Problem Set 2 (SOLUTIONS)

This problem set will take you through some Stata commands to estimate simple regression equations with dummy variables. You will learn how to interpret the estimated coefficients and test some linear hypotheses. Interpretation of these coefficients will be useful when we do treatment evaluation models later in term 1.

The hypothesis tests discussed in this problem set include standard T-tests and F-tests, which is assumed undergraduate knowledge for this module.

You will need to download the dataset problemset2.dta, which is available on Moodle.

Conditional Expectation Function

Consider the Conditional Expectation Function (CEF), $E[Y_i|X_i]$. If X takes on discrete values: $X_i \in \{x_1, x_2, ..., x_m\}$, then

$$E[Y_i|X_i] = E[Y_i|X_i = x_1] \cdot \mathbf{1}\{X_i = x_1\} + \dots + E[Y_i|X_i = x_m] \cdot \mathbf{1}\{X_i = x_m\}$$

where $\mathbf{1}\{X_i=x_m\}$ is a dummy variable, = 1 when $X_i=x_m$. Since the values of X_i are mutually exclusive there is no overlap of these dummy variables.

Note, we do not need to assume that X is a single random variable. It can be a vector of random variables that takes on discrete values.

We can re-arrange this expression using anyone of the values of X. The natural option is to choose the first, but this is arbitrary.

$$\begin{split} E[Y_i|X_i] = & E[Y_i|X_i = x_1] + (E[Y_i|X_i = x_2] - E[Y_i|X_i = x_1]) \cdot \mathbf{1}\{X_i = x_2\} + \dots \\ & + (E[Y_i|X_i = x_m] - E[Y_i|X_i = x_1]) \cdot \mathbf{1}\{X_i = x_m\} \end{split}$$

Since, $E[Y_i|X_i=x_m]$ is a constant $(X_i$ is set to a specific value), we can express the CEF as a function that is linear in parameters.

$$E[Y_i|X_i] = \beta_1 + \beta_2 D_{i2} + \dots + \beta_m D_{im}$$

where $D_{im} = \mathbf{1}\{X_i = x_m\}.$

Preamble

<IPython.core.display.HTML object>

Create a do-file for this problem set and include a preamble that sets the directory and opens the data. For example,

```
clear
//or, to remove all stored values (including macros, matrices, scalars, etc.)
*clear all

* Replace $rootdir with the relevant path to on your local harddrive.
cd "$rootdir/problem-sets/ps-2"

cap log close
log using problem-set-2.txt, replace

use problem-set-2-data.dta
```

Questions

1. Consider the $E[ln(Wage_i)|Gender_i]$, where $Gender_i \in \{1 \text{``}Male'', 2 \text{``}Female''\}$. Show that this CEF implies a linear model,

$$ln(Wage_i) = \beta_1 + \beta_2 D_{i2} + \varepsilon_i$$

What do the parameters β_1 and β_2 imply?

$$\begin{split} E[ln(Wage_i)|G_i] &= E[ln(Wage_i)|G_i=1] + (E[ln(Wage_i)|G_i=2] - E[ln(Wage_i)|G_i=1]) \cdot \mathbf{1}\{G_i=2\} \\ &= \beta_1 + \beta_2 D_{i2} \\ \Rightarrow E[\varepsilon_i|D_{i2}] = 0. \end{split}$$

2. Regress lwage (log wage) on just a set of binary indicators that will enable you to test the hypothesis that males and females are on average, paid the same wage, ceteris paribus. Test this hypothesis.

reg lwage female * or gen male=1-female reg lwage male

Source	SS	df	MS	Number of obs F(1, 4163)	•
	93.6914807 793.213421		93.6914807 .190538895	Prob > F	= 0.0000 = 0.1056
Total	886.904902	4,164	.212993492	Root MSE	= .43651
lwage	Coefficient			P> t [95% co	onf. interval]
female	4744661	.0213967	-22.17	0.0005164	154325171
_cons	6.729774	.00718	937.29	0.000 6.71569	97 6.74385
Source	SS	df 	MS	Number of obs F(1, 4163)	
Model	93.6914807	1	93.6914807	<u>-</u>	
Residual	793.213421	4,163	.190538895		
+-				Adj R-squared	= 0.1054
Total	886.904902	4,164	.212993492	Root MSE	= .43651
lwage	Coefficient	Std. err.	t :	P> t [95% co	onf. interval]
male	.4744661	.0213967	22.17	0.000 .43251	71 .516415
_cons	6.255308	.020156		0.000 6.21579	91 6.294824

Alternatively, you could use Stata's factor notation:

```
reg lwage i.female
```

//note: defaults to smallest value as base category. This can be changed as follows.

reg lwage ib1.female

Source	SS	df	MS	Number of ob		4,165
+ Model	93.6914807	1	93.6914807	F(1, 4163) Prob > F		101112
Residual	793.213421	4,163	.190538895	R-squared	=	0.1056
+				Adj R-square		0.1001
Total	886.904902	4,164	.212993492	Root MSE	=	.43651
lwage	Coefficient	Std. err.	t F	P> t [95%	conf.	interval]
1.female	4744661	.0213967	-22.17 (0.000516	3415	4325171
_cons	6.729774	.00718	937.29	0.000 6.715	697	6.74385
g I	gg	1.5	ма	N 1	_	4 405
Source	SS 	df	MS	Number of ob F(1, 4163)		-,
Model	93.6914807	1	93.6914807	Prob > F		
Residual			.190538895	R-squared		
+				Adj R-square		0.1054
Total	886.904902	4,164	.212993492	Root MSE	=	.43651
	Coefficient	Std err	 + [P> t [95%	conf	interval]
0.female	.4744661	.0213967	22.17	.000 .4325	5171	.516415
_cons	6.255308	.020156	310.34	0.000 6.215	791	6.294824

It is evident from the test p-value that the difference is statistically significantly. Note, the standard **reg** command assume homoskedastic SEs. If we believe that the variance varies of (log of) wages varies with gender, we should estimate heteroskedastic SEs. However, in this instance it will not make a difference to the conclusion.

reg lwage female, r

Linear regression Number of obs = 4,165

```
F(1, 4163) = 520.64

Prob > F = 0.0000

R-squared = 0.1056

Root MSE = .43651
```

| Robust
| lwage | Coefficient std. err. t P>|t| [95% conf. interval]
| female | -.4744661 .0207939 -22.82 0.000 -.5152332 -.4336989
| cons | 6.729774 .0072089 933.53 0.000 6.71564 6.743907

- **3.** Extend the specification in (2) that will enable you to test the hypothesis that there is no difference in the wages between the following gender-ethnicity groups. Begin by defining the following dummy variables:
 - female_black = female×black
 - male_black = (1-female) × black
 - female_nonblack = female × (1-black)
 - $male_nonblack = (1-female) \times (1-black)$

```
gen female_black=female*black
gen female_nonblack=female*(1-black)
gen male_black=(1-female)*black
gen male_nonblack=(1-female)*(1-black)
```

Then estimate the following regressions:

- a. lwage on female_black, female_nonblack, male_black, male_nonblack (without a constant: option nocons)
- b. lwage on female, black, female_black
- c. lwage on female_black, female_nonblack, male_black

For some of these exercises you may be able to use Stata's factor notation. However, in some instances you will need to manually create the above dummy-variable interactions.

In each case, identify the base category and write down the parameters of the (implied) model in terms of conditional expectations.

* (a) reg lwage female_black female_nonblack male_black male_nonblack // note, Stata has dropped one variable due to perfect collinearity reg lwage female_black female_nonblack male_black male_nonblack, nocons

note: male_black omitted because of collinearity.

Source	SS	df	MS		of obs =	-,
Model	107.436063	 3	35.8120209	- F(3, 4 9 Prob >		
Residual			.187327287			
nesiduai		4,101	.10732720	-	squared =	
Total	886.904902	4,164	.212993492	•	-	
lwage	Coefficient	Std. err.	t	P> t	 [95% conf.	interval]
female_black	4434409	.0523433	-8.47	0.000	5460617	34082
female_non~k	2101553	.0383456	-5.48	0.000	2853332	1349774
male_black	0	(omitted)				
male_nonbl~k	.2239593	.0317691	7.05	0.000	.1616749	.2862436
_cons	6.517691	.0309152	210.82	0.000	6.457081	6.578301
Source	SS	df	MS	Number - F(4, 4	of obs =	-,
Model	185756.485	4	46439.1213			
Residual	779.468839	4,161	.187327287			
	·			-	squared =	
Total	186535.954	4,165	44.7865436	•	_	
lwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
female_black	6.07425	.0422382	143.81	0.000	5.991441	6.15706
female_non~k		.0226856	278.04	0.000	6.26306	6.352012
male_black		.0309152	210.82	0.000	6.457081	6.578301
male_nonbl~k	6.74165	.0073159	921.51	0.000	6.727307	6.755993

This model returns four parameter-estimates, each corresponding to the four gender-ethnicity groups. These are essentially conditional mean estimates.

```
* (b)
reg lwage female black female_black
// or, using factor notation:
reg lwage i.female##i.black
```

Source	SS	df	MS		er of obs	=	4,165
				- F(3,	4161)	=	191.17
Model	107.436063	3	35.812020	9 Prob	> F	=	0.0000
Residual	779.468839	4,161	.18732728	7 R-sq	uared	=	0.1211
	·			- Adj	R-squared	=	0.1205
Total	886.904902	4,164	.21299349	2 Root	MSE	=	.43281
lwage	Coefficient	Std. err.	t	P> t	[95% cd	onf.	interval]
							
female	4341146	.0238361	-18.21	0.000	48084	16	3873832
black	2239593	.0317691	-7.05	0.000	286243	36	1616749
female_black	0093263	.057515	-0.16	0.871	122086	35	.1034339
_cons	6.74165	.0073159	921.51	0.000	6.72730)7	6.755993
Source	SS	df	MS	Numb	er of obs	=	4,165
				- F(3,	4161)	=	191.17
Model	107.436063	3	35.812020	9 Prob	> F	=	0.0000
Residual	779.468839	4,161	.18732728	7 R-sq	uared	=	0.1211
				- Adj	R-squared	=	0.1205
Total	886.904902	4,164	.21299349	2 Root	MSE	=	.43281
	Coefficient	Std. err.	t	P> t	[95% cd	onf.	interval]
							
1.female	4341146	.0238361	-18.21	0.000	48084	16	3873832
1.black	2239593	.0317691	-7.05	0.000	286243	36	1616749
female#black							
1 1	0093263	.057515	-0.16	0.871	122086	35	.1034339

```
|
_cons | 6.74165 .0073159 921.51 0.000 6.727307 6.755993
```

In this model, we have the following:

- $\beta_1 = E[ln(Wage_i)|F = 0, B = 0]$
- $\beta_2 = E[ln(Wage_i)|F = 1, B = 0] E[ln(Wage_i)|F = 0, B = 0]$
- $\bullet \quad \beta_3 = E[ln(Wage_i)|F=0, B=1] E[ln(Wage_i)|F=0, B=0] \\$
- • $\beta_4 = (E[ln(Wage_i)|F=1,B=1] - E[ln(Wage_i)|F=0,B=1]) - (E[ln(Wage_i)|F=1,B=0] - E[ln(Wage_i)|F=0,B=0])$

* (c)

reg lwage female_black female_nonblack male_black

// note, this one is harder to replicate using factor notation.

Source	SS	df	MS		er of ob		4,165
Model Residual	107.436063 779.468839	3	35.8120209 .187327287	Prob R-squ	4161) > F lared L-square	= = =	191.17 0.0000 0.1211 0.1205
Total	886.904902	4,164	. 212993492	ū	-	=	.43281
lwage	Coefficient			P> t		 conf.	interval]
<pre>female_black female_non~k male_black _cons </pre>	4341146	.0428671 .0238361 .0317691 .0073159	-18.21 -7.05	0.000 0.000 0.000 0.000	7514 480 2862 6.727	846 436	5833576 3873832 1616749 6.755993

In this model, we have the following:

- $\beta_1 = E[ln(Wage_i)|F = 0, B = 0]$
- $\beta_2 = E[ln(Wage_i)|F = 1, B = 1] E[ln(Wage_i)|F = 0, B = 0]$
- $\bullet \ \ \beta_3=E[ln(Wage_i)|F=1,B=0]-E[ln(Wage_i)|F=0,B=0]$

- $\beta_4 = E[ln(Wage_i)|F = 0, B = 1] E[ln(Wage_i)|F = 0, B = 0]$
- **4.** Compare the estimated coefficients with the sample average values for the lwage for the four subgroups. What do you see?

table female black, stat(mean lwage)

	 	0	black 1	Total
female or male 0 1 Total	-+- 	6.74165 6.307536 6.700755	6.517691 6.07425 6.363002	6.729774 6.255308 6.676346

You can compute the coefficients from each model simply using these averages.

5. In each of the above models, describe the null hypothesis you would test to evaluate whether there is a significant earnings difference between the earnings of black and non-black females.

a.
$$H_0: \beta_1 = \beta_2$$

b.
$$H_0: \beta_3 + \beta_4 = 0$$

c.
$$H_0: \beta_2 - \beta_3 = 0$$

6. Verify your solution to 4 by performing a test using the three set of regression output. You can use the post-estimation test command.

```
reg lwage female_black female_nonblack male_black male_nonblack, nocons

test female_black = female_nonblack

reg lwage female black female_black

test female_black + black = 0

reg lwage female_black female_nonblack male_black

test female_black - female_nonblack = 0
```

Source		df	MS	Number of o		4,165
Model Residual	185756.485	4	46439.1213 .187327287	Prob > F	> = =	99999.00 0.0000 0.9958
	+			Adj R-squar		
•	Coefficient			P> t [95%		interval]
<pre>female_black female_non~k male_black male_nonbl~k</pre>	6.307536 6.517691	.0422382 .0226856 .0309152 .0073159	278.04 210.82	0.000 5.99 0.000 6.20 0.000 6.45 0.000 6.72	6306 7081	6.15706 6.352012 6.578301 6.755993

(1) female_black - female_nonblack = 0

F(1, 4161) = 23.68Prob > F = 0.0000

Source	SS	df	MS	Number of of F(3, 4161)	bs =	4,165 191.17
Model Residual	107.436063 779.468839	3 4,161		Prob > F R-squared	=	0.0000 0.1211 0.1205
Total	886.904902	4,164	.212993492		=	. 43281
lwage	Coefficient				conf.	interval]
female	4341146	.0238361	-18.21	0.00048	0846	3873832
black	2239593	.0317691	-7.05	0.000286	2436	1616749
female_black	0093263	.057515	-0.16	0.871122	0865	.1034339
_cons	6.74165	.0073159	921.51	0.000 6.72	7307	6.755993

(1) black + female_black = 0

F(1, 4161) = 23.68Prob > F = 0.0000

Source	SS	df	MS		ber of obs	=	4,165 191.17
Model	107.436063	3	35.8120209		b > F	=	0.0000
Residual	779.468839	,	.187327287		quared	=	0.1211
Total	886.904902		.212993492	_	R-squared t MSE	=	0.1205 .43281
lwage	Coefficient			P> t	2 - 10	 nf.	interval]
female_black	6674001	.0428671	-15.57	0.000	751442	6	5833576
female_non~k	4341146	.0238361	-18.21	0.000	48084	6	3873832
male_black	2239593	.0317691	-7.05	0.000	286243	6	1616749
_cons	6.74165	.0073159	921.51 	0.000	6.72730 	7 	6.755993

(1) female_black - female_nonblack = 0

$$F(1, 4161) = 23.68$$

 $Prob > F = 0.0000$

7. In each case, test equality across all four gender-ethnicity groups. Again, you should get the same result.

```
reg lwage female_black female_nonblack male_black male_nonblack, nocons

test female_black = female_nonblack = male_black = male_nonblack

reg lwage female black female_black

test female_black = black = female = 0

reg lwage female_black female_nonblack male_black

test female_black = female_nonblack = male_black = 0
```

Source	l ss	df	MS	Number of obs	=	4,165
	+			F(4, 4161)	>	99999.00
Model	185756.485	4	46439.1213	Prob > F	=	0.0000
Residual	779.468839	4,161	.187327287	R-squared	=	0.9958
	+			Adj R-squared	=	0.9958

Total | 186535.954 4,165 44.7865436 Root MSE = .43281

<u> </u>	Coefficient		t	P> t	[95% conf.	_
<pre>female_black female_non~k male_black male_nonbl~k</pre>	6.07425 6.307536 6.517691	.0422382 .0226856 .0309152 .0073159	143.81 278.04 210.82 921.51	0.000 0.000 0.000 0.000	5.991441 6.26306 6.457081 6.727307	6.15706 6.352012 6.578301 6.755993

- (1) female_black female_nonblack = 0
- (2) female_black male_black = 0
- (3) female_black male_nonblack = 0

$$F(3, 4161) = 191.17$$

 $Prob > F = 0.0000$

Source		df	MS	Number of ob F(3, 4161)	os = =	4,165 191.17
Model Residual	107.436063 779.468839	3 4,161	35.8120209 .187327287	Prob > F R-squared	=	0.0000 0.1211 0.1205
Total			.212993492	• •	=	.43281
•	Coefficient				conf.	interval]
female black female_black _cons	4341146 2239593 0093263	.0238361 .0317691 .057515 .0073159	-18.21 -7.05 -0.16	0.000480 0.0002862 0.8711220 0.000 6.727	2436 0865	3873832 1616749 .1034339 6.755993

- (1) black + female_black = 0
- (2) female + female_black = 0
- (3) female_black = 0

$$F(3, 4161) = 191.17$$

 $Prob > F = 0.0000$

Source | SS df MS Number of obs = 4,165 ----- F(3, 4161) = 191.17

```
Model | 107.436063 3 35.8120209
                                 Prob > F
                                               0.0000
  Residual | 779.468839
                   4,161 .187327287
                                 R-squared
                                               0.1211
-----
                                 Adj R-squared =
                                               0.1205
    Total | 886.904902
                                 Root MSE
                  4,164 .212993492
                                               .43281
______
    lwage | Coefficient Std. err. t > |t| [95% conf. interval]
______
female_black | -.6674001
                  .0428671 -15.57
                               0.000
                                     -.7514426
                                             -.5833576
female_non~k | -.4341146 .0238361 -18.21 0.000
                                     -.480846
                                             -.3873832
                  .0317691 -7.05 0.000
 male_black | -.2239593
                                     -.2862436
                                             -.1616749
    _cons | 6.74165
                  .0073159
                                      6.727307
                         921.51
                               0.000
                                              6.755993
```

- (1) female_black female_nonblack = 0
- (2) female_black male_black = 0
- (3) female_black = 0

$$F(3, 4161) = 191.17$$

 $Prob > F = 0.0000$

8. Try to replicate the F-statistic for one of the above models. Hint, the F-stat for these models is the same as that of the whole model.

```
reg lwage female black female_black
ereturn list
scalar fstat = (e(r2)*e(df_r))/((1-e(r2))*e(df_m))
scalar list fstat
```

Source	SS	df	MS		er of obs	=	4,165 191.17
Model Residual		3		9 Prob		=	0.0000
	886.904902			- Adj	R-squared MSE	=	0.1205 .43281
•	Coefficient			P> t		 onf.	interval]
female		.0238361	-18.21 -7.05	0.000	48084 286243		3873832 1616749

```
      female_black | -.0093263
      .057515
      -0.16
      0.871
      -.1220865
      .1034339

      _cons | 6.74165
      .0073159
      921.51
      0.000
      6.727307
      6.755993
```

scalars:

e(N) = 4165 e(df_m) = 3 e(df_r) = 4161 e(F) = 191.1735422330181 e(r2) = .1211359442526956 e(rmse) = .4328132235793649 e(mss) = 107.4360627542734 e(rss) = 779.4688391479763

 $e(r2_a) = .1205023003768864$ e(11) = -2419.902951629166 $e(11_0) = -2688.805870567022$

e(rank) = 4

macros:

e(cmdline) : "regress lwage female black female_black"

e(title) : "Linear regression"

e(marginsok) : "XB default"

e(vce) : "ols"
e(depvar) : "lwage"
e(cmd) : "regress"
e(properties) : "b V"

e(predict) : "regres_p"
e(model) : "ols"

e(estat_cmd) : "regress_estat"

matrices:

e(b) : 1 x 4 e(V) : 4 x 4 e(beta) : 1 x 3

functions:

e(sample) fstat = 191.17354

In the case where the F-test corresponds to the test of the entire model, you can write the F-statistic in terms of \mathbb{R}^2 .

9. Estimate the following model:

$$lwage = \beta_1 + \beta_2 F + \beta_3 B + \beta_4 F \times B + \beta_5 exp + \beta_6 exp^2 + \beta_7 educ + \varepsilon$$

- Interpret the estimated coefficients $\hat{\beta}_7$.
- Interpret the effect of experience variable exp. Use the median level of experience to make your calculation.

```
sum educ, det
reg lwage i.female##i.black exper expsq educ
di (exp(_b[educ])-1)*100
```

years of education

	Percent	iles Smal	lest					
1%		6	4					
5%		8	4					
10%		9	4	Obs		4,165		
25%		12	4	Sum of wgt	t.	4,165		
50%		12		Mean	12	.84538		
		Lar	gest	Std. dev.	2.	787995		
75%		16	17					
90%		17	17	Variance	7.	772916		
95%		17	17	Skewness	2	581161		
99%		17	17	Kurtosis	2	.71273		
	Source	l SS	df	MS	Numb	er of obs	=	
		+				4158)		
		330.586						
		556.318902	4,158	.13379483	_			
	Total	+ 886.904902	4,164	.212993492		R-squared MSE		
	lwage	Coefficient	Std. err.	t	P> t	[95% co	 nf.	in
		4032047						
	1.black e#black	1551546 	.0269249	-5.76	0.000	207941	7	
Temale	E#DIGCK	I						

1 1		002071	.0488405	-0.04	0.966	0978246	.0936826
exper		.0427346	.0022404	19.07	0.000	.0383422	.047127
expsq		0006982	.0000494	-14.14	0.000	0007951	0006014
educ		.0731837	.0020983	34.88	0.000	.0690698	.0772975
_cons		5.303667	.0362462	146.32	0.000	5.232606	5.374729

7.5928119

 \bullet A one unit increase in years of educ is associated with an increase of 7.59% in expected wages, holding other regressors fixed.

```
sum exper, det
return list
di (exp(_b[exper]+2*r(p50)*_b[expsq])-1)*100
```

years of full-time work experience

	Percentiles	Smallest		
1%	3	1		
5%	5	1		
10%	7	1	Obs	4,165
25%	11	1	Sum of wgt.	4,165
50%	18		Mean	19.85378
		Largest	Std. dev.	10.96637
75%	29	50		
90%	36	50	Variance	120.2613
95%	39	50	Skewness	.4000014
99%	44	51	Kurtosis	2.072064

scalars:

 $r(sum_w) = 4165$ r(mean) = 19.85378151260504 r(Var) = 120.2612759224727 r(sd) = 10.96637022548814 r(skewness) = .4000013893781186r(kurtosis) = 2.072064120792274

r(sum) = 82691r(min) = 1

r(N) = 4165

r(max) = 51 r(p1) = 3 r(p5) = 5 r(p10) = 7 r(p25) = 11 r(p50) = 18 r(p75) = 29 r(p90) = 36 r(p95) = 39r(p99) = 44

1.7754427

- A one unit incease in years of experience is associated with an increase of 1.78% in expected wages, holding other regressors fixed.
- 10. Theoretically, how would you test the following restrictions for the model below?

a.
$$\beta_2 = \beta_3$$

b.
$$\beta_4 + \beta_5 = 1$$

c.
$$\beta_2 = \beta_3$$
 and $\beta_4 + \beta_5 = 1$

$$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \varepsilon$$

a. Restrictions 1: $H_0: \beta_2 = \beta_3 \Rightarrow \beta_2 - \beta_3 = 0$. This can be written as a simple T-test (or F-tests),

$$\text{T-stat} = \frac{\hat{\beta}_2 - \hat{\beta}_3}{\sqrt{\hat{Var}(\hat{\beta}_2 - \hat{\beta}_3)}}$$

where,

$$Var(\hat{\beta}_2 - \hat{\beta}_3) = Var(\hat{\beta}_2) + Var(\hat{\beta}_3) - 2 \cdot Cov(\hat{\beta}_2, \hat{\beta}_3)$$

Alternatively, rewrite the model, adding and subtracting $\beta_3 X_2$ (or $\beta_2 X_3$):

$$Y = \beta_1 + (\beta_2 - \beta_3)X_2 + \beta_3(X_2 + X_3) + \beta_4X_4 + \beta_5X_5 + \varepsilon$$

Then test the hypothese that the coefficient on X_2 is = 0.

b. Restrictions 1: $H_0: \beta_4 + \beta_5 = 1$. This can be written as a simple T-test,

$$\text{T-stat} = \frac{\hat{\beta}_4 + \hat{\beta}_5 - 1}{\sqrt{\hat{Var}(\hat{\beta}_4 + \hat{\beta}_5)}}$$

where,

$$Var(\hat{\beta}_4 + \hat{\beta}_5) = Var(\hat{\beta}_4) + Var(\hat{\beta}_5) + 2 \cdot Cov(\hat{\beta}_4, \hat{\beta}_5)$$

Alternatively, rewrite the model, adding and subtracting $\beta_5 X_4 - X_5$ (or $\beta_2 X_3)$:

$$Y - X_4 = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + (\beta_4 + \beta_5 - 1) X_4 + (\beta_5) (X_5 - X_4) + \varepsilon$$

Then test the hypothese that the coefficient on X_4 is = 0.

c. To test both of the linear restrictions simultaneously, we would use an F-test.

Step 1: estimate the unrestricted model

$$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \varepsilon$$

Store the SSR_U

Step 2: estimate the restricted model

$$(Y - X_4) = \gamma_1 + \gamma_2(X_2 + X_3) + \gamma_5(X_5 - X_4) + \varepsilon$$

Store the SSR_R .

Step 3: Compute the F-statistic

$$\text{F-stat} = \frac{(SSR_R - SSR_U)/(df_R - df_U)}{SSR_U/df_U}$$

Postamble

log close