PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-264618

(43)Date of publication of application: 18.09.2002

(51)Int.CI.

B60C 23/04

G01L 17/00

(21)Application number: 2001-060379

(71)Applicant :

PACIFIC IND CO LTD

(22)Date of filing:

05.03.2001

(72)Inventor:

OKUBO YOICHI

(54) TIRE AIR PRESSURE SENSOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a tire air pressure sensor equipped with a travel sensor with such high reliability that it prevents imperfect contact, as compared with conventional switch contact types, by detecting the travel of a vehicle not by a conventional mechanical contact opening/closing method, but by a highly reliable method of detecting it from changes in electrostatic capacity.

SOLUTION: The tire air pressure sensor comprises a pressure sensor 1 for detecting the pneumatic pressure of a tire, a travel sensor 2 for detecting the travel of the vehicle, an electronic circuit part 3 for transmitting the detected pressure to a receiver on the vehicle body by means of electric waves, and a battery 4 or the like for actuating the electronic circuit part 3. The travel sensor 2 is formed of a fixed electrode 5 and an opposite movable electrode 6 and determines that the vehicle is traveling when the electronic circuit part 3 detects a change in electrostatic capacity between the fixed electrode 5 and the movable electrode 6 caused by the displacement of the movable electrode 6 due to either a centrifugal force or acceleration produced by the rotation of the tire.

LEGAL STATUS

[Date of request for examination]

06.12.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The pressure sensor 1 which detects the pneumatic pressure of a tire, and the transit sensor 2 which detects transit of a car, In the tire pneumatic sensor which consists of cell 4 grade for operating the electronic-circuitry section 3 of transmitting the detection pressure force to the receiver by the side of a car body through radio, and the electronic-circuitry section 3 concerned The transit sensor 2 concerned is formed with the movable electrode 6 which comes to carry out phase opposite with a fixed electrode 5. The tire pneumatic sensor constituted that it should detect that the electrostatic capacity between a fixed electrode 5 and a movable electrode 6 changes in said electronic-circuitry section 3, and should judge with a run state with the variation rate produced in a movable electrode 6 with the centrifugal force or acceleration by rotation of a tire.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the tire pneumatic sensor which can check the condition of the pneumatic pressure in the tire for automobiles by the vehicle room side.

[0002]

[Description of the Prior Art] In the conventional tire pneumatic sensor, as shown in drawing 3, when the centrifugal switch 7 was formed between the cell 4 and the electronic circuitry 3 and the travel speed became for example, 20 km/h, the centrifugal switch 7 was turned on, and the power source of the electronic-circuitry section 3 was turned on, and it had become the configuration that the actuation as a tire pneumatic sensor started.

[0003] It is an example of the centrifugal switch 7 concerned, and <u>drawing 4</u> is a centrifugal force by transit, and the migration child 8 overcomes and moves to the force of a spring 9, and it is constituted that a contact 10 and a contact 11 should be made switch-on. There were problems, like in such a configuration, since the usual consumed electric current of an electronic circuitry is as small as several microA, it is necessary to make a contact 10 and a contact 11 into high-reliability extremely or, since a certain amount of magnitude is required for the migration child 8 and a spring 9, the own configuration of a tire pneumatic sensor becomes large, or cost becomes high in order to make it structure which ceases against the vibration in a tire or an impact.

[0004]

[Problem(s) to be Solved by the Invention] This invention was not made in order to solve the above troubles, and it tends to offer the tire pneumatic sensor which adopted the method which is not a mechanical contact closing motion method like before, and detects a run state by change of reliable electrostatic capacity.

[0005]

[Means for Solving the Problem] The pressure sensor with which the pneumatic sensor of this invention detects the pneumatic pressure of a tire. The transit sensor which detects transit, and the electronic-circuitry section which transmits a tire pressure to the receiver by the side of a car body through radio while calculating and processing the sensor signal concerned. Consist of a cell for operating the electronic-circuitry section concerned etc., carry out phase opposite of the transit sensor concerned with a fixed electrode, and it forms with a movable electrode. It constitutes that the thing which arise in a movable electrode and which it bends and the electrostatic capacity between a fixed electrode and a movable electrode changes with variation rates should be detected in said electronic-circuitry section, and should be judged to be a run state with the centrifugal force or acceleration by rotation of a tire. [0006]

[Embodiment of the Invention] Hereafter, the example of this invention is explained based on a drawing. The pressure sensor 1 which drawing 1 is the block diagram of the tire pneumatic sensor of this invention, and detects the pneumatic pressure of a tire, While processing the electrostatic-capacity change by the transit sensor 2 which detects the transit which consists of a fixed electrode 5 and a movable electrode 6, and the transit sensor 2 concerned and judging transit initiation or a halt It responds to the result, the signal of a pressure sensor 1 is calculated and processed, and it consists of cell 4 grades for operating the electronic-circuitry section 3 which transmits to the receiver by the side of a car body through radio, and the electronic-circuitry section 3 concerned.

[0007] Drawing 2 is the structure section Fig. of said transit sensor 2, and is formed from the movable electrode 6 which bends with the centrifugal force or acceleration by rotation of a fixed electrode 5 and a tire, and produces a variation rate.

[Function of the Invention] According to the pneumatic sensor of this invention, it can be bent by the centrifugal force or acceleration by rotation of a tire in a movable electrode, and a variation rate can be produced, consequently the electrostatic capacity between movable electrodes and fixed electrodes concerned can change, and the transit start of a vehicle can be detected by detecting it in an electronic circuitry.

[8000]

[Effect of the Invention] As mentioned above, since the tire pneumatic sensor of this invention is the structure of detecting the electrostatic-capacity change between the movable electrodes and fixed electrodes which are produced with the centrifugal force or acceleration by rotation of a tire in an electronic circuitry, there is no trouble by the poor contact of a contact like a switch-contact method, and a very reliable tire pneumatic sensor with a transit sensor can be offered.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

- [Drawing 1] The block diagram of the tire pneumatic sensor by this invention.
- [Drawing 2] The structure section Fig. of the transit sensor which constitutes the tire pneumatic sensor by this invention.
- [Drawing 3] The block Fig. of the tire pneumatic sensor at the time of using the conventional centrifugal switch.
- [Drawing 4] The structure section Fig. of the conventional centrifugal switch.

[Description of Notations]

- 1 Pressure Sensor
- 2 Transit Sensor
- 3 Electronic-Circuitry Section
- 4 Cell
- 5 Fixed Electrode
- 6 Movable Electrode
- 7 Centrifugal Switch
- 8 Migration Child
- 9 Spring
- 10 Contact
- 11 Contact

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-264618 (P2002-264618A)

(43)公開日 平成14年9月18日(2002.9.18)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

B60C 23/04

G01L 17/00

B60C 23/04

2F055

G01L 17/00

В

審査請求 未請求 請求項の数1 OL (全 3 頁)

(21)出願番号

特顧2001-60379(P2001-60379)

(71)出願人 000204033

太平洋工業株式会社

岐阜県大垣市久徳町100番地

(22)出願日 平成13年3月5日(2001.3.5)

(72)発明者 大久保 陽一

岐阜県大垣市久徳町100番地 太平洋工業

株式会社内

Fターム(参考) 2F055 AA12 BB19 CC60 DD20 EE40

FF49 GG31

(54)【発明の名称】 タイヤ空気圧センサー

(57)【要約】

本発明は、走行状態を従来のような機械式の 接点開閉方式ではなく、信頼性の高い静電容量の変化で 検出する方式を採用することにより、従来のスイッチ接 点方式に比べて接点の接触不良が起きない、極めて信頼 性の高い走行センサー付きタイヤ空気圧センサーを提供 しようとするものである。

【解決手段】 タイヤの空気圧を検出する圧力センサー 1と、車両の走行を検知する走行センサー2と、検出圧 力を電波で車体側の受信機に送信する等の電子回路部3 と、当該電子回路部3を作動させるための電池4等から なるタイヤ空気圧センサーにおいて、当該走行センサー 2を固定電極5と相対向してなる可動電極6とで形成 し、タイヤの回転による遠心力または加速度によって可 動電極6に生じる変位によって固定電極5と可動電極6 の間の静電容量が変化することを前記電子回路部3で検 出して走行状態と判定すべく構成したタイヤ空気圧セン サーである。

1

【特許請求の範囲】

【請求項1】タイヤの空気圧を検出する圧力センサー1 と、車両の走行を検知する走行センサー2と、検出圧力 を電波で車体側の受信機に送信する等の電子回路部3 と、当該電子回路部3を作動させるための電池4等から なるタイヤ空気圧センサーにおいて、

当該走行センサー2を固定電極5と相対向してなる可動 電極6とで形成し、タイヤの回転による遠心力または加 速度によって可動電極6に生じる変位によって固定電極 子回路部3で検出して走行状態と判定すべく構成したタ イヤ空気圧センサー。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、自動車用タイヤ内 の空気圧の状態を車室側で確認できるタイヤ空気圧セン サーに関するものである。

[0002]

【従来の技術】従来のタイヤ空気圧センサーでは、図3 に示すように、遠心力スイッチ7を電池4と電子回路3 の間に設け、走行速度が例えば20km/hになると、 遠心力スイッチ7が〇Nになり、電子回路部3の電源が 入り、タイヤ空気圧センサーとしての動作が始まる構成 になっていた。

【0003】図4は、当該遠心力スイッチ7の一例で、 走行による遠心力で、移動子8がばね9の力に打ち勝っ て移動し、接点10と接点11を導通状態にすべく構成 されている。このような構成の場合、電子回路の通常の 消費電流が数μΑと小さいため、接点10と接点11を 極めて高信頼性にする必要があるとか、移動子8とばね 30 9にある程度の大きさが必要であるために、タイヤ空気 圧センサー自身の形状が大きくなるとか、タイヤ内の振 動や衝撃に絶えるような構造にするために、コストが髙 くなるなどの問題があった。

[0004]

【発明が解決しようとする課題】本発明は、上記のよう な問題点を解決するためになされたもので、走行状態を 従来のような機械式の接点開閉方式ではなく、信頼性の 高い静電容量の変化で検出する方式を採用したタイヤ空 気圧センサーを提供しようとするものである。

[0005]

【課題を解決するための手段】本発明の空気圧センサー は、タイヤの空気圧を検出する圧力センサーと、走行を 検知する走行センサーと、当該センサー信号を演算・処 理すると共にタイヤ空気圧を電波で車体側の受信機に送 信する電子回路部と、当該電子回路部を作動させるため の電池等からなり、当該走行センサーを固定電極と相対 向して可動電極とで形成し、タイヤの回転による遠心力 または加速度によって可動電極に生じるたわみ変位によ って固定電極と可動電極の間の静電容量が変化すること 50

を前記電子回路部で検出して走行状態と判断すべく構成 したものである。

[0006]

【発明の実施の形態】以下、本発明の実施例を図面に基 づいて説明する。図1は、本発明のタイヤ空気圧センサ ーの構成図で、タイヤの空気圧を検出する圧力センサー 1と、固定電極5と可動電極6からなる走行を検知する 走行センサー2と、当該走行センサー2による静電容量 変化を処理し、走行開始または停止を判定するととも 5と可動電極6の間の静電容量が変化することを前記電 10 に、その結果に応じて圧力センサー1の信号を演算・処 理し、電波で車体側の受信機に送信する電子回路部3 と、当該電子回路部3を作動させるための電池4等から 構成されている。

> 【0007】図2は、前記走行センサー2の構造断面図 で、固定電極5とタイヤの回転による遠心力または加速 度によりたわみ変位を生ずる可動電極6から形成されて いる。

> 【発明の作用】本発明の空気圧センサーによれば、タイ ヤの回転による遠心力または加速度で可動電極にたわみ 変位を生じ、その結果、当該可動電極と固定電極の間の 静電容量が変化し、それを電子回路で検出することによ り、車の走行スタートを検出することができる。

[8000]

【発明の効果】以上のように、本発明のタイヤ空気圧セ ンサーは、タイヤの回転による遠心力または加速度によ り生ずる可動電極と固定電極の間の静電容量変化を電子 回路で検出する構造であるために、スイッチ接点方式の ような接点の接触不良によるトラブルは皆無であり、極 めて信頼性の高い走行センサー付きタイヤ空気圧センサ ーを提供することができる。

【図面の簡単な説明】

【図1】 本発明によるタイヤ空気圧センサーのブロッ ク図。

【図2】 本発明によるタイヤ空気圧センサーを構成す る走行センサーの構造断面図。

【図3】 従来の遠心力スイッチを使った場合のタイヤ 空気圧センサーのプロック図。

【図4】 従来の遠心力スイッチの構造断面図。

【符号の説明】

- 40 圧力センサー
 - 2 走行センサー
 - 3 電子回路部
 - 4 電池
 - 固定電極
 - 6 可動電極
 - 7 遠心力スイッチ
 - 8 移動子
 - 9 ばね
 - 10 接点
- 11 接点

