Marginal Proportional Hazards Models for Multivariate Interval-Censored Data

Yangjianchen Xu, Donglin Zeng and D. Y. Lin

Department of Biostatistics, University of North Carolina at Chapel Hill

Background

- · Multivariate interval-censored data
- Multiple types of events or clusters of study subjects
- Each event is only known to occur over a particular time interval
 Example: Atherosclerosis Risk in
 - Communities Study

Data

- n clusters
- n_i subjects in ith cluster
 K types of events
- $X_{ijk}(\cdot)$: covariates for the kth event time for
- the *j*th subject of the *i*th cluster
 T_{ijk} : event time bracketed by $(L_{ijk}, R_{ijk}]$

Models and Pseudo-Likelihood

- Wiodels and I seado Eikenno
- Marginal hazard function for T_{ijk} : $\lambda_{ijk}(t) = \lambda_k(t) exp\{\beta_k^T X_{ijk}(t)\}$
- Pseudo-Likelihood for β_k and Λ_k :

$$\prod_{i=1}^{R} \prod_{j=1}^{R_i} \left(\exp\left[-\int_0^{L_{ijk}} \exp\left\{ \beta_k^T X_{ijk}(t) \right\} d\Lambda_k(t) \right] - \exp\left[-\int_0^{R_{ijk}} \exp\left\{ \beta_k^T X_{ijk}(t) \right\} d\Lambda_k(t) \right] \right)$$

EM-type Algorithm

- Introduce latent (Poisson) random variables W_{ijka}
- E-step

$$= \frac{\hat{E}(W_{ijkq})}{1 - \exp\left\{-\sum_{L_{ijk} < t_{kq'} \le R_{ijk}} \lambda_{kq'} \exp\left(\beta_k^\mathsf{T} X_{ijkq}\right)\right\}}$$

M-step

$$\triangleright$$
 Update β_k :

$$\sum_{i=1}^{n} \sum_{j=1}^{n_{i}} \sum_{q=1}^{m_{k}} I(R_{ijk}^{*} \ge t_{kq}) \hat{E}(W_{ijkq}) \left\{ X_{ijkq} - \frac{\sum_{i'=1}^{n} \sum_{j'=1}^{n_{i'}} I(R_{i'j'k}^{*} \ge t_{kq}) \exp(\beta_{k}^{T} X_{i'j'kq}) X_{i'j'kq}}{\sum_{i'=1}^{n} \sum_{j'=1}^{n_{i'}} I(R_{i'j'k}^{*} \ge t_{kq}) \exp(\beta_{k}^{T} X_{i'j'kq})} \right\} = 0$$

ightharpoonup Update λ_{kq} :

$$\lambda_{kq} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n_i} I(R_{ijk}^* \ge t_{kq}) \hat{E}(W_{ijkq})}{\sum_{i=1}^{n} \sum_{j=1}^{n_i} I(R_{ijk}^* \ge t_{kq}) \exp(\beta_k^\mathsf{T} X_{ijkq})}$$

Asymptotic Properties

Strong consistency of parameter estimators:

$$|\hat{\beta} - \beta_0| + \sum_{k=1}^K \sup_{t \in [0, \tau_k]} |\widehat{\Lambda}_k(t) - \Lambda_{0k}(t)| \to_{a.s.} 0$$

- Weak convergence: $n^{1/2}(\hat{\beta}-\beta_0) \rightharpoonup N(0,\Omega)$
- Sandwich variance estimator is consistent:

$\left\{D_{h_n}^2 \mathrm{pl}_{\mathbf{k}}(\widehat{\beta_k})\right\}^{-1} \sum_{i=1}^n D_{h_n} \mathrm{pl}_{\mathbf{k}\mathbf{i}}(\widehat{\beta_k}) D_{h_n} \mathrm{pl}_{\mathbf{l}\mathbf{i}}(\widehat{\beta_l})^{\mathrm{T}} \left\{D_{h_n}^2 \mathrm{pl}_{\mathbf{l}}(\widehat{\beta_l})\right\}^{-1}$

Simulation Studies

 Clustered data: compare marginal model and random-effects model

Time Time Time

Fig. 1. Estimation of the cumulative baseline hazard function $\Lambda(t)$ for clustered data; the solid and dashed cur

 Multiple-event data: estimate a common parameter

Table 2. Parameter estimation results for simulation studies with multiple-event data													
		First event				Second event				Optimal combination			
ρ	No. of subjects	Bias	SE	SEE	CP	Bias	SE	SEE	CP	Bias	SE	SEE	CP
0.2	n = 100	0.019	0.287	0.297	95.9	0.018	0.281	0.289	95.8	0.007	0.213	0.223	96.0
	n = 200	0.009	0.196	0.202	95.8	0.010	0.191	0.196	95.7	0.005	0.147	0.151	95.5
	n = 400	0.005	0.136	0.139	95.5	0.006	0.134	0.135	95.2	0.004	0.103	0.104	95.1
0.5	n = 100	0.020	0.285	0.297	96.2	0.026	0.280	0.289	96.0	0.011	0.232	0.248	96.3
	n = 200	0.010	0.195	0.202	95.9	0.014	0.191	0.196	95.8	0.008	0.160	0.167	96.1
	n = 400	0.007	0.138	0.139	95.4	0.007	0.133	0.135	95.7	0.005	0.112	0.115	95.7
0.75	n = 100	0.020	0.282	0.297	96.2	0.021	0.276	0.289	96.0	0.004	0.260	0.268	96.5
	n = 200	0.009	0.195	0.202	96.0	0.009	0.188	0.195	95.8	0.003	0.170	0.180	96.4

A Real Data Example

- Events: diabetes and hypertension
 - Baseline risk factors: age, body mass index, glucose level, systolic blood pressure and diastolic blood pressure
- 8735 individuals, 2000 distinct interval endpoints

Table 3. Regression analysis of the Atherosclerosis Risk in Communities Study data

Future Work

- Model checking
- Joint model: allow intermittent missing covariate values or measurement errors
- Transformation model: nonproportional hazard

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL