

Instituto Tecnológico de Costa Rica

ÁREA DE INGENIERÍA EN COMPUTADORES

CE-4202: Taller de Diseño Analógico

Tarea #1: Arduino

Estudiante: Arturo CHINCHILLA S. 2013009344

Profesor:
Rodolfo Tacsan Chaves

I Semestre, 26 de marzo de 2019

¿Qué es?

Según [1] "Arduino es una plataforma de desarrollo basada en una placa electrónica de hardware libre que incorpora un microcontrolador re-programable y una serie de pines hembra, los que permiten establecer conexiones entre el microcontrolador y los diferentes sensores y actuadores de una manera muy sencilla (principalmente con cables dupont)".

¿Cómo trabaja?

Para [2] el funcionamiento de la placa a muy grosso modo, se compone de:

- Conexiones de Entrada: Mediante sensores conectados a sus pins,
 Arduino recibe distintas señales provenientes del entono.

 Microcontrolador: Es el cerebro de Arduino, con los datos recibidos del
 entorno es donde, a través de un lenguaje de programación basado en C++
 (open source y con una curva de aprendizaje rápida), el programador le
 dice cómo interpretar la información, qué parámetros buscar y comparar, y
 por último, qué acciones tomar a modo de respuesta.
- Conexiones de Salida: Dependiendo del proyecto en el que esté
 trabajando, y en función de las órdenes que se le hayan dado programando
 el microcontrolador, Arduino puede conectarse con diversos actuadores
 (relés, pantallas, motores...), y sistemas lógicos (otras placas,
 ordenadores...) para provocar la respuesta que necesitamos.
- Puertos/Buses de comunicación: serie, I2C, SPI en la placa y ethernet, wifi, modbus, can bus, RS232, etc... mediante shields.

Explique la arquitectura detrás de esta tecnología. ¿Qué circuitos integrados son necesarios para el funcionamiento de esta tecnología?

En [1] se menciona que al igual que ocurre con el resto de microcontroladores usados en otras placas Arduino, el ATmega328P tiene una arquitectura de tipo AVR, arquitectura desarrollada por Atmel y en cierta medida "competencia" de otras

arquitecturas como por ejemplo la PIC del fabricante Microchip. Mas concretamente, el ATmega328P pertenece a la subfamilia de microcontroladores "megaAVR". Otras subfamilias de la arquitectura AVR son la "tinyAVR" (cuyos microcontroladores son mas limitados y se identifica con el nombre ATtiny) y la "XMEGA"(cuyos microcontroladores son mas capaces y se identifican con el nombre de ATxmega).

En la Figura 1 tomada de [3] se muestra el diagrama de bloques de una arquitectura AVR.

Figura 1. Diagrama de bloques de la Arquitectura AVR

Lenguaje de programación que utiliza y cómo funciona

En [4] se menciona que el lenguaje de programación de Arduino está basado en C++ y aunque la referencia para el lenguaje de programación de Arduino está en su página oficial, también es posible usar comandos estándar de C++ en la programación funciones para Arduino.

Ya que el lenguaje está basado en C++, éste se puede dividir en 3 partes principales, primeramente, tenemos las funciones, que es donde se define código para realizar tareas específicas. De segundo tenemos las variables, las cuales son utilizadas para almacenar y manejar mediante una etiqueta datos, pines, etc. Por último, tenemos los loops, que son utilizadas para realizar los sketches (while y for en C++).

¿En qué se diferencia ARDUINO a Raspberry PI?

Para [5], Arduino, a pesar de poder ser programado con diferentes lenguajes, jamás podrá funcionar y operar como sistema operativo de modo que, a groso modo, no puede pensar, tomar decisiones, ni conectarse a internet por sí mismo. Mientras que Raspberry Pi es un micro ordenador muy económico que utiliza Linux (según quiera el usuario) como sistema operativo.

Arduino	Raspberry Pi
Microcontrolador ATMEGA 328	Microprocesador: 256/512 MB de RAM
No tiene Sistema Operativo	Sistema Operativo propio: Raspbian
Necesita Shield para acceso a internet	Puerto de comunicación Ethernet
Prototipado electrónico y robótico	Desarrollo y posibilidades informáticas
USB, 19 pines GPIO	USB, HDMI, RCA, Audio 3.5mm, 40
	pines GPIO
Velocidad 16 MHz	Velocidad 700 MHz
Pensado para la electrónica	Pensado para la educación informática

Tabla 1. Comparativa entre Arduino y Raspberry Pi.

¿Qué otros embebidos hacen competencia con Arduino?

Además de la ya mencionada Raspberry Pi, existen otras plataformas alternativas a Arduino, como pueden ser:

- NANODE: es la creación de un Ing. Electrónico de Reino Unido de nombre Ken Boak. Algunas características son: Conector Ethernet, Entorno de desarrollo de Arduino, API para proyectos en línea, Bajo costo.
- TEENSY: Sus capacidades le permiten superar algunos Arduinos con facilidad, pues su procesador de 32 bit ARM Cortex-M4 72 MHz CPU le permite crear proyectos que necesiten mayor procesamiento de datos y aunque la comunidad es escasa te permite utilizar el IDE de Arduino para programarla en vez de C como es por defecto. Algunas características son: Conexión USB, 46 Pines, Entorno de desarrollo de Arduino, Bajo costo.
- MOTEINO: Fue diseñado para ser una plataforma inalámbrica compacta, adecuada para proyectos de automatización del hogar. Algunas de sus características son: incluye el chip y la antena en una sola placa, Bajo consumo, Bajo costo, Entorno de desarrollo de Arduino.

Aplicaciones de esta tecnología en la industria

Según [6] Existen multitud de entornos de aplicación de Arduino: automatización industrial, domótica, herramienta de prototipado, plataforma de entrenamiento para aprendizaje de electrónica, tecnología para artistas, eficiencia energética, monitorización, adquisición de datos, DIY, aprendizaje de habilidades tecnológicas y programación, etc...

Bibliografía

- [1]"¿Que es Arduino? ~ Arduino.cl Plataforma Open Source para el desarrollo de prototipos electrónicos", *Arduino.cl Plataforma Open Source para el desarrollo de prototipos electrónicos*. [Online]. Available: http://arduino.cl/que-es-arduino/. [Accessed: 24- Mar- 2019].
- [2]"Cómo funciona Arduino.", *Aprendiendo Arduino*, 2016. [Online]. Available: https://aprendiendoarduino.wordpress.com/2016/03/28/como-funciona-arduino/. [Accessed: 24- Mar- 2019].
- [3] *Cdn.sparkfun.com*. [Online]. Available: https://cdn.sparkfun.com/assets/c/a/8/e/4/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf. [Accessed: 24- Mar- 2019].
- [4]"Lenguaje de programación C++", Aprendiendo Arduino. [Online]. Available: https://aprendiendoarduino.wordpress.com/2015/03/26/lenguaje-de-programacion-c/. [Accessed: 24- Mar- 2019].
- [5]"Diferencias entre Arduino y Raspberry Pi", Leantec Robotics&Electronics. [Online]. Available: https://leantec.es/blog/22_Diferencias-entre-Arduino-y-Raspberry-Pi.html. [Accessed: 24- Mar- 2019].
- [6]"Aplicaciones Industriales | Aprendiendo Arduino", Aprendiendoarduino.wordpress.com. [Online]. Available: https://aprendiendoarduino.wordpress.com/tag/aplicaciones-industriales/. [Accessed: 25- Mar- 2019].