## Matakuliah:

# KOMUNIKASI DATA & JARINGAN KOMPUTER







Oleh: Danang, S.Kom., M.T

<u>UNIVERSITAS SAINS DAN TEKNOLOGI KOMPUTER</u>

Pertemuan 5:

Tugas Konsep IP Address & Subneting

## Silahkan mengerjakan Tugas berikut:

- Konversi Desimal ke Biner
  - **115.224.111.172**
  - **125.234.112.102**
  - **135.244.113.182**
  - **145.254.114.162**
- Konversi Biner ke Desimal
  - **10111000.01000010. 00110001. 00010000**
  - ► 11011010.01000000. 01100100. 00001100
  - ► 10011010.00100000. 01000110. 01001000
  - **10011001.00010000. 10000011. 01010100**

SILAHKAN DI KERJAKAN SESUAI CONTOH, DAN DI KUMPULKAN TERAKHIR MID SEMESTER

BOLEH DI TULIS TANGAN (
HASIL DI FOTO) BISA
MENGGUNAKAN WORD

# **CONTOH PENYELESAIAN**

## Konversi Angka (2)

Contoh Konversi Desimal ke Biner

```
a) 203 = ?

203 : 2 = 101 sisa 1

101 : 2 = 50 sisa 1

50 : 2 = 25 sisa 0

25 : 2 = 12 sisa 1

12 : 2 = 6 sisa 0

6 : 2 = 3 sisa 0

3 : 2 = 1 sisa 1

1 (selesai) → diletakkan di posisi akhir

Jadi 203 = 11001011
```

```
b) 61 = ?
61 : 2 = 30 sisa 1
30 : 2 = 15 sisa 0
15 : 2 = 7 sisa 1
7 : 2 = 3 sisa 1
3 : 2 = 1 sisa 1
1 (selesai) \rightarrow diletakkan di posisi akhir
Jadi 61 = 1111110100
```

#### Ilustrasi IP Address

- Contoh IP Address:
  - 202.146.243.90
  - 167.205.9.35
  - 192.192.168.141
- IP Address dalam bilangan desimal & biner :

| Desimal | 167      | 205      | 9        | 35       |
|---------|----------|----------|----------|----------|
| Biner   | 10100111 | 11001101 | 00001001 | 00100011 |



#### Konversi Angka

 Untuk memahami IP address, terlebih dahulu memahami bagaimana cara mengubah angka dari biner ke desimal dan sebaliknya.

| Kolom   | 7   | 6  | 5  | 4  | 3 | 2 | 1 | 0 ← n              |
|---------|-----|----|----|----|---|---|---|--------------------|
| Biner   | 1   | 1  | 1  | 1  | 1 | 1 | 1 | 1                  |
| Desimal | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 ← 2 <sup>n</sup> |

#### Contoh Biner ke Desimal

| 1     | 1                            | 0      | 0      | 1      | 0     | 1   | 1 |       |
|-------|------------------------------|--------|--------|--------|-------|-----|---|-------|
| 128   | 64                           | 0      | 0      | 8      | 0     | 2   | 1 | = 203 |
| adi 1 | 10010                        | 11 sam | a deng | an 203 | desim | al. |   |       |
| adi 1 | 10010                        | 11 sam | a deng | an 203 | desim | al. |   |       |
|       | 10010 <sup>.</sup><br>111101 |        | a deng | an 203 | desim | al. |   |       |
|       |                              |        | a deng | an 203 | desim | al. | 1 |       |

# STUDI KASUS PERTAMA

- ISP mendapat alokasi IP Address dengan spesifikasi:
- Net-ID : 10.10.0.0
- subnet mask : 255.255.0.0
- Kemudian diinginkan agar menjadi Tiga (3) Net-ID baru.
- Bagaimana cara subnetting-nya ?

# STUDI KASUS KEDUA

- ► ISP mendapat alokasi IP Address dengan spesifikasi:
- Net-ID : 192.168.0.0
- subnet mask: 255.255.255.0
- Kemudian diinginkan agar menjadi Enam(6) Net-ID baru.
- Bagaimana cara subnetting-nya ?

SILAHKAN DI KERJAKAN SESUAI CONTOH, DAN DI KUMPULKAN TERAKHIR MID SEMESTER

BOLEH DI TULIS TANGAN (
HASIL DI FOTO) BISA
MENGGUNAKAN WORD

## Contoh Kasus (1)

ISP mendapat alokasi IP Address dengan spesifikasi:

Net-ID : 130.200.0.0 subnet mask : 255.255.0.0

Kemudian diinginkan agar menjadi dua Net-ID baru.

Bagaimana cara subnetting-nya?



Net-ID semula : 130.200.0.0 Subnet mask semula : 255.255.0.0

> 1111111.11111111.00000000.00000000 Oktet ketiga diselebung ( mask ) 2 bit : 11111111.11111111.11000000.00000000

Subnet mask baru : 255,255,192.0

Jumlah subnet ID baru : 256 - 192 = 64 ( sebagai kelipatan )

Jumlah kelompok =  $2^2 - 2 = 2$  kelompok, yaitu kelompok 64 dan 128

130.200.64.1 s/d 130.200.127.254

130.200.**128**.1 s/d 130.200**.191**.254

### Contoh Kasus (2)

 ISP mendapat alokasi IP Address dengan spesifikasi:

Net-ID : 192.100.81.0 subnet mask : 255.255.255.0

■ Dinginkan empat Net-ID baru.

Bagaimana cara subnetting-nya?

## Jawaban Kasus (2)

Net-ID semula : 192.100.81.0 Subnet mask semula : 255.255.255.0

> 11111111.111111111.111111111.00000000 Oktet ketiga diselebung ( mask ) 4 bit : 11111111.111111111.111110000

Subnet mask baru : 255.255.255.240

Jumlah subnet ID baru : 256 - 240 = 16 ( sebagai kelipatan )

# SELAMAT MENGERJAKAN