Lecture 18

§1 Natural Logarithmic Function: Algebraic Properties

1. Theorem: Algebraic properties of In

For any $b \in R > 0$ and $x \in R > 0$

- l_{i} $l_{i}(bx) = l_{i}b + l_{i}x$
- $2 \ln(b/x) = \ln b \ln x$
- $3. \left| \ln \left(1/x \right) \right| = \ln x$
- 4. $\ln(x^r) = r \ln x$, for any $r \in \mathbb{Q}$

2. Proof of 1:

Let
$$f(x) = \ln(bx)$$
, defined on $(0, \infty)$. Then
$$f(x) = \frac{b}{bx} = \frac{1}{x} = \ln'x$$

So
$$f(x) = \ln x + C$$
 for some constant C, $\forall x \in (0, +\infty)$

3. Proof of 4

Let
$$f(x) = \ln(x^r)$$
, defined on $(0, \infty)$. Then

$$f(x) = \frac{r x^{r-1}}{x^r} = r \cdot \frac{1}{x} = \frac{d}{dx} (r \ln x)$$

So
$$f(x) = r \ln x + C$$
 for some constant C , $\forall x \in (0, \infty)$

$$f(1) = \ln 1^r = 0 = r \ln 1 + C = C$$

$$ln(\frac{b}{x}) = ln(bx^{-1})$$

=
$$lnb + ln(x^{-1})$$

$$ln(\frac{1}{x}) = ln 1 - ln x$$

= $-ln x$

§ 2 Natural Logarithmic Function: Graph and Range

1. Range

We already know that In is differentiable and increasing on $(0,\infty)$

Since $\ln 2 = \int_{1}^{2} \frac{1}{4} dt > (2-1)(\frac{1}{2}) = \frac{1}{2}$

It follows that for any $n \in \mathbb{Z}_+$,

$$|n(2^n) = n|n2 > \frac{n}{2}$$

Since In is increasing,

$$|n(x)>|n(z^n)>\frac{n}{2}$$
 for all $x\in[z^n,\infty)$

As $n \to \infty$, $\ln(2^n) \to \infty$, and

Also,

$$\lim_{x\to 0^+} \ln x = \lim_{u\to\infty} \ln \left(\frac{1}{u}\right) = \lim_{u\to\infty} \left(-\ln u\right) = -\infty$$

Now let yo be any fixed real number.

By the two limits above, there exists x_i and x_i in $(0, +\infty)$ such that $\ln(x_i) < y_0$ $\ln(x_i) > y_0$

By IVT, there exists $C \in [x_1, x_2]$ such that $h C = y_0$

This shows that range (In) = R

2. Concavity

Since $m''(x) = \frac{d}{dx}(\frac{1}{x}) = -\frac{1}{x^2} < 0$ for all $x \in (0, \infty)$,

the curve y= ln x is concave down

3. Limit of derivatives

Note that
$$\lim_{x\to 0^+} h'(x) = \lim_{x\to 0^+} \frac{1}{x} = \infty$$

Also $\lim_{x\to \infty} |h'(x)| = \lim_{x\to \infty} \frac{1}{x} = D$

§ 3 Natural Logarithmic Function: Composite Function Inog

1. Composite function mog

Let
$$g: D \rightarrow R > 0$$
 be differentiable on D. Then:
 $(m \circ g)'(x) = ln'(g(x)) \cdot g'(x) = \frac{g'(x)}{g(x)}$

If we take q(x)=|x| with $D=R\setminus\{0\}$, then:

So
$$g'(x) = \frac{|x|}{x}$$

By the formula above we have

$$\frac{d}{dx} \ln |x| = \frac{1}{|x|} \cdot \frac{|x|}{x} = \frac{1}{x}$$

This means that for $X \in \mathbb{R} \setminus \{0\}$, $|n| \times |i|$ is an antiderivative of $\frac{1}{x}$ $\int \frac{1}{x} dx = |n| \times |i| + C$

More generally, if g(x) = |f(x)| where f is differentiable and never zero, then by the chain rule:

$$g'(x) = \frac{f(x)}{f(x)} \cdot f'(x)$$

So
$$\frac{d}{dx} \ln |f(x)| = \frac{1}{|f(x)|} \cdot \frac{|f(x)|}{|f(x)|} \cdot f(x) = \frac{f(x)}{|f(x)|}$$

Then
$$\int \frac{f(x)}{f(x)} dx = \ln |f(x)| + C$$

is valid on any interval contained in the domain of f, fix170.

$$\int tan x \, dx = \int \frac{smx}{cosx} \, dx$$

$$= -\int \frac{-smx}{cosx} \, dx$$

$$= -\ln|cosx| + C$$

$$= \ln|secx| + C$$
Find $\int secx \, dx$

e.g. Find
$$\int \sec x \, dx$$

$$\int \sec x \, dx = \int \frac{\sec x \cdot \frac{\sec x + \tan x}{\sec x + \tan x} \, dx}{\sec x + \tan x} \, dx$$

$$= \int \frac{\sec x \cdot \tan x + \sec^2 x}{\sec x + \tan x} \, dx$$

$$= \ln|\sec x + \tan x| \, dx$$

2. Integrals of the tangent, cotangent, secant, cosecant functions.

Let
$$u=2x$$
. then $dx=\frac{1}{2}du$, $u=0$ when $x=0$, $u=\frac{\pi}{3}$ when $x=\frac{\pi}{6}$

$$\int_0^{\frac{\pi}{6}} \tan 2x \, dx = \int_0^{\frac{\pi}{3}} \frac{1}{2} \tan u \, du$$

$$= \frac{1}{2} \left[\ln|\sec u| \right]_0^{\frac{\pi}{3}}$$

$$= \frac{1}{2} \ln 2$$

§4 Natural Logarithmic Function: Logarithmic Differentiation

1. Logarithmic differentiation

Suppose Fixi involves complicated products, quotients and powers, e.g.

$$F(x) = \frac{f_1(x)^{m_1} f_2(x)^{m_2}}{f_3(x)^{m_3}}$$

Taking In on both sides we get:

Differentiating both sides yields:

$$\frac{F(x)}{F(x)} = m_1 \frac{f_1(x)}{f_1(x)} + m_2 \frac{f_2(x)}{f_2(x)} - m_3 \frac{f_3(x)}{f_3(x)}$$

Move Fix) to the right to get Fix).

e.g. Find y' where
$$y = \frac{x^{\frac{3}{4}}\sqrt{x^{2}+1}}{(3x+2)^{5}}$$

 $\ln y = \frac{2}{4}\ln x + \frac{1}{2}\ln(x^{2}+1) - 5\ln(3x+2)$
 $\frac{y'}{y} = \frac{2}{4}\cdot\frac{1}{x} + \frac{1}{2}\cdot\frac{2x}{x^{2}+1} - 5\cdot\frac{3}{3x+2}$
 $y' = \frac{x^{\frac{3}{4}}\sqrt{x^{2}+1}}{(2x+2)^{5}}\left(\frac{3}{4x} + \frac{x}{x^{2}+1} - \frac{5}{3x+2}\right)$

85 Natural Exponential Function: Definition and Derivative

1. Definition

Consequently

Since $\ln:(0,\infty)\to R$ is bijective, it has an inverse function $\exp:R\to(0,\infty)$ called the natural exponential function. Since $\ln e=1$ by definition, we have $e=\exp(1)$ Since e>0, e^r is defined for any national power r. Since $\ln(e^r)=r\ln e^{\frac{\det}{2}}r$, we have $\exp(r)=e^r$, $\forall r\in Q$ For invalional power r we simply define e^x as follows: $e^x\stackrel{\det}{=}\exp(x)$, $\forall x\in R\setminus Q$ Hence, $\exp(x)=e^x$ for all $x\in R$

$$e^{\ln x} = x$$
, $\forall x \in [0, \infty)$
 $\ln(e^x) = x$, $\forall x \in R$

2. Derivative

Let
$$y = \exp(x)$$
, then $\ln y = x$
Apply $\frac{dy}{dx}$ to both sides gives
$$\frac{1}{y} \cdot \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = y = \exp(x)$$

So
$$\exp'(x) = \exp(x)$$
 or $\frac{1}{dx} e^x = e^x$
 $e.g. Find \int_0^{\frac{\pi}{2}} e^{smx} \cos x \, dx$
Let $u = \sinh x$, then $du = \cos x \, dx$, $u = 1$ when $x = \frac{\pi}{2}$, $u = 0$ when $x = 0$,
 $\int_0^{\frac{\pi}{2}} e^{smx} \cos x \, dx = \int_0^1 e^u \, du$
 $= [e^u]_0^1$
 $= e - 1$

86 Natural Exponential Function: Algebraic Properties

1. Theorem: Algebraic properties of exp

For any real number x_1, x_2 and x_3 :

1. $e^{x_1}e^{x_2}=e^{x_1+x_2}$

$$2. e^{-x} = \frac{1}{e^x}$$

$$2. \quad e^{-x} = \frac{1}{e^{x}}$$

$$3. \quad \frac{e^{x_{1}}}{e^{x_{3}}} = e^{x_{1}-x_{2}}$$

4.
$$(e^x)^r = e^{rx}$$
. for any $r \in \mathbb{R}$

2. Proof of 1
Let
$$y_i = e^{x_i}$$
, $y_z = e^{x_z}$. Then
$$e^{x_i + x_z} = e^{\ln y_i + \ln y_z}$$

3. Proof of 4.

4. Proof of 3

$$e^{x_i - x_2} = e^{x_i} e^{-x_2}$$
$$= \frac{e^{x_1}}{e^{x_2}}$$

5. Proof of 2

$$e^{-x} = e^{0-x}$$

$$= \frac{1}{e^{x}}$$