Осенний семестр 2021/2022. Лабораторный практикум по курсу «Математическая статистика»

Лабораторная работа № 2 «Критерии согласия и однородности выборок»

студента <u>Когановского Григория</u> группы <u>Б22-534</u>. Дата сдачи: <u>29.11.2024</u> Ведущий преподаватель: <u>Новиков М.А.</u> оценка: ____ подпись:____

Вариант №7

Цель работы: изучение функций Statistics and Machine Learning Toolbox™ MATLAB / Python SciPy.stats для проверки критериев согласия (*goodness-of-fit tests*) и однородности выборок.

1. Исходные данные

Характеристики наблюдаемой случайной величины X:

Распределение	Параметры	Математическое ожидание, <i>m</i>	Дисперсия, σ^2
<i>N</i> (-1,2)	$m_1 = -1, \sigma_1 = 2$	$m_1 = -1$	$\sigma_1^2 = 4$

Объём выборки $n_1 = 100$

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

Среднее, \overline{x}	Оценка дисперсии, s ²	Оценка с.к.о., s
-0.91	4.37	2.09

2. Визуальное представление выборки

Гистограммы частот:

Примечание: для построения гистограмм использовать функцию hist (scipy.stats: histogram; matplotlib.pyplot: hist)

3. Критерий хи-квадрат

а) Статистическая гипотеза: H_0 : $X \sim N(m, \sigma)$

Число интервалов группировки	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
5	0.48	0.79	H_0 принимается	Нет
10	2.13	0.95	H_0 принимается	Нет
15	6.94	0.86	H_0 принимается	Нет
7	0.99	0.91	H_0 принимается	Нет

Осенний семестр 2021/2022. Лабораторный практикум по курсу «Математическая статистика»

б) Статистическая гипотеза: $H_0: X \sim R$

Число интервалов группировки	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
5	47.60	0.00	H_0 отклоняется	Нет
10	55.20	0.00	H_0 отклоняется	Нет
15	56.90	0.00	H_0 отклоняется	Нет
7	48.12	0.00	H_0 отклоняется	Нет

в) Статистическая гипотеза: H_0 : $X \sim \chi^2(5)$

, , ,					
Число интервалов группировки	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения	
5	+∞	0.00	H_0 отклоняется	Нет	
10	+∞	0.00	H_0 отклоняется	Нет	
15	+∞	0.00	H_0 отклоняется	Нет	
7	+∞	0.00	H_0 отклоняется	Нет	

Примечание: при расчетах использовать функции chi2gof, fitdist (scipy.stats: histogram, chisquare)

4. Критерий Колмогорова

Статистическая гипотеза, H_0	Выборочное значение статистики критерия	p-value	Статистическое решение при α = 0.05	Ошибка стат. решения
$X \sim N(m, \sigma)$	0.06	0.86	H_0 принимается	Нет
$X \sim R$	0.25	0.00	H_0 отклоняется	Нет
$X \sim \chi^2(5)$	0.80	0.00	H_0 отклоняется	Нет

Примечание: при расчетах использовать функции kstest, lillietest, fitdist (scipy.stats: kstest)

Примечание: для построения графиков использовать функции ecdf, cdf (scipy.stats: uniform.cdf, norm.cdf, chi2.cdf; statsmodels.distributions. empirical distribution: ECDF)

5. Двухвыборочные критерии

Характеристики наблюдаемой случайной величины У:

Распределение	Параметры	Математическое ожидание	Дисперсия
R(-2,0)	$a_2 = -2, b_2 = 0$	$m_2 = \frac{a_2 + b_2}{2} = -1$	$\sigma_2^2 = \frac{(b_2 - a_2)^2}{12} = \frac{1}{3}$

Объём выборки $n_2 = 100$

Осенний семестр 2021/2022. Лабораторный практикум по курсу «Математическая статистика»

Критерий	Статистическа я гипотеза, <i>H</i> ₀	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибк а стат. решен ия
Chi- squared	$F_X(x) = F_Y(x)$	59.77	0.00	H_0 отклоняется	Нет
KS-test	$F_X(x) = F_Y(x)$	0.34	0.00	H_0 отклоняется	Нет
Sign test	$F_X(x) = F_Y(x)$	1	0.92	H_0 принимается	Да
U-test	$F_X(x) = F_Y(x)$	4989	0.98	H_0 принимается	Да

Примечание: при расчетах использовать функции chi2gof, kstest2, signtest, ranksum (scipy.stats: chisquare, ks_2samp; statsmodels.stats.descriptivestats. sign test, ranksums)