 3.074
```

Best transformation for each response variable:

Table 3: Best transformation for each response variable

Variable	${\bf Best_Transformation}$	Best_Score	Skewness	Kurtosis	Shapiro_p
butterfly_diff_95th	sqrt	0.8102	0.021	-0.467	0.6501
butterfly_diff_top3	sqrt	0.8033	0.039	-0.436	0.6273
butterfly_diff	sqrt	0.7552	0.238	-0.117	0.6179

cat("\n\nUsing the best response variable transformation: butterfly_diff_95th_sqrt\n")

Using the best response variable transformation: butterfly_diff_95th_sqrt

```
cat("Summary of transformed response variable:\n")
```

```
Summary of transformed response variable:
print(summary(daily_data$butterfly_diff_95th_sqrt))
    Min. 1st Qu.
                     Median
                                Mean 3rd Qu.
                                                    Max.
-17.6068 -5.5649 -1.7176 -0.8088
                                        4.2426 16.0187
# Visualize the top 6 most normal transformations
top_transformations <- head(normality_ranking, 6)</pre>
plots <- list()</pre>
for(i in 1:nrow(top transformations)) {
    row <- top_transformations[i, ]</pre>
    var_name <- row$Variable</pre>
    trans_name <- row$Transformation</pre>
    if(var_name %in% names(daily_data)) {
        var_data <- daily_data[[var_name]]</pre>
        trans_func <- transformations[[trans_name]]</pre>
        transformed_data <- trans_func(var_data)</pre>
        # Create histogram with normal overlay
        p \leftarrow ggplot(data.frame(x = transformed_data), aes(x = x)) +
            geom_histogram(aes(y = after_stat(density)), bins = 30,
                           fill = "steelblue", alpha = 0.7) +
            stat_function(fun = dnorm,
                          args = list(mean = mean(transformed_data, na.rm = TRUE),
                                     sd = sd(transformed_data, na.rm = TRUE)),
                          color = "red", size = 1) +
            labs(
                 title = paste0("Rank ", i, ": ", var_name),
                 subtitle = pasteO(trans_name, " (Score: ", row$Normality_Score, ")"),
                 x = paste0(var_name, " (", trans_name, ")"),
                 y = "Density"
            ) +
            theme minimal() +
            theme(plot.title = element_text(size = 10),
                   plot.subtitle = element_text(size = 8))
```


Temperature Patterns

```
# Temperature relationships
p1 <- ggplot(daily_data, aes(x = temp_max_t_1, y = butterfly_diff_95th_sqrt)) +
        geom_point(alpha = 0.3, color = "red") +
        geom_smooth(method = "loess", se = TRUE, color = "darkred") +
        labs(
            title = "Maximum Temperature vs Butterfly Change",
            x = "Previous Day Max Temperature (°C)",</pre>
```

```
y = "Change in 95th Percentile (sqrt)"
    ) +
    theme_minimal()
p2 <- ggplot(daily_data, aes(x = temp_min_t_1, y = butterfly_diff_95th_sqrt)) +
    geom_point(alpha = 0.3, color = "blue") +
    geom_smooth(method = "loess", se = TRUE, color = "darkblue") +
    labs(
        title = "Minimum Temperature vs Butterfly Change",
        x = "Previous Day Min Temperature (°C)",
        y = "Change in 95th Percentile (sqrt)"
    theme_minimal()
p3 <- ggplot(daily_data, aes(x = temp_at_max_count_t_1, y = butterfly_diff_95th_sqrt)) +
    geom_point(alpha = 0.3, color = "orange") +
    geom_smooth(method = "loess", se = TRUE, color = "darkorange") +
   labs(
        title = "Temperature at Max Count vs Butterfly Change",
        x = "Previous Day Temp at Max Count (°C)",
        y = "Change in 95th Percentile (sqrt)"
    ) +
    theme minimal()
# Temperature range
daily_data <- daily_data %>%
    mutate(temp_range_t_1 = temp_max_t_1 - temp_min_t_1)
p4 <- ggplot(daily_data, aes(x = temp_range_t_1, y = butterfly_diff_95th_sqrt)) +
    geom_point(alpha = 0.3, color = "purple") +
    geom_smooth(method = "loess", se = TRUE, color = "darkviolet") +
   labs(
        title = "Temperature Range vs Butterfly Change",
        x = "Previous Day Temp Range (°C)",
        y = "Change in 95th Percentile (sqrt)"
    ) +
    theme_minimal()
grid.arrange(p1, p2, p3, p4, ncol = 2)
```


Wind and Sun Exposure

```
# Wind effect
p1 <- ggplot(daily_data, aes(x = wind_max_gust_t_1, y = butterfly_diff_95th_sqrt)) +
    geom_point(alpha = 0.3, color = "steelblue") +
    geom_smooth(method = "loess", se = TRUE, color = "darkblue") +
    geom_vline(xintercept = 2, linetype = "dashed", color = "red", alpha = 0.5) +
    labs(
        title = "Maximum Wind Gust vs Butterfly Change",
        x = "Previous Day Max Wind Gust (m/s)",
        y = "Change in 95th Percentile (sqrt)"
    theme_minimal()
# Sun exposure
p2 <- ggplot(daily_data, aes(x = sum_butterflies_direct_sun_t_1, y = butterfly_diff_95th_sqr
    geom_point(alpha = 0.3, color = "orange") +
    geom_smooth(method = "loess", se = TRUE, color = "darkorange") +
    labs(
        title = "Direct Sun Exposure vs Butterfly Change",
        x = "Previous Day Sum of Butterflies in Direct Sun",
```

```
y = "Change in 95th Percentile (sqrt)"
    ) +
    theme_minimal()
# Note: Seasonal progression will be handled via temporal autocorrelation
# rather than as a fixed effect
p3 <- ggplot(daily_data, aes(x = date_t, y = butterfly_diff_95th_sqrt)) +
    geom_point(alpha = 0.3, color = "darkgreen") +
   geom_smooth(method = "loess", se = TRUE, color = "forestgreen") +
        title = "Temporal Pattern vs Butterfly Change",
        x = "Date",
        y = "Change in 95th Percentile (sqrt)"
    ) +
    theme_minimal()
# Previous day baseline
p4 <- ggplot(daily_data, aes(x = butterflies_95th_percentile_t_1, y = butterfly_diff_95th_sq
    geom_point(alpha = 0.3, color = "purple") +
   geom_smooth(method = "loess", se = TRUE, color = "darkviolet") +
   labs(
        title = "Previous Day Baseline vs Change",
        x = "Previous Day 95th Percentile Count",
        y = "Change in 95th Percentile (sqrt)"
    ) +
    theme_minimal()
grid.arrange(p1, p2, p3, p4, ncol = 2)
```


Data Preparation

```
# Remove missing values and prepare modeling dataset
model_data <- daily_data %>%
    filter(
        !is.na(butterfly_diff_95th_sqrt),
        !is.na(butterflies_95th_percentile_t_1),
        !is.na(temp_max_t_1),
        !is.na(temp_min_t_1),
        !is.na(temp_at_max_count_t_1),
        !is.na(wind_max_gust_t_1),
        !is.na(sum_butterflies_direct_sun_t_1),
        !is.na(deployment_id)
    ) %>%
    # Create standardized versions for interpretation
    mutate(
        wind_max_gust_std = scale(wind_max_gust_t_1)[, 1],
        temp_max_std = scale(temp_max_t_1)[, 1],
        temp_min_std = scale(temp_min_t_1)[, 1],
        temp_at_max_std = scale(temp_at_max_count_t_1)[, 1],
        sun_exposure_std = scale(sum_butterflies_direct_sun_t_1)[, 1],
```

```
baseline_std = scale(butterflies_95th_percentile_t_1)[, 1],
# Note: day_sequence is now provided by the data preparation script
# Each deployment has its own day counter starting from 1
)
cat("Clean dataset has", nrow(model_data), "observations\n")
```

Clean dataset has 100 observations

```
cat("Number of unique deployment days:", n_distinct(paste(model_data$deployment_id, model_data$deployment_id, model_data$d
```

Number of unique deployment days: 100

Modeling Strategy

Our modeling approach for daily-level data tests both **absolute effects** and **proportional effects** of environmental variables on butterfly abundance changes:

1. Response Variable: butterfly_diff_95th_sqrt - square root transformed difference in 95th percentile butterfly counts between consecutive days (selected as the most normal transformation)

2. Two Model Sets:

M Models (Absolute Effects): Test whether environmental variables have direct effects on absolute changes in abundance:

- Do NOT include previous day's butterfly count
- Test if weather has consistent magnitude effects regardless of population size

B Models (Proportional/Density-Dependent Effects): Test whether environmental effects depend on baseline population:

- Include butterflies_95th_percentile_t_1 as a covariate
- Test if weather effects scale with population size
- Include interactions between baseline count and environmental variables
- 3. **Fixed Effects** (tested in various combinations):
 - Temperature variables: max, min, and temperature at max count
 - Wind: maximum gust from previous day
 - Sun exposure: sum of butterflies in direct sun from previous day
 - Previous day baseline: 95th percentile count (B models only)

4. Random Effects:

- Deployment ID (random intercept)
- AR1 temporal autocorrelation within deployments using day_sequence | deployment_id

5. Correlation Structures:

- No correlation (baseline)
- AR1 within deployments to account for temporal autocorrelation

This dual approach allows us to distinguish between: - **Absolute effects**: Environmental variables cause fixed-magnitude changes regardless of population size - **Proportional effects**: Environmental impacts scale with the existing population (density-dependence)

Model Building and Selection

```
library(nlme)
# Define random effects structure with temporal autocorrelation
# We'll test different correlation structures
random structure <- list(deployment id = ~1)</pre>
# Define correlation structures to test
correlation_structures <- list(</pre>
    "no_corr" = NULL, # No temporal correlation
    "AR1" = corAR1(form = ~day_sequence | deployment_id) # AR1 within deployments
)
# Model specifications for AIC comparison - WITHOUT previous day baseline
model_specs <- list(</pre>
    # Null model
    "M1" = "butterfly_diff_95th_sqrt ~ 1",
    # Single predictor models (linear)
    "M2" = "butterfly_diff_95th_sqrt ~ wind_max_gust_t_1",
    "M3" = "butterfly diff 95th sqrt ~ temp max t 1",
    "M4" = "butterfly_diff_95th_sqrt ~ temp_min_t_1",
    "M5" = "butterfly_diff_95th_sqrt ~ temp_at_max_count_t_1",
    "M6" = "butterfly_diff_95th_sqrt ~ sum_butterflies_direct_sun_t_1",
    # Temperature combinations (linear)
```

```
"M8" = "butterfly_diff_95th_sqrt ~ temp_max_t_1 + temp_min_t_1",
"M9" = "butterfly_diff_95th_sqrt ~ temp_max_t_1 + temp_at_max_count_t_1",
"M10" = "butterfly_diff_95th_sqrt ~ temp_min_t_1 + temp_at_max_count_t_1",
"M11" = "butterfly_diff_95th_sqrt ~ temp_max_t_1 + temp_min_t_1 + temp_at_max_count_t_1"
# Two-variable combinations
"M12" = "butterfly_diff_95th_sqrt ~ wind_max_gust_t_1 + temp_max_t_1",
"M13" = "butterfly_diff_95th_sqrt ~ wind_max_gust_t_1 + temp_min_t_1",
"M14" = "butterfly_diff_95th_sqrt ~ wind_max_gust_t_1 + temp_at_max_count_t_1",
"M15" = "butterfly_diff_95th_sqrt ~ wind_max_gust_t_1 + sum_butterflies_direct_sun_t_1",
"M16" = "butterfly_diff_95th_sqrt ~ temp_at_max_count_t_1 + sum_butterflies_direct_sun_t
# Full models with various temperature specs (linear)
"M17" = "butterfly_diff_95th_sqrt ~ temp_max_t_1 + wind_max_gust_t_1 + sum_butterflies_d
"M18" = "butterfly_diff_95th_sqrt ~ temp_min_t_1 + wind_max_gust_t_1 + sum_butterflies_d
"M19" = "butterfly_diff_95th_sqrt ~ temp_at_max_count_t_1 + wind_max_gust_t_1 + sum_butterfly_diff_95th_sqrt ~ temp_at_max_count_t_1 + wind_max_gust_t_1 + w
"M20" = "butterfly_diff_95th_sqrt ~ temp_max_t_1 + temp_min_t_1 + wind_max_gust_t_1 + su
"M21" = "butterfly_diff_95th_sqrt ~ temp_max_t_1 + temp_min_t_1 + temp_at_max_count_t_1 +
# Smooth terms models - single predictors
"M24" = "butterfly_diff_95th_sqrt ~ s(wind_max_gust_t_1)",
"M25" = "butterfly_diff_95th_sqrt ~ s(temp_max_t_1)",
"M26" = "butterfly_diff_95th_sqrt ~ s(temp_min_t_1)",
"M27" = "butterfly_diff_95th_sqrt ~ s(temp_at_max_count_t_1)",
"M28" = "butterfly_diff_95th_sqrt ~ s(sum_butterflies_direct_sun_t_1)",
# Smooth terms - combinations
"M30" = "butterfly_diff_95th_sqrt ~ s(temp_max_t_1) + s(temp_min_t_1)",
"M31" = "butterfly_diff_95th_sqrt ~ s(temp_at_max_count_t_1) + s(wind_max_gust_t_1)",
"M32" = "butterfly_diff_95th_sqrt ~ s(temp_at_max_count_t_1) + s(sum_butterflies_direct_
"M33" = "butterfly_diff_95th_sqrt ~ s(wind_max_gust_t_1) + s(sum_butterflies_direct_sun_
# Complex smooth models
"M34" = "butterfly_diff_95th_sqrt ~ s(temp_at_max_count_t_1) + s(wind_max_gust_t_1) + s(
"M35" = "butterfly_diff_95th_sqrt ~ s(temp_max_t_1) + s(temp_min_t_1) + s(wind_max_gust_
"M37" = "butterfly_diff_95th_sqrt ~ s(temp_max_t_1) + s(temp_min_t_1) + s(temp_at_max_co
# Mixed linear and smooth
"M38" = "butterfly_diff_95th_sqrt ~ temp_at_max_count_t_1 + s(wind_max_gust_t_1) + s(sum_
"M39" = "butterfly_diff_95th_sqrt ~ s(temp_at_max_count_t_1) + wind_max_gust_t_1 + sum_b
"M40" = "butterfly_diff_95th_sqrt ~ s(temp_at_max_count_t_1) + wind_max_gust_t_1 + s(sum_at_max_count_t_1)
```

```
# Interaction models (without baseline)
"M41" = "butterfly_diff_95th_sqrt ~ temp_at_max_count_t_1 * wind_max_gust_t_1",
"M42" = "butterfly_diff_95th_sqrt ~ temp_at_max_count_t_1 * sum_butterflies_direct_sun_t
"M43" = "butterfly_diff_95th_sqrt ~ wind_max_gust_t_1 * sum_butterflies_direct_sun_t_1",
"M44" = "butterfly_diff_95th_sqrt ~ temp_at_max_count_t_1 * wind_max_gust_t_1 + sum_butterfly_diff_95th_sqrt ~ temp_at_max_count_t_1 + sum_butterfly_di
"M45" = "butterfly_diff_95th_sqrt ~ temp_at_max_count_t_1 + wind_max_gust_t_1 * sum_butterfly_diff_95th_sqrt ~ temp_at_max_count_t_1 + wind_max_gust_t_1 + wind_max_gu
"M46" = "butterfly_diff_95th_sqrt ~ temp_at_max_count_t_1 * wind_max_gust_t_1 * sum_butterfly_diff_95th_sqrt ~ temp_at_max_count_t_1 * sum_butterfly_diff_95
# Temperature range models
"M47" = "butterfly_diff_95th_sqrt ~ I(temp_max_t_1 - temp_min_t_1)",
"M48" = "butterfly_diff_95th_sqrt ~ I(temp_max_t_1 - temp_min_t_1) + wind_max_gust_t_1",
"M49" = "butterfly_diff_95th_sqrt ~ s(I(temp_max_t_1 - temp_min_t_1))",
"M50" = "butterfly_diff_95th_sqrt ~ s(I(temp_max_t_1 - temp_min_t_1)) + s(wind_max_gust_1)
# ===== MODELS WITH PREVIOUS DAY BASELINE =====
# All models below include butterflies_95th_percentile_t_1 to test proportional effects
# Baseline-only model
"B1" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1",
# Single predictor models + baseline (linear)
"B2" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + wind_max_gust_t_1",
"B3" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + temp_max_t_1",
"B4" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + temp_min_t_1",
"B5" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + temp_at_max_count_t.
"B6" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + sum_butterflies_directions."
# Temperature combinations + baseline (linear)
"B8" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + temp_max_t_1 + temp
"B9" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + temp_max_t_1 + temp
"B10" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + temp_min_t_1 + temp
"B11" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + temp_max_t_1 + tem
# Two-variable combinations + baseline
"B12" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + wind_max_gust_t_1 -
"B13" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + wind_max_gust_t_1 -
"B14" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + wind_max_gust_t_1 -
"B15" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + wind_max_gust_t_1 -
"B16" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + temp_at_max_count_
# Full models with various temperature specs + baseline (linear)
"B17" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + temp_max_t_1 + wind
```

```
"B19" = "butterfly_diff_95th sqrt ~ butterflies 95th_percentile_t 1 + temp_at_max_count_
"B20" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + temp_max_t_1 + tem
"B21" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + temp_max_t_1 + tem
# Smooth terms models - single predictors + baseline
"B24" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(wind_max_gust_t_
"B25" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(temp_max_t_1)",
"B26" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(temp_min_t_1)",
"B27" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(temp_at_max_counding)
"B28" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(sum_butterflies_6)
# Smooth baseline + other predictors
"B29" = "butterfly_diff_95th_sqrt ~ s(butterflies 95th_percentile_t_1)",
"B29a" = "butterfly_diff_95th_sqrt ~ s(butterflies_95th_percentile_t_1) + wind_max_gust_
"B29b" = "butterfly_diff_95th_sqrt ~ s(butterflies_95th_percentile_t_1) + temp_at_max_co
"B29c" = "butterfly_diff_95th_sqrt ~ s(butterflies_95th_percentile_t_1) + s(wind_max_gus
"B29d" = "butterfly_diff_95th_sqrt ~ s(butterflies_95th_percentile_t_1) + s(temp_at_max_
# Smooth terms - combinations + baseline
"B30" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(temp_max_t_1) + s
"B31" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(temp_at_max_coun
"B32" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(temp_at_max_coun
"B33" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(wind_max_gust_t_
# Complex smooth models + baseline
"B34" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(temp_at_max_coun
"B35" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(temp_max_t_1) + s
"B37" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(temp_max_t_1) + s
# Mixed linear and smooth + baseline
"B38" = "butterfly_diff_95th sqrt ~ butterflies 95th_percentile_t 1 + temp_at_max_count_
"B39" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(temp_at_max_coun
"B40" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(temp_at_max_counding)
# Interaction models with baseline
"B41" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + temp_at_max_count_
"B42" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + temp_at_max_count_
"B43" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + wind_max_gust_t_1 =
"B44" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + temp_at_max_count_
"B45" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + temp_at_max_count_
"B46" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + temp_at_max_count_
```

"B18" = "butterfly diff 95th sqrt ~ butterflies 95th percentile t 1 + temp min t 1 + wind

```
# Temperature range models + baseline
    "B47" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + I(temp_max_t_1 - to
    "B48" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + I(temp_max_t_1 - to
    "B49" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(I(temp_max_t_1 -
    "B50" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(I(temp_max_t_1 -
    # Interaction with baseline (testing if environmental effects depend on population size)
    "B51" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 * wind_max_gust_t_1"
    "B52" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 * temp_at_max_count_
    "B53" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 * sum_butterflies_di
    "B54" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 * wind_max_gust_t_1 -
    "B55" = "butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 * temp_at_max_count_
cat("Total models to fit:", length(model_specs), "\n")
Total models to fit: 100
cat("- M models (M1-M50):", sum(grepl("^M", names(model_specs))), "models WITHOUT previous data
- M models (M1-M50): 45 models WITHOUT previous day baseline
cat("- B models (B1-B55):", sum(grepl("^B", names(model_specs))), "models WITH previous day i
- B models (B1-B55): 55 models WITH previous day baseline
```

Model Fitting

```
data = data,
                     random = random_structure,
                    method = "REML"
                )
            } else {
                model <- gamm(formula_obj,</pre>
                    data = data,
                    random = random_structure,
                     correlation = correlation,
                    method = "REML"
                )
            }
            # Add correlation structure name to the model for tracking
            model$correlation_structure <- corr_name</pre>
            return(model)
        },
        error = function(e) {
            message("Failed to fit model: ", formula_str, " with correlation: ", corr_name)
            message("Error: ", e$message)
            return(NULL)
        }
    )
}
# Fit all models with different correlation structures
cat("Fitting models...\n")
```

Fitting models...

```
fitted_models <- list()

# Fit each model specification with each correlation structure
for (model_name in names(model_specs)) {
    formula_str <- model_specs[[model_name]]

    for (corr_name in names(correlation_structures)) {
        corr_struct <- correlation_structures[[corr_name]]

        # Create unique model name with correlation structure
        full_model_name <- paste(model_name, corr_name, sep = "_")</pre>
```

Successfully fitted 200 out of 100 models

Model Comparison

```
# Extract AIC values
aic_results <- map_dfr(names(successful_models), function(full_model_name) {
    model <- successful_models[[full_model_name]]</pre>
    # Parse model name and correlation structure
    name_parts <- strsplit(full_model_name, "_")[[1]]</pre>
    corr_suffix <- name_parts[length(name_parts)]</pre>
    base_model_name <- paste(name_parts[-length(name_parts)], collapse = "_")</pre>
    # Get the formula from the base model name
    formula_str <- model_specs[[base_model_name]]</pre>
    if (is.null(formula_str)) {
        formula_str <- "Unknown formula"</pre>
    }
    data.frame(
        Model = full_model_name,
        Base_Model = base_model_name,
        Correlation = corr_suffix,
        Formula = formula_str,
        AIC = AIC(model$lme),
        LogLik = logLik(model$lme)[1],
        df = attr(logLik(model$lme), "df"),
        stringsAsFactors = FALSE
```

```
)
}) %>%
    arrange(AIC) %>%
    mutate(
        Delta_AIC = AIC - min(AIC),
        AIC_weight = exp(-0.5 * Delta_AIC) / sum(exp(-0.5 * Delta_AIC))
)

# Display top 10 models
aic_results %>%
    head(10) %>%
    select(Model, Correlation, AIC, Delta_AIC, AIC_weight, df) %>%
    kable(digits = 3, caption = "Top 10 models by AIC")
```

Table 4: Top 10 models by AIC

Model	Correlation	AIC	Delta_AIC	AIC_weight	df
B33_AR1	AR1	668.401	0.000	0.148	9
$B29c_AR1$	AR1	668.671	0.270	0.129	8
$B28_AR1$	AR1	669.101	0.700	0.104	7
$B35_AR1$	AR1	669.573	1.172	0.082	13
B37_AR1	AR1	669.594	1.193	0.081	15
$B29_AR1$	AR1	669.685	1.284	0.078	6
$B34_AR1$	AR1	670.016	1.615	0.066	11
$B29a_AR1$	AR1	670.504	2.103	0.052	7
B38_AR1	AR1	670.691	2.289	0.047	10
$B29d_AR1$	AR1	670.864	2.463	0.043	8

```
# Show model formulas for top 5
cat("\nTop 5 model specifications:\n")
```

Top 5 model specifications:

```
head(aic_results, 5) %>%
  select(Base_Model, Correlation, Formula, Delta_AIC) %>%
  kable(digits = 3)
```

Base_	_Model	la Fior mula	Delta_AIC
B33	AR1	butterfly_diff_95th_sqrt \sim butterflies_95th_percentile_t_1 +	0.000
		$s(wind_max_gust_t_1) + s(sum_butterflies_direct_sun_t_1)$	
B29c	AR1	$butterfly_diff_95th_sqrt \sim s(butterflies_95th_percentile_t_1) +$	0.270
		$s(wind_max_gust_t_1)$	
B28	AR1	butterfly_diff_95th_sqrt \sim butterflies_95th_percentile_t_1 +	0.700
		$s(sum_butterflies_direct_sun_t_1)$	
B35	AR1	butterfly_diff_95th_sqrt \sim butterflies_95th_percentile_t_1 +	1.172
		$s(temp_max_t_1) + s(temp_min_t_1) + s(wind_max_gust_t_1) +$	
		$s(sum_butterflies_direct_sun_t_1)$	
B37	AR1	butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 +	1.193
		$s(temp_max_t_1) + s(temp_min_t_1) +$	
		$s(temp_at_max_count_t_1) + s(wind_max_gust_t_1) +$	
		$s(sum_butterflies_direct_sun_t_1)$	

Best Model Analysis

```
# Get the best model
best_model_name <- aic_results$Model[1]
best_model <- successful_models[[best_model_name]]
cat("Best model:", best_model_name, "\n")</pre>
```

Best model: B33_AR1

```
cat("Formula:", aic_results$Formula[1], "\n\n")
```

Formula: butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(wind_max_gust_t_1) +

```
# Model summary
summary(best_model$gam)
```

Family: gaussian

Link function: identity

Formula:

 $\verb|butterfly_diff_95th_sqrt| \sim \verb|butterflies_95th_percentile_t_1| +$

```
s(wind_max_gust_t_1) + s(sum_butterflies_direct_sun_t_1)
Parametric coefficients:
                            Estimate Std. Error t value Pr(>|t|)
                            (Intercept)
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                               edf Ref.df
                                            F p-value
s(wind_max_gust_t_1)
                             2.466 2.466 2.725 0.08649 .
s(sum_butterflies_direct_sun_t_1) 2.918 2.918 6.122 0.00245 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.226
 Scale est. = 43.072 n = 100
# Calculate R-squared
r_squared <- summary(best_model$gam)$r.sq</pre>
dev_explained <- summary(best_model$gam)$dev.expl</pre>
cat("\n\nModel Performance:\n")
Model Performance:
cat("R-squared:", round(r_squared, 4), "\n")
R-squared: 0.2264
cat("Deviance explained:", round(dev_explained * 100, 2), "%\n")
Deviance explained: %
```

Effect Visualizations

```
# Define custom theme
custom_theme <- theme_minimal(base_size = 12) +</pre>
    theme(
        panel.grid.major = element_line(color = "gray90", size = 0.5),
        panel.grid.minor = element line(color = "gray95", size = 0.3),
        axis.text = element_text(color = "black", size = 11),
        axis.title = element text(color = "black", size = 12, face = "bold"),
        plot.title = element_text(color = "black", size = 14, face = "bold", hjust = 0.5),
        panel.border = element_rect(color = "black", fill = NA, size = 0.5),
        plot.margin = margin(10, 10, 10, 10)
    )
# Function to add zero line
add_zero_line <- function(plot) {</pre>
    zero_line_layer <- geom_hline(yintercept = 0, color = "gray70", size = 0.8, alpha = 1)</pre>
    plot$layers <- c(list(zero_line_layer), plot$layers)</pre>
    return(plot)
}
# Create effect plots for the best model
# Extract which terms are in the best model
best_formula <- aic_results$Formula[1]</pre>
has_smooth <- grepl("s\\(", best_formula)</pre>
if (has smooth) {
    # For GAM with smooth terms
    plots <- list()</pre>
    # Check which smooth terms are in the model
    smooth_terms <- summary(best_model$gam)$s.table</pre>
    # Plot each smooth term
    for (i in 1:nrow(smooth_terms)) {
        term_name <- rownames(smooth_terms)[i]</pre>
        p <- draw(best_model$gam, select = term_name, rug = FALSE, residuals = FALSE) +</pre>
             custom theme +
            theme(plot.caption = element_blank())
        p <- add_zero_line(p)</pre>
        plots[[i]] <- p</pre>
    # Combine plots
```

```
if (length(plots) > 0) {
    if (length(plots) <= 2) {
        combined_plots <- wrap_plots(plots, nrow = 1)
    } else if (length(plots) <= 4) {
        combined_plots <- wrap_plots(plots, nrow = 2)
    } else {
        combined_plots <- wrap_plots(plots, nrow = 3)
    }
    print(combined_plots)
}
else {
    # For linear models, create partial residual plots
    cat("Best model uses linear terms. Creating partial residual plots...\n")

# Extract coefficients
    coef_summary <- summary(best_model$gam)$p.table
    print(coef_summary)
}</pre>
```


Wind Effect Analysis

```
# Check if wind is in the best model
has_wind <- grepl("wind_max_gust", best_formula)

if (has_wind) {
    cat("Wind is included in the best model.\n\n")

    # Extract wind coefficient or smooth term details
    if (grepl("s\\(wind_max_gust", best_formula)) {
        # Smooth term
        smooth_table <- summary(best_model$gam)$s.table</pre>
```

```
wind_row <- grep("wind_max_gust", rownames(smooth_table))</pre>
        if (length(wind row) > 0) {
            wind_smooth <- smooth_table[wind_row[1], ]</pre>
            cat("Wind effect (smooth term):\n")
            cat("EDF:", round(wind_smooth["edf"], 3), "\n")
            cat("F-statistic:", round(wind_smooth["F"], 3), "\n")
            cat("p-value:", format.pval(wind_smooth["p-value"], digits = 3), "\n")
        }
    } else {
        # Linear term
        param_table <- summary(best_model$gam)$p.table</pre>
        wind_row <- grep("wind_max_gust", rownames(param_table))</pre>
        if (length(wind_row) > 0) {
            wind_coef <- param_table[wind_row[1], ]</pre>
            cat("Wind effect (linear term):\n")
            cat("Coefficient:", round(wind_coef["Estimate"], 4), "\n")
            cat("Std. Error:", round(wind_coef["Std. Error"], 4), "\n")
            cat("t-value:", round(wind_coef["t value"], 3), "\n")
            cat("p-value:", format.pval(wind_coef["Pr(>|t|)"], digits = 3), "\n")
        }
   }
} else {
    cat("Wind is NOT included in the best model.\n")
    cat("Testing wind effect by comparing models with and without wind...\n\")
    # Find best model with wind
    wind_models <- aic_results %>%
        filter(grepl("wind_max_gust", Formula))
    if (nrow(wind_models) > 0) {
        best_wind_model <- wind_models[1, ]</pre>
        cat("Best model with wind:", best_wind_model$Model, "\n")
        cat("Delta AIC from best overall:", round(best_wind_model$Delta_AIC, 3), "\n")
        cat("This suggests wind does not improve model fit.\n")
    }
```

Wind is included in the best model.

Wind effect (smooth term):

EDF: 2.466

F-statistic: 2.725 p-value: 0.0865

Temperature Effects Analysis

```
# Analyze temperature effects in the best model
temp_vars <- c("temp_max_t_1", "temp_min_t_1", "temp_at_max_count_t_1")
temp_in_model <- sapply(temp_vars, function(x) grepl(x, best_formula))
cat("Temperature variables in best model:\n")</pre>
```

Temperature variables in best model:

```
for (i in 1:length(temp_vars)) {
    if (temp_in_model[i]) {
        cat("-", temp_vars[i], "\n")
    }
}
# If temperature is in the model, show its effect
if (any(temp_in_model)) {
    cat("\nTemperature effects:\n")
    for (var in temp_vars[temp_in_model]) {
        if (grepl(paste0("s\\(", var), best_formula)) {
            # Smooth term
            smooth_table <- summary(best_model$gam)$s.table</pre>
            smooth_name <- paste0("s(", var, ")")</pre>
            if (smooth_name %in% rownames(smooth_table)) {
                temp_smooth <- smooth_table[smooth_name, ]</pre>
                cat("\n", var, "(smooth term):\n")
                cat(" EDF:", round(temp_smooth["edf"], 3), "\n")
                cat(" F-statistic:", round(temp_smooth["F"], 3), "\n")
                cat(" p-value:", format.pval(temp_smooth["p-value"], digits = 3), "\n")
        } else if (var %in% rownames(summary(best_model$gam)$p.table)) {
            # Linear term
            param_table <- summary(best_model$gam)$p.table</pre>
```

Model Diagnostics

```
# Create diagnostic plots
par(mfrow = c(2, 2))

# Residuals vs Fitted
plot(best_model$lme, main = "Residuals vs Fitted Values")
```

Residuals vs Fitted Values


```
# Q-Q plot
qqnorm(residuals(best_model$lme, type = "normalized"), main = "Q-Q Plot")
qqline(residuals(best_model$lme, type = "normalized"))

# Scale-location plot
plot(fitted(best_model$lme), sqrt(abs(residuals(best_model$lme, type = "normalized"))),
    main = "Scale-Location Plot",
    xlab = "Fitted values",
    ylab = "sqrt(|Standardized residuals|)"
)
lines(lowess(fitted(best_model$lme), sqrt(abs(residuals(best_model$lme, type = "normalized"))
# Histogram of residuals
hist(residuals(best_model$lme, type = "normalized"),
```

```
breaks = 30,
  main = "Distribution of Residuals",
  xlab = "Standardized Residuals",
  col = "lightblue"
)

par(mfrow = c(1, 1))
```


Distribution of Residuals

Outlier Investigation

First, let's examine extreme values in our data before fitting models
cat("Response variable summary:\n")

Response variable summary:

print(summary(model_data\$butterfly_diff_95th_sqrt))

```
Min. 1st Qu.
                   Median
                               Mean 3rd Qu.
                                                 Max.
-17.6068 -5.7489 -1.7248 -0.8095 4.4219 16.0187
cat("\nExtremes in response variable:\n")
Extremes in response variable:
print(quantile(model_data$butterfly_diff_95th_sqrt, c(0.001, 0.01, 0.05, 0.95, 0.99, 0.999),
     0.1%
                           5%
                 1%
                                    95%
                                              99%
                                                      99.9%
-17.38138 -15.35248 -13.55386 11.37729 15.59117 15.97598
# Identify the most extreme observations
extreme_high <- model_data %>%
    arrange(desc(butterfly_diff_95th_sqrt)) %>%
   head(5) %>%
    select(deployment_id, date_t, butterfly_diff_95th_sqrt,
           butterflies_95th_percentile_t, butterflies_95th_percentile_t_1,
           temp_max_t_1, wind_max_gust_t_1)
extreme_low <- model_data %>%
    arrange(butterfly_diff_95th_sqrt) %>%
   head(5) %>%
    select(deployment_id, date_t, butterfly_diff_95th_sqrt,
           butterflies_95th_percentile_t, butterflies_95th_percentile_t_1,
           temp_max_t_1, wind_max_gust_t_1)
cat("\nTop 5 most extreme HIGH values:\n")
```

Top 5 most extreme HIGH values:

print(extreme_high)

```
# A tibble: 5 x 7
  deployment_id date_t
                           butterfly_diff_95th_sqrt butterflies_95th_percentil~1
  <chr>
                <date>
                                               <dbl>
                                                                             <dbl>
1 SC10
                2024-01-12
                                                16.0
                                                                              477.
2 SC10
                2024-01-23
                                                15.6
                                                                              246.
3 SC4
                2023-12-07
                                                12.8
                                                                              170.
4 SC4
                2023-12-24
                                                12.5
                                                                              263
5 SC6
                                                11.7
                2024-01-01
                                                                              164
# i abbreviated name: 1: butterflies_95th_percentile_t
# i 3 more variables: butterflies_95th_percentile_t_1 <dbl>,
    temp_max_t_1 <dbl>, wind_max_gust_t_1 <dbl>
cat("\nTop 5 most extreme LOW values:\n")
```

Top 5 most extreme LOW values:

print(extreme_low)

5 SC10

```
# A tibble: 5 x 7
  deployment_id date_t
                            butterfly_diff_95th_sqrt butterflies_95th_percentil~1
  <chr>
                                                <dbl>
                <date>
                                                                              <dbl>
1 SC4
                                                -17.6
                2023-12-05
                                                                              187
2 SC8
                                                -15.3
                                                                               53
                2024-01-18
3 SC4
                2023-12-10
                                                -15.1
                                                                               19
4 SC10
                2024-01-15
                                                -14.7
                                                                              283.
```

-14.6

68.9

```
# i abbreviated name: 1: butterflies_95th_percentile_t
```

2024-01-16

```
# Check if extreme values correspond to specific deployments
cat("\nExtreme values by deployment:\n")
```

Extreme values by deployment:

[#] i 3 more variables: butterflies_95th_percentile_t_1 <dbl>,

[#] temp_max_t_1 <dbl>, wind_max_gust_t_1 <dbl>

#	A tibble: 6 x	5			
	deployment_id	n_obs	min_change	${\tt max_change}$	range_change
	<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	SC10	21	-14.7	16.0	30.7
2	SC4	31	-17.6	12.8	30.5
3	SC6	20	-12.2	11.7	24.0
4	SC8	20	-15.3	7.55	22.9
5	SC12	6	-10.2	8.29	18.4
6	SC1	2	-5.92	-3.99	1.93

Sensitivity Analysis

```
# Test model sensitivity to outliers
# Identify potential outliers
residuals_std <- residuals(best_model$lme, type = "normalized")
outliers <- which(abs(residuals_std) > 3)

if (length(outliers) > 0) {
    cat("Number of potential outliers (|standardized residual| > 3):", length(outliers), "\n
    cat("Proportion of data:", round(length(outliers) / nrow(model_data) * 100, 2), "%\n\n")

# Refit without outliers
model_data_clean <- model_data[-outliers, ]
best_model_clean <- fit_model_safely(aic_results$Formula[1], model_data_clean)

if (!is.null(best_model_clean)) {
    cat("Model comparison with outliers removed:\n")</pre>
```

```
cat("Original R2:", round(summary(best_model$gam)$r.sq, 4), "\n")
    cat("Without outliers R2:", round(summary(best_model_clean$gam)$r.sq, 4), "\n")
} else {
    cat("No extreme outliers detected (|standardized residual| > 3)\n")
}
```

No extreme outliers detected (|standardized residual| > 3)

Data Structure Summary

```
# Check data structure for modeling
cat("Data structure summary:\n")
```

Data structure summary:

```
temporal_structure <- model_data %>%
    group_by(deployment_id) %>%
    summarise(
        n_days = n(),
        date_range = paste(min(date_t), "to", max(date_t)),
        .groups = 'drop'
    ) %>%
    arrange(desc(n_days))

print(head(temporal_structure, 10))
```

```
# A tibble: 6 x 3
 deployment_id n_days date_range
  <chr>
                 <int> <chr>
1 SC4
                   31 2023-12-05 to 2024-01-05
                    21 2024-01-07 to 2024-01-30
2 SC10
                   20 2023-12-17 to 2024-01-05
3 SC6
4 SC8
                   20 2024-01-07 to 2024-01-26
5 SC12
                   6 2024-01-29 to 2024-02-03
                    2 2023-11-19 to 2023-11-20
6 SC1
```

```
cat("\nTotal observations per deployment:\n")
```

Total observations per deployment:

```
print(summary(temporal_structure$n_days))

Min. 1st Qu. Median Mean 3rd Qu. Max.
```

20.75

16.67

31.00

Alternative Model Exploration

9.50

20.00

2.00

```
# Examine top 3 models for consistency
cat("Examining top 3 models for consistency of effects:\n\n")
```

Examining top 3 models for consistency of effects:

```
for (i in 1:min(3, nrow(aic_results))) {
   model_name <- aic_results$Model[i]
   model <- successful_models[[model_name]]

   cat("Model", i, "(", model_name, "):\n")
   cat("Formula:", aic_results$Formula[i], "\n")
   cat("Delta AIC:", round(aic_results$Delta_AIC[i], 3), "\n")
   cat("R²:", round(summary(model$gam)$r.sq, 4), "\n\n")
}</pre>
```

```
Model 1 ( B33_AR1 ):
Formula: butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(wind_max_gust_t_1) +
Delta AIC: 0
R²: 0.2264

Model 2 ( B29c_AR1 ):
Formula: butterfly_diff_95th_sqrt ~ s(butterflies_95th_percentile_t_1) + s(wind_max_gust_t_1)
Delta AIC: 0.27
R²: 0.1753

Model 3 ( B28_AR1 ):
```

```
Formula: butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(sum_butterflies_dired)

Delta AIC: 0.7

R2: 0.1679

Results Summary
```

```
cat(rep("=", 60), collapse = "", "\n")
cat("DAILY LAG ANALYSIS SUMMARY\n")
DAILY LAG ANALYSIS SUMMARY
cat(rep("=", 60), collapse = "", "\n\n")
cat("Dataset:\n")
Dataset:
cat("- Total observations:", nrow(model_data), "\n")
- Total observations: 100
cat("- Number of deployments:", n_distinct(model_data$deployment_id), "\n")
- Number of deployments: 6
cat("- Date range:", min(model_data$date_t), "to", max(model_data$date_t), "\n\n")
```

- Date range: 19680 to 19756

```
cat("Best Model:\n")
Best Model:
cat("- Model ID:", best model name, "\n")
- Model ID: B33_AR1
cat("- Formula:", aic_results$Formula[1], "\n")
- Formula: butterfly_diff_95th_sqrt ~ butterflies_95th_percentile_t_1 + s(wind_max_gust_t_1)
cat("- AIC:", round(aic_results$AIC[1], 3), "\n")
- AIC: 668.401
cat("- R-squared:", round(r_squared, 4), "\n")
- R-squared: 0.2264
cat("- Deviance explained:", round(dev_explained * 100, 2), "%\n\n")
- Deviance explained: %
cat("Key Findings:\n")
Key Findings:
# Wind effect
if (has_wind) {
    cat("- Wind IS included in the best model\n")
    if (grepl("s\\(wind_max_gust", best_formula)) {
        wind_p <- summary(best_model$gam)$s.table["s(wind_max_gust_t_1)", "p-value"]</pre>
        cat(" - Effect type: Non-linear (smooth)\n")
        cat(" - Significance: p =", format.pval(wind_p, digits = 3), "\n")
    } else {
```

```
wind_p <- summary(best_model$gam)$p.table["wind_max_gust_t_1", "Pr(>|t|)"]
        cat(" - Effect type: Linear\n")
        cat(" - Significance: p =", format.pval(wind_p, digits = 3), "\n")
    }
} else {
    cat("- Wind is NOT included in the best model\n")
    wind_models <- aic_results %>% filter(grep1("wind_max_gust", Formula))
    if (nrow(wind_models) > 0) {
        cat(" - Best model with wind has Delta AIC =", round(wind_models$Delta_AIC[1], 3),
    }
- Wind IS included in the best model
  - Effect type: Non-linear (smooth)
 - Significance: p = 0.0865
# Temperature effects
if (any(temp_in_model)) {
    cat("\n- Temperature effects:\n")
    for (var in temp_vars[temp_in_model]) {
        cat(" -", var, "is included\n")
   }
} else {
    cat("\n- No temperature variables in the best model\n")
```

- No temperature variables in the best model

```
# Other predictors
if (grepl("sum_butterflies_direct_sun", best_formula)) {
    cat("\n- Sun exposure IS included in the best model\n")
}
```

- Sun exposure IS included in the best model

```
# Model type analysis
best_model_type <- ifelse(grepl("^B", best_model_name), "B (with baseline)", "M (absolute effect("- Best model type:", best_model_type, "\n")</pre>
```

- Best model type: B (with baseline)

```
if (grep1("butterflies_95th_percentile_t_1", best_formula)) {
    cat("- Previous day baseline IS included (testing proportional/density-dependent effects

# Check for interactions with baseline
    if (grep1("butterflies_95th_percentile_t_1 \\*", best_formula)) {
        cat(" - Includes interactions with baseline (environmental effects depend on popular) } else {
        cat(" - Baseline as additive effect only (no interactions)\n")
    }
} else {
    cat("- Previous day baseline is NOT included (testing absolute effects)\n")
}
```

- Previous day baseline IS included (testing proportional/density-dependent effects)

- Baseline as additive effect only (no interactions)

```
# Temporal autocorrelation structure
best_corr <- gsub(".*_", "", best_model_name)
if (best_corr == "AR1") {
    cat("- Temporal autocorrelation: AR1 structure within deployments (day_sequence | deploysed)
} else {
    cat("- Temporal autocorrelation: No correlation structure\n")
}</pre>
```

- Temporal autocorrelation: AR1 structure within deployments (day_sequence | deployment_id)

```
cat("\n", rep("=", 60), collapse = "", "\n")
```

Export Results

```
# Create export directory
export_dir <- here("thesis_exports", "daily_analysis")
if (!dir.exists(export_dir)) dir.create(export_dir, recursive = TRUE)</pre>
```

```
# Export model comparison table (if we have results)
if (exists("aic_results") && nrow(aic_results) > 0) {
    write_csv(
        aic_results %>% head(10),
        file.path(export_dir, "daily_model_comparison.csv")
    )
    # Export best model summary
    best_model_summary <- data.frame(</pre>
        Model = aic_results$Model[1],
        Formula = aic_results$Formula[1],
        AIC = aic_results$AIC[1],
        Delta_AIC = aic_results$Delta_AIC[1],
        stringsAsFactors = FALSE
    )
    write_csv(
        best_model_summary,
        file.path(export_dir, "daily_best_model_summary.csv")
    )
    cat("\nResults exported to:", export_dir, "\n")
    cat("Model comparison table with", nrow(aic_results), "models exported\n")
} else {
    cat("\nNo model results to export\n")
```

Results exported to: /Users/kylenessen/Documents/Code/masters-analysis/thesis_exports/daily_self. Model comparison table with 200 models exported

Conclusions

This daily-level analysis examined both **absolute effects** and **proportional effects** of previous day's weather conditions on monarch butterfly abundance changes, measured as the 95th percentile of counts. The analysis includes two model sets:

- M Models: Test absolute environmental effects without controlling for previous day's butterfly count
- **B Models**: Test proportional/density-dependent effects by including the previous day's butterfly count as a covariate

Temporal patterns are modeled through AR1 autocorrelation structures within deployments using the proper day_sequence grouping.

The analysis reveals:

- 1. Model Performance: The best model explains approximately % of the deviance in daily butterfly abundance changes, with an \mathbb{R}^2 of 0.226.
- 2. Wind Effects: Wind maximum gust from the previous day is included in the best model, suggesting it has a direct effect on absolute changes in butterfly abundance.
- 3. **Temperature Effects**: Temperature variables were not selected in the best model for absolute abundance changes.

4. Model Interpretation:

- If an M model wins: Environmental variables have consistent absolute effects regardless of population size
- If a B model wins: Environmental effects are proportional to or depend on the existing population
- If interactions with baseline are significant: Environmental impacts scale with population density (density-dependent effects)
- 5. **Temporal Autocorrelation**: Models were fitted both with and without AR1 temporal autocorrelation structures. The AR1 structure uses day_sequence within each deployment_id, properly accounting for the sequential nature of daily observations while resetting the correlation structure for each deployment site.
- 6. **Temporal Scale**: Daily aggregation captures cumulative weather effects over 24-hour periods, providing insights into how sustained environmental conditions (rather than brief events) influence monarch roosting populations.

The dual modeling approach provides comprehensive insights into whether environmental variables have: - **Fixed magnitude effects** (absolute effects, M models) - **Population-scaled effects** (proportional effects, B models) - **Density-dependent effects** (interactions with baseline population)

This distinction is crucial for understanding monarch behavioral ecology and predicting population responses to environmental variability.