

NTE4024B Integrated Circuit CMOS, 7-Stage Ripple Counter 14-Lead DIP Type Package

Description:

The NTE4024B is a 7-stage ripple counter with short propagation delays and high maximum clock rates. The Reset input has standard noise immunity, however the Clock input has increased noise immunity due to Hysteresis. The output of each counter stage is buffered.

Features:

- Diode Protection on All Inputs
- Output Transitions Occur on the falling Edge of the Clock Pulse
- Supply Voltage Range: 3Vdc to 18Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range

Note 1. Maximum Ratings are those values beyond which damage to the device may occur.

<u>Electrical Characteristics:</u> (Voltages referenced to V_{SS}, Note 2)

		.,	−55°C		+25°C			+125°C		
Parameter	Symbol	V _{DD} Vdc	Min	Max	Min	Тур	Max	Min	Max	Unit
Output Voltage "0" Level	V _{OL}	5.0	_	0.05	-	0	0.05	-	0.05	Vdc
$V_{in} = V_{DD}$ or 0		10	_	0.05	-	0	0.05	-	0.05	Vdc
		15	_	0.05	-	0	0.05	-	0.05	Vdc
"1" Level	V _{OH}	5.0	4.95	_	4.95	5.0	_	4.95	_	Vdc
$V_{in} = 0$ or V_{DD}		10	9.95	_	9.95	10	_	9.95	_	Vdc
		15	14.95	-	14.95	15	-	14.95	_	Vdc
Input Voltage "0" Level $(V_O = 4.5 \text{ or } 0.5\text{Vdc})$	V _{IL}	5.0	_	1.5	_	2.25	1.5	_	1.5	Vdc
(V _O = 9.0 or 1.0Vdc)		10	_	3.0	-	4.50	3.0	-	3.0	Vdc
(V _O = 13.5 or 1.5Vdc)		15	_	4.0	-	6.75	4.0	-	4.0	Vdc
"1" Level (V _O = 0.5 or 4.5Vdc)	V _{IH}	5.0	3.5	-	3.5	2.75	_	3.5	-	Vdc
(V _O = 1.0 or 9.0Vdc)		10	7.0	_	7.0	5.50	_	7.0	_	Vdc
(V _O = 1.5 or 13.5Vdc)		15	11.0	_	11.0	8.25	-	11.0	_	Vdc
Output Drive Current Source (V _{OH} = 2.5Vdc)	I _{OH}	5.0	-3.0	_	-2.4	-4.2	_	-1.7	_	mAdc
(V _{OH} = 4.6Vdc)		5.0	-0.64	_	-0.51	-0.88	_	-0.36	_	mAdc
(V _{OH} = 9.5Vdc)		10	-1.6	_	-1.3	-2.25	-	-0.9	_	mAdc
(V _{OH} = 13.5Vdc)		15	-4.2	_	-3.4	-8.8	_	-2.4	_	mAdc
Sink (V _{OL} = 0.4Vdc)	l _{OL}	5.0	0.64	-	0.51	0.88	_	0.36	-	mAdc
(V _{OL} = 0.5Vdc)		10	1.6	_	1.3	2.25	_	0.9	_	mAdc
(V _{OL} = 1.5Vdc)		15	4.2	_	3.4	8.8	_	2.4	_	mAdc
Input Current	l _{in}	15	_	±0.1	_	±0.00001	±0.1	_	±0.1	μAdc
Input Capacitance (V _{IN} = 0)	C _{in}	_	-	_	-	5.0	7.5	-	_	pF
Quiescent Current (Per Package)	I _{DD}	5.0	_	5.0	_	0.005	5.0	_	150	μAdc
(i ei i ackage)		10	_	10	_	0.010	10	-	300	μAdc
		15	_	20	_	0.015	20	_	600	μAdc
Total Supply Current (Dynamic plus Quiescent,	Ι _Τ	5.0				.31μA/kHz)			_	μAdc
Per Package, C _L = 50pF on		10			$I_T = (0$.60μA/kHz)	f + I _{DD}			μAdc
all outputs, all buffers switching, Note 3, Note 4)		15			I _T = (1	.89μA/kHz)	f + I _{DD}			μAdc

- Note 2. Data labeled "Typ" is not to be used for design purposes but is intended as an indication of the device's potential performance.
- Note 3. The formulas given are for the typical characteristics only at +25°C.
- Note 4. To calculate total supply current at loads other than 50pF:

$$I_T(C_L) = I_T(50pF) + (C_L -50) V_{fk}$$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.001.

Switching Characteristics: ($C_L = 50pF$, $T_A = +25^{\circ}C$, Note 2)

Parameter	Symbol	V _{DD} Vdc	Min	Тур	Max	Unit
Output Rise and Fall Time	t _{TLH} ,	5.0		400	000	
t_{TLH} , $t_{THL} = (1.5ns/pf) C_L + 25ns$	t _{THL}	5.0	_	100	200	ns
t_{TLH} , $t_{THL} = (0.75 \text{ns/pf}) C_L + 12.5 \text{ns}$	<u> </u>	10	_	50	100	ns
t_{TLH} , $t_{THL} = (0.55 \text{ns/pf}) C_L + 9.5 \text{ns}$		15	_	40	80	ns
Propagation Delay Time Clock to Q1	t _{PLH} . t _{PHL}					
t_{PLH} , $t_{PHL} = (1.7 \text{ns/pf}) C_L + 295 \text{ns}$	PHL	5.0	_	380	600	ns
t_{PLH} , $t_{PHL} = (0.66 \text{ns/pf}) C_L + 117 \text{ns}$	Ī	10	_	150	230	ns
t_{PLH} , $t_{PHL} = (0.5 \text{ns/pf}) C_L + 85 \text{ns}$		15	_	110	175	ns
Clock to Q7						
t_{PLH} , $t_{PHL} = (1.7 \text{ns/pf}) C_L + 915 \text{ns}$		5.0	_	1000	2000	ns
t_{PLH} , $t_{PHL} = (0.66ns/pf) C_L + 367ns$		10	_	400	750	ns
t_{PLH} , $t_{PHL} = (0.5 \text{ns/pf}) C_L + 275 \text{ns}$		15	_	300	565	ns
Reset to Q _n						
t_{PLH} , $t_{PHL} = (1.7 \text{ns/pf}) C_L + 415 \text{ns}$		5.0	_	500	800	ns
t_{PLH} , $t_{PHL} = (0.66ns/pf) C_L + 217ns$	<u> </u>	10	_	250	400	ns
t_{PLH} , $t_{PHL} = (0.5 \text{ns/pf}) C_L + 155 \text{ns}$		15	_	180	300	ns
Clock Pulse Width	t _{WH}	5.0	500	200	_	ns
		10	165	60	_	ns
		15	125	40	_	ns
Reset Pulse Width	t _{WH}	5.0	600	375	_	ns
		10	350	200	_	ns
		15	260	150	_	ns
Reset Removal Time	t _{rem}	5.0	625	250	_	ns
		10	190	75	-	ns
		15	145	50	-	ns
Clock Input Rise and Fall Time	t _{TLH} ,	5.0	_	_	1.0	S
	t _{THL}	10	_	_	8.0	ms
		15	_	_	200	μs
Input Pulse Frequency	f _{cl}	5.0	_	2.5	1.0	MHz
		10	_	8.0	3.0	MHz
		15	_	12.0	4.0	MHz

Note 2. Data labeled "Typ" is not to be used for design purposes but is intended as an indication of the device's potential performance.

Note 3. The formulas given are for the typical characteristics only at +25°C.

Truth Table

CLOCK	Reset	Output State	
0	0	No Change	
0	1	All Outputs Low	
1	0	No Change	
1	1	All Outputs Low	
	0	No Change	
	1	All Outputs Low	
	0	Advance One Count	
	1	All Outputs Low	

