CS & IT ENGINEERING

IPv4 Header & Fragmentation

Lecture No-2

By-Ankit Doyla Sir

TOPICS TO BE COVERED

IPv4 Header

IPv4 Header

VER(4)	HL(4)	Services(s	Total Length(16)
Identifica No.	ation (1664)	Flags (3 b)	Fragment offset
Time to Live		Protocol	Header checksum
	5	Source IP Ac	ldress (39 b+)
	Des	stination IP	Address (3961)
		Option	

VERSION (4 bit):

9t is used to indicate IPv4 or IPv6

```
TR_{1} \times TR_{2} \times TR_{2} \times TR_{3} \times TR_{4} \rightarrow (0100)
TR_{5} \times TR_{6} \rightarrow (0110)
```

Services:

In this Interpretation the first 3 bit are called precedence bit (Priority bit) and Next 4 bit are called types of services bits and last bit is Not used.

Priority:

It is a 3 bit subfield ranging from 0 to 7 (000 to 111 in binary). Priority field is needed if a router is congested need to discard some datagram, those datagram which have the lowest priority are discarded first

Types of Services:

It is a 4 bit subfield. Each bit having a special meaning .although a bit can be 0 or 1. One and only one of the bits can have the value 1 in each datagram.

D	T	R	C	
0	0	0	0	DeFault
1	0	0	0	minimum Dolay
0	1	0	O	Max. Throughput.
0	0	1	O	High Reliability
0	0	0	1	min. cost

Total Length: (16 bit)

Maximum data size at NL= 65,515 Byte

Identification Number of Datagram Number (1661)

- Each datagram is associated with a sequence no. is called as datagram no. or identification no.
- 2. It is used to identify all the fragment of same datagram.
- All the <u>fragment of same datagram</u> will have the <u>same</u> identification no.

Flags:

It is the 3 bit Field or shown in the figure.

```
and bit is Called as Don't Fragment
3rd bit is called as more Fragment
```


DF (Don't Fragment)

- 1) DF = 1 Means Datagram can't be Fragmented
- (a) DF=0 → means Datagram can be Fragmented

MF (more Fragment)

MF=1 -> means this is Not the Last Fragment their are more Fragment after this Fragment

MF=0 - means this is the last Fragment or only Fragment

Fragment offset: (13bit) → Range → o to 2 -1 (0to 8191)

Fragment offset indicate no of data byte ahead of this fragment in that particular packet.

Note: OIP is a Packet stream Protocal 1:c every Packet is associated with one sequence Number

TCP is a Byte stream Protocal 1:e every Byte is associated with one seguence Number

