# Zapojení grafové neuronové sítě při návrhu obvodů

Průzkum systémů pro výběr nejlepšího kandidáta.

Autor: Bc. Vojtěch Vlach (xvlach22) Garant: Ing. Vojtěch Mrázek, Ph.D.

## Zadání

Od vedoucího získáte konfiguraci pro různé obvody v generátoru v Python (<u>github.com/ehw-fit/ariths-gen</u>).

Pomocí CGP **optimalizujte velikost obvodů**. Vyhodnoťte parametry navržených obvodů z pohledu ostatních chyb a velikosti. **Snažte se určit parametry obvodů ne simulací, ale vhodně natrénovanou grafovou neuronovou sítí.** 

Pozn: experimentální téma!

## Implementace #1 - Grafové neuronové sítě

- odhad aritmetické fitness a počtu použitých bloků pro daného kandidáta
- grafová regrese



Kandidát

Grafová reprezentace

# Implementace #2 - Bayesovský model pro odhad fitness

- využívá předchozí simulace daného kandidáta
- odhad nejlepšího kandidáta pro danou populaci
- částečná eliminace počtu simulací obvodů

# GNNs – Nastavení experimentů

- Dataset pro 3 bitovou násobičku (30\_000 kandidátů)
- Offline vyhodnocení
- Různé architektury sítí
  - grafové konvoluce
  - message passing
  - agregace skrz uzly
  - attention
- Metrika: úspěšnost výběru správného kandidáta
  - největší fitness, nejmíň bloků

## GNNs – Vyhodnocení experimentů

- Žádná zkoušená architektura se nebyla schopna dostatečně natrénovat.
- Úspěšnost výběru nejlepšího kandidáta kolem 10 %.

 Pravděpodobný problém:
Nedostatečná grafová reprezentace nebo výběr featur

## Odhad počtu použitých bloků



## Bayesovský přístup – Nastavení experimentů

- Beta(počet úspěšných, počet neúspěšných) = 0..1
- Fitness = poměr úspěšných simulací
- "S jakou jistotou je kandidát 1 lepší, než kandidát 2?" = soft decision
- Postupné vyloučení kandidátů
  - práh jistoty = hard decision



# Bayesovský přístup – Vyhodnocení experimentů

- Dataset populací a nejlepších kandidátů
- Offline výběr z každé populace
- Metrika: kolik simulací můžeme zanedbat?

#### 3 bitová násobička

- ušetřeno 12 % simulací

#### 4 bitová násobička

- ušetřeno 15 % simulací

#### 5 bitová násobička

- ušetřeno 23 % simulací

## Závěr

#### **GNNs**

- pro daný dataset se nepodařilo, bohužel...
- nedostatečná grafová reprezentace nebo výběr featur
- nutný dataset na každou funkci zvlášť
- nejistota výsledku pro neviděná data (vysoká fitness)

### Bayesovský přístup

- částečné urychlení výběru kandidáta
- možnost nastavování prahu (i za běhu)
- brzké vyloučení velmi špatných kandidátů
- čásová náročnost počítání integrálu

# Zdroje + další info

github.com/vlachvojta/BIN\_CGP\_with\_GNN

#### Trénování GNN

