Discrete Mathematics

Rule of Inference

Shin Hong

Sep 16, 2019

How can we know an argument true?

Rule of Inference

Discrete Math.

Proof and Inference

- An argument is a sequence of statements
- An argument is **valid** iff it is impossible that all preceding statements are true and a final statement is false at the same time
 - a conclusion follows the premises
- An **argument form** is a valid proposition whose structure is $P_1 \wedge P_2 \dots \wedge P_n \to Q$ where P_i and Q are compound propositions **Inference rule**
- An argument is valid if all initial statements are known to be true, and for every non-initial statement, there is an argument form that connects the preceding statements with it
 - Such a sequence of argument is called **proof**

 $p \to q$ p $\frac{p}{q}$

Rule of Inference

Discrete Math.

Rule of Inference	Tautology	Name	Dules of	
$p \\ p \to q \\ \therefore \overline{q}$	$(p \land (p \to q)) \to q$	Modus ponens	Rules of Inferences	4
	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens	premise ₁ premise ₂	
$p \to q$ $q \to r$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism	conclusion	
$ \begin{array}{c} p \lor q \\ \neg p \\ \hline \vdots q \end{array} $	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism		
$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition		
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \to p$	Simplification		
$p \\ q \\ \therefore p \land q$	$((p) \land (q)) \to (p \land q)$	Conjunction		Rule of Inference
$p \vee q$ $\neg p \vee r$ $\therefore \overline{q \vee r}$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution		Discrete Math. 2019-09-16

$ \begin{array}{c} p \\ p \to q \\ \therefore \overline{q} \end{array} $	Modus ponens
	Modus tollens
$p \to q$ $q \to r$ $\therefore p \to r$	Hypothetical syllogism
$ \begin{array}{c} p \lor q \\ \hline \neg p \\ \hline q \end{array} $	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	Addition
$\therefore \frac{p \wedge q}{p}$	Simplification
$ \begin{array}{c} p \\ q \\ \therefore p \wedge q \end{array} $	Conjunction
$ \begin{array}{c} p \lor q \\ \neg p \lor r \\ \therefore \overline{q \lor r} \end{array} $	Resolution

If there is fire, fire alarm rings.
 There is fire.
 Thus, fire alarm rings

Intuitive Examples

- Fire alarm rings if there's fire.
 There is no fire alarm.
 Thus, there is no fire.
- If one is a man, the one eventually dies. If one is a philosoper, the one is a man. Thus, a philosoper eventually dies.

I will take a taxi tonight if it rains.
 Otherwise, I will take a bus tonight.
 Thereby, I will take a taxi or bus tonight.

Rule of Inference

Discrete Math.

Quantified Statements

- Valid arguments for quantified statements are a sequence of statements where each statement is either a premise or follows from previous statements by rules of inference
 - rules of inference for propositional logic
 - rules of inference for quantified statements
 - Universal Instantiation (UI)
 - Universal Generalization (UG)
 - Existential Instantiation (EI)
 - Existential Generalization (EG)

Rule of Inference

Universal Instantiation (UI)

$$\frac{\forall x P(x)}{\therefore P(c)}$$

- c is a specific instance of the domain, or
- c is a variable representing an arbitrary value of the domain

Example:

Our domain consists of all dogs and Bingo is a dog.

"All dogs are cuddly."

"Therefore, Bingo is cuddly." "Therefore, dog *d* is cuddly"

Rule of Inference

Discrete Math.

Universal Generalization (UG)

$$P(c)$$
 for an arbitrary c
 $\therefore \forall x P(x)$

Used often implicitly in Mathematical Proofs.

Rule of Inference

Existential Instantiation (EI)

```
\exists x P(x)
```

 $\therefore P(c)$ for some element c

Example:

"There is someone who got an A in the course."

"Let's call her a and say that a got an A"

Rule of Inference

Discrete Math.

Existential Generalization (EG)

$$P(c)$$
 for some element c
 $\therefore \exists x P(x)$

Example:

"Michelle got an A in the class."

"Therefore, someone got an A in the class."

Rule of Inference

Using Rules of Inference

Construct a valid argument to show that

"John Smith has one wife" is a consequence of the premises:

"Every married man has one wife." "John Smith is a married man."

Solution: Let M(x) denote "x is a man", and L(x) denote "x has one wife", and let / be an element representing John Smith.

Step

- 1. $\forall x (M(x) \to L(x))$
- 2. $M(J) \to L(J)$ UI from (1)
- 3. M(J)
- 4. L(J)

Reason

Premise

Premise

Modus Ponens using

(2) and (3)

Rule of Inference

Using Rules of Inference

- Construct a valid argument showing that the conclusion:
 - "Someone who passed the first exam has not read the book." follows from
 - "A student in this class has not read the book."
 - "Everyone in this class passed the first exam."
- Solution: Let C(x) denote "x is in this class," B(x) denote "x has read the book," and P(x) denote "x passed the first exam."

$$\exists x (C(x) \land \neg B(x)) \\ \forall x (C(x) \to P(x)) \\ \therefore \exists x (P(x) \land \neg B(x))$$

Step

- 1. $\exists x (C(x) \land \neg B(x))$
- 2. $C(a) \wedge \neg B(a)$ EI from (1)
- 3. C(a)
- 4. $\forall x (C(x) \to P(x))$
- 5. $C(a) \rightarrow P(a)$
- 6. P(a)
- 7. $\neg B(a)$
- 9. $\exists x (P(x) \land \neg B(x))$

Reason

Premise

Simplification from (2)

Premise

UI from (4)

MP from (3) and (5)

Simplification from (2)

8. $P(a) \wedge \neg B(a)$ Conj from (6) and (7)

EG from (8)

Rule of Inference

Discrete Math.

Proof

- A theorem is an important proposition that can be shown true
 - a theorem (or fact) is a proposition that is true
 - a lemma is a less important proposition that is true (usullay a part of a theorem)
 - a corollary is a theorem directly established from a main theorem
- A proof is a valid argument that establishes the truth of a theorem
 - a proof can include axioms (postulates) which are statement known, assumed, or believed to be true
 - a proof can include proven theorems
 - a proof can include premises
 - a proof include a conclusion from valid assertions by a valid inference rule

• A conjecture is a statement proposed to be true (yet) without a proof

Rule of Inference

Discrete Math.