ELSEVIER

Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Potential of adsorbents and membranes for SF₆ capture and recovery: A review

Chong Yang Chuah^a, Yechan Lee^b, Tae-Hyun Bae^{b,*}

- ^a Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
- b Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

HIGHLIGHTS

- Recent progress on developments of porous adsorbents for SF₆ separation and recovery is discussed.
- Recent efforts in membrane-based SF₆ separation are introduced.
- Advantages and drawbacks on both adsorptive and membrane-based SF₆ separations were discussed.
- Current challenges and future direction in SF₆ separation are provided.

GRAPHICAL ABSTRACT

ARTICLE INFO

Keywords: SF₆ Greenhouse gas Adsorbents Membranes Selectivity

ABSTRACT

Sulfur hexafluoride (SF₆) is an industrial gas used in various applications such as high-voltage electrical transmission and distribution systems, film protection, semiconductors, and plasma-etching processes. Compared with CO_2 , the most common greenhouse gas that has received a tremendous amount of attention, SF_6 possesses a considerably higher potential for global warming and longer atmospheric lifetime. Conventional SF_6 capture and recovery methods such as distillation and liquefaction are known to be costly due to the energy required for phase changes. The use of adsorbents and membranes in SF_6 separation has therefore been extensively studied for its attractive advantages such as lower energy penalty. In this review, we present a brief overview of the current status of SF_6 separation based on adsorbents and membranes together with the technical challenges involved in such separation processes for potential industrial applications.

1. Introduction

Sulfur hexafluoride (SF₆) is a non-flammable, non-toxic, tasteless, odorless, and colorless gas [1,2]. These properties together with its high dielectric property have led to the use of SF₆ in several specialized applications such as high-voltage electrical appliances, electrical transmission, and distribution systems including circuit breakers, gasinsulated switchgear (GIS), and transformers [3–5]. The production of

 SF_6 began in 1953 when SF_6 was involved in the installation of the first circuit breaker in the United States. The introduction of GIS using SF_6 in 1972 further accelerated the rate of SF_6 production [5]. In 2018, the global market for SF_6 was reported to be 205.9 million USD with a 6% expected annual growth rate until 2025 [6]. SF_6 is used in film protection to prevent molten metal (e.g. magnesium) from oxidizing when exposed to ambient air [7]. SF_6 also plays a pivotal role in plasmaetching, a crucial process in the fabrication of photovoltaic devices,

E-mail address: thbae@kaist.ac.kr (T.-H. Bae).

^{*} Corresponding author.