以下是概率论与数理统计期末考试中常考的**核心性质、公式及定理**整理,涵盖基础概念、概率计算、随机变量、数字特征、大数定律及数理统计等模块,适合考前复习巩固:

一、基础概率公式

1. 事件关系与运算

德摩根定律:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}, \quad \overline{A \cap B} = \overline{A} \cup \overline{B}$$

• 加法公式:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

推广到三个事件:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)$$

2. 条件概率与独立性

条件概率:

$$P(B|A) = \frac{P(AB)}{P(A)}$$
 $(P(A) > 0)$

• 乘法公式:

$$P(AB) = P(A)P(B|A) = P(B)P(A|B)$$

• 全概率公式:

若
$$B_1,B_2,\ldots,B_n$$
为样本空间的划分,则 $P(A)=\sum_{i=1}^n P(B_i)P(A|B_i)$

• 贝叶斯公式:

$$P(B_j|A) = rac{P(B_j)P(A|B_j)}{\sum_{i=1}^n P(B_i)P(A|B_i)}$$

- 独立性:
 - \circ 事件独立: P(AB) = P(A)P(B)
 - 。 独立事件的并:

$$P(A \cup B) = 1 - P(\overline{A})P(\overline{B})$$

二、随机变量及其分布

1. 离散型随机变量

• 常见分布:

分布类型	概率质量函数 (PMF)	期望 (E(X))	方差 (D(X))
0-1分布	$P(X=k)=p^k(1-p)^{1-k}, k=0,1$	p	p(1-p)
二项分布	$P(X=k)=C_n^kp^k(1-p)^{n-k}$	np	np(1-p)
泊松分布	$P(X=k)=rac{\lambda^k e^{-\lambda}}{k!}$	λ	λ

2. 连续型随机变量

• 概率密度函数 (PDF) 性质:

$$\int_{-\infty}^{+\infty} f(x) dx = 1, \quad P(a < X \leq b) = \int_a^b f(x) dx$$

• 常见分布:

分布类型	概率密度函数 (PDF)	期望 (E(X))	方差 (D(X))
均匀分布	$f(x) = rac{1}{b-a}, a < x < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
指数分布	$f(x)=\lambda e^{-\lambda x}, x\geq 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
正态分布	$f(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2

• 正态分布标准化:

若
$$X\sim N(\mu,\sigma^2)$$
 ,则 $Z=rac{X-\mu}{\sigma}\sim N(0,1)$, $P(X\leq x)=\Phi\left(rac{x-\mu}{\sigma}
ight)$

三、多维随机变量

1. 联合分布与边缘分布

• 二维离散型:

联合概率质量函数
$$P(X=x_i,Y=y_j)$$
,边缘分布:
$$P(X=x_i)=\sum_j P(X=x_i,Y=y_j),\quad P(Y=y_j)=\sum_i P(X=x_i,Y=y_j)$$

• 二维连续型:

联合密度函数
$$f(x,y)$$
,边缘密度: $f_X(x)=\int_{-\infty}^{+\infty}f(x,y)dy, \quad f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)dx$

2. 独立性

- 离散型: $P(X=x_i,Y=y_j)=P(X=x_i)P(Y=y_j)$ 对所有i,j成立。
- 连续型: $f(x,y) = f_X(x)f_Y(y)$ 几乎处处成立。

四、数字特征

1. 期望与方差

• 期望性质:

$$\circ$$
 $E(c) = c$, $E(aX + b) = aE(X) + b$

$$\circ$$
 若 X, Y 独立,则 $E(XY) = E(X)E(Y)$

• 方差性质:

$$\circ D(c) = 0, D(aX + b) = a^2D(X)$$

$$O(X) = E(X^2) - [E(X)]^2$$

$$\circ$$
 若 X, Y 独立,则 $D(X \pm Y) = D(X) + D(Y)$

2. 协方差与相关系数

协方差:

$$\operatorname{Cov}(X,Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y)$$

• 性质: $\operatorname{Cov}(X,X) = D(X)$, $\operatorname{Cov}(aX + b, cY + d) = ac \cdot \operatorname{Cov}(X,Y)$

• 相关系数:

$$ho_{XY} = rac{ ext{Cov}(X,Y)}{\sqrt{D(X)D(Y)}}, \quad |
ho_{XY}| \leq 1$$

 \circ $\rho_{XY}=0$ 时,称X,Y不相关(独立 \Rightarrow 不相关,但反之不成立)。

五、大数定律与中心极限定理

• 切比雪夫不等式:

$$P(|X - E(X)| \ge \varepsilon) \le \frac{D(X)}{\varepsilon^2}$$

• 大数定律(以切比雪夫大数定律为例):

若
$$X_1,X_2,\ldots,X_n$$
独立同分布, $E(X_i)=\mu$, $D(X_i)=\sigma^2<\infty$,则 $rac{1}{n}\sum_{i=1}^nX_i\stackrel{P}{ o}\mu\quad(n o\infty)$

• 中心极限定理 (CLT):

若
$$X_1,X_2,\ldots,X_n$$
独立同分布, $E(X_i)=\mu$, $D(X_i)=\sigma^2>0$,则当 n 充分大时, $\frac{\sum_{i=1}^n X_i-n\mu}{\sigma\sqrt{n}}\stackrel{d}{ o}N(0,1)$ 即 $\sum_{i=1}^n X_ipprox N(n\mu,n\sigma^2)$, $\overline{X}=\frac{1}{n}\sum X_ipprox N\left(\mu,\frac{\sigma^2}{n}\right)$ 。

六、数理统计基础

1. 常用统计量

- 样本均值: $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$, $E(\overline{X})=\mu$, $D(\overline{X})=\frac{\sigma^2}{n}$
- 样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$, $E(S^2) = \sigma^2$

2. 三大抽样分布

• 卡方分布 (χ^2 分布) :

若
$$X_i\sim N(0,1)$$
独立,则 $\sum_{i=1}^n X_i^2\sim \chi^2(n)$, $E(\chi^2(n))=n$, $D(\chi^2(n))=2n$ 。

• t分布:

若
$$X\sim N(0,1)$$
, $Y\sim \chi^2(n)$ 独立,则 $rac{X}{\sqrt{Y/n}}\sim t(n)$ 。

• F分布

若
$$U\sim \chi^2(m)$$
, $V\sim \chi^2(n)$ 独立,则 $rac{U/m}{V/n}\sim F(m,n)$,且 $rac{1}{F(m,n)}\sim F(n,m)$ 。

3. 参数估计(点估计)

- **矩估计法**: 用样本矩估计总体矩, 如 $\hat{\mu}=\overline{X}$, $\hat{\sigma}^2=\frac{1}{n}\sum (X_i-\overline{X})^2$ 。
- 极大似然估计 (MLE) : 构造似然函数 $L(\theta) = \prod f(X_i; \theta)$, 求 θ 使 $L(\theta)$ 最大。

七、假设检验

- 步骤:
 - 1. 提出原假设 H_0 和备择假设 H_1 ;
 - 2. 选择检验统计量,确定拒绝域形式;
 - 3. 根据显著性水平 α , 计算临界值或p值;
 - 4. 决策:若统计量落入拒绝域,则拒绝 H_0 。
- 常见检验:
 - 正态总体均值检验:
 - Z检验 (σ²已知, 大样本);
 - t检验 (σ²未知, 小样本)。
 - 卡方检验(拟合优度检验、方差检验)。

八、重要定理与公式速记

- 泊松近似二项分布: 当n大、p小, $\lambda=np$ 适中时, $C^k_np^k(1-p)^{n-k}pprox rac{\lambda^ke^{-\lambda}}{k!}$
- **二维正态分布**: 若 $(X,Y)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$,则 $X\sim N(\mu_1,\sigma_1^2)$, $Y\sim N(\mu_2,\sigma_2^2)$,且 ρ 为相关系数。

复习建议:

- 1. 结合教材例题和真题,重点练习全概率公式、正态分布计算、数字特征推导、参数估计和假设检验;
- 2. 熟记常见分布的期望、方差及概率密度形式;
- 3. 注意区分独立与不相关、样本方差与总体方差的自由度差异。

需要具体题型讲解或公式应用示例可随时提问!