MA1201 MATEMATIKA 2A

Hendra Gunawan

Semester II, 2016/2017 22 Februari 2017

Kuliah Sebelumnya

9.4 Deret Positif: Uji Lainnya

Memeriksa kekonvergenan deret positif dengan uji perbandingan dan uji rasio

9.5 Deret Ganti Tanda: Kekonvergenan Mutlak dan Kekonvergenan Bersyarat

Memeriksa kekonvergenan mutlak/bersyarat deret ganti tanda

Sasaran Kuliah Hari Ini

9.6 Deret Pangkat

Menentukan selang kekonvergenan deret pangkat

9.7 Operasi pada Deret Pangkat

Melakukan operasi pada deret pangkat (yang diketahui jumlahnya) untuk mendapatkan deret pangkat lainnya (dan jumlahnya)

MA1201 MATEMATIKA 2A

9.6 DERET PANGKAT

Menentukan selang kekonvergenan deret pangkat

Deret Fungsi

Sejauh ini kita baru membahas deret bilangan real. Sekarang kita akan mempelajari **deret fungsi**, yang secara umum berbentuk $\sum u_n(x)$. Sebagai contoh,

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n} = \frac{\sin x}{1} + \frac{\sin 2x}{2} + \frac{\sin 3x}{3} + \dots$$

Perhatikan jika kita substitusikan nilai x tertentu, misal x = $\pi/2$, maka kita peroleh deret bilangan.

Deret Pangkat

Deret pangkat adalah deret yang berbentuk

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$$

dengan $a_n \in \mathbf{R}$ untuk tiap $n \in \mathbf{N}$.

Pertanyaan yang perlu kita ajukan terkait dengan deret pangkat adalah:

- 1. Untuk nilai x manakah deret tsb konvergen?
- 2. Apakah kita dapat menentukan fungsi yang merupakan jumlah deret tsb?

Jika $a \neq 0$, maka deret pangkat

$$\sum_{n=0}^{\infty} ax^n = a + ax + ax^2 + \dots$$

Merupakan deret geometri dengan suku pertama a dan rasio x. Kita tahu deret ini konvergen ke

$$S(x) = \frac{a}{1 - x}$$

untuk |x| < 1.

BAGAIMANA DENGAN DERET PANGKAT LAINNYA?

Tentukan untuk x mana sajakah deret berikut konvergen?

$$\sum_{n=1}^{\infty} \frac{x^n}{n} = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots$$

Dengan Uji Rasio Mutlak, kita hitung

$$\rho = \lim_{n \to \infty} \left| \frac{x^{n+1}}{n+1} \div \frac{x^n}{n} \right| = \lim_{n \to \infty} \left| \frac{nx}{n+1} \right| = |x|.$$

Jadi deret <u>konvergen</u> untuk |x| < 1 dan <u>divergen</u> untuk |x| > 1. Untuk |x| = 1, Uji Rasio tidak memberikan kesimpulan apapun. *So*?

Kita selidiki apa yang terjadi dengan $\sum_{n=1}^{\infty} \frac{x^n}{n}$ untuk |x|=1, yakni untuk $x=\pm 1$, secara tersendiri.

Jika x = 1, maka deret menjadi deret harmonik $\sum_{n=1}^{\infty} \frac{1}{n}$ yang divergen.

Jika x = -1, maka deret menjadi deret harmonik ganti tanda $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ yang konvergen.

Jadi deret pangkat $\sum_{n=1}^{\infty} \frac{x^n}{n}$ konvergen pada [-1,1).

Latihan

Tentukan pada selang manakah deret berikut konvergen.

$$1. \quad \sum_{n=1}^{\infty} \frac{x^n}{2^n n^3}$$

$$2. \quad \sum_{n=1}^{\infty} \frac{x^n}{n!}$$

$$3. \sum_{n=1}^{\infty} n! x^{2n}$$

Teorema Selang Kekonvergenan Deret Pangkat

Himpunan kekonvergenan deret pangkat $\sum a_n x^n$ selalu berupa salah satu dari tiga kemungkinan berikut:

- (*i*) *Himpunan* {**0**}.
- (ii) Selang (-R,R), mungkin dengan salah satu atau kedua titik ujungnya.
- (iii) Seluruh garis bilangan real R.

Bila (i), (ii) atau (iii) terjadi, deret dikatakan mempunyai jari-jari kekonvergenan 0, R, atau ∞.

) Hendra Gunawan

$$1. \quad \sum_{n=1}^{\infty} \frac{x^n}{2^n n^3}$$

$$[-2,2]$$

$$2. \quad \sum_{n=1}^{\infty} \frac{x^n}{n!}$$

$$\infty$$

3.
$$\sum_{n=1}^{\infty} n! x^{2n}$$

Teorema

Deret pangkat $\sum a_n x^n$ konvergen mutlak di setiap titik di dalam selang kekonvergenannya.

Deret Pangkat dalam x – a

Deret pangkat berbentuk

$$\sum a_n (x-a)^n = a_0 + a_1 (x-a) + a_2 (x-a)^2 + \dots$$

disebut **deret pangkat dalam** x - a.

Selang dan jari-jari kekonvergenan deret pangkat dalam x - a dapat ditentukan melalui deret pangkat dalam t, dengan t = x - a.

Sebagai contoh,
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{2^n n^3} = \sum_{n=1}^{\infty} \frac{t^n}{2^n n^3}$$
 konvergen utk -2 \le t \le 2, yakni utk -1 \le x \le 3.

2/21/2014

(c) Hendra Gunawar

Soal

Tentukan selang kekonvergenan deret pangkat

$$\sum_{n=1}^{\infty} (-1)^n \frac{(x+1)^n}{3n^2 + 1}$$

MA1201 MATEMATIKA 2A

9.7 OPERASI PADA DERET PANGKAT

Melakukan operasi pada deret pangkat (yang diketahui jumlahnya) untuk mendapatkan deret pangkat lainnya (dan jumlahnya)

Jumlah Deret Pangkat

Deret pangkat $\sum_{n=0}^{\infty} ax^n$ yang merupakan deret geometri dengan suku pertama a dan rasio x mempunyai jumlah

$$S(x) = \frac{a}{1-x}, \quad -1 < x < 1.$$

Bagaimana dengan deret pangkat lainnya? Apakah kita dapat menentukan jumlahnya?

Penurunan dan Pengintegralan Suku demi Suku

Teorema. Misalkan S(x) adalah jumlah suatu deret pangkat pada selang I, yakni

$$S(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$$

Maka, untuk x di dalam selang I, berlaku

(i)
$$S'(x) = \sum_{n=0}^{\infty} na_n x^{n-1} = a_1 + 2a_2 x + 3a_3 x^2 + \dots$$

$$(ii) \int_{0}^{x} S(t)dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} = a_0 x + \frac{a_1}{2} x^2 + \frac{a_2}{3} x^3 + \dots$$

18

Kita sudah tahu bahwa

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots, \qquad -1 < x < 1.$$

Penurunan suku demi suku menghasilkan

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} nx^{n-1} = 0 + 1 + 2x + ..., -1 < x < 1.$$

Pengintegralan suku demi suku menghasilkan

$$-\ln(1-x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots, -1 < x < 1.$$

2/21/2014

Contoh 2 (Substitusi Peubah)

Kita sudah tahu bahwa

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots, \qquad -1 < x < 1.$$

Ganti x dengan –x, kita peroleh

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-x)^n = 1 - x + x^2 - \dots, \quad -1 < x < 1.$$

Ganti lagi x dengan x^2 , kita peroleh

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-x^2)^n = 1 - x^2 + x^4 - \dots, \quad -1 < x < 1.$$

2/21/2014

Tentukan deret pangkat untuk tan-1 x.

Petunjuk:
$$\tan^{-1} x = \int_{0}^{x} \frac{1}{1+t^{2}} dt$$
.

Tentukan jumlah dari deret pangkat berikut:

$$S(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

<u>Catatan</u>. Deret ini konvergen pada **R**.

Jawab: Penurunan terhadap x menghasilkan

$$S'(x) = 0 + 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = S(x).$$

Solusi persamaan diferensial ini adalah $S(x) = Ce^x$. Karena S(0) = 1, maka C = 1. Jadi $S(x) = e^x$.

2/21/2014 (c) Hendra Gunawan

22

Soal

Tentukan deret pangkat untuk

1.
$$e^{-x^2}$$

2.
$$\frac{e^{x}}{1+x^{2}}$$

3.
$$\frac{xe^{x}}{\tan^{-1}x}$$