Alexandre THIMONIER 1782235

Constantin BOUIS 1783438

TP5 de INF1600

EXRCICE 2 Memoire cache

Q1 :

La mémoire principale est de 1024 Ko et donc code sur 20 bits. On utilise 14bits pour adresser les 16Ko de mémoire cache. Les lignes sont de 16octets : on utilise donc 4bits pour chaque ligne. 14-4 = 10 bits pour le nombre de lignes.

Direct : On utilise une ligne par ensemble.
6 bits TAG | 10 bits ensemble | 4 bits pour l'octet

Ensemble de 2 : 2 voies donc 1 bit pour le coder, 10-1=9 bits pour l'ensemble. 20Bits-9-4=7 bits de tag.

7 bits TAG | 9 bits ensemble | 4 bits pour l'octet

Ensemble de 4 : 4 voies donc 2 bits pour le coder : 10-2 = 10bits pour l'ensemble. 8 bits TAG | 8 bits ensemble | 4 bits pour l'octet

Q2 :

	DIRECT					2 blocs				4 blocs			
Acces	Tag	Set	Hit	W-b	Tag	Set	Hit	W-b	Tag	Set	Hit	w-b	
WR 0x5EF1D	17	2F1			2F	0F1			5E	F1			
WR 0×19C7C	06	1C7			0C	1 C7			19	C7			
RD 0x5EF1B	17	2F1	0		2F	0F1	0		5E	F1	0		
RD 0x8CDB0	23	0DB			46	0DB			8C	DB			
WR 0x3CDB3	0F	0DB		0	1E	0DB			3C	DB			
WR 0x5EF15	17	2F1	0		2F	0F1	0		5E	F1	0		
RD 0x68DBF	1A	0DB		0	34	0DB		0	68	DB			
WR 0xCAF1C	32	2F1		0	65	0F1			CA	F1			
RD 0x39C7E	0E	1C7		0	1C	1 C7			39	C7			
WR 0xCAF1A	32	2F1	0		65	0F1	0		CA	F1	0		

Q3_:

État cache fin (Ensemble direct) :

Set	Tag
2F1	32*
1C7	0E
0DB	1A

État cache fin (Ensemble de deux) :

Set	Tag
0F1	2F*
	65*
1C7	0C*
	1C
0DB	34
	1E*

État cache fin (Ensemble de quatre) :

Set	Tag	
F1	5E*	
	CA*	
C7	19*	
	39	
DB	8C	
	3C*	
	68	

<u>Q4</u>:

h : Taux de succes

(1-h) : Taux de defaut
p: Taux de 'write-back'

Tc : Temps d'acces a la cache = 8ns

Tp : Temps d'acces memoire principale = 100ns

Temps d'accès effectif : h*Tc + (1-h)*Tp + p*Tp

<u>Direct</u>:

3 succès, 11 copies (7 lectures et 4 écriture)

h*Tc + (1-h)*Tp + p*Tp = 0,3*8 + 0,7*100 + 0,4*100 = 112,4 ns

Bloc 2:

3 succès, 8 copies (7 lectures et 1 écriture)

h*Tc + (1-h)*Tp + p*Tp = 0,3*8 + 0,7*100 + 0,1*100 = 82,4 ns

Bloc 4:

3 succès, 7 copies (7 lectures et 0 écriture)

h*Tc + (1-h)*Tp + p*Tp = 0,3*8 + 0,7*100 + 0*100 = 72,4 ns

Q5:

Dans une cache complètement associative, il n'y a pas d'ensembles. La structure de l'adresse serait devenu : 16 | 4, c'est a dire, 16 bits de tag ainsi que 4 bits pour l'octet, ce qui donne un total de 20 bits pour les 1024Ko de mémoire principale