Matematica discreta elemental

Ernesto Rodriguez

Universidad del Itsmo erodriguez@unis.edu.gt

Principios basicos

- Los numeros son representaciones simbolicas de cantidades.
- Se pueden representar de muchas formas
- Consideremos la más basica:

- Se utilizan marcas en una superficie para contar.
- Por ejemplo: "///" significa cuatro.

Construccion Algoritmica

Se utilizaran dos reglas para construir los numeros:

- regla-o el espacio vacio (' ') es un numero.
- regla-s se puede construir un numero nuevo colocando una marca ("/") despes de un numero existente.
- **Ejemplo:** El numero "////" se produce mediante la aplicación de la regla-o y cuatro aplicaciones de la regla-s
- Los numeros construidos mediante estas reglas se conocen como: Numeros unarios naturales

Más formalidad

- Definición: Un numero natural unario es el sucesor (predecesor) si se puede construir al agregar (quitar) una marca – la regla-s produce los sucesores.
- **Ejemplo:** /// es el sucesor de // y // el predecesor de ///

Axiomas de Peano

- Aximoa (P1): ' ' (llamado cero) es un numero unario natural
- Axioma (P2): Todo numero natural unario tiene un sucesor que es diferente a el
- Axioma (P3): El cero no es el sucesor de ningún numero natural unario
- Axioma (P4): Diferentes numeros naturales unarios tienen diferentes sucesores
- **Axioma (P5: Inducción):** Todos los numeros naturales unarios tienen una propiedad *P* si:
 - cero tiene la propiedad P
 - El sucesor de todo numero con la propiedad P también tiene la propiedad P.
- Pregunta: ¿Por que es necesaria tanta formalidad?
- "Este es el precio que hay que pagar para estar absolutamente seguro" – Bernard Russel

Razonamiento sobre Numeros Naturales Unarios

- Los axiomas de Peano nos permiten razonar acerca de los numeros naturales
- Definición: Un axioma es un enunciado sobre objetos matematicos que asumimos ser cierto
- Un teorema es un enunciado sobre objetos matematicos que sabemos que es cierto
- Razonamos acerca de los numeros naturales infiriendo teoremas a partir de axiomas u otros teoremas. Ej:
 - (axioma P1)
 - / es un numero natural unario (axioma P2 y 1)
- Una sequencia de inferencias es una *demostración* del ultimo enunciado.

Más teoremas y demostraciones

- Teorema: /////// es un numero natural unario
- **Teorema:** /// es diferente de //
- **Teorema:** //// es diferente de //
- Teorema: Existe un numero natural unario que es sucesor de ///
- Teorema: Existen al menos 7 numeros naturales unarios
- **Teorema:** Todo numero natural unario es cero o el sucesor de otro numero natural unario

Inducción para los numeros naturales unarios

- **Teorema:** Todo numero natural unario es cero o el sucesor de otro numero
- Demostración mediante el axioma P2:
 - Se considera la propiedad p que dice "es cero o sucesor" y se verifican los requisitos.
 - 2 El numero ' ' es cero, por lo que cumple con p
 - \odot Considerar un numero natural unario arbitrario n que cumple con p
 - **1** El numero n tiene un sucesor llamado s(n) (P2).
 - Dado que n fue arbitrario, mediate P5 concluimos que todo numero natural unario cumple con p.

Notación¹

- Es permitido nombrar un numeor natural unario arbitrario mediante una variable (n, m, l, k, n_1, n_2)
- Representamos los numeros mediante la aplicación de reglas que los construye: /// se representa como s(s(s(o)))
- Definición: Introduciomos algúnas abreviaciones:
 - Se abrevia a o o ' ' mediante el simbolo '0'
 - Se abrevia a s(o) y / mediante el simbolo '1'
 - Se abrevia a s(s(o)) y // mediante '2'
 - ...
- ullet \mathbb{N}_1 representa al conjunto de todos los numeros naturales

El Teorema Domino

- **Teorema:** Consideremos una secuencia $S_0, S_1, ...$ de dominos, tal que cada numero natural unario n comple con:
 - La distancia entre S_n y $S_{s(n)}$ es menor que la altura de S_n
 - S_n es más alto que ancho, por ente inestable
 - S_n y $S_{s(n)}$ tienen el mismo peso
 - Todos los dominoes S_n se encuentran en una linea recta
- **Teorema:** Si S_0 cae en la dirección de S_1 , todos los dominos caen

La Inducción de Domino

- **Demostración:** Demostramos el teorema mediante inducción sobre n con la propiedad P que dice: " S_n cae en la dirección de $S_{s(n)}$ "
- Hay que considerar dos casos:
 - Caso base: n es cero
 - **1** Asumimos que S_0 se empuja en la dirección de S_1 por lo cual cae
 - Caso inductivo: n es un numero natural unario arbitrario
 - 0 n = s(m) para algun numero natural unario m (P2)
 - ② Asumimos que P se mantiene, por lo cual S_m cae en la dirección de $S_{s(m)}$
 - 3 Sabemos que S_m empuja a $S_{s(m)}$ en la direccion opuesta que cayo ya que la distancia entre ambos es menor que la altura de S_m y la segunda ley de newton
 - ① Debido a que $S_{s(m)}$ tiene el mismo peso que S_m y es inestable, debe caer en la dirección opuesta que cayo S_m