BooW-VTON: Boosting In-the-Wild Virtual Try-On via Mask-Free Pseudo Data Training

arXiv, 2024

5 citations

Tianjin University, Alibaba Group

02. **METHOD**

03. **EXPERIMENTS**

Virtual Try-On

- Aims to generate realistic try-on images of a specific person while preserving the original pose and body feature in source images
- Issue
 - Render garments onto correct human body parts while preserving non try-on contents
 - E.g., body structure, external objects

Previous works

- Extract human pose parser to maintain a structure of output person
- Utilize an independent image warping modules to deform garment images

Current works

- Encode garment images and human pose using pre-trained encoders
- Utilize the powerful diffusion models

Problem

• Existing methods require masking the person image → significant loss of spatial information

Current works 2

- TPD mitigates information loss by reducing the mask area through precise mask
- Fails to fully resolve the issues caused by mask

Contribution

- Propose BooW-VTON, a mask-free in-the-wild virtual try-on diffusion model without any additional parser
 - In the-wild data augmentation
 - Try-on localization loss

Overview

(a) Pseudo Data Prepare

- Paired setting: $P\&G \rightarrow P$
- Unpaired setting: $P\&G' \rightarrow P'$

P: person image

P': result of person P wearing garment G'

G: garment worn by the P

G': another garment image different from G

- The results P_{mid} contain imperfections caused by the mask
- Adopt a two-stage inference approach
- For next step: $\{P, P', M\}$

(a) Pseudo Data Prepare

Model: IDM-VTON with IP-Adapter

(b-i) In-the-Wild Augmentation

- $\{P, P', M\}$: simple try-on samples
- Background: T2I model SDXL

(a) Generation of Background

{ } in a china garden
{ } in a snowy winter landscape with pine trees
{ } in a bustling urban street scene

(b-i) In-the-Wild Augmentation

P: person image P': result of person P wearing garment G'

(b-i) In-the-Wild Augmentation

- SDXL vs SD
 - X3 U-Net backbone
 - Two text encoders
 - Refinement model

Table 1: Comparison of SDXL and older Stable Diffusion models.

Model	SDXL	SD 1.4/1.5	SD 2.0/2.1
# of UNet params	2.6B	860M	865M
Transformer blocks	[0, 2, 10]	[1, 1, 1, 1]	[1, 1, 1, 1]
Channel mult.	[1, 2, 4]	[1, 2, 4, 4]	[1, 2, 4, 4]
Text encoder	CLIP ViT-L & OpenCLIP ViT-bigG	CLIP ViT-L	OpenCLIP ViT-H
Context dim.	2048	768	1024
Pooled text emb.	OpenCLIP ViT-bigG	N/A	N/A

(b-i) In-the-Wild Augmentation

- $\{P, P', M\}$: simple try-on samples
- Foreground: LayerDiffusion

Colorful balloons, helium-filled, shiny and reflective Sunflower bouquet, vibrant yellow, lush green stems Vintage bicycle, red paint, woven wicker basket

(b-i) In-the-Wild Augmentation

P: person image P': result of person P wearing garment G'

(b-i) In-the-Wild Augmentation

LayerDiffusion

Inference:

(a) & (b-ii)

• Create in-the-wild unpaired dataset

(b-ii) Mask-Free Try-On Model

- Try-On U-Net: SDXL
- IP-Adapter: garment & text encoder
- Reference U-Net: garment encoder

P: person image Z_t : latent code at time-step t G: garment worn by the P ε : encoder

Try-on localization loss

• Help the model correctly identify try-on areas

$$\mathcal{L}_{\mathrm{ar}} = \frac{1}{n} \sum_{k=1}^{n} \mathrm{mean}(A_k(1 - M^{Aug})).$$

Try-on localization loss

• Help the model correctly identify try-on areas

$$\mathcal{L}_{ar} = \frac{1}{n} \sum_{k=1}^{n} \operatorname{mean}(A_k(1 - M^{Aug})).$$

Try-on localization loss

• Help the model correctly identify try-on areas

$$\mathcal{L}_{\mathrm{ar}} = rac{1}{n} \sum_{k=1}^{n} \mathrm{mean}(A_k(1 - M^{Aug})).$$

Try-on localization loss

• Help the model correctly identify try-on areas

$$\mathcal{L}_{ar} = \frac{1}{n} \sum_{k=1}^{n} \operatorname{mean}(A_k(1 - M^{Aug})).$$

The information of the garment should be within try-on areas

Baselines

DCI-VTON, LaDI-VTON, CAT-DM, StableVITON, TPD, OOTD, IDM-VTON

Datasets

Dataset	Images	Resolution	Pairs	Wild Back	Wild Fore
VITON-HD	2032	1024×768	1	×	X
DressCode	1800×3	1024×768	1	×	X
StreetVTON	2089	Various	X	✓	×
WildVTON	1224	Various	X	✓	✓

Evaluation metric

- Paired setting: LPIPS, SSIM, PSNR
- Unpaired setting: FID, KID

Occlusion (VITON-HD), accessories (StreetVITON), Tattoo (WildVTON)

- DressCode
 - Muscle details
 - Characteristics of skirt

• Base mask-free: distillation from **IDM-VTON** → in-the-wild

Testsets		VITON-HD			StreetVTON		WildVTON					
Model		LPIPS ↓	SSIM ↑	PSNR ↑	$\mathbf{FID}_{\mathrm{p}}\downarrow$	$KID_p \downarrow$	$\textbf{FID}_u \downarrow$	KID _u ↓	$\overline{\mathbf{FID}_{\mathrm{u}}}\downarrow$	$\mathbf{KID}_{\mathrm{u}}\downarrow$	$\mathbf{FID}_{\mathrm{u}}\downarrow$	$KID_u \downarrow$
DCI-VTON	MM2023	0.1800	0.8545	19.27	24.05	16.44	8.998	1.187	20.95	3.470	35.66	4.649
LaDI-VTON	MM2023	0.2014	0.8395	18.69	9.746	2.599	11.08	2.634	24.12	5.638	44.54	9.203
CAT-DM	CVPR2024	0.1621	0.8391	20.45	9.336	2.294	10.28	1.980	25.84	6.879	42.16	8.374
TPD	CVPR2024	0.1822	0.8516	20.75	13.07	7.880	13.82	6.641	23.02	4.671	45.37	14.67
StableVITON	CVPR2024	0.1479	0.8519	21.72	8.926	2.538	9.851	1.727	23.15	4.628	42.32	8.194
OOTD	Q 5.9k stars	0.1420	0.8301	19.20	8.136	1.469	12.19	2.682	27.00	7.473	40.68	5.606
IDM-VTON	ECCV2024	0.1223	0.8547	21.06	8.594	2.529	9.265	1.272	23.62	6.181	38.77	7.686
Base mask-free		0.1206	0.8529	20.60	8.766	2.611	9.467	1.493	28.81	8.026	57.52	18.59
+H.Q. pseudo data		0.1101	0.8597	21.37	6.896	1.580	9.191	1.120	27.26	7.616	56.14	18.31
+Wild augmentation		0.1173	0.8589	21.23	7.405	1.405	9.204	1.089	21.70	5.170	35.62	6.180
$+L_{ar}$ (Full Model)		0.1080	0.8618	21.80	6.885	1.366	8.809	0.8176	20.50	4.494	32.53	4.509

- Ablation study
 - Wild Aug & Loss: preservation of non-try-on content

- Ablation study
 - 1, 15, 30 denoising step
 - Self-attention layer in 35th attention block

Application

(a) Prompt Controlled Try-On

(b) Full-Body Try-On

Limitation

