Exponential methods for solving hyperbolic problems with application to kinetic equations

N. Crouseilles ^{1,2} L. Einkemmer ³ <u>J. Massot</u> ^{2,1}

¹Inria Rennes – Bretagne Atlantique

²IRMAR, Université de Rennes

³University of Innsbruck

December 4, 2020

Outline

- Motivation for Vlasov-Poisson equations
- 2 Linear analysis
 - Lawson methods
 - Exponential Runge-Kutta methods
- 3 Numerical simulation: Vlasov-Poisson equations
- 4 Conclusion

Outline

- Motivation for Vlasov-Poisson equations
- 2 Linear analysis
 - Lawson methods
 - Exponential Runge-Kutta methods
- Numerical simulation: Vlasov-Poisson equations
- 4 Conclusion

Vlasov-Poisson equations 1D×1D

Our model: a non-linear transport in $(x, v) \in \Omega \times \mathbb{R}$ of an electron density distribution f = f(t, x, v):

$$\begin{cases} \partial_t f + v \partial_x f + E \partial_v f = 0 \\ \partial_x E = \int_{\mathbb{R}} f \, \mathrm{d} v - 1 \end{cases}$$

Motivation:

- We want high order methods in (x, v)
- We want high order methods in time t:
 - Splitting methods: could have a lot of steps
 - Runge-Kutta methods: stability constraints (CFL condition)
 - The most restrictive CFL condition is associated with the linear part $(\partial_t f + v \partial_x f = 0)$

→We want to propose a compromise: exponential integrators.

Vlasov-Poisson equations 1D×1D

Fourier transform in x direction of Vlasov, amenable to exponential integrators:

$$\partial_t \hat{f} + ikv\hat{f} + \widehat{E\partial_v f} = 0$$

Vlasov is of the form:

$$\dot{u} = iau + F(u)$$

Variation of constant: $\partial_t(e^{-iat}u) = e^{-iat}F(u)$. No more CFL in x of the form $\Delta t \leq \sigma \frac{\Delta x}{v_{\max}}$ with $[-v_{\max}, v_{\max}] \equiv \mathbb{R}$.

Time integration:

$$u(t_n + \Delta t) = \exp(ia\Delta t)u(t_n) + \int_0^{\Delta t} \exp(ia(\Delta t - s))F(u(t_n + s)) ds$$

with $\Delta t > 0$, $t_n = n\Delta t$ with $n \in \mathbb{N}$ Linear part is exact!

Idea of exponential integrators

2 classes of methods:

exponential Runge-Kutta: solve exactly what we can, and interpolate the rest. For example first order exponential Euler method:

$$u(t_n+\Delta t)pprox u^{n+1}=e^{-ia\Delta t}u^n+\Delta t arphi_1(ia\Delta t)F(u^n)$$
 where $arphi_1(z)=rac{e^z-1}{z}$

Hochbruck and Ostermann 2010, Acta Numerica

Lawson: Change of variable: $v(t) = e^{-iat}u(t)$, we solve with a RK method: $\dot{v} = \tilde{F}(t, v) = e^{-iat}F(e^{iat}v(t))$ For example, Lawson Euler method:

$$v(t_n + \Delta t) \approx v^{n+1} = v^n + \Delta t e^{-iat_n} F(e^{iat_n} v^n)$$

or as an expression of u:

$$u^{n+1} = e^{-ia\Delta t}u^n + \Delta t e^{ia\Delta t}F(u^n)$$

Isherwood, Grant, and Gottlieb 2018, *Journal on Numerical Analysis*

Outline

- Motivation for Vlasov-Poisson equations
- 2 Linear analysis
 - Lawson methods
 - Exponential Runge-Kutta methods
- Numerical simulation: Vlasov-Poisson equations
- 4 Conclusion

Reminder of stability tools

If we want to study stability of:

$$\partial_t u + \partial_x u = 0$$

with centered scheme (CD2) $(\partial_x u)_j \approx \frac{1}{2\Delta x}(u_{j+1} - u_{j-1})$. After a Fourier transform (von Neumann analysis):

$$\dot{u} + i \frac{\sin(k\Delta x)}{\Delta x} u = 0$$

Explicit Euler method in time: we have to stretch eigenvalues (or Fourier symbol) of CD2 into explicit Euler stability domain.

J. Massot (IRMAR) Canum-J 2020 December 4, 2020 8 / 27

Reminder of stability tools

From linear Vlasov equation to toy model

Linear Vlasov equation:

$$\partial_t f + a \partial_x f + b \partial_v f = 0$$

Fourier transform in x, CD2 in v plus a Fourier transform in v, formally:

$$\frac{\mathrm{d}f}{\mathrm{d}t} + iakf + b\frac{i\sin(\varphi)}{\Delta x}f = 0$$

Toy model:

$$\dot{u} + iau + \lambda u = 0$$

with $a \in \mathbb{R}$, $\lambda \in \mathbb{C}$ (diffusive scheme for example).

 λ is the Fourier symbol (or eigenvalues) of FD method to approximate $\partial_{\nu}f$.

J. Massot (IRMAR) Canum-J 2020 December 4, 2020

9 / 27

In v direction we use a FD method:

- CD2 (centered difference of order 2): $(\partial_{\nu} f)(\nu_j) \approx \frac{f_{j+1} f_{j-1}}{2\Delta \nu}$
- WENO5 (weighted essentially non-oscillatory of order 5):
 - WENO5: non linear scheme: Von Neumann analysis
 - LW5 (linearized WENO5): linear scheme (this is Lagrange interpolation of order 5)

$$(\partial_{\nu}f)(\nu_{j}) \approx \frac{1}{\Delta\nu} \left(-\frac{1}{30}f_{j-3} + \frac{1}{4}f_{j-2} - f_{j-1} + \frac{1}{3}f_{j} + \frac{1}{2}f_{j+1} - \frac{1}{20}f_{j+2} \right)$$

- Wang and Spiteri 2007, Journal on Numerical Analysis
 - Motamed, Macdonald, and Ruuth 2010, Journal of Scientific Computing

J. Massot (IRMAR) Canum-J 2020 December 4, 2020

10 / 27

Fourier symbols

Lawson methods stability domain

For our toy model:

$$\dot{u} = iau + \lambda(u)$$

Change of variable: $v(t) = e^{-iat}u(t)$

$$\dot{v} = e^{-iat} \lambda e^{iat} v$$

Apply a Runge-Kutta method to compute stability function of Lawson method:

$$v^{n+1} = \underbrace{p(\lambda \Delta t)}_{\text{stability function of RK}} v^n$$

i.e.:

stability function of Lawson

$$u^{n+1} = p(\lambda \Delta t)e^{-ia\Delta t}$$
 u^n

Stability domain: $\mathcal{D}=\{z\in\mathbb{C}, |p(z)|\leq 1\}$ of Lawson method is **the same** as the underlying Runge-Kutta method **because** $ia\in i\mathbb{R}$

Considered Lawson(RK(s, p)) methods

J. Massot (IRMAR) Canum-J 2020 December 4, 2020

Lawson methods – CD2

For stability between a Lawson method and CD2, we solve:

$$|p(iy)|=1, y\in\mathbb{R}$$

J. Massot (IRMAR) Canum-J 2020 December 4, 2020

J. Massot (IRMAR) Canum-J 2020 December 4, 2020

Lawson methods – CD2/LW5: CFL estimates

-	Lawson $(RK(3,3))$	Lawson $(RK(4,4))$
CD2 (y_{max})	$\sqrt{3}$	$2\sqrt{2}$
LW5 (σ)	1.433	1.73

Table: CFL number for some Lawson schemes.

Other RK-CD2 CFL estimates:

Baldauf 2008, Journal of Computational Physics

Same estimation of RK-WENO CFL estimates:

Motamed, Macdonald, and Ruuth 2010, Journal of Scientific Computing

Lunet et al. 2017, Monthly Weather Review

J. Massot (IRMAR) Canum-J 2020 December 4, 2020 16 / 27

Exponential Runge-Kutta methods

$$\dot{u} = iau + F(u)$$

Example on ExpRK(2,2):

$$u^{(1)} = e^{-ia\Delta t}u^n - \Delta t\varphi_1 F(u^n)$$

$$u^{n+1} = e^{-ia\Delta t}u^n - \Delta t \left[(\varphi_1 - \varphi_2)F(u^n) + \varphi_2 F(u^{(1)}) \right]$$

Stability function becomes:

$$p_{\text{ExpRK}(2,2)}(z) = \frac{1}{2}\varphi_1\varphi_{1,2}z^2 + (\varphi_1 + i\frac{\varphi_1\varphi_{1,2}}{2}a)z + 1 + i\varphi_1a$$

Stability domain depends of $a\Delta t...X$

J. Massot (IRMAR) Canum-J 2020 December 4, 2020

17 / 27

Figure: Stability domain of ExpRK(2,2) for $a\Delta t \in \{1.1, 3.4\}$

Figure: Stability domain of Cox-Matthews for $a\Delta t \in \{1.1, 3.4\}$

Outline

- Motivation for Vlasov-Poisson equations
- 2 Linear analysis
 - Lawson methods
 - Exponential Runge-Kutta methods
- 3 Numerical simulation: Vlasov-Poisson equations
- 4 Conclusion

J. Massot (IRMAR) Canum-J 2020 December 4, 2020 19 / 27

$$\begin{cases} \partial_t f + v \partial_x f + E \partial_v f = 0 \\ \partial_x E = \int_{\mathbb{R}} f \, dv - 1 \end{cases}$$

Numerical tools:

- FFT in x direction
- WENO5 in v direction
- Lawson(RK(s, p)) method in time t

CFL:
$$\Delta t_n \leq \frac{C\Delta v}{||E^n||_{\infty}} \leq \frac{C\Delta v}{\max_n ||E^n||_{\infty}}$$
 where $C = y_{\max}$ or σ from the linear theory.

We can choose:
$$\Delta t = \min\left(0.1, \frac{C\Delta v}{\max_n ||E^n||_{\infty}}\right)$$

J. Massot (IRMAR) Canum-J 2020 December 4, 2020 20 / 27

Landau damping

$$f(t=0,x,v)=f_0(x,v)=\frac{1}{\sqrt{2\pi}}e^{-\frac{v^2}{2}}(1+0.001\cos(0.5x))$$

 $x \in [0, 4\pi], \ v \in [-8, 8], \ N_x = 81, \ N_v = 128$

Because of damping:

$$\max_{n}||E^n||_{\infty}=||E^0||_{\infty}$$

So, we choose $\Delta t = 0.1$ (with $\Delta t = 100$ it is still stable!)

21/27

Landau damping: numerical results

Figure: Landau damping test: time history of $||E(t)||_{L^2}$ (semi-log scale) obtained with Lawson(RK(4,4)) and WENO5 with $\Delta t = 1/8$ and $\Delta t = 1$.

J. Massot (IRMAR) Canum-J 2020 December 4, 2020 22 / 27

Landau damping: numerical results

Figure: Landau damping test: time history of the CFL condition (semi-log scale).

J. Massot (IRMAR) Canum-J 2020 December 4, 2020 22 / 27

Bump on Tail (BoT)

$$f(t=0,x,v) = \left[\frac{0.9}{\sqrt{2\pi}}e^{-\frac{v^2}{2}} + \frac{0.2}{\sqrt{2\pi}}e^{-2(v-4.5)^2}\right](1+0.001\cos(0.5x))$$

 $x \in [0, 20\pi], v \in [-8, 8], N_x = 135, N_v = 256$ Numerical estimation of $\max_n ||E^n||_{\infty} \approx 0.6$, we choose $\Delta t = \frac{C\Delta v}{0.6}$

Canum-J 2020 December 4, 2020 23 / 27

BoT: numerical results

Figure: Distribution function at time t=40 as a function of x and v for Lawson(RK(4,4)) + WENO5 (left), Lawson(RK(4,4)) + centered scheme (center), Hochbruck–Ostermann + centered scheme (right).

J. Massot (IRMAR) Canum-J 2020 December 4, 2020 24 / 27

BoT: numerical results

Figure: Illustration of the accuracy of the CFL estimate obtained from the linear theory. History of electric energy with Lawson(RK(4,4)) + WENO5

Figure: History of CFL condition for Lawson(RK(4,4)) + WENO5 case

J. Massot (IRMAR) Canum-J 2020 December 4, 2020 24 / 27

Outline

- - Lawson methods
 - Exponential Runge-Kutta methods
- Conclusion

J. Massot (IRMAR) Canum-J 2020 December 4, 2020 25 / 27

Summary

- Better understanding on stability of Lawson or ExpRK methods in transport equations
- Python script with sympy to compute estimates of CFL of Lawson CD2, Lawson – WENO (5 or 3)

Future works

- We can improve method with an embedded Runge-Kutta method (Dormand-Prince method, used in ode45 of Matlab)
- Compare performance between exponential integrators and splitting methods (same order)
- Use semi-Lagrangian method to remove dependency on periodic space (Fourier transform)

J. Massot (IRMAR) Canum-J 2020 December 4, 2020 26 / 27

Thank you for your attention