Lecture 17

Part 3 Estimation and Hypothesis Test

ECON2843 1/41

F-distribution

ECON2843 2 / 41

F-distribution

- ▶ The null distribution of this F-statistic is an F-distribution with n_1-1 numerator degrees of freedom and n_2-1 denominator degrees of freedom.
- ▶ The *F*-distribution is a special continuous distribution:
 - ▶ It has two parameters called the numerator degrees of freedom and the denominator degrees of freedom.
 - ► F-tables give critical values that cut off probability A in the upper tail.
 - ▶ There is a different table for each value of *A*.
 - ▶ Rows and columns display the degrees of freedom.

◆ロト ◆個ト ◆意ト ◆意ト · 意 · かへで

ECON2843 3 / 41

F-distribution

TABLE **6(a)** Critical Values of the F-Distribution: A = .05

	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\									NUMER	ATOR DEGRE	ES OF FREE	DOM								
	ν2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	1	161	199	216	225	230	234	237	239	241	242	243	244	245	245	246	246	247	247	248	248
	2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4
	3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76	8.74	8.73	8.71	8.70	8.69	8.68	8.67	8.67	8.66
	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.94	5.91	5.89	5.87	5.86	5.84	5.83	5.82	5.81	5.80
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.70	4.68	4.66	4.64	4.62	4.60	4.59	4.58	4.57	4.56
	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03	4.00	3.98	3.96	3.94	3.92	3.91	3.90	3.88	3.87
		5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.60	3.57	3.55	3.53	3.51	3.49	3.48	3.47	3.46	3.44
	8	5.32 5.12	4.46 4.26	4.07 3.86	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.31	3.28	3.26 3.05	3.24	3.22	3.20 2.99	3.19 2.97	3.17 2.96	3.16 2.95	2.94
	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.23	3.02	2.98	2.94	2.91	2.89	2.86	2.85	2.83	2.97	2.80	2.79	2.77
	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.82	2.79	2.76	2.74	2.72	2.70	2.69	2.67	2.75	2.65
	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.72	2.69	2.66	2.64	2.62	2.60	2.58	2.57	2.56	2.54
	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.63	2.60	2.58	2.55	2.53	2.51	2.50	2.48	2.47	2.46
	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.57	2.53	2.51	2.48	2.46	2.44	2.43	2.41	2.40	2.39
	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.51	2.48	2.45	2.42	2.40	2.38	2.37	2.35	2.34	2.33
	8 16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.46	2.42	2.40	2.37	2.35	2.33	2.32	2.30	2.29	2.28
	16 17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.41	2.38	2.35	2.33	2.31	2.29	2.27	2.26	2.24	2.23
	يِّ 18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.37	2.34	2.31	2.29	2.27	2.25	2.23	2.22	2.20	2.19
		4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.34	2.31	2.28	2.26	2.23	2.21	2.20	2.18	2.17	2.16
	20 20 22	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.31	2.28	2.25	2.22	2.20	2.18	2.17	2.15	2.14	2.12
		4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.26	2.23	2.20	2.17	2.15	2.13	2.11	2.10	2.08	2.07
	26 28 30 30	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.22	2.18	2.15	2.13	2.11	2.09	2.07	2.05	2.04	2.03
	₹ 26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.18	2.15	2.12	2.09	2.07	2.05	2.03	2.02	2.00	1.99
	§ 28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.15	2.12	2.09	2.06	2.04	2.02	2.00	1.99	1.97	1.96
		4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.13	2.09	2.06	2.04	2.01	1.99	1.98	1.96	1.95	1.93
	35	4.12	3.27	2.87	2.64	2.49	2.37	2.29	2.22	2.16	2.11	2.07	2.04	2.01	1.99	1.96	1.94	1.92	1.91	1.89	1.88
	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.04	2.00	1.97	1.95	1.92	1.90	1.89	1.87	1.85	1.84
	45	4.06	3.20	2.81	2.58	2.42	2.31	2.22	2.15	2.10	2.05	2.01	1.97	1.94	1.92	1.89	1.87	1.86	1.84	1.82	1.81
	50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07	2.03	1.99	1.95	1.92	1.89	1.87	1.85	1.83	1.81	1.80	1.78

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - から(^)

ECON2843 4 / 41

Testing Equality of Variances

- ▶ Decision rule:
 - ightharpoonup Compare the F-statistic to the appropriate F-distribution.
 - \blacktriangleright For a given value of α , reject the null hypothesis if

$$F < F_{1-\frac{\alpha}{2},n_1-1,n_2-1}$$
 or $F > F_{\frac{\alpha}{2},n_1-1,n_2-1}$

where $F_{1-\frac{\alpha}{2},n_1-1,n_2-1}$ and $F_{\frac{\alpha}{2},n_1-1,n_2-1}$ are the critical values that cut off $100\left(\frac{\alpha}{2}\right)\%$ in the lower and upper tails, respectively, of the appropriate F-distribution.

- ▶ But the tables don't give us the lower cut-off values.
- ▶ Special trick for doing test...

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

ECON2843 5 / 41

Testing Equality of Variances

ECON2843 6 / 41

Testing Equality of Variances

$$F = \frac{s_1^2}{s_2^2}$$

- ▶ The labeling of sample 1 and sample 2 is arbitrary, so always put the larger sample variance on top.
- Then our F-statistic will always be larger than 1, and we only have to look up the upper cut-off and reject H_0 at significance level α whenever

$$F > F_{\frac{\alpha}{2}, n_1 - 1, n_2 - 1}.$$

ECON2843 7 / 41

Testing $\mu_1 - \mu_2$ when $\sigma_1^2 = \sigma_2^2$

Hypotheses:

$$H_0: \mu_1 - \mu_2 = D_0$$

 $H_1: \mu_1 - \mu_2(\neq, <, >)D_0$

► Test statistic:

$$T = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{(\overline{X}_1 - \overline{X}_2) - D_0}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

ECON2843 8 / 41

Testing $\mu_1 - \mu_2$ when $\sigma_1^2 = \sigma_2^2$

We have replaced both population variances in the Z-statistic with s_p^2 , the **pooled sample variance**:

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

- Decision rule:
 - ▶ Compare the T-statistic to a t-distribution with $n_1 + n_2 2$ degrees of freedom, determine rejection region(s) and decide whether or not to reject H_0 .

4□ > 4□ > 4 = > 4 = > = 90

ECON2843 9 / 41

Confidence Interval for $\mu_1 - \mu_2$ when $\sigma_1^2 = \sigma_2^2$

▶ A $100(1-\alpha)\%$ confidence interval for $\mu_1 - \mu_2$ when the population variances are unknown but equal is given by:

$$(\overline{X}_1 - \overline{X}_2) \pm t_{\frac{\alpha}{2}, n_1 + n_2 - 2} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▼■ めへの

ECON2843 10 / 41

Testing $\mu_1 - \mu_2$ when $\sigma_1^2 \neq \sigma_2^2$

- ▶ What happens when the variances aren't equal?
- ▶ The formulae for testing $\mu_1 \mu_2$ when the variances can't be assumed to be equal are complicated.
- Require the use of computer software to accurately perform the test.
- ▶ Therefore they are not considered in this course.

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (C)

ECON2843 11 / 41

- ➤ A company wishes to compare a new type of container with their current type, with respect to the weight of the container.
- ➤ Twenty randomly chosen containers of each type are analysed, and some summary statistics are displayed below.

Variable	n	\overline{X}	Median	s
Current	20	196.41	198.99	23.20
New	20	183.36	177.49	31.26

ECON2843 12 / 41

Testing Equality of Variances

- ▶ Use the output to assess if there is a significant difference between the variances of the weights of the two types of containers.
- Hypotheses:

$$H_0: \sigma_1^2 = \sigma_2^2$$

$$H_1: \sigma_1^2 \neq \sigma_2^2$$

Test statistic:

$$F = \frac{s_1^2}{s_2^2} = \frac{31.26^2}{23.20^2} = 1.8155$$

Testing Equality of Variances

- Decision rule:
 - ▶ We compare this F-statistic to an F-distribution with $n_1 1 = 19$ numerator degrees of freedom and $n_2 1 = 19$ denominator degrees of freedom.
 - ▶ If we conduct the test at the 5% significance level, we need to look up the F-table for $A = \frac{\alpha}{2} = 0.025$.
 - From the table, the upper cut-off value is 2.53.
- Conclusion:
 - ▶ Since 1.8155 < 2.53, we fail to reject H_0 and we can assume that the variances are equal.

ECON2843 14/41

Testing Equality of Variances

TABLE **6(b)** Values of the *F*-Distribution: A = .025

	\ P1									NUMER	ATOR DEGRE	ES OF FREE	DOM								
ν	2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	- 1	648	799	864	900	922	937	948	957	963	969	973	977	980	983	985	987	989	990	992	993
	2	38.5	39.0	39.2	39.2	39.3	39.3	39.4	39.4	39.4	39.4	39.4	39.4	39.4	39.4	39.4	39.4	39.4	39.4	39.4	39.4
	3	17.4	16.0	15.4	15.1	14.9	14.7	14.6	14.5	14.5	14.4	14.4	14.3	14.3	14.3	14.3	14.2	14.2	14.2	14.2	14.2
	4	12.2	10.6	10.0	9.60	9.36	9.20	9.07	8.98	8.90	8.84	8.79	8.75	8.71	8.68	8.66	8.63	8.61	8.59	8.58	8.5
	5 6	10.0 8.81	8.43 7.26	7.76 6.60	7.39 6.23	7.15 5.99	6.98 5.82	6.85 5.70	6.76 5.60	6.68 5.52	6.62 5.46	6.57 5.41	6.52 5.37	6.49 5.33	6.46 5.30	6.43 5.27	6.40 5.24	6.38 5.22	6.36 5.20	6.34 5.18	6.33 5.13
		8.07	6.54	5.89	5.52	5.29	5.12	4.99	4.90	4.82	4.76	4.71	4.67	4.63	4.60	4.57	4.54	4.52	4.50	4.48	4.4
	8	7.57	6.06	5.42	5.05	4.82	4.65	4.53	4.43	4.36	4.30	4.71	4.07	4.16	4.13	4.10	4.08	4.05	4.03	4.02	4.00
	9	7.21	5.71	5.08	4.72	4.48	4.03	4.20	4.10	4.03	3.96	3.91	3.87	3.83	3.80	3.77	3.74	3.72	3.70	3.68	3.6
	10	6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.78	3.72	3.66	3.62	3.58	3.55	3.52	3.50	3.47	3.45	3,44	3.4
	11	6.72	5,26	4.63	4.28	4.04	3.88	3.76	3.66	3.59	3.53	3,47	3.43	3.39	3.36	3.33	3.30	3.28	3.26	3,24	3.2
	12	6.55	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.44	3.37	3.32	3.28	3.24	3.21	3.18	3.15	3.13	3.11	3.09	3.0
	13	6.41	4.97	4.35	4.00	3.77	3.60	3.48	3.39	3.31	3.25	3.20	3.15	3.12	3.08	3.05	3.03	3.00	2.98	2.96	2.9
	14	6.30	4.86	4.24	3.89	3.66	3.50	3.38	3.29	3.21	3.15	3.09	3.05	3.01	2.98	2.95	2.92	2.90	2.88	2.86	2.8
	15	6.20	4.77	4.15	3.80	3.58	3.41	3.29	3.20	3.12	3.06	3.01	2.96	2.92	2.89	2.86	2.84	2.81	2.79	2.77	2.7
REEDOM	16	6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	3.05	2.99	2.93	2.89	2.85	2.82	2.79	2.76	2.74	2.72	2.70	2.6
9	17	6.04	4.62	4.01	3.66	3.44	3.28	3.16	3.06	2.98	2.92	2.87	2.82	2.79	2.75	2.72	2.70	2.67	2.65	2.63	2.6
A H		5.98	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.93	2.87	2.81	2.77	2.73	2.70	2.67	2.64	2.62	2.60	2.58	2.5
		5.92	4.51	3.90	3.56	3.33	3.17	3.05	2.96	2.88	2.82	2.76	2.72	2.68	2.65	2.62	2.59	2.57	2.55	2.53	2.5
DEGREES	20	5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.84	2.77	2.72	2.68	2.64	2.60	2.57	2.55	2.52	2.50	2.48	2.4
DEC	22	5.79	4.38	3.78	3.44	3.22	3.05	2.93	2.84	2.76	2.70	2.65	2.60	2.56	2.53	2.50	2.47	2.45	2.43	2.41	2.3
TOR M	24	5.72	4.32	3.72	3.38	3.15	2.99	2.87	2.78	2.70	2.64	2.59	2.54	2.50	2.47	2.44	2.41	2.39	2.36	2.35	2.3
DENOMINATOR	26	5.66	4.27	3.67	3.33	3.10	2.94	2.82	2.73	2.65	2.59	2.54	2.49	2.45	2.42	2.39	2.36	2.34	2.31	2.29	2.2
ŏ	28	5.61	4.22	3.63	3.29	3.06	2.90	2.78	2.69	2.61	2.55	2.49	2.45	2.41	2.37	2.34	2.32	2.29	2.27	2.25	2.2
DEN	30	5.57	4.18	3.59	3.25	3.03	2.87	2.75	2.65	2.57	2.51	2.46	2.41	2.37	2.34	2.31	2.28	2.26	2.23	2.21	2.2
	35	5.48	4.11	3.52	3.18	2.96	2.80	2.68	2.58	2.50	2.44	2.39	2.34	2.30	2.27	2.23	2.21	2.18	2.16	2.14	2.1
	40	5.42	4.05	3.46	3.13	2.90	2.74	2.62	2.53	2.45	2.39	2.33	2.29	2.25	2.21	2.18	2.15	2.13	2.11	2.09	2.0
	45	5.38	4.01	3.42	3.09	2.86	2.70	2.58	2.49	2.41	2.35	2.29	2.25	2.21	2.17	2.14	2.11	2.09	2.07	2.04	2.0
	50	5.34	3.97	3.39	3.05	2.83	2.67	2.55	2.46	2.38	2.32	2.26	2.22	2.18	2.14	2.11	2.08	2.06	2.03	2.01	1.9

ECON2843 15 / 41

Testing
$$\mu_1 - \mu_2$$
 when $\sigma_1^2 = \sigma_2^2$

- ▶ Use the output to assess if there is a significant difference between the average weights of the two types of containers.
- Hypotheses:

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_1: \mu_1 - \mu_2 \neq 0$$

ECON2843 16 / 41

Testing $\mu_1 - \mu_2$ when $\sigma_1^2 = \sigma_2^2$

- Test statistic:
 - First calculate the pooled sample variance:

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$
$$= \frac{19 \times 31.26^2 + 19 \times 23.20^2}{20 + 20 - 2}$$
$$= 757.7138$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

ECON2843 17 / 41

Testing $\mu_1 - \mu_2$ when $\sigma_1^2 = \sigma_2^2$

- Test statistic continued:
 - ▶ Then calculate the *T*-statistic:

$$T = \frac{(\overline{X}_1 - \overline{X}_2) - D_0}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
$$= \frac{(183.36 - 196.41) - 0}{\sqrt{757.7138 \times \left(\frac{1}{20} + \frac{1}{20}\right)}}$$
$$= -1.4992$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

ECON2843 18 / 41

Testing
$$\mu_1 - \mu_2$$
 when $\sigma_1^2 = \sigma_2^2$

- Decision rule:
 - ▶ Compare to a *t*-distribution with $n_1 + n_2 2 = 38$ degrees of freedom
 - ▶ Since t-table doesn't list 38 degrees of freedom, use the closest in the table, i.e., 40.
 - ▶ For $\alpha = 5\%$, rejection region is T > 2.021 or T < -2.021(two-tailed test).
- Conclusion:
 - ▶ Since -2.021 < -1.4992 < 2.021, there is insufficient evidence to reject the null hypothesis.
 - ▶ That is, we conclude that the average weights of the two types of containers are the same.

19 / 41

Paired Samples

ECON2843 20 / 41

Paired Samples

- Paired samples are much easier to deal with than independent samples.
- Let $\{X_{11}, X_{12}, \dots, X_{1n}\}$ and $\{X_{21}, X_{22}, \dots, X_{2n}\}$ denote our two paired samples.
- For each pair of observations, calculate the difference $X_{Di} = X_{1i} X_{2i}$, for i = 1, ..., n.
- ▶ We are now making inferences about $\mu_D = E(X_D)$, the population mean of these differences X_{Di} , and we are in a one-sample situation!

ECON2843 21 / 41

Hypotheses and Test Statistic

► Hypotheses:

$$H_0: \mu_D = D_0$$

 $H_1: \mu_D(\neq, <, >)D_0$

► Test statistic:

$$T = \frac{\overline{X}_D - \mu_D}{\frac{s_D}{\sqrt{n}}} = \frac{\overline{X}_D - D_0}{\frac{s_D}{\sqrt{n}}}$$

 $lackbox \overline{X}_D$ and s_D are the sample mean and sample standard deviation, respectively, of the paired differences.

ECON2843 22 / 41

Decision Rule and Conclusion

- Decision rule:
 - We need to compare this T-statistic to a t-distribution with n-1 degrees of freedom.
 - ▶ Look up the *t*-table to determine rejection regions.
- Conclusion:
 - ▶ If the T-statistic falls in the rejection region, reject H_0 . Otherwise, fail to reject H_0 .

ECON2843 23 / 41

Confidence Interval

▶ A $100(1-\alpha)\%$ confidence interval for μ_D , the population mean of the paired differences, is given by:

$$\overline{X}_D \pm t_{\frac{\alpha}{2}, n-1} \frac{s_D}{\sqrt{n}}$$

ECON2843 24 / 41

- ➤ As a test of how effective antilock brakes are, a car buyer hit the brakes and, using a stopwatch, recorded the number of seconds it took to stop an ABS-equipped car and another identical car without ABS.
- ➤ The speeds (mph) when the brakes were applied and the number of seconds each car took to stop are listed on the next slide.
- ▶ Can we infer that ABS is better?

ECON2843 25 / 41

Speeds	20	25	30	35	40	45	50	55
ABS	3.6	4.1	4.8	5.3	5.9	6.3	6.7	7.0
Non-ABS	3.4	4.0	5.1	5.5	6.4	6.5	6.9	7.3
Difference	0.2	0.1	-0.3	-0.2	-0.5	-0.2	-0.2	-0.3

ECON2843 26 / 41

Hypotheses:

$$H_0: \mu_D = 0$$

$$H_1: \mu_D < 0$$

From the differences calculated in the previous table, we can obtain their sample mean and sample standard deviation, $\overline{X}_D = -0.175$ and $s_D = 0.2252$.

ECON2843 27 / 41

Test statistic:

$$T = \frac{\overline{X}_D - D_0}{\frac{s_D}{\sqrt{n}}} = \frac{-0.175 - 0}{\frac{0.2252}{\sqrt{8}}} = -2.1980$$

- Decision rule and conclusion:
 - ▶ Rejection region is $T < t_{0.05,7} = -1.895$.
 - ▶ Since -2.1980 < -1.895, we reject H_0 .
 - ► That is, there is enough evidence to infer that ABS is better.

ECON2843 28 / 41

Why Product of F-Distribution Critical Values Equals 1

- ▶ Let $F_{\alpha}(df_1, df_2)$ be the upper α critical value of $F(df_1, df_2)$
- ▶ We want to prove: $F_{\alpha}(df_1, df_2) \cdot F_{1-\alpha}(df_2, df_1) = 1$

ECON2843 29 / 41

Why Product of F-Distribution Critical Values Equals 1

If
$$X \sim F(df_1, df_2)$$
, then $\frac{1}{X} \sim F(df_2, df_1)$

$$P(X > F_{\alpha}(df_1, df_2)) = \alpha$$

$$P\left(\frac{1}{X} < \frac{1}{F_{\alpha}(df_1, df_2)}\right) = \alpha$$

$$\frac{1}{F_{\alpha}(df_1, df_2)} = F_{1-\alpha}(df_2, df_1)$$

$$\therefore F_{\alpha}(df_1, df_2) \cdot F_{1-\alpha}(df_2, df_1) = 1$$

ECON2042

ECON2843 30 / 41

Test sample proportion

ECON2843 31 / 41

- ▶ Just as with means, we can test the difference between two population proportions.
- ▶ We typically require *independent* samples when dealing with proportions.
- We are making inferences about $p_1 p_2$, so what is a reasonable estimator of $p_1 p_2$?
- ▶ We can use $\hat{p}_1 \hat{p}_2$ as an estimator of $p_1 p_2$, where $\hat{p}_1 = \frac{X_1}{n_1}$ and $\hat{p}_2 = \frac{X_2}{n_2}$.

ECON2843 32 / 41

▶ For large n_1 and n_2 , the sampling distribution of $\hat{p}_1 - \hat{p}_2$ is approximately normal with mean and variance given by:

$$E(\hat{p}_1 - \hat{p}_2) = p_1 - p_2$$

$$V(\hat{p}_1 - \hat{p}_2) = \frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}$$

As a rule of thumb, this normal approximation is valid provided n_1p_1 , $n_1(1-p_1)$, n_2p_2 and $n_2(1-p_2)$ are all larger than 5.

ECON2843 33 / 41

▶ Hypotheses:

$$H_0: p_1 - p_2 = D_0$$

 $H_1: p_1 - p_2(\neq, <, >)D_0$

for some $D_0 \neq 0$.

▶ Test statistic:

$$Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = \frac{(\hat{p}_1 - \hat{p}_2) - D_0}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$$

ECON2843 34 / 41

- ▶ What happens when $D_0 = 0$?
- ► Hypotheses:

$$H_0: p_1 - p_2 = 0$$

 $H_1: p_1 - p_2(\neq, <, >)0$

We have to change the test statistic slightly.

ECON2843 35 / 41

► Test statistic:

$$Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

where \hat{p} is the **combined proportion**:

$$\hat{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$$

ECON2843 36 / 41

Confidence Interval for $p_1 - p_2$

▶ A $100(1-\alpha)\%$ confidence interval for p_1-p_2 is given by:

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

Note that we can't assume the population proportions are equal when constructing the confidence interval.

ECON2843 37 / 41

➤ These statistics are calculated from samples taken from two Bernoulli populations:

$$\hat{p}_1 = 0.6, \quad n_1 = 225, \quad \hat{p}_2 = 0.55, \quad n_2 = 225$$

► Calculate the *p*-value of a test to determine whether there is evidence to infer that the population proportions differ.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 900

ECON2843 38 / 41

Hypotheses and Test Statistic

► Hypotheses:

$$H_0: p_1 - p_2 = 0$$

$$H_1: p_1 - p_2 \neq 0$$

- ► Test statistic:
 - Combined proportion:

$$\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2} = \frac{225 \times 0.6 + 225 \times 0.55}{225 + 225} = 0.575$$

ECON2843 39 / 41

Test Statistic

- ► Test statistic continued:
 - > Z-statistic:

$$Z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
$$= \frac{0.6 - 0.55}{\sqrt{0.575(1 - 0.575)\left(\frac{1}{225} + \frac{1}{225}\right)}}$$
$$= 1.0728$$

ECON2843 40 / 41

Decision Rule and Conclusion

- Decision rule
 - ► The p-value is given by:

$$\begin{aligned} p\text{-value} &= P(Z < -1.07) + P(Z > 1.07) \\ &= 2 \times P(Z < -1.07) \\ &= 0.2846 \end{aligned}$$

- Conclusion:
 - Since 0.2846 is greater than $\alpha = 0.05$ or even $\alpha = 0.1$, we would fail to reject the null hypothesis at both the 5% and 10% significance levels.
 - ▶ We conclude the population proportions do not differ.