V/F	Es. 1	Es. 2	Voto	
/12	/10	/10	/32	

Sapienza Università di Roma, Corso di Laurea in Informatica - canale telematico (a.a. 2022/2023)

Prova scritta di Calcolo Differenziale - 7 settembre 2023

Nome e Cognome (in stampatello):

Numero matricola:

NOTA BENE: devono essere riconsegnati soltanto i fogli contenenti i testi degli esercizi. È vietato usare testi, appunti e strumenti elettronici di ogni tipo. Ogni affermazione negli esercizi a risposta aperta deve essere motivata dettagliatamente! È possibile utilizzare anche il retro dei fogli per inserire i calcoli. Il tempo a disposizione per la prova è di 2h.

Domande V/F

NOTA BENE: +1 risposta esatta, -0.5 risposta sbagliata, 0 risposta assente

1. Sia data la successione numerica reale

$$a_n = (-1)^n \frac{2\sqrt{n} - 1}{n^5 + n + 1}$$

1A a_n è infinitesima la successione $b_n = (-1)^n a_n$ non ammette limite finito per $n \longrightarrow \infty$ la successione $c_n = (a_n)^2$ è limitata **1C** 1D a_n è indeterminata

2. Sia data la funzione

$$f(x) = \arctan x^2$$

2A f ammette asintoti orizzontali **2B** f non ammette punti né di massimo né di minimo relativi **2C** f è decrescente su \mathbb{R} **2D** l'insieme immagine di f è $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

3. Sia

$$f(x) = x^4 + x^2 + 3$$

3A L'insieme immagine di f è l'insieme \mathbb{R} . **3B** La funzione f è invertibile **3C** La funzione f ha esattamente uno zero reale negativo. **3D** f è convessa in tutto il suo dominio

Esercizio 1

(1) Studiare continuità e derivabilità della funzione

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{se } x \neq 0\\ 0 & \text{se } x = 0 \end{cases}$$

Usando il teorema dei carabinieri si trova che la funzione è continua nell'origine. La derivata di f, definita per x \neq 0, è

$$f'(x) = 2x\sin\frac{1}{x} - \cos\frac{1}{x}$$

Per studiare la derivabilità di f nell'origine, non possiamo utilizzare la condizione sufficiente, infatti il limite di f' nell'origine non esiste. Usiamo invece la definizione di derivata. Si trova:

$$f'(0) = \lim_{h \to 0} \frac{h^2 \sin \frac{1}{h}}{h} = \lim_{h \to 0} h \sin \frac{1}{h} = 0,$$

applicando il teorema dei carabinieri. Quindi f è continua e derivabile nell'origine, ma non è di classe C^1 .

(2) Applicare, se possibile, il teorema di Rolle alla funzione

$$f(x) = x\sqrt{1-x}$$

definita nell'intervallo [0, 1].

Il teorema di Rolle è applicabile poiché f è derivabile (e continua) su (0,1). Inoltre f(0)=f(1)=0. Si calcola facilmente che

$$f'(x) = \frac{2 - 3x}{2\sqrt{1 - x}}.$$

Allora risolviamo l'equazione

$$f'(x) = 0$$

nel dominio di f e troviamo $x = \frac{2}{3}$.

(3) Calcolare il polinomio di MacLaurin di

$$f(x) = x^2 \sin x$$

di grado 2.

Si trova p(x) = 0, poiché il primo termine non nullo è di grado 3.

Esercizio 2

Studiare la seguente funzione

$$f(x) = xe^{\frac{1}{x}}$$

In particolare: determinarne il dominio, eventuali simmetrie, studiarne il segno, studiare i limiti agli estremi del dominio, determinare eventuali asintoti, studiarne la continuità, derivabilità, la monotonia, la convessità, determinarne eventuali punti di massimo, di minimo (locali e/o assoluti) e di flesso. Tracciare un grafico qualitativo di f.

La funzione è definita su $\mathbb{R} \setminus \{0\}$ e non ha simmetrie notevoli. Non interseca gli assi. È negativa per x < 0, positiva per x > 0. Ha l'asse y come asintoto verticale a destra di x = 0. Ammette poi l'asintoto obliquo y = x + 1, per $x \longrightarrow \pm \infty$. Si ha che

$$f'(x) = \frac{x-1}{x}e^{\frac{1}{x}}$$

e

$$f''(x) = \frac{1}{x^3} e^{\frac{1}{x}}.$$

La funzione ha un minimo relativo in $x = 1$. concava, sui positivi è convessa.	La funzione non	ha flessi ma camb	via concavità:	sui negativi è