# Disclosure risk

| Medical D | Oata Re | $\operatorname{leased}$ | as A | Anony | mous |
|-----------|---------|-------------------------|------|-------|------|
|-----------|---------|-------------------------|------|-------|------|

| SSN | Name | Ethnicity     | Date Of Birth | Sex    | ZIP   | Marital Status | Problem             |
|-----|------|---------------|---------------|--------|-------|----------------|---------------------|
|     |      | asian         | 09/27/64      | female | 02139 | divorced       | hypertension        |
|     |      | asian         | 09/30/64      | female | 02139 | divorced       | obesity             |
|     |      | asian         | 04/18/64      | male   | 02139 | married        | chest pain          |
|     |      | asian         | 04/15/64      | male   | 02139 | married        | obesity             |
|     |      | black         | 03/13/63      | male   | 02138 | married        | hypertension        |
|     |      | black         | 03/18/63      | male   | 02138 | married        | shortness of breath |
|     |      | black         | 09/13/64      | female | 02141 | married        | shortness of breath |
|     |      | black         | 09/07/64      | female | 02141 | married        | obesity             |
|     |      | white         | 05/14/61      | male   | 02138 | single         | chest pain          |
|     |      | $_{ m white}$ | 05/08/61      | male   | 02138 | $_{ m single}$ | obesity             |
|     |      | white         | 09/15/61      | female | 02142 | widow          | shortness of breath |

## Terms

| Medical | Data | Released | as | Anony | vmous |
|---------|------|----------|----|-------|-------|
|---------|------|----------|----|-------|-------|

| SSN | Name | Ethnicity | Date Of Birth | Sex          | ZIP   | Marital Status | Problem             |
|-----|------|-----------|---------------|--------------|-------|----------------|---------------------|
|     |      | asian     | 09/27/64      | female       | 02139 | divorced       | hypertension        |
|     |      | asian     | 09/30/64      | female       | 02139 | divorced       | obesity             |
|     |      | asian     | 04/18/64      | male         | 02139 | married        | chest pain          |
|     |      | asian     | 04/15/64      | male         | 02139 | married        | obesity             |
|     |      | black     | 03/13/63      | male         | 02138 | married        | hypertension        |
|     |      | black     | 03/18/63      | male         | 02138 | married        | shortness of breath |
|     |      | black     | 09/13/64      | female       | 02141 | married        | shortness of breath |
|     |      | black     | 09/07/64      | female       | 02141 | married        | obesity             |
|     |      | white     | 05/14/61      | $_{ m male}$ | 02138 | single         | chest pain          |
|     |      | white     | 05/08/61      | male         | 02138 | single         | obesity             |
|     |      | white     | 09/15/61      | female       | 02142 | widow          | shortness of breath |

**Attributes:** Let T is a table with a finite number of tuples. The finite set of attributes of T are {A1,...,An}

## Identifiers

|     | Medical Data Released as Anonymous |               |               |        |       |                |                     |  |  |
|-----|------------------------------------|---------------|---------------|--------|-------|----------------|---------------------|--|--|
| SSN | Name                               | Ethnicity     | Date Of Birth | Sex    | ZIP   | Marital Status | Problem             |  |  |
|     |                                    | asian         | 09/27/64      | female | 02139 | divorced       | hypertension        |  |  |
|     |                                    | asian         | 09/30/64      | female | 02139 | divorced       | obesity             |  |  |
|     |                                    | asian         | 04/18/64      | male   | 02139 | married        | chest pain          |  |  |
|     |                                    | asian         | 04/15/64      | male   | 02139 | married        | obesity             |  |  |
|     |                                    | black         | 03/13/63      | male   | 02138 | married        | hypertension        |  |  |
|     |                                    | black         | 03/18/63      | male   | 02138 | married        | shortness of breath |  |  |
|     |                                    | black         | 09/13/64      | female | 02141 | married        | shortness of breath |  |  |
|     |                                    | black         | 09/07/64      | female | 02141 | married        | obesity             |  |  |
|     |                                    | white         | 05/14/61      | male   | 02138 | single         | chest pain          |  |  |
|     |                                    | $_{ m white}$ | 05/08/61      | male   | 02138 | $_{ m single}$ | obesity             |  |  |
|     |                                    | white         | 09/15/61      | female | 02142 | widow          | shortness of breath |  |  |

Given a population of entities U, an entity-specific table T(A1,...,An),  $f_c: U \rightarrow T$  and  $f_g: T \rightarrow U'$ , where  $U \subseteq U'$ . A set of attributes  $\mathcal{A}$  in Table  $\mathcal{T}$  is an identifier if  $\mathcal{T}[\mathcal{A}]$  can uniquely map an entity.

## Quasi-identifiers

| Medical Data Released as Anonymous |      |           |               |        |       |                |                     |  |  |
|------------------------------------|------|-----------|---------------|--------|-------|----------------|---------------------|--|--|
| SSN                                | Name | Ethnicity | Date Of Birth | Sex    | ZIP   | Marital Status | Problem             |  |  |
|                                    |      | asian     | 09/27/64      | female | 02139 | divorced       | hypertension        |  |  |
|                                    |      | asian     | 09/30/64      | female | 02139 | divorced       | obesity             |  |  |
|                                    |      | asian     | 04/18/64      | male   | 02139 | married        | chest pain          |  |  |
|                                    |      | asian     | 04/15/64      | male   | 02139 | married        | obesity             |  |  |
|                                    |      | black     | 03/13/63      | male   | 02138 | married        | hypertension        |  |  |
|                                    |      | black     | 03/18/63      | male   | 02138 | married        | shortness of breath |  |  |
|                                    |      | black     | 09/13/64      | female | 02141 | married        | shortness of breath |  |  |
|                                    |      | black     | 09/07/64      | female | 02141 | married        | obesity             |  |  |
|                                    |      | white     | 05/14/61      | male   | 02138 | single         | chest pain          |  |  |
|                                    |      | white     | 05/08/61      | male   | 02138 | single         | obesity             |  |  |
|                                    |      | white     | 09/15/61      | female | 02142 | widow          | shortness of breath |  |  |

**Quasi identifier:** Given a population of entities U, an entity-specific table T(A1,...,An),  $f_c: U \rightarrow T$  and  $f_g: T \rightarrow U'$ , where  $U \subseteq U'$ .

A quasi-identifier of T, written  $Q_T$ , is a set of attributes  $\{Ai,...,Aj\} \subseteq \{A1,...,An\}$  where:  $\exists p_i \in U$  such that  $f_g(f_c(p_i)[QT]) = p_i$ .

## Sensitive attributes

|     | Medical Data Released as Anonymous |           |               |        |       |                |                     |  |  |  |
|-----|------------------------------------|-----------|---------------|--------|-------|----------------|---------------------|--|--|--|
| SSN | Name                               | Ethnicity | Date Of Birth | Sex    | ZIP   | Marital Status | Problem             |  |  |  |
|     |                                    | asian     | 09/27/64      | female | 02139 | divorced       | hypertension        |  |  |  |
|     |                                    | asian     | 09/30/64      | female | 02139 | divorced       | obesity             |  |  |  |
|     |                                    | asian     | 04/18/64      | male   | 02139 | married        | chest pain          |  |  |  |
|     |                                    | asian     | 04/15/64      | male   | 02139 | married        | obesity             |  |  |  |
|     |                                    | black     | 03/13/63      | male   | 02138 | married        | hypertension        |  |  |  |
|     |                                    | black     | 03/18/63      | male   | 02138 | married        | shortness of breath |  |  |  |
|     |                                    | black     | 09/13/64      | female | 02141 | married        | shortness of breath |  |  |  |
|     |                                    | black     | 09/07/64      | female | 02141 | married        | obesity             |  |  |  |
|     |                                    | white     | 05/14/61      | male   | 02138 | single         | chest pain          |  |  |  |
|     |                                    | white     | 05/08/61      | male   | 02138 | single         | obesity             |  |  |  |
|     |                                    | white     | 09/15/61      | female | 02142 | widow          | shortness of breath |  |  |  |

A *sensitive attribute* is an attribute whose value for any particular individual must be kept secret from people who have no direct access to the original data.

# Linking attack with Quasi identifiers

| SSN | Name | Ethnicity     | Date Of Birth | $\mathbf{Sex}$ | ZIP   | Marital Status | Problem             |
|-----|------|---------------|---------------|----------------|-------|----------------|---------------------|
|     |      | asian         | 09/27/64      | female         | 02139 | divorced       | hypertension        |
|     |      | asian         | 09/30/64      | female         | 02139 | divorced       | obesity             |
|     |      | asian         | 04/18/64      | $_{ m male}$   | 02139 | married        | chest pain          |
|     |      | asian         | 04/15/64      | $_{ m male}$   | 02139 | married        | obesity             |
|     |      | black         | 03/13/63      | $_{ m male}$   | 02138 | married        | hypertension        |
|     |      | black         | 03/18/63      | $_{ m male}$   | 02138 | married        | shortness of breath |
|     |      | black         | 09/13/64      | female         | 02141 | married        | shortness of breath |
|     |      | black         | 09/07/64      | female         | 02141 | married        | obesity             |
|     |      | $_{ m white}$ | 05/14/61      | $_{ m male}$   | 02138 | single         | chest pain          |
|     |      | $_{ m white}$ | 05/08/61      | $_{ m male}$   | 02138 | single         | obesity             |
|     |      | $_{ m white}$ | 09/15/61      | female         | 02142 | widow          | shortness of breath |

### Voter List

| Name           | Address       | $\mathbf{City}$ | ZIP   | DOB     | $\mathbf{Sex}$ | Party    |  |
|----------------|---------------|-----------------|-------|---------|----------------|----------|--|
|                |               |                 |       |         |                |          |  |
|                |               |                 |       |         |                |          |  |
| Sue J. Carlson | 1459 Main St. | Cambridge       | 02142 | 9/15/61 | female         | democrat |  |
|                |               |                 |       |         |                |          |  |

### Medical Data Released as Anonymous

| SSN | Name | Ethnicity | Date Of Birth | Sex    | ZIP   | Marital Status | Problem             |
|-----|------|-----------|---------------|--------|-------|----------------|---------------------|
|     |      | asian     | 09/27/64      | female | 02139 | divorced       | hypertension        |
|     |      | asian     | 09/30/64      | female | 02139 | divorced       | obesity             |
|     |      | asian     | 04/18/64      | male   | 02139 | married        | chest pain          |
|     |      | asian     | 04/15/64      | male   | 02139 | married        | obesity             |
|     |      | black     | 03/13/63      | male   | 02138 | married        | hypertension        |
|     |      | black     | 03/18/63      | male   | 02138 | married        | shortness of breath |
|     |      | black     | 09/13/64      | female | 02141 | married        | shortness of breath |
|     |      | black     | 09/07/64      | female | 02141 | married        | obesity             |
|     |      | white     | 05/14/61      | male   | 02138 | single         | chest pain          |
|     |      | white     | 05/08/61      | male   | 02138 | single         | obesity             |
|     |      | white     | 09/15/61      | female | 02142 | widow          | shortness of breath |

### The Netflix Prize: How a \$1 Million Contest Changed Binge-Watching Forever

By Dan Jackson

"WE NEED TO GO WIN A MILLION DOLLARS." Lester Mackey was just a senior computer science major at Princeton when a friend burst into his dorm room in a hysterical fit of excitement. "Veneed to do this."

In October 2006, Natflix, then a service neddling discs of every movie and TV show under the sur

## How to prevent linkage attacks?

spread like a virus through comp-sci circles, tech blogs, research communities, and even the mainstream media. ("And if You Liked the Movie, a Netflix Contest May Reward You Handsomely" read the *New York Timesheadline*.) And while a million dollars created attention, it was the data set — over 100 million ratings of 17,770 movies from 480,189 customers — that had number-crunching nuts salivating. There was nothing like it at the time. There hasn't been anything quite

Why the hell would a tech giant even do that? While it's common for successful corporations to protect their data like pirates guarding treasure, at the time CEO Reed Hastings was looking for a way to increase the efficiency of Cinematch, the software the company rolled out in 2000 to recommend movies you might enjoy. (If you liked *The 40-Year-Old Virgin*, check out *Superbad*.) Over the years he'd recruited brilliant minds to tinker with the magic formula, but they'd hit a wall. He needed results. Fresh ideas. Innovation.

It's the same impulse that led the company to make another drastic change to their user interface earlier this year: At a press conference in March, VP of Product Todd Yellin announced the five-star ratings would be replaced with a new thumbs-up-or-down system. The star ratings, which drove much of the data and excitement around the Netflix prize, are dead. But the story of the Netflix Prize lives on. This is how a super-squad of nerds from across the globe changed Netflix, and the field of artificial intelligence, forever.

# K-anonymity or "hide in the crowd"

Each release of data must be such that every combination of values of quasi-identifiers can be indistinctly matched to at least k individuals.

Let T(A1,...,An) be a table and  $QI_T$  be the quasi-identifier associated with it. T is said to satisfy k-anonymity if and only if each sequence of values in  $T[QI_T]$  appears with at least k occurrences in  $T[QI_T]$ .

# 2-anonymous table

|            | Race  | Birth | Gender | ZIP   | Problem      |
|------------|-------|-------|--------|-------|--------------|
| t1         | Black | 1965  | m      | 0214* | short breath |
| t2         | Black | 1965  | m      | 0214* | chest pain   |
| t3         | Black | 1965  | f      | 0213* | hypertension |
| t4         | Black | 1965  | f      | 0213* | hypertension |
| t5         | Black | 1964  | f      | 0213* | obesity      |
| <b>t</b> 6 | Black | 1964  | f      | 0213* | chest pain   |
| t7         | White | 1964  | m      | 0213* | chest pain   |
| t8         | White | 1964  | m      | 0213* | obesity      |
| t9         | White | 1964  | m      | 0213* | short breath |
| t10        | White | 1967  | m      | 0213* | chest pain   |
| t11        | White | 1967  | m      | 0213* | chest pain   |

# 4-anonymous table

|    | N        | on-Se | Sensitive   |                 |
|----|----------|-------|-------------|-----------------|
|    | Zip Code | Age   | Nationality | Condition       |
| 1  | 130      | 28    | Russian     | Heart Disease   |
| 2  | 130      | 29    | American    | Heart Disease   |
| 3  | 130      | 21    | Japanese    | Viral Infection |
| 4  | 130      | 23    | American    | Viral Infection |
| 5  | 148      | 50    | Indian      | Cancer          |
| 6  | 148      | 55    | Russian     | Heart Disease   |
| 7  | 148      | 47    | American    | Viral Infection |
| 8  | 148      | 49    | American    | Viral Infection |
| 9  | 130      | 31    | American    | Cancer          |
| 10 | 130      | 37    | Indian      | Cancer          |
| 11 | 130      | 36    | Japanese    | Cancer          |
| 12 | 130      | 35    | American    | Cancer          |

|    | Zip Code |
|----|----------|
| 1  | 130**    |
| 2  | 130**    |
| 3  | 130**    |
| 4  | 130**    |
| 5  | 1485*    |
| 6  | 1485*    |
| 7  | 1485*    |
| 8  | 1485*    |
| 9  | 130**    |
| 10 | 130**    |
| 11 | 130**    |
| 12 | 130**    |

## Generalization process

```
origin \in \{US, UK, Germany, China, Korea, ...\}

age \in \{18, 19, ..., 99\}

zip \in \{85281, 47408, ...\}

origin \in \{NA, Europe, Asia, ...\}

age \in \{[18 - 29], [30 - 45], [46 - 65], [66 - 99]\}

zip \in \{8528 *, 4740 *\}
```

## Domain generalization

Given two domains  $D_i$  and  $D_j$ , relationship  $D_i \leq D_j$  describes the fact that values in domain  $D_i$  are generalization of values in domain  $D_i$ .

1. 
$$\forall D_i, D_j, D_k \in Dom: D_i \leq D_j, D_i \leq D_k \Rightarrow D_i \leq D_k \text{ or } D_k \leq D_i$$

2. All maximal element of *Dom* are singleton.

$$zip \in \{8528 *, 4740 *\} \Rightarrow \{852 **, 474 **\} \Rightarrow ... \Rightarrow \{*****, *****\}$$

# Domain Generalization Hierarchy (DGH)







## Domain Generalization Hierarchy (DGH)





## Generalized table

 $T_i$  is a generalization of table  $T_j$ , defined on the same set of attributes, iff

- $|I_i| = |T_i|$
- 2. The domain of each attribute in  $T_j$  is equal to or is a generalization of, the domain corresponding attribute in  $T_i$
- 3. A bijective functions maps each tuple  $t_i \in T_i$  to one tuple in  $t_j \in T_j$  where attribute values in  $t_j$  is equal or more generic than attribute values in  $t_i$

|                               |                             |                               |                             |                               |                              | <br>                         |                             |
|-------------------------------|-----------------------------|-------------------------------|-----------------------------|-------------------------------|------------------------------|------------------------------|-----------------------------|
| $\mathbf{Race}: \mathtt{R}_0$ | $\mathbf{ZIP}:\mathbf{Z}_0$ | $\mathbf{Race}: \mathtt{R}_1$ | $\mathbf{ZIP}:\mathbf{Z}_0$ | $\mathbf{Race}: \mathtt{R}_1$ | $\mathbf{ZIP}: \mathbf{Z}_1$ | $\mathbf{Race}:\mathtt{R}_1$ | $\mathbf{ZIP}:\mathbf{Z}_2$ |
| asian                         | 94138                       | person                        | 94138                       | person                        | 9413*                        | person                       | 941**                       |
| asian                         | 94139                       | person                        | 94139                       | person                        | 9413*                        | person                       | 941**                       |
| asian                         | 94141                       | person                        | 94141                       | person                        | 9414*                        | person                       | 941**                       |
| asian                         | 94142                       | person                        | 94142                       | person                        | 9414*                        | person                       | 941**                       |
| black                         | 94138                       | person                        | 94138                       | person                        | 9413*                        | person                       | 941**                       |
| black                         | 94139                       | person                        | 94139                       | person                        | 9413*                        | person                       | 941**                       |
| black                         | 94141                       | person                        | 94141                       | person                        | 9414*                        | person                       | 941**                       |
| black                         | 94142                       | person                        | 94142                       | person                        | 9414*                        | person                       | 941**                       |
| white                         | 94138                       | person                        | 94138                       | person                        | 9413*                        | person                       | 941**                       |
| white                         | 94139                       | person                        | 94139                       | person                        | 9413*                        | person                       | 941**                       |
| white                         | 94141                       | person                        | 94141                       | person                        | 9414*                        | person                       | 941**                       |
| white                         | 94142                       | person                        | 94142                       | person                        | 9414*                        | person                       | 941**                       |
| P <sup>-</sup>                | Γ                           | GT                            | [1,0]                       | $GT_{\scriptscriptstyle{[}}$  | 1,1]                         | GT <sub>[</sub>              | 1,2]                        |
|                               |                             | k=                            | 1, 2                        | k= 1                          | ., 2,, 6                     | k= *                         |                             |

## Distance vector

Let  $T_i$  and  $T_j$  be two tables such that  $T_i \leq T_j$ . The distance vector of  $T_j$  from  $T_i$  is the vector  $DV = [d_1, ..., d_n]$ , where each  $d_i$  is length of unique path between corresponding domains in the domain generalization hierarchy.

| $\mathbf{Race}: \mathtt{R}_0$ | $\mathbf{ZIP}:\mathbf{Z}_0$ |
|-------------------------------|-----------------------------|
| asian                         | 94138                       |
| asian                         | 94139                       |
| asian                         | 94141                       |
| asian                         | 94142                       |
| black                         | 94138                       |
| black                         | 94139                       |
| black                         | 94141                       |
| black                         | 94142                       |
| white                         | 94138                       |
| white                         | 94139                       |
| white                         | 94141                       |
| white                         | 94142                       |

| $oxed{Race: R_1}$ | $\mathbf{ZIP}: \mathbf{Z}_0$ |
|-------------------|------------------------------|
| person            | 94138                        |
| person            | 94139                        |
| person            | 94141                        |
| person            | 94142                        |
| person            | 94138                        |
| person            | 94139                        |
| person            | 94141                        |
| person            | 94142                        |
| person            | 94138                        |
| person            | 94139                        |
| person            | 94141                        |
| person            | 94142                        |

PT

 $\mathsf{GT}_{[1,0]}$ 

# k minimal generalization

Let  $T_i$  and  $T_j$  be two tables such that  $T_i \leq T_j$ .  $T_j$  is a k-minimal generalization of  $T_i$  iff

- 1. T<sub>i</sub> satisfies k-anonymity
- 2.  $\forall T_k: T_i \leq T_j, T_k$  satisfies k anonymity implies !  $(DV_{\{i,k\}} \leq DV_{\{i,j\}})$

# Example

| Race:R <sub>0</sub> | $\mathbf{ZIP}: \mathbf{Z}_0$ | ] | $\mathbf{Race}: \mathtt{R}_1$ | $\mathbf{ZIP}:\mathbf{Z}_0$ |
|---------------------|------------------------------|---|-------------------------------|-----------------------------|
| race.n <sub>0</sub> | Z1F .Z0                      |   | rtace.n <sub>1</sub>          | 211 .20                     |
| asian               | 94138                        |   | person                        | 94138                       |
| asian               | 94139                        |   | person                        | 94139                       |
| asian               | 94141                        |   | person                        | 94141                       |
| asian               | 94142                        |   | person                        | 94142                       |
| black               | 94138                        |   | person                        | 94138                       |
| black               | 94139                        |   | person                        | 94139                       |
| black               | 94141                        |   | person                        | 94141                       |
| black               | 94142                        |   | person                        | 94142                       |
| white               | 94138                        |   | person                        | 94138                       |
| white               | 94139                        |   | person                        | 94139                       |
| white               | 94141                        |   | person                        | 94141                       |
| white               | 94142                        |   | person                        | 94142                       |
|                     |                              | , |                               | •                           |

| $\mathbf{Race}: \mathbb{R}_0$ | $\mathbf{ZIP}:Z_1$ |
|-------------------------------|--------------------|
| asian                         | 9413*              |
| asian                         | 9413*              |
| asian                         | 9414*              |
| asian                         | 9414*              |
| black                         | 9413*              |
| black                         | 9413*              |
| black                         | 9414*              |
| black                         | 9414*              |
| white                         | 9413*              |
| white                         | 9413*              |
| white                         | 9414*              |
| white                         | 9414*              |



PT

 $\mathsf{GT}_{[1,0]}$ 

 $\mathsf{GT}_{[0,1]}$ 

 $\mathsf{GT}_{[1,2]}$ 

# Suppression

|    |          | ~     |             |                 |
|----|----------|-------|-------------|-----------------|
|    | No       | on-Se | nsitive     | Sensitive       |
|    | Zip Code | Age   | Nationality | Condition       |
| 1  | 13053    | 28    | Russian     | Heart Disease   |
| 2  | 13068    | 29    | American    | Heart Disease   |
| 3  | 13068    | 21    | Japanese    | Viral Infection |
| 4  | 13053    | 23    | American    | Viral Infection |
| 5  | 14853    | 50    | Indian      | Cancer          |
| 6  | 14853    | 55    | Russian     | Heart Disease   |
| 7  | 14850    | 47    | American    | Viral Infection |
| 8  | 14850    | 49    | American    | Viral Infection |
| 9  | 13053    | 31    | American    | Cancer          |
| 10 | 13053    | 37    | Indian      | Cancer          |
| 11 | 13068    | 36    | Japanese    | Cancer          |
| 12 | 13068    | 99    | American    | Cancer          |

# Finding k-anonymous solution

#### Find\_vector

INPUT: Table  $T_i = \mathsf{PT}[QI]$  to be generalized, anonymity requirement k, suppression threshold  $\mathsf{MaxSup}$ , lattice  $\mathsf{VL}_{DT}$  of the distance vectors corresponding to the domain generalization hierarchy  $\mathsf{DGH}_{DT}$ , where DT is the tuples of the domains of the quasi-identifier attributes.

OUTPUT: The distance vector sol of a generalized table  $\mathsf{GT}_{sol}$  that is a k-minimal generalization of  $\mathsf{PT}[QI]$  according to Definition 4.3. METHOD: Executes a binary search on  $\mathsf{VL}_{DT}$  based on height of vectors in  $\mathsf{VL}_{DT}$ .

- 1. low := 0;  $high := height(\top, VL_{DT})$ ;  $sol := \top$
- 2. while low < high
  - $2.1 \ try := \lfloor \frac{low + high}{2} \rfloor$
  - 2.2  $Vectors := \{vec \mid height(vec, VL_{DT}) = try\}$
  - $2.3 \ reach_k := false$
  - 2.4 while  $Vectors \neq \emptyset \land reach\_k \neq \texttt{true do}$

Select and remove a vector vec from Vectors

if satisfies( $vec, k, T_i, MaxSup$ ) then  $sol := vec; reach_k := true$ 

- 2.5 if  $reach_k = true then high:= try else low:= try + 1$
- 3. Return sol



heights: {0, 1, 2, 3}

## Resources

Hundepol et al. Handbook on statistical data disclosure Samarati Protecting Respondents' Identities in Microdata Release

LeFevre et al. Incognito: Efficient Full Domain K-Anonymity

# Finding k-anonymous solution

#### Find\_vector

INPUT: Table  $T_i = \mathsf{PT}[QI]$  to be generalized, anonymity requirement k, suppression threshold  $\mathsf{MaxSup}$ , lattice  $\mathsf{VL}_{DT}$  of the distance vectors corresponding to the domain generalization hierarchy  $\mathsf{DGH}_{DT}$ , where DT is the tuples of the domains of the quasi-identifier attributes.

OUTPUT: The distance vector sol of a generalized table  $\mathsf{GT}_{sol}$  that is a k-minimal generalization of  $\mathsf{PT}[QI]$  according to Definition 4.3. METHOD: Executes a binary search on  $\mathsf{VL}_{DT}$  based on height of vectors in  $\mathsf{VL}_{DT}$ .

- 1. low := 0;  $high := height(\top, VL_{DT})$ ;  $sol := \top$
- 2. while low < high
  - $2.1 \ try := \lfloor \frac{low + high}{2} \rfloor$
  - 2.2  $Vectors := \{vec \mid height(vec, VL_{DT}) = try\}$
  - $2.3 \ reach_k := false$
  - 2.4 while  $Vectors \neq \emptyset \land reach\_k \neq true do$

Select and remove a vector vec from Vectors

if satisfies( $vec, k, T_i, MaxSup$ ) then  $sol := vec; reach_k := true$ 

- 2.5 if  $reach_k = true then high:= try else low:= try + 1$
- 3. Return sol

# Example input

| Medical Data Released as Anonymous |      |       |             |        |       |                |                     |
|------------------------------------|------|-------|-------------|--------|-------|----------------|---------------------|
| SSN                                | Name | Race  | DateOfBirth | Sex    | ZIP   | Marital Status | HealthProblem       |
|                                    |      | asian | 09/27/64    | female | 94139 | divorced       | hypertension        |
|                                    |      | asian | 09/30/64    | female | 94139 | divorced       | obesity             |
|                                    |      | asian | 04/18/64    | male   | 94139 | married        | chest pain          |
|                                    |      | asian | 04/15/64    | male   | 94139 | married        | obesity             |
|                                    |      | black | 03/13/63    | male   | 94138 | married        | hypertension        |
|                                    |      | black | 03/18/63    | male   | 94138 | married        | shortness of breath |
|                                    |      | black | 09/13/64    | female | 94141 | married        | shortness of breath |
|                                    |      | black | 09/07/64    | female | 94141 | married        | obesity             |
|                                    |      | white | 05/14/61    | male   | 94138 | single         | chest pain          |
|                                    |      | white | 05/08/61    | male   | 94138 | single         | obesity             |
|                                    |      | white | 09/15/61    | female | 94142 | widow          | shortness of breath |

| $oxed{\mathbf{Race}:} \mathtt{R}_0$ | $\mathbf{ZIP}:Z_0$ |
|-------------------------------------|--------------------|
| asian                               | 94138              |
| asian                               | 94139              |
| asian                               | 94141              |
| asian                               | 94142              |
| black                               | 94138              |
| black                               | 94139              |
| black                               | 94141              |
| black                               | 94142              |
| white                               | 94138              |
| white                               | 94139              |
| white                               | 94141              |
| white                               | 94142              |



## Execution

#### Find\_vector

INPUT: Table  $T_i = \mathsf{PT}[QI]$  to be generalized, anonymity requirement k, suppression threshold  $\mathsf{MaxSup}$ , lattice  $\mathsf{VL}_{DT}$  of the distance vectors corresponding to the domain generalization hierarchy  $\mathsf{DGH}_{DT}$ , where DT is the tuples of the domains of the quasi-identifier attributes.

OUTPUT: The distance vector sol of a generalized table  $\mathsf{GT}_{sol}$  that is a k-minimal generalization of  $\mathsf{PT}[QI]$  according to Definition 4.3. METHOD: Executes a binary search on  $\mathsf{VL}_{DT}$  based on height of vectors in  $\mathsf{VL}_{DT}$ .

- 1. low := 0;  $high := height(\top, VL_{DT})$ ;  $sol := \top$
- 2. while low < high
  - $2.1 \ try := \lfloor \frac{low + high}{2} \rfloor$
  - 2.2  $Vectors := \{vec \mid height(vec, VL_{DT}) = try\}$
  - $2.3 \; reach\_k := false$
  - 2.4 while  $Vectors \neq \emptyset \land reach\_k \neq \texttt{true do}$ Select and remove a vector vec from Vectorsif  $satisfies(vec,k,T_i,\mathsf{MaxSup})$  then  $sol:=vec;\ reach\_k:=\texttt{true}$
  - 2.5 if  $reach_k = true then high:= try else low:= try + 1$
- 3. Return sol



 $DGH_{R_0,Z_0}$ 



heights: {0, **1**, **2**,3}

## Execution

#### Find\_vector

INPUT: Table  $T_i = \mathsf{PT}[QI]$  to be generalized, anonymity requirement k, suppression threshold  $\mathsf{MaxSup}$ , lattice  $\mathsf{VL}_{DT}$  of the distance vectors corresponding to the domain generalization hierarchy  $\mathsf{DGH}_{DT}$ , where DT is the tuples of the domains of the quasi-identifier attributes.

OUTPUT: The distance vector sol of a generalized table  $\mathsf{GT}_{sol}$  that is a k-minimal generalization of  $\mathsf{PT}[QI]$  according to Definition 4.3. METHOD: Executes a binary search on  $\mathsf{VL}_{DT}$  based on height of vectors in  $\mathsf{VL}_{DT}$ .

- 1. low := 0;  $high := height(\top, VL_{DT})$ ;  $sol := \top$
- 2. while low < high
- $2.1 \ try := \lfloor \frac{low + high}{2} \rfloor \ \mathsf{try} = 1$ 
  - 2.2  $Vectors := \{vec \mid height(vec, VL_{DT}) = try\}$
  - $2.3 \ reach\_k := false$
  - 2.4 while  $Vectors \neq \emptyset \land reach\_k \neq \texttt{true do}$

Select and remove a vector vec from Vectors

 $\textbf{if} \ \mathsf{satisfies}(\textit{vec}, k, T_i, \mathsf{MaxSup}) \ \textbf{then} \ \textit{sol} := \textit{vec}; \ \textit{reach\_k} := \mathtt{true}$ 

- 2.5 if  $reach_k = true then high:= try else low:= try + 1$
- 3. Return sol



 $DGH_{R_0,Z_0}$ 



heights: {0, **1** , **2** ,3}

# Applying the vectors

| $oxed{\mathbf{Race}:} \mathtt{R}_0$ | $\mathbf{ZIP}: Z_0$ |
|-------------------------------------|---------------------|
| asian                               | 94138               |
| asian                               | 94139               |
| asian                               | 94141               |
| asian                               | 94142               |
| black                               | 94138               |
| black                               | 94139               |
| black                               | 94141               |
| black                               | 94142               |
| white                               | 94138               |
| white                               | 94139               |
| white                               | 94141               |
| white                               | 94142               |

| $oxed{\mathbf{Race}: \mathtt{R}_1}$ | $\mathbf{ZIP}: Z_0$ |
|-------------------------------------|---------------------|
| person                              | 94138               |
| person                              | 94139               |
| person                              | 94141               |
| person                              | 94142               |
| person                              | 94138               |
| person                              | 94139               |
| person                              | 94141               |
| person                              | 94142               |
| person                              | 94138               |
| person                              | 94139               |
| person                              | 94141               |
| person                              | 94142               |

 $\mathsf{GT}_{[1,0]}$ 

| $\mathbf{Race}:\mathtt{R}_0$ | $\mathbf{ZIP}$ :Z <sub>1</sub> |  |
|------------------------------|--------------------------------|--|
| asian                        | 9413*                          |  |
| asian                        | 9413*                          |  |
| asian                        | 9414*                          |  |
| asian                        | 9414*                          |  |
| black                        | 9413*                          |  |
| black                        | 9413*                          |  |
| black                        | 9414*                          |  |
| black                        | 9414*                          |  |
| white                        | 9413*                          |  |
| white                        | 9413*                          |  |
| white                        | 9414*                          |  |
| white                        | 9414*                          |  |

 $\mathsf{GT}_{[0,1]}$ 

<R1,Z0>

<R0,Z1>

## Execution

#### Find\_vector

INPUT: Table  $T_i = \mathsf{PT}[QI]$  to be generalized, anonymity requirement k, suppression threshold  $\mathsf{MaxSup}$ , lattice  $\mathsf{VL}_{DT}$  of the distance vectors corresponding to the domain generalization hierarchy  $\mathsf{DGH}_{DT}$ , where DT is the tuples of the domains of the quasi-identifier attributes.

OUTPUT: The distance vector sol of a generalized table  $\mathsf{GT}_{sol}$  that is a k-minimal generalization of  $\mathsf{PT}[QI]$  according to Definition 4.3. METHOD: Executes a binary search on  $\mathsf{VL}_{DT}$  based on height of vectors in  $\mathsf{VL}_{DT}$ .

- 1. low := 0;  $high := height(\top, VL_{DT})$ ;  $sol := \top$
- 2. while low < high
  - $2.1 \ try := \lfloor \frac{low + high}{2} \rfloor \ \mathsf{try} = 0$
  - $2.2 \ Vectors := \{vec \mid height(vec, VL_{DT}) = try\}$
  - $2.3 \; reach\_k := false$
  - 2.4 while  $Vectors \neq \emptyset \land reach\_k \neq \texttt{true do}$ Select and remove a vector vec from Vectors
    - if satisfies( $vec,k,T_i,MaxSup$ ) then  $sol:=vec; reach\_k:=true$
- ▶ 2.5 if  $reach\_k = true then high:= try else low:= try + 1$
- 3. Return sol



DGH (RO,ZO)



heights: {0, 1, 2, 3}

## Execution

#### Find\_vector

INPUT: Table  $T_i = \mathsf{PT}[QI]$  to be generalized, anonymity requirement k, suppression threshold  $\mathsf{MaxSup}$ , lattice  $\mathsf{VL}_{DT}$  of the distance vectors corresponding to the domain generalization hierarchy  $\mathsf{DGH}_{DT}$ , where DT is the tuples of the domains of the quasi-identifier attributes.

OUTPUT: The distance vector sol of a generalized table  $\mathsf{GT}_{sol}$  that is a k-minimal generalization of  $\mathsf{PT}[QI]$  according to Definition 4.3. METHOD: Executes a binary search on  $\mathsf{VL}_{DT}$  based on height of vectors in  $\mathsf{VL}_{DT}$ .

- 1. low := 0;  $high := height(\top, VL_{DT})$ ;  $sol := \top$
- 2. while low< high

$$2.1 \ try := \lfloor \frac{low + high}{2} \rfloor \ \mathsf{try} = 2$$

- $2.2 \ Vectors := \{vec \mid height(vec, VL_{DT}) = try\}$
- $2.3 \; reach\_k := false$
- 2.4 while  $Vectors \neq \emptyset \land reach\_k \neq \texttt{true do}$ Select and remove a vector vec from Vectorsif satisfies( $vec, k, T_i, \mathsf{MaxSup}$ ) then  $sol := vec; reach\_k := \texttt{true}$
- ▶ 2.5 if  $reach\_k =$ true then high:= try else low:= try + 1
- 3. Return sol



 $DGH_{R_0,Z_0}$ 



heights: {0, **1** , **2** ,3}

# The most general table

| $oxed{\mathbf{Race}: \mathtt{R}_1}$ | Zip: Z5 |
|-------------------------------------|---------|
| person                              | ****    |

# Which minimal generalization to pick?

Minimum absolute distance prefers the *smallest total number* of generalization steps.

Minimum relative distance prefers the generalization(s) that has the smallest relative distance.



```
 Z_{2} = \{941**\} \\ Z_{1} = \{9413*,9414*\} \\ Z_{0} = \{94138,94139,94141,94142\} \\ DGH_{Z_{0}}  9413* 94139 94141 94142  VGH_{Z_{0}}
```

# Which *minimal* generalization to pick?

Minimum absolute distance prefers the smallest total number of generalization steps.

Minimum relative distance prefers the generalization(s) that has the smallest relative distance.

**Maximum distribution** prefers the generalization(s) that contains the greatest number of distinct tuples.

**Minimum suppression** prefers the generalization(s) that suppresses less tuples.

# Utility metrics

Loss of information

Use of sanitized data

# The number of generalization/suppression steps

Generalizing zip code

$$\{85281, 47408, ...\} \Rightarrow \{8528 *, 4740 *, ...\} \Rightarrow \{852 **, 474 **, ...\} \Rightarrow ... \Rightarrow \{*****, *****\}$$

# The number of generalization/suppression steps

Generalizing zip code

```
\{85281, 47408, ...\} \Rightarrow \{8528 *, 4740 *, ...\} \Rightarrow \{852 **, 474 **, ...\}
\Rightarrow .. \Rightarrow \{************\}
```

85281 8528\* 852\*\* 85\*\*\*

Information loss is not actually same for each subsequent step.

One idea is to double the loss at each subsequent step.

# The number of generalization/suppression steps



The same number of steps can result in unequal information loss for different attributes.

## Loss metric



## Loss metric



## Discernibility metric (DM)

| Zip   | Race  | Disease  |
|-------|-------|----------|
| 85281 | Asian | Migraine |
| 85282 | Asian | Migraine |
| 85283 | Black | Heart    |
| 47408 | Black | Heart    |
| 47401 | Black | Migraine |
| 47403 | Black | Heart    |

| Zip   | Race  | Disease  |                   |
|-------|-------|----------|-------------------|
| 8528* | Asian | Migraine | Equivalence       |
| 8528* | Asian | Migraine | class             |
| 85283 | Black | Heart X  |                   |
| 4740* | Black | Heart    |                   |
| 4740* | Black | Heart    | Equivalence class |
| 47403 | Black | Heart    |                   |

## Information theoretic measures

Entropy of a random variable X:

$$H(X) = -\sum_{i} p(x_i) \log_2(p(x_i))$$



Coin toss: 
$$X = \{head, tail\}$$
  
 $H(X) = -p(head) \log_2 p(head) - p(tail) \log_2(p(tail))$   
 $= -\frac{1}{2}(-1) - \frac{1}{2}(-1) = 1$ 

## Information theoretic measures

Entropy of a random variable X:

$$H(X) = -\sum_{i} p(x_i) \log_2(p(x_i))$$

Dice: 
$$X = \{1,2,3,4,5,6\}$$
  
 $H(X) = -6 * \frac{1}{6} * \log_2 \frac{1}{6} = \sim 2.585$ 

- 1. When all values of X are equally likely, entropy is the highest.
- 2. The larger the domain of X, the higher the entropy.

How the concept of entropy can be used as a utility measure?

## Distortion

| Gender | Race  |
|--------|-------|
| М      | Black |
| М      | Asian |
| F      | Asian |
| М      | White |
| F      | White |
| F      | Black |

$$X = \{\{M, Black\}, \{M, Asian\}, \dots, \{F, Black\}\}\}$$

$$H(X) = -6 * \frac{1}{6} * \log_2 \frac{1}{6} = \sim 2.585$$

| Gender | Race |
|--------|------|
| *      | *    |
| *      | *    |
| *      | *    |
| *      | *    |
| *      | *    |
| *      | *    |

$$X = \{\{*,*\}, \{*,*\}, \dots\}$$
  
 $H(X) = -6 * 1 * \log_2 1 = 0$ 

$$Distortion = \frac{\left(H(QI_{pre}) - H(QI_{post})\right)}{\log_2(\#r)} = \frac{2.585}{\log_2 6} = 1$$

## Distortion

| Gender | Race  |
|--------|-------|
| М      | Black |
| М      | Asian |
| F      | Asian |
| М      | White |
| F      | White |
| F      | Black |

$$X = \{\{M, Black\}, \{M, Asian\}, \dots, \{F, Black\}\}\}$$

$$H(X) = -6 * \frac{1}{6} * \log_2 \frac{1}{6} = \sim 2.585$$

| Gender | Race  |
|--------|-------|
| *      | Black |
| *      | Asian |
| *      | Asian |
| *      | White |
| *      | White |
| *      | Black |

$$X = \{\{*, Black\}, \{*, Asian\}, \dots\}$$

$$H(X) = -3 * \frac{1}{3} * \log_2 \frac{1}{3} = 1.585$$

$$Distortion = \frac{\left(H(QI_{pre}) - H(QI_{post})\right)}{\log_2(\#r)} = \frac{1}{\log_2 6} < 1$$

# How good is k-anonymity?

|    | Non-Sensitive |           | Sensitive   |                 |
|----|---------------|-----------|-------------|-----------------|
|    | Zip Code      | Age       | Nationality | Condition       |
| 1  | 130**         | < 30      | *           | Heart Disease   |
| 2  | 130**         | < 30      | *           | Heart Disease   |
| 3  | 130**         | < 30      | *           | Viral Infection |
| 4  | 130**         | < 30      | *           | Viral Infection |
| 5  | 1485*         | $\geq 40$ | *           | Cancer          |
| 6  | 1485*         | $\geq 40$ | *           | Heart Disease   |
| 7  | 1485*         | $\geq 40$ | *           | Viral Infection |
| 8  | 1485*         | $\geq 40$ | *           | Viral Infection |
| 9  | 130**         | 3*        | *           | Cancer          |
| 10 | 130**         | 3*        | *           | Cancer          |
| 11 | 130**         | 3*        | *           | Cancer          |
| 12 | 130**         | 3*        | *           | Cancer          |

## Resources

Utility metrics: Ch. 3 of Chen at al. Privacy-Preserving Data Publishing

link: https://www.researchgate.net/publication/220626610 Privacy-Preserving Data Publishing

https://www.youtube.com/watch?v=yQq1- ujXrM