Machine Learning Pipeline Report: Secondhand Machinery Price Prediction

Cristian Perlog

July 16, 2025

1 Introduction

This report summarizes the results of the machine learning pipeline developed to predict second-hand machinery sale prices. The pipeline includes data preprocessing, feature engineering, and evaluation of multiple regression models. The best achieved R² score was 0.87 using XGBoost.

2 Data Exploration

2.1 Data Overview

The dataset contains information about secondhand machinery sales including model description, sale date, base model, and other details. Key preprocessing steps included:

- Handling missing values (dropping columns with more than 70% missing)
- Encoding categorical variables (Target Encoding for high cardinality, Label Encoding for low)
- Feature engineering (e.g., calculating machine age from year made and sale date or splitting sales date into year, month and day)

Figure 1: Correlation Between Features

Figure 2: Exploratory Data Analysis: Target distribution and top correlations

3 Models Used

Four types of models with hyperparameter tuning were evaluated:

- Linear Models: Baseline (Linear, Ridge, Lasso)
- Random Forest: Robust to outliers with feature importance
- Gradient Boosting: Sequential error correction
- XGBoost: Advanced boosting with regularization

4 Results

4.1 Model Performance Comparison

Table 1: Model Comparison

Model	Test R ²	Test RMSE	Test MAE
XGBoost	0.871	8,133.74	5,393.81
Gradient Boosting	0.870	$8,\!178.66$	$5,\!358.42$
Random Forest	0.852	8,727.84	$5,\!678.27$
Linear Regression	0.575	14,771.56	10,362.33

Key observations from the model comparison:

- Tree-based models significantly outperformed linear models (XGBoost R² 0.871 vs Linear Regression 0.575)
- XGBoost and Gradient Boosting showed nearly identical performance
- The best parameters show preference for deeper trees (maximum depth=5-7) and moderate learning rates (0.1)

Figure 3: Model performance comparison on test set

4.2 Best Model Performance

The XGBoost model achieved the best performance with the following metrics:

Table 2: Best Model (XGBoost) Evaluation Metrics

Metric	Test Set
R ² Score	0.8711
RMSE	8133.74
MAE	5393.81

Figure 4: Visualization of the XGBoost Predictions

4.3 Feature Importance

The Random Forest feature importance analysis revealed the most predictive features:

Figure 5: Top 20 important features from Random Forest

5 Conclusion

The XGBoost model demonstrated the best performance in predicting second hand machinery prices, achieving an \mathbb{R}^2 of 0.8711. Key findings include:

- Machine age and model description were among the most important features
- Tree-based models outperformed linear models significantly
- The model shows good generalization with similar validation and test performance