

Claims

[c1]

1. A process for forming a contact for a semiconductor device comprising: forming a first compound semiconductor layer, wherein: the first compound semiconductor layer includes a first compound semiconductor material and has a first conductivity type; forming a second compound semiconductor layer includes a second compound semiconductor material and has a second conductivity type; and the second conductivity type is opposite the first conductivity type; patterning the second semiconductor layer to define an opening with a wall; forming an insulating material along the wall; and forming a third compound semiconductor material at least partially within the opening, wherein: the third compound semiconductor material has the first conductivity type and

the third compound semiconductor material has the first conductivity type and a dopant concentration that is higher than a dopant concentration of the first compound semiconductor layer; and the third compound semiconductor material is electrically connected to the first compound semiconductor layer and is insulated from the second compound

semiconductor layer.

2. The process of claim 1, wherein the third compound semiconductor material is formed by sputtering.

3. The process of claim 1, wherein each of the first, second, and third compound semiconductor materials include at least two Group IVA elements.

4. The process of claim 1, wherein each of the first, second, and third compound semiconductor materials include silicon carbide.

5. The process of claim 1, further comprising forming a metal layer above and electrically connected to the third compound semiconductor material.

6. The process of claim 5, wherein an electrical connection between the third compound semiconductor material and the metal layer is ohmic.

7. The process of claim 5, wherein the metal layer comprises aluminum.

[c10]

- [c8] 8. The process of claim 1 further comprising forming a third compound semiconductor layer before forming the first compound semiconductor layer, wherein the third compound semiconductor layer includes a fourth compound semiconductor material and has the second conductivity type.
- [c9] 9. A semiconductor device comprising:

 a first active layer including a first compound semiconductor material and having a first conductivity type;

a second active layer including a second compound semiconductor material and having a second conductivity type opposite the first conductivity type, wherein the second active layer contacts the first active layer;

a third active layer including a third compound semiconductor material and having the first conductivity type, wherein:

the third active layer contacts the second active layer; and a combination of the first, second, and third active layers are at least part of a transistor;

an opening extending through the third active layer and contacting the second active layer;

a fourth compound semiconductor material at least partially within the opening, wherein the fourth compound semiconductor material:

has the second conductivity type and a dopant concentration higher than a dopant concentration of the second active layer; and is electrically connected to the second active layer;

and an insulating layer at least partially within the opening, wherein the insulating layer lies between the third active layer and the fourth compound semiconductor material.

- 10. The device of claim 9, where each of the first, second, third, and fourth compound semiconductor material include at least two Group IVA elements.
- [c11] 11. The device of claim 9, where the first, second, third, and fourth compound semiconductor material comprise silicon carbide.
- [c12]
 12. The device of claim 9, further comprising electrical contacts to the third

active layer and the fourth compound semiconductor material.

[c13]	13. The device of claim 12, wherein the electrical contacts are ohmic.
[c13]	13. The device of claim 12, wherein the electrical contacts are ohmic

<u> </u>		
A'C	[c14]	1
2 A		co

14. The device of claim 9, wherein surfaces of the insulating layer and metal contacts furthest from the substrate lie in substantially a same plane.

[c15] 15. The device of claim 9, wherein the second active layer has a thickness in a range of approximately 0.1-2 microns thick.