ALBERT: A LITE BERT FOR SELF-SUPERVISIED LEARNING OF LANGUAGE REPRESENTATIONS (ICLR'20 papers)

25th Jan, 2022 JongHyeon Kim

github.com/bellhyeon bellhyeon@naver.com

Prior to the start of the presentation, I inform you in advance that the prior knowledge has been summarized in references, and that this presentation will be presented mainly by ALBERT.

Full Network Pre-Training

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

2 - Supervised training on a specific task with a labeled dataset.

Reference: http://jalammar.github.io/illustrated-bert/

Race Dataset

Model	Model Report Time		RACE	RACE- M	RACE- H
Base					
Gated Attention Reader*	Apr 15, 2017	CMU	44.1	43.7	44.2
RoBERTa (SOTA)					
RoBERTa	Jul 26, 2019	Facebook Al	83.2	86.5	81.8
ALBERT					
ALBERT (ensemble)	Sep 26, 2019	Google Research & TTIC	89.4	91.2	88.6

Reference: http://www.qizhexie.com/data/RACE_leaderboard.html

Model Distillation

1. Teacher Network (T)

- cumbersome model
 ex) ensemble / a large generalized model
- (pros) excellent performance
- (cons) computationally expansive
- can not be deployed when limited environments

2. Student Network (S)

- small model
- suitable for deployment
- (pros) fast inference
- (cons) lower performance than T

Reference: https://baeseongsu.github.io/posts/knowledge-distillation/

Memory Limitation Problem & Training Time

Reference: https://medium.com/huggingface/distilbert-8cf3380435b5

Memory Limitation Problem & Training Time

Model	Size	TPU (\$ per hour)	TPU Count (device)	Training Time	Cost (USD)	CO2 emissions (lbs)
BERT	24 Layers (340M)	v2 (\$4.5)	16	4 days	\$6,912 (약 850만원)	1428
GPT-2	48 Layers (1542M)	v3 (\$8)	32	7 days	\$43,008 (약 5,100만원)	2516
XLNet	24 Layers (365M)	v3 (\$8)	128	2.5 days	\$61,440 (약 7,300만원)	-

Reference: https://medium.com/huggingface/distilbert-8cf3380435b5

Model Degradation - Are Large Models Always The Answer?

Reference: https://amitness.com/2020/02/albert-visual-summary/

Model Degradation - Are Large Models Always The Answer?

Figure 1: Training loss (left) and dev masked LM accuracy (right) of BERT-large and BERT-xlarge (2x larger than BERT-large in terms of hidden size). The larger model has lower masked LM accuracy while showing no obvious sign of over-fitting.

Model	Hidden Size	Parameters	RACE (Accuracy)
BERT-large (Devlin et al., 2019)	1024	334M	72.0%
BERT-large (ours)	1024	334M	73.9%
BERT-xlarge (ours)	2048	1270M	54.3%

Table 1: Increasing hidden size of BERT-large leads to worse performance on RACE.

A Lite BERT (ALBERT)

- Solved aforementioned Methods
- Fewer parameters than BERT
- Propose parameter reduction techniques
 - Factorized embedding parameterization
 - Cross-layer parameter sharing
- Sentence-order prediction (SOP)

Reference: https://github.com/cybertronai/gradient-checkpointing

Scaling Up Representation Learning For Natural Language

- Often shown that larger model size improves performance
- Larger model size always leads to better performance in BERT (Larger Hidden Size, More Hidden Layers & Attention Heads)

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

GLUE

SQuAD 1.1

System	D	ev	Test		
	EM	F1	EM	F1	
Top Leaderboard System	s (Dec	10th,	2018)		
Human	-	_	82.3	91.2	
#1 Ensemble - nlnet	2	-	86.0	91.7	
#2 Ensemble - QANet	7	75	84.5	90.5	
Publishe	d				
BiDAF+ELMo (Single)	-	85.6	-	85.8	
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5	
Ours	Andrews .				
BERT _{BASE} (Single)	80.8	88.5	-	- 2	
BERT _{LARGE} (Single)	84.1	90.9	_	-	
BERT _{LARGE} (Ensemble)	85.8	91.8	-	2	
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8	
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2	

SWAG Dev & Test

System	Dev	Test
ESIM+GloVe ESIM+ELMo OpenAI GPT		52.7 59.2 78.0
$\begin{array}{c} BERT_{BASE} \\ BERT_{LARGE} \end{array}$	81.6 86.6	86.3
Human (expert) [†] Human (5 annotations) [†]	-	85.0 88.0

Reference: https://arxiv.org/pdf/1810.04805.pdf

Scaling Up Representation Learning For Natural Language

- Experiment with large models is difficult → due to computational constraints
 GPU/TPU memory limitations
- Current SOTA Models have millions or billions of parameters

Reference: https://han.gl/ULJWI

Scaling Up Representation Learning For Natural Language

- Gradient Checkpointing (Training Deep Nets with Sublinear Memory Cost, Chen et al., 2016)
- Reconstruct Each Layer's Activations From the Next Layer
 (The Reversible Residual Network: Backpropagation Without Storing Activations, Gomez et al., 2017)

These Solutions solved only Memory Limitation Problem !!

Cross-Layer Parameter Sharing

- Previously Explored with Transformer Architecture (Attention is All You Need, Vaswani et al., 2017)
 - Focused on Training Encoder-Decoder Architecture rather than Pretraining / Finetuning
- Universal Transformers (Dehghani et al., 2018)
 - Better Performance on Language Modeling and Subject-Verb Agreement than Vanilla Transformer
- Deep Equilibrium Models (Bai et al., 2019)
 - DQE can reach an equilibrium point for which the input embedding and the output embedding of a certain layer stay the same
- Modeling Recurrence for Transformers (Hao et al., 2019)
 - Vanilla Transformer Encoder + Recurrence Encoder Structure

Sentence Ordering Objectives

- BERT uses Next Sentence Prediction (NSP) Loss for downstream tasks
 - Take two segments that appear consecutively from the training corpus
 - Create a random pair of segments from the different document as negative samples

Reference: https://amitness.com/2020/02/albert-visual-summary/

Sentence Ordering Objectives

- Papers like RoBERTa and XLNET have shed light on the ineffectiveness of NSP and found its impact on the downstream tasks unreliable
- NSP sees not only the continuity, but also the topic of the sentence
- May be judged as a negative example by the different topic → Topic Prediction

Model Architecture Choices

- Transformer Encoder + GELU Activation Function (Similar To BERT)
- Follows BERT notation conventions
 - Vocabulary Embedding Size: E
 - Number of Encoder Layers: L
 - Hidden Size: *H*
 - Feed-Ford-Network(FFN) Size: 4H
 - Attention Heads: H/64

Model Architecture Choices

- 1. Factorized embedding parameterization
 - Modeling Perspective
 - WordPiece embedding learns context-independent representations
 - Hidden layer embedding learns context-dependent representations
 - WordPiece Embedding Information << Hidden Layer Embedding Information
 - Practical Perspective
 - NLP usually require the large vocab size
 - If increase hidden size H when E = H, embedding matrix = $(V \times E (= H))$
 - If H := E, embedding matrix = $V \times H + V \times E$ (H > E)

Reference: https://han.gl/ULJWI

Model Architecture Choices

- 2. Cross-layer parameter sharing
 - ALBERT proposes cross-layer paramaeter sharing
 - Only sharing feed-forward network
 - Only sharing multi-head attention parameters
 - Default: Sharing All parameters across layers

Figure 1: The L2 distances and cosine similarity (in terms of degree) of the input and output embedding of each layer for BERT-large and ALBERT-large.

Weight-Sharing has an effect on stabilizing network parameters

Model Architecture Choices

- 2. Cross-layer parameter sharing
 - Similar to Universal Transformer
 - Recurrent Transformer Encoder

Model Architecture Choices

- 3. Inter-sentence coherence loss
 - ALBERT proposes Sentence Order Prediction (SOP)
 - Take two consecutive segments from the same document as a positive class
 - Swap the order of the same segment and use that as a negative example

EXPERIMENTAL SETUP

- Pre-train Corpora: Bookcorpus, English Wikipedia
- Same input format as BERT: [CLS] x₁ [SEP] x₂ [SEP]
- 30,000 Vocab tokenized by SentencePiece (Same as BERT)
- MLM targets: n-gram masking $(1 \le n \le 3)$ $p(n) = \frac{1/n}{\sum_{k=1}^{N} 1/k}$
- Batch Size: 4096
- Optimizer: Lamb (Large Batch Optimization for Deep Learning, You et al., 2019)
- Learning Rate: 0.00176
- Used Google Cloud TPU v3: 64 ~ 512 used depending on model size
- Train Steps: 125,000 steps

EVALUATION BENCHMARKS

Overall Comparison Between BERT and ALBERT

- ALBERT-xxlarge
 - Only around 70% of BERT-large's parameters
 - Achieves significant improvements over BERT-large
- Training time faster under the same TPUS
 - Because of less communication and fewer computation
 - ALBERT-large is about 1.7 times faster than BERT-large
 - ALBERT-xxlarge is about 3 times slower than BERT-large (larger structure)

Mod	lel	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg	Speedup
	base	108M	90.4/83.2	80.4/77.6	84.5	92.8	68.2	82.3	4.7x
BERT	large	334M	92.2/85.5	85.0/82.2	86.6	93.0	73.9	85.2	1.0
	base	12M	89.3/82.3	80.0/77.1	81.6	90.3	64.0	80.1	5.6x
ALBERT	large	18M	90.6/83.9	82.3/79.4	83.5	91.7	68.5	82.4	1.7x
ALBERT	xlarge	60M	92.5/86.1	86.1/83.1	86.4	92.4	74.8	85.5	0.6x
	xxlarge	235M	94.1/88.3	88.1/85.1	88.0	95.2	82.3	88.7	0.3x

EVALUATION BENCHMARKS

Factorized Embedding Parameterization

- Under the non-shared condition (BERT-style)
 - Larger embedding sizes give better performance, but not by much
- Under the all-shared condition (ALBERT-style)
 - Best: Embedding size 128
 - Use embedding size E = 128 in all future settings

Model	\boldsymbol{E}	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg
AL DEDT	64	87M	89.9/82.9	80.1/77.8	82.9	91.5	66.7	81.3
ALBERT base	128	89M	89.9/82.8	80.3/77.3	83.7	91.5	67.9	81.7
not-shared	256	93M	90.2/83.2	80.3/77.4	84.1	91.9	67.3	81.8
not-snared	768	108M	90.4/83.2	80.4/77.6	84.5	92.8	68.2	82.3
ALDEDT	64	10M	88.7/81.4	77.5/74.8	80.8	89.4	63.5	79.0
ALBERT base	128	12M	89.3/82.3	80.0/77.1	81.6	90.3	64.0	80.1
all-shared	256	16M	88.8/81.5	79.1/76.3	81.5	90.3	63.4	79.6
an-snared	768	31M	88.6/81.5	79.2/76.6	82.0	90.6	63.3	79.8

EVALUATION BENCHMARKS

Cross-Layer Parameter Sharing

- Not shared strategy is best
- Shared-Attention strategy hurts a little
- Shared-FFN strategy hurts more than Shared-Attention strategy
- Shared-Attention has more parameters than Shared-FFN

	Model	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg
ALDEDT	all-shared	31M	88.6/81.5	79.2/76.6	82.0	90.6	63.3	79.8
ALBERT base	shared-attention	83M	89.9/82.7	80.0/77.2	84.0	91.4	67.7	81.6
E=768	shared-FFN	57M	89.2/82.1	78.2/75.4	81.5	90.8	62.6	79.5
E=708	not-shared	108M	90.4/83.2	80.4/77.6	84.5	92.8	68.2	82.3
ALBERT base E=128	all-shared	12M	89.3/82.3	80.0/77.1	82.0	90.3	64.0	80.1
	shared-attention	64M	89.9/82.8	80.7/77.9	83.4	91.9	67.6	81.7
	shared-FFN	38M	88.9/81.6	78.6/75.6	82.3	91.7	64.4	80.2
E-126	not-shared	89M	89.9/82.8	80.3/77.3	83.2	91.5	67.9	81.6

EVALUATION BENCHMARKS

Sentence Order Prediction (SOP)

- Compare None inter-sentence loss (XLNet / RoBERTa Style),
 NSP loss (BERT-Style), SOP loss (ALBERT Style)
- NSP loss does not effect to SOP task
- SOP loss effect to both NSP task and SOP task
- SOP loss appears to consistently improve downstream task performance for multi-sentence encoding

	Intr	insic Tas	sks		Dowr	istream Ta			
SP tasks	MLM	NSP	SOP	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg
None	54.9	52.4	53.3	88.6/81.5	78.1/75.3	81.5	89.9	61.7	79.0
NSP	54.5	90.5	52.0	88.4/81.5	77.2/74.6	81.6	91.1	62.3	79.2
SOP	54.0	78.9	86.5	89.3/82.3	80.0/77.1	82.0	90.3	64.0	80.1

EVALUATION BENCHMARKS

What If We train For the Same Amout Of Time?

ALBERT-xxlarge is significantly better than BERT-large: Avg (+1.5%),
 Race (+5.2%)

Models	Steps	Time	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg
BERT-large	400k	34h	93.5/87.4	86.9/84.3	87.8	94.6	77.3	87.2
ALBERT-xxlarge	125k	32h	94.0/88.1	88.3/85.3	87.8	95.4	82.5	88.7

EVALUATION BENCHMARKS

What If We train For the Same Amout Of Time?

- Compared by not number of training steps, but actual training time
 - → Due to longer training usually leads to better performance
- ALBERT-xxlarge is significantly better than BERT-large: Avg (+1.5%),
 Race (+5.2%)

Models	Steps	Time	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg
BERT-large	400k	34h	93.5/87.4	86.9/84.3	87.8	94.6	77.3	87.2
ALBERT-xxlarge	125k	32h	94.0/88.1	88.3/85.3	87.8	95.4	82.5	88.7

EVALUATION BENCHMARKS

Additional Training Data And Dropout Effects

- With additional data improves performance
 - → Except SQuAD: Due to ALBERT pretrained with Wikipedia corpus
- ALBERT-xxlarge is significantly better than BERT-large: Avg (+1.5%),
 Race (+5.2%)

	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg
No additional data	89.3/82.3	80.0/77.1	81.6	90.3	64.0	80.1
With additional data	88.8/81.7	79.1/76.3	82.4	92.8	66.0	80.8

EVALUATION BENCHMARKS

Additional Training Data And Dropout Effects

- ALBERT-xxlarge does not overfitted after training 1M steps
 - → Remove Dropout for increase model capacity
- Removing dropout leads to improvements for all downstream tasks
 - → Needs further experimentation with other transformer-based architectures

EVALUATION BENCHMARKS

Current State-Of-The-Art On NLU Tasks

Models	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task single	Single-task single models on dev									
BERT-large	86.6	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
XLNet-large	89.8	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa-large	90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	-	-
ALBERT (1M)	90.4	95.2	92.0	88.1	96.8	90.2	68.7	92.7	-	-
ALBERT (1.5M)	90.8	95.3	92.2	89.2	96.9	90.9	71.4	93.0	-	-
Ensembles on test	Ensembles on test (from leaderboard as of Sept. 16, 2019)									
ALICE	88.2	95.7	90.7	83.5	95.2	92.6	69.2	91.1	80.8	87.0
MT-DNN	87.9	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5
Adv-RoBERTa	91.1	98.8	90.3	88.7	96.8	93.1	68.0	92.4	89.0	88.8
ALBERT	91.3	99.2	90.5	89.2	97.1	93.4	69.1	92.5	91.8	89.4

EVALUATION BENCHMARKS

Current State-Of-The-Art On NLU Tasks

Models	SQuAD1.1 dev	SQuAD2.0 dev	SQuAD2.0 test	RACE test (Middle/High)				
Single model (from leaderboard as of Sept. 23, 2019)								
BERT-large	90.9/84.1	81.8/79.0	89.1/86.3	72.0 (76.6/70.1)				
XLNet	94.5/89.0	88.8/86.1	89.1/86.3	81.8 (85.5/80.2)				
RoBERTa	94.6/88.9	89.4/86.5	89.8/86.8	83.2 (86.5/81.3)				
UPM	-	-	89.9/87.2	-				
XLNet + SG-Net Verifier++	-	-	90.1/87.2	-				
ALBERT (1M)	94.8/89.2	89.9/87.2	-	86.0 (88.2/85.1)				
ALBERT (1.5M)	94.8/89.3	90.2/87.4	90.9/88.1	86.5 (89.0/85.5)				
Ensembles (from leaderboard as of Sept. 23, 2019)								
BERT-large	92.2/86.2	-	-	-				
XLNet + SG-Net Verifier	-	-	90.7/88.2	-				
UPM	-	-	90.7/88.2					
XLNet + DAAF + Verifier	-	-	90.9/88.6	-				
DCMN+	-	-	-	84.1 (88.5/82.3)				
ALBERT	95.5/90.1	91.4/88.9	92.2/89.7	89.4 (91.2/88.6)				

CONCLUSION & DISCUSSION

- ALBERT-xxlarge has less parameters than BERT-large, computation cost is expensive due to larger structure
- Next step to speed up the training and inference speed methods Sparse Attention(Child et al., 2019) / Block Attention (Shen et al., 2018)
- Next step to more better representation

 Hard Example Mining (Mikolove et al., 2013) / Efficient Language Model Training (Yang et al., 2019)
- Hypothesize that there could be another self-supervised training loss

CONCLUSION & DISCUSSION

- ALBERT-xxlarge has less parameters than BERT-large, computation cost is expensive due to larger structure
 - 12 repeating layers
 - 128 embedding dimension
 - 4096 hidden dimension
 - 64 attention heads
 - 223M parameters

ALBERT-xxlarge Model Configuration

- 24-layer
- 1024 hidden dimension
- 16 attention heads
- 336M parameters.

BERT-large Model Configuration

Reference: https://huggingface.co/albert-xxlarge-v2; https://huggingface.co/bert-large-uncased

