

Over-generation cannot be rewarded: Length-Adaptive Average Lagging

Sara Papi, Marco Gaido, Matteo Negri, Marco Turchi

{spapi,mgaido,negri,turchi}@fbk.eu

AutoSimTrans Worshop @ NAACL2022

Evaluation in SimulST

Simultaneous Speech Translation (SimulST) evaluation involves measuring:

- Translation quality: measures how good the translation is (e.g. with BLEU as in standard offline speech translation evaluation)
- Latency: measures the delay between the source speech and the generated translation

Latency Metrics

Many metrics have been proposed for simultaneous machine translation and adapted to SimulST:

→ Average Lagging or AL (Ma et al., 2019) is the most popular and widely used

Latency Metrics

Many metrics have been proposed for simultaneous machine translation and adapted to SimulST:

→ Average Lagging or AL (Ma et al., 2019) is the most popular and widely used

The AL goal is to quantify how much time the system is out of sync with the speaker

$$AL = \underbrace{\frac{1}{\tau'(|\mathbf{X}|)}}_{\text{index of the target token when the end of audio is reached}}^{\tau'(|\mathbf{X}|)} \underbrace{\sum_{i=1}^{\tau'(|\mathbf{X}|)}}_{i=1} d_i - d_i^*$$

index of the

target token when the end of

audio is reached

system delay

to be evaluated

6

system delay

to be evaluated

index of the target token when the end of audio is reached

$$d_i^* = (i-1) \cdot \frac{\sum_{j=1}^{j-1} T_j}{|\mathbf{Y}|}$$

7

ideal policy delay

perfectly in sync

with the speaker

index of the

target token

when the end of

audio is reached

system delay

to be evaluated

ideal policy delay
perfectly in sync
with the speaker

 $d_i^* = (i-1) \cdot \frac{\sum_{j=1}^{|\mathbf{X}|} (T_j)}{|\mathbf{Y}|}$

duration of the $\mathbf{x}_{\mathbf{j}}$ audio segment

system delay

to be evaluated

index of the target token when the end of audio is reached

$$d_i^* = (i-1)$$

duration of the \mathbf{x}_{j}

prediction length

(in words)

Average Lagging and under-generation:

In adapting the metric for speech, Ma et al. (2020) noticed that the metric was not robust to **under-generation**:

- The problem is more frequent in SimulST due to the presence of silences or long pauses
- → The lagging behind the ideal policy becomes negative and this favors under-generative systems

Average Lagging and under-generation:

In adapting the metric for speech, Ma et al. (2020) noticed that the metric was not robust to **under-generation**:

- The problem is more frequent in SimulST due to the presence of silences or long pauses
- → The lagging behind the ideal policy becomes negative and this favors under-generative systems

For this reason, they proposed to change the ideal policy calculation

Average Lagging: ideal policy for under-generation

$$AL = \frac{1}{\tau'(|\mathbf{X}|)} \sum_{i=1}^{\tau'(|\mathbf{X}|)} d_i - d_i^*$$

$$d_i^* = (i-1) \cdot \frac{\sum_{j=1}^{|\mathbf{X}|} T_j}{\mathbf{Y}^*}$$
 Reference length instead of prediction length

The Problem of Over-generation

Still, Ma et al. (2020) did not consider the **over**-generation:

→ Older systems were more affected by under-generation

BUT

→ Newer systems can generate more than one word at a time which sometimes results in over-generation

The Problem of Over-generation: an example

AL (automatic): 198ms

Real delay: 846ms

How frequent is over-generation?

We investigate if it represents a problem considering:

- CAAT (Liu et al., 2021): state-of-the-art SimulST system with adaptive policy
- Wait-k (Ma et al, 2020): SimulST system adopting the most popular (fixed) decision policy in simultaneous
- Offline with wait-k (Papi et al, 2022): offline system used in simultaneous by adopting wait-k decision policy

Average Word Length Difference (AWLD)

We measure AWLD between reference and predictions:

$$\text{AWLD} = \underbrace{N}_{s=1}^{N} |\mathbf{Y}| - |\mathbf{Y}^*|$$
 number of samples

- Positive values → the system tends to over-generate
- Negative values → the system tends to under-generate

Model	k=3	k=5	k=7	k=9	k=11
wait-k	-5.57	-3.82	-2.30	-1.13	-0.74
offline wait-k	0.48	0.49	0.53	0.74	0.80
CAAT	1.57	0.96	0.61	0.35	0.18

Model	k=3	k=5	k=7	k=9	k=11
wait-k	-5.57	-3.82	-2.30	-1.13	-0.74
offline wait-k	0.48	0.49	0.53	0.74	0.80
CAAT	1.57	0.96	0.61	0.35	0.18

wait-k strongly under-generates

Model	k=3	k=5	k=7	k=9	k=11
wait-k	-5.57	-3.82	-2.30	-1.13	-0.74
offline wait-k	0.48	0.49	0.53	0.74	0.80
CAAT	1.57	0.96	0.61	0.35	0.18

offline wait-k slightly over-generates

Model	k=3	k=5	k=7	k=9	k=11
wait-k	-5.57	-3.82	-2.30	-1.13	-0.74
offline wait-k	0.48	0.49	0.53	0.74	0.80
CAAT	1.57	0.96	0.61	0.35	0.18

CAAT tends to over-generate, especially at low latency

Our solution: Length-Adaptive Average Lagging (LAAL)

Our metric accounts also for over-generation phenomena by considering in the ideal policy computation:

- reference length when the prediction is shorter
- prediction length when the prediction is longer
- → the correction is made at sentence-level and can be applied both to over- and under-generative SimulST systems

LAAL: formulation

For each sentence, we take the maximum between prediction and reference lengths in the ideal policy:

$$d_i^* = (i-1) \cdot \frac{\sum_{j=1}^{|\mathbf{X}|} T_j}{\max\{|\mathbf{Y}|, |\mathbf{Y}^*|\}}$$

Model	Metric	k=3	k=5	k=7	k=9	k=11
wait-k	AL	1761	1970	2272	2582	2931
	LAAL	1778	2001	2332	2655	3003
offline wait-k	AL	1522	1959	2463	2926	3350
	LAAL	1682	2093	2588	3043	3457
CAAT	AL	735	1149	1533	1905	2265
	LAAL	1018	1365	1708	2046	2382

Model	Metric	k=3	k=5	k=7	k=9	k=11	
wait-k	AL	1761	1970	2272	2582	2931	
	LAAL	1778	2001	2332	2655	3003	
offline wait-k	AL	1522	10.	2/163	2026	3350	
	LAAL	1682		Slight differences			
CAAT	AL	735	Detv	between AL and LAAL			
	LAAL	1018	1365	1708	2046	2382	

Metric	k=3	k=5	k=7	k=9	k=11
AL	1761	1970	2272	2582	2931
LAAL	1778	2001	2332	2655	3003
AL	1522	1959	2463	2926	3350
LAAL	1682	2093	2588	3043	3457
AL	735	11.	1522	1005	2265
LAAL	1018		LAAL increases by ~100ms compared to Al		
	AL LAAL AL AL	AL 1761 LAAL 1778 AL 1522 LAAL 1682 AL 735	AL 1761 1970 LAAL 1778 2001 AL 1522 1959 LAAL 1682 2093 AL 735 11. LAAL 1018	AL 1761 1970 2272 LAAL 1778 2001 2332 AL 1522 1959 2463 LAAL 1682 2093 2588 AL 735 11 1522 LAAL 1018 LAAL increas	AL 1761 1970 2272 2582 LAAL 1778 2001 2332 2655 AL 1522 1959 2463 2926 LAAL 1682 2093 2588 3043 AL 735

Model	Metric	k=3	k=5	k=7	k=9	k=11
wait-k	AL	1761	1970	2272	2582	2931
	LAAL	1778	2001			
offline wait-k	AL	1522	1959	LAAL is at least 100ms higher compared to AL		
	LAAL	1682	2093		30 4 3	545 1
CAAT	AL	735	1149	1533	1905	2265
	LAAL	1018	1365	1708	2046	2382

Model	Metric	k=3	k=5	k=7	k=9	k=11	
wait-k	AL	1761	1970	2272	2582	2931	
	LAAL	1778	2001	2332	2655	3003	
offline wait-k	AL	1522	LAAI	LAAL latency increases up to ~300ms at very low			
	LAAL	1682	up to				
CAAT	AL	735	111	latency			
	LAAL	1018	1365	1708	2046	2382	

In Conclusion

- Current SimulST systems evaluation metrics do not take into account over-generation
- The problem is quite frequent in the output of current SimulST systems
- Our proposed metric, Length-Adaptive Average Lagging, takes into account for both under- and over-generation phenomena at sentence level
- Our experiments show that LAAL gives a more precise measure of latency compared to AL
- Use LAAL for more reliable reliable system evaluations!

What's next?

The ideal policy formulation of AL/LAAL assumes that:

- only one word at a time is emitted
- the words are equally distributed in the speech
- → These strong assumptions are not valid in general and imply that the obtained evaluation could be unreliable
- → This should be considered in future studies for even better latency estimates

Thanks for your attention!

Over-generation cannot be rewarded: Length-Adaptive Average Lagging

Sara Papi, Marco Gaido, Matteo Negri, Marco Turchi

{spapi,mgaido,negri,turchi}@fbk.eu

