Uvod u aritmetiku eliptičkih krivulja

Frobeniusov element beskonačnog proširenja (skica) - 24. lekcija

Neka je sad L/\mathbf{Q} Galoisovo proširenje beskonačnog stupnja (tj. unija svojih Galoisovih podproširenja K/\mathbf{Q} konačnog stupnja). Uskladjena familija (\mathcal{P}_K) prostih ideala iznad prostog broja p, prema definiciji je familija za koju je svaki \mathcal{P}_K prost ideal u prstenu cijelih algebarskih brojeva O_K od K i koji dijeli ideal pO_K , ali takva da ako je $K' \subset K$, onda je $\mathcal{P}_K \cap O_{K'} = \mathcal{P}_{K'}$. Tada je $\mathcal{P}_L := \bigcup \mathcal{P}_K$ prost ideal u O_L i obratno, svaki se prosti ideal u O_L tako dobije.

Ako su sad za neki \mathcal{P}_L svi pripadni \mathcal{P}_K nerazgranati, onda kažemo da je i \mathcal{P}_K nerazgranat. Ako su svi \mathcal{P}_L iznad p nerazgranati, kažemo de je p nerazgranat u L, odnosno da je L nerazgranato u p (inače je razgranato). Jasno je da je, općenito, nerazgranatost kod proširenja beskonačna stupnja rijetkost, ali nije potpuno isključena.

Primjer 1. (i) Neka je $L := \bigcup_n \mathbf{Q}(\mu_{l^n})$ unija proširenja generiranih l^n -tim korijenima iz jedinice, za fiksiran prost broj l, dok n prolazi skupom svih prirodnih brojeva. Može se pokazati da je \mathcal{P}_L razgranat ako i samo ako je \mathcal{P}_L iznad l. Drugim riječima, tu je L nerazgranato osim u l (gdje je razgranato). (ii) (**vrlo važan primjer**) Neka je $L := K_{E,l}$ polje generirano koordinatama točkama l^n -tog reda fiksirane eliptičke krivulje E nad \mathbf{Q} , pri fiksiranom prostom broju l, i prirodnim brojevima n. Prema teoremu Serrea i Tatea, L je nerazgranat upravo u onim prostim brojevima $p \neq l$ u kojima E ima dobru redukciju (posebice, ono je nerazgranato izvan konačnog skupa prostih brojeva).

(iii) Neka je $L := \operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ polje svih algebarskih brojeva. Tada je L Galoisovo beskonačnog stupnja u kojemu je svaki \mathcal{P}_L razgranat (pa je L razgranato u svim prostim p). Naime, neka je \mathcal{P}_L iznad p i neka je K kvadratno proširenje u kojemu se p grana (na primjer $K := \mathbf{Q}(\sqrt{p})$). Tada je pripadni \mathcal{P}_K razgranat.

Ako je neki \mathcal{P}_L iznad p nerazgranat onda definiramo Frobeniusov automorfizam $Frob_{\mathcal{P}_L}$ u \mathcal{P}_L kao uskladjenu familiju Frobeniusovih automorfizama $(Frob_{\mathcal{P}_K})$ gdje K ide svim konačnim Galoisovim podproširenjima od L (tu

uskladjenost znači da se Frobeniusov automorfizam manjeg polja dobije restrikcijom Frobeniusova automorfizma s većega, što slijedi iz definicije). Zato je $Frob_{\mathcal{P}_L}$ element Galoisove grupe od L nad \mathbf{Q} .

Nije teško vidjeti da ako je neki \mathcal{P}_L iznad p nerazgranat onda je i svaki \mathcal{P}_L iznad p nerazgranat i da su svaka dva pripadna Frobeniusova automorfizma konjigirana, i svaki automorfizam iz klase konjugiranosti jednoga \mathcal{P}_L je Frobeniusov automorfizam nekoga prostoga ideala nad p. Zato je jednoznačno definirana klasa konjugiranosti Frobeniusova automorfizma $Frob_{\mathcal{P}_L}$ koja se zove **Frobeniusov element** prostog broja p i označava se kao $Frob_p$ (da ne dodje do zabune, kadkad se u oznaci stavi i L da se dade do znanja koje je gornje polje).

Trag i determinanta Frobeniusova elementa pri l-adskoj reprezentaciji.

Zaključujemo, prema Primjeru 1(ii), da je za $K_{E,l}$ uvijek jednoznačno definirana klasa konjugiranosti $Frob_p$ uz uvjet da E ima dobru redukciju u p i da je $p \neq l$. Kako je pripadna l-adska reprezentacija

$$\rho_{E,l}: \operatorname{Gal}(K_{E,l}/\mathbf{Q}) \to \operatorname{Gl}_2(\mathbf{Z}_l)$$

injektivna, razumno je definirati tragom, odnosno determinantom svakog automorfizma, kao tragom odnosno determinantom pripadne 2×2 matrice. Kako konjugirani automorfizmi pri reprezentaciji prelaze u konjugirane matrice, i kako konjugirane matrice imaju jednake tragove i determinante, jednoznačno su definirani

$$tr(Frob_p)$$
 i $det(Frob_p)$ kao $tr(\rho_{E,l}Frob_P)$ i $det(\rho_{E,l}Frob_P)$ gdje je \mathcal{P} bilo koji prosti ideal u prstenu cijelih od $O_{K_{E,l}}$ iznad p .

Općenito, trag automorfizma grupe $Gal(K_{E,l}/\mathbf{Q})$ je cijeli l-adski broj, a determinanta invertibilni cijeli algebarski broj (jer pripadna matrica ima koeficijente u \mathbf{Z}_l). Vrlo važno svojstvo Froneniusovih elemenata (odnosno klase konjugiranosti pripadnih Frobeniusovih automorfizama) jest da su njihovi trag i determinanta obični cijeli brojevi (iako pripadne matrice u pravilu nemaju cijele koeficijente). To se dobije pažljivom analizom koju sad ne možemo prezentirati. Vrijedi naime, puno preciznija tvrdnja.

Teorem. Neka je E fiksirana eliptička krivulja nad \mathbf{Q} i neka je l fiksiran prost broj. Tada za svaki prosti $p \neq l$ u kojemu E ima dobru redukciju vrijedi:

$$trFrob_p = a_p i detFrob_p = p$$

gdje je $a_p = p + 1 - N_p$, a N_p je broj \mathbf{F}_p -racionalnih točaka na redeciranoj eliptičkoj krivulji modulo p. Prema Hasseovu teoremu vrijedi $|a_p| < 2\sqrt{p}$.

Frobeniusovi elementi u razgranatim prostim brojevima i idealima.

Prema dosadašnjem razmatranju, definirali smo Frobeniusove automorfizme i elemente samo u nerazgranatom slučaju. Kao posljedicu imali smo, na primjer, da tako ne možemo definirati Frobeniuosove elemente u $\operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ niti za jedan prosti p. Zato ćemo sad naše definicije proširiti i na razgranati slučaj. Startat ćemo, kao i obično, s konačnim Galoisovim proširenjima. Kao što je poznato, eksplicitno se može definirati diskriminanta D svakog takvog proširenja, koja je cijeli broj različit od 0, -1, 1 i vrijedi:

p se grana u proširenju ako i samo ako p|D.

Podsjetimo, ako je K/\mathbf{Q} konačno Galoisovo proširenje s Galoisovom grupom G, p prost broj i \mathcal{P} neki prost ideal u K koji je iznad p. Tada smo definirali grupu razlaganja u \mathcal{P} :

$$D_{\mathcal{P}} = \{ \sigma \in G : \sigma(\mathcal{P}) = \mathcal{P} \},\$$

i grupu inercije $I_{\mathcal{P}}$ u \mathcal{P} kao jezgru prirodnog surjektivnog homomorfizma $D_{\mathcal{P}} \to \operatorname{Gal}(\mathbf{F}_{p^f}/\mathbf{F}_p)$, gdje je f indeks inercije u p. Napomenimo da je ta jezgra trivijalna ako i samo ako je p nerazgranat. Dakle imamo prirodni izomorfizam

$$D_{\mathcal{P}}/I_{\mathcal{P}} \cong \operatorname{Gal}(\mathbf{F}_{p^f}/\mathbf{F}_p).$$

Zato je jednoznačno definiran automorfizam $Frob_{\mathcal{P}}$ iz $D_{\mathcal{P}}/I_{\mathcal{P}}$ koji pri tom izomorfizmu prelazi u Frobeniusov automorfizam konačnog polja.

Napomenimo da za razgranati p svi \mathcal{P} koji sudjeluju u rastavu od pO_K dolaze s fiksnim eksponentom $e \geq 2$ (indeks grananja) i da vrijedi

$$efm = n \; (***)$$

gdje je m broj različitih prostih faktora u rastavu.

Ako je proširenje Abelovo onda $D_{\mathcal{P}}, I_{\mathcal{P}}, D_{\mathcal{P}}/I_{\mathcal{P}}$ i $Frob_{\mathcal{P}}$ ne ovise o \mathcal{P} već samo o p pa je, prema definiciji, $Frob_p := Frob_{\mathcal{P}}$, za bilo koji \mathcal{P} iznad p.

Uočite da $Frob_p$ nije više element od G (ako je u p grananje), već klasa elemenata iz G koja ima bar dva elementa, pa nije klasa konjugiranosti (u abelovom slučaju).

Primjer 2. (i) U $K = \mathbf{Q}(i)$ je $G = \{1, \sigma\}$, gdje je σ kompleksno konjugiranje; grana se samo 2 i jer je $2O_K = (1-i)^2$ vidimo da je $\mathcal{P} = (1-i)$

(glavni ideal), s indeksom grananja e = 2. Izravno se dobije:

 $D_{\mathcal{P}} = G$ (jer je $\sigma(1-i) = 1+i = -i(1-i)$). Kako je $O_K = \mathbf{Z}[i]$ vidi se da je $O_K/\mathcal{P} \cong \mathbf{F}_2$ pa je f = 1, tj. $I_{\mathcal{P}} = G$ i $Frob_2$ je 1 kao jedini element od G/G. (ii) U $K = \mathbf{Q}(\mu_5)$ je $G = \{1, \sigma, \sigma^2, \sigma^3\}$, gdje je σ jednoznačno zadano kao $\sigma(\mu_5) := \mu_5^2$. Grana se jedino 5. Naime $X^4 + X^3 + X^2 + X + 1 = (X-1)^4$ modulo 5, pa je $5O_K = \mathcal{P}^4$ za prosti ideal \mathcal{P} (koji se može eksplicitno napisati, štoviše tu ideali nisu ni potrebni).

Zato je tu opet $Frob_5 = 1 \in G/G$.

(iii) Neka je $K := \mathbf{Q}(\sqrt{3}, i)$. To je proširenje 4-tog stupnja s abelovom Galoisovom grupom G koja je direktni produkt dviju cikličkih grupa 2-gog reda $\{1, \sigma\}$ i $\{1, \tau\}$, gdje je $\sigma(i) = -i$ i $\sigma(\sqrt{3}) = \sqrt{3}$, dok je $\tau(i) = i$ i $\tau(\sqrt{3}) = -\sqrt{3}$. Lako se vidi da se samo 2 i 3 granaju, a može se pokazati da su ostali prosti brojevi nerazgranati. Nije teško vidjeti da je

$$2O_K = \mathcal{P}^2$$

za neki prosti ideal \mathcal{P} . Zato je e = f = 2, i takodjer $D_{\mathcal{P}} = G$. Zaključujemo da je $I_{\mathcal{P}} = \{1, \sigma\}$ (jer je restrikcija te grupe na $\mathbf{Q}(i)$ netrivijalna - naime 2 se grana i u tom polju). Zato je $Frob_2$ klasa od τ u $G/\{1, \sigma\}$.

Potpuno analogno $Frob_3$ je klasa od σ u $G/\{1, \sigma\tau\}$. Naime, restrikcija grupe inercije na $\mathbb{Q}(\sqrt{-3})$ (koje je takodjer podpolje od K) mora biti netrivijalna, kako se 3 grana i u tom polju. Kako su σ i τ trivijalni na tom polju, ostaje nam $\sigma\tau$.

Ako je G nekomutativna grupa, onda se sve malo usložnjuje. Opet je za svaki fiksirani prosti broj p i svaki prosti ideal \mathcal{P} u O_K koji je iznad p jednoznačno definiran automorfizam $Frob_{\mathcal{P}}$ iz $D_{\mathcal{P}}/I_{\mathcal{P}}$. Ako je \mathcal{Q} neki drugi prosti ideal iznad p, onda postoji $g \in G$ tako da bude $g\mathcal{P} = \mathcal{Q}$; tada je $D_{\mathcal{Q}} = gD_{\mathcal{P}}g^{-1}$ i $I_{\mathcal{Q}} = gI_{\mathcal{P}}I^{-1}$. Takodjer,

za $Frob_{\mathcal{P}} \in D_{\mathcal{P}}/I_{\mathcal{P}}$ i $Frob_{\mathcal{Q}} \in D_{\mathcal{Q}}/I_{\mathcal{Q}}$, vrijedi $Frob_{\mathcal{Q}} = gFrob_{\mathcal{P}}g^{-1}$, gdje definiramo prirodno djelovanje od G na klase kao $h(\sigma I_{\mathcal{P}}) := (h\sigma)(hI_{\mathcal{P}})$, za $h \in G$ i $\sigma \in D_{\mathcal{P}}$, i slično za djelovanje zdesna.

Sad definiramo $Frob_p$ kao familiju $Frob_p$ za sve \mathcal{P} iznad p. Vidimo, ako je klasa od $Frob_p$ oblika σI_p , onda je $g\sigma I_p g^{-1} = g\sigma g^{-1}gI_p g^{-1} = g\sigma g^{-1}I_Q$, a to je klasa od $Frob_Q$.

Uočite da $Frob_p$, za razgranati p (shvaćen kao skup svih automorfizama koji u njemu sudjeluju) nije nužno klasa konjugiranosti u G (iako može biti, za razliku od abelova slučaja). To čemo vidjeti u sljedećem primjeru.

Primjer 3. Neka je $K:=\mathbf{Q}(\sqrt[3]{2},\sqrt{-3})$. Kako smo vidjeli, ono je Galoisovo i neabelovo stupnja 6, s Galoisovom grupom $\{1,\sigma,\sigma^2,\tau,\sigma\tau,\sigma^2\tau\}$ uz $\sigma^3=\tau^2=1$ i $\tau\sigma=\sigma^2\tau$. Može se uzeti da je $\sigma(\sqrt[3]{2})=\rho\sqrt[3]{2}$ i $\sigma(\rho)=\rho$. Lako se vidi da se 2 i 3 granaju u K, a može se pokazati da su ostali prosti brojevi nerazgranati.

Opišimo $Frob_2$. Kako je 2 inertan u $\mathbf{Q}(\rho)$, zaključujemo da mora biti $2O_K = \mathcal{P}^3$ za neki prosti ideal \mathcal{P} . Zato je f=2, a restrikcija od $I_{\mathcal{P}}$ na $\mathbf{Q}(\rho)$ treba biti trivijalna pa je $I_{\mathcal{P}} = \langle \sigma \rangle$, i konačno $Frob_2$ klasa τ modulo $\langle \sigma \rangle$. Vidimo da $Frob_2$ shvaćen kao skup elemenata od G čini jednu klasu konju-

giranosti. Opiv simo sad $Frob_3$. Kako se 3 grana u $\mathbf{Q}(\rho)$ i u $\mathbf{Q}(\sqrt[3]{2})$, vrijedi $3O_K = Q^6$ za neki prosti ideal Q. Sad je e = 6 pa je f = 1, $D_P = IP = G$, tj. $Frob_3 = 1$

kao element od G/G, a kao skup elemenata od G to je cijeli G, što nije klasa onjugiranosti.

Definicija $Frob_p$ za bilo koji p i proširenje.

Neka je L bilo koje Galoisovo proširenje od \mathbb{Q} , neka je p fiksirani prost broj i neka je \mathcal{P} fiksirani prosti ideal u L iznad p. To znači da imamo uskladjenu familiju prostih ideala \mathcal{P}_K za konačna Galoisova proširenja K. Za svaki \mathcal{P}_K imamo $Frob_{\mathcal{P}_K} \in D_{\mathcal{P}_K}/I_{\mathcal{P}_K}$ koji su uskladjeni u smislu da su i svi $D_{\mathcal{P}_K}$ i svi $I_{\mathcal{P}_K}$ uskladjeni, pa su dobro definirani $D_{\mathcal{P}}$, $I_{\mathcal{P}}$ i $Frob_{\mathcal{P}} \in D_{\mathcal{P}}/I_{\mathcal{P}}$.

Ako je \mathcal{Q} neki drugi prosti ideal iznad p, onda je $g\mathcal{P} = \mathcal{Q}$ za neki $g \in G$, pa su pripadni Frobeniusovi (odnosno klase) konjugirani itd., pa je dobro definirana klasa $Frob_p$ koju zovemo Frobeniusov element u p.