

MAT1161 – Cálculo a uma Variável G1 - Maple – 7 de abril de 2016 Versão Ia

Nome Legível	:	
Assinatura	:	
Matrícula	:	Turma :

Questão	Valor	Grau	Revisão
1^a	1,5		
2^a	1,5		
Total	3,0		

Todas as questões devem ser justificadas de forma clara e rigorosa. Respostas sem justificativas não serão consideradas. Quando usar o Maple na resolução, deixe isto claro fornecendo os comandos de entrada no programa.

ATENÇÃO

Você PODE consultar o help do Maple durante a prova.

Você NÃO PODE consultar outros materiais durante a prova.

Você NÃO PODE obter ajuda do professor (nem de colegas) com seus comandos durante a prova.

Antes de se desesperar, verifique se o seu erro não é de um destes tipos comuns:

- Falta de ; no final da linha
- Parênteses que abre mas não fecha ou fecha mas não abre
- Falta do = ou do : na atribuição de valor (f:=...)
- Falta de -> na atribuição de função (f:=x->...)
- X maiúsculo onde deveria ser minúsculo
- Deixar de usar parênteses para algum comando
- Deixar de especificar domínio para o plot (x=...)
- Falta do sinal de multiplicação (é 2*x e não 2x)
- O comando para a função seno é sin e não sen
- Ordem certa dos parênteses na derivada é D(f)(x)
- Os comandos Int e Sum são diferentes dos int e sum

A .~ 1	G . 1	c ~	e ()	0-x . $0x$	()	()
Questão 1.	Considere a	is funções	f(x) =	$2^{-x} + 2^{x}$	e q(x) =	$5\sin(x)$.

(a) Desenhe a região delimitada pelos gráficos das duas funções. Identifique as interseções, escrevendo o truncamento das coordenadas com 3 casas decimais.

Questão 2. Considere a função $f(x) = \frac{3x^3 - 3x^2 - 18x}{x^2 + 1}$ no domínio $[-3, 3]$	Questão 2.	Considere a f	função j	f(x) =	$\frac{3x^3 - 3x^2 - x^2 - x^2 + 1}{x^2 + 1}$	18x	no domínio	[-3, 3]
---	------------	---------------	----------	--------	---	-----	------------	---------

(a) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha inclinação 3. Dê o truncamento de x_0 com 3 casas decimais.

(c) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a maior inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.
(d) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a menor inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.

VERSAO Ia

```
> f:=x->2^(-x)+2^x;
g:=x->5*sin(x);
plot([f(x),g(x)],x=0..3);
x1:=fsolve(f(x)=g(x),x=0..1);
y1:=f(x1);
x2:=fsolve(f(x)=g(x),x=1..3);
y2:=f(x2);
int(g(x)-f(x),x=x1..x2);

f:=x 	o 2^{-x} + 2^x
g:=x 	o 5 sin(x)
```

```
x1 := 0.4312468208

y1 := 2.090018977

x2 := 2.060759955

y2 := 4.411749879

2.097379454
```

(1)

TVERSÃO Ia

```
> f:=x->(3*x^3-3*x^2-18*x)/(x^2+1);
x0:=fsolve(D(f)(x)=3,x=-3..3);
y=3*(x-x0)+f(x0);
plot([f(x),D(f)(x),D(D(f))(x),3*(x-x0)+f(x0)],x=-3..3,numpoints=
1000);
a:=fsolve(D(D(f))(x)=0,x=-2..-1);
b:=fsolve(D(D(f))(x)=0,x=-1..1);
c:=fsolve(D(D(f))(x)=0,x=1..3);
D(f)(-3.);
D(f)(a);
D(f)(b);
D(f)(c);
```

$$f := x \to \frac{3 x^3 - 3 x^2 - 18 x}{x^2 + 1}$$
$$x0 := -0.8672954017$$
$$y = 3 x + 9.106601719$$

a := -1.557060202 b := 0.04733432220 c := 1.938297309 4.860000000 6.347515418 -18.14210910 5.044593681 4.5000000000

(2)

MAT1161 – Cálculo a uma Variável G1 - Maple – 7 de abril de 2016 Versão Ib

Nome Legível	:	
Assinatura	:	
Matrícula	•	Turma ·

Questão	Valor	Grau	Revisão
1^a	1,5		
2^a	1,5		
Total	3,0		

Todas as questões devem ser justificadas de forma clara e rigorosa. Respostas sem justificativas não serão consideradas. Quando usar o Maple na resolução, deixe isto claro fornecendo os comandos de entrada no programa.

ATENÇÃO

Você PODE consultar o help do Maple durante a prova.

Você NÃO PODE consultar outros materiais durante a prova.

Você NÃO PODE obter ajuda do professor (nem de colegas) com seus comandos durante a prova.

Antes de se desesperar, verifique se o seu erro não é de um destes tipos comuns:

- Falta de ; no final da linha
- Parênteses que abre mas não fecha ou fecha mas não abre
- Falta do = ou do : na atribuição de valor (f:=...)
- Falta de -> na atribuição de função (f:=x->...)
- X maiúsculo onde deveria ser minúsculo
- Deixar de usar parênteses para algum comando
- Deixar de especificar domínio para o plot (x=...)
- Falta do sinal de multiplicação (é 2*x e não 2x)
- O comando para a função seno é sin e não sen
- Ordem certa dos parênteses na derivada é D(f)(x)
- Os comandos Int e Sum são diferentes dos int e sum

Questão 1.	Considere a	as funções	f(x) =	$2^{-x} + 4^x$	e q(x) =	$7\sin(x)$.

(a) Desenhe a região delimitada pelos gráficos das duas funções. Identifique as interseções, escrevendo o truncamento das coordenadas com 3 casas decimais.

Questão 2. Considere a função
$$f(x) = \frac{3x^3 + 3x^2 - 36x}{x^2 + 1}$$
 no domínio $[-3, 3]$.

(a) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha inclinação 3. Dê o truncamento de x_0 com 3 casas decimais.

(c) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a maior inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.
(d) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a menor inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.

VERSAO Ib

```
> f:=x->2^(-x)+4^x;

g:=x->7*sin(x);

plot([f(x),g(x)],x=0..2);

x1:=fsolve(f(x)=g(x),x=0..1);

y1:=f(x1);

x2:=fsolve(f(x)=g(x),x=1..2);

y2:=f(x2);

int(g(x)-f(x),x=x1..x2);

f:=x \rightarrow 2^{-x} + 4^{x}
g:=x \rightarrow 7 \sin(x)
```

```
x1 := 0.3518108070

y1 := 2.412187869

x2 := 1.341539321

y2 := 6.816848583

0.9613687304
```

0.9613687304 (1)

VERSÃO Ib

```
> f:=x->(3*x^3+3*x^2-36*x)/(x^2+1);
x0:=fsolve(D(f)(x)=3,x=-3..3);
y=3*(x-x0)+f(x0);
plot([f(x),D(f)(x),D(D(f))(x),3*(x-x0)+f(x0)],x=-3..3,numpoints=
1000);
a:=fsolve(D(D(f))(x)=0,x=-3..-1);
b:=fsolve(D(D(f))(x)=0,x=-1..1);
c:=fsolve(D(D(f))(x)=0,x=1..2);
D(f)(-3.);
D(f)(a);
D(f)(b);
```

$$f := x \to \frac{3 x^3 + 3 x^2 - 36 x}{x^2 + 1}$$
$$x0 := 0.9260311393$$
$$y = 3 x - 18.05760721$$

$$a := -1.839185379$$
 $b := -0.02559621815$
 $c := 1.634012366$
 5.940000000
 7.263316143
 -36.07680544
 8.563489289
 6.3000000000

(2)

MAT1161 – Cálculo a uma Variável G1 - Maple – 7 de abril de 2016 Versão II

Nome Legível	:	
Assinatura	:	
Matrícula	:	Turma :

Questão	Valor	Grau	Revisão
1^a	1, 5		
2^a	1, 5		
Total	3,0		

Todas as questões devem ser justificadas de forma clara e rigorosa. Respostas sem justificativas não serão consideradas. Quando usar o Maple na resolução, deixe isto claro fornecendo os comandos de entrada no programa.

ATENÇÃO

Você PODE consultar o help do Maple durante a prova.

Você NÃO PODE consultar outros materiais durante a prova.

Você NÃO PODE obter ajuda do professor (nem de colegas) com seus comandos durante a prova.

Antes de se desesperar, verifique se o seu erro não é de um destes tipos comuns:

- Falta de ; no final da linha
- Parênteses que abre mas não fecha ou fecha mas não abre
- Falta do = ou do : na atribuição de valor (f:=...)
- Falta de -> na atribuição de função (f:=x->...)
- X maiúsculo onde deveria ser minúsculo
- Deixar de usar parênteses para algum comando
- Deixar de especificar domínio para o plot (x=...)
- Falta do sinal de multiplicação (é 2*x e não 2x)
- O comando para a função seno é sin e não sen
- Ordem certa dos parênteses na derivada é D(f)(x)
- Os comandos Int e Sum são diferentes dos int e sum

			_	- / \			
Questão	1.	Considere a	as funções	f(x) =	$=2^{-x}+3^x$	e q(x) =	$=7\sin(x)$.

(a) Desenhe a região delimitada pelos gráficos das duas funções. Identifique as interseções, escrevendo o truncamento das coordenadas com 3 casas decimais.

Questão 2. Considere a função
$$f(x) = \frac{3x^3 + 3x^2 - 36x}{x^2 + 1}$$
 no domínio $[-3, 1]$.

(a) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha inclinação 3. Dê o truncamento de x_0 com 3 casas decimais.

(c) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a maior inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.
(d) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a menor inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.

VERSAO II

```
> f:=x->2^(-x)+3^x;

g:=x->7*sin(x);

plot([f(x),g(x)],x=0..2);

x1:=fsolve(f(x)=g(x),x=0..1);

y1:=f(x1);

x2:=fsolve(f(x)=g(x),x=1..2);

y2:=f(x2);

int(g(x)-f(x),x=x1..x2);

f:=x \to 2^{-x} + 3^{x}
g:=x \to 7 \sin(x)
```

```
x1 := 0.3236196746

y1 := 2.226002910

x2 := 1.720230985

y2 := 6.921987823

2.238292359
```

(1)

VERSÃO II

```
> f:=x->(3*x^3+3*x^2-36*x)/(x^2+1);
x0:=fsolve(D(f)(x)=3,x=-3..1);
y=3*(x-x0)+f(x0);
plot([f(x),D(f)(x),D(D(f))(x),3*(x-x0)+f(x0)],x=-3..1,numpoints=
1000);
a:=fsolve(D(D(f))(x)=0,x=-3..-1);
b:=fsolve(D(D(f))(x)=0,x=-1..1);
D(f)(-3.);
D(f)(a);
D(f)(b);
D(f)(1.);
```

$$f := x \to \frac{3 x^3 + 3 x^2 - 36 x}{x^2 + 1}$$
$$x0 := -1.079877293$$
$$y = 3 x + 21.05760722$$

$$a := -1.839185379$$
 $b := -0.02559621815$
 5.940000000
 7.263316143
 -36.07680544
 4.50000000

(2)

MAT1181 – Cálculo a uma Variável-Especial G1 - Maple – 8 de abril de 2016 Versão IIIa

Nome Legível	:	
Assinatura	:	
Matrícula		Turma :

Questão	Valor	Grau	Revisão
1^a	1, 5		
2^a	1, 5		
Total	3,0		

Todas as questões devem ser justificadas de forma clara e rigorosa. Respostas sem justificativas não serão consideradas. Quando usar o Maple na resolução, deixe isto claro fornecendo os comandos de entrada no programa.

ATENÇÃO

Você PODE consultar o help do Maple durante a prova.

Você NÃO PODE consultar outros materiais durante a prova.

Você NÃO PODE obter ajuda do professor (nem de colegas) com seus comandos durante a prova.

Antes de se desesperar, verifique se o seu erro não é de um destes tipos comuns:

- Falta de ; no final da linha
- Parênteses que abre mas não fecha ou fecha mas não abre
- Falta do = ou do : na atribuição de valor (f:=...)
- Falta de -> na atribuição de função (f:=x->...)
- X maiúsculo onde deveria ser minúsculo
- Deixar de usar parênteses para algum comando
- Deixar de especificar domínio para o plot (x=...)
- Falta do sinal de multiplicação (é 2*x e não 2x)
- O comando para a função seno é sin e não sen
- Ordem certa dos parênteses na derivada é D(f)(x)
- Os comandos Int e Sum são diferentes dos int e sum

	Questão 1. (Considere as fu	nções $f(x) = 0$	$(2^{-x}+3^x)(x-1)$	$(2)^2 e g(x) = 7\sin(x).$
--	--------------	-----------------	------------------	---------------------	----------------------------

(a) Desenhe a região delimitada pelos gráficos das duas funções. Identifique as interseções, escrevendo o truncamento das coordenadas com 3 casas decimais.

Questão 2. Considere a função
$$f(x) = \frac{3x^3 + 3x^2 - 36x}{x^2 + 1}$$
 no domínio $\left[-3, \frac{3}{2} \right]$.

(a) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha inclinação 3. Dê o truncamento de x_0 com 3 casas decimais.

(c) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a maior inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.
(d) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a menor inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.

VERSAO IIIa

```
> f:=x->(2^(-x)+3^x)*(x-2)^2;

g:=x->7*sin(x);

plot([f(x),g(x)],x=-1..3);

x1:=fsolve(f(x)=g(x),x=0..1);

y1:=f(x1);

x2:=fsolve(f(x)=g(x),x=2..3);

y2:=f(x2);

int(g(x)-f(x),x=x1..x2);

f:=x \rightarrow (2^{-x}+3^x)(x-2)^2
g:=x \rightarrow 7 \sin(x)
```

$$x1 := 0.7191981478$$

 $y1 := 4.611471359$
 $x2 := 2.509545025$
 $y2 := 4.135586428$
 7.669012750

(1)

VERSÃO IIIa

```
> f:=x->(3*x^3+3*x^2-36*x)/(x^2+1);
x0:=fsolve(D(f)(x)=3,x=-3..1.5);
y=3*(x-x0)+f(x0);
plot([f(x),D(f)(x),D(D(f))(x),3*(x-x0)+f(x0)],x=-3..1.5,
numpoints=1000);
a:=fsolve(D(D(f))(x)=0,x=-3..-1);
b:=fsolve(D(D(f))(x)=0,x=-1..1);
D(f)(-3.);
D(f)(a);
D(f)(b);
D(f)(1.5);
```

$$f := x \to \frac{3 x^3 + 3 x^2 - 36 x}{x^2 + 1}$$
$$x0 := -1.079877293$$
$$y = 3 x + 21.05760722$$

$$a := -1.839185379$$
 $b := -0.02559621815$
 5.940000000
 7.263316143
 -36.07680544
 8.467455623

(nessa versão o ponto de máximo local é o extremo do intervalo)

(2)

MAT1181 – Cálculo a uma Variável-Especial G1 - Maple – 8 de abril de 2016 Versão IIIb

Nome Legível	:	
Assinatura	:	
Matrícula		Turma :

Questão	Valor	Grau	Revisão
1^a	1, 5		
2^a	1, 5		
Total	3,0		

Todas as questões devem ser justificadas de forma clara e rigorosa. Respostas sem justificativas não serão consideradas. Quando usar o Maple na resolução, deixe isto claro fornecendo os comandos de entrada no programa.

ATENÇÃO

Você PODE consultar o help do Maple durante a prova.

Você NÃO PODE consultar outros materiais durante a prova.

Você NÃO PODE obter ajuda do professor (nem de colegas) com seus comandos durante a prova.

Antes de se desesperar, verifique se o seu erro não é de um destes tipos comuns:

- Falta de ; no final da linha
- Parênteses que abre mas não fecha ou fecha mas não abre
- Falta do = ou do : na atribuição de valor (f:=...)
- Falta de -> na atribuição de função (f:=x->...)
- X maiúsculo onde deveria ser minúsculo
- Deixar de usar parênteses para algum comando
- Deixar de especificar domínio para o plot (x=...)
- Falta do sinal de multiplicação (é 2*x e não 2x)
- O comando para a função seno é sin e não sen
- Ordem certa dos parênteses na derivada é D(f)(x)
- Os comandos Int e Sum são diferentes dos int e sum

Questão 1.	Considere as funçõe	$f(x) = (2^{-x})$	$+3^{x})(x-2)^{2}$	$e \ a(x) = 5\sin(x)$
Questao 1.	Considere as runções	S f(x) - (z)	+3/(x-2)	$e g(x) - o \sin(x)$

(a) Desenhe a região delimitada pelos gráficos das duas funções. Identifique as interseções, escrevendo o truncamento das coordenadas com 3 casas decimais.

Questão 2. Considere a função
$$f(x) = \frac{3x^3 + 3x^2 - 36x}{x^2 + 1}$$
 no domínio $\left[-3, \frac{3}{2} \right]$.

(a) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha inclinação 6. Dê o truncamento de x_0 com 3 casas decimais.

(c) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a maior inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.
(d) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a menor inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.

VERSAO IIIb

```
> f:=x->(2^(-x)+3^x)*(x-2)^2;

g:=x->5*sin(x);

plot([f(x),g(x)],x=-1..3);

x1:=fsolve(f(x)=g(x),x=0..1);

y1:=f(x1);

x2:=fsolve(f(x)=g(x),x=2..3);

y2:=f(x2);

int(g(x)-f(x),x=x1..x2);

f:=x \rightarrow (2^{-x}+3^x)(x-2)^2
g:=x \rightarrow 5 \sin(x)
```

```
x1 := 0.8977568404

y1 := 3.909652852

x2 := 2.457871397

y2 := 3.158411049

4.696466746
```

(1)

VERSÃO IIIb

```
> f:=x->(3*x^3+3*x^2-36*x)/(x^2+1);
x0:=fsolve(D(f)(x)=6,x=-3..1.5);
y=6*(x-x0)+f(x0);
plot([f(x),D(f)(x),D(D(f))(x),6*(x-x0)+f(x0)],x=-3..1.5,
numpoints=1000);
a:=fsolve(D(D(f))(x)=0,x=-3..-1);
b:=fsolve(D(D(f))(x)=0,x=-1..1);
D(f)(-3.);
D(f)(a);
D(f)(b);
D(f)(b);
```

$$f := x \to \frac{3x^3 + 3x^2 - 36x}{x^2 + 1}$$
$$x0 := -1.348544452$$
$$y = 6x + 24.64079544$$

$$a := -1.839185379$$
 $b := -0.02559621815$
 5.940000000
 7.263316143
 -36.07680544
 8.467455623

(nessa versão o ponto de máximo local é o extremo do intervalo)

(2)

MAT1161 – Cálculo a uma Variável G1 - Maple – 8 de abril de 2016 Versão IVa

Nome Legível	:	
Assinatura	:	
Matrícula		Turma :

Questão	Valor	Grau	Revisão
1^a	1,5		
2^a	1,5		
Total	3,0		

Todas as questões devem ser justificadas de forma clara e rigorosa. Respostas sem justificativas não serão consideradas. Quando usar o Maple na resolução, deixe isto claro fornecendo os comandos de entrada no programa.

ATENÇÃO

Você PODE consultar o help do Maple durante a prova.

Você NÃO PODE consultar outros materiais durante a prova.

Você NÃO PODE obter ajuda do professor (nem de colegas) com seus comandos durante a prova.

Antes de se desesperar, verifique se o seu erro não é de um destes tipos comuns:

- Falta de ; no final da linha
- Parênteses que abre mas não fecha ou fecha mas não abre
- Falta do = ou do : na atribuição de valor (f:=...)
- Falta de -> na atribuição de função (f:=x->...)
- X maiúsculo onde deveria ser minúsculo
- Deixar de usar parênteses para algum comando
- Deixar de especificar domínio para o plot (x=...)
- Falta do sinal de multiplicação (é 2*x e não 2x)
- O comando para a função seno é sin e não sen
- Ordem certa dos parênteses na derivada é D(f)(x)
- Os comandos Int e Sum são diferentes dos int e sum

Questão 1.	Considere a	região o	do plano	cartesiano	definida	por:
Queblac II	COIDIGOIC G	105100	ao piano	Car contain	acililaa	POI.

$$\begin{cases} x \ge 0 \\ y \ge 0 \\ y \ge 10 \cos(x) \\ y < 10 - 4x^2 \end{cases}$$

(a) Desenhe a região. Identifique as interseções, escrevendo o truncamento das coordenadas com 3 casas decimais.

Questão 2. Considere a função $f(x) = 2^x + \frac{1}{x^2 + 1}$ no domínio [-1, 1].

(a) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha inclinação 1. Dê o truncamento de x_0 com 3 casas decimais.

(c) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a maior inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.
(d) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a menor inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.

```
VERSAO IVa
```

```
f := x \to 10 \cos(x);
f := x \to 10 \cos(x)
\Rightarrow g := x \to 10 - 4 \times x^{2};
\text{plot}([f(x), g(x)], x = 0...2);
g := x \to 10 - 4 x^{2}
```

VERSÃO IVa

```
> restart;
    f:=x->2^x + 1/(x^2+1);
    x0:=fsolve(D(f)(x)=1,x=-1..1);
    y=1*(x-x0)+f(x0);
    plot([f(x),D(f)(x),D(D(f))(x),1*(x-x0)+f(x0)],x=-1..1,numpoints=
    1000);
    a:=fsolve(D(D(f))(x)=0,x=-1..0);
```

```
b:=fsolve(D(D(f))(x)=0,x=0..1);

evalf(D(f)(-1.));

evalf(D(f)(a));

evalf(D(f)(b));

evalf(D(f)(1.));

f:=x \rightarrow 2^{x} + \frac{1}{x^{2}+1}
x0 := -0.2243056994
y = x + 2.032409675
```


$$a := -0.4764582824$$
 $b := 0.4066291309$
 0.8465735903
 1.131124332
 0.3199758606
 0.8862943610

(3)

MAT1161 – Cálculo a uma Variável G1 - Maple – 8 de abril de 2016 Versão IVb

Nome Legível	:	
Assinatura	:	
Matrícula	:	Turma :

Questão	Valor	Grau	Revisão
1^a	1, 5		
2^a	1, 5		
Total	3,0		

Todas as questões devem ser justificadas de forma clara e rigorosa. Respostas sem justificativas não serão consideradas. Quando usar o Maple na resolução, deixe isto claro fornecendo os comandos de entrada no programa.

ATENÇÃO

Você PODE consultar o help do Maple durante a prova.

Você NÃO PODE consultar outros materiais durante a prova.

Você NÃO PODE obter ajuda do professor (nem de colegas) com seus comandos durante a prova.

Antes de se desesperar, verifique se o seu erro não é de um destes tipos comuns:

- Falta de ; no final da linha
- Parênteses que abre mas não fecha ou fecha mas não abre
- Falta do = ou do : na atribuição de valor (f:=...)
- Falta de -> na atribuição de função (f:=x->...)
- X maiúsculo onde deveria ser minúsculo
- Deixar de usar parênteses para algum comando
- Deixar de especificar domínio para o plot (x=...)
- Falta do sinal de multiplicação (é 2*x e não 2x)
- O comando para a função seno é sin e não sen
- Ordem certa dos parênteses na derivada é D(f)(x)
- Os comandos Int e Sum são diferentes dos int e sum

$$\begin{cases} 0 \le x \le 2 \\ y \ge 0 \\ y \le 10 \cos(x) \\ y \ge 10 - 5x^2 \end{cases}$$

(a) Desenhe a região. Identifique as interseções, escrevendo o truncamento das coordenadas com 3 casas decimais.

Questão 2. Considere a função $f(x) = 2^x + \frac{1}{x^2 + 1}$ no domínio [-1, 2].

(a) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha inclinação 2. Dê o truncamento de x_0 com 3 casas decimais.

(c) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a maior inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.
(d) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a menor inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.

```
VERSAO IVb
```

```
> f:=x->10*cos(x);

f:=x \to 10 \cos(x)
> g:=x->10-5*x^2;

plot([f(x),g(x)],x=0..2);

g:=x \to 10-5 x^2
```

VERSÃO IVb

```
> restart;
f:=x->2^x + 1/(x^2+1);
x0:=fsolve(D(f)(x)=2,x=-1..2);
y=2*(x-x0)+f(x0);
```

```
plot([f(x),D(f)(x),D(D(f))(x),2*(x-x0)+f(x0)],x=-1..2,numpoints= 1000);

a:=fsolve(D(D(f))(x)=0,x=-1..0);

b:=fsolve(D(D(f))(x)=0,x=0..1);

evalf(D(f)(-1.));

evalf(D(f)(a));

evalf(D(f)(b));

evalf(D(f)(2.));

f:=x \rightarrow 2^{x} + \frac{1}{x^{2}+1}
x0:=1.684937498
y=2x+0.105873195
```

$$a := -0.4764582824$$
 $b := 0.4066291309$
 0.8465735903
 1.131124332
 0.3199758606
 2.612588722

(nessa versao o maximo esta no extremo do dominio)

(3)

MAT1161 – Cálculo a uma Variável G1 - Maple – 8 de abril de 2016 Versão Va

Nome Legível	:		
Assinatura	:		
Matrícula	:	Turma :	

Questão	Valor	Grau	Revisão
1^a	1, 5		
2^a	1, 5		
Total	3,0		

Todas as questões devem ser justificadas de forma clara e rigorosa. Respostas sem justificativas não serão consideradas. Quando usar o Maple na resolução, deixe isto claro fornecendo os comandos de entrada no programa.

ATENÇÃO

Você PODE consultar o help do Maple durante a prova.

Você NÃO PODE consultar outros materiais durante a prova.

Você NÃO PODE obter ajuda do professor (nem de colegas) com seus comandos durante a prova.

Antes de se desesperar, verifique se o seu erro não é de um destes tipos comuns:

- Falta de ; no final da linha
- Parênteses que abre mas não fecha ou fecha mas não abre
- Falta do = ou do : na atribuição de valor (f:=...)
- Falta de -> na atribuição de função (f:=x->...)
- X maiúsculo onde deveria ser minúsculo
- Deixar de usar parênteses para algum comando
- Deixar de especificar domínio para o plot (x=...)
- Falta do sinal de multiplicação (é 2*x e não 2x)
- O comando para a função seno é sin e não sen
- Ordem certa dos parênteses na derivada é D(f)(x)
- Os comandos Int e Sum são diferentes dos int e sum

$$\begin{cases} x \ge 0 \\ y \ge 0 \\ y \le 10 \sin(x) \\ y \le 10 - 5x^2 \end{cases}$$

(a) Desenhe a região. Identifique as interseções, escrevendo o truncamento das coordenadas com 3 casas decimais.

Questão 2. Considere a função $f(x) = 2^x + \frac{3}{x^2 + 1}$ no domínio [-2, 1].

(a) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha inclinação 2. Dê o truncamento de x_0 com 3 casas decimais.

(c) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a maior inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.
(d) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a menor inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.

```
VERSAO Va
```

```
f := x \to 10 \sin(x);
f := x \to 10 \sin(x)
g := x \to 10 - 5 \times ^2;
plot([f(x),g(x)],x=0..2);
g := x \to 10 - 5 x^2
```

VERSÃO Va

```
> restart;
f:=x->2^x + 3/(x^2+1);
x0:=fsolve(D(f)(x)=2,x=-2..1);
y=2*(x-x0)+f(x0);
```

```
plot([f(x),D(f)(x),D(D(f))(x),2*(x-x0)+f(x0)],x=-2..1,numpoints= 1000);

a:=fsolve(D(D(f))(x)=0,x=-1..0);

b:=fsolve(D(D(f))(x)=0,x=0..1);

evalf(D(f)(-2.));

evalf(D(f)(a));

evalf(D(f)(b));

evalf(D(f)(1.));

f:=x \rightarrow 2^{x} + \frac{3}{x^{2}+1}
x0:=-0.2753029277
y=2x+4.165526589
```


$$a := -0.5418873888$$
 $b := 0.5077512789$
 0.6532867952
 2.418921204
 -0.9400839102
 -0.113705639

(3)

MAT1161 – Cálculo a uma Variável G1 - Maple – 8 de abril de 2016 Versão Vb

Nome Legível	:	
Assinatura	:	
Matrícula		Turma ·

Questão	Valor	Grau	Revisão
1^a	1, 5		
2^a	1, 5		
Total	3,0		

Todas as questões devem ser justificadas de forma clara e rigorosa. Respostas sem justificativas não serão consideradas. Quando usar o Maple na resolução, deixe isto claro fornecendo os comandos de entrada no programa.

ATENÇÃO

Você PODE consultar o help do Maple durante a prova.

Você NÃO PODE consultar outros materiais durante a prova.

Você NÃO PODE obter ajuda do professor (nem de colegas) com seus comandos durante a prova.

Antes de se desesperar, verifique se o seu erro não é de um destes tipos comuns:

- Falta de ; no final da linha
- Parênteses que abre mas não fecha ou fecha mas não abre
- Falta do = ou do : na atribuição de valor (f:=...)
- Falta de -> na atribuição de função (f:=x->...)
- X maiúsculo onde deveria ser minúsculo
- Deixar de usar parênteses para algum comando
- Deixar de especificar domínio para o plot (x=...)
- Falta do sinal de multiplicação (é 2*x e não 2x)
- O comando para a função seno é sin e não sen
- Ordem certa dos parênteses na derivada é D(f)(x)
- Os comandos Int e Sum são diferentes dos int e sum

$$\begin{cases} 0 \le x \le 5 \\ y \ge 0 \\ y \le 10\sin(x) \\ y \le 8\cos\left(\frac{3x}{5}\right) \end{cases}$$

(a) Desenhe a região. Identifique as interseções, escrevendo o truncamento das coordenadas com 3 casas decimais.

Questão 2. Considere a função $f(x) = 2^x + \frac{5}{x^2 + 1}$ no domínio [-2, 3].

(a) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha inclinação -2. Dê o truncamento de x_0 com 3 casas decimais.

(c) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a maior inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.
(d) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a menor inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.

```
VERSAO Vb
```

```
f := x \rightarrow 10 \sin(x)
f := x \rightarrow 10 \sin(x)
\Rightarrow g := x \rightarrow 8 \cos(3*x/5);
\text{plot}([f(x), g(x)], x = 0..3.2);
g := x \rightarrow 8 \cos\left(\frac{3}{5}x\right)
```

VERSÃO Vb

```
> restart;
f:=x->2^x + 5/(x^2+1);
x0:=fsolve(D(f)(x)=-2,x=-2..3);
```

```
y=-2*(x-x0)+f(x0);
plot([f(x),D(f)(x),D(D(f))(x),-2*(x-x0)+f(x0)],x=-2..3,numpoints=1000);
a:=fsolve(D(D(f))(x)=0,x=-1..0);
b:=fsolve(D(D(f))(x)=0,x=0..1);
evalf(D(f)(-2.));
evalf(D(f)(a));
evalf(D(f)(b));
evalf(D(f)(3.));
f:=x\to 2^x+\frac{5}{x^2+1}
x0:=0.3801540123
y=-2x+6.430443606
```


$$a := -0.5557897924$$
 $b := 0.5331474247$
 0.9732867952
 3.715651327
 -2.229549625
 5.245177445

(3)

(nessa versao o maximo esta no extremo do dominio)

MAT1161 – Cálculo a uma Variável G1 - Maple – 8 de abril de 2016 Versão VIa

Nome Legível	:		
Assinatura	:		
Matrícula	:	Turma :	

Questão	Valor	Grau	Revisão
1^a	1, 5		
2^a	1, 5		
Total	3,0		

Todas as questões devem ser justificadas de forma clara e rigorosa. Respostas sem justificativas não serão consideradas. Quando usar o Maple na resolução, deixe isto claro fornecendo os comandos de entrada no programa.

ATENÇÃO

Você PODE consultar o help do Maple durante a prova.

Você NÃO PODE consultar outros materiais durante a prova.

Você NÃO PODE obter ajuda do professor (nem de colegas) com seus comandos durante a prova.

Antes de se desesperar, verifique se o seu erro não é de um destes tipos comuns:

- Falta de ; no final da linha
- Parênteses que abre mas não fecha ou fecha mas não abre
- Falta do = ou do : na atribuição de valor (f:=...)
- Falta de -> na atribuição de função (f:=x->...)
- X maiúsculo onde deveria ser minúsculo
- Deixar de usar parênteses para algum comando
- Deixar de especificar domínio para o plot (x=...)
- Falta do sinal de multiplicação (é 2*x e não 2x)
- O comando para a função seno é sin e não sen
- Ordem certa dos parênteses na derivada é D(f)(x)
- Os comandos Int e Sum são diferentes dos int e sum

$$\begin{cases} 0 \le x \le 5 \\ y \ge 0 \\ y \le 10\sin(x) + 2 \\ y \le 8\cos\left(\frac{3x}{5}\right) \end{cases}$$

(a) Desenhe a região. Identifique as interseções, escrevendo o truncamento das coordenadas com 3 casas decimais.

Questão 2. Considere a função $f(x) = 2^x + \frac{4}{x^2 + 1}$ no domínio [-1, 3].

(a) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha inclinação -1. Dê o truncamento de x_0 com 3 casas decimais.

(c) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a maior inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.
(d) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a menor inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.

```
VERSAO VIa
```

```
> f:=x->10*sin(x)+2;

f:=x \to 10 \sin(x) + 2
> g:=x->8*cos(3*x/5);

plot([f(x),g(x)],x=0..3.2);

g:=x \to 8 \cos\left(\frac{3}{5}x\right)
```

VERSÃO VIa

```
> restart;
  f:=x->2^x + 4/(x^2+1);
  x0:=fsolve(D(f)(x)=-1,x=-1..3);
```

```
y=-1*(x-x0)+f(x0);
plot([f(x),D(f)(x),D(D(f))(x),-1*(x-x0)+f(x0)],x=-1..3,numpoints=1000);
a:=fsolve(D(D(f))(x)=0,x=-1..0);
b:=fsolve(D(D(f))(x)=0,x=0..1);
evalf(D(f)(-1.));
evalf(D(f)(a));
evalf(D(f)(b));
evalf(D(f)(3.));
f:=x\rightarrow 2^{x}+\frac{4}{x^{2}+1}
x0:=0.8656300658
y=-x+4.974374131
```

$$a := -0.5505357785$$
 $b := 0.5233145263$
 2.346573590
 3.067000732
 -1.583718158
 5.305177445

(3)

(nessa versao o maximo esta no extremo do dominio)

MAT1161 – Cálculo a uma Variável G1 - Maple – 8 de abril de 2016 Versão VIb

Nome Legível	:	
Assinatura	:	
Matrícula	•	Turma ·

Questão	Valor	Grau	Revisão
1^a	1, 5		
2^a	1, 5		
Total	3,0		

Todas as questões devem ser justificadas de forma clara e rigorosa. Respostas sem justificativas não serão consideradas. Quando usar o Maple na resolução, deixe isto claro fornecendo os comandos de entrada no programa.

ATENÇÃO

Você PODE consultar o help do Maple durante a prova.

Você NÃO PODE consultar outros materiais durante a prova.

Você NÃO PODE obter ajuda do professor (nem de colegas) com seus comandos durante a prova.

Antes de se desesperar, verifique se o seu erro não é de um destes tipos comuns:

- Falta de ; no final da linha
- Parênteses que abre mas não fecha ou fecha mas não abre
- Falta do = ou do : na atribuição de valor (f:=...)
- Falta de -> na atribuição de função (f:=x->...)
- X maiúsculo onde deveria ser minúsculo
- Deixar de usar parênteses para algum comando
- Deixar de especificar domínio para o plot (x=...)
- Falta do sinal de multiplicação (é 2*x e não 2x)
- O comando para a função seno é sin e não sen
- Ordem certa dos parênteses na derivada é D(f)(x)
- Os comandos Int e Sum são diferentes dos int e sum

$$\begin{cases} 0 \le x \le 5 \\ y \ge 0 \\ y \le 10\sin(x) + 5 \\ y \le 8\cos\left(\frac{3x}{5}\right) \end{cases}$$

(a) Desenhe a região. Identifique as interseções, escrevendo o truncamento das coordenadas com 3 casas decimais.

Questão 2. Considere a função $f(x) = 2^x + \frac{4}{x^2 + 1}$ no domínio [-1, 2].

(a) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha inclinação 1. Dê o truncamento de x_0 com 3 casas decimais.

(c) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a maior inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.
(d) Encontre um valor de x_0 para que a reta tangente naquele ponto tenha a menor inclinação possível. Dê o truncamento de x_0 com 3 casas decimais.

VERSAO VIb

```
> f:=x->10*sin(x)+5;

f:=x \to 10 \sin(x) + 5
> g:=x->8*cos(3*x/5);

plot([f(x),g(x)],x=0..3.2);

g:=x \to 8 \cos\left(\frac{3}{5}x\right)
```

x0:=fsolve(D(f)(x)=1,x=-1..2);

```
y=1*(x-x0)+f(x0);
plot([f(x),D(f)(x),D(D(f))(x),1*(x-x0)+f(x0)],x=-1..2,numpoints=1000);
a:=fsolve(D(D(f))(x)=0,x=-1..0);
b:=fsolve(D(D(f))(x)=0,x=0..1);
evalf(D(f)(-1.));
evalf(D(f)(a));
evalf(D(f)(b));
evalf(D(f)(b));
evalf(D(f)(2.));
f:=x\rightarrow 2^{x}+\frac{4}{x^{2}+1}
x0:=-0.04091601560
y=x+5.006268300
```


$$a := -0.5505357785$$
 $b := 0.5233145263$
 2.346573590
 3.067000732
 -1.583718158
 2.132588722

(3)