ANKIT MAHATO Y9227099

Problem 1

The Hilbert matrix, known to be severely illconditioned, is defined as

$$H_n = \begin{bmatrix} 1 & 1/2 & 1/3 & \dots & 1/N \\ 1/2 & 1/3 & \dots & \dots & 1/(N+1) \\ 1/3 & \dots & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \dots & \vdots \\ 1/N & \dots & \dots & \dots & 1/(2N-1) \end{bmatrix}$$

Condition Number $(H_n) = |||H_n||| |||H_n^{-1}|||$ The elements of H_n is given by

$$H_{n_{ij}} = \frac{1}{(i+j-1)}$$

The elements of H_n^{-1} is given by

$$H_{n_{ij}}^{-1} = \frac{(-1)^{i+j} c_i c_j}{(i+j-1)}$$

where

$$c_i = \frac{(n+i-1)!}{(n-i)!((i-1)!)^2}$$

We calculate the 1-norm of the hilbert matrix and its inverse using:

$$||A||_1 = max(\sum_{j=1}^n A_{1j}, \sum_{j=1}^n A_{2j}, ..., \sum_{j=1}^n A_{nj})$$

After calculating using MATLAB code.

Table

Condition Number(K	$ H_n^{-1} $	$ H_n $	Ν
	1	1.000	1
2	18	1.500	2
74	408	1.833	3
2837	13620	2.083	4
94365	413280	2.283	5
2907027	11865420	2.450	6

After N=5 CN exceeds 10^6 .

CN as a function of N upto N=5 is given by the plot below

We calculate the 2-norm of the hilbert matrix and its inverse using:

$$||A||_2 = \sqrt{\lambda_{max}(A \times A)}$$

where $\lambda_m ax$ is the maximum among the eigen values. After calculating using MATLAB code.

Table

N	$ H_n $	$ H_n^{-1} $	Condition $Number(K)$
1	1.000	1	1
2	1.267	15.211	19.281
3	1.408	372.115	524.057
4	1.500	10341.015	15513.739
5	1.567	304142.842	476607.250
6	1.619	9235320.244	14951058.640
Afte	er N=5 ($^{\circ}$ N exceeds 10^6	

CN as a function of N upto N=5 is given by the plot below

Problem 2

X 10.57 0.10.219.03 0.536.61 44.430.752.921.0 2.0 68.1682.655.0 7.0 86.3010.0 89.46 The saturation curve is given by

$$y = \frac{\alpha x}{\beta + x}$$
$$\frac{1}{y} = \frac{\beta}{\alpha} \frac{1}{x} + \frac{1}{\alpha}$$

Now we can perform linear regression and determine the constants β and α using the matlab code

Their values are

$$\alpha = 95.8729$$
$$\beta = 0.8073$$

The correlation coefficient is equal to 1 which suggests perfect positive fit as shown by the plot of 1/y vs 1/x below:

The y vs x curve generated using the new model is shown below

