NOZZLE DESIGN CONSIDERATIONS

In the design of the Solid Rocket Motor, the design of the nozzle is of critical importance. This document highlights the procedures taken in the design of the nozzle for the N-2 rocket motor.

The specifications for the N-2 rocket motor were as follows;

- 1. Fuel casing outer diameter \rightarrow 56 mm
- 2. Fuel to be used → KNSB (Potassium Nitrate + Sorbitol)

Tools Used

- 1. OpenMotor
- 2. Casing.xls
- 3. SRM.xls

Procedure

1. Using the excel sheet **casing.xls**, we get the Design pressure for the rocket motor casing as well as the burst pressure.

Design and Burst Pressures for Rocket Motor Casing

[Input data in blue text, English or (SI) units]

Casing Dimensions and Design Factors

The values for the outer diameter and thickness of the proposed casing are input, in mm. The safety factor being 2.5

The material properties are also input in the following sections. N-2 utilizes 7075 aluminum alloy for the fabrication of the casing, the values are input in the sections below.

Material Properties

The tool computes the design and burst pressures that can be handled by the casing with the given dimensions. The results are presented below;

Design and Burst Pressures

$P_D =$	12286 psi (kPa)	Design pressure
P _U =	40610 psi (kPa)	Burst pressure
$S_U =$	3.31	Burst Safety Factor

The design pressure is 12 MPa.

However, the initial design was done using 6063 aluminum which was not locally available. Using 6063 aluminum yielded a Design pressure of 2 MPa.

This value of pressure was used since it still lies way below the design pressure of 7075 aluminum, i.e., 12 MPa.

The value of interest is the design pressure \rightarrow <u>2MPa.</u> (Remember to use the design pressure obtained from the tool casing.xls)

2. Using the excel workbook <u>SRM.xls</u>, we get the design of the nozzle as follows. In the first sheet within the workbook, **Data and Kn**, the values for Outer grain diameter, core diameter, number of grain segments, segment lengths, type of fuel, inhibited surfaces are input according to the design parameters.

The target maximum pressure is also input in psi.

The values were input as shown below;

The target maximum pressure is also input in psi.

The solve button is clicked, then proceed to the next stage. (The next sheet, titled **Pressure**)

3. In the Pressure sheet, click Solve 2 followed by Solve 3 then proceed to the next sheet, titled **Performance**

4. In the Performance sheet, the nozzle efficiency and the nozzle expansion ratio are set. Optimum values for the Nozzle expansion ratio are given and a suitable value for the nozzle expansion ratio can be selected bearing this in mind.

Values for the optimum nozzle expansion ratio at Po max and the average optimum nozzle expansion ratio. These values are computed for the specific fuel we have been designing. In this case, the value 6.25 is selected. 6.25 is arbitrarily selected since it lies close to the optimum values provided. Any value around the given optimum values can be used.

5. Once this is done, click the Solve (4) button and proceed to the next excel sheet, titled

Nozzle Design.

Here, the convergence and divergence half angles are selected within some allowable limits. In our case, the following angles were selected.

Nozzle Design

beta	35.0 degrees	Nozzle convergence half-angle	
alpha	15.0 degrees	Nozzle divergence half-angle	
Dc	52 mm	Chamber inside diameter	Reference worksheets: Data and Kn Data and Kn Performance Performance
Dt	12.96 mm	Nozzle throat diameter	
De	32.39 mm	Nozzle exit diameter	
De opt	27.67 mm	Optimum nozzle exit diameter	
Lc	27.88 mm	Convergence length	
Ld	36.26 mm	Divergence length	
Lo	64.14 mm	Overall length	

6. The final output of the rocket motor is then displayed in the next sheet, titled **Output** This is shown below;

Example Rocket Motor		
utilizing KNSB propellant.		
Grain mass	0.588	kg.
	1.295	lb.
Total impulse	683.6	N-sec.
	153.7	lb-sec.
Average thrust	338.9	N.
	76.2	lb.
Thrust time	2.017	sec.
Specific Impulse	118.6	sec.
Motor Classification	J	339

Thrust-time data [see note 1] Time step 0.0996 sec. [see note2]						
Data pt.	Time	Thrust	Thrust			
·	(sec.)	(N.)	(lb.)			
1	0.000	Ó	Ó			
2	0.105	300	67			
3	0.107	300	68			
4	0.205	309	70			
5	0.306	317	71			
6	0.406	325	73			
7	0.506	332	75			
8	0.607	338	76			
9	0.707	343	77			
10	0.807	348	78			
11	0.908	351	79			
12	1.008	354	80			
13	1.108	357	80			
14	1.209	358	80			
15	1.309	359	81			
16	1.410	358	81			
17	1.510	357	80			
18	1.610	356	80			
19	1.711	353	79			
20	1.811	350	79			
21	1.912	346	78			
22	2.000	248	56			
23	2.017	0	0			

From Section (5) above, the nozzle parameters can be obtained.

The section included the parameters to be used for the nozzle fabrication.

These parameters are listed below.

Nozzle Design

These values are used to design the nozzle.

The Nozzle Engineering drawing is attached below

