

Longshore transport

CERC formula

transport coef. (0.4 sand)

$$Q_{ls} = K_{ls} H_b^{5/2} \sin 2\alpha_b$$

breaking wave height

breaking wave angle

other formula:

- **Kamphuis** (1991)
- Shore Protection Manual (**SPM**) (1984)

The profile is in equilibrium in the cross-shore direction.

if	Qin	>	Qout:
----	-----	---	-------

accretion

shoreline advance offshore

```
if Q<sub>in</sub> < Q<sub>out</sub>:
```

erosion

shoreline retreat

Conservation of mass implies:

Hanson, Hans (2016)

1-line model

Distance Alongshore

Distance Offshore

$$[\mathbf{Q} + (\delta \mathbf{Q}/\delta \mathbf{x})\Delta \mathbf{x}]\Delta \mathbf{t}$$

ΔΟ

 $D_B + D_C \Delta X$

1-line model

The profile is in equilibrium in the cross-shore direction.

if Q_{in} > Q_{out}:

accretion → shoreline advance offshore

if Q_{in} < Q_{out}:

erosion → shoreline retreat

Conservation of mass implies:

$$\frac{\Delta y}{\Delta t} + \frac{1}{D_B + D_C} \frac{\Delta Q}{\Delta x} = 0$$

Longshore transport

CERC formula

transport coef. (0.4 sand)

breaking wave angle

$$Q_{ls} = K_{ls} H_b^{5/2} \sin 2\alpha_b$$

breaking wave height

other formula:

- **Kamphuis** (1991)
- Shore Protection Manual (**SPM**) (1984)

1-line model

