TCS II Formal Languages and Computability 2020/21 1st Midterm

		oril	00	1
h	Δ1	arı I	· 71	171
v.	Δ	JIII	~(<i>) –</i> 1

Solve the assignments on your ow	'n.

Time limit is 90 minutes.

Good luck!

ASSIGNMENT	POINTS	OUT OF	ASSIGNMENT	POINTS	OUT OF
1			2		
3			4		

FIRST AND LAST NAME:	
STUDENT ID:	
SIGNITURE:	

2

1. Assignment: (30 points)

Let's define languages:

$$L_1 = \{a^n b a^n \mid n \ge 1\}, \Sigma = \{a, b\}$$

 $L_2 = \{w \mid (01)^* 1 (1 + 00)^*\}, \Sigma = \{0, 1\}$

QUESTIONS:

For every language:

1. Find out if the language is regular or not, justify your claim!

INSTRUCTIONS:

If a language is regular, construct a deterministic finite automaton (DFA) – write down the complete 5-touple. If the language is not regular, you must prove that such an automaton cannot be constructed (pumping lemma for regular languages).

2. For every language, define a context free grammar (CFG) for it.

2. Assignment: (20 points)

You are given the following ε -NFA:

QUESTIONS: Convert the ε -NFA into a DFA.

3. Assignment: (25 points)

You are given the following automaton:

QUESTIONS:

Minimize the automaton using the table filling method.

5

4. Assignment: (25 points)

You are given the following context free grammar (CFG), $\Sigma = \{0, 1, 2\}$:

$$\begin{split} S \rightarrow X \mid Y \mid XY \mid YX \\ X \rightarrow 01 \mid 0Y1 \mid \varepsilon \\ Y \rightarrow 2 \mid X2 \\ Z \rightarrow 12 \mid 1XX2 \end{split}$$

QUESTIONS:

Turn this grammar into Chomsky Normal Form (CNF) – write down the complete procedure.