

ESCUELA POLITÉCNICA NACIONAL

MÉTODOS NUMÉRICOS

JIMÉNEZ JARAMILLO YASID GABRIEL

[Taller 04] Mínimos cuadrados

```
from ipywidgets import interact, widgets
import matplotlib.pyplot as plt
import numpy as np
x_{data} = np.array([5.4, 9.5, 12.3])
y_{data} = np.array([3.2, 0.7, -3.6])
p1 = (x data[0], y data[0])
p2_i = (x_{data[1]}, y_{data[1]})
p3 = (x_data[2], y_data[2])
m = -1
b = 8
def update plot(p2 x, p2 y):
    x coords = [p1[0], p2 x, p3[0]]
    y_{coords} = [p1[1], p2_y, p3[1]]
    plt.figure(figsize=(10, 6))
    plt.scatter(x_coords, y_coords, color="red")
    x_{line} = [min(x_{coords}), max(x_{coords})]
    y line = [m * x + b for x in x line]
    plt.plot(x_line, y_line, color="blue")
    plt.xlabel("X")
    plt.ylabel("Y")
    plt.title("Points and Line Plot")
    plt.show()
interact(
    update plot,
    p2 x=widgets.FloatSlider(
        \min=\min(p1[0], p3[0]), \max=\max(p1[0], p3[0]), step=0.1,
value=p2 i[0]
    p2 y=widgets.FloatSlider(
        \min=\min(p1[1], p3[1]), \max=\max(p1[1], p3[1]), step=0.1,
value=p2_i[1]
    )
{"model id": "4dcf96ae1db841b58dd703051f73e22a", "version major": 2, "vers
ion minor":0}
<function main .update plot(p2 x, p2 y)>
```


Points and Line Plot

REPOSITORIO:

https://github.com/ImYasid/METODOS NUMERICOS.git

REFERENCIAS BIBLIOGRÁFICAS:

[1] Richard L. Burden, 2017. Análisis Numérico. Lugar de publicación: 10ma edición. Editorial Cengage Learning.

DECLARACIÓN DEL USO DE INTELENGIA ARTIFICIAL

Se utilizo IA para la optimización de código adicional al mejoramiento de la gramática del texto para un mejor entendimiento.