MODELOS DE VARIABLES ALEATORIAS

1. Modelos de variables aleatorias discretas

1.1. Variable aleatoria de Bernoulli

La variable aleatoria de Bernoulli se utiliza para modelar un experimento con dos posibles resultados, denominados respectivamente éxito y fracaso. Usualmente se asigna el valor 1 para el éxito y el valor 0 para el fracaso. Se supone que el éxito aparece con probabilidad $p \in (0,1)$ y por tanto, el fracaso con probabilidad q = 1 - p. Este tipo de experimentos se denominan experimentos de Bernoulli.

Más formalmente, una variable aleatoria X sigue una distribución de Bernoulli de parámetro $p \in (0,1)$, si su función de probabilidad es:

$$P(X = 0) = 1 - p \text{ y } P(X = 1) = p.$$

Se denotará $X \sim \text{Be}(p)$.

Para esta variable aleatoria se tiene:

- $E(X^r) = p, \ \forall r > 0.$
- En particular, E(X) = p y Var(X) = pq.
- $M_X(t) = E(e^{tX}) = pe^t + q$

1.2. Variable aleatoria binomial

Supongamos un experimento de Bernoulli que es repetido n veces. Se supondrá además que los experimentos son (mutuamente) independientes y que la probabilidad de éxito, p, se mantiene constante en las n repeticiones. La variable aleatoria

X = número de éxitos en los n ensayos Bernoulli

es una variable aleatoria binomial de parámetros n y p. Se denota $X \sim Bi(n,p)$.

Obviamente, si n = 1 la variable binomial coincide con la distribución binomial.

La función de probabilidad de una variable $X \sim Bi(n, p)$ es:

$$P(X = k) = \binom{n}{k} p^k q^{n-k}, \ k = 0, \dots, n, \text{ con } q = 1 - p.$$

Se verifica:

- $M_X(t) = (q + pe^t)^n.$
- E(X) = np y Var(X) = npq.
- Reproductividad: Si $X_1 \sim Bi(n_1, p)$ y $X_2 \sim Bi(n_2, p)$ son independientes, entonces $X_1 + X_2 \sim Bi(n_1 + n_2, p)$.

1.3. Variable aleatoria geométrica

Supongamos un experimento de Bernoulli que puede ser repetido indefinidamente. Supondremos también que los experimentos son mutuamente independientes y que la probabilidad de éxito, $p \in (0,1)$ se mantiene constante en todos los experimentos. La variable aleatoria

X = n'umero de fracasos hasta que por primera vez se obtiene un éxito

es una variable aleatoria geométrica de parámetro p y se denota $X \sim Ge(p)$.

La función de probabilidad de una variable $X \sim Ge(p)$ es:

$$P(X = k) = q^k p, \ k = 0, 1, \dots$$

Se verifica:

- $M_X(t) = p/(1 qe^t)$ $t < -\ln(q)$.
- $E(X) = q/p, Var(X) = q/p^2.$
- La familia de distribuciones geométricas no es reproductiva.

1.4. Variable aleatoria binomial negativa

Es una generalización de la distribución geométrica. La situación experimental es similar a la caso de un experimento geométrico, es decir, se tiene un experimento de Bernoulli que puede ser repetido indefinidamente de tal forma que los ensayos sean independientes entre sí y que la probabilidad de éxito, $p \in (0,1)$, se mantenga inalterada. La variable:

X = número total de fracasos hasta que se obtienen r éxitos

es una variable aleatoria binomial negativa de parámetros r y p. Se denota $X \sim BN(r, p)$.

La función de probabilidad de una variable $X \sim BN(r, p)$ es:

$$P(X = k) = {k + r - 1 \choose k} q^k p^r, \ k = 0, 1, \dots$$

Nótese que si r=1 la variable X es geomérica de parámetro p. Se verifica:

- $M_X(t) = p^r/(1 e^t q)^r$ $t < -\ln(q)$
- E(X) = rq/p, $Var(X) = rq/p^2$
- Reproductividad: Si $X_1 \sim BN(n_1, p)$ y $X_2 \sim BN(n_2, p)$ son independientes, entonces $X_1 + X_2 \sim BN(n_1 + n_2, p)$.

1.5. Variable aleatoria de Poisson

Una variable aleatoria X que toma valores en los enteros no negativos y que tiene una función de probabilidad de la forma

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \dots$$

es una variable aleatoria de Poisson de parámetro $\lambda > 0$. Se denota $X \sim Po(\lambda)$.

La distribución de Poisson es un caso límite de la distribución binomial. Sean $X_n \sim Bi(n, p_n)$ con $p_n = \lambda/n$, con $\lambda > 0$. La función de probabilidad de X_n es:

$$P(X_n = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}, \ k = 0, \dots, n,$$
 (1)

si hacemos tender n (número de ensayos de Bernoulli) a infinito en (1) se obtiene:

$$\lim_{n} P(X_n = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \text{ para todo } k \ge 0 \text{ entero.}$$

Por lo tanto, la distribución de Poisson puede entenderse como el límite de probabilidades binomiales cuando el número de ensayos tiende a infinito y la probabilidad de exito tiende a cero, manteniéndose constante el valor esperado $\lambda = np_n$.

Se verifica:

- $M_X(t) = \exp \{\lambda(e^t 1)\}, \forall t \in \mathbb{R}$
- $E(X) = Var(X) = \lambda$.
- Reproductividad: Si $X_1 \sim Po(\lambda_1)$ y $X_2 \sim Po(\lambda_2)$ son independientes, entonces $X_1 + X_2 \sim Po(\lambda_1 + \lambda_2)$.

1.6. Variable aleatoria hipergeométrica

Consideremos un conjunto finito con N elementos, de los cuales, N_1 son de $tipo\ I$ y $N_2 = N - N_1$ de $tipo\ II$. De la población se extrae una muestra de $n \le N$ elementos, sin reemplazamiento y sin considerar el orden como característica diferenciadora de las muestras, de forma que todas las posibles combinaciones sean equiprobables. La variable aleatoria

X = número de elementos de tipo I en la muestra extraida

es una variable hipergeométrica y se denotará $X \sim \mathcal{H}(N_1, N_2; n)$.

La función de probabilidad de la variable hipergeométrica es:

$$P(X = k) = \frac{\binom{N_1}{k} \binom{N_2}{n-k}}{\binom{N}{n}}$$

para $\max\{0, n + N_1 - N\} \le k \le \min\{n, N_1\}.$

Se verifica:

- E(X) = np, con $p = N_1/N$
- Var(X) = npq(N-n)/(N-1), con q = 1 p.

1.7. Variable aleatoria uniforme discreta en N puntos

Sean x_1, \ldots, x_N puntos distintos de \mathbb{R} . Diremos que la variable aleatoria discreta X tiene una distribución uniforme en los N puntos antes mencionados si a todos ellos se le asigna la misma probabilidad, es decir:

$$P(X = x_k) = 1/N, \ k = 1, \dots, N.$$

Un caso de particular interés en ciertas aplicaciones ocurre cuando $x_k = k, k = 1, ..., N$. En este caso se suele denotar $X \sim UD\{1, ..., N\}$. Para esta variable se tiene:

- E(X) = (N+1)/2.
- $E(X^2) = (N+1)(2N+1)/6.$
- $Var(X) = (N^2 1)/12$.

2. Modelos de variables aleatorias absolutamente continuas

2.1. Variable aleatoria uniforme

Diremos que la la variable aleatoria X se distribuye uniformemente en el intervalo (a, b) con $a, b \in \mathbb{R}$, a < b, si es absolutamente continua con función de densidad,

$$f(x) = \frac{1}{b-a} I_{[a,b]}(x), \ x \in \mathbb{R}.$$

y denotaremos $X \sim \mathcal{U}(a, b)$.

La variable aleatoria $X \sim \mathcal{U}(a, b)$ modela la selección al azar de un punto en el intervalo (a, b). La correspondiente función de distribución es:

$$F(x) = \begin{cases} 0, & x \le a \\ \frac{x-a}{b-a}, & a < x \le b \\ 1, & x \ge b \end{cases}$$

Se tiene además:

• Momentos ordinarios de orden k:

$$E(X^k) = \frac{b^{k+1} - a^{k+1}}{(b-a)(k+1)}, \ k \ge 0$$

• Esperanza, momento ordinario de segundo orden y varianza:

$$E(X) = \frac{a+b}{2}$$
; $E(X^2) = \frac{b^2 + ab + a^2}{3}$; $Var(X) = \frac{(b-a)^2}{12}$.

Un caso particular, que aparece con frecuencia es el que se tiene cuando (a, b) = (0, 1), siendo entonces $f = I_{[0,1]}$.

2.2. Variable aleatoria exponencial

Diremos que X tiene una distribución exponencial de parámetro $\lambda > 0$ si es absolutamente continua con función de densidad:

$$f(x) = \lambda e^{-\lambda x} I_{(0,+\infty)}(x)..$$

Se denotará $X \sim \text{Exp}(\lambda)$.

La función de distribución de $X \sim Exp(\lambda)$ es

$$F(x) = (1 - e^{-\lambda x}) I_{(0,+\infty)}(x).$$

Se verifica:

lacktriangle Momentos ordinarios de orden k:

$$E(X^k) = \frac{k!}{\lambda^k}, \ k \ge 0.$$

• Esperanza, momento ordinario de segundo orden y varianza:

$$E(X) = \frac{1}{\lambda}; \ E(X^2) = \frac{2}{\lambda^2}; \ Var(X) = \frac{1}{\lambda^2}.$$

• Función generatriz de momentos:

$$M_X(t) = \left(1 - \frac{t}{\lambda}\right)^{-1}, \quad t < \lambda.$$

La familia de distribuciones exponenciales no es reproductiva.

2.3. Variable aleatoria Gamma

Diremos que la variable aleatoria X se distribuye según una distribución Gamma de parámetros p > 0 y $\lambda > 0$, si es absolutamente continua, con función de densidad,

$$f(x) = \frac{\lambda^p}{\Gamma(p)} e^{-x^{p-1}} I_{(0,+\infty)}(x), \ \lambda > 0, \ p > 0.$$

Se denotará $X \sim \operatorname{Ga}(p, \lambda)$.

En la anterior definición, $\Gamma(p)$ denota la función gamma, definida como:

$$\Gamma(p) = \int_0^{+\infty} x^{p-1} e^{-x} dx, \quad p > 0.$$

Algunas propiedades básicas de la función gamma son:

- $\Gamma(1) = 1$
- $\Gamma(p) = (p-1)\Gamma(p-1), p > 1$
- $\Gamma(n) = (n-1)!, \ n \in \mathbb{N}$

$$\quad \blacksquare \ \Gamma(\tfrac{1}{2}) = \sqrt{\pi}$$

Fácilmente se comprueba que f cumple los requisitos para ser función de densidad. Se tiene además:

 \blacksquare Momentos ordinarios de orden k.

$$E(X^k) = \frac{\Gamma(k+p)}{\lambda^k \Gamma(p)}, \ k \ge 0.$$

• Esperanza, momento ordinario de segundo orden y varianza:

$$E(X) = \frac{p}{\lambda}; \quad E(X^2) = \frac{p(p+1)}{\lambda^2}; \quad Var(X) = \frac{p}{\lambda^2}$$

• Función generatriz de momentos:

$$M_X(t) = \left(1 - \frac{t}{\lambda}\right)^{-p}, \quad t < \lambda.$$

■ Reproductividad: Si $X_1 \sim \operatorname{Ga}(p_1, \lambda)$ y $X_2 \sim \operatorname{Ga}(p_2, \lambda)$ son independientes, entonces $X_1 + X_2 \sim \operatorname{Ga}(p_1 + p_2, \lambda)$.

2.4. Variable aleatoria Beta

Diremos que la variable aleatoria X se distribuye según una distribución Beta de parámetros a > 0 y b > 0, lo que denotaremos $X \sim \text{Be}(a, b)$, si es absolutamente continua, con función de densidad;

$$f(x) = \frac{1}{\beta(a,b)} x^{a-1} (1-x)^{b-1} I_{(0,1)}(x).$$

En la definición anterior $\beta(a,b)$ representa la función beta, definida como,

$$\beta(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx, \quad a,b > 0$$

y que presenta interesantes propiedades, entre ellas, la siguiente relación con la función Gamma:

$$\beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

Fácilmente se comprueba que f es una función de densidad. Se tiene además:

 \blacksquare Momentos ordinarios de orden k.

$$E(X^k) = \frac{\beta(a+k,b)}{\beta(a,b)}, \quad k \ge 0$$

• Esperanza, momento ordinario de segundo orden y varianza.

$$E(X) = \frac{a}{a+b}; \ E(X^2) = \frac{a(a+1)}{(a+b)(a+b+1)}; \ Var(X) = \frac{ab}{(a+b)^2(a+b+1)}.$$

- Si a = b = 1 entonces $X \sim U(0, 1)$.
- Si $X \sim \text{Be}(a, b)$ entonces $Y = (1 X) \sim \text{Be}(b, a)$.

2.5. Variable aleatoria de Cauchy

Diremos que la variable aleatoria X se distribuye según una distribución de Cauchy, lo que denotaremos $X \sim \text{Ca}(0,1)$, si es absolutamente continua, con función de densidad,

$$f(x) = \frac{1}{\pi} \frac{1}{1+x^2}, \ x \in \mathbb{R}$$

La función de distribución correpondiente,

$$F(x) = \int_{-\infty}^{x} f(t) dt = \frac{1}{\pi} \operatorname{arctg}(x) + \frac{1}{2}, \ x \in \mathbb{R}.$$

La distribución de Cauchy no tiene momentos de primer orden (ni de orden superiores) finito.

2.6. Variable aleatoria normal univariante

Diremos que la variable aleatoria Z se distribuye según una distribución normal de parámetros 0 y 1, lo que denotaremos $Z \sim \mathcal{N}(0, 1)$, si es absolutamente continua, con función de densidad,

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^2\right), \ x \in \mathbb{R}.$$

La correspondiente función de distribución es

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{1}{2}t^{2}\right) dt.$$

Algunas propiedades de esta variable son:

- φ es una función par, i.e., es simétrica respecto al cero: $\varphi(x) = \varphi(-x), \ \forall x \in \mathbb{R}$.
- $\Phi(-x) = 1 \Phi(x), \, \forall x \in \mathbb{R}.$
- E(Z) = 0; Var(Z) = 1.
- $M_Z(t) = \exp(\frac{1}{2}t^2), t \in \mathbb{R}$

Más variables aleatorias normales pueden obtenerse mediante transformaciones afines de una variable $Z \sim \mathcal{N}(0, 1)$:

Si $Z \sim \mathcal{N}(0,1)$ y $\mu, \sigma \in \mathbb{R}$ con $\sigma > 0$, sea $X = \mu + \sigma Z$. La función de distribución de X será pues,

$$F_X(x) = P(X \le x) = P\left(Z \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{x - \mu}{\sigma}} \exp\left(-\frac{1}{2}t^2\right) dt, \forall x \in \mathbb{R}$$

y mediante el cambio de variables $t=(s-\mu)/\sigma,$ se obtiene

$$F_X(x) = \int_{-\infty}^x \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(s-\mu)^2}{2\sigma^2}\right) ds$$

por lo que la variable aleatoria X es absolutamente continua y tiene como función de densidad,

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \ t \in \mathbb{R}$$

y diremos que sigue una distribución normal de parámetros μ y σ^2 , denotándose $X \sim \mathcal{N}(\mu, \sigma^2)$. La variable aleatoria $X \sim \mathcal{N}(\mu, \sigma^2)$ verifica:

•
$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$
 (estandarización).

• La fdd de
$$X$$
 es: $f(x) = \frac{1}{\sigma} \varphi\left(\frac{x-\mu}{\sigma}\right)$.

- f(x) es una función simétrica respecto a μ , i.e., $f(x) = f(2\mu x)$.
- $E(X) = \mu; Var(X) = \sigma^2.$
- $M_X(t) = \exp(t\mu + \frac{1}{2}\sigma^2 t^2), t \in \mathbb{R}.$
- Reproductividad: Si $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ y $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ son independientes, entonces $X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

3. Utilización en R

La siguiente tabla muestra los nombres en R de las funciones asociadas a los modelos clásicos de probabilidad.

Distribución	Nombre	Argumentos
Binomial	binom	size=n, prob=p
Geométrica	geom	prob = p
Binomial Negativa	nbinom	size=r, prob=p
Poisson	pois	$lambda=\lambda$
Hipergeométrica	hyper	$m = N_1, n = N_2, k = n$
Uniforme	unif	min=a, max=b
Exponencial	exp	$rate = \lambda$
Gamma	gamma	shape=p, rate= λ , scale=1/rate
Beta	beta	shape1=a, shape2=b
Cauchi	cauchy	location=0, scale=1
Normal	norm	$mean = \mu, sd = \sigma$

Dependiendo de lo que se quiera calcular, las funciones anteriores llevan asociados los siguientes prefijos:

- "d": función de probabilidad (caso discreto) y función de densidad (caso continuo).
- "p": función de distribución.
- "q": percentiles o inversa de la función de distribución, es decir, los puntos críticos.
- "r": generación de valores de la variable aleatoria.

Otro argumento opcional es lower.tail, es una argumento lógico. Si TRUE (defecto) calcula probabilidades $P[X \le x]$, en otro caso P[X > x]

A continuación pondremos ejemplos de como utilizar estas funciones.

3.1. Cálculo de probabilidades

Binomial: P(X = x) con $X \sim B(n, p)$ es dbinom(x,n,p)

```
#P(X=3) con X~B(5,0.5)

dbinom(3,5,0.5)

## [1] 0.3125
```

Binomial: $P(X \le x)$ con $X \sim B(n, p)$ es pbinom(x,n,p)

```
#P(X<=3) con X~B(5,0.5)
pbinom(3,5,0.5)
## [1] 0.8125
```

Hipergeométrica: P(X = x) con $X \sim H(N_1, N_2, n)$ es dhyper(x, N_1, N_2, n)

```
#P(X=3) con X~H(13,5,6)

dhyper(3,13,5,6)

## [1] 0.1540616
```

Binomial Negativa: $P(X \le x)$ con $X \sim BN(r, p)$ es pbinom(x,r,p)

```
#P(X<=2) para X~BN(10,0.1)

pnbinom(2,10,0.1)

## [1] 5.455e-09
```

Poisson: P(X = x) con $X \sim P(\lambda)$ es dpois (x,λ)

```
#P(X=2) para X~Exp(3)
dpois(2,3)
## [1] 0.2240418
```

Uniforme: P(X > x) con $X \sim U(a,b)$ es punif(x,a,b,lower.tail=FALSE)

```
#P(X>10) para X~U(8,12)
punif(10,8,12,lower.tail = FALSE)
## [1] 0.5
```

Exponencial: $P(x_1 < X \le x_2)$ con $X \sim Exp(\lambda)$ es $pexp(x_2, \lambda)$ - $pexp(x_1, \lambda)$

```
#P(3<X<=12) con X~Exp(1/8)
pexp(12,1/8)-pexp(3,1/8)

## [1] 0.4641591
```

Gamma: $F(x) = P(X \le x) \text{ con } X \sim Ga(p, \lambda) \text{ es pgamma}(x,p,\lambda) \text{ ó pgamma}(x,p, 1/\lambda)$

```
#F(1)=P(X<=1) para X~G(2,4)

pgamma(1,2,4)

## [1] 0.9084218

pgamma(1,2,,1/4)

## [1] 0.9084218
```

Beta: $f(x) \operatorname{con} X \sim \beta(a, b)$ es dbeta(x,a,b)

```
#f(0.4) para X~beta(2,1)
dbeta(0.4,2,1)

## [1] 0.8
```

Cauchy: $F(x) = P(X \le x) \text{ con } X \sim Ca(0,1) \text{ es pcauchy(x,0,1) \'o pcauchy(x)}$

```
#F(0.3) para X~Ca(0,1)
pcauchy(0.3,0,1)

## [1] 0.5927736

pcauchy(0.3)

## [1] 0.5927736
```

Normal: $P(x_1 < X \le x_2)$ con $X \sim N(\mu, \sigma^2)$ es pnorm (x_2, μ, σ) pnorm (x_1, μ, σ)

```
#P(8<X<=20) con X~N(15,9)
pnorm(20,15,3)-pnorm(8,15,3)
## [1] 0.9423943
```

3.2. Percentiles

```
#percentil 50 de X~U(8,12)
qunif(0.5,8,12)
## [1] 10
```

```
#percentil 15 de X~N(6,1.2^2)
qnorm(0.15,6,1.2)
## [1] 4.75628
```

```
#percentil 70 de X~Beta(2,1)
qbeta(0.7,2,1)
## [1] 0.83666
```

3.3. Generación de números aleatorios

Generación de n números aleatorios según una variable $X \sim N(\mu, \sigma)$

```
#Generaci\'on de 15 valores aleatorios de X~N(5,9^2)
datos=rnorm(15,5,9)
datos
                               5.8817107
##
    [1] -2.6155271
                     3.2694986
                                            9.7568923 -1.6145975
##
   [6]
         4.1759528
                     7.3968089 23.4201628
                                            0.4326755
                                                      1.8420507
## [11] -10.7479277
                     6.3083266 11.1603728 -4.8415184 17.6795124
```

4. Utilización en Excel

4.1. Función de distribución ó densidad

La siguiente tabla muestra los nombres en excel de las funciones (de distribución ó densidad) asociadas a los modelos clásicos de probabilidad.

Distribución	Nombre	Argumentos
Binomial	DISTR.BINOM.N(k;n;p;acum)	k=núm-éxitos, n=ensayos, p=prob-éxito
Binomial Negativa	NEGBINOM.DIST(k;r;p;acum)	k=núm-fracasos=k, r=núm-éxitos, p=prob-éxito
Poisson	POISSON.DIST(x; λ ;acumulado)	λ =media
Hipergeométrica	DISTR.HIPERGEOM.N(k; N_1 ; N ;acum)	k=muestra-éxito, n=núm-de-muestra,
		N_1 =población-éxito, N =núm-de-población
Exponencial	DISTR.EXP.N $(x;\lambda;acum)$	$\lambda = lambda$
Gamma	DISTR.GAMMA.N $(x;p;1/\lambda;acum)$	p=alpha, $1/\lambda$ =beta
Beta	DISTR.BETA.N(x;a;b;acumulativo)	a=alpha, b=beta
Normal	DISTR.NORM.N(x; μ ; σ ;acum)	μ =media, σ =desv-estándar

La opción **Acumulado** (acum ó acumulativo) es Obligatoria. Un valor lógico que determina la forma de la distribución de probabilidad devuelta. Si el argumento acumulado es VERDADERO, la función devuelve la función de distribución; si el argumento acumulado es FALSO, la función devuelve la función de probabilidad (discreto) ó densidad (continuo).

4.2. Percentiles

Distribución	Nombre	Argumentos
Binomial	$INV.BINOM(n;p;\alpha)$	n=ensayos, p=prob-éxito, $\alpha = P[X \le x]$
Gamma	INV.GAMMA $(\alpha,p,1/a)$	p=alpha, $1/a$ =beta, prob= α
Beta	INV.BETA.N(α ;a;b)	a=alpha, b=beta, α =prob
Normal	INV.NORM $(\alpha; \mu; \sigma)$	μ =media, σ =desv-estándar, α =prob

4.3. Ejemplos

- $P(X = 3) \text{ con } X \sim B(5, 0.5)$: DISTR.BINOM.N(3;5;0,5;FALSO)=0.3125
- $P(X \le 3) \text{ con } X \sim B(5, 0.5)$: DISTR.BINOM.N(3;5;0,5;VERDADERO)=0.8125
- $P(X = 3) \text{ con } X \sim H(13, 5, 6)$: DISTR.HIPERGEOM.N(3;6;13;18;FALSO)=0.15406162
- $P(X \le 2)$ con $X \sim BN(10, 0.1)$: NEGBINOM.DIST(2;10;0,1VERDADERO) =5,455E-09
- P(X = 2) con $X \sim P(3)$: POISSON.DIST(2;3;FALSO) =0.22404181

- $P(3 < X \le 12)$ con $X \sim Exp(1/8)$: DISTR.EXP.N(12;1/8;VERDADERO)-DISTR.EXP.N(3;1/8;VERDADERO)=0.46415912
- $F(1) = P(X \le 1)$ con $X \sim Ga(2,4)$: DISTR.GAMMA.N(1;2;1/4;VERDADERO) =0.90842181
- f(0.4) con $X \sim \beta(2, 1)$: DISTR.BETA.N(0,4;2;1;FALSO)=0.8
- $P(8 < X \le 20) \text{ con } X \sim N(15, 3^2)$: DISTR.NORM.N(20;15;3;VERDADERO)-DISTR.NORM.N(8;15;3;VERDADERO) =0.94239432
- Percentil 15 de $X \sim N(6, 1.2^2)$ INV.NORM(0.15;6;1.2)=4.75627993
- Percentil 70 de $X \sim \beta(2,1)$ INV.BETA.N(0.7;2;1)=0.83666