Funktionenfolgen und Konvergenz

Wir befassen uns hier mit Folgen, deren Glieder Funktionen sind. Diese kann man lokal oder global betrachten.

Definition 1. (f_n) heißt *punktweise konvergent* gegen eine Funktion $f: X \to \mathbb{R}$, wenn folgendes gilt:

$$\forall x \in X \quad \forall \varepsilon > 0 \quad \exists N(\varepsilon, x) \in \mathbb{N} \quad \forall n > N(\varepsilon, x) :$$

$$|f_n(x) - f(x)| < \varepsilon.$$

Beispiel 1. Sei E=[0,1] und $f_n(x)=x^n$. Dann konvergiert f_n punktweise gegen die Funktion f mit $f(x)=\left\{ egin{array}{ll} 0 & \mbox{f\"ur} & x\in[0,1), \\ 1 & \mbox{f\"ur} & x=1 \end{array} \right.$

Heuristik: Sei $x \in [0, 1)$. Dann gilt

$$|f_n(x) - f(x)| < \varepsilon \Leftrightarrow x^n < \varepsilon$$

$$\Leftrightarrow n \ln x < \ln \varepsilon$$

$$\Leftrightarrow n > \frac{\ln \varepsilon}{\ln x}$$

und wählt daher

$$N(\varepsilon, x) = \left\lfloor \frac{\ln \varepsilon}{\ln x} \right\rfloor + 1.$$

Definition 2. (f_n) heißt *gleichmäßig konvergent* gegen eine Funktion $f: X \to \mathbb{R}$, wenn folgendes gilt:

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad \forall x \in X : \quad |f_n(x) - f(x)| < \varepsilon.$$

- **Bemerkung 1.** Beim Vergleich von Definition 1 und 2 beachte man, dass bei punktweiser Konvergenz die Schranke N auch von x abhängen darf.
- Das Cauchy-Konvergenz-Kriterium für gleichmäßige Konvergenz lautet

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n, m > N : ||f_n - f_m||_{\infty} < \varepsilon.$$

• Der einzige Unterschied zwischen den Aussagen (gleichm. und punktw.) besteht also darin, dass die beiden Quantoren $(\forall x \in X)$ und $(\exists N(\varepsilon, x) \in \mathbb{N})$ die Plätze vertauscht haben. Wenn es aber ein $N(\varepsilon, x)$ gibt, das für alle x funktioniert, so gibt es sicherlich zu jedem x ein passendes $N(\varepsilon, x)$. Die Umkehrung ist falsch, wie die Folge $f_n(x) = x^n$ zeigt.

Praktisches Vorgehen: Man soll eine Funktionenfolge $(f_n)_n$ auf Konvergenz untersuchen. Zunächst kann man die Punkte x bestimmen, für die die Zahlenfolge $(f_n(x))_n$ konvergiert und evtl. sogar die Grenzfunktion f angeben. Man untersucht die Folge zunächst also auf punktweise Konvergenz. Um die gleichmäßige Konvergenz zu überprüfen, schätzt man anschließend das Supremum der Abstände $|f_n(x) - f_m(x)|$ bzw. $|f_n(x) - f(x)|$

ab (Extremwertaufgabe lösen). Man kann aber auch geplanter vorgehen mit vielleicht einem der folgenden Kriterien:

Kriterien für gleichmäßige Konvergenz

Satz 1 (Cauchysches Konvergenzkri. f. glm. K.) Die Aussagen sind äquivalent:

- i) Die Funktionenfolge (f_n) konvergiert gleichmäßig,
- ii) Zu jedem $\varepsilon > 0$ existiert ein $N := N(\varepsilon) \in \mathbb{N}$ mit

$$||f_n - f_m||_{\infty} < \varepsilon, \qquad n, m \ge N.$$

Für Funktionenreihen gilt: $s_n := \sum_{k=0}^{\infty} f_k$ konvergiert gleichmäßig auf X gdw. $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n \geq m : \sup_{x \in X} |\sum_{k=m}^n f_k(x)| < \varepsilon.$

Die Funktionenreihe $\sum f_k$ heißt

- ullet punktweise konvergent $:\Leftrightarrow \sum f_k(x)$ konvergiert in E für alle $x\in X$.
- absolut konvergent $:\Leftrightarrow \sum |f_k(x)| < \infty$ für jedes $x \in X$.
- ullet gleichmäßig konvergent $:\Leftrightarrow (s_n)$ konvergiert gleichmäßig.
- normal konvergent $:\Leftrightarrow \sum ||f_k||_{\infty} < \infty$.

Es gelten die folgenden Aussagen:

i) $\sum f_k$ konvergiert absolut $\Rightarrow \sum f_k$ konvergiert punktweise.

- ii) $\sum f_k$ konvergiert gleichmäßig $\Rightarrow \sum f_k$ konvergiert absolut.
- iii) $\sum f_k$ konvergiert absolut $\not\Rightarrow \sum f_k$ konvergiert gleichmäßig.

Bei der Untersuchung von Funktionenreihen ist in der Praxis oft nützlich:

Satz 2 (Weierstraß Kriterium) Gibt es eine in \mathbb{R} konvergente Reihe $\sum \alpha_k$ mit $||f_k||_{\infty} \leq \alpha_k$ für fast alle $k \in \mathbb{N}$, so ist $\sum f_k$ normal, also insbesondere absolut und gleichmäßig, konvergent.

Satz 3 (Dini) Sei $K \subset X$ eine kompakte Teilmenge des metrischen Raumes (X,d). Jede monoton wachsende (bzw. fallende) Folge stetiger Funktionen $f_n(x)$: $K \to \mathbb{R}$, die auf K punktweise gegen eine stetige Funktion $f(x): K \to \mathbb{R}$ konvergiert, konvergiert auf K gleichmäßig gegen f(x).

Satz 4 (Majr.kriterium f. glm. Konvergenz) Für alle Indizes $n>N_0$ und für alle $x\in E$ gelte $|f_n(x)|\leq b$. Ferner sei die Zahlenreihe $\sum_{n=0}^\infty b_n$ konvergent. Dann konvergiert $\sum_{n=0}^\infty f_n(x)$ auf E absolut und gleichmäßig.