Note: Page numbers followed by f and t refers to figures and tables respectively.

A	generalized Fung model, 282
Abaqus/Explicit VUMAT	Holzapfel-Gasser-Ogden
subroutine, for Neo-	model, 285–287
Hookean model, 448–450	invariant based anisotropy,
Abaqus/Implicit UMAT	282–283
subroutine, for Neo-	Anisotropic material, 199
Hookean model, 450–454	Arrhenius model, 344–345
AB model. See Arruda-Boyce	Arruda–Boyce (AB) model, 283
(AB) model	athermal shear resistance, 396
Acrylate-Butadiene rubber (ABR)	deviatoric back stress,
Bergstrom-Boyce model, 458,	394–395
459–460, 459 <i>f</i>	glassy polymers, 393–394
calibrations, 456, 458 <i>t</i>	linear elastic response, 394
linear viscoelasticity model,	plastic flow rate, 395–396
458, 459 <i>f</i>	rheological representation, 394
mechanical response, 455–456	394 <i>f</i>
stress-time response, 456,	stress-strain predictions, 396,
457 <i>f</i>	397 <i>f</i>
uniaxial compression data, 456,	Atomic force microscopy (AFM),
456 <i>f</i>	87–88
Yeoh hyperelastic model, 456,	-
457 <i>f</i>	В
Addition polymerization, 11	Balance law, 171–184
Adiabatic thermoelastic material,	Balance of angular momentum,
194	178–180
Almansi strain, 163	Balance of linear momentum,
Amorphous polymers, 5–7, 6 <i>f</i>	175–178
Anisotropic elasticity, 215–217	BAM model, 275–277
Anisotropic hyperelasticity	Barcol hardness testing, 50
Bergstrom anisotropic eight-	BB model. See Bergstrom–Boyce
chain model, 285	(BB) model
Bischoff anisotropic eight-	Bergstrom anisotropic eight-chain
chain model, 283–285	model, 285

Bergstrom–Boyce (BB) model, 27–28	strain amplitude dependence, 372
acrylate-butadiene rubber, 458,	time derivative, 378
459–460, 459 <i>f</i>	viscous components, 377–378
applied strain history, 372–374,	viscous flow, 381–382
373 <i>f</i>	Biot strain, 163
Brownian motion, 379, 380f	Birefringence spectroscopy,
Cauchy stress, 376–377	95–97
chain stretch, 379–381	Bischoff anisotropic eight-chain
chloroprene rubber, 372–374,	model, 283–285
373f, 462, 463f	Blatz-Ko foam model, 289
creep experiment, 379–381	Boltzmann's superposition
crosslinked polymer,	principle, 310
378, 379 <i>f</i>	Bulk modulus, 64–71, 241
dynamic loading predictions, 387–392	Buna-N. See Nitrile rubber
eight-chain model, 376–377	C
elastic and viscoelastic	Cauchy stress theorem,
components, 376, 376f	176–178
elastomers, 375	Cauchy surface tractions, 176
equilibrium stress, 374–375,	Chemical characterization
374 <i>f</i>	techniques
generic numerical	energy dispersive X-ray
implementation, 386–	spectroscopy, 101–103
387	Fourier transform infrared
hyperelastic response, 377	spectroscopy, 100–101
hypothetical stress-strain curve,	Raman spectroscopy, 109–110
374–375	size-exclusion chromatography
Matlab implementation,	103–107
382–384	thermogravimetric analysis,
nitrile rubber, 466, 467f	107–109
non-linear viscoelastic flow	Chloroprene rubber (CR)
element, 375	BB model with Mullins
polyether ether ketone, 491,	damage, 462, 463f
493 <i>f</i>	calibrations, 461–462, 461 <i>t</i>
polymer modeling, 392–393	linear viscoelastic model, 462,
Python implementation,	463f
384–386	stress relaxation response, 460,
Rouse relaxation time, 379–381	461 <i>f</i>
santoprene, 470–474, 473f,	uniaxial compression data, 460
474 <i>f</i>	460 <i>f</i>

uniaxial tension, 440, 441 <i>f</i> Yeoh hyperelastic model, 461–462, 462 <i>f</i>	vs. relaxation modulus, 336–337
Coefficient of determination, 444	D
Condensation polymerization, 11	Dark field microscopy, 83
Conductive polymers, 9	Deformation
Confocal microscopy, 83	modeling, 120–125
Conservation of mass, 173–175	simple shear, 152
Continuum mechanics	undeformed state, 151
foundations, 219–224	uniaxial tension, 151
balance laws and field	volumetric deformation, 153
equations, 171–184	Dependence of stored energy,
constitutive equations, 187–194	229–232
coordinate transformations,	Differential interference contrast
149	(DIC) microscopy, 83
deformation gradient, 150-157	Differential scanning calorimetry
derivatives of scalar, vector,	(DSC), 89–90
and tensor fields, 147–149	Digital image correlation (DIC)
Dyadic product, 143–144	strain measurement
energy balance and stress	system, 66
power, 184–186	DNF model. See Dual network
invariants, 150	fluoropolymer (DNF)
large strain kinematics,	model
137–141	Drucker Prager plasticity,
material symmetry, 198-199	366–367, 367 <i>f</i>
multiaxial loading, 135–137	Drucker stability, 297
observer transformation,	Dual network fluoropolymer
194–198	(DNF) model, 121–122
rates of deformation, 164–165	Cauchy stress,
strain, stretch, and rotation,	398–400
157–164	constant viscosity, 402
stress tensors, 165–170	deviatoric viscoelastic flow,
symbols, 199	401–402
tensor operations, 144–147	kinematics of deformation,
uniaxial loading, 133–135	398, 399f
vector operations, 141–143	material parameters, 403
Coordinate transformations, 149	Matlab implementation, 404
Corrugated hose failure, 127	plastic flow, 402–403
CR. See Chloroprene rubber (CR)	polymer modeling, 404
Creep compliance	strain rates, 397–398
definition, 335	structure, 398, 399 <i>f</i>

Dual network fluoropolymer	deformation modeling, 120-
(DNF) model (Continued)	125
thermal expansion, 398–400	failure modeling, 125–130
thermoplastics, 398	polymer mechanics, 115
velocity gradient, 401	properties of polymers and
viscoelastic deformation	metals, 116–117
gradient, 400–401	required inputs, 117–118
volumetric viscoelastic flow,	types, 119
401–402	First law of thermodynamics,
Dyadic product, 143–144	180–182
Dynamic mechanical analysis	First Piola-Kirchhoff stress
(DMA), 43–47, 347	tensor, 167
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Flex circuit pressure sensor, 124
E	Fluorescence microscopy, 84
Eigenvalue and spectral	Fourier transform approach, 326
decompositions, 154–	Fourier transform infrared
157	spectroscopy (FTIR),
Eight-chain (EC) model,	100–101
250–259	Freely jointed chain (FJC) model,
Elastomers, 24, 25f	232–236
Energy balance and stress power,	
184–186	G
Energy dispersive X-ray	Gaussian chains, 258
spectroscopy (EDS),	Gel permeation chromatography
101–103	(GPC), 103–107
Entropy, 183	Generalized Fung model, 282
Environmental SEM (ESEM), 86	Genetic algorithm, 445
Environmental stress cracking	Gent model, 263–265
(ESC), 126	Glass transition temperature, PET
Euler–Almansi strain, 164	24
Extended tube (ET) model,	Green–Lagrange strain, 163
273–275	
	H
F	Hardness and indentation testing,
Failure model calibration, 73	47–51
Failure modeling, 125–130	HDPE. See High-density
FEA. See Finite element analysis	polyethylene (HDPE)
(FEA)	Heaviside step function, 310
Fiber-reinforced composite, 217,	Helmholtz free energy,
218 <i>f</i>	191–192
Finite element analysis (FEA)	Hencky strain, 163, 164

High-density polyethylene	hyperfoam model, 290–291
(HDPE)	Hyperelasticity
Arruda–Boyce eight-chain	code examples, 299–303
model, 477–478, 478f	Drucker stability, 297
calibrations, 477, 477t	experimental testing, 296–297
elastic-plastic material model,	limitations, 298–299
477–478, 478 <i>f</i>	material parameters, 298
linear viscoelastic model, 479,	Hyperfoam model, 290–291
479 <i>f</i>	
PN model, 479, 480 <i>f</i>	I
power-flow model,	I_1 and I_2 model, 250
479, 481 <i>f</i>	Impact testing, 40–43
stress relaxation data, 474-476,	Incompressible biaxial
476 <i>f</i>	deformation, 237–238
stress-strain response, 474–476	Incompressible planar
uniaxial tension data, 476f	deformation, 237–238
Holzapfel–Gasser–Ogden (HGO)	Incompressible uniaxial
model, 285–287	deformation, 237–238
Hooke's law, 67–68, 211–212	Interface friction, 27–28
Horgan and Saccomandi model,	Invariant based anisotropy,
265–266	282–283
Hybrid model (HM)	Inverse Langevin function,
backstress network, 411	256–257
deformation map, 409, 410f	Isothermal thermoelastic material
energy activation approach, 412	194
isotropic linear elasticity	Isotropic elasticity, 211–215
expression, 410–411	Isotropic hardening plasticity
Matlab implementation,	model. See J ₂ -plasticity,
413–414	isotropic hardening
polymer modeling, 414–416	Isotropic hyperelasticity
relative stiffness, 411	BAM model, 275–277
rheological representation, 409,	continuum mechanics
410 <i>f</i>	foundations, 219–224
strain elastic constants, 412	dependence of stored energy,
ultra-high molecular weight	229–232
polyethylene, 409	eight-chain model, 250–259
viscoelastic deformation	extended tube model,
gradient, 412	273–275
viscoplastic flow, 411–412	freely jointed chain model,
Hyperelastic foam models	232–236
Blatz–Ko foam model, 289	Gent model, 263–265
Diaiz-Ku iuaili iliuuci, 209	3011t 1110dO1, 203 203

Isotropic hyperelasticity	K
(Continued)	Kinematic hardening plasticity
Horgan and Saccomandi model,	model
265–266	Abaqus material definition,
I_1 and I_2 model, 250	363, 364, 365
Knowles hyperelastic model,	backstress network, 363, 363f,
268–270	364 <i>f</i> , 365
Mooney-Rivlin model,	Chaboche type, 362–363
243–245	limitations, 365
Neo-Hookean model,	MCalibration software, 363
236–242	Knowles hyperelastic model,
Ogden model, 259–261	268–270
predictive capabilities,	
277–281	L
pure shear vs. planar tension,	Lagrangian and Eulerian
226–228	Formulations, 139
response function	Large strain kinematics, 137–141
hyperelasticity, 270-	Large strain linear viscoelasticity
272	generalization, 331–332
uniaxial compression vs.	hyperelastic stress function,
biaxial tension, 225–226	332
Yeoh model, 245–248	numerical implementation,
Isotropic material, 199	332–334
т	Linear elasticity
Johnson Cook placticity model	anisotropic elasticity, 215–217
Johnson–Cook plasticity model,	isotropic elasticity, 211–215
365–366, 366 <i>f</i> J ₂ -plasticity, isotropic hardening	transversely isotropic elasticity, 217–218
abacus, 354	Linear viscoelasticity
ANSYS, 354	creep compliance, 335–337
cyclic loading, 355–357, 356 <i>f</i>	differential form, 337–340
Matlab implementation,	large strain, 331–334
357–359	polymer modeling, 345–349
Python implementation,	shift functions, 340–345
359–360, 359 <i>f</i> , 360 <i>f</i>	small strain, 310–331
stress-strain representation,	Loss modulus, 322–323
355, 355f	
UHMWPE thermoplastic	M
material, 361–362, 361f,	Material parameters, 437
362 <i>f</i>	determination, 438–440

error measurement functions,	N
442–444	Nanoindentation, 51
extraction, 439, 439 <i>f</i>	Nanson's formula, 156
find_material_params, 444-445	Natural polymers, 4–5, 5 <i>f</i>
initial guess, 440–442,	NBR. See Nitrile rubber
441 <i>f</i>	Near-field scanning optical
mathematical minimization	microscopy (NSOM), 83
problem, 439–440	Nelder-Mead simplex method,
Monte Carlo method, 442	444–445
optimization algorithm,	Neo-Hookean hyperelastic
444–445	material model
prior knowledge, 442	Abaqus/Explicit VUMAT,
Matlab implementation	448–450
Bergstrom-Boyce model,	Abaqus/Implicit UMAT,
382–384	450–454
dual network fluoropolymer	stress, 447–448
model, 404	Neo-Hookean (NH) model,
hybrid model, 413–414	236–242
J ₂ -plasticity, isotropic	Neoprene. See Chloroprene
hardening, 357–359	rubber (CR)
small strain linear	Nitrile rubber
viscoelasticity, 329,	BB model, 466, 467 <i>f</i>
330 <i>f</i>	calibrations, 464, 465 <i>t</i>
three network model, 422	linear viscoelastic model, 466,
Maxwell rheological model,	467 <i>f</i>
338–339, 339 <i>f</i>	stress-time response, 464, 465 <i>f</i>
MCalibration software, 445	uniaxial compression data, 464
Mechanical stress, 134	464 <i>f</i>
Metal plasticity model, 353	Yeoh hyperelastic model,
Mises stress, 123, 123 <i>f</i> , 170	465–466, 466 <i>f</i>
Monte Carlo method, 442	Nominal strain, 164
Mooney–Rivlin (MR) model,	Nominal traction vector, 167
243–245	Normalized mean absolute
Mullins effect models	difference, 444
Ogden–Roxburgh,	Normalized root-mean square
293–295	difference, 444
Qi–Boyce, 295	0
Multiaxial loading, 135–137	O odan madal 250, 261
Multi-network Maxwell model,	Ogden model, 259–261
340f	Ogden–Roxburgh Mullins effect model, 293–295

Optical microscopy, 81–84	plasticity models, 367-368
Orthotropic elasticity,	types, 4–7
216–217	Polypropylene (PP), 10
_	Polytetrafluoroethylene (PTFE)
P	calibrations, 484t
Parallel network (PN) model,	dual network fluoropolymer
427–431, 459–460	model, 483–484, 486f
high-density polyethylene, 479,	elastic-plastic material model,
480f	482–483, 485 <i>f</i>
polyether ether ketone,	mechanical behavior, 479-481
491–492, 494 <i>f</i>	microporosity, 479-481
Payne effect, 348–349	TN model, 484, 487f
PEEK. See Polyether ether ketone	volumetric compression data,
(PEEK)	483 <i>f</i>
Plane strain tension, 33–37	yield stress, 479–481
Plasticity theory. See J ₂ -plasticity,	PolyUMod library, 447–448
isotropic hardening	Powell method, 445
Polarized light microscopy, 82	Pressure-volume-temperature
Polyether ether ketone (PEEK)	(PVT) testing, 66
BB model, 491, 493 <i>f</i>	Prony series, 315–316, 317 <i>f</i> ,
calibrations, 490, 492 <i>t</i>	336–337, 345–346
force-displacement results,	PTFE. See Polytetrafluoroethy-
494–495, 495 <i>f</i>	lene (PTFE)
Johnson-Cook plasticity	Pure shear vs. planar tension,
model, 491, 493f	226–228
PN model, 491–492, 494 <i>f</i>	Python implementation
spherical indentation test,	Bergstrom-Boyce model,
495–496	384–386
TN model, 492, 494f	J ₂ -plasticity, isotropic
uniaxial tension and	hardening, 359–360,
compression data,	359f, 360f
490, 491 <i>f</i>	small strain linear
Polyethylene terephthalate (PET),	viscoelasticity, 330-
487–489	331, 331 <i>f</i>
Polylactic acid (PLA), 7	three network model, 422
Polymers	viscoplasticity models, 432-
description, 1, 2–3	434
history, 7–10	_
manufacturing and processing,	Q
11	Qi-Boyce Mullins effect model,
mechanics, 11–15	295

R	Shear and bulk relaxation moduli,
Raman spectroscopy, 109–110	312–313
Rates of deformation, 164–165	Shear modulus, 239
Relaxation time spectrum, 328	Shore (durometer) testing, 48–49
Residual error	Simple anisotropic hyperelastic
strain-controlled experiment,	model, 283
442, 443 <i>f</i>	Simple shear, 37–39, 152
stress-controlled experiment,	Size-exclusion chromatography
443, 443 <i>f</i>	(SEC), 103–107
Response function hyperelasticity,	Small-angle X-ray diffraction, 95
270–272	Small punch testing, 77–79
Retardation time spectrum, 328	Small-strain classical theory, 135
Rheologically simple material,	Small strain linear viscoelasticity
342	applied strain history,
Rheological models, 338–340,	311, 312 <i>f</i>
339f, 340f	Boltzmann's superposition
Rockwell hardness testing,	principle, 310
47–48	characteristic relaxation time,
~	313
S	cyclic loading response,
Santoprene	320–322
BB model, 470–474, 473 <i>f</i> ,	Heaviside step function, 310
474f, 475f	Matlab implementation, 329,
calibrations, 468, 470t	330f
elastic-plastic material model,	mat_LVE() function, 329
469–470, 472 <i>f</i> , 473 <i>f</i>	monotonic loading response,
isotropic hardening plasticity	314–320, 317 <i>f</i>
model with rate-	Prony series, 315–316, 317 <i>f</i>
dependence, 469,	Python implementation,
472 <i>f</i>	330–331, 331 <i>f</i>
linear viscoelastic model, 469,	relaxation time spectrum, 328
471 <i>f</i>	retardation time spectrum, 328
uniaxial tensile stress-strain	shear and bulk relaxation
data, 468, 468f, 469f	moduli, 312–313
Yeoh hyperelastic model, 468–469, 471 <i>f</i>	storage and loss modulus, 322–327
Scanning electron microscopy	stress relaxation, 310, 311f,
(SEM), 84–86	313, 314 <i>f</i>
Second law of thermodynamics,	stretched exponential stress
183–184	relaxation modulus,
Semicrystalline polymers, 5–7, 6 <i>f</i>	316–318, 318 <i>f</i> , 319 <i>f</i>

Small strain linear viscoelasticity (Continued)	arbitrary rigid body rotation, 420–421
test_mat_LVE function, 329,	Cauchy–Green deformation
330 <i>f</i>	tensor, 417–418
Spatial velocity gradient,	deformation gradient, 417–418
164–165	elastic and viscous components
Spin tensor, 164–165	419–420
Split-Hopkinson pressure bar	flow rate, 419–420
(SHPB) testing, 53–63	
	material parameters, 421, 421 <i>t</i>
Stereo microscopy, 84	Matlab implementation, 422
Storage modulus, 322–323	plastic strain, 418–419
Strain matrix, 136	polyether ether ketone, 492,
Stress invariants, 169–170	494f
Stress-strain response, 24	polymer modeling, 426
Stress tensors, 165–170	polytetrafluoroethylene, 484,
Surface characterization	487 <i>f</i>
techniques	Python implementation, 422
atomic force microscopy,	rheological representation, 417
87–88	417 <i>f</i>
optical microscopy, 81–84	shear modulus, 419
scanning electron microscopy,	viscoelastic deformation
84–86	gradient, 418–419
Swell testing, 97–99	Time shifts, 342
Synthetic polymers, 4–5, 5 <i>f</i>	Time-temperature equivalence,
	341–345, 341 <i>f</i> , 343 <i>f</i> , 344 <i>f</i>
T	TNM. See Three network model
Tensor operations, 144–147	(TNM)
Thermoelastic material,	Transmission electron microscopy
189–194	(TEM), 90–91
Thermogravimetric analysis	Transversely isotropic elasticity,
(TGA), 107–109	217–218
Thermomechanical deformations, 121	Tresca stress, 170
Thermoplastics, 5, 6 <i>f</i> , 24, 26 <i>f</i>	\mathbf{U}
Thermoplastic vulcanizates	Ultra-high molecular
(TPV). See Santoprene	weight polyethylene
Thermosets, 5, 6 <i>f</i> , 24, 27 <i>f</i>	(UHMWPE), 213–214,
Threaded connection gasket, 121	214f
Three network model (TNM),	isotropic hardening plasticity
450_460	model 361_362

Johnson–Cook model, 365–366, 366 <i>f</i>	three network model, 417–426
kinematic hardening plasticity	V-notch shear testing, 80
model, 362–365	Volume characterization
linear viscoelasticity	techniques
application, 346, 346 <i>f</i>	birefringence, 95–97
Uniaxial compression	differential scanning
vs. biaxial tension,	calorimetry, 89–90
225–226	swell testing, 97–99
testing, 24–29	transmission electron
Uniaxial loading, 133–135	microscopy, 90–91
Uniaxial tension, 29–33, 151	X-ray diffraction, 92–95
User material subroutines	Volumetric deformation, 153
Abaqus/Explicit VUMAT,	Vulcanized natural rubber,
448–450	8–9
Abaqus/Implicit UMAT,	
450–454	\mathbf{W}
description, 447–448	Water filter failure, 126
purpose, 447–448	Wide-angle X-ray diffraction, 93–94
\mathbf{V}	William-Landel-Ferry (WLF)
Vector and tensor algebra,	equation, 343, 344, 344 <i>f</i>
141–150	Work conjugate stress, 185
Vertical shifts, 345	
Viscoplastic deformations, 130	X
Viscoplasticity models	X-ray diffraction (XRD), 92–95
Arruda-Boyce model, 393-396	
Bergstrom-Boyce model,	Y
372–393	Yeoh hyperelastic model, 456,
dual network fluoropolymer	457 <i>f</i>
model, 397-404	acrylate-butadiene rubber, 456
hybrid model, 409–416	chloroprene rubber, 461–462,
parallel network model,	462 <i>f</i>
427–431	nitrile rubber, 465–466, 466 <i>f</i>
polymer modeling, 431–432	santoprene, 468–469, 471 <i>f</i>
Python code examples,	Yeoh model, 245–248
432–434	Young's modulus, 23, 23f