MATH 257: Homework #4

Jesse Farmer

27 October 2004

1. Let $\varphi: G \to H$ be a homomorphism and $E \leq H$. Prove that $\varphi^{-1}(E) \leq G$. If $E \subseteq H$ show that $\varphi^{-1}(E) \subseteq G$. Deduce that $\ker \varphi \subseteq G$.

A subset of H of a group G is a subgroup if and only if for all $x, y \in G$, $xy^{-1} \in G$. Let $x, y \in \varphi^{-1}(E)$, then $\varphi(x), \varphi(y) \in E$. Because $E \leq H$, $\varphi(y^{-1}) = \varphi(y)^{-1} \in E$. Hence $\varphi(x)\varphi(y^{-1}) = \varphi(xy^{-1}) \in E$ and therefore $xy^{-1} \in \varphi^{-1}(E)$.

If $E \subseteq H$ and $x \in \varphi^{-1}(E)$ is arbitrary, then $\varphi(gxg^{-1}) = \varphi(g)\varphi(x)\varphi(g)^{-1} = h\varphi(x)h^{-1}$. This is in E since $\varphi(x) \in E$ and $E \subseteq H$, hence $gxg^{-1} \in \varphi^{-1}(E)$ and $\varphi^{-1}(E) \subseteq G$.

 $\ker \varphi = \varphi^{-1}(e)$, i.e., the kernel is the fiber of the identity element. Since $\{e\} \subseteq H$, it follows that $\ker \varphi = \varphi^{-1}(\{e\}) \subseteq G$.

- 2. Let φ: G → H be a group homomorphism with kernel K and let a, b ∈ φ(G). Let X ∈ G/K be the fiber above a and Y the fiber above b. Fix an element u of X so φ(u) = a. Prove that if XY = Z in the quotient group G/K and w ∈ Z then there exists v ∈ Y such that uv = w. If w ∈ XY then φ(w) = ab since there exist x, y such that w = xy where φ(x) = a and φ(y) = b. If u ∈ X is fixed any w ∈ Z is arbitrary, then φ(u⁻¹w) = φ(u)⁻¹φ(w) = a⁻¹ab = b. Hence u⁻¹w ∈ Y, and this is precisely the v for which we are looking.
- 3. Prove that if $N \subseteq G$ and $H \subseteq G$ then $N \cap H \subseteq H$. Let $x \in N \cap H$. Then $x \in N$ and $x \in H$. For any $h \in H \subseteq G$, $hxh^{-1} \in N$ since $N \subseteq G$ and $h \in G$, and $hxh^{-1} \in H$ since H is a subgroup of G. Therefore $hgh^{-1} \in N \cap H$, i.e.,
- 4. Prove that if G/Z(G) is cyclic then G is abelian.

 $N \cap H \subseteq H$.

In general, if $N \subseteq G$ then $(gN)^n = g^nN$. This is easy to see through induction. Since the group operation on the quotient group is well-defined, i.e., $gHgH = HggH = g^2H$, if it is true for $n \in \mathbb{N}$ then $(gN)^{n+1} = (gN)^ngN = g^nNgN = Ng^ngN = g^{n+1}N$. That is is true for $n \in \mathbb{Z}$ is proven identically by considering $g^{-1}N$.

Since Z(G) is certainly normal – it is an abelian subgroup – this holds here. Assume $G/Z(G) = \langle xZ(G) \rangle$ for some $x \in G$, then $G/Z(G) = \{(xZ(G))^n \mid n \in \mathbb{Z}\} = \{x^nZ(G) \mid n \in \mathbb{Z}\}$. If $g \in G$ then $g \in gH = x^kZ(G)$ for some $k \in \mathbb{Z}$, and hence $g = x^kz$ for some $k \in \mathbb{Z}$ and some $z \in Z(G)$. Let $g_1, g_2 \in G$ then $g_1 = x^jz$ and $g_2 = x^kz'$ for some $k, j \in \mathbb{Z}$. Since z and z' commute with every element of G,

$$g_1g_2 = (x^jz)(x^kz') = z(x^jx^k)z' = zx^{j+k}z' = z'x^{k+j}z = z'(x^kx^j)z = (x^kz')(x^jz) = g_2g_1$$

Therefore G is abelian

5. Let $H \leq G$ and let $g \in G$. Show that if the right coset Hg equals some left coset of H in G then it equals gH and hence $g \in N_G(H)$.

Let $x \in G$ be such that gH = Hx, then certainly $g \in gH = Hx$. However, $g \in Hg$. Since cosets partition G, and $Hg \cap Hx \neq \emptyset$, gH = Hx = Hg.

6. Prove that there are the same number of left cosets as right cosets.

Consider the map $\varphi(gH) = Hg^{-1}$ from the set of left cosets to the set of right cosets. The map $\varphi^{-1}(Hg) = g^{-1}H$ is both a left and right inverse since

$$(\varphi \circ \varphi^{-1})(Hg) = \varphi(g^{-1}H) = Hg$$

and

$$\left(\varphi^{-1}\circ\varphi\right)(gH)=\varphi^{-1}(Hg^{-1})=gH$$

Hence φ is a bijection, and so the number of left and right cosets must be equal.

7. Let G be a finite group and $H \leq G$, $N \subseteq G$. Prove that if (|H|, [G:N]) = 1 then $H \leq N$. Let $\varphi: G \to G/N$ be the natural group homomorphism. Then $\varphi|_{H}: H \to G/N$ is still a

homomorphism. This means $\ker \varphi \mid_H \subseteq H$ and so $|\varphi(H)| \mid |H|$. Since $H \subseteq G$, $\varphi(H) \subseteq G/N$ and therefore $|\varphi(H)| \mid [G:N]$ by Lagrange's theorem. However, (|H|, [G:N]) = 1 so $|\varphi(H)| = 1$, i.e., $\varphi(H) = \{e\}$. This implies hN = N for all $h \in H$ and therefore $H \subseteq N$.

8. Determine the last two digits of $3^{3^{100}}$.

In general, the order of any element of a group divides the order of the group, and hence if $x \in |G|$ then $x^{|G|} = e$. Since an element x of the integers modulo n is a unit if and only if (x,n) = 1, $|(\mathbb{Z}/n\mathbb{Z})^{\times}| = \varphi(n)$ and therefore $x^{\varphi(n)} \equiv 1 \mod n$.

Note that $\varphi(100) = 40$ and (3,100) = 1, hence $3^{40} \equiv 1 \pmod{100}$. Also,

$$3^{100} \equiv (3^4)^{10} \equiv 81^{10} \equiv 1 \pmod{40}$$

Therefore there exists a k such that

$$3^{3^{100}} = 3^{40k+1} \equiv 3^{40}3 \equiv 3 \pmod{100}$$

The last two digits are 0 and 3.

- 9. Let $\sigma = (1\,2\,3\,4\,5)$ in S_5 . Find τ such that the following are satisfied:
 - (a) $\tau \sigma \tau^{-1} = \sigma^2$ $\sigma^2 = (13524)$, so we must find a τ such that tau(1) = 3, $\tau(2) = 5$, $\tau(3) = 2$, $\tau(4) = 4$, and $\tau(5) = 1$). Computing the cycles for this gives $\tau = (1325)$.
 - (b) $\tau \sigma \tau^{-1} = \sigma^{-1}$ $\sigma^{-1} = (15432)$, so τ must be such that $\tau(1) = 1$, $\tau(2) = 5$, $\tau(3) = 4$, $\tau(4) = 3$, $\tau(5) = 2$. This gives $\tau = (25)(34)$.
 - (c) $\tau \sigma \tau^{-1} = \sigma^{-2}$ $\sigma^{-2} = (31425)$, and using the exact same procedure as the previous two yields $\tau = (1342)$.

- 10. For each of the following determine if σ_1 and σ_2 are conjugate, and if so a permutation τ such that $\tau \sigma_1 \tau^{-1} = \sigma_2$.
 - (a) $\sigma_1 = (1\,2)(3\,4\,5)$ and $\sigma_2 = (1\,2\,3)(4\,5)$. Yes, these two permutations are conjugate and $\tau = (1\,3\,5\,2\,4)$. The procedure used is the same as that used in the previous problems.
 - (b) $\sigma_1 = (15)(372)(106811)$ and $\sigma_2 = (37510)(49)(13112)$ Yes. $\tau = (14)(31011769581213)$.
 - (c) $\sigma_1 = (15)(372)(106811)$ and $\sigma_2 = \sigma_1^3$ These cannot be conjugate because they have different orders, 12 and 4 respectively.
 - (d) $\sigma_1 = (1\,3)(2\,4\,6)$ and $(3\,5)(2\,4)(5\,6)$ These cannot be conjugate either because they have different orders, 6 and 2, respectively.