Math 104 Real Analysis

Instructor: Peng Zhou

KELVIN LEE

Contents

1	The Real Number Systems		
	1	Natural Numbers N	
	2	Rational Numbers Q	
	3	Real Numbers $\mathbb R$	
	4	$+\infty$ and $-\infty$	
	5	Reading (Rudin's)	
2	Seq	quences que la companya de la companya del companya de la companya del companya de la companya d	
	6	Limits of Sequences	
	7	Proofs of Limits	
	8	Limit Theorems for Sequences	
	9	Monotone Sequences and Cauchy Sequences	

THE REAL NUMBER SYSTEMS

1 Natural Numbers \mathbb{N}

Definition 1 (Peano Axioms (Peano Postulates)). The properties of the set of natural numbers, denoted \mathbb{N} , are as follows:

- (i) 1 belongs to \mathbb{N} .
- (ii) If *n* belongs to \mathbb{N} , then its successor n+1 belongs to \mathbb{N} .
- (iii) 1 is not the successor of any element in \mathbb{N} .
- (iv) If $n, m \in \mathbb{N}$ have the same successor, then n = m.
- (v) A subset of \mathbb{N} which contains 1, and which contains n+1 whenever it contains n, must equal to \mathbb{N} .

Remark. The last axiom is the basis of mathematical induction. Let $P_1, P_2, P_3, ...$ be a list of propositions that may or may not be true. The principle of mathematical induction asserts all the statements $P_1, P_2, ...$ are true provided

- P_1 is true. (Basis for induction)
- $P_n \Longrightarrow P_{n+1}$. (Induction step)

2 Rational Numbers \mathbb{Q}

Definition 2 (Rational Numbers). The set of **rational numbers**, denoted \mathbb{Q} , is defined by

$$\mathbb{Q} = \left\{ \frac{m}{n} \mid n, m \in \mathbb{Z}, n \neq 0 \right\},\,$$

which supports addition, multiplication, subtraction, and division.

Remark. \mathbb{Q} is a very nice algebraic system. However, there is no rational solution to equations like $x^2 = 2$.

Definition 3 (Algebraic Number). A number is called an **algebraic number** if it satisfies a polynomial equation

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 = 0$$

where $c_0, ..., c_n$ are integers, $c_n \neq 0$ and $n \geq 1$.

Remark. Rational numbers are always algebraic numbers.

Theorem 4 (Rational Zeros Theorem). Suppose $c_0, c_1, ..., c_n$ are integers and r is a rational number satisfying the polynomial equations

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 = 0$$

where $n \ge 1$, c_n , $c_0 \ne 0$. Let $r = \frac{c}{d}$ where $\gcd(c,d) = 1$. Then $c \mid c_0$ and $d \mid c_n$. In simpler terms, the only rational candidates for solutions to the equation have the form $\frac{c}{d}$ where c is a factor of c_0 and d is a factor of c_n .

Proof. Plug in $r = \frac{c}{d}$ to the equation, we get

$$c_n \left(\frac{c}{d}\right)^n + c_{n-1} \left(\frac{c}{d}\right)^{n-1} + \dots + c_1 \left(\frac{c}{d}\right) + c_0 = 0.$$

Then we multiply by d^n on both sides and get

$$c_n c^n + c_{n-1} c^{n-1} d + \dots + c_1 c d^{n-1} + c_0 d^n = 0.$$

Solving for c_0d^n , we obtain

$$c_0d^n = -c(c_nc^n + c_{n-1}^{n-2} + \dots + c_2cd^{n-2} + c_1d^{n-1}).$$

Then it follows that $c \mid c_0 d^n$. Since gcd(c,d) = 1, c can only divide c_0 . Now let's instead solve for $c_n c^n$, then we have

$$c_n c^n = -d \left(c_{n-1} c^{n-1} + c_{n-2} c^{n-2} d + \dots + c_1 c d^{n-2} + c_0 d^{n-1} \right).$$

Thus $d \mid c_n c^n$, which implies $d \mid c_n$ because gcd(c,d) = 1.

Corollary 5. Consider

$$x^{n} + c_{n-1}x^{n-1} + \dots + c_{1}x + c_{0} = 0,$$

where $c_0, c_1, ..., c_{n-1}$ are integers and $c_0 \neq 0$. Any rational solution of this equation must be an integer that divides c_0 .

Proof. Since the Rational Zeros Theorem states that d must divide c_n , which is 1 in this case, r is an integer and it divides c_0 .

Example 6. $\sqrt{2}$ is not a rational number.

Proof. Using Corollary 5, if $r = \sqrt{2}$ is rational, then $\sqrt{2}$ must be an integer, which is a contradiction.

П

3 Real Numbers \mathbb{R}

3.1 The Completeness Axiom

Definition 7 (Maximum/minimum). Let S be a nonempty subset of \mathbb{R} .

- (i) If S contains a largest element s_0 (i.e., $s_0 \in S$, $s \le s_0 \forall s \in S$), then s_0 is the **maximum** of S, denoted $s_0 = \max S$.
- (i) If S contains a smallest element, then it is called the **minimum** of S, denoted as min S.

Remark.

- If s_1, s_2 are both maximum of S, then $s_1 \ge s_2, s_2 \ge s_1$, which implies that $s_1 = s_2$. Thus the maximum is **unique** if it exists.
- However, the maximum may not exist (e.g. $S = \mathbb{R}$).
- If $S \subset \mathbb{R}$ is a finite subset, then max S exists.

Definition 8 (Upper/Lower bound). Let S be a nonempty subset of \mathbb{R} .

- (i) If a real number M satisfies $s \le M$ for all $s \in S$, then M is an **upper bound** of S and S is said to be *bounded above*.
- (i) If a real number m satisfies $\leq s$ for all $s \in S$, then m is a **lower bound** of S and S is said to be *bounded below*.
- (i) S is said to be *bounded* if it is bounded above and bounded below. Thus S is bounded if there exist real numbers m and M such that $S \subset [m, M]$.

Definition 9 (Supremum/Infimum). Let S be a nonempty subset of \mathbb{R} .

- If S is bounded above and S has a least upper bound, then it is called the **supremum** of S, denoted by sup S.
- If S is bounded below and S has a greatest lower bound, then it is called the **infimum** of S, denoted by inf S.

Remark. If S has a maximum, then $\max S = \sup S$. Similarly, if S has a minimum, then $\min S = \inf S$. Also note that $\sup S$ and $\inf S$ need not belong to S.

Example 10. Suppose we have $S = \{1 - \frac{1}{n} \mid n \in \mathbb{N}\}$. Then max S does not exist and sup S = 1.

Proof. Suppose for contradiction that it exists. Then it must be of the form $1 - \frac{1}{n_0}$ for some $n_0 \in \mathbb{N}$. However,

$$1 - \frac{1}{n_0 + 1} > 1 - \frac{1}{n_0}$$

and $1 - \frac{1}{n_0 + 1} \in S$. Hence a contradiction.

Theorem 11 (Completeness Axiom). Every nonempty subset $S \subset \mathbb{R}$ that is bounded above has a least upper bound. In other words, sup S exists and is a real number.

Corollary 12. Every nonempty subset $S \subseteq \mathbb{R}$ that is bounded below has a greatest lower bound inf S.

Proof. Consider the set $-S = \{-s \mid s \in S\}$. Since S is bounded below there exists an $m \in \mathbb{R}$ such that $m \le s$ for all $s \in S$. This implies $-m \ge -s$ for all $s \in S$, so $-m \ge u$ for all $u \in -S$. Thus, -S is bounded above by -m. The Completeness Axiom applies to -S, so sup -S exists.

Now we show that $\inf S = -\sup -S$. Let $s_0 = \sup -S$, we need to prove

$$-s_0 \le s$$
 for all $s \in S$,

and if $t \le s$ for all $s \in S$, then $t \le -s_0$. The first inequality will show that $-s_0$ is a lower bound while the second inequality will show that $-s_0$ is the greatest lower bound, i.e., $-s_0 = \inf S$. The proofs of the two claims are left as an exercise.

Theorem 13 (Archimedean Property). If a, b > 0, then na > b for some positive integer n.

Proof. Suppose the property fails for some pair of a,b>0. That is, for all $n \in \mathbb{N}$, we have $na \leq b$, meaning that b is an upper bound for the set $S = \{na \mid n \in \mathbb{N}\}$. Using the Completeness Axiom, we can let $s_0 = \sup S$. Since a > 0, we have $s_0 - a < s_0$, so $s_0 - a$ cannot be an upper bound for S. It follows that $s_0 - a < n_0 a$ for some $n_0 \in \mathbb{N}$, which then implies that $s_0 < (n_0 + 1)a$. Since $(n_0 + 1)a$ is in S, s_0 is not an upper bound for S, which is a contradiction.

Theorem 14 (Denseness of \mathbb{Q}). If $a, b \in \mathbb{R}$ and a < b, then there is a rational $r \in \mathbb{Q}$ such that a < r < b.

Proof. We need to show that $a < \frac{m}{n} < b$ for some integers m and n where $n \neq 0$. Equivalently, we want

$$an < m < bn$$
.

Since b-a>0, the Archimedean property shows that there exists an $n\in\mathbb{N}$ such that

$$n(b-a) > 1 \Longrightarrow bn-an > 1$$
.

Now we need to show that there is an integer m between an and bn.

4 $+\infty$ and $-\infty$

We adjoint $+\infty$ and $-\infty$ to $\mathbb R$ and extend our ordering to the set $\mathbb R \cup \{-\infty, +\infty\}$. Explicitly, we have $-\infty \le a \le +\infty$ for all $a \in \mathbb R \cup \{-\infty, +\infty\}$.

Remark. $+\infty$ and $-\infty$ are not real numbers. Theorems that apply to real numbers would not work.

We define

 $\sup S = +\infty$ if *S* is not bounded above

and

 $\inf S = -\infty$ if *S* is not bounded below.

5 Reading (Rudin's)

5.1 Ordered Sets

Definition 15 (Order). Let S be a set. An **order** on S is a relation, denoted by <, with the following two properties:

• If $x \in S$ and $y \in S$, then one and only one of the statements

$$s < y$$
, $x = y$, $y < x$

is true.

• If $x, y, z \in S$, if x < y and y < z, then x < z.

Definition 16 (Ordered Set). An **ordered set** is a set S in which an order is defined.

For example, Q is an ordered set if r < s is defined to mean that s - r is a positive rational number.

5.2 Fields

Definition 17 (Field). A **field** is a set F with two operations: *addition* and *multiplication*, which satisfy the following **field axioms**:

(A) Axioms for addition

- (A1) If $x, y \in F$, then $x + y \in F$.
- (A2) (Commutativity) $\forall x, y \in F, x + y = y + x$.
- (A3) (Associativity) $\forall x, y, z \in F$, (x + y) + z = x + (y + z).
- (A4) (Identity) $\forall x \in F$, 0 + x = x.
- (A5) (Inverse) $\forall x \in F$, there exists a corresponding $-x \in F$ such that

$$x + (-x) = 0.$$

(M) Axioms for multiplication

- (M1) If $x, y \in F$, then $xy \in F$.
- (M2) (Commutativity) $\forall x, y \in F, xy = yx$.
- (M3) (Associativity) $\forall x, y, z \in F$, (xy)z = x(yz).
- (M4) (Identity) $\forall x \in F$, 1x = x.
- (M5) (Inverse) $\forall x \in F$, there exists a corresponding $\frac{1}{x} \in F$ such that

$$x\left(\frac{1}{x}\right) = 1.$$

(D) The distributive law

$$\forall x, y, z \in F, x(y+z) = xy + xz.$$

Definition 18 (Ordered Field). An **ordered field** is a field F which is also an *ordered set*, such that

- (i) if y < z and $x, y, z \in F$, x + y < x + z,
- (i) if x, y > 0 and $x, y \in F$, xy > 0.

LECTURE 2	
1	
	SEQUENCES

6 Limits of Sequences

Definition 19 (Sequence). A **sequence** is a function whose domain is a set of the form $\{n \in \mathbb{Z} \mid n \geq m\}$ where m is usually 1 or 0.

One may wonder why do we care about sequence, and the answer is that sequences are useful for *approximation*.

Definition 20. A sequence $\{s_n\}$ of real numbers is said to **converge** to the real number s if $\forall \epsilon > 0$, $\exists N > 0$ such that for all positive integers n > N, we have

$$|s_n - s| < \epsilon$$
.

If $\{s_n\}$ converges to s, we write $\lim_{n\to\infty} s_n = s$, or simply $s_n\to s$, where s is called the **limit** of the sequence. A sequence that does not converge to some real number is said to **diverge**.

7 Proofs of Limits

Example 21. Prove $\lim_{n\to\infty}\frac{1}{n^2}=0$.

Scratch. For any $\epsilon > 0$, we want

$$\left| \frac{1}{n^2} - 0 \right| < \epsilon \iff \frac{1}{n^2} < \epsilon \iff \frac{1}{\epsilon} < n^2 \iff \frac{1}{\sqrt{\epsilon}} < n.$$

Thus, we can just take $N = \frac{1}{\sqrt{\epsilon}}$.

Proof. Let $\epsilon > 0$ and $N = \frac{1}{\sqrt{\epsilon}}$. Then n > N implies $n > \frac{1}{\sqrt{\epsilon}}$ which implies $n^2 > \frac{1}{\epsilon}$ and hence $\epsilon > \frac{1}{n^2}$. Thus n > N implies $\left| \frac{1}{n^2} - 0 \right| < \epsilon$. This proves our claim.

Example 22. Prove $\lim_{n\to\infty} \frac{3n+1}{7n-4} = \frac{3}{7}$.

Scratch. $\forall \epsilon > 0$, we need $\left| \frac{3n+1}{7n-4} - \frac{3}{7} \right| < \epsilon$, which implies that

$$\left| \frac{21n+7-21n+12}{7(4n-4)} \right| < \varepsilon \implies \left| \frac{19}{7(7n-4)} \right| < \varepsilon.$$

Since 7n-4>0, we can remove the absolute value sign and have

$$\frac{19}{7\epsilon} < 7n - 4 \implies \frac{19}{49\epsilon} + \frac{4}{7} < n.$$

Thus, we have $N = \frac{19}{49\epsilon} + \frac{4}{7}$.

Proof. Let $\epsilon > 0$ and let $N = \frac{19}{49\epsilon} + \frac{4}{7}$. Then n > N implies $n > \frac{19}{49\epsilon} + \frac{4}{7}$, hence $7n > \frac{19}{7\epsilon} + 4$, which gives us $\frac{19}{7(7n-4)} < \epsilon$, and thus $\left| \frac{3n+1}{7n-4} - \frac{3}{7} \right| < \epsilon$. Then we are done.

Example 23. Prove $\lim_{n\to\infty} 1 + \frac{1}{n} (-1)^n = 1$.

Scratch. $\forall \epsilon > 0$, we want *n* large enough, such that

$$|a_n - 1| < \epsilon \iff \left| 1 + \frac{1}{n} (-1)^n - 1 \right| < \epsilon \iff \left| \frac{1}{n} (-1)^n \right| < \epsilon \iff \frac{1}{n} < \epsilon \iff n > \frac{1}{\epsilon}.$$

Just take $\alpha = \frac{1}{\epsilon}$, then $n > N \rightarrow |a_n - 1| < \epsilon$

8 Limit Theorems for Sequences

Definition 24 (Bounded). A sequence $\{s_n\}$ of real numbers is said to be **bounded** if the set $\{s_n \mid n \in \mathbb{N}\}$ is a bounded set, i.e., if there exists a constant M such that $|s_n| \leq M$ for all n.

Theorem 25. Convergent sequences are bounded.

Proof. Let $\{s_n\}$ be a convergent sequence and let $s = \lim_{n \to \infty} s_n$. Let $\epsilon > 0$ be fixed. Then by convergence of the sequence, there exists an number $N \in \mathbb{N}$ such that

$$n > N \implies |s_n - s| < \epsilon$$
.

By the triangle inequality we see that n > N implies $|s_n| < |s| + \epsilon$. Define $M = \max\{|s| + \epsilon, |s_1|, \dots, |s_N|\}$. Then $|s_n| \le M$ for all $n \in \mathbb{N}$, so $\{s_n\}$ is a bounded sequence.

Theorem 26. Let $\{s_n\}$ and $\{t_n\}$ be sequences in \mathbb{R} such that $s_n \to s$ adn $t_n \to t$. Let $k \in \mathbb{R}$ be a constant. Then

- (i) $ks_n \rightarrow ks$.
- (ii) $(s_n + t_n) \rightarrow s + t$.
- (iii) $s_n t_n \to st$.
- (iv) If $s_n \neq 0$ for all n, and if $s \neq 0$, then $\frac{1}{s_n} \to \frac{1}{s}$.
- (v) If $s_n \neq 0$ and $s \neq 0$ for all n, then $\frac{t_n}{s_n} \to \frac{t}{s}$.

Proof of (i). Since the case where k=0 is trivial, we assume $k \neq 0$. Let $\epsilon > 0$ and we want to show that $|ks_n - ks| < \epsilon$ for large n. Since $\lim_{n \to \infty} = s$, there exists N such that

$$n>N \implies |s_n-s|<\frac{\epsilon}{|k|}.$$

Then

$$n > N \implies |ks_n - ks| < \epsilon$$
.

Proof of (ii). Let $\epsilon > 0$. We need to show

$$|s_n + t_n - (s + t)| < \epsilon$$
 for large n .

Using triangle inequality, we have $|s_n + t_n - (s+t)| \le |s_n - s| + |t_n - t|$. Since $s_n \to s$, there exists N_1 such that

$$n > N_1 \Longrightarrow |s_n - s| < \frac{\epsilon}{2}.$$

Similarly, there exists N_2 such that

$$n > N_2 \implies |t_n - t| < \frac{\epsilon}{2}.$$

Let $N = \max \{N_1, N_2\}$. Then clearly

$$n>N \implies |s_n+t_n-(s+t)| \leq |s_n-s|+|t_n-t| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Proof of (iii). We use the identity

$$s_n t_n - st = (s_n - s)(t_n - t) + s(t_n - t) + t(s_n - s).$$

Given $\epsilon > 0$, there are integers N_1, N_2 such that

$$n > N_1 \implies |s_n - s| < \sqrt{\epsilon}$$

 $n > N_2 \implies |t_n - t| < \sqrt{\epsilon}$

If we take $N = \max \{N_1, N_2\}, n \ge N$ implies

$$|(s_n-s)(t_n-t)|<\epsilon$$

which implies that

$$\lim_{n\to\infty} (s_n - s)(t_n - t) = 0.$$

Applying (i) and (ii), we get

$$\lim_{n\to\infty}(s_nt_n-st)=0.$$

Proof of (iv). Choosing m such that $|s_n - s| < \frac{1}{2}|s|$ if $n \ge m$, we see that

$$|s_n| > \frac{1}{2}|s| \quad (n \ge m).$$

Given $\epsilon > 0$, there is an integer N > m such that n > N implies

$$|s_n - s| < \frac{1}{2}|s|^2 \epsilon.$$

Hence, for $n \ge N$

$$\left|\frac{1}{s_n} - \frac{1}{s}\right| = \left|\frac{s_n - s}{s_n s}\right| < \frac{2}{|s|^2} \left|s_n - s\right| < \epsilon.$$

Proof of (v). Using (iv), we have $\frac{1}{s_n} \to \frac{1}{s}$, and by (iii), we get

$$\lim_{n \to \infty} \frac{t_n}{s_n} = \lim_{n \to \infty} \frac{1}{s_n} \cdot t_n = \frac{1}{s} \cdot t = \frac{t}{s}.$$

Theorem 27.

(i) $\lim_{n\to\infty} \frac{1}{n^p} = 0$ for p > 0.

(ii) $\lim_{n\to\infty} a^n = 0$ if |a| < 1.

(iii) $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$.

(iv) $\lim_{n\to\infty} a^{\frac{1}{n}} = 1$ for a > 0.

Proof of (i). Let $\epsilon > 0$ and let $N = \left(\frac{1}{\epsilon}\right)^{\frac{1}{p}}$. Then n > N implies $n^p > \frac{1}{\epsilon}$ and thus $\epsilon > \frac{1}{n^p}$. Since $\frac{1}{n^p} > 0$, this shows n > N implies $\left|\frac{1}{n^p} - 0\right| < \epsilon$.

Proof of (ii). The case for a=0 is trivial. Suppose that $a \neq 0$. Since |a| < 1, we can write $|a| = \frac{1}{1+b}$ where b > 0. By the binomial theorem, we have $(1+b)^n \ge 1 + nb > nb$, then

$$|a^n - 0| = |a^n| = \frac{1}{(1+b)^n} < \frac{1}{nb}.$$

Consider $\epsilon > 0$ and let $N = \frac{1}{\epsilon b}$. Then n > N implies $n > \frac{1}{\epsilon b}$ and thus $|a^n - 0| < \frac{1}{nb} < \epsilon$.

Proof of (iii). Let $s_n = n^{\frac{1}{n}} - 1$. Then $s_n \ge 0$ and by the binomial theorem,

$$n = (1 + s_n)^n \ge \frac{n(n-1)}{2} s_n^2.$$

Hence,

$$0 \le s_n \le \sqrt{\frac{2}{n-1}} \implies s_n \to 0.$$

Proof of (iv). Suppose a > 1. Let $s_n = a^{\frac{1}{n}} - 1$. Then $s_n > 0$, and by the binomial theorem,

$$1 + ns_n \le (1 + s_n)^n = a,$$

so that

$$0 < s_n \le \frac{p-1}{n}.$$

Hence, $s_n \to 0$. The case for a = 1 is trivial, and if 0 , the result is obtained by taking reciprocals.

8.1 Upper and lower limits

Definition 28. Let $\{s_n\}$ be a sequence of real numbers with the property that for every real M there is an integer N such that $n \ge N$ implies $s_n \ge M$. We then write

$$s_n \to +\infty$$
.

Similarly, if for every real M there is an integer N such that $n \ge N$ implies $s_n \le M$, we write

$$s_n \to -\infty$$
.

9 Monotone Sequences and Cauchy Sequences

Definition 29 (Monotone sequence). A sequence $\{s_n\}$ of real numbers is called an *increasing sequence* if $s_n \le s_{n+1}$ for all n, and $\{s_n\}$ is called a *decreasing sequence* if $s_n \ge s_{n+1}$ for all n. If $\{s_n\}$ is increasing, then $s_n \le s_m$ whenever n < m. A sequence that is increasing or decreasing will be called a **monotone sequence** or a **monotonic sequence**.

Theorem 30. All bounded monotone sequences converge.

Proof. Let $\{s_n\}$ be a bounded increasing sequence, Let $=\{s\mid n\in\mathbb{N}\}$ and let $u=\sup S$, Since S is bounded, u represents a real number. We show $s_n\to u$. Let $\epsilon>0$. Since $u-\epsilon$ is not an upper bound for S, there exists N such that $s_N>u-\epsilon$. Since $\{s_n\}$ is increasing, $s_N\leq s_n$ for all $n\geq N$. Of course $s_n\leq u$ for all n, so n>N implies $u-\epsilon< s_n\leq u$, which implies $|s_n-u|<\epsilon$. Hence $s_n\to u$. The proof for bounded decreasing sequences is left as an exercise.

Theorem 31.

- (i) If $\{s_n\}$ is an unbounded increasing sequence, then $s_n \to +\infty$.
- (ii) If $\{s_n\}$ is an unbounded decreasing sequence, then $s_n \to -\infty$.

Corollary 32. If $\{s_n\}$ is a monotone sequence, then the sequence either converges, diverges to $+\infty$, or $-\infty$. Thus $\lim s_n$ is always meaningful for monotone sequences.

Proof. Simply apply the previous two theorems.

Definition 33. Let $\{s_n\}$ be a sequence in \mathbb{R} . We define

$$\limsup s_n = \lim_{N \to \infty} \sup \{s_n \mid n > N\}$$

and

$$\liminf s_n = \lim_{N \to \infty} \inf \{ s_n \mid n > N \}$$

Theorem 34. Let $\{s_n\}$ be a sequence in \mathbb{R} .

(i) If $\lim s_n$ is defined (real, or $\pm \infty$), then

$$\liminf s_n = \lim s_n = \limsup s_n$$
.

(ii) If $\lim \inf s_n = \lim \sup s_n$, then $\lim s_n$ is defined and

$$\lim s_n = \lim \inf s_n = \lim \sup s_n$$
.

Definition 35 (Cauchy sequence). A sequence $\{s_n\}$ of real numbers i called a **Cauchy sequence** if for each $\epsilon > 0$ there exists a number N such that

$$m, n > N \Longrightarrow |s_n - s_m| < \epsilon$$
.

Lemma 36. Convergent sequences are Cauchy sequences.

Proof. Suppose $\lim s_n = s$. Since the terms s_n are close to s for large n, they must also be close to each other; indeed

$$|s_n - s_m| = |s_n - s + s - s_m| \le |s_n - s| + |s - s_m|.$$

Let $\epsilon > 0$. Then there exists *N* such that

$$n > N \implies |s_n - s| < \frac{\epsilon}{2}.$$

Clearly we can also write

$$m > N \implies |s_m - s| < \frac{\epsilon}{2}$$

so

$$m,n>N \implies |s_n-s_m| \leq |s_n-s|+|s-s_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus $\{s_n\}$ is a Cauchy sequence.

Lemma 37. Cauchy sequences are bounded.

Proof. Let $\epsilon = 1$. By definition, we have N in \mathbb{N} such that

$$m, n > N \implies |s_n - s_m| < 1.$$

In particular, $|s_n - s_{N+1}| < 1$ for n > N, so $|s_n| < |s_{N+1}| + 1$ for n > N. If $M = \max\{|s_{N+1} + 1, |s_1|, |s_2|, \dots, |s_N|\}$, then $|s_n| \le M$ for all $n \in \mathbb{N}$.

Theorem 38. A sequence is a convergent sequence if and only if it is a Cauchy sequence.

Proof. Earlier we have shown one direction in a lemma. We now only need to show that Cauchy sequences are convergent sequences. Consider a Cauchy sequence $\{s_n\}$ and it is bounded by previous lemma. We now need to show that

$$\liminf s_n = \limsup s_n.$$

Let $\epsilon > 0$. Since $\{s_n\}$ is a Cauchy sequence, there exists N so that

$$m, n > N \implies |s_n - s_m| < \epsilon$$
.

In particular, $s_n < s_m + \epsilon$ for all m, n > N. This shows $s_m + \epsilon$ is an upper bound for $\{s_n \mid n > N\}$, so $v_N = \sup\{s_n \mid n > N\} \le s_m + \epsilon$ for m > N. This, in turn, shows $v_N - \epsilon$ is a lower bound for $\{s_m \mid m > N\}$, so $v_N - \epsilon \le \inf\{s_m \mid m > N\} = u_N$. Thus

$$\limsup s_n \le v_N \le u_N + \epsilon \le \liminf s_n + \epsilon$$
.

Since this holds for all $\epsilon > 0$, we have $\limsup s_n \le \liminf s_n$. Since $\limsup s_n \ge \liminf s_n$ always holds, we are done.