ROCÍO PILAR FANJUL COYA COLABORADORA HONORÍFICA DE ECONOMÍA FINANCIERA

Curso: 2015_2016 MATERIA: DIRECCIÓN FINANCIERA 1

SEGUNDO SEMESTRE

B.T.II: LA DECISIÓN DE INVERSIÓN_FINANCIACIÓN EN AMBIENTE DE CERTIDUMBRE

TEMA 2. ANÁLISIS DE PROYECTOS PUROS.

- 2.1. FUNDAMENTOS: APLICABILIDAD Y CONSISTENCIA.-
- 2.2. INTERSECCIÓN ÚNICA.-
- 2.3. NO HAY INTERSECCIÓN.-
- 2.4. INTERSECCIÓN MÚLTIPLE.-

- ANÁLISIS DE DOS PROYECTOS PUROS DE INVERSIÓN_FINANCIACIÓN.
 - **«CASO»: INTERSECCIÓN ÚNICA SIMPLE.**
 - «CASO»: NO HAY INTERSECCIÓN.
 - **«CASO»: INTERSECCIÓN MÚLTIPLE.**
- **O ANÁLISIS DE TRES PROYECTOS PUROS DE INVERSIÓN_FINANCIACIÓN.**
 - **«CASO»: INTERSECCIÓN ÚNICA SIMPLE.**
 - **«CASO»: NO HAY INTERSECCIÓN.**
 - **«CASO»: INTERSECCIÓN MÚLTIPLE.**

FANJUL, J. L.; ROBLEDA, H.; FERNÁNDEZ, C. y BILBAO, A. (1991): Análisis de Proyectos. Casos y Supuestos. Universidad de León, Fundación Monteleón.

FANJUL, J. L. y CASTAÑO, F. J. (2006): Dirección Financiera Caso a Caso Thomson-Civitas, Aranzadi, Navarra

INTERSECCIÓN ÚNICA SIMPLE

INTERSECCIÓN ÚNICA SIMPLE

La CONDICIÓN NECESARIA

para que EXISTA INTERSECCIÓN ÚNICA SIMPLE entre las FUNCIONES VAN de DOS Proyectos Puros de Inversión: «G» y «H»; en el intervalo:

$$(0, r_M]$$
; $donde: r_M = Valor mínimo(r_G, r_H) = r_G$

Donde: r_M = menor de las TIR (RCI) de ambos Proyectos.

Es que: el TIR (RCI) de «G» sea MENOR O IGUAL que el TIR (RCI) de «H».

$$r_G \leq r_H$$

La CONDICIÓN SUFICIENTE

Es que el TIR (RCI) de «G» sea MENOR O IGUAL que el TIR (RCI) de «H».

Y que la PRIMERA DERIVADA del VAN del «PROYECTO DIFERENCIA» NO se anule en el intervalo.

$$r_G \leq r_H$$

$$VAN_D(x) \neq 0, \forall x \in (0, r_M]$$

_	Proyecto	Q_0	Q ₁	Q_2	Q_3	Q_4	VAN(0)	RCI
G	UNO	-100	20	30	40	50	40	0,128257
H	DOS	-100	50	40	30	10	30	0,144888
	UNO - DOS	0	-30	-10	10	40	10	0,091414
	Derivada	-30	-20	30	160	-140	-68,5355	0,719274

Paso 0 : establecer el intervalo de estudio. $(0, r_M]$; donde: $r_M = Valor \, m inimo \, (r_G, r_H)$

 \Box Paso 2: calcular el Rendimiento del Capital Invertido: r_G , r_H

$$\begin{cases} r_{G} = 0.128257 \\ r_{H} = 0.144888 \end{cases} \Rightarrow Intervalo = (0, r_{M}]; donde : r_{M} = Valor \, minimo \, (r_{G}, r_{H}) = r_{G} = 0.128257$$

Paso 1: aplicar el criterio de ordenación siguiente: $VAN_G(0) \ge VAN_H(0)$

$$VAN_G(0) = -100 + 20 + 30 + 40 + 50 = 40$$

 $VAN_H(0) = -100 + 50 + 40 + 30 + 10 = 30$

Comprobamos que la PRIMERA DERIVADA DEL VAN del PROYECTO DIFERENCIA NO se anula en el <u>intervalo de estudio</u>: $(0, r_M]$ $r_M = Valor mínimo$ $(r_G, r_H) = 0.128257$.

$$VAN_{G}(0) \ge VAN_{H}(0)$$

$$VAN_{D}(x) = \sum_{j=1}^{j=n} \frac{(-j) \cdot Q_{j}}{(1+x)^{j+1}} \longrightarrow VAN_{D}(x) \ne 0$$

	Proyecto	Q_0	Q ₁	Q_2	Q_3	Q_4	VAN(0)	RCI
	UNO	-100	20	30	40	50	40	0,128257
	DOS	-100	50	40	30	10	30	0,144888
	UNO - DOS	0	-30	-10	10	40	10	0,091414
	Derivada	-30	-20	30	160	-140	-68,5355	0,719274

$$VAN_{D}(x) = -\frac{30}{(1+x)} - \frac{10}{(1+x)^{2}} + \frac{40}{(1+x)^{3}} + \frac{40}{(1+x)^{4}}$$

$$VAN_{D}(x) = \sum_{j=1}^{j=n} \frac{(-j) \cdot Q_{j}}{(1+x)^{j+1}}$$

$$VAN_{D}(x) = \frac{30}{(1+x)^{2}} + \frac{20}{(1+x)^{3}} - \frac{30}{(1+x)^{4}} - \frac{160}{(1+x)^{5}}$$

En los extremos del intervalo de estudio la PRIMERA DERIVADA DEL VAN del PROYECTO DIFERENCIA toma VALORES DEL MISMO SIGNO (negativo):

$$(0, r_M] r_M = Valor \, minimo \, (r_G, r_H) = 0.128257.$$

$$VAN_{D}(0) = -140$$

 $VAN_{D}(0,128257) = -68,535591$

Aplica la REGLA de los SIGNOS de HARRIOT_DESCARTES a la función:

160

$$VAN_{D}' = \frac{30}{(1+x)^{2}} + \frac{20}{(1+x)^{3}} - \frac{30}{(1+x)^{4}} - \frac{160}{(1+x)^{5}}$$
Con el cambio de variable:
$$16 \cdot y^{3} + 3 \cdot y^{2} - 2 \cdot y - 3 = 0 \Rightarrow y = 0,581641 \rightarrow x = \frac{1-y}{y} = 0,71927380$$

$$y = \frac{1}{1+x}$$

$$16 \cdot y^3 + 3 \cdot y^2 - 2 \cdot y - 3 = 0 \Rightarrow y = 0,581641 \rightarrow x = \frac{1 - y}{y} = 0,71927380$$

TEOREMA DE BOLZANO: por tomar VALORES DEL MISMO SIGNO EN LOS EXTREMOS del intervalo el NÚMERO DE RAÍCES ES CERO O CIFRA PAR.

REGLA DE LOS SIGNOS DE HARRIOT-DESCARTES: el NÚMERO MÁXIMO DE RAÍCES POSITIVAS viene dado por el NÚMERO DE CAMBIOS DE SIGNO; cuando es menor la diferencia entre el número de variaciones de signo y el número de raíces positivas es un número par.

Existe un cambio de signo; lo que nos indica que como máximo tenemos una raíz positiva (Raíz = 0,71927380 > 0,128257); por lo tanto, LA RAÍZ QUE EXISTE ESTÁ FUERA DEL INTERVALO. Consecuentemente NO EXISTE RAÍCES EN EL INTERVALO de estudio.

La PRIMERA DERIVADA del VAN del PROYECTO DIFERENCIA NO se anula en el intervalo:

$$(0, r_M]$$
 $r_M = Valor \, minimo \, (r_G, r_H) = 0.128257.$

$$VAN_D(x) \neq 0$$

INTERSECCIÓN ÚNICA SIMPLE

ANÁLISIS DE DOS PROYECTOS PUROS DE INVERSIÓN

✓ NO HAY INTERSECCIÓN: LA ORDENACIÓN ES COINCIDENTE

✓ INTERSECCIÓN ÚNICA SIMPLE: LAS FUNCIONES VAN SE CORTA EN UN PUNTO EN EL QUE CAMBIA LA ORDENACIÓN

✓ INTERSECCIÓN MÚLTIPLE: LAS FUNCIONES VAN SE CORTAN EN VARIOS PUNTOS EN LOS QUE CAMBIA LA ORDENACIÓN

