This homework is due on Friday, October 28, 2022, at 11:59PM. Self-grades and HW Resubmissions are due on the following Friday, November 4, 2022, at 11:59PM.

1. (OPTIONAL) Mid-Semester Survey

Please fill out this mid-semester survey to let us know how the class has been going so far! This survey is optional and anonymous, but you can submit a screenshot of the final page of the survey to Gradescope to receive 2 global extra credit points! We will be accepting submissions on Gradescope until Sunday, October 30 at 11:59pm.

2. Change of Basis

(a) For any given vector, we have to choose a basis to write this vector in. Typically, we choose the standard basis $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ where \vec{e}_i is a vector with a 1 in the *i*th position and zeros ev-

erywhere else. Given a vector
$$\vec{x} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$
, write \vec{x} as a linear combination of standard basis

vectors.

Solution: We have that $\alpha_i \vec{e_i}$ will put the term α_i in the *i*th component of the vector and zeros everywhere else. Hence, we can write

$$\vec{x} = \alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2 + \dots + \alpha_n \vec{e}_n \tag{1}$$

(b) We can also represent the same vector \vec{x} in a different basis. Let us write this new basis as $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$. Find a way to write \vec{x} from the previous subpart as a linear combination of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$. Simplify your answer as an equation with matrix-vector multiplication, and assume that $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are linearly independent.

(HINT: One representation of \vec{x} is the one you determined in the previous subpart. Another representation of \vec{x} is $\tilde{\alpha}_1\vec{v}_1 + \tilde{\alpha}_2\vec{v}_2 + \cdots + \tilde{\alpha}_n\vec{v}_n$. We need these two representations to be algebraically equal to indicate

that they both represent the same vector. For your convenience, you may define $\vec{\tilde{\alpha}} = \begin{bmatrix} \alpha_1 \\ \widetilde{\alpha}_2 \\ \vdots \\ \widetilde{\alpha}_n \end{bmatrix}$.)

Solution: We can first write $\tilde{\alpha}_1 \vec{v}_1 + \tilde{\alpha}_2 \vec{v}_2 + \cdots + \tilde{\alpha}_n \vec{v}_n$ as

$$\widetilde{\alpha}_{1}\overrightarrow{v}_{1} + \widetilde{\alpha}_{2}\overrightarrow{v}_{2} + \dots + \widetilde{\alpha}_{n}\overrightarrow{v}_{n} = \underbrace{\begin{bmatrix} \overrightarrow{v}_{1} & \overrightarrow{v}_{2} & \dots & \overrightarrow{v}_{n} \end{bmatrix}}_{V} \begin{bmatrix} \widetilde{\alpha}_{1} \\ \widetilde{\alpha}_{2} \\ \vdots \\ \widetilde{\alpha}_{n} \end{bmatrix}$$
(2)

We want this to be equal to $\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$, so by setting these two terms equal, we have

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = V \begin{bmatrix} \widetilde{\alpha}_1 \\ \widetilde{\alpha}_2 \\ \vdots \\ \widetilde{\alpha}_n \end{bmatrix}$$
 (3)

Hence, we have that

$$\begin{bmatrix} \widetilde{\alpha}_1 \\ \widetilde{\alpha}_2 \\ \vdots \\ \widetilde{\alpha}_n \end{bmatrix} = V^{-1} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$
 (4)

where *V* is invertible because $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are linearly independent.

(c) Suppose that we truncated our basis so that we now only have $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ where m < n linearly independent vectors, but we could still represent \vec{x} as a linear combination of these vectors. **How do you modify your method from the previous part?** You may not assume that you know $\vec{v}_{m+1}, \ldots, \vec{v}_n$.

(HINT: Think about using projections. Specifically, consider projecting onto the column space of a matrix that you define.)

Solution: Following the hint, we can define a matrix $V_m = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_m \end{bmatrix}$. We want to find

a vector
$$\begin{bmatrix} \widetilde{\alpha}_1 \\ \widetilde{\alpha}_2 \\ \vdots \\ \widetilde{\alpha}_m \end{bmatrix}$$
 such that

$$V_{m} \begin{bmatrix} \widetilde{\alpha}_{1} \\ \widetilde{\alpha}_{2} \\ \vdots \\ \widetilde{\alpha}_{m} \end{bmatrix} = \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{bmatrix}$$
 (5)

We can solve this as a least squares problem and obtain

$$\begin{bmatrix} \widetilde{\alpha}_1 \\ \widetilde{\alpha}_2 \\ \vdots \\ \widetilde{\alpha}_m \end{bmatrix} = \left(V_m^\top V_m \right)^{-1} V_m^\top \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$
 (6)

(d) Suppose that all the vectors \vec{v}_i from the previous part were orthonormal. **Simplify your answer** from the previous subpart under this assumption.

(HINT: Let
$$U = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \cdots & \vec{u}_m \end{bmatrix} \in \mathbb{R}^{n \times m}$$
 where $n > m$. If $S = U^\top U$, then $S_{ij} = \vec{u}_i^\top \vec{u}_j$.)

Solution: Following the hint, we can define $S = V_m^\top V_m$. We have that $S_{ij} = \vec{v}_i^\top \vec{v}_j$. If i = j, then $S_{ij} = S_{ii} = \vec{v}_i^\top \vec{v}_i = 1$. Otherwise, if $i \neq j$, $S_{ij} = \vec{v}_i^\top \vec{v}_j = 0$. Hence, we have ones along the diagonal and zeros everywhere else, so S = I. Thus, our result from the previous part simplifies to

$$\begin{bmatrix} \widetilde{\alpha}_1 \\ \widetilde{\alpha}_2 \\ \vdots \\ \widetilde{\alpha}_m \end{bmatrix} = \left(\underbrace{V_m^{\top} V_m}_{I} \right)^{-1} V_m^{\top} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = V_m^{\top} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$
 (7)

3. Cayley-Hamilton and Controllability Matrix

(a) We can define the *characteristic polynomial* of a matrix $A \in \mathbb{R}^{n \times n}$ as

$$p_A(\lambda) = \lambda^n + c_{n-1}\lambda^{n-1} + \dots + c_1\lambda + c_0\lambda^0$$
(8)

where each $c_i \in \mathbb{R}$ is a constant. The characteristic polynomial has roots that are the eigenvalues of A. That is, we can equivalently define

$$p_A(\lambda) = \det\{\lambda I - A\} \tag{9}$$

We say that any of the eigenvalues of A "satisfy" the characteristic polynomial in that

$$p_A(\lambda_i) = 0 \tag{10}$$

where λ_i is the *i*th eigenvalue of A. Now, let A be a diagonalizable matrix, where we may write $A = V\Lambda V^{-1}$. **Prove that** A **satisfies its own characteristic polynomial.** In other words, prove that $p_A(A) = 0_{n \times n}$, where $0_{n \times n}$ is a $n \times n$ matrix of zeros.

(HINT: It is not correct to simply plug in $\lambda = A$ into $det\{\lambda I - A\}$.)

Solution: Recall that $A^i = V \Lambda^i V^{-1}$. Hence,

$$p_A(A) = A^n + c_{n-1}A^{n-1} + \dots + c_1A + c_0A^0$$
(11)

$$= V\Lambda^{n}V^{-1} + c_{n-1}V\Lambda^{n-1}V^{-1} + \dots + c_{1}V\Lambda V^{-1} + c_{0}I$$
(12)

$$= V \left(\Lambda^{n} + c_{n-1} \Lambda^{n-1} + \dots + c_{1} \Lambda + c_{0} I \right) V^{-1}$$
(13)

Notice that the *i*th diagonal entry of $\Lambda^n + c_{n-1}\Lambda^{n-1} + \cdots + c_1\Lambda + c_0I$ is $\lambda_i^n + c_{n-1}\lambda_i^{n-1} + \cdots + c_1\lambda_i + c_0 = p_A(\lambda_i)$. Thus, we have that

$$p_A(A) = V \begin{bmatrix} p_A(\lambda_1) & & & \\ & p_A(\lambda_2) & & \\ & & \ddots & \\ & & p_A(\lambda_n) \end{bmatrix} V^{-1}$$

$$(14)$$

Note that $p_A(\lambda_i) = 0$, so

$$p_A(A) = V \begin{bmatrix} p_A(\lambda_1) & & & \\ & p_A(\lambda_2) & & \\ & & \ddots & \\ & & p_A(\lambda_n) \end{bmatrix} V^{-1}$$

$$(15)$$

$$=V\begin{bmatrix}0\\0\\&&\\&&\ddots\\&&&0\end{bmatrix}V^{-1}$$
(16)

$$=0_{n\times n} \tag{17}$$

where $0_{n \times n}$ is an $n \times n$ matrix of zeros.

(b) Now, consider some vector $\vec{b} \in \mathbb{R}^n$. Using the result from the previous part, show that $A^n\vec{b}$ is linearly dependent on $A^{n-1}\vec{b}$, $A^{n-2}\vec{b}$, ..., $A\vec{b}$, \vec{b} .

Solution: From the previous part, we know that

$$A^{n} + c_{n-1}A^{n-1} + \dots + c_{1}A + c_{0}I = 0_{n \times n}$$
(18)

Right multiplying both sides by \vec{b} , we get

$$A^{n}\vec{b} + c_{n-1}A^{n-1}\vec{b} + \dots + c_{1}A\vec{b} + c_{0}\vec{b} = \vec{0}$$
(19)

which we can rearrange to get

$$A^{n}\vec{b} = -\left(c_{n-1}A^{n-1}\vec{b} + \dots + c_{1}A\vec{b} + c_{0}\vec{b}\right)$$
 (20)

Thus, $A^n\vec{b}$ is linearly dependent on $A^{n-1}\vec{b}$, $A^{n-2}\vec{b}$, ..., $A\vec{b}$, \vec{b} .

(c) Instead of setting \vec{b} to be a vector, let it be a matrix $B \in \mathbb{R}^{n \times m}$. Now, show that the columns of $A^n B$ are linearly dependent on the columns of $A^{n-1}B$, $A^{n-2}B$, ..., AB, B.

(HINT: If we were to write $B = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_m \end{bmatrix}$ where each column is n-dimensional, we can write $A^i B = \begin{bmatrix} A^i \vec{b}_1 & A^i \vec{b}_2 & \cdots & A^i \vec{b}_m \end{bmatrix}$. Make sure you convince yourself of this.)

Solution: We have that $A^nB = \begin{bmatrix} A^n\vec{b}_1 & A^n\vec{b}_2 & \cdots & A^n\vec{b}_m \end{bmatrix}$. From the previous part, we have that $A^n\vec{b}_i$ is linearly dependent on $A^{n-1}\vec{b}_i$, $A^{n-2}\vec{b}_i$, ..., $A\vec{b}_i$, \vec{b}_i . Since i is arbitrary here, we have that the columns of A^nB are linearly dependent on the columns of $A^{n-1}B$, $A^{n-2}B$, ..., AB, B.

(d) Consider a discrete time system of the form

$$\vec{x}[i+1] = A\vec{x}[i] + B\vec{u}[i] \tag{21}$$

where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. The controllability matrix for this discrete time system is given by

$$C = \begin{bmatrix} A^{n-1}B & A^{n-2}B & \cdots & AB & B \end{bmatrix}$$
 (22)

Conclude that the rank of your controllability matrix will not change if, instead, you made your controllability matrix $\begin{bmatrix} A^nB & A^{n-1}B & \cdots & AB & B \end{bmatrix}$ (i.e., you prepended A^nB to your original controllability matrix).

Solution: From the previous part, we have that the columns of A^nB are linearly dependent on the columns of $A^{n-1}B$, $A^{n-2}B$,..., AB, B. Hence, if we were to prepend A^nB to our original controllability matrix, the rank would not change since each column of A^nB is linearly dependent on columns already in the controllability matrix.

4. CCF Transformation and Controllability

(a) Consider the following discrete time system

$$\vec{x}[i+1] = A\vec{x}[i] + B\vec{u}[i] \tag{23}$$

Suppose we define a change of basis operation given by $M\vec{z}[i] = \vec{x}[i] \iff \vec{z}[i] = M^{-1}\vec{x}[i]$. This yields a new discrete time system of the form

$$\vec{z}[i+1] = \widetilde{A}\vec{z}[i] + \widetilde{B}\vec{u}[i] \tag{24}$$

for some \widetilde{A} and \widetilde{B} defined in terms of M, A, and B. What is the controllability matrix for the system in eq. (24), in terms of M, A, and B?

Solution: We have that

$$\vec{x}[i+1] = A\vec{x}[i] + B\vec{u}[i] \tag{25}$$

$$M\vec{z}[i+1] = AM\vec{z}[i] + B\vec{u}[i] \tag{26}$$

$$\vec{z}[i+1] = \underbrace{M^{-1}AM}_{\widetilde{A}} \vec{z}[i] + \underbrace{M^{-1}B}_{\widetilde{B}} \vec{u}[i]$$
 (27)

We have that the controllability matrix for the z system is $C_z = \begin{bmatrix} \widetilde{A}^{n-1}\widetilde{B} & \widetilde{A}^{n-2}\widetilde{B} & \cdots & \widetilde{A}\widetilde{B} & \widetilde{B} \end{bmatrix}$ where $\widetilde{A}^i\widetilde{B} = (M^{-1}A^iM)(M^{-1}B) = M^{-1}A^iB$. Hence, we can rewrite the controllability matrix as

$$C_z = \begin{bmatrix} M^{-1}A^{n-1}B & M^{-1}A^{n-2}B & \cdots & M^{-1}AB & M^{-1}B \end{bmatrix}$$
 (28)

$$= M^{-1} \begin{bmatrix} A^{n-1}B & A^{n-2}B & \cdots & AB & B \end{bmatrix}$$
 (29)

(b) Consider the change of basis given by $\vec{z}[i] = T^{-1}\vec{x}[i]$ where, under this change of basis transformation, we have the following discrete time system

$$\vec{z}[i+1] = A_{\text{CCF}}\vec{z}[i] + B_{\text{CCF}}\vec{u}[i]$$
(30)

Using the result from the previous part, determine an expression for T in terms of C, the controllability matrix of the original system in eq. (23), and C_{CCF} , the controllability matrix of the system in eq. (30).

Solution: From the previous part, we can set M = T and $C_z = C_{CCF}$ to obtain

$$C_{CCF} = T^{-1}C \tag{31}$$

$$TC_{CCF} = C$$
 (32)

$$T = \mathcal{CC}_{CCF}^{-1} \tag{33}$$

(c) We know that the controllability matrix for a system in CCF will always be full rank. **Using this,** prove that you can find a transformation matrix *T* as in the previous part if and only if your original system is controllable. (HINT: To prove this, you can first show that, if such a *T* exists, then

your original system is controllable. Then, you can show that, if your original system is controllable, there will exist such a transformation matrix T.) (HINT: Recall that T must be invertible (equivalently, full rank) in order for it to be a valid transformation matrix. You may use without proof the fact that rank(AB) = min(rank(A), rank(B)).)

Solution: Following the hint, we have that, if T exists, then it must be full rank. Also, rank(\mathcal{C}_{CCF}) = n. From the previous part, we end up with

$$rank(\mathcal{C}_{CCF}) = rank(T^{-1}\mathcal{C}) \tag{34}$$

$$rank(\mathcal{C}_{CCF}) = min(rank(T^{-1}), rank(\mathcal{C}))$$
 (35)

$$n = \min(n, \operatorname{rank}(\mathcal{C})) \tag{36}$$

Notice that $rank(\mathcal{C}) \leq n$, so $min(n, rank(\mathcal{C})) = rank(\mathcal{C})$ and we conclude that $rank(\mathcal{C}) = n$. Next, we need to prove that if the original system is controllable (i.e., $rank(\mathcal{C}) = n$), then T exists. We already know how to compute T, so we need to show that rank(T) = n (which would make it a valid basis transformation matrix). We have that

$$rank(T) = rank(\mathcal{CC}_{CCF}^{-1})$$
(37)

$$rank(T) = min(rank(C), rank(C_{CCE}^{-1}))$$
(38)

$$rank(T) = min(n, n) = n (39)$$

so rank(T) = n and it is thus a valid transformation matrix.

(d) Consider the following discrete-time dynamics model:

$$\vec{x}[i+1] = \underbrace{\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}}_{A} \vec{x}[i] + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{\vec{b}} \vec{u}[i] \tag{40}$$

Find the transformation matrix T such that the dynamics model for $\vec{z}[i] = T^{-1}\vec{x}[i]$ is in CCF. You may use a calculator/computer to perform any computations, if you wish.

(HINT: First, find the characteristic polynomial of A. Use this to determine what A_{CCF} and \vec{b}_{CCF} should be, and then use this to determined C_{CCF} .)

Solution: Firstly, we can compute C as follows:

$$\vec{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{41}$$

$$A\vec{b} = \begin{bmatrix} 1\\1 \end{bmatrix} \tag{42}$$

so $\mathcal{C} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ which is full rank. Hence, the transformation matrix T will exist. Following the hint, the characteristic polynomial of A is

$$p_A(\lambda) = \det\{A - \lambda I\} \tag{43}$$

$$= \det \left\{ \begin{bmatrix} 1 - \lambda & 1 \\ 0 & 1 - \lambda \end{bmatrix} \right\} \tag{44}$$

$$= (\lambda - 1)^2 \tag{45}$$

$$=\lambda^2 - 2\lambda + 1 \tag{46}$$

Here, we pattern match $a_2 = 2$ and $a_1 = -1$. Recall that our A matrix in CCF will be

$$A_{\rm CCF} = \begin{bmatrix} 0 & 1 \\ a_1 & a_2 \end{bmatrix} \tag{47}$$

$$= \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} \tag{48}$$

and

$$\vec{b}_{\rm CCF} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{49}$$

by the definition of CCF. Hence, \mathcal{C}_{CCF} can be computed as follows:

$$\vec{b}_{\text{CCF}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{50}$$

$$A_{\rm CCF}\vec{b}_{\rm CCF} = \begin{bmatrix} 1\\2 \end{bmatrix} \tag{51}$$

so
$$\mathcal{C}_{CCF} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$
. Thus,

$$T = \mathcal{C}\mathcal{C}_{\text{CCF}}^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$
 (52)

5. QR System ID

(a) Suppose we are given the following discrete time dynamical system:

$$x[i+1] = ax[i] + b_1u_1[i] + b_2u_2[i] + \dots + b_{n-1}u_{n-1}[i]$$
(53)

We would like to estimate $a, b_1, b_2, \ldots, b_{n-1}$ using system ID. Suppose we have collected data up to x[m], where m < n. Set up a linear system of the form $D\vec{p} = \vec{s}$ to solve this system ID problem. Show that D has dimensions $m \times n$.

Solution: We can set up our system ID problem as

$$\begin{bmatrix}
x[1] \\
x[2] \\
\vdots \\
x[m]
\end{bmatrix} = \begin{bmatrix}
x[0] & u_1[0] & u_2[0] & \cdots & u_{n-1}[0] \\
x[1] & u_1[1] & u_2[1] & \cdots & u_{n-1}[1] \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x[m-1] & u_1[m-1] & u_2[m-1] & \cdots & u_{n-1}[m-1]
\end{bmatrix} \underbrace{\begin{bmatrix}
a \\
b_1 \\
b_2 \\
\vdots \\
b_{n-1}
\end{bmatrix}}_{\vec{n}} \tag{54}$$

Here, *D* has *m* rows and *n* columns, so $D \in \mathbb{R}^{m \times n}$.

(b) As we saw in the previous part, we have a wide matrix D. Assuming that D is rank m, we would technically have infinitely many solutions for $a, b_1, b_2, \ldots, b_{n-1}$. We can find the solution with the smallest norm using QR decomposition.

We can write $D^{\top} = \begin{bmatrix} \vec{d}_1 & \vec{d}_2 & \cdots & \vec{d}_m \end{bmatrix}$ where each $\vec{d}_i \in \mathbb{R}^n$. We can also define an orthonormal matrix $Q \in \mathbb{R}^{n \times n}$ which can be written as $Q = \begin{bmatrix} \vec{q}_1 & \vec{q}_2 & \cdots & \vec{q}_m & \vec{q}_{m+1} & \vec{q}_{m+2} & \cdots & \vec{q}_n \end{bmatrix}$, where $\operatorname{Span}(\vec{q}_1, \vec{q}_2, \dots, \vec{q}_m) = \operatorname{Span}\left(\vec{d}_1, \vec{d}_2, \dots, \vec{d}_m\right)$. In this case, what is $\vec{d}_j^{\top} \vec{q}_i$ for $j \in \{1, \dots, m\}$ and $i \in \{m+1, \dots, n\}$? Explain your answer.

(HINT: If we say that $\operatorname{Span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n) = \operatorname{Span}(\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n)$, then we may say that \vec{v}_i can be written as a linear combination of $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n$ (and equivalently, \vec{u}_i can be written as a linear combination of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$).)

Solution: Each \vec{d}_j can be written as a linear combination of $\vec{q}_1, \vec{q}_2, \dots, \vec{q}_m$ since their spans are equal. More concretely,

$$\vec{d}_j = \alpha_1 \vec{q}_1 + \alpha_2 \vec{q}_2 + \dots + \alpha_m \vec{q}_m \tag{55}$$

Hence, we have that

$$\vec{d}_j^{\top} \vec{q}_i = (\alpha_1 \vec{q}_1 + \alpha_2 \vec{q}_2 + \dots + \alpha_m \vec{q}_m)^{\top} \vec{q}_i$$
 (56)

$$= \alpha_1 \vec{q}_1^{\top} \vec{q}_i + \alpha_2 \vec{q}_2^{\top} \vec{q}_i + \dots + \alpha_m \vec{q}_m^{\top} \vec{q}_i$$
 (57)

Since $i \in \{m+1,...,n\}$, we have that $\vec{q}_1^{\top} \vec{q}_i = 0, \vec{q}_2^{\top} \vec{q}_i = 0,..., \vec{q}_m^{\top} \vec{q}_i = 0$, so $\vec{d}_j^{\top} \vec{q}_i = 0$ for $j \in \{1,...,m\}$ and $i \in \{m+1,...,n\}$.

(c) Suppose that D^{\top} can be written as

$$D^{\top} = \begin{bmatrix} \vec{q}_1 & \vec{q}_2 & \cdots & \vec{q}_m \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1m} \\ 0 & r_{22} & \cdots & r_{2m} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & r_{mm} \end{bmatrix}$$
(58)

Using this result and the result from the previous part, show that the QR decomposition of D^{\top} can be written as

 $D^{\top} = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0_{(n-m)\times m} \end{bmatrix}$ (59)

Using eq. (59), write an expression for $Q_1^{\top}\vec{p}$ where $D\vec{p} = \vec{s}$, and show that the value of $Q_2^{\top}\vec{p}$ does not matter. Here, $R_1 \in \mathbb{R}^{m \times m}$ is a square, upper triangular matrix, $\begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \in \mathbb{R}^{n \times n}$ is an orthonormal matrix, and $0_{(n-m)\times m} \in \mathbb{R}^{(n-m)\times m}$ is a matrix of all zeros. Q_1 is $n \times m$ and Q_2 is $n \times (n-m)$. Note that R_1 is invertible.

(HINT: Equation (59) uses block matrix form. When multiplying block matrices, they obey the same rules as regular matrix-vector multiplication. That is, $\begin{bmatrix} M & N \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = MA + NB$. When transposing

block matrices, we may write $\begin{bmatrix} A \\ B \end{bmatrix}^{\top} = \begin{bmatrix} A^{\top} & B^{\top} \end{bmatrix}$.) (HINT: First, simplify eq. (59) using the previous hint. Then, use the previous problem to find a potential candidate for Q_2 . Use the previous part again to confirm that this candidate would work by computing R_{ij} using the formula provided in lecture (for $j \in \{1, ..., m\}$ and $i \in \{m+1, ..., n\}$).)

Solution: Simplifying eq. (59), we have

$$D^{\top} = Q_1 R_1 + Q_2 O_{(n-m) \times m} = Q_1 R_1 \tag{60}$$

From eq. (58), we can set

$$Q_1 = \begin{bmatrix} \vec{q}_1 & \vec{q}_2 & \cdots & \vec{q}_m \end{bmatrix} \tag{61}$$

$$R_{1} = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1m} \\ 0 & r_{22} & \cdots & r_{2m} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & r_{mm} \end{bmatrix}$$

$$(62)$$

For Q_2 , we can set it as

$$Q_2 = \begin{bmatrix} \vec{q}_{m+1} & \vec{q}_{m+2} & \cdots & \vec{q}_n \end{bmatrix} \tag{63}$$

which would mean that $\begin{bmatrix} Q_1 & Q_2 \end{bmatrix} = Q$ is an orthonormal matrix. However, we need to check that $R = \begin{bmatrix} R_1 \\ 0_{(n-m)\times m} \end{bmatrix}$ is a valid upper triangular matrix for the QR decomposition.

From lecture, we know that $R_{ij} = \vec{d}_j^{\top} \vec{q}_i$. For $j \in \{1, ..., m\}$ and $i \in \{1, ..., m\}$, we have that $R_{ij} = r_{ij} = \vec{d}_j^{\top} \vec{q}_i$ from eq. (58). For $j \in \{1, ..., m\}$ and $i \in \{m+1, ..., n\}$, we know that $R_{ij} = 0$ from the previous part. Hence, our R matrix is valid.

To find an expression for $Q_1^{\top} \vec{p}$, we can use the fact that $D^{\top} = QR$ to write $D = R^{\top}Q^{\top}$. Hence,

$$R^{\top}Q^{\top}\vec{p} = \vec{s} \tag{64}$$

$$\begin{bmatrix} R_1^{\top} & 0_{(n-m)\times m}^{\top} \end{bmatrix} \begin{bmatrix} Q_1^{\top} \\ Q_2^{\top} \end{bmatrix} \vec{p} = \vec{s}$$
 (65)

$$R_1^{\top} Q_1^{\top} \vec{p} + 0_{(n-m) \times m}^{\top} Q_2^{\top} \vec{p} = \vec{s}$$
 (66)

$$R_1^{\top} Q_1^{\top} \vec{p} = \vec{s} \tag{67}$$

$$Q_1^{\top} \vec{p} = \left(R_1^{\top} \right)^{-1} \vec{s} \tag{68}$$

Note that in eq. (66) we have $0_{(n-m)\times m}^{\top}$ multiplying $Q_2^{\top}\vec{p}$, so it does not matter what $Q_2^{\top}\vec{p}$ is (it can be a vector with any numbers, but since it multiplies with a 0 matrix the result will always be $\vec{0}$).

(d) From the previous part, we determined that the value of $Q_2^{\top} \vec{p}$ did not matter. Hence, we can set $Q_2^{\top} \vec{p} = \vec{0}$ for the purposes of minimizing $\|\vec{p}\|$ (the reason why we do this will be covered a little bit later, but take this as a given for now). Solve for \vec{p} using the QR decomposition of D^{\top} , assuming $Q_2^{\top} \vec{p} = \vec{0}$. (HINT: The following identity holds true: $\begin{bmatrix} A\vec{x} \\ B\vec{x} \end{bmatrix} = \begin{bmatrix} A \\ B \end{bmatrix} \vec{x}$.) (HINT: Stack the two expressions for $Q_1^{\top} \vec{p}$ and $Q_2^{\top} \vec{p}$ to obtain an expression for $\begin{bmatrix} Q_1^{\top} \vec{p} \\ Q_2^{\top} \vec{p} \end{bmatrix}$. Use the previous hint to determine your final expression for \vec{p} .)

Solution: Following the hint, we have $Q_1^{\top} \vec{p} = (R_1^{\top})^{-1} \vec{s}$ from the previous part, and $Q_2^{\top} \vec{p} = \vec{0}$. Thus,

$$\begin{bmatrix} Q_1^{\top} \vec{p} \\ Q_2^{\top} \vec{p} \end{bmatrix} = \begin{bmatrix} (R_1^{\top})^{-1} \vec{s} \\ \vec{0} \end{bmatrix}$$
 (69)

$$\begin{bmatrix} Q_1^\top \\ Q_2^\top \end{bmatrix} \vec{p} = \begin{bmatrix} \left(R_1^\top \right)^{-1} \vec{s} \\ \vec{0} \end{bmatrix} \tag{70}$$

$$Q^{\top} \vec{p} = \begin{bmatrix} \left(R_1^{\top} \right)^{-1} \vec{s} \\ \vec{0} \end{bmatrix} \tag{71}$$

$$\vec{p} = Q \begin{bmatrix} \left(R_1^{\top} \right)^{-1} \vec{s} \\ \vec{0} \end{bmatrix} \tag{72}$$

Contributors:

• Anish Muthali.