

### Word Sense Disambiguation

CS-585

Natural Language Processing

Derrick Higgins

### Word Sense Disambiguation

- Many words have multiple meanings
  - E.g, river bank, financial bank
- Problem: Assign proper sense to each ambiguous word in text

- Applications:
  - Machine translation
  - Information retrieval
  - Semantic interpretation of text

### Sense Tagging

 Idea: Treat sense disambiguation like POS tagging, just with "semantic tags"

### Distributional Similarity

- The problems differ:
  - POS tags depend on specific structural cues (mostly neighboring tags)
  - Senses depend on semantic context less structured, longer distance dependency

### Approaches

- Dictionary-Based Learning
  - Learn to distinguish senses from dictionary entries
- Supervised learning:
  - Learn from a pretagged corpus
- Unsupervised Learning
  - Automatically cluster word occurrences into different senses

### Evaluation

- Train and test on pretagged texts
  - Difficult to come by
- Artificial data: 'merge' two words to form an 'ambiguous' word with two 'senses'
  - E.g, replace all occurrences of door and of window with doorwindow and see if the system figures out which is which

### Performance Bounds

- How good is (say) 83.2%??
- Evaluate performance relative to lower and upper bounds:
  - Baseline performance: how well does the simplest "reasonable" algorithm do?
  - Human performance: what percentage of the time do people agree on classification?

Measure how often humans agree on annotations

- If they don't often agree, then the task is ill-defined
- Agreement probability P(agree)
   Number of times raters agree / Number of ratings
  - But if 90% of things are annotated as X, then agreement could be high by chance
- Cohen's Kappa

$$\frac{P_{agree} - P_{chance}}{1 - P_{chance}}$$

Cohen's Kappa

$$\frac{P_{agree} - P_{chance}}{1 - P_{chance}}$$

- $P_{agree}$ : Observed agreement rate between annotators (or annotator/system)
- $P_{chance}$ : Expected agreement rate between two annotators assigning labels randomly, but using the true class distribution

- For a binary classification task with equiprobable outcomes,  $P_{chance}$  is 0.5. We'd expect raters using the two classes with equal frequency to agree half the time.
- So in this case, if  $P_{agree} = 0.7$ , then

$$\kappa = \frac{P_{agree} - P_{chance}}{1 - P_{chance}}$$

$$= \frac{0.7 - 0.5}{1 - 0.5}$$

$$= 0.4$$



- For a distribution with N classes,  $P_{chance} = \sum_{i=1}^{N} P_i^2$
- For example, for labels distributed according to (0.1,0.3,0.4,0.2):

|         | A (0.1) | B (0.3) | C (0.4) | D (0.2) |
|---------|---------|---------|---------|---------|
| A (0.1) | 0.01    | 0.03    | 0.04    | 0.02    |
| B (0.3) | 0.03    | 0.09    | 0.12    | 0.06    |
| C (0.4) | 0.04    | 0.12    | 0.16    | 0.08    |
| D (0.2) | 0.02    | 0.06    | 0.08    | 0.04    |

$$P_{chance} = 0.01 + 0.09 + 0.16 + 0.04 = 0.3$$

- For labels distributed according to  $\langle 0.1, 0.3, 0.4, 0.2 \rangle$ ,  $P_{chance} = 0.3$
- So if  $P_{agree} = 0.7$ ,

$$\kappa = \frac{P_{agree} - P_{chance}}{1 - P_{chance}}$$

$$= \frac{0.7 - 0.3}{1 - 0.3}$$

$$\approx 0.57$$

### DICTIONARY-BASED LEARNING



### Dictionary-Based Disambiguation

 Idea: Choose between senses of a word given in a dictionary based on the words in the definitions

#### cone:

- A mass of ovule-bearing or pollen-bearing scales in trees of the pine family or in cycads that are arranged usually on a somewhat elongated axis
- Something that resembles a cone in shape: as a crisp cone-shaped wafer for holding ice cream

## Algorithm (Lesk 1986)

- Define  $D_i(w)$  as the bag of words in the ith definition for w
- Define E(w) as  $\bigcup_i D_i(w)$
- For all senses  $s_k$  of w, do:

$$Score(s_k) = similarity \left( D_k(w), \left[ \bigcup_{v \in c} E(v) \right] \right)$$

Choose

$$s = \operatorname*{argmax} Score(s_k)$$



# Similarity Metrics

similarity(X,Y) =

Matching coefficient  $|X \cap Y|$ 

Dice coefficient  $\frac{2|X \cap Y|}{|X| + |Y|}$ 

Jaccard coefficient  $\frac{|X \cap Y|}{|X \cup Y|}$ 

Overlap coefficient  $\frac{|X \cap Y|}{\min(|X|,|Y|)}$ 



Transforming Lives.Inventing the Future.www.iit.edu

#### ash:

s<sub>1</sub>: a tree of the olive family

s<sub>2</sub>: the solid residue left when combustible material is

burned

The fire had left behind nothing but a pile of ash<sub>2</sub>

The ash<sub>1</sub> can be recognized by its serrated leaves

After being struck by **lightning** the **maple** was reduced to ash?



#### ash:

s<sub>1</sub>: a tree of the olive family

s<sub>2</sub>: the solid residue left when combustible material is

burned

The fire had left behind nothing but a pile of ash<sub>2</sub>

The ash fire: no recognized by its serrated leaves

1. combustion or burning, in which substances combine chemically with oxygen from the air to as 2. the shooting of projectiles from weapons

#### ash:

s₁: a tree of the olive family

s2: the solid residue left when combustible material is

burned

The fire had left behind nothing but a pile of ash<sub>2</sub>

The ash<sub>1</sub> can be recognized by its serrated leaves

to ash?

- After beleaf: struck by lightning the maple was reduced 1. a flattened structure of a higher plant or tree, typically green and blade-like
  - a thing that resembles a leaf in being flat and thin

```
ash:
```

s<sub>1</sub>: a tree of the olive family

s<sub>2</sub>: the solid residue left when combustible material is burned

#### lightning:

1. the occurrence of a natural electrical discharge
The fire had between a cloud and the ground, often ash
causing combustion
The as 2. very fast

After being struck by **lightning** the **maple** was reduced to ash?



```
ash:
```

s<sub>1</sub>: a tree of the olive family

s<sub>2</sub>: the solid residue left when combustible material is burned

#### maple:

1. a tree or shrub with lobed leaves, winged

The fire haruits, and colorful autumn foliagepile of asha

The ash<sub>1</sub> can be recognized by its serrated leaves

After being struck by **lightning** the **maple** was reduced to ash?



### Some Improvements

- Lesk obtained results of 50-70% accuracy
- Possible improvements:
  - Run iteratively, each time only using definitions of "appropriate" senses for context words
  - Expand each word to a set of synonyms, using a thesaurus

### Thesaurus-Based Disambiguation

- Thesaurus assigns subject codes to different words, assigning multiple codes to ambiguous words
- $t(s_k)$ = subject code of sense  $s_k$  for word w in the thesaurus
- $\delta(t, v) = 1$  iff t is a subject code for word v

### "mean"

mean (adj.) average 29 small 32 middle 68 contemptible 643 stingy 819 shabby 874 ignoble 876 sneaking 886 base 940 selfish 943

#### 29 Mean

*N* mean, medium, average, balance, mediocrity, generality, golden mean, mid-course, middle, compromise, middle course, state neutrality

V split the difference, take the average, reduce to a mean, strike a balance, pair off

*Adj* mean, intermediate, middle, average, neutral, mediocre, middle class, commonplace, unimportant

#### 643 Unimportance

N unimportance insignificance nothingness immateriality.... Adj unimportant, of little/small/no account/importance, immaterial, un/non-essential, indifferent, subordinate, inferior, mediocre, average, passable, fair, respectable, tolerable, commonplace, uneventful,...

... pitiful, contemptible, contempt, sorry, mean, meager, shabby, miserable, wretched, vile, scrubby,...

. . . .

## Simple Algorithm

Count up number of context words with same subject code:

for each sense  $s_k$  of  $w_i$ , do:

$$Score(s_k) = \sum_{v \in c} \delta(t(s_k), v)$$

$$s(w_i) = \operatorname{argmax}_{s_k} Score(s_k)$$



### SUPERVISED LEARNING



## Supervised Learning

- Each ambiguous word token  $w_i$  in the training is tagged with a sense from Senses $(w_i) = s_1, ..., s_k$
- Each word token occurs in a context  $c_i$ 
  - (usually defined as a window around the word occurrence – up to ~100 words long)
- ullet Each context contains a set of words used as features  $v_{ij}$

### Bayesian Classification

- Bayes decision rule:
  - Classify  $s(w_i) = \operatorname{argmax}_s P(s \mid c_i)$
- Minimizes probability of error
- How to compute? Use Bayes' Theorem:

$$P(s_k|c) = \frac{P(c|s_k)P(s_k)}{P(c)}$$

# Bayes' Classifier (cont.)

 Note that P(c) is constant for all senses, therefore:

$$s(w_i) = \operatorname{argmax}_s P(s|c)$$
  
=  $\operatorname{argmax}_s \frac{P(c|s)}{P(c)} P(s)$   
=  $\operatorname{argmax}_s P(c|s) P(s)$ 

$$s(w_i) = \operatorname{argmax}_s (\log P(c \mid s) + \log P(s))$$



### Naïve Bayes

#### Assume:

- Features are conditionally independent, given the example class
- Feature order doesn't matter
- (bag of words model repetition counts)

$$P(c|s) = P(\{v_j : v_j \in c\}|s)$$

$$= \prod_{v_j \in c} P(v_j|s)$$

$$\log P(c|s) = \sum_{v_j \in c} \log P(v_j|s)$$

### Naïve Bayes Training

- For all senses s<sub>k</sub> of w, do:
  - For all words  $v_i$  in the vocabulary, do:

$$P(v_j|s_k) = \frac{Count(v_j, s_k)}{Count(s_k)}$$

• For all senses s<sub>k</sub> of w, do:

$$P(s_k) = \frac{Count(s_k)}{Count(w)}$$

### Naïve Bayes Classification

• For all senses s<sub>k</sub> of w<sub>i</sub>, do:

$$Score(s_k) = \log P(s_k)$$

• For all words  $v_j$  in the context window  $c_i$ , do:

$$Score(s_k) += \log P(v_i|s_k)$$

Choose

$$s(w_i) = \underset{s_k}{\operatorname{argmax}} Score(s_k)$$



# Significant Features

Senses of "drug" (Gale et al. 1992):

```
    'medication' prices, prescription, patent, increase, consumer, pharmaceutical
    'illegal substance' abuse, paraphernalia, illicit, alcohol, cocaine, traffickers
```

### UNSUPERVISED LEARNING



### Some Issues

- Domain-dependence: In computer manuals, "mouse" will not be evidence for topic "mammal"
- Coverage: "Michael Jordan" will not likely be in a thesaurus, but is an excellent indicator for topic "sports"

# Tuning for a Specific Corpus

• Use a naïve-Bayes formulation:

$$P(t \mid c) = \frac{P(t) \prod_{v \in c} P(v \mid t)}{\prod_{v \in c} P(v)}$$

- Initialize probabilities as uniform
- Re-estimate P(t) and  $P(v_j | t)$  for each topic t and each word  $v_j$  by evaluating all contexts in the corpus, assuming the context has topic t if  $P(t | c) > \theta$  (where  $\theta$  is a predefined threshold)

#### Training:

for all contexts c and topics t, do:

$$Score(c,t) = \frac{P(t) \prod_{v \in c} P(v|t)}{P(c)}$$

for all contexts c, let

$$t(c) = \{t | Score(c, t) > \theta\}$$

for all topics  $t_i$ , let

$$T_l = \{c | t_l \in t(c)\}$$

for all words  $v_i$ , let

$$V_i = \{c | v_i \in c\}$$

for all words 
$$v_j$$
, topics  $t_l$ , do:
$$P(v_j|t_l) = \frac{|V_i \cap T_l|}{|V_j|V_j \cap T_l|}$$

for all topics  $t_l$ , do:

$$P(t_l) = \frac{\bigcup_j |V_j \cap T_l|}{\bigcup_m \bigcup_j |V_j \cap T_m|}$$

### LEVERAGING BILINGUAL DATA



## Using a Bilingual Corpus

Use correlations between phrases in two languages to disambiguate

E.g, interest = 'legal share' (acquire an interest)

'attention' (show interest)

In German Beteiligung erwerben

Interesse zeigen

Depending on where the translations of related words occur, determine which sense applies



### Scoring

- Given a context c in which a syntactic relation R(w, v) holds between w and a context word v:
  - Score of sense  $s_k$  is the number of contexts c' in the second language such that  $R(w', v') \in c'$  where w' is a translation of  $s_k$  and v' is a translation of v.
  - Choose highest-scoring sense