

Çizgisel Kaynak Modeli

$$C(X) = \left(\frac{2}{\pi}\right)^{1/2} \frac{Q}{u\sigma_z \sin \phi} exp\left(-\frac{H^2}{2\sigma_z^2}\right)$$

- > C(X): X noktasındaki konsantrasyon (μg/m³)
- ➤ Q: çizgisel kaynak emisyonu (µg/m.s)
- ➤ u: rüzgar hızı (m/s)
- $\triangleright \sigma_7$: dispersiyon katsayısı (m) (ilk değeri 2 3 m)
- → φ: yol ile rüzgar arasındaki açı
- ➤ H: etkin emisyon yüksekliği (muhtemelen 2 3 m)

(Hanna et al., 1982)

Cadde Kanyon Modeli

S. Vardoulakis et al. | Atmospheric Environment 37 (2003) 155-182

Fig. 1. Pollutant dispersion in a regular street canyon (Dabberdt et al., 1973).

- Motorlu taşıt CO emisyonlarının modellenmesi için kullanılır.
- C₁: rüzgar altı konsantrasyonu
- ➤ C₂: rüzgara karşı konsantrasyon
- \triangleright C₁ > C₂
- C_D: caddeye taşınan konsantrasyon
- Caddedeki CO konsantrasyonu:

$$C = C_D + \frac{(C_1 + C_2)}{2}$$
(Hanna et al., 1982)

Cadde Kanyon Modeli

$$C_1 = \frac{0.1 KNS^{-0.75}}{(u+0.5)\{(x^2+z^2)^{0.5}+2\}}(ppm)$$

$$C_2 = \frac{0.1KNS^{-0.75}}{(u+0.5)W}(ppm)$$

- N: trafik hacmi (araç/saat)
- > S: ortalama araç hızı (km/saat)
- u: çatı seviyesindeki rüzgar hızı (m/s)
- ➤ W: cadde genişliği (m)
- > x: yatay mesafe (m)
- > z: alıcı ile trafik arasındaki yükseklik (m)
- ➤ K: boyutsuz sabit (genellikle ≈ 7)

(Hanna et al., 1982)

Gauss Puff Modeli

- Puff modelleri, belirli zaman dilimlerinde kesikli olarak salınan kirletici emisyonlarının taşınım ve dispersiyonlarını matematiksel olarak modellemek için kullanılırlar.
- Gauss Puff modeli, Gauss dispersiyon modelinin başarısız olduğu düşük rüzgar hızları ve birikimin olması gibi durumlarda kirletici konsantrasyonlarını başarı ile hesaplayabilmektedir.
- Puff'un boyutları, puff'un seyahat süresinin fonksiyonu olan dispersiyon parametreleri ile belirlenir.
- ➤ Puff, ∆t zaman aralıklarında kaynaktan salındıktan sonra rüzgar yönünde ilerlerken seyrelmeye uğrar.

Gauss Puff Modeli

➤ Her bir puff'un ∆t zaman aralıklarındaki toplam N defada salındığı düşünülürse oluşacak konsantrasyon her bir puff'un toplamı olacaktır:

$$C(x, y, z, t) = \frac{1}{(2\pi)^{3/2}} \sum_{i=1}^{N} \frac{s_i \Delta t}{\sigma_x \sigma_y \sigma_z} exp \left[-\frac{\left(x - x_i(t)\right)^2}{2\sigma_z^2} - \frac{\left(y - y_i(t)\right)^2}{2\sigma_y^2} \right] * \left[exp \left(-\frac{\left(z - z_i(t) - h\right)^2}{2\sigma_z^2} \right) + exp \left(-\frac{\left(z - z_i(t) - h\right)^2}{2\sigma_z^2} \right) \right]$$

Herhangi bir yöndeki (x, y veya z) zamana bağlı puff'un merkezi ise:

$$x(t) = x_i(t - \Delta t) + u[x_i(t - \Delta t), t - \Delta t]\Delta t$$
 (Sportisse, 2010)

Gauss Puff Modeli

- > C: Kirletici konsantrasyonu (μg/m³)
- > S_iΔt: t_i zamanındaki kirletici emisyonu (µg/s)
- $\triangleright \sigma_x$: x yönünde hüzmenin standart sapması (m)
- > σ_v: y yönünde hüzmenin standart sapması (m)
- σ₂: z yönünde hüzmenin standart sapması (m)
- ➤ h: Yükseklik (m)
- x_i(t): Puff'un t anındaki x yönündeki merkezi (m)
- ➤ u(x,t): Rüzgarın x yönündeki bileşeni (m/s)

Çok Kutulu Modeller

- > Eularian Fotokimyasal Grid Modeller:
 - CMAQ (Community Multiscale Air Quality)
 - https://www.cmascenter.org/cmaq/
 - CAMx (Comprehensive Air Quality Model with Extensions)
 - http://www.camx.com/
- ➤ Her iki model de Linux işletim sisteminde çalışmaktadır.

"Tek Atmosfer" Yaklaşımı

- > Emisyon Kaynakları:
 - · Çizgisel kaynaklar (NOx, VOC, Toksik hava kirleticileri)
 - Endüstriye kaynaklar (SOx, NOx, VOC, Toksik hava kirleticileri)
 - Alansal kaynaklar (NOx, VOC, Toksik hava kirleticileri)
- ➤ Meteoroloji, Atmosfer Kimyası
- ➤ Ozon, PM, Asit Yağmuru, Görüş Seviyesi, Toksik Hava Kirleticiler, Atmosferik Çökelme (kuru, yaş)

CAMx Model Formülasyonu

Konsantrasyon Patay Dikey Türbülanslı Difüzyon
$$\frac{\partial c_{l}}{\partial t} = -\nabla_{H} \cdot V_{H} c_{l} + \left[\frac{\partial (c_{l} \eta)}{\partial z} - c_{l} \frac{\partial^{2} h}{\partial z \partial t} \right] + \left[\nabla \cdot \rho K \nabla (c_{l} / \rho) \right] + \left[\frac{\partial c_{l}}{\partial t} \right]_{Emission} + \left[\frac{\partial c_{l}}{\partial t} \right]_{Chemistry} + \left[\frac{\partial c_{l}}{\partial t} \right]_{Removal}$$

- > c₁: kirletici konsantrasyonu
- V_H: yatay rüzgar vektörü
- η: net dikey taşınım oranı
- h: katman arayüz yüksekliği
- ρ: atmosfer yoğunluğu
- K: türbülans değişim (difüzyon) katsayısı
- z: arazi yüksekliği

HYSPLIT Modeli

- ➤ Hybrid Single Particle Langrangian Integrated Trajectory
- ➤ Hibrit Tek Parçacıklı Lagrange Entegre Yörünge
- HYSPLIT modeli sadece bir taşınım veya dispersiyon modeli olmayıp aynı zamanda hava parselinin yörünge ve çökelme hesaplarını da yapabilmekte, ayrıca kimyasal reaksiyonları da hesaplayabilmektedir.
- Windows, Linux, Mac işletim sistemli PC'lerde ve web tabanlı olarak çalıştırmak mümkündür.
- ➤ NOAA ARL tarafından geliştirilmiştir.

HYSPLIT Modeli

- ➤ Hibrit Yaklaşım: Model, hava parsellerinin yörüngelerin adveksiyon ve difüzyon hesaplamalarında Lagrange yaklaşımını (hareketli referans çerçevesi); hava kirleticilerinin konsantrasyon hesaplamasında ise Euler yaklaşımını (sabit referans çerçevesi) kullanır.
- Modelin kullanım alanları:
 - Atmosferik taşınım (ileri ve geri yörüngeler)
 - Kirleticilerin dispersiyonu (tehlikeli hava kirleticileri dahil)
 - Kirleticilerin çökelmesi

HYSPLIT Modeli

NOAA'S HYSPLIT ATMOSPHERIC TRANSPORT AND DISPERSION MODELING SYSTEM

BY A. F. STEIN, R. R. DRAXLER, G. D. ROLPH, B. J. B. STUNDER, M. D. COHEN, AND F. NGAN

AFFILIATIONS: STEIN, DRAXLER, ROLPH, STUNDER, AND COHEN— NOAA/Air Resources Laboratory, College Park, Maryland; NGAN—NOAA/Air Resources Laboratory, and Cooperative Institute for Climate and Satellites, College Park, Maryland CORRESPONDING AUTHOR: Ariel F. Stein, NOAA/Air Resources Laboratory, R/ARL—NCWCP—Room 4205, 5830 University Research Court, College Park, MD 20740 E-mail: ariel.stein@noa.gov

The abstract for this article can be found in this issue, following the table of contents.

DOI:10.1175/BAMS-D-14-00110.1

A supplement to this article is available online (10.1175/BAMS-D-14-00110.2)

In final form 27 April 2015 ©2015 American Meteorological Society https://doi.org/10.1175/BAMS-D-14-00110.1

TrajStat

- ➤ Uzun süreli geri yörünge analizlerinin hava kirliliği ölçümleri ile birlikte yapılmasını sağlayan CBS tabanlı istatistiksel bir yazılımdır.
- > Kullanım alanları:
 - · Geri yörüngelerin kümelenmesi
 - Potansiyel kaynak katkı fonksiyonlarının (PSCF) hesaplanması
 - Konsantrasyon ağırlıklı yörüngelerin (CWT) analizi
- http://meteothink.org/downloads/index.html

Kaynaklar

- Hanna, S. R., Briggs, G. A., Hosker, R. P., Handbook on Atmospheric Diffusion, U.S. Department of Energy, U.S.A., 1982.
- İncecik S., Hava Kalitesi Yönetimi Kursu Notları, İzmir, 1999.
- > Jacob, D. J., Introduction to Atmospheric Chemistry, Princeton University Press, 1999.
- Sportisse B., Fundamentals in Air Pollution from Processes to Modelling, Springer, Paris, 2010.
- Vardoulakis, S., Afisher, B. E., Pericleous, K., Gonzalez-Flesca, N., 2003. Modelling air quality in street canyons: a review, Atmospheric Environment, 37(2): 155-182.
- Wang, Y.Q., Zhang, X.Y. and Draxler, R., 2009. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data, Environmental Modelling & Software, 24: 938-939.