To Do List and Open Issues

Javier Villarreal

To Do

Build Options

Before development can go fully underway, build and compilation options need to be defines in the makefile. Some options to bear in mind:

- Debug vs Release builds. (Note: If using VSCode, the different builds should be reflected in the JSON option files)
- Warning and error flags (-Wall, -pedantic, -std=...)
- Optimizations, -Og for debugging and -O2,-O3 for release.

Read in simulation metadata

The data files necessary to make the code run are different depending on whether the code is running a 2or 3-dimensional problem. The common files are:

- SimulationValues.txt
 - Mach number
 - Angle of Attack
 - Reynolds Number
- Sizes.txt
 - # of domain nodes (including body boundary nodes)
 - # of body boundary nodes
 - # of farfield boundary nodes
 - (Only in 3D code) # of symmetry nodes
 - # of cloud nodes per domain/body boundary node (for differential quadrature)
 - # of ghost nodes per body boundary node (for differential quadrature, should equal (cloud-1)/2)
 - # of extrapolation nodes per farfield boundary node
 - # of total nodes (= domain + farfield + ghost*body)

The current task is to write a subroutine to read those files. The subroutine should reside in a separate module, since file I/O is not inherently a SOMA-specific task.

Data architecture

Geometry and simulation data is structured a certain way in the C++ code (to be documented later). There could be room for improvement in the structure – not necessarily for performance, but for readability of the code.