Contents

1	Classes			2
	1.1	poly.n	nultivar – multivariate polynomial	4
		1.1.1	PolynomialInterface – base class for all multivariate poly-	
			nomials	ć
		1.1.2	BasicPolynomial – basic implementation of polynomial	ć
		1.1.3	TermIndices – Indices of terms of multivariate polynomials	ć
			1.1.3.1 pop	4
			1.1.3.2 gcd	
			1 1 3 3 lcm	,

Chapter 1

Classes

- 1.1 poly.multivar multivariate polynomial
 - Classes
 - $-\ \dagger Polynomial Interface$
 - †BasicPolynomial
 - TermIndices

1.1.1 PolynomialInterface – base class for all multivariate polynomials

Since the interface is an abstract class, do not instantiate.

1.1.2 BasicPolynomial – basic implementation of polynomial

Basic polynomial data type.

1.1.3 TermIndices – Indices of terms of multivariate polynomials

It is a tuple-like object.

Initialize (Constructor)

 $TermIndices(indices: tuple) \rightarrow TermIndices$

The constructor does not check the validity of indices, such as integerness, nonnegativity, etc.

Operations

operator	explanation
t == u	equality
t != u	inequality
t + u	(componentwise) addition
t - u	(componentwise) subtraction
t * a	(componentwise) multiplication by scalar a
t <= u, t < u, t >= u, t > u	ordering
t[k]	k-th index
len(t)	length
iter(t)	iterator
hash(t)	hash

Methods

1.1.3.1 pop

```
\mathtt{pop}(\mathtt{self},\,\mathtt{pos:}\,integer) 	o (integer,\,\mathit{TermIndices})
```

Return the index at pos and a new TermIndices object as the omitting-the-pos indices.

1.1.3.2 gcd

```
\gcd(\text{self, other: } \textit{TermIndices}) \rightarrow \textit{TermIndices}
Return the "gcd" of two indices.
```

1.1.3.3 lcm

 $\mathbf{lcm}(\mathtt{self},\,\mathtt{other}\colon\, \mathit{TermIndices}) \,\to\, \mathit{TermIndices}$

Return the "lcm" of two indices.