多分类学习

多分类学习

- □ 多分类学习方法
 - 二分类学习方法推广到多类
 - 利用二分类学习器解决多分类问题(常用)
 - 对问题进行拆分,为拆出的每个二分类任务训练一个分类器
 - 对于每个分类器的预测结果进行集成以获得最终的多分类结果

□ 拆分策略

- -xy (One vs. One, OvO)
- 一对其余(One vs. Rest, OvR)
- 多对多 (Many vs. Many, MvM)

多分类学习 - 一对一

- □ 拆分阶段
 - N个类别两两配对
 - N(N-1)/2 个二类任务
 - 各个二类任务学习分类器
 - N(N-1)/2 个二类分类器

- □ 测试阶段
 - 新样本提交给所有分类器预测
 - N(N-1)/2 个分类结果
 - 投票产生最终分类结果
 - 被预测最多的类别为最终类别

多分类学习 - 一对其余

- □ 任务拆分
 - 某一类作为正例,其他反例
 - N 个二类任务
 - 各个二类任务学习分类器
 - N 个二类分类器

- □测试阶段
 - 新样本提交给所有分类器预测
 - N 个分类结果
 - 比较各分类器预测置信度
 - 置信度最大类别作为最终类别

多分类学习 - 两种策略比较

- ▶ OvO的存储开销和测试时间开销通常比OvR大:
 OvR只需训练N个分类器,
 而OvO需训练N(N-1)/2个分类器。
- ➤ 类别多时,OvO的训练时 间开销通常比OvR小:训练时,OvR的每个分类器 均使用全部训练样本,而 OvO的每个分类器仅用到 两个类样本;
- 预测性能差不多:至于预测性能,则取决于具体的数据分布,在多数情形下两者差不多。

多分类学习 - 多对多

- □ 多对多 (Many vs Many, MvM)
 - 若干类作为正类,若干类作为反类
- □ 纠错输出码 (Error Correcting Output Code, ECOC)

编码:对N个类别做M次划分,每次划分将一部分类别划为正类,一部分划为反类 距离最小的类别为最终类别 解码:测试样本交给M个分类器预测 长度为M的编码预测

多分类学习 - 多对多

□ 纠错输出码(Error Correcting Output Code, ECOC)

(a) 二元 ECOC 码

[Dietterich and Bakiri,1995]

(b) 三元 ECOC 码

[Allwein et al. 2000]

- ECOC编码对分类器错误有一定容忍和修正能力,编码越长、纠错能力越强
- 对同等长度的编码,理论上来说,任意两个类别之间的编码距离越远,则 纠错能力越强

多分类学习 - 多对多

□ 纠错输出码(Error Correcting Output Code, ECOC)

(a) 二元 ECOC 码

[Dietterich and Bakiri,1995]

对于二元ECOC码: 首先进行异或操作

编码值	-1	+1	-1	+1	+1
测试值	-1	-1	+1	-1	+1
异或	0	1	1	1	0

海明距离= 0+1+1+1+0 = 3

(b) 三元 ECOC 码

[Allwein et al. 2000]

对于**三元ECOC码**,规则同上,但是三元操作不进行异或

海明距离:+1和-1之间的海明距离为1

+1/-1和0之间的海明距离为0.5

类别不平衡问题

类别不平衡问题

- □ 类别不平衡 (class imbalance)
 - 不同类别训练样例数相差很大情况(正类为小类)

类别平衡正例预测
$$\frac{y}{1-y} > 1$$

$$\frac{y}{1-y} > \frac{m^+}{m^-}$$
 正负类比例

- □ 再缩放
 - 欠采样 (undersampling)
 - 去除一些反例使正反例数目接近(EasyEnsemble [Liu et al.,2009])
 - 过采样(oversampling)
 - 增加一些正例使正反例数目接近(SMOTE [Chawla et al.2002])

类别不平衡问题

➤ 过采样 (oversampling):

- ✓ 样本复制
- ✓ 样本插值
- ✓ 样本生成 (GAN)

[1] Chawla N V, Bowyer K W, et al. **SMOTE: Synthetic Minority Over-Sampling Technique**. *JAIR*, 2002.

> 欠采样 (undersampling)

[2] Xu-Ying Liu, Jianxin Wu, Zhi-Hua Zhou. **Exploratory Undersampling for Class-Imbalance Learning**. *IEEE TSMCB*, 2009.

优化提要

- □ 各任务下(回归、分类)各个模型优化的目标
 - 最小二乘法:最小化均方误差
 - 对数几率回归:最大化样本分布似然
 - 线性判别分析:投影空间内最小(大)化类内(间)散度

- □ 参数的优化方法
 - 最小二乘法:线性代数
 - 对数几率回归: 凸优化梯度下降、牛顿法
 - 线性判别分析:矩阵论、广义瑞利商

总结

- □ 线性回归
 - 最小二乘法 (最小化均方误差)
- □ 二分类任务
 - 对数几率回归
 - 单位阶跃函数、对数几率函数、极大似然法
 - 线性判别分析
 - 最大化广义瑞利商
- □ 多分类学习
 - \(\forall \) \(\fo
 - 一对其余
 - 多对多
 - 纠错输出码
- □ 类别不平衡问题
 - 基本策略:再缩放