COMP3331 - Semester 2, Assignment 1

"Simple Transfer Protocol"

Keiran Sampson - z5168147

September 25, 2018

This protocol was designed using Python3 and is not compatible with prior versions.

The files have also been made executable, and as such can be executed by the commands:

```
python3.6 sender.py <Arguments>
python3.6 receiver.py <Arguments>
or

//sender.py <Arguments>
//receiver.py <Arguments>
```

Implementation and Features

I was able to successfully implement all of the STP Protocol and PLD features as outlined in the Assignment specifications. Below are overviews of the key features implemented.

sender.py

The STP Sender is divided into two main components, *listener* and *sender* threads. They work together to manage the clients network connection, file transfer, PLD and logging. See Appendix Image 1.

Listener - operated by the main thread, its primary operations include:

- 1. Initialising the STP Protocol:
 - a. Storing the program Arguments
 - b. Opening the file, breaking it up into chunks and queuing into MSS segments
 - c. Initialising the sending window of MWS
 - d. Connecting to the remote server using a three-segment (SYN, SYN/ACK, ACK) handshake
- 2. Initialising the PLD Module for use by the Sender Thread
- 3. Creating and starting a Sender Thread
- 4. Listening for incoming ACK requests:
 - a. Receive incoming segments and unpacking into a message object

- 5. Updating the message window:
 - a. Update log with received message stats
 - b. Update Estimated RTT and RTO
 - c. Update message window if required
 - d. If duplicate ACK:
 - i. Updating duplicate ACK count
 - ii. Carrying out Fast ReTransmission if required, and subsequently cancelling RTT calculation
 - e. Signal if file transfer completed
- 6. Terminating the Sender Thread
- 7. Closing the remote connection:
 - a. Complete a four-segment (FIN, ACK, FIN, ACK) teardown
 - b. Write final PLD Log Statistics
 - c. Program closure

Sender - operated by the spawned secondary thread, its primary operations include:

- 1. Calculation of Timeout Events
 - a. Logging of Timeout Events
 - b. Restarting Timeout Timer
 - c. Cancelling active RTT calculation
- 2. Sending new, unsent segments from the message window
- 3. Operating the PLD module
 - a. Calculation and execution of PLD events ie message dropping, corruption etc
 - b. Logging of PLD events
 - c. Creating delayed message threads as required
 - d. Final transmission of segments over UDP network

receiver.py

The STP Receiver is a single threaded system. It manages the servers STP Protocol, network connections, file buffering, logging and file output. Its primary operations are:

- 1. Initialising the STP Protocol:
 - a. Storing the program arguments
 - b. Creating a listening UDP socket
- 2. Connection Management
 - a. Initialising a new client connection
 - b. Completing three-segment (SYN, SYN/ACK, ACK) handshake
 - c. Buffering out of order message segments
 - d. Managing Cumulative Acknowledgments
 - e. Managing Sequence/Ack Numbers
 - f. Sending/Receiving Messages
 - g. Completing a four-segment (FIN, ACK, FIN, ACK) teardown

- 3. Message Operations
 - a. Unpacking received STP segments
 - b. STP corruption checks
 - c. Packing of STP segments for sending
- 4. File Logging
 - a. Logging of received and sent files
 - b. Logging of STP statistics

STP HEADER

The header I designed is 88 bits in size and contains 4 fields with the variable sized payload following. The fields used are as follows:

- i. SEQ NUMBER Increment from 0 by bytes of data (32 bits)
- ii. ACK NUMBER Increment from 0 by bytes of data (32 bits)
- iii. FLAGS Bitwise Flags (SYN, ACK, SYN/ACK, FIN) (8 bits)
- iv. CHECKSUM Checksum of the STP Segment (includes payload) (16 bits)
- v. PAYLOAD Transmitted data of variable length

See Appendix Image 2 for the Header Diagram.

Design Trade-offs and Future Improvements

Sender

The main trade off I made to the sender was to only create 2 threads. Although it does improve the sending throughput, it would be better to have implemented several producer and consumer worker threads for the sender to prevent possible bottlenecks occuring.

A listener thread would simply receive packets and add them to a worker queue. Main worker threads would then take these received messages and calculate any actions necessary (ie logging, Fast RXT etc) and update the message window. A message window thread would send any new messages in the message window, a separate timeout thread would carry out any timeout events and PLD worker threads would carry out any PLD operations before sending the messages.

Receiver

For the receiver to keep the system simple I made the significant tradeoff of not threading the system. I believe that a significant improvement to the receiver would be to implement listener, sender and worker threads (similar to the sender) to improve system throughput.

For the receiver, I have also partially implemented the ability to receive multiple files simultaneously. However because the assignment requires that we hardcode the filename to save a file under, any transmitted file is subsequently overwritten. The assignment also requires us to terminate the server upon the first files upload completing which breaks any subsequent uploads.

In my current implementation, to accommodate multiple connections, when a new connection is made I store it and any relevant information into a dictionary using the unique sender and port as the key. This allows me to accept and manage multiple connections from any sending programs at once (even if it's the same originating PC).

When a packet is received, using the sender as the key, I can retrieve the required connection information, such as its Sequence and ACK numbers, current file buffer etc and perform the operations required.

In order to be able to properly complete this system, I would need to first prevent previously uploaded files from being overwritten via a filename increment, and remove the subsequent termination of the server upon completing a file upload.

I would also change the current handshake and teardown systems. The reason for this is that they currently discard any packets that are not specifically applicable to the current stage of the handshake/teardown, reducing the systems overall efficiency should we be receiving multiple files simultaneously.

Experiments

Experiment 1 - test0.pdf:

Params: pDrop = 0.1, MWS = 500 bytes, MSS = 100 bytes, seed = 100, gamma = 4
To assist with understanding what has happened in the following experiments, I have added in the locations where received packets were **DROPPED**, and made the dropped sequence numbers **BOLD**.

i. Transfer the File test0.pdf with pdrop = 0.1 - For result log files see Appendix Tables 1 and 2

Sequence Numbers Received by Server:

0,1,1,101,**DROP**,301,401,501,**201**,601,701,801,901,1001,1101,1201,1301,1401,1501,1601,1701,1801,1901,**D ROP**,2101,2201,2301,2401,**2001**,2501,2601,**DROP**,**DROP**,2901,3001,**2701**,2**801**,3029,3030

Looking at the Sender log, we can see that 4/39 packets were dropped (approx 10% loss). However just by looking at the receiver, we can determine that this occurred where several packets arrive significantly out of sequence, ie: 2101,2201,2301,2401,2001

We would normally expect to see 2001,2101,2201,2301,2401 had no loss occurred. Of importance is that no more than 4 packets larger than the dropped packet are received before the dropped packet. This is due to the sender window containing 5 segments (including the dropped packet). Therefore it cannot slide the window up to send any new packets until the bottom (dropped) packet is acknowledged by the server.

ii. Repeat with pdrop = 0.3 - For result log files see Appendix Tables 3 and 4

Sequence Numbers Received by Server:

0,1,DROP,101,201,301,1,DROP,501,DROP,DROP,801,401,DROP,1001,601,1101,701,1201,901,DROP,DROP,DROP,1601,1701,1301,1801,1401,1501,DROP,2001,2101,2201,1901,DROP,2401,2301,DROP,DROP,DROP,2801,2501,2601,2701,2901,3001,3029,3030

Raising pdrop to 0.3 (30%) significantly increases the number of dropped packets. Looking at the Sender log, we can determine that 24/59 packets were dropped. Approx 41%. The dramatic increase in the number of dropped packets has significantly slowed down the file upload process, now taking 21 seconds to complete.

Note however that the receiver only observed 13 dropped packets. The reason for this is that the receiver does not know when several sequential packets are dropped by the sender in a row (with no subsequent packets being successfully sent). This results in the sender experiencing a time-out. When a timeout is followed by another dropped packet, it results in even further time delays.

Experiment 2 - test1.pdf:

Params: pdrop = 0.5, MWS = 500 bytes, MSS = 50 bytes, seed = 300, pdelay = 0.2, MaxDelay = 1000 TimeoutInterval = EstimatedRTT + gamma * DevRTT

During this experiment we ran the same file transfer 3 times with increasing gamma values: 2, 4 and 6.

We observed that increasing from 2 to 4/6 significantly affected the TimeoutInterval calculations causing the program to wait increasingly longer for any timeouts and subsequent retransmissions caused by dropped/delayed packets. This resulted in the observed file transmission time increases whenever the gamma value was increased. However, the benefit of this increased timeout value was a reduction in the total number of segment retransmissions. This is because delayed segments now had time to be received by the server and subsequently ACK'd before the server timed out.

The reason that gamma 6 does not see any real change in the number of total transmitted segments, but is still significantly slower than gamma 4 is that delayed packets are already being ACK'd before any timer timeouts in both cases. However, dropped packets are now significantly slowing the file transfer as the protocol is waiting significantly longer to timeout and retransmit than it did for gamma 4.

- i. gamma = 2 For result log files see Appendix Tables 6 and 7
- ii. gamma = 4 For result log files see Appendix Tables 8 and 9
- iii. gamma = 6 For result log files see Appendix Tables 10 and 11

Note that only the start and end of the log files are included due to their significant size.

Experiment 3 - test2.pdf:

```
Params: MWS = 500, MSS = 50, gamma = 4, pDrop = 0.1, pDuplicate = 0.1, pCorrupt = 0.1, pOrder = 0.1, maxOrder = 4, pDelay = 0, maxDelay = 0, and seed = 300
```

The transfer of this file took 58 minutes 29 seconds.

To determine the worst cause of the file transfer delay I looked at each event as a percentage of the total segments transmitted via the PLD. See Appendix Table 12 for these results.

From this we can observe that there were more dropped packets than any other event. When a packet is dropped or corrupted, the best scenario is that there is a fast retransmission, worst scenario is we have to wait for a timeout. This causes significant delays, and if the segment dropped was the smallest segment in the transmission window, stops the file upload until it is successfully received by the receiver.

Duplicate packets, are unhelpful as they are wasted bandwidth, but are not stopping the file upload from progressing. Similarly out of order packets cause fast retransmissions and subsequently duplicate packets, but because we are using cumulative acknowledgements, they also don't prevent the file upload from progressing.

Appendix

Image 1: Sender System Overview

Image 2: STP Message Header

rcv 0.76 S 0 0 0	snd 0.87 A 1 0 1901	snd 0.0 S 0 0 0	rcv/DA 0.11 A 1 0 2001
snd 0.76 SA 0 0 1	rcv 0.87 D 1901 100 1	rcv 0.0 SA 0 0 1	snd 0.12 D 2301 100 1
rcv 0.76 A 1 0 1	snd 0.87 A 1 0 2001	snd 0.0 A 1 0 1	rcv/DA 0.12 A 1 0 2001
rcv 0.76 D 1 100 1	rcv 0.87 D 2101 100 1	snd 0.0 D 1 100 1	snd 0.12 D 2401 100 1
snd 0.76 A 1 0 101	snd/DA 0.87 A 1 0 2001	rcv 0.0 A 1 0 101	snd/RXT 0.12 D 2001 100 1
rcv 0.76 D 101 100 1	rcv 0.87 D 2201 100 1	snd 0.0 D 101 100 1	rcv/DA 0.15 A 1 0 2001
snd 0.76 A 1 0 201	snd/DA 0.87 A 1 0 2001	rcv 0.0 A 1 0 201	rcv/DA 0.19 A 1 0 2001
rcv 0.78 D 301 100 1	rcv 0.87 D 2301 100 1	snd/drop 0.0 D 201 100 1	rcv 0.23 A 1 0 2501
snd/DA 0.78 A 1 0 201	snd/DA 0.87 A 1 0 2001	snd 0.02 D 301 100 1	snd 0.26 D 2501 100 1
rcv 0.78 D 401 100 1	rcv 0.87 D 2401 100 1	rcv/DA 0.02 A 1 0 201	snd 0.26 D 2601 100 1
snd/DA 0.78 A 1 0 201	snd/DA 0.87 A 1 0 2001	snd 0.02 D 401 100 1	snd/drop 0.26 D 2701 100 1
rcv 0.78 D 501 100 1	rcv 0.87 D 2001 100 1	rcv/DA 0.02 A 1 0 201	rcv 0.26 A 1 0 2601
snd/DA 0.78 A 1 0 201	snd 0.87 A 1 0 2501	snd 0.02 D 501 100 1	snd/drop 0.26 D 2801 100 1
rcv 0.78 D 201 100 1	rcv 1.02 D 2501 100 1	snd/RXT 0.02 D 201 100 1	rcv 0.26 A 1 0 2701
snd 0.78 A 1 0 601	snd 1.02 A 1 0 2601	snd 0.02 D 601 100 1	snd 0.26 D 2901 100 1
rcv 0.78 D 601 100 1	rcv 1.02 D 2601 100 1	rcv/DA 0.03 A 1 0 201	rcv/DA 0.26 A 1 0 2701
snd 0.78 A 1 0 701	snd 1.02 A 1 0 2701	rcv 0.08 A 1 0 601	snd 0.26 D 3001 28 1
rcv 0.87 D 701 100 1	rcv 1.02 D 2901 100 1	rcv 0.11 A 1 0 701	rcv/DA 0.26 A 1 0 2701
snd 0.87 A 1 0 801	snd/DA 1.02 A 1 0 2701	snd 0.11 D 701 100 1	snd/RXT 0.3 D 2701 100 1
rcv 0.87 D 801 100 1	rcv 1.02 D 3001 28 1	rcv 0.11 A 1 0 801	rcv 0.34 A 1 0 2801
snd 0.87 A 1 0 901	snd/DA 1.02 A 1 0 2701	snd 0.11 D 801 100 1	snd/RXT 2.06 D 2801 100 1
rcv 0.87 D 901 100 1	rcv 1.06 D 2701 100 1	rcv 0.11 A 1 0 901	rcv 2.07 A 1 0 3029
snd 0.87 A 1 0 1001	snd 1.06 A 1 0 2801	snd 0.11 D 901 100 1	snd 2.11 F 3029 0 1
rcv 0.87 D 1001 100 1	rcv 2.82 D 2801 100 1	rcv 0.11 A 1 0 1001	rcv 2.11 A 1 0 3030
snd 0.87 A 1 0 1101	snd 2.82 A 1 0 3029	snd 0.11 D 1001 100 1	rcv 2.11 F 1 0 3030
rcv 0.87 D 1101 100 1	rcv 2.87 F 3029 0 1	rcv 0.11 A 1 0 1101	snd 2.11 A 3030 0 2
snd 0.87 A 1 0 1201	snd 2.87 A 1 0 3030	snd 0.11 D 1101 100 1	=======================================
rcv 0.87 D 1201 100 1	snd 2.87 F 1 0 3030	rcv 0.11 A 1 0 1201	Size of the file (in Bytes) 3028
snd 0.87 A 1 0 1301	rcv 2.87 A 3030 0 2	snd 0.11 D 1201 100 1	Segments transmitted (including drop & RXT) 39
rcv 0.87 D 1301 100 1	=======================================	snd 0.11 D 1301 100 1	Number of Segments handled by PLD 35
snd 0.87 A 1 0 1401	Amount of data received (bytes) 3028	rcv 0.11 A 1 0 1301	Number of Segments dropped 4
rcv 0.87 D 1401 100 1	Total Segments Received 35	snd 0.11 D 1401 100 1	Number of Segments Corrupted 0
snd 0.87 A 1 0 1501	Data segments received 31	rcv 0.11 A 1 0 1401	Number of Segments Re-ordered 0
rcv 0.87 D 1501 100 1	Data segments with Bit Errors 0	snd 0.11 D 1501 100 1	Number of Segments Duplicated 0
snd 0.87 A 1 0 1601	Duplicate data segments received 0	rcv 0.11 A 1 0 1501	Number of Segments Delayed 0
rcv 0.87 D 1601 100 1	Duplicate ACKs sent 9	snd 0.11 D 1601 100 1	Number of Retransmissions due to TIMEOUT 1
snd 0.87 A 1 0 1701	=======================================	rcv 0.11 A 1 0 1601	Number of FAST RETRANSMISSION 3
rcv 0.87 D 1701 100 1		snd 0.11 D 1701 100 1	Number of DUP ACKS received 9
snd 0.87 A 1 0 1801		rcv 0.11 A 1 0 1701	======================================
rcv 0.87 D 1801 100 1		snd 0.11 D 1801 100 1	
100 0.07 100 1 100 1		rcv 0.11 A 1 0 1801	
		snd 0.11 D 1901 100 1	
		rcv 0.11 A 1 0 1901	
		snd/drop 0.11 D 2001 100 1	
		rcv 0.11 A 1 0 2001	
		snd 0.11 D 2101 100 1	
		snd 0.11 D 2101 100 1	
		311d 0.11 D 2201 100 1	

Table 1: Experiment 1 (i) Receiver Log File

Table 2: Experiment 1 (i) Sender Log File

rcv 0.48 S 0 0 0	snd/DA 13.93 A 1 0 1901	snd 0.0 S 0 0 0	rcv 13.44 A 1 0 1901
snd 0.48 SA 0 0 1	rcv 13.93 D 1901 100 1	rcv 0.0 SA 0 0 1	snd 13.45 D 2001 100 1
rcv 0.48 A 1 0 1	snd 13.93 A 1 0 2301	snd 0.0 A 1 0 1	rcv/DA 13.45 A 1 0 1901
rcv 0.48 D 101 100 1	rcv 13.96 D 2401 100 1	snd/drop 0.0 D 1 100 1	snd 13.45 D 2101 100 1
snd/DA 0.48 A 1 0 1	snd/DA 13.96 A 1 0 2301	snd 0.0 D 101 100 1	rcv/DA 13.45 A 1 0 1901
rcv 0.48 D 201 100 1	rcv 14.93 D 2301 100 1	rcv 0.0 A 1 0 1	snd 13.45 D 2201 100 1
snd/DA 0.48 A 1 0 1	snd 14.93 A 1 0 2501	snd 0.0 D 201 100 1	snd/RXT 13.45 D 1901 100 1
rcv 0.48 D 301 100 1	rcv 14.97 D 2801 100 1	snd 0.0 D 301 100 1	rcv/DA 13.46 A 1 0 1901
snd/DA 0.48 A 1 0 1	snd/DA 14.97 A 1 0 2501	snd/drop 0.0 D 401 100 1	rcv 13.46 A 1 0 2301
rcv 3.49 D 1 100 1	rcv 15.97 D 2501 100 1	rcv 0.0 A 1 0 1	snd/drop 13.45 D 2301 100 1
snd 3.49 A 1 0 401	snd 15.97 A 1 0 2601	rcv 0.03 A 1 0 1	rcv/DA 13.48 A 1 0 2301
rcv 3.52 D 501 100 1	rcv 16.98 D 2601 100 1	snd/RXT/drop 1.0 D 1 100 1	snd 13.47 D 2401 100 1
snd/DA 3.52 A 1 0 401	snd 16.98 A 1 0 2701	snd/RXT/drop 2.01 D 1 100 1	snd/drop 13.48 D 2501 100 1
rcv 3.52 D 801 100 1	rcv 18.03 D 2701 100 1	snd/RXT 3.01 D 1 100 1	snd/drop 13.48 D 2601 100 1
snd/DA 3.52 A 1 0 401	snd 18.03 A 1 0 2901	rcv 3.01 A 1 0 401	snd/drop 13.48 D 2701 100 1
rcv 3.55 D 401 100 1	rcv 20.03 D 2901 100 1	snd 3.04 D 501 100 1	snd/RXT 14.46 D 2301 100 1
snd 3.55 A 1 0 601	snd 20.03 A 1 0 3001	snd/drop 3.04 D 601 100 1	rcv 14.46 A 1 0 2501
rcv 3.63 D 1001 100 1	rcv 22.04 D 3001 28 1	snd/drop 3.04 D 701 100 1	snd 14.49 D 2801 100 1
snd/DA 3.63 A 1 0 601	snd 22.04 A 1 0 3029	rcv/DA 3.04 A 1 0 401	snd/drop 14.49 D 2901 100 1
rcv 4.62 D 601 100 1	rcv 22.06 F 3029 0 1	snd 3.04 D 801 100 1	rcv/DA 14.49 A 1 0 2501
snd 4.62 A 1 0 701	snd 22.06 A 1 0 3030	rcv/DA 3.04 A 1 0 401	snd/RXT 15.49 D 2501 100 1
rcv 4.65 D 1101 100 1	snd 22.06 F 1 0 3030	snd/RXT 3.07 D 401 100 1	rcv 15.49 A 1 0 2601
snd/DA 4.65 A 1 0 701	rcv 22.06 A 3030 0 2	rcv 3.11 A 1 0 601	snd/drop 15.5 D 3001 28 1
rcv 5.65 D 701 100 1	=======================================	snd/drop 3.14 D 901 100 1	snd/RXT 16.5 D 2601 100 1
snd 5.65 A 1 0 901	Amount of data received (bytes) 3028	snd 3.15 D 1001 100 1	rcv 16.51 A 1 0 2701
rcv 5.68 D 1201 100 1	Total Segments Received 35	rcv/DA 3.16 A 1 0 601	snd/RXT 17.55 D 2701 100 1
snd/DA 5.68 A 1 0 901	Data segments received 31	snd/RXT 4.14 D 601 100 1	rcv 17.55 A 1 0 2901
rcv 6.68 D 901 100 1	Data segments with Bit Errors 0	rcv 4.14 A 1 0 701	snd/RXT/drop 18.55 D 2901 100 1
snd 6.68 A 1 0 1301	Duplicate data segments received 0	snd 4.17 D 1101 100 1	rcv 19.56 A 1 0 3001
rcv 6.78 D 1601 100 1	Duplicate ACKs sent 16	rcv/DA 4.17 A 1 0 701	snd/RXT 19.56 D 2901 100 1
snd/DA 6.78 A 1 0 1301	=======================================	snd/RXT 5.17 D 701 100 1	snd/RXT/drop 20.56 D 3001 28 1
rcv 6.78 D 1701 100 1		rcv 5.18 A 1 0 901	snd/RXT 21.56 D 3001 28 1
snd/DA 6.78 A 1 0 1301		snd 5.2 D 1201 100 1	rcv 21.56 A 1 0 3029
rcv 7.86 D 1301 100 1		snd/drop 5.2 D 1301 100 1	snd 21.58 F 3029 0 1
snd 7.86 A 1 0 1401		rcv/DA 5.2 A 1 0 901	rcv 21.58 A 1 0 3030
rcv 7.88 D 1801 100 1		snd/RXT 6.2 D 901 100 1	rcv 21.58 F 1 0 3030
snd/DA 7.88 A 1 0 1401		rcv 6.2 A 1 0 1301	snd 21.58 A 3030 0 2
rcv 8.88 D 1401 100 1		snd/drop 6.23 D 1401 100 1	=======================================
snd 8.88 A 1 0 1501		snd/drop 6.27 D 1501 100 1	Size of the file (in Bytes) 3028
rcv 13.92 D 1501 100 1		snd 6.3 D 1601 100 1	Segments transmitted (including drop & RXT) 59
snd 13.92 A 1 0 1901		rcv/DA 6.3 A 1 0 1301	Number of Segments handled by PLD 55
rcv 13.93 D 2001 100 1		snd 6.3 D 1701 100 1	Number of Segments dropped 24
snd/DA 13.93 A 1 0 1901		rcv/DA 6.31 A 1 0 1301	Number of Segments Corrupted 0
rcv 13.93 D 2101 100 1		snd/RXT/drop 6.35 D 1301 100 1	Number of Segments Re-ordered 0
snd/DA 13.93 A 1 0 1901		snd/RXT 7.38 D 1301 100 1	Number of Segments Duplicated 0
rcv 13.93 D 2201 100 1		rcv 7.39 A 1 0 1401	Number of Segments Delayed 0
		snd 7.41 D 1801 100 1	Number of Retransmissions due to TIMEOUT 21
		rcv/DA 7.41 A 1 0 1401	Number of FAST RETRANSMISSION 3
		snd/RXT 8.41 D 1401 100 1	Number of DUP ACKS received 13
		rcv 8.42 A 1 0 1501	=====================================
		snd/drop 8.44 D 1901 100 1	
		snd/RXT/drop 9.44 D 1501 100 1	
		snd/RXT/drop 10.44 D 1501 100 1	
		snd/RXT/drop 11.44 D 1501 100 1 snd/RXT/drop 12.44 D 1501 100 1	
		snd/RXT/drop 12.44 D 1501 100 1 snd/RXT 13.44 D 1501 100 1	
		3110/1XX1 13.44 D 1301 100 1	

Table 3: Experiment 1 (ii) Receiver Log File

Table 4: Experiment 1 (ii) Sender Log File

Gamma	Execution Time	Segments Transmitted
2	2686.12	13155
4	10061.16	12450
6	13553.95	12459

Table 5: Experiment 2 Gamma Results

Start Receiver Log	End Receiver Log	Start Sender Log	End Sender Log
rcv 1.45 S 0 0 0	snd 2681.24 A 1 0 307501	snd 0.0 S 0 0 0	rcv 2683.19 A 1 0 307851
snd 1.45 SA 0 0 1	rcv 2681.77 D 307501 50 1	rcv 0.0 SA 0 0 1	snd/RXT 2683.38 D 307851 50 1
rcv 1.45 A 1 0 1	snd 2681.77 A 1 0 307601	snd 0.0 A 1 0 1	rcv 2683.4 A 1 0 307901
rcv 2.0 D 1 50 1	rcv 2682.79 D 307601 50 1	snd 0.56 D 1 50 1	snd/RXT 2683.59 D 307901 50 1
snd 2.0 A 1 0 51	snd 2682.79 A 1 0 307651	snd/drop 0.56 D 51 50 1	rcv 2683.61 A 1 0 307951
rcv 2.01 D 201 50 1	rcv 2683.14 D 307651 50 1	rcv 0.56 A 1 0 51	snd/RXT 2683.8 D 307951 50 1
snd/DA 2.01 A 1 0 51	snd 2683.14 A 1 0 307701	snd/drop 0.56 D 151 50 1	rcv 2683.81 A 1 0 308001
rcv 2.01 D 301 50 1	rcv 2683.24 D 308151 50 1	snd 0.56 D 201 50 1	snd/RXT/drop 2684.0 D 308001 50 1
snd/DA 2.01 A 1 0 51	snd/DA 2683.24 A 1 0 307701	snd/drop 0.56 D 251 50 1	snd/RXT/drop 2684.17 D 308001 50 1
rcv 2.01 D 51 50 1	rcv 2683.34 D 307701 50 1	rcv/DA 0.56 A 1 0 51	snd/RXT/drop 2684.33 D 308001 50 1
snd 2.01 A 1 0 101	snd 2683.34 A 1 0 307801	snd 0.56 D 301 50 1	snd/RXT/drop 2684.49 D 308001 50 1
rcv 2.01 D 401 50 1	rcv 2683.38 D 308201 3 1	rcv/DA 0.56 A 1 0 51	snd/RXT/drop 2684.66 D 308001 50 1
snd/DA 2.01 A 1 0 101	snd/DA 2683.38 A 1 0 307801	snd/drop 0.56 D 351 50 1	snd/RXT/drop 2684.82 D 308001 50 1
rcv 2.01 D 501 50 1	rcv 2683.41 D 308101 50 1	snd/RXT 0.56 D 51 50 1	snd/RXT 2684.99 D 308001 50 1
snd/DA 2.01 A 1 0 101	snd/DA 2683.41 A 1 0 307801	snd 0.56 D 401 50 1	rcv 2684.99 A 1 0 308051
rcv 2.02 D 101 50 1	rcv 2684.63 D 307801 50 1	rcv 0.56 A 1 0 101	snd/RXT/drop 2685.18 D 308051 50 1
snd 2.02 A 1 0 151	snd 2684.63 A 1 0 307851	snd 0.56 D 501 50 1	snd/RXT/drop 2685.35 D 308051 50 1
rcv 2.31 D 101 50 1	rcv 2684.83 D 307851 50 1	rcv/DA 0.56 A 1 0 101	snd/RXT/drop 2685.51 D 308051 50 1
snd/DA 2.31 A 1 0 151	snd 2684.84 A 1 0 307901	snd/drop 0.56 D 551 50 1	snd/RXT/drop 2685.84 D 308051 50 1
rcv 2.93 D 451 50 1	rcv 2685.04 D 307901 50 1	rcv/DA 0.56 A 1 0 101	snd/RXT/drop 2686.01 D 308051 50 1
snd/DA 2.93 A 1 0 151	snd 2685.05 A 1 0 307951	snd/RXT 0.57 D 101 50 1	snd/dely 2686.07 D 308051 50 1
rcv 2.97 D 151 50 1	rcv 2685.25 D 307951 50 1	rcv 0.6 A 1 0 151	rcv 2686.09 A 1 0 308204
snd 2.98 A 1 0 251	snd 2685.25 A 1 0 308001	snd/drop 0.63 D 601 50 1	snd 2686.12 F 308204 0 1
rcv 5.17 D 251 50 1	rcv 2686.44 D 308001 50 1	snd/dely 0.87 D 101 50 1	rcv 2686.12 A 1 0 308205
snd 5.17 A 1 0 351	snd 2686.44 A 1 0 308051	rcv/DA 0.89 A 1 0 151	rcv 2686.12 F 1 0 308205
rcv 6.28 D 351 50 1	rcv 2687.52 D 308051 50 1	snd/dely 1.49 D 451 50 1	snd 2686.12 A 308205 0 2
snd 6.28 A 1 0 551	snd 2687.52 A 1 0 308204	rcv/DA 1.51 A 1 0 151	=======================================
rcv 6.33 D 1001 50 1	rcv 2687.57 F 308204 0 1	snd/RXT 1.53 D 151 50 1	Size of the file (in Bytes) 308203
snd/DA 6.33 A 1 0 551	snd 2687.57 A 1 0 308205	rcv 1.56 A 1 0 251	Segments transmitted (including drop & RXT) 13155
rcv 11.66 D 551 50 1	snd 2687.57 F 1 0 308205	snd/drop 1.58 D 651 50 1	Number of Segments handled by PLD 13151
snd 11.66 A 1 0 601	rcv 2687.57 A 308205 0 2	snd/drop 1.58 D 701 50 1	Number of Segments dropped 6629
rcv 12.99 D 601 50 1		snd/RXT/drop 2.65 D 251 50 1	Number of Segments Corrupted 0
snd 12.99 A 1 0 651	Amount of data received (bytes) 319581	snd/RXT 3.72 D 251 50 1	Number of Segments Re-ordered 0
rcv 16.47 D 651 50 1	Total Segments Received 6526	rcv 3.73 A 1 0 351	Number of Segments Duplicated 0
snd 16.47 A 1 0 701	Data segments received 6522	snd/drop 3.76 D 751 50 1	Number of Segments Delayed 1296
rcv 17.58 D 701 50 1	Data segments with Bit Errors 0	snd/drop 3.76 D 801 50 1	Number of Retransmissions due to TIMEOUT 6063
snd 17.58 A 1 0 751	Duplicate data segments received 357	snd/RXT 4.83 D 351 50 1	Number of FAST RETRANSMISSION 923
rcv 17.62 D 1201 50 1	Duplicate ACKs sent 3425	rcv 4.83 A 1 0 551	Number of DUP ACKS received 3425
snd/DA 17.62 A 1 0 751			=======================================
		(SKIP LOG UNTIL END)	
(SKIP LOG UNTIL END)			

Table 6: Experiment 2 (i) Receiver Log File

Table 7: Experiment 2 (i) Sender Log File

Table 8: Experiment 2 (ii) Receiver Log File

Table 9: Experiment 2 (ii) Sender Log File

Start Receiver Log	End Receiver Log	Start Sender Log	End Sender Log
rcv 2.99 S 0 0 0 snd 3.0 SA 0 0 1 rev 3.0 A 1 0 1 rev 3.55 D 1 50 1 snd 3.55 A 1 0 51 rev 3.6 D 201 50 1 snd/DA 3.6 A 1 0 51 rev 3.63 D 301 50 1 snd/DA 3.63 A 1 0 51 rev 3.63 D 51 50 1 snd/DA 3.63 A 1 0 101 rev 3.63 D 401 50 1 snd/DA 3.63 A 1 0 101 rev 3.63 D 501 50 1 snd/DA 3.63 A 1 0 101 rev 3.65 D 101 50 1 snd/DA 3.63 A 1 0 101 rev 3.65 D 101 50 1 snd/DA 3.65 A 1 0 151 rev 3.65 D 101 50 1 snd/DA 3.66 A 1 0 151 rev 4.55 D 451 50 1 snd/DA 4.55 A 1 0 151 rev 4.59 D 151 50 1 snd/DA 4.59 A 1 0 251 rev 9.34 D 251 50 1 snd 9.34 A 1 0 351 rev 11.67 D 351 50 1 snd 11.68 A 1 0 551 rev 11.82 D 1001 50 1 snd/DA 11.82 A 1 0 551 rev 23.38 D 551 50 1 snd 23.38 A 1 0 601 rev 25.97 D 601 50 1 snd 25.98 A 1 0 651 (SKIP LOG UNTIL END)	rcv 13534.63 D 307701 50 1 snd/DA 13534.69 D 307251 50 1 snd 13534.69 A 1 0 307501 rcv 13534.84 D 307851 50 1 snd/DA 13534.84 A 1 0 307501 rcv 13534.84 D 307751 50 1 snd/DA 13534.84 A 1 0 307501 rcv 13534.84 D 307751 50 1 snd/DA 13534.85 D 307901 50 1 snd/DA 13534.85 D 307501 rcv 13539.53 D 307501 rcv 13539.53 D 307501 for 13539.53 D 307501 for 13539.64 D 308101 50 1 snd/DA 13539.65 A 1 0 307801 rcv 13539.66 D 308151 50 1 snd/DA 13539.67 A 1 0 307801 rcv 13539.68 D 308201 3 1 snd/DA 13539.69 A 1 0 307801 rcv 13539.69 A 1 0 307801 rcv 13542.13 D 307801 50 1 snd 13542.14 A 1 0 308001 rcv 13551.87 D 308001 50 1 snd 13556.87 D 308051 fo 1 snd 13556.87 A 1 0 308205 rcv 13556.94 F 308204 0 1 snd 13556.94 F 308204 0 1 snd 13556.94 F 1 0 308205 rcv 13556.94 F 1 0 308205 rcv 13556.94 A 308205 rcv 13556.94 A 308205 rcv 13556.94 R 6175 Data segments Received (bytes) 308503 Total Segments Received 6171 Data segments with Bit Errors 0 Duplicate data segments received 6 Duplicate ACKs sent 3040	snd 0.0 S 0 0 0 rev 0.0 SA 0 0 1 snd 0.0 A 1 0 1 snd 0.56 D 1 50 1 rev 0.56 A 1 0 51 snd/drop 0.56 D 51 50 1 snd/drop 0.59 D 151 50 1 snd/drop 0.59 D 151 50 1 rev/DA 0.61 A 1 0 51 snd/drop 0.61 D 251 50 1 snd/drop 0.63 D 351 50 1 snd/drop 0.63 D 351 50 1 snd/drop 0.63 D 351 50 1 snd/RXT 0.63 D 51 50 1 snd 0.63 A 1 0 51 snd/RXT 0.63 D 51 50 1 snd 0.64 A 1 0 101 snd 0.64 D 501 50 1 rev/DA 0.64 A 1 0 101 snd/drop 0.64 D 551 50 1 rev/DA 0.64 A 1 0 101 snd/RXT 0.65 D 101 50 1 rev 0.69 A 1 0 151 snd/drop 0.73 D 601 50 1 snd/dely 0.87 D 101 50 1 rev/DA 0.89 A 1 0 151 snd/dely 1.56 D 451 50 1 rev/DA 1.57 A 1 0 151 snd/drop 1.67 D 651 50 1 snd/drop 1.67 D 651 50 1 snd/drop 1.67 D 651 50 1 snd/RXT 1.6 0 D 701 50 1 snd/RXT 1.6 0 D 701 50 1 snd/RXT 1.6 3 A 1 0 251 snd/RXT/drop 3.98 D 251 50 1 snd/RXT 6.33 D 251 50 1	snd/RXT 13536.54 D 307501 50 1 rev 13536.56 A 1 0 307801 snd/drop 13536.6 D 308001 50 1 snd/drop 13536.62 D 308051 50 1 snd 13536.64 D 308101 50 1 rev/DA 13536.66 A 1 0 307801 snd 13536.66 D 308151 50 1 rev/DA 13536.66 D 308151 50 1 rev/DA 13536.67 A 1 0 307801 snd 13536.68 D 308201 3 1 snd/RXT/drop 13536.69 D 307801 50 1 rev/DA 13536.72 A 1 0 307801 snd/dely 13539.14 D 307801 50 1 rev 13539.16 A 1 0 308001 snd/RXT/drop 13541.5 D 308001 50 1 snd/RXT/drop 13543.84 D 308001 50 1 snd/RXT/drop 13543.84 D 308001 50 1 snd/RXT/drop 13543.84 D 308001 50 1 snd/RXT/drop 13545.26 D 308051 50 1 snd/dely 13553.88 D 308051 50 1 rev 13548.91 A 1 0 308051 snd/RXT/drop 13551.26 D 308051 50 1 snd/dely 13553.88 D 308051 50 1 rev 13553.95 F 308204 0 1 rev 13553.95 F 308204 0 1 rev 13553.95 A 308205 snd 13553.95 A 308205 sn

Table 10: Experiment 2 (iii) Receiver Log File

Table 11: Experiment 2 (iii) Sender Log File

Start Receiver Log	End Receiver Log	Start Sender Log	End Sender Log
rcv 7.03 S 0 0 0 snd 7.03 SA 0 0 1 rcv 7.03 A 1 0 1 rcv 7.03 A 1 0 1 rcv 21.75 D 51 50 1 snd/DA 21.75 A 1 0 1 rcv 21.77 D 101 50 1 snd/DA 21.77 A 1 0 1 rcv 21.78 D 151 50 1 snd/DA 21.78 A 1 0 1 rcv 21.79 D 201 50 1 snd/DA 21.79 A 1 0 1 rcv 21.8 D 251 50 1 snd/DA 21.8 A 1 0 1 rcv 21.8 D 251 50 1 snd/DA 21.8 A 1 0 1 rcv 21.8 D 251 50 1 snd/DA 21.8 A 1 0 1 rcv 21.8 D 251 50 1 snd/DA 21.8 A 1 0 1 rcv 21.8 D 251 50 1 snd/DA 21.8 A 1 0 1 rcv 21.8 D 401 50 1 snd/DA 21.8 A 1 0 1 rcv 21.8 D 401 50 1 snd/DA 21.8 A 1 0 1 rcv 21.8 D 451 50 1 snd/DA 22.75 D 1 50 1 snd/DA 22.75 D 1 50 1 snd/DA 22.77 A 1 0 351 rcv 22.77 D 601 50 1 snd/DA 22.78 A 1 0 351 rcv 22.78 D 351 50 1 snd/DA 22.78 A 1 0 351 rcv 22.78 D 351 50 1 snd/DA 22.78 A 1 0 551 rcv 22.78 D 801 50 1 snd/DA 22.78 A 1 0 551 rcv 22.78 D 801 50 1 (SKIP LOG UNTIL END)	rcv 3514.48 D 1605151 50 1 snd/DA 3514.48 A 1 0 1604801 rcv 3514.49 D 1605201 50 1 snd/DA 3514.5 A 1 0 1604801 rcv 3514.5 D 1605251 50 1 snd/DA 3514.5 D 1605251 50 1 snd/DA 3514.5 A 1 0 1604801 rcv 3514.5 D 1604801 50 1 snd 3514.55 A 1 0 1605301 rcv 3514.9 D 1605351 50 1 snd/DA 3514.91 A 1 0 1605301 rcv 3514.91 D 1605401 50 1 snd/DA 3514.91 A 1 0 1605301 rcv 3514.91 D 1605401 50 1 snd/DA 3514.91 A 1 0 1605301 rcv 3514.93 D 1605401 50 1 snd/DA 3514.93 A 1 0 1605301 rcv 3514.93 D 1605451 50 1 snd/DA 3514.95 A 1 0 1605301 rcv 3514.98 D 1605501 50 1 snd/DA 3514.95 A 1 0 1605301 rcv 3514.98 D 1605551 50 1 snd 3514.98 A 1 0 1605551 rcv 3516.34 D 1605551 rcv 3516.35 A 1 0 1605586 rcv 3516.41 F 1605586 0 1 snd 3516.41 A 1 0 1605587 snd 3516.41 A 1 0 1605587 rcv 3516.41 A 1 605587 0 2 ===================================	snd 0.0 S 0 0 0 rcv 0.0 SA 0 0 1 snd 0.0 A 1 0 1 snd/corr 14.72 D 1 50 1 snd 14.72 D 51 50 1 snd 14.72 D 51 50 1 snd 14.73 A 1 0 1 snd 14.75 D 151 50 1 snd 14.75 D 151 50 1 snd 14.77 D 201 50 1 rcv 14.75 A 1 0 1 snd/dup 14.78 D 251 50 1 snd 14.78 D 301 50 1 rcv 14.78 A 1 0 1 snd/corr 14.8 D 351 50 1 snd 14.81 D 401 50 1 rcv 14.8 A 1 0 1 snd 14.83 D 451 50 1 rcv 14.87 A 1 0 1 rcv 15.03 A 1 0 1 rcv 15.03 A 1 0 1 rcv 15.73 D 501 50 1 rcv/DA 15.73 A 1 0 351 snd 15.75 D 601 50 1 rcv/DA 15.75 A 1 0 351 snd 15.75 D 651 50 1 snd/RXT 15.75 D 351 50 1 snd/dup 15.75 D 801 50 1 rcv/DA 15.75 A 1 0 351 snd/dup 15.75 D 801 50 1 rcv/DA 15.75 A 1 0 351 snd/dup 15.75 D 801 50 1 rcv/DA 15.75 A 1 0 551 (SKIP LOG UNTIL END)	snd/RXT 3506.24 D 1604601 50 1 rcv 3506.25 A 1 0 1604651 snd 3506.34 D 1605101 50 1 rcv/DA 3506.35 A 1 0 1604651 snd/RXT 3507.33 D 1604651 50 1 rcv 3507.34 A 1 0 1604801 snd/rord 3507.44 D 1604601 50 1 snd/dup 3507.43 D 1605151 50 1 rcv/DA 3507.44 A 1 0 1604801 snd 3507.47 D 1605201 50 1 snd 3507.48 D 1605251 50 1 rcv/DA 3507.47 A 1 0 1604801 snd 3507.48 D 1605251 50 1 rcv/DA 3507.55 A 1 0 1604801 rcv/DA 3507.55 A 1 0 1604801 rcv/DA 3507.55 A 1 0 1604801 rcv/DA 3507.78 A 1 0 1604801 rcv/DA 3507.78 A 1 0 1605301 snd/drop 3507.87 D 1605301 50 1 snd 3507.88 D 1605551 50 1 rcv/DA 3507.88 D 1605401 50 1 rcv/DA 3507.88 D 1605401 50 1 rcv/DA 3507.89 D 1605501 50 1 snd 3507.90 D 1605501 50 1 rcv/DA 3507.91 A 1 0 1605301 snd/RXT 3507.95 D 1605301 snd/RXT 3507.95 D 1605301 rcv/DA 3507.99 A 1 0 1605301 rcv/DA 3508.22 A 1 0 1605551 snd/RXT 3509.3 D 1605551 snd/RXT 3509.3 D 1605557 rcv 3509.38 F 10 1605586 snd 3509.38 F 10 1605587 rcv 3509.38 F 10 1605587 rcv 3509.38 F 1 0 1605587 snd 3509.38 F 10 1605587 snd 3509
			Number of Retransmissions due to TIMEOUT 2166 Number of FAST RETRANSMISSION 6575 Number of DUP ACKS received 26399 ==================================

Table 10: Experiment 3 Receiver Log File

Table 11: Experiment 3 Sender Log File

Event	Percentage of Total Sent
pDrop	4152/40853 = 10%
pCorrupt	3329/40853 = 8%
pDuplicate	3684/40853 = 9%
pOrder	2261/40853 = 5%

Table 12: Experiment 3

References

16 bit IP Hash Algorithm https://tools.ietf.org/html/rfc1071

How to terminate python threads

https://www.g-loaded.eu/2016/11/24/how-to-terminate-running-python-threads-using-signals/

Kurose, J. and Ross, K. (2013). Computer networking: A Top-down Approach. 6th Edition. Boston: Pearson.