Топология

ГКП-3, упр.1. Докажите, что непрерывный образ компакта — компакт.

ГКП-3, упр.2. Гомеоморфны ли окружность и граница треугольника?

ГКП-3, упр.3*. Рассмотрим буквы T, X, L и E как топологические пространства. Какие из них гомеоморфны друг другу?

ГКП-3, упр.4*. Докажите, что если X компактно, то любое взаимнооднозначное непрерывное отображение $f\colon X\to Y$ — гомеоморфизм, где Y — хаусдорфово.

Кривизны поверхностей

Рассмотрим поверхность $f\colon U\to M$. Оператор формы $S\colon \mathrm{T}_pU\to \mathrm{T}_pU$ — это линейный оператор, удовлетворяющий $df(SX)=d\mathrm{N}(X)$. Главные кривизны k_1,k_2 и направления — это собственные значения и векторы S. Гауссова кривизна $\mathrm{K}=k_1k_2$, средняя кривизна $\mathrm{H}=k_1+k_2$.

ГКП-3, упр.5. Возьмите в качестве M либо сферу

$$f(u, v) = (R \cos u \cos v, R \cos u \sin v, R \sin u),$$

либо тор

$$f(u,v) = ((a+b\cos u)\cos v, (a+b\cos u)\sin v, b\sin u).$$

Вычислите главные кривизны и направления M в точке r(0,0).

ГКП-3, упр.6. Докажите, что $H^2 > 4$ К. Когда достигается равенство?

ГКП-3, упр.7*. Вторая квадратичная форма определяется через

$$\mathbf{I}(X,Y) := -g(SX,Y) = -d\mathbf{N}(X) \cdot df(Y).$$

Выразите её в координатах. Докажите, что $k_n(X) = \frac{{\rm I\hspace{-.1em}I}(X,X)}{g(X,X)}.$