Algorithm 1: Function Main(G, PES)

Input: An instance of the A-CONN problem where G has a partial k-tree topology with a given $PES=(v_1, v_2, \ldots, v_n)$

Output: Conn(G)

Notation: *Temp* is a temporary table.

1 Initialization: initialize a table T_H for each k-clique H of G. T_H contains all possible state types on nodes of H.

```
2 for (i = 1, 2, ..., |V| - k) do
       Temp = T_{v_i,1}
       for (j = 2, 3, ..., k) do
 4
           Temp = t\_merge(Temp, T_{v_i, j})
 5
       T_{v_i,base} = t\_merge(Temp, T_{v_i,base})
 6
       foreach (key \in T_{v_i,base}) do
 7
           if (v_i \text{ is a singleton part of key}) then
 8
               delete key from T_{v_i,base}
 9
           end
           else
10
               delete v_i and its associated position from key
           end
       end
   end
```

11 **return** $Conn(G) = \sum$ values in table $T_{v_{n-k},base}$ corresponding to state types that have exactly one connected component

 $K_{v_i,base}$ is considered bad at this stage if node v_i appears as a singleton part in the partition specified by A-type(S).

This badness holds because $K_{v_i,base}$ is a separator clique in G. So, if v_i appears disconnected from the nodes in $K_{v_i,base}$ in any network state S then S can not be extended to an operating state of the entire network. On the other hand, if A-type(S) is not bad, then step 10 just removes node v_i and its associated position from A-type(S).

Example 4.4. Figure 4.3 illustrates a 3-tree that has a $PES = (v_6, v_5, v_7, v_8, v_9, v_4)$. the main loop processes node v_6 by merging tables $T_{v_6,1}$ on nodes $\{v_4, v_5, v_6\}$, $T_{v_6,2}$ on nodes $\{v_3, v_5, v_6\}$, $T_{v_6,3}$ on nodes $\{v_3, v_4, v_6\}$, and $T_{v_6,base}$ on nodes $\{v_3, v_4, v_5\}$ into one table stored in $T_{v_i,base}$.

Termination (Step 11): The main loop finishes after processing node v_{n-k} . The resulting table $T_{v_{n-k},base}$ corresponds to the k-clique H on nodes (v_{n-k+1},\ldots,v_n) .

Any state type where all nodes of H appear in one connected component corresponds to a set of operating network states of the entire network. Thus, we return the sum of probabilities of all such state types.

4.2.2 Function Table Merge

```
Algorithm 2: Function t_{-}merge(T_1, T_2)
Input: Two tables T_1 and T_2 that may share common nodes
Output: A merged table T_{out}
 1 Initialization: Clear table T_{out}
 2 set C = the set of common nodes between T_1 and T_2
 3 foreach (pair of state types key_1 \in T_1 and key_2 \in T_2) do
       if (any node in C lies in two different positions in key<sub>1</sub> and key<sub>2</sub>) then
            continue
 5
       end
       set key_{out} = the state type obtained from node positions in key_1 and key_2,
 6
                       and the partition computed by p\_merge(key_1, key_2)
       set p_{out} = T_1(key_1) \times T_2(key_2) adjusted to take the effect of common nodes in
 7
                   C into consideration
       if (key_{out} \in T_{out}) then
 8
          update T_{out}(k_{out}) + = p_{out}
       end
       else
           \mathbf{set}\ T_{out}(key_{out}) = p_{out}
10
       end
   end
11 return T_{out}
```

Algorithm 2 illustrates the main steps of the middle level table merge function. We recall that t-merge is called from the main function to merge two tables, denoted T_1 and T_2 , that may have a set C of common nodes (i.e., $V(T_1) \cap V(T_2) \neq \emptyset$). Each table $T_i, i = 1, 2$, stores information about some subgraph, G_i , that has been reduced onto some k-clique, K_i . Table merging is done by processing each pair of state types (i.e., table keys) $key_1 \in T_1$ and $key_2 \in T_2$. Processing state types key_1 and key_2 results in a new state type, denoted key_{out} , and an associated probability, denoted p_{out} .

Our method of computing P_{out} can be summarized as follows. Each partition (e.g. P_1 or P_2) is represented by a list of sets (a list is an ordered container). Each part within a partition is represented as a set of nodes.

First, we put all parts of P_1 and P_2 in one partition. In function p_merge (Algorithm 3) we choose to put all parts in P_1 (steps 1 and 2). Second, we process each pair of parts in P_1 by merging them into one part if there is at least one common node. If two parts are merged together, then both parts are deleted from the ordered list P_1 and their union is placed at the beginning of P_1 . Processing of pairs of parts in the updated P_1 then restarts from the beginning of P_1 . Processing finishes when all pairs in the ordered list P_1 are considered.

```
Algorithm 3: function p\_merge(P_1, P_2)
   Input: Two partitions P_1 and P_2
   Output: A partition P
   Notation: s and t are two set iterators and their corresponding set are
   indicated by s^* and t^*.
 1 foreach ( set s^* in P_2) do
       P_1.push\_back(s^*)
   end
 3 for (s = P_1.begin(); s \neq P_1.end(); ++s) do
        for (t = s.next(); t \neq P_1.end(); ++t) do
            if (s^* \cap t^* \neq \emptyset) then
 \mathbf{5}
              P_1.push\_front(s^* \cup t^*)
P_1.delete(s^*)
P_1.delete(t^*)
s = P_1.begin()
break
        end
   end
11 set P = P_1
   return P
```

4.3 Example Tables

Example 4.6. In figure 4.5, two keys (state types) $key_1 = (\{v_1, v_2\}^{(1,1)} \{v_3\}^{(2)})$ and $key_2 = (\{v_1\}^{(1)} \{v_3, v_4\}^{(2,1)})$ belong to tables T_1 and T_2 respectively. The two keys can be merged together since the common nodes v_1 and v_3 assume the