Exercic

Proposer un modèle de connaissance et de comportement

1	Proposer un modèle de connaissance et de comportement 2
1.1	Établir un modèle de connaissance par des fonctions de transfert
1.2	Proposer un modèle cinématique à partir d'un système réel ou d'une maquette numérique
1.3	Modéliser la cinématique d'un ensemble de solides 6
1.4	Modéliser une action mécanique
1.5	Établir un modèle de connaissance par des fonctions de transfert
1.6	Proposer un modèle cinématique à partir d'un système réel ou d'une maquette numérique
1.7	Modéliser la cinématique d'un ensemble de solides 15
1.8	Modéliser une action mécanique
2	Mettre en œuvre une démarche de résolution analy- tique
2.1	Déterminer les relations entre les grandeurs géométriques ou cinématiques
2.2	Déterminer les relations entre les grandeurs géométriques ou cinématiques
2.3	Déterminer les actions mécaniques en dynamique dans le cas où le mouvement est imposé
3	Mettre en œuvre une démarche de résolution analy- tique 29
3.1	Déterminer les relations entre les grandeurs géométriques ou cinématiques
3.2	Déterminer les relations entre les grandeurs géométriques ou cinématiques
3.3	Déterminer les actions mécaniques en dynamique dans le

1 Mettre en œuvre une démarche de résolution analytique

1.1 Déterminer les actions mécaniques en dynamique dans le cas où le mouvement est imposé.

Exercice 1 - Mouvement T - *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$. On note m_1 la masse du solide et $I_B(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & -D_1 \\ 0 & B_1 & C_1 \end{pmatrix}$.

Question 1 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}$ en B.

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Corrigé voir 156.

Exercice 2 - Mouvement R *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec R = 20 mm. On note m_1 la masse du solide 1, B son centre

$$\text{d'inertie et } I_G(1)\!=\!\begin{pmatrix} A_1 & 0 & 0 \\ 0 & A_1 & 0 \\ 0 & 0 & A_1 \end{pmatrix}_{\mathscr{B}_1}.$$

Méthode 1 – Déplacement du torseur dynamique

Question 1 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}$

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Méthode 2 – Calcul en A

Question 3 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Masse ponctuelle

On fait maintenant l'hypothèse que la masse est ponctuelle et concentrée en \mathcal{B} .

Question 4 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}$ en B.

Question 5 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Corrigé voir 157.

Exercice 3 - Mouvement TT - *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$. De plus :

• $G_1 = B$ désigne le centre d'inertie de 1, on note m_1

sa masse et
$$I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathfrak{B}_1};$$

• $G_2 = C$ désigne le centre d'inertie de $\mathbf{2}$, on note m_2

sa masse et
$$I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\Re_0}$$
.

Question 1 Exprimer les torseurs cinétiques $\{\mathscr{C}(1/0)\}\$ et $\{\mathscr{C}(2/0)\}\$.

Question 2 Exprimer les torseurs dynamiques $\{\mathcal{D}(1/0)\}\$ et $\{\mathcal{D}(2/0)\}\$ en B.

Question 3 En déduire $\{\mathcal{D}(1+2/0)\}\$ en B.

Corrigé voir 158.

Exercice 4 - Mouvement RR *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \, \overrightarrow{i_2}$ avec $L = 15 \, \text{mm}$. De plus :

• G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = 15 \, \text{mm}$

• G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = \frac{1}{2}R\overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \frac{1}{2}R\overrightarrow{i_1}$

$$egin{pmatrix} A_1 & 0 & 0 \ 0 & B_1 & 0 \ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{B}_1};$$

• G_2 désigne le centre d'inertie de $\mathbf{2}$ et $\overrightarrow{BG_2} = \frac{1}{2}L\overrightarrow{i_2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = \frac{1}{2}L\overrightarrow{i_2}$

$$egin{pmatrix} A_2 & 0 & 0 \ 0 & B_2 & 0 \ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}.$$

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en A.

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(2/0)\}\$ en B.

Question 3 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir 159.

Exercice 5 - Mouvement RT *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathfrak{B}_1}$;
- $G_2 = B$ désigne le centre d'inertie de $\mathbf{2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B.

Question 2 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir 160.

Exercice 6 - Mouvement RT *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{_{\mathfrak{M}}};$
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathbb{R}^2}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$

Question 2 Déterminer $\overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0}$

Corrigé voir 161.

Exercice 7 - Mouvement RR 3D **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathfrak{A}}$;
- G_2 désigne le centre d'inertie de **2** tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\$ en B.

Question 2 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{i_0}$

Corrigé voir 162.

Exercice 8 - Mouvement RR 3D **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm. De plus :

- G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = H \overrightarrow{j_1}$, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\$ en B.

Question 2 Déterminer $\delta(A, 1+2/0)$.

Corrigé voir 164.

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

•
$$G_1$$
 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = \ell \overrightarrow{i_1}$, on note m_1 la masse de 1 et $I_{G_1}(1) = \ell \overrightarrow{i_1}$

$$\begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{A}};$$

• $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Déterminer $\overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1}$ **Question 2** Déterminer $\overrightarrow{\delta}(I, 1+2/0) \cdot \overrightarrow{k_0}$

Corrigé voir 164.

2 Mettre en œuvre une démarche de résolution analytique

Déterminer les actions mécaniques en dynamique dans le cas où le mouvement est imposé.

```
Exercice 10 - Mouvement T - *
     C2-08
                Pas de corrigé pour cet exercice.
     C2-09
    Question 1 Exprimer le torseur cinétique \{\mathscr{C}(1/0)\}\ en B.
    Question 2 Exprimer le torseur dynamique \{\mathcal{D}(1/0)\}\ en B puis en A.
Exercice 11 - Mouvement R *
     C2-08
     C2-09
                Pas de corrigé pour cet exercice.
    Méthode 1 – Déplacement du torseur dynamique
    Question 1 Exprimer le torseur cinétique \{\mathscr{C}(1/0)\}\ en B.
    Question 2 Exprimer le torseur dynamique \{\mathcal{D}(1/0)\}\ en B puis en A.
    Méthode 2 – Calcul en A
    Question 3 Exprimer le torseur dynamique \{\mathcal{D}(1/0)\}\ en B puis en A.
    Masse ponctuelle
    On fait maintenant l'hypothèse que la masse est ponctuelle et concentrée en B.
    Question 4 Exprimer le torseur cinétique \{\mathscr{C}(1/0)\}\ en B.
    Question 5 Exprimer le torseur dynamique \{\mathcal{D}(1/0)\}\ en B puis en A.
Exercice 12 - Mouvement TT - *
     C2-08
     C2-09
                Pas de corrigé pour cet exercice.
    Question 1 Exprimer les torseurs cinétiques \{\mathscr{C}(1/0)\}\ et \{\mathscr{C}(2/0)\}\.
    Question 2 Exprimer les torseurs dynamiques \{\mathcal{D}(1/0)\}\ et \{\mathcal{D}(2/0)\}\ en B.
    Question 3 En déduire \{\mathcal{D}(1+2/0)\} en B.
Exercice 13 - Mouvement RR *
     C2-08
                Pas de corrigé pour cet exercice.
     C2-09
    Question 1 Exprimer le torseur dynamique \{\mathcal{D}(1/0)\}\ en A.
    Question 2 Exprimer le torseur dynamique \{\mathcal{D}(2/0)\} en B.
    Question 3 Déterminer \delta(A, 1+2/0) \cdot \overrightarrow{k_0}
Exercice 14 - Mouvement RT *
     C2-08
                Pas de corrigé pour cet exercice.
    Question 1 Exprimer le torseur dynamique \{\mathcal{D}(1/0)\}\ en B.
    Question 2 Déterminer \delta(A, 1+2/0) \cdot k_0
Exercice 15 - Mouvement RT *
     C2-08
     C2-09
                Pas de corrigé pour cet exercice.
    Question 1 Exprimer le torseur dynamique \{\mathcal{D}(1/0)\} en B.
    Question 2 Déterminer R_d(1+2/0) \cdot \vec{i_0}
Exercice 16 - Mouvement RR 3D **
     C2-08
     C2-09
                Pas de corrigé pour cet exercice.
    Question 1 Exprimer le torseur dynamique \{\mathcal{D}(1/0)\}\ en B.
    Question 2 Déterminer \delta(A, 1+2/0) \cdot \overrightarrow{i_0}
Exercice 17 - Mouvement RR 3D **
     C2-08
     C2-09
                Pas de corrigé pour cet exercice.
    Question 1 Exprimer le torseur dynamique \{\mathcal{D}(1/0)\}\ en B.
    Question 2 Déterminer \delta(A, 1+2/0) \cdot j_0
Exercice 18 - Mouvement RT - RSG **
     C2-08
     C2-09
                Pas de corrigé pour cet exercice.
    Question 1 Déterminer R_d(2/0) \cdot \vec{i_1}
```

Question 2 Déterminer $\delta(I, 1+2/0) \cdot k_0$