

FACULTY OF ELECTRICAL ENGINEERING **DEPARTMENT OF TELECOMMUNICATION ENGINEERING**

B(E)2M32BTSA - Wireless Technologies

Medium Access Control

Techniques and analysis

Zdeněk Bečvář

Czech Technical University in Prague Faculty of Electrical Engineering Department of Telecommunication Engineering

Outline

Overview of wireless channel access problem

Deterministic medium access

- ► Polling, Token, Reservation-based
- Overview and principle

Non-deterministic medium access

- ► ALOHA
 - Principle and throughput analysis
- ► Carrier Sensing-based approach(es)
 - Methods and their principle

Access to wireless channel

Multiple devices willing to access shared resources

- Channel allocated to devices when they request it
- ▶ If amount of requests exceeds amount of channels → blocking
- ► If more devices access the same channel → collision
- ▶ A need for a mechanism controlling who transmits at what time
 - Efficiency vs overhead
 - Medium Access Control layer (just above physical layer)

Medium access protocols

Deterministic

- ► Outcome of access procedure always the same
 - Any realization provides the same output for same inputs
 - > Does not matter how many times we repeat the procedure, output is always the same
- ► Multiple users access channel → same user always gets channel
 - Under assumption of the same status of the network, channels, requests,...
 - Outcome depends on definition of rules/protocol
- ► "Predictable" outcome
- ► Management required → more complex

Non-deterministic (Random)

- ► Outcome of access procedure is driven by randomness
 - > Every realization of the protocol can give different results
- ► Multiple users access channel → different user can gets channel in each realization
 - Depends on actual value of random variables
- ► "Unpredictable" outcome

Polling

Managed by a controller → no collisions

- ► Centralized controller polls devices and offers them transmission
 - > If data ready, then transmit
 - > If no data ready, poll next station

Usage of communication resources

- ▶ Resources shared between **polling** (T_p) and data **transmission** (T_{TX})
 - \triangleright Plus propagation and processing (T_{pro})
- $\blacktriangleright \quad Efficiency = {}^{T_{TX}}/_{(T_p + T_{pro} + T_{TX})}$

Token passing

Distributed control (no central controller)

- ▶ **Devices pass "token"** (polling request) among themselves
- Device transmits when it has token
- Order in which token is passed token ring
 - > To be defined in advance

Principle similar to polling

- Similar efficiency (depends on propagation and processing)
- ► No central controller required, but still no collisions
- ► Problem in case of "device failure"

Reservation-based bit map protocol

Communication

Reservation

Slotted time split into

- ► Reservation part
 - Devices indicate willingness to communicate (reserve communication resources)
 - Short (e.g. 1 bit) message in reservation slots belonging to device → known order of devices in advance
 - Number of reservation slots = number of devices
- ► Communication part
 - > Data transmitted by devices that indicated willingness to transmit their data

Devices "hear" reservations of others

► Each device can determine its own transmission time → no collisions

Usage of communication resources

- \blacktriangleright Resources shared between reservation (T_r) and data transmission (T_{TX})
 - \triangleright Plus propagation and processing time (T_{pro})
- $Efficiency(time) = {^{T_{TX}}}/{_{(T_r + T_{pro} + T_{TX})}}$

ALOHA protocol

Pure ALOHA

- ▶ Device sends data (frames) whenever it has some
- ► If another device(s) starts transmitting when the device transmits → collision → resend later (after random back-off interval)
- ► Very simple, but low efficiency

Pure ALOHA analysis

Throughput (S) of Pure ALOHA

- Assumptions
 - > Frame duration T for all frames (data) of all devices
 - Poisson frame arrival: $Pr[k] = \frac{G^k e^{-G}}{k!}$
 - k frames generated during a frame time (with duration T)
 in which G frames are expected in average (offered load)

- \triangleright $S = GP_0$
- ► Successful transmission in T: $P_0 = e^{-G}$ (for Poisson distribution of frame arrivals)
- Vulnerable period
 - > Period within which any other transmitted frame inevitably causes collision
 - Collision if another transmission starts within current T and preceding T
 - \rightarrow Vulnerable period for pure ALOHA is $2T \rightarrow$ number of frames is 2G
 - $\triangleright P_0 = e^{-2G}$
- ► Throughout $S = Ge^{-2G}$
- ► Maximum throughput (S_{max})

$$> S' = 0$$

$$ightharpoonup e^{-2G} - 2Ge^{-2G} = 0 \Rightarrow \text{maximum at } \Rightarrow G = 1/2$$

$$ightharpoonup S_{max} = \frac{1}{2}e^{-2\frac{1}{2}} = \frac{1}{2}e^{-1} = 0.184$$

Slotted ALOHA

Discrete time slots for transmission

Duration equal to frame duration T

Each device transmits at the beginning of time slot

► Requires **synchronization** among devices

Slotted ALOHA analysis

Throughput (S) of Slotted ALOHA

- Same assumptions as for pure ALOHA
 - > Poisson frame arrival, all frames with duration T
- \triangleright $S = GP_0$
- Vulnerable period for slotted ALOHA
 - > Collision if another transmission starts in the same slot, i.e., within 1T
 - Vulnerable period for slotted ALOHA is <u>T</u>
 - $\triangleright P_0 = e^{-G}$
- ► Throughout $S = Ge^{-G}$
- ► Maximum throughput (S_{max})
 - > S' = 0
 - $ightharpoonup e^{-G} Ge^{-G} = 0 \Rightarrow \text{maximum at } \Rightarrow G = 1$
 - $> S_{max} = 1e^{-1} = 0.368$

Carrier sensing

Sense (listen) channel before transmit

Reduces collision probability by awareness of the channel wrt ALOHA

- ► Collisions not totally eliminated due to signal propagation delay
- Vulnerable period shortened to only propagation time

Types of Carrier Sensing Multiple Access (CSMA) methods

- ► 1-persistent
- ▶ Non-persistent
- p-persistent

1-persistent CSMA

Principle

- ▶ If busy, then keep continuously sensing and wait until it is idle
- ► If channel is idle, transmit

- ▶ All waiting devices transmits at the same time after channel becomes idle
 - Collision
 - Anytime two devices are willing to start transmission during busy channel
 - Channel propagation problem channel seems idle, but other device already transmits
 - Wait random time and try again

Non-persistent CSMA

Principle

- ▶ If channel is busy, listen again after a random back-off time interval
- ► If channel is idle, transmit

- ► Waiting devices (most likely) sense at different times
 - > Lower collision probability
 - Longer delay wrt 1-persistent
 - Channel may remain idle even if data is ready

p-persistent CSMA

Principle

- ► Slotted time (channel)
- ► If channel is **busy**, **wait** until idle
- ▶ If channel is idle, transmit with probability p
 - \triangleright Defer transmission to next slot with probability q = 1 p

- Waiting devices senses till channel is idle
 - \triangleright If idle transmit only with probability $p \rightarrow$ lower probability of collision than 1-persistent
 - \triangleright Low $p \rightarrow$ low probability of collision, but longer waiting time
 - \rightarrow High $p \rightarrow$ higher probability of collision, shorter waiting ($p = 1 \dots 1$ -persistent)

Continuous sensing by **B & C**

CSMA - collision detection

CSMA/Collision Detection (CD)

- ▶ Based on CSMA, i.e., sense before transmit
- ▶ Collision
 - > **Detection** (e.g., by signal level measurement)
 - > All devices abort transmission to avoid wasting resources
- ▶ Problem in wireless
 - ➤ Half-duplex operation (cannot listen when transmitting)
 - Transmission power >> Received power

CSMA - collision avoidance

CSMA/Collision Avoidance (CA)

- ▶ Sense before transmit
- ► If channel is busy, wait
- ► If channel is idle, wait Inter Frame Space (IFS)
 - Mitigate signal propagation issue (~μs)
- ► If channel is still idle, wait for Contention Window
 - Random duration (in slots) to reduces collision probability
- Send frame
- Wait for ACK
 - In not received within **Time out**, then repeat the procedure

Smak Inc., "Wireless Application protocols" 2012

Limitations of CSMA in wireless

- ► **Hidden node problem** (increase amount of collisions for all CSMAs)
- ► Exposed node problem (reduces bandwidth utilization for all CSMAs)

Hidden node problem

Hidden node

- ▶ Node close to communicating pair, within range of destination node, but out of range of source node, willing to communicate with the destination node
- ► Cannot hear ongoing communication → collision
- ► Example:
 - > A and C in communication range of B
 - A and C can communicate with B
 - > A and C out of communication range of each other
 - A and C cannot communicate with each other
 - > A transmits to B, but C does not hear it (too far from A)
 - \triangleright C sees the channel idle and transmits to $B \rightarrow$ collision

Exposed node problem

Exposed node

- ► Node close to communicating pair within range of source node, but out of range of destination node, willing to communicate with another node
- ► Hear ongoing communication → do not transmit even if it could → wasting bandwidth
- ► Example:
 - > A and C in communication range of B
 - > A and C out of communication range of each other
 - > B transmits to A; and C wants to transmit to D
 - \triangleright C hears B \rightarrow A communication, and thus stays idle
 - \triangleright C cannot reach A (it is too far) so C could transmit to D \rightarrow wasting bandwidth

FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF TELECOMMUNICATION ENGINEERING

Questions?

zdenek.becvar@fel.cvut.cz

