ORIE7391 Augmented Lagrangian Method and Alternating Direction Method of Multiplier

Siyu Kong (sk3333)

Cornell University

February 21, 2022

Table of Contents

- 1 Problem Formulation and Motivation
- 2 Duality
- 3 Analysis on Augmented Lagrangian Method
- 4 Alternating Direction Method of Multiplier

Question

- Question 1: Which of the following statements about l_1 penalty method is correct?
 - (a). After adding the l_1 penalty function, we get a smooth objective function in penalty method.
 - (b). Compared to quadratic penalty method, l_1 penalty method relies less on the choices of penalty parameter ρ .
 - (c). Both of (a) and (b).
 - (d). Neither of (a) or (b).
- Question 2: What is true about augmented Lagrangian method?
 - (a). The choice of penalty parameters in augmentedLagrangian method is irrelevant to the convergence rate.
 - (b). Under mild conditions augmented Lagrangian is smooth.
 - (c). Both of (a) and (b).
 - (d). Neither of (a) or (b).

Problem Formulation

Consider the following optimization problem:

$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} f(x) \\
\text{s.t.} \quad c_i(x) = 0 \text{ for } 1 \le i \le m$$
(1)

where f and c_i are smooth functions.

In fact, (1) is equivalent to augmented form:

$$\min_{x \in \mathbb{R}^n} \quad Q(x; \rho) = f(x) + \frac{\rho}{2} ||c(x)||_2^2
\text{s.t.} \quad c_i(x) = 0 \text{ for } 1 \le i \le m$$
(2)

where $c(x) = (c_1(x), ..., c_m(x))^T \in \mathbb{R}^m$ and $\|\cdot\|_2$ is l_2 norm.

Toy Algorithm - Quadratic Penalty Method (Theoretic Framework)

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad Q(\mathbf{x}; \rho) = f(\mathbf{x}) + \frac{\rho}{2} \|c(\mathbf{x})\|_2^2$$

s.t. $c_i(\mathbf{x}) = 0$ for $1 \le i \le m$

Algorithm Idea: At each step, given ρ^k , solve for unconstrained optimization problem $x^k = \min_x Q(x; \rho^k)$, denote x^* as primal solution, then $Q(x^k; \rho^k) \leq Q(x^*; \rho^k) = p$. Therefore usually x^k is not feasible. When $\rho^k \to \infty$, hope $x^k \to x^*$.

Algorithm Quadratic Penalty Method

Consider an increasing sequence of $\{\rho^k\}$ and a decreasing sequence $\{\epsilon^k\}\to 0$. for k=0,1,2,...

find $x^k = \arg \min Q(x; \rho^k)$ (When $\|\nabla_x Q(x^k; \rho^k)\| \le \epsilon^k$ holds).

Output x^k when it achieve the convergence test .

Penalty Function and Penalty Parameter

In form (2), we introduce a quadratic penalty function $g_{\rho}(x)$ of the form

$$g_{\rho}(x) = \frac{\rho}{2} \|c(x)\|_2^2$$
 (3)

- Good Property: $Q(x; \rho)$ is smooth, $\nabla_x Q(x; \rho^k)$ easy to compute.
- Bad Property: (i). $\nabla_x g_\rho(\tilde{x}) = 0$ for any feasible \tilde{x} , need large ρ to guarantee convergence to feasible solution. (ii). $H = \nabla^2_{xx} Q(x; \rho)$, some eigenvalues of H approach constants, others are of order ρ , when $\rho \to \infty$, condition number tends to infinity.
- **Other Variant**: Take $g_{\rho}(x) = \frac{\rho}{2} ||c(x)||_1$. Better convergence result but lack of smoothness.

Theoretical Convergence Result and Practical Implementation

- **Convergence**: When x^k is global minimization of $Q(x; \rho^k)$ and $\rho^k \to \infty$, $x^* = \lim_{k \to \infty} x^k$ is a global minimum solution.
- Practical Implementation: Highly adopted in applications due to
 - (i). Simplicity
 - (ii). Ill-conditioning problem can be solved by numerical scheme.

Problem and Goal

Problem: Any method to both guarantee the **smoothness** of objective function as well as good **convergence** result? **Answer**: Yes. Combining quadratic penalty method with Lagrangian method. In literature we call it **method of multipliers** or **augmented Lagrangian method**.

Lagrangian and Dual Problem

Still consider primal augmented form, denote optimal value of (4) as p:

$$\min_{x \in \mathbb{R}^n} \quad Q(x; \rho) = f(x) + \frac{\rho}{2} ||c(x)||_2^2$$
s.t. $c_i(x) = 0$ for $1 \le i \le m$ (4)

- Lagrangian of $Q(x; \rho)$ is $L(x, y; \rho) = f(x) + \sum_{1 \le i \le m} y_i c_i(x) + \frac{\rho}{2} ||c(x)||_2^2$
- Dual Function: $g_{\rho}(y) = \inf_{x} L(x, y; \rho)$
- Dual Problem: $\max_{y} g_{\rho}(y)$, optimal value denoted as d
- Weak Duality: $d \le p$
- When strong duality holds, p = d, instead of minimizing primal problem, we can **maximize dual problem**.

Proof of Weak Duality

For any function f(x), the weak duality $d \leq p$ holds.

Proof.

Denote x^* as primal optimal solution. For any y, we have $g_{\rho}(y) = \inf_{x} L(x, y; \rho)$. Particularly, $g_{\rho}(y) \leq L(x^*, y; \rho) = f(x^*) = p$. Then dual optimal value $d = \max_{y} g_{\rho}(y) \leq p$.

Another point of view:

- For any function f(x, y), $\inf_x \sup_y f(x, y) \ge \sup_y \inf_x f(x, y)$.
- Consider $L(x, y; \rho) = f(x) + \sum_{1 \le i \le m} y_i c_i(x) + \frac{\rho}{2} ||c(x)||_2^2$, therefore $\inf_x Q(x; \rho) = \inf_x \sup_y L(x, y; \rho)$.

Algorithm Derivation

Still consider primal augmented form, denote optimal value of (4) as p:

$$\min_{x \in \mathbb{R}^n} \quad Q(x; \rho) = f(x) + \frac{\rho}{2} ||c(x)||_2^2$$
s.t. $c_i(x) = 0$ for $1 \le i \le m$ (5)

- Lagrangian of $Q(x; \rho)$ is $L(x, y; \rho) = f(x) + \sum_{1 \le i \le m} y_i c_i(x) + \frac{\rho}{2} ||c(x)||_2^2$
- Dual Function: $g_{\rho}(y) = \inf_{x} L(x, y; \rho) \leq p$
- Dual Problem: $\max_{y} g_{\rho}(y)$, optimal value denoted as d
- Algorithm Idea:
 - (i). Given y^k , first compute $x^{k+1} = \arg\min_{x \in \mathcal{L}} L(x, y^k; \rho)$
 - (ii). Approximate $\nabla g_{\rho}(y^k)$ by $\nabla_y L(x^{k+1}, y^k; \rho)$.

Algorithm Derivation

Algorithm Idea:

- (i). Given y^k , first compute $x^{k+1} = \arg\min L(x, y^k; \rho)$
- (ii). Approximate $\nabla g_{\rho}(y^k)$ by $\nabla_y L(x^{k+1}, y^k; \rho)$.

Analysis:

- $\nabla_{x} L(x, y; \rho) = \nabla f(x) + \sum_{1 < i < m} (y_{i} + \rho c_{i}(x)) \nabla c_{i}(x).$
- $\nabla_{y} L(x, y; \rho) = c(x)$

Algorithm Augmented Lagrangian Method

Consider a non-decreasing sequence of $\{\rho^k\}$.

for k = 0, 1, 2, ..., given a pair (x^k, y^k) at k-th iteration, find $x^{k+1} = \arg\min_x L(x, y^k; \rho)$, update $y^{k+1} = y^k + \rho^k c(x^{k+1})$.

Output (x^k, y^k) when convergence test is satisfied.

Comparison with Quadratic Penalty Method

Algorithm Augmented Lagrangian Method

Consider a non-decreasing sequence of $\{\rho^k\}$. for k=0,1,2,..., given a pair (x^k,y^k) at k-th iteration, find $x^{k+1}=\arg\min_x L(x,y^k;\rho)$, update $y^{k+1}=y^k+\rho^k c(x^{k+1})$. Output (x^k,y^k) when convergence test is satisfied.

- When we find $x^{k+1} = \arg\min_{x} L(x, y^k; \rho)$, the starting point of the search is less sensitive, which can simply put as $x_s^{k+1} = x^k$.
- Step size ρ^k is not required to increase indefinitely (we can even set $\rho_k \equiv \rho$ for suitable ρ), and ill conditioning is less a problem.

Alternative Understanding of the Augmented Lagrangian Method

Apart from dual accent idea, we can also connect augmented Lagrangian method with KKT conditions as follow:

Lemma (Characterization of Strong Duality)

In convex optimization problem, when primal-dual pair (x^*, y^*) satisfy KKT conditions:

- $\nabla_{x} L(x^*, y^*; \rho) = 0$
- $c_i(x^*) = 0 \text{ for } 1 \le i \le m$

they are primal-dual optimal and strong duality holds. Particularly, $Q(x^*, \rho) = g_{\rho}(y^*)$.

Explanation: In augmented Lagrangian method, $\{x^k, y^k\}$ is a sequence that converges to a pair which satisfies KKT conditions.

Existence of Local Minima of the Augmented Lagrangian

Question Concerned: Whether local minima of the augmented Lagrangian exist? If so, how their distance from local minima of the original problem is affected by the values of the multiplier y^k and the penalty parameter ρ^k ?

Answer: Theorem 17.6 in the reading NW04. (When (x^k, y^k) is close enough to (x^*, y^*) , the local minima in the algorithm exists with suitable choice of ρ^k).

Existence of Local Minima of the Augmented Lagrangian

Assumption: Let x^* be a local minimum and LICQ holds, and f, c are C^2 functions on some open sphere centred at x^* . Further more x^* together with its associated Lagrange multiplier vector y^* satisfies KKT conditions and second-order conditions:

$$z^{T}\nabla_{xx}^{2}L(x^{*},y^{*};0)z>0$$
 (6)

for all $z \neq 0$ with $\nabla c_i(x^*)^T z = 0$ for any $1 \leq i \leq m$. **LICQ(Linear Independence Constraint Qualification)**: $\nabla c_i(x^*)$ for $1 \leq i \leq m$ are linearly independent vectors.

Theorem of Minima Existence

Theorem (17.6 in NW04)

Assume a pair (x^*, y^*) satisfy the assumption, there exists a threshold $\bar{\rho}$, and positive scalars δ, ϵ and M such that

- (i). For all y^k and ρ^k satisfying $\|y^k y^*\| \le \rho^k \delta$, $\rho^k \ge \overline{\rho}$, the problem $\min_x L(x, y^k; \rho^k)$ subject to $\|x x^*\| \le \epsilon$ has a unique solution x^{k+1} . Moreover, we have $\|x^{k+1} x^*\| \le M\|y^k y^*\|/\rho^k$.
- (ii). Under the same condition as (i), we have $||y^{k+1} y^*|| \le M||y^k y^*||/\rho^k$.
- (iii). Under the same condition as (i), the matrix $\nabla^2_{xx} L(x^k, y^k; \rho^k)$ is positive definite and the constraint gradient $\nabla c_i(x^k)$, $1 \le i \le m$ are linearly independent.

Proof.

(i). For $\rho > 0$, consider the following system of equations on (x, \tilde{y}, y, ρ) :

$$\nabla f(x) + A(x)^T \tilde{y} = 0, \quad c(x) + (y - \tilde{y})/\rho = 0$$
 (7)

where $A(x)^T = [\nabla c_i(x)]_{1 \le i \le m}$. Particularly, from definition of iteration steps, we have $(x^{k+1}, y^{k+1}, y^k, \rho^k)$ satisfy the above equations (7).

Now define $t \in \mathbb{R}^m, \gamma \in \mathbb{R}$ as

$$t = (y - y^*)/\rho, \quad \gamma = 1/\rho. \tag{8}$$

Proof.

We can rewrite (7) as

$$\nabla f(x) + A(x)^T \tilde{y} = 0, \quad c(x) + t + \gamma y^* - \gamma \tilde{y} = 0.$$
 (7)

For t=0 and $\gamma\in[0,1/\bar{\rho}]$, from KKT conditions, we know (7) has the solution $x=x^*$ and $\tilde{y}=y^*$. The Jacobian w.r.t. (x,\tilde{y}) at such a solution is

$$\begin{bmatrix} \nabla_{xx}^2 L_0(x^*, y^*) & A(x^*)^T \\ A(x^*) & -\gamma I \end{bmatrix}$$
 (8)

In fact the matrix (8) is invertible for all $\gamma \in [0, 1/\bar{\rho}]$.

Proof.

Denote $x(t,\gamma) := \min_x L(x,y^* + \rho t,\rho)$ and $y(t,\gamma)$ as the next y^{k+1} when starting at y^k indexed by t ($\rho = 1/\gamma$). From implicit function theorem, there exist ϵ and $\delta > 0$ such that, for $(x(t,\gamma),y(t,\gamma)) \in B((x^*,y^*),\epsilon)$ and $(t,\gamma) \in B(K,\delta)$ where $K := \{(0,\gamma): \gamma \in [0,1/\bar{\rho}]\}$

$$\nabla f(x(t,\gamma)) + A(x(t,\gamma))^{T} y(t,\gamma) = 0$$
$$c(x(t,\gamma)) + t + \gamma y^{*} - \gamma y(t,\gamma) = 0$$

Differentiate the two equations,

$$\begin{bmatrix} \nabla_t x(t,\gamma)^T & \nabla_\gamma x(t,\gamma)^T \\ \nabla_t y(t,\gamma)^T & \nabla_\gamma y(t,\gamma)^T \end{bmatrix} = A(t,\gamma) \begin{bmatrix} 0 & 0 \\ -I & y(t,\gamma) - y^* \end{bmatrix}$$
(7)

Proof.

where

$$A(t,\gamma) = \begin{bmatrix} \nabla_{xx}^2 L_0(x(t,\gamma), y(t,\gamma)) & A(x(t,\gamma))^T \\ A(x(t,\gamma)) & -\gamma I \end{bmatrix}. \tag{7}$$

Notice $A(t,\gamma)$ is uniformly bounded on $\{(t,\gamma): |t|<\delta,\gamma\in[0,1/\bar{\rho}]\}$. Now by applying fundamental theorem of calculus algebraic computation,

$$(|x(t,\gamma)-x^*|^2+|y(t,\gamma)-y^*|^2)^{1/2}\leq 2\mu|t|$$
 (8)

where μ is some number that is larger than the upper bound of $|A(t,\gamma)|$. Result of $||x^{k+1}-x^*|| \leq M||y^k-y^*||/\rho^k$ and $||y^{k+1}-y^*|| \leq M||y^k-y^*||/\rho^k$ follows. The factor $1/\rho^k$ comes with definition that $t=(y-y^*)/\rho$.

Convergence Result

From $||y^{k+1} - y^*|| \le M||y^k - y^*||/\rho^k$, we know that:

- When $\{\rho^k\}$ is chosen to increase and diverge to infinity, augmented Lagrangian method has a **superlinear** convergence rate.
- When $\{\rho^k\}$ is bounded (for example, a constant sequence), then augmented Lagrangian method has a **linear** convergence rate.

Alternating Direction Method of Multipliers

Key Idea: ADMM is an algorithm intended to blend the decomposability of dual ascent with the superior convergence properties of the method of multipliers.

Problem Formulation in ADMM

Consider the following problem

$$\min_{x,z} f(x) + g(z)$$
s.t. $Ax + Bz = c$ (9)

with variables $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^m$, $A \in \mathbb{R}^{p \times n}$, $B \in \mathbb{R}^{p \times m}$ and $c \in \mathbb{R}^p$. Assume f and g are convex.

If we want to use augmented Lagrangian method, we have the following augmented Lagrangian:

$$L_{\rho}(x,z,y) = f(x) + g(z) + y^{T}(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_{2}^{2}$$
(10)

Augmented Lagrangian Method v.s. ADMM

■ In augmented Lagrangian method, need to solve

$$\min_{x,z} L_{\rho}(x,z,y)$$

Challenge: *x*, *z* in quadratic augmented term is not separable! Cannot divide the problem into smaller pieces. **Requirement**: However, we want to keep this quadratic term because of its fast convergence rate.

Augmented Lagrangian Method v.s. ADMM

In augmented Lagrangian method, need to solve

$$\min_{x,z} L_{\rho}(x,z,y)$$

Solution: Do x-minimization step and z-minimization step separately:

$$x^{k+1} := \arg\min_{x} L_{\rho}(x, z^{k}, y^{k})$$

$$z^{k+1} := \arg\min_{z} L_{\rho}(x^{k+1}, z, y^{k})$$

$$y^{k+1} := y^{k} + \rho(Ax^{k+1} + Bz^{k+1} - c)$$
(11)

This method is called ADMM.

Convergence Result of ADMM

- Assumption 1: The (extended-real valued) functions $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ and $g: \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ are closed, proper can convex. Equivalently, epi(f) and epi(g) are closed nonempty convex set.
- Assumption 2: The unaugmented Lagrangian L_0 has a saddle point.

Theorem (Convergence Result of ADMM)

Under Assumptions 1 and 2, ADMM iterates satisfy the following

- Residual convergence: $r^k \to 0$ as $k \to$, where $r^k := Ax^k + Bz^k c$. Equivalently the iterates approach feasibility.
- Objective convergence: $f(x^k) + g(z^k) \rightarrow p^*$ as $k \rightarrow \infty$.
- Dual variable convergence: $y^k \to y^*$ as $k \to \infty$ where y^* is a dual optimal point.

Example of ADMM: LASSO

Notice that

$$min_x f(x) + g(x) \Leftrightarrow min_{x,z} f(x) + g(z) \text{ s.t. } x - z = 0$$
 (12)

Now consider lasso problem: Given $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, want

$$\min_{\beta} \frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1 \tag{13}$$

We can rewrite it as

$$\min_{\beta} \frac{1}{2} \|y - X\beta\|_{2}^{2} + \lambda \|\alpha\|_{1} \text{ s.t. } \beta - \alpha = 0.$$
 (14)

ADMM Steps in LASSO

ADMM steps:

$$\beta^{k} = (X^{T}X + \rho I)^{-1}(X^{T}y + \rho(\alpha^{k-1} - y^{k-1}))$$

$$\alpha^{k} = S_{\lambda/\rho}(\beta^{k} + y^{k-1})$$

$$y^{k} = y^{k-1} + \beta^{k} - \alpha^{k}$$
(15)

■ The α update applies the soft-thresholding operator S_t defined as

$$[S_t(x)]_j = \begin{cases} x_j - t & \text{if } x_j - t \ge 0\\ 0 & \text{if } -t < x_j < t\\ x_j + t & \text{if } x_j < -t \end{cases}$$
 (16)

■ Matrix $(X^TX + \rho I)$ is always invertible. Compute factorization (e.f. Cholesky) in $O(p^3)$ flops, then each β update takes $O(p^2)$ flops.

Convergence Result Compared to Other Method

An experiment with n = 200, p = 50 and 100 instances.

Practical Implementation

- Practical in application. In high dimensional data analysis, where we decompose the large-scale problem in a form of decomposition-coordination procedure, and then tackle the small local subproblems.
- Usually ADMM converges to modest accuracy within a few tens of iterations.
- However ADMM is slow to get high accuracy result.
- Such properties satisfy requirement from engineering view of point. For example, large scale machine learning problems require high convergence rate but is not demanding in a specific highly accurate result.

Thank You!