Réalisez des indexations automatiques d'images

Agenda

- 1 Contexte
- 2 Approche
- 3 Présentation des jeux de données
- 4 Analyse SIFT
- 5 Analyse CNN
- 6 Conclusion
- 7 Prochaines étapes
- 8 Annexe: l'environnement technique

1) Contexte

Objectif

La base de données d'une association de protection des animaux commence à grandir et ils n'ont pas toujours le temps de référencer les images des animaux accumulées depuis des années. Ils aimeraient donc réaliser un index de l'ensemble de la base de données d'images qu'ils possèdent, pour classer les chiens par races.

Données mises à disposition

Le Stanford Dogs Dataset

Mission

Réalisation d'un algorithme de détection de la race du chien sur base d'une photo, afin d'accélérer leur travail d'indexation.

2) Approche

Présentation du jeu de données (Nombre de photos, Répartition des photos par race, analyse des hauteurs et largeurs des images...), Travail préparatoire (renommage des noms de repertoires, organisation de différents jeux de train/test.)

Sélection de l'algorithme, Nettoyage des images (Noir et Blanc, Whitening, Std, ...), Data Augmentation, MixedUp, ...

Nettoyage des images (Noir et Blanc, Whitening, Std,), Data Augmentation, Mixed Up CNN from Scratch, CNN Transfer Learning

3) Présentation des jeux de données (1/3)

Nombre d'images par race

3) Présentation des jeux de données (2/3)

Analyse des hauteurs des images

Caractéristiques	Valeur
Nombre de lignes	20580
Moyenne du nombre de pixels	395.572109
Ecart type	101.737213
Min de valeurs	144.000000
25%	333.000000
50%	375.000000
75%	500.000000
Max	703.000000

Analyse des largeurs des images

Caractéristiques	Valeur
Nombre de lignes	20580
Moyenne du nombre de pixels	432.038678
Ecart type	120.367525
Min de valeurs	144.000000
25%	340.000000
50%	500.000000
75%	500.000000
Max	901.000000

3) Présentation des jeux de données (3/3)

Sélection de l'algorithme

Sur base de l'étude Image Matching Using SIFT, SURF, and ORB: Performance Comparison for Distorted Images : https://arxiv.org/ftp/arxiv/papers/1710/1710.02726.pdf

Domain	Criteria	SIFT	SURF	ORB
Van in a latanaitu	Time	Ø	9	6
Varying Intensity	Match Rate	Ø	0	
Datata d Imaga	Time	0	9	0
Rotated Image	Match Rate	Ø	Ø	
Scaled Image	Time	O	9	Ø
	Match Rate	•		6
Sheared Image	Time	Ø	Ø	Ø
	Match Rate	Ø	Ø	

Légende :

Choix

Démarche SIFT

1) Présentation

2) Analyse SIFT

3) Analyse CN

1. Préparation

1.1 Redimensionnement des images Pour chaque phtot :

Redimensionnement 224 X 224

1.2 Pré-processing

Noir & Blanc, Whitening, Std, ..MixedUp

2. Extraction des features

2.1 Extraction

Pour chaque image extraction de toutes les features

2.2 Limitation à 150 points centraux par feature

Application d'un KMEANS sur chaque feature

3. Résultats

3.1 Réduction à deux dimensions Application d'une TSNE

3.2 Prédiction de la classe pour les images de tests via Catboost

3.3 Calcul de l'accuracy

Image originale

Image nettoyée

Image avec les features

2) Analyse S

Comparaison des méthodes de préprocessing (1/2)

1) Whitening : True / Std : True

2) Whitening : False / Std : True

Comparaison des méthodes de préprocessing (2/2)

3) Whitening: False / Std: False

3) Analyse CNN

g(2/2)

4) Whitening: True / Std: False

Data Augmentation

Principe : Génération de nouvelles images modifiées sur base d'images existantes (rotation, zoom, symétrie axiale,). Cependant, il y a des dépendances vis à vis du jeu de données pouvant mener à un surapprentissage.

Mixed Up

Principe: Description dans le papier :https://arxiv.org/pdf/1710.09412.pdf
L'objectif est de créer un dataset sur base d'images appartenant à des categories différentes

- Modélisation de relations entre individus de différentes categories
- Amélioration des modèles dans la prise de décisions

Résultats obtenus sur le jeux de données Tiny

Résultats obtenus sur le jeux de données Tiny

1) Whitening : False / Std : True

2) Whitening: False / Std: True avec MixedUP

silhouette_score -0.020029584 calinski_harabasz_score 7.324503443115568 Accuracy: 54.05 %

Démarche CNN from Scratch

Full

120

20580

70% train / 30% test

Validation (20% du train)

Standard

12

1382

70% train / 30% test

Validation (20% du train)

1. Préparation

1.1 Séparation Train / Test / Validation

1.2 Redimensionnement des images en 224 x 224

Nom

Nombre de races

Nombre d'images

Ratio

Nom

Nombre de races

Nombre d'images

Ratio

2. Entraînement du modèle

2.2 Optimizer

Adam est choisi car:

- · Peu gourmand en mémoire
- Tuning des hyperparamètres simplifié L'hyperparamètre learning_rate est à 0.0001

1) Présentation

2) Analyse SIFT

3) Analyse CNN

3. Résultats

3.1 Accuracy sur le jeu de tests de train et validation

3.2 Accuracy sur le jeu de tests après entrainement

3.3 Matrice de confusion et classification report

CNNFromScratch: StandardDataSet No Data Augmentation

	precision	recall	f1-score	support
AfricanHuntingDog	0.41	0.64	0.50	50
Basset	0.38	0.33	0.35	52
BouvierDesFlandres	0.51	0.41	0.46	44
Cardigan	0.26	0.30	0.28	46
Dingo	0.36	0.67	0.47	46
FrenchBulldog	0.11	0.04	0.06	47
Kelpie	0.23	0.27	0.24	45
Malinois	0.19	0.07	0.10	44
OldEnglishSheepdog	0.49	0.44	0.46	50
Redbone	0.29	0.37	0.32	43
SaintBernard	0.37	0.38	0.38	50
TibetanTerrier	0.38	0.25	0.30	61
accuracy			0.35	578
macro avg	0.33	0.35	0.33	578
weighted avg	0.33	0.35	0.33	578

CNNFromScratch: StandardDataSet With Data Augmentation

	precision	recall	f1-score	support
AfricanHuntingDog	0.49	0.70	0.58	50
Basset	0.48	0.29	0.36	52
BouvierDesFlandres	0.47	0.52	0.49	44
Cardigan	0.43	0.07	0.11	46
Dingo	0.43	0.72	0.54	46
FrenchBulldog	0.26	0.21	0.23	47
Kelpie	0.23	0.16	0.19	45
Malinois	0.23	0.11	0.15	44
OldEnglishSheepdog	0.42	0.50	0.45	50
Redbone	0.54	0.33	0.41	43
SaintBernard	0.69	0.22	0.33	50
TibetanTerrier	0.23	0.56	0.32	61
accuracy			0.37	578
macro avg	0.41	0.36	0.35	578
weighted avg	0.41	0.37	0.35	578

CNNFromScratch: FullDataSet

1) No Data Augmentation

accuracy			0.09	6063
macro avg	0.08	0.09	0.08	6063
weighted avg	0.09	0.09	0.08	6063

2) Data Augmentation

accuracy			0.12	6063
macro avg	0.12	0.12	0.11	6063
weighted avg	0.12	0.12	0.11	6063

3) Mixed Up

accura	асу			0.14	6063
macro a	avg	0.15	0.14	0.13	6063
weighted a	avg	0.15	0.14	0.13	6063

CNNFromScratch : MixedUp Confusion Matrix

Full

120

20580

70% train / 30% test

Validation (20% du train)

Standard 12

Démarche CNN Transfer Learning

2. Entraînement du modèle

2.1 Modèles

- Xception est choisi pour son bon rapport performance / taille.
- EfficientB7 est choisi pour sa precision

Pour le Transfer Learning, l'approche "fine-tuning partielle a été choisie **Êntraînement du** classifieur et des couches basses),

2.2 Optimizer

Adam est choisi car:

- Peu gourmand en mémoire
- · Tuning des hyperparamètres simplifié L'hyperparamètre learning_rate est à 0.0001

3. Résultats

3.1 Accuracy sur le jeu de tests de train et validation

3.2 Accuracy sur le jeu de tests après entrainement

3.3 Matrice de confusion et classification report

Nombre d'images 1382 70% train / 30% test Ratio Validation (20% du train)

1. Préparation

1.1 Séparation Train / Test / Validation

Nom

Nombre de races

Nombre d'images

Ratio

Nom

Nombre de races

1.2 Redimensionnement des images en 224 x 224

5) Analyse des images

Comparatif

	Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
	Xception	88 MB	0.790	0.945	22,910,480	126
	VGG16	528 MB	0.713	0.901	138,357,544	23
	VGG19	549 MB	0.713	0.900	143,667,240	26
	ResNet50	98 MB	0.749	0.921	25,636,712	-
	ResNet101	171 MB	0.764	0.928		-
	ResNet152	232 MB	0.766	0.931	60,419,944	-
	ResNet50V2	98 MB	0.760	0.930	25,613,800	-
	ResNet101V2	171 MB	0.772	0.938	44,675,560	-
	ResNet152V2	232 MB	0.780	0.942	60,380,648	150
	InceptionV3	92 MB	0.779	0.937	23,851,784	159
	InceptionResNetV2	215 MB	0.803	0.953	55,873,736	572
	MobileNet	16 MB	0.704	0.895	4,253,864	88
	MobileNetV2	14 MB	0.713	0.901	3,538,984	88
	DenseNet121	33 MB	0.750	0.923	8,062,504	121
	DenseNet169	57 MB	0.762	0.932	14,307,880	169
	DenseNet201	80 MB	0.773	0.936	20,242,984	201
	NASNetMobile	23 MB	0.744	0.919	5,326,716	-
	NASNetLarge	343 MB	0.825	0.960	88,949,818	-
	EfficientNetB0	29 MB	-	-	5,330,571	-
	EfficientNetB1	31 MB	-	-	7,856,239	-
	EfficientNetB2	36 MB	-	-	9,177,569	-
	EfficientNetB3	48 MB	-	-	12,320,535	-
	EfficientNetB4	75 MB	-	-	19,466,823	-
	EfficientNetB5	118 MB	-	-	30,562,527	-
	EfficientNetB6	166 MB	-	-	43,265,143	-
ľ	EfficientNetB7	256 MB	-	-	66,658,687	-

Trés bon positionnement taille vs accuracy

CNNTransfer Learning Xception: StandardDataSet No Data Augmentation

	precision	recall	f1-score	support
AfricanHuntingDog	1.00	0.96	0.98	50
Basset	0.98	0.98	0.98	52
BouvierDesFlandres	1.00	0.93	0.96	44
Cardigan	0.90	0.96	0.93	46
Dingo	0.89	0.91	0.90	46
FrenchBulldog	0.96	0.96	0.96	47
Kelpie	0.86	0.84	0.85	45
Malinois	0.93	0.93	0.93	44
OldEnglishSheepdog	1.00	0.96	0.98	50
Redbone	0.98	0.98	0.98	43
SaintBernard	1.00	1.00	1.00	50
TibetanTerrier	0.94	1.00	0.97	61
accuracy			0.95	578
macro avg	0.95	0.95	0.95	578
weighted avg	0.95	0.95	0.95	578

CNNTransfer Learning Xception: StandardDataSet With Data Augmentation

	precision	recall	f1-score	support
AfricanHuntingDog	1.00	0.96	0.98	50
Basset	0.93	0.98	0.95	52
BouvierDesFlandres	0.97	0.89	0.93	44
Cardigan	0.91	0.93	0.92	46
Dingo	0.91	0.93	0.92	46
FrenchBulldog	0.96	0.98	0.97	47
Kelpie	0.93	0.82	0.87	45
Malinois	0.93	0.93	0.93	44
OldEnglishSheepdog	1.00	0.96	0.98	50
Redbone	0.95	0.98	0.97	43
SaintBernard	1.00	1.00	1.00	50
TibetanTerrier	0.91	1.00	0.95	61
accuracy			0.95	578
macro avg	0.95	0.95	0.95	578
weighted avg	0.95	0.95	0.95	578

CNNTransfer Learning Xception : FullDataSet

1) No Data Augmentation

Time:760.45620984334s

accuracy			0.79	6063
macro avg	0.80	0.79	0.79	6063
weighted avg	0.80	0.79	0.79	6063

2) Data Augmentation

Time:3501.90120927334s

accuracy			0.78	6063
macro avg	0.79	0.78	0.78	6063
weighted avg	0.79	0.78	0.78	6063

3) Mixed Up

Time:4406.90290927887s

accuracy			0.75	6063
macro avg	0.75	0.74	0.74	6063
weighted avg	0.75	0.75	0.74	6063

5) Analyse CNN

CNNTransfer Learning Xception Classification Report

3) Analyse CNN

26

					Entlebucher	0.73	0.72	0.72	60
	precision	recall	f1-score	support	EskimoDog	0.50	0.32	0.39	44
					Flat	0.80	0.78	0.79	45
Affenpinscher	0.83	0.91	0.87	44	FrenchBulldog	0.87	0.85	0.86	47
AfghanHound	0.89	0.93	0.91	71	GermanShepherd	0.85	0.78	0.81	45
AfricanHuntingDog	0.94	0.98	0.96	50	GermanShort	0.80	0.89	0.84	45
Airedale	0.80	0.82	0.81	60	GiantSchnauzer	0.75	0.65	0.70	46
AmericanStaffordshireTerrier	0.61	0.75	0.67	48	GoldenRetriever	0.77	0.75	0.76	44
Appenzeller	0.66	0.57	0.61	44	GordonSetter	0.87	0.89	0.88	45
AustralianTerrier	0.70	0.79	0.74	58	GreatDane	0.82	0.80	0.81	46
Basenji	0.91	0.82	0.86	62	GreatPyrenees	0.65	0.76	0.70	63
Basset	0.89	0.75	0.81	52	GreaterSwissMountainDog	0.73	0.76	0.74	49
Beagle	0.75	0.81	0.78	58	Groenendael	0.82	0.84	0.83	44
BedlingtonTerrier	0.94	0.94	0.94	54	IbizanHound	0.90	0.84	0.87	55
BerneseMountainDog Black	0.91 0.84	0.94 0.79	0.92	64 47	IrishSetter	0.96	0.93	0.95	46
BlenheimSpaniel	0.84 0.98	0.79	0.81 0.90	47 55	IrishTerrier	0.73	0.86	0.79	50
Bloodhound	0.79	0.84	0.81	55 55	IrishWaterSpaniel	0.84	0.84	0.84	44
Bluetick	0.83	0.78	0.80	50	IrishWolfhound	0.76	0.80	0.78	64
BorderCollie	0.72	0.78	0.77	44	ItalianGreyhound	0.69	0.74	0.71	54
BorderTerrier	0.86	0.82	0.84	51	JapaneseSpaniel	0.84	0.94	0.89	54
Borzoi	0.86	0.86	0.86	44	Keeshond	0.96	0.96	0.96	46
BostonBull	0.77	0.93	0.84	54	Kelpie	0.66	0.69	0.67	45
BouvierDesFlandres	0.72	0.70	0.71	44	KerryBlueTerrier	0.89	0.89	0.89	53
Boxer	0.88	0.50	0.64	44	Komondor	0.97	0.82	0.89	45
BrabanconGriffon	0.83	0.78	0.80	45	Kuvasz	0.84	0.73	0.78	44
Briard	0.71	0.82	0.76	45	LabradorRetriever	0.71	0.68	0.69	50
BrittanySpaniel	0.80	0.87	0.83	45	LakelandTerrier	0.83	0.67	0.74	58
BullMastiff	0.85	0.85	0.85	46	Leonberg	0.92	0.90	0.91	62
Cairn	0.90	0.81	0.85	58	Lhasa	0.62	0.55	0.58	55
Cardigan	0.80	0.76	0.78	46	Lhasa Malamute	0.55	0.83	0.66	53 52
ChesapeakeBayRetriever	0.57	0.86	0.68	49	Malinois	0.55 0.81	0.63	0.79	52 44
Chihuahua	0.74	0.71	0.73	45	Malinois MalteseDog	0.81 0.88	0.77	0.79 0.87	75
Chow	0.95	0.91	0.93	58					
Clumber	0.91	0.95	0.93	44	MexicanHairless	0.86	0.96	0.91	46
CockerSpaniel	0.82	0.77	0.79	47	MiniaturePinscher	0.77	0.85	0.81	54
Collie	0.55	0.62	0.58	45	MiniaturePoodle	0.68	0.37	0.48	46
Curly	0.70	0.86	0.78	44	MiniatureSchnauzer	0.70	0.82	0.76	45
DandieDinmont	0.92	0.89	0.90	53	Newfoundland	0.68	0.74	0.71	58
Dhole	0.97	0.84	0.90	44	NorfolkTerrier	0.78	0.57	0.66	51
Dingo	0.80	0.85	0.82	46	NorwegianElkhound	0.80	0.90	0.85	58
Doberman	0.84	0.86	0.85	44	NorwichTerrier	0.73	0.65	0.69	54
EnglishFoxhound	0.72	0.63	0.67	46	OldEnglishSheepdog	0.87	0.94	0.90	50
EnglishSetter	0.92	0.74	0.82	47	Otterhound	0.91	0.73	0.81	44
EnglishSpringer	0.84	0.91	0.88	47	Papillon	0.96	0.76	0.85	58

Pekinese	0.77	0.77	0.77	44	
Pembroke	0.77	0.89	0.82	53	
Pomeranian	0.91	0.92	0.92	65	
Pug	0.84	0.88	0.86	59	
Redbone	0.67	0.65	0.66	43	
RhodesianRidgeback	0.62	0.71	0.66	51	
Rottweiler	0.86	0.93	0.89	45	
SaintBernard	0.94	0.98	0.96	50	
Saluki	0.77	0.95	0.85	59	
Samoyed	0.93	0.97	0.95	64	
Schipperke	0.77	0.91	0.84	45	
ScotchTerrier	0.93	0.83	0.87	46	
ScottishDeerhound	0.86	0.83	0.84	69	
SealyhamTerrier	0.91	0.88	0.90	60	
ShetlandSheepdog	0.86	0.67	0.76	46	
Shih	0.67	0.71	0.69	63	
SiberianHusky	0.55	0.42	0.48	57	
SilkyTerrier	0.79	0.69	0.73	54	
Soft	0.73	0.70	0.71	46	
StaffordshireBullterrier	0.61	0.54	0.57	46	
StandardPoodle	0.71	0.72	0.72	47	
StandardSchnauzer	0.59	0.76	0.67	46	
SussexSpaniel	0.98	0.91	0.94	44	
TibetanMastiff	0.89	0.87	0.88	45	
TibetanTerrier	0.80	0.67	0.73	61	
ToyPoodle	0.64	0.66	0.65	44	
ToyTerrier	0.88	0.59	0.71	51	
Vizsla	0.77	0.82	0.80	45	
WalkerHound	0.65	0.58	0.61	45	
Weimaraner	0.82	0.89	0.86	47	
WelshSpringerSpaniel	0.80	0.89	0.84	44	
WestHighlandWhiteTerrier	0.76	0.94	0.84	50	
Whippet	0.70	0.64	0.67	55	
Wire	0.86	0.80	0.83	46	
YorkshireTerrier	0.65	0.75	0.70	48	
accuracy			0.79	6063	
macro avg	0.80	0.79	0.79	6063	
weighted avg	0.80	0.79	0.79	6063	

CNNTransfer Learning efficientnetb7 StandardDataSet No Data Augmentation

	precision	recall	f1-score	support
AfricanHuntingDog	1.00	0.98	0.99	50
Basset	0.92	0.94	0.93	52
BouvierDesFlandres	0.93	0.93	0.93	44
Cardigan	0.86	0.93	0.90	46
Dingo	0.85	0.96	0.90	46
FrenchBulldog	0.94	0.96	0.95	47
Kelpie	0.92	0.80	0.86	45
Malinois	0.95	0.82	0.88	44
OldEnglishSheepdog	1.00	0.92	0.96	50
Redbone	0.95	0.95	0.95	43
SaintBernard	0.98	1.00	0.99	50
TibetanTerrier	0.89	0.95	0.92	61
accuracy			0.93	578
macro avg	0.93	0.93	0.93	578
weighted avg	0.93	0.93	0.93	578

CNNTransfer Learning efficientnetb7 StandardDataSet With Data Augmentation

AfricanHuntingDog Basset BouvierDesFlandres Cardigan Dingo FrenchBulldog Kelpie Malinois OldEnglishSheepdog Redbone	48 0 0 0 1 0 0 0 0	0 50 0 2 0 0 0 1 0	004000000	1 0 44 1 2 3 1 0 0	1 0 0 0 42 0 2 1 0 1	0 0 0 0 0 4 ³ 1 0 0	0 0 0 1 1 38 0 0	0 0 0 0 1 0 1	00000000	0 1 0 0 0 0 0 0 0	0 0 0 0 0 1 0 1	
SaintBernard TibetanTerrier	0	0	0 2	0	00	0	0	0	0	0	50	5
The current	AfricanHuntingDog	Basset	BouvierDesFlandres		Dingo		Kelpie	Malinois	OldEnglishSheepdog	Redbone	SaintBernard	TihetanTerrier

	precision	recall	f1-score	support
AfricanHuntingDog	0.98	0.96	0.97	50
Basset	0.94	0.96	0.95	52
BouvierDesFlandres	0.95	0.91	0.93	44
Cardigan	0.83	0.96	0.89	46
Dingo	0.89	0.91	0.90	46
FrenchBulldog	0.96	0.91	0.93	47
Kelpie	0.95	0.84	0.89	45
Malinois	0.95	0.89	0.92	44
OldEnglishSheepdog	0.98	1.00	0.99	50
Redbone	0.98	0.98	0.98	43
SaintBernard	0.96	1.00	0.98	50
TibetanTerrier	0.94	0.95	0.94	61
accuracy			0.94	578
macro avg	0.94	0.94	0.94	578
weighted avg	0.94	0.94	0.94	578

CNNTransfer Learning efficientnetb7: FullDataSet

1) No Data Augmentation

2) Data Augmentation

3) Mixed Up

Time: 1531.5925679206848s

accuracy			0.78	6063
macro avg	0.78	0.77	0.77	6063
weighted avg	0.79	0.78	0.78	6063

accuracy			0.77	6063
macro avg	0.78	0.76	0.76	6063
weighted avg	0.78	0.77	0.77	6063

Time: 4071.7993955612183s Time: 3915.4189338684087s

accui	racy			0.56	6063
macro	avg	0.62	0.55	0.53	6063
weighted	avg	0.61	0.56	0.53	6063

Comparatif

	Xception			EfficientB7				
	NoDataAugmentation	DataAugmentation	MixedUp	NoDataAugmentation	DataAugmentation	MixedUp		
Accuracy	0,80	0,79	0,75	0,78	0,78	0,62		
Time (s)	760	3501	4406	1531	4071	3915		

5) Analyse CNN

Exemples d'erreurs detectées pour le modèle le plus performant

Catégorie réelle	Malamute
Catégorie détectée	Siberian Husky

Catégorie réelle	Siberian Husky
Catégorie détectée	Malamute

Catégorie réelle	American Staffordshireterrier
Catégorie détectée	Staffordshire Bullterrier

Catégorie réelle	Staffordshire Bullterrier
Catégorie détectée	American Staffordshireterrier

Catégorie réelle	Shetland SheepDog
Catégorie détectée	Collie

Catégorie réelle	Collie
Catégorie détectée	Shetland SheepDog

5) Conclusion

Modèles

- Les modèles de type CNN sont très performants.
- Le transfer learning permet d'avoir des résultats très bons par une simple configuration.

Pré-traitements

- Des pré-traitements tels que Rotation, Zoom, Std, ont leur intérêt sur des modèles de type SIFT
- Pour des modèles de type CNN, ces pré-traitements ne sont pas toujours nécessaires (dependence du jeu de données).

7) Prochaines étapes

Revoir la configuration du modèle EfficientNetB7 afin d'avoir de meilleurs résultats (une accuracy d'environ 90% est possible)

2 Images de l'association

Application du meilleur modèle sur les images de l'association. Une validation manuelle est faite pour s'assurer des bonnes races.

3 Stabilisation

Alimentation des Nouvelles images au modèle

Validation de la race proposée par un membre de l'association

8) Environnements techniques

