Apellido	Nombre	Padrón	Hojas entregadas	Nota

IMPORTANTE: Resolver cada problema en HOJAS SEPARADAS. Identificar con nombre y apellido cada hoja. Numerar las hojas que entrega. El examen se resuelve en tinta. No usar color rojo. Justificar los resultados obtenidos con procedimientos físico matemáticos lícitos, y con ecuaciones y leyes de la física. Indicar claramente los sistemas de referencia elegidos.

MOMENTOS DE INERCIA BARICÉNTRICOS: I_{CM-ARO}=MR² ; I_{CM-CILINDRO}=MR²/2 ; I_{CM-ESFERA}

MACIZA=2MR²/5 ; I_{CM-ESFERA} HUECA=2MR²/3 ; I_{CM-BARRA}=ML²/12

- 1) Dos partículas están apoyadas sobre una superficie horizontal con rozamiento despreciable. Inicialmente la masa M₁=1kg tiene una rapidez de 2,5m/s. Después que golpea a la M₂=2kg, las masas se mueven según indica la figura.
 - a) Calcular la velocidad de ambas masas después del choque.
 - b) Determinar el impulso de la fuerza resultante sobre M₂ durante el choque.
 - c) Calcular la variación de energía cinética durante el choque. Clasificar el choque.

- **2)** Una barra de masa M y longitud L está sujeta a un eje fijo "O". Inicialmente está en equilibrio, en posición horizontal, y sostenida por un cable. Expresar, en función de los datos del problema:
 - a) La fuerza que ejerce el cable sobre la barra.

Cuando se corta la soga, la barra cae girando sobre el eje "O":

- b) Velocidad angular de la barra cuando ésta forma un ángulo α con la horizontal.
- c) Aceleración angular y la del centro de masa de la barra cuando ésta forma un ángulo α con la horizontal.
- 3) Un bloque (M_B =m) está unido a un disco (M_D =4m y radio R_D =3r) por una soga ideal que está enrollada a una distancia r del centro del disco y pasa por una polea ideal. Considerando un rozamiento tal que el disco rueda sin deslizar:
 - a) Hacer el DCL del disco y del bloque. Escribir las ecuaciones de movimiento y los vínculos.
 - b) Calcular la aceleración angular del disco.
 - c) Calcular la velocidad angular del disco cuando M_{B} bajó una distancia d.

$$\begin{array}{c} M_{2} \cdot \frac{\lambda 2n_{1}4S^{2} \cdot coh_{3}0^{2}}{\lambda 2n_{3}3S^{2}} + M_{1} \cdot coh_{4}4S^{2} \\ \hline M_{2} \cdot \frac{\lambda 2n_{1}4S^{2} \cdot coh_{3}3S^{2}}{\lambda 2k_{3}^{2} \cdot ch_{3}^{2} \cdot ch_{3}S^{2}} = V_{2} \\ \hline 2k_{3}^{2} \cdot \frac{0.707 \cdot 0.966}{0.5} + \frac{2}{9} \cdot \frac{1}{9} \cdot \frac{$$

=>> 8= -48 K

Tricialments on repose of luege Mg braja una distancia d

Planter DEmpisco = Wfvcpisco Ny + Wfr + WT

Emf - Emo = ST. dx

Emf - Emo = ST. dx

Language Mg braja una distancia d

Planter DEmpisco = Wfvcpisco Ny + Wfr + WT

Emf - Emo = ST. dx

Language Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ny + Wfr + WT

Emf - Emo = ST. dx

Language Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ny + Wfr + WT

Emf - Emo = ST. dx

Language Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ny + Wfr + WT

Emf - Emo = ST. dx

Language Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ny + Wfr + WT

Emf - Emo = ST. dx

Language Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Emf - Emo = ST. dx

Language Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco Ng haja una distancia d

Planter DEmpisco = Wfvcpisco