2000 G2

Ezra Guerrero Alvarez

March 1, 2022

2000 G2

2000 G2

Two circles G_1 and G_2 intersect at two points M and N. Let AB be the line tangent to these circles at A and B, respectively, so that M lies closer to AB than N. Let CD be the line parallel to AB and passing through the point M, with C on G_1 and D on G_2 . Lines AC and BD meet at E; lines AN and CD meet at P; lines BN and CD meet at Q. Show that EP = EQ.

We use directed angles mod 180°. Also, let m(X,Y) denote the midpoint of \overline{XY} . We have

$$\angle BAE = \angle MCA = \angle MAB = -\angle BAM, \angle EBA = \angle BDM = \angle ABM = -\angle MBA,$$

and AB = AB. Thus, by SAS we have

$$\triangle AMB \stackrel{-}{\cong} \triangle AEB.$$

It follows that AM = AE and MB = EB, so \overline{AB} is the perpendicular bisector of \overline{EM} . Therefore, $\overline{EM} \perp \overline{AB} \parallel \overline{PQ}$, so it suffices to show M is the midpoint of \overline{PQ} . To this end, note that ABQP is a trapezoid whose non-parallel sides meet at N. Therefore, by homothety m(A,B) - m(P,Q) - N. However, by Power of a point we know m(A,B) lies on the radical axis of both circles, id est \overline{MN} . Therefore, m(P,Q) lies on \overline{MN} and must therefore be M. Since MP = MQ and $\overline{EM} \perp \overline{PQ}$, the conclusion follows.