

NeuroMLR

Robust & reliable route recommendation on road networks

Matías Etcheverry, Martín González y Blanca Romero

Problema de recomendación

- Mejor ruta en red vial
- Predecir la ruta más probable
 - Trayectorias históricas
 - Tráfico
 - Topología del mapa

Contribución

- Mejor desempeño que modelos actuales
- Soluciona problemas actuales:
 - Adapta mejor a datos no vistos
 - Más probabilidad de alcanzar el destino

- Constrained State Space
 Recurrent Neural Network
- Secuencias de nodos
- Aprende patrones

DeepST

- Modelo probabilístico profundo
- Predice el siguiente segmento de la ruta

Estado del Arte y Marco Teórico

- CssRnn: representación fija de nodos
- DeepST: No conoce probabilidades a nuevos segmentos
- No garantizan llegar al destino
 - Distintos destinos con mismas probabilidades

Estado del Arte y Marco Teórico

Solución

Búsqueda

Dijkstra Greedy

Aseguran que se alcance el destino

Asignación de probabilidades

Red neuronal → Predecir la probabilidad de transición de cada nodo

Solución

Dado un grafo $G = (V, E, \delta, \tau_t)$

V = nodos (intersecciones)

E = aristas (segmentos de calle)

 $\delta(e)$ = largo de segmento de calle

 τ_t (e) = tiempo promedio por segmento de calle a la hora t

+ D un dataset con trayectos históricos sobre este grafo

Representación de tráfico

 $\mathbf{r_t}$ = Vector de velocidades a la hora t

• vector de tamaño |E|

top 5% de caminos más frecuentados

 $\mathbf{z_t}$ = Representación del tráfico a la hora t

vector de tamaño k

Representación de nodos

Modelo - GCN

Propósito: Afinar Lipschitz embeddings Los embeddings v(u) se usan como input inicial

Última capa $\rightarrow \mathbf{h}^{L}_{\mathbf{u}} = \mathbf{z}_{\mathbf{u}}$ nuevo embedding

Modelo

Modelo

Todo el modelo se entrena con el dataset D

Θ → cross entropy loss

Evaluación/Resultados

Métricas utilizadas:

Precision =
$$\frac{\sum_{e \in (\mathcal{R} \cap \mathcal{R}^*)} \delta(e)}{\sum_{e \in \mathcal{R}^*} \delta(e)},$$

$$\text{Reachability} = \begin{cases} 1 & \text{if } d = d^* \\ 0 & otherwise \end{cases},$$

Recall =
$$\frac{\sum_{e \in (\mathcal{R} \cap \mathcal{R}^*)} \delta(e)}{\sum_{e \in \mathcal{R}} \delta(e)}$$

Reachability Distance = $Haversine(d, d^*)$

Evaluación/Resultados

	Precision (%)	Recall (%) Reachability (%)		Reachability Distance (km)
NeuroMLR-D	74.0%	66.4%	-	-
NeuroMLR-G	69.8%	64.4%	98.1	0.02
CssRnn	48.7%	57.7%	79.0%	1.0
DeepSt	59.9%	31.8%	7.8%	1.9
SP	55.9%	46.8%	_	_
QP	46.6%	40.9%	_	-

Tabla 1: Métricas de desempeño sobre distintos métodos

Impacto de la distancia de viaje

Figura 3: Impacto de distancia del viaje en puntaje F1 y porcentaje de nodos de destino alcanzados dentro del set de datos de Beijing

Desempeño en data no vista

Figura 1: Variación de los nodos alcanzados y del puntaje F1 con el umbral de frecuencia para diferentes categorías de popularidad

Desempeño con distintos volúmenes de datos

Figura 2: Desempeño de NeuroMLR-G y CssRnn con diferentes porcentajes de los datos de aprendizaje

Tiempos de inferencia

Algorithm	Chengdu	Porto	Harbin	Beijing	CityIndia
NEUROMLR-D	11.38	10.11	7.62	1.08	0.28
NEUROMLR-G	5612	4539	3286	2084	1522
CSSRNN	4425	1684	1355	522	467

Tabla 2: Viajes procesados por segundo

Conclusiones

Explicabilidad del modelo

• El usuario no sabe por qué se le recomienda cierta ruta.

Código no ejecutable

• Existen dependencias conflictivas y clases que no existen.

Posible método: RL

- Aprendizaje de secuencia de decisiones
- Estados, acciones, recompensas, objetivo y restricciones

NeuroMLR

Robust & reliable route recommendation on road networks

Matías Etcheverry, Martín González y Blanca Romero