PRACTICE QUIZ 2 SOLUTIONS

ADRIAN PĂCURAR

Allowed Time: 10 min Time to beat: 3 min

Problem 1. Find the region where $f(x) = -\frac{x^2}{(x-1)^5}$ is continuous.

Since f is a rational function, it is continuous everywhere on its domain. The denominator is $(x-1)^5$ which is zero when x=1, so the domain is all real numbers except x=1. Thus the region of continuity is $x \neq 1$ or alternately $(-\infty, 1) \cup (1\infty)$. Sometimes we also write this as $\mathbb{R} \setminus \{1\}$.

Problem 2. If $f(x) = 5x^2 + 3x$, find the equation of the tangent line at x = 1.

We evaluate the derivative f'(x) = 10x + 3 at x = 1 to obtain a slope of 13. We also need the y-value of the function at x = 1, which is f(1) = 8. This gives us a point $(x_0, y_0) = (1, 8)$ with the slope of m = 13, so we can use the point slope form of a line $y - y_0 = m(x - x_0)$:

$$y - 8 = 13(x - 1)$$

which can also be written as y = 13x - 5.

Problem 3. The limit $\lim_{h\to 0} \frac{\sqrt{h+4}-\sqrt{4}}{h}$ represents the derivative of a function f(x) at some point x=a. State f(x) and a.

The formal definition of the derivative of a function f(x) at x = a is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

In our case the limit can be written as

$$\lim_{h \to 0} \frac{\sqrt{4+h} - \sqrt{4}}{h} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

and we actually have two options for our answer. We can interpret this as $f(x) = \sqrt{x}$ with a = 4, or we can interpret it as $f(x) = \sqrt{x+4}$ with a = 0. Either one is correct.

Problem 4. Match the given graph of the function with the graph of its derivative.

The correct answer is A.