UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Instituto de Informática Departamento de Informática Aplicada

Aula 4: Representação de textos com técnicas tradicionais

Prof. Dennis Giovani Balreira

INF01221 - Tópicos Especiais em Computação XXXVI: Processamento de Linguagem Natural

Conteúdo

- Introdução à representação de textos
- Modelos tradicionais de representação textual:
 - Bag of words
 - o TF-IDF
- Medidas de similaridade entre textos
 - Distância de cosseno
- Problemas de representações tradicionais

Onde estamos em PLN?

- Algoritmos tradicionais
 - Predominantes entre o final dos anos 1990 até ~2016
 - BoW features + Aprendizado de Máquina
- Embeddings fixas + Deep Learning
 - Predominates de ~2014 até ~2019
 - Word2vec, Glove, FastText + LSTM
- Embeddings contextuais + Large Language Models
 - Estado da arte em diversas tarefas
 - BERT, GPT, etc.

- Como representar textos em computação?
 - o No sentido de tipos de dados?

- Como representar textos em computação?
 - No sentido de tipos de dados?
 - Caracteres
 - Strings
 - **■** ...
 - São na verdade símbolos codificados em "binários"
 - Mas qual relação eles possuem?

97	01100001	a
98	01100010	b
99	01100011	С
100	01100100	d
101	01100101	е
102	01100110	f
103	01100111	g

- Como representar textos em computação?
 - No sentido de tipos de dados?
 - Caracteres
 - Strings
 - **...**
 - São na verdade símbolos codificados em "binários"
 - Mas qual relação eles possuem?
 - 'a' está antes de 'b' em ASCII
 - "amor" e "paixão":
 - "amor": [97, 109, 111, 114]
 - "paixão": [112, 97, 105, 120, 227, 111]

97	01100001	а		
98	01100010	b		
99	99 01100011			
100	01100100	d		
101	01100101	е		
102	01100110	f		
103	01100111	g		

- Como representar textos em computação?
 - o No sentido de tipos de dados?
 - Caracteres
 - Strings
 - **...**
 - São na verdade símbolos codificados em "binários"
 - Mas qual relação eles possuem?
 - 'a' está antes de 'b' em ASCII
 - "amor" e "paixão":
 - "amor": [97, 109, 111, 114]
 - "paixão": [112, 97, 105, 120, 227, 111]

97	97 01100001			
98	98 01100010			
99	99 01100011			
100	100 01100100			
101	101 01100101			
102	01100110	f		
103	01100111	g		

Legal, mas 'a' não tem nada a ver com 'b'!

Números muito diferentes em palavras muito relacionadas!

- Problema fundamental:
 - Máquinas processam números!
 - Mas textos são por natureza simbólicos...
 - Simbólico: palavras, expressões
 - Numérico: números, vetores, matrizes
 - Queremos poder processar texto números
 - Isso requer formas de representar os textos

Modelos tradicionais de representação textual

- Modelos tradicionais para representar texto:
 - Bag of Words (BoW)
 - Term Frequency Inverse Document Frequency (TF-IDF)

Modelos tradicionais de representação textual

- Modelos tradicionais para representar texto:
 - Bag of Words (BoW)
 - Term Frequency Inverse Document Frequency (TF-IDF)

- Bag of Words (BoW)
 - Cada documento é transformado em um vetor, onde cada elemento representa a frequência de uma palavra específica
 - "Documento" neste caso é qualquer texto

		about	bird	heard	is	the	word	you
1	About the bird, the bird, bird bird bird	1	5	0	0	2	0	0
2	You heard about the bird	1	1	1	0	1	0	1
3	The bird is the word	0	1	0	1	2	1	0

- Bag of Words (BoW)
 - É uma das formas mais simples de representar texto
 - Qual o tamanho (dimensão) do vetor gerado?
 - Depende do que?

- Bag of Words (BoW)
 - É uma das formas mais simples de representar texto
 - Qual o tamanho (dimensão) do vetor gerado?
 - Depende do número de "termos" distintos que aparecem no vocabulário de todos os documentos!
 - Cada documento gera um vetor diferente, mas todos possuem a mesma dimensão!

$$\overrightarrow{d}_{j} = (w_{1,j}, w_{2,j}, ..., w_{t,j})$$

dj: documento j. wk,j: frequência da palavra k (considerando todo o vocabulário) no documento j.

Document D1	The child makes the dog happy
	the: 2, dog: 1, makes: 1, child: 1, happy: 1
Document D2	The dog makes the child happy
	the: 2, child: 1, makes: 1, dog: 1, happy: 1

	child	dog	happy	makes	the	BoW Vector representations	
D1	1	1	1	1	2	[1,1,1,1,2]	
D2	1	1	1	1	2	[1,1,1,1,2]	

Bag of Words (BoW)

Exercício 1: Considere os seguintes documentos:

Documento 1: "O gato correu rápido."

Documento 2: "O cachorro correu devagar."

Documento 3: "O gato e o cachorro correram."

- a) Qual o vocabulário dos documentos?
- b) Qual a dimensão (tamanho) dos vetores a serem gerados?
- c) Quais os vetores d1, d2 e d3?

Bag of Words (BoW)

```
Exercício 1: Considere os seguintes documentos:
     Documento 1: "O gato correu rápido."
     Documento 2: "O cachorro correu devagar."
     Documento 3: "O gato e o cachorro correram."
a) Qual o vocabulário dos documentos?
     Vocabulário: ["O", "gato", "correu", "rápido", "cachorro", "devagar", "e", "correram"]
b) Qual a dimensão (tamanho) dos vetores a serem gerados?
     8 (vocabulário contém oito palavras únicas)
c) Quais os vetores d1, d2 e d3?
     d1 (Documento 1): [1, 1, 1, 1, 0, 0, 0, 0]
     d2 (Documento 2): [1, 0, 1, 0, 1, 1, 0, 0]
     d3 (Documento 3): [2, 1, 0, 0, 1, 0, 1, 1]
```

- Bag of Words (BoW)
 - Considere as frases:
 - d1: "O time venceu o jogo."
 - d2: "A equipe entendeu a estratégia."
 - BoW: 0
 - vocab: ['a', 'entendeu', 'equipe', 'estratégia', 'jogo', 'o', 'time', 'venceu']
 - d1: [0, 0, 0, 0, 1, 2, 1, 1] d2: [2, 1, 1, 1, 0, 0, 0, 0]

- Bag of Words (BoW)
 - Considere as frases:
 - d1: "O time venceu o jogo."
 - d2: "A equipe entendeu a estratégia."
 - BoW: 0
 - vocab: ['a', 'entendeu', 'equipe', 'estratégia', 'jogo', 'o', 'time', 'venceu']
 - Qual problema principal temos usando BoW?

- Bag of Words (BoW)
 - Considere as frases:
 - d1: "O time venceu o jogo."
 - d2: "A equipe entendeu a estratégia."
 - o BoW:
 - vocab: ['a', 'entendeu', 'equipe', 'estratégia', 'jogo', 'o', 'time', 'venceu']
 d1: 0. 0. 0. 1. 2. 1. 11
 - d1. p0, 0, 0, 1, 2, 1, 1, d2: [2, 1, 1, 1, 0, 0, 0, 0]
 - Qual problema principal temos usando BoW?
 - Palavras "fracas" (não representam o contexto da frase) e palavras "fortes" (representam o contexto) possuem o mesmo peso

- Modelos tradicionais para representar texto:
 - Bag of Words (BoW)
 - Term Frequency Inverse Document Frequency (TF-IDF)

- Term Frequency Inverse Document Frequency (TF-IDF)
 - Mede a relevância de uma palavra em um documento em relação a um conjunto de documentos
 - Ajusta a contagem simples de palavras do BoW ponderando as palavras de acordo com sua importância (termos raros tem mais importância)
 - Proposto por Karen Spärck Jones (1972)

- *Term Frequency* (TF): mede quantas vezes a palavra aparece no documento
- Inverse Document Frequency (IDF): mede o quanto uma palavra é rara em todos os documentos do corpus

(26/08/1935 - 04/04/2007)

• Term Frequency - Inverse Document Frequency (TF-IDF)

número total de documentos do corpus

$$\text{TF-IDF}(t,d) = TF(t,d) \times IDF(t)$$

- Term Frequency Inverse Document Frequency (TF-IDF)
 - o Exemplo:
 - Documento 1: "O time venceu o jogo."
 - Documento 2: "A equipe entendeu a estratégia."
 - Documento 3: "O time entendeu a estratégia de jogo."

Qual o TF-IDF de todos os termos para cada documento?

(Considere após remoção das stopwords "o" e "a")

$$TF(t,d) = rac{f_{t,d}}{N_d}$$
 $IDF(t) = \log\left(rac{N}{1+df(t)}
ight)$ $TF ext{-IDF}(t,d) = TF(t,d) imes IDF(t)$

- Term Frequency Inverse Document Frequency (TF-IDF)
 - o Exemplo:
 - Documento 1: "O time venceu o jogo."
 - Documento 2: "A equipe entendeu a estratégia."
 - Documento 3: "O time entendeu a estratégia de jogo."

$$TF(t,d) = rac{f_{t,d}}{N_d}$$

$$IDF(t) = \log\left(rac{N}{1+df(t)}
ight)$$

$$TF\text{-}IDF(t,d) = TF(t,d) imes IDF(t)$$

Qual o TF-IDF de todos os termos para cada documento?

Vocabulário final (sem stopwords): ["time", "venceu", "jogo", "equipe", "entendeu", "estratégia"]

Documento 1: ["time", "venceu", "jogo"]

$$ullet$$
 "time": $TF("time")=1/3=0.333$

$$ullet$$
 "venceu": $TF("venceu")=1/3=0.333$

• "jogo":
$$TF("jogo") = 1/3 = 0.333$$

Documento 2: ["equipe", "entendeu", "estratégia"]

• "equipe":
$$TF("equipe") = 1/3 = 0.333$$

• "entendeu":
$$TF("entendeu") = 1/3 = 0.333$$

• "estratégia":
$$TF("estratégia") = 1/3 = 0.333$$

Documento 3: ["time", "entendeu", "estratégia", "jogo"]

• "time":
$$TF("time") = 1/4 = 0.25$$

$$ullet$$
 "entendeu": $TF("entendeu")=1/4=0.25$

$$ullet$$
 "estratégia": $TF("estrat\'egia")=1/4=0.25$

• "jogo":
$$TF("jogo") = 1/4 = 0.25$$

- Term Frequency Inverse Document Frequency (TF-IDF)
 - o Exemplo:
 - Documento 1: "O time venceu o jogo."
 - Documento 2: "A equipe entendeu a estratégia."
 - Documento 3: "O time entendeu a estratégia de jogo."

$$TF(t,d) = rac{f_{t,d}}{N_d}$$

$$IDF(t) = \log\left(rac{N}{1+df(t)}
ight)$$

$$TF\text{-}IDF(t,d) = TF(t,d) imes IDF(t)$$

Qual o TF-IDF de todos os termos para cada documento?

• "time" aparece em 2 documentos (1 e 3):

$$IDF("time") = \log\left(rac{3}{1+2}
ight) = \log(1) = 0$$

• "venceu" aparece em 1 documento (1):

$$IDF("venceu") = \log\left(rac{3}{1+1}
ight) = \log(1.5) pprox 0.176$$

• "jogo" aparece em 2 documentos (1 e 3):

$$IDF("jogo") = \log\left(rac{3}{1+2}
ight) = \log(1) = 0$$

• "equipe" aparece em 1 documento (2):

$$IDF("equipe") = \log\left(rac{3}{1+1}
ight) = \log(1.5) pprox 0.176$$

- "entendeu" aparece em 2 documentos (2 e 3):
$$IDF("entendeu") = \log\left(\frac{3}{1+2}\right) = \log(1) = 0$$

• "estratégia" aparece em 2 documentos (2 e 3):

$$IDF("estrat\'egia") = \log\left(rac{3}{1+2}
ight) = \log(1) = 0$$

- Term Frequency Inverse Document Frequency (TF-IDF)
 - o Exemplo:
 - Documento 1: "O time venceu o jogo."
 - Documento 2: "A equipe entendeu a estratégia."
 - Documento 3: "O time entendeu a estratégia de jogo."

Qual o TF-IDF de todos os termos para cada documento?

Documento 1:

• "time":
$$TF - IDF = 0.333 \times 0 = 0$$

$$ullet$$
 "venceu": $TF-IDF=0.333 imes0.176pprox0.059$

$$ullet$$
 "jogo": $TF-IDF=0.333 imes0=0$

Documento 2:

$$ullet$$
 "equipe": $TF-IDF=0.333 imes0.176pprox0.059$

$$ullet$$
 "entendeu": $TF-IDF=0.333 imes0=0$

$$ullet$$
 "estratégia": $TF-IDF=0.333 imes0=0$

$$TF(t,d) = rac{f_{t,d}}{N_d}$$
 $IDF(t) = \log\left(rac{N}{1+df(t)}
ight)$ $\overline{ ext{TF-IDF}(t,d) = TF(t,d) imes IDF(t)}$

Documento 3:

• "time":
$$TF-IDF=0.25 imes 0=0$$

$$ullet$$
 "entendeu": $TF-IDF=0.25 imes0=0$

• "estratégia":
$$TF-IDF=0.25 imes0=0$$

• "jogo":
$$TF-IDF=0.25 imes0=0$$

- Term Frequency Inverse Document Frequency (TF-IDF)
 - Análise com outro exemplo maior:
 Documento 1 (outros documentos omitidos):

"A **tecnologia** está mudando rapidamente o mundo em que vivemos. As empresas de **tecnologia** estão cada vez mais focadas em **inovação** para criar produtos que impactam positivamente a sociedade. A **inovação** em **inteligência** artificial (IA) é um dos principais fatores que impulsionam essas mudanças. As empresas estão investindo em pesquisa e desenvolvimento de IA para criar soluções inovadoras que transformem indústrias inteiras."

Assumindo os seguintes valores de TF-IDF: TF-IDF("tecnologia") = 0.04 × 0.154 = 0.00616
$$\frac{2}{50}$$
 $\log{(\frac{100}{70})}$

TF-IDF("inteligência") = 0.02 × 1 = 0.02
$$\longrightarrow$$
 $\frac{1}{50} \log(\frac{100}{10})$

"Tecnologia" é uma palavra importante no documento, mas porque é comum no corpus tem valor de TF-IDF baixo.

"Inteligência" é menos comum tanto no documento quanto no corpus, portanto, tem um valor de TF-IDF maior do que palavras muito comuns.

- Term Frequency Inverse Document Frequency (TF-IDF)
 - Destaca palavras que são frequentes em um documento específico e que não são comuns em outros documentos
 - Permite identificar termos que carregam mais significado em um contexto particular
 - Palavras com valores de TF-IDF mais altos são mais relevantes
 - Podem ser usadas para identificar os principais tópicos do documento

Aparece com frequência no documento

Considere os seguintes textos:

"Maria levou seu cachorro ao parque. Lá, o cachorro brincou com outros animais e correu feliz. No fim do dia, Maria deu ração ao seu cachorro."

"João levou seu gato ao veterinário. O gato ficou um pouco assustado com a presença de outros animais. Quando voltou para casa, João deu comida ao seu gato."

Quais semelhanças entre os textos?

Considere os seguintes textos:

"Maria levou seu cachorro ao parque. Lá, o cachorro brincou com outros animais e correu feliz. No fim do dia, Maria deu ração ao seu cachorro."

"João levou seu gato ao veterinário. O gato ficou alegre com a presença de outros animais. Quando voltou para casa, João deu comida ao seu gato."

Várias!! Algumas relações:

- Maria e João
- cachorro e gato
- animais
- alegre e feliz (sinônimo)
- ração e comida

Como achar similaridades sintáticas simples (com o que já vimos)?

Considere os seguintes textos:

"Maria levou seu cachorro ao parque. Lá, o cachorro brincou com outros animais e correu feliz. No fim do dia, Maria deu ração ao seu cachorro."

"João levou seu gato ao veterinário. O gato ficou alegre com a presença de outros animais. Quando voltou para casa, João deu comida ao seu gato."

Várias!! Algumas relações:

- Maria e João
- cachorro e gato
- animais
- alegre e feliz (sinônimo)
- ração e comida

Formas "sintáticas":

- 1. BoW: conta palavras comuns de dois textos
 - 2. N-grams: conta a quantidade de palavras consecutivas iguais entre dois textos
- 3. Distância de Levenshtein: conta a quantidade de erros entre dois textos

Considere os seguintes textos:

"Maria levou seu cachorro ao parque. Lá, o cachorro brincou com outros animais e correu feliz. No fim do dia, Maria deu ração ao seu cachorro."

"João levou seu gato ao veterinário. O gato ficou alegre com a presença de outros animais. Quando voltou para casa, João deu comida ao seu gato."

Mas e se quisermos tentar capturar similaridades semânticas (significado)?

Considere os seguintes textos:

"Maria levou seu cachorro ao parque. Lá, o cachorro brincou com outros animais e correu feliz. No fim do dia, Maria deu ração ao seu cachorro."

"João levou seu gato ao veterinário. O gato ficou alegre com a presença de outros animais. Quando voltou para casa, João deu comida ao seu gato."

Mas e se quisermos tentar capturar similaridades semânticas (significado)?

Podemos usar os modelos tradicionais para vetorizar palavras e utilizar distâncias para computar similaridade!

- Ideia geral: documentos próximos no espaço vetorial têm conteúdo similar
 - Exemplo:

		As You Like It	Twelfth Night	Julius Caesar	Henry V
	battle		0	7	13
(Termos)	good	114	80	62	89
(Territos)	fool	36	58	1	4
	wit	20	15	2	3

(Documentos)

Quais textos são mais semelhantes?

- Ideia geral: documentos próximos no espaço vetorial têm conteúdo similar
 - Exemplo:

		As You Like It	Twelfth Night	Julius Caesar	Henry V	
	battle		0	7	13	
(Termos)	good	14	80	62	89	
	fool	36	58	1	4	
	wit	20	15	2	3	

(Documentos)

Quais textos são mais semelhantes?

- "fool" e "wit" são palavras que remetem a comédias
- "battle" remete a textos mais sérios

- Ideia geral: documentos próximos no espaço vetorial têm conteúdo similar
 - Exemplo:

		As You Like It	Twelfth Night	Julius Caesar	Henry V
	battle		0	7	13
(Termos)	good	14	80	62	89
(1611105)	fool	36	58	1	4
	wit	20	15	2	3

(Documentos)

Vetores:

As You Like It: [1,114,36,20] Twelfth Night: [0,80,58,15] Julius Caesar: [7,62,1,2] Henry V: [13,89,4,3]

4D difícil de visualizar... Como vê-los em 2D?

- Ideia geral: documentos próximos no espaço vetorial têm conteúdo similar
 - Exemplo:

		As You Like It	Twelfth Night	Julius Caesar	Henry V
	battle		0	7	13
(Termos)	good	14	80	62	89
(Territos)	fool	36	58	1	4
	wit	20	15	2	3

(Documentos)

Vetores:

As You Like It: [1,114,36,20] Twelfth Night: [0,80,58,15] Julius Caesar: [7,62,1,2]

Henry V: [13,89,4,3]

4D difícil de visualizar...

Como vê-los em 2D?

Utilizar técnicas de redução de dimensionalidade (transformar dados de alta dimensão em espaço de menor dimensão)

Ex: PCA, t-SNE

Ideia geral: documentos próximos no espaço vetorial têm conteúdo similar

Exemplo:

Vetores:

As You Like It: [1,114,36,20] Twelfth Night: [0,80,58,15] Julius Caesar: [7,62,1,2] Henry V: [13,89,4,3]

Vetores reduzidos em 2D:

As You Like It: [-25.35,-19.08] Twelfth Night: [-27.10,21.45] Julius Caesar: [33.23,10.20] Henry V: [19.22,-12.56]

*PCA: Principal Component Analysis

Ideia geral: documentos próximos no espaço vetorial têm conteúdo similar
 Exemplo:

Qual distância mostra a similaridade de documentos?

Ideia geral: documentos próximos no espaço vetorial têm conteúdo similar
 Exemplo:

Similaridade de textos: distância de cosseno

- Calcular o ângulo entre os vetores, em vez da magnitude
 - A similaridade do cosseno tem range [-1,1] e a distância [0,2], onde:
 - 0 indica que os vetores são idênticos
 - o 1 indica que os vetores são completamente independentes (ortogonais)
 - 2 indica que os vetores estão em direções opostas

$$\operatorname{s_cos}(A,B) = rac{A \cdot B}{||A|| \, ||B||}$$
 Produto escalar Similaridade Normas de A e B

$$d_{-}\cos(A,B) = 1 - s_{-}\cos(A,B)$$
 Distância

Sobre os modelos tradicionais

- Ambas BoW e TF-IDF ajudam na representação numérica de palavras!
 - Abordagens simples e de fácil implementação
 - Interpretação intuitiva
 - Sabe-se exatamente o significado dos vetores gerados
 - Não precisam de treinamento prévio
 - São pouco custosos, sendo eficientes para pequenos conjuntos de textos

Questões fundamentais de "Linguagens Naturais"

- Ambiguidade: mesma palavra com significados distintos (contexto)
 Ex: "João foi ao banco para sacar dinheiro." vs.
 "João sentou no banco da praça para descansar."
- Sinônimos: diferentes palavras com mesmo significado, mas representadas de forma completamente diferente Ex: "O cachorro correu pelo parque." vs.
 "O canino correu pelo parque."
- Contexto: a ordem das palavras influencia o significado de uma frase
 Ex: "O cachorro mordeu o homem." vs. "O homem mordeu o cachorro."

Como as abordagens BoW e TF-IDF lidam com estas questões?

Questões fundamentais de "Linguagens Naturais"

- Ambiguidade: mesma palavra com significados distintos (contexto)
 Ex: "João foi ao banco para sacar dinheiro." vs.
 "João sentou no banco da praça para descansar."
- Sinônimos: diferentes palavras com mesmo significado, mas representadas de forma completamente diferente Ex: "O cachorro correu pelo parque." vs.
 "O canino correu pelo parque."
- Contexto: a ordem das palavras influencia o significado de uma frase
 Ex: "O cachorro mordeu o homem." vs. "O homem mordeu o cachorro."

Abordagens fundamentais (BoW e TF-IDF) permitem algum tipo de similaridade, mas não ajudam nestes pontos...

Material complementar

- Scikit-learn (https://scikit-learn.org/stable/)
 - TF-IDF: Fornece implementações eficientes para calcular TF-IDF com a classe TfidfVectorizer.
 - Bag of Words (BoW): A classe CountVectorizer permite gerar representações BoW.
 - Similaridade do cosseno: Pode ser calculada utilizando a função cosine_similarity.

Próximas aulas

- Aula prática (Laboratório 1)
- Aula teórica:
 - Aprendizado supervisionado para textos

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Instituto de Informática Departamento de Informática Aplicada

Obrigado pela atenção! Dúvidas?

Prof. Dennis Giovani Balreira (Material adaptado da Profa. Viviane Moreira e do Prof. Dan Jurafsky)

INF01221 - Tópicos Especiais em Computação XXXVI: Processamento de Linguagem Natural

