第十一章 凸优化与支持向量机

- 本章以支持向量机 (Support Vector Machine, SVM) 为例,介绍带限制条件的凸优化问题的一般解法
- Margin是 SVM 的一个重要概念,代表一种预测的"信心"
 - ▶ Logistic 回归做预测时可以采用以下规则: 如果 $P(Y=1 \mid x, \theta) \ge 0.5$, 预测 Y=1, 反之 $Y=0 \Leftrightarrow \theta^{\top}x \ge 0$, 预测 Y=1, 反之 Y=0
 - ▶ $\theta^{\top}x$ 越大,预测 Y=1 越有信心; $\theta^{\top}x$ 越小,预测 Y=0 越有信心

当要预测的点越远离决策边界,对它的预测越有信心

在训练集 $S = \{(\mathbf{x}_i, y_i) : i = 1, ..., n\}$ 中,每个点 i 由一个特征向量 \mathbf{x}_i 和一个标签 $y_i \in \{-1, 1\}$ 组成,线性 SVM 分类器假设决策边界具有如下形式:

$$\boldsymbol{\omega}^{\top} \mathbf{x} + \mathbf{b} = 0$$

- 决策规则为: $\omega^{\top} \mathbf{x} + \mathbf{b} \geq 0$, 预测 y = 1; 反之, 预测 y = -1
- 如果将点 i 的 margin 定义为

$$\gamma_i = y_i(\boldsymbol{\omega}^\top \mathbf{x}_i + b) \tag{1}$$

- $ightharpoonup \gamma_i > 0$ 表明对点 i 的预测是正确的,同时较大的 γ_i 代表对预测值较大的信心
- ▶ 如果将 ω 和 b 同时扩大 2 倍,决策边界不变,但是对预测的信心 γ_i 却扩大了 2 倍
- 为了保证 margin 可识别,需要对(1)中的系数加一些规范化条件,比如令 $\|\omega\|_0 = 1$ 或者令

$$\gamma_i = y_i \left(\frac{\omega^\top \mathbf{x}_i + b}{\|\boldsymbol{\omega}\|_2} \right) \tag{2}$$

• Margin 的几何意义

由(2)定义的 margin γ_i 等于点 i 到决策边界的距离

假设训练集线性可分,SVM 希望训练集中的所有点都远离决策边界,令

$$\gamma = \min_{i} \gamma_{i}$$

SVM 的目标是寻找一条决策边界使最小的 margin γ 最大:

$$\max_{\boldsymbol{\omega},b} \ \gamma \ \text{s.t.} \ y_i(\boldsymbol{\omega}^{\top} \boldsymbol{x}_i + b) / \|\boldsymbol{\omega}\| \ge \gamma, \ i = 1, \dots, n$$
 (3)

在(3)中令 $\|\omega\|=1/\gamma$,则最大化最小 margin 的问题(3)可以转化为如下非常容易求解的优化问题:

$$\min_{\boldsymbol{\omega},b} \frac{1}{2} \|\boldsymbol{\omega}\|^2 \quad \text{s.t.} \quad -y_i(\boldsymbol{\omega}^\top \boldsymbol{x}_i + b) + 1 \le 0, \ i = 1,\dots, n$$
 (4)

- (4)可以用二次规划 (QP) 算法求解
- 在很多实际问题中,特征 $x_i \in \mathbb{R}^d$ 是一个高维向量 $(d \gg n)$, 如果将(4)转 化为**拉格朗日对偶形式**求解,会比直接使用 QP 更高效

一般的凸优化问题:

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$$
s.t. $g_i(\mathbf{x}) \le 0, i = 1, ..., m$

$$h_i(\mathbf{x}) = 0, j = 1, ..., p.$$
(5)

其中函数 $f: \mathbb{R}^d \to \mathbb{R}$ 和 $g_i: \mathbb{R}^d \to \mathbb{R}$, i = 1, ..., m 都是可导的凸函数, 函数 $h_j: \mathbb{R}^d \to \mathbb{R}$, j = 1, ..., p 都是仿射函数

• (5)可以写为以下等价的无限制优化问题:

$$\min_{\mathbf{x}} \Theta_{P}(\mathbf{x}) \triangleq f(\mathbf{x}) + \infty \sum_{i=1}^{m} \mathbf{1} \left(g_{i}(\mathbf{x}) > 0 \right) + \infty \sum_{j=1}^{p} \mathbf{1} \left(h_{j}(\mathbf{x}) \neq 0 \right) \quad (6)$$

称(6)为**原始优化问题 (primal optimization)**

• (6)很难求解,考虑用某种可导函数替换惩罚函数 $\infty \cdot \mathbf{1}(u > 0)$,比如线性函数 αu . 当 $\alpha \geq 0$ 时,函数 αu 是 $\infty \cdot \mathbf{1}(u > 0)$ 的一个下界 函数

类似地,函数 βu 总是 $\infty \cdot \mathbf{1}(u \neq 0)$ 的一个下界函数

• 定义拉格朗日函数 (Lagrangian):

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\mathbf{x}) + \sum_{i=1}^{m} \alpha_{i} g_{i}(\mathbf{x}) + \sum_{j=1}^{p} \beta_{j} h_{j}(\mathbf{x})$$

其中 $\alpha = (\alpha_1, \dots, \alpha_m)$ 和 $\beta = (\beta_1, \dots, \beta_p)$ 的元素称为**拉格朗日乘 子** (Lagrange multipliers)

可以证明

$$\Theta_P(\mathbf{x}) = \max_{\boldsymbol{lpha}, \boldsymbol{eta}} \ \mathcal{L}(\mathbf{x}, \boldsymbol{lpha}, \boldsymbol{eta}) \ \ ext{s.t.} \ \ \alpha_i \geq 0, orall i$$

• 因此原始优化问题 (6)可以转化为以下目标函数可导的优化问题:

$$\min_{\mathbf{x}} \Theta_{P}(\mathbf{x}) = \min_{\mathbf{x}} \left[\max_{\alpha, \beta, \alpha_{i} \geq 0, \forall i} \mathcal{L}(\mathbf{x}, \alpha, \beta) \right]$$
(7)

- 如果点 x 满足所有限制条件,即 $g_i(x) \le 0$, $\forall i \bowtie h_j(x) = 0$, $\forall j$,称点 x 为**原始可行的** (primal feasible)
- 假设 $\Theta_P(\mathbf{x})$ 在 \mathbf{x}^\star 处达到最小,最小值记为 $\mathbf{p}^\star = \Theta_P(\mathbf{x}^\star)$

交换(7)中 min 和 max 的顺序, 就得到了另一个不同的优化问题, 称为(7)的**对偶问题 (dual problem)**:

$$\max_{\boldsymbol{\alpha},\boldsymbol{\beta},\alpha_i \geq 0, \forall i} \left[\min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x},\boldsymbol{\alpha},\boldsymbol{\beta}) \right] = \max_{\boldsymbol{\alpha},\boldsymbol{\beta},\alpha_i \geq 0, \forall i} \Theta_D(\boldsymbol{\alpha},\boldsymbol{\beta})$$
(8)

此处定义**对偶目标函数 (dual objective)** $\Theta_D(\alpha, \beta) = \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \alpha, \beta)$

- 如果点 (α, β) 满足 $\alpha_i \geq 0$, $\forall i$, 称点 (α, β) 为**对偶可行的 (dual feasible)**
- 假设 $\Theta_D(\alpha,\beta)$ 在 $(\alpha^\star,\beta^\star)$ 处达到最大,最大值记为 $d^\star=\Theta_D(\alpha^\star,\beta^\star)$

定理

对任意一对原始和对偶问题 (7)和(8), 总有 $d^* \leq p^*$.

- 如果原始和对偶问题满足 $d^* = p^*$, 称为**强对偶性 (strong duality)**
- 很多条件可以保证强对偶性成立,最常用的是 Slater's condition: 即优化问题(5)的解 \mathbf{x}^* 使所有不等式限制条件都严格成立, $g_i(\mathbf{x}^*) < 0$, $\forall i$

KKT 条件

• 对于带限制的优化问题(5), 找到满足 KKT 条件的解等价于找到全局最小值点 (global minimum)

引理 (互补松弛性 (Complementary Slackness))

如果强对偶性成立, 那么 $\alpha_i^* g_i(\mathbf{x}^*) = 0$, $i = 1, \ldots, m$.

- 当强对偶性成立时,在原始/对偶问题的最优解 $(\mathbf{x}^*, \alpha^*, \boldsymbol{\beta}^*)$ 处有以下结论成立:
 - ▶ 如果某个 $\alpha_i^* > 0$,则对应的 $g_i(\mathbf{x}^*) = 0$,此时称该限制条件 g_i 为 active constraint 或 binding constraint
 - ▶ 如果某个 $g_i(\mathbf{x}^*) < 0$, 则对应的 $\alpha_i^* = 0$

KKT 条件

• 当强对偶性成立时,由上述引理的证明可得, x^* 是凸函数 $\mathcal{L}(x,\alpha^*,\beta^*)$ 的最小值点,因此满足梯度为零:

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^{\star}, \boldsymbol{\alpha}^{\star}, \boldsymbol{\beta}^{\star}) = \nabla_{\mathbf{x}} f(\mathbf{x}^{\star}) + \sum_{i=1}^{m} \alpha_{i}^{\star} \nabla_{\mathbf{x}} g_{i}(\mathbf{x}^{\star}) + \sum_{j=1}^{p} \beta_{j}^{\star} \nabla_{\mathbf{x}} h_{j}(\mathbf{x}^{\star}) = \mathbf{0} \quad (9)$$

称等式(9)为**拉格朗日不动性 (Lagrangian stationarity)**

• (9)表明在最优解 x* 处,目标函数 f 的梯度和限制函数的梯度方向相反,模长相等

KKT 条件

定理 (KKT 条件)

如果点 $\mathbf{x}^* \in \mathbb{R}^d$, $\alpha^* \in \mathbb{R}^m$, $\beta^* \in \mathbb{R}^p$ 满足以下条件:

- (原始可行性) $g_i(\mathbf{x}^*) \leq 0$, i = 1, ..., m且 $h_i(\mathbf{x}^*) = 0$, j = 1, ..., p
- (对偶可行性) $\alpha_i^* \geq 0$, i = 1, ..., m
- (互补松弛性) $\alpha_i^* g_i(\mathbf{x}^*) = 0$, i = 1, ..., m
- (拉格朗日不动性) $\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^{\star}, \boldsymbol{\alpha}^{\star}, \boldsymbol{\beta}^{\star}) = \mathbf{0}$.

则 \mathbf{x}^* 是原始问题最优解, $(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)$ 是对偶问题最优解. 如果强对偶性成立,则任何原始问题最优解 \mathbf{x}^* 及任何对偶问题最优解 $(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)$ 必须满足以上条件.

- 如果强对偶性不成立, KKT 条件是找到优化问题(5)全局最优解的充分条件
- 如果强对偶性成立,KKT 条件是找到(5)全局最优解的充要条件

SVM: 最大化最小 margin

回到线性 SVM 分类模型,最佳决策边界是以下带限制的凸优化问题的解:

$$\min_{\boldsymbol{\omega},b} \frac{1}{2} \|\boldsymbol{\omega}\|^{2}$$
s.t. $-y_{i}(\boldsymbol{\omega}^{\top} \boldsymbol{x}_{i} + b) + 1 \leq 0, i = 1,..., n.$

$$(10)$$

下面列出(10)的最优解需要满足的 KKT 条件:

• 拉格朗日不动性. (10)的拉格朗日函数为

$$\mathcal{L}([\boldsymbol{\omega}, b], \boldsymbol{\alpha}) = \frac{1}{2} \sum_{j=1}^{d} \omega_j^2 + \sum_{i=1}^{n} \alpha_i \left[-y_i(\boldsymbol{\omega}^\top \boldsymbol{x}_i + b) + 1 \right]$$

计算 \mathcal{L} 关于 ω 和 b 的梯度并令其等于零:

$$\nabla_{\boldsymbol{\omega}} \mathcal{L} = \boldsymbol{\omega} - \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} = \mathbf{0} \implies \boldsymbol{\omega}^{\star} = \sum_{i=1}^{n} \alpha_{i}^{\star} y_{i} \mathbf{x}_{i}$$
 (11)

$$\nabla_b \mathcal{L} = -\sum_{i=1}^n \alpha_i y_i = 0 \implies \sum_{i=1}^n \alpha_i^* y_i = 0$$
 (12)

SVM: 最大化最小 margin

- 对偶可行性: $\alpha_i^* \geq 0, \forall i$
- 原始可行性: $-y_i(\boldsymbol{\omega}^{\star \top} \boldsymbol{x}_i + \boldsymbol{b}^{\star}) + 1 \leq 0, \forall i$
- 互补松弛性: $\alpha_i^{\star} \left[-y_i(\boldsymbol{\omega}^{\star \top} \boldsymbol{x}_i + \boldsymbol{b}^{\star}) + 1 \right] = 0, \forall i$

将(11)和(12)代入拉格朗日函数,得到对偶目标函数在 α^* 处的值:

$$\Theta_D(\boldsymbol{\alpha}^{\star}) = \mathcal{L}([\boldsymbol{\omega}^{\star}, \boldsymbol{b}^{\star}], \boldsymbol{\alpha}^{\star}) = -\frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} \alpha_{i}^{\star} \alpha_{k}^{\star} y_{i} y_{k} \boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{k} + \sum_{i=1}^{n} \alpha_{i}^{\star}$$

SVM: 最大化最小 margin

考虑到 α^* 还需满足条件(12)和对偶可行性, α^* 是以下对偶优化问题的解:

$$\max_{\boldsymbol{\alpha}} \Theta_D(\boldsymbol{\alpha}) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{k=1}^n \alpha_i \alpha_k y_i y_k \mathbf{x}_i^\top \mathbf{x}_k$$
s.t. $\alpha_i \ge 0, \ i = 1, \dots, n$

$$\sum_{i=1}^n \alpha_i y_i = 0$$
(13)

- 当特征 x_i 的维数 $d\gg n$ 时,与(10)相比,(13)仅对应一个 n 维凸优化,此时可以使用 QP 算法求解,或者专门为 SVM 设计的 SMO 算法
- 假设已经解出 α^* , 由(11)可以得到原始问题最优解:

$$\boldsymbol{\omega}^{\star} = \sum_{i=1}^{n} \alpha_{i}^{\star} y_{i} \boldsymbol{x}_{i}$$

但是仍然不知道 b^* 的取值, 注意 KKT 条件中的 "原始可行性" 和 "互补松弛性" 条件还没有用到

支持向量

由互补松弛性条件 $\alpha_i^* \left[-y_i(\boldsymbol{\omega}^{*\top} \boldsymbol{x}_i + \boldsymbol{b}^*) + 1 \right] = 0, \forall i,$ 可得:

$$\alpha_i^{\star} > 0 \Rightarrow y_i(\boldsymbol{\omega}^{\star \top} \boldsymbol{x}_i + \boldsymbol{b}^{\star}) = 1$$

即在 $\alpha_i^*>0$ 对应的的点 (\mathbf{x}_i,y_i) 处,不等式限制条件以等式成立,说明该点到决策边界的距离最小 (为 $\gamma=1/\|\boldsymbol{\omega}^*\|$),训练集中这样的点 (\mathbf{x}_i,y_i) 被称为支持向量 (support vectors),它们是最靠近决策边界的点

• 因此可以从解出的 α^* 中找到 $\alpha_i^* > 0$ 对应的支持向量, 再从任一支持向量 $(\mathbf{x}_i, \mathbf{y}_i)$ 处利用等式 $\mathbf{y}_i(\boldsymbol{\omega}^{*\top}\mathbf{x}_i + \boldsymbol{b}^*) = 1$ 计算出 \mathbf{b}^*

很多实际问题不存在线性决策边界 (超平面) 可以将训练集中的正负点 区分开

因此需要对 SVM 模型(10)做一些修改以适用线性不可分情形 (nonseparable case),修改后的模型将允许一些分类错误,但需要为错误付出一定代价

修改后的 SVM 求解的优化问题变为:

$$\min_{\boldsymbol{\omega}, b, \boldsymbol{\xi}} \frac{1}{2} \|\boldsymbol{\omega}\|^2 + C \sum_{i=1}^n \xi_i$$
s.t. $y_i(\boldsymbol{\omega}^\top \boldsymbol{x}_i + b) \ge 1 - \xi_i$

$$\xi_i \ge 0 \ i = 1, \dots, n$$
(14)

- (14)在限制条件中加入了一些 "松弛" (slack) ξ_i
 - ▶ 如果观察点 i 满足 $y_i(\omega^{\top} x_i + b) \ge 1$, 令 $\xi_i = 0$ 可以避免惩罚
 - ▶ 如果观察点 i 出现 $y_i(\boldsymbol{\omega}^{\top}\mathbf{x}_i + b) = 1 \xi_i \mathbf{\Xi} \xi_i > 0$,则需要付出代价 $C\xi_i$
- 参数 C 代表对实现以下两个目标的权衡: (i) 保证训练集中大部分 样本点被正确分类 (ii) 使支持向量的 margin $\gamma=1/\|\omega\|$ 尽可能大

- C 较大: 所有点的 margins 都是正的,但支持向量的 margins 很小
- C 较小: 可以减小决策边界对异常点 (outliers) 的敏感性,通过付出一些分类错误的代价保证大多数点的 margins 较大

下面通过 KKT 条件求解(14)

• 建立拉格朗日函数

$$\mathcal{L}([\boldsymbol{\omega}, b, \boldsymbol{\xi}], \boldsymbol{\alpha}, \boldsymbol{r}) = \frac{1}{2} \boldsymbol{\omega}^{\top} \boldsymbol{\omega} + C \sum_{i=1}^{n} \xi_{i} + \sum_{i=1}^{n} \alpha_{i} \left[-y_{i}(\boldsymbol{\omega}^{\top} \boldsymbol{x}_{i} + b) + 1 - \xi_{i} \right] + \sum_{i=1}^{n} r_{i}(-\xi_{i})$$
(15)

• \diamondsuit \mathcal{L} 关于 ξ_i 的一阶偏导数等于 0 得

$$\frac{\partial \mathcal{L}}{\partial \xi_i} = C - \alpha_i - r_i = 0 \implies \alpha_i^* = C - r_i^* \tag{16}$$

因此 $0 < \alpha_i^* < C, i = 1, ..., n$

• \mathcal{L} 关于 ω 和 b 的梯度与(11) (12)相同,令其梯度等于零再代入 (15), 经过整理可得 α^* 是以下对偶问题的解:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}^{\top} \mathbf{x}_{k}$$
s.t. $0 \le \alpha_{i} \le C, i = 1, ..., n$

$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
(17)

- (17)与(13)的唯一区别是 α_i 的范围从 $\alpha_i \geq 0$ 变为 $0 \leq \alpha_i \leq C$
- 此时截距项 b* 的计算与之前的方法不同,由互补松弛性条件可得:

$$y_{i}(\boldsymbol{\omega}^{\star\top}\boldsymbol{x}_{i}+b^{\star}) > 1 \implies \alpha_{i}^{\star} = 0$$

$$y_{i}(\boldsymbol{\omega}^{\star\top}\boldsymbol{x}_{i}+b^{\star}) < 1 \implies \xi_{i}^{\star} > 0 \implies r_{i}^{\star} = 0 \implies \alpha_{i}^{\star} = C$$

$$0 < r_{i}^{\star} < C \implies 0 < \alpha_{i}^{\star} < C, \ \xi_{i} = 0 \implies y_{i}(\boldsymbol{\omega}^{\star\top}\boldsymbol{x}_{i}+b^{\star}) = 1$$

所以只需找到 $0 < \alpha_i^* < C$ 对应的观察点 (\mathbf{x}_i, y_i) , 然后利用等式 $y_i(\boldsymbol{\omega}^{*\top}\mathbf{x}_i + b^*) = 1$ 解出 b^*

SMO 算法

- Sequential Minimal Optimization (SMO) 是为求解 SVM 优化问题(17)设计的一个非常高效的算法,本质上是一种坐标下降算法
- 假设有一组 $\alpha_1, \ldots, \alpha_n$ 满足(17)中所有限制条件,如果固定 $\alpha_2, \ldots, \alpha_n$,通过调整 α_1 能使(17)的目标函数值上升吗?
 - ▶ 不能. 由(17)的限制条件 $\sum_{i=1}^{n} \alpha_i y_i = 0$ 可得当 $\alpha_2, \ldots, \alpha_n$ 固定时, α_1 也被 固定了
- 考虑同时更新 α 中的 2 个元素,比如固定 $\alpha_3, \ldots, \alpha_n$,如何调整 α_1, α_2 使(17)的目标函数值上升?
 - ▶ 首先由限制条件可得 (α_1,α_2) 只能位于正方形 $[0,C]\times[0,C]$ 内的一条线段上
 - ▶ 使用 α_2 表示 α_1 ,则目标函数可写为 α_2 的二次函数,易得 α_2 在区间 [L,H] 上的最优解

● SVM 与核函数 (kernels) 结合可以产生非常灵活的非线性决策边界或超曲面

• 当在 x 的特征空间 (feature space) 无法用线性决策边界将正负点区分时,一个解决办法是将 x 的特征空间升维到 $\phi(x)$ 所在的高维特征空间,使得在这个高维空间可以用线性超平面将正负点区分开,该超平面在原特征空间的投影是一条可区分正负点的曲线边界

SVM 的优化问题可以转化为求解以下对偶问题:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} \alpha_{i} \alpha_{k} y_{i} y_{k} \mathbf{x}_{i}^{\top} \mathbf{x}_{k}$$
s.t. $0 \le \alpha_{i} \le C$, $i = 1, ..., n$

$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0.$$
(18)

- 注意到(18)只用到了特征的内积 $\mathbf{x}_i^{\top} \mathbf{x}_k$,因此只需将(18)中 $\mathbf{x}_i^{\top} \mathbf{x}_k$ 替换为 $\phi(\mathbf{x}_i)^{\top} \phi(\mathbf{x}_k)$,就得到了 $\phi(\mathbf{x})$ 空间的对偶问题
- 对每一个映射 ϕ , 定义它对应的核函数为:

$$K_{\phi}(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x})^{\top} \phi(\mathbf{z})$$

- 很多时候计算核函数的成本很小,但计算 $\phi(x)$ 的成本却很高
 - ▶ 例如 $\mathbf{x} \in \mathbb{R}^d$, 令 $\phi(\mathbf{x}) = \begin{pmatrix} x_1^2, x_1 x_2, \dots, x_1 x_d, \dots, x_d x_1, \dots, x_d^2 \end{pmatrix}^\top$, 它的 核函数为 $K_{\phi}(\mathbf{x}, \mathbf{z}) = \begin{pmatrix} \mathbf{x}^\top \mathbf{z} \end{pmatrix}^2$
 - ▶ $\phi(x)$ 的计算量为 $O(d^2)$, 而 $K_{\phi}(x,z)$ 的计算量只有 O(d)
- 如果核函数的形式为 $K_{\phi}(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^r$,称其为**多项式核函数**,它 对应的 $\phi(\mathbf{x})$ 中的每个元素都是一个 r 次多项式 $x_{i_1} x_{i_2} \dots x_{i_r}$,此时 $\phi(\mathbf{x})$ 的计算量为 $O(d^r)$,而 $K_{\phi}(\mathbf{x}, \mathbf{z})$ 的计算量仍为 O(d).
- 从计算的角度,如果只需要知道 $K_{\phi}(\mathbf{x},\mathbf{z})$ 的值,不一定要先计算出 $\phi(\mathbf{x})$ 和 $\phi(\mathbf{z})$

如果不计算 $\phi(\cdot)$ 在任意一点的值,对于一个测试点 z, 如何用 $\phi(x_i)$ 所在空间的决策超平面预测其正负?

• 若 SVM 在 x 的特征空间的最优线性决策边界为

$$\boldsymbol{\omega}^{\star\top} \boldsymbol{x} + \boldsymbol{b}^{\star} = 0$$

当测试点 z 满足 $\omega^{*\top}z + b^* \ge 0$, 预测其为正, 反之为负

• 由拉格朗日不动性条件 (11)可得 $\omega^* = \sum_{i=1}^n \alpha_i^* y_i x_i$, 则最优决策边界可写为:

$$\sum_{i=1}^{n} \alpha_i^* y_i \mathbf{x}_i^\top \mathbf{x} + b^* = 0$$
 (19)

• 注意到(19)只用到点的内积 $\mathbf{x}_i^{\mathsf{T}}\mathbf{x}$,因此在 $\phi(\mathbf{x})$ 的空间中,最优决策 超平面应具有以下形式:

$$\sum_{i=1}^{n} \alpha_i^{\star} y_i \mathcal{K}_{\phi}(\mathbf{x}_i, \mathbf{x}) + b^{\star} = 0$$
 (20)

• (20)中 b^* 可以从某个 $0 < \alpha_j^* < C$ 对应的观察点 $(\phi(\mathbf{x}_j), y_j)$ 处计算得到:

$$b^* = y_j - \boldsymbol{\omega}^{*\top} \phi(\mathbf{x}_j) = y_j - \sum_{i=1}^n \alpha_i^* y_i \phi(\mathbf{x}_i)^\top \phi(\mathbf{x}_j) = y_j - \sum_{i=1}^n \alpha_i^* y_i K_{\phi}(\mathbf{x}_i, \mathbf{x}_j)$$

- (20)在 x 所在的空间一般对应一条曲线或曲面
 - ▶ 如果在(20)中使用多项式核函数,在 x 的空间就得到一条多项式决策 边界
- 对于测试点 z, 如果 $\sum_{i=1}^n \alpha_i^* y_i K_\phi(\mathbf{x}_i, \mathbf{z}) + b^* \geq 0$, 预测其为正,反之为负
- 以上分析表明,不需要知道映射 $\phi(\cdot)$ 的具体形式,只需要定义一个核函数 $K(\cdot,\cdot):\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}$ 就可以得到 SVM 的决策边界

如何证明确实存在一个映射 $\phi(\cdot)$ 使得 $K(x,z) = \phi(x)^{\top}\phi(z)$?

- 首先考察核函数需要具备的必要条件
 - ▶ $K(\cdot,\cdot)$ 需要满足对称关系 K(x,z) = K(z,x)
 - ▶ 对 \mathbb{R}^d 上的任意 n 个点 $\mathbf{x}_1, \ldots, \mathbf{x}_n$, 定义矩阵

$$\mathbf{K} = \left(\mathbf{K}_{ij}\right)_{n \times n} \tag{21}$$

其中 $K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$. 此时对 $\forall \mathbf{z} \in \mathbb{R}^d$, $\mathbf{z}^\top K \mathbf{z} \geq 0$, 因此矩阵 K 是一个半正定矩阵

定理 (Mercer)

函数 $K(\cdot,\cdot):\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}$ 是一个有效核函数的充分必要条件是:对 \mathbb{R}^d 上的任意有限个点 $\mathbf{x}_1,\ldots,\mathbf{x}_n$ 由(21)定义的矩阵 \mathbf{K} 是一个对称半正定矩阵.

SVM 中一个常用的核函数是高斯核函数 (Gaussian kernel):

$$K(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma^2}\right)$$
 (22)

- ▶ (22)反映了点 x 和 z 的相似度
- ▶ (22)对应的映射 $\phi(\cdot)$ 将原特征映射到一个无穷维空间
- 核函数的应用不仅限于 SVM,只要一个算法仅用到特征的内积 $\mathbf{x}^{\mathsf{T}}\mathbf{z}$,就可以将其替换为一个核函数 $K(\mathbf{x},\mathbf{z})$,从而能在更高维的空间继续使用该算法,这个方法被称为**核函数技巧 (kernel trick)**