

Modulhandbuch Studiengang Bachelor Biotechnologie

(PO 2022)

Hochschule Emden/Leer Fachbereich Technik Abteilung Naturwissenschaftliche Technik

(Stand: 23. Mai 2023)

Inhaltsverzeichnis

1	Kompetenzen in der Biotechnologie und Bioinformatik	4
2	Modul-Kompetenz-Matrix	8
3	Abkürzungen der Studiengänge des Fachbereichs Technik	11
	Abkürzungen der Studiengänge des Fachbereichs Technik Modulverzeichnis 4.1 Pflichtmodule Allgemeine Biologie Allgemeine Chemie für BT/BI Mathematik 1 Physik Physikalische Chemie Programmieren 1 Anorganische Chemie für BT/BI Mathematik 2 Mikrobiologie 1 Organische Chemie Programmieren 2 Programmieren 2 Programmieren 2 Softskills 1 BT/BI Thermodynamik Algorithmen und Datenstrukturen Biochemie Bioinformatik 1 Datenbanken Fermentationstechnik Mikrobiologie Praktikum 1 Organische Chemie Grundpraktikum Thermodynamik der Gemische Angewandte Bioinformatik Biochemie Praktikum Digitale Bidsignalverarbeitung Instrumentelle Analytik Mechanische Verfahrenstechnik Molekulare Genetik Softwareprojektmanagement Thermische Verfahrenstechnik Aufarbeitung	11 12 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 38 40 40 40 40 40 40 40 40 40 40 40 40 40
	Bioverfahrenstechnik 1 Data Science GUI-Programmierung Mikrobiologie 2 Softskills 2 BT/BI Umweltverfahrenstechnik Verfahrenstechnik Praktikum BT	43 44 46 47 48 49 50
	Apparate & Werkstoffe Bioverfahrenstechnik 2 Enzymtechnik&Angewandte Mikrobiologie Instrumentelle Analytik (Praktikum) für BT Projekt Enzymtechnik Spektroskopie Umweltanalytik Umwelttechnik Praktikum Praxisphase Bachelorarbeit	51 52 53 54 55 56 57 58 59 60
	4.2 Wahlpflichtmodule	61

/PM Bioverfahrenstechnik 3	61
PM Grundlagen der Zellkulturtechnik	62
PM Grundlagen der Zellkulturtechnik mit Praxis	63
/PM Histologische Methoden	64
PM Interdisziplinäres Arbeiten	65
PM Internet-Programmierung	66
PM Mikrobiologie Praktikum 2	67
PM Mischen und Rühren	68
PM Modellierung chemischer Reaktoren (Ba)	69
/PM Nachwachsende Rohstoffe	70
PM Naturstoffe	71
PM Pflanzlicher Sekundär Metabolismus	72
PM Polymere	73
PM Polymere Praktikum	74
PM Projekt Bioinformatik	75
PM Prozessmodellierung & Energieoptimierung	76
PM Prozessmodellierung & Energieoptimierung Praktikum	77
PM Studienarbeiten in der Biotechnologie	78
PM Technische Nutzung von Mikroorganismen in der Umweltbiotechnologie	79
/PM Toxikologie (BA)	80

1 Kompetenzen in der Biotechnologie und Bioinformatik

Verschiedene Fachorganisationen haben aus eigenen Erhebungen und darüber hinaus aus dem gesellschaftlichen Auftrag der Hochschulen Empfehlungen für Studiengänge im Bereich der Biotechnologie sowie den Bereich der Bioinformatik entwickelt. Seit Jahren werden diese Empfehlungen zur Gestaltung unseres Studienganges mit heran gezogen.

Die Absolventen des Studiengangs mit Vertiefung Biotechnologie finden in vielen Zweigen Beschäftigung. Die Kombination naturwissenschaftlicher und technischer Lehrinhalte bietet den Absolventinnen und Absolventen vielfältige Einsatzmöglichkeiten sowohl im privatwirtschaftlichen Bereich als auch im öffentlichen Dienst, z.B. in Forschungsinstituten und Untersuchungsämtern.

Sie arbeiten beispielsweise in Großunternehmen der chemisch-biotechnologischen und pharmazeutischen Industrie im Bereich der Analytik, Produktion, Prozessentwicklung, Qualitätssicherung und Validierung aber auch in Mittel- und Kleinbetrieben mit chemisch-biotechnologischen Arbeitsaspekten, wie Ingenieur- und Planungsbüros, bei privaten und kommunalen Diagnostiklaboren, der Kreislauf- und Energiewirtschaft. Die Aufgaben umfassen Planung und Realisierung sowie Überwachung und Betrieb von Verfahren, Anlagen und Prozessen in den genannten Bereichen. Ein weiteres Feld besteht in der Analyse solcher Prozesse und der hiermit einhergehenden Optimierung von industriellen Prozessen.

Über die Vertiefung Bioinformatik können die Absolventen des Studienganges mit Methoden der Informatik zu bewältigende Fragestellungen aus dem Bereich der Biotechnologie und Analytik und daraüberhinaus in geeignete Softwarelösungen umsetzen. Sie arbeiten beispielsweise in Unternehmen des medizinischdiagnostischen Bereichs aber auch in der behördlichen Forensik an Verfahren zur biometrischen Erfassung und Auswertung über Bild- und Audioanalysen, der computerüberwachten Ansteuerung von Produktionsabläufen in mittelständischen Unternehmen oder der Großindustrie, bis hin zur Neuentwicklung genom- und proteomanalytischer Untersuchungsverfahren in Forschungslabors.

Die Studienrichtungen bieten aber auch die Möglichkeit einer akademischen Karriere über Weiterqualifikation an Großforschungseinrichtungen und/oder Universitäten und Aufnahme eines entsprechend ausgerichteten Masterstudienangebotes, das natürlich auch den selbst angebotenen Masterstudiengang Applied Life Sciences umfasst.

Daraus ergeben sich persönliche und berufsbezogene Studienziele.

Qualifikationsziele							
Berufsbezogen	Persönlichkeitsbezogen						
naturwissenschaftliches Allgemeinwissen Methoden des qualitätsgesicherten Softwareengineering fachliche Kompetenz Problemlösungskompetenz Handlungskompetenz Interdisziplinarität	Team- und Kommunikationsfähigkeit Selbstständigkeit Weiterbildungsbereitschaft Befähigung zu lebenslangem Lernen						

Um diese Ziele zu erreichen müssen folgende Kompetenzfelder abgedeckt werden:

- Mathematisch-naturwissenschaftliche Grundlagen
- · Kompetenzen zur Softwareprogrammierung
- Ingenieurwissenschaftliche Grundlagen
- Prozesswissenschaftliche Kompetenzen

- Vertiefende Kenntnisse und Fertigkeiten im Bereich Biotechnologie bzw. Bioinformatik im Besonderen je nach Profilbildung
- Nichttechnische überfachliche Kompetenzen

Im Folgenden werden diese Kompetenzfelder detaillierter und stichwortartig beschrieben angelehnt an die **Empfehlungen des VDI**

- Basiskompetenzen
- · Technologische Kompetenzen
- Fachübergreifende und Schlüsselkompetenzen

Im Folgenden werden diese Kompetenzfelder detaillierter und stichwortartig beschrieben.

Basiskompetenzen

Basis-MATH	Mathematische Basiskompetenzen
Basis-N	Basiskompetenzen in den naturwissenschaftlichen Fächern
Basis-ING+P	Basiskompetenzen der Ingenieurwissenschaften und der Prozesstechnik

Technologische Kompetenzen

Tech-CHEM	Verständnis anorganischer und organisch-chemischer Reaktionen. Kenntnisse über organisch-chemische Synthesen sowie von physikalisch-chemischen Zusammenhängen							
Tech-BIO	Verständnis biologischer, biochemischer und molekularbiologischer Grundlagen und Verfahren. Kenntnis der Mikrobiologie							
Tech-ANALYT	Fähigkeit, Stoffgemische mit Methoden der analytischen Chemie sowie der instrumentellen Analytik qualitativ und quantitativ zu analysieren							
Tech-ING	Verständnis verfahrenstechnischer Zusammenhänge, Prozesstechnik, Prozessautomatisierung sowie energetischer Zusammenhänge							
Tech-BIOVT	Verständnis bioverfahrenstechnischer Zusammenhänge							
Tech-IT	Verständnis von Software-Engineering, Anwendersoftware und Simulationssoftware							

Fachübergreifende Kompetenzen und Schlüsselkompetenzen (FÜS)

FÜS-BWL+R	Grundkenntnisse in BWL und Recht
FÜS-PRÄS	Dokumentationsfähigkeit und Präsentationsfähigkeit vor einer Gruppe in englischer und deutscher Sprache
FÜS-SOZIAL	Soziale Kompetenzen und Selbstkompetenz: überzeugend präsentieren können, abweichende Positionen erkennen und integrieren können, zielorientiert argumentieren, mit Kritik sachlich umgehen, Missverständnisse erkennen und abbauen, Einflüsse der Biotechnologie und Bioinformatik auf die Gesellschaft einschätzen können, Berücksichtigung von Gender-Aspekten, ethische Leitlinien kennen und befolgen

Die Vermittlung von Schlüsselkompetenzen ist oft an die Vermittlung biotechnologischer und bioinformatischer Kenntnisse und Fertigkeiten z. B. durch Gruppenarbeit in Laboren gekoppelt oder wird in separaten Softskills-Modulen vermittelt. Nichttechnische Aspekte werden darüber hinaus in den Projektarbeiten z. B. in Form von Studienarbeiten und Semaren/studentischen Präsentationen neben fachlichen Aspekten vermittelt.

Mit dem erfolgreichen Abschluss des Studiums sind die Absolventen Ingenieure im Sinne der Ingenieurgesetze der Länder.

2 Modul-Kompetenz-Matrix

Modul-Kompetenz-Matrix für den Studiengang Biotechnologie (leere Felder: nicht vermittelt, x: mittelstark vermittelt, xx: sehr stark vermittelt)

Madul	Kompetenz	Basis-MATH	Basis-N	Basis-ING+P	Tech-CHEM	Tech-BIO	Tech-ANALYT	Tech-ING	Tech-BIOVT	Tech-IT	FÜS-BWL+R	FÜS-PRÄS	FÜS-SOZIAL
Modul													
Algorithmen und Datenstrukturen			X	Х						XX			
Allgemeine Biologie			XX			XX	Х			Х			
Allgemeine Chemie für BT/BI		XX				XX							
Angewandte Bioinformatik			Х			Х				XX			
Anorganische Chemie		XX	Х			Х						Х	
Apparate & Werkstoffe				XX			Х	Х					
Aufarbeitung		Х	XX		XX		Х	XX					
Biochemie			XX			XX							
Biochemie Praktikum			Х			XX							
Bioinformatik 1			Х	Х		Х				XX			
Bioverfahrenstechnik 1				Χ		Х		Х	XX				
Bioverfahrenstechnik 2						Х		Х	XX			Х	
Bioverfahrenstechnik 3									XX				
Chemie und Analytik der Lebensmittel		Х	Х	Х	Х	XX	Х	Х		х			
Data Sciences			Х	Х						xx			
Datenbanken								Х	Х	XX		Х	
Digitale Bildsignalverarbeitung		Х	Х	Х				Х		хх			
Enzymtechnik & Angewandte Mikrobiologie						х			xx				
Fermentationstechnik			Х	Х	Х	Х		Х	XX				
Grundlagen der Zellkulturtechnik			Х			Х			хх				
Grundlagen der Zellkulturtechnik mit Praxis			х			х			xx				
GUI Programmierung		Х	Х					Х		ХX			
Histologische Methoden			XX						хх	х			
Instrumentelle Analytik						XX						Х	
Instrumentelle Analytik Praktikum						XX						Х	
Internet-Programmierung			хх	хх						хх			
Mathematik 1		ХХ											
Mathematik 2		хх											
Mechanische Verfahrenstechnik		Х	хх	хх				хх					
Mikrobiologie 1			ХХ		х	хх							
Mikrobiologie 2			хх		х	хх							
Mikrobiologie Praktikum 1			Х		х	хх			х				
Mikrobiologie Praktikum 2			х		Х	хх			Х				

Modul	Kompetenz	Basis-MATH	Basis-N	Basis-ING+P	Tech-CHEM	Tech-BIO	Tech-ANALYT	Tech-ING	Tech-BIOVT	Tech-IT	FÜS-BWL+R	FÜS-PRÄS	FÜS-SOZIAL
Mischen und Rühren		х	х	xx				xx	х				
Molekularbiologie BI	1		X	XX		XX		XX			Х		
Molekularbiologie BT	1		X			XX					X		
Molekulare Genetik	1		X			XX				Х			
Nachwachsende Rohstoffe	1				х	X		х			х		Х
Naturstoffe		х			Х	X	х	X					
Organische Chemie	1		XX		XX								
Organische Chemie Grundpraktikum	1		X		XX								
Physik	1		XX		XX								
Physikalische Chemie		х	X	xx	XX			х					
Polymere				70.	Х		х	Х					
Polymere Praktikum			х		Х		Х	Х					Х
Praktikum Lebensmittelanalytik		х	Х	х	Х	XX	Х	Х					
Programmieren 1			Х	Х	,,	7.0.1	,,			XX			
Programmieren 2			Х	Х						XX			
Projekt Bioinformatik			XX	ХX		хх		хх		XX			
Projekt Enzymtechnik		Х	х		XX		Х	ХX					
Prozessmodellierung & Energieoptimierung					х		xx	х	Х				
Prozessmodellierung & Energieoptimierung Praktikum Softskills 1 BT/BI					х		xx	х	х			x	х
Softskills 2 BT/BI											Х	хх	xx
Softwareprojektmanagement								Х	х	ХХ		ХХ	хх
Spektroskopie		Х	Х	Х	хх	хх	Х						
Studienarbeiten in der BT							Х	Х	Х			Х	Х
Technische Nutzung von Mikroorganismen in der Umweltbiotechnologie			х			х		х	х				
Thermische Verfahrenstechnik		х	х	хх	Х		хх	х					
Thermodynamik		Х	Х	XX	xx			Х					
Thermodynamik der Gemische		х	Х	хх	хх			xx					
Toxikologie (BA)			xx			XX					Х		
Umweltanalytik						хх	х				Х	Х	
Umwelttechnik Praktikum							Х	ХХ	Х				
Umweltverfahrenstechnik							Х	XX					

Modul	Kompetenz	Basis-MATH	Basis-N	Basis-ING+P	Tech-CHEM	Tech-BIO	Tech-ANALYT	Tech-ING	Tech-BIOVT	Tech-IT	FÜS-BWL+R	FÜS-PRÄS	FÜS-SOZIAL
Verfahrenstechnik Praktikum BT		Х	Х	хх	хх		хх	хх				Х	Х
Vorlesung Lebensmittelchemie 1		Х			Х	Х	Х			Х			
Vorlesung Lebensmittelchemie 2		Х			Х	Х	Х			Х			

3 Abkürzungen der Studiengänge des Fachbereichs Technik

Abteilung Elektrotechnik und Informatik

BET Bachelor Elektrotechnik

BETPV Bachelor Elektrotechnik im Praxisverbund

BI Bachelor Informatik

BIPV Bachelor Informatik im Praxisverbund

BMT Bachelor Medientechnik

BOMI Bachelor Medieninformatik (Online)

BOWI Bachelor Regenerative Energien (Online)

BOWI Bachelor Wirtschaftsinformatik (Online)

MII Master Industrial Informatics

MOMI Master Medieninformatik (Online)

Abteilung Maschinenbau

BIBS Bachelor Industrial and Business Systems

BMD Bachelor Maschinenbau und Design

BMDPV Bachelor Maschinenbau und Design im Praxisverbund

BNPM Bachelor Nachhaltige Produktentwicklung im Maschinenbau

MBIDA Master Business Intelligence and Data Analytics

MMB Master Maschinenbau

MTM Master Technical Management

Abteilung Naturwissenschaftliche Technik

BBTBI Bachelor Biotechnologie/Bioinformatik

BCTUT Bachelor Chemietechnik/Umwelttechnik

BEP Bachelor Engineering Physics

BEPPV Bachelor Engineering Physics im Praxisverbund

BSES Bachelor Sustainable Energy Systems

MALS Master Applied Life Sciences

MEP Master Engineering Physics

4 Modulverzeichnis

4.1 Pflichtmodule

Modulbezeichnung	Allgemeine Biologie
Semester (Häufigkeit)	1 (jedes Wintersemester)
ECTS-Punkte (Dauer)	4 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	60 h Kontaktzeit + 60 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BBTPV
Prüfungsform und -dauer	Klausur 1,0 h
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	G.Kauer

Qualifikationsziele

Vorausetzungen zur Entwicklung des Lebens und Modellvorstellungen zur Evolution verstehen. Einen taxonomisch fundierten Überblick gewinnen. Einsatz von Mikroorganismen in Biotechnologie, Modellorganismen für Forschung oder Bedeutsamkeit als Krankheitserreger verstehen. Fundierte Kenntnisse über Baupläne, Reproduktionszyklen, Verbreitung, biologische Besonderheiten und grundsätzliches Verständnis für das Gebiet der Histologie gewinnen.

Lehrinhalte

Evolutionsmodelle, Biologische Systematik:

- Bacteria: Allgemeine Biologie, Zellwand. Antibiotika/Resistenz. Flagellenmotor. Photosynthese, Atmungskette. Sporenbildung.Lebensräume, Krankheitserreger. F-Plasmid. Bakterien in der Biotechnologie.
- 2. Bacteriophagen:Biologischer Begriff "Virus". Infektionszyklen.
- 3. Archaea: Biologie der Archaea.
- 4. Eucarya: Allgemeine Biologie von: Amoeba, Euglenozoa, Retortamonada, Axostylata, Alveolata, Apicomplexa, Ciliophora. Vertebrata, Histologie zu Mammalia. Glaucobionta, Chlorobionta (Chlorophyta + Streptophyta, Histologie zu Streptophyta), Rhodobionta, Haptophyta, Chrysophyta.

Literatur

Strasburger: Lehrbuch der Botanik, Spektrum Akademischer Verlag, 2008 Hickman, Roberts, et Al.: Zoologie, Pearson Verlag, 2008 Brock: Mikrobiologie, Pearson Verlag, 2008

Lehrve	eranstal	ltungen
--------	----------	---------

Dozenten/-innen	Titel der Lehrveranstaltung	SWS
G.Kauer	Allgemeine Biologie	4

Modulbezeichnung	Allgemeine Chemie für BT/BI				
Semester (Häufigkeit)	1 (jedes Wintersemester)				
ECTS-Punkte (Dauer)	7 (1 Semester)				
Art	Pflichtfach				
Studentische Arbeitsbelastung	120 h Kontaktzeit + 90 h Selbststudium				
Voraussetzungen (laut BPO)					
Empf. Voraussetzungen					
Verwendbarkeit	ВВТВІ				
Prüfungsform und -dauer	Klausur 2 h und experimentelle Arbeit				
Lehr- und Lernmethoden	Vorlesung, Praktikum				
Modulverantwortliche(r)	F. Uhlenhut				

Die Studierenden kennen die theoretischen Grundlagen der Allgemeinen und der Analytischen Chemie. Sie verstehen die grundlegenden Prinzipien des Aufbaus der Materie, des Periodensystems der Elemente und der chemischen Bindung. Sie kennen wichtige chemische Grundbegriffe wie Säure, Base, pH-Wert, Oxidation, Reduktion, den Molbegriff, das chemische Gleichgewicht u.a. und sind in der Lage, einfache titrimetrische Analysen selbständig durchzuführen und auszuwerten.

Lehrinhalte

Aufbau der Atome/der Elektronenhülle. Periodensystem der Elemente. Theorien der chemischen Bindung. Stöchiometrie, chemisches Rechnen. pH-Wert und Säure-Base-Begriff, Säure- und Basenstärke, Puffer, Säure-Base-Titrationen, Titrationskurven. Löslichkeit und Löslichkeitsprodukt, Fällungstitrationen. Komplexometrie, komplexometrische Titrationen. Reduktion und Oxidation, Redoxreaktionen, elektrochemische Spannungsreihe, Redoxtitrationen.

Literatur

Riedel, E., Janiak, C.: Anorganische Chemie, de Gruyter

Mortimer, C. E., Müller, U.: Chemie, Thieme

Jander, G., Blasius, E.: Einführung in das anorganisch-chemische Praktikum, Hirzel

LehrveranstaltungenDozenten/-innenTitel der LehrveranstaltungSWSF. UhlenhutVorlesung Allgemeine Chemie6F. Uhlenhut, G. WalkerPraktikum Analytische Chemie 1 für BT/BI2

Modulbezeichnung	Mathematik 1
Modulbezeichnung (eng.)	Mathematics I
Semester (Häufigkeit)	1 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Klausur 2 h oder mündliche Prüfung
Lehr- und Lernmethoden	Vorlesung, Übung
Modulverantwortliche(r)	J. Hüppmeier

Die Studierenden kennen grundlegende algebraische Strukturen und können naturwissenschaftliche und technische Probleme im Rahmen dieser Strukturen mathematisch modellieren und die Problemstellung systematisch bearbeiten. Die Studierenden können naturwissenschaftliche Zusammenhänge durch Funktionen beschreiben, sie kennen grundlegende Eigenschaften der Funktionen und können diese auf naturwissenschaftliche und technische Probleme übertragen. Die Studierenden kennen die Grundlagen der Linearen Algebra, sie können lineare Gleichungssysteme lösen, mit Matrizen rechnen und Determinanten berechnen.

Lehrinhalte

Mengen und Gleichungen, Eigenschaften von Funktionen, wichtige Funktionen in Naturwissenschaft und Technik, Vektorrechnung, Lineare Algebra

Literatur

- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler Band 1, Springer Vieweg 2018
- L. Papula: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Springer Vieweg 2017

Lehrveranstaltungen			
Dozenten/-innen Titel der Lehrveranstaltung		sws	
J. Hüppmeier	Mathematik 1 (Vorlesung)	2	
J. Hüppmeier, M. Luczak, I. Dittmar	Mathematik 1 (Übung)	2	

Modulbezeichnung	Physik				
Semester (Häufigkeit)	1 (jedes Wintersemester)				
ECTS-Punkte (Dauer)	5 (1 Semester)				
Art	Pflichtfach				
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium				
Voraussetzungen (laut BPO)					
Empf. Voraussetzungen					
Verwendbarkeit	BBTBI, BCTUT				
Prüfungsform und -dauer	Klausur 2 h oder mündliche Prüfung				
Lehr- und Lernmethoden	Vorlesung und Übung				
Modulverantwortliche(r)	B. Struve				

Die Studierenden verstehen die Grundlagen der Mechanik, Gleichstromlehre und Optik. Sie können diese auf einfache physikalische Probleme anwenden.

Lehrinhalte

Physikalische Größen und Einheiten, Kinematik eines Massepunktes, Mechanik starrer Körper, Schwingungen und Wellen, Gleichstromlehre, elektrisches Feld, Optik

Literatur

E. Hering, R. Martin, M. Stohrer, Physik für Ingenieure, Springer Verlag, Berlin

<u> </u>			
Dozenten/-innen Titel der Lehrveranstaltung			
B. Struve	Physik Vorlesung	2	
B. Struve	Physik Übung	2	

Modulbezeichnung	Physikalische Chemie				
Semester (Häufigkeit)	1 (jedes Wintersemester)				
ECTS-Punkte (Dauer)	5 (1 Semester)				
Art	Pflichtfach				
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium				
Voraussetzungen (laut BPO)					
Empf. Voraussetzungen					
Verwendbarkeit	BBTBI, BCTUT				
Prüfungsform und -dauer	Klausur 2 h oder mündliche Prüfung				
Lehr- und Lernmethoden	Vorlesung, Hausaufgaben				
Modulverantwortliche(r)	M. Sohn				

Die Studierenden verstehen die durch Zustandsgleichungen beschriebenen Zusammenhänge zwischen Druck, Volumen und Temperatur für ideale und reale Gase. Sie können das pV-, das pT-, und das pVT-Diagramm (inkl. kritischem Punkt) lesen und interpretieren. Sie verstehen auf Basis der kinetischen Gastheorie die Teilchenbewegung in Abhängigkeit von Temperatur und Druck. Die Studierenden kennen auf molekularer Ebene die Hintergründe der Transportphänomene Diffusion, Wärmeleitfähigkeit, Viskosität und elektrische Leitfähigkeit. Die Geschwindigkeitsgesetze einfacher und zusammengesetzter chemischer Reaktionen (Folge- und Parallelreaktionen) können sie herleiten und interpretieren. Sie beherrschen die Grundlagen der Elektrochemie. Sie kennen Adsorptionsisothermen und ihre Bedeutung für Oberflächenreaktionen.

Lehrinhalte

Ideales Gasgesetz, Realgasgleichungen (van-der-Waals-Gleichung SRK), kinetische Gastheorie; molekulare Gemeinsamkeiten der Transportphänomene; Geschwindigkeitsgesetz, Temperaturabhängigkeit chemischer Reaktionen und Auswirkungen auf Ausbeute und Selektivität; Nernstsche Gleichung.

Literatur

P. W. Atkins, J. de Paula, Physikalische Chemie, Wiley-VCH, Weinheim

G. Wedler, Lehrbuch der Physikalischen Chemie, Wiley-VCH, Weinheim

Dozenten/-innen Titel der Lehrveranstaltung					
M. Sohn Vorlesung Physikalische Chemie					

Modulbezeichnung	Programmieren 1					
Semester (Häufigkeit)	1 (jedes Wintersemester)					
ECTS-Punkte (Dauer)	5 (1 Semester)					
Art	Pflichtfach, Wahlpflichtmodul SES					
Studentische Arbeitsbelastung	90 h Kontaktzeit + 60 h Selbststudium					
Voraussetzungen (laut BPO)						
Empf. Voraussetzungen						
Verwendbarkeit	BBTBI, BCTUT, BSES					
Prüfungsform und -dauer	Klausur 1,5 h oder mündliche Prüfung plus Erstellung und Do- kumentation von Rechnerprogrammen					
Lehr- und Lernmethoden	Vorlesung, Praktikum					
Modulverantwortliche(r)	J. Mäkiö					

Die Studierenden verstehen die Grundbegriffe der objektorientierten, imperativen Softwareentwicklung und können eigene einfache Java-Programme erstellen und erläutern. Sie können sich einfache fremde Programme erarbeiten und verstehen. Sie kennen die wichtigsten Programmierrichtlinien und wenden sie in eigenen Programmen an.

Lehrinhalte

Elemente der Programmiersprache Java: Literale, Variablen, Datentypen, Ausdrücke und Operatoren, Kontrollstrukturen, Rekursion, Parameterübergabe, Rückgabewerte. Objektorientierte Programmierung: Klassen und Objekte, Methoden, Konstruktoren; Vererbung, Polymorphismus; Ausnahmebehandlung; Ausgewählte Klassen; Dokumentation und Layout von Programmen (JavaDoc); Refactoring; Interfaces; Im Praktikum ist Anwesenheitspflicht.

Literatur

Ratz, D.: Grundkurs Programmieren in JAVA 8, Carl Hanser Verlag, 2014. Schiedermeyer, R.: Programmieren mit Java. Pearson Education, 2004. Krüger, G., Stark, T.: Handbuch der Java-Programmierung, Addison-Wesley, 2009.

Lehrveranstaltungen			
Dozenten/-innen Titel der Lehrveranstaltung SW			
J. Mäkiö	Programmieren 1	2	
J. Mäkiö	Programmieren 1 Praktikum	2	

Modulbezeichnung	Anorganische Chemie für BT/BI					
Semester (Häufigkeit)	2 (jedes Sommersemester)					
ECTS-Punkte (Dauer)	7 (1 Semester)					
Art	Pflichtfach					
Studentische Arbeitsbelastung	105 h Kontaktzeit + 105 h Selbststudium					
Voraussetzungen (laut BPO)	Allgemeine Chemie für BT/BI					
Empf. Voraussetzungen						
Verwendbarkeit	ВВТВІ					
Prüfungsform und -dauer	Vorlesungsteil: Klausur 1,5 h (Prüfungsleistung), Praktikumsteil: Experimentelle Arbeiten (Studienleistung)					
Lehr- und Lernmethoden	Vorlesung, Seminar, Praktikum					
Modulverantwortliche(r)	G. Walker					

Fachkompetenz Die Studierenden kennen und verstehen die Grundlagen der qualitativen und quantitativen Analyse. Sie erlernen die wichtigsten grundlegenden Nachweisreaktionen der anorganischen Chemie und können diese auch im Labor durchführen und anwenden. Sie kennen den Aufbau des Periodensystems der Elemente und darin die Stellung der Hauptgruppenelemente. Sie wissen um das Vorkommen, die Darstellung, die Eigenschaften und Reaktionen und können die Verwendung der wichtigsten Hauptgruppenelemente des PSE erläutern. Sie kennen zudem bei den wichtigsten Hauptgruppenelementen auch Hintergründe zu Umweltaspekten bei der Gewinnung und Verarbeitung. Methodenkompetenz Die Studierenden lernen das systematische Vorgehen bei der Durchführung einer qualitativen und einer quantitativen Analyse. Sie können diese Systematik auf einfache Proben und Probengemische anwenden. Sie lernen zudem, ihre eigenen Analysenergebnisse kritisch zu betrachten und auf Plausibilität zu überprüfen. Sie lernen, wie Elemente unter Berücksichtigung von wirtschaftlichen, und umweltbezogenen Aspekten aus der Natur gewonnen und weiterverarbeitet werden, und sie lernen diese Aspekte kritisch zu betrachten und gegeneinander abzuwägen.

Lehrinhalte

Analytische Chemie (Chromatographie, Photometrie, qualitative anorganische Analytik), Anorganische Chemie: Aufbau des PSE, Chemie der Hauptgruppenelemente: Vorkommen, Darstellung (im Labormaßstab und in der Technik), Eigenschaften, Reaktionen, Verwendung

Literatur

Mortimer, CE., Müller, U.: Chemie, Thieme, 2015. Riedel, E. Anorganische Chemie, de Gruyter, 2011. Jander G., Blasius E.: Einführung in das anorganisch-chemische Praktikum, Hirzel, 2005.

ı	۵ŀ	١r١	ام/	ar	et	tal	tu	ın	an	n
L	.CI	иν	<i>'</i> –	aı	131	a	ıu		ue	

Dozenten/-innen	Titel der Lehrveranstaltung				
G. Walker, F. Uhlenhut	Anorganische Chemie, Hauptgruppenelemente (Vorlesung)	4			
F. Uhlenhut	Analytische Chemie (Seminar)	1			
F. Uhlenhut	Analytische Chemie (Praktikum II)	2			

Modulbezeichnung	Mathematik 2
Semester (Häufigkeit)	2 (jedes Sommersemester)
ECTS-Punkte (Dauer)	7 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	90 h Kontaktzeit + 120 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Mathematik 1
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Klausur 2h oder mündliche Prüfung, Hausarbeit
Lehr- und Lernmethoden	Vorlesung, Übung
Modulverantwortliche(r)	J. Hüppmeier

Die Studierenden kennen die Grundlagen der Analysis und können Funktionen mit einer sowie mit mehreren Variablen differenzieren und integrieren. Die Studierenden können naturwissenschaftliche Zusammenhänge durch Funktionen mit mehreren Variablen beschreiben, sie kennen grundlegende Eigenschaften dieser Funktionen und können diese auf naturwissenschaftliche und technische Probleme übertragen. Die Studierenden können mit statistischen Methoden zur Versuchsplanung und - auswertung umgehen. Sie kennen gängige Verteilungsmodelle und können diese auf konkrete statistische Merkmale anwenden. Sie können Daten aus naturwissenschaftlichen und technischen Problemstellungen softwaregestützt (z.B. Excel) auswerten und die Ergebnisse hinsichtlich der Problemstellung interpretieren.

Lehrinhalte

Differential- und Integralrechnung, Funktionen mehrerer Veränderlicher, partielle Differentiation, Mehrfachintegrale, Vektoranalysis, Schließende Statistik, Versuchsplanung

Literatur

- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler Band 1, 2 und 3, Springer Vieweg 2018
- L. Papula: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Springer Vieweg 2017
- W. Dürr/H. Mayer: Wahrscheinlichkeitsrechnung und Schließende Statistik, Hanser

-		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
J. Hüppmeier	Mathematik 2 (Vorlesung)	2
J. Hüppmeier, M. Luczak, I. Dittmar	Mathematik 2 (Übung)	2
J. Hüppmeier	Einführung in die Statistik	2

Modulbezeichnung	Mikrobiologie 1
Semester (Häufigkeit)	2 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach, Wahlpflichtmodul für CTUT
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Klausur 2 h oder mündliche Prüfung
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	C. Gallert

Die Studierenden kennen die Grundlagen der Mikrobiologie. Sie können wesentliche Auswirkungen, die von Stoffwechseltätigkeiten von Mikroorganismen ausgehen, beurteilen. Sie verstehen die praktische Anwendung und die Gefahren von Mikroorganismen.

Lehrinhalte

Grundlagen der Mikrobiologie werden erarbeitet, dazu gehören unter anderem: Zellaufbau, Morphologie und Taxonomie von Mikroorganismen (Bacteria, Archaea, Eucarya), Wachstum und Ernährung, Energiegewinnung, Atmung, Photosynthese, verschiedene Gärstoffwechsel, Vorkommen und Stoffwechselleistungen von Mikroorganismen in verschiedenen Ökosystemen, Wirkung von Antibiotika.

Literatur

Michael T. Madigan, Brock: Mikrobiologie, Spektrum Akademischer Verlag Heidelberg, Berlin, 13. Auflage, 2013.

G. Fuchs: Allgemeine Mikrobiologie, Thieme Verlag Stuttgart, New York, 9. Auflage, 2014. Joseph W. Lengeler, Gerhart Drews, Hans G. Schlegel: Biology of the prokaryotes, Thieme Verlag Stuttgart, New York, 1999.

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
C. Gallert	Vorlesung Mikrobiologie 1	4

Modulbezeichnung	Organische Chemie
Semester (Häufigkeit)	2 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Allgemeine Chemie
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Klausur 2 h
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	J. Reimer

Die Studierenden kennen die in der organischen Chemie verwendeten Formeltypen. Sie können organische-chemische Verbindungen nach funktionellen Gruppen klassifizieren. Die Grundlagen der Bindungstheorie sind bekannt. Isomerietypen können erkannt werden. Chemische Reaktionen können typisiert werden. Die Mechanismen der wichtigsten Reaktionstypen werden sicher beherrscht. Der Begriff der Aromatizität kann definiert werden. Die Studierenden kennen die Nomenklatur, die Darstellungsmethoden und die Reaktivität der folgenden Stoffklassen: Kohlenwasserstoffe, halogenierte Kohlenwasserstoffe, Aromaten, Alkohole, Ether, Epoxide, Carbonylverbindungen, Carbonsäuren und ihre Derivate, Amine.

Lehrinhalte

Chemische Formeln, Typen u. Schreibweise; funktionelle Gruppen; qualitative Behandlung der Bindungstheorie; Isomerie; Klassifizierung von organisch-chemischen Reaktionen; Reaktionsmechanismen; Stoffchemie der folgenden Stoffklassen: gesättigte und ungesättigte Kohlenwasserstoffe, halogenierte Kohlenwasserstoffe, aromatische Kohlenwasserstoffe, Alkohole, Ether, Epoxide, Aldehyde, Ketone, Carbonsäuren und ihre Derivate, Amine

Literatur

Die Literaturliste wird in der ersten Vorlesungsstunde bekannt gegeben.

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
J. Reimer	Vorlesung Organische Chemie	4

Modulbezeichnung	Programmieren 2
Semester (Häufigkeit)	2 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach BT/BI, Wahlpflichtmodul CT/UT
Studentische Arbeitsbelastung	90 h Kontaktzeit + 60 h Selbststudium
Voraussetzungen (laut BPO)	Programmieren 1
Empf. Voraussetzungen	Programmieren 1
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Klausur 1,5 h oder mündliche Prüfung plus Erstellung und Do- kumentation von Rechnerprogrammen
Lehr- und Lernmethoden	Vorlesung, Praktikum
Modulverantwortliche(r)	T. Schmidt

Die Studierenden vertiefen die Kenntnisse in der Java Programmierung im Breich OOP und durch praxisbezogene Anwendungen wie etwa die Nutzung und Verarbeitung von heterogenen Datenquellen (z.B. aus Dateien oder Webservices). Komplexere Programme sollen selbstständig entwickelt und getestet werden können. Die Studierenden sollen in die Lage versetzt werden auf verteilte Informationen zugreifen zu können, diese zusammenführen und nutzen können. Im Praktikum ist Anwesenheitspflicht.

Lehrinhalte

Grundzüge des objektorientierten Softwaredesigns, Design Pattern und Themen der Softwarearchitektur. Verarbeitung von Daten aus verschiedenen Quellen: Files, Steams, XML/JSON, Webservices. Serialisierung; Reguläre Ausdrücke

Literatur

Eilebrecht, K.: Patterns kompakt: Entwurfsmuster für effektive Software-Entwicklung, Springer Vieweg, 2013

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
T. Schmidt	Programmieren 2	2
T. Schmidt	Programmieren 2 Praktikum	2

Modulbezeichnung	Programmieren 2
Semester (Häufigkeit)	2 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach BT/BI, Wahlpflichtmodul CT/UT
Studentische Arbeitsbelastung	90 h Kontaktzeit + 60 h Selbststudium
Voraussetzungen (laut BPO)	Programmieren 1
Empf. Voraussetzungen	Programmieren 1
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Klausur 1,5 h oder mündliche Prüfung plus Erstellung und Do- kumentation von Rechnerprogrammen
Lehr- und Lernmethoden	Vorlesung, Praktikum
Modulverantwortliche(r)	J. Mäkiö

Die Studierenden vertiefen die Kenntnisse in der Java Programmierung im Breich OOP und durch praxisbezogene Anwendungen wie etwa die Nutzung und Verarbeitung von heterogenen Datenquellen (z.B. aus Dateien oder Webservices). Komplexere Programme sollen selbstständig entwickelt und getestet werden können. Die Studierenden sollen in die Lage versetzt werden auf verteilte Informationen zugreifen zu können, diese zusammenführen und nutzen können. Im Praktikum ist Anwesenheitspflicht.

Lehrinhalte

Grundzüge des objektorientierten Softwaredesigns, Design Pattern und Themen der Softwarearchitektur. Verarbeitung von Daten aus verschiedenen Quellen: Files, Steams, XML/JSON, Webservices. Serialisierung; Reguläre Ausdrücke

Literatur

Eilebrecht, K.: Patterns kompakt: Entwurfsmuster für effektive Software-Entwicklung, Springer Vieweg, 2013

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	SWS
J. Mäkiö	Programmieren 2	2
J. Mäkiö	Programmieren 2 Praktikum	2

Modulbezeichnung	Softskills 1 BT/BI
Semester (Häufigkeit)	2 (jedes Sommersemester)
ECTS-Punkte (Dauer)	2 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	30 h Kontaktzeit + 30 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Klausur 2h oder mündliche Prüfung nach Wahl des Prüfers
Lehr- und Lernmethoden	Vorlesung, Übung, Gruppenarbeit
Modulverantwortliche(r)	K. Scharfenberg

Entwicklung der persönlichen kommunikativen und sozialen Kompetenzen

Lehrinhalte

Technisches Englisch (Pflichtanteil Sprachen/Kommunikation)

Literatur

Düwel, F.: Englisch für Chemie und Berufe der Labor- und Prozesstechnik; Christiani Technisches Institut für Aus- und Weiterbildung, Konstanz, 2014

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
M. Parks	Technisches Englisch	2

Modulbezeichnung	Thermodynamik
Semester (Häufigkeit)	2 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	Für Praktikum: Physikalische Chemie
Empf. Voraussetzungen	Mathematik I
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Klausur 2 h oder mündliche Prüfung sowie experimentelle Arbeit
Lehr- und Lernmethoden	Vorlesung, Prkatikum
Modulverantwortliche(r)	M. Sohn

In der Thermodynamik (Wärmelehre) lernen die Studierenden System und Umgebung, Zustandsgrößen und Zustandsgleichungen, Zustandsfunktionen (U, H, S, A, G) und Wegfunktionen (q, w) unterscheiden. Sie erlernen die Bedeutung und Auswirkungen der Hauptsätze der Thermodynamik am Beispiel der Energieumwandlung von Wärme und Arbeit. In Kreispozessen wie Carnot, Otto, Diesel und Clausius-Rankine werden die Grundlagen von Wärmekraftmaschinen und Kältmaschinen erlernt und der Bezug zu chemischen Anlagen und lebenden Organsimen hergestellt. Dabei können die Studierenden isotherme, adiabatische, isobare und isochore Prozessschitte unterscheiden. Die Studierenden lernen die Auswirkung der Entropie auf alle techssichen und natürlichen Vorgänge kennen. In der Thermochemie erkenen Sie die Bedeutung der Reaktionsenthalpie und von Prozeßenthalpien, und erlernen ihre Bestimmung und Berechnung. Mit der freien Energie und Enthalpie können die Studierenden Aussagen über die Spontaneität von Prozessen treffen. Sie können das Gelernte auf das chemische Gleichgewichte und Phasenübergänge übertragen. Sie können Gleichgewichtskonstanten und -zusemmensetzungen unter Bereücksichtigung von Druck und Temperatur berechnen. Sie kennen die thermodynamischen Grundlagen der Phasenübergänge, können sie im p,T-Diagramm beschreiben und die Druck/Temperatur-Abhängigkeit als Funktion der Enthalpie als berechnen.

Lehrinhalte

Hauptsätze der Thermodynamik, Kreisprozesse (Carnot, Otto, Diesel, Clausius-Rankine), Wärmekraftmaschinen/Kältemaschinen, Arbeits-/Wärmediagramm, Thermochemie, Joule-Thomson-Effekt, chemisches Gleichgewicht, Phasenübergänge

Literatur

Baehr/Kabelac, Thermodynamic, Springer Verlag, Heidelberg, 2006 P. W. Atkins, J. de Paula, Physikalische Chemie, Wiley-VCH, Weinheim G. Wedler, Lehrbuch der Physikalischen Chemie, Wiley-VCH, Weinheim

<u> </u>		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
M. Sohn	Vorlesung Thermodynamik	2
M. Sohn	Physikalische Chemie Grundpraktikum	2

Modulbezeichnung	Algorithmen und Datenstrukturen
Semester (Häufigkeit)	3 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach Vertiefung Bioinformatik
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Programmieren 1, Programmieren 2
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Klausur 1,5 h oder mündliche Prüfung plus Erstellung und Do- kumentation von Rechnerprogrammen
Lehr- und Lernmethoden	Vorlesung, Praktikum
Modulverantwortliche(r)	T. Schmidt

Die Studierenden kennen häufig verwendete Algorithmen mit ihren dazu gehörigen Datenstrukturen und können sie an Beispielen per Hand veranschaulichen. Sie kennen die Laufzeit und den Speicherbedarf der verschiedenen Algorithmen und können einfache Aufwandsanalysen selbständig durchführen. Sie sind in der Lage zu einer gegebenen Aufgabenstellung verschiedene Algorithmen effizient zu kombinieren und anschließend zu implementieren.

Lehrinhalte

Häufig verwendete Algorithmen mit ihren dazu gehörigen Datenstrukturen werden vorgestellt und verschiedene Implementierungen bewertet. Stichworte sind: Listen, Bäume, Mengen, Sortierverfahren, Graphen und Algorithmenentwurfstechniken. Es wird besonderer Wert auf die Wiederverwendbarkeit der Implementierungen für unterschiedliche Grunddatentypen gelegt.

Literatur

Heun, V.: Grundlegende Algorithmen, Vieweg, 2000.

Sedgewick, R.: Algorithmen in Java, 3. überarbeitete Auflage, Pearson Studium, 2003.

Dozenten/-innen	Titel der Lehrveranstaltung	sws
T. Schmidt	Algorithmen und Datenstrukturen	3
T. Schmidt	Praktikum Algorithmen und Datenstrukturen	1

Modulbezeichnung	Biochemie
Semester (Häufigkeit)	3 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	Organische Chemie
Empf. Voraussetzungen	
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Klausur 3 h und Kursarbeit
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	R. Pfitzner

Der Aufbau, die Eigenschaften und die Funktion der wichtigsten biochemischen Stoffklassen sind bekannt. Die Studierenden kennen die biochemischen Analysemethoden zur Untersuchung dieser Stoffklassen. Die Grundlagen der Biokatalyse und des Stofftransports durch Membranen können erklärt werden.

Lehrinhalte

Aufbau, Funktion und Analytik der Aminosäuren, Peptide, Proteine, Kohlenhydrate, Lipide und Nukleinsäuren; enzymatische Katalyse. Aufbau und Stofftransport durch biologische Membranen.

Literatur

Voet, D.: Lehrbuch der Biochemie, Wiley-VCH, 2010

Lehrveranstaltungen		
Dozenten/-innen Titel der Lehrveranstaltung		
R. Pfitzner	Vorlesung Biochemie	4

Modulbezeichnung	Bioinformatik 1
Semester (Häufigkeit)	3 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	Programmieren 1
Empf. Voraussetzungen	Allgemeine Biologie, Programmieren 1, Programmieren 2
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Klausur 1,5 h oder mündliche Prüfung plus Praktikumsaufgaben
Lehr- und Lernmethoden	Vorlesung, Praktikum
Modulverantwortliche(r)	T. Schmidt

Der Student soll die Methoden der DNA-und Protein-Sequenzanalyse verstehen. Die grundlegenden Methoden des nicht exakten Stringmustervergleichs sollen die grundsätzliche Problematik bei den Analysemethoden informationstragender Makromoleküle wie DNA- und Proteinsequenz verdeutlichen. Die heuristischen Verfahren (FAST und BLAST) und deren Algorithmik sollen erarbeitet werden.

Lehrinhalte

Modelle zur Sequenzanalyse in der Bioinformatik. Dynamische Programmierung und heuristische Methoden. FAST und BLAST Algorithmus. Multiples Sequenzalignment. Sekundäre Analyse von Sequenzinformationen: Pattern, gewichtete Matrizen, HMM. Genvorhersagen in Prokaryoten Im Praktikum ist Anwesenheitspflicht.

Literatur

Mount: Bioinformatics Sequence and Genome Analysis, Cold Spring Harbor Lab Press, 2004

Selzer: Angewandte Bioinformatik, Springer Verlag, 2004

Dozenten/-innen	Titel der Lehrveranstaltung	sws
T. Schmidt	Bioinformatik 1	2
T. Schmidt	Bioinformatik 1 Praktikum	2

Modulbezeichnung (Kürzel)	Datenbanken (DBMS)
Modulbezeichnung (eng.)	Database Systems
Semester (Häufigkeit)	3 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach Vertiefung Bioinformatik
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Programmieren 1
Verwendbarkeit	ввтві, ві, вмт
Prüfungsform und -dauer	Klausur 1,5 h oder mündliche Prüfung
Lehr- und Lernmethoden	Vorlesung, Praktikum
Modulverantwortliche(r)	F. Rump

Die Studierenden kennen die grundlegenden Datenbankkonzepte. Sie können komplex strukturierte Datenumgebungen modellieren und beherrschen deren Abbildung auf relationale Datenbanksysteme. Sie verfügen über vertiefte praktische Kenntnisse im Umgang mit SQL.

Die Studierenden sind in der Lage, moderne und etablierte Datenbanktechnologien als Teil komplexer informationstechnischer Projekte einzusetzen. Sie können selbständig neue Datenbanktechnologien und -konzepte erlernen und in praktische Projekte einfließen lassen.

Lehrinhalte

- Begriffe, Konzepte und Architekturen
- Relationale Datenbankmanagementsysteme und deren Fundierung
- Datenmodellierung (z.B. ER-Modellierung)
- Überführung der Modellierung auf ein konkretes Datenmodell (z.B. von ER zu relational)
- · Normalisierung, Normalformen Redundanz, Effizienzaspekte
- Einführung in eine Anfragesprache (insb. SQL) nebst programmiersprachlichen Erweiterungen
- Nutzung von Datenbanken aus Programmiersprachen
- Transaktionen und Mehrbenutzerbetrieb
- Einführung in fortgeschrittene Datenbanktechnologien

Literatur

- Kleuker, S.: Grundkurs Datenbankentwicklung Von der Anforderungsanalyse zur komplexen Datenbankanfrage; 4. Auflage; Springer Vieweg; 2016.
- Adams, R.: SQL Eine Einführung mit vertiefenden Exkursen, Hanser Verlag, 2012.
- Edlich, S. et al.: NoSQL Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken, 2. Auflage, Hanser, 2011.
- Heuer, A., Saake, G.: Datenbanken Konzepte und Sprachen, 3. Auflage, mitp, 2008.

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
F. Rump	Datenbanken	2
F. Rump	Praktikum Datenbanken	2

Modulbezeichnung	Fermentationstechnik
Semester (Häufigkeit)	3-4 (Beginn jedes Wintersemester)
ECTS-Punkte (Dauer)	6 (2 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	60 h Kontaktzeit + 120 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Klausur 2 h
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	K. Scharfenberg

Erwerben eines grundlegenden Verständnises über den technischen Aufbau von Kultivierungssystemen u. darin ablaufenden biologischen u. technischen Phänomenen; Verständnis über den Ablauf von Fermentationen sowie zur notwendigen Datenerfassung, Auswertung u.Darstellung (verschiedene Verfahrensformen); Aufbau von Fertigkeiten zur Analyse und Bewertung der Prozesse mit Hilfe weiterführender Berechnungen; die Lehrveranstaltung dient zur Vorbereitung auf das erste Bioverfahrenstechnikpraktikum.

Lehrinhalte

Grundlagen zur Kultivierung von Mikroorganismen in technischen Systemen; Energetik, Wachstumsbedingungen, Stoffwechsel u. Produktbildung, Medienkomposition, Ablauf biotechnologischer Verfahren, Erfassung u. Darstellung des mikrobiellen Wachstums, Kinetik des mikrobiellen Wachstums, Klassifizierung u. Darstellung v.Reaktorbetriebsweisen, Grundlegende reaktionskinetische Modelle für Verbrauch u. Bildung, Transportprozesse in Reaktoren; in Übungen während der Vorlesung werden diese Kenntnisse vertieft.

Literatur

Präsentationsmaterial/Skript der Vorlesung Hass u. Pörtner: Praxis der Prozesstechnik, 2009

und weitere Literatur gem. Skript

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
K. Scharfenberg	Fermentationstechnik 1	2
K. Scharfenberg	Fermentationstechnik 2	2

Modulbezeichnung	Mikrobiologie Praktikum 1	
Semester (Häufigkeit)	3 (jedes Wintersemester)	
ECTS-Punkte (Dauer)	6 (1 Semester)	
Art	Pflichtfach	
Studentische Arbeitsbelastung	75 h Kontaktzeit + 105 h Selbststudium	
Voraussetzungen (laut BPO)	Praktika der Module Allgemeine Chemie und Anorganische Chemie, Klausur Allgemeine Biologie, Klausur Mikrobiologie 1	
Empf. Voraussetzungen		
Verwendbarkeit	ВВТВІ	
Prüfungsform und -dauer	Experimentelle Arbeit, Kolloquium	
Lehr- und Lernmethoden Praktikum mit Übung		
Modulverantwortliche(r)	liche(r) C. Gallert	

Die Studierenden kennen die sterilen Arbeitstechniken und das Arbeiten mit aeroben und anaeroben Mikroorganismen. Sie beherrschen den Umgang mit dem Mikroskop. Sie können unterschiedliche Mikroorganismen aus der Natur isolieren und beschreiben. Sie können aus Mischkulturen die jeweiligen Spezies isolieren und identifizieren.

Lehrinhalte

Es werden folgende Methoden und Fähigkeiten erworben und Versuche durchgeführt: Steril- und Reinkulturtechniken, selektive Anreicherungskulturen, Hellfeld- und Phasenkontrast-Mikroskopie, coliforme Keime, Milchsäurebakterien, Sporenbildner, Streptomyceten, N2-Fixierer, Bakteriophagen, Antibiotika-Hemmtest, phototrophe Bakterien, Identifikation

Literatur

E. Bast: Mikrobiologische Methoden, Springer Spektrum, 3. Auflage, 2014. A. Steinbüchel, F. B. Oppermann-Sanio: Mikrobiologisches Praktikum, Springer Spektrum, 2. Auflage, 2013.

Lehrveranstaltungen			
Dozenten/-innen	Titel der Lehrveranstaltung	sws	
C. Gallert	Praktikum Mikrobiologie 1	5	
C. Gallert	Übung zum Praktikum	2	

Modulbezeichnung	Organische Chemie Grundpraktikum		
Semester (Häufigkeit)	3 (jedes Wintersemester)		
ECTS-Punkte (Dauer)	5 (1 Semester)		
Art	Pflichtfach		
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium		
Voraussetzungen (laut BPO)	Organische Chemie, Allgemeine Chemie		
Empf. Voraussetzungen			
Verwendbarkeit	ВВТВІ		
Prüfungsform und -dauer	Experimentelle Arbeit		
Lehr- und Lernmethoden	Praktikum		
Modulverantwortliche(r) R. Pfitzner			

Die Grundoperationen der organisch-chemischen Labortechnik werden sicher beherrscht.

Lehrinhalte

Das Praktikum ist Pflichtfach für die Studierenden der Studienrichtung Biotechnologie. Im Praktikum weren ausgewählte Grundoperationen der präparativen organischen Chemie an Hand wichtiger Synthesereaktionen geübt. Die Charakterisierung der synthetisierten Verbindungen erfolgt über Schmelzpunkt, Brechungsindex und IR-Spektroskopie.

Literatur

Eicher, T.; Tietze, L.: Organisch-chemisches Grundpraktikum, Wiley-VCH, 1995.

Das Organikum (24. Auflage, Autorenkollektiv, Wiley-VCH Verlag (Weinheim, 2015)

Hüning, S.; Kreitmeier, P.; Märkl, G.: Arbeitsmethoden der organischen Chemie, Lehmans, 2007.

Dozenten/-innen	Titel der Lehrveranstaltung	sws
R. Pfitzner, M. Rüsch gen. Klaas, M. Sohn	Organische Chemie Grundpraktikum	4

Modulbezeichnung	Thermodynamik der Gemische	
Semester (Häufigkeit)	3 (jedes Wintersemester)	
ECTS-Punkte (Dauer)	5 (1 Semester)	
Art	Pflichtfach	
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium	
Voraussetzungen (laut BPO)		
Empf. Voraussetzungen	Mathematik I + II	
Verwendbarkeit	BBTBI, BCTUT	
Prüfungsform und -dauer	Klausur 2 h oder mündliche Prüfung sowie experimentelle Arbeit	
Lehr- und Lernmethoden	Vorlesung, Praktikum	
Modulverantwortliche(r)	M. Sohn	

Die Studierenden erkennen, dass sich Mischungen aufgrund der intermolekularen Wechselwirkungen anders verhalten als Reinstoffe und sich ihre Größen nicht additiv verhalten. Sie begreifen die physikalischchemischen Grundlagen von Phasenleichgewichten zwischen Flüssigkeit und Dampf (VLE), zwischen zwei flüssigen Phasen (LLE) und zwischen Flüssigkeit und Festkörper (SLE), die die Voraussetzung für die in der thermischen Verfahrenstechnik angewendeten Methoden Destillation (Rektifikation), Extraktion und Kristallisation darstellen. Die Studierenden lernen die Gesetzmäßigkeiten zur Beschreibung idealer Dampf-Flüssig-Gleichgewichte und können daraus das Dampfdruck- (p,x), das Siede- (T,x) und das Gleichgewichtsdiagramm (y,x) ableiten und beschreiben. Gleichermaßen können Sie die Phasendiagramme für reale Dampf-Flüssig- sowie für reale Flüssig-Flüssig- und für reale Flüssig-Fest Gleichgewichte interpretieren und daraus Zusammensetzungen und Mengenverhältnisse ablesen. Sie können positive und negative Abweichungen vom Raoultschen Gesetz im VLE erkennen und beschreiben. Sie lernen die verschiedenen Anomalien (u.a.Azeotrope im VLE und Eutektika im SLE) und ihre Auswirkung auf die Stofftrennung kennen und können diese beschreiben. Sie lernen die Berechnung realer VLE-Gleichgewichte mittels der wichtigsten Aktivitäts- und Exzeßenthalpiemodelle kennen.

Lehrinhalte

Thermodynamik der Mischungen: Partielle molare Größen, Phasenregel, ideale und reale Dampf-Flüssig-Gleichgewichte (VLE), reale Flüssig-Flüssig-Gleichgewichte (LLE) und reale Flüssig-Festg-Geichgewichte.

Literatur

P. W. Atkins, J. de Paula, Physikalische Chemie, Wiley-VCH, Weinheim

G. Wedler, Lehrbuch der Physikalischen Chemie, Wiley-VCH, Weinheim

Dozenten/-innen Titel der Lehrveranstaltung		sws
M. Sohn Vorlesung Thermodynamik der Gemische		2
M. Sohn	Fortgeschrittenenpraktikum Physikalische Chemie	2

Modulbezeichnung	Angewandte Bioinformatik	
Semester (Häufigkeit)	4 (jedes Sommersemester)	
ECTS-Punkte (Dauer)	6 (1 Semester)	
Art	Pflichtfach Vertiefung Bioinformatik, Wahlpflichtmodul Vertiefung Biotechnologie	
Studentische Arbeitsbelastung	60 h Kontaktzeit + 120 h Selbststudium	
Voraussetzungen (laut BPO)	Programmieren 1	
Empf. Voraussetzungen	Bioinformatik 1, Programmieren 1 & 2, Algorithmen und Datenstrukturen	
Verwendbarkeit	ВВТВІ	
Prüfungsform und -dauer	Klausur 1,5h oder mündliche Prüfung plus Erstellung und Do- kumentation von Rechnerprogrammen	
Lehr- und Lernmethoden	Vorlesung, Praktikum	
Modulverantwortliche(r)	T. Schmidt	

Grundlegenden Methoden und Konzepte der Bioinformatik aus den Bereichen Graphen und Sequenzen werden sicher beherrscht und können auf neue Fragestellungen angewendet werden. Mit weiterführenden Themen wie beispielsweise non-coding RNAs, Next Generation Sequencing sind die Studierenden vertraut.

Lehrinhalte

Current topics in computational biology e.g.

- · Concepts and properties of graph based network analysis
- · Probabilistic networks
- Sequence based methods for the systematic analysis of genomic information (pro- and eukaryotes)
- ENCODE I und II
- Protein/protein networks
- Metabolic networks (static, transient, conditional)
- · Regulatory networks / expression analysis
- Non-coding RNA
- Epigenetics
- Genetic variance and population based genomewide studies (GWAS)
- High-throughput NGS sequence analysis

Literatur

Mount: Bioinformatics Sequence and Genome Analysis, Cold Spring Harbor Lab Press, 2004 Aktuelle Fachartikel zum Beispiel aus Nature, Science, Genome Biology, PNAS, NAR oder Bioinformatics

Lehrveranstaltungen			
Dozenten/-innen Titel der Lehrveranstaltung SW			
T. Schmidt	Angewandte Bioinformatik	4	

Modulbezeichnung	Biochemie Praktikum
Semester (Häufigkeit)	4 (jedes Sommersemester)
ECTS-Punkte (Dauer)	6 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	60 h Kontaktzeit + 120 h Selbststudium
Voraussetzungen (laut BPO)	Biochemie
Empf. Voraussetzungen	
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Experimentelle Arbeit, mündliche Prüfung, Abschlusskolloqui- um
Lehr- und Lernmethoden	Praktikum
Modulverantwortliche(r)	J. Reimer

Die grundlegenden Arbeitstechniken der analytischen und präparativen Biochemie werden sicher beherrscht. Die Protokollierungsform für wissenschaftliche Arbeiten wurde erlernt und kann fehlerfrei angewendet werden.

Lehrinhalte

Dieses Modul ist ein Pflichtmodul für die Studierenden der Studienrichtung Biotechnologie. Lehrinhalte: Aufreinigung von Proteinen, Lipiden, Nukleinsäuren aus biologischen Proben durch verschiedene Extraktions- u. Fällungsverfahren sowie vor allem chromatographischer Verfahren; Bioanalytik mit Hilfe verschiedener Elektrophoreseverfahren, HPLC und Immnuoassay; Durchführung von Enzymaktivitätsbestimmungen. Durchführung von Proteinbestimmungen; Photometrie;

Literatur

Pingoud, A.: Arbeitsmethoden der Biochemie, de Gruyter, 1999.

Rehm, H.: Der Experimentator: Proteinbiochemie / Proteomics, Spektrum, 2016.

siehe auch Praktikumsskript für weitere Angaben

Dozenten/-innen	Titel der Lehrveranstaltung	SW
J. Reimer, S. Benner, B. Schmietenknop, S. Steffen	Praktikum Biochemie	4

Modulbezeichnung	Digitale Bildsignalverarbeitung	
Semester (Häufigkeit)	4-5 (Beginn jedes Sommersemester)	
ECTS-Punkte (Dauer)	7 (2 Semester)	
Art	Pflichtfach Vertiefung Bioinformatik	
Studentische Arbeitsbelastung	90 h Kontaktzeit + 120 h Selbststudium	
Voraussetzungen (laut BPO)		
Empf. Voraussetzungen		
Verwendbarkeit	ВВТВІ	
Prüfungsform und -dauer	Klausur 1,0h (Vorlesung BV) und mündliche Präsentation und schriftliche Dokumentation (Praktikum)	
Lehr- und Lernmethoden	Vorlesung, Praktikum	
Modulverantwortliche(r) G. Kauer		

Die Studierenden haben einen fundierten Überblick auf die Methodik der digitalen Bildsignalverarbeitung. Sie können in praktischen Arbeiten Methoden der digitalen Bildsignalverarbeitung zur Verbesserung und Analyse mikroskopisch histologischer bzw. mikroskopisch cytologischer Bildvorlagen einsetzen.

Lehrinhalte

Grundlagen für das Verständnis ein- und mehrdimensionaler digitaler Signale. Verfahren zur Interpretation und Modifikation von digitalen Bildvorlagen überwiegend aus dem Bereich der Histologie. Farbmodelle und ihr Einsatz, Methoden des Orts- und Frequenzbereiches. Methoden der Bildverbesserung, Methoden der Objektdetektion und Formerkennung. Anwendung digitaler Filter für den optimalen Einsatz in den jeweiligen mikroskopischen Methoden. Methoden der Histologie optimal und praktisch einsetzen für die Methoden der Digitalen Bildsignalverarbeitung

Literatur

Gonzalez Woods:Digital Image Processing, Prentice Hall,2002 Laganière:Open Cv Programming Cookbook,2014 Welsch, Histologie, Elsevier, 2010

م ا	hrv	/era	nsta	ltun	aen
ᆫ		vela	HISLA	ILUII	uen

Dozenten/-innen	Titel der Lehrveranstaltung	sws
G. Kauer	Vorlesung Digitale Bildsignalverarbeitung	4
G. Kauer	Praktikum Histologische Methoden	2

Modulbezeichnung	Instrumentelle Analytik
Semester (Häufigkeit)	4 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	Allgemeine Chemie, Physikalische Chemie, Organische Chemie
Empf. Voraussetzungen	Mathematik I - III
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Klausur 2 h (Prüfungsleistung)
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	G. Walker

Fachkompetenz Die Studierenden kennen die derzeit am Häufigsten angewandten Methoden der instrumentellen Analy- tik. Sie verstehen die theoretischen physikalisch-chemischen Grundlagen und sind in der Lage, Geräte und Analysenverfahren zu erläutern, sowie einfache IR-, MS- und NMR-Spektren zu interpretieren. Methodenkompetenz Die Studierenden lernen die Grundlagen der Statistik, und können statistische Teste bei der Qualitätssicherung in der analytischen Chemie anwenden. Sie erlernen die Zusammenhänge von physikalisch-chemischen Beobachtungen und deren Anwendung bei instrumentellen analytischen Methoden.

Lehrinhalte

Grundlagen der Qualtitätssicherung in der analytischen Chemie, Chromatographie (DC, HPLC, GC, Kopplungstechniken), UV/VIS-Spektroskopie/Spektralphotometrie Schwingungsspektroskopie (IR- und Raman-Spektroskopie) Massenspektrometrie, Kernmagnetische Resonanz-Spektroskopie (NMR) Elektroanalytik (Konduktometrie, Elektrogravimetrie, Polarographie, Biamperometrie)

Literatur

Cammann, K.: Instrumentelle Analytische Chemie, Spektrum-Verlag, 2010

Schwedt, G.: Taschenatlas der Analytik, Wiley-VCH, 2007

Otto, M.: Analytische Chemie, Wiley-VCH, 2019

Dozenten/-innen	Titel der Lehrveranstaltung	sws
G. Walker	Instrumentelle Analytik (Vorlesung)	4

Modulbezeichnung	Mechanische Verfahrenstechnik
Semester (Häufigkeit)	4 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	75 h Kontaktzeit + 75 h Selbststudium
Voraussetzungen (laut BPO)	Mathematik I + II
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Klausur 2,0 h
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	R. Habermann

Fachkompetenz

Verstehen und Transfer der physikalischen Grundlagen auf Prozesse der Mechanischen Verfahrenstechnik, Kenntnisse der Funktionsweise, Auswahl, Auslegung und Optimierung geeigneter Maschinen und Apparate Methodenkompetenz

Selbständige Lösung von Aufgabenstellung der Mechanischen Verfahrenstechnik, Informationsbeschaffung und -auswertung sowie Kommunikation mit Experten und Laien, Beteiligung an Fachdiskussionen. Personale und soziale Kompetenz

Erkenntnisgewinn über die Bedeutung der Grundoperationen der Mechanischen Verfahrenstechnik, Vermittlung von Informationen zur Anwendung und Motivation zur Weiterentwicklung der Prozesse unter ökonomischen und ökologischen Aspekten

Übergreifende Handlungskompetenz

Befähigung zum eigenständigen Wissenserwerbs, Entscheidungsfindung und Problemlösung, zur verantwortungsbewussten Anwendung des Wissens unter ökologischen und wissenschaftlichen Erfordernissen und zur selbständigen Vertiefung

Lehrinhalte

Lehrinhalte

Grundlagen der Strömungslehre (Strömungsmechanik, Hydrostatik, inkompressible Ströme, Strömung bei Reibung, Strömung in Schüttschichten) sowie Strömungsmaschinen (Pumpen, Verdichter, Turbinen) und Auslegung von Apparaten

Ähnlichkeitstheorie, Grundlagen der Partikeltechnologie, Grundlagen der Partikelbewegung in Strömungen, Funktionsweisen von Maschinen und Apparaten der mechanischen Verfahrenstechnik zur Zerkleinerung und Fest/Gasförmig-Trennung.

Literatur

Käppeli, E.: Strömungslehre und Strömungsmaschinen, Harri Deutsch, 1987 Stieß, M.: Mechanische Verfahrenstechnik I + II, Springer, Heidelberg, 1995 Schubert, H.: Handbuch der Mechanischen Verfahrenstechnik I + II, Wiley-VCH, Weinheim, 2003;

Lehrveranstaltungen		
Dozenten/-innen Titel der Lehrveranstaltung S		SWS
R. Habermann, G. Illing	Mechanische Verfahrenstechnik	5

Modulbezeichnung	Molekulare Genetik
Semester (Häufigkeit)	4-5 (Beginn jedes Sommersemester)
ECTS-Punkte (Dauer)	8 (2 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	90 h Kontaktzeit + 150 h Selbststudium
Voraussetzungen (laut BPO)	Klausur Biologische Grundlagen, Klausur Organische Chemie, Klausur Mikrobiologie, Klausur Biochemie, Praktikum Bioche- mie
Empf. Voraussetzungen	
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Klausur 2 h oder mündliche Prüfung
Lehr- und Lernmethoden	Vorlesung, Praktikum
Modulverantwortliche(r)	G. Kauer

Studierende kennen Grundlagen der molekularen Genetik und Infektiologie von Eucaryoten. Kenntnisse: Gentechnikgesetz, Gentechniksicherheitsverordnung. Praktische Erfahrungen in Agarose-Gelelektrophorese von DNA-Fragmenten; Restriktionsverdau u. Restriktionskartierung; Transformationsmethoden; Plasmid-Isolierung; DNA-Klonierung; Selektionierungsverfahren; PCR; DNA-Fingerprinting

Lehrinhalte

Folgende Inhalte werden behandelt: Transkription, Spleißen, Translation, Sekretion, Telomere, Transposone, Replikations-, Genexpressions-, Regulationsmechanismen (u.A.iRNA)der Eucaryoten. Epigenetik und Histone. Signaltransduktion. Klinische Virologie und virale Replikationen(Schwerpunkt Humanpathogene). Molekulargenetische Methoden: Sequenzierung (gelbasiert,chipbasiert+NGS, RFLP, STR, SNIPs, ESTs, Primerdesign, Vectorcloning Strategien (auch Suicide Vectors), PCR, Tagging (GFP), Reportergene, Flowcellcytometrie/ Scatterplots, Genomics, Proteomics). Lerninhalte Praktikum: Isolierung, Restriktion und Elektrophorese von DNA, Transformationsmethoden, Steuerungsmechanismen in Vektoren, Vektorklonierung, VNTR Polymorphismus, PCR, Umgang mit GVO.

Literatur

Alberts, Johnson, Lewis,... Molekularbiologie der Zelle, Wiley-VCH 5.Auflage; Modrow, Falke, Truyen ... Molekulare Virologie, Spektrum Verlag, 3. Auflage; Olaf Schmidt "Genetik und Molekularbiologie", Springer-Spektrum; Molekularbiologische Methoden 2.0, Thomas Reinhard, Verlag Ulmer Stuttgart, 2. Auflage 2018, ISBN 978-3-8252-8742-9; Der Experimentator: Molekularbiologie/Genomics, Cornel Mülhardt, Springer Verlag Berlin Heidelberg, 7. Auflage 2013, ISBN 978-3-642-34635-4

Le	hrv	erai	nsta	Itun	gen
----	-----	------	------	------	-----

Dozenten/-innen	Titel der Lehrveranstaltung	sws
G. Kauer	Vorlesung Molekulare Genetik	4
N.N.	Praktikum Molekulare Genetik für BT	2
C. Gallert	Praktikum Molekulare Genetik für BI	2

Modulbezeichnung (Kürzel)	Softwareprojektmanagement (SWPM)
Modulbezeichnung (eng.)	Software Project Management
Semester (Häufigkeit)	4 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach Vertiefung Bioinformatik
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Java 1, Java 2, Datenbanken, Modellierung, Algorithmen und Datenstrukturen
Verwendbarkeit	BBTBI, BI, BIPV
Prüfungsform und -dauer	Klausur 1,5h oder mündliche Prüfung
Lehr- und Lernmethoden	Vorlesung, Praktikum
Modulverantwortliche(r)	M. Krüger-Basener

Die Studierenden kennen verschiedene Prozessmodelle. Sie können für überschaubare Aufgabenstellungen die Software-Entwicklung planen, kontrollieren und steuern. Dabei sind sie in der Lage, ihre Entscheidungen zu begründen und gegenüber Auftraggebern zu vermitteln und können mit Konflikten in Gruppen umgehen.

Lehrinhalte

Prozessmodelle der Software-Entwicklung, Rollen und Phasen in den Bereichen: System- bzw. Software-Erstellung, Projektmanagement, Qualitätssicherung und Konfigurationsmanagement. Organisation von Projekten und Funktion des Projektleiters, Projektdefinition, Projektplanung, Projektdurchführung (Projekt-Controlling, Projekt-Kickoff, Vertragsmanagement, Information und Kommunikation), Projektabschluss, Führung von IT-Projekten - auch im Hinblick auf Projektmitarbeiter.

Literatur

Hindel, B. u. a.: Basiswissen Software-Projektmanagement. Aus- und Weiterbildung zum certified professional for project management nach ISQI-Standard. Heidelberg, Dpunkt-Verlag, 2009 (3).

Olfert, K.: Kompakt-Training Projektmanagement. Ludwigshafen, Kiehl, 2016 (10).

Wieczorrek, H. W. u. Mertens, P.: Management von IT-Projekten. Von der Planung zur Realisierung. Berlin, Heidelberg, Springer, 2011 (4).

Lehrveranstaltungen		
Dozenten/-innen Titel der Lehrveranstaltung SW		sws
M. Krüger-Basener, T. Schmidt	Softwareprojektmanagement	2
M. Krüger-Basener, T. Schmidt Praktikum Softwareprojektmanagement 2		

Modulbezeichnung	Thermische Verfahrenstechnik
Semester (Häufigkeit)	4 (jedes Sommersemester)
ECTS-Punkte (Dauer)	7 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	90 h Kontaktzeit + 120 h Selbststudium
Voraussetzungen (laut BPO)	Mathematik I + II
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BCTUT, BCTPV, BBTPV
Prüfungsform und -dauer	Klausur 2,0 h
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	G. Illing

Die Studierenden beherrschen die thermischen Grundoperationen (Trenntechnik, Trocknung, Wärmeübertragung). Sie kennen die einzelnen Apparate und können diese thermodynamisch und fluiddynamisch auslegen.

Lehrinhalte

Thermodynamische Grundlagen dienen zur Beschreibung realer Phasengleichgewichte und deren Anwendung zur Auslegung der Rektifikation und Extraktion. Das McCabe-Thiele Verfahren wird zur Auslegung ebenso herangezogen wie exemplarische empirische Modelle zur fluiddynamischen Auslegung von Packungs- und Bodenkolonnen. Es werden die Grundlagen der Wärmeübertragung vermittelt und typische Bauarten von Wärmeübertragern diskutiert und ausgelegt. Trocknungsprozesse werden anhand des Mollier-Diagramms verdeutlicht und Kovektionstrockner anhand von Beispielen rechnerisch ausglegegt.

Literatur

Lunze, J.: Regelungstechnik 1, Springer, 2007

Strohrmann, G.: Automatisierung verfahrenstechnischer Prozesse, Oldenbourg, 2002

Wagner w.: Technische Wärmelehre, Vogel Buchverlag, 2015 Cerbe, G.: Einführung in die Wärmelehre, Hanser Verlag, 2014

3 -		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
S. Steinigeweg	Thermische Verfahrenstechnik 1	2
G. Illing	Thermische Verfahrenstechnik 2	2
G. Illing, S. Steinigeweg	Übung thermische Verfahrenstechnik	2

Modulbezeichnung	Aufarbeitung
Semester (Häufigkeit)	5 (jedes Wintersemester)
ECTS-Punkte (Dauer)	3 (1 Semester)
Art	Pflichtfach Vertiefung Biotechnologie
Studentische Arbeitsbelastung	30 h Kontaktzeit + 60 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Klausur 1,0 h oder mündliche Prüfung
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	R. Habermann

Fachkompetenz

Verstehen und Transfer der physikalischen Grundlagen auf die Downstream Processing, Kenntnisse der Funktionsweise, Auswahl, Auslegung und Optimierung geeigneter Maschinen und Apparate

Methodenkompetenz

Selbständige Lösung von Aufgabenstellung der Aufarbeitung, Informationsbeschaffung und -auswertung sowie Kommunikation mit Experten und Laien, Beteiligung an Fachdiskussionen.

Personale und soziale Kompetenz

Erkenntnisgewinn über die Bedeutung des Downstream Processing, Vermittlung von Informationen zur Anwendung und Motivation zur Weiterentwicklung der Prozesse unter ökonomischen und ökologischen Aspekten

Übergreifende Handlungskompetenz

Befähigung zum eigenständigen Wissenserwerbs, Entscheidungsfindung und Problemlösung, zur verantwortungsbewussten Anwendung des Wissens unter ökologischen und wissenschaftlichen Erfordernissen und zur selbständigen Vertiefung

Lehrinhalte

Fermentationseinfluss auf die Zielstoffisolierung. Abtrennung mittels Klassier- und Filtrationsverfahren. Zellaufschluss durch Kugelmühle. Hochdruckhomogenisator und Ultraschall. Produktanreicherung und -reinigung mithilfe von Extraktion, thermischer Konzentrierung, Kristallisation und Chromatographie. Kontakt-, Strahlungs- und Konvektionstrocknung.

Literatur

Storhas, W.: Bioverfahrensentwicklung, Wiley-VCH, Weinheim, 2013 Chmiel, H.: Bioprozesstechnik, Springer Spektrum, Berlin, 2018

Lehrveranstaltungen		
Dozenten/-innen Titel der Lehrveranstaltung SWS		
R. Habermann	Aufarbeitung	2

Modulbezeichnung	Bioverfahrenstechnik 1
Semester (Häufigkeit)	5 (jedes Wintersemester)
ECTS-Punkte (Dauer)	7 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	75 h Kontaktzeit + 135 h Selbststudium
Voraussetzungen (laut BPO)	#Klausur Fermentationstechnik (praktikumsrelevanter Teil muss bestanden sein) #Modul Biochemie, #Modul PC I + II für BT, #Mikrobiologie 1-Klausur und Praktikum
Empf. Voraussetzungen	
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Experimentelle Arbeiten mit Kolloq und Protokollen
Lehr- und Lernmethoden	Praktikum
Modulverantwortliche(r)	K. Scharfenberg

Entwicklung grundlegender Fertigkeiten im praktischen Umgang mit Bioreaktoren und zugehöriger Peripherie sowie der MSR- und Steriltechnik; Verständnis für Ablauf von Fermentationen in verschiedenen Reaktoren. Durch Versuchsprotokollierung erwerben die Studierenden Erfahrungen in Auswertung u. Darstellung experimenteller Daten, deren Bewertung und der Interpretation von Ergebnissen. Die Lehrveranstaltung dient zur Vorbereitung auf das zweite Pflicht-Praktikum für Fortgeschrittene im BT-Schwerpunkt.

Lehrinhalte

Arbeitssicherheit im Biotech-Labor, Vorbereitungen zur Kultivierung in technischen Systemen; Ablaufplanung biotechnologischer Verfahren (Simulation u. konkrete Bsp. im kleinen Maßstab); Medienherstellung und Materialvorbereitung; Erfassung mikrobiellen Wachstums (Off- und Online-Parameter); MSRTechnik bei mikrobiologischen Prozessen (spezielle Versuche an den einzelnen Geräten sowie den Einsatz begleitend); Massentransfer im Multiphasensystem (kLa-Bestimmung; Mischzeiten)

Literatur

Praktikumsskript

Literaturempfehlungen der Vorlesungen Fermentationstechnik und angewandte Mikrobiologie

LehrveranstaltungenDozenten/-innenTitel der LehrveranstaltungSWSK. Scharfenberg, R. HabermannBioverfahrenstechnik 15

Modulbezeichnung (Kürzel)	Data Science (DASC)
Modulbezeichnung (eng.)	Data Science
Semester (Häufigkeit)	5 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach Vertiefung Bioinformatik
Sprache(n)	Deutsch
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Programmieren 1, Programmieren 2
Verwendbarkeit	BBTBI, BI, BIPV
Prüfungsform und -dauer	Klausur 1,5 h oder mündliche Prüfung
Lehr- und Lernmethoden	Vorlesung, Praktikum
Modulverantwortliche(r)	T. Schmidt

Die Studierenden kennen die wesentlichen Konzepte in den Bereichen i) Datenintegration und Datenhaltung ii) Datenanalyse und Wissensmanagement sowie iii) Datenvisualisierung und Informationsbereitstellung. Die Studierenden verstehen die Anforderungen von großen Datenmengen (Big Data), kennen grundlegende Konzepte (z.B. MapReduce) und sind mit aktuellen Big-Data Technologien (z.B. Hadoop, Spark) vertraut und können diese auf praktische Problemstellungen anwenden.

Lehrinhalte

Vorgestellt werden grundlegende Konzepte und Methoden aus den Data Science Bereichen Maschine Learning/Knowledge Data Discovery in Databases und Big Data die mit praktischen Übungen verdeutlicht werden. Stichworte sind:

Bereich KDD/ML:

- 1. supervised/unsupervised learning
- 2. Algorithmen: clustering (hierarchical, top-down vs. bottom-up, k-means), classification, Decision Trees, Random Forest, Apriori
- 3. Evaluation measures: confusion matrix, ROC, Silhouette, unbalanced classes, challenges & pitfalls.

Bereich Big Data:

- 1. Big Data Collection: cleaning & integration, data platforms & the cloud
- Big Data Storage: Hadoop, modern databases, distributed computing platforms, MapReduce, Spark, NoSQL/NewSQL
- 3. Big Data Systems: Security, Scalability, Visualisation & User Interfaces
- 4. Big Data Analytics: Fast Algorithms, Data Compression, Machine Learning Tools for Big Data Frameworks, Case Studies & Applications (e.g. Medicine, Finance)

Literatur

Freiknecht, Jonas: Big Data in der Praxis: Lösungen mit Hadoop, HBase und Hive. Daten speichern, aufbereiten, visualisieren, Carl Hanser Verlag, 2014

Karau, Holden: Learning Spark: Lightning-Fast Big Data Analysis, O'Reilly, 2015

Ester, Martin: Knowledge Discovery in Databases - Techniken und Anwendungen, Springer Verlag, 2000

Dozenten/-innen	Titel der Lehrveranstaltung	SWS
T. Schmidt	Data Science	3

T. Schmidt	Praktikum Data Science	1

Modulbezeichnung	GUI-Programmierung
Semester (Häufigkeit)	5 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach Vertiefung Bioinformatik
Studentische Arbeitsbelastung	70 h Kontaktzeit + 80 h Selbststudium
Voraussetzungen (laut BPO)	Programmieren I, Programmieren II
Empf. Voraussetzungen	
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Erstellung und Dokumentation von Rechnerprogrammen, Mündliche Präsentation und schriftliche Dokumentation
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	G. Kauer

Der Student wird in die Lage versetzt, Graphische Windowsprogramme in der Sprache C# zu schreiben. Er ist nach Abschluss des Moduls fähig, einfache grahische Programmierprobleme über dokumentierte objektorientierte Ansätze zu lösen.

Lehrinhalte

Elemente der Programmiersprache C# zur Implementation von Windows GUI Programmen, .NET Bibliotheken und wichtige graphische Benutzerschnittstellen (Edit, Listbox usw.), der "Canvas", Callbacks, Prozesse anstoßen, dateibasierte Ein/Ausgaben, der Druckvorgang, Multitasking, Dokumentationsmethoden mit UML, einfache wiederverwendbare Design Patterns. Implementation von C# GUI-Programmen aus UML Entwürfen heraus.

Literatur

Kühnel: Visual C#, Galileo Press, 2010 Judith Bishop, c# 3.0, Entwurfsmuster, O'Reilly, 2008

Lehrveranstaltungen		
Dozenten/-innen Titel der Lehrveranstaltung SWS		sws
G. Kauer	GUI-Programmierung	4

Modulbezeichnung	Mikrobiologie 2
Semester (Häufigkeit)	5 (jedes Wintersemester)
ECTS-Punkte (Dauer)	3 (1 Semester)
Art	Pflichtfach Vertiefung Biotechnologie, Wahlpflichtmodul für BI, CTUT
Studentische Arbeitsbelastung	30 h Kontaktzeit + 60 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Mikrobiologie 1
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Klausur 1 h oder mündliche Prüfung
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	C. Gallert

Die Studierenden kennen den Beitrag von Mikroorganismen an wichtigen Stoffkreisläufen. Sie verstehen genetische Regulationsebenen von katabolen und anabolen Enzymen. Sie können Anpassungsstrategien von Mikroorganismen in verschiedenen Ökosystemen bewerten.

Lehrinhalte

Aufbauend auf der Vorlesung Mikrobiologie I werden mikrobielle Grundlagen zu folgenden Themen vertieft: Mikrobielle Reaktionen im Kohlenstoff- (Mineralisation, Methanogenese), Stickstoff-, Schwefel-und Eisen-Kreislauf, procaryontische Regulationsebenen im Stoffwechsel (DNA-Struktur, Transkription, mRNA, Translation, Posttranslation), Synthropie, Konkurrenz, Kooperation, R- und K-Strategie, Threshold.

Literatur

- M. T. Madigan: Brock Mikrobiologie, Pearson Studium, 13. Auflage, 2013.
- J. L. Slonczewski, J. W. Foster: Mikrobiologie, Springer Spektrum, 7. Auflage, 2013.
- G. Fuchs: Allgemeine Mikrobiologie, Thieme Verlag Stuttgart, New York, 9. Auflage, 2014.

Dozenten/-innen	Titel der Lehrveranstaltung	sws
C. Gallert	Vorlesung Mikrobiologie 2	2

Modulbezeichnung	Softskills 2 BT/BI
Semester (Häufigkeit)	5 (jedes Wintersemester)
ECTS-Punkte (Dauer)	4 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	60 h Kontaktzeit + 60 h Se
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Mündliche Präsentation digkeiten von Projekten fers/Betreuers oder Nachw eigneten Hochschulverans
Lehr- und Lernmethoden	Seminar, Gruppenarbeit, fer/Betreuer
Modulverantwortliche(r)	K. Scharfenberg

Weitere Entwicklung der individuellen Fertigkeiten im Softskillsbereich:

Für sCP: Teilnahme an Angeboten für soziales Engagement im Hochschulleben (z.B. Funktionen im Fachschaftsrat, studentische Vertretung in Berufungskommissionen, Übungsleiter im Hochschulsport; aktive Teilnahme an der CampusKulturWerkstatt usw.) nach Absprache mit den betreuenden Dozenten und dem Modulverantwortlichen. Details in der periodisch angebotenen Infoveranstaltung zu jedem Semesterbeginn. Der Besuch zum Beginn des Studiums wird empfohlen.

Seminar: Das Seminar wird im 5.Semester angeboten. Die Studierenden können selbstständig wissenschaftliche Literatur und Daten (meist im Team) erarbeiten und schriftlich wie mündlich präsentieren mit Hilfe von Präsentationssoftware. Die Studierenden sind in der Lage, den idividuellen Wissenshorizont im biotechnologischen und bioinformatischen Bereich auch in Hinblick auf spätere Bachelorarbeiten selbst zu erweitern.

Lehrinhalte

Für sCP: Wird den jeweiligen Angeboten durch betreuende Dozenten und HS-Mitarbeitern angepasst. Hierzu gibt es periodisch zu Semesterbeginn eine einführende Infoveranstaltung.

Im Seminar: Projektarbeit in kleineren Arbeitsgruppen (2-3 Studierende) zur Aufarbeitung fachspezifischer Themen sowie deren Präsentation in einem Seminarbetrag. Themen nach eigener Wahl in Abstimmung mit betreuenden Dozenten oder Auswahl aus Themenvorgaben durch die Dozenten. Die Teilnahme an allen Semester-Präsentationen ist Pflicht und kann nur als Ausnahme durch andere Aktivitäten im Hochschulleben ausgeglichen werden. Die Dokumentationspflicht/Nachweis des Umfanges gegenüber dem Modulverantwortlichen obliegt den Studierenden selbst (Formblätter zurDokumentation werden gestellt).

Literatur

Im Seminar: Themenrelevante Lehrbuch- und wissenschaftliche Literatur gemäß gewählten Themen durch eigene Beschaffung und Ausgaben durch die jeweiligen betreuenden DozentInnen Für sCP: nach Vorgaben der Betreuenden.

Lehrveranstaltungen	
Dozenten/-innen	Titel der Lehrveranstaltu
N.N.; nach Rücksprache mit Modulverantwortlichem	Social Credit Points
Dozenten der Biotechno- logie/Bioinformatik u.a. Prof.C.Gallert, R.Habermann K.Scharfenberg	Softskills 2 BT/BI

Modulbezeichnung	Umweltverfahrenstechnik
Semester (Häufigkeit)	5 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach Vertiefung Umwelttechnik
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	Allgemeine Chemie
Empf. Voraussetzungen	Grundlagen der Umwelttechnik
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Klausur 1,5 h oder mündliche Prüfung
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	S. Steinigeweg

Die Studierenden sollen Grundlagen des Betriebs und der Auslegung energieverfahrenstechnischer Verfahren am Beispiel der Anlagen im Bereich Abwasser und Abluft beherrschen. Die Grundlagen sind bekannt und können für den technischen Prozess angewendet werden.

Lehrinhalte

Die Studierenden lernen Abwasser (industriell und kommunal) kennen. Die mechanische Abwasserbehandlung, die biologische Behandlung sowie Klärtechnik werden besprochen. Wichtige Aspekte der Abwasseranalytik werden behandelt und der Betrieb und die Bauweise unter energierelevaten Gesichtspunkten werden besprochen. Die Reinigung von Abluftströmen mittels Staubabtrennung, Absorption & Adsorption, Schadstoffzerstörung und -abbau, Rauchgasentschwefelung sowie CO2-Abtrennung und -Speicherung werden am Beispiel von Kraftwerken besprochen. Technische Apparate werden ausgelegt und der rechtliche Rahmen (BImSchG) besprochen.

Literatur

Bank, M.: Basiswissen Umwelttechnik, Vogel-Verlag, Wiley-VCH, 2006 Pehnt, M.: Energieeffizienz: Ein Lehr- und Handbuch, Springer-Verlag, 2011

Leh	rverar	ıstaltı	ıngen
-----	--------	---------	-------

<u> </u>		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
R. Habermann	Abwasserbehandlung	2
S. Steinigeweg	Ablufttechnik	2

Modulbezeichnung	Verfahrenstechnik Praktikum BT
Semester (Häufigkeit)	5 (jedes Wintersemester)
ECTS-Punkte (Dauer)	4 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	Praktika PC, OC und AC, sowie die Klausuren Mathematik I + II
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BBTPV
Prüfungsform und -dauer	Experimentelle Arbeit, mündliche Prüfung, Praktikumsbericht
Lehr- und Lernmethoden	Praktikum
Modulverantwortliche(r)	G. Illing

Die Lehrinhalte der Fächer der Verfahrenstechnik werden vertieft und erweitert. Praktischer Umgang mit den Apparaten der Verfahrenstechnik

Lehrinhalte

Versuche zur: Rektifikation; Prozesssimulation Rektifikation, Extraktion; Strömungslehre; Adsorption; Wärmeübertragung (Luft-Luft, Wasser-Wasser); Gaswirbelschicht; Filtration.

Literatur

Praktikumsskripte zu jedem Versuch

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
G. Illing, R. Habermann	Praktikum Verfahrenstechnik	2

Modulbezeichnung	Apparate & Werkstoffe
Semester (Häufigkeit)	6 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach für CT
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Klausur 2h
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	J. Hüppmeier

Die Studierenden können Werkstoffe für den chemischen Anlagenbau und ihre Eigenschaften erläutern. Sie können geeignete Werkstoffe anhand der Eigenschaften für bestimmte Anwendungen auswählen. Die Studierenden können die verschiedenen für den Anlagenbau relevanten Korrosionsformen aufzählen und -mechanismen und können geeignete Maßnahmen gegen diese Korrosionsformen benennen. Die Studierenden können Apparatezeichnungen, Prozessfließbilder und Rohrleitungs- und Instrumentenfließbilder interpretieren sowie vereinfachte Prozessfließbilder und Apparatezeichnungen erstellen. Die Studierenden können Wandstärken für gängige Apparateelemente bestimmen sowie gegebene Apparate für bestimmte Belastungsfälle berechnen. Sie sind in der Lage, die erforderlichen Formeln und Daten aus aktuellen Regelwerken (z.B. DIN-Normen) herauszusuchen und anzuwenden.

Lehrinhalte

Die Grundlagen der Werkstofftechnik wie Aufbau und Systematik von Werkstoffen, Werkstoffprüfung und Methodik der Werkstoffauswahl werden vermittelt, ein besonderer Fokus wird dabei auf die Werkstoffe für den chemischen Anlagenbau gelegt. Die Studierenden lernen die Entstehung, Arten und Vermeidung von Korrosion und ihre Folgen. Die Vorlesung Apparatebau umfasst

- das Kennenlernen von Anlagen, Apparaten, Behältern, Rohrleitungen und Apparateelementen,
- die Unterscheidung von Belastungsfällen im Apparatebau,
- · die Auslegung von Behältern und Apparaten sowie
- die Dokumentation verfahrenstechnischer Anlagen. Letzteres beinhaltet auch den Umgang mit Apparatezeichnungen, Prozessfließbilder und Rohrleitungs- und Instrumentenfließbildern.

Literatur

W. Callister: Materialwissenschaften und Werkstofftechnik, Wiley-VCH 2012 DIN-EN-13445-3:2014, Unbefeuerte Druckbehälter - Teil 3: Konstruktion

Dozenten/-innen	Titel der Lehrveranstaltung	sws
J. Hüppmeier	Apparatebau (Vorlesung)	2
J. Hüppmeier	Werkstoffe und Korrosion (Vorlesung)	2

Modulbezeichnung	Bioverfahrenstechnik 2
Semester (Häufigkeit)	6 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach für Fortgeschrittene im BT-Schwerpunkt
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	Fermentationstechnik-Klausur, Bioverfahrenstechnik 1 Prakti- kumsabschluss
Empf. Voraussetzungen	
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Experimentelle Arbeiten mit Kolloq und Protokollen
Lehr- und Lernmethoden	Praktikum
Modulverantwortliche(r)	K. Scharfenberg

Vertiefung der Fertigkeiten im praktischen Umgang mit Bioreaktoren durch aufwändigere Fermentationen auch im größeren Maßstab und zugehöriger spezifischer Analytik (u.a. Enzymaktivität). Durch die Erweiterung der Experimente um die verfahrenstechnischen Aspekte des Downstream Processing erwerben die Studierenden Fertigkeiten im Bereich der Aufarbeitung biotechnologischer Produkte.

Lehrinhalte

Herstellung biotechnologischer Produkte in unterschiedlichen Reaktorsystemen bei unterschiedlichen Betriebsparametern und Prozessführungen;

Zellaufschluss durch Kugelmühle und Hochdruckhomogenisator und Aufarbeitung biotechnologischer Produkte

Literatur

Praktikumsskript

Literaturempfehlungen der Vorlesungen Fermentationstechnik und angewandte Mikrobiologie

H. Chmiel: Bioprozesstechnik, Springer 2011

W. Storhas: Bioverfahrensentwicklung, Wiley-VCH Verlag, Weinheim, 2013

LehrveranstaltungenDozenten/-innenTitel der LehrveranstaltungSWSK. Scharfenberg, R. HabermannBioverfahrenstechnik 24

Modulbezeichnung	Enzymtechnik&Angewandte Mikrobiologie
Semester (Häufigkeit)	6 (jedes Sommersemester)
ECTS-Punkte (Dauer)	6 (1 Semester)
Art	Pflichtfach Vertiefung Biotechnologie
Studentische Arbeitsbelastung	60 h Kontaktzeit + 120 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	2 Klausurteile a 1,5 h oder mündliche Prüfung nach Wahl der Prüfer
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	K. Scharfenberg

Die Studierenden eignen sich Grundkenntnisse über Enzyme und Gruppen von industriell interessanten Mikroorganismen an und erwerben Kenntnisse über deren Einsatz in Forschung sowie Industrie und Technik. Zugleich entwickeln Sie ein Grundverständnis für den Nutzen unterschiedlicher methodischer Ansätze sowie der spezifischen Steuerung der Randparameter und des Materialeinsatzes in den jeweiligen Anwendungen z.B. in Produktionsprozessen. Ausgehend von wirtschaftlich bedeutsamen BioTech-Produkten und Produktgruppen vertiefen sie die Kenntnisse über relevante Biosynthesewege uund beispielhafte Regulationsprinzipien für die angewandte Mikrobiologie.

Lehrinhalte

Lehrinhalte ET: Biokatalysatoren, Aktivierungsenergie, pflanzliche und tierische Enzyme sowie Enzyme von Mikroorganismen, Berechnung der Enzymaktivität, technische Enzyme, Enzyme in Back- und Waschprozessen, immobilisierte Enzyme, Transportprozesse, Effizienz (Thiele-Modul)

Lehrinhalte aMiBi: Überblick über Produktionsprozesse und Produktableitung; Regulation mikrobieller Aktivität; Screeningmethoden und Stammentwicklung/Optimierung; Substrate und Einsatzstoffe für industrielle Fermentationen; Anhand technisch relevanter Verfahren wird das Zusammenwirken von Genetik, Physiologie u. Fermentationstechnik verdeutlicht; Produkte des Primär- und Intermediärstoffwechsels; Produkte des sekundären Stoffwechsels; Bsp. für Biotransformationen (Ganzzellkatalse)

Literatur

Polaina, J.; Industrial Enzymes: Structure, Function and Applications; Dordrecht, Springer 2007

Bisswanger, H.; Practical Enzymology; Weinheim, Wiley-VCH, 2004

Buchholz, K.; Biokatalysatoren und Enzymtechnologie; Weinheim, Wiley-VCH, 1997

Antranikian, G.: Angewandte Mikrobiologie, Springer, 2006

Sahm et al (Herg): Industrielle Mikrobiologie; Berlin, Heidelberg, Springer, 2013

Dozenten/-innen	Titel der Lehrveranstaltung	sws
R. Habermann	Enzymtechnik	2
K. Scharfenberg	Angewandte Mikrobiologie	2

Modulbezeichnung	Instrumentelle Analytik (Praktikum) für BT
Semester (Häufigkeit)	6 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach BT, Wahlpflichtmodul BI
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	Allgemeine Chemie, Anorganische Chemie, Physikalische Chemie, Organische Chemie
Empf. Voraussetzungen	Mathematik I - III
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Experimentelle Arbeiten und Projektberichte (Studienleistung)
Lehr- und Lernmethoden	Praktikum
Modulverantwortliche(r)	G. Walker

Fachkompetenz Das Modul vermittelt den Studierenden den Umgang mit den derzeit in der Praxis am Häufigsten angewandten Methoden der instrumentellen Analytik zur Chromatographie, Spektroskopie und Elektroanalytik. Sie sind in der Lage, ausgewählte reale Proben aufzuarbeiten, zu analysieren und die Ergebnisse zu interpretieren. Methodenkompetenz Die Studierenden erlernen das Vorgehen bei der Durchführung von instrumentell ausgeführten qualitativen und vor allem quantitativen Analysen sowie den dazu erforderlichen Probenvorbereitungsschritten. Sie können selbst mitgebrachte Proben und Probengemische aufarbeiten und analysieren. Sie lernen zudem, ihre Analysenergebnisse kritisch zu betrachten, auf Plausibilität zu überprüfen und anhand von gesetzlichen Grenzwerten, toxikologischen Vorgaben oder anderen Literaturwerten zu bewerten.

Lehrinhalte

Grundlagen der Qualtitätssicherung in der analytischen Chemie, Chromatographie (HPLC, GC, GC-MS), UV/VIS-Spektroskopie/Spektralphotometrie Schwingungsspektroskopie (IR-Spektroskopie); Massenspektrometrie und GC-MS, Elektroanalytik (Automatische Titrationen, Biamperometrie), Metallanalytik mit AAS und ICP-AES

Literatur

Cammann, K.: Instrumentelle Analytische Chemie, Spektrum-Verlag, 2010

Schwedt, G.: Taschenatlas der Analytik, Wiley-VCH, 2007

Otto, M.: Analytische Chemie, Wiley-VCH, 2019

LehrveranstaltungenDozenten/-innenTitel der LehrveranstaltungSWSG. WalkerInstrumentelle Analytik (Praktikum) für BT4

Modulbezeichnung	Projekt Enzymtechnik
Semester (Häufigkeit)	6 (jedes Sommersemester)
ECTS-Punkte (Dauer)	3 (1 Semester)
Art	Pflichtfach Vertiefung Bioinformatik
Studentische Arbeitsbelastung	30 h Kontaktzeit + 60 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Enzymtechnik
Verwendbarkeit	BBTBI
Prüfungsform und -dauer	Schriftliche Dokumentation
Lehr- und Lernmethoden	Praktikum
Modulverantwortliche(r)	R. Habermann

Fachkompetenz

Verbreiterung und Vertiefung der in der Vorlesung vermittelten Grundlagen der Enzymtechnik auf ein praktisches Anwendungsbeispiel

Methodenkompetenz

Transfer und selbständige Erarbeitung von Lösungsansätzen anhand einer Aufgabenstellung aus der Enzymtechnik, Informationsbeschaffung und -auswertung sowie Kommunikation mit Experten und Laien, Beteiligung an Fachdiskussionen.

Personale und soziale Kompetenz

Erkenntnisgewinn über die Bedeutung der Methoden der Enzymtechnik, Vermittlung von Informationen zur Anwendung und Motivation zur Weiterentwicklung der Prozesse unter ökonomischen und ökologischen Aspekten

Übergreifende Handlungskompetenz

Befähigung zum eigenständigen Wissenserwerbs, Entscheidungsfindung und Problemlösung, zur verantwortungsbewussten Anwendung des Wissens unter ökologischen und wissenschaftlichen Erfordernissen und zur selbständigen Vertiefung

Lehrinhalte

Literaturrecherche zu Daten von Enzymen, Planung und Entwicklung von Apparaturen zur enzymatischen Umsetzung von Substraten, Anwendung nativer oder fixierter Enzyme, Enzymkinetik

Literatur

Jäger, K.-E.: Einführung in die Enzymtechnologie, Springer, Berlin, 2018 Buchholz, K.: Biocatalysts and enzyme technology, VCH-Wiley, Weinheim, 2012 Polania, J.: Industrial Enzymes - Structure, Function and Applications, Springer, Dordrecht, 2007 Aehle, W.: Enzymes in industry. Production and applications, Wiley-VCH, Weinheim, 2005

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
R. Habermann	Enzymtechnik Projekt	2

Modulbezeichnung	Spektroskopie
Semester (Häufigkeit)	6 (jedes Sommersemester)
ECTS-Punkte (Dauer)	3 (1 Semester)
Art	Pflichtfach für CT, Wahlpflichtmodul für BT, SES
Studentische Arbeitsbelastung	30 h Kontaktzeit + 60 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Physikalische Chemie, Thermodynamik, Thermodynamik der Gemische, Mathematik I - III
Verwendbarkeit	BBTBI, BCTUT, BSES
Prüfungsform und -dauer	Klausur 2 h oder mündliche Prüfung
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	M. Sohn

Die Studierenden lernen die physikalisch-chemischen Grundlagen moderner bildgebender Verfahren wie der Lichtmikroskopie, der Eektronen- und Sondenmikroskopie (Rasterleketronenmikroskopie (REM) und Rasterkraftmikroskopie (AFM)) sowie der Spektroskopie, insbesondere der FTIR-Spektroskopie, kennen. Bei der Lichtmikroskopie lernen die Studierenden die verschiedenen Mikroskop-Typen (Auflicht/Durchlicht), -Bauweisen (aufrecht/invers, stereo) und -Klassen (von Feld bis Forschung) kennen. Sie erlernen den Gesamtaufbau eiens Mikroskops sowie die einzelnen Komponenten mit ihrer Bauweise und Funktion. Sie können den Strahlengang und die Bilderzeugung mit dem ihr zugrunde liegenden Prinzip beschreiben, insbesondere für die verschiedenen Kontrastverfahren Hellfeld, Dunkelfeld, Phasenkontrast, Polarisation, Differentieller Interferenzkontrast (DIC)) und Fluoreszenz. Sie verstehen Auflösung und Kontrast. Die Studierenden lernen den Aufbau eines IR-Mikroskops und die Durchführung von Messungen damit kennen.Gleiches gilt für das Rasterlektronen- (REM) und das Rasterkraftmikroskop (AFM). Bei AFm lernen sie die verschiedenen Modi (Kontakt, dynamisch/Tapping, Phase Imaging, MFM, EFM, etc) zu unterscheiden und ihre Vor und Nachteile sowie ihre Anwendungsgebiete zu beschreiben. Die Studierenden erlernen die Erstellung und Interpretation von Kraftkurven sowie Force Mapping.

In der Spektroskopie erlenen die Studierenden die Grundlagen von Ration und Schwingung in der klassischen Physik inklusive ihrer quantenmechanischen Erweiterungen zur Anwendungen in der FTIR-Spektroskopie. Sie lernen Entstehung, Aussehen und Interpretation von Flüssigphasen-, Gasphasen-Rotations- und Gasphasen-Rotationsschwingungsspektren. Sie lernen den Aufbau eines FTIR-Spektrometers sowie fortgeschrittene Methoden wie abgeschwächte Totalreflexion (ATR), diffuse Reflexion (DRIFT), Absorptions-Reflexions-Spektroskopie (IRRAS) kennen.

Lehrinhalte

Physikalisch chemische Grundlagen zur Lichtmikroskopie, Rasterlektronenmikroskopie, Rasterkraftmikroskopie, IR-Mirksokopie und IR-Spektroskopie. Aufbau der Geräte und Durchführung der Messungen mit ihnen. Grundlagen von Schwingung und Rotation, Entstehung und Interpretation der Gasphasen- und Flüssigkeitsspektren. Moderne Methoden der IR-Spektroskopie wie Abgeschwächte Totalreflexion (ATR), diffuse Reflexion (DRIFT), Reflexions-Absorptionsspektroskopie (IRRAS).

Literatur

P. W. Atkins, J. de Paula, Physikalische Chemie, Wiley-VCH, Weinheim G. Wedler, Lehrbuch der Physikalischen Chemie, Wiley-VCH, Weinheim

Dozenten/-innen	Titel der Lehrveranstaltung	sws
M. Sohn	Vorlesung Spektroskopie	2

Modulbezeichnung	Umweltanalytik
Semester (Häufigkeit)	6 (jedes Sommersemester)
ECTS-Punkte (Dauer)	3 (1 Semester)
Art	Pflichtfach Vertiefung UT, Wahlpflichtmodul BaBTBICT
Studentische Arbeitsbelastung	45 h Kontaktzeit + 45 h Selbststudium
Voraussetzungen (laut BPO)	Allgemeine Chemie
Empf. Voraussetzungen	Allgemeine Biologie, Physikalische Chemie, Anorganische Chemie
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Experimentelle Arbeiten und Projektbericht (Prüfungsleistung)
Lehr- und Lernmethoden	Vorlesung, Praktikum
Modulverantwortliche(r)	G. Walker

Fachkompetenz Die Studierenden kennen die wichtigsten chemischen und mikrobiologischen Schadstoffe der Innenraumluft. Sie verstehen die Ursachen von Schimmelpilzwachstum in Innenräumen. Sie sind in der Lage, nach den Vorgaben der DIN-ISO Reihe 16000, Blatt 16-19, und anhand des Leitfadens des Umweltbundesamtes Proben aus der Innenraumluft zu nehmen, diese zu inkubieren und die gewachsenen Kolonien auf Gattungsniveau unter Anleitung zu differenzieren. Sie sind in der Lage die Ergebnisse in Form eines Prüfberichtes darzustellen. Methodenkompetenz Die Studierenden lernen die Vorgehensweise bei einer Ortsbegehung bei Schimmel in Gebäuden und die zu diesem Zweck durchgeführte Ursachensuche in Bezug auf Feuchteschäden an Gebäuden. Sie verstehen das Zusammenarbeiten von Sachverständigen für Innenraumschadstoffe, Bausachverständigen und Sanierungsfirmen. Sie sind in der Lage, die Laborergebnisse von Schimmeluntersuchungen anhand der Leitfäden des Umweltbundesamtes kritisch zu überprüfen und zu interpretieren, um so die Grundlage für eine ggf. erforderliche Gebäudesanierung mit zu erarbeiten. Sozialkompetenz Die Studierenden lernen, die Ergebnisse ihrer Gruppenarbeit in einem Projektbericht darzustellen und in Form einer Präsentation vorzustellen und zu vertreten.

Selbstkompetenz Die Studierenden erproben in Gruppenarbeit und projektbezogen das Zusammenwirken von Sachverständigen aus verschiedenen Fachrichtungen bei der Bearbeitung von Schimmelpilzschäden in Gebäuden. Sie lernen, wie die einzelnen Schritte aufeinander aufbauen und zusammenwirken. Sie verstehen, wie ihr eigenes Handeln und ihre eigenen Ergebnisse die nachfolgenden Schritte beeinflussen. Sie lernen, ihr eigenes Tun kritisch zu hinterfragen, und so die eigene Arbeit sinnvoll in das Gesamtprojekt einfließen zu lassen.

Lehrinhalte

Schimmelpilzwachstum in Innenräumen, Probenahmetechniken (Luft, Material, Oberflächenkontaktproben), Inkubation, Differenzierung mit Hilfe der Mikroskopie, Auswertung der Ergebnisse, Sanierungsmöglichkeiten

Literatur

Umweltbundesamt: Schimmelleitfaden, 2017

Umweltbundesamt: Leitfaden für die Innenraumhygiene in Schulgebäuden, 2008

DIN ISO - Norm 16000: Blatt 16 - 21

Dozenten/-innen	Titel der Lehrveranstaltung	sws
G. Walker, I. Toepfer	Schimmelpilzanalytik (Praktikum)	2
G. Walker	Innenraumanalytik (Vorlesung)	1

Modulbezeichnung	Umwelttechnik Praktikum
Semester (Häufigkeit)	6 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtfach Vertiefung Umwelttechnik, Wahlpflichtmodul BaBT-BI, BaSES
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BCTUT, BSES
Prüfungsform und -dauer	Mündliche Präsentation und schriftliche Dokumentation
Lehr- und Lernmethoden	Praktikum
Modulverantwortliche(r)	S. Steinigeweg

Die Studierenden sollen im Rahmen einer praktischen Fragestellung Elemente der angewandten Umwelttechnik erlernen. Sie sind in der Lage eine reale energie- und umwelttechnische Aufgabenstellung methodisch korrekt und systematisch zu lösen.

Lehrinhalte

Im Rahmen eines Projekts, das in kleinen Gruppen von Studierenden durchgeführt wird, erlernen die Studierenden, die konkrete Umsetzung der modellbasierten Optimierung umwelttechnischer und energietechnischer Prozesse oder Fragestellungen der Umweltanalytik selbstständig zu lösen. Aktuelle Entwicklungen können dabei aufgegriffen werden. Eine Mitwirkung in Forschungsprojekten und Einbindung in Master-Arbeiten ist erwünscht.

Literatur

Bliefert, C.: Umweltchemie, Wiley-VCH, 2002

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
R. Habermann	Abwassertechnik Praktikum	2
W. Paul, S. Steinigeweg	Prozessmodellierung & Energieoptimierung Praktikum	2

Modulbezeichnung	Praxisphase
Semester (Häufigkeit)	7 (jedes Wintersemester)
ECTS-Punkte (Dauer)	18 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	60 h Kontaktzeit + 480 h Selbststudium
Voraussetzungen (laut BPO)	alle Module des 1 4. Semesters, 40 KP aus dem 5. und 6. Semester
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Schriftliche Dokumentation und Poster
Lehr- und Lernmethoden	Praktikum außerhalb oder innerhalb der Hochschule
Modulverantwortliche(r)	Professoren/Dozenten der BT/BI/CT/UT

Die Studierenden wenden ihre Kenntnisse in Firmen, Forschungsinstituten oder Arbeitsgruppen der Hochschule in der Praxis an.

Lehrinhalte

Mitarbeit in Projekten von Firmen, Forschungsinstituten oder Arbeitsgruppen der Hochschule

Literatur

nach Thema verschieden

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
Professoren/Dozenten der BT, BI, CT, UT	Praxisphase	16
Professoren/Dozenten der BT, BI, CT, UT	Präsentation zum Thema der Praxisphase	2

Modulbezeichnung	Bachelorarbeit
Semester (Häufigkeit)	7 (nach Bedarf)
ECTS-Punkte (Dauer)	12 (1 Semester)
Art	Pflichtfach
Studentische Arbeitsbelastung	30 h Kontaktzeit + 330 h Selbststudium
Voraussetzungen (laut BPO)	alle Module des 1 6. Semesters
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Mündliche Präsentation und schriftliche Dokumentation
Lehr- und Lernmethoden	Bachelorarbeit außerhalb oder innerhalb der Hochschule
Modulverantwortliche(r)	Professoren/Dozenten der BT/BI/CT/UT

Die Studierenden sind in der Lage, ihre Bachelorarbeit in Firmen, Forschungsinstituten oder Arbeitsgruppen der Hochschule anzufertigen.

Lehrinhalte

Anfertigung der Bachelorarbeit in Firmen, Forschungsinstituten oder Arbeitsgruppen der Hochschule

Literatur

nach Thema verschieden

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
Professoren/Dozenten der BT, BI, CT, UT	Bachelorarbeit	11
Professoren/Dozenten der BT, BI, CT, UT	Kolloquium zur Bachelorarbeit	1

4.2 Wahlpflichtmodule

Modulbezeichnung	Bioverfahrenstechnik 3
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	3 (1 Semester)
Art	Wahlpflichtmodul
Studentische Arbeitsbelastung	30 h Kontaktzeit + 60 h Selbststudium
Voraussetzungen (laut BPO)	Praktikumsabschluss Bioverfahrenstechnik 1+2
Empf. Voraussetzungen	
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Experimentelle Arbeiten mit Kolloq und Protokollen
Lehr- und Lernmethoden	Praktikum
Modulverantwortliche(r)	K. Scharfenberg

Qualifikationsziele

Weitere Vertiefung der Kenntnisse und Fertigkeiten im praktischen Umgang mit Bioprozessen in verschiedenen Prozessführungen und angepassten Aufarbeitungstechniken.

Lehrinhalte

Herstellung unterschiedlicher biotechnologischer Produkte in Fermentationen mit Fedbatch- oder auch Konti. Je nach betrachtetem Prozess Zielsetzung in Richtung Prozessoptimierung oder Produkt-Aufarbeitung mit verschieden Aufschluß- und Aufarbeitungsmethoden und zugehöriger spezifischer Analytik

Literatur

Praktikumsskript

Literaturempfehlungen der Vorlesungen Fermentationstechnik und angewandte Mikrobiologie

Lehrveranstaltungen		
Dozenten/-innen Titel der Lehrveranstaltung		sws
K. Scharfenberg	Bioverfahrenstechnik 3	2

Modulbezeichnung	Grundlagen der Zellkulturtechnik
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	3 (1 Semester)
Art	Wahlpflichtmodul Vertiefung Biotechnologie
Studentische Arbeitsbelastung	30 h Kontaktzeit + 60 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Fermenttionstechnik, Bioverfahrenstechnik1
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Klausur 1 h oder mündliche Prüfung nach Wahl des Prüfers
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	K. Scharfenberg

Die Studierenden sollen Grundkentnisse zur Herstellung und Erhaltung von tierischen und pflanzlichen Gewebekulturen entwickeln, um praktische Aufgabenstellungen bearbeiten zu können. Anhand von ausgewählten Anwendungen werden die besonderen Eigenschaften höherer Zellen und die kritischen Aspekte ihrer Kultivierung bewußt gemacht. Das erworbene Wissen dient als Basis für den praktischen Umgang.

Lehrinhalte

Überblick über animale/humane und pflanzliche Gewebekulturtechnik; Apparative Voraussetzungen für die Kultivierung von Geweben und Zellen; Laborsicherheit und Steriltechnik; Kulturbedingungen (Physikochemische Parameter und Kultursubstrate); Methoden der Zellkultivierung; Produkt- und Prozessbeispiele aus der Zellkulturtechnik. Falls kein Praktikumsangebot möglich ist oder die Voraussetzungen nicht früh genug nachgewiesen werden, ersetzt dieses Modul das reguläre Modul "Grundlagen der Zellkulturtechnik mit Praxis".

Literatur

Skript-Material der Vorlesung

Gstraunthaler, G. Lindl, T.: Zell- und Gewebekultur; Springer, 2013

Freshney, R.I.: Culture of Animal Cells: A Manual of Basic Technique; John Wiley & Sons, 2010

LehrveranstaltungenDozenten/-innenTitel der LehrveranstaltungSWSK. ScharfenbergGrundlagen der Zellkulturtechnik2

Modulbezeichnung	Grundlagen der Zellkulturtechnik mit Praxis
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	5 (2 Semester)
Art	Wahlpflichtmodul Vertiefung Biotechnologie
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	Für Praktikumsanteil: Klausur Grundlagen der Zellkulturtech- nik, Praktikumsabschluss Bioverfahrenstechnik 1+2
Empf. Voraussetzungen	
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Klausur 1 h oder mündliche Prüfung nach Wahl des Prüfers sowie Experimentelle Arbeiten mit Berichten
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	K. Scharfenberg

Die Studierenden sollen Grundkentnisse zur Herstellung und Erhaltung von tierischen und pflanzlichen Gewebekulturen entwickeln, um praktische Aufgabenstellungen bearbeiten zu können. Anhand von ausgewählten Anwendungen werden die besonderen Eigenschaften höherer Zellen und die kritischen Aspekte ihrer Kultivierung bewußt gemacht. Das erworbene Wissen dient als Basis für den praktischen Umgang.

Lehrinhalte

Überblick über animale/humane und pflanzliche Gewebekulturtechnik; Apparative Voraussetzungen für die Kultivierung von Geweben und Zellen; Laborsicherheit und Steriltechnik; Kulturbedingungen (Physikochemische Parameter und Kultursubstrate); Methoden der Zellkultivierung; Produkt- und Prozessbeispiele aus der Zellkulturtechnik. Im Praktikumsangebot (soweit möglich) wird dies durch praktische Übungen und Experimente unterstützt. Falls die Voraussetzungen zur Teilnahme am Praktikum nicht früh genug nachgewiesen werden, kann die Vorlesung mit bestandener Klausur anerkannt werden als Modul "Grundlagen der Zellkulturtechnik".

Literatur

Skript-Material der Vorlesung

Gstraunthaler, G. Lindl, T.: Zell- und Gewebekultur; Springer, 2013

Freshney, R.I.: Culture of Animal Cells: A Manual of Basic Technique; John Wiley & Sons, 2010

Lehrveranstaltungen			
Dozenten/-innen Titel der Lehrveranstaltung S			
K. Scharfenberg	Grundlagen der Zellkulturtechnik	2	
K. Scharfenberg	Grundlagen der Zellkulturtechnik Praktikum	2	

Modulbezeichnung	Histologische Methoden
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	7 (1 Semester)
Art	Wahlpflichtmodul
Studentische Arbeitsbelastung	90 h Kontaktzeit + 120 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Modul Histologie
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Mündliche Präsentation und schriftliche Dokumentation, Erstellung und Dokumentation von Rechnerprogrammen
Lehr- und Lernmethoden	Praktikum
Modulverantwortliche(r)	G. Kauer

Die Studierenden werden in die Lage versetzt histologische Präparate (wahlweise aus der normalen oder pathologischen Histologie des Menschen aber auch der, veterinärmedizinischen und/oder botanischen Histologie) für eine optimale Merkmalsextraktion für die anzuwendende digitalen Bildsignalanalyse im Labor anzufertigen. Pathologische Merkmale (zum Beispiel pathologisch vergrößerte Zellkerne bei menschlich/tierischem Material, oder pathogene Infektionsprozesse bei botanischem Material) können erkannt und als Merkmale in den digitalen Bildvorlagen ideal dargestellt und ausgewertet werden. Auch cytologische Untersuchungsmethoden oder gewässertypologische Untersuchungen können, je nach Fragestellung und geplanter Merkmalsextraktion gewählt werden.

Lehrinhalte

Methoden der Bildverarbeitung auf die Bilddokumentationen anwenden. Methoden der GUI-Programmierung und Implementation von Algorithmen anwenden. Moderne mikroskopische Verfahren für die optimale Analyse mit Methoden der digitalen Bildsignalverarbeiung und -Analyse einsetzen und in praktischen Übungen anwenden.

Literatur

Romeis, Mikroskopische Technik, Spektrumverlag 2014 Gonzalez Woods: Digital Image Processing, Prentice Hall, 2002 Welsch, Lehrbuch der Histologie Elsevier, 2010

						Let	rve	eran	ısta	Itung	en	
_	_				 							

Dozenten/-innen	Titel der Lehrveranstaltung	sws
G. Kauer	Histologische Methoden, vertieft	6

Modulbezeichnung (Kürzel)	Interdisziplinäres Arbeiten (IARB)
Modulbezeichnung (eng.)	Working in Interdisciplinary Settings
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	2,5 (1 Semester)
Art	Wahlpflichtmodul
Studentische Arbeitsbelastung	35 h Kontaktzeit + 40 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BI, BET, BETPV, BMT
Prüfungsform und -dauer	Studienarbeit
Lehr- und Lernmethoden	Vorlesung, Studentische Arbeit
Modulverantwortliche(r)	M. Krüger-Basener

Studierende erkennen die aktuelle gesellschaftliche Herausforderung zur interdisziplinären Kooperation von Technik, Design, Architektur, Wirtschaft sowie der Gesundheits- und Sozialpädagogik. Durch die Bearbeitung von konkreten Fragestellungen erlernen sie zusammen mit Studierenden aus anderen Fachbereichen in Projekten die interdisziplinäre Zusammenarbeit am praktischen Beispiel.

Lehrinhalte

Gesellschaftliche Herausforderungen mit technischen Lösungen bewältigen. Notwendigkeiten, Bedarfe und Perspektiven von technischen Lösungen im interdisziplinären Kontext von Elektro- und Medientechnik, Informatik, Wirtschaft sowie Gesundheits- und Sozialpädagogik erkennen und nutzen, aktuelle Themen wie beispielsweise "Ambient Assisted Living und seine Anwendung in öffentlichen Gebäuden (Schulen etc.)" oder "Change Management bei der Einführung neuer Software" werden im interdisziplären Kontext bearbeitet und ggfs. die dazugehörende Technik mit und für spezifische Nutzer/innen-/Kundengruppen entwickelt.

Literatur

wird jeweils in der Veranstaltung bekannt gegeben

Lehrveranstaltungen				
Dozenten/-innen Titel der Lehrveranstaltung SWS				
M. Krüger-Basener	M. Krüger-Basener Neue Technik-Horizonte			

Modulbezeichnung	Internet-Programmierung
Modulbezeichnung (eng.)	Internet Programming
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	8 (1 Semester)
Art	Wahlpflichtmodul
Studentische Arbeitsbelastung	90 h Kontaktzeit + 150 h Selbststudium
Voraussetzungen (laut BPO)	Programmieren I & II
Empf. Voraussetzungen	Programmieren I & II
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Klausur 1,5h oder mündliche Prüfung plus Erstellung und Do- kumentation von Rechnerprogrammen
Lehr- und Lernmethoden	Vorlesung, Praktikum
Modulverantwortliche(r)	T. Schmidt

Die Studierenden kennen die Aufbau und die Verwendung des Protokolls HTTP und analysieren die Client-Server-Kommunikation. Sie können Kommunikationsfehler erkennen und beheben. Sie können den Apache-Webserver konfigurieren. Sie erstellen unter Verwendung von professionellen Techniken (OOP, Design-Pattern) PHP-Programme mit Datenbankanbindung. Sie analysieren und erstellen Reguläre Ausdrücke auch zur Absicherung des PHP-Programms bezüglich der Nutzereingaben.

Lehrinhalte

Die Grundlagen für die Client-Server-Programmierung werden vorgestellt. Hierzu gehören insbesondere HTTP und die Konfiguration des Apache Webservers. Anschließend wird die PHP-Programmierung behandelt, sodass die Studierenden eigene Internetanwendungen erstellen können und im Fehlerfall analysieren können.

Literatur

Kersken, S.: Apache2, Galileo Computing, 2005 Friedl, J.: Reguläre Ausdrücke, OReilly, 2007

Möhrke, C.: Besser PHP programmieren, Galileo Computing, 2008

Dozenten/-innen	Titel der Lehrveranstaltung	sws
T. Wilts, S. Wallner	Internet-Programmierung	4
T. Wilts, S. Wallner	Praktikum Internet-Programmierung	2

Modulbezeichnung	Mikrobiologie Praktikum 2
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	4 (1 Semester)
Art	Wahlpflichtmodul für BT und BI
Studentische Arbeitsbelastung	45 h Kontaktzeit + 75 h Selbststudium
Voraussetzungen (laut BPO)	Mikrobiologie Praktikum 1, Bestandene Klausur "Mikrobiologie 2" für Bl
Empf. Voraussetzungen	
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Experimentelle Arbeit und schriftliche Dokumentation
Lehr- und Lernmethoden	Praktikum mit Übung (als Blockveranstaltung in der ersten und zweiten Semesterhälfte mit 6 SWS)
Modulverantwortliche(r)	C. Gallert

Die Studierenden können unterschiedliche Mikroorganismen aus natürlichen Habitaten oder Lebensmitteln isolieren, beschreiben und identifizieren. Sie können grundlegende Stoffwechselvorgänge induzieren, analysieren und interpretieren und gewonnene Ergebnisse evaluieren.

Lehrinhalte

Es werden folgende Methoden und Fähigkeiten erworben und Versuche durchgeführt: Selbständiges Erstellen von benötigten sterilen Arbeitsmaterialien (feste & flüssige Nährmedien, Arbeitsgeräte) Arbeiten mit Anreicherungs- und Reinkulturen, Arbeiten unter der clean-bench, Wachstumsversuche, Enzyminduktion und Enzymnachweis, Biotests, Bestimmung der MHK und MBK von Desinfektionsmitteln.

Literatur

A. Brandis-Heep, E. Kothe, T. Zimmermann: Methoden der Mikrobiologie - Ein Praxishandbuch, Springer Spektrum, 2020

E. Bast: Mikrobiologische Methoden, Springer Spektrum, 3. Auflage, 2014.

A.Steinbüchel, F. B. Oppermann-Sanio: Mikrobiologisches Praktikum, Springer Spektrum, 2. Auflage, 2013.

Lehrveranstaltungen			
Dozenten/-innen Titel der Lehrveranstaltung SI			
C. Gallert	Praktikum Mikrobiologie 2	3	

Modulbezeichnung	Mischen und Rühren
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	3 (1 Semester)
Art	Wahlpflichtmodul
Studentische Arbeitsbelastung	30 h Kontaktzeit + 60 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Mechanische Verfahrenstechnik
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	1,0 h oder mündliche Prüfung
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	R. Habermann

Fachkompetenz

Vermittlung der Grundbegriffe der Mischtechnik; Wissen über die unterschiedlichen Feststoffmisch- und Rührsysteme und Verständnis über deren Funktionsweise.

Methodenkompetenz

Befähigung zur selbständigen Planung und Durchführung von Mischgüte-Analysen unter Nutzung der erforderlichen Grundlagen der Statistik. Anwendung der Grundprinzipien des Scale-Ups von Misch- und Rührprozessen.

Personale und soziale Kompetenz

Entwicklung eines Bewusstseins über die Bedeutung der Misch- und Rührtechnik für die Verfahrenstechnik und Ausführung ihrer Tätigkeiten mit hohem Verantwortungsbewusstsein.

Übergreifende Handlungskompetenz

Kooperation mit Fachkundigen anderer Disziplinen, mit Kunden und Lieferanten, ggf. auch im Ausland, und Vermittlung der dazu notwendigen Kommunikations- und ggf. Sprachkenntnisse.

Lehrinhalte

Begriffe und Definition der Misch- und Rührtechnik, Betrachtung ausgewählter Misch- und Rührsysteme hinsichtlich ihrer Funktion und Anwendung, Betrieb und die Mischaufgaben, Vorgehen bei der Skalierung von Misch- und Rührapparaten.

Literatur

Kraume, M.: Transportvorgänge in der Verfahrenstechnik, Springer Vieweg, Heidelberg, 2020 Stieß, M.: Mechanische Verfahrenstechnik II, Springer, Heidelberg, 2009 Schubert, H.: Handbuch der Mechanischen Verfahrenstechnik I + II, Wiley-VCH, Weinheim, 2003

Lehrveranstaltungen		
Dozenten/-innen Titel der Lehrveranstaltung		sws
R. Habermann	Vorlesung Mischen und Rühren	2

Modulbezeichnung	Modellierung chemischer Reaktoren (Ba)
Modulbezeichnung (eng.)	Chemical Reactor Modeling
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Wahlpflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Reaktionstechnik, Mathematik 3
Verwendbarkeit	BBTBI, BCTUT, BSES
Prüfungsform und -dauer	Erstellung und Dokumentation von Rechnerprogrammen
Lehr- und Lernmethoden	Vorlesung, Studentische Arbeit
Modulverantwortliche(r)	J. Hüppmeier

Die Studierenden können reaktionstechnische Probleme in mathematischen Modellen formulieren und mit Hilfe geeigneter Software Lösungen für diese Probleme erarbeiten. Sie sind weiterhin in der Lage, typische Optimierungsaufgaben in der Reaktionstechnik zu lösen.

Lehrinhalte

Aufstellen von Massen- und Energiebilanzen, Grundlegende Reaktormodelle, Numerisches Lösen von gewöhnlichen und partiellen Differentialgleichungen, Numerische Optimierung, Experimentgestützte Modellierung

Literatur

G. Emig, E. Klemm, Chemische Reaktionstechnik, Springer Verlag 2017

Löwe, A., Chemische Reaktionstechnik mit Matlab und Simulink

Matlab OnRamp (https://de.mathworks.com/learn/tutorials/matlab-onramp.html)

Dozenten/-innen	Titel der Lehrveranstaltung	sws
J. Hüppmeier	Modellierung chemischer Reaktoren (Ba)	2
J. Hüppmeier	Projekt Reaktormodell	2

Modulbezeichnung	Nachwachsende Rohstoffe
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Wahlpflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Mündliche Prüfung
Lehr- und Lernmethoden	Vorlesung, Praktikum
Modulverantwortliche(r)	M. Rüsch gen. Klaas

Die Studierenden kennen wichtige Industriepflanzen als Lieferanten nachwachsender Rohstoffe, Aufbau und chemische Zusammensetzung der Rohstoffe wie z.B. Stärke, Cellulose, Öle und Fette. Sie haben Kenntnis über wichtige Einsatzfelder nachwachsender Rohstoffe in der stofflichen und energetischen Nutzung.

Lehrinhalte

Die Vorlesung vermittelt einen Überblick über das Thema "Nachwachsende Rohstoffe". Vorgestellt werden eine Vielzahl von Ölpflanzen, Stärke-/Zuckerpflanzen, Eiweißpflanzen, Faserpflanzen, die daraus gewonnenen Rohstoffe und deren chemische Zusammensetzung, aktuelle und optionale Nutzung (Biokunststoffe, Biodiesel, BTL etc.).

Literatur

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
M. Rüsch gen. Klaas	Vorlesung Nachwachsende Rohstoffe	2
M. Rüsch gen. Klaas	Praktikum Nachwachsende Rohstoffe	2

Modulbezeichnung	Naturstoffe
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	3 (1 Semester)
Art	Wahlpflichtmodul, nicht wählbar für CT
Studentische Arbeitsbelastung	35 h Kontaktzeit + 55 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Organische Chemie
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Klausur 1 h oder mündliche Prüfung
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	H. Meyer

Die Studierenden kennen wichtige Naturstoffe, ihr Vorkommen, ihren chemischen Aufbau, charakteristische Eigenschaften und Reaktionen sowie grundlegende Methoden der Naturstoffanalytik. Sie erhalten einen Einblick in technische Verfahren zur Gewinnung und Verwendung der Naturstoffe.

Lehrinhalte

Die Vorlesung "Naturstoffe" stellt Chemie und typische Eigenschaften der Kohlenhydrate, Lipide, Proteine und wichtiger sekundärer Pflanzenstoffe vor. Vorkommen, Gewinnung, grundlegende Analytik sowie Beispiele zur Verwendung der Naturstoffe runden das Bild ab.

Literatur

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
H. Meyer	Vorlesung Naturstoffe	2

Modulbezeichnung	Pflanzlicher Sekundär Metabolismus
Modulbezeichnung (eng.)	Plant Secondary Setabolism
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	4 (1 Semester)
Art	Wahlpflichtmodul
Studentische Arbeitsbelastung	45 h Kontaktzeit + 75 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Allgemeine Biologie, Organische Chemie, Biochemie (Vorlesung und Praktikum)
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Mündliche Präsentation und Klausur 1 h
Lehr- und Lernmethoden	Vorlesung, Seminar
Modulverantwortliche(r)	J. Reimer

Vertiefende Kenntnisse über Sekundär Metabolismus in Pflanzen. Studierende kennen verschiedene Klassen sekundärer Metabolite, ihre biologischen Synthese Wege und wo in der Zelle diese synthetisiert werden. Sie kennen Auslöser für die Produktion sekundärer Metabolite und den Nutzen dieser für den Menschen.

Lehrinhalte

Unterschiede zwischen primärem und sekundärem Metabolismus sowie abiotischen und biotischen Stressen; Biosynthetische Produktion von Phenolen, schwefel-haltigen Verbindungen, Terpenen, Alkaloiden, Acetylen und Psoralen; Vorkommen verschiedener sekundärer Metabolite; Einfluss der sekundär Metabolite auf den menschlichen Organismus.

Literatur

Skript der Vorlesung

Alain Crozier: Plant Secondary Metabolites; Wiley-Blackwell Peter Nuhn: Naturstoffchemie; S. Hirzel Verlag Stuttgart Leipzig

Gerhard Habermehl, Peter Hammann: Naturstoffchemie: Eine Einführung; Springer

Dozenten/-innen	Titel der Lehrveranstaltung	sws
J. Reimer	Vorlesung Pflanzlicher Sekundär Metabolismus	1,5 SWS
J. Reimer	Seminar Pflanzlicher Sekundär Metabolismus	1,5 SWS

Modulbezeichnung	Polymere
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	2 (1 Semester)
Art	Wahlpflichtmodul nur BaUT,BaBT,BaEE
Studentische Arbeitsbelastung	30 h Kontaktzeit + 30 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BCTUT, BEE
Prüfungsform und -dauer	Mündliche Prüfung (20 min)
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	M. Rüsch gen. Klaas

Die Studierenden kennen die wichtigsten synthetischen Polymere, die Reaktionen zu ihrer Herstellung, die Technologie ihrer Verarbeitung, ihre Anwendungsfelder sowie die Methoden der Polymeranalytik.

Lehrinhalte

Die Vorlesung vermittelt einen Überblick über das Thema "Polymere". Vorgestellt wird zunächst die Chemie und Technologie ihrer Herstellung. Behandelt werden die wichtigsten Polymere PE, PP, PS, PVC, PUs, Polyester, Polyamide und Polyurethane, ihre Eigenschaften und ihre Verwendung sowie die wichtigsten Methoden der Polymeranalytik.

Literatur

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
M. Rüsch gen. Klaas	Vorlesung Polymere	2

Modulbezeichnung	Polymere Praktikum
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	6 (1 Semester)
Art	Wahlpflichtmodul BaCTUT, BaBT, BaEE
Studentische Arbeitsbelastung	60 h Kontaktzeit + 120 h Selbststudium
Voraussetzungen (laut BPO)	Polymere
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Experimentelle Arbeit uund schriftliche Dokumentation
Lehr- und Lernmethoden	Praktikum
Modulverantwortliche(r)	M. Rüsch gen. Klaas

Lehrinhalte

Versuche aus den Bereichen Chemie (Analytik, Synthese), Physik (Prüfmethoden), Technologien (Verarbeitung, Recycling) von natürlichen und synthetischen polymeren Stoffen. Projektbearbeitung nach Absprache.

Literatur

S. Sandler u. a.: Polymer Synthesis and Characterization, Academic Press, 1998.

W. Grellmann, S. Seidler: Kunststoffprüfung, Hanser, 2005.

Dozenten/-innen	Titel der Lehrveranstaltung	sws
M. Rüsch gen. Klaas	Praktikum Polymere	4

Modulbezeichnung	Projekt Bioinformatik	
Semester (Häufigkeit)	WPM (nach Bedarf)	
ECTS-Punkte (Dauer)	15 (1 Semester)	
Art	Wahlpflichtmodul Bioinformatik	
Studentische Arbeitsbelastung	60 h Kontaktzeit + 150 h Selbststudium	
Voraussetzungen (laut BPO)	Bioinformatik 1	
Empf. Voraussetzungen	Programmieren 1, Programmieren 2	
Verwendbarkeit	ВВТВІ	
Prüfungsform und -dauer	Projektbericht oder Referat oder Rechnerprogramm oder mündliche Prüfung	
Lehr- und Lernmethoden	Projekt	
Modulverantwortliche(r)	T. Schmidt	

Der Student soll anhand mit dem Dozenten vereinbarter Projektziele seine Fähigkeiten vertiefen, Probleme der Bioinformatik möglichst selbständig zu lösen.

Lehrinhalte

Aktuelle Fragestellungen aus den Bereichen der Bioinformatik.

Literatur

Mount: Bioinformatics Sequence and Genome Analysis, Cold Spring Harbor Lab Press, 2004 Aktuelle Fachartikel zum Beispiel aus Nature, Science, Genome Biology, PNAS, NAR oder Bioinformatics

LehrveranstaltungenDozenten/-innenTitel der LehrveranstaltungSWSSchmidtProjekt Bioinformatik4

Modulbezeichnung	Prozessmodellierung & Energieoptimierung
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	3 (1 Semester)
Art	Wahlpflichtmodul
Studentische Arbeitsbelastung	45 h Kontaktzeit + 45 h Selbststudium
Voraussetzungen (laut BPO)	Allgemeine Chemie
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Klausur 1,5h oder mündliche Prüfung
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	S. Steinigeweg

Die Studierenden sind in der Lage einen gegebenen biologische, energierelevanten, umwelttechnischen oder chemischen Prozess zu modellieren und energetisch zu optimieren. Sie sind mit den Grundlagen der Modellbildung und der Energieoptimierung vertraut und können diese an Beispielen aus der Praxis anwenden.

Lehrinhalte

Die Studierenden erlernen die Grundlagen der Modellbildung sowie die Funktionsweise von Prozesssimulatoren aus dem industriellen Umfeld. Sie können von Prozessen eine Massen- und Energiebilanz erstellen. Sie erlernen die theoretischen Grundlagen der Pinch-Methoden und üben dies im Praktikum an realen Beispielen aus der Industrie.

Literatur

Seider, W.D. et al: Process Design Principles, John Wiley, 2010 Kemp, I.C.: Pinch Analysis and Process Integration, Elsevier, 2007 Watter, H.: Nachhaltige Energiesysteme, Vieweg-Teubner, 2015

Lehrveranstaltungen		
Dozenten/-innen Titel der Lehrveranstaltung		sws
W. Paul, S. Steinigeweg	Prozessmodellierung & Energieoptimierung Vorlesung	3

Modulbezeichnung	Prozessmodellierung & Energieoptimierung Praktikum
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	3 (1 Semester)
Art	Wahlpflichtmodul
Studentische Arbeitsbelastung	30 h Kontaktzeit + 60 h Selbststudium
Voraussetzungen (laut BPO)	Allgemeine Chemie
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Mündliche Präsentation und schriftliche Dokumentation
Lehr- und Lernmethoden	Praktikum
Modulverantwortliche(r)	S. Steinigeweg

Die Studierenden sind in der Lage einen gegebenen biologische, energierelevanten, umwelttechnischen oder chemischen Prozess mittels eines in der Industrie eingesetzten Softwaresystems in zu modellieren und energetisch zu optimieren. Sie können fehlende Informationen durch gezielte Messungen im Labor beschaffen.

Lehrinhalte

Die Studierenden setzen die erlernten Grundlagen der Modellbildung sowie der Energieoptimierung an einem industriellen Praxisbeispiel um. Sie ermitteln unter Anleitung fehlende Informationen, planen die Messung im Labor und führen diese durch. Sie können von Prozessen eine Massen- und Energiebilanz erstellen. Sie sind mit Sensitivitätsanalysen und Prozessbewertungen vertraut.

Literatur

Seider, W.D. et al: Process Design Principles, John Wiley, 2010 Kemp, I.C.: Pinch Analysis and Process Integration, Elsevier, 2007 Watter, H.: Nachhaltige Energiesysteme, Vieweg-Teubner, 2015

Lehrveranstaltungen		
Dozenten/-innen Titel der Lehrveranstaltung S		sws
W. Paul, S. Steinigeweg	Prozessmodellierung & Energieoptimierung Praktikum	2

Modulbezeichnung	Studienarbeiten in der Biotechnologie
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	3 bis max. 6 (3 Semester)
Art	Wahlpflichtmodul
Studentische Arbeitsbelastung	15 h Kontaktzeit + 60 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	gemäß Vorgaben der/des Dozentin / Dozenten, die die Themen ausschreiben
Verwendbarkeit	ВВТВІ
Prüfungsform und -dauer	Studienarbeit/experimentelle Arbeit mit Bericht
Lehr- und Lernmethoden	Studentische Projekte als Einzelarbeit oder in Zweiergrup- pen zu fachlichen Themen von maximal 2 Projekten a 3 CP (der Umfang wird nach Abschluss durch die Dozenten mit der Abschluss-Bestätigung an das Prüfungsamt rückgemel- det)
Modulverantwortliche(r)	K. Scharfenberg

Weiterentwicklung der Fähigkeiten zum selbstständigen experimentellen Arbeiten.

Lehrinhalte

Die Studierenden sollen Experimente an eng vorgegebenen fachlichen Themenstellungen als Leistung im Schwerpunkt der Biotechnologie durchführen. Die Inhalte richten sich nach dem jeweiligen durch einen Dozenten der BT vorgegebenen Rahmen.

Literatur

Richtet sich nach dem jeweiligen durch eine Dozentin / einen Dozenten der BT vorgegebenen Thema.

Lehrveranstaltungen		
Dozenten/-innen Titel der Lehrveranstaltung SW		
DozentInnen der BT Studienarbeiten im Schwerpunkt		2 oder 4

Modulbezeichnung	Technische Nutzung von Mikroorganismen in der Umweltbiotechnologie
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Wahlpflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Vorlesung Mikrobiologie 2
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Klausur 1 h oder mündliche Prüfung, Mündliche Präsentation
Lehr- und Lernmethoden	Vorlesung, Exkursion und Vortrag
Modulverantwortliche(r)	C. Gallert

Die Studierenden können biotechnologische Potentiale von Mikroorganismen anhand der jeweiligen Stoffwechselleistungen bewerten. Sie kennen die Nutzung und Einsatzgebiete von Mikroorganismen in der Umweltbiotechnologie. Es werden Exkursionen zu ausgewählten Praxisbeispielen der Umweltbiotechnologie durchgeführt und durch einen Seminarvortrag vertieft.

Lehrinhalte

Es werden Grundlagen sowie technische Anwendungen von Mikroorganismen in folgenden Bereichen der Umweltbiotechnologie vermittelt: Abwasserreinigung, Schlammfaulung, Kompostierung, Vergärung/Anaerobtechnologie, Bodensanierung, Mikrobielle Erzlaugung, Abluftreinigung.

Literatur

- H. Sahm: Industrielle Mikrobiologie, Springer Spektrum Verlag Berlin Heidelberg, 2013.
- W. Reineke, M. Schlömann: Umweltmikrobiologie, Spektrum Verlag, 2. Auflage 2015.
- G. Antranikian: Angewandte Mikrobiologie, Springer Verlag Berlin Heidelberg, 2006.

Lehrveranstaltunger

Dozenten/-innen	Titel der Lehrveranstaltung	sws
C. Gallert	Vorlesung Technische Nutzung von Mikroorganismen in der Umweltbiotechnologie	2
C. Gallert	Exkursion und Seminarbeitrag	2

Modulbezeichnung	Toxikologie (BA)
Semester (Häufigkeit)	WPM (nach Bedarf)
ECTS-Punkte (Dauer)	2 (1 Semester)
Art	Wahlpflichtmodul
Studentische Arbeitsbelastung	35 h Kontaktzeit + 40 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BBTBI, BCTUT
Prüfungsform und -dauer	Klausur 1h oder mündliche Prüfung
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	M. Batke

Die Studierenden kennen die Grundlagen der Toxikologie. Sie haben ein Verständnis für toxikologische Bewertungen von Chemikalien ausgehend von Einstufung und Kennzeichnung bis hin zu spezieller Zielorgantoxizität entwickelt.

Lehrinhalte

Grundlagen zu: -Einstufung und Kennzeichnung von Chemikalien, -LD50-Wert, -ADME-Model: Aufnahme, Verteilung, Metabolismus und Ausscheidung von Fremdstoffen,- Fremdstoffmetabolismus, -Mutagenität und Kanzerogenität, -reaktive Sauerstoffspezies, - Threshold of Toxicological Concern, - Tierversuche nach OECD-Guidelines, - Spezielle Zielorgantoxizität (Leber, Niere, Lunge, Blut, Knochenmark, Nerven, Immunsystem), Reproduktionstoxizität, Chemikalienbewertung (MAK, AGW)

Literatur

Dekant, W.: Toxikologie: Eine Einführung für Chemiker, Biologen und Pharmazeuten, Spektrum, 2010

Dozenten/-innen	Titel der Lehrveranstaltung	sws
M.Batke	Toxikologie	2