Database Management System

Lecture 4: Functional Dependency

Chapter: 7

Outline

- Functional dependency (FD)
- Keys
- Closure set of attributes
- Canonical form
- Equivalence
- Finding Candidate key, Prime and Non Prime attributes

Functional Dependency (FD)

• The functional dependency is a *relationship* that exists between two attributes. It typically exists between the primary key and non-key attribute within a table.

$$\bullet X \rightarrow Y$$

- The left side of FD is known as a *determinant*, the right side of the production is known as a *dependent*.
- Functional dependency is used as a tool for normalization
- Data is dependent on FD, FD is not dependent on Data.

students

Id	Name	Roll	Phone	Address	gpa
1	Kabir	121	0178	Dhaka	3.5
2	Khan	122	019088	Barishal	3.45
3	Alice	123	0192320	Barishal	2.86
4	Bob	124	088889	Dhaka	4
5	Campher	125	09898089	New york	4
6	Alice	126	979009	Khulna	3.75

Functional Dependencies Definition

Let R be a relation schema

$$\alpha \subseteq R$$
 and $\beta \subseteq R$

The functional dependency

$$\alpha \rightarrow \beta$$

holds on R if and only if for any legal relations r(R), whenever any two tuples t_1 and t_2 of r agree on the attributes α , they also agree on the attributes β . That is,

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

• Example: Consider r(A,B) with the following instance of r.

• On this instance, $B \rightarrow A$ hold; $A \rightarrow B$ does **NOT** hold,

Examples

- A→BC
- DE \rightarrow C
- C→DE
- BC \rightarrow D

Α	В	С	D	Е
а	2	3	4	5
2	а	3	4	5
а	2	3	6	5
a	2	3	6	6

Types of FD

Trivial

- A → B has trivial functional dependency if B is a subset of A.
- Examples: $A \rightarrow A$, $B \rightarrow B$, $AB \rightarrow A$

Non Trivial

- A → B has a non-trivial functional dependency if B is not a subset of A.
- When A intersection B is NULL, then A → B is called as complete non-trivial.
- Examples: $A \rightarrow B$, $AB \rightarrow ABC$

Closure of a Set of Functional Dependencies

- It is the complete set of all possible attributes that can be functionally derived from given functional dependency using the inference rules known as Armstrong's Rules.
- Given a set F set of functional dependencies, there are certain other functional dependencies that are logically implied by F.
 - If $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$
- The set of **all** functional dependencies logically implied by *F* is the **closure** of *F*.
- We denote the closure of F by F⁺.

Armstrong's axioms or Inference Rules

- Reflexivity Rule: If $\beta \subseteq \alpha$ then: $\alpha \rightarrow \beta$
- Augmentation Rule: If $\alpha \rightarrow \beta$ then: $\alpha \gamma \rightarrow \beta \gamma$
- Transitivity rule. If $\alpha \to \beta$ holds and $\beta \to \gamma$ holds, then $\alpha \to \gamma$ holds
- Union rule. If $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds.
- **Decomposition rule**. If $\alpha \to \beta \gamma$ holds, then $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds

How to Find Closure set of Attributes

- R(ABC)
- F:
 - $-A \rightarrow B$
 - $-B \rightarrow C$
- $A^+ \rightarrow \{A,B,C\}$
- $B^+ \rightarrow \{B,C\}$
- $C^+ \rightarrow \{C\}$

Exercises

R (ABCDEFG)

FD:

- A →B
- BC→DE
- $AEG \rightarrow G$

 $(AC)^{+}=?$

R (ABCDE)

FD:

- $A \rightarrow BC$
- *CD* →*E*
- $B \rightarrow D$
- \bullet $E \rightarrow A$

 $(B)^{+}=?$ And $(AB)^{+}=?$

R (ABCDEFGH)

FD:

- $A \rightarrow BC$
- *CD* →*E*
- $E \rightarrow C$, $D \rightarrow AEH$
- ABH →BD, DH→BC

 $BCD \rightarrow H$?

Equivalence of FD

- R(ABCDEH)
- F₁:
 - $-A \rightarrow C$
 - $-AC \rightarrow D$
 - $-E \rightarrow AD$
 - $-E \rightarrow H$
- F₂:
 - $-A \rightarrow CD$
 - $-E \rightarrow AH$

Irreducible set of FD (Canonical Cover)

- A canonical cover is a simplified and reduced version of the given set of functional dependencies.
- R(ABCD)
- *FD*:
 - $-B\rightarrow A$
 - $-AD \rightarrow BC$
 - $-C \rightarrow ABD$
- Canonical Cover (F^c):
 - $-B \rightarrow A$
 - $-AD \rightarrow C$
 - $-C \rightarrow BD$

Keys \rightarrow SK, CK, PK

- R(ABCD)
 - $FD1: A \rightarrow BC$
 - FD2: ABC \rightarrow D, AB \rightarrow CD, A \rightarrow BCD
 - FD3: B→ACD, ACD→B
- Super key is the key that can uniquely identify any record in a database
- Candidate Keys are super keys with the least number of attributes. Any CK can not be proper sub set of any other super keys.
 - $-A \rightarrow BCD$
 - AB →CD [here A is the subset of the super key AB]

Finding Candidate Keys

- R(ABCD)
 - $-A\rightarrow B, B\rightarrow C, C\rightarrow A$
- A(ABCD)
 - $-AB \rightarrow CD, D \rightarrow A$
- R(ABCDEF)
 - $-AB \rightarrow C, C \rightarrow D, B \rightarrow AE$
- R(ABCDE)
 - $-AB \rightarrow CD, D \rightarrow A, BC \rightarrow DE$

Prime and Non-Prime Attribute

- Prime Attribute: Member of candidate key
- Non-Prime Attribute: Attributes those are not member of candidate key

Chapter 7: Functional Dependency

END OF LECTURE