Assignment-4: Pattern Recognition

Contents

1		ated D																		2	
	1.1	HMM																		2	
	1.2	DTW																		3	
2	Cor	nected	l D	igi	\mathbf{ts}															4	
3		ndwriti																		5	
	3.1	HMM																		5	
		3.1.1	Iso	lat	ed															5	
		3.1.2	Co	$_{ m nti}$	nuc	ous	5													7	
	3.2	DTW																		7	

1 Isolated Digits

1.1 HMM

Data: Classes given to us are "1", "5" and "z".

Algorithm: The data is divided into train (70%) and test (30%). The data is quantized using K-means with the number of symbols being equal to the number of means. A left-right HMM is trained on each class. Given a test datapoint, the likelihoods of the three models on this data-point are obtained, with the predicted class being the one having the maximum likelihood.

Experiments: The number of states and symbols are the free variables. Each state-symbol combination is one run.

Performance as a function of symbols

Figure 1: HMM is labelled as < symbols $> _ <$ states >

Performance as a function of states

Figure 2: HMM is labelled as < symbols $> _ <$ states >

Figure 3: HMM is labelled as < symbols $> _ <$ states >

Observations: The design of the codebook has a much greater impact on the performance than the states. 16 is observed to be the optimal codebook size. Even a single state HMM with 16-symbols performs better than HMMs with a smaller codebook.

1.2 DTW

Figure 4: Each model is labelled by the number of nearest neighbours chosen.

Observations: Near perfect classification is obtained using just a single neighbour. This suggests that DTW is a very good distance measure for time series data.

2 Connected Digits

Results on test-1									
Ground truth	Known model	Unknown model							
	length	length							
11z	11z	11z							
15	15	155							
15z	1zz	1zz							
1z51	1z51	1z51z							
1z	1z	1z5							
1zz	1zz	1zz							
1zzz1	1zzz1	1zzz1							
51	51	511							
51z	51z	51z1							
51zz5	51zz1	51zz1							
55	55	55							
z1	z1	z1z							
z1z	ZZZ	ZZZ							
z51z	z1z5	z1z5							
z5	z5	z51							
z5z	z5z	z5z1							
z5zzz	z5zzz	z5zzz							
zz	ZZ	ZZ							

Results on test-2									
Ground truth	Fixed model	Unknown model							
	length = 3	length							
154.txt	111	11							
155.txt	155	155z							
156.txt	151	151							
157.txt	1zz	1zz1							
158.txt	z51	z51z							
159.txt	551	551							
160.txt	1zz	1zz							
161.txt	z1z	z1z							
162.txt	zz5	zz5							
163.txt	zz5	zz5z							
164.txt	ZZZ	ZZ							
165.txt	ZZZ	zzz5z							
166.txt	ZZZ	ZZZ							

16-symbol, 10-state HMM models trained on each class are used for this task. The HMMs are then concatenated to form different continuous models. During concatenation the final state's self-transition probability is set to 0.5, and its next state transition probability is also set to 0.5. Sequence lengths upto 5 are considered. So there are a total of $3^1 + 3^2 + 3^3 + 3^4 + 3^5 = 363$ HMM models against which each datapoint is tested. In the case of a tie, the smallest length model is chosen.

3 Handwriting

Figure 5: bA, dA, lA

3.1 HMM

3.1.1 Isolated

Four types of features are used : coordinates, first derivatives, second derivatives, curvature. Different combination of these features are used to prepare different datasets.

Figure 6: HMM is labelled as < features > _ < symbols > _ < states >

The effect of features on performance

Figure 7: HMM is labelled as < features $> _ <$ symbols $> _ <$ states >

Confusion Matrix on Test Data								
	bA	dA	lA					
bA	29	1	0					
dA	0	30	0					
lA	0	5	25					

Observations: The curvature is the most important feature. The first and second derivatives capture the speed and acceleration of the stroke. Though the dataset has been generated in an online fashion by sampling points as they are written, the prediction happens offline, after the entire stroke has been recorded. Hence the speed and acceleration do not have any impact on the classification. In fact the second derivatives make the performance worse.

There is a confusion between the characters "dA" and "lA". Since the curvature is the main feature, we need to study the variation in curvature across a stroke for each of these characters. The kind of curves that are traced on the paper while writing a letter, and the order in which these curves are traced carries the signature of a letter. In this respect, it appears that "dA" and "lA" have a lot of common curves that are traced in a similar manner.

3.1.2 Continuous

Results for 1, 2 and 3									
Ground truth	Fixed model	Unknown model length							
	length = 3								
dA-bA-bA (1)	bA-dA-dA,	bA-dA-bA							
	bA-dA-bA,								
	bA-dA-lA								
bA-lA-lA (2)	bA-lA-lA,	bA-lA-lA-bA-dA							
	bA-lA-dA,								
	bA-lA-bA								
bA-bA-lA (3)	dA-bA-bA	dA-bA-dA							

3.2 DTW

DTW-kNN classifier

Figure 8: Each model is labelled by the number of nearest neighbours chosen

Confusion Matrix on Test Data								
	bA	dA	lA					
bA	28	2	0					
dA	0	22	8					
lA	1	0	29					