Gramáticas

Son dispositivos generadores de cadenas. Se componen de una serie de algoritmos conclusivos, pero no son algoritmos.

Definiciones

- **Producir**: Es una relación binaria con cierre transitivo (producir en al menos 1 paso) y cierre transitivo y reflexivo (producir en n pasos)
- **Derivación**: Secuencia finita de producciones desde S hasta $w \in V^*$
- Forma sentencial: Cada una de las cadenas que se derivan a partir de S. Si $S\Rightarrow^*\alpha\in V^*$, entonces α es una forma sentencial de G
- Cadena generada por una gramática: w es una cadena generada por G sii $w \in T^*$ y w es una forma sentencial
- ullet Lenguaje generado por una gramática: Todas las cadenas generadas por G constituyen el lenguaje L(G)

Tipos de reglas

Nombre	Símbolo	Regla	Restricciones
Estructura de frase	Tipo0	lpha ightarrow eta	$(lpha \in V^+) \wedge (eta \in V^*)$
Sensible al contexto	Tipo1	$lpha Aeta ightarrow lpha \gamma eta$	$(lpha,eta\in V^*)\wedge (\gamma\in V^+)\wedge (A\in N)$
De contexto libre	Tipo2	A o lpha	$(A\in N)\wedge (lpha\in V^+)$
Regular izquierda	R_{izq}	A o aB	$(A,B\in N)\wedge (a\in T)$
Regular derecha	R_{der}	A o Ba	$(A,B\in N)\wedge (a\in T)$
Regular terminal	R_{ter}	A o a	$(A \in N) \wedge (a \in T)$
Tipo 3	R		$(p \in R_{izq}) \lor (p \in R_{der})$
Lineal	L	A o lpha Beta	$((A,B\in N)\wedge(\alpha,\beta\in T^*))\vee(p\in R_{izq})\vee(p\in R_{der})$
Lineal terminal	L_{ter}	A o lpha	$(A\in N)\wedge (lpha\in T^+)$
Lineal izquierda	L_{izq}	A o lpha B	$(A,B\in N)\wedge (\alpha\in T^*)$
Lineal derecha	L_{der}	A o Blpha	$(A,B\in N)\wedge(\alpha\in T^*)$
Unitaria	U	A o B	$A,B\in N$
Épsilon	$R_{arepsilon}$	A o arepsilon	$A \in N$

- Las gramáticas de tipo0 es la única que pueden sustituir más de un símbolo en otra cadena (antecedente > consecuente). Además, pueden convertir símbolos terminales en no terminales o en otros terminales.
- A partir de las reglas de contexto libre, toda regla de producción se compondrá de un antecedente **único** que precede a una cadena de V^+ . Por otra parte, las reglas lineales son muy similares a las reglas regulares pero difieren en los conjuntos terminales que utilizan. Mientras que las reglas terminales utilizan símbolos de T^+ o T^*
- Las reglas unitarias y lineales son de tipo 2
- Las reglas Épsilon son de tipo 0

Tipos de gramáticas

Nombre	Símbolo	Condiciones
Estructura de frase	Tipo0	$orall p \in P ightarrow p \in Tipo0$
Sensible al contexto	Tipo1	$orall p \in P ightarrow p \in Tipo1$
De contexto libre	Tipo2	$orall p \in P ightarrow p \in Tipo2$
Regular	Tipo3	$P \subset GRI \lor P \subset GRD$
Regular izquierda	GRI	$orall p \in P o (p \in R_{ter}) ee (p \in R_{izq})$
Regular derecha	GRD	$orall p \in P o (p \in R_{ter}) ee (p \in R_{der})$
Lineal	GL	$orall p \in P ightarrow p \in Lineal$
Lineal izquierda	GLI	$orall p \in P o (p \in L_{izq}) ee (p \in L_{ter})$
Lineal derecha	GLD	$orall p \in P o (p \in L_{der}) ee (p \in L_{ter})$
Épsilon regular	$G \varepsilon R$	$P \subset G arepsilon RI ee P \subset G arepsilon RD$
Épsilon regular izquierda	$G \varepsilon R I$	$orall p \in P o (p \in R_{ter}) ee (p \in R_{izq}) ee (p \in R_{arepsilon})$
Épsilon regular derecha	$G \varepsilon R D$	$orall p \in P o (p \in R_{ter}) ee (p \in R_{der}) ee (p \in R_{arepsilon})$
Épsilon - contexto libre	$G \varepsilon C L$	$orall p \in P o (p \in Tipo2) ee (p \in R_\epsilon)$

Jerarquía de Chomsky. Clasificación de lenguajes

 $Finitos \subset Tipo3 \subset Lineales \subset Tipo2 \subset Tipo1 \subset Tipo0 \subset L_{REP} \subset 2^{\Sigma^*}$

¿Existe un algoritmo conclusivo para ...?

	Estructura de frase	Sensible al contexto	Contexto libre	Lineales	Regulares
$G_1 \equiv G_2$	No	No	No	No	Sí
$L(G_1)\subseteq L(G_2)$	No	No	No	No	Sí
$X\in L(G_1)$	No	Sí	Sí	Sí	Sí
$L(G_1)=\emptyset$	No	No	Sí	Sí	Sí
$ L(G_1) \in N$	No	No	Sí	Sí	Sí
$L(G_1) \in L.3$	No	No	No	No	Trivial

Cierre de los tipos de lenguaje

	Estructura de frase	Sensible al contexto	Contexto libre	Lineales	Regulares
$L \cup L'$	Sí	Sí	Sí	Sí	Sí
$L\cap L'$	Sí	Sí	No	No	Sí
$L\cap L.3$	Sí	Sí	Sí	Sí	Sí
\overline{L}	No	Sí	No	No	Sí
LL'	Sí	Sí	Sí	No	Sí
L^N	Sí	Sí	Sí	No	Sí
L^*	Sí	Sí	Sí	No	Sí
L^+	Sí	Sí	Sí	No	Sí
L^R	Sí	Sí	Sí	Sí	Sí

Proposiciones

General

- La cadena w necesita al menos |w| pasos para que un AFD lo compute
- La cadena w puede rechazarse en un autómata ND en menos de |w| pasos si todas sus computaciones sobre w son de bloqueo
- ullet $arepsilon\in T^*$ por lo que la cadena vacía siempre es un símbolo terminal (pertenece a las cadenas terminales)

Reglas de producción

- ullet Una regla de producción puede generar el mismo símbolo que su antecesor (Regla unitaria donde A o A)
- Solo hacen falta 2 reglas para tener un lenguaje infinito.

Gramáticas

- Toda gramática es de tipo 0 (al menos)
- Existen infinitas gramáticas equivalentes
- Dada $G \in GRI$, se puede obtener $G \equiv G' \in GR \varepsilon I$ tal que $L(G') = L(G) \cup \{\varepsilon\}$
- Dada $G \in GCL$, se puede obtener $G \equiv G' \in GR \varepsilon CL$ tal que $L(G') = L(G) \cup \{\varepsilon\}$
- Una gramática puede ser lineal sin ser lineal derecha ni lineal izquierda
- Si G es Lineal izq y Lineal der, entonces ||L(G)|| < |P||
- Si G es Lineal izq o Lineal der, entonces L(G) es regular
- Si G es GRI y GRD, entonces solo contiene reglas terminales y por tanto $||L(G)|| \leq |T||$

Lenguajes

- ullet Los lenguajes se analizan independientemente del símbolo Épsilon $L(G)=L-\{arepsilon\}$
- Σ^* es un lenguaje regular
- No todo subconjunto de un lenguaje regular es también lenguaje regular
- Todo lenguaje es numerable puesto que es subconjunto de Σ^*
- Todo lenguaje no representable es la unión de infinitos lenguajes representables

Alef1

2^sigma*

