

FABulous:

an Open-Everything Framework for (embedded) FPGAs

Bea Healy, Jing Yu, Nguyen Dao, King Lok Chung, Myrtle Shah and Dirk Koch

Dirk Koch

1 2 3 4 5 6 7 8 9 W

Self-adaptive reconfigurable embedded systems

FPGA design tools for run-time reconfiguration 2

The FABulous Framework

Fully integrated framework for eFPGAs

Uses many projects:

- Yosys & ABC
- nextpnr
- OpenLANE
- VPR
- OpenRAM
- Verilator

FPGA Basics – Logic

Look-up tables (LUTs) as the basic building block for implementing logic

1	A ₃ , A ₂ , A ₁ , A ₀	LUT-value AND gate	LUT-value OR gate
0	0000	0	0
1	0001	0	1
2	0010	0	1
3	0011	0	1
4	0100	0	1
5	0101	1	
6	0110	0	1
7	0111	0	1
8	1000	0	1
9	1001	0	1
Α	1010	0	1
В	1011	0	1
С	1100	0	1
D	1101	0	1
Е	1110	0	1
F	1111	1	1 4

FPGA Basics – Logic

- Look-up tables (LUTs) are basically multiplexers selecting configuration latches storing a function as a simple truth table
- Configuration latches are usually written through the configuration port only
- In distributed memory options (LUT is used as a shift register or memory file, table is also writeable through the user logic

LUTs help with the routing (pin swaps are for free)

$A_3 A_2 A_1 A_0$	A ₃ A ₀	A ₃ A ₀	A ₃ A ₀	A ₃	A ₃
0:0000	0	0	0	0	0
1: 0 0 0 1	0	0	0	1	0
2: 0 0 1 0	0	0	1	0	0
3: 0 0 1 1	0	1	1	1	0
4: 0 1 0 0	0	1	0	0	0
5: 0 1 0 1	0	1	0	1	0
6: 0 1 1 0	0	1	1	0	0
7: 0 1 1 1	0	1	1	1	0
8: 1 0 0 0	0	0	0	0	1
9: 1 0 0 1	0	0	0	1	1
A: 1 0 1 0	0	0	1	0	1
B: 1 0 1 1	0	1	1	1	1
C: 1 1 0 0	0	1	1	0	1
D: 1 1 0 1	0	1	1	1	1
E: 1 1 1 0	0	1	1	0	1
F: 1 1 1 1	1	1	1	1	1

Routing

FPGA Basics – Routing (Virtex-II style)

- AMD/Intel use multiple levels of one-hot encoded routing with pass-transistors
- Multiple activated inputs can cause short-circuit situations
 - → this is why you should blank a region before overwriting it with a new module
 - → less of a problem for encoded bitstreams (not one-hot encoded)

FPGA Basics – FPGA Fabric

Example of an FPGA fabric composed of LUTs, switch matrices and I/O cells.
 Other common primitives: memories, multipliers, transceivers, ...

FPGA Basics – FPGA Fabric

.A1(Ci), .S(c_I0mux),

Switch matrix

- 1. LUT input muxes
- 2. Constant input value
- 3. LUT and Flop output muxes
- Rest: local routing
- Virtex II
 - 332 inputs
 - 160 multiplexer
- Virtex V
 - 305 inputs
 - 172 Multiplexer

Rough Cost Estimate

In total per CLB					12,560	1,600
Virtex-6	/mux	In total				
Routing resource	# muxes	# inputs	Pass	Conf.	Trans.	Conf. bits
LUT inputs	48	24	29	50	3,792	480
FF_in	8	28	34	55	712	88
D_in	4	22.5*	27.5	50	310	40
CLK and GFAN	4	14	18	40	232	32
WE CR SE	2 2 2	24 23 12	29 28 16	50 50 35	416	54
Local routing	96	20.5*	25.5	50	7,248	960
Longlines	4	12*	16	35	204	28
Sum routing					12,914	1,682
LUT truth table		Trans.: 8×448	Conf. bits	: 8 × 64	3,584	512
In total per CLB					16,498	2,194

^{*}Average value

FPGA Configuration

- The easiest way to implement configuration storage is using a shift register
- Bit-wise addressing is way too expensive!
 - → frame-based reconfiguration
- But how do we update individual switch matrix multiplexers?

FPGA Configuration

- Do not use shift register configuration
 - High power during configuration (thousands of bits)
 - Configuration only valid if completely shifted in (transient short-circuits or ring-oscillators)
 - Cannot do "real" partial reconfiguration (static routes through reconfigurable regions)
 - Too expensive (shift registers need flip flops, frame-based configuration can do with latches)

Clock

FPGA Configuration (as used in FABulous)

What is FABulous offering?

- Fully integrated open-source FPGA framework with good quality of results (area & performance)
- Entirely open and free, including commercial use (we integrated many other projects:
 Yosys, ABC, OpenRAM)
- Supports custom cells (if provided) → some tooling is on the way
- Supports partial reconfiguration
- Designed for ease of use while providing full control as needed
- Versatile
 - Different flows (OpenLane ←→Cadance) (Yosys/nextpnr ←→ VPR)
 - Easy to customize, including the integration of own IP

Basic concepts

- Basic tiles have same height, but type-specific width (for logic tiles, DSPs, etc.)
- Adjacent tiles can be fused for more complex blocks (see the DSP example) →Supertile 18

Basic concepts

- I/Os belong logically to the fabric but are physically routed to the surrounding
- Internal wires, buses, etc. are "just" wires at the border of the fabric

Let's build a small eFPGA: Fabric Definition

	term	term	term	term	
IO	REG	DSP	LUT	LUT	CPU
Pin	(mem)				Ю
		DSP_top			
IO	REG		LUT	LUT	CPU
Pin	(mem)				Ю
		DSP_bot			
Ю	REG	DSP	LUT	LUT	CPU
Pin	(mem)				Ю
		DSP_top			
IO	REG		LUT	LUT	CPU
Pin	(mem)				Ю
		DSP_bot			
	term	term	term	term	

■ 4 x register file, 2 x DSPs, 4 x LUTs (CLB), I/Os left and right,

Let's build a small eFPGA: Fabric Definition

	term	term		term	term				
Ю	REG	DSP	L	UT I	UT CPU	J			
Pin	(mem)				IO				
		DSP_		Α	В	С	D	Е	F
IO Din	REG		1	Fabric				,—,;	•
Pin	(mem)	DSP_	2	NULL	N_term	N_term	N_term	N_term	NULL
10	REG	DSP	3	W_IO	RegFile	DSP_top	LUT4AB	LUT4AB	CPU_IO
Pin	(mem)		4	W_IO	RegFile	DSP_bot	LUT4AB	LUT4AB	CPU_IO
		DSP_	5	W_IO	RegFile	DSP_top	LUT4AB	LUT4AB	CPU_IO
10	REG		6	W_IO	RegFile	DSP_bot	LUT4AB	LUT4AB	CPU_IO
Pin	(mem)	DSP	7	NULL	S_term	S_term	S_term	S_term	NULL
	term	term	8	Fabric	End		0 03 00		

- 4 x register file, 2 x DSPs, 8 x LUT-tiles (CLB), I/Os left and right,
- A fabric is modelled as a spreadsheet (tiles are references to tile descriptors)

Let's build a small eFPGA: Tile Definition

- Wires
- Primitives (basic elements)
- Switch matrix

Let's build a small eFPGA: Tile Definition

	121	TII E	LUT4AB	15				
1) LUT	121	44	A CONTRACTOR OF THE PARTY OF TH	V - 55 1	V - # 1	d = = 1:= = 1:= =	and the same	-
ll ll tile		#direction	A CONTRACTOR OF THE PARTY OF TH	X-offset	Y-offset	The Assessment Control of the Control	and memory and	
		NORTH	N1BEG	0	1	N1END	8	
Jump Dia	124	NORTH	N2BEG	0	2	N2END	4	
Jump Drinning	125	NORTH	Co	0	1	Ci	1	# carry
	126	EAST	E1BEG	1	0	E1END	8	
No Sc St	127	EAST	E4BEG	4	0	E4END	2	
Nc St St Nt switch	128	SOUTH	S1BEG	0	-1	S1END	8	
Ne matrix	129	SOUTH	S2BEG	0	-2	S2END	4	
Sb	130	WEST	W1BEG	-1	0	W1END	8	
EeWb EtWt WeEb	131	WEST	W4BEG	-4	0	W4END	2	
	132	JUMP	J_BEG	0	0	J_END	42	
Ec	133	BEL	LUT4.vhdl	LA_				
Wc	134	BEL	LUT4.vhdl	LB_				
	135	BEL	LUT4.vhdl	LC_				
	136	BEL	LUT4.vhdl	LD_				
Wires	137	BEL	MUX8LUT.vh	dl				
	138	MATRIX	LUT4AB_swit	ch_matrix	vhdl			
Primitives (basic elements)	139	EndTILE	D.					
Switch matrix							·	23

eFPGA Ecosystem – Tile/Wire Definitions

- Wires are defined by
 - <direction> <symbolic begin|end names> <target offset> <# wires>
- Jump wires for hierarchical routing (Intel/Altera and Xilinx UltraScale style)

eFPGA Ecosystem – Switch Matrix Definition

```
# LUT4AB
     # double with MID cascade : [N,E,S,W]2BEG --- [N,E,S,W]2MID -> [N,E,S,W]2BEGb --- [N,E,S,W]2END (
     [N|E|S|W]2BEGb[0|1|2|3|4|5|6|7],[N|E|S|W]2MID[0|1|2|3|4|5|6|7]
     ############ LUT Inputs #############
     ############ LUT Inputs #############
     ############ LUT Inputs ############
 9
     # shared double MID jump wires
10
     J2MID ABa BEG[0|0|0|0|, [JN2END3|N2MID6|S2MID6|W2MID6]
11
     J2MID ABa BEG[1|1|1|1], [E2MID2|JE2END3|S2MID2|W2MID2]
12
     J2MID ABa BEG[2|2|2|2], [E2MID4|N2MID4|JS2END3|W2MID4]
13
     J2MID ABa BEG[3|3|3|3], [E2MID0|N2MID0|S2MID0|JW2END3]
14
15
     # Carry chain Ci -> LA Ci-LA Co -> LB Ci-LB Co -> ... ->
16
17
     LA Ci,Ci0
     L[B|C|D|E|F|G|H] Ci, L[A|B|C|D|E|F|G] Co
18
19
     Co0,LH Co
```

- Describes the adjacency in a symbolic way <mux_output>,<mux_input>
- Alternatively adjacency matrix

>		A	В	C	D	E	F
	1	CLB	N1END0	N1END1	N1END2	N2END0	N2EN
	2	N1BEG0	0	1	1	1	1
	3	N1BEG1	1	0	1	0	0
	4	N1BEG2	1	0	1	0	1
	5	N2BEG0	0	1	0	1	0
	6	N2BEG1	1	0	0	0	0
	7	N2BEG2	1	1	1	0	0
	8	N4BEG0	0	1	0	1	1
	9	N4BEG1	1	1	1	1	1
	10	E1BEG0	1	0	1	0	1
	11	E1BEG1	1	1	0	1	1

The FABulous eFPGA Ecosystem

- FABulous eFPGA generato
 - ASIC RTL and constraints generation
 - Generating models for nextpnpr/VPR flows
 - FPGA emulation
- Virtex-II, Lattice clones (patent-free!)
- See our FPGA 2021 paper "FABulous: An Embedded FPGA Framework"

The first open-everything FPGA

- Built using open tools (Yosys, OpenLane, Verilator...)
- Open PDK(Skywater 130 process)

Google Shuttle (MPW5):https://github.com/nguyendaouom/open_eFPGA

Sky130 with CLBs, DSPs, RegFiles, BRAMs Google Shuttle - MPW-2 (can implement RISC-V)

https://github.com/nguyendao-uom/eFPGA v3 caravel

Sky130 with CLBs, DSPs, RegFiles, BRAMs Google Shuttle - MPW-2 (can implement RISC-V)

 $https://github.com/nguyendao-uom/eFPGA_v3_caravel$

Sky130 with CLBs, DSPs, RegFiles, BRAMs Google Shuttle - MPW-2 (can implement RISC-V)

https://github.com/nguyendao-uom/eFPGA_v3_caravel

Dual-Ibex-Crypto-eFPGA

Google Shuttle - MPW-4 (custom instructions, T-shaped fabric)

https://github.com/nguyendao-uom/ICESOC

Open ReRAM FPGA test chip

- Sky130, Google ShuttleMPW4https://github.com/nguyendao-uom/rram_testchip
- Just enough logic to send "Hello World" to a UART
- Different configuration modes

Posible advantages of ReRAM FPGAs

- Security (user circuit is encoded in resitsive states)
- Reliability (ReRAM is radiation hard)
- Probably density
- Instantanous on
- CMOS friendly

FABulous versus OpenFPGA (on Sky130)

- OpenFPGA CLBs are 17% bigger
- New optimizations gave us further 21.7% in density on the same netlist!

Tile-based Design in FABulous

Replace standard cell multiplexers with custom mux-4

$$A_{\text{std-cell}} - A_{\text{c-mux4}} \times N = (33.8 \, \mu m^2 - 17.5 \, \mu m^2) \times 376 = 6,116 \, \mu m^2$$

		Standa	Custom	n mux-4		
	height	width	area	util.	area	util.
CLB	219 µm	219 µm	47,961	81.8%	46,225	60.7%
REG	219 µm	214 µm	46,866	84.1%	46,655	64.3%
DSP	443 µm	185 µm	81,955	80.9%	81,780	56.7%

Observation:

- No area improvement
- Instead: core utilization went down
- → Congested tile routing

In short

Optimization: Bitstream Remapping

- The configuration bit cells may induce inferior placement of multiplexers
- We can remap configuration bits → requires remapping of the bitstream (trivial)

Optimization: Bitstream Remapping

 We use Google's Operations Research tools to compute the grid points (https://github.com/google/or-tools)

Optimization: Bitstream Remapping

The FABulous eFPGA Framework – Wrap-up

- Heterogeneous (FPGA) fabric (DSBs, BRAMs, CPUs, custom blocks)
 - Multiple tiles can be combined for integrating more complex blocks
 - Custom blocks can be instantiated directly in Verilog and are integrated in Yosys, VPR/nextpnr CAD tools (Synthesis, Place&Route) (as primitive blocks)
- Support for dynamic partial reconfiguration
 (some elements of XC6200, like wildcard configuration)
- Configuration through shift registers or latches (or custom cells)
- Support for custom cell primitives (passtransistor multiplexers)
- Good performance / area / power figures (about 1.5x worse than Xilinx)
 (could be narrowed down through customization)
- Usable by FPGA users (you don't have to be an FPGA architect)
 - → there are FPGA classics that we have/will clone
- ToDo: multiple clock domains, mixed-grained granularity, ...

FABulous Contributors

People:

Nguyen Dao nguyen.dao@manchester.ac.uk

Jing Li jing.li@manchester.ac.uk

Khoa Pham khoa.pham@manchester.ac.uk

Myrtle Shah gatecat@ds0.me

King Chung king.chung@student.manchester.ac.uk

Tuan La tuan.la@manchester.ac.uk

Andrew Attwood a.j.attwood@ljmu.ac.uk

Bea Healy tabitha.healy@student.manchester.ac.uk

Dirk Koch dirk.koch@manchester.ac.uk

See our projects under:

https://github.com/FPGA-Research-Manchester

This work is kindly supported by the UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/R024642/1 and Carl-Zeiss-Stiftung

