Automatique : analyse fréquentielle des systèmes linéaires continus et invariants

Émilien DURIF

Lycée F. Roosevelt Classe de PCSI

- Définitions et intérêts de l'analyse fréquentielle
 - Définition de l'analyse fréquentielle
 - Intérêts de l'étude fréquentielle
 - Définition du support du cours

- Définitions et intérêts de l'analyse fréquentielle
 - Définition de l'analyse fréquentielle
 - Intérêts de l'étude fréquentielle
 - Définition du support du cours

Définition de l'analyse fréquentielle

Analyse fréquentielle ou harmonique

L'analyse fréquentielle d'un système linéaire, continu et invariant consiste à étudier la réponse (s(t)) vis à vis d'une entrée (e(t)) de type harmonique ou sinusoïdale :

$$e(t) = e_0 \sin(\omega t) u(t) = e_0 \sin(2\pi f t) u(t)$$
 (1)

Ce signal est caractérisé par :

- sa fréquence f = 1/T (inverse de la période T),
- ou sa pulsation $\omega = 2\pi f$,
- son amplitude e_0 .

- Définitions et intérêts de l'analyse fréquentielle
 - Définition de l'analyse fréquentielle
 - Intérêts de l'étude fréquentielle
 - Définition du support du cours

$$\widetilde{\mathbf{e}}(t) = \mathbf{a}_0 + \sum_{k=1}^n \mathbf{a}_k \cdot \sin(2\pi \ k \ f \ t)$$

$$\widetilde{\mathbf{e}}(t) = \mathbf{a}_0 + \sum_{k=1}^n \mathbf{a}_k \cdot \sin(2\pi \ k \ f \ t)$$

$$\widetilde{\mathbf{e}}(t) = \mathbf{a}_0 + \sum_{k=1}^n \mathbf{a}_k \cdot \sin(2\pi \ k \ f \ t)$$

$$\widetilde{e}(t) = a_0 + \sum_{k=1}^{n} a_k \cdot \sin(2\pi \ k \ f \ t)$$

Étude d'un signal quelconque

Pour étudier la réponse d'un système vis-à-vis d'un signal quelconque, il faudra alors être capable de caractériser la réponse fréquentielle sur une plage de fréquence (f) ou de pulsation (ω) étendue.

On peut également choisir cette méthode d'analyse pour vérifier le comportement d'un système vis à vis d'une entrée harmonique caractérisée par différentes valeurs de fréquence (f) ou de pulsation (ω) .

- Définitions et intérêts de l'analyse fréquentielle
 - Définition de l'analyse fréquentielle
 - Intérêts de l'étude fréquentielle
 - Définition du support du cours

Exemple d'une suspension d'un véhicule

Suspension de véhicule

- m = 100 kg,
- $c = 106 \ N.s.m^{-1}$
- $k = 80kN.m^{-1}$.

Exemple d'une suspension d'un véhicule

• Le PFD en résultante suivant la direction \overrightarrow{y} appliqué à l'habitacle par rapport au repère R_0 :

$$-c\left(\frac{d(s(t)-e(t))}{dt}\right)-k(s(t)-e(t))=m\frac{d^2s(t)}{dt^2}.$$

• La fonction de transfert du système H(p) = S(p)/E(p) est égale à :

$$H(p) = \frac{c p + k}{m p^2 + c p + k} = \frac{\frac{c}{k} p + 1}{\frac{m}{k} p^2 + \frac{c}{k} p + 1}$$

$$e(t) = e_0 \sin(\omega t)$$
.

Exemple d'une suspension d'un véhicule

 \bullet Le PFD en résultante suivant la direction \overrightarrow{y} appliqué à l'habitacle par rapport au repère R_0 :

$$-c\left(\frac{d(s(t)-e(t))}{dt}\right)-k(s(t)-e(t))=m\frac{d^2s(t)}{dt^2}.$$

• La fonction de transfert du système H(p) = S(p)/E(p) est égale à :

$$H(p) = \frac{c p + k}{m p^2 + c p + k} = \frac{\frac{c}{k} p + 1}{\frac{m}{k} p^2 + \frac{c}{k} p + 1}$$

$$e(t) = e_0 \sin(\omega t)$$
.