Национальный исследовательский университет «МЭИ»

ИНСТИТУТ РАДИОТЕХНИКИ И ЭЛЕКТРОНИКИ КАФЕДРА РАДИОТЕХНИЧЕСКИХ СИСТЕМ

Курсовая работа

по дисциплине

«Аппаратура потребителей спутниковых радионавигационных систем»

Разработка модуля расчёта координат спутника Beidou

ФИО студента: Хоанг Д.Д.
Группа: ЭР-15-16
Вариант №: 15
Дата:
Подпись:
ФИО преподавателя: Корогодин И.В.
Оценка:

СОДЕРЖАНИЕ

ВВЕД	ЕНИЕ 3
ГЛАЕ	ВА 1. ИСПОЛЬЗОВАНИЕ СТОРОННИХ СРЕДСТВ 4
1.	Описание задания
2.	Определение формы орбиты и положения спутника
3.	Определение формы орбиты и положения спутника на ней с
помощью	сервиса CelesTrak6
4.	Расчет графика угла места собственного спутника от времени по
данным Т	Frimble GNSS Planning Online
5.	Расчет диаграммы угла места и азимута спутника (SkyView, он
же SkyPlo	ot) по данным Trimble GNSS Planning Online
6.	Формирование таблицы эфемерид собственного спутника 12
СПИС	СОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

ВВЕДЕНИЕ

Цель проекта - добавление в программное обеспечение приемника функции расчета положения спутника Beidou на заданное время по данным его эфемерид.

Требования к разрабатываемому программному модулю:

- требования назначения;
- отсутствие утечек памяти;
- малое время выполнения;
- низкий расход памяти;
- корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам проекта и контрольным мероприятиям:

- обработка данных от приемника, работа со сторонними сервисами для подготовки входных и проверочных данных для разрабатываемого модуля;
- моделирование модуля в Matlab/Python;
- реализация программного модуля на C/C++, включая юниттестирование в Check.

Конечная цель всего курсового проекта - получить библиотеку функций на «С++», позволяющую рассчитывать положение спутника Beidou по его эфемеридам.

ГЛАВА 1. ИСПОЛЬЗОВАНИЕ СТОРОННИХ СРЕДСТВ

1. Описание задания

На первом этапе подготовим вспомогательные данные для разработки: эфемериды и оценки положения спутника от сторонних сервисов (чтобы было с чем сравниваться на след. этапах).

На крыше корпуса Е МЭИ установлена трехдиапазонная антенна Harxon HX-CSX601A. Она через 50-метровый кабель, сплиттер, bias-tee и усилитель подключена к трем навигационным приемникам:

- Javad Lexon LGDD,
- SwiftNavigation Piksi Multi,
- Clonicus разработки ЛНС МЭИ.

Эти приемники осуществляют первичную обработку сигналов Beidou B1I, выдавая по интерфейсам соответствующие потоки данных - наблюдения псевдодальностей и эфемериды спутников. Данные от приемника Clonicus, записанные вечером 16 февраля 2021 года.

2. Определение формы орбиты и положения спутника.

Используя сервис «Информационно-аналитического центра координатно-временного и навигационного обеспечения» определим номер НОРАД [1] и сравним его с номером из «Википедии» [2]:

C16	43539	IGSO-7	BDS-2	10.07.18	967	Используется по ЦН
C19	43001	MEO-1	BDS-3	05.11.17	1214	Используется по ЦН
C20	43002	MEO-2	BDS-3	05.11.17	1214	Используется по ЦН
C21	43208	MEO-3	BDS-3	12.02.18	1115	Используется по ЦН
C22	43207	MEO-4	BDS-3	12.02.18	1115	Используется по ЦН
C23	43581	MEO-5	BDS-3	29.07.18	948	Используется по ЦН
C24	43582	MEO-6	BDS-3	29.07.18	948	Используется по ЦН
C25	43603	MEO-11	BDS-3	25.08.18	921	Используется по ЦН
C26	43602	ME0-12	BDS-3	25.08.18	921	Используется по ЦН
C27	43107	MEO-7	BDS-3	12.01.18	1146	Используется по ЦН
C28	43108	MEO-8	BDS-3	12.01.18	1146	Используется по ЦН
C29	43245	MEO-9	BDS-3	30.03.18	1069	Используется по ЦН
C30	43246	MEO-10	BDS-3	30.03.18	1069	Используется по ЦН
C32	43622	MEO-13	BDS-3	19.09.18	896	Используется по ЦН
C33	43623	MEO-14	BDS-3	19.09.18	896	Используется по ЦН
C34	43648	MEO-15	BDS-3	15.10.18	870	Используется по ЦН
C35	43647	MEO-16	BDS-3	15.10.18	870	Используется по ЦН
C36	43706	MEO-17	BDS-3	19.11.18	835	Используется по ЦН
C37	43707	MEO-18	BDS-3	19.11.18	835	Используется по ЦН
C38	44204	IGSO-1	BDS-3	20.04.19	683	Используется по ЦН
C39	44337	IGSO-2	BDS-3	25.06.19	617	Используется по ЦН

Рисунок 1 — Состояние космических аппаратов ВеіDou на 03.03.21

16	Vauras C6	COO	25 40 2042 45:22	C7 2C	2012 0504-5	20052-5	FCO 90°			
16	Компас G6	C02	25.10.2012 15:33	CZ-3C	2012-059A ₽	38953₽	ГСО, 80° в. д.	действующий		
17	Бэйдоу-3S IGSO-1	C31	30.03.2015 13:52	CZ-3C/YZ-1	2015-019A ₽	40549㎡	Геосинхронная, наклонение 55°	на испытании		
18	Бэйдоу-3S M1	C58	25.07.2015 12:29	12:29 CZ-3B/YZ-1	2015-037A ₽	40748₺	<u>СОО</u> , ~21 500 км	на испытании		
19	Бэйдоу-3S M2	C57	25.07.2015 12.29		2015-037B ₽	40749₺	<u>СОО</u> , ~21 500 км	на испытании	Бэйдоу-3S	
20	Бэйдоу-3S IGSO-2	C56	29.09.2015 23:13	CZ-3B/E	2015-053A @	40938₽	Геосинхронная, наклонение 55°	на испытании		
21	Бэйдоу-3S M3	N/A	01.02.2016 07:29	CZ-3C/YZ-1	2016-006A ₽	41315₺	<u>СОО</u> , ~21 500 км	на испытании		
22	Бэйдоу-2 IGSO-6	C13	29.03.2016 20:11	CZ-3A	2016-021A @	41434₽	Геосинхронная, накл. 55°;	действующий	Бэйдоу-2	
23	Бэйдоу-2 G7	C03	12.06.2016 15:30	CZ-3C	2016-037A ₽	41586㎡	ГСО, 144° в. д.	действующий		
24	Бэйдоу-3 М1	C19	- 05.11.2017 11:44	07.200/7.4	2017-069A ₽	43001₺	СОО, ~21 500 км	действующий		
25	Бэйдоу-3 М2	C20	05.11.2017 11:44	CZ-3B/YZ-1	2017-069B ₽	43002₺	СОО, ~21 500 км	действующий	Бэйдоу-3	
26	Бэйдоу-3 М3	C27	44.04.0040.0040	1.01.2018 23:18 CZ-3B/YZ-1	2018-003A ₽	43107₺	<u>СОО</u> , ~21 500 км	действующий		
27	Бэйдоу-3 М4	C28	11.01.2010 23:10		2018-003B ₽	43108₺	СОО, ~21 500 км	действующий		
28	Бэйдоу-3 М5	C22	42.02.2040.05.40	2.02.2018 05:10 CZ-3B/YZ-1	2018-018A ₽	43207₺	СОО, ~21 500 км	действующий		
29	Бэйдоу-3 М6	C21	12.02.2010 05.10		2018-018B ₽	43208₺	СОО, ~21 500 км	действующий		
30	Бэйдоу-3 М7	C29	29.03.2018 17:50	7:50 CZ-3B/YZ-1	2018-029A ₽	43245₺	СОО, ~21 500 км	действующий		
31	Бэйдоу-3 М8	C30	29.03.2016 17:50		2018-029B ₽	43246₺	СОО, ~21 500 км	действующий		
32	Бэйдоу-2 IGSO-7	C16	09.07.2018 20:58	CZ-3A	2018-057A ₽	43539₽	Геосинхронная, накл. 55°;	действующий	Бэйдоу-2	
33	Бэйдоу-3 М9	C23	- 29.07.2018 01:48	CZ-3B/YZ-1	2018-062A ₽	43581₺	<u>СОО</u> , ~21 500 км	действующий		
34	Бэйдоу-3 М10	C24	29.07.2010 01.40	CZ-3B/YZ-1	2018-062B ₽	43582₺	СОО, ~21 500 км	действующий		
35	Бэйдоу-3 М11	C26	24.08.2018, 23:37	CZ-3B/YZ-1	2018-067A ₽	43602₺	СОО, ~21 500 км	действующий		
36	Бэйдоу-3 М12	C25	24.00.2010, 23:31	CZ-3B/YZ-1	2018-067B ₽	43603㎡	СОО, ~21 500 км	действующий		
37	Бэйдоу-3 М13	C32	10.00.2019.14:07	07 CZ-3B/YZ-1	2018-072A ₽	43622₺	СОО, ~21 500 км	действующий		
38	Бэйдоу-3 М14	C33	19.09.2018, 14:07		2018-072B ₽	43623₺	СОО, ~21 500 км	действующий		
39	Бэйдоу-3 М15	C35	15 10 2019 04-23	C7 3R/V7 1	2018-078A ₽	43647₺	СОО, ~21 500 км	действующий	Бэйдоу-3	

Рисунок 2 — Состояние системы BeiDou с сайта Википедия

Интересующий нас спутник "BEIDOU-3 M7":

Таблица 1 – Сведения о спутнике

Спутник	PRN	ID	SCN
BEIDOU-3 M7	C29	2018-029A	43245

3. Определение формы орбиты и положения спутника на ней с помощью сервиса CelesTrak

Введем название спутника и сверим его по номеру NSSDC ID и НОРАД (SCN).

Значения совпадают, данный спутник существует проведем моделирование на момент времени 15:00, 16 февраля 2021, так как на данном сервисе отсчет времени происходит по UTC(0):

Рисунок 3 – Моделирование с помощью сервиса CelesTrak

4. Расчет графика угла места собственного спутника от времени по данным Trimble GNSS Planning Online

Настроим для моделирования GNSS Planning Online, координаты установим в соответствии с расположеним антенны — и они будут соответствовать значению корпуса Е МЭИ, также начальное время будет соответствовать 18:00, временной пояс будет равен +3 (UTC +3) на всем этапе моделирования в сервисе GNSS Planning Online.

Рисунок 4 — Моделирование с помощью сервиса Trimble GNSS Planning Далее ограничим количество отображаемых спутников и оставим в моделирование только нужны нам спутник — C24:

Рисунок 5 – Моделирование с помощью сервиса Trimble GNSS Planning

Получим график расчета угла места собственного спутника от времени:

Рисунок 6 — График угла места собственного спутника от времени По графику видно, что на указанном в задание интервале с 18:00 — 06:00, спутник был в области видимости один раз с 18:00 до 20:30.

5. Расчет диаграммы угла места и азимута спутника (SkyView, он же SkyPlot) по данным Trimble GNSS Planning Online

Так как сервис для определения Sky Plot используется тот же - Trimble GNSS Planning Online, то настройки оставим прежние, и проведем моделирование Sky Plot во временном интервале 18:00-06:00 и зафиксируем положение спутника на небосводе в критических точках, то есть когда он находился в области видимости - в 18:00 и 20:30.

Тогда получим 2 графика моделирования:

• 16 февраля 2021 в 18:00:

Рисунок 7 — Моделирование с помощью сервиса Trimble GNSS Planning

• 16 февраля 2021 в 20:30:

Рисунок 8 – Моделирование с помощью сервиса Trimble GNSS Planning

6. Формирование таблицы эфемерид собственного спутника

Таблица 2 – Значения эфемерид спутника

Параметр	Значение	Размерность
SatNum	29	-
toe	219600000.000	MC
Crs	4.84375000000000000e-01	M
Dn	3.38049792152073092e-12	рад/с
M0	-2.04583603053961255e-01	рад
Cuc	7.40401446819305420e-08	рад
e	1.57959060743451118e-04	-
Cus	1.13863497972488403e-05	рад
sqrtA	5.28262396240234375e+03	м^1/2
Cic	3.86498868465423584e-08	рад
Omega0	-2.39429712929735228e+00	рад
Cis	3.07336449623107910e-08	рад
i0	9.65601789007491829e-01	рад
Crc	1.32890625000000000e+02	M
omega	6.54981262210034165e-01	рад
OmegaDot	-6.63384775495807734e-12	рад/мс
iDot	5.14307137242361949e-14	рад/мс
Tgd	1.02200000000000000e+06	MC
toc	2.19600000000000000e+08	MC
af2	0.00000000000000000e+00	мс/мс^2
afl	5.06794606280891458e-12	мс/мс
af0	3.53220045566558838e-01	MC
URA	0	-
IODE	257	-
IODC	1	-
codeL2	0	-
L2P	0	-
WN	789	-

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1]. «Инфомационно-аналитечкского центра коррдинатновременного и навигационного обеспечения «www.glonass-iac.ru»»
- [2]. «Википедия. Свободная энциклопедия «https://ru.wikipedia.org/wiki/Бэйдоу»»
- [3]. «Определение формы орбиты и положения спутника на ней «https://www.celestrak.com»»
- [4]. «https://www.gnssplanningonline.com/»