Prova 2 - F428 - 2º. Sem. 2010

- Dois foguetes, cada um deles com 100~m de comprimento quando medidos em repouso, se afastam da Terra ao longo de um mesmo eixo ligando os foguetes e a Terra. No referencial da Terra, os dois foguetes têm velocidades iguais a (4/5)c e (5/13)c, respectivamente, sendo que o foguete mais rápido seta se aproximando do foguete mais lento que está mais distante da Terra.
 - a) Determine o comprimento do foguete mais rápido medido por um observador na Terra.
 - b) Determine a velocidade do foguete mais rápido em relação ao foguete mais lento.
- c) Determine o comprimento do foguete mais rápido medido por um observador no foguete mais lento.

A luz de uma galáxia é focalizada e incide sobre uma placa de um material cuja função trabalho é 2, I eV. O potencial de corte dos elétrons emitidos é 0, 4 V.

- a) Determine o comprimento de onda da luz que incide na placa.
- b) Se o comprimento de luz no referencial da galáxia é $500 \, nm$, qual a velocidade da galáxia com relação à Terra? Considere que a galáxia se move ao longo da linha que liga o centro da galáxia ao centro da Terra e suponha que a velocidade da galáxia é muito menor que a velocidade da luz.
- c) A galáxia está se afastando ou se aproximando da Terra? Justifique.

Um curral quadrado de lados $L_x = L_y = L$ com barreiras de potencial infinitas contem 7 elétrons. Despreze a interação Coulombiana entre os elétrons, mas leve em consideração os estados de spin dos elétrons. Escreva suas respostas em função da constante $E_o = h^2/8m_eL^2$, onde m_e é a massa do elétron.

- a) Faça um diagrama dos níveis de energia, indicando os 4 primeiros níveis de elétrons com suas respectivas energias. Indique no diagram o número de elétrons presentes em cada nível quando o sistema de 7 elétrons está em seu estado fundamental.
- b) Determine a energia total do sistema de 7 elétrons no seu estado fundamental e nos dois primeiros estados excitados. Faça o diagramas dos níveis de energia, indicando a ocupação dos níveis pelos elétrons, para o caso dos dois estados excitados.
- c) Determine a energia mínima necessária de um fóton capaz de excitar um dos elétrons do nível de menor energia do curral quando o sistema de 7 elétrons se encontra em seu estado fundamental.
- Um átomo de hidrogênio está num estado excitado, de modo que o elétron está num estado quântico com o menor número quântico principal n possível para o qual m_l =2.
 - a) Determine a energia do elétron neste estado em unidades de eV.
 - b) Determine a energia do fóton que este átomo emitiria ao retornar para seu estado fundamental.
 - c) Determine o raio no qual a probabilidade de encontrar o elétron é máxima quando o átomo de hidrogênio está no estado fundamental, considerando a função de onda radial fornecida na lista de equações.

$h = Q + Km \dot{\alpha} = hc \Rightarrow \lambda = hc$
2 Øthrix
7-1200 = 7= 480 nm/
2,1+0,4
b) 20 = 600 mm
NE DX C => NZ 20 C => N= 0,04C
λ_0 600
c) A gabisia está se aproximonde 20>2 >> fo 2/= aprox
3) Lx=Ly=L. Feletrons Eo= h2
3 Brel2
$E_{xy} = h^2 \left(\gamma_y^2 + \gamma_y^2 \right) = E - \left[\gamma_x^2 + \gamma_z^2 \right]$
8 me L ^z
My My Ex,y 13E.
L 1 2€
1 0 1 5Eo
20
1 3 10 €0 4 00 5€0
3/2/2060;
2/2/8E01
2 (3. 136)
3, 2 (136)
D) Extra fundament : Ep= 2. 2 to + 4. 5 to + 1. 8 to
E1=32E0/
1º esto do excitado: E, = 34Eo
2º estado uscitado: Ez= 36Es
À F.
O) E thin=bEo
tillbra

