Dimensions for the spaces of Siegel cusp forms of level 4

Manami Roy
Fordham University
(Joint work with Ralf Schmidt and Shaoyun Yi)

International Seminar on Automorphic Forms

December 7, 2021

Outline

- Available dimensions of spaces of Siegel cusp forms of degree 2.
- ullet Counting cuspidal automorphic representation of $\mathrm{GSp}(4)$.
- New dimensions of spaces of Siegel cusp forms of degree 2 and level 4.

The group GSp(4)

$$\mathrm{GSp}(4) := \{g \in \mathrm{GL}(4): \ ^t g J g = \lambda(g) J, \ \lambda(g) \in \mathrm{GL}(1) \}, \ \mathsf{where}$$

$$J = \left[\begin{smallmatrix} 1 & 1 \\ -1 & -1 \end{smallmatrix} \right].$$

 $\mathrm{Sp}(4) := \{g \in \mathrm{GSp}(4) : \lambda(g) = 1\}$. We consider the congruence subgroups:

$$\mathrm{K}(\textit{N}) := \mathrm{Sp}(4,\mathbb{Q}) \cap \left[\begin{smallmatrix} \mathbb{Z} & \textit{N}\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{N}^{-1}\mathbb{Z} \\ \mathbb{N}\mathbb{Z} & \textit{N}\mathbb{Z} & \mathbb{N}\mathbb{Z} & \mathbb{Z} \end{smallmatrix} \right]$$

$$\Gamma_0(\mathit{N}) := \operatorname{Sp}(4, \mathbb{Z}) \cap \left[egin{array}{cccc} \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ N\mathbb{Z} & N\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \end{array}
ight]$$

$$\Gamma_0^{'}(\textit{N}) := \operatorname{Sp}(4,\mathbb{Z}) \cap \left[\begin{smallmatrix} \mathbb{Z} & \textit{NZ} & \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \textit{NZ} & \mathbb{Z} & \mathbb{Z} \\ \textit{NZ} & \textit{NZ} & \textit{NZ} & \mathbb{Z} \\ \end{smallmatrix} \right]$$

$$\mathrm{B}(\textit{N}) := \mathrm{Sp}(4,\mathbb{Z}) \cap \left[\begin{smallmatrix} \mathbb{Z} & \textit{N}\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ \textit{N}\mathbb{Z} & \textit{N}\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ \textit{N}\mathbb{Z} & \textit{N}\mathbb{Z} & \textit{N}\mathbb{Z} & \mathbb{Z} \\ \end{smallmatrix} \right]$$

Siegel modular forms (degree 2)

Let $\mathcal{H}_2 = \{Z = X + iY \in M_2(\mathbb{C}) : Z^t = Z \text{ and } Y \text{ is positive definite}\}.$

A holomorphic function $f:\mathcal{H}_2\to\mathbb{C}$ is called a **Siegel modular form** of degree 2 and weight k if

$$\det(CZ+D)^{-k}f\big((AZ+B)(CZ+D)^{-1}\big)=f(Z) \text{ for } \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \Gamma_N.$$

We consider the following congruence subgroups Γ_{N} of $\mathrm{Sp}(4,\mathbb{Q})$:

$$\Gamma_N$$
: $K(N)$ $\Gamma_0(N)$ $\Gamma_0'(N)$ $B(N)$

• F is called a **Siegel cusp form** if $\lim_{\lambda \to \infty} (F|g)([i\lambda_{\tau}]) = 0$ for all $g \in \operatorname{Sp}(4, \mathbb{Q})$ and $\tau \in \mathcal{H}_1$.

 $S_k(\Gamma_N)$: the space of Siegel cusp forms of weight k with respect to Γ_N .

Dimensions of Siegel cusp forms of level p

Dimensions	k	р	References
$dim_{\mathbb{C}} \mathcal{S}_k(\mathrm{Sp}(4,\mathbb{Z}))$			Igusa 1964, Hashimoto 1983
$dim_{\mathbb{C}} \mathcal{S}_k(\mathrm{K}(p))$	≥ 5	≥ 2	Ibukiyama 1985
$\dim_{\mathbb{C}} S_k(\Gamma_0(p))$	≥ 5	≥ 3	Hashimoto 1983
	≥ 4	≥ 2	Tsushima 1997
$\dim_{\mathbb{C}} S_k(\Gamma_0'(p))$	≥ 5	≥ 5	Hashimoto, Ibukiyama 1985
$dim_{\mathbb{C}} \mathcal{S}_k(\mathrm{B}(p))$	≥ 5	≥ 5	Hashimoto, Ibukiyama 1985
all	≥ 5	≥ 2	Wakatsuki 2012
all	3,4	≥ 2	Ibukiyama 2007
all but $\dim_{\mathbb{C}} S_k(\mathrm{B}(3))$	2	2,3	Ibukiyama 1984, Ibukiyama 2018

Dimensions of Siegel cusp forms of non-squarefree level

Dimensions	k	References
$\dim_{\mathbb{C}} S_k(\Gamma_0(4))$	≥ 0	Tsushima 2003
$dim_{\mathbb{C}} \mathcal{S}_k(\mathrm{K}(4))$	≥ 0	Poor, Yuen 2013
$dim_{\mathbb{C}} \mathcal{S}_k(\mathrm{K}(8))$	10, 12	Poor, Schmidt, Yuen 2018
$dim_{\mathbb{C}} \mathcal{S}_k(\mathrm{K}(16))$	≤ 14	Poor, Schmidt, Yuen 2018

Dimensions of Siegel cusp forms of non-squarefree level

Dimensions	k	References
$\dim_{\mathbb{C}} S_k(\Gamma_0(4))$	≥ 0	Tsushima 2003
$dim_{\mathbb{C}} \mathcal{S}_k(\mathrm{K}(4))$	≥ 0	Poor, Yuen 2013
$dim_{\mathbb{C}} \mathcal{S}_k(\mathrm{K}(8))$	10, 12	Poor, Schmidt, Yuen 2018
$dim_{\mathbb{C}} \mathcal{S}_k(\mathrm{K}(16))$	≤ 14	Poor, Schmidt, Yuen 2018

Available methods:

- Riemann-Roch-Hirzebruch theorem for $k \ge 4$ and Selberg trace formula for $k \ge 5$.
- Igusa's theorem to find $\dim_{\mathbb{C}} M_k(\Gamma_N)$ and Satake's theorem to find the codimension formula.

New dimension formulas of Siegel cusp forms of level 4

Goal: Find the dimension of spaces of Siegel cusp forms of degree 2 with respect to

(1) The Klingen congruence subgroup of level 4

$$\Gamma_0^{'}(4) := \operatorname{Sp}(4,\mathbb{Z}) \cap \left[\begin{smallmatrix} \mathbb{Z} & 4\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & 4\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ 4\mathbb{Z} & 4\mathbb{Z} & 4\mathbb{Z} & \mathbb{Z} \end{smallmatrix} \right]$$

(2) The middle group of level 4

$$\mathrm{M}(4) := \mathrm{Sp}(4,\mathbb{Q}) \cap \left[egin{array}{cccc} \mathbb{Z} & 4\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & 2\mathbb{Z} & \mathbb{Z} & 2^{-1}\mathbb{Z} \\ 4\mathbb{Z} & 4\mathbb{Z} & 4\mathbb{Z} & \mathbb{Z} \end{array}
ight]$$

Note that, $\Gamma_0'(4) \subset \mathrm{M}(4) \subset \mathrm{K}(4)$.

Counting certain set of cuspidal automorphic representations of
$\mathrm{GSp}(4)$.

Classical modular forms and automorphic representations

Automorphic forms

- \mathbb{Q}_p is the completion of \mathbb{Q} with respect to the *p*-adic norm.
- Consider a global (adelic) group $G(\mathbb{A}_{\mathbb{Q}}) = \prod_{p \leq \infty}' G(\mathbb{Q}_p)$, which is a restricted direct product of local groups.

A smooth function $\Phi \colon G(\mathbb{A}_{\mathbb{Q}}) \to \mathbb{C}$ is called an **automorphic form** if

$$\Phi(\gamma g) = \Phi(g) \quad \text{for all } g \in G(\mathbb{A}_{\mathbb{Q}}) \text{ and } \gamma \in G(\mathbb{Q}),$$

and Φ satisfies a few other properties. Φ is called **cusp form** if

$$\int_{N(\mathbb{Q})\backslash N(\mathbb{A}_{\mathbb{Q}})} \Phi(ng) \, dn = 0$$

for all unipotent radicals N of parabolic subgroups of G.

Automorphic representations

An automorphic representation (π, V) of $G(\mathbb{A}_{\mathbb{Q}})$ is an irreducible subquotient of the set of automorphic forms on $G(\mathbb{A}_{\mathbb{Q}})$.

An automorphic rep. (π, V) is called **cuspidal** if V consists of cusp forms.

Roughly speaking, an automorphic representation π of $G(\mathbb{A}_{\mathbb{Q}})$ is an irreducible, admissible representation $G(\mathbb{A}_{\mathbb{Q}})$ that has the form

$$\pi\cong\bigotimes_{p\leq\infty}\pi_p$$

where π_p is an irreducible, admissible representation of $G(\mathbb{Q}_p)$.

Four types of local irreducible admissible representations

• (Constituents of) Borel-induced representations:

$$\chi_1 \times \chi_2 \rtimes \sigma \qquad B = \begin{bmatrix} * & * & * & * \\ * & * & * \\ * & * \end{bmatrix} = \underbrace{\begin{bmatrix} * \\ * \\ * \end{bmatrix}}_{\mathbb{Q}_\rho^\times \times \mathbb{Q}_\rho^\times \times \mathbb{Q}_\rho^\times} \times \begin{bmatrix} 1 & * & * & * \\ 1 & * & * \\ 1 & * \end{bmatrix}}_{\mathbb{Q}_\rho^\times \times \mathbb{Q}_\rho^\times \times \mathbb{Q}_\rho^\times}$$

• (Constituents of) Siegel-induced representations:

• (Constituents of) Klingen-induced representations:

$$\chi \rtimes \pi \qquad Q = \begin{bmatrix} * & * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} = \underbrace{ \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} }_{*} \ltimes \begin{bmatrix} 1 & * & * & * \\ 1 & * & * \\ 1 & * & * \end{bmatrix}$$

Supercuspidal representations

$$\mathbb{Q}_p^{\times} \times \mathrm{GL}(2,\mathbb{Q}_p)$$

Sally and Tadić (1993) classified the non-supercuspidal representations.

Borel-induced representations

Ω	constituents of		representation	tempered	L^2	8
1	$\chi_1 \times \chi_2$	$\underline{\sigma} \rtimes \sigma$	(irreducible)	•		•
П	$\nu^{1/2}\chi\times\nu^{-1/2}\chi\rtimes\sigma$	a	$\chi \operatorname{St}_{\operatorname{GL}(2)} \rtimes \sigma$	•		•
	$\left(\chi^2 \neq \nu^{\pm 1}, \chi \neq \nu^{\pm 3/2}\right)$	b	$\chi 1_{\mathrm{GL}(2)} \rtimes \sigma$			
Ш	$\chi \times \nu \rtimes \nu^{-1/2} \sigma$	a	$\chi \rtimes \sigma \operatorname{St}_{\mathrm{GSp}(2)}$	•		
	$(\chi\notin\{1,\nu^{\pm2}\})$	b	$\chi \times \sigma 1_{\mathrm{GSp}(2)}$			
IV	$\nu^2 \times \nu \rtimes \nu^{-3/2} \sigma$	a	$\sigma \mathrm{St}_{\mathrm{GSp}(4)}$	•	•	
		b	$L(\nu^2, \nu^{-1}\sigma \operatorname{St}_{\mathrm{GSp}(2)})$			
		С	$L(\nu^{3/2}St_{GL(2)}, \nu^{-3/2}\sigma)$			
		d	$\sigma 1_{\mathrm{GSp}(4)}$			
٧	$\nu\xi\times\xi\rtimes\nu^{-1/2}\sigma$	a	$\delta([\xi,\nu\xi],\nu^{-1/2}\sigma)$	•	•	
	$(\xi^2=1,\xi eq1)$	b	$L(\nu^{1/2}\xi St_{GL(2)}, \nu^{-1/2}\sigma)$			
		С	$L(\nu^{1/2}\xi \operatorname{St}_{\operatorname{GL}(2)}, \xi \nu^{-1/2}\sigma)$			
		d	$L(\nu\xi,\xi\rtimes\nu^{-1/2}\sigma)$			
VI	$\nu \times 1_{F^{\times}} \rtimes \nu^{-1/2} \sigma$	a	$\tau(S, \nu^{-1/2}\sigma)$	•		
		b	$\tau(T, \nu^{-1/2}\sigma)$	•		
		С	$L(\nu^{1/2}\mathrm{St}_{\mathrm{GL}(2)}, \nu^{-1/2}\sigma)$			
		d	$L(\nu, 1_{F^{\times}} \rtimes \nu^{-1/2}\sigma)$			

Klingen- and Siegel-induced representations

Klingen-induced:

Ω	constituents of		representation	tempered	L^2	g
VII	$\chi \rtimes \pi$	(irred	ucible)	•		•
VIII	$1_{F^\times} \rtimes \pi$	a	$ au(\mathcal{S},\pi)$	•		•
		b	$\tau(T,\pi)$	•		
IX	$\nu \xi \rtimes \nu^{-1/2} \pi$	a	$\delta(\nu\xi,\nu^{-1/2}\pi)$	•	•	•
	$(\xi \neq 1, \xi \pi = \pi)$	b	$L(\nu\xi,\nu^{-1/2}\pi)$			

Siegel-induced:

Ω	constituents of		representation	tempered	L^2	g
X	$\pi \rtimes \sigma$	(irre	educible)	•		•
XI	$\nu^{1/2}\pi \rtimes \nu^{-1/2}\sigma$	a	$\delta(\nu^{1/2}\pi,\nu^{-1/2}\sigma)$	•	•	•
	$(\omega_{\pi}=1)$	b	$L(\nu^{1/2}\pi,\nu^{-1/2}\sigma)$			

Three supercuspidal representations

Ω	representation	tempered	L^2	g
Va*	$\delta^*([\xi,\nu\xi],\nu^{-1/2}\sigma)$	•	•	
XIa*	$\delta^*(\nu^{1/2}\pi,\nu^{-1/2}\sigma)$	•	•	
sc(16)	$\operatorname{c-Ind}_{ZG(\mathbb{Z}_2)}^{G(\mathbb{Q}_2)}([2,2,1,1])$	•	•	•

L-packets: {VIa, VIb}, {VIIIa, VIIIb}, {Va, Va*}, {XIa, XIa*}

sc(16): The only generic depth-zero supercuspidal of $GSp(4, \mathbb{Q}_2)$.

What about π_{∞} ?

A representation of $\mathrm{GSp}(4,\mathbb{R})$ can be visualized by the weight structures with a minimal weight.

We consider π_{∞} as the *lowest weight module* with minimal K-type (k, k).

This is related to the Siegel modular forms of weight k.

Let $k \in \mathbb{Z}_{>0}$. Let $S_k(\Omega)$ be the set of cuspidal automorphic representations $\pi \cong \bigotimes_{\nu \leq \infty} \pi_{\nu}$ of $\mathrm{GSp}(4,\mathbb{A}_{\mathbb{Q}})$ with trivial central character (i.e., a rep. of $\mathrm{PGSp}(4,\mathbb{A}_{\mathbb{Q}})$) such that

 $\pi_{\mathbf{v}}$ is unramified for all $\mathbf{v} \neq 2, \infty$.

 π_{∞} is the lowest weight module with minimal K-type (k,k).

k = 1: a non-tempered representation

k = 2: a holomorphic limit of discrete series representation

 $k \ge 3$: a holomorphic discrete series representation

 π_2 is a depth-zero representation of $PGSp(4, \mathbb{Q}_2)$ of type Ω .

Let $k \in \mathbb{Z}_{>0}$. Let $S_k(\Omega)$ be the set of cuspidal automorphic representations $\pi \cong \bigotimes_{\nu \leq \infty} \pi_{\nu}$ of $\mathrm{GSp}(4,\mathbb{A}_{\mathbb{Q}})$ with trivial central character (i.e., a rep. of $\mathrm{PGSp}(4,\mathbb{A}_{\mathbb{Q}})$) such that

 $\pi_{\mathbf{v}}$ is unramified for all $\mathbf{v} \neq 2, \infty$.

 π_{∞} is the lowest weight module with minimal K-type (k, k).

k = 1: a non-tempered representation

k = 2: a holomorphic limit of discrete series representation

 $k \ge 3$: a holomorphic discrete series representation

 π_2 is a depth-zero representation of $PGSp(4, \mathbb{Q}_2)$ of type Ω .

(These are precisely the representations that admit non-zero fixed vectors under the principal congruence subgroup $\Gamma(2\mathbb{Z}_2)$.)

Let $k \in \mathbb{Z}_{>0}$. Let $S_k(\Omega)$ be the set of cuspidal automorphic representations $\pi \cong \bigotimes_{\nu \leq \infty} \pi_{\nu}$ of $\mathrm{GSp}(4,\mathbb{A}_{\mathbb{Q}})$ with trivial central character (i.e., a rep. of $\mathrm{PGSp}(4,\mathbb{A}_{\mathbb{Q}})$) such that

 π_{ν} is unramified for all $\nu \neq 2, \infty$.

 π_{∞} is the lowest weight module with minimal K-type (k, k).

k = 1: a non-tempered representation

k = 2: a holomorphic limit of discrete series representation

 $k \ge 3$: a holomorphic discrete series representation

 π_2 is a depth-zero representation of $PGSp(4, \mathbb{Q}_2)$ of type Ω .

(These are precisely the representations that admit non-zero fixed vectors under the principal congruence subgroup $\Gamma(2\mathbb{Z}_2)$.)

Possible Ω are types I-XI, Va*, sc(16).

Let $k \in \mathbb{Z}_{>0}$. Let $S_k(\Omega)$ be the set of cuspidal automorphic representations $\pi \cong \bigotimes_{\nu \leq \infty} \pi_{\nu}$ of $\mathrm{GSp}(4,\mathbb{A}_{\mathbb{Q}})$ with trivial central character (i.e., a rep. of $\mathrm{PGSp}(4,\mathbb{A}_{\mathbb{Q}})$) such that

 $\pi_{\mathbf{v}}$ is unramified for all $\mathbf{v} \neq 2, \infty$.

 π_{∞} is the lowest weight module with minimal K-type (k, k).

k = 1: a non-tempered representation

k = 2: a holomorphic limit of discrete series representation

 $k \geq 3$: a holomorphic discrete series representation

 π_2 is a depth-zero representation of $PGSp(4, \mathbb{Q}_2)$ of type Ω .

(These are precisely the representations that admit non-zero fixed vectors under the principal congruence subgroup $\Gamma(2\mathbb{Z}_2)$.)

Possible Ω are types I-XI, Va*, sc(16).

$$s_k(\Omega) := \#S_k(\Omega)$$

$$\pi \in S_k(\Omega) \longrightarrow \operatorname{cusp} \text{ form } \Phi \in V \cong \bigotimes_{v \le \infty} V_v \longrightarrow \operatorname{eigenform } f \in S_k(\Gamma)$$

A Siegel modular form of degree 2, level 4, weight kGlobal dimensions

A representation of PGSp(4) $\pi \cong \bigotimes_{v \leq \infty} \pi_v \text{ in } S_k(\Omega)$

dim_C $S_k(\Gamma)$ where Γ are congruence subgroups

Dimensions of spaces of fixed vectors of
$$(\pi_2, V_2)$$
 under compact open subgroups C

$$\begin{array}{c|cccc} \hline \Gamma & \mathrm{Sp}(4,\mathbb{Z}) & \mathrm{K}(4) & \Gamma_0(4) & \Gamma_0^{'}(4) & \mathrm{M}(4) \\ \hline C & \mathrm{GSp}(4,\mathbb{Z}_2) & \mathrm{K}(\mathfrak{p}^2) & \mathrm{Si}(\mathfrak{p}^2) & \mathrm{Kl}(\mathfrak{p}^2) & \mathrm{M}(\mathfrak{p}^2) & (\mathfrak{p}=2\mathbb{Z}_2) \\ \hline \end{array}$$

$$\pi \in \mathcal{S}_k(\Omega) \longrightarrow \mathsf{cusp} \; \mathsf{form} \; \Phi \in V \cong \bigotimes_{v \leq \infty} V_v \longrightarrow \mathsf{eigenform} \; f \in \mathcal{S}_k(\Gamma)$$

$$\dim_{\mathbb{C}} S_k(\Gamma) = \sum_{\Omega} \sum_{\pi \in S_k(\Omega)} \dim \pi_2^{\mathcal{C}} = \sum_{\substack{\Omega \\ \text{s.t. } \pi \in S_k(\Omega)}} \underline{s_k(\Omega)} \dim \pi_2^{\mathcal{C}}.$$

Computing new dimensions of some spaces of Siegel cusp forms of

level 4 with respect to $\Gamma'_0(4)$ and M(4)

Main ingredients

Suppose $\Gamma = \Gamma'_0(4), M(4)$. Then we have

$$\dim_{\mathbb{C}} S_k(\Gamma) = \sum_{\substack{\Omega \\ \mathrm{s.t.} \, \pi \in S_k(\Omega)}} \underline{s_k(\Omega)} \, \dim \pi_2^C.$$

where $C = \mathrm{Kl}(\mathfrak{p}^2)$ and $\mathrm{M}(\mathfrak{p}^2)$ respectively.

Main ingredients

Suppose $\Gamma = \Gamma_0'(4), M(4)$. Then we have

$$\dim_{\mathbb{C}} S_k(\Gamma) = \sum_{\substack{\Omega \\ \mathrm{s.t.} \, \pi \in S_k(\Omega)}} \underline{s_k(\Omega)} \, \dim \pi_2^C.$$

where $C = Kl(\mathfrak{p}^2)$ and $M(\mathfrak{p}^2)$ respectively.

[Yi, 2019]: A representation of $\mathrm{GSp}(4,\mathbb{Q}_2)$ which has a non-zero $\mathrm{Kl}(\mathfrak{p}^2)$ -invariant vectors is depth-zero. Give the dimensions of spaces of $\mathrm{Kl}(\mathfrak{p}^2)$ and $\mathrm{M}(\mathfrak{p}^2)$ -invariant vectors.

Main ingredients

Suppose $\Gamma = \Gamma_0'(4), M(4)$. Then we have

$$\dim_{\mathbb{C}} S_k(\Gamma) = \sum_{\substack{\Omega \\ \mathrm{s.t.} \, \pi \in S_k(\Omega)}} \underline{s_k(\Omega)} \, \dim \pi_2^C.$$

where $C = Kl(\mathfrak{p}^2)$ and $M(\mathfrak{p}^2)$ respectively.

[Yi, 2019]: A representation of $\mathrm{GSp}(4,\mathbb{Q}_2)$ which has a non-zero $\mathrm{Kl}(\mathfrak{p}^2)$ -invariant vectors is depth-zero. Give the dimensions of spaces of $\mathrm{Kl}(\mathfrak{p}^2)$ and $\mathrm{M}(\mathfrak{p}^2)$ -invariant vectors.

[R., Schmidt, Yi, 2021]: We compute $s_k(\Omega)$ explicitly.

Arthur packets

Six types of discrete automorphic representations π of $PGSp(4, \mathbb{A}_{\mathbb{Q}})$:

- **(G)** General: $L(s,\pi) = L(s,\Pi)$ with $\Pi \in \mathcal{A}_0(\mathrm{GL}(4,\mathbb{A}_\mathbb{Q}))$
- (Y) Yoshida: $L(s,\pi) = L(s,\mu_1)L(s,\mu_2)$ with $\mu_1,\mu_2 \in \mathcal{A}_0(\mathrm{GL}(2,\mathbb{A}_\mathbb{Q}))$
- (P) Saito-Kurokawa, P-CAP: $L(s,\pi) = L(s,\mu)L(s+1/2,\chi)L(s-1/2,\chi)$
- (Q) Soudry, *Q*-CAP: $L(s, \pi) = L(s + 1/2, \mu)L(s 1/2, \mu)$
- (B) Howe–Piatetski-Shapiro, *B*-CAP: $L(s,\pi) = \prod_{i=1}^{2} L(s+\frac{1}{2},\chi_i)L(s-\frac{1}{2},\chi_i)$
- **(F)** Finite (one-dimensional): Not occur in the cuspidal spectrum!

$$s_k(\Omega) = s_k^{(G)}(\Omega) + s_k^{(Y)}(\Omega) + s_k^{(P)}(\Omega) + s_k^{(Q)}(\Omega) + s_k^{(B)}(\Omega)$$

Note: **(Q)** and **(B)** packets could have only contributed to weight 1 or 2.

Theorem (R., Schmidt, Yi, 2021)

$$s_k^{(\mathbf{B})}(\Omega) = s_k^{(\mathbf{Q})}(\Omega) = s_k^{(\mathbf{Y})}(\Omega) = 0$$
 for all k and all Ω .

Theorem (R., Schmidt, Yi, 2021)

$$s_k^{(\mathbf{B})}(\Omega) = s_k^{(\mathbf{Q})}(\Omega) = s_k^{(\mathbf{Y})}(\Omega) = 0$$
 for all k and all Ω .

$$s_k(\Omega) = s_k^{(\mathbf{G})}(\Omega) + s_k^{(\mathbf{P})}(\Omega).$$
$$\dim_{\mathbb{C}} S_k(\Gamma) = \dim_{\mathbb{C}} S_k^{(\mathbf{G})}(\Gamma) + \dim_{\mathbb{C}} S_k^{(\mathbf{P})}(\Gamma).$$

Theorem (R., Schmidt, Yi, 2021)

$$s_k^{(\mathbf{B})}(\Omega) = s_k^{(\mathbf{Q})}(\Omega) = s_k^{(\mathbf{Y})}(\Omega) = 0$$
 for all k and all Ω .

$$\dim_{\mathbb{C}} S_k(\Gamma) = \dim_{\mathbb{C}} S_k^{(\mathbf{G})}(\Gamma) + \dim_{\mathbb{C}} S_k^{(\mathbf{P})}(\Gamma).$$
• groups I-VI: we need $\dim_{\mathbb{C}} S_k(\Gamma)$ for $\Gamma \in \{\operatorname{Sp}(4,\mathbb{Z}),\operatorname{K}(2),\Gamma_0(2),\Gamma_0'(2),I(2)\}.$

- groups I-VI: we need $\dim_{\mathbb{C}} S_k(I)$ for $I \in \{\mathrm{Sp}(4, \mathbb{Z}), \mathrm{K}(2), \mathrm{I}_0(2), \mathrm{I}_0(2),$
- groups VII-XI: we need $\dim_{\mathbb{C}} S_k(\Gamma)$ for $\Gamma \in \{\Gamma(2), K(4), \Gamma_0(4), \Gamma_0^*(4)\}$.

 $s_k(\Omega) = s_k^{(\mathbf{G})}(\Omega) + s_k^{(\mathbf{P})}(\Omega).$

$$\Gamma_0^*(4) = \left\{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \Gamma_0(4) : D \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \pmod{2} \right\}$$

$$1 \rightarrow \Gamma_0^*(4) \rightarrow \Gamma_0(4) \rightarrow \{\pm 1\} \rightarrow 1.$$

Arthur packets for depth-zero representations

Ω	Tempered	(G)	(P)	(Y)	Γ(p)	К	$\mathrm{K}(\mathfrak{p})$	$K(\mathfrak{p}^2)$	Si(p)	$\mathrm{Si}(\mathfrak{p}^2)$	$\mathrm{Si}^*(\mathfrak{p}^2)$	$\mathrm{Kl}(\mathfrak{p})$	$\mathrm{Kl}(\mathfrak{p}^2)$	$\mathrm{M}(\mathfrak{p}^2)$	1
1	•	•		0	45	1	2	4	4	12	15	4	11	8	8
Ha	•	•		0	30	0	1	2	1	5	8	2	7	5	4
Пь			•		15	1	1	2	3	7	7	2	4	3	4
IIIa	•	•			30	0	0	1	2	8	10	1	5	3	4
IIIb					15	1	2	3	2	4	5	3	6	5	4
IVa	•	•			16	0	0	0	0	2	4	0	2	1	1
IVb		ever unit	ary		14	0	0	1	2	6	6	1	3	2	3
IVc		ever unit	ary		14	0	1	2	1	3	4	2	5	4	3
IVd					1	1	1	1	1	1	1	1	1	1	1
Va	•	•		0	21	0	0	1	0	2	5	1	5	3	2
Vb			•		9	0	1	1	1	3	3	1	2	2	2
$_{ m Vc}$			0		9	0	1	1	1	3	3	1	2	2	2
Vd					6	1	0	1	2	4	4	1	2	1	2
VIa	•	•		0	25	0	0	1	1	5	7	1	5	3	3
VIb	•	•	٠	•	5	0	0	0	1	3	3	0	0	0	1
VIc			•		5	0	1	1	0	0	1	1	2	2	1
VId					10	1	1	2	2	4	4	2	4	3	3
VII	•	•			15	0	0	0	0	4	5	0	2	0	0
VIIIa	•	•		0	10	0	0	0	0	3	4	0	2	0	0
VIIIb	•	•		•	5	0	0	0	0	1	1	0	0	0	0
IXa	•	•			10	0	0	0	0	3	4	0	1	0	0
IXb					5	0	0	0	0	1	1	0	1	0	0
x	•	•		0	15	0	0	1	0	1	7	0	3	2	0
XIa	•	•		0	10	0	0	0	0	1	4	0	2	1	0
XIb			•		5	0	0	1	0	0	3	0	1	1	0
Va*	•	•	•	•	1	0	0	0	0	0	1	0	0	0	0
sc(16)	•	•			9	0	0	0	0	0	3	0	1	0	0

```
\dim_{\mathbb{C}} S_k(\operatorname{Sp}(4,\mathbb{Z}))
  \dim_{\mathbb{C}} S_k(K(2))
                                                \dim_{\mathbb{C}} S_k(\Gamma'_0(2))
\dim_{\mathbb{C}} S_k(\Gamma_0(2))
                                                                                                                                                                                                       s_k(VIa)
  \dim_{\mathbb{C}} S_k(B(2))
                                                                                                                                                                                                       s_k(VIc)
 \dim_{\mathbb{C}} S_k(\mathrm{K}(4))
\dim_{\mathbb{C}} S_k(\Gamma_0(4))
\dim_{\mathbb{C}} S_k(\Gamma_0^*(4))
\dim_{\mathbb{C}} S_k(\Gamma(2))
                                                                                                                                                                                                       s_k(VII)
                                                                                                                                                                                                     s_k(VIIIa)
```

- dim π_2^C for $C = K(\mathfrak{p}), Si(\mathfrak{p}), Kl(\mathfrak{p}), I(\mathfrak{p})$ have been computed by Schmidt (2005).
- dim π_2^C for $C = \text{Si}(\mathfrak{p}^2), \text{Si}^*(\mathfrak{p}^2), \Gamma(\mathfrak{p})$ are computed by using hyperspecial parahoric restriction of PGSp(4, \mathbb{Q}_2).

$s_k^{(\mathbf{P})}(\Omega)$ (Saito-Kurokawa types)

$$\begin{split} s_k(\mathrm{IIb}) &= \begin{cases} \dim_{\mathbb{C}} S_{2k-2}(\mathrm{SL}(2,\mathbb{Z})) & \text{if k is even,} \\ 0 & \text{if k is odd.} \end{cases} \\ s_k(\mathrm{Vb}) &= \begin{cases} \dim_{\mathbb{C}} S_{2k-2}^{-,\mathrm{new}}(\Gamma_0^{(1)}(2)) & \text{if k is even,} \\ 0 & \text{if k is even,} \end{cases} \\ s_k^{(\mathbf{P})}(\mathrm{VIb}) &= \begin{cases} \dim_{\mathbb{C}} S_{2k-2}^{+,\mathrm{new}}(\Gamma_0^{(1)}(2)) & \text{if k is even,} \\ 0 & \text{if k is even,} \end{cases} \\ s_k(\mathrm{VIc}) &= \begin{cases} 0 & \text{if k is even,} \\ \dim_{\mathbb{C}} S_{2k-2}^{-,\mathrm{new}}(\Gamma_0^{(1)}(2)) & \text{if k is even,} \end{cases} \\ s_k^{(\mathbf{P})}(\mathrm{Va}^*) &= \begin{cases} 0 & \text{if k is even,} \\ \dim_{\mathbb{C}} S_{2k-2}^{+,\mathrm{new}}(\Gamma_0^{(1)}(2)) & \text{if k is even,} \end{cases} \\ dim_{\mathbb{C}} S_{2k-2}^{+,\mathrm{new}}(\Gamma_0^{(1)}(2)) & \text{if k is even,} \end{cases} \end{split}$$

$$s_k(\mathrm{XIb}) = egin{cases} \dim_{\mathbb{C}} S^{+,\mathrm{new}}_{2k-2}(\Gamma^{(1)}_0(2)) & ext{if k is odd.} \ s_k(\mathrm{XIb}) = egin{cases} 0 & ext{if k even,} \ \dim_{\mathbb{C}} S^{\mathrm{new}}_{2k-2}(\Gamma^{(1)}_0(4)) & ext{if k odd.} \end{cases}$$

$$\begin{array}{c|c} \Gamma & \sum_{k\geq 0} \dim_{\mathbb{C}} S_{k}^{(\mathbf{P})}(\Gamma) t^{k} \\ \hline \mathrm{Sp}(4,\mathbb{Z}) & \frac{t^{10}}{(1-t^{2})(1-t^{6})} \\ \mathrm{K}(2) & \frac{t^{8}(1+t^{2}+t^{3}+t^{4})}{(1-t^{4})(1-t^{6})} \\ \hline \Gamma_{0}(2) & \frac{t^{6}(1+t^{2}+2t^{4})}{(1-t^{2})(1-t^{6})} \\ \hline \Gamma_{0}'(2) & \frac{t^{8}(1+2t^{2}+t^{3}+2t^{4})}{(1-t^{4})(1-t^{6})} \\ \hline B(2) & \frac{t^{6}(1+3t^{2}+4t^{4}+t^{5}+3t^{6})}{(1-t^{4})(1-t^{6})} \\ \hline \mathrm{K}(4) & \frac{t^{7}(1+t+t^{2}+2t^{3}+t^{4}+2t^{5})}{(1-t^{4})(1-t^{6})} \\ \hline \Gamma_{0}(4) & \frac{t^{6}(3+3t^{2}+4t^{4})}{(1-t^{2})(1-t^{6})} \\ \hline \Gamma_{0}^{*}(4) & \frac{t^{5}(1+3t+2t^{2}+3t^{3}+t^{4}+4t^{5})}{(1-t^{2})(1-t^{6})} \\ \hline \Gamma(2) & \frac{t^{5}(1+t+t^{2})(1+4t+10t^{3}-5t^{4}+10t^{5})}{(1-t^{4})(1-t^{6})} \end{array}$$

General type supercuspidal representations

$$\sum_{k\geq 0} s_k^{(G)}(Va^*)t^k = \frac{t^{15}(1+t^2-t^{12})+t^{30}}{(1-t^4)(1-t^6)(1-t^{10})(1-t^{12})}$$
$$\sum_{k\geq 0} s_k(sc(16))t^k = \frac{t^9}{(1-t^2)(1-t^4)^2(1-t^5)}$$

- We consider the hyperspecial parahoric restriction of $\mathrm{PGSp}(4,\mathbb{Q}_2)$. This is the equivalence class of the representation of $\mathrm{Sp}(4,\mathbb{F}_2)\cong S_6$ acting on the space of $\Gamma(\mathfrak{p})$ -invariant vectors.
- $\operatorname{Sp}(4,\mathbb{Z})/\Gamma(2)\cong\operatorname{Sp}(4,\mathbb{F}_2)\cong S_6$ acts on the space $M_k(\Gamma(2))$ of Siegel modular forms of weight k. The characters for the representation of S_6 on $M_k(\Gamma(2))$ are given in **[Igusa, 1964]**.

How to compute $\dim_{\mathbb{C}} S_k(\Gamma_0(4)^*)$?

[Igusa, 1964]: One can obtain $\dim_{\mathbb{C}} M_k(\Gamma)$ whenever $\Gamma(2) \subset \Gamma$.

How to compute $\dim_{\mathbb{C}} S_k(\Gamma_0(4)^*)$?

[Igusa, 1964]: One can obtain $\dim_{\mathbb{C}} M_k(\Gamma)$ whenever $\Gamma(2) \subset \Gamma$.

Using Satake's theorem [1957-1958]:

Theorem (R., Schmidt, Yi, 2021)

Let Γ be a congruence subgroup of $\operatorname{Sp}(4,\mathbb{Q})$. Let X be a fixed set of representatives of $\Gamma\backslash\operatorname{Sp}(4,\mathbb{Q})/P(\mathbb{Q})$ and Y be a fixed set of representatives of $\Gamma\backslash\operatorname{Sp}(4,\mathbb{Q})/Q(\mathbb{Q})$. Let $\omega: \begin{bmatrix} a & 0 & b & * \\ c & 0 & d & * \end{bmatrix} \mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and

$$\Gamma_y := \omega\left(y^{-1}\Gamma y \cap Q(\mathbb{Q})\right)$$
 for $y \in Y$. Then, for even $k \geq 6$, we have

$$\dim_{\mathbb{C}} M_k(\Gamma) - \dim_{\mathbb{C}} S_k(\Gamma) = |X| + \sum_{y \in Y} \dim_{\mathbb{C}} S_k(\Gamma_y).$$

If
$$\begin{bmatrix} 1 & -1 & \\ & 1 & \\ & & -1 \end{bmatrix} \in y^{-1} \Gamma y \cap Q(\mathbb{Q})$$
, then for any odd $k \geq 1$,

$$\dim_{\mathbb{C}} M_k(\Gamma) - \dim_{\mathbb{C}} S_k(\Gamma) = 0.$$

$\dim_{\mathbb{C}} S_k(\Gamma_0(4)^*)$

$$\sum_{k>0} \dim_{\mathbb{C}} M_k(\Gamma_0(4)^*) t^k = \frac{1+t^4+t^5+t^6+t^9+t^{10}+t^{11}+t^{15}}{(1-t^2)^3 (1-t^6)}.$$

$\dim_{\mathbb{C}} S_k(\Gamma_0(4)^*)$

$$\sum_{k\geq 0} \dim_{\mathbb{C}} M_k(\Gamma_0(4)^*) t^k = \frac{1+t^4+t^5+t^6+t^9+t^{10}+t^{11}+t^{15}}{(1-t^2)^3(1-t^6)}.$$

 $\dim_{\mathbb{C}} M_k(\Gamma_0^*(4)) - \dim_{\mathbb{C}} S_k(\Gamma_0^*(4)) = 7 + 5 \dim S_k(\mathrm{SL}(2,\mathbb{Z}) \cap \left[\begin{smallmatrix} \mathbb{Z} & \mathbb{Z} \\ 4\mathbb{Z} & \mathbb{Z} \end{smallmatrix} \right]).$

$\dim_{\mathbb{C}} S_k(\Gamma_0(4)^*)$

$$\sum_{k\geq 0} \dim_{\mathbb{C}} M_k(\Gamma_0(4)^*) t^k = \frac{1+t^4+t^5+t^6+t^9+t^{10}+t^{11}+t^{15}}{(1-t^2)^3(1-t^6)}.$$
$$\dim_{\mathbb{C}} M_k(\Gamma_0^*(4)) - \dim_{\mathbb{C}} S_k(\Gamma_0^*(4)) = 7 + 5 \dim S_k(\operatorname{SL}(2,\mathbb{Z}) \cap \left[\frac{\mathbb{Z}}{4\mathbb{Z}}\right]).$$

$$\sum_{k\geq 0} \dim_{\mathbb{C}} S_k(\Gamma_0(4)^*) t^k = \frac{t^5(1+3t+t^3+t^4+2t^5+t^6-t^7-t^9+t^{10})}{(1-t^2)^3 (1-t^6)}$$

Other general types

$$s_k(p, \text{VIa/b}) := s_k(p, \text{VIa}) = s_k^{(\mathbf{G})}(p, \text{VIb})$$

 $s_k(p, \text{IIIa} + \text{VIa/b}) := s_k(p, \text{IIIa}) + s_k(p, \text{VIa/b})$
 $s_k(p, \text{VIIIa/b}) := s_k(p, \text{VIIIa}) = s_k^{(\mathbf{G})}(p, \text{VIIIb})$
 $s_k(p, \text{VII} + \text{VIIIa/b}) := s_k(p, \text{VII}) + s_k(p, \text{VIIIa/b})$

Final results (dimensions of cusp form spaces)

$$\sum_{k\geq 0} \dim_{\mathbb{C}} S_k(\Gamma'_0(4)) t^k =$$

$$= \frac{t^7 \left(1 + 2t^2 + 5t^4 + 4t^6 + 5t^8 + 4t^{10} + 2t^{12} + t^{16}\right) + t^8 \left(3 + 9t^2 + 13t^4 + 6t^6 - 3t^{10} - 2t^{12} - 2t^{14}\right)}{\left(1 - t^4\right)^2 \left(1 - t^6\right)^2}$$

$$\sum_{k\geq 0} \dim_{\mathbb{C}} S_k(M(4)) t^k =$$

$$= \frac{t^7 \left(1 + 3t^4 - t^6 + 4t^8 + 3t^{12} + 2t^{16} - t^{18} + t^{20}\right) + t^8 \left(2 + 2t^2 + 4t^4 + 5t^8 + 2t^{12} - 2t^{14} + t^{16} - 2t^{18}\right)}{\left(1 - t^2\right) \left(1 - t^4\right) \left(1 - t^6\right) \left(1 - t^{12}\right)}$$

Final results (dimensions of modular form spaces)

$$\begin{aligned} \operatorname{codim}_{k}(\Gamma'_{0}(4)) &= 4 + 3 \dim_{\mathbb{C}} S_{k}(\operatorname{SL}(2,\mathbb{Z})) + \dim_{\mathbb{C}} S_{k}(\Gamma_{0}^{(1)}(2)) + 2 \dim_{\mathbb{C}} S_{k}(\Gamma_{0}^{(1)}(4)) \\ \operatorname{codim}_{k}(\operatorname{M}(4)) &= 3 + 2 \dim_{\mathbb{C}} S_{k}(\operatorname{SL}(2,\mathbb{Z})) + 3 \dim_{\mathbb{C}} S_{k}(\Gamma_{0}^{(1)}(2)) \end{aligned}$$

$$\sum_{k\geq 0} \dim_{\mathbb{C}} M_k(\Gamma'_0(4)) t^k =$$

$$= \frac{1 + 2t^4 + 4t^6 + t^7 + 5t^8 + 2t^9 + 4t^{10} + 5t^{11} + 5t^{12} + 4t^{13} + 2t^{14} + 5t^{15} + t^{16} + 4t^{17} + 2t^{19} + t^{23}}{(1 - t^4)^2 (1 - t^6)^2}$$

$$\sum_{k\geq 0} \dim_{\mathbb{C}} M_k(\mathcal{M}(4)) t^k =$$

$$= \frac{1 - t^2 + 2t^4 + t^7 + 3t^8 + 3t^{11} + 4t^{12} - t^{13} - t^{14} + 4t^{15} + 3t^{16} + 3t^{19} + t^{20} + 2t^{23} - t^{25} + t^{27}}{(1 - t^2)(1 - t^4)(1 - t^6)(1 - t^{12})}$$

$s_k(p,\Omega)$ for Iwahori-spherical representations at p

At π_p consider Iwahori-Spherical representations of type Ω . These are types I-VI with unramified characters.

```
 \begin{bmatrix} \dim_{\mathbb{C}} S_k(\operatorname{Sp}(4,\mathbb{Z})) \\ \dim_{\mathbb{C}} S_k(K(\rho)) \\ \dim_{\mathbb{C}} S_k(\Gamma_0(\rho)) \\ \dim_{\mathbb{C}} S_k(\beta) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 4 & 1 & 3 & 2 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 4 & 2 & 2 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ 8 & 4 & 4 & 4 & 1 & 2 & 2 & 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} s_k(\rho, IIa) \\ s_k(\rho, IIa) \\ s_k(\rho, IIIa) \\ s_k(\rho, IIVa) \\ s_k(\rho, IVa) \\ s_k(\rho, Va) \\ s_k(\rho, VIb) \\ s_k(\rho, VIb) \\ s_k(\rho, VIb) \end{bmatrix}
```

$s_k(p,\Omega)$ for Iwahori-spherical representations at p

Theorem (R., Schmidt, Yi, 2020)

ullet For $k\geq 3$ and $p\geq 5$, we $s_k(p,\Omega)$ compute them explicitly. Specifically,

$$s_k(p,\Omega) = a_{\Omega} \frac{(k-2)(k-1)(2k-3)}{2^7 3^3 5} + O_p(k^2),$$

where a_{Ω} are given as follows.

Ω	Ι	IIa	IIIa + VIa/b	IVa	Va
a_{Ω}	1	$p^{2} - 1$	$\frac{(p-1)(p^2+p+2)}{2}$	$(p-1)(p^3-1)$	$\frac{p(p-1)^2}{2}$

- ullet For $k \geq 3$ and p=2,3, we give the corresponding generating functions.
- $s_1(p,\Omega) = 0$ for any p, and $s_2(p,\Omega) = 0$ for $p \in \{2,3\}$.

Final remarks

- How far can we extend this explicit method of counting automorphic representations?
- Can we compute new dimension formulas of Siegel cusp form spaces using this method?

Thank You!