Aluminium - Chromium - Zirconium

Leonid Guzei, updated by Viktor Kuznetsov

Literature Data

In this system experimental information on phase equilibria comprises isothermal sections at several temperatures: 800°C [1970Mar], 620 and 450°C [1972Kad], 400°C [1967Zar] and series of isopleths in the Zr-rich region at fixed composition ratios of Al:Cr = 4:1, 1:1, 1:4 and at fixed content of 3 mass% Cr [1968Gru]. [1970Mar] studied phase equilibria at 800°C on 114 alloys, prepared by melting pure elements (above 99.9% purity) under argon in an arc furnace. The specimens were annealed at 800°C for 1000 h followed by quenching in cold water and examined by X-ray and metallographic analysis. The phase compositions of solid alloys in the Al corner at 400°C were established by [1967Zar] where arc melted ingots were annealed for 1000 h at 400°C and quenched in toluene. Using optical microscopy and electrical resistivity measurements, [1972Kad] investigated the solubility of Cr and Zr in Al at 450 and 620°C. Alloys were homogenized for 48 h at 500°C and after hot-working heated for 280 h at 620°C with an additional annealing for 100 h at 620°C after cold-working to ensure that equilibrium was reached. The Zr corner of the system was investigated by [1968Gru]. However, the results are in contradiction to [1970Mar] and are not shown here. The thermodynamic calculations made by [1977Cha] are not accepted in this evaluation as they do not take into account the well confirmed existence of the continuous solid solution between ZrCr₂ and ZrAl₂ at high temperatures. A short review of the system is given by [1990Kum].

[1989Sok1], [1989Sok2] and [1992Dob] observed an increase of solubility of Cr and Zr in Al in metastable state which is achieved by cooling the alloys rapidly at rates of 10^6 to $10^7 \text{K} \cdot \text{s}^{-1}$. The authors also investigated the corrosion behavior and the kinetics of decay of these solid solutions. [1991Des] examined the ZrAl₃ based L1₂ phase in the mechanically alloyed samples. [1993Tai] studied microstructure and some mechanical properties of samples obtained by powder extrusion. The present evaluation updates the review made by [1991Guz].

Binary Systems

The ternary description presented here is consistent with the edge boundary systems Al-Cr as published by [2003Cor] and Cr-Zr by [2002Per]. For the Al-Zr edge the description by [2003Sch] is accepted.

Solid Phases

No stable ternary phases have been found. The phase with $L1_2$ structure, found by [1991Des] in mechanically alloyed two-phase sample with an over-all composition of Al-12.5Cr-25Zr (at.%) is most probably metastable, although the authors do not exclude that it is stable at low temperatures.

In the as cast state a continuous series of solid solutions exists between $ZrCr_2$ and $ZrAl_2$. At 800°C solid solutions based on $ZrCr_2(\lambda_2)$ and $ZrAl_2(\lambda_1)$ are formed with limited concentrations of Al and Cr, up to 7.5 and 54 at.%, respectively [1970Mar]. The known solid phases are listed in Table 1.

Liquidus Surface

No experimental investigations seem to exist. Figure 1 shows a partial liquidus projections extrapolated thermodynamically from binary data using a Muggianu formalism [1986Sau]. Three transition reactions (U-type) are shown with liquid phase composition very close to the Al-Cr side.

Isothermal Sections

Figure 2 displays the isothermal section at 800°C after [1970Mar] with minor corrections to meet the boundary system, in particular to account for the homogeneity range of the binary intermetallic compound ZrCr₂. Furthermore, [1970Mar] plotted an δ, CrAl₃, phase which, by more recent assessment [1986Sau],

Landolt-Börnstein
New Series IV/11A1

MSIT®

has been proved to exist only at temperatures higher than 1060° C, as the high-temperature modification of the compound Al_0Cr_A .

Figure 3 shows the Al corner at 620°C [1972Kad]. Cr and Zr solubility in (Al) decrease with decreasing temperature from 0.187 at.% Cr and 0.049 at.% Zr at 620°C to 0.057 at.% Cr and 0.016 at.% Zr at 450°C. The agreement between the experimental phase boundaries by [1972Kad] and the calculated ones by [1986Sau] in the Al-rich corner of the 620°C and 450°C isothermal sections is very good and the calculations proved to be insensitive to any ternary interaction parameter in the fcc-(Al) phase [1986Sau].

Temperature – Composition Sections

Two polythermal sections, (1) at constant mass ratio Zr:Cr = 5:7 and (2) at $ZrAl_3$ - $CrAl_7$ have been constructed by [1989Sok1]. They are in general agreement with the solid state equilibria presented in Figs. 2 and 3. However, both sections do not reflect the present knowledge on the edge binary systems, in particular with respect to the temperature at which the $CrAl_7$ phase forms; also temperature scale is not shown by [1989Sok1] for the Zr:Cr = 5:7 section. Therefore, these sections are not presented in this evaluation.

Notes on Materials Properties and Applications

[1989Sok1, 1989Sok2] studied the corrosion behavior of supersaturated Al based solid solutions. [1991Des] investigated mechanical properties of the probably metastable $L1_2$ phase which turned out to be slightly more ductile than the equilibrium $ZrAl_3$ phase. [1993Tai] reports the microstructure, mechanical properties and thermal stability of the Al-1.6Cr-1.6Zr (at.%) alloy prepared by hot-extrusion of rapidly solidified powder.

Magnetic susceptibilities have been recorded by [1984Sup] for the $MgZr_2$ type solution $ZrCr_{2-x}Al_x$ revealing Pauli-paramagnetism for all compositions x.

Miscellaneous

Figure 4 shows the metastable solubility of Cr and Zr in (Al) after solidification at different cooling rates, compared with equilibrium data by [1972Kad] at 620° C (curve 1). Curves 2 and 3 by [1977Ela] relate to material cooled at $10~\rm K\cdot s^{-1}$ and $100~\rm K\cdot s^{-1}$ rates, respectively. Additions of Zr to an Al-Cr alloy increased the maximum solid solubility of Cr from 5 to 8 mass% in alloys produced by the atomization splat quenching method [1987Kim]. Rapidly solidified alloys (10^6 - $10^7~\rm K\cdot s^{-1}$) showed a maximum solid solubility of 6.5 at.% Cr and 0.55 at.% Zr, respectively [1989Sok1]. Figure 5 presents the limits of metastable solubility at cooling rates of $10^3~\rm to~10^6~\rm K\cdot s^{-1}$ [1992Dob].

References

- [1937Bra] Bradley, A.J., Lu, S.S., "An X-Ray Study of the Chromium-Aluminium Equilibrium Diagram", *J. Inst. Met.*, **60**, 319-337 (1937) (Experimental, Crys. Structure, Equi. Diagram, 8)
- [1941Kna] Knappwost, A., Nowotny, H., "Magnetic Investigations in the Ternary Al-Cr-Cu System", *Z. Metallkd.*, **33**, 153-157 (1941)
- [1960Coo] Cooper, M.J., "The Structure of the Intermetallic Phase θ (Cr-Al)", *Acta Crystallogr.*, **13**, 257-263 (1960) (Crys. Structure, Experimental, 10)
- [1963Koe] Köster, W., Watchel, E., Grube, K., "Structure and Magnetic Properties of Aluminium-Chromium Alloys" (in German), *Z. Metallkd.*, **54**, 393-401 (1963) (Equi. Diagram, Crys. Structure, Thermodyn., Magn. Prop., Experimental, 33)
- [1964Ram] Raman, A., Schubert, K., "The Occurrence of Zr₂Cu and Cr₂Al Type Intermetallic Compounds" (in German), *Z. Metallkd.*, **55**, 798-804 (1964) (Crys. Structure, Experimental, 23)
- [1967Zar] Zarechnyuk, O.S., Malinkovich, A.N., Lalayan, E.A., Markiv, V.Ya., "X-Ray Investigation of Aluminium-Rich Alloys of the Ternary Al-Cu-Cr, Al-Cu-Zr, Al-Cr-Zr Systems and the

MSIT[®]
Landolt-Börnstein
New Series IV/11A1

- Quaternary Al-Cu-Cr-Zr System", *Russ. Metall.*, (6), 105-107 (1967), translated from *Izv. Akad. Nauk SSSR*, *Met.*, (6), 201-204 (1967) (Equi. Diagram, Experimental, 2)
- [1968Gru] Gruzdeva, N.M., Tregubov, I.A., "The Zr Corner of the Zr-Al-Cr Phase Diagram and the Alloy Properties" (in Russian), *Fiz-Khimiya Splavov Tsirkoniya*, Publ. Nauka, Moscow, 23-30 (1968) (Equi. Diagram, Experimental, Phys. Prop., 2)
- [1968Lin] Lindahl, T., Pilotti, A., Westman, S., "Rhombohedrally Distorted Gamma Phases in the Copper-Mercury and Chromium-Aluminium Systems", *Acta. Chem. Scand.*, **22**, 748-752 (1968) (Crys. Structure, Experimental, 9)
- [1970Mar] Markiv, V.Ya., Burnashova, V.V., "Study on the Zr-Cr-Al and Zr-Cu-Al Systems" (in Russian), *Poroshk. Metall.*, **12**, 53-58 (1970) (Equi. Diagram, Experimental, #, *, 14)
- [1972Kad] Kadaner. E.S., Kuz'mina, V.I., "Phase Equilibria in the Al-Cr-Zr System" (in Russian) in "Metallovedenie Tsvetnych Metallov i Splavov", Drits, M.E. (Ed.), Nauka, Moscow, 41-44 (1972) (Equi. Diagram, Experimental, #, 4)
- [1973Pet] Pet'kov, V.V., Prima, S.B., Tretjachenko, L.A., Kocherszinskij, Yu.A., "New Data on Laves Phases in the Zr-Cr System" (in Russian), *Metallofizika*, **46**, 80-84 (1973) (Crys. Structure, Equi. Diagram, Experimental, 8)
- [1975Ohn] Ohnishi, T., Nakatani, Y., Okabayashi, K., *Bull. Univ. Osaka Prefect.*, **24**, 183-191 (1975) (Equi. Diagram, Crys. Structure, Experimental) as quoted by [1998Mur]
- [1977Bra] Brandon, J.K., Pearson, W.B., Riley, P.W., Chieh, C., Stokhuyzen, R., "γ-Brasses with R Cells", *Acta Crystallogr.*, **3B**, 1088-1095 (1977) (Crys. Structure, Experimental, 16)
- [1977Cha] Chart, T.G., "The Calculation of Multicomponent Alloy Phase Diagrams at the National Physical Laboratory", *NBS Special Publ.*, *2*, *No. 496*, 1186-1199 (1977, Publ. 1978) (Equi. Diagram, Thermodyn., Theory, 26)
- [1977Ela] Elagin, V.I., Fedorov, V.M., "The Al-Cr-Zr System: A Basis for Precipitation Hardened Aluminium Alloys", *Russ. Metall.*, (5), 193-198 (1977), translated from *Izv. Akad.Nauk SSSR, Met.*, (5), 239-245 (1977), (Experimental, 14)
- [1977Vis] Visser J.W., "On the Structure of Chromium-Aluminum (Cr₅Al₈) 26r A Correction", *Acta Crystallogr.*, Sect. B, **33B**(1), 316 (1977)
- [1981Bro] den Broeder, F.J.A., Tendeloo, G. van, Amelinckx, S., Hornstra, J., de Ridder, R., van Landgut, J., van Daal, H.J., "Microstructure of $Cr_{100-x}Al_x$ Alloys (10 at.% $\le x \le 33$ at.%) Studied by Means of Electron Microscopy and Diffraction, II. Discovery of a New Phase", *Phys. Status Solidi*, **67**, 233-248 (1981) (Equi. Diagram, Crys. Structure, Experimental, 9)
- [1981Ten] van Tendeloo, G., den Broeder, F.J.A., Amelinckx, S., de Ridder, R., van Landuyt, J., van Daal, H.J., "Microstructure of $Cr_{100-x}Al_x$ Alloys (10 at.% < x < 33 at.%) Studied by Means of Transmission Electron Microscopy and Diffraction. I. Microstructure of the β -Phase", *Phys. Stat. Sol. A*, **67**, 217-232 (1981) (Equi. Diagram, Experimental, 10)
- [1984Sup] Suprunenko, P.A., Markiv, V.Ya., Tsvetkova, T.M., "Magnetic and X-Ray Diffraction Study of Laves Phases in the Ternary Systems (Ti, Zr, Hf)-Cr-Al", *Russ. Metall.*, (1), 207-210 (1984), translated from *Izv. Akad. Nauk SSSR, Met.*, (1), 207-210 (1984) (Crys. Structure, Experimental, 11)
- [1986Ari] Arias, D., Abriata, J.P., "The Cr-Zr (Chromium-Zirconium) System", *Bull. Alloy Phase Diagram*, 7(3), 237-244, (1986) (Equi. Diagram, Review, #, 32)
- [1986Sau] Saunders, N., Rivlin, V.G., "Thermodynamic Characterization of Al-Cr, Al-Zr and Al-Cr-Zr Systems", *Mater. Sci. Technol.*, **2**, 521-527 (1986) (Equi. Diagram, Review, 48)
- [1987Kim] Kim, J.R., Kim, T.H., "The Effect of Additional Element Zr on Solid Solubility of Cr and Mechanical Properties of Rapidly Solidified Al-Cr Alloys" (in Korean), *J. Korean Inst. Met.*, **25**, 506-513 (1987) (Crys. Structure, Experimental, Mechan. Prop., 14)
- [1987Vec] Vecchio, K.S., Williams, D., "Convergent Beam Electron Diffraction Study of Al₃Zr in Al-Zr and Al-Li-Zr Alloys", *Acta Metall.*, **35**(12), 2959-2970 (1987) (Experimental)
- [1989Ell] Ellner, M., Braun, J., Predel, B., "X-Ray Study on Cr-Al Phases of the W-Family" (in German), Z. Metallkd., 80, 374-383 (1989) (Equi. Diagram, Crys. Structure, Experimental, 38)

Landolt-Börnstein
New Series IV/11A1

MSIT®

- [1989Sok1] Sokolovskaya, E.M., Badalova, L.M., Podd'yakova, E.I., Kazakova, E.F., Loboda, T.P., Gribanov, A.V., "Phase Composition and Properties of Rapidly Cooled Aluminium Alloys with Zirconium and Chromium", *Russ. Metall.*, (1), 168-172 (1989), translated from *Izv. Akad. Nauk SSSR, Met.*, (1), 164-168 (1989) (Equi. Diagram, Electrochem. Prop., Experimental, 6)
- [1989Sok2] Sokolovskaya, E.M., Badalova, L.M., Podd'yakova, E.I., Kazakova, E.F., Loboda, T.P., "Formation, Stability and Properties of Metastable Phases in the Al-Zr-Cr System" (in Russian), *Dokl. Akad. Nauk SSSR*, **306**, 396-398 (1989) (Electrochem. Prop., Kinetics, Experimental, 3)
- [1990Kum] Kumar, K.S., "Ternary Intermetallics in Aluminium-Refractory Metal-X Systems (X = V, Cr, Mn, Fe, Co, Ni, Cu, Zn)", *Int. Mater. Rev.*, **35**, 293-327 (1990) (Crys. Structure, Equi. Diagram, Review, 158)
- [1990Ram] Ramon, J.J., Shechtman, D., Dirnfeld, S.F., "Synthesis of Al-Cr Intermetallic Crystals", *Scr. Metall. Mater*, **24**, 1087 (1990) (Experimental, Crys. Structure)
- [1991Des] Desch, P.B., Schwarz, R.B., Nash, P., "Formation of Metastable L1₂ Phases in Al₃Zr and Al-12.5% X-25% Zr (X = Li, Cr, Fe, Ni, Cu)", *J. Less-Common Met.*, **168**, 69-80 (1991) (Crys. Structure, Experimental, 25)
- [1991Guz] Guzei L., "Al-Cr-Zr (Aluminium Chromium Zirconium)," MSIT Ternary Evaluation Program, in *MSIT Workplace*, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart; Document ID: 10.16133.1.20, (1991) (Crys. Structure, Equi. Diagram, Review, 15)
- [1992Dob] Dobatkin, V.I., Beloserkovets, V.V., Golder, Yu.G., "The Metastable Equilibria During Crystallization of Alloys of Ternary Systems" (in Russian), *Metally*, (5), 169-177 (1992) (Equi. Diagram, Kinetics, Experimental, Review, *, #, 8)
- [1992Ma] Ma, Y., Romming, C., Lebech, B., Gjonnes, J., Tafto, J., "Structure Refinement of Al₃Zr Using Single Crystal X-Ray Diffraction, Powder Neutron Diffraction and CBED", *Acta Crystallogr.*, **B48**, 11-16 (1992) (Experimental, Crys. Structure, 11)
- [1992Wen] Wen, K.Y., Chen, Y.L., Kuo, K.H., "Crystallographic Relationships of the Al₄Cr Crystalline and Quasicrystalline Phases", *Met. Trans. A*, **23A**, 2437-2445 (1992) (Crys. Structure, Experimental, 36)
- [1993Tai] Tai, H., Furushiro, N., Mae, T., Fujitani, W., Hori, S., "Microstructures and Hardness of Al-1.6%Cr-1.6%Zr Alloy Prepared by Hot-Extrusion of Rapidly Solidified Powder", *Met. Abstr. Light Metals and Alloys*, **26**, 62 (1993) (Phys. Prop., 0)
- [1994Sel] Selke, H., Vogg, U., Ryder, P.L., "New Quasiperiodic Phase in Al₈₅Cr₁₅", *Phys. Status Solidi A*, **141**, 31-41 (1994) (Crys. Structure, Experimental, 19)
- [1995Aud] Audier, M., Durand-Charre, M., Laclau, E., Klein, H., "Phase Equilibria in the Al-Cr System", *J. Alloys Compd.*, **220**, 225-230 (1995) (Crys. Structure, Experimental, *, 17)
- [1995Sou] Soubeyroux, J.L., Bououdina, M., Fruchart, D., Pontonnier, L., "Phase Stability and Neutron Diffraction Studies of Laves Phases $Zr(Cr_{1-x}M_x)_2$ with M = Mn, Fe, Co, Ni, Cu and 0 < x < 0.2 and their Hydrides", *J. Alloys Compd.*, **219**, 48-54, (1995) (Crys. Structure, Experimental, 20)
- [1997Kur] Kuranaka, S., Gamo, T., Morita, Y., "Powder X-ray Diffraction under a High Pressure Hydrogen Atmosphere for Zr-Cr Based Laves Phase Alloys", *J. Alloys Compd.*, **253-254**, 268-271, (1997) (Crys. Structure, Experimental, 13)
- [1997Li] Li, X.Z., Sugiyama, K., Hiraga, K., Sato, A., Yamamoto, A., Sui, H.X, Kuo, K.H., "Crystal Structure of Orthorhombic ε-Al₄Cr", *Z. Kristallogr.*, **212**, 628-633 (1997) (Crys. Structure, Experimental, 17)
- [1998Li] Li, X.Z., Sui, H.X, Kuo, K.H., Sugiyama, K., Hiraga, K., "On the Structure of the Al₄Cr ε Phase and its Relation to the Al–Cr–Ni κ Phase", *J. Alloys Compd.*, **364**, L9-L12 (1998) (Crys. Structure, Experimental, 11)
- [1998Mur] Murray, J.L., "The Al–Cr (Aluminium–Chromium) System", *J. Phase Equilib.*, **19**(4), 368-375 (1998) (Equi. Diagram, Assessment, Calculation, Review, #, *, 43)

MSIT[®]
Landolt-Börnstein
New Series IV/11A1

[2000Mah]	Mahdouk, K., Gachon, JC., "Thermodynamic Investigation of the Aluminium—Chromium System", <i>J. Phase Equilib.</i> , 21 (2), 157-166 (2000) (Equi. Diagram, Thermodyn., Experimental, *, 26)
[2000Sha1]	Shao, G., Tsakiropoulos, P., "On the ω Phase Formation in Cr-Al and Ti-Al-Cr Alloys", <i>Acta Mater.</i> , 48 , 3671-3685 (2000) (Crys. Structure, Experimental, 39)
[2000Sha2]	Shao, G., Nguyen-Manh, D., Pettifor, D.G., Tsakiropoulos, P., "ω-Phase Formation in a Rapidly Solidified Cr-40 at.% Al Alloy", <i>Philos. Mag. Let.</i> , 80 (11), 703-710 (2000) (Crys. Structure, Thermodyn., Experimental, 22)
[2002Per]	Perrot, P., "Cr-Zr (Chromium-Zirconium)", MSIT Binary Evaluation Program, in <i>MSIT Workplace</i> , Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart; Document ID: 20.15393.1.20, (2002) (Crys. Structure, Equi. Diagram, Assessment, 14)
[2003Cor]	Cornish, L., Saltykov, P., Cacciamani, G., Velikanova, T., "Al-Cr (Aluminum-Chromium)", MSIT Binary Evaluation Program, in <i>MSIT Workplace</i> , Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart, to be published, 2003 (Crys. Structure, Equi. Diagram, Review, 51)
[2003Sch]	Schuster, J.C., "Al-Zr (Aluminium-Zirconium)", MSIT Binary Evaluation Program, in <i>MSIT Workplace</i> , Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart; submitted for publication (2003) (Crys. Structure, Equi. Diagram, Assessment, 151)

 Table 1: Crystallographic Data of Solid Phases

Phase/ Temperature Range	Pearson Symbol/ Space Group/	Lattice Parameters [pm]	Comments/References
[°C]	Prototype		
(Al)	cF4	a = 404.96	at 25°C [Mas2]
< 660.452	$Fm\overline{3}m$		0.37 at.% Cr at 661.5°C
	Cu		0.07 at.% Zr at 660.8°C
(Cr)	cI2	a = 288.48	at 25°C [Mas2]
< 1863	$Im\overline{3}m$		46 at.% Al at 1350°C
	W		0.6 at.% Zr at 1592°C
(βZr)(h)	cI2	a = 356.90	at 25°C [V-C2]
1855-863	$Im\overline{3}m$		8 at.% Cr at 1332°C
	W		26 at.% Al at 1350°C
$(\alpha Zr)(r)$	hP2	a = 323.2	at 915°C [V-C2]
< 863	$P6_3/mmc$	c = 514.7	8.3 at.% Al at 910°C
	Mg		0.5 at.% Cr at 836°C
Cr ₂ Al ₁₃ (CrAl ₇)	mC104	a = 2519.6	at room temperature 13.5 at.% Cr
< 790	C2/m	b = 757.4	[1960Coo, 1975Ohn, 1995And]
	V_7Al_{45}	c = 1094.9	
		$\beta = 128.7$	

Landolt-Börnstein New Series IV/11A1

Phase/ Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments/References
Cr ₂ Al ₁₁ (CrAl ₅) 940-790	Orthorhombic	a = 1240 b = 3460 c = 2020	quenched from 920°C 16.9 to 19.2 at.% Cr; [1995Aud, 2000Mah]
	oC584 Cmcm	a = 1252.1 $b = 3470.5$ $c = 2022.3$ $a = 1260$ $b = 3460$ $c = 2000$	single crystal "εCrAl ₄ " [1997Li, 1998Li] "εCrAl ₄ " [1992Wen]
CrAl ₄ < 1030	<i>hP</i> 574 <i>P6</i> ₃ / <i>mmc</i> μMnAl ₄	a = 1998 c = 2467 a = 2010 c = 2480	at room temperature, 20.9 ± 0.3 at.% Cr [1995Aud, 2000Mah]; [1990Ram] 20.6 to 21.2 at.% Cr [1995Aud]; 22.3 ± 0.1 at.% Cr at Cr-rich border at 1000°C [2000Mah]
ε ₁ , Cr ₄ Al ₉ (h2) 1170-1060			[2003Cor]
ε ₂ , Cr ₄ Al ₉ (h1) <~ 1060	cI52 I43m Cu ₄ Al ₉	a = 912.3	~31 to 45 at.% Cr quenched from liquid [1941Kna, Mas2]; 29 at.% Cr at Al-rich border at 920°C [1995Aud]
ε ₃ , Cr ₄ Al ₉ (r) < 700 (?)	hR52 R3m Cr ₄ Al ₉	a = 1291 c = 1567.7	32.8 to 35 at.% Cr [1968Lin, Mas2]
$\zeta_1, \operatorname{Cr}_5 \operatorname{Al}_8(h)$ $\geq 1100 \ (?)$	<i>I</i> 52 <i>I</i> 43 <i>m</i> Cu ₅ Zn ₈	<i>a</i> = 910.4 to 904.7	30 to 42 at.% Cr, quenched from liquid [1989Ell]
$\zeta_2, \operatorname{Cr}_5 \operatorname{Al}_8(r)$ $\leq 1100 \ (?)$	hR78-1.50 R3m	a = 1271.9 c = 793.6	[1977Vis, Mas2]
	Cr ₅ Al ₈	a = 1272.8 c = 794.2 a = 1281.3 c = 795.1	[1977Bra] [1989Ell]
Cr ₂ Al < 910	tI6 I4/mmm MoSi ₂	a = 300.45 c = 864.77 a = 300.5 to 302.8 c = 864.9 to 875.5	~65.5 to ~71.4 at.% Cr [1937Bra, 1963Koe, 1998Mur] [1989Ell]
<i>X</i> (Al-Cr) ≤ 400	Cr ₅ Al ₃ or Cr ₃ Al super lattice		~75 to ~80 at.% Cr [1981Bro, 1981Ten]; possibly metastable [1998Mur]
"ε'CrAl ₄ "	Ртст		in as-cast alloy 15 at.% Cr, lattice parameters are the same as for "ε'CrAl ₄ " metastable [1994Sel]
<i>i</i> CrAl ₄	icosahedral		in spinning alloy of 8 to 13 at.% Cr; by decomposition of amorphous 20 at.% Cr, metastable [1998Mur]

MSIT®

Landolt-Börnstein
New Series IV/11A1

Phase/ Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments/References
dCrAl ₄	decagonal		19 at.%, 4 at.% Si [1994Sel]
ω(Al-Cr)			in quenched Al-Cr alloys of 60-100 at.% Cr, like metastable ω Ti [2000Sha1, 2000Sha2]
ZrAl ₃ (m)	cP4 Pm3m Cu₃Au	a = 408	[1987Vec] at 16.5 at.% Zr
ZrAl ₃ < 1580	tI16 I4/mmm ZrAl ₃	$a = 399.93 \pm 0.05$ $c = 1728.3 \pm 0.02$	[1992Mur, 2003Sch]
λ_1 , Zr(Cr _x Al _{1-x}) ₂	hP12 P6 ₃ /mmc MgZn ₂	a = 519 $c = 848$	0 ≤ x ≤ 0.8 [1970Mar] at 33 at.% Cr; 80 h at 700°C [1964Ram]
ZrAl ₂ <1660		a = 528.24 c = 874.82	[V-C]
Zr ₂ Al ₃ <1590	oF40 Fdd2 Zr ₂ Al ₃	$a = 960.1 \pm 0.2$ $b = 1390.6 \pm 0.2$ $c = 557.4 \pm 0.2$	[2003Sch]
ZrA1 < 1275±25	oC8 Cmcm CrB	$a = 335.9 \pm 0.1$ $b = 1088.7 \pm 0.3$ $c = 427.4 \pm 0.1$	[2003Sch]
Zr ₅ Al ₄ (h) 1550-~1000	hP18 P6 ₃ /mcm Ti ₅ Ga ₄	a = 844.8 c = 580.5	[2003Sch]
Zr ₄ Al ₃ <~1030	hP7 P6/mmm Zr ₄ Al ₃	$a = 543.3 \pm 0.2$ $c = 539.0 \pm 0.2$	[12003Sch]
Zr ₃ Al ₂ <1480	<i>tP</i> 20 <i>P</i> 4 ₂ / <i>mnm</i> Zr ₄ Al ₃	a = 763.0(1) c = 699.8(1)	[2003Sch]
Zr ₅ Al ₃ (h) <1400	tI32 I4/mcm W ₅ Si ₃	a = 1104.4 c = 539.1	[2003Sch]
Zr ₅ Al ₃ (r?)	hP16 P6 ₃ /mcm Mn ₅ Si ₃	a = 817.4 c = 569.8	[2003Sch]
Zr ₂ Al <1350	<i>hP</i> 6 <i>P6</i> ₃ /mmc Ni ₂ In	$a = 489.39 \pm 0.05$ $c = 592.83 \pm 0.05$	[2003Sch]
Zr ₃ Al <1019	cP4 Pm3m Cu₃Au	$a = 437.2 \pm 0.3$	[2003Sch]

Phase/ Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments/References
Zr(Al,Cr) ₃ metastable	cP4 Pm3m AuCu ₃	a = 438.0 a = 465.2	in Al-Zr binary (metastable) [V-C2] [1991Des], two-phase sample, no composition of phase is given
γZrCr ₂ 1677-1625	hP12 P6 ₃ /mmc MgZn ₂	a = 510.2 c = 828.9 a = 511.1 c = 834.1	C14 structure [1995Sou] at 20°C [1997Kur] at 300°C [1997Kur]
βZrCr ₂ 1625-1546	hP24 P6 ₃ /mmc MgNi ₂	a = 510.0 c = 1661	C36 structure [1986Ari]
λ_2 , $Zr(Cr_{1-x}Al_x)_2$	cF24 Fd3m		$0 \le x \le 0.1$, 64 to 69 at.% Cr [1970Mar], [1973Pet]
αZrCr ₂ < 1560	MgCu ₂	a = 721.8 a = 719.4 a = 720.4	at 64 at.% Cr [1973Pet] at 69 at.% Cr C15 structure [1995Sau]

 $MSIT^{\tiny{\circledR}}$

ΑI Data / Grid: at.% Fig. 3: Al-Cr-Zr. Axes: at.% Isothermal section of the Al-corner at (Al) 620°C (Al)+ZrAl₃ (Al)+CrAl₇ (Al)+ZrAl₃+CrAl₇ Zr Cr 1.00 Zr 0.00 0.00 Cr 1.00 99.00 99.00

Landolt-Börnstein New Series IV/11A1 $MSIT^{\circledR}$

ΑI Data / Grid: mass% Fig. 5: Al-Cr-Zr. Axes: mass% Limits of Cr and Zr solubility in (Al) for 1: at cooling rate 1000 K/s; 2: at cooling 10⁶ K/s; 3: at cooling rate 10⁸ K/s. metastable alloys 90 10 14.00 0.00 Zr Cr 0.00 Cr 14.00 86.00 ΑI 86.00

 MSIT^{\circledR}