ТВиМС-2025

4 июня 2025 г.

Содержание

\mathbf{C}	Содержание					
1	Теория вероятностей.					
	1.1	_	ы теории вероятностей и схема Бернулли	3 3		
		1.1.1	Классическое и геометрическое определение веро-			
			ятности	3		
		1.1.2	Основные комбинаторные формулы	4		
		1.1.3	Аксиоматика Колмогорова	5		
		1.1.4	Условная вероятность. Независимость. Формулы сло-			
			жения и умножения	5		
		1.1.5	Формула полной вероятности	8		
		1.1.6	Формула Байеса	8		
		1.1.7	Испытания Бернулли. Формула Бернулли	8		
		1.1.8	Пуассоновское приближение для схемы Бернулли	10		
		1.1.9	Локальная теорема Муавра – Лапласа	10		
		1.1.10	Интегральная теорема Муавра – Лапласа	10		
	1.2	Случа	йные величины и их распределения	12		
		1.2.1	Случайная величина. Функция распределения слу-			
			чайной величины, ее свойства	12		
		1.2.2	Непрерывная случайная величина. Плотность рас-			
			пределения, ее свойства. Примеры	12		
		1.2.3	Дискретная случайная величина. Способы задания.			
			Примеры	12		
		1.2.4	Математическое ожидание и дисперсия. Их свойства.	12		
		1.2.5	Распределение функций от случайных величин	12		
		1.2.6	Случайные векторы. Совместные распределения слу-			
			чайных величин.	12		

3	Спи	исок во	опросов.	14
2	Mag	гемати	ическая статистика.	13
		1.3.9	Эргодическая теорема	12
		1.3.8	Классификация состояний цепи Маркова	12
			вероятностей, матрица перехода за n шагов	12
		1.3.7	Цепи Маркова. Определение, матрица переходных	
		1.3.6	Центральная предельная теорема Леви	12
		1.3.5	Формулы обращения для непрерывных и целочисленных случайных величин	12
		1.0.4	их свойства	12
		1.3.4	Характеристические функции случайных величин,	12
		1.3.3	ду ними	12
		1.3.2	Типы сходимости в теории вероятностей, связь меж-	12
		1.3.1	Неравенство Чебышева	12
	1.3		льные теоремы и марковские цепи	12
		$\frac{1.2.10}{-}$	1 1 /1 1	12
			ность. Условная дисперсия	12
		1.2.9	Условное математическое ожидание. Условная плот-	
			мости компонент	12
			ция. Необходимое и достаточное условие независи-	
		1.2.0	(в невырожденном случае), характеристическая функ-	
		1.2.8	Многомерное нормальное распределение. Плотность	
		1.2.1	корреляции.	12
		1.2.7	Независимость случайных величин. Коэффициент	

1 Теория вероятностей.

1.1 Основы теории вероятностей и схема Бернулли.

1.1.1 Классическое и геометрическое определение вероятности.

Определение 1.1.1 (Пространство элементарных событий).

 Ω - пространство элементарных событий.

 $\omega_1, \, \omega_2, \, \dots$ - элементарные события.

 $A\subset\Omega$ - случайное событие. $\mathscr{A}=\{A\subset\Omega\}$ - σ -алгебра подмножеств.

Определение 1.1.2 (σ -алгебра событий).

Свойства алгебры событий:

- 1. $\Omega \in \mathscr{A}$ достоверное событие.
- 2. Если $A \subset \mathscr{A}$, то $\overline{A} \subset \mathscr{A}$
- 3. ∅ невозможное событие.
- 4. Если A, B события (т.е. принадлежат \mathscr{A}), то $A \cup B$ и $A \cap B$ события.

Свойства σ -алгебра событий:

- 1. Все свойства алгебры событий.
- 2. Если $A_1, A_2, ..., A_n \in \mathcal{A}$, то:
 - (a) $\bigcup_{i=1}^{\infty} A_i \in \mathscr{A}$
 - (b) $\bigcap_{i=1}^{\infty} A_i \in \mathscr{A}$

Алгебра событий - семейство подмножеств Ω , замкнутое относительно операций конечного объединения, пересечения и дополнения.

 σ -алгебра событий - семейство подмножеств Ω , замкнутое относительно операций счетного объединения, пересечения и дополнения.

05	Термины		
Обозначения	теории множеств	теории вероятностей	
Ω	Множество, пространство	Пространство элементарных событий, достоверное событие	
ω	Элемент множества	Элементарное событие	
A, B	Подмножество A, B	Случайное событие А, В	
$A+B=A\cup B$	Объединение (сумма) мно- жеств А и В	Сумма случайных событий А и В	
$AB = A \cap B$	Пересечение множеств A и B	Произведение событий A и B	
\bar{A}	Дополнение множества A	Событие, противоположное для А	
$A \backslash B$	Разность множеств А и В	Разность событий А и В	
φ	Пустое множество	Невозможное событие	
$AB = A \cap B = \phi$	Множества A и B не пересекаются (не имеют общих элементов)	События А и В несовместимы	
A = B	Mножества A и B равны	События А и В равносильны	
$A \subset B$	A есть подмножество В	Событие А влечет событие В	

Рис. 1: Таблица соответствий

Определение 1.1.3 (Класическое определение вероятности). Пусть $|\Omega| = n \ P(\omega_i) = \frac{1}{n}$ (т.е. события равновероятны). $A \subset \Omega$ - событие (подмножество элементарных событий). $|A| = k \to P(A) = \frac{k}{n}$ Следовательно, $0 \le P(A) \le 1$.

Определение 1.1.4 (Геометрическое определение вероятности). Рассматриваем Лебегову σ -алгебру \to mes (мера) - существует и конечна.

Мера Лебега - мера, обобщающая понятия длины отрезка, площади фигуры и объёма тела на произвольное n-мерное евклидово пространство.

$$0 < mes(\Omega) < +\infty$$

$$mes(\omega_i) = 0$$

$$A \subset \Omega \to P(A) = \frac{mes(A)}{mes(\Omega)}$$

Проще говоря: Ω - плоское, значит у Ω \exists площадь, и она конечна. $0 < S(\Omega) < +\infty$ $S(\omega_i) = 0$ $A \subset \Omega \to P(A) = \frac{S(A)}{S(\Omega)}$

1.1.2 Основные комбинаторные формулы.

Определение 1.1.5 (Размещения).

Размещения - способ расположить в определенном порядке некоторого числа элементов из заданного конечного множества.

Формулы:

- 1. Размещения без повторений: $A_n^k = n(n-1)(n-2)...(n-k+1) = n(n-1)(n-2)...(n-k+1)$
- 2. Размещения с повторениями: $U_n^k = n \cdot n \cdot ... \cdot n = n^k$

Определение 1.1.6 (Сочетание).

Сочетания - способ расположения с несущественной последовательностью выбора некоторого числа элементов из заданного конечного множества.

Формулы:

- 1. Сочетания без повторений: $C_n^k = \frac{A_n^k}{k!} = \frac{n!}{(n-k)! \cdot k!}$ 2. Сочетания с повторениями: $V_n^k = C_{n+k-1}^{n-1} = \frac{(n+k-1)!}{k! \cdot (n-1)!}$

1.1.3 Аксиоматика Колмогорова.

Определение 1.1.7 (Несовместные события).

События A и B - несовместные $\leftrightarrow A \cap B = AB = 0$.

Т.е. события не могут наступить одновременно.

Определение 1.1.8 (Вероятность как функция).

 Ω - пространство элементарных событий.

 $\omega_i \in \Omega$ - элементарное событие.

 \mathscr{A} - σ -алгебра событий.

Тогда вероятность P - функция на множестве событий: $P: \mathcal{A} \to [0;1]$

Со следующими аксиомами:

- 1. $P(\Omega) = 1$
- 2. $\forall A, B: A \cap B = \emptyset \rightarrow P(A \cup B) = P(A) + P(B)$ 3. (Счетная аддитивность) $\forall A_1, ..., A_n \in \mathscr{A} \ P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i),$ причем $A_iA_j=\emptyset$, если $i\neq j$

Из аксиом можно получить данные следствия:

- 1. $P(\emptyset) = 0$
- 2. $P(\overline{A}) = 1 P(A)$
- 3. $A \subset B \to P(A) \leq P(B)$

Условная вероятность. Независимость. Формулы сложе-1.1.4 ния и умножения.

Определение 1.1.9 (Условная вероятность).

A, B - события, причем: P(A) > 0.

Тогда вероятность события В при условии А:

$$P(B|A) = \frac{P(AB)}{P(A)} = P_A(B)$$

Определение 1.1.10 (Формула умножения).

A, B - события: P(A) > 0 и P(B) > 0.

Формула умножения: $P(AB) = P(B|A) \cdot P(A) = P(A|B) \cdot P(B)$

Пример:

В колоде 36 карт. На удачу вытащили 2 карты. Какова вероятность, что обе карты - пики?

- 1. Класическая вероятность: $=\frac{C_9^2}{C_{36}^2}=\frac{9.8}{36.35}$
- 2. Формула умножения: А первая карта пики, В вторая карта - пики. Тогда $P(AB) = P(A) \cdot P(B|A) = \frac{9}{36} \cdot \frac{8}{35}$

Теорема 1.1.1 (Условная вероятность и аксиоматика Колмогорова).

Зафиксируем $A \subset \Omega$: $P(A) \neq 0$.

Тогда $P_A(B)$ - подчиняется аксиоматике Колмогорова, т.е. для нее выполняются те же аксиомы.

Доказательство 1ой аксиомы:

$$P_A(\Omega) = \frac{P(\Omega A)}{P(A)}$$

$$P_A(\Omega) = rac{P(\Omega A)}{P(A)}$$

Т.к. $A \subset \Omega$, то $\Omega A = A$

Следовательно,
$$P_A(\Omega) = \frac{P(A)}{P(A)} = 1$$

Доказательство 2ой аксиомы:

Пусть В, С - события: $BC = \emptyset$, тогда:

$$P_A(B \cup C) = \frac{P(A(B \cup C))}{P(A)} = \frac{P(AB \cup AC)}{P(A)}$$

Т.к. $BC = \emptyset$, получаем: $ABAC = ABC = \emptyset$, т.е. события AB и AC несовместны.

Песовместны. Следовательно,
$$\frac{P(AB \cup AC)}{P(A)} = \frac{P(AB) + P(AC)}{P(A)}$$
 Значит, $P_A(B \cup C) = \frac{P(AB) + P(AC)}{P(A)}$

Значит,
$$P_A(B \cup C) = \frac{P(AB) + P(AC)}{P(A)}$$

$$P_A(B) = \frac{P(AB)}{P(A)}$$

$$P_A(C) = \frac{P(AC)}{P(A)}$$

Значит,
$$P_A(B) + P_A(C) = \frac{P(AB) + P(AC)}{P(A)}$$

Итог:
$$P_A(B \cup C) = \frac{P(AB) + P(AC)}{P(A)} = P_A(B) + P_A(C)$$

Зяя аксиома доказывается аналогичным образом.

Определение 1.1.11 (Независимые события. Попарно независимые события. Независимые в совокупности события).

Пусть А и В - события.

Тогда A и B называют **независимыми событиями** $\leftrightarrow P(AB) = P(A) \cdot P(B)$

Пусть $A_1, ..., A_n$ - события.

Тогда они **попарно независимы**, если $\forall i \neq j, A_i$ и A_j независимы.

Пусть $A_1, ..., A_n$ - события.

Тогда они **независимы в совокупности**, если $\forall k \in \overline{[2..n]}$ и \forall набора $1 \leq i_1 < i_2 < ... < i_k \leq n$, выполняется: $P(A_{i_1}A_{i_2}...A_{i_k}) = P(A_{i_1})P(A_{i_2})...P(A_{i_k})$

Определение 1.1.12 (Формула сложения).

Пусть А, В - события, тогда:

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

$$P(A \cup B) = P(A\overline{B} \cup AB \cup B\overline{A}) = P(A\overline{B}) + P(AB) + P(B\overline{A})$$

$$A = A\Omega = A(\overline{B} \cup B) = A\overline{B} \cup AB$$
$$B = AB \cup B\overline{A}$$

$$P(A \cup B) = P(A\overline{B}) + P(AB) + P(B\overline{A}) + P(BA) - P(AB) = P(A) + P(B) - P(AB)$$

Итог: $P(A \cup B) = P(A) + P(B) - P(AB)$

Пусть А, В, С - события.

Аналогично (через разбиения на несовместные), доказывается следующее:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(BC) - P(AC)$$

Формула сложения в общем виде:

 $A_1, ..., A_n$ - события.

$$P(A_1 \cup ... \cup A_n) = \sum_{i=1}^n P(A_i) + ... + (-1)^{r+1} \sum_{1 \le i_1 < i_2 < ... < i_r \le n} P(A_{i_1} A_{i_2} ... A_{i_r}) + ... + (-1)^n P(\bigcap_{i=1}^n A_i)$$

Если, дополнительно, $A_1, ..., A_n$ - независимы в совокупности, то: $P(\bigcup_{i=1}^n A_i) = 1 - P(\bigcap_{i=1}^n \overline{A_i}) = 1 - \bigcap_{i=1}^n (1 - P(A_i))$

1.1.5 Формула полной вероятности.

Определение 1.1.13 (Формула полной вероятности).

Разобъем множество элементарных событий Ω на независимые попарно гипотезы $H_1...H_n$.

T.e.
$$\Omega = \bigcup_{i=1}^n H_i$$
 u $\forall i \neq j \rightarrow H_i H_j = \emptyset$.

Причем $\forall i H_i > 0$, иначе объединим эту гипотизу с другой.

Формула полной вероятности: $P(A) = \Sigma_{i=1}^n P(A|H_i) P(H_i)$

По итогу получаем следующее: $\forall A \in \mathscr{A} \to P(A) = P(A\Omega) = \bigcup_{i=1}^n (AH_i)$ По попарной независимости и правилу умножения: $\bigcup_{i=1}^n (AH_i) = \sum_{i=1}^n (AH_i) = \sum_{i=1}^n P(A|H_i)P(H_i)$

1.1.6 Формула Байеса.

Определение 1.1.14 (Формула Байеса).

Для получения вероятности наступления конкретной гипотезы используется формула Байеса.

А - событие:
$$P(A) \neq 0, H_1, ..., H_i$$
 - гипотезы, тогда: Формула Байеса: $P(H_i|A) = \frac{P(A|H_i) \cdot P(H_i)}{P(A)} = \frac{P(A|H_i) \cdot P(H_i)}{\sum_{i=1}^n P(A|H_i) \cdot P(H_i)}$

1.1.7 Испытания Бернулли. Формула Бернулли.

Определение 1.1.15 (Испытания Бернулли).

Испытания Бернулли - последовательность независимых испытаний с бинарным исходом.

Пространство элементарных событий - набор двоичных слов. Например: Подбрасываются 3 монеты: 0 - решка (неудача), 1 - орел (успех). P(выпал орел) = p и P(выпала решка) = q.

События:

0 0 0 (вероятность - q^3) 0 0 1 (вероятность - $p \cdot q^2$)

```
0 1 0 (вероятность - p \cdot q^2)
```

0 1 1 (вероятность -
$$p^2 \cdot q$$
)

1 0 0 (вероятность -
$$p \cdot q^2$$
)

1 0 1 (вероятность -
$$p^2 \cdot q$$
)

$$1 \ 1 \ 0$$
 (вероятность - $p^2 \cdot q$)

1 1 1 (вероятность -
$$p^3$$
)

Введем дополнительные обозначения:

Пусть S_n - число успехов в n-испытаниях Бернулли, тогда:

$$P(S_n = k) := P_n(k), \forall k \in \overline{[0..n]}$$

$$P(m_1 \le S_n \le m_2) = \sum_{k=m_1}^{k=m_2} P_n(k) \ \forall \ m_1 \ge 0, \ m_2 \le n, \ m_1 \le m_2$$

Тогда легко можно получить формулу Бернулли:

- 1. Для точного числа успехов: $P_n(k) = C_n^k p^k q^{n-k}$
- 2. Для промежутка: $P(m_1 \le S_n \le m_2) = \sum_{k=m_1}^{m_2} C_n^k p^k q^{n-k}$

Теорема 1.1.2 (Наиболее вероятное число успехов).

Число успехов, что наиболее вероятны, ограничено значением p(n+1)-1. Причем для целого p(n+1)-1 существует два таких числа, а для нецелого - одно.

Пусть даны n и p. Найдем k, при котором $P(S_n=k)$ - максимальное. Сравним $P_n(k)$ и $P_n(k+1)$:

$$\frac{C_n^{k+1}p^{k+1}q^{n-k-1}}{C_n^kp^kq^{n-k}} = \frac{\frac{n!}{(k+1)!(n-k-1)!}\cdot p}{\frac{n!}{k!(n-k!)}\cdot q} = \frac{n-k}{k+1}\cdot \frac{p}{1-p}$$

Найдем решение неравенства: $\frac{n-k}{k+1} \cdot \frac{p}{1-p} \ge 1$

$$(n-k)p \ge (k+1)(1-p)$$

$$pn - pk \ge k - kp + 1 - p$$

$$k \le pn + p - 1$$

$$k \le p(n+1) - 1$$

T.к. значения p и n даны, то можно подсчитать значение для k - наиболее вероятного числа успехов.

Рассмотрим два варианта:

- 1. $p(n+1)-1 \in \mathbb{Z}$: два наиболее вероятных числа успехов k и k+1.
- 2. $p(n+1) 1 \notin \mathbb{Z}$: одно наиболее вероятное значение.

1.1.8 Пуассоновское приближение для схемы Бернулли.

Определение 1.1.16 (Пауссоновское приближение).

При фиксированном числе успехов и $n\to\infty$, верно следующее: $C_n^k p^k q^{n-k} \to \frac{\lambda^k \cdot e^{-\lambda}}{k!}$

1.1.9 Локальная теорема Муавра – Лапласа.

Теорема 1.1.3 (Локальная теорема Муавра-Лапласа).

Пусть:

1.
$$x_n = \frac{k-np}{\sqrt{npq}}$$
: $n, k \to \infty$, x_n - ограничено.

2.
$$\phi(x) = \frac{1}{\sqrt{2\Pi}} \cdot e^{-\frac{x^2}{2}}$$
 - функция Гаусса.

Тогда:

$$P_n(k) \sim \frac{1}{npq} \cdot \phi(x_n)$$
, при $n \to \infty$

- 1. Пользуемся формулой Стирлинга: $n! \sim e^{-n} n^n \sqrt{2 \Pi n}$.
- 2. Пользуемся разложением в ряд Тейлора: $ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} + o(x^n)$

Аккуратно расписываем $C_n^k p^n q^{n-k}$. При переходе от факториала к экспоненте необходимо будет прологарифмировать.

1.1.10 Интегральная теорема Муавра – Лапласа.

Теорема 1.1.4 (Интегральная теорема Муавра-Лапласа).

Пусть:

1.
$$x_n^{'}=\frac{k_1-np}{\sqrt{npq}}$$
: $n\to\infty,\ k_1$ - левая граница интервала.

2.
$$x_n'' = \frac{k_2 - np}{\sqrt{npq}}$$
: $n \to \infty$, k_2 - правая граница интервала.

3.
$$\Phi(x) = \frac{1}{\sqrt{2\Pi}} \cdot \int_0^x e^{-\frac{x^2}{2}} dx$$
.

Тогда:
$$P_n(k_1; k_2) = \Phi(x'') - \Phi(x')$$

- 1.2 Случайные величины и их распределения.
- 1.2.1 Случайная величина. Функция распределения случайной величины, ее свойства.
- 1.2.2 Непрерывная случайная величина. Плотность распределения, ее свойства. Примеры.
- 1.2.3 Дискретная случайная величина. Способы задания. Примеры.
- 1.2.4 Математическое ожидание и дисперсия. Их свойства.
- 1.2.5 Распределение функций от случайных величин.
- 1.2.6 Случайные векторы. Совместные распределения случайных величин.
- 1.2.7 Независимость случайных величин. Коэффициент корреляции.
- 1.2.8 Многомерное нормальное распределение. Плотность (в невырожденном случае), характеристическая функция. Необходимое и достаточное условие независимости компонент.
- 1.2.9 Условное математическое ожидание. Условная плотность. Условная дисперсия.
- 1.2.10 Условные характеристики для нормального вектора.
- 1.3 Предельные теоремы и марковские цепи.
- 1.3.1 Неравенство Чебышева.
- 1.3.2 Типы сходимости в теории вероятностей, связь между ними.
- 1.3.3 Закон больших чисел в форме Чебышева.
- 1.3.4 Характеристические функции случайных величин, их свойства.
- 1.3.5 Формулы обращения для непрерывных и целочисленных случайных величин.
- 1.3.6 Центральная предельная теорема Леви.
- 1.3.7 Цепи Маркова. Определение, матрица переходных вероятностей, матрица перехода за n шагов.
- 1.3.8 Классификация состояний цепи Маркова.
- 1.3.9 Эргодическая теорема.

2 Математическая статистика.

3 Список вопросов.

- 1. Классическое и геометрическое определение вероятности.
- 2. Основные комбинаторные формулы.
- 3. Аксиоматика Колмогорова.
- 4. Условная вероятность. Независимость. Формулы сложения и умножения.
- 5. Формула полной вероятности.
- 6. Формула Байеса.
- 7. Испытания Бернулли. Формула Бернулли.
- 8. Пуассоновское приближение для схемы Бернулли.
- 9. Локальная теорема Муавра Лапласа.
- 10. Интегральная теорема Муавра Лапласа.
- 11. Случайная величина. Функция распределения случайной величины, ее свойства.
- 12. Непрерывная случайная величина. Плотность распределения, ее свойства. Примеры.
- 13. Дискретная случайная величина. Способы задания. Примеры.
- 14. Математическое ожидание и дисперсия. Их свойства.
- 15. Распределение функций от случайных величин.
- 16. Случайные векторы. Совместные распределения случайных величин. Вычисление распределений компонент.
- 17. Независимость случайных величин. Коэффициент корреляции.
- 18. Многомерное нормальное распределение. Плотность (в невырожденном случае), характеристическая функция. Необходимое и достаточное условие независимости компонент.
- 19. Неравенство Чебышева.
- 20. Типы сходимости в теории вероятностей, связь между ними.
- 21. Закон больших чисел в форме Чебышева.
- 22. Характеристические функции случайных величин, их свойства.
- 23. Формулы обращения для непрерывных и целочисленных случайных величин.
- 24. Центральная предельная теорема Леви.
- 25. Условное математическое ожидание. Условная плотность. Условная дисперсия.
- 26. Условные характеристики для нормального вектора.
- 27. Цепи Маркова. Определение, матрица переходных вероятностей, матрица перехода за n шагов.
- 28. Классификация состояний цепи Маркова.
- 29. Эргодическая теорема.
- 30. Задачи математической статистики. Оценка параметров, проверка

гипотез.

- 31. Основные выборочные характеристики.
- 32. Эмпирическая функция распределения. Теорема Гливенко-Кантелли.
- 33. Свойства статистических оценок (с примерами и доказательствами).
- 34. Оценивание по методу максимального правдоподобия.
- 35. Регулярный эксперимент. Неравенство Рао Крамера.
- 36. Оценивание по методу моментов.
- 37. Распределение функций от нормальной выборки. Лемма Фишера.
- 38. Доверительные интервалы для параметров нормального распределения.
- 39. Проверка гипотез: понятие ошибок I и II рода, уровень значимости, мощность критерия; критическая область; простые и сложные гипотезы.
- 40. Проверка простой гипотезы по методу хи-квадрат.
- 41. Проверка согласия с помощью критерия Колмогорова.
- 42. Постановка задачи линейной регрессии. Метод наименьших квадратов.
- 43. Несмещенная оценка дисперсии в задаче линейной регрессии.