CAPÍTULO 3 DEPENDÊNCIA LINEAR

1 Combinação Linear

Definição: Seja $\{\vec{v}_1,\vec{v}_2,...,\vec{v}_n\}$ um conjunto com n vetores. Dizemos que um vetor \vec{u} é combinação linear desses n vetores, se existirem escalares $a_1,a_2,...,a_n\in\Re$ tais que $\vec{u}=a_1\vec{v}_1+a_2\vec{v}_2+...+a_n\vec{v}_n$, ou seja, $\vec{u}=\sum_{i=1}^n a_i\vec{v}_i$.

Exemplo (1): Considere os vetores $\vec{u} = (-4,10,5)$, $\vec{v}_1 = (1,1,-2)$, $\vec{v}_2 = (2,0,3)$ e $\vec{v}_3 = (-1,2,3)$.

- a) Escrever, se possível, o vetor \vec{u} como combinação linear dos vetores \vec{v}_1 , \vec{v}_2 e \vec{v}_3 .
- b) Escrever, se possível, o vetor \vec{u} como combinação linear dos vetores \vec{v}_2 e \vec{v}_3 .

Solução:

a) Para que \vec{u} seja combinação linear dos vetores $\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}$, devem existir escalares $\alpha,\beta,\gamma\in\Re$ tais que $\vec{u}=\alpha\vec{v}_1+\beta\vec{v}_2+\gamma\vec{v}_3$. Então:

$$(-4,\!10,\!5) = \alpha(1,\!1,\!-2) + \beta(2,\!0,\!3) + \gamma(-1,\!2,\!3) \Rightarrow \begin{cases} \alpha + 2\beta - \gamma = -4 \\ \alpha + 2\gamma = 10 \\ -2\alpha + 3\beta + 3\gamma = 5 \end{cases}. \text{ Resolvendo o sistema}$$

linear vamos obter: $\alpha = 2$, $\beta = -1$ e $\gamma = 4$. Portanto: $\vec{u} = 2\vec{v}_1 - \vec{v}_2 + 4\vec{v}_3$.

b) Para que \vec{u} seja combinação linear dos vetores \vec{v}_2 e \vec{v}_3 , devem existir escalares $men \in \Re$ tais que $\vec{u} = m\vec{v}_2 + n\vec{v}_3$. Então:

$$(-4,10,5) = m(2,0,3) + n(-1,2,3) \Rightarrow \begin{cases} 2m-n=-4 \\ 2n=10 \end{cases} \text{. Da segunda equação obtemos } 3m+3n=5$$

n=5. Substituindo nas outras duas obtemos $m=\frac{1}{2}$ e $m=-\frac{10}{3}$. O que é uma contradição. Logo o sistema linear é impossível e não admite solução real. Portanto, não existem escalares $m\,e\,n\in\Re$ tais que $\vec{u}=m\vec{v}_2+n\vec{v}_3$, ou seja, não é possível escrever o vetor \vec{u} como combinação linear dos vetores \vec{v}_2 e \vec{v}_3 .

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

2 Vetores LI e LD

Definição: Dizemos que os vetores $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ são *linearmente independentes* (vetores LI) se a expressão $a_1\vec{v}_1 + a_2\vec{v}_2 + ... + a_n\vec{v}_n = \vec{0}$ se verifica somente se os escalares $a_1, a_2, ..., a_n \in \Re$ forem todos nulos, ou seja, $a_1 = a_2 = ... = a_n = 0$.

Definição: Dizemos que os vetores $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ são *linearmente dependentes* (vetores LD) se a expressão $a_1\vec{v}_1 + a_2\vec{v}_2 + ... + a_n\vec{v}_n = \vec{0}$ se verifica somente se os escalares $a_1, a_2, ..., a_n \in \Re$ forem não todos nulos, ou seja, pelo menos um dos escalares deve ser diferente de zero.

Exemplo (2): Verificar a dependência linear dos vetores abaixo:

a)
$$\vec{v}_1 = (1,1,-2)$$
, $\vec{v}_2 = (2,0,3)$ e $\vec{v}_3 = (-1,2,3)$

b)
$$\vec{v}_1 = (1,1,-2), \vec{v}_2 = (2,0,3) \text{ e } \vec{v}_3 = (8,2,5)$$

Solução:

a) Para verificar a dependência linear entre esses vetores, devemos escrever a expressão $\vec{av_1} + \vec{bv_2} + \vec{cv_3} = \vec{0}$ e determinar os escalares. Então:

$$a(1,1,-2) + b(2,0,3) + c(-1,2,3) = (0,0,0) \Rightarrow \begin{cases} a+2b-c=0 \\ a+2c=0 \\ -2a+3b+3c=0 \end{cases}$$
. Resolvendo o sistema

linear homogêneo vamos obter: a = 0, b = 0 e c = 0, ou seja, os escalares todos nulos. Portanto os vetores são LI.

b) Analogamente ao item (a), escrevemos a expressão $a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3 = \vec{0}$. Então:

$$a(1,1,-2) + b(2,0,3) + c(8,2,5) = (0,0,0) \Rightarrow \begin{cases} a + 2b + 8c = 0 \\ a + 2c = 0 \\ -2a + 3b + 5c = 0 \end{cases}$$
. Resolvendo o sistema

linear homogêneo vamos obter a solução geral: a=-2c e b=-3c, $\forall c \in \Re$. É evidente que para c=0 segue que a=0 e b=0, mas não é a única solução, ou seja, existem infinitas soluções onde os escalares não são todos nulos. Portanto os vetores são LD.

Teorema (1): Os vetores $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ são Linearmente Dependentes (LD) se, e somente se um deles é combinação linear dos demais.

OBS: este é um teorema de condição necessária e suficiente; o termo "se, e

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

somente se" significa que o teorema tem duas implicações:

(1) "se um conjunto de vetores é LD, então um deles é combinação linear dos demais vetores", e (2) "se, em um conjunto de vetores, um deles é combinação linear dos demais, então esses vetores são LD".

Assim, a demonstração do teorema contém duas partes: uma para demonstrar a condição necessária (1) e a outra para demonstrar a condição suficiente (2).

Demonstração:

(1) <u>Hipótese</u>: os vetores $v_1, v_2, ..., v_n \in V$ são LD

Tese: um deles é combinação linear dos demais vetores.

Se, por hipótese, os vetores $v_1, v_2, ..., v_n$ são LD, então, existem escalares $\alpha_1, \alpha_2, ..., \alpha_n$, não todos nulos, tais que: $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = 0$.

Supondo, por exemplo, que $\alpha_1 \neq 0$, pode-se escrever:

$$v_1 = \left(-\frac{\alpha_2}{\alpha_1}\right)v_2 + \left(-\frac{\alpha_3}{\alpha_1}\right)v_3 + \dots + \left(-\frac{\alpha_n}{\alpha_1}\right)v_n;$$

chamando:

$$\beta_2 = -\frac{\alpha_2}{\alpha_1}$$
; $\beta_3 = -\frac{\alpha_3}{\alpha_1}$; ...; $\beta_n = -\frac{\alpha_n}{\alpha_1}$, vem:

$$V_1 = \beta_2 V_2 + \beta_3 V_3 + \dots + \beta_n V_n$$
,

e, portanto, o vetor v_1 é combinação linear dos demais vetores.

Observe-se que, assim como se supôs que $\alpha_1 \neq 0$ e se mostrou que v_1 é combinação linear dos demais vetores, pode-se supor que qualquer um dos escalares α_i $\left(1 \leq i \leq n\right)$ é diferente de zero e concluir-se que v_i é combinação linear dos demais vetores.

(2) <u>Hipótese</u>: um dos vetores é combinação linear dos demais vetores.

Tese: os vetores
$$v_1, v_2, ..., v_n \in V$$
 são LD

Por hipótese, um dos vetores é combinação linear dos demais; pode-se supor, por exemplo, que esse seja o vetor v_1 . Isso significa que existem escalares β_2 , β_3 ,..., β_n tais que:

$$V_1 = \beta_2 V_2 + \beta_3 V_3 + \dots + \beta_n V_n$$
;

pode-se escrever, equivalentemente:

$$(-1)v_1 + \beta_2v_2 + \beta_3v_3 + \cdots + \beta_nv_n = 0.$$

Sendo o escalar que multiplica o vetor v_1 não nulo, já que é igual a -1, conclui-se que os vetores $v_1, v_2, ..., v_n$ são LD.

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

É claro que, fazendo-se a suposição de que qualquer vetor v_i $(1 \le i \le n)$ seja combinação linear dos outros vetores, concluir-se-á, de maneira análoga, que os vetores $v_1, v_2, ..., v_n$ são LD.

Exemplo (3): Como vimos no exemplo (2) os vetores $\vec{v}_1 = (1,1,-2)$, $\vec{v}_2 = (2,0,3)$ e $\vec{v}_3 = (8,2,5)$ são LD. Logo, pelo Teorema (1), um deles é combinação linear dos demais. De fato. Suponhamos que $\vec{v}_3 = m\vec{v}_1 + n\vec{v}_2$. Então:

$$(8,2,5) = m\,(1,1,-2) + n\,(2,03) \, \Rightarrow \begin{cases} 8 = m+2n \\ 2 = m \end{cases} \quad \text{. Da segunda equação vem que } m = 2 \; \text{.} \\ 5 = -2m+3n \end{cases}$$

Substituindo m=2 nas outras duas equações vem que n=3. Logo, existem os escalares m=2 e n=3 tais que $\vec{v}_3=2\vec{v}_1+3\vec{v}_2$. Portanto, \vec{v}_3 é combinação linear dos vetores \vec{v}_1 e \vec{v}_2 .

Teorema (2): Considere $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$, vetores LD, então k desses vetores serão LD, para $k \ge n$.

Demonstração:

<u>Hipótese</u>: os vetores $v_1, v_2, ..., v_n \in V$ são LD

<u>Tese</u>: os vetores $v_1, v_2, ..., v_k$ são LD, para todo $k \ge n$

Por hipótese, os vetores $v_1, v_2, ..., v_n$ são LD; então, existem escalares $\alpha_1, \alpha_2, ..., \alpha_n$, não todos nulos, tais que:

$$\alpha_1 V_1 + \alpha_2 V_2 + \ldots + \alpha_n V_n = 0.$$

A esse conjunto de n vetores, acrescentem-se mais k-n ($k \ge n$) vetores, isto é, considere-se, agora, o conjunto:

$$\{v_1, v_2, \dots, v_n, v_{n+1}, v_{n+2}, \dots, v_k\}.$$

Escrevendo-se a equação:

$$\alpha_1 V_1 + \alpha_2 V_2 + \dots + \alpha_n V_n + \alpha_{n+1} V_{n+1} + \alpha_{n+2} V_{n+2} + \dots + \alpha_k V_k = 0$$
,

conclui-se, a partir dela, que os vetores $v_1, v_2, ..., v_n, v_{n+1}, v_{n+2}, ..., v_k$ são LD, pois, mesmo que os escalares $\alpha_{n+1}, \alpha_{n+2}, ..., \alpha_k$ sejam todos nulos, entre os escalares $\alpha_1, \alpha_2, ..., \alpha_n$ há pelo menos um deles que não é nulo, já que os vetores $v_1, v_2, ..., v_n$ são LD. Logo, o conjunto de vetores $\{v_1, v_2, ..., v_n, v_{n+1}, v_{n+2}, ..., v_k\}$ é LD.

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

Observações:

- 1) Por esse teorema, conclui-se que, se um conjunto de vetores é LD, aumentandose o número de vetores deste conjunto, o novo conjunto será LD.
- 2) Observe-se que o teorema é apenas de condição necessária, ou seja, a recíproca $\underline{n}\underline{a}\underline{o}$ é verdadeira. Isso significa que, se um conjunto de n vetores $v_1, v_2, ..., v_n$ é LD, isso $\underline{n}\underline{a}\underline{o}$ implica que o conjunto de vetores $v_1, v_2, ..., v_m$ é LD, para $m \le n$. Assim, quando se sabe que um conjunto de vetores é LD, se forem retirados desse conjunto um ou mais vetores, $\underline{n}\underline{a}\underline{o}$ o novo conjunto é LD.

Teorema (3): Considere $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ vetores LI, então k desses vetores serão LI, para $k \le n$.

Demonstração:

<u>Hipótese</u>: os vetores $v_1, v_2, ..., v_n \in V$ são LI

<u>Tese</u>: os vetores $v_1, v_2, ..., v_k$ são LI, para todo $k \le n$

Por hipótese, os vetores $v_1, v_2, ..., v_n$ são LI; então, a equação

$$\alpha_1 V_1 + \alpha_2 V_2 + \ldots + \alpha_n V_n = 0$$

é verdadeira somente se $\alpha_1 = \alpha_2 = ... = \alpha_n = 0$.

Tomando-se um índice $k \le n$, considere-se o conjunto

$$\{v_1, v_2, ..., v_k\} \subset \{v_1, v_2, ..., v_n\}.$$

Da equação:

$$\alpha_1 V_1 + \alpha_2 V_2 + \ldots + \alpha_k V_k = 0,$$

segue-se que $\alpha_1 = \alpha_2 = ... = \alpha_k = 0$, pois os vetores $v_1, v_2, ..., v_n$ são LI e os vetores $v_1, v_2, ..., v_k$ estão entre eles. Portanto, conclui-se que os vetores $v_1, v_2, ..., v_k$ são LI, o que demonstra o teorema.

OBS:

- 1) Por esse teorema, conclui-se que, se um conjunto de vetores é LI, diminuindo-se o número de vetores deste conjunto, o novo conjunto também será LI.
- 2) O teorema é apenas de condição necessária, isto é, a recíproca $\underline{n}\underline{a}\underline{o}$ é verdadeira. Isso significa que, se um conjunto de n vetores $v_1, v_2, ..., v_n$ é LI, isso $\underline{n}\underline{a}\underline{o}$ implica que o conjunto de vetores $v_1, v_2, ..., v_m$ é LI, para $m \ge n$. Assim, quando se sabe que um conjunto de vetores é LI, se forem acrescentados a esse

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

conjunto um ou mais vetores, não se pode afirmar que o novo conjunto é LI.

Conseqüências:

- (a) As afirmações abaixo são válidas para vetores no \Re^2 .
- 1) O vetor nulo $\{\vec{0}\}$ é LD.
- 2) O $\{\vec{v}\}$, com $\vec{v} \neq \vec{0}$, é LI.
- 3) Dois vetores $\{\vec{v}_1, \vec{v}_2\}$, com $\vec{v}_1 \neq \vec{0}$ e $\vec{v}_2 \neq \vec{0}$, são LD se os vetores forem paralelos (são múltiplos escalares). Caso contrário são LI (não paralelos, não são múltiplos).
- 4) Três ou mais vetores $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, ...\}$ são sempre LD.
- (b) As afirmações abaixo são válidas para vetores no \mathfrak{R}^3 .
- 1) O vetor nulo $\{\vec{0}\}$ é LD.
- 2) O $\{\vec{v}\}$, com $\vec{v} \neq \vec{0}$, é LI.
- 3) Dois vetores $\{\vec{v}_1, \vec{v}_2\}$, com $\vec{v}_1 \neq \vec{0}$ e $\vec{v}_2 \neq \vec{0}$, são LD se os vetores forem paralelos (são múltipos escalares). Caso contrário são LI (não paralelos, não são múltiplos).
- 4) Três vetores $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ são sempre LD se forem coplanares. Caso contrário são LI (não coplanares).
- 5) Quatro ou mais vetores $\{\vec{v}_1,\vec{v}_2,\vec{v}_3,\vec{v}_4,...\}$ são sempre LD.

3 Base

Definição: Seja B = $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ um conjunto de vetores de um espaço qualquer $(\Re^2 \text{ ou } \Re^3)$. Dizemos que B é uma base desse espaço se:

- a) B é um conjunto LI.
- b) B gera o espaço.

OBS: Dizer que um conjunto $B = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ gera o espaço significa que qualquer vetor \vec{u} , desse espaço, se escreve como combinação linear dos vetores de B, ou seja, existem escalares $a_1, a_2, ..., a_n \in \Re$ tais que $\vec{u} = a_1 \vec{v}_1 + a_2 \vec{v}_2 + ... + a_n \vec{v}_n$.

Exemplo (4): Mostre que os conjuntos abaixo são bases dos respectivos espaços.

- a) B = $\{(1,2), (-3,4)\}$ é base do \Re^2 .
- b) B = $\{(1,1,1), (1,1,0), (1,0,0)\}$ é base do \Re^3 .

Solução:

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

a) Sejam $\vec{v}_1 = (1,2)$ e $\vec{v}_2 = (-3,4)$. Vamos mostrar que B é um conjunto LI. Como não existe uma proporcionalidade entre as coordenadas dos vetores eles não são múltiplos, logo não são paralelos. Portanto são LI. Seja $\vec{u} = (x,y)$ um vetor qualquer do \Re^2 . Vamos mostrar que \vec{u} se escreve como combinação linear dos vetores de B.

Então $\vec{u}=(x,y)=a(1,2)+b(-3,4)\Rightarrow \begin{cases} x=a-3b\\ y=2a+4b \end{cases}$. Resolvendo o sistema temos:

$$\begin{cases} a = \frac{4x + 3y}{10} \\ b = \frac{-2x + y}{10} \end{cases}, \ \forall x \, e \, y \in \Re \ . \ Isso \ mostra \ que \ o \ sistema \ \'e \ possível \ e \ determinado. \ Logo$$

existem os escalares a e b $\in \Re$ tais que $\vec{u}=(x,y)=a(1,2)+b(-3,4)$, ou seja, o vetor $\vec{u}=(x,y)$ se escreve como combinação linear dos vetores \vec{v}_1 e \vec{v}_2 , mostrando que B gera o \Re^2 . Portanto, B é base do \Re^2 .

b) Utilizando a condição de coplanaridade entre três vetores temos:

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix} = -1 \neq 0 \,, \ \, \text{ou seja, os vetores não são coplanares. Portanto, são LI.}$$

Mostrando que B gera o \Re^3 . Seja $\vec{v} = (x, y, z)$ um vetor qualquer do \Re^3 . Então:

$$(x,y,z) = a(1,1,1) + b(1,1,0) + c(1,0,0) \Rightarrow \begin{cases} x = a+b+c \\ y = a+b \end{cases} . \text{ Resolvendo temos a solução} \\ z = a \end{cases}$$

$$\begin{cases} a=z\\b=y-z\,,\forall x,y\,e\,z\in\Re\;. & \text{Logo, existem escalares} & \text{a,be}\;c\in\Re\;\;\text{tais que}\\c=x-y \end{cases}$$

(x,y,z)=a(1,1,1)+b(1,1,0)+c(1,0,0), ou seja, o vetor $\vec{v}=(x,y,z)$ se escreve como combinação linear dos vetores de B, mostrando que B gera o \Re^3 . Portanto, B é base do \Re^3 .

Conseqüências

- 1) O \Re^2 e o \Re^3 possuem infinitas bases.
- 2) Qualquer base do \Re^2 tem a mesma quantidade de vetores.
- 3) Qualquer base do \Re^3 tem a mesma quantidade de vetores.
- 4) Das infinitas bases do \Re^2 , uma é considerada a mais simples, chamada de **Base** Canônica do \Re^2 . Ela é constituída pelos vetores $\{\vec{i}, \vec{j}\}$, onde $\vec{i} = (1,0)$ e $\vec{j} = (1,0)$.
- 5) Das infinitas bases do \Re^3 , uma também é considerada a mais simples, chamada de **Base Canônica do** \Re^3 . Ela é constituída pelos vetores $\{\vec{i}, \vec{j}, \vec{k}\}$, onde $\vec{i} = (1,0,0), \ \vec{j} = (0,1,0) \ e \ \vec{k} = (0,0,1)$.

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

- 2) No \Re^2 , qualquer conjunto com dois vetores LI constitui uma base.
- 3) No \Re^3 , qualquer conjunto com três vetores LI constitui uma base.

Exercícios Propostos

1) Verificar a dependência linear dos vetores:

a)
$$\vec{u} = \left(\frac{1}{2}, -3, 6\right) e \vec{v} = \left(-\frac{1}{8}, \frac{3}{4}, -\frac{3}{2}\right)$$

b)
$$\vec{a} = (1,2,2), \vec{b} = (-4,6,0) \ \vec{c} = (3,-1,2)$$

c)
$$\vec{a} = (1,2,-1), \vec{b} = (-2,3,-1) \ \vec{c} = (0,-1,2)$$

Resp: a) LD b) LD c)LI

- 2) Escrever o vetor $\vec{w} = (-3,5,3)$ como combinação linear dos vetores $\vec{a} = (1,2,-1), \vec{b} = (-2,3,-1)$ e $\vec{c} = (0,-1,2)$ Resp: $\vec{w} = \vec{a} + 2\vec{b} + 3\vec{c}$
- 3) Verificar quais dos conjuntos abaixo é uma base do \Re^3 .

a)
$$\vec{a} = (1,0,2), \vec{b} = (-2,3,1) \ e \ \vec{c} = (3,2,-2)$$

b)
$$\vec{u} = (1,0,0), \vec{v} = (2,3,1)$$
 e $\vec{w} = (-1,-6,-2)$ Resp: a) é base b) não é base

- 4) Determine m para que os vetores $\vec{u}=(2,m,2), \vec{v}=(3,m,0)$ e $\vec{w}=(1,-3,4)$ formem uma base do \Re^3 . Resp: m \neq -3
- 5) Determine os valores de m para que os vetores $\vec{u}=(2,m,8), \ \vec{v}=(m+4,-1,3)$ e $\vec{w}=(7,4m,31)$ sejam LD. Resp: m=-3 ou m=2
- 6) Prove: " $\{\vec{u} + \vec{v}, \vec{u} \vec{v}\}\$ são LI $\Leftrightarrow \{\vec{u}, \vec{v}\}\$ são LI".
- 7) Dados dois vetores $\{\vec{u}, \vec{v}\}$ LI, mostre que: "se \vec{w} é combinação linear de $\{\vec{u}, \vec{v}\}$, então essa combinação linear é única".

COMENTÁRIOS IMPORTANTES

- 1) Cuidado com as definições de combinação linear e de vetores LI e LD. Elas são muito parecidas e pode causar confusão.
- 2) Na prática, discutir se um conjunto de vetores é LI ou LD, quando usamos a definição, sempre vamos resolver um sistema linear homogêneo. Como os sistemas homogêneos são sempre possíveis, esta discussão se resume em: se o sistema for SPD (admite somente a solução trivial, todos os escalares são nulos), então os vetores são LI; se o sistema for SPI (além da solução trivial admite outras infinitas), então os vetores são LD.
- 2) Como o próprio nome diz: vetores linearmente dependentes (LD) significa que existe uma dependência entre eles, ou seja, eles se relacionam de alguma forma. Esta dependência é uma combinação linear que, geometricamente, significa que ou dois vetores são paralelos ou três vetores são coplanares. Caso os vetores sejam

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

linearmente independentes (LI), isso quer dizer que não existe relação nenhuma entre eles, ou seja, não são paralelos, não são coplanares.