Student Information

Full Name : Zeynep Erdoğan

Id Number: 2171577

Answer 1

$\mathbf{a} : A \cap B \subseteq (A \cup \bar{B}) \cap (\bar{A} \cup B)$

Let's assume that $x \in (A \cap B)$. This means $x \in A$ and $x \in B$ by definition of intersection. Then $x \in (A \cup \overline{B})$ and $x \in (\overline{A} \cup B)$ by definition of union. Using definition of intersection we conclude that $x \in (A \cup \overline{B}) \cap (\overline{A} \cup B)$. Then we conclude that $A \cap B \subseteq (A \cup \overline{B}) \cap (\overline{A} \cup B)$ by definition of subset.

\mathbf{b} . $\bar{A} \cap \bar{B} \subseteq (A \cup \bar{B}) \cap (\bar{A} \cup B)$

Let's assume that $x \in (\bar{A} \cap \bar{B})$. This means $x \in \bar{A}$ and $x \in \bar{B}$ by definition of intersection. Then $x \in (A \cup \bar{B})$ and $x \in (\bar{A} \cup B)$ by definition of union. Using definition of intersection we conclude that $x \in (A \cup \bar{B}) \cap (\bar{A} \cup B)$. Then we conclude that $A \cap B \subseteq (A \cup \bar{B}) \cap (\bar{A} \cup B)$ by definition of subset.

Answer 2

$$f^{-1}((A \cap B) \times C) = f^{-1}(A \times C) \cap f^{-1}(B \times C)$$

$$(A \cap B) \times C = \{(x, y) : x \in A \cap B, y \in C\}$$

$$= \{(x, y) : x \in A, y \in C \text{ and } x \in B, y \in C\}$$

$$= \{(x, y) : (x, y) \in A \times C \text{ and } (x, y) \in B \times C\}$$

$$= (A \times C) \cap (B \times C)$$
so that $f^{-1}((A \cap B) \times C) = f^{-1}((A \times C) \cap (B \times C))$

We will prove $f^{-1}((A \times C) \cap (B \times C)) = f^{-1}(A \times C) \cap f^{-1}(B \times C)$ by showing that each side is a subset of the other side.

Let $x \in f^{-1}((A \times C) \cap (B \times C))$ then $f(x) \in (A \times B) \cap (A \times C)$. So $f(x) \in (A \times B)$ and $f(x) \in (A \times C)$. Then $x \in f^{-1}(A \times B)$ and $x \in f^{-1}(B \times C)$. And finally $x \in f^{-1}(A \times B) \cap f^{-1}(B \times C)$. So we conclude that $f^{-1}((A \times C) \cap (B \times C)) \subseteq f^{-1}(A \times C) \cap f^{-1}(B \times C)$

Now let $x \in f^{-1}(A \times C) \cap f^{-1}(B \times C)$ then $x \in f^{-1}(A \times C)$ and $x \in f^{-1}(B \times C)$. So $f(x) \in (A \times B)$ and $f(x) \in (A \times C)$. Then $f(x) \in (A \times B) \cap (A \times C)$. Finally $x \in f^{-1}((A \times B) \cap (B \times C))$. We conclude that $f^{-1}(A \times C) \cap f^{-1}(B \times C) \subseteq f^{-1}((A \times C) \cap (B \times C))$. This completes the proof of identity.

Answer 3

$$a \cdot f(x) = ln(x^2 + 5)$$

For this function to be one-to-one $\forall a \forall b (f(a) = f(b) \rightarrow a = b)$ but if we put x = 1 then f(x) = ln6, also if we put x = -1 then f(x) = ln6. This example doesn't satisfy the definition so this function is not one-to-one.

This function is onto because for every $y \in R$, there is $x \in R$ such that f(x) = y

$$\mathbf{b} \cdot f(x) = e^{e^{x^7}}$$

This function is strictly increasing $\forall x \forall y (x < y \to f(x) < f(y))$ so that $\forall a \forall b (f(a) = f(b) \to a = b)$. We conclude that this function is one-to-one by definition of one-to-one.

This function is onto because for every $y \in R$, there is $x \in R$ such that f(x) = y

Answer 4

a. If A and B are countable their elements can be arranged in a finite or infinite list;

$$A = \{a_0, a_1, a_2, \dots\}, B = \{b_0, b_1, b_2, \dots\}$$

The elements of $A \times B$ can be arranged in an array:

$$(a_0, b_0)(a_0, b_1)(a_0, b_2)(a_0, b_3)(a_0, b_4) \dots$$

$$(a_1, b_0)(a_1, b_1)(a_1, b_2)(a_1, b_3)(a_1, b_4) \dots$$

$$(a_2, b_0)(a_2, b_1)(a_2, b_2)(a_2, b_3)(a_2, b_4) \dots$$

$$(a_3, b_0)(a_3, b_1)(a_3, b_2)(a_3, b_3)(a_3, b_4) \dots$$

$$(a_4, b_0)(a_4, b_1)(a_4, b_2)(a_4, b_3)(a_4, b_4) \dots$$

and subsequently, following the diagonals, listed:

$$A \times B = \{(a_0, b_0), (a_0, b_1), (a_1, b_0), (a_0, b_2), (a_1, b_1), (a_2, b_0), (a_0, b_3), (a_1, b_2)....\}$$

 $A \times B$ elements can be arranged in a finite or infinite list so it is countable.

21 × D elements can be arranged in a finite of finiting list so it is countab

- **b**. If A is uncountable and $A \subseteq B$, B is also uncountable.
- **c**. If B is countable and $A \subseteq B$, A is also countable.

Answer 5

a. If $f_1(x)$ is $O(f_2(x))$, $|f_1(x)| \leq C_1|f_2(x)|$ whenever $x > k_1$. As both of them are increasing functions, $|ln|f_1(x)|| \leq C_2|ln|f_2(x)||$ is true whenever $x > k_2$ for every function $f_1(x)$ and $f_2(x)$ so $ln|f_1(x)|$ is $O(ln|f_2(x)|)$

b. If $f_1(x)$ is $O(f_2(x))$, $|f_1(x)| \leq C_1|f_2(x)|$ whenever $x > k_1$. As both of them are increasing functions, $|3^{f_1(x)}| \leq C_2|3^{f_2(x)}|$ is true whenever $x > k_2$ for every function $f_1(x)$ and $f_2(x)$ so $3^{f_1(x)}$ is $O(3^{f_2(x)})$

Answer 6

 \mathbf{a} .

b.

$$gcd(123, 277) = gcd(123, 31)$$

= $gcd(31, 30)$
= $gcd(30, 1)$
= 1 (2)