feature_engineering_and_modelling_model_answer

November 25, 2021

1 Feature Engineering and Modelling

- 1. Import packages
- 2. Load data
- 3. Feature engineering
- 4. Modelling

1.1 1. Import packages

```
[]: import warnings
    warnings.filterwarnings("ignore", category=FutureWarning)

[]: import pandas as pd
```

```
[]: import pandas as pd
  import numpy as np
  import seaborn as sns
  from datetime import datetime
  import matplotlib.pyplot as plt

# Shows plots in jupyter notebook
  %matplotlib inline

# Set plot style
  sns.set(color_codes=True)
```

1.2 2. Load data

```
[]: df = pd.read_csv('./clean_data_after_eda.csv')
   df["date_activ"] = pd.to_datetime(df["date_activ"], format='%Y-%m-%d')
   df["date_end"] = pd.to_datetime(df["date_end"], format='%Y-%m-%d')
   df["date_modif_prod"] = pd.to_datetime(df["date_modif_prod"], format='%Y-%m-%d')
   df["date_renewal"] = pd.to_datetime(df["date_renewal"], format='%Y-%m-%d')
```

```
[]: df.head(3)
```

```
[]:
                                                               channel_sales \
                                       id
        24011ae4ebbe3035111d65fa7c15bc57
                                           foosdfpfkusacimwkcsosbicdxkicaua
       d29c2c54acc38ff3c0614d0a653813dd
     1
                                                                     MISSING
        764c75f661154dac3a6c254cd082ea7d foosdfpfkusacimwkcsosbicdxkicaua
                                cons last month date activ
        cons 12m
                  cons_gas_12m
                                                               date end
     0
               0
                          54946
                                               0 2013-06-15 2016-06-15
     1
            4660
                             0
                                               0 2009-08-21 2016-08-30
     2
                              0
                                               0 2010-04-16 2016-04-16
             544
       date_modif_prod date_renewal
                                     forecast_cons_12m
            2015-11-01
                         2015-06-23
                                                   0.00
     0
            2009-08-21
     1
                          2015-08-31
                                                 189.95
     2
            2010-04-16
                          2015-04-17
                                                  47.96 ...
                                    var_6m_price_peak_var
        var_6m_price_off_peak_var
     0
                          0.000131
                                             4.100838e-05
                          0.00003
                                             1.217891e-03
     1
     2
                          0.00004
                                             9.450150e-08
        var_6m_price_mid_peak_var
                                    var_6m_price_off_peak_fix
     0
                          0.000908
                                                      2.086294
     1
                          0.000000
                                                      0.009482
     2
                          0.000000
                                                      0.000000
        var_6m_price_peak_fix
                               var_6m_price_mid_peak_fix var_6m_price_off_peak
                    99.530517
                                                44.235794
                                                                        2.086425
     0
                     0.000000
                                                 0.00000
                                                                        0.009485
     1
     2
                     0.00000
                                                 0.00000
                                                                        0.000004
        var_6m_price_peak var_6m_price_mid_peak
     0
             9.953056e+01
                                        44.236702
     1
             1.217891e-03
                                         0.000000
                                                        0
     2
             9.450150e-08
                                         0.000000
                                                        0
     [3 rows x 44 columns]
```

1.3 3. Feature engineering

1.3.1 Difference between off-peak prices in December and preceding January

Below is the code created by your colleague to calculate the feature described above. Use this code to re-create this feature and then think about ways to build on this feature to create features with predictive power.

```
[]: price_df = pd.read_csv('price_data.csv')
     price_df["price_date"] = pd.to_datetime(price_df["price_date"],__
     \rightarrowformat='\%Y-\%m-\%d')
     price df.head()
[]:
                                      id price_date price_off_peak_var \
    0 038af19179925da21a25619c5a24b745 2015-01-01
                                                                0.151367
     1 038af19179925da21a25619c5a24b745 2015-02-01
                                                                0.151367
     2 038af19179925da21a25619c5a24b745 2015-03-01
                                                                0.151367
     3 038af19179925da21a25619c5a24b745 2015-04-01
                                                                0.149626
     4 038af19179925da21a25619c5a24b745 2015-05-01
                                                                0.149626
        price_peak_var price_mid_peak_var price_off_peak_fix price_peak_fix \
     0
                   0.0
                                       0.0
                                                     44.266931
                                                                            0.0
                                                                            0.0
     1
                   0.0
                                       0.0
                                                     44.266931
     2
                   0.0
                                       0.0
                                                     44.266931
                                                                            0.0
     3
                   0.0
                                       0.0
                                                     44.266931
                                                                            0.0
     4
                   0.0
                                       0.0
                                                     44.266931
                                                                            0.0
        price_mid_peak_fix
     0
                       0.0
                       0.0
     1
     2
                       0.0
     3
                       0.0
     4
                       0.0
[]: # Group off-peak prices by companies and month
     monthly_price_by_id = price_df.groupby(['id', 'price_date']).
      →agg({'price_off_peak_var': 'mean', 'price_off_peak_fix': 'mean'}).
     →reset_index()
     # Get january and december prices
     jan_prices = monthly_price_by_id.groupby('id').first().reset_index()
     dec_prices = monthly_price_by_id.groupby('id').last().reset_index()
     # Calculate the difference
     diff = pd.merge(dec prices.rename(columns={'price off peak var': 'dec 1',,,
     →'price_off_peak_fix': 'dec_2'}), jan_prices.drop(columns='price_date'),
     →on='id')
     diff['offpeak_diff_dec_january_energy'] = diff['dec_1'] -__
     →diff['price off peak var']
     diff['offpeak_diff_dec_january_power'] = diff['dec_2'] -__

→diff['price_off_peak_fix']
     diff = diff[['id',__
      →'offpeak_diff_dec_january_energy','offpeak_diff_dec_january_power']]
     diff.head()
```

```
[]:
                                           offpeak_diff_dec_january_energy
     0 0002203ffbb812588b632b9e628cc38d
                                                                  -0.006192
     1 0004351ebdd665e6ee664792efc4fd13
                                                                 -0.004104
     2 0010bcc39e42b3c2131ed2ce55246e3c
                                                                  0.050443
     3 0010ee3855fdea87602a5b7aba8e42de
                                                                 -0.010018
     4 00114d74e963e47177db89bc70108537
                                                                 -0.003994
        offpeak_diff_dec_january_power
     0
                              0.162916
     1
                              0.177779
     2
                              1.500000
     3
                              0.162916
     4
                             -0.00001
[]: df = pd.merge(df, diff, on='id')
     df.head()
[]:
                                       id
                                                              channel_sales
     0 24011ae4ebbe3035111d65fa7c15bc57
                                           foosdfpfkusacimwkcsosbicdxkicaua
     1 d29c2c54acc38ff3c0614d0a653813dd
     2 764c75f661154dac3a6c254cd082ea7d
                                           foosdfpfkusacimwkcsosbicdxkicaua
     3 bba03439a292a1e166f80264c16191cb
                                           lmkebamcaaclubfxadlmueccxoimlema
     4 149d57cf92fc41cf94415803a877cb4b
                                                                     MISSING
        cons 12m
                  cons gas 12m
                               cons_last_month date_activ
                                                              date end
     0
               0
                         54946
                                               0 2013-06-15 2016-06-15
            4660
                             0
                                               0 2009-08-21 2016-08-30
     1
     2
                             0
                                               0 2010-04-16 2016-04-16
             544
     3
                             0
                                               0 2010-03-30 2016-03-30
            1584
     4
            4425
                             0
                                             526 2010-01-13 2016-03-07
       date_modif_prod date_renewal forecast_cons_12m
     0
            2015-11-01
                         2015-06-23
                                                   0.00 ...
     1
            2009-08-21
                         2015-08-31
                                                 189.95 ...
     2
            2010-04-16
                         2015-04-17
                                                  47.96 ...
     3
            2010-03-30
                         2015-03-31
                                                 240.04 ...
            2010-01-13
                         2015-03-09
                                                 445.75
        var_6m_price_mid_peak_var
                                   var_6m_price_off_peak_fix
     0
                     9.084737e-04
                                                     2.086294
     1
                     0.000000e+00
                                                     0.009482
     2
                     0.000000e+00
                                                     0.00000
     3
                     0.000000e+00
                                                     0.00000
     4
                     4.860000e-10
                                                     0.00000
        var_6m_price_peak_fix var_6m_price_mid_peak_fix var_6m_price_off_peak \
     0
                    99.530517
                                                44.235794
                                                                         2.086425
```

```
1
                0.000000
                                             0.000000
                                                                     0.009485
2
                0.00000
                                             0.000000
                                                                     0.00004
3
                0.000000
                                             0.000000
                                                                     0.000003
4
                0.00000
                                             0.000000
                                                                     0.000011
   var_6m_price_peak var_6m_price_mid_peak
                                             churn \
0
        9.953056e+01
                               4.423670e+01
                               0.000000e+00
                                                  0
1
        1.217891e-03
2
        9.450150e-08
                               0.000000e+00
                                                  0
3
        0.000000e+00
                               0.000000e+00
                                                  0
4
        2.896760e-06
                               4.860000e-10
                                                  0
   offpeak_diff_dec_january_energy offpeak_diff_dec_january_power
0
                           0.020057
                                                             3.700961
1
                          -0.003767
                                                             0.177779
2
                          -0.004670
                                                             0.177779
3
                          -0.004547
                                                             0.177779
4
                          -0.006192
                                                             0.162916
[5 rows x 46 columns]
```

1.4 Average price changes across periods

We can now enhance the feature that our colleague made by calculating the average price changes across individual periods, instead of the entire year.

```
[]: # Aggregate average prices per period by company
mean_prices = price_df.groupby(['id']).agg({
          'price_off_peak_var': 'mean',
          'price_peak_var': 'mean',
          'price_mid_peak_var': 'mean',
          'price_off_peak_fix': 'mean',
          'price_peak_fix': 'mean',
          'price_mid_peak_fix': 'mean'
}).reset_index()
```

```
[]: # Calculate the mean difference between consecutive periods

mean_prices['off_peak_peak_var_mean_diff'] = mean_prices['price_off_peak_var']_

→ mean_prices['price_peak_var']

mean_prices['peak_mid_peak_var_mean_diff'] = mean_prices['price_peak_var'] -

→ mean_prices['off_peak_mid_peak_var_mean_diff'] =

→ mean_prices['price_off_peak_var'] - mean_prices['price_mid_peak_var']

mean_prices['off_peak_peak_fix_mean_diff'] = mean_prices['price_off_peak_fix']_

→ mean_prices['price_peak_fix']
```

```
mean_prices['peak mid_peak fix mean_diff'] = mean_prices['price_peak_fix'] -__
      →mean_prices['price_mid_peak_fix']
     mean_prices['off_peak_mid_peak_fix_mean_diff'] =_
      →mean_prices['price_off_peak_fix'] - mean_prices['price_mid_peak_fix']
[]: columns = [
         'id'.
         'off_peak_peak_var_mean_diff',
         'peak_mid_peak_var_mean_diff',
         'off_peak_mid_peak_var_mean_diff',
         'off_peak_peak_fix_mean_diff',
         'peak_mid_peak_fix_mean_diff',
         'off_peak_mid_peak_fix_mean_diff'
     ]
     df = pd.merge(df, mean_prices[columns], on='id')
     df.head()
[]:
                                       id
                                                               channel_sales \
     0 24011ae4ebbe3035111d65fa7c15bc57
                                           foosdfpfkusacimwkcsosbicdxkicaua
     1 d29c2c54acc38ff3c0614d0a653813dd
                                                                     MISSING
     2 764c75f661154dac3a6c254cd082ea7d
                                           foosdfpfkusacimwkcsosbicdxkicaua
     3 bba03439a292a1e166f80264c16191cb
                                           lmkebamcaaclubfxadlmueccxoimlema
     4 149d57cf92fc41cf94415803a877cb4b
                                                                     MISSING
                  cons_gas_12m cons_last_month date_activ
        cons_12m
                                                              date_end
                         54946
     0
               0
                                               0 2013-06-15 2016-06-15
                                               0 2009-08-21 2016-08-30
     1
            4660
                             0
     2
             544
                             0
                                               0 2010-04-16 2016-04-16
     3
            1584
                             0
                                               0 2010-03-30 2016-03-30
            4425
                             0
                                             526 2010-01-13 2016-03-07
       date_modif_prod date_renewal forecast_cons_12m ... var_6m_price_mid_peak
     0
            2015-11-01
                         2015-06-23
                                                   0.00
                                                                      4.423670e+01
                         2015-08-31
                                                                      0.000000e+00
     1
            2009-08-21
                                                 189.95 ...
     2
            2010-04-16
                         2015-04-17
                                                  47.96 ...
                                                                      0.000000e+00
     3
            2010-03-30
                         2015-03-31
                                                 240.04 ...
                                                                      0.000000e+00
                                                                      4.860000e-10
            2010-01-13
                         2015-03-09
                                                 445.75 ...
               offpeak_diff_dec_january_energy offpeak_diff_dec_january_power
     0
            1
                                       0.020057
                                                                        3.700961
            0
     1
                                      -0.003767
                                                                        0.177779
     2
            0
                                      -0.004670
                                                                        0.177779
     3
            0
                                      -0.004547
                                                                        0.177779
     4
                                      -0.006192
                                                                        0.162916
        off_peak_peak_var_mean_diff peak_mid_peak_var_mean_diff \
     0
                           0.024038
                                                         0.034219
```

```
1
                       0.142485
                                                      0.007124
2
                       0.082090
                                                      0.088421
3
                       0.151210
                                                      0.000000
4
                       0.020536
                                                      0.030773
                                     off_peak_peak_fix_mean_diff
  off_peak_mid_peak_var_mean_diff
0
                          0.058257
                                                        18.590255
1
                          0.149609
                                                        44.311375
2
                          0.170512
                                                        44.385450
3
                                                        44.400265
                          0.151210
4
                                                        16.275263
                          0.051309
   peak_mid_peak_fix_mean_diff
                                 off_peak_mid_peak_fix_mean_diff
0
                       7.450670
                                                         26.040925
                       0.00000
1
                                                         44.311375
2
                       0.00000
                                                         44.385450
3
                       0.00000
                                                         44.400265
4
                       8.137629
                                                         24.412893
```

[5 rows x 52 columns]

This feature may be useful because it adds more granularity to the existing feature that my colleague found to be useful. Instead of looking at differences across an entire year, we have now created features that look at mean average price differences across different time periods (off_peak, peak, mid_peak). The dec-jan feature may reveal macro patterns that occur over an entire year, whereas inter-time-period features may reveal patterns on a micro scale between months.

1.5 Max price changes across periods and months

Another way we can enhance the feature from our colleague is to look at the maximum change in prices across periods and months.

```
[]: # Calculate the mean difference between consecutive periods

mean_prices_by_month['off_peak_peak_var_mean_diff'] = 

→ mean_prices_by_month['price_off_peak_var'] - 

→ mean_prices_by_month['price_peak_var']
```

```
mean_prices_by_month['peak_mid_peak_var_mean_diff'] =_

mean_prices_by_month['price_mid_peak_var'] -_

mean_prices_by_month['price_mid_peak_var_mean_diff'] =_

mean_prices_by_month['price_off_peak_var'] -_

mean_prices_by_month['price_mid_peak_var']

mean_prices_by_month['price_mid_peak_fix_mean_diff'] =_

mean_prices_by_month['price_off_peak_fix'] -_

mean_prices_by_month['price_peak_fix']

mean_prices_by_month['peak_mid_peak_fix_mean_diff'] =_

mean_prices_by_month['price_mid_peak_fix']

mean_prices_by_month['price_mid_peak_fix_mean_diff'] =_

mean_prices_by_month['off_peak_mid_peak_fix_mean_diff'] =_

mean_prices_by_month['price_mid_peak_fix_mean_diff'] =_

mean_prices_by_month['price_off_peak_fix'] -_

mean_prices_by_month['price_mid_peak_fix']
```

```
[]: | # Calculate the maximum monthly difference across time periods
    max diff across periods months = mean prices by month.groupby(['id']).agg({
        'off peak peak var mean diff': 'max',
        'peak_mid_peak_var_mean_diff': 'max',
        'off_peak_mid_peak_var_mean_diff': 'max',
        'off_peak_peak_fix_mean_diff': 'max',
        'peak mid peak fix mean diff': 'max',
        'off_peak_mid_peak_fix_mean_diff': 'max'
    }).reset index().rename(
        columns={
            'off peak peak var mean diff': 'off peak peak var max monthly diff',
            'peak mid peak var mean diff': 'peak mid peak var max monthly diff',
           'off_peak_mid_peak_var_mean_diff':
     'off_peak_peak_fix_mean_diff': 'off_peak_peak_fix_max_monthly_diff',
            'peak_mid_peak_fix_mean_diff': 'peak_mid_peak_fix_max_monthly_diff',
            'off peak mid peak fix mean diff':
     }
```

```
[]: columns = [
    'id',
    'off_peak_peak_var_max_monthly_diff',
    'peak_mid_peak_var_max_monthly_diff',
    'off_peak_mid_peak_var_max_monthly_diff',
    'off_peak_peak_fix_max_monthly_diff',
    'peak_mid_peak_fix_max_monthly_diff',
    'off_peak_mid_peak_fix_max_monthly_diff'
]
```

```
df.head()
[]:
                                                               channel_sales
                                       id
       24011ae4ebbe3035111d65fa7c15bc57
                                            foosdfpfkusacimwkcsosbicdxkicaua
     1 d29c2c54acc38ff3c0614d0a653813dd
                                                                      MISSING
     2 764c75f661154dac3a6c254cd082ea7d
                                           foosdfpfkusacimwkcsosbicdxkicaua
     3 bba03439a292a1e166f80264c16191cb
                                           lmkebamcaaclubfxadlmueccxoimlema
     4 149d57cf92fc41cf94415803a877cb4b
                                                                      MISSING
        cons_12m
                  cons_gas_12m
                                cons_last_month date_activ
                                                               date_end
     0
               0
                          54946
                                                0 2013-06-15 2016-06-15
                                                0 2009-08-21 2016-08-30
            4660
                              0
     1
     2
             544
                              0
                                                0 2010-04-16 2016-04-16
     3
            1584
                              0
                                                0 2010-03-30 2016-03-30
            4425
                              0
                                             526 2010-01-13 2016-03-07
       date_modif_prod date_renewal forecast_cons_12m
     0
            2015-11-01
                          2015-06-23
                                                    0.00
     1
            2009-08-21
                          2015-08-31
                                                  189.95 ...
     2
            2010-04-16
                          2015-04-17
                                                   47.96 ...
     3
                         2015-03-31
            2010-03-30
                                                  240.04 ...
            2010-01-13
                         2015-03-09
                                                  445.75 ...
        off_peak_mid_peak_var_mean_diff off_peak_peak_fix_mean_diff
     0
                                0.058257
                                                             18.590255
                                0.149609
     1
                                                             44.311375
     2
                                0.170512
                                                             44.385450
     3
                                0.151210
                                                             44.400265
     4
                                0.051309
                                                             16.275263
                                     off_peak_mid_peak_fix_mean_diff
        peak_mid_peak_fix_mean_diff
     0
                            7.450670
                                                             26.040925
     1
                           0.000000
                                                             44.311375
     2
                           0.000000
                                                             44.385450
     3
                            0.000000
                                                             44.400265
     4
                           8.137629
                                                             24.412893
        off peak peak var max monthly diff peak mid peak var max monthly diff
     0
                                   0.060550
                                                                         0.085483
                                   0.151367
                                                                         0.085483
     1
     2
                                   0.084587
                                                                         0.089162
     3
                                   0.153133
                                                                         0.00000
     4
                                   0.022225
                                                                         0.033743
       off_peak_mid_peak_var_max_monthly_diff off_peak_peak_fix_max_monthly_diff
                                                                           44.266930
     0
                                      0.146033
```

df = pd.merge(df, max_diff_across_periods_months[columns], on='id')

```
1
                                  0.151367
                                                                        44.444710
2
                                  0.172468
                                                                        44.444710
3
                                  0.153133
                                                                        44.444710
4
                                  0.055866
                                                                        16.291555
   peak_mid_peak_fix_max_monthly_diff
                                          off_peak_mid_peak_fix_max_monthly_diff
0
                               8.145775
                                                                           44.26693
1
                               0.000000
                                                                           44.44471
2
                               0.000000
                                                                           44.44471
3
                               0.000000
                                                                           44.44471
4
                               8.145775
                                                                           24.43733
```

[5 rows x 58 columns]

I thought that calculating the maximum price change between months and time periods would be a good feature to create because I was trying to think from the perspective of a PowerCo client. As a Utilities customer, there is nothing more annoying than sudden price changes between months, and a large increase in prices within a short time span would be an influencing factor in causing me to look at other utilities providers for a better deal. Since we are trying to predict churn for this use case, I thought this would be an interesting feature to include.

1.6 (BONUS) Further feature engineering

This section covers extra feature engineering that you may have thought of, as well as different ways you can transform your data to account for some of its statistical properties that we saw before, such as skewness.

1.6.1 Tenure

12

6 7 0.083333

0.073394

How long a company has been a client of PowerCo.

```
[]: df['tenure'] = ((df['date_end'] - df['date_activ'])/ np.timedelta64(1, 'Y')).
      →astype(int)
[]: df.groupby(['tenure']).agg({'churn': 'mean'}).sort_values(by='churn',__
      →ascending=False)
[]:
                churn
     tenure
     3
             0.143713
     2
             0.133080
     4
             0.125756
     13
             0.095238
     5
             0.085425
```

```
11 0.063584
8 0.048000
9 0.024096
10 0.020000
```

We can see that companies who have only been a client for 4 or less months are much more likely to churn compared to companies that have been a client for longer. Interestingly, the difference between 4 and 5 months is about 4%, which represents a large jump in likelihood for a customer to churn compared to the other differences between ordered tenure values. Perhaps this reveals that getting a customer to over 4 months tenure is actually a large milestone with respect to keeping them as a long term customer.

This is an interesting feature to keep for modelling because clearly how long you've been a client, has a influence on the chance of a client churning.

1.6.2 Transforming dates into months

- months_activ = Number of months active until reference date (Jan 2016)
- months_to_end = Number of months of the contract left until reference date (Jan 2016)
- months_modif_prod = Number of months since last modification until reference date (Jan 2016)
- months_renewal = Number of months since last renewal until reference date (Jan 2016)

```
[]: def convert_months(reference_date, df, column):
    """
    Input a column with timedeltas and return months
    """
    time_delta = reference_date - df[column]
    months = (time_delta / np.timedelta64(1, 'M')).astype(int)
    return months
```

```
[]: # Create reference date
reference_date = datetime(2016, 1, 1)

# Create columns
df['months_activ'] = convert_months(reference_date, df, 'date_activ')
df['months_to_end'] = -convert_months(reference_date, df, 'date_end')
df['months_modif_prod'] = convert_months(reference_date, df, 'date_modif_prod')
df['months_renewal'] = convert_months(reference_date, df, 'date_renewal')
```

Dates as a datetime object are not useful for a predictive model, so we needed to use the datetimes to create some other features that may hold some predictive power.

Using intuition, you could assume that a client who has been an active client of PowerCo for a longer amount of time may have more loyalty to the brand and is more likely to stay. Whereas a newer client may be more volatile. Hence the addition of the months_activ feature.

As well as this, if we think from the perspective of a client with PowerCo, if you're coming toward the end of your contract with PowerCo your thoughts could go a few ways. You could be looking for better deals for when your contract ends, or you might want to see out your contract and

sign another one. One the other hand if you've only just joined, you may have a period where you're allowed to leave if you're not satisfied. Furthermore, if you're in the middle of your contract, their may be charges if you wanted to leave, deterring clients from churning mid-way through their agreement. So, I think months_to_end will be an interesting feature because it may reveal patterns and behaviours about timing of churn.

My belief is that if a client has made recent updates to their contract, they are more likely to be satisfied or at least they have received a level of customer service to update or change their existing services. I believe this to be a positive sign, they are an engaged customer, and so I believe months_modif_prod will be an interesting feature to include because it shows the degree of how 'engaged' a client is with PowerCo.

Finally the number of months since a client last renewed a contract I believe will be an interesting feature because once again, it shows the degree to which that client is engaged. It also goes a step further than just engagement, it shows a level of commitment if a client renews their contract. For this reason, I believe months_renewal will be a good feature to include.

			id			channe	l_sales \	
0	24011ae4ebbe3035111d65fa7c15bc57		foosdfpfkusacimwkcsosbicdxkicaua					
1	d29c2c54acc38ff3c0614d0a653813dd		MISSING					
2	764c75f661154dac3a6c254cd082ea7d		foosdfpfkusacimwkcsosbicdxkicaua					
3	bba03439a292a1e166f80264c16191cb			lmkebamcaaclubfxadlmueccxoimlema				
4	149d57cf92fc41cf94415803a877cb4b			MISSING				
	cons_12m	cons_gas_12m	cons_last	_month	fore	cast_cons_12m	\	
0	0	54946		0		0.00		
1	4660	0		0		189.95		
2	544	0		0		47.96		
3	1584	0		0		240.04		
4	4425	0		526		445.75		
	forecast_	cons_year for	ecast_disc	ount_en	ergy	forecast_mete	r_rent_12m	\
0	0		0.0		1.78			
1	0		0.0 16.2		16.27			
2		0			0.0		38.72	
1 2		0						
	1 2 3 4 0 1 2 3 4	1 d29c2c54a 2 764c75f66 3 bba03439a 4 149d57cf9 cons_12m 0 0 1 4660 2 544 3 1584 4 4425 forecast_	1 d29c2c54acc38ff3c0614d0 2 764c75f661154dac3a6c254 3 bba03439a292a1e166f8026 4 149d57cf92fc41cf9441580 cons_12m cons_gas_12m 0 0 54946 1 4660 0 2 544 0 3 1584 0 4 4425 0 forecast_cons_year for 0 0	0 24011ae4ebbe3035111d65fa7c15bc57 1 d29c2c54acc38ff3c0614d0a653813dd 2 764c75f661154dac3a6c254cd082ea7d 3 bba03439a292a1e166f80264c16191cb 4 149d57cf92fc41cf94415803a877cb4b	0 24011ae4ebbe3035111d65fa7c15bc57 foosdf 1 d29c2c54acc38ff3c0614d0a653813dd 2 764c75f661154dac3a6c254cd082ea7d foosdf 3 bba03439a292a1e166f80264c16191cb lmkeba 4 149d57cf92fc41cf94415803a877cb4b cons_12m cons_gas_12m cons_last_month 0 0 54946 0 1 4660 0 0 2 544 0 0 3 1584 0 0 4 4425 0 526 forecast_cons_year forecast_discount_en 0 0	0 24011ae4ebbe3035111d65fa7c15bc57 foosdfpfkus 1 d29c2c54acc38ff3c0614d0a653813dd 2 764c75f661154dac3a6c254cd082ea7d foosdfpfkus 3 bba03439a292a1e166f80264c16191cb lmkebamcaac 4 149d57cf92fc41cf94415803a877cb4b cons_12m cons_gas_12m cons_last_month fore 0 0 54946 0 1 4660 0 0 2 544 0 0 3 1584 0 0 4 4425 0 526 forecast_cons_year forecast_discount_energy 0 0 0.0 1 0 0.0	0 24011ae4ebbe3035111d65fa7c15bc57 foosdfpfkusacimwkcsosbicd 1 d29c2c54acc38ff3c0614d0a653813dd 2 764c75f661154dac3a6c254cd082ea7d foosdfpfkusacimwkcsosbicd 3 bba03439a292a1e166f80264c16191cb lmkebamcaaclubfxadlmueccx 4 149d57cf92fc41cf94415803a877cb4b 0 0 54946 0 0.00 1 4660 0 0 189.95 2 544 0 0 47.96 3 1584 0 0 240.04 4 4425 0 526 445.75 forecast_cons_year forecast_discount_energy forecast_meter 0 0 0.0 1 0 0.0	0 24011ae4ebbe3035111d65fa7c15bc57 foosdfpfkusacimwkcsosbicdxkicaua 1 d29c2c54acc38ff3c0614d0a653813dd MISSING 2 764c75f661154dac3a6c254cd082ea7d foosdfpfkusacimwkcsosbicdxkicaua 3 bba03439a292a1e166f80264c16191cb lmkebamcaaclubfxadlmueccxoimlema 4 149d57cf92fc41cf94415803a877cb4b MISSING cons_12m cons_gas_12m cons_last_month forecast_cons_12m \ 0 0 54946 0 0.00 \ 1 4660 0 0 189.95 \ 2 544 0 0 47.96 \ 3 1584 0 0 240.04 \ 445.75 \ \ \ 0 1.78 \ \ 0 0.0 1.78 \ \ 0 0.0 1.78 \ \ 0 0.0 16.27 \

3

0

0.0

19.83

4	526			0.0	131.73			
	forecas	t price energy	off peak	peak_mid_peak_var_ma	ax monthly diff '	\		
0		0.085483						
1	0.114481 0.085483 0.145711 0.085483							
2	0.165794 0.089162							
3								
4			0.116900		0.033743			
	off_pea	k_mid_peak_var	_max_monthly_d	iff off_peak_peak_f:	ix_max_monthly_dia	ff \		
0			0.146	033	44.26693	30		
1	0.151367 44.444710							
2		0.172468 44.444710						
3		0.153133 44.444710						
4		0.055866 16.291555						
	peak_mi	d_peak_fix_max	_monthly_diff	off_peak_mid_peak_n	fix_max_monthly_d:	iff \		
0	8.145775 44.26693							
1	0.000000 44.44471					471		
2	0.000000 44.44471							
3	0.000000 44.44471							
4	8.145775 24.43733							
	tenure	months_activ	months_to_end	months_modif_prod	months_renewal			
0	3	30	 5	2	- 6			
1	7	76	7	76	4			
2	6	68	3	68	8			
3	6	69	2	69	9			
4	6	71	2	71	9			

[5 rows x 59 columns]

1.6.3 Transforming Boolean data

has_gas We simply want to transform this column from being categorical to being a binary flag

```
[]: df['has_gas'] = df['has_gas'].replace(['t', 'f'], [1, 0])
df.groupby(['has_gas']).agg({'churn': 'mean'})
```

```
[]: churn
has_gas
0 0.100544
1 0.081856
```

If a customer also buys gas from PowerCo, it shows that they have multiple products and are a loyal customer to the brand. Hence, it is no surprise that customers who do not buy gas are almost 2% more likely to churn than customers who also buy gas from PowerCo. Hence, this is a useful feature.

1.6.4 Transforming categorical data

A predictive model cannot accept categorical or string values, hence as a data scientist you need to encode categorical features into numerical representations in the most compact and discriminative way possible.

The simplest method is to map each category to an integer (label encoding), however this is not always appropriate because it then introduces the concept of an order into a feature which may not inherently be present $0 < 1 < 2 < 3 \ldots$

Another way to encode categorical features is to use dummy variables AKA one hot encoding. This create a new feature for every unique value of a categorical column, and fills this column with either a 1 or a 0 to indicate that this company does or does not belong to this category.

channel sales

```
[]: # Transform into categorical type
df['channel_sales'] = df['channel_sales'].astype('category')

# Let's see how many categories are within this column
df['channel_sales'].value_counts()
```

```
[]: foosdfpfkusacimwkcsosbicdxkicaua
                                          6754
    MISSING
                                          3725
     lmkebamcaaclubfxadlmueccxoimlema
                                          1843
    usilxuppasemubllopkaafesmlibmsdf
                                          1375
     ewpakwlliwisiwduibdlfmalxowmwpci
                                           893
     sddiedcslfslkckwlfkdpoeeailfpeds
                                            11
     epumfxlbckeskwekxbiuasklxalciiuu
                                             3
                                             2
     fixdbufsefwooaasfcxdxadsiekoceaa
    Name: channel_sales, dtype: int64
```

We have 8 categories, so we will create 8 dummy variables from this column. However, as you can see the last 3 categories in the output above, show that they only have 11, 3 and 2 occurrences respectively. Considering that our dataset has about 14000 rows, this means that these dummy variables will be almost entirely 0 and so will not add much predictive power to the model at all (since they're almost entirely a constant value and provide very little).

For this reason, we will drop these 3 dummy variables.

```
Г1:
                                                    cons_gas_12m cons_last_month
                                      id
                                          cons_12m
     0 24011ae4ebbe3035111d65fa7c15bc57
                                                           54946
     1 d29c2c54acc38ff3c0614d0a653813dd
                                              4660
                                                               0
                                                                                 0
     2 764c75f661154dac3a6c254cd082ea7d
                                                               0
                                                                                 0
                                               544
     3 bba03439a292a1e166f80264c16191cb
                                                                0
                                                                                 0
                                              1584
```

```
4425
                                                              0
                                                                               526
   149d57cf92fc41cf94415803a877cb4b
   forecast_cons_12m forecast_cons_year
                                             forecast_discount_energy
0
                 0.00
                                          0
               189.95
                                          0
                                                                    0.0
1
2
                47.96
                                          0
                                                                    0.0
                                          0
                                                                    0.0
3
               240.04
4
               445.75
                                        526
                                                                    0.0
   forecast_meter_rent_12m forecast_price_energy_off_peak
0
                        1.78
                                                      0.114481
1
                      16.27
                                                      0.145711
2
                      38.72
                                                      0.165794
3
                      19.83
                                                      0.146694
4
                     131.73
                                                      0.116900
                                             months_activ
                                                            months_to_end
   forecast_price_energy_peak
                                    tenure
0
                      0.098142
                                          3
                                                        30
                                          7
                                                        76
                                                                         7
1
                      0.000000
2
                                          6
                                                        68
                                                                         3
                      0.087899
3
                      0.000000
                                          6
                                                        69
                                                                         2
4
                      0.100015
                                                                         2
                                          6
                                                        71
   months_modif_prod months_renewal
                                         channel MISSING
0
                    2
                                      6
                                                        0
                   76
                                      4
1
                                                        1
                                     8
2
                   68
                                                        0
3
                   69
                                     9
                                                        0
4
                   71
                                      9
                                                        1
   channel_ewpakwlliwisiwduibdlfmalxowmwpci
0
1
                                             0
2
                                             0
3
                                             0
4
                                             0
   channel_foosdfpfkusacimwkcsosbicdxkicaua
0
                                             0
1
2
                                             1
3
                                             0
4
  channel_lmkebamcaaclubfxadlmueccxoimlema \
0
                                            0
1
                                            0
```

```
2
                                               0
     3
                                               1
     4
                                               0
        channel_usilxuppasemubllopkaafesmlibmsdf
     0
     1
                                                0
     2
                                                0
     3
                                                0
     4
                                                0
     [5 rows x 63 columns]
    origin up
[]: # Transform into categorical type
     df['origin_up'] = df['origin_up'].astype('category')
     # Let's see how many categories are within this column
     df['origin_up'].value_counts()
[]: lxidpiddsbxsbosboudacockeimpuepw
                                         7097
    kamkkxfxxuwbdslkwifmmcsiusiuosws
                                         4294
     ldkssxwpmemidmecebumciepifcamkci
                                         3148
    MISSING
                                           64
     usapbepcfoloekilkwsdiboslwaxobdp
                                             2
     ewxeelcelemmiwuafmddpobolfuxioce
                                             1
     Name: origin_up, dtype: int64
    Similar to channel_sales the last 3 categories in the output above show very low frequency, so we
    will remove these from the features after creating dummy variables.
[]: df = pd.get_dummies(df, columns=['origin_up'], prefix='origin_up')
     df = df.drop(columns=['origin_up_MISSING',__
      \hookrightarrow 'origin_up_usapbepcfoloekilkwsdiboslwaxobdp', \sqcup
      df.head()
[]:
                                       id cons_12m
                                                     cons_gas_12m cons_last_month
     0 24011ae4ebbe3035111d65fa7c15bc57
                                                 0
                                                            54946
                                                                                 0
     1 d29c2c54acc38ff3c0614d0a653813dd
                                               4660
                                                                0
                                                                                 0
     2 764c75f661154dac3a6c254cd082ea7d
                                                                0
                                                544
                                                                                 0
                                                                0
     3 bba03439a292a1e166f80264c16191cb
                                               1584
                                                                                 0
     4 149d57cf92fc41cf94415803a877cb4b
                                               4425
                                                                0
                                                                               526
        forecast_cons_12m forecast_cons_year
                                               forecast_discount_energy
     0
                     0.00
                                            0
                                                                     0.0
                   189.95
                                            0
                                                                     0.0
     1
```

```
47.96
2
                                          0
                                                                    0.0
3
               240.04
                                          0
                                                                    0.0
4
               445.75
                                                                    0.0
                                        526
                             forecast_price_energy_off_peak
   forecast_meter_rent_12m
0
                        1.78
                                                      0.114481
                       16.27
                                                      0.145711
1
2
                       38.72
                                                      0.165794
3
                       19.83
                                                      0.146694
4
                      131.73
                                                      0.116900
   forecast_price_energy_peak
                                    months_modif_prod
                                                         months_renewal
0
                       0.098142
1
                       0.000000
                                                     76
                                                                       4
2
                       0.087899
                                                     68
                                                                       8
3
                       0.000000
                                                     69
                                                                       9
4
                       0.100015
                                                                       9
                                                     71
                     channel_ewpakwlliwisiwduibdlfmalxowmwpci
   channel_MISSING
0
                  0
                                                                0
1
                  1
2
                                                                0
                  0
3
                  0
                                                                0
   channel_foosdfpfkusacimwkcsosbicdxkicaua
0
                                             0
1
2
                                             1
3
                                             0
4
                                             0
   channel_lmkebamcaaclubfxadlmueccxoimlema
0
                                             0
                                             0
1
2
                                             0
3
                                             1
4
                                             0
   \verb|channel_usilxuppasemubllopkaafesmlibmsdf|
0
                                             0
1
2
                                             0
3
                                             0
4
                                              0
   origin_up_kamkkxfxxuwbdslkwifmmcsiusiuosws
```

```
0
                                                 0
1
                                                 1
2
                                                 1
3
                                                 1
4
                                                 1
   origin_up_ldkssxwpmemidmecebumciepifcamkci
0
1
                                                 0
2
                                                 0
3
                                                 0
4
   origin_up_lxidpiddsbxsbosboudacockeimpuepw
0
                                                 1
                                                 0
1
2
                                                 0
3
                                                 0
4
```

[5 rows x 65 columns]

1.6.5 Transforming numerical data

In the previous exercise we saw that some variables were highly skewed. The reason why we need to treat skewness is because some predictive models have inherent assumptions about the distribution of the features that are being supplied to it. Such models are called <code>parametric</code> models, and they typically assume that all variables are both independent and normally distributed.

Skewness isn't always a bad thing, but as a rule of thumb it is always good practice to treat highly skewed variables because of the reason stated above, but also as it can improve the speed at which predictive models are able to converge to its best solution.

There are many ways that you can treat skewed variables. You can apply transformations such as:
- Square root - Cubic root - Logarithm

to a continuous numeric column and you will notice the distribution changes. For this use case we will use the 'Logarithm' transformation for the positively skewed features.

Note: We cannot apply log to a value of 0, so we will add a constant of 1 to all the values

First I want to see the statistics of the skewed features, so that we can compare before and after transformation

```
[]: skewed = [
    'cons_12m',
    'cons_gas_12m',
    'cons_last_month',
    'forecast_cons_12m',
    'forecast_cons_year',
```

```
'forecast_discount_energy',
         'forecast_meter_rent_12m',
         'forecast_price_energy_off_peak',
         'forecast_price_energy_peak',
         'forecast_price_pow_off_peak'
    ]
     df[skewed].describe()
[]:
                cons_12m
                           cons_gas_12m
                                         cons_last_month
                                                          forecast_cons_12m
            1.460600e+04
                           1.460600e+04
                                            14606.000000
                                                                 14606.000000
     count
            1.592203e+05
                           2.809238e+04
                                            16090.269752
    mean
                                                                 1868.614880
    std
            5.734653e+05
                           1.629731e+05
                                            64364.196422
                                                                 2387.571531
                           0.000000e+00
    min
            0.000000e+00
                                                 0.000000
                                                                     0.000000
    25%
            5.674750e+03
                           0.000000e+00
                                                 0.00000
                                                                   494.995000
    50%
            1.411550e+04
                          0.000000e+00
                                               792.500000
                                                                  1112.875000
    75%
            4.076375e+04
                          0.000000e+00
                                              3383.000000
                                                                  2401.790000
            6.207104e+06 4.154590e+06
                                           771203.000000
                                                                 82902.830000
    max
            forecast cons year
                                 forecast discount energy
                                                            forecast meter rent 12m
                  14606.000000
                                              14606.000000
                                                                        14606.000000
     count
                   1399.762906
    mean
                                                  0.966726
                                                                           63.086871
    std
                   3247.786255
                                                  5.108289
                                                                           66.165783
    min
                      0.00000
                                                  0.00000
                                                                            0.000000
    25%
                       0.00000
                                                  0.00000
                                                                           16.180000
     50%
                    314.000000
                                                  0.000000
                                                                           18.795000
    75%
                   1745.750000
                                                  0.000000
                                                                          131.030000
    max
                 175375.000000
                                                 30.000000
                                                                          599.310000
            forecast_price_energy_off_peak
                                             forecast_price_energy_peak
                               14606.000000
                                                            14606.000000
     count
                                   0.137283
                                                                 0.050491
    mean
    std
                                   0.024623
                                                                 0.049037
    min
                                   0.000000
                                                                 0.00000
    25%
                                   0.116340
                                                                 0.00000
    50%
                                   0.143166
                                                                 0.084138
    75%
                                   0.146348
                                                                0.098837
    max
                                   0.273963
                                                                 0.195975
            forecast_price_pow_off_peak
                            14606.000000
     count
                               43.130056
    mean
    std
                                4.485988
    min
                                0.000000
    25%
                               40.606701
    50%
                               44.311378
    75%
                               44.311378
```

max 59.266378

We can see that the standard deviation for most of these features is quite high.

```
[]: # Apply log10 transformation
     df["cons 12m"] = np.log10(df["cons 12m"] + 1)
     df["cons_gas_12m"] = np.log10(df["cons_gas_12m"] + 1)
     df["cons_last_month"] = np.log10(df["cons_last_month"] + 1)
     df["forecast_cons_12m"] = np.log10(df["forecast_cons_12m"] + 1)
     df["forecast_cons_year"] = np.log10(df["forecast_cons_year"] + 1)
     df["forecast_meter_rent_12m"] = np.log10(df["forecast_meter_rent_12m"] + 1)
     df["imp_cons"] = np.log10(df["imp_cons"] + 1)
[]: df[skewed].describe()
[]:
                                         cons last month
                                                           forecast cons 12m
                cons 12m
                           cons gas 12m
                                                                 14606.000000
            14606.000000
                           14606.000000
                                             14606.000000
     count
     mean
                4.223939
                               0.779244
                                                 2.264646
                                                                     2.962177
     std
                0.884515
                               1.717071
                                                 1.769305
                                                                     0.683592
    min
                0.00000
                               0.00000
                                                 0.00000
                                                                     0.000000
     25%
                3.754023
                               0.00000
                                                 0.00000
                                                                     2.695477
     50%
                4.149727
                               0.000000
                                                 2.899547
                                                                     3.046836
     75%
                4.610285
                               0.00000
                                                 3.529430
                                                                     3.380716
                6.792889
                                                                     4.918575
     max
                               6.618528
                                                 5.887169
                                                            forecast_meter_rent_12m \
            forecast_cons_year forecast_discount_energy
                  14606.000000
                                                                        14606.000000
     count
                                              14606.000000
                       1.784610
                                                  0.966726
                                                                            1.517203
    mean
     std
                       1.584986
                                                  5.108289
                                                                            0.571481
    min
                       0.000000
                                                  0.000000
                                                                            0.000000
     25%
                       0.00000
                                                  0.000000
                                                                            1.235023
     50%
                       2.498311
                                                  0.000000
                                                                            1.296555
     75%
                       3.242231
                                                  0.000000
                                                                            2.120673
                      5.243970
                                                                            2.778376
                                                 30.000000
    max
            forecast_price_energy_off_peak
                                             forecast_price_energy_peak
                               14606.000000
                                                            14606.000000
     count
                                   0.137283
                                                                0.050491
     mean
     std
                                   0.024623
                                                                0.049037
    min
                                   0.000000
                                                                0.00000
     25%
                                   0.116340
                                                                0.000000
     50%
                                   0.143166
                                                                0.084138
     75%
                                                                0.098837
                                   0.146348
                                   0.273963
                                                                0.195975
    max
            forecast_price_pow_off_peak
                            14606.000000
     count
     mean
                               43.130056
```

std	4.485988
min	0.000000
25%	40.606701
50%	44.311378
75%	44.311378
max	59.266378

Now we can see that for the majority of the features, their standard deviation is much lower after transformation. This is a good thing, it shows that these features are more stable and predictable now.

Let's quickly check the distributions of some of these features too.

```
[]: fig, axs = plt.subplots(nrows=3, figsize=(18, 20))
# Plot histograms
sns.distplot((df["cons_12m"].dropna()), ax=axs[0])
sns.distplot((df[df["has_gas"]==1]["cons_gas_12m"].dropna()), ax=axs[1])
sns.distplot((df["cons_last_month"].dropna()), ax=axs[2])
plt.show()
```


1.6.6 Correlations

In terms of creating new features and transforming existing ones, it is very much a trial and error situation that requires iteration. Once we train a predictive model we can see which features work and don't work, we will also know how predictive this set of features is. Based on this, we can come back to feature engineering to enhance our model.

For now, we will leave feature engineering at this point. Another thing that is always useful to look at is how correlated all of the features are within your dataset.

This is important because it reveals the linear relationships between features. We want features to correlate with churn, as this will indicate that they are good predictors of it. However features that

have a very high correlation can sometimes be suspicious. This is because 2 columns that have high correlation indicates that they may share a lot of the same information. One of the assumptions of any parametric predictive model (as stated earlier) is that all features must be independent.

For features to be independent, this means that each feature must have absolutely no dependence on any other feature. If two features are highly correlated and share similar information, this breaks this assumption.

Ideally, you want a set of features that have 0 correlation with all of the independent variables (all features except our target variable) and a high correlation with the target variable (churn). However, this is very rarely the case and it is common to have a small degree of correlation between independent features.

So now let's look at how all the features within the model are correlated.

```
[]: correlation = df.corr()
```


I will leave it as an exercise for yourself to decide which features to remove based on the correlation results (there are various methods you can use to decide which features to remove).

For now, I will remove two variables which exhibit a high correlation with other independent features.

d29c2c54acc38ff3c0614d0a653813dd

3.668479

0.000000

0.000000

```
764c75f661154dac3a6c254cd082ea7d 2.736397
                                                      0.000000
                                                                        0.00000
3 bba03439a292a1e166f80264c16191cb 3.200029
                                                      0.00000
                                                                        0.00000
4 149d57cf92fc41cf94415803a877cb4b 3.646011
                                                      0.000000
                                                                        2.721811
   forecast_cons_12m forecast_discount_energy
                                                   forecast_meter_rent_12m
0
            0.000000
                                             0.0
                                                                   0.444045
            2.280920
                                             0.0
                                                                   1.237292
1
2
            1.689841
                                             0.0
                                                                   1.599009
3
                                             0.0
                                                                   1.318689
            2.382089
            2.650065
                                             0.0
                                                                   2.122969
   forecast_price_energy_off_peak forecast_price_energy_peak
0
                          0.114481
                                                        0.098142
                          0.145711
                                                        0.000000
1
2
                          0.165794
                                                        0.087899
3
                          0.146694
                                                        0.000000
4
                          0.116900
                                                        0.100015
   forecast_price_pow_off_peak
                                     months_modif_prod
                                                        months_renewal
0
                      40.606701
                                                                       6
1
                      44.311378 ...
                                                     76
                                                                       4
2
                      44.311378
                                                     68
                                                                       8
3
                      44.311378
                                                     69
                                                                       9
                      40.606701
                                                     71
   channel MISSING
                     channel_ewpakwlliwisiwduibdlfmalxowmwpci
0
1
                                                              0
2
                  0
                                                              0
3
                  0
                                                              0
4
                  1
                                                              0
   channel_foosdfpfkusacimwkcsosbicdxkicaua
0
                                            0
1
2
                                            1
3
                                            0
                                            0
   channel lmkebamcaaclubfxadlmueccxoimlema
0
                                            0
1
2
                                            0
3
                                            1
                                            0
   \verb|channel_usilxuppasemubllopkaafesmlibmsdf|
```

```
0
                                               0
1
                                               0
2
                                               0
3
                                               0
4
                                               0
   origin_up_kamkkxfxxuwbdslkwifmmcsiusiuosws
0
                                                 1
1
2
                                                 1
3
                                                 1
4
                                                 1
   origin_up_ldkssxwpmemidmecebumciepifcamkci
0
                                                 0
                                                 0
1
2
                                                 0
3
                                                 0
4
                                                 0
   origin_up_lxidpiddsbxsbosboudacockeimpuepw
0
1
                                                 0
2
                                                 0
3
                                                 0
4
                                                 0
[5 rows x 63 columns]
```

1.7 5. Modelling

We now have a dataset containing features that we have engineered and we are ready to start training a predictive model. Remember, we only need to focus on training a Random Forest classifier.

```
[]: from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
```

1.7.1 Data sampling

The first thing we want to do is split our dataset into training and test samples. The reason why we do this, is so that we can simulate a real life situation by generating predictions for our test sample, without showing the predictive model these data points. This gives us the ability to see how well our model is able to generalise to new data, which is critical.

A typical % to dedicate to testing is between 20-30, for this example we will use a 75-25% split

between train and test respectively.

```
[]: # Make a copy of our data
     train_df = df.copy()
     # Separate target variable from independent variables
     v = df['churn']
     X = df.drop(columns=['id', 'churn'])
     print(X.shape)
     print(y.shape)
    (14606, 61)
    (14606,)
[]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,__
     →random state=42)
     print(X_train.shape)
     print(y train.shape)
     print(X_test.shape)
     print(y_test.shape)
    (10954, 61)
    (10954,)
    (3652, 61)
    (3652,)
```

1.7.2 Model training

Once again, we are using a Random Forest classifier in this example. A Random Forest sits within the category of ensemble algorithms because internally the Forest refers to a collection of Decision Trees which are tree-based learning algorithms. As the data scientist, you can control how large the forest is (that is, how many decision trees you want to include).

The reason why an ensemble algorithm is powerful is because of the laws of averaging, weak learners and the central limit theorem. If we take a single decision tree and give it a sample of data and some parameters, it will learn patterns from the data. It may be overfit or it may be underfit, but that is now our only hope, that single algorithm.

With ensemble methods, instead of banking on 1 single trained model, we can train 1000's of decision trees, all using different splits of the data and learning different patterns. It would be like asking 1000 people to all learn how to code. You would end up with 1000 people with different answers, methods and styles! The weak learner notion applies here too, it has been found that if you train your learners not to overfit, but to learn weak patterns within the data and you have a lot of these weak learners, together they come together to form a highly predictive pool of knowledge! This is a real life application of many brains are better than 1.

Now instead of relying on 1 single decision tree for prediction, the random forest puts it to the overall views of the entire collection of decision trees. Some ensemble algorithms using a voting approach to decide which prediction is best, others using averaging.

As we increase the number of learners, the idea is that the random forest's performance should converge to its best possible solution.

Some additional advantages of the random forest classifier include:

- The random forest uses a rule-based approach instead of a distance calculation and so features do not need to be scaled
- It is able to handle non-linear parameters better than linear based models

On the flip side, some disadvantages of the random forest classifier include:

- The computational power needed to train a random forest on a large dataset is high, since we need to build a whole ensemble of estimators.
- Training time can be longer due to the increased complexity and size of thee ensemble

[]: RandomForestClassifier(n_estimators=1000)

The scikit-learn documentation: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html, has a lot of information about the algorithm and the parameters that you can use when training a model.

For this example, I am using $n_{estimators} = 1000$. This means that my random forest will consist of 1000 decision trees. There are many more parameters that you can fine-tune within the random forest and finding the optimal combinations of parameters can be a manual task of exploration, trial and error, which will not be covered during this notebook.

1.7.3 Evaluation

Now let's evaluate how well this trained model is able to predict the values of the test dataset.

We are going to use 3 metrics to evaluate performance:

- Accuracy = the ratio of correctly predicted observations to the total observations
- Precision = the ability of the classifier to not label a negative sample as positive
- Recall = the ability of the classifier to find all the positive samples

The reason why we are using these three metrics is because a simple accuracy is not always a good measure to use. To give an example, let's say you're predicting heart failures with patients in a hospital and there were 100 patients out of 1000 that did have a heart failure.

If you predicted 80 out of 100 (80%) of the patients that did have a heart failure correctly, you might think that you've done well! However, this also means that you predicted 20 wrong and what may the implications of predicting these remaining 20 patients wrong? Maybe they miss out on getting vital treatment to save their lives.

As well as this, what about the impact of predicting negative cases as positive (people not having heart failure being predicted that they did), maybe a high number of false positives means that resources get used up on thee wrong people and a lot of time is wasted when they could have been helping the real heart failure sufferers.

This is just an example, but it illustrates why other performance metrics are necessary such Precision and Recall, which are good measures to use in a classification scenario.

```
[]: predictions = model.predict(X_test)
    tn, fp, fn, tp = metrics.confusion_matrix(y_test, predictions).ravel()

[]: y_test.value_counts()

[]: 0     3286
          1     366
          Name: churn, dtype: int64

[]: print(f"True positives: {tp}")
          print(f"False positives: {fp}")
          print(f"True negatives: {tn}")
          print(f"False negatives: {fn}\n")

          print(f"Accuracy: {metrics.accuracy_score(y_test, predictions)}")
          print(f"Precision: {metrics.precision_score(y_test, predictions)}")
          print(f"Recall: {metrics.recall score(y_test, predictions)}")
```

True positives: 18 False positives: 4 True negatives: 3282 False negatives: 348

Accuracy: 0.9036144578313253 Precision: 0.8181818181818182 Recall: 0.04918032786885246

Looking at these results there are a few things to point out:

Note: If you are running this notebook yourself, you may get slightly different answers!

- Within the test set about 10% of the rows are churners (churn = 1).
- Looking at the true negatives, we have 3282 out of 3286. This means that out of all the negative cases (churn = 0), we predicted 3282 as negative (hence the name True negative). This is great!
- Looking at the false negatives, this is where we have predicted a client to not churn (churn = 0) when in fact they did churn (churn = 1). This number is quite high at 348, we want to get the false negatives to as close to 0 as we can, so this would need to be addressed when improving the model.
- Looking at false positives, this is where we have predicted a client to churn when they actually didnt churn. For this value we can see there are 4 cases, which is great!
- With the true positives, we can see that in total we have 366 clients that churned in the test dataset. However, we are only able to correctly identify 18 of those 366, which is very poor.
- Looking at the accuracy score, this is very misleading! Hence the use of precision and recall is important. The accuracy score is high, but it does not tell us the whole story.
- Looking at the precision score, this shows us a score of 0.82 which is not bad, but could be improved.

• However, the recall shows us that the classifier has a very poor ability to identify positive samples. This would be the main concern for improving this model!

So overall, we're able to very accurately identify clients that do not churn, but we are not able to predict cases where clients do churn! What we are seeing is that a high % of clients are being identified as not churning when they should be identified as churning. This in turn tells me that the current set of features are not discriminative enough to clearly distinguish between churners and non-churners.

A data scientist at this point would go back to feature engineering to try and create more predictive features. They may also experiment with optimising the parameters within the model to improve performance. For now, lets dive into understanding the model a little more.

1.7.4 Model understanding

plt.xlabel('Importance')

plt.show()

A simple way of understanding the results of a model is to look at feature importances. Feature importances indicate the importance of a feature within the predictive model, there are several ways to calculate feature importance, but with the Random Forest classifier, we're able to extract feature importances using the built-in method on the trained model. In the Random Forest case, the feature importance represents the number of times each feature is used for splitting across all trees.

```
[]: feature_importances = pd.DataFrame({
    'features': X_train.columns,
    'importance': model.feature_importances_
}).sort_values(by='importance', ascending=True).reset_index()

[]: plt.figure(figsize=(15, 25))
    plt.title('Feature Importances')
    plt.barh(range(len(feature_importances)), feature_importances['importance'],___
```

plt.yticks(range(len(feature_importances)), feature_importances['features'])

From this chart, we can observe the following points:

- Net margin and consumption over 12 months is a top driver for churn in this model
- Margin on power subscription also is an influential driver
- Time seems to be an influential factor, especially the number of months they have been active,

their tenure and the number of months since they updated their contract

- The feature that our colleague recommended is in the top half in terms of how influential it is and some of the features built off the back of this actually outperform it
- Our price sensitivity features are scattered around but are not the main driver for a customer churning

The last observation is important because this relates back to our original hypothesis:

> Is churn driven by the customers' price sensitivity?

Based on the output of the feature importances, it is not a main driver but it is a weak contributor. However, to arrive at a conclusive result, more experimentation is needed.

```
[]: proba_predictions = model.predict_proba(X_test)
    probabilities = proba_predictions[:, 1]

[]: X_test = X_test.reset_index()
    X_test.drop(columns='index', inplace=True)

[]: X_test['churn'] = predictions.tolist()
    X_test['churn_probability'] = probabilities.tolist()
    X_test.to_csv('out_of_sample_data_with_predictions.csv')
```