Lecture 30-31

Balanced Binary Tree (AVL Tree)

IT205: Data Structures (AY 2023/24 Sem II Sec B) — Dr. Arpit Rana

Issues with Binary Search Tree

Average search time in a binary search tree

$$\Gamma = \frac{\sum_{i=1}^{n} \tau_{i}}{n}$$

- τ= Number of comparisons for the ith element
- n = Total number of elements in the binary search tree

A binary search tree should be with a minimum value of average search time (Γ) .

A skewed binary tree obtained from lexicographical order of data

$$\Gamma = (1 + 2 + ... + 12) / 12 = 6.5$$

A binary search tree (half skewed version)

$$\Gamma = [(1 + 2 + ... + 7) + (2 + 3 + ... + 6)] / 12 = 4$$

A binary search tree (obtained by inserting the data into the order of months).

$$\Gamma = [(1 + 2 + ... + 7) + (2 + 3 + ... + 6)] / 12 = 4$$
 $\Gamma = [(2 + ... + 5) + (3 + 4) + (1 + ... + 6)] / 12 = 3.5$

it means that when we chose balanced binary tree it reduces avg search time

A binary search tree obtained by a special technique

$$\Gamma$$
= 3.16 (1+2+3+4)+(3)+(2+3+4+5)+(3+4)+4/12

Finding the Best BST

How to find a binary search tree with a minimum value of average search time?

- Height balanced binary search tree a.k.a AVL tree (Adelson–Velsky and Landis) Concept of balance factor of a
- node $bf = Height of the left subtree (h_L) Height of the right subtree (h_R)$

Height Balanced Binary Tree: Definition

A balanced binary tree (a.k.a. AVL tree) is a binary tree in which the height of the two subtrees of every node never differ by more than 1.

$$bf = |h_L - h_R| \le 1$$

Steps

:

- Insert node into a binary search tree
- Compute the balance factors
- Decide the pivot node
- Balance the unbalance tree through rotations

AVL Rotations: Left Rotation

Left (anti-clockwise) Rotation

q = right(p)
hold = left(q)
left(q) = p
right(p) = hold

Initially After Inserting (10) Perform Rotation

node a) in the left side

and then take become

imbalance then it is

called 11- imbalance

is called 11-

Rotation or Right

rotation on clock wise rolation

AVL Rotations: Right Rotation

Right (clockwise) Rotation

q = left(p)hold = right(q)right(q) = pleft(p) = hold

Root is the initial parent and Pivot is the child to take the root's place.

AVL Rotations

- LL (Left) Rotation
- RR (Right) Rotation
- LR (Left+Right)Rotation
- RL (Right+Left) Rotation

Right (RR) rotation

A single rotation applied when a node is inserted in the left subtree of a left subtree. In the given example, node C now has a balance factor of 2 after the insertion of node A. By rotating the tree right (clockwise), node B becomes the root resulting in a balanced tree.

Left (LL) rotation

A single rotation applied when a node is inserted in the right subtree of a right subtree. In the given example, node A has a balance factor of 2 after the insertion of node C. By rotating the tree left (anti-clockwise), node B becomes the root resulting in a balanced tree.

Left-Right (LR) Rotation

A double rotation in which a left rotation is followed by a right rotation. In the given example, node B is causing an imbalance resulting in node C to have a balance factor of 2. As node B is inserted in the right subtree of node A, a left rotation needs to be applied. However, a single rotation will not give us the required results. Now, all we have to do is apply the right rotation as shown before to achieve a balanced tree.

Right-Left (RL) Rotation

A double rotation in which a right rotation is followed by a left rotation. In the given example, node B is causing an imbalance resulting in node A to have a balance factor of 2. As node B is inserted in the left subtree of node C, a right rotation needs to be applied. However, just as before, a single rotation will not give us the required results. Now, by applying the left rotation as shown before, we can achieve a balanced tree.

LL ROTATION

LR ROTATION

Rotations: When to Use What

```
IF tree is right heavy {
    IF tree's right subtree is left heavy {
        Perform Right Left rotation
    ELSE {
        Perform Single Left rotation
ELSE IF tree is left heavy {
    IF tree's left subtree is right heavy {
        Perform Left Right rotation
    ELSE {
        Perform Single Right rotation
```


Balanced Binary Tree: Property

Maximum height possible in an AVL tree with *n* number of nodes is given by

$$h_{\text{max}} = 1.44 \log_2 n$$

Exercise

Construct an AVL tree with the following elements:

H, I, J, B, A, E, C, F, D, G, K, L

Code - > avl2.cpp

Construct an AVL tree with the following elements:

H, I, J, B, A, E, C, F, D, G, K, L

- On inserting the above elements, especially in the case of H, the BST becomes unbalanced as the Balance Factor of H is -2.
- Since the BST is right-skewed, we will perform LL (anti-clockwise) Rotation on node H.

Construct an AVL tree with the following elements:

- On inserting the above elements, especially in case of A, the BST becomes unbalanced as the Balance Factor of H and I is 2, we consider the first node from the last inserted node i.e. H.
- Since the BST from H is left-skewed, we will perform RR (clockwise) Rotation on node H.

Construct an AVL tree with the following elements:

H, I, J, B, A, $\underline{\mathbf{E}}$, C, F, D, G, K, L

- On inserting E, BST becomes unbalanced as the Balance Factor of I is 2,
- Since if we travel from E to I we find that it is inserted in the left subtree of right subtree of I, we will perform RL Rotation on node I.
- LR = LL (anti-clockwise) rotation + RR (clockwise)

Construct an AVL tree with the following elements:

H, I, J, B, A, E, C, F, D, G, K, L

- On inserting C, F, D, BST becomes unbalanced as the Balance Factor of B and H is -2.
- Since if we travel from D to B we find that it is inserted in the left subtree of right subtree of B, we will perform RL Rotation on node I.
- RL = RR + LL rotation.

Construct an AVL tree with the following elements:

A node is always deleted as a leaf node. After deleting a node, the balance factors of the nodes get changed. In order to rebalance the balance factor, suitable rotations are performed.

Locate nodeToBeDeleted (recursion is used to find nodeToBeDeleted.

There are three cases for deleting a node:

- If nodeToBeDeleted is the leaf node (ie. does not have any child), then remove nodeToBeDeleted.
- If nodeToBeDeleted has one child, then substitute the contents of nodeToBeDeleted with that of the child. Remove the child.
- If nodeToBeDeleted has two children, find the inorder successor w of nodeToBeDeleted (i.e., node with a minimum value of key in the right subtree).

A node is always deleted as a leaf node. After deleting a node, the balance factors of the nodes get changed. In order to rebalance the balance factor, suitable rotations are performed.

A node is always deleted as a leaf node. After deleting a node, the balance factors of the nodes get changed. In order to rebalance the balance factor, suitable rotations are performed.

A node is always deleted as a leaf node. After deleting a node, the balance factors of the nodes get changed. In order to rebalance the balance factor, suitable rotations are performed.

Augmenting a Data Structure

Augmenting a data structure means storing additional information in it.

- Augmentation is not always straightforward.
- The added information must be updated and maintained by the ordinary operations on the data structure.
- For example,
 - Maintaining the balance factor of each node in the AVL tree

all operation avl1.cpp

Next Lecture

• Heap Tree