Københavns Universitet. Økonomisk Institut

1. årsprøve 2014 S-1A ex ret

Skriftlig eksamen i Matematik A

Onsdag den 11. juni 2014

Rettevejledning

Opgave 1. Rentesregning.

I et pengeinstitut er terminsrenten r>0, og i n på hinanden følgende terminsdage indsættes beløbet a>0 på en konto i dette pengeinstitut. Vi antager, at $n\geq 2$.

Der er her tale om en opsparingsannuitet.

Efter at den sidste indbetaling på kontoen er foretaget, er saldoen A_n .

(1) Vis, at

$$A_n = a + a(1+r) + a(1+r)^2 + \ldots + a(1+r)^{n-1} = \frac{a}{r} ((1+r)^n - 1).$$

Løsning. Siden man første gang indsatte beløbet a i pengeinstituttet, er der gået n-1 terminer, og derfor er dette beløb vokset til $a(1+r)^{n-1}$. På tilsvarende måde ser vi, hvor meget de senere indsatte beløb vokser i løbet af forrentningsperioden. Sidste gang, hvor vi indsætter beløbet a, gør vi kontoen op, og derfor er dette sidst indsatte beløb ikke blevet forrentet.

Saloden på kontoen er derfor

$$A_n = a + a(1+r) + a(1+r)^2 + \dots + a(1+r)^{n-1}.$$

Da r > 0, er fremskrivningsfaktoren 1 + r > 1, så

$$A_n(1+r) = a(1+r) + a(1+r)^2 + \ldots + a(1+r)^{n-1} + a(1+r)^n,$$

og heraf får vi, at

$$A_n - A_n(1+r) = -A_n r = a - a(1+r)^n = a(1-(1+r)^n).$$

Det er nu klart, at

$$A_n = -\frac{a}{r} (1 - (1+r)^n) = \frac{a}{r} ((1+r)^n - 1).$$

(2) I det samme pengeinstitut indsættes på en terminsdag en kapital S, og denne kapital forrentes i n terminer, så den vokser til beløbet S_n . Bestem S udtrykt ved a, r og n, så $S_n = A_n$.

Løsning. Da
$$S_n = S(1+r)^n$$
, får vi, at

$$S_n = A_n \Leftrightarrow S(1+r)^n = \frac{a}{r} ((1+r)^n - 1) \Leftrightarrow S = \frac{a}{r} (1 - (1+r)^{-n}).$$

Opgave 2.

(1) Udregn de ubestemte integraler

$$\int \frac{x}{x^2 + 1} dx$$
, $\int \frac{\cos x}{10 + \sin x} dx$ og $\int \frac{e^x}{(3 + e^x)^2} dx$.

Løsning. Vi finder, at

$$\int \frac{x}{x^2 + 1} dx = \frac{1}{2} \int \frac{1}{x^2 + 1} d(x^2 + 1) = \frac{1}{2} \ln(x^2 + 1) + k, \text{ hvor } k \in \mathbf{R},$$

$$\int \frac{\cos x}{10 + \sin x} dx = \int \frac{1}{10 + \sin x} d(10 + \sin x) = \ln(10 + \sin x) + k, \text{ hvor } k \in \mathbf{R}$$
og
$$\int \frac{e^x}{(3 + e^x)^2} dx = \int \frac{1}{(3 + e^x)^2} d(3 + e^x) = -\frac{1}{3 + e^x} + k, \text{ hvor } k \in \mathbf{R}.$$

(2) Bestem værdien af det uegentlige integral

$$\int_0^\infty \frac{e^x}{(3+e^x)^2} \, dx.$$

Løsning. På baggrund af resultatet i ovenstående spørgsmål får vi, at

$$\int_0^\infty \frac{e^x}{(3+e^x)^2} \, dx = \left[-\frac{1}{3+e^x} \right]_0^\infty = \frac{1}{4}.$$

(3) Bestem tallet k, så

$$\int_0^\infty \frac{ke^x}{(3+e^x)^2} \, dx = 1.$$

Det er oplagt, at k = 4.

Opgave 3. Vi betragter den funktion $f: \mathbb{R}^2 \to \mathbb{R}$, som har forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = e^x + y^2 - y^3.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

i et vilkårligt punkt $(x, y) \in \mathbf{R}^2$.

Løsning. Vi finder, at

$$\frac{\partial f}{\partial x}(x,y) = e^x \text{ og } \frac{\partial f}{\partial y}(x,y) = 2y - 3y^2.$$

(2) Bestem værdimængden R(f) for funktionen f.

Løsning. Vi finder, at

$$f(0,y) = 1 + y^2(1-y) \to \overline{+}\infty \text{ for } y \to \pm \infty,$$

hvoraf det fremgår, at værdimængden for f er $R(f) = \mathbf{R}$.

Vi definerer herefter den funktion $g: \mathbf{R} \to \mathbf{R}$, som har forskriften

$$\forall x \in \mathbf{R} : g(x) = f(x, x).$$

(3) Bestem Taylorpolynomiet P_3 af tredje orden for funktionen g ud fra punktet $x_0 = 0$. Dette polynomium kaldes også Maclaurinpolynomiet af tredje orden for funktionen g.

Løsning. Vi ser, at $g(x) = e^x + x^2 - x^3$, så

$$g'(x) = e^x + 2x - 3x^2$$
, $g''(x) = e^x + 2 - 6x$ og $g'''(x) = e^x - 6$.

Da får vi, at

$$P_3(x) = g(0) + g'(0)x + \frac{g''(0)x^2}{2} + \frac{g'''(0)x^3}{6} = 1 + x + \frac{3x^2}{2} - \frac{5x^3}{6}.$$