

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15030012302

FCC REPORT (BLE)

Applicant: KRONOZ

Address of Applicant: ROUTE DE VALAVRAN 96, GENTHOD 1294, Switzerland

Equipment Under Test (EUT)

Product Name: Smart Watch

Model No.: ZeClock

Trade mark: MyKronoz

FCC ID: 2AA7D-ZECK1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Mar., 2015

Date of Test: 12 Mar., to 24 Mar., 2015

Date of report issued: 27 Apr., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	27 Apr., 2015	Original

Prepared by: Date: 27 Apr., 2015

Report Clerk

Reviewed by: 27 Apr., 2015

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2		
	٥.٧	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	13
	6.3 6.4	CONDUCTED OUTPUT POWER	
	6.3 6.4 6.5	CONDUCTED OUTPUT POWER	
	6.3 6.4 6.5 6.6	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE	
	6.3 6.4 6.5 6.6 6.6.1	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method	
	6.3 6.4 6.5 6.6 6.6.1 6.6.2	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method Radiated Emission Method	
	6.3 6.4 6.5 6.6 6.6.1 6.6.2	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method Radiated Emission Method SPURIOUS EMISSION	
	6.3 6.4 6.5 6.6 6.6.1 6.6.2 6.7 6.7.1	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method Radiated Emission Method SPURIOUS EMISSION Conducted Emission Method	
	6.3 6.4 6.5 6.6 6.6.1 6.6.2 6.7 6.7.1 6.7.2	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method Radiated Emission Method SPURIOUS EMISSION Conducted Emission Method Radiated Emission Method Radiated Emission Method	
7	6.3 6.4 6.5 6.6 6.6.1 6.6.2 6.7 6.7.1 6.7.2	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method Radiated Emission Method SPURIOUS EMISSION Conducted Emission Method	

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	KRONOZ
Address of Applicant:	ROUTE DE VALAVRAN 96, GENTHOD 1294, Switzerland
Manufacturer:	KRONOZ
Address of Manufacturer:	ROUTE DE VALAVRAN 96, GENTHOD 1294, Switzerland
Factory:	Shenzhen Wime Communication Co.,Ltd.
Address of Factory:	B210 Languang Building, NO.7 Xinxi Road, High-tech Park North, Nanshan District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Smart Watch
Model No.:	ZeClock
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-200mAh

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCIS15030012302

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m/1.5m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

Manufacturer	Description	otion Model Serial		FCC ID/DoC
LENOVO	Notebook	ThinkPad SL510	LR-7Y97D	DoC

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2014	03-31-2015	
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-05-2015	
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2014	03-31-2015	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-30-2014	03-29-2015	
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015	
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2014	03-31-2015	
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2014	03-31-2015	
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	05-29-2014	05-28-2015	
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015	

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	04-10-2014	04-09-2015		
3	LISN	CHASE	MN2050D	CCIS0074	04-10-2014	04-10-2015		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2014	03-31-2015		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7				
Test Method:	ANSI C63.4: 2009					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz					
Limit:	Frequency range (MHz)					
	0.15-0.5	Quasi-peak 66 to 56*	Average 56 to 46*			
	0.5-5					
	5-30	60	50			
	* Decreases with the logarithm	of the frequency.				
	 a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 					
Test setup:	LISN 40cm		er — AC power			
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Neutral:

Trace: 3 Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

Job No. EUT : 123rf EUT : Smart Watch

Model : ZeClock

Test Mode : BLE modeI

Power Rating : AC 120/60Hz

Environment : Temp: 23 'C Huni:56% Atmos:101KPa

Test Engineer: Carey

Kemark								
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	<u>dB</u>	dBu₹	dBu₹	<u>d</u> B	
1	0.190	46.23	0.25	10.76	57.24	64.02	-6.78	QP
2	0.190	32.52	0.25	10.76	43.53	54.02	-10.49	Average
1 2 3 4 5 6 7 8	0.249	37.58	0.26	10.75	48.59	61.78	-13.19	QP
4	0.249	24.70	0.26	10.75	35.71	51.78	-16.07	Average
5	0.310	34.99	0.26	10.74	45.99	59.97	-13.98	QP
6	0.320	21.29	0.26	10.74	32.29	49.71	-17.42	Average
7	0.330	33.97	0.26	10.73	44.96	59.44	-14.48	QP
8	0.330	20.58	0.26	10.73	31.57	49.44	-17.87	Average
9	0.389	28.66	0.25	10.72	39.63	58.08	-18.45	QP
10	0.389	13.89	0.25	10.72	24.86	48.08	-23.22	Average
11	0.402	27.82	0.25	10.72	38.79	57.81	-19.02	QP
12	0.431	10.56	0.26	10.73	21.55	47.24	-25.69	Average

Line:

Trace: 1

: CCIS Shielding Room

Site Condition : FCC PART15 B QP LISN LINE

: 123rf Job No. : Smart Watch EUT : ZeClock Model Test Mode : BLE mode

Power Rating: AC 120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

remark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
100100	MHz	dBu∜	dB	₫B	dBu₹	dBu√	dB	
1	0.185	47.31	0.28	10.77	58.36	64.24	-5.88	QP
2	0.185	34.60	0.28	10.77	45.65	54.24	-8.59	Average
2	0.205	45.58	0.28	10.76	56.62	63.40	-6.78	QP
4 5	0.205	32.19	0.28	10.76	43.23	53.40	-10.17	Average
5	0.249	42.85	0.27	10.75	53.87	61.78	-7.91	QP
6 7 8 9	0.260	41.89	0.27	10.75	52.91	61.42	-8.51	QP
7	0.260	28.97	0.27	10.75	39.99	51.42	-11.43	Average
8	0.310	37.15	0.26	10.74	48.15	59.97	-11.82	QP
9	0.320	36.54	0.26	10.74	47.54	59.71	-12.17	QP
10	0.320	26.32	0.26	10.74	37.32	49.71	-12.39	Average
11	0.379	19.96	0.28	10.72	30.96	48.30	-17.34	Average
12	0.440	12.62	0.28	10.74	23.64	47.07	-23.43	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.4:2009 and KDB558074				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2				

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-1.64		
Middle	-2.37	30.00	Pass
Highest	-2.94		

Test plot as follows:

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.75		
Middle	0.76	>500	Pass
Highest	0.76		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.06		
Middle	1.06	N/A	N/A
Highest	1.06		

Test plot as follows:

Highest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-2.55		
Middle	-3.29	8.00	Pass
Highest	-3.81		

Test plots as follow:

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.4: 20						
Test Frequency Range:	2.3GHz to 2.5G						
Test site:	Measurement Distance: 3m						
	Weasurement L	istance. Sin					
Receiver setup:	Frequency Above 1GHz	Detector Peak RMS	RBW 1MHz 1MHz	VBW 3MHz 3MHz	Remark Peak Value Average Value		
Limit:		-			7 tronago rando		
	Freque	ency I	Limit (dBuV	/m @3m)	Remark		
	Above 1	GH ₇	54.0		Average Value		
			74.0		Peak Value		
Test Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antenrathe ground Both horizon make the number of the end of the end of the end of the EUT have 10 determined to determine the same of the EUT have 10 determined to determine the limit specified EUT have 10 determined to determine the limit specified EUT have 10 determined the end of the EUT have 10 determined to determine the limit specified EUT have 10 determined the end of the	at a 3 meter cane the position of as set 3 meters which was mountained height is varieto determine the ontal and vertical easurement. Uspected emissionen the antennal the rota table of maximum readinceiver system where it is an	amber. The tool the highest away from the don the tool the maximum all polarization, the EU awas turned to maximum Harman and the EUT in peasiting could be ted. Otherwise the steet of the polarization and the EUT in peasiting could be ted. Otherwise the metal awas termined to the maximum Harman arting could be ted. Otherwise re-testee the steet of the might be re-tested.	table was rost radiation. the interfer op of a variate meter to for a value of the arrow of the arrow 0 degree ak Detect old Mode. It was arrow old Mode was to be stopped a vise the emit one by one	our meters above e field strength. Intenna are set to aged to its worst from 1 meter to 4 ees to 360 degrees		
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer 1.5m Amplifier						
Test Instruments:	Refer to section	5.7 for details					
Test mode:	Refer to section						
Test results:	Passed						

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart Watch : ZeClock EUT Model

: BLE-L MODE Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: Carey

Huni:55%

REMARK

CHICAL	r :								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	—dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1	2390.000	23.95	27.58	5.67	0.00	57.20	74.00	-16.80	Peak
2	2390, 000	12, 59	27, 58	5, 67	0.00	45, 84	54,00	-8.16	Average

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Watch Model : ZeClock
Test mode : BLE-L MODE
Power Rating : AC120V/60Hz
Environment : Test Notes

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

шици		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
-	MHz	dBu∜	— <u>dB</u> /m	₫B	<u>dB</u>	dBuV/m	dBu√/m	dB	
1 2	2390.000 2390.000					58.62 45.86			

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart Watch : ZeClock EUT Model Test mode : BLE-H MODE Power Rating : AC120V/60Hz Environment : Temp:25.5°C Test Engineer: Carey REMARK :

Huni:55%

EMAR	r :								
	Freq		Antenna Factor					Over Limit	Remark
3	MHz	dBu₹	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1	2483.500								
2	2483.500	12.81	27, 52	5, 70	0.00	46, 03	54,00	-7.97	Average

Test channel: Highest

Vertical:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Watch : ZeClock EUT Model Test mode : BLE-H MODE Power Rating : AC120V/60Hz Environment : Temp:25.5°C Test Engineer: Carey

Huni:55%

CHENIC									
			Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBuV	<u>dB</u> /m	<u>dB</u>	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	2483.500								
2	2483,500	14, 60	27, 52	5, 70	0.00	47, 82	54, 00	-6.18	Average

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.4:2009 and KDB558074							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Lowest channel

Date: 21.APR.2015 17:56:09

30MHz~25GHz

Middle channel

Date: 21.APR.2015 17:51:25

30MHz~25GHz

Page 28 of 36

Date: 21.APR.2015 17:52:23

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205									
Test Method:	ANSI C63.4:2009											
Test Frequency Range:	9KHz to 25GHz											
Test site:	Measurement Distance: 3m											
Receiver setup:	Frequency Detector RRW VRW Remark											
. tooding.	Frequency	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value										
	30MHz-1GHz											
	Above 1GHz	Above 1GHz Peak 1MHz 3MHz Peak Value										
	Above 10112	RMS	1MHz	3MHz	Average Value							
Limit:												
	Frequency Limit (dBuV/m @3m) Remark											
		30MHz-88MHz 40.0 Quasi-peak Value										
	88MHz-216MHz	+	43.5		Quasi-peak Value							
	216MHz-960MH 960MHz-1GHz	IZ	46.0 54.0		Quasi-peak Value Quasi-peak Value							
	900101112-113112		54.0		Average Value							
	Above 1GHz		74.0		Peak Value							
Test Procedure:	below 1GH meter camposition of second position of second 2. The EUT second antenna, we tower. 3. The antennathe ground Both horizon make the meters and to find the meters and to find the meters and to find the second s	dz/1.5 meters ber. The table the highest ra was set 3 m hich was mon ha height is w to determin ontal and ver heasurement. Suspected en hen the ante the rota table maximum rea eceiver syste sandwidth with sion level of the ecified, then the would be re margin would	s for above 10 e was rotated adiation. Interes away funted on the towaried from one the maximutical polarizations was tuned awas turned ding. In Maximum Howe EUT in peresting could be ported. Other do be re-tested adiations and the second could be re-tested.	GHz above all 360 degree from the interpretation of a variance meter to the interpretation of the EUT was and to height from 0 degree to Peak Dold Mode, ak mode where stopped wise the end one by one	table 0.8 meters for the ground at a 3 tes to determine the atterference-receiving table-height antenna to four meters above of the field strength. The antenna are set to the strength of the strength of the field strength of the s							

Antenna Tower Search Antenna RF T est Receiver Ground Plane Above 1GHz Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details Test results: Passed	Test setup:	D. L. JOH
Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details Test results: Passed	ι σοι σσιαρ.	Below 1GHz
Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details Test results: Passed		Search Antenna RF Test Receiver Turn Table 0.8m Im Ground Plane Above 1GHz Antenna Tower Horn Antenna Spectrum Analyzer Turn Table 1.5m
Test mode: Refer to section 5.3 for details Test results: Passed	Took Inches was a refere	Defaute costion 5.7 for dataile
Test results: Passed		
Remark: 1 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), a	Test results:	Passed
found the Y-axis is the worst case.	Remark:	2. 9 kHz to 30MHz is too low, so only shows the data of above 30MHz

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Smart Watch : ZeClock : BLE MODE Model Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

EMAKK										
	Freq		Antenna Factor				Limit Line	Over Limit	Remark	
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	43.506	33.77	13.56	0.55	29.87	18.01	40.00	-21.99	QP	
2	107.510	32.91	12.49	1.03	29.47	16.96	43.50	-26.54	QP	
3	145.861	37.15	8.23	1.30	29.24	17.44	43.50	-26.06	QP	
4	187.096	36.69	10.32	1.37	28.92	19.46	43.50	-24.04	QP	
5	519.065	33.97	17.00	2.45	29.01	24.41	46.00	-21.59	QP	
6	599.321	35.52	18.45	2.62	28.94	27.65	46.00	-18.35	QP	

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT : Smart Watch : ZeClock Model Test mode : BLE MODE Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey REMARK :

Freq						Limit Line	Over Limit	Remark
MHz	dBu∀	<u>dB</u> /m	dB	dB	dBu√/m	dBu√/m	<u>d</u> B	
31, 731	37, 22	12.32	0.45	29. 97	20, 02	40.00	-19.98	ΩP
44.120		CWOTTERS OF CONTRACT AND				Market Street Street		1 P. S. P. S.
59.025	32.12	12.77	0.68	29.78	15.79	40.00	-24.21	QP
93.440	32.67	12.58	0.92	29.56	16.61	43.50	-26.89	QP
400.432	33.16	15.10	2.12	28.78	21.60	46.00	-24.40	QP
601.427	33.99	18.46	2.63	28.93	26.15	46.00	-19.85	QP
	MHz 31.731 44.120 59.025 93.440 400.432	MHz dBuV 31.731 37.22 44.120 34.60 59.025 32.12 93.440 32.67 400.432 33.16	Freq Level Factor MHz dBuV dB/m 31.731 37.22 12.32 44.120 34.60 13.56 59.025 32.12 12.77 93.440 32.67 12.58 400.432 33.16 15.10	MHz dBuV dB/m dB 31.731 37.22 12.32 0.45 44.120 34.60 13.56 0.55 59.025 32.12 12.77 0.68 93.440 32.67 12.58 0.92 400.432 33.16 15.10 2.12	MHz dBuV dB/m dB dB 31.731 37.22 12.32 0.45 29.97 44.120 34.60 13.56 0.55 29.87 59.025 32.12 12.77 0.68 29.78 93.440 32.67 12.58 0.92 29.56 400.432 33.16 15.10 2.12 28.78	MHz dBuV dB/m dB dB dBuV/m 31.731 37.22 12.32 0.45 29.97 20.02 44.120 34.60 13.56 0.55 29.87 18.84 59.025 32.12 12.77 0.68 29.78 15.79 93.440 32.67 12.58 0.92 29.56 16.61 400.432 33.16 15.10 2.12 28.78 21.60	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 31.731 37.22 12.32 0.45 29.97 20.02 40.00 44.120 34.60 13.56 0.55 29.87 18.84 40.00 59.025 32.12 12.77 0.68 29.78 15.79 40.00 93.440 32.67 12.58 0.92 29.56 16.61 43.50 400.432 33.16 15.10 2.12 28.78 21.60 46.00	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dBuV/m dB dB dB dBuV/m dBuV/m dBuV/m dB dB dBuV/m dBuV/m dB dB dB dBuV/m dBuV/m dB dB dB dBuV/m dBuV/m dB dB

Above 1GHz

Т	est channel	:	Lowest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	46.18	31.53	8.90	40.24	46.37	74.00	-27.63	Vertical	
4804.00	46.23	31.53	8.90	40.24	46.42	74.00	-27.58	Horizontal	

Test channel:			Lowest		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	36.23	31.53	8.90	40.24	36.42	54.00	-17.58	Vertical
4804.00	36.16	31.53	8.90	40.24	36.35	54.00	-17.65	Horizontal

Т	est channel	:	Middle		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	44.52	31.58	8.98	40.15	44.93	74.00	-29.07	Vertical	
4884.00	45.15	31.58	8.98	40.15	45.56	74.00	-28.44	Horizontal	

Test channel:			Middle		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	34.07	31.58	8.98	40.15	34.48	54.00	-19.52	Vertical
4884.00	35.35	31.58	8.98	40.15	35.76	54.00	-18.24	Horizontal

Test channel:			Highest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	46.26	31.69	9.08	40.03	47.00	74.00	-27.00	Vertical
4960.00	44.48	31.69	9.08	40.03	45.22	74.00	-28.78	Horizontal

Test channel:			Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	36.78	31.69	9.08	40.03	37.52	54.00	-16.48	Vertical
4960.00	34.91	31.69	9.08	40.03	35.65	54.00	-18.35	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366