Modeling of CW/CCW calibration in a FS-type lattice

Alexander Aksentev

August 9, 2018

Overview

- Optimization of sextupole strengths for reducing decoherence;
 - problem with simultaneous suppression of x- and d-offset decoherence.
- Modeling of the CW/CCW calibration procedure;
 - spin freeze problem.

Optimization of sextupole strengths

for the reduction of decoherence

- ► Three sextupole families (GSX, GSY, GSD), each expected to suppress decoherence, resp., in X-,Y-,D-planes;
- spin tune Taylor expansion (COSY Infinity) assumes the form (some terms omitted):

$$\mu(x, y, d) = \mu_0 + a_{xx} \cdot x^2 + a_{yy} \cdot y^2 + a_{dd} \cdot d^2 + a_{xd} \cdot x \cdot d + a_{yd} \cdot y \cdot d;$$

- ▶ parabolic dependence of spin tune on the x, y, d variables (confirmed by spin tracking) \Rightarrow objective function $f = a_{xx}^2 + a_{yy}^2 + a_{yd}^2$;
- ▶ the reason a_{dd} , a_{xd} are not involved in f: a_{xx} , a_{dd} couldn't be minimized simultaneously (analysis below).

Computed as $\mu_i = \mu(x_0^i, y_0^i, d_0^i)$

Linear fit of tracking data

Example fits (X-,D-bunch)

Gradient sweep analysis

FS-type lattice beta functions

- Sextupoles are placed in the maximums of the corresponding beta functions;
- because DispX, BetaX maxima coincide, considered 3 cases: 1) GSD only in big DispX maxima, 2) GSD only in smaller maxima not coinciding with BetaX maxima, 3) GSD in both types DispX maxima.

Gradsweep cases 4&12

- ► Took a grid GSX, GSY, GSD: ±10⁻² T/cm² (10 points each axis);
- computed the spin tune, and extracted the a_{xx}, a_{yy}, a_{dd} coefs (plotted);
- observe that a_{xx}, and a_{dd} cannot be simultaneously set to 0.

CW/CCW B-field calibration procedure

Rationale

- ► The core idea of the procedure is to use the x-z plane spin precession frequency as a measure of the B-field;
- ▶ an element tilt θ introduces a B_x field component, which induces a $\Omega_x^{\mathrm{MDM}} \propto B_x$;
- ▶ $\Omega_v^{\mathrm{MDM}} \propto B_v$, and B_v and B_x are strictly related via θ ;
- m heta doesn't change going from CW to CCW, hence by reproducing $\Omega_y^{
 m MDM}$ we can be sure to reproduce B_y , and also B_x and $\Omega_x^{
 m MDM}$.

CW/CCW B-field calibration procedure Modeling

- 1. distribute element tilt errors $\theta \sim N(\mu_i, \sigma_i), j \in J$;
- 2. for an ensemble of initial conditions $\{(x^i, a^i, y^i, b^i, t^i, d^i)\}_{i \in I}$ compute array of $\{(\Omega_x^i, \Omega_y^i)\}_{i \in I}$;
- 3. compute statistics: $S_1 \equiv |\Omega_x^{\rm CW}| |\Omega_x^{\rm CCW}|, \ S_2 \equiv |\Omega_y^{\rm CW}| |\Omega_y^{\rm CCW}|;$
- 4. repeat for $j \in J$.

Spin freeze $\theta = \theta_0$

All WF are tilted by the same angle θ_0 ; S_y oscillates as expected.

 $\theta \sim N(0, \sigma)$

Reaching the apex, spin freezes at $(S_y, S_z) = (1, 0)$.

Spin freeze

 $\theta \sim N(0, \sigma)$

Another realization of the same distribution; this time there's no spin freeze.

Look at the lattice as a whole

Hypothesis: something's wrong with the mean B_x value.

Simulation: Three values of $\sigma \in [1,2,3] \cdot 10^{-4}$ rad; 30 trials/value.

Look at particular WFs

Tilted WF #1 by 10^{-4} rad

Spin doesn't have a problem crossing the apex.

Look at particular WFs

Tilted WF #5 by 10^{-4} rad

Spin freeze at the top.

Probable cause

There's evidence that spin freeze is not caused by my crooked hands; Eremey also encountered that problem:

- Spin freeze is not a computational artifact; it's a resonance implicit in the mathematical model;
- it occurs whenever the spin vector gets into a certain, fairly wide azimuth range close to $S_v = 1$.

And it looks like that range is dangerous in some places along the beamline, and not the others, seeing as tilting of WF ##1, 32, some others, doesn't cause freezing, whereas ##5, 8 does.