Total Score: 15

Page: 1

Subtask	Th	Points
1.1	Bernoulli: $\rho \cdot g \cdot h - \frac{\rho}{2} \cdot v^2 = \left(\xi_T + \lambda \cdot \frac{l}{d} + \xi_V\right) \cdot \frac{\rho}{2} \cdot v^2$ 0.5 P	2.0
	$v = \sqrt{\frac{2 \cdot \rho \cdot g \cdot h}{\rho \cdot \left(1 + \xi_T + \lambda \cdot \frac{l}{d} + \xi_V\right)}} = \sqrt{\frac{2 \cdot 9.81 \cdot 10}{1 + 0.3 + 0.03 \cdot 20/0.05 + 3}} m/s 1 \text{ P}$	
	$v = \sqrt{12.04} \ m/s = 3.47 \ m/s$ 0.5 P	
1.2	Re = $\frac{v \cdot D_H \cdot \rho}{\eta} = \frac{3.47 \cdot 0.05}{50 \cdot 10^{-6}} = 3471 \ge 2300 \Rightarrow turbulent$	2.0
1.3	$Q_{\text{max}} = v \cdot \frac{\pi}{4} \cdot d^2 = 3.47 \cdot \frac{\pi}{4} \cdot 0.05^2 = 6.81 \cdot 10^{-3} \frac{m^3}{s} = 409 \frac{l}{\text{min}}$	0.5
1.4	$\dot{Q}_0 = \frac{A}{l \cdot \rho} \cdot \rho \cdot g \cdot h = \frac{\pi \cdot d^2 \cdot g \cdot h}{4 \cdot l} = \frac{\pi \cdot 0.05^2 \cdot 9.81 \cdot 10}{4 \cdot 20} \frac{m^3}{s^2} $ 1 P	2.0
	$\dot{Q}_0 = 9.631 \cdot 10^{-3} \frac{m^3}{s^2}$ 1 P	
1.5	$T = \frac{Q_{\text{max}}}{\dot{Q}_0} = \frac{6.81 \cdot 10^{-3}}{9.631 \cdot 10^{-3}} s = 0.707 s$	1.0
1.6	>4 μ max. 80000	1.5
	>6 μ max. 5000 >14 μ max. 320	
1.7	return line filter 1 Point per filter	2.0
1.8	HEES = synthetic ester	1.0
1.9	viscosity (without further specification) 0.5 P	1.0
	viscosity group, nominal viscosity, viscosity at 40 °C or similar +0.5 P	
1.10	HLP 46 has the lowest VI (Blackline 46) 0.5 P	2.0
	Justification: highest V ₄₀ , lowest V ₁₀₀ +1.5 P	
	Summe:	15

Total Score: 10

0.1.1		
Subtask	Ro	Points
2.1	(T) (B) (P) (A)	2.0
	Denomination: hydraulically actuated, spring-centred 4/3- port valve	
2.2	Functionality: A connected element can be moved arbitrarily in the middle position because ports A and B are connected with port T	2.0
	Tank Druck-versorgung	
	Denomination: Flow control valve with by-pass (check valve); unlockable	
2.3	check valve $x_{\rm F} = \frac{\Delta p \cdot A}{c_{\rm F}} = \frac{\Delta p \cdot \pi \cdot d^2}{c_{\rm F} 4} = 18.76 \text{ mm}$	1,0
2.4	$\Delta p = \left(\frac{Q}{\alpha_D A}\right)^2 \frac{\rho}{2} = \left(\frac{2201}{0.7 \pi 0.007 \text{m} \cdot 0.001 \text{m min}}\right)^2 \frac{890 \text{kg}}{2 \text{m}^3} = 252.47 \text{bar}$	0.5
2.5	$p_0 = p_{\rm T} + \Delta p = 257.47 \text{ bar}$ constant pressure system: $F_{\rm Str} = 2 \cdot \alpha_{\rm D}^2 \frac{\cos \varepsilon_{\rm I}}{\sin \varepsilon_{\rm I}} d \cdot \pi \cdot x \cdot \Delta p = 198.04 \text{ N}$	1.5
	alternative: $F_{\text{Str}} = \frac{\rho Q^2}{d \pi x} \frac{\cos \varepsilon_1}{\sin \varepsilon_1} = 198.04 \text{ N}$	
	$x = x_0 + \frac{F_{Str}}{c_F} = 1 \text{ mm} + 4.95 \text{ mm} = 5.95 \text{ mm}$	

2.6	increase of the inflow angle $\boldsymbol{\varepsilon}_1$	1.0
	deviation of the flow (increase of the outflow angle $90^{\circ} \le \varepsilon_2 \le 180^{\circ}$)	

decrease of the flow cross section area $A = d \cdot \pi \cdot x$

2.7
$$Q_{\text{Ein}} = v \cdot A = v \cdot \frac{\pi}{4} d_{\text{Kolben}}^2 = 109.93 \frac{1}{\text{min}}$$
 2.0

$$Q_{\text{out}} = v \cdot A = v \cdot \frac{\pi}{4} (d_{\text{Piston}}^2 - d_{Rod}^2) = 84.45 \frac{1}{\text{min}}$$

The pressure loss amounts ca. 6 bar for both directions (from diagram).

$$P = \Delta p (Q_{in} + Q_{out}) = 1943.8 W$$

Summation: 10

Total Score: 10

Subtask	C1-					Dilita		
	SK .					Points 0.5		
3.1	vane pump							
3.2	1. vane, 2. valve plate, 3. rotor, 4. stator ring, 5. housing							
3.3	wobble plate swash plate bent axis							
	variability	very bad	good	bad				
	rotating mass	small	big	big				
	imbalance	yes	no	no				
	run through shaft	yes	yes	no				
	motor mode	bad	bad	good				
3.5	work is considered a higher efficiency factor $V = z \cdot A_P \cdot d_P \cdot \tan \theta$	ctors.	•		ally reach	1		
3.6	$Q = V \cdot n = 48.23 \text{cm}^3 \cdot 1500 \text{rpm} = 72.346 \frac{I}{\text{min}}$ $\delta' = 1 - \cos\left(\frac{90^\circ}{Z}\right) = 0.13397 \Rightarrow 13.397\%$							
3.7	$\left[\sum \frac{dV_{P}}{d\varphi}\right]_{\text{max}} = \frac{h_{\text{max}}}{2} \cdot A_{P} \left[\sin\left(\frac{\pi}{2}\right) + \sin\left(\frac{\pi}{2} + \frac{2 \cdot \pi}{z}\right) + \sin\left(\frac{\pi}{2} + \frac{4 \cdot \pi}{z}\right)\right]$ $= \frac{h_{\text{max}}}{2} \cdot A_{P} \left[1 - 0.5 - 0.5\right] = \frac{h_{\text{max}}}{2} \cdot A_{P}$							
	$\left[\sum \frac{dV_{P}}{d\varphi}\right]_{\min} = \frac{h_{\max}}{2} \cdot A_{P} \left[\sin(\pi) + \sin(\pi + \frac{2 \cdot \pi}{z}) + \sin(\pi + \frac{4 \cdot \pi}{z})\right]$ $= \frac{h_{\max}}{2} \cdot A_{P} \left[0 - 0.866 + 0.866\right] = \frac{h_{\max}}{2} \cdot A_{P} \cdot 0.866$							
	$\left[\sum \frac{dV_{K}}{d\varphi}\right]_{avg} = h_{max} \cdot A_{P} \frac{z}{2\pi}$ $\delta = \frac{\frac{h_{max}}{2} \cdot A_{P} \cdot (1 - 0.866)}{h_{max} \cdot A_{P} \frac{3}{2\pi}} \cdot 100\% = 14.03\%$							
				Sumn	nation:	10		

Sample Solution for Exercise: 4

Total Score: 10

Subtask	Va			Points
4.1	adjustment	primary adjustment	secundary adjustment	2.5
	impressing	impressing of flow rate	impressing of pressure	
	output control	torque-controlled	rotational speed-controlled	
		O Swash plate angle [%] ¹⁰⁰	100 + 100 100	
4.2	ICE		rear wheel 1 mec. differential rear wheel 2	2.5
4.3	ICE TO THE PART OF	diff	front wheel 1 mec. erential mec. differential front rear wheel 2	1
	T-pieces → hydrau	lic differential		
4.4	$\eta_{\sf hm} \cdot \eta_{\sf vol}$	$\frac{M_{out} \cdot n_{out} \cdot 2 \cdot \pi}{\eta_{hm} \cdot \eta_{vol}} = Q_{requ}$		1
	$Q_{requ} = \frac{800 \text{Nm} \cdot 12}{0.98 \cdot 0.9}$	$\frac{200rpm \cdot 2 \cdot \pi}{93 \cdot 33 \text{ MPa}} = 200.55$	<u>/</u> min	

4.5	$V_{Pump_1} = \frac{Q_{requ}}{n_{out} \cdot \eta_{vol}} = \frac{200.55 \frac{I}{min}}{2100 rpm \cdot 0.94} = 101.6 cm^3 $ [151.97cm ³]	1
4.6	$\eta_{hm2} = \eta_{hm1} \cdot (\mathbf{e}^{\alpha 2} - 1) = 97\% \cdot (\mathbf{e}^{0.6} - 1) = 79.75\%$	2
	$M_{Pump2} = \frac{\Delta p \cdot V_{Pump2}}{2 \cdot \pi \cdot \eta_{hm2}} = \frac{33 MPa \cdot 101.6 cm^3 \cdot 0.6}{2 \cdot \pi \cdot 79.75\%} = 401.47 Nm$	
	$P_{in} = M_{Pume2} \cdot n_{in} \cdot 2 \cdot \pi = 401.47 \text{Nm} \cdot 2100 \frac{U}{\text{min}} \cdot 2 \cdot \pi = 88.29 \text{kW}$	
	$M_{pump2} = [600.5 \text{ Nm}/ 296.36 \text{ Nm}]$	
	$P_{an} = [132.06 \text{ kW}/65.18 \text{ kW}]$	
	Summation:	10

Page: 6

Page: 7

Total Score: 15

Subtask	vG		Points					
5.1	single acting cylinder							∑=0,5
5.2		Ben	efit		Di	isadvantage		Σ=3
	low operating pressure	cons	sure resistar struction ele roblematic,	ments is use of hose	in hydraulics		d torques than	
	low viscosity	low		, high operating		igh leakage lo imping	osses, low	
	high comressibility		gy accumul e behaviour	ation, elastic		w static and c	lynamic n control chains	
5.3	Rotary Motor			of Expansion Work ble Due to Principle		Use of Expansion Work Not Possible Due to Principle		Σ=2
	Vane Motor		x					
	Geared Moto	or				x		
	Turbines			X				
	Piston Motor	rs	X					
5.4					-			∑=2,5
	one way flow control valve	non valv spri		shuttle valve		justable rottle	shut-off valve	

5.5 slow lowering \rightarrow isothermal change of state

∑=3

load per wheel:

$$F_{Fahrzeug} = \frac{m_{PKW} \cdot g}{\Delta} = 4905N$$

balance of forces at air spring:

$$F_{vehicle} + p_U \cdot A_D - p_F \cdot (A_D - A_K) - A_K \cdot p_{oil} = 0$$

$$\Leftrightarrow p_F = \frac{F_{vehicle} + p_U \cdot A_D - A_K \cdot p_{oil}}{A_D - A_K} = 22,08bar$$

calculation of the volume V_1 after compression of volume V_0 $V_0=A_F\cdot l-A_D\cdot x_0-(l-x_0)\cdot A_K=1746,8cm^3$

ideal gas: pV = mRT

with m, T =const:

$$p_0V_0 = p_1V_1 \Leftrightarrow V_1 = \frac{p_{F0}}{p_F}V_0 = 1582,20cm^3$$

calculation of the compression travel s

$$s = \frac{V_0 - V_1}{A_D - A_K} = 8,7cm$$

5.6 abrupt change of state \rightarrow adiabatic, isenstropic $\rightarrow n = 1,4$

 $\Sigma=2$

increase of temperature after isentropic relation and $T_{F,unloaded} = T_{U}$:

$$\frac{p_{F,unloaded}}{p_F} = \left(\frac{T_{F,unloaded}}{T_F}\right)^{\frac{n}{n-1}} \Leftrightarrow T_F = \frac{T_{F,unloaded}}{\left(\frac{p_{F,unloaded}}{p_F}\right)^{\frac{n-1}{n}}} = 312,45K$$

specific work that is stored in the spring

$$w = \frac{R}{n-1} \left(T_F - T_{F,unloaded} \right) = \frac{288 \frac{Nm}{KgK}}{1,4-1} \left(312,45K - 293,15K \right) = 13896 \frac{J}{Kg} \text{ ai}$$

r mass in the spring

$$m_{\textit{Feder}} = \frac{p_{\textit{F,unloaded}} \cdot V_{\textit{F,unloaded}}}{R \cdot T_{\textit{F,unloaded}}} = \frac{24bar \cdot 1700cm^3}{288 \frac{Nm}{\textit{KgK}} \cdot 293,15\textit{K}} = 48,33\textit{g}$$

energy that is stored in the spring

$$E = w \cdot m_{spring} = 671,53J$$

Page: 9

	calculation of the volume that needs to be displaced:	∑=2
	$V_{leak} = (A_D - A_K) \cdot (l - (x_0 + s)) = 1885mm^2 \cdot (250mm - 50mm - 20mm)$	
	$=339,3cm^2$	

mass in the volume that needs to be displaced:

$$m_{Leck} = \frac{p_F \cdot V_{Leck}}{R \cdot T_F} = \frac{24bar \cdot 339,3cm^3}{288 \frac{Nm}{KgK} \cdot 300K} = 9,425g$$

Because it is deaerated from p_F over the gap to the environment in every case critical flow can be considered (b<<0,528).

$$\dot{m}^* = C \cdot p_F \cdot \rho_0 \sqrt{\frac{T_0}{T_F}} = 0.5 \frac{Nl}{\min \cdot bar} \cdot 24bar \cdot 1.1845 \frac{kg}{m^3} \cdot \sqrt{\frac{293.15K}{300K}} = 0.234 \frac{g}{s}$$

The time T for the displacement of the volume occurs to:

$$T = \frac{m_{leak}}{\dot{m}^*} = \frac{9,425g}{0,234\frac{g}{s}} = 40,28s$$

Summation: 15

Sample Solution for Exercise: 6

Page: 10

Subtask	Ev	Points
6.1	electrically actuated, spring return 4/2-port switching valve	0,5
6.2	For an exhaust air flow control in a wide area the velocity is independent of the load; so in this case independent of the mass of the different boxes.	0,5
6.2		1,0
6.3	$\sum_{K} F = 0 = F_R - p_A \cdot A_K + p_B \cdot (A_K - A_S) + p_U \cdot A_S$ $\Rightarrow F_R = p_A \cdot \frac{\pi}{4} D^2 - p_B \cdot \frac{\pi}{4} (D^2 - d^2) - p_U \cdot \frac{\pi}{4} d^2$	0,5
	$\Rightarrow F_R = \frac{\pi}{4} \cdot \left[6 \cdot 32^2 - 5.5 \cdot (32^2 - 12^2) - 1 \cdot 12^2 \right] \cdot bar \cdot mm^2 = 91.1N$	0,5+0,5
6.4	$\dot{m}^* = \rho_B \cdot Q_B = \frac{p_B}{R_L \cdot T_B} \cdot \frac{\pi}{4} (D^2 - d^2) \cdot v$	0,5
	$\Rightarrow \dot{m}^* = \rho_B \cdot Q_B = \frac{5,5bar}{288Nm/(kgK) \cdot 300K} \cdot \frac{\pi}{4} (32^2 - 12^2)mm^2 \cdot 1m/s$	
	$\Rightarrow \dot{m}^* = 4.399 g / s$	0,5
	The throttle in the exhausting pipe is floated supercritically (exhaust flow control). Therefore yields:	
	$\dot{m}^* = C \cdot p_B \cdot \rho_0 \cdot \sqrt{\frac{T_0}{T_B}}$	0,5
	$\Rightarrow C = \frac{\dot{m}^*}{p_B \cdot \rho_o} \sqrt{\frac{T_B}{T_0}} = \frac{4,399g/s}{5,5bar \cdot 1,184kg/m^3} \sqrt{\frac{300K}{293,15K}} = 40,93l/(\text{min} \cdot bar)$	0,5
	$C = \frac{\alpha_D \cdot A_2 \cdot \Psi_{\text{max}} \sqrt{2 \cdot R_{L,0} \cdot T_o}}{p_0}$	0,5
	$\Rightarrow A_2 = \frac{C \cdot p_0}{\alpha_D \cdot \Psi_{\text{max}} \sqrt{2 \cdot R_{L,0} \cdot T_o}} = \frac{40,93l/(\text{min} \cdot bar) \cdot 1bar}{0,7 \cdot 0,484 \sqrt{2 \cdot 288Nm/(kgK) \cdot 293,15K}}$	
	$A_2 = 4.89 mm^2$	0,5
6.5	1 st law for a closed system: $Q_{12} + W_{12} = U_2 - U_1 + E_{a2} - E_{a1}$	

$Q_{12} = 0$, because of an adiabatic change of state $E_{a2} - E_{a1} = 0$ (assignment	
of tasks)	
$W_{12} = \frac{m_{\text{Kiste}}}{2} v^2$	0,5
$U_2-U_1=m\cdot c_v\cdot (T_2-T_1)$	0,5
From the ideal gas equation yields $m = \frac{p_0 \cdot V}{R_L \cdot T_0}$	0,5
$\Rightarrow \frac{m_{\text{\tiny KiSSE}}}{2} v^2 = \frac{p_0 \cdot V}{R_L \cdot T_0} \cdot \frac{R}{\kappa - 1} \cdot \left(T_2 - T_0\right) = \frac{p_0 \cdot V}{\kappa - 1} \cdot \frac{\left(T_2 - T_0\right)}{T_0}$	0,5
$\Rightarrow \frac{m_{Kiste}}{2} v^2 = \frac{p_0 \cdot V}{R_L \cdot T_0} \cdot \frac{R}{\kappa - 1} \cdot (T_2 - T_0) = \frac{p_0 \cdot V}{\kappa - 1} \cdot \frac{(T_2 - T_0)}{T_0}$ $\Rightarrow T_2 = \left(\frac{m_{Kiste}}{2} \frac{\kappa - 1}{p_0 \cdot V} v^2 + 1\right) \cdot T_0$	
$\Rightarrow T_2 = \left(\frac{50kg}{2} \frac{4}{\pi} \frac{1,4-1}{1bar \cdot 100^3 mm^3} 1m^2 / s^2 + 1\right) \cdot 293,15K = 330,47K$	0,5
6.6 isentropic change of state	
$\Rightarrow x_2 = x_1 \cdot \left(\frac{T_1}{T_2}\right)^{\frac{1}{\kappa-1}} \text{page 24}$	0,5
$\Rightarrow_{X_2} = 100mm \cdot \left(\frac{293,15K}{330,47K}\right)^{\frac{1}{0,4}} = 74,11mm$	
The absorber moves 25,89 mm.	0,5
(for T ₂ =327 K: $\Rightarrow x_2 = 76,1mm \Rightarrow$ absorber movement 23,9 mm.)	
Summation:	10

Page: 11