

Experimental analysis of binary search models in graphs

Supervised by: prof. dr. hab. inż. Dariusz Dereniowski

Michał Szyfelbein

October 6, 2025

GDANSKUNIVERSITY | Basic information

The aim: Experimental analysis of selected generalized binary search problems. The aim of the analysis is to verify the hypotheses regarding the effectiveness of search algorithms.

Schedule:

- 2024.01 2024.06: Researching and selection of the query model.
- 2024.06 2025.05: Development and formal analysis of the proposed algorithms.
- 2025.06 2025.10: Selection of models and algorithms for comparison, implementation, thesis writing.
- 2025.11 2025.12: Execution of experiments, analysis and interpretation of the results, finalization of the thesis.

Michał Szyfelbein PG Presentation October 6, 2025 1/41

GDANSKUNIVERSITY | Basic information

The aim: Experimental analysis of selected generalized binary search problems. The aim of the analysis is to verify the hypotheses regarding the effectiveness of search algorithms.

Schedule:

- 2024.01 2024.06: Researching and selection of the query model.
- 2024.06 2025.05: Development and formal analysis of the proposed algorithms.
- 2025.06 2025.10: Selection of models and algorithms for comparison, implementation, thesis writing.
- 2025.11 2025.12: Execution of experiments, analysis and interpretation of the results, finalization of the thesis.

Michał Szyfelbein PG Presentation October 6, 2025 1/41

- Implementation, about 60% complete:
 - Language: python,
 - Libraries: networkx,
 - Environment: PyCharm,
 - Versioning: git + github, https://github.com/MSzyfel/Binary-Search.
- Thesis, about 80% complete:
 - Language: LaTeX,
 - Environment: Visual Studio Code.
 - Versioning: git + github, https://github.com/MSzyfel/Papers.
- What is left:
 - Experiments,
 - Advanced data generation
 - Optimization
 - Bug fixing
 - Data visualization

- Implementation, about 60% complete:
 - Language: python,
 - Libraries: networkx,
 - Environment: PyCharm,
 - Versioning: git + github, https://github.com/MSzyfel/Binary-Search.
- Thesis, about 80% complete:
 - Language: LaTeX,
 - Environment: Visual Studio Code,
 - Versioning: git + github, https://github.com/MSzyfel/Papers.
- What is left:
 - Experiments,
 - Advanced data generation
 - Optimization
 - Bug fixing
 - Data visualization

- Implementation, about 60% complete:
 - Language: python,
 - Libraries: networkx,
 - Environment: PyCharm,
 - Versioning: git + github, https://github.com/MSzyfel/Binary-Search.
- Thesis, about 80% complete:
 - Language: LaTeX,
 - Environment: Visual Studio Code,
 - Versioning: git + github, https://github.com/MSzyfel/Papers.
- What is left:
 - Experiments,
 - Advanced data generation,
 - Optimization,
 - Bug fixing,
 - Data visualization.

lesser than median

greater than median

Figure: Example of a sorted array containing 14 elements.

3/41 Michał Szyfelbein October 6, 2025

GDANSK UNIVERSITY | Generalized binary search

Definition

A searcher is required to find a hidden target vertex x in a graph G. To do so, they iteratively perform queries to an oracle, each about a chosen vertex v. After each such call, the oracle responds whether the target was found and if not, the searcher receives as a reply the connected component of G-v containing the target.

A further generalization is to associate with each vertex a **cost** function $c:V(G)\to\mathbb{R}_{\geq 0}$ representing the time required to query a given vertex.

Michał Szyfelbein PG Presentation October 6, 2025 4 / 41

GDAŃSK UNIVERSITY | Generalized binary search

Definition

A searcher is required to find a hidden target vertex x in a graph G. To do so, they iteratively perform queries to an oracle, each about a chosen vertex v. After each such call, the oracle responds whether the target was found and if not, the searcher receives as a reply the connected component of G-v containing the target.

A further generalization is to associate with each vertex a **cost** function $c:V(G)\to\mathbb{R}_{\geq 0}$ representing the time required to query a given vertex.

Michał Szyfelbein PG Presentation October 6, 2025 4 / 41

Figure: Query to b.

Figure: Query to f.

Figure: Query to b.

5/41 Michał Szyfelbein October 6, 2025

Figure: Query to f.

Figure: Query to b.

Figure: Query to d.

5/41 Michał Szyfelbein October 6, 2025

Figure: Query to f.

Figure: Query to b.

Figure: Query to c.

Figure: Query to d.

There are three main classes of graphs to be considered:

- Paths equivalent to searching in a sorted array.
- Trees The most extensively studied model. Our choice.
- General graphs Computationally hardest.

Michał Szyfelbein PG Presentation October 6, 2025 6/41

There are three main classes of graphs to be considered:

- Paths equivalent to searching in a sorted array.
- Trees The most extensively studied model. Our choice.
- General graphs Computationally hardest.

Michał Szyfelbein PG Presentation October 6, 2025 6/41

There are three main classes of graphs to be considered:

- Paths equivalent to searching in a sorted array.
- Trees The most extensively studied model. Our choice.
- General graphs Computationally hardest.

Michał Szyfelbein PG Presentation October 6, 2025 6/41

Decision tree:

- D = (V(D), E(D)), V(D) = V(T) are vertices and E(D) are edges of D.
- $Q_D(T,x)$ sequence of queries performed in order to find x.
- **Cost** of *D* in (*T*, *c*):

$$\mathtt{COST}_{D}\left(T,c\right) = \max_{x \in V(T)} \left\{ \sum_{q \in Q_{D}\left(T,x\right)} c\left(q\right) \right\}$$

• OPT $(T,c) = \min_D \{ COST_D(T,c) \}$ - optimal cost.

Decision tree:

- D = (V(D), E(D)), V(D) = V(T) are vertices and E(D) are edges of D.
- $Q_D(T,x)$ sequence of queries performed in order to find x.
- **Cost** of *D* in (*T*, *c*):

$$\mathtt{COST}_{D}\left(T,c\right) = \max_{x \in V(T)} \left\{ \sum_{q \in Q_{D}\left(T,x\right)} c\left(q\right) \right\}$$

• OPT $(T,c) = \min_{D} \{ COST_{D}(T,c) \}$ - optimal cost.

Decision tree:

- D = (V(D), E(D)), V(D) = V(T) are vertices and E(D) are edges of D.
- $Q_D(T,x)$ sequence of queries performed in order to find x.
- **Cost** of *D* in (*T*, *c*):

$$\mathtt{COST}_{D}\left(T,c\right) = \max_{x \in V\left(T\right)} \left\{ \sum_{q \in Q_{D}\left(T,x\right)} c\left(q\right) \right\}.$$

• OPT $(T,c) = \min_{D} \{ COST_{D}(T,c) \}$ - optimal cost.

Decision tree:

- D = (V(D), E(D)), V(D) = V(T) are vertices and E(D) are edges of D.
- $Q_D(T,x)$ sequence of queries performed in order to find x.
- **Cost** of *D* in (*T*, *c*):

$$\mathtt{COST}_{D}\left(T,c\right) = \max_{x \in V\left(T\right)} \left\{ \sum_{q \in Q_{D}\left(T,x\right)} c\left(q\right) \right\}.$$

• OPT $(T,c) = \min_{D} \{ COST_{D}(T,c) \}$ - optimal cost.

GDAŃSKUNIVERSITY | Example of decision tree

Figure: Sample input tree and a decision tree for it.

Michał Szyfelbein PG Presentation October 6, 2025 8/41

GDAŃSKUNIVERSITY | Problem statement

Definition

Given a tree T and weight function c, the **Tree Search Problem** consists of finding a decision tree D, such that $\mathrm{COST}_D\left(T,c\right) = \mathrm{OPT}\left(T,c\right)$.

Unluckily, the Tree Search Problem is **strongly NP-Hard** even when restricted to binary trees and spiders of diameter at most 6. However, one can find **approximate** solutions.

Michał Szyfelbein PG Presentation October 6, 2025 9 / 41

GDAŃSKUNIVERSITY | Problem statement

Definition

Given a tree T and weight function c, the **Tree Search Problem** consists of finding a decision tree D, such that $\mathrm{COST}_D\left(T,c\right) = \mathrm{OPT}\left(T,c\right)$.

Unluckily, the Tree Search Problem is **strongly NP-Hard** even when restricted to binary trees and spiders of diameter at most 6. However, one can find **approximate** solutions.

Michał Szyfelbein PG Presentation October 6, 2025 9 / 41

Theorem

Let $c\left(v\right)=1$ for every $v\in V\left(T\right)$. There exists an exact algorithm called RankingBasedDT for the Tree Search Problem running in linear time, such that the resulting decision tree uses at most $\left|\log n\right|+1$ queries.

Theorem

Fix $0 < \epsilon \le 35$. There exists a $(1 + \epsilon)$ -approximation algorithm for the Tree Search Problem running in $n^{O(\log n/\epsilon^2)}$ time.

Theorem

There exists a polynomial time $O\left(\sqrt{\log n}\right)$ -approximation algorithm for the Tree Search Problem.

Michał Szyfelbein PG Presentation October 6, 2025 10 / 41

Theorem

Let $c\left(v\right)=1$ for every $v\in V\left(T\right)$. There exists an exact algorithm called RankingBasedDT for the Tree Search Problem running in linear time, such that the resulting decision tree uses at most $\left|\log n\right|+1$ queries.

Theorem

Fix $0 < \epsilon \le 35$. There exists a $(1+\epsilon)$ -approximation algorithm for the Tree Search Problem running in $n^{O(\log n/\epsilon^2)}$ time.

Theorem

There exists a polynomial time $O\left(\sqrt{\log n}\right)$ -approximation algorithm for the Tree Search Problem.

Michał Szyfelbein PG Presentation October 6, 2025 10 / 41

Theorem

Let $c\left(v\right)=1$ for every $v\in V\left(T\right)$. There exists an exact algorithm called RankingBasedDT for the Tree Search Problem running in linear time, such that the resulting decision tree uses at most $\left|\log n\right|+1$ queries.

Theorem

Fix $0 < \epsilon \le 35$. There exists a $(1+\epsilon)$ -approximation algorithm for the Tree Search Problem running in $n^{O(\log n/\epsilon^2)}$ time.

Theorem

There exists a polynomial time $O\left(\sqrt{\log n}\right)$ -approximation algorithm for the Tree Search Problem.

Michał Szyfelbein PG Presentation October 6, 2025 10 / 41

GDANSKUNIVERSITY | Implementation results I

Figure: Input tree of size 10.

Figure: Decision tree of cost 2.8.

11 / 41

Michał Szyfelbein October 6, 2025

GDANSKUNIVERSITY | Implementation results II

Figure: Input tree of size 25.

Figure: Decision tree of cost 3.

12/41 Michał Szyfelbein October 6, 2025

GDANSK UNIVERSITY | Implementation results III

Figure: Input tree of size 50.

Figure: Decision tree of cost 3.78.

13/41 Michał Szyfelbein October 6, 2025

GDANSK UNIVERSITY | Implementation results IV

Figure: Input tree of size 100.

Figure: Decision tree of cost 4.85.

14 / 41 Michał Szyfelbein October 6, 2025

GDANSK UNIVERSITY | Implementation results V

Figure: Input tree of size 200.

Figure: Decision tree of cost 4.66

$\operatorname{proc} \operatorname{ApproxDT}(T)$:

- **1.** Set a global parameter $k = 2^{\lfloor \sqrt{\log n} \rfloor + 2}$.
- **2.** if $n(T) \leq k$ then: return QPTAS $(T, \epsilon = 1)$.
- **3.** else: find a set $\mathcal{X} \subseteq V\left(T\right)$, such that $|\mathcal{X}| \leq k$ and for every $H \in T \mathcal{X}$, $n\left(H\right) \leq n\left(T\right)/2^{\sqrt{\log n}}$.
- **4.** $\mathcal{Y} \leftarrow \mathcal{X} \cup$ all branching vertices in $T\langle X \rangle$.
- **5.** $\mathcal{Z} \leftarrow \mathcal{Y} \cup$ all lightest vertices on paths between vertices of Y.
- **6.** $D \leftarrow D_{\mathcal{Z}} \leftarrow \mathsf{QPTAS}\left(T_{\mathcal{Z}}, \epsilon = 1\right)$, where $T_{\mathcal{Z}}$ is a tree built on \mathcal{Z} .
- **7.** for $H \in T \mathcal{X}$: hang $D_H \leftarrow \text{ApproxDT}(H)$ in $D_{\mathcal{Z}}$.
- 8. return D.

Michał Szyfelbein PG Presentation October 6, 2025 16 / 41

GDANSKUNIVERSITY | Auxiliarry tree structure

17 / 41 Michał Szyfelbein October 6, 2025

GDANSKUNIVERSITY | Solution structure

Figure: Structure of the decision tree D.

18 / 41 Michał Szyfelbein October 6, 2025

GDANSKUNIVERSITY | Approximation guarantee

Since $COST_{D_{\alpha}} \leq 2 \cdot OPT(T)$, we have:

$$\begin{split} \operatorname{COST}_D\left(T\right) & \leq \operatorname{COST}_{D_{\mathcal{Z}}} + \max_{H \in T - \mathcal{Z}} \left\{\operatorname{COST}_{D_H}\left(H\right)\right\} \\ & \leq 2 \cdot \log_{2^{\sqrt{\log n}}}\left(n\right) \cdot \operatorname{OPT}\left(T\right) \\ & = \frac{2\log n}{\sqrt{\log n}} \cdot \operatorname{OPT}\left(T\right) \\ & = 2\sqrt{\log n} \cdot \operatorname{OPT}\left(T\right). \end{split}$$

- Let $p \in \mathbb{N}$.
- Let k = a/pn, for some $a \in \mathbb{N}$.
- We define new cost function c', called **aligned cost function**:

$$c'\left(v\right) = \begin{cases} \left\lceil c\left(v\right)\right\rceil_k, & \text{if } c\left(v\right) > pk, \text{ heavy vertex.} \\ \left\lceil c\left(v\right)\right\rceil_{\frac{1}{pn}}, & \text{otherwise, light vertex.} \end{cases}$$

Michał Szyfelbein PG Presentation October 6, 2025 20 / 41

- Let $p \in \mathbb{N}$.
- Let k = a/pn, for some $a \in \mathbb{N}$.
- We define new cost function c', called **aligned cost function**:

$$c'\left(v\right) = \begin{cases} \left\lceil c\left(v\right)\right\rceil_{k}, & \text{if } c\left(v\right) > pk, \text{ heavy vertex}, \\ \left\lceil c\left(v\right)\right\rceil_{\frac{1}{pn}}, & \text{otherwise, light vertex}. \end{cases}$$

Lemma

$$\mathit{OPT}(T,c') \leq \left(1 + \frac{2}{p}\right) \cdot \mathit{OPT}(T,c)$$
.

Lemma

There exists a decision tree D for (T,c'), such that.

- **1.** $COST_D\left(T,c'\right) \leq \left(1+\frac{3}{p}\right) \cdot OPT(T,c').$
- **2.** Starting point of each heavy query is aligned to a multiple of k.
- **3.** Starting point of each light query is aligned to a multiple of $\frac{1}{pn}$.

We call a decision tree fulfiling the requirements 2. and 3. of the above lemma an aligned decision tree.

Lemma

$$\mathit{OPT}(T,c') \leq \left(1 + \frac{2}{p}\right) \cdot \mathit{OPT}(T,c)$$
.

Lemma

There exists a decision tree D for (T, c'), such that:

- **1.** $COST_D\left(T,c'\right) \leq \left(1 + \frac{3}{p}\right) \cdot OPT(T,c').$
- **2.** Starting point of each heavy query is aligned to a multiple of k.
- **3.** Starting point of each light query is aligned to a multiple of $\frac{1}{pn}$.

We call a decision tree fulfiling the requirements 2. and 3. of the above lemma an aligned decision tree.

Lemma

$$\mathit{OPT}(T,c') \leq \left(1 + \frac{2}{p}\right) \cdot \mathit{OPT}(T,c)$$
.

Lemma

There exists a decision tree D for (T, c'), such that:

- **1.** $COST_D\left(T,c'\right) \leq \left(1 + \frac{3}{p}\right) \cdot OPT(T,c').$
- **2.** Starting point of each heavy query is aligned to a multiple of k.
- **3.** Starting point of each light query is aligned to a multiple of $\frac{1}{pn}$.

We call a decision tree fulfiling the requirements 2. and 3. of the above lemma an **aligned decision tree**.

GDANSKUNIVERSITY | Directions of the responses

- x the target.
- T current candidate subtree.
- $q \in V(D)$ next query to be made.
- Let $T' \in T q$, such that $x \in T'$.
- If $r(T) \in V(T')$, then the response is called an **up** response, the subtree D_u of D associated with T' is called **left** subtree and u is a **left** child
- If otherwise, then the response is called an **down** response, the subtree D_u of D associated with T' is called **right** subtree and u is a **right** child.

GDAŃSK UNIVERSITY | Directions of the responses

- x the target.
- T current candidate subtree.
- $q \in V(D)$ next query to be made.
- Let $T' \in T q$, such that $x \in T'$.
- If $r(T) \in V(T')$, then the response is called an **up** response, the subtree D_u of D associated with T' is called **left** subtree and u is a **left** child.
- If otherwise, then the response is called an **down** response, the subtree D_u of D associated with T' is called **right** subtree and u is a **right** child.

GDANSK UNIVERSITY | Directions of the responses

- x the target.
- T current candidate subtree.
- $q \in V(D)$ next query to be made.
- Let $T' \in T q$, such that $x \in T'$.
- If $r(T) \in V(T')$, then the response is called an **up** response, the subtree D_u of D associated with T' is called **left** subtree and u is a **left** child.
- If otherwise, then the response is called an **down** response, the subtree D_u of D associated with T' is called **right** subtree and u is a **right** child.

GDAŃSK UNIVERSITY | Directions of the responses

- x the target.
- T current candidate subtree.
- $q \in V(D)$ next query to be made.
- Let $T' \in T q$, such that $x \in T'$.
- If $r(T) \in V(T')$, then the response is called an **up** response, the subtree D_u of D associated with T' is called **left** subtree and u is a **left** child.
- If otherwise, then the response is called an **down** response, the subtree D_u of D associated with T' is called **right** subtree and u is a **right** child.

Figure: Sample input tree and a decision tree for it.

For any vertex $v\in V\left(T\right)$ and query $q\in Q_{D}\left(T,v\right)$ the **contribution** $\kappa_{T,c',k}\left(q,v\right)$ is defined as:

$$\kappa_{T,c',k}\left(q,v\right) = \begin{cases} 0, & \text{if } q \text{ is light and the response is down,} \\ c'\left(q\right), & \text{otherwise.} \end{cases}$$

Then, the aligned cost of D is defined as

$$\mathtt{COST}_{D}'\left(T,c',k\right) = \max_{v \in V(T)} \left\{ \sum_{q \in Q_{D}(T,v)} \kappa_{T,c',k}\left(q,v\right) \right\}$$

 $\mathsf{OPT}'\left(T,c',k\right)$ - the **optimal aligned cost**.

For any vertex $v\in V\left(T\right)$ and query $q\in Q_{D}\left(T,v\right)$ the **contribution** $\kappa_{T,c',k}\left(q,v\right)$ is defined as:

$$\kappa_{T,c',k}\left(q,v\right) = \begin{cases} 0, & \text{if } q \text{ is light and the response is down,} \\ c'\left(q\right), & \text{otherwise.} \end{cases}$$

Then, the **aligned cost** of D is defined as:

$$\mathtt{COST}_{D}'\left(T,c',k\right) = \max_{v \in V(T)} \left\{ \sum_{q \in Q_{D}(T,v)} \kappa_{T,c',k}\left(q,v\right) \right\}.$$

 $\mathtt{OPT}'\left(T,c',k\right)$ - the **optimal aligned cost**.

GDANSK UNIVERSITY | Heavy module contraction

Figure: Input tree.

Figure: Input tree with heavy modules contracted.

Proposition

Let T be a tree, c' an aligned cost function, $p \in \mathbb{N}$, k the box size and $d \in \mathbb{N}$ be the depth. There exists a DP procedure, which (if it exists) calculates an aligned decision tree D for (T,c') of cost at most $\mathrm{COST}'_D\left(T,c',k\right) \leq kd$, running in $(pn)^{O(d)}$ time.

Proposition

Let T be a tree, c' be an aligned cost function, $p \in \mathbb{N}$, $k \in \mathbb{R}_{>0}$ be the bosize, D_A be a decision tree for T and F_C be forest of decision trees for T with all heavy modules contracted. There exists a polynomial time MergeDTs procedure which returns a decision tree of cost at most:

$$COST_{D}\left(T,c',k\right) \leq COST'_{DA}\left(T,c',k\right) + 2pk \cdot COST_{FC}\left(T,1\right).$$

Proposition

Let T be a tree, c' an aligned cost function, $p \in \mathbb{N}$, k the box size and $d \in \mathbb{N}$ be the depth. There exists a DP procedure, which (if it exists) calculates an aligned decision tree D for (T,c') of cost at most $\mathrm{COST}_D'(T,c',k) \leq kd$, running in $(pn)^{O(d)}$ time.

Proposition

Let T be a tree, c' be an aligned cost function, $p \in \mathbb{N}$, $k \in \mathbb{R}_{>0}$ be the box size, D_A be a decision tree for T and F_C be forest of decision trees for T with all heavy modules contracted. There exists a polynomial time MergeDTs procedure which returns a decision tree of cost at most:

$$COST_{D}\left(T,c',k\right) \leq COST'_{D_{A}}\left(T,c',k\right) + 2pk \cdot COST_{F_{C}}\left(T,1\right).$$

$\mathbf{proc}\ \mathsf{QPTAS}\ (T,\epsilon) \colon$

- 1. $p \leftarrow \lfloor 59/\epsilon \rfloor$,
- **2.** $d \leftarrow p^2 \cdot (\lfloor \log n \rfloor + 1)$.
- **3.** $k \leftarrow 0$.
- **4.** while $D = \emptyset$:
 - 1. $k \leftarrow k + \frac{1}{pn}$.
 - 2. for $v \in V\left(T\right)$: if $c\left(v\right) > pk$ then: $c'\left(v\right) \leftarrow \lceil c\left(v\right) \rceil_k$, else: $c'\left(v\right) \leftarrow \lceil c\left(v\right) \rceil_{\frac{1}{pn}}$.
 - 3. $D_A \leftarrow \text{DP}(T, c', p, k, n, d)$.
 - 4. if $D_A \neq \emptyset$ then:
 - 1. $T_C \leftarrow T$ with all heavy modules contracted.
 - 2. $D_C \leftarrow \texttt{RankingBasedDT}(T_C)$.
 - 3. $D \leftarrow \texttt{MergeDTs}(T, D_A, D_C)$.
- **5.** return D.

Let k' be the value of k for which D was found. Since:

$$k' \leq \frac{\mathtt{OPT}'(T,c',k')}{d} + \frac{1}{pn} \leq \frac{2 \cdot \mathtt{OPT}'(T,c')}{p^2 \cdot (\lfloor \log n \rfloor + 1)},$$
 we have that:

$$\begin{aligned} \operatorname{COST}_D\left(T,c'\right) &\leq \operatorname{OPT}'\left(T,c'\right) + 2pk' \cdot \left(\left\lfloor \log n \right\rfloor + 1 \right) \\ &\leq \operatorname{OPT}'\left(T,c'\right) + 2p \cdot \left(\left\lfloor \log n \right\rfloor + 1 \right) \cdot \frac{2 \cdot \operatorname{OPT}'\left(T,c'\right)}{p^2 \cdot \left(\left\lfloor \log n \right\rfloor + 1 \right)} \\ &\leq \left(1 + \frac{4}{p} \right) \cdot \operatorname{OPT}'\left(T,c'\right) \\ &\leq \left(1 + \frac{2}{p} \right) \cdot \left(1 + \frac{3}{p} \right) \cdot \left(1 + \frac{4}{p} \right) \cdot \operatorname{OPT}\left(T,c\right) \\ &\leq \left(1 + \frac{59}{p} \right) \cdot \operatorname{OPT}\left(T,c\right) = \left(1 + \frac{59}{\left\lceil \frac{59}{e} \right\rceil} \right) \cdot \operatorname{OPT}\left(T,c\right) \end{aligned}$$

Michał Szyfelbein October 6, 2025 28 / 41

Let k' be the value of k for which D was found. Since:

$$k' \leq \frac{\mathtt{OPT}'(T,c',k')}{d} + \frac{1}{pn} \leq \frac{2 \cdot \mathtt{OPT}'(T,c')}{p^2 \cdot (\lfloor \log n \rfloor + 1)}$$
 , we have that:

$$\begin{split} \operatorname{COST}_D\left(T,c'\right) &\leq \operatorname{OPT}'\left(T,c'\right) + 2pk' \cdot \left(\left\lfloor \log n \right\rfloor + 1 \right) \\ &\leq \operatorname{OPT}'\left(T,c'\right) + 2p \cdot \left(\left\lfloor \log n \right\rfloor + 1 \right) \cdot \frac{2 \cdot \operatorname{OPT}'\left(T,c'\right)}{p^2 \cdot \left(\left\lfloor \log n \right\rfloor + 1 \right)} \\ &\leq \left(1 + \frac{4}{p} \right) \cdot \operatorname{OPT}'\left(T,c'\right) \\ &\leq \left(1 + \frac{2}{p} \right) \cdot \left(1 + \frac{3}{p} \right) \cdot \left(1 + \frac{4}{p} \right) \cdot \operatorname{OPT}\left(T,c\right) \\ &\leq \left(1 + \frac{59}{p} \right) \cdot \operatorname{OPT}\left(T,c\right) = \left(1 + \frac{59}{\left\lceil \frac{59}{\epsilon} \right\rceil} \right) \cdot \operatorname{OPT}\left(T,c\right) \\ &\leq \left(1 + \epsilon \right) \cdot \operatorname{OPT}\left(T,c\right). \end{split}$$

proc MergeDTs (T, D_A) :

- **1.** if F_C is connected then: $r = r(F_C)$.
- **2.** else: $r = r(D_A)$.
- **3.** $D \leftarrow \text{decision tree with root } r$.
- **4.** for $T' \in T r$:
 - 1. $F'_C \leftarrow F_C$ restricted to T'_C
 - 2. $D'_A \leftarrow D$ restricted to T'.
 - 3. $D' \leftarrow \texttt{MergeDTs}(T', D'_A, F'_C)$.
 - 4. Hang D' below r in D.
- **5.** return D.

Definition

Boxed decision tree:

- **1.** D = (V(D), E(D), u, l), V(D) nodes of D, called **boxes**, E(D) edges of D, $u:V(T)\times V(D)\to \{0,1/pn,2/pn,\ldots,k\}$ - usage function and $l: V(D) \rightarrow \{0, 1/pn, 2/pn, \dots, k\}$ - **load** function.

Michał Szyfelbein PG Presentation October 6, 2025 30 / 41

Definition

Boxed decision tree:

- **1.** D = (V(D), E(D), u, l), V(D) nodes of D, called **boxes**, E(D) edges of D, $u:V(T)\times V(D)\to \{0,1/pn,2/pn,\ldots,k\}$ - usage function and $l: V(D) \rightarrow \{0, 1/pn, 2/pn, \dots, k\}$ - **load** function.
- **2.** For every $b \in V(D)$, $Q(b) = \{v \in V(T) | u(v,b) > 0\}$ query **assignment**, vertices of T, such that queries to them overlap with b.

Definition

Boxed decision tree:

- **1.** D = (V(D), E(D), u, l), V(D) nodes of D, called **boxes**, E(D) edges of D, $u:V(T)\times V(D)\to \{0,1/pn,2/pn,\ldots,k\}$ - usage function and $l: V(D) \rightarrow \{0, 1/pn, 2/pn, \dots, k\}$ - **load** function.
- **2.** For every $b \in V(D)$, $Q(b) = \{v \in V(T) | u(v, b) > 0\}$ query **assignment**, vertices of T, such that queries to them overlap with b.
- **3.** All boxes containing v form a left path. Additionally, for each interior box b of this path, l(b) = 0 and u(v, b) = k.

Definition

Boxed decision tree:

- **1.** D = (V(D), E(D), u, l), V(D) nodes of D, called **boxes**, E(D) edges of D, $u:V(T)\times V(D)\to \{0,1/pn,2/pn,\ldots,k\}$ - usage function and $l: V(D) \rightarrow \{0, 1/pn, 2/pn, \dots, k\}$ - **load** function.
- **2.** For every $b \in V(D)$, $Q(b) = \{v \in V(T) | u(v,b) > 0\}$ query **assignment**, vertices of T, such that queries to them overlap with b.
- **3.** All boxes containing v form a left path. Additionally, for each interior box b of this path, l(b) = 0 and u(v, b) = k.
- **4.** For every $b \in V\left(D\right)$, $l\left(b\right) + \sum_{v \in V\left(T\right)} u\left(v,b\right) \leq k$ and for every $v \in V(T)$, either $\sum_{b \in V(D)} u(v,b) = 0$ or $\sum_{b \in V(D)} u(v,b) = c'(v)$.

Michał Szyfelbein PG Presentation October 6, 2025 30 / 41

Definition

Boxed decision tree:

- **1.** D = (V(D), E(D), u, l), V(D) nodes of D, called **boxes**, E(D) edges of D, $u:V(T)\times V(D)\to \{0,1/pn,2/pn,\ldots,k\}$ - usage function and $l: V(D) \to \{0, 1/pn, 2/pn, \dots, k\}$ - **load** function.
- **2.** For every $b \in V(D)$, $Q(b) = \{v \in V(T) | u(v,b) > 0\}$ query **assignment**, vertices of T, such that queries to them overlap with b.
- **3.** All boxes containing v form a left path. Additionally, for each interior box b of this path, l(b) = 0 and u(v, b) = k.
- **4.** For every $b \in V(D)$, $l(b) + \sum_{v \in V(T)} u(v, b) \le k$ and for every $v \in V(T)$, either $\sum_{b \in V(D)} u(v,b) = 0$ or $\sum_{b \in V(D)} u(v,b) = c'(v)$.
- **5.** Every heavy query is aligned.

Michał Szyfelbein PG Presentation October 6, 2025 30 / 41

Figure: Input tree.

Figure: Boxed decision tree.

Definition

Boxline:
$$B = \langle (b_1, \tau_1), (b_2, \tau_2), \dots, (b_d, \tau_d) \rangle$$
, b_j - box, such that $Q(b_i) = \emptyset$, τ_i - boolean flag.

Definition

Left box-path of D

- **1.** $B_D = \langle (q_1, f_1), (q_2, f_2), \dots, (q_h, f_h) \rangle$, q_j box f_j boolean flag, obtained by traversing boxes of D towards left. For each such box b_j , $q_j = l\left(b\right) + \sum_{v \in Q(b)} q\left(v, b\right)$, whereas f_j denotes whether there exists a **transcending** query in $Q\left(b_j\right)$, i. e.: $v \in Q\left(b_j\right)$, such that $v \in Q\left(b_{j+1}\right)$.
- **2.** Decision tree D with a left box-path B_D is **box-compatible** with boxline B ($h \le d$), if l (q_i) $\ge l$ (b_i) and $\tau_i \implies f_i$.

Definition

Boxline: $B = \langle (b_1, \tau_1), (b_2, \tau_2), \dots, (b_d, \tau_d) \rangle$, b_j - box, such that $Q(b_j) = \emptyset$, τ_j - boolean flag.

Definition

Left box-path of D:

- **1.** $B_D = \langle (q_1, f_1), (q_2, f_2), \dots, (q_h, f_h) \rangle$, q_j box f_j boolean flag, obtained by traversing boxes of D towards left. For each such box b_j , $q_j = l\left(b\right) + \sum_{v \in Q(b)} q\left(v, b\right)$, whereas f_j denotes whether there exists a **transcending** query in $Q\left(b_j\right)$, i. e.: $v \in Q\left(b_j\right)$, such that $v \in Q\left(b_{j+1}\right)$.
- **2.** Decision tree D with a left box-path B_D is **box-compatible** with boxline B ($h \le d$), if $l(q_i) \ge l(b_i)$ and $\tau_i \implies f_i$.

Michał Szyfelbein PG Presentation October 6, 2025

32 / 41

GDANSKUNIVERSITY | Useful operations I

- Puting a query to vertex v at s-th slot of a box b:
 - **1.** $\sigma(v) \leftarrow c(v)$:
 - **2.** while $\sigma(v) > 0$:
 - 1. $u(v,b) \leftarrow \min\{k s/pn, \sigma(v)\}.$
 - 2. $\sigma(v) \leftarrow \sigma(v) u(v,b)$.
 - 3. $b \leftarrow \text{left child of } b$.

If such operation violates the definition of D or query to vtranscendents any box b_i , such that τ_i we mark D as **conflicted**.

GDANSK UNIVERSITY | Useful operations II

- Building a decision tree D based on boxline B:
 - 1. $D \leftarrow \emptyset$
 - **2.** for 1 < i < |B|:
 - 1. Create box q_i in D.
 - 2. $l(j) \leftarrow b_i$.
 - 3. $Q(q_i) \leftarrow \emptyset$.
 - **4.** if j > 1 then: hang q_i as the left child of q_{i-1} .
 - 3. return D.
- Bipartitioning of B. A bipartition of a boxline B consists of a pair of boxlines (B_1, B_2) such that:
 - $|B| = |B_1| = |B_2|.$
 - $-l(b_{1,i}) + l(b_{2,i}) k = l(b_i).$
 - $-(\tau_{1,i} \wedge \tau_{2,i} \iff \tau_i).$
 - $-(\tau_{1,i} \vee \tau_{2,i}).$

Michał Szyfelbein October 6, 2025 34 / 41

GDANSK UNIVERSITY | Useful operations III

- Rotating a decision tree D around vertex v:
 - **1.** $q_h \leftarrow$ the box containing the end of the query to v.
 - **2.** Sort vertices whose queries start in $Q(q_h)$ according to c'.
 - **3.** Create box q.
 - **4.** Move queries from $Q(q_h)$ to Q(q), so that all queries after v are in Q(q).
 - **5.** Hang q'_h as a right child of q_h .
 - **6.** Rehang left child of q_h as the left child of q_h .

S GDANSK UNIVERSITY | Useful operations IV

- Aligning D₁ and D₂ by their left paths to create new decision tree D:
 - 1. $D \leftarrow \emptyset$.
 - **2.** for 1 < i < |B|:
 - 1. Create box q_i in D.
 - 2. $l(j) \leftarrow l(q_{1,j}) + l(q_{2,j}) k$.
 - 3. for $v \in V(T)$: $u(v, q_i) \leftarrow \max\{u(v, q_{1,i}), u(v, q_{2,i})\}$.
 - **4.** Hang all right children of $q_{1,i}$ and $q_{2,i}$ below q_i .
 - **5**. **if** j > 1 **then**: hang q_j as the left child of q_{j-1} .
 - 3. return D.

Figure: No children.

Figure: One child.

Figure: Many children.

proc DPNoChildren $(T_{v,i}, c', B)$:

- **1.** for $1 \le b \le d$ and $0 \le s \le (k/pn \text{ if } c(v) > pk \text{ else } 0)$:
 - **1.** $D \leftarrow$ a decision tree based on B.
 - 2. Put query to v at the s-th slot of q_b .
 - **3**. **if** *D* is not conflicted **then**:
 - 1. if $COST'_D(T_{v,i},c',k) \leq dk$ then: return D, else: return \emptyset .
- 2. return ∅.

proc DPOneChild
$$(T_{v,i}, c', B)$$
:

- 1. $\mathcal{D} \leftarrow \emptyset$.
- **2.** for $1 \le b \le d$ and $0 \le s \le (k/pn \text{ if } c(v) > pk \text{ else } 0)$:
 - 1. $D \leftarrow$ a decision tree based on B.
 - 2. Put guery to v at the s-th slot of q_b .
 - 3. if D is not conflicted and $COST'_D(T_{v,i},c',k) \leq dk$ then:
 - 1. $B' \leftarrow \text{left box-path of } D$.
 - 2. $h \leftarrow \text{index of the last box } q_h \text{ occupied by the query to } v$.
 - 3. for $h < j \le d$: $b'_i \leftarrow 0$, $t'_i \leftarrow$ false.
 - 4. $D' \leftarrow \text{DP}(T_{c_1}, c', B')$.
 - 5. Put query to v at the s-th slot of q_b .
 - 6. Rotate D' around v.
 - 7. $\mathcal{D} \leftarrow \mathcal{D} \cup \{D \text{ and } D' \text{ with their left paths aligned}\}.$
- **3.** return $\arg\min_{D\in\mathcal{D}} \{ \text{COST}'_D(T_{v,i}, c', k) \}$.

GDAŃSKUNIVERSITY | Many children

proc DPManyChildren $(T_{v,i}, c', B)$:

- 1. $\mathcal{D} \leftarrow \emptyset$.
- **2.** for bipartition (B_1, B_2) of B:
 - 1. $D_1 \leftarrow \text{DP}(T_{n,i-1},c',B_1)$.
 - 2. $h \leftarrow \text{index the last box } q_{1,h} \text{ occupied by the query to } v.$
 - 3. **for** $h \le j \le d$: $b_{2,j} \leftarrow 0$, $t_{2,j} \leftarrow$ **false**.
 - **4.** $D_2 \leftarrow \text{DP}(T_{c_1}, c', B_2)$.
 - **5**. Rotate D_2 around v.
 - **6**. $\mathcal{D} \leftarrow \mathcal{D} \cup \{D_1 \text{ and } D_2 \text{with their left paths aligned}\}.$
- **3.** return $\arg\min_{D\in\mathcal{D}} \{ \text{COST}'_D(T_{v,i},c',k) \}$.

Figure: Decision tree D_1 .

Figure: Boxline B_2 .

41 / 41

Figure: Decision tree D_2 .

Figure: Rotating step.

Figure: Resulting decision tree D.