

Matemática Discreta Práctico 6

Licenciatura en Informática Ingeniería en Informática

Ejercicio 1

Considere el tipo de similaridad < 1,2; 1; 2 > con símbolos de relación P (unario) y R (binario), símbolo de función f (unario) v símbolos de constante c_1 , c_2 . Construya derivaciones que demuestren las siguientes consecuencias sintácticas de lógica de predicados. Justifique cuando corresponda que las restricciones sobre las variables se cumplen al aplicar las reglas:

- $P(c_1), \forall x (P(x) \rightarrow P(f(x))) \models P(f(c_1))$ d) $\forall x R(x, c_1), \forall x (R(x, c_1) \rightarrow P(x)) \models \forall y P(f(y))$
- b) $\forall x \forall y R(x,y) \vdash R(f(c_1), f(c_2))$ e) $\forall x \forall y (R(x,y) \rightarrow \neg R(y,x)) \vdash \forall x R(x,x) \rightarrow \exists y \neg R(y,y)$
- $P(c_1), P(c_2) \models \exists x \exists y (P(x) \land P(y))$ f) $\forall x (P(x) \rightarrow \neg R(x,x)) \models \exists x R(x,x) \rightarrow \neg \forall x P(x)$

Ejercicio 2

Sean α , $\beta \in FORM$ fórmulas cualesquiera. Construya derivaciones que demuestren las siguientes consecuencias sintácticas de lógica de predicados. Justifique cuando corresponda que las restricciones sobre las variables se cumplen al aplicar las reglas:

- a) $\forall x (\alpha \rightarrow \beta), \exists x \alpha \vdash \exists x \beta$
- d) $\exists x (\neg \beta \rightarrow \alpha), \forall x (\alpha \rightarrow \beta) \vdash \exists x \beta$
- b) $\forall x \alpha \wedge \exists x \beta \vdash \exists x (\alpha \wedge \beta)$
- e) $\forall x \alpha \vee \forall x \beta \vdash \forall x (\alpha \vee \beta)$
- c) $\forall x(\alpha \leftrightarrow \beta) \vdash \forall x \alpha \leftrightarrow \forall x \beta$

Ejercicio 3

Sean $\alpha, \beta \in FORM$ fórmulas cualesquiera. Construya derivaciones que demuestren los siguientes teoremas de lógica de predicados. Justifique cuando corresponda que las restricciones sobre las variables se cumplen al aplicar las reglas:

- a) $\mid \forall x(\alpha \land \beta) \rightarrow \forall x \alpha \land \forall x \beta$ d) $\mid \neg \exists x \alpha \leftrightarrow \forall x \neg \alpha$
- b) $\vdash \exists x (\alpha \land \beta) \rightarrow \exists x \alpha \land \exists x \beta$ e) $\vdash \exists x (\alpha \rightarrow \beta) \leftrightarrow \exists x (\neg \beta \rightarrow \neg \alpha)$
- c) $\vdash \forall x \forall y \alpha \leftrightarrow \forall y \forall x \alpha$

Ejercicio 4

Un conjunto $\Gamma \subseteq \mathsf{SENT}$ es *inconsistente* si y sólo si $\Gamma \models \bot$. Al igual que en PROP, para probar la inconsistencia de Γ basta con dar una derivación que concluya \bot partiendo de hipótesis en Γ . En cambio, para probar la consistencia de Γ es necesario usar el Teorema de Completitud.

Utilizando el Teorema de Completitud, demuestre la Condición necesaria y suficiente de consistencia para la Lógica de Predicados, cuyo enunciado es el siguiente:

Dado $\Gamma \subset \mathsf{SENT}$, Γ es consistente \Leftrightarrow Existe una estructura \mathcal{M} tal que $\mathcal{M} \models \Gamma$.

Considere el tipo de similaridad < 1 ; - ; 1 > con un símbolo de relación P (unario) y símbolo de constante c₁. Determine si cada uno de los siguientes conjuntos es consistente o inconsistente, justificando apropiadamente su respuesta en cada caso:

$$\Gamma_1 = \{ \ \forall x \ P(x), \ \exists x \neg P(x) \}$$

$$\Gamma_2 = \{ \ \forall x \ P(x), \ \neg \exists x \ P(x) \}$$

$$\Gamma_4 = \{ \ \neg \forall x \ P(x), \ \exists x \ \neg P(x) \}$$

$$\Gamma_4 = \{ \ \neg \forall x \ P(x), \ \exists x \ \neg P(x) \}$$

$$\Gamma_2 = \{ \neg \forall \mathbf{x} \, \mathbf{P}(\mathbf{x}) \mid \exists \mathbf{x} \, \mathbf{P}(\mathbf{x}) \}$$

$$\Gamma_2 = \{ \forall x P(x), \neg \exists x P(x) \}$$

$$\Gamma_4 = \{ \neg \forall x P(x), \exists x \neg P(x) \}$$