Esame di "FONDAMENTI DI AUTOMATICA" (9 CFU)

Prova MATLAB – 18 luglio 2022 – Testo A

Istruzioni per lo svolgimento: lo studente deve consegnare al termine della prova una cartella nominata Cognome Nome, contenente:

- 1. Un Matlab script file (i.e. file di testo con estensione .m) riportante i comandi eseguiti e <u>la risposta alle eventuali richieste teoriche sotto forma di commento</u> (i.e. riga di testo preceduta dal simbolo %)
 - **NOTA**: per copiare i comandi dalla Command History, visualizzarla tramite menu "Layout → Command History → Docked", selezionare in tale finestra le righe di interesse tramite *Ctrl+mouse left-click* e dal menu visualizzato tramite *mouse right-click* selezionare "create script"
- 2. Le figure rilevanti per la dimostrazione dei risultati ottenuti in **formato JPEG o PNG** avendo cura di salvare i file delle figure quando queste mostrano le caratteristiche di interesse per la verifica del progetto (i.e. Settling Time, Stability Margins, ecc.).

NOTA: per salvare una figura Matlab in formato PNG o JPG, usare il menu "File → Save as" dalla finestra della figura di interesse, assegnarle un nome e selezionare l'estensione *.PNG o *.JPG nel menu a tendina "salva come", <u>avendo cura che le figure siano salvate quando queste mostrano le caratteristiche di interesse per la verifica del progetto</u>

INTRODUZIONE

Si consideri il forno industriale mostrato nella seguente figura:

il cui modello matematico è stato oggetto dei primi esercizi della prova scritta odierna (Testo 6 CFU). Il modello esteso, del tipo

$$\dot{x}(t) = Ax(t) + Bu(t); \ y(t) = Cx(t) + Du(t)$$

è inizializzato dallo script initAutomaticaTestoA.m fornito dal docente.

ESERCIZIO 1.

a) Dato il modello ottenuto nell'introduzione, si ricavi la funzione di trasferimento G(s) del sistema in esame.

b) Si determinino i poli della funzione di trasferimento e si verifichi se coincidono con gli autovalori di A. Descrivere il motivo di eventuali discrepanze tramite righe di commento (i.e. precedute dal simbolo %) sul file .m

ESERCIZIO 2

Si consideri il sistema in retroazione unitaria rappresentato in figura:

Con G(s) ricavata al punto a) dell'Esercizio 1, $G_a(s)$ e H(s) inizializzate dallo script initAutomaticaTestoA.m.

Si verifichi se il sistema ad anello chiuso, con guadagno K=1, risulti o meno stabile tramite l'analisi della risposta y(t) al gradino unitario.

- a) Si determini, se esiste, il valore del guadagno K_{lim} per il quale il sistema risulta semplicemente stabile, utilizzando il grafico del luogo delle radici della funzione $G_a(s)*G(s)*H(s)$.
- b) Si ponga $K_1 = 0.8 \, K_{lim}$, si visualizzi l'andamento della risposta al gradino y(t) del sistema chiuso in retroazione con tale guadagno e si determini il tempo d'assestamento al 5%.
- c) Si determini il valore a regime della risposta al gradino y(t) e si motivi il risultato tramite righe di commento (i.e. precedute dal simbolo %) sul file .m

ESERCIZIO 3

Si consideri il sistema rappresentato in figura

con G(s) ricavata dall'Esercizio 1, $G_a(s)$ e H(s) inizializzate dallo script initAutomaticaTestoA.m.

- a) Si determinino come possibili funzioni di trasferimento alternative per il controllore $G_c(s)$ quelle di un regolatore di tipo **PI** e di uno di tipo **PID**, considerati entrambi nella formulazione classica e con i parametri K_p , T_i , T_d tarati secondo il metodo di Ziegler-Nichols basato sull'oscillazione critica ad anello chiuso (vedi tabella allegata).
- b) Si verifichi tramite l'analisi della risposta al gradino del sistema compensato e chiuso in retroazione quale tra i regolatori proposti sia il più efficace in termini di massima sovraelongazione percentuale e tempo di assestamento.

TIPO	\mathbf{K}_{p}	T _i	T _d
PI	0.45 K ₀	0.85 T ₀	-
PID	0.6 K ₀	0.5 T ₀	0.125 T ₀

NOTA:

 K_0 = guadagno critico, di fatto corrispondente al guadagno K_{lim} determinato al punto b) dell'Esercizio 2, cioè tale per cui il sistema chiuso in retroazione risulti semplicemente stabile (i.e. con oscillazione persistente della risposta).

T₀ = periodo delle oscillazioni della risposta in condizione di stabilità semplice ad anello chiuso.

SOLUZIONE (traccia):

Contenuto di initAutomaticaTestoA

```
% Inizializzazione parametri
Kc = 240;
Kr = 160;
Kg=160;
Ka = 200;
Cr=40;
Cq=20;
Cs=80;
% Inizializzazione matrici
A = [ -(Kg + Kr)/Cs, Kg/Cs,
                                       Kr/Cs;
        Kg/Cg, -Kg/Cg,
        Kr/Cr,
                  0, -(Ka + Kr)/Cr]
B = [Kc/Cs;
     0;
     0]
C=[1 \ 0 \ 0]
D=0
s=tf('s');
% Inizializzazione FdT attuatore
Ga=1/(1+s*0.1)
% Inizializzazione FdT sensore
H=1/(1+s*0.4)
```

```
Svolgimento:
sys=ss(A,B,C,D)
G=tf(sys)
G =
     3 s^2 + 51 s + 216
  s^3 + 21 s^2 + 116 s + 80
pole(G)
ans = -11.5771
   -8.6214
   -0.8015
eig(A)
ans = --0.8015
  -11.5771
   -8.6214
% Poli e autovalori coincidono
                                   (sistema
                                             completamente
controllabile e osservabile)
Gcl=feedback(Ga*G,H)
step(Gcl)
```


rlocus (Ga*G*H)

Klim = 10.6
Gcl=feedback(0.8*Klim*Ga*G,H)
step(Gcl)

% Valore a regime < 1 (errore NON nullo in risposta al gradino unitario), perché il sistema NON è di tipo 1, cioè NON ha un polo nell'origine)

Gcl=feedback(Klim*Ga*G,H)
step(Gcl)

% Riduco il tempo del grafico di risposta al gradino unitario per vedere meglio le oscillazioni step(Gcl,10)


```
T0 = 4.82-3.91
K0 = Klim
% Costruisco il PID
Kp=0.6*K0
Ti=0.5*T0
Td=0.125*T0
s=tf('s')
PID=Kp*(1+1/Ti/s+Td*s)
% Costruisco il PI
Kp=0.45*K0
Ti=0.85*T0
PI=Kp*(1+1/(Ti*s))
% Confronto PID vs PI
GclPID=feedback (PID*Ga*G, H)
GclPI=feedback(PI*Ga*G,H)
step (GclPID)
hold on
step(GclPI)
```


% Il PID fornisce una prestazione migliore in senso assoluto, in assenza dell'azione predittiva del termine D il controllore PI determina infatti un'azione troppo poco smorzata per essere accettabile in una applicazione pratica (oscillazioni troppo evidenti e persistenti).