

Matrix-Vector multiplication using MapReduce (1/3)

• Suppose we have an $n \times n$ matrix M, whose element in row i and column j will be denoted M_{ij} • v is a $n \times l$ column vector

• Then the matrix-vector product is the vector x of length n, whose i^{th} element x_i is given by: $x_i = \sum_{j=1}^n m_{ij} v_j$

9/6/2016	CS535 Big Data - Fall 2016	W3.A.12
Objectives		
The goal of this progran gain experience in:	nming assignment is to enable you	to
Implementing iterative algorithms Wikipedia articles	orithms to estimate PageRank values of	
Designing and implementi and HDFS	ng batch layer computations using Apache	: Spark

9/6/2016	CS535 Big Data	- Fall 2016	W3.A.13
Tasks			
1	•	inder ideal conditio es while considerir	
Analysis of the Implement a Wike			

Requirements
A sorted list of Wikipedia pages based on their ideal PageRank value in descending order
A sorted list (in descending order) of Wikipedia pages based on their PageRank value with taxation
Average difference between the ideal PageRank (from A) and PageRank with taxation (from B) for each Wikipedia article

What does this matrix mean? (1/4) The probability distribution for the location of a random surfer A column vector whose jth component is the probability that the surfer is at page jIf we surf any of the n pages of the Web with equal probability The initial vector v_o will have I/n for each component If M is the transition matrix of the Web After one step, the distribution of the surfer will be Mv_o After two steps, $M(Mv_o) = M^2v_o$ and so on Multiplying the initial vector v_o by M a total of i times The distribution of the surfer after i steps

9/6/2016	CS535 Big Data - Fall 2016	W3.A.21
What does t	his matrix mean?	(2/4)
next step	that a random surfer will be at $\sum_{j}m_{ij}v_{j}$	node i at the
• m_{ij} is the probability the next step	ty that a surfer at node j will m	ove to node i at
• v_j is the probability step	η that the surfer was at node j a	at the previous

35 Big Data - Fall 2016	W3.A.23
atrix mean?	(4/4)
multiplying the distribution or of <i>M</i>	,
mns each add up to 1), v	is the principle
ns are sufficient to co recision arithmetic	onverge to within
	nultiplying the distributed the distribution or of <i>M</i> mns each add up to 1), <i>v</i> a largest of all eigenvalues on s are sufficient to co

9/6/2016		С	S535 Big Data	- Fall 2016		W3.A.25
• The seq	ng at eac 15/48 11/48 11/48 11/48	approxinh step b 11/32 7/32 7/32 7/32 7/32	mations y <i>M</i> is: 3/9 2/9 2/9	to the limi	it we get by	W3.A.25
In the real Web, there are billions of nodes of greatly varying importance						
• The pro				www.amaz	on.com is ord	ers of

9/6/2016	CS535 Big Data - Fall 2016	W3.A.26
Avoiding [Dead Ends	
	ad ends matrix of the Web is no longer stochastic olumns will sum to 0 rather than 1	
matrix Some of all of t substochastic r		estochastic
Importance "dra	e column sums are at most 1 ains out" of the Web n about the relative importance of pages	

9/6/2016	CS535 Big Data - Fall 2016	W3.A.28		
Example: Dead end (contd.)				
Repeatedly m	Repeatedly multiplying the vector by M:			
[14] [3/24] 14 5/24 14 5/24 14 5/24	4 5/48 21/288 0 4 7/48 31/288 0 4 7/48 31/288 0 4 7/48 31/288 0 0 0			
The probability of a surfer being anywhere goes to 0 as the number of steps increase				

Example of recursive deletion (3/4)

• We still need to compute PageRank for deleted nodes (C and E)

• C was the last to be deleted

• We know all its predecessors have PageRanks (A and D)

• Therefore,

• PageRank of C = 1/3 x 2/9 + ½ x 3/9 = 13/54

Example of recursive deletion (4/4)

Now, we can compute the PageRank for E
Only one predecessor, C
The PageRank of E is the same as that of C (13/54)

The sums of the PageRanks exceeds 1
It cannot represent the distribution of a random surfer
But it provides a good estimate

PageRank using Taxation (1/5)

To avoid dead ends, we modify the calculation of PageRank
Allow each random surfer a small probability of *teleporting* to a random page
Rather than following an out-link from their current page

PageRank using Taxation (2/5)

The iterative step, where we compute a new vector estimate of PageRanks v' from the current PageRank estimate v and the transition matrix M is $v' = \beta M v + (1 - \beta) e / n$ Where β is a chosen constant . Usually in the range 0.8 to 0.9

• e is a vector with 1's for the appropriate number of components . n is the number of nodes in the Web graph

9/6/2016	CS535 Big Data - Fall 2016	W3.A.36
PageRa	nk using Taxation	(3/5)
•	Mv represents the case where: bility eta , the random surfer decides to follow be	v an out-link from their
• Each of who	$-\beta$) e/n is a vector ose components has value $(1-\beta)/n$ the introduction, with probability $1-\beta$, of a large	new random surfer at
$v' = \beta M v +$	$+(1-\beta)e/n$	

9/6/2016	CS535 Big Data - Fall 2016	W3.A.37
PageRanl	k using Taxation	(4/5)
If the graph ha	as no dead ends	
 The probability 	of introducing a new random surfer is a the random surfer will decide not to follow	
Surfer decides	either to follow a link or teleport to a rai	ndom page

PageRank using Taxation (5/5)

If the graph has dead ends
The surfer goes nowhere
The term (1-β)e/n does not depend on the sum of the components of the vector ν, there will be some fraction of a surfer operating on Web

When there are dead ends, the sum of the components of ν may be less than 1
But it will never reach 0

9/6/2016 CS535 Big Data - F	all 2016 W3.A.40
Example of Taxation	(2/2)
For the first few iterations:	
[4] [9/60] [41/300] [543/45] [4] [13/60] [53/300] [707/45] [4] [13/60] [53/300] [707/45]	500 19/148 500 19/148

