DIGITAL ELECTRONICS

Lecture Note 02: Number Systems

Dr. Tushar Kanti Bera

Department of Electrical Engineering
National Institute of Technology Durgapur (NITD)

Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal 713209, India

Number Systems

- A number system defines a set of values used to represent different quantities of the parameters.
- Examples:
 - Number of students in a class
 - Number of players playing a cricket match in a stadium
 - Numbers of books in a library
 - Numbers of coins in your purse etc.
- The digital computer internally uses the binary numbers system to represent data and information (includes video, audio, graphics, text, and numbers) or to perform the arithmetic calculations.
- Base or Radix: The base or radix is the total numbers of digit used in a number system.
- It is, sometimes, written after the number as a subscript.

https://examston.com/2018/09/27/number-system-in-a-compute

Different Number Systems

- Types of Number Systems
- Some important number systems are as follows:
 - Decimal (comes from the Latin word "decimus (ten)")
 - Binary (comes from the Latin word "bīnārius (two)")
 - Octal (comes from the Latin word "octo (eight)")
 - Hexadecimal (comes from the Greek word "hexa (six)")
- Base of Number Systems
- Each number system has a base
 - Decimal: Base 10 (Digits: 0 1 2 3 4 5 6 7 8 9)
 - Binary: Base 2 (Digits: 0 1)
 - Octal: Base 8 (Digits: 0 1 2 3 4 5 6 7)
 - Hexadecimal: Base 16 (Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

Decimal number System

- It is the most widely used Number System in a Computer.
- Base: Decimal Number System is a base 10 number system.
- **Digits:** Consists of ten digits from 0 to 9: 0,1,2,3,4,5,6,7,8,9.

$$X = \sum_{0}^{n-1} D_n \times 10^n$$

$$X = D_{n-1} \times 10^{n-1} + D_{n-2} \times 10^{n-2} + ... + D_1 \times 10^1 + D_0 \times 10^0$$

$$X = \sum_{n=0}^{n-1} D_n \times 10^n = D_{n-1} \times 10^{n-1} + D_{n-2} \times 10^{n-2} + ... + D_1 \times 10^1 + D_0 \times 10^0$$

https://examston.com/2018/09/27/number-system-in-a-compu

Decimal number System

 Any decimal number can be formed using the base and these 10 digits.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

- Each value in a decimal number could be represented as the summation of the digits multiplied by a power of 10 i.e. D_n*10^n , where n ranges from 0 to n-1.
- Example: Say, **5733**_{10,} it has four digits so it can be represented as

 $X = \sum_{n=1}^{n-1} D_n \times 10^n$

• Example: $(5733)_{10} = 5*10^3 + 7*10^2 + 3*10^1 + 3*10^0$ = 5000 + 700 + 30 + 3

= 5000 + 700 + 30 + 3 http://www.ton.com/2019/00/27/numbersustam.in.a.com/ust

Digit Representation (Decimal)

- Numbers are used to represent a magnitude of any parameter.
- Each number can be represented with a base and value/multiplier.

Example (Decimal):

$$D_3 D_2 D_1 D_0 = D_{n=3} * 10^{n=3} + D_{n=2} * 10^{n=2} + D_{n=1} * 10^{n=1} + D_{n=0} * 10^{n=0}$$

 $D_3 D_2 D_1 D_0 = D_3 * 10^3 + D_2 * 10^2 + D_1 * 10^1 + D_0 * 10^0$ Example: $4967 = 5*10^3 + 9*10^2 + 6*10^1 + 7*10^0$

Binary Number System

BASE = 2

- It is Very Efficient for Computers, but not for human.
- The digital computer represents all data and information in the form of a binary digit.
- Binary Number system consists of two symbols '0' and '1' that represent quantities.
- It has a base of 2: i.e. a binary number can be represented in a combination of binary digit i.e. 0 & 1 (no more digits are there).
- Each place value in binary number has a power of 2.
- Example: $(1010)_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$

https://examston.com/2018/09/27/number-system-in-a-comp

Digit Representation (Binary)

□Number Systems

- Numbers are used to represent a magnitude of any parameter.
- Each number can be represented with a base and value/multiplier.

$$X = D_3 D_2 D_1 D_0 \qquad X = \sum_{0}^{n-1} \left(D_n * B^n \right)$$
t Positions
$$X = D_3 D_3 D_3 D_4 D_5$$
Weight

Example (Binary):

$$D_3 D_2 D_1 D_0 = D_3^*2^3 + D_2^*2^2 + D_1^*2^1 + D_0^*2^0$$

1010 =
$$\mathbf{1}^{*}2^{3} + \mathbf{0}^{*}2^{2} + \mathbf{1}^{*}2^{1} + \mathbf{0}^{*}2^{0} \equiv \mathbf{10}_{10}$$

Binary Number Representations

Example: 4-Bit Binary Number

Binary number system - a system that denotes all numbers and combinations of two digits.

The binary system uses two digits to represent the numbers 0 and 1.

	Computational Code: ASCII								
Intercom com mod they The ASCI	rchange, municat puters, t ern cha support Internet	is ion. telecor racter many Assign chara	a chara ASCII mmunica encodir additio ned Num icter enc	acter cations ng sche nal cha nbers A coding.	encodin codes equipmo emes ar aracters. outhority	g sta reprent, ar e base	ndard resent id other ed on A	for el tex device ASCII, a	rmation lectronic t in es. Most although ame US-
 ASCI 	I is one o	of the	IEEE mil	<u>estone</u>	<u>s</u> .				
	_					Character	Binary Code	Character	Binary Code
• ASCI		Character	Binary Code	Character		Character	Binary Code 01110111	Character	Binary Code 00101101
Character	Binary Code		Binary Code		Binary Code			Character	
Character A	Binary Code 01000001	Character Q	Binary Code 01010001	Character g	Binary Code 01100111	w	01110111	-	00101101
Character A B	Binary Code 01000001 01000010	Character Q R	Binary Code 01010001 01010010	Character g	Binary Code 01100111 01101000	w x	01110111 01111000	-	00101101 00101110
Character A B C	Binary Code 01000001 01000010 01000011	Character Q R S	Binary Code 01010001 01010010 01010011	Character g	Binary Code 01100111 01101000 01101001	w x y	01110111 01111000 01111001	- ;	00101101 00101110 00101111
Character A B C D	Binary Code 01000001 01000010 01000011 01000100	Character Q R S T	Binary Code 01010001 01010010 01010011 01010100	Character g h i	Binary Code 01100111 01101000 01101001 01101010	w x y	01110111 01111000 01111001 01111010	· / 0	00101101 00101110 00101111 00110000
Character A B C D E	Binary Code 01000001 01000010 01000011 01000100 01000101	Character Q R S T	Binary Code 01010001 01010010 01010011 01010100 01010101	Character g h i j	Binary Code 01100111 01101000 01101001 01101010 01101011	w x y	01110111 01111000 01111001 01111010 00100001	- / 0	00101101 00101110 00101111 00110000 00110001
Character A B C D E	Binary Code 01000001 01000010 01000011 01000100 01000101 01000110	Character Q R S T U	Binary Code 01010001 01010010 01010011 01010100 01010101 01010110	Character g h i j k	Binary Code 01100111 01101000 01101001 01101010 01101011 011011	w x y z	01110111 01111000 01111001 01111010 00100001 00100010	, / 0 1 2	00101101 00101110 00101111 00110000 00110001 00110010
Character A B C D E F	Binary Code 01000001 01000010 01000011 01000100 01000101 01000110	Character Q R S T U V W	Binary Code 01010001 01010010 01010011 01010100 01010101 01010110 01010111	Character g h i j k l m	Binary Code 01100111 01101000 01101001 01101010 01101011 011011	w x y z !	01110111 01111000 01111001 01111010 00100001 00100010 00100011	/ 0 1 2 3	00101101 00101110 00101111 00110000 00110001 00110010 00110011
Character A B C D F G H	Binary Code 01000001 01000010 01000011 01000101 01000101 01000111 01000111	Character Q R S T U V W X	Binary Code 01010001 01010010 01010011 01010100 01010101 01010110 01010111 01010100	Character g h i j k l m	Binary Code 01100111 01101000 01101001 01101010 01101011 011011	w x y z !	01110111 01111000 01111001 01111010 00100001 00100010 00100011 001001	/ 0 1 2 3 4	00101101 00101110 00101111 00110000 00110001 00110010 00110011 00110100
Character A B C D F G H I	Binary Code 01000001 01000010 01000011 01000100 01000101 01000111 01000111 010010	Character Q R S T U V W X Y	Binary Code 01010001 01010010 01010011 01010101 01010101 01010111 01010111 01011000 01011001	Character g h i j k I m n	Binary Code 01100111 01101000 01101001 01101001 01101011 011011	w x y z ! "	01110111 01111000 01111001 01111010 00100001 00100010 00100011 001001	/ 0 1 2 3 4 5	00101101 00101110 00101111 00110000 00110001 00110010 00110011 00110100 00110101
Character A B C D E F G H I	Binary Code 01000001 01000010 01000011 01000101 01000101 01000110 01000110 010010	Character Q R S T U W X Y Z	Binary Code 01010001 01010010 01010010 01010011 01010100 01010110 01010111 01011000 01011001 01011001	Character g h i j k I m n o	Binary Code 01100111 01101000 01101001 01101001 01101011 011011	w x y z ! "	01110111 01111000 01111001 01111010 00100001 00100010 00100011 001001	- / 0 1 2 3 4 5	00101101 00101110 00101111 00110000 00110001 00110010 00110011 00110100 00110101 00110101
Character A B C C D E F G H J K	Binary Code 01000001 01000010 01000011 01000100 01000101 01000111 010010	Character Q R S T U V W X Y Z a	Binary Code 01010001 01010010 01010010 01010010 01010100 01010101 01010111 01010101 01011000 01011001 01011000	Character g h i j k I m n o	Binary Code 01100111 01101000 01101001 01101001 011011	w x y z ! "	01110111 01111000 01111001 01111010 00100001 00100001 00100011 001001	- / 0 1 2 3 4 5 6	00101101 00101110 00101111 00110000 00110001 00110001 00110010 00110101 00110101 0011011
Character A B C D E F G H I J K L	Binary Code 01000001 01000010 01000010 01000101 01000101 01000110 01000110 010010	Character Q R S T U V W X Y Z a b	Binary Code 01010001 01010010 01010011 01010101 01010101 01010110 01010110 01011000 01011001 01011000 01011000 011100001	Character g h i j k I m n o p q	Binary Code 01100111 01101000 01101001 01101001 01101010 011011	w x y z ! "	01110111 01111000 01111001 01111010 00100001 00100010 00100011 001001	- / 0 1 2 3 4 5 6 7 8	00101101 00101110 00101111 00110000 00110001 00110010 00110010 00110100 00110101 00110110 00110111
Character A B C C D E F G H I J K L	Binary Code 01000001 01000010 01000010 01000101 01000101 01000110 01000101 010010	Character Q R S T U V X Y Z a b c	Binary Code 01010001 01010010 01010010 01010101 01010101 01010111 01010111 01011001 01011001 01011001 01100001 01100001	Character g h i j k I m n o p q r s	Binary Code 01100111 01101000 01101001 01101010 01101011 011011	w x y z ! "	01110111 01111000 01111001 01111010 00100001 00100001 00100010 001001	/ 0 1 2 3 4 5 6 7 8	00101101 00101110 00101111 00110000 00110001 00110010 00110010 00110101 00110110 00110110 00110100 00111000 00111000

Bit Dependent Binary Numbers								
ASCII	AS	CII Co	de:	Cha	racte	r	to	Binary
	۰	0011 0000	0	0100	1111	m	0110	1101
	1	0011 0001	P	0101	0000	n	0110	1110
	2	0011 0010	Q	0101	0001	•	0110	1111
	3	0011 0011	R	0101	0010	p	0111	0000
	4	0011 0100	s	0101	0011	q.	0111	0001
	5	0011 0101	T	0101	0100	r	0111	0010
	6	0011 0110	U	0101	0101	3	0111	0011
	7	0011 0111	v	0101	0110	t	0111	0100
	8	0011 1000	w	0101	0111	u	0111	0101
	9	0011 1001	x	0101	1000	v	0111	0110
		0100 0001	Y	0101	1001	w	0111	0111
	8	0100 0010	z	0101	1010	×	0111	1000
	c	0100 0011		0110	0001	У	0111	1001
	D	0100 0100	b	0110	0010	=	0111	1010
	E	0100 0101	c	0110	0011		0010	1110
	F	0100 0110	a	0110	0100		0010	0111
	· ·	0100 0111		0110	0101		0011	1010
	ж	0100 1000	£	0110	0110	,	0011	1011
	I	0100 1001	g	0110	0111	7	0011	1111
	J	0100 1010	h	0110	1000	1	0010	0001
	к	0100 1011	1	0110	1001		0010	1100
	L	0100 1100	3	0110	1010	-	0010	0010
	м	0100 1101	k	0110	1011	(0010	1000
	N	0100 1110	1	0110	1100)	0010	1001
					ap	ace	0010	0000

Machine Language: Number System

☐Machine language

- Machine code can be developed with the binary number system: a number system with base 2: either a 1 or 0.
- Machine code can also be expressed in hex-format (hexadecimal) a number system with base 16.
- Binary and hex numbers are interrelated and easily to converted from one to another.
- As hex is much more readable and useful than binary it's often used and shown.
- Let us take a binary sequence: 1001111000001010: it can easily be converted to hex by grouping in blocks - each block consisting of four bits.

1001 1110 0000 1010 => 9 $\,$ 14 0 10 which in hex becomes: 9E0A.

How 1s and 0s are generated: Transistor Switching Transistor could be used as a switch In its switching mode, it could be either could be be on or off. Transistor Switch Transistor Switch

Electronic Display

- ☐Electronic Displays are very common in our society.
- ☐The electronic display is used for displaying the numbers and letters
- ☐The words and sentences are also possible to be displayed
- ☐The display may be static or dynamic

□Examples:

- Electronic watch
- Railway notice board

https://www.adefruit.com/product/865 https://hackaday.com/2019/01/12/addressable-7-segment-displays-may-make-multiplexing-a-thing-of-the-put-

Electronic Display

- □Electronic Displays are very common in our society.
- ☐The Display board is developed with "Seven Segment Display Unit (SSDU)".
- □SSDU is developed with a combination of seven LEDs.
- ☐The LEDs in a SSDU is made with a rectangular shape.
- ☐A single SSDU is used to display a number or letter.

7 Segment Display - Pin Out Diagram
https://commons.wikimedia.org/wiki/File-7_Segment_Display_with_Labeled_Segments_sp

Applications: Seven Segment Display

Seven Segment Display

- Depending upon the digit to be displayed, the particular set of LEDs is forward biased.
- By forward biasing different LEDs, we can display the digits 0 through 9.
- To display a zero, the LEDs A, B, C, D, E and F are to be forward biased.
- To light up a 5, we need to forward bias segments A, F, G, C, D.

Seven Segment Display: LED Driver

Seven Segment Display

- The output of a digital circuit is logical '0' or '1'. The '0' means low while '1' means high. In the high state the output voltage is nearly 5 V while in low state, it is almost
- If LED is to be driven by such digital circuit, it can be connected as shown in the
 Fig. 5. When output of digital circuit is high, both ends of LED are at 5 V and it can
 not be forward biased hence will not give light. While when output of digital circuit
 is low, then high current will flow through LED as it becomes forward biased, and it
 will give light.

Seven Segment Display: LED Driver

In practice seven segment displays are used at the output of digital integrated circuits, the output of which is in binary coded decimal form (BCD). Such output has only four lines and it cannot drive seven segments of the displays directly. In such a case a driver circuit is used which is a BCD to 7 segment decoder. It converts 4 BCD lines into 7lines. A typical LED seven segment display with its driver circuit is shown in the Fig. 6. The common anode type display is used.

Seven Segment Display: LED Driver

In practice seven segment displays are used at the output of digital integrated circuits, the output of which is in binary coded decimal form (BCD). Such output has only four lines and it cannot drive seven segments of the displays directly. In such a case a driver circuit is used which is a BCD to 7 segment decoder. It converts 4 BCD lines into 7lines. A typical LED seven segment display with its driver circuit is shown in the Fig. 6. The common anode type display is used.

Seven Segment Display: LED Driver

Notice that, an additional LED corresponding to the decimal point is also provided in the seven segment display, which again has a current limiting series resistance. Hence a positive voltage is applied to the common anode Therefore selected LEDs are illuminated by making their respective

Fig. 6 Typical 7-segment LED display with its driver

Seven Segment Display: LED Driver

Notice additional LED corresponding to the decimal point is also provided in the segment display, which again has a current limiting resistance. series Hence a positive voltage is applied to the common anode. Therefore selected LEDs illuminated by making their respective cathodes low (0 V)

Decimal	Binary DCBA	7 Segment Code a b c d e f g
0	0000	1111110
1	0001	0110000
2	0010	1101101
3	0011	1111001
4	0100	0110011
5	0101	1011011
6	0110	0011111
7	0111	1110000
8	1000	1111111
9	1001	1110011

