GTI 1 - (Elementare Logik)

Prädikatenlogik: Aussagenlogik angereichert mit Quantoren.

Aussageform (Prädikat): Satz mit mind. einem Platzhalter, in der/die X eingesetzt werden kann,

wobei X das Universum ist.

Eine Belegung eines Prädikats führt zu einer Aussage.

Junktor: Logische Verknüpfung

Tautologie: Immer wahr Kontradiktion: Immer falsch

Modus Ponens: $(p \land (p \Rightarrow q)) \Rightarrow q$

Boolesche Ausdrücke:

1. 0 und 1 sind Boolsche Ausdrücke

2. Jede Boolsche Variable (fängt mit X1 an und danach 0/1) ist ein Boolscher Ausdruck

3. Ist w ein B.A., so auch \rightarrow w

4. Sind v, w B.A., so auch (v+w)

5. Sind v, w B.A., so auch (vw)

Literal: Ein Boolscher Ausdruck, der nur aus einer (negierten) Variable besteht.

 $\label{thm:constraint} \mbox{Disjunktive Normalform: Summe von Produkten (Disj.\,Von\,Konj.)}$

Konjunktive Normalform: Produkt von Summen (Konj. Von Disj.)

Aussagenlogik:

Aussagenlogische Formel:

1. Alle atomaren Formeln sind Formeln

2. Ist F eine Formel, so auch →F

3. Sind F und G Formeln, so auch (FAG), (FVG)

0,1 heißen Wahrheitswerte

Eine Belegung ist eine Abbildung, die jeder Atomaren Formel einen Wahrheitswert zuweist.

Resolutionskalkül:

Klausel: Endliche Menge von Literalen

Klauselmenge: Nichtleere Menge von Klauseln einer Formel

Resolvente: $A \in K_x$, $\rightarrow A \in K_y \rightarrow K_z = (K_x \setminus \{A\}) \cup (K_y \setminus \{ \rightarrow A\})$

Enthält eine Klauselmenge Ø, wird sie als unerfüllbar bezeihnet.

Menge der Resolventen n-ter Stufe: $Res^n(K) = K \cup \{R | R \text{ Resolvente zweier Klauseln aus } K\}$

Hornlogik:

Eine Formel in KNF heißt Hornformel, wenn jede Disjunktion maximal ein positives Literal hat.

Eine Klausel heißt Hornklausel, wenn höchstens eins der Literale positiv ist.

Tatsachenklausel: Klausel ohne negative Literale (also ein positives).

Regel/Prozedurklausel: Ein positives und mindestens ein negatives Literal.

Zielklausel: Ohne positives aber mindestens ein Negatives Literal.

Markierungsalgorithmus:

- 1. Markiere jedes Literal aus Tatsachenklauseln
- 2. Markiere Tatsachenklausel als erfüllt
- 3. Wiederhole solange es neu markierte Literale gibt:
 - 3.1 Für alle neu markierten Literale: Markiere jedes Auftreten des Literals in den Klauseln.
 - 3.2 Danach für alle Programmklauseln: Sind alle negativen Literale in der Klausel markiert, so

markiere auch das Positive Literal und die Klausel selbst.

- 4. Bleiben Literale der Zielklausel unmarkiert: Ziel ist keine Folgerung
- 5. Sind alle Literale der Zielklausel markiert: Ziel ist eine Foglerung

Gibt der Algorithmus "keine Folgerung" aus, so ist die Belegung (mit 1 falls markiert, sonst 0) ein Modell von F. F ist also erfüllbar.

Resolventen als Baum darstellbar -> DFS/BFS (Depth-first/Breadth-first search)

Prädikatenlogik:

Man benötigt:

Variablen über einem Universum

Funktionen

Terme zur Bildung komplexer Ausdrücke

Prädikate, mit denen aus Werten des Universums Wahrheitswerte gebildet werden können Junktoren zur Verknüpfung von Wahrheitswerten

Quantoren

Syntax:

Eine Variable ist ein Symbol der Formel x_i mit $i \in \mathbb{N}$.

Ein Funktionssymbol hat die Form $f_i^{(k)}mit\ i,k\in\mathbb{N}$, wobei k die Anzahl der Parameter angibt Ein Prädikatensymbol hat die Form $P_i^{(k)}mit\ i,k\in\mathbb{N}$, wobei k die Anzahl der Parameter angibt Ein Term entsteht durch endlich viele Anwendungen aus:

Jede Variable ist ein Term

Ist f ein k-stelliges Funktionssymbol und sind $t_1...t_k$ bereits Terme, so ist auch $f(t_1...t_k)$ ein Term

Eine prädikatenlogische Formel entsteht durch endlich viele Anwendungen aus:

Ist P ein k-stelliges Prädikatensymbol und sind $t_1...t_k$ bereits Terme, so ist P $(t_1...t_k)$ eine Formel.

Sind F und G Formeln, so auch $\rightarrow F$, $(F \land G)$, $(F \lor G)$

Ist x eine Variable und F eine Formel, so auch $\forall x: F \ und \ \exists x: F$

Das Alphabet besteht somit aus: $\{x, f, P, 0, 1, (,), \neg, \land, \lor, \forall, \exists, :\}$

Semantik:

Eine zu F passende *Struktur* α ist ein Tupel $\alpha = (U, \phi, \psi, \xi)$, wobei:

U eine nichtleere Menge (Universum) ist

φ ordnet jedem in F vorkommenden Funktionssymbol eine Abbildung

$$\phi(f): U^k \to U$$
 zu

 ψ ordnet jedem in F
 vorkommenden Prädikatensymbol P eine Teilmenge $\psi(P)\subseteq U^k$ zu

 ξ ordnet jeder in F vorkommenden Variablen x ein Element $\xi(x)$ aus U zu

Eine zu F passende Struktur α heißt *Modell* für F, wenn α (F)=1 (Schreibweise: α | = F

F heißt erfüllbar, wenn es ein Modell für F gibt

F heißt unerfüllbar, wenn es kein Modell für F gibt

F heißt allgemeingültig oder Tautologie, wenn jede passende Struktur α bereits ein Modell ist Die Aussagenlogik ist Teil der Prädikatenlogik.