

Human Centered Data Science SS 2025

Remedi

An Alzheimer's Risk Assessment Tool

Saad Waseem Yasemin Mutlugil Nino Sabella Orkun Akyol Jingren Dai

About the project

Diagnosing Alzheimer's is complex and we wanted to create an Al tool that can help with this process by:

- Predicting the risk
- Explaining the prediction
- Being transparent throughout the process

Intended Audience

Our tool supports Physicians in making a more informed decision in diagnosing Alzheimer's.

Key Questions Addressed

- Is the model confident in making diagnosis?
- Why does the model think a patient might have Alzheimer's?
- Is the prediction fair and unbiased?
- What would happen if this patient's condition changed?
- Is the decision justifiable to the patient?

About the dataset

Dataset

Alzheimer's Disease Dataset shared by Rabie El Kharoua on Kaggle

Data

2149 Patient Records, 32 features per patient, binary target variable

Key Features

Demographics, lifestyle habits, cognitive scores, medical history

Type

Synthetic data for educational purposes and enables testing without privacy concerns.

Models We Built

Logistic Regression

Simple and highly interpretable

Random Forest

Robust and accurate

Neural Network

Captures complex patterns but less interpretable

Why three models?

Each model offers a different balance between accuracy and explainability, giving physicians options.

Model	Accuracy	Precision	Recall	F1 Score	AUC
Logistic Regression	0.8278	0.72	0.83	0.7711	0.902
Random Forest	0.9884	0.99	0.98	0.985	0.9949
Neural Network	0.7762	0.63	0.9	0.7412	0.9034

Key Design Choices

Rapid Prototyping

Streamlit allowed fast iterations and integration of interactive components

Explainable

Used SHAP and PDP for model transparency

Preprocessing

Tested the effects of standardization and PCA on traceability, used oversampling to avoid bias

Confidence-Driven Results

Confidence scores with human-in-the-loop decisions.

Improvement from User Feedback

Reworked Input Design: Medical jargon replaced with plain language **Improved Navigation Flow**: Added navigation buttons inside pages **Visual Risk Indicators**: Introduced clear, color-coded risk levels to guide interpretation.

Actionable Insights Panel: Included suggestions for next steps.

Reordered UI: Presented easily interpretable information first before details.

Model Info Made Accessible: Added brief explanations of each model and trade-offs between accuracy and interpretability.

Live Demo!

Thanks!

Do you have any questions?

