NASA TECH BRIEF

NASA Tech Briefs are issued to summarize specific innovations derived from the U. S. space program and to encourage their commercial application. Copies are available to the public from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.

Two-Light Circuit Continuously Monitors AC Ground, Phase, and Neutral Wires

The problem:

To provide a means of monitoring the continuity of the ground, neutral, and phase wires of an ac circuit. Redundant ground straps used to insure proper grounding have no monitor, can constitute safety hazards, and give no indication if either the phase or neutral lines should become open-circuited.

The solution:

A two-transformer, two-lamp circuit designed to give different visual indications if any one of the three_lines is open-circuited.

How it's done:

The circuit consists of two transformers and two pilot lamps wired as shown. With all circuits connected and performing properly, pilot lamp PL_2 should be illuminated and PL_1 should be off. The primary of T_2 is energized by current from the phase wire to the ground wire, thus energizing the secondary of T_1 in phase with the secondary of T_2 . PL_1 will

not be illuminated since there is no difference in potential across its terminals.

A loss of the ground wire will de-energize T_2 and PL_2 will go off. T_1 secondary is still energized, thus illuminating PL_1 . The ac impedance of the secondary of T_2 is much less than that of PL_2 , hence PL_2 will remain off.

A loss of the neutral wire will de-energize T_1 , allowing the secondary of T_2 to energize both PL_1 and PL_2 since they are in parallel with respect to T_2 .

A loss of the phase wire will de-energize all circuits and extinguish both lights.

Note:

Inquiries concerning this innovation may be directed to:

Technology Utilization Officer Manned Spacecraft Center Houston, Texas, 77001 Reference: B66-10163

(continued overleaf)

This document was prepared under the sponsorship of the National Aeronautics and Space Administration. Neither the United States Government nor any person acting on behalf of the United States

Government assumes any liability resulting from the use of the information contained in this document, or warrants that such use will be free from privately owned rights.

Patent status:

No patent action is contemplated by NASA.

Source: R. W. Mee
of North American Aviation, Inc.
under contract to
Manned Spacecraft Center
(MSC-356)

