

Workshop 12

COMP90051 Machine Learning Semester 2, 2018

Agenda

- 1. Worksheet 12 (35 min)
 - * Exercises on PGMs
 - * Pen and paper
- 2. Stan demo (15 min)
 - * Inference for nuclear power plant example
 - * (Optional) install Stan and follow along

Worksheet 12

Probabilistic Graphical Models

Q1: Bayes net

For the following Bayes nets:

- write down the factorised joint distribution
- count the # of free parameters in the CPTs (assuming each variable is Boolean).

Q1: Bayes net

Joint distribution:

$$p(A, B, C, D, E) = p(E|C, D)p(D|C, B)p(C|A, B)p(A)p(B)$$

CPTs:

Node	# free params
Α	$2^0 = 1$
В	$2^0 = 1$
С	$2^2 = 4$
D	$2^2 = 4$
Ε	$2^2 = 4$
Total	14

Q1: Bayes net

Joint distribution:

$$p(A, B, C, D) = p(D|A, B, C)p(C|A, B)p(A)p(B)$$

CPTs:

Node	# free params
А	$2^0 = 1$
В	$2^0 = 1$
С	$2^2 = 4$
D	$2^3 = 8$
Total	14

Q2: Variable elimination

- Leo's house has an alarm to detect burglars
- The alarm is occasionally set off by an earthquake
- Leo's neighbours John and Mary (who don't know each other) sometimes call if they hear the alarm
- If Leo receives a call from John and Mary, what's the likelihood his house has been burgled?

Q2: Variable elimination

- Query analysis:
 - * Query nodes: Burglary
 - * Evidence (observed) nodes: JohnCalls, MaryCalls
 - * Latent (unobserved) nodes: Earthquake, Alarm
- Need to compute p(B|j,m) Here lowercase means the observed value
- Bayes' rule gives

$$p(B|j,m) = \frac{p(B,j,m)}{p(j,m)}$$

 Use the full joint distribution + marginalisation to compute the numerator and denominator

Q2: Variable elimination

Numerator:

$$p(B,j,m) = \sum_{E} \sum_{A} p(A,B,E,j,m) = p(B) \underbrace{\sum_{E} p(E) \underbrace{\sum_{A} p(A|B,E) \underbrace{p(j|A)p(m|A)}_{f_{j,m}(B,E)}}}_{f_{j,m}(B,E)}$$

$$f_{j,m}(A) = \begin{cases} A & f_{j,m}(A) \\ 0 & 0.0005 \\ 1 & 0.63 \end{cases}$$

A	p(j A)
0	0.05
1	0.90

A	p(m A)
0	0.01
1	0.70

X

	В	E	$f_{j,m}(B,E)$
	0	0	0.0011295
$f_{j,m}(B,E) =$	0	1	0.183055
$J_{J,m}(D,L)$ —	1	0	0.59223
	1	1	0.598525

		p(A I)	B, E)
В	E	A=0	A=1
0	0	0.999	0.001
0	1	0.71	0.29
1	0	0.06	0.94
1	1	0.05	0.95

Marginalising over A

,	A	$f_{j,m}(A)$
	0	0.0005
	1	0.63

Marginalising

Q2: Variable elimination

	$f_{j,m}(B,E)$		
В	E=0	E=1	
0	0.0011295	0.183055	
1	0.59223	0.598525	

		ove	r
/			
	E	p(E)	
	0	0.98	
X	1	0.02	

$$p(B,j,m) = \begin{array}{c} B & p(B) \\ \hline 0 & 0.0047203299 \\ \hline 1 & 0.005923559 \end{array}$$

B	p(B)
0	0.99
1	0.01

В	$f_{j,m}(B)$
0	0.00476801
1	0.5923559

Denominator:

$$p(j,m) = \sum_{B} p(B,j,m) = 0.0047203299 + 0.005923559 = 0.0106438889$$

Putting the results together:

$$p(B=1|j,m) = \frac{p(B=1,j,m)}{p(j,m)} = \frac{0.005923559}{0.0106438889} = 0.5565$$

Q3: Independence

Returning to the previous Bayes net:

- Are the 'Burglary' and 'Earthquake' nodes independent?
- What if we observe 'MaryCalls' = T?
- What if we observe 'Alarm' = T?

Q3: Independence

• (Marginal) independence:

$$p(B,E) = p(B)p(E) \underbrace{\sum_{A} p(A|B,E) \underbrace{\sum_{J} p(J|A)}_{=1} \underbrace{\sum_{M} p(M|A)}_{=1}}_{=1}$$

$$= p(B)p(E)$$

(Conditional) independence when 'MaryCalls' = T:

$$p(B, E|m) \propto p(B)p(E) \sum_{A} p(A|B, E) \underbrace{\sum_{J} p(J|A)}_{=1} p(m|A)$$

$$\neq p(B|m)p(E|m)$$

(Conditional) independence when 'Alarm' = T:

$$p(B, E|a) \propto p(B)p(E)p(a|B, E) \underbrace{\sum_{J} p(J|a)}_{=1} \underbrace{\sum_{M} p(M|a)}_{=1}$$

$$\neq p(B|a)p(E|a)$$

Hint: see supplemental slides 'Independence in PGMs' for graphical rules

Stan Demo

What is Stan?

- A probabilistic programming language
- Workflow:
 - * declare data and parameters
 - * declare log posterior
 - Stan automates the inference (MCMC, VB or MLE)
- Interfaces for R, Python, MATLAB, Julia, Stata
- Official website: http://mc-stan.org
- Learn more: <u>slide deck</u>

Some alternatives:

- PyMC3 (soon PyMC4)
- TensorFlow probability

Nuclear power plant demo

See nuclear. Rmd