dOpt Compulsory Assignment 3 Re-handin

Christian Zhuang-Qing Nielsen*

April 22, 2018

Contents

1	Proof	1
2	Notes	2

1 Proof

We want to prove that one of two languages are in P iff the other one is as well. These languages are decided by the same function, but the input to the deciding function is represented differently (both are still strings $x \in \{0, 1\}^*$) and the two representations are good and polynomially equivalent.

Starting off, we can assume that one of the languages, lets say L_1 , is in P:

$L_1 \in \boldsymbol{P}$

Under this assumption, the language is decided by a Turing machine T_1 in polynomial time. Now to continue our proof we need to show that L_2 is also in \mathbf{P} . From our assumption, we know that π_1 is a good representation and we want to map it to π_2 . However, we cannot assume that $x \in \pi_2(S)$ just because they are polynomially equivalent.

Since π_2 is also supposedly a good representation we can create a Turing machine T_2 that decides the language it represents in polynomial time. Being

^{*201504624}, christian@czn.dk

certain of a good representation AND knowing it is polynomially equivalent with pi_1 from the description, we can perform the mapping

$$\pi_1(x) = r_1(\pi_2(x)).$$

Since every input to the mapping was a good representation (and thus decidable by a Turing machine) and it can be mapped back to π_1 used by L_1 , which was definitely in \boldsymbol{P} from our assumption, which translates back to $L_2 \in \boldsymbol{P}$ iff it is decided by a TM T_2 and L_1 is decided by a TM T_1 . \square

2 Notes

So the idea is that if $L_1 \in \mathbf{P}$ we can utilise a mapping between the polynomially equivalent representations. We know that π_1 is a good representation from our assumption (and our constructed Turing machine). For the mapping to make sense, π_2 must also be a good representation, which is why we construct the second Turing machine that hopefully decides the language L_2 . This can be used to confirm that $L_2 \in \mathbf{P}$ if and only if our assumptions are true (i.e. that π_2 is a good representation and that $L_1 \in \mathbf{P}$).

This was how I interpreted the proof made using Turing machines.