Trendy Tastings: AOP (Arithmetization-Oriented Primitives)

Savoring Symmetric Cryptography's Newest Arrivals

Clémence Bouvier

Journées GDR, Rennes June 10th, 2024

RUHR UNIVERSITÄT **BOCHUM**

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

A new context

Unsolved Sudoku

Unsolved Sudoku

Solved Sudoku

Unsolved Sudoku

A new context

Grid cutting

A new context

Unsolved Sudoku

Rows checking

A new context

Unsolved Sudoku

Columns checking

A new context •0000000000

Unsolved Sudoku

Squares checking

A need for new primitives

Protocols requiring new primitives:

A new context

- * MPC: Multiparty Computation
- * FHE: Fully Homomorphic Encryption
- **ZK**: Systems of Zero-Knowledge proofs Example: SNARKs, STARKs, Bulletproofs

A need for new primitives

Protocols requiring new primitives:

A new context

- * MPC: Multiparty Computation
- * FHE: Fully Homomorphic Encryption
- ZK: Systems of Zero-Knowledge proofs
 Example: SNARKs, STARKs, Bulletproofs

Problem: Designing new symmetric primitives

And analyse their security!

Hash functions

Definition

A new context 0000000000

Hash function: $H: \mathbb{F}_q^\ell \to \mathbb{F}_q^h, x \mapsto y = H(x)$ where ℓ is arbitrary and h is fixed.

Hash functions

Definition

Hash function: $H: \mathbb{F}_q^\ell \to \mathbb{F}_q^h, x \mapsto y = H(x)$ where ℓ is arbitrary and h is fixed.

- * Preimage resistance: Given y it must be infeasible to find x s.t. H(x) = y.
- * Collision resistance: It must be infeasible to find $x \neq x'$ s.t. H(x) = H(x').

Hash functions

Definition

A new context 0000000000

Hash function: $H: \mathbb{F}_q^\ell \to \mathbb{F}_q^h, x \mapsto y = H(x)$ where ℓ is arbitrary and h is fixed.

- * Preimage resistance: Given y it must be infeasible to find x s.t. H(x) = y.
- * Collision resistance: It must be infeasible to find $x \neq x'$ s.t. H(x) = H(x').

Sponge construction

Parameters:

- * rate r > 0
- \star capacity c > 0
- \star permutation of \mathbb{F}_q^n (n=r+c)

Sponge construction

Sponge construction

Parameters:

A new context 0000000000

- * rate r > 0
- \star capacity c > 0
- \star permutation of \mathbb{F}_q^n (n=r+c)

Sponge construction

Sponge construction

Parameters:

A new context 0000000000

- * rate r > 0
- \star capacity c > 0
- \star permutation of \mathbb{F}_q^n (n=r+c)

Iterated construction

Sponge construction

Sponge construction

Parameters:

- \star rate r > 0
- * capacity c > 0
- \star permutation of \mathbb{F}_a^n (n=r+c)

Iterated construction

CICO problem

Content

★ Introduction of AOP

* An example of AOP: Anemoi

★ Attacks against AOP

Traditional case

* Alphabet:

A new context 00000000000

$$\mathbb{F}_2^n$$
, with $n \simeq 4,8$

Ex: Field of AES: \mathbb{F}_2^n where n = 8

Arithmetization-oriented (AO)

* Alphabet:

$$\mathbb{F}_q$$
, with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 64$

Ex: Scalar Field of Curve BLS12-381: \mathbb{F}_p where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

Traditional case

* Alphabet:

A new context 00000000000

 \mathbb{F}_2^n , with $n \simeq 4,8$

Ex: Field of AES: \mathbb{F}_2^n where n = 8

* Operations: logical gates/CPU instructions

Arithmetization-oriented (AO)

- * Alphabet:
 - \mathbb{F}_{q} , with $q \in \{2^{n}, p\}, p \simeq 2^{n}, n > 64$

Ex: Scalar Field of Curve BLS12-381: \mathbb{F}_n where p = 0x73eda753299d7d483339d80809a1d805

53bda402fffe5bfeffffffff00000001

* Operations: large finite-field arithmetic

Traditional case

* Alphabet:

A new context 00000000000

 \mathbb{F}_2^n , with $n \simeq 4,8$

Ex: Field of AES: \mathbb{F}_2^n where n = 8

- * Operations: logical gates/CPU instructions
- * Metric: minimize time and memory $y \leftarrow E(x)$

Arithmetization-oriented (AO)

* Alphabet:

 \mathbb{F}_{q} , with $q \in \{2^{n}, p\}, p \simeq 2^{n}, n > 64$

Ex: Scalar Field of Curve BLS12-381: \mathbb{F}_n where p = 0x73eda753299d7d483339d80809a1d805

53bda402fffe5bfeffffffff00000001

- * Operations: large finite-field arithmetic
- * Metric: minimize the number of multiplications $y \leftarrow E(x)$ and y == E(x)

A new context

Primitives overview

Example of Type I: Poseidon

A new context

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy and M. Schofnegger, USENIX 2021

★ S-box:

$$x \mapsto x^3$$

★ Nb rounds:

$$R = 2 \times Rf + RP$$
$$= 8 + (from 56 to 84)$$

Example of Type I: Poseidon

A new context

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy and M. Schofnegger, USENIX 2021

★ S-box:

$$x \mapsto x^3$$

⋆ Nb rounds:

$$R = 2 \times Rf + RP$$
$$= 8 + (from 56 to 84)$$

Type I (low-degree primitives)

- ★ fast in plain
- ★ many rounds
- * often more constraints

Example of Type II: Rescue

A new context

1 round (2 steps) A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, ToSC 2020

★ S-box:

$$x \mapsto x^3$$
 and $x \mapsto x^{1/3}$

⋆ Nb rounds:

$$R = \text{from 8 to 26}$$
 (2 S-boxes per round)

A new context

1 round (2 steps) A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, ToSC 2020

★ S-box:

$$x \mapsto x^3$$
 and $x \mapsto x^{1/3}$

⋆ Nb rounds:

$$R = \text{from 8 to 26}$$
 (2 S-boxes per round)

Type II (equivalence relation)

- ★ slow in plain
- ★ fewer rounds
- ★ fewer constraints

Example of Type III: Reinforced Concrete

L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger, M. Schofnegger and R. Walch, ACM CCS 2022

★ S-box:

⋆ Nb rounds:

$$R = 7$$

Example of Type III: Reinforced Concrete

A new context

L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger, M. Schofnegger and R. Walch, ACM CCS 2022

⋆ S-box:

⋆ Nb rounds:

$$R = 7$$

Type III (look-up tables)

- ★ faster in plain
- ★ fewer rounds
- ★ constraints depending on proof systems

Primitives overview

Design of Anemoi

- * Link between CCZ-equivalence and Arithmetization-Orientation
- ★ A new S-Box: the Flystel
- * A new family of ZK-friendly hash functions: Anemoi

joint work with P. Briaud, P. Chaidos, L. Perrin, R. Salen, V. Velichkov and D. Willems, published at CRYPTO 2023

What does "efficient" mean for Zero-Knowledge Proofs?

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$

$$t_3 = t_2 \times t_1$$

$$t_6 = t_3 \times t_5$$

$$t_1 = t_0 + b$$

$$t_4 = c \cdot x$$

$$t_7 = e \cdot x$$

$$t_2 = t_1 \times t_1$$

$$t_5 = t_4 + d$$

$$t_8=t_6+t_7$$

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$

$$t_1 = t_0 + b$$

$$t_2 = t_1 \times t_1$$

$$t_3 = t_2 \times t_1$$

$$a = c \cdot x$$

$$t_5 = t_4 + d$$

$$t_6 = t_3 \times t_5$$

$$t_7 = e \cdot x$$

$$t_8 = t_6 + t_7$$

3 constraints

Our approach

Need: verification using few multiplications.

High degree for security VS Low degree for performance

Our approach

Need: verification using few multiplications.

High degree for security

VS

Low degree for performance

* First approach: using inversion, e.g. Rescue [Aly et al., ToSC20]

$$y \leftarrow E(x)$$

 \sim E: high degree

 $\sim E^{-1}$: low degree

Our approach

Need: verification using few multiplications.

High degree for security

VS

Low degree for performance

* First approach: using inversion, e.g. Rescue [Aly et al., ToSC20]

$$y \leftarrow E(x)$$

→ E: high degree

 $\sim E^{-1}$: low degree

* Our approach: using $(u, v) = \mathcal{L}(x, y)$, where \mathcal{L} is linear

$$y \leftarrow E(x)$$

 \sim E: high degree

 \sim *F*: low degree

CCZ-equivalence

Definition [Carlet, Charpin and Zinoviev, DCC98]

 $E: \mathbb{F}_q \to \mathbb{F}_q$ and $F: \mathbb{F}_q \to \mathbb{F}_q$ are CCZ-equivalent if

$$\Gamma_E = \mathcal{L}(\Gamma_F) + c$$
, where \mathcal{L} is linear.

CCZ-equivalence

Definition [Carlet, Charpin and Zinoviev, DCC98]

 $E: \mathbb{F}_q \to \mathbb{F}_q$ and $F: \mathbb{F}_q \to \mathbb{F}_q$ are CCZ-equivalent if

 $\Gamma_E = \mathcal{L}(\Gamma_F) + c$, where \mathcal{L} is linear.

Inversion

$$\Gamma_{\boldsymbol{E}} = \{(x, \boldsymbol{E}(x)), x \in \mathbb{F}_q\} \quad \text{and} \quad \Gamma_{\boldsymbol{E}^{-1}} = \{(y, \boldsymbol{E}^{-1}(y)), y \in \mathbb{F}_q\}$$

Noting that

$$\Gamma_{E} = \left\{ \left(E^{-1}(y), y \right), y \in \mathbb{F}_{q} \right\} ,$$

then, we have:

$$\Gamma_{\boldsymbol{\textit{E}}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\boldsymbol{\textit{E}}^{-1}} \; .$$

If $E : \mathbb{F}_q \to \mathbb{F}_q$ and $F : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

 \star Differential properties are the same: $\delta_{\it F} = \delta_{\it F}$.

Differential uniformity

$$\delta_{E} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{q}^{m}, E(x+a) - E(x) = b\}|$$

If $E : \mathbb{F}_q \to \mathbb{F}_q$ and $F : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

 \star Differential properties are the same: $\delta_{\it F} = \delta_{\it F}$.

Differential uniformity

$$\delta_{E} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_q^m, E(x+a) - E(x) = b\}|$$

 \star Linear properties are the same: $\mathcal{W}_{E} = \mathcal{W}_{F}$.

Linearity

$$\mathcal{W}_{\mathcal{E}} \ = \ \max_{a,b
eq 0} \left| \sum_{\mathbf{x} \in \mathbb{F}_{an}^n} (-1)^{a \cdot \mathbf{x} + b \cdot \mathcal{E}(\mathbf{x})} \right|$$

If $E: \mathbb{F}_q \to \mathbb{F}_q$ and $F: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow E(x)$, $v \leftarrow F(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == E(x)? \iff v == F(u)?$$

If $E : \mathbb{F}_q \to \mathbb{F}_q$ and $F : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow E(x)$, $v \leftarrow F(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == E(x)? \iff v == F(u)?$$

* The degree is **not preserved**.

Example

in \mathbb{F}_p where

 $p = 0 \times 73 \\ eda \\ 753299 \\ d7d483339 \\ d80809 \\ a1d80553 \\ bda402 \\ fffe5 \\ bfefffffff00000001 \\ description \\$

if
$$F(x) = x^5$$
 then $F^{-1}(x) = x^{5^{-1}}$ where

 $5^{-1} = 0$ x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332ccccccd

If $E : \mathbb{F}_q \to \mathbb{F}_q$ and $F : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow E(x)$, $v \leftarrow F(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == E(x)? \iff v == F(u)?$$

★ The degree is **not preserved**.

Example

in \mathbb{F}_p where

 $p = 0 \times 73 \\ eda \\ 753299 \\ d7d483339 \\ d80809 \\ a1d80553 \\ bda402 \\ fffe5 \\ bfefffffff00000001 \\ description \\$

if
$$F(x) = x^5$$
 then $F^{-1}(x) = x^{5^{-1}}$ where

 $5^{-1} = 0$ x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332ccccccd

The Flystel

 $Butterfly + Feistel \Rightarrow Flystel$

A 3-round Feistel-network with

 $Q_{\gamma}: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_{\delta}: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation

High-Degree permutation

Open Flystel \mathcal{H} .

Low-Degree function

Closed Flystel \mathcal{V} .

Butterfly + Feistel \Rightarrow Flystel

A 3-round Feistel-network with

 $Q_{\gamma}: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_{\delta}: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation

High-Degree permutation

Open Flystel \mathcal{H} .

Closed Flystel V.

$$\Gamma_{\mathcal{H}} = \mathcal{L}(\Gamma_{\mathcal{V}})$$
 s.t. $((x_1, x_2), (y_1, y_2)) = \mathcal{L}(((y_2, x_2), (x_1, y_1)))$

★ High-Degree Evaluation.

High-Degree permutation

Open Flystel \mathcal{H} .

Example

if $E: x \mapsto x^5$ in \mathbb{F}_p where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfefffffff00000001

then $E^{-1}: x \mapsto x^{5^{-1}}$ where

 $5^{-1} = 0x2e5f0fbadd72321ce14a56699d73f002$ 217f0e679998f19933333332ccccccd

- ★ High-Degree Evaluation.
- ⋆ Low-Degree Verification.

$$(y_1, y_2) == \mathcal{H}(x_1, x_2) \Leftrightarrow (x_1, y_1) == \mathcal{V}(x_2, y_2)$$

Open Flystel \mathcal{H} .

Low-Degree function

Closed Flystel \mathcal{V} .

Flystel in \mathbb{F}_{2^n} , n odd

$$Q_{\gamma}(x) = \gamma + \beta x^3$$
, $Q_{\delta}(x) = \delta + \beta x^3$, and $E(x) = x^3$

Open Flystel₂.

Closed Flystel₂.

Properties of Flystel in \mathbb{F}_{2^n} , n odd

Degenerated Butterfly.

Introduced by [Perrin et al. 2016].

Theorems in [Li et al. 2018] state that if $\beta \neq 0$:

* Differential properties

$$\delta_{\mathcal{H}} = \delta_{\mathcal{V}} = 4$$

* Linear properties

$$W_{\mathcal{H}} = W_{\mathcal{V}} = 2^{n+1}$$

- * Algebraic degree
 - * Open Flystel₂: $deg_{\mathcal{U}} = n$
 - ★ Closed Flystel₂: $deg_V = 2$

$$Q_{\gamma}(x) = \gamma + \beta x^2$$
, $Q_{\delta}(x) = \delta + \beta x^2$, and $E(x) = x^d$

usually d = 3 or 5.

Open Flystel,

Closed Flystel,

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \le \frac{d}{1}$$

Properties of Flystel in \mathbb{F}_p

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \le \frac{d}{1}$$

Solving the open problem of finding an APN (Almost-Perfect Non-linear) permutation over \mathbb{F}_p^2

Properties of Flystel in \mathbb{F}_p

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{p}^{2}, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \le \frac{d}{1}$$

Solving the open problem of finding an APN (Almost-Perfect Non-linear) permutation over \mathbb{F}_n^2

* Linear properties

Conjecture:

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b
eq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i(\langle a,x \rangle - \langle b,\mathcal{H}(x) \rangle)}{p} \right) \right| \leq p \log p ?$$

The internal state of Anemoi and its basic operations.

A Substitution-Permutation Network with:

(a) Internal state.

(b) The constant addition.

(c) The diffusion layer.

with
$$\mathcal{P} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

(d) The Pseudo-Hadamard Transform.

(e) The S-box layer.

Algebraic Attacks against AOP

Performance metric

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$
$$t_1 = t_0 + b$$

$$t_2 = t_1 \times t_1$$

$$t_3 = t_2 \times t_1$$

$$a = c \cdot x$$

$$t_5 = t_4 + d$$

$$t_6 = t_3 \times t_5$$

$$t_7 = e \cdot x$$

$$t_8 = t_6 + t_7$$

3 constraints

Some Benchmarks

	$m (= 2\ell)$	RP^1	Poseidon ²	Griffin ³	Anemoi		
R1CS	2	208	198	-	76		
	4	224	232	112	96		R1CS
K1C3	6	216	264	-	120		KICS
	8	256	296	176	160		
	2	312	380	-	191	-	
Plonk	4	560	832	260	316		Plonk
	6	756	1344	-	460		FIOIIK
	8	1152	1920	574	648		
	2	156	300	-	126	_	
AIR	4	168	348	168	168		AIR
	6	162	396	-	216		AIK
	8	192	456	264	288		
						-	

	$m (= 2\ell)$	RP	Poseidon	Griffin	Anemoi
	2	240	216	-	95
R1CS	4	264	264	110	120
KICS	6	288	315	-	150
	8	384	363	162	200
Plonk	2	320	344	-	212
	4	528	696	222	344
	6	768	1125	-	496
	8	1280	1609	492	696
AIR	2	200	360	-	210
	4	220	440	220	280
	6	240	540	-	360
	8	320	640	360	480

(a) when d = 3.

(b) when d = 5.

Constraint comparison for standard arithmetization, without optimization (s = 128).

¹Rescue [Aly et al., ToSC20]

²Poseidon [Grassi et al., USENIX21]

Some Benchmarks

** Numbers to be updated! **

	$m (= 2\ell)$	RP^1	Poseidon ²	Griffin ³	Anemoi
	2	208	198	-	76
R1CS	4	224	232	112	96
KICS	6	216	264	-	120
	8	256	296	176	160
	2	312	380	-	191
Plonk	4	560	832	260	316
PIONK	6	756	1344	-	460
	8	1152	1920	574	648
	2	156	300	-	126
AIR	4	168	348	168	168
	6	162	396	-	216
	8	192	456	264	288

	$m (= 2\ell)$	RP	Poseidon	Griffin	Anemoi
	2	240	216	-	95
R1CS	4	264	264	110	120
KICS	6	288	315	-	150
	8	384	363	162	200
	2	320	344	-	212
Plonk	4	528	696	222	344
PIONK	6	768	1125	-	496
	8	1280	1609	492	696
AID	2	200	360	-	210
	4	220	440	220	280
AIR	6	240	540	-	360
	8	320	640	360	480

(a) when d = 3.

(b) when d = 5.

Constraint comparison for standard arithmetization, without optimization (s = 128).

¹Rescue [Aly et al., ToSC20]

²Poseidon [Grassi et al., USENIX21]

Take-Away

Anemoi: A new family of ZK-friendly hash functions

- * Identify a link between AO and CCZ-equivalence
- * Contributions of fundamental interest:

⋆ New S-box: Flystel

⋆ New mode: Jive

Take-Away

Anemoi: A new family of ZK-friendly hash functions

- * Identify a link between AO and CCZ-equivalence
- * Contributions of fundamental interest:

* New S-box: Flystel
* New mode: Jive

Related works and cryptanalysis

- * AnemoiJive₃ with TurboPlonK [Liu et al., 2022]
- * Arion [Roy, Steiner and Trevisani, 2023]
- * APN permutations over prime fields [Budaghyan and Pal, 2023]
- * Algebraic attacks [Bariant et al., CRYPTO24], [Koschatko, Lüftenegger and Rechberger, 2024]

Algebraic Attacks against AOP

- ★ Solving the CICO problem
- * Trick to bypass rounds of SPN construction
 - * Application to Poseidon and Rescue-Prime
 - * Solving Ethereum Challenges

joint work with A. Bariant, G. Leurent and L. Perrin, published at ToSC 2022

★ FreeLunch attack

CICO Problem

CICO: Constrained Input Constrained Output

Definition

Let $P : \mathbb{F}_q^t \to \mathbb{F}_q^t$ and u < t.

The **CICO** problem is:

Finding
$$X, Y \in \mathbb{F}_a^{t-u}$$
 s.t. $P(X, 0^u) = (Y, 0^u)$.

when t = 3, u = 1.

Ethereum Challenges: solving CICO problem for AO primitives with $q \sim 2^{64}$ prime

- * Feistel-MiMC [Albrecht et al., AC16]
- ⋆ Poseidon [Grassi et al., USENIX21]
- * Rescue-Prime [Aly et al., ToSC20]
- * Reinforced Concrete [Grassi et al., CCS22]

Solving polynomial systems

 \star **Univariate** solving: find the roots of $\mathcal{P}_j \in \mathbb{F}_q[X]$

$$\begin{cases} \mathcal{P}_0(X) &= 0 \\ &\vdots \\ \mathcal{P}_{m-1}(X) &= 0 \end{cases}.$$

* **Multivariate** solving: find the roots of $\mathcal{P}_i \in \mathbb{F}_q[X_0, \dots, X_{n-1}]$

$$\begin{cases} \mathcal{P}_{0}(X_{0}, \dots, X_{n-1}) &= 0 \\ &\vdots \\ \mathcal{P}_{m-1}(X_{0}, \dots, X_{n-1}) &= 0 \end{cases}.$$

- * Compute a grevlex order GB (F5 algorithm)
- * Convert it into lex order GB (FGLM algorithm)
- \star Find the roots in \mathbb{F}_a^n of the GB polynomials using univariate system resolution.

Let $P = P_0 \circ P_1$ be a permutation of \mathbb{F}_p^3 and suppose

$$\exists V, G \in \mathbb{F}_p^3$$
, s.t. $\forall \mathbf{X} \in \mathbb{F}_p$, $P_0^{-1}(\mathbf{X}V + G) = (*, *, 0)$.

(a) R-round system.

Algebraic Attacks against AOP 000000000

(b) (R-2)-round system.

Trick for Poseidon

(a) First two rounds.

(b) Overview.

Trick for Rescue-Prime

(a) First round.

(b) Overview.

Cryptanalysis Challenge

Category	Parameters	Security level	Bounty
Easy	N = 4, m = 3	25	\$2,000
Easy	N = 6, m = 2	25	\$4,000
Medium	N = 7, m = 2	29	\$6,000
Hard	N = 5, m = 3	30	\$12,000
Hard	N = 8, m = 2	33	\$26,000

(a) Rescue-Prime

Category	Parameters	Security level	Bounty
Easy	RP = 3	8	\$2,000
Easy	RP = 8	16	\$4,000
Medium	RP = 13	24	\$6,000
Hard	RP = 19	32	\$12,000
Hard	RP = 24	40	\$26,000

(c) Poseidon

Category	Parameters	Security level	Bounty
Easy	r = 6	9	\$2,000
Easy	r = 10	15	\$4,000
Medium	r = 14	22	\$6,000
Hard	r = 18	28	\$12,000
Hard	r = 22	34	\$26,000

(b) Feistel-MiMC

Category	Parameters	Security level	Bounty
Easy	p = 281474976710597	24	\$4,000
Medium	p = 72057594037926839	28	\$6,000
Hard	p = 18446744073709551557	32	\$12,000

(d) Reinforced Concrete

FreeLunch attack

A. Bariant, A. Boeuf, A. Lemoine, I. Manterola Ayala, M. Øygarden, L. Perrin, and H. Raddum, CRYPTO 2024

Multivariate solving:

- ⋆ Define the system
- * Compute a grevlex order GB (F5 algorithm)
- * Convert it into lex order GB (FGLM algorithm)
- \star Find the roots in \mathbb{F}_q^n of the GB polynomials using univariate system resolution.

FreeLunch attack

A. Bariant, A. Boeuf, A. Lemoine, I. Manterola Ayala, M. Øygarden, L. Perrin, and H. Raddum, CRYPTO 2024

Multivariate solving:

- ⋆ Define the system
- * Convert it into lex order GB (FGLM algorithm)
- \star Find the roots in \mathbb{F}_q^n of the GB polynomials using univariate system resolution.

Take-Away

Take-Away

Recommendations for future designs

- ★ study possible tricks to bypass rounds
- * prefer univariate instead of multivariate systems
- * consider as many variants of modeling and ordering as possible

Conclusions and Perspectives

New designs and cryptanalysis techniques for AOP

- * Anemoi: new tools for designing primitives (Jive, Flystel)
- * A better insight into the behaviour of algebraic systems

Conclusions and Perspectives

New designs and cryptanalysis techniques for AOP

- * Anemoi: new tools for designing primitives (Jive, Flystel)
- * A better insight into the behaviour of algebraic systems

Cryptanalysis and designing of AOP remain to be explored!

- * missing cryptanalysis for Type III
- * investigating new areas of application
- * ...

Conclusions and Perspectives

New designs and cryptanalysis techniques for AOP

- * Anemoi: new tools for designing primitives (Jive, Flystel)
- * A better insight into the behaviour of algebraic systems

Cryptanalysis and designing of AOP remain to be explored!

- * missing cryptanalysis for Type III
- * investigating new areas of application
- * ...

Thank you

Website

STAP Zoo 51AP primitive types 51AP corr cases All 51AP primitives

STAP

Symmetric Techniques for Advanced Protocols

The term STAP (Symmetric Techniques for Advanced Protocols) was first introduced in STAP2.1, an allitade worshop of terrocrypt2.3. It generally refers to algorithms in symmetric cryptography specifically designed to be efficient in new advanced cryptography protocols. These contents include zero shonelege (Zid) proofs, secure cryptography controls. These contents include zero shonelege (Zid) proofs, secure It ancompasses everything from arithmetization-oriented hash functions to homomorphic encryption-friendly stream ciphers.

STAP Zoo

We present a collection of proposed symmetric primitives fitting the STAP description and keep track of recent advances regarding their security and consequent updates. These may be filtered according to their features; we categorize them into different groups regarding primitive-type (block cipher, stream cipher, hash function or PER) and use-case (HEL, MET, and C.).

For each STAP-primitive, we provide a brief overview of its main cryptographic characteristics, including:

- . Basic general information: designers, year, conference/journal where it was first introduced and reference.
- Basic cryptographic properties such as description of the primitive (and relevant diagrams when
- applicable), use-case and proposed parameter sets.

 Relevant known attacks/weaknesses.
- Properties of its best hardware implementation.

When applicable, we also mention connections and relations between different designs.

See more at

stap-zoo.com

Anemoi

More benchmarks and Cryptanalysis

Sponge construction

- \star Hash function (random oracle):
 - \star input: arbitrary length
 - ⋆ ouput: fixed length

New Mode: Jive

- ★ Compression function (Merkle-tree):
 - * input: fixed length
 - ★ output: (input length) /2

Dedicated mode: 2 words in 1

$$(x,y) \mapsto x + y + u + v$$
.

 $Jive_2(x, y)$

New Mode: Jive

* Compression function (Merkle-tree):

* input: fixed length

⋆ output: (input length) /b

Dedicated mode: b words in 1

$$\mathtt{Jive}_b(P): egin{cases} (\mathbb{F}_q^m)^b & o \mathbb{F}_q^m \ (x_0,...,x_{b-1}) & \mapsto \sum_{i=0}^{b-1} \left(x_i + P_i(x_0,...,x_{b-1})\right) \end{cases}.$$

Comparison for Plonk (with optimizations)

	m	Constraints
Poseidon	3	110
r oseidon	2	88
Reinforced Concrete	3	378
Reilliorced Concrete	2	236
Rescue-Prime	3	252
Griffin	3	125
AnemoiJive	2	86 56

	m	Constraints
Poseidon	3	98
POSEIDON	2	82
Reinforced Concrete	3	267
	2	174
Rescue-Prime	3	168
Griffin	3	111
AnemoiJive	2	64

(a) With 3 wires.

(b) With 4 wires.

Constraints comparison with an additional custom gate for x^{α} . (s = 128).

with an additional quadratic custom gate: 56 constraints

Native performance

Rescue-12	Rescue-8	Poseidon-12	Poseidon-8	Griffin-12	Griffin-8	Anemoi-8
15.67 μ s	9.13 μ s	$5.87~\mu$ s	$2.69~\mu s$	$2.87~\mu s$	2.59 μ s	4.21 μ s

2-to-1 compression functions for \mathbb{F}_p with $p = 2^{64} - 2^{32} + 1$ (s = 128).

Rescue	Poseidon	Griffin	Anemoi
206 μs	9.2 μ s	74.18 μ s	128.29 μ s

For BLS12 - 381, Rescue, Poseidon, Anemoi with state size of 2, Griffin of 3 (s = 128).

Algebraic attacks: 2 modelings

Properties of Flystel in \mathbb{F}_p

* Linear properties

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i (\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p} \right) \right| \leq p \log p ?$$

Conjecture for the linearity.

Properties of Flystel in \mathbb{F}_p

* Linear properties

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i(\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p} \right) \right| \leq p \log p ?$$

(a) when p = 11 and d = 3.

(b) when p = 13 and d = 5.

(c) when p = 17 and d = 3.

LAT of Flystel,