Московский Государственный Университет

им. М.В. Ломоносова

Факультет Вычислительной Математики и Кибернетики. Кафедра Суперкомпьютеров и Квантовой Информатики.

Практикум на ЭВМ.

Отчет №4: Параллельная программа на MPI, реализующая квантовые гейты.

Постановка задачи

Реализовать квантовые гейты H, H^n , CNOT, ROT, CROT, NOT. Для каждого написать тест на корректность (canonization + blackbox). Оформить в виде библиотеки. Сделать цель check/test — проверка тестов. Тесты реализовать отдельно от библиотеки. Провести анализ масштабируемости гейтов H^n , CNOT.

Запуск теста: make test

Результаты

Гейт	Количеств о кубитов	Количество потоков	Время работы (сек)	Ускорение
Hn	25	1	27,47	1,00
		2	13,85	1,98
		4	6,93	3,97
		8	3,52	7,80
	26	1	57,82	1,00
		2	28,88	2,00
		4	14,44	4,01
		8	7,57	7,64
	27	1	113,42	
		2	56,89	1,00
		4	28,28	1,99
		8	14,33	4,01
CNOT	25	1	0,1743	1,00
		2	0,1119	1,56
		4	0,0650	2,68
		8	0,0403	4,32
	26	1	0,3325	1,00

		2	0,1974	1,68
		4	0,1426	2,33
		8	0,0792	4,20
	27	1	0,6845	1,00
		2	0,3969	1,72
		4	0,2441	2,80
		8	0,2160	3,17