Graph Mining SD212

2. Graph models

Thomas Bonald

2018 - 2019

Motivation

Random graph = random instance of a graph with some specific statistical properties

Useful for:

- generating graphs "for free"
- testing algorithms (simulation)
- proving algorithms (analysis)

We focus on **undirected** graphs; the results naturally extend to directed graphs

Outline

- 1. Erdös-Rényi graphs
- 2. Preferential attachment
- 3. Configuration model

- ▶ *n* nodes
- ▶ $p \in (0,1)$
- \blacktriangleright An edge with probability p between any distinct nodes u, v

- ▶ *n* nodes
- ▶ $p \in (0,1)$
- \blacktriangleright An edge with probability p between any distinct nodes u, v

- ▶ *n* nodes
- ▶ $p \in (0,1)$
- \blacktriangleright An edge with probability p between any distinct nodes u, v
- Degree distribution

- ▶ *n* nodes
- ▶ $p \in (0,1)$
- \blacktriangleright An edge with probability p between any distinct nodes u, v
- Degree distribution (all instances)
- ► Empirical degree distribution (one instance)

Large Erdös-Rényi graphs

- $ightharpoonup n o +\infty$
- ightharpoonup p
 ightarrow 0
- ▶ $np \rightarrow \lambda$

Example with n=100, p=0.03 ($\lambda=3$)

Local structure

A tree!

Galton-Watson tree

Recursive definition:

- ► A root
- \blacktriangleright The offspring of each node has a Poisson distribution with parameter λ

Three regimes

Extinction probability

Assume $\lambda \geq 1$

Fixed-point equation

Extinction probability

Back to Erdös-Rényi graphs

Three regimes:

- ▶ **Subcritical** (λ < 1): finite tree \rightarrow many small components
- Supercritical (λ > 1): infinite tree with probability p = 1 − q → one giant component containing a fraction p of the nodes (the others in small components)
- ▶ **Critical** ($\lambda = 1$): finite tree (but infinite expectation) → one large component

Examples

Outline

- 1. Erdös-Rényi graphs
- 2. Preferential attachment
- 3. Configuration model

Power law

▶ The typical degree distribution of real graphs is of the form

$$p_k \propto rac{1}{k^{lpha}} \quad lpha > 1$$

 Explained by the "rich get richer" phenomenon Barabasi & Albert 1999

Scale-free graphs

Source: Barabasi, Network Science, 2016

Barabasi-Albert model

Explicit construction (with $d \ge 1$):

- Start from a clique of d nodes
- ► Add new nodes one at a time, each of degree *d* and with **preferential attachment**

Outline

- 1. Erdös-Rényi graphs
- 2. Preferential attachment
- 3. Configuration model

Configuration model

Given some sequence of integers d_1, \ldots, d_n , can we generate a graph with this particular **degree sequence**?

Havel-Hakimi algorithm

Random configuration

Number of self-loops

Summary

Random graphs are generated from **models**

- Erdös-Rényi graphs
- Preferential attachment
- Configuration model

- \rightarrow No structure
- \rightarrow Power law
- → Degree sequence

These may be combined to get more realistic (but complex) models