Modern

ormula sheet provided:	no but formulae listed on next page.
ask weighting:	%ET
Narks available:	sylvew Ot
pecial items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper,
tandard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Naterials required:	No Cals allowed at all!
umber of questions:	8
Vorking time allowed for	this task: 40 mins
eading time for this test	suim 2 :
эг к т уре:	gesbouse
:tudent name:	Теасhег пате:

_			
1 Page			
Note: All part question	s worth more than	marks require working to obtain full marks	
Formula sheet provide	a: no but formulae	ted on next page.	
Task weighting:	%£ ī		
Marks available:	40 marks		
Special items:	Drawing instrume PA paper,	ts, templates, notes on one unfolded sheet of	
smeđi brebnet?:		eferred), pencils (including coloured), sharpene e, eraser, ruler, highlighters	
Materials required:	No Cals allowe	Ille te	
Number of questions:	8		
Working time allowed	for this task: 40 mir		
Reading time for this te	Reading time for this test: 5 mins		
Task type:	gesbouse		
Student name:		Теасһег пате:	
Course 1	Methods Te	St 1 Year 12	
MOUNGIEST SHOW	Independent P	blic School	
-DI-man or		chooling. Exceptional studer	
	рғвтн	NODEKN SCHOO	
Маthematics Departmen	ņ	ЪЭ	

Perth Modern Mathematics Department

Useful formulae

$\frac{d}{dx}x^n = nx^{n-1}$		$\int x^n dx = \frac{x^{n+1}}{n+1}$	$-+c$, $n \neq -1$
$\frac{d}{dx}e^{ax-b} = ae^{ax-b}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$	
$\frac{d}{dx} \ln x = \frac{1}{x}$		$\int \frac{1}{x} dx = \ln x + c, x > 0$	
$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$		$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c, f(x) > 0$	
$\frac{d}{dx}\sin(ax-b) = a\cos(ax-b)$		$\int \sin(ax-b) dx$	$dx = -\frac{1}{a}\cos(ax - b) + c$
$\frac{d}{dx}\cos(ax-b) = -a\sin(ax-b)$		$\int \cos (ax-b)$	$dx = \frac{1}{a}\sin(ax - b) + c$
	If $y = uv$		If $y = f(x) g(x)$
Product rule	then	or	then
	$\frac{d}{dx}(uv) = v\frac{du}{dx} + u\frac{dv}{dx}$		y' = f'(x) g(x) + f(x) g'(x)
Quotient rule	If $y = \frac{u}{v}$		If $y = \frac{f(x)}{g(x)}$
	then	or	then
	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$		$y' = \frac{f'(x) g(x) - f(x) g'(x)}{(g(x))^2}$
	If $y = f(u)$ and $u = g(x)$)	If $y = f(g(x))$
Chain rule	then	or	then
	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$		y' = f'(g(x)) g'(x)
Fundamental theorem	$\frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x)$	and	$\int_{a}^{b} f'(x) dx = f(b) - f(a)$
Increments formula	$\delta y \approx \frac{dy}{dx} \times \delta x$		
Exponential growth and decay	$\frac{dP}{dt} = kP \iff P = P_0 e^{kt}$		

2 | P a g e

Mathematics Department Perth Modern

7 | Page

Q8 (4 marks) A rectangle has one vertex at the origin, another on the positive x-axis, another on the positive y-axis and a fourth on the line y = ax + b where a & b are constants.

The greatest area occurs when x = 8 with an area of 32 sq units. **Using calculus**, determine the values of the constants a & b.

Q7 (5 marks)

Mathematics Department

Perth Modern

Mathematics Department

No calculators allowed!!!

Perth Modern

Determine the equation of the tangent to the following curves at the stated point: Q1 (2 & 3 = 5 marks)

Determine the derivatives of the following using the quotient rule and simplify your answer.

(0,1) at the point (1,0) $y = 2x^3 - 3x + 1$ at the point (1,0)

(6,1–) third entry is $\frac{1}{z_{\chi}} + {}^{\xi}\chi \partial = \chi$ (d

 $\frac{\xi + x}{\xi + x} = (x) f \quad (a)$

Q2 (3 & 3 = 6 marks)

$$\frac{1+^2x\xi}{(1-x\xi)} = (x) t \quad (d)$$

G6 (3 marks)

If $q=rac{\delta}{\overline{z}}$ use differentiation to determine the approximate percentage change in q when t increases

.%£ yd

Consider the function f(x) = f(x) as graphed below. On the axes below sketch the function f(x) = f(x) and

Determine the coordinates of the stationary points of $f(x) = x^3 - 3x + 2$ using calculus and justify their nature

Q4 (1, 2 & 3 = 6 marks)

Consider an object initially at the origin that moves only in a straight line with displacement from origin,

x, given by
$$x = \frac{t^3}{3} - \frac{3t^2}{2} + 2t$$
 at time, t seconds.

Determine:

- a) Acceleration at t = 1 second.
- b) The times the object is at rest.
- c) The distance travelled in the first 3 seconds.

Mathematics Department Perth Modern

Q5 (2, 2 & 2 = 6 marks)

The graphs of f and g are displayed below.

- a) Determine the derivative of f(x)g(x) at x = 3.
- b) Determine the derivative of $\frac{f(x)}{g(x)}$ at x = 2.

c) Determine the derivative of f(g(x)) at x = -1