Comp 330 - Lec 24 - Nov 23rd
: prime²-1 124

IE: Hai voluto la bicicletta? Adesso pedala!

Added a vicles about Lec 23
P(L(M))

Lendreidable moblems about CFLS

Recall DPs about CFL5 which are decidable

ISIN (G, ω) : "Given a CFG G & Atnivg $\omega \in \Sigma^*$, is $\omega \in L(G)$?" $\Rightarrow L(YK)$ EMPTY -CF: "Given a CFG G, is $L(G) = \emptyset$?" $\Rightarrow GEN$

Many timple DPs about CFLs are undecidable

ALL-CF (6): "Given CFGG, L(6)= Ex?"

INTERSECT-CF(6,,62): "Given CFGG,,62,

L(6,) 12 (62) + \$\phi ?"

Show mut HP 5m ALL-CF

1. Convert IHD = <M(x) 70

IALL-CF = <6>

binary encoding CFGG

2. Show Moops on x <=> L(6) = E*

How can we croote 6? Requires computation history of H run on x. Key insight: If a TH H loops on x Then There is no finite string which represents its computation history.

Def Given a TH M & on input string $x \in \Sigma^*$, a valid computation history of M run on x is a thing of the The form $\# \& \Gamma$

The form # ET

<pre

where

1) #: separator taken, # & [

2)
$$\forall i \in O...N$$
, $\alpha i \in \Delta^*$, $\Delta = \Gamma \cup G$, αi is an instantaneous states interpreted as letters configuration

$$x = abb$$

$+ q_0 \circ bb \square \# + aqabb \square \#$
 $x = ba \propto c$

$+ q_0 ba \square \# + bq_1 a \square \#$
 $+ q_2 ba \square \# \dots$

Def Given a TH H & input string × E I*, \D = QUPU \ + }

VALLOMPS (M, X) = { \(\times \) is a vold

computation history of

H reunning on X }

\(\times \) \(\times \) \(\times \)

How is this relevant to HP < m KLL-CF?

ANS (
$$T_{ALICF}$$
) = \mathcal{J}_{es} => $L(s) = \Delta^*$
 $\Rightarrow VALCOMPS(\mathcal{H},x) = \Delta^*$
=> $VALCOMPS(\mathcal{H},x) = \emptyset$
 $\Rightarrow M(ocps or x$
=> $ANS(T_{FP}) = \mathcal{J}_{es}$

$$\Rightarrow VA2COMPS(H,x) \neq \emptyset$$

$$\Rightarrow M holts on x$$

$$\Rightarrow ANS(I fip) = No$$

Show not VALCOMPS is CF.

To do this, we lest the conditions for $\alpha \in \Delta^{\infty}$ to be a valid computation history (i.e. $\alpha \in VALCOMPS(M, x)$) $C_{1}) \quad \alpha = \# \alpha_{0} \# \alpha_{1} \# \dots \# \alpha_{N} \# \dots \#$

Described with a seg exp; $H = \# \Delta^* \# \Delta^* \dots$ $(a+b+D+9o+9,+9z+9o+9H)^*$

Tope alphabet

Of T.H.

D=GUT

U S# }

C2) Every $x_i \in (A-1+i)^*$ contains exactly one $q \in A$, starts + and ends with the B 7-1+i $\rightarrow 0+\rightarrow 0$ $\rightarrow 0+\rightarrow 0$ $\rightarrow 0+\rightarrow 0$

 C_3) $\propto_0 \in \{+ \leq u \leq (\Gamma - \{ \# \})^* \}$ $\Rightarrow \text{Reg exp.}$ Cy) $\propto N$ must be a halting config $< N \in$ | $+ uq_n v II : u_i v \in (\Gamma - \{ \# \})^2$ | $+ uq_n v II : u_i v \in (\Gamma - \{ \# \})^2$ | $\rightarrow \text{Regerp}$

(5) $\forall i \in G... \ \lambda-1 \quad \alpha_{i,\alpha_{i+1}}$ must follow $d; \stackrel{4}{\rightarrow} \alpha_{i+1}$

uaqbv# uabpv # }ww: wEp.by }

x: xi+1 is not CF

S(q,b) = (p,b,R)

VALCOMPS $(H,K) = \{ x \in \Delta^{\otimes} : c, \Lambda \dots \Lambda cs \}$ = $\{ x \in \Delta^{\otimes} : c, \} \cap \dots \cap \{ x \in \Delta^{\otimes} : cs \}$ = $L_1 \cap \dots \cap L_s$

VALCOMPS(M,x) = I, U I, U I, U IS)

REG REG REG IS CF

Show that Is is CF: Design a PDA which accepts Is

\[
 \alpha \in \text{L5} => \\ \frac{1}{2} \alpha; \alpha; \text{\(\pi\)} \\
 \alpha \\
 \al

Examples of inconsistencies?

Ex | # abb q, a # b bbqza# > mixcopying

a: $\alpha : + 1$ Ex 2 # abb q, a # ab qz bb# $S(q_1, a) = (q_2, a, L)$

PDA needs to look at a 3 letter wirelow (3 l.w.) to find a pain of inconsistent &:, &i+1:

1) At most one of the 3 l.w. contained a state q E Q and a miscapey

occurs (Ex1)
2) Both of the 3.L w. contain
9 EQ and S is violated (Fx2)

Folio 1 [7, G& f are all finite > The PDA can hardcoole every possible inconsistency

Inconsistercy 2

... bq, a ... # ... qz bb... #
$$S(q_1, a) = (q_2, a, L)$$

Problem with idea 1: False positives.

aoab

Idea ? Use the Stock to ensure that

4, x 42 # w, y wr

inconsistent 3.6.w.

x & y are the same distance

from their respective *

145

$$\Delta : \Delta : \xi \to X$$

$$\Rightarrow \Delta : \xi \to X$$

What's the point? PDA accepts

Ls > CF

VALCOMPS = L, ULz... ULS

REG CF

Given IAP create a PDA which accepts $VCOMPS \Rightarrow Create a CFG$ which accepts $VCOMPS \Rightarrow L(G) = VCOMPS = 1$ H (cops or \times .

=> XLL-CF is undecidable 1.