

I Primitives et intégrales :

Primitives

- Une fonction F est une primitive de f si F'(x) = f(x) pour toutes les valeurs de x de l'ensemble de définition.
- Soit a < b dans l'ensemble de définition de f:

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

	Y)
_		7
	Y	

Primitives

Primitive	Fonction	Dérivée
kx	constante=k	0
$a\frac{t^2}{2}$	at	a
$a\frac{t^3}{3} + b\frac{t^2}{2}$	$at^2 + b$	2at
$t\ln(t)-t$	ln(t)	$\frac{1}{t}$
$\frac{1}{a} \times e^{at+b}$	e^{at+b}	ae^{at+b}
pas à connaître	$\ln(u(t))$	$\frac{u'(t)}{u(t)}$
pas à connaître	arctan(u(t))	$\frac{u'(t)}{1+u(t)^2}$
pas à connaître	$e^{u(t)}$	$u'(t)e^{u(t)}$
$\sin(t)$	$\cos(t)$	$-\sin(t)$
$-\cos(t)$	$\sin(t)$	$\cos(t)$
$\frac{1}{an}\sin(ant)$	$\cos(ant)$	$-an\sin(ant)$
$-\frac{1}{an}\cos(ant)$	sin(ant)	ancos(ant)

II Séries de Fourier

$\stackrel{\wedge}{\square}$

Définitions

Dans le cas où f est une fonction périodique de période T, on pose :

- $\omega = \frac{2\pi}{T}$: c'est ce qu'on appelle la pulsation
- $\implies S(f)(t)$, la série de Fourier associée à f:

$$a_0(f) + \sum_{n\geq 1}^{+\infty} a_n(f)\cos(n\omega t) + b_n(f)\sin(n\omega t)$$

f périodique de période T sans parité apparente

Le coefficient a_0 et les coefficients a_n et b_n , pour $n \ge 1$, s'expriment de la façon suivante :

- $\Rightarrow a_0(f) = \frac{1}{T} \int_a^{a+T} f(t) dt$ = valeur moyenne de f sur une période
- \implies pour $n \ge 1$, $a_n(f) = \frac{2}{T} \int_a^{a+T} f(t) \cos(n\omega t) dt$
- \implies pour $n \ge 1$, $b_n(f) = \frac{2}{T} \int_a^{a+T} f(t) \sin(n\omega t) dt$

f périodique de période T paire

Le coefficient a_0 et les coefficients a_n et b_n , pour $n \ge 1$, s'expriment de la façon suivante :

- \implies valeur moyenne de f sur une période= $a_0(f) = \frac{2}{T} \int_0^{\frac{T}{2}} f(t) dt$
- \implies pour $n \ge 1$, $a_n(f) = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega t) dt$
- \implies pour $n \ge 1$, $b_n(f) = 0$

f périodique de période T impaire

Le coefficient a_0 et les coefficients a_n et b_n , pour $n \ge 1$, s'expriment de la façon suivante :

- $\Rightarrow a_0(f) = 0$
- \implies pour $n \ge 1$, $a_n(f) = 0$
- \implies pour $n \ge 1$, $b_n(f) = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega t) dt$

Théorème de Dirichlet

Sous de bonnes conditions, (on ne les vérifiera pas):

$$f(t) = S(f)(t)a_0(f) + \sum_{n\geq 1}^{+\infty} a_n(f)\cos(n\omega t) + b_n(f)\sin(n\omega t)$$

Formule de Parseval

Ce théorème nous permet de calculer la valeur de certaines séries numériques.

Valeur moyenne de
$$f^2$$

= (valeur efficace de f) f^2
= $\frac{1}{T} \int_0^T f(t)^2 dt$
= $a_0(f)^2 + \frac{1}{2} \sum_{n\geq 1}^{+\infty} a_n(f)^2 + b_n(f)^2$

Égalités à connaître

$$\cos(0) = 1$$

$$\bullet \sin(0) = 0$$

$$\cos(2\pi n) = 1$$

$$\bullet \sin(2\pi n) = 0$$

$$\bullet \cos(\pi n) = \begin{cases} 1 & \text{si n est pair} \\ -1 & \text{si n est impair} \end{cases}$$

•
$$\sin\left(\frac{\pi}{2}\right) = 1$$

•
$$\sin\left(-\frac{\pi}{2}\right) = \sin\left(\frac{3\pi}{2}\right) = -1$$

Primitives à connaître

L'application de l'intégration par partie nous permet de trouver des primitives aux fonctions suivantes :

$$t\cos(n\omega t) \longrightarrow \frac{t}{n\omega}\sin(n\omega t) + \frac{1}{n^2\omega^2}\cos(n\omega t)$$

$$t\sin(n\omega t) \longrightarrow -\frac{t}{n\omega}\cos(n\omega t) + \frac{1}{n^2\omega^2}\sin(n\omega t)$$

III Equations différentielles : premier ordre

Définitions

$$a(t)y'(t) + b(t)y(t) = s(t)$$
 (E)
 $a(t)y'(t) + b(t)y(t) = 0$ (E₀)

Ces deux équations ont du sens quand a(t) ne s'annule pas.

(E) est l'équation que l'on cherche à résoudre et (E₀) est appelée équation homogène : on doit d'abord la résoudre pour trouver les solutions de (E).

Solution de (E_0)

Les solutions de (E_0) sont de la forme :

$$Ke^{-}$$
 une primitive de $\frac{b(t)}{a(t)}$

avec K une constante qui dépendra des conditions initiales données par l'énoncé.

Solutions particulières

$$a(t)h'(t) + b(t)h(t)$$

et vérifier que cette somme est égale à s(t).

Il se peut que l'on nous demande de déterminer une solution constante de (E).

Cela arrive quand a(t) = a, b(t) = b et s(t) = s, c'est à dire des constantes. Dans ce cas, on pose $h(t) = \alpha$ donc h'(t) = 0, on sait que :

$$a \times h'(t) + b \times h(t) = s$$

$$\Leftrightarrow a \times 0 + b \times \alpha = s$$

$$\Leftrightarrow b \times \alpha = s$$

$$\Leftrightarrow \alpha = \frac{s}{t}$$

Solutions de (*E*)

Les solutions de (E) sont de la forme :

$$f(t) = Ke^{-\text{ une primitive de } \frac{b(t)}{a(t)}} + h(t)$$

avec K une constante dont la valeur dépend de la condition initiale et h(t) une solution particulière de (E).

Condition initiale

Pour trouver la solution f qui vérifie $f(x_0) = y_0$, on doit remplacer t par x_0 puis déterminer pour quelle valeur de K, on obtient y_0

IV Equation différentielle du second ordre

Définitions

$$ay''(t) + by'(t) + cy(t) = s(t)$$
 (E)
 $ay''(t) + by'(t) + cy(t) = 0$ (E₀)

Ces deux équations ont du sens quand $a \neq 0$.

(E) est l'équation que l'on cherche à résoudre et (E₀) est appelée équation homogène : on doit d'abord la résoudre pour trouver les solutions de (E).

Solution de (E_0)

Pour résoudre (E_0) , on résout l'équation second degré suivante :

$$ar^2 + br + c = 0$$
 (S)

On calcule le discriminant $\Delta = b^2 - 4ac$ et suivant la valeur de ce discriminant les solutions de (E_0) ne seront pas le mêmes :

Si $\Delta > 0$, (S) a deux solutions réelles distinctes :

$$r_1 = \frac{-b + \sqrt{\Delta}}{2a} \qquad \qquad r_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

Les solutions de (E_0) sont de la forme $f_0(t) = Ae^{r_1t} + Be^{r_2t}$ avec $A, B \in \mathbb{R}$. Si $\Delta = 0$, (S) a une solution réelle double :

$$r_0 = -\frac{b}{2a}$$

Les solutions de (E_0) sont de la forme $f_0(t) = (At + B)e^{r_0t}$ avec $A, B \in \mathbb{R}$. Si $\Delta < 0$, (S) a deux solutions complexes conjuguées :

$$r_1 = \frac{-b + i\sqrt{|\Delta|}}{2a} = \alpha + i\beta$$
 $r_2 = \frac{-b - i\sqrt{|\Delta|}}{2a} = \alpha - i\beta$

Les solutions de (E_0) sont de la forme $f_0(t) = e^{\alpha t} (A\cos(\beta t) + B\sin(\beta t))$ avec $A, B \in \mathbb{R}$.

Solutions particulières

 \blacksquare En général, pour vérifier que h(t) est une solution particulière de (E) il faut calculer :

$$ah''(t) + bh'(t) + ch(t)$$

et vérifier que cette somme est égale à s(t).

Il se peut que l'on nous demande de déterminer une solution constante de (E).

Dans ce cas, on pose $h(t) = \alpha$ donc h'(t) = h''(t) = 0, on sait que :

$$a \times h''(t) + b \times h'(t) + ch(t) = s$$

$$\Leftrightarrow a \times 0 + b \times 0 + c \times \alpha = s$$

$$\Leftrightarrow c \times \alpha = s$$

Solutions de (E)

Les solutions de (E) sont de la forme :

$$f(t) = f_0(t) + h(t)$$

avec h(t) une solution particulière de (E) et $f_0(t)$ la solution de (E_0) .

Conditions initiales

Pour trouver la solution f qui vérifie $f(x_0) = y_1$ et $f'(x_0) = y_2$, on doit résoudre un système d'équations dont les inconnues sont les constantes A et B intervenant dans la détermination de la solution de (E_0) .

La première équation se trouve en remplaçant t par x_0 dans f(t) et en écrivant que le résultat est y_1 .

La seconde équation se trouve en dérivant f(t) puis en remplaçant t par x_0 dans f'(t) et en écrivant que le résultat est y_2 .

2TSELT Résumé

Probabilités et variables aléatoires

V.1 Probabilités conditionnelles

Propriétés

Soit A et B deux événements.

$$P_A(B) = \frac{P(A \cap B)}{P(A)} = \text{probabilit\'e de B sachant A}$$

 $P(A \cap B) = P_A(B) \times P(A)$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Deux événements A et B sont indépendants si et seulement si $P(A \cap B) =$ $P(A) \times P(B)$.

Loi uniforme **V.2**

Propriétés

Cette loi intervient dans ces situations de choix aléatoires ou quand le terme "au hasard dans un intervalle ou entre deux valeurs" intervient. Par exemple pour X qui suit la loi uniforme sur [a;b]:

$$P(X \le y) = \frac{y-a}{b-a} = \int_a^y \frac{1}{b-a} dt$$

$$P(X \ge x) = \frac{b-x}{b-a} = \int_x^b \frac{1}{b-a} dt$$

$$P(x \le X \le y) = \frac{y-x}{b-a} = \int_x^y \frac{1}{b-a} dt$$

$$P(X = x) = 0$$

avec $x, y \in [a; b]$.

L'espérance de cette loi est $\frac{a+b}{2}$.

La fonction de densité de cette loi est $f(t) = \frac{1}{b-a}$. La variable X ne pourra prendre ses valeurs qu'entre a et b et la probabilité qu'elle prenne ses valeurs ailleurs sera nulle.

On écrira $X \sim \mathcal{U}([a,b])$.

V.3 Loi exponentielle

Propriétés

Cette loi intervient lors de vieillissements sans mémoire : l'écoulement du temps n'a pas d'influence sur le comportement de la variable. Par exemple, pour X qui suit une loi exponentielle de paramètre λ :

$$P(X \le t) = 1 - e^{-\lambda x} t = \int_0^t \lambda e^{-\lambda x} dx$$

$$P(X \ge t) = e^{-\lambda x} t$$

$$P(X = t) = 0$$

avec $t \ge 0$.

L'espérance de cette loi est $\frac{1}{\lambda}$. La fonction de densité de cette loi est $f(x) = \lambda e^{-\lambda x}$. La variable X ne pourra prendre que des valeurs positives.

V.4 Loi binomiale

Propriétés

La loi binomiale est une loi discrète, contrairement aux trois autres lois étudiées qui sont continues, elle ne peut prendre que des valeurs entières entre 0 et *n*, une valeur entière donnée par l'énoncé.

Pour justifier qu'une variable X suit une loi binomiale, on écrira la phrase suivante :

"La variable X compte le nombre de répétitions d'une succession de n épreuves de Bernouilli(car deux issues), indépendantes (car tirage avec remise) et de même probabilité p".

Les valeurs n et p seront donnés dans l'énoncé.

On écrira $X \sim \mathcal{B}(n, p)$.

Les calculs se feront systématiquement à la calculatrice.

V.5 Loi normale

Propriétés

Pour une loi normale $N(\mu, \sigma)$, on a :

- 1. μ qui est la moyenne
- **2.** σ qui est l'écart-type.
- **3.** $P(X \le \mu) = P(X \ge \mu) = 0.5$.
- **4.** $P(\mu \sigma \le Y \le \mu + \sigma) \approx 0.68$
- **5.** $P(\mu 2\sigma \le Y \le \mu + 2\sigma) \approx 0.95$

Une loi binomiale $\mathcal{B}(n;p)$ peut être approchée par une loi normale de moyenne $n \times p$ et d'écart-type $\sqrt{n \times p \times (1-p)}$.

Il faut bien comprendre la signification du terme approcher dans ce contexte, il faudra prendre en compte la correction de continuité.

Pour $X \sim \mathcal{B}(n, p)$ et $Y \sim N(n \times p; \sqrt{n \times p \times (1 - p)})$:

- P(X = k) ne sera pas approximé par P(Y = k), qui est nul, mais par $P(k 0.5 \le Y \le k + 0.5)$
- $P(i \le X \le j)$ sera approximé par $P(i-0,5 \le Y \le j+0.5)$
- $P(X \ge i)$ sera approximé par $P(Y \ge i 0, 5)$.
- $P(X \le i)$ sera approximé par $P(Y \le i + 0.5)$.

Dans les exercices, on demandera surtout de donner les paramètres de la loi normale par laquelle on pourra approcher la loi binomiale.