### Polar符号とその研究動向

森 立平

京都大学 大学院 情報学研究科 2011 年 11 月 30 日

#### **Contents**

- Polar 符号と通信路分極現象 [Arıkan 2008]
- Polar 符号に関する研究紹介 I(polar 符号の性質)
  - 1. Polar 符号の漸近的誤り確率 [Arıkan and Telatar 2008]
  - 2. Polar 符号の  $\ell imes \ell$  行列への一般化 [Korada, Şaşoğlu, and Urbanke 2009]
  - 3. 密度発展法を用いた polar 符号の構成 [Mori and Tanaka 2009]
  - 4. Polar 符号の compound capacity [Hassani, Korada, and Urbanke 2009]
  - 5. 多元 (素体) polar 符号 [Şaşoğlu, Telatar, and Arıkan 2009]
  - 6. 多元 (一般の有限体) polar 符号と Reed-Solmon 行列 [Mori and Tanaka 2010]
  - 7. Polar 符号のより詳細な漸近的誤り確率 [Tanaka and Mori 2010] [Hassani and Urbanke 2010] [Hassani, Mori, Tanaka, and Urbanke 2011]
  - 8. Polar 符号の誤り確率のスケーリング [Korada, Montanari, Telatar, and Urbanke 2010] [Hassani, Alishahi, and Urbanke 2010]
  - 9. Polar 符号の重み分布 [Mori and Urbanke]
- Polar 符号に関する研究紹介 II(復号法とアプリケーション)

## Polar 符号と通信路分極現象

#### Polar符号とは

Polar 符号 [Arıkan 2008]とは

- 任意の二元離散無記憶通信路 (B-DMC) W で対称通信路容量 /(W) を達成することが証明されている
- 符号化、復号の計算量が O(N log N) (N は符号長)
- 任意の R < I(W) と  $\epsilon > 0$  について、 $P_e = o\left(2^{-N^{\frac{1}{2}-\epsilon}}\right)$

B-DMC W の対称通信路容量 /(W)

$$I(W) := \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} \frac{1}{2} W(y \mid x) \log \frac{W(y \mid x)}{\frac{1}{2} W(y \mid 0) + \frac{1}{2} W(y \mid 1)}$$

#### Polar符号の生成行列

$$extit{G}_{2} = egin{bmatrix} 1 & 0 \ 1 & 1 \end{bmatrix}$$



$$\begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}$$

#### Polar符号の生成行列

$$G_4 = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} egin{bmatrix} 1 & 0 \ 1 & 1 \end{bmatrix}^{\otimes 2} = egin{bmatrix} 1 & 0 & 0 & 0 \ 1 & 0 & 1 & 0 \ 1 & 1 & 0 & 0 \ 1 & 1 & 1 & 1 \end{bmatrix}$$



## Polar符号の生成行列

$$G_{2^n} = (I_{2^{n-1}} \otimes G_2) R_{2^n} (I_2 \otimes G_{2^{n-1}}) = B_{2^n} G_2^{\otimes n}$$



# Polar符号の符号化



②:凍結ビット

# Polar符号の符号化



②:凍結ビット

## Polar符号の符号化



符号化の計算量  $\propto$  チェックノードの数 =  $O(N \log N)$ 

#### Polar符号の復号

Succesive cancellation (SC) decoding インデックスが小さなビットから順番に硬判定

F: 凍結ビットのインデックスの集合

 $i \in F$  のとき

$$\hat{U}_i(y_1^N, \hat{u}_1^{i-1}) = 0$$

*i ∉ F* のとき

$$\hat{U}_i(y_1^N, \hat{u}_1^{i-1}) = \underset{u_i=0,1}{\operatorname{argmax}} W_N^{(i)}(y_1^N, \hat{u}_1^{i-1} \mid u_i)$$

 $W_N^{(i)}$  は i 番目のサブチャネル

$$W_N^{(i)}(y_1^N, u_1^{i-1} \mid u_i) := \frac{1}{2^{N-1}} \sum_{u_{i+1}^N} W^N(y_1^N \mid u_1^N G_N).$$

# Polar符号の復号



# Polar符号の復号



木の上で ML⇔ belief propagation (BP) で計算可能

## 疑問

- 何故これで対称通信路容量を達成できるのか?
- ■どのビットを情報ビットとして選べばよいのか



分極現象

## 分極現象

 $\blacksquare (U_1^N, Y_1^N): W^N(y_1^N \mid u_1^N G_N)/2^N$  に従う確率変数

$$NI(W) = I(U_1^N; Y_1^N) = \sum_{i=1}^N I(Y_1^N, U_1^{i-1}; U_i) = \sum_{i=1}^N I(W_N^{(i)})$$

このとき右辺の N 個の相互情報量はほぼ 0 のものと、ほぼ 1 のものに分極

$$\lim_{N\to\infty} \frac{\left|\left\{i\in\{1,\ldots,N\}\mid \epsilon< I(W_N^{(i)})<1-\epsilon\right\}\right|}{N}=0$$

ほぼ1のものはN/(W)、ほぼ0のものはN(1-/(W))

# 分極現象



通信路は BEC(0.4)、通信路容量は 0.6、符号長は 1024

## 通信路分離と通信路結合



$$2I(W) = I(W^{(0)}) + I(W^{(1)})$$



$$W^{(0)}(y_1, y_2 \mid u_1)$$

$$W^{(1)}(y_1, y_2, u_1 \mid u_2)$$

# Random process $\{W_n\}$ of DMC

$$W_{n} := \begin{cases} W_{n-1}^{(0)} & \text{w.p.} & \frac{1}{2} \\ W_{n-1}^{(1)} & \text{w.p.} & \frac{1}{2} \end{cases}, \qquad W_{0} := W \qquad \text{w.p. } 1$$

$$W^{(0)}(0) \qquad W^{(0)}(0)(0) \qquad$$

Polarization: 
$$I(W_n) \rightarrow I_{\infty} = \begin{cases} \mathbf{0}, & \text{w.p.} \mathbf{1} - I(W) \\ \mathbf{1}, & \text{w.p.} I(W) \end{cases}$$
 almost surely

### マルチンゲール

$$\mathbb{E}[X_n \mid X_{n-1}, \dots, X_0] = X_{n-1}$$

例 1)

$$X_0 = 0$$
 w.p. 1
$$X_n = \begin{cases} X_{n-1} + 1 & \text{w.p. } \frac{1}{2} \\ X_{n-1} - 1 & \text{w.p. } \frac{1}{2} \end{cases}$$

例 2)

$$X_0=30,$$
 w.p. 1 
$$X_n=\begin{cases} X_{n-1}+1 & \text{w.p.}\ rac{1}{2} \ X_{n-1}-1 & \text{w.p.}\ rac{1}{2} \end{cases}, \quad \text{if } X_{n-1}
eq 0,100$$
  $X_n=X_{n-1}, \quad \text{if } X_{n-1}=0,100$ 

## マルチンゲールの収束定理

もし  $\sup_n \mathbb{E}[|X_n|] < \infty$  ならば確率変数  $X_\infty$  が存在して  $X_n$  は  $X_\infty$  に概収束する

例 1) 適用不可能

例 2)  $X_n > 0$  なので適用可能

$$X_{\infty} \in \{0, 100\}$$
 w.p. 1

 $X_n$  は有界なので  $\mathbb{E}[X_\infty] = \lim_{n o \infty} \mathbb{E}[X_n] = 30$ よって、

$$X_{\infty} = egin{cases} 0, & ext{w.p. } 0.7 \ 100, & ext{w.p. } 0.3 \end{cases}$$

#### 分極の証明



0と1以外は収束先に成り得ない

Polarization: 
$$I(W_n) \rightarrow I_{\infty} = \begin{cases} \mathbf{0}, & \text{w.p.} \mathbf{1} - I(W) \\ \mathbf{1}, & \text{w.p.} I(W) \end{cases}$$
 almost surely

## 誤り確率の評価

$$\mathcal{B}_{i} := \{ u_{1}^{N}, y_{1}^{N} \mid \hat{u}_{1}^{i-1} = u_{1}^{i-1}, \hat{U}_{i}(y_{1}^{N}, \hat{u}_{1}^{i-1}) \neq u_{i} \}$$

$$\subseteq \{ u_{1}^{N}, y_{1}^{N} \mid \hat{U}_{i}(y_{1}^{N}, u_{1}^{i-1}) \neq u_{i} \} =: \mathcal{A}_{i}.$$

$$P_{\mathsf{error}}(F) = \Pr\left(\bigcup_{i \in F^c} \mathcal{B}_i\right) = \sum_{i \in F^c} \Pr(\mathcal{B}_i) \le \sum_{i \in F^c} \Pr(\mathcal{A}_i) = \sum_{i \in F^c} P_e(W_N^{(i)})$$

ある関数 f(N) = o(1/N) について

$$\lim_{N\to\infty} \frac{\left|\left\{i\in\{1,\ldots,N\}\mid P_{e}(W_{N}^{(i)})< f(N)\right\}\right|}{N} = I(W)$$

が言えればよい

### 対称通信路容量を達成することの証明

$$Z(W) := \sum_{y \in \mathcal{Y}} \sqrt{W(y \mid \mathbf{0})W(y \mid \mathbf{1})}$$

$$I(W) \approx \mathbf{0} \Longrightarrow Z(W) \approx \mathbf{1}$$
  
 $I(W) \approx \mathbf{1} \Longrightarrow Z(W) \approx \mathbf{0}$ 

$$Z(W) \geq P_e(W) \geq \frac{1}{2}Z(W)^2$$

$$\lim_{N \to \infty} \frac{\left| \left\{ i \in \{1, \dots, N\} \mid Z(W_N^{(i)}) < N^{-\frac{5}{4}} \right\} \right|}{N} = I(W)$$
 [Arıkan 2008]

これらの結果から任意の R < I(W) について polar 符号のブロック誤り確率は  $O(N^{-\frac{1}{4}})$ 

# Bhattacharyya 定数 for BEC( $\epsilon$ )



$$Z_n = egin{cases} Z_{n-1}^2, & \text{if} & B_n = 1 \ 1 - (1 - Z_{n-1})^2, & \text{if} & B_n = 0 \end{cases}$$

#### **Contents**

- Polar 符号と通信路分極現象 [Arıkan 2008]
- Polar 符号に関する研究紹介 I(polar 符号の性質)
  - 1. Polar 符号の漸近的誤り確率 [Arıkan and Telatar 2008]
  - 2. Polar 符号の  $\ell imes \ell$  行列への一般化 [Korada, Şaşoğlu, and Urbanke 2009]
  - 3. 密度発展法を用いた polar 符号の構成 [Mori and Tanaka 2009]
  - 4. Polar 符号の compound capacity [Hassani, Korada, and Urbanke 2009]
  - 5. 多元 (素体) polar 符号 [Şaşoğlu, Telatar, and Arıkan 2009]
  - 6. 多元 (一般の有限体) polar 符号と Reed-Solmon 行列 [Mori and Tanaka 2010]
  - 7. Polar 符号のより詳細な漸近的誤り確率 [Tanaka and Mori 2010] [Hassani and Urbanke 2010] [Hassani, Mori, Tanaka, and Urbanke 2011]
  - 8. Polar 符号の誤り確率のスケーリング [Korada, Montanari, Telatar, and Urbanke 2010] [Hassani, Alishahi, and Urbanke 2010]
  - 9. Polar 符号の重み分布 [Mori and Urbanke]
- Polar 符号に関する研究紹介 II(復号法とアプリケーション)

#### Polar符号の漸近的誤り確率

[Arıkan and Telatar 2008]

任意の  $\beta < \frac{1}{2}$  について

$$\lim_{n\to\infty} \Pr\left(Z(W_n) < \mathbf{2}^{-N^{\beta}}\right) = I(W)$$

任意の  $\beta > \frac{1}{2}$  について

$$\lim_{n\to\infty} \Pr\left(Z(W_n) < \mathbf{2}^{-N^{\beta}}\right) = 0$$

これらのことから polar 符号の誤り確率は  $o\left(2^{-N^{\frac{1}{2}-\epsilon}}\right)$  かつ $\omega\left(2^{-N^{\frac{1}{2}+\epsilon}}\right)$  for any  $\epsilon>0$ .

#### **Contents**

- Polar 符号と通信路分極現象 [Arıkan 2008]
- Polar 符号に関する研究紹介 I(polar 符号の性質)
  - 1. Polar 符号の漸近的誤り確率 [Arıkan and Telatar 2008]
  - 2. Polar 符号の ℓ×ℓ 行列への一般化 [Korada, Şaşoğlu, and Urbanke 2009]
  - 3. 密度発展法を用いた polar 符号の構成 [Mori and Tanaka 2009]
  - 4. Polar 符号の compound capacity [Hassani, Korada, and Urbanke 2009]
  - 5. 多元 (素体) polar 符号 [Şaşoğlu, Telatar, and Arıkan 2009]
  - 6. 多元 (一般の有限体) polar 符号と Reed-Solmon 行列 [Mori and Tanaka 2010]
  - 7. Polar 符号のより詳細な漸近的誤り確率 [Tanaka and Mori 2010] [Hassani and Urbanke 2010] [Hassani, Mori, Tanaka, and Urbanke 2011]
  - 8. Polar 符号の誤り確率のスケーリング [Korada, Montanari, Telatar, and Urbanke 2010] [Hassani, Alishahi, and Urbanke 2010]
  - 9. Polar 符号の重み分布 [Mori and Urbanke]
- Polar 符号に関する研究紹介 II(復号法とアプリケーション)

### 行列の指数

Polar 符号の基になる  $2 \times 2$  行列  $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$  を一般化して  $\ell \times \ell$  行列 G に基づいた polar 符号を考える そのとき

任意の定数  $\beta < E(G)$  について

$$\lim_{n\to\infty} \Pr(Z(W_n) \le 2^{-N^{\beta}}) = I(W)$$

また、任意の定数  $\beta > E(G)$  について

$$\lim_{n\to\infty}\Pr(Z(W_n)\geq 2^{-N^{\beta}})=1$$

となるような  $E(G) \in [0,1)$  を行列 G の指数と呼ぶ

## Polar符号の誤り指数

[Korada, Şaşoğlu and Urbanke 2009]

$$E(G) = \frac{1}{\ell} \sum_{i=1}^{\ell} \log_{\ell} D_i$$

 $\ell \times \ell$  行列 G について部分距離  $D_i$  を以下のように定める

$$D_i := d(g_i, \langle g_{i+1}, \dots, g_{\ell} \rangle), \qquad i = 1, \dots, \ell - 1$$
  
 $D_{\ell} := d(g_{\ell}, 0)$ 

ただし  $g_i$  は G の i 行目、 $\langle g_i, ..., g_\ell \rangle$  は  $g_i, ..., g_\ell$  で張られる部分符号

例

$$egin{bmatrix} 1 & 0 & 0 \ 1 & 0 & 1 \ 1 & 1 & 1 \end{bmatrix}$$

について  $D_1 = 1$ ,  $D_2 = 1$ ,  $D_3 = 3$ 

### Polar符号の誤り指数

$$E(G) = \frac{1}{\ell} \sum_{i=1}^{\ell} \log_{\ell} D_i$$

また、

$$egin{aligned} oldsymbol{\mathcal{E}_\ell} := \max_{G \in \{0,1\}^{\ell imes \ell}} \mathcal{E}(G) &$$
について  $\lim_{\ell o \infty} oldsymbol{\mathcal{E}_\ell} = 1 \end{aligned}$ 

が成り立つ

特に、
$$\ell \leq 14$$
 のとき  $E_\ell \leq \frac{1}{2}$  だが  $E_{16}=0.51828>\frac{1}{2}$  となる [Korada, Şaşoğlu, and Urbanke 2009]

#### **Contents**

- Polar 符号と通信路分極現象 [Arıkan 2008]
- Polar 符号に関する研究紹介 I(polar 符号の性質)
  - 1. Polar 符号の漸近的誤り確率 [Arıkan and Telatar 2008]
  - 2. Polar 符号の  $\ell imes \ell$  行列への一般化 [Korada, Şaşoğlu, and Urbanke 2009]
  - 3. 密度発展法を用いた polar 符号の構成 [Mori and Tanaka 2009]
  - 4. Polar 符号の compound capacity [Hassani, Korada, and Urbanke 2009]
  - 5. 多元 (素体) polar 符号 [Şaşoğlu, Telatar, and Arıkan 2009]
  - 6. 多元 (一般の有限体) polar 符号と Reed-Solmon 行列 [Mori and Tanaka 2010]
  - 7. Polar 符号のより詳細な漸近的誤り確率 [Tanaka and Mori 2010] [Hassani and Urbanke 2010] [Hassani, Mori, Tanaka, and Urbanke 2011]
  - 8. Polar 符号の誤り確率のスケーリング [Korada, Montanari, Telatar, and Urbanke 2010] [Hassani, Alishahi, and Urbanke 2010]
  - 9. Polar 符号の重み分布 [Mori and Urbanke]
- Polar 符号に関する研究紹介 II(復号法とアプリケーション)

#### ブロック誤り確率

$$P_{e}(F) \leq \sum_{i \in F^{c}} P_{e}(W_{N}^{(i)}) \leq \frac{1}{2} \sum_{i \in F^{c}} Z(W_{N}^{(i)})$$

 $Z(W_N^{(i)})$  の代わりに  $P_e(W_N^{(i)})$  を直接評価



### 密度発展法

$$\mathbf{Pr}(\mathcal{A}_i) = \mathfrak{E}(\mathsf{a}_N^i),$$

where

$$\mathfrak{E}(\mathsf{a}) := \lim_{\epsilon \to +0} \left( \int_{-\infty}^{-\epsilon} \mathsf{a}(x) \mathsf{d}x + \frac{1}{2} \int_{-\epsilon}^{+\epsilon} \mathsf{a}(x) \mathsf{d}x \right),$$

$$a_{2N}^{2i} = a_N^i * a_N^i,$$
 $a_{2N}^{2i-1} = a_N^i * a_N^i,$ 
 $a_1^1 = a_W.$ 

 $\chi(N)$ :  $\{a_N^i(x)\}_{i=1,...,N}$  を計算するのに必要な畳み込み演算  $(\star, \mathbb{R})$  の回数

$$\chi(N) = N + \chi\left(\frac{N}{2}\right) = N + \frac{N}{2} + \frac{N}{4} + \dots + 1 = O(N).$$

[Mori and Tanaka 2009]

#### **Contents**

- Polar 符号と通信路分極現象 [Arıkan 2008]
- Polar 符号に関する研究紹介 I(polar 符号の性質)
  - 1. Polar 符号の漸近的誤り確率 [Arıkan and Telatar 2008]
  - 2. Polar 符号の  $\ell imes \ell$  行列への一般化 [Korada, Şaşoğlu, and Urbanke 2009]
  - 3. 密度発展法を用いた polar 符号の構成 [Mori and Tanaka 2009]
  - 4. Polar 符号の compound capacity [Hassani, Korada, and Urbanke 2009]
  - 5. 多元 (素体) polar 符号 [Şaşoğlu, Telatar, and Arıkan 2009]
  - 6. 多元 (一般の有限体) polar 符号と Reed-Solmon 行列 [Mori and Tanaka 2010]
  - 7. Polar 符号のより詳細な漸近的誤り確率 [Tanaka and Mori 2010] [Hassani and Urbanke 2010] [Hassani, Mori, Tanaka, and Urbanke 2011]
  - 8. Polar 符号の誤り確率のスケーリング [Korada, Montanari, Telatar, and Urbanke 2010] [Hassani, Alishahi, and Urbanke 2010]
  - 9. Polar 符号の重み分布 [Mori and Urbanke]
- Polar 符号に関する研究紹介 II(復号法とアプリケーション)

# Polar 符号の compound capacity

[Hassani, Korada, and Urbanke 2009]

W: 通信路の集合

$$C(W) = \max_{P_X} \inf_{W \in W} I(X; Y)$$

Polar 符号を SC 復号したときの compound capacity は

$$\lim_{N\to\infty}\sum_{i=1}^N\inf_{W\in\mathcal{W}}I(W_N^{(i)})$$

BEC(0.5)と BSC(0.11002) の場合は約 0.4816

#### **Contents**

- Polar 符号と通信路分極現象 [Arıkan 2008]
- Polar 符号に関する研究紹介 I(polar 符号の性質)
  - 1. Polar 符号の漸近的誤り確率 [Arıkan and Telatar 2008]
  - 2. Polar 符号の  $\ell imes \ell$  行列への一般化 [Korada, Şaşoğlu, and Urbanke 2009]
  - 3. 密度発展法を用いた polar 符号の構成 [Mori and Tanaka 2009]
  - 4. Polar 符号の compound capacity [Hassani, Korada, and Urbanke 2009]
  - 5. 多元 (素体) polar 符号 [Şaşoğlu, Telatar, and Arıkan 2009]
  - 6. 多元 (一般の有限体) polar 符号と Reed-Solmon 行列 [Mori and Tanaka 2010]
  - 7. Polar 符号のより詳細な漸近的誤り確率 [Tanaka and Mori 2010] [Hassani and Urbanke 2010] [Hassani, Mori, Tanaka, and Urbanke 2011]
  - 8. Polar 符号の誤り確率のスケーリング [Korada, Montanari, Telatar, and Urbanke 2010] [Hassani, Alishahi, and Urbanke 2010]
  - 9. Polar 符号の重み分布 [Mori and Urbanke]
- Polar 符号に関する研究紹介 II(復号法とアプリケーション)

## 多元 polar 符号

有限環 $\mathbb{Z}/q\mathbb{Z}$ 上の行列

$$egin{bmatrix} 1 & 0 \ 1 & 1 \end{bmatrix}$$

での分極を考える

q が素数のとき任意の通信路が分極し、q が非素数のとき分極しない通信路が存在する

[Şaşoğlu, Telatar, and Arıkan 2009]

任意の離散無記憶通信路Wが有限体 $\mathbb{F}_q$ 上の行列

$$egin{bmatrix} 1 & 0 \ 1 & \gamma \end{bmatrix}$$

で分極する必要十分条件は $\mathbb{F}_p(\gamma) = \mathbb{F}_q$  [Mori and Tanaka 2010]

## Matrix with large exponent

もしGが

$$D_0 \le D_2 \le \dots \le D_{\ell-1} \tag{1}$$

を満たさなかったら G の行を置換することで  $E(G') \ge E(G)$  かつ (1) を満たす G' を構成できる [Korada, Şaşoğlu, and Urbanke 2009]

条件 (1) が成り立ってるとき  $D_i$  は  $\langle g_i, \ldots, g_{\ell-1} \rangle$  の最小距離.

よって大きな E(G) を持つ行列を得ることは以下を満たす符号列  $C_1, ..., C_\ell$  を得ることと等しい

- $C_i$ : 次元 i 符号長  $\ell$  の線型符号
- $\blacksquare \ \mathcal{C}_1 \subseteq \mathcal{C}_2 \subseteq \cdots \subseteq \mathcal{C}_\ell$
- 符号  $C_i$  の最小距離が大きい for  $i \in \{1, ..., \ell\}$

Reed-Solomon 符号はこれらの条件を満たしている

### Reed-Solomon matrix [Mori and Tanaka 2010]

Let  $\alpha$  be a primitive element of  $\mathbb{F}_q$ .

A Reed-Solomon matrix  $G_{RS}(q)$  is defined as

Submatrix which consists of *i*th row to the last row is a generator matrix of extended Reed-Solomon code.

The size  $\ell$  of RS matrix is q.

Since 
$$G_{RS}(2)=\begin{bmatrix}1&0\\1&1\end{bmatrix}$$
, RS matrix can be regarded as a generalization of Arıkan's binary matrix  $\begin{bmatrix}1&0\\1&1\end{bmatrix}$ .

Since 
$$D_i = i + 1$$
,  $E(G_{RS}(q)) = \frac{\log(q!)}{q \log q}$ 

## **Exponent of Reed-Solomon matrix**

$$E(G_{RS}(q)) = \frac{\log(q!)}{q \log q}$$

| q              | 2   | 4        | 16       | 64       | 256      |
|----------------|-----|----------|----------|----------|----------|
| $E(G_{RS}(q))$ | 0.5 | 0.573120 | 0.691408 | 0.770821 | 0.822264 |

$$\lim_{q o \infty} {\sf E}({\sf G}_{\sf RS}(q)) = 1$$

The exponent of binary matrix of size smaller than 32 is smaller than 0.55

[Korada, Şaşoğlu, and Urbanke 2009]

Reed-Solomon matrix is useful for obtaining large exponent!

How about the performance for finite blocklength?

## Simulation result on BAWGNC (I(W) = 0.5)



#### Polar codes and Reed-Muller codes: binary case

[Arıkan 2009]

Polar rule: 
$$\{i \in \{0, ..., 2^n - 1\} \mid P_e(W^{(i_1) \cdots (i_n)}) < \epsilon\}$$
  
Reed-Muller rule:  $\{i \in \{0, ..., 2^n - 1\} \mid i_1 + \cdots + i_n > k\}$ 

Binary polar codes using  $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$  and binary Reed-Muller codes are similar.

Reed-Muller rule maximizes the minimum distance.

#### Polar codes using RS matrix and Reed-Muller codes: q-ary case

Polar rule: 
$$\{i \in \{0, ..., q^n - 1\} \mid P_e(W^{(i_1) \cdots (i_n)}) < \epsilon\}$$
  
Reed-Muller rule:  $\{i \in \{0, ..., q^n - 1\} \mid i_1 + \cdots + i_n > k\}$ 

Q-ary polar codes using  $G_{RS}(q)$  and q-ary Reed-Muller codes are also similar.

Hyperbolic rule: 
$$\{i \in \{0, ..., q^n-1\} \mid (i_1+1)\cdots(i_n+1) > k\}$$

Hyperbolic rule maximizes the minimum distance (Massey-Costello-Justesen codes, hyperbolic cascaded RS codes).

- Polar 符号と通信路分極現象 [Arıkan 2008]
- Polar 符号に関する研究紹介 I(polar 符号の性質)
  - 1. Polar 符号の漸近的誤り確率 [Arıkan and Telatar 2008]
  - 2. Polar 符号の  $\ell imes \ell$  行列への一般化 [Korada, Şaşoğlu, and Urbanke 2009]
  - 3. 密度発展法を用いた polar 符号の構成 [Mori and Tanaka 2009]
  - 4. Polar 符号の compound capacity [Hassani, Korada, and Urbanke 2009]
  - 5. 多元 (素体) polar 符号 [Şaşoğlu, Telatar, and Arıkan 2009]
  - 6. 多元 (一般の有限体) polar 符号と Reed-Solmon 行列 [Mori and Tanaka 2010]
  - 7. Polar 符号のより詳細な漸近的誤り確率 [Tanaka and Mori 2010] [Hassani and Urbanke 2010] [Hassani, Mori, Tanaka, and Urbanke 2011]
  - 8. Polar 符号の誤り確率のスケーリング [Korada, Montanari, Telatar, and Urbanke 2010] [Hassani, Alishahi, and Urbanke 2010]
  - 9. Polar 符号の重み分布 [Mori and Urbanke]
- Polar 符号に関する研究紹介 II(復号法とアプリケーション)

## Polar符号のより詳細な漸近的誤り確率

[Tanaka and Mori 2010] [Hassani and Urbanke 2010] [Hassani, Mori, Tanaka and Urbanke 2011] For  $R \in (0, 1)$ ,

$$\lim_{n\to\infty} \Pr\left(Z(W_n) \leq 2^{-\ell^{nE(G)} + \sqrt{nV(G)}Q^{-1}(R/I(W)) + f(n)}\right) = R$$

for any  $f(n) = o(\sqrt{n})$  where  $\ell^n = N$ ,

$$Q(x) := \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}} dx$$

$$E(G) := \frac{1}{\ell} \sum_{i=1}^{\ell} \log_{\ell} D_{i}(G)$$

$$V(G) := \frac{1}{\ell} \sum_{i=1}^{\ell} (\log_{\ell} D_{i}(G) - E(G))^{2}.$$

## 通信路に依存するビットの数

[Mori 2010 SITA Newsletter] [Hassani, Mori, Tanaka and Urbanke 2011]

Reed-Muller 符号:

■ インデックスの二進展開に1の数が多いビットを選ぶ

Polar 符号:

■ インデックスの二進展開に従って密度発展法で  $P_{e}(W_{N}^{(i)})$  を計算し  $P_{e}(W_{N}^{(i)})$  が小さいものから順に選ぶ

二進展開のうち最初の  $\Theta(\log n)$  ビットを通信路に依存して選び、残りの部分を Reed-Muller ルールで選ぶ方法で漸近的に最適な誤り確率が得られる  $(2^n = N)$ 

この手法を繰り返し適用すれば、二進展開のうち最初の  $\Theta(\log \log \log ... \log n)$  ビットだけが通信路に依存する構成法で漸近的に最適な polar 符号が得られる!

- Polar 符号と通信路分極現象 [Arıkan 2008]
- Polar 符号に関する研究紹介 I(polar 符号の性質)
  - 1. Polar 符号の漸近的誤り確率 [Arıkan and Telatar 2008]
  - 2. Polar 符号の  $\ell imes \ell$  行列への一般化 [Korada, Şaşoğlu, and Urbanke 2009]
  - 3. 密度発展法を用いた polar 符号の構成 [Mori and Tanaka 2009]
  - 4. Polar 符号の compound capacity [Hassani, Korada, and Urbanke 2009]
  - 5. 多元 (素体) polar 符号 [Şaşoğlu, Telatar, and Arıkan 2009]
  - 6. 多元 (一般の有限体) polar 符号と Reed-Solmon 行列 [Mori and Tanaka 2010]
  - 7. Polar 符号のより詳細な漸近的誤り確率 [Tanaka and Mori 2010] [Hassani and Urbanke 2010] [Hassani, Mori, Tanaka, and Urbanke 2011]
  - 8. Polar 符号の誤り確率のスケーリング [Korada, Montanari, Telatar, and Urbanke 2010] [Hassani, Alishahi, and Urbanke 2010]
  - 9. Polar 符号の重み分布 [Mori and Urbanke]
- Polar 符号に関する研究紹介 II(復号法とアプリケーション)

# Polar 符号の誤り確率 $BEC(\epsilon=0.5)$



# Polar符号の誤り確率 $BEC(\epsilon=0.5)$



レートを止めて符号長を大きくしたときにどれくらいの 速さで誤り確率が減少するか Gallager Type の解析

# Polar 符号の誤り確率 $BEC(\epsilon=0.5)$



誤り確率を止めて符号長を大きくしたときにどれくらいの 速さでレートがキャパシティに近づくか  $\iff$  Strassen Type の解析

## Polar 符号の誤り確率のスケーリング

[Korada, Montanari, Telatar, and Urbanke 2010] [Hassani, Alishahi, and Urbanke 2010]

ある固定した $a \in (0,1)$ について

$$F_N(\epsilon) := \Pr(\epsilon \leq Z(W_n) \leq a)$$

Scaling Asumption:

ある  $\mu > 0$  が存在して、任意の  $\epsilon \in (0,a]$  について

$$F(\epsilon) := \lim_{N \to \infty} N^{\frac{1}{\mu}} F_N(\epsilon)$$

が存在する ( $\mu$ : スケーリングパラメータ) このとき、

$$F^{-1}(N^{\frac{1}{\mu}}(I(W)-R)) \leq P_{e}$$

## Polar符号のスケーリングパラメータ

[Korada, Montanari, Telatar, and Urbanke 2010] [Hassani, Alishahi, and Urbanke 2010]

$$P_{\rm e} \ge F^{-1}(N^{\frac{1}{\mu}}(I(W) - R))$$
 $NR \le NI(W) - N^{1-\frac{1}{\mu}}F(P_{\rm e})$ 

これは Strassen 型の評価

Scaling Assumption より  $F_N(\epsilon) = \Theta(N^{-\frac{1}{\mu}})$ .

$$-\frac{1}{\mu} = \lim_{n \to \infty} \frac{1}{n} \log \Pr(a \le Z(W_n) \le b)$$

通信路が BEC のときには評価可能で  $1/\mu\approx 0.2757$ . AWGC 通信路の場合ガウス近似を使って評価すると  $1/\mu\approx 0.2497$ . ランダム符号や LDPC 符号は  $1/\mu=0.5$ .

- Polar 符号と通信路分極現象 [Arıkan 2008]
- Polar 符号に関する研究紹介 I(polar 符号の性質)
  - 1. Polar 符号の漸近的誤り確率 [Arıkan and Telatar 2008]
  - 2. Polar 符号の  $\ell imes \ell$  行列への一般化 [Korada, Şaşoğlu, and Urbanke 2009]
  - 3. 密度発展法を用いた polar 符号の構成 [Mori and Tanaka 2009]
  - 4. Polar 符号の compound capacity [Hassani, Korada, and Urbanke 2009]
  - 5. 多元 (素体) polar 符号 [Şaşoğlu, Telatar, and Arıkan 2009]
  - 6. 多元 (一般の有限体) polar 符号と Reed-Solmon 行列 [Mori and Tanaka 2010]
  - 7. Polar 符号のより詳細な漸近的誤り確率 [Tanaka and Mori 2010] [Hassani and Urbanke 2010] [Hassani, Mori, Tanaka, and Urbanke 2011]
  - 8. Polar 符号の誤り確率のスケーリング [Korada, Montanari, Telatar, and Urbanke 2010] [Hassani, Alishahi, and Urbanke 2010]
  - 9. Polar 符号の重み分布 [Mori and Urbanke]
- Polar 符号に関する研究紹介 II(復号法とアプリケーション)

## Polar符号の重み分布

2010 年 10 月 10 日から 10 月 30 日まで EPFL の Urbanke 教授の研究室に滞在M(N, w): 符号列  $\{\mathcal{C}_N\}_{N\in\mathbb{N}}$  について、符号長 N の符号  $\mathcal{C}_N$  に含まれる重み w の符号語の数

Growth rate  $G(\omega)$ :

$$G(\omega) := \lim_{N \to \infty} \frac{1}{N} \log M(N, \lfloor N\omega \rfloor)$$

for  $\omega \in [0,1]$  (極限の存在は仮定する).



## Polar符号の重み分布

Cumulative growth rate  $G(\omega)$  [Mori and Urbanke]:

$$G(\omega) := \liminf_{N \to \infty} \frac{1}{N} \log \sum_{i=0}^{\lfloor N\omega \rfloor} M(N, i)$$

for  $\omega \in [0,1].$ 



#### Polar 符号と Reed-Muller 符号の cumulative growth rate の下界

[Mori and Urbanke]



- Polar 符号と通信路分極現象 [Arıkan 2008]
- Polar 符号に関する研究紹介 I(polar 符号の性質)
  - 1. Polar 符号の漸近的誤り確率 [Arıkan and Telatar 2008]
  - 2. Polar 符号の  $\ell imes \ell$  行列への一般化 [Korada, Şaşoğlu, and Urbanke 2009]
  - 3. 密度発展法を用いた polar 符号の構成 [Mori and Tanaka 2009]
  - 4. Polar 符号の compound capacity [Hassani, Korada, and Urbanke 2009]
  - 5. 多元 (素体) polar 符号 [Şaşoğlu, Telatar, and Arıkan 2009]
  - 6. 多元 (一般の有限体) polar 符号と Reed-Solmon 行列 [Mori and Tanaka 2010]
  - 7. Polar 符号のより詳細な漸近的誤り確率 [Tanaka and Mori 2010] [Hassani and Urbanke 2010] [Hassani, Mori, Tanaka, and Urbanke 2011]
  - 8. Polar 符号の誤り確率のスケーリング [Korada, Montanari, Telatar, and Urbanke 2010] [Hassani, Alishahi, and Urbanke 2010]
  - 9. Polar 符号の重み分布 [Mori and Urbanke]
- Polar 符号に関する研究紹介 II(復号法とアプリケーション)

- Polar 符号と通信路分極現象 [Arıkan 2008]
- Polar 符号に関する研究紹介 I(polar 符号の性質)
- Polar 符号に関する研究紹介 II(復号法とアプリケーション)
  - 1. 歪み有り圧縮と Wyner-Ziv, Gelfand-Pinsker 問題 [Korada and Urbanke 2009]
  - 2. 歪み無し圧縮と情報源分極 [Arıkan 2010]
  - 3. Wiretap 通信路 [Mahdavifar and Vardy 2010] [Hof and Shamai 2010] [Koyluoglu and El Gamal 2010]
  - 4. 2-user MAC [Şaşoğlu, Telatar, and Yeh 2010], m-user MAC [Abbe and Telatar 2010]
  - 5. Compressed sensing [Pilani, Arıkan, Arıkan 2010]
  - 6. Relay 通信路 (compress-and-forward) [Blasco-Serrano, Thobaben, Rathi, and Skoglund 2010]
  - 7. Polar 符号の構成法 [Tal and Vardy 2010] [Pedarsani, Hassani, Tal, and Telatar 2011]
  - 8. 量子通信路 [Wilde and Guha 2011] [Renes, Dupuis, and Renner 2011]
  - 9. Markov 情報源 [Şaşoğlu 2011]
  - 10. リスト復号 [Tal and Vardy 2011]