ORDER NO. KMS0104563C1

Service Manual

DIGITAL PROPRIETARY TELEPHONE

KX-T7453 / KX-T7453B **White Version Black Version** (for U.S.A.)

SPECIFICATIONS

■ SPECIFICATIONS

Station Loop Limit: Cabling Method: Jacks: Display: Dimensions: Weight:

40 ohms 2 pair wire

Main Unit, Handset/Headset, Telephone 16 digits (max.)

208 (W) x 105 (H) x 232(D) mm with handset 1.03 kg

Design and specifications are subject to change without notice.

Panasonic[®]

1. CAUTION

Note:

When you note the serial number, write down all of the 11 digitals.

The serial number may be found on the label affixed to the bottom of the unit.

2. FOR SERVICE TECHNICIANS

- 1. Note the following items when exchanging the LEDs (Ref. No. D100-130, D201, D202) of Dial P.C. Board.
 - 1) Do not reuse a LED which is removed from the P.C. Board.
 - 2) Use a soldering iron (less than 15 W) for exchanging LED.
 - 3) Do not heat the LED for more than 2 seconds.
 - 4) Do not move the LED after soldering.
- 2. This unit employs the switch which is influenced by the light for the hook switch.

When you open the cabinet to repair the unit in the bright light, the hook switch might work improperly.

Therefore, take care not to shine the hook switch directly, or use the jig as shown below.

3. LOCATION OF CONTROLS

4. DISASSEMBLY INSTRUCTIONS

4.1. HOW TO REMOVE THE LOWER CABINET

(Procedure 1)

- (1) Remove the 4 screws A.
- (2) Remove the lower cabinet.

4.2. HOW TO REMOVE THE HOOK BUTTON

(Procedure 1 \rightarrow 2)

(1) Remove the hook button.

4.3. HOW TO REMOVE THE SWITCH AND MAIN BOARDS

(Procedure 1 \rightarrow 2 \rightarrow 3)

- (1) Remove the screws A.
- (2) Pull out the switch board connector.
- (3) Remove the switch board.
- (4) Pull out the flat cable. (See Fig. 1)
- (5) Remove the 2 screws B.
- (6) Pull out the speaker and microphone connectors.
- (7) Remove the main board.

4.4. HOW TO REMOVE THE LCD BOARD

(Procedure 1 → 4)

- (1) Pull out the flat cable. (See Fig. 1)
- (2) Remove the LCD block. (See Fig. 2)
- (3) Remove the 2 screws A.
- (4) Remove the lower cabinet.
- (5) Remove the LCD board.

5. IC DATA

5.1. IC1

Name	Pin	Dir.	Pull Up	Туре	lo	Act.	Block	MHz	Descriptions
DB3	2	bidir		TTL	8.0mA	high	PT5B03	2.0	Data Bus [3]
DB3	3	bidir		TTL	8.0mA	high	PT5B03	2.0	Data Bus [2]
DB2	4	bidir		TTL	8.0mA	high	PT5B03	2.0	Data Bus [1]
DB1	5	bidir		TTL	8.0mA	high	PT5B03	2.0	Data Bus [0]
ADR1	6	input	12-38k	TTL	0.0111A	high	PT5D01U	2.0	Address Bus [1]
ADR0	7	input	12-38k	TTL		high	PT5D01U	2.0	Address Bus [0]
CSN	8	input		TTL		low	PT5D01	1.0	Chip Select
REN	10	input	12-38k	TTL		low	PT5D01U	2.0	Read Enable Command
WEN	9	input	12-38k	TTL		low	PT5D01U	2.0	Write Enable Command
RST	63	input		CMOS		high	PC5D21	0.01	Asynchronous Reset Inp
		put		schmidt		9	. 55221	0.0.	/ toynomenous researing
INT0N	11	output		CMOS	2.0mA	low	PC5O01	0.01	Interrupt Request
INT1N	12	output		CMOS	2.0mA	low	PC5O01	0.01	Interrupt Request
DR0	38	input		CMOS		low	PC5D01	0.6	Dpits Receive Data [1]
DR1	39	input		CMOS		low	PC5D01	0.6	Dpits Receive Data [0]
DX0	40	output		CMOS	4.0mA	low	PC5002	0.6	Dpits Transmit Data [1]
DX1	41	output		CMOS	4.0mA	low	PC5002	0.6	Dpits Transmit Data [0]
CK512K	37	output		CMOS	2.0mA	high	PC5001	0.6	Dpits Bit Rate Clock
SR0	19	input	12-38k	TTL		high	PT5D01U	0.1	Serial Receive Data
		-							Stream [0]
SR1	20	input	12-38k	TTL		high	PT5D01U	0.1	Serial Receive Data
									Stream [1]
SX	21	output		CMOS	4.0mA	high	PC5O02	0.1	Serial Transmit Data
									Stream
CK2M	18	output		CMOS	4.0mA	high	PC5002	2.1	Serial Stream Clock
EP0	13	output		CMOS	2.0mA	high	PC5001	0.01	External Channel Pulse
EP1	14	output		CMOS	2.0mA	high	PC5001	0.01	External Channel Pulse
EP2	15	output		CMOS	2.0mA	high	PC5001	0.01	External Channel Pulse
EP3	16	output		CMOS	2.0mA	high	PC5001	0.01	External Channel Pulse
PI	61	input		CMOS		high	PC5D21	0.01	Rotary Encoder Input
114	60	In m4		schmidt		h!arla	DOED04	0.04	[Pos]
NI	62	input		CMOS		high	PC5D21	0.01	Rotary Encoder Input
CLM0	43	Outnut		schmidt CMOS	4 0m A	hiah	PC5O02	0.01	[Neg] LED Column Drive [0]
CLM0	44	output output		CMOS	4.0mA 4.0mA	high high	PC5002 PC5002	0.01	LED Column Drive [1]
CLM1	44	output		CMOS	4.0mA	high	PC5002	0.01	LED Column Drive [2]
CLM3	46	output		CMOS	4.0mA	high	PC5002	0.01	LED Column Drive [3]
CLM4	47	output		CMOS	4.0mA	high	PC5002	0.01	LED Column Drive [4]
CLM5	48	output		CMOS	4.0mA	high	PC5002	0.01	LED Column Drive [5]
NROW0	50	output		CMOS	4.0mA	low	PC5002	0.01	LED Row Drive [0]
	51	output		CMOS	4.0mA	low	PC5O02	0.01	LED Row Drive [1]
NROW1									
NROW2	52	output		CMOS	4.0mA	low	PC5002	0.01	LED Row Drive [2]
NROW3	53	output		CMOS	4.0mA	low	PC5O02	0.01	LED Row Drive [3]
NID CNA/4			1	CMOS	4.0mA	low	PC5002	0.01	LED Row Drive [4]
NROW4	54	output		CIVIOS	T.0111A		. 55552		
NROW4 NROW5	54 55	output output		CMOS	4.0mA	low	PC5O02	0.01	LED Row Drive [5]

NROW7	57	output		CMOS	4.0mA	low	PC5O02	0.01	LED Row Drive [7]
NROW8	58	output		CMOS	4.0mA	low	PC5002	0.01	LED Row Drive [8]
NROW9	59	output		CMOS	4.0mA	low	PC5002	0.01	LED Row Drive [9]
IP0	27	input	12-38k	CMOS		high	PC5D01U	0.01	Input Port [0]
IP1	28	input	12-38k	смоѕ		high	PC5D01U	0.01	Input Port [1]
IP2	29	input	12-38k	CMOS		high	PC5D01U	0.01	Input Port [2]
IP3	30	input	12-38k	CMOS		high	PC5D01U	0.01	Input Port [3]
OP0	23	output		CMOS	4.0mA	high	PC5O02	0.01	Output Port [0]
OP1	24	output		CMOS	4.0mA	high	PC5O02	0.01	Output Port [1]
OP2	25	output		CMOS	4.0mA	high	PC5O02	0.01	Output Port [2]
OP3	26	output		CMOS	4.0mA	high	PC5O02	0.01	Output Port [3]
CK2K	22	output		CMOS	4.0mA	high	PC5O02	0.20	2kHz Clock Output (duty
									25%)
CK16M	36	output		CMOS	2.0mA	high	PC5001	16.4	Master Clock Out
OSI	33	input		Analog			PC5X02	16.4	X'tal In (XIN)
oso	34	output		Analog			PC5X02	16.4	X'tal Out (XOUT)
N.C.	32								not used
N.C.	42								not used
N.C.	60								not used
VDD1	1	vdd							Vdd (5V)
VDD2	31	vdd							Vdd (5V)
VDD3	49	vdd							Vdd (5V)
VSS1	17	vss							Vss (GND)
VSS2	35	vss							Vss (GND)
VSS3	64	vss							Vss (GND)

5.2. IC2

Name	NO.	I/O	Classification	Function
APMP	1	Analog	Analog	Non-inverting input terminal of microphone amplifier M1.
		input		Connect to the microphone.
VREFDA	2		Power.	Reference voltage teminal of DAC.
			supply, etc.	Connect the capacitor of 40 μ F between this terminal and pi (AG2).
AG1	3			Ground terminal of the analog circuit.
HO+	4	Analog	Analog	Output terminal for the handset receiver.
HO-	5	output		HO+ terminal and HO- terminal are biased to Vdd/2 voltage.
				HO- terminal is the inverse porality output terminal for pin 4 (l+).
				Connect the capacitor in series between the handset and the terminals to cut the DC.
				Use the nonpolar type capacitor.
A5V1	6		Power	5V power supply terminal of analog circuit.
A5V2	7	1	supply, etc.	
SPO	8	Analog	Analog	Output treminal for the speaker amplifier.
		output		Connect to the external speaker amplifier input terminal.
				SPO terminal is biased to Vdd/2 voltage.
				Connect the capacitor of 0.1 μ F in series between the extern
				speaker amplifier input terminal and this terminal.
AG2	9		Powers supply, etc.	Ground terminal of the analog circuit.
P/-S	10	смоѕ	Micro-	Mode selection terminal of microcomputer interface.
		input	computer interface	Inputting "0" selects the serial mode, and "1" selects the parallel mode.
-RESET	11			System reset terminal.
				The system is reset when "0" is pressed.
DG1	12		Powers supply, etc.	Ground terminal of the digital circuit.
OP0	13	3 states	Output port	Outputs BIT0 signal of OPORT1 resistor.
OP1	14	output		Outputs BIT1 signal of OPORT1 resistor.
D5V1	15		Powers	5V power supply terminal of digital circuit.
			supply, etc.	,
OP2	16	3 states	11 37	Outputs BIT2 signal of OPORT1 resistor.
OP3	17	output		Outputs BIT3 signal of OPORT1 resistor.
OP4	18	1	Output	Outputs BIT4 signal of OPORT1 resistor.
OP5	19	1		Outputs BIT5 signal of OPORT1 resistor.
OP6	20	1		Outputs BIT6 signal of OPORT1 resistor.
OP7	21	1		Outputs BIT7 signal of OPORT1 resistor.

RXD	22	TTL		Input terminal for PCM data.
TXD	23	input output	_	Output terminal for PCM data
-FSYNC	24	TTL	PCM interface	Input terminal of Sync. signal for PCM interface. The frequence of input sync. signal is 8 kHz.
BCLK	25			Input terminal of shift clock pulse for PCM deta. Input pulse frequency range is 64 kHz~2.048 kHz. PCM data (TXD termianl signal) is output st the positive edge PCM data (RXD terminal signal) is sampled at the negative ed The sameling is performed inside LSI.
MCLK	26	Output	Clock	Clock pulse output terminal. Output pulse frequency is 6.144MHz. System reset (inputting "0" to -RESET terminal) doesn't stop
CLKO	27			this output. Clock pulse output terminal which has selective frequencies. The following 4 frequencies can be selected by resistor settin 12.228, 4.096, 2.048, 1.536 (MHz). System reset (inputting "0" to -RESET terminal) selects the frequency of 1.536MHz and doesn't stop this output.
DG2	28		Power supply, etc.	Ground terminal of digital circuit.
OSCI	29		Clock	Input terminal of oscillation circuit. Connect the oscillator and resistor between this terminal and pin 30 (OSCO), moreover, connect the capacitor between this terminal and digital ground to make the oscillation circuit.
osco	30			Output terminal of oscillation circuit. Connect the oscillator and resistor between this terminal and pin 29 (OSCI), moreover, connect the capacitor between this terminal and digital ground to make the oscillation circuit.
D5V2	31		Power supply, etc.	5V power supply terminal of digital circuit.
-INT	44	Output	Micro- computer interface	Outputs 8 kHz clock pulse which is synchronized with -FSYN
TEST	45	CMOS input	Power supply, etc.	Test terminal Connect to the digital ground.
A5V3	46		1	5V power supply terminal of analog circuit.
HI	47	Analog input	Analog	Input terminal of TX handset signal. Either this signal or the signal supplied to pin 49 (HI) is input AD converter.
VBB	48		Power supply, etc.	Reference voltage terminal of AD converter. Connect the capacitor of 10 μ F between VBB terminal and p 50 (AG3).
MI	49	Analog input	Analog	Input terminal of TX microphone signal. Either this signal or the signal supplied to pin 47 (HI) is input AD converter.

AG3	50		Power	Ground terminal of analog circuit.
A5V4	51		supply, etc.	5V power terminal of analog circuit.
AP2HO	52	Analog		Output terminal of microphone amplofier H2.
		output		Connect the capacitor of 0.1 μ F to this terminal to cut the D
AP2HI	53	Analog		Inverting input terminal of microphone amplofier H2.
		input	Analog	Connect the capacitor of 0.1 μ F to this terminal to cut the D
AP1HO	54	Analog		Output terminal of microphone amplofier H1.
		output		Connect the capacitor of 0.1 μ F to this terminal to cut the D
AP1HN	55	Analog		Inverting input terminal of microphone amplofier H1.
		input		Connect to the handset.
AP1HP	56	Analog input	Analog	Non-inverting input terminal of microphone amplofier H1.
VREFM	57		Power	Reference voltage terminal of microphone amplifier.
			supply, etc.	Connect the capacitor of 40 μ F between this terminal and pi 56 (MICG).
AG4	58			Ground terminal of analog circuit.
APMO	59	Analog		Output terminal of microphone amplifier.
		input	Analog	Connect the capacitor of 0.1 μ F to this terminal to cut the D
APMN	60	Analog		Non-inverting input terminal of microphone amplofier M.
		input		

6. BLOCK DIAGRAM

7. CIRCUIT OPERATIONS

7.1. KEY INPUT CONTROL CIRCUIT

1) Circuit Operation

Sequential input information (negativa logic) from the DSHS proprietary telephone is executed by dynamic scanning.

The ports RR70 to RR73, RR80 to RR83 of IC6 are brought to low status consecutively. If a key is pressed, the key-in information input is executed by ports R91 to R93, RB1, RB11, RB21, RB0, RD1.

Circuit Diagram

Key Input Control Timing Chart

7.2. LCD CONTROL CIRCUIT

1) Circuit Operation

The LCD data is output from pins 32 to 35, 40 to 47 and 11 of IC6.

LCD contrast adjustment is performed by the circuit composed of Q28, Q29, R109, R108 and R106. The contrast is determined only by the voltage level between V5 and VEE of IC202 and IC201. Higher potential makes the contrast high.

LCD Contrast Control

CONTRAST	IC9 Pin 56	IC9 Pin 57
HIGH	H	L
MIDDLE	L	H
LOW	H	H

4-bit Data Transfer Timing Sequence

Data Transfer Timing Sequence

7.3. LED CIRCUIT

1) Circuit Operation

The LED executes dynamic lighting for the status indicators, and control is executed by the output ports C0 to C5 (column) and R0 to R9 of IC1.

A fixed pulse (T=1.82 msec) is output continuously from the/SCK1 terminal of IC9. This pulse is counted and the output of IC1 is shifted sequentially from C0 to C5.

R0 to R7 of IC1 also output pulses, and the lighting of the LED is controlled by the timing of the output ports C0 to C5.

7.4. DATA COMMUNICATION CIRCUIT

1) Function

The data communication circuit serves the following functions:

Information exchanger between the DSHS and DSHS proprietary telephone, key input information as well as data for the LED control, LCD control, etc. This information is continuously exchanged at all

times.

2) Circuit Operation

When the DSHS propritary telephone receives an IRQ signal from the DSHS and after sending the key input information to the DSHS and receiving data for the LED control, etc., the DSHS proprietary telephone will return to the DSHS an acknowledge signal.

3) Reception

The data from the DSHS is received via the H and L lines along the path shown below.

H, L Line
$$\ \ ^{\rightarrow}$$
 T1 $\ \ ^{\rightarrow}$ IC11 Pin 5, 10 $\ \ ^{\rightarrow}$ IC1 Pin 38, 39 $\ \ ^{\rightarrow}$ IC1 Pin 21 $\ \ ^{\rightarrow}$ IC2 Pin 22

4) Transmission

The data to the DSHS proprietary telephone is transmitted along the following path.

IC2 Pin 23
$$\rightarrow$$
 IC1 Pin 20 \rightarrow IC1 Pin 40, 41 \rightarrow Q1, Q2 \rightarrow T1 \rightarrow H, L Line

Circuit Diagram

Timing Chart for D-PITS Transmission

5) IC1 (GATE ARRAY) DPITS Interface

DPITS Layer 1 interface. DR [1:0] is receiving input and DX [1:0] is transmitting output.

Layer 1 is the transmission method of Ping-Pong type which is AMI encoded. "SYNC/MAM/C/D/B1/B2/P" data is received in the first half at 125us/frame. After 1 bit time has passed since receiving P data, "SYNC/MAM/C/D/B1/B2/P" is transmitted. 1 bit time is 512kHz. 7-bit time idle term comes after receiving P data.

Dpits Frame Timing

6) PCM interface (between IC1 and IC2)

PCM interface consists of following 4 terminals.

PCM interface terminal

-FSYNC	8kHz sync. signal input terminal	BCLK	PCM data shift clock input terminal
TXD	TXD data output terminal	RXD	PCM data input terminal

The first PCM data is output from TXD at the positive edge of -FSYNC. The second data and the followings are output at the positive edge of BCLK. After all data of 8 bit are output, the last data is kept until the positive edge of next -FSYNC. The positive edge of BCLK should be within ±100ns from the positive edge of -FSYNC.

The PCM data input from RXD is sampled at the negative edge of BCLK inside LSI. The sampling of the first data is performed between the positive edge of -FSYNC and the first negative edge of BCLK. After completing the sampling of all data of 8 bit, this sampling pauses until the next positive edge of -FSYNC.

Pulse Timing

 $(-100\text{ns} \leq \triangle) \leq +100\text{ns})$

7.5. RESET CIRCUIT

1) Circuit Operation

This circuit is used for transmission of a reset pulse to the CPU (IC6) at the following times, connecting the telephone line jack and circuit operation.

The timing chart is shown below.

Circuit Diagram

The reset signal is negledted.

Timing Chart

7.6. TONE GENERATION CIRCUIT

1) Function

Calling tones, Busy tone, DTMF signal and Key in tone are generated in IC2.

IC2 Block Diagram

DTMF Frequency Table

	_		High Group (IC9 Pin 77)	
		1209 Hz	1336 Hz	1477 Hz
Low	697 Hz	1	2	3
Low Group /IC9 \	770 Hz	4	5	6
Pin 78)	852 Hz	7	8	9
	941 Hz	*	0	#

7.7. JOG DIAL CIRCUIT

1) Circuit Operation

This unit is equipped with the JOG switch, which makes the settings of the volume, function selection speed dial, etc. easy and convenient. This JOG switch consists of 2-phase rotary encoder, and the gate array of IC1 counts the number of the rotation to control. The sampling cycle is 1ms and provided with the chattering protective circuit whose available pulse width is 1ms or more.

These are the rotary encoder inputs, and sampled 1 kHz (1 msec)/cycle. The built-in chattering protective circuit neglects the input pulse of 1 msec or less. The high pulse of 2 msec or more is available. The availability of the pulse with the width of 1~2 msec is not ensured. The changed number of these 2-phase inputs is counted cumulatively. The maximum counting value is 255.

7.8. HOOK SWITCH CIRCUIT

1) Circuit Operation

The hook switch of this unit employs the photo switch consisting of LED and photo transistor. The 2kHz pulse from the gate array of IC2 causes the LED to emit the light. The light is interrupted at ON-HOOK and passes through at OFF-HOOK by the hooking bar,so that the hooking is performed controlling the light of the photo transistor. The detection signal is determined by the microcomputer of IC6.

Circuit Diagram

7.9. HANDSET CIRCUIT

1) Transmission signal path

The analog input signal from the handset microphone is input to the communication LSI through the IC2 built-in analog amplifier. In this LSI the network control based on A/D conversion and the handset software and the gain control based on the down load data from the PBX are performed. The voice data is sent to IC1 by the serial transmission. The voice data is transmitted between PBX and DPITS with the protocol originated by KME.

2) Reception signal path

24

The voice serial data transmitted from PBX is sent to IC1 or IC2 by the serial data. The network control, gain control, A/D conversion is performed in IC2, then the data is output from the handset speaker. Q31 of the handset speaker performs the mute operation by controlling IC6.

3) Circuit diagram for transmission/reception signal path

Refer to page SCHEMATIC DIAGRAM ().

7.10. SP-PHONE CIRCUIT

1) Transmission signal path

The analog input signal from SP-phone microphone is input to the communication LSI through the IC2 built-in analog amplifier. In this LSI the network control based on A/D conversion and the handset software and the gain control based on the down load data from the PBX are performed. The voice data is sent to IC1 by the serial transmission. The voice data is transmitted between PBX and DPITS with the protocol originated by KME. IC3 is the SP-phone amplifier, which turns ON/OFF using the port of IC2. The analog switch of IC12 interrupts the input signal.

2) Reception siganl path

The voice serial data transmitted from PBX is sent to IC2 by the serial transmission. Then the signal is output from the handset speakerphone after performing the network control, gain control, and A/D conversion in IC2. The SP-phone microphone has the mute function, which interrupts the input signal with the analog switch and controls the port of IC2 with Q26.

3) Circuit diagram for transmission/reception signal path

Refer to page <u>SCHEMATIC DIAGRAM</u> ().

8. TROUBLESHOOTING GUIDE

8.1. NO OPERATION.

8.2. THE LCD DOES NOT OPERATE.

8.3. THE ELECTRONIC VOLUME OF THE SPEAKER-PHONE DOES NOT WORK.

8.4. THE ELECTRONIC VOLUME OF THE HANDSET DOES NOT WORK.

8.5. SPEAKER-PHONE TROUBLE.

8.6. TONE DIAL TROUBLE.

8.7. HANDSET TROUBLE.

9. TERMINAL GUIDE OF ICS, TRANSISTORS AND DIODES

10. HOW TO REPLACE THE FLAT PACKAGE IC

If you do not have the special tools (for example: SPOT HEATER) to remove the SPOT HEATER'S Flat IC, If you have solder (large amount) a soldering iron and a cutter knife, you can easily remove IC's even though large than 100 pin.

10.1. PREPARATION

- SOLDER

Sparkle Solder 115A-1, 115B-1 or Almit Solder KR-19, KR-19RMA

- Soldering iron

Recommended power consumption is between 30 W to 40 W.

Temperature of Copper Rod 662 \pm 50°F (350 \pm 10°C)

(An expert may handle a 60~80 W iron, but beginner might damage foil by overheating.)

- Flux

HI115 Specific gravity 0.863 (Original flux should be replaced daily.)

10.2. FLAT PACKAGE IC REMOVE PROCEDURE

1. When all of the IC lead can not been seen at the standard degree, fill with large quantities of solder.

Note:

If you do not fill with solder and directly cut the IC lead with the cutter, stress may build up directly in the P.C.board's pattern. If you do not fill with large quantities of solder as in step 1 the P.C.board pattern may be removed.

2. Using a cutter, cut the lead at the source. (Cut the contents with the cutter lightly 5 or 6 times.)

3. Remove when the solder melts. (Remove the lead at the same time.)

After removing the Flat IC and when attaching the new IC, remove any of the excess solder on the land using the soldering wire, etc. If the excess solder is not removed from the land, the IC will slip and not be attached properly.

10.3. FLAT PACKAGE IC INSTALLATION PROCEDURE

1. Temporary fix FLAT PACKAGE IC by soldering on two marked pins.

*Check the accuracy of the IC setting with the corresponding soldering foil.

2. Apply flux for all pins of FLAT PACKAGE IC.

3. Solder using the specified solder, in the direction of the arrow, by sliding the soldering iron.

10.4. BRIDGE MODIFICATION PROCEDURE

- 1. Lightly re-solder the bridged portion.
- 2. Remove the remaining solder along pins using a soldering iron as shown in the figure below.

11. WAVEFORM

12. CABINET AND ELECTRICAL PARTS LOCATION

13. ACCESSORIES AND PACKING MATERIALS

14. REPLACEMENT PARTS LIST

Note:

1. The marking (RTL) indicates that the Retention Time is limited for this item.

After the discontinuation of this assembly in production, the item will continue to be available for a specific period of time. The retention period of availability depends on the type of assembly and the laws governing parts and product retention. After the end of this period, the assembly will no longer be available.

2. The S mark indicates service standard parts and may differ from production.

3. RESISTORS & CAPACITORS Unless otherwise specified; All resistors are in ohms (Ω) K=1000 Ω , M=1000k Ω All capacitors are in MICRO FARADS (μ F) P= μ μ F *Type & Wattage of Resistor

Type							
ERC:Solid ERD:Carbon PQRD:Carbo	ERG:Met	RX:Metal Film RG:Metal Oxide R0:Metal Film			PQ4R:Carbon ERS:Fusible Resistor ERF:Cement Resistor		
Wattage							
10,16:1/8W	14,25:1	I/4W	12:1/2	W	1:1W	2:2W	3:3W
*Type & Voltage of Capacitor Type							
ECQS:Styrol PQCUV:Chip	ECFD:Semi-Conductor ECQS:Styrol PQCUV:Chip ECQMS:Mica			ECCD,ECKD,ECBT,PQCBC:Ceramic ECQE,ECQV,ECQG:Polyester ECEA,ECSZ:Electlytic ECQP:Polypropylene			
Voltage							
ECQ Type	ECQ Type			Others			
1H:50V 2A:100V 2E:250V 2H:500V	05:50V 1:100V 2:200V	0F:3.1 1A:10 1V:35 0J:6.3	V V	0J 1A 1C 1E,25	:6.3V :10V :16V 5:25V	50,1H: 1J :	35V 50V 63V :100V

14.1. CABINET AND ELECTRICAL PARTS

Ref. No.	Part No.	Part Name & Description	Remarks
<u>1</u>	PSKM1052T1	CABINET, UPPER (WHITE VERSION)	
1	PSKM1052T3	CABINET, UPPER (BLACK VERSION)	
2	PSGD1026Z	CARD, DIAL (WHITE VERSION)	
2	PSGD1033Z	CARD, DIAL (BLACK VERSION)	
3	PSHR1134Z	COVER, TEL CARD	
4	PQKE82X1	HANGER (WHITE VERSION)	
4	PQKE82X2	HANGER (BLACK VERSION)	
5	PQHR576Z	COVER, TEL NO.	
6	PQHP532X	CARD, TEL NO.	
<u>-</u> 7	PSBC1012Z1	BUTTON, JOG DIAL (WHITE VERSION)	
<u> </u>	PSBC1012Z2	BUTTON, JOG DIAL (BLACK VERSION)	
	PSHR1164Y	SPACER, JOG DIAL	
3		·	
9	PSBH1002Y1	BUTTON, HOOK (WHITE VERSION)	
9	PSBH1002Y2	BUTTON, HOOK (BLACK VERSION)	
10	PSUS1006Z	SPRING	
<u>11</u>	PQAS65P28Z	SPEAKER	
12	PSJS02Q35Z	CONNECTOR, 2P	_
13	RJM142Z	MICROPHONE	S
14	PSHG1122Z	RUBBER PARTS, MIC COVER	
<u>15</u>	PSBX1041Z3	BUTTON, 15KEY (WHITE VERSION)	
15	PSBX1041Z4	BUTTON, 15KEY (BLACK VERSION)	
16	PSBX1039Z1	BUTTON, DIAL (WHITE VERSION)	
16	PSBX1039Z2	BUTTON, DIAL (BLACK VERSION)	
17	PSYX1001Z1	BUTTON, 3KEY (WHITE VERSION)	
17	PSYX1001Z2	BUTTON, 3KEY (BLACK VERSION)	
18	PSBX1042Z1	BUTTON, 4KEY (WHITE VERSION)	
 18	PSBX1042Z2	BUTTON, 4KEY (BLACK VERSION)	
19	PSBX1052Z3	BUTTON, 15KEY (WHITE VERSION)	
19	PSBX1052Z4	BUTTON, 15KEY (BLACK VERSION)	
20	PSSX1006Y	KEY SWITCH	
<u>21</u>	PSBE1001Z1	BUTTON, ADJUST (WHITE VERSION)	
	PSBE1001Z2	, ,	
21		BUTTON, ADJUST (BLACK VERSION)	
22	PSQA2021Z	LABEL, NOTE	
23	PSGP1024X1	PANEL, LCD (WHITE VERSION)	
23	PSGP1024X2	PANEL, LCD (BLACK VERSION)	
24	PSGG1005Y1	GRILLE (WHITE VERSION)	
24	PSGG1005Y2	GRILLE (BLACK VERSION)	
<u>25</u>	PSBX1044Z1	BUTTON, 3KEY (WHITE VERSION)	
25	PSBX1044Z2	BUTTON, 3KEY (BLACK VERSION)	
26	PSBC1013Z1	BUTTON, SHIFT (WHITE VERSION)	
26	PSBC1013Z2	BUTTON, SHIFT (BLACK VERSION)	
27	PSSX1007Y	KEY SWITCH	
28	PSJE1011Z	FLAT CABLE	
29	PSKF1025Y1	CABINET, GRILL LOWER (WHITE VERSION)	
29	PSKF1025Y2	CABINET, GRILL LOWER (BLACK VERSION)	
30	PSJJ1T017Z	JACK, TEL.	
31	PSKF1024M1	CABINET, LOWER (WHITE VERSION)	
31	PSKF1024M2	CABINET, LOWER (BLACK VERSION)	
32	PSKL1005X1	STAND (WHITE VERSION)	
		, ,	
32	PSKL1005X2	STAND (BLACK VERSION)	
33	PSHA1002Z	RUBBER PARTS, FOOT	
34	PSGT2174Z	NAME PLATE (WHITE VERSION)	
34	PSGT2176Z	NAME PLATE (BLACK VERSION)	
	PSBD1012Z1	COVER, SWITCH	

14.2. ACCESSORIES AND PACKING MATERIALS

Ref. No.	Part No.	Part Name & Description	Remarks
<u>A1</u>	PQJX2PS409Z	HANDSET (WHITE VERSION)	
A1	PQJX2PM409Z	HANDSET (BLACK VERSION)	
<u>A2</u>	PSJA1043Z	CORD, HANDSET (WHITE VERSION)	
A2	PSJA1043Y	CORD, HANDSET (BLACK VERSION)	
<u>A3</u>	PQJA48W	CORD, TEL.	
<u>A4</u>	PSGD1040Z	CARD OVELAY	s
<u>A5</u>	PSQX1525X	INSTRUCTION BOOK	
<u>P1</u>	PSPK1906Z	GIFT BOX (WHITE VERSION)	
P1	PSPK1909Z	GIFT BOX (BLACK VERSION)	
<u>P2</u>	PQPP170Z	PROTECTION COVER	

14.3. MAIN BOARD PARTS

Ref. No.	Part No.	Part Name & Description	Remarks
PCB1	PSWP1T7453UK	MAIN BOARD ASS'Y (RTL)	
		(ICS)	
IC1	PSVIBU65050D	IC	
IC2	PSVITC5324F2	IC	
IC3	PQVIMC34119D	IC	
IC6	PSVI40612A04	IC	
IC7	PQVINJU7660M	IC	s
IC8	PQVINJM2904M	IC	
IC9	PSVIBA05FP	IC	
IC10	PSVIBA05FP	IC	
IC11	PQVINJM319V	IC	
SW1	PSVII24015T	IC	
		(TRANSISTORS)	
Q1	2SA1576Q	TRANSISTOR(SI)	
Q2	2SA1576Q	TRANSISTOR(SI)	
Q3	PQVTDTA143XU	TRANSISTOR(SI)	
Q4	PQVTDTA143XU	TRANSISTOR(SI)	
Q5	PQVTDTA143XU	TRANSISTOR(SI)	
Q6	PQVTDTA143XU	TRANSISTOR(SI)	
Q7	PQVTDTA143XU	TRANSISTOR(SI)	
Q8	PQVTDTA143XU	TRANSISTOR(SI)	
Q9	PQVTDTA143XU	TRANSISTOR(SI)	
Q10	PQVTDTA143XU	TRANSISTOR(SI)	
Q11	PQVTDTA143XU	TRANSISTOR(SI)	
Q12	PQVTDTA143XU	TRANSISTOR(SI)	
Q13	PQVTDTD133HK	TRANSISTOR(SI)	
Q14	PQVTDTD133HK	TRANSISTOR(SI)	
Q15	PQVTDTD133HK	TRANSISTOR(SI)	
Q16	PQVTDTD133HK	TRANSISTOR(SI)	
Q17	PQVTDTD133HK	TRANSISTOR(SI)	
Q18	PQVTDTD133HK	TRANSISTOR(SI)	
Q23	UN5213	TRANSISTOR(SI)	s
Q24	PQVTDTA143XU	TRANSISTOR(SI)	
Q25	2SC4081Q	TRANSISTOR(SI)	
Q27	2SA1576Q	TRANSISTOR(SI)	
Q28	UN5213	TRANSISTOR(SI)	s
Q29	UN5213	TRANSISTOR(SI)	S

Ref. No.	Part No.	Part Name & Description	Remarks
Q30	2SA1576Q	TRANSISTOR(SI)	
Q31	PQVTFB1J3P	TRANSISTOR(SI)	
		(DIODES)	
D1	PQVDS1ZB60F1	DIODE(SI)	
D3	RLS71	DIODE(SI)	
D4	RLS71	DIODE(SI)	
D5	RLS71	DIODE(SI)	
D6	RLS71	DIODE(SI)	
D7	RLS71	DIODE(SI)	
D8	RLS71	DIODE(SI)	
D9	RLS71	DIODE(SI)	
D10	RLS71	DIODE(SI)	
D11	PSVDUDZ39B	DIODE(SI)	
D12	RLS71	DIODE(SI)	
D13	RLS71	DIODE(SI)	
D17	RLS71	DIODE(SI)	
D17	KLO7 I	` '	
D100	PSVD2SRVGCT	(LEDS)	
	PSVD2SRVGCT		
D101		LED	
D102	PSVD2SRVGCT	LED	
D103	PSVD2SRVGCT	LED	
D104	PSVD2SRVGCT	LED	
D105	PSVD2SRVGCT	LED	
D106	PSVD2SRVGCT	LED	
D107	PSVD2SRVGCT	LED	
D108	PSVD2SRVGCT	LED	
D109	PSVD2SRVGCT	LED	
D110	PSVD2SRVGCT	LED	
D111	PSVD2SRVGCT	LED	
D112	PSVD2SRVGCT	LED	
D113	PSVD2SRVGCT	LED	
D114	PSVD2SRVGCT	LED	
D115	PSVD2SRVGCT	LED	
D116	PSVD2SRVGCT	LED	
D117	PSVD2SRVGCT	LED	
D118	PSVD2SRVGCT	LED	
D119	PSVD2SRVGCT	LED	
D120	PSVD2SRVGCT	LED	
D121	PSVD2SRVGCT	LED	
D122	PSVD2SRVGCT	LED	
D123	PSVD2SRVGCT	LED	
D124	PSVD1SRCT	LED	
D125	PSVD1SRCT	LED	
D126	PSVD1SRCT	LED	
D127	PSVD1SRCT	LED	
D128	PSVD1SRCT	LED	
D129	PSVD1SRCT	LED	
D130	PSVD1VGCT	LED	
		(CONNECTORS)	
CN1	PSJP03A05Z	CONNECTOR, 3P	
CN2	PSJS36A61Z	CONNECTOR, 36P	
CN3	PSJP02A05Z	CONNECTOR, 2P	
CN4	PSJP02A05Z	CONNECTOR, 2P	
CN5	PSJP04A05Z	CONNECTOR, 4P	
		(CERAMIC FILTER)	
Х3	PQVBTCS4.00M	CERAMIC FILTER	
	. 4.5.004.000	(COIL)	
		(COIL)	

Ref. No.	Part No.	Part Name & Description	Remarks
L1	PQLQR1LT	COIL	
L2	PQLQR1LT	COIL	
L5	PQLQR1RM601	COIL	
L6	PQLQR1RM601	COIL	
L9	PQLQR1LT	COIL	
		(CRYSTAL OSCILLATORS)	
X1	PSVCCR1638B7	CRYSTAL OSCILLATOR	
X2	PSVCCR1228B7	CRYSTAL OSCILLATOR	
		(JACKS)	
JK1	PSJJ1T011Z	JACK	
JK2	PSJJ1T012Z	JACK	
		(TRANSFORMER)	
T1	PSLT9Z4A	TRANSFORMER	
		(RESISTORS)	
JP3	PQ4R18XJ000	0	
JP5	PQ4R18XJ000	0	
JP7	PQ4R18XJ000	0	
JP14	ERJ3GEY0R00	0	
JP14 JP15	ERJ3GEY0R00	0	
JP15 JP16	PQ4R18XJ000	0	
J17	ERJ3GEY0R00	0	
L7			
	PQ4R10XJ000	0	
L8	PQ4R10XJ000	0	
L10	ERJ3GEY0R00	0	
L11	ERJ3GEY0R00	0	
L12	ERJ3GEY0R00	0	
L13	ERJ3GEY0R00	0	
L14	ERJ3GEY0R00	0	
L15	ERJ3GEY0R00	0	
L16	ERJ3GEY0R00	0	
L17	ERJ3GEY0R00	0	
R1	ERJ3GEYJ472	4.7K	
R2	ERJ3GEYJ472	4.7K	
R3	ERJ3GEYJ472	4.7K	
R4	ERJ3GEYJ330	33	
R5	ERJ3GEYJ471	470	
R6	ERJ3GEYJ472	4.7K	
R7	ERJ3GEYJ330	33	
R8	ERJ3GEYJ472	4.7K	
R9	ERJ3GEYJ472	4.7K	
R10	ERJ3GEYJ472	4.7K	
R11	ERJ3GEYJ472	4.7K	
R12	ERJ3GEYJ472	4.7K	
R13	ERJ3GEYJ472	4.7K	
R14	ERJ3GEYJ122	1.2K	
R15	ERJ3GEYJ682	6.8K	
R16	ERJ3GEYJ470	47	
R17	ERJ3GEYJ221	220	
R18	ERJ3GEYJ470	47	
R19	ERJ3GEYJ221	220	
R20	ERJ3GEYJ470	47	
R21	ERJ3GEYJ221	220	
R22	ERJ3GEYJ470	42	
R23	ERJ3GEYJ221	220	
	ERJ3GEYJ221	220	
R24			

Ref. No.	Part No.	Part Name & Description	Remarks
R26	PQ4R18XJ100	10	11011101110
R27	ERJ3GEYJ102	1K	
R28	ERJ3GEYJ105	1M	
R29	ERJ3GEYJ561	560	
	ERJ3GEYJ151		
R30		150	
R31	ERJ3GEYJ103	10K	
R32	ERJ3EKF9102	91K	
R34	ERJ3GEYJ105	1M	
R35	ERJ3GEYJ822	8.2K	
R36	ERJ3GEYJ222	2.2K	
R38	ERJ3GEYJ222	2.2K	
R39	ERJ3GEYJ224	220K	
R40	ERJ3GEYJ222	2.2K	
R41	ERJ3GEYJ472	4.7K	
R42	ERJ3GEYJ103	10K	
R43	ERJ3GEYJ102	1K	
R44	ERJ3GEYJ183	18K	
R45	ERJ3GEYJ103	10K	
R46	ERJ3GEYJ392	3.9K	
R56	PQ4R18XJ390	39	
R57	ERJ3GEYJ124	120K	
R58	ERJ3GEYJ564	560K	
R59	ERJ3GEYJ332	3.3K	
R60	ERJ3GEYJ151	150	
R67	ERJ3GEYJ222	2.2K	
R68	ERJ3GEYJ222	2.2K	
R69	PQ4R18XJ3R3	3.3	
	ERJ3GEYJ104	100K	
R83			
R84	ERJ3GEYJ103	10K	
R85	ERJ3GEYJ103	10K	
R86	ERJ3GEYJ103	10K	
R87	ERJ3GEYJ104	100K	
R88	ERJ3GEYJ333	33K	
R89	ERJ3GEYJ223	22K	
R90	ERJ3GEYJ183	18K	
R91	ERJ3GEYJ103	10K	
R92	ERJ3GEYJ105	1M	
R93	ERJ3GEYJ223	22K	
R94	ERJ3GEYJ223	22K	
R95	ERJ3GEYJ223	22K	
R96	ERJ3GEYJ223	22K	
R97	ERJ3GEYJ223	22K	
R98	ERJ3GEYJ223	22K	
R99	ERJ3GEYJ223	22K	
R100	ERJ3GEYJ223	22K	
R101	ERJ3GEYJ472	4.7K	
R102	ERJ3GEYJ472	4.7K	
R103	ERJ3GEYJ104	100K	
R104	ERJ3GEYJ472	4.7K	
R105	ERJ3GEYJ472	4.7K	
R106	ERJ3GEYJ154	150K	
R107	ERJ3GEYJ104	100K	
R108	ERJ3GEYJ563	56K	
R109	ERJ3GEYJ123	12K	
R110	ERJ3GEYJ223	22K	
R113	ERJ3GEYJ680	68 68	
R114	ERJ3GEYJ102	1K	

Ref. No.	Part No.	Part Name & Description	Remarks
R116	ERJ3GEY0R00	0	
R117	ERJ3GEYJ473	47K	
R118	ERJ3GEYJ473	47K	
R119	ERJ3GEY0R00	0	
R120	ERJ3GEY0R00	0	
R121	ERJ3GEYJ101	100	
R123	ERJ3GEYJ223	22K	
R124	ERJ3GEYJ223	22K	
R125	ERJ3GEYJ223	22K	
R126	ERJ3GEYJ223	22K	
R127	ERJ3GEYJ102	1K	
R128	ERJ3GEYJ102	1K	
R129	ERJ3GEYJ473	47K	
R130	ERJ3GEYJ182	1.8K	
R131	ERJ3GEYJ330	33	
R132	ERJ3GEYJ330	33	
R133	PQ4R18XJ100	10	
R134	ERJ3GEYJ330	33	
R134 R135			
	ERJ3GEYJ330	33	
R136	ERJ3GEY0R00	0	
R138	ERJ3GEYJ104	100K	
R139	ERJ3GEYJ103	10K	
R140	ERJ3GEYJ103	10K	
R141	ERJ3GEYJ271	270	
R144	ERJ3GEYJ330	33	
R145	ERJ3GEYJ330	33	
R146	ERJ3GEYJ330	33	
R147	ERJ3GEYJ330	33	
R148	ERJ3GEYJ330	33	
R149	ERJ3GEYJ330	33	
R150	ERJ3GEYJ330	33	
R151	ERJ3GEYJ330	33	
R152	ERJ3GEYJ330	33	
R153	ERJ3GEYJ330	33	
R160	ERJ3GEYJ104	100K	
		(CAPACITORS)	
C2	ECEV1HA2R2N	2.2	
C3	PSCEV1HA010	1	
C4	ECUV1H680JCV	68P	
C5	ECUV1H101JCV	100P	
C6	ECUV1H680JCV	68P	
C7	ECUV1H101JCV	100P	
C8	ECUV1H101JCV	47P	
C9	ECUV1H470JCV	47P	
C10	PSCEV1EA101	100	
C11	PQCUV1E104MD	0.1	S
C12	PSCEV1EA101	100	
C13	PQCUV1E104MD	0.1	S
C14	PSCEV1HA010	1	
C15	PSCEV0JA102	1000	
C16	PSCEV0JA102	1000	
C17	PQCUV1E104MD	0.1	s
C18	ECUV1H080DCV	8P	
C19	ECUV1H470JCV	47P	
C21	ECUV1H104ZFV	0.1	s
C22	ECUV1H104ZFV	0.1	s
C23	PSCEV0JA470	47	
	l .	l .	

Ref. No.	Part No.	Part Name & Description	Remarks
C25	ECUV1H470JCV	47P	
C26	ECUV1H080DCV	8P	
C27	ECUV1H104ZFV	0.1	s
C28	PQCUV1C334ZF	0.33	
C31	PQCUV1C334ZF	0.33	
C32	PSCEV0JA220	22	
C33	PQCUV1E104MD	0.1	
C34	PSCEV0JA470	47	
C35	PSCEV0JA470	47	
C36	PSCEV1HA100	10	
C37	PSCEV0JA220	22	
C39	PSCEV0JA471	470	
C40	PQCUV1E681MB	680	
C41	PQCUV1C334KB	0.33	
C42	PSCEV1HA010	1	
C43	PQCUV1E473MD	0.047	s
C61	PSCEV0JA102	1000	
C62	PQCUV1E104MD	0.1	
C63	PSCEV1HA100	10	
C71	PQCUV1E473MD	0.047	s
C72	PQCUV1E473MD	0.047	s
C73	PSCEV1EA4R7	4.7	
C74	PQCUV1E104MD	0.1	s
C78	ECUV1E102JCV	0.001	
C79	ECUV1E102JCV	0.001	
C80	PSCEV1HA010	1	
C82	PSCEV0JA101	100	
C83	PSCEV0JA101	100	
C84	PSCEV0JA220	22	
C85	ECUV1H683MD	0.68	
C88	PSCEV1HA100	10	
C89	PSCEV0JA220	22	
C106	PSCEV0JA101	100	
C107	PSCEV0JA101	100	
C108	ECUV1H471JCV	470P	
C111	ECUV1H104ZFV	0.1	
C115	ECUV1H104ZFV	0.1	s
C117	ECUV1H104ZFV	0.1	s
C118	ECUV1H104ZFV	0.1	S
C119	ECUV1H104ZFV	0.1	S
C120	PSCEV0JA470	47	
C121	PQCUV1C474ZF	0.47	
C122	ECUV1H151JCV	150P	

14.4. LCD BOARD PARTS

Ref. No.	Part No.	Part Name & Description	Remarks
PCB2	PSWP2T7453UK	LCD BOARD ASS'Y (RTL)	
		(ICS)	
IC201	PSVILC7931D	IC	
IC202	PSVI44780B24	IC	
		(LED)	
D201	PSVD111R820R	LED	
D202	PSWE1013Z	BACKLIGHT	
		(CONNECTOR)	
CN201	PSJS36A61Z	CONNECTOR, 36P	
		(SWITCH)	
SW1	PSSS3A101Z	SWITCH, BACKLIGHT	
		(RESISTORS)	
R201	PQ4R10XJ222	2.2K	
R202	PQ4R10XJ222	2.2K	
R203	PQ4R10XJ222	2.2K	
R204	PQ4R10XJ222	2.2K	
R205	PQ4R10XJ393	39K	
R206	PQ4R10XJ104	100K	
R207	PQ4R10XJ391	390	
R208	PQ4R10XJ102	1K	
		(CAPACITORS)	
C200	PQCUV1E104MD	0.1	s
		(OTHERS)	
E1	L5ADBKD00002	LIQUID CRYSTAL DISPLAY	
E2	PSSE1011Z	CONNECTOR	
E3	PSHR1132Y	GUIDE	

14.5. SWITCH BOARD PARTS

Ref. No.	Part No.	Part Name & Description	Remarks
PCB3	PSWP3T7431UK	SWITCH BOARD ASS'Y (RTL)	
		(SWITCH)	
SW301	PSSRCA101Z	SWITCH, JOG DIAL	
		(CONNECTOR)	
CN301	PSJS03Q36Z	CONNECTOR, 3P	

15. PRINTED CIRCUIT BOARD

- 15.1. MAIN BOARD (COMPONENT VIEW)
- 15.2. MAIN BOARD (BOTTOM VIEW)
- **16. SCHEMATIC DIAGRAM**
- 17. PRINTED CIRCUIT BOARD

H KXT7453MUK / KXT7453MBUK

Note:

25~32 Note used

