

THKEVASE KSANA EKFONISI GIA TO TI ZHTA

Your Subtitle

Περιεχόμενα

1	Εισα	αγωγή	2
2	Λήψ	η δεδομένων	2
3	Γραφ	φική Αναπαράσταση Δικτύου	3
4	Βασι	ικά στοιχεία Δικτύου	6
5	Com	nponent Measures	7
6	Degr	ree Measures	9
	6.1	Maximum Degree	9
	6.2	Average Node Degree	9
	6.3	Degree Distribution	10
		6.3.1 In-Degree	10
		6.3.2 Out-Degree	12
		6.3.3 Total Degree	15
7	Cent	trality measures	18
	7.1	Degree	18
	7.2	Betweenness Centrality	18
	7.3	Closeness Centrality	20
	7.4	Eigenvector Centrality	23

1 Εισαγωγή

Το Youtube είναι ένας ιστότοπος κοινοποίησης, αποθήκευσης, αναζήτησης και αναπαραγωγής βίντεο. Κάθε χρήστης μπορεί να δημιουργήσει λογαριασμό και να ανεβάζει τα δικά του βίντεο ή ακόμα και να αναπαράγει σε πραγματικό χρόνο. Εκτός από τους χρήστες, πρόσβαση έχει ο οποιοσδήποτε στον ιστότοπο αυτό όπου μπορεί μόνο να παρακολουθεί τα βίντεο άλλων χρηστών. Το προφίλ του χρήστη παρουσιάζεται ως κανάλι όπου άλλοι χρήστες μπορούν να εγγραφούν ώστε να παρακολουθούν και να ενημερώνονται για βίντεο ή για πραγματικού χρόνου αναπαραγωγές που τους ενδιαφέρουν. Τα βίντεο που ανεβάζει ο κάθε χρήστης είναι συνηθως αποθηκευμένα σε playlists αναλόγως με την μορφή και το θέμα που έχουν. Επίσης στο κανάλι του ο κάθε χρήστης μπορεί να έχει κανάλια άλλων χρηστών που όπως αναφέρονται στην αγγλική ορολογία "Featured channels". Τα επιλεγμένα αυτα κανάλια αποτελούν κανάλια όπου ενας χρήστης επιλέγει να τα συμπεριλάβει στο δικο του κανάλι(δεν φαίνονται στο κοινό). Ο λόγος που γίνεται αυτό είναι για να προωθούν οι χρήστες και να εμφανίζουν άλλα κανάλια που τους αρέσουν, με τα οποία μπορεί να συνεργάζονται ή να θέλουν να τα προτείνους στους θεατές τους. Έτσι με αυτό τον τρόπο, οι χρήστες μπορούν να προσεγγίσουν πολλά είδη κοινού και να αυξήσουν ετσι τις εγγραφές και τις προβολές τους. Στην ανάλυση αυτή θα εξετάσουμε το κανάλι Samsung. Το κανάλι αυτό είναι το κανάλι του ομίλου εταιρειών Samsung που έχει ως σκοπό την ενημέρωση σχετικά με εκδηλώσεις, καινοτομες ταιχνολογίες, αφαρμογές και υπηρεσίες, B2B solutions, παρουσιάσεις, και τις τελευταίες και καινοτόμες τεχνολογίες του ομίλου.

2 Λήψη δεδομένων

Τα δεδομενα για την ανάλυση μας τα πήραμε με τη χρήση του Bernhard Reiner's Tool χρησιμοποιόντας τα YouTube Data Tools. Αρχικά, χρησιμοποιόντας το link του καναλιου στο YouTube, βρήκαμε το id του καναλιού μέσω του Channel Info Module. Έπειταμ με τη χρήση του Channel Network Module, πήραμε δεδομένα για το δίκτυο του καναλιού. Οι παραμέτροι που χρησιμοποιήθηκαν ηταν το seed(αρχικό κανάλι) με τη χρηση του id με crawl depth ίσον με 2(το crawl depth καθορίζει πόσο βαθιά στο δίκτυο μπορουμε να φτάσουμε. Για παράδειγμα με depth=0 το εργαλείο αυτο επιστρέφει το δίκτυο με τις συσχετίσεις ανάμεσα στα seeds που δίνονται, με depth=1 επιστρέφει τα featured channels που έχει ο χρήστης στο κανάλι του και με depth=2 επιστρέφει τα featured channels που υπάρχουν στα κανάλια που βρήκαμε στο depth=1). Η επιλογή για της εγγραφές δεν λήφθηκε υπόψην δίοτι θέλαμε τα δεδομένα να είναι μόνο με τα featured channels. Μετά απο αυτά τα βήματα το εργαλείο δημιούργησς ενα gdf αρχείο το οποίο φορτώσαμε στο πρόγραμμα Gephi για ανάλυση. Εδω να σημεωθει οτι μέσω του Gephi έγινε έλεγχος των δεδομένων για τυχόν σφάλατα που θα μπορούσαν να

επηρεάσουν την ανάλυση μας όπως για παρέδειγμα ο έλεγχος δυπλοτύπων, όπου σε μια περίπτωση υπήρκε διπλότυπο όπου και εντιμετωπίστηκε μέσω του Gephi, ο έλεγχος για null τιμές κ.α. Σε μερικές περιπτώσεις υπήρχαν μη διαθέσιμες τιμές. Για παράδειγμα σε ορισμένους κόμβους, δεν υπήρχε στο αντίστοιχο κελί η χώρα ενώ ήταν γνωστή. Επομένως εισήχθησαν χοιροκίνητα οι τιμές όπου ηταν εφικτό. Σε άλλες περιπτώσεις, τυχόν σφάλματα αντιμετωπίζονται αναλόγως τη δεδομένη στιγμή όπου και αναφέρονται.

3 Γραφική Αναπαράσταση Δικτύου

Το δίκτυο μόνο με τα ονόματα των κόμβων(καναλιών) χωρίς κάποια παραμετροποίηση.

Επίσης μέσω του Gephi μπορούμε να θέσουμε διάφορες παραμέτρους όσον αφορά τον χρωματισμό και την διάταξη ανάλογα με ορισμένες ιδιότητες που έχει το δίκτυο μας. Για παράδειγμα, για τη μορφή των κόμβων θέσαμε το μέγεθος του κάθε κόμβου ανάλογα με το πλήθος των εγγραφών(subscribercount) που έχει το κανάλι που αντιπροσοπεύει και για τον χρωματισμό θέσαμε ασπρο-πορτοκαλι-κοκκινο στο χαρακτηριστικο των προβολών(viewcount(100s)). Για την διάταξη, τρέξαμε τον Atlas Force 2 για να αραιώσουμε τον γράφο μας και τον Label Adjust για να διαχωριστουν οι ετικέτες ονομάτων των κόμβων. Έτσι προέκυψε η πάρακάτω εικόνα:

Απο την εικόνα αυτή, τα δεδομένα που λαμβάνουμε είνα ο αριθμός των εγγραφών σε ενα κανάλι παίζει αρκετό ρόλο με τις προβολές που μπορεί να εχει, πραγμα αναμενόμενο για τον ιστότοπο που συζητάμε.

Βλέποντας τα δεδομένα του δικτύου μας απο το Data Laboratory του Gephi, παρατηρήσαμε πως υπάρχουν κανάλια απο διάφορες χώρες. Επομένως θεωρήσαμε ενδιαφέρον να κάνουμε μία παραμετροποίηση με τις χώρες ως εξής. Ο χρωματισμός έγινε μέσω διφορετικών χρωματων, τοσων, όσος και ο αριθμός των διαφορετικών χωρών, μέσω του partition tab. Στο σημείο αυτο, θεώρήσαμε επίσης σημαντικό και την αναφορά του seed. Αυτό έγινε μεσω του μεγέθους των κόμβων μέσω του seedrank(αντίστοιχη μεταβλητη με την isseed εαν χρησιμοποιούσαμε τον χρωματισμό). Στη συνέχεια μέσω του Plugin Circular Layout που κατεβάσαμε μέσω των Tools του Gephi, δημιουργήσαμε την πιο κάτω διάταξη θέτοντας στην ιδιότητα "Order Nodes By" την χώρα. Για άλλη μια φορά, χρησιμοποιήσαμε τον Label Adjust για διαχωρισμό των ετοικετών.

Απο την πιο πάνω εικόνα μπορούμε εύκολα να παρατηρήσουμε πως ο κεντρικός και ισως ο πιο σηαντικος κόμβος να είναι ο "Samsung" ο οποίος είναι με πράσινο χρώμα. Οι δύο δεξιές θέσεις απο αυτο το κόμβο είναι επίσης με πράσινο χρώμα αφού και αυτοι οι κόμβοι είναι κανάλια απο την ίδια χώρα, την Νότιο Κορέα.

4 Βασικά στοιχεία Δικτύου

Το δίκτυο που μελετάμε έχει τα εξής βασικά στοιχεία:

- Αριθμός κόμβων: 76 διαφορετικά κανάλια-κόμβοι
- Αριθμός ακμών: 149 συνδέσμοι μέσω των οποίων συνδέονται τα κανάλια-κόμβοι
- Ο γράφος μας είναι **κατευθυνόμενος**. Δηλαδή κάθε σύνδεσμος απο ενα κανάλι προς ενα άλλο εχει κατέυθυνση όπως φαινεται στην πιο κάτω εικόνα:

Ο πράσινος κόμβος-κανάλι έχει ως featured channel τον κόμβο-κανάλι με ροζ χρώμα.

- Διάμετρος δικτύου: Η **διάμετρος** ενός δικτύου είναι η μακρύτερη συντομότερη διαδρομή που μπορούμε να βρούμε. Στην περίπτωσή μας είναι 3. Τιμή αναμενόμενη λόγω του depth με τιμή 2 που επιλέξαμε.
- Average path length: Είναι ο μέσος όρος των συντομότερων μονοπατιών για όλα τα ζεύγη κόμβων. Στο δίκτυο μας είναι 1.9760.

Parameters:

Network Interpretation: directed

Results:

Diameter: 3 Radius: 0

AveragePathlength: 1.9760319573901464

5 Component Measures

Στο δίκτυο μας, όλοι οι κόμβοι είναι συνδεδεμένοι μεταξύ τους(έμμεσα είτε άμεσα). Άρα μπορούμε να πούμε πως υπάρχει ένα giant component. Επομένως ο αριθμός των weakly connected components είναι ίσος με 1.

Αναφορίκα με τον αριθμό των **strongly connected components**, αυτό που πρέπει να δούμε στην περίπτωση μας είναι αν υπάρχουν κανάλια-κόμβοι τα οποία δεν έχουν Featured Channels, δηλαδή δεν έχουν εξερχόμενους συνδέσμους. Έτσι μέσω του Connected Components tool απο το πεδίο Statistics του Gephi έχουμε την ακόλουθη αναφορά.

Connected Components Report

Parameters:

Network Interpretation: directed

Results:

Number of Weakly Connected Components: 1 Number of Strongly Connected Components: 57

Παρατηρόντας την πιο πάνω είκονα λοιπόν, μπορούμε να επιβεβαιώσουμε τον αριθμό των weakly connected components. Όσον αφορά τον αριθμό των strongly connected components μεσω του Gephi βλέπουμε πως είναι 57. Στο σημείο αυτο μπορούμε να εφαρμόσουμε μια διάταξη για να δούμε σχηματικά αυτους τους κόμβους ώστε να καταλάβουμε καλύτερα τι σημβαίνει. Χρησιμοποιόντας λοιπόν τον αλγόριθμο Dual Circle Layout, με Upper Order Count ίσο με 20(Πλήθος κόμβων - strong connected components + weakly connected components) με σκοπό να πάρουμε στον εξωτερικό κύκλο τα κανάλια που δεν έχουν Featured Channels(20 κανάλια, 20 διαφορετικά χρώματα). Έτσι όπως φαίνεται και πιο κάτω, στον εξωτερικό κύκλο, τα κανάλια αυτά έχουν ακμές που φτάνουν σε αυτά και κανένα δεν έχει ακμή που να ξεκινάει απο αυτά.

Να σημειωθεί οτι κρατήσαμε διαμόρφωση των κόμβων σχετκα με το μέγεθος στην σχέση seedrank χωρις αυτο να παιζει κάποιο ρόλο, γι'αυτο και ο κόμβος Samsung έχει μεγαλύτερο μέγεθος.

6 Degree Measures

(mikri eiagogi AN DEN FKENNEI EN ΟΚ)Στο σημέιο αυτό της analisis mas tha aaferthoume sta degree measures. ta degree measures einai...

6.1 Maximum Degree

Το Maximum Degree είναι ο μέγιστος αριθμός ακμών που έχει ενας κόμβος μέσα στο δίκτυο. Στην περίπτωση που εξετάζουμε, αφορά τον κόμβο "Samsung" με τιμη 87. Αποτέλεσμα αναμενόμενο, αφού ο συγκεκριμένος κόμβος παίζει τον πιο σηαντικό ρόλο στο δίκτυο μας όπως έχουμε δεί και σε αλλες παριπτώσεις. Αυτό φαίνεται μέσω του πιο κάτω στιγμιότυπου που πηραμε απο το Gephi αφού βρήκαμε πρώτα το degree του κάθε κόμβου.

Label	Degree V
Samsung	87
Samsung New Zealand	11
Samsung México	10
Samsung Polska	9
KYU WON LEE	9
Samsung France	8
Samsung Maroc	8
Samsung India	7
Samsung US	6
Samsung Österreich	6
Samsung Latvia	6

6.2 Average Node Degree

Το Average Node Degree είναι ο μέσος αριθμός ακμών που υπάρχουν στο δίκτυο. Στο δίκτυο μας είναι ίσο με 1.961 σύμφωνα με το Degree Report που φτιάξαμε μέσω του Gephi απο το μενού Statistics.

6.3 Degree Distribution

isos na valw mia mikri isagogi?

6.3.1 In-Degree

Το In-Degree είναι οι εισέρχόμενες προς κάποιον κόμβο ακμές. Στην περίπτωση μας, ο αριθμος αυτός αποτελεί τον αριθμό των καναλιών που έχουν ως Featured Channel το κανάλι που εξετάζουμε. Έτσι για κάθε κανάλι με τη βοήθεια του Gephi για το δίκτυο μας έχουμε:

Label	In-Degree V
Samsung	19
KYU WON LEE	6
Samsung US	6
Samsung Newsroom	5
Samsung UK	5
Samsung Canada	4
Samsung España	4
Samsung Australia	3
Samsung Deutschland	3
Samsung Estonia	3
Samsung France	3
Samsung Korea	3
Samsung Latvia	3
Samsung Lithuania	3
SamsungPrinting	3
SamsungChile	2
Samsung Egypt	2
Samsung Gulf	2
Samsung Hong Kong	2
Samsung Indonesia	2
Samsung Malaysia	2
Samsung Österreich	2
Samsung Philippines	2
Samsung Russia	2
Samsung Singapore	2
Samsung South Africa	2
Samsung Switzerland	2
SamsungTaiwan	2
Samsung Thailand	2
Samsung Vietnam	2
CNET	1
ForumMySamsung	1
Samsung Argentina	1
Samsung Azerbaijan	1
Samsung Belgium	1
Samsung Bosna i Hercegovina	1
Samsung Brasil	1

Samsung Suomi	1
Samsung Bulgaria	1
Samsung Nederland	1
Samsung Srbija	1
Samsung Norge	1
Samsung Danmark	1
Samsung Hrvatska	1
Samsung Slovenija	1
Samsung Ireland	1
Samsung Shqiperi	1
Samsung Makedonija	1
Samsung Bosna i Hercegovina	1
Samsung Crna Gora	1
Samsung Portugal	1
Samsung Pakistan	1
Samsung New Zealand	1
Samsung Levant	1
Samsung Latinoamérica y Caribe	1
Samsung Saudi Arabia	1
Samsung Israel	1
Samsung Maroc	1
Samsung Argentina	1
Samsung Colombia	1
Samsung Perú	1
Samsung Ukraine	1
Samsung Kazakhstan	1
Samsung Ghana	1
Samsung Georgia	1
Samsung Azerbaijan	1
ForumMySamsung	1
Samsung Developers	1
Samsung Memory	1
CNET	1
samsungmena	1

Κατανομή του In-Degree μέσω γραφικής παράστασης:

Μετά απο τα πιο πάνω, θα ήταν αρκετα ενδιαφέρον να δούμε πως αλλάζει το δίκτυο όσον αφορά μέγεθος και χρώμα κόμβων σε σε συνάρτηση με το In-Degree.dipla pou thn pio katw na mpei h ipolipi ths

Έτσι χρησιμοποιόντας τον αλγόριθμο Radial Axis Layout μπορούμε να δούμε τον διαχωρισμο που γινεται ανάμεσα στους κόμβους σε σχέση με το in-degree του κάθε καναλιού. Τα κανάλια λοιπόν χωρήστκαν σε 7 διαφορετικές ομάδες σε οριζόντιους άξονες αφου οι διαφορετικές τιμες που παρατηρούνται είναι 7 όπως είδαμε και στους πιο πάνω πίνακες. Έτσι στο σημείο αυτό μπορούμε εύκολα να δούμε τα κανάλια τα όποια υπάρχουν κατα πολυ περισσότερες φορές ως Featured channels σε άλλα. Προταγωνησικο ρόλο έχει το κανάλι της Samsung για ακόμα μια φορα ενω ακολουθούν στη συνέχια τα κανάλια SamsungUS, KYO WON LEE κοκ.

6.3.2 Out-Degree

Το Out-Degree είναι οι εξέρχόμενες απο τον κάθε κόμβο ακμές. Με το δίκτυο το οποίο μελετάμε είναι ο αριθμός των Featured Channels που μπορεί να έχει ένα κανάλι όπως βλέπουμε παρακάτω.

Label	Out-Degree V
Samsung	68
Samsung New Zealand	10
Samsung México	9
Samsung Polska	8
Samsung Maroc	7
Samsung India	6
Samsung France	5
Samsung Österreich	4
KYU WON LEE	3
Samsung Estonia	3
Samsung Latvia	3
Samsung Lithuania	3
Samsung Switzerland	3
Samsung Norge	3
Samsung Suomi	3
Samsung Sverige	3
Samsung Australia	2
Samsung Deutschland	2
Samsung Vietnam	2
Samsung Hrvatska	1
Samsung Latinoamérica y Caribe	1
Samsung US	0
Samsung Newsroom	0
Samsung UK	0
Samsung Canada	0
Samsung España	0
Samsung Korea	0
SamsungPrinting	0
SamsungChile	0
Samsung Egypt	0
Samsung Gulf	0
Samsung Hong Kong	0
Samsung Indonesia	0
Samsung Malaysia	0
Samsung Philippines	0
Samsung Russia	0
Samsung Singapore	0

Samsung South Africa	0
SamsungTaiwan	0
Samsung Thailand	0
CNET	0
ForumMySamsung	0
Samsung Argentina	0
Samsung Azerbaijan	0
Samsung Belgium	0
Samsung Bosna i Hercegovina	0
Samsung Brasil	0
Samsung Bulgaria	0
Samsung Česko a Slovensko	0
Samsung Colombia	0
Samsung Crna Gora	0
Samsung Danmark	0
Samsung Developers	0
Samsung Georgia	0
Samsung Ghana	0
Samsung Greece	0
Samsung Ireland	0
Samsung Israel	0
Samsung Italia	0
Samsung Kazakhstan	0
Samsung Levant	0
Samsung Magyarország	0
Samsung Makedonija	0
Samsung Memory	0
samsungmena	0
Samsung Nederland	0
Samsung Pakistan	0
Samsung Perú	0
Samsung Portugal	0
Samsung Romania	0
Samsung Saudi Arabia	0
Samsung Shqiperi	0
Samsung Slovenija	0
Samsung Srbija	0
Samsung Türkiye	0
Samsung Ukraine	0

Κατανομή του Out-Degree μέσω γραφικής παράστασης:

Αντίστοιχα με το In-Degree θα δούμε πως αλλάζει το δίκτυο όσον αφορά μέγεθος και χρώμα κόμβων σε συνάρτηση με το Out-Degree αυτη τη φορά. dipla pou thn pio katw na mpei h ipolipi ths

Με τον αντίστοιχο τρόπο που δουλέψαμε για το In-Degree προηγουμένως, δουλέψαμε και τώρα. Όπως παρατηρούμε, στην πρωτη θέση εξακολουθει να είναι το καναλι Samsung ενω στο προσκήνιο έχουν προστεθει αρκετα κανάλια σε σχέση με πριν. Λογικό, αφου όσο πιο πολλα Featured Channels έχει ενα κανάλι τοσο πιο εύκολα μπορεί να προσεγγίσει κοινό και να αυξήσει τις προβολές και τις εγγραφές του. Επίσης ένα παράδειγμα που πολλές φορες συμβαίνει είναι οτι με αυτον τον τρόπο ο κόσμος μπορεί να ενημερωθεί πολυ πιο γρήγορα για ενα καινούργιο προιον που έχει παρουσιαστει σε μια άλλη χωρα βλέποντας ενα προτεινόμενο κανάλι που θα προτείνει η ίδια η πλατφόρμα του YouTube μέσω των Featured Channels που έχει το κανάλι το οποίο ακολουθεί ένας χρήστης.

6.3.3 Total Degree

Το Total Degree είναι το σύνολο των ακμών που ξεκηνούν ή που καταλήγουν σε ένα κόμβο. Με άλλα λόγια, είναι ουσιαστικά το άθροισμα του In-Degree και του Out-Degree.

Label	Degree 🗸
Samsung	87
Samsung New Zealand	11
Samsung México	10
Samsung Polska	9
KYU WON LEE	9
Samsung France	8
Samsung Maroc	8
Samsung India	7
Samsung US	6
Samsung Österreich	6
Samsung Latvia	6
Samsung Lithuania	6
Samsung Estonia	6
Samsung UK	5
Samsung Deutschland	5
Samsung Switzerland	5
Samsung Australia	5
Samsung Newsroom	5
Samsung Vietnam	4
Samsung Canada	4
Samsung España	4
Samsung Sverige	4
Samsung Suomi	4
Samsung Norge	4
Samsung Korea	3
SamsungPrinting	3
Samsung Indonesia	2
Samsung Hong Kong	2
Samsung Russia	2
Samsung Hrvatska	2
Samsung Malaysia	2
Samsung Philippines	2
SamsungTaiwan	2
Samsung Singapore	2
Samsung Latinoamérica y Caribe	2
Samsung Egypt	2
Samsung Gulf	2

Cameuna Chile	2
SamsungChile Samsung South Africa	2
Samsung Thailand	2
Samsung Türkiye	1
Samsung Brasil	1
Samsung Italia	1
Samsung Romania	1
Samsung Greece	1
Samsung Česko a Slovensko	1
Samsung Belgium	1
Samsung Magyarország	1
Samsung Bulgaria	1
Samsung Nederland	1
Samsung Srbija	1
Samsung Danmark	1
Samsung Slovenija	1
Samsung Ireland	1
Samsung Shqiperi	1
Samsung Makedonija	1
Samsung Bosna i Hercegovina	1
Samsung Crna Gora	1
Samsung Portugal	1
Samsung Pakistan	1
Samsung Levant	1
Samsung Saudi Arabia	1
Samsung Israel	1
Samsung Argentina	1
Samsung Colombia	1
Samsung Perú	1
Samsung Ukraine	1
Samsung Kazakhstan	1
Samsung Ghana	1
Samsung Georgia	1
Samsung Azerbaijan	1
ForumMySamsung	1
Samsung Developers	1
Samsung Memory	1
CNET	1
samsungmena	1

Κατανομή του Total Degree μέσω γραφικής παράστασης:

Όπως και στις δύο προηγούμενες περιπτώσεις, θα δούμε πως διαμορφώνεται το δίκτυο μας λαμβάνοντας υπόψην το Total Degree αυτή τη φορά. dipla pou thn pio katw na mpei h ipolipi ths

Το πρώτο πράγμα που μπορεί να προσέξει κανεις για το σχήμα που προέκυψε με μετρική το Total Degree είναι πως υπάρχει ο ίδιος αριθμός ομάδων κατα πλήθος κόμβων σε σχέση με πριν. Η διαφορά όμως έγγυται στο γεγονός πως όλοι σχεδόν οι κόμβοι που υπήρχαν και πριν στο Out-Degree, πέραν απο τον προφανές της Samsung, υπάρχουν και τώρα. Άρα φαίνεται πως το Out-Degree είναι αυτο που παίζει τον πιο σημαντικό ρόλο αφού όπως είπαμε και προηγουμένως είναι αυτό που καθορίζει ποια κανάλια θα προωθηθούν περισσότερο απο τον τρόπο που δουλεύει το Youtube μέσω των Featured Channels.

Τέλος να πούμε πως δεν έγινε κάποια αναφορά για το Weight Degree αφου στο δίκτυο που μελετάμε όλες οι ακμές έχουν ίσο βάρος πραγμα που δεν επηρεάζει τα δεδομένα μας. Επομένως δεν είχε νόημα η οποιαδίποτε αναφορά σε αυτό. sioureftou full gia touto an j nmz en k dioti j sto fire etsi elalen

7 Centrality measures

7.1 Degree

dame enikserw ti na grapsw, sthn ekfonisi lalei gia Degree enw sto Section6 pou en ta Degree Measures lalei gia Total Degree. enen idia touta ta 2? na mpw stes dialeksis gia to section7 na dw ti lalei

7.2 Betweenness Centrality

Το Betweenness Centrality δείχνει πόσο σημαντικός είναι ένας κόμβος(ως ενδιάμεσος) όταν θέλουμε να συνδέσουμε όλους τους κόμβους μεταξύ τους μέσω αυτού. Για παράδειγμα, για τον κόμβο n_i βρίσκουμε για κάθε ζεύγος κόμβων(u, w) του δικτύου τις εξής τιμές όπου και τις διαιρούμε:

- 1. Το σύνολο των συντομότερων μονοπατιών απο τον κόμβο n_i : $\Sigma_{u\omega}(n_i)$
- 2. Με τον αριθμο των συντομότερων διαδρομων που παιρνούν απο τον κόμβο \mathbf{x} (τα μονοπάτια των \mathbf{u} προς \mathbf{w}): $\Sigma_{u\omega}$

Αθροίζοντας το πηλίκο των διαιρέσεων των σημείων 1 και 2 βρίσκουμε το Betweenness Centrality του κόμβου x. Ο τύπος για την πιο πάνω διαδικάσια δίνεται απο την σχέση $C_B(n_i) = \sum (\sum_{u\omega}(n_i) / \sum_{u\omega})$.

Αφού καταλάβαμε πως προκύπτει το Betweenness Centrality, μπορούμε με την χρήση του Gephi να το βρούμε αυτόματα για όλους τους κόμβους μέσω των Statistics.

Label	Betweenness Centrality >
Samsung	1334.5
Samsung Polska	45.166667
Samsung Maroc	24.333333
Samsung Australia	20.5
Samsung Vietnam	19.0
Samsung Österreich	6.333333
Samsung Deutschland	3.833333
KYU WON LEE	3.5
Samsung Sverige	1.833333
Samsung Suomi	1.833333
Samsung Norge	1.833333
Samsung México	1.833333
Samsung France	1.5
Samsung US	0.0
Samsung Ukraine	0.0
Samsung UK	0.0
Samsung Türkiye	0.0
Samsung Thailand	0.0
Samsung Taiwan	0.0
Samsung Switzerland	0.0
Samsung Srbija	0.0
Samsung South Africa	0.0
Samsung Slovenija	0.0
Samsung Singapore	0.0
Samsung Shqiperi	0.0
Samsung Saudi Arabia	0.0
Samsung Russia	0.0
Samsung Romania	0.0
SamsungPrinting	0.0
Samsung Portugal	0.0
Samsung Philippines	0.0
Samsung Perú	0.0
Samsung Pakistan	0.0
Samsung New Zealand	0.0
Samsung Newsroom	0.0
Samsung Nederland	0.0
samsungmena	0.0

Samsung Memory	0.0
Samsung Malaysia	0.0
Samsung Makedonija	0.0
Samsung Magyarország	0.0
Samsung Lithuania	0.0
Samsung Levant	0.0
Samsung Latvia	0.0
Samsung Latinoamérica y Caribe	0.0
Samsung Korea	0.0
Samsung Kazakhstan	0.0
Samsung Italia	0.0
Samsung Israel	0.0
Samsung Ireland	0.0
Samsung Indonesia	0.0
Samsung India	0.0
Samsung Hrvatska	0.0
Samsung Hong Kong	0.0
Samsung Gulf	0.0
Samsung Greece	0.0
Samsung Ghana	0.0
Samsung Georgia	0.0
Samsung Estonia	0.0
Samsung España	0.0
Samsung Egypt	0.0
Samsung Developers	0.0
Samsung Danmark	0.0
Samsung Crna Gora	0.0
Samsung Colombia	0.0
SamsungChile	0.0
Samsung Česko a Slovensko	0.0
Samsung Canada	0.0
Samsung Bulgaria	0.0
Samsung Brasil	0.0
Samsung Bosna i Hercegovina	0.0
Samsung Belgium	0.0
Samsung Azerbaijan	0.0
Samsung Argentina	0.0
ForumMySamsung	0.0
CNET	0.0

Όπως φαίνεται και απο τους πιο πάνω πίνακες λοιπόν, είναι λίγες οι χώρες που έχουν μη μηδενικό Betweenness Centrality. Στην κορυφή των μετρήσεων μας είναι για ακόμη μια φορα το κανάλι της Samsung ενώ έχουν ανέβει στην κορυφή τώρα ορισμένα κανάλια όπου σε προηγούμενες μετρλησεις δεν ήταν σε τόσο υψηλή θέση. Όπως βλέπουμε, υπάρχουν μία ή περισσότερες χώρες απο κάθε ήπειρο εκτός απο την Ευρώπη που συγκεντρώνει 7 χώρες.

7.3 Closeness Centrality

Το Closeness Centrality είναι μια μετρημη που αποσμοπέι στο πόσο μοντά είναι ένας μόμβος σε όλους τους άλλους. Να σημειωθεί επίσης οτι μιμρότεροι αριθμοί δείχνουν πως ένας μόμβος έχει υψηλό Closeness Centrality με τις τιμές να μειμένονται απο 0 εως 1.

Τον τρόπο με τον οποίο μπορούμε να υπολογίσουμε τη μετρικλη αυτή σε ένα κατευθυνόμενο δίκτυο όπως το δικό μας μπορούμε να τον δούμε μέσω του ακόλουθου παραδείγματος.

Έστω πως θέλουμε να βρούμε το Closeness Centrality για τον κόμβο C. Βρίσκουμε τον συνολικό αριθμό αριθμό κόμβων του δικτύο μας και αφαιρούμε ένα, και τον διαιρούμε με το άθροισμα των συντομότερων μονοπατιών απο τον κόμβο που εξετάζουμε προς όλους τους υπόλοιπους. Επομένως για τον κόμβο C έχουμε:

Αρχικός κόμβος	Τελικός Κόμβος	Συντομότερη Διαδρομή	Κόστος Διαδρομής
С	Α	C-→B→A	2
С	В	C→B	1
С	D	C→D	1
С	E	C→D→E	2
С	F	C → D → E → F	3
С	G	C→D→H→G	3
С	Н	C→D→H	2
		Σύνολο:	14

Άρα το Closeness Centrality του κόμβου C είναι 7/14 = 0.5

Να πούμε επίσης πως σε κατευθυνόενους γράφους, παίζει ρόλο η φορά των ακμών. Για παράδειγμα σε περιπτωσεις όπου δεν υπάρχει διαδρομή λόγω φοράς ακμών, θεωρούμε μηδενικό το μονοπάτι. Έτσι γενικέυοντας το πιο πάνω υπάρχει περίπτωση κάποιος κόμβος να έχει μηδενικό Betweenness Centrality.

Τώρα με την βοήθεια του Gephi μέσω των Statistics έχουμε τις εξής τιμές για τη μετρική αυτή.

Label	Closeness Centrality >
Samsung Australia	1.0
Samsung	0.914634
Samsung Polska	0.517241
Samsung New Zealand	0.517241
Samsung México	0.510204
Samsung Maroc	0.506757
Samsung India	0.5
Samsung Österreich	0.496689
Samsung France	0.493421
Samsung Switzerland	0.493421
KYU WON LEE	0.490196
Samsung Sverige	0.490196
Samsung Suomi	0.490196
Samsung Norge	0.490196
Samsung Vietnam	0.487013
Samsung Deutschland	0.487013
Samsung Lithuania	0.487013
Samsung Latvia	0.487013
Samsung Estonia	0.487013
Samsung Latinoamérica y Caribe	0.480769
Samsung Hrvatska	0.480769
Samsung US	0.0
Samsung Ukraine	0.0
Samsung UK	0.0
Samsung Türkiye	0.0
Samsung Thailand	0.0
SamsungTaiwan	0.0
Samsung Srbija	0.0
Samsung South Africa	0.0
Samsung Slovenija	0.0
Samsung Singapore	0.0
Samsung Shqiperi	0.0
Samsung Saudi Arabia	0.0
Samsung Russia	0.0
Samsung Romania	0.0
SamsungPrinting	0.0
Samsung Portugal	0.0

Samsung Philippir	nes	0.0	
Samsung Perú		0.0	
Samsung Pakistan		0.0	
Samsung Newsroo	om	0.0	
Samsung Nederlan	nd	0.0	
samsungmena		0.0	
Samsung Memory	,	0.0	
Samsung Malaysia	9	0.0	
Samsung Makedo	nija	0.0	
Samsung Magyard	ország	0.0	
Samsung Levant		0.0	
Samsung Korea		0.0	
Samsung Kazakhsi	tan	0.0	
Samsung Italia		0.0	
Samsung Israel		0.0	
Samsung Ireland		0.0	
Samsung Indones	iia	0.0	
Samsung Hong Ko	ong	0.0	
Samsung Gulf		0.0	
Samsung Greece		0.0	
Samsung Ghana		0.0	
Samsung Georgia		0.0	
Samsung España		0.0	
Samsung Egypt		0.0	
Samsung Develop	ers	0.0	
Samsung Danmar	k	0.0	
Samsung Crna Go	ra	0.0	
Samsung Colomb	ia	0.0	
SamsungChile		0.0	
Samsung Česko a	Slovensko	0.0	
Samsung Canada		0.0	
Samsung Bulgaria		0.0	
Samsung Brasil		0.0	
Samsung Bosna i I	Hercegovina	0.0	
Samsung Belgium		0.0	
Samsung Azerbaij	an	0.0	
Samsung Argentin	na	0.0	
ForumMySamsun	g	0.0	

Παρατηρόντας τις πιο πάνω τιμές βλέπουμε πως υπάρχει μια κατανομή για το Closeness Centrality των καναλιών του δικτύου μας. Έτσι για να καταλάβουμε καλύτερα τι συμβαίνει μπορούμε να δούμε τις τιμές αυτές μέσω του ακόλουθου διαγράμματος.

Βλέπουμε λοιπόν πως υπάρχει μια ομαδοποίηση των κόμβων μεταξύ των τιμών 0.48 και 0.51. Αντίθετα όμως, μόνο δύο κόμβοι έχουν υψηλές τιμές της τάξης των 0.91 και 1.0. Άρα αμέσως καταλαβαίνουμε οτι τα κανάλια που έχουν πιο σημαντικό ρόλο στο δίκτυο μας είναι αυτα με 0.91 και 1.0 με το όνομα αυτων να ειναι Samsung και Samsung Australia αντιστοιχα. Στο σημείο αυτό, να σημειωθεί οτι υπάρχουν αρκετά κανάλια τα οποία έχουν μηδενικό Closeness Centrality αφού είναι κανάλια τα οποία είναι featured channels άλλων καναλιών ενω ταυτόχρονα τα κανάλια αυτά δεν εχουν δικά τους featured channels.

7.4 Eigenvector Centrality

Το Eigenvector Centrality είναι ένα μετρο με το οποίο μπορούμε να καταλάβουμε την επηροή που μποροεί να έχει ένας κόμβος μέσα στο δίκτυο μας. Δείχνει δηλαδή πόσο σημαντικός είναι ένας κόμβος ανάλογα με το ποσο σημαντικοι είναι και οι κόμβοι-γειτονες που έχει.

Ο τρόπος με τον οποίο μπορούμε να υπολογίσουμε τη μετρική αυτή σε ένα κατευθυνόμενο δίκτυο όπως το δικό μας μπορούμε να τον δούμε μέσω του εξής παραδείγματος. Έστω το ακόλουθο δίκτυο:

Αρχικά κατασκεύαζουμε το γραμμικό σύστημα(πίνακας δύο διαστάσεων) για το δίκτυο μας όπου βάζουμε τους αριθμούς 0 ή 1 εφόσον υπάρχει μονοπάτι που συνδέει τους κόμβους του δικτύου μας. Για παράδειγμα για τον κόμβο Reza η πρώτη στήλη στο γραμμικό μας σύστημα θα ειναι 0(θεωρούμε πως δεν υπάρχει μονοπατι απο κάποιο κόμβο προς τον εαυτό του), 1(για το μονοπάτι Reza προς Sofia) και 1(για το μονοπάτι Reza προς Luke). Έτσι, με αυτό το τρόπο προκύπτει ο ακόλουθος πίνακας.

			From	
		Reza	Sofia	Luka
				\neg
	Reza	0	0	1
То	Sofia	1	0	0
	Luka	1	1	0

Στη συνέχεια χρησιμοποιόντας αλγόριθμους γραμμικής άλγεβρας βρίκουμε το ιδιοδιάνυσμα που αντιστοιχεί στη μεγαλύτερη ιδιοτιμή του πίνακα που βρήκαμε στο προηγούμενο βήμα, κάνουμε κανονικοποίηση και έτσι προκύπτουν οι τιμες για το Eigenvector Centrality του κάθε κόμβου.

Τώρα με την βοήθεια του Gephi για το Eigenvector Centrality έχουμε τις εξής τιμές.

Label	Eigenvector Centrality >
Samsung	1.0
Samsung US	0.461073
Samsung UK	0.399569
Samsung Newsroom	0.398726
Samsung España	0.356162
Samsung Canada	0.355318
Samsung Latvia	0.352047
Samsung Lithuania	0.352047
Samsung Estonia	0.352047
Samsung Deutschland	0.317048
Samsung Korea	0.312754
Samsung France	0.294658
Samsung Australia	0.294658
KYU WON LEE	0.282834
Samsung Switzerland	0.262445
Samsung Österreich	0.262445
Samsung Vietnam	0.251251
Samsung Indonesia	0.251251
Samsung Hong Kong	0.251251
Samsung Russia	0.251251
Samsung Malaysia	0.251251
Samsung Philippines	0.251251
SamsungTaiwan	0.251251
Samsung Singapore	0.251251
Samsung Egypt	0.251251
Samsung Gulf	0.251251
SamsungChile	0.251251
Samsung South Africa	0.251251
Samsung Thailand	0.251251
Samsung India	0.207843
Samsung Türkiye	0.207843
Samsung Brasil	0.207843
Samsung México	0.207843
Samsung Italia	0.207843
Samsung Polska	0.207843
Samsung Romania	0.207843
Samsung Sverige	0.207843

Samsung Greece	0.207843
Samsung Česko a Slovensko	0.207843
Samsung Belgium	0.207843
Samsung Magyarország	0.207843
Samsung Suomi	0.207843
Samsung Bulgaria	0.207843
Samsung Nederland	0.207843
Samsung Srbija	0.207843
Samsung Norge	0.207843
Samsung Danmark	0.207843
Samsung Hrvatska	0.207843
Samsung Slovenija	0.207843
Samsung Ireland	0.207843
Samsung Shqiperi	0.207843
Samsung Makedonija	0.207843
Samsung Bosna i Hercegovina	0.207843
Samsung Crna Gora	0.207843
Samsung Portugal	0.207843
Samsung Pakistan	0.207843
Samsung New Zealand	0.207843
Samsung Levant	0.207843
Samsung Latinoamérica y Caribe	0.207843
Samsung Saudi Arabia	0.207843
Samsung Israel	0.207843
Samsung Maroc	0.207843
Samsung Argentina	0.207843
Samsung Colombia	0.207843
Samsung Perú	0.207843
Samsung Ukraine	0.207843
Samsung Kazakhstan	0.207843
Samsung Ghana	0.207843
Samsung Georgia	0.207843
Samsung Azerbaijan	0.207843
SamsungPrinting	0.141417
CNET	0.061504
ForumMySamsung	0.052455
Samsung Developers	0.043407
Samsung Memory	0.043407
samsungmena	0.043407

Αρχικά, το πρωτο πραγμα που βλέπουμε είναι πως δεν υπάρχουν μηδενικές τιμές σε αντίθεση με το Closeness Centrality αφου λαμβανοντας υπόψην τον αλγόριθμο με τον οποίο υπολογίζεται το Eigenvector Centrality όλοι οι κόμβοι είναι ενωμένοι με όλους έστω και με μία μονο ακμή.

Πέραν απο το πιο πάνω, το πλέον σημαντικό που μπορούμε να πούμε για τα αποτελέσματα αυτά είναι πως υπάρχει μια μεγάλη αριθμιτική διαφορά μεαξύ του πρώτου σε σκόρ καναλιού και όλων των υπολοίπων. Στη πρώτη θέση λοιπόν βρίσκεται ξανα το κανάλι Samsung με σκόρ 1 ενώ τα υπόλοιπα κανάλια ξεκινούν απο σκόρ 0.46 και κάτω. Αυτό μας δείχνει ότι οι γείτονες των κόμβων μας είναι το ίδιο περίπου ισχυροί με μικρη διαφορα κάθε φορα που ολοένα και μικραίνει. Άρα φαίνεται πως επηρεάζονται περίπου το ίδιο κανάλια που βρισκονται ως featured channels σε άλλα αφού ο σκοπός είναι να φαίνονται όλα τα κανάλια χωρίς να υπάρχει κάποιος ιδιαίτερος λόγος διαχωρισμού προτιμήσεων αφού στο δίκτυο που μελετάμε όλες οι συνδέσεις είναι με βαση το κρητηρίο των featured channels.