Rank-74499 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^2 X_2 + X_1^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(2)$ is 74499

General information

Number of lines	7
Number of points	11
Number of singular points	2
Number of Eckardt points	1
Number of double points	5
Number of single points	4
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	37
Type of lines on points	$4, 3, 2^5, 1^4$

Singular Points

The surface has 2 singular points:

$$0: P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0)$$
$$1: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 7 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_0 = \mathbf{Pl}(1,0,0,0,0,0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \mathbf{PI}(0, 0, 1, 0, 0, 0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{11} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{11} = \mathbf{PI}(0, 0, 1, 0, 0, 1)_{22}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{3} = \mathbf{PI}(1, 0, 1, 0, 1, 0)_{13}$$

$$\ell_{4} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{29} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{29} = \mathbf{PI}(0, 0, 0, 1, 0, 1)_{25}$$

$$\ell_{5} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \mathbf{PI}(0, 1, 0, 0, 0, 0)_{1}$$

$$\ell_{6} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{25} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{25} = \mathbf{PI}(0, 1, 1, 0, 0, 1)_{24}$$

Rank of lines: (0, 4, 11, 3, 29, 34, 25)

Rank of points on Klein quadric: (0, 2, 22, 13, 25, 1, 24)

Eckardt Points

The surface has 1 Eckardt points:

$$0: P_0 = \mathbf{P}(1, 0, 0, 0) = \mathbf{P}(1, 0, 0, 0). T = -1$$

Double Points

The surface has 5 Double points:

The double points on the surface are:

$$P_5 = (1, 1, 0, 0) = \ell_0 \cap \ell_2$$

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_4$$

$$P_{14} = (0, 1, 1, 1) = \ell_3 \cap \ell_4$$

$$P_4 = (1, 1, 1, 1) = \ell_3 \cap \ell_6$$

$$P_{12} = (0, 0, 1, 1) = \ell_4 \cap \ell_5$$

Single Points

The surface has 4 single points:

The single points on the surface are:

0: $P_3 = (0, 0, 0, 1)$ lies on line ℓ_5 1: $P_6 = (1, 0, 1, 0)$ lies on line ℓ_1

 $2: P_8 = (1, 1, 1, 0)$ lies on line ℓ_2

The single points on the surface are:

3: $P_{11} = (1, 1, 0, 1)$ lies on line ℓ_6

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

	0123456
$\overline{0}$	0111100
1	1011011
2	1100011
3	1100101
4	1001010
5	0110101
6	$\begin{array}{c} 3123130\\ 0111100\\ 1011011\\ 1100011\\ 1100101\\ 0110101\\ 0111010 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4
in point	P_0	P_5	P_0	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_5	ℓ_6
in point	P_0	P_2	P_0	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_5	ℓ_6
in point	P_5	P_2	P_2	P_2

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_4	ℓ_6
in point	P_0	P_0	P_{14}	P_4

Line 4 intersects

Line	ℓ_0	ℓ_3	ℓ_5
in point	P_1	P_{14}	P_{12}

Line 5 intersects

Line	ℓ_1	ℓ_2	ℓ_4	ℓ_6
in point	P_2	P_2	P_{12}	P_2

Line 6 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_5
in point	P_2	P_2	P_4	P_2

The surface has 11 points:

The points on the surface are:

$$0: P_0 = (1, 0, 0, 0) 1: P_1 = (0, 1, 0, 0)$$

$$4: P_4 = (1, 1, 1, 1)$$

$$8: P_{11} = (1, 1, 0, 1)$$

$$1 P_1 = (0.1, 0.0)$$

$$5: P_5 = (1, 1, 0, 0)$$

9:
$$P_{12} = (0, 0, 1, 1)$$

10: $P_{14} = (0, 1, 1, 1)$

$$2: P_2 = (0, 0, 1, 0)$$

$$6: P_6 = (1,0,1,0)$$

$$0: P_{14} = (0, 1, 1, 1)$$

$$3: P_3 = (0,0,0,1)$$

$$7: P_8 = (1, 1, 1, 0)$$

$$Y: P_8 = (1, 1, 1, 0)$$