Auf diesem Übungsblatt sollen Sie die folgenden Begriffe

- Relation, reflexiv, (anti)symmetrisch,transitiv
- Ordnungs- und Äquivalenzrelation
- Äquivalenzklasse
- Abbildung, Bild, Urbild
- injektiv, surjektiv, bijektiv
- inverse Abbildung

wiederholen und üben

- zu überprüfen, ob eine Relation vorliegt und welche Eigenschaften diese besitzt;
- zu überprüfen, ob eine Abbildung vorliegt und welche Eigenschaften diese besitzt;
- zu überprüfen, ob zwei Mengen gleichmächtig sind.

Präsenzaufgaben

Verständnisfragen

1. Kann eine Ordnungsrelation gleichzeitig eine Äquivalenzrelation sein?

2. Eine Äquivalenzrelation teilt eine Menge M in disjunkte Äquivalenzklassen ein. Sei umgekehrt eine Einteilung von M in disjunkte Teilmengen gegeben, deren Vereinigung gerade M ergibt. Gibt es eine Äquivalenzrelation, deren Äquivalenzklassen genau diese Teilmengen sind?

3.	Welche der	folgenden	Relationen sind Aquivalenzrelationen?
	$\Box a$	$\sim b$: \Leftrightarrow	a und b duzen sich.
	$\Box a$	$\sim b$: \Leftrightarrow	a kennt b.
	$\Box a$	$\sim b :\Leftrightarrow $	a kennt nicht b .
	$\Box a$	$\sim b :\Leftrightarrow $	a ist ein Kind von b .
	$\Box a$	$\sim b :\Leftrightarrow $	a ist verwandt mit b .
	$\Box a$	$\sim b :\Leftrightarrow $	a hat die gleiche Haarfarbe wie b .
4. Welche der folgenden Abbildungen ist injektiv?			
	\square Kind \mapsto Vater		
	\square Stadt in Deutschland \mapsto Postleitzahl		
	\square Berg \mapsto Gipfelhöhe		

- \square Studierender der HTWG \mapsto Immatrikulationsnummer
- \square Mensch \mapsto Einkommen im Jahr 2019
- 5. Wieviele injektive Abbildungen von $\{a, b, c\} \rightarrow \{a, b, c\}$ gibt es? Wieviele surjektive? Wieviele bijektive?
- 6. Sei $|Y| < \infty$ und $f: X \to Y$ injektiv. Wie verhalten sich die Mächtigkeiten der Mengen X und Y zueinander?
- 7. Welche der folgenden Abbildungen $\mathbb{N} \to \mathbb{N}$ ist injektiv?
 - \square $n \mapsto$ nächstgrößere Primzahl
 - \square $n \mapsto \text{größter Primzahlteiler von } n$
 - \square $n \mapsto$ nächstgrößere Zahl in \mathbb{N}
 - \square $n \mapsto \text{gr\"oßte Quadratzahl} \leq n$
- 8. Beschreiben Sie den Graph einer injektiven Abbildung $\mathbb{R} \to \mathbb{R}$ bzw. einer surjektiven Abbildung $f : \mathbb{R} \to \mathbb{R}$.
- 9. Erklären Sie in Ihren eigenen Worten, warum die Mengen Z und 2Z (=Menge aller geraden, ganzen Zahlen) gleichmächtig sind, d.h. gleich viele Elemente enthalten.
- 10. Seien A, B endliche Mengen mit |A| = |B|. Ist es möglich, eine injektive Abbildung $A \to B$ zu definieren, die nicht surjektiv ist? Ist es möglich eine surjektive Abbildung $A \to B$ zu definieren, die nicht injektiv ist?
- 11. Geben Sie jeweils eine Abbildung $\{1,2,3,4,5\} \rightarrow \{1,2,3,4,5\}$ mit den folgenden Eigenschaften an:
 - (a) injektiv und surjektiv
 - (b) weder injektiv noch surjektiv
 - (c) injektiv, aber nicht surjektiv
 - (d) surjektiv, aber nicht injektiv

Standardfragen zu Relationen

- 1. Geben Sie jeweils die Pärchen an, die zu der Relation gehören:
 - (a) $x\mathcal{R}y :\Leftrightarrow x \mid y. (2,3), (2,4), (2,8), (2,17)$
 - (b) $x\mathcal{R}y :\Leftrightarrow x \leq y$. (2,3), (3,2), (2,4), (5,8)
 - (c) $x\mathcal{R}y :\Leftrightarrow y = x^2$. (1,1),(2,3),(2,4),(2,6)
- 2. Überprüfen Sie die folgenden Relationen auf Reflexivität, Symmetrie und Transitivität.
 - (a) $\mathcal{R}_1 := \{(m, n) \in \mathbb{Z} \times \mathbb{Z} \mid m \ge n\}$
 - (b) $\mathcal{R}_2 := \{(m, n) \in \mathbb{Z} \times \mathbb{Z} \mid m \cdot n > 0\}$
 - (c) $\mathcal{R}_3 := \{(m, n) \in \mathbb{Z} \times \mathbb{Z} \mid m = 2n\}$

- 3. Zeigen Sie, dass die Relation | eine Ordnungsrelation auf der Menge $\{1, 2, 3, 6\}$ ist.
- 4. Welche der folgenden Relationen sind Äquivalenzrelationen auf \mathbb{Z} ? Überprüfen Sie die Eigenschaften einer Äquivalenzrelation.
 - (a) $a \sim b$: \Leftrightarrow a + b ist gerade.
 - (b) $a \sim b$: \Leftrightarrow 6 | a b
- 5. Bestimmen Sie die Äquivalenzklassen der folgenden Äquivalenzrelation:

 $a \sim b$: \Leftrightarrow a - b ist gerade.

Standardfragen zu Abbildungen

1. Welche der folgenden Abbildungen $\mathbb{R} \to \mathbb{R}$ ist injektiv?

 $\square x \mapsto x^4$

 $\Box x \mapsto e^{-x^2}$

2. Welche der folgenden Abbildungen $\mathbb{N} \to \mathbb{N}$ ist surjektiv?

 $\square \ n \mapsto \min \{ p \in \mathbb{P} \mid p \ge n \}$

 $\square n \mapsto n + 1000$

 \square $n \mapsto n^2$

- 3. Wieviele bijektive Abbildungen $X \to Y$ für |X| = n gibt es?
- 4. Welche der folgenden Abbildungen besitzt eine inverse Abbildung? Geben Sie diese gegebenenfalls an.

(a) $f: \mathbb{Z} \to \mathbb{Z}$, f(n) = n - 5

(b) $f: \mathbb{Z} \to \mathbb{Z}$, f(n) = 5n

(c) $f: \mathbb{R} \to \mathbb{R}$, f(x) = 5x + 3

- 5. Sei $f, g, h : \mathbb{Z} \to \mathbb{Z}$, f(k) = k + 1, g(k) = 2k und $h(k) = \lceil \frac{k}{2} \rceil$.
 - (a) Welche der Abbildungen ist/sind injektiv?
 - (b) Welche der Abbildungen ist/sind surjektiv?
 - (c) Drücken Sie die Kompositionen $f\circ g,\ g\circ f,\ g\circ h,h\circ g$ und h^2 möglichst einfach aus.

Übungsaufgaben: Abgabe

1. Überprüfen Sie die folgenden Relationen auf Reflexivität, Symmetrie und Transitivität.

(a)
$$\mathcal{R}_1 := \{(m, n) \in \mathbb{Z} \times \mathbb{Z} \mid m \le n + 1\}$$

(b)
$$\mathcal{R}_2 := \{ (m, n) \in \mathbb{Z} \times \mathbb{Z} \mid m \cdot n \ge -1 \}$$

(c)
$$\mathcal{R}_3 := \{(m, n) \in \mathbb{Z} \times \mathbb{Z} \mid m = 2\}$$

(9 Punkte)

2. Welche der folgenden Relationen sind Äquivalenzrelationen auf \mathbb{Z} ? Überprüfen Sie die Eigenschaften einer Äquivalenzrelation.

(a) $a \sim b$: \Leftrightarrow a - b wird von 6 mit Rest 2 geteilt.

(b) $a \sim b$: \Leftrightarrow a - b ist ungerade.

(c) $a \sim b$: \Leftrightarrow $a \cdot b$ ist gerade.

(d) $a \sim b$: \Leftrightarrow $a \cdot b$ ist nichtnegativ.

(8 Punkte)

3. Bestimmen Sie die Äquivalenzklassen der folgenden Äquivalenzrelation: $a \sim b$: \Leftrightarrow 10 | a-b. (3 Punkte)

4. Welche der folgenden Abbildungen $\mathbb{Z} \to \mathbb{Z}$ besitzt eine inverse Abbildung? Geben Sie diese gegebenenfalls an.

(a)
$$f(n) = 5n + 3$$

(b) f(n) = gr"oßter echter Teiler von n.

Überprüfen Sie bitte, ob die Abbildungen jeweils bijektiv sind.

(10 Punkte)

5. Welche der folgenden Abbildungen $\mathbb{R} \to \mathbb{R}$ ist injektiv, surjektiv bzw. bijektiv?

$$\square x \mapsto x^3$$

$$\square x \mapsto e^x$$

Überprüfen Sie bitte jeweils alle Eigenschaften.

(10 Punkte)

Abgabe freiwillig möglich bis zum 20.04.2020.