

Iterative Depth-First Search for FOND Planning

Ramon Fraga Pereira¹ André Grahl Pereira² Frederico Messa² Giuseppe De Giacomo¹

²Federal University of Rio Grande do Sul, Porto Alegre, Brazil ¹Sapienza University of Rome, Rome, Italy

Motivation and Contributions

Fully Observable Non-Deterministic (FOND) planning models uncertainty through actions with non-deterministic effects with uniform probabilities over the actions' effects.

Existing FOND planners are effective and employ a wide range of techniques. However, most of the existing FOND planners are not robust for dealing with both non-determinism and task size.

The main contributions of this work are as follows:

- Iterative Depth-First Search (IDFS) algorithms for FOND Planning:
 - Our algorithms are explicitly designed for solving FOND Planning;
 - Use heuristics to make the iterative process effective in FOND;
 - IDFS is effective to deal with different non-deterministic aspects of FOND Planning;

Background and Notation

Definition (FOND Planning Task)

A FOND planning task is tuple $\Pi = \langle \mathcal{D}, s_0, s_* \rangle$:

- $\mathcal{D} = \langle \mathcal{F}, \mathcal{A} \rangle$ is a **non-deterministic domain model**, where \mathcal{F} is a set of *fluents*, and a set of **non-deterministic actions** A. Every $a \in \mathcal{A}$ consists of $a = \langle pre, EFFS \rangle$, where:
 - \blacksquare pre(a) represents the **preconditions**; and
 - EFFS(a) represents the **set of possible effects** of a;
- \blacksquare s_0 is the **initial state**;
- \blacksquare s_* is the **goal condition**;

The application of EFFS(a) to a state s generates a set of possible successor states $SUCCS(s, a) = \{SUCC(s, eff) \mid eff \in EFFS(a)\}.$

Definition (FOND Planning Solution Policy π)

A solution to a FOND planning task Π is a **policy** π , a partial function that maps non-goal states s into actions $a \in \mathcal{A}$.

A policy π induces π -trajectories, a non-empty sequence of states $\langle s^0, s^1, \dots s^k \rangle$, such that $s^{i+1} \in SUCCS(s^i, \pi(s^i)), \forall i \in \{0, 1, ..., k-1\}.$

A policy π is closed if any π -trajectory starting from s_0 ends either in a goal state or in a state defined in the policy π .

Definition (Strong Policy)

A policy π is a *strong policy* for Π if it is closed and no π -trajectory passes through a state more than once.

Definition (Strong Cyclic Policy)

A policy π is a strong cyclic policy for Π if it is closed and any π -trajectory starting from s_0 which does not end in a goal state, ends in a state s' such that exists another π -trajectory starting from s' ending in a goal state.

Figure 1. Strong Policy.

Figure 2. Strong Cyclic Policy.

Evaluation Function \mathcal{F} for FOND

 ${}^{a}g(s)$ represents the search depth from s_0 to s_0

We define the f-value^a of a state s as:

$$f(s) = g(s) + h(s). \tag{1}$$

We evaluate the successor states SUCCS(s, a) using the Evaluation Function \mathcal{F}_{ξ} . \mathcal{F}_{ξ} uses a function ξ to aggregate the f-values of states in SUCCS(s, a):

$$\mathcal{F}_{\min}(SUCCS(s,a)) \equiv \min_{s' \in SUCCS(s,a)} f(s')$$
 (2)

$$\mathcal{F}_{\max}(SUCCS(s,a)) \equiv \max_{s' \in SUCCS(s,a)} f(s')$$
(3)

 \mathcal{F}_{ξ} is "pessimistic" when $\xi = \max$, whereas it is "optmistic" when $\xi = \min$.

Iterative DFS for FOND Planning

- IDFS performs a series of **bounded** depth-first searches;
- IDFS produces a strong cyclic policy in a **bottom-up way**;
 - It only adds an action to the policy if it determines that the resulting policy with the additional action has the potential to become a strong cyclic policy without exceeding the current search-depth bound.

- Z ancestors of s; Z_* ancestors of s that has achieved s_* through a π -trajectory;
- Base Cases: Check if $s \models s_*$ OR $s \in Z_*$ OR $\pi(s) \neq \bot$. If so, it returns *SOLVED*; And, if $s \in (Z \setminus Z_*)$ (s visited before), if so, it returns UNSOLVED.
- **Evaluate Applicable Actions in** s: Check bound for SUCCS(s, a).
- If $\mathcal{F}_{\varepsilon}(SUCCS(s, a)) > bound$) and $Z_{*} = \emptyset$: **discards** a on s, and proceeds to the next action.
- **2** If if g(n) + 1 > bound: **discards** a on s, and proceeds to the next action.
- **■** Fixed Point:
- It maps $s \mapsto a$ to π **ONLY** if **ALL** recursive calls on states of SUCCS(s, a) returned SOLVED;
- \blacksquare If not, it **discards** a on s, and proceeds to the next action.

IDFS Pruning (IDFSP)

IDFSP **prunes** non-promising states. E.g., it prunes states whose all successor states for all applicable actions have \mathcal{F} greater than the current bound.

Experiments and Evaluation

We use two FOND planning benchmarks: IPC-FOND and NEW-FOND.

Our planner is called PALADINUS.

We compare PALADINUS with: MYND, PRP, and FONDSAT.

${ m JS}$ with: MYND, PRP, and FC	ONDSAT.
Planner	Solved Tasks (#590)
PALADINUS $\overline{\text{IDFSP}}$ ($\mathcal{F}_{\min}, h^{\text{max}}$)	337
$\text{PALADINUS } \underline{\text{IDFSP}}_{(\mathcal{F}_{\min}, \; h^{\text{FF}})}$	406
$\text{PALADINUS IDFSP}_{(\mathcal{F}_{\min}, \; h^{\text{ADD}})}$	411
PALADINUS $\overline{\text{IDFSP}}$ (\mathcal{F}_{max} , h^{max})	334
$\text{PALADINUS IDFSP}_{(\mathcal{F}_{\max}, \; h^{\text{ff}})}$	380
$\text{PALADINUS IDFSP}_{(\mathcal{F}_{\text{max}}, \; h^{\text{ADD}})}$	422
FONDSAT	276
$\operatorname{PRP}\left(h^{\scriptscriptstyle{\mathrm{MAX}}}\right)$	292
$PRP_{(h^{\text{ff}})}$	412
$PRP(h^{ADD})$	389
$\mathrm{MYND}_{(h^{\mathrm{MAX}})}$	180
$\mathrm{MYND}_{(h^{\mathrm{FF}})}$	265
$\mathrm{MYND}_{(h^{\mathrm{ADD}})}$	289

Table 1. Overall coverage results.

Figure 3. All Benchmarks.

Figure 4. NEW-FOND Benchmarks.

ICAPS Conference, Virtual, 2022 pereira@diag.uniroma1.it