# Practical Text Analytics: Latent Semantic Analysis

Fan Dai

Iowa State University

October 15, 2019

## Recall: Text analytics process

### Text analytics process

- Planning the text analytics projects
- Preparing and preprocessing text
- Analyzing data
  - Latent Semantic Analysis (LSA)
     (Chapter 6, Anandarajan et al.(2019))
- Interpreting results

# LSA: Motivating Example



Source: https://kids.nationalgeographic.com/

- What a computer can learn from text describing "cheetah" by looking at word frequency, proximity. . . ?
  - "cheetah" and "cat" are semantically related.
  - "cheetah" and "fastest" are more closely related than "cat" and "fastest".
- The computer makes the connection that *cheetah is the fastest cat*.

### LSA: Definition

• The underlying idea

Extract and reveal information that conveyed from how words co-occur with each other across documents

- Reflect a shared latent concept, e.g., {"fastest", "cat"}⇒"cheetah".
- ② Classify the documents, e.g., {"dog", "cat", "apple", "blueberry", "orange"}⇒ group documents into "animal" and "fruit"
- The analysis object: tokens
  - Meaning of words
  - Relationships with other tokens

How to do when two words are related through a third word only?

e.g., Two words from Iowa's winery blogs: "Ackerman", "Tassel"

- Rarely together within the same document.
- Related through their frequent shared co-occurrence with other terms like "producer" or "price".

#### Solution:

Singular value decomposition (SVD) on the weighted term-document matrix (TDM)

#### **TDM**

- Rows: words/terms. Columns: documents
- Entries: the number of times that the *i*th term appears in the *j*th documents.

|                                                       | Local weight for word <i>i</i> in document <i>j</i>           | Global weight for word i |                                                                                                                     |  |  |  |  |
|-------------------------------------------------------|---------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Raw                                                   | $tf_{i,j}$                                                    | None                     | 1                                                                                                                   |  |  |  |  |
| Binary                                                | $\begin{cases} tf_{i,j} \ge 1:1\\ tf_{i,j} = 0:0 \end{cases}$ | IDF                      | $1 + \log_2\left(\frac{n}{df(i)}\right)$                                                                            |  |  |  |  |
| Log                                                   | $\log_2 \bigl(tf_{i,j}+1\bigr)$                               | Entropy                  | $1 + \sum_{j=document}^{corpus} \frac{tf_{i,j}}{gf_i} \times \log_2\left(\frac{tf_{i,j}}{gf_i}\right) \\ \log_2(n)$ |  |  |  |  |
| $tf_{i,j}$ $df_i$ $gf_i$ $n$                          |                                                               |                          |                                                                                                                     |  |  |  |  |
| $Final\ weight = local\ weight \times global\ weight$ |                                                               |                          |                                                                                                                     |  |  |  |  |

Figure: Weighting for TDM

Source: David Gefen; et al. (2017)

### *tfidf*-weighted TDM is prefered in LSA

#### *How does SVD work?*

• identify underlying factors in the weighted TDM by transforming it into three matrices that represent terms, documents, and a matrix multiplier for reconstruction, respectively.

$$M = U \times \Sigma \times V^{\top}$$

- *M* is the weighted TDM
- *U* contains the left singular vectors of terms
- $\bullet$   $\Sigma$  is a matrix with weight values on the diagonal
- V contains the right singular vectors of documents

• in LSA, we apply a truncated SVD

$$M \approx A_k = U_k \times \Sigma_k \times V_k^{\top}$$

 $A_k$  represents the LSA space out of the rank r matrix M



Figure: Truncated SVD process

Source: Martin and Berry (2007)

- the *k* remaining singular vectors in *U* and *V* correspond to *k* "hidden concepts" where the terms and documents participate.
- k is too small: vectors that are related conceptually are not combined
- *k* is too large: redundant information is included (with those singular values that are "too small" and thus "negligible").
- determine *k*: e.g., scree plot showing variance explained by number of singular vectors.
- SVD v.s. Principal component analysis (PCA): reference link

What can we do with the SVD in LSA?

Example: 10 respondents and descriptions of their dog (Anandarajan et al.(2019)):

- Document 1: My Favorite Dog Is Fluffy and Tan.

Document 2: the dog is brown and cat is brown.

Document 3: My favorite coat is brown and hat is pink

*Document 4: My dog has a hat and leash.* ♥

Document 10: MY fluffy dog has a white coat and hat!

### tfidf-weighted TDM

|          | D1  | D2  | D3  | D4  | D5  | D6  | D7  | D8  | D9   | D10 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|
| Brown    | 0.0 | 3.0 | 1.5 | 0.0 | 1.5 | 3.0 | 1.5 | 1.5 | 1.5  | 0.0 |
| Cat      | 0.0 | 4.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0  | 0.0 |
| Coat     | 0.0 | 0.0 | 2.0 | 0.0 | 4.0 | 2.0 | 0.0 | 2.0 | 0.0  | 2.0 |
| Dog      | 1.3 | 1.3 | 0.0 | 1.3 | 0.0 | 1.3 | 1.3 | 2.6 | 1.3  | 1.3 |
| Favorite | 2.7 | 0.0 | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.7  | 0.0 |
| Fluffy   | 1.7 | 0.0 | 0.0 | 0.0 | 1.7 | 1.7 | 0.0 | 1.7 | 1.7  | 1.7 |
| Hat      | 0.0 | 0.0 | 2.3 | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 | 2.3  | 2.3 |
| Leash    | 0.0 | 0.0 | 0.0 | 4.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0  | 0.0 |
| Pink     | 0.0 | 0.0 | 3.3 | 0.0 | 0.0 | 0.0 | 0.0 | 3.3 | 0.0  | 0.0 |
| Spot     | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.3 | 0.0 | 0.0  | 0.0 |
| Tan      | 4.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0  | 0.0 |
| White    | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.7 | 2.7 | 0.00 | 2.7 |

Source: Practical text analytics: maximizing the value of text data

Apply truncated SVD with k = 2 and plot each terms and documents according to the row vectors in  $U_2\Sigma_2$  and  $V_2\Sigma_2$ , respectively.



Source: Practical text analytics: maximizing the value of text data

Apply truncated SVD with k = 3.



Source: Practical text analytics: maximizing the value of text data

## LSA: cosine similarity

Measure the similarity between two vectors in the LSA space.

- Cosine similarity:  $\cos(\mathbf{v_1}, \mathbf{v_2}) = \frac{\mathbf{v_1}^\top \mathbf{v_2}}{||\mathbf{v_1}|| ||\mathbf{v_2}||}$ , which can be applied to terms, documents (or both), and queries.
- Query: a scaled, weighted sum of the component term vectors.

query = 
$$q^{\top}U_k\Sigma_k^{-1}$$

 LSA uses the cosine measures to find documents that are similar to words that designated as query terms

Example: Cosine values between the query (brown, pink, tan) and documents.

| brown | cat | coat | dog | favorite | fluffy | hat | leash | pink | spot | tan | white |
|-------|-----|------|-----|----------|--------|-----|-------|------|------|-----|-------|
| 1     | 0   | 0    | 0   | 0        | 0      | 0   | 0     | 1    | 0    | 1   | 0     |

| Document | Cosine |
|----------|--------|
| 6        | 0.81   |
| 5        | 0.78   |
| 9        | 0.73   |
| 2        | 0.71   |
| 1        | 0.69   |
| 3        | 0.66   |
| 8        | 0.24   |
| 10       | -0.08  |
| 7        | -0.30  |
| 4        | -0.30  |
|          |        |

### LSA: summaries



Figure: Main Steps for latent semantic analysis