离散数学 (2023) 作业 12

周帛岑 221900309

2023年4月5日

1 Problem 1

解:

 $A \times A = \{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)\}$

- (1): 由于 ∅ 为任何集合的子集, 所以正确
- (2):A 中元素只有 a,b,c 三种, 不含 {a,c}, 故错误
- (3): 由前面计算的 A×A 可知, {a,b} 不是 A×A 中的元素, 故错误
- (4): 由前面计算的 A×A 可知, (c,c) 是 A×A 中的元素, 故正确

2 Problem 2

证:

我们注意到这两个集合中都有类似 (n,n)(即序偶前后元素相同) 的元素,故这样的序偶也会存在一一对应的关系,即对于 $\forall a_i \in A$,总存在唯一的 $b_j \in B$,有 $a_i = b_j$

又
$$A \times A = B \times B$$
,我们可以得到 A,B 基数相同故 $A = B$

3 Problem 3

证:

观察上述两集合我们得知,对于 $A\times B$,属于 A 的元素在序偶中处于第一位,对于 $B\times A$,属于 A 的元素在序偶中处于第二位。

故如果 $A \times B = B \times A$, 即对于 $\forall a_i \in A$, 总存在 $b_j \in B$, 有 $a_i = b_j$, 且由集合的定义,每一个 a_i 均不同, $|B| \ge |A|$, 同理,我们也可以得到 $|A| \ge |B|$, 即 |B| = |A|, 又 A 与 B 中的元素一一对应,故 A = B

反之,若 $A \neq B$,存在 a_i ,其在 B 中找不到相同元素,此时 $A \times B$ 中的 (a_i, XX) $B \times A$ 的元素对应,或存在 b_j ,其在 A 中找不到相同元素,此时 $B \times A$ 中的 (b_j, XX) $A \times B$ 的元素对应.

综上, 命题得证

4 Problem 4

- (1): 解:由题可知, $R^{-1} = \{(a,b)|b$ 整除 a}
- (2): 解: 由题可知, $\overline{R} = \{(a,b)|b \mod a \neq 0\}$

5 Problem 5

(1): 解;

$$A \cup B = \{ \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 4 \rangle, \langle 3, 3 \rangle, \langle 4, 2 \rangle \}$$

$$A \cap B = \{ <2, 4 > \}$$

(2): 解:

$$dom A = \{1,2,3\}$$

dom
$$B = \{1,2,4\}$$

$$dom (A \cup B) = \{1,2,3,4\}$$

(3): 解:

ran A =
$$\{2,3,4\}$$

ran B = $\{2,3,4\}$
ran (A \cap B) = $\{4\}$
(4): 解:
A-B = $\{(1,2),(3,3)\}$
则 fld (A-B) = $\{1,2,3\}$

6 Problem 6

解:

由题可知,我们求 R 与 S 的复合 由复合关系的定义,S \circ R = $\{(1,1),(1,1),(1,2),(2,1),(2,2),(2,2)\}$

7 Problem 7

- (1): 解: 由题可知, $R_1 \cup R_2 = \{(a,b) | a \equiv b \pmod{3}$ 或 $a \equiv b \pmod{4}$
- (2): 解: 由题可知,由于 3 与 4 互质, $R_1 \cap R_2 = \{(a,b) | a \equiv b \pmod{12}\}$
- (3): 解: 由题可知,由于 3 与 4 互质, R_1 - $R_2 = \{(a,b)|a \equiv b \pmod{3}$ 但 $a \neq b \pmod{4}\}$
- (4): 解: 由题可知,由于 3 与 4 互质, R_2 - $R_1 = \{(a,b)|a \equiv b \pmod{4}$ 但 $a \neq b \pmod{3}\}$
- (4): 解: 由题可知,由于 3 与 4 互质, $R_2 \oplus R_1 = \{(a,b) | a \equiv b \pmod{4}$ 或 $a \equiv b \pmod{3}$ 但 a $\neq b \pmod{12}$

8 Problem 8

a):

解: 由题可知, 取 A = {a,b,c,d}

则 $A \times A$ 中一共 $A_4^2 = 12$ 个元素

由关系的定义,一共有 212+1 = 4097 种关系

b):

排除 $(a,a),A \times A$ 中一共 $A_4^2-1=11$ 个元素

由关系的定义,一共有 $2^{11} = 2048$ 种关系

9 Problem 9

(1): 证:

不妨假设 $\forall (x,y) \in (R_1 \cup R_2)^{-1}$

则 $(y,x)\in R_1\cup R_2$

则 $(y,x) \in R_1$ 或 $(y,x) \in R_2$

即 $(x,y) \in (R_1)^{-1}$ 或 $(x,y) \in (R_2)^{-1}$

 $\mathbb{RI} (R_1 \cup R_2)^{-1} = (R_1)^{-1} \cup (R_2)^{-1}$

(2): 证:

不妨假设 $\forall (x,y) \in (R_1 \cap R_2)^{-1}$

则 $(y,x)\in R_1\cap R_2$

则 $(y,x)\in R_1$ 且 $(y,x)\in R_2$

即 $(x,y) \in (R_1)^{-1}$ 且 $(x,y) \in (R_2)^{-1}$

 $\mathbb{RI} (R_1 \cup R_2)^{-1} = (R_1)^{-1} \cap (R_2)^{-1}$

10 Problem 10