A Generalized 2-Layer Weighted Ensemble Classifier with Superior Text Sentiment Classification

Relevance Scores for Mixes of Classifiers on Different Data Types							
	Movie Review	Product Review	SMS	Tweet			
Movie Review	1.000	0.744	0.445	0.218			
Product Review		1.000	0.472	0.238			
SMS			1.000	0.521			
Tweet				1.000			

For every dataset:

- 1. Partition into:
 - 1. Training set
 - 2. Validation set
 - 3. Testing set
- 2. Train two classifiers per dataset
- 3. Calculate relevance on other datasets via difference in accuracy from testing on native data
- 4. Train 2nd layer on outputs of all 1st layer classifiers, data source, and gating function weights (relevance)

Averaged Accuracy, Precision, Recall & F-score

Performance Tested Over a Mixed Collection of All Data Types							
Classifier	Average of Accuracy	Average of Precision	Average of Recall	Average of F-score			
Ensemble Classifier	0.659353913	0.673589125	0.659353913	0.645066061			
Movie-Review Naive Bayes	0.485097001	0.423082888	0.485097001	0.440402281			
Movie-Review SVM	0.486097511	0.423872071	0.486097511	0.442288145			
Product-Review-A Naive Bayes	0.494054465	0.429983151	0.494054465	0.443720837			
Product-Review-A SVM	0.491369807	0.443990459	0.491369807	0.448403621			
Product-Review-B Naive Bayes	0.478876147	0.417827931	0.478876147	0.424040821			
Product-Review-B SVM	0.502604355	0.43459631	0.502604355	0.456248458			
SMS-A Naive Bayes	0.495762987	0.42342102	0.495762987	0.444214278			
SMS-A SVM	0.495217884	0.420759605	0.495217884	0.444902735			
SMS-B Naive Bayes	0.344937988	0.58862545	0.344937988	0.317676573			
SMS-B SVM	0.413597434	0.670582519	0.413597434	0.426082345			
Twitter-A Naive Bayes	0.254437484	0.130884576	0.254437484	0.1680969			
Twitter-A SVM	0.254437484	0.130884576	0.254437484	0.1680969			
Twitter-B Naive Bayes	0.276761012	0.398238841	0.276761012	0.227611442			
Twitter-B SVM	0.297229494	0.534863273	0.297229494	0.277465871			
Grand Total	0.428655664	0.436346786	0.428655664	0.384954485			