

Optimización Dinámica

Profesor: Enrique Calfucura. **Ayudantes**: Alejandro Poblete.

Ejercicios Abril 2020

1. Considere el brote de una enfermedad infeciosa, que plantea un peligro para la salud pública. En el tiempo $t \in [0,T]$, donde T>0 es un horizonte de intervención dado, el porcentaje de personas infectadas en una población dada es $x(t) \in [0,1]$. Dado una politica de tratamiento público $u(t) \in [0,\bar{u}]$ (con $\bar{u}>\alpha$ un nivel de intervención máximo definido por la capacidad de las instalaciones de tratamiento), las dinamicas de la enfermedad son descritas por el siguiente problema:

$$\dot{x} = \alpha(1-x)x - ux \quad ; \quad x(0) = x_0; \quad x(T)libre \tag{1}$$

Donde $\alpha > 0$ es un parametro dado de cuan efectivo es la enfermedad, y la propagación inicial de la enfermedad $x_0 \in (0,1)$ es conocida. Un Social Planner quiere maximizar la función de bienestar social:

$$-\int_0^T (x(t) + cu^k(t))e^{-rt}dt \tag{2}$$

donde r > 0 es la tasa de descuento social, c > 0 denota el costo de intervención y $k \le 1$ describe las deseconomías al ampliar los esfuerzos de tratamiento público.

- a) Formule el problema de maximización del bienestar como un problema de control óptimo y encuentre el Hamiltonianco Corriente.
- b) Provea las condiciones necesarias de optimalidad (principio del máximo) para $k \in \{1, 2\}$.
- c) Caracterice las soluciones óptimas para $k \in \{1, 2\}$.

^{1&}quot;k" describes the diseconomies when scaling up public treatment efforts.