Opór (skupiony i niezmienniczy w czasie)

Opór wiąże ze sobą napięcie i prąd:

$$u = f_R(i)$$
 lub $i = f_G(u)$

Reprezentuje straty cieplne przy przepływie prądu. Założenia:

- Funkcje f_B i f_G są ciągłe w przedziale $(-\infty, +\infty)$.
- 2 W każdym punkcie pracy oporu zachodzi $ui \ge 0$.
- ① Dodatkowo $ui = 0 \Leftrightarrow u = 0 \land i = 0$.

Jeśli istnieją obie funkcje f_R i f_G , to opór jest *nieuzależniony*. Jeśli istnieje tylko f_B , to opór jest *uzależniony prądowo*. Jeśli istnieje tylko f_G , to opór jest *uzależniony napięciowo*. Jeśli $f_R(i) = Ri$ oraz $f_G(u) = u/R = Gu$, to opór jest *liniowy*, w przeciwnym przypadku – *nieliniowy*. $[R] = \Omega$, [G] = S. Postać funkcji f_B i f_G nie zależy od czasu \Longrightarrow opór jest elementem niezmienniczym w czasie. Uogólnienie – elementy rezystancyjne (np. zwarcie, rozwarcie,

dioda zwarciowo-rozwarciowa, dioda idealna, opór ujemny).

Pojemność (skupiona i niezmiennicza w czasie)

Pojemność wiąże ze sobą ładunek i napięcie:

$$q = f_C(u), \quad i = Dq$$

Reprezentuje gromadzenie energii w polu elektrycznym. Założenia:

- Funkcja f_C jest ciągła i rosnąca w przedziale $(-\infty, +\infty)$.
- Funkcja f_C ma prawie wszędzie ciągłą pochodną.
- $f_C(0) = 0.$

Jeśli $f_C(u) = Cu$, to pojemność jest *liniowa*: i = DCu, [C] = F, w przeciwnym przypadku – nieliniowa.

Postać funkcji f_C nie zależy od czasu \Longrightarrow pojemność jest elementem niezmienniczym w czasie.

Dla pradu stałego (DC): $i = Dq = 0 \Longrightarrow$ rozwarcie. Uogólnienie – elementy pojemnościowe (np. f_C niemalejąca).

Indukcyjność (skupiona i niezmiennicza w czasie)

Indukcyjność wiąże ze sobą strumień skojarzony i prąd:

$$\psi = f_L(i), \quad u = \mathsf{D}\psi$$

Reprezentuje gromadzenie energii w polu magnetycznym. Założenia:

- Funkcja f_l jest ciągła i rosnąca w przedziale $(-\infty, +\infty)$.
- Funkcja f_i ma prawie wszędzie ciągłą pochodną.

Jeśli $f_L(i) = Li$, to indukcyjność jest *liniowa*: u = DLi, [L] = H, w przeciwnym przypadku – nieliniowa.

Postać funkcji f_l nie zależy od czasu \Longrightarrow indukcyjność jest elementem niezmienniczym w czasie.

Dla pradu stałego (DC): $u = D\psi = 0 \Longrightarrow zwarcie$. Uogólnienie – elementy indukcyjne (np. f_l niemalejąca).

Źródła (niezależne) napięciowe i prądowe idealne

Źródła są obwodowymi modelami przetworników energii mechanicznej, chemicznej itp. na energię elektryczną. Są traktowane jako *pobudzenia* (*wymuszenia*).

Źródło napięciowe idealne

Niezależnie od prądu napięcie jest równe sile elektromotorycznej:

$$\forall i: u = e$$

Nie może być zwarte. Można je łączyć szeregowo.

Źródło prądowe idealne

Niezależnie od napięcia prąd jest równy wydajności prądowej:

$$\forall u: i = i$$

Nie może być rozwarte. Można je łączyć równolegle.

Odwrotna standardowa konwencja strzałkowania *u*, *i*! Źródła napięcia i prądu *stałego* można traktować jako liniowe elementy rezystancyjne, opisane charakterystykami *u-i*.

Źródła (niezależne) napieciowe i pradowe rzeczywiste

Źródła idealne są zbyt przybliżonym modelem (moc $\rightarrow \infty$).

Źródło napięciowe rzeczywiste

Wraz ze wzrostem pobieranego pradu spada napięcie na zaciskach:

$$\forall i: u = e - R_w i$$

 $R_w > 0$ – opór wewnętrzny źródła

 $R_w \rightarrow 0 \Longrightarrow \text{\'erodlo idealne}$

$$i = \frac{e}{R_w} - \frac{1}{R_w}u$$

Źródło prądowe rzeczywiste

Wraz ze wzrostem napięcia na zaciskach spada wydawany prąd:

$$\forall u: i = j - G_w u$$

 $G_w > 0$ – przewodność wewnętrzna źródła $G_W \rightarrow 0 \Longrightarrow \text{\'e} r\'odlo idealne}$

$$u = \frac{j}{G_w} - \frac{1}{G_w}i$$

Dwa źródła rzeczywiste są równoważne...

... jeśli ich równania u(i) oraz i(u) są identyczne.

$$u = e - R_w i$$

$$G_w = 1/R_w$$

$$G_w = 1/R_w$$

$$i = j - G_w u$$

$$R_w = 1/G_w$$

Dla dowolnego obciążenia prąd i napięcie *na obciążeniu* nie zmienią się, jeśli źródło zastąpimy źródłem mu równoważnym.

- "Strzałki" źródeł równoważnych mają zgodne zwroty.
- Źródła równoważne mają jednakowe opory wewnętrzne.
- SEM i wydajność prądowa źródeł równoważnych są powiązane zależnością przypominającą prawo Ohma:

$$e = R_w j, \qquad j = G_w e.$$

"Dobre" źródło napięciowe \equiv "złe" źródło prądowe i odwrotnie.

Żródła sterowane

Źródła sterowane liniowe:

r-nia czwórnikowe

ZPSN sterowane "własnym" napięciem \equiv przewodności $\pm q$.

ZNSP sterowane "własnym" prądem \equiv oporowi $\pm r$.

Źródła sterowane nieliniowe:

r-nia czwórnikowe

Występują w modelach obwodowych elementów aktywnych.

Wzmacniacz operacyjny jest granicznym przypadkiem źródła sterowanego (dowolnego) dla współczynnika sterowania $\to \infty$.

Wrota wejściowe wzmacniacza operacyjnego stanowią bezpradowe zwarcie. Jeżeli jeden z zacisków wejściowych jest na masie, to drugi stanowi mase pozorna.

Podstawowe układy ze wzmacniaczem operacyjnym:

- wzmacniacz odwracający (i ew. sumujący)
- wzmacniacz nieodwracający (ew. wtórnik)

Układy z jednym WO mogą symulować np. źródła sterowane.

Wykład 2. Równania elementów. Źródła. Prawa Kirchhoffa. Równania elementów Źro

Równania elementów Źródła sterowane Prawa Kirchhoffa

Podstawowe pojęcia podejścia sieciowego

Gałąź...

... jest dwójnikiem (elementem lub połączeniem elementów). Opisana jest wspólnym dla całej gałęzi prądem i napięciem.

Węzeł...

... jest punktem połączenia gałęzi (ale niekoniecznie elementów). Charakteryzuje się tzw. *potencjałem węzłowym*.

Obwód (zamknięty)...

... jest to ciąg niepowtarzających się gałęzi i węzłów, który jest zamknięty, tzn. umożliwia przepływ prądu.

Oczko (określone tylko w sieci planarnej)...

... jest to taki obwód zamknięty, że wewnątrz wyznaczonego przezeń obszaru nie ma żadnych gałęzi układu.

Prawa Kirchhoffa i zasada Tellegena

W każdym układzie skupionym obowiązują postulaty:

Prądowe prawo Kirchhoffa (PPK) – zachowanie ładunku

Suma prądów wpływających do dowolnego węzła układu (i do dowolnego obszaru zamknietego) jest w każdej chwili równa 0.

Napięciowe prawo Kirchhoffa (NPK)

Suma napięć skierowanych wzdłuż dowolnej drogi zamknietej (niekoniecznie po gałęziach) jest w każdej chwili równa 0.

Zasada Tellegena (ZT) – zachowanie energii

Suma mocy chwilowych *pobieranych* przez wszystkie elementy układu jest w każdej chwili równa 0.

Przypadki patologiczne – np. oczko źródeł napięciowych czy węzeł prądowych. Można wykazać, że PPK \wedge NPK \Longrightarrow ZT.

Systematyczne układanie równań obwodu

Metody sieciowe pozwalają na systematyczne (dające się skomputeryzować) układanie równań dużych układów.

Teoria obwodów...

...to prawa Kirchhoffa i równania elementów.

Załóżmy, że w układzie występuje g gałęzi i w węzłów. Chcemy rozwiązać obwód, czyli wyznaczyć wszystkie napięcia i prądy. Mamy 2*g* niewiadomych, więc musimy ułożyć 2*g* równań:

- g równań gałęzi (równań elementów, np. prawo Ohma)
- PPK można napisać dla każdego z w węzłów, ale tylko w-1 równań jest niezależnych (pomijamy PPK dla masy).
- NPK można ułożyć dla bardzo wielu dróg zamknietych, ale tylko g - w + 1 równań jest niezależnych (w sieci planarnej wybieramy tylko oczka).

Na ogół $w \ll g$, co pozwala na redukcję liczby równań układu.