

CompTIA Network+ N10-009 TTT Session 2:

Title

June 20, 2024

Network+ Team

Instructor:
Don Tilley
Cybersecurity Instructor,
Program Director
Access Computer Training
dontilley130@gmail.com

Guest:
Mike Kilgore
Director, Product Management
CompTIA
mkilgore@comptia.org

Instructor:
Brian Ford
Technical Instructor
CompTIA
BFord@comptia.global

The CompTIA Instructor Network (CIN) is a worldwide community for instructors who provide CompTIA certification training.

Benefits of being a community member include:

- Communicate and collaborate with CompTIA staff and other instructors.
- Access resources for students to understand the value of getting certified.
- Receive complimentary training and tools from CompTIA to enrich your classroom.
- Become proficient at teaching CompTIA standards.
- Share best practices and resources with each other.

- Introductions
- Getting to know you
- Why Network+
- Session 2 topics

Network+ N10-009 TTT Session Outline		
Date	Topic	
√ 06/20/2024	Introduction and Network Topologies	
√ 06/25/2024	Cabling and Physical Installations	
06/27/2024	Configuring Interfaces and Switches	
07/02/2024	Configuring Network Addressing	
07/09/2024	Configuring Routing and Advanced Switching	
07/11/2024	Network Security	
07/16/2024	Network Security (Continued)	
07/18/2024	Wireless Networking	
07/23/2024	Troubleshooting and Management	
07/25/2024	Emerging Technologies and Trends	

SUPPORTING CABLING & PHYSICAL INSTALLATIONS

Learning Objectives

Summarize Ethernet standards.

Summarize copper cabling and connector types.

Summarize fiber optic cabling and connector types.

Describe physical installation factors for rack-based installations in server rooms and datacenters.

Deploy and troubleshoot Ethernet cabling.

Network Data Transmission Terms

Data transmission is transferring data from one device to another. Data is sent point-to point via wired or wireless streams or **channels**.

Digital signals (1s and 0s) are transmitted across the channels.

Transmission media include copper wires, fiber optic cables, or wireless signals.

The speed at which the data is sent is the data transfer rate.

Error detection/correctionmechanisms detect
transmission errors.

Copyright © 2024 The Computing

9

Technology Industry Association, Inc. Al

Ethernet Standards

Standard	Cables	Speed
10Base-T	Unshielded twisted pair (UTP)	10 Mbps
100Base-T	Cat5e or higher	100 Mbps
1000Base-T Gigabit Ethernet	Cat6 or higher	1000 Mbps
10GBase-T 10 Gigabit Ethernet	Cat6 or higher	10 Gbps
100Base-TX Fast Ethernet	Cat5 or higher	100 Mbps

 IEEE 802.3 standards define the physical layer and data link layer's media access control (MAC) for wired Ethernet.

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

CSMA/CD Diagram

2. Check network

3. Transmit data

4. Collision

5. Wait

6. Retransmit data

Fiber Ethernet Standards

Standard	Cables	Speed
100Base-FX	MMF (OM1)	100 Mbps
100Base-SX	MMF (OM1, OM2)	100 Mbps
1000Base-SX	MMF (OM2, OM3)	1 Gbps
1000Base-LX	MMF (OM1, OM2, OM3), SMF (OS1, OS2)	1 Gbps
10GBase-SR	MMF (OM2, OM3, OM4)	10 Gbps
10GBase-LR	SMF (OS1,OS2)	10 Gbps

COPPER CABLES & CONNECTORS

Unshielded Twisted Pair (UTP)

Structure

• Contains 2 to 1800 pairs in a plastic jacket

Interference

• Minimal EMI protection

Use

• Popular for LANs because it is cost-effective

Categories

• Grades like Cat5e (1 Gbps) and Cat6a (10 Gbps)

Installation

• Avoid sharp bends, keep away from EMI sources

Shielded Twisted Pair Cable (STP)

Structure

• Twisted copper wires

Conductive shielding

Interference

• EMI protection

Reduced crosstalk

Use

• High-interference areas

Sensitive data transmission.

Categories

• Grades such as Cat5e, 6, 7

Installation

Careful handling

Avoid sharp bends

Ethernet Connectors

Feature	RJ11	RJ45
Image		
Configuration	6 positions, 4 connectors	8 positions, 8 connectors
Usage	Phone and modem	Computer networking
Bandwidth	24 Mbps	10 Gbps over Ethernet

Plenum and Riser-Rated Cable

Plenum-rated

Installed in plenum spaces

Made of fire-resistant low toxic materials

Meets higher fire safety standards

More expensive

Riser-rated

Used in vertical spaces between floors

Fire-resistant

Prevent spread of fire between floors

More cost-effective

Coaxial and Twinaxial Cable

Feature	Coaxial	Twinaxial
Image		
Configuration	Central conductor, insulation, metallic shield, outer jacket	Two inner conductors in a twisted pair, insulation, outer jacket
Usage	TV, Internet, radio signals, CCTV	10 GB Ethernet networks
Bandwidth	Wide range of frequencies, high-speed data transmission	Very-short range high-speed
Commentar 2024 The Comp Inc. All rights reserved.	uti BNGchTNI6gySMA try Association,	Proprietary 1

Activity: Multiple Choice

A company is setting up a network in an industrial environment where machinery often causes significant electromagnetic interference. The network requires a cabling solution that can handle high-speed data transfer while also being resistant to this interference. The cable will be used to connect servers within the same data center, and the runs will not exceed 100 meters.

- A. Unshielded Twisted Pair (UTP)
- B. Shielded Twisted Pair (STP)
- c. Coaxial Cable
- D. Fiber Optic Cable

WIRING IMPLEMENTATION

Structured Cabling System

 A structured cabling scheme is a standard way of provisioning cabled networking for computers in an office building.

Structured Cabling Diagram

T568A and T568B Termination Standards

Patch Panels

Structured Cable Installation

Termination Tools

Crimp Tools

Punch-Down Tools

Cable Strippers

Activity: What is it?

PHYSICAL INSTALLATION FACTORS

Specifications and Limitations: Part One

Understanding Specifications

Compare expected vs. actual performance Assess speed, throughput, distance

Speed vs. Throughput

Physical Layer: Symbols transmitted, measured in baud

rate (Hz)

Data Link Layer: Nominal bit rate or bandwidth (bps)

Throughput Factors

Average data transfer rate over time

Affected by encoding, errors, distance, interference

Specifications and Limitations: Part Two

Measurement Layers

- Network/Transport Layer: Throughput
- Application Layer: Goodput (accounting for packet loss)

Latency

- Speed of packet delivery, measured in milliseconds (ms)
- Also known as latency or delay

Distance Limitations

- Media type dictates bit rate over distance
- Attenuation (dB loss) and interference (SNR) impact performance

Cable Issues: Symptoms

Slow Internet speeds

disconnections and reconnections

Connection timeouts

of applications

audio/video communication

or unstable network link

Cable Issues: Troubleshooting

Physical inspection of cables

Verify patch cord connections

Substitute patch cords with known good ones if faulty

Test transceivers with a loopback tool

Use alternative hosts or switch ports to test connectivity

Check structured cabling with appropriate tools

Verify drivers and network adapter

Cable Testers

Diagnosis with Cable Testing Tools

- Used when cable is not directly accessible
- Diagnose intermittent connectivity or performance issues

Cable Tester Functions

- Reports on physical and electrical properties
- Tests conditions, crosstalk, attenuation, noise, resistance

CIN

Wire Map Testers and Tone Generators

Wire Map Testers

Detect improper cable termination

Use base and remote units to test each wire conductor

Identify issues like open circuits, shorts, and incorrect pin-outs

Tone Generators

Trace cables through walls or identify active cables in a bundle

Known as "Fox and Hound"

Apply signal to trace cable with a probe

Attenuation Issues

Issues

Signal strength loss during transmission

Higher impedance, higher attenuation

Long cabling distance

Thin wire size

Environmental factors

Solutions

Shorten cable lengths
Use
repeaters/extenders
Upgrade to high-quality
cables
Measure and test signal
attenuation at

installation

 Loss of signal strength in networking cables or connections (measured in decibels (dB) or voltage)

CIN

Interference Issues

 Negative effects of electromagnetic, radio frequency, and electrostatic signals on cable transmissions

Issues

- Electromagnetic interference (EMI)
- Radio frequency interference (RFI)
- Crosstalk from adjacent wires
- Defective connectors/conductors

Solutions

- Shielding techniques (foil/braided shields)
- Systematic cable routing and organization
- Use robust materials and strain relief
- Compatibility testing

Activity: Think About It

What are some symptoms of cabling issues?

Summary

- Understand Cable Needs: Consider factors like interference and attenuation when choosing shielded copper or fiber optic cables
- Proper Cable Preparation: Use appropriate tools for cable preparation and termination for connectors or punch down blocks
- Application-Specific Use: Ensure cables are used for their intended purpose to meet network requirements.
- Cable Testing: Verify cable integrity using appropriate testing tools to identify and troubleshoot faults

Discussion time: Please type your questions in chat

- Questions over content.
- Share you experience.
- What would you like to see different moving forward?

Thank You!

Let's keep the conversation going in the CompTIA Instructor Forum: https://cin.comptia.org