HANDBOOK OF THE ELEMENTS

H IIA Li Be Mg Na IIIB IVB VB VIB VIIB 18 IIB Co Cu Ca Sc ٧ Cr Mn Fe Ni Zn K Ti Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd Cs Ba La* Hf Ta W Re Os Ir Pt Au Hg 104 105 106 107 Fr Ra Act 109 Dy Ho Nd Sm Eu Gd Tb Er Tm Ce Pm Md Pu Am Cm Bk Cf Es Np Fm Th Pa

IA

SAMUEL RUBEN

											0
						IIIA	IVA	VA	VIA	VIIA	He
						В	С	N	0	F	Ne
VIIB		VIII		IB.	IIB	Al	Si	Р	s	CI	Ar
Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
107		109									
Gd	Tb	Dy	Но	Er	Tm	Yb	Lu				
								4			

OPEN COURT LA SALLE, ILLINOIS 61301 ISBN 0-87548-399-2

ISBN 0-87548-399-\$10.95

Handbook of the Elements

Handbook of the Elements

Samuel Ruben

Open Court Publishing Company La Salle, Illinois 61301

To order books from Open Court, call toll-free 1-800-815-2280.

Open Court Publishing Company is a division of Carus Publishing Company.

Copyright © 1965, 1967, 1985 by Samuel Ruben.

Fourth printing 1992 Fifth printing 1994 Sixth printing 1995 Seventh printing 1996 Eighth printing 1998

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher, Open Court Publishing Company, a division of Carus Publishing Company, 315 Fifth Street, P.O. Box 300, Peru, Illinois 61354-0300.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Ruben, Samuel
Handbook of the elements

1. Chemical elements. I. Title QD466.R78 1985 546 85-18942 ISBN 0-87548-399-2

Preface

Handbook of the Elements is a practical reference source that provides essential information on the 108 known chemical elements for students and working scientists alike.

Knowledge about the elements is critical to our understanding of science and the world around us. This edition represents the most up-to-date compilation of information on the elements currently available.

Data on the chemical elements have been the fundamentals of scientific work for years, yet new research is continually revising previously published material about them. Even physical "constants" are subject to change in the light of additional research.

The information contained in this the third edition reflects state-of-theart values on the most frequently required constants. The material in this current edition was compiled, corrected, and updated over a period of several years, utilizing hundreds of sources. Each value was checked in a minimum of 10 sources to ensure accuracy. A partial listing of the primary reference sources consulted is given at the end of the monographs.

I wish to acknowledge the significant assistance of Wayne Hruden for updating the reported values of the constants and the support given by the Duracell International Inc.

SAMUEL RUBEN December 1984

Introduction

This handbook contains monographs for each of the 108 known chemical elements, arranged in alphabetical order for rapid reference.

Except where unavailable, values for the following twenty-five different elemental constants are given:

Periodic classification The group, family name, and/or series of the element; this categorization reflects the position of the element in the periodic table.

Atomic number An element of atomic number Z occupies the Zth position in the periodic classification. Its neutral atom has a nucleus with a charge of $+Z\epsilon$ surrounded by Z electrons, each of charge $-\epsilon$.

Atomic weight The relative atomic mass (A_r) based on $^{12}C \equiv 12$; the value for the most stable isotope is given for synthetic elements.

- **Naturally occurring isotopes** Mass numbers of the isotopes are listed in decreasing order of natural terrestrial abundance.
- **Density** The weight per unit volume of the element; measurements of this constant are generally made at 25°C, but the temperature utilized is shown in parentheses. Units are grams per cubic centimeter (g/cm³).
- **Melting point** Units are degrees Celsius (°C); **Boiling point**: Units are degrees Celsius (°C).
- **Latent heat of fusion** The quantity of heat required to change 1 g of the solid element into the liquid state at a constant temperature. Units are Joules per gram (J/g).
- **Specific heat** The thermal capacity of an element; the specific heat capacity is the quantity of heat required to raise the temperature of a mass through a measured number of Celsius degrees. Units are Joules per gram per degree Celsius (J/g/°C).
- **Coefficient of lineal thermal expansion** The ratio of the change in length per degree Celsius to the original length at zero degrees Celsius. Units are centimeter per centimeter per degree Celsius (cm/cm/°C).
- **Thermal conductivity** Thermal energy transmitted through a unit cube per unit time when there exists unit temperature difference between opposite parallel faces. Units are watts (or milliwatts) per centimeter per degree Celsius [w (or mw)/cm/°C].
- **Electrical resistivity** A proportionality factor (ρ) relating the resistance to current flow between parallel faces of a 1-cm cube of the element. This factor is also known as specific resistance. Because the resistance of semiconductor is substantially influenced by the presence of traces of impurities, the intrinsic resistivity is the parameter given for these ultrapure elements. Units are ohm-centimeters (ohm-cm).
- **lonization potential (1st)** The energy necessary to remove the least strongly bound electron from its orbit and place it at rest at an infinite distance. Units are electron volts (eV).
- **Electron work function** (φ) The minimum photonic energy required to remove an electron from the boundary of an element; also known as photoelectric work function. Units are electron volts (eV).
- Oxidation potential The difference in potential produced by a voltaic halfcell associated with the cited chemical reaction. By using the oxidation potential, the likelihood of various chemical reactions can be predicted. Oxidation of gaseous hydrogen (at 1 atmosphere pressure) to ionic hydrogen (in 1 molar acid solution at 25°C) defines the zero reference. Units are volts (V).
- **Chemical valence** The number of hydrogen atoms (or their equivalent) with which an atom of an element can combine (if negative) or the number which it can displace in a reaction (if positive). The principal valence is set in italic type when more than one valence is possible.

Electrochemical equivalents The mass of an element displaced by the passage of unit quantity of electricity. The values provided are derived from:

electrochemical equivalents =
$$\frac{kA}{n}$$

where k is a constant equal to 0.0373100, A is the gram-atomic weight, and n is the principal valence. Units are grams per amperehour (g/amp-hr).

lonic radius The radius an ion exhibits in an ionic crystal in which the ions are packed together with their outermost electronic shells in contact with each other. Values are given for a coordination number of 6. Ionic radii for other coordination numbers can be obtained by multiplying by the following conversion factors:

Coordination Number	Conversion Factor
12	1.12
9	1.05
8	1.03
6	1.00
4	0.94

Units are Ångstroms (1Å = 10^{-8} cm).

Valence electron potential ($-\epsilon$ **V)** A calculated value based on the charge of the valence electrons and the ionic radius. It provides a quantitative indication of the reactivity of an element and is determined by the equation:

$$(-\epsilon V) = \frac{kn}{r}$$

where $(-\epsilon V)$ is the valence electron potential, n is the valence, and k is a proportionality factor converting Ångstroms to centimeters and expressing the force exerted by the valence electrons in electron volts and is equal to 14.399; r is the ionic radius in Ångstroms. The principal valence has been used for the determination.

Electronic configuration A sequential listing of the orbiting electrons, indicating the principal shells and the number of electrons in each subshell. For example, $4d^{10}$ would indicate the presence of 10 electrons in the "d" subshell of the fourth (N) principal shell. Principal shells are assigned letters corresponding to their quantum numbers as follows: 1 = K, 2 = L, 3 = M, 4 = N, 5 = O, 6 = P, and 7 = Q. A maximum exists for the number of electrons in each subshell: 2 in s, 6 in p, 10 in d, and 14 in f.

Valence electrons A sequential listing of the electrons involved in the ionization of the element. They are indicated in the same manner as in the electronic configuration.

Crystal form A brief description of the atomic arrangement in the elemental solid state. (See accompanying figure for common Crystal Forms).

- **Half life** The time required for one-half of an initial quantity of a radioactive isotope to be converted into its decay product. This entry is included only when all known isotopes of an element are unstable. The half life presented is that of the most stable isotope. Units are seconds, minutes, hours, days, or years.
- **Cross section** σ The effective size of a nucleus in capturing a thermal (slow) neutron. The larger the cross section the greater is the probability of neutron capture. Units are millibarns (mbarns) or barns (1 barn = 10^{-24} cm²).
- **Vapor pressure** The pressure exerted when a solid or liquid is in equilibrium with its vapor. Since this parameter is a function of temperature, the vapor pressure at the melting point is given. Units are Pascals (Pa).

Crystal Forms

Periodic Classification of the Elements

IA									
1.0079 H 1	IIA								
6.941 Li 3	9.01218 Be 4	Mit-in-							
22.98977 Na 11	24.305 Mg 12	IIIB	IVB	VB	VIB	VIIB		– VIII –	
39.098 K 19	40.08 Ca 20	44.95592 Sc 21	47.90 Ti 22	50.9415 V 23	51.996 Cr 24	54.9380 Mn 25	55.847 Fe 26	58.9332 Co 27	58.70 N i 28
85.4678 Rb 37	87.62 Sr 38	88.9059 Y 39	91.22 Zr 40	92.9064 Nb 41	95.94 Mo 42	96.906 TC 43	101.07 Ru 44	102.9055 Rh 45	106.4 Pd 46
132.9054 Cs 55	137.34 Ba 56	138.9055 La* 57	178.49 Hf 72	180.9479 Ta 73	183.85 W 74	186.2 Re 75	190.2 Os 76	192.22 r 77	195.09 Pt 78
223.01976 Fr 87	226.02544 Ra 88	227.02777 Ac† 89	104	105	106	107		109	-

*Lanthanide Series

140.12	140.9077	144.24	144.913	150.4	151.96	157.25	158.9254	162.50	164.9304	
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	
58	59	60	61	62	63	64	65	66	67	

†Actinide Series

232.03807	231.0359	238.029	237.0482	244.06423	243.0614	247.07038	247.07032	251.07961	254.08805
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es
90	91	92	93	94	95	96	97	98	99

							0
		IIIA	IVA	VA	VIA	VIIA	4.00260 He 2
		10.81 B 5	12.011 C 6	14.0067 N 7	15.9994 O 8	18.998403 F 9	20.179 Ne 10
IB	IIB	26.98154 Al 13	28.0855 Si 14	30.97376 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.9216 As 33	^{78.96} Se 34	^{79.904} Br 35	83.80 Kr 36
107.868 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.9045 53	131.30 Xe 54
196.9665 A u 79	200.59 Hg 80	204.37 TI 81	207.2 Pb 82	208.9804 Bi 83	208.98243 Po 84	209.987 At 85	222.01761 Rn 86

167.26	168.9342	173.04	174.97
Er	Tm	Yb	Lu
68	69	70	71

257.09515	258	259	260
Fm	Md	No	Lr
100	101	102	103

		•

Actinium

227.02777

Actinio Actinium Aktinium Actinio актиний אקטיניום

Naturally occurring isotope: 227 (minute quantities only)

Density: 10.07 g/cm³ (25°C)

Melting point: 1100 ± 50 °C Boiling point: 3200 ± 300 °C (est)

Latent heat of fusion: 62 J/g Specific heat: 0.12 J/g/°C

Thermal conductivity: 0.12 w/cm/°C (25°C)

Ionization potential (1st): 5.17 eV

Oxidation potential: $Ac \rightarrow Ac^{3+} + 3\epsilon = 2.2 \text{ V}$

Chemical valence: 3

Electrochemical equivalents: 2.82347 g/amp-hr

lonic radius: 1.119 Å (Ac3+)

Valence electron potential ($-\epsilon V$): 38.60 (Ac³⁺)

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶

5d¹⁰ 6s² 6p⁶ 6d¹ 7s² Valence electrons: 6d1 7s2

Crystal form: Cubic, face centered

Half life: 21.77 years

Cross section σ : 810 ± 20 barns

Aluminum

13 26.98154

Alumínio Aluminium Aluminio Aluminio אלומין

鋁

Naturally occurring isotope: 27 Density: 2.6984 g/cm³ (20°C)

Melting point: 660.37°C Boiling point: 2467°C

Latent heat of fusion: 395.7 J/gSpecific heat: 0.903 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 23.9 \times $10^6 cm/cm/^{\circ}C$ (20°C)

Thermal conductivity: 2.37 w/cm/°C (25°C)

Electrical resistivity: 2.6548 × 10⁻⁶ ohm-cm (20°C)

lonization potential (1st): 5.986 eV Electron work function ϕ : 4.28 eV

Oxidation potential: Al \rightarrow Al³⁺ + 3 ε = 1.662 V

Chemical valence: 3

Electrochemical equivalents: 0.33556 g/amp-hr

lonic radius: 0.535 Å (Al3+)

Valence electron potential ($-\epsilon V$): 80.7

Principal quantum number: 3 Principal electron shells: K L M

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^1$

Valence electrons: 3s² 3p¹
Crystal form: Cubic, face centered
Cross section σ: 232±3 mbarns

Vapor pressure: 2.42×10^{-6} Pa (at melting point)

Americium

95 243.0614

Actinide Series

232.03807 Th 90	231.0359 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247 07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.08805 Es 99
257 09515	258	259	260						
Fm 100	Md 101	No 102	Lr 103						

Amerício
Américium
Amerizium
Americio
америций

鎇

ケメリシウ

Naturally occurring isotopes: None

Density: 13.67 g/cm³ (20°C)

Melting point: 1176°C Boiling point: 2011°C

Ionization potential (1st): 5.99 eV

Oxidation potential: Am \rightarrow Am³⁺ + 3 ε = 2.32 V

Chemical valence: 2, 3, 4, 5, 6

Electrochemical equivalents: 3.0229 g/amp-hr

lonic radius: 0.982 Å (Am³⁺)

Valence electron potential ($-\epsilon V$): 44.0

Principal quantum number: 7

Principal electron shells: K \perp M N O P Q

Electronic configuration: $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 4f^{14} \ 5s^2 \ 5p^6$

5d¹⁰ 5f⁷ 6s² 6p⁶ 7s²

Valence electrons: $5f^7 \, 7s^2$ Crystal form: Hexagonal Half life: $7.32 \times 10^3 \, years$ Cross section σ : $180 \pm 20 \, barns$

Antimony

51 121.75

Antimônio Antimoine Antimon Antimonio сурьма אנטימון

Naturally occurring isotopes: 121, 123

Density: 6.691 g/cm³ (20°C)

Melting point: 630.74°C Boiling point: 1750°C

Latent heat of fusion: 165.0 J/gSpecific heat: 0.207 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 9.2×10^{-6} cm/cm/°C (0°C)

Thermal conductivity: 0.244 w/cm/°C (25°C) Electrical resistivity: 39×10^{-6} ohm-cm (0°C)

lonization potential (1st): 8.641 eV Electron work function ϕ : 4.55 eV

Oxidation potential: $2Sb + 3H_2O \rightarrow Sb_2O_3 + 6H^+ + 6\varepsilon = -0.152 \text{ V}$

Chemical valence: -3, 0, 3, 5

Electrochemical equivalents: 1.5142 g/amp-hr

lonic radius: 0.76 Å (Sb3+)

Valence electron potential ($-\epsilon V$): 57

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^3$

Valence electrons: $5s^2 5p^3$ Crystal form: Rhombohedral Cross section σ : 5 ± 1 barns

Vapor pressure: 2.49×10^{-9} Pa (at melting point)

Argon

18 39.948

Argônio Argon Argon Argón aproн ארגזן ארגזן

Naturally occurring isotopes: 40, 36, 38

Density: 1.65 g/cm³ ($-\,233^{\circ}\text{C}$), 1.784 $\times~10^{-3}$ g/cm³ (0°C)

Melting point: -189.2°C Boiling point: -185.7°C

Latent heat of fusion: 29.45 J/g Specific heat: 0.52032 J/g/°C (25°C)

Thermal conductivity: 0.1772 mw/cm/°C (27°C at 1 atm)

Ionization potential (1st): 15.759 eV

Chemical valence: 0

Principal quantum number: 3
Principal electron shells: K L M

Electronic configuration: $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6$

Valence electrons: (3s² 3p⁶)

Crystal form: Cubic, face centered

Cross section σ : 0.66 barns

Arsenic

33 74.9216

Arsênio Arsenic Arsen Arsénico мышьяк

砷素

Naturally occurring isotope: 75 Density: 5.73 g/cm³ (gray) (20°C)

Melting point: 817°C (at 28 atm) Boiling point: 613°C (sublimes)

Latent heat of fusion: 369.9 J/g

Specific heat: 0.329 J/g/°C (gray) (25°C)

Coefficient of lineal thermal expansion: $6.02 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (25°C)

Thermal conductivity: $0.502 \text{ w/cm/}^{\circ}\text{C}$ (gray) (25°C) Electrical resistivity: $35 \times 10^{-6} \text{ ohm-cm}$ (0°C)

lonization potential (1st): 9.81~eVElectron work function ϕ : 3.75~eV

Oxidation potential: As $+ 2H_2O \rightarrow HAsO_2 + 3H^+ + 3\epsilon = -0.2476 \text{ V}$

Chemical valence: -3, 0, 3, 5

Electrochemical equivalents: 0.93177 g/amp-hr

lonic radius: 0.58 Å (As3+)

Valence electron potential ($-\epsilon V$): 74

Principal quantum number: 4
Principal electron shells: K L M N

Electronic configuration: $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^3$

Valence electrons: $4s^2 4p^3$ Crystal form: Rhombohedral Cross section σ : 4.30 ± 0.10 barns

Astatine

85 209.987

Astato
Astatine
Astat
Astatino
астатин

サスタチン

Naturally occurring isotopes: None

Melting point: 302°C (est) Boiling point: 337°C (est)

Latent heat of fusion: 114 J/g (est) lonization potential (1st): 9.65 eV

Oxidation potential: $2At^- \rightarrow At_2 + 2\varepsilon = -0.2 \text{ V}$

Chemical valence: 1, 3, 5, 7

Electrochemical equivalents: 7.8346 g/amp-hr

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{14}\ 5s^2\ 5p^6$

5d¹⁰ 6s² 6p⁵

Valence electrons: 6s² 6p⁵

Half life: 8.1 hr

Barium

56 137.34

Bário Barium Barium Bario барий ピロいる

Naturally occurring isotopes: 138, 137, 136, 135, 134, 130, 132

Density: 3.59 g/cm³ (20°C)

Melting point: 725°C Boiling point: 1640°C

Latent heat of fusion: 55.79 J/gSpecific heat: 0.204 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 19.0×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.184 w/cm/°C (22°C)

lonization potential (1st): 5.212 eV Electron work function ϕ : 2.7 eV

Oxidation potential: Ba \rightarrow Ba²⁺ + 2 ε = 2.906 V

Chemical valence: 2

Electrochemical equivalents: 2.5621 g/amp-hr

lonic radius: 1.35 Å (Ba²⁺)

Valence electron potential ($-\epsilon V$): 21.3

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^6 6s^2$

Valence electrons: 6s2

Crystal form: Cubic, body centered Cross section σ : 1.2 \pm 0.1 barns

Vapor pressure: 9.80 × 10 Pa (at melting point)

Berkelium

97 247.07032

Actinide Series

232.03807	231.0359	238.029	237 0482	244.06423	243.0614	247.07038	247.07032	251.07961	254.08805
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es
90	91	92	93	94	95	96	97	98	99
257 09515 Fm 100	258 Md 101	259 No 102	260 Lr 103						

Berquélio Berkelium Berkelium Berkelio беркелий

に バークリウ

Naturally occurring isotopes: None

Density: 14.78 g/cm 3 (25°C) Melting point: 986 \pm 25°C Ionization potential (1st): 6.23 eV

Oxidation potential: $Bk \rightarrow Bk^{3+} + 3\epsilon = 1.97 \text{ V}$

Chemical valence: 3, 4

Electrochemical equivalents: 3.0727 g/amp-hr

Ionic radius: 0.949 Å (Bk3+)

Valence electron potential ($-\epsilon V$): 45.5

Principal quantum number: 7

Principal electron shells: K L M N O P Q

 $\textbf{Electronic configuration:} \ \ 1s^2 \ \ 2s^2 \ \ 2p^6 \ \ 3s^2 \ \ 3p^6 \ \ 3d^{10} \ \ 4s^2 \ \ 4p^6 \ \ 4d^{10} \ \ 4f^{14} \ \ 5s^2 \ \ 5p^6$

 $5d^{10} 5f^8 6s^2 6p^6 6d^1 7s^2$ Valence electrons: $5f^8 6d^1 7s^2$ Crystal form: Hexagonal Half life: 1.4×10^3 years

Beryllium

4 9.01218

Berílio Beryllium Berilio бериллий בריליום リ

Naturally occurring isotope: 9 Density: 1.848 g/cm³ (20°C)

Melting point: $1278 \pm 5^{\circ}$ C Boiling point: 2970° C

Latent heat of fusion: 1301 J/g Specific heat: 1.82 $J/g/^{\circ}C$ (25°C)

Coefficient of lineal thermal expansion: 11.6×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 2.01 w/cm/°C (25°C) Electrical resistivity: 4.0×10^{-6} ohm-cm (20°C)

lonization potential (1st): 9.322 eV Electron work function ϕ : 4.98 eV

Oxidation potential: Be \rightarrow Be²⁺ + 2 ε = 1.85 V

Chemical valence: 2

Electrochemical equivalents: 0.16812 g/amp-hr

lonic radius: 0.35 Å (Be²⁺)

Valence electron potential ($-\epsilon$ V): 82

Principal quantum number: 2 Principal electron shells: K L Electronic configuration: $1s^2\ 2s^2$

Valence electrons: 2s²

Crystal form: Hexagonal, close packed Cross section σ : 9.2 \pm 0.5 mbarns

Vapor pressure: 4.18 Pa (at melting point)

Bismuth

83 208.9804

Bismuto
Bismuth
Wismut
Bismuto
висмут

ビスマス

Naturally occurring isotope: 209 Density: 9.78 g/cm³ (20°C)

Melting point: 271.3° C Boiling point: $1560 \pm 5^{\circ}$ C

Latent heat of fusion: 52.09 J/gSpecific heat: 0.122 J/g/°C (25°C)

Coefficient of lineal thermal expansion: $13.3 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$

Thermal conductivity: 0.0792 w/cm/°C (25°C) Electrical resistivity: 106.8×10^{-6} ohm-cm (0°C)

lonization potential (1st): 7.289 eV Electron work function ϕ : 4.22 eV

Oxidation potential: Bi + $H_2O \rightarrow$ BiO + + $2H^+$ + 3ϵ = -0.320 V

Chemical valence: 3, 5

Electrochemical equivalents: 2.5990 g/amp-hr

Ionic radius: 1.03 Å (Bi³⁺)

Valence electron potential ($-\epsilon V$): 41.9

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{14}\ 5s^2\ 5p^6$

5d¹⁰ 6s² 6p³

Valence electrons: $6s^2 6p^3$ Crystal form: Rhombohedral Cross section σ : 19 ± 2 mbarns

Vapor pressure: 6.27×10^{-4} Pa (at melting point)

Boron

10.81

Bóro Bore Bor Boro бор בור

Naturally occurring isotopes: 11, 10

Density: 2.34 g/cm³ (crystalline), 2.37 g/cm³ (amorphous) (both at 20°C)

Melting point: 2300°C Boiling point: 2550°C (sublimes)

Latent heat of fusion: 890.8 J/q Specific heat: 1.03 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 8.3×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.274 w/cm/°C (25°C) Electrical resistivity: 1.8 × 10⁶ ohm-cm (0°C)

Ionization potential (1st): 8.298 eV Electron work function o: 4.45 eV

Oxidation potential: B + $3H_2O \rightarrow H_3BO_3 + 3H^+ + 3\epsilon = -0.8698 \text{ V}$

Chemical valence: 3

Electrochemical equivalents: 0.1344 g/amp-hr

lonic radius: 0.23 Å (B3+)

Valence electron potential ($-\epsilon V$): 190

Principal quantum number: 2 Principal electron shells: K L Electronic configuration: 1s² 2s² 2p¹

Valence electrons: 2s² 2p¹

Crystal form: Hexagonal, close packed

Cross section o: 759 barns

Vapor pressure: 3.48×10^{-1} Pa (at melting point)

Bromine

35 79.904

Bromo
Brome
Bromo
Gpom

Naturally occurring isotopes: 79, 81

Density: 3.1028 g/cm³ (20°C)

Melting point: -7.2° C Boiling point: 58.78° C

Latent heat of fusion: 132.0 J/g (Br₂) Specific heat: 0.47362 J/g/°C (Br₂) (25°C) Thermal conductivity: 1.22 mw/cm/°C (27°C) Electrical resistivity: 7.8×10^{12} ohm-cm (0°C)

Ionization potential (1st): 11.814 eV

Oxidation potential: $2Br^- \rightarrow Br_2 + 2\varepsilon = -1.0652 \text{ V}$

Chemical valence: -1, 3, 5, 7

Electrochemical equivalents: 2.9812 g/amp-hr

lonic radius: 1.96 Å (Br⁻)

Valence electron potential ($-\epsilon V$): -7.35

Principal quantum number: 4 Principal electron shells: K L M N

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^5$

Valence electrons: $4s^2 4p^5$

Crystal form: Orthorhombic, rhombic Cross section σ : 6.8 ± 0.1 barns

Vapor pressure: 5.80×10^3 Pa (at melting point)

Cadmium

48 112.41

Cádmio Cadmium Cadmio Садмий

カドミウム

Naturally occurring isotopes: 114, 112, 111, 110, 113, 116, 106, 108

Density: 8.65 g/cm³ (20°C)

Melting point: 320.9°C Boiling point: 765°C

Latent heat of fusion: 54.01 J/gSpecific heat: $0.231 \text{ J/g/}^{\circ}\text{C}$ (25°C)

Coefficient of lineal thermal expansion: $29.8 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (25°C)

Thermal conductivity: 0.969 w/cm/°C (25°C) Electrical resistivity: 6.83 \times 10 $^{-6}$ ohm-cm (0°C)

lonization potential (1st): 8.993 eV Electron work function ϕ : 4.22 eV

Oxidation potential: $Cd \rightarrow Cd^{2+} + 2\varepsilon = 0.4029 \ V$

Chemical valence: 2

Electrochemical equivalents: 2.0970 g/amp-hr

Ionic radius: 0.97 Å (Cd2+)

Valence electron potential ($-\epsilon V$): 30

Principal quantum number: 5
Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s²

Valence electrons: 5s2

Crystal form: Hexagonal, close packed Cross section σ : 2450 \pm 20 barns

Vapor pressure: 1.48 × 10 Pa (at melting point)

Calcium

20 40.08

Cálcio Calcium Kalzium Calcio кальций プロ

钙剂

Naturally occurring isotopes: 40, 44, 42, 48, 43, 46

Density: 1.55 g/cm³ (20°C)

Melting point: $839 \pm 2^{\circ}$ C Boiling point: 1484° C

Latent heat of fusion: 216.2 J/g Specific heat: 0.632 J/g°C (25°C)

Coefficient of lineal thermal expansion: $22.3 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (20°C)

Thermal conductivity: 2.01 w/cm/°C (25°C) Electrical resistivity: 3.91×10^{-6} ohm-cm (0°C)

Ionization potential (1st): 6.113 eV Electron work function φ: 2.87 eV

Oxidation potential: $Ca \rightarrow Ca^{2+} + 2\epsilon = 2.866 \text{ V}$

Chemical valence: 2

Electrochemical equivalents: 0.7477 g/amp-hr

Ionic radius: 0.99 Å (Ca²⁺)

Valence electron potential ($-\epsilon V$): 29

Principal quantum number: 4 Principal electron shells: K L M N

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

Valence electrons: 4s²

Crystal form: Cubic, face centered Cross section σ : 0.44 \pm 0.02 barns

Vapor pressure: 2.54×10^2 Pa (at melting point)

Californium

98

251.07961

Actinide Series

232.03807	231.0359	238.029	237.0482	244.06423	243.0614	247.07038	247.07032	251.07961	254.08805
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es
90	91	92	93	94	95	96	97	98	99
257 09515 Fm 100	258 Md 101	NO 102	260 Lr 103						

Califórnio
Californium
Californium
Californio
калифорний

כליפורגיום

釧

カリフォリニウム

Naturally occurring isotopes: None

Density: 15.1 g/cm³ (25°C) Melting point: 900 ± 30 °C Ionization potential (1st): 6.30 eV

Oxidation potential: Cf \rightarrow Cf³⁺ + 3 ε = 2.0 V

Chemical valence: 2, 3, 4

Electrochemical equivalents: 3.1226 g/amp-hr

lonic radius: $0.934 \text{ Å (Cf}^{3+})$

Valence electron potential ($-\epsilon V$): 44.5

Principal quantum number: 7

Principal electron shells: K L M N O P Q

 $\textbf{Electronic configuration: } 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{14}\ 5s^2\ 5p^6$

5d¹⁰ 5f¹⁰ 6s² 6p⁶ 7s²

Valence electrons: 5f¹⁰ 7s² Crystal form: Hexagonal Half life: 900 years

Cross section σ : 2100 \pm 1000 barns

Carbon

6 12.011

Carbono Carbone Kohlenstoff Carbono углерод

碳炭素

Naturally occurring isotopes: 12, 13, 14

Density: 3.52 g/cm³ (diamond), 1.9-2.3 g/cm³ (graphite), 1.8-2.1 g/cm³

(amorphous) (all at 20°C)

Melting point: 3550° C Boiling point: 4827° C Specific heat: $0.7099 \text{ J/g/}^{\circ}$ C (graphite) (25° C)

Coefficient of lineal thermal expansion: $2.10 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (graphite)

(30°C)

Thermal conductivity: $0.8-2.2~\text{w/cm/}^{\circ}\text{C}$ (graphite) (25°C) Electrical resistivity: $1375~\times~10^{-6}$ ohm-cm (graphite) (0°C)

lonization potential (1st): 11.260 eV Electron work function ϕ : 5.0 eV

Oxidation potential: $CH_4 \rightarrow C + 4H^+ + 4\varepsilon = -0.1316 \text{ V}$

Chemical valence: 2, 3, 4

Electrochemical equivalents: 0.11203 g/amp-hr

lonic radius: 0.16 Å (C4+)

Valence electron potential ($-\epsilon V$): 360

Principal quantum number: 2
Principal electron shells: K L
Electronic configuration: 1s² 2s² 2p²

Valence electrons: 2s2 2p2

Crystal form: Hexagonal (graphite), cubic (diamond)

Cross section σ : 3.4 \pm 0.2 mbarns

Cerium

58

140.12

Lanthanide Series

140 12 Ce 58	140 9077 Pr 59	144 24 Nd 60	144.913 Pm 61	150 4 Sm 62	151 96 Eu 63	157 25 Gd 64	158.9254 Tb 65	Dy 66	164.9304 Ho 67
167.26 Er 68	168.9342 Tm 69	173.04 Yb 70	174.97 Lu 71						

Cério Cérium Zerium Cerio церий

新り

צריום

Naturally occurring isotopes: 140, 142, 138, 136

Density: 6.657 g/cm³ (25°C)

Melting point: 799°C Boiling point: 3426°C

Latent heat of fusion: 65.7 J/gSpecific heat: 0.192 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 7.1×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.113 w/cm/°C (25°C) Electrical resistivity: 77×10^{-6} ohm-cm (25°C)

lonization potential (1st): 5.47~eVElectron work function ϕ : 2.84~eV

Oxidation potential: $Ce \rightarrow Ce^{3+} + 3\epsilon = 2.483 \text{ V}$

Chemical valence: 3, 4

Electrochemical equivalents: 1.7426 g/amp-hr

lonic radius: 1.034 Å (Ce3+)

Valence electron potential ($-\epsilon V$): 41.78

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^2\ 5s^2\ 5p^6\ 6s^2$

Valence electrons: 4f² 6s²

Crystal form: Cubic, face centered Cross section σ : 0.73 \pm 0.08 barns

Cesium

55 132.9054

Césio Césium Caesium Ceslo цезий

Naturally occurring isotope: 133 Density: 1.873 g/cm³ (20°C)

Melting point: 28.40 ± 0.01°C Boiling point: 669.3°C

Latent heat of fusion: 16.372 J/gSpecific heat: $0.241 \text{ J/g/}^{\circ}\text{C}$ (25°C)

Coefficient of lineal thermal expansion: 97×10^{-6} cm/cm/°C (20°C) Thermal conductivity: 0.359 w/cm/°C (solid at melting point)

Electrical resistivity: 20.46×10^{-6} ohm-cm (20°C)

lonization potential (1st): 3.894~eVElectron work function ϕ : 2.14~eV

Oxidation potential: Cs \rightarrow Cs $^+$ + ε = 2.923 V

Chemical valence: 1

Electrochemical equivalents: 4.95870 g/amp-hr

lonic radius: 1.67 Å (Cs+)

Valence electron potential ($-\epsilon V$): 8.62

Principal quantum number: 6
Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁶ 6s¹

Valence electrons: 6s1

Crystal form: Cubic, body centered Cross section σ : 30.0 \pm 1.5 barns

Vapor pressure: 2.50×10^{-5} Pa (at melting point)

Chlorine

17 35.453

Clóro Chlore Chlor Cloro xnop Cctr

Naturally occurring isotopes: 35, 37

Density: 1.56 g/cm³ (-33.6°C), 3.214 × 10⁻³ g/cm³ (0°C)

Melting point: -100.98° C Boiling point: -34.6° C

Latent heat of fusion: 180.8 J/g (Cl₂) Specific heat: 0.4782 J/g/°C (Cl₂) (25°C)

Thermal conductivity: 0.089 mw/cm/°C (27°C at 1 atm)

Ionization potential (1st): 12.967 eV

Oxidation potential: $2CI^- \rightarrow CI_2 + 2\varepsilon = -1.3595 \text{ V}$

Chemical valence: -/, 3, 5, 7

Electrochemical equivalents: 1.3228 g/amp-hr

lonic radius: 1.81 Å (Cl⁻)

Valence electron potential ($-\epsilon V$): -7.96

Principal quantum number: 3 Principal electron shells: $K \perp M$

Electronic configuration: $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^5$

Valence electrons: $3s^2 3p^5$ Crystal form: Tetragonal Cross section σ : 33 barns

Vapor pressure: 1.30×10^3 Pa (at melting point)

Chromium

24 51.996

Crômio Chrom Chrom

Cromo xpoм ברום

鉛さ

Naturally occurring isotopes: 52, 53, 50, 54

Density: 7.20 g/cm³ (20°C)

Melting point: $1857 \pm 20^{\circ}$ C Boiling point: 2672° C

Latent heat of fusion: 265.7 J/g Specific heat: 0.449 J/g/ $^{\circ}$ C (25 $^{\circ}$ C)

Coefficient of lineal thermal expansion: 6.2 \times 10 $^{-6}$ cm/cm/°C (20°C)

Thermal conductivity: 0.939 w/cm/°C (25°C) Electrical resistivity: 12.9 $\times~10^{-6}$ ohm-cm (20°C)

lonization potential (1st): 6.766~eVElectron work function ϕ : 4.5~eV

Oxidation potential: $Cr \rightarrow Cr^{3+} + 3\varepsilon = 0.744 \ V$

Chemical valence: 1, 2, 3, 4, 5, 6

Electrochemical equivalents: 0.32333 g/amp-hr

lonic radius: 0.52 Å (Cr⁶⁺)

Valence electron potential ($-\epsilon V$): 170

Principal quantum number: 4 Principal electron shells: K L M N

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$

Valence electrons: 3d⁵ 4s¹

Crystal form: Cubic, body centered Cross section σ : 3.1 \pm 0.2 barns

Vapor pressure: 9.90×10^2 Pa (at melting point)

Cobalt

2*1* 58.9332

	- VIII -	
55.847	58.9332	58.70
Fe	Co	Ni
26	27	28
101 07	102 9055	106.4
Ru	Rh	Pd
44	45	46
190.2	192.22	195.09
Os	r	Pt
76	77	78
	109	

Cobalto
Cobalt
Kobalt
Cobalto
кобальт

站沿

Naturally occurring isotope: 59 Density: 8.71 g/cm³ (21°C)

Melting point: 1495°C Boiling point: 2870°C

Latent heat of fusion: 258.6 J/gSpecific heat: 4.21 J/g/°C (25° C)

Coefficient of lineal thermal expansion: $13.80 \times 10^{-6} \text{ cm/cm/}^{\circ}\text{C}$ (20°C)

Thermal conductivity: 1.00 w/cm/°C (25°C)

Electrical resistivity: 6.24×10^{-6} ohm-cm (20°C)

lonization potential (1st): 7.86~eVElectron work function ϕ : 5.0~eV

Oxidation potential: $Co \rightarrow Co^{2+} + 2\epsilon = 0.277 \text{ V}$

Chemical valence: 2, 3, 4

Electrochemical equivalents: 1.0994 g/amp-hr

lonic radius: $0.745 \text{ Å } (\text{Co}^{3+})$

Valence electron potential ($-\epsilon V$): 38.7

Principal quantum number: 4
Principal electron shells: K L M N

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^7 4s^2$

Valence electrons: 3d⁷ 4s²

Crystal form: Hexagonal, close packed Cross section σ : 37.5 \pm 0.2 barns

Vapor pressure: 1.75×10^2 Pa (at melting point)

Copper

29 63.546 1B 63.546 Cu 29 107.868 Ag 47

Cobre Cuivre Kupfer Cobre

> медь נחושת

銅舞

Naturally occurring isotopes: 63, 65

Density: 8.96 g/cm³ (25°C)

Melting point: 1083.4 ± 0.2 °C Boiling point: 2567°C

Latent heat of fusion: 205.6 J/g Specific heat: 0.3845 J/g/°C (25°C)

Coefficient of lineal thermal expansion: $16.6 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (25°C)

Thermal conductivity: 4.01 w/cm/°C (25°C)

Electrical resistivity: 1.678×10^{-6} ohm-cm (20°C)

lonization potential (1st): 7.726 eVElectron work function ϕ : 4.65 eV

Oxidation potentials: $Cu \rightarrow Cu^+ + \varepsilon = -0.521 \ V$

 $Cu \rightarrow Cu^{2+} + 2\epsilon = -0.3419 \text{ V}$

Chemical valence: 1, 2

Electrochemical equivalents: 1.1855 g/amp-hr

lonic radius: 0.73 Å (Cu²⁺)

Valence electron potential ($-\epsilon V$): 34

Principal quantum number: 4 Principal electron shells: $K \perp M N$

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s¹

Valence electrons: 3d10 4s1

Crystal form: Cubic, face centered Cross section σ : 3.8 \pm 0.1 barns

Vapor pressure: 5.05×10^{-2} Pa (at melting point)

Curium

96

247.07038

Actinide Series

232.03807 Th 90	231.0359 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.08805 ES 99
257 09515	258	259	260						
Fm	Md	No	Lr	1					
100	101	102	103						

Cúrio

Curium

Curium

Curio кюрий

כיוריום

W, 11

鉢

キュリウム

Naturally occurring isotopes: None

Density: 13.51 g/cm³ (25°C)

Melting point: $1340 \pm 40^{\circ}C$ Boiling point: $3110^{\circ}C$

lonization potential (1st): 6.02 eV

Oxidation potential: $Cm \rightarrow Cm^{3+} + 3\varepsilon = 2.07 \text{ V}$

Chemical valence: 3, 4

Electrochemical equivalents: 3.0727 g/amp-hr

Ionic radius: 0.970 Å (Cm³⁺)

Valence electron potential ($-\epsilon V$): 44.5

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 4f^{14} \ 5s^2 \ 5p^6$

5d¹⁰ 5f⁷ 6s² 6p⁶ 6d¹ 7s²

Valence electrons: $5f^7 6d^1 7s^2$ Crystal form: Hexagonal Half life: 1.6×10^7 years Cross section σ : 180 barns

Dysprosium

66 162.50

Disprósio Dysprosium Dysprosium Disprosio

диспрозий דיטברוניום

Lanthanide Series

140 12	140 9077	144 24	144 913	150 4	151.96	157 25	158.9254	162.50	164.9304
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho
58	59	60	61	62	63	64	65	66	67
167 26 Er 68	168 9342 Tm 69	173.04 Yb 70	174.97 Lu 71				·		

Naturally occurring isotopes: 164, 162, 163, 161, 160, 158, 156

Density: 8.550 g/cm³ (25°C)

Melting point: 1412°C Boiling point: 2562°C

Latent heat of fusion: 105.6 J/g Specific heat: 173 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 8.6×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.107 w/cm/°C (25°C) Electrical resistivity: 90×10^{-6} ohm-cm (25°C)

Ionization potential (1st): 5.928 eV

Oxidation potential: Dy \rightarrow Dy³⁺ + 3 ϵ = 2.353 V

Chemical valence: 3

Electrochemical equivalents: 2.0210 g/amp-hr

Ionic radius: 0.912 Å (Dv3+)

Valence electron potential ($-\epsilon V$): 47.4

Principal quantum number: 6

Principal electron shells: KLMNOP

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁰ 5s²

 $5p^6 6s^2$

Valence electrons: 4f10 6s2

Crystal form: Hexagonal, close packed

Cross section σ : 930 \pm 20 barns

Einsteinium

99 254.08805

Einstênio Einsteinium Einsteinium Einstenio

ЭЙНШТЕЙНИЙ

אינשטייניום

マムニレジンペレム

Actinide Series

232.03807	231.0359	238.029	237 0482	244.06423	243.0614	247.07038	247.07032	251.07961	254.08805
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es
90	91	92	93	94	95	96	97	98	99
257 09515 Fm 100	258 Mdi 101	259 No 102	260 Lr 103					•	

Naturally occurring isotopes: None

Melting point: 860 ± 30°C

Ionization potential (1st): 6.42 eV

Oxidation potential: Es \rightarrow Es²⁺ + 2 ϵ = 2.3 V

Chemical valence: 2, 3

Electrochemical equivalents: 4.7400 g/amp-hr

lonic radius: 0.925 Å (Es³⁺) Principal quantum number: 7

Principal electron shells: KLMNOPQ

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6$

5d¹⁰ 5f¹¹ 6s² 6p⁶ 7s² Valence electrons: 5f11 7s2

Crystal form: Cubic, face centered

Half life: 276 days

Cross section σ : < 40 barns

Erbium

68

167.26

Érbio

Erbium

Erbium Erbio

эрбий

. ארביום

Lanthanide Series

140 12	140.9077	144 24	144 913	150.4	151.96	157.25	158.9254	162 50	164 9364
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho
58	59	60	61	62	63	64	65	66	67
167.26 Er 68	168.9342 Tm 69	173.04 Yb 70	174.97 Lu 71						

鉺

エルピウム

Naturally occurring isotopes: 166, 168, 167, 170, 164, 162

Density: 9.066 g/cm³ (25°C)

Melting point: 1529°C Boiling point: 2863°C

Latent heat of fusion: 102.6 J/gSpecific heat: $0.168 \text{ J/g/}^{\circ}\text{C}$ (25°C)

Coefficient of lineal thermal expansion: 9.2 \times 10 $^{-6}$ cm/cm/ $^{\circ}$ C (25 $^{\circ}$ C)

Thermal conductivity: $0.145 \text{ w/cm/}^{\circ}\text{C}$ (25°C)

Electrical resistivity: 107.0 × 10⁻⁶ ohm-cm (25°C)

lonization potential (1st): 6.10~eV

Oxidation potential: Er \rightarrow Er³⁺ + 3 ϵ = 2.296 V

Chemical valence: 3

Electrochemical equivalents: 2.0802 g/amp-hr

lonic radius: 0.881 Å (Er³+)

Valence electron potential ($-\epsilon V$): 49.0

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{12}\ 5s^2$

5p⁶ 6s²

Valence electrons: 4f¹² 6s²

Crystal form: Hexagonal, close packed

Cross section σ : 160 \pm 30 barns

Europium

Dy

Ho

63

151.96

Lanthanide Series

140 12 Ce 58	140.9077 Pr 59	144 24 Nd 60	144.913 Pm 61	150.4 Sm 62	151 96 Eu 63	157 25 Gd 64	158 9254 Tb 65	
167 26' Er	168.9342 Tm	173.04 Yb	174.97 Lu					•
68	69	70	71					

Európio
Europium
Europio
Europio
esponum

Naturally occurring isotopes: 153, 151

Density: 5.243 g/cm³ (25°C)

Melting point: 822°C Soiling point: 1597°C

Latent heat of fusion: 68.9 J/gSpecific heat: 0.182 J/g/°C (25°C)

Coefficient of lineal thermal expansion: $26 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (20°C)

Thermal conductivity: $0.139 \text{ w/cm}/^{\circ}\text{C}$ (25°C) Electrical resistivity: $81 \times 10^{-6} \text{ ohm-cm}$ (25°C)

lonization potential (1st): 5.666 eV Electron work function ϕ : 2.5 eV

Oxidation potential: Eu \rightarrow Eu³⁺ + 3 ε = 2.407 V

Chemical valence: 2, 3

Electrochemical equivalents: 1.8899 g/amp-hr

Ionic radius: 0.947 Å (Eu³⁺)

Valence electron potential ($-\epsilon V$): 45.6

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 4f^7 \ 5s^2$

5p⁶ 6s²

Valence electrons: 4f7 6s2

Crystal form: Cubic, body centered Cross section σ: 4100 ± 100 barns

Vapor pressure: 1.44×10^2 Pa (at melting point)

Fermium

100 257.09515

Actinide Series

232.03807	231.0359	238.029	237.0482	244.06423	243.0614	247.07038	247.07032	251.07961	254.0880
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es
90	91	92	93	94	95	96	97	98	99
257 09515 Fm 100	258 Md 101	259 N O 102	260 Lr 103						

Férmio Fermium

Fermium

Fermio фермий

פרמיום

鐨

フェリミウム

Naturally occurring isotopes: None lonization potential (1st): 6.50 eV

Oxidation potential: $Fm \rightarrow Fm^{3+} + 3\epsilon = 2.0 \text{ V}$

Chemical valence: 2, 3

Electrochemical equivalents: 3.1974 g/amp-hr

Principal quantum number: 7

Principal electron shells: K L M N O P Q

 $\textbf{Electronic configuration:} \ 1 \text{s}^2 \ 2 \text{s}^2 \ 2 \text{p}^6 \ 3 \text{s}^2 \ 3 \text{p}^6 \ 3 \text{d}^{10} \ 4 \text{s}^2 \ 4 \text{p}^6 \ 4 \text{d}^{10} \ 4 \text{f}^{14} \ 5 \text{s}^2 \ 5 \text{p}^6$

 $5d^{10} 5f^{12} 6s^2 6p^6 7s^2$ Valence electrons: $5f^{12} 7s^2$

Half life: 80 days

Fluorine

9 18.998403

Flúor Fluor Flúor Prop Otixita 東

Naturally occurring isotope: 19 Density: $1.696 \times 10^{-3} \text{ g/cm}^3 (0^{\circ}\text{C})$

Melting point: -219.62°C Boiling point: -188.14°C

Latent heat of fusion: $26.89 \text{ J/g (F}_2)$ Specific heat: $0.824 \text{ J/g/°C (F}_2)$ (25°C)

Thermal conductivity: 0.279 mw/cm/°C (27°C at 1 atm)

lonization potential (1st): 17.422 eV

Oxidation potential: $F^- \rightarrow \frac{1}{2}F_2 + \epsilon = -2.87 \text{ V}$

Chemical valence: -1

Electrochemical equivalents: 0.70883 g/amp-hr

lonic radius: 1.33 Å (F-)

Valence electron potential ($-\epsilon V$): -10.1

Principal quantum number: 2 Principal electron shells: K L Electronic configuration: $1s^2\ 2s^2\ 2p^5$

Valence electrons: 2s² 2p⁵

Cross section σ : 9.8 ± 0.7 mbarns

Vapor pressure: 4.90×10^2 Pa (at melting point)

Francium

87 223.01976

Frâncio Francium Franzium Francio Франций อาะมาอ

Naturally occurring isotopes: None (actinium decay product)

Melting point: 27°C (est) Boiling point: 677°C (est)

Latent heat of fusion: $9.39\ J/g\ (est)$ lonization potential (1st): $3.83\ eV$

Chemical valence: 1

Electrochemical equivalents: 8.3209 g/amp-hr

lonic radius: 1.80 Å (Fr⁺)

Valence electron potential ($-\epsilon V$): 8.00

Principal quantum number: 7

Principal electron shells: K \perp M N O P Q

Electronic configuration: $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 4f^{14} \ 5s^2 \ 5p^6$

5d¹⁰ 6s² 6p⁶ 7s¹ Valence electrons: (7s¹) Half life: 22 minutes

Crystal form: Cubic, body centered

Gadolinium

64

157.25

Lanthanide Series

140 12	140.9077	144 24	144 913	150.4	151.96	157.25	158.9254	162 50	164 9304
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho
58	59	60	61	62	63	64	65	66	67
167.26 Er	168.9342 Tm	173.04 Yb	174.97 Lu						

Gadolínio Gadolinium Gadolinium Gadolinio гадолиний

Naturally occurring isotopes: 158, 160, 156, 157, 155, 154, 152

Density: 7.900 g/cm³ (25°C)

Melting point: 1313°C Boiling point: 3266°C

Latent heat of fusion: 98.51 J/gSpecific heat: 0.235 J/g/°C (25° C)

Coefficient of lineal thermal expansion: 9.7×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: $0.105 \text{ w/cm/}^{\circ}\text{C}$ (25°C)

Electrical resistivity: 140.5×10^{-6} ohm-cm (25°C)

lonization potential (1st): 6.14~eVElectron work function ϕ : 3.1~eV

Oxidation potential: $Gd \rightarrow Gd^{3+} + 3\varepsilon = 2.397 \text{ V}$

Chemical valence: 3

Electrochemical equivalents: 1.9557 g/amp-hr

lonic radius: 0.938 Å (Gd3+)

Valence electron potential ($-\epsilon V$): 46.1

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^7\ 5s^2\ 5p^6$

5d1 6s2

Valence electrons: 4f7 5d1 6s2

Crystal form: Hexagonal, close packed Cross section σ : 46,000 \pm 2000 barns

Vapor pressure: $2.44 \times 10^4 \, \text{Pa}$ (at melting point)

Gallium

31 69.72

Gálio Gallium Gallium Galio галлий

Naturally occurring isotopes: 69, 71

Density: 5.906 g/cm³ (25°C)

Melting point: 29.78°C Boiling point: 2403°C

Latent heat of fusion: 80.17~J/g Specific heat: 0.371~J/g°C (25°C)

Coefficient of lineal thermal expansion: 18.1 imes 10 $^{-6}$ cm/cm/°C (25°C)

Thermal conductivity: 0.281 w/cm/°C (liquid) (30°C) Electrical resistivity: 17.4×10^{-6} ohm-cm (20°C)

lonization potential (1st): 5.999~eVElectron work function ϕ : 4.2~eV

Oxidation potential: $Ga \rightarrow Ga^{3+} + 3\varepsilon = -0.529 \text{ V}$

Chemical valence: 2, 3

Electrochemical equivalents: 0.8671 g/amp-hr

lonic radius: 0.620 Å (Ga³⁺)

Valence electron potential ($-\epsilon$ V): 69.7

Principal quantum number: 4 Principal electron shells: K L M N

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^1$

Valence electrons: 4s² 4p¹

Crystal form: Orthorhombic, rhombic **Cross section** σ : 3.1 \pm 0.3 barns

Vapor pressure: 9.31×10^{-36} Pa (at melting point)

Germanium

32 72.59

Germânion Germanium Germaniom Germanio германий エרמניום

クルマニウム

Naturally occurring isotopes: 74, 72, 70, 73, 76

Density: 5.323 g/cm³ (25°C)

Melting point: 937.4°C Boiling point: 2830°C

Latent heat of fusion: 438.3 J/g Specific heat: 0.3216 J/g/°C (25°C)

Coefficient of lineal thermal expansion: $5.75 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (20°C)

Thermal conductivity: 0.667 w/cm/°C (25°C)

Electrical resistivity: 47 ohm-cm (intrinsic resistivity) (22°C)

lonization potential (1st): 7.899 eV Electron work function ϕ : 5.0 eV

Oxidation potential: Ge + $2H_2O \rightarrow GeO_2 + 4H^+ + 4\epsilon = -0.15 \text{ V}$

Chemical valence: -4, 2, 4

Electrochemical equivalents: 0.6771 g/amp-hr

lonic radius: 0.530 Å (Ge⁴⁺)

Valence electron potential ($-\epsilon V$): 109

Principal quantum number: 4 Principal electron shells: K \perp M N

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^2$

Valence electrons: $4s^2 4p^2$ Crystal form: Cubic, diamond Cross section σ : 2.30 ± 0.26 barns

Vapor pressure: 7.46×10^{-5} Pa (at melting point)

Gold

79 196.9665 18 63.546 Cu 29 107.868 Ag 47 196.9665 Au

Ouro Or Gold Oro

отопо **ТПС**

金金

Naturally occurring isotope: 197 Density: 19.32 g/cm³ (20°C)

Melting point: 1064.43°C Boiling point: 3080°C

Latent heat of fusion: 62.81 J/gSpecific heat: 0.1290 J/g/°C (25° C)

Coefficient of lineal thermal expansion: 14.2 \times 10 $^{-6}$ cm/cm/ $^{\circ}$ C (20 $^{\circ}$ C)

Thermal conductivity: 3.19 w/cm/°C (25°C)

Electrical resistivity: 2.44×10^{-6} ohm-cm (20°C)

lonization potential (1st): 9.225 eV Electron work function ϕ : 5.1 eV

Oxidation potentials: $Au \rightarrow Au^+ + \varepsilon = -1.691 \text{ V}$ $Au \rightarrow Au^{3+} + 3\varepsilon = -1.498 \text{ V}$

Chemical valence: 1, 3

Electrochemical equivalents: 2.4496 g/amp-hr

lonic radius: 0.85 Å (Au³⁺)

Valence electron potential ($-\epsilon V$): 51

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6$

5d¹⁰ 6s¹

Valence electrons: 5d10 6s1

Crystal form: Cubic, face centered Cross section σ : 98.8 \pm 0.3 barns

Vapor pressure: $2.37 \times 10^{-4} \, \text{Pa}$ (at melting point)

Hafnium

/2 178.49

IVB
47 90 Ti 22
91.22 Zr 40
178 49 Hf 72
104

Háfnio Hafnium Hafnio Наfnio гафний

Naturally occurring isotopes: 180, 178, 177, 179, 176, 174

Density: 13.31 g/cm³ (20°C)

Melting point: $2227 \pm 20^{\circ}$ C Boiling point: 4602° C

Latent heat of fusion: 122.0 J/g Specific heat: 0.144 J/g°C (25°C)

Coefficient of lineal thermal expansion: 5.6×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.230 w/cm/ $^{\circ}$ C (25 $^{\circ}$ C) Electrical resistivity: 35.1 \times 10 $^{-6}$ ohm-cm (25 $^{\circ}$ C)

lonization potential (1st): 6.65 eVElectron work function ϕ : 3.9 eV

Oxidation potential: Hf \rightarrow Hf⁴⁺ + 4 ϵ = 1.70 V

Chemical valence: 4

Electrochemical equivalents: 1.6649 g/amp-hr

lonic radius: 0.71 Å (Hf4+)

Valence electron potential ($-\epsilon V$): 81

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6$

 $5d^2 6s^2$

Valence electrons: 5d² 6s²

Crystal form: Hexagonal, close packed

Cross section σ : 103 ± 3 barns

Vapor pressure: 1.12×10^{-3} Pa (at melting point)

Helium

Z 4.00260

Hélio Hélium Helium Helio гелий

Naturally occurring isotopes: 4, 3 Density: $0.17847 \times 10^{-3} \text{ g/cm}^3$ (0°C)

Melting point: -272.2°C (26 atm); | Boiling point: -268.934°C

Latent heat of fusion: 5.23 J/g Specific heat: 5.1930 J/g/°C (25°C)

Thermal conductivity: 1.520 mw/cm/°C (25°C at 1 atm)

lonization potential (1st): $24.58\ eV$

Chemical valence: 0

Principal quantum number: 1
Principal electron shells: K
Electronic configuration: 1s²
Valence electrons: (1s²)

Crystal form: Hexagonal, close packed

Cross section σ : 0.007 barns

Holmium

67

164.9304

Lanthanide Series

140.12	140.9077	144 24	144 913	150.4	151 96	157 25	158.9254	162 50	164 9304
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho
58	59	60	61	62	63	64	65	66	67
167.26 Er 68	168.9342 Tm 69	173.04 Yb 70	174.97 Lu 71						

Hólmio Holmium Holmio אואתסא זולמיום

よれ きゅん

Naturally occurring isotope: 165 Density: 8.795 g/cm³ (25°C)

Melting point: 1474°C Boiling point: 2695°C

Latent heat of fusion: 104.1 J/gSpecific heat: 0.165 J/g/°C (25°C)

Coefficient of lineal thermal expansion: $9.5 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (400°C)

Thermal conductivity: 0.162 w/cm/°C (25°C)

Electrical resistivity: 87.0 × 10⁻⁶ ohm-cm (25°C)

Ionization potential (1st): 6.02 eV

Oxidation potential: $Ho \rightarrow Ho^{3+} + 3\epsilon = 2.319 \text{ V}$

Chemical valence: 3

Electrochemical equivalents: 2.0512 g/amp-hr

lonic radius: $0.901 \text{ Å } (\text{Ho}^{3+})$

Valence electron potential ($-\epsilon V$): 47.9

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{11}\ 5s^2$

5p⁶ 6s²

Valence electrons: 4f¹¹ 6s²

Crystal form: Hexagonal, close packed

Cross section σ : 65 ± 2 barns

Hydrogen

ı 1.0079

Hidrogênio Hydrogène Wasserstoff Hidrógeno водород

Naturally occurring isotopes: 1.007825 (protium), 2.01410 (deuterium),

3.01605 (tritium)

Density: $0.08988 \times 10^{-3} \, \text{g/cm}^3 \, \text{(0°C)}$

Latent heat of fusion: 116.3 J/g (H₂) Specific heat: 14.30 J/g/°C (H₂) (25°C)

Thermal conductivity: 1.815 mw/cm/°C (27°C at 1 atm)

Ionization potential (1st): 13.59765 eV

Oxidation potentials: $H_2 \rightarrow 2H^+ + \varepsilon = 0.00000 \text{ V}$

 $H^- \rightarrow \frac{1}{2}H_2 + \epsilon = 2.25 \text{ V}$

Chemical valence: 1

Electrochemical equivalents: 0.037605 g/amp-hr

lonic radius: 0.012 Å (H+)

Valence electron potential ($-\epsilon V$): 1200

Principal quantum number: 1 Principal electron shells: K Electronic configuration: 1s¹ Valence electrons: 1s¹

Crystal form: Hexagonal, close packed

Cross section σ : 0.33 barns

Indium

49 114.82

indio Indium Indium oibnl йидни **ж**ינדים

Naturally occurring isotopes: 115, 113

Density: 7.28 g/cm³ (20°C)

Melting point: 156.61°C Boiling point: 2080°C

Latent heat of fusion: 28.44 J/g Specific heat: 0.233 J/g°C (25°C)

Coefficient of lineal thermal expansion: 24.8 imes 10 $^{-6}$ cm/cm/ $^{\circ}$ C (20 $^{\circ}$ C)

Thermal conductivity: $0.818 \text{ w/cm/}^{\circ}\text{C}$ (25°C) Electrical resistivity: $8.37 \times 10^{-6} \text{ ohm-cm}$ (0°C)

lonization potential (1st): 5.786~eVElectron work function ϕ : 4.12~eV

Oxidation potential: $ln \rightarrow ln^{3+} + 3\varepsilon = 0.343 \text{ V}$

Chemical valence: 1, 2, 3

Electrochemical equivalents: 1.4280 g/amp-hr

lonic radius: 0.800 Å (ln3+)

Valence electron potential ($-\epsilon V$): 54.0

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 5s^2 \ 5p^1$

Valence electrons: $5s^2 5p^1$ Crystal form: Tetragonal Cross section σ : 194 ± 2 barns

Cross section σ: 194±2 barns

Vapor pressure: 1.42×10^{17} Pa (at melting point)

lodine

53 126.9045

lôdo lode lod Yodo иод

Naturally occurring isotope: 127 Density: 4.93 g/cm³ (20°C)

Melting point: 113.5°C Boiling point: 184.35°C

Latent heat of fusion: 124.4 J/g (I_2) Specific heat: 0.21448 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 93 \times 10 $^{-6}$ cm/cm/ $^{\circ}$ C (20 $^{\circ}$ C)

Thermal conductivity: 4.49 mw/cm/°C (27°C)
Electrical resistivity: 1.3 × 10⁹ ohm-cm (20°C)

Ionization potential (1st): 10.451 eV

Oxidation potential: $I^- \rightarrow \frac{1}{2}I_2 + \varepsilon = -0.5355 \text{ V}$

Chemical valence: -1, 3, 5, 7

Electrochemical equivalents: 4.7348 g/amp-hr

lonic radius: 2.20 Å (l-)

Valence electron potential ($-\epsilon V$): -6.55

Principal quantum number: 5 Principal electron shells: K L M N O

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^5$

Valence electrons: $5s^2 5p^5$ Crystal form: Orthorhombic Cross section σ : 6.2 ± 0.2 barns

Iridium

77 192.22

Irídio Iridium Iridio Iridio иридий **Ж**'Г'Г'[С

欽

Naturally occurring isotopes: 193, 191

Density: 22.42 g/cm³ (17°C)

Melting point: 2410°C Boiling point: 4130°C

Latent heat of fusion: 137.2 J/g Specific heat: 0.131 J/g°C (25°C)

Coefficient of lineal thermal expansion: $6.6 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (25°C)

Thermal conductivity: 1.47 w/cm/°C (25°C)

Electrical resistivity: 4.71×10^{-6} ohm-cm (20°C)

lonization potential (1st): 9.1 eV Electron work function ϕ : 5.27 eV

Oxidation potential: Ir + 6Cl⁻ \rightarrow IrCl₆³⁻ + 3 ε = -0.77 V

Chemical valence: 2, 3, 4, 6

Electrochemical equivalents: 1.793 g/amp-hr

lonic radius: $0.625 \text{ Å} (1r^{4+})$

Valence electron potential ($-\epsilon V$): 92.2

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{14}\ 5s^2\ 5p^6$

5d⁷ 6s²

Valence electrons: 5d7 6s2

Crystal form: Cubic, face centered Cross section σ : 425 \pm 15 barns

Vapor pressure: 1.47 Pa (at melting point)

Iron

26 55.847

Ferro Fer Eisen Hierro

железо ברול

鉄鉄

Naturally occurring isotopes: 56, 54, 57, 58

Density: 7.874 g/cm³ (20°C)

Melting point: 1535°C Boiling point: 2750°C

Latent heat of fusion: 275.1 J/gSpecific heat: 0.450 J/g/°C (25° C)

Coefficient of lineal thermal expansion: 11.76 \times 10 $^{-6}$ cm/cm/ $^{\circ}$ C (20 $^{\circ}$ C)

Thermal conductivity: $0.804 \text{ w/cm/}^{\circ}\text{C}$ (25°C) Electrical resistivity: $9.71 \times 10^{-6} \text{ ohm-cm}$ (20°C)

lonization potential (1st): 7.870 eV Electron work function ϕ : 4.70 eV

Oxidation potential: Fe \rightarrow Fe²⁺ + 2 ε = 0.4402 V

Chemical valence: 2, 3, 4, 6

Electrochemical equivalents: 0.69455 g/amp-hr

lonic radius: 0.645 Å (Fe³⁺)

Valence electron potential ($-\epsilon V$): 67.0

Principal quantum number: 4
Principal electron shells: K L M N

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ 4s²

Valence electrons: 3d⁶ 4s²

Crystal form: Cubic, body centered Cross section σ : 2.56 \pm 0.05 barns

Vapor pressure: 7.05 Pa (at melting point)

Krypton

36 83.80

Criptônio Krypton Krypton Criptón криптон

気の

Naturally occurring isotopes: 84, 86, 82, 83, 80, 78

Density: $3.733 \times 10^{-3} \text{ g/cm}^3 (20^{\circ}\text{C})$

Melting point: -156.6° C Boiling point: $-152.30 \pm 0.10^{\circ}$ C

Latent heat of fusion: 19.54 J/gSpecific heat: 0.24804 J/g/°C (25° C)

Thermal conductivity: 0.0949 mw/cm/°C (27°C)

Ionization potential (1st): 13.999 eV

Chemical valence: 0

Principal quantum number: 4 Principal electron shells: K L M N

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6$

Valence electrons: (4s² 4p⁶)

Crystal form: Cubic, face centered (solid)

Cross section σ : 24.5 \pm 1.0 barns

Lanthanum

57 138.9055

Lantânio Lanthane Lanthan Lantano лантан

Naturally occurring isotopes: 139, 138

Density: 6.145 g/cm³ (25°C)

Melting point: 921°C Boiling point: 3457°C

Latent heat of fusion: 81.4 J/gSpecific heat: $0.195 \text{ J/g/}^{\circ}\text{C}$ (25°C)

Coefficient of lineal thermal expansion: 5.2 \times 10 $^{-6}$ cm/cm/°C (25°C)

Thermal conductivity: 0.134 w/cm/°C (25°C) Electrical resistivity: 56×10^{-6} ohm-cm (25°C)

lonization potential (1st): 5.577 eV Electron work function ϕ : 3.5 eV

Oxidation potential: La \rightarrow La³⁺ + 3 ϵ = 2.522 V

Chemical valence: 3

Electrochemical equivalents: 1.7275 g/amp-hr

lonic radius: 1.061 Å (La³⁺)

Valence electron potential ($-\epsilon V$): 40.71

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁶

5d1 6s2

Valence electrons: 5d¹ 6s²

Crystal form: Hexagonal, close packed

Cross section σ : 8.9 ± 0.2 barns

Vapor pressure: 1.33×10^{-7} Pa (at melting point)

Lawrencium

103

260

Laurêncio
Lawrencium
Lawrenzium
Lawrencio
лавренций

Actinide Series

232.03807 Th 90	231.0359 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.08805 Es 99
257 09515	258	259	260						•
Fm 100	Md 101	No 102	Lr 103						

テーレンチウ

Naturally occurring isotopes: None

Oxidation potential: $Lr \rightarrow Lr^{3+} + 3\epsilon = 2.0 \text{ V}$

Chemical valence: 3

Electrochemical equivalents: 3.23 g/amp-hr

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶

5d¹⁰ 5f¹⁴ 6s² 6p⁶ 6d¹ 7s²

Valence electrons: $5f^{14} 6d^1 7s^2$

Half life: 3 minutes

Lead

82 207.2 12.011 C 6 28.0855 Si 14 72.59 Ge 32 118.89 Sn 50

Plomb Blei Plomo свинец

鉛鉛

Naturally occurring isotopes: 208, 206, 207, 204

Density: 11.342 g/cm³ (20°C)

Melting point: 327.502°C Boiling point: 1740°C

Latent heat of fusion: 23.06 J/gSpecific heat: $0.128 \text{ J/g/}^{\circ}\text{C}$ (25°C)

Coefficient of lineal thermal expansion: 28.3 imes 10 $^{-6}$ cm/cm/ $^{\circ}$ C (25 $^{\circ}$ C)

Thermal conductivity: 0.353 w/cm/°C (25°C)

Electrical resistivity: 20.65 × 10⁻⁶ ohm-cm (20°C)

Ionization potential (1st): 7.416 eVElectron work function ϕ : 4.25 eV

Oxidation potential: $Pb \rightarrow Pb^{2+} + 2\epsilon = 0.126 \text{ V}$

Chemical valence: 2, 4

Electrochemical equivalents: 3.865 g/amp-hr (Pb2+)

lonic radius: 1.19 Å (Pb²⁺)

Valence electron potential ($-\epsilon V$): 24.2

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6$

5d¹⁰ 6s² 6p²

Valence electrons: 6s2 6p2

Crystal form: Cubic, face centered Cross section σ : 180 \pm 10 mbarns

Vapor pressure: 4.21×10^{-7} Pa (at melting point)

Lithium

3 6.941

IA 1.0079 6 941 Li 22.98977 Na 39.096 Κ 19 85.4678 Rb 37 132.9054 Cs 223.01976 Fr

Litio Lithium Lithium Litio литий さっれていりチウム

Naturally occurring isotopes: 7, 6

Density: 0.534 g/cm³ (20°C)

Melting point: 180.54°C Boiling point: 1342°C

Latent heat of fusion: 430.1 J/gSpecific heat: 3.57 J/g/°C (25° C)

Coefficient of lineal thermal expansion: $60 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (25°C)

Thermal conductivity: $0.848 \text{ w/cm/}^{\circ}\text{C}$ (25°C) Electrical resistivity: $8.55 \times 10^{-6} \text{ ohm-cm}$ (0°C)

lonization potential (1st): 5.392~eVElectron work function ϕ : 2.9~eV

Oxidation potential: Li \rightarrow Li $^+$ + ε = 3.045 V

Chemical valence: 1

Electrochemical equivalents: 0.2590 g/amp-hr

lonic radius: 0.76 Å (Li⁺)

Valence electron potential ($-\epsilon V$): 19

Principal quantum number: 2 Principal electron shells: K L Electronic configuration: $1s^2 2s^1$

Valence electrons: 2s1

Crystal form: Cubic, body centered

Cross section σ : 71 barns

Vapor pressure: 1.63×10^{-8} Pa (at melting point)

Lutetium

71 174.97 Lutécio

Lutetium Lutetium

Lutecio

אוושפדטת לוטציום ל

Lanthanide Series

140 12 Ce 58	140 9077 Pr 59	Nd 60	144.913 Pm 61	150.4 Sm 62	151 96 Eu 63	157 25 Gd 64	158.9254 Tb 65	162 50 Dy 66	164.9304 HO 67
167 26 Er 68	168.9342 Tm 69	173.04 Yb 70	174.97 Lu 71						•

金質が

Naturally occurring isotopes: 175, 176

Density: 9.840 g/cm3 (25°C)

Melting point: 1663°C Boiling point: 3395°C

Latent heat of fusion: 110.1 J/gSpecific heat: $0.154 \text{ J/g/}^{\circ}\text{C}$ (25°C)

Coefficient of lineal thermal expansion: 12.5 \times 10 $^{-6}$ cm/cm/°C (400°C)

Thermal conductivity: 0.164 w/cm/°C (25°C) Electrical resistivity: 79.0×10^{-6} ohm-cm (25°C)

lonization potential (1st): 5.4259 eV Electron work function ϕ : 3.3 eV

Oxidation potential: Lu \rightarrow Lu³⁺ + 3 ε = 2.255 V

Chemical valence: 3

Electrochemical equivalents: 2.1760 g/amp-hr

lonic radius: $0.848 \text{ Å} (Lu^{3+})$

Valence electron potential ($-\epsilon V$): 50.9

Principal quantum number: 6

Principal electron shells: K L M N O P

 $\textbf{Electronic configuration:} \ \, 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 4f^{14} \ 5s^2 \ 5p^6$

5d1 6s2

Valence electrons: 5d1 6s2

Crystal form: Hexagonal, close packed

Cross section σ : 75 ± 2 barns

Vapor pressure: 2.46×10^3 Pa (at melting point)

Magnesium

12 24.305

Magnésio Magnésium Magnesium Magnesio Marний むいいな

Naturally occurring isotopes: 24, 26, 25

Density: 1.738 g/cm³ (20°C)

Melting point: 648.8 ± 0.5 °C Boiling point: 1090 °C

Latent heat of fusion: 368.6 J/gSpecific heat: 102 J/g/°C (25° C)

Coefficient of lineal thermal expansion: 27.1 imes 10 $^{-6}$ cm/cm/ $^{\circ}$ C (20 $^{\circ}$ C)

Thermal conductivity: 1.56 w/cm/°C (20°C)

Electrical resistivity: 4.45×10^{-6} ohm-cm (20°C)

lonization potential (1st): 7.646~eV Electron work function ϕ : 3.66~eV

Oxidation potential: Mg \rightarrow Mg²⁺ + 2 ε = 2.363 V

Chemical valence: 2

Electrochemical equivalents: 0.45341 g/amp-hr

lonic radius: $0.72 \text{ Å (Mg}^{2+})$

Valence electron potential ($-\epsilon V$): 40

Principal quantum number: 3 Principal electron shells: K L M

Electronic configuration: 1s² 2s² 2p⁶ 3s²

Valence electrons: 3s²

Crystal form: Hexagonal, close packed

Cross section σ : 64 ± 2 mbarns

Vapor pressure: 3.61×10^2 (at melting point)

Manganese

25 54.9380 VIIB
54.9390
Mn
25
96.906
Tc
43
186.2
Re
75

Manganês Manganese Mangan Manganeso марганец

子がガンガン

מנגו

Naturally occurring isotope: 55

Density: 7.44 g/cm³ (20°C)

Melting point: $1244 \pm 3^{\circ}C$ Boiling point: $1962^{\circ}C$

Latent heat of fusion: 266.7 J/g Specific heat: 0.479 J/g°C (20°C)

Coefficient of lineal thermal expansion: 22 imes 10 $^{-6}$ cm/cm/ $^{\circ}$ C (20 $^{\circ}$ C)

Thermal conductivity: 78.1 mw/cm/°C (25°C) Electrical resistivity: 185×10^{-6} ohm-cm (20°C)

lonization potential (1st): 7.435 eV Electron work function ϕ : 4.1 eV

Oxidation potential: $Mn \rightarrow Mn^{2+} + 2\varepsilon = 1.18 \, V$ Chemical valence: -2, -1, 0, 1, 2, 3, 4, 5, 6, 7 Electrochemical equivalents: 0.29282 g/amp-hr

lonic radius: 0.46 Å (Mn⁷⁺)

Valence electron potential ($-\epsilon$ V): 220

Principal quantum number: 4

Principal electron shells: K L M N

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^2$

Valence electrons: 3d⁵ 4s²

Crystal form: Cubic, face centered Cross section σ : 13.3 \pm 0.1 barns

Vapor pressure: 1.21×10^2 Pa (at melting point)

Mendelevium

101 258

Actinide Series

232.03807 Th 90	231.0359 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247 07032 Bk 97	251 07961 Cf 98	254 08805 Es 99
257 09515	258	259	260	1		•		-	
Fm	Md	No	Lr	ļ					
100	101	102	103						

Mendelévio Mendelevium Mendelevium Mendelevio менделевий מגדלביום

Naturally occurring isotopes: None Ionization potential (1st): 6.58 eV

Oxidation potential: $Md \rightarrow Md^{3+} + 3\varepsilon = 1.6 V$

Chemical valence: 1, 2, 3

Electrochemical equivalents: 3.21 g/amp-hr

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6$

5d¹⁰ 5f¹³ 6s² 6p⁶ 7s² Valence electrons: 5f13 7s2

Half life: 55 days

Mercury

80 200.59

Mercúrio Mercure Quecksilber Mercurio

汞 ᢢ

ртуть כספית

Naturally occurring isotopes: 202, 200, 199, 201, 198, 204, 196

Density: 13.534 g/cm³ (25°C)

Melting point: -38.87°C Boiling point: 356.58°C

Latent heat of fusion: 11.46 J/g

Specific heat: 0.1395 J/g/°C (liquid) (25°C) Thermal conductivity: 0.0830 w/cm/°C (25°C) Electrical resistivity: 95.78×10^{-6} ohm-cm (20°C)

lonization potential (1st): 10.437 eV Electron work function ϕ : 4.49 eV

Oxidation potential: $Hg \rightarrow Hg^{2+} + 2\varepsilon = -0.788 \text{ V}$

Chemical valence: 1, 2

Electrochemical equivalents: 3.7420 g/amp-hr

lonic radius: 1.02 Å (Hg²⁺)

Valence electron potential ($-\epsilon V$): 28.2

Principal quantum number: 6

Principal electron shells: K L M N O P

 $\textbf{Electronic configuration:} \ 1 \text{s}^2 \ 2 \text{s}^2 \ 2 \text{p}^6 \ 3 \text{s}^2 \ 3 \text{p}^6 \ 3 \text{d}^{10} \ 4 \text{s}^2 \ 4 \text{p}^6 \ 4 \text{d}^{10} \ 4 \text{f}^{14} \ 5 \text{s}^2 \ 5 \text{p}^6$

5d¹⁰ 6s²

Valence electrons: $6s^2$ Crystal form: Rhombohedral Cross section σ : 375 ± 5 barns

Vapor pressure: 2.00×10^{-4} Pa (at melting point)

Molybdenum

42 95.94

Molibdênio Molybdène Molybdän Molibdeno молибден מוליבדן

銀ずった

Naturally occurring isotopes: 98, 96, 95, 92, 100, 97, 94

Density: 10.22 g/cm³ (20°C)

Melting point: 2617°C Boiling point: 4612°C

Latent heat of fusion: 288.0 J/gSpecific heat: 0.251 J/g/°C (25° C)

Coefficient of lineal thermal expansion: 6.6×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 1.38 w/cm/ $^{\circ}$ C (25 $^{\circ}$ C) Electrical resistivity: 5.2 \times 10 $^{-6}$ ohm-cm (0 $^{\circ}$ C)

lonization potential (1st): 7.099 eV Electron work function ϕ : 4.6 eV

Oxidation potential: $Mo \rightarrow Mo^{3+} + 3\epsilon = 0.2 \text{ V}$

Chemical valence: 2, 3, 4, 5, 6

Electrochemical equivalents: 0.8949 g/amp-hr

lonic radius: $0.650 \text{ Å } (\text{Mo}^{4+})$

Valence electron potential ($-\epsilon V$): 88.6

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^5 5s^1$

Valence electrons: 4d⁵ 5s¹

Crystal form: Cubic, body centered Cross section σ : 2.65 \pm 0.05 barns

Vapor pressure: 3.47 Pa (at melting point)

Neodymium

60

144.24

Neodímio

Neodymium Neodym

Neodimio

неодимий גיאודימיום

Lanthanide Series

140.12	140.9077	144 24	144 913	150.4	151.96	157.25	158.9254	162.50	164.9304
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho
58	59	60	61	62	63	64	65	66	67
167.26 Er 68	168.9342 Tm 69	173.04 Yb 70	174.97 Lu 71						

紋は

Naturally occurring isotopes: 142, 144, 146, 143, 145, 148, 150

Density: 7.007 g/cm³ (25°C)

Melting point: 1021°C Boiling point: 3068°C

Latent heat of fusion: 75.47 J/gSpecific heat: 0.190 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 8.6×10^6 cm/cm/°C (25°C)

Thermal conductivity: 0.165 w/cm/°C (25°C) Electrical resistivity: 64.0×10^{-6} ohm-cm (25°C)

Ionization potential (1st): 5.49 eVElectron work function ϕ : 3.2 eV

Oxidation potential: Nd \rightarrow Nd³⁺ + 3 ε = 2.431 V

Chemical valence: 2, 3

Electrochemical equivalents: 1.7939 g/amp-hr

lonic radius: 0.995 Å (Nd³⁺)

Valence electron potential ($-\epsilon V$): 43.4

Principal quantum number: 6

Principal electron shells: K L M N O P

 $\textbf{Electronic configuration:} \ \, 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 4f^4 \ 5s^2 \ 5p^6$

6s²

Valence electrons: 4f4 6s2

Crystal form: Hexagonal, close packed

Cross section σ : 49 ± 2 barns

Vapor pressure: 6.03×10^{-3} Pa (at melting point)

Neon

10 20.179

Neônio Neon Neon Neón Heoh ניאון ネオ ン

Naturally occurring isotopes: 20, 22, 21 Density: $0.8999 \times 10^{-3} \text{ g/cm}^3 (20^{\circ}\text{C})$

Melting point: -248.67°C Boiling point: -246.048°C

Latent heat of fusion: 16.6 J/gSpecific heat: 1.0301 J/g/°C (25°C)

Thermal conductivity: 0.493 mw/cm/°C (27°C)

lonization potential (1st): $21.564~\mathrm{eV}$

Chemical valence: 0

Principal quantum number: 2 Principal electron shells: K L Electronic configuration: 1s² 2s² 2p⁶

Valence electrons: (2s² 2p⁶)

Crystal form: Cubic, face centered Cross section σ : 38 \pm 10 mbarns

Neptunium

93

237.0482

Actinide Series

232 03907 Th 90	231.0359 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.08805 Es 99
257 09515	258	259	260						
Fm	Md	No	Lr						
100	101	102	103						

Neptúnìo Neptunium

Neptunium Neptunio

нептуний

נפטוניום

鐣

ネプツニウム

Naturally occurring isotopes: None

Density: 20.45 g/cm³ (25°C)

Melting point: $640 \pm 1^{\circ}$ C Boiling point: 3902° C

Latent heat of fusion: 46 J/g

Thermal conductivity: 63 mw/cm/°C (27°C)

Electrical resistivity: 119×10^{-6} ohm-cm (100° C)

Ionization potential (1st): 6.19 eV

Oxidation potential: $Np \rightarrow Np^{3+} + 3\epsilon = 1.856 \text{ V}$

Chemical valence: 3, 4, 5, 6, 7

Electrochemical equivalents: 1.7689 g/amp-hr

lonic radius: 0.75 Å (Np⁵⁺)

Valence electron potential ($-\epsilon V$): 96

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{14}\ 5s^2\ 5p^6$

 $5d^{10} 5f^4 6s^2 6p^6 6d^1 7s^2$ Valence electrons: $5f^4 6d^1 7s^2$

Crystal form: Orthorhombic Half life: 2.14×10^4 years Cross section σ : 170 ± 5 barns

Nickel

28 58.70

Niquel Nickel Nickel Niquel никель

鎳

ニッケル

Naturally occurring isotopes: 58, 60, 62, 61, 64

Density: 8.902 g/cm³ (25°C)

Melting point: 1453°C Boiling point: 2732°C

Latent heat of fusion: 300.3 J/gSpecific heat: $0.444 \text{ J/g/}^{\circ}\text{C}$ (25°C)

Coefficient of lineal thermal expansion: 13.3×10^{-6} cm/cm/°C (20°C)

Thermal conductivity: 0.909 w/cm/°C (25°C) Electrical resistivity: 6.84×10^{-6} ohm-cm (20°C)

lonization potential (1st): 7.635~eVElectron work function ϕ : 5.15~eV

Oxidation potential: Ni \rightarrow Ni²⁺ + 2 ϵ = 0.250 V

Chemical valence: 0, 1, 2, 3

Electrochemical equivalents: 1.095 g/amp-hr

lonic radius: 0.69 Å (Ni²⁺)

Valence electron potential ($-\epsilon V$): 42

Principal quantum number: 4
Principal electron shells: K L M N

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$

Valence electrons: 3d8 4s2

Crystal form: Cubic, face centered Cross section σ : 4.54 \pm 0.10 barns

Vapor pressure: 2.37×10^2 Pa (at melting point)

Niobium

41 92.9064 VB
50.9415
V
23
92.9064
Nb
41
180.9479
Ta
73

Nióbio Niobium Niob Niobio ниобий

銀ぎ

ניוביום

Naturally occurring isotope: 93

Density: 8.57 g/cm³ (20°C)

Melting point: 2468 ± 10°C Boiling point: 4742°C

Latent heat of fusion: 288.4 J/gSpecific heat: 0.265 J/g/°C (25° C)

Coefficient of lineal thermal expansion: 7.31 imes 10 $^{-6}$ cm/cm/°C (20°C)

Thermal conductivity: 0.537 w/cm/°C (25°C) Electrical resistivity: 14.6 \times 10 $^{-6}$ ohm-cm (20°C)

lonization potential (1st): 6.88~eVElectron work function ϕ : 4.3~eV

Oxidation potential: Nb \rightarrow Nb³⁺ + 3 ε = 1.099 V

Chemical valence: 2, 3, 4, 5

Electrochemical equivalents: 0.69327 g/amp-hr

lonic radius: 0.69 Å (Nb⁵⁺)

Valence electron potential ($-\epsilon V$): 104

Principal quantum number: 5 Principal electron shells: K L M N O

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^4\ 5s^1$

Valence electrons: 4d4 5s1

Crystal form: Cubic, face centered Cross section σ : 1.15 \pm 0.05 barns

Vapor pressure: 7.55×10^{-2} Pa (at melting point)

Nitrogen

7 14.0067

Nitrogênio Azote Stickstoff Nitrógeno asot ロレフロ

Naturally occurring isotopes: 14, 15 Density: $1.165 \times 10^{-3} \text{ g/cm}^3 (20^{\circ}\text{C})$

Melting point: -209.86°C Boiling point: -195.8°C

Latent heat of fusion: 51.41 J/g (N_2) Specific heat: 1.040 J/g/°C (N_2) (25°C)

Thermal conductivity: 0.2598 mw/cm/°C (27°C at 1 atm)

Ionization potential (1st): 14.534 eV

Oxidation potential: N₂ + 2H₂O \rightarrow H₂N₂O₂ + 2H⁺ + 2 ε = -2.65 V

Chemical valence: -3, 3, 5

Electrochemical equivalents: 0.10452 g/amp-hr

lonic radius: 0.13 Å (N⁵⁺)

Valence electron potential ($-\epsilon V$): 550

Principal quantum number: 2 Principal electron shells: K L Electronic configuration: 1s² 2s² 2p³

Valence electrons: 2s² 2p³

Crystal form: Hexagonal, close packed

Cross section σ: 1.9 barns

Nobelium

102

259

Actinide Series

232 03 8 07	231 0359	238.029	237 0482	244.06423	243.0614	247.07038	247.07032	251.07961	254.06805
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es
90	91	92	93	94	95	96	97	98	99
257.09515 Fm 100	258 Md 101	259 No 102	260 Lr 103						

Nobélio Nobelium

Nobelium

Nobelio нобелий

נובליום

Naturally occurring isotopes: None Ionization potential (1st): 6.65 eV

Oxidation potential: No \rightarrow No²⁺ + 2 ϵ = 2.5 V

Chemical valence: 2, 3

Electrochemical equivalents: 4.83 g/amp-hr

Ionic radius: 1.1 Å (est) (No²⁺) Valence electron potential $(-\epsilon V)$: (26)

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶

5d¹⁰ 5f¹⁴ 6s² 6p⁶ 7s² Valence electrons: 5f14 7s2

Half life: ~59 minutes

Osmium

76 190.2

Osmio
Osmium
Osmium
Osmio
Osmio

銀業

Naturally occurring isotopes: 192, 190, 189, 188, 187, 186, 184

Density: 22.61 g/cm³ (20°C)

Melting point: $3045 \pm 30^{\circ}$ C Boiling point: $5027 \pm 100^{\circ}$ C

Latent heat of fusion: 154.1 J/g Specific heat: 0.13 J/g/ $^{\circ}$ C (25 $^{\circ}$ C)

Coefficient of lineal thermal expansion: $6.3\,\times\,10^{-6}\,\text{cm/cm/}^{\circ}\text{C}$ (20°C)

Thermal conductivity: 0.876 w/cm/°C (25°C) Electrical resistivity: 9.5×10^{-6} ohm-cm (20°C)

lonization potential (1st): 8.7~eVElectron work function ϕ : 4.83~eV

Oxidation potential: Os + $4H_2O \rightarrow OsO_4 + 8H^+ + 8\epsilon = -0.85 \text{ V}$

Chemical valence: 0, 1, 2, 3, 4, 5, 6, 7, 8 Electrochemical equivalents: 1.774 g/amp-hr

łonic radius: 0.630 Å (Os4+)

Valence electron potential ($-\epsilon V$): 91.4

Principal quantum number: 6

Principal electron shells: KLMNOP

Electronic configuration: $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 4f^{14} \ 5s^2 \ 5p^6$

5d⁶ 6s²

Valence electrons: 5d⁶ 6s²

Crystal form: Hexagonal, close packed Cross section σ: 15.3 ± 0.7 barns

Vapor pressure: 2.52 Pa (at melting point)

Oxygen

8 15.9994 VIA

15, 9994
O
8
32,06
S
16
78,96
Se
34
127,60
Te
52
208,98243
PO

Oxigênio Oxygène Sauerstoff Oxigeno кислород

氧黨

Naturally occurring isotopes: 16, 18, 17 Density: $1.429 \times 10^{-3} \text{ g/cm}^3 \text{ (0°C)}$

Melting point: -218.4°C Boiling point: -182.962°C

Latent heat of fusion: $26.17 \text{ J/g } (O_2)$ Specific heat: $0.9174 \text{ J/g/°C } (O_2) (25°C)$

Thermal conductivity: 0.2674 w/cm/°C (25°C at 1 atm)

Ionization potential (1st): 13.618 eV

Oxidation potential: $2H_2O$ (liquid) $\rightarrow O_2 + 4H^+ + 4\epsilon = -1.229 \text{ V}$

 $\begin{array}{c} \textbf{Chemical valence:} \ -2 \end{array} \\$

Electrochemical equivalents: 0.29847 g/amp-hr

lonic radius: 1.40 Å (O²⁻)

Valence electron potential ($-\epsilon$ V): -20.6

Principal quantum number: 2 Principal electron shells: K L Electronic configuration: $1s^2\ 2s^2\ 2p^4$

Valence electrons: 2s² 2p⁴ Crystal form: Cubic

Cross section o: 0.27 mbarns

Palladium

46 106.4

Paládio Palladium Palladium Paladio палладий פלדיום

ピラジウ

Naturally occurring isotopes: 106, 108, 105, 110, 104, 102

Density: 12.023 g/cm³ (20°C)

Melting point: 1554°C Boiling point: 3140°C

Latent heat of fusion: 157.4 J/gSpecific heat: 0.244 J/g°C (25°C)

Coefficient of lineal thermal expansion: 11.67×10^{-6} cm/cm/°C (0°C)

Thermal conductivity: 0.718 w/cm/°C (25°C)

Electrical resistivity: 10.54×10^{-6} ohm-cm (20°C)

lonization potential (1st): 8.34 eVElectron work function ϕ : 5.12 eV

Oxidation potential: $Pd \rightarrow Pd^{2+} + 2\varepsilon = -0.987 \text{ V}$

Chemical valence: 2, 3, 4

Electrochemical equivalents: 1.985 g/amp-hr

lonic radius: 0.86 Å (Pd²⁺)

Valence electron potential ($-\epsilon V$): 33

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰

Valence electrons: 4d10

Crystal form: Cubic, face centered Cross section σ : 6.0 ± 1.0 barns

Vapor pressure: 1.33 Pa (at melting point)

Phosphorus

15 30.97376

Fósforo
Phosphore
Phosphor
Fósforo

фосфор

【卷 燐

ורחו

Naturally occurring isotope: 31

Density: 1.828 g/cm³ (white), 2.34 g/cm³ (red), 2.699 g/cm³ (black)

(all at 20°C)

Melting point: 44.1°C (white) Boiling point: 280.3°C (white)

Latent heat of fusion: 20.28 J/g (white) Specific heat: 0.7697 J/g/ $^{\circ}$ C (white) (25 $^{\circ}$ C)

Coefficient of lineal thermal expansion: 125 \times 10 $^{-6}$ cm/cm/ $^{\circ}$ C (25 $^{\circ}$ C)

Thermal conductivity: 2.36 mw/cm/°C (white) (25°C) Electrical resistivity: 10¹¹ ohm-cm (white) (20°C)

Ionization potential (1st): 10.486 eV

Oxidation potential: P + $2H_2O \rightarrow H_3PO_2 + H^+ + \varepsilon = 0.508 V$

Chemical valence: -3, 3, 5

Electrochemical equivalents: 0.23113 g/amp-hr

lonic radius: 0.38 Å (P⁵⁺)

Valence electron potential ($-\epsilon V$): 190

Principal quantum number: 3 Principal electron shells: K L M

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^3$

Valence electrons: 3s² 3p³ Crystal form: Cubic

Cross section σ: 0.19 barns

Vapor pressure: 20.8 Pa (at melting point)

Four allotropes of phosphorus have different melting points, crystal forms, colors, and electrical conductivities. The black variety has the highest electrical conductivity.

Platinum

78 195.09

	– VIII ~	
55.847	58 9332	58.70
Fe	Co	Ni
26	27	28
101.07	102.9055	106.4
Ru	Rh	Pd
44	45	46
190 2	192 22	195.09
Os	r	Pt
76	77	78
	109	

Platina Platine Plátin Platino платина פלכין

Naturally occurring isotopes: 195, 194, 196, 198, 192, 190

Density: 21.45 g/cm³ (20°C)

Melting point: 1773.5°C Boiling point: 3827 ± 100°C

Latent heat of fusion: 100.9 J/gSpecific heat: 0.133 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 9.5×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.716 w/cm/°C (25°C) Electrical resistivity: 9.85×10^{-6} ohm-cm (0°C)

lonization potential (1st): 8.96~eVElectron work function ϕ : 5.65~eV

Oxidation potential: Pt \rightarrow Pt²⁺ + 2 ε = -1.2 V

Chemical valence: 2, 3, 4

Electrochemical equivalents: 1.8197 g/amp-hr

lonic radius: 0.625 Å (Pt4+)

Valence electron potential ($-\epsilon V$): 92.2

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶

5d9 6s1

Valence electrons: 5d9 6s1

Crystal form: Cubic, face centered

Cross section σ : 9 ± 1 barns

Vapor pressure: 3.12×10^{-2} Pa (at melting point)

Plutonium

94 244.06423

Actinide Series

232.03 8 07	231.0359	238.029	237.0482	244.06423	243.0614	247.07038	247.07032	251.07961	254.08805
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es
90	91	92	93	94	95	96	97	98	99
257.09515 Fm	Md	259 No	260 Lr						

Plutônio Plutonium Plutonium Plutonio плутоний מלוטוניום

ノリトニウム

Naturally occurring isotope: 242 (trace)

Density: 19.737 g/cm³ (25°C)

Melting point: 639.5°C Boiling point: 3232°C

Latent heat of fusion: 11 J/g Specific heat: 0.14 J/g/ $^{\circ}$ C (25 $^{\circ}$ C)

Coefficient of lineal thermal expansion: $42.3 \times 10^{-6} \text{ cm/cm/}^{\circ}\text{C}$ (20°C)

Thermal conductivity: 0.0670 w/cm/°C (25°C)
Electrical resistivity: 146.45 × 10⁻⁶ ohm-cm (0°C)

Ionization potential (1st): 6.06 eV

Oxidation potential: $Pu \rightarrow Pu^{3+} + 3\varepsilon = 2.031 \text{ V}$

Chemical valence: 3, 4, 5, 6, 7

Electrochemical equivalents: 2.2765 g/amp-hr

lonic radius: 0.887 Å (Pu⁴⁺)

Valence electron potential ($-\epsilon V$): 64.9

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6$

5d¹⁰ 5f⁶ 6s² 6p⁶ 7s²

Valence electrons: $5f^6 7s^2$ Crystal form: Monoclinic Half life: 8.3×10^7 years Cross section σ : 1.8 ± 0.3 barns

Polonium

04 208.98243

VIA	
15.9994 O 8	
32.06 S 16	
78.96 Se 34	
127.60 Te 52	
208.98243 Po 84	

Polônio Polonium Polonium Polonio полоний ロולוניום

7

Naturally occurring isotopes: None

Density: 9.20 g/cm³ (20°C)

Melting point: 254°C Boiling point: 962°C

Latent heat of fusion: 60.1 J/gSpecific heat: 0.13 J/g/°C (25° C)

Coefficient of lineal thermal expansion: $23.5 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (20°C)

Electrical resistivity: 42×10^{-6} ohm-cm (0°C)

Ionization potential (1st): 8.42 eV

Oxidation potential: Po \rightarrow Po²⁺ + 2 ϵ = -0.65 V

Chemical valence: -2, 0, 2, 4, 6

Electrochemical equivalents: 3.8986 g/amp-hr

Ionic radius: 2.30 Å (Po²⁻)

Valence electron potential ($-\epsilon V$): -12.5

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶

5d¹⁰ 6s² 6p⁴

Valence electrons: 6s2 6p4

Crystal form: Cubic, body centered

Half life: 103 years

Vapor pressure: 1.76×10^{-2} Pa (at melting point)

Potassium

19 39.098

Potássio Potassium Kalium Potasio калий үзтек プリ

Naturally occurring isotopes: 39, 41, 40

Density: 0.862 g/cm³ (20°C)

Melting point: 63.25°C Boiling point: 759.9°C

Latent heat of fusion: 59.33 J/gSpecific heat: 0.757 J/g/°C (25° C)

Coefficient of lineal thermal expansion: 83 imes 10 $^{-6}$ cm/cm/ $^{\circ}$ C (20 $^{\circ}$ C)

Thermal conductivity: 1.025 w/cm/°C (25°C) Electrical resistivity: 7.20×10^{-6} ohm-cm (20°C)

lonization potential (1st): 4.341 eVElectron work function ϕ : 2.30 eV

Oxidation potential: K \rightarrow K $^+$ + ε = 2.925 V

Chemical valence: 1

Electrochemical equivalents: 1.4587 g/amp-hr

lonic radius: 1.38 Å (K+)

Valence electron potential ($-\epsilon V$): 10.4

Principal quantum number: 4 Principal electron shells: $K \perp M N$

Electronic configuration: 1s2 2s2 2p6 3s2 3p6 4s1

Valence electrons: 4s1

Crystal form: Cubic, body centered

Cross section o: 2.1 barns

Vapor pressure: 1.06×10^{-4} Pa (at melting point)

Praseodymium

Dy

Ho

59

140.9077

Lanthanide Series

140 12 Ce 58	140 9077 Pr 59	144 24 Nd 60	Pm 61	150.4 Sm 62	151 96 Eu 63	157.25 Gd 64	158 9254 Tb 65
167.26 Er 68	168 9342 Tm 69	173.04 Yb 70	174.97 Lu 71			•	

Praséodímio

Praseodyne Praseodym

Praseodimio

празеодимий

פרסיאודום פרסיאודום

錔

プラセオジム

Naturally occurring isotope: 141 Density: 6.773 g/cm³ (25°C)

Melting point: 931°C Boiling point: 3512°C

Latent heat of fusion: 71.3 J/g Specific heat: 0.193 J/g°C (25°C)

Coefficient of lineal thermal expansion: 6.5×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: $0.125 \text{ w/cm/}^{\circ}\text{C}$ (25°C) Electrical resistivity: $68 \times 10^{-6} \text{ ohm-cm}$ (25°C)

lonization potential (1st): 5.42 eVElectron work function ϕ : 2.7 eV

Oxidation potential: $Pr \rightarrow Pr^{3+} + 3\varepsilon = 2.462 \text{ V}$

Chemical valence: 3, 4

Electrochemical equivalents: 1.7524 g/amp-hr

Ionic radius: 1.013 Å (Pr³⁺)

Valence electron potential ($-\epsilon V$): 42.64

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^3\ 5s^2$

5p⁶ 6s²

Valence electrons: 4f3 6s2

Crystal form: Hexagonal, close packed

Cross section σ : 3.9 ± 0.5 barns

Promethium

61 144.913

Lanthanide Series

140.12	140.9077	144.24	144.913	50
Ce	Pr	Nd	Pm	Sn
58	59	60	61	62
167.26	168.9342	173.04	174.97	
Er	Tm	Yb	Lu	
68	69	70	71	

Promécio Prometheum **Prometheum** Promecio прометий פרומתיום

Naturally occurring isotopes: None **Density:** $7.22 \pm 0.02 \text{ g/cm}^3 (25^{\circ}\text{C})$

Melting point: 1168 ± 6°C Boiling point: 2460°C

Eu

Gd

Tb Dy Ho 67

Latent heat of fusion: 86.7 J/q Specific heat: 0.185 J/g/°C (25°C)

Thermal conductivity: 0.179 w/cm/°C (25°C)

Ionization potential (1st): 5.55 eV

Oxidation potential: $Pm \rightarrow Pm^{3+} + 3\epsilon = 2.423 \text{ V}$

Chemical valence: 3

Electrochemical equivalents: 1.8022 g/amp-hr

Ionic radius: 0.979 Å (Pm3+)

Valence electron potential $(-\epsilon V)$: 44.1

Principal quantum number: 6

Principal electron shells: KLMNOP

Electronic configuration: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f5 5s2

 $5p^{6} 6s^{2}$

Valence electrons: 4f5 6s2 Crystal form: Hexagonal Half life: 17.7 years

Protactinium

91 231.0359 Protactínio
Protactinium
Protactinium
Protactinio

Actinide Series

232.03807 Th 90	231 0359 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.08805 Es 99
257.09515	258	259	260						
Fm	Md	No	Lr						
100	101	102	103						

פרוטאקטיניום 全安 2

プロトアクチニウム

Naturally occurring isotope: 231 (minute quantities only)

Density: 15.37 g/cm³ (25°C)
Melting point: 1575°C
Latent heat of fusion: 65 J/g
Specific heat: 0.12 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 11.2×10^{-6} cm/cm/°C (25°C)

Ionization potential (1st): 5.89 eV

Chemical valence: 3, 4, 5

Electrochemical equivalents: 1.7240 g/amp-hr Oxidation potential: $Pa \to Pa^{3+} + 3\varepsilon = 1.6 \ V$

lonic radius: 0.78 Å (Pa^{5+})

Valence electron potential ($-\epsilon V$): 92

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{14}\ 5s^2\ 5p^6$

 $5d^{10}$ $5f^2$ $6s^2$ $6p^6$ $6d^1$ $7s^2$ Valence electrons: $5f^2$ $6d^1$ $7s^2$ Crystal form: Tetragonal Half life: 3.248×10^4 years

Cross section σ **:** 200 \pm 10 barns

Radium

88 226.02544

IIA	
9.01218 Be 4	
24.305 Mg 12	
40 08 Ca 20	
87.62 Sr 38	
137.34 Ba 56	
226.02544 Ra 88	

Rádio Radium Radium Radio радий

全 ラシャラ

Naturally occurring isotope: 226 (minute quantities only)

 $\begin{array}{lll} \textbf{Density:} \ 5.5 \ \text{g/cm}^3 \ (\text{extrapolated}) \ (20^{\circ}\text{C}) \\ \textbf{Melting point:} \ 700^{\circ}\text{C} & \textbf{Boiling point:} \ 1140^{\circ}\text{C} \\ \end{array}$

Latent heat of fusion: 37 J/g (est) Specific heat: 0.120 J/g/ $^{\circ}$ C (25 $^{\circ}$ C)

Thermal conductivity: 0.186 w/cm/°C (20°C)

lonization potential (1st): $5.279~\mathrm{eV}$

Oxidation potential: Ra \rightarrow Ra²⁺ + 2 ε = 2.916 V

Chemical valence: 2

Electrochemical equivalents: 4.2165 g/amp-hr

lonic radius: 1.43 Å (Ra²⁺)

Valence electron potential ($-\epsilon V$): 20.1

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 4f^{14} \ 5s^2 \ 5p^6$

5d¹⁰ 6s² 6p⁶ 7s²

Valence electrons: 7s² Half life: 1622 years

Cross section σ : 20 ± 3 barns

Vapor pressure: 3.27×10^2 Pa (at melting point)

Radon

86 222.01761

Radônio Radon Radon Radon радон

氢が

Naturally occurring isotopes: None (radium decay product)

Density: $9.96 \times 10^{-3} \text{ g/cm}^3 (20^{\circ}\text{C})$

Melting point: -71° C Boiling point: -61.8° C

Latent heat of fusion: 13.1 J/g Specific heat: 0.09362 J/g/°C (25°C)

Thermal conductivity: 0.0364 mw/cm/°C (27°C)

Ionization potential (1st): 10.748 eV

Chemical valence: 0

Principal quantum number: 6

Principal electron shells: K L M N O P $\,$

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{14}\ 5s^2\ 5p^6$

5d¹⁰ 6s² 6p⁶

Valence electrons: (6s² 6p⁶)

Crystal form: Cubic, face centered

Half life: 3.824 days

Cross section $\sigma \colon 0.72 \pm 0.07 \text{ barns}$

Rhenium

75 186.2

Rênio Rhenium Rhenium Renio

飲

רגיום

Naturally occurring isotopes: 187, 185

Density: 21.04 g/cm³ (20°C)

Melting point: 3180°C Boiling point: 5627°C (est)

Latent heat of fusion: 177.6 J/g Specific heat: 0.137 J/g°C (25°C)

Coefficient of lineal thermal expansion: 6.7 \times 10 $^{-6}$ cm/cm/ $^{\circ}$ C (25 $^{\circ}$ C)

Thermal conductivity: 0.480 w/cm/°C (25°C) Electrical resistivity: 19.3×10^{-6} ohm-cm (20°C)

lonization potential (1st): 7.88~eVElectron work function ϕ : 4.96~eV

Oxidation potential: Re + $2H_2O \rightarrow ReO_2$ + $4H^+$ + 4ε = -0.2513~V

Chemical valence: 0, 1, 2, 3, 4, 5, 6, 7
Electrochemical equivalents: 0.9924 g/amp-hr

Ionic radius: 0.56 Å (Re⁷⁺)

Valence electron potential ($-\epsilon V$): 180

Principal quantum number: 6

Principal electron shells: K L M N O P

 $\textbf{Electronic configuration:}\ \ 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{14}\ 5s^2\ 5p^6$

5d⁵ 6s²

Valence electrons: 5d⁵ 6s²

Crystal form: Hexagonal, close packed

Cross section σ : 85 ± 5 barns

Vapor pressure: 3.24 Pa (at melting point)

Rhodium

45 102.9055

	– VIII –	-
55.847	58 9332	58.70
Fe	Co	Ni
26	27	28
101.07	102 9055	106 4
Ru	Rh	Pd
44	45	46
190.2	192.22	195.09
Os	Ir	Pt
76	77	78
	109	

Ródio Rhodium Rhodium Rodio родий

老ジウム

Naturally occurring isotope: 103 Density: 12.41 g/cm³ (20°C)

Melting point: 1966 ± 3 °C Boiling point: 3727 ± 100 °C

Latent heat of fusion: 211.6 J/gSpecific heat: 0.24 J/g°C (25°C)

Coefficient of lineal thermal expansion: $8.3 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (20°C)

Thermal conductivity: 1.50 w/cm/°C (25°C)

Electrical resistivity: 4.51×10^{-6} ohm-cm (20°C)

Ionization potential (1st): 7.46~eVElectron work function ϕ : 4.98~eV

Oxidation potential: $Rh \rightarrow Rh^{3+} + 3\epsilon = -0.80 \text{ V}$

Chemical valence: 2, 3, 4, 5, 6

Electrochemical equivalents: 1.2798 g/amp-hr

lonic radius: 0.68 Å (Rh³⁺)

Valence electron potential ($-\epsilon$ V): 64

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^8 \ 5s^1$

Valence electrons: 4d8 5s1

Crystal form: Cubic, face centered Cross section σ : 150 \pm 5 barns

Vapor pressure: 6.33×10^{-1} Pa (at melting point)

Rubidium

37 85.4678

Rubidio Rubidium Rubidium Rubidio рубидий

רובידיום

Naturally occurring isotopes: 85, 87

Density: 1.532 g/cm³ (20°C)

Melting point: 38.89°C Boiling point: 686°C

Latent heat of fusion: 27.43 J/g Specific heat: 0.3634 J/g/°C (25°C)

Coefficient of lineal thermal expansion: $90 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (25°C)

Thermal conductivity: 0.582 w/cm/°C (25°C)

Electrical resistivity: 12.84×10^{-6} ohm-cm (20°C)

lonization potential (1st): 4.177 eV Electron work function ϕ : 2.16 eV

Oxidation potential: $Rb \rightarrow Rb^+ + \varepsilon = 2.925 \text{ V}$

Chemical valence: 1

Electrochemical equivalents: 3.1888 g/amp-hr

Ionic radius: 1.52 Å (Rb+)

Valence electron potential ($-\epsilon V$): 9.47

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 5s^1$

Valence electrons: 5s1

Crystal form: Cubic, body centered Cross section σ : 0.5 \pm 0.1 barns

Vapor pressure: 1.56×10^{-4} Pa (at melting point)

Ruthenium

44 101.07

	– VIII –	
55.847	58 9332	58.70
Fe	Co	Ni
26	27	28
101.07	102.9055	106.4
Ru	Rh	Pd
44	45	46
190 2	192 22	195 09
Os	r	Pt
76	77	78
	109	

Rutênio
Ruthenium
Ruthenium
Rutenio
рутений

アプラウム

Naturally occurring isotopes: 102, 104, 101, 99, 100, 96, 98

Density: 12.45 g/cm³ (20°C)

Melting point: 2310°C Boiling point: 3900°C

Latent heat of fusion: 252.7 J/g Specific heat: $0.238 \text{ J/g/}^{\circ}\text{C}$ (25°C)

Coefficient of lineal thermal expansion: $9.91 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (50°C)

Thermal conductivity: 1.17 w/cm/°C (25°C) Electrical resistivity: 6.80×10^{-6} ohm-cm (0°C)

lonization potential (1st): 7.37~eVElectron work function ϕ : 4.71~eV

Oxidation potential: Ru + 5Cl⁻ \rightarrow RuCl₃²⁻ + 3 ϵ = -0.601 V

Chemical valence: 1, 2, 3, 4, 5, 6, 7, 8

Electrochemical equivalents: 1.2570 g/amp-hr

lonic radius: 0.68 Å (Ru⁴⁺)

Valence electron potential ($-\epsilon V$): 64

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^7 \ 5s^1$

Valence electrons: 4d7 5s1

Crystal form: Hexagonal, close packed

Cross section σ : 3.0 \pm 0.8 barns

Vapor pressure: 1.40 Pa (at melting point)

Samarium

62

150.4

Lanthanide Series

Ce 58	140.9077 Pr 59	Nd 60	Pm 61	150.4 Sm 62	151 96 Eu 63	157 25 Gd 64	158 9254 Tb 65	Dy 66	164 9304 HO 67
167.26 Er	168.9342 Tm	173.04 Yb	174.97 Lu						

Samário Samarium Samarium

> Samario camapuŭ

סמריום

釤

サマリウム

Naturally occurring isotopes: 152, 154, 147, 149, 148, 150, 144

Density: 7.520 g/cm³ (25°C)

Melting point: 1077°C Boiling point: 1791°C

Latent heat of fusion: 73.8 J/g Specific heat: 0.196 $J/g/^{\circ}C$ (25°C)

Thermal conductivity: 0.133 w/cm/ $^{\circ}$ C (25 $^{\circ}$ C) Electrical resistivity: 88 \times 10 $^{-6}$ ohm-cm (25 $^{\circ}$ C)

lonization potential (1st): 5.63 eVElectron work function ϕ : 2.7 eV

Oxidation potential: $Sm \rightarrow Sm^{3+} + 3\varepsilon = 2.414 \text{ V}$

Chemical valence: 2, 3

Electrochemical equivalents: 1.870 g/amp-hr

lonic radius: $0.964 \text{ Å (Sm}^{3+})$ Valence electron potential ($-\epsilon$ V): 44.8

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^6\ 5s^2$

5p⁶ 6s²

Valence electrons: $4f^6 6s^2$ Crystal form: Rhombohedral Cross section σ : 5820 ± 100 barns

Vapor pressure: 5.63×10^2 Pa (at melting point)

Scandium

44.95592

IIIB
44 95592 Sc 21
88.9059 Y 39
138.9055 La 57
227.02777 AC

Escândio Scandium Scandium Escandio скандий

が スカンツウム

Naturally occurring isotope: 45 Density: 2.989 g/cm³ (25°C)

Melting point: 1541°C Boiling point: 2831°C

Latent heat of fusion: 358.6 J/gSpecific heat: 0.568 J/g°C (25°C)

Coefficient of lineal thermal expansion: 12×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.158 w/cm/°C (25°C) Electrical resistivity: 61.0×10^{-6} ohm-cm (20°C)

lonization potential (1st): 6.54~eVElectron work function ϕ : 3.5~eV

Oxidation potential: $Sc \rightarrow Sc^{3+} + 3\varepsilon = 2.077 \text{ V}$

Chemical valence: 3

Electrochemical equivalents: 0.55914 g/amp-hr

lonic radius: $0.745 \text{ Å } (Sc^{3+})$

Valence electron potential ($-\epsilon V$): 58.0

Principal quantum number: 4 Principal electron shells: K L M N

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹ 4s²

Valence electrons: 3d1 4s2

Crystal form: Hexagonal, close packed

Cross section $\sigma \colon 25 \pm 2 \text{ barns}$

Vapor pressure: 2.21 imes 10 Pa (at melting point)

Selenium

34 78.96

Selênio Sélénium Selen Selenio селен

晒さ

Naturally occurring isotopes: 80, 78, 82, 76, 77, 74

Density: 4.792 g/cm3 (gray) (20°C)

Melting point: 217°C (gray) Boiling point: 684.9 ± 1.0 °C

Latent heat of fusion: 68.93 J/g

Specific heat: $0.1606 \text{ J/g/}^{\circ}\text{C (Se}_2) (25^{\circ}\text{C})$

Coefficient of lineal thermal expansion: 36.8 cm/cm/°C (20°C) Thermal conductivity: 0.0452 w/cm/°C (along C-axis at 25°C)

Electrical resistivity: 1 ohm-cm (20°C) lonization potential (1st): 9.752 eV Electron work function φ: 5.9 eV

Oxidation potential: Se + $3H_2O \rightarrow H_2SeO_3$ + $4H^+$ + 4ε = -0.740 V

Chemical valence: -2, 4, 6

Electrochemical equivalents: 0.73650 g/amp-hr

lonic radius: 0.50 Å (Se⁴⁺)

Valence electron potential ($-\epsilon V$): 120

Principal quantum number: 4 Principal electron shells: K L M N

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^4$

Valence electrons: 4s2 4p4

Crystal forms: Hexagonal, monoclinic, amorphous

Cross section σ : 12.2 \pm 0.6 barns

Vapor pressure: 6.95×10^{-1} Pa (at melting point)

Silicon

14 28.0855

Silício Silicium Silizium Silicio Кремний צורך

Naturally occurring isotopes: 28, 29, 30

Density: 2.329 g/cm³ (25°C)

Melting point: 1410°C Boiling point: 2355°C

Latent heat of fusion: 1.655 J/gSpecific heat: $0.712 \text{ J/g/}^{\circ}\text{C}$ (25°C)

Coefficient of lineal thermal expansion: 4.2×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 1.49 w/cm/°C (25°C)
Electrical resistivity: 3.5 ohm-cm (20°C)
Ionization potential (1st): 8.151 eV
Electron work function ϕ : 4.52 eV

Oxidation potential: Si + $2H_2O \rightarrow SiO_2 + 4H^+ + 4\epsilon = 0.857 \text{ V}$

Chemical valence: -4, -1, 1, 4

Electrochemical equivalents: 0.26197 g/amp-hr

Ionic radius: 0.400 Å (Si⁴⁺)

Valence electron potential ($-\epsilon V$): 144

Principal quantum number: 3 Principal electron shells: K L M

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p²

Valence electrons: $3s^2 3p^2$ Crystal form: Cubic, diamond Cross section σ : 160 ± 20 mbarns

Vapor pressure: 4.77 Pa (at melting point)

Silver

47 107.868

Prata
Argent
Silber
Plata

כסף

銀銀

Naturally occurring isotopes: 107, 109

Density: 10.50 g/cm³ (20°C)

Melting point: 961.93°C Boiling point: 2212°C

Latent heat of fusion: 104.8 J/gSpecific heat: 0.2350 J/g/°C (25° C)

Coefficient of lineal thermal expansion: 18.62 \times 10 $^{-6}$ cm/cm/°C (17°C)

Thermal conductivity: 4.29 w/cm/ $^{\circ}$ C (25 $^{\circ}$ C)

Electrical resistivity: 1.586×10^{-6} ohm-cm (20°C)

lonization potential (1st): 7.576 eV Electron work function ϕ : 4.26 eV

Oxidation potentials: Ag \rightarrow Ag $^+$ + ε = -0.7991~V

 $Ag^+ \rightarrow Ag^{2+} + \epsilon = -1.980 \text{ V}$

Chemical valence: 1, 2, 3

Electrochemical equivalents: 4.0246 g/amp-hr

lonic radius: 1.26 $\mbox{\AA}$ (Ag $^+$)

Valence electron potential ($-\epsilon V$): 11.4 Principal quantum number: 5 Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s¹

Valence electrons: $(4d^{10}) 5s^1$ Crystal form: Cubic, face centered Cross section σ : 63.8 ± 0.6 barns

Vapor pressure: 3.42×10^{-1} Pa (at melting point)

Sodium

11 22.98977

IΑ 1.0079 H 6 941 Li 22 9897 Na 39.096 K 19 85.4678 Rb 132.9054 Cs 223.01976 Fr 87

Sódio Sodium Natrium Sodio натрий נתרן ,

Naturally occurring isotopes: 23 Density: 0.9712 g/cm³ (20°C)

Melting point: 97.81 ± 0.03 °C Boiling point: 882.9°C

Latent heat of fusion: 113 J/g Specific heat: 1.23 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 72 imes 10 $^{-6}$ cm/cm/°C (25 $^{\circ}$ C)

Thermal conductivity: 1.42 w/cm/°C (25°C)

Electrical resistivity: 4.33×10^{-6} ohm-cm (0°C)

lonization potential (1st): 5.139 eV Electron work function ϕ : 2.75 eV

Oxidation potential: Na \rightarrow Na⁺ + ε = 2.714 V

Chemical valence: 1

Electrochemical equivalents: 0.85775 g/amp-hr

lonic radius: 1.02 Å (Na+)

Valence electron potential ($-\epsilon V$): 14.1

Principal quantum number: 3 Principal electron shells: K L M

Electronic configuration: 1s² 2s² 2p⁶ 3s¹

Valence electrons: 3s1

Crystal form: Cubic, body centered Cross section σ: 534±5 mbarns

Vapor pressure: 1.43×10^{-5} Pa (at melting point)

Strontium

38 87.62

Estrôncio Strontium Strontium Estroncio стронций

鍶

סטרונציום

Naturally occurring isotopes: 88, 86, 87, 84

Density: 2.54 g/cm³ (20°C)

Melting point: 769°C Boiling point: 1384°C

Latent heat of fusion: 105.1 J/gSpecific heat: 0.30 J/g/°C (25° C)

Coefficient of lineal thermal expansion: 21 \times 10⁻⁶ cm/cm/°C (25°C)

Thermal conductivity: $0.354 \text{ w/cm}/^{\circ}\text{C}$ (25°C) Electrical resistivity: $23 \times 10^{-6} \text{ ohm-cm}$ (20°C)

lonization potential (1st): 5.695 eV Electron work function ϕ : 2.59 eV

Oxidation potential: $Sr \rightarrow Sr^{2+} + 2\varepsilon = 2.888 \text{ V}$

Chemical valence: 2

Electrochemical equivalents: 1.635 g/amp-hr

lonic radius: 1.12 Å (Sr²⁺)

Valence electron potential ($-\epsilon V$): 25.7

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 5s^2$

Valence electrons: 5s2

Crystal form: Cubic, face centered Cross section σ : 1.21 \pm 0.06 barns

Vapor pressure: 2.46×10^2 Pa (at melting point)

Sulfur

16 32.06

Enxôfre Soufre Schwefel Azufre cepa גיפרית

Naturally occurring isotopes: 32, 34, 33, 36

Density: 2.07 g/cm³ (rhombic form at 25°C)

Melting point: 112.8°C

Boiling point: 444.674°C

Latent heat of fusion: 44.01 J/g

Specific heat: 0.706 J/g/°C (rhombic) (25°C)

Coefficient of lineal thermal expansion: $64.13 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (20°C)

Thermal conductivity: 2.70 mw/cm/°C (25°C) Electrical resistivity: 2×10^{17} ohm-cm (20°C)

Ionization potential (1st): 10.360 eV

Oxidation potentials: S $_{1}+~3H_{2}O\rightarrow H_{2}SO_{3}~+~4H^{+}~+~4\varepsilon =~-0.45~V$

 $S^{2-} \rightarrow S + 2\epsilon = 0.447 \text{ V}$

Chemical valence: -2, 4, 6

Electrochemical equivalents: 0.2990 g/amp-hr

lonic radius: 0.37 Å (S⁴⁺)

Valence electron potential ($-\epsilon V$): 160

Principal quantum number: 3 Principal electron shells: K L M

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^4$

Valence electrons: $3s^2 3p^4$ Crystal form: Orthorhombic Cross section σ : 0.51 barns

Vapor pressure: 2.65×10^{-20} Pa (at melting point)

Tantalum

73 180.9479

VB
50.9415 V 23
92.9064 Nb 41
180.9479 Ta 73
105

Tantálio Tantale Tantal Tántalo

组多

תמדאמד טגטל

Naturally occurring isotopes: 181, 180

Density: 16.60 g/cm³ (20°C)

Melting point: 2996°C Boiling point: 5425 ± 100°C

Latent heat of fusion: 174 J/g Specific heat: 0.140 J/g/°C (25°C)

Coefficient of lineal thermal expansion: $6.5 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (20°C)

Thermal conductivity: 0.575 w/cm/°C (25°C)

Electrical resistivity: 12.45×10^{-6} ohm-cm (25°C)

Ionization potential (1st): 7.89 eV Electron work function φ: 4.25 eV

Oxidation potential: $2Ta + 5H_2O \rightarrow Ta_2O_5 + 10H^+ + 10\epsilon = 0.812 V$

Chemical valence: 3, 4, 5

Electrochemical equivalents: 1.3502 g/amp-hr

lonic radius: 0.64 Å (Ta⁵⁺)

Valence electron potential ($-\epsilon V$): 110

Principal quantum number: 6

Principal electron shells: K L M N O P

 $\textbf{Electronic configuration:} \ \, 1\text{s}^2 \ 2\text{s}^2 \ 2\text{p}^6 \ 3\text{s}^2 \ 3\text{p}^6 \ 3\text{d}^{10} \ 4\text{s}^2 \ 4\text{p}^6 \ 4\text{d}^{10} \ 4\text{f}^{14} \ 5\text{s}^2 \ 5\text{p}^6$

5d³ 6s²

Valence electrons: 5d3 6s2

Crystal form: Cubic, body centered Cross section σ: 22±1 barns

Vapor pressure: 7.76×10^{-1} Pa (at melting point)

Technetium

43 96.906

Tecnécio
Technetium
Technetium
Tecnecio
Texнеций

温号 テクネチウ

Naturally occurring isotopes: None

Density: 11.496 g/cm³ (25°C)

Melting point: 2172°C Boiling point: 4877°C

Latent heat of fusion: $235 \pm 5 \text{ J/g}$ Specific heat: 0.24 J/g/°C (25°C)

Thermal conductivity: 0.506 w/cm/°C (25°C)

Ionization potential (1st): 7.28 eV

Oxidation potential: $Tc \rightarrow Tc^{2+} + 2\epsilon = -0.4 \text{ V}$

Chemical valence: 0, 1, 2, 3, 4, 5, 6, 7

Electrochemical equivalents: 0.51651 g/amp-hr

lonic radius: $0.56 \text{ Å} (\text{Tc}^{7+})$

Valence electron potential ($-\epsilon V$): 180

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d⁶ 5s¹

Valence electrons: 4d⁶ 5s¹

Crystal form: Hexagonal, close packed

Half life: 2.6×10^6 years

Vapor pressure: 2.29×10^{-2} Pa (at melting point)

Tellurium

52 127,60

VIA	
15.9994 O 8	ĺ
32 06 S 16	
78.96 Se 34	
127.60 Te 52	
208.98243 Po 84	

Telúrio Tellure Tellur Telurio теллур

確った

טלור

Naturally occurring isotopes: 130, 128, 126, 125, 124, 122, 123

Density: 6.24 g/cm³ (20°C)

Melting point: 449.5 ± 0.3 °C Boiling point: 989.8 ± 3.8 °C

Latent heat of fusion: 137.2 J/gSpecific heat: 0.202 J/g/°C (25°C)

Coefficient of lineal thermal expansion: 16.75 \times 10 $^{-6}$ cm/cm/°C (20°C)

Thermal conductivity: 0.0338 w/cm/°C (along C-axis at 25°C)

Electrical resistivity: 4.36 ohm-cm (25°C)

lonization potential (1st): 0.009 eV Electron work function ϕ : 4.95 eV

Oxidation potential: Te + $2H_2O \rightarrow TeO_2$ + $4H^+$ + 4ε = -0.529~V

Chemical valence: -2, 2, 4, 6

Electrochemical equivalents: 1.1902 g/amp-hr

Ionic radius: 0.97 Å (Te⁴⁺)

Valence electron potential ($-\epsilon V$): 59

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 5s^2\ 5p^4$

Valence electrons: $5s^2 5p^4$ Crystal form: Hexagonal Cross section σ : 4.7 ± 0.1 barns

Vapor pressure: 2.31 imes 10 Pa (at melting point)

Terbium

65

158,9254

Lanthanide Series

140 12	140.9077	144 24	144.913	150 4	151 96	157 25	158.9254	162 50	164.9304
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho
58	59	60	61	62	63	64	65	66	67
167.26 Er 68	168.9342 Tm 69	173.04 Yb 70	174.97 Lu 71						

Térbio
Terbium
Terbium
Terbio
тербий

はデルビウ

Naturally occurring isotope: 159 Density: 8.229 g/cm³ (25°C)

Melting point: 1356°C Boiling point: 3123°C

Latent heat of fusion: 102.7 J/gSpecific heat: $0.182 \text{ J/g/}^{\circ}\text{C}$ (25°C)

Coefficient of lineal thermal expansion: 11.8×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.111 w/cm/°C (25°C) Electrical resistivity: 116×10^{-6} ohm-cm (25°C)

lonization potential (1st): 5.85~eVElectron work function ϕ : 3.0~eV

Oxidation potential: $Tb \rightarrow Tb^{3+} + 3\varepsilon = 2.391 \text{ V}$

Chemical valence: 3, 4

Electrochemical equivalents: 1.9765 g/amp-hr

lonic radius: $0.923 \text{ Å} (\text{Tb}^{3+})$

Valence electron potential ($-\epsilon V$): 46.8

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^9 5s^2$

5p⁶ 6s²

Valence electrons: 4f9 6s2

Crystal form: Hexagonal, close packed

Cross section σ : 30 ± 10 barns

Thallium

81 204.37 HIA

10.81

B
5

26.98154

AI
13

69.72

Ga
31

114.82

In
49

204.37

TI

Tálio Thallium Thallium Talio таллий

蛇 9

תליום

Naturally occurring isotopes: 205, 203

Density: 11.85 g/cm³ (20°C)

Melting point: 303.5° C Boiling point: $1457 \pm 10^{\circ}$ C

Latent heat of fusion: 20.90 J/gSpecific heat: 0.129 J/g/°C (25° C)

Coefficient of lineal thermal expansion: $28 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (20°C)

Thermal conductivity: 0.461 w/cm/°C (25°C) Electrical resistivity: 18.0 \times 10 $^{-6}$ ohm-cm (0°C)

lonization potential (1st): 6.108 eV Electron work function ϕ : 3.84 eV

Oxidation potentials: $TI \rightarrow TI^+ + \epsilon = 0.3363 \text{ V}$

 $TI^+ \rightarrow TI^{3+} + 2\varepsilon = -1.25 \text{ V}$

Chemical valence: 1, 3

Electrochemical equivalents: 7.6250 g/amp-hr

lonic radius: 1.50 Å (TI+)

Valence electron potential (– ϵ V): 9.60

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{14}\ 5s^2\ 5p^6$

5d¹⁰ 6s² 6p¹

Valence electrons: 6s2 6p1

Crystal form: Hexagonal, close packed

Cross section σ : 3.4 ± 0.5 barns

Vapor pressure: 5.33×10^{-6} Pa (at melting point)

Thorium

90 232.03807

Thorium Torio торий

Es

Actinide Series

232.03807 Th 90	231.0359 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247 07032 Bk 97	251.07961 Cf 98	
257.09515	258	259	260		***			•	-
Fm 100	Md 101	No 102	Lr 103						

針片

תוריום

Tório Thorium

Naturally occurring isotope: 232 Density: 11.724 g/cm³ (25°C)

Melting point: 1750°C Boiling point: 4787°C

Latent heat of fusion: 82.93 J/g Specific heat: 0.118 J/g°C (25°C)

Coefficient of lineal thermal expansion: $12.5 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (20°C)

Thermal conductivity: 0.540 w/cm/°C (25°C) Electrical resistivity: 13.1×10^{-6} ohm-cm (25°C)

lonization potential (1st): 6.08~eVElectron work function ϕ : 3.41~eV

Oxidation potential: $Th \rightarrow Th^{4+} + 4\varepsilon = 1.899 \text{ V}$

Chemical valence: 3, 4

Electrochemical equivalents: 2.1643 g/amp-hr

Ionic radius: 0.972 Å (Th4+)

Valence electron potential ($-\epsilon V$): 59.3

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{14}\ 5s^2\ 5p^6$

5d¹⁰ 6s² 6p⁶ 6d² 7s²
Valence electrons: 6d² 7s²

Crystal form: Cubic, face centered Half life: 1.40×10^{10} years
Cross section σ : 74 ± 0.1 barns

Thulium

69

168.9342

Lanthanide Series

Túlio

Thulium

Tulio

тулий תוליום

ほッリウ

Ho

Naturally occurring isotope: 169 Density: 9.321 g/cm³ (25°C)

Melting point: 1545 ± 15°C Boiling point: 1727°C

Latent heat of fusion: 109.0 J/gSpecific heat: 0.160 J/g°C (25°C)

Coefficient of lineal thermal expansion: 11.6×10^{-6} cm/cm/°C (400°C)

Thermal conductivity: $0.169 \text{ w/cm/}^{\circ}\text{C}$ (25°C) Electrical resistivity: $79 \times 10^{-6} \text{ ohm-cm}$ (25°C)

Ionization potential (1st): 6.1844 eV

Oxidation potential: $Tm \rightarrow Tm^{3+} + 3\varepsilon = 2.278 \text{ V}$

Chemical valence: 2, 3

Electrochemical equivalents: 2.1010 g/amp-hr

lonic radius: 0.869 Å (Tm3+)

Valence electron potential ($-\epsilon$ V): 49.7

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{13}\ 5s^2\ 5p^6$

6s²

Valence electrons: 4f13 6s2

Crystal form: Hexagonal, close packed

Cross section σ : 115 ± 15 barns

Vapor pressure: 4.90×10^{-3} Pa (at melting point)

Tin

50 118.69

Estanho Etain Zinn Estaño олово とア・ナ

錫す

Naturally occurring isotopes: 120, 118, 116, 119, 117, 124, 122, 112,

114, 115

Density: 7.298 g/cm3 (25°C)

Melting point: 231.9681°C Boiling point: 2270°C

Latent heat of fusion: 60.67 J/gSpecific heat: $0.227 \text{ J/g/}^{\circ}\text{C}$ (25°C)

Coefficient of lineal thermal expansion: $23 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (20°C)

Thermal conductivity: $0.668 \text{ w/cm/}^{\circ}\text{C}$ (25°C) Electrical resistivity: $11.5 \times 10^{-6} \text{ ohm-cm}$ (20°C)

lonization potential (1st): 7.334~eVElectron work function ϕ : 4.42~eV

Oxidation potentials: $Sn \rightarrow Sn^{2+} + 2\epsilon = 0.136 \text{ V}$

 $Sn^{2+} \rightarrow Sn^{4+} + 2\epsilon = -0.15 \text{ V}$

Chemical valence: -4, -1, 2, 4

Electrochemical equivalents: 1.1071 g/amp-hr

lonic radius: 0.690 Å (Sn4+)

Valence electron potential ($-\epsilon V$): 83.5

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 5s^2 \ 5p^2$

Valence electrons: $5s^2 5p^2$ Crystal form: Tetragonal

Cross section $\sigma \colon 0.63 \pm 0.1 \text{ barns}$

Vapor pressure: 5.78×10^{-21} Pa (at melting point)

Titanium

22 47.90

Titânio Titane Titan Titanio титан

鈦多

טיטניום

Naturally occurring isotopes: 48, 46, 47, 49, 50

Density: 4.507 g/cm³ (20°C)

Melting point: $1660 \pm 10^{\circ}$ C Boiling point: 3287° C

Latent heat of fusion: 323.4 J/gSpecific heat: 0.522 J/g°C (25°C)

Coefficient of lineal thermal expansion: $8.41 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (20°C)

Thermal conductivity: 0.219 w/cm/°C (25°C) Electrical resistivity: 42×10^{-6} ohm-cm (20°C)

lonization potential (1st): 6.82 eV Electron work function ϕ : 4.33 eV

Oxidation potential: $Ti \rightarrow Ti^{2+} + 2\varepsilon = 1.628 \text{ V}$

Chemical valence: 1, 2, 3, 4

Electrochemical equivalents: 0.4468 g/amp-hr

lonic radius: 0.605 Å (Ti⁴⁺)

Valence electron potential $(-\epsilon V)$: 95.2

Principal quantum number: 4 Principal electron shells: K L M N

Electronic configuration: 1s2 2s2 2p6 3s2 3p6 3d2 4s2

Valence electrons: 3d² 4s²

Crystal form: Hexagonal, close packed

Cross section σ : 6.1 ± 0.2 barns

Vapor pressure: 4.90×10^{-1} Pa (at melting point)

Tungsten

74 183.85

Tungstênio Tungstène Wolframz Tungsteno вольфрам

鳥クスを

Naturally occurring isotopes: 184, 186, 182, 183, 180

Density: 19.35 g/cm³ (20°C)

Melting point: 3410 ± 20°C Boiling point: 5660°C

Latent heat of fusion: 191.7 J/g Specific heat: 0.125 J/g°C (25°C)

Coefficient of lineal thermal expansion: $4.6 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (20°C)

Thermal conductivity: 1.73 $\text{w/cm/}^{\circ}\text{C}$ (25°C)

Electrical resistivity: 5.65 × 10⁻⁶ ohm-cm (27°C)

lonization potential (1st): 7.98~eVElectron work function ϕ : 4.55~eV

Oxidation potential: W + $3H_2O \rightarrow WO_3$ + $6H^+$ + $6\varepsilon = 0.09 \ V$

Chemical valence: 2, 3, 4, 5, 6

Electrochemical equivalents: 1.1432 g/amp-hr

lonic radius: 0.62 Å (W⁶⁺)

Valence electron potential ($-\epsilon V$): 140

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{14}\ 5s^2\ 5p^6$

5d⁴ 6s²

Valence electrons: 5d4 6s2

Crystal form: Alpha—cubic, body centered; beta—cubic, face centered

Cross section σ : 18.5 ± 0.5 barns

Vapor pressure: 4.27 Pa (at melting point)

Uranium

92 238.029 Urânio

Uranium

Uran Uranio

уран

Actinide Series

232.03 8 07 Th 90	231.0359 Pa 91	238.029 U 92	237.0482 Np 93	244.06423 Pu 94	243.0614 Am 95	247.07038 Cm 96	247.07032 Bk 97	251.07961 Cf 98	254.08805 Es 99
257 09515	258	259	260						
Fm	Md	No	Lr						
100	101	102	103						

אורניום לי בג

油

Naturally occurring isotopes: 238, 235, 234

Density: 19.04 g/cm³ (25°C)

Melting point: 1132.3 ± 0.8 °C Boiling point: 3818°C

Latent heat of fusion: 65.08 J/gSpecific heat: 0.1162 J/g/°C (25° C)

Coefficient of lineal thermal expansion: 13.4×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: 0.275 w/cm/°C (25°C) Electrical resistivity: 27×10^{-6} ohm-cm (25°C)

lonization potential (1st): 6.05 eV Electron work function ϕ : 3.63 eV

Oxidation potential: $U \rightarrow U^{3+} + 3\varepsilon = 1.789 V$

Chemical valence: 3, 4, 5, 6

Electrochemical equivalents: 1.4801 g/amp-hr

Ionic radius: 0.52 Å (U⁶⁺)

Valence electron potential ($-\epsilon V$): 170

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{14}\ 5s^2\ 5p^6$

 $5d^{10}$ 5f³ 6s² 6p⁶ 6d¹ 7s² Valence electrons: 5f³ 6d¹ 7s² Crystal form: Orthorhombic Half life: 4.51 × 10⁹ years

Cross section σ : 7.595 \pm 0.070 barns

Vapor pressure: 1.19×10^{-6} Pa (at melting point)

Vanadium

23 50.9415

VB
50.9415 V 23
92 9064 Nb 41
180.9479 Ta 73
105

Vanádio Vanadium Vanadium Vanadio ванадий

Naturally occurring isotopes: 51, 50

Density: 6.11 g/cm³ (18.7°C)

Melting point: $1890 \pm 10^{\circ}$ C Boiling point: 3380° C

Latent heat of fusion: 345.2 J/gSpecific heat: $0.489 \text{ J/g/}^{\circ}\text{C}$ (25°C)

Coefficient of lineal thermal expansion: 6.15×10^{-6} cm/cm/°C (25°C)

Thermal conductivity: $0.307 \text{ w/cm/}^{\circ}\text{C}$ (25°C) Electrical resistivity: $24.8 \times 10^{-6} \text{ ohm-cm}$ (20°C)

lonization potential (1st): 6.74 eVElectron work function ϕ : 4.3 eV

Oxidation potential: $V \rightarrow V^{2+} + 2\epsilon = 1.186 V$

Chemical valence: 2, 3, 4, 5

Electrochemical equivalents: 0.38013 g/amp-hr

lonic radius: $0.59 \text{ Å } (V^{5+})$

Valence electron potential ($-\epsilon V$): 120

Principal quantum number: 4 Principal electron shells: K L M N

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d³ 4s²

Valence electrons: 3d³ 4s²

Crystal form: Cubic, body centered Cross section σ : 5.06 \pm 0.06 barns

Vapor pressure: 3.06 Pa (at melting point)

Xenon

54 131.30

Xenônio Xenon Xenon Xenon Ксенон ССССТ

気 きょく

Naturally occurring isotopes: 132, 129, 131, 134, 136, 130, 128, 124, 126

Density: $5.895 \times 10^{-3} \text{ g/cm}^3 (20^{\circ}\text{C})$

Melting point: $-111.9^{\circ}C$ Boiling point: $-107.1 \pm 3^{\circ}C$

Latent heat of fusion: 17.5 J/gSpecific heat: $0.15831 \text{ J/g/}^{\circ}\text{C}$ (25°C)

Thermal conductivity: 0.514 mw/cm/°C (0°C at 1 atm)

Ionization potential (1st): 12.130 eV

Chemical valence: 0

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^6$

Valence electrons: $(5s^2 5p^6)$ Crystal form: Cubic, face centered Cross section σ : 24.5 ± 1.0 barns

Ytterbium

70 173.04

Lanthanide Series

40.12	140.9077	144 24	144.913	150 4	151.96	157 25	158.9254	162.50	164.9304
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho
58	59	60	61	62	63	64	65	66	67
67.26 Er	168.9342 Tm	173.04 Yb	174.97 Lu						

Itérbio
Ytterbium
Ytterbium
Iterbio
иттербий

イッテルビウム

Naturally occurring isotopes: 174, 172, 173, 171, 176, 170, 168

Density: 6.965 g/cm3 (25°C)

Melting point: 819°C Boiling point: 1194°C

Latent heat of fusion: 53.23 J/gSpecific heat: 0.155 J/g/°C (25° C)

Coefficient of lineal thermal expansion: $29.9 \times 10^6 \, \text{cm/cm/}^{\circ}\text{C}$ (25°C)

Thermal conductivity: 0.349 w/cm/°C (25°C)
Electrical resistivity: 28 × 10⁻⁶ ohm-cm (25°C)

Ionization potential (1st): 6.2539 eV

Oxidation potential: $Yb \rightarrow Yb^{3+} + 3\epsilon = 2.267 \text{ V}$

Chemical valence: 2.3

Electrochemical equivalents: 2.1520 g/amp-hr

Ionic radius: 0.858 Å (Yb³⁺)

Valence electron potential $(-\epsilon V)$: 50.3

Principal quantum number: 6

Principal electron shells: K L M N O P

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2$

 $5p^6 6s^2$

Valence electrons: 4f14 6s2

Crystal form: Cubic, face centered Cross section σ : 37 ± 3 barns

Vapor pressure: 3.95×10^2 Pa (at melting point)

Yttrium

39 88.9059

Itrio Yttrium Yttrium Itrio иттрий

釔

ーットリウム

Naturally occurring isotope: 89 Density: 4.469 g/cm³ (25°C)

Melting point: 1522°C Boiling point: 3338°C

Latent heat of fusion: 193.1 J/g Specific heat: 0.298 J/g°C (25°C)

Coefficient of lineal thermal expansion: 10.8 \times 10 $^{-6}$ cm/cm/°C (400°C)

Thermal conductivity: 0.172 w/cm/°C (25°C) Electrical resistivity: 57×10^{-6} ohm-cm (25°C)

lonization potential (1st): 6.38 eVElectron work function ϕ : 3.1 eV

Oxidation potential: $Y \rightarrow Y^{3+} + 3\varepsilon = 2.372 \text{ V}$

Chemical valence: 3

Electrochemical equivalents: 1.1057 g/amp-hr

lonic radius: $0.900 \text{ Å } (Y^{3+})$

Valence electron potential ($-\epsilon$ V): 48.0

Principal quantum number: 5

Principal electron shells: K L M N O

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^1 5s^2$

Valence electrons: 4d1 5s2

Crystal form: Hexagonal, close packed

Cross section σ : 1.3 \pm 0.1 barns

Vapor pressure: 5.31 Pa (at melting point)

Zinc

30 65.38 65 38 Zn 30 112.41 Cd 48 200.59 Hg 80

Zinco Zinc Zink Zinc Цинк

鉾 悪

NET

Naturally occurring isotopes: 64, 66, 68, 67, 70

Density: 7.133 g/cm³ (25°C)

Melting point: 419.58°C Boiling point: 907°C

Latent heat of fusion: 113.0 J/gSpecific heat: 0.388 J/g/°C (25°C)

Coefficient of lineal thermal expansion: $39.7 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (20°C)

Thermal conductivity: 1.16 w/cm/°C (25°C)

Electrical resistivity: 5.916×10^{-6} ohm-cm (20°C)

lonization potential (1st): 9.394~eVElectron work function ϕ : 4.33~eV

Oxidation potential: $Zn \rightarrow Zn^{2+} \, + \, 2\varepsilon \, = \, 0.7628 \; V$

Chemical valence: 2

Electrochemical equivalents: 1.220 g/amp-hr

lonic radius: $0.740 \text{ Å } (Zn^{2+})$

Valence electron potential ($-\epsilon$ V): 38.9

Principal quantum number: 4
Principal electron shells: K L M N

Electronic configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s²

Valence electrons: 4s²

Crystal form: Hexagonal, close packed Cross section σ : 1.10 ± 0.04 barns

Vapor pressure: 19.2 Pa (at melting point)

Zirconium

40 91.22

Zircônio
Zirconium
Zirkonium
Zirconio
цирконий

さん ジルコニウム

Naturally occurring isotopes: 90, 94, 92, 91, 96

Density: 6.506 g/cm³ (20°C)

Melting point: 1852 ± 2°C Boiling point: 4377°C

Latent heat of fusion: 251.2 J/g Specific heat: 0.278 J/g/ $^{\circ}$ C (25 $^{\circ}$ C)

Coefficient of lineal thermal expansion: $5.85 \times 10^{-6} \, \text{cm/cm/}^{\circ}\text{C}$ (20°C)

Thermal conductivity: $0.227 \text{ w/cm/}^{\circ}\text{C}$ (27°C) Electrical resistivity: $40 \times 10^{-6} \text{ ohm-cm}$ (20°C)

lonization potential (1st): 6.84~eVElectron work function ϕ : 4.05~eV

Oxidation potential: $Zr \rightarrow Zr^{4+} + 4\varepsilon = 1.529 \text{ V}$

Chemical valence: 1, 2, 3, 4

Electrochemical equivalents: 0.8509 g/amp-hr

lonic radius: 0.72 Å (Zr⁴⁺)

Valence electron potential ($-\epsilon$ V): 80 Principal quantum number: 5 Principal electron shells: K L M N O

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^2 5s^2$

Valence electrons: 4d² 5s²

Crystal form: Hexagonal, close packed Cross section σ : 0.182 \pm 0.005 barns

Vapor pressure: 1.68×10^{-3} Pa (at melting point)

Kurchatovium Rutherfordium

104 261

Naturally occurring isotopes: None

Chemical valence: 4

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Electronic configuration: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6$

 $5d^{10} 5f^{14} 6s^2 6p^6 6d^2 7s^2$ Valence electrons: $6d^2 7s^2$ Half life: ~ 65 seconds

Nielsbohrium Hahnium

105 (262)

Naturally occurring isotopes: None

Chemical valence: (5)

Principal quantum number: 7

Principal electron shells: KLMNOPQ

Half life: ~40 seconds

106 (263)

Naturally occurring isotopes: None

Chemical valence: (6)

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Half life: ~1 second

107 (262)

Naturally occurring isotopes: None

Chemical valence: (7)

Principal quantum number: 7

Principal electron shells: K L M N O P Q

Bibliography

Of the numerous references employed in preparation of the third edition of the "Handbook of the Elements," the following are among the most prominent:

- A. E. Bailey et al., Eds., "Tables of Physical and Chemical Constants," 14th ed., Longman Group Limited, London (1973).
- Barin and O. Knacke, "Thermochemical Properties of Inorganic Substances," Springer-Verlag, Berlin (1973).
- G. Charlot et al., "Selected Constants: Oxidation–Reduction Potentials of Inorganic Substances in Aqueous Solution," Butterworths, London (1971).
- J. A. Dean, Ed., "Lange's Handbook of Chemistry," 12th ed., McGraw-Hill Book Company, New York (1978).
- S. Fraga and J. Karwowski, "Handbook of Atomic Data," Elsevier Scientific Publishing Company, Amsterdam (1976).
- "Gmelin Handbuch der Anorganischen Chemie," Springer-Verlag, Berlin (up to and including 1980).
- M. Grayson, Executive Ed., "Kirk-Othmer Encyclopedia of Chemical Technology," 3rd ed., Volumes 1–20 incl., John Wiley & Sons, New York (1978–1982 incl.)
- G. B. Naumov et al., Eds., "Handbook of Thermodynamic Data," U.S.S.R. Academy of Sciences, Leningrad (1971).
- L. Pauling, "The Nature of the Chemical Bond," 3rd ed., Cornell University Press, Ithaca, New York (1960).
- G. V. Samsonov, "Handbook of the Physicochemical Properties of the Elements," Plenum, New York (1968).
- R. C. Weast, Editor-in-Chief, "CRC Handbook of Chemistry and Physics, 1983–1984," 64th ed., CRC Press, Inc., Boca Raton, Fla. (1983).
- E. Ya. Zandberg and N. L. Ionov, "Surface Ionization," Science Publishing House, Moscow (1969).

In addition to the reference texts, several primary journals and U.S. government publications were employed. The most commonly utilized were:

Acta Chemica Scandinavica

Acta Crystallographica

Analytical Chemistry

Bulletin of the American Physical Society

Canadian Journal of Chemistry

Canadian Journal of Physics

Chemical and Engineering News

Chemical Physics Letters

Chemical Reviews

Chemische Berichte

Electrochimica Acta

Helvetica Chimica Acta Inorganic Chemistry Journal of American Chemical Society Journal of Applied Physics Journal of Chemical and Engineering Data Journal of Chemical Education Journal of Chemical Physics Journal of Inorganic and Nuclear Chemistry Journal of Less-Common Metals Journal of Physical and Chemical Reference Data Journal of Physical Chemistry Journal of Physics and Chemistry of Solids Journal of Solid State Chemistry Journal of the Chemical Society Journal of the Electrochemical Society Materials Research Bulletin Nature Physical Review Proceedings of the Physical Society Proceedings of the Royal Society Progress in Inorganic Chemistry Pure and Applied Chemistry Science Talanta Transactions of the Faraday Society