

Measuring small debris – what you can't see can hurt you

Mark Matney, Ph.D.
Orbital Debris Program Office
NASA Johnson Space Center

What is Orbital Debris?

- Space debris encompasses both natural (meteoroid) and artificial (manmade) particles.
 - Meteoroids are natural objects in orbit about the Sun
 - Any man-made object in Earth orbit that no longer serves a useful purpose
 - All man-made objects in orbit are destined to become debris, in one way or another

Non-operational Spacecraft

Fragmentation and Mission-related Debris

Derelict Launch Vehicle Stages

Brewster Rockit on Debris Sources

SSN

 Almost all our <u>operational</u> knowledge of the space environment is from the U.S. Department of Defense's (DoD) Space Surveillance Network (SSN) and its parallels in other countries

New launches

- Payloads
- Rocket Bodies
- Operational Debris (brackets, shrouds, etc.)

Breakup events

- Anomalous breakups
- Explosions both accidental and deliberate
- Collisions between tracked objects

 It is through the SSN Catalog that we know the various orbits where humans have launched their satellites and how they have evolved over time

Space Surveillance Network

Evolution of the Cataloged Satellite Population

Monthly Number of Objects in Earth Orbit by Object Type

Evolution of the Cataloged Satellite Population

Monthly Number of Objects in Earth Orbit by Object Source

SSN Catalogue Orbital Environment

JSpOC

- The Joint Space Operations Center (JSpOC) is tasked with using the measurement data of the SSN to maintain a Catalog of space objects
 - Catalog consists of objects large enough to be detected by sensors of the SSN and determine their orbits with sufficient accuracy to recover the object on a future pass over an SSN sensor
 - This tracking capability allows the JSpOC to perform conjunction assessment calculations for satellite users
 - There is a sensitivity limit for the SSN sensors, generally given as >10 cm in low-Earth orbit (LEO), and losing sensitivity for deep space objects
 - However, we know there are many debris smaller than 10 cm in size that cannot be tracked
- NASA and the DoD have established complementary areas of expertise in order to understand the debris environment in Earth space
 - DoD concentrates on the part of the environment large enough to track, identifying and tracking individual objects
 - NASA concentrates on the part of the environment too small to track, and uses statistical tools to understand what is going on

NASA Orbital Debris Program

- NASA uses a number of assets to monitor the orbital debris environment <10 cm in order to characterize:
 - Size distribution
 - Orbit distributions (inclination, altitude, eccentricity)
 - Possible sources
 - Material types
- NASA uses a statistical sampling technique a sensor samples the environment over time in order to make statistical conclusions about the debris populations
 - Determine how the debris are distributed in orbit
 - Allows the ability to calculate the collision/damage risk to spacecraft
 - Allows the spacecraft designers to build their spacecraft with better shielding or other techniques to minimize failure risk
 - Identify new sources and prevent future debris-creating events
 - Accurately assess the danger from known sources
 - Assess how space activities might be degrading the debris environment
 - Monitor for unforeseen new events invisible to the SSN

Principal Orbital Debris Data Sources

HUSIR/HAX Radars

- Located in Massachusetts – 42.6° latitude
- Haystack Ultrawide
 Satellite Imaging Radar
 (HUSIR previously
 known as Haystack)
 - 36 m diameter
 - 3 cm wavelength (X-band)
 - Can detect 5 mm 1 cm debris in LEO
- Haystack Auxiliary Radar (HAX)
 - 15 m diameter
 - 1.8 cm wavelength (Kuband)
 - Can detect 1 3 cm debris in LEO

HUSIR/HAX Radars

HUSIR and HAX measurements

- Range
- Doppler range-rate
- Radar cross section (RCS)
- Circular polarization

Haystack/HUSIR uses several different pointing directions to monitor the environment

- 75° East allows the estimate of the inclination using the Doppler range-rate and assuming a circular orbit
- 20° South can detect objects in orbits with inclinations lower than the latitude
- 10° South can detect objects in even lower inclinations, but with less sensitivity

HAX

- Due to sensitivity limitations, uses only 75° East
- Wider beam gives greater count for >1 cm population than HUSIR

Goldstone Radar

- Located in southern
 California 35.4° latitude
- Part of NASA's Deep Space Network
- Bistatic system
 - 70 m dish + 35 m dish
 - 3.5 cm wavelength (X-band)
 - Can detect 2 mm 5 mm debris in LEO
- Limited capability and time available
- 75° East mode, but recently experimented with 20° South

Example of Composite Radar Data

Optical Telescopes

- Telescopes are the preferred method to observe small debris at Geosynchronous orbit (GEO) altitudes
- For more than a decade, NASA has used the Michigan Orbital Debris Survey Telescope (MODEST) to statistically monitor the GEO environment
 - 0.61 m aperture Curtis Schmidt optical telescope
 - Located in Chile, operated by University of Michigan
- Observations are conducted near the Earth's shadow to maximize the reflected sunlight from debris
 - Can detect objects down to about 30 cm in size
- Statistical survey is corrected for probability of detecting an object in a particular orbit

NASA

Statistical Survey

Estimated Near-GEO Population

MCAT – Meter Class Autonomous Telescope

- NASA has recently deployed the Meter-Class Autonomous Telescope (MCAT), a 1.3 m aperture Ritchey-Chretien reflecting telescope to Ascension Island (8.0° S), in the Atlantic Ocean near the Equator
- Will have the ability to extend statistical surveys in GEO for smaller debris (~ 10 cm)
- Will also have the capability to look for lowinclination debris in LEO

In Situ

- For sizes smaller than ~2-3 mm, we rely on returned spacecraft surfaces
- Small impactors leave a damage feature a hole or crater
- Feature size is a function of
 - Particle size
 - Particle mass
 - Particle shape
 - Particle density
 - Particle speed and direction of impact
 - Characteristics of impacted surface
- The chief problem is that we do not typically know these things for each particle, all we have is the feature size and position
 - Sometimes, electron microscope analysis of feature yields melted residual of impactor, letting us know the material of the particle (e.g., aluminum, steel, meteoroid).
- Use statistical techniques to "back out" debris characteristics

Shuttle Database

- Until 2011, the US regularly launched the Space Shuttle into LEO
 - Usually to ~400 km altitude
 - Occasionally up to 600 km altitude
- While not designed as such, certain surfaces served as excellent debris impact detectors
- Windows
 - 3.5 m²
 - Detected impactors in 10 μm 100 μm size range
 - Excellent surface for identification of impactor material
- Radiators
 - 120 m²
 - Detected impactors larger than about 100 µm up to ~1 mm in size
 - Because made of aluminum, could not readily distinguish aluminum impactors

Shuttle In Situ Data

Outer limits of larger crater and impact event influence

Often asked if @Space_Station is hit by space debris. Yes - this chip is in a Cupola window esa.int/spaceinimages/ ...

RETWEETS 1.735

LIKES 2.840

6:07 AM - 12 May 2016

STS-115 MMOD Impact Damage

- The debris punched all the way through the radiator.
- The face sheet hole was 2.8 mm in diameter.
- The core inside the panel was completely destroyed for at least a 2.5 cm diameter below the face sheet damage.
- This is the most significant MMOD damage recorded on the Orbiter radiators to that time

Schematic of Radiator and Sketch of Damage

Additional Images

Outer face sheet damage

Inner face sheet damage

Types of Shuttle Window Impacts

- During 1992-2001 a total of 463 Shuttle window impactors were characterized by type
- Impactors were typically 0.01-0.06 mm in diameter, but some were as large as 0.2 mm in diameter

Identified Impactors

Types of Orbital Debris Impactors

National Aeronautics and Space Administration

Medium Density (e.g., Aluminum) Shuttle Radiator Impactors

Shuttle Radiator Hole Data STS-71 - STS-133 (except STS-75 and STS-100) 1995-2011

High Density (e.g., Steel) Shuttle Radiator Impactors

Shuttle Radiator Hole Data STS-71 - STS-133 (except STS-75 and STS-100) 1995-2011

Future of *In Situ*

The Shuttle no longer flies, so NASA currently has no dedicated sensor to monitor the small particle environment

- The best way to measure small particles is by using a dedicated, calibrated sensor, designed to measure the impactor properties of most interest
 - Size
 - Shape
 - Material Density
 - Speed and Direction
 - Time of Impact (combined with position of sensor, can be used to determine particle orbit)

The Debris Resistive Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is a new technology initiative to measure *in situ* debris

- The resistive grid on the first layer used to estimate the particle size
- Acoustic sensors at each layer to measure path and time-of-flight
- Backstop to record total energy
- Using velocity, energy, and size, should be able to estimate mass and material density
- Impact time to compute debris orbit
- DRAGONS flight demonstration currently manifested to fly on ISS
- We hope to find flight opportunities at higher altitudes in the near future

Ground Experiments

- Sometimes it is not enough to measure events in space, they need to be studied in the laboratory under controlled conditions
- There is a long history of studying collision or explosion debris on the ground by picking up the pieces afterwards
 - Number of debris
 - Size distribution
 - Shapes
 - Delta-velocities

The primary source of data has been the Satellite Orbital debris
 Characterization Impact Test (SOCIT), which used an intact Transit satellite built in the 1960's for the target of a hypervelocity impact test

Ground Experiments

- However, there have been major changes in spacecraft construction materials over the years, so a need to test the breakup models using more modern spacecraft materials
- NASA, in conjunction with US Dept of Defense, conducted the DebriSat impact experiment, using a mock satellite made of modern materials
 - Included a test of a mock tank, designated DebrisLV

A comparison between Transit and DebriSat

	Transit (SOCIT)	DebriSat
Target body dimensions	46 cm (dia) × 30 cm (ht)	60 cm (dia) × 50 cm (ht)
Target mass	34.5 kg	56 kg
MLI and solar panel	No	Yes
Projectile	Al sphere	Hollow Al cylinder
Projectile dimension, mass	4.7 cm (dia), 150 g	8.6 cm × 9 cm, 570 g
Impact speed	6.1 km/sec	6.8 km/sec
Impact energy to target mass ratio	78 J/g (2.7 MJ total impact energy)	235 J/g (13.2 MJ total impact energy)

DebriSat

DebrisLV

DebrisLV

Impact sequences of DebrisLV

DebriSat

Impact sequences of DebrisSat

DebriSat

- The debris from the impacts have all been collected, and are being carefully analyzed by a team from the University of Florida
 - Digital photos of each object
 - Mass, 3D dimensions
 - Material components identified
 - Soft-catch material being analyzed to ascertain particle velocities
- More debris were recovered than we anticipated based on previous models

- Final dataset will be a detailed resource
 - Shape studies
 - RCS studies
 - Material distributions
 - Size distributions

Conclusions

- Monitoring the Earth space environment requires multiple detectors
 - Broad range in size
 - Broad range in altitudes
- Earth environment is dynamic, and needs to be monitored regularly
- With the loss of the Space Shuttle, we need new tools to sample the small particle environment, as well as extend to regions where we have as yet no data
- New detectors will sample sizes and regions previously difficult to see with existing sensors

NASA

Questions?

What day is trash pickup around here?

NASA

Backups

HST SM1 (STS-61, 1993)

National Aeronautics and Space Administration

Visible MMOD Impact Damage on WFPC2 Radiator from the On-orbit Imagery Survey

S125e006995.jpg (edited)

- Red circles: Impacts identified from SM3B images (2002)
- Blue circles: Additional impacts identified from SM4 images (2009)

Debris Impacts Observed during EVA's

• Also in 2007, a crew member on EVA noticed a hypervelocity impact crater while working near a large aluminum panel.

Space debris impact site

MMOD Damage to ISS

MMOD impact damages observed to radiator panel during EVA-20 (Nov. 2012)

National Aeronautics and Space Administration

MMOD Damage to ISS

ISS032e020579

observed to Service Module during Russian EVA-31 (Aug. 2012)

ISS032e020579

Close-up of SM radiator damage (1/4)

ISS032e020579

Close-up of SM radiator damage (3/4)

ISS032e020579

Close-up of SM radiator damage (4/4)

Breakups - BRIZ-M

- On August 6, 2012, the Russians attempted to launch two communications satellites using a Proton rocket
- The BRIZ-M upper stage failed to burn properly, and was left stranded in an elliptical orbit with about 5 metric tons of its propellant still aboard
- On October 16, the rocket body exploded, creating at least 700 trackable pieces of debris (and probably many more too small to be tracked) in orbits that cross ISS altitude
- Observed by astronomers at the Siding Springs Observatory

Previous Briz-M explosion – Feb 19, 2007

Rob McNaught, Siding Springs Observatory Copyright Ray Palmer www.MyAstroSpace.com www.NaturesPeak.com.au