10	Дана трапеция. Сумма оснований равна 13, диагонали 5 и 12.	источники:
	а) Докажите, что диагонали перпендикулярны.	Ященко 2018 Основная волна 2017
	б) Найдите высоту трапеции.	
1_Д3		
16	Дана трапеция. Сумма оснований равна 10, диагонали 6 и 8.	Источники:
	a) Докажите, что диагонали перпендикулярны.	Ященко 2018
	б) Найдите высоту трапеции.	Основная волна 2017
2		
16	В трапеции <i>ABCD</i> с основаниями <i>BC</i> и <i>AD</i> углы <i>ABD</i> и <i>ACD</i> прямые.	Источники:
10		Основная волна 2018
	а) Докажите, что $AB = CD$. б) Найдите AD , если $AB = 2$, $BC = 7$.	Основная волна (Резерв) 2018
3		
16	a Ango	Источники:
10	Дана трапеция $ABCD$ с основаниями AD и BC . Диагональ BD разбивает её на два равнобедренных треугольника с основаниями AD и CD .	ГОЧПИКИ.
	а) Докажите, что луч AC — биссектриса угла BAD .	Ященко 2020 (50 вар) Ященко 2020 (36 вар)
		Ященко 2019 (36 вар) Ященко 2019 (50 вар)
	б) Найдите CD , если известны диагонали трапеции: $AC=12$ и $BD=6,5$.	Ященко 2019 (14 вар) СтатГрад 2018
	♦ 3 √ 5CBC00	
3_Д3		Line in
16	Дана трапеция $ABCD$ с основаниями AD и BC . Диагональ BD разбивает её на два равнобедренных	Источники:
	треугольника с основаниями AD и CD .	FIPI Ященко 2020 (50 вар)
	а) Докажите, что луч AC — биссектриса угла BAD .	Ященко 2020 (36 вар) Ященко 2019 (36 вар)
	б) Найдите CD , если известны диагонали трапеции: $AC=15$ и $BD=8,5$.	Ященко 2019 (50 вар) Ященко 2019 (14 вар)
	७ ୬ √ 00E23C	СтатГрад 2018
4		
16	В треугольнике ABC проведена биссектриса AM . Прямая, проходящая через вершину B перпендикулярно AM , пересекает сторону AC в точке N ; $AB = 6$, $BC = 5$, $AC = 9$. а) Докажите, что биссектриса угла C делит отрезок MN пополам.	Ященко 2018 Основная волна (Резерв) 2014
: 5	б) Пусть $P-$ точка пересечения биссектрис треугольника ABC . Найдите отношение $AP:PN$.	
	LDCD ID	Источники:
16	В равнобедренной трапеции $ABCD$ основание AD в три раза больше основания BC . а) Докажите, что высота CH трапеции разбивает основание AD на отрезки, один из которых вдвое больше другого.	ИСТОЧНИКИ. FIPI
	а) докажите, что высота CH трапеции разоивает основание AD на отрезки, один из которых вдвое облыше другого. б) Найдите расстояние от вершины C до середины диагонали BD , если $AD=15$ и $AC=2\sqrt{61}$.	osfipi Ященко 2019 (36 вар)
	© I NAVIO PER CONTINUE OF BEPENNING OF DEPENNING AND	
5_Д3		
16	В равнобедренной трапеции $ABCD$ основание AD в три раза больше основания BC .	Источники:
	a) Докажите, что высота BH трапеции разбивает основание AD на отрезки, один из которых вдвое больше другого.	FIPI osfipi
	6) Найдите расстояние от вершины B до середины диагонали AC , если $AD = 72$ и $AC = 50$.	ященко 2019 (36 вар)
5		
16	В равнобедренной трапеции $ABCD$ основание AD в два раза больше основания BC .	Источники:
	а) Докажите, что высота CH трапеции разбивает основание AD на отрезки, один из которых втрое больше другого.	FIPI osfipi
	б) Пусть O — точка пересечения диагоналей трапеции $ABCD$. Найдите расстояние от вершины C до середины отрезка OD , если $BC=16$ и $AB=10$.	
	b ≥ √ 832C34	
7	I — — — — — — — — — — — — — — — — — — —	Itaaa
16	Дана равнобедренная трапеция, в которой $AD=3BC,CM-$ высота трапеции.	Источники:
	а) Докажите, что <i>M</i> делит <i>AD</i> в отношении 2:1.	Основная волна 2017
	б) Найдите расстояние от точки C до середины BD , если $AD=18$, $AC=4√13$.	
46	D ARGE AR GE	Maratus de la
16	В треугольнике ABC биссектрисы AD и CE пересекаются в точке O , величина угла AOC составляет 120° .	Источники:
	а) Докажите, что около четырёхугольника $BDOE$ можно описать окружность. 6) Найдите площадь треугольника ABC , если $BC=4$, а $\angle BED=75^\circ$.	Пробный ЕГЭ 2019
Ω ПЭ		
8_Д3 16	В треугольнике <i>ABC</i> биссектрисы <i>AD</i> и <i>CE</i> пересекаются в точке O , величина угла AOE составляет 60° .	Источники:
10		ИСТОЧНИКИ. Пробный ЕГЭ 2019
	а) Локажите, что около четырёхугольника <i>RDOE</i> можно описать окружность	L.

а) Докажите, что около четырёхугольника *BDOE* можно описать окружность. 6) Найдите площадь треугольника *ABC*, если AB=8, а $\angle BED=45^\circ$.

#9		
16	В остроугольном треугольнике ABC проведены высоты AP и CQ .	Источники:
	а) Докажите, что угол PAC равен углу PQC . б) Найдите радиус окружности, описанной около треугольника ABC , если известно, что $PQ=8$ и $\angle ABC=60^\circ$.	Пробный ЕГЭ 2015
#9_Д3 16	f B остроугольном треугольнике ABC проведены высоты AP и CQ .	Источники:
	a) Докажите, что угол <i>PAC</i> равен углу <i>PQC</i> .	Пробный ЕГЭ 2015
#10	б) Найдите радиус окружности, описанной около треугольника ABC , если известно, что $PQ=6\sqrt{3}$ и $\angle ABC=60^\circ$.	
16	В треугольнике ABC угол ABC равен $60\degree$. Окружность, вписанная	Источники:
	в треугольник, касается стороны AC в точке M .	FIPI osfipi
	а) Докажите, что отрезок BM не больше утроенного радиуса вписанной в треугольник окружности.	Основная волна 2016
	б) Найдите $\sin \angle BMC$, если известно, что отрезок BM в 2,5 раза больше радиуса вписанной в треугольник окружности.	
	७ ● ✓ 6FC99C	
#10_Д 16	В треугольнике <i>ABC</i> с углом <i>A</i> равным 60° вписана окружность, касающаяся стороны <i>BC</i> в точке <i>M</i> . а) Докажите, что <i>AM</i> не больше утроенного радиуса вписанной окружности. б) Найдите синус больше из углов <i>BAM</i> и <i>CAM</i> , если <i>AM</i> равно 2,5 радиусам вписанной окружности.	ИСТОЧНИКИ: FIPI оябрі Основная волна 2016
#11	7	
16	В прямоугольном треугольнике ABC точка M лежит на катете AC , а точка N лежит на продолжении катета BC за точку C , причём $CM = BC$ и $CN = AC$. Отрезки CP и CQ — биссектрисы треугольников ACB и NCM соответственно.	ИСТОЧНИКИ: Основная волна 2019
	а) Докажите, что <i>CP</i> и <i>CQ</i> перпендикулярны.	
	6) Найдите PQ , если $BC = 3$, а $AC = 5$.	
#12		Meroninakia
16	Задание с развернутым ответом	ИСТОЧНИКИ:
	В остроугольном треугольнике ABC провели высоту BH . Из точки H на стороны AB и BC опустили перпендикуляры HK и HM соответственно. а) Докажите, что треугольник MBK подобен треугольнику ABC . б) Найдите отношение площади треугольника MBK к площади четырёхугольника $AKMC$, если $BH=3$, а радиус окружности, описанной около треугольника ABC , равен 4.	Ященко 2016 (36 вар) Семёнов 2015 Основная волна 2014 Материалы для экспертов ЕГЭ
	і Номер: 4383 ★	
#12_ /	13	
16	Задание с развернутым ответом	Источники:
	В остроугольном треугольнике ABC провели высоту BH . Из точки H на стороны AB и BC опустили перпендикуляры HK и HM соответственно. а) Докажите, что треугольник MBK подобен треугольнику ABC . б) Найдите отношение площади треугольника MBK к площади четырёхугольника $AKMC$, если $BH=2$, а радиус окружности, описанной около треугольника ABC , равен 3.	osfipi Ященко 2016 (36 вар) Семёнов 2015 Основная волна 2014 Материалы для экспертов ЕГЭ
	і Номер: 4404 ★	
#13		
16	В треугольник ABC вписана окружность радиуса R , касающаяся стороны AC в точке D , причём $AD=R$.	Источники:
	а) Докажите, что треугольник ABC прямоугольный. 6) Вписанная окружность касается сторон AB и BC в точках E и F . Найдите площадь треугольника BEF , если $R=5$ и $CD=15$.	Гордин #16 2019 Семёнов 2015
#13_ /	[3	
16	В треугольник ABC вписана окружность радиуса R , касающаяся стороны AC в точке D , причём $AD=R$.	Источники:
	а) Докажите, что треугольник ABC прямоугольный. б) Вписанная окружность касается сторон AB и BC в точках E и F . Найдите площадь треугольника BEF , если $R=2$ и $CD=10$.	Гордин #16 2019 Семёнов 2015
#14		
16	В равнобедренном тупоугольном треугольнике ABC на продолжение боковой стороны BC опущена высота AH . Из точки H на сторону AB и основание AC опущены перпендикуляры HK и HM соответственно.	Источники: FIPI osfipi
	а) Докажите, что отрезки AM и MK равны.	
	а) докажите, что отрезки AM и MK равны. б) Найдите MK , если $AB=5$, $AC=8$.	
	о) паидите MK , если $AB = 5$, $AC = 6$. AAF5C4	

#14_Д	3	_
16	В равнобедренном тупоугольном треугольнике ABC на продолжение боковой стороны BC опущена высота AH . Из точки H на сторону AB и основание AC опущены перпендикуляры HK и HM соответственно.	Источники:
	а) Докажите, что отрезки <i>АМ</i> и <i>МК</i> равны.	FIPI osfipi
	а) докажите, что отрежки A м и ми к равны. 6) Найдите MK , если $AB = 13$, $AC = 24$.	
#15		
16	Задание с развернутым ответом	Источники:
	Высоты BB_1 и CC_1 остроугольного треугольника ABC пересекаются в точке H .	osfipi Ященко 2018
	а) Докажите, что $\angle AHB_1 = \angle ACB$.	Семёнов 2015 Основная волна 2014
	б) Найдите BC , если $AH=8\sqrt{3}$ и $\angle BAC=60^\circ$.	
	і Номер: 4299 🁚	
#15_Д		
16		Источники:
10	Задание с развернутым ответом	osfipi
	Высоты BB_1 и CC_1 остроугольного треугольника ABC пересекаются в точке H . а) Докажите, что $\angle AHB_1 = \angle ACB$.	Ященко 2018 Семёнов 2015
	6) Найдите BC , если $AH=10\sqrt{3}$ и $\angle BAC=30^\circ$.	Основная волна 2014
	і Номер: 4320 🤺	
#16		
16	В треугольнике ABC угол ABC тупой, $H-$ точка пересечения продолжений высот, угол AHC равен 60° .	Источники:
	а) Докажите, что угол <i>ABC</i> равен 120°.	Досрочная волна 2018 osfipi
	6) Найдите BH , если $AB=7$, $BC=8$.	
#16_Д	3	III.
16	Задание с развернутым ответом	Источники: Досрочная волна 2018
	Высоты тупоугольного треугольника ABC с тупым углом ABC пересекаются в точке H . Угол AHC равен 60° .	osfipi
	а) Докажите, что угол ABC равен 120° . б) Найдите BH , если $AB=6$, $BC=10$.	
	і Номер: 5064 🌟	
#17		
16	В треугольник ABC вписана окружность радиуса 4, касающаяся стороны AC в точке M , причём $AM=8$ и $CM=12$.	Источники:
	a) Докажите, что треугольник <i>ABC</i> прямоугольный.	Семёнов 2018
	а) докажите, что треугольник <i>АБС</i> прямоугольный. б) Найдите расстояние между центрами вписанной и описанной окружностей треугольника <i>АВС</i> .	Ященко 2018
#17_Д	3	
16	В треугольник ABC вписана окружность радиуса 2, касающаяся стороны AC в точке M , причём $AM=4$ и $CM=6$.	Источники:
	а) Докажите, что треугольник АВС прямоугольный.	Семёнов 2018 Ященко 2018
	б) Найдите расстояние между центрами вписанной и описанной окружностей треугольника АВС.	
#18		114
16	В треугольник ABC вписана окружность радиуса R , касающаяся стороны AC в точке M , причём $AM = 5R$ и $CM = 1,5R$.	ИСТОЧНИКИ: Семёнов 2018
	а) Докажите, что треугольник ABC прямоугольный. 6) Найдите расстояние между центрами его вписанной и описанной окружностей, если известно, что $R=4$.	Ященко 2018
#18_Д	e fan die fan de earlik in fan de ek ear de earlik fan dit de earlik de ek ek earlik de ek en de earlik de ear	
16	В треугольник <i>ABC</i> вписана окружность радиуса R , касающаяся стороны AC в точке M , причём $AM=2R$ и $CM=3R$.	Источники:
10	а) Докажите, что треугольник <i>АВС</i> прямоугольный.	Семёнов 2018
	R докажите, что греугольник <i>НБС</i> прямоугольным. 6) Найдите расстояние между центрами его вписанной и описанной окружностей, если известно, что $R=2$.	Ященко 2018
#19		
16	Дана равнобедренная трапеция $ABCD$ с основаниями AD и BC . Окружность с центром O , построенная	Источники:
	на боковой стороне AB как	FIPI
	на диаметре, касается боковой стороны CD и второй раз пересекает большее основание AD в точке H , точка Q — середина CD .	osfipi Ященко 2018
	And the second s	Досрочная волна 2015
	а) Докажите, что четырёхугольник $DQOH$ — параллелограмм.	
	б) Найдите AD , если $\angle BAD=60^\circ$ и $BC=2$.	
	७ ● ✓ E16AF4	

#19_Д	3	
16	Дана равнобедренная трапеция $ABCD$ с основаниями AD и BC . Окружность с центром O , построенная на боковой стороне AB как на диаметре, касается боковой стороны CD и второй раз пересекает большее основание AD в точке H , точка Q — середина CD .	ИСТОЧНИКИ: FIPI osfipi Ященко 2018
	а) Докажите, что четырёхугольник $DQOH$ — параллелограмм.	Досрочная волна 2015
	б) Найдите AD , если $\angle BAD=67,5^\circ$ и $BC=3$.	
#20		
16	В треугольнике ABC проведены биссектрисы AA_1 и CC_1 , точки K и M — основания перпендикуляров, опущенных из точки B на прямые AA_1 и CC_1 .	ИСТОЧНИКИ: Гордин #16 2019
	а) Докажите, что $MK \parallel AC$. 6) Найдите площадь треугольника KBM , если $AC=10$, $BC=6$, $AB=8$.	Ященко 2018 (10 вар) Ященко 2018 (30 вар)
#20_Д		
16	В треугольнике ABC проведены биссектрисы AA_1 и CC_1 , точки K и M — основания перпендикуляров, опущенных из точки B на прямые AA_1 и CC_1 .	ИСТОЧНИКИ: Гордин #16 2019 Ященко 2018 (10 вар)
	а) Докажите, что $MK \parallel AC$. 6) Найдите площадь треугольника KBM , если $AC=13, BC=5, AB=12$.	Ященко 2018 (30 вар)
#21 16	P sorvess resulted the resulted that the result will APC a result of the results	Истонички
10	В равнобедренном прямоугольном треугольнике ABC с прямым углом при вершине B проведена биссектриса AK . В треугольник ABC вписан прямоугольник $KLMN$ так, что сторона MN лежит на отрезке AC , а вершина L — на отрезке AB .	ИСТОЧНИКИ: Гордин #16 2019 Досрочная волна (Резерв) 2014
	а) Докажите, что $MN=\sqrt{2}KN$. 6) Найдите площадь прямоугольника $KLMN$, если $AB=1$.	досрочная возна (Гезерв) 2014
#22	o) Tangarte interque apriacoj i comminatori	
16	В равнобедренном треугольнике <i>ABC</i> с углом 120° при вершине <i>A</i> проведена биссектриса <i>BD</i> . В треугольник <i>ABC</i> вписан прямоугольник <i>DEFH</i> так, что сторона <i>HF</i> лежит на отрезке <i>BC</i> , а вершина $E -$ на отрезке <i>AB</i> .	Источники:
	а) Докажите, что $FH=2DH$. 6) Найдите площадь прямоугольника $DEFH$, если $AB=2$.	Гордин #16 2019 Досрочная волна (Резерв) 2014
#22_Д	to facility and Mille to the annual of the annual and annual and annual annual to the contract and annual and	
16	В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD . В треугольник ABC вписан прямоугольник $DEFH$ так, что сторона HF лежит на отрезке BC , а вершина E — на отрезке AB .	ИСТОЧНИКИ: Гордин #16 2019
	а) Докажите, что $FH=2DH$. 6) Найдите площадь прямоугольника $DEFH$, если $AB=4$.	Досрочная волна (Резерв) 2014
#23		
16	В равнобедренную трапецию $ABCD$ с основаниями AD и BC вписана окружность, CH — высота трапеции.	Источники:
	 а) Докажите, что центр окружности, вписанной в трапецию, лежит на отрезке BH. б) Найдите диагональ AC, если средняя линия трапеции равна 2√7, а ∠AOD = 120°, где O – центр окружности, вписанной в трапецию, а 	Гордин #16 2019 Ященко 2018 (30 вар)
# >> □	AD — большее основание.	
#23_Д 16	Э В равнобедренную трапецию <i>ABCD</i> с основаниями <i>AD</i> и <i>BC</i> вписана окружность, <i>CH</i> — высота трапеции.	Источники:
	a) Докажите, что центр окружности, вписанной в трапецию, лежит на отрезке <i>BH</i> .	Гордин #16 2019 Ященко 2018 (30 вар)
	б) Найдите диагональ AC , если средняя линия трапеции равна $2\sqrt{5}$, а $\angle AOD = 150^\circ$, где $O-$ центр окружности, вписанной в трапецию, а $AD-$ большее основание.	этценко 2018 (30 вар)
#24		
16	Задание с развернутым ответом	Источники:
	Высоты BB_1 и CC_1 остроугольного треугольника ABC пересекаются в точке H .	osfipi Гордин #16 2019 Ященко 2016 (36 вар)
	а) Докажите, что $\angle BB_1C_1 = \angle BAH$. б) Найдите расстояние от центра окружности, описанной около треугольника ABC , до стороны BC , если $B_1C_1 = 10\sqrt{3}$ и $\angle BAC = 60^\circ$.	Семёнов 2015
	і Номер: 4341 ★	
#24_Д	3	Meratuu
16	Задание с развернутым ответом	ИСТОЧНИКИ:
	Высоты BB_1 и CC_1 остроугольного треугольника ABC пересекаются в точке H . а) Докажите, что $\angle BB_1C_1 = \angle BAH$. б) Найдите расстояние от центра окружности, описанной около треугольника ABC , до стороны BC , если $B_1C_1 = 9\sqrt{3}$ и $\angle BAC = 30^\circ$.	Гордин #16 2019 Ященко 2016 (36 вар) Семёнов 2015
	і Номер: 4362 ★	

...

	реугольнике ABC проведены две высоты BM и CN , причём $AM:CM=2:3$ и $\cos \angle BAC=\frac{\angle}{\sqrt{5}}$.	Источник
a) [Докажите, что угол <i>ABC</i> тупой.	СтатГрад 2017
б) І	Найдите отношение площадей треугольников BMN и ABC .	
Вв	ыпуклом четырёхугольнике $ABCD$ известны стороны и диагональ: $AB=3,BC=CD=5,AD=8,AC=7.$	Источник
a) [Докажите, что вокруг этого четырёхугольника можно описать окружность.	Досрочная волна (Резерв)
б) І	Найдите <i>BD</i> .	
Вв	ыпуклом четырёхугольнике $ABCD$ известны стороны и диагональ: $AB=7, BC=CD=8, AD=15, AC=13.$	Источни
a) [Цокажите, что около этого четырёхугольника можно описать окружность.	Досрочная волна (Резерв
б) І	Найдите BD.	
Вв	ыпуклом четырёхугольнике $ABCD$ известно, что $AB=7, BC=24, CD=15, AD=20$ и $AC=25$.	Источни
a)]	Докажите, что четырёхугольник <i>АВСD</i> вписанный.	Досрочная волна (Резерн Ященко 2018
	Найти косинус угла между его диагоналями.	лщенко 2018
Вв	ыпуклом четырёхугольнике $ABCD$ известно, что $AB=2$, $BC=21$, $AD=11$ и $CD=18$, $AC=\sqrt{445}$.	Источни
		Досрочная волна (Резерв
, ,	Доказать, что около четырёхугольника <i>ABCD</i> можно описать окружность. Найти угол между его диагоналями.	Ященко 2018
		•
В	трапеции $ABCD$ точка E — середина основания AD , точка M — середина боковой стороны AB .	Источни
	трезки CE и DM пересекаются в точке $O.$	FIPI osfipi Ященко 2018
a) Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равны.	Ященко 2018 Основная волна 2016
) Найдите, какую часть от площади трапеции составляет площадь четырёхугольника $AMOE$, если $BC=3,AD=4.$	
4p	0	
0.	рапеции $ABCD$ точка $E-$ середина основания AD , точка $M-$ середина боковой стороны AB . Отрезки CE и DM пересекаются в точке	ИСТОЧНИ FIPI osfipi
O.	рапеции $ABCD$ точка E — середина основания AD , точка M — середина боковой стороны AB . Отрезки CE и DM пересекаются в точке Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равны. Найдите, какую часть от площади трапеции составляет площадь четырёхугольника $AMOE$, если $BC = 5$, $AD = 7$.	
O. a) Į	Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равны.	FIPI osfipi Ященко 2018 Ященко 2018
О. a) Д б) I	Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равны.	FIPI osfipi Ященко 2018 Ященко 2018 Основная волна 2016
о. а) Д б) І	Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равны. Найдите, какую часть от площади трапеции составляет площадь четырёхугольника $AMOE$, если $BC=5$, $AD=7$.	FIPI
0. a) Д б) І	Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равны. Найдите, какую часть от площади трапеции составляет площадь четырёхугольника $AMOE$, если $BC = 5$, $AD = 7$. Прапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее основание C в точках C и M .	FIPI оябрі Ященко 2018 Ященко 2018 Основная волна 2016 ОСТОЧНИІ FIPI
О. a) Д б) 1	Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равны. Найдите, какую часть от площади трапеции составляет площадь четырёхугольника $AMOE$, если $BC=5$, $AD=7$. Прапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее основание C в точках C и M . Докажите, что $\angle BAM=\angle CAD$.	FIPI
0. a) 2 6) 1 B: B	Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равны. Найдите, какую часть от площади трапеции составляет площадь четырёхугольника $AMOE$, если $BC=5$, $AD=7$. Прапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее основание C в точках C и M . Докажите, что $\angle BAM=\angle CAD$. Диагонали трапеции $ABCD$ пересекаются в точке O . Найдите площадь треугольника AOB , если $AB=\sqrt{10}$, а $BC=2BM$.	FIPI оябрі Ященко 2018 Ященко 2018 Основная волна 2016 ИСТОЧНИ FIPI оябрі Основная волна 2017
О. a) Д б) 1 В а)	Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равны. Найдите, какую часть от площади трапеции составляет площадь четырёхугольника $AMOE$, если $BC=5$, $AD=7$. Трапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее основание C в точках C и M . Докажите, что $\angle BAM=\angle CAD$. Диагонали трапеции $ABCD$ пересекаются в точке O . Найдите площадь треугольника AOB , если $AB=\sqrt{10}$, а $BC=2BM$.	FIPI osfipi Яшенко 2018 Яшенко 2018 Основная волна 2016 Основная волна 2016 ГРГР оsfipi Основная волна 2017 Основная волна 2017
0. a) Д б) 1 в д б) в т	Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равны. Найдите, какую часть от площади трапеции составляет площадь четырёхугольника $AMOE$, если $BC = 5$, $AD = 7$. Прапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее основание C в точках C и M . Докажите, что $\angle BAM = \angle CAD$. Диагонали трапеции $ABCD$ пересекаются в точке O . Найдите площадь треугольника AOB , если $AB = \sqrt{10}$, а $BC = 2BM$. ВЗ890А рапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее гование BC в точках C и M . Цокажите, что $\angle BAM = \angle CAD$.	FIPI оябрі Яшенко 2018 Яшенко 2018 Основная волна 2016 Основная волна 2016 Основная волна 2017 Основная волна 2017
0. a) Д b) 1 B т осн	Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равны. Найдите, какую часть от площади трапеции составляет площадь четырёхугольника $AMOE$, если $BC = 5$, $AD = 7$. Потрапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее основание C в точках C и M . Докажите, что $\angle BAM = \angle CAD$. Диагонали трапеции $ABCD$ пересекаются в точке O . Найдите площадь треугольника AOB , если $AB = \sqrt{10}$, а $BC = 2BM$. ВЗ890А рапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее гование BC в точках C и M .	FIPI оябрі Яшенко 2018 Ященко 2018 Основная волна 2016 ИСТОЧНИ FIPI оябрі Основная волна 2017 ИСТОЧНИ FIPI оябрі обрі
0. a) [] b) B T och	Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равны. Найдите, какую часть от площади трапеции составляет площадь четырёхугольника $AMOE$, если $BC = 5$, $AD = 7$. Прапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее основание C в точках C и M . Докажите, что $\angle BAM = \angle CAD$. Диагонали трапеции $ABCD$ пересекаются в точке O . Найдите площадь треугольника AOB , если $AB = \sqrt{10}$, а $BC = 2BM$. ВЗ890А рапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее ювание BC в точках C и M . Цокажите, что $\angle BAM = \angle CAD$. Циагонали трапеции $ABCD$ пересекаются в точке O . Найдите площадь треугольника AOB , если $AB = 6$, а $BC = 4BM$.	FIPI
о. a) Д B т осы	Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равны. Найдите, какую часть от площади трапеции составляет площадь четырёхугольника $AMOE$, если $BC = 5$, $AD = 7$. Трапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее основание C в точках C и M . Докажите, что $\angle BAM = \angle CAD$. Диагонали трапеции $ABCD$ пересекаются в точке O . Найдите площадь треугольника AOB , если $AB = \sqrt{10}$, а $BC = 2BM$. Вазерование BC в точках C и M . Покажите, что $\angle BAM = \angle CAD$. Диагонали трапеции $ABCD$ пересекаются в точке O . Найдите площадь треугольника AOB , если $AB = 6$, а $BC = 4BM$. Вее окружности касаются внутренним образом в точке A , причём меньшая проходит через центр большей. Орда BC большей окружности касается меньшей в точке A . Причём меньшая проходит через центр большей.	FIPI osfipi Ященко 2018 Ященко 2018 Ященко 2018 Основная волна 2016 ИСТОЧНИ FIPI osfipi Основная волна 2017 ИСТОЧНИ FIPI osfipi Основная волна 2017 ИСТОЧНИ FIPI osfipi Основная волна 2017
0. a) Д B т осн а) Д X	Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равны. Найдите, какую часть от площади трапеции составляет площадь четырёхугольника $AMOE$, если $BC = 5$, $AD = 7$. Прапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее основание C в точках C и M . Докажите, что $\angle BAM = \angle CAD$. Диагонали трапеции $ABCD$ пересекаются в точке O . Найдите площадь треугольника AOB , если $AB = \sqrt{10}$, а $BC = 2BM$. ВЗ890А рапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее ювание BC в точках C и M . Цокажите, что $\angle BAM = \angle CAD$. Циагонали трапеции $ABCD$ пересекаются в точке O . Найдите площадь треугольника AOB , если $AB = 6$, а $BC = 4BM$.	FIPI оябрі Ященко 2018 Ященко 2018 Основная волна 2016 ИСТОЧНИ FIPI оябрі Основная волна 2017 ИСТОЧНИ FIPI оябрі Основная волна 2017
O. a) Д B т осн а) Д X оп в	Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равны. Найдите, какую часть от площади трапеции составляет площадь четырёхугольника $AMOE$, если $BC = 5$, $AD = 7$. Причём меньшее основание C в точках C и M . Докажите, что $\angle BAM = \angle CAD$. Диагонали трапеции $ABCD$ пересекаются в точке C . Найдите площадь треугольника AOB , если $AB = \sqrt{10}$, а $BC = 2BM$. ВЗ880А ВЗ880А ВЗ880А ВЗ80ОВ Причём на рапеции $ABCD$ пересекаются в точке C . Найдите площадь треугольника C 0 как на диаметре, пересекает меньшее гование C 1 в точках C 1 и C 2. ВЗ88ОВ ВЗ88ОВ В точках C 1 и C 3. В ве окружности касаются в точке C 4. Найдите площадь треугольника C 5 как на диаметре, пересекает меньшее гование C 6 в точках C 1 и C 4. В ве окружности касаются внутренним образом в точке C 5. Причём меньшая проходит через центр большей. Орда C 6 большей окружности касается меньшей в точке C 7. Хорды C 8 и C 7 пересекают меньшую кружность	FIPI оябрі Ященко 2018 Ященко 2018 Основная волна 2016 ИСТОЧНИІ FIPI оябрі Основная волна 2017 ИСТОЧНИІ FIPI оябрі Основная волна 2017 ИСТОЧНИІ FIPI оябрі Основная волна 2017
0. a) Д В т ост	Покажите, что площади четырёхугольника $AMOE$ и треугольника COD равны. Найдите, какую часть от площади трапеции составляет площадь четырёхугольника $AMOE$, если $BC = 5$, $AD = 7$. Потрапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее основание C в точках C и M . Докажите, что C в C в C в точках C и C в C	FIPI
О. a) Д B т оста б) д Д Хоо в а	Покажите, что площади четырёхугольника $AMOE$ и треугольника COD равны. Найдите, какую часть от площади трапеции составляет площадь четырёхугольника $AMOE$, если $BC = 5$, $AD = 7$. Прапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее основание C в точках C и M . Докажите, что $\angle BAM = \angle CAD$. Диагонали трапеции $ABCD$ пересекаются в точке O . Найдите площадь треугольника AOB , если $AB = \sqrt{10}$, а $BC = 2BM$. Вазерование BC в точках C и M . Цокажите, что $\angle BAM = \angle CAD$. Диагонали трапеции $ABCD$ пересекаются в точке O . Найдите площадь треугольника AOB , если $AB = 6$, а $BC = 4BM$. Ве окружности касаются внутренним образом в точке A , причём меньшая проходит через центр большей. Орда BC большей окружность касается меньшей в точке A . Причём меньшая проходит через центр большей. Орда BC большей окружность точках C и C порямые C параллельны. Орусть C — точка пересечения отрезков C и C Найдите C Найд	FIPI
Втоста) Д Д X OI в в а бесе	Покажите, что площади четырёхугольника $AMOE$ и треугольника COD равны. Найдите, какую часть от площади трапеции составляет площадь четырёхугольника $AMOE$, если $BC = 5$, $AD = 7$. Прапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее основание C в точках C и M . Докажите, что $\angle BAM = \angle CAD$. Диагонали трапеции $ABCD$ пересекаются в точке O . Найдите площадь треугольника AOB , если $AB = \sqrt{10}$, а $BC = 2BM$. Вазерование BC в точках C и M . Цокажите, что $\angle BAM = \angle CAD$. Диагонали трапеции $ABCD$ пересекаются в точке O . Найдите площадь треугольника AOB , если $AB = 6$, а $BC = 4BM$. Ве окружности касаются внутренним образом в точке A , причём меньшая проходит через центр большей. Орда BC большей окружность касается меньшей в точке A . Причём меньшая проходит через центр большей. Орда BC большей окружность точках C и C порямые C параллельны. Орусть C — точка пересечения отрезков C и C Найдите C Найд	FIPI оябрі Яшенко 2018 Яшенко 2018 Основная волна 2016 ИСТОЧНИІ FIPI оябрі Основная волна 2017 ИСТОЧНИІ FIPI оябрі Основная волна 2017 ИСТОЧНИІ FIPI оябрі Основная волна 2017 Яшенко 2020 (36 вар) Яшенко 2019 (36 вар) Яшенко 2018
0. a) Д B т 6) 1 X OI B а 6) Д Х ОI В а	Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равим. Тайдите, какую часть от площади трапешии составляет площадь четырёхугольника $AMOE$, если $BC = 5$, $AD = 7$. Тайдите, какую часть от площади трапешии составляет площадь четырёхугольника $AMOE$, если $BC = 5$, $AD = 7$. Тайдите, какую часть от площади трапешии составляет площадь четырёхугольника AD как на диаметре, пересекает меньшее основание C в точках C и M . Докажите, что $\angle BAM = \angle CAD$. Диагонали трапеции $ABCD$ пересекаются в точке C . Найдите площадь треугольника AOB , если $AB = \sqrt{10}$, а $BC = 2BM$. Вобажите, что $\angle BAM = \angle CAD$. Диагонали трапеции $ABCD$ пересекаются в точке C . Найдите площадь треугольника AOB , если $AB = 6$, а $BC = 4BM$. Вее окружности касаются внутренним образом в точке C . Найдите площадь точке C . Хорды C пересекают меньшей. Орда C большей окружности касается меньшей в точке C . Хорды C пересекают меньшую уружность точках C и C пересекают меньшей в точке C причём меньшая проходит через центр большей. Орда C большей окружности равен 10, а C пересечения отрезков C найдите C найдит	FIPI оябрі Ященко 2018 Ященко 2018 Основная волна 2016 ИСТОЧНИІ FIPI оябрі Основная волна 2017 ИСТОЧНИІ FIPI оябрі Основная волна 2017 ИСТОЧНИІ FIPI оябрі Основная волна 2017 ИСТОЧНИІ FIPI оябрі Ященко 2018 Основная волна 2015 ИСТОЧНИІ КОТОЧНИІ В ПРОВІДІЯ В В В В В В В В В В В В В В В В В В В
0. a) () 6) 1 B т ост () 6) () 7 X OI B а б окт () 60 о	Докажите, что площади четырёхугольника $AMOE$ и треугольника COD равны. Найдите, какую часть от площади трапешии составляет площадь четырёхугольника $AMOE$, если $BC = 5$, $AD = 7$. Прагеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее основание C в точках C и M . Докажите, что $\angle BAM = \angle CAD$. Диагонали трапеции $ABCD$ пересекаются в точке C . Найдите площадь треугольника AOB , если $AB = \sqrt{10}$, а $BC = 2BM$. ВЗ890А рапеции $ABCD$ угол BAD прямой. Окружность, построенная на большем основании AD как на диаметре, пересекает меньшее окавиие BC в точках C и M . ВЗ890А рапеции $ABCD$ пересекаются в точке C . Найдите площадь треугольника AOB , если $AB = 6$, а $BC = 4BM$. Все окружности касаются в нутренним образом в точке A , причём меньшая проходит через центр большей. Орда BC большей окружности касаются меньшей в точке A . Причём меньшая проходит через центр большей. Орда BC большей окружности касаются меньшей в точке A . Причём меньшая проходит через центр большей. Ордокажите, что прямые AC пересекают меньшую кружность точках AC и AC пересекают меньшую кружность точках AC и AC пересекают меньшую кружность и прямые AC параллельны. Ордокажите, что прямые AC и AC параллельны. Ордокажите, что прямые AC параллельны. Ордокажите, что прямые AC параллельны.	FIPI оябрі Ященко 2018 Ященко 2018 Основная волна 2016 ИСТОЧНИІ FIPI оябрі Основная волна 2017 ИСТОЧНИІ FIPI оябрі Основная волна 2017 ИСТОЧНИІ FIPI оябрі Ященко 2019 Ященко 2020 (36 вар) Ященко 2019 (36 вар) Ященко 2018 Основная волна 2015

	16	Биссектриса угла ADC параллелограмма $ABCD$ пересекает прямую AB в точке E . В треугольник ADE вписана окружность, касающаяся стороны AE в точке K и стороны AD в точке T .	ИСТОЧНИКИ: Гордин #16 2019
 поссетием утил АОС паративногоровам АВО пережевает провусе АВ в точек €. В траутельник АОЕ винским окружность, высикным окружность, высикным окружность, высикным окружность, высикным окружность, высикным окружность, высикным окружность. а) Деваенти, етт № Т. В Д. в) В траутельнико АВС точем А1, В1, и С1 — середины сторон ВС, АС и АВ соответственню, АН — высота, ∠ВАС — 60°, ∠ВСА — 45°. а) Доваенти, что точем АВС точем А1, В1, и С1 — середины сторон ВС, АС и АВ соответственню, АН — высота, ∠ВАС — 120°, ∠ВСА — 45°. а) Доваенти, что точем АВС точем А1, В1, и С1 — середины сторон ВС, АС и АВ соответственню, АН — высота, ∠ВАС — 120°, ∠ВСА — 45°. а) Доваенти, что точем АВС точем А1, В2, и И В лекат на одной окружености. б) Найдите А1 И, если ВС = 6√3. ф № № 1 Раутельнико АВС точем А2, В2, и И В лекат на одной окружености. б) Найдите А1 И, если ВС = 6√3. ф № 1 Раутельнико АВС точем А2, В3, и И В лекат на одной окружености. б) Найдите А1 И, если ВС = 6√3. ф № 1 Раутельнико АВС точем А2 ВС правъе высота развительных АВС, втоучено виросевает окременто окружености. в) Доваенти, что А1 в К1 правления. д) Доваенти, что А2 в К1 правления. д) Доваенти, что А2 в К1 правления. д) Доваенти, что А2 в К2 правления. д) Доваенти, что А2 в К2 правления боссетрие ВК. д) Доваенти, что правые МК и до правления высоче МК праутельника АВС скружность. д) Доваенти, что А2 в К3 правления. д) Доваенти, что правлены боссетрие ВК. д) Доваенти, что правые МК и до правления боссетрие ВК. д) Доваенти, что правые МС к до грам К2 стор развительных доступальных доступальных даступальных дас			Семёнов 2015
### В траутольника АВС точки АДС В тремент на одной окружности. В траутольника АВС точки АДС В точки АДС В тремент на одной окружности. В траутольника АВС точки АД ВД С тр И Лекат на одной окружности. В траутольника АВС точки АД ВД С тр И Лекат на одной окружности. В траутольника АВС точки АД ВД С тр И Лекат на одной окружности. В траутольника АВС точки АД ВД С тр И Лекат на одной окружности. В траутольника АВС точки АД ВД С тр И Лекат на одной окружности. В траутольника АВС точки АД ВД С тр И Лекат на одной окружности. В траутольника АВС точки АД ВД С тр И Лекат на одной окружности. В траутольника АВС точки АД ВД С тр И Лекат на одной окружности. В траутольника АВС точки АД ВД С тр И Лекат на одной окружности. В траутольника АВС точки АД ВД С тр И Лекат на одной окружности. В траутольника АВС точки АД ВД С тр И Лекат на одной окружности. В траутольника АВС точки АД ВД С тр И Лекат на одной окружности. В траутольника АВС точки АД ВД С тр И Лекат на одной окружности. В траутольника АВС точки АД ВД С тр И Лекат на одной окружности. В траутольника АВС точки АД ВД С тр И Лекат на одной окружности. В траутольника АВС точки АД ВД С тр И Лекат на одной окружности. В траутольника АВС точки АД ВД С тр И ДД ВД С тр И ВД ВД ВД Т Тр И ВД Т Тр И ВД ВД Т Тр И ВД Т Тр	#31 Д3		
3.) Деважите, чля <i>ВГ</i> 1 Б.С. 6) Наймите учол <i>БАЛ</i> счестирова <i>AD</i> = 8 и <i>КГ</i> = 4. 8) Треугольнике <i>ABC</i> точки <i>A</i> ₁ , <i>B</i> ₁ и <i>C</i> ₁ — середины сторон <i>BC</i> , <i>AC</i> и <i>AB</i> соответственно, <i>AH</i> — высота, <i>CBAC</i> = 60°, <i>CBCA</i> = 45°. a) Докамите, что точки <i>A</i> ₁ , <i>B</i> ₁ , <i>C</i> ₁ и <i>H</i> лежат на одной окружности. b) Найдите <i>A</i> ₁ <i>H</i> , осли <i>BC</i> = 2√3 2/4.24 160 B треугольнике <i>ABC</i> точки <i>A</i> ₁ , <i>B</i> ₁ , <i>C</i> ₁ и <i>H</i> лежат на одной окружности. b) Найдите <i>A</i> ₁ <i>H</i> , осли <i>BC</i> = 2√3 2/4.24 160 B треугольнике <i>ABC</i> точки <i>A</i> ₁ , <i>B</i> ₁ , <i>C</i> ₁ и <i>H</i> лежат на одной окружности. b) Найдите, что точки <i>A</i> ₁ , <i>B</i> ₁ , <i>C</i> ₁ и <i>H</i> лежат на одной окружности. b) Найдите <i>A</i> ₁ <i>H</i> , если <i>BC</i> = 6√3. c) Найдите <i>A</i> ₂ <i>H</i> , если <i>BC</i> = 6√3. 160 B треугольнике <i>ABC</i> осинованизми <i>AD</i> в <i>BC</i> виженая окружность с пентром <i>D</i> . в) Люкамите, что жіж <i>AADB</i> = від <i>ADDC</i> . c) Потимите восинованизми <i>ADB</i> в від сторона различны. Пречаж, совержника высеку <i>BI</i> треугольната <i>ABC</i> , вторично пересекная описанную около трочки предусмаюти по обружность в точке <i>P</i> . Отречев <i>BD</i> – дамаму точкі веружнасти. в) Діяваните <i>BF</i> , екти рашую спіснявной около троугольната <i>ABC</i> окружности. в) Діяваните, что жіж <i>A</i> ₂ <i>CB</i> осторона различны. Пречаж, совержнами высеку <i>BI</i> треугольната <i>ABC</i> , вторично пересекная описанную около трочко предусмаюти предусмаюти предусмаюти предусмаюти предусмаюти предусмаюти расси буб, <i>LBAC</i> = 30°, <i>LBC</i> = 10°. 160 В треугольната <i>ABC</i> се сторона различны. Пречаж, совержнами пасеку <i>BI</i> треугольната <i>ABC</i> , вторично пересекная описанную около трочко предусмаюти расси буб, <i>LBAC</i> = 30°, <i>LBC</i> = 10°. 161 B треугольната, то ж. бо <i>RS RS</i> податлення. 160 В треугольната <i>ABC</i> се сторона различны. Пречаж, совержнами пасеку <i>BI</i> треугольната <i>ABC</i> , вторично пересекная описанную около трочко предусмаюти расси буб, <i>LBAC</i> = 30°, <i>LBC</i> = 10°. 161 B треугольната <i>ABC</i> се сторона различны. Пречаж, совержнами пасеку <i>BI</i> треугольната <i>ABC</i> , вторично пересекная описанную около трочко предусмаюти расси буб.		Биссектриса угла ADC параллелограмма $ABCD$ пересекает прямую AB в точке E . В треугольник ADE вписана окружность, касающаяся	
#32 16 В треугольнике <i>ABC</i> точки <i>A</i> ₁ , <i>B</i> ₁ и <i>C</i> ₁ — середины сторон <i>BC</i> , <i>AC</i> и <i>AB</i> соответственно, <i>AH</i> — высота, <i>∠BAC</i> = 60°, <i>∠BCA</i> = 45°, а) Докамите, что точки <i>A</i> ₁ , <i>B</i> ₂ и <i>C</i> ₁ — середины сторон <i>BC</i> , <i>AC</i> и <i>AB</i> соответственно, <i>AH</i> — высота, <i>∠BAC</i> = 120°, <i>∠BCA</i> = 45°, а) Докамите, что точки <i>A</i> ₁ , <i>B</i> ₁ и <i>C</i> ₁ — середины сторон <i>BC</i> , <i>AC</i> и <i>AB</i> соответственно, <i>AH</i> — высота, <i>∠BAC</i> = 120°, <i>∠BCA</i> = 45°, а) Докамите, что точки <i>A</i> ₁ , <i>B</i> ₁ и <i>C</i> ₁ и <i>H</i> пекат на одной окружности. б) Найдите <i>A</i> ₁ <i>H</i> ₂ , если <i>BC</i> = 6√3. — высота, <i>∠BAC</i> = 120°, <i>∠BCA</i> = 45°, а) Докамите, что точки <i>A</i> ₁ , <i>B</i> ₂ и <i>C</i> ₁ и <i>H</i> пекат на одной окружности. б) Найдите <i>A</i> ₁ <i>H</i> ₂ , если <i>BC</i> = 6√3. — высота, <i>∠BAC</i> = 10°, <i>∠BCA</i> = 45°, а) Докамите, что объе <i>ACD</i> = 50°, <i>∠BCA</i> = 45°, а) Докамите, что объе <i>ACD</i> = 50°, <i>∠BCA</i> = 50°, б) Найдите <i>CACD</i> = 50°, <i>CACD</i> = 50°, <i>CACD</i> = 50°, <i>CACD</i> = 50°, б) Найдите <i>CACD</i> = 50°, <i>CACD</i> = 50°, <i>CACD</i> = 50°, б) Найдите <i>CACD</i> = 50°, <i>CACD</i> = 50°, <i>CACD</i> = 50°, #355 16 В реугольнике <i>ABC</i> состороны реаличан. Провае, содорожная высоту <i>BH</i> грустованна <i>ABC</i> , эторично персокает описанную около треугольных <i>ABC</i> состороных реаличания в провес <i>CACD</i> объе объе объе объе объе объе объе объе			CEMEROB 2013
16 В треугольнике АВС точки А ₁ , В ₁ и С ₁ — середины сторон ВС, АС и АВ соответственно, АН — высота, ∠ВАС = 60°, ∠ВСА = 45°. а) Докажите, что точки А ₁ , В ₁ , С ₁ и Н лежат на одной окружности. б) Найдите А ₁ Н, если ВС = 2√3 Докажите, что точки А ₁ , В ₁ и С ₁ — середины сторон ВС, АС и АВ соответственно, АН — высота, ∠ВАС = 120°, ∠ВСА = 45°. а) Докажите, что точки А ₁ , В ₁ и И лежат на одной окружности. б) Найдите А ₁ Н, если ВС = 6√3. В треугольнике АВС точки А ₁ , В ₁ и И лежат на одной окружности. б) Найдите А ₁ Н, если ВС = 6√3. В треугольнике АВС со-свеватиски АО и ВС вписани окружности. б) Найдите выподал, транении, если ∠ВАО = 90°. в оспования разиле в 1°. #33 16 В треугольнике АВС ве середен разиления правы, сваружания высоту ВН треугольника АВС, второтов пересекает описанизой около треугольника АВС в 1°. #34 16 В треугольнике АВС ве стерены разиления. Правы, сваружания высоту ВН треугольника АВС, второтов пересекает описанизой оказатисти от треутов правения об 1°. #35 16 В треугольнике АВС ве стерены разиления. Правы, сваружания высоту ВН треугольника АВС, второтов пересекает описанизой оказатисти в 1°. #36 17 В треугольнике АВС ве стерены разиления. Правы, сваружания высоту ВН треугольника АВС, второтов пересекает описанизой оказатисти от треутов пересекает описанизой оказатисти правен 6°. #37 18 18 19 В треугольнике АВС ве стерены разиления. Правы, сваружания высоту ВН треугольника АВС, второтов пересекает описанизой оказатисти правен 6°. #38 10 В треугольнике АВС ве стерены разиления. Правы, сваружания высоту ВН треугольника АВС, второтов пересекает описанизой оказатисти правен 6°. #38 16 В треугольнике АВС ве стерены разиления. Правы, сваружания высоту Реугольника АВС варужание 1°. В треугольнике АВС ве стерены правен 6°. #38 16 В треугольнике АВС ве стерены правен в 1°. В треугольника АВС вестерены разиления в 1°. В треугольника АВС вестерены правен 6°. В треугольника АВС вестерены правен в 1°. В треугольника АВС вестерены правен в 1°. В		б) Найдите угол BAD , если сторона $AD=8$ и $KT=4$.	
В треугольнике <i>ABC</i> точки <i>A</i> ₁ , <i>B</i> ₁ и <i>C</i> ₁ — середины сторон <i>BC</i> , <i>AC</i> и <i>AB</i> соответственно, <i>AH</i> — высота, <i>∠BAC</i> = 60°, <i>∠BAC</i> = 45°. а) Докажите, что точки <i>A</i> ₁ , <i>B</i> ₁ , <i>C</i> ₁ и <i>H</i> лежат на одной окружности. (б) Найдите <i>A</i> ₁ <i>H</i> ₁ , если <i>BC</i> = 2√3 #32_ДЗ #32_ДЗ #33_По	#32		
— высота, ∠ВАС — 60 м. ДВСА — 45 м. — высота, ∠ВАС — 60 м. ДВСА — 45 м. — высота, ∠ВАС — 60 м. ДВСА — 45 м. — высота, ∠ВАС — 100 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 45 м. — высота, ∠ВАС — 120 м. ДВСА — 120 м. — высота, ∠ВАС — 120 м. ДВСА — 120 м. — высота, ∠ВАС — 120 м. ДВСА — 120 м. — высота, ∠ВАС — 120 м. ДВСА — 120 м. — высота, ∠ВАС — 120 м. ДВСА — 120 м. — высота, ∠ВАС — 120 м. ДВСА — 120 м. — высота, ∠ВАС — 120 м. ДВСА — 120 м. — высота, ∠ВАС — 120 м. ДВСА — 120 м. — высота, ∠ВАС — 120 м. — высота, АВС м. — высота			Metallinger
а) Докажите, что точки A ₁ , B ₁ , C ₁ и И Лежат на одной окружности. 6) Найдите A ₁ H, если BC = 2√3 — высота. ∠BAC = 120°, ∠BCA = 45°. а) Докажите, что точки A ₁ , B ₁ , и С ₁ — середины сторон BC, AC и AB соответственно, AH — высота. ∠BAC = 120°, ∠BCA = 45°. а) Докажите, что точки A ₁ , B ₁ , C ₁ и И лежат на одной окружности. 6) Найдите A ₁ H, если BC = 6√3. — высота. ∠BAC = 120°, ∠BCA = 45°. а) Докажите, что точки A ₁ , B ₁ , C ₁ и И лежат на одной окружности. 6) Найдите изонаць, транения, есл. АВС. (6) Найдите мисицы, транения, есл. АВС. (7) Найдите изонаць, транения, есл. АВС. (8) Найдите изонаць, транения, есл. АВС. (8) Найдите изонаць транения, есл. АВС. (8) Найдите изонаць транения, есл. АВС. (8) Найдите мисицы, транения, есл. АВС. (8) Найдите мисицы правите мисицы правите, сооръжная высоту ВН трругольника АВС, поричию пересекает описаниую около мусицысти. 9) Докажите, что АВ — СЕ. (9) Найдите растовите ображная править АВС окружности ракен 12, ∠ВАС = 35°, ∠АСВ = 65°. 455 465 166 170 187 187 187 187 187 187 187	10	В треугольнике ABC точки A_1 , B_1 и C_1 — середины сторон BC , AC и AB соответственно, AH — высота, $\angle BAC=60\degree$, $\angle BCA=45\degree$.	FIPI
#32_Д3 В треугольнике ABC точки A ₁ , B ₁ и C ₁ — середины сторон BC, AC и AB соответственно, AH — высота, ∠BAC = 120°, ∠BCA = 45°. а) Докажите, что точки A ₁ , B ₁ , C ₁ и H лежат на одной окружности. б) Найдите A ₁ H, если BC = 6√3. • В треугольнике ABC по сетовавливия AD и BC впискию окружность с центром O. в) Докажите, что из in ∠AOD = sin ∠BOD. б) Найдите площья треилении, ссли ∠BAD = 90°, а освования развые 5 и ?. #34 16 В треугольника ABC по сеторовы различи. Промые, созержащая высоту BH треугольника ABC, вторично пересекает описаниую около и АСС в различи. В размет у той окружаюсть в точке F. Отресок BD — швысету той окружаюсти развея 12, ∠BAC = 35°, ∠ACB = 65°. #35 16 В треугольника ABC по сеторовы различилы. Промые, созержащая высоту BH треугольника ABC, вторично пересекает описания окружаюсти в личке F. Отресок BD — швысету той окружаюсти развея 12, ∠BAC = 35°, ∠ACB = 65°. #35 16 В треугольника ABC пересения описания об около треугольника ABC окружаюсти развея 12, ∠BAC = 35°, ∠ACB = 65°. #36 17 В треугольника ABC проведена биссектраса BK. а) Докажите, что AC и КN паралленны. Промые, созержащая высоту BH треугольника ABC, вторично пересекает описания окружаюсть в точке K. Отресок RN — диамеет ртой окружаюсти. а) Докажите, что AC и КN паралленны. б) Найдите впесиона точки N до прамой AC, если разлус описания б оксужаюсти. а) Докажите, что AC и КN паралленным. б) Найдите впесиона треугольных ABC, сели AB = 13, BC = 7 и BK = ½13 16 По точки МКС = 1 : 3. В треугольным ABC проведена биссектраса BK. а) Докажите, что диде стоянным ABC и докажите в точки N и BO паралленым. б) Найдите впесиона треугольным ABC, сели AB = 13, BC = 7 и BK = ½13 В треугольным ABC проведена биссектраса BK. а) Докажите, что диде стоянным ABC и дожем АВС по параллена В точке N. а) Докажите, что диде стоянным ABC и правленым ображительным В точке N. а) Докажите, что разлуж готой окружаюсти раже высоте треугольника высоторовы. В печетом Оками ВСС правления в постоянным пресекает описания б окружаюс		а) Докажите, что точки A_1 , B_1 , C_1 и H лежат на одной окружности.	
#32_ДВ В треугольнике ABC точки A ₁ , B ₁ и C ₁ — середины сторон BC, AC и AB соответственно, AH — высота, ∠BAC = 120°, ∠BCA = 45°. а) Докажите, что точки A ₁ , B ₁ , C ₁ и H лежат на одной окружности. б) Накците A ₁ H, если BC = 6√3. • Докажите, что точки A ₂ D = 8 в 290°, а оскования равни 5 и 7. #33 16 В треугольнике ABC все стороны различим. Прамые, содержащая высоту ВН треугольника ABC, вторично пересекает описациую околь обото треугольника обружность в точке F. Отреков ВО — диажетр этоб окружности разлен 12, ∠BAC = 35°, ∠ACB = 65°. #35 16 В треугольнике ABC все стороны различим. Прамые, содержащая высоту ВН треугольника ABC, вторично пересекает описациую околь обото треугольника окружность в точке F. Отреков ВО — диажетр этоб окружности разлен 12, ∠BAC = 35°, ∠ACB = 65°. #35 16 В треугольнике ABC все стороны различим. Прамые, содержащая высоту ВН треугольника ABC, вторично пересекает описациую околь обото треугольника окружность в точке F. Отреков ВО — диажетр этоб окружности разлен 12, ∠BAC = 35°, ∠ACB = 65°. #35 16 В треугольнике ABC все стороны различим. Премые, содержащая высоту ВН треугольника ABC, вторично пересекает описациую околь обото треугольника окружность в точке F. Отреков ВИ — апмостр этоб окружности разлен 12, ∠BAC = 35°, ∠ACB = 65°. #36 16 В треугольнике ABC все стороны различим. Премые, содержащая высоту ВН треугольника ABC, вторично пересекает описациую околь обото треугольника ABC окружности разлен 6√6, ∠BAC = 30°, ∠ABC = 105°. #37 16 В треугольнике ABC все стороны различим. Премые, содержащена высоту в Нукольника ABC окружности разлен 6√6, ∠BAC = 30°, ∠ABC = 105°. #37 16 В треугольныке ABC водержащей биссентриса ВК. а) Докажите, что прязые биссентриса ВК. а) Докажите, что прязые АВС водержащей биссентриса ВК. а) Докажите, что прязые МК и BO паралленыы. Премые оботочные в пользовательные в поль		5) H-X-11- A. H D.C. 9. /9	
#32_Д3 В треугольнике ABC точки A ₁ , B ₁ и C ₁ — середины сторон BC, AC и AB соответственно, AH — высота, ∠BAC = 120°, ∠BCA = 45°. в) Докажите, что точки A ₁ , B ₁ , C ₁ и H лежат на одной окружности. б) Найдите A ₁ H, если BC = 6√3. ф № В привешко ABCD с освованиями AD в BC выская окружность с центром C. в) Докажите, что ай A ₁ AD = sin ∠BDC. б) Найдите паовиды транении, если ∠HAD = 90°, а основания ражни 5 и 7. б) Найдите поовиды транении, если ∠HAD = 90°, а основания ражни 5 и 7. в) Докажите, что AD = Cf. б) Найдите поовиды транении, если ∠HAD = 90°, а основания ражни 5 и 7. б) Найдите поовиды транении, если ∠HAD = 90°, а основания ражни 5 и 7. б) Найдите поовиды транении, если ∠HAD = 90°, а основания ражни 5 и 7. б) Найдите растояния обружность в точке F. Отрезок BD — шаметр этой окружности. в) Докажите, что AD = Cf. б) Найдите поовиды обружность в точке F. Отрезок BD — шаметр этой окружности. в) Докажите, что AC в K и парацизация. в) Докажите, что AC в Сб. примения ABC, если рашнуе описанной охопо треутовыника ABC окружности ражен б√б, ∠BAC = 30°, ∠ABC = 105°. #37 ПО В треутовыника окружность в точке K. Отрезок BB — димеер той окружность. в) Докажите, что AC в K и парацизация. в) Докажите, что AC в K и парацизация. в) Докажите, что для докажите, что прямые ABC, если AB = 13, BC = 7 в BK =			
В треугольнике <i>ABC</i> точки <i>A</i> ₁ , <i>B</i> ₁ и <i>C</i> ₁ — середины сторон <i>BC</i> , <i>AC</i> и <i>AB</i> соответственно, <i>AH</i> — высота, <i>CBAC</i> = 120°, <i>CBCA</i> = 45°. а) Докажите, что точки <i>A</i> ₁ , <i>B</i> ₁ , <i>C</i> ₁ и <i>H</i> лежат на одной окружности. б) Найдите <i>A</i> ₁ <i>H</i> , если <i>BC</i> = 6√3.		♦ ♦ ✓ 2AE241	
В треугольнике АВС точки А₁, В₁ и С₁ — середины сторон ВС, АС и АВ соответственно, АН — высота, ∠ВАС = 120°, ∠ВСА = 45°, . В треугольнике АВС точки А₁, В₁, С₁ и Н лежат на одной окружности.	#32_Д3		
8) Докажите, что точьм A ₁ , B ₂ , сти и пежат на одном окружности. 6) Найдите A ₂ H, если BC = 6√3. #33 16 8 транению ABCD с основаниями AD и BC аписана окружность с неитром O. 8) Докажите, что sin ×AOD = sin к ABC. 9) Найдите пленилал транении, если VBAD = 90°, в основания развих 5 и 7. #34 16 8 треутельника ABC пос сторым различин. Примак, солержандая высоту ВН преутельника ABC, вторично пересекает описаниую около этого треутельника окружность в точке F. Отрезов ВD — диаметр этой окружности. 9) Докажите, что AD = CF. 9) Найдите различный ABC все стороны различин. Примак, солержандая высоту ВН преутельника ABC, вторично пересекает описаниую около этого треутельника ABC все стороны различин. Промак, солержандая высоту ВН треутельящая ABC, вторично пересекает описаниую около этого треутельника ABC все стороны различин. Промак, солержандая высоту ВН треутельящая ABC, вторично пересекает описаниную около этого треутельника ABC в обружности. 9) Найдите растения от точки N до прамой AC, если радитуе описанной около треутельника ABC, окружности разлен б√6, ∠BAC = 30°, ∠ABC = 105°. #36 16 В треутельника окружность точки N до прамой AC, если радитуе описанной около треутельника ABC окружности разлен б√6, ∠BAC = 30°, ∠ABC = 105°. #37 16 Дак прамоутельный треутельник ABC, сели AB = 13, BC = 7 и BK = ₹√13 / 4. #37 16 Дак прамоутельный треутельник ABC, сели AB = 13, BC = 7 и BK = ₹√13 / 4. #37 16 Дак прамоутельный треутельника BOMN, если CN = 4 и AM: MC = 1 : 3. #38 16 Виевикамная окружность равнобелренного треутельника всется его боковой стороны. 9) Докажите, что разлые авторы от почил дока всется питотенузы в точке N. 3) Докажите, что прамые MN и BO парапленьы. 6) Найдите площадь четырёхугольника BOMN, если CN = 4 и AM: MC = 1 : 3. #38 16 Виевикамная окружность равнобелренного треутельника всется его боковой стороны. 9) Докажите, что разлые треутельника Вомого треутельника всется его боковой стороны. 9) Докажите, что разлуже треутельника всется его боковой стороны. 9) Докажите, что		В треугольнике ABC точки A_1 , B_1 и C_1 — середины сторон BC , AC и AB соответственно, AH	
5 Найдрите A ₁ H, если BC = 6√3.		а) Докажите, что точки A_1 , B_1 , C_1 и H лежат на одной окружности.	
#33 16 В транению <i>ABCD</i> с основаниям <i>AD</i> и <i>BC</i> винсана окружность с центром <i>O</i> . а) Докажите, что sin ∠ <i>AOD</i> — sin ∠ <i>BOC</i> . б) Найдите изопада, транеции, ости ∠ <i>BAD</i> — 90°, а основания равны 5 п. 7. #34 16 В треутольника <i>ABC</i> все стороны различим. Пракая, содержащая высоту <i>BH</i> треутольника <i>ABC</i> , вторично пересекает описанную около этого треутольника окружность в точке <i>F</i> . Отрезок <i>BD</i> — пивметр этой окружности. а) Докажите, что <i>AD</i> = <i>CP</i> . б) Найдите <i>DF</i> , ости радиус описанной около треутольника <i>ABC</i> окружности равен 12, ∠ <i>BAC</i> = 35°, ∠ <i>ACB</i> = 65°. #35 16 В треутольнике <i>ABC</i> все стороны различим. Пракая, содержащая высоту <i>BH</i> треутольника <i>ABC</i> , вторично пересекает описанную около этого треутольника <i>ABC</i> все стороны различим. Пракая, содержащая высоту <i>BH</i> треутольника <i>ABC</i> , вторично пересекает описанную около этого треутольника <i>ABC</i> все стороны различим. Пракая, содержащая высоту <i>BH</i> треутольника <i>ABC</i> , вторично пересекает описанную около этого треутольника <i>CAC</i> в точке <i>BN</i> — дивметр этой окружности. а) Докажите, что <i>AC</i> в <i>CE</i> б) Найдите площасы треутольника <i>ABC</i> , если раднус описанной около треутольника <i>ABC</i> окружности равен 6√6, ∠ <i>BAC</i> = 30°, ∠ <i>ABC</i> = 105°. #36 16 В треутольнике <i>ABC</i> проведена биссектриса <i>BK</i> . а) Докажите, что <i>AE</i> = <i>CE</i> б) Найдите площады четырежугольника <i>ABC</i> , если <i>BE</i> = 7 и <i>BK</i> = ₹√13 — 4. #37 16 Дан прямоугольный треутольник <i>ABC</i> с прямым углом <i>C</i> . На катете <i>AC</i> взята точка <i>M</i> . Окружность с центром <i>O</i> и дивметром <i>CM</i> касается гипотенузы в точке <i>N</i> . а) Докажите, что прямые <i>MN</i> и <i>BO</i> параллельны. б) Найдите площадь четырежугольника <i>BOMN</i> , если <i>CN</i> = 4 и <i>AM</i> и <i>MC</i> = 1 : 3. 76 Вревинсания окружность равнобедренного треутольника всеается его боколой сторолы. а) Докажите, что развус той окружности равен высоте треутольника окружности греутольника. В каком отношении точка об зверой об чаро об чаро об об чаро			досрочная волна 2017
#33 16 В трапешно ABCD с основаниями AD и BC випсана окружность с неитром O. а) Докажите, что sin ∠AOD = sin ∠BOC. () Найдите вношкал граневия, если £BAD = 90°, а основания развым 5 и 7. #34 16 В треутольника ABC все стороны различим. Примая, содержащим высоту BH треутольника ABC, вторично пересекает описаниую около угото треутольника окружность в точке F. Отрезок BD — диаметр этой окружности. а) Докажите, что AD — CF. () Найдите DF, если раднус описаниюй около треутольника ABC окружности равен 12, ∠BAC = 35°, ∠ACB = 65°. В треутольника ABC все стороны различим. Примая, содержащия высоту BH треутольника ABC, вторично пересекает описаниую около этосто треутольника окружноста в точке K. Отрезок BN — диаметр этой окружности. а) Докажите, что AG и KN параллельны. () Найдите рисстояние от точки M до прамой AC, если раднус описаниюй около треутольника ABC окружности равен 6√6, ∠BAC = 30°, ∠ABC = 193°. #36 16 В треутольнике ABC проведена биссектриса BK. а) Докажите, что AG и KN параллельны. б) Найдите ипопидът треутольника ABC, если AB = 13, BC = 7 и BK = ^{2√13} / ₄ . 137 16 Дан прямоугольный треутольник ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается питотенузы в точке N. а) Докажите, что прямые MN и BO параплельны. б) Найдите ппошадь четырёхугольника BOMN, если CN = 4 и AM : MM : MC = 1 : 3. 76 76 Вневшисанная окружность равнобедренного треутольника жасается его боковой стороны. Вневшисанная окружность равнобедренного треутольника засается его бок		б) Найдите A_1H , если $BC=6\sqrt{3}$.	
В трапешно <i>ABCD</i> с основаниям <i>AD</i> и <i>BC</i> винсана окружность с пентром <i>O</i> . а) Докажите, что sin ∠ <i>AOD</i> = sin ∠ <i>BOC</i> . 6) Найдите плопадь транешля, если ∠ <i>BAD</i> = 90°, а основания равлы 5 и 7. #34 16 В треутольнике <i>ABC</i> все стороны различиы. Прямая, содержащая высоту <i>BH</i> треутольника <i>ABC</i> , вторично пересекает описанную около этого треутольника <i>ABC</i> с третов <i>BD</i> — диаметр этой окружности. а) Докажите, что <i>AD</i> = <i>CF</i> . 6) Найдите <i>bF</i> , ости радичу описанной около треутольника <i>ABC</i> окружности равен 12, ∠ <i>BAC</i> = 35°, ∠ <i>ACB</i> = 65°. #35 16 В треутольнике <i>ABC</i> все стороны различиы. Прямая, содержащая высоту <i>BH</i> треутольника <i>ABC</i> , вторично пересекает описанную около этого треутольника <i>ABC</i> окружности равен 12, ∠ <i>BAC</i> = 35°, ∠ <i>ACB</i> = 65°. #36 В треутольнике <i>ABC</i> все стороны различиы. Прямая, содержащая высоту <i>BH</i> треутольника <i>ABC</i> , вторично пересекает описанную около этого треутольника <i>ABC</i> окружности. а) Докажите, что <i>A</i> и к <i>N</i> парадлельны. 6) Найдите в растоятие от точки <i>N</i> до прямой <i>AC</i> , если радиу описанной около треутольника <i>ABC</i> окружности равен 6√6, ∠ <i>BAC</i> = 30°, ∠ <i>ABC</i> = 105°. #36 16 В треутольнике <i>ABC</i> проведена биссектриса <i>BK</i> . а) Докажите, что <i>AB</i> = <i>CE</i> 6) Найдите площадь треутольника <i>ABC</i> , если <i>AB</i> = 13, <i>BC</i> = 7 и <i>BK</i> = ^{2√13} / ₂ . #37 16 Дан прямоугольный треутольника <i>ABC</i> , если <i>AB</i> = 13, <i>BC</i> = 7 и <i>BK</i> = ^{2√13} / ₂ . #37 16 Дан прямоугольный треутольника <i>BOMN</i> , если <i>CN</i> = 4		♦ I EA7D2B	
В трапешно <i>ABCD</i> с основаниям <i>AD</i> и <i>BC</i> винсана окружность с пентром <i>O</i> . а) Докажите, что sin ∠ <i>AOD</i> = sin ∠ <i>BOC</i> . 6) Найдите плопадь транешля, если ∠ <i>BAD</i> = 90°, а основания равлы 5 и 7. #34 16 В треутольнике <i>ABC</i> все стороны различиы. Прямая, содержащая высоту <i>BH</i> треутольника <i>ABC</i> , вторично пересекает описанную около этого треутольника <i>ABC</i> с третов <i>BD</i> — диаметр этой окружности. а) Докажите, что <i>AD</i> = <i>CF</i> . 6) Найдите <i>bF</i> , ости радичу описанной около треутольника <i>ABC</i> окружности равен 12, ∠ <i>BAC</i> = 35°, ∠ <i>ACB</i> = 65°. #35 16 В треутольнике <i>ABC</i> все стороны различиы. Прямая, содержащая высоту <i>BH</i> треутольника <i>ABC</i> , вторично пересекает описанную около этого треутольника <i>ABC</i> окружности равен 12, ∠ <i>BAC</i> = 35°, ∠ <i>ACB</i> = 65°. #36 В треутольнике <i>ABC</i> все стороны различиы. Прямая, содержащая высоту <i>BH</i> треутольника <i>ABC</i> , вторично пересекает описанную около этого треутольника <i>ABC</i> окружности. а) Докажите, что <i>A</i> и к <i>N</i> парадлельны. 6) Найдите в растоятие от точки <i>N</i> до прямой <i>AC</i> , если радиу описанной около треутольника <i>ABC</i> окружности равен 6√6, ∠ <i>BAC</i> = 30°, ∠ <i>ABC</i> = 105°. #36 16 В треутольнике <i>ABC</i> проведена биссектриса <i>BK</i> . а) Докажите, что <i>AB</i> = <i>CE</i> 6) Найдите площадь треутольника <i>ABC</i> , если <i>AB</i> = 13, <i>BC</i> = 7 и <i>BK</i> = ^{2√13} / ₂ . #37 16 Дан прямоугольный треутольника <i>ABC</i> , если <i>AB</i> = 13, <i>BC</i> = 7 и <i>BK</i> = ^{2√13} / ₂ . #37 16 Дан прямоугольный треутольника <i>BOMN</i> , если <i>CN</i> = 4	#22		
а) Докажите, что зіп АВОС. (в) Найдите площадь траничи, ссли АВА = 90°, а основания равны 5 и 7. (п) Найдите площадь траничи, ссли АВА = 90°, а основания равны 5 и 7. (п) Найдите площадь траничи докажите, что разлуствовника АВС вее стороны различим. Прамая, содержащая высоту ВН треугольника АВС, вторично пересекает описанную около упредусления в разлуствовника АВС окружности. (п) Докажите, что АВ = СР. (п) Найдите ВР, если разлус описанной около треутольника АВС окружности равен 12, АВАС = 35°, АВСВ = 65°. (п) Найдите ВР, если разлус описанной около треутольника АВС вее стороны различим. Прамая, содержащая высоту ВН треутольника АВС, вторично пересекает описанную около того треутольника окружность в точке К. Отремок ВМ — дивметр этой окружности. (п) Найдите площадь четь в точке К. Отремок ВМ — дивметр этой окружности разен 6√6, АВАС = 30°, АВС = 105°. (п) Найдите площадь четь бее стороны различим. Прамая, содержащая высоту ВН треутольника АВС окружности разен 6√6, АВАС = 30°, АВС = 105°. (п) Найдите площадь четы в точки N до примой АС, если разлус описанной около треутольника АВС окружности разен 6√6, АВАС = 30°, АВС = 105°. (п) Найдите площадь четы в точки N до примой АС, если В = 13, ВС = 7 п ВК = 7√13 / 4. (п) Найдите площадь четы режугольника АВС, если АВ = 13, ВС = 7 п ВК = 7√13 / 4. (п) Найдите площадь четы режугольника ВОМ N, если СN = 4 / 4. (п) Найдите площадь четы режугольника ВОМ N, если СN = 4 / 4. (п) Найдите площадь четы режугольника ВОМ N, если СN = 4 / 4. (п) Найдите площадь четы режугольника ВОМ N, если СN = 4 / 4. (п) Найдите площадь четы режугольника ВОМ N, если СN = 4 / 4. (п) Найдите площадь четы режугольника ВОМ N, если СN = 4 / 4. (п) Найдите площадь четы режугольника воснование. (п) Найдите площадь четы режугольника высот треутольника воснование. (п) Найдите площаците площание по предема по предема предема предема по		В трапецию $ABCD$ с основаниями AD и BC вписана окружность с центром O .	Источники:
#34 16 В треугольнике ABC все стороны различны. Прямая, содержащая высоту ВН треугольника ABC, вторично пересекает описаниую около того треугольника окружаюсть в точке F. Отрезок BD — диаметр этой окружности. а) Докажите, что AD = CF. 6) Найдите DF, если радинуе описаниой около треугольника ABC окружности равен 12, ∠BAC = 35°, ∠ACB = 65°. #35 16 В треугольнике ABC все стороны различны. Прямая, содержащая высоту ВН треугольника ABC, вторично пересекает описаниую около того треугольника окружаюсть в точке K. Отрезок BN — диаметр этой окружности. а) Докажите, что AC и KN параллельны. 6) Найдите расстояще от точки N до прямой AC, если радинуе описанной около треутольника ABC окружности равен 6√6, ∠BAC = 30°, ∠ABC = 105°. #36 16 В треугольнике ABC проведена биссектриса BK. а) Докажите, что AE AE AE В проведена биссектриса BK. а) Докажите, что AE AE AE В проведена биссектриса BK. а) Докажите, что AE AE AE AE BE проведена биссектриса BK. а) Докажите, что AE AE AE BE проведена биссектриса BK. а) Докажите, что AE AE AE BE проведена биссектриса BK. а) Докажите, что АЕ AE BE проведена биссектриса BK. а) Докажите, что АЕ AE BE проведена биссектриса BK. а) Докажите, что АЕ AE BE проведена биссектриса BK. а) Докажите, что АЕ AE BE проведенного треугольника BOMN, если CN = 4 b) Докажите, что прямые MN и BO параллельны. б) Найдите площадь четырёхугольника BOMN, если CN = 4 b) Докажите, что радинуе этой окружности раегольника, опущенной на основание. б) Изваение, что радинуе этой окружности в 4 раза больше распуса вписанной па основание. б) Изваение, что радинуе этой окружности в 4 раза больше распуса вписанной по основание. б) Изваение, что распусе этой окружности в 4 раза больше распуса вписанной по ружности треутольника. В каком отношении точка		a) Докажите, что $\sin ∠AOD = \sin ∠BOC$.	Основная волна (Резерв) 2017 Основная волна 2015
В треугольнике <i>ABC</i> все стороны различиы. Прямая, содержащая высоту <i>BH</i> треугольника <i>ABC</i> , вторично пересекает описанную около этого треугольника окружность в точке <i>F</i> . Отрезок <i>BD</i> — диаметр этой окружности равен 12, ∠ <i>BAC</i> = 35°, ∠ <i>ACB</i> = 65°. #35 В треугольнике <i>ABC</i> все стороны различны. Прямая, содержащая высоту <i>BH</i> треугольника <i>ABC</i> , вторично пересекает описанную около этого треугольника <i>ABC</i> все стороны различны. Прямая, содержащая высоту <i>BH</i> треугольника <i>ABC</i> , вторично пересекает описанную около этого треугольника окружность в точке <i>K</i> . Отрезок <i>BN</i> — диаметр этой окружности. а) Докажите, что <i>AC</i> и <i>K</i> № параллельны. б) Найдите площадь треугольника <i>ABC</i> , если <i>раднус</i> описанной около треутольника <i>ABC</i> окружности равен б√б, ∠ <i>BAC</i> = 30°, ∠ <i>ABC</i> = 105°. 436 16		б) Найдите площадь трапеции, если $\angle BAD = 90^{\circ}$, а основания равны 5 и 7.	
В треугольнике <i>ABC</i> все стороны различиы. Прямая, содержащая высоту <i>BH</i> треугольника <i>ABC</i> , вторично пересекает описанную около этого треугольника окружность в точке <i>F</i> . Отрезок <i>BD</i> — диаметр этой окружности. В Докажите, что <i>AD</i> = <i>CF</i> .	#2 <i>/</i> I		
а) Докажите, что <i>AD</i> = <i>CF</i> . 6) Найдите <i>DF</i> , если радиус описанной около треугольника <i>ABC</i> окружности равен 12, ∠ <i>BAC</i> = 35°, ∠ <i>ACB</i> = 65°. #35 16 В треугольника <i>ABC</i> все стороны различиы. Прямая, содержащая высоту <i>BH</i> треугольника <i>ABC</i> , вторично пересекает описанную около того треугольника окружности. а) Докажите, что <i>AC</i> и <i>KN</i> параллельны. 6) Найдите расстояние от точки <i>N</i> до прямой <i>AC</i> , если радиус описанной около треугольника <i>ABC</i> окружности равен 6√6, ∠ <i>BAC</i> = 30°, ∠ <i>ABC</i> = 105°. #36 16 В треугольнике <i>ABC</i> проведена биссектриса <i>BK</i> . а) Докажите, что <i>AB</i> = $\frac{KC}{BC}$ 6) Найдите площадь треугольника <i>ABC</i> , если <i>AB</i> = 13, <i>BC</i> = 7 и <i>BK</i> = $\frac{7\sqrt{13}}{4}$. #37 16 Дан прямоугольный треугольника <i>ABC</i> , если <i>AB</i> = 13, <i>BC</i> = 7 и <i>BK</i> = $\frac{7\sqrt{13}}{4}$. #37 16 Дан прямоугольный треугольника <i>ABC</i> , если <i>AB</i> = 13, <i>BC</i> = 7 и <i>BK</i> = $\frac{7\sqrt{13}}{4}$. #37 16 Внавиненной ой и диаметром <i>CM</i> касается гипотенузы в точке <i>N</i> . а) Докажите, что прямые <i>MN</i> и <i>BO</i> параллельны. б) Найдите площадь четырёхугольника <i>BOMN</i> , если <i>CN</i> = 4 и <i>AM</i> : <i>MC</i> = 1 : 3. ** **38 Внавиненная окружность равнобедренного треугольника касается его боковой стороны. а) Докажите, что раднус этой окружности равен высоте треутольника, опущенной на основание. 6) Внаестно, что раднус этой окружности в 4 раза больше разпуса вписанной окружности треугольника. В каком отношении точка			Источники: Яшенко 2020 (36 вар)
6) Найдите <i>DF</i> , если радпус описанной около треугольника <i>ABC</i> окружности равен 12, ∠ <i>BAC</i> = 35°, ∠ <i>ACB</i> = 65°. #35 16 В треугольника <i>ABC</i> все стороны различны. Прямая, содержащая высоту <i>BH</i> треугольника <i>ABC</i> , вторично пересекает описанную около тот треутольника окружность в точке <i>K</i> . Отрезок <i>BN</i> — днаметр этой окружности. а) Докажите, что <i>AC</i> и <i>KN</i> параллельны. б) Найдите расстояние от точки <i>N</i> до прямой <i>AC</i> , если радпус описанной около треутольника <i>ABC</i> окружности равен 6√6, ∠ <i>BAC</i> = 30°, ∠ <i>ABC</i> = 105°. #36 16 В треутольнике <i>ABC</i> проведена биссектриса <i>BK</i> . а) Докажите, что $\frac{AC}{AB} = \frac{AC}{BC}$. б) Найдите площадь треутольника <i>ABC</i> , если <i>AB</i> = 13, <i>BC</i> = 7 и <i>BK</i> = $\frac{7\sqrt{13}}{4}$. #37 16 Дан прямоугольный треутольник <i>ABC</i> , если <i>AB</i> = 13, <i>BC</i> = 7 и <i>BK</i> = $\frac{7\sqrt{13}}{4}$. #37 16 Докажите, что прямые <i>MN</i> и <i>BO</i> параллельны. б) Найдите площадь четырёхугольника <i>BOMN</i> , если <i>CN</i> = 4 и <i>AM</i> : <i>MC</i> = 1 : 3. Вневипсанная окружность равнобедренного треутольника касается его боковой стороны. а) Докажите, что радиус этой окружности равен высоте треутольника, опущенной на основание. б) Покажите, что радиус этой окружности в 4 раза больше радиуса вписанной окружности треутольника. В каком отношении точка		a) Havayura ura $AD = CE$	[
#35 16 В треугольнике АВС все стороны различны. Прямая, содержащая высоту ВН треугольника АВС, вторично пересекает описанную около этого треугольника окружность в точке К. Отрезок ВN — диаметр этой окружности. а) Докажите, что АС и КN параздельны. 6) Найдите расстояние от точки N до прямой АС, если раднус описанной около треугольника АВС окружности равен 6√6, ∠ВАС = 30°, ∠АВС = 105°. #36 16 В треугольнике АВС проведена биссектриса ВК. а) Докажите, что ^{AE} / _{AB} = ^{CK} / _{BC} 6) Найдите площадь треугольника АВС, если АВ = 13, ВС = 7 и ВК = ^{7√13} / ₄ . #37 16 Дан прямоугольный треугольник АВС с прямым углом С. На катете АС взята точка М. Окружность с центром О и диаметром СМ касается гипотенузы в точке N. а) Докажите, что прямые МN и ВО параллельны. 6) Найдите площадь четырёхугольника ВОМN, если СN = 4 и АМ: МС = 1: 3. ▼ ■			
#36 В треугольнике АВС все стороны различны. Прямая, содержащая высоту ВН треугольника АВС, вторично пересекает описанную около этого треугольника окружность в точке К. Отрезок ВN — диаметр этой окружности.			
а) Докажите, что AC и KN парадлельны. 6) Найдите расстояние от точки N до прямой AC, если радиус описанной около треугольника ABC окружности равен 6√6, ∠BAC = 30°, ∠ABC = 105°. #36 16 В треугольнике ABC проведена биссектриса BK. а) Докажите, что ABC и проведена биссектриса BK. а) Докажите, что ABC и проведена биссектриса BK. б) Найдите площадь треугольника ABC, если AB = 13, BC = 7 и BK = ₹√13 / 4. #37 16 Дан прямоугольный треугольник ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается гипотенузы в точке N. а) Докажите, что прямые MN и BO параллельны. 6) Найдите площадь четырёхугольника BOMN, если CN = 4 и AM : MC = 1 : 3. #38 16 Вневписанная окружность равнобедренного треугольника касается его боковой стороны. 6) Источники Яшемо 2000 (36 вар) Яшемо 2018 Яшемо 2018 Яшемо 2019 (36 вар) Яшемо 2020			Источники: Яшенко 2020 (36 вар)
6) Найдите расстояние от точки N до прямой AC, если радпус описанной около треугольника ABC окружности равен 6√6, ∠BAC = 30°, ∠ABC = 105°. #36 16 В треугольнике ABC проведена биссектриса BK. а) Докажите, что AB = CK BC б) Найдите площадь треугольника ABC, если AB = 13, BC = 7 и BK = 7√13 / 4 #37 16 Дан прямоугольный треугольника ABC, если AB = 13, BC = 7 и BK = 7√13 / 4 #37 16 Дан прямоугольный треугольника ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается гипотенузы в точке N. а) Докажите, что прямые MN и BO параллельны. б) Найдите площадь четырёхугольника BOMN, если CN = 4 и AM: MC = 1:3. #38 16 Вневписанная окружность равнобедренного треугольника касается его боковой стороны. а) Докажите, что радпус этой окружности равен высоте треугольника, опущенной на основание. б) Известно, что радпус этой окружности в 4 раза больше радпуса вписанной окружности треугольника. В каком отношении точка		a) Hovewere has AC u KN hoperand had	7.M M M M M M M M.
#38 В треугольнике ABC проведена биссектриса BK. а) Докажите, что AB / AB / BC. б) Найдите плошадь треугольника ABC, если AB = 13, BC = 7 и BK = √√13 / 4. #37 Дан прямоугольный треугольник ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается гипотенузы в точке N. а) Докажите, что прямые MN и BO параллельны. б) Найдите площадь четырёхугольника BOMN, если CN = 4 и AM: MC = 1:3. #38 Вневписанная окружность равнобедренного треугольника касается его боковой стороны. а) Докажите, что радпус этой окружности равен высоте треугольника, опущенной на основание. (6) Известно, что радпус этой окружности в 4 раза больше радпуса вписанной окружности треугольника. В каком отношении точка		б) Найдите расстояние от точки N до прямой AC , если радиус описанной около треугольника ABC окружности равен $6\sqrt{6}$, $\angle BAC = 30^\circ$,	
#38 В треугольнике ABC проведена биссектриса BK. а) Докажите, что AB / AB / BC. б) Найдите плошадь треугольника ABC, если AB = 13, BC = 7 и BK = √√13 / 4. #37 Дан прямоугольный треугольник ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается гипотенузы в точке N. а) Докажите, что прямые MN и BO параллельны. б) Найдите площадь четырёхугольника BOMN, если CN = 4 и AM: MC = 1:3. #38 Вневписанная окружность равнобедренного треугольника касается его боковой стороны. а) Докажите, что радпус этой окружности равен высоте треугольника, опущенной на основание. (6) Известно, что радпус этой окружности в 4 раза больше радпуса вписанной окружности треугольника. В каком отношении точка	426		
а) Докажите, что $\frac{AR}{AB} = \frac{CR}{BC}$ 6) Найдите площадь треугольника ABC , если $AB = 13$, $BC = 7$ и $BK = \frac{7\sqrt{13}}{4}$. #37 16 Дан прямоугольный треугольник ABC с прямым углом C . На катете AC взята точка M . Окружность с центром O и диаметром CM касается гипотенузы в точке N . а) Докажите, что прямые MN и BO параллельны. б) Найдите площадь четырёхугольника $BOMN$, если $CN = 4$ и $AM : MC = 1 : 3$. **38 16 Вневписанная окружность равнобедренного треугольника касается его боковой стороны. а) Докажите, что радпус этой окружности равен высоте треугольника, опущенной на основание. 6) Известно, что радпус этой окружности в 4 раза больше радпуса вписанной окружности треугольника. В каком отношении точка			les .
а) Докажите, что $\frac{AB}{AB} = \frac{CR}{BC}$ б) Найдите площадь треугольника ABC , если $AB = 13$, $BC = 7$ и $BK = \frac{7\sqrt{13}}{4}$. #37 16 Дан прямоугольный треугольник ABC с прямым углом C . На катете AC взята точка M . Окружность с центром O и диаметром CM касается гипотенузы в точке N . а) Докажите, что прямые MN и BO параллельны. б) Найдите площадь четырёхугольника $BOMN$, если $CN = 4$ и $AM : MC = 1 : 3$. #38 16 Вневписанная окружность равнобедренного треугольника касается его боковой стороны. а) Докажите, что раднус этой окружности равен высоте треугольника, опущенной на основание. б) Извество, что раднус этой окружности в 4 раза больше раднуса вписанной окружности треугольника. В каком отношении точка	16	В треугольнике ABC проведена биссектриса BK .	источники:
#37 16 Дан прямоугольный треугольник ABC с прямым углом C . На катете AC взята точка M . Окружность с центром O и диаметром CM касается гипотенузы в точке N . а) Докажите, что прямые MN и BO параллельны. б) Найдите площадь четырёхугольника $BOMN$, если $CN=4$ и $AM:MC=1:3$. Вневписанная окружность равнобедренного треугольника касается его боковой стороны. а) Докажите, что радиус этой окружности равен высоте треугольника, опущенной на основание. б) Известно, что радиус этой окружности в 4 раза больше радиуса вписанной окружности треугольника. В каком отношении точка		a) Π_{OKAWITE} who $\frac{AK}{C} = \frac{CK}{C}$	Только РЕШУЕГЭ
#37 16 Дан прямоугольный треугольник ABC с прямым углом C . На катете AC взята точка M . Окружность с центром O и диаметром CM касается гипотенузы в точке N . а) Докажите, что прямые MN и BO параллельны. б) Найдите площадь четырёхугольника $BOMN$, если $CN=4$ и $AM:MC=1:3$. Вневписанная окружность равнобедренного треугольника касается его боковой стороны. а) Докажите, что раднус этой окружности равен высоте треугольника, опущенной на основание. б) Известно, что раднус этой окружности в 4 раза больше радиуса вписанной окружности треугольника. В каком отношении точка			
#37 16 Дан прямоугольный треугольник ABC с прямым углом C . На катете AC взята точка M . Окружность с центром O и диаметром CM касается гипотенузы в точке N . а) Докажите, что прямые MN и BO параллельны. б) Найдите площадь четырёхугольника $BOMN$, если $CN=4$ и $AM:MC=1:3$. Вневписанная окружность равнобедренного треугольника касается его боковой стороны. а) Докажите, что радиус этой окружности равен высоте треугольника, опущенной на основание. б) Известно, что радиус этой окружности в 4 раза больше радиуса вписанной окружности треугольника. В каком отношении точка		о) паидите площадь треугольника ABC , если $AB = 15$, $BC = /$ и $BK = \frac{1}{4}$.	
16 Дан прямоугольный треугольник ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается гипотенузы в точке N.	#27		
центром O и диаметром CM касается гипотенузы в точке N . а) Докажите, что прямые MN и BO параллельны. б) Найдите площадь четырёхугольника $BOMN$, если $CN=4$ и $AM:MC=1:3$. 76AFB6 #38 16 Вневписанная окружность равнобедренного треугольника касается его боковой стороны. а) Докажите, что радиус этой окружности равен высоте треугольника, опущенной на основание. б) Известно, что радиус этой окружности в 4 раза больше радиуса вписанной окружности треугольника. В каком отношении точка			Ita
а) Докажите, что прямые MN и BO параллельны. б) Найдите площадь четырёхугольника BOMN, если CN = 4 и AM : MC = 1 : 3. 76AFB6 #38 16 Вневписанная окружность равнобедренного треугольника касается его боковой стороны. а) Докажите, что радиус этой окружности равен высоте треугольника, опущенной на основание. б) Известно, что радиус этой окружности в 4 раза больше радиуса вписанной окружности треугольника. В каком отношении точка	16	Дан прямоугольный треугольник ABC с прямым углом C . На катете AC взята точка M . Окружность с	Источники:
а) Докажите, что прямые MN и BO параллельны. б) Найдите площадь четырёхугольника BOMN, если CN = 4 и AM: MC = 1:3. тоатра в в в в в в в в в в в в в в в в в в в		центром \mathcal{O} и диаметром $\mathcal{O}M$ касается гипотенузы в точке N .	
б) Найдите площадь четырёхугольника ВОМN, если CN = 4 и AM: MC = 1:3. тоаграбов вар) #38 16 Вневписанная окружность равнобедренного треугольника касается его боковой стороны. а) Докажите, что радиус этой окружности равен высоте треугольника, опущенной на основание. б) Известно, что радиус этой окружности в 4 раза больше радиуса вписанной окружности треугольника. В каком отношении точка		а) Докажите, что прямые MN и BO параллельны.	Ященко 2020 (36 вар)
#38 #38 #38 BHEBRIUCAHHAЯ ОКРУЖНОСТЬ РАВНОБЕДРЕННОГО ТРЕУГОЛЬНИКА КАСАЕТСЯ ЕГО БОКОВОЙ СТОРОНЫ. а) Докажите, что радиус этой окружности равен высоте треугольника, опущенной на основание. б) Известно, что радиус этой окружности в 4 раза больше радиуса вписанной окружности треугольника. В каком отношении точка MCTOUHNKI Яшенко 2020 (36 вар) Яшенко 2019 (36 вар) Гордин #16 2019 (36 вар) Гордин #16 2019 (36 вар) Гордин #16 2019 Гордин #16 201			
#38 16 Вневписанная окружность равнобедренного треугольника касается его боковой стороны. а) Докажите, что радиус этой окружности равен высоте треугольника, опущенной на основание. б) Известно, что радиус этой окружности в 4 раза больше радиуса вписанной окружности треугольника. В каком отношении точка MCTOЧНИКІ Яшенко 2020 (36 вар) Яшенко 2019 (36 вар) Горами #16 2019 Гора		о) Найдите площадь четырёхугольника $BOMN$, если $CN=4$ и $AM\cdot MC=1\cdot 3$	
#38 16 Вневписанная окружность равнобедренного треугольника касается его боковой стороны. а) Докажите, что радиус этой окружности равен высоте треугольника, опущенной на основание. б) Известно, что радиус этой окружности в 4 раза больше радиуса вписанной окружности треугольника. В каком отношении точка MCTOUHIKI Ященко 2020 (36 вар) Ященко 2019 (36 вар) Горанн #16 2019 Гор			
 Вневписанная окружность равнобедренного треугольника касается его боковой стороны. а) Докажите, что радиус этой окружности равен высоте треугольника, опущенной на основание. б) Известно, что радиус этой окружности в 4 раза больше радиуса вписанной окружности треугольника. В каком отношении точка 		V ♥ W	
 Вневписанная окружность равнобедренного треугольника касается его боковой стороны. а) Докажите, что радиус этой окружности равен высоте треугольника, опущенной на основание. б) Известно, что радиус этой окружности в 4 раза больше радиуса вписанной окружности треугольника. В каком отношении точка 	#38		
а) Докажите, что радиус этой окружности равен высоте треугольника, опущенной на основание. Ященко 2020 (36 вар) Яшенко 2019 (36 вар) Яшенко 2019 (36 вар) Гордин #16 2019		Вневписанная окружность равнобедренного треугольника касается его боковой стороны	Источники.
а) Докажите, что радиус этои окружности равен высоте треугольника, опущеннои на основание. б) Известно, что радиус этой окружности в 4 раза больше радиуса вписанной окружности треугольника. В каком отношении точка Гордин #16 2019			
касания вписанной окружности с обковой стороной треугольника делит эту сторону:			Ященко 2019 (36 вар)

Вневписанная окружность равнобедренного треугольника касается его боковой стороны.		Источники
а) Докажите, что радиус этой окружности равен высоте треугольника, опущенной на основание.		Ященко 2020 (36 вар)
б) Известно, что радиус этой окружности в пять раз больше радиуса вписанной окружности треугольника. В каком отношен касания вписанной окружности с боковой стороной треугольника делит эту сторону?	пии точка	Ященко 2019 (36 вар) Гордин #16 2019 Ященко 2018 (36 вар)
В остроугольном треугольнике ABC угол A равен 60° . Высоты BN и CM треугольника ABC пересекаются в точке H . Точка CM) — нантр	lide=
в остроугольных ABC угол A равен об . Высоты BN и CM треугольника ABC пересекаются в точке II . Точка с окружности, описанной около треугольника ABC .	<i>/</i> — центр	ИСТОЧНИКІ Основная волна 2019
а) Докажите, что $AH=AO$.		Ochobilaz Bolila 2019
6) Найдите площадь треугольника AHO , если $BC = 6\sqrt{3}$, $∠ABC = 45^{\circ}$.		
В треугольнике ABC известно, что $\angle BAC = 60^{\circ}$, $\angle ABC = 45^{\circ}$. Продолжения высот треугольника ABC пересекают описанну.	ю около него	Источник
окружность в точках M, N, P .		Ященко 2020 (36 вар) Ященко 2019 (36 вар)
а) Докажите, что треугольник MNP прямоугольный. 6) Найдите площадь треугольника MNP , если известно, что $BC=6$.		Гордин #16 2019
В треугольнике ABC известно, что $\angle BAC = 60^{\circ}$, $\angle ABC = 45^{\circ}$. Продолжения высот треугольника ABC пересекают описанну.	ю около него	Источник
окружность в точках M, N, P .		Ященко 2020 (36 вар)
а) Докажите, что треугольник MNP прямоугольный.		Ященко 2019 (36 вар) Гордин #16 2019
6) Найдите площадь треугольника MNP , если известно, что $BC=10$.		
Description ADC is recognized assume the form of the control of th		Истопичк
В треугольник ABC , в котором длина стороны AC больше длины стороны BC , вписана окружность с центром O . Точка B_1 сточке B относительно CO .	імметрична	Основная волна (Резерв) 20
а) Докажите, что A, B, O и B_1 лежат на одной окружности.		
6) Найдите площадь четырёхугольника 2		
В трапеции $ABCD$ основание AD в два раза больше основания BC . Внутри трапеции взяли точку M так, что углы ABM и DCM	I прямые.	Источник
а) Докажите, что $AM=DM.$		FIPI osfipi
$oxed{6}$) Найдите угол BAD , если угол ADC равен 70° , а расстояние от точки M до прямой AD равно стороне BC .	4E19FD	Ященко 2020 (36 вар) Ященко 2019 (36 вар) Основная волна 2017
	: : :	Основная волна 2017
В трапеции <i>ABCD</i> основание <i>AD</i> в два раза меньше основания <i>BC</i> . Внутри трапеции взяли точку <i>M</i> так, что углы <i>BAM</i> и <i>CD</i>	М прамые	Источникі
а) Докажите, что $BM = CM$.	и примые.	FIPI
а) докажите, что $BM = CM$. 6) Найдите угол ABC , если угол BCD равен 64° , а расстояние от точки M до прямой BC равно стороне AD .		оѕбірі Ященко 2020 (36 вар)
		Ященко 2019 (36 вар) Основная волна 2017
В треугольнике ABC известно, что $AC=10$ и $AB=BC=14$.		Источникі
а) Докажите, что средняя линия треугольника, параллельная стороне <i>AC</i> , пересекает окружность, вписанную в треугольник	ABC.	Ященко 2020 (36 вар)
6) Найдите отношение длин отрезков, на которые окружность делит среднюю линию, параллельную стороне AC.		
В треугольнике ABC известно, что $AC=26$ и $AB=BC=38$.		Источник
а) Докажите, что средняя линия треугольника, параллельная стороне AC , пересекает окружность, вписанную в треугольник	ABC.	Ященко 2020 (36 вар)
6) Найдите отношение длин отрезков, на которые окружность делит среднюю линию, параллельную стороне АС.		
		le a
В прямоугольном треугольнике ABC точки M и N — середины гипотенузы AB и катета BC соответственно. Биссектриса угла пересекает прямую MN в точке L .	a <i>BAC</i>	Источникі
а) Докажите, что треугольники <i>AML</i> и <i>BLC</i> подобны.		Основная волна 2016
б) Найдите отношение площадей этих треугольников, если $\cos \angle BAC = \frac{7}{25}$.		
		Источникі
D		FIPI
В трапеции $ABCD$ боковая сторона AB перпендикулярна основаниям. Из точки A на сторону CD опустили перпендикуляр AH . На стороне AB отмечена точка E так, что CD и CE перпендикулярны.	о прямые	osfipi
Из точки A на сторону CD опустили перпендикуляр AH . На стороне AB отмечена точка E так, что	о прямые	
Из точки A на сторону CD опустили перпендикуляр AH . На стороне AB отмечена точка E так, что CD и CE перпендикулярны.	о прямые	osfipi Сергеев 2018

#45_Д	3	la -
16	В трапеции ABCD боковая сторона AB перпендикулярна основаниям. Из точки A на сторону CD опустили перпендикуляр AH. На стороне AB отмечена точка E так, что прямые CD и CE перпендикулярны.	Источники:
		FIPI osfipi
	a) Докажите, что прямые <i>BH</i> и <i>ED</i> параллельны. б) Найдите отношение <i>BH</i> к <i>ED</i> , если ∠ <i>BCD</i> = 135°.	Сергеев 2018 Ященко 2018
#46		
16	В параллелограмм вписана окружность.	Источники:
10		Ященко 2020 (50 вар)
	а) Докажите, что этот параллелограмм — ромб. б) Окружность, касающаяся стороны ромба, делит её на отрезки, равные 3 и 2. Найдите площадь четырёхугольника с вершинами в точках касания окружности со сторонами ромба.	Ященко 2019 (36 вар) Ященко 2018 (36 вар) Семёнов 2015
#46_Д	3	
16	В параллелограмм вписана окружность.	Источники:
	а) Докажите, что этот параллелограмм – ромб.	Ященко 2020 (50 вар) Ященко 2019 (36 вар)
	б) Окружность, касающаяся стороны ромба, делит её на отрезки, равные 4 и 3. Найдите площадь четырёхугольника с вершинами в точках касания окружности со сторонами ромба.	Яшенко 2018 (36 вар) Семёнов 2015
#47		
16	В выпуклом четырёхугольнике $ABCD$ точки K, L, M и N — середины сторон AB, BC, CD и AD соответственно.	Источники:
	Service acceptable due to experience and acceptable	FIPI osfipi
	Площади четырёхугольников $ABLN$ и $NLCD$ равны, а площади четырёхугольников $KBCM$ и $AKMD$ относятся как $11:17$.	
	а) Докажите, что прямые BC и AD параллельны.	
	б) Найдите отношение BC к AD .	
	♦ ♦ ✓ A0FD25	
#48		
16	В прямоугольном треугольнике ABC с прямым углом C точки M и N — середины катетов AC и BC соответственно, CH — высота.	Источники:
	а) Докажите, что прямые MH и NH перпендикулярны. 6) Пусть P — точка пересечения прямых BC и MH . Найдите площадь треугольника PQM , если $AH = 12$ и $BH = 3$.	Основная волна (Резерв) 2016
#48_Д	3	
16	В прямоугольном треугольнике ABC с прямым углом C точки M и N — середины катетов AC и BC соответственно, CH — высота.	Источники:
	а) Докажите, что прямые <i>MH</i> и <i>NH</i> перпендикулярны.	Основная волна (Резерв) 2016
	б) Пусть $P-$ точка пересечения прямых AC и NH , а $Q-$ точка пересечения прямых BC и MH . Найдите площадь треугольника PQM , если $AH=4$ и $BH=2$.	
#49		
16	Дан треугольник ABC . Серединный перпендикуляр к стороне AB пересекается с биссектрисой угла BAC в точке K , лежащей на стороне BC .	Источники:
	а) Докажите, что $AC^2 = BC \cdot CK$.	Ященко 2020 (50 вар) Ященко 2020 (10 вар)
	а) докажите, что $AC^{-} = BC \cdot CK$. б) Найдите радиус окружности, вписанной в треугольник AKC , если $\sin B = 0.6$ и сторона $AC = 24$.	Ященко 2019 (36 вар) Ященко 2019 (14 вар)
#49_Д		
#49_д 16	Э Дан треугольник <i>ABC</i> . Серединный перпендикуляр к стороне <i>AB</i> пересекается с биссектрисой угла <i>BAC</i> в точке <i>K</i> , лежащей на стороне	Источники:
10	BC.	Ященко 2020 (50 вар)
	а) Докажите, что $AC^2 = BC \cdot CK$.	Ященко 2020 (10 вар) Ященко 2019 (36 вар)
	б) Найдите радиус окружности, вписанной в треугольник AKC , если $\sin B = \frac{\sqrt{11}}{6}$ и сторона $AC = 45$.	Ященко 2019 (14 вар)
#50		
16	Вершины K и L квадрата $KLMN$ с центром O лежат на стороне AB треугольника ABC , а вершины M и N — на сторонах BC и AC соответственно. Высота CH треугольника ABC проходит через точку O и пересекает отрезок MN в точке D , причём $CD = DO = OH$.	Источники:
		Ященко 2020 (50 вар) Ященко 2020 (36 вар)
	а) Докажите, что треугольник ABC равнобедренный и прямоугольный. 6) Пусть прямая AD пересекает сторону BC в точке Q . Найдите AQ , если сторона квадрата $KL=2$.	Ященко 2020 (14 вар) Ященко 2020 (10 вар) Ященко 2019 (36 вар)
		Ященко 2019 (50 вар) Ященко 2019 (14 вар)
#50_Д	3	
	Вершины K и L квадрата $KLMN$ с центром O лежат на стороне AB треугольника ABC , а вершины M и N — на сторонах BC и AC	Источники:
16	соответственно. Высота CH треугольника ABC проходит через точку O и пересекает отрезок MN в точке D , причём $CD=DO=OH$.	Яшенко 2020 (50 вап)
16		Ященко 2020 (50 вар) Ященко 2020 (36 вар) Ященко 2020 (14 вар)
16	а) Докажите, что треугольник <i>ABC</i> равнобедренный и прямоугольный. б) Пусть прямая <i>AD</i> пересекает сторону <i>BC</i> в точке <i>Q</i> . Найдите <i>AQ</i> , если сторона квадрата <i>KL</i> = 4.	Ященко 2020 (36 вар)

_	Дана трапеция $ABCD$ с основаниями AD и BC . Точки M и N — середины сторон AB и CD соответственно. Окружность проходит через точки B и C и пересекает отрезки BM и CN в точках P и Q , отличных от кондов отрезка, соответственно.	Источник Досрочная волна 2019
	а) Докажите, что точки M , N , P и Q лежат на одной окружности. б) Найдите PM , если отрезки AQ и BQ перпендикулярны, $AB=15$, $BC=1$, $CD=17$, $AD=9$.	
	В треугольнике ABC проведены биссектрисы BM и CN . Оказалось, что точки B , C , M и N лежат на одной окружности.	Источни
	а) Докажите, что треугольник ABC равнобедренный. 6) Пусть P — точка пересечения биссектрис треугольника ABC . Найдите площадь четырёхугольника $AMPN$, если $MN:BC=2:5$, а $BN=14$.	СтатГрад 25.09.19
Į3		
	В треугольнике ABC проведены биссектрисы BM и CN . Оказалось, что точки B , C , M и N лежат на одной окружности.	ИСТОЧНИІ СтатГрад 25.09.19
	а) Докажите, что треугольник ABC равнобедренный. 6) Пусть P — точка пересечения биссектрис треугольника ABC . Найдите площадь четырёхугольника $AMPN$, если $MN:BC=2:5$, а $BN=21$.	Clair pag 23.05.15
	Боковые стороны AB и AC равнобедренного треугольника ABC вдвое больше основания BC . На боковых сторонах AB и AC отложены отрезки AP и CQ соответственно, равные четверти этих сторон.	ИСТОЧНИ Основная волна 2018
	а) Докажите, что средняя линия треугольника, параллельная его основанию, делится прямой PQ в отношении 1:3. 6) Найдите длину отрезку прямой PQ , заключенного внутри вписанной окружности треугольника ABC , если $BC=4\sqrt{19}$.	
	В остроугольном треугольнике ABC проведены высоты AK и CM . На них из точек M и K опущены перпендикуляры ME и KH соответственно.	Источни
	а) Докажите, что прямые EH и AC параллельны.	оябрі Ященко 2018 Основная волна 2016
	б) Найдите отношение EH к AC , если $\angle ABC=30^\circ$.	
	♦ 3 ✓ 250B4D	
3		
	В остроугольном треугольнике ABC проведены высоты AK и CM . На них из точек M и K опущены перпендикуляры ME и KH соответственно.	Источни _{БІРІ}
	а) Докажите, что прямые <i>EH</i> и <i>AC</i> парадлельны.	osfipi Ященко 2018 Основная волна 2016
	6) Найдите отношение EH к AC , если $∠ABC = 45^\circ$.	Основная волна 2010
	В прямоугольную трапецию $ABCD$ с прямым углом при вершине A и острым углом при вершине D вписана окружность с центром O . Прямая DO пересекает сторону AB в точке M , а прямая CO пересекает сторону AD в точке K .	ИСТОЧНИ Основная волна 2017
	а) Докажите, что $\angle AMO = \angle DKO$. б) Найдите площадь треугольника AOM , если $BC = 10$ и $AD = 15$.	
	В прямоугольном треугольнике ABC с прямым углом C известны стороны $AC=15, BC=8$. Окружность радиуса 2,5 с центром O на стороне BC проходит через вершину C . Вторая окружность касается катета AC , гипотенузы треугольника, а также внешним образом касается первой окружности.	Источниі СтатГрад 2015
	а) Докажите, что радиус второй окружности меньше, чем $\frac{1}{4}$ длины катета AC . 6) Найдите радиус второй окружности.	
3		
	В прямоугольном треугольнике ABC с прямым углом C известны стороны $AC=12$, $BC=5$. Окружность радиуса 0.5 с центром O на стороне BC проходит через вершину C . Вторая окружность касается катета AC , гипотенузы треугольника, а также внешним образом касается первой окружности.	ИСТОЧНИІ СтатГрад 2015
	а) Докажите, что радиус второй окружности меньше, чем $\frac{1}{5}$ длины катета AC . 6) Найдите радиус второй окружности.	
1	Две окружности касаются внешним образом в точке K . Прямая AB касается первой окружности в точке A , а второй – в точке B . Прямая BK пересекает первую окружность в точке D , прямая AK пересекает вторую окружность в точке C .	ИСТОЧНИ Досрочная волна (Резерг
1	а) Докажите, что прямые AD и BC параллельны.	Демо 2020 Демо 2019
		Демо 2018
	6) Найдите площадь треугольника АКВ, если известно, что радиусы окружностей равны 4 и 1.	Демо 2017
-	б) Найдите площадь треугольника АКВ, если известно, что радиусы окружностей равны 4 и 1.	

#51

BK пересекает первую окружность в точке D , прямая AK пересекает вторую окружность в точке C .	досрочная волна (Резерв
a) Докажите, что прямые AD и BC параллельны.	Демо 2020 Демо 2019
б) Найдите площадь треугольника <i>DKC</i> , если известно, что радиусы окружностей равны 4 и 9.	Демо 2018
	Демо 2017 Демо 2016
	Демо 2015
	Демо 2014 Ященко 2018 (30 вар)
	la a
Две окружности касаются внешним образом в точке K . Прямая AB касается первой окружности в точке A , а второй – в точке B . Пряма	ая Источниі
BK пересекает первую окружность в точке D , прямая AK пересекает вторую окружность в точке C .	Досрочная волна (Резерг
а) Докажите, что прямые AD и BC параллельны.	
б) Найдите радиус окружности, описанной около треугольника ВСD, если известно, что радиус первой окружности равен 4, а радиус	
второй окружности равен 1.	
D A DCD	Источни
В прямоугольной трапеции $ABCD$ с прямым углом при вершине A расположены две окружности. Одна из них касается боковых сторон	FIPI
и большего основания AD , вторая — боковых сторон, меньшего основания BC и первой окружности.	osfipi
1100	Ященко 2020 (36 вар) Ященко 2019 (36 вар)
а) Прямая, проходящая через центры окружностей, пересекает основание AD в точке P . Докажите, что AP	Ященко 2018 Основная волна 2015
$\frac{AP}{PD} = \sin D.$	Основная волна 2013
PD	
4 1	
б) Найдите площадь трапеции, если радиусы окружностей равны $\frac{1}{3}$ и $\frac{1}{3}$.	
№ 3 999FC	74
2	Источни
Задание с развернутым ответом	FIPI
В прямоугольной трапеции $ABCD$ с прямым углом при вершине A расположены две окружности. Одна из них касается боковых сторон	osfipi
и большего основания AD , вторая — боковых сторон, меньшего основания BC и первой окружности.	Ященко 2020 (36 вар) Ященко 2019 (36 вар)
а) Прямая, проходящая через центры окружностей, пересекает основание AD в точке P . Докажите, что $\frac{AP}{PD} = \sin D$.	Ященко 2018 Основная волна 2015
б) Найдите площадь трапеции, если радиусы окружностей равны 2 и 1.	
II II	
і Номер: 4613	
В прямоугольном треугольнике АВС проведена высота СН из вершины прямого угла. В треугольники АСН и ВСН вписаны окружност	ше Источни
центрами O_1 и O_2 соответственно, касающиеся прямой CH в точках M и N соответственно.	.,
	Основная волна 2017
а) Докажите, что прямые AO_1 и CO_2 перпендикулярны. б) Найдите площадь четырёхугольника MO_1NO_2 , если $AC=12$ и $BC=5$.	
e far and a contrata far far and a first far and a contrata far and a contrata far and a contrata far and a co	
В прямоугольном треугольнике АВС проведена высота СН из вершины прямого угла. В треугольники АСН и ВСН вписаны окружност	пис Источни
центрами O_1 и O_2 соответственно, касающиеся прямой CH в точках M и N соответственно.	Основная волна 2017
a) Havayuwa ura maguya 40 u 60 manayuwa magayu	2017
а) Докажите, что прямые AO_1 и CO_2 перпендикулярны. б) Найдите площадь четырёхугольника MO_1NO_2 , если $AC=20$ и $BC=15$.	
Дан остроугольный треугольник <i>ABC</i> . Биссектриса внутреннего угла при вершине <i>B</i> пересекает биссектрису внешнего угла при верши	ине Источни
C в точке M , а биссектриса внутреннего угла при вершине C пересекает биссектрису внешнего угла при вершине B в точке B .	
	Ященко 2020 (50 вар) Ященко 2020 (36 вар)
	Ященко 2020 (14 вар)
a) Докажите, что 2∠СNM = ∠ABC. 6) Наймите CN остуг AB = 4C = 13, BC = 10	
6) Найдите CN , если $AB = AC = 13$, $BC = 10$.	
6) Найдите CN , если $AB = AC = 13$, $BC = 10$.	ине Источни
6) Найдите CN , если $AB = AC = 13$, $BC = 10$.	11010 11111
6) Найдите <i>CN</i> , если <i>AB</i> = <i>AC</i> = 13, <i>BC</i> = 10. Дан остроугольный треугольник <i>ABC</i> . Биссектриса внутреннего угла при вершине <i>B</i> пересекает биссектрису внешнего угла при верши <i>C</i> в точке <i>M</i> , а биссектриса внутреннего угла при вершине <i>C</i> пересекает биссектрису внешнего угла при вершине <i>B</i> в точке <i>N</i> .	Ященко 2020 (50 вар) Ященко 2020 (36 вар)
 б) Найдите CN, если AB = AC = 13, BC = 10. Дан остроугольный треугольник ABC. Биссектриса внутреннего угла при вершине В пересекает биссектрису внешнего угла при вершине 	Ященко 2020 (50 вар)