可積分関数のフーリエ変換は有界かつ連続

1

命題 1.1. $f \in L^1(\mathbb{R})$ とする. このとき, $\hat{f} \in C_b(\mathbb{R})$ が成り立つ.

証明.

$$\hat{f}(\xi) = \frac{1}{(2\pi)^{\frac{1}{2}}} \int f(x)e^{-ix\xi}dx$$

が成り立つので, $|f(\xi)| \leq \frac{1}{(2\pi)^{\frac{1}{2}}} \|f\|_1$ が成り立つ. また, $\xi_n \to \xi$ とすると,

$$\left| f(x)e^{-ix\xi} \right| \le f(x)$$

なので優収束定理から $\hat{f}(\xi_n) \to \hat{f}(\xi)$ が成り立つ.

命題 1.2. $f\in L^1(\mathbb{R})$ は, $\hat{f}\in L^1(\mathbb{R})$ であれば, $f\in L^1(\mathbb{R})\cap C_b(\mathbb{R})$

証明. 反転公式より従う.