Formato de Archivo Fuente SCE de DAAD - Referencia Completa

Índice

- 1. Introducción
- 2. Estructura General del Archivo SCE
- 3. Secciones del Archivo SCE
- 4. Los Procesos: Corazón del Sistema DAAD
- 5. Funcionamiento del Sistema de Procesos
- 6. Comandos del Compilador
- 7. Sintaxis y Reglas
- 8. Ejemplos Prácticos

Introducción

El archivo SCE (Source Code file) es el archivo fuente de DAAD que contiene toda la definición de un juego de aventura conversacional. Este archivo utiliza formato ASCII y contiene todas las secciones necesarias para crear una aventura completa: vocabulario, mensajes, objetos, localizaciones, conexiones y, lo más importante, las **tablas de procesos** que controlan toda la lógica del juego.

Características del Sistema

- **Multiplataforma**: Un archivo SCE se compila para múltiples sistemas (PC, Spectrum, Atari ST, Amiga, etc.)
- Lenguaje de procesos avanzado: Con características como bucles, indirección y llamadas anidadas
- Sistema modular: Separación clara entre datos (vocabulario, mensajes) y lógica (procesos)
- Soporte multi-idioma: Capacidad para crear versiones en diferentes idiomas

Estructura General del Archivo SCE

Un archivo SCE está organizado en secciones obligatorias que deben aparecer en un orden específico:

```
; Control - Configuración general
/CTL
/VOC
            ; Vocabulary - Vocabulario del juego
/STX
            ; System Messages - Mensajes del sistema
            ; Messages - Mensajes del juego
/MTX
/OTX
            ; Object Names - Nombres de objetos
/LTX
            ; Location Names - Nombres de localizaciones
            ; Connections - Conexiones entre localizaciones
/CON
/OBJ
            ; Objects - Definición de objetos
            ; Processes - Tablas de procesos (CORAZÓN DEL SISTEMA)
/PRO
```

- Comentarios: Las líneas que comienzan con ; son comentarios
- Espacios en blanco: Se ignoran los espacios al inicio de línea (excepto en PRO)
- Continuación de línea: El carácter \ al final permite continuar en la siguiente línea
- **Códigos de escape**: Se pueden usar secuencias como \n (nueva línea), \t (tab), etc.
- Sensibilidad: El sistema es sensible a mayúsculas y minúsculas

Secciones del Archivo SCE

1. Sección CTL (Control)

Define parámetros globales del juego:

```
/CTL
; Número de localizaciones, objetos, mensajes, etc.
; Definición de banderas especiales
; Configuración de la aventura
```

2. Sección VOC (Vocabulary)

Define todas las palabras que el jugador puede usar:

```
/VOC
; Formato: PALABRA TIPO VALOR
NORTH NOUN 1
GO VERB 1
TAKE VERB 10
SWORD NOUN 50
```

Tipos de palabras:

- VERB (verbos)
- NOUN (sustantivos)
- ADJECTIVE (adjetivos)
- ADVERB (adverbios)
- PREPOSITION (preposiciones)
- PRONOUN (pronombres)
- CONJUGATION (conjugaciones)

3. Sección STX (System Messages)

Mensajes predefinidos del sistema:

```
/STX
"You can't go that way."
```

```
"I don't understand."

"You can't do that."
```

4. Sección MTX (Messages)

Mensajes definidos por el autor del juego:

```
/MTX
"Welcome to the adventure!"
"You see a rusty sword here."
"The door is locked."
```

5. Sección OTX (Object Names)

Nombres y descripciones de objetos:

```
/OTX
"sword" "rusty sword" "An old rusty sword."
"key" "golden key" "A small golden key."
```

6. Sección LTX (Location Names)

Nombres y descripciones de localizaciones:

```
/LTX
"Forest" "You are in a dark forest. Paths lead north and south."
"Castle" "You stand before an imposing castle gate."
```

7. Sección CON (Connections)

Define las conexiones de movimiento entre localizaciones:

```
/CON
; Localización 0
NORTH 1
SOUTH 2
; Localización 1
SOUTH 0
EAST 3
```

8. Sección OBJ (Objects)

Define propiedades y ubicación inicial de objetos:

```
/OBJ
; objeto ubicación peso atributos
sword 1 10 N N ; espada en localización 1, peso 10
key 255 5 N N ; llave llevada por jugador (255 = CARRIED)
```

Los Procesos: Corazón del Sistema DAAD

¿Qué son los Procesos?

Los **procesos** son tablas que contienen la lógica del juego. Cada proceso es una tabla numerada que contiene **entradas**, y cada entrada tiene:

- 1. Verbo y Sustantivo: Condiciones de activación
- 2. CondActs: Secuencia de condiciones y acciones a ejecutar

Estructura de un Proceso

```
/PRO 0 ; Proceso número 0 (proceso principal)
       ; Entrada que coincide con cualquier verbo/sustantivo
   MESSAGE 0 ; Acción: mostrar mensaje 0
              ; Acción: analizar entrada del jugador
   PARSE
   DOALL 255 ; Acción: procesar todos los objetos en localización actual
   PROCESS 1 ; Acción: llamar al proceso 1
   RESTART ; Acción: reiniciar bucle principal
/PRO 1 ; Proceso número 1 (procesos de verbos)
TAKE
   PRESENT 100 ; Condición: objeto 100 debe estar presente
   GET 100 ; Acción: tomar objeto 100
   MESSAGE 10 ; Acción: mostrar mensaje de éxito
          ; Acción: terminar procesamiento
LOOK _
             ; Acción: describir localización actual
   DESC
                ; Acción: terminar
   DONE
```

Tipos de Procesos Especiales

- 1. **Proceso 0**: El proceso principal (bucle principal del juego)
- 2. Proceso 1: Tradicionalmente maneja verbos comunes
- 3. **Proceso 2**: Tradicionalmente maneja respuestas a verbos específicos

Funcionamiento del Sistema de Procesos

El Bucle Principal (Main Loop)

El intérprete DAAD funciona con el siguiente flujo:

```
INICIO → Inicialización → Proceso O → Sistema Operativo/Reinicio
```

- 1. Inicialización: Se limpia el estado del juego, jugador en localización 0
- 2. Llamada al Proceso 0: Se ejecuta el proceso principal
- 3. Retorno: Al terminar Proceso 0, se sale al SO o reinicia

Proceso de Búsqueda en Tablas

Cuando se ejecuta un proceso, DAAD:

- 1. **Examina cada entrada** de la tabla secuencialmente
- 2. Compara Verbo y Sustantivo con la Oración Lógica actual (LS)
- 3. Si coinciden, ejecuta los CondActs de esa entrada
- 4. Si no coinciden, pasa a la siguiente entrada

Funcionamiento de las Entradas

```
VERBO SUSTANTIVO
CONDICIÓN1 parámetros
CONDICIÓN2 parámetros
ACCIÓN1 parámetros
ACCIÓN2 parámetros
```

Flujo de ejecución:

- 1. Se verifican las **condiciones** en orden
- 2. Si una condición falla, se abandona la entrada y se pasa a la siguiente
- 3. Si todas las condiciones pasan, se ejecutan las acciones
- 4. Las acciones se ejecutan hasta encontrar una acción de salida (DONE, RESTART, etc.)

Comodines en Procesos

- _ (guión bajo): Coincide con cualquier palabra
- **Ejemplo**: __ coincide con cualquier combinación verbo-sustantivo
- Uso típico: En Proceso 0 para capturar todas las entradas

Tipos de CondActs

1. Condiciones

Deben cumplirse para continuar:

```
AT 5 ; ¿Está el jugador en localización 5?
PRESENT 10 ; ¿Está presente el objeto 10?
```

```
CARRIED 15 ; ¿Lleva el jugador el objeto 15?
```

2. Acciones Normales

Se ejecutan y continúan:

```
MESSAGE 20 ; Mostrar mensaje 20
GET 10 ; Tomar objeto 10
DROP 15 ; Soltar objeto 15
```

3. Acciones de Salida

Terminan el procesamiento de la entrada actual:

```
DONE ; Terminar entrada actual
RESTART ; Volver al inicio del Proceso 0
END ; Terminar juego
```

4. Acciones de Salida Condicional

Terminan solo si fallan:

```
GET 10 ; Si falla (no se puede tomar), termina entrada
PUTIN 10 20 ; Si falla (no se puede meter), termina entrada
```

5. Acciones de Control

Cambian el flujo de ejecución:

```
PROCESS 2 ; Llamar al proceso 2
SKIP 5 ; Saltar 5 CondActs
GOTO etiqueta ; Saltar a etiqueta local
```

Indirección

Los procesos soportan **indirección** en el primer parámetro:

```
MESSAGE [100] ; Mostrar mensaje cuyo número está en bandera 100
GET [50] ; Tomar objeto cuyo número está en bandera 50
```

Comandos del Compilador

Comandos de Compilación Condicional

```
#IFDEF símbolo ; Si símbolo está definido
#IFNDEF símbolo ; Si símbolo NO está definido
#ELSE ; Alternativa
#ENDIF ; Fin de bloque condicional
```

Comandos de Definición

```
#DEFINE símbolo valor ; Definir símbolo con valor
#SYMBOLS archivo ; Incluir archivo de símbolos
```

Comandos de Inclusión de Datos

```
#INCBIN archivo ; Incluir archivo binario 
#DEFB 1 2 3 4 ; Definir bytes 
#DEFW 1000 2000 ; Definir palabras (16-bit) 
#HEX FF00 AB12 ; Incluir datos hexadecimales
```

Comandos de Direccionamiento

```
#DBADDR símbolo ; Dar a símbolo la dirección actual
#USERPTR n ; Vector de usuario (0-9)
```

Comandos Específicos de 8-bit

```
#EXTERN archivo ; Vector externo

#SFX archivo ; Vector de efectos de sonido

#INT archivo ; Vector de interrupción 50Hz
```

Sintaxis y Reglas

Reglas de Formato

- 1. Secciones obligatorias: Deben aparecer en el orden especificado
- 2. Numeración consecutiva: Procesos deben numerarse 0, 1, 2, ...
- 3. Espacios en PRO: En sección PRO, columna 1 indica nueva entrada
- 4. Etiquetas locales: Líneas que empiezan con \$ definen etiquetas

Códigos de Escape

```
\n ; Nueva línea
\t ; Tabulación
\\ ; Barra invertida literal
\" ; Comillas literal
\NNN ; Carácter por código ASCII (octal)
```

Limitaciones

• Vocabulario: Limitado por memoria disponible

• Mensajes: Máximo definido en CTL

• Objetos/Localizaciones: Máximo 255 cada uno

• Procesos: Sin límite teórico, limitado por memoria

• **Banderas**: 256 banderas (0-255)

Ejemplos Prácticos

Ejemplo 1: Proceso Principal Básico

```
/PRO 0
   CLS
                  ; Limpiar pantalla
                  ; Describir localización
   LOOK
   NEWLINE
                 ; Nueva línea
   MESSAGE 0
                 ; "What do you want to do?"
   PARSE
                  ; Analizar entrada del jugador
                ; Procesar verbos comunes
   PROCESS 1
                  ; "I don't understand"
   MESSAGE 1
   RESTART
                  ; Volver al inicio
```

Ejemplo 2: Proceso de Verbos

```
/PRO 1
TAKE _
    PRESENT ? ; ¿Está presente el sustantivo?
    WEIGHT ? 10 ; ¿Pesa menos de 10?
    GET ? ; Tomar objeto
    MESSAGE 10 ; "Taken"
    DONE ; Terminar

LOOK _
    DESC ; Describir localización
    DONE

INVENTORY _
```

```
INVEN ; Mostrar inventario
DONE

QUIT _
    MESSAGE 20 ; "Are you sure?"
    PARSE ; Obtener respuesta
    YES ; ¿Es afirmativa?
    END ; Terminar juego
    RESTART ; Si no, continuar
```

Ejemplo 3: Proceso con Condiciones Complejas

```
/PRO 2
OPEN DOOR
   CARRIED KEY ; ¿Lleva la llave?
                  ; ¿Está en localización 5?
   AT 5
   HASNAT DOOR OPEN ; ¿La puerta NO está abierta?
   SETAT DOOR OPEN ; Marcar puerta como abierta
   MESSAGE 30 ; "The door creaks open"
   DONE
CLOSE DOOR
   AT 5
                   ; ¿Está en localización 5?
   HASAT DOOR OPEN ; ¿La puerta está abierta?
   HASNAT DOOR OPEN; Marcar puerta como cerrada
   MESSAGE 31 ; "You close the door"
   DONE
```

Ejemplo 4: Uso de Indirección

```
/PRO 3
USE _
    CARRIED ? ; ¿Lleva el objeto?
    COPYOF ? 100 ; Copiar número de objeto a bandera 100
    EQ 100 SWORD ; ¿Es la espada?
    PROCESS 10 ; Procesar uso de espada
    EQ 100 KEY ; ¿Es la llave?
    PROCESS 11 ; Procesar uso de llave
    MESSAGE 40 ; "You can't use that"
    DONE
```

Ejemplo 5: Bucle con DOALL

```
/PRO 4
LOOK _
DESC ; Describir localización
```

```
DOALL 255 ; Para cada objeto en localización actual
PROCESS 5 ; Procesar descripción de objeto
DONE

/PRO 5

--

CARRIED ? ; ¿Está el objeto siendo llevado?
SKIP 2 ; Si sí, saltar descripción
MESSAGE [?] ; Mostrar descripción del objeto (indirecto)
NEWLINE ; Nueva línea
DONE
```

Conclusión

El formato SCE de DAAD es un sistema potente y flexible para crear aventuras conversacionales. Su **sistema de procesos** basado en tablas de verbo-sustantivo con CondActs proporciona un control fino sobre la lógica del juego, mientras que su estructura modular permite una organización clara y mantenible del código fuente.

La clave para dominar DAAD está en comprender cómo funcionan los procesos y cómo se relacionan entre sí a través de las llamadas PROCESS, el bucle principal en el Proceso 0, y el flujo de ejecución de condiciones y acciones dentro de cada entrada de proceso.

Este documento está basado en el Manual DAAD Version 2 Release 1 y proporciona una referencia completa del formato de archivo SCE y el funcionamiento del sistema de procesos.