

Giảng viên: Nguyễn Lê Thi Bộ Môn Toán – Khoa Khoa học ứng dụng

MỤC TIÊU BÀI HỌC

- Nhận dạng được chuỗi lũy thừa
- Tìm được miền hội tụ của chuỗi lũy thừa
- Áp dụng tính chất của chuỗi lũy thừa để tính tổng

NỘI DUNG CHÍNH

12.1>Tổng quan về chuỗi lũy thừa

12.2> Úng dụng của chuỗi lũy thừa

1. TỔNG QUAN VỀ CHUỐI LỮY THỬA

1. Định nghĩa chuỗi lũy thừa

- ☐ Chuỗi lũy thừa là chuỗi mà các phần tử là các hàm lũy thừa.
- \Box Chuỗi lũy thừa theo x c có dạng

$$\sum_{k=0}^{\infty} a_k (x-c)^k = a_0 + a_1 (x-c) + a_2 (x-c)^2 + \dots$$

trong đó, a_0, a_1, a_2, \dots là các hệ số của chuỗi.

 \square Nếu c = 0 thì chuỗi lũy thừa có dạng chuẩn

$$\sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + \dots$$

2. Miền hội tụ của chuỗi lũy thừa

Miền hội tụ: là tập hợp tất cả các giá trị của x mà tại đó chuỗi lũy thừa là một chuỗi số hội tụ.

Định lý. Xét chuỗi lũy thừa $\sum_{k=0}^{\infty} a_k x^k$. Khi đó, một trong các điều sau là đúng:

- 1. Chuỗi hội tụ với mọi x
- 2. Chuỗi chỉ hội tụ tại x=0
- 3. Chuỗi hội tụ tuyệt đối với mọi $x \in (-R, R)$ và phân kỳ với |x| > R. Ngoài ra, chuỗi có thể hội tụ tại $x = \pm R$.

- R: là bán kính hội tụ
- (-*R*, *R*): khoảng hội tụ.
- Khoảng hội tụ kết hợp tính hội tụ tại $\pm R \rightarrow \text{miền hội tụ}$ Bán kính hội tụ xác định bởi:

$$R = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| hay \ R = \frac{1}{\lim_{k \to \infty} \sqrt[k]{|a_k|}}$$

R = 0: chuỗi chỉ hội tụ tại x = 0

 $R = \infty$: chuỗi hội tụ với mọi $x \in \mathbb{R}$.

 $0 < R < \infty$: chuỗi hội tụ với mọi -R < x < R

3. Quy trình tìm miền hội tụ của chuỗi lũy thừa

$$\sum_{k=0}^{\infty} a_k X^k \text{ với } X = x \text{ hoặc } X = x - c$$

1. Tìm bán kính hội tụ R theo:

$$R = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| hay R = \frac{1}{\lim_{k \to \infty} \sqrt[k]{|a_k|}}$$

- 2. Khảo sát sự hội tụ của chuỗi lũy thừa tại $X = \pm R$
- 3. Suy ra miền hội tụ theo $X \rightarrow k$ ết luận miền hội tụ theo x

Tìm miền hội tụ của chuỗi lũy

$$\sum_{k=1}^{\infty} \frac{x^k}{3^k k}$$

thừa

Tìm miền hội tụ của chuỗi lũy

thừa

$$\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1} (x-3)^k$$

Tìm miền

hội tụ của

chuỗi lũy

thừa

$$\sum_{k=0}^{+\infty} \frac{x^k}{k!}$$

Tìm miền

hội tụ của

chuỗi lũy

thừa sau

$$\sum_{k=0}^{+\infty} k! x^k$$

Tìm miền

hội tụ của

chuỗi lũy

thừa sau

$$\sum_{k=0}^{+\infty} 2^k \left(x - 1 \right)^k$$

2. ỨNG DỤNG CỦA CHUỐI LŨY THỬA

1. Đạo hàm và tích phân từng số hạng của chuỗi lũy thừa

Nếu
$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$
 khi $|x| < R$ thì
$$1. f'(x) = \left(\sum_{k=0}^{+\infty} a_k x^k\right)' = \sum_{k=0}^{\infty} \left(a_k x^k\right)' = \sum_{k=0}^{\infty} k a_k x^{k-1}$$

$$2. \int f(x)dx = \sum_{k=0}^{\infty} \left(\int a_k x^k dx \right) = \sum_{k=0}^{\infty} \frac{a_k}{k+1} x^{k+1} + C$$

2. Một số ví dụ

Chứng minh

$$\sum_{k=0}^{+\infty} \frac{x^k}{k!} = e^x, \, \forall x$$

Tính tổng
$$S(x) = -2x + 4x^3 - 6x^5 + ... + (-1)^n 2nx^{2n-1} + ...$$

KÉT BÀI

Sinh viên cần lưu ý:

- Tìm được miền hội tụ của một chuỗi lũy thừa
- Vận dụng được công thức đạo hàm và tích phân từng số hạng của chuỗi lũy thừa để tính tổng.

THANKS FOR WATCHING!

Tìm miền hội tụ của chuỗi lũy

thừa sau

$$\sum_{k=1}^{\infty} \frac{x^{2k}}{\sqrt{k}}$$

Bài giải

Bán kính hội tụ

$$R = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = \lim_{k \to \infty} \left| \frac{\frac{1}{\sqrt{k}}}{\frac{1}{\sqrt{k+1}}} \right| = \lim_{k \to \infty} \frac{\sqrt{k+1}}{\sqrt{k}} = 1$$

Khoảng hội tụ: $-1 < x^2 < 1 \Rightarrow x^2 < 1 \Rightarrow -1 < x < 1$

$$x = -1: \sum_{k=1}^{\infty} \frac{\left(-1\right)^{2k}}{\sqrt{k}} = \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \rightarrow \text{Chuỗi-p phân kỳ}$$

$$\text{vì } p = 1/2 < 1$$

$$x = 1: \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$$
 \rightarrow Chuỗi-p phân kỳ

Miền hội tụ của chuỗi là -1 < x < 1 hay (-1,1)