Úkol 2

Příklad 1

Mějme problém MOD-SUMBSETSUM definovaný následovně: Vstupem je konečná množina položek S, váhová funkce $v:S\to\mathbb{N}$ a přirozená čísla $k,m\in\mathbb{N}$ taková, že k< m. Problém se ptá, zda existuje množina $A\subseteq S$ taková, že:

$$\left(\sum_{i \in A} v(i)\right) \bmod m = k$$

Dokažte, že MOD-SUMBSETSUM je \mathbf{NP} -úplný problém. Nezapomeňte, že důkaz NP-úplnosti se skládá ze dvou částí.

Řešení 1

Důkaz. Definice \mathbf{NP} -úplného problému říká: L je \mathbf{NP} -úplný, pokud $L \in \mathbf{NP}$ a zároveň existuje známý \mathbf{NP} -úplný problém L' (MOD-SUMBSETSUM), pro který platí $L' \leq_p L$. Proto rozdělíme důkaz na dvě části. V první ukážeme, že $MOD-SUMBSETSUM \in \mathbf{NP}$ a v druhé, že SUMBSETSUM lze polynomiálně redukovat na MOD-SUMBSETSUM.

Důkaz náležitosti do NP:

Uvažujme vícepáskový nedeterministický turingův stroj M, který rozhoduje MOD-SUMBSETSUM v polynomiálním čase. Vstupní páska stroje má tvar $\triangle\langle S\rangle\#\langle v\rangle\#\langle m\rangle\#\langle k\rangle\triangle\triangle^\omega$, kde $\langle S\rangle$ je kód množiny S, $\langle v\rangle$ je kód funkce v, $\langle m\rangle$ a $\langle k\rangle$ jsou kódy čísel $m,k\in\mathbb{N}$. Nejprve M zkontroluje validitu vstupní pásky, to dokáže v čase $\mathcal{O}(n)$. Pokud je obsah pásky nevalidní, zamítne, jinak pokračuje. Dále M nedeterministicky vygeneruje množinu $S'\subseteq S$ na druhou pásku, to lze provést v čase $\mathcal{O}(n)$. Na třetí zapíše číselné hodnoty prvků z druhé pásky na základě váhové funkce v, tento přepis lze uskutečnit v čase $\mathcal{O}(n^2)$ (pro každý prvek z S' je potřeba vyhledat jeho cenu v první pásce). M sečte celou třetí pásku a výsledek zapíše na čtvrtou pásku, sčítání provede v čase $\mathcal{O}(n)$. Na pátou pásku zapíše hodnotu uloženou na čtvrté pásce $modulo\ m$, operaci modulo provede v čase $\mathcal{O}(n^2)$. Pokud se číslo uložené na páté pásce shoduje s k, pak příjme, jinak odmítne. Je vidět, že časová složitost nedeterministického vícepáskového stroje je $\mathcal{O}(n^2)$, tedy $MOD-SUMBSETSUM \in \mathbf{NP}$.

Důkaz **NP**-těžkosti:

Pro důkaz \mathbf{NP} -těžkosti využijeme polynomiální redukci z problému SUMBSETSUM, který je \mathbf{NP} -úplný. Problém SUMBSETSUM je trojice (S, v, k), kde S je množina položek, $v: S \to \mathbb{N}$ váhová funkce a $k \in \mathbb{N}$. Problém se ptá, zda existuje množina $A \subseteq S$ taková, že:

$$\left(\sum_{i \in A} v(i)\right) = k$$

Polynomiální redukční funkci f definujeme takto:

$$f(\langle S \rangle \# \langle v \rangle \# \langle k \rangle) = \langle S' \rangle \# \langle v' \rangle \# \langle m' \rangle \# \langle k' \rangle$$

Pokud není $\langle S \rangle \# \langle v \rangle \# \langle k \rangle$ korektní instancí SUMBSETSUM, pak funkce f vrací řetězec, pro který $S' = \emptyset$, $v' = \emptyset$ m' = 2, k' = 1. Určitě neexistuje vhodná kombinace elementů (žádné neexistují), aby jejich celková hodnota $mod\ 2$ byla 1.

Pokud je $\langle S \rangle \# \langle v \rangle \# \langle k \rangle$ korektní instancí SUMBSETSUM, funkce f vrací řetězec, pro který:

- S' = S
- v' = v
- $m' = \left(\sum_{i \in S} v(i)\right) + 1$
- k' = k

Víme (z předchozího kroku), že výpočet m' má časovou složitost $\mathcal{O}(n^2)$, tedy funkce f je polynomiální redukční funkcí.

Protože $MOD-SUMBSETSUM \in \mathbf{NP}$ a $SUMBSETSUM \leq_p MOD-SUMBSETSUM$, pak je MOD-SUMBSETSUM \mathbf{NP} -úplný.

Příklad 2

Mějme jazyk $L_t = \{0\}$ nad abecedou $\{0, 1\}$.

Dokažte (popište základní myšlenky důkazu) následující tvrzení $\mathbf{P} = \mathbf{NP} \implies L_t$ je \mathbf{NP} -úplný. *Nápověda: uvědomte si, jakým způsobem je definován pojem redukce a pojem NP-úplnosti.*

Řešení 2

Důkaz. Jazyk $L_t \in \mathbf{P}$, protože pro jazyk L_t můžeme sestrojit deterministický turingův stroj, který jej rozhoduje v $\mathcal{O}(1)$. Dále mějme předpoklad $\mathbf{P} = \mathbf{NP}$, pak tedy $L_t \in \mathbf{NP}$. Tímto je splněna jedna ze dvou podmínek pro \mathbf{NP} -úplné jazyky. Nyní zbývá dokázat, že každý jazyk $L' \in \mathbf{NP}$ lze na L_t redukovat polynomiální redukcí. Díky předpokladu $\mathbf{P} = \mathbf{NP}$ víme, že pro každý jazyk $L' \in \mathbf{NP}$ platí $L' \in \mathbf{P}$. Polynomiální redukci libovolného jazyka L' provádí funkce f následovně:

$$f(\langle w \rangle) = \begin{cases} \langle 0 \rangle & w \in L' \\ \langle 1 \rangle & \text{jinak} \end{cases}$$

Lze vidět, že funkce je vyčíslitelná v polynomiálním čase, protože pro každý L' platí $L' \in \mathbf{P}$. Bylo tedy dokázáno, že $\mathbf{P} = \mathbf{NP} \implies L_t$ je \mathbf{NP} -úplný.

Příklad 3

Zdůvodněte, proč z tvrzení v bodu 3 plyne, že: $P = NP \implies \text{každý jazyk } L \in NP \text{ je } NP-\text{úplný}^1$.

Řešení 3

Důkaz. V důkazu nebudeme brát v úvahu prázdný a univerzální jazyk. Pro ně tvrzení neplatí. Mějme předpoklad P = NP, pak víme, že pro každý jazyk $L \in NP$ platí, $L \in P$. Z toho vyplývá, že pro každý jazyk $L \in NP$ existuje deterministický turingův stroj M, který jej rozhoduje v polynomiálním čase. A proto je možné pro každou dvojici jazyků $L, L' \in NP$ provést polynomiální redukci $L' \leq_p L$. Mějme následující řetězce $y \in L$ a $r \notin L$. Polynomiální redukce je definována funkci f následovně:

$$f(\langle w \rangle) = \begin{cases} \langle y \rangle & w \in L' \\ \langle r \rangle & \text{jinak} \end{cases}$$

¹Toto tvrzení neplatí pro prázdný a universální jazyk.

Lze vidět, že funkce je vyčíslitelná v polynomiálním čase, protože platí $L' \in \mathbf{P}$. Bylo tedy dokázáno, že: $\mathbf{P} = \mathbf{NP} \implies \text{každý jazyk } L \in \mathbf{NP} \text{ je } \mathbf{NP}\text{-uplny}^1$.

Příklad 4

Uvažujme problém *GRAPH_COLORING* definovaný ve slidech (série č. 5).

Dále definujme optimalizační problém $OPT_GRAPH_COLORING$ následovně: Pro graf G(V,E) a konečnou množinu barev C, přípustné řešení je libovolná funkce $A:V\to C$. Cena tohoto řešení je definována jako $c(A)=|\{(v_1,v_2)\in E\,|\,A(v_1)=A(v_2)\}|$, tedy počet hran, jejichž oba vrcholy jsou obarvené stejnou barvou. Optimální řešení je to s minimální cenou. Dokažte, že pokud $\mathbf{P}\neq\mathbf{NP}$, tak neexistuje absolutní aproximační algoritmus pro problém $OPT_GRAPH_COLORING$.

Řešení 4

 $D\mathring{u}kaz$. $D\mathring{u}kaz$ neexistence absolutního aproximačního algoritmu povedeme sporem. Nejprvé definujeme m-tou mocninu graph G, značenou G^m . Takovýto graf získáme, pokud vezmeme m kopií grafu G a hranou spojíme každou dvojici vrcholů, které nenáleží stejné kopii. Lehce lze ověřit, že pokud je k obarvení grafu G zapotřebí i barev, pak pro obarvení grafu G^m bude zapotřebí im barev, protože žádná dvojice vrcholů z různých kopií grafu G nemůže mít stejnou barvu.

Předpokládejme, že pro problém $OPT_GRAPH_COLORING$ existuje absolutní aproximační algoritmus P, jehož výstupem je funkce $A:V\to C$, s absolutní chybou $k\in\mathbb{N}$. Potom optimální řešení problému $OPT_GRAPH_COLORING$ lze získat simulací P na vstupu G^{k+1} . Tedy platí:

$$|c(P(G^{k+1})) - OPT(G^{k+i})| \le k$$

Lze vidět, že pokud dokážeme obarvit graf G^m za pomocí i barev, pak graf G dokážeme obarvit $\frac{i}{m}$ barvami v polynomiálním čase, to ale znamená, že dokážeme obarvit graf G tak, že:

$$|c(P(G)) - OPT(G)| \le \frac{k}{k+1}$$

Protože jsou hodnoty c(P(G)) a OPT(G) celočíselné, pak musí být k=0, což je ale spor s $k \in \mathbb{N}$, tedy pro $OPT_GRAPH_COLORING$ neexistuje absolutní aproximační algoritmus.