Quiz 1A solution

1 Exercise 1

1.1 Exercise 1.1

Let

$$a_n(x) = (-1)^n \frac{x^2}{n^2}$$
 and $b_n = (-1)^n \frac{1}{n}$ for all $n \in \mathbb{N}$.

Note that $f_n = a_n + b_n$ for all $n \in \mathbb{N}$. Fix x, then because we have that $\sum \frac{1}{n^2}$ and $\sum (-1)^n \frac{1}{n}$ converges, we know that for all $\varepsilon > 0$ there exists some N be such that

$$\left| \sum_{p=n}^{q} \frac{1}{n^2} \right| < \varepsilon \quad \text{and} \quad \left| \sum_{p=n}^{q} (-1)^n \frac{1}{n} \right| < \varepsilon \quad \text{for all } q > p > N.$$
 (1)

Using (1), we have for all q > p > N,

$$\left| \sum_{p=n}^{q} f_n(x) \right| \le \left| \sum_{p=n}^{q} a_n(x) \right| + \left| \sum_{p=n}^{q} b_n \right| \le (|x|^2 + 1) \varepsilon.$$

This shows pointwise convergence using the Cauchy criterion.

1.2 Exercise 1.2

Let I = [a, b] be a bounded interval of \mathbb{R} . From (1), we know that for all q > p > N,

$$\sup_{x \in [a,b]} \left| \sum_{p=n}^{q} f_n(x) \right| \le \sup_{x \in [a,b]} \left| \sum_{p=n}^{q} a_n(x) \right| + \left| \sum_{p=n}^{q} b_n \right| \le \left(|a|^2 + |b|^2 + 1 \right) \varepsilon.$$

This shows converges uniformly using the Cauchy criterion. Using Corollary 2.4, f is continuous on [a, b], for any $a, b \in \mathbb{R}$. Let $a \to -\infty$ and $b \to +\infty$, we obtain f is continuous on \mathbb{R} .

2 Exercise 2

2.1 Exercise 2.1

Because we have that $\sum \frac{1}{n^2}$ converges, we know that for all $\varepsilon > 0$ there exists some N be such that

$$\sup_{x \in [0,\infty)} \left| \sum_{p=n}^q f_n(x) \right| = \sup_{x \in [0,\infty)} \left| \sum_{p=n}^q \frac{1}{x+n^2} \right| \le \sum_{p=n}^q \frac{1}{n^2} \le \varepsilon \quad \text{for all } q > p > N.$$

This shows converges uniformly using the Cauchy criterion.

2.2 Exercise 2.2

Using Corollary 2.4 and $\sum_{1}^{\infty} f_n$ converges uniformly, we obtain f is continuous on $[0, \infty)$.

2.3 Exercise 2.3

By direct computation, we obtain

$$f'_n(x) = -\frac{1}{(x+n^2)^2}$$
 for all $n \in \mathbb{N}$.

Because we have that $\sum \frac{1}{n^4}$ converges, we know that for all $\varepsilon > 0$ there exists some N be such that

$$\sup_{x\in[0,\infty)}\left|\sum_{p=n}^q f_n(x)\right| = \sup_{x\in[0,\infty)}\left|\sum_{p=n}^q \frac{1}{(x+n^2)^2}\right| \leq \sum_{p=n}^q \frac{1}{n^4} \leq \varepsilon \quad \text{for all } q>p>N.$$

This shows uniformly convergent on $[0, \infty)$ using the Cauchy criterion.

2.4 Exercise 2.4

Using Theorem 3.2, Exercise 2.1 and Exercise 2.3, we know that f(x) is derivable on $[0, \infty)$ and $f'(x) = \sum_{1}^{\infty} f'_{n}(x)$. Using Corollary 2.4 and $\sum_{1}^{\infty} f'_{n}$ converges uniformly, we obtain $\sum_{1}^{\infty} f'_{n}(x)$ is continuous on $[0, \infty)$. We conclude that f is C^{1} on $[0, \infty)$.