

Multi-agent decision making: preference reasoning and voting theory

Outline

- Preferences
- Several kinds of preferences
- Preferences in multi-agent decision making
- Voting theory (social choice)
- In multi-agent AI scenarios:
 - Missing and imprecise preferences
 - Computational concerns
 - Large set of candidates
 - Candidate set with a combinatorial structure

Preferences

- Preferences are ubiquitous in everyday decision making
 - Essential ingredients in every reasoning tool
- Preferences are **orderings** over possible options
 - Options: candidates, car, computers, books, movies ...

- Preferences can model levels of acceptance, or costs
 - Preferences are tolerant constraints
 - Constraints are strict requirements that must be satisfied

Preferences

- If all constraints, possibly
 - no solution, or
 - too many of them, all apparently equally good
- Some problems are **naturally modelled** with preferences
 - I don't like meat, and I prefer fish to cheese
- Constraints and preferences may be present in the same problem
 - Ex. Timetabling, ...

University timetable

Several kinds of preferences

Unconditional

I prefer taking the bus

Conditional

I prefer taking the bus if it's raining

Multi-agent

■ I like blue, my husband likes green, what color for the new car?

Several kinds of preferences

Quantitative

- Numbers, or ordered set of objects
 - My preference for ice cream is 0.8, and for cake is 0.6

Qualitative

- Pairwise comparisons
 - Ice cream is <u>better than</u> cake

Two main ways to model compactly preferences

- Several kinds of preferences
- Two compact ways to model <u>preferences</u>
 - Soft constraints

for modeling quantitative and unconditional preferences

■ Ex., My preference for ice cream is 0.8, and for cake is 0.6

CP-nets

for modeling qualitative and conditional preferences

■ Ex., Red wine is <u>better than</u> white wine <u>if there is meat</u>

Multi-agent decision making: preference reasoning and voting theory

II PART

Outline

- Preferences
- Several kinds of preferences
- Preferences in multi-agent decision making
- Voting theory (social choice)
- In multi-agent AI scenarios:
 - Missing and imprecise preferences
 - Computational concerns
 - Large set of candidates
 - Candidate set with a combinatorial structure

Preferences for <u>collective decision making</u> in multi-agent systems

- Several **agents**
- **Common set of possible decisions**
- Each agent has its <u>preferences</u> over the possible decisions
- Goal: to choose <u>one</u> of the decisions, based on the preferences of the agents
 - or a set of decisions
 - or <u>a ranking</u> over the decisions
- AI scenarios add:
 - Imprecision
 - Uncertainty
 - Complexity concerns
 - Combinatorial structure of the decisions

Applications

Doodle

- Several time slots under consideration
- Participants accept or reject each time slot
 - Very <u>simple way</u> to express preferences over time slots
 - Very <u>little information</u> communicated to the system
- Collective choice: a <u>single</u> time slot
 - The one with <u>most acceptance votes</u> from participants
- Other applications
 - Group recommender systems
 - Meta-search engine

How to compute a collective decision?

- Let the agents vote by expressing their preferences over the possible decisions
- Aggregate the votes to get a single decision

- Let's look at voting theory
 - Agents = Voters
 - Decisions = Candidates
 - Preferences
 - Chosen decision = winner

Voting theory (Social choice)

- **Voters**
- **Candidates**
- Each voter expresses its preferences over the candidates
- Goal: to choose <u>one</u> candidate (the winner), based on the voters' preferences
 - Also <u>many</u> candidates, or <u>ranking</u> over candidates
- Voting Rules (functions) to achieve the goal

Some voting rules

- Plurality
 - Voting: each voter provides the most preferred decision
 - Selection: the decision preferred by the largest number of voters
- Majority: like plurality, over 2 options

Plurality

- **Voting**: the most preferred decision
- **Selection**: the decision preferred by the largest number of agents
- **Example:**
 - 6 voters
 - 3 candidates:

Profile

Winner

Another voting rule

- Approval (m options)
 - **Voting:**each voter approves any number of options
 - Selection: option with most votes

Voting rule used in Doodle

Another voting rule

■ Borda

- Voting: <u>each voter</u> provides a ranking over all options
- Score of an option for a voter: number of options that it dominates
- Selection: option with greatest sum of scores

Borda

Some desirable properties

■ Unanimity (efficiency)

■ If all voters have the same top choice, it is selected

■ Non-dictatorship

- There is no dictator
- Dictator: voter such that his top choice always wins, regardless of the votes of other voters

■ Non-manipulability

■ There is no incentive for agents to misrepresent the preferences

Two classical impossibility results

- Arrow's theorem (1951)
 - Totally ordered preferences
 - It is **impossible** to find a **voting rule** with some desirable properties including
 - unanimity
 - non-dictatoriality

■ Gibbard-Sattherwaite's theorem (1973)

- Totally ordered preferences
- it is impossible to have a reasonable voting rule that is
 - non-dictatorial
 - non-manipulable
- These impossibility results hold also when we allow partially ordered preferences

Multi-agent decision making: preference reasoning and voting theory

III PART

Voting theory and multi-agent systems

- Voting theory (social choice)
 - Voting rules
 - Desirable properties
 - Impossibility results

- In multi-agent AI scenarios, we usually have
 - Incomparability
 - Uncertainty, vagueness, preference elicitation
 - Computational concerns
 - Large set of decisions (candidates) w.r.t. number of agents (voters)
 - Combinatorial structure for the set of decisions (candidates)

Incomparability

- Preferences do not always induce a total order over the options
- Preferences may induce a partial order where some options are incomparable

- Some options are <u>naturally</u> incomparable
 - Eg., it may be **easy** to compare two apartments
 - but it may be difficult to compare an apartment and a house, thus we say they are incomparable
- An agent may have <u>several</u> possibly conflicting preference criteria he wants to follow
 - Eg., a cheap and slow car is incomparable w.r.t. an expensive and fast car
- Many AI formalisms to model preferences allow for partial orders (eg., soft constraints)

Uncertainty, vagueness

- Missing preferences
 - Too costly to compute them
 - Privacy concerns
 - Ongoing elicitation process

- Imprecise preferences
 - Preferences coming from sensor data
 - Too costly to compute the exact preference
 - Estimates

Aim in AI: Find compact preference <u>formalisms</u> and <u>solving techniques to model</u> and <u>solve</u> problems with missing or imprecise preferences

Preference elicitation

■ Some **preferences** may be missing

■ Time consuming, costly, difficult, to elicit all preferences

■ We want to terminate preferences elicitation as soon as a winner fixed

Computational concerns

- We would like to avoid very costly ways to
 - Model agents' preferences
 - Compute the winner
 - Reason with the agents' preferences

On the other hand, we need a computational barrier against bad behaviors (such as manipulation)

Bartholdi, Tovey, Trick. The computational difficulty of manipulating an election. Social Choice and Welfare 1989

Large set of candidates

■ In **AI** scenarios, usually

the set of decisions (candidates) is <u>much larger</u> than the set of agents expressing preferences over the decisions

■ Eg., many web pages, few search engines

Combinatorial structure for the set of decisions

- The set of decisions may have a combinatorial structure
- **Dinner example:**
 - Three friends need to decide what to cook for dinner
 - **4 items** (pasta, main, dessert, drink)
 - 5 options for each item
 - 5⁴ = **625** possible dinners
 - It is **unfeasible** providing a **preference ordering over 625** dinners
- In general: Cartesian product of several variable domains
 - Variables = items of the menu
 - **Domain** of each variable = **5 options**
- Goal: Find compact preference formalism to express agents' preferences

Formalisms to model preferences compactly

- Preference ordering over a large set of decisions
 - → need to model them compactly
 - Otherwise too much space and time to handle such preferences

- Two examples:
 - Soft constraint formalism
 - **CP-net formalism**

Multi-agent decision making: preference reasoning and voting theory

IV PART

Soft constraint formalism

- Soft constraint formalism (the c-semiring framework)
 - The agent expresses his preferences over <u>partial</u> assignments of the decision variables
 - From these preferences → the preference ordering over the solution space is generated
 - Any ordering can be obtained!

Formalisms to model compactly preferences

- Soft constraints model quantitative and unconditional preferences
 - Quantitative → a level of preference for each assignment of the variables in a soft constraint
 - It is difficult to elicitate quantitative preferences from user
- Moreover, many problems need statements like
 - "I like white wine if there is fish" (conditional)
 - "white wine is better than red wine" (qualitative)

■ **CP-net**: formalism to <u>compactly</u> represent qualitative and conditional preferences

CP-net (conditional preference network)

- Variables $\{X_1, ..., X_n\}$ with domains
- For each variable, a total order over its values
- <u>Indipendent</u> variable:

$$\mathbf{X} = \mathbf{v}_1 > \mathbf{X} = \mathbf{v}_2 > ... > \mathbf{X} = \mathbf{v}_k$$

- <u>Dependent</u> variable: a total order over its values for each combination of values of some other variables
 - \blacksquare Y=a, Z=b: X= $v_1 > X=v_2 > ... > X=v_k$
 - X depends on Y and Z (parents of X)
- Graphically: directed graph over $X_1, ..., X_n$
- Possibly cyclic

CP-net

- \blacksquare A CP-net over variables $V = \{X1,...,Xn\}$ is
 - a directed graph G over X1,...,Xn
 - whose nodes are annotated with conditional preference tables CPT(Xi) for each $Xi \in V$.
 - Each conditional preference table CPT(Xi) associates
 a total order > with each instantiation u of Xi's parents Pa(Xi) = U.

CP-net: an example

Variables

- MainCourse
- Wine
- Fruit

Domains

- $D_{MainCourse} = \{meat, fish\}$
- $D_{Wine} = \{white, red\}$
- D_{Fruit} ={peaches,strawberries}

Independent variables

- MainCourse
- Fruit

Dependent variable

Wine

➤ Boutilier, Brafman, Domshlak, Hoos, Poole. CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements. J. Artif. Intell. Res. (JAIR) 21: 135-191 (2004)

CP-net semantics

■ Worsening flip: changing the value of a variable in a way that is less preferred in some statement

Example:

- An outcome O₁ is preferred to O₂ iff there is a <u>sequence</u> of <u>worsening flips</u> from O₁ to O₂
- Optimal outcome: if no other outcome is preferred

A CP-net induces an ordering over solutions

Optimal solution

Finding an optimal solution in acyclic CPnets is easy!

Forward sweep algorithm

- First consider independent variables

 Assign them their most preferred values
- Then consider dependent variables, that directly depend on the assigned variables
 - Assign them their most preferred values that are consistent with the values previously assigned to their parents
- And so on until we assign a value to all the variables

Finding an optimal solution in acyclic CP-nets is easy!

Optimal solution

fish, white, peaches

Soft constraints vs. CP-nets

- Different expressive power
- Different computational complexity for reasoning with them

Preference orderings

Find an optimal decision

Compare two decisions

Check if a decision is optimal

Soft CSPs	Tree-like soft CSPs	CP-nets	Acyclic CP-nets
all	all	some	some
difficult	easy	difficult	easy
easy	easy	difficult	difficult
difficult	easy	easy	easy

Multi-agent decision making: preference reasoning and voting theory

V PART

Sequential voting

- Several voters
- Decisions are made by several issues
- Main idea: vote separately on each issue, but do so sequentially
- This gives voters the opportunity to make their vote <u>for one</u> <u>issue</u> <u>depending</u> on the <u>decisions on previous issues</u>

- In AI: sequential voting when agents express their preferences
 - via soft constraints
 - via CP-nets

Sequential voting with soft constraints

■ How to apply sequential voting when agents express their preferences via soft constraint problems?

- Assume the agents have
 - the same constraint graph
 - but different preference values

Dinner example, three agents, fuzzy constraints

The sequential voting approach

- For each variable
 - Compute an explicit profile over the variable domain
 - 2. Apply a voting rule to this explicit profile \rightarrow the rule will return a specific value that will be assigned to this variable
 - 3. Add the information about the selected variable value

Similar approach used for CP-nets in [Lang, Xia, 2009]

Agent 1

Agent 2

Agent 3

Agent 1

Agent 2

Agent 3

Agent 1

Agent 2

Agent 3

