

المركز الوطنى للتقويم والامتحاثات

C: NS22

الامتحان الوطني الموحد للبكالوريا -الدورة العادية 2008-المه ضه ع

		الموضوع
7	المعامل:	
3س	مدة الإنجاز:	عبة العلوم والتكنولوجيات بمسلكيها

الرياضيات	العــــادة:
شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الشعب (ة):

(يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة)

التمرين الأول (3ن)

 $B\left(1,-1,0\right)$ و $A\left(0,-1,1\right)$ ، النقطتين $A\left(0,-1,1\right)$ و والفلكة ($C,\vec{i},\vec{j},\vec{k}$) ، النقطتين $A\left(0,-1,1\right)$ و $A\left(0,-1,1\right)$ و الفلكة ($C,\vec{i},\vec{j},\vec{k}$) ، النقطتين $A\left(0,-1,1\right)$ و الفلكة ($C,\vec{i},\vec{j},\vec{k}$) التي معادلتها $A\left(0,-1,1\right)$

- Λ وان شعاعها هو $\sqrt{3}$ و تحقق من ان Λ تنتمي إلى Λ النقطة Ω (Λ) هي النقطة (Λ) وان شعاعها هو Λ
- (OAB) وبين أن x+y+z=0 وبين أن x+y+z=0 عدد مثلوث إحداثيات المتجهة $\overrightarrow{OA} \wedge \overrightarrow{OB}$ وبين أن
 - A النقطة (S) مماس للفلكة (S) مماس النقطة (S) في النقطة (S) بين أن المستوى

التمرين الثاني (3 ن)

1

0,75

1

1

1

- . $z^2 6z + 34 = 0$: المعادلة : C المعادلة (1) مجموعة الأعداد العقدية
- C و B و A النقط C و C و C التي الحاقها C النقط C و التي الحاقها C التي الحاقها C و C التي الحاقها على التوالي هي : C و C و C التي الحق C و C التي الحق C التي الحق C التي المستوى و C التي العقطة C النقطة C النقطة C و التي المتجهة C التي المتجهة C التي المقطة C النقطة C النقطة C المتجهة C المتجهة C التي المتجهة C المتجهة C التي المتجهة C المتحدد C المتحد
 - . T أ- بين أن z'=z+4-2i ثم تحقق من أن النقطة C هي صورة النقطة z'=z+4-2i
 - $\frac{b-c}{a-c} = 2i$: ب بین ان
 - BC = 2AC ج- استنتج أن المثلث ABC قائم الزاوية وأن O,75

التمرين الثالث (3)

يحتوي صندوق على ست كرات حمراء وثلاث كرات خضراء (لا يمكن التمييز بين الكرات باللمس) .

- 1) نُسَحَبُ عَسُوانَيا وَفَي آن واحد ثلاث كراتُ من الصندوق .
- أ- احسب احتمال الحصول على كرتين حمراوين وكرة خضراء .
- $\frac{16}{21}$ بين أن احتمال الحصول على كرة خضراء واحدة على الأقل هو
- 2) نعتبر في هذا السؤال التجربة التالية: نسحب عشوانيا بالتتابع وبدون إحلال ثلاث كرات من الصندوق. الحسب احتمال الحصول على ثلاث كرات حمراء.

الصفحة	
2 2	الامتحا <i>ن الوطني الموحد للبكالوريا</i> (الدورة العادية 2008)
1	الموضوع

السمسادة: الرياضيات

شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

الشعب (ة):

0,5

0,5

0,5

0,75

0,25

0,75

0,25

0,5

0,75

C: NS22

.
$$g(x) = x - 2 \ln x$$
 يلي: g ألدالة العدبية المعرفة على المجال $g = -2 \ln x$ إلدالة العدبية المعرفة على المجال g

- g'(x) المجال] $0,+\infty$ الكل g'(x) من المجال]
- . $[2,+\infty[$ وتزايدية على g ب- بين أن g تناقصية على g
- . (g(2) > 0 استنتج أن g(x) > 0 لكل x من المجال g(x) > 0 (2
- . $f(x) = x (\ln x)^2$: يعتبر الدالة العددية f المعرفة على المجال $\int +\infty$ المعرفة على المجال f المنحنى الممثل للدالة f في معلم متعامد ممنظم f المنحنى الممثل للدالة f في معلم متعامد ممنظم f
 - lim f(x) | lim

.(
$$\lim_{t\to +\infty} \frac{\ln t}{t} = 0$$
 : نذکر ان : $t = \sqrt{x}$ وضع $\lim_{x\to +\infty} \frac{\left(\ln x\right)^2}{x} = 0$).

. (
$$f(x) = x \left(1 - \frac{(\ln x)^2}{x} \right)$$
 : $\lim_{x \to +\infty} \frac{f(x)}{x} = 1$ i. $\lim_{x \to +\infty} f(x) = +\infty$ i. $\lim_{x \to +\infty} (f(x) - x)$ i. $\lim_{x \to +\infty} (f(x) - x)$ i. $\lim_{x \to +\infty} (f(x) - x)$ 0,5

- ج احسب f(x)-x ، فرعا شَلْجمیا اتجاهه $\lim_{x\to +\infty} (f(x)-x)$ ، فرعا شَلْجمیا اتجاهه المستقیم (Δ) الذي معادلته y=x
 - .(Δ) يوجد تحت المستقيم (C) يوجد نحت المستقيم
- $[0,+\infty[$ لكل x من $]0,+\infty[$ و بين أن $f'(x)=rac{g(x)}{x}$: الدالة $f'(x)=\frac{g(x)}{x}$ من $[0,+\infty[$ و بين أن $f'(x)=\frac{g(x)}{x}$.
 - . 1 هي معادلة ديكارتية لمماس المنحنى (C) في النقطة التي افصولها y=x 0,5

.((ln 2)
$$^2 < \frac{1}{2}$$
 نقبل ان المعادلة $f(x) = 0$ تقبل حلا وحيدا α في a بين ان المعادلة a عقبل ان a تقبل حلا وحيدا a في a بين ان المعادلة a

- (5) انشئ المستقيم (Δ) و المنحنى (C) في المعلم (\vec{i} , \vec{j}) (نقطة انعطاف (E المنحنى (E) و ناخذ (E » 2,7).
 - 0,5 المجال 0,5 ا0,5 المجال 0,5 المجال 0,5
 - . $\int_{1}^{e} (\ln x)^{2} dx = e 2$: ii نبن أن أن مكاملة بالأجزاء ، بين أن 0,75
- ج- احسب مساحة حيز المستوى المحصور بين المنحنى (C) والمستقيم (Δ) والمستقيمين اللذين معادلتاهما x=e و x=1
 - . IN نعتبر المنتالية العدية u_n المعرفة بما يلي : $u_0 = 2$ و $u_{n+1} = f(u_n)$ لكل من u_n
 - . (ـا (3-II لكل n من n (يمكنك استعمال نتيجة السوال $1 \le u_n \le 2$) بين أن $1 \le u_n \le 2$
 - بين أن المتتالية (u_n) بناقصية.
 - استنتج أن (u_n) متقاربة ثم حدد نهايتها. (3 0.75