

电路与电子学实验报告

院(系):智能工程学院 **学号:** 20354027 **姓名:** 方桂安

日期: 12月16日 **实验名称**: 单极交流放大电路

一、 实验目的

1. 熟悉电子元器件和模拟电路实验箱。

- 2. 掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
- 3. 学习测量放大电路Q点, A_u 、 r_i 、 r_o 的方法,了解共射极电路特性。
- 4. 学习放大电路的动态性能。

二、预习要求

- 1. 三极管及单管放大电路工作原理。
- 2. 放大电路静态和动态测量方法。

三、实验仪器

- 1. TPE-A5 II L 电路分析试验箱 一台
- 2. SDM3065 数字万用表 一只
- 3. SDS5054 数字示波器 一台
- 4. SDG6032X 函数信号发生器 一台

四、实验内容与步骤

图 1.1 基本放大电路

1. 装接电路与简单测量

- (1) 用万用表判断实验箱上三极管 V 的极性和好坏, 电解电容 C 的极性和好坏。
- (2) 按图 1.1 所示,连接电路(注意:接线前先测量+12V 电源,关断电源后再连线),将 R_P 的阻值调到最大位置。
- 2. 静态测量与调整
- (1) 接线完毕仔细检查,确定无误后接通电源。改变 R_P ,记录 I_C 分别为 0.5mA、1mA、1.5mA 时的 I_R ,并计算三极管V的 β 值。

注意: I_R和I_C的测量和计算方法

方法一: I_B 和 I_C 一般可用间接测量法,即通过测 U_C 和 U_B , R_c 和 R_b 、 R_{b2} 计算出 I_B 和 I_C 。此法虽不直观,但操作较简单,建议初学者采用。

方法二:直接测量法,即将电流表直接串联在基极和集电极中测量。此法直观,但操作不当容易损坏器件和仪表。不建议初学者采用。

(2) 调整 R_P 使 $U_E = 2.2V$,计算并填表 1.1。

=:	1	1
衣	1	J

实测			实测	计算
$U_{BE}(V)$	$U_{CE}(V)$	$R_b(\mathrm{K}\Omega)$	$I_B(\mu A)$	$I_C(\text{mA})$

3. 动态研究

(1) 按图 1.2 所示电路接线,调节 R_P 使 $U_C = 6V$ 。如想做直流负反馈放大电路实验按图 1.5 所示电路接线。

注:在进行小信号放大实验时,由于所用信号发生器及连接电缆的缘故,往往在进入放大器前就出现噪声或不稳定,实验时可采用在放大器输入端加衰减的方法。一般可用实验箱中电阻组成衰减器,这样连接电缆上信号电平较高,不易受干扰。实验连接线应尽量短,避免相互干扰。

- (2) 将信号发生器的输出信号调到f = 1 kHz,幅值为 500mV,接至放大电路的 A 点,经过 R_1 、 R_2 衰减, U_i 点得到接近 5mV 的小信号。或者不接 R_1 、 R_2 ,直接从 U_i 点输入幅值 5mV、1kHz 信号。观察 U_i 和 U_o 端波形,并比较相位。
- (3) 信号源频率不变,逐渐加大信号源幅度,观察 U_o 不失真时的最大值并填表 1.2。

	测	实测计算	估算
$U_i(mV)$	$U_o(V)$	A_u	A_u

(4) 保持 $U_i = 5$ mV不变,放大器接入负载 R_L ,在改变 R_c 数值情况下测量, 并将计算结果填表 1.3。

表 1.3

给定	参数	实	测	实测计算	估算
R_C	R_L	$U_i(mV)$	$U_o(V)$	A_u	A_u
2k	5k1				
2k	2k2				
5k1	5k1				
5k1	2k2				

(5) $R_c = 5k1$,不接负载电阻,选择合适 U_i ,增大和减小 R_P ,观察 U_o 波形变化,应可出现正常放大和两种失真现象。若失真观察不明显可增大 U_i 幅值,并重测,将测量结果填入表 1.4。

表 1.4

R_P	U_B	U_C	U_E	输出波形情况
较大				
合适				
较小				

4. 测放大电路输入、输出电阻。

(1) 输入电阻测量(见图 1.3)

不接衰減电路的 R_2 ,即在输入端 U_i 串接一5k1电阻如 1.3,测量 U_s 与 U_i ,即可计算 r_i 。

图 1.3 输入电阻测量

(2) 输出电阻测量(见图 1.4)

图 1.4 输出电阻测量

在输出端接入可调电阻作为负载,选择合适的 R_L 值使放大电路输出不失真(接示波器监视),测量带负载时 U_L 和空载时的 U_o ,即可计算出 r_o 。将上述测量及计算结果填入表 1.5 中。

测算输入电阻(设: $R=5k1$)				测算输	出电阻	
实测	测算	估算	实测		测算	估算
$U_S(mV)$ $U_i(mV)$	r_i	r_i	$U_o \\ R_L = \infty$	U_L $R_L =$	$r_o(\mathrm{k}\Omega)$	$r_o(\mathrm{k}\Omega)$

五、 数据分析

- 1. 静态测量与调整
- (1) 记录记录 I_C 分别为 0.5mA、1mA、1.5mA 时的 I_B ,并计算三极管 V 的 β 值:

_					
	IC(mA)	Ub1(V)	Ub2(V)	$IB(\mu A)$	β
Ī	0.5	2.460	1.605	7.670	65.19
	1.0	3.997	2.538	15.371	65.06
	1.5	5.547	3.471	23.466	63.92

(2) 填写表 1.1:

表 1.6 (原表 1.1)

实测			实测	计算
$U_{BE}(V)$	$U_{CE}(V)$	$R_b(K\Omega)$	$I_B(\mu A)$	$I_C(mA)$
0.7117	3.82	66.25	15.86	1.173

- 2. 动态研究
- (1) 观察 U_i 和 U_o 的波形:

经过比较, U_i 和 U_o 端的波形相差半个周期,波形刚好相反。

(2) 填写表 1.2:

表 1.7 (原表 1.2)

实	则	实测计算	估算
$U_i(mV)$	$U_o(V)$	A_u	A_u
3.321	0.756	-227.64	-228
6.665	1.498	-224.76	-228
10.010	2.208	-220.58	-228

其中放大系数 A_u 的计算公式为:

$$A_u = \frac{U_o}{U_i}$$

(3) 填写表 1.3:

表 1.8 (原表 1.8)

ž,	合定参数	实	测	实测计算	估算
R_C	R_L	$U_i(mV)$	$U_o(V)$	A_u	A_u
2k	5k1	3.32	0.226	-68.07	-64.40
2k	2k2	3.32	0.166	-50.00	-46.96
5k1	5k1	3.32	0.384	-115.66	-114.38
5k1	2k2	3.32	0.235	-70.78	-68.90

(4) 填写表 1.4:

表 1.9 (原表 1.4)

R_P	U_B	U_C	U_E	输出波形情况
较大	2.93	0.809	0	失真
合适	3.31	0.757	0	正常
较小	3.39	0.231	0	失真

当 R_b 增大时,静态电流 I_{BQ} 减小,使静态工作点Q偏低,从而产生截止失真,解决办法为减小 R_b 的阻值来提高 I_{BQ} ,使其波形恢复正常,使得三极管正常工作。

当 R_b 减小时,静态电流 I_{BQ} 增大,使静态工作点Q偏高,从而产生饱和失真,解决办法为增大 R_b 的阻值来减小 I_{BQ} ,使其波形恢复正常,使得三极管正常工作。

3. 测放大电路的输入输出电阻 表 1.5 的填写:

表 1.10 (原表 1.5)

测算输入电阻(设: $R=5k1$)			测算输出电阻				
实	测	测算	估算	实测		测算	估算
$U_{\mathcal{S}}(\mathrm{mV})$	$U_i(mV)$	r_i	r_i	$U_o \\ R_L = \infty$	$U_L \\ R_L =$	$r_o(\mathrm{k}\Omega)$	$r_o(\mathrm{k}\Omega)$
35.68	7.80	1.43	1.39	1.09	0.34	4.85	5.10

六、 实验结论

结论:本次实验,将理论所学的单级放大电路的工作原理应用到实际的实验电路中,共射极晶体管放大电路的发射极是输入回路(基极回路)和输出回路(集电极回路)的公共端,如果在放大电路的输入端加入一个正弦电压,则在线性范围内,晶体管的各个元件的电压、电流都将围绕自己的静态值随输入的正弦信号规律变化。当元件参数取得合适时, u_o 的幅度大于 u_i 的幅度,实现了电压放大,这是我们可以测量电路的各个部分的电流计算放大倍数。

误差:主要原因在于非线性失真,这是影响放大电路质量的一个很重要的 因素,放大电路应有合适的静态工作点,否则将会出现截止失真和饱和失真。 以及测量仪器本身存在的精度误差,以及人为连接电路的误差,此外,电阻箱 本身的瑕疵可能也对实验带来了影响。

收获:进一步学习了晶体管的性质和共射放大电路的静态分析和动态分析,以及连接电路时实验操作的规范性,对单极交流放大电路有了进一步的认识。