2021年10月23日

离散数学

吴天阳 2204210460

习题四

31. 对集合 $\{1,2,3,4,5,6,7,8,9,10,11,12\}$ 上的整除关系画出 Hasse 图,并对子集 $\{2,3,6\},\{2,4,6\},\{4,8,12\}$ 找出最大元素、最小元素、极大元素、极小元素、上确界、下确界。

解答. 令 $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$,则半序集 (A, |) 所对应的 Hasse 图如下:

令 $B_1 = \{2,3,6\}, B_2 = \{2,4,6\}, B_3 = \{4,8,12\},$ 它们的最大元素、最小元素、极大元素、极小元素、上确界、下确界如下表所示:

集合	最大元素	最小元素	极大元素	极小元素	上确界	下确界
B_1	6	无	{6}	{2,3}	6	1
B_2	无	2	{4,6}	{2}	12	2
B_3	无	4	{8,12}	{4}	无	4

32. 写出集合 A 及半序关系 \prec 的所有元素。

解答.

$$A = \{0, 1, 2, 3, 4, 5, 6\}$$

$$\leq = \{(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (2, 5), (3, 5), (4, 6), (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\}$$

34. 设 $\preccurlyeq_1, \preccurlyeq_2$ 分别是定义在非空集合 A, B 上半序关系,如下定义 \preccurlyeq_3 :

$$\forall a_1, a_2 \in A, \ b_1, b_2 \in B$$

 $((a_1, b_1), (a_2, b_2)) \in \preceq_3 \iff (a_1, a_2) \in \preceq_1 \land (b_1, b_2) \in \preceq_2$

证明: \leq_3 是 $A \times B$ 上的半序关系。

证明. 1. (自反性) 设 $a \in A, b \in B$, 由 \leq_1, \leq_2 的自反性知

$$(a,a) \in \preceq_1 \land (b,b) \in \preceq_2 \Rightarrow ((a,b),(a,b)) \in \preceq_3$$

2. (反对称性) 设 $a_1, a_2 \in A, b_1, b_2 \in B$,

若有
$$((a_1, b_1), (a_2, b_2)) \in \preceq_3 \land ((a_2, b_2), (a_1, b_1)) \in \preceq_3$$

$$\Rightarrow (a_1, a_2) \in \preceq_1 \land (a_2, a_1) \in \preceq_1 \land (b_1, b_2) \in \preceq_2 \land (b_2, b_1) \in \preceq_2$$
(由 \preceq_1, \preceq_2 的反对称性知)

$$\Rightarrow a_1 = a_2 \land b_1 = b_2$$

$$\Rightarrow (a_1, b_1) = (a_2, b_2)$$

3. (传递性) 设 $a_1, a_2, a_3 \in A$, $b_1, b_2, b_3 \in B$,

$$((a_1, b_1), (a_2, b_2)) \in \preceq_3 \land ((a_2, b_2), (a_3, b_3)) \in \preceq_3$$

$$\Rightarrow (a_1, a_2) \in \preceq_1 \land (a_2, a_3) \in \preceq_1 \land (b_1, b_2) \in \preceq_2 \land (b_2, b_3) \in \preceq_2$$
(由 \preceq_1, \preceq_2 的传递性知)
$$\Rightarrow (a_1, a_3) \in \preceq_1 \land (b_1, b_3) \in \preceq_2$$

$$\Rightarrow ((a_1, b_1), (a_3, b_3)) \in \preceq_3$$

综上, ≼3 满足自反性, 反对称性, 传递性, 则 ≼3 是半序关系。

36. 解答.

令有限集合 $A = \{1, 2, 3, 12, 18\}$,无限集合 $B = \{2^n, 3^m, 12, 18: n, m \in \mathbb{N}\}$,则有关于整除关系的非空半序集合 (A, |), (B, |),取 $C = \{2, 3\}$,则 C 为 A, B 的子集,下面对三问关于 C 分别进行验证。

- (1).C 中没有最大元素。
- (2).C 在 A,B 中都有最大下界 1,没有最小元素。
- (3).C 在 A, B 中都有上界 {12,18},没有最小上界。

习题五

3. 解答.

- (1). 单射的,因为 $\forall x, y \in \mathbb{N}, \ x^2 + 1 = y^2 + 1 \Rightarrow \ x = y, \ 不是满射,因为 <math>f(x) = 3$ 无解。
 - (2). 满射的,因为 f(0) = 1, f(1) = 0, 不是单射的,因为 f(0) = f(2) = 1。
- (3). 既不是单射也不是满射,不是单射,因为 f(0) = f(2) = 1,不是满射,因为 $\Re(f) = \{0,1\} \neq \mathbb{N}$ 。
 - (4). 满射的,因为 $\forall m \in \mathbb{N}, f(m,1) = m$,不是单射,因为 f(2,4) = f(4,2) = 16。
 - (5). 双射的,因为 f(x) 是线性函数,由 $x = \frac{f(x) + 17}{3}$ 知, f(x) 是单射也是满射。
 - (6). 单射的,因为 $n = 10^{f(n)}$,不是满射,因为 $f(n) = \log_{10} n = -1$,无解。
- (7). 既不是单射也不是满射,不是单射,因为 $f(A_1, A_2) = f(A_2, A_1)$,不是满射,因为 $f((A_1, A_2)) = (\emptyset, \{X\})$,由于 $\{X\} \not\subset \emptyset$,且 $A_1 \cap A_2 \subset A_1 \cup A_2$,则不存在这样的 (A_1, A_2) 满足条件。
- **6.** 设 f 和 g 是函数, $f \subset g$ 并且 $\mathfrak{D}(g) \subset \mathfrak{D}(f)$, 证明 f = g。

证明. 由于 $f \subset q$, 所以只需证 $q \subset f$ 。

对 $\forall x \in \mathfrak{D}(g)$, 由于 $\mathfrak{D}(g) \subset \mathfrak{D}(f)$, 则有 $x \in \mathfrak{D}(f)$, 故 $(x, f(x)) \in f$ 。 又由于 $f \subset g$,则 $(x, f(x)) \in g$,于是有 $f(x) = g(x) \Rightarrow (x, g(x)) \in f$,故 $g \subset f$ 。 综上,f = g。

11. 解答.

$$p^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
$$p \diamond p^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

12. 设 A 是无限集合,B 是有限集合。

解答.

- (1). $A \cap B$ 不是无限集合,因为 $A \cap B \subset B$,而 B 是有限集合,有限集合的子集还是有限集合。
- (2). $A \cup B$ 是无限集合,因为 $A \subset A \cup B$,而 A 是无限集合,包含无限集合的集合一定是无限集合。
- (3). $A \setminus B$ 是无限集合,因为无限集中去除有限多个元素,仍然是无限集,所以 $A \setminus B$ 是无限集合。