Synchronous Modulo-6 UP Counter using T-FF:

Modulo 6 Synchronous Counter using T-FF:

We require to count: $000 - 001 - 010 - 011 - 100 - 101 - 000 - 001 - 010 \dots$

State Transition Table:

PS	NS	Q ₂ PS	Q ₁ PS	Q ₀ PS	Q ₂ NS	Q ₁ NS	Q ₀ NS	T ₂	T ₁	T ₀
000	001	0	0	0	0	0	1	0	0	1
001	010	0	0	1	0	1	0	0	1	1
010	011	0	1	0	0	1	1	0	0	1
011	100	0	1	1	1	0	0	1	1	1
100	101	1	0	0	1	0	1	0	0	1
101	000	1	0	1	0	0	0	1	0	1

$Q_2Q_1Q_1$	0	1
00	0	0
01	0	1
11	φ	φ
10	0	1
		Γ ₂

$Q_2Q_1^{Q_0}$	0	1
00	0	1
01	0	1
11	φ	φ
10	0	0
	_	Γ ₁

$Q_2 Q_1^{Q_0}$	0	1
00	1	1
01	1	1
11	φ	φ
10	1	1

Synchronous Modulo-6 UP Counter using T-FF:

Modulo 6 Synchronous Counter using D-FF:

We require to count: $000 - 001 - 010 - 011 - 100 - 101 - 000 - 001 - 010 \dots$

State Transition Table:

PS	NS	Q ₂ PS	Q ₁ PS	Q ₀ PS	Q ₂ NS	Q ₁ NS	Q ₀ NS	D ₂	D ₁	D ₀
000	001	0	0	0	0	0	1	0	0	1
001	010	0	0	1	0	1	0	0	1	0
010	011	0	1	0	0	1	1	0	1	1
011	100	0	1	1	1	0	0	1	0	0
100	101	1	0	0	1	0	1	1	0	1
101	000	1	0	1	0	0	0	0	0	0

Modulo 6 Synchronous Counter using D-FF:

Variable length 3-bit synchronous counter using DFF and Load?

Step 1: Design of a 3-bit synchronous counter using DFF

PS	NS	Q ₂ PS	Q ₁ PS	Q ₀ PS	Q ₂ NS	Q ₁ NS	Q ₀ NS	D ₂	D ₁	D ₀
000	001	0	0	0	0	0	1	0	0	1 .
001	010	0	0	1	0	1	0	0	1	0
010	011	0	1	0	0	1	1	0	1	1.
011	100	0	1	1	1	0	0	1	0	0 .
100	101	1	0	0	1	0	1	1	0	1.
101	110	1	0	1	1	1	0	1	1	0 ·
110	111	1	1	0	1	1	1	1	1	1 .
111	000	1	1	1	0	0	0	0	0	0 .

$Q_2 Q_1 Q_0$	0	1
00	1	0
01	1	0
11	1	0
10	1	0

D_0	$= \overline{Q_0}$

$$D_2 = Q_2 \overline{Q_1} + Q_2 \overline{Q_0} + \overline{Q_2} Q_1 Q_0$$

$$= Q_2 (\overline{Q_1} + \overline{Q_0}) + \overline{Q_2} Q_1 Q_0$$

$$= Q_2 (\overline{Q_1} + \overline{Q_0}) + \overline{Q_2} Q_1 Q_0$$

$$= Q_2 (\overline{Q_1} + \overline{Q_0}) + \overline{Q_2} Q_1 Q_0$$

$$= Q_2 (\overline{Q_1} + \overline{Q_0}) + \overline{Q_2} Q_1 Q_0$$

$$= Q_2 (\overline{Q_1} + \overline{Q_0}) + \overline{Q_2} Q_1 Q_0$$

March 30, 2022 IIITD ECE111 Section A

Step 1: Design of a 3-bit synchronous counter using DFF

Step 2: Synchronous Modulo-6 UP Counter with Load using D-FF:

HW

• Draw the timing diagram of the following circuit

Synchronous Counter

Johnson Counter (Twisted Tail Ring Counter):

N-FF -> 2N Patters generato

	•			
	Q_2		\mathbf{Q}_1	$\mathbf{Q_0}$
7	0	0	0	0
-7 tail	1	1	0	0,
	1	2	1	0
	· 1	3	1	1
	0	4	1	1
	0	5	0	1
	0		0	0
	1		0	0
	1		1	0
-for b	, dien			

Check what happens when FFs are initialised to 010 or 101 or 100

Ensurel

Johnson Counter as Frequency Divider:

Q_2	Q_1	Q_0
0	0	0
1	0	0
1	1	0
1	1	1
0	1	1
0	0	1
0	0	0
1	0	0
1	1	0
1	1	1
0	1	1
0	0	1
0	0	0
1	0	0
1	1	0
1	1	1

What Next...

Derhysteran Pener Leshannis

• Ripple counters have limitation of clock frequency. Synchronous counters do not have that limitation.

- Modulo-K counters with asynchronous preset/clear has glitch which may not be acceptable in some applications. One approach is to use D-FF with parallel load capability (Explore and get back in the next class)
- How to design circuits/counters with variable steps: 2->4-> 50070000 Monday
- How to design circuits which can generate any pattern?
- How to design circuits/counters for clock division other than power-of-two
- How to design frequency division circuit which can generate desired clock frequency with control over the duty cycle?

March 30, 2022