Lista 4

Victor Sena Molero - 8941317

March 29, 2016

Ex 16. Provar (nos moldes da prova vista em aula para o algoritmo de Kruskal) que o algoritmo descrito a seguir constói uma árvore geradora de custo mínimo.

Prova. Seja G = (V, A) um grafo conexo, com custos c_a em cada aresta $a \in A$. Seja também a função c(H), com H sendo um grafo qualquer, o custo deste grafo, ou seja $c(H) = \sum_{a \in A(H)} c_a$. Queremos provar que o algorimo DESAPEGADO devolve uma árvore geradora mínima T do grafo G.

O algoritmo opera removendo as arestas de G que não desconectam o grafo atual em ordem não-crescente de custo. Seja R o conjunto das arestas removidas de G pelo algorimo, ou seja, o algoritmo retorna a árvore $T = G \setminus R$. Seja, também, T^* uma árvore geradora mínima do grafo G tal que $|T \cap T^*|$ é máximo, ou seja, a árvore geradora mínima de G com mais arestas em comum com T (todos os vértices de G sempre pertencem a $T \cap T^*$.

Devemos, primeiramente, provar que o T retornardo pelo algoritmo é uma árvore. Mas o algoritmo garante que T é conexo, pois o algoritmo nunca remove uma ponte do grafo atual. Além disso, se fosse possível remover mais uma aresta de T sem desconectá-lo, o algoritmo teria removido, pois ele passa por todas as arestas de G e remove todas as que

não desconectam o grafo.

Agora vamos provar que T é de fato mínima, ou seja, tem custo mínimo. Para isso, basta escolher o conjunto de arestas $R^* = G \setminus T^*$, ou seja, todas as arestas de G que não pertencem à árvore T^* que, por hipótese, é mínima. Se $R^* = R$, então $T = T^*$ e T é uma árvore geradora mínima. Vamos supor, por absurdo, que $R^* \neq R$.

Para isso, escolhemos a aresta $\alpha \in R$ tal que $\alpha \notin R^*$ e α é um dos de custo máximo dentre todos os possíveis. Além disso, escolhemos a aresta $\beta \in R^*$ tal que $\beta \notin R$ e β é um dos de custo máximo dentre todos os possíveis.