Lecture 7: Neural Networks

Haiping Lu

YouTube Playlist: https://www.youtube.com/c/HaipingLu/playlists

COM4059/6059: MLAI21@The University of Sheffield

Week 7 Contents / Objectives

- Learning with Neurons
- Neural Networks (NNs)
- NN Decision Boundary & Features
- Convolutional NN Basics
- Convolutional NN Unboxing

Week 7 Contents / Objectives

- Learning with Neurons
- Neural Networks (NNs)
- NN Decision Boundary & Features
- Convolutional NN Basics
- Convolutional NN Unboxing

Did you know?

Pigeons identify Breast Cancer

Just as well as radiologists

Three correct trials with benign images follow (the yellow button is correct).

The Neuron Metaphor

- Neurons
 - Accept information from multiple inputs
 - Transmit information to other neurons
- Multiply inputs by weights along edges
- Apply some function to the inputs at each node

A Neuron Analogous to the Brain

07/11/2021

Neural Network

- Network of neurons
- Linear neuron $w_0 + w_1x_1 + w_2x_2 + w_3x_3$

Activation Functions

Commonly used activation functions

• Sigmoid:
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- Tanh: $\tanh(z) = \frac{\exp(z) \exp(-z)}{\exp(z) + \exp(-z)}$
- ReLU (Rectified Linear Unit): ReLU(z) = max(0, z)

Computation in Neural Networks

- Forward pass
 - Making predictions (decisions)
 - Plug in the input *x*, get the output *y*

$$\mathbf{o} = g\left(\left(W^{(2)} \right)^T \mathbf{h} + b^{(2)} \right)$$
$$\mathbf{h} = g\left(\left(W^{(1)} \right)^T \mathbf{x} + b^{(1)} \right)$$

- Backward pass (backpropagation for optimisation)
 - Compute the gradient of the cost (loss/error) function with respect to the weights to find good values for weights

07/11/2021

Autograd: Chain Rule

Univariate chain rule

$$\frac{d}{dt}g(f(t)) = \frac{dg}{df}.\frac{df}{dt}$$

Multivariate chain rule

$$\frac{\partial g}{\partial x} = \sum \frac{\partial g}{\partial f_i} \frac{\partial f_i}{\partial x}$$

07/11/2021

Week 7 Contents / Objectives

- Learning with Neurons
- Neural Networks (NNs)
- NN Decision Boundary & Features
- Convolutional NN Basics
- Convolutional NN Unboxing

AlexNet for ImageNet LSVRC-2010

Input image (pixels)

- Five convolutional layers (w/max-pooling)
- Three fully connected layers

1000-way softmax

Data, Model, Metric for Learning

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

2. Choose each of these:

Decision function/model

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function/metric

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

Face Face Not a face

Examples: Linear regression, Logistic regression, Neural Network

Examples: Mean-squared error, Cross Entropy

Data, Model, Metric, Optimisation

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

2. Choose each of these:

Decision function/model

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function/metric

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

3. Define goal:

Objective function

$$oldsymbol{ heta}^* = rg \min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

4. Train/optimize with SGD: (take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Data, Model, Metric, Optimisation

1. Given training data:

$$\{\boldsymbol{x}_i, \boldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of these:
 - Decision function/mod

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function/metric

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

- 3. Define goal:
- Objective function

Compute **gradients**via backpropagation
Using automatic
differentiation

$$(f_{m{ heta}}(m{x}_i),m{y}_i)$$

opposite the gradient) $oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$

Linear Regression Model ($x \rightarrow y$)

Linear Regression Neural Networks

 Question: What happens when we arrange linear neurons in a multilayer network?

Linear Regression Neural Networks

Nothing special happens.

 The product of two linear transformations is itself a linear transformation.

Logistic Regression Model (x -> y)

Logistic Regression Neural Networks

Inputs

Independent (input) variables

Weights (Coefficients) Hidden layer

Weights (Coefficients)

Dependent (output) variable (Prediction /estimate/ target)

Week 7 Contents / Objectives

- Learning with Neurons
- Neural Networks (NNs)
- NN Decision Boundary & Features
- Convolutional NN Basics
- Convolutional NN Unboxing

Hidden Layers -> Decisions

Decision Boundary

- 0 hidden layers: linear classifier
 - Hyperplanes

Decision Boundary

- 1 hidden layer
 - Boundary of <u>convex</u> region (open or closed)

Decision Boundary

- 2 hidden layers
 - Combinations of convex regions

Deeper Networks

Different Levels of Abstraction

complex patterns go

- We don't know the "right" levels of abstraction
- So let the model figure it out!

data driven approach

Different Levels of Abstraction

Face Recognition:

- Deep Network can build up increasingly higher levels of abstraction
- Lines, parts, regions

Different Levels of Abstraction

Machine Learning Ingredients

- Data: + pre-processing (& visualisation), e.g., $\mathcal{N}(0,1)$
- Model
 - Structure ~ Architecture ← expert knowledge
 - Must specify before ML, can optimise via cross validation (CV)
 - **Hyper-parameter**, e.g., prior, #degree, layer ← knowledge
 - Must specify (choices) and can optimise via CV (tuning)
 - Parameters (theta)
 - Compute/learn parameter, e.g., weights, bias ← optimisation alg.
- Evaluation metric (what's best): loss/error function
- Optimisation: (how to find the best) learnable parameters

Neural Network Training

Data → Model → Metric → Optimisation

https://slazebni.cs.illinois.edu/fall18/assignment2/nn.gif

Neural Network Ingredients

- Data: + pre-processing, e.g., $\mathcal{N}(0,1)$
- Model
 - Structure/Architecture: layered network
 - Hyper-parameter: layer specs, e.g. #layers, #neurons/units, activation function
 - Parameters (theta): layer weights & biases
- Evaluation metric (loss): max likelihood (min NLL), cross-entropy, etc.
- Optimisation: backpropagation (gradient-based)

Week 7 Contents / Objectives

- Learning with Neurons
- Neural Networks (NNs)
- NN Decision Boundary & Features
- Convolutional NN Basics
- Convolutional NN Unboxing

Fully Connected (FC) Layer

- Linear layers such as linear/logistic regression
- What if our network is bigger?
 - Input image: 200 × 200 pixels, first hidden layer: 500 units
 - Question: How many weights for input→1st hidden?
 20 million
 - Q: Why is using an FC layer problematic for images?
 - Computing predictions (forward pass) will take a long time
 - A large number of weights requires a lot of training data to avoid overfitting
 - Small shift in image can result in large change in prediction
 - Not making use of the image geometry

Convolutional Neural Network

- Key ideas:
 - Locally-connected layers: look for local features in small regions of the image
 - Weight-sharing: detect the same local features across the entire image

07/11/2021

Weight Sharing

 Each neuron on the higher layer detects the same feature, but in different locations on the lower layer

The red connections all have the same weight

"Detecting" = the output (activation) is high if the feature is present

"Feature" = something in the image, like an edge, blob or shape

Forward Pass Example (Single Channel)

https://developer.nvidia.com/sites/default/files/pictures/2018/convolution-2.gif

- The kernel/filter (yellow) contains the trainable weights. In the above, the kernel *size* is 3 ×3.
- The "convolved features" is another term for "convolution output"

07/11/2021

38

Example of convolution

Greyscale input image: 7 × 7

Convolution kernel: 3 × 3

Questions:

- How many units are in the output?
- How many trainable weights are there?

Convolution in RGB for colour images

The kernel: a 3-D tensor! In this example, the kernel has size $\frac{3}{4} \times 3 \times 3$.

The first number 3: the number of **input channels** or **input feature maps**

Detecting Multiple Features

- **Q**: What if we want to detect many features of the input? (e.g. **both** horizontal edges and vertical edges, and maybe even other features?)
- A: Have many convolutional filters!

Input image size: $3 \times 32 \times 32$

Convolution kernel (4D): $3 \times 3 \times 3 \times 5$

- The number 3 is the number of input channels or input feature maps
- The number <u>5</u> is the number of **output channels** or **output feature maps**

Zero Padding

Add zeros around the border of the image (can add more than one pixel of zeros)

Question: Why might we want to add zero padding?

- Keep the next layer's width and height consistent with the previous
- Keep the information around the border of the image

Strided Convolution

Shift the kernel by **2** (stride=2) when computing the next output feature.

Objective: to consolidate (summarise) information

07/11/2021 43

Transpose Convolution Layer

(a) Convolutional layer: the input size is the convolution is performed with stride S = 1and no padding (P = 0). The output Yis of size $W_2 = H_2 = 3$.

(b) Transposed convolutional layer: input size $W_1 = H_1 = 5$; the receptive field F = 3; $W_1 = H_1 = 3$; transposed convolution with stride S = 2; padding with P = 1; and a receptive field of F = 3. The output Yis of size $W_2 = H_2 = 5$.

https://www.mdpi.com/2072-4292/9/6/522/htm

More at https://github.com/vdumoulin/conv arithmetic

Week 7 Contents / Objectives

- Learning with Neurons
- Neural Networks (NNs)
- NN Decision Boundary & Features
- Convolutional NN Basics
- Convolutional NN Unboxing

Convolutional Neural Networks

Fully Connected Layer

32x32x3 image → stretch to 3072 x 1

Tensor: Preserve spatial structure

• 32x32x3 image

Filters always extend the full depth of the input volume

• 5x5x3 filter

- **Convolve** the filter with the image
- i.e. "slide over the image spatially, computing dot products"

activation map

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Convolution Operation

7

7x7 input (spatially) assume 3x3 filter

7

Convolution Operation

7

7x7 input (spatially) assume 3x3 filter

7

Convolution Operation

After three more sliding and dot products

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2 → 3x3 output!

Question: 7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn't fit!
cannot apply 3x3 filter
on 7x7 input with stride
3 (unless ignoring parts).

Convolution – Size of output

N

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$

Zero Padding

e.g. input 7x73x3 filter, applied with stride 1pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

```
e.g. F = 3 => zero pad with 1
F = 5 => zero pad with 2
F = 7 => zero pad with 3
```

Convolution Shrinks

Example: 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 \rightarrow 28 \rightarrow 24 ...).

Exercises

- Input volume: 32x32x3; 10 5x5 filters with stride 1, pad 2
 - Output volume size?

Number of parameters for this layer?

Pooling Layer: Downsampling

- Operate over each activation map independently:

Max Pooling

Single depth slice

0 1					
x	\	1	1	2	4
		5	6	7	8
		3	2	1	0
		1	2	3	4

max pool with 2x2 filters and stride 2

Lab 7 CNN (See notebook for details)

```
init (self):
super(CNN, self). init ()
self.conv1 = nn.Conv2d(3, 6, 5) #3: #
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
forward(self, x):

    After fc1: 120

x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))

    After fc2:84

x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
```

• Initial Image Size: $3 \times 32 \times 32$

• After conv1 : $6 \times 28 \times 28$ (32)

After Pooling: 6 x 14 x 14 (image)

• After conv2 : $16 \times 10 \times 10$ (14)

After Pooling: 16 × 5 × 5 (halve

After fc3: 10 (= number of class)

Acknowledgement

 The slides used materials from: Matt Gormley, Eric Xing, Nina Balcan, Fei-Fei Li & Justin Johnson & Serena Yeung, Lisa Zhang, Michael Guerzhoy, Svetlana Lazebnik, Ismini Lourentzou, Dekai Wu

Recommended Reading

- <u>CS231n: Convolutional Neural</u>
 <u>Networks for Visual Recognition</u>

 <u>from Stanford</u> (Fei-Fei Li et al.)
- The Deep Learning Book with a free official html version provided by the authors (Ian Goodfellow et al.)
- Convolution arithmetic

PyTorch documentations

The lab notebook and references