Hemanth Kumar V C 1BM18CS037

ML_LAB

PROGRAM_4

```
import math
import csv
def load_csv(filename):
  lines=csv.reader(open(filename,"r"))
  dataset = list(lines)
  headers = dataset.pop(0)
  return dataset, headers
class Node:
  def __init__(self,attribute):
     self.attribute=attribute
     self.children=[]
     self.answer=""
def subtables(data,col,delete):
  dic={}
  coldata=[row[col] for row in data]
  attr=list(set(coldata))
```

```
counts=[0]*len(attr)
  r=len(data)
  c=len(data[0])
  for x in range(len(attr)):
     for y in range(r):
       if data[y][col]==attr[x]:
          counts[x]+=1
  for x in range(len(attr)):
     dic[attr[x]]=[[0 for i in range(c)] for j in range(counts[x])]
     pos=0
     for y in range(r):
       if data[y][col]==attr[x]:
          if delete:
             del data[y][col]
          dic[attr[x]][pos]=data[y]
          pos+=1
  return attr,dic
def entropy(S):
  attr=list(set(S))
  if len(attr)==1:
     return 0
```

```
counts=[0,0]
  for i in range(2):
     counts[i]=sum([1 for x in S if attr[i]==x])/(len(S)*1.0)
  sums=0
  for cnt in counts:
     sums+=-1*cnt*math.log(cnt,2)
  return sums
def compute_gain(data,col):
  attr,dic = subtables(data,col,delete=False)
  total_size=len(data)
  entropies=[0]*len(attr)
  ratio=[0]*len(attr)
  total_entropy=entropy([row[-1] for row in data])
  for x in range(len(attr)):
     ratio[x]=len(dic[attr[x]])/(total_size*1.0)
     entropies[x]=entropy([row[-1] for row in dic[attr[x]]])
     total_entropy-=ratio[x]*entropies[x]
  return total_entropy
def build_tree(data,features):
```

```
lastcol=[row[-1] for row in data]
  if(len(set(lastcol)))==1:
     node=Node("")
     node.answer=lastcol[0]
     return node
  n=len(data[0])-1
  gains=[0]*n
  for col in range(n):
     gains[col]=compute_gain(data,col)
  split=gains.index(max(gains))
  node=Node(features[split])
  fea = features[:split]+features[split+1:]
  attr,dic=subtables(data,split,delete=True)
  for x in range(len(attr)):
     child=build_tree(dic[attr[x]],fea)
     node.children.append((attr[x],child))
  return node
def print_tree(node,level):
  if node.answer!="":
```

```
print(" "*level,node.answer)
     return
  print(" "*level,node.attribute)
  for value,n in node.children:
     print(" "*(level+1),value)
     print_tree(n,level+2)
def classify(node,x_test,features):
  if node.answer!="":
     print(node.answer)
     return
  pos=features.index(node.attribute)
  for value, n in node.children:
     if x_test[pos]==value:
       classify(n,x_test,features)
"'Main program'"
dataset,features=load_csv("testdata.csv")
node1=build_tree(dataset,features)
print("The decision tree for the given dataset using ID3 algorithm is")
print_tree(node1,0)
```

```
testdata,features=load_csv("test.csv")
```

```
print()
```

for xtest in testdata:

```
print("The test instance:",xtest)
print("The label for test instance:",end=" ")
classify(node1,xtest,features)
```

