Introduction to Artificial Intelligence

Daniel Deng

1 Search Problems

Definition 1.1 (Reflex Agent). A reflex agent chooses actions based on its current perception of the world.

Definition 1.2 (Planning Agent). A planning agent chooses actions based on hypothesized consequences of actions.

Definition 1.3 (Search Problem). A search problem consists of a state space, a successor function, a start state, and a goal test.

2 Search Algorithms

2.1 Heuristics

Definition 2.1 (Heuristic). A heuristic h(n) is a function that estimates the distance from state n to the goal state for a particular search problem. It is often solutions of relaxed problems.

Definition 2.2 (Admissibility). A heuristic is admissible, or optimistic, if $0 \le h(n) \le h^*(n)$ where h^* is the true cost to goal state.

Definition 2.3 (Consistency). A heuristic is consistent if $h(n) - h(n+1) \le c(n, n+1)$ where c is the cost between states n and n+1.

Remark. Consistency necessarily implies admissibility.

Fringe Complete Optimal Time Space $O(b^m)$ Depth-First Search Stack O(bm)iff no cycle No Breadth-First Search $O(b^s)^1$ $O(b^s)^1$ Queue Yes iff uniform cost $O(b^{c^*/\epsilon})^3 O(b^{c^*/\epsilon})^3$ $PQ(g(n))^2$ Uniform Cost Search iff positive cost Yes Greedy Search PQ(h(n))No A* Tree Search PQ(h(n) + g(n))iff h(n) admissible A* Graph Search⁴ PQ(h(n) + g(n))iff h(n) consistent

Table 1: Search algorithms.

Remark. Implementation of search algorithms differ only in fringe strategies.

3 Constrained Satisfaction Problems

Definition 3.1 (Constrained Satisfaction Problems). Constrained Satisfaction Problems (CSPs) are a type of **identification problem** defined by variable X_0, \ldots, X_n with values from a domain D that satisfies a set of constrains.

3.1 Ordering

Definition 3.2 (Minimum Remaining Values). The MRV policy chooses an unassigned variable that has the fewest valid remaining values in order to induce backtracking earlier and reduce potential node expansions.

Definition 3.3 (Least Constraining Value). The LCV policy chooses a value assignment that violates the least amount of constraints, which requires additional computation such as running arc consistency test on each value.

 $^{^{1}}$ s = depth of solution.

 $^{^{2}}$ g(n) = cumulative path cost.

 $[\]frac{3}{c^*/\epsilon} = \text{effective solution depth } (c^* = \text{cost of the cheapest solution}; \epsilon = \text{minimum cost of cost-contour arcs}).$

⁴ Compared to tree search, graph search keeps a closed set of expanded states to check against to prevent duplicate expansions.