농구에서 체중과 신장

컴퓨터정보과 201944031 박민우

Mijnuu/NBA_Height_Analizye: Visualize NBA Height / Weight trend by Python (github.com)

목차

선정동기	해당 주제의 선정동기
데이터 소스 분석	데이터 소스 분석
신장 기본 정보 분석	기본 신장 정보 분석
체격의 변화 트렌드	시대에 따른 체격의 트렌드 분석
신장과 스탯의 상관관계	신장이 스탯(status) 에 미치는 영향 분석
결론	앞에 분석한 결과를 바탕으로 도출한 결론

농구는 신장으로 하는 것이 아니라, 심장으로하는 것이다.

-알렌 아이버슨-

선정동기

농구를 즐기는 사람으로서 **키**가 농구에 미치는 영향이 얼마나 될 지 궁금하여 해당 주제 선정.

스포츠로 꿈꾸는 세상

데이터 소스 분석 (NBA)

player_name	team_abbr age	player_height	player_weight	college	country	draft_year	draft_round	draft_number	gp	pts	reb	ast	net_rating	oreb_pct	dreb_pct ເ	ısg_pct t	:s_pct a	st_pct s	season
0 Dennis Rodma	CHI 30	6 198.12	99.79024	Southeast	:USA	1986	2	27	55	5.7	16.1	3.1	16.1	0.1860000	0.3229999	0.1	0.479	0.113 1	1996-97
1 Dwayne Schint	t LAC 28	8 215.9	117.93392	Florida	USA	1990	1	24	15	2.3	1.5	0.3	12.3	0.078	0.151	0.175	0.43	0.048 1	1996-97
2 Earl Cureton	TOR 39	9 205.74	95.25432	Detroit M	USA	1979	3	58	9	0.8	1	0.4	-2.1	0.105	0.102 0	0.1030000	0.376 0	.14800001	1996-97
3 Ed O'Bannon	DAL 24	4 203.2	100.697424	UCLA	USA	1995	1	9	64	3.7	2.3	0.6	-8.7	0.06	0.149 0	0.1669999	1.3989999	0.077 1	1996-97
4 Ed Pinckney	MIA 34	4 205.74	108.86208	Villanova	USA	1985	1	10	27	2.4	2.4	0.2	-11.2	0.109	0.179	0.127	0.611	0.04 1	1996-97
5 Eddie Johnson	HOU 38	3 200.66	97.5222800000	Illinois	USA	1981	2	29	52	8.2	2.7	1	4.1	0.034	0.126	0.22	0.541	0.102 1	1996-97
6 Eddie Iones	ΙΔΙ 2	5 198 12	86 18248	Temple	LISA	1994	1	10	80	17 2	4 1	3 4	4 1	0.035	0 091	0 209 (5589999	0 149 1	1996-97

매 시즌 별 선수의 데이터가 저장됨을 알 수 있다.

Player_Name(선수이름), Team, Age, Season 등 기본적인 **선수 정보** GP(경기수), PTS(평균 경기당 득점), REB(평균 경기당 리바운드) 등 고전적인 **1차 스탯** NET_RATING(평균 마진율), USG_PCT(공격 점유율), TS_PCT(트루 슈팅 성공률) 등 현대적인 **2차 스탯**

	player_name	team_abbreviation	college	country	draft_year	draft_round	draft_number	season
count	11145	11145	11145	11145	11145	11145	11145	11145
unique	2235	36	316	76	45	8	75	24

총 11145개의 데이터를 갖고 있음 24시즌 (95~19년)동안 2235개의 선수 데이터를 가지고 있음

미국 성인 남성의 평균신장과 NBA 선수들의 신장 비교 (미국성인남성 신장 데이터 소스: WikiPedia)

NBA 선수들의 신장 분포도

키와 체중의 상관관계 트랜드

시간이 지날 수록 키와 몸무게의 상관 관계가 줄어들고 있음

이는 키도 크고 체중도 많이 나가는 건 장한 체격에서 비교적 체중이 덜 나가 는 체형을 선호함을 의미함.

즉, 현대 NBA에서 요구하는 신장의 조건이 **과거와 변화하고 있음**을 알 수 있음.

NBA 선수들의 BMI 트랜드

BMI지수가 점점 줄어듦을 알 수 있다.

보통 일반인의 경우 BMI를 비만 도를 측정하는데 사용하지만, 운동선수들의 경우 **근육량**을 측정 하는 척도로 사용한다.

즉, 전보다 **더 왜소한 체격**의 선수 를 요구하는 걸 알 수 있다. (2019년에 반등한 건, 한 선수에 의해서다.)

NBA선수들의 키/체중 트랜드

시간이 지날 수록 키와 몸무게도 줄어들고 있음.

앞서 말한 것처럼 과거에 비해 덜 건장한 체격을 선호하는 것 뿐만 아니라, 키와 몸 무게도 더 작은 사이즈를 요구하고 있음 을 알 수 있음.

드래프트(신인지명) 평균 신장

드래프트에서 요구하는 평균 키의 변화량은 크지 않음

즉, 신인을 뽑을 때 고려하는 요소 로써 신장은 중요하게 보는 것을 알 수 있다.

드래프트(신인지명) 평균 BMI

앞에 언급한 신장과 BMI(체격)의 사정은 조금 다르다.

앞서 언급했던 2019년 드래프트를 제외하고는 신인 선수에게 요구하는 체격 조건은 눈에 띄게 감소하는 추세이다.

즉, 여전히 키는 신인 선수를 볼 때 중요한 요소 중에 하나이지만, 체격의 중요성은 감소하는 추세이다.

나이에 따른 체중

이와 별개로, 나이에 따라 체중 (근육량)은 증가하는 경향을 볼 수 있다.

26세부터 이러한 경향이 눈에 띄는데, 운동 능력(민첩성, 속도 등)의 저하를 근육량, 즉 힘의 향상으로 대체함을 알 수 있다.

신장과 스탯 간의 상관관계

당연하게 신장과 리바운드의 상관관계는 높다. 즉, 키가 큰 선수는 리바운드를 잘 잡는다는 결론이다.

마찬가지로, 신장과 어시스트의 상관관계는 낮다.

신장이 큰 선수는 플레이 메이킹보다 다른 플레이에 집중을 하는 것을 알 수 있다. (USG(공격 점유율)도 낮다.)

즉 신장과 유의미한 상관관계가 있는 스탯은 리바운드와 어시스트다.

신장 별 리바운드 / 어시스트

앞서 언급한대로 유의미한 상관 관계를 내는 신장 별 리바운드 / 어시스트 스탯이다.

신장이 클수록, 높은 리바운드와 낮은 어시스트.

작을수록 낮은 리바운드, 높은 어시스트를 기록한다.

의문점

그렇지만, 니콜라 요키치와 같은 선수들을 보면 센터임에도 플레 이 메이킹을 한다.

르브론 제임스의 케이스도 장신이지만 플레이 메이킹을 주도한다. (물론 위의 두 선수들은 아웃라이어다)

과연 위에서 언급한대로 장신은 선수들은 플레이 메이킹 능력이 떨어져도 되는가?

GAME 1 **29 PTS** 15 REB **14 AST GAME 3 19 PTS** 12 REB **18 AST GAME 5 17 PTS** 9 REB **11 AST**

GAME 2 **24 PTS** 9 REB 10 AST **GAME 4 26 PTS** 12 AST **GAME 6 19 PTS** 12 REB **12 AST**

신장별리바운드 / 어시스트 상관계 트랜드

신장별 리바운드의 트랜드는 크게 변화량이 없다.

하지만 어시스트의 경우 사정이 다르다. 2012년을 기점으로 어시스트의 상관관계는 꾸준히 증가하고 있다.

즉, 현대 농구는 **빅맨에게도 플** 레이 메이킹 능력을 요구하도 록 변화하고 있다.

2010년 이전의 신장과 마진율 Box Plot

height_bin=(190.5, 198.12]
height_bin=(210.82, 231.14]
height_bin=(200.66, 205.74]
height_bin=(198.12, 200.66]
height_bin=(160.019, 190.5]
height_bin=(205.74, 210.82]

2010년 이전의 경우, 210cm 이상의 전수들이 높은 마진율을 기록하고 있다. (편차는 크지만) 198~200cm 사이의 선수가 가장 이상적인 마진율을 기록한다.

중요한 건 **신장별로 마진율의 편차가** 보 인다.

2010년 이후의 신장과 마진율 Box Plot

신장별로 유의미한 마진율 차이를 볼 수는 없으나, 198~200cm 사이의 기 가 가장 이상적인 마진율을 기록함을 볼 수 있다.

2010년 이전과의 가장 큰 차이점은 신장별로 마진율에 유의미한 차이를 보기 힘들다는 것이다.

결론

과거의 경우, 신장별로 정해진 역할을 수행하였고, 이로 인해 큰 키가 가지는 메리트가 분명히 있었다.

하지만, 현대로 올 수록 키와 관계없이 **다재다능** 한 역할을 요구하고 있다.(물론 확실한 강점이 있는 선수들은 예외다)

즉 전술의 발전에 의해 현대 농구는 키와 체중의 강점이 이전에 비해 <mark>엿어짐</mark>을 알 수 있다.

추가적인 이야기

사실 이러한 트랜드의 가장 큰 변화는 한 선수에 의해서다.

바로 골든 스테이트 소속의 스테판 커리 선수의 등장 이후로 **3점 슛의 중요성**이 대두되었다.

3점 슛의 비중이 이전보다 높아지면서, 코트를 넓게 쓰는 팀을 수비하는데 고전하는 느린 선수들을 선호하지 않게 되었다.

마찬가지로 예전과 달리 빅맨이 골 밑에서만 플레이 하는 것이 아니라 외각에서 슛도 중요하게 되었다.

감사합니다

컴퓨터정보과 201944031 **박민우**

Github: Miinuu/NBA Height Analizye: Visualize NBA Height / Weight trend by Python (github.com)