Admitere * Universitatea Politehnica din București 2004 Disciplina: Algebră și Elemente de Analiză Matematică

- 1. Să se calculeze $L = \lim_{n \to \infty} (\sqrt{n+2} \sqrt{n+1})$.
 - a) L=-1; b) L=1; c) $L=\infty$; d) L=2; e) L=0; f) nu există.
- 2. Să se determine suma S a coeficienților polinomului $f = (8X^3 7)^4$.
 - a) S = 0; b) S = 3; c) S = 1; d) S = 2; e) $S = 2^{10}$; f) S = -2.
- 3. Să se calculeze $\sqrt{0.09} \sqrt[3]{0.008}$.
 - a) 0,3; b) 0,5; c) 0,1; d) $\frac{1}{3}$; e) -0,1; f) 0.
- 4. Funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \left\{ \begin{array}{ll} x^2+x+1, & x>0 \\ 2x+a, & x\leq 0 \end{array} \right.$ este continuă dacă
 - a) a = 1; b) a = 2; c) $a \in R$; d) a = 0; e) a = -1; f) $a = \frac{3}{2}$.
- 5. Să se determine $m \in \mathbb{R}$ dacă ecuația $|\ln x| = mx$ are trei soluții reale și distincte.
 - a) $m \in (0, \frac{1}{e})$; b) $m > \frac{1}{e}$; c) $m = \frac{1}{e}$; d) $m < \frac{1}{e}$; e) m = e; f) m > 0.
- 6. Să se scrie în ordine crescătoare numerele: $a = \sqrt{3} 1$, $b = \sqrt{5} 2$, c = 1.
 - a) a, b, c; b) c, a, b; c) c, b, a; d) b, c, a; e) b, a, c; f) a, c, b.
- 7. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt[3]{x^2 + x + 1}$. Atunci f'(1) este
 - a) 0; b) $\frac{1}{2}$; c) -1; d) $\frac{1}{3}$; e) $\frac{1}{\sqrt[3]{6}}$; f) $\frac{1}{\sqrt[3]{9}}$.
- 8. Să se determine $m \in \mathbb{R}$ astfel încât sistemul $\begin{cases} mx + y + z = 0 \\ x + my + 2z = 0 \end{cases}$ să admită numai soluția nulă (banală). x y z = 0
 - a) $m \neq -1$ și $m \neq 2$; b) m = 0; c) m = 2; d) $m \in \mathbb{R}$; e) nu există; f) m = -1.
- 9. Să se calculeze limita $L = \lim_{x \to 0} \frac{\sin^2 2x}{\sin^2 3x}$.
 - a) $L = \frac{2}{3}$; b) $L = \frac{4}{9}$; c) $L = \infty$; d) nu există; e) L = -1; f) L = 0.
- 10. Multimea soluțiilor ecuației $\sqrt[3]{x-1} x = -1$ este
 - a) $\{0\}$; b) $\{1, 2, 3\}$; c) \emptyset ; d) $\{0, 1, 2\}$; e) $\{-1, 0, 1\}$; f) $\{1\}$.
- 11. Să se determine $a \in \mathbb{R}$ astfel încât polinomul $f = 6X^4 7X^3 + aX^2 + 3X + 2$ să se dividă prin polinomul $q = X^2 - X - 1$.
 - a) a = -2; b) a = 2; c) a = -1; d) a = -7; e) a = 0; f) a = 1.
- 12. Funcția $f:(0,\;2)\to\mathbb{R},\, f(x)=rac{2}{x^2+2x}.$ Să se calculeze

$$S_n = \sum_{k=1}^n (f^{(k)}(1) - f^{(k+1)}(1)).$$

a)
$$S_n = (-1)^n \left(1 - \frac{1}{3^{n+2}}\right)$$
; b) $S_n = -\frac{8}{9} + 2(-1)^n \left(1 - \frac{1}{3^{n+2}}\right)$; c) $S_n = 1 - \frac{1}{3^{n+2}}$; d) $S_n = -\frac{8}{9} + (-1)^n \left(1 - \frac{3}{3^{n+2}}\right)$; e) $S_n = (-1)^n \left(1 - \frac{1}{3^{n+1}}\right)$; f) $S_n = -\frac{8}{9} + (-1)^n (n+1)! \left(1 - \frac{1}{3^{n+2}}\right)$.

- 13. Fie $A=\left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right)$ și $B=\left(\begin{array}{cc} a & b \\ 0 & 2 \end{array}\right)$. Determinați $a,b\in\mathbb{R}$ astfel încât AB=BA.
 - a) a = b = 1; b) $a \in \mathbb{R}$, b = 2; c) a = -1, b = 3; d) a = -2, b = 0;
 - e) nu există; f) $a=2, b \in \mathbb{R}$.
- 14. Să se calculeze $i + i^3 + i^5$, $(i^2 = -1)$.
 - a) 0; b) 3i; c) -1; d) i; e) -i; f) 2i.

- 15. Să se determine mulțimea $A = \{x \in \mathbb{R} \mid (2x 3)(3x 2) \ge 0 \}.$
 - a) $A = (\frac{2}{3}, \frac{3}{2})$; b) $A = \mathbb{R}$; c) $A = \emptyset$; d) A = (-1, 1); e) $A = [\frac{3}{2}, \infty)$; f) $A = (-\infty, \frac{2}{3}] \cup [\frac{3}{2}, \infty)$.
- 16. Numărul $x = C_6^4 + A_5^2 P_4$ este
 - a) x = 0; b) $x = \frac{11}{2}$; c) x = 11; d) x = 10; e) x = 15; f) x = 25.
- 17. Să se rezolve ecuația $\log_2 x + \log_2 2x = 3.$
 - a) x=0; b) x=-2; c) nu are soluții; d) $x=\pm 2$; e) x=1; f) x=2.
- 18. Să se calculeze $I = \int\limits_0^1 x \mathrm{e}^x \; \mathrm{d}x$.
 - a) I = e; b) I = -1; c) I = 1; d) I = 0; e) I = 2e; f) I = -e.