ARDUINO и ОСНОВЫ УПРАВЛЕНИЯ

Содержание

□ Arduino

- □ Основы управления
 - последовательный ввод / вывод
 - Основы управления аппаратным обеспечением

Что такое Arduino

- □ Arduino это платформа для аппаратного и программного обеспечения с открытым исходным кодом, основанная на микроконтроллерах Atmel.
 - : Открытый источник означает, что схемы и исходный код программн ого обеспечения, используемого в проектах, свободно доступны и могут быть изменены энтузиастами.
 - Аппаратное обеспечениеArduino (одноплатный микроконтроллер)
 : Микроконтроллер построен на одной печатной плате, которая обеспечи вает все схемы, необходимые для полезной задачи управления.
 - Программное обеспечение Arduino (IDE)
 - ➤ Программное обеспечение Arduino с открытым исходным кодом (IDE) позволяет легко писать код и загружать его на борт.
 - Среда разработки написана на Java и основана на обработке и другом программном обеспечении с открытым исходным кодом.

Почему Arduino

- □ недорогой: платы Arduino относительно недороги по сравнению с другими платформами микроконтроллеров.
- □ Кросс-платформенная: программа Arduino (IDE) работает в операционных системах Windows, Macintosh OSX и Linux.
- □ Простая и понятная среда программирования: програ ммное обеспечение Arduino (IDE) прост в использовании для новичк ов, но достаточно гибкое для продвинутых пользователей
- □ Открытое и расширяемое оборудование: планы плат Arduino публикуются под лицензией Creative Commons, поэтому опы тные дизайнеры могут создавать собственную версию модуля, расш иряя и улучшая его.
- □ Открытое и расширяемое программное обеспечение: программное обеспечение Arduino публикуется как инструменты с открытым исходным кодом, доступные для расширения опытными программистами. Язык может быть расширен через библиотеки С +

плата микроконтроллераArduino

- **1. Кнопка сброса:** перезагрузка любого загруженного на плате кода
- **2. AREF**: Стенды для «Analog Reference» и используетс я для установки внешнего опорного напряжения
- 3, 14: контакт заземления
- **4. Цифровой вход / выход:** контакты 0-13 могут использоваться для цифрового входа или выхода
- **5. PWM**: pinы отмеченные символом (\sim), могут имитиров ать выход **PWM**
- **6. USB-соединение:** используется для включения питания и загрузки программного обеспечения
- 7. TX / RX Светодиодные индикаторы передачи и приема данных
- 8. ATmega Microcontroller: это мозг и где хранятся программы
- 9. Светодиодный индикатор питания
- **10.Регулятор напряжения:** контролирует количество напряжения, поступающего на плату Arduino
- **11.Разъем питания постоянного тока:** для питания платы с источником питания
- 12. 3.3V Pin: обеспт 3,3 вольт мощности для проекто
- 13. 5V Pin: обесп.т 5 вольт мощности для проектов
- **15. Аналоговые выводы:** могут считывать сигнал с аналогового датчика и преобразовывать его в цифровой

Семейство Arduino

Arduino Mega (R3)

Arduino Leonardo

Arduino Due

Arduino Nano

Расширенные семейные датчики

Pасширенное семейство - щиты Shields

Проекты с использованием Arduino UNO

Доступ к безопасности с помощью RFID-считывателя

Arduino UNO & Genuino UNO

: 1

Arduino code for RFID reader Arduino

In the piece of code above you need to change the if (content.substring(1) == "REPLACE WITH YOUR UID") and type the UID card you've written previously.

```
1  /*
2  *
3  * All the resources for this project: https://www.hackster.io/Aritro
4  * Modified by Aritro Mukherjee
5  *
6  *
7  */
8
9  #include <SPI.h>
10  #include <MFRC522.h>
11
12  #define SS_PIN 10
13  #define RST_PIN 9
14  MFRC522 mfrc522(SS_PIN, RST_PIN); // Create MFRC522 instance.
15
16  void setup()
17  {
18  Serial.begin(9600); // Initiate a serial communication
```

Код Arduino для считывателя RFID

Проекты с использованием Arduino UNO

роботизированная рука с диста нционным управлением

Программное обеспечение Arduino (IDE)

- □ Arduino IDE (интегрированная среда разработки)
 - содержит текстовый редактор для написания кода, область сообщений, текстовую консоль, панель инструментов с кнопками для общих функций и ряд меню.

подключается к оборудованию Arduino для загрузки программ и

общения с ними

Программное обеспечение Arduino (IDE) - Эскизы

□ Написание эскизов

- Программы, написанные с использованием Arduino Software (IDE), называются эскизами
- Эскизы записываются в текстовый редактор и сохраняются с расширением файла .ino.
- Кнопки панели инструментов позволяют проверять и загружать программы, создавать, открывать и сохранять эскизы и открывать после довательный монитор.
 - Verify: проверяет ваш код на наличие ошибок.
 - ■Upload: компилирует свой код и загружает его на настроенную плату.
 - New: создает новый эскиз
 - Ореп: представляет меню всех эскизов в вашем альбоме. Щелчок по одному откроет его в текущем окне, перезаписывая его содержимое.
 - Save: сохраняет эскиз
 - Serial Monitor: открывает последовательный монитор

Программное обеспечение Arduino (IDE) - Загрузка

□ Загрузка

- Перед загрузкой эскиза вам нужн о выбрать правильные элементы в меню Инструменты> Board и инструменты> Port
- Нажмите кнопку загрузки или выберите пункт «Загрузить» в меню «Эскиз».
- Текущие платы Arduino сбрасыва ются автоматически и начинают загрузку
- Когда эскиз загружается, светодиоды RX и TX мигают.
- После завершения загрузки сред а IDE отобразит сообщение или покажет сообщение об ошибке

Программное обеспечение Arduino (IDE) - Библиотеки

Библиотеки

- Библиотеки предоставляют дополнительную функциональность для использования в эскизах, например. работа с оборудованием или мани пулирование данными.
- Чтобы использовать библиотеку, выберите ее из меню Sketch> Import Library.
- Это вставляет один или несколько операторов #include в верхней части эскиза и скомпилирует библиотеку с вашим эскизом.
- Другие библиотеки можно загружать из разных источников или через Менеджер библиотек

Программное обеспечение Arduino (IDE) - последовательность

- □ Последовательный монитор
 - Это отображает серийный номер, отправленный с платы Arduino через USB или последовательный разъем.
 - Чтобы отправить данные на доску, введите текст и нажмите кнопку «Отправить» или нажмите «Ввод».
 - Выберите скорость передачи в раскрывающемся меню, которая соответствует скорости, переданной Serial.begin в эскизе.

```
sketch_jan15b | Arduino 1.8.1

Serial Monitor

sketch_jan15b §

void setup() {
    // Begin the serial velocity
    // 9600 byte/sec approximately 1000 character/sec

Serial.begin(9600);
}

void loop() [
    // Say hello to serial monitor every 3 sec
Serial.println("Hellloooo");
    delay(3000);
}
```


Arduino Software (IDE)-Структура

- □ Функция setup()
 - :операторы в функции setup () выполн яются только один раз, каждый раз, когда выполняется эскиз.
- □ Функция loop()
 - : Выражения в функции loop () будут выполняться непрерывно сверху вниз, а затем обратно в начало
- □ Текстовое сообщение от Arduino IDE
 - Область сообщений дает обратную связь при сохранении и экспорте, а также отображает ошибки.
 - Консоль отображает текстовый вывод, включая полные сообщения об ошибках и другую информацию

```
sketch sep18a | Arduino 1.8.5
File Edit Sketch Tools Help
  sketch sep18a
void setup() {
  // put your setup code here, to run once:
  Serial.begin(9600);
  Serial.println("Hello, world!")
void loop() {
  // put your main code here, to run repeatedly:
                                       Copy error messages
expected ';' before '}' token
```


Типы данных Arduino

Туре	Keyword	Width	Description				
Boolean (логическ)	bool	1bit	1bit True(1) or False(0)				
	char	1byte	a character value in the ASCII table				
Character(символь)	unsigned char		datatype for numbers from 0 to 255.				
Byte(битовой)	byte	1byte	8-bit unsigned number, from 0 to 255				
	short	2byte	16-bit value, from -32768 to 32767				
Integer(целочисл)	int	2byte	16-bit value, from -32768 to 32767				
	unsigned int	2byte	16-bit value, from 0 to 65535				
Word(слово)	word	2byte	16-bit unsigned number, from 0 to 65535				
1	long	4byte	32 bits, from -2,147,483,648 to 2,147,483,647				
Long(длина)	unsigned long	4byte	32 bits, from 0 to 4,294,967,295				
Floating point(пл.то)	float	4byte	32 bits, -3.4028235E+38 ~ 3.4028235E+38				
Double floating point	double	-	Arduino Uno: 4bytes, Arduino Due: 8bytes				
String(строка)	string		Character array or an object of String class				
Valueless(без знач)	void		no information				

Константы в Arduino

Туре	Description
true	определяется как 1, Любое целое, отличное от нуля будет правд
false	Определяет как 0
HIGH	- Чтение: напряжение выше 3,0 В - Запись: вывод находится на 5 вольт
LOW	- Чтение: на выводе присутствует напряжение менее 1,5 В - Запись: вывод находится на 0 вольт
INPUT	высокоимпедансное состояние для считывания датчика. Чтобы обеспечи ть правильное считывание, когда переключатель разомкнут, необходимо использовать подтягивающий или выталкивающий резистор
OUTPUT	низкоомное состояние, которое может обеспечить значительное количес тво тока для других цепей
Integer Constants	Целочисленные константы - это числа, которые используются непосредс твенно в эскизе: десятичный (7), двоичный (В1111011), восьмеричный (0173), шестнадцатеричный (0x7B)
Floating Point Constants	константы с плавающей запятой используются, чтобы сделать код более читаемым: 0.005, 10.0, 2.34E5(2.34*10^5 = 234000), 67e-10(67.0*10^-10= 0.0000000067)

Преобразование типа в Arduino

- □ Преобразование значения в другой тип
 - char(): Преобразует значение в тип данных char
 - byte() : Преобразует значение в тип данных byte
 - int(): преобразует значение в тип данных int
 - word(): преобразует значение в тип данных word
 - long(): преобразует значение в тип данных long
 - float(): преобразует значение в тип данных float

#1 задача: Обработка данных Arduino

□ Task(Задание)

: объявите переменные и присвойте им значения, а затем преоб разуйте значения в соответствующие типы данных, как показано ниже.

Имя переменной	Типы данных	значения	Тип преобразов ания
f_sw	boolean	false	byte
mark	character	'A'	word
id	byte	0x1F	character
rank	unsigned integer	123	float point
average	floating point	3.141592	integer

□ Use Tip(Подсказка)

Обратитесь к типам данных и константам Arduino

Содержание

□ Arduino

- □ Основы управления
 - последовательный ввод / вывод
 - Основы управления аппаратным обеспечением

Последовательность в Arduino

- □ Используется для связи между платой Arduino и компьютером или другими устройствами. Все платы Arduino имеют как минимум один последовательный порт (также известный как UART или USART)
- □ Пользователь может вводить данные в поле ввода в окне последоват ельного монитора для отправки значений и данных в Arduino

- ☐ Serial.begin()
 - : Устанавливает скорость передачи данных в битах в секунду (бод) для последовательной передачи данных
 - Синтаксис
 - Serial.begin(speed)
 - speed: используйте одну из этих скоростей: 300, 600, 1200, 2400, 4800, 9600, 14400 , 19200, 28800, 38400, 57600, or 115200
 - Пример

```
void setup() {
    // открывает последовательный порт, устанавливает скорость передачи данных до 9600 бит / с
    Serial.begin(9600);
}
void loop() { ... }
```

- □ Serial.end()
 - : Отключает последовательную связь. Для повторного включения вызовите Serial.begin ()
 - Синтаксис
 - Serial.end()

- ☐ Serial.available()
 - : Получить количество байтов (символов), доступных для чтения из последовательного порта
 - Синтаксис
 - Serial.available()
 - Возвращает значение: количество байтов, доступных для чтения
 - Пример

- ☐ Serial.read(), Serial.readBytes()
 - : Считывает последовательные данные
 - Синтаксис
 - > Serial.read(): считывает входящие последовательные данные
 - > Serial.readBytes(buffer, length): считывает символы из последователь ного порта в буфер
 - buffer: буфер для хранения байтов в (char[] or byte[])
 - length: количество прочитанных байтов (int)

Пример

```
byte data = 0; // для входящих последовательных данных void loop() {
  if (Serial.available() > 0) { // отвечать только тогда, когда вы получаете данные data = Serial.read(); // читаеть входящий байт:
```


☐ Serial.print(), Serial.println()

: Распечатывает данные на последовательный порт в виде читабел ьного человека текста ASCII,

Синтаксис

- Serial.print(val, format)
- Serial.println(val, format): за которым следует символ возврата ('/ r') и символ новой строки ('\ n')
 - val: значение для печати любой тип данных
 - format: указывает номер базы

Пример

```
Serial.print(78)
                                                  // gives "78"
Serial.print(1.23456)
                                                  // gives "1.23"
Serial.print('N')
                                                  // gives "N"
Serial.print("Hello world.")
                                                  // gives "Hello world."
                                                  // gives "1001110"
Serial.println(78, BIN)
                                                  // gives "116"
Serial.println(78, OCT)
                                                  // gives "78"
Serial.println(78, DEC)
Serial.println(78, HEX)
                                                  // gives "4E"
```


Пример кода

```
char data = 0;
                                      // для входящих последовательных данных
void setup() {
                               // открывает порт, устан.т скоростьдо 9600 бит / с}
  Serial.begin(9600);
void loop() {
  if (Serial.available() > 0) {
                                       // отвечаеть тогда, когда получает данные:
         data = Serial.read();
                                             // читать входящий байт:
                                             // скажите, что вы получили
         Serial.print("I received: ");
         Serial.println(data);
```


#2 задача: напечатать текст

- □ Task(Задание)
 - 1. Введите символ в последовательный монитор
 - 2. Распечатайте соответствующий текст, как показано ниже.

Character	Text statement
'F'	"Go Forward"
'B'	"Go backward"
'R'	"Turn Right"
'L'	"Turn Left"

- □ Use Tip(Подсказка)
 - Установите скорость передачиданных спомощью Serial.begin ()
 - Получите количество байтов, доступных для чтения из послед овательного порта с Serial.available ()
 - Прочитайте последовательные данные Serial.read () и распечатайте данные на последовательный порт с помощью Serial.println ()

#2-а задача: найти максимальное значение

- □ Task(Задание)
 - 1. Введите новое значение в последовательный монитор
 - 2. Сравните сохраненное максимальное значение с входным значением
 - 3. Вывести максимальное значение

- □ Use Tip(Подсказка)
 - Установите скорость пере данных с помощью Serial.begin ()
 - Получите количество байтов, доступных для чтения из последовательного порта с Serial.available ()
 - Прочитайте последовательные данные Serial.read () и распечатайте данные на последовательный порт с помощью Serial.print () и Serial.println ()

Содержание

Arduino

- □ Основы управления
 - последовательный ввод / вывод
 - Основы управления аппаратным обеспечением

Управление цифровым I/O

- Функция pinMode()
 - заданный pin, может быть использован как вход или как выход
 - Синтаксис
 - pinMode(pin, mode)
 - pin: номер контакта, режим которого вы хотите установить.
 - mode: это INPUT, OUTPUT, или INPUT_PULLUP

Пример

```
void setup()
{
  pinMode(2, INPUT_PULLUP); // устанавливает цифровой pin2 в качестве входа
  pinMode(13, OUTPUT); // устанавливает цифровой pin13 в качестве выхода
}
```


Arduino схема подключения: светодиода

Управление цифровым I/O

- функция digitalWrite()
 - Напишите значение HIGH или LOW для цифрового pin
 - Синтаксис
 - digitalWrite(pin, value)
 - pin: номер pin
 - mode: HIGH or LOW (включить или выключить)
 - Пример

```
void loop()
{
    digitalWrite(13, HIGH); // устанавливает pin 13 как включить
    delay(1000); // ждет секунду
    digitalWrite(13, LOW); // устанавливает pin 13 как выключить
    delay(1000); // ждет секунду
}
```


#3 задача: LED Blinking

□ Task(Задание)

- 1. Введите значение, указывающее секунду (2: 2 секунды)
- 2. Сделать светодиод мигать с интервалом времени ввода

секунды	светодиод мигать
1	Светодиод мигает каждую 1 секунду
5	Светодиод мигает каждые 5 секунд

□ Use Tip(Подсказка)

- Установите скорость передачи данных с помощью Serial.begin()
- Получить число байтов, доступных для чтения с последовательного порта с помощью Serial.available () и Считать последовательные данные с помощью Serial.read ()
- Настройте выходной контакт с помощью pinMode ()
- Записать ВЫСОКОЕ или НИЗКОЕ значение на 13-контактный разъем с помощью digitalWrite ()

схема подключения Arduino : Нажатие кнопки

Управление цифровым I/O

- □ Функция digitalRead()
 - Считывает значение с указанного цифрового вывода, либо HIGH, либо LOW
 - Синтаксис
 - digitalRead(pin)
 - Нужно указать номер pin, с которого вы хотите прочитать
 - Возвращает значение: LOW или HIGH
 - Пример

```
void loop()
{
  bool val;
  val = digitalRead(2);  // read the input pin(2)
}
```


#4 задача: кнопка и светодиод

- □ Task(Задание)
 - 1. Прочтите значение с 2х ріп подключенного с помощью кнопки
 - 2. Включите светодиод при нажатии кнопки
 - 3. Выключите светодиод при отпускании кнопки

- □ Use Tip(подсказка)
 - Настроить pin input/output используя функцию pinMode()
 - Прочитать значения с 2x pin с помощью функции digitalRead()
 - Записать значение HIGH или LOW в pin13 используя функцию digitalWrite()

#4-а задача: кнопка и светодиод

- □ Task(Задание)
 - 1. Прочтите значение с 2x pin подключенного с помощью кнопки
 - 2. Включите светодиод при нажатии кнопки
 - 3. Выключите светодиод при повторном нажатии кнопки

- □ Use Tip(подсказка)
 - Настроить pin input/output используя функцию pinMode()
 - Прочитать значения с 2х pin с помощью функции digitalRead()
 - Записать значение HIGH или LOW в pin13 используя функцию digitalWrite()

#приложение

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22	II .	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	Е	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	у
26	1A	[SUBSTITUTE]	58	3A		90	5A	Z	122	7A	Z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

#приложение

Pull-up Resistor Circuit

Pull-down Resistor Circuit

Circuit Arrangement

is open

When **Switch** R_1 = Pull up resistor Current Path = Vcc → input pin (High)

R₂ = Pull down resistor Current Path = Input pin → GND ∴ Voltage at input pin = Vcc ∴ Voltage at input pin = GND (Low)

is closed

→ GND

(Low)

When Switch | Current Path = Vcc → input pin Current Path = Vcc→ input pin → GND

∴ Voltage at input pin = GND ∴ Voltage at input pin = Vcc (High)

