CS 3640: Introduction to Networks and Their Applications

Fall 2023, Lecture 10: Addressing in the network layer

Instructor: Rishab Nithyanand

Teaching Assistant: Manisha Keim

Announcements

• Assignment 2 due 9/28.

Assignment 3

- Releasing on 9/28. Due on 10/12.
- First group programming project.
 - Socket programming to implement ping and traceroute.
 - 2-5/group. Declare groups to Manisha and me by ICON message before 10/2.

Today's class

1.

The role of the network layer

2.

Network layer addressing

What the network layer does

• It connects multiple LANs with each other.

- Facilitate communication between incompatible link layers (e.g., Wi-Fi and Ethernet networks).
- The connected networks are an "internetwork". Example: The Internet.
- Interconnections are made using network-layer devices called "routers".

The structure of the Internet

- The Internet is a collection of interconnected networks.
 - It is not organized to have a specific topology and technologies in each network vary significantly.
 - Packets travel from source to destination by hopping through networks
 - Routers "peer" (connect) with different networks
 - At each hop a router sends packets to one of its peer networks
 - Remember: The Internet is packet-switched
 - Discuss: What are the implications of this?
 - Packets between the same source and destination can take different routes.

Forwarding (link layer) vs. Routing (network layer)

- Discuss: How do you plan a long road trip from Iowa City to New York City?
- You plan the trip at a high-level: We'll drive from Iowa to Illinois to Ohio to Pennsylvania to New Jersey to New York.
 - This is routing: What should be the next state (network) we travel to?
- Then you plan the day-to-day bits: We'll use Hwy 6 to get to the I-80 ramp, then take exit X to get on the I-76.
 - This is forwarding: How can we reach the next state (network) from where we are?

Functions of the network layer

- What are the functions of the network layer?
 - Addressing: How do we specify who we want to talk to on the Internet?
 - Routing: How do we make sure our packets get to their destination?
- Discuss: Why not use the link layer? It does both of these for LANs.
 - Link layer protocols were not designed to be scalable to billions of end-hosts.
 - Link layers can be different in different networks!
- What makes the network layer special?
 - The core protocols are implemented in every host and router on the "internet"! There is no communication between networks without the network layer.
 - Discuss: What kind of service guarantees can the network layer provide if it has to serve every network on the Internet?

Today's class

1.

The role of the network layer

2.

Network layer addressing

Addressing options

- Discuss: How did LANs deal with addressing? Why doesn't that work on the Internet?
 - LANs relied on a "flat" addressing scheme.
 - A unique, essentially **random**, 48-bit string for each device.
 - Problem: Each router has to remember how to reach every other device on the Internet (~23 Billion).
- Discuss: How do we deal with addressing in the physical world?
 - We use a hierarchical addressing scheme.
 - Country (least specific) State City Street Building Apartment Person (most specific).
 - Mail routing offices along the way only need to know how to reach the region at some specificity.
 - E.g., UPS New York only needs to know how to get the parcel to UPS Iowa. UPS Iowa needs to get the parcel to UPS Iowa City.

Network layer addressing

• The Internet uses a hierarchical addressing scheme.

IP addressing

- Every device on the Internet has an "IP address"
 - IP (Internet Protocol) is **THE** network layer protocol.
 - There is no Internet without IP!
- IPv4: 32 bit strings
 - They are usually written in dotted notation. Example: 192.168.0.1
 - Each of these numbers is a byte.

Routing tables

- Routing tables contain information to help packets get to their destination.
 - Requirement: For ANY IP address, be able to give the next hop.
- 32 bit addresses: 2³² addresses! Cannot store next hop info for each address.
- Problem isn't just storage. Also speed of lookup.
 - 4 10G ports operating at capacity will require 176Gbps memory bandwidth!
 - DRAM is 6 Gbps.
 - Need to hit caches and have smaller tables.

Hierarchy in IP addressing

• Each IP address has a "network" string known to all routers and a "host" string known to edge routers (access networks).

- How long is the network string and host string?
 - Depends on the "class" of the network.

Classes of IP addresses/networks

- IANA (Internet Assigned Number Authority) assigns IP addresses.
- You can apply, get a class, and start installing routers that advertise routes to addresses in your class.

Hierarchy in IP addressing

The hierarchy of IP addresses

Hierarchy in IP addressing

• Discuss: Do IP address classes solve our problem of memory on routing devices? Why or why not?

Way too big for access networks to remember

Class	Prefix Bits	Network Bits	Number of network classes	Hosts per network clas.
A	1	7	$2^7 - 2 = 126$ (0 and 127 are reserved)	$2^{24} - 2 = 16,777,214$ (All 0 and all 1 are reserved)
В	2	14	2 ¹⁴ = 16,398	$2^{16} - 2 = 65,534$ (All 0 and all 1 are reserved)
С	3	21	2 ²¹ = 2,097,512	$2^8 - 2 = 254$ (All 0 and all 1 are reserved)
			Total: 2,114,036	

Too many network IDs for every router to remember

The problem with class-based hierarchies

- Problem: Too many hosts to remember for Class A and Class B access network routers.
 - Discuss: How would you fix this?

Way too big

Class	Prefix Bits	Network Bits	Number of network classes	Hosts network class
Α	1	7	$2^7 - 2 = 126$ (0 and 127 are reserved)	$2^{24} - 2 = 16,777,214$ (All 0 and all 1 are reserved)
В	2	14	2 ¹⁴ = 16,398	$2^{16} - 2 = 65,534$ (All 0 and all 1 are reserved)
С	3	21	2 ²¹ = 2,097,512	$2^{8} - 2 = 254$ (All 0 and all 1 are reserved)
			Total: 2,114,036	

Reducing router storage with subnets

- Problem: Too many hosts to remember for Class A and Class B access network routers.
- Solution: Tack on another layer to the hierarchy.
 - Each "network" manages many "subnetworks".
 - The number of hosts in each subnetwork is much smaller.
 - Each access network router only needs to know how to reach a subnet.
 - Each subnet router only needs to know how to reach hosts in it.
 - If it seems like everything on the Internet is a patched solution, its because it is! The designers did not foresee needing to store 1000s of entries on routers.

Reducing storage with subnets

Subnet masks and routing tables

- A subnet "mask" is a 32 bit string.
 - 1s as long as the prefix+network+subnet parts of the IP address. It is used by routers to indicate which hosts are reachable in a subnet.

Address Prefix	Subnet Mask	Prefix After Masking (in Binary)	Next Hop
0.0.0.0	0.0.0.0	****** ****** ****** ****	Port 4
18.0.0.0	255.0.0.0	00010010 ******* ****** ******	Port 2
128.42.0.0	255.255.0.0	10000000 00101010 ******* ******	Port 3
128.42.128.0	255.255.128.0	10000000 00101010 1****** ******	Port 5
128.42.222.0	255.255.255.0	10000000 00101010 11011110 ******	Port 1

- Discuss: We need to send a packet to 128.42.222.198. This entry is satisfied by 4 entries in the routing table. Which entry should I use? Why?
 - Match the longest prefix. The row with the longest string of 1s in the subnet mask. It gets me closest to the destination.

The limitations of subnetting

- Discuss: Do subnets solve the problem of having too many network classes?
 - No! We have less number of hosts in a class, but a router still needs to know (at least) every network which is allocated a class (at least 2.1 M).

Class	Prefix Bits	Network Bits	Number of network classes	Hosts per network class
А	1	7	$2^7 - 2 = 126$ (0 and 127 are reserved)	$2^{24} - 2 = 16,777,214$ (All 0 and all 1 are reserved)
В	2	14	2 ¹⁴ = 16,398	$2^{16} - 2 = 65,534$ (All 0 and all 1 are reserved)
С	3	21	2 ²¹ = 2,097,512	$2^{8} - 2 = 254$ (All 0 and all 1 are reserved)
			Total: 2,114,036	

Way too big

Reducing routing table sizes with CIDR (Classless Inter Domain Routing)

- Key idea: Get rid of IP classes in routing tables.
- Create an arbitrary split between networks and hosts.
 - The split is specified by a bitmask (net mask).
- CIDR representation example:
 - Let 129.10.0.1 be our host IP. Let 255.255.0.0 be our net mask
 - Host IP: 10000001 00001010 00000000 00000001
 - Net mask: 11111111 11111111 00000000 00000000
 - CIDR representation: 129.10.0.1 & 255.255.0.0: 129.10.0.0/16
 - Saying you can route to 129.10.0.0/16 means you're saying you can reach all IPs which have a CIDR representation of 129.10.0.0/16
 - this includes 129.10.0.0/17, ..., 129.19.0.0/32.

Reducing routing table sizes with CIDR (Classless Inter Domain Routing)

Prefix	Netmask	Prefix After Masking (in Binary)	IP Address Range
207.46.0.0	19	11001111 00101110 000***** ******	207.46.0 – 31.*
207.46.32.0	19	11001111 00101110 001***** ******	207.46.32 - 63.*
207.46.64.0	19	11001111 00101110 010***** ******	207.46.64 – 95.*
207.46.128.0	18	11001111 00101110 10***** ******	207.46.128 – 191.*
207.46.192.0	18	11001111 00101110 11***** ******	207.46.192 – 255.*

Hole in the Routing Table: No coverage for 96 – 127 Missing entry: 207.46.96.0/19

Reducing routing table sizes with CIDR (Classless Inter Domain Routing)

Same length netmask		All bits match except for the last one	Same port
Prefix	tmask	Prefix After Maskir	Next Hop
207.46.0.0	17	11001111 00101110 0****** ******	Port 1
207.46.128.0	18	11001111 00101110 10***** ******	Port 2
207.46.192.0	18	11001111 00101110 11***** ******	Port 3

Aggregation allows multiple routes to be compressed together to shrink the size of the routing table

Size of CIDR routing tables: ~450K entries for the entire internet

What you should remember from this lecture

- Why doesn't "flat addressing" work on the Internet? What does?
 - Flat addressing is not scalable. Too many routing table entries for every router.
 - Hierarchical addressing scales better. Don't need to have entries for all routers.
 - Need highly specific information only for routers in their own network.
- Class-based addressing is too coarse.
 - Class A networks are too big for access network routers.
 - Class C networks are too many for everyone else.
- CIDR introduces arbitrary hierarchies using netmasks.
 - Improves scalability by allowing more aggregation at routers.
- At each hop routing decisions are made using "longest prefix matching".

