

# ЭТИКЕТКА

# СЛКН.431323.029 ЭТ

Микросхема интегральная 564 ПУ8Т1ЭП Функциональное назначение — Шесть преобразователей высокого уровня (с низкого на высокий) без инверсии

Схема расположения выводов Климатическое исполнение УХЛ





# Таблица назначения выводов

| №<br>вывода | Назначение вывода       | №<br>вывода | Назначение вывода       |
|-------------|-------------------------|-------------|-------------------------|
| 1           | Вход 1 преобразователя  | 8           | Выход 4 преобразователя |
| 2           | Выход 1 преобразователя | 9           | Вход 4 преобразователя  |
| 3           | Вход 2 преобразователя  | 10          | Выход 5 преобразователя |
| 4           | Выход 2 преобразователя | 11          | Вход 5 преобразователя  |
| 5           | Вход 3 преобразователя  | 12          | Выход 6 преобразователя |
| 6           | Выход 3 преобразователя | 13          | Вход 6 преобразователя  |
| 7           | Общий                   | 14          | Питание                 |

# 1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при  $t = (25\pm10)$  °C)

#### Таблица 1

| Наименование параметра, единица измерения, режим измерения                                                     | Буквенное         | Норма    |          |
|----------------------------------------------------------------------------------------------------------------|-------------------|----------|----------|
| панменование нараметра, единица измерения, режим измерения                                                     | обозначение       | не менее | не более |
| 1                                                                                                              | 2                 | 3        | 4        |
| 1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 12 \; B,  U_{IL} = 0.8 \; B,  I_0 = 1.3 \; \text{мA}$ | $U_{OL}$          | -        | 0,5      |
| 2. Выходное напряжение высокого уровня, B, при: $\rm U_{CC}$ = 12 B, U $_{IH}$ = 3,0 B, $\rm I_{O}$ = 1,3 мA   | U <sub>OH</sub>   | 11,5     | -        |
| 3. Ток потребления, мкА, при: $U_{CC} = 12 \; B, \; U_{IL} = 0.8 \; B, \; U_{IH} = 3.0 \; B$                   | I <sub>CC1</sub>  | -        | 4000     |
| 4. Ток потребления, мкА, при: $\rm U_{CC} = 15~B,  U_{IL} = 0~B,  U_{IH} = 15~B$                               | $I_{CC2}$         | -        | 20       |
| 5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15~B,U_{IL} = 0~B,U_{IH} = 15~B$                            | $I_{IL}$          | -        | /-0,1/   |
| 6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15~B,U_{IL} = 0~B,U_{IH} = 15~B$                           | $I_{\mathrm{IH}}$ | -        | 0,1      |

| Продолжение таблицы 1                                                                                                                   |                                    |   |     |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---|-----|--|--|
| 1                                                                                                                                       | 2                                  | 3 | 4   |  |  |
| 7. Время задержки распространения при выключении и включении, нс, при: $U_{CC}$ = 12 B, $U_{IL}$ = 0 B, $U_{IH}$ = 3,0 B, $C_L$ = 50 пФ | t <sub>PLH</sub> ,t <sub>PHL</sub> | - | 110 |  |  |
| 8. Входная емкость , п $\Phi$ , при: $U_{CC}$ = 12 B, $C_L$ = 50 п $\Phi$                                                               | Cı                                 | - | 12  |  |  |

1.2 Содержание драгоценных металлов в 1000 шт. изделий:

золото г, серебро г,

в том числе:

золото г/мм

на 14 выводах, длиной мм.

Цветных металлов не содержится.

#### 2 НАДЕЖНОСТЬ

- 2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ С не менее 100000 ч, а в облегченном режиме ( $U_{\rm CC}$  от 5 до 10B)- не менее 120000 ч.
- $2.2\ \Gamma$ амма процентный срок сохраняемости ( $T_{C\gamma}$ ) при  $\gamma$  = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте 3ИП , должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИЙ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.610-30ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие.

Срок гарантии исчисляется с даты изготовления, нанесенной на микросхемы.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ПУ8Т1ЭП соответствуют техническим условиям АЕЯР.431200.610-30ТУ и признаны годными для эксплуатации.

| Приняты по    |                        | ОТ         |        |                     |
|---------------|------------------------|------------|--------|---------------------|
|               | (извещение, акт и др.) |            | (дата) |                     |
| Место для шт  | ампа ОТК               |            |        | Место для штампа ВП |
| Место для шт  | ампа «Перепроверка і   | произведен | на     | »<br>(дата)         |
| Приняты по _  | (извещение, акт и др.) | ОТ         | (дата) | _                   |
| Место для шт  | ампа ОТК               |            |        | Место для штампа ВП |
| Цена договорі | ная                    |            |        |                     |

#### 5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка, вход – выход, питание-общая точка.

Остальные указания по применению и эксплуатации – в соответствии с АЕЯР.431200.610ТУ