Introduction to Theory of Deep Learning Lecture 3: Mickey Mouse Proof for Double Descent

Background: Expected Trace of Inverse Wishart distributed matrices

Expected Inverse Wishart: A Tutorial Proof via Sherman–Morrison (with n > d + 1)

Model and goal. Let $g_1, \ldots, g_n \in \mathbb{R}^d$ be i.i.d. $\mathcal{N}(0, \Sigma)$ and define the Wishart matrix

$$W = \sum_{i=1}^{n} g_i g_i^T \sim W_d(n, \Sigma),$$

with n > d+1 so that W is invertible a.s. and $\mathbb{E}[W^{-1}]$ exists. We will prove, in a short and modular way, that

$$\mathbb{E}[W^{-1}] = \frac{1}{n - d - 1} \, \Sigma^{-1}.$$

We organize the proof into small lemmas and emphasize the distributional input and expectation step.

Step 1: Reduction to identity covariance

Lemma 1 (Linear change of variables). Let $h_i := \Sigma^{-1/2} g_i \sim \mathcal{N}(0, I_d)$ and $W_0 := \sum_{i=1}^n h_i h_i^T \sim W_d(n, I_d)$. Then

$$W = \Sigma^{1/2} W_0 \Sigma^{1/2}, \qquad W^{-1} = \Sigma^{-1/2} W_0^{-1} \Sigma^{-1/2}.$$

Consequently,

$$\mathbb{E}[W^{-1}] \; = \; \Sigma^{-1/2} \, \mathbb{E}[W_0^{-1}] \, \Sigma^{-1/2}.$$

Hence it suffices to prove $\mathbb{E}[W_0^{-1}] = \frac{1}{n-d-1}I_d$ for the identity case. From now on assume $\Sigma = I_d$.

Step 2: Two linear-algebra ingredients

Lemma 2 (Sherman–Morrison, invertible base). Let $A \in \mathbb{R}^{m \times m}$ be invertible and $u, v \in \mathbb{R}^m$. If $1 + v^T A^{-1} u \neq 0$, then $A + uv^T$ is invertible and

$$(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1 + v^TA^{-1}u}.$$

Proof. Set $c := v^T A^{-1} u$ and define $B := A^{-1} - \frac{A^{-1} u v^T A^{-1}}{1+c}$. Then

$$(A + uv^T)B = AB + (uv^T)B = \left(I - \frac{uv^TA^{-1}}{1+c}\right) + \left(uv^TA^{-1} - \frac{c}{1+c}uv^TA^{-1}\right) = I.$$

Similarly $B(A + uv^T) = I$. Hence $B = (A + uv^T)^{-1}$.

Lemma 3 (Leave-one-out base is invertible a.s.). Fix $\ell \in \{1, ..., n\}$ and let $W_{(-\ell)} := \sum_{i \neq \ell} g_i g_i^T$. If n > d + 1, then $W_{(-\ell)}$ is invertible almost surely.

Proof. Let $G \in \mathbb{R}^{d \times n}$ have columns g_1, \ldots, g_n and $G_{(-\ell)} \in \mathbb{R}^{d \times (n-1)}$ be G with the ℓ -th column removed. Since $n-1 \geq d$, a random Gaussian $G_{(-\ell)}$ has full row rank d a.s. (the event of rank < d is a zero set of polynomial equations in the entries). Thus $W_{(-\ell)} = G_{(-\ell)}G_{(-\ell)}^T$ is positive definite and invertible a.s.

Remark 1 (Simple Sherman–Morrison update, no subspace decomposition). By Lemmas 2 and 3, for each ℓ we can write

$$W = W_{(-\ell)} + g_{\ell}g_{\ell}^{T}, \qquad W^{-1} = W_{(-\ell)}^{-1} - \frac{W_{(-\ell)}^{-1}g_{\ell}g_{\ell}^{T}W_{(-\ell)}^{-1}}{1 + g_{\ell}^{T}W_{(-\ell)}^{-1}g_{\ell}}.$$

Pedagogically, when n > d+1 the span of $\{g_i : i \neq \ell\}$ is already \mathbb{R}^d a.s., so no column-space orthogonal complements are needed to justify this update.

Step 3: Isotropy \Rightarrow diagonal expectation

Lemma 4 (Diagonal form by sign symmetry). For $\Sigma = I_d$, $\mathbb{E}[W^{-1}]$ is a scalar multiple of the identity:

$$\mathbb{E}[W^{-1}] = \alpha I_d, \qquad \alpha = \frac{1}{d} \mathbb{E}[\operatorname{Tr}(W^{-1})].$$

Proof. Let $D = \operatorname{diag}(1, \dots, 1, -1, 1, \dots, 1)$ flip any fixed coordinate. Since $g_i \stackrel{d}{=} Dg_i$, we have $W \stackrel{d}{=} DWD$ and hence $\mathbb{E}[W^{-1}] = \mathbb{E}[DW^{-1}D] = D\mathbb{E}[W^{-1}]D$. Comparing off-diagonals gives $\mathbb{E}[W^{-1}]_{ij} = 0$ for $i \neq j$. By coordinate permutation symmetry, all diagonal entries are equal. \square

Step 4: Trace as a sum of column norms of G^{\dagger}

Let $G \in \mathbb{R}^{d \times n}$ be the data matrix with columns g_i , so $W = GG^T$. Since n > d, G has rank d a.s., its Moore–Penrose pseudoinverse is $G^{\dagger} = G^T(GG^T)^{-1} = G^TW^{-1} \in \mathbb{R}^{n \times d}$, and

$$W^{-1} = (GG^T)^{-1} = G^{\dagger}(G^{\dagger})^T, \qquad \text{Tr}(W^{-1}) = \|G^{\dagger}\|_F^2.$$

Writing the columns of G^{\dagger} as $c_1, \ldots, c_d \in \mathbb{R}^n$,

$$\operatorname{Tr}(W^{-1}) = \sum_{j=1}^{d} \|c_j\|_2^2.$$

Lemma 5 (Geometric formula for c_j). Let $z_1, \ldots, z_d \in \mathbb{R}^n$ denote the rows of G. Then $GG^{\dagger} = I_d$ implies $z_k \cdot c_j = \delta_{kj}$. If Q_j is the orthogonal projector onto $\left(\operatorname{span}\{z_k : k \neq j\}\right)^{\perp}$, then

$$c_j = \frac{Q_j z_j}{\|Q_j z_j\|_2^2}, \qquad \|c_j\|_2^2 = \frac{1}{\|Q_j z_j\|_2^2}.$$

Proof. The relations $z_k \cdot c_j = \delta_{kj}$ say exactly that c_j is orthogonal to all z_k $(k \neq j)$ and has unit inner product with z_j . Thus c_j lies on the ray spanned by $Q_j z_j$, say $c_j = \theta_j Q_j z_j$. The constraint $1 = c_j^T z_j = \theta_j \|Q_j z_j\|_2^2$ gives $\theta_j = \|Q_j z_j\|_2^{-2}$ and the claims follow.

Step 5: Distributional input (tutorial style)

Lemma 6 (Projected Gaussian is chi-square in the projected norm). Fix j. Condition on the sigma-field generated by $\{z_k : k \neq j\}$. Then Q_j is a deterministic orthogonal projector onto a subspace of dimension

$$r = n - (d - 1) = n - d + 1.$$

Since $z_j \sim \mathcal{N}(0, I_n)$ is independent of $\{z_k : k \neq j\}$, the projected vector $Q_j z_j$ is distributed as a standard Gaussian in that r-dimensional subspace. In particular,

$$||Q_j z_j||_2^2 \sim \chi_{n-d+1}^2$$
.

Tutorial proof. (i) Dimension count.) Almost surely the d-1 rows $\{z_k : k \neq j\}$ are linearly independent (Gaussian rows are in general position), so their span has dimension d-1, hence its orthogonal complement has dimension r=n-(d-1)=n-d+1.

(ii) Rotational invariance.) Conditional on $\{z_k : k \neq j\}$, the matrix Q_j is fixed. Because $z_j \sim \mathcal{N}(0, I_n)$ is independent and spherically symmetric, $Q_j z_j$ is Gaussian with mean 0 and covariance $Q_j I_n Q_j = Q_j$. Thus in any orthonormal basis adapted to range (Q_j) , the coordinates of $Q_j z_j$ are i.i.d. $\mathcal{N}(0, 1)$ on that r-dimensional subspace and 0 elsewhere.

(iii) Norm square.) Therefore $||Q_j z_j||_2^2$ is the sum of squares of r independent standard normals, i.e. χ_r^2 with r = n - d + 1.

Proposition 1 (Mean of the reciprocal chi-square). If $Y \sim \chi^2_{\nu}$ with $\nu > 2$, then

$$\mathbb{E}\Big[\frac{1}{Y}\Big] = \frac{1}{\nu - 2}.$$

Quick integral proof. The density is $f(y) = \frac{1}{2^{\nu/2}\Gamma(\nu/2)} y^{\nu/2-1} e^{-y/2}, y > 0$. Then

$$\mathbb{E}\Big[\frac{1}{Y}\Big] = \frac{1}{2^{\nu/2}\Gamma(\nu/2)} \int_0^\infty y^{\nu/2-2} e^{-y/2} \, dy = \frac{1}{2^{\nu/2}\Gamma(\nu/2)} \cdot 2^{\nu/2-1} \Gamma\Big(\frac{\nu}{2} - 1\Big) = \frac{1}{2} \cdot \frac{\Gamma(\nu/2 - 1)}{\Gamma(\nu/2)}.$$

Using $\Gamma(x+1) = x \Gamma(x)$ with $x = \nu/2 - 1$ gives $\Gamma(\nu/2) = (\nu/2 - 1)\Gamma(\nu/2 - 1)$ and hence

$$\mathbb{E}\Big[\frac{1}{Y}\Big] = \frac{1}{2} \cdot \frac{1}{\nu/2 - 1} = \frac{1}{\nu - 2}.$$

Step 6: Put it together

Theorem 1 (Expected inverse, identity case). Assume $\Sigma = I_d$ and n > d + 1. Then

$$\mathbb{E}[W^{-1}] = \frac{1}{n - d - 1} I_d.$$

Proof. By Lemma 4, $\mathbb{E}[W^{-1}] = \alpha I_d$ with $\alpha = \frac{1}{d}\mathbb{E}[\text{Tr}(W^{-1})]$. From Step 4 and Lemma 5,

$$\operatorname{Tr}(W^{-1}) = \sum_{j=1}^{d} \|c_j\|_2^2 = \sum_{j=1}^{d} \frac{1}{\|Q_j z_j\|_2^2}.$$

By Lemma 6, $||Q_j z_j||_2^2 \sim \chi_{n-d+1}^2$; hence by Proposition 1 (valid since n-d+1>2),

$$\mathbb{E}[\|c_j\|_2^2] = \mathbb{E}\left[\frac{1}{\|Q_j z_j\|_2^2}\right] = \frac{1}{n - d - 1}.$$

This value is the same for each j, so

$$\mathbb{E}[\text{Tr}(W^{-1})] = \sum_{j=1}^{d} \mathbb{E}[\|c_j\|_2^2] = d \cdot \frac{1}{n-d-1}, \qquad \alpha = \frac{1}{d} \mathbb{E}[\text{Tr}(W^{-1})] = \frac{1}{n-d-1}.$$

Thus
$$\mathbb{E}[W^{-1}] = \frac{1}{n-d-1}I_d$$
.

Theorem 2 (Expected inverse, general covariance). For $W \sim W_d(n, \Sigma)$ with n > d + 1,

$$\mathbb{E}[W^{-1}] = \frac{1}{n - d - 1} \, \Sigma^{-1}.$$

Proof. Combine Lemma 1 with Theorem 1.

Remark 2. The identity $\text{Tr}(W^{-1}) = \|G^{\dagger}\|_F^2 = \sum_{j=1}^d \|c_j\|_2^2$ together with $c_j = (Q_j z_j)/\|Q_j z_j\|_2^2$ is a version of the so-called negative second moment identity.