1. A flat aluminum strip has a resistivity of $3.44 \times 10^{-8} \Omega$ m, a cross-sectional area of 2x10⁻⁴ mm², and a length of 5mm, what is the voltage drop across the strip for a current of 50 m A?

Solo
$$S = 3.44 \times 10^8 \text{ Q.m.}, A = 2 \times 10^4 \text{ mm}^2, L = 5 \text{ mm}, E = 50 \text{ m/s}$$

$$\Rightarrow R = \frac{fL}{A} = \frac{(3.44 \times 10^8)(5 \times 10^3)}{(2 \times 10^4) \times 10^6} = 0.86 \Omega$$

$$\Rightarrow V = IR = (50 \times 10^3)(0.86) = 0.043 \text{ Volt}$$

- 2. The resistance of no.18 copper wire (diameter= 1.03mm) is 6.5 ohms per 1000 ft. The concentration of free electrons in copper is 8.4×10^{28} electrons/m³. If the current is 2A, find the followings:
 - (b) Conductivity (c) Mobility (1 ft. = 0.3 m)(a) Drift velocity

=>
$$d = 1.03 \text{ mm}$$
 => $Y = 0.515 \times 10^{3} \text{ m}$
=> $d = 1.03 \text{ mm}$ => $Y = 0.515 \times 10^{3} \text{ m}$
=> $R_{y} = 6.5 \text{ s} / \text{kooft} = 6.5 \times 10^{3} \text{ s}/\text{ft} = 6.5 \times 10^{3} \text{ s}/\text{m}$
=> $n = 8.4 \times 10^{29} \text{ e}/\text{m}^{3}$, $I = 2A$

a)
$$\Rightarrow I = J \cdot A = ng \mu E \cdot A$$

= $ng v_a A$

$$= V_d = \frac{I}{ngA} = \frac{2}{8.4 \times 10^{28} \times 1.6 \times 10^{19} \times \pi \times (0.515 \times 10^3)^2}$$
$$= 1.785 \times 10^4 \text{ m/s}$$

b)
$$\circ \circ R = \frac{1}{6 \pi A} = > 6 = \frac{1}{R_{\ell} * A} = \frac{1}{(21.67 \times 10^{3})} \pi (0.515 \times 10^{3})^{2}$$

= 55.383 × 106 5/m

$$C) => 6 = NGM => M = \frac{6}{NG} = \frac{55.383 \times 10^{6}}{8.4 \times 10^{28} \times 1.6 \times 10^{19}}$$
$$= 4.12 \times 10^{3} \text{ m}^{2}/\text{V.S.}$$
$$= 41.2 \text{ cm}^{2}/\text{V.S.}$$

- 3. A specimen of silicon is 4cm long and has a square cross section 2x2mm, the current is due to electrons whose mobility is 1300 cm²/v. Two volts impressed across the bar results in a current of 8mA.
 - (a) Calculate the concentration n of free electrons.
 - (b) The drift velocity.

501° l = 4cm, A = 2 × 2 mm², Mn = 1300 cm²/v.s. V = 2 Volt, I = 8 mA

a)
$${}^{\circ}{$$

=1.923 × 10 =/m

b) ""
$$V_d = ME$$
, $E = \frac{V}{Z}$

$$= > V_d = (1300)(10)(\frac{2}{4 \times 10^2}) = 6.5 \text{ m/s}$$

4. Show that the resistivity of intrinsic germanium at 300°k is 45 ohm.cm, and also find the resistivity of intrinsic silicon at 300°k.

For germanium:
$$\mu_P = 1900 \text{ cm}^2/V_{15}$$
, $\mu_n = 3900 \text{ cm}^2/V_{15}$
 $(at 300^{\circ}K)$ $n_i = 2.4 * 10^{13} \text{ cm}^3$
=> $6' = ng \mu_n + Pg \mu_P$
 $0'' = N = P = N_i$ (for intrinsic semiconductor)
=> $6' = n_i g (\mu_n + \mu_p)$
= $(2.4 * 10^{13}) (1.6 * 10^{19}) (3900 + 1900)$
= 0.02227 S/cm

$$\frac{\text{for silicon}}{(at 300°K)}$$
: $\mu_P = 475 \text{ cm}/V \cdot \text{s}$, $\mu_n = 1500 \text{ cm}^3/V \cdot \text{s}$

$$= 36 = N; 9(\mu_0 + \mu_P)$$

$$= (1.45 \times 10^{\circ}) (1.6 \times 10^{19}) (1500 + 475)$$

$$= 4.582 \times 10^{6} S/cm$$

$$\Rightarrow$$
 $S = 2.18 * 10^5 2.cm$

- 5. (a) Determine the concentration of free electrons and holes in a sample of germanium at 300° k which has a concentration of donor atoms equal to 2×10^{14} atoms/cm³ and a concentration of acceptor atoms equal to 3×10^{14} atoms/cm³. Is this p or n type germanium? In other words, is the conductivity due primarily to holes or to electrons? (n_i for Ge at 300° k = 2.5×10^{13} atoms/cm³).
 - (b) Repeat part a for equal donor and acceptor concentration of 10¹⁵ atoms/cm³ Is this p or n type germanium?
 - (c) Repeat part a for a donor concentration of 10^{16} atoms/cm³ and an acceptor concentration 10^{14} atoms/cm³.

a)
$$N_D = 2 \times 10^{14} \text{ atom} / \text{cm}^2$$
, $N_A = 3 \times 10^{14} \text{ atoms} / \text{cm}^3$

"8 $N_A > N_D = \text{P-tyPe}$ germanium

"ass action taw:

 $\Rightarrow nP = n^{\circ}$, $N_D + P = N_A + N$ (charge neutrality)

 $\Rightarrow P = \frac{n^{\circ}}{n}$
 $\Rightarrow N_D + \frac{n^{\circ}}{n} = N_A + N$
 $\Rightarrow N_D + \frac{n^{\circ}}{n} = N_D + N^{\circ}$
 $\Rightarrow N_D - N_A = n N_D + N^{\circ}$
 $\Rightarrow N_D - N_A = n N_D + N^{\circ}$
 $\Rightarrow N_D - N_A = n N_D + N^{\circ}$
 $\Rightarrow N_D - N_A = n N_D + N^{\circ}$
 $\Rightarrow N_D - N_A = n N_D + N^{\circ}$
 $\Rightarrow N_D - N_A = n N_D + N^{\circ}$
 $\Rightarrow N_D - N_A = n N_D + N^{\circ}$

$$= 5.9016 \times 10^{12} \text{ cm}^{3}$$

$$= > P = \frac{n^{2}}{n} = \frac{(2.5 \times 10^{13})^{2}}{5.9016 \times 10^{12}} = 1.059 \times 10^{14} \text{ cm}^{3}$$

b)
$$N_A = N_D = 10^{15}$$

°° $N_A = N_D = 5$ not n nor p-type => Intrinsic

=> n=p=n1=2.5 x 1013 cui3

Germanium

$$=> np = n_i^2 , N_0 + P = N_A + n$$

$$=> p = \frac{n_i^2}{n}$$

=>
$$n^2 - n(N_D - N_A) - n_i^2 = 0$$

$$= > \mathcal{N} = \frac{(N_0 - N_A) + \sqrt{(N_0 - N_A)^2 + 4N_1^2}}{2}$$

$$= 9.9 \times 10^{15} + \sqrt{(9.9 \times 10^{15})^2 + 4(2.5 \times 10^3)^2}$$

$$=> P = \frac{n_i^2}{n} = 6.313 \times 10^{10} \text{ cm}^{-3}$$

Another solo

$$=) P = \frac{n^{2}}{2L} = \frac{(2.5 \times 10^{13})^{2}}{10^{16}}$$