Finding happiness in your SAD

Intro

- SAD is fundamental to ecological theory
- As such we should have robust methods to test SAD predictions
- Despite decades of work on SAD, there is little agreement about best practices
- Here we lay out guidance to be happy with your SAD
 - SAD models are mathematically related to one another and recognizing that can help us identify
 what we're really testing
 - Common visualization methods are mathematical transformations of one another, but some are better than others
 - * use CDF or Rank
 - * Binning data does not help identify nor illustrate the shape of the SAD; this has been said many times before, can we all finally agree to stop?
 - Sampling is a real consideration but the veil line is overly simplistic
 - * sub-sampling largely preservers parametric forms of SADs
 - * sub-sampling produces predictable changes in parameter values of SADs
 - * small sample sizes make it hard to discriminate between models
 - AIC is great for model comparison (widely agreed on) but is not great for goodness of fit
 - We explore a range of goodness of fit metrics and decide on the following guidelines
 - * hypothesis tests to reject a model based on exact tests are good
 - * sample size can have a strong influence on goodness of fit metrics so to compare goodness of fit across samples of different size care is needed; we propose XYZ method for this use case
- We apply these best practices to several iconic SAD datasets, uncovering several new finds
 - something about which models fit best (not new, but sets the stage)
 - something about whether those best fitting models are actually well-fit (new)
 - something about sufficiency of data to discriminate amoung models (new)
 - something about scaling of parameters across space or something (new)

Mathematical relationships between SAD forms

- We first use known results from the applied mathematics literature to draw connections between parametric forms of SAD models
- Maybe: We then use KL divergences to understand how identifiable two major classes of SAD models are
 - what is KL divergence
 - how does sample size come into play
- Figure map of SADs and (maybe, maybe not at all: map of plognorm and tnegbiom parameter spaces)

Visualization practices

- We use known results from probability theory to re-iterate relationships between SAD plots
- We use known results from applied math to argue for the use of certain plots over others
- We use simulation to demonstrate a few pitfalls of binning
- Figure map of plot types
- Figure binning and modes

Exploring the effects of sampling on SAD inference

- Defining SAD sampling: it's over individuals not species
- Simulation experiment
 - Supp Figure how does sample size influence parameter estimates
 - Figure how does sample size influence model competition

Developing the best goodness of fit metrics

- The metrics to be considered and why
 - classic metrics (e.g. KS)
 - MSE on RAD
 - "exact test" metric
 - order statistic metric
- Simulation set-up
 - simulate under known model
 - fit that model or a different model
 - calculate goodness of fit
 - do under different sample sizes
- Supp Figure scaling of goodness of fit metrics and sample size
- Figure ability of goodness of fit metrics to accurately capture divergence from known SAD models

Studying SADs in the wild

- Figure spatial structure of SAD in BBS (or something)
- Figure data sufficiency

Discussion

- Summarize key take-homes
- address areas for continued improvement (both in data generation and analysis)
- Make a final point about the continued relevance of SADs