Convex Unconstrained and Constrained Optimization

José Dorronsoro Escuela Politécnica Superior Universidad Autónoma de Madrid CONTENTS 2

${\bf Contents}$

1	Con	avex Optimization 3		
	1.1	Convex Set and Function Basics		
		Minimization of Convex Functions		
	1.3	Proximal Gradient		
2	Constrained Optimization 15			
	2.1	Projected Gradient		
	2.2	Lagrangian Optimization		
	2.3	Duality		
	2.4	Support Vector Classification		

1 Convex Optimization

1.1 Convex Set and Function Basics

Learning in Machine Learning

• ML models are usually built by the minimization of a function

$$J(w) = \ell(w) + \alpha R(w),$$

where ℓ is a loss function, R a regularizer and w varies over fixed set C

- When $C = \mathbf{R}^d$ and both ℓ and R functions are differentiable, we have to deal with an **unconstrained**, **differentiable** optimization problem
- When C is a proper subset of \mathbf{R}^d , we are dealing with a **constrained** optimization problem
- Moreover, it is often the case that either ℓ or R, or even both, are not differentiable but then they are assumed to be **convex**

Two Key Problems

• In Lasso we want to minimize

$$e(w,b) = \frac{1}{2n} \sum_{p} (t^{p} - w \cdot x^{p} - b)^{2} + \alpha ||w||_{1}$$
$$= \frac{1}{2} mse(w,b) + \alpha ||w||_{1},$$

- Here $\ell = mse$ is the mean squared error (and hence differentiable) but $R(w) = ||w||_1 = \sum_{i=1}^{d} |w_i|$ is only convex but not differentiable
- In support vector classification (SVC) we want to minimize

$$\min_{w,b} f(w,b) = \frac{1}{2} \|w\|^2 + C \sum_{1}^{n} \xi^p = \frac{1}{2} \|w\|^2 + C\ell(w,b)$$

subject to $y^p(w \cdot x^p + b) \ge 1 - \xi^p, \xi^p \ge 0$

• Here $R(w) = ||w||_2^2$ (and hence differentiable) but the hinge loss ℓ is only convex

Optimization Scenarios

- Therefore, Lasso is an example of an unconstrained, convex minimization problem
- And SVC is an example of a **convex**, **constrained** minimization problem
- We thus need fundamentals and techniques to solve constrained problems with non differentiable but at least convex functions
- Moreover, convex functions are in many senses the **natural context for minimization problems**

- We will thus consider convex optimization first and then unconstrained optimization
- Reference: parts of Chapters 6, 7, 8, 9, 11 and 12 of Introduction to Nonlinear Optimization, by Amir Beck

Basic Definitions I

• We say that S is a **convex set** if for all $x, x' \in S$ and $\lambda \in [0, 1]$,

$$\lambda x + (1 - \lambda)x' \in S$$

- First we recall/clarify basic definitions to be more precise the kind of sets we work with
- The set $\operatorname{int}(S) = \{x \in S : B(x, \delta) \subset S \text{ for some } \delta > 0\}$ is the **interior** of $S \subset \mathbf{R}^d$
 - If S = int(S), we say that S is an **open** set
- The **closure** of S is $cl(S) = \{x : S \cap B(x, \delta) \neq \emptyset \text{ for all } \delta > 0\}$
 - If S = cl(S), we say that S is a **closed** set
- Proposition. S is closed iff for any sequence $\{x_n\} \subset S$ such that $x_n \to x$, then $x \in S$
- The boundary of S is $\partial S = cl(S) int(S)$

Basic Definitions II

- We say that S is **bounded** if $S \subset B(0,R)$ for some R > 0
- ullet We say that S is a **compact** set if it is bounded and closed
- We state next two key results that we will use later on
- **Proposition:** If S is a compact set, any sequence $\{x_n\} \subset S$ has a convergent subsequence $\{x_{n_k}\}$
 - I.e., there are an $\{x_{n_k}\}\subset\{x_n\}$ and $x\in S$ such that $\lim_{k\to\infty}x_{n_k}=x$
- Weierstrass Theorem: If S is a compact set and $f: S \subset \mathbf{R}^d \to \mathbf{R}$ is continuous, then f has a maximum and a minimum on S

The Projection Theorem

• **Theorem.** Let S be a non emtpy convex (nEC) set. Then, for any $y \notin S$, there is a unique $x \in cl(S)$ such that

$$||x - y|| \le ||x' - y||$$
 for any other $x' \in S$

- To prove the existence, choose any $z \in S$ and define $S_z = \{x' \in cl(S) : ||x' y|| \le ||z y||.$
- Then S_z is closed and bounded, and since f(z) = ||z y|| is continuous, Weierstrass' theorem ensures the existence of a minimum point x
- Uniqueness is slightly more involved but essentially elementary

- We will call the unique x the **projection** $P_S(y)$
- An important property of $P_S(y)$ is the following
- Theorem. Let S be a nCE set. Then for any $y \notin S$, $x = P_S(y)$ iff $(y x) \cdot (x' x) \le 0$ for all $x' \in S$

The Supporting Hyperplane

- **Theorem.** Let S be a nEC set and $x \in \partial S$. Then there exists a vector $p \in \mathbf{R}^d$ such that $p \cdot (x' x) \leq 0$ for any $x' \in cl(S)$.
 - Since $x \in \partial S$, there is a sequence $y_k \subset cl(S)^c$ such that $y_k \to x$ and, by the Projection Theorem, if $x_k = P_S(y_k)$ and $p_k = \frac{y_k x_k}{\|y_k x_k\|}$, then $p_k \cdot (x' x_k) \le 0$ for any $x' \in cl(S)$
 - Now, the sequence p_k lies in a compact subset and if $\{p_{k_j}\}$ is a convergent subsequence tends to some p, then, for any $x' \in cl(S)$,

$$p \cdot (x' - x) = \lim_{j} p_{k_j} \cdot (x' - x_{k_j}) \le 0$$

- We will call the hyperplane $H = \{z : p \cdot (z x) = 0\}$ the supporting hyperplane
- We can reformulate the previous theorem as saying that for a closed nEC set and $x \in \partial S$ there is a hyperplane H that supports S at x

Convex Functions

• Let $S \subset \mathbf{R}^d$ a nEC set; a function $f: S \to \mathbf{R}$ is **convex** if for any $x, x' \in S$ and $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)x') \le \lambda f(x) + (1 - \lambda)f(x')$$

• f is strictly convex if for any $x, x' \in S$ with $x \neq x'$ and $\lambda \in (0, 1)$,

$$f(\lambda x + (1 - \lambda)x') < \lambda f(x) + (1 - \lambda)f(x')$$

- Convex functions have many nice properties
- Theorem. Let S be a nEC set and f convex on S. Then f is continuous in int(S)
- We define the **directional derivative** g(x;d) at a point x in the direction d as the limit $\lim_{t\downarrow 0} \frac{f(x+td)-f(x)}{t}$ when it exits
 - IF f is continuously differentiable (i.e, its partials are continuous), then $g(x;d) = \nabla f(x) \cdot d$
- Theorem. Let S be an nEC open set. Then g(x;d) exists for any $x \in S$ and $d \in \mathbf{R}^d$

Differentiable Convex Functions I

• **Definition.** Let S be an nEC open set. We say that $f: S \to \mathbf{R}$ is differentiable at $x \in S$ if there exists a vector $\nabla f(x)$ such that for any $z \in S$

$$f(z) = f(x) + \nabla f(x) \cdot (z - x) + \|z - x\| \alpha(x; z - x)$$
 (1)

such that $\lim_{z\to x} \alpha(x;z-x) = 0$

- Equation (1) is called the **first order Taylor expansion** of f at x
- **Theorem.** Let S be an nEC open set and f convex and continuously differentiable in S. Then, for any $x, x' \in S$ $f(x') \ge f(x) + \nabla f(x) \cdot (x' - x)$
 - Notice that $f(\lambda x' + (1 \lambda)x) = f(x + \lambda(x' x)) \le \lambda f(x') + (1 \lambda)f(x)$ and hence

$$\frac{f(x + \lambda(x' - x)) - f(x)}{\lambda} \le f(x') - f(x)$$

and the right hand side limit when $\lambda \to 0$ is $\nabla f(x) \cdot (x' - x)$

Differentiable Convex Functions II

- For functions of a single variable the previous theorem means that the graph of f is above its tangent at any point x
- The previous is also sufficient and, moreover, if f is strictly convex, the inequality is strict
- **Theorem.** Let S be an nEC open set and f differentiable in S. Then f is convex iff for any $x, x' \in S$,

$$(\nabla f(x) - \nabla f(x')) \cdot (x - x') \ge 0$$

- Just apply the previous theorem at x and x'
- For functions of a single variable this means that the **derivative** f' **is monotonously increasing**
- Because of this we will say that the gradient of a convex function is monotone

Differentiable Convex Functions III

• Theorem. Let $f: U \in \mathbf{R}^d \to \mathbf{R}$ be twice differentiable on the open set U. Then if $B(x,r) \subset U$ and $z \in B(x,r)$, then

$$f(z) = f(x) + \nabla f(x) \cdot (z - x) + \frac{1}{2}(z - x)^t H f(x)(z - x) + o(\|z - x\|^2),$$

with Hf(x) the Hessian of f at x

- Definition. We say that a square matrix Q is semidefinite positive if $w^tQw \ge 0$ for all w. If, moreover, $w^tQw > 0$ for all $w \ne 0$, we say that Q is definite positive
- We relate next convexity to the Hessians being positive definite
- **Theorem.** Let $f: U \in \mathbf{R}^d \to \mathbf{R}$ be twice differentiable on the open convex set U. Then f is convex on U iff Hf(x) is semidefinite positive for any $x \in U$. Moreover, if Hf(x) is definite positive for all $x \in U$, f is strictly convex
 - Notice that $f(x) = x^4$ is strictly convex, but $f''(x) = 12x^2$ and f''(0) = 0

Subgradients and Subdifferentials

• Recall that our goal here are **non-differentiable** convex functions

- In fact, much of the above extends to this case if we look at gradients in an appropriate way
- **Definition.** Let $f: S \to \mathbf{R}$ with S an nEC open set. We say that $\xi \in \mathbf{R}^d$ is a **subgradient** at $x \in S$ if for any $x' \in S$, $f(x') \ge f(x) + \xi \cdot (x' x)$
- **Definition.** The subset $\partial f(x) = \{\xi : \xi \text{ is a subgradient of } f \text{ at } x\}$ is called the **subdif**ferential of such an f at x
- Our next goal is to show that for such an f and $x \in S$, $\partial f(x) \neq \emptyset$
- **Definition.** Let $f: S \to \mathbf{R}$ with S an nEC open set. The **epigraph** of f is the set $epi(f) = \{(x,t): x \in S, t \geq f(x)\}$
- Proposition. Let $f: S \to \mathbf{R}$ with S an nEC open set. Then f is convex iff epi(f) is convex

An Example

• Consider f(x) = |x|

- It is convex and differentiable in all ${\bf R}$ but 0
- At 0 we have $\partial f(0) = [-1, 1]$
- Its epigraph is obviously convex

Existence of Subgradients and Subdifferentials

- **Theorem.** Let $f: S \to \mathbf{R}$ be a convex function on the nEC open set S. Then, for all $x \in int(S)$, $\partial f(x) \neq \emptyset$
 - Since $(x, f(x)) \in \partial \text{epi}(f)$, there is a hyperplane $f(x) + \xi(x' x)$ that supports epi(f) at (x, f(x)). But then $\xi \in \partial f(x)$
- This has a converse result
- **Theorem.** Let $f: S \to \mathbf{R}$ with S an nEC open set. Then, if for all $x \in int(S)$, $\partial f(x) \neq \emptyset$, f is a convex function

- Things are much simpler for differentiable functions
- **Theorem.** Let $f: S \to \mathbf{R}$ be a convex function on the nEC open set S. If f is differentiable at $x \in int(S)$, then $\partial f(x) = \{\nabla f(x)\}$

Moreau-Rockafellar Theorem

• Theorem. Let $f, g: S \to \mathbf{R}$, with S an nEC open set, be two convex functions. Then, as subsets.

$$\partial f(x) + \partial g(x) = \partial (f+g)(x)$$

for any $x \in S$

- Often one allows convex functions to take a $+\infty$ value, although never $-\infty$; in this case there is a more general version of Moreau-Rockafellar
- In this case we can consider any such function initially defined on a subset S as defined on the entire \mathbf{R}^d by setting $f(x) = +\infty$ for $x \notin S$
- For such an f we define $dom(f) = \{x \in \mathbf{R}^d : f(x) < +\infty\}$
- **Theorem.** Let $f, g : \mathbf{R}^d \to (-\infty, +\infty]$ be two convex functions. Then, as subsets, $\partial f(x) + \partial g(x) \subset \partial (f+g)(x)$ for any $x \in S$ Moreover, if $int(dom(f)) \cap int(dom(g)) \neq$, $\partial (f+g)(x) \subset \partial f(x) + \partial g(x)$

1.2 Minimization of Convex Functions

Minima of Convex Functions

- Convex functions may not have a minimum (think of f(x) = x) but when they do, they have nice properties
- Let S be a nEC set, $f: S \to \mathbf{R}$ a convex differentiable function and consider the following problem:

$$\min_{x \in S} f(x) \tag{2}$$

- Theorem. Assume $x^* \in S$ is a local solution of (2). Then x^* is also a global minimum of (2) Moreover, if f is strictly convex, x^* is the unique global minimum
 - We know that for some $\delta > 0$, $f(x) \leq f(z)$ for all $z \in B(x, \delta)$
 - Now if $x' \in S$ verifies f(x') < f(x) and λ is small enough, we can get $z = \lambda x' + (1 \lambda)x \in B(x, \delta) \cap S$, but then

$$f(z) \le \lambda f(x') + (1 - \lambda)f(x) < f(x)$$

Minima and Subgradients

• **Theorem.** Let S be a nEC set and $f: S \to \mathbf{R}$ a convex function. Then, $x^* \in S$ solves (2) iff there is a $\xi \in \partial f(x^*)$ such that $\xi \cdot (x - x^*) \geq 0$ for any other $x \in S$

– The sufficiency is essentially obvious: since f is convex and $\xi \in \partial f(x^*)$, we have for any other $x \in S$,

$$f(x) \ge f(x^*) + \xi \cdot (x - x^*) \ge f(x^*)$$

- Necessity is harder as we have to deal with a general convex S and the minimum x^* may be in its boundary ∂S
- The preceding result simplifies for differentiable functions
- Theorem. Let S be a nEC set and $f: S \to \mathbf{R}$ a convex differentiable function. Then, $x^* \in S$ solves (2) iff $\nabla f(x^*) \cdot (x x^*) \ge 0$ for any other $x \in S$

Fermat's Theorem

- Fermat's Theorem. Let S be an open nEC set and $f: S \to \mathbf{R}$ a convex function. Then, $x^* \in S$ solves (2) iff $0 \in \partial f(x^*)$
 - The sufficiency is again obvious.
 - So is here the necessity: if x^* is a global minimum, for any $x \in S$, $f(x) \ge f(x^*) = f(x^*) + 0 \cdot (x x^*)$ and, thus, $0 \in \partial f(x^*)$
- Again the preceding simplifies for differentiable functions
- Theorem. Let S be an open nEC set and $f: S \to \mathbf{R}$ a convex differentiable function. Then, $x^* \in S$ solves (2) iff $\nabla f(x^*) = 0$

Examples

- Consider again f(x) = |x|;
 - It has a minimum at 0 and $0 \in \partial f(0)$
- A second example is the hinge loss $h(x) = \max\{-x, 0\}$, with minima in the set $M = [0, \infty)$
 - Here $0 \in \partial h(0) = [-1, 0]$ and $\partial h(x) = \{0\}$ if x > 0
- A third example are the ReLU activations $r(x) = \max\{0, x\}$ used in DNNs
 - By the way, DNNs do not bother much with differentiability niceties

Towards the Proximal Operator

- The preceding shows that convex functions are the **natural ones** to study function minimization
- In fact, one can aim to derive **general algorithms** to find their minima, in contrast to the situation for general functions
- The tool to achieve this is the **proximal operator**
- If a convex f has a minimum at x, we have $0 \in \lambda \partial f(x)$ for all $\lambda > 0$ and, thus,

$$0 \in \partial \lambda f(x) \text{ iff } x \in x + \lambda \partial f(x) = (I + \lambda \partial f)(x) \tag{3}$$

• Thus, if we could invert $I + \lambda \partial f$, the minimum will verify $x = (I + \lambda \partial f)^{-1}(x)$

Back to |x|

- The minimum of |x| is 0 and we have $0 \in \partial |\cdot|(0)$
- We have

$$(I + \lambda \partial |\cdot|)(x) = x - \lambda \text{ if } x < 0$$

= $[-\lambda, \lambda] \text{ if } x = 0$
= $x + \lambda \text{ if } x > 0$

• Although not a function, $I + \lambda \partial |\cdot|$ is increasing, and we can invert it by flipping it around the y = x line, to get

$$(I + \lambda \partial |\cdot|)^{-1}(y) = y + \lambda \text{ if } y < -\lambda$$

= 0 if $y = 0$
= $y - \lambda \text{ if } y < \lambda$

• Or just $(I + \lambda \partial |\cdot|)^{-1}(y) = \operatorname{sign}(y)[|y| - \lambda]_+ = \operatorname{soft}_{\lambda}(y)$

Monotone Operators

- We could invert $I + \lambda \partial |\cdot|$ because it is essentially a monotone function
- The set-valued operator $T: \mathbb{R}^d \to 2^{\mathbb{R}^d}$ is called **monotone** if for all $x_1, x_2, \xi_1 \in T(x_1), \xi_2 \in T(x_2)$ we have $(\xi_1 \xi_2) \cdot (x_1 x_2) \geq 0$.
- Theorem. If f is a convex function, ∂f is a monotone operator
 - This follows from the subgradient's definition: take $x_1, x_2, \xi_1 \in T(x_1), \xi_2 \in T(x_2)$; then

$$\begin{array}{lcl} f(x_2) & \geq & f(x_1) + \xi_1 \cdot (x_2 - x_1) \\ f(x_1) & \geq & f(x_2) + \xi_2 \cdot (x_1 - x_2) = f(x_2) - \xi_2 \cdot (x_2 - x_1) \end{array}$$

and just add these two inequalities

Inverting $I + \lambda \partial f$

• While in principle, $(I + \lambda \partial f)^{-1}$ is defined as a set function:

$$(I + \lambda \partial f)^{-1}(x) = \{z : x \in (I + \lambda \partial f)(z)\},\$$

it is actually a standard point function

- Theorem. The set function $(I + \lambda \partial f)^{-1}$ is a single valued function
 - This follows from the monotonicity of ∂f

– If $(I + \lambda \partial f)^{-1}$ is not single valued, there are two $z, z' \in (I + \lambda \partial f)^{-1}(x)$, that is, there are $\xi, \xi' \in \partial f(x)$ such that

$$x = z + \lambda \xi = z' + \lambda \xi' \quad \Rightarrow \quad z - z' + \lambda(\xi - \xi') = 0$$
$$\Rightarrow \quad z - z' = -\lambda(\xi - \xi')$$

– But since ∂f is monotone, we arrive at z = z', as we have

$$0 \le (z - z') \cdot (\xi - \xi') = -\frac{\|z - z'\|^2}{\lambda}$$

Understanding the Proximal Operator

- We call $(I + \partial f)^{-1}(x)$ the **proximal operator** prox_f
- An equivalent and slightly more practical definition is
- Proposition. We have

$$\operatorname{prox}_{f}(x) = \arg\min_{u} \left\{ f(u) + \frac{1}{2} \|u - x\|^{2} \right\}$$
 (4)

- We have that p is the minimum of (4) iff $0 \in p x + \partial f(p)$ iff $x \in (I + \partial f)(p)$ iff $p = (I + \partial f)^{-1}(x)$
- For a C^1 function $f, p = p_{\lambda}(x) = \text{prox}_{\lambda f}(x)$ solves the equation

$$\lambda \nabla f(p) + p - x = 0$$
, that is, $p = x - \lambda \nabla f(p)$

• Thus, in this case, the proximal corresponds to an **implicit** gradient descent with step λ

Fixed Points

- The following theorem re-states much of the preceding
- Theorem. Let S be an open nEC set and $f: S \to \mathbf{R}$ a convex function. Then, $x^* \in S$ solves (2) iff x is a fixed point of $(I + \partial \lambda f)^{-1}$
- This suggests to try to obtain fixed points of an operator T is to start from some x_0 and study the convergence of the iterations $x_{k+1} = T(x_k)$
- We say that the operator T is **contractive** if there is a $\lambda < 1$ such that for all x, x', $||T(x) T(x')|| \le \lambda ||x x'||$
- In other words, T is Lipschitz with a constant $\lambda < 1$

Picard's Theorem

- Picard's Theorem. If T is a contractive operator, the sequence $x_{k+1} = T(x_k)$ converges to the unique fixed point of T
 - The key is that contractivity implies that x_k is a Cauchy sequence

- First is easy to see that x_n is bounded, i.e., $||x_n|| \leq R$ for some R
- For any pair n, k consider $||x_{n+k} x_n||$; we have

$$||x_{n+k} - x_n|| \le \lambda ||x_{n-1+k} - x_{n-1}|| \le \lambda^2 ||x_{n-2+k} - x_{n-2}|| \le \dots$$

 $\le \lambda^n ||x_k - x_0|| \le 2\lambda^n R$

and now is easy to check the Cauchy's sequence definition

- x_n has thus a limit x^* but then $\lim T(x_n) = \lim x_{n+1} = x^*$

Non Expansive Operators

- Unfortunately, $prox_f$ is not contractive
 - It it were so, it would have a unique fixed point, i.e., f would have a unique minimum
 - In fact, if f is strictly convex, $prox_f$ is contractive
- In general the proximal operator satisfies a milder condition
- Definition. An operator T is is firmly non expansive if

$$||T(x_1) - T(x_2)||^2 \le (x_1 - x_2) \cdot (T(x_1) - T(x_2))$$

- It follows from this that $||T(x_1) T(x_2)|| \le ||x_1 x_2||$, i.e., T is Lipschitz with constant 1
- Proposition. The proximal operator is firmly non expansive
- We cannot use Picard's theorem to arrive at a fixed point but we still have
- Proposition. If the convex f has a minimum, the sequence $prox_{\lambda f}(x_k)$ converges to a minimizer of f

The Proximal Algorithm

• Theorem. Let the convex function $f : \mathbb{R}^d \to \mathbb{R}$ have a minimum. Then, for any sequence λ_k such that $\sum_k \lambda_k = \infty$, the sequence

$$x_{k+1} = (I + \lambda_k \partial f)^{-1}(x_k)$$

converges to a minimizer x^* of f

- Thus, if for a convex f we can compute its proximal, we have a **general algorithm to** find a minimizer
- However, computing $prox_f$ for a general convex f is quite **difficult and/or costly**

Computing the Proximal Operator

- In some cases the definition $(I + \partial f)^{-1}(x)$ makes it easy to compute the prox_f operator
- Also, when f(x,y) separates as f(x,y) = g(x) + h(y), its proximal also separates as

$$\operatorname{prox}_{f}(u, v) = (\operatorname{prox}_{g}(u), \operatorname{prox}_{h}(v)) \tag{5}$$

- In general, equation (4) allows the computation of the proximal operator as a minimization problem
- But although amenable to an algorithmic resolution, it is in general still quite a difficult problem

Takeaways on Convex Minimization

- Convex functions only have global minima (if they do)
- Even when non differentiable, they have subgradients
- A convex f has a minimum at x^* on an open convex set iff $0 \in \partial f(x^*)$ and, moreover, iff

$$x^* = (I + \lambda \partial f)^{-1} (x^*) = \operatorname{prox}_{\lambda f} (x^*)$$

- Thus, we can in principle minimize convex functions by finding iteratively fixed points of prox
- In fact, the sequence obtained iterating from an initial point converges to a minimum x^*
- Bu this is practical provided prox can be computed without much work ... which is often not the case

1.3 Proximal Gradient

Minimizing Sums of Convex Functions

• A frequent situation is to solve for f, g both convex with f also C^1 (i.e., continuous with continuous partials), problems of the form

$$\min_{x \in \mathbf{R}^d} F(x) = f(x) + g(x) \tag{6}$$

• We know that x^* solves (6) iff for any $\lambda > 0$

$$0 \in \lambda \partial (f+g)(x^*) = \lambda \nabla f(x^*) + \lambda \partial g(x^*)$$

or, in other words, there is a $\xi \in \partial g(x^*)$ s.t. $0 = \lambda \nabla f(x^*) + \lambda \xi$

• But then we have $0 = \lambda \nabla f(x^*) - x^* + x^* + \lambda \xi \in \lambda \nabla f(x^*) - x^* + (I + \lambda \partial g)(x^*)$, i.e.

$$x^* - \lambda \nabla f(x^*) \in (I + \lambda \partial g)(x^*)$$

• Or, equivalently

$$x^* = (I + \lambda \partial g)^{-1}(x^* - \lambda \nabla f(x^*)) = \operatorname{prox}_{\lambda g}(x^* - \lambda \nabla f(x^*))$$

The Proximal Gradient Method

• This leads to the **Proximal Gradient Method** with iterations of the form

$$x_{k+1} = \operatorname{prox}_{\lambda_k q}(x_k - \lambda_k \nabla f(x_k)) \tag{7}$$

• **Theorem.** Assume that ∇f is Lipschitz with constant L. Then, for any $\lambda < \frac{1}{L}$, the iterations (7) with $\lambda_k = \lambda$ verify $F(x_k) \to F^*$, with F^* the minimum of (6) and, moreover

$$F(x_k) - F^* = O\left(\frac{1}{k}\right)$$

- Notice that for g = 0, (7) reduces to gradient descent, and for f = 0 to proximal minimization
- The Lasso problem is a particular case of the above

The Lasso Problem

• Recall that in Lasso we want to minimize

$$e(w,b) = \frac{1}{2n} \sum_{p} (t^{p} - w \cdot x^{p} - b)^{2} + \alpha ||w||_{1}$$
$$= \frac{1}{2} mse(w,b) + \alpha ||w||_{1},$$

with $mse\ C^1$ and $\|\cdot\|_1$ convex but not differentiable at 0

- We will assume x, y to be centered to ensure b = 0 and then work just with e(w)
- Then, w^* is optimal for e iff $0 \in \frac{\lambda}{2} \nabla mse(w^*) + \lambda \alpha \partial \|\cdot\|_1(w^*)$ for all $\lambda > 0$ or, equivalently,

$$w^* - \frac{\lambda}{2} \nabla mse(w^*) \in (I + \lambda \alpha \partial \|\cdot\|_1)(w^*)$$

• That is, $w^* = (I + \lambda \alpha \partial \| \cdot \|_1)^{-1} (w^* - \frac{\lambda}{2} \nabla mse(w^*))$

Solving Lasso

• Now, if X is the $n \times d$ sample matrix and Y the $n \times 1$ target vector, we have

$$mse(w) = \frac{1}{n} ||Xw - Y||^2 = \frac{1}{n} (w^t X^t - Y^t)(Xw - Y)$$
$$= \frac{1}{n} (w^t X^t X w - 2w^t X^t Y + Y^t Y)$$

• The gradient is thus

$$G = \nabla mse(w) = \frac{2}{n}(X^tXw - X^tY) = \frac{2}{n}X^t(Xw - Y),$$

and, componentwise, $G_j = \frac{2}{n} \sum_{1}^{n} x_j^p (x^p \cdot w - y^p), \ 1 \le j \le d$

• Now $||w||_1 = \sum_{i=1}^{d} |w_i|$ separates as a sum of single valued functions and by (5),

$$\left[\operatorname{prox}_{\lambda\|\cdot\|}(z)\right]_{i} = \operatorname{sign}(z_{i})\left[|z_{i}| - \lambda\right]_{+} = \operatorname{soft}_{\lambda}(z_{i}), \ 1 \le i \le d$$

Proximal Gradient for Lasso

• Putting all this together, we have

$$w_{k+1} = \mathbf{soft}_{\lambda\alpha} \left(w^k - \frac{\lambda}{n} X^t (X w^k - Y) \right)$$

with $\mathbf{soft}_{\mu}(z)_i = soft_{\mu}(z_i)$

- This is known as the ISTA algorithm and has a convergence rate of O(1/k)
- If known, one chooses $\lambda = \frac{1}{L}$, with L the Lipschitz constant of $\nabla mse(w)$
- However, for the Lasso specific case, the GLMNet algorithm is more efficient

Lasso Variants

- Lasso's advantage: thresholding forces non relevant coefficients to zero
 - It can be used for feature selection
- However, Lasso models often underperform ridge regression
- Solution: Elastic Nets, which minimizes

$$e_{EN}(w) = mse(w) + \frac{\alpha_2}{2} ||w||^2 + \alpha_1 ||w||_1$$

• ISTA's iteration is now

$$w_{k+1} = \operatorname{soft}_{\frac{\alpha_1}{L}} \left(w_k - \frac{1}{L} \left(\nabla m s e(w_k) + \alpha_2 w_k \right) \right)$$

- Other, related algorithms are group Lasso, fused Lasso, as well as logistic regression variants for classification
- They are all linear models
 - Also often used for feature selection
 - But weaker than MLPs or SVMs

2 Constrained Optimization

2.1 Projected Gradient

Projected Gradient

• For f a C^1 function and a closed nEC S, consider the problem

$$\min_{x \in C} f(x) \tag{8}$$

• Defining i(x) = 0 if $x \in C$ and $+\infty$ if $x \notin C$, we can write (8) as

$$\min_{x \in \mathbf{R}^d} f(x) + i(x) \tag{9}$$

• Thus, if f is convex, x^* solves (9) iff for all $\lambda > 0$

$$x^* = \text{prox}_{\lambda_{IG}} (x^* - \lambda \nabla f(x^*))$$

- We need to compute prox_{iC}
- Proposition. We have $prox_{\lambda_{I_C}}(x) = P_C(x)$
 - Just use the characterization (4) of the proximal operator
- Proposition. If f is convex, x^* solves (9) iff

$$x^* = P_C(x^* - \lambda \nabla f(x^*))$$

Projected Gradient

• The previous results lead us to the **Projected Gradient** algorithm to solve (8)

```
Algorithm 1: Projected Gradient

1 function projected_gradient(\epsilon, x_0) is
2 | k=0
3 | for k=1,2,\ldots do
4 | choose a step \lambda_k
x_{k+1}=P_C(x_k-\lambda_k\nabla f(x_k))
6 | if ||x_{k+1}-x_k|| \leq \epsilon then
7 | return x_{k+1}
end
9 | end
10 end
```

• It has the convergence properties of the Proximal Gradient algorithm

Have We Finished?

- Yes if we could compute projections over general convex sets
 - But this is easy only for particular sets
- If $C = B(x, \delta)$ and $z \notin B(x, \delta)$, $P_C(z) = x + \delta \frac{z x}{\|z x\|}$
 - This is relevant for the constrained formulation of Ridge regression

$$\min_{w,b} mse(w,b) \text{ s.t. } ||w||_2 \le \rho$$

- If C is the positive orthant $C = \{x : x_i \ge 0, 1 \le i \le d\}, P_C(x)_i = \max\{0, x_i\}$
 - This is relevant for homogeneous support vector classification
- But it is much harder to compute the projection on the 1-norm ball
 - This is needed for constrained Lasso

$$\min_{w,b} mse(w,b) \text{ s.t. } ||w||_1 \le \rho$$

- Trying to solve Lasso this way won't be easier than by ISTA
- The same is true for P_C on a general convex C and we need new ideas to solve (8) in practice

2.2 Lagrangian Optimization

Basics of Lagrange Multipliers

• For $f, g: \mathbb{R}^2 \to \mathbb{R}$ consider the following minimization problem

$$\min f(x, y) \text{ s. t. } h(x, y) = 0$$
 (10)

• Assuming the **implicit function theorem** holds, we can find a function $y = \phi(x)$ s.t. $h(x, \phi(x)) = 0$ and, thus, we can write

$$f(x,y) = f(x,\phi(x)) = \Psi(x)$$

• At a minimum x^* with $y^* = \phi(x^*)$ we thus have

$$0 = \Psi'(x^*) = \frac{\partial f}{\partial x}(x^*, y^*) + \frac{\partial f}{\partial y}(x^*, y^*)\phi'(x^*)$$

$$\tag{11}$$

• But since $h(x, \phi(x)) = 0$, we also have

$$0 = \frac{\partial h}{\partial x}(x^*, y^*) + \frac{\partial h}{\partial y}(x^*, y^*)\phi'(x^*) \Rightarrow \phi'(x^*) = -\frac{\frac{\partial h}{\partial x}(x^*, y^*)}{\frac{\partial h}{\partial y}(x^*, y^*)}$$
(12)

Basics of Lagrange Multipliers II

• Putting together (11) and (12) we arrive at

$$0 = \frac{\partial f}{\partial x}(x^*, y^*) \frac{\partial h}{\partial y}(x^*, y^*) - \frac{\partial f}{\partial y}(x^*, y^*) \frac{\partial h}{\partial x}(x^*, y^*)$$

- That is, at (x^*, y^*) , $\nabla f \perp \left(\frac{\partial h}{\partial y}, -\frac{\partial h}{\partial x}\right)$ and, since $\left(\frac{\partial h}{\partial y}, -\frac{\partial h}{\partial x}\right) \perp \nabla h$, we have $\nabla f \parallel \nabla h$, i.e. $\nabla f(x^*, y^*) = -\mu^* \nabla h(x^*, y^*)$ for some $\lambda^* \neq 0$
- Thus, for the Lagrangian

$$L(x, y, \lambda) = f(x, y) + \mu h(x, y),$$

we have that at a minimum (x^*, y^*) there is a $\mu^* \neq 0$ s.t.

$$\nabla L(x^*, y^*, \lambda^*) = \nabla f(x^*, y^*) + \mu^* \nabla h(x^*, y^*) = 0$$
(13)

• Thus a way to solve (10) is to define its Lagrangian and solve simultaneously (13) and the constraint h(x,y) = 0

Basics of Lagrange Multipliers III

- Graphically we have
- We consider next how these ideas are applied in a general context

Inequality Constrained Minimization

• Consider the following minimization problem

$$\min f(x) \text{ s. t. } g_i(x) \le 0, \ i = 1, \dots, m$$
 (14)

with f and the g_i being C^1 functions

- An x that verifies the constraints is said to be **feasible**
- A feasible x^* is a **local minimum** of (14) if there is a $\delta > 0$ s.t. $f(x^*) \leq f(x)$ for all $x \in B(x^*, \delta) \cap \{g_i \leq 0, i = 1, \dots, m\}$
- Proposition. Assume x^* is a local minimum of (14) and let $A(x^*) = \{i : g_i(x^*) = 0\}$ be the set of active constraints. Then, there is no $d \in \mathbf{R}^d$ s.t. $\nabla f(x^*) \cdot d < 0$ and $\nabla g_i(x^*) \cdot d < 0$ for all $i \in A(x^*)$
 - If such a **descent direction** d exists, we will have for t small, $f(x^* + td) < f(x^*)$, $g_i(x^* + td) < g_i(x^*) \le 0$; hence, x^* won't be a minimum

The Fritz John Conditions

• Theorem. Fritz John's Conditions. Let x^* be a local minimum of (14). There is a λ_0 and $\lambda_i \geq 0$, $1 \leq i \leq m$, not all 0, s.t.

$$\lambda_0 \nabla f(x^*) + \sum_{1}^{m} \lambda_i \nabla g_i(x^*) = 0,$$

$$\lambda_i g_i(x^*) = 0$$
 (15)

- Notice that if $i \notin A(x^*)$, $g_i(x^*) < 0$ and, hence, $\lambda_i = 0$
- It may be the case that, in the above, $\lambda_0 = 0$, which then implies that the $\nabla g_i(x^*)$ would be linearly dependent
 - But this may very well happen when x^* is not a local minimimum

- And we wouldn't get any information about f
- Thus, to exploit the above conditions to locate a global minimum, we must enforce $\lambda_0 \neq 0$
- The simplest way is to ensure this is that the $\nabla g_i(x^*)$ are linearly independent

The KKT Conditions

• Theorem. KKT Conditions. Let x^* be a local minimum of (14) and assume that $\{\nabla g_i(x^*): i \in A(x^*)\}$ are linearly independent. Then, there are $\lambda_i \geq 0$, $1 \leq i \leq m$, not all 0 s.t.

$$\nabla f(x^*) + \sum_{1}^{m} \lambda_i \nabla g_i(x^*) = 0,$$
$$\lambda_i g_i(x^*) = 0$$

- Just notice that the Fritz John conditions (15) must hold, but if $\lambda_0 = 0$, the $\{\nabla g_i(x^*)\}$ would be linearly dependent.
- Thus, we must have $\lambda_0 \neq 0$ and we just have to divide by λ_0 to arrive at (16)

General Constrained Minimization

• Consider the following minimization problem

min
$$f(x)$$
 s. t. $g_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$ (16)

with f and the g_i , h_j being C^1 functions

• Theorem. KKT Conditions. Let x^* be a local minimum of (16) and assume that

$$\{\nabla g_i(x^*) : i \in A(x^*)\} \cup \{\nabla h_j(x^*) : 1 \le j \le m\}$$

are linearly independent. Then, there are $\lambda_i \geq 0$, $1 \leq i \leq m$, not all 0, and μ_1, \ldots, μ_p s.t.

$$\nabla f(x^*) + \sum_{1}^{m} \lambda_i \nabla g_i(x^*) + \sum_{1}^{p} \mu_j \nabla h_j(x^*) = 0,$$

$$\lambda_i g_i(x^*) = 0$$
(17)

Regular and KKT Points

- To lighten the statements we define regular and KKT points
- We say that a feasible point x is **regular** if

$$\{\nabla g_i(x) : i \in A(x)\} \cup \{\nabla h_j(x) : 1 \le j \le m\}$$

are linearly independent

• We say that a feasible point x is a **KKT point** if conditions (17) hold at x

- We can thus rewrite the previous theorem as stating that, under its conditions, if a minimum point x^* is regular, then it is a KKT point
- The KKT conditions give us a set of equations that a minimum must verify
 - We can try to solve them and check then that the solution is indeed a minimum

The Convex Case

- Until now we have just seen **necessary** conditions; in the convex case they are also **sufficient**
- **Theorem.** If in Problem (16) we assume f and the g_i to be convex and the h_j to be affine, then a regular KKT point x^* is an optimum of Problem (16)
- This is the situation in several key problems in ML
 - The constrained versions of Ridge and Lasso, with Lagrangians

$$L(w, \lambda) = \frac{1}{2} mse(w) + \frac{\lambda}{2} (\|w\|_{2}^{2} - \rho)$$

$$L(w, \lambda) = \frac{1}{2} mse(w) + \lambda (\|w\|_{1} - \rho)$$

- * Notice that dropping the ρ term we get their standard unconstrained versions
- The primal and dual versions of support vector classification and regression

The Slater Conditions

- Checking the regularity of a given point may be hard in general
- Slater's conditions simplify this for the convex case
- We say that a point x verifies the **Slater conditions** for problems (14) and (16) if $g_i(x) < 0$ for all i = 1, ..., m
- Theorem. Let x^* be a solution for Problem (14) with f and g_i being C^1 and the g_i also convex and assume the problem has a Slater point. Then x^* is a KKT point
- Theorem. Let x^* be a solution for Problem (16) where we assume the f and g_i C^1 to be C^1 and convex, and the h_j affine. Then, if the problem has a Slater point, a KKT point x^* is also an optimum

2.3 Duality

The Lagrangian and the Dual Problem

• Consider the following minimization problem

min
$$f(x)$$
 s. t. $g_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$

• We define for $\lambda_i \geq 0, \, \mu_j, \, 1 \leq i \leq m, \, 1 \leq j \leq p, \, \text{the Lagrangian as}$

$$L(x, \lambda, \mu) = f(x) + \sum_{i} \lambda_{i} g_{i}(x) + \sum_{j} \mu_{j} h_{j}(x)$$

- Notice that at a feasible x we have $L(x, \lambda, \mu) \leq f(x)$
- We define the dual function with domain dom $(q) = \mathbf{R}_{+}^{m} \times \mathbf{R}^{p}$ as

$$q(\lambda, \mu) = \min_{x} L(x, \lambda, \mu)$$

• Then the dual problem is

$$\max_{(\lambda,\mu)\in\text{dom }(q)} q(\lambda,\mu) \tag{18}$$

Weak Duality

- Proposition. dom(q) is a convex set and q a concave function
 - Hence, -q is convex
- Theorem. Weak Duality If f^* and q^* are optimal values for problems (16) and (18), respectively, then $q^* \leq f^*$
 - Notice that for any $(\lambda, \mu) \in \text{dom }(q)$

$$\begin{array}{lcl} q(\lambda,\mu) & = & \displaystyle \min_{x} L(x,\lambda,\mu) \leq \min_{x \text{ feasible}} L(x,\lambda,\mu) \\ & \leq & \displaystyle \min_{x \text{ feasible}} f(x) = f^* \end{array}$$

and, hence, $q^* < f^*$

Strong Duality

- In general, there is no guarantee that $f^* = q^*$; however, this is so in the convex case
- Theorem. Strong Duality Consider problem (14) where f and the g_i are C^1 and convex and there is a Slater point. Then, if f^* is the optimal value of (14), (18) has an optimal value q^* and $q^* = f^*$
- Theorem. Strong Duality II Consider problem (16) where f and the g_i are C^1 and convex, and the h_j are affine. Then, if there is a Slater point and f^* is the optimal value of (16), (18) has an optimal value q^* and $q^* = f^*$

And So What?

- Notice that the dual constraints will be in most cases much simpler that the primal ones
- If we can compute the dual function and strong duality holds, it will be worth our while
 - Try first to solve the dual problem (18) to get optimum λ^*, μ^*
 - Try then to get a primal optimum solution x^* and its value f^* from the dual solution
- Usually, once we have got the dual solutions λ^*, μ^* , we may try to **exploit the KKT** conditions to derive from them a primal solution x^*
- This is precisely the approach followed for **support vector machines**

2.4 Support Vector Classification

Revisiting the Classification Problem

• Basic problem: binary classification of a sample

$$S = \{(x^p, y^p), 1 \le p \le N\}$$

with d-dimensional x^p patterns and $y^p = \pm 1$

• We assume that S is **linearly separable**: for some w, b

$$w \cdot x^p + b > 0 \text{ if } y^p = 1;$$

 $w \cdot x^p + b < 0 \text{ if } y^p = -1$

- More concisely, we want $y^p(w \cdot x^p + b) > 0$
- How can we find a pair w, b so that the model **generalizes well**?

Margins and Generalization

• Intuitively, we will have good generalization if (w, b) has a large margin

• But, how can we ensure a maximum margin?

Distance to a Hyperplane

- Recall that given the hyperplane $\pi: w \cdot x + b = 0$, w is orthogonal to the surface defined by π
- If $x_0 \in \pi$, we compute the distance $d(x,\pi)$ of a point x to π projecting on w the vector $\overline{x_0x}$, i.e.

$$d(x,\pi) = \frac{|w \cdot \overline{x_0} \overrightarrow{x}|}{\|w\|} = \frac{|w \cdot x - w \cdot x_0|}{\|w\|} = \frac{|w \cdot x + b|}{\|w\|}$$

for $w \cdot x_0 + b = 0$; i.e. $w \cdot x_0 = -b$

- The absolute values compensate for the orientation of w
- When the origin is in π (homogeneous π), the distance is

$$d(x,\pi) = \frac{|w \cdot x|}{\|w\|}$$

Learning and Margins

- If we assume w "points" to the positive patterns, we have $y^p(w \cdot x^p + b) = |w \cdot x^p + b|$
- The margin $\gamma = \gamma(w)$ is precisely the minimum distance between the sample S and π , i.e.,

$$\gamma = m(w, b, S) = \min_{p} d(x^{p}, \pi) = \min_{p} \frac{y^{p}(w \cdot x^{p} + b)}{\|w\|}$$

- Notice that $(\lambda w, \lambda b)$ give the same margin than (w, b); we can thus normalize (w, b) as we see fit
- For instance, taking ||w|| = 1 we have

$$\gamma(w) = \min_{p} \frac{y^p(w \cdot x^p + b)}{\|w\|} = \min_{p} y^p(w \cdot x^p + b)$$

Hard Margin SVC

• But we will work with the following normalization of w, b

$$\min_{p} y^{p}(w \cdot x^{p} + b) = 1$$

- Since S is finite, we will have $y^{p_0}(w \cdot x^{p_0} + b) = 1$ for some p_0
- For a pair w, b so normalized we then have

$$m(w,b) = \min_{p} \left\{ \frac{y^{p}(w \cdot x^{p} + b)}{\|w\|} \right\} = \frac{y^{p_{0}}(w \cdot x^{p_{0}} + b)}{\|w\|} = \frac{1}{\|w\|}$$

- Thus, we work with these w and maximize $1/\|w\|$, i.e., **minimize** $\|w\|$ or, the simpler $\frac{1}{2}\|w\|^2$
- We arrive to the hard margin SVC primal problem is

$$\min_{w,b} \frac{1}{2} ||w||^2 \text{ s.t. } y^p (w \cdot x^p + b) \ge 1$$

Cover's Theorem

- SVMs are simple and elegant, but also linear
- But, will linear SVM classifiers powerful enough?
- Or, alternatively, are linearly solvable classification problems frequent enough?

- Answer: No, because of Cover's Theorem
- The patterns in a size N sample S with dimension d are said to be in **general position** if no d+1 points are in a (d-1)-dimensional hyperplane
- Then, if $N \le d+1$, all 2-class problems on S are linearly separable and if N > d+1, the number of linearly separable samples in general position is

$$2\sum_{i=0}^{d} \binom{N-1}{i}$$

Points in General Position

• Consider d = 2, 3 = d + 1 points and a 1 = d - 1-dimensional hyperplane

Points Not in General Position

• Consider now d=2 and 3=d+1 points **not** on a 1=d-1-dimensional hyperplane (i.e., a line)

Are Linearly Separable Problems Frequent?

- Our current SVM classifiers will be useful if linearly separable 2–class problems are frequent enough
- It is relatively easy to show that for $N \gg d+1$

$$2\sum_{i=0}^d \binom{N-1}{i} \leq 2(d+1)\binom{N-1}{d} \leq 2\frac{d+1}{d!}N^d \lesssim N^d$$

- On the other hand, the total number of two–class problems over a sample of size N is 2^N
- And $\frac{N^d}{2^N} \to 0$ very fast when $N \to \infty$
- Since in many practical problems we will have $N\gg d$, essentially all such 2-class problems won't be linearly separable
- And our current SVMs will be useless on them

Slacks

- What can we do?
- First step: make room for non linearly separable problems

Linear SVMs for Non Linear Probems

- Thus we no longer require perfect classification but allow for slacks or even errors in some patterns
- More precisely, we relax the previous requirement $y^p(w \cdot x^p + b) \ge 1$ to

$$y^p(w \cdot x^p + b) \ge 1 - \xi_p$$

where we impose a new constraint $\xi_p \geq 0$

- Notice that if $\xi_p \geq 1$, x^p will not be correctly classfied
- Thus, we allow for defective clasification but we also **penalize** it

L_k Penalty SVMs

• New primal problem: for $K \ge 1$ consider the cost function

$$\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + \frac{C}{K} \sum \xi_p^K$$

now subject to $y^p(w \cdot x^p + b) \ge 1 - \xi_p, \, \xi_p \ge 0$

- Simplest choice K=2: L_2 (i.e., square penalty) SVMs
 - Easy to work out but usually worse models that are not sparse
- Usual (and best) choice K = 1
 - We will concentrate on it
- Notice that if $C \to \infty$ we recover the previous slack-free approach

The L_1 Primal Problem

• The soft margin or L_1 SVC primal problem is

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum \xi_p$$

subject to $y^p(w \cdot x^p + b) \ge 1 - \xi_p, \, \xi_p \ge 0$

- Notice that the loss and the constraints are convex and a Slater point will exists
- Thus w^*, b^*, ξ^* will be a minimum iff it is a KKT point
- However, we will pursue duality to solve it
- The L_1 Lagrangian is here

$$L(w, b, \xi, \alpha, \beta) = \frac{1}{2} ||w||^2 + C \sum_{p} \xi_p - \sum_{p} \alpha_p \left[y^p (w \cdot x^p + b) - 1 + \xi_p \right] - \sum_{p} \beta_p \xi_p$$

with $\alpha_p, \beta_p \geq 0$

Reorganizing the Lagrangian

• We reorganize the L_1 Lagrangian as

$$L(w, b, \xi, \alpha, \beta) = w \cdot \left(\frac{1}{2}w - \sum \alpha_p y^p \ x^p\right) + \sum \xi_p (C - \alpha_p - \beta_p) - b \sum \alpha_p y^p + \sum \alpha_p$$

- To get the dual function we solve $\nabla_w L=0, \ \frac{\partial L}{\partial b}=0, \ \frac{\partial L}{\partial \xi_p}=0$
- The w and b partials yield

$$w = \sum \alpha_p y^p x^p, \ \sum \alpha_p y^p = 0$$

- The b term drops from the Laplacian and the w term simplifies
- Moreover, once we get the optimal α^* , we can also get the **optimal** $w^* = \sum_p \alpha_p^* y^p x^p$

The L_1 SVM Dual

• From $\frac{\partial L}{\partial \xi_p} = C - \alpha_p - \beta_p = 0$ we see that

$$C = \alpha_p + \beta_p,$$

- Substituting things back into the Lagrangian we arrive at the L_1 dual function

$$\Theta(\alpha, \beta) = \sum_{p} \alpha_{p} - \frac{1}{2}w \cdot \sum_{p} \alpha_{p}y^{p}x^{p}$$
$$= \sum_{p} \alpha_{p} - \frac{1}{2}\alpha^{\tau}Q\alpha$$

subject to $\sum_p \alpha_p y^p = 0, \alpha_p + \beta_p = C$, plus $\alpha_p \ge 0, \beta_p \ge 0$ (and both $\le C$)

Simplifying the L_1 Dual

- In fact, we can drop β
 - Notice that we already have that $\Theta(\alpha, \beta) = \Theta(\alpha)$
 - It is also clear that the constraints on α, β can be reduced to $0 \le \alpha_p \le C$
- Thus, we get a much simpler version of the dual problem

$$\min_{\alpha} \ \frac{1}{2} \alpha^{\tau} Q \alpha - \sum_{p} \alpha_{p}$$

subject to $\sum \alpha_p y^p = 0$, $0 \le \alpha^p \le C$, $1 \le p \le N$

• This is a constrained minimization problem with simple **box** constraints and a harder linear one $\sum \alpha_p y^p = 0$

Relevant and Irrelevant Samples

• Recall our previous picture

• We can expect some patterns to influence the final model but others to be irrelevant

KKT Conditions for L_1 SVMs

• The complementary slackness conditions are now

$$\begin{array}{rcl} \alpha_p^* \left[y^p (w^* \cdot x^p + b^*) - 1 + \xi_p^* \right] & = & 0 \\ \beta_p^* \xi_p^* & = & 0 \end{array}$$

- And also recall that $\alpha_p^* + \beta_p^* = C$
- Now, if $\xi_p^* > 0$, then $\beta_p^* = 0$ and, therefore, $\alpha_p^* = C$
 - We say that such an x^p is **at bound**
- Also, if $0 < \alpha_p^* < C$, then $\beta_p^* > 0$ and $\xi_p^* = 0$
 - Thus, if $0 < \alpha_p^* < C$, $y^p(w^* \cdot x^p + b^*) = 1$ and x^p lies in one of the **support** hyperplanes $w^* \cdot x + b^* = \pm 1$
 - We can obtain $b^* = y^p w^* \cdot x^p$ from any supporting x^p
 - If needed, we can then derive $\xi_p^* > 0$, since then $\alpha_p^* = C$ and

$$\xi_p^* = 1 - y^p (w^* \cdot x^p + b^*)$$

Projected Gradient Descent

- For homogeneous SVMs without the b term, the linear constraint disappears
- We can then solve the homogeneous dual by projected gradient descent
- The gradient of Θ is just

$$\nabla\Theta = Q\alpha - \mathbf{1}$$

with 1 the all ones vector and we can solve it by projected gradient descent

- Projected (i.e., clipped) descent:
 - At step t update first α^t to α' as $\alpha'_p = \alpha^t_p \rho\left((Q\alpha^t)_p 1\right)$ for an appropriate step ρ
 - And then clip α' as $\alpha_p^{t+1} = \min\{\max\{\alpha_p', 0\}, C\}$
- But usually homogeneous SVMs give poorer results
 - And if sample size N is large, Q will be huge and each step very costly

The SMO Algorithm

- The simplest way to handle the equality constraint is
 - Start with an α^0 that verifies it
 - Update α^t to $\alpha^{t+1} = \alpha^t + \rho_t d^t$ with a direction d^t that also verifies it
 - Then $\sum_{p} \alpha_p^{t+1} y^p = \sum_{p} \alpha_p^t y^p + \rho_t \sum_{p} d_p^t y^p = 0$
- Simplest choice: select L_t, U_t so that $d^t = y^{L_t} e_{L_t} y^{U_t} e_{U_t}$ is a maximal **descent direction**
- Since $\nabla\Theta(\alpha^t) \cdot d^t = y^{L_t}\nabla\Theta(\alpha^t)_{L_t} y^{U_t}\nabla\Theta(\alpha^t)_{U_t}$, the straightforward choice is

$$L_t = \arg\min_p y^p \nabla \Theta(\alpha^t)_p, \quad U_t = \arg\min_q y^q \nabla \Theta(\alpha^t)_q$$

- This is the basis of the **Sequential Minimal Optimization** (SMO), the standard algorithm for the general case
 - Effective but also quite costly

Good Option, But ...

- L_1 SVMs are (relatively) sparse, i.e., the number of non–zero multipliers should be $\ll N$
- The bound $\alpha_p^* = C$ for $\xi_p^* > 0$ limits the effect of not correctly classified patterns
- And usually L_1 SVMs are much better than, say, L_2 SVMs
- But still they are linear ...
- We must thus somehow introduce some kind of non-linear processing for SVMs to be truly effective
 - To do so, one observes that SVCs and SMO only require to compute dot products
 - This and the **Kernel Trick** leads to the very powerful kernel SVMs
 - Although probably not for big data problems as their training cost is $\Omega(N^2)$