Section 1.4

October 23, 2023

Figures for Section 1.4

```
[1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

```
[2]: # preprocess data
wine = [i.strip().split() for i in open("../../data/wine.dat.rtf").readlines()]
# remove entries with '\\'
wine_cleaned = [m for m in wine if '\\' not in ' '.join(m)]

# slice the data, remove the first and last entries
wine_df = pd.DataFrame(wine_cleaned[1:-1])

# change datatype from str to int
wine_df = wine_df.astype({0:'int'})
#wine_df.head()
```

Figure 1.10

Time series plots of the red wine sales in Australia from January 1980 to October 1991 (left) and its log transformation with yearly mean estimates (right).

```
# column names
newdf.columns = ['year','average']

# select the previous 141 data, assign to 'yearly_average'
wine_df['yearly_average'] = newdf['average'][:141]
```

```
[5]: fig, axs = plt.subplots(1, 2, figsize=(9,4),constrained_layout = True)
    axs[0].plot(times, wine_df[0])
# plot log-transferred data
    axs[1].plot(times, wine_df['log'])
# plot yearly average data
    axs[1].plot(times, wine_df['yearly_average'])
plt.show()
```


Figure 1: Time series plots of the red wine sales in Australia from January 1980 to October 1991 (left) and its log transformation with yearly mean estimates (right).

Figure 1.11

The detrended log series (left), the estimated seasonal component (center) and the corresponding residuals series (right) of the Australian red wine sales data.

```
[6]: # calcualted estimated seasonal components
    # extract yearly average values
    m = wine_df['yearly_average'].unique()
    N,d = 12,12
    w_log = wine_df['log']

# store estimated seasonality
# intialize as an array
    s = np.zeros(d)
```

```
for k in range(d):
         j=0
         sN = 0
         while k+j*d < len(w_log):
             # relabel observations
             i = k + j*d
             sN = sN + (w_log[i]-m[j])
             j = j+1
         s[k] = 1/N * sN
     # the sum of s should be 0
     # np.sum(s)
     # create a new column for estimated seasonal components
     wine_df = wine_df.assign(est_s=s[np.arange(len(wine_df)) % N])
     # calcualte residuals
     wine_df['res'] = wine_df['log']-wine_df['yearly_average'] - wine_df['est_s']
[7]: fig, axs = plt.subplots(1, 3, figsize=(12,5),constrained_layout = True)
     axs[0].plot(times, wine_df['log']-wine_df['yearly_average'])
```

```
axs[1].plot(times, wine_df['est_s'])
axs[2].plot(times, wine_df['res'])
```

[7]: [<matplotlib.lines.Line2D at 0x7fd3c20913d0>]

Figure 2: The detrended log series (left), the estimated seasonal component (center) and the corresponding residuals series (right) of the Australian red wine sales data.

The differenced observed series $\nabla_{12}x_t$ (left), ∇x_t (middle) and $\nabla \nabla_{12}x_t = \nabla_{12}\nabla x_t$ (right) for the Australian red wine sales data.

```
[8]: # create a lag-difference
def lagDiff(data,d):
    lagdiff = list()
    for i in range(d, len(data)):
        v = data[i] - data[i-d]
        lagdiff.append(v)

    return lagdiff
```

```
[9]: fig, axs = plt.subplots(1, 3, figsize=(15,3.5))

lag12 = lagDiff(w_log, 12)
    axs[0].plot(lag12)

df1 = np.diff(w_log)
    axs[1].plot(df1)

df2 = np.diff(lag12)
    axs[2].plot(df2)
```

[9]: [<matplotlib.lines.Line2D at 0x7fd3c20e1b90>]

Figure 3: The differenced observed series $\nabla_{12}x_t$ (left), ∇x_t (middle) and $\nabla \nabla_{12}x_t = \nabla_{12}\nabla x_t$ (right) for the Australian red wine sales data.

Reference:

- 1. https://matplotlib.org/stable/api/dates_api.html
- 2. https://stackoverflow.com/questions/65471540/get-monthly-average-in-pandas
- 3. https://stackoverflow.com/questions/50788508/how-can-i-replicate-rows-of-a-pandas-dataframe
- 4. https://stackoverflow.com/questions/47255885/how-do-i-add-a-column-to-a-dataframe-with-a-repeating-series-of-values
- 5. https://machinelearningmastery.com/difference-time-series-dataset-python/