Approfondimento di Intelligenza Artificiale

Tristano Munini

11 ottobre 2020

Indice

- AutoEncoders (AE) e Variational AutoEncoders (VAE)
- Generative Adversarial Network (GAN)
- ► Reinforcement Learning (RL)
 - QNN
 - Policy Gradient
- ▶ GAN + RL per generazione di testi
 - SeqGAN
 - LeakGAN

AutoEncoders

- $x \in \text{real data space}$
- $z \in \text{latent space}$
- $\hat{x} \in \text{real data space}$

The point of maximum compression, where z is produced, is called bottleneck of the network

Variational AutoEncoders

z is sampled from the distribution with mean vector μ and standard deviation vector σ .

We want an \hat{x} that is similar to x but that has some differences. We want a variation of x.

Reparametrization Trick

We can not use $z \sim \mathcal{N}(\mu, \sigma^2)$ So we use

$$z = \mu + \sigma \odot \varepsilon$$
 where $\varepsilon \sim \mathcal{N}(0,1)$

Where \odot notes the element-wise multiplication Now z is the sum of two fixed vectors, μ and σ , and a random constant ε used as a weight

Reparametrization Trick

Generative Adversarial Networks

GANs are a way to make a generative model by having two neural networks compete with each other

z can be sampled form $\mathcal{N}(0,1)$ as in the VAEs

GAN Training

It is a min-max game

$$egin{aligned} \mathit{min}_{G} \; \mathit{max}_{D} \; \mathit{V}(D,G) &= \mathbb{E}_{\mathit{x} \sim P_{\mathit{real}(\mathit{x})}}[\mathit{log}D(\mathit{x})] \\ &+ \mathbb{E}_{\mathit{z} \sim P_{\mathit{z}}(\mathit{x})}[\mathit{log}(1-D(G(\mathit{z}))] \end{aligned}$$

Where $P_{real(x)}$ is the probability distribution of the real data and $P_z(x) = \mathcal{N}(0,1)$ in our case

GAN Problems

- ► Hard to converge to a good solution
- ► Vanishing gradient problem
- Model collapse
- ► Hard to find equilibrium

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

Total reward, R_t , is the discounted sum of all rewards obtained from time t

$$Q(\mathbf{s}_t, \mathbf{a}_t) = \mathbb{E}[R_t | \mathbf{s}_t, \mathbf{a}_t]$$

The Q-function captures the **expected total future reward** an agent in state, *s*, can receive by executing a certain action, *a*

$$\pi^*(s) = \operatorname*{argmax}_{a} Q(s, a)$$

Use NN to learn Q-function and then use to infer the optimal policy, $\pi(s)$

