Creating optimal conditions for reproducible data analysis in R with 'fertile'

Audrey Bertin

Smith College, '21

Introduction

fertile:

- What? Software package written in R
- Goal: Improve scientific reproducibility of R projects
- My Role: Leading code development for the last ~2 years!

Overview

- 1. What is reproducibility and why is it lacking?
- 2. Other attempts to address reproducibility and their shortcomings
- 3. Why fertile is different
- 4. Potential applications
- 5. Conclusion
- 6. Accessing project materials

What is reproducibility?

In data science, research is considered fully **reproducible** when the requisite code and data files produce identical results when run by another analyst.

VS

Replicability: The ability of a researcher to duplicate the results of a study when following the original procedure but collecting new data

The benefits of reproducibility

- 1. Trusting findings
- 2. Receiving feedback
- 3. Extending ideas

The reproducibility crisis

Nature (2016): 52% respondents claim "crisis"

Vast majority cannot reproduce others' work.

Half cannot even reproduce their own!

Some fields have reproducibility rate <10%.

The reproducibility crisis

6 components of reproducibility

- 1) Basic files made accessible
- 2) Organized file structure
- 3) Good documentation
- 4) File paths
- 5) Randomness
- 6) Style

Attempts to address reproducibility: educational programs

- Replication studies at Graduate level (Cambridge, Harvard, UNC, Penn State, Berkeley)
- At undergraduate level, requirement for work to be completed in .Rmd (Smith, Duke)

Attempts to address reproducibility: journals

Journal Name	Code Sharing	Data Sharing	Other Components
	Required?	Required?	Required?
Journal of the American Statistical Association	+	+	+
Journal of Statistical Software	+	-	+
Journal of Computational and Graphical Statistics	+	+ *	0
The R Journal	+	4	0
The American Statistician	*	⊘ *	0
The Annals of Statistics	0	0	0

^{*} Component recommended, but not required.

Component required, but exceptions granted.

Attempts to address reproducibility: software

- rrtools: create basic package structure, Docker dependency management
- orderly: automation of projects
- workflowr: version control
- checkers: custom checks to assess reproducibility
- renv (formerly packrat): dependency management
- drake: makefiles
- reproducible: caching to speed up analysis
- Continuous integration tools: wercker, GitHub Actions, Travis CI,
 Circle CI.

Shortcomings of current attempts

• Education:

- 1. Workshops often optional
- 2. Only really at graduate level
- 3. Takes time away from other important class topics
- 4. Takes a lot of effort for professor to set up

• Journals:

- 1. Authors lack knowledge and/or time to make changes
- 2. Reproducibility review is time/cost intensive for journals

Software:

- 1. Packages narrow in scope
- 2. Complex functions, bad for new users
- 3. Cumbersome, with steep learning curve
- 4. CI tools: lack software-specific tools

Setting fertile apart: package goals

- 1) Simple and straightforward
- 2) Accessible to variety of users
- 3) Addresses many aspects of reproducibility
- 4) R-specific features
- 5) Customizable
- 6) Educational
- 7) Applicable in many domains

Overview functions

- proj_check(): run a bunch of different tests on various parts of reproducibility (files, paths, documentation, etc.)
- proj_analyze(): package dependencies, files, file move suggestions, paths
- proj_badges(): earn/display badges for different components, summary of project generation info

Overview functions

Overview functions

Code Style

```
## # A tibble: 1 x 1
## check_name
## <chr>
## 1 has_no_lint
```

Output Generation Details:

This project summary was generated on 2020-10-29 at 14:00:51 (America/New_York) by a user with the following information:

- · Full name: Audrey Bertin
- Username: audreybertin
- Email: N/A
- GitHub Username: N/A

The computer used to generate this file was running R version 4.0.2 (2020-06-22) on the x86_64-apple-darwin17.0 (64-bit) platform and the macOS Catalina 10.15.5 operating system.

The files analyzed in the creation of this summary, as well as their last-modified timestamp, are provided below:

```
## # A tibble: 9 x 2
   file name
                           last edited
   <chr>
                           <dttm>
## 1 Blot data updated.csv 2020-10-12 14:25:17
## 2 CS data redone.csv
                          2020-10-12 14:25:22
## 3 Estrogen Receptors.docx 2020-10-12 14:25:27
## 4 README.md
                          2019-01-25 14:19:39
                 2020-10-12 14:25:32
## 5 analysis.Rmd
## 6 citrate v time.png 2020-10-29 14:00:40
## 7 mice.csv
                          2020-10-12 14:29:31
## 8 miceps.Rproj
                          2019-01-25 14:19:39
## 9 proteins v_time.png
                           2020-10-29 14:00:39
```

Educational features

- Interactive path warning system
- Checks provide informative messages
 - Explain problem
 - Provide solution

read.csv("~/Desktop/my_data.csv")

```
## Error: Detected absolute paths. Absolute paths are not reproducible
## and will likely only work on your computer. If you would like
## to continue anyway, please execute the following command:
## utils::read.csv('~/Desktop/my_data.csv')
```

Customizability

- proj_check_some(): run subset of checks
- proj_check_badges(): run each of the badges from proj_badges()
 individually
- Controlling which functions throw warnings about paths:
 - Some built in, but users can add/edit others:
 - add_shim(): add a function to the warning list
 - o edit_shims(): edit warning list
 - load_shims(): activate warning system
 - unload_shims(): deactivate warning system

Potential applications: teaching reproducibility

- Introduce reproducibility in undergrad classrooms
- Limited barriers to entry:
- 1. R and RStudio installed on their computer
- 2. Knowledge of how to install a package from GitHub and load it into their environment
- 3. Knowledge of how to create an R project
- 4. Knowledge of how to run basic functions and input simple file paths

Potential applications: miscellaneous

- Private companies: increasing transparency w/ clients, building trust
- Conferences: reproducibility standards as requirement for acceptance
- Informal analysis: more reproducible work for events like tidy tuesday --> share knowledge!

Conclusion

- There is currently a reproducibility crisis
- Existing solutions are lacking for a variety of reasons
- fertile addresses these all in one!
 - Customizable
 - Easy to use
 - Educational
 - R specific features
 - Addresses multiple aspects of reproducibility
 - Applicable to many domains
- Potential uses:
 - Classroom
 - Journals
 - Offices
 - Conferences
 - Informal analysis

To learn more

- GitHub repository for fertile: https://github.com/baumer-lab/fertile
- My repository for fertile, to track my changes: https://github.com/ambertin/fertile
- Currently writing a thesis. The library will have a copy sometime in the near future!
- fertile article in Stat journal: https://doi.org/10.1002/sta4.332

Questions?