

CLE266 Chipset

VT8623 North Bridge

Single-Chip SMA North Bridge with 133 / 100 / 66 MHz Front Side Bus for VIA C3 CPUs with Integrated 2D / 3D AGP Graphics Core plus Advanced DDR Memory Controller supporting DDR266 / DDR200 (PC2100 / PC1600) DDR SDRAM and PC133 / PC100 SDR SDRAM for Desktop PC Systems

> Revision 0.92 January 14, 2003

a joint development of VIA TECHNOLOGIES, INC. and S3 GRAPHICS, INC.

Copyright Notice:

Copyright © 2002, 2003, VIA Technologies Incorporated. All Rights Reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated. The material in this document is for information only and is subject to change without notice. VIA Technologies Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Copyright © 2002, 2003, S3 Graphics Incorporated. All rights reserved. If you have received this document from S3 Graphics Incorporated in electronic form, you are permitted to make the following copies for business use related to products of S3 Graphics Incorporated: one copy onto your computer for the purpose of on-line viewing, and one printed copy. With respect to all documents, whether received in hard copy or electronic form, other use, copying or storage, in whole or in part, by any means electronic, mechanical, photocopying or otherwise, is not permitted without the prior written consent of S3 Graphics Incorporated. The material in this document is for information only and is subject to change without notice. S3 Graphics Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Trademark Notices:

VT8623 and CLE266 may only be used to identify products of VIA Technologies.

C3™ is a registered trademark of VIA Technologies

Windows XP™. Windows 2000™. Windows ME™, Windows 98™, Windows 95™ and Plug and PlayTM are registered trademarks of Microsoft Corp.

PCI™ is a registered trademark of the PCI Special Interest Group. PS/2™ is a registered trademark of International Business Machines Corp. VESA™ is a trademark of the Video Electronics Standards Association. All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies or S3 Graphics. VIA Technologies and S3 Graphics make no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies and S3 Graphics assume no responsibility for any errors in this document. Furthermore, VIA Technologies and S3 Graphics assume no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

VIA Technologies Incorporated Taiwan Office: 8th Floor, No. 533 Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC Tel: (886-2) 2218-5452

Fax: (886-2) 2218-5453 Home page: http://www.via.com.tw VIA Technologies Incorporated USA Office: 940 Mission Court Fremont, CA 94539 USA

Tel: (510) 683-3300

Fax: (510) 683-3301 or (510) 687-4654

Home Page: http://www.viatech.com

S3 Graphics Incorporated USA Office: 1045 Mission Court Fremont, CA 94539 USA

Tel: (510) 687-4900 Fax: (510) 687-4901

Home Page: http://www.s3graphics.com

REVISION HISTORY

0.1		Initials
	sed on the VT8613 TwisterT-DDR data sheet rev 0.9	DH
	overview and block diagram per engineering spec rev 0.7	
	l block diagram to Functional Description per engg spec 0.7	
	gineering ballout 1.0 and changed package to 548 balls	
	summary tables except for 3D registers	
	7-6] and Rx69[6] to remove 66 MHz FSB support	
	5,57,5E,5F (SDRAM bank 4-7 control) and Rx6E/6F (ECC)	
	umber on legal page; Changed CPU support to VIA C3 only	DH
	or Device 0 Rx3-2, 60[3-0], Device 1 Rx8, 41[3], 43, 44	
	egister summary table for Device 0 Rx40-41, 44-43, 4C-4B	
	de non-zero defaults bold in register bit descriptions	
	and Device 1 from 32-bit to 8-bit	
	0, 60[7-4], 77, 7E-7F, B0-B3, BE, D0-D4, E4-E5	
	[0], 69[5], Device 1 Rx42[3,0]; Added Device 0 RxBC-BE	
	aphics block diagram; Fixed misalignments in package diagram	DII
0.21 5/22/02 Fixed cover page watern		DH
	engineering rev 1.1 (DVI pin rearrangement to match TV pins)	DH
	ture bullet for "Advanced automatic clock throttling."	DH
	t panel support from Overview	
	and BISTIN pin descriptions	
	ry tables Graphics Controller registers 3C5 Rx43-4B, Video	
	3F0-3FC, DMA Controller RxE4C (default)	DII
	m ball pitch 27x27mm standard BGA	DH DH
	esktop" on cover and in feature bullets and overview 8[7-4] defaults and removed default from Rx50[6] (set from strap)	DΗ
	[, 69[1], AC[7], BD[7], E3[3-2]; Fixed typos in Rx84	
	& Rx54[1] to 54[2]; Updated RxBE[6-2], E1[6-4]	
	[8], 3E[3], 40[4-3], 41[0]	
	0[7] IOQ depth from 4 to 8; Updated Rx88[1] bit name	DH
11 0	ister names in register summary tables & register descriptions	DII
	play section of Overview & added 64MB FB size to Table 1	DH
	[6-4] to add 64MB FB support	DII
	bullets; Removed DirectX texture compression references	DH
	Overview; Fixed BISTIN and DFTIN pin descriptions	DII
	TN" panels in Overview "LCD Panel" section	DH
Added straps and interna	l pull-downs on FPD8-22; added strap details in pin descriptions	D 11
	ock diagram in Functional Description section	
0.91 9/24/02 Updated FPD8-22 strap		DH
	ge headers; Removed VT8622 "2D-Only" version	DH
	s, copyright notice, disclaimer and company address	
	n for DDR266/DDR200; Reworded some DRAM feature bullets	
	of SMB ports and fixed VLVREF voltage in pin descriptions	
	bles & FPD RGB mapping table in Functional Description section	

TABLE OF CONTENTS

REVISION HISTORY	l
TABLE OF CONTENTS	II
LIST OF FIGURES	IV
LIST OF TABLES	IV
PRODUCT FEATURES	1
OVERVIEW	5
HIGH-PERFORMANCE 3D ACCELERATOR	6
128-BIT 2D GRAPHICS ENGINE	6
DVD PLAYBACK AND VIDEO CONFERENCING	6
TV DISPLAY OUTPUT SUPPORT	7
VIDEO CAPTURE INTERFACE	
LCD, FLAT PANEL MONITOR, AND TV OUTPUT DISPLAY SUPPORT	7
HIGH SCREEN RESOLUTION CRT SUPPORT	7
PINOUTS	8
PIN DESCRIPTIONS	11
REGISTERS	19
REGISTER OVERVIEW	19
NORTH BRIDGE MISCELLANEOUS I/O	30
PCI CONFIGURATION SPACE I/O	30
DEVICE 0 REGISTER DESCRIPTIONS	31
Device 0 Host Bridge Header Registers	
Device 0 Host Bridge Device-Specific Registers V-Link Control	
Host CPU Control	
DRAM Control	
PCI Bus Control	43
GART / Graphics Aperture Control	
AGP Control	
V-Link Control	
Frame Buffer and High Memory Control	
BIOS Scratch	
DEVICE 1 REGISTER DESCRIPTIONS	51
Device 1 PCI-to-PCI Bridge Header Registers	51
Device 1 PCI-to-PCI Bridge Device-Specific Registers	
Internal AGP Bus Control	53
Power Management	
FUNCTIONAL DESCRIPTION	56
INTEGRATED GRAPHICS CONTROLLER	56
Internal Architecture	56
GRAPHICS MODES	57

Desktop Modes - Single Display	57
Desktop Modes - LCD VGA 640x480 Multiple Display	
Desktop Modes - LCD SVGA 800x600 Multiple Display	
Desktop Modes - LCD XGA 1024x768 Multiple Display	
Desktop Modes - LCD SXGA 1280x1024 Multiple Display Desktop Modes - LCD SXGA+ 1400x1050 Multiple Display	
Desktop Modes - LCD UXGA 1600x1200 Multiple Display	
Graphics Modes That Allow LCD Centering and Expansion	
VGA Graphics Modes	
Direct Draw Graphics Modes	
Graphics Modes for TV Display	
Additional Graphics Modes for IA Devices	
FLAT PANEL DISPLAY RGB MAPPING	69
ELECTRICAL SPECIFICATIONS	
ABSOLUTE MAXIMUM RATINGS	70
DC CHARACTERISTICS POWER CHARACTERISTICS	70
POWER CHARACTERISTICS	71
AC TIMING SPECIFICATIONS	
MECHANICAL SPECIFICATIONS	74

LIST OF FIGURES

FIGURE 1. SYSTEM BLOCK DIAGRAM	5
FIGURE 2. BALL DIAGRAM (TOP VIEW)	
FIGURE 3. GRAPHICS APERTURE ADDRESS TRANSLATION	45
FIGURE 4. GRAPHICS CONTROLLER INTERNAL BLOCK DIAGRAM	56
FIGURE 5. DESKTOP GRAPHICS MODES – SINGLE DISPLAY	57
FIGURE 6. DESKTOP GRAPHICS MODES – LCD VGA 640X480 MULTIPLE DISPLAY	58
FIGURE 7. DESKTOP GRAPHICS MODES – LCD SVGA 800X600 MULTIPLE DISPLAY	59
FIGURE 8. DESKTOP GRAPHICS MODES – LCD XGA 1024X768 MULTIPLE DISPLAY	60
FIGURE 9. DESKTOP GRAPHICS MODES – LCD SXGA 1280X1024 MULTIPLE DISPLAY	
FIGURE 10. DESKTOP GRAPHICS MODES – LCD SXGA+ 1400X1050 MULTIPLE DISPLAY	
FIGURE 11. DESKTOP GRAPHICS MODES – LCD UXGA 1600X1200 MULTIPLE DISPLAY	
FIGURE 12. GRAPHICS MODES THAT ALLOW LCD CENTERING AND EXPANSION	
FIGURE 13. VGA GRAPHICS MODESFIGURE 14. DIRECT DRAW GRAPHICS MODES	65
FIGURE 14. DIRECT DRAW GRAPHICS MODES	66
FIGURE 15. GRAPHICS MODES FOR TV DISPLAY	
FIGURE 16. ADDITIONAL GRAPHICS MODES FOR IA DEVICES	
FIGURE 17. MECHANICAL SPECIFICATIONS – 548-PIN 27X27MM BALL GRID ARRAY PACKAGE WITH 1M	
BALL PITCH	74
LIST OF TABLES	
TADLE 1 CURROTER OF SCREEN DESCRIPTIONS	7

TABLE 1. SUPPORTED CRT SCREEN RESOLUTIONS	7
TABLE 2. PIN LIST (<u>NUMERICAL</u> ORDER)	
TABLE 3. PIN LIST (ALPHABETICAL ORDER)	10
TABLE 4. PIN DESCRIPTIONS	11
TABLE 5. REGISTERS	19
TABLE 6. SYSTEM MEMORY MAP	
TABLE 7. MA MAP TYPE ENCODING	
TABLE 8. MEMORY ADDRESS MAPPING TABLE	
TABLE 9. VGA / MDA MEMORY / IO REDIRECTION	53
TABLE 10. FPD RGB MAPPING	
TABLE 11. ABSOLUTE MAXIMUM RATINGS	
TABLE 12. DC CHARACTERISTICS	
TABLE 13. POWER CHARACTERISTICS – INTERNAL AND INTERFACE DIGITAL LOGIC	71
TABLE 14. POWER CHARACTERISTICS – ANALOG AND REFERENCE VOLTAGES	
TABLE 15. AC TIMING MIN / MAX CONDITIONS	
TABLE 16. AC TIMING – CPU INTERFACE	
TABLE 17. AC TIMING – MEMORY INTERFACE	73

CLE266 CHIPSET

VT8623 North Bridge

Single-Chip SMA North Bridge
with 133 / 100 / 66 MHz Front Side Bus
for VIA C3 CPUs
with Integrated 2D / 3D AGP Graphics Core
plus Advanced DDR Memory Controller
supporting DDR266 / DDR200 (PC2100 / PC1600) DDR SDRAM
and PC133 / PC100 SDR SDRAM
for Desktop PC Systems

PRODUCT FEATURES

• Defines Integrated Solutions for Value PC Desktop Designs

- High performance SMA North Bridge: Integrated Apollo Pro266T & graphics accelerator in a single chip
- 64-bit advanced memory controller supporting DDR266 / DDR200 (PC2100/PC1600) DDR SDRAM and PC133 / PC100 SDR SDRAM
- Combines with VIA VT8233A V-Link South Bridge for integrated audio, ATA-133 IDE, and 4 USB ports

High Performance CPU Interface

- Support for Socket-370 VIA C3 processors
- 133 / 100 / 66 MHz CPU Front Side Bus (FSB)
- Built-in Phase Lock Loop circuitry for optimal skew control within and between clocking regions
- Five outstanding transactions (four In-Order Queue (IOQ) plus one output latch)
- Dynamic deferred transaction support

High Bandwidth 266 MB / Sec 8-Bit V-Link Host Controller

- Supports 66 MHz V-Link Host interface with total bandwidth of 266 MB/Sec
- V-Link operates at 2x or 4x modes
- Full-duplex commands with separate strobe / command
- Request / Data split transaction
- Configurable outstanding transaction queue for Host to V-Link Client accesses
- Supports Defer / Defer-Reply transactions
- Transaction assurance for V-Link Host to Client access (eliminates V-Link Host-Client Retry cycles)
- Intelligent V-Link transaction protocol to eliminate data wait-state / throttle transfer latency. All V-Link transactions (both Host and Client) have a consistent view of transaction data depth and buffer size to avoid data overflow.
- Highly efficient V-Link arbitration with minimum overhead. All V-Link transactions have predictable cycle length with known Command / Data duration.

• Advanced High-Performance DDR / SDR DRAM Controller

- Supports DDR266 / DDR200 DDR SDRAM and PC133 / PC100 SDR SDRAM memory types
- DRAM interface synchronous with host CPU (133/100 MHz) for most flexible configuration
- DRAM interface may be faster or slower than CPU by 33 MHz
- Concurrent CPU, AGP, and V-Link access
- Mixed 1M / 2M / 4M / 8M / 16M / 32M / 64MxN DRAMs
- Supports 4 banks up to 2 GB DRAMs (512Mb x8/x16 DRAM technology)
- Flexible row and column addresses. 64-bit data width only
- LVTTL 3.3V DRAM interface with 2.5V SSTL-2 DRAM interface (DDR) and 5V-tolerant inputs (SDR)
- Programmable I/O drive capability for MA, command, and MD signals
- Two-bank interleaving for 16Mbit SDRAM support
- Two-bank and four bank interleaving for 64Mbit SDRAM support
- Supports maximum 8-bank interleave (i.e., 8 pages open simultaneously); banks are allocated based on LRU
- Seamless DRAM command scheduling for maximum DRAM bus utilization (e.g., precharge other banks while accessing the current bank)
- Four cache lines (16 quadwords) of CPU to DRAM write buffers
- Four cache lines of CPU to DRAM read prefetch buffers
- Read around write capability for non-stalled CPU read
- Speculative DRAM read before snoop result
- Burst read and write operation
- x-1/2-1/2-1/2-1/2-1/2 back-to-back accesses for DDR SDRAM (x-1-1-1-1-1 for SDR)
- Supports DDR SDRAM CL 2/2.5/3 and 1T per command
- Decoupled and burst DRAM refresh with staggered RAS timing (CAS before RAS or self refresh)

Integrated Graphics / Video Accelerator

- Optimized Shared Memory Architecture (SMA)
- 8 / 16 / 32 / 64MB frame buffer using system memory
- Internal AGP 8x performance
- Separate 128-bit data paths between north bridge and graphics core for pixel data flow and texture / command access
- Graphics engine clocks up to 133 MHz decoupled from memory clock
- Direct hardware inputs to force graphics accelerator into suspend / standby states
- High quality DVD video playback
- VIP 1.1 / VIP 2.0-compatible video capture inputs up to 165 MHz data rate
- Internal hardware VGA controller with true-color / high-color sprite for hardware cursor implementation
- 128-bit 2D graphics engine
- 128-bit 3D graphics engine
- Floating point triangle setup engine
- 3M triangles/second setup engine
- 133M pixels/second trilinear fill rate

• Extensive Display Support

- CRT display interface with 24-bit true-color RAMDAC up to 250 MHz pixel rate with gamma correction capability
- Direct TFT flat panel interface up to 24-bit data width supporting 18, 24, or 18+18 TFT panels or LVDS encoders
- 12-bit DVI 1.0-compatible interface for drive of flat panel monitor using external TMDS encoders
- Interface to external TV Encoder for NTSC or PAL TV display
- Flexible output configuration: CRT output plus 8-bit video capture port plus either 1) LCD Panel + DVI or TV-Out or 2) DVI + TV-Out + 2nd 8-bit video capture port (or video capture port extension to 16-bit)
- Support for CRT resolutions up to 1920x1440 and panel resolutions up to 1600x1200
- Automatic panel power sequencing and VESA DPMS CRT power-down
- Dual view capability where CRT and Flat Panel Monitor can have a different resolution and refresh rate
- Built-in reference voltage generator and monitor sense circuits
- I²C Serial Bus and DDC Monitor Communications for CRT Plug-and-Play configuration

• Video Support

- Up to three video windows for video conferencing applications
- High quality scaler (up or down) for both horizontal and vertical scaling (linear interpolation for horizontal and vertical up-scaling and filtering for horizontal and vertical down-scaling)
- Color space conversion
- Color enhancement (contrast, hue, saturation, brightness, and gamma correction)
- Color and chroma key support
- Hardware sub-picture blending
- Bob / weave de-interlacing mode and advanced de-interlacing to improve video quality
- Video capture inputs (one or two 8-bit ports or one 16-bit port) with built-in phase adjuster to fine tune the clock/data signal timing
- PAL / NTSC TV output capability using external TV encoder
- Supports CCIR601standard

• MPEG-2/1 Video Decoder

- Motion compensation for full speed DVD playback
- Hardware accelerated Slice layer, IDCT and Motion compensation

2D Hardware Acceleration Features

- BitBLT (bit block transfer) functions including alpha blts
- Text function
- Bresenham line drawing / style line function
- ROP3, 256 operation
- Color expansion
- Source and destination color keys
- Transparency mode
- Window clipping
- 8, 15/16, and 32 bpp mode acceleration

3D Hardware Acceleration Features

- Microsoft DirectX 7.0 and 8.0 compatible
- OpenGL driver available
- Floating-point setup engine
- Triangle rate up to 3-million triangles per second and Pixel rate up to 133-million pixels per second for 2 texture, depth test and alpha blending
- Flat and Gouraud shading
- Hardware back-face culling
- 16-bit, 32-bit Z test, and 24+8 Z+Stencil test support
- Z-Bias support
- Stipple Test, Line-Pattern test, Texture-Transparence test, Alpha test support
- Edge anti-aliasing support
- Two textures per pass
- Tremendous Texture Format: 16/32 bpp ARGB, 1/2/4/8 bpp Luminance, 1/2/4/8 bpp Intensity, 1/2/4/8 bpp Paletized (ARGB), YUV 422/420 format
- Texture sizes up to 2048x2048
- High quality texture filter modes: Nearest, Linear, Bi-linear, Tri-linear, Anisotropic
- LOD-Bias support
- Vertex Fog and Fog Table
- Specular Lighting
- Alpha Blending
- High quality dithering
- ROP2 support
- Internal full 32-bit ARGB format for high rendering quality
- System balance to achieve high performance

Advanced System Power Management

- Power down of SDRAM (CKE)
- Independent clock stop controls for CPU / SDRAM and on-chip AGP bus
- Suspend power plane for preservation of memory data
- Suspend-to-DRAM and self-refresh power down
- Low-leakage I/O pads
- ACPI 1.0B and PCI Bus Power Management 1.1 compliant

• Full Software Support

- Drivers for major operating systems and APIs: [Windows® 9x, Windows NT, Windows 2000, Windows XP, Direct3DTM, DirectDrawTM and DirectShowTM, OpenGLTM ICD for Windows 9x, NT, 2000, and XP]
- North Bridge / Chipset and Video BIOS support (including all standard VESA CRT display modes)
- 2.5V Core and Mixed 3.3V / 5V Tolerant and GTL+ I/O
- 27 x 27mm Ball Grid Array Package with 548 Balls and 1mm Ball Pitch

OVERVIEW

CLE266 is a high performance, cost-effective and energy efficient SMA chipset for the implementation of desktop personal computer systems with 133 MHz, 100 MHz and 66 MHz CPU host bus ("Front Side Bus") frequencies and based on 64-bit Socket-370 VIA C3 processors.

Figure 1. System Block Diagram

The CLE266 chipset consists of the VT8623 north bridge (548 pin BGA) and the VT8233A V-Link south bridge (376 pin BGA). The CLE266 north bridge (or "Host System Controller") integrates VIA's VT8653 Apollo Pro266T system controller, 128-bit graphics accelerator and flat panel interfaces into a single 548 BGA package. The VT8623 provides superior performance between the CPU, DRAM, V-Link bus and internal AGP 8x graphics controller bus with pipelined, burst, and concurrent operation. The VT8233A V-Link Client controller is a highly integrated PCI / LPC controller. Its internal bus structure is based on a 66 MHz PCI bus that provides 2x bandwidth compared to previous generation PCI / ISA bridge chips. The VT8233A also provides a 266 MB / Sec bandwidth Host / Client V-Link interface with V-Link-PCI and V-Link-LPC controllers. It supports five PCI slots of arbitration and decoding for all integrated functions and LPC bus.

The VT8623 supports four banks of DDR / SDR SDRAMs up to 2 GB. The DRAM controller supports PC2100 / PC1600 Double-Data-Rated (DDR) SDRAM but can also support standard PC133 / PC100 Synchronous DRAM (SDR SDRAM). The DDR / SDR DRAM interface allows zero wait state bursting between the DRAM and the data buffers at 133 / 100 MHz. The different banks of DRAM can be composed of an arbitrary mixture of 1M / 2M / 4M / 8M / 16M / 32M / 64M xN DRAMs. The DRAM controller can run either synchronous or pseudo-synchronous with the host CPU bus.

The VT8623 host system controller supports a high speed 8-bit 66 MHz Quad Data Transfer interconnect (V-Link) to the VT8233A South Bridge. Each chip also contains a built-in bus-to-bus bridge to allow simultaneous concurrent operations on each bus. Five levels (doublewords) of post write buffers are included to allow for concurrent CPU and V-Link operation. For V-Link Host operation, forty-eight levels (doublewords) of post write buffers and sixteen levels (doublewords) of prefetch buffers are included for concurrent V-Link bus and DRAM/cache accesses. The combined V-Link Host and Client controllers realize a complete PCI sub-system that supports enhanced PCI bus commands such as Memory-Read-Line, Memory-Read-Multiple and Memory-Write-Invalid commands to minimize snoop overhead. In addition, advanced features are supported such as snoop ahead, snoop filtering, L1 write-back forward to PCI master, and L1 write-back merged with PCI post write buffers to minimize PCI master read latency and DRAM utilization. Delay transaction and read caching mechanisms are also implemented for further improvement of overall system performance.

The CLE266 north bridge also integrates a VIA-designed 128-bit graphics accelerator into the chip. This brings mainstream graphics performance to the Value PC with leading-edge 2D, 3D and DVD video acceleration into a cost effective package. Based on its capabilities, the CLE266 chipset is an ideal solution for the consumer, corporate desktop users and entry-level professionals.

The industry's first low-cost integrated AGP 8x solution to support DDR memory, the CLE266 north bridge combines internal AGP 8x equivalent performance with massive 2Kx2K textures to deliver unprecedented performance and image quality for the Value PC desktop market.

The 376-pin Ball Grid Array VT8233A Client V-Link PCI / LPC controller supports four levels (doublewords) of line buffers, type F DMA transfers and delay transaction to allow efficient PCI bus utilization and (PCI-2.1 compliant). The VT8233A integrated PCI controller and PCI arbitration for up to five PCI slots. One of the PCI REQ / GNT pairs can be configured as high-priority to better support a low latency PCI bus master device.

The VT8233A also includes an integrated keyboard controller with PS2 mouse support, integrated DS12885 style real time clock with extended 256 byte CMOS RAM, integrated master mode enhanced IDE controller with full scatter / gather capability and extension to UltraDMA-133/100/66/33 for 133/100/66/33 MB/sec transfer rate, integrated USB interface with two root hubs and four functional ports with built-in physical layer transceivers, Distributed DMA support, and OnNow / ACPI compliant advanced configuration and power management interface.

For sophisticated power management, the CLE266 chipset provides independent clock stop control for the CPU / SDRAM and PCI and CKE control for powering down of the SDRAM. A separate suspend-well plane is implemented for the SDRAM control signals for Suspend-to-DRAM operation. Using the VT8623 north bridge coupled with the VT8233A south bridge, a complete power conscious PC main board can be implemented with no external TTLs.

High-Performance 3D Accelerator

Featuring an internal 128-bit 3D graphics engine, the CLE266 VT8623 north bridge utilizes a single cycle architecture that provides high performance along with superior image quality. Several new features enhance the 3D architecture, including single-pass multitexturing, anisotropic filtering, and an 8-bit stencil buffer. The chip also offers the industry's only simultaneous usage of single-pass multitexturing and single-cycle trilinear filtering – enabling stunning image quality without performance loss. Image quality is further enhanced with true 32-bit color rendering throughout the 3D pipeline to produce more vivid and realistic images. The advanced triangle setup engine provides industry leading 3D performance for a realistic user experience in games and other interactive 3D applications. The 3D engine is optimized for AGP texturing from system memory.

128-bit 2D Graphics Engine

The CLE266 north bridge's advanced 128-bit 2D graphics engine delivers high-speed 2D acceleration for productivity applications. The enhanced 2D architecture optimizes SMA performance and provides acceleration of all color depths.

DVD Playback and Video Conferencing

The CLE266 north bridge provides the ideal architecture for high quality MPEG-2 based DVD applications and video conferencing. For DVD playback, the integrated video accelerator offloads the CPU by performing the planar to packed format conversion and motion compensation tasks, while its enhanced scaling algorithm delivers incredible full-screen video playback. For video conferencing, multiple video windows enable a cost effective solution.

TV Display Output Support

The CLE266 north bridge provides an interface to an external TV Encoder (VIA VT1621, VT1622, or compatible).

Video Capture Interface

The CLE266 north bridge provides a VIP 2.0-compatible interface to allow capture of video from an external source. This interface can be configured as one 8-bit, one 16-bit or two 8-bit ports.

LCD, Flat Panel Monitor, and TV Output Display Support

The CLE266 north bridge supports a wide variety of LCD panels through a direct interface up to 24-bits wide. This includes support for VGA, SVGA, XGA, SXGA+, UXGA, and UXGA+ TFT color panels with 18-bit and 24-bit interfaces (both 1 pixel/clock and 2 pixels/clock for both 18 and 24-bit interfaces). The CLE266 north bridge supports UXGA and higher resolutions only with the VIA VT1631 LVDS Transmitter chip since the VT1631 supports dual-edge data transfer.

In addition to the 24-bit panel interface, also provided is a 12-bit interface to a TMDS encoder. This interface is Digital Visual Interface (DVI) 1.0 compliant for driving an external flat panel monitor. The pins of the DVI port can optionally be configured for support of an external TV-Encoder for display of video on a TV display. An alternate configuration, however, allows the upper bits of the 24-bit direct flat panel interface to be configured as a DVI interface. This allows both TV out and DVI capability at the same time with the lower bits of the flat panel interface configured for either an 8-bit direct panel interface, a second 8-bit video capture port or an extension of the basic 8-bit capture port to 16 bits.

Available display interface combinations:

- CRT + DVI + TV-Out + 8-Bit or 16-Bit Video Capture Port
- CRT + DVI + TV-Out + Two 8-Bit Video Capture Ports
- CRT + 24-bit LCD Panel + DVI or TV-Out + 8-bit Video Capture Port

High Screen Resolution CRT Support

	System M	emory Frame F	Buffer Size
Resolutions Supported	8 MB	16/32 MB	64 MB
640x480x8/16/32	V	~	~
800x600x8/16/32	V	~	~
1024x768x8/16/32	V	~	V
1280x1024x8	~	~	V
1280x1024x16	/	~	V
1280x1024x32	/	~	V
1600x1200x8	/	~	V
1600x1200x16	/	~	V
1600x1200x32	'	~	~
1920x1440x8	'	~	~
1920x1440x16	V	~	~

Table 1. Supported CRT Screen Resolutions

PINOUTS

Figure 2. Ball Diagram (Top View)

	10013												an Die													
Key	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
A	TVVS DVIVS	TVD1 DVID1	TVD3 DVID3	TVD6 DVID6	TVD9 DVID9	DFT IN	AGP STDBY	SP CLK2	H SYNC	AB	RSET	GND PLL1	GND PLL3	HD56	HD54	HD57	HD47	HD51	HD39	HD36	HD34	HD32	HD33	HD26	HD23	HD21
В	TVHS DVIHS	TVD0 DVID0	TVD2 DVID2	TVD5 DVID5	TVD8 DVID8	INT A#	BIST IN	AGP BUSY#	V SYNC	AG	GND RGB	VCC PLL1	GND	HD61	HD55	GND	HD40	HD49	GND	HD37	HD22	GND	HD19	HD24	GND	HD16
C		TVCLK DVICLK	TVCKR NC	TVD4 DVID4	TVD7 DVID7	TVD10 DVID10	AGP SUSP	AGP STP#	SP DAT2	AR	VCC DAC	GND PLL2	VCC PLL3	HD60	HD46	HD52	HD63	HD41	HD45	HD38	HD28	HD31	HD25	HD30	HD7	HD3
D	CPD 3	CPD 2	CPD 1	CPD 0	TVBL# DVIDE		GPIO 0	GPIO 2	SP DAT1	VCC RGB	GND DAC	VCC PLL2	HD50	HD53	HD62	HD59	HD48	HD42	HD27	HD43	HD29	HD35	HD20	HD13	HD14	HD11
E	CPD 5	CPD 4	CP CLK	CPD 6	VCC FP	GND	GPIO 1	GPIO 3	SP CLK1	GND	GND	XIN	HD58	GND	GND	VTT	VTT	GND	HD44	GTL VREF	GND	VTT	HD2	HD9	GND	HD18
F	FPDE CPD8	FPHS CPHS	FPVS CPVS	CPD 7	VCC FP	F6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	F21	VTT	HD8	HD12	HD17	HD10
G	FPD2 CPD11	FPD1 CPD10	FPD0 CPD9	EN VDD	EN VEE	G		VCC FP	VCC FP	VCC FP	VCC FP	VCC FP	GND	VTT	VTT	VTT	VTT	VTT	VTT		G	HD5	HD1	HD4	HD6	HD15
Н	FPD5 CPD13	FPD4 CPD12	FPD3 CPCK1	DCLK I	EN BLT	Н	VCC FP	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	VTT	Н	HA26	HA18	CPU RST#	GND	HD0
J	FPD7 CPD15	FPD6 CPD14		DCLK O	GND	J	VCC FP	VCC 25	Flat					9					VCC 25	VTT	J	VTT	HA29	HA24	HA27	HA30
K	FPD10 DFDE	FPD9 DFHS	FPD8 DFVS	FPD11 DFD0	GND	K	VCC FP	VCC 25	Panel	K10	11	12	13	14	15	16	K17	CPU	VCC 25	VTT	K	VTT	HA20	HA19	HA22	HA17
L	FPD15 DFD4	FPD14 DFD3	FPD13 DFD2	FPD12 DFD1	VCC FP	L	VCC FP	VCC 25		L	GND	GND	GND	GND	GND	GND	L		VCC 25	VTT	L	GND	HA23	HA31	GND	HA25
M	FPD18 DFD7	FPD17 DFD6	FPD19 DFD8	FPD16 DFD5	VCC FP	M	VCC FP	VCC 25		M	GND	GND	GND	GND	GND	GND	M		VCC 25	VTT	M	GND	HA15	HA28	HA21	HA10
N	FPD21 DFD10	FPD22 DFD11	FPD20 DFD9	FPD23 DFDET	GND	N	VCC FP	VCC 25		N	GND	GND	GND	GND	GND	GND	N		VCC 25	VTT	N	GND	HA5	HA12	HA16	HA13
P	VAD 0	GND	VAD 1	G CLK	GND	P	VCC VL	VCC 25		P	GND	GND	GND	GND	GND	GND	P		VCC 25	VTT	P	GND	HA6	HA9	GND	HA3
R	VAD 5	VDN STB	VDN STB#	VAD 3	VBE#	R	VCC VL	VCC 25	VL	R	GND	GND	GND	GND	GND	GND	R		VCC 25	VTT	R	BNR#	HA14	HA8	HA4	HA11
Т	VUP STB#	VUP STB	VDN CMD	VL VREF	VUP CMD	Т	VCC VL	VCC 25	Bus	Т	GND	GND	GND	GND	GND	GND	Т		VCC 25	VTT	Т	GTL VREF	HREQ 1#	HA7	HREQ 4#	B PRI#
U	VAD 2	GND	VL PAR	GND	VCC VL	U	VCC M	VCC 25		U10	11	12	13	14	15	16	U17		VCC 25	VTT	U	VTT	DE FER#	H REQ0#	GND	H REQ2#
V	VAD 6	VAD 7	VAD 4	VL COMP	VCC VL	v	VCC M	VCC 25						DRAM					VCC 25	VCC M	\mathbf{v}	VTT	HIT M#	H REQ3#	H LOCK#	RS1#
W	PWR OK	SUS ST#	RE SET#	CS3#	VSUS 25	w	VCC M	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	VCC M	\mathbf{w}	GND	HIT#	D BSY#	HT RDY#	RS0#
Y	MD59	GND	CS1#	GND	VCC M	Y		VCC M	VCC M	VCC M	VCC M	VCC M	VCC M	VCC M	VCC M	VCC M	VCC M	VCC M	VCC M		Y	GND	H CLK	GND HCK	RS2#	D RDY#
AA	MD63	MD58	MD62	CS0#	VCC M	AA6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	AA21	GND	MD0	VCC HCK	ADS#	B REQ0#
AB	DQS 7#	DQM 7	MD57	S CAS#	S WE#	MA11	M VREF	VCC M	VCC M	NC	GND	GND	MA3	GND	GND	MA7	MA9	VCC M	VCC M	M VREF	VCC M	VCC M	MCLK	VCC MCK	MD5	MD4
AC	MD61	GND	CS2#	MD53	GND	MA10	MD42	GND	MD40	NC	MA2	MD32	MA4	MA5	DQM 3	MA8	MA13	GND	MA14	CKE 0	CKE 2	CKE 1	MCLK FB	GND MCK	GND	MD1
AD	MD56	MD60	MD51	MD52	S RAS#	MA12	DQS 5#	MD44	MD38	MA0	MA1	MD37	MD31	MA6	DQS 3#	MD24	MD23	MD18	MD17	MD11	MD10	DQM 1	CKE 3	MD2	DQM 0	DQS 0#
AE	MD55	GND	DQS 6#	GND	MD47	MD46	GND	MD41	MD39	GND	DQM 4	MD33	GND	MD30	MD25	GND	MD22	DQS 2#	GND	MD16	MD14	GND	MD12	MD8	GND	MD6
AF	MD50	MD54	DQM 6	MD49	MD48	MD43	DQM 5	MD45	MD35	MD34	DQS 4#	MD36	MD27	MD26	MD29	MD28	MD19	DQM 2	MD21	MD20	MD15	DQS 1#	MD13	MD9	MD3	MD7
-			Ÿ				ŭ				• "							_				*"				

Table 2. Pin List (Numerical Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin #		Pin Name	Pin#		Pin Names	Pin#		Pin Name
A01	О	TVVS / DVIVS	D01	I	CPD03	G19	P	VTT	P01	Ю	VAD0 / strap	Y09	P	VCCM	AD01	Ю	MD56
A02	О	TVD01 / DVID01	D02	I	CPD02	G22	Ю	HD05	P02	P	GND	Y10	P	VCCM	AD02	Ю	MD60
A03	О	TVD03 / DVID03	D03	I	CPD01	G23		HD01	P03	Ю		Y11	P	VCCM	AD03	IO	MD51
A04		TVD06 / DVID06	D04	I	CPD00	G24		HD04	P04	I	GCLK	Y12	P	VCCM	AD04	IO	MD52
A05	Ō	TVD09 / DVID09	D05	0	TVBL# / DVIDE	G25	-	HD06	P05	P	GND	Y13	P	VCCM	AD05	0	SRAS#
A06	I	DFTIN	D06	0	TVD11 / DVID11	G26		HD15	P07	P	VCCVL	Y14	P	VCCM	AD06	0	MA12
A07 A08	I IO	AGPSTDBY SPCLK2	D07 D08	IO IO	GPIO0 GPIO2	H01 H02	0	FPD05 / CPD13 FPD04 / CPD12	P20 P22	P P	VTT GND	Y15 Y16	P P	VCCM VCCM	AD07 AD08	O IO	DQS5# MD44
A09		HSYNC	D08	IO	SPDAT1	H03	ŏ	FPD04 / CPCK1	P23	IO		Y17	P	VCCM	AD08	IO	MD38
A10	ŏ	AB	D10	P	VCCRGB	H04	I	DCLKI	P24		HA09	Y18	P	VCCM	AD10	0	MA00
A11	Ā	RSET	D11	P	GNDDAC	H05	O	ENBLT	P25	P	GND	Y19	P	VCCM	AD11	Ŏ	MA01
A12	P	GNDPLL1	D12	P	VCCPLL2	H07	P	VCCFP	P26	Ю	HA03	Y22	P	GND	AD12	Ю	MD37
A13	P	GNDPLL3	D13	IO	HD50	H20	P	VTT	R01		VAD5	Y23	I	HCLK	AD13	IO	MD31
A14		HD56	D14	IO	HD53	H22	IO	HA26	R02	0	VDNSTB	Y24	P	GNDHCK	AD14	0	MA06
A15		HD54	D15	IO	HD62	H23	IO	HA18	R03	0	VDNSTB#	Y25	IO	RS2#	AD15	0	DQS3#
A16 A17		HD57 HD47	D16 D17	IO IO	HD59 HD48	H24 H25	O P	CPURST# GND	R04 R05		VAD3 / strap VBE#	Y26 AA01	IO	DRDY# MD63	AD16 AD17	IO	MD24 MD23
A17		HD51	D17		HD42	H26	IO	HD00	R07	P	VCCVL	AA01	Ю	MD58	AD17		MD18
A19		HD39	D19		HD27	J01	0	FPD07 / CPD15	R20	P	VTT	AA03	Ю	MD62	AD19	IO	MD17
A20		HD36	D20		HD43	J02	ŏ	FPD06 / CPD14	R22	IO	BNR#	AA04		CS0#	AD20	IO	MD11
A21	Ю	HD34	D21	Ю	HD29	J03	О	FPCLK / DFCLK	R23	Ю		AA05	P	VCCM	AD21	Ю	MD10
A22		HD32	D22		HD35	J04	О	DCLKO	R24	IO		AA22	P	GND	AD22	О	DQM1
A23		HD33	D23		HD20	J05	P	GND	R25		HA04	AA23		MD00	AD23	O	CKE3
A24		HD26	D24	IO	HD13	J07	P	VCCFP	R26		HA11	AA24	P	VCCHCK	AD24	IO	MD02
A25		HD23	D25		HD14	J20	P	VTT	T01	I	VUPSTB#	AA25			AD25	0	DQM0
A26 B01		HD21 TVHS / DVIHS	D26 E01	IO	HD11 CPD05	J22 J23	P IO	VTT HA29	T02 T03	O	VUPSTB VDNCMD	AA26 AB01	0	BREQ0# DQS7#	AD26 AE01	O IO	DQS0# MD55
B02	ő	TVD00 / DVID00	E01	I	CPD03 CPD04	J23 J24	IO	HA24	T04	P	VLVREF	AB01	ŏ	DQM7	AE01	P	GND
B03	ŏ	TVD02 / DVID02	E03	I	CPCLK	J25	Ю	HA27	T05	I	VUPCMD	AB03	Ю	MD57	AE03	o	DQS6#
B04	ŏ	TVD05 / DVID05	E04	Ī	CPD06	J26	Ю		T07		VCCVL	AB04	0	SCAS#	AE04	P	GND
B05	О	TVD08 / DVID08	E05	P	VCCFP	K01	О	FPD10 / DFDE / strap	T20	P	VTT	AB05	0	SWE#	AE05	Ю	MD47
B06		INTA#	E06	P	GND	K02	O	FPD09 / DFHS / strap	T22		GTLVREF	AB06		MA11	AE06	Ю	MD46
B07	I	BISTIN	E07	IO	GPIO1	K03	0	FPD08 / DFVS / strap	T23		HREQ1#	AB07	P	MEMVREF	AE07	P	GND
B08	0	AGPBUSY#	E08	IO	GPIO3	K04	0	FPD11 / DFD00 / strap	T24		HA07	AB08	P	VCCM	AE08	IO	MD41
B09 B10	0	VSYNC	E09 E10	IO	SPCLK1	K05 K07	P	GND VCCFP	T25 T26	IO	HREQ4# BPRI#	AB09 AB10	P	VCCM	AE09 AE10	IO P	MD39 GND
B11	O P	AG GNDRGB	E10	P P	GND GND	K20	P	VTT	U01	IO		AB10	- Р	NC GND	AE10 AE11	O	DQM4
B12	P	VCCPLL1	E12	I	XIN	K22	P	VTT	U02	P	GND	AB11	P	GND	AE12	Ю	MD33
B13	P	GND	E13	IO	HD58	K23	ΙO	HA20	U03	Ю		AB13	ō	MA03	AE13	P	GND
B14	Ю	HD61	E14	P	GND	K24	Ю	HA19	U04	P	GND	AB14	P	GND	AE14	Ю	MD30
B15		HD55	E15	P	GND	K25		HA22	U05_	P	VCCVL	AB15		GND	AE15	Ю	MD25
B16	P	GND	E16	P	VTT	K26		HA17	U07	P	VCCM	AB16	0	MA07	AE16	P	GND
B17	IO	HD40	E17	P	VTT	L01	0	FPD15 / DFD04 / strap	U20	P	VTT	AB17		MA09	AE17	IO	MD22
B18 B19	IO P	HD49 GND	E18 E19	P IO	GND HD44	L02 L03	0	FPD14 / DFD03 / strap FPD13 / DFD02 / strap	U22 U23	P IO	VTT DEFER#	AB18	P P	VCCM VCCM	AE18 AE19	O P	DQS2# GND
B20		HD37	E20	P	GTLVREF	L03	o	FPD12 / DFD02 / strap	U24			AB19 AB20	P	MEMVREF	AE19 AE20	IO	MD16
B21		HD22	E21	P	GND	L05	P	VCCFP	U25	P	GND	AB21	P	VCCM	AE21	IO	MD14
B22	P	GND	E22	P	VTT	L07	P	VCCFP	U26	Ю	HREQ2#	AB22	P	VCCM	AE22	P	GND
B23	Ю	HD19	E23	IO	HD02	L20	P	VTT	V01	Ю		AB23	О	MCLK	AE23	Ю	MD12
B24		HD24	E24	Ю	HD09	L22	P	GND	V02	_	VAD7	AB24	P	VCCMCK	AE24	Ю	MD08
B25	P	GND	E25	P	GND	L23	IO	HA23	V03		VAD4		IO	MD05	AE25	P	GND
B26		HD16	E26	IO	HD18	L24	Ю	HA31	V04	A	VLCOMP	AB26			AE26	IO	MD06
C01 C02	I	DVIDET TVCLK / DVICLK	F01 F02	0	FPDE / CPD08 FPHS / CPHS	L25 L26	P IO	GND HA25	V05 V07	P P	VCCVL VCCM	AC01 AC02		MD61 GND	AF01 AF02	IO	MD50 MD54
C02		TVCLK / DVICLK	F03		FPVS / CPVS	M01		FPD18 / DFD07 / strap	V20	P		AC02			AF03		DQM6
C04		TVD04 / DVID04				M02		FPD17 / DFD06 / strap	V22	P	VTT	AC04	IO	MD53	AF04		
C05	ŏ	TVD07 / DVID07	F05	P	VCCFP	M03	o	FPD19 / DFD08 / strap	V23			AC05	P	GND	AF05	Ю	MD48
C06	О	TVD10 / DVID10	F22	P	VTT	M04	О	FPD16 / DFD05 / strap	V24	Ю	HREQ3#	AC06	О	MA10	AF06	Ю	MD43
C07	I	AGPSUSP	F23	IO	HD08	M05	P	VCCFP	V25		HLOCK#	AC07			AF07	0	DQM5
C08		AGPSTP#	F24	IO	HD12	M07	P	VCCFP	V26		RS1#	AC08	P	GND	AF08		MD45
C09		SPDAT2	F25		HD17	M20	P	VTT	W01	I	PWROK	AC10	10		AF09		MD35
C10 C11	O P	AR VCCDAC	F26 G01	0	HD10 FPD02 / CPD11	M22 M23	P	GND HA15	W02 W03	I	SUSST# RESET#	AC10 AC11	- O	NC MA02	AF10 AF11	0	MD34 DOS4#
C11	P	GNDPLL2	G01 G02	ő	FPD02 / CPD11 FPD01 / CPD10	M24		HA15 HA28	W03	O	CS3#	AC11			AF11 AF12		MD36
C13	P	VCCPLL3	G02	ŏ	FPD00 / CPD9	M25		HA21	W05		VSUS25	AC13		MA04	AF13		MD27
		HD60	G04	ŏ	ENVDD	M26		HA10	W07	P	VCCM	AC14			AF14	IO	MD26
C15	Ю	HD46	G05	О	ENVEE	N01	О	FPD21 / DFD10 / strap	W20	P	VCCM	AC15	О	DQM3	AF15	Ю	MD29
		HD52	G08	P	VCCFP	N02	O	FPD22 / DFD11 / strap	W22	P	GND	AC16	О	MA08	AF16		MD28
		HD63	G09	P	VCCFP	N03	0	FPD20 / DFD09 / strap	W23		HIT#	AC17		MA13	AF17		MD19
C18		HD41	G10	P	VCCFP	N04	O	FPD23 / DFDET	W24		DBSY#	AC18		GND	AF18	0	DQM2
		HD45	G11	P	VCCFP	N05	P	GND	W25		HTRDY#	AC19			AF19		MD21
C20 C21		HD38 HD28	G12 G13	P P	VCCFP GND	N07 N20	P P	VCCFP VTT	W26 Y01		RS0# MD59	AC20 AC21		CKE0 CKE2	AF20 AF21	IO	MD20 MD15
C21		HD31	G13	P	VTT	N20 N22	P	GND	Y02		GND	AC21	ő	CKE2 CKE1	AF21 AF22	0	DQS1#
		HD25	G15	P	VTT	N23	Ю	HA05	Y03	o	CS1#	AC23	I	MCLKFB	AF23		MD13
C24	IO	HD30	G16	P	VTT	N24		HA12	Y04	P	GND	AC24		GNDMCK	AF24		MD09
C25	Ю	HD07	G17	P	VTT	N25	Ю	HA16	Y05	P	VCCM	AC25	P	GND	AF25	Ю	MD03
C26	Ю	HD03	G18	P	VTT	N26	Ю	HA13	Y08	P	VCCM	AC26	Ю	MD01	AF26	Ю	MD07

Center VCC25 Pins (44 pins): H8-19, J8,19, K8,19, L8,19, M8,19, N8,19, P8,19, R8,19, T8,19, V8,19, W8,19, Y8-19
Center GND Pins (37 pins): G13, L11-16, M11-16, N11-16, P11-16, R11-16, T11-16

Table 3. Pin List (Alphabetical Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Nan	ne	Pin#		Pin Name	Pin#		Pin Names	Pin#		Pin Name
A10	О	AB	N01	О	FPD21 / DFD10 / strap	P24	Ю	HA09		A15	Ю	HD54	AC09	Ю	MD40	K07	P	VCCFP
B10		AG	N02	О	FPD22 / DFD11 / strap	M26		HA10		B15		HD55	AE08	Ю	MD41	L05	P	VCCFP
AA25		ADS#	N04	0	FPD23 / DFDET	R26		HA11		A14		HD56	AC07	IO	MD42	L07	P	VCCFP
B08	O	AGPBUSY# AGPSTDBY	F01 F02	0	FPDE / CPD08 FPHS / CPHS	N24				A16 E13		HD57 HD58	AF06	IO	MD43 MD44	M05 M07	P P	VCCFP VCCFP
A07 C08	IO	AGPSTDB1 AGPSTP#	F03	0	FPVS / CPVS	N26 R23		-		D16		HD59	AD08 AF08	IO IO	MD45	N07	P	VCCFP
C07	I	AGPSUSP	P04	I	GCLK	M23				C14		HD60	AE06	Ю	MD46	AA24	P	VCCHCK
C10	0	AR	B13	P	GND	N25		HA16		B14		HD61	AE05	Ю	MD47	U07	P	VCCM
B07	I	BISTIN	B16	P	GND	K26	IO			D15		HD62	AF05	IO	MD48	V07	P	VCCM
R22		BNR# BPRI#	B19 B22	P P	GND	H23 K24		HA18		C17		HD63 HIT#	AF04	IO	MD49	V20 W07	P P	VCCM VCCM
T26 AA26	IO O	BREQ0#	B25	P	GND GND	K24 K23		HA19 HA20		W23 V23	I		AF01 AD03	IO IO	MD50 MD51	W20	P	VCCM
AC20	Ō	CKE0	E06	P	GND	M25		HA21		V25	Ī		AD04	IO	MD52	Y05	P	VCCM
AC22	O	CKE1	E10	P	GND	K25				U24		HREQ0#	AC04	Ю	MD53	Y08	P	VCCM
AC21		CKE2	E11	P	GND	L23				T23		HREQ1#	AF02	IO	MD54	Y09	P	VCCM
AD23 E03		CKE3 CPCLK	E14 E15	P P	GND GND	J24 L26	IO	HA24 HA25		U26 V24		HREQ2# HREQ3#	AE01 AD01	IO IO	MD55 MD56	Y10 Y11	P P	VCCM VCCM
D04	I	CPD00	E18	P	GND	H22				T25		HREQ3#	AB03	IO	MD57	Y12	P	VCCM
D03	Ī	CPD01	E21	P	GND	J25		HA27		A09		HSYNC	AA02	IO	MD58	Y13	P	VCCM
D02	I	CPD02	E25	P	GND	M24		HA28		W25	IO	HTRDY#	Y01	Ю	MD59	Y14	P	VCCM
D01	I	CPD03	G13	P	GND	J23		HA29		B06	0	INTA#	AD02	IO	MD60	Y15	P	VCCM
E02	I	CPD04	H25 J05	P P	GND	J26		HA30		AD10	0	MA00	AC01	IO	MD61 MD62	Y16	P	VCCM
E01 E04	I I	CPD05 CPD06	K05	P	GND GND	L24 Y23	I	HA31 HCLK		AD11 AC11	0	MA01 MA02	AA03 AA01	IO IO	MD63	Y17 Y18	P P	VCCM VCCM
F04	Í	CPD07	L22	P	GND	H26	IO			AB13	ŏ	MA03	AB07	P	MEMVREF	Y19	P	VCCM
H24	0	CPURST#	L25	P	GND	G23	Ю	HD01	\mathcal{A}	AC13	Õ	MA04	AB20	P	MEMVREF	AA05	P	VCCM
AA04	0	CS0#	M22	P	GND	E23		HD02	6	AC14	O	MA05	AB10	-	NC	AB08	P	VCCM
Y03	0	CS1#	N05	P	GND	C26	IO	HD03		AD14	0	MA06	AC10 W01	_ T	NC	AB09	P	VCCM
AC03 W04	0	CS2# CS3#	N22 P02	P P	GND GND	G24 G22				AB16 AC16	0	MA07 MA08	W01	1	PWROK RESET#	AB18 AB19	P P	VCCM VCCM
W24		DBSY#	P05	P	GND	G25		HD06		AB17	ŏ	MA09	W26		RS0#	AB13	P	VCCM
H04	I	DCLKI	P22	P	GND	C25				AC06	0	MA10	V26_	Ю	RS1#	AB22	P	VCCM
J04	O	DCLKO	P25	P	GND	F23		HD08		AB06	0	MA11	Y25		RS2#	AB24	P	VCCMCK
U23	IO	DEFER#	U02	P	GND	E24				AD06	O	MA12	A11	A	RSET	B12	P	VCCPLL1
A06 AD25	О	DFTIN DQM0	U04 U25	P P	GND GND	F26 D26	IO IO	HD10 HD11		AC17 AC19	0	MA13 MA14	AB04 E09	O IO		D12 C13	P	VCCPLL2 VCCPLL3
AD23	ŏ	DQM0 DQM1	W22	P	GND	F24	IO			AC23	I		A08	IO		D10	P	VCCRGB
AF18	ŏ	DQM2	Y02	P	GND	D24		HD13		AB23	Ô	MCLK	D09	IO		P07	P	VCCVL
AC15	O	DQM3	Y04	P	GND	D25		HD14		AA23		MD00	C09	Ю		R07	P	VCCVL
AE11	0	DQM4	Y22	P	GND	G26		HD15		AC26		MD01	AD05	Ō	SRAS#	T07	P	VCCVL
AF07	0	DQM5 DQM6	AA22 AB11	P P	GND GND	B26 F25		HD16 HD17		AD24 AF25		MD02 MD03	W02 AB05	O	SUSST# SWE#	U05 V05	P P	VCCVL VCCVL
AF03 AB02	Ö	DQM6 DQM7	AB11	P	GND	E26	Ю					MD03 MD04	D05	0	TVBL# / DVIDE	T03	0	VDNCMD
	IO	DQS0#	AB14	P	GND	B23	Ю			AB25		MD05	C02	ŏ	TVCLK / DVICLK	R02	ŏ	VDNSTB
	Ю	DQS1#	AB15	P	GND	D23	Ю			AE26		MD06	C03	I	TVCLKR	R03	О	VDNSTB#
AE18	IO	DQS2#	AC02	P	GND	A26	IO			AF26		MD07	B02	0	TVD00 / DVID00	V04	Α	VLCOMP
AD15		DQS3#	AC05	P	GND	B21				AE24		MD08	A02	0	TVD01 / DVID01	U03	IO P	
AF11 AD07	IO	DQS4# DQS5#	AC08 AC18	P P	GND GND	A25 B24	IO	HD23 HD24	,	AF24 AD21		MD09 MD10	B03 A03	0	TVD02 / DVID02 TVD03 / DVID03	T04 W05	P	VLVREF VSUS25
AE03	Ю	DQS6#	AC25	P	GND	C23		HD25		AD20		MD11	C04	ŏ	TVD04 / DVID04	B09	Ō	VSYNC
AB01	Ю	DQS7#	AE02	P	GND	A24	Ю	HD26		AE23	Ю	MD12	B04	О	TVD05 / DVID05	E16	P	VTT
Y26		DRDY#	AE04	P	GND	D19		HD27		AF23		MD13	A04	0	TVD06 / DVID06	E17	P	VTT
C01 H05		DVIDET ENBLT	AE07 AE10	P P	GND GND	C21 D21				AE21	-	MD14 MD15	C05 B05	0	TVD07 / DVID07 TVD08 / DVID08	E22 F22	P P	VTT
G04		ENVDD	AE10 AE13	P	GND GND	C24		HD29 HD30		AF21 AE20			A05	0	TVD08 / DVID08	G14	P P	VTT VTT
G05		ENVEE	AE16	P	GND	C22	_	HD31		AD19			C06	o		G15	P	VTT
J03	O	FPCLK / DFCLK	AE19	P	GND	A22	Ю	HD32		AD18			D06	О	TVD11 / DVID11	G16	P	VTT
G03		FPD00 / CPD9	AE22	P	GND	A23		HD33				MD19	B01	O	TVHS / DVIHS	G17	P	VTT
G02		FPD01 / CPD10	AE25 D11	P	GND	A21 D22		HD34				MD20 MD21	A01		TVVS / DVIVS	G18	P P	VTT VTT
G01 H03		FPD02 / CPD11 FPD03 / CPCK1	Y24	P	GNDDAC GNDHCK	A20		HD35 HD36		AF19 AE17			P01 P03		VAD0 / strap VAD1 / strap	G19 H20	P P	VII
H02	ŏ	FPD04 / CPD12	AC24	P	GNDMCK	B20		HD37				MD23	U01		VAD1 / strap	J20	P	VTT
H01	O	FPD05 / CPD13	A12	P	GNDPLL1	C20	Ю	HD38		AD16	Ю	MD24	R04	Ю	VAD3 / strap	J22	P	VTT
J02		FPD06 / CPD14	C12	P		A19		HD39				MD25	V03		VAD4	K20	P	VTT
J01		FPD07 / CPD15	A13	P		B17		HD40				MD26	R01		VAD5	K22	P	VTT
K03 K02		FPD08 / DFVS / strap FPD09 / DFHS / strap	B11 D07	IO.	GNDRGB GPIO0	C18 D18		HD41 HD42		AF13 AF16		MD27 MD28	V01 V02		VAD6 VAD7	L20 M20	P P	VTT VTT
K02 K01		FPD10 / DFDE / strap	E07		GPIO1	D18		HD42		AF15			R05		VBE#	N20	P	VTT
K04		FPD11 / DFD00 / strap	D08	IO		E19		HD44		AE14	Ю	MD30	C11	P		P20	P	VTT
L04	O	FPD12 / DFD01 / strap	E08		GPIO3	C19	Ю	HD45		AD13	Ю	MD31	E05	P	VCCFP	R20	P	VTT
L03	0	FPD13 / DFD02 / strap	E20	P	GTLVREF	C15		HD46				MD32	F05	P	VCCFP	T20	P	VTT
L02 L01		FPD14 / DFD03 / strap FPD15 / DFD04 / strap	T22 P26	P IO	GTLVREF HA03	A17 D17		HD47 HD48				MD33 MD34	G08	P P	VCCFP VCCFP	U20 U22	P P	VTT VTT
M04		FPD16 / DFD04 / strap FPD16 / DFD05 / strap	R25		HA04	B18		HD48 HD49				MD34 MD35	G09 G10	P	VCCFP	V22	P P	VTT
M02		FPD17 / DFD06 / strap	N23		HA05	D13		HD50				MD36	G11	P	VCCFP	T05	I	VUPCMD
M01	O	FPD18 / DFD07 / strap	P23	Ю	HA06	A18	Ю	HD51		AD12	Ю	MD37	G12	P	VCCFP	T02	I	VUPSTB
M03		FPD19 / DFD08 / strap	T24		HA07	C16		HD52		AD09			H07	P	VCCFP	T01	I	VUPSTB#
N03	0	FPD20 / DFD09 / strap	R24	Ю	HA08	D14	Ю	HD53		AE09	Ю	MD39	J07	P	VCCFP	E12	I	XIN

Center VCC25 Pins (44 pins): H8-19, J8,19, K8,19, L8,19, M8,19, N8,19, P8,19, R8,19, T8,19, V8,19, W8,19, Y8-19
Center GND Pins (37 pins): G13, L11-16, M11-16, N11-16, P11-16, F11-16, T11-16

Pin Descriptions

Table 4. Pin Descriptions

CPU cycles HA[31:3] are inputs. These signals are driven by the CLE266 north bridge during cache snooping operations. HD[63:0]# (see pin list) IO Host CPU Data. These signals are connected to the CPU data bus. AA25				Table 4. Thi Descriptions
Ha[31:3]# (see pin list) IO				CPU Interface
CPU cycles HA[31:3] are inputs. These signals are driven by the CLE266 north bridduring cache snooping operations. HD[63:0]# (see pin list) 10 Host CPU Data. These signals are connected to the CPU data bus. AD\$# AA25 10 Block Next Request. Used to block the current request bus owner from issuing ne requests. This signal is used to dynamically control the processor bus pipeline depth. BPRI# T26 10 Priority Agent Bus Request. The owner of this signal will always be the next be owner. This signal has priority over symmetric bus requests and causes the curre symmetric owner to stop issuing new transactions unless the HLOCK# signal asserted. The CLE266 north bridge drives this signal to gain control of the process bus. DBSY# W24 10 Data Busy. Used by the data bus owner to hold the data bus for transfers requiring more than one cycle. DEFER# U23 10 Defer. A dynamic deferring policy is used to optimize system performance. To DEFER# signal is also used to indicate a processor retry response. HIT# W23 10 Hit Indicates that a caching agent holds an unmodified version of the requested lin Also driven in conjunction with HITM# by the target to extend the snoop window. HITM# V23 1 Hit Modified. Asserted by the CPU to indicate that the address presented with the lassertion of EADS# is modified in the L1 cache and needs to be written back. HLOCK# V25 1 Host Lock. All CPU cycles sampled with the assertion of HLOCK# and ADS# un the negation of HLOCK# must be atomic. HTRDY# W25 10 Request Command. Asserted during both clocks of the request phase. In the fine the complete transaction type. HTRDY# W25 10 Host Target Ready. Indicates that the target of the processor transaction is able enter the data transfer phase. RS[2:0]# Response Signals. Indicates the type of response per the table below: RS[2:0]# Response type 100 Hard Failure 101 Normal Without Data 110 Implicit Writeback 111 Normal With Data 110 Implicit Writeback 111 Normal With Data 111 Normal With Data	Signal Name	Pin #	I/O	Signal Description
ADS# AA25 IO Address Strobe. The CPU asserts ADS# in T1 of the CPU bus cycle.	HA[31:3]#	(see pin list)	IO	Host Address Bus. HA[31:3] connect to the address bus of the host CPU. During CPU cycles HA[31:3] are inputs. These signals are driven by the CLE266 north bridge during cache snooping operations.
BNR# R22	HD[63:0]#	(see pin list)	IO	Host CPU Data. These signals are connected to the CPU data bus.
Projects. This signal is used to dynamically control the processor bus pipeline depth. Priority Agent Bus Request. The owner of this signal will always be the next be owner. This signal has priority over symmetric bus requests and causes the curre symmetric owner to stop issuing new transactions unless the HLOCK# signal asserted. The CLE266 north bridge drives this signal to gain control of the process bus. Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performance. The Defer. A dynamic deferring policy is used to optimize system performa	ADS#	AA25	IO	Address Strobe. The CPU asserts ADS# in T1 of the CPU bus cycle.
owner. This signal has priority over symmetric bus requests and causes the curre symmetric owner to stop issuing new transactions unless the HLOCK# signal asserted. The CLE266 north bridge drives this signal to gain control of the process bus. DBSY# W24 IO Data Bus Busy. Used by the data bus owner to hold the data bus for transfers requiring more than one cycle. DEFER# U23 IO Defer. A dynamic deferring policy is used to optimize system performance. To DEFER# signal is also used to indicate a processor retry response. DRDY# Y26 IO Data Ready. Asserted for each cycle that data is transferred. HIT# W23 IO Hit. Indicates that a caching agent holds an unmodified version of the requested in Also driven in conjunction with HITM# by the target to extend the snoop window. HITM# V23 I Hit Modified. Asserted by the CPU to indicate that the address presented with the lassertion of EADS# is modified in the L1 cache and needs to be written back. HLOCK# V25 I Host Lock. All CPU cycles sampled with the assertion of HLOCK# and ADS# un the negation of HLOCK# must be atomic. REQ[4:0]# T25, V24, U26, T23, U24 Command. Asserted during both clocks of the request phase. In the find clock, the signals define the transaction type to a level of detail that is sufficient begin a snoop request. In the second clock, the signals carry additional information define the complete transaction type. RES[2:0]# Response Signals. Indicates that the target of the processor transaction is able enter the data transfer phase. Response Signals. Indicates the type of response per the table below: RES[2:0]# Response type O10 Defer Response O11 Reserved Hard Failure Hormal With Data Hit Modified. Asserted by Hard Failure Hard Failure Hormal With Data CPURST# H24 O CPU Reset. Reset output to CPU. External pullup and filter capacitor to ground should be provided per CPU manufacturer's recommendations.	BNR#	R22	IO	Block Next Request . Used to block the current request bus owner from issuing new requests. This signal is used to dynamically control the processor bus pipeline depth.
DEFER# U23 IO Defer. A dynamic deferring policy is used to optimize system performance. To Defer. By dynamic deferring policy is used to optimize system performance. To Defer. A dynamic deferring policy is used to optimize system performance. To Defer. By dynamic deferring policy is used to optimize system performance. To Defer. A dynamic deferring policy is used to optimize system performance. To Defer. A dynamic deferring policy is used to optimize system performance. To Defer. A dynamic deferring policy is used to optimize system performance. To Defer. A dynamic deferring policy is used to optimize system performance. To Defer Response to Defer. A dynamic deferring policy is used to optimize system performance. To Defer Response to Defer	BPRI#	T26	IO	Priority Agent Bus Request . The owner of this signal will always be the next bus owner. This signal has priority over symmetric bus requests and causes the current symmetric owner to stop issuing new transactions unless the HLOCK# signal is asserted. The CLE266 north bridge drives this signal to gain control of the processor bus.
DRDY# Y26 IO Data Ready. Asserted for each cycle that data is transferred. HIT# W23 IO Hit. Indicates that a caching agent holds an unmodified version of the requested lin Also driven in conjunction with HITM# by the target to extend the snoop window. HITM# V23 I Hit Modified. Asserted by the CPU to indicate that the address presented with the lassertion of EADS# is modified in the L1 cache and needs to be written back. HLOCK# V25 I Host Lock. All CPU cycles sampled with the assertion of HLOCK# and ADS# un the negation of HLOCK# must be atomic. REQ[4:0]# T25, V24, U26, T23, U24 Clock, the signals define the transaction type to a level of detail that is sufficient begin a snoop request. In the second clock, the signals carry additional information define the complete transaction type. HTRDY# W25 IO Host Target Ready. Indicates that the target of the processor transaction is able enter the data transfer phase. RS[2:0]# Response Signals. Indicates the type of response per the table below: RS[2:0]# Response type 000 Idle State 001 Retry Response 010 Defer Response 011 Response type 100 Hard Failure 101 Normal Without Data 110 Implicit Writeback 111 Normal With Data CPURST# H24 O CPU Reset. Reset output to CPU. External pullup and filter capacitor to ground should be provided per CPU manufacturer's recommendations.	DBSY#	W24	IO	Data Bus Busy . Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.
HIT# W23 IO Also driven in conjunction with HITM# by the target to extend the snoop window. HITM# V23 I Hit Modified. Asserted by the CPU to indicate that the address presented with the la assertion of EADS# is modified in the L1 cache and needs to be written back. HLOCK# V25 I Host Lock. All CPU cycles sampled with the assertion of HLOCK# and ADS# un the negation of HLOCK# must be atomic. HREQ[4:0]# T25, V24, U26, T23, U24 PHTRIP W25 IO Host Target Ready. In the second clock, the signals carry additional information define the complete transaction type to a level of detail that is sufficient begin a snoop request. In the second clock, the signals carry additional information define the complete transaction type. HTRDY# W25 IO Host Target Ready. Indicates that the target of the processor transaction is able enter the data transfer phase. RS[2:0]# Response Signals. Indicates the type of response per the table below: RS[2:0]# Response type	DEFER#	U23	IO	Defer . A dynamic deferring policy is used to optimize system performance. The DEFER# signal is also used to indicate a processor retry response.
Also driven in conjunction with HITM# by the target to extend the snoop window. HITM#	DRDY#	Y26	IO	Data Ready. Asserted for each cycle that data is transferred.
HLOCK# V25 I Host Lock. All CPU cycles sampled with the assertion of HLOCK# and ADS# un the negation of HLOCK# must be atomic. HREQ[4:0]# T25, V24, U26, T23, U24 V25 IO Request Command. Asserted during both clocks of the request phase. In the find clock, the signals define the transaction type to a level of detail that is sufficient begin a snoop request. In the second clock, the signals carry additional information define the complete transaction type. HTRDY# W25 IO Host Target Ready. Indicates that the target of the processor transaction is able enter the data transfer phase. RS[2:0]# Y25, V26, W26 RESponse Signals. Indicates the type of response per the table below: RES[2:0]# Response type Idle State 001 Retry Response 010 Defer Response 010 Hard Failure 100 Hard Failure 101 Normal Without Data 110 Implicit Writeback 111 Normal With Data CPURST# H24 O CPU Reset. Reset output to CPU. External pullup and filter capacitor to ground should be provided per CPU manufacturer's recommendations.	HIT#	W23	IO	Hit . Indicates that a caching agent holds an unmodified version of the requested line. Also driven in conjunction with HITM# by the target to extend the snoop window.
HREQ[4:0]# T25, V24, U26, T23, U24 begin a snoop request. In the second clock, the signals carry additional information define the complete transaction type. HTRDY# W25 IO Host Target Ready. Indicates that the target of the processor transaction is able enter the data transfer phase. RS[2:0]# Y25, V26, W26 IO Response Signals. Indicates the type of response per the table below: RS[2:0]# Response Signals. Indicates the type of response per the table below: RS[2:0]# Response type Idle State 001 Retry Response 010 Defer Response 011 Reserved 100 Hard Failure 101 Normal Without Data 110 Implicit Writeback 111 Normal With Data CPURST# H24 O CPU Reset. Reset output to CPU. External pullup and filter capacitor to ground should be provided per CPU manufacturer's recommendations.	HITM#	V23	I	Hit Modified. Asserted by the CPU to indicate that the address presented with the last
CPURST# U24 U25, T23, U24 Clock, the signals define the transaction type to a level of detail that is sufficient begin a snoop request. In the second clock, the signals carry additional information define the complete transaction type. HTRDY# W25 IO Host Target Ready. Indicates that the target of the processor transaction is able enter the data transfer phase. RS[2:0]# Y25, V26, W26 Response Signals. Indicates the type of response per the table below: Response type O00	HLOCK#	V25	4	Host Lock . All CPU cycles sampled with the assertion of HLOCK# and ADS# until the negation of HLOCK# must be atomic.
HTRDY# W25 IO Host Target Ready. Indicates that the target of the processor transaction is able enter the data transfer phase. RS[2:0]# Y25, V26, W26 IO Response Signals. Indicates the type of response per the table below: RS[2:0]# Response type O00 Idle State O01 Retry Response O10 Defer Response O11 Reserved O10 Hard Failure O10 Hard Failure O10 Implicit Writeback O11 Normal Without Data O11 Normal With Data CPURST# H24 O CPU Reset. Reset output to CPU. External pullup and filter capacitor to ground should be provided per CPU manufacturer's recommendations.	HREQ[4:0]#	U26, T23,	IO	Request Command. Asserted during both clocks of the request phase. In the first clock, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second clock, the signals carry additional information to
RS[2:0]# Response type 000 Idle State 001 Retry Response 010 Defer Response 011 Reserved 100 Hard Failure 101 Normal Without Data 110 Implicit Writeback 111 Normal With Data CPURST# H24 O CPU Reset. Reset output to CPU. External pullup and filter capacitor to ground should be provided per CPU manufacturer's recommendations.	HTRDY#	W25	IO	Host Target Ready. Indicates that the target of the processor transaction is able to
CPURST# H24 O CPU Reset. Reset output to CPU. External pullup and filter capacitor to ground should be provided per CPU manufacturer's recommendations.	RS[2:0]#	Y25, V26, W26	Ю	RS[2:0]# Response type 000 Idle State 001 Retry Response 010 Defer Response 011 Reserved 100 Hard Failure 101 Normal Without Data 110 Implicit Writeback
	CPURST#	H24	О	CPU Reset. Reset output to CPU. External pullup and filter capacitor to ground
	BREQ0#	AA26	О	

Note: Clocking of the CPU interface is performed with HCLK.

Note: Internal pullup resistors are provided on all GTL interface pins. If the CPU does not have internal pullups, the north bridge internal pullups may be enabled to allow the interface to meet GTL bus interface specifications (see strap descriptions).

The pinouts were defined assuming the ATX PCB layout model shown below (and general pin layout shown) as a guide for PCB component placement. Other PCB layouts (AT, LPX, and NLX) were also considered and can typically follow the same general component placement.

1							
				V-Link Inter	face		
Signal Name	Pin #	I/O	Signal D	escription			
VAD7,	V2	IO	Address	/Data Bus.			
VAD6,	V1	IO					
VAD5,	R1	IO					SB
VAD4,	V3	IO	Strap	<u>Function</u>	Setting (L=strap low, H=strap high)	Register	<u>Pin</u>
VAD3 / strap,	R4	IO	VAD3	GTL Pullup Enable	L=Disable, H=Enable	Rx50[6]	SA19
VAD2 / strap,	U1	IO	VAD2	IOQ Depth	L=1-Level, H=8-Level	Rx50[7]	SA18
VAD1 / strap,	P3	IO	VAD1	CPU FSB Clock Msb	LL=66 MHz, LH=100 MHz	Rx54[7]	SA17
VAD0 / strap	P1	IO	VAD0	CPU FSB Clock Lsb	Hx=133 MHz	Rx54[6]	SA16
VLPAR	U3	IO	Parity.				
VBE#	R5	IO	Byte En	able.			
VUPCMD	T5	I	Comma	nd from Client-to-Host.			
VUPSTB	T2	I	Strobe f	rom Client-to-Host.			
VUPSTB#	T1	I	Complei	ment Strobe from Client-	to-Host.		
VDNCMD	Т3	О	Comma	nd from Host-to-Client.			
VDNSTB	R2	О	Strobe f	rom Host-to-Client.			
VDNSTB#	R3	О	Complei	ment Strobe from Host-to	o-Client.		

	DDR Synchro	nou	s DRAM Memory Interface
Signal Name	Pin #	I/O	Signal Description
MD[63:0]	(see pinout tables)	Ю	Memory Data. These signals are connected to the DRAM data bus. Output drive strength may be set by Device 0 Rx6D[1-0].
MA[14-0]	AC19, AC17, AD6, AB6, AC6, AB17, AC16, AB16, AD14, AC14, AC13, AB13, AC11, AD11, AD10	О	Memory Address. DRAM address lines. Output drive strength may be set by Device 0 Rx6C[7-6].
CS[3:0]#	W4, AC3, Y3, AA4	О	Chip Select. Chip select of each bank. Output drive strength may be set by Device 0 Rx6D[3-2].
DQM[7:0]	AB2, AF3, AF7, AE11, AC15, AF18, AD22, AD25	О	Data Mask. Data mask of each byte lane. Output drive strength may be set by Device 0 Rx6D[5-4].
DQS[7:0]#	AB1, AE3, AD7, AF11, AD15, AE18, AF22, AD26	IO	DDR Data Strobe. Data strobe of each byte lane. Output drive strength may be set by Device 0 Rx6C[3-2].
SRAS#	AD5	О	Row Address Command Indicator. Output drive strength may be set by Device 0 Rx6C[7-4].
SCAS#	AB4	О	Column Address Command Indicator. Output drive strength may be set by Device 0 Rx6C[7-4].
SWE#	AB5	O	Write Enable Command Indicator. Output drive strength may be set by Device 0 Rx6C[7-4].
CKE[3:0]	AD23, AC21, AC22, AC20	0	Clock Enables. Clock enables for each DRAM bank for powering down the SDRAM or clock control for reducing power usage and for reducing heat / temperature in high-speed memory systems. See Device 0 Rx6B[4].

SMB / I2C Interface							
Signal Name	Pin#	I/O	Signal Description				
SPCLK[2:1]	A8, E9	IO	Serial Port (SMB/I2C) Clocks. These are the clocks for serial data transfer. SPCLK1 is typically used for DDC communications with a CRT monitor. As an output, it is programmed via CRA0[0]. As an input, its status is read via CRA0[2]. In either case the serial port must be enabled by CRA0[4] = 1. SPCLK2 is typically used for I^2C communications. As an output, it is programmed via CRB1[0]. As an input, its status is read via CRB1[2]. The port is enabled via CRB1[4] = 1.				
SPDAT[2:1]	C9, D9	IO	Serial Port (SMB/I2C) Data. These are the data signals used for serial data transfer. SPDAT1 is typically used for DDC communications with a CRT monitor. As an output, it is programmed via CRA0[1]. As an input, its status is read via CRA0[3]. In either case the serial port must be enabled by CRA0[4] = 1. SPDAT2 is typically used for I ² C communications. As an output, it is programmed via CRB1[1]. As an input, its status is read via CRB1[3]. The port is enabled via CRB1[4] = 1.				

	Digital Monitor (DVI) Interface			
Signal Name	Pin #	I/O	Signal Description	
DVID11 / TVD11,	D6	О	Digital Monitor Data Out. Internally pulled down during reset	
DVID10 / TVD10,	C6			
DVID09 / TVD9,	A5			
DVID08 / TVD8,	B5			
DVID07 / TVD7,	C5			
DVID06 / TVD6,	A4			
DVID05 / TVD5,	B4			
DVID04 / TVD4,	C4			
DVID03 / TVD3,	A3			
DVID02 / TVD2,	В3		C.	
DVID01 / TVD1,	A2			
DVID00 / TVD0	B2			
DVICLK / TVCLK	C2	0	Digital Monitor Clock Out. Internally pulled down during reset	
DVIHS / TVHS	B1	О	Digital Monitor Horizontal Sync. Internally pulled down during reset	
DVIVS / TVVS	A1	О	Digital Monitor Vertical Sync. Internally pulled down during reset	
DVIDE / TVBL#	D5	О	Digital Monitor Display Enable. Indicates valid data on DVID[11:0]. Internally	
			pulled down during reset	
DVIDET / NC	C1	I	Digital Monitor Detect. Rx?? will read 1 if a digital monitor is connected. Must be	
			tied to GND if not used.	

TV Encoder Interface					
Signal Name	Pin#	I/O	Signal Description		
TVD11 / DVID11,	D6	Q	TV Encoder Data. Internally pulled down during reset		
TVD10 / DVID10,	C6				
TVD9 / DVID09,	A5				
TVD8 / DVID08,	B5	,			
TVD7 / DVID07,	C5				
TVD6 / DVID06,	A4				
TVD5 / DVID05,	B4				
TVD4 / DVID04,	C4				
TVD3 / DVID03,	A3				
TVD2 / DVID02,	В3				
TVD1 / DVID01,	A2				
TVD0 / DVID00	B2				
TVCLKR / NC	C3	I	TV Encoder Clock In. Input clock from encoder. Internally pulled down.		
TVCLK / DVICLK	C2	О	TV Encoder Clock Out. Output clock to TV encoder. Internally pulled down.		
TVHS / DVIHS	B1	О	TV Encoder Horizontal Sync. Internally pulled down during reset		
TVVS / DVIVS	A1	О	TV Encoder Vertical Sync. Internally pulled down during reset		
TVBL# / DVIDE	D5	О	TV Encoder Blanking. Internally pulled down during reset		

CRT Interface				
Signal Name	Pin #	I/O	Signal Description	
AR	C10	A	Analog Red. Analog red output to the CRT monitor.	
AB	A10	A	Analog Blue. Analog blue output to the CRT monitor.	
AG	B10	A	Analog Green. Analog green output to the CRT monitor.	
HSYNC	A9	О	Horizontal Sync. Output to CRT.	
VSYNC	B9	О	Vertical Sync. Output to CRT.	
RSET	A11	A	Reference Resistor. Tie to GNDRGB through an external 140 Ω resistor to control	
			the RAMDAC full-scale current value.	

Direct LCD Panel Interface						
	ı	ı	Direc	T LCD Failer Interra	ce	
Signal Name	Pin #	I/O	Signal Des	scription		
FPD23 / DFDET,	N4	О			o function as strap inputs that are	
FPD22 / DFD11 / strap,	N2	О			os are defined per the table below.	
FPD21 / DFD10 / strap,	N1	О			strap high (4.7K $\!\Omega\!$ to $10K\Omega$ t $3.3V$	7). See Design
FPD20 / DFD09 / strap,	N3	О	Guide for o	letails.		
FPD19 / DFD08 / strap,	M3	О				
FPD18 / DFD07 / strap,	M1	О	<u>Strap</u>	<u>Function</u>	Setting	Register
FPD17 / DFD06 / strap,	M2	О	FPD22	Reserved for Test	Always Strap Low	_
FPD16 / DFD05 / strap,	M4	О				
FPD15 / DFD04 / strap,	L1	О	FPD21-20	TV Mode	LL=PAL, LH=NTSC,	EXSR13[4:3]
FPD14 / DFD03 / strap,	L2	О			HL=PAL-N, HH=PAL-NC	
FPD13 / DFD02 / strap,	L3	О	FPD19	TV # of Lines	L=525 Lines, H=625 Lines	EXSR12[6]
FPD12 / DFD01 / strap,	L4	О		~ A		
FPD11 / DFD00 / strap,	K4	0	FPD18	DVI Port Configuration	L=DVI, H=TV	EXSR12[5]
FPD10 / DFDE / strap,	K1	O	FPD17	Panel Interface Config	L=DVI / Capture, H=Panel	EXSR12[4]
FPD9 / DFHS / strap,	K2	0	FPD16-13	Panel Type	Customer Defined (contact VIA)	EXSR12[3:0]
FPD8 / DFVS / strap,	K3	Ŏ		, , ,	,	
FPD7 / CPD15,	J1	О	FPD12	Reserved for Test	Always Strap Low	_
FPD6 / CPD14,	J2	О	FPD11	Reserved for Test	Always Strap Low	_
FPD5 / CPD13,	H1	О	FPD10	Reserved for Test	Always Strap Low	_
FPD4 / CPD12,	H2	О	FPD9	Reserved for Test	Always Strap Low	_
FPD3 / CPCK1,	Н3	О	FPD8	Reserved for Test	Always Strap Low	_
FPD2 / CPD11,	G1	О			•	
FPD1 / CPD10,	G2	О				
FPD0 / CPD09	G3	О	y			
FPVS / CPVS	F3	0	Flat Panel	Vertical Sync. Internally	pulled down.	
FPHS / CPHS	F2	0		Horizontal Sync. Interna		
FPDE / CPD08	F1	0	Flat Panel	Data Enable. Internally	pulled down.	
FPCLK / DFCLK	J3	О	Flat Panel	Clock. Internally pulled	down during reset.	
ENVDD	G4	0	Enable VI	DD. This signal is driven h	nigh to initiate a flat panel power up	p sequence.
ENVEE	G5	О	Enable VI	EE. This signal is driven	high for a programmable time af	fter ENVDD is
			driven high	driven high during a flat panel power up sequence.		
ENBLT	Н5	0	Enable Ba	cklight.		

	Video Capture Interface				
Signal Name	Pin #	I/O	Signal Description		
CPD15 / FPD7,	J1	I	Flat Panel Data Out.		
CPD14 / FPD6,	J2				
CPD13 / FPD5	H1				
CPD12 / FPD4,	H2				
CPD11 / FPD2,	G1				
CPD10 / FPD1,	G2				
CPD09 / FPD0	G3				
CPD08 / FPDE	F1				
CPD07	F4				
CPD06	E4				
CPD05	E1				
CPD04	E2				
CPD03	D1				
CPD02	D2				
CPD01	D3				
CPD00	D4				
CPVS / FPVS	F3	I	Video Capture Vertical Sync. Internally pulled down.		
CPHS / FPHS	F2	I	Video Capture Horizontal Sync. Internally pulled down.		
CPCLK	ЕЗ	Ι	Video Capture Clock 0. Clock for capture data inputs 0-7 (or 0-15 when capture port is configured as 16-bit)		
CPCK1 / FPD3	Н3	I	Video Capture Clock 1. Clock for capture data inputs 8-15 when used as a second 8-bit capture port.		

Note: The Video Capture Port may always be used in 8-bit input mode. The "upper" data bits (CPD[15:8] may be used as a 16-bit extension or as a second 8-bit port if the 24-bit direct flat panel interface is not used.

	Alternate Digital Monitor (DVI) Interface					
Signal Name	Pin#	I/O	Signal Description			
DFD11 / FPD22,	N2	0	Digital Monitor Data Out.			
DFD10 / FPD21,	N1	7				
DFD09 / FPD20,	N3					
DFD08 / FPD19,	M3					
DFD07 / FPD18,	M1					
DFD06 / FPD17,	M2					
DFD05 / FPD16,	M4		Y			
DFD04 / FPD15,	L1					
DFD03 / FPD14,	L2					
DFD02 / FPD13,	L3					
DFD01 / FPD12,	L4					
DFD00 / FPD11	K4					
DFCLK / FPCLK	J3	О	Digital Monitor Clock. Internally pulled down during reset.			
DFHS / FPD9	K2	О	Digital Monitor Horizontal Sync. Internally pulled down during reset			
DFVS / FPD8	K3	О	Digital Monitor Vertical Sync. Internally pulled down during reset			
DFDE / FPD10	K1	О	Digital Monitor Display Enable. Indicates valid data on DFD[11:0]. Internally pulled down			
			during reset			
DFDET / FPD23	N4	О	Digital Monitor Detect. Rx?? will read 1 if a digital monitor is connected. Must be tied to GND if not used.			

Note: All "DFxxx" pins perform the same function as the "DMxxx" pins (the other DVI interface muxed with the TV-out pins).

Cl	Clocks, Resets, Power Control, General Purpose I/O, Interrupts and Test					
Signal Name	Pin #	I/O	Signal Description			
HCLK	Y23	Ι	Host Clock. This pin receives the host CPU clock (100 / 133 MHz). This clock is used by all CLE266 logic that is in the host CPU domain.			
MCLK	AB23	0	Memory (SDRAM) Clock. Output from the internal clock generator to the external clock buffer.			
MCLKFB	AC23	I	Memory (SDRAM) Clock Feedback. Input from the external clock buffer.			
DCLKI	H4	Ι	Dot Clock (Pixel Clock) In. Used for external EMI reduction circuit if used. Loop back from DCLKO if external EMI reduction circuit not implemented.			
DCLKO	J4	О	Dot Clock (Pixel Clock) Out. Used for external EMI reduction circuit if used. Loop back to DCLKI if external EMI reduction circuit not implemented.			
XIN	E12	Ι	Reference Frequency Input. 14.31818 MHz reference clock input for the internal graphics controller Phase Locked Loops (PLLs). All internal graphics controller clocks are synthesized on chip using this frequency as a reference.			
RESET#	W3	Ι	Reset. When asserted low, this signal resets the internal logic of the chip and sets all register bits to thier default values. The rising edge of this signal is used to sample all power-up strap options. Normally driven by the south bridge.			
PWROK	W1	Ι	Power OK. When asserted high, this signal indicates that system voltages are correct and stable. Driven by on-board Power Good circuitry. Also connected to the chipset south bridge.			
SUSST#	W2	I	Suspend Status. For implementation of the Suspend-to-DRAM feature. Normally driven by the south bridge. Connect to an external pullup if not used.			
INTA#	В6	O	Interrupt. PCI interrupt output (handled by the interrupt controller in the South Bridge)			
AGPBUSY#	В8	0	AGP Interface Busy. Connect to a south bridge GPIO pin for monitoring the status of the internal AGP bus. See CLE266 Design Guide for details.			
GPIO0	D7	0	General Purpose Input / Output 0.			
GPIO1	E7	, O	General Purpose Input / Output 1.			
GPIO2	D8	О	General Purpose Input / Output 2.			
GPIO3	E8	0	General Purpose Input / Output 3.			
AGPSTOP#	C8	I	AGP Stop. Assert low to stop the internal AGP interface (for power measurement only, not used in normal operation)			
AGPSTDBY	A7	Ι	AGP Standby. Assert high to put the internal AGP interface into standby mode (for power measurement only, not used in normal operation)			
AGPSUSP	C7	Ι	AGP Suspend. Assert high to put the internal AGP interface into suspend mode (for power measurement only, not used in normal operation)			
GCLK	P4	I	Graphics Clock. 66 MHz clock from system clock sythesizer.			
BISTIN	В7	I	BIST (Built-In-Self-Test) In. This pin is used for testing and must be tied low on all board designs.			
DFTIN	A6	I	DFT (Design-For-Test) In. This pin is used for testing and must be tied low on all board designs.			
NC	AB10, AC10	_	No Connect. Do not connect. Reserved for future use.			

	Power, Ground, and Test					
Signal Name	Pin #	I/O	Signal Description			
VTT	(see pin list)	P	Power for CPU I/O Interface Logic. Voltage is CPU dependent. See CLE266 Design Guide for details.			
GTLVREF	E20, T22	P	CPU Interface GTL+ Voltage Reference. 2/3 VTT ±2% typically derived using a resistive voltage divider. See CLE266 Design Guide for details.			
VCCM	(see pin list)	P	Power for Memory I/O Interface Logic. $2.5 \pm 5\%$.			
MEMVREF	AB7, AB20	P	Memory Voltage Reference.			
VCCVL	P7, R7, T7, U5, V5	P	Power for V-Link I/O Interface Logic. 2.5V ±5%.			
VLCOMP	V4	I	V-Link P-Channel Compensation. Connect 70 Ω 1% resistor to ground.			
VLVREF	T4	P	V-Link Voltage Reference. 0.9V derived using a resistive voltage divider between VCC25 and ground (see Design Guide for details).			
VCC25	(see pin list)	P	Power for Internal Digital Logic. 2.5V ±5%.			
VSUS25	W5	P	Suspend Power. 2.5V ±5%.			
VCCHCK	AA24	P	Power for Host CPU Clock DLL. 2.5V ±5%.			
VCCMCK	AB24	P	Power for Memory Clock DLL. 2.5V ±5%.			
VCCFP	(see pin table)	P	Power for Flat Panel, DVI, TV-Out and Video Capture Interfaces. 3.3V ±5%.			
VCCRGB	D10	P	Power for CRT RGB Outputs. 2.5V ±5%.			
VCCDAC	C11	P	Power for DAC Digital Logic. 2.5V ±5%.			
VCCPLL1	B12	P	Power for Graphics Controller PLL 1. 2.5V ±5%.			
VCCPLL2	D12	P	Power for Graphics Controller PLL 2. 2.5V ±5%.			
VCCPLL3	C13	P	Power for Graphics Controller PLL 3. 2.5V ±5%.			
GND	(see pin table)	P	Ground for Internal Digital Logic. Connect to primary PCB ground plane.			
GNDHCK	Y24	P	Ground for Host CPU Clock Circuitry. Connect to main ground plain through a ferrite bead.			
GNDMCK	AC24	P	round for Memory Clock Circuitry. Connect to main ground plain through a rrite bead.			
GNDRGB	B11	P	Connection Point for RGB Load Resistors.			
GNDDAC	D11	P	Ground for DAC Digital Circuitry.			
GNDPLL1	A12	P	Ground for Graphics Controller PLL 1.			
GNDPLL2	C12	P	Ground for Graphics Controller PLL 2.			
GNDPLL3	A13	P	Ground for Graphics Controller PLL 3.			

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions following these tables for details). All offset and default values are shown in hexadecimal unless otherwise indicated.

Table 5. Registers

I/O Ports

Port #	I/O Port	<u>Default</u>	Acc
0022	PCI / AGP Arbiter Disable	00	RW
0CFB-0CF8		0000 0000	
0CFF-0CFC	Configuration Data	0000 0000	RW

Device 0 Registers - Host Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3123	RO
5-4	Command	0006	RW
7-6	Status	0210	WC
8	Revision ID	0n	RO
9	Program Interface	00	RO
Α	Sub Class Code	00	RO
В	Base Class Code	06	RO
С	-reserved-	00	_
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Graphics Aperture Base	0000 0008	RW
14-2B	-reserved-	00	
2D-2C	Subsystem Vendor ID	0000	W1
2F-2E	Subsystem ID	0000	W1
30-33	-reserved-	00	_
34	Capability Pointer	A0 🗸	RO
35-3F	-reserved-	00	\neq

Device-Specific Registers

Offset	V-Link Control	Default	Acc
40	V-Link Revision ID	00	RO
41	V-Link NB Capability	18	RO
42	V-Link NB Downlink Command	88	RW
44-43	V-Link NB Uplink Status	8280	RO
45	V-Link NB Bus Timer	44	RW
46	V-Link Misc NB Control	00	RW
47	V-Link Control	00	RW
48	V-Link NB/SB Configuration	18	RW
49	V-Link SB Capability	18	RW
4A	V-Link SB Downlink Status	88	RO
4C-4B	V-Link SB Uplink Command	8280	RW
4D	V-Link SB Bus Timer	44	RW
4E	CCA Master High Priority	00	RW
4F	V-Link SB Miscellaneous Control	00	RW

Offset	Host CPU Protocol Control	Default	Acc
50	CPU Interface Request Phase Control	20	RW
51	CPU Interface Basic Control	00	RW
52	CPU Interface Advanced Control	00	RW
53	CPU Interface Arbitration Control	03	RW
54	CPU Miscellaneous Control	00	RW

Device-Specific Registers (continued)

Offset	DRAM Control	Default	Acc
55	DRAM Control	00	RW
56-57	-reserved-	00	
58	MA Map Type	22	RW
59	-reserved-	00	
5F-5A	DRAM Row Ending Address:		
5A	Bank 0 Ending (HA[31:24])	01	RW
5B	Bank 1 Ending (HA[31:24])	01	RW
5C	Bank 2 Ending (HA[31:24])	01	RW
5D	Bank 3 Ending (HA[31:24])	01	RW
5E-5F	-reserved-	01	RW
60	DRAM Type	00	RW
61	ROM Shadow Control C0000-CFFFF	00	RW
62	ROM Shadow Control D0000-DFFFF	00	RW
63	ROM Shadow Control E0000-FFFFF	00	RW
64	DRAM Timing for All Banks	E4	RW
65	DRAM Arbitration Timer	00	RW
66	DRAM Arbitration Control	00	RW
67	DRAM DQS/SDR/MD Read Delay	00	RW
68	DRAM DDR Control	00	RW
69	Extended SMRAM Control	00	RW
6A	DRAM Refresh Counter	00	RW
6B	DRAM Arbitration Control	00	RW
6C	SDRAM Control	00	RW
6D	DRAM Control Drive Strength	00	RW
6E-6F	-reserved-	00	

Offset	PCI Bus Control	Default	Acc
70	PCI Buffer Control	00	RW
71	CPU to PCI Flow Control	48	RW
72	-reserved-	00	
73	PCI Master Control 1	00	RW
74	-reserved-	00	
75	PCI Arbitration 1	00	RW
76	PCI Arbitration 2	00	RW
77-7F	-reserved-	00	

Device 0 Device-Specific Registers (continued)

Offset	GART/TLB Control	Default	Acc
83-80	GART/TLB Control	0000 0000	RW
84	Graphics Aperture Size	00	RW
85	Write Policy	00	RW
86-87	-reserved-	00	
8B-88	Gr. Aperture TLB Base Register Base	0000 0000	RW
8C-9F	-reserved-	00	

Offset	AGP Control	Default	Acc
A0	AGP ID	02	RO
A1	AGP Next Item Pointer	C0	RO
A2	AGP Specification Revision	20	RO
A3	-reserved-	00	_
A7-A4	AGP Status	1F00 0207	RO
AB-A8	AGP Command	0000 0000	RW
AC	AGP Control	00	RW
AD	AGP Miscellaneous Control 1	02	RW
AE	AGP Miscellaneous Control 2	00	RW
AF-B3	-reserved-	00	_

Offset	V-Link Control	Default	Acc	E4-
B4	V-Link NB Compensation Control	00	RW	Е
B5	V-Link NB Drive Control	00	RW	E
B6-B7	-reserved-	00		E
B8	V-Link SB Compensation Control	00	RW	E9-
В9	V-Link SB Drive Control	00	RW	
BA-BB	-reserved-	00		Off
				F7- F8- FC-

Device 0 Device-Specific Registers (continued)

Offset	Power Management Control	Default	Acc
BC	Power Management Mode	00	RW
BD	DRAM Power Management	00	RW
BE	Dynamic Clock Stop	00	RW
BF	MA / SCMD Pad Toggle Reduction	00	RW
C0	Power Management Capability	01	RO
C1	Power Management Next Pointer	00	RO
C2	Power Management Capabilities I	02	RO
C3	Power Management Capabilities II	00	RO
C4	Power Management Control/Status	00	RW
C5	Power Management Status	00	RW
C6	PCI-to-PCI Bridge Support Extension	00	RW
C7	Power Management Data	00	RW
C8-DF	-reserved-	00	

Ī	Offset	Frame Buffer & High Memory Ctrl	Default	Acc
	E0	CPU Direct Access FB Base	00	RW
d	E1	CPU Direct Access FB Size	00	RW
	E2	VGA Arbitration Timer 1	00	RW
	E3	UMA Control	00	RW
	E4-E5	-reserved-	00	
	E6	SMM / APIC Decoding	01	RW
	E7	-reserved-	00	_
	E8	VGA Arbitration Timer 2	40	RW
	E9-EF	-reserved-	00	_

Offset	Test, BIOS Scratch, Miscellaneous	Default	Acc
F7-F0	BIOS Scratch Registers	00	RW
F8-FB	-reserved-	00	
FC-FF	Reserved (Do Not Program)	0000	RW

Device 1 Registers - PCI-to-PCI Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	B091	RO
5-4	Command	0007	RW
7-6	Status	0230	WC
8	Revision ID	0n	RO
9	Programming Interface	00	RO
A	Sub Class Code	04	RO
В	Base Class Code	06	RO
С	-reserved-	00	
D	Latency Timer	00	RO
Е	Header Type	01	RO
F	-reserved- (Built In Self Test)	00	_
10-17	-reserved-	00	
18	Primary Bus Number	00	RW
19	Secondary Bus Number	00	RW
1A	Subordinate Bus Number	00	RW
1B	Secondary Latency Timer	00	RO
1C	I/O Base	F0	RW
1D	I/O Limit	00	RW
1F-1E	Secondary Status	0000	RO
21-20	Memory Base	FFF0	RW
23-22	Memory Limit (Inclusive)	0000	RW
25-24	Prefetchable Memory Base	FFF0	RW
27-26	Prefetchable Memory Limit	0000	RW
28-33		00	
34	Capability Pointer	80	RO
	-reserved-	00	
3F-3E	PCI-to-PCI Bridge Control	0000	RW

Device-Specific Registers

Offset	AGP Bus Control	Default	Acc
40	CPU-to-AGP Flow Control 1	00	RW
41	CPU-to-AGP Flow Control 2	08	RW
42	AGP Master Control	00	RW
43	AGP Master Latency Timer	22	RW
44	Reserved (Do Not Program)	20	RW
45	Fast Write Control	72	RW
47-46	PCI-to-PCI Bridge Device ID	0000	RW
48	AGP Parity Error Control	00	RW
49-7F	-reserved-	00	

Offset	Power Management	Default	Acc
80	Capability ID	01	RO
81	Next Pointer	00	RO
82	Power Management Capabilities 1	02	RO
83	Power Management Capabilities 2	00	RO
84	Power Management Control / Status	00	RW
85	Power Management Status	00	RO
86	PCI-PCI Bridge Support Extensions	00	RO
87	Power Management Data	00	RO
88-FF	-reserved-	00	_

Graphics Controller Registers

PCI Configuration Space Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3122	RO
5-4	Command	0000	RW
7-6	Status	0230	WC
8	Revision ID	0n	RO
9	Program Interface	00	RO
A	Sub Class Code	00	RO
В	Base Class Code	03	RO
С	-reserved-	00	
D	Latency Timer	00	RO
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Memory Base 0	0000 0008	RW
17-14	Memory Base 1	0000 0000	RW
18-2B	-reserved-	00	
2D-2C	Subsystem Vendor ID	0000	RO
2F-2E	Subsystem ID	0000	RO
30-33	-reserved-	00	
34	Capability Pointer	60	RO
35-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	01	RW
3E-3F	-reserved-	00	•

PCI Configuration Space Device-Specific Registers

Offset	Power Management Configuration	Default	Acc
40-5F	-reserved-	00	
60	Capability ID	01	RO
61	Next Item Pointer	70	RO
63-62	Power Management Capabilities	0622	RO
65-64	Power Management Control / Status	0000	RW
67-66	Data + PM Control / Status BSE	0000	RO
68-6F	-reserved-	00	

Offset	AGP Configuration	<u>Default</u>	Acc
70	Capability ID	02	RO
71	Next Item Pointer	00	RO
73-72	Revision Number	0020	RO
77-74	AGP Status	1F00 0207	RO
7B-78	AGP Command	0000 0000	RW
7C-FF	-reserved-	00	

Memory Base 0

Up to 64 MB for the graphics and video playback buffer.

Memory Base 1

16 MB for memory mapped I/O, 2D host Bitblt space, and burst command area.

Offset Range	Memory Mapped I/O (0 to 2M-1)	Acc
0000-01FF	2D Engine Control	RW
0200-03FF	Video-related Engines Control	RW
0400-07FF	3D Engine Control	RW
0800-0BFF	Burst Command Area	RW
0C00-0DFF	DVD Engine (MPEG) Control	RW
0E00-0FFF	DMA / AGP Control	RW
1000-83BF	-reserved-	
83Cx-83Dx	VGA Memory Mapped I/O	RW
83E0-FFFF	-reserved-	

Offset Range	2D Host Bitblt / Burst Command Area	Acc
2M to 4M-1	2D Host Bitblt Space	RW
4M to 8M-1	Burst Command Area	RW
8M to 16M-1	-reserved-	_

VGA Registers

Port	Index	General Registers	Acc
3C2	-	Miscellaneous Output	WO
3CC	-	Miscellaneous Output	RO
3C2	-	Input Status 0	RO
3?A	-	Input Status 1	RO
3C3	-	Video Subsystem Enable	RW
46E8	-	Video Adapter Enable	RW

In the port column above "?" = B for monochrome mode and D for color mode.

Port	Index	Attribute Controller Registers	Acc
3C0	-	Index	RW
3C1	00-0F	Color Palette	RW
3C1	10	Mode Control	RW
3C1	11	Overscan Color	RW
3C1	12	Color Plane Enable	RW
3C1	13	Horizontal Pixel Panning	RW
3C1	14	Color Select	RW
3C1	15-7F	-reserved-	

Port	Index	Sequencer Registers	Acc
3C4	-	Index	RW
3C5	00	Reset	RW
3C5	01	Clocking Mode	RW
3C5	02	Map Mask	RW
3C5	03	Character Map Select	RW
3C5	04	Memory Mode	RW
3C5	05-0F	-reserved-	
3C5	10-7F	(extended registers - see next page)	,

Port	Index	Graphics Controller Registers	Acc
3CE	-	Index	RW
3CF	00	Set / Reset	RW
3CF	01	Set / Reset Enable	RW
3CF	02	Color Compare	RW
3CF	03	Data Rotate	RW
3CF	04	Read Map Select	RW
3CF	05	Mode	RW
3CF	06	Miscellaneous	RW
3CF	07	Color Don't Care	RW
3CF	08	Bit Mask	RW
3CF	09-1F	-reserved-	
3CF	20-7F	(extended registers - see next page)	

Refer to any VGA book or technical reference for detailed descriptions of the bits of the above VGA-standard registers.

Port	Index	CRT Controller Registers	Acc
3?4	-	Index	RW
3?5	00	Horizontal Total	RW
3?5	01	Horizontal Display End	RW
3?5	02	Start Horizontal Blank	RW
3?5	03	End Horizontal Blank	RW
3?5	04	Start Horizontal Retrace	RW
3?5	05	End Horizontal Retrace	RW
3?5	06	Vertical Total	RW
3?5	07	Overflow	RW
3?5	08	Preset Row Scan	RW
3?5	09	Max Scan Line	RW
3?5	0A	Cursor Start	RW
3?5	0B	Cursor End	RW
3?5	0C	Start Address High	RW
3?5	0D	Start Address Low	RW
3?5	0E	Cursor Location High	RW
3?5	0F	Cursor Location Low	RW
3?5	10	Vertical Retrace Start	RW
3?5	11	Vertical Retrace End	RW
3?5	12	Vertical Display End	RW
3?5	13	Offset	RW
3?5	14	Underline Location	RW
3?5	15	Start Vertical Blank	RW
3?5	16	End Vertical Blank	RW
3?5	17	CRTC Mode Control	RW
3?5	18	Line Compare	RW
3?5	19-31	-reserved-	
3?5	32-7F	(extended registers - see next page)	

In the port column above "?" = B for monochrome mode and D for color mode.

Refer to any VGA book or technical reference for detailed descriptions of the bits of the above VGA-standard registers.

VGA Extended Registers

Port	Index	Extended Sequencer Registers	Acc
3C5	10	Extended Register Unlock	RW
3C5	11	Configuration 0	RO
3C5	12	Configuration 1	RO
3C5	13	Configuration 2	RO
3C5	14	Memory Clock DPA 0	RW
3C5	15	Display Mode Control	RW
3C5	16	Display FIFO Threshold Control	RW
3C5	17	Display FIFO Control	RW
3C5	18	Display Arbitor Control 0	RW
3C5	19	Clock Control	RW
3C5	1A	PCI Bus Control	RW
3C5	1B	Power Management Control 0	RW
3C5	1C	Horiz Display Quadword Count Data	RW
3C5	1D	Horiz Display Quadword Count Control	RW
3C5	1E	Power Management Control	RW
3C5	1F	Memory Control 0	RW
3C5	20	Typical Arbiter Control 0	RW
3C5	21	Typical Arbiter Control 1	RW
3C5	22	Display Arbiter Control 1	RW
3C5	23	Memory Control 1	RW
3C5	24	Memory Control 2	RW
3C5	25	General Purpose I/O Port	RW
3C5	26	IIC Serial Port Control 0	RW
3C5	27	Memory Control 3	RW
3C5 3C5	28 29	Memory Control 5	RW RW
		Memory Control 5 MCK De-skew Control 0	RW
3C5 3C5	2A 2B	MCK De-skew Control 0 MCK De-skew Control 1	RW
3C5			RW
	2C	General Purpose I/O Port	
3C5 3C5	2D 2E	Power Management Control 1	RW RW
3C5	2F	Power Management Control 2	_
3C5	30	PCI Config Memory Base Shadow 0 PCI Config Memory Base Shadow 1	RW RW
	31	IIC Serial Port Control 1	RW
3C5	32		
3C5 3C5		SPR 1	RW RW
3C5	33 34	SPR 2 SPR 3	RW
3C5	36-35	Subsystem Vender ID	RW
3C5 3C5	38-37	Subsystem ID BIOS Reserved Register 1-0	RW RW
3C5		-reserved-	IX VV
3C5 3C5	3F-3B 40	AGP Pad Control 1	RW
			_
3C5	41 42	Typical Arbitor Control 1	RW RW
3C5		Typical Arbitor Control 2	ΚW
3C5	43	-reserved-	

("3C5" Sequencer Extended Registers table continued at top of next column)

Port	Index	Extended Sequencer Regs (continued)	Acc
3C5	44	LCDCK Clock Synth D Value (def=C3h)	RW
3C5	45	LCDCK Clock Synth N Value (def=2Ah)	RW
3C5	46	VCK Clock Synthesizer D Value (C3h)	RW
3C5	47	VCK Clock Synthesizer N Value (2Ah)	RW
3C5	48	ECK Clock Synthesizer D Value (47h)	RW
3C5	49	ECK Clock Synthesizer N Value (6Ah)	RW
3C5	4A	MCK Clock Synthesizer D Value	RW
3C5	4B	MCK Clock Synthesizer N Value	RW
3C5	4C-7F	-reserved-	

Port	Index	Extended Graphics Controller Regs	Acc
3CF	20	Offset Register Control	RW
3CF	21	Öffset Register A	RW
3CF	22	Offset Register B	RW
3CF	23-7F	-reserved-	_

Port	Index	Extended CRT Controller Regs	Acc
3?5	32	Mode Control	RW
3?5	33	HSYNC Adjuster	RW
3?5	34	Starting Address Overflow	RW
3?5	35	Extended Overflow	RW
3?5	36	Power Mgmt Control 3 (Monitor Control)	RW
y 3?5	37	-reserved-	
3?5	38	Signature Data Register B0	RW
3?5	39	Signature Data Register B1	RW
3?5	3A	Signature Data Register B2	RW
3?5	3F-3B	BIOS Reserved Register 6-2	RW
3?5	40	Test Mode Control 0	RW
. 3?5	41-45	-reserved-	
3?5	46	Test Mode Control 1	RW
3?5	47	Test Mode Control 2	RW
3?5	48	Test Mode Control 3	RW
3?5	49-7F	-reserved-	

2D Graphics Engine Registers

Video Engine Registers

Offset	Video Playback & Blending Registers	Acc		Offset	Video Playback &
0200	Interrupt Flags & Masks Control	RW		02D0	Graphics Hardware
0204	Ram Table & Address Flip Status	RO		02D4	Graphics Hardware
0208	Alpha Win & HI H & V Start	RW		02D8	Graphics Hardware
020C	Alpha Win H & V End & HI Center Offset	RW		02DC	Graphics Hardware
0210	Alpha Window Control	RW		02E0	Graphics Hardware
0214	CRT Starting Address	RW		02E4	Video Window 1 FE
0218	Second Display Start Address	RW		02E8	Video Window 1 FE
021C	Alpha Stream Frame Buffer Stride	RW		02EC	Video Window 1 FE
0220	CRT Color Key	RW		02F0	Video Window 1 FE
0224	Alpha Win & HI FB Start Address	RW		02F4	Video Window 1 FE
0228	Chroma Key Lower Bound	RW		02F8	Video Window 1 FE
022C	Chroma Key Upper Bound	RW		02FC	Video Window 1 FF
0230	Video Stream 1 Control	RW			above are 32-bit m
0234	Video Win 1 Fetch Count.	RW			Memory Base 1.
0238	Video Win 1 FB Y Start Address 1	RW			Win = Window, F
023C	Video Win 1 FB Stride	RW			Conversion, $Thr = Th$
0240	Video Win 1 H & V Start	RW		Color Space	^
0244	Video Win 1 H & V End	RW			
0248	Video Win 1 FB Y Start Address 2	RW		0	
024C	Video Win 1 Display Zoom Control	RW			
0250	Video Win 1 Minify & Interpolation Ctrl	RW			
0254	Video Win 1 FB Y Start Address 0	RW			
0258	Video 1 FIFO Depth / Threshold Control	RW			
025C	Video Win 1 FB Y Start Address 3	RW			
0260	HI Control	RW		,	
0264	Second Display Color Key	RW			
0268	V3 & Alpha Win FIFO Depth & Thr Ctrl	RW	,		
026C	V1 Source Image Line Count	RW			
0270	HI Transparent Color	RW	/		
0274	V1 Display Temporary Zoom Control	RW			
0278	V3 & Alpha Win FIFO Depth / Thr Ctrl	RW			
027C, 0280	-reserved-				
0284	V1 CSC & Enhancement Control (I)	RW	7		
0288	V1 CSC & Enhancement Control (II)	RW			
028C	V1 FB U Start Address 0	ŔW			
0290, 0294	-reserved-				
0298	Compose Outputs Mode Select	RW			
029C	-reserved-				
02A0	V3 Control	RW			
02A4	V3 Frame Buffer Starting Address 0	RW			
02A8	V3 Frame Buffer Starting Address 1	RW			
02AC	V3 Frame Buffer Stride	RW			
02B0	V3 Horizontal and Vertical Start	RW			
02B4	V3 Horizontal and Vertical End	RW			
02B8	V3 & Alpha Window Fetch Count	RW			
02BC	V3 Display Zoom Control 1	RW			
02C0	V3 Minify & Interpolation Control	RW			
02C4	V3 CSC & Enhancement Control (I)	RW			
02C8	V3 CSC & Enhancement Control (II)	RW			
02CC	V3 Display Temporary Zoom Control	RW			
0200	, 5 2 15 play 1 chipotary 200 in Control	17.11	J		

Offset	Video Playback & Blending Regs (cont)	Acc
02D0	Graphics Hardware Cursor Mode Control	RW
02D4	Graphics Hardware Cursor Position	RW
02D8	Graphics Hardware Cursor Origin	RW
02DC	Graphics Hardware Cursor FG Color	RW
02E0	Graphics Hardware Cursor BG Color	RW
02E4	Video Window 1 FB U Start Address 1	RW
02E8	Video Window 1 FB U Start Address 2	RW
02EC	Video Window 1 FB U Start Address 3	RW
02F0	Video Window 1 FB V Start Address 0	RW
02F4	Video Window 1 FB V Start Address 1	RW
02F8	Video Window 1 FB V Start Address 2	RW
02FC	Video Window 1 FB V Start Address 3	RW

All registers above are 32-bit memory mapped with offsets relative to Memory Base 1. FG = Foreground, BG = Background, Win = Window, FB = Frame Buffer, CSC = Color Space Conversion, Thr = Threshold

Video Engine Registers (continued)

	The Continued)		
Offset	Video Capture Engine & HQV Regs	Acc	1 0 0
0300	C0 Interrupt Flags and Masks Control	RW	
0304	C1 Interrupt Flags and Masks Control	RW	-
0308, 030C	-reserved-	_	relative to Memory Base 1.
0310	C0 Interface Control	RW	
0314	C0 Video H Range (CCIR601 only)	RW	
0318	C0 Video V Range (CCIR601 only)	RW	
031C	C0 Scaling Control	RW	
0320	C0 VBI Data Horizontal Range	RW	
0324	C0 VBI Data Vertical Range	RW	
0328	C0 VBI Memory Starting Address	RW	
032C	C0 VBI Memory Stride	RW	
0330	C0 Ancillary Data Count Setting	RW	
0334	C0 Max Count of Active Video Data	RW	
0338	C0 Max VBI or ANC Memory Data Count	RW	Č.
033C	C0 Capture Data Count	RO	
0340	C0 Video Capture Data 1st FB Start Addr	RW	• 6 .
0344	C0 Video Capture Data 2nd FB Start Addr	RW	
0348	C0 Video Capture Data 3rd FB Start Addr	RW	
034C	-reserved-	_	
0350	C0 Active Video Data Memory Stride &	RW	
	Coring Function		
0354	C1 Interface Control	RW	
0358-377	-reserved-		
0378	C1 Max Count of Active Video Data	RW	
037C	-reserved-	-	
0380	C1 Capture Data Count	RW	
0384	C1 Video Capture Data 1st FB Start Addr	RW	
0388	C1 Video Capture Data 2nd FB Start Addr		
038C	C1 Active Video Data Memory Stride &	RW	
	Coring function		
0390-3BF	-reserved-	1	
03C0	Sub-picture FB Stride & Control	RW	
03C4	Sub-picture FB Start Address	RW	
03C8	Sub-picture 4 X 16 RAM Table Write Ctrl		
03CC	Sub-picture RAM Table Read Data	RO	
03D0	HQV Stream Control / Status	RW	
03D4	HQV SW Source Data Start Address 0 (Y)	_	
03D8	HQV SW Source Data Start Address 1 (U)		
03DC	HQV SW Source Data Start Address 2 (V)		-
03E0	HQV Source Data Start Address 2 (v)	RW	
OSEO	Count Per Line	10 11	
03E4	HQV Filter Control	RW	
03E4 03E8	HQV Minify Control	RW	1
03E6	HQV Destination Data Start Address 0	RW	-
03EC 03F0	HQV Destination Data Start Address 1	RW	
03F0 03F4	HQV Destination FB Stride	RW	
03F4 03F8	HQV Source FB Stride		
03F6 03FC		RW	-
USFC	-reserved-		<u>L</u>

All registers above are 32-bit memory mapped with offsets relative to Memory Base 1. FB = Frame Buffer, C0 = Capture 0, C1 = Capture 1, HQV = High Quality Video, VBI = Vertical Blanking Interval

3D Engine Registers

Offset	3D Graphics Engine Registers	Acc
(see CLE2	66 graphics programming manual for detail	s)

All registers above are 32-bit memory mapped with offsets relative to Memory Base 1.

DVD Engine Registers

Offset	DVD Engine (MPEG) Regs	Default	Acc
0C00	Picture Description	0000 0000	RW
0C04	Macroblock Description	0000 0000	RW
0C08	Null	XXXX XXXX	W
0C0C	MPEG Control	0000 0000	RW
0C10	Motion Vector 0	XXXX XXXX	W
0C14	Motion Vector 1	xxxx xxxx	W
0C18	Motion Vector 2	xxxx xxxx	\mathbf{W}
0C1C	Motion Vector 3	xxxx xxxx	W
0C20	Buffer 0 Y Base Address	XXXX XXXX	W
0C24	Buffer 0 Cb Base Address	XXXX XXXX	W
0C28	Buffer 0 Cr Base Address	XXXX XXXX	W
0C2C	Buffer 1 Y Base Address	xxxx xxxx	W
0C30	Buffer 1 Cb Base Address	xxxx xxxx	W
0C34	Buffer 1 Cr Base Address	XXXX XXXX	W
0C38	Buffer 2 Y Base Address	XXXX XXXX	W
0C3C	Buffer 2 Cb Base Address	xxxx xxxx	W
0C40	Buffer 2 Cr Base Address	XXXX XXXX	W
0C44	Buffer 3 Y Base Address	XXXX XXXX	W
0C48	Buffer 3 Cb Base Address	XXXX XXXX	W
0C4C	Buffer 3 Cr Base Address	XXXX XXXX	W
0C50	Line Offset	xxxx xxxx	W
0C54	MPEG Decoder Status	xxxx xxxx	RW
0C58	IDCT Block Data	XXXX XXXX	W
0C5C	Quantizer Matrix Selection	xxxx xxxx	W
0C60	Quantizer Matrix Content	xxxx xxxx	W
0C64	Slice Bit Stream Content	xxxx xxxx	R
0C80-0C8C	IDCT Coefficients / Datum	XXXX XXXX	W
0C90	Slice Control 1	XXXX XXXX	W
0C94	Slice Control 2	xxxx xxxx	W
0C98	Slice Control 3	xxxx xxxx	W
0C9C	Slice Control 4	xxxx xxxx	$\mathbf{W}^{\mathbb{T}}$
0CA0	Slice Bit Stream	xxxx xxxx	W
0CA4-0DFF	-reserved-	7	1

All registers above are 32-bit memory mapped with offsets relative to Memory Base 1.

DMA Controller Registers

Offset	DMA Controller Registers	Default	Acc
0E00-0E3F	-reserved-	_	
0E40	Channel 0 Memory Address	0000 0000	RW
0E44	Channel 0 Device Address	0000 0000	RW
0E48	Channel 0 Byte Count	0000 0000	RW
0E4C	Channel 0 Descriptor Pointer	0000 0000	RW
0E50	Channel 1 Memory Address	0000 0000	RW
0E54	Channel 1Device Address	0000 0000	RW
0E58	Channel 1Byte Count	0000 0000	RW
0E5C	Channel 1Descriptor Pointer	0000 0000	RW
0E60	Channel 2 Memory Address	0000 0000	RW
0E64	Channel 2 Device Address	0000 0000	RW
0E68	Channel 2 Byte Count	0000 0000	RW
0E6C	Channel 2 Descriptor Pointer	0000 0000	RW
0E70	Channel 3 Memory Address	0000 0000	RW
0E74	Channel 3 Device Address	0000 0000	RW
0E78	Channel 3 Byte Count	0000 0000	RW
0E7C	Channel 3 Descriptor Pointer	0000 0000	RW
0E80	Channel 0 Mode	0000 0000	RW
0E84	Channel 1 Mode	0000 0000	RW
0E88	Channel 2 Mode	0000 0000	RW
0E8C	Channel 3 Mode	0000 0000	RW
0E90	Channel 0 Command / Status	0000 0000	RW
0E94	Channel 1 Command / Status	0000 0000	RW
0E98	Channel 2 Command / Status	0000 0000	RW
0E9C	Channel 3 Command / Status	0000 0000	RW
0EA0	Priority Type	0000 0000	RW
0EA4-0FFF	-reserved-	_	

All registers above are 32-bit memory mapped with offsets relative to Memory Base 1. Channels 2 and 3 are currently reserved.

North Bridge Miscellaneous I/O

One I/O port is defined: Port 22.

Port 22	2 – PCI / AGP Arbiter DisableRW
7-2	Reserved always reads 0
1	AGP Arbiter Disable
	0 Respond to GREQ# signaldefault
	1 Do not respond to GREQ# signal
0	PCI Arbiter Disable
	0 Respond to all REQ# signalsdefault
	1 Do not respond to any REQ# signals,
	including PREQ#

This port can be enabled for read/write access by setting bit-7 of Device 0 Configuration Register 78.

PCI Configuration Space I/O

All registers (listed above in the "register summary" section of this document) are addressed via the following configuration mechanism:

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Respond to all REQ# signalsdefault Do not respond to any REQ# signals, including PREQ# analyse enabled for read/write access by setting bit-7 figuration Register 78. Port CFB-CF8 - Configuration Address	
ncluding PREQ# 31 Configuration Space Enable enabled for read/write access by setting bit-7 Disabled	default
	default
figuration Register 78	
	writes to
configuration cycles on the PCI bus	
30-24 Reservedalwa	ys reads 0
23-16 PCI Bus Number	
Used to choose a specific PCI bus in the sy	stem
15-11 Device Number	
Used to choose a specific device in the	ne system
(devices 0 and 1 are defined)	
10-8 Function Number	
Used to choose a specific function if the	
device supports multiple functions (only fu	nction 0 is
defined).	
7-2 Register Number (also called the "Offset	
Used to select a specific DWORD	in the
configuration space	
1-0 Fixedalwa	ys reads 0
Port CFF-CFC - Configuration Data	DW
1 of CFF-CFC - Configuration Data	17 77
	1 1 . 11
Refer to PCI Bus Specification Version 2.2 for furt	ner details
on operation of the above configuration registers.	
P .	

Device 0 Register Descriptions

Device 0 Host Bridge Header Registers

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through 0CF8 / 0CFC with bus number, function number, and <u>device number</u> equal to <u>zero</u>.

Device	0 Offs	et 1-0 - Vendor ID (1106h)RO	
15-0	ID C	ode (reads 1106h to identify VIA Technologies)	
Device	0 Offs	et 3-2 - Device ID (3123h)RO	
15-0	ID C	ode (reads 3123h to identify the VT8623 north	
	bridge chip)		
D	0 O.C.	-4.5.4. Commond (000(h)	
		et 5-4 –Command (0006h)RW	
15-10			
9		Back-to-Back Cycle EnableRO	
	0	Fast back-to-back transactions only allowed to	
	1	the same agentdefault Fast back-to-back transactions allowed to	
	1	different agents	
8	SERI	R# EnableRO	
Ü	0	SERR# driver disableddefault	
	1	SERR# driver enabled	
	(SER	R# is used to report ECC errors)	
7	Addr	ress / Data SteppingRO	
	0	Device never does steppingdefault	
	1	Device always does stepping	
6	Parit	y Error ResponseRW	
	0	Ignore parity errors & continuedefault	
	1	Take normal action on detected parity errors	
5		Palette SnoopRO	
	0	Treat palette accesses normallydefault	
	1	Don't respond to palette accesses on PCI bus	
4	Mem 0	ory Write and Invalidate CommandRO Bus masters must use Mem Writedefault	
	1	Bus masters must use Mem Write & Inval	
3	-	ial Cycle MonitoringRO	
3	0	Does not monitor special cyclesdefault	
	1	Monitors special cycles	
2	_	Bus MasterRO	
	0	Never behaves as a bus master	
	1	Can behave as a bus masterdefault	
1	Mem	ory SpaceRO	
	0	Does not respond to memory space	
	1	Responds to memory spacedefault	
0	I/O S		
	0	Does not respond to I/O spacedefault	
	1	Responds to I/O space	

Device	0 Offset 7-6 – Status (0210h)RWC
15	Detected Parity Error
10	0 No parity error detecteddefault
	1 Error detected in either address or data phase.
	This bit is set even if error response is disabled
	(command register bit-6)write one to clear
14	Signaled System Error (SERR# Asserted)
	always reads 0
13	Signaled Master Abort
	0 No abort receiveddefault
	1 Transaction aborted by the master
	write one to clear
12	Received Target Abort
	0 No abort received default
	1 Transaction aborted by the target
	write one to clear
11	Signaled Target Abortalways reads 0
. 0	0 Target Abort never signaled
10-9	DEVSEL# Timing
	00 Fast
20	01 Medium always reads 01
	10 Slow
	11 Reserved
8	Data Parity Error Detected
40	0 No data parity error detected default
	1 Error detected in data phase. Set only if error
	response enabled via command bit- $6 = 1$ and
	The VT8623 was initiator of the operation in
	which the error occurred
	write one to clear
7	Fast Back-to-Back Capablealways reads 0
6	User Definable Featuresalways reads 0
5	66MHz Capable always reads 0
4	Supports New Capability list always reads 1
3-0	Reservedalways reads 0
Device	0 Offset 8 - Revision ID (0nh)RO
7-0	Chip Revision Codealways reads 0nh
Device	0 Offset 9 - Programming Interface (00h)RO
7-0	Interface Identifieralways reads 00h
, 0	interface recitationarways reads oon
Device	0 Offset A - Sub Class Code (00h)RO
7-0	Sub Class Codereads 00 to indicate Host Bridge
Dovice	0 Offset R Rese Class Code (06b) DO
	0 Offset B - Base Class Code (06h)
7-0	Base Class Code reads 06 to indicate Bridge Device
Device	0 Offset D - Latency Timer (00h)RW
Specifie	es the latency timer value in PCI bus clocks.
7-3	Guaranteed Time Slice for CPUdefault=0
2-0	Reserved (fixed granularity of 8 clks) always read 0
	Bits 2-1 are writeable but read 0 for PCI specification
	compatibility. The programmed value may be read
	hools in Offset 75 hits 5.4 (DCI Arbitration 1)

back in Offset 75 bits 5-4 (PCI Arbitration 1).

Device 0 Host Bridge Header Registers (continued)

Device	0 Offset E - Header Type (00h)RO
7-0	Header Type Code reads 00: single function
Device	0 Offset F - Built In Self Test (BIST) (00h)RO
7	BIST Supportedreads 0: no supported functions
6-0	Reserved always reads 0

<u>Device 0 Offset 13-10 - Graphics Aperture Base</u> (00000008h)RW

31-28 Upper Programmable Base Address Bits def=0
27-20 Lower Programmable Base Address Bits def=0
These bits behave as if hardwired to 0 if the corresponding Graphics Aperture Size register bit (Device 0 Offset 84h) is 0.

27 26 25 24 23 22 21 20 (This Register) <u>6</u> <u>5</u> <u>4</u> (Gr Aper Size) RW RW RW RW RW RW RW 1M RW RW RW RW RW RW 2MRWRWRWRWRW 0 4M RWRWRWRW 0 0 8M RWRWRWRW 0 0 0 16M RWRWRW 0 0 32M RWRW 0 0 0 64M RW 0 0 0 0 0 0 0 128M 0 0 0 256M 0 0 0 0

19-0 Reservedalways reads 00008

Note: The locations in the address range defined by this register are prefetchable.

Device 0 Host Bridge Header Registers (continued)

Device 0 O	<u> Miset 2D-2C – Subsys Vend</u>	or ID (U	000n)	<u>W I/K</u>
15-0 St	ıbsystem Vendor ID		defaı	ult = 0
This registe	er may be written once and is	then res	ad only	

This register may be written once and is then read only.

This register may be written once and is then read only.

Device 0 Offset 34 - Capability Pointer (A0h).....RO

Contains a byte offset from the start of configuration space.

7-0 AGP Capability List Pointer always reads A0h

DW

Device 0 Host Bridge Device-Specific Registers

These registers are normally programmed once at system initialization time.

V-Link Control

Device	0 Offset 40 – V-Link Specification ID (00h)RO	Device 0 Offset 45 –
7-0	Specification Revision always reads 00	7-4 Timer for N 0000 Imme 0001 1*4 V
Device	0 Offset 41 – NB V-Link Capability (18h)RO	0011 1 V
7-6	Reserved always reads 0	0010 2 1 V
5	16-bit Bus Width SupportedRO	0100 4*4 V
	0 Not Supporteddefault	0101 5*4 V
	1 Supported	0110 6*4 V
4	8-Bit Bus Width SupportedRO	0111 7*4 V
	0 Not Supported	1000 8*4 V
	1 Supporteddefault	1001 16*4
3	4x Rate SupportedRO	1010 32*4
	0 Not Supported	1011 64*4
	1 Supporteddefault	11xx Own t
2	2x Rate SupportedRO	3-0 Timer for H
	0 Not Supporteddefault	0000 Imme
	1 Supported	0001 1*2 V
1-0	Reserved always reads 0	0010 2*2 V
		0011 3*2 V
		0100 4*2 V
<u>Device</u>	0 Offset 42 – NB Downlink Command (88h), RW	0101 5*2 V
7-4	DnCmd Max Request Depth (0=1 DnCmd) . def = 8	0110 6*2 V
3-0	DnCmd Write Buffer Size (doublewords) def = 8	0111 7*2 V
D	0. Office 4.44.42 ND Helbert Co. 4-4-1 (02001)	1000 8*2 V
	0 Offset 44-43 – NB Uplink Status (8280h)RO	1001 16*2
	UpCmd P2C Write Buffer Size (max lines) def = 8	1010 32*2
11-8	UpCmd P2P Write Buffer Size (max lines) def = 2	1011 64*2

7-4 UpCmd Max Request Depth (0=1 UpCmd) . def = 8

Reserved always reads 0

<u> Device</u>	0 Offset 45 –NB V-Link Bus Timer (44h) RW
7-4	Timer for Normal Priority Requests from SB
	0000 Immediate
	0001 1*4 VCLKs
	0010 2*4 VCLKs
	0011 3*4 VCLKs
	0100 4*4 VCLKsdefault (both timers)
	0101 5*4 VCLKs
	0110 6*4 VCLKs
	0111 7*4 VCLKs
	1000 8*4 VCLKs
XK	1001 16*4 VCLKs
	1010 32*4 VCLKs
	1011 64*4 VCLKs
	11xx Own the bus for as long as there is a request
3-0	Timer for High Priority Requests from SB
-	0000 Immediate
40	0001 1*2 VCLKs
	0010 2*2 VCLKs
9	0011 3*2 VCLKs
	0100 4*2 VCLKsdefault (both timers)
	0101 5*2 VCLKs
	0110 6*2 VCLKs
	0111 7*2 VCLKs
N	1000 8*2 VCLKs
	1001 16*2 VCLKs
	1010 32*2 VCLKs
	1011 64*2 VCLKs

11xx Own the bus for as long as there is a request

Device	0 Offset 46 - NB V-Link Misc Control (00h)RW	Device 0 Offset 48 - NB/SB V-Link Co
7	Downstream High Priority	7 Reserved
	0 Disable High Priority Down Commandsdef	6 Rest Bus Width Supported
	1 Enable High Priority Down Commands	0 Not Supported
6	Downlink Priority	1 Supported
	0 Treat Downlink Cycles as Normal Priority.def	5 16-bit Bus Width Supported
	1 Treat Downlink Cycles as High Priority	0 Not Supported
5-4	Combine Multiple STPGNT Cycles into V-Link	1 Supported
	Command	4 8-Bit Bus Width Supported
	00 Compatible, 1 command per V-Link cmddef	0 Not Supported
	01 2 commands per V-Link command	1 Supported
	10 3 commands per V-Link command	3 4x Rate Supported
	11 4 commands per V-Link command	0 Not Supported
3-2	V-Link Master Access Ordering Rules	1 Supported
	00 High priority read, pass normal read (not pass	2 2x Rate Supported
	write)default	0 Not Supported
	01 Read (high/normal) pass write (HR>LR>W)	1 Supported
	1x Read / write in order	1-0 Reserved
1-0	Reserved always reads 0	20
	0 Offset 47 – V-Link Control (00h)RW	
7-6	Reserved always reads 0	.60
5	C2P Read L1 Ready Returned After P2C Write	
	Flush	
	0 Disabledefault	
	1 Enable	
4-3	Reserved always reads 0	
2	Auto-Disconnect	
	0 Disabledefault	
	1 Enable	
1	V-Link Disconnect Cycle for HALT cycle	
	0 Disabledefault	
	1 Enable	
0	V-Link Disconnect Cycle for STPGNT Cycle	
	0 Disabledefault	7
	1 Enable	
	>	

Device	0 Offset 48 – NB/SB V-Link Co	nfiguration (18h)RW
7	Reserved	always reads 0
6	Rest Bus Width Supported	
	0 Not Supported	default
	1 Supported	
5	16-bit Bus Width Supported	
	0 Not Supported	default
	1 Supported	
4	8-Bit Bus Width Supported	
	 Not Supported 	
	1 Supported	default
3	4x Rate Supported	
	0 Not Supported	
	1 Supported	default
2	2x Rate Supported	
	0 Not Supported	default
	1 Supported	
1-0	Reserved	always reads 0

Device	0 Offset 49 – SB V-Link Capability (18h)RO
7-6	Reserved always reads 0
5	16-bit Bus Width SupportedRO
	0 Not Supporteddefault
	1 Supported
4	8-Bit Bus Width SupportedRO
	0 Not Supported
	1 Supporteddefault
3	4x Rate SupportedRO
	0 Not Supported
	1 Supporteddefault
2	2x Rate SupportedRO
	0 Not Supporteddefault
4.0	1 Supported
1-0	Reserved always reads 0
Device	0 Offset 4A – SB Downlink Status (88h)RO
7-4	DnCmd Max Request Depth (0=1 DnCmd) . def = 8
3-0	DnCmd Write Buffer Size (doublewords) def = 8
Dovice	0 Offset 4C 4D SP Unlink Command (9290h) DW
	0 Offset 4C-4B – SB Uplink Command (8280h). RW
	UpCmd P2C Write Buffer Size (max lines) def = 8
11-8 7-4	UpCmd P2P Write Buffer Size (max lines) def = 2
7-4 3-0	UpCmd Max Request Depth (0=1 UpCmd) . def = 8 Reserved always reads 0
3-0	Reserved arways reads 0
Device	0 Offset 4D – SB V-Link Bus Timer (44h)RW
7-4	Timer for Normal Priority Requests from SB
	0000 Immediate
	0001 1*4 VCLKs
	0010 2*4 VCLKs
	0011 3*4 VCLKs
	0100 4*4 VCLKsdefault (both timers)
	0101 5*4 VCLKs
	0110 6*4 VCLKs
	0111 7*4 VCLKs
	1000 8*4 VCLKs
	1001 16*4 VCLKs
	1010 32*4 VCLKs
	1011 64*4 VCLKs
3-0	11xx Own the bus for as long as there is a request Timer for High Priority Requests from SB
3-0	0000 Immediate
	0001 1*2 VCLKs
	0010 2*2 VCLKs
	0010 2 2 VCLKs 0011 3*2 VCLKs
	0100 4*2 VCLKsdefault (both timers)
	0101 5*2 VCLKs
	0110 6*2 VCLKs
	0111 7*2 VCLKs
	1000 8*2 VCLKs
	1001 16*2 VCLKs
	1010 32*2 VCLKs
	1011 64*2 VCLKs
	11xx Own the bus for as long as there is a request

	0 Offset 4E – CCA Master Priority (00h) RW
7	1394 High Priority
	0 Low prioritydefault
	1 High priority
6	LAN / NIC High Priority
	0 Low prioritydefault
	1 High priority
5	Reserved always reads 0
4	USB High Priority
	0 Low prioritydefault
	1 High priority
3	Reserved always reads 0
2	IDE High Priority
	0 Low prioritydefault
	1 High priority
1	AC97-ISA High Priority
	0 Low prioritydefault
	1 High priority
0	PCI High Priority
	0 Low prioritydefault
40	1 High priority
D .	O OCC (AFE CD V/L) M' C (1/001) DVV
	0 Offset 4F – SB V-Link Misc Control (00h) RW
7	Upstream Command High Priority
	0 Disable high priority up commands default
	1 Enable high priority up commands
6-1	Reservedalways reads 0
0	Down Cycle Wait for Up Cycle Write Flush
	(Except Down Cycle Post Write)
	0 Disabledefault
A.	1 Enable
	,

Device 0 Offset 52 - CPU Interface Advanced Ctrl (00h)RW

AGP Capability Header Support

Enable

Reserved

1-0

0 Disable......default

.....always reads 0

Device 0 Offset 50 - Request Phase Control (00h)RW

Host CPU Control

7	CPU Hardwired IOQ (In Order Queue) Size	7 CPU RW DRAM 0WS for Back-to-Back Pipeline
	Default via VAD2 from strap on South Bridge LA18.	Access
	0 1-Level	0 Disabledefault
	1 8-Level	1 Enable
6	GTL Pullup	6 HREQ / HPRI
	Default via VAD3 from strap on South Bridge LA19.	0 Disabledefault
	0 Disable	1 Enable
	1 Enable	5 GTL POS
5	GTL Always Pullup Mode	0 Disabledefault
	0 Disable	1 Enable
	1 Enabledefault	4 Dynamic Snoop Stall for CPU FIFO Full
4-0	Dynamic Defer Snoop Stall Count	0 Disabledefault
		1 Enable
Device	0 Offset 51 – CPU Interface Basic Control (00h)RW	3 Write Retire Policy After 2 Writes
7	Add 1T Delay for CPU-to-Memory Requests	0 Disabledefault
	0 Disabledefault	1 Enable
	1 Enable	2 133 / 100 DADS Fast Conversion
6	Read Around Write	0 Disabledefault
	0 Disabledefault	1 Enable
	1 Enable	1 Consecutive Speculative Read
5	DRQ Control	0 Disabledefault
	0 Non pipelineddefault	1 Enable
	1 Pipelined	0 Speculative Read
4	CPU to PCI Read Defer	0 Disabledefault
	0 Disabledefault	1 Enable
	1 Enable	D. I. A. G. L. G. L.
3	Two Defer / Retry Entries	<u>Device 0 Offset 53 – CPU Arbitration Control (03h) RW</u>
	0 Disabledefault	7-4 Host Timerdefault = 0
	1 Enable	3-0 BPRI Timer (units of 4 HCLKs)default = 3
2	Two Defer / Retry Entries Shared	Device 0 Offset 54 – CPU Miscellaneous Control (00h) RW
	0 Each entry is dedicated to 1 CPUdefault	
	1 Each entry is shared by 2 CPUs	7-6 CPU Frequency (VAD1-0 strap from south bridge
1	PCI Master Pipelined Access	pins SA[16-17])
	0 Disabledefault	00 -reserved-
	1 Enable	01 100
0	Dual Processor Mode Enhancement	1x 133
	0 Disabledefault	5 SDRAM Burst Length of 8
	1 Enable	0 Disabledefault
		1 Enable
		4-3 Reservedalways reads 0

DRAM Control

These registers are normally set at system initialization time and not accessed after that during normal system operation. Some of these registers, however, may need to be programmed using specific sequences during power-up initialization to properly detect the type and size of installed memory (refer to the CLE266 BIOS porting guide for details).

Table 6. System Memory Map

Space Start DOS 0	Size Address Range 640K 00000000-0009FFFF	Comment Cacheable	0 Disable 1 Enable
VGA 640K	128K 000A0000-000BFFFF	Used for SMM	B DQM Removal (
BIOS 768K	16K 000C0000-000C3FFF	Shadow Ctrl 1	0 Disable
BIOS 784K	16K 000C4000-000C7FFF	Shadow Ctrl 1	1 Enable
BIOS 800K	16K 000C8000-000CBFFF	Shadow Ctrl 1	2 DQS Output
BIOS 816K	16K 000CC000-000CFFFF	Shadow Ctrl 1	0 Disable
BIOS 832K	16K 000D0000-000D3FFF	Shadow Ctrl 2	1 Enable
BIOS 848K	16K 000D4000-000D7FFF	Shadow Ctrl 2	Auto Precharge
BIOS 864K	16K 000D8000-000DBFFF	Shadow Ctrl 2	0 Disable
BIOS 880K	16K 000DC000-000DFFFF	Shadow Ctrl 2	1 Enable
BIOS 896K	64K 000E0000-000EFFFF	Shadow Ctrl 3	Write Recovery
BIOS 960K	64K 000F0000-000FFFFF	Shadow Ctrl 3	0 1T
Sys 1MB	— 00100000-DRAM Тор	Can have hole	1 2T
Bus D Top	DRAM Top-FFFEFFF		Y
Init 4G-64K	64K FFFEFFFF-FFFFFFF	000Fxxxx alias	

Device	e 0 Offset 55 – DRAM Control (00h)RW
7	0WS Back-to-Back Write to Different DDR Bank
	0 Disabledefault
	1 Enable
6	Reservedalways reads 0
5	DQS Input DLL Adjustment
	0 Disabledefault
	1 Enable
4	DQS Output DLL Adjustment
	0 Disabledefault
	1 Enable
3	DQM Removal (Always Perform 4-Burst RW)
	0 Disabledefault
	1 Enable
2	DQS Output
- 0	0 Disabledefault
1	1 Enable
1	Auto Precharge for TLB Read or CPU WriteBack
20	0 Disabledefault
	1 Enable
0	Write Recovery Time
	0 1Tdefault
- 40	1 2T

Device	0 Offset 58 - DRAM MA Map Type (22h)RW
7-5	Bank 1/0 MA Map Type (see Table 7 below)
4	Bank 1/0 1T Command Rate
	0 2T Commanddefault
	1 1T Command
3-1	Bank 3/2 MA Map Type (see Table 7 below)
0	Bank 3/2 1T Command Rate
	0 2T Commanddefault
	1 1T Command
	Table 7. MA Map Type Encoding

000	<u>16Mb</u>	8-bit, 9-bit, 10-bit Column Address
001	64/128Mb	8-bit Column Addressdefault
010	64/128Mb	9-bit Column Address
011	64/128Mb	10/11-bit Column Address
100		-reserved-
101	256Mb	8-bit Column Address
110	<u>256Mb</u>	9-bit Column Address
111	<u>256Mb</u>	10/11-bit Column Address

Device 0 Offset 5F-5A – DRAM Row Ending Address:

Offset 5A – Bank 0 Ending (HA[31:24]) (01h)	RW
Offset 5B - Bank 1 Ending (HA[31:24]) (01h)	RW
Offset 5C - Bank 2 Ending (HA[31:24]) (01h)	RW
Offset 5D – Bank 3 Ending (HA[31:24]) (01h)	RW

BIOS is required to fill the ending address registers for all banks even if no memory is populated. The endings have to be in incremental order.

Device	0 Offse	et 60 – DRAM Type (001	n) RW
7-4	Reser	ved	always reads 0
3-2	DRA	M Type for Bank 3/2	
	00	SDR SDRAM	default
	01	-reserved-	
	10	DDR SDRAM	
	11	-reserved-	
1-0	DRA	M Type for Bank 1/0	
	00	SDR SDRAM	default
0, K	01	-reserved-	
4	10	DDR SDRAM	
	11	-reserved-	

Table 8. Memory Address Mapping Table

		1	11	-re	sei	rve	d-											
			0					4										
	Tr.	. 1. 1	م ام	Τ,	Л.				J J.		~ T	1 -		•	- Tr	- L	1.	
	1.3	aDI	e o	• I	vie	me	ry	A	ua	res	SIV	via	pp	ıng	, 1	aD	ie	
	SDR / D	DE	≀ SI	DR	ΑN	A (:	x4 1	DR	Aλ	As s	เบก	noi	ted	l bs	, SI	ΟR	only)	
	MA:			Ī	I	10	1 9	8	7	6	5	<i>Α</i>	3	2	1	0	0111)	\neg
	16Mb	17	24	į	13	ļ	_		22	21		19			16	1	12 row	\dashv
	$\frac{10000}{(000)}$		27				24				8	7	6	5	4		10,9,8 co	o1
	64/128Mb										_		_			Ť	x16 (14,	_
	2K page	14	24	14	13	12	11	23	22	21	20	19	18	17	16	15	x32 (14,	
	001	7	27	14	13	PC	26	25	10	9	8	7	6	5	4		x8 (14,9	
		14					24					19	18	17	16		x16 (14,	
	010						26				8	7	6	5	4		x4 (14,1	
	8K page	14					24					19					x8 (14,1	
	011		27	14	13	PC	12	11	10	9	8	7	6	5	4	3	x4 (14,1	1)
	256Mb		٠,								•						22 (15	0)
	2K page	25	24	14	13	12	11	23	22	21	20	19	18	17	16	15	x32 (15,	3)
	101 4K page	26	27	14	13	PC	20	23	22	21	8 20	10	10) 17	16	15	x16 (15,	0)
	4K page 110	20	23	14	13	1Z	26	11	10	0	2U Ω	7	6	5	10	2	X10 (13,	"
Y	8K page	27	26	14	13	25	24	23	22	21	20	19	18	17	16	15	x8 (15,1	9)
	111	- /					12				8	7	6	5	4		x4 (15,1	
											_		_	_		Ť	(,-	7

Device	0 Offse	et 61 - Shadow RAM Control 1 (00h)RW
7-6		00h-CFFFFh
	00	Read/write disabledefault
	01	Write enable
	10	Read enable
	11	Read/write enable
5-4		0h-CBFFFh
	00	Read/write disabledefault
	01	Write enable
	10	Read enable
	11	Read/write enable
3-2		0h-C7FFFh
	00	Read/write disabledefault
	01	Write enable
	10	Read enable
	11	Read/write enable
1-0		0h-C3FFFh
	00	Read/write disabledefault
	01	Write enable
	10	Read enable
	11	Read/write enable
Device	0 Offs	et 62 - Shadow RAM Control 2 (00h)RW
7-6		00h-DFFFFh
	00	Read/write disabledefault
	00 01	Read/write disabledefault Write enable
	01	Write enable Read enable
5-4	01 10 11	Write enable Read enable
5-4	01 10 11 D800	Write enable Read enable Read/write enable
5-4	01 10 11 D800	Write enable Read enable Read/write enable 0h-DBFFFh Read/write disabledefault
5-4	01 10 11 D800 00	Write enable Read enable Read/write enable 0h-DBFFFh Read/write disabledefault
5-4	01 10 11 D800 00 01 10	Write enable Read enable Read/write enable 0h-DBFFFh Read/write disabledefault Write enable
5-4 3-2	01 10 11 D800 00 01 10	Write enable Read enable Read/write enable 0h-DBFFFh Read/write disable
	01 10 11 D800 00 01 10	Write enable Read enable Read/write enable Oh-DBFFFh Read/write disable
	01 10 11 D800 00 01 10 11 D400	Write enable Read enable Read/write enable Oh-DBFFFh Read/write disable
	01 10 11 D800 00 01 10 11 D400	Write enable Read enable Read/write enable Oh-DBFFFh Read/write disable default Write enable Read enable Read/write enable Oh-D7FFFh Read/write disable default
	01 10 11 D800 00 01 10 11 D400 00	Write enable Read enable Read/write enable 0h-DBFFFh Read/write disable
	01 10 11 D800 00 01 10 11 D400 00 01 10	Write enable Read enable Read/write enable 0h-DBFFFh Read/write disable
3-2	01 10 11 D800 00 01 10 11 D400 00 01 10	Write enable Read enable Read/write enable 0h-DBFFFh Read/write disable
3-2	01 10 11 D800 00 01 11 D400 01 11 D000	Write enable Read enable Read/write enable 0h-DBFFFh Read/write disable

<u>Dev</u>	vice 0	Offse	et 63 - Shado	w RAM	Control 3	(00h)RW
7	7-6	E000	0h-EFFFFh			
į		00	Read/write	disable		default
		01	Write enable	e		
		10	Read enable	•		
		11	Read/write	enable		
5	5-4	F000)h-FFFFFh			
-		00	Read/write	disable		default
		01	Write enable	e		
		10	Read enable	•		
		11	Read/write	enable		
3	3-2	Mem	ory Hole			
		00	None			default
		01	512K-640K			
		10	15M-16M (1M)		
		11	14M-16M (2M)		
1	-0	SMI I	Mapping Co			
•		9	<u>SM</u>	M	Non-	<u>SMM</u>
			Code		<u>Code</u>	<u>Data</u>
		00	DRAM	DRAM	PCI	PCI
	7	01	DRAM	DRAM	DRAM	DRAM
0		10	DRAM	PCI	PCI	PCI
		-11	DRAM	DRAM	DRAM	DRAM
	K					
			0.4			
)					
		4				

11 Read/write enable

Device	0 Offset 64 - DRAM Timing for All Banks (E4h)RW	Device	0 Offset 67 – DDR Strobe
7	Precharge Command to Active Command Period	Device	SDR:
,	0 T _{RP} = 2T	7-5	Reserved
	1 TRP = 3Tdefault	4	MD Latch Clock Select
6	Active Command to Precharge Command Period	•	0 Internal clock
U	0 Tras = 5T		1 External feedback
	$1 \text{Tras} = 6T \dots \text{def}$	3	Reserved
5-4	CAS Latency	2-0	MD Latch Delay
5-4	SDR DDR	2-0	Wid Laten Delay
	00 1T -		DDR:
	01 2T 2T	7-6	CS Early Clock Select
	10 3T 2.5Tdefault	5-0	DQS Input Delay
	11 - 3T	3-0	(if Rx66[7]=0, read DLL
3	Reservedalways reads 0		(ii Kxoo[7] 0, Icau DEL
2	ACTIVE to CMD		
2	0 2T		
	1 3Tdefault		0 Offset 68 – DDR Strobe
1-0	Bank Interleave	7-0	DDR DQS Output Delay
1-0	00 No Interleave default	0, 8	
	01 2-way		
	10 4-way		
	11 Reserved		
	For 16Mb SDRAMs bank interleave is always 2-way	J	
	Tor Torrio SDIVANIS bank interieave is always 2-way)	
	0 Offset 65 - DRAM Arbitration Timer (00h) RW		
7-4	AGP Timer (units of 4 MCLKs) default = 0		
3-0	CPU Timer (units of 4 MCLKs) default = 0		
Device	0 Offset 66 - DRAM Arbitration Control (00h)RW	e .	
7	SDR – Feedback Clock Select		
,	DDR - DQS Input Delay Setting		7
	0 Auto (Rx67 reads DLL calibration result)def		
	1 Manual (Rx67 reads DQS input delay)		
6	Reservedalways reads 0		
5-4	Arbitration Parking Policy	,	
J- 4	00 Park at last bus ownerdefault		
	01 Park at CPU		
	10 Park at AGP		
	11 -reserved-		
3-0	AGP / CPU Priority (units of 4 MCLKs)		
3-0	AGI / CI O I HOTHY (units of 4 MCLKS)		

Jevice	<u> U Oliset o / – DDR Strobe Input Delay (UUn) Rw</u>
	SDR:
7-5	Reservedalways reads 0
4	MD Latch Clock Select
	0 Internal clockdefault
	1 External feedback clock
3	Reservedalways reads 0
2-0	MD Latch Delay
7-6 5-0	DDR: CS Early Clock Select
Device	0 Offset 68 – DDR Strobe Output Delay (00h) RW
	DDR DQS Output Delay default = 0

Device	0 Offset 69 – DRAM Clock Select (00h)RW	Device 0 Offset 6A - Refresh Counter (00h)RW
7	CPU Operating Frequency Faster Than DRAM	7-0 Refresh Counter (in units of 16 MCLKs)
	0 CPU Same As or Equal to DRAMdefault	00 DRAM Refresh Disabled default
	1 CPU Faster Than DRAM by 33 MHz	01 32 MCLKs
6	DRAM Operating Frequency Faster Than CPU	02 48 MCLKs
	0 DRAM Same As or Equal to CPUdefault	03 64 MCLKs
	1 DRAM Faster Than CPU by 33 MHz	04 80 MCLKs
		05 96 MCLKs
	<u>Rx54[7-6]</u> <u>Rx69[7-6]</u> <u>CPU / DRAM</u>	
	01 10 100 / 66	The macromod valve is the desired number of 16
	01 00 100 / 100	The programmed value is the desired number of 16-
	01 01 100 / 133†	MCLK units minus one.
		Device 0 Offset 6B - DRAM Arbitration Control (00h) RW
	1x 10 133 / 100	7 Fast Read to Write turn-around
	1x 00 133 / 133	0 Disabledefault
	$\dagger Rx53[6]$ must also be set to 1 for DRAM > CPU	1 Enable
_		6 Page Kept Active When Cross Bank
5	DRAM Controller Queue Greater Than 2	0 Disabledefault
	0 Disabledefault	1 Enable
	1 Enable	5 Burst Refresh
4	DRAM Controller Queue Not Equal to 4	0 Disabledefault
	0 Disabledefault	1 Enable
_	1 Enable	4 CKE Function
3	DRAM 8K Page Enable	0 Disabledefault
	0 Disabledefault	1 Enable
_	1 Enable	3 CA22 / CA14 Swap
2	DRAM 4K Page Enable	0 Disabledefault
	0 Disabledefault	1 Enable for performance enhancement
	1 Enable	2-0 SDRAM Operation Mode Select
1	Reserved always reads 0	000 Normal SDRAM Modedefault
0	Multiple Page Mode	001 NOP Command Enable
	0 Disabledefault	010 All-Banks-Precharge Command Enable
	1 Enable	(CPU-to-DRAM cycles are converted
		to All-Banks-Precharge commands).
		011 MSR Enable
		CPU-to-DRAM cycles are converted to
		commands and the commands are driven on
		MA[14:0]. The BIOS selects an appropriate
		host address for each row of memory such that
	>	the right commands are generated on
		and right commands are generated on

MA[14:0].

101 Reserved11x Reserved

100 CBR Cycle Enable (if this code is selected, CAS-before-RAS refresh is used; if it is not

selected, RAS-Only refresh is used)

Device	0 Offs	et 6C - Drive Control 1 (00h)RW	Device	0 Offset 6D - Drive Control 2 (00h)RW
7-6		S#, SCAS#, SWE#, MA Drive	7-6	, ,
		Lowestdefault		Command)
	01			00 Latestdefault
	10	TT. 1		01
<i>5</i> 4		Highest		10
5-4 3-2	Rese		5 4	11 Earliest
3-2		DQS# Drive Lowestdefault	5-4	DQM Drive 00 Lowestdefault
	01	Lowestdefauit		01 default
	10			10
		Highest		11 Highest
1-0		MECC/CAS/CKE Early Clock Select	3-2	CS# Drive
		Latestdefault		00 Lowest default
	01			01
	10			10
	11	Earliest		11 Highest
			1-0	, , , , , , , , , , , , , , , , , , , ,
				00 Lowest default
				01
				10 11 Highest
			,	Tringliest
)	
			40	
		Cy		
		\(\text{\tint{\text{\tin}\text{\ti}\\\ \text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\ti}\text{\texi}\text{\text{\text{\texit{\ti}\tint{\text{\text{\text{\text{\texi}\tint{\tiint{\text{\texit{\texi}\titt{\texi}\tittt{\texitit}\\\ \texittt{\text{\tex{		
			y	
		Y		

PCI Bus Control

These registers are normally programmed once at system initialization time.

Device	0 Offse	et 70 - PCI Buffer Control (00h)RW
7	CPU	to PCI Post-Write
	0	Disabledefault
	1	Enable
6	Reser	
5-4	PCI N	Master to DRAM Prefetch
		Always prefetchdefault
	x1	
_	10	Prefetch only for Enhance command
3	Reser	
2		Master Read Caching
	0	Disabledefault
	1	Enable
1	•	Transaction Disabledefault
	0	
0		Enable vedalways reads 0
U	Reser	ved always reads 0
Device	0 Offse	et 71 - CPU to PCI Flow Control (48h)RWC
7	Retry	StatusRWC
	0	No retry occurreddefault
	1	Retry occurred
6	Retry	Timeout Action
	0	Retry forever (record status only)
	1	Flush buffer or return FFFFFFFh for reads
	_	default
5-4		Count and Retry Backoff
	00	
	01	Retry 16 times
		Retry 4 times
3	11 DCL I	Retry 64 times Burst
3		Disable
	1	Enabledefault
2	Reser	
1		patible Type#1 Configuration Cycles
1	0	Disable (fixed AD31)default
	1	Enable
0	-	L Control
-	0	AD11, AD12default
	1	AD30, AD31

<u>w</u>	Device	0 Offse	et 73 - P	CI Master	Control	(00h)	RW
	7	Reser	rved			alwa	ays reads 0
ult	6	PCI I	Master 1	l-Wait-Sta	ate Write	;	•
		0	Zero w	ait state Tl	RDY# res	ponse	default
s 0		1	One wa	ait state TR	RDY# res	ponse	
	5	PCI I		l-Wait-Sta			
ult		0					default
		1		ait state TR	RDY# res	ponse	
	4	WSC					
s 0							default
		1	Enable				
ult	3-1	Resei					ays reads 0
	0	.)		Broken Ti			1.0.1
1.		0					default
ult		1 /					there is no
n			FKAM	E# 16 PCI	CLK's at	ter the gra	ant.
s 0							
VC							
VC							
ult			9.1				
				7			
7							
ult							
	45	-					
ult							
Y							
)	Y						

or after every third master grant (11). **Select REQn# to REQ4# mapping**

REQ4# is High Priority Master

01 REQ0# 10 REQ1# 11 REQ2#

Enable

00 REQ4#......default

Reservedalways reads 0

0 Disable.....default

Device	0 Offset 75 - PCI Arbitration 1 (00h)RW	Device	0 Offset 76 - PCI Arbitration 2 (00h)RW
7	Arbitration Mode	7	I/O Port 22 Access
	0 REQ-based (arbitrate at end of REQ#)default		0 CPU access to I/O address 22h is passed on to
	1 Frame-based (arbitrate at FRAME# assertion)		the PCI busdefault
6-4	Latency Timerread only, reads Rx0D bits 2:0		1 CPU access to I/O address 22h is processed
3	Reserved always reads 0		internally
2-0	PCI Master Bus Time-Out	6	Reserved always reads 0
	(force into arbitration after a period of time)	5-4	Master Priority Rotation Control
	000 Disabledefault		00 Disabledefault
	001 1x16 PCICLKs		01 Grant to CPU after every PCI master grant
	010 2x16 PCICLKs		10 Grant to CPU after every 2 PCI master grants
	011 3x16 PCICLKs		11 Grant to CPU after every 3 PCI master grants
	100 4x16 PCICLKs		Setting 01: the CPU will always be granted access
			after the current bus master completes, no matter how
	111 7x16 PCICLKs		many PCI masters are requesting.
			Setting 10: if other PCI masters are requesting during
			the current PCI master grant, the highest priority
		0. 0	master will get the bus after the current master
			completes, but the CPU will be guaranteed to get the
			bus after that master completes.
		70	Setting 11: if other PCI masters are requesting, the
			highest priority will get the bus next, then the next
)	highest priority will get the bus, then the CPU will
			get the bus.
			In other words, with the above settings, even if
			multiple PCI masters are continuously requesting the
			bus, the CPU is guaranteed to get access after every
			master grant (01), after every other master grant (10)

GART / Graphics Aperture Control

The function of the Graphics Address Relocation Table (GART) is to translate virtual 32-bit addresses issued by an AGP device into 4K-page based physical addresses for system memory access. In this translation, the upper 20 bits (A31-A12) are remapped, while the lower 12 address bits (A11-A0) are used unchanged.

A one-level fully associative lookup scheme is used to implement the address translation. In this scheme, the upper 20 bits of the virtual address are used to point to an entry in a page table located in system memory. Each page table entry contains the upper 20 bits of a physical address (a "physical page" address). For simplicity, each page table entry is 4 bytes. The total size of the page table depends on the GART range (called the "aperture size") which is programmable.

This scheme is shown in the figure below.

Figure 3. Graphics Aperture Address Translation

Since address translation using the above scheme requires an access to system memory, an on-chip cache (called a "Translation Lookaside Buffer" or TLB) is utilized to enhance performance. The on-chip TLB contains 16 entries. Address "misses" in the TLB require an access of system memory to retrieve translation data. Entries in the TLB are replaced using an LRU (Least Recently Used) algorithm.

Addresses are translated only for accesses within the "Graphics Aperture" (GA). The Graphics Aperture can be any power of two in size from 1MB to 256MB (i.e., 1MB, 2MB, 4MB, 8MB, etc). The base of the Graphics Aperture can be anywhere in the system virtual address space on an address boundary determined by the aperture size (e.g., if the aperture size is 4MB, the base must be on a 4MB address boundary). The Graphics Aperture Base is defined in register offset 10 of device 0. The Graphics Aperture Size and TLB Table Base are defined in the following register group (offsets 84 and 88 respectively) along with various control bits.

Device	0 Offset 83-80 - GART/TLB Control (00000000h) RW
31-16	Reserved always reads 0
15-8	Reserved (test mode status)RO
7	Flush Page TLB
•	0 Disabledefault
	1 Enable
6-0	Reserved (always program to 0)RW
	or any master access to the Graphics Aperture range,
snoop w	vill not be performed.
Dovigo	0 Offset 84 - Graphics Aperture Size (00h) RW
7-0	Graphics Aperture Size
	00000000 256Mdefault
	10000000 128M
	11000000 64M
	11100000 32M
. 0	11110000 16M
26	111111000 8M
	11111100 4M
20	11111110 2M
	11111111 1M
Offset 8	25 – Write Policy (00h) RW
7	Reserved always reads 0
6-4	Write Request Limitdefault = 0
3	DRAM Bus Float When Idle
	0 Disabledefault
	1 Enable
2-0	Write Request Basedefault = 0
Offset 8	B-88 - GA Translation Table Base (00000000h) RW
31-12	Graphics Aperture Translation Table Base.
	Pointer to the base of the translation table in system
	memory used to map addresses in the aperture range
	(the pointer to the base of the "Directory" table).
11-2	Reserved always reads 0
1	Graphics Aperture A[31:28]
	0 Disable default
	1 Enable
	Note: To disable the Graphics Aperture, set this bit to
	0 and set all bits of the Graphics Aperture Size to 0.
	To enable the Graphics Aperture, set this bit to 1 and
	program the Graphics Aperture Size to the desired
	aperture size.
0 1	Reservedalways reads 0

AGP Control

Device 0 Offset A3-A0 - AGP Capability Identifier				
(0020C	002h)	RO		
31-24	Reserved	always reads 00		
23-20	Major Specific	ation Revision always reads 0010		
	Major rev # of A	AGP spec to which device conforms		
19-16	Minor Specific	ation Revision always reads 0000		
	Minor rev # of A	AGP spec to which device conforms		
	Bits 23-16 indic	eate the device conforms to AGP 2.0		
15-8	Pointer to Next	t Item always reads C0h (last item)		
7-0	AGP ID (always reads 02 to indicate it is AGP)		
Device	<u> 0 Offset A7-A4 -</u>	AGP Status (1F000207h)RO		
31-24	Maximum AG	P Requests always reads 1F†		
		requests the device can manage (32)		
		C[1] and RxFD[2-0]		
23-10		always reads 0		
9		Band Addressing always reads 1		
8-6		always reads 0		
5	4G Supported.	(can be written at RxAE[5]		
4	Fast Write Sup	ported (can be written at RxAE[4]		
3	Reserved	always reads 0		
2	4X Rate Suppo	rted always reads 1		
1	2X Rate Suppo	rted always reads 1		
0	1X Rate Suppo	rted always reads 1		

Device (O Offset AB-A8 - AGP Command (00000000h)RW
31-24	3
23-10	
9	SideBand Addressing Enable
	0 Disabledefault
	1 Enable
8	AGP Enable
	0 Disabledefault
	1 Enable
7-6	Reserved always reads 0s
5	4G Enable
	0 Disabledefault
	1 Enable
4	Fast Write Enable
	0 Disabledefault
	1 Enable
3	Reserved always reads 0s
2	4X Mode Enable
	0 Disabledefault
	1 Enable
1	2X Mode Enable
	0 Disabledefault
	1 Enable
0	1X Mode Enable
	0 Disabledefault
	1 Enable

Device	e O Offset AC - AGP Control (00h)RW
7	Reservedalways reads 0
6	AGP Read Synchronization
	0 Disabledefault
	1 Enable
5	AGP Read Snoop DRAM Post-Write Buffer
	0 Disabledefault
	1 Enable
4	GREQ# Priority Becomes Higher When Arbiter is
	Parked at AGP Master
	0 Disabledefault
	1 Enable
3	2X Rate Supported
	0 Disabledefault
	1 Enable
2	Fence / Flush
4	0 Disable - low priority requests may be
20	executed out of orderdefault
	1 Enable – all normal priority AGP operations
	will be executed in order
1	AGP Grant Parking Policy
-40	0 Non-Parking Grant – if GFRM# or GPIPE# is
	asserted, GGNT# is deasserted default
	1 Parking Grant – if GFRM# or GPIPE# is
	asserted, GGNT# is not de-asserted until
	GREQ# is deasserted or timeout
0	AGP to PCI Master or CPU to PCI Turnaround
	Cycle
1	0 2T or 3T Timingdefault
	1 1T Timing

Device	DOffset AD – AGP Misc Control 1 (02h)RW
7-6	Reserved always reads 0
5	Input on AGP GD / GBE Pads
	0 Disabledefault
	1 Enable
4	Choose First or Last Ready of DRAM
	0 Last ready chosendefault
	1 First ready chosen
3-0	AGP Data Phase Latency Timer default = 02h

Offset AD – AGP Misc Control 1 (02h)RW		0 Offset AE – AGP Misc Control	
eserved	7-6	Reserved	aiways reads 0
nput on AGP GD / GBE Pads 0 Disabledefault	5	4G Supported 0 4G not supported	dafault
1 Enable		0 4G not supported1 4G supported	deraun
Thoose First or Last Ready of DRAM	4	Fast Write Supported	
0 Last ready chosendefault	4	0 Fast Write not supported	default
1 First ready chosen		1 Fast Write supported	uciaun
GP Data Phase Latency Timer default = 02h	3	Reserved	alwaya randa A
GI Data I hase Latency Time! default – 0211	2	4X Rate Supported	aiways icaus 0
	_	0 Disable	default
		1 Enable	aciaan
	1-0	Reserved	always reads 0

V-Link Control

	Offset B4 – V-Link NB Compensation Ctrl (00h)RW V-Link Autocomp Output Value always reads 0 Pullup Compensation Selection 0 Auto Comp (use values in bits 7-6)default 1 Manual Comp (use values in bits 3-2) Pulldown Compensation Selection 0 Auto Comp (use values in bits 7-6)default 1 Manual Comp (use values in bits 1-0) Pullup Compensation Manual Setting def = 0	7-6 V-Link Autocomp Output Values Pullup Compensation Selection O Auto Comp (use values in 1 Manual Comp (use values Pulldown Compensation Select O Auto Comp (use values in 1 Manual Comp (use values in 1 Manual Comp (use values in 1 Manual Comp (use values in 2 Pullup Compensation Manual in	bits 7-6) default in bits 7-6) default in bits 3-2) citon bits 7-6) default in bits 1-0)
1-0	Pulldown Compensation Manual Setting def = 0	1-0 Pulldown Compensation Manu	
Device	0 Offset B5 – V-Link NB Drive Control (00h)RW	evice 0 Offset B9 – V-Link SB Drive C	
7-6 5-4 3-1 0	NB V-Link Strobe Pullup Manual Setting NB V-Link Strobe Pulldown Manual Setting Reservedalways reads 0 NB V-Link Slew Rate Control	7-6 SB V-Link Strobe Pullup Manu 5-4 SB V-Link Strobe Pulldown M 3-1 Reserved	
v	0 Disabledefault 1 Enable	0 Disable	default

Power Management

Device	0 Offset BC – Power Management Mode (00h)RW
7	Dynamic Power Management
	0 Disabledefault
	1 Enable
6-0	Reserved always reads 0
Device	0 Offset BD – DRAM Power Mgmt Mode (00h) RW
7	Reserved always reads 0
6	Dynamic CKE When DRAM Is Idle
	0 Disabledefault
	1 Enable
5	Dynamic DRAM I/O Pad Power-Down (Float)
	0 Disabledefault
4.0	1 Enable
4-0	Reserved always reads 0
Device	0 Offset BE - Dynamic Clock Stop Control (00h)RW
7	Host CPU Interface Power Management
	0 Disabledefault
	1 Enable
6	System Memory Interface Power Management
	0 Disabledefault
_	1 Enable
5	V-Link Interface Power Management
	0 Disabledefault
4	1 Enable
4	AGP Interface Power Management
	0 Disabledefault 1 Enable
3	Reservedalways reads 0
2	Graphics Memory Interface Power Management
_	0 Disabledefault
	1 Enable
1	Configuration Registers Power Management
	0 Disabledefault
	1 Enable
0	Reservedalways reads 0
Device	0 Offset BF – DRAM Pad Toggle Reduction (00h)RW
7	MA / SCMD Pin Toggle Reduction
	0 Disabledefault
	1 Enable (MA and S command pins won't
	toggle if not accessed)
6	Slew Rate Control for MA / SCMD
	0 Disabledefault
	1 Enable
5_0	Reserved always reads 0

Device	0 Offset C0 – Power Management Capability IDRO
7-0	Capability IDalways reads 01h
Device	0 Offset C1 – Power Management Next Pointer. RO
7-0	Next Pointer always reads 00h ("Null" Pointer)
Device	0 Offset C2 – Power Mgmt Capabilities IRO
7-0	Power Management Capabilities always reads 02h
Device	0 Offset C3 – Power Mgmt Capabilities II RO
7-0	Power Management Capabilities always reads 00h
Device	0 Offset C4 – Power Mgmt Control / Status RW
7-2	Reservedalways reads 0
1-0	Power State
. 0	00 D0default
1	01 -reserved-
6 7	10 -reserved-
0	11 D3 Hot
Device	0 Offset C5 – Power Management Status RW
7-0	Power Management Status default = 00h
Device	0 Offset C6 – PCI-to-PCI Bridge Support Ext RW
7-0	P2P Bridge Support Extensions default = 00h
Device	0 Offset C7 – Power Management DataRW
	Power Management Data default = 00h

Frame Buffer and High Memory Control

Device	0 Offset E0 – CPU Direct Access FB Base (00h) RW
7-1	CPU Direct Access FB Base Address[27:21] . def=0
0	CPU Direct Access Frame Buffer
	0 Disabledefault
	1 Enable
Device	0 Offset E1 – CPU Direct Access FB Size (00h) RW
7	Internal VGA
	0 Disabledefault
	1 Enable
6-4	Frame Buffer Size
	000 Nonedefault
	001 2M
	010 4M
	011 8MB
	100 16MB
	101 32MB
	110 64MB
	111 -reserved-
3-0	CPU Direct Access FB Base Address[31:28] . def=0
Device	0 Offset E2 – VGA Arbitration Timer 1 (00h)RW
7-4	Timer for Promoted High Priority Display
	Requests $def = 0$
3-0	Timer for Promoted High Priority Display. $def = 0$
The fie	lds above are defined in units of 16 memory (DRAM)
clocks.	(See also note under VGA Timer 2 description).
Device	0 Offset E3 – UMA Control (00h)RW
7-5	110501 104 11111111111111111111111111111
4	Trume Burier riddress Conversion
	0 Disabledefault
	1 Enable

Setting this bit further optimizes the MA table for VGA frame buffer accesses according to the DRAM page size in use. Setting this bit should improve VGA performance especially in tiling address mode. This but cannot be used at the same time as CPU Direct Access FB mode. If used, this bit must be set before enabling the internal VGA to prevent display corruption.

- **3-2 Reserved**always reads 0
- 1-0 Frame Buffer Bank

Device	Offset E6 - SMM / APIC Decoding (01h) RW
7-6	Reservedalways reads 0
5	Reserved (Do Not Program)default = 0
4	I/O APIC Decoding
	0 FECxxxxx accesses go to PCI default
	1 FEC00000 to FEC7FFFF accesses go to PCI
	FEC80000 to FECFFFFF accesses go to AGP
3	MSI (Processor Message) Support
	0 Disable (master access to FEExxxxx will go to
	PCI)default
	1 Enable (master access to FEExxxxx will be
	passed to host side to do snoop)
2	Top SMM
	0 Disabledefault
	1 Enable
1	High SMM
9	0 Disabledefault
4	1 Enable
0	Compatible SMM
	0 Disable
	1 Enabledefault

Device 0 Offset E8 - VGA Arbitration Timer 2 (40h)... RW

- 7-4 Timer for Promoted Low Priority Display Requestsdefault = 0100b
- **3-0** Timer for Promoted Low Priority Display .. def = 0 The fields above are defined in units of 16 memory (DRAM) clocks.

VGA timers 1 and 2 are access arbitration timers between the display engine and the graphics engine. Normally the display engine has lower priority than the graphics engine unless the display buffer is below the threshold level where display requests become high priority. The VGA Timers provide the ability to override this deault behavior. These bits should be set prior to turning on the VGA.

BIOS Scratch

Device	<u> 1 Offset F/-FU – BIOS Scratch Registers Rv</u>	<u> </u>
7-0	No hardware function default =	0

Device 1 Offset 7-6 - Status (Primary Bus) (0230h).....RWC

Device 1 Register Descriptions

Device 1 PCI-to-PCI Bridge Header Registers

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number of 0 and function number equal to 0 and <u>device number</u> equal to <u>one</u>.

Device 1	l Offset 1-0 - Vendor ID (1106h)I	RO
15-0	ID Code (reads 1106h to identify VIA Technological)	
Device 1	1 Offset 3-2 - Device ID (B091h)	<u> 20</u>
15-0	ID Code (reads B091h to identify the on-chip Poto-PCI Bridge device)	
Device 1	1 Offset 5-4 – Command (0007h)R	<u>w</u>
15-10	Reserved always read	s 0
9	Fast Back-to-Back Cycle Enable	RO
	0 Fast back-to-back transactions only allowed	
	the same agentdefa	
	1 Fast back-to-back transactions allowed	to
	different agents	
8	SERR# Enable	
	0 SERR# driver disableddefa	ult
	1 SERR# driver enabled	
_	(SERR# is used to report ECC errors)	
7	Address / Data SteppingI	KO (
	0 Device never does steppingdefa	ult
	1 Device always does stepping	117
6	Parity Error Response	
	1 Take normal action on detected parity errors	
5	Reservedalways read	
4	Memory Write and Invalidate CommandI	
7	0 Bus masters must use Mem Writedefa	
	1 Bus masters may generate Mem Write & Inv	
3	Special Cycle Monitoring	
· ·	0 Does not monitor special cyclesdefa	ult
	1 Monitors special cycles	
2	Bus Master R	W
	0 Never behaves as a bus master	
	1 Enable to operate as a bus master on	the
	primary interface on behalf of a master on	
	secondary interfacedefa	
1	Memory Space	\W
	0 Does not respond to memory space	
	1 Enable memory space accessdefa	
0	I/O Space	W
	0 Does not respond to I/O space	

1 Enable I/O space accessdefault

Device	1 Offset 7-0 - Status (1 filliary Dus) (023011)KWC
15	Detected Parity Error always reads 0
14	Signaled System Error (SERR#)always reads 0
13	Signaled Master Abort
	0 No abort received default
	1 Transaction aborted by the master with
	Master-Abort (except Special Cycles)
	write 1 to clear
12	Received Target Abort
12	S .
	1 Transaction aborted by the target with Target-
	Abortwrite 1 to clear
11	Signaled Target Abortalways reads 0
10-9	DEVSEL# Timing
	00 Fast
0. 2	01 Medium always reads 01
	10 Slow
	11 Reserved
8	Data Parity Error Detectedalways reads 0
7	Fast Back-to-Back Capable always reads 0
6	User Definable Featuresalways reads 0
5	66MHz Capable always reads 1
4	Supports New Capability list always reads 1
3-0	Reserved always reads 0
3-0	Reservedarways reads 0
Device	1 Offset 8 - Revision ID (0nh)RO
7-0	Chip Revision Codealways reads 0nh
Device	1 Offset 9 - Programming Interface (00h)RO
	gister is defined in different ways for each Base/Sub-
	ode value and is undefined for this type of device.
Class C	
7-0	Interface Identifieralways reads 00
Device	1 Offset A - Sub Class Code (04h)RO
7-0	Sub Class Code reads 04 to indicate PCI-PCI Bridge
7-0	Sub Class Code. reads 04 to indicate FC1-FC1 Bridge
Device	1 Offset B - Base Class Code (06h)RO
7-0	
, ,	-
Device	1 Offset D - Latency Timer (00h)RO
7-0	Reserved always reads 0
ъ .	1 Off (F H) F (01)
	1 Offset E - Header Type (01h)RO
7-0	Header Type Codereads 01: PCI-PCI Bridge

Device 1 Offset 18 - Primary Bus Number (00h)RW	Device 1 Offset 34 - Capability Pointer (80h)RO
7-0 Primary Bus Number default = 0	Contains a byte offset from the start of configuration space.
This register is read write, but internally the chip always uses bus 0 as the primary.	7-0 AGP Capability List Pointer always reads 80h
Device 1 Offset 19 - Secondary Bus Number (00h)RW	
7-0 Secondary Bus Number default = 0	Device 1 Offset 3F-3E – PCI-to-PCI Bridge Control
Note: AGP must use these bits to convert Type 1 to Type 0.	(0000h)RW
	15-4 Reserved always reads 0
Device 1 Offset 1A - Subordinate Bus Number (00h) RW	3 VGA-Compatible I/O and Memory Addresses
7-0 Primary Bus Number default = 0	O Do not forward VGA accesses default
Note: AGP must use these bits to decide if Type 1 to Type 1	1 Forward VGA accesses
command passing is allowed.	Note: VGA addresses are memory A0000-BFFFFh
	and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-
	3DFh (10-bit decode). "Mono" text mode uses
	B0000-B7FFFh and "Color" Text Mode uses B8000-
Device 1 Offset 1B – Secondary Latency Timer (00h)RO	BFFFFh. Graphics modes use Axxxxh. Mono VGA uses I/O addresses 3Bx-3Cxh and Color VGA uses
7-0 Reserved always reads 0	3Cx-3Dxh. If an MDA is present, a VGA will not
	use the 3Bxh I/O addresses and B0000-B7FFFh
	memory space; if not, the VGA will use those
Device 1 Offset 1C - I/O Base (F0h)RW	addresses to emulate MDA modes.
7-4 I/O Base AD[15:12]default = 1111b	2 Block / Forward ISA I/O Addresses
3-0 I/O Addressing Capability default = 0	0 Forward all I/O accesses to the AGP bus if
e o 12 o 12 da 12	they are in the range defined by the I/O Base
Device 1 Offset 1D - I/O Limit (00h)RW	and I/O Limit registers (device 1 offset 1C-
7-4 I/O Limit AD[15:12] default = 0	1D)
3-0 I/O Addressing Capability default = 0	default
	1 Do not forward I/O accesses to the AGP bus
	that are in the 100-3FFh address range even if
Device 1 Offset 1F-1E - Secondary StatusRO	they are in the range defined by the I/O Base
15-0 Secondary Status	and I/O Limit registers.
Rx44[4] = 0: these bits read back 0000h	1-0 Reservedalways reads 0
Rx44[4] = 1: these bits read back same as $Rx7-6$	
ratifical substitution and ratification and respectively.	
D 1 1 Off 1 21 20 M D (EDEN)	
Device 1 Offset 21-20 - Memory Base (FFF0h)RW	
15-4 Memory Base AD[31:20] default = FFFh	
3-0 Reserved always reads 0	
Device 1 Offset 23-22 - Memory Limit (Inclusive) (0000h) RW	
15-4 Memory Limit AD[31:20] default = 0	
3-0 Reservedalways reads 0	
0 0 120002 10 u	
Declaration of the Declaration o	
Device 1 Offset 25-24 - Prefetchable Memory Base	
(FFF0h) RW	
15-4 Prefetchable Memory Base AD[31:20]def = FFFh	
3-0 Reserved always reads 0	
Device 1 Offset 27-26 - Prefetchable Memory Limit	
(0000h)	
15-4 Prefetchable Memory Limit AD[31:20] def = 0	
3-0 Pasarvad	

Device 1 PCI-to-PCI Bridge Device-Specific Registers

Internal AGP Bus Control

Device	1 Offset 40 - CPU-to-AGP Flow Control 1 (00h) RW	Device	1 Offset 41 -
7	CPU-AGP Post Write	7	Retry State
	0 Disabledefault		0 No r
	1 Enable		1 Retr
6	Reserved always reads 0	6	Retry Time
5	CPU-AGP One Wait State Burst Write		0 No a
	0 Disabledefault		1 Flus
	1 Enable	5-4	Retry Cou
4-3	Read Prefetch Control		00 Retr
	00 Always prefetchdefault		01 Retr
	10 Prefetch only for "Enhance" command		10 Retr
	x1 Prefetch Disable		11 Retr
2	MDA Present on AGP	3	CPU-to-A
	0 Forward MDA accesses to AGPdefault	3,6	0 Disa
	1 Forward MDA accesses to PCI		1 Enab
	Note: Forward despite IO / Memory Base / Limit	2	Reserved
	Note: MDA (Monochrome Display Adapter)	1	CPU-to-PC
	addresses are memory addresses B0000h-B7FFFh	١	Buffered R
	and I/O addresses 3B4-3B5h, 3B8-3BAh, and 3BFh		0 Disa
	(10-bit decode). 3BC-3BE are reserved for printers.		1 Enat
	Note: If Rx3E bit-3 is 0, this bit is a don't care (MDA	0	AGP Read
	accesses are forwarded to the PCI bus).		0 Disa
1	AGP Master Read Caching 0 Disabledefault		1 Enat
		,	
0	1 Ziweit		
0	AGP Delay Transaction 0 Disabledefault		
			,
	1 Enable		
Tab	ole 9. VGA / MDA Memory / IO Redirection		
3E[3	1] 40[2] VGA MDA Axxxx, B0000 3Cx,	,	
VG/			
Pres			

Table 9. VGA / MDA Memory / IO Redirection

3E[3]	40[2]	<u>VGA</u>	MDA	Axxxx,	<u>B0000</u>	3Cx	
VGA	MDA	is	is	B8xxx	-B7FFF	<u>3Dx</u>	3Bx
Pres.	Pres.	<u>on</u>	<u>on</u>	Access	Access	<u>I/O</u>	<u>I/O</u>
0	-	PCI	PCI	PCI	PCI	PCI	PCI
1	0	AGP	AGP	AGP	AGP	AGP	AGP
1	1	AGP	PCI	AGP	PCI	AGP	PCI

<u>evice</u>	1 Offset 41 - CPU-to-AGP Flow Control 2 (08h) RW
7	Retry Status
	0 No retry occurreddefault
	1 Retry Occurredwrite 1 to clear
6	Retry Timeout Action
	0 No action taken except to record status def
	1 Flush buffer for write or return all 1s for read
5-4	Retry Count
	00 Retry 2, backoff CPU default
	01 Retry 4, backoff CPU
	10 Retry 16, backoff CPU
	11 Retry 64, backoff CPU
3	CPU-to-AGP Bursting Timeout
X	0 Disable
	1 Enabledefault
2	Reserved always reads 0
1	CPU-to-PCI/AGP Cycles Invalidate PCI/AGP
	Buffered Read Data
	0 Disabledefault
	1 Enable
0	AGP Read Bursting
	0 Disabledefault
	1 Enable

	1 Offset 42 - AGP Master Control (00h)RW	Device	1 Offset 45	<u>– Fast Writ</u>	e Control (72h)RW	
7	AGP Performance Enhancement	7			le to be QW Aligned	
•	0 Disabledefault	•	(if Rx45[6	•	to to we & \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	1 Enable				default	
6	AGP Master One Wait State Write		1 Ena		deladit	
U	0 Disabledefault	6			Transactions Into One Fast	
	1 Enable	U		st Transact		
5	AGP Master One Wait State Read		0 Disa		1011	
3	0 Disabledefault				dofoult	
	1 Enable	5	1 Enabledefault Merge Multiple CPU Write Cycles To Memory			
4	Break Consecutive PCI Master Accesses	3				
4					Write Burst Cycles	
			(if Rx45[6			
•	1 Enable		0 Disa		J - C 14	
3	Dynamic AGP Mem Read Ready Head-Tail Select	4			CDL Weite Cooler To	
	0 Disable (use tail to return data)default	4			CPU Write Cycles To	
	1 Enable (dynamically use head or tail to return				ry Offset 27-24 Into Fast	
	data)				f Rx45[6] = 0)	
2	Claim I/O R/W and Memory Read Cycles	0, 2	0 Disa		1.6.14	
	0 Disabledefault				default	
	1 Enable	3			always reads 0	
1	Claim Local APIC FEEx xxxx Cycles	2			Max (No Slave Flow Control)	
	0 Disabledefault				default	
•	1 Enable	.)	1 Ena		4 D 1	
0	Support Host CPU Snoop Cycles at 2T Rate			e Fast Back	то васк	
	0 Disabledefault		0 Disa		d o f o - 14	
	1 Enable	V ₀			default ck 1 Wait State	
		U		7	default	
			1 Ena		delauit	
Device	1 Offset 43 - AGP Master Latency Timer (22h) RW		1 13114	DIC		
20,100			7			
	Host to AGP Time slot	Rx45		CPU Write		
	Host to AGP Time slot 0 Disable (no timer)	Rx45 Bits	CPU Write	CPU Write Address		
	Host to AGP Time slot 0 Disable (no timer) 1 16 GCLKs		CPU Write		Fast Write Cycle Alignment	
	Host to AGP Time slot 0 Disable (no timer)	Bits	CPU Write Address	Address	Fast Write Cycle Alignment QW aligned, burstable	
	Host to AGP Time slot 0 Disable (no timer) 1 16 GCLKs 2 32 GCLKs default	Bits <u>7-4</u>	CPU Write Address <u>in Mem1</u>	Address in Mem2	QW aligned, burstable	
	Host to AGP Time slot 0 Disable (no timer) 1 16 GCLKs 2 32 GCLKsdefault F 240 GCLKs	Bits <u>7-4</u> x1xx	CPU Write Address in Mem1	Address in Mem2		
	Host to AGP Time slot 0 Disable (no timer) 1 16 GCLKs 2 32 GCLKs default F 240 GCLKs AGP Master Time Slot	Bits <u>7-4</u> x1xx 0000	CPU Write Address in Mem1 -	Address in Mem2 -	QW aligned, burstable DW aligned, nonburstable	
7-4	Host to AGP Time slot 0 Disable (no timer) 1 16 GCLKs 2 32 GCLKs default F 240 GCLKs AGP Master Time Slot 0 Disable (no timer)	Bits <u>7-4</u> x1xx 0000 x010	CPU Write Address in Mem1 - 0	Address in Mem2 - - 0	QW aligned, burstable DW aligned, nonburstable n/a	
7-4	Host to AGP Time slot 0 Disable (no timer) 1 16 GCLKs 2 32 GCLKs default F 240 GCLKs AGP Master Time Slot 0 Disable (no timer) 1 16 GCLKs	Bits 7-4 x1xx 0000 x010 0010 x010	CPU Write Address in Mem1 - 0 0	Address in Mem2 - - 0	QW aligned, burstable DW aligned, nonburstable n/a DW aligned, non-burstable	
7-4	Host to AGP Time slot 0 Disable (no timer) 1 16 GCLKs 2 32 GCLKs default F 240 GCLKs AGP Master Time Slot 0 Disable (no timer)	Bits 7-4 x1xx 0000 x010 0010 x010 x001	CPU Write Address in Mem1 - 0 0 1	Address in Mem2 - 0 1	QW aligned, burstable DW aligned, nonburstable n/a DW aligned, non-burstable QW aligned, burstable n/a	
7-4	Host to AGP Time slot 0 Disable (no timer) 1 16 GCLKs 2 32 GCLKs	Bits 7-4 x1xx 0000 x010 0010 x010	CPU Write Address in Mem1 - 0 0 1	Address in Mem2 - 0 1 - 0	QW aligned, burstable DW aligned, nonburstable n/a DW aligned, non-burstable QW aligned, burstable	
7-4	Host to AGP Time slot 0 Disable (no timer) 1 16 GCLKs 2 32 GCLKs default F 240 GCLKs AGP Master Time Slot 0 Disable (no timer) 1 16 GCLKs 2 32 GCLKs default	Bits 7-4 x1xx 0000 x010 0010 x010 x001 x001	CPU Write Address in Mem1 - 0 0 1 0 -	Address in Mem2 - 0 1 - 0 1	QW aligned, burstable DW aligned, nonburstable n/a DW aligned, non-burstable QW aligned, burstable n/a QW aligned, burstable	
7-4	Host to AGP Time slot 0 Disable (no timer) 1 16 GCLKs 2 32 GCLKs	Bits 7-4 x1xx 0000 x010 0010 x010 x001 x001 x00	CPU Write Address in Mem1 - 0 0 1 - 1	Address in Mem2 - 0 1 - 0 1 0 1 0	QW aligned, burstable DW aligned, nonburstable n/a DW aligned, non-burstable QW aligned, burstable n/a QW aligned, burstable DW aligned, non-burstable	
7-4	Host to AGP Time slot 0 Disable (no timer) 1 16 GCLKs 2 32 GCLKs	Bits 7-4 x1xx 0000 x010 0010 x010 x001 x001 x001 x011	CPU Write Address in Mem1 - 0 0 1 0 - 1 0	Address in Mem2 - 0 1 - 0 1 0 0 0	QW aligned, burstable DW aligned, nonburstable n/a DW aligned, non-burstable QW aligned, burstable n/a QW aligned, burstable DW aligned, non-burstable n/a	
7-4	Host to AGP Time slot 0 Disable (no timer) 1 16 GCLKs 2 32 GCLKs	Bits 7-4 x1xx 0000 x010 0010 x010 x001 x001 x001 x011 x011	CPU Write Address in Mem1 - 0 0 1 0 - 1 0 1	Address in Mem2 - 0 1 - 0 1 0 0 0	QW aligned, burstable DW aligned, nonburstable n/a DW aligned, non-burstable QW aligned, burstable n/a QW aligned, burstable DW aligned, non-burstable n/a QW aligned, non-burstable	
7-4	Host to AGP Time slot 0 Disable (no timer) 1 16 GCLKs 2 32 GCLKs	Bits 7-4 x1xx 0000 x010 0010 x010 x001 x001 x001 x011 x011	CPU Write Address in Mem1 - 0 0 1 0 - 1 0 1 0 1	Address in Mem2 - 0 1 - 0 1 0 0 - 1 1 1 1 1 1 1 1 1 1	QW aligned, burstable DW aligned, nonburstable n/a DW aligned, non-burstable QW aligned, burstable n/a QW aligned, burstable DW aligned, non-burstable n/a QW aligned, burstable QW aligned, burstable QW aligned, burstable	

Device	1 Offset 47-46 – PCI-to-PCI Bridge Device IDRW
15-0	PCI-to-PCI Bridge Device ID default = 0000
Device	1 Offset 48 – AGP Parity Error ControlRW
7-2	Reserved always reads 0
1	Pass AGP Data Parity Error to V-Link
	0 Disabledefault
	1 Enable
0	Pass AGP Address Parity Error to V-Link
	0 Disabledefault
	1 Enable

Power Management

ffset 47-46 – PCI-to-PCI Bridge Device IDRW	Dovice	1 Offset 90 Canability ID (01b) DO
-		1 Offset 80 – Capability ID (01h)RO
CI-to-PCI Bridge Device ID default = 0000	7-0	Capability IDalways reads 01h
ffset 48 – AGP Parity Error ControlRW	Device	1 Offset 81 – Next Pointer (00h)RO
eserved always reads 0	7-0	Next Pointer: Nullalways reads 00h
ss AGP Data Parity Error to V-Link		
0 Disabledefault		
1 Enable	Device	1 Offset 82 – Power Mgmt Capabilities 1 (02h) RO
oss AGP Address Parity Error to V-Link O Disabledefault	7-0	Power Mgmt Capabilitiesalways reads 02h
1 Enable	Davisa	1 Officet 92 Deman Manut Comphilities 2 (00h) DO
		1 Offset 83 – Power Mgmt Capabilities 2 (00h) RO
	7-0	Power Mgmt Capabilitiesalways reads 00h
	- 0	
		1 Offset 84 – Power Mgmt Ctrl/Status (00h) RW
	7-2 1-0	Reserved
	1-0	Power State 00 D0default
		01 -reserved-
		10 -reserved-
	40	11 D3 Hot
	Device	1 Offset 85 – Power Mgmt Status (00h)RO
	7-0	Power Mgmt Status
		1 Offset 86 – P2P Br. Support Extensions (00h). RO
	7-0	P2P Bridge Support Extensions default = 00
Y A	Device	1 Offset 87 – Power Management Data (00h) RO
	7-0	Power Management Data default = 00
	·	
y		

FUNCTIONAL DESCRIPTION

Integrated Graphics Controller

Figure 4. Graphics Controller Internal Block Diagram

Internal Architecture

A high-level block diagram of the integrated graphics controller core is shown in Figure 4 above. This diagram is intended to be used for gaining an understanding of chip features and programming. It shows logical structure but is not intended to show actual internal implementation details.

Graphics Modes

Mode support is influenced by:

- Amount, speed and bus width of video memory
- q Display resolution and color depth
- q Maximum refresh capability detected for the display devices
- q Panel Size
- q Single IGA or Dual IGA setting
- q SAMM setting

Desktop Modes - Single Display

LCD Single Display modes follow the 60Hz refresh column in the table below.

			CRT M	AXIMUM F	REFRESH	
RESOLUTION	ВРР	09	75	85	100	120
640x480	8 16 32	\ \ \ \	V V	√ √ √	\frac{}{}	\ \ \ \
800x600	8 16 32	V V	\ \ \ \	\ \ \ \	\ \ \ \	\ \ \ \
1024x768	8 16 32	V V	\ \ \ \	$\sqrt{\frac{1}{\sqrt{1}}}$	$\frac{\sqrt{1}}{\sqrt{1}}$	
1152x864	8 16 32	V V	\ \ \ \			
1280x1024	8 16 32	√ √ √	\ \ \ \	$\frac{}{\sqrt{3}}$		
1400x1050**	8 16 32	N N	$\sqrt{\frac{\sqrt{3}}{\sqrt{3}}}$	$\sqrt{\frac{1}{\sqrt{4}}}$		
1600x1200	8 16 32	$\frac{}{\sqrt{3}}$	√ √1	√ √1		

Figure 5. Desktop Graphics Modes – Single Display

- * = Mode available for systems where this LCD panel size is detected
- √ = Supported with DDR200 or DDR266: **Mode available and Overlay available**
- $\sqrt{1}$ = DDR200: **Mode available**, overlay not available. DDR266: **Mode available**, **overlay available**.
- $\sqrt{2}$ = DDR200: **Mode available**, overlay not available. DDR266: **Mode available**, overlay not available.
- $\sqrt{3}$ = DDR200: Mode not available, overlay not available. DDR266: **Mode available, overlay available**.
- $\sqrt{4}$ = DDR200: Mode not available, overlay not available. DDR266: **Mode available**, overlay not available.

Desktop Modes - LCD VGA 640x480 Multiple Display

			L	CD 8B	PP			LO	CD 16B	PP			LO	CD 32B	3PP	
		CF	RT MA	XIMUM	REFRE	ESH	CF	RT MA	XIMUM	REFRE	ESH	CF	RT MA	XIMUM	REFRE	ESH
CRT RESOLUTION	ВРР	09	75	85	100	120	09	75	85	100	120	09	75	85	100	120
640x480	8	√ 	√ 	1	√	√ ,	√ 	√ 	V	√ 	√ 	√ 	1	1	1	1
UTUATOU	16 32	$\sqrt{}$	√ √	√ √	√ √	√ √	$\sqrt{}$	√ √	√ √	√ √	√ √	√ √	√ √	$\frac{}{}$	√ √	√ √
	8	√	V	√	V	V	√	V	√		V	→ √	√	√	V	V
800x600	16		$\sqrt{}$		V			$\sqrt{}$	√	. 1	1	$\sqrt{}$				$\sqrt{1}$
	32	√	√	√	√		√	√	$\sqrt{}$	$\sqrt{}$, 1	√	√	√	$\sqrt{1}$	
	8	√	√	√	√		√	√	√	V		√	√	√	$\sqrt{1}$	
1024x768	16	√	√	√	√1		√	√	4	√1		√,	√ /	$\sqrt{1}$	√2	
	32	√ /	√ /	√1			√	V	VI			√	√	√1		
1152-074	8	√ /	√ /				√	1				√	√ 			
1152x864	16	$\sqrt{}$	$\sqrt{1}$				√	1/2				√ /	$\sqrt{1}$			
	32		-	./1			V	V1	$\sqrt{1}$			1		-/2		
1280x1024	8 16	√ √	$\frac{\sqrt{1}}{\sqrt{1}}$	$\frac{\sqrt{1}}{\sqrt{1}}$			\ \ \ \ \	$\frac{\sqrt{1}}{\sqrt{1}}$	$\sqrt{1}$			$\sqrt{1}$	$\sqrt{1}$	$\frac{\sqrt{2}}{\sqrt{2}}$		
120031024	32	√ √	√1	√4			√ √	$\sqrt{1}$	$\sqrt{4}$		- (√1 √1	$\sqrt{2}$	√4		
	8	√1	$\sqrt{2}$	٧4			√1 √1	$\sqrt{2}$	**			$\sqrt{2}$	$\sqrt{2}$	٧4		
1600x1200	16	$\sqrt{2}$	$\sqrt{2}$	1			$\sqrt{2}$	$\sqrt{2}$				$\sqrt{2}$	$\sqrt{2}$			
	32	√4					√4				,	√4				

Figure 6. Desktop Graphics Modes - LCD VGA 640x480 Multiple Display

- √ = Supported with DDR200 or DDR266: Mode available and Overlay available
- $\sqrt{1}$ = DDR200: **Mode available**, overlay not available. DDR266: **Mode available**, **overlay available**.
- $\sqrt{2}$ = DDR200: **Mode available**, overlay not available. DDR266: **Mode available**, overlay not available.
- $\sqrt{3}$ = DDR200: Mode not available, overlay not available. DDR266: **Mode available, overlay available**.
- $\sqrt{4}$ = DDR200: Mode not available, overlay not available. DDR266: **Mode available**, overlay not available.
- $\sqrt{5}$ = Mode and Motion Compensation available with LCD in standalone configuration only

Desktop Modes - LCD SVGA 800x600 Multiple Display

			L	CD 8bi	PP			LO	CD 16E	BPP			L	CD 32E	PP	
		CF	RT MAX	XIMUM	REFRE	ESH	CF	RT MA	XIMUM	REFRI	ESH	CF	RT MA	XIMUM	REFRE	ESH
CRT RESOLUTION	ВРР	09	75	85	100	120	09	75	85	100	120	09	75	85	100	120
640x480	8	√ 	V	√ /	V	V	√ 	√ 	√	V	V	√ ,	√ ,	V	V	V
0403460	16 32	$\sqrt{}$	√ √	√ √	√ √	√ √	$\sqrt{}$	√ √	√ √	√ √	√ √	$\frac{}{}$	√ √	√ √	√ √	√ √
	8	√ √	√ √	√ √	√ √	1	√ √	√ √	√ √	1	7	<u>√</u>	√	√ √	√ √	1
800x600	16	√	√	√	√	√	√	√	√	, 1	1	√	√	√	√	√1
	32		V		V		\checkmark			V	,		V	V	√1	
	8	$\sqrt{}$	$\sqrt{}$		√				√	V		√	√	√	√1	
1024x768	16	√	√	√	√1		√	√	V	√1		√	√	√1	√2	
	32	√	√	√1			√	$\sqrt{}$	VΙ			√	√	$\sqrt{1}$		
44.50 064	8	√	√ '				√	1				√	√ .			
1152x864	16	√	√1				V	$\sqrt{1}$				√ /	$\sqrt{1}$			
	32	√ /	√1	1.			V	$\sqrt{1}$	1.	7	r	$\sqrt{}$	√1	1-		
1280x1024	8	√ /	√1 ./1	√1 ./1			7	√1 ./1	$\sqrt{1}$			1/1	√2 √2	$\sqrt{2}$		
1200X1024	16 32	√ √	$\sqrt{1}$	$\sqrt{1}$			1	$\sqrt{1}$	$\frac{\sqrt{1}}{\sqrt{4}}$		- ($\sqrt{1}$	$\sqrt{2}$	√2 √4		
	8	$\sqrt{2}$	$\sqrt{2}$	'V4	1	·	$\sqrt{2}$	$\frac{\sqrt{1}}{\sqrt{2}}$	7/4			$\sqrt{2}$	$\sqrt{2}$	'\4		
1600x1200	16	$\sqrt{2}$	$\sqrt{2}$	4			$\sqrt{2}$	$\sqrt{2}$				$\frac{\sqrt{2}}{\sqrt{2}}$	$\sqrt{2}$			
100031200	32	√4	٧Z		,		$\sqrt{4}$	VZ			7	$\sqrt{4}$	VZ			

Figure 7. Desktop Graphics Modes – LCD SVGA 800x600 Multiple Display

- √ = Supported with DDR200 or DDR266: Mode available and Overlay available
- $\sqrt{1}$ = DDR200: **Mode available**, overlay not available. DDR266: **Mode available**, **overlay available**.
- $\sqrt{2}$ = DDR200: **Mode available**, overlay not available. DDR266: **Mode available**, overlay not available.
- $\sqrt{3}$ = DDR200: Mode not available, overlay not available. DDR266: **Mode available, overlay available**.
- $\sqrt{4}$ = DDR200: Mode not available, overlay not available. DDR266: **Mode available**, overlay not available.
- $\sqrt{5}$ = Mode and Motion Compensation available with LCD in standalone configuration only

Desktop Modes - LCD XGA 1024x768 Multiple Display

			L	CD 8BI	PP			LO	CD 16E	BPP			L	CD 32E	PP	
		CF	RT MA	XIMUM	REFRE	ESH	CF	RT MA	XIMUM	REFRE	ESH	CF	RT MA	XIMUM	REFRE	ESH
CRT RESOLUTION	ВРР	09	75	85	100	120	09	75	85	100	120	09	75	85	100	120
640x480	8	√ 	√ 	√ /	V	V	√ 	√ 	√	V	V	√ ,	√	V	V	V
0402400	16 32	$\sqrt{}$	√ √	√ √	√ √	√ √	$\sqrt{}$	√ √	√ √	√ √	√ √	$\frac{}{}$	√ √	√ √	√ √	√ √
	8	√ √	√ √	√ √	√ √	√ √	√ √	√ √	√ √	√ √	$\overline{\mathcal{A}}$	<u>√</u>	√ √	√ √	√ √	√ √
800x600	16	√	V	√	√	√	√	V	√	, 1	1	√	√	√	√	$\sqrt{1}$
	32								$\sqrt{}$	V	,				√1	
	8	√	√	√	V		√	√	√	V		√	√	√	√1	
1024x768	16	√	√	√ /	√1		√	√	4	√1		<u>√</u>	√1	$\sqrt{1}$	√2	
	32		√ /	√1			$\sqrt{}$	V	VΙ			$\sqrt{1}$	$\sqrt{1}$	√1		
1152-064	8	√ /	√ 				√	1				1.	$\sqrt{1}$			
1152x864	16 32	$\sqrt{}$	$\sqrt{1}$				√	$\sqrt{1}$			r	$\frac{\sqrt{1}}{\sqrt{1}}$	$\sqrt{1}$			
	8	√ √	√1	√1			V	√1 √1	$\sqrt{1}$	7		$\sqrt{1}$	$\sqrt{2}$	√2		
1280x1024	16	√1	√1	√1			$\sqrt{1}$	√1	$\sqrt{1}$	-		$\sqrt{1}$	$\sqrt{2}$	$\sqrt{2}$		
	32	√1	√1	√4			√1	$\sqrt{1}$	$\sqrt{4}$			$\sqrt{1}$	$\sqrt{2}$	√4		
	8	$\sqrt{2}$	√2			>	$\sqrt{2}$	$\sqrt{2}$		2		$\sqrt{2}$	√2			
1600x1200	16	√2	√2	1	V.		$\sqrt{2}$	$\sqrt{2}$			>	√2	√2			
	32	√4			,		√4					√4				

Figure 8. Desktop Graphics Modes – LCD XGA 1024x768 Multiple Display

- √ = Supported with DDR200 or DDR266: Mode available and Overlay available
- $\sqrt{1}$ = DDR200: **Mode available**, overlay not available. DDR266: **Mode available**, **overlay available**.
- $\sqrt{2}$ = DDR200: **Mode available**, overlay not available. DDR266: **Mode available**, overlay not available.
- $\sqrt{3}$ = DDR200: Mode not available, overlay not available. DDR266: **Mode available, overlay available**.
- $\sqrt{4}$ = DDR200: Mode not available, overlay not available. DDR266: **Mode available**, overlay not available.
- $\sqrt{5}$ = Mode and Motion Compensation available with LCD in standalone configuration only

Desktop Modes - LCD SXGA 1280x1024 Multiple Display

			L	CD 8BI	PP			LO	CD 16B	BPP .			L	CD 32E	BPP .	
		CF	RT MA	XIMUM	REFRE	ESH	CF	RT MA	XIMUM	REFRE	ESH	CF	RT MA	XIMUM	REFRE	ESH
CRT RESOLUTION	ВРР	09	75	85	100	120	09	75	85	100	120	09	75	85	100	120
640x480	8	√ 	√ 	√	V	V	√ 	√ 	V	√ ,	√	$\sqrt{1}$	$\sqrt{1}$	$\sqrt{1}$	√1	$\sqrt{1}$
0403460	16 32	$\frac{}{}$	√ √	√ √	√ √	√ √	$\sqrt{}$	√ √	√ √	√ √	√ √	$\frac{\sqrt{1}}{\sqrt{3}}$	$\frac{\sqrt{1}}{\sqrt{3}}$	$\sqrt{1}$	$\sqrt{3}$	$\sqrt{4}$ $\sqrt{4}$
	8	√ √	√ √	√ √	√ √	1	√ √	√ √	√ √	√ √	7	$\sqrt{1}$	$\sqrt{1}$	$\sqrt{1}$	√3	$\sqrt{2}$
800x600	16	√	√	√	√	√1	√	√	1	. 1	$\sqrt{1}$	√3	√4	√4	√4	√4
	32	$\sqrt{}$			√1		$\sqrt{}$		1	$\sqrt{1}$	7	√3	√4	√4	√4	
	8			√	√1				$\sqrt{}$	$\sqrt{1}$		$\sqrt{1}$	√1	$\sqrt{2}$	√4	
1024x768	16	√	√1	$\sqrt{1}$	√1		√	√1	√1	√1		√4	√4	√4	√4	
	32	$\sqrt{1}$	√1	√2			$\sqrt{1}$	$\sqrt{1}$	√2			√4	√4	√4		
1152x864	8	$\frac{}{\sqrt{1}}$	$\frac{\sqrt{1}}{\sqrt{1}}$				$\frac{}{\sqrt{1}}$	$\frac{\sqrt{1}}{\sqrt{1}}$				$\frac{\sqrt{2}}{\sqrt{4}}$	$\sqrt{2}$			
1152x604	16 32	√1	$\sqrt{2}$				$\sqrt{1}$	$\sqrt{2}$			r	√4 √4	√4 √4			
	8	√1	√1	√2			$\sqrt{1}$	√1	$\sqrt{2}$			$\sqrt{4}$	√4	√4		
1280x1024	16	√1	√2	$\sqrt{2}$			$\sqrt{1}$	√2	$\sqrt{2}$,		√4	√4	√4		
	32	√2	√2	√4			√2	$\sqrt{2}$	√4			$\sqrt{4}$				
	8	$\sqrt{2}$	√2				$\sqrt{2}$	$\sqrt{2}$		2		√4	√4			
1600x1200	16	√2	√2	70	Y,		√2	$\sqrt{2}$			7	√4	√4			
	32	√4					√4				7					

Figure 9. Desktop Graphics Modes - LCD SXGA 1280x1024 Multiple Display

- √ = Supported with DDR200 or DDR266; Mode available and Overlay available
- $\sqrt{1}$ = DDR200: **Mode available**, overlay not available. DDR266: **Mode available**, **overlay available**.
- $\sqrt{2}$ = DDR200: **Mode available**, overlay not available. DDR266: **Mode available**, overlay not available.
- $\sqrt{3}$ = DDR200: Mode not available, overlay not available. DDR266: **Mode available**, overlay available.
- $\sqrt{4}$ = DDR200: Mode not available, overlay not available. DDR266: **Mode available**, overlay not available.
- $\sqrt{5}$ = Mode and Motion Compensation available with LCD in standalone configuration only

Desktop Modes - LCD SXGA+ 1400x1050 Multiple Display

Note: LCD at 32bpp is not supported with SXGA+ panels.

			L	CD 8bi	PP			LO	C D 16B	PP			LC	D 32B	PP ⁵	
		CF	RT MAX	XIMUM	REFRE	ESH	CF	RT MA	XIMUM	REFRE	ESH	CR	RT MA	XIMUM	REFRE	CSH
CRT RESOLUTION	ВРР	09	75	85	100	120	09	75	85	100	120	09	75	85	100	120
640x480	8 16 32	√ √ √	√ √ √	√ √ √	√ √ √	\ \ \ \	√ √ √	√ √ √	√ √ √	√ √ √	\ \ \ \					
800x600	8 16 32	√ √ √	√ √ √	√ √ √	√ √ √1	√ √1	√ √ √	√ √ √	√ √ √	√ √ √1	√ √1					
1024x768	8 16 32	$\sqrt{\frac{}{\sqrt{1}}}$	$\sqrt{\frac{1}{\sqrt{2}}}$	$\sqrt{\frac{\sqrt{1}}{\sqrt{2}}}$	$\sqrt{1}$ $\sqrt{2}$		$\frac{}{\sqrt{1}}$	$\frac{\sqrt{1}}{\sqrt{2}}$	$\frac{\sqrt{1}}{\sqrt{2}}$	$\sqrt{1}$ $\sqrt{2}$						
1152x864	8 16 32	$\begin{array}{c} \sqrt{} \\ \sqrt{1} \\ \sqrt{1} \end{array}$	$\sqrt{1}$ $\sqrt{1}$ $\sqrt{2}$				$\sqrt{\frac{1}{\sqrt{1}}}$	$\begin{array}{c} \sqrt{1} \\ \sqrt{1} \\ \sqrt{2} \end{array}$								
1280x1024	8 16 32	$\begin{array}{c} \sqrt{1} \\ \sqrt{1} \\ \sqrt{2} \end{array}$	$\sqrt{1}$ $\sqrt{2}$ $\sqrt{2}$	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{4}$	()	,	$\begin{array}{c} \sqrt{1} \\ \sqrt{1} \\ \sqrt{2} \end{array}$	$\frac{\sqrt{1}}{\sqrt{2}}$	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{4}$	•	3					
1400x1050	8 16 32	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{4}$	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{4}$				$\sqrt{2}$ $\sqrt{2}$ $\sqrt{4}$	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{4}$								
1600x1200	8 16 32	$\begin{array}{c} \sqrt{2} \\ \sqrt{2} \\ \sqrt{4} \end{array}$	$\sqrt{2}$ $\sqrt{2}$				$\begin{array}{c} \sqrt{2} \\ \sqrt{2} \\ \sqrt{4} \end{array}$	$\frac{\sqrt{2}}{\sqrt{2}}$								

Figure 10. Desktop Graphics Modes - LCD SXGA+ 1400x1050 Multiple Display

- √ = Supported with DDR200 or DDR266: Mode available and Overlay available
- $\sqrt{1}$ = DDR200: **Mode available**, overlay not available. DDR266: **Mode available**, **overlay available**.
- $\sqrt{2}$ = DDR200: **Mode available**, overlay not available. DDR266: **Mode available**, overlay not available.
- $\sqrt{3}$ = DDR200: Mode not available, overlay not available. DDR266: **Mode available, overlay available**.
- $\sqrt{4}$ = DDR200: Mode not available, overlay not available. DDR266: **Mode available**, overlay not available.
- $\sqrt{5}$ = Mode and Motion Compensation available with LCD in standalone configuration only

<u>Desktop Modes - LCD UXGA 1600x1200 Multiple Display</u>

Note: LCD at 32bpp is not supported with UXGA panels.

			L	CD 8bi	PP			L	CD 16B	BPP			LC	CD 32B	PP ⁵	
		CF	RT MA	XIMUM	REFRI	ESH	CF	RT MA	XIMUM	REFRE	ESH	CR	RT MA	XIMUM	REFRE	SH
CRT RESOLUTION	ВРР	09	75	85	100	120	09	75	85	100	120	09	75	85	100	120
640x480	8 16 32	$\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$	$\frac{\sqrt{1}}{\sqrt{1}}$	$\frac{\sqrt{1}}{\sqrt{1}}$	$\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$	$\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$	$\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$	$\frac{\sqrt{1}}{\sqrt{1}}$	$\frac{\sqrt{1}}{\sqrt{1}}$	$\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$	$\frac{\sqrt{1}}{\sqrt{1}}$	•				
800x600	8 16 32	$\begin{array}{c} \sqrt{1} \\ \sqrt{1} \\ \sqrt{1} \end{array}$	$\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$	$\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$	$\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$	√1 √1	$\begin{array}{c} \sqrt{1} \\ \sqrt{1} \\ \sqrt{1} \end{array}$	$\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$	$\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$	$\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$	√1 √1					
1024x768	8 16 32	$\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$	$\sqrt{1}$ $\sqrt{1}$ $\sqrt{2}$	$\sqrt{1}$ $\sqrt{1}$ $\sqrt{2}$	$\sqrt{1}$ $\sqrt{2}$		$\frac{\sqrt{1}}{\sqrt{1}}$	$\frac{\sqrt{1}}{\sqrt{1}}$	$\sqrt{1}$ $\sqrt{1}$ $\sqrt{2}$	$\sqrt{1}$ $\sqrt{2}$						
1152x864	8 16 32	$\begin{array}{c} \sqrt{1} \\ \sqrt{1} \\ \sqrt{2} \end{array}$	$\sqrt{1}$ $\sqrt{2}$ $\sqrt{4}$				$\sqrt{1}$ $\sqrt{1}$ $\sqrt{2}$	$\sqrt{\frac{1}{\sqrt{2}}}$,					
1280x1024	8 16 32	$\sqrt{1}$ $\sqrt{2}$ $\sqrt{4}$	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{4}$	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{4}$	3)	$\begin{array}{c} \sqrt{1} \\ \sqrt{2} \\ \sqrt{4} \end{array}$	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{4}$	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{4}$	•						
1600x1200	8 16 32	$\begin{array}{c} \sqrt{2} \\ \sqrt{2} \\ \sqrt{4} \end{array}$	√2 √4				$\sqrt{2}$ $\sqrt{2}$ $\sqrt{4}$	√2 √4								

Figure 11. Desktop Graphics Modes – LCD UXGA 1600x1200 Multiple Display

- √ = Supported with DDR200 or DDR266: Mode available and Overlay available
- $\sqrt{1}$ = DDR200: **Mode available**, overlay not available. DDR266: **Mode available**, **overlay available**.
- $\sqrt{2}$ = DDR200: **Mode available**, overlay not available. DDR266: **Mode available**, overlay not available.
- $\sqrt{3}$ = DDR200: Mode not available, overlay not available. DDR266: **Mode available, overlay available**.
- $\sqrt{4}$ = DDR200: Mode not available, overlay not available. DDR266: **Mode available**, overlay not available.
- $\sqrt{5}$ = Mode and Motion Compensation available with LCD in standalone configuration only

Graphics Modes That Allow LCD Centering and Expansion

When the LCD resolution is smaller than the panel's native resolution, software and hardware may activate centering or expansion depending on the display setting, using the high quality interpolated scaler.

	LC	CD NATIVE	RESOLUT	ION
RESOLUTION	LCD XGA 1024x768	LCD WXGA 1280x1024	LCD SXGA+ 1400x1050	LCD UXGA 1600x1200
640x480	CE	CE	CE	CE
800x600	CE	CE	CE	CE
1024x768		CE	CE	CE
1280x1024	0,	40	CE	CE
1400x1050				
1600x1200			0	

Figure 12. Graphics Modes That Allow LCD Centering and Expansion

C = Centered

CE = Centering and Expansion possible for LCD

VGA Graphics Modes

Legacy VGA modes may be supported by BIOS and DOS, but most are not enabled for drivers.

						CRT	Γ Refe	RESH	
RESOLUTION	Врр	COLORS	Memory	Море	09	70	75	85	100
40x25	С	16	text	0,1		√			
80x25	c	16	text	2,3		√			
320x200	2	4	2-bit planar	4,5	C	√			
640x200	1	2	1-bit planar	6		1			
80x25	bw	mono	text	7		√			
320x200	4	16	4-bit planar	0D		√			
640x200	4	16	4-bit planar	0E		√			
640x350	bw	mono	1-bit planar	0F		√			
640x350	4	16	4-bit planar	10		√			
640x480	1	2	2-bit planar	11	1				
640x480	4	16	4-bit planar	12	7				
320x200*	8	256	8-bit packed	13		√)			
800x600**	4	16	4-bit planar	102	√		1	√	1

Figure 13. VGA Graphics Modes

= Supported

= Legacy VGA Mode 13, 320x200x8 is used by DirectDraw = Legacy VESA Mode 102, 800x600x4 is used by Windows XP

= Black and White

= Color

Direct Draw Graphics Modes

Overlay is enabled for all the Direct Draw modes listed below.

			CRT REFRESH
RESOLUTION	ВРР	Море	85
200 000	8	13	1
320x200	16	10E	V
	32	10F	V
	8	131	√ C
320x240	16	133	
	32	134	V
	8	141	V
400x300	16	143	<u> </u>
	32	144	\supset \checkmark
	8	151	√
512x384	16	153	V
	32	154	V
	8	100	V
640x400	16	11D	\checkmark
	32	11E	V 1

Figure 14. Direct Draw Graphics Modes

 $\sqrt{}$ = Supported

Graphics Modes for TV Display

Modes supported on TV using an external TV encoder:

		VT1	621	VT1	622	CH7 CH7		SAA? SAA?	
RESOLUTION	ВРР	NTSC	PAL	NTSC	PAL	NTSC	PAL	NTSC	PAL
40x25_TEXT	c c	√	√	√	√	√	1	√ √	√
80x25_TEXT	c c bw	√ √	√ √	√ √	7	1	7	\ \ \	√ √ √
320x200	8	√	√	√	٧ ,	\mathcal{N}	√	√	V
640x480	4 8 16 32	\ \ \ \	√ √ √	777	7 7 7	777	7 7	\ \ \ \	√ √ √
800x600	8 16 32	√ √	7	7 7	√	7	7	1 1	√ √ √
1024x768	8 16 32			7	\ \ \ \	7	→ →	\ \ \	√

Figure 15. Graphics Modes for TV Display

√ = Supported

bw = Black and White

 \mathbf{c} = Color

Additional Graphics Modes for IA Devices

These modes will be available for use in IA devices, but are not supported for PC configurations.

			CI Refi	RT RESH
RESOLUTION	Врр	Mode	09	75
	8	171	1	1
720x480	16	173	√	√
	32	175	√	√
	8	17C	√	√
720x576	16	17E	√	1
	32	17F	1	1
	8	15C	4	
848x480	16	15D	. 1	V
	32	15F	~	√
	8	1A9	7	√
1024x512	16	1AA	√ √	√
	32	1AB	√ <	1

A D Figure 16. Additional Graphics Modes for IA Devices

Flat Panel Display RGB Mapping

Table 10. FPD RGB Mapping

i		
	18Bit	24Bit
<u>Pin</u>	<u>RGB</u>	<u>RGB</u>
FPD0		В0
FPD1		B1
FPD2	B2	B2
FPD3	В3	В3
FPD4	B4	B4
FPD5	B5	B5
FPD6	В6	В6
FPD7	B7	В7
FPD8		G0
FPD9		G1
FPD10	G2	G2
FPD11	G3	G3
FPD12	G4	G4
FPD13	G5	G5
FPD14	G6	G6
FPD15	G7	G7
FPD16		R0
FPD17		R1
FPD18	R2	R2
FPD19	R3	R3
FPD20	R4	R4
FPD21	R5	R5
FPD22	R6	R6
FPD23	R7	R7

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Table 11. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
$T_{\rm C}$	Case operating temperature	0	85	°C	1
T_S	Storage temperature	-55	125	°C	1
$V_{\rm IN}$	Input voltage	-0.5	$V_{RAIL} + 10\%$	Volts	1, 2
V _{OUT}	Output voltage	-0.5	$V_{RAIL} + 10\%$	Volts	1, 2

Note 1. Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

Note 2. V_{RAIL} is defined as the V_{CC} level of the respective rail. The CPU interface can be 3.3V or 2.5V. Memory can be 3.3V only. PCI can be 3.3V or 5.0V. Video can be 3.3V or 5.0V. Flat Panel can be 3.3V only. AGP can be 1.5V (4x transfer mode) or 3.3V (2x transfer mode).

DC Characteristics

DC Characteristics $T_C = 0-85$ °C, $V_{RAIL} = V_{CC} \pm 5\%$, $V_{CORE} = 2.5V \pm 5\%$, GND=0

Table 12. DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
$V_{\rm IL}$	Input Low Voltage	-0.50	0.8	V	
$ m V_{IH}$	Input High Voltage	2.0	V _{CC} +0.5	V	
V_{OL}	Output Low Voltage	-0	0.55	V	$I_{OL} = 4.0 \text{mA}$
V_{OH}	Output High Voltage	2.4	-	V	$I_{OH} = -1.0 \text{mA}$
I_{IL}	Input Leakage Current	- '	±10	uA	$0 < V_{\rm IN} < V_{\rm CC}$
I _{OZ}	Tristate Leakage Current	7	±20	uA	$0.55 < V_{OUT} < V_{CC}$

Power Characteristics

 $T_{C}=0\text{-}85^{\circ}\text{C},~V_{RAIL}=V_{CC}\pm5\%,~V_{CORE}=2.5\text{V}\pm5\%,~GND\text{=}0\text{V}$

Table 13. Power Characteristics – Internal and Interface Digital Logic

Symbol	Parameter	Тур	Max	Unit	Condition
I_{TT}	Power Supply Current – VTT			mA	Full-On Operation
I _{TTPOS}	Power Supply Current – VTT			mA	POS
I _{TTSTR}	Power Supply Current – VTT			mA	STR
I _{TTSOF}	Power Supply Current – VTT			mA	Soft-Off
I_{CCG}	Power Supply Current – VCCG			mA	Full-On Operation
I _{CCGPOS}	Power Supply Current – VCCG		4	mA	POS
I _{CCGSTR}	Power Supply Current – VCCG			mA	STR
I _{CCGSOF}	Power Supply Current – VCCG		9	mA	Soft-Off
I_{CCV}	Power Supply Current – VCCVL	26)	mA	Full-On Operation
I _{CCVPOS}	Power Supply Current – VCCVL	6		mA	POS
I _{CCVSTR}	Power Supply Current – VCCVL	10		mA	STR
I _{CCVSOF}	Power Supply Current – VCCVL	7		mA	Soft-Off
I_{CCM}	Power Supply Current – VCCM		. 7	mA	Full-On Operation
I_{CCMPOS}	Power Supply Current – VCCM		·	mA	POS
I_{CCMSTR}	Power Supply Current – VCCM			mA	STR
I_{CCMSOF}	Power Supply Current – VCCM			mA	Soft-Off
I_{CC25}	Power Supply Current – VCC25			mA	Full-On Operation
I _{CC25POS}	Power Supply Current – VCC25		9	mA	POS
I _{CC25STR}	Power Supply Current – VCC25			mA	STR
I _{CC25SOF}	Power Supply Current – VCC25	7		mA	Soft-Off
I_{SUS25}	Power Supply Current – VSUS25	7		mA	Full-On Operation
I _{SUS25POS}	Power Supply Current – VSUS25			mA	POS
I _{SUS25STR}	Power Supply Current – VSUS25			mA	STR
I _{SUS25SOF}	Power Supply Current – VSUS25			mA	Soft-Off
I_{CCDAC}	Power Supply Current – VCCDAC			mA	Max operating frequency
P_{D}	Power Dissipation			W	Max operating frequency

Table 14. Power Characteristics – Analog and Reference Voltages

Symbol	Parameter	Тур	Max	Unit	Condition
I_{CCGTL}	Power Supply Current – GTLVREF			mA	Max operating frequency
I _{CCMREF}	Power Supply Current – MEMVREF			mA	Max operating frequency
I _{CCVLREF}	Power Supply Current – VLVREF			mA	Max operating frequency
I_{CCHCK}	Power Supply Current – VCCHCK			mA	Max operating frequency
I _{CCMCK}	Power Supply Current – VCCMCK			mA	Max operating frequency
I _{CCMDLL}	Power Supply Current – VCCMDLL			mA	Max operating frequency
I_{CCRGB}	Power Supply Current – VCCRGB			mA	Max operating frequency
I _{CCPLL1}	Power Supply Current – VCCPLL1		1.4	mA	Max operating frequency
I _{CCPLL2}	Power Supply Current – VCCPLL2			mA	Max operating frequency
I _{CCALPLL}	Power Supply Current – VCCALPLL		Ċ,	mA	Max operating frequency
I _{CCALVDS}	Power Supply Current – VCCALVDS	. 0	7	mA	Max operating frequency

AC Timing Specifications

AC timing specifications provided are based on external zero-pf capacitance load. Min/max cases are based on the following table:

Table 15. AC Timing Min / Max Conditions

Parameter	Min	Max	Unit
5.0V Power	4.75	5.25	Volts
3.3V Power (I/O Pads, VCCQ for 2x transfer mode)	3.135	3.465	Volts
2.5V Power (Internal Logic)	2.375	2.625	Volts
1.5V Power (VCCQ for 4x transfer mode)	1.425	1.575	Volts
Case Temperature	0	85	°C

Drive strength for selected output pins is programmable. See Rx6D for details.

Table 16. AC Timing – CPU Interface

Signal	Setup	Hold	Min Delay	Max Delay	Unit
HD Bus				-	ns
HA Bus					ns
ADS#					ns
DBSY#					ns
DRDY#					ns
BNR#					ns
HIT#			C		ns
HITM#					ns
HLOCK#					ns
HREQ0#			à '		ns
HREQ1#		. 0	7		ns
HREQ2#					ns
HREQ3#					ns
HREQ4#	1		. 6	A	ns
BPRI#					ns
DEFER#				9	ns
HTRDY#					ns
RS[2:0]#					ns

Table 17. AC Timing – Memory Interface

	Rx67[6:5] MD Bus		Weak Drive		Strong			
Signal	Read Delay	Setup	Hold	Min Delay	Max Delay	Min Delay	Max Delay	Unit
MD Bus	00 (0.0 ns)							ns
MD Bus	01 (0.5 ns)		4	<u> </u>	_	_	_	ns
MD Bus	10 (1.0 ns)			· -	_	-	_	ns
MD Bus	11 (1.5 ns)		\ 	_	_	_	_	ns
MA Bus	_	_	_					ns
SRAS# Bus	_	_	_					ns
SCAS# Bus	_	_	_					ns
SWE# Bus	_	_	_					ns
CS# Bus	_	_	_					ns
DQM Bus	_	_	-					ns

MECHANICAL SPECIFICATIONS

Figure 17. Mechanical Specifications – 548-Pin 27x27mm Ball Grid Array Package with 1mm Ball Pitch