Decorating "Classical Lambda Calculus in Modern Dress"

April 12, 2023

Definitions - Algebraic Theory

Definition

An algebraic theory consists of

- a functor $\mathcal{T}: F \to \operatorname{SET}$,
- elements (projections) $\pi_{n,i} \in \mathcal{T}(n)$ for all $1 \leq i \leq n$,
- a composition morphism : $\mathcal{T}(m) \times \mathcal{T}(n)^m \to \mathcal{T}(n)$ for all m, n.

The composition must be

- associative,
- unital,
- compatible with projections,
- dinatural in m.

Definitions - Abstract Clone

Definition

An abstract clone is

- a function $C: \mathbb{N} \to \operatorname{SET}$,
- a composition morphism : $C(m) \times C(n)^m \to C(n)$ for all m, n,
- elements (projections) $\pi_{n,i} \in C(n)$ for all $1 \le i \le n$.

The composition must satisfy

- $\pi_{n,i}$ $(f_1,\ldots,f_n)=f_i$,
- $f \bullet (\pi_{1,n}, \ldots, \pi_{n,n}) = f$,
- $(f \bullet (g_1,\ldots,g_m)) \bullet (h_1,\ldots,h_n) = f \bullet (g_1 \bullet (h_1,\ldots,h_n),\ldots,g_m \bullet (h_1,\ldots,h_n)).$

Definitions - Algebra for an Algebraic Theory

Definition

An algebra for an algebraic theory ${\mathcal T}$ consists of

- 1. a set A,
- 2. an action $\alpha_n : \mathcal{T}(n) \times A^n \to A$.

Such that α_n satisfies:

- 1. naturality in *n*,
- 2. associativity,
- 3. unitality.

Definitions - λ -theory

Definition

A λ -theory consists of

- an algebraic theory L,
- a retraction $\rho: \mathcal{L}(n) \to \mathcal{L}(n+1)$,
- a section $\lambda: \mathcal{L}(n+1) \to \mathcal{L}(n)$.

Such that

- ρ and λ are natural in n;
- ρ and λ are compatible (?) with the actions $\mathcal{L}(m) \times \mathcal{L}(n)^m \to \mathcal{L}(n)$ and $\mathcal{L}(m+1) \times \mathcal{L}(n)^m \to \mathcal{L}(n+1)$ (which "ignores the last variable").

Definitions - λ -theory

Definition

A λ -theory consists of

- an algebraic theory \mathcal{L} ,
- a retraction $\rho: \mathcal{L}(n) \to \mathcal{L}(n+1)$,
- a section $\lambda: \mathcal{L}(n+1) \to \mathcal{L}(n)$.

Such that

- ρ and λ are natural in n;
- ρ and λ are compatible (?) with the actions $\mathcal{L}(m) \times \mathcal{L}(n)^m \to \mathcal{L}(n)$ and $\mathcal{L}(m+1) \times \mathcal{L}(n)^m \to \mathcal{L}(n+1)$ (which "ignores the last variable").

Definition

An algebra for a λ -theory $\mathcal L$ is an algebra A for the underlying algebraic theory.

Definitions - λ -theory

Definition

A λ -theory consists of

- an algebraic theory \mathcal{L} ,
- a retraction $\rho: \mathcal{L}(n) \to \mathcal{L}(n+1)$,
- a section $\lambda: \mathcal{L}(n+1) \to \mathcal{L}(n)$.

Such that

- ρ and λ are natural in n;
- ρ and λ are compatible (?) with the actions $\mathcal{L}(m) \times \mathcal{L}(n)^m \to \mathcal{L}(n)$ and $\mathcal{L}(m+1) \times \mathcal{L}(n)^m \to \mathcal{L}(n+1)$ (which "ignores the last variable").

Definition

An algebra for a λ -theory $\mathcal L$ is an algebra A for the underlying algebraic theory.

For each term $t(\mathbf{x}) \in \mathcal{L}(n)$ and each tuple $\mathbf{a} \in A^n$, we get an interpretation $t(\mathbf{a}) \in A$. Given a λ -theory \mathcal{L} , we can interpret a term t of the lambda calculus (that has a context Γ of length n) as an element $[\![t]\!] \in \mathcal{L}(n)$.

Definition

An abstract clone is

- a function $C: \mathbb{N} \to \operatorname{SET}$,
- a composition morphism : $C(m) \times C(n)^m \to C(n)$ for all $m, n, m \to C(n)$
- elements (projections) $\pi_{n,i} \in C(n)$ for all $1 \le i \le n$.

The composition must satisfy

- $\pi_{n,i}$ $(f_1,\ldots,f_n)=f_i$,
- $f \bullet (\pi_{1,n}, \ldots, \pi_{n,n}) = f$,
- $(f \bullet (g_1,\ldots,g_m)) \bullet (h_1,\ldots,h_n) = f \bullet (g_1 \bullet (h_1,\ldots,h_n),\ldots,g_m \bullet (h_1,\ldots,h_n)).$

Example

Take $C(n) = \{\star\}$, $\pi_{n,i} = \star$ and $\star \bullet \{\star, \ldots, \star\} = \star$.

This theory is the terminal λ -theory.

The λ -calculus Λ , in which $\Lambda(n)$ consists of the terms with n free variables, $\pi_{n,i} = \text{Var}(i)$ (with De Bruijn indices) and \bullet is substitution.

The λ -calculus Λ , in which $\Lambda(n)$ consists of the terms with n free variables, $\pi_{n,i} = \text{Var}(i)$ (with De Bruijn indices) and \bullet is substitution.

For every theory \mathcal{T} the $\mathcal{T}(n)$ are algebras, so the $\Lambda(n)$ are algebras.

The λ -calculus Λ , in which $\Lambda(n)$ consists of the terms with n free variables, $\pi_{n,i} = \text{Var}(i)$ (with De Bruijn indices) and \bullet is substitution.

For every theory \mathcal{T} the $\mathcal{T}(n)$ are algebras, so the $\Lambda(n)$ are algebras.

This is a λ -theory. According to the paper, it is the initial λ -theory.

More generally, we can create abstract clones using algebraic signatures: Given sets of n-ary constructors Σ_n and a sequence of variables x_1, \ldots, x_n , we can build the C(n) inductively:

- $x_i : C(n)$ for $1 \le i \le n$;
- $\sigma(c_1,\ldots,c_n):C(n)$ for $c_1,\ldots,c_n:C(n)$ and $\sigma:\Sigma_n$.

Then the $\pi_{n,i}$ are the x_i , and $f \bullet (g_1, \ldots, g_m)$ substitutes the g_i for the x_i in f.

More generally, we can create abstract clones using algebraic signatures: Given sets of n-ary constructors Σ_n and a sequence of variables x_1, \ldots, x_n , we can build the C(n) inductively:

- $x_i : C(n)$ for $1 \le i \le n$;
- $\sigma(c_1,\ldots,c_n):C(n)$ for $c_1,\ldots,c_n:C(n)$ and $\sigma:\Sigma_n$.

Then the $\pi_{n,i}$ are the x_i , and $f \bullet (g_1, \ldots, g_m)$ substitutes the g_i for the x_i in f.

For example, if we talk about rings, we have $\Sigma_0 = \{0,1\}$, $\Sigma_1 = \{-\}$ (negation) and $\Sigma_2 = \{+,\cdot\}$. Then C(n) is almost the polynomial ring over $\mathbb Z$ in n variables (but not quite, because we distinguish, for example, between 0, 0+0 and x_1-x_1).

More generally, we can create abstract clones using algebraic signatures: Given sets of n-ary constructors Σ_n and a sequence of variables x_1, \ldots, x_n , we can build the C(n) inductively:

- $x_i : C(n)$ for $1 \le i \le n$;
- $\sigma(c_1,\ldots,c_n):C(n)$ for $c_1,\ldots,c_n:C(n)$ and $\sigma:\Sigma_n$.

Then the $\pi_{n,i}$ are the x_i , and $f \bullet (g_1, \ldots, g_m)$ substitutes the g_i for the x_i in f.

For example, if we talk about rings, we have $\Sigma_0 = \{0,1\}$, $\Sigma_1 = \{-\}$ (negation) and $\Sigma_2 = \{+,\cdot\}$. Then C(n) is almost the polynomial ring over $\mathbb Z$ in n variables (but not quite, because we distinguish, for example, between 0, 0+0 and x_1-x_1).

If we have a type A and we have for all $\sigma \in \Sigma_n$, a map $[\![\sigma]\!]: A^n \to A$. Then we can make A into an algebra for this theory.

Let R be a ring. Take $T(n) = R[x_1, ..., x_n]$ the polynomial ring in n variables. Take $\pi_{n,i} = x_i$ and let $f \bullet (g_1, ..., g_n)$ substitute the g_i for the x_i in f.

Let R be a ring. Take $T(n) = R[x_1, \ldots, x_n]$ the polynomial ring in n variables. Take $\pi_{n,i} = x_i$ and let $f \bullet (g_1, \ldots, g_n)$ substitute the g_i for the x_i in f.

If we have a homomorphism of rings $R \to S$ and we take $\mathcal{T}(n) = R[X_1, \dots, X_n]$, then S is a \mathcal{T} -algebra.

Let R be a ring. Take $T(n) = R[x_1, ..., x_n]$ the polynomial ring in n variables. Take $\pi_{n,i} = x_i$ and let $f \bullet (g_1, ..., g_n)$ substitute the g_i for the x_i in f.

Let R be a ring. Take $T(n) = R[x_1, \ldots, x_n]$ the polynomial ring in n variables. Take $\pi_{n,i} = x_i$ and let $f \bullet (g_1, \ldots, g_n)$ substitute the g_i for the x_i in f.

If we have a homomorphism of rings $R \to S$ and we take $\mathcal{T}(n) = R[X_1, \dots, X_n]$, then S is a \mathcal{T} -algebra.

Take $T(n) = \{1, 2, ..., n\}$, $\pi_{n,i} = i$ and $i \bullet (f_1, ..., f_n) = f_i$. This is the initial algebraic theory.

Take
$$T(n) = \{1, 2, ..., n\}$$
, $\pi_{n,i} = i$ and $i \bullet (f_1, ..., f_n) = f_i$. This is the initial algebraic theory.

Any type A can be an algebra, with $i(a_1, \ldots, a_n) = a_i$.

Take
$$T(n) = \{1, 2, ..., n\}$$
, $\pi_{n,i} = i$ and $i \bullet (f_1, ..., f_n) = f_i$. This is the initial algebraic theory.

Any type A can be an algebra, with $i(a_1, \ldots, a_n) = a_i$.

I am still pondering whether $T(n) = \mathbb{Z}$ could be a λ -algebra.

Take a semiring R with identities 0,1 and operations $+,\cdot$. Take $T(n)=R^n$, $\pi_{n,i}=(0,\ldots,0,1,0,\ldots,0)$ and take

$$f \bullet (g_1, \ldots, g_n) = \begin{pmatrix} g_{1,1} & \cdots & g_{n,1} \\ \vdots & \ddots & \vdots \\ g_{1,m} & \cdots & g_{n,m} \end{pmatrix} \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix} := \left(\sum_i f_i \cdot g_{i,1}, \ldots, \sum_i f_i \cdot g_{i,m} \right)$$

in a matrix multiplication like fashion. (T(n)) is the free R-module on n generators)

Take a semiring R with identities 0,1 and operations $+,\cdot$. Take $T(n)=R^n$, $\pi_{n,i}=(0,\ldots,0,1,0,\ldots,0)$ and take

$$f \bullet (g_1, \ldots, g_n) = \begin{pmatrix} g_{1,1} & \cdots & g_{n,1} \\ \vdots & \ddots & \vdots \\ g_{1,m} & \cdots & g_{n,m} \end{pmatrix} \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix} := \left(\sum_i f_i \cdot g_{i,1}, \ldots, \sum_i f_i \cdot g_{i,m} \right)$$

in a matrix multiplication like fashion. (T(n)) is the free R-module on n generators)

For example, take S a set, \mathcal{T} a topology on S. Then we can take $T(n) = \mathcal{T}^n$, with operations \cup , \cap , and units \emptyset , S. Then we have $\pi_{n,i} = (\emptyset, \dots, \emptyset, S, \emptyset, \dots, \emptyset)$. For $U = (U_1, \dots, U_n)$, $V_i = (V_{i,1}, \dots, V_{i,m})$ we have

$$U \bullet (V_1, \ldots, V_n) = (U_1 \cap V_{1,1} \cup \cdots \cup U_n \cap V_{n,1}, \ldots, U_1 \cap V_{1,m} \cup \cdots \cup U_n \cap V_{n,m}).$$

Take a semiring R with identities 0,1 and operations $+,\cdot$. Take $T(n)=R^n$, $\pi_{n,i}=(0,\ldots,0,1,0,\ldots,0)$ and take

$$f \bullet (g_1, \ldots, g_n) = \begin{pmatrix} g_{1,1} & \cdots & g_{n,1} \\ \vdots & \ddots & \vdots \\ g_{1,m} & \cdots & g_{n,m} \end{pmatrix} \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix} := \left(\sum_i f_i \cdot g_{i,1}, \ldots, \sum_i f_i \cdot g_{i,m} \right)$$

in a matrix multiplication like fashion. (T(n)) is the free R-module on n generators)

For example, take S a set, \mathcal{T} a topology on S. Then we can take $T(n) = \mathcal{T}^n$, with operations \cup , \cap , and units \emptyset , S. Then we have $\pi_{n,i} = (\emptyset, \dots, \emptyset, S, \emptyset, \dots, \emptyset)$. For $U = (U_1, \dots, U_n)$, $V_i = (V_{i,1}, \dots, V_{i,m})$ we have

$$U \bullet (V_1, \ldots, V_n) = (U_1 \cap V_{1,1} \cup \cdots \cup U_n \cap V_{n,1}, \ldots, U_1 \cap V_{1,m} \cup \cdots \cup U_n \cap V_{n,m}).$$

Or take $R = \mathbb{N}$, with operations $+, \cdot$ and units 0, 1.

In any category with finite products, take an object X. Then we can set $T(n)=(X^n\to X)$. Then $\pi_{n,i}$ is the ith projection morphism. Also, by the universal property of the product, if we have m terms of $(X^n\to X)$, we get a term of $(X^n\to X^m)$ which we can compose with a term of $(X^m\to X)$ to get a term of $(X^n\to X)$.

In any category with finite products, take an object X. Then we can set $T(n)=(X^n\to X)$. Then $\pi_{n,i}$ is the ith projection morphism. Also, by the universal property of the product, if we have m terms of $(X^n\to X)$, we get a term of $(X^n\to X^m)$ which we can compose with a term of $(X^m\to X)$ to get a term of $(X^n\to X)$.

I believe that if we have a retraction $r: X \to A$ with section s, then A is an algebra with $\varphi \cdot (a_1, \ldots, a_n) = r(\varphi(s(a_1), \ldots, s(a_n)))$.

In any category with finite products, take an object X. Then we can set $T(n)=(X^n\to X)$. Then $\pi_{n,i}$ is the ith projection morphism. Also, by the universal property of the product, if we have m terms of $(X^n\to X)$, we get a term of $(X^n\to X^m)$ which we can compose with a term of $(X^m\to X)$ to get a term of $(X^n\to X)$.

I believe that if we have a retraction $r: X \to A$ with section s, then A is an algebra with $\varphi \cdot (a_1, \ldots, a_n) = r(\varphi(s(a_1), \ldots, s(a_n)))$.

If we have a retraction $X \to X^X$, the theory that we get is a λ -theory.

Any algebra $(A, (\alpha_i)_i)$ for a λ -theory can be interpreted as a Λ -algebra.

Any algebra $(A, (\alpha_i)_i)$ for a λ -theory can be interpreted as a Λ -algebra.

Any λ -theory \mathcal{T} has an element $e \in \mathcal{T}(1)$, retractions $\rho : \mathcal{T}(n) \to \mathcal{T}(n+1)$ and sections $\sigma : \mathcal{T}(n+1) \to \mathcal{T}(n)$. Define $app = \rho(e)$. For $\mathcal{T} = \Lambda$, we have app = xy.

Any algebra $(A, (\alpha_i)_i)$ for a λ -theory can be interpreted as a Λ -algebra.

Any λ -theory \mathcal{T} has an element $e \in \mathcal{T}(1)$, retractions $\rho : \mathcal{T}(n) \to \mathcal{T}(n+1)$ and sections $\sigma : \mathcal{T}(n+1) \to \mathcal{T}(n)$. Define $app = \rho(e)$. For $\mathcal{T} = \Lambda$, we have app = xy. Then $\alpha_2(app, (a, -)) : A \to A$ gives an interpretation of a : A as a function.

Any algebra $(A, (\alpha_i)_i)$ for a λ -theory can be interpreted as a Λ -algebra.

Any λ -theory \mathcal{T} has an element $e \in \mathcal{T}(1)$, retractions $\rho : \mathcal{T}(n) \to \mathcal{T}(n+1)$ and sections $\sigma : \mathcal{T}(n+1) \to \mathcal{T}(n)$. Define $app = \rho(e)$. For $\mathcal{T} = \Lambda$, we have app = xy. Then $\alpha_2(app, (a, -)) : A \to A$ gives an interpretation of a : A as a function.

Take $\mathbf{1}_n = \sigma^{n+1}(\rho^n(e))$. Note that we can inject this as $\mathbf{1}_n \bullet ()$ into any $\mathcal{T}(n)$. For $\mathcal{T} = \Lambda$, this is $\lambda x, \lambda y_1, \dots, \lambda y_n, xy_1 \dots y_n$.

Any algebra $(A, (\alpha_i)_i)$ for a λ -theory can be interpreted as a Λ -algebra.

Any λ -theory \mathcal{T} has an element $e \in \mathcal{T}(1)$, retractions $\rho : \mathcal{T}(n) \to \mathcal{T}(n+1)$ and sections $\sigma : \mathcal{T}(n+1) \to \mathcal{T}(n)$. Define $app = \rho(e)$. For $\mathcal{T} = \Lambda$, we have app = xy. Then $\alpha_2(app, (a, -)) : A \to A$ gives an interpretation of a : A as a function.

Take $\mathbf{1}_n = \sigma^{n+1}(\rho^n(e))$. Note that we can inject this as $\mathbf{1}_n \bullet ()$ into any $\mathcal{T}(n)$. For $\mathcal{T} = \Lambda$, this is

$$\lambda x, \lambda y_1, \ldots, \lambda y_n, xy_1 \ldots y_n.$$

For n = 1, this is

$$\lambda x, \lambda y, xy.$$

Preliminaries to the main theorem

For a $\lambda\text{-theory }\mathcal{L}\text{, }\mathcal{L}(0)$ is a $\mathcal{L}\text{-algebra}$ and therefore a $\Lambda\text{-algebra}.$

Preliminaries to the main theorem

For a λ -theory \mathcal{L} , $\mathcal{L}(0)$ is a \mathcal{L} -algebra and therefore a Λ -algebra.

Given a Λ -algebra A. Take $\Lambda_A(n) = A + \Lambda(n)$, as a coproduct of \mathcal{T} -algebras, defined using a coend.

Preliminaries to the main theorem

For a λ -theory \mathcal{L} , $\mathcal{L}(0)$ is a \mathcal{L} -algebra and therefore a Λ -algebra.

Given a Λ -algebra A. Take $\Lambda_A(n) = A + \Lambda(n)$, as a coproduct of \mathcal{T} -algebras, defined using a coend.

Lemma

 Λ_A is a λ -theory.

Proof.

We can identify Λ_A with \mathcal{U}_A .

We have a retraction $U_A o U_A^{U_A}$. Composition with this gives a retraction

$$\mathcal{U}_A(n) \to \mathcal{U}_A(n+1)$$
.

\mathcal{U}_{A}

Let A be a Λ -algebra.

Definition

We define a monoid $M_A = (\{a \in A \mid \mathbf{1}a = a\}, \circ)$ with \circ being function composition.

\mathcal{U}_{A}

Let A be a Λ -algebra.

Definition

We define a monoid $M_A = (\{a \in A \mid \mathbf{1}a = a\}, \circ)$ with \circ being function composition.

Definition

We define P(A) to be the category of presheaves on the category M_A . This has 'universal object' $U_A = M_A$ with the obvious right action of M_A .

\mathcal{U}_{A}

Let A be a Λ -algebra.

Definition

We define a monoid $M_A = (\{a \in A \mid \mathbf{1}a = a\}, \circ)$ with \circ being function composition.

Definition

We define P(A) to be the category of presheaves on the category M_A . This has 'universal object' $U_A = M_A$ with the obvious right action of M_A .

Lemma

We have a retraction $U_A \rightarrow U_A^{U_A}$.

Proof.

We have $M_A = \{a \in A \mid \mathbf{1}a = a\}$. We can identify $U_A^{U_A}$ with $\{a \in A \mid \mathbf{1}_2 a = a\}$. Composition on the left with $\mathbf{1}$ gives the retraction.

$$\mathcal{U}_{A}$$

Let A be a Λ -algebra.

Definition

We define a monoid $M_A = (\{a \in A \mid \mathbf{1}a = a\}, \circ)$ with \circ being function composition.

Definition

We define P(A) to be the category of presheaves on the category M_A . This has 'universal object' $U_A = M_A$ with the obvious right action of M_A .

Lemma

We have a retraction $U_A \to U_A^{U_A}$.

Proof.

We have $M_A = \{a \in A \mid \mathbf{1}a = a\}$. We can identify $U_A^{U_A}$ with $\{a \in A \mid \mathbf{1}_2 a = a\}$. Composition on the left with 1 gives the retraction.

Definition

We take \mathcal{U}_A to be the endomorphism theory of the reflexive universal $U_A \in P(A)$.

The Main Theorem of the Lambda Calculus

Theorem

There is an adjoint equivalence $\mathcal{L} \mapsto \mathcal{L}(0)$ and $A \mapsto \Lambda_A$ between λ -theories and Λ -algebras.

In particular, each λ -theory $\mathcal L$ is isomorphic to the theory of extensions of its initial algebra $\mathcal L(0)$.