

Turbo codes
(© IEEE
spectrum)

Control of the spectrum of the

Turbo codes: latency

- Convolutional codes in general and turbo codes in particular have a problem with *latency* due to the presence of the interleaver and the iterative decoding process.
- At any given SNR there is a tradeoff between latency due to interleaver and QOS
 - Small block sizes (~300 bits) can be used for real time voice (medium-high BER can be tolerated).
 - \bullet Mid range block sizes (~4000 bits) used for video play back (low BER).
 - Large block sizes (~16000 bits) large latency, very low BER, useful for file transfer (very low BER).

Spatial diversity

Receive diversity

- Among the many ways to obtain diversity:
 - Frequency and time diversity require expensive resources (bandwidth or time) and do not provide array gain.
 - Space diversity by means of multiple antennas does not sacrifice bandwidth or time and may provide array gain.
- Array gain: is the power gain achieved by using multiple antennas with respect to the single antenna case. The more correlated is the spatial channel the higher the potential array gain.
- Diversity gain: is the power gain due to the exploitation of the diversity of the spatial channel. It is maximum when the spatial channel is uncorrelated.

MIMO channel Multiple aut put Multiple input Multiple output (MIMO) System • Multiple-input multipleoutput systems are systems where where both the transmitter and the receiver are equipped with several antennas. • Narrowband assumption: the channel linking the n-th receive antenna with the mth transmit antenna is the Transmitter **Institute **Institute** **Institute **Institute** **Institute **Institute** **Institute **Institute** **Institute **Institute** **Institute **Institute** **Institute*

1st Source of delay is the interleance at TRX 2nd Source of delay is "" " TX 2rd Source to " t is the iderative proces

nication systems Page 2

scalar $h_{n,m}$

SIMO channel: receive diversity

- N > 1 antennas at the receiver,
 M = 1 at the transmitter.
- The decision variable at the i-th receive antenna is $x_i(m) = h_i c_m + n_i(m)$
- \bullet The signals received at the Nantennas are combined together and the decision variable is $z(m) = w_1 x_1(m) + \dots + w_N x_N(m)$

w combining weights

Maximal ratio combining (MRC)

• The decision variable is

$$\begin{split} z(m) &= \textstyle \sum_{i=1}^N w_i h_i \, c_m + \\ \textstyle \sum_{i=1}^N w_i n_i(m) \end{split}$$

• For the i-th antenna the optimal weight is

$$w_i = h_i^*$$

• In the 1x2 case, the signal-tonoise ratio is

$$SNR = (|h_1|^2 + |h_2|^2) \frac{A}{\sigma^2}$$

1×2 Chamel

$$2 (m) = w_1 h_1 (m + w_2 h_2 C_m + w_3 h_4 (m) + w_2 h_2 (m)$$

$$(apt)(h_1^* h_1 + h_2^* h_2) c_m + h_2^* n_1(m) \cdot h_2^* n_2(m)$$

$$= (Mh_1)^2 + (h_2)^2 c_m + h_2^* n_1(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_1(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_1(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_2(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_2(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_2(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_2(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_2(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_2(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_2(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_2(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_2(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_2(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_2(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_2(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_2(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_2(m) \cdot h_2^* n_2(m)$$

$$= (h_1)^2 + (h_2)^2 c_m + h_2^* n_2(m) \cdot h_2^* n_2(m)$$

SNR_{1x1} = |h₁|² A