a) Outer loop'since n is being subtracted by In for every iteration->A(n-kIn)

K /	<i>i</i> /	\sim
\ \	l	N-Vn
2	2	2-27
3	3	3-375

it kare growing at the same rate: i= K i=n-kvn k=n-kvn k+kvn=n k-kvn=n k= kvn=n k= i+rn

$$\frac{1}{100} \frac{1}{100} \frac{1}$$

B) Outer loop: O(n)) goes from 1 to n Inner loop: O(n) if worst case Cersel: all 1 [[1, 1, 1, 1, 1] $+ \sim$ casc 2: (1,... n): has one for every n to make third loop: mtm logen So log(n) runs n fincs O(n). O(n) + nlog(n) $\frac{n^2 + n \log (n)}{O(n^2)}$

C) First loop: A(N)

make_pair: A(1)

Insert: log(11+log(2) + ... + log(N)= & log(i)

A(N) A(log(N)) = A(Nlog(N))

Second lop: O(n)
find: log(n) rontime

K/=2 = log (N)

(nt K = max will be a since CX9, n)

(nt K = max will be a since CX9, n)

(log(n))

(log(n))

(log(n))

NogN+ nlognlogn)

()) outer loop: n if: max once first: 3 (10) = 15 32 (15)=3.32.10 32.32.10 $\frac{3}{2} \times 10 \qquad \text{exp} \quad \text{kin n}$ $\frac{3}{2} \times 10 = \text{N}$ $\frac{3}{2} \times 10 = \text{N}$ $\frac{3}{2} \times 10 = \text{N}$ $\frac{3}{2} \times \frac{1}{10} = \text{N}$ $|\log_{\frac{1}{2}} \frac{\pi}{10}|$ $|\log_{\frac{1}{2}} \frac{\pi}{10}|$ $|\log_{\frac{1}{2}} \frac{\pi}{10}|$ $|\log_{\frac{1}{2}} \frac{\pi}{10}|$ $|\log_{\frac{1}{2}} \frac{\pi}{10}|$ $n - \log_2(\frac{n}{2}) + \log_2 \frac{n}{2}$ i = 1 i = 1 i = 1 i = 1 i = 1