OPTIMAL NEURAL CODING FOR ARBITRARY STIMULUS PRIORS

Zhuo Wang, Kevin Shi, Alan Stocker and Daniel Lee

wangzhuo@sas.upenn.edu, kshi@sas.upenn.edu, astocker@sas.upenn.edu, ddlee@seas.upenn.edu

INTRODUCTION

Noisy spiking can lead to decoding error, so neurons need to adapt their tuning curves to optimally encode an environmental stimulus. Which tuning curve best The *discrimax* problem: represents an arbitrary stimulus prior?

3. Noise model P[X|s,T]

2. Encoding r = h(s)

4. Decoding $\hat{s} = h^{-1}(\hat{r})$

FISHER INFORMATION & ASSUMPTIONS (TECH. DETAILS)

Fisher information (FI) $\mathcal{I}(s)$:

$$\mathcal{I}(s) = \mathbf{E} \left[\left(\frac{\partial \log p(X|s)}{\partial s} \right)^2 \middle| s \right]$$

Cramer-Rao Bound (CRB):

$$\chi^2(s) = \mathbf{E}[(\hat{s} - s)^2 | s] \ge \frac{1}{\mathcal{I}(s)}$$

Sigmoidal tuning curve h(s):

$$h_{\min} \le h(s) \le h_{\max}, \quad h'(s) \ge 0$$

Poisson noise model P[X|s,T]:

$$\mathbf{P}[X = n|s, T] = e^{-h(s)T} \frac{(h(s)T)^n}{n!}$$

FI for Poisson noise:

$$\mathcal{I}_h(s) = T \frac{h'(s)^2}{h(s)}$$

OPTIMIZATION PROBLEM AND SOLUTION

min
$$\left\langle \frac{1}{\mathcal{I}_h(s)} \right\rangle_p = \int \frac{p(s)}{\mathcal{I}_h(s)} ds$$
s.t $h_{\min} \le h(s) \le h_{\max}$
 $h'(s) \ge 0$

Optimal solution:

$$h(s) = \left(A + B \frac{\int_{-\infty}^{s} p(s)^{1/3} ds}{\int_{-\infty}^{\infty} p(s)^{1/3} ds}\right)^{2}$$

$$A = \sqrt{h_{\min}}$$

$$B = \sqrt{h_{\max}} - \sqrt{h_{\min}}$$

KEY IDEAS & SIMULATION (TECH. DETAILS)

One-to-one correspondence:

$$h(s) \leftrightarrow \mathcal{I}_h(s) \leftrightarrow \sqrt{\mathcal{I}_h(s)}$$

Constraint on total budget:

$$\int \sqrt{\mathcal{I}_h(s)} \, ds \le 2B\sqrt{T}$$

Euler-Lagrange equation:

$$\frac{\partial}{\partial \mathcal{I}_h} \left(\frac{p}{\mathcal{I}_h} - \lambda \sqrt{\mathcal{I}_h} \right) = 0$$

$$\Rightarrow \mathcal{I}_h \propto p^{2/3}$$

Arbitrary tuning curves have same total $\sqrt{\mathcal{I}}$:

Draw s from standard normal, encode and decode s using β -code

$$h(s) = \left(A + B \frac{\int_{-\infty}^{s} p(s)^{1/\beta} ds}{\int_{-\infty}^{\infty} p(s)^{1/\beta} ds}\right)^{2}$$

Coding error χ^2 computed for each β . Theoretical optimal $\beta = 3$.

APPLICATION TO FLY H1 NEURON

Analysis of data from [3]: Prior p(s) is assumed to be Gaussian with zero mean and standard deviation σ . The optimal value $\sigma \approx 8$ deg/sec is found by fitting the firing rates of the spike data (grey points).

CONCLUSION

The optimal tuning curve h(s) is fully determined by the stimulus prior p(s). For example, optimizing for maximal discriminability with Poisson noise leads to a cube-root law between prior and tuning curve:

$$d\sqrt{h(s)}/ds \propto p(s)^{\frac{1}{3}}$$

The framework is general and can be used to constrain tuning curves for different noise types, optimality criterions. It can be expanded to populations of neurons.

ACKNOWLEDGEMENT

This project has been supported by the grant ONR-N000141110744.

PARTIAL REFERENCES

- [1] Bethge M, Rotermund D, Pawelzik K. Optimal short-term population coding: when Fisher information fails. Neural Computation (2002).
- [2] Brunel N, Nadal J.-P. Mutual information, Fisher information and population coding. Neural Computa-
- [3] Rob R. de Ruyter van Steveninck, Geoffrey D. Lewen, Steven P. Strong, Roland Koberle, William Bialek. Reproducibility and Variability in Neural Spike Trains. Science (1997)