Homework 5

Math 55b Due Tuesday, 3 Mar 2009.

Figure 1. Littlewood's proof.

1. Let $\alpha > 1$. Find all functions $f: [0,1] \to \mathbb{R}$ satisfying

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$

for some C > 0.

- 2. Suppose $f:[a,b]\to\mathbb{R}$ is differentiable, f(a)=0 and $|f'(x)|\leq f(x)$ for all x. Prove that f is constant.
- 3. Given $p \ge 1$ and $f \in C[a, b]$, let

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}.$$

Prove that $||f + g||_p \le ||f||_p + ||g||_p$.

- 4. Recall that $||f||_{\infty} = \sup |f(x)|$. Prove that for $f \in C[a, b]$, we have $\lim_{p\to\infty} ||f||_p = ||f||_{\infty}$.
- 5. Suppose $f \in C^2(\mathbb{R})$, $|f''(x)| \leq 1$ and $f(x) \to 0$ as $x \to \infty$. Prove that $f'(x) \to 0$ as $x \to \infty$. (Hint: Littlewood suggests that Figure 1 is already a proof.)
- 6. Let $f(x) = \exp(-1/x^2)$ for $x \neq 0$ and let f(0) = 0. Prove that all derivatives of f vanish at x = 0.
- 7. Let $L(n) = n(\log n)(\log \log n)(\log \log \log n) \cdots$, where the product is continued until you reach a term < e. Is $\sum 1/L(n)$ convergent or divergent?
- 8. Prove or disprove the following:
 - (a) If $f:[a,b]\to\mathbb{R}$ is differentiable, then $f(b)-f(a)=\int_a^b f'(x)\,dx$.
 - (b) If $f:[a,b]\to\mathbb{R}$ is monotone and differentiable, then f'(x) is continuous.
 - (c) If $f_n:[0,1]\to\mathbb{R}$ are differentiable functions, $f_n\to g$ uniformly, and g is differentiable, then $f'_n\to g'$ pointwise.