Introduction to Logic

Carson James

1

Contents

N	otation	vii
P	reface	1
	Review of Fundamentals 1.1 Set Theory	3
2	Propositional Logic	5

vi CONTENTS

Notation

 $\begin{array}{ll} \mathcal{M}_+(X,\mathcal{A}) & \text{ finite measures on } (X,\mathcal{A}) \\ v & \text{ velocity} \end{array}$

viii Notation

Preface

cc-by-nc-sa

2 Notation

Chapter 1

Review of Fundamentals

1.1 Set Theory

Definition 1.1.0.1.

- We define $[0] = \emptyset$ and for $k \in \mathbb{N}$, we define $[k] = \{1, \dots, k\}$.
- Let S be a set and $k \in \mathbb{N}_0$. We define the **set of** k-tupels with entries in S, denoted S^k , by

$$S^k = \{u : [k] \to S\}$$

• Let S be a set. We define the set of all tuples with entries in S, denoted S^* , by

$$S^* = \bigcup_{k \in \mathbb{N}_0} S^k$$

• Let S be a set and $k \in \mathbb{N}_0$. We define the **set of** k-ary operations on S, denoted $\mathcal{F}^k(S)$, by $\mathcal{F}^k(S) = S^{(S^k)}$. We define the **set of finitary operations on** S, denoted $\mathcal{F}^*(S)$, by

$$\mathcal{F}^*(S) = \bigcup_{k \in \mathbb{N}_0} \mathcal{F}^k(S)$$

• Let S be a set. We define the **arity map**, denoted arity: $S^* \to \mathbb{N}_0$, by

arity
$$f = k$$
, $f \in \mathcal{F}^k(S)$

• Let S be a set, $\mathcal{F} \subset \mathcal{F}^*(S)$ and $k \in \mathbb{N}_0$. We define the k-ary members of \mathcal{F} , denoted \mathcal{F}_k , by

$$\mathcal{F}_k = \mathcal{F} \cap \mathcal{F}^k(S)$$

Definition 1.1.0.2. Let S be a set, $\mathcal{F} \subset \mathcal{F}^*(S)$ and $C \subset S$. Then C is said to be \mathcal{F} -closed if for each $k \in \mathbb{N}_0$, $f \in \mathcal{F}_k$ and $a_1, \ldots, a_k \in C$, $f(a_1, \ldots, a_k) \in C$.

Definition 1.1.0.3. Let S be a set, $\mathcal{F} \subset \mathcal{F}^*(S)$ and $\mathcal{C} \subset \mathcal{P}(S)$. If for each $C \in \mathcal{C}$, C is \mathcal{F} -closed, then $\bigcap_{C \in \mathcal{C}} C$ is \mathcal{F} -closed

Proof. Suppose that for each $C \in \mathcal{C}$, C is \mathcal{F} -closed. Let $k \in \mathbb{N}_0$, $f \in \mathcal{F}_k$, $a_1, \ldots, a_k \in \bigcap_{C \in \mathcal{C}} C$ and $C_0 \in \mathcal{C}$. Since $C_0 \in \mathcal{C}$, we have that

$$a_1, \dots, a_k \in \bigcap_{C \in \mathcal{C}} C$$

$$\subset C_0$$

Since C_0 is \mathcal{F} -closed, we have that $f(a_1, \ldots, a_k) \in C_0$. Since $C_0 \in \mathcal{C}$ is arbitrary, we have that for each $C \in \mathcal{C}$, $f(a_1, \ldots, a_k) \in C$. Hence $f(a_1, \ldots, a_k) \in \bigcap_{C \in \mathcal{C}} C$. Since $k \in \mathbb{N}_0$ and $a_1, \ldots, a_k \in \bigcap_{C \in \mathcal{C}} C$ are arbitrary, we have that $\bigcap_{C \in \mathcal{C}} C$ is \mathcal{F} -closed.

Definition 1.1.0.4. Let S be a set, $\mathcal{F} \subset \mathcal{F}^*(S)$ and $B, C \subset S$. Then C is said to be \mathcal{F} -inductive over \mathcal{B} if

- 1. C is \mathcal{F} -closed
- 2. $B \subset C$

Chapter 2

Propositional Logic

Definition 2.0.0.1. Let \mathcal{A} be a set, $\mathcal{V} \subset \mathcal{A}$, $\mathcal{F} \subset \bigcup_{k \in \mathbb{N}_0} A^k$, $\mathcal{C} \subset \bigcup_{k \in \mathbb{N}_0} \mathcal{F}^{(\mathcal{F}^k)}$. Then $(\mathcal{A}, \mathcal{V}, \mathcal{A})$ is said to be a **propositional calculus** if

- 1. $\mathcal{V} \subset \mathcal{F}$
 - for each $k \in \mathbb{N}_0$, $p_1, \ldots, p_k \in \mathcal{F}$, and $f \in \mathcal{C}_k$, $f(p_1, \ldots, p_k) \in \mathcal{F}$
 - for each $p \in \mathcal{F}$, there exists some tree $fin\mathcal{T}^k(\mathcal{F})$ such that $\in \mathcal{F}^k$

define the alphabet \mathcal{A} define the variables \mathcal{V} define the formulas \mathcal{F} define the connectives \mathcal{C} the formulas of \mathcal{L} ,

Exercise 2.0.0.2.