* Assignment - 4

Am: - write ctt program to draw 2-D

object and perform following basic
transform ations.

- (a) scaling
- 6 translation
- @ Rotation
- 1 Using operation overloading

Theory' -

Transformation means changing some
graphics into something else by applying rule,
we can have various types of transformation
such as translation, sliding up or down,
rotation, shearing reflection etc. when a
transformation takes places an a 20 place,
it is called 20 transformation. Transformations
play an important role in car to reposition
the graphics on the screen and change their
size or orientation. Translation, scotting
and Rotation are basic transformation.

Translation;

A translation move an object to q different position on the screen you (an translate a point in 20 by adding translation. Co-ordinate or translation Vedor (TX, Ty): to the original co-ordinate,

consider, Initial (0-08 dinates of object 0= (x0,40) new co-ordinates of object of cariyo Translation or shift vedor = (TxiTy) マハニスのナナス Yn= yotty. In Matrix form. [7 n] = [20] + 2 Rotation'-In rotation we rotate objet at particular angle o from its original position Consider! Initial co-ordinate: (xo,yo) New angle = 0 Initial angle = 9 New Co-ordinate = (xn. yn 5n 10

Yn = 70 6050 - 40 8100 Yn = 70 8100 + 40 (050,

In matrix form:- $\begin{bmatrix}
x & 0 \\
y & 0
\end{bmatrix} = \begin{bmatrix}
\cos \phi & -\sin \theta
\end{bmatrix}
\begin{bmatrix}
x & 0
\end{bmatrix}
\begin{bmatrix}
y & 0
\end{bmatrix}$

Scaling: Scaling transformation is used to change the size of an object. In the 8 caling process. You either expand as compress the dimensions of the object scaling can be acheived by multiplying the original co-ordinate of the object with the 8 caling factor (Sx, 8y) If 8 caling factor >1. then the object size is increased and vice vers q

Consider (oordinates = (xo, yo)

Scaling for x-axig = sy y-avis: sx.

New Co-ordinate = (xn, yn)

yn= y039

Matrix form:

 $\begin{bmatrix} x & 0 \end{bmatrix} = \begin{bmatrix} Sx & 0 \end{bmatrix} \begin{bmatrix} x & 0 \end{bmatrix}$ $\begin{bmatrix} y & 0 \end{bmatrix}$

