introduction to recommender systems

Carlos Soares

(adapted from materials from the book "Recommender Systems – An Introduction" by Dietmar Jannach, Markus Zanker, Alexander Felfernig, Gerhard Friedrich Cambridge University Press)

Recommender Systems – An Introduction

mar <u>Jannach</u>, Markus <u>Zanker</u>, Alexander <u>Felfernig</u>, Gerhard Friedrich Cambridge University Press

Which digital comera should I buy? What is the best holiday for me and my family? Which is the best investment for supporting the education of my children? Which was best will if I find interesting? Which book should buy for my next vacation? Which degree and university are the best for my future?

reference materials

• JMM et al. ch. 13.2

plan

- introduction to RS
 - what are RS
 - differences to other ML problems: the obvious
 - UB collaborative filtering: a basic algorithm
 - evaluation
- paradigms for RS algorithms
- differences to other ML problems: the not so obvious

RS: definition

- given
 - user model
 - e.g. ratings, preferences, demographics, situational context
 - items
 - with or without description of item characteristics
- find
 - relevance score for set of items
 - typically used for ranking

Purpose and success criteria

- retrieval
 - users know in advance what they want
 - should provide "correct"/"relevant" proposals
 - reduce search costs
- recommendation
 - items "unknown" to users
 - serendipity
- prediction
 - estimate degree of interest of users in item
- interaction
 - give users a "good feeling"
 - convince/persuade users explain
- conversion
 - increase "hit", "clickthrough", "lookers to bookers" rates
 - optimize sales margins and profit

differences to other ML problems: the obvious

what's the target?! User\ltem Item 1 Item 2 Item 3 Item 4 Item N-2 Item N-1 Item N 1 User 1 User 2 User 3 1 User 4 User M-2 User M-1 User M very sparse https://github.com/CSKrishna/Recommender-Systems-for-Implicit-Feedback-datasets

user-based nearest-neighbor CF: example

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	Ş
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

sim = 0.85

sim = 0.00

sim = 0,70

sim = -0.79

gps

- introduction to RS
 - what are RS
 - differences to other ML problems: the obvious
 - UB collaborative filtering: a basic algorithm
 - evaluation
 - offline evaluation
 - metrics
 - online evaluation
- paradigms for RS algorithms
- differences to other ML problems: the not so obvious

offline evaluation method

- data
 - collected in your problem
 - benchmark datasets

User\ltem	Item 1	Item 2	Item 3	Item 4			Item N-2	Item N-1	Item N
User 1	1		1						
User 2				1				1	
User 3	1		1		1		1		
User 4									1
	1			1					
User M-2						1			
User M-1									1
User M		1				1			

train and test

- training set
 - randomly selected share of known ratings
 - build the model
- testing set
 - remaining share of withheld ratings
 - ground truth to evaluate the model's quality
 - ... by comparing with its recommendations
- perhaps taking time into account rather than randomly

... maybe with a twist

- training set
 - randomly selected share of known users
 - build the model
- testing set
 - remaining share of withheld users
 - recommendations based on observed items
 - ... compared to hidden itens
- perhaps taking time into account rather than randomly
- ... and removing useless data

metrics for relevance prediction

- confusion matrix & friends
 - borrowing from information retrieval (IR)

		Reality					
		Actually Good	Actually Bad				
Prediction	Rated Good	True Positive (tp)	False Positive (fp)				
Predi	Rated Bad	False Negative (fn)	True Negative (tn)				

ranks matter!

For a user:

- take the positions of correct items in a ranked list into account
 - as they say: "the best place to hide a corpse in the second page of results of a google search"

metrics for rating prediction

- ground truth = ratings
 - i.e. regression problem
- Mean Absolute Error (MAE) computes the deviation between predicted ratings and actual ratings

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|$$

 Root Mean Square Error (RMSE) is similar to MAE, but places more emphasis on larger deviation $RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(p_i - r_i)^2}$

14

online evaluation

Lab studies

- Expressly created for the purpose of the study
- Extraneous variables can be controlled more easily by selecting study participants
- ... who should behave as they would in a real-world environment
- ... but doubts may exist about participants motivated by money, prizes or social pressure

Field studies

- Conducted in a preexisting realworld environment
- Users are intrinsically motivated to use a system

Experiment designs

gps

- introduction to RS
- paradigms for RS algorithms
 - collaborative
 - content
 - knowledge
 - hybrid
- differences to other ML problems: the not so obvious

Paradigms of recommender systems

Memory-based and modelbased approaches

- User-based CF is said to be "memory-based"
 - the rating matrix is directly used to find neighbors / make predictions
 - does not scale for most real-world scenarios
- Model-based approaches
 - based on an offline pre-processing or "modellearning" phase
 - at run-time, only the learned model is used to make predictions
 - models are updated / re-trained periodically

Item-based collaborative filtering

• Basic idea:

Use the similarity between items (and not users) to make predictions

• Example:

- Look for items that are similar to Item5
- Take Alice's ratings for these items to predict the rating for Item5

	ltem1	ltem2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Matrix factorization

 (Golub and Kahan 1965) a given matrix M can be decomposed into a product of three matrices as follows

$$M = U \times \Sigma \times V^T$$

- where U and V are called left and right singular vectors and the values of the diagonal of Σ are called the singular values
- full matrix can be approximated by observing only the most important features
 - those with the largest singular values

Example for SVD-based recommendation

• SVD: $M_k = U_k \times \Sigma_k \times V_k^T$

U _k	Dim1	Dim2
Alice	0.47	-0.30
Bob	-0.44	0.23
Mary	0.70	-0.06
Sue	0.31	0.93

	minator	e Hard	Wins	Lay Love	Woman
V_k^T					
Dim1	-0.44	-0.57	0.06	0.38	0.57
Dim2	0.58	-0.66	0.26	0.18	-0.36

• Prediction: $\hat{r}_{ui} = \overline{r}_u + U_k(Alice) \times \Sigma_k \times V_k^T(EPL)$ = 3 + 0.84 = 3.84

\sum_{k}	Dim1	Dim2
Dim1	5.63	0
Dim2	0	3.23

Paradigms of recommender systems

Paradigms of recommender systems

knowledge-based recommendations

- users want to define their requirements explicitly
 - "the accomodations should be pet-friendly"
- very specific to this particular search
 - i.e. only very specific parts of profile are relevant
- usually conversational recommendation processes
 - users specify the requirements
 - systems try to identify solutions
 - if no solution can be found, users change requirements

Manchester: 586 properties found Our top picks Homes & apartments first Stars (highest first Commission paid and other benefits may affect an accommodation's ranking. Find Clayton Hotel Manchester City C Manchester City Centre, Manchester - Show on may 400 m from centre Travel Sustainable property In a prime location in the centre of Manchester, Clayt City Centre provides air-conditioned rooms, a fitness

Motel One Manchester-Piccadilly Manchester City Centre, Manchester - Show on map

Motel One Manchester-Piccadilly is located a 5-minu Manchester Piccadilly train station, offering a central WiFi and use of on-site bar One Lounge.

interaction with knowledgebased RS: critiquing

- user may not know exactly what they are seeking
- ... can specify their why current item is not satisfactory
 - e.g. price must be lower

Hybrid recommender systems

Community data

Title	Genre	Actors	

Product features

Knowledge models

Hybrid: combinations of various inputs and/or composition of different mechanism

item	score
i1	0.9
i2	1
i3	0.3

Recommendation component

Recommendation list

Collaborative: "Tell me what's popular among my peers"

Content-based: "Show me more of the same what I've liked"

Knowledge-based: "Tell me what fits based on my needs"

hybrid recommender systems

- think of the best salesperson you have met
 - probably combines ideas
 from the three approaches
 discussed

hybridization

- monolithic exploitation of different features
- parallel
- pipeline

gps

- introduction to RS
- paradigms for RS algorithms
- differences to other ML problems: the not so obvious
 - user bias
 - meaning of data
 - the long tail
 - cold start

UBCF: not so simple after all...

	Item1	Item2	Item3	Item4	Item5	
Alice	5	3	4	4	?	
User1	3	1	2	3	3	
User2	4	3	4	3	5	
User3	3	3	1	5	4	
User4	1	5	5	2	1	

- calculate whether the neighbors' ratings for the unseen item i are higher or lower than their average rating
 - ... weight, using the similarity with the active user, u, as a weight
- add/subtract the active user's average rating

meaning of data

- explicit
 - binary
 - e.g. like
 - rating
 - 1 to 5
 - ... possibly multidimensional
 - e.g. ratings for actors and sound as opposed to the movie
 - ... users not always willing to rate many items
- implicit
 - user action interpreted as rating
 - e.g. access to content in social media
 - ... access to product's page and/or buying it
 - easy to collect transparently, without additional effort
 - ... but action doesn't necessarily have the same meaning as a rating
 - e.g. user might not like all the books he or she has bought
 - ... the user also might have bought a book for someone else

User\ltem	Item 1	Item 2	Item 3	Item 4			Item N-2	Item N-1	Item N
User 1	1		1						
User 2				1				1	
User 3	1		1		1		1		
User 4									1
	1			1					
User M-2						1			
User M-1									1
User M		1				1			

https://github.com/CSKrishna/Recommender-Systems-for-Implicit-Feedback-datasets

• important effects on offline evaluation

serendipity and the long tail

- 20% of items accumulate74% of all positive ratings
 - less likely to be interesting recommendations
- recommend widely unknown items that users might actually like!
 - much harder

cold start

- cold start problem
 - how to recommend new items?
 - what to recommend to new users?
- some (simple) approaches
 - ask/force users to rate a set of items
 - in the beginning, use method not based on ratings
 - ... then CF method
 - default voting
 - assign default values to items that only one of the two users to be compared has rated
- more complex algorithms exist

User\ltem	ltem 1	Item 2	Item 3	Item 4			Item N-2	Item N-1	Item N
User 1	1		1						
User 2				1				1	
User 3	1		1		1		1		
User 4									1
	1			1					
User M-2						1			
User M-1									1
User M		1				1			

https://github.com/CSKrishna/Recommender-Systems-for-Implicit-Feedback-datasets

summary

- problem of recommendation
- collaborative filtering approaches
- ... and other algorithms
- evaluation is key! (once more...)
 - metrics
 - use of data for estimating their value
- issues of the data used in RS