APPUNTI DI ALGEBRA

MANUEL DEODATO

INDICE

1	Teoria dei gruppi		3
	1.1	Il gruppo degli automorfismi	3
	1.2	Azioni di gruppo	4

1 TEORIA DEI GRUPPI

1.1 Il gruppo degli automorfismi

LEMMA 1.0.1. Siano H, G due gruppi ciclici; un omomorfismo $\varphi : G \to H$ è univocamente determinato da come agisce su un generatore di G.

Dimostrazione. Sia $g_0 \in G$ tale che $\langle g_0 \rangle = G$ e sia $\varphi(g_0) = \overline{h} \in H$. Per $g \in G$ generico, per cui $g_0^k = g$ per qualche intero k, si ha:

$$\varphi(g) = \varphi(g_0^k) = \varphi(g_0)^k = \overline{h}^k$$

Cioè tutti gli elementi di $\operatorname{Im} \varphi$ sono esprimibili come potenze di \overline{h} .

OSSERVAZIONE 1.1. Non ogni scelta di $\overline{h} \in H$ è ammissibile, ma bisogna rispettare l'ordine di g_0 . Se $g_0^n = e_G$, allora $e_H = \varphi(g_0^n) = \varphi(g_0)^n = \overline{h}^n$. Questa condizione, impone che ord $(\overline{h}) \mid \operatorname{ord}(g_0)$.

DEFINIZIONE 1.1 (GRUPPO DEGLI AUTOMORFISMI). Sia *G* un gruppo; si definisce il gruppo dei suoi automorfismi come

$$Aut(G) = \{f : G \rightarrow G \mid f \text{ è un isomorfismo di gruppi}\}$$

ESEMPIO 1.1. Si calcola $Aut(\mathbb{Z})$.

Svolgimento. Il gruppo $(\mathbb{Z},+)$ è ciclico, quindi un omomorfismo è determinato in base a come agisce su un generatore. Prendendo, per esempio 1, si definisce $q_a:\mathbb{Z}\to\mathbb{Z}$ tale che $q_a(1)=a$; perché $\langle q_a(1)\rangle=\mathbb{Z}^1$, è necessario che a sia un generatore di \mathbb{Z} , perciò sono ammessi $a=\pm 1$. In questo caso, $\operatorname{Aut}(\mathbb{Z})=\{\pm\operatorname{Id}_{\mathbb{Z}}\}\cong(\mathbb{Z}/2\mathbb{Z},+)$.

TEOREMA 1.1. Aut
$$(\mathbb{Z}/m\mathbb{Z}) \cong (\mathbb{Z}/m\mathbb{Z})^*$$
.

Dimostrazione. ($\mathbb{Z}/m\mathbb{Z}$, +) è ciclico, quindi si stabilisce l'azione di $f: \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ su un generatore. Preso, allora, $\overline{k} \in \mathbb{Z}/m\mathbb{Z}$ tale che $\gcd(k,m)=1$ e scelto $f(\overline{k})=\overline{a}$, si ha che $\langle f(\overline{k})\rangle=\langle \overline{a}\rangle=\mathbb{Z}/m\mathbb{Z} \iff \gcd(a,m)=1 \iff \overline{a} \in (\mathbb{Z}/m\mathbb{Z})^*$.

DEFINIZIONE 1.2 (AUTOMORFISMO INTERNO). Sia G un gruppo; si definisce ϕ_g : $G \to G$, $\forall g \in G$, come $\phi_g(x) = gxg^{-1}$ ed è detto *automorfismo interno*. L'insieme di questi automorfismi, al variare di $g \in G$, forma il gruppo

$$\operatorname{Int}(G) = \{ \phi_g : G \to G \mid g \in G \text{ e } \phi_g \text{ automorfismo interno} \}$$

¹Richiesto dal fatto che q_a sia suriettivo.

PROPOSIZIONE 1.1. Sia G un gruppo; allora $Int(G) \triangleleft Aut(G)$ e $Int(G) \cong G/Z(G)$.

Dimostrazione. $\operatorname{Int}(G)$ è un sottogruppo di $\operatorname{Aut}(G)$ perché $\operatorname{Id}(x) = exe^{-1} = x \Rightarrow \operatorname{Id} \in \operatorname{Int}(G)$. Inoltre, $\phi_g \circ \phi_h(x) = ghxh^{-1}g^{-1} = \phi_{gh}(x) \in \operatorname{Int}(G)$ e $\phi_{g^{-1}} \circ \phi_g(x) = x \Rightarrow \phi_g^{-1} = \phi_{g^{-1}} \in \operatorname{Int}(G)$.

È un sottogruppo normale perché $\forall f \in Aut(G)$, si ha

$$f \circ \phi_g \circ f^{-1}(x) = f\left(gf^{-1}(x)g^{-1}\right) = f(g)xf(g)^{-1} \in Int(G)$$

Per finire, si definisce $\Phi: G \to \operatorname{Int}(G)$. Questo è un omomorfismo perché $\Phi(gh) = \phi_{gh} = \phi_g \circ \phi_h = \Phi(g)\Phi(h)$. È, inoltre, suriettivo perché ogni automorfismo interno è associato ad un elemento di G, cioè $\forall \phi_g \in \operatorname{Int}(G), \ \exists g \in G : \Phi(g) = \phi_g$. Allora, la tesi deriva dal I teorema di omomorfismo, visto che $\operatorname{Ker} \Phi = \mathcal{Z}(G)$.

OSSERVAZIONE 1.2. $H \triangleleft G \iff \phi_{\sigma}(H) = H, \ \forall \phi_{\sigma} \in \operatorname{Int}(G).$

Dimostrazione. Per ogni elemento di Int(G), si ha $\phi_g(H) = H \iff gHg^{-1} = H \iff H \triangleleft G$.

DEFINIZIONE 1.3 (SOTTOGRUPPO CARATTERISTICO). Sia G un gruppo e H < G. Si dice che H è *caratteristico* se è invariante per automorfismo, cioè $\forall f \in \operatorname{Aut}(G), \ f(H) = H$.

COROLLARIO 1.1.1. Sia G un gruppo; per la proposizione 1.1 e l'osservazione 1.2 se H è caratteristico, allora $H \triangleleft G$.

Il viceversa è falso, cioè normale \Rightarrow caratteristico; infatti, in $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, il sottogruppo $\langle (1,0) \rangle$ è normale, ma non caratteristico perché l'automorfismo che scambia le coordinate è tale per cui $\langle (1,0) \rangle \mapsto \langle (0,1) \rangle \neq \langle (1,0) \rangle$.

1.2 Azioni di gruppo

DEFINIZIONE 1.4 (AZIONE). Sia G un gruppo; un'azione di G su un insieme X è un omomorfismo

$$\gamma: \begin{array}{ccc} G & \longrightarrow & S(X) = \{f: X \to X \mid f \text{ biettiva}\} \\ g & \longmapsto & \psi_g: \psi_g(x) = g \cdot x \end{array}$$

ESEMPIO 1.2. Sia $G = \{z \in \mathbb{C}^* \mid |z| = 1\} \cong S^1$ la circonferenza unitaria e $X = \mathbb{R}^2$. Un'azione di G su X è una rotazione definita da $\gamma(z) = R(\arg z)$. Questa è un omomorfismo perché $\gamma(zw) = R(\arg zw) = R(\arg z + \arg w) = R(\arg z)R(\arg w) = \gamma(z)\gamma(w)$.

Un'azione γ di G su X definisce, proprio su X, una relazione di equivalenza definita da

$$x \sim_{\gamma} y \iff x = \psi_{g}(y) = g \cdot y, \text{ con } x, y \in X$$
 (1.2.1)

La relazione di equivalenza è ben definita perché le ψ_g sono mappe biettive.

DEFINIZIONE 1.5 (ORBITA). Sia $\gamma:G\to \mathcal{S}(X)$ un'azione di G gruppo su X. Dato $x\in X$, la sua classe di equivalenza rispetto alla relazione \sim_{γ} è detta *orbita* ed è indicata con orb $(x)=\{g\cdot x\mid g\in G\}$.

Ricordando che una relazione di equivalenza fornisce una partizione dell'insieme su cui è definita, si ha:

$$X = \bigsqcup_{x \in R} \operatorname{orb}(x) \tag{1.2.2}$$

con R insieme dei rappresentati di tutte le orbite. Se, poi, X ha cardinalità finita, allora:

$$|X| = \sum_{x \in R} |\operatorname{orb}(x)| \tag{1.2.3}$$

DEFINIZIONE 1.6 (STABILIZZATORE). Sia $\gamma: G \to \mathcal{S}(X)$ un'azione di G su X; allora per ogni $x \in X$, si definisce l'insieme

$$Stab(x) = \{ g \in G \mid g \cdot x = x \} < G$$

LEMMA 1.1.1. Se due elementi di un'orbita sono uguali, allora appartengono alla stessa classe di equivalenza di $G/\operatorname{Stab}(x)$.

Dimostrazione. Se $g \cdot x$, $h \cdot x \in \text{orb}(x)$ sono uguali, allora $x = h^{-1}g \cdot x$, cioè $h^{-1}g \in G$ lascia invariato x, quindi è in Stab(x). Da questo segue che $h \cdot \text{Stab}(x) = hh^{-1}g \cdot \text{Stab}(x) = g \cdot \text{Stab}(x)$.

PROPOSIZIONE 1.2. Esiste una mappa biettiva $\Gamma: \operatorname{orb}(x) \to G/\operatorname{Stab}(x)$ tale che $\Gamma(g \cdot x) = g \operatorname{Stab}(x)$.

Dimostrazione. Γ è iniettiva come diretta conseguenza del lemma 1.1.1 ed è suriettiva perché $\forall g$ Stab(x) ∈ G/Stab(x), $\exists g \cdot x \in \text{orb}(x)$ tale che $\Gamma(g \cdot x) = g$ Stab(x). \Box