Tutorial para Torneamento:

- Application -> Manufacturing
 - Cam_general com turning
- Geometry View → "+" em MCS_MAIN_SPINDLE e clique duplo em WORKPIECE_MAIN
 - Specify Part: Select Object → Clicar na peça toda
 - Specify Blank: Mudar Geometry para Bounding Cilinder
 - Diâmetro já deve estar certo, aumentar height em 1
 - Distance+ \rightarrow 1; Distance- \rightarrow 0

FACEAMENTO

- Machine Tool View → Create Tool
 - Type: turning, com Subtype OD_80_L (1ª da lista)
 - Mudar nome para FERRAMENTA-1
 - Nose Radius: 0.8
 - Length: 12

Numbers → Tool Number: 1

Information → Catalog Number: CNMG_120408

Holder → Description: DCLNL_2525_M12

- Program Order View → Mudar nome da pasta PROGRAM p/ oq quiser
- Create Operation
 - Type: turning, com Subtype Face Turn (1º da lista)
 - Program: Marcar o com o nome escolhido
 - Tool: FERRAMENTA-1
 - Geometry: AVOIDANCE_MAIN
 - Method: NONE
 - Name: FACEAMENTO

Nas opções da operação:

- Main:
 - Path Settings: Cut Depth Constant; Depth 2 mm (ap faceamento no torno)
 - Feeds & Speeds:
 - Surface Speed (smm): 130 m/min
 - Cut: 0.2 mmpr (mm/rot) → Generate e Verify

DESBASTE

- Program Order View → Create Operation
 - Type: turning, com Subtype Rough Turn (2º da lista)
 - Program: Marcar o com o nome escolhido
 - Tool: FERRAMENTA-1
 - Geometry: AVOIDANCE_MAIN
 - Method: NONE
 - Name: DESBASTE

Nas opções da operação:

- Main:
 - Path Settings: Cut Depth Constant; Depth 2 mm (ap Desbaste Externo)
 - Feeds & Speeds:
 - Surface Speed (smm): 150 m/min
 - Cut: 0.3 mmpr (mm/rot)
 - Stock, Tol. & Clearance
 - Rough Stock: Constant → 1 (sobremetal p/ acabamento)

→ Generate e Verify

ACABAMENTO

- Machine Tool View → Create Tool
 - Type: turning, com Subtype OD_55_L (3ª da lista)
 - Mudar nome para FERRAMENTA-2
 - Nose Radius: 0.4
 - Length: 16

Numbers → Tool Number: 2

Information → Catalog Number: VCGX_160404

Holder → Description: SVJBL_2525_M16

- Program Order View → Create Operation
 - Type: turning, com Subtype Finish Turn (5º da lista)
 - Program: Marcar o com o nome escolhido
 - Tool: FERRAMENTA-2

- Geometry: AVOIDANCE_MAIN

- Method: NONE

- Name: ACABAMENTO

Nas opções da operação:

- Feeds & Speeds:
 - Surface Speed (smm): 180 m/min
 - Cut: 0.1 mmpr (mm/rot)
- \rightarrow 1 de sobremetal no Desbaste, automaticamente vira o ap de 0,5 do acabamento.
- → Generate e Verify

Para ver a operação completa, clicar na pasta renomeada e Verify Tool Path.

Para ver a programação pós processada, clicar na pasta selecionada e Post Process: LATHE_2_AXIS e OK

- Save As e salvar

CANAL(IS) EXTERNO(S)

- Machine Tool View → Create Tool
 - Type: turning, com Subtype OD_GROOVE_L (8ª da lista)
 - Mudar nome para FERRAMENTA-3
 - (IW) Insert Width: 2.5 (?) OU 1 mm a menos que o canal (ex: 3 p/ canal 4)

Numbers → Tool Number: 3

Information → Catalog Number: R123F2-0250-0501

Holder → Description: LF123F20-2020B

- Program Order View → Create Operation
 - Type: turning, com Subtype Groove (6º da lista)
 - Program: Marcar o com o nome escolhido
 - Tool: FERRAMENTA-3 (Grooving Tool)
 - Geometry: AVOIDANCE_MAIN

- Method: NONE

- Name: CANAL

Nas opções da operação:

- Feeds & Speeds:
 - Surface Speed (smm): 100 m/min
 - Cut: 0.2 mmpr (mm/rot)
- Main:
 - Geometry -> Axial Trim Plane 1
 - Limit Option → Point
 - Specify Point: Escolher a borda do canal e clicar nela

→ Se forem vários canais:

- Feeds & Speeds: Igual para canal único
- Main:
 - Geometry -> Axial Trim Plane 1
 - Limit Option → Point
 - Specify Point: Escolher a borda do primeiro canal "da direita para a esquerda" e clicar
 - More (logo abaixo de Axial Trim Plane 2):
 - Region Machining \rightarrow Single para Multiple
 - Specify Point (ainda em Axial Trim Plane 1):

- Selecionar Inferred Point e selecionar a borda do último canal

Deverá ficar assim:

→ Generate e Verify

ROSCA EXTERNA

- Machine Tool View -> Create Tool
 - Type: turning, com Subtype OD_THREAD_TRIANGULAR (13ª da lista)
 - Mudar nome para FERRAMENTA-4
 - Insert Position → Underside
 - Nose Radius: 0.2 (padrão)
 - InsertLength: 16 (padrão)

Numbers → Tool Number: 4

Edge of Part Spun Outline(28)

Information → Catalog Number: 266RG-16VM01A002M

Holder: Hand → Right

Holder → Description: R166.4FG-2525-16

- Program Order View → Create Operation
 - Type: turning, com Subtype THREAD_TURN (8° da lista)
 - Program: Marcar o com o nome escolhido
 - Tool: FERRAMENTA-4 (Threading Tool)
 - Geometry: AVOIDANCE_MAIN
 - Method: NONE
 - Name: ROSCA

Nas opções da operação:

- Main:
 - Geometry → Select cylinder for thread (0)
 - Clicar com botão direito na peça e Select from List...
- Selecionar Mxx X 2 Symbolic Thread (2 cilindros pontilhados ao redor da rosca deverão ficar marcados na peça. Se aparecer Motion to Start of Engage → Axial
 - Offset:
 - Star Offset: 5; End Offset 1
- Feeds & Speeds:
 - Output Mode: SMM → Surface Speed (smm): 30 m/min
 - Cut: Ir para Part Navigator e achar a Symbolic Thread
 - Botão direito e Edit Parameters → Clicar em Feature Dialog
 - Ver qual o Pitch -> Será o passo, por exemplo 2
 - Voltar para Feeds & Speeds → Cut: passo mmpr (mm/rot)
- → Generate e Verify

FURO DE CENTRO

- Machine Tool View → Create Tool
 - Type: centerline, com Subtype CENTERDRILL (3ª da lista)
 - Mudar nome para FERRAMENTA-5
 - Diameter: 8 (padrão)

Numbers → Tool Number e Adjust Register: 5

Information → Catalog Number: DIN333A 3.15x8

- Program Order View → Create Operation
 - Type: centerline, com Subtype CENTERLINE_SPOTDRILL (1º da lista)
 - Program: Marcar o com o nome escolhido
 - Tool: FERRAMENTA-5 (Centerdrill)
 - Geometry: AVOIDANCE_MAIN
 - Method: NONE
 - Name: FURO_CENTRO

Nas opções da operação:

- Main:
 - Cycle Type → Distance: 8
- Feeds & Speeds:
 - Output Mode: Marcar caixa Spindle Speed → 1000 rpm
 - Cut: 0.08 mmpr (mm/rot)
- → Generate e Verify

FURO FINAL COM BROCA HELICOIDAL

- Machine Tool View → Create Tool
 - Type: centerline, com Subtype STD_DRILL (2ª da lista)
 - Mudar nome para FERRAMENTA-6
 - Ir para Part Navigator e encontrar o furo
 - Duplo clique no furo e ver Hole Diaméter e Hole Depth; voltar para a ferramenta
 - Diameter: será o próprio Hole Diameter
 - Flute Length: Na aula foi usado 20 mm a mais do que o tamanho do furo (Hole Depth) → Ex: furo era de 60 mm, usou 80
 - Length: Na aula foi usado 40 mm a mais do que o Flute Length \rightarrow Ex: Flute Length era 80, usou 120.

Numbers -> Tool Number e Adjust Register: 6

Information → Catalog Number: DIN338 ØxLc → Sendo DiâmetroXFlute Length

- Program Order View → Create Operation
 - Type: centerline, com Subtype CENTERLINE_BREAKCHIP (4º da lista)
 - Program: Marcar o com o nome escolhido
 - Tool: FERRAMENTA-6 (Drilling Tool)
 - Geometry: AVOIDANCE_MAIN
 - Method: NONE
 - Name: FURO_xxMM

Nas opções da operação:

- Main:
 - Cycle Type → Distance: Será a distância do furo, obtida em Hole Depth
- Feeds & Speeds:
 - Output Mode: Marcar caixa Spindle Speed → 600 rpm
 - Cut: 0.1 mmpr (mm/rot)
- Strategy → Chip Removal
 - Increment Type: Constant, com Constant Increment 5 OU outro, se especificado.
- → Generate e Verify

Para ver a operação completa, clicar na pasta renomeada e Verify Tool Path.

Para ver a programação pós processada, clicar na pasta selecionada e Post Process: LATHE_2_AXIS e OK

- Save As e salvar