9. Übung zur finiten Elemente Methode - stationäre Probleme 12. Dezember 2012

1. Integrationsregeln:

Sei T ein Dreieck, zeigen Sie (λ_i ... baryzentrische Koordinaten):

$$\int\limits_{T} \lambda_{1}^{p} \, \lambda_{2}^{q} \, \lambda_{3}^{r} \, dx = \frac{p! \, q! \, r!}{(p+q+r+2)!} 2 \, |T|$$

2. Zeigen Sie, dass die folgenden Intetgrationsregeln exakt für \mathbb{P}^1 bzw. \mathbb{P}^2 sind:

•
$$\int_T q \, dx = \frac{|T|}{3} \sum_{i=1}^3 q(V_i) \quad \forall q \in P^1(T)$$

•
$$\int_T q \, dx = \frac{|T|}{3} \sum_{i=1}^3 q(E_{i,\alpha}) \quad \forall q \in P^2(T),$$

wobei $E_{i,\alpha}$ der Mittelpunkt der *i*-ten Kante ist.

3. (*) Wir betrachten nochmals die Operatoren aus Übung 8.4. Zeigen Sie

$$||u - \Pi_h u||_{L_2(T)} \le ch ||\nabla u||_{L_2(\omega_T)}$$

(für die Operatoren aus a.), b.), c.) sowie d.))

$$|u - \Pi_h u|_{H^1(T)} \le ch|u|_{H^2(\omega_T)}$$

(für die Operatoren aus c.) und d.))

Hinweise:

- Bsp. 8.4 (erhalten von Konstanten resp. linearen Funktionen)
- $|(I \Pi_h)u|_{H^1(T)} \le c|u|_{H^1(\omega_T)}$
- es gilt $(u \Pi_h u)|_T = \sum_{\alpha=1}^3 (u \Psi_{V_\alpha}(u))\varphi_{V_\alpha}$
- aus VL: $||u \bar{u}||_{L_2(\omega_n)} \le ch|u|_{H^1(\omega_n)}$
- 4. Seien P die aus 7.4 a), sowie \tilde{P} die aus 7.4 b) bekannten $L_2(I)$ bzw. $H^1(I)$ Projektionen auf $P^p(I)$, mit I=(-1,1). In der VL wird $\|u-Pu\|_{L_2(I)}\leq \frac{c}{p}|u|_{H^1(I)}$ gezeigt. Zeigen Sie:

$$|u - \tilde{P}u|_{H^1(I)} \le \frac{c}{p}|u|_{H^2(I)}$$

Hinweis: Zeigen Sie $(\tilde{P}u)' = P(u')$ (=commuting diagramm property)

5. Zeigen Sie mit den Bezeichnungen aus dem vorherigen Beispiel, dass

$$||u - \tilde{P}u||_{L_2(I)} \le \frac{c}{p^2} |u|_{H^2(I)}$$

Hinweis: Aubin - Nitsche

6. Fehlerschätzer basierend auf Prager Synge:

Wir betrachten das Problem $-u''+u=1, \quad u(0)=u(1)=0$ mit $V_h=P^1$ -FEM Raum. Das Residuum $r(\cdot)\in (H^1)^*$ ist durch

$$\begin{split} r(v) &= f(v) - A(u_h, v) \\ &= \sum_{T} \int_{T} r_T v + \sum_{i} r_{x_i} v(x_i) \\ r_T &= f + u_h \big|_{T}^{"} - u_h \big|_{T} &\in P^1(T) \\ r_{x_i} &= [u_h'] = u_h'(x_i +) - u_h'(x_i -) \end{split}$$

gegeben. Wir zerlegen nun $r(\cdot)$ in lokale Residuuen mittels $r_i(v) := r(\varphi_i v)$. Zeigen Sie, dass es ein $p_i^{\Delta} \in L_2(\Omega)$ mit $p_i^{\Delta}\big|_T \in P^3(T)$ mit supp $p_i^{\Delta} \subset \omega_{V_i}$ gibt, sodass

$$(p_i^{\Delta})' = r_i$$
 im distributionellen Sinne

Weiters definieren wir $p^{\Delta} := \sum p_i^{\Delta}$ sowie $p := u_h' - p^{\Delta}$. Zeigen Sie, dass $p' = f + u_h$ gilt.

Erst bis zum 19. Dezember:

Implementieren Sie den Fehlerschätzer $||u_h'-p||_{L_2}$ und vergleichen Sie den geschätzten Fehler mit $\sqrt{2(J(u)-J(u_h))}$.

(Programm zählt 4 Kreuze am 19. Dezember)