Midterm 1

Math 252

Spring 2021

You have 50 minutes to complete this exam and scan and upload it to Canvas. Show all your work. You may use a scientific calculator, but not a graphing one. When you're finished, first check your work if there is time remaining, then scan the exam and upload it to Canvas. If you have a question, don't hesitate to ask — I just may not be able to answer it.

1. (32 points) Multiple choice. You don't need to show your work.

a) (8 points) Let f be a positive function on an interval [a,b]. The upper Riemann sum of f on [a,b] with 5 subintervals chooses x_i^* to be

- A) the left endpoint on each subinterval.
- B) the right endpoint on each subinterval.
- C) the x in the subinterval that has the largest value of f(x).
- D) the x in the subinterval that has the smallest value of f(x).

b) (8 points) What is $\int \frac{1}{\sqrt{1-x^2}} dx$?

- A) $\tan^{-1}(x) + C$.
- B) $\sin^{-1}(x) + C$.
- C) $\cos^{-1}(x) + C$.
- D) $\tan^{-1}(x) + C$.

c) (8 points)

Let f(t) be defined by the previous graph. Then $\int_{-2}^{1} f(t) dt$ is

- A) positive.
- B) negative.
- C) zero.
- D) undefined.

d) (8 points) With f defined from the same graph as before, let $g(x) = \int_{-3}^{x} f(t) dt$. Which of the following could possibly be a graph of g?

2. (32 points) Short-answer. Explain your reasoning and/or show your work for each question.

a) (8 points) Evaluate $1 + 2 + 3 + \dots + 99 + 100$.

b) (8 points) Evaluate $\int (x^2 + \ln(x)) dx$.

c) (8 points) Evaluate $\int_2^6 \frac{1}{r} dr$.

d) (8 points) Evaluate $\int \sin(t)\cos(t)\sin(\cos(2t)) dt$. (Hint: $\sin(2t) = 2\sin(t)\cos(t)$)

3. (32 points) Let $v(t) = 2t + 2t^2$ be the velocity of a particle at time t .
a) (8 points) Find $a(t)$, the acceleration of the particle at time t .
b) (8 points) Find $s(t)$, the position of the particle at time t , given that $s(3) = 2$.
c) (8 points) Sketch graphs of $s(t)$, $v(t)$, and $a(t)$ on [0, 5].
d) (8 points) What is the average position of the particle on $[0,5]$?
e) (4 points extra credit) Let $e(x)$ be the average position of the particle on $[0,x]$. Find $e(x)$ and sketch a graph.