NIS2312-1 2022-2023 Fall

信息安全的数学基础 (1)

Assignment 1

2022 年 9 月 14 日

Problem 1

证明: 设 a,b 是两个不全为零的整数, 令 $S=\{xa+yb>0\mid x,y\in\mathbb{Z}\}$, 则 $(a,b)=\min S$.

解: 设 $d = \min S$, 则 $d \mid a, d \mid b$: 假设 $d \nmid a$, 则 a = qd + r, 其中 $q \geq 0, 0 < r < d$. 因此有 qd = q(ax + by) = a - r, 即 r = (1 - qx)a - qyb. 注意到 1 - qx, -qy 均为整数, 因此确定 $r \in S$, 但 r < d, 与 $d = \min S$ 矛盾, 所以 $d \mid a$. 同样的方法可以证明 $d \mid b$. 因此 $d = \min S$ 是 a, b 的公因子.

下证 a,b 的任意公因子均整除 d: 假设 a=cu,b=cv, 那么 d=ax+by=c(au+bv), 即 $c\mid d$. Q.E.D.

Problem 2

证明: 若 a,b,c 是三个整数,则:

- (1) $\stackrel{\text{def}}{=}$ (a,c) = 1 $\stackrel{\text{def}}{=}$ (b,c) = 1, $\stackrel{\text{def}}{=}$ (ab,c) = 1;
- (2) 若 (a,c) = 1 且 $c \mid ab$, 则 $c \mid b$;
- (3) 若 c 为素数且 $c \mid ab$, 则 $c \mid a$ 或者 $c \mid b$.

解:

- (1) $(a,c) = 1 \Rightarrow \exists m,n \in \mathbb{Z}$, s.t. ma + nc = 1, 同理得到 m'b + n'c = 1. 因此 (ma + nc)(m'b + n'c) = 1, 整理得到 mm'ab + (man' + m'bn + ncn')c = 1, 再根据第一题, 可确定 (ab,c) = 1.
- (2) 因为 $c \mid ab$, 故 ab = xc, 那么由 (a,c) = 1 可知 $\exists m, n \in \mathbb{Z}$ s.t. $ma + nc = 1 \Rightarrow mab + ncb = b \Rightarrow mxc + ncb = b$, 即 c(mx + nb) = b, Q.E.D.
- (3) 反证: 假设 c 为素数且 $c \mid ab$, 则 $c \nmid a$ 且 $c \nmid b$, 因此 (a,c) = 1, (b,c) = 1, 同时根据第二题第一小题, 可知 (ab,c) = 1, 与 $c \mid ab$ 矛盾. Q.E.D.

Problem 3

设 a,b 是任意两个正整数,证明:

- (1) a,b 的所有公倍数就是 [a,b] 的所有倍数;
- (2) $[a,b] = \frac{ab}{(a,b)}$.

解:

- (1) 设 m 为 a, b 的公倍数, 则 $a \mid m$, $b \mid m$. 反证: 假设 m 不是 [a,b] 的公倍数, 则有 m = q[a,b] + r, 其中 $q \ge 0$, 0 < r < [a,b], 注意到 $a \mid m$, $a \mid [a,b]$, 则 $a \mid r$, 同理 $b \mid r$, 故 r 也是 a, b 的公倍数, 与 [a,b] 是最小公倍数矛盾. Q.E.D.
- (2) 设 d = (a, b), 则 a = md, b = nd 且 (n, m) = 1. 显然 mnd 是 a, b 的公倍数, 下面证明 mnd = [a, b]: 设 c 是 a, b 的公倍数, 则有 c = ka = kmd, 同时 $b = nd \mid c = kmd$, 得到 $n \mid km$, 利用第二题第二小问可确定 $n \mid k$, 因此 $mnd \mid c$, 故 a, b = ab. Q.E.D.