Statistik och Dataanalys I

Föreläsning 16 - Sannolikhetsmodeller II

Mattias Villani

Statistiska institutionen Stockholms universitet

Översikt

- Poissonfördelning
- **Exponentialfördelning**
- Student-*t*
- **Sannolikhetsmodeller** och verkligheten

Poissonfördelning

- Poissonfördelningen är en fördelning för räknedata (antal).
- lacksquare Om $X \sim \operatorname{Poisson}(\lambda)$ så

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!},$$
 för $x = 0, 1, 2, ...$

Poisson har samma väntevärde och varians:

$$E(X) = \lambda$$
$$Var(X) = \lambda$$

- Exempel:
 - antal buggar i en mjukvara
 - antal budgivare i en eBay auktion
 - antal besök till läkaren

Poissonfördelning - interaktivt

Poissonfördelning för antal bud på eBay

- Data från 1000 eBay-auktioner av samlarmynt.
- nBids är antalet budgivare i en given auktion.
- Olika värdefulla och olika reservationspris (lägsta pris).
- Fokus här på de 550 observationer med lägst reservationspris.
- Modell för nBids: $X_1, \ldots, X_n \stackrel{\text{ober}}{\sim} \operatorname{Pois}(\lambda)$.

	nBids	PowerSeller	VerifyID	Sealed	Minblem	MajBlem	LargNeg	LogBook	MinBidShare	Sold	low_res_price
1	2	0	0	0	0	0	0	-0.224	-0.209	True	low
2	6	1	0	0	0	0	0	0.607	-0.348	True	low
3	1	1	0	0	0	0	0	0.033	0.442	True	high
4	1	0	0	0	1	0	0	0.376	0.144	True	high
5	4	0	0	0	0	0	1	1.435	-0.41	True	low
6	2	0	0	0	0	0	0	-0.914	0.632	True	high
7	2	0	0	0	1	0	0	-0.248	0.295	True	high
8	2	0	0	0	0	0	0	-0.914	0.632	True	high
9	2	1	0	0	0	0	0	0.511	0.055	True	high
10	6	0	0	1	0	0	0	-0.362	0.025	True	high
11	n	1	0	n	n	n	n	-n 224	0.477	False	hinh

Wegmann, B. och Villani, M. (2011). Bayesian Inference in Structural Second-Price Common Value Auctions, Journal of Business and Economic Statistics

Punktskattning av modellparametrar

- Modell för nBids: $X_1, \ldots, X_n \stackrel{\text{ober}}{\sim} \operatorname{Pois}(\lambda)$.
- Hur väljer vi parametern λ ? Punktskattning. Estimat. $\hat{\lambda}$.
- **Momentmetoden**: Eftersom $E(X) = \lambda$ så är $\hat{\lambda} = \bar{x}$ rimligt.
- **Maximum likelihood**: välj det λ som maximerar sannolikheten för datamaterialet.
- Maximum likelihood-metoden funkar för alla modeller. 😎

Maximum likelihood för Poisson - interaktivt

Exponentialfördelning

Om $X \sim \operatorname{Expon}(\lambda)$ så är täthetsfunktionen

$$f(x) = \lambda e^{-\lambda x}$$
, för $x > 0$

- $e \approx 2.71$ är Eulers tal.
- Väntevärde och varians

$$E(X) = \frac{1}{\lambda} \text{ och } Var(X) = \frac{1}{\lambda^2}$$

- **Exponentialfördelning** vanlig modell för väntetider.
 - ► Tid mellan samtal till stödlinje.
 - Tid mellan mjukvarureleaser.
- Exponential och Poisson-fördelningen hänger ihop:
 - ▶ Om antalet samtal till stödlinje per timme är $Poisson(\lambda = 6)$ så förväntar vi oss $\lambda = 6$ st samtal i timmen.
 - ▶ Då är tiden mellan samtal $\operatorname{Expon}(\lambda = 6)$ och vi förväntar oss $1/\lambda = 1/6$ timmar (10 minuter) mellan samtal.

Exponentialfördelning

Exponentialfördelning i R

 $X \sim \text{Expon}(\lambda = 3)$. Parametern λ kallas rate i R.

Beräkning	R kommando	Kommentar		
f(0.5)	dexp(x = 0.5, rate = 3)	f(x) vid $x=2$		
$P(X \le 0.5)$	pexp(q = 0.5, rate = 3)			
Kvantil	qexp(p = 0.5, rate = 3)	Medianen		
10 slumptal	rexp(n = 10, rate = 3)			

- Täthetsfunktion heter density function på engelska.

 Därav namnet dexp.
- Se programkoden exponential.R på kurssidan.

Student-t fördelning (standard)

- $X \sim t_{\nu}(0,1)$ är en **student**-t fördelning med ν **frihetsgrader**.
- **Kontinuerliga symmetriska** variabler över $(-\infty, \infty)$.
- Student-t har mer sannolikhet på extrema utfall.
- **Student-** t fördelning blir alltmer lik normal när ν ökar.

Varför student-t är viktig för inferens

- X_1, X_2, \dots, X_n är oberoende data from $N(\mu, \sigma^2)$.
- Stickprovmedelvärdet

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Inferens: intresserad av fördelningen för det standardiserad medelvärdet.

$$\frac{\bar{X} - \mu}{SD(\bar{X})}$$

- Om variansen i populationen σ^2 är känd så är det standardiserade medelvärdet normalfördelat.
- Om variansen i populationen σ^2 är okänd, och måste skattas med s^2 , så är det standardiserade medelvärdet student-t fördelad med $\nu = n 1$ frihetsgrader.

Student-t som modell för aktieavkastning

- Finansiella data har ofta extremvärden. Tunga svansar.
- Maximum likelihood: $\mu = 0.094$, $\phi = 1.279$ och $\nu = 2.706$.

Allmän Student-t fördelning för datamodellering

Population och stickprov - ändliga populationer

Modeller som en förenkling av verkligheten

Sannolikhetsmodeller och inferens

Sannolikhetsmodeller möter verkligheten - prediktion

Modellering är en iterativ process

Slutmålet är ofta beslutsfattande i en osäker värld

