

Network Analysis – Part 1

Instructor: Khaled Diab

Goal

Analyze network traffic for different goals.

- Useful for:
 - Intrusion Analyst: dissect network traffic to study intrusions
 - Forensic Investigator: check the extent of a malware infection
 - Attackers: understand their victim networks!

Outline

- Network Hardware
- Packets
 - Dissecting Packets
 - Sample of Network Protocols
 - ARP and ICMP
- Capturing packets
 - Packet Sniffing
 - Sniffer deployment
 - Tools: Wireshare
- Network-level operations:
 - Network Recon
 - Traffic Manipulation
 - Spoofing

Network Hardware

A quick review

Hub

- L1 device
- Repeats the traffic on one port to other ports (i.e., broadcast)

- Usages:
 - Mirror traffic for analysis
 - Making multiple network devices act as one segment
- Obsolete and rarely deployed in modern networks

Ethernet Switch

- L2 device
- Decides outgoing port based on dst MAC

- Maintains a mapping between MAC address and outgoing ports
 - Using a CAM table

- Modern switches become smarter
 - Programmable and bare-metal

Router

- L3 device
- Forwards packets based on IP address
 - How?

Dissecting Packets

Recall: Packet Switching

- Packet Switching: Hosts break application-layer messages into packets
 - Forward packets from one router to the next, across links on path from source to destination
 - Each packet is transmitted at full link capacity (no reservation)
- The header of each packet carries necessary information
 - Routers examine the header and make forwarding decisions

Header Payload

Recall: Encapsulation

Packet Representation

- Packet is a sequence of bytes
 - Formatted based on the rules of protocols
 - Multiple fields, each has a specific value

- Binary representation:
 - Sequence of 0's and 1's

 - Hard to read

Packet Representation

- Hex representation
- Uses numbers 0–9 and letters a–f
- A byte is represented using two characters
 - E.g., 2a is one byte
- In a byte, a nibble has 4 bits
 - 4 bits represent a character from 0—f

What is this protocol? What is missing information?

- A graphical representation of a packet
 - Allows analysts to map bytes to fields
 - Often based on protocol's RFC

	Internet Protocol Version 4 (IPv4)							
Offsets	Octet	0		1	2		3	
Octet	Bit	0–3	4–7	8–15	16–18	19–23	24-31	
0	0					•		
4	32							
8	64							
12	96							
16	128							
20	160							
24+	192+							

- A graphical representation of a packet
 - Allows analysts to map bytes to fields
 - Often based on protocol's RFC

	Internet Protocol Version 4 (IPv4)								
Offsets	Octet	0		1	2		3		
Octet	Bit	0–3	4–7	8–15	16–18	16–18 19–23			
0	0	Version	Header Length	Type of Service	rvice Total Length				
4	32	Identification			Flags	Fra	gment Offset		
8	64	Time to Live Protocol			}	Header C	Checksum		
12	96		Source IP Address						
16	128		Destination IP Address						
20	160	Options							
24+	192+	Data							

4500 003c 50db 0000 8001 cf8e 0a00 0048 0808 0808

	Internet Protocol Version 4 (IPv4)								
Offsets	Octet	0		1 2		2	3		
Octet	Bit	0–3	0-3 4-7 8-15 16-18 19-23		24–31				
0	0	4 5 00 003c					3c		
4	32	50db Flags				Fragment Offset			
8	64	80 01			1	cf	⁻ 8e		
12	96		0a00 0048						
16	16 128 0808 0808								
20	160	Options							
24+	192+	Data							

- Protocol is 0x01. What is this protocol?
- Check IP protocol numbers.

	Internet Protocol Version 4 (IPv4)								
Offsets	Octet	0		0 1		2		3	
Octet	Bit	0–3	4–7	8–15	16–18	19–23	24–31		
0	0	4 5 00 003c					3c		
4	32	50db Flags Fragment Offset				gment Offset			
8	64	80 01			4	cf	⁻ 8e		
12	96		0a00 0048						
16	16 128 0808 0808								
20	160	Options							
24+	192+	Data							

IP Protocol Numbers: Examples

Protocol Number (Hex)	Protocol
0x01	ICMP
0x06	TCP
0x11	UDP
0x29	IPv6 (why?)
0x2f	GRE
0x59	OSPF

Tools for Dissecting Packets

Various tools can be used to dissect and decode a packet

```
✓ Wireshark · Packet 14 · Wi-Fi
> Frame 14: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface
                                                                                                                          , id 0
Ethernet II, Src:
  Internet Protocol Version 4, Src: 10.0.0.72, Dst: 8.8.8.8

▼ Internet Control Message Protocol

     Type: 8 (Echo (ping) request)
     Code: 0
     Checksum: 0x4d37 [correct]
     [Checksum Status: Good]
     Identifier (BE): 1 (0x0001)
     Identifier (LE): 256 (0x0100)
     Sequence number (BE): 36 (0x0024)
     Sequence number (LE): 9216 (0x2400)
     [Response frame: 15]
   Data (32 bytes)
                                                   ·V··[[·! XL····E·
 0000
                                        08 00 45 00
 · · · · M7 · · $abcdef
 0020 08 08 08 00 4d 37 00 01
                            00 24 61 62 63 64 65 66
                                                    ghijklmn opqrstuv
      67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76
 0040 77 61 62 63 64 65 66 67 68 69
                                                     wabcdefg hi
```

Sample of Network Protocols

ARP and ICMP

- Two types of addresses are used for communication:
 - Physical (e.g., MAC): within a single network
 - Logical (e.g., IP): among multiple networks, and indirectly connected devices

- Consider the case when:
 - an application at A communicates with an app at B

- Device A needs to fill fields L2—L5
 - It has all the information of L3—L5 (why?)
- However, device A does not know the physical address of device B
 - A field in L2 (dst MAC)

ARP (RFC 826): a protocol to map an IP address to MAC address

• Two operations: ARP request (broadcasted to all devices on the network) Hi there, My IP is 10.0.0.5 and MAC is X Who knows MAC of IP 10.0.0.27

• Two operations:

ARP Packet Structure

			Address Resolution Protoco	ol (ARP)				
Offsets	Octet	et 0 1 3 4						
Octet	Bit	0–7	8–15	0–7	8–15			
0	0	Hard	ware Type	Proto	col Type			
4	32	Hardware Address Length Operation						
8	64		Sender Hardwe	are Address				
12	96	Sender Ha	rdware Address	Sender Pro	tocol Address			
16	128	Sender Protocol Address Target Hardware Address						
20	160	Target Hardware Address						
24+	192+	Target Protocol Address						

What are potential security concerns?

Internet Control Message Protocol (ICMP)

- RFC 792
- A utility protocol of TCP/IP
- Provides information about availability of:
 - Devices, services, or routes on a TCP/IP network
- Popular utilities that use ICMP?

ICMP Packet Structure

Internet Control Message Protocol (ICMP)								
Offsets	Offsets Octet 0 1 2 3							
Octet	Bit	0–7	8–15	16–23	24-31			
0	0 0 Type Code Checksum							
4+	32+		Variable					

0: Echo Reply

8 : Echo Request

11: Time Exceeded

ICMP: ping

Often used to check availability

ICMP: traceroute

Build a path of routers from source to destination. How?

ICMP: traceroute

Build a path of routers from source to destination. How?

ICMP: traceroute

Build a path of routers from source to destination. How?

To do list

- Start using Wireshark
- Get familiar with packet diagrams and major protocols:
 - IP, ARP, ICMP, DNS, TCP, UDP

Next Lecture

- Packet Sniffing
- Packet Spoofing