

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II.

doi: 10.18637/jss.v000.i00

Single-Source Capture-Recapture Models With singleRcapture

Piotr Chlebicki

Maciej Beresewicz

Stockholm University

Poznań University of Economics and Business Statistical Office in Poznań

Abstract

Estimating population size is an important issue in official statistics, social sciences and natural sciences. One way to approach this problem is to use capture-recapture methods, which can be classified according to the number of sources used, the main distinction being between methods based on one source and those based on two or more sources. In this presentation we will introduce the **singleRcapture** R package for fitting SSCR models. The package implements state-of-the-art models as well as some new models proposed by the authors (e.g. extensions of zero-truncated one-inflated and one-inflated zero-truncated models). The software is intended for users interested in estimating the size of populations, particularly those that are difficult to reach or for which information is available from only one source and dual/multiple system estimation cannot be used.

Keywords: population size estimation, truncated distributuons, count regression models, R.

1. Introduction

1.1. Literature review

This work is supported by the National Science Center, OPUS 20 grant no. 2020-/-39/-B/-HS4/-00941 Towards census-like statistics for foreign-born populations – quality, data integration and estimation

The subject of this workshop is the **singleRcapture** package and its lightweight extension that allows for integration with other R packages called **singleRcaptureExtra**.

The package is available on CRAN: CRAN.R-project.org/package=singleRcapture while the extension is available on: https://github.com/ncn-foreigners/singleRcaptureExtra. The **singleRcapture** package is an R language package that focuses on implementing state of the art methods for frequentist point and interval estimation of size of closed populations in single-source capture-recapture (SSCR) setting (e.g. estimation of the population size of irregular migrants at set time point in a given area).

The beginning of inference in single source capture-recapture dates back to the seminal van der Heijden, Bustami, Cruyff, Engbersen, and van Houwelingen (2003) paper in which the zero truncated poisson model was applied to study the size of population of irregular migrants in fours cities in Netherlands.

1.2. How do we estimate population size with only one register? The basics of SSCR

Let Y_k represent the number of times k-th unit was observed in source data. Clearly, we don not know how often $Y_k = 0$ and to find the total population size N we need to estimate it. In general, we assume that conditional distribution of Y_k given a~vector of covariates \boldsymbol{x}_k follows some version of zero truncated count data distribution. Knowing the parameters of the distribution we may estimate the population size using Horwitz-Thompson type estimator:

$$\hat{N} = \sum_{k=1}^{N} \frac{I_k}{\mathbb{P}[Y_k > 0 | \boldsymbol{X}_k]} = \sum_{k=1}^{N_{obs}} \frac{1}{\mathbb{P}[Y_k > 0 | \boldsymbol{X}_k]},$$

where $I_k := \mathcal{I}_{\mathbb{N}}(Y_k)$, and maximum likelihood estimate of N is obtained after substituting regression estimates for $\mathbb{P}[Y_k > 0 | \boldsymbol{x}_k]$ into the equation above. Most of the methods relate to poisson processes.

The analytic variance estimation is then done by computing two parts of the decomposition due to the law of total variance:

$$\operatorname{var}[\hat{N}] = \mathbb{E}\left[\operatorname{var}\left[\hat{N}|I_1,\dots,I_n\right]\right] + \operatorname{var}\left[\mathbb{E}[\hat{N}|I_1,\dots,I_n]\right],\tag{1}$$

where the first addend is by the multivariate δ method seen to be:

$$\mathbb{E}\left[\operatorname{var}\left[\hat{N}|I_{1},\ldots,I_{n}\right]\right] = \left.\left(\frac{\partial(N|I_{1},\ldots,I_{N})}{\partial\boldsymbol{\beta}}\right)^{T}\operatorname{cov}\left[\boldsymbol{\beta}\right]\left(\frac{\partial(N|I_{1},\ldots,I_{N})}{\partial\boldsymbol{\beta}}\right)\right|_{\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}},\tag{2}$$

while the later part of the decomposition in (1) is under the assumption of independence of I_k 's and after some omitted simplifications one sees that this is optimally estimated via:

$$\operatorname{var}\left(\mathbb{E}(\hat{N}|I_1,\dots,I_n)\right) = \operatorname{var}\left(\sum_{k=1}^N \frac{I_k}{\mathbb{P}(Y_k > 0)}\right)$$

$$\approx \sum_{k=1}^{N_{obs}} \frac{1 - \mathbb{P}(Y_k > 0)}{\mathbb{P}(Y_k > 0)^2},$$
(3)

which forms the basis of confidence interval creation. Confidence intervals are usually constructed under the assumption of (asymptotic) normality of \hat{N} or asymptotic normality of $\ln(\hat{N}-N)$ (or log normality of \hat{N}). The latter of which is an attempt to address a common

criticism of student type confidence intervals in SSCR, that is a possibly skewed distribution of \hat{N} , and results in the confidence interval of the form (for confidence level of α):

$$\left(N_{obs} + \frac{\hat{N} - N_{obs}}{G}, N_{obs} + \left(\hat{N} - N_{obs}\right)G\right),\,$$

where:

$$G = \exp\left(z\left(1 - \frac{\alpha}{2}\right)\sqrt{\ln\left(1 + \frac{\widehat{\text{Var}}(\hat{N})}{\left(\hat{N} - N_{obs}\right)^2}\right)}\right).$$

The estimator \hat{N} is best interpreted as being an estimator for the total number of <u>observable</u> units in the population since we have no means of estimating the number of units in the population for which the probability of being included in the data is 0 cf. van der Heijden et al. (2003).

Existing implementations

There are some packages implementing zero truncated count data models such as **VGAM** and **countreg** and they can be integrated within the **singleRcapture** ecosystem by the lightweight extention **singleRcaptureExtra**.

2. Basic usage

2.1. The estimatePopsize function

The main function that **singleRcapture** is built around is **estimatePopsize**. The leading design principle was to make using **estimatePopsize** as close to standard **stats::glm** as possible. The most important arguments are:

- formula the main formula (i.e for the Poisson λ parameter),
- data the data.frame (or data.frame coercible) object,
- model either a function a string or a family class object specifying which model should be used possible values are listed in documentation. The supplied argument should have the form model = "ztpoisson", model = ztpoisson or model = ztpoisson(lambdaLink = "log") the third way is the only one where the user may (but doesn't have to) select a link function.
- method numerical method used to fit regression IRLS or optim,
- popVar a method for estimating variance of \hat{N} and confidence interval creation (either bootstrap, analytic or skipping the estimation entirely),
- controlMethod, controlModel, controlPopVar control parameters for numerical fitting, specifying additional formulas (inflation, dispersion) and population size estimation respectively. We will tackle these arguments separately,

• offset – a matrix of offset values with number of columns matching the number of distribution parameters providing offset values to each of linear predictors.

With the formula, data, model being the three arguments which must be provided in estimatePopsize syntax.

Example with R code

The package should be installed from CRAN https://cran.r-project.org/package=singleRcapture with the usual code:

```
R> install.packages("singleRcapture")
```

To showcase the main function let us recreate the zero truncated Poisson model from van der Heijden et al. (2003) on the same data included in the package under the name netherlandsimmigrant:

```
R> library(singleRcapture)
R> head(netherlandsimmigrant)
```

	capture	gender	age		reason		${\tt nation}$
1	1	${\tt male}$	<40yrs	Other	reason	North	${\tt Africa}$
2	1	${\tt male}$	<40yrs	Other	reason	North	Africa
3	1	${\tt male}$	<40yrs	Other	reason	North	Africa
4	1	${\tt male}$	<40yrs	Other	reason		Asia
5	1	${\tt male}$	<40yrs	Other	reason		Asia
6	2	male	<40yrs	Other	reason	North	Africa

This data set contains information about immigrants in four cities (Amsterdam, Rotterdam, The Hague and Utrecht) in Netherlands that have been staying in the country illegally in 1995 and have appeared in police records that year. The number of times each individual appeared in the records is included in the capture variable with the available covariates being gender, age, reason, nation being respectively the persons gender and age, reason for being captured and region of the world from which each person comes:

R> summary(netherlandsimmigrant)

```
capture
                    gender
                                    age
                                                       reason
Min.
       :1.000
                 female: 398
                               <40yrs:1769
                                              Illegal stay: 259
1st Qu.:1.000
                 male :1482
                               >40yrs: 111
                                              Other reason:1621
Median :1.000
Mean
       :1.162
3rd Qu.:1.000
Max.
       :6.000
                    nation
American and Australia: 173
```

Asia : 284
North Africa :1023

Rest of Africa : 243 Surinam : 64 Turkey : 93

The basic syntax is indeed vary similar to that of glm with the output of the summary method being also quite simmilar except for the additional results of the population size estimates:

```
R> basicModel <- estimatePopsize(</pre>
    formula = capture ~ gender + age + nation,
            = ztpoisson(),
    data
              = netherlandsimmigrant
+ )
R> summary(basicModel)
Call:
estimatePopsize.default(formula = capture ~ gender + age + nation,
    data = netherlandsimmigrant, model = ztpoisson())
Pearson Residuals:
              1st Qu.
                           Median
      Min.
                                         Mean
                                                  3rd Qu.
-0.486442 -0.486442 -0.298080 0.002093 -0.209444 13.910844
Coefficients:
For linear predictors associated with: lambda
                       Estimate Std. Error z value P(>|z|)
(Intercept)
                          -1.3411 0.2149 -6.241 4.35e-10 ***
gendermale
                         0.3972
                                      0.1630 2.436 0.014832 *
                         age>40yrs
nationAsia
nationNorth Africa
                         0.1900
                                      0.1940 0.979 0.327398

      nationRest of Africa
      -0.9106
      0.3008
      -3.027
      0.002468
      **

      nationSurinam
      -2.3364
      1.0136
      -2.305
      0.021159
      *

      nationTurkey
      -1.6754
      0.6028
      -2.779
      0.005445
      **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AIC: 1712.901
BIC: 1757.213
Residual deviance: 1128.553
Log-likelihood: -848.4504 on 1872 Degrees of freedom
Number of iterations: 8
Population size estimation results:
Point estimate 12690.35
```

```
Observed proportion: 14.8% (N obs = 1880)
Std. Error 2808.169
95% CI for the population size:
          lowerBound upperBound
            7186.444
normal
                       18194.26
            8431.275
                       19718.32
logNormal
95% CI for the share of observed population:
          lowerBound upperBound
normal
           10.332927
                       26.16037
logNormal
            9.534281
                       22.29793
```

One point which we should make while analysing this data set is that there is a disproportionate number of individuals who were observed only once (see table bellow):

R> table(netherlandsimmigrant\$capture)

```
1 2 3 4 5 6
1645 183 37 13 1 1
```

Since there is a reasonable suspicion that the act of observing a unit in the dataset may led to undesirable consequences from the point of view of the subject of the observation (here possible deportation, detainment or similar). For those reason one should

Warning in estimatePopsize.default(formula = capture ~ nation, model = oiztgeom(omegaLink NOTE: Second derivative test failing does not

necessarily mean that the maximum of score function that was found numerically is invalid since $R^{\hat{}}k$ is not a bounded space.

Additionally in one inflated and hurdle models second derivative test often fails even on

Warning in estimatePopsize.default(formula = capture ~ nation, model = oiztgeom(omegaLink = "cloglog"), : Switching from observed information matrix to Fisher information matrix because hessian of log-likelihood is not negative define.

R> summary(modelInflated)

```
Call:
estimatePopsize.default(formula = capture ~ nation, data = netherlandsimmigrant,
    model = oiztgeom(omegaLink = "cloglog"), popVar = "bootstrap",
     controlModel = controlModel(omegaFormula = ~gender + age),
    controlPopVar = controlPopVar(bootType = "semiparametric"))
Pearson Residuals:
    Min. 1st Qu. Median Mean 3rd Qu.
                                                       Max.
-0.41643 -0.41643 -0.30127 0.00314 -0.18323 13.88376
Coefficients:
For linear predictors associated with: lambda
                      Estimate Std. Error z value P(>|z|)
(Intercept) -1.2552 0.2149 -5.840 5.22e-09 ***
nationAsia -0.8193 0.2544 -3.220 0.00128 **
nationNorth Africa 0.2057 0.1838 1.119 0.26309
nationRest of Africa -0.6692 0.2548 -2.627 0.00862 **
nationSurinam -1.5205 0.6271 -2.425 0.01532 *
                       -1.1888 0.4343 -2.737 0.00619 **
nationTurkey
-----
For linear predictors associated with: omega
             Estimate Std. Error z value P(>|z|)
(Intercept) -1.4577 0.3884 -3.753 0.000175 ***
gendermale -0.8738 0.3602 -2.426 0.015267 * age>40yrs 1.1745 0.5423 2.166 0.030326 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
AIC: 1677.125
BIC: 1726.976
Residual deviance: 941.5416
Log-likelihood: -829.5625 on 3751 Degrees of freedom
Number of iterations: 10
______
Population size estimation results:
Point estimate 6699.953
Observed proportion: 28.1% (N obs = 1880)
Boostrap sample skewness: 1.621389
O skewness is expected for normally distributed variable
Bootstrap Std. Error 1719.353
95% CI for the population size:
```

```
lowerBound upperBound
5001.409 11415.969
95% CI for the share of observed population:
lowerBound upperBound
16.46816 37.58941
```

Methods

```
R> (popEst <- popSizeEst(basicModel))</pre>
```

Point estimate: 12690.35

Variance: 7885812

95% confidence intervals:

lowerBound upperBound normal 7186.444 18194.26 logNormal 8431.275 19718.32

the popEst object is of the popSizeEstResults class and list type and contains the following fields:

- pointEstimate, variance numerics containing point estimate and variance of this estimate.
- confidenceInterval a data.frame with confidence intervals.
- boot If bootstrap was performed a numeric vector containing the \hat{N} values from the bootstrap, a character vector with value "No bootstrap performed" otherwise.
- control a controlPopVar object with controls used to obtained the object.

```
R> dfb <- dfbeta(basicModel)
R> apply(dfb, 2, quantile)
```

```
(Intercept)
                     gendermale
                                    age>40yrs
                                                 nationAsia nationNorth Africa
0%
     -0.0099087523 -0.0905349877 -0.0200100688 -9.555875e-02
                                                                -9.660498e-02
25% -0.0015325874 -0.0007770049 0.0001792919 -5.288544e-04
                                                                -8.417624e-04
50%
     0.0001906118 -0.0002829978 0.0003789034 6.642632e-05
                                                                -1.768274e-04
75%
     0.0005208531 0.0010171840 0.0006909682 1.199821e-04
                                                                  8.674555e-05
100% 0.0866193890 0.0221346456 0.1600608785 1.799137e-01
                                                                  3.125955e-02
    nationRest of Africa nationSurinam nationTurkey
0%
           -9.449682e-02 -9.313964e-02 -9.619821e-02
25%
           -2.436010e-04 -6.616693e-05 -2.199799e-04
            2.984337e-05 1.969480e-05 7.918067e-05
50%
75%
            8.278833e-05 3.543883e-05 1.427684e-04
100%
            1.097872e-01 9.933829e-01 3.209798e-01
R> dfp <- dfpopsize(basicModel, dfbeta = dfb)</pre>
R> summary(dfp)
```

2.2. Marginal frequencies

A popular method of testing the model fit in single source capture-recapture studies is comparing the fitted marginal frequencies $\sum_{j=1}^{N_{obs}} \hat{\mathbb{P}}[Y_j = k | \boldsymbol{x}_j, Y_j > 0]$ with the observed marginal

frequencies
$$\sum_{j=1}^{N} \mathcal{I}_{\{k\}}(Y_k) = \sum_{j=1}^{N_{obs}} \mathcal{I}_{\{k\}}(Y_k)$$
 for $k \geq 1$. If a fitted model bears sufficient resembles to the contract of th

blance to the real data collection process these quantities should be quite close and both G and χ^2 tests may be employed in order to test the statistical significance of the discrepancy with the following **singleRcapture** syntax:

```
R> margFreq <- marginalFreq(basicModel)
R> summary(margFreq, df = 1, drop15 = "group")
```

Test for Goodness of fit of a regression model:

```
Test statistics df P(>X^2)
Chi-squared test 50.06 1 1.5e-12
G-test 34.31 1 4.7e-09
```

```
Cells with fitted frequencies of < 5 have been grouped Names of cells used in calculating test(s) statistic: 1 2 3
```

where the drop15 argument is used to indicate how to handle the cells with less than 5 fitted observations, note however that currently there is no continuity correction.

2.3. Plots

The singleRStaticCountData class has a plot method implementing several types of quick demonstrative plots such as the rootogram Kleiber and Zeileis (2016) for comparing the fitted and marginal frequencies which we can get with the syntax:

```
R> plot(basicModel, plotType = "rootogram")
```


The comparison of deletion effect on population size estimate and inverse probability weights:

and the plot that showcases stratisfied stimates:

R> par(mar = c(2.5, 8.5, 4.1, 2.5), cex.main = .7, cex.lab = .6) R> plot(basicModel, plotType = "strata")

Confidence intervals and point estimates for specified sub populations Observed population sizes are presented as navy coloured points

the information which was supplied to the plot function above comes from the $\mathtt{stratifyPopsize}$ method:

R> stratifyPopsize(basicModel)

	Observed	Estimated	${\tt ObservedPercentage}$		
1	398	3811.0924	10.443200	1153.9749	1549.34322
2	1482	8879.2613	16.690578	1812.0813	5327.64720
3	1769	10506.8994	16.836556	2017.2314	6553.19848
4	111	2183.4543	5.083688	1132.4512	-36.10932
5	173	708.3688	24.422308	132.8183	448.04969
6	284	2742.3147	10.356215	655.0929	1458.35623
7	1023	3055.2033	33.483860	201.2387	2660.78263
8	243	2058.1533	11.806701	493.2612	1091.37903
9	64	2386.4544	2.681803	2380.1882	-2278.62875
10	93	1739.8592	5.345260	1008.1794	-236.13602
	normalUpp	oerBound log	gNormalLowerBound lo	ogNormalUp	perBound
1	60	72.8415	2189.0439	(3902.140
2	124	130.8754	6090.7752	13	3354.889
3	144	160.6002	7359.4140	15	5426.465
4	44	103.0179	872.0130	į	5754.881
5	9	968.6878	504.6086		1037.331
6	40	26.2732	1755.2548	4	1391.590
7	34	149.6240	2697.4900	3	3489.333
8	30	24.9276	1318.7466	3	3305.786
9	70	51.5375	505.2460	12	2288.008

10	3715.8544 63	38.0497	5068.959
	name	e confLevel	
1	gender==female	e 0.05	
2	gender==male	e 0.05	
3	age==<40yr	s 0.05	
4	age==>40yr	s 0.05	
5	nation == American and Australia	a 0.05	
6	nation==Asia	a 0.05	
7	nation==North Africa	a 0.05	
8	nation == Rest of Africa	a 0.05	
9	nation==Surina	m 0.05	
10	nation==Turke	y 0.05	

The full list of plot types along with the list of optional arguments which may be passed from the call to the plot method down to base R and graphics functions is listed in the help file:

R> ?plot.singleRStaticCountData

$The \ {\tt stratifyPopsize} \ method$

As previously showcased the stratifyPopsize may be used to estimate the population sizes for different stratas using the same fitted regression model as previously computed using the call to the estimatePopsize function. The method for singleRStaticCountData class accepts three optional parameters stratas, alpha, cov which correspond to specification of sub populations, the significance levels and the covariance matrix that will be used to compute standard errors.

The full call is of the type:

```
R> library(sandwich)
R> stratifyPopsize(
   object = basicModel,
   stratas = ~ gender / (nation + age),
   alpha = rep(c(.1, .2, .3, .4, .5))
                length.out = 18),
           = vcovHC(basicModel, type = "HC4")
   cov
  Observed Estimated ObservedPercentage
                                      StdError normalLowerBound
      398 3811.0924 10.443200 1282.10163 1702.22285
1
     1482 8879.2613
                          16.690578 1999.39536
2
                                                   6316.93303
       67 328.8780
                          20.372297 84.81957
3
                                                    240.96814
      106 379.4908
                          27.932167 83.91530
                                                    308.86588
4
5
       62 775.9054
                           7.990665 303.01257
                                                    571.52651
       222 1966.4093
                          11.289613 603.18021
6
                                                    974.26616
       169 644.0545
                           26.240014 116.46407
                                                     494.79982
7
       854 2411.1488
                          35.418801 172.33202
                                                   2232.53812
8
       65 682.1776
                            9.528310 218.28791
                                                     498.46186
9
10
       178 1375.9757
                          12.936275 369.03697
                                                    1127.06403
11
       20 931.4690
                            2.147146 985.54387
                                                    -689.60644
12
       44 1454.9854
                            3.024085 1520.27552
                                                    -493.32603
       15 448.6079
                            3.343677 300.30767
13
                                                     137.35901
14
       78 1291.2513
                            6.040652 733.06058
                                                     674.29194
                          11.924940 937.42764
15
       378 3169.8272
                                                    2537.54191
```

16	1391 7337.0721	18.958516	1313.47365	5176.60023
17	20 641.2651	3.118835	453.82545	59.66441
18	91 1542.1892	5.900703	887.97956	621.85750
	normalUpperBound logNormalL	owerBound 1	logNormalUppe	rBound
1	5919.9619	2275.6410	660:	2.1678
2	11441.5895	6745.5664	1187	7.8932
3	416.7878	255.7692	430	0.3013
4	450.1157	318.4739	45	8.0301
5	980.2842	604.5269	100	1.4205
6	2958.5525	1225.6476	325	3.9046
7	793.3092	517.5628	810	6.4495
8	2589.7594	2242.8856	259	9.7970
9	865.8933	527.2996	888	8.9423
10	1624.8873	1155.7975	164	5.7331
11	2552.5444	234.3584	389	5.6394
12	3403.2969	502.1054	438	9.8993
13	759.8568	241.6446	84	4.5624
14	1908.2106	836.6593	201	8.2367
15	3802.1126	2617.4719	385	8.4185
16	9497.5440	5543.4788	990	5.3779
17	1222.8658	288.7316	145	6.2671
18	2462.5208	899.8794	269	4.5402
		1	name confLeve	1
1		gender==fen	male 0.	1
2		gender==n	male 0.5	2
3	<pre>genderfemale:nationAmerican</pre>	and Austra	alia 0.	3
4	gendermale:nationAmerican	and Austra	alia 0.	4
5	genderfem	ale:nation/	Asia 0.	5
6	genderm	ale:nation/	Asia 0.	1
7	genderfemale:nati	onNorth Afi	rica 0.5	2
8	gendermale:nati	onNorth Afi	rica 0.3	3
9	${\tt genderfemale:nation}$	Rest of Afi	rica 0.4	4
10	gendermale:nation	Rest of Afi	rica 0.	5
11	genderfemale	:nationSuri	inam 0.	1
12	gendermale	:nationSuri	inam 0.1	2
13	genderfemal	e:nationTu	rkey 0.3	3
14	gendermal	e:nationTu	rkey 0.4	4
15	genderfe	male:age<40	Dyrs 0.	5
16	gender	male:age<40	Oyrs 0.	1
17	genderfe	male:age>40	Oyrs 0.3	2
18	gender	male:age>40	Oyrs 0.3	3

where we used the vcovHC method for singleRStaticCountData class from the sandwitch package, different significance levels for confidence intervals in each strata and a formula to specify that we wanted estimates for both males and females subdivided by nation and age. The stratas parameter may be specified either as:

- a formula with empty left hand side which we have seen here,
- a logical vector with number of entries equal to number of rows in the dataset in which case only one strata will be created,
- a (named) list where each element is a logical vector, names of the list will be used to specify names variable in returned object,

- a vector of names of explanatory variables which will result in every level of explanatory variable having its own sub population for each variable specified,
- or not supplied at all in which case stratas will correspond to levels of each factor in the data without any interactions (string vectors will be converted to factors for the convenience of the user).

For plotting only the logNormal type of confidence interval is used since the studentized confidence intervals often result in negative lower bounds.

3. Detailed information

3.1. Fitting method

As previously showcased the **singleRcapture** package supports modelling (linear) dependence on covariates of all parameters. To that end a modified IRLS algorithm is employed, full details are available in Yee (2015). In order to employ the algorithm a modified model matrix is created X_{vlm} at call to estimatePopsize. In the context of the models implemented in singleRcapture this matrix can be written as:

$$\boldsymbol{X}_{vlm} = \begin{pmatrix} \boldsymbol{X}_1 & \boldsymbol{0} & \dots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{X}_2 & \dots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \dots & \boldsymbol{X}_p \end{pmatrix}$$
(4)

where each X_i corresponds to a model matrix associated with user specified formula.

In the context of multi-parameter families we have a matrix of linear predictors η instead of a vector, with the number of columns matching the number of parameters in the distribution.

"Weights" are then modified to be information matrices $\mathbb{E}\left[-\frac{\partial^2 \ell}{\partial \boldsymbol{\eta}_{(k)}^T \partial \boldsymbol{\eta}_{(k)}}\right]$ where $\boldsymbol{\eta}_{(k)}$ is the k'th row of $\boldsymbol{\eta}$, while in the usual IRLS they are scalars $\mathbb{E}\left[-\frac{\partial^2 \ell}{\partial \eta_k^2}\right]$ which is often just $-\frac{\partial^2 \ell}{\partial \eta^2}$.

- 1. Initialize with iter $\leftarrow 1, \eta \leftarrow \text{start}, W \leftarrow I, \ell \leftarrow \ell(\beta)$.
- 2. Store values from the previous step: $\ell_- \leftarrow \ell, W_- \leftarrow W, \beta_- \leftarrow \beta$ (the last assignment is omitted during the first iteration), and assign values in current iteration $\boldsymbol{\eta} \leftarrow \boldsymbol{X}_{\text{vlm}}\boldsymbol{\beta} + \boldsymbol{o}, \boldsymbol{W}_{(k)} \leftarrow \mathbb{E}\left[-\frac{\partial^2 \ell}{\partial \boldsymbol{\eta}_{(k)}^T \partial \boldsymbol{\eta}_{(k)}}\right], Z \leftarrow \boldsymbol{\eta}_{(k)} + \frac{\partial \ell}{\partial \boldsymbol{\eta}_{(k)}} \boldsymbol{W}_{(k)}^{-1} - \boldsymbol{o}_{(k)}.$
- 3. Assign current coefficient value: $\beta \leftarrow (X_{\text{vlm}}WX_{\text{vlm}})^{-1}X_{\text{vlm}}WZ$.
- 4. If $\ell(\beta) < \ell(\beta_-)$ try selecting the smallest value h such that for $\beta_h \leftarrow 2^{-h} (\beta + \beta_-)$ the inequality $\ell(\beta_h) > \ell(\beta_-)$ holds if this is successful $\beta \leftarrow \beta_h$ else stop the algorithm.
- 5. If convergence is achieved or iter is higher than maxiter end algorithm, else iter← 1+iter and return to step 2.

3.2. The estimatePopsizeFit function

```
R> X <- matrix(data = 0, nrow = 2 * NROW(farmsubmission), ncol = 7)
R> X[1:NROW(farmsubmission), 1:4] <- model.matrix(</pre>
+ ~ 1 + log_size + log_distance + C_TYPE,
+ farmsubmission
+ )
R > X[-(1:NROW(farmsubmission)), 5:7] < X[1:NROW(farmsubmission), c(1, 3, 4)]
R> # this attribute tells the function which elements of the design matrix
R> # correspond to which linear predictor
R > attr(X, "hwm") <- c(4, 3)
R> start <- glm.fit(# get starting points</pre>
    y = farmsubmission$TOTAL_SUB,
  x = X[1:NROW(farmsubmission), 1:4],
  family = poisson()
+ )$coefficients
R> res <- estimatePopsizeFit(</pre>
                = farmsubmission$TOTAL_SUB,
    У
   X
                = X.
              = "IRLS",
  method
+ priorWeights = 1,
               = ztoigeom(),
= controlMethod(silent = TRUE),
+ family
   control
+ coefStart = c(start, 0, 0, 0),
+ etaStart = matrix(X %*% c(start, 0, 0, 0), ncol = 2),
+ offset = cbind(rep(0, NROW(farmsubmission)),
                          rep(0, NROW(farmsubmission)))
+ )# extract results
R> 11 <- ztoigeom()$makeMinusLogLike(y = farmsubmission$TOTAL_SUB, X = X)
R> print(c(res$beta, -ll(res$beta), res$iter))
[1] -2.784523e+00 6.170270e-01 -6.455925e-02 5.346108e-01 -3.174491e+00
[6] 1.280589e-01 -1.086452e+00 -1.727876e+04 1.500000e+01
R> # Compare with optim call
R> res2 <- estimatePopsizeFit(</pre>
   y = farmsubmission$TOTAL_SUB,
+ X = X
+ method = "optim",
+ priorWeights = 1,
+ family = ztoigeom(),
  coefStart = c(start, 0, 0, 0),
+ control = controlMethod(silent = TRUE),
    offset = cbind(rep(0, NROW(farmsubmission)), rep(0, NROW(farmsubmission)))
+ )# extract results
R> c(res2$beta, -11(res2$beta), res2$iter)
```

3.3. Avaiable models

The full list of implemented models in **singleRcapture** along with the expressions for probability density functions and point estimates is found in the collective help file for all family functions:

R> ?ztpoisson

Here we limit ourselves to just listing the family functions:

• Zero-truncated and zero-one-truncated Poisson, geometric, NB type II regression where the untruncated distribution is parameterized as:

$$\mathbb{P}[Y = y | \lambda, \alpha] = \frac{\Gamma(y + \alpha^{-1})}{\Gamma(\alpha^{-1}) y!} \left(\frac{\alpha^{-1}}{\alpha^{-1} + \lambda}\right)^{\alpha^{-1}} \left(\frac{\lambda}{\lambda + \alpha^{-1}}\right)^{y}.$$

• Zero-truncated one-inflated (ztoi) modifications distributions where the new probability \mathbb{P}^* measure is defined in terms of count data measure \mathbb{P} with support on $\mathbb{N} \cup \{0\}$ as:

$$\mathbb{P}^*[Y = y] = \begin{cases} \mathbb{P}[Y = 0] & y = 0, \\ \omega (1 - \mathbb{P}[Y = 0]) + (1 - \omega) \mathbb{P}[Y = 1] & y = 1, \\ (1 - \omega) \mathbb{P}[Y = y] & y > 1, \end{cases}$$
$$\mathbb{P}^*[Y = y | Y > 0] = \omega \mathcal{I}_{\{1\}}(y) + (1 - \omega) \mathbb{P}[Y = y | Y > 0].$$

• One-inflated zero-truncated (oizt) modifications distributions where the new probability \mathbb{P}^* measure is defined as:

$$\mathbb{P}^*[Y = y] = \omega \mathcal{I}_{\{1\}}(y) + (1 - \omega)\mathbb{P}[Y = y],$$

$$\mathbb{P}^*[Y = y | Y > 0] = \omega \frac{\mathcal{I}_{\{1\}}(y)}{1 - (1 - \omega)\mathbb{P}[Y = 0]} + (1 - \omega)\frac{\mathbb{P}[Y = y]}{1 - (1 - \omega)\mathbb{P}[Y = 0]}.$$

• Generalized Chao's and Zelterman's estimators via logistic regression on variable Z defined as Z=1 if Y=2 and Z=0 if Y=1 with $Z\sim b(p)$ where $\mathrm{logit}(p)=\ln(\lambda/2)$ for poisson parameter λ ,

$$\hat{N} = N_{obs} + \sum_{k=1}^{f_1 + f_2} \left(2 \exp\left(\boldsymbol{x}_k \hat{\boldsymbol{\beta}}\right) + 2 \exp\left(2\boldsymbol{x}_k \hat{\boldsymbol{\beta}}\right) \right)^{-1}, \qquad \text{(Chao's estimator)}$$

$$\hat{N} = \sum_{k=1}^{N_{obs}} \left(1 - \exp\left(-2 \exp\left(\boldsymbol{x}_k \hat{\boldsymbol{\beta}}\right)\right) \right)^{-1}. \qquad \text{(Zelterman's estimator)}$$

• Alternative approaches to modelling one-inflation that mimic hurdle models where the first type zero truncated hurdle model (ztHurdle) is defined as:

$$\mathbb{P}^*[Y=y] = \begin{cases} \frac{\mathbb{P}[Y=0]}{1-\mathbb{P}[Y=1]} & y=0, \\ \pi(1-\mathbb{P}[Y=1]) & y=1, \\ (1-\pi)\frac{\mathbb{P}[Y=y]}{1-\mathbb{P}[Y=1]} & y>1, \end{cases}$$

$$\mathbb{P}^*[Y=y|Y>0] = \pi \mathcal{I}_{\{1\}}(y) + (1-\pi)\mathcal{I}_{\mathbb{N}\backslash\{1\}}(y) \frac{\mathbb{P}[Y=y]}{1-\mathbb{P}[Y=0] - \mathbb{P}[Y=1]}$$

• The Hurdle zero truncarted (Hurdlezt) is defined as:

$$\begin{split} \mathbb{P}^*[Y=y] &= \begin{cases} \pi & y=1,\\ (1-\pi)\frac{\mathbb{P}[Y=y]}{1-\mathbb{P}[Y=1]} & y \neq 1, \end{cases} \\ \mathbb{P}^*[Y=y|Y>0] &= \begin{cases} \pi\frac{1-\mathbb{P}[Y=1]}{1-\mathbb{P}[Y=0]-\mathbb{P}[Y=1]} & y=1,\\ (1-\pi)\frac{\mathbb{P}[Y=y]}{1-\mathbb{P}[Y=0]-\mathbb{P}[Y=1]} & y>1. \end{cases} \end{split}$$

Key takeaways of different models

- The dispersion parameter α in the negative binomial type models is often interpreted as measuring the severeness of unobserved heterogeneity in the underlying poisson process cf. Cruyff and van der Heijden (2008). When using any truncated negative binomial model the hope is that due to the class of models considered the consistency is not lost despite the lack of information.
- While not discussed in the literature yet (to the best of the knowledge of the authors) the interpretation of α being heterogeneous across the population (specified in controlModel) would be that the unobserved heterogeneity affects the accuracy of the prediction for the dependent variable Y more severely than others.
- The geometric model (negative binomial with $\alpha=1$) is singled out in the package and often considered in the literature due to inherent computational issues with negative binomial models which are exasperated by the fact that data in SSCR is usually of somewhat low quality. Sparseness of the data is in particular a common issue in SSCR and a big issue for all numerical methods for fitting the (zero truncated) negative binomial model.
- The extra mass ω in the inflated models is an important addition to the researcher's toolbox in SSCR since the inflation at y=1 is likely to occur in many types of applications. For example in estimating the number active people who committed criminal acts in a given time period being observed naturally induces a risk of no longer being able to be observed for all units with possibility of arrest. One constraint present in modelling via inflated models is that trying to include both the possibility of one inflation and one deflation leads to both numerical and theoritical problems since the parameter space (of (ω, λ) or $(\omega, \lambda, \alpha)$) is then a much more complicated set.

- Hurdle models are another approach to modelling the one-inflation, they can also model deflation as well as both inflation and deflation simultaneously so they are more flexible and situationally the Hurdle zero truncated models seem to be more numerically stable.
- Although interpretation of regression parameters tends to be somewhat overlooked in SSCR studies we should point out that interpretation of the ω inflation parameter is more convenient that the interpretation of the π probability parameter. Additionally the interpretation of the λ parameter in (one) inflated models conforms to the intuition that given that unit k comes from the non-inflated part of the population then it follows a poisson distribution (respectively geometric or negative binomial) with the λ parameter (or λ , α), in hurdle models one loses that interpretation.
- It is somewhat interesting is that the estimates from Hurdle zero truncated and one inflated zero truncated models are "usually" quite close to one another.

3.4. Structure of a family function

• makeMinusLogLike - A factory function for creating the:

$$\ell(oldsymbol{eta}), rac{\partial \ell}{\partial oldsymbol{eta}}, rac{\partial^2 \ell}{\partial oldsymbol{eta}^T \partial oldsymbol{eta}}$$

functions from y vector and X_{vlm} the argument deriv with possible values in c(0, 1, 2) provides which derivative to return with the default 0 being just the minus log-likelihood.

- links List with link functions.
- mu.eta, variance Functions of linear predictors that return expected value and variance. There is a 'type' argument with 2 possible values "trunc" and "nontrunc" that specifies whether to return $\mathbb{E}[Y|Y>0]$, var[Y|Y>0] or $\mathbb{E}[Y]$, var[Y] respectively, also the deriv argument with values in c(0, 1, 2) is used for indicating the derivative with respect to the linear predictors with is used for providing standard error in predict method.
- family Character that specifies name of the model.
- valideta, validmu For now only returns true. In near future will be used to check whether applied linear predictors are valid (i.e. are transformed into some elements of parameter space the subjected to inverse link function).
- funcZ, Wfun Functions that create pseudo residuals and working weights used in IRLS algorithm.
- devResids Function that given the linear predictors prior weights vector and response vector returns deviance residuals.
- pointEst, popVar Functions that given prior weights linear predictors and in the later case also estimation of $cov(\hat{\beta})$ and X_{vlm} matrix return point estimate for population size and analytic estimation of its variance. There is a additional boolean parameter contr in the former function that if set to true returns contribution of each unit.

- etaNames Names of linear predictors.
- densityFunction A function that given linear predictors returns value of PMF at values x. Additional argument type specifies whether to return $\mathbb{P}[Y|Y>0]$ or $\mathbb{P}[Y]$.
- simulate A function that generates values of dependent vector given linear predictors.
- getStart Expression for generating starting points.

3.5. Bootstrap algorithms

There are three types of bootstrap algorithms which the user may specify in controlPopVar controls with bootType argument which has three possible values "parametric", "semiparametric", "nonparametric" with the nonparametric being bootstrap being the usual bootstrap algorithm which as argued in Norris and Pollock (1996) and Zwane and Van der Heijden (2003). The idea of semiparametric bootstrap is to modify the usual bootstrap to include the additional uncertainty due to the sample size being a random variable. This type of bootstrap can be in short described as:

- 1. Draw the sample size $N'_{obs} \sim \text{Be}\left(N', \frac{N' N_{obs}}{N'}\right)$, where $N' = \lfloor \hat{N} \rfloor + b \left(\lfloor \hat{N} \rfloor \hat{N}\right)$.
- 2. Draw N_{obs}^{\prime} units from the data uniformly without replacement.
- 3. Obtain new population size estimate using bootstrap data.
- 4. Repeat 1-3 B times.

In other words we first draw the sample size and then the sample conditional on the sample size. Note that in using semi-parametric bootstrap one implicitly assumes that the population size estimate \hat{N} is accurate. The last implemented bootstrap type is the parametric algorithm which in short first draws the finite population of size $\approx \hat{N}$ from the superpopulation model and then samples from this population according to the selected model:

- 1. Draw the number of covariates equal to $\lfloor \hat{N} \rfloor + b \left(\lfloor \hat{N} \rfloor \hat{N} \right)$ proportional to the estimated contribution $(\mathbb{P}\left[Y_k > 0 | \boldsymbol{x}_k \right])^{-1}$ with replacement.
- 2. Using the fitted model and regression coefficients $\hat{\beta}$ draw for each covariate the Y value from the corresponding probability measure on $\mathbb{N} \cup \{0\}$.
- 3. Truncate units with drawn Y value equal to 0.
- 4. Obtain population size estimate based on the truncated data.
- 5. Repeat 1-4 B times.

Note however that for this type of algorithm to result in consistent standard error estimates it is imperative that the estimated model for the entire superpopulation probability space is consistent which may be much less realistic than semiparametric bootstrap. The parametric bootstrap algorithm is the default in **singleRcapture**.

Additional arguments accepted by the **contorlPopVar** function which are relevant to bootstrap are:

- alpha, B significance level and number of bootstrap samples to be performed respectively with 0.05 and 500 being the default options.
- cores number of process cores to use in bootstrap (1 by default) parallel computing is done via **doParallel**, **foreach**, **parallel** packages.
- keepbootStat logical value indicating whether to keep a vector of statistics produced by bootstrap.
- traceBootstrapSize, bootstrapVisualTrace logical values indicating whether sample and population size should be tracked (FALSE by default) these work only when cores = 1.
- fittingMethod, bootstrapFitcontrol fitting method (by default the same as used in the original call) and control parameters (controlMethod) for model fitting in bootstrap.

4. Integration with the VGAM, countreg packages

The singleRcaptureExtra extensions allows for converting objects created by vglm, vgam, countreg functions from packages VGAM, countreg to a singleRStaticCountData via the respective estimatePopsize methods for their classes. The help files for all the methods and all the controll functions are accessed by:

```
R> ?estimatePopsize.vgam
R> ?controlEstPopVgam
```

Using the fitted zerotrunc, vglm, vgam class objects in population size estimation such as the one additive models with smooth terms for dataset from Böhning, Vidal-Diez, Lerdsuwansri, Viwatwongkasem, and Arnold (2013):

can be a complished with the following syntax simple syntax:

R> modelVgamPop <- estimatePopsize(modelVgam)</pre>

```
Compare with a simmilar linear model from base singleRcapture:
```

```
R> modelBase <- estimatePopsize(</pre>
   TOTAL_SUB ~ (log_size + log_distance) * C_TYPE,
  data = farmsubmission,
   model = ztnegbin()
+ )
R> summary(modelBase)
Call:
estimatePopsize.default(formula = TOTAL_SUB ~ (log_size + log_distance) *
   C_TYPE, data = farmsubmission, model = ztnegbin())
Pearson Residuals:
    Min. 1st Qu. Median Mean 3rd Qu.
                                                Max.
-0.729357 -0.317558 -0.152482 0.000609 0.148985 6.604269
Coefficients:
_____
For linear predictors associated with: lambda
                    Estimate Std. Error z value P(>|z|)
                    -1.77609 0.45894 -3.870 0.000109 ***
(Intercept)
                     0.49391 0.02521 19.594 < 2e-16 ***
log_size
log_distance
                    -1.68591 0.55327 -3.047 0.002310 **
C_TYPEDairy
log_distance:C_TYPEDairy 0.08568 0.04874 1.758 0.078762 .
______
For linear predictors associated with: alpha
          Estimate Std. Error z value P(>|z|)
(Intercept) 0.57673 0.07267 7.936 2.09e-15 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
AIC: 34481.99
BIC: 34533.76
Residual deviance: 17611.16
Log-likelihood: -17233.99 on 24065 Degrees of freedom
Number of iterations: 9
Population size estimation results:
Point estimate 38877
Observed proportion: 31% (N obs = 12036)
Std. Error 1749.448
95% CI for the population size:
        lowerBound upperBound
          35448.14 42305.85
normal
logNormal 35661.32 42530.37
95% CI for the share of observed population:
```

```
lowerBound upperBound
normal
            28.44996
                      33.95382
logNormal
            28.29978
                       33.75085
R> summary(modelVgamPop)
Call:
estimatePopsize.vgam(formula = modelVgam)
_____
Population size estimation results:
Point estimate 37760.01
Observed proportion: 31.9\% (N obs = 12036)
Std. Error 1630.429
95% CI for the population size:
         lowerBound upperBound
normal
           34564.42 40955.59
logNormal 34757.77
                      41158.93
95% CI for the share of observed population:
         lowerBound upperBound
            29.38793
                     34.82193
normal
logNormal
           29.24274 34.62823
-- Summary of foreign object --
Call:
vgam(formula = TOTAL_SUB ~ (s(log_size, df = 3) + s(log_distance,
    df = 2))/C_TYPE, family = posnegbinomial(lsize = negloglink),
    data = farmsubmission)
Names of additive predictors: loglink(munb), negloglink(size)
Dispersion Parameter for posnegbinomial family:
Log-likelihood: -17214.62 on 24063.17 degrees of freedom
Number of Fisher scoring iterations:
DF for Terms and Approximate Chi-squares for Nonparametric Effects
                                                  Df Npar Df Npar Chisq
(Intercept):1
                                                   1
(Intercept):2
                                                    1
s(log_size, df = 3)
                                                    1
                                                          1.8
                                                                 51.949
s(log_distance, df = 2)
                                                                  3.503
                                                          1.0
                                                   1
s(log_size, df = 3):s(log_distance, df = 2):C_TYPE 2
                                                     P(Chi)
(Intercept):1
(Intercept):2
s(log_size, df = 3)
                                                  0.000000
```

Acknowledgements

The authors' work has been financed by the National Science Centre in Poland, OPUS 20, grant no. 2020/39/B/HS4/00941. Codes to reproduce simulations from the paper are available at . . .

A. Implementing custom singleRcapture family function

Suppose we want to implement a very specific zero truncated family function in the **singleRcapture** which corresponds to the following "untruncated" distribution:

$$\mathbb{P}[Y = y | \lambda, \pi] = \begin{cases}
1 - \frac{1}{2}\lambda - \frac{1}{2}\pi & \text{when: } y = 0 \\
\frac{1}{2}\pi & \text{when: } y = 1 \\
\frac{1}{2}\lambda & \text{when: } y = 2,
\end{cases}$$
(5)

with $\lambda, \pi \in (0,1)$ being dependent on covariates. The following would be one way of implementing it, with lambda, pi in the code meaning $\frac{1}{2}\lambda, \frac{1}{2}\pi$ in the equation above:

```
R> myFamilyFunction <- function(lambdaLink = c("logit", "cloglog", "probit"),</pre>
                                          = c("logit", "cloglog", "probit"),
                                piLink
                                ...) {
    if (missing(lambdaLink)) lambdaLink <- "logit"</pre>
    if (missing(piLink)) piLink <- "logit"</pre>
    links <- list()
    attr(links, "linkNames") <- c(lambdaLink, piLink)</pre>
    lambdaLink <- switch(lambdaLink,</pre>
      "logit" = singleRcapture:::singleRinternallogitLink,
      "cloglog" = singleRcapture:::singleRinternalcloglogLink,
      "probit" = singleRcapture:::singleRinternalprobitLink
    piLink <- switch(piLink,</pre>
      "logit" = singleRcapture:::singleRinternallogitLink,
      "cloglog" = singleRcapture:::singleRinternalcloglogLink,
      "probit" = singleRcapture:::singleRinternalprobitLink
    links[1:2] <- c(lambdaLink, piLink)</pre>
    mu.eta <- function(eta, type = "trunc", deriv = FALSE, ...) {</pre>
     pi <- piLink(eta[, 2], inverse = TRUE) / 2</pre>
      lambda <- lambdaLink(eta[, 1], inverse = TRUE) / 2</pre>
      if (!deriv) {
        switch (type,
          "nontrunc" = pi + 2 * lambda,
```

```
"trunc" = 1 + lambda / (pi + lambda)
       )
      } else {
        # Only necessary if one wishes to use standard errors in predict method
       switch (type,
          "nontrunc" = {
           matrix(c(2, 1) * c(
              lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) / 2,
                  piLink(eta[, 2], inverse = TRUE, deriv = 1) / 2
           ), ncol = 2)
          },
          "trunc" = {
           matrix(c(
            pi / (pi + lambda) ^ 2,
              -lambda / (pi + lambda) ^ 2
            ) * c(
             lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) / 2,
                 piLink(eta[, 2], inverse = TRUE, deriv = 1) / 2
            ), ncol = 2)
+
       )
+
     }
    7
    variance <- function(eta, type = "nontrunc", ...) {</pre>
     pi <- piLink(eta[, 2], inverse = TRUE) / 2</pre>
     lambda <- lambdaLink(eta[, 1], inverse = TRUE) / 2</pre>
     switch (type,
      "nontrunc" = pi * (1 - pi) + 4 * lambda * (1 - lambda - pi),
      "trunc" = lambda * (1 - lambda) / (pi + lambda)
    }
    Wfun <- function(prior, y, eta, ...) {
     pi <- piLink(eta[, 2], inverse = TRUE) / 2</pre>
      lambda <- lambdaLink(eta[, 1], inverse = TRUE) / 2</pre>
      GO1 <- ((lambda + pi) ^ (-2)) * piLink(eta[, 2], inverse = TRUE, deriv = 1) *
       lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) * prior / 4
      G00 <- ((lambda + pi) ^ (-2)) - (pi ^ (-2)) - lambda / ((lambda + pi) * (pi ^ 2))
      G00 \leftarrow G00 * prior * (piLink(eta[, 2], inverse = TRUE, deriv = 1) ^ 2) / 4
      G11 <- ((lambda + pi) ^ (-2)) - (((lambda + pi) * lambda) ^ -1)
      G11 \leftarrow G11 * prior * (lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) ^ 2) / 4
     matrix(
        -c(G11, # lambda)
           GO1, # mixed
           GO1, # mixed
           G00 # pi
       dimnames = list(rownames(eta), c("lambda", "mixed", "mixed", "pi")),
       ncol = 4
      )
   }
```

```
funcZ <- function(eta, weight, y, prior, ...) {</pre>
  pi <- piLink(eta[, 2], inverse = TRUE) / 2</pre>
  lambda <- lambdaLink(eta[, 1], inverse = TRUE) / 2</pre>
  weight <- weight / prior</pre>
                       - ((lambda + pi) ^ -1)
  GO \leftarrow (2 - y) / pi
  G1 \leftarrow (y - 1) / lambda - ((lambda + pi) ^ -1)
  G1 <- G1 * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) / 2
  GO \leftarrow GO * piLink(eta[, 2], inverse = TRUE, deriv = 1) / 2
  uMatrix \leftarrow matrix(c(G1, G0), ncol = 2)
  weight <- lapply(X = 1:nrow(weight), FUN = function (x) {</pre>
    matrix(as.numeric(weight[x, ]), ncol = 2)
  pseudoResid <- sapply(X = 1:length(weight), FUN = function (x) {</pre>
    #xx <- chol2inv(chol(weight[[x]])) # less computationally demanding</pre>
    xx <- solve(weight[[x]]) # more stable</pre>
    xx %*% uMatrix[x, ]
  7)
  pseudoResid <- t(pseudoResid)</pre>
  dimnames(pseudoResid) <- dimnames(eta)</pre>
  pseudoResid
minusLogLike <- function(y, X, offset,</pre>
                          weight
                                   = 1,
                          NbyK
                                    = FALSE,
                          vectorDer = FALSE,
                          deriv
                                   = 0,
                          ...) {
  y <- as.numeric(y)</pre>
  if (is.null(weight)) {
   weight <- 1
  if (missing(offset)) {
    offset <- cbind(rep(0, NROW(X) / 2), rep(0, NROW(X) / 2))
  if (!(deriv %in% c(0, 1, 2))) stop("Only score function and derivatives up to 2 are supported.")
  deriv <- deriv + 1 # to make it conform to how switch in R works, i.e. indexing begins with 1
  switch (deriv,
   function(beta) {
      eta <- matrix(as.matrix(X) %*% beta, ncol = 2) + offset
     pi <- piLink(eta[, 2], inverse = TRUE) / 2</pre>
      lambda <- lambdaLink(eta[, 1], inverse = TRUE) / 2</pre>
      -sum(weight * ((2 - y) * log(pi) + (y - 1) * log(lambda) - log(pi + lambda)))
    function(beta) {
      eta <- matrix(as.matrix(X) %*% beta, ncol = 2) + offset</pre>
      pi <- piLink(eta[, 2], inverse = TRUE) / 2</pre>
      lambda <- lambdaLink(eta[, 1], inverse = TRUE) / 2</pre>
```

```
GO \leftarrow (2 - y) / pi
                        - ((lambda + pi) ^ -1)
  G1 \leftarrow (y - 1) / lambda - ((lambda + pi) ^ -1)
  G1 <- G1 * weight * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) / 2
  GO <- GO * weight *
                           piLink(eta[, 2], inverse = TRUE, deriv = 1) / 2
  if (NbyK) {
    XX <- 1:(attr(X, "hwm")[1])</pre>
    return(cbind(as.data.frame(X[1:nrow(eta), XX]) * G1, as.data.frame(X[-(1:nrow(eta)), -XX])
  if (vectorDer) {
    return(cbind(G1, G0))
  as.numeric(c(G1, G0) \%*\% X)
},
function (beta) {
  lambdaPredNumber <- attr(X, "hwm")[1]</pre>
  eta <- matrix(as.matrix(X) %*% beta, ncol = 2) + offset
               piLink(eta[, 2], inverse = TRUE) / 2
       <-
  lambda <- lambdaLink(eta[, 1], inverse = TRUE) / 2</pre>
  res <- matrix(nrow = length(beta), ncol = length(beta),</pre>
                dimnames = list(names(beta), names(beta)))
  # pi^2 derivative
  dpi <- (2 - y) / pi - (lambda + pi) ^ -1
  G00 <- ((lambda + pi) ^ (-2)) - (2 - y) / (pi ^ 2)
  G00 \leftarrow t(as.data.frame(X[-(1:(nrow(X) / 2)), -(1:lambdaPredNumber)] *
  (G00 * ((piLink(eta[, 2], inverse = TRUE, deriv = 1) / 2) ^ 2) +
  dpi * piLink(eta[, 2], inverse = TRUE, deriv = 2) / 2) * weight)) %*%
  as.matrix(X[-(1:(nrow(X) / 2)), -(1:lambdaPredNumber)])
  # mixed derivative
  G01 \leftarrow (lambda + pi) ^ (-2)
  G01 \leftarrow t(as.data.frame(X[1:(nrow(X) / 2), 1:lambdaPredNumber]) *
  G01 * (lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) / 2) *
  (piLink(eta[, 2], inverse = TRUE, deriv = 1) / 2) * weight) %*%
  as.matrix(X[-(1:(nrow(X) / 2)), -(1:lambdaPredNumber)])
  # lambda^2 derivative
  G11 <- ((lambda + pi) ^ (-2)) - (y - 1) / (lambda ^ 2)
  dlambda <- (y - 1) / lambda - ((lambda + pi) ^ -1)
  G11 \leftarrow t(as.data.frame(X[1:(nrow(X) / 2), 1:lambdaPredNumber] *
  (G11 * ((lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) / 2) ^ 2) +
  dlambda * lambdaLink(eta[, 1], inverse = TRUE, deriv = 2) / 2) * weight)) %*%
  X[1:(nrow(X) / 2), 1:lambdaPredNumber]
 res[-(1:lambdaPredNumber), -(1:lambdaPredNumber)] <- G00</pre>
 res[1:lambdaPredNumber, 1:lambdaPredNumber] <- G11</pre>
 res[1:lambdaPredNumber, -(1:lambdaPredNumber)] <- t(G01)</pre>
 res[-(1:lambdaPredNumber), 1:lambdaPredNumber] <- G01</pre>
  res
}
```

```
}
    validmu <- function(mu) {</pre>
      (sum(!is.finite(mu)) == 0) \&\& all(0 < mu) \&\& all(2 > mu)
    # this is optional
    devResids <- function(y, eta, wt, ...) {</pre>
    7
    pointEst <- function (pw, eta, contr = FALSE, ...) {</pre>
     pi <- piLink(eta[, 2], inverse = TRUE) / 2</pre>
      lambda <- lambdaLink(eta[, 1], inverse = TRUE) / 2</pre>
      N \leftarrow pw / (lambda + pi)
     if(!contr) {
       N \leftarrow sum(N)
      N
    popVar <- function (pw, eta, cov, Xvlm, ...) {</pre>
      pi <- piLink(eta[, 2], inverse = TRUE) / 2
      lambda <- lambdaLink(eta[, 1], inverse = TRUE) / 2</pre>
      bigTheta1 \leftarrow -pw / (pi + lambda) ^ 2 # w.r to pi
      bigTheta1 <- bigTheta1 * piLink(eta[, 2], inverse = TRUE, deriv = 1) / 2</pre>
      bigTheta2 <- -pw / (pi + lambda) ^ 2 # w.r to lambda
      bigTheta2 <- bigTheta2 * lambdaLink(eta[, 1], inverse = TRUE, deriv = 1) / 2# w.r to lambda
      bigTheta <- t(c(bigTheta2, bigTheta1) %*% Xvlm)</pre>
      f1 <- t(bigTheta) %*% as.matrix(cov) %*% bigTheta</pre>
      f2 <- sum(pw * (1 - pi - lambda) / ((pi + lambda) ^ 2))
      f1 + f2
    dFun <- function (x, eta, type = c("trunc", "nontrunc")) {
      if (missing(type)) type <- "trunc"</pre>
      pi <- piLink(eta[, 2], inverse = TRUE) / 2
      lambda <- lambdaLink(eta[, 1], inverse = TRUE) / 2</pre>
      switch (type,
        "trunc" = {
          (pi * as.numeric(x == 1) + lambda * as.numeric(x == 2)) / (pi + lambda)
        "nontrunc" = {
          (1 - pi - lambda) * as.numeric(x == 0) +
          pi * as.numeric(x == 1) + lambda * as.numeric(x == 2)
+
      )
    7
    simulate <- function(n, eta, lower = 0, upper = Inf) {</pre>
```

```
piLink(eta[, 2], inverse = TRUE) / 2
  lambda <- lambdaLink(eta[, 1], inverse = TRUE) / 2</pre>
  CDF <- function(x) {</pre>
   ifelse(x == Inf, 1,
   ifelse(x < 0, 0,
   ifelse(x < 1, 1 - pi - lambda,
   ifelse(x < 2, 1 - lambda, 1))))
 }
 1b <- CDF(lower)</pre>
 ub <- CDF(upper)
 p_u <- stats::runif(n, lb, ub)</pre>
 sims \leftarrow rep(0, n)
 cond <- CDF(sims) <= p_u</pre>
 while (any(cond)) {
   sims[cond] <- sims[cond] + 1
    cond <- CDF(sims) <= p_u</pre>
  7
  sims
getStart <- expression(</pre>
  if (method == "IRLS") {
    etaStart <- cbind(</pre>
      family$links[[1]](mean(observed == 2) * (1 + 0 * (observed == 2))), # lambda
      family$links[[2]](mean(observed == 1) * (1 + 0 * (observed == 1))) # pi
    ) + offset
  } else if (method == "optim") {
    init <- c(
      family$links[[1]](weighted.mean(observed == 2, priorWeights) * 1 + .0001),
      family$links[[2]](weighted.mean(observed == 1, priorWeights) * 1 + .0001)
    )
   if (attr(terms, "intercept")) {
      coefStart <- c(init[1], rep(0, attr(Xvlm, "hwm")[1] - 1))</pre>
    } else {
     coefStart <- rep(init[1] / attr(Xvlm, "hwm")[1], attr(Xvlm, "hwm")[1])</pre>
    if ("(Intercept):pi" %in% colnames(Xvlm)) {
      coefStart <- c(coefStart, init[2], rep(0, attr(Xvlm, "hwm")[2] - 1))</pre>
    } else {
      coefStart <- c(coefStart, rep(init[2] / attr(Xvlm, "hwm")[2], attr(Xvlm, "hwm")[2]))</pre>
  }
)
structure(
  list(
    makeMinusLogLike = minusLogLike,
   densityFunction = dFun,
              = links,
   links
   mu.eta = mu.eta,
    valideta = function (eta) {TRUE},
    variance = variance,
    Wfun
              = Wfun,
    funcZ
             = funcZ,
    devResids = devResids,
    validmu = validmu,
    pointEst = pointEst,
```

```
popVar
               = popVar,
      family = "myFamilyFunction",
      etaNames = c("lambda", "pi"),
      simulate = simulate,
      getStart = getStart,
      extraInfo = c(
       mean = "pi / 2 + lambda",
       variance = paste0("(pi / 2) * (1 - pi / 2) + 2 * lambda * (1 - lambda / 2 - pi / 2)"),
       popSizeEst = "(1 - (pi + lambda) / 2) ^ -1",
       meanTr = "1 + lambda / (pi + lambda)",
        varianceTr = pasteO("lambda * (1 - lambda / 2) / (pi + lambda)")
      )
     ).
     class = c("singleRfamily", "family")
+ }
A quick tests shows us that this implementation in fact works:
R> set.seed(123)
R> Y <- simulate(</pre>
      myFamilyFunction(lambdaLink = "logit", piLink = "logit"),
      nsim = 1000, eta = matrix(0, nrow = 1000, ncol = 2),
      truncated = FALSE
+ )
R> mm <- estimatePopsize(</pre>
      formula = Y \sim 1,
+
      data = data.frame(Y = Y[Y > 0]),
      model = myFamilyFunction(lambdaLink = "logit",
                                 piLink = "logit"),
      # the usual observed information matrix
      # is ill-suited for this distribution
      controlPopVar = controlPopVar(covType = "Fisher")
+ )
R> summary(mm)
Call:
estimatePopsize.default(formula = Y ~ 1, data = data.frame(Y = Y[Y >
    O]), model = myFamilyFunction(lambdaLink = "logit", piLink = "logit"),
    controlPopVar = controlPopVar(covType = "Fisher"))
Pearson Residuals:
   Min. 1st Qu. Median Mean 3rd Qu.
                                             Max.
-0.8198 -0.8198 0.8099 0.0000 0.8099 0.8099
Coefficients:
For linear predictors associated with: lambda
            Estimate Std. Error z value P(>|z|)
```

```
0.20253
                                  0.06
                                         0.952
(Intercept) 0.01217
For linear predictors associated with: pi
           Estimate Std. Error z value P(>|z|)
(Intercept) -0.01217
                       0.08926 -0.136
AIC: 687.4249
BIC: 695.8259
Residual deviance: 0
Log-likelihood: -341.7124 on 984 Degrees of freedom
Number of iterations: 2
______
Population size estimation results:
Point estimate 986
Observed proportion: 50% (N obs = 493)
Std. Error 70.30092
95% CI for the population size:
          lowerBound upperBound
normal
           848.2127
                      1123.787
           866.3167
                      1144.053
logNormal
95% CI for the share of observed population:
          lowerBound upperBound
normal
           43.86951
                      58.12221
logNormal
           43.09241
                      56.90759
```

Where the link functions such as singleRcapture:::singleRinternalcloglogLink are just internal functions in singleRcapture that compute link functions their inverses and derivatives of both links and inverse link up to third order:

```
R> singleRcapture:::singleRinternalcloglogLink
function (x, inverse = FALSE, deriv = 0)
    deriv <- deriv + 1
    if (isFALSE(inverse)) {
        res <- switch(deriv, log(-log(1 - x)), -1/((1 - x) *
            log(1 - x)), -(1 + log(1 - x))/((x - 1)^2 * log(1 - x))
            x)^2, (2 * log(1 - x)^2 + 3 * log(1 - x) + 2)/(log(1 - x)^2)
            x)^3 * (x - 1)^3)
    }
    else {
        res <- switch(deriv, 1 - \exp(-\exp(x)), \exp(x - \exp(x)),
            (1 - \exp(x)) * \exp(x - \exp(x)), (\exp(2 * x) - 3 *
                exp(x) + 1) * exp(x - exp(x))
    }
    res
}
<bytecode: 0x1284c8958>
<environment: namespace:singleRcapture>
```

one might of course include code for computing them manually.

References

- Böhning D, Vidal-Diez A, Lerdsuwansri R, Viwatwongkasem C, Arnold M (2013). "A Generalization of Chao's Estimator for Covariate Information." *Biometrics*, **69**(4), 1033–1042.
- Cruyff MJLF, van der Heijden PGM (2008). "Point and Interval Estimation of the Population Size Using a Zero-Truncated Negative Binomial Regression Model." *Biometrical Journal*, **50**(6), 1035–1050.
- Kleiber C, Zeileis A (2016). "Visualizing Count Data Regressions Using Rootograms." The American Statistician, 70(3), 296–303. doi:10.1080/00031305.2016.1173590.
- Norris JL, Pollock KH (1996). "Including model uncertainty in estimating variances in multiple capture studies." *Environmental and Ecological Statistics*, **3**(3), 235–244.
- van der Heijden PG, Bustami R, Cruyff MJ, Engbersen G, van Houwelingen HC (2003). "Point and interval estimation of the population size using the truncated Poisson regression model." *Statistical Modelling*, **3**(4), 305–322.
- Yee TW (2015). Vector Generalized Linear and Additive Models: With an Implementation in R. 1st edition. Springer Publishing Company, Incorporated.
- Zwane E, Van der Heijden P (2003). "Implementing the parametric bootstrap in capture–recapture models with continuous covariates." Statistics & probability letters, 65(2), 121–125.

Affiliation:

Piotr Chlebicki Stockholm University Matematiska institutionen Albano hus 1 106 91 Stockholm, Sweden

E-mail: piotr.chlebicki@math.su.se

URL: https://github.com/Kertoo, https://www.su.se/profiles/pich3772

Maciej Beręsewicz Poznań University of Economics and Business Statistical Office in Poznań Poznań University of Economics and Business Department of Statistics Institute of Informatics and Quantitative Economics Al. Niepodległosci 10 61-875 Poznań, Poland

Statistical Office in Poznań ul. Wojska Polskiego 27/29 60-624 Poznań, Poland

E-mail: maciej.beresewicz@ue.poznan.pl

 $\label{thm:continuous} \textit{Journal of Statistical Software} \\ \text{published by the Foundation for Open Access Statistics}$

MMMMMM YYYY, Volume VV, Issue II doi:10.18637/jss.v000.i00

http://www.jstatsoft.org/ http://www.foastat.org/ Submitted: yyyy-mm-dd

Accepted: yyyy-mm-dd