注意事项

- 一定要有充足的时间投入(建议时间投入比例1: 10)
- 养成<mark>读代码</mark>的习惯,注重写代码或代码重现(论文、 算法≠代码)
- 一定找到自己工作与GNN的切入点(即数据问题)
- 一定要有读论文的总结(别人用了哪些metrics、涉及 到了哪些baseline)
- 学术问题在大群里提问

Graph Neural Network

What is a graph

What features?

Jurij Leskovec

ASSOCIATE PROFESSOR OF COMPUTER SCIENCE

Web page: http://cs.stanford.edu/~jure

Jiaxuan You

Founding member
Kumo AI
Palo Alto, California
Email: jiaxuan@cs.stanford.edu
[Google Scholar] [Github]

Hi! I am a Founding member at Kumo Al. I received my Ph.D. and M.S. degrees from Department of Computer Science, Stanford University, advised by Prof. Jure Leskovec. I was supported by JPMC PhD Fellowship and Baidu Scholarship during my PhD. At Kumo Al, I aim to build a relational machine learning engine for cloud databases. I'm on the 2022-2023 academic Job market.

Why graph is so important?

Event Graphs

Computer Networks

Disease Pathways

Image credit: Wikipedia

Food Webs

Image credit: Pinterest

Great Date Portland Euron Square Foreign Cod Street Street

Image credit: visitlondon.com

Particle Networks

Underground Networks

Why graph is so important?

Social Networks

Citation Networks

Economic Networks Communication Networks

Image credit: Missoula Current News

Internet

Image credit: The Conversation

Networks of Neurons

Why graph is so important?

Image credit: Maximilian Nickel et al

Image credit: ese.wustl.edu

Image credit: math.hws.edu

Knowledge Graphs

Regulatory Networks

Scene Graphs

Image credit: MDPI

Code Graphs

Molecules

3D Shapes

Image credit: Wikipedia

Features of a graph

图	度数矩阵	邻接矩阵	调和矩阵
	$(2 \ 0 \ 0 \ 0 \ 0 \ 0)$	$(0 \ 1 \ 0 \ 0 \ 1 \ 0)$	$\begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \end{pmatrix}$
$\binom{6}{2}$	0 3 0 0 0 0	$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$	$oxed{ egin{bmatrix} -1 & 3 & -1 & 0 & -1 & 0 \end{bmatrix}}$
(4)-(3)	0 0 2 0 0 0	0 1 0 1 0 0	$egin{bmatrix} 0 & -1 & 2 & -1 & 0 & 0 \\ \hline \end{pmatrix}$
I	0 0 0 3 0 0	0 0 1 0 1 1	$\begin{bmatrix} 0 & 0 & -1 & 3 & -1 & -1 \end{bmatrix}$
(3)-(2)	0 0 0 0 3 0	1 1 0 1 0 0	$oxed{ egin{bmatrix} -1 & -1 & 0 & -1 & 3 & 0 \end{bmatrix}}$
	$(0 \ 0 \ 0 \ 0 \ 0 \ 1)$	$(0 \ 0 \ 0 \ 1 \ 0 \ 0)$	
	D	A	L=D-A

拉普拉斯矩阵的性质:

- 特征值都是非负实数
- 特征向量都是实向量, 且正交
- 正则化表示 $L_{sym} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$

What we will do?

Word embedding

What we will do?

What we will do?

Task dependent or task independent?

核心工具介绍

NetworkX(与pytorch、pyg协同)

- 如何从dataframe创建一个graph
- •如何获取图的node、edge信息(比如手动构建一条路径)
- 如何获取图的邻接矩阵(计算GCN)
- 如何将NetworkX的graph对象转化为pyg对象

• ...

			_	
Node1	Node2	Edge		
				8
	Node1	Node1 Node2	Node1 Node2 Edge	Node1 Node2 Edge

sklearn和Pytorch

- Sklearn中常用的分类、回归方法
- 各种metrics(acc、F1等)和常用方法train_test_split等
- 如何构建Dataset和DataLoader
- 如何写模型的类,包括forward方法
- nn、Functional模块的常用层: Linear、各种activation
- 常见的损失函数: crossentropy、L1、MSE等
- Routine的训练过程

PyTorch Geometric (PyG)

- 如何直接创建pyg的network对象
- Pyg常用的模块(GCN、GAT等)
- PyG Documentation pytorch_geometric documentation (pytorchgeometric.readthedocs.io)
- Loading Graphs from CSV —
 pytorch_geometric documentation
 (pytorch-geometric.readthedocs.io)

TORCH_GEOMETRIC.NN

Contents

- Convolutional Layers
- Aggregation Operators
- Normalization Layers
- Pooling Layers
- Unpooling Layers
- Models
- Encodings
- Functional
- Model Transformations
- Dense Convolutional Layers
- Dense Pooling Layers
- DataParallel Layers

一些关键的论文和数据

Network Embedding

- DeepWalk: Online Learning of Social Representations
- node2vec: Scalable Feature Learning for Networks
- Semi-Supervised Classification with Graph Convolutional Networks
- Inductive Representation Learning on Large Graphs
- Graph Attention Networks
- metapath2vec: Scalable Representation Learning for Heterogeneous Networks

Datasets

Stanford Biomedical Network Dataset Collection

Jure Leskovec @ Stanford

https://cseweb.ucsd.edu/~jmcauley/datasets.html

Table 1: Summary of the datasets used in our experiments.

	Cora	Citeseer	Pubmed	PPI
Task	Transductive	Transductive	Transductive	Inductive
# Nodes	2708 (1 graph)	3327 (1 graph)	19717 (1 graph)	56944 (24 graphs)
# Edges	5429	4732	44338	818716
# Features/Node	1433	3703	500	50
# Classes	7	6	3	121 (multilabel)
# Training Nodes	140	120	60	44906 (20 graphs)
# Validation Nodes	500	500	500	6514 (2 graphs)
# Test Nodes	1000	1000	1000	5524 (2 graphs)

图方法的任务

Tasks

Tasks

- Node classification: Predict a property of a node
 - Example: Categorize online users / items
- Link prediction: Predict whether there are missing links between two nodes
 - Example: Knowledge graph completion
- Graph classification: Categorize different graphs
 - Example: Molecule property prediction
- Clustering: Detect if nodes form a community
 - Example: Social circle detection
- Other tasks:
 - Graph generation: Drug discovery
 - Graph evolution: Physical simulation

项目具体流程

- 先掌握2-3种baseline方法(deepwalk、GCN等,传统方法不要忘记)
- 确定每位学员的具体任务(大方向, 非具体)
 - 确定数据
 - 确定方向(模型改进、模型迁移)
- 讲解进阶方法(会对具体的代码进行讲解,学员需要去确定一下采用哪种方法去做)
 - GAT、metapath···
- 具体案例讲解
- 每位学员的具体论文情况说明