

Microcap

- Задать новые имена резисторам R1=Rin R2=Rout и определить значения резистора Rout при передаче максимальной мощности в этот резистор (Rin=1)
- В режиме Dynamic DC показать мощность, выделяемую на резисторе Rout

Microcap

• Постройте напряжение на генераторе V1, и ток на R1, напряжение на индуктивности L1, напряжение на генераторе V2, ток на сопротивлении R2 и напряжение на ёмкости C1, определите фазовые сдвиги между токов и напряжений. Частота гармонического сигнала 100 Гц

Multisim

• Построить АЧХ колебательного контура и определить частоту резонанса при Vvar=1 В

Microcap

- Определить ВАХ полупроводникового диода на прямой ветви (от 0 до 2 Вольт), регистрируя ток через резистор RmA и напряжение на диоде как напряжение на RmV
- В режиме Dynamic DC показать мощность, выделяемую на резисторе Rout

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

Построить семейство резонансных кривых ДЛЯ разных значений напряжения источника управления (V2 на рисунке, напряжение изменять от 1 до 15 Вольт с шагом 1 Вольт). Для получения АЧХ резонансных кривых, колебательного контура, использовать встроенный прибор Bode Plotter:

Microcap

• Определить мощность, выделяемую на сопротивлении R4, значение которого необходимо изменяется в диапазон изменения от 0 до 40 Ом. Шаг изменения сопротивления 1 Ом и • Значение сопротивления R4, при котором мощность, выделяемая в этом сопротивлении, является максимальной

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

• Провести моделирование работы схемы в анализе Transient Analysis. Вывести на графике напряжение на конденсаторе и ток через индуктивность на одном графике:

Получить ВАХ активного элемента — диода GF1A, в программе Multisim с использованием встроенного прибора IV и вывести данные анализа в текстовый файл.

Microcap

• Определить мощность, выделяемую на сопротивлении R4, значение которого необходимо изменяется в диапазон изменения от 0 до 40 Ом. Шаг изменения сопротивления 1 Ом и • Значение сопротивления R4, при котором мощность, выделяемая в этом сопротивлении, является максимальной

V1 C1 1e-6 1e3 R1

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

• Провести моделирование работы схемы с использованием двухканального осциллографа:

Microcap

• Определить мощность, выделяемую на сопротивлении R4, значение которого необходимо изменяется в диапазон изменения от 0 до 40 Ом. Шаг изменения сопротивления 1 Ом и • Значение сопротивления R4, при котором мощность, выделяемая в этом сопротивлении, является максимальной

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

• Определить Мощность, выделяемую на сопротивлениях R1 и R2. Значение сопротивления R2 необходимо изменять от 0 до 2 Ом. Шаг изменения сопротивления 0.10 Ом и значение сопротивления R2, при котором мощность, выделяемая в этом сопротивлении, является максимальной

Microcap

- Задать новые имена резисторам R1=Rin R2=Rout и определить значения резистора Rout при передаче максимальной мощности в этот резистор (Rin=6)
- В режиме Dynamic DC показать мощность, выделяемую на резисторе Rout

Microcap

• Постройте напряжение на генераторе V1, и ток на R1, напряжение на индуктивности L1, напряжение на генераторе V2, ток на сопротивлении R2 и напряжение на ёмкости C1, определите фазовые сдвиги между токов и напряжений. Частота гармонического сигнала 100 Гц

Multisim

• Построить АЧХ колебательного контура и определить частоту резонанса при Vvar=6 В

Microcap

- Определить ВАХ полупроводникового диода на прямой ветви (от 0 до 2 Вольт), регистрируя ток через резистор RmA и напряжение на диоде как напряжение на RmV
- В режиме Dynamic DC показать мощность, выделяемую на резисторе Rout

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

Построить семейство резонансных кривых ДЛЯ разных значений напряжения источника управления (V2 на рисунке, напряжение изменять от 1 до 15 Вольт с шагом 1 Вольт). Для получения АЧХ резонансных кривых, колебательного контура, использовать встроенный прибор Bode Plotter:

(0,0)

Вариант 8

Microcap

• Определить мощность, выделяемую на сопротивлении R4, значение которого необходимо изменяется в диапазон изменения от 0 до 40 Ом. Шаг изменения сопротивления 1 Ом и • Значение сопротивления R4, при котором мощность, выделяемая в этом сопротивлении, является максимальной

V1 C1 1e-6 1e3 R1

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

• Провести моделирование работы схемы в анализе Transient Analysis. Вывести на графике напряжение на конденсаторе и ток через индуктивность на одном графике:

Получить ВАХ активного элемента – диода GF1A, в программе Multisim с использованием встроенного прибора IV и вывести данные анализа в текстовый файл.

Microcap

• Определить мощность, выделяемую на сопротивлении R4, значение которого необходимо изменяется в диапазон изменения от 0 до 40 Ом. Шаг изменения сопротивления 1 Ом и • Значение сопротивления R4, при котором мощность, выделяемая в этом сопротивлении, является максимальной

V1 C1 1e-6 1e3 R1

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

• Провести моделирование работы схемы с использованием двухканального осциллографа:

Microcap

• Определить мощность, выделяемую на сопротивлении R4, значение которого необходимо изменяется в диапазон изменения от 0 до 40 Ом. Шаг изменения сопротивления 1 Ом и • Значение сопротивления R4, при котором мощность, выделяемая в этом сопротивлении, является максимальной

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

• Определить Мощность, выделяемую на сопротивлениях R1 и R2. Значение сопротивления R2 необходимо изменять от 0 до 2 Ом. Шаг изменения сопротивления 0.10 Ом и значение сопротивления R2, при котором мощность, выделяемая в этом сопротивлении, является максимальной

Microcap

- Задать новые имена резисторам R1=Rin R2=Rout и определить значения резистора Rout при передаче максимальной мощности в этот резистор (Rin=11)
- В режиме Dynamic DC показать мощность, выделяемую на резисторе Rout

Microcap

• Постройте напряжение на генераторе V1, и ток на R1, напряжение на индуктивности L1, напряжение на генераторе V2, ток на сопротивлении R2 и напряжение на ёмкости C1, определите фазовые сдвиги между токов и напряжений. Частота гармонического сигнала 100 Гц

Multisim

• Построить АЧХ колебательного контура и определить частоту резонанса при Vvar=11 В

Microcap

- Определить ВАХ полупроводникового диода на прямой ветви (от 0 до 2 Вольт), регистрируя ток через резистор RmA и напряжение на диоде как напряжение на RmV
- В режиме Dynamic DC показать мощность, выделяемую на резисторе Rout

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

семейство Построить резонансных кривых ДЛЯ разных значений напряжения источника управления (V2 на рисунке, напряжение изменять от 1 до 15 Вольт с шагом 1 Вольт). Для получения АЧХ резонансных кривых, колебательного контура, использовать встроенный прибор Bode Plotter:

Microcap

• Определить мощность, выделяемую на сопротивлении R4, значение которого необходимо изменяется в диапазон изменения от 0 до 40 Ом. Шаг изменения сопротивления 1 Ом и • Значение сопротивления R4, при котором мощность, выделяемая в этом сопротивлении, является максимальной

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

• Провести моделирование работы схемы в анализе Transient Analysis. Вывести на графике напряжение на конденсаторе и ток через индуктивность на одном графике:

Получить ВАХ активного элемента – диода GF1A, в программе Multisim с использованием встроенного прибора IV и вывести данные анализа в текстовый файл.

Microcap

• Определить мощность, выделяемую на сопротивлении R4, значение которого необходимо изменяется в диапазон изменения от 0 до 40 Ом. Шаг изменения сопротивления 1 Ом и • Значение сопротивления R4, при котором мощность, выделяемая в этом сопротивлении, является максимальной

XSC1

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

• Провести моделирование работы схемы с использованием двухканального осциллографа:

Microcap

• Определить мощность, выделяемую на сопротивлении R4, значение которого необходимо изменяется в диапазон изменения от 0 до 40 Ом. Шаг изменения сопротивления 1 Ом и • Значение сопротивления R4, при котором мощность, выделяемая в этом сопротивлении, является максимальной

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

• Определить Мощность, выделяемую на сопротивлениях R1 и R2. Значение сопротивления R2 необходимо изменять от 0 до 2 Ом. Шаг изменения сопротивления 0.10 Ом и значение сопротивления R2, при котором мощность, выделяемая в этом сопротивлении, является максимальной

Microcap

- Задать новые имена резисторам R1=Rin R2=Rout и определить значения резистора Rout при передаче максимальной мощности в этот резистор (Rin=16)
- В режиме Dynamic DC показать мощность, выделяемую на резисторе Rout

Microcap

• Постройте напряжение на генераторе V1, и ток на R1, напряжение на индуктивности L1, напряжение на генераторе V2, ток на сопротивлении R2 и напряжение на ёмкости C1, определите фазовые сдвиги между токов и напряжений. Частота гармонического сигнала 100 Гц

Multisim

• Построить АЧХ колебательного контура и определить частоту резонанса при Vvar=16 В

Microcap

- Определить ВАХ полупроводникового диода на прямой ветви (от 0 до 2 Вольт), регистрируя ток через резистор RmA и напряжение на диоде как напряжение на RmV
- В режиме Dynamic DC показать мощность, выделяемую на резисторе Rout

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

семейство Построить резонансных кривых ДЛЯ разных значений напряжения источника управления (V2 на рисунке, напряжение изменять от 1 до 15 Вольт с шагом 1 Вольт). Для получения АЧХ резонансных кривых, колебательного контура, использовать встроенный прибор Bode Plotter:

Microcap

• Определить мощность, выделяемую на сопротивлении R4, значение которого необходимо изменяется в диапазон изменения от 0 до 40 Ом. Шаг изменения сопротивления 1 Ом и • Значение сопротивления R4, при котором мощность, выделяемая в этом сопротивлении, является максимальной

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

• Провести моделирование работы схемы в анализе Transient Analysis. Вывести на графике напряжение на конденсаторе и ток через индуктивность на одном графике:

Получить ВАХ активного элемента – диода GF1A, в программе Multisim с использованием встроенного прибора IV и вывести данные анализа в текстовый файл.

Microcap

• Определить мощность, выделяемую на сопротивлении R4, значение которого необходимо изменяется в диапазон изменения от 0 до 40 Ом. Шаг изменения сопротивления 1 Ом и • Значение сопротивления R4, при котором мощность, выделяемая в этом сопротивлении, является максимальной

XSC1

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

• Провести моделирование работы схемы с использованием двухканального осциллографа:

Microcap

• Определить мощность, выделяемую на сопротивлении R4, значение которого необходимо изменяется в диапазон изменения от 0 до 40 Ом. Шаг изменения сопротивления 1 Ом и • Значение сопротивления R4, при котором мощность, выделяемая в этом сопротивлении, является максимальной

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

• Определить Мощность, выделяемую на сопротивлениях R1 и R2. Значение сопротивления R2 необходимо изменять от 0 до 2 Ом. Шаг изменения сопротивления 0.10 Ом и значение сопротивления R2, при котором мощность, выделяемая в этом сопротивлении, является максимальной

Microcap

- Задать новые имена резисторам R1=Rin R2=Rout и определить значения резистора Rout при передаче максимальной мощности в этот резистор (Rin=21)
- В режиме Dynamic DC показать мощность, выделяемую на резисторе Rout

Microcap

• Постройте напряжение на генераторе V1, и ток на R1, напряжение на индуктивности L1, напряжение на генераторе V2, ток на сопротивлении R2 и напряжение на ёмкости C1, определите фазовые сдвиги между токов и напряжений. Частота гармонического сигнала 100 Гц

Multisim

• Построить АЧХ колебательного контура и определить частоту резонанса при Vvar=21 В

Microcap

- Определить ВАХ полупроводникового диода на прямой ветви (от 0 до 2 Вольт), регистрируя ток через резистор RmA и напряжение на диоде как напряжение на RmV
- В режиме Dynamic DC показать мощность, выделяемую на резисторе Rout

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

семейство Построить резонансных кривых ДЛЯ разных значений напряжения источника управления (V2 на рисунке, напряжение изменять от 1 до 15 Вольт с шагом 1 Вольт). Для получения АЧХ резонансных кривых, колебательного контура, использовать встроенный прибор Bode Plotter:

(M)

Вариант 23

Microcap

• Определить мощность, выделяемую на сопротивлении R4, значение которого необходимо изменяется в диапазон изменения от 0 до 40 Ом. Шаг изменения сопротивления 1 Ом и • Значение сопротивления R4, при котором мощность, выделяемая в этом сопротивлении, является максимальной

V1 C1 1e-6 1e3 R1

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

• Провести моделирование работы схемы в анализе Transient Analysis. Вывести на графике напряжение на конденсаторе и ток через индуктивность на одном графике:

Получить ВАХ активного элемента – диода GF1A, в программе Multisim с использованием встроенного прибора IV и вывести данные анализа в текстовый файл.

Microcap

• Определить мощность, выделяемую на сопротивлении R4, значение которого необходимо изменяется в диапазон изменения от 0 до 40 Ом. Шаг изменения сопротивления 1 Ом и • Значение сопротивления R4, при котором мощность, выделяемая в этом сопротивлении, является максимальной

V1 C1 1e-6 1e3 R1

XSC1

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

• Провести моделирование работы схемы с использованием двухканального осциллографа:

Microcap

• Определить мощность, выделяемую на сопротивлении R4, значение которого необходимо изменяется в диапазон изменения от 0 до 40 Ом. Шаг изменения сопротивления 1 Ом и • Значение сопротивления R4, при котором мощность, выделяемая в этом сопротивлении, является максимальной

Microcap

• Выполнить моделирование работы цепи при заданной длительности импульса 4 мс и скважности 2. Амплитуду импульса задать 10 В.

Multisim

• Определить Мощность, выделяемую на сопротивлениях R1 и R2. Значение сопротивления R2 необходимо изменять от 0 до 2 Ом. Шаг изменения сопротивления 0.10 Ом и значение сопротивления R2, при котором мощность, выделяемая в этом сопротивлении, является максимальной

