Data Sheet No. PD60143-N

IR2127(S) / IR2128(S) IR21271(S)

CURRENT SENSING SINGLE CHANNEL DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V
 Tolerant to negative transient voltage dV/dt immune
- Application- specific gate drive range:
 Motor Drive: 12 to 20V (IR2127/IR2128)
 Automotive: 9 to 20V (IR21271)
- Undervoltage lockout
- 3.3V, 5V and 15V input logic compatible
- FAULT lead indicates shutdown has occured
- Output in phase with input (IR2127/IR21271)
- Output out of phase with input (IR2128)

Description

The IR2127/IR2128/IR21271(S) is a high voltage, high speed power MOSFET and IGBT driver. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs, down to 3.3V. The protection circuity detects over-current in the driven power transistor and terminates the gate drive voltage. An open drain FAULT signal is provided to indicate that an over-current shutdown has occurred. The output driver features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side or low side configuration which operates up to 600 volts.

Product Summary

 VOFFSET
 600V max.

 Io+/ 200 mA / 420 mA

 Vout
 12 - 20V (IR2127/IR2128)
 9 - 20V (IR21271)

 VCSth
 250 mV or 1.8V

 ton/off (typ.)
 200 & 150 ns

Packages

Typical Connection

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Min.	Max.	Units
VB	High Side Floating Supply Voltage		-0.3	625	
Vs	High Side Floating Offset Voltage		V _B - 25	V _B + 0.3	
V _{HO}	High Side Floating Output Voltage		V _S - 0.3	V _B + 0.3	
Vcc	Logic Supply Voltage		-0.3	25	V
VIN	Logic Input Voltage		-0.3	V _{CC} + 0.3	
V _{FLT}	FAULT Output Voltage		-0.3	V _{CC} + 0.3	
Vcs	Current Sense Voltage		V _S - 0.3	V _B + 0.3	
dV _s /dt	Allowable Offset Supply Voltage Transient		_	50	V/ns
PD	Package Power Dissipation @ T _A ≤ +25°C	(8 Lead DIP)	_	1.0	W
		(8 Lead SOIC)	_	0.625	VV
Rth _{JA}	Thermal Resistance, Junction to Ambient	(8 Lead DIP)	_	125	°C/W
		(8 Lead SOIC)	_	200	C/VV
TJ	Junction Temperature		_	150	
TS	Storage Temperature		-55	150	°C
TL	Lead Temperature (Soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition		Min.	Max.	Units
V _B	High Side Floating Supply Voltage	(IR2127/IR2128)	V _S + 12	V _S + 20	
		(IR21271)	V _S + 9	V _S + 20	
Vs	High Side Floating Offset Voltage		Note 1	600	
VHO	High Side Floating Output Voltage		Vs	VB	
Vcc	Logic Supply Voltage		10	20	V
V _{IN}	Logic Input Voltage		0	V _{CC}	
V _{FLT}	FAULT Output Voltage		0	Vcc	
Vcs	Current Sense Signal Voltage		Vs	Vs + 5	
T _A	Ambient Temperature		-40	125	°C

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, C_L = 1000 pF and T_A = 25°C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-On Propagation Delay	_	200	250		V _S = 0V
t _{off}	Turn-Off Propagation Delay	_	150	200		V _S = 600V
t _r	Turn-On Rise Time	_	80	130		
t _f	Turn-Off Fall Time	_	40	65	ns	
t _{bl}	Start-Up Blanking Time	500	700	900		
t _{cs}	CS Shutdown Propagation Delay	_	240	360		
t _{flt}	CS to FAULT Pull-Up Propagation Delay	_	340	510		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to V_S .

Symbol	Definition		Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" Input Voltage Logic "0" Input Voltage	(IR2127/IR21271) (IR2128)	3.0	_	_	V	
V _{IL}	Logic "0" Input Voltage Logic "1" Input Voltage	(IR2127/IR21271) (IR2128)	_		0.8	V	V _{CC} = 10V to 20V
V _{CSTH+}	CS Input Positive	(IR2127/IR2128)	180	250	320	mV	
	Going Threshold	(IR21271)	_	1.8	_	V	
VoH	High Level Output Voltage, VBI	AS - VO	_	_	100	mV IO = 0A	
V _{OL}	Low Level Output Voltage, VO		_	_	100		IO = 0A
I _{LK}	Offset Supply Leakage Curren	t	_	_	50		$V_{B} = V_{S} = 600V$
I _{QBS}	Quiescent V _{BS} Supply Current		_	200	400		V _{IN} = 0V or 5V
IQCC	Quiescent V _{CC} Supply Current	:	_	60	120	_	
I _{IN+}	Logic "1" Input Bias Current		_	7.0	15	μA	$V_{IN} = 5V$
I _{IN-}	Logic "0" Input Bias Current "High" CS Bias Current		_	ı	1.0		$V_{IN} = 0V$
I _{CS+}			_	l	1.0		$V_{CS} = 3V$
I _{CS} -	"High" CS Bias Current		_	I	1.0		$V_{CS} = 0V$
V _{BSUV+}	V _{BS} Supply Undervoltage	(IR2127/IR2128)	8.8	10.3	11.8		
	Positive Going Threshold	(IR21271)	6.3	7.2	8.2	V	
V _{BSUV-}	V _{BS} Supply Undervoltage	(IR2127/IR2128)	7.5	9.0	10.6		
	Negative Going Threshold	(IR21271)	6.0	6.8	7.7		
I _{O+}	Output High Short Circuit Pulsed Current		200	250	_	mA	$V_O = 0V, V_{IN} = 5V$ PW $\leq 10 \mu s$
I _O -	Output Low Short Circuit Pulsed Current		420	500		ША	$V_{O} = 15V, V_{IN} = 0V$ PW \le 10 \mus
Ron, FLT	FAULT - Low on Resistance		_	125	_	Ω	

Functional Block Diagram IR2127/IR21271

Functional Block Diagram IR2128

Lead Definitions

Symbol	Description
V _{CC}	Logic and gate drive supply
IN	Logic input for gate driver output (HO), in phase with HO (IR2127/IR21271)
	out of phase with HO (IR2128)
FAULT	Indicates over-current shutdown has occurred, negative logic
COM	Logic ground
V_{B}	High side floating supply
НО	High side gate drive output
Vs	High side floating supply return
CS	Current sense input to current sense comparator

Lead Assignments

International TOR Rectifier

Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definition

Figure 3. Start-up Blanking Time Waveform Definitions

Figure 4. CS Shutdown Waveform Definitions

Figure 5. CS to FAULT Waveform Definitions

IR2127(S) / IR21271(S) / IR2128(S)

Figure 10A Turn-On Time vs. Temperature

Figure 10B Turn-On Time vs. Supply Voltage

Figure 10C Turn-On Time vs. Input Voltage

Figure 11A Turn-Off Time vs. Temperature

Figure 11B Turn-Off Time vs. Supply Voltage

Figure 11C Turn-OffTime vs. Input Voltage

International TOR Rectifier

Figure 12A Turn-On Rise Time vs. Temperature

Figure 12B Turn-On Rise Time vs. Supply Voltage

Figure 13A Turn-Off Fall Time vs. Temperature

Figure 13B Turn-Off Fall Time vs. Voltage

Figure 14A Start-Up Blanking Time vs. Temperature

Figure 14B Start-Up Blanking Time vs Voltage

IR2127(S) / IR21271(S) / IR2128(S)

Figure 15A CS Shutdown Propagation Delay vs. Temperature

Figure 15B CS Shutdown Propagation Delay vs. Voltage

Figure 16A CS to FAULT Pull-Up Propagation Delay vs. Temperature

Figure 16B CS to FAULT Pull-Up Propagation Delay vs. Voltage

Figure 17A Logic "1" Input Voltage (IR2127) Logic "0" Input Voltage (IR2128) vs Temperature

Figure 17B Logic "1" Input Voltage (IR2127) Logic "0" Input Voltage (IR2128) vs Voltage

International TOR Rectifier

Figure 18A Logic "0" Input Voltage (IR2127) Logic "1" Input Voltage (IR2128) vs Temperature

Figure 18B Logic "0" Input Voltage (IR2127) Logic "1" Input Voltage (IR2128) vs Voltage

Figure 19A CS Input Positive Going Voltage vs Temperature (IR2127/IR2128)

Figure 19B CS Input Positive Going Voltage vs Voltage (IR2127/IR2128)

Figure 20A High Level Output vs Temperature

Figure 20B High Level Output vs Voltage

IR2127(S) / IR21271(S) / IR2128(S)

Figure 21A Low Level Output vs Temperature

Figure 21B Low Level Output vs Voltage

Figure 22A Offset Supply Current vs Temperature

Figure 22B Offset Supply Current vs Voltage

Figure 23A VBS Supply Current vs Temperature

Figure 23B VBS Supply Current vs Voltage

International TOR Rectifier

Figure 24A Vcc Supply Current vs Temperature

Figure 25A Logic "1" Input Current vs Temperature

Figure 26A Logic "0" Input Current vs Temperature

Figure 24B Vcc Supply Current vs Voltage

Figure 25B Logic "1" Input Current vs Voltage

Figure 26B Logic "0" Input Current vs Voltage

IR2127(S) / IR21271(S) / IR2128(S)

Figure 27A "High" CS Bias Current vs Temperature

Figure 28A "Low" CS Bias Current vs Temperature

Figure 29A VBS Undervoltage Threshold (+) vs Temperature (IR2127/IR2128)

Figure 27B "High" CS Bias Current vs Voltage

Figure 28B "Low" CS Bias Current vs Voltage

Figure 29B VBS Undervoltage Threshold (+) vs Voltage (IR2127/IR2128)

Figure 30A VBS Undervoltage Threshold (-) vs Temperature (IR2127/IR2128)

Figure 30B VBS Undervoltage Threshold (-) vs Voltage (IR2127/IR2128)

Figure 31A Output Source Current vs Temperature

Figure 31B Output Source Current vs Voltage

Figure 32A Output Sink Current vs Temperature

Figure 32B Output Sink Current vs Voltage

IR2127(S) / IR21271(S) / IR2128(S)

Case outlines

5/15/2001