Chapitre 6 : Calcul vectoriel et produit scalaire Cours 1 : Produit scalaire dans le plan

R. KHODJAOUI

Lycée J.J. HENNER - Première D

Sommaire

1 Définition du produit scalaire

2 Orthogonalité et produit scalaire

Définition 1 : norme d'un vecteur

On donne un vecteur \vec{u} du plan et deux points A et B tels que $\vec{u} = \overrightarrow{AB}$.

Solution La norme du vecteur \vec{u} , notée $||\vec{u}||$, est la distance AB.

Définition 1 : norme d'un vecteur

On donne un vecteur \vec{u} du plan et deux points A et B tels que $\vec{u} = \overrightarrow{AB}$.

La norme du vecteur \vec{u} , notée $||\vec{u}||$, est la distance AB.

Définition 2 : produit scalaire

Pour deux vecteurs \vec{u} et \vec{v} , le produit scalaire des vecteurs \vec{u} et \vec{v} est le nombre réel, noté $\vec{u} \cdot \vec{v}$ défini de la manière suivante :

- si \vec{u} ou \vec{v} est nul, le produit scalaire $\vec{u} \cdot \vec{v}$ est égal à 0.
- Si \overrightarrow{u} et \overrightarrow{v} ne sont pas nuls, on pose $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{AC}$ Le produit scalaire $\overrightarrow{u} \cdot \overrightarrow{v}$ est égal au nombre réel défini par :

$$\overrightarrow{u}\cdot\overrightarrow{v}=\|\overrightarrow{u}\|\times\|\overrightarrow{v}\|\times\cos(\widehat{BAC})$$

Autrement dit:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times cos(\widehat{BAC})$$

Exemple : l'unité est le carreau

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC})$$

$$= 5 \times 3\sqrt{2} \times \cos(45^{\circ})$$

$$= 15\sqrt{2} \times \frac{\sqrt{2}}{2}$$

$$= 15 \times \frac{\sqrt{2}^{2}}{2}$$

$$= 15$$

Remarque : cas des vecteurs colinéraires

Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs colinéaires non nuls, alors :

$$\Rightarrow \vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}||$$
 si \vec{u} et \vec{v} sont de même sens.

 $\Rightarrow \vec{u} \cdot \vec{v} = -\|\vec{u}\| \times \|\vec{v}\| \text{ si } \vec{u} \text{ et } \vec{v} \text{ sont de sens contraires.}$

Remarque : cas des vecteurs colinéraires

Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs colinéaires non nuls, alors :

- $\Rightarrow \ \overrightarrow{u}.\overrightarrow{v} = \|\overrightarrow{u}\| \times \|\overrightarrow{v}\| \text{ si } \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ sont de même sens.}$
- $\Rightarrow \vec{u}.\vec{v} = -\|\vec{u}\| \times \|\vec{v}\|$ si \vec{u} et \vec{v} sont de sens contraires.

Propriété : symétrie

Le produit scalaire est symétrique :

Remarque : cas des vecteurs colinéraires

Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs colinéaires non nuls, alors :

- $\Rightarrow \ \overrightarrow{u}.\overrightarrow{v} = \|\overrightarrow{u}\| \times \|\overrightarrow{v}\| \text{ si } \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ sont de même sens.}$
- $\Rightarrow \vec{u} \cdot \vec{v} = -\|\vec{u}\| \times \|\vec{v}\| \text{ si } \vec{u} \text{ et } \vec{v} \text{ sont de sens contraires.}$

Propriété : symétrie

Le produit scalaire est symétrique :

Exercice

Soit ABC un triangle équilatéral de coté a. Soit H le milieu de [AB] et K le point tel que $\overrightarrow{AK} = -\frac{1}{2}\overrightarrow{AB}$.

Calculer:

- $\overrightarrow{AB} \cdot \overrightarrow{AC}$
- $\overrightarrow{AK} \cdot \overrightarrow{AB}$

${\bf Propri\acute{e}t\acute{e}: projection\ orthogonale}$

Pour tous points A, B et C distints du plan, on a:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$$

H étant le projeté orthogonal de C sur la droite (AB).

Propriété : projection orthogonale

Pour tous points A, B et C distints du plan, on a :

H étant le projeté orthogonal de C sur la droite (AB).

Exemple 1

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$$

$$= AB \times AH$$

$$= 5 \times 3$$

$$= 15.$$

Propriété : projection orthogonale

Pour tous points A, B et C distints du plan, on a :

$$\triangle \overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$$

H étant le projeté orthogonal de C sur la droite (AB).

Exemple 2

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$$

= $-AB \times AH$
= -2×3
= -6 .

Définition : vecteurs orthogonaux

On dit que deux vecteurs non nuls $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{CD}$ sont orthogonaux lorsque les droites (AB) et (CD) sont perpendiculaires. Par convention, le vecteur nul est orthogonal à tout vecteur.

Définition : vecteurs orthogonaux

On dit que deux vecteurs non nuls $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{CD}$ sont orthogonaux lorsque les droites (AB) et (CD) sont perpendiculaires. Par convention, le vecteur nul est orthogonal à tout vecteur.

Propriété

Pour tous vecteurs \vec{u} et \vec{v} du plan : \vec{u} et \vec{v} sont orthogonaux si, et seulement si $\vec{u} \cdot \vec{v} = 0$

Définition: vecteurs orthogonaux

On dit que deux vecteurs non nuls $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{CD}$ sont orthogonaux lorsque les droites (AB) et (CD) sont perpendiculaires. Par convention, le vecteur nul est orthogonal à tout vecteur.

Propriété

Pour tous vecteurs \vec{u} et \vec{v} du plan : \vec{u} et \vec{v} sont orthogonaux si, et seulement si $\vec{u} \cdot \vec{v} = 0$

Démonstration

- ightharpoonup Si \overrightarrow{u} ou \overrightarrow{v} est nul, l'équivalence est immédiate.
- ➤ On suppose \overrightarrow{u} et $\overrightarrow{v} = 0$ non nuls: Notons $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{AC}$ alors: $\overrightarrow{u} \cdot \overrightarrow{v} = 0 \Leftrightarrow \overrightarrow{AB} \cdot \overrightarrow{AC} = 0 \Leftrightarrow AB \times AC \times cos(\widehat{BAC}) = 0$ $\Leftrightarrow AB = 0$ ou AC = 0 ou $cos(\widehat{BAC}) = 0$. Comme les deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont non nuls alors la seule possibilité est qu'ils soient orthogonaux. (\widehat{BAC}) est un angle droit)

FIN

Revenir au début

