Algoritmalara Giriş 6.046J/18.401J

DERS 8

Kıyım Fonksiyonu(Hashing II)

- Evrensel kıyım fonksiyonu
- Evrensellik teoremi
- Evrensel kıyım fonksiyonları kümesini yapılandırmak
- Mükemmel kıyım fonksiyonu

Prof. Charles E. Leiserson

Kıyım fonksiyonunun bir zaafı

Problem: Her kıyım fonksiyonu *h* için, kıyım tablosuna ortalama erişim süresini çok büyük ölçüde arttıracak bir anahtar kümesi vardır.

• Rakibiniz bir i yuvası için tüm anahtarları $\{k \in U : h(k) = i\}$ 'den elde edebilir.

Fikir: Kıyım fonksiyonunu tüm anahtarlardan bağımsız olacak şekilde rastgele seçin.

• Rakibiniz kodunuzu görüyor olsa bile, hangi kıyım fonksiyonunun seçileceğini kesinlikle bilmediğinden, kötü bir anahtar kümesi bulamayacaktır.

Evrensel kıyım fonksiyonu

Tanım. U bir anahtarlar evreni ve \mathcal{H} de sınırlı sayıdaki kıyım fonksiyonlarının kümesi olsun; herbiri U' yu $\{0, 1, ..., m-1\}$ ' e eşlemlesin.

 \mathcal{H} 'nin *evrensel* olması için: $x, y \in U$ ve $x \neq y$, ile $|\{h \in \mathcal{H} : h(x) = h(y)\}| = |\mathcal{H}|/m$ olması gerekir.

Yani, x ile y arasında bir çarpışma olasılığı: 1/m 'dir; koşul: h' nin H' den rastgele seçimi.

Evrensellik iyidir

Teorem. h (tekbiçimli olarak) rastgele seçilmiş bir kıyım fonksiyonu olsun; seçim evrensel bir \mathcal{H} kıyım fonksiyonları setinden yapılmış olsun. h' nin n rastgele anahtarı T tablosundaki m yuvaya kıyımladığını farzedin.

Bu durumda verilen bir *x* anahtarı için:

E[x ile çarpışma sayısı] < n/m.

Teoremin kanıtı

Kanıt. C_x , T' nin içindeki anahtarlarla x' in toplam çarpışma sayısını gösteren rastgele değişken olsun; ve

 $c_{xy} = \begin{cases} 1 \text{ eğer } h(x) = h(y), \\ 0 \text{ (diğer durumlarda)} & \text{olsun.} \end{cases}$

Not:
$$E[c_{xy}] = 1/m$$
 ve $C_x = \sum_{y \in T - \{x\}} c_{xy}$.

$$E[C_x] = E\left[\sum_{y \in T - \{x\}} c_{xy}\right]$$
 • İki tarafın da beklenenini bulun.

$$E[C_x] = E\left[\sum_{y \in T - \{x\}} c_{xy}\right]$$

$$= \sum_{y \in T - \{x\}} E[c_{xy}]$$

- İki tarafın da beklenenini bulun.
- = $\sum E[c_{xy}]$ Beklenenin doğrusallığı (expectation).

$$E[C_x] = E \begin{bmatrix} \sum_{y \in T - \{x\}} c_{xy} \\ = \sum_{y \in T - \{x\}} E[c_{xy}] \\ y \in T - \{x\} \end{bmatrix}$$

$$= \sum_{y \in T - \{x\}} 1/m$$

- İki tarafın da beklenenini bulun.
- Beklenenin doğrusallığı (expectation).
- $\bullet E[c_{xy}] = 1/m.$

$$E[C_x] = E\left[\sum_{y \in T - \{x\}} c_{xy}\right]$$

$$= \sum_{y \in T - \{x\}} E[c_{xy}]$$

$$= \sum_{y \in T - \{x\}} 1/m$$

$$=\frac{n-1}{m}$$
.

- Her iki tarafın da beklenenini bulun.
- Beklenenin doğrusallığı (expectation).
- $E[c_{xy}] = 1/m$.

• Cebir.

Bir evrensel kıyım fonksiyonları

setini yapılandırmak

m asal sayı olsun. k anahtarını r+1 basamağa ayrıştırın; herbirinin set içinde değeri $\{0, 1, ..., m-1\}$ olsun. Yani, $k = \langle k_0, k_1, ..., k_r \rangle$ ve $0 \le k_i \le m$ olsun.

Rastgele yapma stratejisi:

 $a = \langle a_0, a_1, ..., a_r \rangle$ olsun; burada a_i $\{0, 1, \dots, m-1\}$ arasından rastgele seçilmiştir.

Tanım:
$$h_a(k) = \sum_{i=0}^{r} a_i k_i \mod m$$
. Nokta çarpım, mod m (ölçke)

$$\mathcal{H} = \{h_a\}$$
ne büyüklükte?

$$\mathcal{H} = \{h_a\}$$
ne büyüklükte? $|\mathcal{H}| = m^{r+1}$. $\leftarrow \frac{\text{BUNU}}{\text{HATIRLAYIN!}}$

Nokta - çarpım kıyım fonksiyonların evrenselliği

Teorem. $\mathcal{H} = \{h_a\}$ seti evrenseldir.

Kanıt. $x = \langle x_0, x_1, ..., x_r \rangle$ olduğunu varsayın ve y = $\langle y_0, y_1, ..., y_r \rangle$ farklı anahtarlar olsun. Yani, en az bir basamakta farklı olsunlar ve log pozisyonu 0 olsun. Kaç $h_a \in \mathcal{H}$ için x ve y çarpışırlar?

 $h_a(x) = h_a(y)$ olması gerekir ve bunun anlamı:

$$\sum_{i=0}^{r} a_i x_i \equiv \sum_{i=0}^{r} a_i y_i \pmod{m}$$

Benzer yaklaşımla, elimizde

$$\sum_{i=0}^{r} a_i (x_i - y_i) \equiv 0 \pmod{m}$$

veya

$$a_0(x_0 - y_0) + \sum_{i=1}^r a_i(x_i - y_i) \equiv 0 \pmod{m}$$
,

olur ve bu da şu anlama gelir:

$$a_0(x_0 - y_0) \equiv -\sum_{i=1}^r a_i(x_i - y_i) \pmod{m}$$
.

Sayı teorisinin gerçeği

Teorem. m asal sayı olsun. Herhangi bir $z \in \mathbb{Z}_m$ ve $z \neq 0$ için, özgün bir $z^{-1} \in \mathbb{Z}_m$ vardır ve bu durumda:

$$z \cdot z^{-1} \equiv 1 \pmod{m}$$
. (ölçke m) olur.

Örnek: m=7.

$$z$$
 1 2 3 4 5 6 z^{-1} 1 4 5 2 3 6

Kanıta geri dönüş

Elimizde

$$a_0(x_0 - y_0) \equiv -\sum_{i=1}^r a_i(x_i - y_i)$$
 (mod m) var,

ve $x_0 \neq y_0$, olduğundan tersi de $(x_0 - y_0)^{-1}$ olmalıdır, ve bu da şu anlama gelir:

$$a_0 \equiv \left(-\sum_{i=1}^r a_i(x_i - y_i)\right) \cdot (x_0 - y_0)^{-1} \pmod{m}.$$

Yani, herhangi bir $a_1, a_2, ..., a_r$, seçiminde tek a_0 seçimi, x ile y 'nin çarpışmasına neden olur.

Kanıt (tamamlanması)

- **S.** Kaç tane h_a , x ile y' nin çarpışmasına neden olur?
- C. Her $a_1, a_2, ..., a_r$ için m seçenek vardır ama, bunlar bir kez seçildiğinde, sadece bir tane a_0 x ile y' yi çarpıştırabilir, yani

$$a_0 = \left(\left(-\sum_{i=1}^r a_i (x_i - y_i) \right) \cdot (x_0 - y_0)^{-1} \right) \mod m.$$

Böylece, çarpışmaya neden olabilecek h' lerin sayısı $= m^r \cdot 1 = m^{r^a} = |\mathcal{H}|/m$.

Mükemmel kıyım fonksiyonu

n anahtarlı bir set verilirse, bir statik kıyım tablosunu boyutu m = O(n) olacak şekilde yapılandırın ve ARAMA (SEARCH) *en kötü durumda* $\Theta(1)$ süre alsın.

2. düzeyde çarpışmalar.
Teorem. \mathcal{H} , evrensel kıyım fonksiyonu türlerinden

biri olsun ve boyutu da $m = n^2$ olsun. Bu durumda, eğer bir rastgele $h \in \mathcal{H}$ ' yi n anahtarı tabloya kıyımlamakta kullanırsak, beklenen çarpışma sayısı en çok 1/2 olur.

Kanıt. Evrenselliğin tanımı gereği, tablodaki belirli

2 anahtarın h altında çarpışma olasılığı $1/m = 1/n^2$ olur. Çarpışma olasılıklı $\binom{n}{2}$ çift anahtar olduğundan, çarpışmaların beklenen sayısı:

$$\binom{n}{2} \cdot \frac{1}{n^2} = \frac{n(n-1)}{2} \cdot \frac{1}{n^2} < \frac{1}{2}. \quad \square$$

2. düzeyde çarpışma yoktur

Corollary/ Doğal sonuç. Hiç çarpışma olmaması olasılığı en az 1/2 dir.

Kanıt. Markov'un eşitsizliği çerçevesinde herhangi bir negatif olmayan rastgele değişken X için,

$$\Pr\{X \ge t\} \le E[X]/t \text{ dir.}$$

Bu eşitsizliği t = 1, durumuna uygularsak, 1 yada daha fazla çarpışma olasılığının en çok 1/2 olduğunu buluruz.

Böylece, \mathcal{H} 'nin içindeki rastgele kıyım fonksiyonlarını test ederek, çabucak çalışan bir tanesini buluruz.

Depolamanın çözümlenmesi

Düzey-1 değerli kıyım tablosu T için, m = n seçin ve n_i de T 'deki i yuvasına kıyımlanan anahtarları belirten rastgele değişken olsun. Burada n_i^2 yuvalı düzey-2 kıyım tablosu S_i kullanılırsa iki-düzeyli veri tanımlama işlemi için gerekli beklenen toplam depolama

$$E\left[\sum_{i=0}^{m-1}\Theta(n_i^2)\right] = \Theta(n) \text{ olur,}$$

çünkü buradaki çözümleme daha önce ele alınan sepet sıralamasının beklenen koşma süresindekinin aynıdır. (Olasılık sınırı için Markov'u uygulayın.)