

Concepts LAN

Network fundamentals & focus on Ethernet

Eric Gaillard - 2015

EPITA - MAJEURES SRS & TCOM

Ethernet Evolution

Ethernet Design Goals

- Simplicity
- Efficient use of shared resources
- Ease of reconfiguration and maintenance
- Compatibility
- Low cost

Ethernet and the OSI / IEEE models

Ethernet Naming Conventions

Ethernet Principle – CSMA/CD

- Carrier Sense (Is someone already talking?)
- Multiple Access (I hear what you hear!)
- Collision Detection (Hey, we're both talking!)
- 1. If the medium is idle, transmit anytime.
- 2. If the medium is busy, wait and transmit right after.
- 3. If a collision occurs, backoff for a random period, then go back to 1.

Ethernet Operation – CSMA

Ethernet Operation – CD

Ethernet Collisions – More Detail

- The adapters have to hear the collision while they are still transmitting
- They then transmit a 32-bit jam signal
- They wait a random time before retransmission
- If there are repeated collisions the adapter tries again, up to a a maximum of 16 times
 - Uses "truncated binary exponential backoff" algorithm

Ethernet, Logical vs Physical

Format of the IEEE 802.3 frame

_	7	1	6	6	2	46 - 1500	4
	Preamble	SD	AD	AS	Г	Payload	CRC

Ethernet or MAC addresses

Ethernet addresses: Broadcasts

- Ethernet inherently supports broadcasts
- Broadcast mechanism is used frequently
 - Example ARP Address Resolution Protocol
- A Broadcast Domain is all devices that will see a broadcast frame

Ethernet implementations

10BaseT

- 2 pairs of Cat 3 UTP
- By far the most widely used specification

10BaseF

2 strands of MMF

• 10Base2

Thin coaxial or "Thinnet" (Dead)

• 10Base5

Thick coaxial or "Thicknet" (Dead)

• 10Broad36

Coaxial (Dead)

Ethernet implementations

Source : B. Forouzan

d. 10BASE-FL

Ethernet implementations: 10Base5

Pin	Ethernet Circuit	Signal Name
3	DO-A	Data Out Circuit A
10	DO-B	Data Out Circuit B
11	DO-S	Data Out Circuit Shield
5	DI-A	Data In Circuit A
12	DI-B	Data In Circuit B
4	DI-S	Data In Circuit Shield
7	CO-A	Control Out Circuit A (not connected)
15	СО-В	Control Out Circuit B (not connected)
8	CO-S	Control Out Circuit Shield (not connected)
2	CI-A	Control In Circuit A
9	CI-B	Control In Circuit B
1	CI-S	Control In Circuit Shield
6	VC	Voltage Common
13	VP	Voltage Plus
14	VS	Voltage Shield (L25 and M25) Shell PG Protective Ground

Ethernet implementations: 10Base2

- Thin Ethernet, Thinnet, Cheapernet, ...
- Coaxial cable 50 Ohms
- Daisy chain topology
- BNC- connector / T- Connector
- 50 ohms terminator
- Maximum segment length: 185 m
- Maximum coverage : 925 m
- Maximum number of stations per segment : 30
- Minimum distance between two stations: 0,5 m

Ethernet implementations: 10Base2

Ethernet implementations: 10BaseT

Signal Pin Paires torsadées non blindées **Transmit Data +** Gaine isolante **Transmit Data -**Paire de fils de 3 Receive Data + cuivre torsadée 4 **Unused Unused** 5 **Receive Data -**6 **Unused Unused** 8

Connecteur RJ45

Ethernet implementations: 10BaseFL

L1, L2 and L3 equipments

CD = Collision Domain

BD = Broadcast Domain

 A hub is a simple OSI layer 1 device: a hub just repeats the incoming signal

...the hub simply repeats that signal - all devices connected to the hub will see the frame

Crossover Cables

- A "crossover" or "crossed" cable may be used to directly connect two Ethernet devices
 - Transmit/Receive reversed at one end
 - Crossover cables can be made or bought

Pin 1 on right when looking at RJ-45 connector with tab on bottom and contacts on top

EPITA 2015 - Concepts LAN

Connecting Hubs

- Hubs may be connected or "cascaded"
 - Connected hubs behave like one "big" hub

Transparent Bridging

Essentially, a LAN Switch is a faster more modern version of a Bridge

Bridges operation

Address	Port	
712B13456141	1	
712B13456142	1	Bridge table
642B13456112	2	
642B13456113	2	

Source : B. Forouzan

Learning bridge

Address	Port

a. Original

Address	Port
A	1

b. After A sends a frame to D

Address	Port
A	1
E	3

a frame to A

Address	Port
A	1
E	3
В	1

c. After E sends d. After B sends a frame to C

Bridges: learning process

EPITA 2015 – Concepts LAN

LAN Switch Operation

- Flooding
- Learning
- Forwarding
- Filtering

LAN Switch Operation

 Having learned about destination addresses on the network the switch will forward frames intelligently on the basis of their MAC address

Source : B. Forouzan

Half-duplex Ethernet (Typical situation)

Loop problem

Source : B. Forouzan

- STP takes 30 –50 seconds to converge, with default settings
- Rapid Spanning Tree Protocol
- IEEE 802.1w
- Full-duplex mode
- No shared links
- RSTP has two more port designations
 - Alternate Port—backup for Root Port
 - Backup port—backup for Designated Port on the segment
- In RSTP, all bridges send BPDUs automatically
 - in STP, the root triggers BPDUs
- In RSTP, bridges act to bring the network to convergence
 - While in STP, bridges passively wait for time-outs before changing port states

Fast Ethernet Essentials

10BaseT and 100BaseT

- Both use CSMA/CD
- Frame formats and frame lengths the same
- Usually deployed over Category 5 UTP
- Interconnections made with hubs, switches, routers etc.
- Standard defined by IEEE 802.3u

10BaseT vs 100BaseT

- Transmits 10 times as much data in the same time
- New physical standards
- Interframe gap .96 microseconds instead of 9.6 microseconds (unchanged at 96 bit times)

Fast Ethernet Essentials

100Base-TX

Pin	Signal
1	Transmit Data +
2	Transmit Data -
3	Receive Data +
4	Unused
5	Unused
6	Receive Data -
7	Unused
8	Unused

Fast Ethernet: 100BaseT Specifications

100BaseTX

- 2 pairs of Cat 5 UTP or Cat 1 STP
- By far the most widely used specification (95%+)

100BaseFX

2 strands of SMF or MMF

100BaseT4

4 pairs of Cat 3/4/5 UTP

100BaseT2

2 pairs of Cat 3/4/5 UTP

Fast Ethernet: Matching Interfaces

Fast Ethernet: Auto-Negotiation

Useful if unsure what you're plugging in to - AND when upgrading to a 100BASE-T hub

Order:

- 1. 1000BaseT FDX
- 2. 100BaseT2 FDX
- 3. 100BaseT2 HDX
- 4. 100BaseTX FDX
- 5. 100BaseT4
- 6. 100BaseTX
- 7. 10BaseT FDX
- 8. 10BaseT

Algorithm used to negotiate common data service Common RJ-45 connector for 1 of 8 services Fast link pulses (FLP) similar to link integrity (LI)

Hub/NIC adjust speed to highest common mode

Fast Ethernet : Flow control

Fast Ethernet implementations

100BASE-T4
Repeater Hub

External transceiver Cable

40-pin 40-pin NIC
Connector Connector

c. 100BASE-T4

Source: B. Forouzan

Gigabit Ethernet Essentials

- Latest extension to Ethernet
- 1000 Mbit/s 10 times faster than fast Ethernet
- Compatible with existing Ethernet

Gigabit Ethernet Essentials

Gigabit Ethernet : IEEE / ANSI convergence

Gigabit Ethernet: Carrier Extend

Gigabit Ethernet: Frame Bursting

- Frame Bursting is a means to reduce the Inefficiency of Carrier Extension
- The first frame is transmitted using the normal procedures for gigabit Ethernet.
- A frame burst timer is started to allow transmissions of up to 64 Kbits.
- If additional frames are queued for transmission and the 64 Kbit timer has not expired, two things happen
 - The first frame is followed by carrier extend
 - The next frame is transmitted

Gigabit Ethernet: technology family

Source : Gigabit Ethernet Alliance

Gigabit Ethernet implementations

- 1000BaseLX
 - 2 strands of SMF or MMF
- 1000BaseSX
 - 2 strands of SMF
- 1000BaseCX
 - 2 pairs of twinax
- 1000BaseT
 - 4 pairs of Cat 5 UTP

Gigabit Ethernet implementations

a. 1000BASE-SX/LX

b. 1000BASE-T

Ethernet Comparison

Parameter	Ethernet, 802.3	Fast Ethernet 802.3u	Gigabit Ethernet, 802.3z
Inter Frame Gap	96 bit times	96 bit times	96 bit times
Attempt Limit	16 tries	16 tries	16 tries
Max Frame Size	1518 Bytes	1518 Bytes	1518 Bytes
Min Frame Size	64 Bytes	64 Bytes	512 Bytes
Address Size	48 bits	48 bits	48 bits

IP over Ethernet v2 (1/2)

IP over Ethernet: LLC encapsulation (1/2)

IP over Ethernet: LLC encapsulation (2/2)

IP over Ethernet: SNAP/LLC encapsulation

IP over Ethernet : ARP

0	7	5		
	Nature du réseau = 1			······································
	Type de protocole = 0x800		Entête trame physique	
	Longueur des adresses physiques = 6	<u>``</u>		
	Longueur des adresses réseau = 4			Trame physique
	Code opératoire : Req = 1 / Rep = 2		Paquet	
	Adresse physique source (48 bits)		ARP	
	Adresse du protocole réseau source (32 bits)			
	Adresse physique destination (48 bits)			
	Adresse du protocole réseau destination (32 bits)			<u>↓</u>

- A VLAN is a logical grouping of nodes (clients and servers) residing in a common broadcast domain
- The broadcast domain has been artificially created within a LAN switch
- IEEE 802.1p
- Extension of the frame size of the Ethernet standard by four bytes:
 IEEE 802.3ac

Source : B. Forouzan

Switch with VLAN software

Source : B. Forouzan

10 Gigabit Ethernet Alliance

- 802.3ae
- Membres fondateurs
 - 3Com Corporation
 - Cisco Systems
 - Extreme Networks
 - Intel Corporation
 - Nortel Networks
 - Sun Microsystems
 - World Wide Packets
- Q2 03 finalisation du standard
- Q1 99 formation d'un groupe d'étude

10 Gigabit Ethernet

10 Gigabit Ethernet

10 Gigabit Ethernet implementations

- 10GBase-SR
 - 300m sur fibre noire
- 10GBase-SW
 - 300m sur SONET
 - 850nm, multimode
- 10GBase-LR
 - 2m à 10km sur fibre noire
- 10GBase-LW
 - 2m-10km sur SONET
 - 1310nm, fibre monomode
- 10Base-ER
 - 2m à 40km sur fibre noire
- 10Base-EW
 - 2m 40km sur SONET
 - Both 1550nm, single mode fiber
- 10GBase-LX4
 - 4 parallel wavelengths over single multi- or single-mode fiber pair at 1310nm

Resilient Packet Ring

- MAC protocol based on a ring topology
- IEEE 802.17
- An efficient use of network bandwidth (statistical multiplexing not time division multiplexing)
- A resilient network (< 50ms recovery time)
- Can have up to 128 nodes in a ring

Network Layer	IP	IP		IP		IP
Data Link Layer	Ethornot		RPR			PPP
Physical Layer	Ethernet		SONET	Ethernet		SONET

Exercice: frame decoding

```
00 5A 57 49 54
                      08 00 38 03 07 43 08
       0.0
           49
               49
                  35
                      0.0
                          00
                              1D
                                  06 C8
                                         85
   0.0
       B8
                      00
                          15
                              51
                                    71
                                         12
           0C
              52
                  0C
                                  0C
           19
               50
                  18
                      10
                          00
                              F3
                                  FF
                                     00
                                         00
                                             33
                                                 33
0.0
   0.0
   20
       50
           61
               73
                  73
                      77
                          6F
                              72
                                  64
                                     20
                                         72
           65 64
                  20
                              72
                                 20
                      66 6F
                                     бА
                                         65
2E
   0D 0A
```


Appendice: assigned values for the type field

0000-05DC	IEEE802.3 Length Field	803D	DEC Ethernet	80DE-80DF	Integrated Solutions TRFS
0101-01FF	Experimental	Encryption		80E0-80E3	Allen-Bradley
0200	XEROX PUP (see 0A00)	803E	DEC Unassigned	80E4-80F0	Datability
0201	PUP Addr Trans (see 0A01)	803F	DEC LAN Traffic	80F2	Retix
0400	Nixdorf	Monitor		80F3	AppleTalk AARP (Kinetics)
0600	XEROX NS IDP	8040-8042	DEC Unassigned	80F4-80F5	Kinetics
0660	DLOG	8044	Planning Research	80F7	Apollo Computer
			r lanning research		
0661	DLOG	Corp.		80FF-8103	Wellfleet Communications
0800	Internet IP (IPv4)	8046	AT&T	8107-8109	Symbolics Private
0801	X.75 Internet	8047	AT&T	8130	Hayes Microcomputers
0802	NBS Internet	8049	ExperData	8131	VG Laboratory Systems
0803	ECMA Internet	805B	Stanford V Kernel exp.	8132-8136	Bridge Communications
0804	Chaosnet	805C	Stanford V Kernel prod.	8137-8138	Novell, Inc.
0805	X.25 Level 3	805D	Evans & Sutherland	8139-813D	KTI
0806	ARP	8060	Little Machines	8148	Logicraft
0807	XNS Compatability	8062	Counterpoint	8149	Network Computing Devices
081C	Symbolics Private	Computers	o danto i poniti	814A	Alpha Micro
	•	· · · · · · · · · · · · · · · · · ·			
0888-088A	Xyplex	8065	Univ. of Mass. @	814C	SNMP
0900	Ungermann-Bass net debugr	Amherst		814D	BIIN
0A00	Xerox IEEE802.3 PUP	8066	Univ. of Mass. @	814E	BIIN
0A01	PUP Addr Trans	Amherst		814F	Technically Elite Concept
			Manage Interpreted Auto		
0BAD	Banyan Systems	8067	Veeco Integrated Auto.	8150	Rational Corp
1000	Berkeley Trailer nego	8068	General Dynamics	8151-8153	Qualcomm
1001-100F	Berkeley Trailer encap/IP	8069	AT&T	815C-815E	Computer Protocol Pty Ltd
1600	Valid Systems	806A	Autophon	8164-8166	Charles River Data System
4242	PCS Basic Block Protocol	806C	ComDesign	817D-818C	Protocol Engines
5208		806D		818D	
	BBN Simnet		Computgraphic Corp.		Motorola Computer
6000	DEC Unassigned (Exp.)	806E-8077	Landmark Graphics	819A-81A3	Qualcomm
6001	DEC MOP Dump/Load	Corp.		81A4	ARAI Bunkichi
6002	DEC MOP Remote Console	807A	Matra	81A5-81AE	RAD Network Devices
6003	DEC DECNET Phase IV Route	807B	Dansk Data Elektronik	81B7-81B9	Xyplex
6004	DEC LAT	807C	Merit Internodal	81CC-81D5	Apricot Computers
6005	DEC Diagnostic Protocol	807D-807F	Vitalink	81D6-81DD	Artisoft
6006	DEC Customer Protocol	Communications		81E6-81EF	Polygon
6007	DEC LAVC, SCA	8080	Vitalink TransLAN III	81F0-81F2	Comsat Labs
6008-6009	DEC Unassigned	8081-8083	Counterpoint	81F3-81F5	SAIC
			Counterpoint		
6010-6014	3Com Corporation	Computers		81F6-81F8	VG Analytical
7000	Ungermann-Bass download	809B	Appletalk	8203-8205	Quantum Software
7002	Ungermann-Bass dia/loop	809C-809E	Datability	8221-8222	Ascom Banking Systems
7020-7029	LRT	809F	Spider Systems Ltd.	823E-8240	Advanced Encryption Syste
7030	Proteon	80A3	Nixdorf Computers	827F-8282	Athena Programming
7030	Cabletron	80A4-80B3	Siemens Gammasonics	8263-826A	Charles River Data System
			Siemens Gammasonics		
8003	Cronus VLN	Inc.		829A-829B	Inst Ind Info Tech
8004	Cronus Direct	80C0-80C3	DCA Data Exchange	829C-82AB	Taurus Controls
8005	HP Probe	Cluster		82AC-8693	Walker Richer & Quinn
8006	Nestar	80C4	Banyan Systems	8694-869D	Idea Courier
8008	AT&T	80C5	Banyan Systems	869E-86A1	Computer Network Tech
8010	Excelan	80C6	Pacer Software	86A3-86AC	Gateway Communications
8013	SGI diagnostics	80C7	Applitek Corporation	86DB	SECTRA
8014	SGI network games	80C8-80CC	Intergraph Corporation	86DE	Delta Controls
8015	SGI reserved	80CD-80CE	Harris Corporation	86DF	ATOMIC
8016	SGI bounce server	80CF-80D2	Taylor Instrument	86E0-86EF	Landis & Gyr Powers
8019	Apollo Computers	80D3-80D4	Rosemount Corporation	8700-8710	Motorola
802E	Tymshare	80D5	IBM SNA Service on	8A96-8A97	Invisible Software
802F	Tigan, Inc.	Ether		9000	Loopback
8035	Reverse ARP	80DD	Varian Associates	9001	3Com(Bridge) XNS Sys Mgmt
		0000	variati Associates		
8036	Aeonic Systems			9002	3Com(Bridge) TCP-IP Sys
8038	DEC LANBridge			9003	3Com(Bridge) loop detect
8039-803C	DEC Unassigned			FF00	BBN VITAL-LanBridge cache
	•			FF00-FF0F	ISC Bunker Ramo