Método do Caminho Critíco

TRABALHO REALIZADO POR:

João Figueiredo Martins Peixe dos Santos
Francisco Alves Andrade
Luís Filipe Cruz Sobral
Paulo Silva Sousa
Meriem Khammassi

A89520 João Santos

A89474 Luís Sobral

 $\begin{array}{c} {\rm A85829} \\ {\rm Meriem~Khammassi} \end{array}$

A89465 Paulo Sousa

A89513 Francisco Andrade

PROJETO MDIO 2020/2021 UNIVERSIDADE DO MINHO

Conteúdo

1	Par	$ ext{te }0$
	1.1	Determinação da lista de atividades
	1.2	Diagrama de Gaant
		1.2.1 Variáveis de Decisão
		1.2.2 Função Objetivo
		1.2.3 Restrições
		1.2.4 Input
		1.2.5 Output e Resultados
2	Par	te 1
	2.1	Descrição do Problema
	2.2	Objetivo
	2.3	Variáveis de Decisão
	2.4	Função Objetivo
	2.5	Restrições
	2.6	Input
	2.7	Output e Resultados
	2.8	Diagrama de Gaant
	2.9	Validação do Resultado
3	Con	nclusão

1 Parte 0

1.1 Determinação da lista de atividades

Sendo que o nosso número de aluno mais alto é A89520, vamos remover as atividades $2 \ {\rm e} \ 0.$

Após removermos a atividade 0, os seus sucessores (atividades 1 e 4) passaram a ter como precedência a atividade ini.

Da mesma forma, ao removermos a atividade 2, o seu sucessor passa a ter como precedência a sua precedência, ou seja, a atividade 3 passa a ter como precedência a atividade 1.

Assim, o grafo associado a este projeto é o seguinte:

Figura 1: Atividades

Deste modo, as actividades e as relações de precedência são as seguintes:

Atividade	Duração	Precedências
1	6	-
3	2	1,4,5
4	9	7
5	4	4,8
6	5	-
7	6	6
8	4	7,10
9	2	8,11
10	8	6
11	7	10

Tabela 1: Atividades e Relações de precedência

1.2 Diagrama de Gaant

O problema apresentado em cima foi resolvido no LPSolve, de modo a criar o Diagrama de Gaant e descobrir a duração do projeto.

1.2.1 Variáveis de Decisão

tj: tempo de inicio da atividade j, j = i, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, f

1.2.2 Função Objetivo

O objetivo deste problema é minimizar o tempo de execução do projeto, respeitando, ao mesmo tempo, as restrições de precedência. Assim, a nossa função objetivo é a seguinte:

$$min: t_f$$

1.2.3 Restrições

As restrição que aplicamos no nosso problema foi a de uma atividade j apenas poder começar após uma atividade k (que é sua precedência) ter terminado. Assim, a restrição é·

$$t_j \ge t_k + d_k$$

1.2.4 Input

O ficheiro de input do LPSolve foi o seguinte:

```
/* Objective function */
min: tf;
/* Variable bounds */
arco_i1: t1>=ti+0;
arco_13: t3>=t1+6;
arco_3f: tf>=t3+2;
arco i4: t4>=ti+0;
arco_43: t3>=t4+9;
arco 45: t5>=t4+9;
arco 53: t3>=t5+4;
arco_5f: tf>=t5+4;
arco_i6: t6>=ti+0;
arco 67: t7>=t6+5;
arco_74: t4>=t7+6;
arco 78: t8>=t7+6;
arco 85: t5>=t8+4;
arco 89: t9>=t8+4;
arco 9f: tf>=t9+2;
arco 610: t10>=t6+5;
arco_108: t8>=t10+8;
arco_1011: t11>=t10+8;
arco_119: t9>=t11+7;
```

Figura 2: Input LPsolve

1.2.5 Output e Resultados

O ficheiro de output e os resultados são os seguintes, respetivamente:

Figura 3: Output

Figura 4: Resultados

Assim, convertemos os resultados num diagrama de Gaant, e chegamos à conclusão que o nosso projeto tem uma duração de 26 unidades.

Figura 5: Diagrama de Gaant

2 Parte 1

2.1 Descrição do Problema

Aumentando os recursos aplicados, com custos suplementares, nesta parte do trabalho, consideramos que seria assim possível reduzir a duração de uma atividade .

Ficamos assim com a tabela de relações entre os custos e as reduções dependendo das características das atividades, podendo ser não linear.

Nesta tabela, apresentamos cinco parâmetros para cada atividade: O custo normal, o valor de C1(o custo suplementar de reduzir a duração da atividade de uma unidade de tempo), o valor da máxima redução de tempo a um custo C1, o valor de C2(equivalente ao C1 após a aplicação da redução máxima) e o valor da máxima redução de tempo a um custo C2.

Atividade	Custo Normal	C1	Redução C1	C2	Redução C2
1	1000	600	1	300	1
3	300	200	0.5	100	0.5
4	2000	800	2	400	1
5	1000	1600	0.5	800	0.5
6	800	180	1	90	1
7	900	300	5	1100	4
8	600	200	0.5	100	0.5
9	300	200	1	400	0
10	1600	1000	0.5	500	0.5
11	1400	600	1	300	1

Tabela 2: Tabela de relações entre custos e reduções

2.2 Objetivo

O objetivo deste problema é minimizar a duração de uma atividade, aumentando os recursos aplicados e com custos suplementares, de modo a realizar o projeto na nova duração desejada, com um custo suplementar mínimo.

2.3 Variáveis de Decisão

Em relação ao problema anterior, acrescentamos 4 variáveis. Acrescentamos r_{j1} , r_{j1}^{max} , c_j e r_{j2} . c_j é uma variável binária, que impede realizarmos uma redução aplicada a custo 2 sem realizarmos o limite de reduções aplicadas a custo c_1 .

Assim, as nossas variáveis de decisão são as seguintes:

 t_j - tempo em que se inicia a atividade j

 r_{i1}^{max} - redução máxima aplicada a custo 1 à atividade j

 r_{i1} - redução aplicada a custo 1 à atividade j

 r_{j2} - redução aplicada a custo 2 à atividade j

 c_j - 1, se o numero máximo de reduções aplicados a custo 1 foi atingida, 0, caso contrário

$$\forall j \in \{1, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$$

2.4 Função Objetivo

Tendo por base o objetivo do problema, tencionamos minimizar os custos de reduções, obtendo, assim, a seguinte função objetivo.

$$min: \sum_{j} (c_{1j}r_{1j} + c_{2j}r_{2j})$$

 $\forall j \in \{1, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$

Onde c_{1j} é o custo da redução 1 e c_{2j} é o custo da redução 2.

2.5 Restrições

Relativamente ao problema com o qual nos deparamos, houve um acréscimo de restrições, face ao problema anterior, tendo em conta as dependências de reduções. Isto deveu-se ao facto de, neste problema, termos de verificar se c_1 já atingiu o seu limite, pois só aí puderemos efetuar reduções a custo c_2 .

Tendo em conta os limites máximos das reduções relativas aos custos c_1 e c_2 , foram impostas restrições. No caso particular das reduções a custo c_1 , a restrição a utilizar pode ser a apresentada anteriormente, já que estas reduções são independentes.

$$r_{1j} \leq r_{1j}^{max}$$

Desta forma, necessitamos de encontrar uma forma de calcular o limite máximo das reduções a custo c_1 . Vamos então usar uma variável binária c_i , com o objetivo de efetuar o controlo dessa redução e a respetiva possibilidade ou impossibilidade de ela continuar. Formolou-se assim uma restrição que calcula a diferença entre o valor da máxima redução de tempo a um custo c_1 e a redução aplicada a custo c_1 à atividade i,na qual obtemos um valor maior que zero se a redução ainda não tiver terminado, e o valor zero se já tiver terminado.

$$c_j \ge r_{1j}^{max} - r_{1j}$$

Desenvolvimento das restrições relativas a custo c_2 :

$$r_{2j} \le r_{2j}^{max} (1 - c_j)$$

Assim, na eventualidade da redução a custo c1 da atividade i atingir o limite, será atribuído o valor 0 à variável binária c_i , alcançando a restrição $r_{2j} \leq r_{2j}^{max}$, permitindo assim a iniciação da redução. Por outro lado, na eventualidade de a redução a custo c1 não atingir o limite, será atribuído o valor 1 à variável binária c_i , alcançando a restrição $r_{2j} \leq 0$, impossibilitando a redução de unidades de tempo a custo c_2 .

2.6 Input

O ficheiro de input do LPSolve foi o seguinte:

```
40 r11<=1;

11 r31<=0.5;

21 r41<<2;

22 r51<=0.5;

42 r61<=1;

45 r71<-5;

46 r61<-1;

47 r91<-1;

40 r101<-0.5;

47 r91<-1;

50 c10=r11m - r11;

51 c10=r11m - r11;

52 c30=r31m - r31;

53 c40=r44m - r41;

54 c50=r51m - r51;

54 c60=r51m - r51;

56 c60=r51m - r51;

56 c70=r71m - r71;

57 c80=r81m - r81;

58 c90=r91m - r91;

51 c100=r101m - r101;

61 c110=r11m - r111;

62 r12<-1-c1;

63 r32<-0.5-0.5c3;

64 r42<-1-c4;

65 r52<-0.5-0.5c3;

67 r72<-4-4-67;

67 r32<-0.5-0.5c6;

68 r32<-0.5-0.5c6;

69 r32<-0.5-0.5c6;

69 r32<-0.5-0.5c6;

61 r32<-0.5-0.5c6;

62 r32<-0.5-0.5c6;

63 r32<-0.5-0.5c6;

64 r32<-0.5-0.5c6;

65 r32<-0.5-0.5c6;

67 r32<-0.5-0.5c6;

67 r32<-0.5-0.5c6;

68 r32<-0.5-0.5c6;

69 r32<
```

Figura 6: Input(1)

Figura 7: Input(2)

2.7 Output e Resultados

Introduzindo no LPSolve, obtemos o seguinte output e os respetivos resultados.

riables	MILP	result
11	2000	2000
12	0	0
31	0	0
132	0	0
r41	1	1
142	0	0
151	0	0
r52	0	0
r61	0	0
162	0	0
r71 r72	4	4
181	0	0
r82	0	0
191	0	0
192	0	0
r101	0	0
r102	0	0
r111	0	0
r112	23	23
t1	0	0
ti	0	0
13	21	21
t4	7	7
15	17	17
16	0	0
t7	5 13	13
18	20	20
110	5	5
111	13	13
r11m	1	1
r31m	0,5	0,5
r41m	2	2

Figura 8: Resultado(1)

Figura 9: Resultado(2)

```
Objective:
             Minimize(R0)
SUBMITTED
                                        52 variables,
0 GUB,
Model size:
                  39 constraints,
Sets:
                                                                  0 SOS.
Using DUAL simplex for phase 1 and PRIMAL simplex for phase 2.
The primal and dual simplex pricing strategy set to 'Devex'.
Relaxed solution
                                 2000 after
                                                     25 iter is B&B base.
 easible solution
                                 2000 after
                                                     29 iter,
                                                                      4 nodes (gap 0.0%)
ptimal solution
                                 2000 after
                                                     29 iter,
                                                                      4 nodes (gap 0.0%)
 elative numeric accuracy ||*|| = 7.10543e-016
```

Figura 10: Output

Após executarmos o LPSolve, verificamos que o tempo de duração do projeto baixou para o tempo pretendido (23). Isso foi possível através da redução de 4 UT na atividade 7 a custo 1 e da redução de 1 UT na atividade 4, também a custo 1.

2.8 Diagrama de Gaant

Com base nos resultados que obtivemos no LPSolve, aqui se encontra o nosso plano de execução através de um Diagrama de Gaant.

Figura 11: Diagrama de Gaant

2.9 Validação do Resultado

Observando o diagrama de Gaant acima(11), verificamos que a duração da nova solução tem a duração de 23 U.T.. Esta solução revela-se lógica, uma vez que reduzimos 4 U.T. na atividade 7 (que fazia parte do caminho crítico) e 1 U.T. na atividade 4.

Relativamente ao custo das reduções, verificamos a sua validação já que reduzir 4 U.T. à atividade 7 tem um custo de $300 \times 4 = 1200$ e reduzir 1 U.T à atividade 4 tem um custo de 800. Isto resulta num custo total de 1200 + 800 = 2000, como está representado no output.

3 Conclusão

O presente trabalho prático permitiu a consolidação da matéria dada nas aulas, nomeadamente sobre o método do caminho crítico.

Em suma, o grupo considera que este trabalho prático foi um bom meio de estudo e uma experiência positiva para a avaliação e consolidação de conhecimentos relativamente à UC de Modelos Determinísticos de Investigação Operacional.