Machine Hack: Analytics Olympiad 2023

Hariprasath Venkatraman

Table of Contents

Introduction	1
Data Understanding	1
Data Preparation	5
Data Partition	6
Model	6
Model Interpretation	9
Result	13

Introduction

Create a machine learning models to determine the likelihood of a customer defaulting on a loan based on the credit history, payment behaviour, and account details.

Data Understanding

To predict the likelihood of a customer default, the model must predict two outcome variables.

- ✓ Primary close flag
- ✓ Final close flag
- Primary close flag
 - Primary close flag target column contains binary values.
- Primary close flag data distribution

There is an imbalance between the primary close flag class distribution

- Final close flag
 - Final close flag target column contains binary values.
- Final close flag distribution

There is an imbalance between the final close flag class distribution.

- Features category
 - The features are categorized into following types,
 - ✓ Credit card information
 - ✓ Loan overdue information
 - ✓ Credit utilization and limit information
 - ✓ Encoded features
 - Credit card information features
 - √ record number
 - √ days_since_opened
 - √ days_since_confirmed
 - ✓ primary term

- √ final term
- √ days till primary close
- √ days_till_final_close
- √ loans_credit limit
- √ loans next payment summary
- √ loans outstanding balance
- √ loans max overdue amount
- √ loans_credit_cost_rate
- Loan overdue information related features
 - √ loans_within_5_days
 - √ loans_within_5_to_30_days
 - √ loans within 30 to 60 days
 - ✓ loans_within_60_to_90_days
 - ✓ loans_over_90_days
 - √ is_zero_loans_within_5_days
 - √ is zero loans within 5 to 30 days
 - √ is zero_loans_within_30_to_60_days
 - ✓ is_zero_loans_within_60_to_90_days
 - √ is_zero_loans_over_90_days
- Credit utilization and limit information related features
 - ✓ utilization
 - ✓ over limit count
 - √ max over limit count
 - √ is zero utilization
 - √ is_zero_over_limit_count
 - ✓ is zero max over limit count
- Encoded features
 - ✓ Enoded_payment feature from 0 to 24
 - ✓ encoded loans account holder type

- ✓ encoded loans credit status
- ✓ encoded loans credit type
- ✓ encoded loans account currency
- All of the features above are ordinal categories, except for the following nominal features.
 - √ is_zero_loans_within_5_to_30_days
 - √ is_zero_loans_within_30_to_60_days
 - √ is zero loans within 60 to 90 days
 - √ is_zero_loans_over_90_days
 - √ is zero utilization
 - √ is _zero_over_limit_count
 - √ is zero max over limit count

Data Preparation

There are missing values in the encoded features of both the train and test datasets.

- Feature Engineering.
 - The feature engineering process contains following task.
 - Missing value imputation
 - Category column-wise primary close flag target frequency
 - Category column-wise final close flag target frequency

Data Partition

- The train data further split into train and validation data. The split is based on the target column (stratified split).
 - 67% of data to train the model
 - 33% of data to validate the model
- The data is split and stored separately for both target columns.

Model

- The Catboost model was trained separately for both targets, using default parameters.
- The model was evaluated at each iteration using validation data.
- The model's performance was assessed using an accuracy score.

 Catboost model permutation feature importance for the target primary close flag.

The permutation feature importance plot explains that the likelihood of a customer defaulting on a loan is determined by the following features.

- Primary term feature's category-wise primary close flag target's positive class frequency
- Days till primary close feature's category-wise primary close flag target's positive class frequency

 Catboost model permutation feature importance for the target final close flag.

The permutation feature importance plot explains that the likelihood of a customer defaulting on a loan is determined by the following features.

- Final term feature's category-wise final close flag target's positive class frequency
- Days till final close feature's category-wise final close flag target's positive class frequency

Model Interpretation

- The model further interpreted with the SHAP library.
- Primary close flag
 - SHAP Global feature importance

- The SHAP global importance explain that the likelihood of a customer defaulting on a loan is determined by the following features.
 - Primary term feature's category-wise primary close flag target's positive class frequency
 - Days till primary close feature's category-wise primary close flag target's positive class frequency
 - Primary term feature's category-wise primary close flag target's negative class frequency

SHAP - Local feature importance

For primary close flag 1

For primary close flag 0

• Final close flag

o SHAP - Global feature importance

- The SHAP global importance explain that the likelihood of a customer defaulting on a loan is determined by the following features.
 - Days till final close feature's category-wise final close flag target's positive class frequency
 - Final term feature's category-wise final close flag target's positive class frequency

SHAP - Local feature importance

For final close flag class 1

For final close flag class 0

Result

The likelihood of a customer defaulting on a loan is determined by the following features.

- ✓ Primary term feature's category-wise primary close flag target's positive class frequency
- ✓ Days till primary close feature's category-wise primary close flag target's positive class frequency
- ✓ Primary term feature's category-wise primary close flag target's negative class frequency
- ✓ Days till final close feature's category-wise final close flag target's positive class frequency
- ✓ Final term feature's category-wise final close flag target's positive class frequency