

Protects you from unwanted images/videos

Phobia Triggers

A phobia is an anxiety disorder defined by a persistent and excessive fear of an object or situation

Fear of amphibians

Fear of clowns

Fear of insects

Coulro
phobia

Arachnop
hobia

Fear of spiders

Fear of dogs

Fear of of spiders

Fear of dogs

Other Issues

Snakes

Trypophobia

Short term

Shortness of breath

Loss of appetite

Confusion or disorientation

Sweating Chills

Nausea Headaches Numbness

Symptoms / Effects

Long Term

Constant Anxiety Panic Attack Suicidal (depression) Character & Values change

Current Solutions: URL Blacklist

Government Blacklist

Open Sourced / Custom Url Blocklist

What about everyday sites?

Everyday Sites

What can we do?

How can we prevent users from getting bothered by undesired Images and Videos?

Computer Vision

Chrome Extension

(Image Classification)

Hide images and gif that you choose not to see.

- Dogs
- Cats
- Snakes
- Trypophobia

Streamlit Post-Processing / Image Filter

(Instance Segmentation)

Identify images of snakes by pixel and filter them out

Streamlit Post-Processing Video Filter

(Instance Segmentation)

Identify images of snakes in a video by pixel and filter them out

Chrome Extension

Business
Requirements &
Success Factors

Business Requirements

- Javascript compatible model (serverless)
- Speed
- Model pretrained with relevant dataset

Success Factors

- Model accuracy above 70%
- Functioning chrome extension

Fulfilling Business Requirements

MobileNet V2

Relevant Pretrained Dataset

IM ... GENET

shutterstock.com · 1933018322

JavaScript Requirement

Speed

Model Architecture

Metrics

Hidden Layers	Regularisation	Validation Loss*	Validation Accuracy
1	None	0.1402	0.9586
1	EarlyStopping	0.1570	0.9603
2	EarlyStopping, Dropout	0.1533	0.9522

* Loss Function: categorical_crossentropy

Chrome Extension

Showcase

Chrome Extension

(Image Classification)

Hide images and gif that you choose not to see.

- Dogs
- Cats
- Snakes
- Trypophobi

Streamlit Post-Processing Video Filter

(Instance Segmentation)

Identify images of snakes in a video by pixel and filter them out

Streamlit

Business
Requirements &
Success Factors

Business Requirements

- Balance between Speed and Accuracy
- Model should work on both images and videos
- Constant Learning MLOps

Success Factors

- Bounding mAP_0.5 > 0.5
- Mask mAP_0.5 > 0.5
- Functioning Streamlit

Fulfilling Business Requirements

YOLO_v7

Works on Images & Videos

Speed & Accuracy

PWC Categories	Model	FPS	Mask AP
Real-time Instance Segmentation	SparseInst-608	40	37.9
Video Instance Segmentation	IDOL	17.6	64.3
Real-Time Object Detection	YOLOv7-E6E	36	64.0

Data Preparation

roboflow

Example of mask segmentation annotation. Green border denotes polygon coordinates

Output Label (YOLOv7 format)

```
0 0.459375 0.577777778125 0.44375 0.5611111109375 0.44
0 0.3453125 0.3333333328125 0.3515625 0.31666666671875
0 0.48887583125 0.601851853125 0.493214325 0.611111110
0 0.425 0.46944444374999994 0.422063025000000004 0.4907
```

Polygon Coordinates

Model Architecture

Active Learning

Metric Explanation AP

		interpolated Precision for a given Recall value (r)		
No	TP/FP @ loU 0.5	Precision TP/(TP+FP))	Recall TP/(TP+FN))	Precision_ interp
P1	TP	1/1 = 1	1/3 = 0.33	1
P2	TP	2/2 = 1	2/4 = 0.5	1
P3	TP	3/3 = 1	3/5 = 0.6	1
P4	FN	3/3 = 1	3/5 = 0.6	1
P5	FP	3/4 = 0.75	3/5 = 0.6	1
P6	FP	3/5 = 0.6	3/5 = 0.6	1
P7	FP	4/6 = 0.67	4/6 = 0.67	0.67

Metric Explanation AP

 $p_{interp}(r) = \max_{\tilde{r}: \tilde{r} > r} p(\tilde{r})$ Interpolated Precision for a given Recall Value (r)

No	TP/FP @ IoU 0.5	Precision TP/(TP+FP))	Recall TP/(TP+FN))	Precision_ interp
P1	TP	1/1 = 1	1/3 = 0.33	1
P2	TP	2/2 = 1	2/4 = 0.5	1
P3	TP	3/3 = 1	3/5 = 0.6	1
P4	FN	3/3 = 1	3/5 = 0.6	1
P5	FP	3/4 = 0.75	3/5 = 0.6	1
P6	FP	3/5 = 0.6	3/5 = 0.6	1
P7	FP	4/6 = 0.67	4/6 = 0.67	0.67

$$AP = \frac{1}{11} \sum_{r \in \{0, 0.1, 0..., 0.9, 1\}} p_{inter_p}(r)$$

$$= \frac{1}{11}(1+1+1+1+1+1+1+1+0.67+0.67+0.67+0.67$$

$$AP \approx 0.879$$

Active Learning Metrics

^{*}Only the first 100 images are annotated

Streamlit

SHOWCASE

https://bit.ly/3g96L3J

Video Segmentation Example

Source: <u>Deadliest Job in America - Snake Milker! - YouTube</u>

Success Factors Evaluation

Tasks	Factors	Outcomes	
Image Classification	Validation Image Accuracy >	0.9586	
Image Classification	Functioning Chrome Extension	Yes	
Instance Segmentation	mAP_0.5(B)	0.5372	
Instance Segmentation	mAP_0.5(M)	0.5396	
Instance Segmentation	Functioning Streamlit App	Yes 🏅	

3 Prong Approach

Government
Regulations
through laws
and ISP blacklist

Opensource URL blacklist (<u>GitHub</u>)

Recommendations

Always rely on <u>multiple redundancies</u> to perform our task reliabily and effectively

Future Steps

- Allow real time streaming of output logs from model to Streamlit
- Continue to improve on Instance Segmentation mAP results
- Explore deeper on video instance segmentation such as IDOL
- Expand feature to allow segmentation on YouTube or Live Stream
- Expand filter classes beyond dogs, cats, snakes, tropophobia images, such as car type, car plate which can be used for autonomous driving

THANKS

Er Jie Yong erjieyong@gmail.com

Special Thanks: Shilpa, Instructor