Data Structures and Algorithms CS245-2013S-22 Dynamic Programming

David Galles

Department of Computer Science University of San Francisco

22-0: Dynamic Programming

- Simple, recursive solution to a problem
- Naive solution recalculates same value many times
- Leads to exponential running time

22-1: Fibonacci Numbers

- Calculating the nth Fibonacci number
 - Fib(0) = 1
 - Fib(1) = 1
 - Fib(n) = Fib(n-1) + Fib(n-2)

22-2: Fibonacci Numbers

```
int Fibonacci(int n) {
  if (n == 0)
      return 1;
  if (n == 1)
      return 1;
 return Fibonacci(n-1) + Fibonacci(n-2);
```

22-3: Fibonacci Numbers

- Why is this solution bad?
- Recalculate values many times
 - Many, many, times

22-4: Fibonacci Numbers

22-5: Fibonacci Numbers

22-6: Fibonacci Numbers

22-7: How Bad is Recalculation?

- Assume 2 GHz machine
- Add every cycle
 - No time spent on recursive call overhead
 - Lower bound on time required
- Fibonacci(100) will take:

22-8: How Bad is Recalculation?

- Assume 2 GHz machine
- Add every cycle
 - No time spent on recursive call overhead
 - Lower bound on time required
- Fibonacci(100) will take:
 - 9087 Years

22-9: How Bad is Recalculation?

- Assume 2 GHz machine
- Add every cycle
 - No time spent on recursive call overhead
 - Lower bound on time required
- Fibonacci(100) will take:
 - 9087 Years
- Fibonacci(200) will take:

22-10: How Bad is Recalculation?

- Assume 2 GHz machine
- Add every cycle
 - No time spent on recursive call overhead
 - Lower bound on time required
- Fibonacci(100) will take:
 - 9087 Years
- Fibonacci(200) will take:
 - 719770570404153908544 millennia
 - Well after heat death of the universe (100 trillion years)

22-11: Dynamic Programming

- Recalculating values can lead to unacceptable run times
 - Even if the total number of values that needs to be calculated is small
- Solution: Don't recalculate values
 - Calculate each value once
 - Store results in a table
 - Use the table to calculate larger results

22-12: Dynamic Programming

- To calculate Fibonacci(100), only need to calculate 101 values
- Fibonacci(n) can be calculated in time O(1)
 - Assuming we have values for Fibonacci(n-1) and Fibonacci(n-2)

22-13: Dynamic Programming

- Create a table: FIB[]
 - FIB[n] = nth Fibonacci number
- Fill the table from left to right
- Use old values in table to calculate new values

22-14: Faster Fibonacci

```
int Fibonacci(int n) {
int[] FIB = new int[n+1];
 FIB[0] = 1;
 FIB[1] = 1;
 for (i=2; i<=n; i++)
    FIB[i] = FIB[i-1] + FIB[i-2];
 return FIB[n];
```

22-15: Dynamic Programming

- To create a dynamic programming solution to a problem:
 - Create a simple recursive solution (that may require a large number of repeat calculations
 - Design a table to hold partial results
 - Fill the table such that whenever a partial result is needed, it is already in the table

22-16: World Series

- Two teams T_1 and T_2
- T_1 will win any game with probability p
 - T_2 will win any game with probability 1-p
- What is the probability that T_1 will win a best-of-seven series?
 - Answer is not p: why not?

22-17: World Series

- Calculate the probability that T_1 will win the series, given T_1 needs to win x more games, and T_2 needs to win y more games
 - PT1win(x,y)
- The probability that P_1 will win a best-of-seven series is then PT1win(4,4)
- The probability that P_1 will win a best-of-seven series, if P_1 has already one 2 games, and P_2 has won 1 game is then PT1win(2,3)

22-18: World Series

- Base cases:
 - What is PT1win(0,x)?

22-19: World Series

- Base cases:
 - What is PT1win(0,x)?
 - 1! T_1 has already won!
 - What is PT1win(x,0)?

22-20: World Series

- Base cases:
 - What is PT1win(0,x)?
 - 1! T_1 has already won!
 - What is PT1win(x,0)?
 - 0! T_1 has already lost!

22-21: World Series

- Recursive Case: PT1win(x,y)
 - If T_1 wins the next, game, then the probability that T_1 will win the rest of the series is

22-22: World Series

- Recursive Case: PT1win(x,y)
 - If T_1 wins the next, game, then the probability that T_1 will win the rest of the series is
 - PT1win(x-1,y)
 - If T_1 loses the next game, then the probability that T_1 will win the rest of the series is:

22-23: World Series

- Recursive Case: PT1win(x,y)
 - If T_1 wins the next, game, then the probability that T_1 will win the rest of the series is
 - PT1win(x-1,y)
 - If T_1 loses the next game, then the probability that T_1 will win the rest of the series is
 - PT1win(x,y-1)

22-24: World Series

- Recursive Case: PT1win(x,y)
 - If T_1 wins the next, game, then the probability that T_1 will win the rest of the series is
 - PT1win(x-1,y)
 - If T_1 loses the next game, then the probability that T_1 will win the rest of the series is
 - PT1win(x,y-1)
 - Probability that T_1 will win is p
 - Probability that T_1 will lose is 1-p
 - What then is PT1win(x,y)?

22-25: World Series

- Recursive Case: PT1win(x,y)
 - If T_1 wins the next, game, then the probability that T_1 will win the rest of the series is
 - PT1win(x-1,y)
 - If T_1 loses the next game, then the probability that T_1 will win the rest of the series is
 - PT1win(x,y-1)
 - Probability that T_1 will win is p
 - Probability that T_1 will lose is 1-p
 - PT1win(x,y) = p * PT1win(x-1,y) + (1-p) * PTwin(x,y-1)

22-26: World Series

22-27: World Series

- Just like Fibonacci, recalculating values exponential time
- How many total values do we need to calculate for PT1win(n,n)?

22-28: World Series

- Just like Fibonacci, recalculating values exponential time
- How many total values do we need to calculate for PT1win(n,n)?
 - \bullet n^2

22-29: World Series

- P[x,y] = # of games required for T_1 to win, if T_1 needs to win x more games, and T_2 needs to win y more games.
 - P[0,x] = 1 for all x > 0
 - P[x,0] = 0 for all x > 0
 - P[x,y] = p * P[x-1,y] + (1-p) * P[x,y-1]
- Need to fill out the table such that when we need a partial value, it has already been computed

22-30: World Series

22-31: World Series

22-32: World Series

22-33: World Series

 \bullet P(x,y)

	0	1	2	3	4
0					
1					
2					
3					
4					

$$p = 0.9$$

22-34: World Series

P(x,y)

	0	1	2	3	4
0		1	1	1	1
1	0				
2	0				
3	0				
4	0				

$$p = 0.9$$

22-35: World Series

 \bullet P(x,y)

	0	1	2	3	4
0		1	1	1	1
1	0	.9			
2	0				
3	0				
4	0				

$$p = 0.9$$

22-36: World Series

P(x,y)

	0	1	2	3	4
0		1	1	1	1
1	0	.9	.99		
2	0				
3	0				
4	0				

p = 0.9

22-37: World Series

	0	1	2	3	4
0		1	1	1	1
1	0	.9	.99	.999	
2	0				
3	0				
4	0				

22-38: World Series

P(x,y)

$$p = 0.9$$

	0	1	2	3	4
0		1	1	1	1
1	0	.9	.99	.999	.9999
2	0				
3	0				
4	0				

22-39: World Series

P(x,y)

$$p = 0.9$$

	0	1	2	3	4
0		1	1	1	1
1	0	.9	.99	.999	.9999
2	0	.81			
3	0				
4	0				

22-40: World Series

 \bullet P(x,y)

$$p = 0.9$$

	0	1	2	3	4
0		1	1	1	1
1	0	.9	.99	.999	.9999
2	0	.81	.972		
3	0				
4	0				

22-41: World Series

	0	1	2	3	4
0		1	1	1	1
1	0	.9	.99	.999	.9999
2	0	.81	.972	.9963	
3	0				
4	0				

22-42: World Series

	0	1	2	3	4
0		1	1	1	1
1	0	.9	.99	.999	.9999
2	0	.81	.972	.9963	.9995
3	0				
4	0				

22-43: World Series

	0	1	2	3	4
0		1	1	1	1
1	0	.9	.99	.999	.9999
2	0	.81	.972	.9963	.9995
3	0	.729			
4	0				

22-44: World Series

	0	1	2	3	4
0		1	1	1	1
1	0	.9	.99	.999	.9999
2	0	.81	.972	.9963	.9995
3	0	.729	.9477		
4	0				

22-45: World Series

.729

3

0

 P(x,y) p = 0.94 3 2 0 .9 .99 .999 .9999 0 .9963 2 .81 .9995 0 .972 .9914

.9477

22-46: World Series

 P(x,y) p = 0.94 3 2 0 .9 .99 .999 .9999 0 2 .9995 0 .81 .972 .9963 .9914 3 .729 .9477 .9987 0

22-47: World Series

.6561

0

 P(x,y) p = 0.94 2 3 0 .9 .99 .999 .9999 0 2 .81 .972 .9995 0 .9963 .9914 3 .729 .9477 .9987 0

22-48: World Series

 P(x,y) p = 0.94 2 3 0 .9 .99 .999 .9999 0 2 0 .81 .972 .9963 .9995 .9914 3 .729 .9477 .9987 0 .9185 .6561 0

22-49: World Series

 P(x,y) p = 0.94 2 3 0 .9 .99 .999 .9999 0 2 0 .81 .972 .9963 .9995 3 .729 .9477 .9914 .9987 0 .6561 .9185 .9841 0

22-50: World Series

•	• $P(x,y)$ $p=0.9$								
		0	1	2	3	4			
	0		1	1	1	1			
	1	0	.9	.99	.999	.9999			
	2	0	.81	.972	.9963	.9995			
	3	0	.729	.9477	.9914	.9987			
	4	0	.6561	.9185	.9841	.9972			

22-51: World Series

	0	1	2	3	4	5
0		1	1	1	1	1
1	0	.6	.84	.936	.9744	.98976
2	0	.36	.648	.820	.91296	.95904
3	0	.216	.4752	.68208	.82061	.90367
4	0	.1296	.33696	.54403	.70998	.82619
5	0	.07776	.23328	.41973	.59388	.73327

22-52: Sequences & Subsequences

- A sequence is an ordered list of elements
 - \bullet $\overline{\langle A, B, C, B, D, A, B \rangle}$
- A subsequence is a sequence with some elements left out;
- Subsequences of <A, B, C, B, D, A, B>
 - <B, B, A>
 - <A, B, C>
 - <B, D, A, B>
 - <C>

22-53: Sequences & Subsequences

- A sequence is an ordered list of elements
 - <A, B, C, B, D, A, B>
- A subsequence is a sequence with some elements left out
- NON-Subsequences of <A, B, C, B, D, A, B>
 - <D, A, C>
 - <A, B, B, C>
 - <C, A, D>
 - <B, D, B, A>

22-54: Common Subsequences

- Given two sequences S_1 and S_2 , a *common* subsequence is subsequence of both sequences
- <A, B, C, B, D, A, B>, <B, D, C, A, B, A>
- Common Subsequences:
 - <B, C, A>
 - <B, D>
 - <B, A, B>
 - <B, C, B, A>

22-55: LCS

- Longest Common Subsequence
- Need not be unique
- <A, B, C, B, D, A, B>, <B, D, C, A, B, A>
 - < B, C, B, A>
 - <B, D, A, B>

22-56: LCS

- Given the sequences:<A, B, A, B, B><B, C, A, B>
- LCS must end in B.
 - Why?

22-57: LCS

- Given the sequences:
 - <A, B, A, B, B> <B, C, A, B>
- LCS must end in B.
- Length of LCS:
 - 1 + lengthLCS (<A, B, A, B> , <B, C, A>)

22-58: LCS

• Given the sequences:

```
<A, B, A, B> <B, C, A>
```

- The last element in the LCS must be:
 - not B
 - not A

22-59: LCS

Given the sequences:

- The last element in the LCS must be:
 - not B
 - not A
- Length of LCS: Maximum of:
 - lengthLCS (<A, B, A> , <B, C, A>)
 - lengthLCS (<A, B, A, B> , <B, C>)

22-60: LCS Pseudo-Code

22-61: LCS Pseudo-Code

```
LCS(int x, int y, String S1, String S2) {
  if ((x == 0) | | (y == 0))
    return 0;
  if (S1.charAt(x-1) == S2.charAt(y-1))
    return 1 + LCS(x-1, y-1, S1, S2);
  else
    return MAX(LCS(x-1, y, S1, S2),
               LCS(x, y-1, S1, S2));
```

22-62: LCS Pseudo-Code

```
LCS(int x, int y, String S1, String S2) {
  if ((x == 0) | (y == 0))
    return 0;
  if (S1.charAt(x-1) == S2.charAt(y-1))
    return 1 + LCS(x-1, y-1, S1, S2);
  else
    return MAX(LCS(x-1, y, S1, S2),
               LCS(x, y-1, S1, S2));
```

Requires exponential time in (x+y)

22-63: LCS

- For x,y:
 - Total number of subproblems

22-64: LCS

- For x,y:
 - Total number of subproblems

•
$$(x + 1) * (y + 1) (O(x * y))$$

22-65: LCS

- Create a table T
 - T[i,j] = LCS(i, j, S1, S2)
 - T[x,0] = 0
 - T[0,x] = 0
 - T[x,y] =
 - 1 + T[x-1,y-1]
 - MAX(T[x-1,y], T[x,y-1])
- if S1[x] = S2[y]
- otherwise

22-66: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0							
Α	1							
В	2							
С	3							
В	4							
D	5							
Α	6							
В	7							

22-67: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
Α	1	0						
В	2	0						
С	3	0						
В	4	0						
D	5	0						
A	6	0						
В	7	0						

22-68: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
Α	1	0	0					
В	2	0						
С	3	0						
В	4	0						
D	5	0						
A	6	0						
В	7	0						

22-69: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0				
В	2	0						
С	3	0						
В	4	0						
D	5	0						
A	6	0						
В	7	0						

22-70: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
Α	1	0	0	0	0			
В	2	0						
С	3	0						
В	4	0						
D	5	0						
Α	6	0						
В	7	0						

22-71: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
Α	1	0	0	0	0	1		
В	2	0						
С	3	0						
В	4	0						
D	5	0						
Α	6	0						
В	7	0						

22-72: **LCS**

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	
В	2	0						
С	3	0						
В	4	0						
D	5	0						
Α	6	0						
В	7	0						

22-73: **LCS**

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0						
С	3	0						
В	4	0						
D	5	0						
A	6	0						
В	7	0						

22-74: **LCS**

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1					
С	3	0						
В	4	0						
D	5	0						
A	6	0						
В	7	0						

22-75: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1				
С	3	0						
В	4	0						
D	5	0						
Α	6	0						
В	7	0						

22-76: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1			
С	3	0						
В	4	0						
D	5	0						
A	6	0						
В	7	0						

22-77: **LCS**

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1		
С	3	0						
В	4	0						
D	5	0						
Α	6	0						
В	7	0						

22-78: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	
С	3	0						
В	4	0						
D	5	0						
Α	6	0						
В	7	0						

22-79: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0						
В	4	0						
D	5	0						
Α	6	0						
В	7	0						

22-80: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1					
В	4	0						
D	5	0						
A	6	0						
В	7	0						

22-81: **LCS**

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
Α	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1	1				
В	4	0						
D	5	0						
A	6	0						
В	7	0						

22-82: **LCS**

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1	1	2			
В	4	0						
D	5	0						
A	6	0						
В	7	0						

22-83: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1	1	2	2		
В	4	0						
D	5	0						
A	6	0						
В	7	0						

22-84: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
Α	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1	1	2	2	2	
В	4	0						
D	5	0						
A	6	0						
В	7	0						

22-85: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1	1	2	2	2	2
В	4	0						
D	5	0						
A	6	0						
В	7	0						

22-86: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1	1	2	2	2	2
В	4	0	1					
D	5	0						
A	6	0						
В	7	0						

22-87: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
Α	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1	1	2	2	2	2
В	4	0	1	1				
D	5	0						
Α	6	0						
В	7	0						

22-88: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
Α	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1	1	2	2	2	2
В	4	0	1	1	2			
D	5	0						
Α	6	0						
В	7	0						

22-89: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2		
D	5	0						
Α	6	0						
В	7	0						

22-90: **LCS**

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	
D	5	0						
A	6	0						
В	7	0						

22-91: **LCS**

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
C	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0						
A	6	0						
В	7	0						

22-92: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1					
Α	6	0						
В	7	0						

22-93: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2				
A	6	0						
В	7	0						

22-94: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2	2			
A	6	0						
В	7	0						

22-95: **LCS**

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2	2	2		
Α	6	0						
В	7	0						

22-96: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
C	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2	2	2	3	
Α	6	0						
В	7	0						

22-97: **LCS**

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
C	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2	2	2	3	3
A	6	0						
В	7	0						

22-98: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
Α	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2	2	2	3	3
Α	6	0	1					
В	7	0						

22-99: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
Α	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
C	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2	2	2	3	3
Α	6	0	1	2				
В	7	0						

22-100: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
Α	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
C	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2	2	2	3	3
Α	6	0	1	2	2			
В	7	0						

22-101: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
C	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2	2	2	3	3
Α	6	0	1	2	2	3		
В	7	0						

22-102: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
C	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2	2	2	3	3
Α	6	0	1	2	2	3	3	
В	7	0						

22-103: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
C	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2	2	2	3	3
Α	6	0	1	2	2	3	3	4
В	7	0						

22-104: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
Α	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
C	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2	2	2	3	3
Α	6	0	1	2	2	3	3	4
В	7	0	1					

22-105: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
Α	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
C	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2	2	2	3	3
Α	6	0	1	2	2	3	3	4
В	7	0	1	2				

22-106: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
C	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2	2	2	3	3
Α	6	0	1	2	2	3	3	4
В	7	0	1	2	2			

22-107: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
C	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2	2	2	3	3
Α	6	0	1	2	2	3	3	4
В	7	0	1	2	2	3		

22-108: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
Α	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
С	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2	2	2	3	3
A	6	0	1	2	2	3	3	4
В	7	0	1	2	2	3	4	

22-109: LCS

			В	D	С	Α	В	Α
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1	1
В	2	0	1	1	1	1	2	2
C	3	0	1	1	2	2	2	2
В	4	0	1	1	2	2	3	3
D	5	0	1	2	2	2	3	3
Α	6	0	1	2	2	3	3	4
В	7	0	1	2	2	3	4	4

22-110: Memoization

- Can be difficult to determine order to fill the table
- We can use a table together with recursive solution
 - Initialize table with sentinel value
 - In recursive function:
 - Check table if entry is there, use it
 - Otherwise, call function recursively
 Set appropriate table value
 return table value

22-111: LCS Memoized

```
LCS(int x, int y, String S1, String S2) {
  if ((x == 0) | | (y == 0))
   T[x,y] = 0;
    return 0;
  if (T[x,y] != -1)
    return T[x,y];
  if (S1.charAt(x) == S2.charAt(y))
    T[x,y] = 1 + LCS(x-1, y-1, S1, S2);
  else
    T[x,y] = MAX(LCS(x-1, y, S1, S2),
                  LCS(x, y-1, S1, S2));
  return T[x,y];
```

22-112: Fibonacci Memoized

```
int Fibonacci(int n) {
  if (n == 0)
      return 1;
  if (n == 1)
      return 1;
  if (T[n] == -1)
    T[n] = Fibonacci(n-1) + Fibonacci(n-2);
 return T[n];
```

22-113: Making Change

- Problem:
 - Coins: 1, 5, 10, 25, 50
 - Smallest number of coins that sum to an amount X?
- How can we solve it?

22-114: Making Change

- Problem:
 - Coins: 1, 4, 6
 - Smallest number of coins that sum to an amount X?
- Does the same solution still work? Why not?

22-115: Making Change

- Problem:
 - Coins: $d_1, d_2, d_3, ..., d_k$
 - Can assume $d_1 = 1$
 - Value X
 - Find smallest number of coins that sum to X
- Solution:

22-116: Making Change

- Problem:
 - Coins: $d_1, d_2, d_3, ..., d_k$
 - Can assume $d_1 = 1$
 - Value X
 - Find smallest number of coins that sum to X
- Solution:
 - We can use any of the coins d_i whose value is less than or equal to X
 - We then have a smaller subproblem: Finding change for value up to $X-d_i$.
 - How do we know which one to chose? Try them all!

22-117: Making Change

- Problem:
 - Coins: $d_1, d_2, d_3, ..., d_k$
 - Can assume $d_1 = 1$
 - Value X
 - Find smallest number of coins that sum to X
- Solution:
 - C[X] = smallest number of coins required for amount X
 - What is the base case?
 - What is the recursive case?

22-118: Making Change

- C[X] = smallest number of coins required for amount X, using coins $d_1, d_2, d_3 \dots d_k$
 - Base Case:

$$C[0] = 0$$

Recursive Case:

$$C[X] = \min_{1 \le i \le n} 1 + C[X - d_i]$$

(where d_n is the largest coin $\leq X$)

22-119: Making Change

$$d_1 = 1, d_2 = 4, d_3 = 6$$

0
0
1
2
3
4
5
6
7
8
9

22-120: Making Change

$$d_1 = 1, d_2 = 4, d_3 = 6$$
 0
 1
 1
 2
 3
 4
 5
 6
 7
 8

22-121: Making Change

$$d_1 = 1, d_2 = 4, d_3 = 6$$

0
0
1
1
2
2
3
4
5
6
7
8
9

22-122: Making Change

$$d_1 = 1, d_2 = 4, d_3 = 6$$

0
0
1
1
2
2
3
3
4
5
6
7
8
9

22-123: Making Change

$$d_1 = 1, d_2 = 4, d_3 = 6$$

0
0
1
1
2
2
3
3
4
1
5
6
7
8
9

22-124: Making Change

$$d_1 = 1, d_2 = 4, d_3 = 6$$

0
0
1
1
2
2
3
3
4
1
5
2
6
7
8
9

22-125: Making Change

$$d_1 = 1, d_2 = 4, d_3 = 6$$

0
0
1
1
2
2
3
3
4
1
5
2
6
1
7
8
9

22-126: Making Change

$$d_1 = 1, d_2 = 4, d_3 = 6$$

0
0
1
1
2
3
3
4
1
5
2
6
1
7
2
8
9
10

22-127: Making Change

$$d_1 = 1, d_2 = 4, d_3 = 6$$

0 0
1 1
2 2
3 3
4 1
5 2
6 1
7 2
8 2
9 1

22-128: Making Change

$$d_1 = 1, d_2 = 4, d_3 = 6$$

0
0
1
1
2
2
3
3
4
1
5
2
6
1
7
2
8
2
9
3

22-129: Making Change

$$d_1 = 1, d_2 = 4, d_3 = 6$$

0
0
1
1
2
2
3
3
4
1
5
2
6
1
7
2
8
2
9
3

22-130: Making Change

• Given the table, can we determine the optimal way to make change for a given value X? How?

22-131: Making Change

- Given the table, can we determine the optimal way to make change for a given value X? How?
 - Look back through table, determine which coin was used to get the smallest number of coins
 - (examples)
- We could also store which coin we used to get the smallest number of coins

22-132: Making Change

$$d_1 = 1, d_2 = 4, d_3 = 6$$
 $0 \quad 0 \quad 0 \quad 0$
 $1 \quad 1 \quad 0 \quad d_1 \quad (1)$
 $2 \quad 2 \quad 0 \quad d_1 \quad (1)$
 $3 \quad 3 \quad 0 \quad d_1 \quad (1)$
 $4 \quad 1 \quad 0 \quad d_2 \quad (4)$
 $5 \quad 2 \quad 0 \quad d_2 \quad (4)$
 $6 \quad 1 \quad 0 \quad d_3 \quad (6)$
 $7 \quad 2 \quad 0 \quad d_3 \quad (6)$
 $8 \quad 2 \quad 0 \quad d_2 \quad (4)$
 $9 \quad 3 \quad 0 \quad d_2 \quad (4)$
 $9 \quad 3 \quad 0 \quad d_3 \quad (6)$
 $10 \quad 2 \quad 0 \quad d_3 \quad (6)$

22-133: Matrix Multiplication

- Quick review (on board)
 - Matrix A is $i \times j$
 - Matrix B is $j \times k$
 - # of scalar multiplications in A * B?

22-134: Matrix Multiplication

- Quick review (on board)
 - Matrix A is $i \times j$
 - Matrix B is $j \times k$
 - # of scalar multiplications in A * B?
 - *i* * *j* * *k*

22-135: Matrix Chain Multiplication

- Multiply a chain of matrices together
 - A * B * C * D * E * F
- Matrix Multiplication is associative
 - (A * B) * C = A * (B * C)
 - (A * B) * (C * D) = A * (B * (C * D)) = ((A * B) * C) * D = A * ((B * C) * D) =(A * (B * C)) * D

22-136: Matrix Chain Multiplication

- Order Matters!
- $A: (100 \times 100), B: (100 \times 100), C: (100 \times 100), D: (100 \times 1)$
 - ((A * B) * C) * D Scalar multiplications:
 - A*(B*(C*D)) Scalar multiplications:

22-137: Matrix Chain Multiplication

- Order Matters!
- $A : \overline{(100 \times 100), B : (100 \times 100),}$ $C : (100 \times 100), D : (100 \times 1)$
 - ((A*B)*C)*D Scalar multiplications: 2,010,000
 - A*(B*(C*D)) Scalar multiplications: 30,000

22-138: Matrix Chain Multiplication

- Matrices $A_1, A_2, A_3 \dots A_n$
- Matrix A_i has dimensions $p_{i-1} \times p_i$
- Example:
 - $A_1: 5 \times 7, A_2: 7 \times 9, A_3: 9 \times 2, A_4: 2 \times 2$
 - $p_0 = 5, p_1 = 7, p_2 = 9, p_3 = 2, p_4 = 2$
 - How can we break $A_1 * A_2 * A_3 * \ldots * A_n$ into smaller subproblems?
 - Hint: Consider the last multiplication

22-139: Matrix Chain Multiplication

- M[i,j] = smallest # of scalar multiplications required to multiply $A_i * ... * A_j$
- Breaking M[1, n] into subproblems:
 - Consider last multiplication
 - (use whiteboard)

22-140: Matrix Chain Multiplication

- M[i,j] = smallest # of scalar multiplications required to multiply $A_i * ... * A_j$
- Breaking M[1, n] into subproblems:
 - Consider last multiplication:
 - $(A_1 * A_2 * \ldots * A_k) * (A_{k+1} * \ldots * A_n)$
 - $M[1,n] = M[1,k] + M[k+1,n] + p_0 p_k p_n$
 - In general,

$$M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j$$

• What should we choose for k? which value between i and j-1 should we pick?

22-141: Matrix Chain Multiplication

Recursive case:

$$M[i,j] = \min_{i \le k < j} (M[i,k] + M[k+1,j] + p_{i-1} * p_k * p_j)$$

What is the base case?

22-142: Matrix Chain Multiplication

Recursive case:

$$M[i,j] = \min_{i \le k < j} (M[i,k] + M[k+1,j] + p_{i-1} * p_k * p_j)$$

What is the base case?

$$M[i,i] = 0$$

for all i

22-143: Matrix Chain Multiplication

$$M[i,j] = \min_{i \le k < j} (M[i,k] + M[k+1,j] + p_{i-1} * p_k * p_j)$$

• In what order should we fill in the table? What to we need to compute M[i,j]?

	1	2	3	4	5	6	7	8
1	0							
2		0						
3			0					
4				0				
5					0			
6						0		
7							0	
8								0

22-144: Matrix Chain Multiplication

$$M[i,j] = \min_{i \le k < j} (M[i,k] + M[k+1,j] + p_{i-1} * p_k * p_j)$$

• In what order should we fill in the table? What to we need to compute M[i,j]?

22-145: Matrix Chain Multiplication

$$M[i,j] = \min_{i \le k < j} (M[i,k] + M[k+1,j] + p_{i-1} * p_k * p_j)$$

What about the lower-left quadrant of the table?

22-146: Matrix Chain Multiplication

$$M[i,j] = \min_{i \le k \le j} (M[i,k] + M[k+1,j] + p_{i-1} * p_k * p_j)$$

What about the lower-left quadrant of the table?

22-147: Matrix Chain Multiplication

```
Matrix-Chain-Order(p)
     n \leftarrow \text{\# of matrices}
     for i \leftarrow 1 to n do
          M[i,i] \leftarrow 0
     for l \leftarrow 2 to n do
          for i \leftarrow 1 to n - \overline{l+1}
                j \leftarrow i + l - 1
                M[i,j] \leftarrow \infty
                for k \leftarrow i to j-1 do
                     q \leftarrow \overline{M[i,k]} + \overline{M[k+1,j]} + p_{i-1} * \overline{p_k} * \overline{p_j}
                     if q < M[i,j] then
                           M[i,j] = q
                           S[i,j] = k
```