Mining Propositional Simplification Proofs for Small Validating Clauses

Ian Wehrman ^{1,2}

Computer Science and Engineering Washington University in St. Louis St. Louis, MO USA

Aaron Stump³

Computer Science and Engineering Washington University in St. Louis St. Louis, MO USA

Abstract

The problem of obtaining small conflict clauses in SMT systems has received a great deal of attention recently. We report work in progress to find small subsets of the current partial assignment that imply the goal formula when it has been propositionally simplified to a boolean value. The approach used is algebraic proof mining. Proofs from a propositional reasoner that the goal is equivalent to a boolean value (in the current assignment) are viewed as first-order terms. An equational theory between proofs is then defined, which is sound with respect to the quasi-order "proves a more general set theorems." The theory is completed to obtain a convergent rewrite system that puts proofs into a canonical form. While our canonical form does not use the smallest subset of the current assignment, it does drop many unnecessary parts of the proof. The paper concludes with discussion of the complexity of the problem and effectiveness of the approach.

Key words: SAT, SMT, algebraic proof mining, term rewriting.

1 Introduction

The problem of obtaining small conflict clauses, long known in the SAT community to be crucial for high performance [8], has recently been of great inter-

¹ Thanks to Joel Brandt and Edwin Westbrook for their help on this project and to the anonymous reviewers for their comments on an earlier draft.

² Email: iwehrman@cse.wustl.edu

³ Email: stump@cse.wustl.edu

est to the satisfiability modulo theories (SMT) community [5,3]. This paper reports work in progress (without implementation) to find small subsets of the current partial assignment that imply the goal formula when it has been propositionally simplified to a boolean value (true or false). We refer to clauses that imply the goal formula as validating clauses. Validating clauses in the context of validity correspond to conflict clauses in the context of satisfiability. The techniques we propose can be applied to either problem, but we refer only to the first case in the paper.

SMT tools like CVC [6] and CVC Lite [2] work (roughly) by first choosing an atomic formula to case split on, followed by simplification of the (non-clausal) goal. Splitting and simplification proceeds until the formula simplifies to a boolean value. If that value is true, we would like to record a subset of the current partial assignment as a validating clause. The current assignment itself is not useful in guiding the search, but a small proper subset can be. We hope to find such a small subset because incremental simplification is often redundant in the following sense. Consider the formula $(\chi \vee \psi) \wedge \phi$. Simplification may proceed (left to right) as follows:

$$(\chi \vee \psi) \wedge \phi \xrightarrow{\chi \Leftrightarrow F} \psi \wedge \phi \xrightarrow{\psi \Leftrightarrow T} \phi \xrightarrow{\phi \Leftrightarrow T} T. \tag{1}$$

Here, the assignment with domain χ, ψ, ϕ is a validating clause, implying $(\chi \lor \psi) \land \phi \Leftrightarrow T$. It is easy to see, however, that the first decision in this assignment is redundant. If simplification had omitted the first decision,

$$(\chi \vee \psi) \wedge \phi \xrightarrow{\psi \Leftrightarrow T} \phi \xrightarrow{\phi \Leftrightarrow T} T, \tag{2}$$

the formula would still simplify to T, resulting in a smaller and potentially more useful validating clause.

SMT tools such as CVC generate proofs of simplification. These proofs correspond to the step-by-step simplification of the goal to a boolean value. The main observation of this paper is that proofs can be transformed to find smaller validating clauses. Given a formula ϕ and proof that $\phi \Leftrightarrow T$ from simplification, we can reduce the proof using a term rewriting system (TRS) to one using a smaller assignment — proofs as in (1) are reduced to proofs as in (2). This is of potential value for systems that rely on simplifying a non-clausal goal formula, such as CVC Lite which uses both clausal and non-clausal forms of the goal, the former in order to obtain validating clauses [1]. The method proposed in this paper could be used to obtain small validating clauses without resorting to clausal form. In addition, studying the transformation of proofs could pave the way for more sophisticated proof mining techniques and applications.

The approach used is algebraic proof mining [7]. Proofs obtained from propositional simplification are viewed as first-order terms. A (finite) equational theory between proofs is defined, which is sound with respect to the

quasi-order "proves a more general set of theorems." The theory is completed to obtain a convergent TRS which puts proofs into a canonical form. While our rewrite system does not result in a canonical form that uses the smallest subset of the current assignment, it does remove clearly unnecessary parts of the proof. These unnecessary parts correspond to the simplifications performed, e.g., on the left side of a disjunction whose right side simplifies to true. The simplifications performed on the left disjunct are unnecessary, because the whole disjunction will simplify to true whether or not the left disjunct is simplified.

In Sec. 2, we describe the propositional formulas and proofs under consideration and, in Sec. 3, we present a term rewriting system for proof reduction.

2 Propositional Equivalence Formulas and Proofs

We begin by defining the propositional formulas considered in our system and then describe a set of first-order terms that represent the proof rules. Finally, we give an equational theory for simplifying proof terms, along with a completed set of rewrite rules.

Let A be a countable set of propositional variables, V the set of boolean values $\{T, F\}$ and S the set of propositional formulas defined inductively by

$$\mathcal{S} ::= A \mid (\mathcal{S} \vee \mathcal{S}) \mid (\mathcal{S} \wedge \mathcal{S}) \mid \neg \mathcal{S}.$$

Let \mathcal{D} be the set of equivalence formulas and \mathcal{E} be the set of boolean-valued equivalence formulas defined inductively by

$$\mathcal{D} ::= \mathcal{S} \Leftrightarrow \mathcal{S} \mid \mathcal{E}$$
$$\mathcal{E} ::= \mathcal{S} \Leftrightarrow V.$$

Note that $\mathcal{E} \subset \mathcal{D}$ and \mathcal{E} only contains formulas of the form $\phi \Leftrightarrow T$ and $\phi \Leftrightarrow F$. We use the notation $Var(\phi)$ to denote the set of propositional variables occurring in formula ϕ .

A decision $u = \langle a, v \rangle$ is associates a propositional variable $a \in A$ with a boolean value $v \in V$. An assignment \mathcal{U} is any set of decisions that is a partial function; its extension $\hat{\mathcal{U}} = \{\langle u, a \Leftrightarrow v \rangle \mid u = \langle a, v \rangle \in \mathcal{U}\}$ is the relation between the decisions of an assignment and the respective theorems they prove. We inductively define the set of equivalence proofs \mathcal{P} with the following grammar:

$$\mathcal{P} ::= \mathcal{U} \mid \mathsf{Trans}(\mathcal{P}, \mathcal{P}) \mid \mathsf{Refl} \mid \mathsf{NotFalse} \mid \mathsf{NotTrue} \mid \mathsf{OrTrue1} \mid \mathsf{OrTrue2} \mid \\ \mathsf{OrFalse1} \mid \mathsf{OrFalse2} \mid \mathsf{AndTrue1} \mid \mathsf{AndTrue2} \mid \mathsf{AndFalse1} \mid \mathsf{AndFalse2} \mid \\ \mathsf{CongrOr1}(\mathcal{P}) \mid \mathsf{CongrOr2}(\mathcal{P}) \mid \mathsf{CongrAnd1}(\mathcal{P}) \mid \mathsf{CongrAnd2}(\mathcal{P}) \mid \\ \mathsf{CongrNot}(\mathcal{P}).$$

The proof rules (if not their notation) should be familiar to the reader: Refl

```
if a \in A, v \in V, u = \langle a, v \rangle \in \mathcal{U}
                                                       a \Leftrightarrow v
     \mathsf{Trans}(p_1, p_2)
                                                                                                      if p_1 \vdash_{\mathcal{D}} \phi \Leftrightarrow \psi, p_2 \vdash_{\mathcal{D}} \psi \Leftrightarrow \chi
                                                       \phi \Leftrightarrow \chi
                           Refl \vdash_{\mathcal{D}}
                                                      \phi \Leftrightarrow \phi
                OrTrue1
                                          \vdash_{\mathcal{D}} T \lor \phi \Leftrightarrow T
                OrTrue2
                                         \vdash_{\mathcal{D}} \phi \lor T \Leftrightarrow T
                                          \vdash_{\mathcal{D}} F \lor \phi \Leftrightarrow \phi
               OrFalse1
               OrFalse2
                                         \vdash_{\mathcal{D}} \phi \lor F \Leftrightarrow \phi
            AndTrue1
                                         \vdash_{\mathcal{D}} T \land \phi \Leftrightarrow \phi
                                         \vdash_{\mathcal{D}} \phi \lor T \Leftrightarrow \phi
            AndTrue2
                                         \vdash_{\mathcal{D}} F \land \phi \Leftrightarrow F
           AndFalse1
           AndFalse2
                                          \vdash_{\mathcal{D}} \phi \wedge F \Leftrightarrow F
               NotFalse
                                         \vdash_{\mathcal{D}} \neg F \Leftrightarrow T
                NotTrue \vdash_{\mathcal{D}} \neg T \Leftrightarrow F
                                                                                                  if p_1 \vdash_{\mathcal{D}} \phi \Leftrightarrow \phi'
   CongrOr1(p_1)
                                         \vdash_{\mathcal{D}} \phi \lor \psi \Leftrightarrow \phi' \lor \psi
   CongrOr2(p_1) \vdash_{\mathcal{D}} \phi \lor \psi \Leftrightarrow \phi \lor \psi' if p_1 \vdash_{\mathcal{D}} \psi \Leftrightarrow \psi'
                                         \vdash_{\mathcal{D}} \phi \land \psi \Leftrightarrow \phi' \land \psi \quad \text{if } p_1 \vdash_{\mathcal{D}} \phi \Leftrightarrow \phi'
CongrAnd1(p_1)
                                         \vdash_{\mathcal{D}} \phi \land \psi \Leftrightarrow \phi \land \psi' \quad \text{if } p_1 \vdash_{\mathcal{D}} \psi \Leftrightarrow \psi'
CongrAnd2(p_1)
                                                                                                      if p_1 \vdash_{\mathcal{D}} \phi \Leftrightarrow \phi'.
   CongrNot(p_1) \vdash_{\mathcal{D}} \neg \phi \Leftrightarrow \neg \phi'
```

Fig. 1. Proof Rules

denotes reflexivity of equivalence, Trans the transitivity of equivalence, etc. A complete description of the rules is given in Fig. 1.

Let $\vdash_{\mathcal{D}}$ be the smallest relation on $\mathcal{P} \times \mathcal{D}$ that extends $\hat{\mathcal{U}}$ and denotes the set of theorems proved by an equivalence proof, defined inductively by the universal closures of the formulas in Fig. 1. Instead of $\langle p, \phi \rangle \in \vdash_{\mathcal{D}}$ we write $p \vdash_{\mathcal{D}} \phi$ (read "p proves ϕ "). The relation \vdash is the restriction of $\vdash_{\mathcal{D}}$ to $\mathcal{P} \times \mathcal{E}$.

We define the proof generality quasi-order as the smallest relation $\succeq_{\mathcal{D}}$ on $\mathcal{P} \times \mathcal{P}$ such that $p_1 \succeq_{\mathcal{D}} p_2$ iff $\forall \phi \in \mathcal{D}. p_1 \vdash_{\mathcal{D}} \phi \Rightarrow p_2 \vdash_{\mathcal{D}} \phi$. Similarly, let \succeq be the relation on $\mathcal{P} \times \mathcal{P}$ such that $p_1 \succeq_{\mathcal{D}} p_2$ iff $\forall \phi \in \mathcal{E}. p_1 \vdash_{\mathcal{D}} \phi \Rightarrow p_2 \vdash_{\mathcal{D}} \phi$. Note \succeq is a subset of $\succeq_{\mathcal{D}}$. We say p_2 is more general than p_1 if $p_1 \succeq_{\mathcal{D}} p_2$. For example, Trans(CongrAnd1(p_1), AndFalse2) \succeq AndFalse2 because, if $p_1 \vdash_{\mathcal{D}} \phi \Leftrightarrow_{\mathcal{D}} \phi'$, both prove $\phi \wedge F \Leftrightarrow_{\mathcal{F}} F$. However, the latter proves theorems of the form $\phi \wedge F$ for any formula ϕ , while the former only holds for the particular formula ϕ referenced in the disjunct.

Note that it is not the case that all syntactically well-formed proofs prove a theorem. For example, $\mathsf{Trans}(\mathsf{CongrOr1}(p), \mathsf{AndFalse1})$ — clearly, $\mathsf{CongrOr1}(p) \vdash \phi \lor \psi \Leftrightarrow \phi' \lor \psi$ is not compatible with the definition of $\mathsf{AndFalse1}$. We define $\hat{\mathcal{P}}$ as $Dom(\vdash)$, the set of all proofs that prove a theorem of \mathcal{E} .

$$\frac{\frac{(p_1)}{\chi \Leftrightarrow \chi'}}{\frac{\chi \lor \psi \Leftrightarrow \chi' \lor \psi}{\chi \lor \psi \Leftrightarrow \chi' \lor \psi}} \begin{array}{c} \frac{\frac{(p_2)}{\psi \Leftrightarrow T}}{\chi' \lor \psi \Leftrightarrow \chi' \lor T} \hspace{0.1cm} \mathsf{CongrOr2} \hspace{0.1cm} \frac{\chi' \lor T \Leftrightarrow T}{\chi' \lor \psi \Leftrightarrow T} \hspace{0.1cm} \mathsf{Trans} \end{array} \begin{array}{c} \mathsf{OrTrue2} \\ \mathsf{Trans} \end{array}$$

Fig. 2. Proof Reduction Example

3 Propositional Proof Reduction

Now that we have defined our proof rules as a set of first-order terms, we turn to transformations of these terms. Consider $p \in \hat{\mathcal{P}}$ and $\phi \in \mathcal{S}$ such that $p \vdash \phi \Leftrightarrow T$. Associated with p is a truth assignment whose domain is the set of propositional variables that occur in ϕ . This truth assignment corresponds to a validating clause for ϕ (a model under which the formula simplifies to true). It is possible, however, that some of the assignments may be redundant — i.e., a subset of the truth assignment validates the formula. For example, the validating clause of the first proof in Fig. 2 comprises the truth assignment for all propositional variables in $Var(\chi) \cup Var(\psi)$. However, it is clear that the decisions occurring in p_1 are inconsequential because $p_2 \vdash \psi \Leftrightarrow T$ and so only the decisions in p_2 are needed to prove $\chi \lor \psi \Leftrightarrow T$.

We now present an equational theory for removing inconsequential decisions contained within proofs. The basic reduction steps, presented as oriented rewrite rules on the first-order terms of $\hat{\mathcal{P}}$, are given in Fig. 3. These rules are used to transform the proofs from propositional simplification into a canonical form (given in Sec. 3.1) with fewer unnecessary subproofs. E.g., if $p \vdash_{\mathcal{D}} \phi \lor T \Leftrightarrow T$ then any derivation that proves equivalences of ϕ proves a subset of theorems of one that ignores ϕ (an instance of the first **Deriv-Cut** rule). The following lemma (proved in Sec. A) expresses the fact that the universal closures of the basic rules in Fig. 3 are sound w.r.t. $\succcurlyeq_{\mathcal{D}}$.

Lemma 3.1 (Basic Rule Soundness) For all $p_1, p_2 \in \hat{\mathcal{P}}$, if $p_1 \to p_2$, then $p_1 \succcurlyeq_{\mathcal{D}} p_2$.

Using the equational theorem proving tool Waldmeister [4], we can augment our basic rules using Knuth-Bendix completion, resulting in a confluent and terminating (i.e., convergent) rewrite system for reducing proofs. The completed set of 58 rules is given in Sec. B in the appendix. It is straightforward to verify, given the previous lemma and the correctness of the completion procedure, that proof generality holds for reduction w.r.t. the completed set of rewrite rules: for any p_1, p_2 such that p_1 rewrites to p_2 it is the case that p_2

```
Right-Assoc
\mathsf{Trans}(\mathsf{Trans}(x_1, x_2), x_3) \to \mathsf{Trans}(x_1, \mathsf{Trans}(x_2, x_3))
Trans-Refl
\mathsf{Trans}(\mathsf{Refl}, x_1) \to x_1
\mathsf{Trans}(x_1, \mathsf{Refl}) \to x_1
Congr-Refl
CongrOr1(Refl) \rightarrow Refl
CongrOr2(Refl) \rightarrow Refl
CongrAnd1(Refl) \rightarrow Refl
CongrAnd2(Refl) \rightarrow Refl
CongrNot(Refl) \rightarrow Refl
Deriv-Cut
\mathsf{Trans}(\mathsf{CongrOr1}(x_1), \mathsf{OrTrue2}) \to \mathsf{OrTrue2}
\mathsf{Trans}(\mathsf{CongrOr2}(x_1), \mathsf{OrTrue1}) \to \mathsf{OrTrue1}
\mathsf{Trans}(\mathsf{CongrAnd1}(x_1), \mathsf{AndFalse2}) \to \mathsf{AndFalse2}
\mathsf{Trans}(\mathsf{CongrAnd2}(x_1), \mathsf{AndFalse1}) \to \mathsf{AndFalse1}
Congr-Drop
\mathsf{Trans}(\mathsf{CongrOr2}(x_1), \mathsf{OrFalse1}) \to \mathsf{Trans}(\mathsf{OrFalse1}, x_1)
\mathsf{Trans}(\mathsf{CongrOr1}(x_1), \mathsf{OrFalse2}) \to \mathsf{Trans}(\mathsf{OrFalse2}, x_1)
\mathsf{Trans}(\mathsf{CongrAnd2}(x_1), \mathsf{AndTrue1}) \to \mathsf{Trans}(\mathsf{AndTrue1}, x_1)
\mathsf{Trans}(\mathsf{CongrAnd1}(x_1), \mathsf{AndTrue2}) \to \mathsf{Trans}(\mathsf{AndTrue2}, x_1)
Congr-Pull
\mathsf{Trans}(\mathsf{Trans}(\mathsf{CongrOr1}(x_1),\mathsf{CongrOr2}(x_2)),\mathsf{Trans}(\mathsf{CongrOr1}(x_3),\mathsf{CongrOr2}(x_4)))
         \rightarrow Trans(CongrOr1(Trans(x_1, x_3)), CongrOr2(Trans(x_2, x_4)))
\mathsf{Trans}(\mathsf{Trans}(\mathsf{CongrAnd1}(x_1),\mathsf{CongrAnd2}(x_2)),\mathsf{Trans}(\mathsf{CongrAnd1}(x_3),\mathsf{CongrAnd2}(x_4)))
         \rightarrow Trans(CongrAnd1(Trans(x_1, x_3)), CongrAnd2(Trans(x_2, x_4)))
\mathsf{Trans}(\mathsf{CongrNot}(x_1), \mathsf{CongrNot}(x_2)) \to \mathsf{CongrNot}(\mathsf{Trans}(x_1, x_2))
```

Fig. 3. Basic Reduction Rules

is more general than the p_1 . This yields the following theorem, where we write $\stackrel{*}{\rightarrow}$ to denote the reflexive-transitive closure of \rightarrow over the completed TRS.

Theorem 3.2 (Soundness) For all $p_1, p_2 \in \hat{\mathcal{P}}$, if $p_1 \stackrel{*}{\to} p_2$ then $p_1 \succcurlyeq_{\mathcal{D}} p_2$.

3.1 Canonical Form

We can describe the canonical form of proofs rewritten in this rewrite system as follows. Consider proofs of formulas of the form $\phi \Leftrightarrow T$. If $\phi := \chi \lor \psi$, then the canonical form will prove exactly one disjunct is equivalent to true and use the appropriate cut-off rule to show ϕ is true (either OrTrue1 for χ or OrTrue2 for ψ). If $\phi := \chi \land \psi$, then the canonical form first has a proof that one side is true and then that the other side is true, using either AndTrue1 or AndTrue2 (as appropriate) as the only intermediate step. If $\phi := \neg \psi$, then

```
\mathcal{C}_T
                               \mathcal{U} \mid \mathcal{C}_{T \vee 1} \mid \mathcal{C}_{T \vee 2} \mid \mathcal{C}_{T \wedge 1} \mid \mathcal{C}_{T \wedge 2} \mid \mathcal{C}_{T \neg}
                ::=
                               \mathcal{U} \mid \mathcal{C}_{F \vee 1} \mid \mathcal{C}_{F \vee 2} \mid \mathcal{C}_{F \wedge 1} \mid \mathcal{C}_{F \wedge 2} \mid \mathcal{C}_{F \neg}
    \mathcal{C}_F
                ::=
\mathcal{C}_{T \vee 1}
                               Trans(CongrOr1(\mathcal{C}_T), OrTrue1)
                ::=
\mathcal{C}_{T\vee 2}
                ::=
                               Trans(CongrOr2(C_T), OrTrue2)
                                \mathsf{Trans}(\mathsf{CongrOr1}(\mathcal{C}_F), \mathsf{Trans}(\mathsf{OrFalse1}, \mathcal{C}_F))
\mathcal{C}_{F\vee 1}
                ::=
\mathcal{C}_{F\vee 2}
                               \mathsf{Trans}(\mathsf{CongrOr2}(\mathcal{C}_F), \mathsf{Trans}(\mathsf{OrFalse2}, \mathcal{C}_F))
                ::=
\mathcal{C}_{F\wedge 1}
                ::=
                               Trans(CongrAnd1(C_F), AndFalse1)
\mathcal{C}_{F \wedge 2}
                                \mathsf{Trans}(\mathsf{CongrAnd2}(\mathcal{C}_F), \mathsf{AndFalse2})
                ::=
\mathcal{C}_{T\wedge 1}
                ::=
                               \mathsf{Trans}(\mathsf{CongrAnd1}(\mathcal{C}_T), \mathsf{Trans}(\mathsf{AndTrue1}, \mathcal{C}_T))
\mathcal{C}_{T\wedge 2}
                ::=
                               \mathsf{Trans}(\mathsf{CongrAnd2}(\mathcal{C}_T), \mathsf{Trans}(\mathsf{AndTrue2}, \mathcal{C}_T))
 \mathcal{C}_{T\neg}
                ::=
                                Trans(CongrNot(C_F), NotFalse)
  \mathcal{C}_{F\neg}
                ::=
                               \mathsf{Trans}(\mathsf{CongrNot}(\mathcal{C}_T), \mathsf{NotTrue})
```

Fig. 4. Canonical Form of Simplified Proofs

the canonical form has a proof that ψ is *false* and then uses the NotFalse rule, proving $\neg F \Leftrightarrow T$. The form for *false* disjunctions, conjunctions and negations is similar. The canonical form is completely characterized as a context-free grammar in Fig. 4 and Thm. A.1 (in the appendix) states that it is a consequence of our rewrite system.

Unfortunately, although the rewrite system is convergent, not all proofs that prove a theorem in common have the same canonical form. Consider the formula $\phi \lor \psi \Leftrightarrow T$, where non-canonical proof p reduces both disjuncts to true. In canonical form, one disjunct will be reduced and the other discarded, but the choice is dependent on the exact form of the input proof. A consequence of this is that we cannot prove that the rewrite system returns a proof that uses the minimum number of decisions (i.e., the assignment with the fewest unique literals) — to do so, it would have to choose the disjunct that results in the globally smaller set of decisions.

However, while the rewrite system does not return the minimum number of decisions in instances like the above formula (or one in which both sides of a conjunction reduce to false), it will correctly prune portions of the proof for which no "non-deterministic" choice is necessary. If one side of a conjunction reduces to true and the other to false the rewrite system will always remove the latter derivation. Furthermore, the problem of choosing the disjuncts that result in the minimum-size set of decisions is NP-complete. This is seen via a reduction from VERTEX-COVER in which nodes of an input graph are seen as atomic formulas and the graph itself as a conjunction of disjuncts corresponding to pairs of vertices connected by an edge. The decisions contained in a proof that an assignment implies the resulting formula (and has the smallest number of unique decisions) corresponds to an optimal cover. Our proof reduction system removes the obviously inconsequential portions of the proof and makes an arbitrary choice in the other cases. The authors believe that, in practice, this will result in a useful reduction in the size of the assignment.

4 Conclusion and Future Work

We have presented a sound rewrite system for simplifying propositional equivalence proofs to find small validating clauses. We have described the canonical form of the proofs and explored the effectiveness of the algebraic approach.

This is a work-in-progress and there are many avenues still unexplored. As presented, our technique is not likely to be practical for high-performance decision procedures. Rewriting proofs without any strategy will almost certainly be too costly. Future work is to find an efficient rewriting strategy or, better, a more sophisticated proof mining method that requires no rewriting at all (as in [7]). Another possible extension is to modify the rewrite system in such a way that disjunctions whose disjuncts both simplify to *true* are preserved in the canonical form (i.e., in this case neither side is eliminated). Then, a post-processing choice could be made to find the proof with a globally smaller number of decisions. Although this problem is NP-complete, if a suitable approximation algorithm can be applied then a bound can be given on how much larger the given validating clause is from an optimal one.

References

- [1] C. Barrett and J. Donham. Combining SAT Methods with Non-Clausal Decision Heuristics. In S. Ranise and C. Tinelli, editors, *Pragmatics of Decision Procedures in Automated Reasoning*, 2004.
- [2] Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the cooperating validity checker. In R. Alur, editor, *Proceedings of the 16th* International Conference on Computer-Aided Verification, 2004.
- [3] L. de Moura, H. Rueß, and N. Shankar. Justifying Equality. In S. Ranise and C. Tinelli, editors, 2nd International Workshop on Pragmatics of Decision Procedures in Automated Reasoning, 2004.
- [4] B. Löchner and T. Hillenbrand. The Next Waldmeister Loop. In A. Voronkov, editor, *CADE-18*, pages 486–500, 2002.
- [5] R. Nieuwenhuis and A. Oliveras. Proof-producing Congruence Closure. In J. Giesl, editor, 16th International Conference on Rewriting Techniques and Applications, 2005.
- [6] A. Stump, C. Barrett, and D. Dill. CVC: a Cooperating Validity Checker. In 14th International Conference on Computer-Aided Verification, 2002.
- [7] A. Stump and L.-Y. Tan. The Algebra of Equality Proofs. In Jürgen Giesl, editor, 16th International Conference on Rewriting Techniques and Applications, 2005.
- [8] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient Conflict Driven Learning in Boolean Satisfiability Solver. In *International Conference on Computer Aided Design*, pages 279–285, 2001.

A Proofs of Soundness and Canonical Form

We now prove Lem. 3.1, that if $p_1 \to p_2$, then $p_1 \succeq_{\mathcal{D}} p_2$ for any $p_1, p_2 \in \hat{\mathcal{P}}$.

Proof. (Basic Rule Soundness) First consider congruence. Assume $p_1 \to p_2$ and consider $\mathsf{Trans}(p_1,p)$. Since $p_1 \in \hat{\mathcal{P}}$, p_1 proves either $a \Leftrightarrow T$ or $a \Leftrightarrow F$. For $\mathsf{Trans}(p_1,p)$ to prove a theorem, p must be compatible with p_1 , and so can only be Refl. Consequently, $\mathsf{Trans}(p_1,p)$ proves exactly the same theorems as p_1 , and so by assumption proves a theorem in common with p_2 . It is also clear that, if $p_1 \to p_2$ then $\mathsf{CongrOr2}(p_1) \to \mathsf{CongrOr1}(p_2)$, and similarly for the other congruence rules.

Now consider the axioms for \rightarrow as given in Fig. 3.

- **Right-Assoc**: Suppose $\operatorname{Trans}(\operatorname{Trans}(p_1, p_2), p_3) \vdash_{\mathcal{D}} \phi \Leftrightarrow \xi$. Then $\operatorname{Trans}(p_1, p_2) \vdash_{\mathcal{D}} \phi \Leftrightarrow \chi$ and $p_3 \vdash_{\mathcal{D}} \chi \Leftrightarrow \xi$. The former implies that $p_1 \vdash_{\mathcal{D}} \phi \Leftrightarrow \psi$ and $p_2 \vdash_{\mathcal{D}} \psi \Leftrightarrow \chi$. By definition, $\operatorname{Trans}(p_2, p_3) \vdash_{\mathcal{D}} \psi \Leftrightarrow \xi$ and also $\operatorname{Trans}(p_1, \operatorname{Trans}(p_2, p_3)) \vdash_{\mathcal{D}} \phi \Leftrightarrow \xi$.
- **Trans-Refl**: Suppose Trans(Refl, p_1) $\vdash_{\mathcal{D}} \phi \Leftrightarrow \psi$. Since Refl $\vdash_{\mathcal{D}} \phi \Leftrightarrow \phi$, it must be that $p_1 \vdash_{\mathcal{D}} \phi \Leftrightarrow \psi$. Similarly for Trans(p_1 , Refl).
- **Congr-Refl:** Suppose CongrOr1(Refl) $\vdash_{\mathcal{D}} \phi \lor \psi \Leftrightarrow \phi' \lor \psi$. But Refl $\vdash_{\mathcal{D}} \phi \Leftrightarrow \phi$, so it must be that $\phi = \phi'$, and CongrOr1(Refl) $\vdash_{\mathcal{D}} \phi \lor \psi \Leftrightarrow \phi \lor \psi$, which Refl alone proves. Similarly for CongrOr2, CongrAnd1, CongrAnd2 and CongrNot.
- **Deriv-Cut**: Suppose $p = \text{Trans}(\text{CongrOr1}(p_1), \text{OrTrue2}) \vdash_{\mathcal{D}} \phi \lor \psi \Leftrightarrow T$ (because it cannot prove F). Then $\text{CongrOr1}(p_1) \vdash_{\mathcal{D}} \phi \Leftrightarrow \phi'$. But, by assumption, p proves a well-formed theorem, so it must be that $\psi = T$. The rule OrTrue2 proves any theorem of the form $\phi \lor T$, and so proves a superset of theorems proved by p. Similarly for the cases involving CongrOr2, CongrAnd1 and CongrAnd2.
- **Congr-Drop**: Suppose $p = \text{Trans}(\text{CongrOr2}(p_1), \text{OrFalse1}) \vdash_{\mathcal{D}} \phi \lor \psi \Leftrightarrow \psi'$. Because p proves a theorem, it must be that $\phi \Leftrightarrow F$, and $p_1 \vdash_{\mathcal{D}} \psi \Leftrightarrow \psi'$. So it is also the case that $\text{Trans}(\text{OrFalse1}, p_1) \vdash_{\mathcal{D}} \phi \lor \psi \vdash_{\mathcal{D}} \psi'$, which encompasses the same set of theorems. Similarly for the cases involving OrFalse2, AndTrue1 and AndTrue2.
- Congr-Pull: Suppose $p = \text{Trans}(\text{Trans}(\text{CongrOr1}(p_1), \text{CongrOr2}(p_2)), \text{Trans}(\text{CongrOr1}(p_3), \text{CongrOr2}(p_4))) \vdash_{\mathcal{D}} \phi \lor \psi \Leftrightarrow \phi'' \lor \psi''. \text{ Then Trans}(\text{CongrOr1}(p_1), \text{CongrOr2}(p_2)) \vdash_{\mathcal{D}} \phi \lor \psi \Leftrightarrow \phi' \lor \psi' \text{ and Trans}(\text{CongrOr1}(p_3), \text{CongrOr2}(p_4) \vdash_{\mathcal{D}} \phi' \lor \psi' \Leftrightarrow \phi'' \lor \psi''. \text{ So } p_1 \vdash_{\mathcal{D}} \phi \Leftrightarrow \phi', p_3 \vdash_{\mathcal{D}} \phi' \Leftrightarrow \phi'' \text{ and Trans}(p_1, p_3) \vdash \phi \Leftrightarrow \phi'. \text{ Similarly, Trans}(p_2, p_4) \vdash_{\mathcal{D}} \psi \Leftrightarrow \psi''. \text{ So Trans}(\text{CongrOr1}(\text{Trans}(p_1, p_3)), \text{CongrOr2}(\text{Trans}(p_2, p_4))) \vdash \phi \lor \psi \Leftrightarrow \phi'' \lor \psi'', \text{ which proves the same set of theorems as } p. \text{ Similarly for the cases involving CongrNot, CongrAnd1 and CongrAnd2}.}$

The proof of canonical form requires that there be no boolean values in the input formula. This is easily justified because any implementation can, in

linear time, simplify an input formula that has boolean value to one that does not. By convention, v ranges over the set of boolean values V (i.e., v is either T or F).

Theorem A.1 (Canonical Form) Suppose $p \in \hat{\mathcal{P}}$ is a proof such that 1) p is in normal form w.r.t. the rewrite system, 2) $p \vdash \phi \Leftrightarrow v$, for a propositional formula ϕ and boolean value v, and 3) ϕ contains no boolean values. Then $p \in \mathcal{C}_v$.

Proof. By induction on the form of the proof p.

- $p = u \in \mathcal{U}$: Immediate because $\mathcal{U} \subset \mathcal{C}_T$ and $\mathcal{U} \subset \mathcal{C}_F$.
- $p = \mathsf{Refl}$: The proof p must either prove $T \Leftrightarrow T$ or $F \Leftrightarrow F$, but this violates the boolean values assumption (assumption 3).
- $p = \mathsf{OrFalse1}$: The proof p must prove $T \vee F \Leftrightarrow T$, violating assumption 3. Similarly for the other cut-off rules.
- $p = \mathsf{CongrNot}(p_1)$: The proof p proves $\neg \phi \Leftrightarrow \neg \phi'$, violating the assumption that p proves $\phi \Leftrightarrow T$ or $\phi \Leftrightarrow F$ (assumption 2).
- $p = \mathsf{CongrOr1}(p_1)$: The proof p proves $\phi \lor \psi \Leftrightarrow \phi' \lor \psi$, violating assumption 2. Similarly for the other congruence rules.
- $p = \mathsf{Trans}(p_1, p_2)$: Consider the possible forms of p_1 .
 - $p_1 = \text{Refl}$ or $p_2 = \text{Refl}$: If either subproof is Refl, normal form is violated (assumption 1).
 - $p_1 = \mathsf{OrFalse1}$: The proof p must prove $F \wedge \phi \Leftrightarrow \chi$, but this violates assumption 2. Similarly for other cut-off rules.
 - $p_1 = \mathsf{Trans}(p_{11}, p_{12})$: Violation of assumption 1.
 - $p_1 = \mathsf{CongrOr1}(p_{11})$: The proof p_1 proves $\phi \lor \psi \Leftrightarrow \phi' \lor \psi$. Consider the possible forms of p_2 .
 - $p_2 = \text{OrTrue2}$: Violation of assumption 1. Similarly for OrFalse2.
 - $p_2 = \mathsf{OrFalse1}$: The proof p proves $\phi \lor \psi \Leftrightarrow \psi$. But then ψ must by either T or F, violating assumption 3.
 - $p_2 = \mathsf{AndFalse1}$: Since p_1 proves a disjunction, so must p_2 . Therefore, this case does not prove a theorem, violating 2. Similarly for AndFalse2, AndTrue1, AndTrue2, NotFalse, NotTrue, CongrAnd1, CongrAnd2 and CongrNot.
 - $p_2 = \mathsf{CongrOr1}(p_{21})$: Violation of assumption 1.
 - $p_2 = \mathsf{CongrOr2}(p_{21})$: The proof p proves $\phi \lor \psi \Leftrightarrow \phi' \lor \psi'$, violating assumption 2.
 - $p_2 = \mathsf{Trans}(p_{21}, p_{22})$: Because the proof proves a theorem of the form $\phi \lor \psi \Leftrightarrow v$, neither p_{21} nor p_{22} can be AndTrue1, AndTrue2, AndFalse1, AndFalse2, CongrAnd1or CongrAnd2. Nor can either be Refl, for violation of assumption 1. Similarly, if the proof p_{21} is Trans, CongrOr1, OrTrue1, OrTrue2 or OrFalse2 assumption 1 is violated. Suppose $p_{21} = \mathsf{CongrOr2}(p_{211})$. Then the proof p_{22} cannot be CongrOr2, CongrOr1, OrFalse1, OrFalse2, OrTrue1 or OrTrue2 for violation of assump-

tion 1. Furthermore, p_{22} cannot be any other rule and still prove a theorem.

It follows that if $p_1 = \mathsf{CongrOr1}(p_{11})$, then p_2 must be either $\mathsf{OrTrue1or}$ $\mathsf{Trans}(\mathsf{OrFalse1}, p_{22})$. Consider the first case, where $p = \mathsf{Trans}(\mathsf{CongrOr1}(p_{11}), \mathsf{OrTrue1})$. By IH, we know p_{11} is in \mathcal{C}_T and it follows that p is in \mathcal{C}_T . Similarly, if $p = \mathsf{Trans}(\mathsf{CongrOr1}(p_{11}), \mathsf{Trans}(\mathsf{OrFalse1}, p_{22}))$, by IH, p_{22} is in \mathcal{C}_F and so p is in \mathcal{C}_F .

- $p_1 = \mathsf{CongrOr2}(p_{11})$: The proof p_1 proves $\phi \lor \psi \Leftrightarrow \phi \lor \psi'$.
 - $p_2 = \text{OrTrue1}$: Violation of assumption 1. Similarly for OrFalse1.
 - $p_2 = \text{OrFalse2: Then } p$ $Proves\phi \lor \psi \Leftrightarrow \psi$, but ψ must be either T or F, violating assumption
 - $p_2 = \mathsf{AndFalse1}$: Since p_1 proves a disjunction equivalence, so must p_2 . Therefore, p does not prove a theorem. Similarly for AndFalse2, AndTrue1, AndTrue2, NotFalse, NotTrue, CongrAnd2, CongrAnd2and CongrNot.
 - $p_2 = \mathsf{CongrOr1}(p_{21})$: Then $p \vdash \phi \lor \psi \Leftrightarrow \phi' \lor \psi'$, in violation of assumption 2.
 - $p_2 = \mathsf{CongrOr2}(p_{21})$: Violation of assumption 1.
 - $p_2 = \mathsf{Trans}(p_{21}, p_{22})$: If $p_{21} = \mathsf{CongrOr1}(p_{211})$, then from the previous case, we have shown the only possibility is $p_2 = \mathsf{Trans}(\mathsf{CongrOr1}(p_{211}), \mathsf{OrFalse1})$, which, in the context of p_1 , violates assumption 1. Similarly if p_{21} is $\mathsf{CongrOr1}$, $\mathsf{OrTrue1}$ or $\mathsf{OrFalse1}$. If p_{21} is $\mathsf{OrTrue2}$, then p_{22} must be Reflviolating assumption 1. All conjunction rules are incompatible.
 - It follows that if $p_1 = \mathsf{CongrOr2}(p_{11})$, then p_2 must be either $\mathsf{OrTrue2or}$ $\mathsf{Trans}(\mathsf{OrFalse2}, p_{22})$. Consider the first case, where $p = \mathsf{Trans}(\mathsf{CongrOr2}(p_{11}), \mathsf{OrTrue2})$. By IH, we know p_{11} is in \mathcal{C}_T and it follows that p is in \mathcal{C}_T . Similarly, if $p = \mathsf{Trans}(\mathsf{CongrOr2}(p_{11}), \mathsf{Trans}(\mathsf{OrFalse2}, p_{22}))$, by IH, p_{22} is in \mathcal{C}_F and so p is in \mathcal{C}_F .
- $p_1 = \mathsf{CongrNot}(p_{11})$: Assume $p \vdash \neg \phi \Leftrightarrow T$. Then $p_1 \vdash \neg \phi \Leftrightarrow \neg F$ and the only choice for p_2 that does not violate an assumption for p_2 is NotFalse. By IH, p_{11} is in \mathcal{C}_F and so $p = \mathsf{Trans}(\mathsf{CongrNot}(p_{11}), \mathsf{NotFalse})$ is in \mathcal{C}_T . Similarly, if $p \vdash \neg \phi \Leftrightarrow F$, then $p_1 \Leftrightarrow \neg T$, and the only legal choice for p_2 is NotTrue. It follows that $p = \mathsf{Trans}(\mathsf{CongrNot}(p_{11}), \mathsf{NotTrue})$ is in \mathcal{C}_F .

The cases for $p_1 = \mathsf{CongrAnd1}(p_{11})$ and $p_1 = \mathsf{CongrAnd2}(p_{11})$ are symmetric to the cases for $\mathsf{CongrOr1}$ and $\mathsf{CongrOr2}$.

B Completed Set of Reduction Rules

```
\mathsf{Trans}(\mathsf{Refl}, x_1) \to x_1
\mathsf{Trans}(x_1, \mathsf{Refl}) \to x_1
 \mathsf{Trans}(\mathsf{Trans}(x_1, x_2), x_3) \to \mathsf{Trans}(x_1, \mathsf{Trans}(x_2, x_3))
\mathsf{CongrAnd1}(\mathsf{Refl}) \to \mathsf{Refl}
CongrAnd2(RefI) \rightarrow RefI
\mathsf{CongrNot}(\mathsf{Refl}) \to \mathsf{Refl}
\mathsf{CongrOr1}(\mathsf{Refl}) \to \mathsf{Refl}
\mathsf{CongrOr2}(\mathsf{RefI}) \to \mathsf{RefI}
 \mathsf{Trans}(\mathsf{CongrAnd1}(x_1), \mathsf{AndFalse2}) \to \mathsf{AndFalse2}
\mathsf{Trans}(\mathsf{CongrAnd1}(x_1), \mathsf{AndTrue2}) \to \mathsf{Trans}(\mathsf{AndTrue2}, x_1)
\mathsf{Trans}(\mathsf{CongrAnd1}(x_1),\mathsf{CongrAnd1}(x_2)) \to \mathsf{CongrAnd1}(\mathsf{Trans}(x_1,x_2))
 \mathsf{Trans}(\mathsf{CongrAnd1}(x_1), \mathsf{Trans}(\mathsf{AndFalse2}, x_2)) \to \mathsf{Trans}(\mathsf{AndFalse2}, x_2)
\mathsf{Trans}(\mathsf{CongrAnd1}(x_1),\mathsf{Trans}(\mathsf{AndTrue2},x_2)) \to \mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(x_1,x_2))
\mathsf{Trans}(\mathsf{CongrAnd1}(x_1), \mathsf{Trans}(\mathsf{CongrAnd1}(x_2), x_3)) \to \mathsf{Trans}(\mathsf{CongrAnd1}(\mathsf{Trans}(x_1, x_2)), x_3)
 \mathsf{Trans}(\mathsf{CongrAnd1}(x_1), \mathsf{Trans}(\mathsf{CongrAnd2}(x_2), \mathsf{AndFalse2})) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_2), \mathsf{AndFalse2})
\mathsf{Trans}(\mathsf{CongrAnd1}(x_1),\mathsf{Trans}(\mathsf{CongrAnd2}(x_2),\mathsf{AndTrue2})) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_2),\mathsf{Trans}(\mathsf{AndTrue2},x_1))
\mathsf{Trans}(\mathsf{CongrAnd1}(x_1), \mathsf{Trans}(\mathsf{CongrAnd2}(x_2), \mathsf{CongrAnd1}(x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd1}(\mathsf{Trans}(x_1, x_3)), \mathsf{CongrAnd2}(x_2))
 \mathsf{Trans}(\mathsf{CongrAnd1}(x_1), \mathsf{Trans}(\mathsf{CongrAnd2}(x_2), \mathsf{Trans}(\mathsf{AndFalse2}, x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_2), \mathsf{Trans}(\mathsf{AndFalse2}, x_3)))
\mathsf{Trans}(\mathsf{CongrAnd1}(x_1),\mathsf{Trans}(\mathsf{CongrAnd2}(x_2),\mathsf{Trans}(\mathsf{AndTrue2},x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_2),\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(x_1,x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_2),\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndTrue2},\mathsf{Trans}(\mathsf{AndT
\mathsf{Trans}(\mathsf{CongrAnd1}(x_1), \mathsf{Trans}(\mathsf{CongrAnd2}(x_2), \mathsf{Trans}(\mathsf{CongrAnd1}(x_3), x_4))) \to
                                             \mathsf{Trans}(\mathsf{CongrAnd1}(\mathsf{Trans}(x_1, x_3)), \mathsf{Trans}(\mathsf{CongrAnd2}(x_2), x_4))
\mathsf{Trans}(\mathsf{CongrAnd2}(x_1),\mathsf{AndFalse1}) \to \mathsf{AndFalse1}
\mathsf{Trans}(\mathsf{CongrAnd2}(x_1),\mathsf{AndTrue1}) \to \mathsf{Trans}(\mathsf{AndTrue1},x_1)
\mathsf{Trans}(\mathsf{CongrAnd2}(x_1), \mathsf{CongrAnd2}(x_2)) \to \mathsf{CongrAnd2}(\mathsf{Trans}(x_1, x_2))
\mathsf{Trans}(\mathsf{CongrAnd2}(x_1), \mathsf{Trans}(\mathsf{AndFalse1}, x_2)) \to \mathsf{Trans}(\mathsf{AndFalse1}, x_2)
\mathsf{Trans}(\mathsf{CongrAnd2}(x_1),\mathsf{Trans}(\mathsf{AndTrue1},x_2)) \to \mathsf{Trans}(\mathsf{AndTrue1},\mathsf{Trans}(x_1,x_2))
 \mathsf{Trans}(\mathsf{CongrAnd2}(x_1), \mathsf{Trans}(\mathsf{CongrAnd2}(x_2), x_3)) \to \mathsf{Trans}(\mathsf{CongrAnd2}(\mathsf{Trans}(x_1, x_2)), x_3)) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_1), \mathsf{Trans}(\mathsf{CongrAnd2}(x_2), x_3)) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_1), \mathsf{Trans}(\mathsf{CongrAnd2}(x_2), x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_1), \mathsf{Trans}(\mathsf{CongrAnd2}(x_2), x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_1), \mathsf{Trans}(\mathsf{CongrAnd2}(x_2), x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(x_2), x_3)) \to \mathsf{Trans}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(\mathsf{CongrAnd2}(
\mathsf{Trans}(\mathsf{CongrAnd2}(x_1), \mathsf{Trans}(\mathsf{CongrAnd1}(x_2), \mathsf{AndFalse1})) \to \mathsf{Trans}(\mathsf{CongrAnd1}(x_2), \mathsf{AndFalse1})
\mathsf{Trans}(\mathsf{CongrAnd2}(x_1),\mathsf{Trans}(\mathsf{CongrAnd1}(x_2),\mathsf{AndTrue1})) \to \mathsf{Trans}(\mathsf{CongrAnd1}(x_2),\mathsf{Trans}(\mathsf{AndTrue1},x_1))
 \mathsf{Trans}(\mathsf{CongrAnd2}(x_1),\mathsf{Trans}(\mathsf{CongrAnd1}(x_2),\mathsf{CongrAnd2}(x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd1}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(x_1,x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd1}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(x_1,x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_1),\mathsf{Trans}(\mathsf{CongrAnd2}(x_2),\mathsf{CongrAnd2}(x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(x_1,x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(x_1,x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(x_1,x_3)))) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(x_1,x_3)))) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(x_1,x_3)))) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(x_1,x_3)))) \to \mathsf{Trans}(\mathsf{CongrAnd2}(\mathsf{Trans}(x_1,x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(x_1,x_3)))) \to \mathsf{Trans}(\mathsf{CongrAnd2}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(\mathsf{Trans}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(x_2),\mathsf{CongrAnd2}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{Trans}(\mathsf{T
\mathsf{Trans}(\mathsf{CongrAnd2}(x_1), \mathsf{Trans}(\mathsf{CongrAnd1}(x_2), \mathsf{Trans}(\mathsf{AndFalse1}, x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd1}(x_2), \mathsf{Trans}(\mathsf{CongrAnd1
\mathsf{Trans}(\mathsf{CongrAnd2}(x_1),\mathsf{Trans}(\mathsf{CongrAnd1}(x_2),\mathsf{Trans}(\mathsf{AndTrue1},x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd1}(x_2),\mathsf{Trans}(\mathsf{AndTrue1},\mathsf{Trans}(x_1,x_3))) \to \mathsf{Trans}(\mathsf{CongrAnd1}(x_2),\mathsf{Trans}(\mathsf{AndTrue1},\mathsf{Trans}(\mathsf{AndTrue1},\mathsf{Trans}(\mathsf{AndTrue1},\mathsf{Trans}(\mathsf{AndTrue1},\mathsf{Trans}(\mathsf{AndTrue1}))) \to \mathsf{Trans}(\mathsf{CongrAnd1}(x_2),\mathsf{Trans}(\mathsf{AndTrue1},\mathsf{Trans}(\mathsf{AndTrue1},\mathsf{Trans}(\mathsf{AndTrue1},\mathsf{Trans}(\mathsf{AndTrue1},\mathsf{Trans}(\mathsf{AndTrue1})))) \to \mathsf{Trans}(\mathsf{CongrAnd1}(x_1,\mathsf{Trans}(\mathsf{AndTrue1},\mathsf{Trans}(\mathsf{AndTrue1},\mathsf{Trans}(\mathsf{AndTrue1},\mathsf{Trans}(\mathsf{AndTrue1},\mathsf{Trans}(\mathsf{AndTrue1}))))) \to \mathsf{Trans
 \mathsf{Trans}(\mathsf{CongrAnd2}(x_1), \mathsf{Trans}(\mathsf{CongrAnd1}(x_2), \mathsf{Trans}(\mathsf{CongrAnd2}(x_3), x_4))) –
                                             \mathsf{Trans}(\mathsf{CongrAnd1}(x_2), \mathsf{Trans}(\mathsf{CongrAnd2}(\mathsf{Trans}(x_1, x_3)), x_4))
\mathsf{Trans}(\mathsf{CongrNot}(x_1), \mathsf{CongrNot}(x_2)) \to \mathsf{CongrNot}(\mathsf{Trans}(x_1, x_2))
\mathsf{Trans}(\mathsf{CongrNot}(x_1), \mathsf{Trans}(\mathsf{CongrNot}(x_2), x_3)) \to \mathsf{Trans}(\mathsf{CongrNot}(\mathsf{Trans}(x_1, x_2)), x_3)
\mathsf{Trans}(\mathsf{CongrOr1}(x_1), \mathsf{CongrOr1}(x_2)) \to \mathsf{CongrOr1}(\mathsf{Trans}(x_1, x_2))
 \mathsf{Trans}(\mathsf{CongrOr1}(x_1), \mathsf{OrFalse2}) \to \mathsf{Trans}(\mathsf{OrFalse2}, x_1)
\mathsf{Trans}(\mathsf{CongrOr1}(x_1), \mathsf{OrTrue2}) \to \mathsf{OrTrue2}
\mathsf{Trans}(\mathsf{CongrOr1}(x_1), \mathsf{Trans}(\mathsf{CongrOr1}(x_2), x_3)) \to \mathsf{Trans}(\mathsf{CongrOr1}(\mathsf{Trans}(x_1, x_2)), x_3)
 \mathsf{Trans}(\mathsf{CongrOr1}(x_1), \mathsf{Trans}(\mathsf{CongrOr2}(x_2), \mathsf{CongrOr1}(x_3))) \to \mathsf{Trans}(\mathsf{CongrOr1}(\mathsf{Trans}(x_1, x_3)), \mathsf{CongrOr2}(x_2))
\mathsf{Trans}(\mathsf{CongrOr1}(x_1), \mathsf{Trans}(\mathsf{CongrOr2}(x_2), \mathsf{OrFalse2})) \to \mathsf{Trans}(\mathsf{CongrOr2}(x_2), \mathsf{Trans}(\mathsf{OrFalse2}, x_1))
\mathsf{Trans}(\mathsf{CongrOr1}(x_1),\mathsf{Trans}(\mathsf{CongrOr2}(x_2),\mathsf{OrTrue2})) \to \mathsf{Trans}(\mathsf{CongrOr2}(x_2),\mathsf{OrTrue2})
 \mathsf{Trans}(\mathsf{CongrOr1}(x_1),\mathsf{Trans}(\mathsf{CongrOr2}(x_2),\mathsf{Trans}(\mathsf{CongrOr1}(x_3),x_4))) \to \mathsf{Trans}(\mathsf{CongrOr1}(\mathsf{Trans}(x_1,x_3)),\mathsf{Trans}(\mathsf{CongrOr2}(x_2),x_4))) \to \mathsf{Trans}(\mathsf{CongrOr1}(\mathsf{Trans}(x_1,x_3)),\mathsf{Trans}(\mathsf{CongrOr2}(x_2),x_4))) \to \mathsf{Trans}(\mathsf{CongrOr1}(\mathsf{Trans}(x_1,x_3)),\mathsf{Trans}(\mathsf{CongrOr2}(x_2),x_4))) \to \mathsf{Trans}(\mathsf{CongrOr1}(\mathsf{Trans}(x_1,x_3)),\mathsf{Trans}(\mathsf{CongrOr2}(x_2),x_4))) \to \mathsf{Trans}(\mathsf{CongrOr1}(\mathsf{Trans}(x_1,x_3)),\mathsf{Trans}(\mathsf{CongrOr2}(x_2),x_4))) \to \mathsf{Trans}(\mathsf{CongrOr1}(\mathsf{Trans}(x_1,x_3)),\mathsf{Trans}(\mathsf{CongrOr2}(x_2),x_4))) \to \mathsf{Trans}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(x_2),x_4))) \to \mathsf{Trans}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(x_2),x_4)) \to \mathsf{Trans}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(x_2),x_4)) \to \mathsf{Trans}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(x_2),x_4)) \to \mathsf{Trans}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(x_2),x_4)) \to \mathsf{Trans}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(x_2),x_4)) \to \mathsf{Trans}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(x_2),x_4)) \to \mathsf{Trans}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(x_2),x_4)) \to \mathsf{Trans}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{CongrOr2}(\mathsf{Congr
\mathsf{Trans}(\mathsf{CongrOr1}(x_1), \mathsf{Trans}(\mathsf{CongrOr2}(x_2), \mathsf{Trans}(\mathsf{OrFalse2}, x_3))) \to \mathsf{Trans}(\mathsf{CongrOr2}(x_2), \mathsf{Trans}(\mathsf{OrFalse2}, \mathsf{Trans}(x_1, x_3)))) \to \mathsf{Trans}(\mathsf{CongrOr2}(x_2), \mathsf{Trans}(\mathsf{OrFalse2}, \mathsf{Trans}(x_1, x_3)))) \to \mathsf{Trans}(\mathsf{CongrOr2}(x_2), \mathsf{Trans}(\mathsf{OrFalse2}, \mathsf{
\mathsf{Trans}(\mathsf{CongrOr1}(x_1),\mathsf{Trans}(\mathsf{CongrOr2}(x_2),\mathsf{Trans}(\mathsf{OrTrue2},x_3))) \to \mathsf{Trans}(\mathsf{CongrOr2}(x_2),\mathsf{Trans}(\mathsf{OrTrue2},x_3))
 \mathsf{Trans}(\mathsf{CongrOr1}(x_1),\mathsf{Trans}(\mathsf{OrFalse2},x_2)) \to \mathsf{Trans}(\mathsf{OrFalse2},\mathsf{Trans}(x_1,x_2))
\mathsf{Trans}(\mathsf{CongrOr1}(x_1), \mathsf{Trans}(\mathsf{OrTrue2}, x_2)) \to \mathsf{Trans}(\mathsf{OrTrue2}, x_2)
\mathsf{Trans}(\mathsf{CongrOr2}(x_1),\mathsf{CongrOr2}(x_2)) \to \mathsf{CongrOr2}(\mathsf{Trans}(x_1,x_2))
\mathsf{Trans}(\mathsf{CongrOr2}(x_1), \mathsf{OrFalse1}) \to \mathsf{Trans}(\mathsf{OrFalse1}, x_1)
 \mathsf{Trans}(\mathsf{CongrOr2}(x_1),\mathsf{OrTrue1}) \to \mathsf{OrTrue1}
\mathsf{Trans}(\mathsf{CongrOr2}(x_1),\mathsf{Trans}(\mathsf{CongrOr1}(x_2),\mathsf{CongrOr2}(x_3))) \to \mathsf{Trans}(\mathsf{CongrOr1}(x_2),\mathsf{CongrOr2}(\mathsf{Trans}(x_1,x_3))) \to \mathsf{Trans}(\mathsf{CongrOr2}(x_1),\mathsf{Trans}(\mathsf{CongrOr2}(x_2),\mathsf{CongrOr2}(x_3))) \to \mathsf{Trans}(\mathsf{CongrOr2}(x_2),\mathsf{CongrOr2}(x_3))) \to \mathsf{Trans}(\mathsf{CongrOr2}(x_2),\mathsf{CongrOr2}(x_3))) \to \mathsf{Trans}(\mathsf{CongrOr2}(x_3)) \to \mathsf{Tr
 \mathsf{Trans}(\mathsf{CongrOr2}(x_1), \mathsf{Trans}(\mathsf{CongrOr1}(x_2), \mathsf{OrFalse1})) \to \mathsf{Trans}(\mathsf{CongrOr1}(x_2), \mathsf{Trans}(\mathsf{OrFalse1}, x_1))
\mathsf{Trans}(\mathsf{CongrOr2}(x_1), \mathsf{Trans}(\mathsf{CongrOr1}(x_2), \mathsf{OrTrue1})) \to \mathsf{Trans}(\mathsf{CongrOr1}(x_2), \mathsf{OrTrue1})
\mathsf{Trans}(\mathsf{CongrOr2}(x_1), \mathsf{Trans}(\mathsf{CongrOr1}(x_2), \mathsf{Trans}(\mathsf{CongrOr2}(x_3), x_4))) \to \mathsf{Trans}(\mathsf{CongrOr1}(x_2), \mathsf{Trans}(\mathsf{CongrOr2}(\mathsf{Trans}(x_1, x_3)), x_4))) \to \mathsf{Trans}(\mathsf{CongrOr1}(x_2), \mathsf{Trans}(\mathsf{CongrOr2}(x_3), x_4))) \to \mathsf{Trans}(\mathsf{CongrOr2}(x_3), x_4)) \to \mathsf{Trans}(\mathsf{CongrOr2}(x_3), \mathsf{Trans}(\mathsf{CongrOr2}(x_3), \mathsf{Trans}(\mathsf{CongrOr2}(x_3), \mathsf{Trans}(\mathsf{CongrOr3}(x_3), \mathsf{Trans}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(x_3), \mathsf{Trans}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrOr3}(\mathsf{CongrO
 \mathsf{Trans}(\mathsf{CongrOr1}(x_1), \mathsf{Trans}(\mathsf{CongrOr1}(x_2), \mathsf{Trans}(\mathsf{OrFalse1}, x_3))) \to \mathsf{Trans}(\mathsf{CongrOr1}(x_2), \mathsf{Trans}(\mathsf{OrFalse1}, \mathsf{Trans}(x_1, x_3))) \to \mathsf{Trans}(\mathsf{CongrOr1}(x_2), \mathsf{Trans}(\mathsf{OrFalse1}, \mathsf{Trans}(\mathsf{OrFalse1}
\mathsf{Trans}(\mathsf{CongrOr2}(x_1), \mathsf{Trans}(\mathsf{CongrOr1}(x_2), \mathsf{Trans}(\mathsf{OrTrue1}, x_3))) \to \mathsf{Trans}(\mathsf{CongrOr1}(x_2), \mathsf{Trans}(\mathsf{OrTrue1}, x_3))
\mathsf{Trans}(\mathsf{CongrOr2}(x_1),\mathsf{Trans}(\mathsf{CongrOr2}(x_2),x_3)) \to \mathsf{Trans}(\mathsf{CongrOr2}(\mathsf{Trans}(x_1,x_2)),x_3)
 \mathsf{Trans}(\mathsf{CongrOr2}(x_1), \mathsf{Trans}(\mathsf{OrFalse1}, x_2)) \to \mathsf{Trans}(\mathsf{OrFalse1}, \mathsf{Trans}(x_1, x_2))
\mathsf{Trans}(\mathsf{CongrOr2}(x_1), \mathsf{Trans}(\mathsf{OrTrue1}, x_2)) \to \mathsf{Trans}(\mathsf{OrTrue1}, x_2)
```