Informe de Física: Encontrando el coeficiente de fricción dinámica

Francisco Carruthers, Facundo Firpo y Joel Jablonski

 $\begin{tabular}{ll} {\tt Grupo 4} \\ & {\tt Fisica I, tutorial Vinograd} \end{tabular}$

2do Semestre 2024

Resumen

Utilizando un carrito, una soga y una polea, se busca encontrar el coeficiente de fricción dinámica entre el carrito y la superficie. Para ello, se mide la aceleración del carrito con distintas masas y se calcula el coeficiente de fricción dinámica. También, utilizamos varias superficies para ver cómo afecta el coeficiente de fricción.

1. Introducción

(Descripción del experimento) (Desarrollo de Newton y Vinculos del problema)

Objeto	Masa(g)
Pesa dorada	72 +- 1
Pesa plateada	23 + 1
Pesa madera	6 + - 1
Trineo	109 + 1
Metro	134 + 1

Tabla 1: Mediciones de masa

2. Calibración

Utilizamos un sistema de referencia para calibrar el sistema.

Figura 1: Calibración del sistema

Pendiente: 0.0184 ± 0.0005

Ordenada al origen: -0.508 ± 0.532

Distancia para 600: 10.54 \pm 0.44 cm

3. Resultados

3.1. Papel y Papel

3.1.1. $M = 243 \pm 1, m = 72 \pm 1$

En un primer caso pusimos el metro en el carrito y la pesa dorada en el extremo de la soga.

Usando los datos del sensor Arduino, podemos calcular la distancia recorrida en función del tiempo.

Figura 2: Papel y Papel, m= Metro y M= Pesa dorada

Usamos un ajuste cuadrático para encontrar la aceleración.

Figura 3: Ajuste cuadratico

Con
$$Pos_1(t) = (3.91 \pm 0.33)t^2 + (0.23 \pm 0.78)t + (-0.81 \pm 0.40)$$

Graficamos las aceleraciones en función de las masas.

Figura 4: Aceleraciones vs m y M

(No se ve del todo bien, probablemente haya que cambiar la manera de graficar)

Utilizando estas aceleraciones, reemplazamos en la ecuacion para el μ_d y encontramos que μ_d de rozamiento entre papel y papel es 21.22 N. (falta la incerteza)