Mountain Jump

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

It's vacation time for John! To recover his energy, he decided to climb some mountains on I.C.M.C. (Iconical Chilean Mountain Chain).

The chain contains n mountains, labeled from 1 to n. John is not interested in visiting every mountain - he just wants to start on the first mountain and reach the last one, performing some jumps.

Each mountain i has a height h_i . If John is currently on mountain i, he can choose one of the following:

- If $i+1 \le n$, he can jump from mountain i to i+1, using $|h_i-h_{i+1}|$ units of energy;
- If $i + 2 \le n$, he can jump from mountain i to i + 2, using $|h_i h_{i+2}|$ units of energy (skipping mountain i + 1).

As John is on vacation, he doesn't want to waste more energy than enough to experience the path from mountains 1 to n. What is the minimum required energy to perform his journey?

Input

The first line contains n ($1 \le n \le 10^5$), the number of mountains.

The second line contains n integers h_i ($1 \le h_i \le 10^4$), the height of the mountains.

Output

Print the minimum possible total energy cost incurred.

Examples

standard input	standard output
4	30
10 30 40 20	
2	0
10 10	
6	40
30 10 60 10 60 50	

Note

In the first test case, John will do the following path: $1 \to 2 \to 4$, and the cost is: |10-30|+|30-20|=30. In the second case, the path is $1 \to 2$ and the cost is |10-10|=0.

The path for the third case is $1 \to 3 \to 5 \to 6$.