BÀI TẬP TRẮC NGHIỆM GIẢI TÍCH 1

Năm học 2023- 2024

CHƯƠNG 1: GIỚI HẠN – LIÊN TỤC

Câu 1: Tính
$$\lim_{x\to 0} \left(\frac{x-1}{x^2-1}\right)^{x+1}$$
:

- A. 0
- B. 1
- C. 2
- D. $\frac{1}{4}$

Câu 2: Tính
$$L_1 = \lim_{x \to 0^+} \frac{1}{1 + e^{\frac{1}{x}}}$$

$$L_2 = \lim_{x \to 0^-} \frac{1}{1 + e^{\frac{1}{x}}}.$$

- A. $L_1 = \frac{1}{2}$, $L_2 = 1$
- B. $L_1 = \frac{3}{2}$, $L_2 = \frac{1}{3}$
- C. $L_1 = 0$, $L_2 = 1$
- D. $L_1 = 1, L_2 = \frac{1}{2}$

Câu 3: Tîm
$$L_1 = \lim_{x \to 0^+} \left(\frac{1}{1 + 2^{\frac{1}{x}}} + \frac{\sin x}{x} \right)$$
,

$$L_2 = \lim_{x \to 0^-} \left(\frac{1}{1 + 2^{\frac{1}{x}}} + \frac{\sin x}{x} \right).$$

- A. $L_1 = -\infty$, $L_2 = 2$
- B. $L_1 = 2$, $L_2 = +\infty$
- C. $L_1 = 1, L_2 = 2$
- D. $L_1 = 2$, $L_2 = 1$

Câu 4: Tính
$$L_1 = \lim_{x \to +\infty} \left(\frac{1+2^x}{2+3^x} + \frac{\sin x}{x} \right)$$
,

$$L_2 = \lim_{x \to -\infty} \left(\frac{1 + 2^x}{2 + 3^x} + \frac{\sin x}{x} \right).$$

- A. $L_1 = \frac{1}{2}$, $L_2 = 0$
- B. $L_1 = \frac{3}{2}$, $L_2 = \frac{1}{3}$
- C. $L_1 = 0, L_2 = 1$
- D. $L_1 = 0$, $L_2 = \frac{1}{2}$

Câu 5: Tính

$$L_1 = \lim_{x \to +\infty} \left(\frac{1+7^x}{2+5^x} + x \sin \frac{1}{x} \right),$$

$$L_2 = \lim_{x \to -\infty} \left(\frac{1 + 7^x}{2 + 5^x} + x \sin \frac{1}{x} \right).$$

A.
$$L_1 = \frac{1}{2}$$
, $L_2 = 0$

B.
$$L_1 = +\infty$$
, $L_2 = \frac{3}{2}$

C.
$$L_1 = \frac{3}{2}$$
, $L_2 = +\infty$

D.
$$L_1 = 1, L_2 = \frac{1}{2}$$

Câu 6: Tính

$$L_1 = \lim_{x \to 0^+} \left(1 + e^{\frac{1}{x}} + x \arctan \frac{1}{x} \right),$$

$$L_2 = \lim_{x \to 0^-} \left(1 + e^{\frac{1}{x}} + x \arctan \frac{1}{x} \right).$$

A.
$$L_1 = \frac{1}{2}$$
, $L_2 = 0$

B.
$$L_1 = +\infty$$
, $L_2 = \frac{3}{2}$

C.
$$L_1 = 1, L_2 = +\infty$$

D.
$$L_1 = +\infty$$
, $L_2 = 1$

Câu 7: Tính

$$L_1 = \lim_{x \to +\infty} \left(x - \sqrt{x^2 - 2x} \right),$$

$$L_2 = \lim_{x \to -\infty} \left(x - \sqrt{x^2 - 2x} \right).$$

A.
$$L_1 = \frac{1}{2}$$
, $L_2 = 0$

B.
$$L_1 = +\infty$$
, $L_2 = \frac{3}{2}$

C.
$$L_1 = 1, L_2 = -\infty$$

D.
$$L_1 = 1, L_2 = \frac{1}{2}$$

Câu 8: Tìm giới hạn

$$L = \lim_{x \to +\infty} \left(\sqrt[3]{1 - x^3} + x \right).$$

A.
$$L = 0$$

B.
$$L = 1$$

C.
$$L = 2$$

D.
$$L = +\infty$$

Câu 9: Tính

$$\lim_{x \to +\infty} (\sqrt[3]{x^3 + 3x^2} - \sqrt{x^2 - 2x})$$

- A. 1
- B. 2
- C. 3
- D. 0

Câu 10: Tính
$$\lim_{x \to \pm \infty} \left(\frac{x^2 - 2x + 1}{x^2 + 4x + 5} \right)^x$$

- A. e^{-6}
- $B.e^3$
- $C. e^4$
- D. 1

Câu 11: Tính
$$\lim_{x\to 0} (1 + \sin x)^{\frac{1}{x}}$$
.

- A. *e*
- B. e^3
- C. e^4
- D. $\sqrt[4]{e}$

Câu 12: Tính $\lim_{x\to 0} (\cos x)^{\cot^2 x}$. C. 2 D. 0 A. e^{-6} Câu 20: Tính $\lim_{x \to +\infty} \left(\frac{x}{1+a^{\frac{1}{x}}} - \frac{x}{2} \right)$. $B.\frac{1}{\sqrt{e}}$ $C. e^4$ A. 1 D. $\sqrt[4]{e}$ B. $-\frac{1}{4}$ **Câu 13**: Tính $\lim_{x\to 0} (\cos 3x)^{\frac{2}{x^2}}$. C. 2 D. $\frac{1}{4}$ A. e^{-9} $B.\frac{1}{\sqrt{e}}$ **Câu 21**: Tính $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt[3]{1+x}-\sqrt[3]{1-x}}$ C. *e*⁴ A. 1 D. $\sqrt[4]{e}$ B. 2 Câu 14: Tính $\lim_{x\to 0} (\cos x + \sin x)^{\cot x}$. C. 3 D. $\frac{3}{2}$ A. e^{-9} $B.\frac{1}{\sqrt{e}}$ Câu 22: Tính $\lim_{x\to +\infty} \frac{\ln(m+e^x)}{x}$, m>0. C. e A. *m* D. $\sqrt[4]{e}$ B. 1 **Câu 15**: Tính $\lim_{x \to 1} \frac{\sqrt[3]{x^2} - 2\sqrt[3]{x} + 1}{(x-1)^2}$. C.-mD. 0 A. 1 Câu 23: Tính $\lim_{x \to 1} \frac{(1 - \sqrt{x})(1 - \sqrt[3]{x})...(1 - \sqrt[n]{x})}{(x - 1)^{n - 1}}, n \ge 2.$ A. $\frac{(-1)^{n - 1}}{n!}$ B. $\frac{(-1)^n}{n!}$ C. $\frac{(-1)^{n + 1}}{n!}$ D. $\frac{1}{n!}$ B. $\frac{1}{9}$ C. 3 D. $\frac{3}{2}$ **Câu 16**: Tính $\lim_{x\to-\infty}\frac{\ln(m+e^x)}{x}$, m>0. A. mB. 2m C.-mCâu 24: Tính $\lim_{x\to 1} \frac{x^{mx}-1}{x \ln x}$. D. 0 **Câu 17**: Tính $\lim_{x\to 0} \frac{\ln(1+\tan^4 x)}{x^2 \sin^2 x}$. A. *m* B. 2m A. 1 C.-mB. 2 D. m + 1C. 3 Câu 25: Tính $\lim_{x\to 0} \frac{x-\sin 5x+\sin^2 x}{4x+\arcsin^2 x+x^2}$ $D. +\infty$ **Câu 18:** Tính $\lim_{x \to 0} \frac{5^x - 4^x}{x^2 + x}$. A. -1*B*. 1 A. $\ln \frac{5}{4}$ C. 2 B. $\ln \frac{4}{5}$ D. 0 **Câu 26**: Cho $f(x) = 1 - \cos x +$ C. ln 5 $ln(1 + tan^2 2x) + 2 \arcsin x$. Khi $x \rightarrow$ D. $\frac{3}{2}$

0, thì

A. $f(x) \sim 2x$

B. $f(x) \sim -\frac{x^2}{2}$

Câu 19: Tính $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{x}} - e^{\frac{1}{x-1}}\right)$.

A. 1 B. -1

C.
$$f(x) \sim \frac{3x^2}{2}$$

D.
$$f(x) \sim \frac{5x^2}{2}$$

Câu 27: Cho $f(x) = \ln(1 + \tan 3x) + \ln(1 + \tan 3x)$ $(\sqrt{1+2\sin x}-1)(\arcsin 2x+x^2)$.

Khi $x \rightarrow 0$, thì

A.
$$f(x) \sim 3x$$

B.
$$f(x) \sim -\frac{x^2}{2}$$

C.
$$f(x) \sim \frac{3x^2}{2}$$

D.
$$f(x) \sim \frac{5x^2}{2}$$

Câu 28: Xét hàm số y = f(x) cho bởi phương trình tham số $\begin{cases} x = \arctan t \\ y = \frac{t^2}{2} \end{cases}$

Tìm vô cùng bé tương đương của f(x)khi $x \to 0$.

A.
$$f(x) \sim \frac{x^2}{2}$$

B.
$$f(x) \sim -\frac{x^2}{2}$$

C. $f(x) \sim \frac{3x^2}{2}$

C.
$$f(x) \sim \frac{3x^2}{2}$$

D.
$$f(x) \sim \frac{5x^2}{2}$$

Câu 29: Cho $f(x) = 1 - \cos x +$ $ln(1 + tan^2 2x) + 2 arcsin x$.

Khi $x \rightarrow 0$ thì

A.
$$f(x) \sim 2x$$

B.
$$f(x) \sim -\frac{x^2}{2}$$

C.
$$f(x) \sim \frac{3x^2}{2}$$

D.
$$f(x) \sim \frac{5x^2}{2}$$

Câu 30: Cho

$$f(x) = \ln(1 + \tan 3x) +$$

$$(\sqrt{1+2\sin x}-1)(\arcsin 2x+x^2).$$

Khi $x \rightarrow 0$ thì

A.
$$f(x) \sim 3x$$

B.
$$f(x) \sim -\frac{x^2}{2}$$

C.
$$f(x) \sim \frac{3x^2}{2}$$

D.
$$f(x) \sim \frac{5x^2}{2}$$

Câu 31: Xác định m để hàm số f(x) = $\begin{cases} \frac{\sin x}{x}, & x \neq 0; \\ \text{liên tục tại } x = 0. \end{cases}$

A.
$$m = 1$$

B.
$$m = 2$$

C.
$$m = 3$$

$$D. m = 0$$

Câu 32: Xác định m để hàm số f(x) = $\frac{\cos x}{x}$, $x \neq 0$; liên tục tại x = 0. (1+2m, x=0)

A.
$$m = 1$$

B.
$$m = 2$$

C.
$$m = 3$$

D. Không tồn tại *m*

Câu 33: Xác định m để hàm số

$$f(x) = \begin{cases} \arctan \frac{1}{(x-1)^2}, & x < 1; \\ \frac{x^2 + 3x + m}{x^2 + 1}, & x \ge 1 \end{cases}$$
 liên

tục tại x = 1

A.
$$m = 1$$

B.
$$m = 2$$

C.
$$m = \pi - 4$$

D.
$$m = -\pi - 4$$

Câu 34: Xác định m để hàm số

$$f(x) = \begin{cases} \frac{x \sin x + 2 \tan^2 x}{x^2}, & x < 0; \\ \cos^2 x + 2m, & x \ge 0 \end{cases}$$
 liên

tục tại x = 0.

A.
$$m = 1$$

B.
$$m = 2$$

C.
$$m = 3$$

D.
$$m = 0$$

Câu 35: Xác định m để hàm số

$$f(x) = \begin{cases} \frac{x \tan x}{\ln(1+x^2)}, & x \in (-1,1) \setminus \{0\}; \\ 1+2m, & x \neq 0 \end{cases}$$

liên tuc tai x = 0.

A.
$$m = 1$$

B.
$$m = 2$$

C.
$$m = 3$$

D.
$$m = 0$$

Câu 36: Xác định m để hàm số

$$f(x) = \begin{cases} \arctan \frac{1}{x-2}, & x \neq 2; \\ 1+2m, & x = 2 \end{cases}$$
 liên tục

tai
$$x = 2$$
.

A.
$$m = 1$$

B.
$$m = 2$$

C.
$$m = 3$$

Câu 37: Xác định m để hàm số f(x) = $\frac{\ln(1+\tan^4 x)}{x\sin x}, \quad x \in (-1,1)\setminus\{0\};$ liên x = 0

tục tại x = 0.

A. m = 1

B. m = 0

C. m = 2

D. Không tồn tại m

Câu 38: Xác định m để hàm số f(x) =

$$\begin{cases} \frac{\sqrt{2x+1}-\cos x}{x}, & x \in \left(-\frac{1}{2}, +\infty\right) \setminus \{0\}; \\ m, & x = 0 \end{cases}$$

liên tục tại x = 0.

A. m = 1

B. *m*= 0

C. m = 2

D. Không tồn tại *m*

CHƯƠNG 2: ĐẠO HÀM VÀ VI PHÂN

Câu 1: Viết phương trình tiếp tuyến của đường cong $y = \ln(x^2 + e)$ tại điểm có hoành độ x = 0.

A. y = 0

B. y = 1

C. y = x + 1

D. y = x - 1

Câu 2: Tính đạo hàm của hàm

$$f(x) = \frac{e^x}{\sin x}.$$

$$Sin x$$

$$A. f'(x) = \frac{e^x(\sin x - \cos x)}{\sin^2 x}$$

$$B. f'(x) = \frac{e^x(\sin x + \cos x)}{\sin^2 x}$$

$$C. f'(x) = \frac{e^x(-\sin x + \cos x)}{\sin^2 x}$$

$$D. f'(x) = \frac{e^x}{\cos x}$$

B.
$$f'(x) = \frac{e^x(\sin x + \cos x)}{\sin^2 x}$$

C.
$$f'(x) = \frac{e^x(-\sin x + \cos x)}{\sin^2 x}$$

D.
$$f'(x) = \frac{e^x}{\cos x}$$

Câu 3: Tính đạo hàm của hàm

$$f(x) = (1+x)^x, x > 1.$$

A.
$$(1+x)^x \left[\ln(1+x) + \frac{x}{x+1} \right]$$

B.
$$(1+x)^x \left[\ln(1+x) - \frac{x}{x+1} \right]$$

C.
$$f'(x) = \ln(1+x) + \frac{x}{x+1}$$

C.
$$f'(x) = \ln(1+x) + \frac{x}{x+1}$$

D. $f'(x) = \ln(1+x) - \frac{x}{x+1}$

Câu 4: Tính đạo hàm cấp *n* của hàm $y = e^{-3x}$.

A.
$$y^{(n)} = (-3)^n e^{3x}$$

B.
$$v^{(n)} = (-3)^{n+1}e^{-3x}$$

C.
$$v^{(n)} = (-3)^{n-1}e^{-3x}$$

D.
$$y^{(n)} = (-3)^n e^{-3x}$$

Câu 5: Tính đạo hàm cấp n của hàm $f(x) = \ln|x + 2|.$

A.
$$f^{(n)}(x) = \frac{(-1)^{n-1}n!}{(x+2)^n}$$

B.
$$f^{(n)}(x) = \frac{(-1)^n (n-1)!}{(x+2)^n}$$

C.
$$f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(x+2)^n}$$

D.
$$f^{(n)}(x) = \frac{(-1)^{n-1}(n+1)!}{(x+2)^n}$$

Câu 6: Tính đạo hàm cấp n của hàm $f(x) = \ln|x^2 - 3x + 2|.$

A.
$$(-1)^n (n-1)! \left[\frac{1}{(x-1)^n} + \frac{1}{(x-2)^n} \right]$$

B.
$$(-1)^{n-1}(n-1)! \left[\frac{1}{(x-1)^n} + \frac{1}{(x-2)^n} \right]$$

C.
$$(-1)^{n-1}(n+1)! \left[\frac{1}{(x+1)^n} + \frac{1}{(x+2)^n} \right]$$

D.
$$(-1)^{n-1}n!\left[\frac{1}{(x-1)^n} + \frac{1}{(x-2)^n}\right]$$

Câu 7: Tính $y' = \frac{dy}{dx}$ của hàm số y =

y(x) được cho bởi phương trình tham

$$s\acute{o} \begin{cases} x = \cos t \\ y = \sin^2 t \end{cases}, t \in (0, \pi).$$

A.
$$y' = 2 \sin t$$

B.
$$y' = 2 \sin t \cos t$$

C.
$$y' = 2x$$

D.
$$y' = -2x$$

Câu 8: Tính $y'\left(\frac{\pi}{3}\right) = \frac{dy}{dx}\Big|_{x=\frac{\pi}{3}}$ của hàm

y = y(x) cho bởi phương trình tham số $\begin{cases} x = \arctan t \\ y = \frac{t^2}{2} \end{cases}$.

$$s\hat{o} \begin{cases} x = \arctan t \\ y = \frac{t^2}{2} \end{cases}.$$

A.
$$y'\left(\frac{\pi}{3}\right) = 4\sqrt{3}$$

B.
$$y'\left(\frac{\pi}{3}\right) = 2\sqrt{3}$$

C.
$$y'(\frac{\pi}{3}) = 3\sqrt{3}$$

D.
$$y'\left(\frac{\pi}{3}\right) = 0$$

Câu 9: Tính $y'(x) = \frac{dy}{dx}$ của hàm y =y(x) cho bởi phương trình tham số

$$\begin{cases} x = \arctan t \\ y = \ln t \end{cases}, t > 0.$$

A.
$$y'(x) = \frac{t}{1+t^2}$$

B.
$$y'(x) = -\frac{1+t^2}{t}$$

C.
$$y'(x) = \frac{1+t^2}{t}$$

D.
$$y'(x) = -\frac{t}{1+t^2}$$

Câu 10: Tính
$$y'\left(\frac{\pi}{4}\right) = \frac{dy}{dx}\Big|_{x=\frac{\pi}{4}}$$
 của

hàm y = y(x) cho bởi phương trình tham số $\begin{cases} x = \arctan t \\ y = \ln t \end{cases}$, t > 0.

A.
$$y'\left(\frac{\pi}{4}\right) = 1$$

B.
$$y'\left(\frac{\pi}{4}\right) = 2$$

C.
$$y'\left(\frac{\pi}{4}\right) = 3$$

D.
$$y'\left(\frac{\pi}{4}\right) = 4$$

Câu 11: Tính vi phân của $y = (3x)^x$.

$$A. dy = (3x)^x (\ln 3x + 3) dx$$

$$B. dy = (\ln 3x + 1)dx$$

$$C. dy = (3x)^x (\ln 3x + 1) dx$$

$$D. dy = (\ln 3x + 3)dx$$

Câu 12: Tính dy của y =

$$\arctan\left(\frac{\ln x}{3}\right)$$
.

$$A. dy = -\frac{3}{x(9+\ln^2 x)} dx$$

$$B. dy = \frac{3}{x(1+\ln^2 x)} dx$$

C.
$$dy = \frac{1}{x(9+\ln^2 x)} dx$$

D.
$$dy = \frac{3}{x(9 + \ln^2 x)} dx$$

Câu 13: Tính vi phân cấp 2 của hàm $y = \ln(1 + x^2).$

A.
$$d^2y = \frac{2x^2 - 2}{(1+x^2)^2}dx^2$$

B.
$$d^2y = \frac{2x^2+2}{(1+x^2)^2}dx^2$$

C.
$$d^2y = \frac{2-2x^2}{(1+x^2)^2}dx^2$$

D.
$$d^2y = -\frac{2x^2+2}{(1+x^2)^2}dx^2$$

Câu 14: Tính vi phân cấp 2 của hàm $y = \arctan(x^2)$.

A.
$$d^2y = \frac{2+6x^4}{(1+x^4)^2}dx^2$$

B.
$$d^2y = \frac{2-6x^4}{(1+x^4)^2}dx^2$$

C.
$$d^2y = \frac{6x^4-2}{(1+x^4)^2}dx^2$$

D.
$$d^2y = -\frac{2+6x^4}{(1+x^4)^2}dx^2$$

Câu 15: Tính giới hạn $\lim_{n\to\infty} \frac{2016\sqrt{x}-1}{2017\sqrt{x}-1}$

$$A.\frac{1}{4}$$

B.
$$\frac{2017}{2016}$$

C.
$$\frac{2016}{2017}$$

Câu 16: Xác định m để hàm số

$$f(x) = \begin{cases} \frac{e^{2x} - 2x - 1}{\sin^2 x}, & x \in (-1; 1) \setminus \{0\} \\ 3m - 1, & x = 0 \end{cases}$$

liên tuc tai x = 0.

A.
$$m = 1$$

B.
$$m = 2$$

C.
$$m = 3$$

D.
$$m = 0$$

Câu 17: Xác định m để hàm số

$$f(x) = \begin{cases} \frac{e^{-2x} + e^{2x} - 2}{2x^2}, & x \neq 0 \\ 2m, & x = 0 \end{cases}$$
 liên tục

tại
$$x = 0$$
.

A.
$$m = 0$$

B.
$$m = 2$$

C.
$$m = 3$$

D.
$$m = 1$$

Câu 18: Xác định m để hàm số

$$f(x) = \begin{cases} \frac{\ln(1+x)-x}{\sin^2 x}, & -1 < x < 0\\ m - \frac{1}{2}, & x = 0 \end{cases}$$
 liêr

tục tại x = 0.

A.
$$m = 3$$

B.
$$m = 2$$

C.
$$m = 0$$

D.
$$m = 1$$

Câu 19: Tính giới hạn $\lim_{r\to 0} \left(\frac{\tan x}{r}\right)^{\frac{1}{x}}$

B.
$$\sqrt[3]{e}$$

C.
$$\sqrt{e}$$

D.
$$\frac{3}{2}$$

Câu 20: Tính giới hạn $\lim_{x\to -2} \frac{\sqrt[3]{x-6}+2}{x^3+8}$

A.
$$-\frac{1}{144}$$
B. $\frac{1}{144}$
C. $\frac{1}{36}$

B.
$$\frac{1}{144}$$

C.
$$\frac{1}{36}$$

D.
$$-\frac{1}{36}$$

Câu 21: Tính giới hạn $\lim_{r\to 0} \frac{\sqrt[5]{32+2x}-2}{\sqrt[4]{x+16}-2}$

A.
$$\frac{2}{5}$$

B.
$$-\frac{2}{5}$$

C.
$$\frac{4}{5}$$

D.
$$-\frac{4}{5}$$

Câu 22: Tính giới hạn $\lim_{x\to 0} \frac{x^2}{\sqrt[5]{1+5x}-1-x}$

A.
$$\frac{2}{5}$$

B.
$$-\frac{2}{5}$$

$$C.\frac{1}{2}$$

D.
$$-\frac{1}{2}$$

Câu 23: Tính giới hạn $\lim_{x\to 0^+} (\cos 2x +$

$$(x^2)^{\cot^3 x}$$

Câu 24: Tính giới hạn $\lim_{x\to 0} (\cos x +$

$$\sin^2 x)^{\cot^2 x}$$

B.
$$\sqrt{e}$$

C.
$$\sqrt[3]{e}$$

D.
$$\sqrt[4]{e}$$

Câu 25: Xác định a, b để hàm số

$$f(x) = \begin{cases} x(x-1)+1, & x \ge 0 \\ ax+b, & x < 0 \end{cases}$$
 có

đạo hàm tại x = 0.

A.
$$a = -1$$
; $b = 1$

B.
$$a = 1$$
; $b = 1$

C.
$$a = -1$$
; $b = -1$

D.
$$a = 1$$
; $b = -1$

Câu 26: Tính $y''(1) = \frac{d^2y}{dx^2}\Big|_{x=1}$ của

hàm y = y(x) cho bởi phương trình

tham số
$$\begin{cases} x = \ln t \\ y = t^3 \end{cases}$$
, $t > 0$.

A.
$$y''(1) = 9e^2$$

B.
$$y''(1) = 9e^3$$

C.
$$y''(1) = 9e$$

D.
$$y''(1) = 9e^4$$

CHƯƠNG 3: TÍCH PHÂN A. TÍCH PHÂN BẤT ĐỊNH

Câu 1: Tính $I = \int \frac{3}{x+a} dx$.

$$A. I = 3 |x + a| + \tilde{C}$$

$$B. I = 3 \ln(x + a) + C$$

$$C. I = -3 \ln(x + a) + C$$

D.
$$I = 3 \ln |x + a| + C$$

Câu 2: Tính $I = \int \frac{3}{(x+a)^2} dx$.

$$A. I = \frac{-3}{x+a} + C$$

$$B. I = 3 \ln(x + a) + C$$

C.
$$I = \frac{3}{x + a} + C$$

C.
$$I = \frac{3}{x+a} + C$$

D. $I = 3 \ln|x + a| + C$

Câu 3: Tính $I = \int \frac{1}{x^2 - 3x + 2} dx$.

A.
$$I = \ln \left| \frac{x-1}{x-2} \right| + C$$

A.
$$I = \ln \left| \frac{x-1}{x-2} \right| + C$$

B. $I = \ln \left| \frac{x-2}{x-1} \right| + C$
C. $I = \ln \left(\frac{x-1}{x-2} \right) + C$
D. $I = \ln \left(\frac{x-2}{x-1} \right) + C$

$$C. I = \ln\left(\frac{x-1}{x-2}\right) + C$$

D.
$$I = \ln \left(\frac{x-2}{x-1} \right) + C$$

Câu 4: Tính $I = \int \sin(3x+1)dx$.

A.
$$\frac{\cos(3x+1)}{3} + C$$

A.
$$\frac{\cos(3x+1)}{3} + C$$

B. $-\frac{\cos(3x+1)}{3} + C$

$$C. \cos(3x+1) + C$$

$$D. - \cos(3x + 1) + C$$

Câu 5: Tính $I = \int \cos(5x - 2) dx$.

A.
$$\frac{\sin(5x-2)}{5} + C$$

A.
$$\frac{\sin(5x-2)}{5} + C$$

B. $-\frac{\sin(5x-2)}{5} + C$

$$C. \sin(5x - 2) + C$$

$$D. - \sin(5x - 2) + C$$

Câu 6: Tính $I = \int \frac{dx}{4x-1}$.

$$A. \frac{\ln|4x-1|}{4} + C$$

$$B. \frac{\ln(4x-1)}{4} + C$$

C.
$$\ln(4x - 2) + C$$

D.
$$\ln |4x - 1| + C$$

Câu 7: Tính $I = \int \frac{e^3}{e^{2x}} dx$.

A.
$$\frac{e^{3-2x}}{2} + C$$

B.
$$-\frac{e^{3-2x}}{2} + C$$

C. $e^{3-2x} + C$

C.
$$e^{3-2x} + C$$

D.
$$-e^{3-2x} + C$$

Câu 8: Tính
$$I = \int (2^x + x^2) dx$$
.

A.
$$2^x + \frac{x^3}{3} + C$$

B.
$$\frac{2^x}{\ln 2} + \frac{x^3}{3} + C$$

C. $2^x + x^3 + C$

C.
$$2^x + x^3 + C$$

D.
$$\frac{2^{x}}{\ln 2} + x^{3} + C$$

Câu 9: Tính $I = \int \frac{dx}{7x-3}$.

A.
$$\ln |7x - 3| + C$$

B.
$$\frac{\ln |7x-3|}{7} + C$$

C.
$$\ln(7x - 3) + C$$

D.
$$\frac{\ln(7x-3)}{7} + C$$

Câu 10: Tính $I = \int 5^{3x+1} dx$.

A.
$$5^{3x+1} + C$$

B.
$$\frac{5^{3x+1}}{3 \ln 5} + C$$
.
C. $5^{3x} + C$

C.
$$5^{3x} + C$$

D.
$$\frac{5^{3x+1}}{3} + C$$

Câu 11: Tính $I = \int \sin x \cos x \, dx$.

A.
$$\cos 2x + C$$

$$B. - \frac{\cos 2x}{4} + C$$

C.
$$\sin 2x + C$$

D.
$$-\sin 2x + C$$

Câu 12: Tính I =

$$\int \sqrt{9^x + 9^{-x} + 2} dx.$$

A.
$$3^x + 3^{-x} + C$$

$$B. \frac{3^x - 3^{-x}}{\ln 3} + C$$

C.
$$3^{x} - 3^{-x} + C$$

D.
$$\frac{3^x}{\ln 3} + C$$

Câu 13: Tính $I = \int \frac{dx}{x^2 + x - 2}$.

A.
$$\frac{1}{3} \ln \left| \frac{x-1}{x+2} \right| + C$$

B. $\ln \left| \frac{x-1}{x+2} \right| + C$
C. $\ln \frac{x-1}{x+2} + C$
D. $\ln \frac{x+2}{x-1} + C$

B.
$$\ln \left| \frac{x-1}{x+2} \right| + C$$

C.
$$\ln \frac{x-1}{x+2} + C$$

D.
$$\ln \frac{x+2}{x-1} + C$$

Câu 14: Tính $I = \int \frac{dx}{x^2 - x - 6} dx$.

A.
$$\frac{1}{5} \ln \left| \frac{x-3}{x+2} \right| + C$$

B. $\ln \left| \frac{x-3}{x+2} \right| + C$
C. $\ln \frac{x-3}{x+2} + C$
D. $\ln \frac{x+2}{x-3} + C$

B.
$$\ln \left| \frac{x-3}{x+2} \right| + C$$

C.
$$\ln \frac{x-3}{x+2} + C$$

D.
$$\ln \frac{x+2}{x-3} + C$$

Câu 15: Tính $I = \int \frac{7^2}{75x} dx$.

A.
$$7^{2-5x} + C$$

B.
$$-\frac{7^{2-5x}}{5\ln 7} + C$$

C.
$$7^{5x} + C$$

D.
$$\frac{7^{1-5x}}{\ln 7} + C$$

Câu 16: Tính tích phân $\int \frac{2e^x dx}{\sqrt{2+2e^x+e^{2x}}}$

$$(\text{dăt } MS = \sqrt{2 + 2e^x + e^{2x}})$$

A.
$$2\ln(e^x + 1 + MS) + C$$

B.
$$\sqrt{2+2e^x+e^{2x}}+C$$

C.
$$2\arcsin(e^x+1)+C$$

D.
$$2\arctan(e^x+1)+C$$

Câu 17: Tính tích phân $\int \frac{\ln x dx}{x^3}$

$$A. - \frac{2\ln x - 1}{4x^2} + C$$

B.
$$-\frac{2 \ln x + 1}{x^2} + C$$

C.
$$\frac{2 \ln x + 1}{4x^2} + C$$

D.
$$-\frac{2 \ln x + 1}{4 x^2} + C$$

Câu 18: Tính

 $I = \int \sin x \cos x \ e^{\sin x} \ dx.$

$$A. I = (\sin x + 1)e^{\sin x} + C$$

$$B. I = \sin 2x \frac{e^{\sin x}}{2} + C$$

C.
$$I = \sin x e^{\sin x} + C$$

$$D. I = (\sin x - 1)e^{\sin x} + C$$

Câu 19: Tính
$$I = \int \frac{dx}{\sqrt{x}(x+1)}$$
.

A.
$$I = \arctan \sqrt{x} + C$$

B.
$$I = 2\arctan\sqrt{x} + C$$

C.
$$I = \arcsin \sqrt{x} + C$$

$$D. I = \ln \sqrt{x} + C$$

Câu 20: Tính $I = \int \frac{\sin x dx}{\sqrt{\cos^2 x + 4}}$

A.
$$I = \ln(\cos x + 4 + \sqrt{\cos^2 x + 4}) + C$$

B.
$$I = \ln(\cos x + 2 + \sqrt{\cos^2 x + 4}) + C$$

C.
$$I = -\ln(\cos x + \sqrt{\cos^2 x + 4}) + C$$

D. $I = \frac{1}{\ln(\cos^2 x + 4)} + C$

D.
$$I = \frac{1}{\ln(\cos^2 x + 4)} + C$$

B. TÍNH TÍCH PHÂN SUY RÔNG

Câu 21: Tính tích phân

$$I = \int_{\sqrt{2}}^{+\infty} \frac{dx}{x \cdot \sqrt{x^2 - 1}}.$$

A.
$$I = \pi$$

B.
$$I = \frac{\pi}{2}$$

B.
$$I = \frac{\pi}{4}$$

C. $I = \frac{1}{4}$

D.
$$I = +\infty$$

Câu 22: Tính tích phân

$$I = \int_{-\infty}^{+\infty} \frac{dx}{x^2 + 4x + 9}.$$
A.
$$I = \frac{\pi}{2}$$
B.
$$I = \frac{\pi}{4}$$
C.
$$I = \frac{\pi}{\sqrt{5}}$$

A.
$$I = \frac{\pi}{2}$$

B.
$$I = \frac{\pi}{4}$$

C.
$$I = \frac{\pi}{\sqrt{5}}$$

D.
$$I = +\infty$$

Câu 23: Tính tích phân

$$I = \int_0^{+\infty} \frac{\arctan x}{1 + x^2} dx.$$

A.
$$I = \frac{\pi^2}{8}$$

B. $I = \frac{\pi^2}{6}$
C. $I = \frac{\pi^2}{4}$

B.
$$I = \frac{\pi^2}{6}$$

C.
$$I = \frac{\pi^2}{4}$$

D.
$$I = \frac{\pi^2}{2}$$

Câu 24: Tính $I = \int_{e}^{e^2} \frac{dx}{x^{\frac{3}{\sqrt{\ln x - 1}}}}$.

A.
$$I = \frac{1}{2}$$

A.
$$I = \frac{1}{2}$$

B. $I = \frac{3}{2}$

C.
$$I = 2$$

D.
$$I = +\infty$$

Câu 25: Tính $I = \int_{1}^{2} \frac{dx}{\sqrt[3]{(x-1)^{2}}}$

A.
$$I = 1$$

B.
$$I = 3$$

C.
$$I = 5$$

D.
$$I = +\infty$$

Câu 26: Tính $I = \int_{2}^{4} \frac{dx}{\sqrt{6x-x^2-8}}$.

A.
$$I = \pi$$

B.
$$I = 2\pi$$

C.
$$I = 3\pi$$

D.
$$I = +\infty$$

Câu 27: Tính $I = \int_0^{\ln 2} \frac{dx}{\sqrt{e^x - 1}}$.

A.
$$I = \frac{\pi}{2}$$

B.
$$I = \frac{\pi}{2}$$

A.
$$I = \frac{\pi}{2}$$

B. $I = \frac{\pi}{3}$
C. $I = \frac{\pi}{4}$

D.
$$I = +\infty$$

Câu 28: Tính $I = \int_0^e \frac{dx}{x(1+\ln^2 x)}$.

A.
$$I = \frac{3\pi}{2}$$

B.
$$I = \frac{\pi}{1}$$

A.
$$I = \frac{3\pi}{4}$$

B. $I = \frac{\pi}{4}$
C. $I = \frac{\pi}{2}$

D.
$$I = +\infty$$

Câu 29: Tính $I = \int_0^1 \frac{dx}{(2-x)\sqrt{1-x}}$

A.
$$I = \pi$$

B.
$$I = \frac{\pi}{2}$$

$$C. I = \frac{\bar{\pi}}{3}$$

D.
$$I = +\infty$$

C. XÉT TÍNH HỘI TỤ CỦA TÍCH PHÂN SUY RỘNG

Câu 30: Cho $I = \int_{\ln 2}^{+\infty} \frac{dx}{(x+1)^2 e^x}; J =$

$$\int_{2}^{+\infty} \frac{e^{x} dx}{\sqrt{x}}.$$

A. I hội tụ; J phân kỳ

B. I hội tụ; J phân kỳ

C. I phân kỳ; J phân kỳ

D. I phân kỳ; J hội tụ

Câu 31: Cho $I = \int_{-1}^{0} \frac{1-\sin^2 x}{(x+1)^2} dx$;

$$J = \int_{-1}^{0} \frac{1 - \cos 4x}{\sqrt[3]{(x+1)^4}} dx.$$

A. I hội tụ; J phân kỳ

B. I hội tụ; J phân kỳ

C. I phân kỳ; J phân kỳ

D. I phân kỳ; J hội tụ

Câu 32: Cho $I = \int_{2}^{+\infty} \frac{dx}{x^{2} + 2\sin^{2}x};$ $J = \int_{2}^{+\infty} \frac{dx}{\sqrt{x} - \cos^{2}x}.$

A. I hội tụ; J phân kỳ

B. I hội tụ; J phân kỳ

C. I phân kỳ; J phân kỳ

D. I phân kỳ; J hội tụ

Câu 33: Cho $I = \int_{1}^{+\infty} \frac{1+x^2}{x^3} dx$;

$$J = \int_0^1 \frac{dx}{e^{\sqrt[3]{x}} - 1}.$$

A. I hội tụ; J phân kỳ

B. I hội tụ; J phân kỳ

C. I phân kỳ; J phân kỳ

D. I phân kỳ; J hội tụ

Câu 34: Cho $I = \int_{1}^{+\infty} \frac{e^{-x^2}}{x^2} dx$;

$$J = \int_0^1 \frac{dx}{\sqrt{x(x+1)}}.$$

A. I hội tụ; J phân kỳ

B. I hội tụ; J phân kỳ

C. I phân kỳ; J phân kỳ

D. I phân kỳ; J hội tụ

Câu 35: Cho $I = \int_0^1 \frac{x^2 dx}{\sqrt[3]{(1-x^2)^5}}$;

$$J = \int_0^{+\infty} \sin x \, dx.$$

A. I hội tụ; J phân kỳ

B. I hội tụ; J phân kỳ

C. I phân kỳ; J phân kỳ

D. I phân kỳ; J hội tụ

Câu 36: Cho $I = \int_0^2 \frac{x^5 dx}{\sqrt{(4-x^2)^5}};$

$$J = \int_0^{+\infty} \frac{1 + e^{-x}}{(x^2 + 2x + 3)^2} dx.$$

A. I hội tụ; J phân kỳ

B. I hội tụ; J phân kỳ

C. I phân kỳ; J phân kỳ

D. I phân kỳ; J hội tụ

Câu 37: Cho $I = \int_{1}^{+\infty} \frac{x}{x^{3}+1} dx$; J =

$$\int_{1}^{+\infty} \ln\left(1 + \frac{1}{x^2}\right) dx.$$

A. I hội tụ; J phân kỳ

B. I hội tụ; J phân kỳ

C. I phân kỳ; J phân kỳ

D. I phân kỳ; J hội tụ

Câu 38: Cho $I = \int_0^1 \frac{x+1}{\sqrt{\sin x}} dx$; J =

$$\int_{1}^{+\infty} \ln\left(1 + \frac{2x}{x^3 + 1}\right) dx.$$

A. I hội tụ; J phân kỳ

B. I hội tụ; J phân kỳ

C. I phân kỳ; J phân kỳ

D. I phân kỳ; J hội tụ

D. XÁC ĐỊNH THAM SỐ ĐỂ TÍCH PHÂN HỘI TỤ

Câu 39: Tích phân $I = \int_1^{+\infty} \frac{x^a + 2x}{x^3 + x + 1} dx$

hội tụ khi và chỉ khi

A. a < 2

B. a > 2

C. a < 3

D. a > 3

Câu 40: Tích phân $I = \int_1^{+\infty} \frac{x^2 + x + 1}{x^2 + x^4} dx$

hội tụ khi và chỉ khi

A. $a \in R$

B. a > 2

C. a < 3

D. a > 3

Câu 41: Tích phân $I = \int_{1}^{+\infty} \frac{x^2 + x + 1}{x^a + x^3} dx$

hội tụ khi và chỉ khi

A. $a \in R$

B. a > 2

C. a < 3

D. a > 3

Câu 42: Tích phân $I = \int_{1}^{+\infty} \frac{a + \sin x}{\sqrt{x}} dx$

hôi tu khi và chỉ khi

A. $a \neq 0$

B. $-\frac{1}{2} < a < 1$

C. a < 1

D. a = 0

Câu 43: Tích phân

 $I = \int_{1}^{+\infty} \frac{x \sin(ax)}{x^{3} + 1} dx$ hội tụ khi và chỉ

khi

A. $a \in R$

B. $-\frac{1}{2} < a < 1$

C. a < 1

D. a = 0

Câu 44: Tích phân $I = \int_{e^3}^{+\infty} \frac{dx}{x \cdot \ln^{2a+1} x}$

hội tụ khi và chỉ khi

 $A. a \in R$

B. $-\frac{1}{2} < a < 1$

C. a < 1

D. a = 0

Câu 45: Tích phân $I = \int_{e}^{+\infty} \frac{\sqrt{\ln^{a-1} x}}{x} dx$

hội tụ khi và chỉ khi

A. $a \in R$

B. $-\frac{1}{4} < a < 1$

C. a < -1

D. $a > -\frac{1}{4}$

Câu 47: Tích phân $I = \int_0^1 \frac{x^{a-1}}{\sqrt{(x^2+1).\sin x}} dx \text{ hội tụ khi và chỉ}$

A. $a \in R$

B. $\frac{1}{2} < a < 1$

C. a < 1

D. $a > \frac{1}{2}$

Câu 48: Tích phân $I = \int_0^1 \frac{a + \sin x}{x \sqrt{x}} dx$

hội tụ khi và chỉ khi

A. $a \neq 0$

B. $-\frac{1}{2} < a < 1$

C. a < 1

D. a = 0

Câu 49: Tích phân $I = \int_0^2 \frac{x^{2a}}{\sqrt{(x^2 + x)(3 - x)}} dx \text{ hội tụ khi và}$

chỉ khi

A. $a \in R$

B. $-\frac{1}{4} < a < 1$

C. a < 1

D. $a > -\frac{1}{4}$

Câu 50: Tích phân

$$I = \int_0^1 \frac{x^{\bar{\alpha}}}{\sqrt{x(x+1)(2-x)}} dx \text{ hội tụ khi và}$$

chỉ khi

A.
$$a > -\frac{1}{2}$$

B.
$$a < -1$$

C.
$$a < \frac{1}{2}$$

D. a tùy ý

Câu 51: Tích phân

$$I = \frac{(\sqrt{x+1}-1)\sin x}{\sqrt[3]{x^a \cdot \ln(1+x)}} dx \text{ phân kỳ khi và}$$

chỉ khi

A.
$$a \in R$$

B.
$$0 < a < 8$$

C.
$$8 < a < 9$$

D. $a \ge 8$

E. ÚNG DỤNG TÍCH PHÂN

Câu 52: Tính độ dài cung có PT tham

$$s\hat{o} \begin{cases} x = a\cos^3 t; \\ y = a\sin^3 t; \end{cases} t \in \left[0; \frac{\pi}{2}\right]; a > 0.$$

A.
$$\frac{3a}{2}$$

B.
$$\frac{3a}{4}$$

$$C.\frac{6a}{5}$$

B.
$$\frac{\frac{2}{3a}}{\frac{4}{5}}$$
 C. $\frac{\frac{6a}{5}}{\frac{9a}{2}}$

Câu 53: Tính độ dài cung phẳng y = $\frac{1}{3}(3-x).\sqrt{x}$; $0 \le x \le 3$.

A.
$$2\sqrt{3}$$

B. 2

C. 1

D. 3

Câu 54: Tính độ dài cung phẳng y = $\frac{1}{4}x^2 - \frac{1}{2}\ln x \; ; \; 1 \le x \le e.$

A.
$$\frac{e^2+1}{1}$$

D. $\frac{1}{2}$

Câu 55: Tính độ dài cung phẳng có phương trình: $r = a(1 + \cos \varphi); a >$ 0.

A. 8a

B. 2a

C. a

D. 3a

Câu 56: Tính diện tích hình phẳng giới hạn bởi các đường $y = x^2$; y =3*x*.

A. $\frac{9}{2}$ B. $\frac{7}{2}$

C. 2 D. 3

Câu 57: Tính diện tích hình phẳng giới hạn bởi các đường $y = x^2$; x =

A. $\frac{1}{3}$ B. $\frac{2}{3}$

C. 2

D. 3

Câu 58: Tính diện tích hình phẳng giới hạn bởi $r^2 = a^2 \cos 2\varphi$.

A. $\frac{a^2}{2}$ B. a^2

C. $2a^2$

D. $3a^2$

Câu 59: Tính diện tích hình phẳng giới hạn bởi $r = a(1 + \cos \varphi)$; r =a; a > 0.

A. $\frac{3\pi a^2}{2}$

C. a^2

D. $2a^2$

Câu 60: Tính diện tích hình phẳng giới hạn bởi $\begin{cases} x = a \cos^3 t; \\ y = a \sin^3 t; \end{cases}$

 $[0; 2\pi].$

A. $\frac{3\pi a^2}{8}$ B. $\frac{\pi a^2}{8}$

C. a^2 D. $2a^2$

Câu 61: Tính diện tích hình phẳng giới hạn bởi

$$\begin{cases} x = a (t - \sin t) \\ y = a (1 - \cos t); \ 0 \le t \le 2\pi; \end{cases} y =$$

A. $3\pi a^2$

B. πa^2

 $C. a^2$

D. $2a^2$

Câu 62: Tính diện tích hình phẳng
giới hạn bởi các đường $y = x^2$; $y =$
2 <i>x</i> .
A. $\frac{4}{3}$
$B.\frac{1}{2}$

 $C. \frac{1}{2}$ $D. \frac{1}{4}$

Câu 63: Tính thể tích vật thể giới hạn bởi các đường $y = x^2$; y = x khi quay quanh Ox.

A.
$$\frac{2\pi}{15}$$
B. $\frac{\pi}{15}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{3}$

Câu 64: Tính thể tích vật thể giới hạn bởi các đường $y = 2x - x^2$; y = 0 khi quay quanh Ox.

A.
$$\frac{16\pi}{\frac{15}{15}}$$
B. $\frac{\pi}{\frac{15}{2}}$
C. $\frac{\pi}{\frac{2}{3}}$

Câu 65: Tính thể tích vật thể giới hạn bởi các đường $y = 2x - x^2$; y = 0 khi quay quanh Oy.

A.
$$\frac{8\pi}{3}$$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{3}$

Câu 66: Tính thể tích vật thể giới hạn bởi các đường $y = \sin x$; $0 \le x \le \pi$ khi quay quanh Ox.

A.
$$\frac{\pi^2}{2}$$
B.
$$\frac{3\pi^2}{2}$$
C.
$$\frac{\pi}{2}$$

Câu 67: Tính thể tích vật thể giới hạn bởi các đường $y = \sin x$; y = 0; $0 \le x \le \pi$ khi quay quanh Oy.

A. $2\pi^2$ B. π^2 C. $\frac{\pi}{2}$

```
D. \frac{\pi}{3}

Câu 68: Tính thể tích vật thể giới hạn
(x = a \cos^3 t)
```

bởi các đường $\begin{cases} x = a \cos^3 t; \\ y = a \sin^3 t; \end{cases} t \in$

 $[0; 2\pi]$ khi quay quanh Ox.

A.
$$\frac{32\pi a^3}{105}$$
B. $\frac{2\pi a^3}{105}$
C. πa^2
D. $2\pi a^2$

Câu 69: Tính thể tích vật thể giới hạn bởi các đường $y = \sqrt{\sin x}$; $0 \le x \le \pi$ khi quay quanh Ox.

A. 2π B. π C. 1 D. 2

Câu 70: Tính thể tích vật thể giới hạn bởi các đường $y = x^2$; y = 4 khi quay quanh Ox.

A.
$$\frac{176\pi}{3}$$
B. $\frac{\pi}{3}$
C. π
D. $\frac{\pi}{3}$

Câu 71: Tính thể tích vật thể giới hạn bởi các đường

$$\begin{cases} x = a (t - \sin t) \\ y = a (1 - \cos t); & 0 \le t \le 2\pi; \end{cases} y = 0 \text{ khi quay quanh Ox.}$$
A. $5\pi^2 a^3$

A. $5\pi^{2}a^{3}$ B. $\pi^{2}a^{3}$ C. πa D. $2\pi a$

Câu 72: Tính thể tích vật thể giới hạn bởi các đường

$$\begin{cases} x = a (t - \sin t) \\ y = a (1 - \cos t); & 0 \le t \le 2\pi; \end{cases} y = 0 \text{ khi quay quanh Oy.}$$
A. $6\pi^3 a^3$

A. $6\pi^{3}a^{3}$ B. $\pi^{3}a^{3}$ C. πa D. $2\pi a$

CHƯƠNG 4: CHUỐI

CHUÔI SỐ

Câu 1: Chuỗi $\sum_{n=0}^{+\infty} q^n$ hội tụ nếu

A.
$$q < 1$$

B.
$$|q| < 1$$

C.
$$q > 1$$

D.
$$q > -1$$

Câu 2: Chuỗi $\sum_{n=0}^{+\infty} \frac{1}{2^n}$

D. hội tụ và có tổng là
$$\frac{1}{2}$$

Câu 3: Chuỗi
$$\sum_{n=1}^{+\infty} \left(\frac{1}{n^{p-2}} + \frac{1}{n^{1-q}} \right)$$
 hội

tu nếu và chỉ nếu

A.
$$p > 3$$
; $q > 0$

B.
$$p > 3$$
; $q < 0$

C.
$$p \le 3$$
; $q < 0$

D.
$$p \ge 3$$
; $q < 0$

Câu 4: Chuỗi nào trong ba chuỗi sau

phân kỳ? (1)
$$\sum_{n=0}^{+\infty} \left(\frac{\sin 2}{\pi}\right)^n$$
;

(2)
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt[3]{n}}$$
; (3) $\sum_{n=1}^{+\infty} \left(\frac{2n}{n+1}\right)^n$

Câu 5: Chuỗi $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + A^2}$ (A là tham

số) hôi tu tuyệt đối khi và chỉ khi

$$A. A \ge 1$$

C.
$$A > 2$$

D.
$$A > 1$$

Câu 6: Tìm p để chuỗi

$$\sum_{n=1}^{+\infty} \frac{n^2+3}{(n+1)(n^p+1)} \text{hội tụ}$$

A.
$$p < 2$$

B.
$$p > 2$$

C.
$$p \ge 2$$

D.
$$p > 1$$

Câu 7: Bằng cách so sánh với chuỗi

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$
, mệnh đề nào sau đây đúng

A.
$$\sum_{n=1}^{+\infty} \frac{n+1}{n^2+3}$$
 hội tự

A.
$$\sum_{n=1}^{+\infty} \frac{n+1}{n^2+3}$$
 hội tụ
B. $\sum_{n=1}^{+\infty} \frac{n+1}{n(\sqrt{n^3}+2)}$ hội tụ

C.
$$\sum_{n=1}^{+\infty} \frac{2n+1}{5n^2+3}$$
 hội tự

C.
$$\sum_{n=1}^{+\infty} \frac{2n+1}{5n^2+3}$$
 hội tụ
D. $\sum_{n=1}^{+\infty} \frac{7n+3}{n(\sqrt{n^5}+1)}$ phân kỳ

Câu 8: Bằng cách so sánh với chuỗi

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$
, mệnh đề nào sau đây đúng

A.
$$\sum_{n=1}^{+\infty} \frac{n+1}{n^2 + \ln n}$$
 hội tự

A.
$$\sum_{n=1}^{+\infty} \frac{n+1}{n^2 + \ln n} \text{ hội tụ}$$
B.
$$\sum_{n=1}^{+\infty} \frac{n+1}{n(\sqrt{n^3} + 5)} \text{ phân kỳ}$$

C.
$$\sum_{n=1}^{+\infty} \frac{2n+1}{5n^2+3}$$
 hội tụ

D.
$$\sum_{n=1}^{+\infty} \frac{2n+3}{n^5 + ln(n+1)}$$
 hội tụ

Câu 9: Chuỗi
$$\sum_{n=1}^{+\infty} \frac{n^2+2n}{(3n+1)n^{\alpha-1}}$$
 hội tụ

khi và chỉ khi

A.
$$\alpha > 3$$

B.
$$\alpha < 3$$

C.
$$\alpha \geq 3$$

D.
$$\alpha \leq 3$$

Câu 10: Chuỗi
$$\sum_{n=1}^{+\infty} \frac{n^2+2n}{n^3+n^2+1}$$
 hội tụ

khi và chỉ khi

A.
$$\alpha > 1$$

B.
$$\alpha < 3$$

C.
$$\alpha \geq 3$$

D.
$$\alpha > 3$$

Câu 11: Chuỗi
$$\sum_{n=1}^{+\infty} \frac{n^2+2n}{n^4+n^2+1}$$
 hội tụ

khi và chỉ khi

A.
$$\alpha > 1$$

B.
$$\alpha < 3$$

C.
$$\alpha \in R$$

D.
$$\alpha > 3$$

Câu 12: Chuỗi
$$\sum_{n=1}^{+\infty} \frac{n^2 + n^{\alpha} + 2n}{n^4 + 1}$$
 hội tụ

khi và chỉ khi

A.
$$\alpha > 1$$

B.
$$\alpha < 3$$

C.
$$\alpha \in R$$

D.
$$\alpha > 3$$

Câu 13: Chuỗi
$$\sum_{n=1}^{+\infty} \frac{n^2 + n^{\alpha} + 2}{n^3 + 1}$$
 phân kỳ

khi và chỉ khi

A.
$$\alpha > 2$$

B.
$$\alpha < 2$$

C.
$$\alpha \in R$$

D.
$$\not\exists \alpha$$

Câu 14: Chuỗi $\sum_{n=1}^{+\infty} (\frac{1}{n^{\alpha-1}} +$

 $\frac{2}{n^{3-\beta}}$) hội tụ khi và chỉ khi

A. $\alpha > 2 v a \beta < 3$

B. $\alpha < 2 v \grave{a} \beta > 2$

C. $\alpha > 1 v \grave{a} \beta < 3$

D. $\alpha > 2 v \dot{a} \beta < 2$

Câu 15: Chuỗi $\sum_{n=1}^{+\infty} (\frac{1}{n^{\alpha-1}} +$

3ⁿ) phân kỳ khi và chỉ khi

A. $\alpha > 2$

B. $\alpha < 2$

C. $\alpha > 1$

D. $\alpha \in R$

Câu 16: Chuỗi $\sum_{n=1}^{+\infty} \frac{3}{(q^2+1)^n}$ hội tụ khi

và chỉ khi

A. q > 1

B. -1 < q < 1

C. $q \neq 0$

D. $0 < q < \sqrt{2}$

Câu 17: Chuỗi $\sum_{n=1}^{+\infty} \frac{2^n + q^{2n}}{9^n}$ hội tụ khi

và chỉ khi

A. -3 < q < 3

B. -2 < q < 2

C. 0 < q < 3

D. q > 3

Câu 18: Chuỗi $\sum_{n=1}^{+\infty} ((p+1)^{2n} +$

 q^{2n}) hội tụ khi và chỉ khi

A. -2

B. -2 và <math>0 < q < 1

C. 0

D. -2

Câu 19: Xét chuỗi đan dấu

 $S:=\sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}+3}$. Mệnh đề nào sau đây

đúng?

A. S bán hội tụ (hội tụ tương đối)

B. S hội tụ tuyệt đối

C. S phân kỳ

D. S hội tụ tuyệt đối nhưng phânkỳ

Câu 20: Xét chuỗi đan dấu

 $\mathrm{S}:=\sum_{n=1}^{+\infty} \; (-1)^n rac{n+1}{n(\sqrt{n^3}+3)}$. Mệnh đề

nào sau đây đúng?

A. S bán hội tụ

B. S hội tụ tuyệt đối

C. S phân kỳ

D. S hội tụ tuyệt đối nhưng phân kỳ

Câu 21: Xét chuỗi đan dấu

 $S := \sum_{n=1}^{+\infty} (-1)^n \arctan(\frac{n+1}{n+3})$. Mệnh

đề nào sau đây đúng?

A. S bán hội tụ

B. S hội tụ tuyệt đối

C. S phân kỳ theo tiêu chuẩn

Leibniz

D. S phân kỳ theo điều kiện cần

Câu 22: Chuỗi đan dấu $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha-1}}$ hội

tụ khi và chỉ khi

A. $\alpha > 2$

B. $\alpha < 2$

C. $\alpha > 1$

D. $\alpha \in R$

Câu 23: Chuỗi đan

dấu $\sum_{n=1}^{+\infty} (-1)^n \frac{n^2+1}{n^\alpha+n+2}$ hội tụ khi và

chỉ khi

A. $\alpha > 2$

B. $\alpha < 2$

C. $\alpha > 1$

D. $\alpha \in R$

Câu 24: Chuỗi đan

dấu $\sum_{n=1}^{+\infty} (-1)^n \frac{n^2+1}{n^3+m^2}$ hội tụ khi và

chỉ khi

A. m > 2

B. m < 2

C. m > 1

D. $m \in R$

Câu 25: Cho chuỗi số $\sum_{n=1}^{+\infty} \frac{(p^2+3)n^2+5}{2^n}$ với p là tham số. Mệnh đề nào sau đây

A. Chuỗi hội tụ với mọi p

B. Chuỗi phân kỳ với mọi |p| > 1

C. Nếu $|p| > \sqrt{3}$ thì chuỗi phân kỳ

D. Chuỗi hội tụ khi và chỉ khi

|p| < 2

đúng?

Câu 26: Chuỗi $\sum_{n=1}^{+\infty} (\frac{pn^2+n+1}{2n^2+3})^n$ hội tụ

khi và chỉ khi

A. $-2 \le p < 2$

B. -2

C.
$$-2$$

D.
$$-2 \le p \le 2$$

Câu 27: Chuỗi
$$\sum_{n=1}^{+\infty} (\frac{2n^2+n+1}{pn^2+3})^n$$
 hội tụ

khi và chỉ khi

A.
$$p \le -2 \lor p \ge 2$$

B.
$$p < -2$$

C.
$$p > 2$$

D.
$$p < -2 \lor p > 2$$

Câu 28: Chuỗi
$$\sum_{n=1}^{+\infty} (\frac{pn^2+n+1}{2n^3+3})^n$$
 hội tụ

khi và chỉ khi

A.
$$-2 \le p < 2$$

B.
$$-2$$

C.
$$-2$$

D.
$$p \in R$$

Câu 29: Cho hai chuỗi $S_1 :=$

$$\sum_{n=1}^{+\infty} (-1)^{n-1}$$
, $S_2 := \sum_{n=1}^{+\infty} \frac{1}{n} (\frac{2}{5})^n$.

Chọn khẳng định đúng

A.
$$S_1$$
, S_2 cùng hội tụ

B.
$$S_1$$
 hội tụ, S_2 phân kỳ

C.
$$S_1$$
 phân kỳ, S_2 hội tụ

D.
$$S_1$$
, S_2 cùng phân kỳ

Câu 30: Cho hai chuỗi $S_1 :=$

$$\sum_{n=1}^{+\infty}\frac{2^n}{n}$$
 , $S_2:=\sum_{n=1}^{+\infty}\frac{1}{\sqrt{n}}$. Chọn

khẳng định đúng

$$B.$$
 S_1 hội tụ, S_2 phân kỳ

C.
$$S_1$$
 phân kỳ, S_2 hội tụ

D.
$$S_1$$
, S_2 cùng phân kỳ

Câu 31: Cho hai chuỗi $S_1 :=$

$$\sum_{n=1}^{+\infty} \frac{1}{(3n-1)^2}$$
, $S_2 := \sum_{n=1}^{+\infty} \frac{\sqrt[3]{n}}{(n+1)\sqrt{n}}$.

Chọn khẳng định đúng

B.
$$S_1$$
 hội tụ, S_2 phân kỳ

C.
$$S_1$$
 phân kỳ, S_2 hội tụ

D.
$$S_1$$
, S_2 cùng phân kỳ

Câu 32: Cho hai chuỗi $S_1 :=$

$$\textstyle \sum_{n=1}^{+\infty} (\frac{n}{3n-1})^n \;,\; S_2 := \; \sum_{n=1}^{+\infty} (\frac{n+1}{2n-1})^n \;.$$

Chọn khẳng định đúng

B.
$$S_1$$
 hội tụ, S_2 phân kỳ

C.
$$S_1$$
 phân kỳ, S_2 hội tụ

Câu 33: Cho hai chuỗi

$$S_1 := \sum_{n=1}^{+\infty} \frac{1}{n!}$$
 , $S_2 := \sum_{n=1}^{+\infty} \frac{1}{(n+1)^2 - 1}$

Chọn khẳng định đúng

C.
$$S_1$$
 phân kỳ, S_2 hội tụ

D.
$$S_1$$
, S_2 cùng phân kỳ

Câu 34: Cho hai chuỗi $S_1 :=$

$$\sum_{n=1}^{+\infty} \left(\frac{4n}{3n+1}\right)^n, S_2 := \sum_{n=1}^{+\infty} \left(\frac{2n+1}{3n+1}\right)^{\frac{n}{2}}.$$

Chọn khẳng định đúng

B.
$$S_1$$
 hội tụ, S_2 phân kỳ

C.
$$S_1$$
 phân kỳ, S_2 hội tụ

D.
$$S_1$$
, S_2 cùng phân kỳ

Câu 35: Cho hai chuỗi
$$S_1 :=$$

$$\sum_{n=1}^{+\infty} \frac{n^3}{e^n}$$
 , $S_2 := \sum_{n=1}^{+\infty} \frac{2^{n-1}}{n^n}$. Chọn

khẳng định đúng

B.
$$S_1$$
 hội tụ, S_2 phân kỳ

C.
$$S_1$$
 phân kỳ, S_2 hội tụ

D.
$$S_1$$
, S_2 cùng phân kỳ

Câu 36: Cho hai chuỗi
$$S_1 :=$$

$$\sum_{n=1}^{+\infty} \frac{n!}{2^{n}+1}$$
 , $S_2 := \sum_{n=1}^{+\infty} \frac{2^{n-1}}{(n+1)!}$. Chọn

khẳng định đúng

C.
$$S_1$$
 phân kỳ, S_2 hội tụ

D.
$$S_1$$
, S_2 cùng phân kỳ

Câu 37: Cho hai chuỗi
$$S_1 :=$$

$$\sum_{n=1}^{+\infty} arcsin \frac{1}{\sqrt{n}}$$
, $S_2 := \sum_{n=1}^{+\infty} sin \frac{1}{n^2}$.

Chọn khẳng định đúng

C.
$$S_1$$
 phân kỳ, S_2 hội tụ

D.
$$S_1$$
, S_2 cùng phân kỳ

Câu 38: Cho hai chuỗi
$$S_1 :=$$

$$\sum_{n=1}^{+\infty} ln(1+\frac{1}{n}), S_2 :=$$

$$\sum_{n=1}^{+\infty} ln(\frac{n^2+1}{n^2})$$
. Chọn khẳng định

đúng

A.
$$S_1$$
, S_2 cùng hội tụ

B.
$$S_1$$
 hội tụ, S_2 phân kỳ

C.
$$S_1$$
 phân kỳ, S_2 hội tụ

D.
$$S_1$$
, S_2 cùng phân kỳ

Câu 39: Cho hai chuỗi $S_1 :=$

$$\sum_{n=2}^{+\infty} \frac{1}{\ln n}$$
, $S_2 := \sum_{n=2}^{+\infty} \frac{1}{n \ln(n)}$. Chọn

khẳng định đúng

A. S₁, S₂ cùng hội tụ

В. S_1 hội tụ, S_2 phân kỳ

C. S_1 phân kỳ, S_2 hội tụ

S₁, S₂ cùng phân kỳ

Câu 40: Cho hai chuỗi

$$S_1 := \sum_{n=2}^{+\infty} \frac{1}{n \ln^2 n}$$
 , $S_2 :=$

 $\sum_{n=10}^{+\infty} \frac{1}{n \ln(n) \ln(\ln n)}$. Chọn khẳng định

đúng

S₁, S₂ cùng hội tụ A.

S₁ hội tụ, S₂ phân kỳ В.

C. S_1 phân kỳ, S_2 hội tụ

S₁, S₂ cùng phân kỳ

Câu 41: Cho hai chuỗi $S_1 :=$

$$\sum_{n=2}^{+\infty} \frac{1}{\sqrt{n \ln(n)}}$$
 , $S_2 :=$

 $\sum_{n=2}^{+\infty} \frac{1}{n \ln(n) + \sqrt{\ln^3 n}}$. Chọn khẳng định

đúng

S₁, S₂ cùng hội tụ A.

В. S_1 hội tụ, S_2 phân kỳ

C. S_1 phân kỳ, S_2 hội tụ

S₁, S₂ cùng phân kỳ

Câu 42: Cho hai chuỗi $S_1 :=$

 $\sum_{n=2}^{+\infty} \frac{2^n n!}{n^n}$, $S_2 := \sum_{n=2}^{+\infty} \frac{3^n n!}{n^n}$. Chọn

khẳng định đúng

A. S₁, S₂ cùng hội tụ

S₁ hội tụ, S₂ phân kỳ В.

C. S_1 phân kỳ, S_2 hội tụ

S₁, S₂ cùng phân kỳ

Câu 43: Cho hai chuỗi $S_1 :=$

 $\sum_{n=2}^{+\infty} (1 - \cos \frac{\pi}{n})$, $S_2 := \sum_{n=2}^{+\infty} \frac{n!}{n^n}$.

Chọn khẳng định đúng

S₁, S₂ cùng hội tụ A.

S₁ hội tụ, S₂ phân kỳ В.

C. S₁ phân kỳ, S₂ hội tụ

S₁, S₂ cùng phân kỳ

Câu 44: Cho hai chuỗi $S_1 :=$

 $\sum_{n=2}^{+\infty} \frac{e^n n!}{n^n}$, $S_2 := \sum_{n=2}^{+\infty} (\frac{3n^2 + n + 2}{5n^2 + 2n + 1})^n$.

Chọn khẳng định đúng

A. S₁, S₂ cùng hội tụ

В. S₁ hội tụ, S₂ phân kỳ C. S_1 phân kỳ, S_2 hội tụ

D. S₁, S₂ cùng phân kỳ

Câu 45: Cho hai chuỗi $S_1 :=$

$$\sum_{n=2}^{+\infty} \frac{(-1)^{n-1}}{2n-1}$$
 , $S_2 := \sum_{n=2}^{+\infty} \frac{(-1)^{n-1}}{n^2}$.

Chọn khẳng định đúng

S₁, S₂ cùng hội tụ tuyệt đối

 S_1 bán hội tụ, S_2 hội tụ tuyệt đối В.

C. S₁, S₂ cùng phân kỳ

D. S₁ hội tụ tuyệt đối, S₂ bán hội tụ

Câu 46: Cho hai chuỗi $S_1 :=$

$$\sum_{n=2}^{+\infty} (-1)^{n-1} \frac{n}{6n-5}, S_2 :=$$

$$\sum_{n=2}^{+\infty} (-1)^{n-1} \frac{2n+1}{n(n+1)}$$
. Chọn khẳng

định đúng

S₁, S₂ cùng hội tụ tuyệt đối A.

S₁ phân kỳ, S₂ bán hội tụ B.

C. S₁ hội tụ tuyệt đối, S₂ bán hội tụ

D. S₁, S₂-cùng phân kỳ

Câu 47: Cho hai chuỗi $S_1 :=$

$$\sum_{n=1}^{+\infty} (-1)^{n-1} \frac{n}{2^n}$$
 , $S_2 :=$

$$\begin{array}{l} \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{n}{2^n} \text{ , } S_2 := \\ \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{n+3}{n\sqrt{n+1}-1}. \text{ Chọn khẳng} \end{array}$$

định đúng

S₁, S₂ cùng hội tụ tuyệt đối A.

S₁ bán hội tụ, S₂ hội tụ tuyệt đối В.

C. S₁, S₂ cùng phân kỳ

 S_1 hội tụ tuyệt đối, S_2 bán hội tụ D.

Câu 48: Cho hai chuỗi $S_1 :=$

$$\sum_{n=1}^{+\infty} (-1)^{n-1} \frac{\ln n}{n}$$
, $S_2 :=$

$$\sum_{n=1}^{+\infty} (-1)^{n-1} tan \frac{1}{n\sqrt{n}}$$
. Chọn khẳng

định đúng

S₁, S₂ cùng hội tụ tuyệt đối A.

S₁ bán hội tụ, S₂ hội tụ tuyệt đối В.

C. S_1 , S_2 cùng phân kỳ

 S_1 hội tụ tuyệt đối, S_2 bán hội tụ D.

В. CHUÔI HÀM

Câu 49: Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{+\infty} \frac{n}{3^{n}+1} (x-1)^{n}$.

A. [-1;3]

(-1;3]В.

C. (-2;4)

D. [-2;4)

Câu 50: Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{+\infty} \frac{n!}{3^{n+1}} (x-2)^n$.

A. [-1;5]

- B. (-1;5]
- C. (-1;5)
- D. {2}

Câu 51: Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{+\infty} \frac{3^n+2}{n!} (x-3)^n$.

- A. [0;6]
- B. (0;6]
- C. (0;6)
- D. R

Câu 52: Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n} (x-1)^n$.

- A. [-1;3]
- B. (0;2]
- C. (0;2)
- D. [-1;3)

Câu 53: Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2+1} (x-1)^n$.

- A. [-1;3]
- B. (-1;3]
- C. (0;2)
- D. [0;2]

Câu 54: Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n \cdot 2^n} (x-5)^n$.

- A. [2;8]
- B. (3;7]
- C. (2;8)
- D. [3;7]

Câu 55: Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=2}^{+\infty} \frac{1}{n.\ln n} (x-5)^n$.

- A. [2;8]
- B. (4;6]
- C. (2;8)
- D. [4;6)

Câu 56: Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{+\infty} (\frac{n+1}{3n})^n (x-5)^n$.

- A. [3;7]
- B. (3;7]
- C. (2;8)
- D. [2;8]

Câu 57: Cho chuỗi

 $S = \sum_{n=1}^{+\infty} (-1)^n (n+2)^2 x^n \text{ với hai}$ mệnh đề:

(a) S hội tụ tuyệt đối khi -1 < x < 1

(b) S phân kỳ khi $|x| \ge 1$

Khẳng định nào sau đây đúng?

- A. (a) đúng, (b) đúng
- B. (a) đúng, (b) sai
- C. (a) sai, (b) đúng
- D. (a) sai, (b) sai

Câu 58: Cho chuỗi $S := \sum_{n=1}^{+\infty} \frac{x^n}{n}$ với các phát biểu:

- (a) S hội tụ tuyệt đối khi -1 < x < 1
- (b) S bán hội tụ khi x = -1

Chọn khẳng định đúng:

- A. (a), (b) đều đúng
- B. (a) đúng, (b) sai
- C. (a) sai, (b) đúng
- D. (a), (b) đều sai

Câu 59: Cho chuỗi $S := \sum_{n=1}^{+\infty} \frac{x^n}{n}$ với các phát biểu:

- (a) S hội tụ tuyệt đối khi -1 < x < 1
- (b) S bán hội tụ khi x = 1

Chọn khẳng định đúng:

- A. (a), (b) đều đúng
- B. (a) đúng, (b) sai
- C. (a) sai, (b) đúng
- D. (a), (b) đều sai

Câu 60: Cho chuỗi $S := \sum_{n=1}^{+\infty} \frac{x^n}{n^2}$ với các phát biểu:

- (a) S hội tụ tuyệt đối khi $-1 \le x \le 1$
- (b) S phân kỳ khi và chỉ khi x < -1 Chọn khẳng định đúng nhất:
- A. (a), (b) đều đúng
- B. (a) đúng, (b) sai
- C. (a) sai, (b) đúng
- D. (a), (b) đều sai

Câu 61: Cho chuỗi $S := \sum_{n=1}^{+\infty} \frac{x^n}{n^2}$ với các phát biểu:

- (a) S hội tụ tuyệt đối khi $-1 \le x \le 1$
- (b) S phân kỳ khi và chỉ khi x > 1 Chọn khẳng định đúng:
- A. (a), (b) đều đúng
- B. (a) đúng, (b) sai
- C. (a) sai, (b) đúng
- D. (a), (b) đều sai