Controllo qualità scatole Ferrero

Assunzioni

- Condizioni prospettiche, di luce e di dimensione assimilabili a quelle del set fornito
- Scatola elemento più grande nell'immagine

Dataset

Set fornito: 64 scatole miste

• Estensione 1: 68 scatole rettangolari

Estensione 2: 51 scatole quadrate

Suddivisione del lavoro

Alind: 30%

- Individuazione scatola
- Classificazione scatola
- Individuazione slot quadrate

Mario: 35%

- Classificazione scatola
- Classificazione slot
- Conformità/Individuazione errori

Pietro: 35%

- Individuazione slot quadrate
- Individuazione slot rettangolari
- Ricostruzione griglia

Pipeline

Estrazione contorni

Costruzione maschera

Estrazione contorni

Costruzione maschera

Errori classificazione scatola

Canale S:

-set fornito: 1.60% -set estensione 1: 13.23% -set estensione 2: 49.02%

Canale b:

-set fornito: 0% -set estensione 1: 1.47% -set estensione 2: 29.41%

Estrazione contorni

Costruzione maschera

Canny + Otsu threshold

Laplacian + Otsu threshold

Estrazione contorni

Costruzione maschera

Dilation (collegamento edge vicini)

Chiusura buchi + filtraggio per area

Involucro convesso

Problema

Soluzione

Riduzione della soglia (85% soglia di Otsu)

Feature selection

Elongation: length/width della bounding box

Compactness: 4*pi*area/perim^2

Corr coef: -0.0415

Elongation

Feature selection: elongation

Trasformata di Hough ————— Equazione di un lato ————— Rotazione

Elongation

Elongation

Feature: elongation

SVM

Kernel	linear	
<u>Training</u> q	0.9730	0.0270
r	0	1
Accuracy	0.9844	
Testing q	0.9706	0.0294
r	0.1569	0.8431
Accuracy	0.9160	

<u>Training</u> q	0.9730	0.0270
r	0	1
Accuracy	0.9844	
<u>Testing</u> q	0.9706	0.0294
r	0.1569	0.8431
Accuracy	0.9160	

gaussian

Kernel

^{*}Training sul set fornito, testing sul set estensione

Feature: elongation, compactness

SVM

Kernel	linear	
<u>Training</u> q	0.9730	0.0270
r	0	1
Accuracy	0.9844	
<u>Testing</u> q	0.9706	0.0294
r	0.1373	0.8627
<u>Accuracy</u>	0.9244	

<u>Training</u> q	1	0
r	0	1
<u>Accuracy</u>	1	
<u>Testing</u> q	0.9853	0.0147
r	0.3333	0.6667
<u>Accuracy</u>	0.8487	

gaussian

Kernel

^{*}Training sul set fornito, testing sul set estensione

Feature: elongation, compactness

kNN k = 1

Training	1	q	<u>Testina</u>	0.9265	0.0735	*Migliora l'accuracy complessive ma
<u></u>	•	٩	<u></u>	0.0200	0.0.00	*Migliora l'accuracy complessiva ma peggiora la classificazione delle scatole
Accuracy	1	r		0.1569	0.8431	rettangolari, in favore di quelle quadrate; tuttavia la classificazione dei cioccolatini di
			<u>Accuracy</u>	0.8908		queste ultime non sarebbe fedele (vedere slide successive).

^{*}Training sul set fornito, testing sul set estensione

Estrazione circonferenze

Scelta spazi colore, canali e pre-processing

RGB -> R

RGB -> G

CMY -> M

- G*2.5 enfatizza gli edges utili e riduce quelli intra-cioccolatino
- R*2.5 enfatizza gli edges utili e riduce quelli intra-cioccolatino
- Gamma correction su M per enfatizzare edges utili e ridurre quelli deboli

Equalizzazione locale per enfatizzare gli edges rimanenti e smoothing per mantenere gli edge forti (smooth solo per G e R).

RGB -> R -> Cioccolatini e scatola hanno R simile, vicino a 0 nelle zone d'ombra. Con R*2.5 queste rimangono, ottenendo le sagome dei cioccolatini.

RGB -> G -> I bordi dei cioccolatini sono meno illuminati facilitando l'individuazione (Bayer pattern).

CMY -> M -> I Rocher hanno quantità minore di M rispetto alla scatola, i pirottini maggiore.

Estrazione circonferenze

Scelta spazi colore, canali e pre-processing

N.B: Anche utilizzando solo S di HSV si riescono a trovare tutti i cioccolatini nel dataset fornito.

Le restanti elaborazioni sono propedeutiche alla ricerca in immagini con condizioni di luce diverse.

* Tutte le immagini sono state equalizzate localmente per enfatizzare gli edges

HSV -> S -> I cioccolatini hanno saturazione nettamente minore dal resto.

HSV -> V -> Slot non conformi possono avere luminosità diversa dal resto; i raggi trovati sono ben approssimati, contribuendo alla moda.

YCBCR -> Y -> La luminanza dei Rocher e dei Raffaello è maggiore rispetto al resto.

Estrazione circonferenze

Utilizzo della trasformata di Hough

Radius range: 11-30 quadrate

11-25 rettangolari

Edge Threshold: 0.12-0.2 quadrate

0.15-0.16 rettangolari

Sensitivity: 0.86-0.87 quadrate

0.80-0.84 rettangolari

Object Polarity: dark,bright quadrate

dark,bright rettangolari

I raggi devono essere compresi tra 11 e 30 pixel, altrimenti si possono trovare i bollini o circonferenze più grandi del necessario.

I threshold non sono scelti con Otsu in quanto serve una soglia locale che non tenga conto delle maschere e delle soglie tra cioccolatini di altro tipo.

Sensitivity è stata limitata per evitare circonferenze spurie nelle scatole rettangolari, mentre per le scatole quadrate sono stati scelti parametri meno restrittivi per riuscire a trovare sempre le circonferenze

Estrazione delle circonferenze

Rimozione duplicati

Due circonferenze vengono considerate duplicate se il centro di una è all'interno dell'altra. Viene utilizzato un raggio pari alla moda senza outliers per ogni circonferenza.

Clustering

Data la retta A, parallela a uno dei bordi della scatola, e il raggio r:

- 1) calcolare la distanza di uno dei centri da A
- 2) se in un intorno I del centro in esame esiste un cluster di punti a distanza d da A, inserisco il centro al cluster, altrimenti ne creo uno nuovo

Ripetere per ogni circonferenza trovata N.B: I intorno circolare di raggio r

Ricostruzione slot mancanti

Ricostruzione slot mancanti

- 1. Si calcola la retta A dalla regressione lineare dei centri di una riga R in cui manca almeno un cioccolatino
- 2. Si calcola l'equazione di B perpendicolare ad A e passante per un centro qualsiasi di una riga differente
- 3. Si calcola il punto P di intersezione tra la retta A e la retta B e, se non esiste una circonferenza in un intorno di P, aggiungo a R una circonferenza con centro P.

Ricostruzione slot mancanti

Ordinamento righe

Ordinamento colonne

- 1. Si calcola la retta A dalla regressione lineare dei centri della riga da ordinare
- 2. Si decide un punto B sulla retta che sia fuori dall'area della scatola
- 3. Per ogni circonferenza della riga si calcola la distanza del centro da B
- 4. Si ordinano le circonferenze sulla base della distanza da B

Ordinamento righe

Ordinamento colonne

- 1. Si calcola la retta A dalla regressione lineare dei centri della prima colonna
- 2. Si decide un punto B sulla retta che sia fuori dall'area della scatola
- 3. Per ogni circonferenza della colonna si calcola la distanza del centro da B
- 4. Si ordinano le intere righe sulla base della distanze ottenute

Feature selection

kNN k = 1

	Training	1	b	Testing	0.9048	0	0	0.0952
			d			0.9878	0	0.0122
LBP			n		0	0	1	0
			r		0.0588	0.0588	0	0.8824
	<u>Accuracy</u>	1		<u>Accuracy</u>	0.9739			

^{*}Training e testing su partizioni del set fornito

Feature selection

kNN k = 1

	<u>Training</u>	1	b	Testing	0.9841	0	0	0.0159	
			d		0	1	0	0	
CEDD			n		0	0	1	0	
			r		0	0	0	1	
	<u>Accuracy</u>	1		Accuracy	0.9978		1		

^{*}Training e testing su partizioni del set fornito

Problema

Non rigettato

Soluzione

^{*}s: quantità minima di rosso affinché il logo sia interamente visibile (nel caso specifico l'area è pari a 270, ma s = 500 per una maggiore restrittività)

No estensione dataset

Motivi: condizioni differenti di luci, proporzioni, risoluzione

Scatole rettangolari Estensione 1				
34	pipeline corrette			
17	errori classificazione cioccolatini			
14	errori estrazione circonferenze			
3	altro (es. bollini, forma)			
68				

Train e test su set fornito + slot vuoti del set Estensione 1: accuracy 1

Esecuzione pipeline su set Estensione 1: errori classificazione cioccolatini bianchi -> peggioramento

Scatole quadrate Estensione 2					
4	pipeline corrette				
22	errori classificazione cioccolatini				
5	errori estrazione circonferenze				
17	errori forma scatola				
3	altro (bollini)				
51					

Individuazione bollino

^{*}s: area minima (ottenuta sperimentalmente e poi abbassata per una maggiore tolleranza -> s= 800)

Conformità / errori

Scatole rettangolari

	y1,1					
x1,1					:	
						y4,6
					x4,6	

classificazione circonferenza i-esima centro (xij,yij) raggio: radius

"b"	"b"	"b"	"b"	"b"	"b"
"d"	"d"	"d"	"d"	"d"	"d"
"d"	"r"	"d"	"d"	"d"	"d"
"n"	"n"	"n"	"n"	"n"	"n"

Confronto:

configurazione ottenuta != configurazione ideale ("b" in alto) configurazione ottenuta != configurazione ideale ("b" in basso)

-> considero il risultato che **minimizza** le differenze

- controllo cioccolatini dorati (bollini)
- controllo cioccolatini bianchi (logo)

Conformità / errori

Scatole quadrate

x1	y1
:	
:	
:	
x24	y24

classificazione
circonferenza i-esima
centro (xi,yi)
raggio: radius

- verifica classe cioccolatino
- verifica presenza del bollino

Analisi dei risultati

Dataset fornito			
	Conforme	Non conforme	
Conforme	38	0	
Non conforme	0	26	

Estensione 1			
	Conforme	Non conforme	
Conforme	14	0	
Non conforme	9	45	

Estensione 2			
	Conforme	Non conforme	
Conforme	4	0	
Non conforme	29	18	

Totale: 64 Precision: 1 Recall: 1 Totale: 68 Precision: 1 Recall: 0.61 Totale: 51 Precision: 1 Recall: 0.12

Migliorie possibili

- Conteggio bollini
- Filtraggio omomorfico
- Estensione dataset
- Distinzione tipo di errore
- Prestazioni