1

Challenging Problem

Pulkit Saxena

1 Problem

Let W_1 and W_2 be subspaces of a finite-dimensional vector space \mathbb{V} . Prove that

- 1) $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$
- 2) $(W_1 \cap W_2)^0 = W_1^0 + W_2^0$

2 Solutions

Proof of $W_1 + W_2 = W_1 \cup W_2$ If W_1 and

If W_1 and W_2 are subspace of vector space \mathbb{V} over a Field F then

1) $W_1 + W_2$ is a subspace of \mathbb{V}

2)span $(W_1 \cup W_2) = W_1 + W_2$ or $W_1 + W_2 = W_1 \cup W_2$

Proof of $W_1 + W_2$ is a subspace of \mathbb{V}

Let $a_1, a_2 \in W_1$ and $b_1, b_2 \in W_2$ and two scalar α and $\beta \in F$ $\alpha \mathbf{a} + \beta \mathbf{b} = \alpha(a_1 + a_2) + \beta(b_1 + b_2) = \alpha a_1 + \beta b_1 + \alpha a_2 + \beta b_2$ $\implies W_1 + W_2 \in \mathbb{V}$

Proof of span $(W_1 \cup W_2) = W_1 + W_2$ **or span** $(W_1 + W_2) = W_1 \cup W_2$

 $0\in W_2$

Let $a_1 \in W_1$

 $a_1 = a_1 + 0 \implies a_1 \in W_1 + W_2$ thus $W_1 \subseteq W_1 + W_2$ Similarly $W_2 \subseteq W_1 + W_2$

We need to show $W_1 + W_2 \subseteq \operatorname{span}(W_1 \cup W_2)$ and $\operatorname{span}(W_1 \cup W_2) \subseteq W_1 + W_2$

Let $a = a_1 + b_1$ be any element of $W_1 + W_2$

Then $a_1 \in W_1$ and $a_2 \in W_2$

therefore $a_1 \in W_1 \cup W_2$ and $b_1 \in W_1 \cup W_2$

We can write $a_1 + b_1 = 1a_1 + 1b_1$ Thus a_1 and b_1 is a linear combination of finite number of elements $a_1, b_1 \in W_1 \cup W_2$

 $\implies a_1 + b_1 \in \operatorname{span}(W_1 \cup W_2)$

 $\implies W_1 + W_2 \in \operatorname{span}(W_1 \cup W_2)$

Now to prove span $(W_1 \cup W_2) \subseteq W_1 + W_2$

span $(W_1 \cup W_2)$ is the smallest subspace containing $W_1 \cup W_2$ and $W_1 + W_2$ is a subspace of containing $W_1 \cup W_2 \implies span(W_1 \cup W_2) \subseteq W_1 + W_2$

Hence we proved $W_1 + W_2 = W_1 \cap W_2$.

From this proof the above equation can be modified as De-Morgan's law.

Proof $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$	From the above proof we can Modify as De-Morgan's Law as
	$(W_1 \cup W_2)' = W_1' \cap W_2'$
	Let $x \in (W_1 \cup W_2)'$
	$\implies x \notin (W_1 \cup W_2)$
	$\implies x \notin W_1 \text{ and } x \notin W_2$
	$\implies x \in W_1' \text{ and } x \in W_2'$
	$\implies x \in W_1' \cap W_2'$
	$\implies x \in W_1' \cap W_2'$ $\implies (W_1 \cup W_2)' = W_1' \cap W_2'$
	Therefore $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$. Hence proved.
Proof $(W_1 \cap W_2)^0 = W_1^0 + W_2^0$	From the above proof we can Modify as De-Morgan's Law as
	$(W_1 \cap W_2)' = W_1' \cup W_2'$
	Let $x \in (W_1 \cap W_2)'$
	$\implies x \notin (W_1 \cap W_2)$
	$\implies x \notin (W_1 \cap W_2)$ $\implies x \notin W_1 \text{ OR } x \notin W_2)$
	$\implies x \in W_1' \text{ OR } x \in W_2'$
	$\implies x \in W_1' \cup W_2'$
	$\implies (W_1 \cup W_2)' = W_1' \cup W_2'.$
	Therefore $(W_1 \cap W_2)^0 = W_1^0 + W_2^0$ Hence proved.

TABLE 1: Solution Table