Probability Theory

I. Construction of Probability Measure

Seongho Joo

Seoul National University

Sigma Fields

We want to define a collection of subsets with necessary properties that fit with probability.

Definition 1 (Field)

A collection $\mathcal{F} \subset 2^{\Omega}$ is a **field** if

- $\mathbf{1} \ \Omega \in \mathcal{F}$
- If $E \in \mathcal{F}$, then $E^c \in \mathcal{F}$
- If $E_1, \ldots, E_n \in \mathcal{F}$, then $\bigcup_{j=1}^n E_j \in \mathcal{F}$

If, instead of 3, we have the stronger 3':

$$3' \colon \text{If } \{E_j\}_{j=1}^\infty \text{ is a countable set of events in } \mathcal{F} \text{, then } \bigcup_{j=1}^\infty E_j \in \mathcal{F}$$

then we call ${\mathcal F}$ a $\sigma\text{-field}$

Examples:

Sigma Fields

We want to define a collection of subsets with necessary properties that fit with probability.

Definition 1 (Field)

A collection $\mathcal{F} \subset 2^{\Omega}$ is a **field** if

- $\Omega \in \mathcal{F}$
- If $E \in \mathcal{F}$, then $E^c \in \mathcal{F}$
- If $E_1, \ldots, E_n \in \mathcal{F}$, then $\bigcup_{j=1}^n E_j \in \mathcal{F}$

If, instead of 3, we have the stronger 3':

$$3'$$
: If $\{E_j\}_{j=1}^\infty$ is a countable set of events in $\mathcal F$, then $\bigcup_{j=1}^\infty E_j \in \mathcal F$

then we call ${\mathcal F}$ a $\sigma\text{-field}$

Examples:

- $\mathcal{F} = 2^{\Omega}$
- $\mathcal{F} = \{\emptyset, \Omega\}$
- $\square \Omega = \{1, 2, 3\}, \mathcal{F} = \{\emptyset, \{1\}, \{2, 3\}, \Omega\}$
- $\mathcal{F} = \{B \subset \Omega : B \text{ is countable or } B^c \text{ is countable } \}$

Sigma fields

Lemma 1 (σ fields are closed in intersection.)

If I is any index set and $\{\mathcal{F}_i: i\in I\}$ are σ -fields over Ω , then $\bigcap_{i\in I}\mathcal{F}_i$ is a σ -field.

Remark : However, σ fields are not closed in the union.

Sigma fields

Lemma 1 (σ fields are closed in intersection.)

If I is any index set and $\{\mathcal{F}_i: i\in I\}$ are σ -fields over Ω , then $\bigcap_{i\in I}\mathcal{F}_i$ is a σ -field.

Remark: However, σ fields are **not** closed in the union.

Proposition 1 (Uniqueness of the smallest σ -field)

Let $\mathcal{E} \subseteq 2^{\Omega}$ be any collection of subsets of Ω . There is a unique smallest σ -field $\sigma(\mathcal{E})$ that contains \mathcal{E} . It is called the σ -field generated by \mathcal{E} .

- **Example**: $\Omega = \{1, 2, 3\}, \mathcal{E} = \{\emptyset, \{1, 2\}, \Omega\} \implies \sigma(\mathcal{E}) = \{\emptyset, \{1, 2\}, \{3\}, \Omega\}$
- Exercise: Let $\mathcal{E}_1, \mathcal{E}_2 \subseteq 2^{\Omega}$. Show that $\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_2)$ if and only if $\mathcal{E}_1 \subseteq \sigma(\mathcal{E}_2)$ and $\mathcal{E}_2 \subseteq \sigma(\mathcal{E}_1)$

The Borel σ -field

Let X be a topological space (e.g. Euclidean space \mathbb{R}^d . The **Borel** σ -field $\mathcal{B}(X)$ is the σ -field generated by the **open** subsets in X.

$$\mathcal{B}(X) = \sigma\{\text{open subsets of } X\} \tag{0.1}$$

Events in $\mathcal{B}(X)$ are called **Borel sets**.

The Borel σ -field

Let X be a topological space (e.g. Euclidean space \mathbb{R}^d . The **Borel** σ -field $\mathcal{B}(X)$ is the σ -field generated by the **open** subsets in X.

$$\mathcal{B}(X) = \sigma\{\text{open subsets of}X\} \tag{0.1}$$

Events in $\mathcal{B}(X)$ are called **Borel sets**.

Fun Fact: For $X = \mathbb{R}^d$, every open set u is a countable union of open balls

$$u = \bigcup_{i=1}^{\infty} B(x_i, r_i)$$
(0.2)

 $\implies \mathcal{B}(\mathbb{R}^d) = \sigma\{\text{open balls in }\mathbb{R}^d\}$

If
$$d = 1$$
, $\mathcal{B}(\mathbb{R}) = \sigma\{(a,b) : a < b\} = \sigma\{[a,b) : a < b\} = \sigma\{(a,b] : a < b\}$

Measures

Definition 2 (Measure)

A function $\mu:\mathcal{F}\to [0,\infty]$ is called a measure if it is countably additive. I.E. If E_1,E_2,E_3,\ldots are all disjoint, then

$$\mu(\bigsqcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu(E_n)$$
(0.3)

- The triple $(\Omega, \mathcal{F}, \mu)$ is then called a **measure space**.
- If $\mu(\Omega) < \infty$, we say μ is a finite measure.
- If $\mu(\Omega) = 1$, we say μ is a probability measure, and the triple $(\Omega, \mathcal{F}, \mu)$ is a probability space.

Measures

Definition 2 (Measure)

A function $\mu:\mathcal{F}\to [0,\infty]$ is called a measure if it is countably additive. I.E. If E_1,E_2,E_3,\ldots are all disjoint, then

$$\mu(\bigsqcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu(E_n)$$
(0.3)

- The triple $(\Omega, \mathcal{F}, \mu)$ is then called a **measure space**.
- If $\mu(\Omega) < \infty$, we say μ is a finite measure.
- If $\mu(\Omega) = 1$, we say μ is a **probability measure**, and the triple $(\Omega, \mathcal{F}, \mu)$ is a **probability space**.

Example

■ Point mass on $(\Omega, 2^{\Omega})$, fix a point $w_0 \in \Omega$, and define $\delta_{w_0} : 2^{\Omega} \to \{0, 1\}$ by

$$\delta_{w_0}(E) = \begin{cases} 1 & \text{if } w_0 \in E \\ 0 & \text{if } w_0 \notin E \end{cases}$$
 (0.4)

Exercise: Verify that it is a measure on 2^{Ω} .

Basic properties of measure

■ Monotone: If $A, B \in \mathcal{F}$ and $A \subseteq B$, $\mu(A) \le \mu(B)$.

■ Rule of addition: If $A, B \in \mathcal{F}$, $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$.

■ Subadditive: If $\{B_n\}_{n=1}^{\infty}$ are in \mathcal{F} , then

$$\mu(\bigcup_{n=1}^{\infty} B_n) \le \sum_{n=1}^{\infty} \mu(B_n) \tag{0.5}$$

Genuine measures defined on full σ -fields are often difficult to construct. To approach this problem, we first start with weaker notions of "measure" that we later build up to the full measure.

Finitely-Additive Measure

Proposition 2 (Super-additivity of F.A. measure)

Let $(\Omega, \mathcal{A}, \chi)$ be a finitely-additive measure space. If $\{A_i\}_{i=1}^{\infty}$ are disjoint in \mathcal{A} , and $A = \bigsqcup_{i=1}^{\infty} A_i \in \mathcal{A}$, then $\chi(A) \geq \sum_{i=1}^{\infty} \chi(A_i)$

Proof.

A "Borel Filed" $\mathcal{B}_{(]}(\mathbb{R})$

Among the many natural generating sets for the Borel σ -field $\mathcal{B}(\mathbb{R}^d)$ is $\ell_{(]}=\{(a,b]:-\infty\leq a\leq b\leq \infty\} \tag{0.6}$

Then, what about the filed generated by these intervals?

A "Borel Filed" $\mathcal{B}_{(l)}(\mathbb{R})$

Among the many natural generating sets for the Borel σ -field $\mathcal{B}(\mathbb{R}^d)$ is

$$\ell_{(]} = \{(a,b] : -\infty \le a \le b \le \infty\} \tag{0.6}$$

Then, what about the filed generated by these intervals?

$$\mathcal{A}(\ell_{(]}) = \{ \text{finite disjoint unions of intervals in } \ell_{(]} \} = \mathcal{B}_{(]}(\mathbb{R}) \tag{0.7}$$

Semi-Algebras of Sets

Definition 3

A collection $\mathcal{S}\subseteq 2^\Omega$ is a semi-algebra or elementary-class if

- $\ \ \, \emptyset \in \mathcal{S}$
- If $A, B \in \mathcal{S}$, then $A \cap B \in \mathcal{S}$
- If $A \in \mathcal{S}$, then A^c is a finite disjoint union of elements from \mathcal{S} .

In particular, $\Omega = \emptyset^c$ is a finite disjoint union of elements in \mathcal{S} .

Proposition 3 (Field generated by Semi-algebras)

If $\mathcal S$ is a semi-algebra over Ω , then the field $\mathcal A(\mathcal S)$ it generates is equal to $\{$ all finite disjoint unions of sets from $\mathcal S$ $\}$

Proof.

F.A. Measures and Semi-Algebras

Proposition 4 (Extension of F.A. measure on semi-algebras)

Let S be a semi-algebras over Ω .

Let $\chi: \mathcal{S} \to [0, \infty]$ be finitely additive: $\chi(E \bigsqcup F) = \chi(E) + \chi(F), E, F \in \mathcal{S}$.

Then, χ extends to a uniquely finitely-additive measure on $\mathcal{A}(\mathcal{S})$, defined by

$$A = \bigsqcup_{i=1}^{n} E_i \implies \chi(A) := \sum_{i=1}^{n} \chi(E_i)$$

Proof

Stieltjes (pre) Measures on $\mathcal{B}_{(]}(\mathbb{R})$

Let $F:\mathbb{R} \to \mathbb{R}$ be a on-decreasing function. On the semi-algegbra $\ell_{(]} = \{(a,b]: -\infty \leq a \leq b \leq \infty\}$, define $\chi_F((a,b]) = F(b) - F(a) \geq 0 \tag{0.8}$

This is additive on the semi-algebra $\ell_{(]}$. Then by prop 4, χ_F extends to a finitely-additive measure on $\mathcal{A}(\ell_{(]})=\mathcal{B}_{(]}(\mathbb{R})$

Question: Is it a premeasure? Is it countably additive?

Stieltjes (pre) Measures on $\mathcal{B}_{(]}(\mathbb{R})$

Let $F:\mathbb{R} \to \mathbb{R}$ be a on-decreasing function. On the semi-algegbra

$$\ell_{(]} = \{(a,b]: -\infty \leq a \leq b \leq \infty\}, \text{ define }$$

$$\chi_F((a,b]) = F(b) - F(a) \ge 0$$
 (0.8)

This is additive on the semi-algebra $\ell_{(]}$. Then by prop 4, χ_F extends to a finitely-additive measure on $\mathcal{A}(\ell_{(]})=\mathcal{B}_{(]}(\mathbb{R})$

Question: Is it a premeasure? Is it countably additive?

Answer: If F(a+) = F(a), then χ_F is countably additive.

Theorem 1 (Stieltjes Premeasure)

The finitely-additive measure χ_F is a premeasure on $\mathcal{B}_{(]}(\mathbb{R})$ if and only if F is right-continuous on \mathbb{R} :

$$\lim_{\delta \downarrow 0} F(a+\delta) = F(a)$$

Stieltjes (pre) Measures on $\mathcal{B}_{(]}(\mathbb{R})$

Proposition 5 (When finitely-additive measure becomes a premeasure?)

Let $\mathcal{S}\subseteq 2^\Omega$ be a semi-algebra. A finitely-additive measure $\chi:\mathcal{A}(\mathcal{S})\to [0,\infty]$ is a premeasure if and only it is countably subadditive on \mathcal{S} :

$$E = \bigsqcup_{j=1}^{\infty} E_j \in \mathcal{S} \implies \chi(E) \le \sum_{j=1}^{\infty} \chi(E_j)$$

Proof.

χ_F is a premeasure

We now show that $\chi_F: \mathcal{A}(\ell_{(]}) \to [0,\infty)$ is a premeasure by showing it is countably subadditive on the semi-algebra $\ell_{(]}$

Choose some $\delta > 0$, by compactness:

$$[a+\delta,b]\subset (a,b]=\bigsqcup_{j=1}^{\infty}(a_j,b_j]\subseteq\bigcup_{j=1}^{N}(a_j,b_j+\delta_j)\subseteq\bigcup_{j=1}^{N}(a_j,b_j+\delta_j]$$

for some $N < \infty$. Since χ_F is subadditive:

$$\chi_F(a+\delta,b] \le \sum_{j=1}^N \chi_F(a_j,b_j+\delta_j] \le \sum_{j=1}^\infty \chi_F(a_j,b_j+\delta_j)$$

$$\underbrace{\chi_F(a+\delta,b]}_{F(b)-F(a+\delta)} \leq \sum_{j=1}^{\infty} \chi_F(a_j,b_j] + \sum_{j=1}^{\infty} \underbrace{\left(\chi_F(b_j,b_j+\delta_j)\right)}_{F(b_j+\delta_j)-F(b_j) < \varepsilon/2^j}$$

Now, let $\delta \to 0$, show that χ_F is countably subadditive on the semi-algebra.

Caratheodory's Extension

Let Ω be a set and $\mathcal{E} \subseteq 2^{\Omega}$ such that $\emptyset, \Omega \in \mathcal{E}$.

Let $\rho: \mathcal{E} \to [0,\infty]$ such that $\phi(\emptyset) = 0$.

Deinfe $\phi^*:2^\Omega \to [0,\infty]$ as follows:

$$\rho^*(A) = \inf\{\sum_{j=1}^{\infty} \phi(E_j) : E_j \in \mathcal{E}, A \subseteq \bigcup_{j=1}^{\infty} E_j\}$$

Theorem 2

If $\mathcal E$ is a field and ρ is a premeasure, then $\rho^*|_{\sigma(\mathcal E)}$ is a measure.

Proposition 6 (Properties of ρ^*)

Fix
$$\rho: \mathcal{E} \subset 2^{\Omega} \to [0,\infty] \ (\emptyset,\Omega \in \mathcal{E}, \rho(\emptyset) = 0)$$
:

- ρ^* is monotone: $A \subseteq B \implies \rho^*(A) \le \rho^*(B)$
- $\ \, \mathbf{0} \ \, \rho^*$ is countably subadditive: $\rho^*(\cup_{n=1}^\infty A_n) \leq \sum_{n=1}^\infty \rho^*(A_n)$

Proof.

Outer measure

Definition 4

Let Ω be a nonempty set. A function $\nu:2^\Omega\to[0,\infty]$ is an outer measure if:

- $\nu(\emptyset) = 0$
- ν is monotone: $A \subseteq B \implies \nu(A) \le \nu(B)$
- ν is countably subadditive: $\nu(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \nu(A_n)$

Thus, Caratheodory's extension ρ^* of a set function is an outer measure. We can use it to distinguish finitely additive measures from premeasure.

Outer measure

Definition 4

Let Ω be a nonempty set. A function $\nu:2^\Omega\to[0,\infty]$ is an outer measure if:

- $\nu(\emptyset) = 0$
- ν is monotone: $A \subseteq B \implies \nu(A) \le \nu(B)$
- 3 ν is countably subadditive: $\nu(\bigcup_{n=1}^{\infty}A_n)\leq \sum_{n=1}^{\infty}\nu(A_n)$

Thus, Caratheodory's extension ρ^* of a set function is an outer measure. We can use it to distinguish finitely additive measures from premeasure.

Lemma 2 (Outer measure dominates any measure extension)

If (Ω,\mathcal{A},μ) is a premeasure space, and $(\Omega,\sigma(\mathcal{A}),\nu)$ is a measure space extending it, then

$$\nu \le \mu^*$$
 on $\sigma(\mathcal{A})$.

Outer measure

Proposition 7 (Distinguish premeasure from F.A measure via outer measure)

If $(\Omega, \mathcal{A}, \chi)$ is a finitely-additive measure space, then $\chi^* \leq \chi$ on \mathcal{A} , and $\chi^* = \chi$ on \mathcal{A} if and only if χ is a premeasure.

Proof.

From premeasure to measure

 \bullet So far we have developed the premeasure, how do we extend it to the genuine measure?

Goal: Define a measure $\boldsymbol{\mu}$ on sigma algebra

Approach:

- \blacksquare Make 2^Ω into a topological space.
- **2** Define $\bar{\mathcal{A}}$ to be the closure of \mathcal{A}
- \blacksquare Prove $\mu: \mathcal{A} \to [0,\infty)$ is sufficiently continuous, thus extends to closure $\bar{\mathcal{A}}$
- Use topological tools to show $\bar{\mathcal{A}}$ is a σ -field, and $\bar{\mu}$ is a measure. It will turn out that $\bar{\mu}$ equals to the outer measure μ^* on $\bar{\mathcal{A}}$

Pseudo-Metric Spaces $d: X \times X \to [0, \infty)$

$$d(x,y) = 0 \longleftarrow x = y$$

$$d(x,y) = d(y,x)$$

$$d(x,z) \le d(x,y) + d(y,z)$$

 \blacksquare A sequence $(x_n)_{n=1}^{\infty}$ in X has a limit x if

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \ \forall n \ge N \ d(x_n, x) < \varepsilon$$
 (0.9)

- lacktriangle Given $V\subseteq X$, the closure $\mathrm{Var}V$ is the set of limits of sequences in V
- \blacksquare A set V is closed if $\bar{V} = V$.
- \blacksquare A function $f:V\to\mathbb{R}$ is Lipschitz if $\exists K\in(0,\infty)$ such that $|f(x)-f(y)|\leq Kd(x,y)$

Pseudo-Metric Spaces $d: X \times X \to [0, \infty)$

$$d(x,y) = 0 \Longleftrightarrow x = y$$

$$d(x,y) = d(y,x)$$

$$d(x,z) \leq d(x,y) + d(y,z)$$

■ A sequence $(x_n)_{n=1}^{\infty}$ in X has a limit x if

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \ \forall n \ge N \ d(x_n, x) < \varepsilon$$
 (0.9)

- lacksquare Given $V\subseteq X$, the closure $\mathrm{Var}V$ is the set of limits of sequences in V
- A set V is closed if $\bar{V} = V$.
- A function $f:V\to\mathbb{R}$ is Lipschitz if $\exists K\in(0,\infty)$ such that $|f(x)-f(y)|\leq Kd(x,y)$

Proposition 8

If f is Lipschitz on a nonempty $V\subseteq X$, then there is a unique Lipschitz extension $\bar f:\bar V\to\mathbb R$ with the same Lipschitz constant K

The outer Pseudo-Metric

• Let (Ω,\mathcal{A},μ) be finite premeasure space. $\mu^*:2^\Omega\to[0,\mu(\Omega)]$ Caratheodory outer measure

$$\mu^*(E) = \inf\{\sum_{j=1}^{\infty} \mu(A_j) : A_j \in \mathcal{A}, E \subseteq \bigcup_{j=1}^{\infty} A_j\}$$

Definition 5

Define $d_{\mu}: 2^{\Omega} \times 2^{\Omega} \to [0, \mu(\Omega)]$,

$$d_{\mu}(E,F) = \mu^*(E \triangle F) := \mu^*((E \setminus F) \cup (F \setminus E))$$

Exercise: The d_{μ} is a pseudo-metric on 2^{Ω}

Key properties of the Outer Pseudo-Metric

$$\forall A, B \in 2^{\Omega}, \ d_{\mu}(A, B) = d_{\mu}(A^{c}, B^{c})$$

$$\forall \{A_{n}\}_{n=1}^{\infty} \{B_{n}\}_{n=1}^{\infty} \in 2^{\Omega}$$

$$d_{\mu}(\bigcup_{n=1}^{\infty} A_{n}, \bigcup_{n=1}^{\infty} B_{n}) \leq \sum_{n=1}^{\infty} d_{\mu}(A_{n}, B_{n})$$

$$d_{\mu}(\bigcap_{n=1}^{\infty} A_{n}, \bigcap_{n=1}^{\infty} B_{n}) \leq \sum_{n=1}^{\infty} d_{\mu}(A_{n}, B_{n})$$

Proof.

Outer Pseudo Metric

Lemma 3 (Continuity of Pseudo Metric)

If $(\Omega, \mathcal{A}, \mu)$ is a finite premeasure space, and $A_n \in \mathcal{A}$ with $A_n \uparrow A$, then $d_\mu(A_n, A) = \mu^*(A) - \mu(A_n) \to 0$

Corollary 1

If $A_n \in \mathcal{A}$ and $A_n \uparrow A$, then $A \in \bar{\mathcal{A}}$

Proof of Lemma .

Theorem 3 (The closure is a σ -field)

If $(\Omega, \mathcal{A}, \mu)$ is a finite premeasure space, then the closure $\bar{\mathcal{A}}$ of the filed \mathcal{A} in the pseudo-metric space $2^{\Omega}, d_{\mu}$ is a σ -field.

Remark. For $A,B\in\mathcal{A}$, $d_{\mu}(A,B)=\mu^*(A\triangle B)=\mu(A\triangle B)=\mu(A\cup B)-\mu(A\cap B)\geq |\mu(A)-\mu(B)|\\ \Longrightarrow \mu \text{ is Lip-1 on } \mathcal{A}. \text{ Note that there is unique Lip-1 function } \bar{\mu}:\bar{\mathcal{A}}\to [0,\mu(\Omega)]$ **Proof.**

Definition 6

Given $\mathcal{E} \subseteq 2^{\Omega}$, $\mathcal{E}_{\sigma} := \{$ countable unions of elements of $\mathcal{E}\}$

Note: \mathcal{E}_{σ} is automatically closed under countable unions. If \mathcal{E} is closed under finite intersections, so is \mathcal{E}_{σ} .

Restatement of Lemma

If $(\Omega, \mathcal{A}, \mu)$ is a finite premeausre space, then $\bar{\mathcal{A}}_{\sigma} = \bar{\mathcal{A}}$, and $\bar{\mu} = \mu^*$ on \mathcal{A}_{σ} **Proof.**

If
$$A \in \mathcal{A}_{\sigma}$$
, $A = \bigcup_{n=1}^{\infty} B_n$, each $B_n \in \mathcal{A}$

Define
$$A_n = \bigcup_{j=1}^n B_j$$
, then $A_n \uparrow A$, $d_\mu(A_n, A) \to 0$

This implies $A_{\sigma} \subseteq \bar{A}$ and note that $A \subseteq A_{\sigma}$. Therefore, $\bar{A}_{\sigma} = \bar{A}$

Proposition 9 (Conditions for a set $\in \bar{\mathcal{A}}$)

Let (Ω,\mathcal{A},μ) be a finite premeasure space. For $B\in 2^\Omega$, The followings are equivalent:

- $\mathbf{1}$ $B \in \bar{\mathcal{A}}$
- $\ \, \textbf{2} \ \, \forall \varepsilon > 0 \text{, } \exists C \in \mathcal{A}_\sigma \text{ such that } B \subseteq C \text{ and } \mu^*(C \setminus B) = d_\mu(B,C) < \varepsilon$

Proof.

Corollary 2

Let $(\Omega, \mathcal{A}, \mu)$ be a finite premeasure space. Then $\mu^* = \bar{\mu}$ on $\bar{\mathcal{A}}$.

Proof.

Let
$$B \in \bar{\mathcal{A}}$$
. $\bar{\mu}(B) = |\bar{\mu}(B) - \bar{\mu}(\emptyset)| \le d_{\mu}(B,\emptyset) = \mu^*(B \triangle \emptyset) = \mu^*(B)$

For reverse inequality: fix $\varepsilon > 0$. By proposition **9**, we can choose $C \in \mathcal{A}_{\sigma}$ such that $B \subset C$ and $d_u(B,C) < \varepsilon$.

$$\implies |\bar{\mu}(B) - \bar{\mu}(C)| \le d_{\mu}(B,C) < \varepsilon, \ \bar{\mu}(C) \le \bar{\mu}(B) + \varepsilon$$

$$\implies \bar{\mu}(B) \le \mu^*(B) \le \mu^*(C) \stackrel{\dagger}{=} \bar{\mu}(C) \le \bar{\mu}(B) + \varepsilon$$

 \dagger holds since $\bar{\mu}=\mu^*$ on $\mathcal{A}_\sigma.$ Take $\varepsilon\downarrow 0,$ $\bar{\mu}(B)=\mu^*(B).$

Theorem 4 ($\bar{\mu}$ is a genuine measure on $\bar{\mathcal{A}}$)

If $(\Omega, \mathcal{A}, \mu)$ is a finite premeasure space, then $\bar{\mu} : \bar{\mathcal{A}} \to [0, \mu(\Omega)]$ is a measure.

Proof.

If we show that $\bar{\mu}$ is **finitely-additive** on $\bar{\mathcal{A}}$, then it is a finitely additive measure on the σ -field $\bar{\mathcal{A}}$. Note that $\bar{\mu}$ is countably super-additive. But by the previous corollary, $\bar{\mu}=\mu^*$ on $\bar{\mathcal{A}}$, μ^* is countably subadditive.

Theorem 4 ($\bar{\mu}$ is a genuine measure on $\bar{\mathcal{A}}$)

If $(\Omega, \mathcal{A}, \mu)$ is a finite premeasure space, then $\bar{\mu}: \bar{\mathcal{A}} \to [0, \mu(\Omega)]$ is a measure.

Proof.

If we show that $\bar{\mu}$ is **finitely-additive** on $\bar{\mathcal{A}}$, then it is a finitely additive measure on the σ -field $\bar{\mathcal{A}}$. Note that $\bar{\mu}$ is countably super-additive. But by the previous corollary, $\bar{\mu}=\mu^*$ on $\bar{\mathcal{A}}$, μ^* is countably subadditive.

Let
$$A,B\in \bar{\mathcal{A}}.$$
 Find $A_n\to A,B_n\to B,\ A_n,B_n\in \mathcal{A}.$ Then, $d_\mu(A_n\bigcup B_n,A\cup B)$ and $d_\mu(A_n\cap B_n,A\cap B)$ is bounded by $d_\mu(A_n,A)=d_\mu(B_n,B)$ which converges to 0 This implies
$$\bar{\mu}(A\cup B)+\bar{\mu}(A\cap B)=\lim_{n\to\infty}\left[\mu(A_n\cup B_n)+\mu(A_n\cap B_n)\right]=\bar{\mu}(A)+\bar{\mu}(B)$$

Uniqueness Theorem

So far, we have constructed **finite** measure on $\bar{\mathcal{A}}$.

Theorem 5 (Uniqueness of Extension)

If $\mathcal F$ is a σ -field with $\mathcal A\subseteq\mathcal F\subseteq\bar{\mathcal A}$. and ν is a measure on $\mathcal F$ with $\nu|_{\mathcal A}=\mu$, then $\nu=\bar\mu|_{\mathcal F}$

Proof.

Extension to σ -Finite Measures

Let (Ω,\mathcal{A},μ) be a σ -finite premeasure space. $\Omega=\bigcup_{n=1}^\infty A_n$ such that $A_n\in\mathcal{A},\mu(A_n)<\infty$ Take $\Omega_1=A_1,\ \Omega_n=A_n\setminus A_{n=1}$, thus $\mu(\Omega_n)\leq \mu(A_n)<\infty,\ \Omega=\bigsqcup_{n=1}^\infty \Omega_n$ Define $\mu_n\to[0,\infty):\mu_n(A):=\mu(A\cap\Omega_n)$ Then $(\Omega_n,\mathcal{A},\mu_n)$ is a finite premeasure space

 \implies Extends to a finite measure $\bar{\mu}_n$ on $\bar{\mathcal{A}}^n\supseteq\sigma(\mathcal{A})$

Extension to σ -Finite Measures

Let (Ω,\mathcal{A},μ) be a σ -finite premeasure space. $\Omega=\bigcup_{n=1}^\infty A_n$ such that

$$A_n \in \mathcal{A}, \mu(A_n) < \infty$$

Take
$$\Omega_1=A_1$$
, $\Omega_n=A_n\setminus A_{n=1}$, thus $\mu(\Omega_n)\leq \mu(A_n)<\infty$, $\Omega=\bigsqcup_{n=1}^\infty\Omega_n$

Define $\mu_n \to [0,\infty) : \mu_n(A) := \mu(A \cap \Omega_n)$

Then $(\Omega_n, \mathcal{A}, \mu_n)$ is a finite premeasure space

$$\implies$$
 Extends to a finite measure $\bar{\mu}_n$ on $\bar{\mathcal{A}}^n \supseteq \sigma(\mathcal{A})$

Theorem 6

$$\bar{\mu}:=\sum_{n=1}^\infty \bar{\mu}_n$$
 is the unique measure on $\sigma(\mathcal{A})$ extending μ

Proof. Easy to check that $\bar{\mu}$ is a countably-additive measure since Ω_n are disjoint. We need to check uniqueness.

Extension to σ -finite Measures

Proposition 10

Let $(\Omega, \mathcal{A}, \mu)$ σ -finite premeausre space.

- $\ \ \, \bar{\mu}=\mu^* \,\, {\rm on} \,\, \sigma(\mathcal{A})$
- 2 If $B \in \sigma(\mathcal{A})$ and $\varepsilon > 0$, $\exists C \in \mathcal{A}_{\sigma}$ such that $B \subseteq C$ and $\bar{\mu}(C \setminus B) < \varepsilon$
- $\qquad \qquad \text{Moreover, if } \bar{\mu}(B) < \infty, \ \exists A \in \mathcal{A} \text{ such that } A \in \mathcal{A} \text{ such that } \bar{\mu}(A \triangle B) < \varepsilon$

Radon Measures

ullet If Ω is a topological space, any measure on $\mathcal{B}(\Omega)$ will be referred to as a **Borel Measure**.

Definition 7 (Radon measure on \mathbb{R})

A Borel measure $(\mathbb{R},\mathcal{B}(\mathbb{R}),\mu)$ on \mathbb{R} is called a **Radom Measure** if

$$\mu([a, b]) < \infty \quad \forall a < b \in \mathbb{R}$$

Example: The Stieltjes premeasures $\mu_F((a,b]) = F(b) - F(a)$ for $F \to \mathbb{R} \to \mathbb{R}$ increasing and right cotinuous

Radon Measures

ullet If Ω is a topological space, any measure on $\mathcal{B}(\Omega)$ will be referred to as a **Borel Measure**.

Definition 7 (Radon measure on \mathbb{R})

A Borel measure $(\mathbb{R},\mathcal{B}(\mathbb{R}),\mu)$ on \mathbb{R} is called a **Radom Measure** if

$$\mu([a, b]) < \infty \quad \forall a < b \in \mathbb{R}$$

Example: The Stieltjes premeasures $\mu_F((a,b]) = F(b) - F(a)$ for $F \to \mathbb{R} \to \mathbb{R}$ increasing and right cotinuous

Theorem 7

If μ is a Radon measure on $\mathbb R$, then there exists a non-decreasing, right-continuous function $F:\mathbb R\to\mathbb R$ (unique up to an additive constant) such that

$$\mu((a,b]) = F(b) - F(a), \quad -\infty \le a \le b \le \infty$$

Radon Measure

Proposition 11 (Continuity of measure)

Let μ be a finitely additive measure on (Ω, \mathcal{A}) . The following are equivalents:

- $oldsymbol{1}{oldsymbol{\mu}}$ is a premeasure on ${\mathcal A}$
- If $A_n, A \in \mathcal{A}$ and $A_n \to A$, then $\mu(A_n) \to \mu(A)$. Moreover, in the case of finite measure, the following are also equivalent
- If $A_n \downarrow A$ in \mathcal{A} , then $\mu(A_n) \downarrow \mu(A)$
- $If A_n \uparrow \Omega \text{ in } \mathcal{A}, \text{ then } \mu(A_n) \uparrow \mu(\Omega).$
- $If A_n \downarrow \emptyset in \mathcal{A}, then \mu(A_n) \downarrow 0$

Proof.

Radon Measure

Definition 8

Let μ be a Borel probability measure on \mathbb{R} .

$$F_{\mu}: \mathbb{R} \to \mathbb{R}; F_{\mu}(x) = \mu((-\infty, x])$$

is the cumulative distribution function (CDF) of μ

By the Radon measure theorem, Borel probability measures on $\ensuremath{\mathbb{R}}$ are characterized by their CDF.

Radon Measure

Definition 8

Let μ be a Borel probability measure on \mathbb{R} .

$$F_{\mu}: \mathbb{R} \to \mathbb{R}; F_{\mu}(x) = \mu((-\infty, x])$$

is the cumulative distribution function (CDF) of μ

By the Radon measure theorem, Borel probability measures on $\ensuremath{\mathbb{R}}$ are characterized by their CDF.

Corollary 3

Any right-continuous, non-decreasing function $F:\mathbb{R} \to \mathbb{R}$ satisfying

$$\lim_{x \to -\infty} F(x) = 0, \quad \lim_{x \to +\infty} F(x) = 1$$

is the cumulative distribution function (CDF) of a unique Borel probability measure on $\mathbb{R}.$

Lebesgue Measure

The Radon measure on ${\mathbb R}$ satisfying

$$\lambda((a,b]) = b-a, \quad -\infty < a < b < \infty$$

is called Lebesgue measure

Note that λ and the outer measure λ^* is both translation invariant, i.e.,

$$\lambda(A+\tau)=\lambda(A)\text{, }\lambda^*(E+\tau)=\lambda^*(E)\text{ for }\tau\in\mathbb{R},\forall A\in\mathcal{B}_{(]}(\mathbb{R}),\forall E\subseteq\mathbb{R}$$

Lebesgue Measure

The Radon measure on $\ensuremath{\mathbb{R}}$ satisfying

$$\lambda((a, b]) = b - a, \quad -\infty < a < b < \infty$$

is called Lebesgue measure

Note that λ and the outer measure λ^* is both translation invariant, i.e.,

$$\lambda(A+\tau)=\lambda(A),\ \lambda^*(E+\tau)=\lambda^*(E)\ \text{for}\ \tau\in\mathbb{R}, \forall A\in\mathcal{B}_{(]}(\mathbb{R}), \forall E\subseteq\mathbb{R}$$

Theorem 8

 λ is the unique translation invariant Borel measure such that $\lambda((0,1])=1$; if μ is another translation invariant Borel measure, then $\mu=\alpha\lambda$ for some $\alpha\geq 0$

Null complete

In a measure space (Ω,\mathcal{F},μ) , a measurable set $N\in\mathcal{F}$ is a null set if $\mu(N)=0$. There are many sets $N\in\mathcal{B}(\mathbb{R})$ of Lebesgue measure 0 that contain non-Borel sets $\Lambda\subseteq N$. This can sometimes cause technical problems.

Definition 9

A measure space $(\Omega, \mathcal{F}, \mu)$ is called **null-complete** if, for every $N \in \mathcal{F}$ with $\mu(N) = 0$, every subset $\Lambda \subseteq N$ is in \mathcal{F} and $\mu(\Lambda) = 0$.

Null complete

In a measure space (Ω,\mathcal{F},μ) , a measurable set $N\in\mathcal{F}$ is a null set if $\mu(N)=0$. There are many sets $N\in\mathcal{B}(\mathbb{R})$ of Lebesgue measure 0 that contain non-Borel sets $\Lambda\subseteq N$. This can sometimes cause technical problems.

Definition 9

A measure space $(\Omega, \mathcal{F}, \mu)$ is called **null-complete** if, for every $N \in \mathcal{F}$ with $\mu(N) = 0$, every subset $\Lambda \subseteq N$ is in \mathcal{F} and $\mu(\Lambda) = 0$.

Theorem 9

For any measure space $(\Omega, \mathcal{F}, \mu)$, there is an extension $\tilde{\mathcal{F}} \supseteq \mathcal{F}$, $\tilde{\mu}|_{\mathcal{F}} = \mu$ such that $(\Omega, \tilde{\mathcal{F}}, \tilde{\mu})$ is null-complete.