Assignment 3 Communication Theory

Name: Shaik Affan Adeeb Roll No: 2022102054

Question 1:

Given Matlab code:

Listing 1: Part 1 - Echo creation

Solution:

Let's break down the MATLAB code and answer each question:

- (a) The key FM parameters can be identified as follows:
 - Sampling frequency (F_s) : The sampling frequency can be inferred from the definition of the time vector t. From $t=0:0.5e^{-6}:0.005$, we see that the time vector t covers a range from 0 to 0.005 with a step size of 0.5×10^{-6} . So, $F_s=\frac{1}{0.5\times 10^{-6}}=2\times 10^6$ Hz.

$$\Longrightarrow F_s = \frac{1}{0.5 \times 10^{-6}} = 2 \times 10^6 Hz$$

• Carrier frequency (f_c) : The carrier frequency is given by the argument of the cosine function in s_t . From the code, $f_c = 2000$ Hz.

$$\implies f_c = 2000Hz$$

• Frequency deviation (Δf) : Δf is not explicitly given, but it can be inferred from the relationship between β and Δf in FM modulation. We'll calculate it in part (b).

• Modulation index (β) : β is not explicitly given, but we can calculate it using the formula $\beta = \frac{\Delta f}{f_m}$, where f_m is the maximum frequency in the message signal m_t . We'll calculate it in part (b).

To determine if it's Narrowband FM (NBFM) or Wideband FM (WBFM), we need to check if $\beta \ll 1$ (NBFM) or $\beta \geq 1$ (WBFM). We'll calculate β in part (b) to answer this question.

As for whether $F_s \gg f_c$, we have $F_s = 2 \times 10^6$ Hz and $f_c = 2000$ Hz, so yes, $F_s \gg f_c$.

- (b) To calculate the FM signal bandwidth (B_T) , we need to find the maximum frequency component in the modulating signal m_t , which corresponds to its maximum frequency. Then, we calculate $B_T = 2 \times (\Delta f + f_m)$, where f_m is the maximum frequency in m_t .
- (c) To address the problem and correct the FM signal waveform, we'll need to adjust a single parameter. Based on the calculations and observations from (a) and (b), we can decide which parameter to modify to achieve the desired result.

Calculations :
$$\xrightarrow{\text{Ans. 1}} \underbrace{(a)}$$

$$t = 0: 0.5 (10^{-6}): 0.005$$
$$= 0: \frac{1}{2 \times 10^{-6}}: 0.005$$

So, $f_s = 2 \times 10^6$ Hz As given $m_t = \sin(2\pi(1000)t)$ and $st = \cos(2\pi(2000)t +$ $2\pi(5000)$ int -mt)

$$f_c = 2000 \; \text{Hz}$$

As we know that

$$\Delta f = \frac{k_f}{2\pi} m_p = \frac{2\pi \times (5000)}{2\pi} \cdot 1$$
 $\Delta f = 5000 \text{ Hz}$

$$\beta = \frac{\Delta f}{B} = \frac{5000}{1000} = 5$$

as $k_f \gg 1$ It is WBFM and also $\Rightarrow F_S \gg F_C$ proved (b) Now Fm signal bard width (using carson law)

$$= 2(5000 + 1000) = 12000 \text{ Hz}$$

= $12\text{KH}z$

Now
$$FS = 2 \times 10^6$$
 Hz

$$2 (f_c + BT/2) = 2(2000 + 6000)$$

$$= 16000 = 16 \text{ Hz}$$

$$\Rightarrow f_s < 2 (f_c + BT/2) \text{ (yes)}$$
and $F_C = 2000 \text{ Hz}$

$$BT/2 = 8000 \text{ Hz}$$

$$\Rightarrow f_C < B_T/2$$

- \Rightarrow If we charge the value of f_m , then the bandwidth of chanel will increase and there will be more spectral dispersion.
- (c) As we can see that $f_c < BT/2$. So the frequency less than fo bounded by $f_c = BT/2$ and become negative and causing the phase change in the angle divested of causing modulation in the frequency. $\Rightarrow f_c > BT/2$ for this requirement We set $f_c = 10 \text{kHz}$ for this purpose.

Question 2

Written in code only.