Database Basics

Database Management Systems and SQL

SoftUni Team

Technical Trainers

Software University

https://softuni.bg

Table of Contents

- 1. Databases: Introduction
- 2. SQL vs. NoSQL Databases
- 3. DBMS Systems (Database Engines)
- 4. Relational Databases, SQL and MySQL Database
- 5. NoSQL Databases and MongoDB

Have a Question?

sli.do

#fund-common

Databases: Introduction

Data Storage and Data Management

What is a Database?

- A database is a collection of data, organized to be easily accessed, managed and updated
- Modern databases are managed by Database
 Management Systems (DBMS)
 - Define database structure, e.g. tables, collections, columns, relations, indexes
 - Create / Read / Update / Delete data (CRUD operations)
 - Execute queries (filter / search data)

Relational and NoSQL Databases

- Databases hold and manage data in the back-end systems
- Relational databases (RDBMS)
 - Hold data in tables + relationships
 - Use the SQL language to query / modify data
 - Examples: MySQL, PostgreSQL, Web SQL in HTML5
- NoSQL databases
 - Hold collections of documents or key-value pairs
 - Examples: MongoDB, IndexedDB in HTML5

Data Storage

Conventional data storage

Orders

Receipts

From Data Storage to Databases

• We can group related pieces of data into separate columns:

Order# 🔽	Date -	Customer -	Product _	S/N	Unit Price	Qty .	Total ,
315	07/16/2016	David Rivers	Oil Pump	OP147-0623	69.90	1	69.90

Why Do We Need Databases?

Storing data is not the primary reason to use a database

- Performance
- Accuracy and consistency
- Security and access control
- Redundancy

SQL Databases (Relational Databases)

Relational (SQL) databases organize data in tables

- Can have relationships to other tables
- Relational databases use the structured query language (SQL) for defining and manipulating data
 - Extremely powerful for complex queries
- Relational databases are the most widely used data management technology

SQL Databases (Relational Databases) (2) Software University

 Relational DB model organizes data into one or more tables of columns and rows with a unique key identifying each row and foreign keys defining relationships

Items Customers

ID	Order ID	Name	Quantity	Price
5	1	Table	1	200.00
6	1	Chair	1	123.12

ID	Name	Email
5	Peter	peter@gmail.com
6	Jayne	jayne@gmail.com

Orders

ID	Customer ID	Date	Total Price
1	5	11/1/17	323.12
2	1	11/15/17	13.99

NoSQL Databases (Non-Relational Databases)

 A NoSQL databases have dynamic schema for unstructured data

NoSQL

- Data is stored in many ways:
 - Document-oriented
 - Column-oriented
 - Graph-based
 - Key-value store

Scalability: Relational vs. NoSQL

- SQL are vertically scalable
 - You can increase the load on a single server by increasing its resources (CPU, RAM, SSD)
 - Or you can replicate the data to a cluster of several servers

Software University

- NoSQL are horizontally scalable
 - You handle more traffic by sharding and adding more servers in your NoSQL database cluster

Structure: Relational vs. NoSQL

- SQL databases are table-based
- Better option for:
 - Applications that require multi-row transactions, such as an accounting system
 - Complex transaction processing systems

- SQL databases hold dynamic data
- NoSQL databases implement four main data models:
 - Document store
 - Wide-column store
 - Key-value data store
 - Graph store

DBMS Systems: Examples

- SQL databases examples:
 - MySQL
 - PostgreSQL
 - Oracle
 - Microsoft SQL Server
 - SQLite and Web SQL

- NoSQL databases examples:
 - MongoDB
 - Redis
 - Google BigTable
 - Amazon DynamoDB
 - Azure Cosmos DB

Database Management Systems (DBMS)

Database Management Systems (DBMS)

- A Database Management System (DBMS) is a software, used to define, manipulate, retrieve and manage data in a database
- DBMS generally manipulates the data itself, the data format,
 field names and data types, record structure and file structure
- DBMS examples:
 - MySQL, MS SQL Server, Oracle, PostgreSQL
 - MongoDB, Cassandra, Redis, HBase
 - Amazon DynamoDB, Azure Cosmos DB

DBMS Systems and Data Flow

DBMS servers use the client-server model:

DBMS Server Architecture

Relational Databases

RDBMS, the SQL Language and MySQL Database

Database Table Elements

The table is the main building block in the relational databases

- Each row is called a record or entity
- Columns (fields) define the type of data they contain

Structured Query Language (SQL)

- SQL == query language designed for managing data in relational databases (RDBMS)
 - Used to communicate with the database engine
- Logically, SQL is divided into four sections:
 - Data definition: describe the structure of data
 - Data manipulation: store and retrieve data
 - Data control: define who can access the data
 - Transaction control: bundle operations together and perform commit / rollback

SQL – Example

Example of SQL query:

SELECT * FROM people

- The query is executed by the DBMS system
 - It returns a sequence of data rows, e.g.

id	email	first_name	last_name	
1	smith@yahoo.co.uk	John	Smith	
2	pwh@gmail.com	Peter	White	
3	anne@anne.com	Anne	Green	
4	jason.jj@gmail.com	Jason	Anderson	

MySQL / MariaDB

- MySQL == open-source relational database management system (RDBMS), very popular, also known as MariaDB
 - Runs on most server platforms: Linux, Windows, macOS
- Used in many large-scale software projects
 - Amazon, Apple, Facebook, others
- In MySQL data is stored in tables with relationships between them
 - SQL is used to query / manipulate data

Developer Tools for MySQL

- phpMyAdmin (part of XAMPP)
 - phpMyAdmin is Web-based MySQL admin tool
 - XAMPP == Web server development stack
 - Apache + MariaDB + PHP + phpMyAdmin

- GUI tool for managing MySQL,
 MSSQL and PostgreSQL
- Query / modify database
- Explore database objects

SQL Commands

- We can communicate with the database engine via SQL
- SQL commands provide greater control and flexibility
- To create a database in MySQL:

CREATE DATABASE employees

Database name

Display all databases in MySQL:

SHOW DATABASES

Creating Table and Inserting Values

■ Creating tables:

CREATE TABLE people (
 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 email VARCHAR(40) NOT NULL,
 first_name VARCHAR(40) NOT NULL,
 last_name VARCHAR(40) NOT NULL
)

Column name

Data type

Inserting values:

```
INSERT INTO people(email, first_name, last_name)
VALUES ('john@gmail.com', 'John', 'Smith')
```

Retrieving Records

Retrieve all records from a table

```
SELECT * FROM people * retrieves all columns
```

You can limit (select) the columns to retrieve

List of columns

```
SELECT first_name, last_name FROM people
```

You can limit the number of rows

```
SELECT first_name, last_name FROM people
LIMIT 5

Number of
rows to return
```

Filtering Data

Retrieve all records, matching a filter

```
SELECT * FROM people
WHERE email = 'peter@gmail.com'
```

Filter the returned rows by a condition

Filter by multiple

conditions

Filter and sort data

```
SELECT * FROM people
```

WHERE id > 10 AND id < 20

ORDER BY ic

Sort by given column / expression

Updating Records

Updating rows

```
UPDATE people
SET last_name = 'Adams'
WHERE first_name = 'John'
```

Updates the last name of person

```
UPDATE people
SET first_name = 'Peter',
    last_name = 'White',
    email = 'pw@email.com'
WHERE id = 42
```

Update multiple fields

Deleting Data and Objects

Deleting table rows

DELETE FROM people WHERE id = 42

- Deleting (dropping) database objects
 - Table

 Delete all records in a table

 Delete the table itself

 TRUNCATE TABLE people

 DROP TABLE people
 - Entire database

DROP DATABASE employees

These actions cannot be undone

Using MySQL and HeidiSQL

Live Demo

NoSQL Databases

- NoSQL databases don't use tables and SQL
 - Instead, use document collections or key-value pairs
- More scalable and provide superior performance
- Examples: MongoDB, Cassandra, Redis, etc.

```
ObjectId("59d3fe7ed81452db0933a871"),
"email": peter@gmail.com,
"age": 22
}

Example of JSON
document in MongoDB
```

MongoDB

- MongoDB == free open-source cross-platform documentoriented database
 - Keeps collections of JSON documents (with or without schema)
- Sample usages: mobile app backend, product catalog, poll system, blog system, Web content management system (CMS)
- Supports evolving data requirements
 - The DB structure may change over the time
- Supports indexing for increased performance

Developer Tools for MongoDB

- MongoDB Compass
- Robo 3T
 - Powerful GUI tool for MongoDB
 - Fully-featured IDE with embedded shell
- NoSQLBooster (alternative)
 - Shell-centric cross-platform GUI tool
 - Object explorer and query builder

Creating a Database

- Creating a MongoDB database in Robo 3T is done using the GUI
- Right click on [New Connection] and select [Create Database]

Creating a Collection and Inserting Values

Creating a collection

Collection name

```
db.createCollection('people')
```

Inserting a document to existing collection

```
db.getCollection('people')
.insert({
    firstName: 'Michael',
    lastName: 'Smith',
    email: 'michael@gmail.com'
})
Data is inserted
    as JSON object
```

Retrieve Entries

Get all entries from a collection

```
db.getCollection('people').find({})
```

Filter elements by given criteria

```
db.getCollection('people').find({ firstName: 'Michael' })
```

Return specified fields

Updating Entries

Update the first entry

Deleting Entries

Delete the first entry that matches given criteria

```
db.getCollection('people').deleteOne(
     { firstName: 'George' }
)
```

Delete all entries that match given criteria

MongoDB and Robo 3T

Live Demo

Summary

- Database management systems (DBMS)
 store and manage data
 - Developers communicate with the DB engine via SQL commands or via API
- MySQL is open-source RDBMS: data is stored in tables and accessed via SQL
- NoSQL databases are more flexible
 - MongoDB stores entries in JSON format

Questions?

SoftUni Diamond Partners

SUPER HOSTING .BG

Educational Partners

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity
- Software University Forums
 - forum.softuni.bg

License

- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://about.softuni.bg
- © Software University https://softuni.bg

