

FIG. 1

(a) DMF, RT (b) AcO_2 , 118-130°C (c) i. CHCl_3 , 80°C; ii. cat. NaOH, ethylene glycol, 130°C
 (d) Br_2 , NaOAc, HOAc, 40°C (e) EtOH, 80°C (f) NEt_3 , cat. DMAP, 1,4-dioxane

FIG. 2

a $\text{Et}_2\text{Zn}, \text{AlCl}_3, \text{CH}_2\text{Cl}_2$, -30°C- rt. b R'substituted-o-aminobenzaledehyde, 33% KOH, EtOH. c Br_2 , NaOAc, HOAc. d EtOH, 80°C.

FIG. 3

FIG. 4

- a. P(OPh)_3 , pyridine, 55 °C, 14 h; b. R^{III} substituted aniline, 55 °C, 1h;
 c. TMSI, MeCN, 25 °C, 1 h; d. KI , K_2CO_3 , DMPU; e. EDC, HOBT,
 CH_2Cl_2 .
 $\text{A}^4=\text{C or N}$

FIG. 5

Scheme for the generic synthesis of benzimidazoles

a K_2CO_3 , DMF, 125°C , 16h. b H_2 , Pd/C, rt. c D- Boc-Ala-OH, EDC, HOBr, NMM, DMF.
d HOAc, 90°C . e 4M HCl in dioxane, EtOAc, rt. f NaBH_3CN , MeOH, rt. g Bop-Cl, Et_3N , THF, rt.

FIG. 6

Part A

Part B

FIG. 7

FIG. 8

FIG. 9

FIG. 10

Ref. Nielsen, F.E.; Pedersen, E.B. Tetrahedron, 1982, 38,

FIG. 11

FIG. 12

FIG. 13

FIG. 14

a. $\text{P}(\text{OPh})_3$, pyridine, 80°C ; b. p-Ethoxylaniline, 50°C ; c. TFA, DCM; d. 3-Pyridylcarboxaldehyde, NEt_3 , MgSO_4 , DCM; e. 3-Fluoro-4-trifluoromethylphenylacetic acid, BOP-Cl.

FIG. 15

a. NEt_3 , DCM; b. EtOH, 90°C ; c. BOP-Cl, DMF.

FIG. 16

a. HCl (gas), EtOH; b. NH₃, EtOH; c. TBDMSCl, Imidazole, DMF; d. K₂CO₃, DMF, 50°C; e. HCl (conc.), EtOH; f. MnO₂, DCM.

R = OMe, COOEt, CN, 2-pyridyl

FIG. 17

a. CF₃CH₂CH₂I, K₂CO₃, DMF, 50°C; b. LiOH, H₂O; c. BOP-Cl, NEt₃.

FIG. 18

a. iBuOCOCl, NEt₃, -20°C; b. iBuOCOCl, NEt₃, 0°C; c. TFA, DCM; d. 3-Pyridylcarboxaldehyde, NaBH(OAc)₃; e. 4-Fluoro-3-trifluoromethylphenylacetic acid, BOP-Cl, NEt₃.

FIGURE 19

Table

CXCR3 binding assay IC50 \geq 10 μ M=X; 10 μ M>IC50 \geq 1 μ M=XX; IC50<1 μ M=XXX

Compound	IC50
1.01	XX
1.02	XXX
1.03	XXX
1.04	XX
1.05	XXX
1.06	X
1.07	XXX
1.08	XXX
1.09	X
1.1	XXX
1.11	X
1.12	XX
1.13	XX
1.14	XX
1.15	XX
1.16	XXX
1.17	XXX
1.18	XXX
1.19	XXX
1.2	XX
1.21	XXX
1.22	XXX
1.23	XXX
1.24	XXX
1.25	XXX
1.26	XXX
1.27	XXX
1.28	XX
1.29	XXX
1.3	XXX
1.31	XX
1.32	XXX
1.33	XX
1.34	XXX
1.35	XX
1.36	XX
1.37	XX
1.38	XX
1.39	XXX
1.4	XX
1.42	XX
1.43	XXX
1.44	X
1.45	X

Compound	IC50
1.47	XX
1.48	XXX
1.49	XXX
1.5	XX
1.51	X
1.53	XXX
1.54	XXX
1.55	X
2.01	XXX
2.02	XXX
2.03	XX
2.04	XX
2.05	XXX
2.06	XXX
2.07	XXX
2.08	XXX
2.09	XXX
2.1	XXX
2.11	XXX
2.12	XXX
3.01	XXX
3.02	XXX
3.03	XXX
3.04	XXX
3.05	XXX
3.06	XXX
3.07	XXX
3.08	XXX
3.09	XXX
3.1	XXX
3.11	XXX
3.12	XXX
3.13	XXX
3.14	XXX
3.15	XX
3.16	X

Compound	IC50
4.01	XXX
4.03	X
5.01	X
6.01	XXX
6.02	XX
7.01	XX
9.01	X
9.01	XXX
9.02	XXX
9.03	XXX
9.04	XXX
9.05	XXX
9.06	XXX
9.07	XXX
9.08	XXX
9.09	X
9.10	
10.01	XXX
10.02	XX
10.03	XXX
10.04	XXX
10.05	XXX