PROGRAMS FOR THE COSMAC ELF GRAPHICS

PRUL C. MOEWS

for noncommercial use only Oct. 20, 2010 PCM

PROGRAMS FOR THE COSMAC ELF GRAPHICS

Paul C. Moews

List of Sections

2. 3.	Introduction	4 4
••	List of Programs	
	List of Frograms	
1.	Display Routine (128 Byte)	5
	Display Routine (64 Byte)	
3.	Display Routine (32 Byte)	10
4.	Variable Resolution Display Routine (48 Bytes)	12
5.	Horse Race	15
6.	Pattern Generator	16
7.	Stop Watch	19
	Twelve Hour Clock	

Copyright © 1978 by Paul C. Moews
All rights reserved
Published September 1978 by Paul C. Moews

Printed by Parousia Press, Storrs, Connecticut

Introduction

The programs in this booklet were written for the basic COSMAC 1802 "Elf" with Pixie graphics as described in the July, 1977 issue of *Popular Electronics*. All programs can be easily modified to work in expanded memory systems by initializing a few registers with high order memory addresses (see Registers and Expanded Memory). The programs are documented to aid understanding, but knowledge of the 1802 instruction set is presumed, and assembly language mnemonics are not provided because of space limitations.

The first four programs introduce new graphic interrupt routines which use 128 bytes or less for display purposes. This is necessary because the basic "Elf" has only 256 bytes of memory and some has to be reserved for programming. While these routines either produce a display with fewer spots or a reduced area with the same resolution as that given in the Pixie examples, they avoid showing active code. A discussion of graphic interrupt routines is provided as an aid to understanding these new routines (see Graphic Interrupt Routines).

As the basic "Elf" has so little memory a programming "trick" is used in programs 5, 7 and 8. This trick allows one to have an instruction that is varied each time a set of code is obeyed by changing the instruction after each pass through the code. See the section entitled "Variable Code" for a discussion of the method used.

Registers and Expanded Memory

The 1802 requires that register O be used for the direct memory access (DMA) address, and register 1 for the interrupt address. Register 2 is used as an X register in all the programs and in some programs additional X registers are employed. Register 3 is used as the main program counter in all programs and subroutines are called by the "SEP register technique" (see RCA's User Manual for the 1802 Cosmac Microprocessor, pp. 54-58). All programs make the high order DMA address the same as the high order interrupt address. Basic "Elf" owners may run the programs just as they are written. In order to work in an expanded memory system R(1), R(2), and R(3) together with any other memory addressing registers must have their high order bytes preset. For example if the first program was to be run in page 4 (block 4) of an expanded system it would be loaded just as written but to page 4 instead of page 0. The following "patch" would be inserted on page 0:

Add.	Code	Notes
00 00	F8 04	load page number to D
02	B1 B2 B3	initialize high order bytes
05	B4 B5	of registers used by program 1
07	C0 04 00	transfer control to page 4 to run program

This patch when executed would initialize the necessary high order bytes and enter the program on page 4. Each program includes a list of registers which must be set to work in expanded systems.

Graphic Interrupt Routines

In the "Elf" the generation of the interrupt and direct memory access (DMA) signals are all done under the control of the 1861 chip and its operation must be understood when writing or modifying interrupt routines. When enabled by an I/O signal from the microprocessor the 1861 chip generates interrupt requests at intervals of 1/61 seconds (3.579545/2 MHz clock). Twentynine machine cycles after each interrupt the first direct memory access (DMA) request occurs. Therefore when the 1861 generates an interrupt request we must use exactly 29 machine cycles to do the housekeeping required to get ready for the direct memory access requests. Things that must be done include saving the current designations of the X and P registers and saving the contents of the D register so that we can return from the interrupt routine. We can also use these instructions to set register 0 to the address where we wish the DMA to start. If we put a counter in these preliminary instructions it will be incremented 61 times a second and can serve as a convenient timer or clock.

After these 29 preliminary machine cycles we get the first "burst" of eight DMA's. Memory bytes with the addresses designated by the contents of register 0.R(0) incremented once, R(0) incremented twice, . . . to R(0) incremented seven times, are mapped to the top line of the TV screen; R(0) is left pointing + 8 memory locations from where it started (i.e. R(0) has been incremented 8 times). We are now given 6 machine cycles, which can be used as we wish, these are normally used to reset register 0. After 6 machine cycles another burst of 8 DMA's occur, followed by 6 machine cycles, and so on until a total of 128 DMA bursts have filled the TV screen. During the last four DMA bursts the EF1 flag is held low as an aid to returning from the interrupt routine.

In the one page interrupt used by the Pixie graphics the starting address of register 0 is held constant for 4 DMA bursts giving a display in which each bit represents a square and we have the display divided into a field of 64 x 32 squares.

If we were to hold the starting address of register 0 constant for 8 DMA bursts one set bit would form a rectangle twice as high as it is wide, and we would form an array of such rectangles 64 across by 16 down. An interrupt routine which does just this is given in program 1. If we chose to set 2 adjacent bits at a time we would then have an array of squares 32 across and 16 down.

In the same manner holding the starting address of register 0 constant for 16 DMA bursts would form rectangles 4 times as high as they are wide and if we set 4 bits at a time we would produce an array of squares 16 across and 8 down. Program 2 contains such an interrupt routine. Holding register 0 constant for 32 DMA bursts and setting one word at a time would give an array of squares 8 across and 4 down as in Program 3. Note that each doubling of the number of DMA bursts halves the number of store locations required for display; 256 locations for 4 DMA bursts, 128 for 8 DMA bursts, 64 for 16 DMA bursts, and 32 for 32 DMA bursts.

It isn't necessary to keep the number of DMA bursts constant at each starting address. There is nothing to prevent changing the resolutions across

the TV screen if we so desire and we can save display locations in this way. Program 4 introduces such an interrupt routine, the top part of the screen is blanked by doing 108 DMA bursts on the same 8 locations, while the last 20 DMA bursts are used to produce an array of 64 x 5 squares with the resolution of a single page interrupt routine.

Variable Code

A simple way to set up code which can be varied is to save an instruction in a register and then modify the instruction by changing the contents of the register. The register contents must, of course, be transferred to memory before the instruction can be executed. The following example is taken from program 8 where it is used to load the low order part of seven registers with seven consecutive switch bytes.

Add.	Code	Notes
0В	F8 1A A4	load address of variable code to R(4)
0E	F8 AF A5	AF is the instruction to be executed in location 1A, 1st time it will be AF, 2nd time AE, then AD, etc. and finally A9
11	85 44	get the instruction and store it in location 1A
13	3F 13 37 15	wait for in on, off
17	6C 64 22	read and display switch byte
1 A	XX	the variable instruction, first AF, etc.
1B	85 FB A9	check, are we done?
1E	32 23	yes-go on
20	25 30 11	no-change instruction and go back through code

A similar method is used to increment one of 4 registers in program 5 as follows:

Add.	Code	Notes
48	8E	R(E) contains the instruction to be executed, in program 5 it is one of 1A, 1B, 1C or 1D. The instruction is here loaded to the D register.
49	53	R(3) is the program counter and a 53 instruction writes 1A, 1C, or 1D to the next location (4A)

4A XX

This location becomes 1A, 1B, 1C, or 1D depending upon the contents of R(E).0 and is executed.

Variable code has the drawback that it cannot be used in read only memory. However random access memory is available in the Elf and variable code can be used to get more work out of the limited memory available. Care must be taken to maintain control over the locations changed and the instructions allowed when using this method.

Program 1-Display Routine (128 Byte)

This program introduces an interrupt routine which displays 128 memory locations on the screen. Each bit is displayed as a rectangle twice as tall as it is wide; in order to get a square, two adjacent bits must be set. Such an interrupt routine could be written by simply extending RCA's single page interrupt, however a method is used in which a counter is incremented between DMA bursts. This method is more versatile and the number of similar DMA bursts can be made equal to 5 + 3N where N is any integer, in this case n = 1 to give 8 identical sets of DMA bursts. Program 3 employs a similar routine with N = 9to produce 32 identical DMA bursts. Note that the routine must not go across a page boundary and that the locations displayed are actually 7F through FE. The memory locations are, however, addressed individually as 00 through 7F in hexadecimal.

The program has three modes depending on what is set in the switches on turning to run. If 01 is set, memory is examined, enter the address desired, (remember 00 to 7F) push the in button and the contents of that location will be displayed; successive pushes of the in button step through memory. If 02 is set memory locations are changed, enter the address desired, push the in button, then enter the new contents and push in again, successive pushes of the in button change successive memory locations. If CC is set the display area is cleared and the program automatically enters the input mode.

A picture which illustrates the use of this interrupt routine is listed at the end of the program. Each line of the listing contains 64 bits (8 words) and forms one of the lines of the TV display, there are 16 lines in all. If this picture is entered by means of the program it will be seen to form as memory is filled.

Registers 1, 2, 3, 4 and 5 must be set if this pro-

gram i		an expanded memory system.			FF we've run over displayed locations
		e of Registers	3 A	3A 3E	go to 3E if address OK
D (0)	High	Low	3C	85 A4	else reset to 7F
R(0)		DMA address	3E	04	load memory contents
R(1)		interrupt address	3F	31 47	go to 47 if Q on—we have to
R(2)		X register			change memory
R(3)		program counter	41	52 64 22	else display memory
R(4)		memory pointer	44	14	increment R(4)
R(5)		memory pointer	45	30 33	go to wait for in on, off
R(C)	counter for interrupt routine		47	6C 64 22	here if memory to be changed read and display switch byte
D(E)	work in	work in intorment	4A	54 30 44	store it and go to 44
R(F)	work in interrupt	work in interrupt	4D	72 70	return from interrupt
	-	***	4F	C4	entry to interrupt
		ogram Listing	50	22 78 22 52	save X, P and D
Add.	Code	Notes	54	9C AF	load counter for DMA bursts
00	F8 4F A1	interrupt address			to R(F).0
03	F8 7E A2	stack address	56	F8 7F BF	load starting address of dis-
06	F8 09 A3	program counter			played locations to R(F).1
09	D3 E2 69	program counter 3, TV on	59	91 BO	load high order DMA address
OC	F8 02 BC	counter for DMA cycles, see interrupt routine	5 B	E2 9F AO	load low order DMA address
OF	F8 7F A5	starting address of displayed			DMA 1 occurs here (1st burst only)
4.0	(0 (4 00	locations	5E	E2 9F AO	restore DMA address
12	6C 64 22	read and display switch byte			DMA 2, 5 here
15	FD CC	is it CC?	61	2F AO 8F	decrement counter, restore
17	3A 24	go to 24 unless switch byte is CC			DMA address, load counter
19	85 A4	otherwise clear store locations			DMA 3, 6 here
1B	F8 00 54	and turn on Q line when	64	32 6A 9F AC	to 6A if counted out, else restore DMA address
1E	14 84	through			DMA 4
20	3A 1B			30 5F	
22	24 7B		68	9F AO	and go back to 5F
24		wait for in on, off	6 A	9F AU	here if counted out, restore DMA address
28	FO	bring back original switch byte			DMA 7
29	F6 33 2D	skip next instruction if switch	6C	AO 9C 34 4E	Prestore DMA address, and re-
20	7D	byte odd	00	110 / 00	load counter, leave routine
2C	7B	turn Q on (memory to be changed)			if done
2D	6C	read switch byte			DMA 8 (except last one)
2E	FA 7F	and it against 7F (prevents	70	AF 80 BF	restore counter and set new
		illegal addresses)			DMA address new DMA 1
30	FC 7F	add starting address of dis- played locations	73	30 5F	back to 5F for DMA 2, etc.
32	A4	load to $R(4).0$ -memory	74-7B		unused
		pointer	7C-7E		stack
33		wait for in on, off	7F-FE		displayed locations
37	84 FF FF	check R(4).0 if contents are			

	Picture							
Add.	Cod	le						
00	98	00	00	60	00	60	00	00
08	88	00	00	20	00	10	01	80
10	F8	00	07	27	F8	18	01	80
18	00	00	1F	FE	DF	98	06	01
20	F8	00	07	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FO	18	06
28	80	00	00	74	$\mathbf{F}\mathbf{F}$	F7	F9	98
30	F8	00	1F	80	3F	9F	FF	EO
38	00	00	F5	FF	CO	7E	1E	60
40	F8	00	1F	80	3F	9F	$\mathbf{F}\mathbf{F}$	EO
48	A 8	00	00	7 F	$\mathbf{F}\mathbf{F}$	F 7	F9	98
50	F8	00	07	FF	$\mathbf{F}\mathbf{F}$	FO	18	06
58	A 8	00	1F	FE	DF	98	06	01
60	00	00	07	27	F8	18	01	80
68	88	00	00	20	00	10	01	80
70	88	00	00	60	00	60	00	00
78	F8	00	00	00	00	00	00	00

D'

Program 2 – Display Routine (64 Byte)

This program contains an interrupt routine which displays 64 memory locations on the screen. Each location is displayed as two adjacent squares. the screen is divided into 128 squares (16 wide by 8 high). Two sets of 64 locations are displayed so there are two displays which appear alternately, each for about 0.5 seconds.

The interrupt routine employs a counter similar to that used in program 1 except that the number of identical DMA bursts is 7 + 3N, where N is any integer. N is set to 3 to give 16 identical DMA cycles. Again the routine must not go across a page boundary and the locations displayed are actually 7F through FE. However in this program the individual squares are the things that are addressed and they are numbered 00 through FF as shown in the diagram. Set one is numbered 00 to 7F and set 2, 80 to FF, again in hexidecimal.

The program has only two modes of operation. If CC is set in the switch register when run is turned on the displayed locations are erased, otherwise they are unaltered. Once the program is running the numbers entered are square identifiers. Enter a square identifier and push in, that square will be changed to its opposite value, that is if it is off it will be turned on, if on it will be turned off. As a trial clear the display area and enter the 74 square identifiers listed after the program.

Registers 1, 2, 3, 4 and 5 must be set if this program is to be run in an expanded memory system.

	111811	
R(0)		DMA address
R(1)		interrupt address
R(2)		X register, stack
R(3)		program counter
R(4)		memory pointer
R(5)		memory pointer
R(9)		counter for timer in interrupt
14(2)		routine
R(C)	counter for	
(-)	interrupt	
	routine	
R(F)	work in	work in interrupt
	interrupt	
	Pro	ogram Listing
Add.	Code	Notes
00	F8 54 A1	interrupt address
03	F8 7E A2	stack address
05	F8 09 A3	program counter
09	D3 E2	establish program counter
09	D3 E2	and X register
OB	F8 04 BC	Counter for DMA bursts, see interrupt routine
OE	F8 7F A5	starting address of displayed
		memory locations
11	6C 64 22	read and display switch byte
14	FD CC	is the switch byte CC?
16	3A 22	unless it is go to 22
18	85 A4	if it is CC clear memory
1 A	F8 00 54	locations
1D	14 84	
1 F	3A 1A 24	
22	69	turn on TV
23	3F 3E	wait for in on (part of waiting
		loop)
25	37 25	wait for in off if pushed
27	6C 64 22	read and display switch byte
2 A	F6 FC 7F	shift (i.e. divide by 2) and
		add 7F the starting address of
20		displayed memory
2D	A4	save result in R(4).0
2E	F0 F6	bring back switch byte, shift
30	3B 38	to 38 if switch byte was even, else go on
32	04 FB OF 54	here if switch byte odd, x'or
		memory against OF and re-
		place

Use of Registers

High

Low

36	30 23	return to waiting loop					וח	MΔ	2 5	Q 1	1 and	14 here	
38		here if switch byte even, x'or	69		32 6F	OF A						out, els	
50	01111031	memory against FO and re-	0)		<i>32</i> 01	71 11				MA ad		Jut, C13	
		place					Di	MA:	3.6	. 9 an	d 12 h	iere	
3C	30 23	return to waiting loop	6D		30 64	ļ				ck to			
3E	89 FD 40	waiting loop, examine timer	6F		9F A	0	he	re i	f co	ounte	d out	, restor	e
41	33 23	continue wait unless time up						MA :				,	
43	F8 00 A9	here if time up, reset timer					D	ΜA	15				
46	85	get starting address of currently displayed locations	71		AO 9	C 34 5	lo	ad (cou			, and re routin	
47	FB BF	is it set 2?						don	-			_	
49	32 4D	go to set 1 if set 2 is now								_	t last	-	
		being displayed	75		AF 8	0 BF					and	set nev	V
4B	FF 80	else set to display set 2						MA a w D					
4D	FC 7F A5	store correct starting address	 78		30 67	,		–		-		DMA 2	,
50	30 23	back to waiting loop	70		30 0 /		et		10 0) / 101	new	DMA 2	٠,
52	72 70	return from interrupt	7A-	7B				use	d				
54	C4	entry to interrupt	7C-1	-				ack	•				
55		save X, P and D	7F-I						ved	locati	ons		
59	9C AF	load counter for DMA bursts to R(F).0	,					ictu		100411	0115		
5 B	85 BF	load starting address of dis-	(Not	e tha	t byte:	s giv	en a	re so	quare	identi	fiers.)	
		played locations to R(F).1	00	03	04	08 0	9 (OD (OE	10			
5 D	91 BO	load high order DMA address	12	15	17	1A 1	.C 1	F :	20	22			
5 F	9F AO 19	load low order DMA address,	25	27	2 A	2F 3	30 3	33	34	37			
		increment timer	3 A	3D	3E	40 4	12 4	15	47	4A			
		DMA 1 occurs here (1st burst only)	4C	50	52	55 5	7 5	5 A	5C	60			
62	30 67 9F AO	skip to 67, reenters at 64 for	63	64	68	69 6	$6C \epsilon$	6D (6E	6F			
02	3007 71 AO	2nd and subsequent bursts	80	81	82	83 8	34 8	36	8 B	8C			
		DMA 4, 7, 10 and 13 here	8 D	8E	8 F	90 9	6 9	PΒ.	ΑO	A6			
66	2F AO 8F	decrement counter, restore	$\mathbf{A}\mathbf{B}$	B 0	B1	B2 E	33 I	36	BB	BC			
		DMA address, load counter	BD	BE	CO	C6 C	CB I	00	D6	DB			
			E0	E1	E2	E3 E	E4 I	E6]	E7	E8			
			E9	EB									

Diagram - Program 2

Set No. 1

00	01	02	03	04	05	06	07	80	09	0A	0B	0C	0D	0E	0F
10	11	12	13	14	15	16	17	18	19	1 A	1B	1C	1D	1E	1F
20	21	22	23	24	25	26	27	28	29	2 A	2B	2C	2D	2E	2F
30	31	32	33	34	35	36	37	38	39	3 A	3B	3C	3D	3E	3F
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
50	51	52	53	54	55	56	57	58	59	5 A	5 B	5C	5D	5E	5F
60	61	62	63	64	65	66	67	68	69	6 A	6B	6C	6D	6E	6F
70	71	72	73	74	75	76	77	78	79	7 A	7B	7C	7D	7E	7F
							_								
80	81	82	83	84	85	86	87	88	89	8 A	8 B	8C	8D	8E	8F
80 90	81 91	82 92	83 93	84 94	85 95	86 96	87 97	88 98	89 99	8 A 9 A	8 B 9 B	8C 9C	8D 9D	8E 9E	8F 9F
90	91	92	93	94	95	96	97	98	99	9 A	9 B	9C	9D	9E	9F
90 A 0	91 A1	92 A2	93 A3	94 A 4	95 A 5	96 A 6	97 A 7	98 A 8	99 A 9	9A AA	9B AB	9C AC	9D AD	9E AE	9F AF
90 A0 B0	91 A1 B1	92 A2 B2	93 A3 B3	94 A4 B4	95 A5 B5	96 A6 B6	97 A7 B7	98 A8 B8	99 A 9 B 9	9A AA BA	9B AB BB	9C AC BC	9D AD BD	9E AE BE	9F AF BF
90 A0 B0 C0	91 A1 B1 C1	92 A2 B2 C2	93 A3 B3 C3	94 A4 B4 C4	95 A5 B5 C5	96 A6 B6 C6	97 A7 B7 C7	98 A8 B8 C8	99 A9 B9 C9	9A AA BA CA	9B AB BB CB	9C AC BC CC	9D AD BD CD	9E AE BE CE	9F AF BF CF

Set No. 2

The points in the above diagram represent squares arranged in arrays 16 wide by 8 high. An easy way to create and encode pictures is to use graph paper.

Program 3 – Display Routine (32 Byte)

The third interrupt routine displays 32 store locations on the screen. Each location is displayed as a single square and the screen is divided into 32 squares (8 wide by 4 high). Four sets of 32 locations are displayed so there are four displays which appear one after the other for about 0.5 seconds each.

This program uses an interrupt routine like that of program 1 except that 32 identical DMA bursts are produced. Again the routine must not go across a page boundary and the locations displayed are actually 7F through FE. The individual squares are the things that are addressed and they are numbered 00 through 7F as shown in the diagram.

The program has the same modes of operation as program 2. If CC is set in the switch register when run is turned on the displayed locations are erased, otherwise they are unaltered. Once the program is running the numbers entered are square identifiers. Enter a square identifier and push in, that square will be changed to its opposite value, that is if it is off it will be turned on, if on it will be turned off. As a trial the program should be entered so as to clear the display and the 78 square identifiers given at the end of the program entered.

Registers 1, 2, 3, 4 and 5 must be set if this program is to be run in an expanded memory system.

	Us	e of Registers	39	33 23	continue wait unless time up
	High	Low	3B	F8 00 A9	here if time up, reset timer
R(O)	****	DMA address	3E	85	get starting address of currently displayed locations
R(1) R(2)		interrupt address X register, stack	3F 41	FB DF 32 48	are we on the last set? if we are go to 48 to start over
R(3) R(4)		program counter memory pointer	43	85 FC 20	if not add 20 to starting address of displayed bytes
R(5)		memory pointer counter for timer in interrupt	46	30 4A	and return to in loop
R(9)		routine	48	F8 7F	here if starting over
R(C)	counter for	Touthie	4A	A5 30 23	restore R(5) and back to waiting loop
	interrupt routine		4D	72 70	return from interrupt
R(F)	work in	work in interrupt	4F	C4	entry to interrupt
14(1)	interrupt		50	22 78 22 52	save X, P and D
	Pr	ogram Listing	54	9C AF	load counter for DMA bursts to R(F).0
Add.	Code	Notes	56	19	increment timer
00	F8 4F A1	interrupt address	57	85 BF	load starting address of dis-
03	F8 7E A2	stack address			played locations
06	F8 09 A3	program counter	59	91 BO	load high order DMA address
09	D3 E2	establish program counter	5 B	9F AO	load low order DMA address
		and X register			DMA 1 here (1st burst only)

ОВ	F8 OA BC	counter for DMA bursts, see interrupt routine
OE	F8 7F A5	starting address of displayed memory locations
11	6C 64 22	read and display switch byte
14	FD CC	is it CC
16	3A 22	no-go to 22
18	85 A4	if switch byte is CC clear dis-
1 A	F8 00 54	play locations
1D	14 84	
1F	3A 1A 24	
22	69	turn on TV
23	3F 36	wait for in on (part of waiting loop)
25	37 25	wait for in off if pushed
27	6C FA 7F	read switch byte, and against 7F to get legal square identifier
2 A	52 64 22	display square to be changed
2D	FC 7F A4	add starting address of locations
30	04 FB FF 54	pick up location, x'or against FF, put it back
34	30 23	return to waiting loop
36	89 FD 20	waiting loop, examine timer
39	33 23	continue wait unless time up
3B	F8 00 A9	here if time up, reset timer
3E	85	get starting address of currently displayed locations
3F	FB DF	are we on the last set?
41	32 48	if we are go to 48 to start over
43	85 FC 20	if not add 20 to starting address of displayed bytes
46	30 4A	and return to in loop
48	F8 7F	here if starting over
4A	A5 30 23	restore R(5) and back to waiting loop
4D	72 70	return from interrupt

5D	E2 9F AO	restore DMA address	6F	1	4F 8	0 BF				ounter and set new	
		DMA 2, 5, 8, 11, 14, 17, 20,						DMA			
		23, 26 and 29 here						new l	DMA	. 1 here	
60	2F AO 8F	decrement counter, restore	72	3	30 5 E	Ξ		back	to 5	E for DMA 2, etc.	
		DMA address, load counter	74-7	7 B				unuse	ed		
		DMA 3, 6, 9, 12, 15, 18, 21,	7C-	7E				stack			
		24, 27 and 30 here	7F-	FΕ				displayed locations			
63	32 69 9F AO	to 69 if counted out, else restore DMA address						Pict	ure		
		DMA 4, 7, 10, 13, 16, 19, 22,	(Note	e tha	t byt	es g	iven :	are s	quare identifiers.)	
		25 and 28 here	01	02	03	04	05	80	09	OB	
67	30 5E	and go back to 5E	OD	OE	11	12	14	15	19	1A	
69	9F AO	here if counted out, restore	1 B	1C	1 D	21	22	23	24	25	
		DMA address	28	29	2 A	2 B	2D	2E	31	32	
		DMA 31 here	34	35	39	3A	3B	3C	3D	41	
6B	AO 9C 34 4D	restore DMA address, and re-	42	43	44	45	48	49	4B	4D	
		load counter, leave routine	4E	51	52	54	55	59	5 A	5B	
		if done	5C	5D	61	62	63	64	65	68	
		DMA 32 here	69	6 B	6C	6D	6E	71	72	74	
			75	79	7 A	7B	7C	7D			

Diagram - Program 3

			Set	t No. 1			
00	01	02	03	04	05	06	07
08	09	0A	0B	0C	0D	0E	0F
10	11	12	13	14	15	16	17
18	19	1 A	1B	1C	1D	1E	1F
40	41	42	43	44	45	46	47
48	49	4A	4B	4C	4D	4E	4F
50	51	52	53	54	55	56	57
58	59	5 A	5B	5C	5D	5E	5F

Set No. 3 Set No. 4

The points in the above diagram represent squares arranged in arrays 8 wide by 4 high. An easy way to create and encode pictures is to use graph paper.

Program 4 — Variable Resolution Display Routine (48 Bytes)

Program 4 introduces a more complex interrupt routine. This interrupt routine displays 48 memory locations with a variable number of DMA bursts. The first 8 locations are used in producing 108 identical DMA bursts which fill most of the television screen. The last 40 store locations are used in 5 groups of 8, each group of which is used to produce 4 DMA bursts. In these last 40 locations, therefore, each bit produces a square of the same size that it would produce if a one page interrupt routine were used. That is the last 40 locations produces a display 64 squares wide and 5 squares high. The first 8 locations produce 64 bars 27 times as high as they are wide. If the first 8 locations are set to 00 the top 27/32 of the screen will be blank while the bottom 5/32 becomes the display area.

The program that uses this interrupt routine produces a "tickertape" display. The material to be displayed is coded in 11 sets of 5 bytes as shown in the diagram. After loading the program switch to run and enter bytes 5 at a time through the switches. When 5 bytes have been entered they are shifted into the tickertape display area and when all 11 sets have been entered the display area moves continuously.

Registers 1, 2, 3, 4, 5, and 6 must be set if this program is to be run in an expanded memory system.

Use	10	Registers
-----	----	-----------

		Ose of Registers
	High	Low
R(0)		DMA address
R(1)		interrupt address
R(2)		X register, stack
R(3)		program counter
R(4)		points to locations where data to be moved to display area is stored
R(5)		memory pointer to display area
R(6)		holds address of display sub- routine
R(7)		counter, 8 bits/word
R(8)		counter, 5 words vertically
R(9)		counter for timer in interrupt routine
R(A)		counter, 8 words/line
R(B)		another 5 counter

R(F) work in work in interrupt interrupt (stores counter)

Add.

Code

Program Listing

Notes

00	F8 A5 A1	interrupt address
03	F8 3A A2	X register, stack
06	F8 3C A6	address of subroutine that shifts 5 by tes into display area
09	F8 A3 A4	A3 is one more than address to write first data point to
OC	F8 OF A3	program counter
OF	D3 E2	establish program counter and X register
11	69	turn on TV
12	7B	Q light on
13	F8 05 AB	set counter to read 5 bytes
16	24	decrement R(4)-points to place to store byte
17	3F 17 37 19	wait for in on, off
1 B	6C 64 22	read and display byte
1E	54	store it in M(R(4))
1F	2B 8B	decrement 5 counter and load it
21	3A 16	if not counted out back to 16 for another
23	7A D6	else turn Q off and call routine to shift these 5 bytes to display
25	84 FB 6C	load R(4).0 if it equals 6C all data has been entered
28	3A 12	else go back for 5 more bytes
2 A	F8 9E A4	here if all data loaded, restore R(4) address for display
2D	D6	this section of code repeatedly
2E	84 FF 05	calls display subroutine to
31	A4	shift the message into the dis-
32	FB 67 3A 2D 30 2A	play area
36		oto als
38	XX XX XX	stack
3B	D3	return from subroutine, this subroutine shifts the bytes in M(R(4)), M(R(4) + 1), M(R(4) + 2) M(R(4) + 3) and M(R(4) + 4) into the display area - R(4) and the memory locations are restored on return
3C	F8 08 A7	entry to routine, establish

counter 8 bits/word

3F		display location where entry starts at	B1 B3	91 BO 9F AO	load high order DMA address load low order DMA address
42	F8 05 A8	5 words to shift in-another			DMA 1 here (only once)
		counter	B5	E2 9F AO	restore DMA address
45		routine to give a brief delay			DMA 2, 5, 8, 11, 14, 104,
48	89 FB 06				and 107
4B	3A 48	counter-8 words/line of dis-	B 8	2F AO 8F	decrement counter, restore
4D	F8 08 AA	play			DMA address, load counter
50	04 FE	load D, shift left to fill DF			DMA 3, 6, 9, 12, 15, 105, and 108
52	04 7E 54	load, circular shift left and	D.D.	22 CL 0E AO	to C1 if counted out, else
32	04 /L 34	restore	BB	32 C1 9F AO	restore DMA address
55	05 7E 55	load, circular shift left and			DMA 4, 7, 10, 13, 16, and
		restore			106
58	25 2A	repeat 8 times till bit shifted	BF	30 B6	and go back to B6
5 A	8A 3A 55	in to line	C1	80 E2	here if counted out, new
5 D	28 88 14	repeat till a bit is shifted into			DMA address and change to 4
60	3A 4D	all five lines			bursts with same DMA address
62	84 FF 05 A4	- ` `			new DMA 1 here
66	27 87	check if all bits shifted in	C3	E2 20 AO	restore DMA address
68	32 3B	if so return			DMA 2 here
6 A	30 3F	else go and shift another set	C6	E2 20 AO	restore DMA address
		in, this is end of subroutine			DMA 3 here
6C-A2		portion of memory used to store data for display	C9	E2 20 AO	restore DMA address
	70.70	return from interrupt			DMA 4 here
A3	72 70		CC	3C C1 30 A3	back for another line or exit
A5	C4	entry to interrupt			if done
A6		save X, P and D	DO-F	F	the displayed locations, DO-
AA	F8 24 AF	counter for 108 DMA bursts			D7 are the locations displayed
AD	19	increment R(9), timer			with 108 identical DMA bursts and should be cleared
ΑE	F8 DO BF	load starting address for DMA			to blank upper part of display

Diagram - Program 4

The above message was written and encoded on a piece of graph paper 88 squares wide and 5 squares high. Your own messages can be done in a similar way.

Program 5 - Horse Race

Four horses, represented by bars, race across the screen. The first to reach the finish line blinks to indicate the winner. The idea is to bet on the outcome.

This program uses the interrupt routine which displays 64 store locations divided into 128 squares (see program 2). The squares are addressed individually in hex (00 through 7F) as they are in set 1 of program 2. Horse 1 lights squares 10 through 1F, horse 2 lights 30 through 3F, horse 3 lights 50 - 5F, and horse 4 lights squares 70 - 7F. The current position of each horse is held in registers A through D and each horse's position is incremented randomly to produce a fair race. To run the program simply switch to run; the horses appear at the starting gate and then race across the screen.

Registers 1, 2, 3, 4, 5, 6, and 7 must be set if this program is to be run in an expanded memory system.

T T	•	-	• .	
1 00	^t	RР	gisters	

		I
	High	Low
R(0)		DMA address
R(1)		interrupt address
R(2)		stack
R(3)		program counter
R(4)		memory pointer and work
R(5)		address of delay subroutine
R(6)		address of display subroutine
R(7)		points to table of winning positions
R(8)	used to generate random number	used to generate random number
R (9)		counter for timer in interrupt routine
R(A)	work in dis- play routine	position of horse 1
R(B)		position of horse 2
R(C)	holds coun- ter for inter- rupt routine	position of horse 3
R(D)		position of horse 4
R(E)		used to hold variable instruc- tion
R(F)	work in interrupt	work in interrupt

Program Listing

	11.	ogram Disting
Add.	Code	Notes
00	F8 93 A1	interrupt address
03	F8 BE A2	stack address
06	F8 09 A3	assign program counter
09	D3	program counter now R(3)
OA	F8 6C A5	address of delay subroutine
OD	F8 77 A6	address of display subroutine
10	F8 04 BC	counter for interrupt routine
13	F8 BF A4	clear the display locations
16	F8 00 54	
19	14 84	
1B	3A 16 24	- (a) 1 - T
1E	E2 69	R(2) is X, turn on TV
20		6 set horses at the starting gate
24 28	F8 50 AC D6	and call the display routine to
2C	F8 70 AD D	
30	D5	call delay routine
31	F8 62 A7	point R(7) is address of 1st
• •	- 0 02	entry of table of winning
		positions
34	F8 1A AE	load R(E).0 with instruction
		1A
37	88 F6 A4	this code together with in-
3A	E4 98 A4	structions 8C through 90 gen-
3D 40	B8 F6 A4 98 F4	erates a random byte in D
42	E7	maka B(7) tha V ragistar
43	FA 01	make R(7) the X register is random no. odd or even?
45 45	32 59	if even go to 59 do not incre-
43	32 39	ment horses position, if odd
		go on
47	D5	call delay routine
48	8E 53 XX	location 4A becomes 1A, 1B,
		1C, or 1D and increments a
		horses position
4B	8E FC 70	change instruction to 8A, 8B,
		8C, or 8D
4E	53 XX	location 4F becomes 8A, 8B,
		8C, or 8D and loads a horses position
50	F3	check to see if horse has won
30	13	by x'or against table of win-
		ning positions
51	32 66	if it has won go to 66 and blink
53	8E FC 70	else load horses position to D
56	53 XX D6	and call display routine
59	8E FB 1D	is instruction 1D?

5C	32 31	yes-go to 31 to start over	
5E	1E 17 30 37	no-increment R(E) and R(7)	
		and go back to generate	
		another random number	
62	1F 3F 5F 7F	table of winning positions	
66	07 D6 D5	comes here when horse has	
69	30 66	won and blinks by calling de-	
		lay and display	
6B	D3	return from delay subroutine,	
6C	F8 00 A9	R(9) is incremented in the	
6F	89 FB 08	interrupt routine	
72	3A 6F		
74	30 6B		
76	D3	return from display routine,	
		this display routine works like program 2, the square	
		like program 2, the square identifier is passed to the sub-	
		routine in D	
77	BA F6	enter subroutine, save D in	
• •	27110	R(A).1 and shift right	
79	FC BF A4	add starting address of dis-	
		played locations, save in R(4)	
7C	9A F6	bring back passed byte, shift	
7E	3B 86	to 86 if passed byte even	
80		byte odd, load x'or against	
00	0.112.01.5.	OF and restore	
84	30 76	return from subroutine	
86		byte even, load, x'or against	
00	01111031	FO and restore	
8 A	30 76	return from subroutine, end	
0.1		of subroutine	
8C	18 98	part of interrupt routine, here	
8E	FF 01 B8	just before returning, add 1	
		to R(8).0 and subtract 1 from	
		R(8).1 as part of random	
		number generator	
91	72 70	return from interrupt	
93	C4	entry to interrupt-this inter-	
94	22 78 22 52	rupt routine is very similar to	
98	9C AF F8 BF BF	that given in program 2 but is located in a different position	
9A 9D	91 BO	in memory	
9 F	9F AO 19	III ilicinory	
A 2	30 A7 9F AC		
A6	2F AO 8F		
A 9	32 AF 9F AC)	
AD	30 A4		
AF	9F AO	1	
B1	AO 9C 34 8C AF 80 BF	•	
B5 B8	30 A7	end of interrupt routine	
J U	33 A /	ond of intollapt loading	
			16

BA-BB	unused
BC-BD	stack
BF-FE	displayed locations

Program 6 — Pattern Generator

Program 6, like program 5, uses the 64 byte interrupt routine to display 8 rows of 16 squares. The area is divided into 4 quarters and used to generate patterns (see diagram).

An additive shift byte is used together with the identification numbers of up to 15 points in the upper left quarter of the display area. The logical exclusive or operation is carried out with each point and the display field and also with 3 related points in the 3 other quarters. The relationship between the points is such that the dotted lines in the diagram are "mirrors". After all of the entered points are exclusively ored the additive shift is applied to each point and the process repeats indefinitely.

To run the program put the additive shift in the switch byte and turn to run, the shift byte will be stored and displayed. Then enter the points to be displayed. Terminate entry with EE (entry is otherwise automatically terminated when 15 points have been entered) and pattern generation begins. It is suggested that a trial run be made with 11 as the shift byte and 00, 01, 12, 23, and EE as the data points.

Registers 1, 2, 3, 4, 5, 6, and 7 must be set if this program is to be run in an expanded memory system.

Note: .The following changes will generate a pattern in which the points in the upper left quarter are exactly repeated in the other 3 quarters. Change memory location 65 to F4 and the table entries at locations 80 through 83 to 00, 08, 40 and 48.

Use	of	Registers
0.50	•	recommend

	High	Low
R(0))	DMA address
R(1	.)	interrupt address
R(2	!)	stack
R(3	3)	program counter
R(4	1)	memory pointer to display locations
R(5	5)	address of display subroutine
R(6	5)	points to locations of entered points
R(7	7)	points to a table of 4 constants
R(8	3)	counter

R(9)		counter for timer in interrupt routine			through 83 is display sub- routine
R(B)	work for dis- play sub-	counter-4 bytes displayed at a time	3B	F8 B0 A6	reload starting address of table of entered points
	routine		3E	8E A8	load no. of points to R(8).0
R(C)	holds coun- ter for inter- rupt routine		40	06 FA 37	load point, and against 37 to get into upper left quarter of display
R(D)		holds shift byte	43	52 64 22	save it on stack, display it
R(E)		counter, number of bytes entered	46 49	F8 00 A9 89 FB 20	brief delay between calls to subroutine
R(F)	work in	work in interrupt	4C	3A 49	sacroutine .
	interrupt	**	4E	D5	call display subroutine, display point is passed on stack
4 1 1		ogram Listing	4F	8D	get shift byte
Add.	Code	Notes	50	E6	make pointer to table of
00	F8 86 A1	interrupt address	30	Lo	entered bytes R(X)
03 06		stack program counter	51	F4 56	add shift byte to table entry and write new entry
OA	F8 04 BC	constant for interrupt routine	53	E2	restore R(X) as 2
OD	F8 5D A5	address of display routine	54	16 28	shift pointer to next location
10	F8 B0 A6	starting address of table of			and decrement counter
12	EO DE AA	entered points	56	88	check, done with all points?
13	F8 BF A4	starting address of displayed locations	57	3A 40	no-go and do next point
16	F8 00 AE	clear display locations and	59	30 3B	yes-start over
19	54 14 84	leave R(E).0 equal to 00,			start of display subroutine,
1C	3A 16	R(E).0 will later contain num-			this display routine works
1E	24	ber of points entered			like program 2 except that that 4 squares are changed,
1 F	E2 69	R(X) is 2, turn on TV			the one passed on the stack
21	6C 64 22	read and display shift byte			and 3 related ones
24	AD	save shift byte in R(D).0	5 B	E2 D3	restore $R(X)$ as 2 and return
25		wait for in on, off			to main
29 2C	6C 64 22 FB EE	read and display entered point check, is it EE?	5D	F8 04 AB	entry point, load counter to display 4 points
2E	32 3B	yes-all points entered, go to 3B	60	F8 80 A7	load starting address of table of four constants
30	F0 56	no-save in table of entered	63	E7	make table pointer R(X)
32	16 1E	points and increment table pointer	64	02 F3 BB	load saved point and x'or against one of the table entries
32	10 12	and counter for number of	67	F6	shift result right
		points	68	FC BF A4	add starting address of dis-
34	8E FB 0F	check counter, 15 points entered?			played locations and save in R(4)
37	32 3B	yes-table full, go to 3B	6B	9B F6	get result back, shift
39	30 25	no-go back for more	6D	3B 75	result even—go to 75
		all points entered, code from 3B through 5A controls dis-	6F	04 FB 0F 54	result odd-x'or location against 0F and replace
		play while code from 5B	73	30 79	go to 79

75	04 FB F0 54	result even-x'or location	8D	F8 BF BF	and program 5
		against F0 and replace	90	91 B0	
79	2B 17 8B	decrement counter, incre-	92	9F A0 19	
		ment table pointer, examine	95	30 9A 9F A)
		counter	99	2F A0 8F	
7C	3A 64	not done-go to 64	9C	32 A2 9F A0)
		<u> </u>	Α0	30 97	
7E	30 5B	done-return from subroutine	A2	9F A0	
80	00 0F 70 7F	table of constants, end of dis-	A4	A0 9C 34 84	Į.
		play subroutine	A8	AF 80 BF	
84	72 70	return from interrupt	AB	30 9A	end of interrupt routine
86	C4	entry to interrupt-this inter-	AD-A	F	stack
87	22 78 22 52	rupt routine is very similar to	BO-BE	3	entered bytes
8 B	9C AF	the one used in program 2	BF-BE		displayed locations

Diagram - Program 6

00	01	02	03	04	05	06	07
10	11	12	13	14	15	16	17
20	21	22	23	24	25	26	27
30	31	32	33	34	35	36	37
							

Program 7 - Stop Watch

This stop watch program displays hours, minutes, and seconds and uses the interrupt routine of program 4. A character table is used to generate the numbers. The operation of the program is simple; R(9) is incremented 61 times a second in the interrupt routine, and this count is propagated through registers A through E to generate seconds, minutes, and hours. Whenever the contents of registers A through E are changed a display routine is called to indicate the new time. Both the timing routine and the display routine make use of variable code and one should read the section on variable code if one has difficulty following the program. Note that with the interrupt routine of program 4 the time is displayed in the last five lines of the display while the top 27/32 of the display is blanked.

On entry to the program the time is reset to zero (however the display is not cleared) and on pushing the in button the timer is started, a second push of the in button stops it, and a third push starts it again from where it left off. To reset the stop watch turn the run switch off and then on again. The maximum time that can be shown is 9 hours, 59 minutes, and 59 seconds.

Registers 1, 2, 3, 4, 5, and 6 must be set if this program is to be run in an expanded memory system.

Use of Registers

DMA address

interment address

seconds counter, units

seconds counter, tens

minute counter, units

minute counter, tens

hours counter, units

work in interrupt

Low

High

R(0)

R(1)

R(A)

R(B)

R(C)

R(D)

R(E)

R(F)

work in

interrupt

K(1)	micrapi addiess
R(2)	stack
R(3)	program counter
R(4)	memory pointer
R(5)	memory pointer
R(6)	memory pointer, also used to store variable instruction
R(7)	holds variable instruction
R(8)	counter in display routine
R(9)	counts 61 times a second, in- cremented in interrupt routine

Program Listing

Program Listing				
Add.	Code	Notes		
00	F8 7E A1	interrupt address		
03	F8 49 A2	stack		
06	F8 09 A3	program counter		
09	D3 E2	establish program counter, X		
		register		
0B	F8 00 AE AE	,		
0F	AC AB AA	minutes and seconds		
12	69	turn on TV		
13	37 13	wait for in off-comes here from 21		
15	3F 15 37 17	wait for in on, off		
19	F8 00 A9	set interrupt counter to 0		
1C	30 4F	go to display routine—note display routine always returns to 1E		
1E	89 FB 3D	here we look for 61 interrupt cycles		
21	37 13	or did someone push the in button		
23	3A 1E A9	to 1E unless 1 second has passed—else goes on first clear R(9).0		
26	F8 3D A5	load address of variable code to R(5)		
29	F8 4A A4	load starting address of table of 5 entries to R(4)		
2C	E4	make R(4) the X register		
2D	F8 1A A6	load instruction (1A) to R(6).0, first obeyed as 1A, then 1B, and finally as 1E, increments registers		
30	86 53 XX	carry out above instruction		
33	FC 90 55	write AA to M(3D), first pass, second time write AB, and finally write AE		
36	FF 20 53	create and obey 8A first time, then 8B, and finally 8E		
39	XX	contents of one of the counting registers loaded here		
3 A	F3	x'or against table entry, maximum count allow in register		
3B	3A 4F	if register contents are not equal to maximum go to display routine		
3D	XX 86	3D becomes one of AA - AE, register which has reached maximum value is here zeroed		

		out, load instruction in R(6)	72	30 68	go and write it
•		to see where we are	74 70	D9 DB DC	table of 5 locations to write
3F	FB 1E	if instruction is 1E we're done	78	DE DF	characters to
41	32 4F	and should go to display routine	79	XX XX XX	
43	16 60		7C	72 70	return from interrupt
43	10 00	else change instruction, increment X to point to new table	7E	C4	entry to interrupt—this inter-
		entry	7F		rupt routine is identical to
45	30 30	and go back to 30 for another	83 86	F8 24 AF 19	that used in program 4 except that it is located in a different
73	30 30	pass	87	F8 D0 BF	place in memory
4 7	xx xx xx	•	8 A	91 B0 9F A0	_
	0A 06 0A		8E	E2 9F A0	
4A 4D	0A 06 0A 06 0A	table of maximum values allowed in the counting	91	2F A0 8F	
4D	00 0A	registers	94	32 9A 9F A)
		_	98	30 8F	
		the display routine starts here, it uses a character table to	9 A	80 E2	
		show the contents of registers	9C	E2 20 A0	
		A through E in the display	9F	E2 20 A0	
		locations	A2	E2 20 A0	
4F	F8 74 A6	load starting address of table	A5 A7	3C 9A 30 7C	end of interrupt routine
41	1.0 /4 Au	of memory locations to		30 /C	
		write to			locations A9 through CF are the character table
52	F8 8F A7	load variable instruction (8F)	4.0	D2	
32	1.0 OL A1	to R(7), it will be obeyed as	A9	B3	starting address of 0
		one of 8E, 8D, 8C, 8B, or 8A	AA	C6	starting address of 1
55	87 FB 8A	check variable instruction, if	AB AC	BB B9	starting address of 2 starting address of 3
33	O/ I'D OA	it's 8A we're done and should	AC AD	CB	starting address of 4
		return	AE	B7	starting address of 5
58	32 1E	all done-return	AF	BD	starting address of 6
	27	more to do-decrement vari-	ВО	C5	starting address of 7
5 A	21	able instruction	B1	BF	starting address of 8
5B	46 A4	load display location to R(4)	B2	C1	starting address of 9
5 D	87 53 XX	obey variable instruction,	В3	F0	character 0, (5 words/charac-
שנ	8/33 AA	loads contents of one of the	B4	90	ter
		counting registers to D	B 5	90	
(0	FC A9		B6	90	
60	FC A9	add the starting address of the character table	В7	F0	character 5
63	45.05.45	and pick up the address of	B8	80	
62	A5 05 A5	the character to be displayed	B9	F0	character 3
<i>(</i>	E0 05 A0		BA BB	10 F0	character 2
65	F8 05 A8	establish counter, 5 words per character	BC	10	Character 2
60	45.54		BD	F0	character 6
68	45 54	load and write word of	BE	80	
	-0.00	character	BF	F0	character 8
6 A	28 88	decrement no. words/charac-	C0	90	
		ter	C1	F0	character 9
6C	32 55	to 55 for next register con-	C2	90	
		tents if done	C3	F0	
6E	84	else load R(4).0	C4	10	ah ama atan 7
6F	FC 08 A4	and set address for next word	C5	F0	character 7
		to write	C6	10	character 1

C 7	10			legible display
C8	10			
C9	10	•	Add.	Code
CA	10		$\mathbf{D0}$	00 00 00 00 00 00 00 00
CB	A 0	character 4	D8	00 XX 00 XX XX 00 XX XX
CC	A 0		E0	00 XX 20 XX XX 20 XX XX
CD	F0		E8	00 XX 00 XX XX 00 XX XX
\mathbf{CE}	20			
CF	20		F0	00 XX 20 XX XX 20 XX XX
		display locations are DO	F8	00 XX 00 XX XX 00 XX XX
		through FF, XX means	Note:	It is probably easiest to clear memory
		doesn't matter, other loca-	before	e loading this program; then set locations E2,
		tions must be set to give	E5, F2	2 and F5 to 20.

Progra	am 8–Two	elve	Hour C	lock
مامماد	n =0.0=0.m	:.	aimila.	t ~

This clock program is similar to the stop watch program but displays a settable twelve hour clock instead of a stop watch. It was not possible to use the interrupt routine of program 4 and a one page interrupt is used instead. Register 9 is incremented within the interrupt routine to act as the timer. The count in register 9 is propagated through registers A to F to generate seconds, minutes and hours.

The clock is a 12 hour one and changes from 12:59:59 to 01:00:00 at 1:00 AM and 1:00 PM. To set the clock each digit is set individually. For example say we wish to set the time 12:03:48. First turn to run, then: set tens digit of hours (01) to switch byte, push in, set units digit of hours (02) to switch byte, push in, set tens digit of minutes (00) to switch byte, push in, set units digit of minutes (03) to switch byte, push in, set tens digit of seconds (04) to switch byte, push in, set units digit of seconds (08) to switch byte, push in, and finally to start clock.

set 00 on switch byte, push in.

Registers 1, 2, 3, 4, 5, and 6 must be set if this program is to be run in an expanded memory system.

Use of Registers

Register use is the same as in program 7 except that register F is used as the tens of hours counter and is not employed in the interrupt routine.

Program Listing

		•
Add.	Code	Notes
00	F8 8D A1	interrupt
03	F8 4D A2	stack
06	F8 09 A3	program counter
09	D3 E2	establish program counter, X register
0B	F8 1A A4	address of location whose contents will be variable code
0E	F8 AF A5	variable instruction to R(5).0 first time will be AF
11	85 54	write instruction to 1A, first time AF
13	3F 13 37 15	wait for in on, off
17	6C 64 22	read and display switch byte
1 A	XX	variable instruction, saves switch byte in a register to set clock, first AF, then AE, etc. and finally A9

1B	85 FB A9	check is instruction A9
1E	32 23	yes-go to 23 and start clock
20	25 30 11	no-change variable instruc- tion and go back to read another switch byte.
23	69	ready to start clock—turn on TV
24	89 FB 3D	get timer from interrupt— is it 61
27	3A 24	no-go and check again
29	A 9	yes-reset interrupt timer and go on
		This portion of code-2A through 53 is almost identical to that of program 7 (26 through 4E) it propagates the second count through the registers
2 A	F8 41 A5	load address of variable code to R(5)
2D	F8 4E A4	load starting address of table of 6 entries to R(4)
30	E4	make R(4) the X register
31	F8 1A A6	load instruction (1A) to R(6).0 first obeyed as 1A, then 1B, and finally 1F, increments counting registers
34	86 53 XX	carry out above instruction
37	FC 90 55	write AA to location 41, first pass, then AB, and finally write AF
3 A	FF 20 53	create and obey 8A first time

then 8B, . . . and finally 8F 3D XX8A through 8F obeyed here, loads one of counting registers to D 3E F3 x'or aginst table entry, maximum count allowed in register 3F 3A 54 if register contents are not equal to maximum go to check hours and then to display routine 41 XX 86 41 becomes one of AA-AF, register which has reached maximum value is here zeroed out, load instruction in R(6) to see where we are

if instruction is 1F we're done

and go to check hours and

then to display routine

43

45

FB 1F

32 54

47	16 60	else change instruction, increment X to point to new table	73	A5 05 A5	and pick up the address of the character to be displayed
49	30 34	entry and go back to 34 for another	76	F8 05 A8	establish counter, 5 words per character
4B	xx xx xx	pass	79	45 54	load and write word of character
4E 51	0A 06 0A 06 0A 0A	table of maximum values allowed in the counting registers	7B	28 88	decrement no. words/character
		comes here to check hours, following code resets 13:00:00	7D	32 66	to 66 for next register contents if done
		to 01:00:00, else does nothing	7 F	84	else load R(4).0
54	8F F6	load hours counter, tens, shift right	80	FC 08 A4	and set address for next word to write
56	3B 60	to display if DF is zero, else	83	30 79	go and write it
		go on	85	D8 D9 D B	table of 6 locations to write
58	8E FB 03	loads hours counter, units, is	88	DC DE DF	characters to
5 B	3A 60	it 3? if not go to display			end of display routine—begin one page interrupt
5D	AF AE 1E	if R(E).0 is 3 reset hours to 01	8 B	72 70	return from interrupt
		this display routine is almost	8D	C4	entry to interrupt
		identical to the one in pro-	8E	22 78 22 52	save X, P and D
		gram 7, it returns to location 24	92	E2 E2 19	increment R(9)
60	F8 85 A6	entry point, load starting ad-	95	91 B0	load high order DMA address
00	1 0 03 A0	dress of table of memory lo-	97	F8 00 A0	load low order DMA address
		cations to write to	9 A	80 E2	DMA address to D
63	F8 90 A7	load variable instruction (90)			DMA 1, here
		to R(7), it be obeyed as one	9C	E2 20 A0	restore DMA address
		of 8F, 8E, 8D, 8C, 8B, or 8A			DMA 2, here
66	87 FB 8A	check variable instruction, if	9F	E2 20 A0	restore DMA address
		it's 8A we're done and should return			DMA 3, here
69	32 24	all done-return	A 2	E2 20 A0	restore DMA address
6B	27	more to do-decrement vari-			DMA 4, here
6C	46 A4	able instruction load display location to R(4)	A 5	3C 9A	not done, back to set new DMA address
6E	87 53 XX	obey variable instruction.	A 7	30 8B	done, return
OE	6/33 AA	loads contents of one of the counting registers to D	A9-FF	3	The character table and display locations are the same as
71	FC A9	add the starting address of the character table			for program 7.

	_
	Ī
	1
	••