

Week 1 - Welcome and Introduction

Sean Wang DVM, Ph.D

Sean Wang, DVM, PHD
Sequencing and Bioinformatics
Unit Supervisor

Sean.wang@state.mn.us

Jake Garfin

Bacteriology Laboratory Specialist

Jake.Garfin@state.mn.us

Angie Taylor, MPH, MB(ASCP)^{CM}
Bacteriology Laboratory Specialist
Angie.taylor@state.mn.us

Matt Plumb, MS

Bacteriology Laboratory Specialist

Matt.plumb@state.mn.us

Kelly Pung

Bacteriology Laboratory Specialist

Kelly.pung@state.mn.us

Central Region BRR and WFD

Bioinformatics Regional Resource and Workforce Development Regions

Regions are the same with PulseNet and ARLN

- O Ad-doc bioinformatics analyses for central region PHLs
- 💴 Onsite & in-house bioinformatics training
- Consultation with region PHL's laboratorians and IT staff members
- "Office hours" to ensure continuous remote bioinformatics support and consultation
- Serve as bioinformatics knowledge exchange and problem solving hub
- Building the "Stratus" cloud computing bioinformatics infrastructure, deploy VMs to region PHLs (Central Region)

Recordings and Slides: StaPH-B YouTube Channel and StaPH-B website http://www.staphb.org/

MN, CO, VA and UT

- √ StaPH-B gen
- √ StaPH-B dev
- √ StaPH-B Steering

Webinar and Training Overview

Week	Dates	Webinar Topic	Hands-on Topic	
1	March 10th & 12th	Why Next-Generation Sequencing?	Introduction to GalaxyTrakr and the Galaxy interface.	
2	March 17 th & 19th	Turning Microbes into Megabases: How Next-Generation Sequencing Works	Understanding bioinformatics file types and sharing in Galaxy	
3	March 24 th & 26 th	From Raw Data to Genomes: QC, Mapping, and Assembly	Assessing read quality and De Novo assembly using Shovill	
4	March 31 & April 2 nd	Mysterious Microbes: NGS for Bacterial Identification	Using MicroRunQC and Kraken to identify unknowns.	
5	April 7 th & 9 th	Predicting Phenotype from Genotype	Antimicrobial gene detection using Abricate and CARD	
6	April 14 th & 16 th	Reading the Tree Leaves: Cluster Detection with Whole Genome Sequencing (WGS)	Running CFSAN SNP Pipeline on GalaxyTrakr	
7	April 21st	NGS Public Health Applications	N/A	

Webinar training goals

- Develop understanding of a selection of bioinformatics topics and theories
- Get hands-on bioinformatics analyses experience using the GalaxyTrakr Platform
- Become more familiar with bioinformatics terminology and platforms
- Be able to execute analyses and interpret bioinformatics results within the GalaxyTrakr independently

^{*}We encourage participation commitment but also fully understand the gravity of ongoing COVID-19 situation

Why GalaxyTrakr?

• FREE!

Why Sequencing? Central Dogma of Biology

Think about some molecular diagnostic assay in your laboratory

- PCR
- RT-PCR
- RT-qPCR
- Biofire

The history of DNA Sequencing

label

Maxam-Gilbert Sequencing

Chain-termination Seuqueicng

Next-Generation Sequencing (NGS) – Amplification is the King

Third Generation Sequencing: Long read, real time sequence read

M03999:11:000000000-ANHE8:1:1101:14560:1871 1:N:0:12 1>>1>111DB111B1E1EBGGGFGDAF1111D33BF11AAF11F22F1GFHGHHBEZ11AGFHHFHHFDGF?EGFCGFHHFI @M03999:11:0000000000-ANHE8:1:1101:14445:1900 1:N:0:12 ACTTAATTGAGTGCTGGCTTCATCTACTGTAGGTTCTTTATCATCTTCATCTTGTTTTAAAACACTTTTATCCATTTGAGT/ 1>>A11DFF11DDDG11AFGF1GAF31D1D331FGFHHH3GA2FFGHF2GGGH2FGGH211DFAGGHHHBGFE2GHHB2CG @M03999:11:0000000000-ANHE8:1:1101:18618:1914 1:N:0:12 ATCAAGCACAACAACATCAACGCCTGCTTCAACTAAAGCATTCACACGATCCATTTGCCCTACTCCTATAGCC 3AAA?4DFFFFBAFGCGGBGGCEEG44FGEDGGGHHFBE3GHGBGDFE?GHEBGGH5AFGHGHHHHHGHEBFG @M03999:11:0000000000-ANHE8:1:1101:17412:1919 1:N:0:12 CTTTTTATTTGTTTTATAAGCTTAAGTGCGGCTAGTGGAGTTTTTGCGCTTTTAAATTTTCAAATCACGGTTATTTCATCA ABBBBF@FFFFFGGGGCDDEGHCB5F5A22EE2EG5232FFHHG2AAAEGGHB35FHHHFFFDGFDFECFGCHHHHFFHBB @M03999:11:0000000000-ANHE8:1:1101:15228:1925 1:N:0:12 CGGAAAAGTCGAAACTCATAGTATATGGCTTTTATTTAAAAAATTGGTTTGAAAATGAAATGATTCCAAATACTAGAAAAAT >1?1A?FBFDA?E1EGEBG3FGHG3F31AFHGHBHHHB2111BGFFGGHFB111DE111GFFHHHFBFBGGHHFFFFHGAG @M03999:11:0000000000-ANHE8:1:1101:12304:1932 1:N:0:12 GTTTTTATTGATGAGATTGATAAAATTGCTAGAATGAGTGAAAATCGTTCTATTACTCGTGATGTAAGTGGAGAGGGCGTG 1AAAAA?FFF3DD3C1BF11FBD11DG1ADED11DA11D11211DA0FGGG2FH2AFA/G/0FFGFF2GBB1/1AF/AAFCF @M03999:11:0000000000-ANHE8:1:1101:14974:1937 1:N:0:12 ${\sf CCATGATTTAAATCTTTTATAAATCTTCCATCAATCTCACTTTCGTCTTTTATTAAATGTAAAGTGGCGTCATATCCTAGC}$ AAAA?4FFFFFGGGGGGGFGFFFGFGHDF5FGDBGHHFBFGHHHDHGHGHHBGHEF5GBHFHFFHGEFCEGGHHHHHHHHGF @M03999:11:0000000000-ANHE8:1:1101:16924:1960 1:N:0:12 GCTTGATAGTGTTATTACCGCAGTAGGAATTGCTCAAGATGTAACCATCATGATTATCGCTGTTATTATCGCAGTAGCTGT A?ABB>DDFFFFGBGGGDDE?2EEB5445BF45AFE3F3FFGCDFDDFAAFB5FGGGD2AHEGHHHHHFFA?FFGHHGHHE

What is Bioinformatics?

- ❖ An interdisciplinary study which combine Statistics, Computer Science and Biology
- "Big data" of Genomics
- Translate meaningless millions of short sequences into meaningful and actionable biological results
- ❖ Population level infectious disease surveillance will require massive computing power to process the large amount of biological data

Three main analyses platforms

- Webpage-based single purpose/small collection of bioinformatics analyses
 - CGE, GalaxyTrakr, Web version of Seqsero
- Commercially/non-profit available bioinformatics software
 - DNAStar
 - Bionumerics
 - CLC Genomic Workbench
 - Geneious
- Linux/Unix based platform
 - Mac OS
 - Linux OS (Desktop, HPC, Cloud etc.)

Benefit of Sequencing

The multi-purpose usage of WGS data

Antibiotic-resistance gene profiling

Antibiotics	Antibiotic resistance Genes	No. reads	Percentage Identity	Contig Length	Reference length
Am inogly cosides	Aph4_la_AGly	234	100	1908	1026
aminopenicillins, carboxypenicillins, ure idopenicillins ,	CTX_M_9_Bla	1174	100	2011	876
Chloramphenicol	Cat8x_Phe	490	100	606	549
Sulfonamides	Sull_Sull	110	100	1798	840
Teracyclines	TetA_Tet	238	100	2170	1275
Teracyclines	TetR_Tet	130	100	1425	651

Whole-genome SNP phylogenetic analyses

Pathogen identification

Klebsiella pneumoniae OR Klebsiella variicola??

Sequencing and Bioinformatics Public Health Application

- Species discovery and identification
 - COVID-19 (https://nextstrain.org/ncov)
- Infectious pathogen characterization
 - Serotyping and genotyping (i.e. Salmonella, Strep pneumo)
 - Antibiotic resistance gene profiling (i.e. mcr-1, mcr-2)
 - Virulence marker/gene detection and mutation monitoring (i.e. SH AA mutation may lead to increased RSV virulence)
- Genetic relatedness
 - PFGE -> WGS
 - HCV "Ghost" program

General workflow from raw NGS yield to biological results

Questions?

