ANIRUPH SETH ANISET @ KTH SE utonial-1 Cliquez Clique FW, SW SW, IW Clique tree (1) $S_{i \rightarrow j} = Z \quad \forall_i \cdot \prod \quad S_{k \rightarrow i}$ $C_{i} - S_{i,j} \quad k \in (Nb_i - \{j\})$ S1-2 (S12) = SP-Message (1,2) SP-Message $V(C_1) = V_1 \cdot T_1$ $K \in Nb_1 - \{2\}$ $T(S_{1,2}) = \{2\}$ $V(C_1)$ C1-512 FW 4(4) = SW-10 S1 + 2 (S1,2) = Z 4(C1) SW SW

(ivi) For adjacent cliques to be callibrated.

$$H_{12} = H_{21}$$
i.e. $\sum_{R_1} K(c_2) = \sum_{E_W} K(c_1)$

$$\sum_{TW} K_{2} K_{2} K_{2} K_{2} K_{3} K_{4} K_{4} K_{5} K$$

$$\frac{3}{\rho_{\phi}(x)} = I(Z=3) \cdot \frac{II_{iev_{r}}(8i(G))}{II_{(i=j)} \in \epsilon_{7}} \underbrace{Hij(Sij)}$$

$$= \underbrace{P_{1}(fw=N,SW)}_{SW} \underbrace{P_{2}}_{SW}$$

$$= \underbrace{N \underbrace{111}_{SW}}_{V} \underbrace{6 28 30}_{V}$$

$$= \underbrace{N \underbrace{112}_{SW}}_{V} \underbrace{80}_{U} \underbrace{14 70 20}$$

$$= \underbrace{6xi4}_{SW} \underbrace{28x80}_{SW} \underbrace{30x24}_{U}$$

$$= \underbrace{17x14}_{SW} \underbrace{19x80}_{102} \underbrace{30x24}_{SW}$$

$$= \underbrace{6xi4}_{SW} \underbrace{28x80}_{U} \underbrace{30x24}_{U}$$

$$= \underbrace{18x4}_{SW} \underbrace{28x80}_{U} \underbrace{30x24}_{U}$$

$$= \underbrace{18x4}_{SW} \underbrace{28x80}_{U} \underbrace{30x24}_{U}$$

$$= \underbrace{18x4}_{SW} \underbrace{28x80}_{U} \underbrace{30x24}_{U}$$

$$= \underbrace{18x4}_{U} \underbrace{28x80}_{U} \underbrace{30x24}_{U}$$

$$= \underbrace{19x4}_{U} \underbrace{30x24}_{U}$$

$$= \underbrace{19x4}_{U}$$

alturnatively
born factor table
$$\Psi(FW=N,SW=V)=10$$

since we only want Marginal of
since we only want Marginal of P(Tw=Other/Sw=v, Fw=N) we consider only 3rd row, 2nd column (Tw=0) (Sw=v) and normalize it
1 (100=0.161) = 0) = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
we consider only station, and column
and normalize it
i·e 5×10_
2x60 + 1x10 + 5x60
$=\frac{50}{80}=0.625$
<u> </u>
le same answer as before.
U