Towards Multi-objective Mixed Integer Evolution Strategies

Koen van der Blom, Kaifeng Yang, Thomas Bäck & Michael Emmerich 21-09-2018

Motivation

- Mixed Integer Evolution Strategy [Li et al 2013]
 - Real, integer, categorical
 - Single objective
- Existing multi-objective techniques
 - Weight space decomposition (MILP) [Przybylski et al 2010]
 - Enhanced Directed Search (EDS) [Laredo 2015]
 - Zigzag [Wang 2013, Wang 2015]
 - No distinction between integer and categorical!
- Extend MIES for multiple objectives

Evolution Strategies

- Mimic evolution for optimisation
 - Parents generate offspring (recombination)
 - Offspring add additional variation (mutation)
- Optimal mutation strength?
 - Changes over time...
- Step size adaptation
 - Same evolutionary mechanisms!

$(\mu + \lambda)$ Evolution Strategy [Schwefel 1981]

- μ parents generate λ offspring
 - Update decision variables
 - Update mutation probabilities
- Select the best from $\mu \cup \lambda$
- Repeat

```
t \leftarrow 0;
P_t \leftarrow \operatorname{init}(); // P_t \in \mathbb{S}^{\mu}: \text{Set of solutions}
while t < t_{max} \operatorname{do}

| // Generate \lambda solutions by (stochastic) variation operators
Q_t \leftarrow \operatorname{generate}(P_t);
evaluate(Q_t);
P_{t+1} \leftarrow \operatorname{select}(Q_t \cup P_t); // Rank and select \mu best
t \leftarrow t+1;
```

Mixed Integer Evolution Strategy

[Li et al 2013]

```
	au \leftarrow \frac{1}{\sqrt{2_{n_r}}}, 	au' \leftarrow \frac{1}{\sqrt{2\sqrt{n_r}}};
                                                                                                                                                     Continuous Variables
\sigma' = \sigma \exp(\tau N(0, 1));
foreach i \in \{1, \ldots, n_r\} do
       r'_i \leftarrow r_i + \sigma' N(0, 1);
                                                                                                                                                         (Normal Distribution)
       r_i' \leftarrow T_{r_i^{min}, r_i^{max}}(r_i'); // \text{ interval boundary treatment}
end
\tau \leftarrow \frac{1}{\sqrt{2_{n_z}}}, \tau' \leftarrow \frac{1}{\sqrt{2\sqrt{n_z}}};
\varsigma' = \max(1, \varsigma \exp(\tau N(0, 1));
foreach i \in \{1, ..., n_7\} do
                                                                                                                                                            Integer Variables
      u_1 \leftarrow U(0,1), u_2 \leftarrow U(0,1), \psi \leftarrow 1 - (\varsigma'/n_z) \left(1 + \sqrt{1 + (\frac{\varsigma'}{n_z})^2}\right)^{-1};
                                                                                                                                                    (Geometrical Distribution)
      G_1 \leftarrow \left| \frac{\ln(1-u_1)}{\ln(1-\psi)} \right|, G_2 \leftarrow \left| \frac{\ln(1-u_2)}{\ln(1-\psi)} \right|;
    z_i' \leftarrow z_i + G_1 - G_2;

z_i' \leftarrow T_{z_i^{min}, z_i^{max}}(z_i'); // \text{ interval boundary treatment}
	au \leftarrow \frac{1}{\sqrt{2_{n_d}}}, 	au' \leftarrow \frac{1}{\sqrt{2\sqrt{n_d}}};
p' = \frac{1}{1 + \frac{1 - p}{n} \exp(-\tau N(0, 1))};
p' = T_{1/n_d,0.5}(p');
foreach i \in \{1, ..., n_d\} do
                                                                                                                                                     Categorical Variables
       if U(0,1) < p' then
             choose a new element uniformly distributed out of D_i \setminus d_i;
       end
end
```

Mutation operators

- Properties
 - Scalability (scale step size)
 - Asymmetry (maximal entropy, avoid bias)
 - Infinite support (every solution is reachable)
- Example
 - Mutation of integer variables [Rudolph 1994]
 - Difference of two
 Geometric distributions

Image from [Li et al 2013]

Multi-objective optimisation

Train Routing

- Time
- Price

Min

Min

SMS-EMOA [Emmerich et al 2005]

- Optimise hypervolume indicator
- Rank solutions
 - Non-dominated sorting
 - Hypervolume contribution

Hypervolume indicator

• Measure the dominated region

S-metric (hypervolume) selection

Hypervolume contribution

Non-dominated sorting

Multi-Objective MIES

- Canonical MIES operators
- S-metric selection
- Non-dominated sorting
- $(\mu + 1)$ strategy
 - Always select the μ best
 - (HV never decreases)

Alternative MO-MIES algorithms

- Mutation only
 - Best results without recombination [Wessing et al 2017]
 - Different optimal step size for different directions

- Mutation tournament
 - Greater selection pressure

Scalable Test Problems

Multi-sphere

$$f_{sphere_1}(\mathbf{r}, \mathbf{z}, \mathbf{d}) = \sum_{i=1}^{n_r} r_i^2 + \sum_{i=1}^{n_z} z_i^2 + \sum_{i=1}^{n_d} d_i^2 \rightarrow min$$

$$f_{sphere_2}(\mathbf{r}, \mathbf{z}, \mathbf{d}) = \sum_{i=1}^{n_r} (r_i - 2)^2 + \sum_{i=1}^{n_z} (z_i - 2)^2 + \sum_{i=1}^{n_d} (d_i - 2)^2 \rightarrow min$$

Multi-barrier

$$f_{barrier_1}(\mathbf{r}, \mathbf{z}, \mathbf{d}) = \sum_{i=1}^{n_r} \left(r_i^2 + \theta \sin(r_i)^2 \right) + \sum_{i=1}^{n_z} A \left[z_i \right]^2 + \sum_{i=1}^{n_d} B_i \left[d_i \right]^2 \rightarrow min$$

$$f_{barrier_2}(\mathbf{r}, \mathbf{z}, \mathbf{d}) = \sum_{i=1}^{n_r} \left((r_i - 2)^2 + \theta \sin(r_i - 2)^2 \right) + \sum_{i=1}^{n_z} (A \left[z_i \right] - 2)^2 + \sum_{i=1}^{n_d} (B_i \left[d_i \right] - 2)^2 \rightarrow min$$

Optical filter

- Layers (on/off)
- Thickness per layer

Experimental setup

- 10,000 evaluations
- 25 repetitions

	n_r	range	n_z	range	n_d	range
$\overline{f_{sphere}}$	5	[0, 20]	5	[0, 20]	5	[0, 20]
$f_{barrier}$	5	[0, 20]	5	[0, 20]	5	[0, 20]
$f_{optfilt}$	11	[0, 1]	N/A	N/A	11	$\{0, 1\}$

Optical filter convergence

Barrier convergence

Step size adaptation (multisphere)

Step size adaptation – Categorical

Future work

- Improve categorical step size adaptation
- Investigate recombination behaviour
 - Why does it work?
 - When will it not work?
- Introduce multi-objective recombination?
- Investigate integer step size adaptation
 - Can we prevent regressive behaviour?

Summary

Goal:

• Extend the MIES algorithm for the multi-objective case

• Plan:

- Evaluate MIES + SMS-EMOA (= MOMIES)
- Evaluate mutation only variant
- Evaluate mutation tournament variant

• Result:

- Best performance for canonical MOMIES
- Step size in continuous and integer space adapts quite well
- Chaotic step size behaviour in categorical space

• Future:

- Improve categorial step size adaptation
- Investigate recombination behaviour

References I

- [Emmerich et al 2005] M. Emmerich, N. Beume, and B. Naujoks, "An EMO algorithm using the hypervolume measure as selection criterion," in Evolutionary Multi-Criterion Optimization, edited by C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), pp. 62–76.
- [Emmerich+Deutz 2018] M. T. M. Emmerich and A. H. Deutz, Natural Computing 17, 585–609Sep (2018).
- [Laredo 2015] D. Laredo Razo, EDS: A Continuation Method for Mixed-Integer Multiobjective Optimization Problems, Master's thesis, CINVESTAV-IPN, Mexico City (2015).
- [Li et al 2013] R. Li, M. T. M. Emmerich, J. Eggermont, T. Bäck, M. Schütz, J. Dijkstra, and J. H. C. Reiber, Evolutionary computation 21, 29–64 (2013).
- [Przybylski 2010] A. Przybylski, X. Gandibleux, and M. Ehrgott, INFORMS Journal on Computing 22, 371–386 (2010).
- [Rudolph 1994] G. Rudolph, "An evolutionary algorithm for integer programming," in Parallel Problem Solving from Nature PPSN III, edited by Y. Davidor, H.-P. Schwefel, and R. Männer (Springer Berlin Heidelberg, Berlin, Heidelberg, 1994), pp. 139–148.
- [Schwefel 1981] Hans-Paul Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons, Inc., New York, NY, USA, 1981.
- [Wang 2015] H. Wang, Computers & Operations Research 61, 100–09 (2015).

References II

• [Wessing et al 2017] S. Wessing, R. Pink, K. Brandenbusch, and G. Rudolph, "Toward step-size adaptation in evolutionary multi-objective optimization," in Evolutionary Multi-Criterion Optimization, edited by H. Trautmann, G. Rudolph, K. Klamroth, O. Schütze, M. Wiecek, Y. Jin, and C. Grimme (Springer International Publishing, Cham, 2017), pp. 670–684.

Sphere convergence

Step size adaptation

