CO_Lab4_Report

0710028 陳敬諺

1. Result of cache simulator

Basic problem:

ICACHE	16	32	64	128	256
4K	2.17096%	1.08548%	0.542741%	0.27137%	0.135685%
16K	2.17096%	1.08548%	0.542741%	0.27137%	0.135685%
64K	2.17096%	1.08548%	0.542741%	0.27137%	0.135685%
256K	2.17096%	1.08548%	0.542741%	0.27137%	0.135685%

DCACHE	16	32	64	128	256
4K	5.55556%	3.1746%	1.5873%	0.793651%	0.793651%
16K	5.55556%	3.1746%	1.5873%	0.793651%	0.793651%
64K	5.55556%	3.1746%	1.5873%	0.793651%	0.793651%
256K	5.55556%	3.1746%	1.5873%	0.793651%	0.793651%

Advanced problem:

LU	1	2	4	8	16	32	64
4K	5.472020%	3.410320%	2.294220%	1.472640%	0.976593%	0.558053%	0.325531%
16K	3.162300%	2.371730%	1.937680%	1.705160%	1.178110%	0.775074%	0.496047%
64K	2.340720%	2.294220%	2.278720%	2.232210%	1.891180%	1.643160%	1.085100%
256K	2.278720%	2.278720%	2.278720%	2.278720%	2.154700%	2.030690%	1.658660%

RADIX	1	2	4	8	16	32	64
4K	19.2569000%	4.2338700%	1.1520700%	0.3960250%	0.1598500%	0.0835253%	0.0489631%
16K	7.3559900%	0.9792630%	0.6322000%	0.3672240%	0.2260940%	0.1310480%	0.0734447%
64K	1.0109400%	0.7517280%	0.6509220%	0.5457950%	0.4205070%	0.2851380%	0.1598500%
256K	0.7517280%	0.7517280%	0.7502880%	0.7488480%	0.6278800%	0.5198730%	0.3528230%

2. Code and Plot Explanation

Basic problem:

從圖表會發現 blocksize 增加,miss rate 會下降,cachesize 增加則不影響 miss rate,這是因為 blocksize 會影響存取的資料範圍,所以 blocksize 越大,範圍越廣,命中的機會就越高,miss rate 則下降。而因為資料區間的關係,所以改變 cachesize 不影響命中的機率

Advancement Problem:

因為要實現 n-ways associate,所以令 line/n-ways 為 block 數,cache 的架構內是存放 tag 的 vector、use_t 是做為表示該 index 存放幾筆 tag,換言之就是 vector 的 size,而在 vector 中,最後(最新)被使用的 tag 會被移動到或存放在 vector 的頭,反覆運作後 vector 尾端就即是最久未使用的 tag,若要存入新的 tag,直接對該 index 的 cache 執行 pop_back()指令。而計算 miss rate 的方法和 basic 雷同,只要在該 index cache 中找尋不到對應的 tag 就是 miss。

3. Conclusion

其實這次 lab 的功能實現上,概念我覺得不難理解,但在 programming 上還是花了不少時間,主要是 C++有段時間沒用,生疏了不少,甚至大概有超過三個小時以上的時間,我單純是因為忘記了 vector 資料的存入模式,而在原地打轉,該找點時間做些複習了。