	König's Thm: The max cardinality of a matching of G = the min
	König's Thm: The max cardinality of a matching of G = the min cardinality of a vertex cover of its edges.
	Hall's marriage Thm: Gr contains a matching of 14 iff IN(S) > 18/ for all S SA.
	all S SA. (20) = (a) y ships to high strings your
	Stable marriage Thm: For every set of preferences, Gr has a stable
į,	mothering.
1	Tutte's necessary I sufficient condition for an ambitrary graph to have
	motiving Tutte's necessary 1 sufficient condition for an arbitrary graph to have 1-factor: A graph G-has 1-factor iff $g(G-S) \leq S $ for all $S \subseteq F V(G)$.
	SSE VUED.
	Petersens Ihm on 1-factor in bridgeless cubic graph:
	Petersens Thm on 1-factor in bridgeless cubic graph: Every bridgeless cubic graph has a 1-factor.
	Tutte's characterization of 3-connected graph:
	A graph Go is 3-connected iff there exists a sequence Go, Go
Zá.	of graphs s.t.
	(i) Go=K+ Gn=Gpand as & 2000
	(ii) Gin has an edge e st. Gi = Gin - e for every i <n.< td=""></n.<>
	(ii). Git has an edge e s.t. Gi = Gin - e for every i < n. Moreover, the graphs in any such seg are all 3-connected.
	Hickoryects conjectione. 4250 7 (1805) == (2-15 K
	(ii) edge xy s.t. d(x).d(y)>3 & Gri= Grin/xy for every in
	of the Movement of 22 for what would proper a girlest.
	I le be a graph on their winds Assume every vertex V in a
	Merger's thm. G=CV, E), A,B SV. The minimum number of vertices
	Menger's thm. (x=CV, E), A.B ⊆ V. The minimum number of vertices Separating A from B in G = the max number of disjoint A-B paths
	Brook's thm: a be a connected graph. If a neither complete nor old cycle.
	Brook's thm: G be a connected graph. If G neither complete nor old cycle, X(G) ≤ △(G)

Hajas' thm on k-constructible graphs:
Go, KelN, X(Go) > K iff Go has a K-constructible subgraph. König's than on LCG) of bipartite graphs.

Every bipartite graph & satisfies \(\sigma(G) = \DCG) Vizing's thm: Every graph Gr, △GOS × XGOS × CGOS+1 Turan's the Forall integers r.n., r>1, every graph G = K" with n vertices and ex(n, K") edges is a Tr-1 (n). unique complete (r-1)-portite graphs on n>r-1 ventices in size by at most 1. Erdos & stone thm: For all integer >2,8>1, 2>0 I no s.t. every graph with n>no vertices and at least trick en edges Contains Ks as a subgraph Prop: Every graph of average degree at least 2"2 has a K"minor. Hadwiger's conjecture: 4r>0, XGD>r=>G>K König's Infinity lemma: Vo.V., inf seq of disjoint mon-empty finite sets, Gbe a graph on their union. Assume every vertex v in a set Vn with n>1 has a neighbour f(v) in Vn-1.

Then Go contains a ray vov. with VneVn Vn. de Brujin 7hm G=(V, E). KEN. If every finite subgraph of G has & Erdös chromatic # out most k, so does G & Erdös

2r-3 Rangers Thm: $\forall r \in \mathbb{N}, \exists n \in \mathbb{N} \text{ s.t. every graph of order at least n contains}$ either K^r or K^r as an induced subgraph. S.t. >0. The a tree of order t. RCT. K')= cs-Dct-D+ CRST: Y DID > 0 3 C s.t. R(H) < C|H| Y H with AH) < A Dirac's Hom: Every graph with n>3 vertices and minimum degree at least 1 has a Hamiltonian cycle. Entis lover bound for Rangey & rumbers: 4 k > 3, R(k) > 2

Erdos thm on graphs with large X(&) & g(G).

Vint k 3 H with g(H)>k and X(H)>k.

Seymours Robsertson's thm: The finite graphs are W-Q-O by