	1a 2a	2b	3a	5a	2c	6a	6b	10a	3b	15a	5b	6c	6d	6e	30a	10b	15b	15c	6f	30b	30c	15d	30d
χ_1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1 - 1	-1	1	1	1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1	-1
χ_3	1 - 1	. 1	1	1	-1	-1	1	1	1	1	1	-1	-1	1	1	1	1	1	-1	1	1	1	1
χ_4	1 1	-1	1	1	-1	1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	-1	-1	-1	1	-1
χ_5	1 - 1	-1	$E(3)^{2}$	1	1	$-E(3)^{2}$	$-E(3)^2$	-1	E(3)	$E(3)^{2}$	1	$E(3)^{2}$	-E(3)	-E(3)	$-E(3)^2$	-1	E(3)	$E(3)^{2}$	E(3)	-E(3)	$-E(3)^2$	E(3)	-E(3)
χ_6	1 - 1	-1	E(3)	1	1	-E(3)	-E(3)	-1	$E(3)^{2}$	E(3)	1	E(3)	$-E(3)^2$	$-E(3)^2$	-E(3)	-1	$E(3)^{2}$	E(3)	$E(3)^{2}$	$-E(3)^2$	-E(3)	$E(3)^{2}$	$-E(3)^2$
χ_7	1 - 1	. 1	$E(3)^{2}$	1	-1	$-E(3)^2$	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	$-E(3)^2$	-E(3)	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	-E(3)	E(3)	$E(3)^{2}$	E(3)	E(3)
χ_8	1 - 1	. 1	E(3)	1	-1	-E(3)	E(3)	1	$E(3)^{2}$	E(3)	1	-E(3)	$-E(3)^{2}$	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	$-E(3)^{2}$	$E(3)^{2}$	E(3)	$E(3)^{2}$	$E(3)^2$
χ_9	1 1	-1	$E(3)^{2}$	1	-1	$E(3)^{2}$	$-E(3)^2$	-1	E(3)	$E(3)^{2}$	1	$-E(3)^2$	E(3)	-E(3)	$-E(3)^2$	-1	E(3)	$E(3)^{2}$	-E(3)	-E(3)	$-E(3)^2$	E(3)	-E(3)
χ_{10}	1 1	-1	E(3)	1	-1	E(3)	-E(3)	-1	$E(3)^{2}$	E(3)	1	-E(3)	$E(3)^{2}$	$-E(3)^2$	-E(3)	-1	$E(3)^{2}$	E(3)	$-E(3)^{2}$	$-E(3)^2$	-E(3)	$E(3)^{2}$	$-E(3)^2$
χ_{11}	1 1	1	$E(3)^{2}$	1	1	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	$E(3)^{2}$	E(3)	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	E(3)	E(3)	$E(3)^{2}$	E(3)	E(3)
χ_{12}	1 1	1	E(3)	1	1	E(3)	E(3)	1	$E(3)^{2}$	E(3)	1	E(3)	$E(3)^{2}$	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	$E(3)^{2}$	$E(3)^{2}$	E(3)	$E(3)^{2}$	$E(3)^2$
χ13	2 0	2	2	$E(5) + E(5)^4$		0	2	$E(5) + E(5)^4$	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	0	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$
χ_{14}	2 0	2	2	$E(5)^2 + E(5)^3$		0	2	$E(5)^2 + E(5)^3$	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	0	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5) + E(5)^4$
χ_{15}	2 0		$2 * E(3)^2$	$E(5) + E(5)^4$	0	0	$2 * E(3)^2$	$E(5) + E(5)^4$	2 * E(3)	$E(15)^7 + E(15)^{13}$	$E(5)^2 + E(5)^3$	0	0	2 * E(3)	$E(15)^7 + E(15)^{13}$	$E(5)^2 + E(5)^3$	$E(15)^2 + E(15)^8$	$E(15) + E(15)^4$	0	$E(15)^2 + E(15)^8$	$E(15) + E(15)^4$	$E(15)^{11} + E(15)^{14}$	$E(15)^{11} + E(15)^{14}$
χ_{16}	2 0		2 * E(3)	$E(5) + E(5)^4$		0	2 * E(3)	$E(5) + E(5)^4$	$2 * E(3)^2$	$E(15)^2 + E(15)^8$	$E(5)^2 + E(5)^3$	0	0	$2 * E(3)^2$	$E(15)^2 + E(15)^8$	$E(5)^2 + E(5)^3$	$E(15)^7 + E(15)^{13}$	$E(15)^{11} + E(15)^{14}$	0	$E(15)^7 + E(15)^{13}$	$E(15)^{11} + E(15)^{14}$	$E(15) + E(15)^4$	$E(15) + E(15)^4$
χ_{17}	2 0			$E(5)^2 + E(5)^3$		0	$2 * E(3)^2$	$E(5)^2 + E(5)^3$	2 * E(3)	$E(15) + E(15)^4$	$E(5) + E(5)^4$	0	0	2 * E(3)	$E(15) + E(15)^4$	$E(5) + E(5)^4$	$E(15)^{11} + E(15)^{14}$	$E(15)^7 + E(15)^{13}$	0	$E(15)^{11} + E(15)^{14}$	$E(15)^7 + E(15)^{13}$	$E(15)^2 + E(15)^8$	$E(15)^2 + E(15)^8$
χ_{18}	2 0	2	2 * E(3)	$E(5)^2 + E(5)^3$		0	2 * E(3)		$2 * E(3)^2$	$E(15)^{11} + E(15)^{14}$	$E(5) + E(5)^4$	0	0	$2 * E(3)^2$	$E(15)^{11} + E(15)^{14}$	$E(5) + E(5)^4$	$E(15) + E(15)^4$	$E(15)^2 + E(15)^8$	0	$E(15) + E(15)^4$	$E(15)^2 + E(15)^8$	$E(15)^7 + E(15)^{13}$	$E(15)^7 + E(15)^{13}$
X19	2 0	-2	2	$E(5) + E(5)^4$		0	-2	$-E(5) - E(5)^4$	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	0	-2	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$
χ_{20}	2 0	-2	2	$E(5)^2 + E(5)^3$		0	-2	$-E(5)^2 - E(5)^3$	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	0	-2	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$
χ_{21}	2 0		$2 * E(3)^2$			0	$-2 * E(3)^2$		2 * E(3)	$E(15)^7 + E(15)^{13}$	$E(5)^2 + E(5)^3$	0	0	-2*E(3)	$-E(15)^7 - E(15)^{13}$	$-E(5)^2 - E(5)^3$	$E(15)^2 + E(15)^8$	$E(15) + E(15)^4$	0	$-E(15)^2 - E(15)^8$	$-E(15) - E(15)^4$	$E(15)^{11} + E(15)^{14}$	$-E(15)^{11} - E(15)^{14}$
χ_{22}	2 0		2 * E(3)	$E(5) + E(5)^4$		0	-2*E(3)		$2 * E(3)^2$	$E(15)^2 + E(15)^8$	$E(5)^2 + E(5)^3$	0	0	$-2*E(3)^2$	$-E(15)^2 - E(15)^8$	$-E(5)^2 - E(5)^3$	$E(15)^7 + E(15)^{13}$	$E(15)^{11} + E(15)^{14}$	0	$-E(15)^7 - E(15)^{13}$	$-E(15)^{11} - E(15)^{14}$	$E(15) + E(15)^4$	$-E(15) - E(15)^4$
χ_{23}	2 0	-2	$2 * E(3)^2$	$E(5)^2 + E(5)^3$		0	$-2*E(3)^2$	()	\ /	$E(15) + E(15)^4$	$E(5) + E(5)^4$	0	0	-2*E(3)	$-E(15) - E(15)^4$	$-E(5) - E(5)^4$	$E(15)^{11} + E(15)^{14}$	$E(15)^7 + E(15)^{13}$	0	$-E(15)^{11} - E(15)^{14}$	$-E(15)^7 - E(15)^{13}$	$E(15)^2 + E(15)^8$	$-E(15)^2 - E(15)^8$
χ_{24}	2 0	-2	2 * E(3)	$E(5)^2 + E(5)^3$	0	0	-2 * E(3)	$-E(5)^2 - E(5)^3$	$2 * E(3)^2$	$E(15)^{11} + E(15)^{14}$	$E(5) + E(5)^4$	0	0	$-2*E(3)^2$	$-E(15)^{11} - E(15)^{14}$	$-E(5) - E(5)^4$	$E(15) + E(15)^4$	$E(15)^2 + E(15)^8$	0	$-E(15) - E(15)^4$	$-E(15)^2 - E(15)^8$	$E(15)^7 + E(15)^{13}$	$-E(15)^7 - E(15)^{13}$

Trivial source character table of $G \cong C6 \times D10$ at $p = 3$:												
Normalisers N_i				N_1						N_2		
p-subgroups of G up to conjugacy in G				P_1						P_2		
Representatives $n_j \in N_i$	1a $2a$ $2b$	5a	2c	10a	5b	10b	1a 2b	2a	5a	2c $10a$	5b	10b
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 $	3 3 3	3	3	3	3	3	0 0	0	0	0 0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	$\begin{vmatrix} 3 & -3 & -3 \end{vmatrix}$	3	3	-3	3	-3	0 0	0	0	0 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	$\begin{vmatrix} 3 & -3 & 3 \end{vmatrix}$	3	-3	3	3	3	0 0	0	0	0 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	$\frac{1}{4} \begin{vmatrix} 3 & 3 & -3 \end{vmatrix}$	3	-3	-3	3	-3	0 0	0	0	0 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	6 0 6	$3*E(5)^2 + 3*E(5)^3$	0	$3*E(5)^2 + 3*E(5)^3$	$3*E(5) + 3*E(5)^4$	$3*E(5) + 3*E(5)^4$	0 0	0	0	0 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $		() () 4		$3*E(5) + 3*E(5)^4$	$3*E(5)^2 + 3*E(5)^3$	$3*E(5)^2 + 3*E(5)^3$	0 0	0	0	0 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot $	$\begin{bmatrix} 1 & 6 & 0 & -6 \end{bmatrix}$	$3*E(5)^2+3*E(5)^3$	0	$-3*E(5)^2 - 3*E(5)^3$	$3*E(5) + 3*E(5)^4$	$-3*E(5) - 3*E(5)^4$	0 0	0	0	0 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	$\begin{bmatrix} 1 & 6 & 0 & -6 \end{bmatrix}$	$3*E(5) + 3*E(5)^4$	0	$-3*E(5) - 3*E(5)^4$	$3*E(5)^2 + 3*E(5)^3$	$-3*E(5)^2 - 3*E(5)^3$	0 0	0	0	0 0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	1 1 1	1	1	1	1	1	1 1	1	1	1 1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	1 -1 1	1	-1	1	1	1	1 1	-1	1	-1 1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	1 1 1 -1	1	-1	-1	1	-1	1 -1	1	1	-1 -1	1	-1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	I	1	1	-1	1	-1	1 -1	-1	1	1 -1	1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	I	$E(5) + E(5)^4$	0	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	2 -2	0 E($(5) + E(5)^4$	0 - E(5) - E	$(5)^4$ $E(5)^2 + E(5)^3$	$-E(5)^2 - E($
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	I	$E(5)^2 + E(5)^3$	0	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$	$\begin{vmatrix} 2 & -2 \end{vmatrix}$	0 E(8)	$(5)^2 + E(5)^3$	$0 - E(5)^2 - E(5)^2$		-E(5)-E(5)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	l .	$E(5) + E(5)^4$	0	$E(5) + E(5)^{4}$	$E(5)^2 + E(5)^3$	$E(5)^{2} + E(5)^{3}$	2 2	0 E($(5) + E(5)^4$	0 $E(5) + E($		$E(5)^2 + E(5)^2$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $		$E(5)^2 + E(5)^3$	0	$E(5)^{2} + E(5)^{3}$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	2 2	0 E(s)	$(5)^2 + E(5)^3$	$0 E(5)^2 + E(5)^2 = 0$		
								`	, , , ,	. /		

 $P_2 = Group([(1,4,11)(2,7,16)(3,9,19)(5,12,22)(6,14,25)(8,17,28)(10,20,31)(13,23,34)(15,26,37)(18,29,40)(21,32,43)(24,35,46)(27,38,48)(30,41,51)(33,44,53)(36,47,55)(39,49,56)(42,52,58)(45,54,59)(50,57,60)]) \cong \mathbf{C3}$

 $N_1 = Group([(1,2)(3,6)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(5,42)(8,36)(4,7)(3,43)(15,26)(3,43)(15,26)(3,43)(15,26)(3,43)(15,26)(3,43)(15,26)(3,43)(15,26)(3,43)(15,26)(3,43)(15,26)(3,43)(15,26)(3,43)(15,26)(3,43)(15,26)(3,43)(15,26)(3,43)(15,26)(3,43)(15,26)(3,43)(15,26)(3,43)(15,26)(3,43)(15,26)(3,43)(15,26)(15,27)(15,2$