CptS 442/542 (Computer Graphics) Unit 10: Curves and Surfaces

Bob Lewis

School of Engineering and Applied Sciences Washington State University

Fall, 2017

Motivation

- Pixel representations limit resolution and have no meaning in 3D.
- Line segment and polygonal representations (like OpenGL uses) limit accuracy.
- Real objects are not usually multifacted polyhedra.
 Manufactured objects in particular need to look smooth.
- Fonts need to be resolution-independent (to first order).
- Objects often move along curves.
- Camera paths must be smooth curves.
- Looking beyond OpenGL, some rendering techniques (mainly ray tracing) can create an image directly from a smooth shape without tesselation.
 - Think: No polygonal silhouettes!

Ground Rules

- ▶ We'll talk mainly about curves.
- Surfaces are (surprisingly) easy, once we understand curves.
- Our curves will be 2D (easier to display), but 3D curves are (we'll see) trivial once we understand 2D curves.

Geometric Observations

- Curves have one degree of freedom (i.e. a parameter), regardless of how many dimensions they're embedded in.
- Surfaces have two degrees of freedom.
- Volumes (which can also be modelled geometrically) have three degrees of freedom.

How Do We Model a Smooth Shape?

- We need to distinguish modelling from rendering:
 - Modelling produces a representation.
 - Rendering produces an image.
- Even if we end up rendering a shape with lines and triangles, it would useful to model the shape with a smooth representation beforehand.
- ► General procedure (cf. coaster):
 - Manipulate the shape model.
 - Tesselate it.
 - Render the tesselation.

Possible (2D) Representations

- explicit functions: y = f(x) problems:
 - no multiple values
 - not axis independent
 - vertical tangents difficult to represent
- implicit functions: f(x, y) = 0 problems:
 - multiple values may require additional constraints
 - hard to draw in general
- ▶ parametric functions: x = x(t), y = y(t) problems:
 - may not be intuitive

Polynomials

- Simple-to-evaluate (even in hardware), but are they useful?
- Choices:
 - Linear: $\tilde{\mathbf{P}}(t) = \tilde{\mathbf{a}}t + \tilde{\mathbf{b}}$
 - ► What do you get with this form?
 - ightharpoonup $\tilde{\mathbf{a}}$ and $\tilde{\mathbf{b}}$ are pretty easy to figure out. (You've done it before.)
 - Quadratic: $\tilde{\mathbf{P}}(t) = \tilde{\mathbf{a}}t^2 + \tilde{\mathbf{b}}t + \tilde{\mathbf{c}}$
 - but what are $\tilde{\mathbf{a}}$, $\tilde{\mathbf{b}}$, and $\tilde{\mathbf{c}}$? $\tilde{\mathbf{c}}$ is easy, but what are $\tilde{\mathbf{a}}$ and $\tilde{\mathbf{b}}$? They *look* like points.
 - Cubic: $\tilde{\mathbf{P}}(t) = \tilde{\mathbf{a}}t^3 + \tilde{\mathbf{b}}t^2 + \tilde{\mathbf{c}}t + \tilde{\mathbf{d}}$
 - Again, what are $\tilde{\mathbf{a}}$, $\tilde{\mathbf{b}}$, and $\tilde{\mathbf{c}}$?
 - Can we generate useful curves with this?
 - Eight values (coefficients) to get a smooth (2D) curve is not bad, but are those values intuitive?
 - How many values would this take in 3D?
- What would be the drawbacks of using a higher-degree expression?

Aside: Can We Do Conics With Parametric Polynomials?

- ▶ It would be useful to be able to represent conics (circles, ellipses, parabolas, etc.)
- We can represent them, but not with the polynomial forms we've used so far.
- We need to use rational curves, (Bézier or B-spline), which we'll talk about later.

Interactive Curve Design

- control points are useful
 - fewer controls
 - guaranteed smoothness
- ightharpoonup can evaluate $\tilde{\mathbf{P}}(t)$ for any t
- independent of scale: no pixels involved
- major application? (You're looking at one.)
- ▶ interpolation vs. approximation

Interactive Spline Demo

```
http://geometrie.foretnik.net/files/NURBS-en.swf
```

Notes:

- Your browser needs to support Shockwave Flash. (My Firefox does.)
- ▶ They constrain the parameter *t* to go from 0 to 1 for the whole spline curve, which is non-standard.

Bézier Curves: The deCasteljau Construction

Given a set of points $\tilde{\mathbf{P}}_0 \dots \tilde{\mathbf{P}}_n$, let

$$\tilde{\mathbf{P}}_{i}^{0}(t) \equiv \tilde{\mathbf{P}}_{i}$$

Then recursively let

$$\begin{split} \tilde{\mathbf{P}}_i^r(t) &= (1-t)\tilde{\mathbf{P}}_i^{r-1}(t) \\ &+ t\tilde{\mathbf{P}}_{i+1}^{r-1}(t) \\ &= \operatorname{lerp}\left(\tilde{\mathbf{P}}_i^{r-1}, t, \tilde{\mathbf{P}}_{i+1}^{r-1},\right) \end{split}$$

for $r \in [1...n]$ and $i \in [0...n - r]$. $\tilde{\mathbf{P}}_0^n(t)$ is the point on the Bézier curve at t.

There's an easy way to see this graphically...

Cubic Bézier Blending Functions

Expand the construction into a single expression of the form:

$$\tilde{\mathbf{P}}(t) = \sum_{i=0}^{3} \tilde{\mathbf{P}}_{i} B_{i}(t)$$

Where the blending curves $B_i(t)$ are the Bernstein polynomials:

$$B_0(t) = (1-t)^3$$

$$B_1(t) = 3t(1-t)^2$$

$$B_2(t) = 3t^2(1-t)$$

$$B_3(t) = t^3$$

Definition: Convex Hulls

- ▶ A convex hull of any collection of points is the smallest (polygon, polyhedron, etc.) that contains all of them.
- convex hulls intuitively defined:
 - in 2D: wrap rubber band around "nails" at points
 - in 3D: shrink wrap around points

Bézier Curves: The Convex Hull Property

Other Bézier Curve Properties

- ▶ interpolates (passes thru) endpoints
- affine invariance:
 affine transform of curve is curve defined by affine transform of control points
- linear precision: if control points line up, so does curve
- derivative (i.e., tangent) easy to compute $\frac{d\tilde{\mathbf{P}}(t)}{dt}$ is polynomial one degree less than that of curve
- Cubics are used most often, but lower and higher degree curves are possible (again, using deCasteljau).
 - You pay a price for higher degrees.

Better Than Bézier Blending Functions

Bézier curves are okay, but we can do better. We want to compute a weighted sum of control points

$$\tilde{\mathbf{P}}(t) = \sum_{i=0}^{3} \tilde{\mathbf{P}}_{i} g_{i}(t)$$

with blending functions $g_i()$ that

- provide local control i.e., have local support
- allow for more than four control points, but are still numerically stable and easy to compute
- sum to unity for all t
- allow control of interpolation vs. approximation
- allow control of smoothness

Editing a Curve

REAR 11.79 Editing partiess of a corre-

Blending Functions

HOUSE 11.29 Elending functions having concentrated support.

Piecewise Polynomials

A single polynomial can't do all of these, but let's try a *piecewise* polynomial:

Procedure:

- subdivide [0,M] into M regions
- create one polynomial of degree M-1 for each region
- require zero values and derivatives at ends (small support)

(other constraints are possible)

Terminology (M = 3):

The Origin of Splines

Originally used in shipbuilding and drafting in general (see image), these were long strips of metal held in place by "ducks" – lead weights.

They were smooth, and the ducks were like (interpolated) control points, but these "natural splines" have two undesirable properties for our purposes: non-locality and a required (possibly big) matrix inversion every time a position changes.

(from Wikipedia)

(Mathematical) Splines

Definition:

► An Mth degree spline is a piecewise polynomial of degree M that is M - 1 smooth at each knot.

Splines are used as blending functions. A *lot*.

A quadratic (degree $M^{2} = 2$) spline (M = 1 is trivial):

Using Splines as Blending Functions

Construct shifted versions of g(t), $g_k(t)$:

$$g_k(t) \equiv g(t-k)$$

These look like:

Splines as Blending Functions

For $2 \le t \le 7$, the curve is

$$\tilde{\mathbf{P}}(t) = \sum_{k=0}^{6} \tilde{\mathbf{P}}_{k} g_{k}(t)$$

- ▶ What if the P_k 's are all identical?
- ▶ Is the curve smooth enough?
- ▶ Is $\tilde{\mathbf{P}}(t)$ continuous at knots t = k? $\tilde{\mathbf{P}}'(t = k)$? $\tilde{\mathbf{P}}''(t = k)$?

Example of Curve Design

FIGURE 11.25 Curve design using translates of g(.).

More Generalized Spline Curves I

We can increase flexibility by allowing for a knot vector $\tilde{\mathbf{T}}=t_0,t_1,t_2,...$ where the t_k 's are a non-decreasing sequence. We take

$$\tilde{\mathbf{P}}(t) = \sum_{k=0}^{L} \tilde{\mathbf{P}}_{k} R_{k}(t)$$

- $ightharpoonup \tilde{\mathbf{P}}()$ is a weighted sum of L+1 control points.
- $ightharpoonup R_k()$'s are blending functions.
- ▶ $t_i's$ can be any non-decreasing sequence, but the only thing that really matters (this can be proven) is whether $t_i = t_{i+1}$ or not, so we usually choose integer $t_i's$, starting at 0 and t_{i+1} is either t_i or $t_i + 1$. (The geometrie foretnik net spline demo doesn't do this.)

Blending Functions for Generalized Knot Vector

FIGURE 11.27 Generalizing on the knot vector and blending functions.

More Generalized Spline Curves II

Reinterpreting what we've done:

- ▶ Bézier: one span, L + 1 knots at each end.
- ▶ translates g(t): knots at 0, 1, 2, ..., L+1, so each translate has 3 quadratic polynomials, each with a span of 3.

The Big Question

Given a knot vector $\tilde{\mathbf{T}}$, can we construct blending functions to represent every possible spline on that knot vector?

- ▶ Such functions form the *basis* for the spline.
- ▶ If we further look to minimize the support of each blending function, we arrive at "B-splines".
 - ► (The "B" stands for "basis", not Bézier.)

B-Spline Basis Functions

Given:

- L control points,
- ▶ an order m (= degree + 1), and
- ▶ a knot vector $\tilde{\mathbf{T}} = \{t_0, t_1, t_2, ..., t_{L+m-1}\}$,

We define the order 1 basis as

$$N_{k,1}(t) \equiv \left\{ egin{array}{ll} 1 & ext{if } t_k < t \leq t_{k+1} \ 0 & ext{otherwise} \end{array}
ight.$$

and recursively define the rest (the Cox-DeBoor relation)

$$N_{k,m}(t) = \left(\frac{t-t_k}{t_{k+m-1}-t_k}\right) N_{k,m-1}(t) + \left(\frac{t_{k+m}-t}{t_{k+m}-t_{k+1}}\right) N_{k+1,m-1}(t)$$

for k = 0, 1, ..., L, with the caveat that if a denominator is 0, we ignore the term.

Linear B-Spline Bases

PIGURE 11.28 Construction of linear B-splines.

Quadratic B-Spline Bases

FIGURE 11.29 The first quadratic B-spline shape.

Cubic B-Spline Bases

FIGURE 11.30 The cubic B-spline on equispaced knots.

Any Degree B-Spline Construction

Note the use of recursion.

```
float b5pline(int k, int m, float t, float knot[])
{
    float denom1, denom2, sum = 0.0;
    if(m == 1)
        return (t >= knot[k] && t < knot[k+1]); // 1 or 0
        // m exceeds 1., use recursion
    denom1 = knot[k + m -1] - knot[k];
    if(denom1 != 0.0)
        sum = (t - knot[k]) * b5pline(k.m-1.t. knot] / denom1;
    denom2 = knot[k + m] - knot[k+1];
    if(denom1 != 0.0)
        sum += (knot[k+m] - t) * b5pline(k+1,m-1,t.knot) / denom2;
    return sum;
}</pre>
```

FIGURE 11.31 Computing B-spline blending functions.

Weighted B-Splines

To give some control vertices more influence than others:

$$\tilde{\mathbf{P}}(t) = \sum_{k=0}^{L} h_k \tilde{\mathbf{P}}_k R_k(t)$$

Reprise: Can We Do Conics With Parametric Polynomials?

We discussed rendering conics (circles, ellipses, parabolas, etc.) and mentioned that we need to use *rational quadratic polynomials*. They look like this:

$$\tilde{\mathbf{P}}(t) = \frac{(1-t)^2 \tilde{\mathbf{P}}_0 + 2wt(1-t)\tilde{\mathbf{P}}_1 + t^2 \tilde{\mathbf{P}}_2}{(1-t)^2 + 2wt(1-t) + t^2}$$

- ▶ This can generate all conics. If the "weight" w is...
 - < 1, the curve is an ellipse,</p>
 - ightharpoonup = 1, the curve is a parabola, and
 - > 1, the curve is a hyperbola.
- This is actually a rational B-spline.

Turning Curves Into Surfaces I

Intuition (from Gerald Farin's book *Curves and Surfaces for CAGD*):

A surface is the locus [set of points] of a curve that is moving through space and thereby changing its shape.

Consider a parametric 3D cubic curve:

$$\tilde{\mathbf{P}}(u) = \sum_{k=0}^{L} \tilde{\mathbf{P}}_{k} R_{k}(u)$$

Turning Curves Into Surfaces II

Surfaces need two degrees of freedom, so let $\tilde{\mathbf{P}}(u,v)$ map the unit square $[0,1]\times[0,1]$ to a parametric 3D surface. Get this by (!) replacing the control points $\tilde{\mathbf{P}}_j$ with parametric functions $\tilde{\mathbf{\Gamma}}_j(v)$:

$$\tilde{\mathbf{P}}(u,v) = \sum_{k=0}^{L} \tilde{\mathbf{\Gamma}}_{k}(u) R_{k}(v)$$

For a fixed u, this is just a curve in space w.r.t. v. Now, however, the $\tilde{\Gamma}_j$'s are space curves w.r.t. u. How to define them?

Turning Curves Into Surfaces III

Well, $\tilde{\Gamma}_j(u)$ is just another space curve, which we already know how to do. Letting each $\tilde{\Gamma}_j(u)$ have its own set of control points $\tilde{\mathbf{P}}_{ij}$:

$$\tilde{\mathbf{\Gamma}}_{j}(u) = \sum_{i=0}^{L} \tilde{\mathbf{P}}_{ij} R_{i}(u)$$

So combining this with what we've done previously...

$$\tilde{\mathbf{P}}(u,v) = \sum_{i=0}^{L} \sum_{j=0}^{L} \tilde{\mathbf{P}}_{ij} R_i(u) R_j(v)$$

This is a parametric bicubic (if L=3) surface. Note the generality (any basis) and extensibility (higher degrees and dimensions).

Cubic Bézier Surfaces

We specify a mesh of 16 control points:

The convex hull of these points is the convex hull of the surface.

Cubic B-Spline Surfaces

- As for a Bézier surface, we specify a mesh of 16 control points whose convex hull is a convex hull of the surface.
- ► This works with all flavors of B-splines.
- This could be a sub-array of a much larger array (e.g. a quad mesh).
- Continuity is built-in (as with curves).

Surface Normals of Parametric Surfaces

If we have

$$\tilde{\mathbf{P}}(s,t) = \sum_{i=0}^L \sum_{j=0}^L \tilde{\mathbf{P}}_{ij} R_i(s) R_j(t)$$

we'd like to compute vertex normals so we can light them properly. How do we compute surface normals? Hint: Think "tangents".

The Standard Knot Vector

Let $\tilde{\mathbf{T}} = \{m * \{0\}, 1, 2, ..., m, m * \{m+1\}\}$ knots for an order m (degree m-1) spline.

- ▶ What is this for cubic (m = 4) B-splines? (Note: $m \le L + 1$)
- How many control points are there?

Cubic Spline Blending Functions

FIGURE 11.34 Eight cubic Bspline blending functions.

Rational Splines and NURBSes

Rational B-Splines are defined as before:

$$\tilde{\mathbf{P}}(t) = \sum_{k=0}^{L} \tilde{\mathbf{P}}_k R_k(t)$$

but the blending functions $R_k(t)$ are:

$$R_k(t) \equiv \frac{w_k N_{k,m}(t)}{\sum_{j=0}^L w_j N_{j,m}(t)}$$

where the w_j 's are "weights" or "shape parameters" chosen so that the denominator never vanishes. (The denominator factors out.) "NURBS" means "Non-Uniform Rational B-Spline." The "non-uniform" means that we allow their knot multiplicity to vary. The acronym is singular.

NURBS Properties I

- ▶ B-splines are affinely, but not projectively (as in perspective) invariant. NURBSes are both.
- ► The transformation of a NURBS is a NURBS generated by the (same) transformation of its control points.
- ► NURBSes can represent conics. (Rational quadratic polynomials being NURBSes.)

NURBS Properties II

- NURBSes are the most common curve and surface modelling tool in use today.
 - used in marine, industrial, automotive, jewelry, and just about every other kind of computer-aided design as well as the film and game industries
 - "Rhinoceros 3D" is a NURBS design system developed at McNeel & Associates (in Seattle)
 - We are only scratching the surface of what can be done with NURBSes. For more details, see the standard reference: Piegl & Tiller's The NURBS Book or Farin's book (see above).

Other Splines

Catmull¹-Rom Like B-splines, but they *interpolate* points. They do not have the convex hull property. Nevertheless, they are useful for animation.

 β -splines biased splines (0 $\leq \beta \leq$ 1) are a variation of B-splines. Varying β controls the "tension": how closely the curve comes to the control points.

Cardinal

Kochanek-Bartels

etc...etc...etc

¹Ed Catmull is the President of Pixar and Walt Disney Animation. He is also winner of 5 Academy Awards.