



รศ.ดร. วฤษาย์ ร่มสายหยุด ประธานกรรมการ

พศ.ดร. ดวงใจ จิตคงชื่น กรรมการ

ดร. เอกสิทธิ์ พัชรวงศ์ศักดา อาจารย์ที่ปรึกษา สิทธิ โง้ววัฒนา 645162020022 ผู้จัดทำ





- ที่มาและความสำคัญ
- วัตถุประสงค์และขอบเขตงาน
- แนวคิด ทฤษฎีและงานวิจัยที่ เกี่ยวข้อง
- ระเบียบวิธีวิจัย
- ผลการดำเนินงาน
- สรุปผลและข้อเสนอแนะ









# ที่มาและความสำคัญ



# ที่มาและความสำคัญ

- เคยประสบปัญหา Regional Team มาขอยืมทรัพยากรไปถึง 30% เพื่อที่จะนำไปช่วยในส่วนของ marketplace ทำให้ทั้งแผนกทำงานได้ ช้าลง เนื่องจากทรัพยากรในการประมวลผลไม่เพียงพอ
- ความคิดเห็นจากผู้ใช้งานในทางลบจาก Social Media ที่เกิดจาก ปัญหาเว็บล่มหรือแอปพลิเคชั่นใช้งานไม่ได้
- ผู้ใช้งานย้ายไปใช้งานบนแพลตฟอร์มของคู่แข่งขัน เนื่องจากมี ประสบการณ์การใช้งานที่ไม่ดี







### ตัวอย่างความคิดเห็นของผู้ใช้งานจาก Social Media







· Feb 6

t]

ช้อปปี้ ล่มอ่อออทำไมให้ล็อคอินใหม่ ?

#ShopeeTH #shopee

Q 126

**C** 977

**O** 403

III 212.9K

1



Stone.rose @Stonero18717930 · Apr 4 lazada คือไรอะ ล่มเฉย #lazadaล่ม

Q

t] 1

 $\bigcirc$  1

1 865



LAππE: ภูเหมียว @chaerinnuna · Apr 4 ลาซาด้า ล่มเหรอวะะะะ

0

t]

 $\mathbb{C}$ 

2

ılıı 519



น้ำใจ (¬\_¬) @naamjai · Apr 4 Lazada ล่ม?

0

17

0

ılıı 537









# วัตถุประสงค์และ ขอบเขตงาน



# วัตถุประสงค์

- เพื่อทำนายปริมาณการเข้าชมเว็บไซต์ล่วงหน้า 14 วัน
- นำผลที่ได้จากการทำนายมาใช้ในการแจ้งเตือนผ่านแอปพลิเคชั่น เพื่อที่จะได้มีเวลาเตรียมการรับมือกับปัญหา
- ศึกษาพฤติกรรมการใช้งานของผู้ใช้เพื่อประโยชน์อื่นๆทางธุรกิจ
- เสนอและเปรียบเทียบแบบจำลองต่างๆ เพื่อเลือกใช้ให้เหมาะสม กับประเภทของงาน



## บอบเขตงาน

- ใช้การดึงข้อมูล Web Traffic จาก Google Analytics
- ข้อมูลรายวันของ Google Merchandise Store ระหว่าง วันที่ 1 มกราคม 2559 ถึง 6 พฤษภาคม 2566
- ข้อมูลแบบ Structured Data









# แนวคิด ทฤษฎีและ งานวิจัยที่เกี่ยวข้อง





- ความหมายและประเภทของ Web Traffic
- ความหมายและประเภทของการพยากรณ์
- พยากรณ์แบบอนุกรมเวลา (Time Series Forecasting)
- Autoregressive Integrated Moving Average (ARIMA)
- Prophet







จำนวนข้อมูลที่ถูกส่งและรับผ่านเครือข่ายอินเทอร์เน็ตของเว็บไซต์หรือ แอปพลิเคชันเว็บในระยะเวลาที่กำหนด โดยมักใช้เพื่อวัดปริมาณการเข้าชม หรือการใช้งานในแต่ละวัน จำนวน web traffic สามารถสื่อถึงความนิยม และความสำเร็จของเว็บไซต์หรือแอปพลิเคชันเว็บได้ในบางครั้ง ยิ่งมีจำนวน web traffic มากขึ้น มักแปลว่ามีผู้เข้าชมหรือผู้ใช้งานมากขึ้นเช่นกัน



## ประเภทของ Web Traffic

#### Organic Traffic

เป็นการเข้าชมเว็บไซต์หรือแอปพลิเคชันเว็บที่เกิดจากผลการค้นหาธรรมชาติ ในเครื่องมือค้นหา เช่น ผลการค้นหาใน Google ผู้เข้าชมประเภทนี้มักเป็นผู้ ที่มีความสนใจในเนื้อหาที่เว็บไซต์หรือแอปพลิเคชันเว็บมีอยู่แล้ว

#### • Referral Traffic

เป็นการเข้าชมที่เกิดจากการคลิกลิงก์ที่อยู่ในเว็บไซต์อื่นๆ ที่ชี้ไปยังเว็บไซต์ หรือแอปพลิเคชันเว็บปลายทาง เช่น ลิงก์ที่อยู่ในโพสต์บนสื่อสังคมออนไลน์ หรือลิงก์ที่อยู่ในบทความบนเว็บไซต์อื่น



## ประเภทของ Web Traffic

#### Direct Traffic

เป็นการเข้าชมที่เกิดจากผู้ใช้งานที่พิมพ์ URL ของเว็บไซต์หรือแอปพลิเคชัน เว็บโดยตรงในแถบที่อยู่ของเบราว์เซอร์ หรือใช้บุ๊คมาร์กหรือประวัติการ เรียกดูเว็บ ไม่ได้เกิดจากการค้นหาบน Search Engine

#### Social Media Traffic

เป็นการเข้าชมที่เกิดจากการคลิกลิงก์ที่อยู่ในโพสต์หรืออัพเดตทางสื่อสังคม ออนไลน์ เช่น Facebook, Twitter, Instagram เป็นต้น



# ประเภทของ Web Traffic

#### Paid Traffic

เป็นการเข้าชมที่เกิดจากการโฆษณาและการตลาดทางออนไลน์ที่เสียค่าใช้ จ่าย เช่น การโฆษณาบนเครื่องมือค้นหาหรือโฆษณาบนโซเชียลมีเดีย

#### Campaign Traffic

เป็นการเข้าชมที่เกิดจากแคมเปญการตลาดที่เฉพาะเจาะจง เช่น การส่ง อีเมล์โปรโมชั่นหรือการโฆษณาทางอีเมล์







## ความหมายของการพยากรณ์

การพยากรณ์เป็นกระบวนการที่ใช้ข้อมูลที่มีอยู่ในอดีตหรือปัจจุบันเพื่อ ทำนายหรือคาดคะเนสิ่งที่จะเกิดขึ้นในอนาคต ซึ่งสามารถนำไปใช้ในการ วิเคราะห์เพื่อให้เห็นแนวโน้มของการเปลี่ยนแปลงในสิ่งที่เราต้องการ พยากรณ์ โดยใช้การวิเคราะห์และการสร้างแบบจำลองทางสถิติและ คณิตศาสตร์ เพื่อประมาณค่าหรือเหตุการณ์ที่อาจเกิดขึ้นในอนาคต



# ประเภทของการพยากรณ์

#### ประเภทของการพยากรณ์ตามระยะเวลา

- การพยากรณ์ระยะสั้น (Short-term Forecasting) เป็นการ พยากรณ์ในช่วงเวลาไม่เกิน 1 ปี
- การพยากรณ์ระยะปานกลาง (Intermediate Forecasting)
   เป็นการพยากรณ์ในช่วงเวลาระหว่าง 3 เดือนถึง 3 ปี
- การพยากรณ์ระยะยาว (Long-term Forecasting) เป็นการ พยากรณ์ในช่วงเวลามากกว่า 3 ปีขึ้นไป



# ประเภทของการพยากรณ์

### ประเภทของการพยากรณ์ตามคุณลักษณะ

- วิธีการเชิงคุณภาพ (Qualitative Methods) เป็นการพยากรณ์ โดยอาศัยผู้เชี่ยวชาญในการคาดการณ์ระยะสั้น โดยไม่ใช้แบบจำลอง ทางคณิตศาสตร์ จึงตรวจสอบความแม่นยำได้ยากกว่าการ พยากรณ์เชิงปริมาณ
- วิธีการเชิงปริมาณ (Quantitative Methods) จะใช้สถิติที่มีความ หมายและข้อมูลเก่าเพื่อคาดการณ์แนวโน้มในอนาคตในระยะยาว





# Time Series Forecasting

เป็นวิธีการอาศัยข้อมูลจากอดีตเพื่อพยากรณ์หรือคาดคะเนสิ่งที่เกิดขึ้น ในอนาคต องค์ประกอบของอนุกรมเวลา ประกอบไปด้วย 4 ส่วนดังนี้

- แนวโน้ม (Trend) มีรูปแบบการเคลื่อนใหวซ้ำๆ ของการเพิ่มขึ้นหรือลด ลงอย่างค่อยเป็นค่อยไป
- ฤดูกาล (Season) มีรูปแบบการเปลี่ยนแปลงแบบซ้ำๆกัน จากผลกระทบ ของฤดูกาล
- วัฏจักร (Cycle) มีรูปแบบการเคลื่อนไหวซ้ำๆ ของการเพิ่มขึ้นหรือลดลง จะแสดงรูปแบบให้เห็น โดยไม่เกี่ยวข้องกับฤดูกาล สามารถมีระยะเวลา ยาวเท่าหรือยาวกว่าฤดูกาล
- ความผิดปกติหรือความไม่แน่นอน (Irregular or Random) มีรูปแบบที่ ไม่มีแบบแผนเป็นผลกระทบจากการเปลี่ยนแปลงแบบสุ่ม







#### องค์ประกอบทั้งสี่ของ Time Series

## Components of Time Series











## ARIMA

เป็นแบบจำลองเชิงสถิติที่ใช้ในการพยากรณ์และการวิเคราะห์อนุกรม เวลา (Time Series Analysis) โดยเฉพาะ โดยมีความสามารถในการ จัดการกับองค์ประกอบของแนวโน้ม (Trend) และสภาวะซ้ำซ้อน (Seasonality) ซึ่งเป็นความสามารถที่สำคัญในการพยากรณ์และการ วิเคราะห์แนวโน้มของข้อมูลตามเวลาในอนาคต

ARIMA ประกอบด้วยสามส่วนหลัก คือ AR (Autoregressive), I (Integrated), และ MA (Moving Average)



# Prophet



เป็นไลบรารีที่สามารถใช้งานได้ใน R และ Python ซึ่งช่วยให้ผู้ใช้ วิเคราะห์และทำนายค่าชุดข้อมูลแบบ Time Series ได้อย่างง่ายดาย ไลบรารีนี้ปล่อยตัวออกมาในปี 2017 ด้วยความพยายามของนักพัฒนาที่ ให้การวิเคราะห์ข้อมูลแบบ Time Series ให้สามารถใช้งานได้โดยไม่ต้องมี ความเชี่ยวชาญมากนัก มีความเป็นมิตรต่อผู้ใช้สูง แต่ยังคงสามารถปรับ แต่งได้มาก





# Prophet

Prophet สร้างแบบจำลองสำหรับพยากรณ์ชุดข้อมูลเวลาที่ สามารถแยกส่วนประกอบหลัก ได้แก่ แนวโน้ม ฤดูกาล วันหยุด และความ ผิดปกติ ดังสมการต่อไปนี้



# งานวิจัยที่เกี่ยวข้อง



Web Traffic Time Series
Forecasting using ARIMA and LSTM RNN

Shelatkar, T., Tondale, S., Yadav, S., & Ahir, S. (2020)

ได้นำเสนอการพยากรณ์ข้อมูลอนุกรมเวลาด้วยการ ใช้ Discrete Wavelet Transform (DWT) แบ่งข้อมูลที่ได้ มาจาก Wikipedia Pageview API ออกเป็น 2 ส่วน ใน ขั้นตอนการจัดเตรียมข้อมูล ทำให้ได้ส่วนที่เป็น Detail และ Approximate เพื่อที่จะแบ่งให้ ARIMA และ LSTM RNN ช่วยกันพยากรณ์ และจะนำผลการพยากรณ์กลับมา รวมกันด้วยวิธี Invert Discrete Wavelet Transform (iDWT) ทำให้ได้ผลการพยากรณ์ที่แม่นยำมากขึ้น



# งานวิจัยที่เกี่ยวข้อง



Website Traffic Time Series Forecasting Using Regression Machine Learning

D. Sikka and C. N. S. Vinoth Kumar (2023)

ได้นำเสนอการพยากรณ์ข้อมูลอนุกรมเวลาด้วยการใช้ Ensemble model ที่ประกอบไป ด้วยแบบจำลองหลายแบบได้แก่ Decision Tree, Multiple Linear Regression และ Support Vector Machine ในการพยากรณ์ข้อมูล pageview และ visitors ใน การหาจำนวน unique visitors จาก statforecasting.com

# งานวิจัยที่เกี่ยวข้อง



Web Traffic Prediction of Wikipedia Pages

N. Petluri and E. Al-Masri (2018)

ได้นำเสนอการพยากรณ์อนุกรมเวลาด้วยวิธีการสร้างตัวแปรใหม่ (Feature Engineering) จากแบบจำลองเดิมที่มีคือ RNN seq2seq โดยที่ผู้วิจัยได้ตั้งสมมติฐานขึ้นมาว่าการสร้าง ตัวแปรใหม่ขึ้นมา จะช่วยส่งเสริมการเรียนรู้ให้กับแบบจำลอง ซึ่งจะทำให้ประสิทธิภาพของ แบบจำลองที่มีอยู่นั้นสูงขึ้นได้









# ระเบียบวิธีวิจัย





#### การรวบรวมข้อมูล

#### การจัดเตรียมข้อมูล

#### การสร้างแบบจำลอง

#### การนำไปใช้งาน

Google Analytics

- เปลี่ยนรูปแบบข้อมูล
- ตั้งชื่อคอลัมน์
- ลบข้อมูลที่ไม่เกี่ยวข้อง
- จัดเรียงข้อมูล
- สร้างตัวแปรใหม่
   (Feature Engineering)

- สร้างแบบจำลอง
  - ARIMA
  - Prophet (Uni.)
  - Prophet (Multi.)

 สร้างระบบแจ้งเตือนผ่าน แอปพลิเคชั่น



# การรวบรวมข้อมูล

- รวบรวมข้อมูล Google Merchandise Store จาก Google Analytics
- ข้อมูลระหว่างวันที่ 1 มกราคม 2559 ถึง 5 พฤษภาคม 2566







#### Web Traffic Data from Google Analytics









#### Web Traffic Data from Google Analytics

### ตัวอย่างชุดข้อมูล

| Day Index | Users | Bounce Rate | Avg. Session Du | Number of Sessi | Pages / Session | Pageviews | Sessions |
|-----------|-------|-------------|-----------------|-----------------|-----------------|-----------|----------|
| 1/1/16    | 1,777 | 47.83%      | 0:01:30         | 1.06            | 4.53            | 8,553     | 1,888    |
| 1/2/16    | 1,402 | 50.48%      | 0:01:49         | 1.04            | 6.42            | 9,359     | 1,458    |
| 1/3/16    | 1,333 | 52.40%      | 0:02:10         | 1.09            | 5.35            | 7,804     | 1,458    |
| 1/4/16    | 1,777 | 48.54%      | 0:03:57         | 1.08            | 9.91            | 18,981    | 1,916    |
| 1/5/16    | 1,736 | 47.70%      | 0:03:10         | 1.04            | 8.42            | 15,191    | 1,805    |
| 1/6/16    | 1,777 | 40.75%      | 0:01:30         | 1.06            | 5.78            | 10,844    | 1,875    |
| 1/7/16    | 1,805 | 46.35%      | 0:02:38         | 1.05            | 7.91            | 14,941    | 1,888    |
| 1/8/16    | 1,625 | 39.81%      | 0:02:44         | 1.05            | 7.49            | 12,788    | 1,708    |



## • <u>เปลี่ยนรูปแบบข้อมูล</u>

 เปลี่ยน data type ให้เหมาะสมกับงาน เนื่องจากเมื่อเก็บ ข้อมูลมาได้ ข้อมูลส่วนใหญ่จะอยู่ในรูปแบบ String

### • ตั้งชื่อคอลัมน์

- ตั้งชื่อคอลัมน์ให้เป็นไปตามข้อกำหนดของแบบจำลองนั้นๆ
   เช่น Prophet จะใช้คอลัมน์วันที่เป็น 'ds' และคอลัมน์ที่จะทำนายเป็น 'y'
- <u>ลบข้อมูลที่ไม่จำเป็นออก</u>



### • สร้างตัวแปรใหม่ (Feature Engineering)

เป็นกระบวนการเพื่อสร้างคุณลักษณะ (features) หรือ ตัวแปรที่เหมาะสมและมีประโยชน์ในการสร้างแบบจำลอง (models) หรือวิเคราะห์ข้อมูล ซึ่งคุณลักษณะเหล่านี้จะถูก นำเข้าไปใช้ในการประมวลผลและการตัดสินใจในการแยกแยะ ข้อมูล มีเป้าหมายเพื่อเพิ่มประสิทธิภาพของแบบจำลอง ลด ความซับซ้อน และเพิ่มความเข้าใจในข้อมูล



#### Feature Engineering

#### is\_weekend

สร้างตัวแปรขึ้นมาใหม่โดยอ้างอิงจากวันที่ เพื่อแสดงว่าวันที่ เหล่านั้นเป็นวันเสาร์-อาทิตย์หรือไม่ โดยที่จะแสดงผลเป็น 1 ถ้าไม่ใช่วันเสาร์-อาทิตย์ จะแสดงผลเป็น Ø

#### week\_no

 สร้างตัวแปรขึ้นมาใหม่โดยอ้างอิงจากวันที่ เพื่อแสดงว่าเป็น สัปดาห์ที่เท่าไรในแต่ละปี ซึ่งจะมีค่าอยู่ที่ระหว่าง 1-52



#### **Feature Engineering**

### avg\_session\_duration

 รวบรวมข้อมูลระยะเวลาเฉลี่ยของการเข้าชมเว็บแต่ละครั้ง เพิ่มเติม จาก Google Analytics ซึ่งจะมีหน่วยเป็นวินาที

### e-commerce holidays

 สร้างตัวแปรขึ้นมาใหม่จากการค้นหาข้อมูลของวันที่ของวัน เทศกาลสำหรับธุรกิจ e-commerce เพื่อช่วยเพิ่มราย ละเอียดและการเรียนรู้ให้แบบจำลองในการพยากรณ์ได้ ที่ เพิ่มเติมจากวันหยุดที่มีอยู่ในฐานข้อมูลเดิมของ Prophet

| e-commerce holidays | วันที่                              |  |  |
|---------------------|-------------------------------------|--|--|
| St. Patrick's Day   | 17 มีนาคม ของทุกปี                  |  |  |
| Easter              | ในเดือนเมษายน วันที่ไม่แน่นอน       |  |  |
| Halloween           | 31 ตุลาคม ของทุกปี                  |  |  |
| Singles' Day        | 11 พฤศจิกายน ของทุกปี               |  |  |
| Black Friday        | วันศุกร์ที่สี่ของเดือนพฤศจิกายน     |  |  |
| Cyber Monday        | วันจันทร์แรกที่ถัดจาก Black Friday  |  |  |
| Super Saturday      | วันเสาร์ก่อนที่จะถึงเทศกาลคริสมาสต์ |  |  |
| Christmas Eve       | 24 ธันวาคม ของทุกปี                 |  |  |
| New Year's Eve      | 31 ธันวาคม ของทุกปี                 |  |  |







สร้างเป็น DataFrame ไว้ ใช้ในแบบจำลอง โดยการ ใช้ข้อมูลวันที่ดังกล่าว ตั้งแต่ปี 2016-2023







ตัวอย่างชุดข้อมูลหลัง Preprocessing

|      | index | ds         | у    | avg_session_duration | week_no | is_weekend |
|------|-------|------------|------|----------------------|---------|------------|
| 2678 | 2678  | 2023-05-02 | 3202 | 185.98               | 18      | 0          |
| 2679 | 2679  | 2023-05-03 | 2808 | 176.39               | 18      | 0          |
| 2680 | 2680  | 2023-05-04 | 2842 | 194.42               | 18      | 0          |
| 2681 | 2681  | 2023-05-05 | 2598 | 160.21               | 18      | 0          |
| 2682 | 2682  | 2023-05-06 | 1981 | 134.34               | 18      | 1          |



## การสร้างแบบจำลอง

- สร้างแบบจำลองพยากรณ์ปริมาณการเข้าชมเว็บไซต์ล่วงหน้า 14 วัน ด้วย ARIMA
- ใช้ค่า p, d, q = 2, 1, 3 ซึ่งเป็นค่าที่ได้มาจากการใช้ Auto ARIMA

```
Forecasted values for the next 14 days:
[2044.16762216 2577.46543803 3133.74068802 3294.1160154 2937.94220578 2333.56161818 1936.13834057 2044.8703286 2577.73989516 3133.3803531 3293.39239756 2937.40028642 2333.60940681 1936.7396857 ]
```



## การสร้างแบบจำลอง

- สร้างแบบจำลองพยากรณ์ปริมาณการเข้าชมเว็บไซต์ล่วงหน้า 14 วัน ด้วย Prophet
- ปรับแต่งพารามิเตอร์ seasonality\_mode='multiplicative' และ make\_future\_dataframe(period=14, freq='D')

#### ผลการพยากรณ์ของแบบจำลอง Prophet (Univariate)













# การสร้างแบบจำลอง

- สร้างแบบจำลองพยากรณ์ปริมาณการเข้าชมเว็บไซต์ล่วงหน้า 14 วัน ด้วย Prophet แบบ Multivariate
- ปรับแต่งพารามิเตอร์ seasonality\_mode='multiplicative' และ make\_future\_dataframe(period=14, freq='D')
- เพิ่มเติมในส่วนของการสร้าง holidays และ e-commerce holidays เข้ามาตามพารามิเตอร์ได้แก่ make\_holidays\_df(country ='US')
- ใช้ฟังก์ชั่น add\_regressor เพื่อที่จะนำตัวแปรที่สร้างขึ้นมาใหม่มาช่วย ในการพยากรณ์

### ตัวอย่างชุดข้อมูลก่อนที่ จะทำการพยากรณ์

|      | ds         | у      | avg_session_duration | is_weekend | week_no |
|------|------------|--------|----------------------|------------|---------|
| 2677 | 2023-05-01 | 2468.0 | 178.480000           | 0          | 18      |
| 2678 | 2023-05-02 | 3202.0 | 185.980000           | 0          | 18      |
| 2679 | 2023-05-03 | 2808.0 | 176.390000           | 0          | 18      |
| 2680 | 2023-05-04 | 2842.0 | 194.420000           | 0          | 18      |
| 2681 | 2023-05-05 | 2598.0 | 160.210000           | 0          | 18      |
| 2682 | 2023-05-06 | 1981.0 | 134.340000           | 1          | 18      |
| 2683 | 2023-05-07 | NaN    | 170.272065           | 1          | 18      |
| 2684 | 2023-05-08 | NaN    | 170.272065           | 0          | 19      |
| 2685 | 2023-05-09 | NaN    | 170.272065           | 0          | 19      |
| 2686 | 2023-05-10 | NaN    | 170.272065           | 0          | 19      |
| 2687 | 2023-05-11 | NaN    | 170.272065           | 0          | 19      |
| 2688 | 2023-05-12 | NaN    | 170.272065           | 0          | 19      |
| 2689 | 2023-05-13 | NaN    | 170.272065           | 1          | 19      |
| 2690 | 2023-05-14 | NaN    | 170.272065           | 1          | 19      |
| 2691 | 2023-05-15 | NaN    | 170.272065           | 0          | 20      |
| 2692 | 2023-05-16 | NaN    | 170.272065           | 0          | 20      |
| 2693 | 2023-05-17 | NaN    | 170.272065           | 0          | 20      |
| 2694 | 2023-05-18 | NaN    | 170.272065           | 0          | 20      |
| 2695 | 2023-05-19 | NaN    | 170.272065           | 0          | 20      |
| 2696 | 2023-05-20 | NaN    | 170.272065           | 1          | 20      |







#### รายการ Holidays และ e-commerce holidays ที่ใช้แบบจำลอง







| 0  | New Year's Day                                  |
|----|-------------------------------------------------|
| 1  | Martin Luther King Jr. Day                      |
| 2  | Washington's Birthday                           |
| 3  | St. Patrick's Day                               |
| 4  | Easter                                          |
| 5  | Memorial Day                                    |
| 6  | Independence Day                                |
| 7  | Labor Day                                       |
| 8  | Columbus Day                                    |
| 9  | Halloween                                       |
| 10 | Single Day                                      |
| 11 | Veterans Day                                    |
| 12 | Thanksgiving                                    |
| 13 | Black Friday                                    |
| 14 | Cyber Monday                                    |
| 15 | Super Saturday                                  |
| 16 | Christmas Eve                                   |
| 17 | Christmas Day                                   |
| 18 | Christmas Day (Observed)                        |
| 19 | New year eve                                    |
| 20 | New Year's Day (Observed)                       |
| 21 | Veterans Day (Observed)                         |
| 22 | Independence Day (Observed)                     |
| 23 | Juneteenth National Independence Day (Observed) |
| 24 | Juneteenth National Independence Day            |









|      | ds         | yhat        |
|------|------------|-------------|
| 2683 | 2023-05-07 | 2157.288511 |
| 2684 | 2023-05-08 | 3218.784425 |
| 2685 | 2023-05-09 | 3334.157834 |
| 2686 | 2023-05-10 | 3331.209260 |
| 2687 | 2023-05-11 | 3238.225519 |
| 2688 | 2023-05-12 | 2890.155165 |
| 2689 | 2023-05-13 | 2041.105600 |
| 2690 | 2023-05-14 | 2139.438604 |
| 2691 | 2023-05-15 | 3188.219417 |
| 2692 | 2023-05-16 | 3292.888774 |
| 2693 | 2023-05-17 | 3280.676759 |
| 2694 | 2023-05-18 | 3180.088680 |
| 2695 | 2023-05-19 | 2826.438551 |
| 2696 | 2023-05-20 | 1974.222634 |





### การนำไปใช้งาน

- เป็นการแจ้งเตือนล่วงหน้า 14 วัน ผ่านแอปพลิเคชั่นไลน์ (Line)
- เมื่อค่า yhat สูงกว่าเกณฑ์ที่ตั้งไว้จะทำการส่งการแจ้งเตือนโดย อัตโนมัติ
- ใช้วิธีการหา Outlier จาก Interquartile range (IQR) เพื่อ นำมาใช้ในการกำหนดเกณฑ์ ซึ่งจะเลือกใช้ค่า Upper bound

Upper bound = Q3 + (IQR \* 1.5)







#### **LINE API Ecosystem**









LINE Login

LINE Notify

Messaging API

LIFF



LINE Pay



LINE Things LINE Beacon



Social API



LINE TV

LINE Developer

### การแจ้งเตือนผ่านแอปพลิเคชั่นไลน์ (Line)





#### LINE Notify

SabaPing888: Local server on 2023-05-20 tends to be insufficient due to the predicted peak load reaching 1974.22 . O . Please be prepared



12:49 AM









# ผลการวิจัย

### ARIMA

**Avg. RMSE:** 617.336

**Avg. MAE:** 542.852

**Avg. MAPE:** ∅.238

| Horizon | RMSE    | MAE     | MAPE  |
|---------|---------|---------|-------|
| 1 day   | 63.168  | 63.168  | 0.032 |
| 2 days  | 575.544 | 575.149 | 0.257 |
| 3 days  | 809.479 | 657.036 | 0.29  |
| 4 days  | 816.197 | 719.306 | 0.309 |
| 5 days  | 758.835 | 666.633 | 0.259 |
| 6 days  | 432.06  | 419.788 | 0.158 |
| 7 days  | 262.949 | 208.036 | 0.09  |
| 8 days  | 524.485 | 433.95  | 0.204 |
| 9 days  | 790.917 | 701.154 | 0.335 |
| 10 days | 967.215 | 838.617 | 0.397 |
| 11 days | 973.001 | 842.239 | 0.388 |
| 12 days | 826.681 | 737.679 | 0.317 |
| 13 days | 560.77  | 506.388 | 0.202 |
| 14 days | 281.397 | 230.79  | 0.095 |







# Prophet

#### Univariate

**Avg. RMSE:** 434.898

**Avg. MAE:** 357.948

**Avg. MAPE:** ∅.173

| Horizon | RMSE    | MAE     | MAPE  |
|---------|---------|---------|-------|
| 2 days  | 322.849 | 267.576 | 0.151 |
| 3 days  | 500.68  | 412.833 | 0.238 |
| 4 days  | 471.871 | 385.048 | 0.19  |
| 5 days  | 384.408 | 332.434 | 0.152 |
| 6 days  | 411.181 | 356.904 | Ø.18  |
| 7 days  | 444.612 | 403.361 | 0.231 |
| 8 days  | 378.911 | 328.384 | 0.185 |
| 9 days  | 541.692 | 395.526 | 0.166 |
| 10 days | 564.653 | 445.163 | Ø.19  |
| 11 days | 472.972 | 387.102 | 0.175 |
| 12 days | 337.286 | 280.647 | 0.126 |
| 13 days | 410.776 | 334.005 | 0.135 |
| 14 days | 411.785 | 324.345 | Ø.13  |







# Prophet

#### Multivariate

**Avg. RMSE:** 338.927

**Avg. MAE:** 275.686

**Avg. MAPE:** ∅.136

| Horizon | RMSE    | MAE     | MAPE  |
|---------|---------|---------|-------|
| 2 days  | 421.397 | 331.615 | Ø.18  |
| 3 days  | 371.928 | 295.82  | 0.172 |
| 4 days  | 290.346 | 235.363 | 0.128 |
| 5 days  | 326.201 | 291.792 | 0.147 |
| 6 days  | 448.867 | 365.931 | 0.191 |
| 7 days  | 360.739 | 300.145 | 0.164 |
| 8 days  | 277.244 | 245.521 | 0.134 |
| 9 days  | 396.295 | 314.753 | 0.142 |
| 10 days | 355.742 | 279.775 | 0.13  |
| 11 days | 303.217 | 233.536 | 0.101 |
| 12 days | 270.91  | 219.458 | 0.092 |
| 13 days | 304.04  | 245.407 | Ø.1   |
| 14 days | 279.129 | 224.805 | 0.09  |









## ผลการวิจัย

จากตารางผลการทดสอบของโมเดล Prophet (Multivariate) มีประสิทธิภาพในการพยากรณ์ปริมาณการเข้าใช้เว็บไซต์ใน 14 วันล่วง หน้า ได้ดีที่สุด โดยที่ค่า RMSE เท่ากับ 279.129 ค่า MAE เท่ากับ 224.805 และ MAPE เท่ากับ 9% และภาพรวมของค่าเฉลี่ย Error น้อยกว่าแบบจำลองอื่นๆ จึงเลือกใช้งาน Prophet (Multivariate) เป็นแบบจำลองในการสร้างระบบแจ้งเตือน

#### ตัวอย่างการส่งข้อความแจ้งเตือนในกลุ่มสนทนา













# สรุปผลและข้อเสนอแนะ



# สรุปผลการศึกษา

ผลการทดลองพบว่าในการประเมินประสิทธิภาพของแบบจำลองที่ใช้ในการ วิเคราะห์อนุกรมเวลาสำหรับการพยากรณ์ปริมาณการเข้าชมเว็บไซต์ พบว่า Prophet แบบ Multivariate มีประสิทธิภาพที่ดีกว่า ARIMA และ Prophet แบบ Univariate การใช้วิธี ARIMA ในการวิเคราะห์อนุกรมเวลาเป็นวิธีที่ได้รับความนิยมใน อดีต แต่ในการทดลองนี้พบว่า Prophet แบบ Multivariate มีประสิทธิภาพที่ดีกว่า ARIMA โดยสามารถให้ผลการพยากรณ์ที่แม่นยำขึ้นและเหมาะสมกับข้อมูลการเข้าชม เว็บไซต์มากขึ้น และในการทดลองนี้ ยังพบว่า Prophet แบบ Multivariate ให้ผล การพยากรณ์ที่ดีกว่า Prophet แบบ Univariate ซึ่งหมายความว่าการนำเข้าข้อมูล เพิ่มเติมเช่นตัวแปรอื่นๆ ที่สอดคล้องกับปริมาณการเข้าชมเว็บไซต์ สามารถช่วยเพิ่ม ประสิทธิภาพในการทำนายได้



## บ้อเสนอแนะ

- ชุดข้อมูลที่นำมาใช้งานเป็นข้อมูลของเว็บไซต์ Google Merchandise Store ซึ่งทาง Google เปิดให้บริการสำหรับขายของที่ระลึก รวมทั้งยังใช้งานเป็น เว็บไซต์ตัวอย่างสำหรับการศึกษาวิธีใช้งาน Google Analytics ข้อมูลจึงอาจ จะมีความคลาดเคลื่อน
- พิจารณาหาตัวแปรหรือปัจจัยอื่นๆที่ส่งผลต่อการพยากรณ์ นอกเหนือจากวัน หยุดและ e-commerce holidays ได้แก่ กิจกรรมส่งเสริมการขายและการ ตลาดของแพลตฟอร์ม เทศกาลอื่นๆที่อาจจะส่งผลต่อการเข้าชมเว็บไซต์ เช่น Pride Month เป็นต้น
- สามารถพัฒนาประสิทธิภาพของแบบจำลองได้ด้วยการทดลองปรับค่า
   พารามิเตอร์ การสร้างตัวแปรใหม่ๆ หรือทดลองกับแบบจำลองประเภทอื่น เพื่อ
   ให้ได้ผลการพยากรณ์ปริมาณการเข้าชมเว็บไซต์ที่แม่นยำมากยิ่งขึ้น







# บอบคุณครับ

Q&A