Σχέσεις Ισοδυναμίας

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Σχέση Ισοδυναμίας

- □ Σχέση **Ισοδυναμίας**: ανακλαστική, συμμετρική, και μεταβατική.
 - Ανθρωποι: ίδιο επώνυμο, κατοικούν ίδια πολυκατοικία, ...
 - Πραγματικοί αριθμοί: |a| = |β|, a β είναι ακέραιος, ...
 - \blacksquare Φυσικοί αριθμοί: $a \equiv \beta \pmod{n}$
- Ποιες από τις παρακάτω είναι σχέσεις ισοδυναμίας;

Κλάση Ισοδυναμίας

- \square Θεωρούμε σχέση ισοδυναμίας $R \subseteq A \times A$.
- □ Κλάση ισοδυναμίας στοιχείου α (συμβ. [α]_R ή απλά [α]):
 - $[a]_R = {\beta \in A: (a, β) \in R}$ (στοιχεία που σχετίζονται με a).
 - **Αντιπρόσωπος κλάσης** $[a]_R$: οποιοδήποτε στοιχείο $\beta \in [a]_R$.
 - Aνακλαστική: α ∈ [α]_R.
 - **Σ**υμμετρική: Av $\beta \in [a]_R$, τότε και $\alpha \in [\beta]_R$.
 - Μεταβατική: Αν β, γ ∈ [α]_R, τότε (β, γ) ∈ R.

Διαμέριση ως Σχέση Ισοδυναμίας

- Διαμέριση Α: συλλογή μη κενών υποσυνόλων $\{A_1, ..., A_k\}$:
 - **A**νά δύο ξένα μεταξύ τους $(A_i \cap A_j = \emptyset)$ για κάθε $i \neq j$.
 - **E**νωσή τους είναι το A $(A_1 \cup ... \cup A_k = A)$.
 - A₁, ..., A_k καλούνται <mark>σύμπλοκα</mark> της διαμέρισης.
- Αντιστοιχία μεταξύ διαμερίσεων συνόλου Α και σχέσεων ισοδυναμίας στο Α.
- Διαμέριση $\{A_1, ..., A_k\}$. Σχέση $R = \{(a, β): a, β \in A_i\}$ αποτελεί σχέση ισοδυναμίας.
 - Ανακλαστική και συμμετρική (προφανές από ορισμό R).
 - **Μεταβατική:** Av a, $\beta \in A_i$ και β , $\gamma \in A_i$, τότε και a, $\gamma \in A_i$.

Σχέση Ισοδυναμίας ως Διαμέριση

- Κλάσεις σχέσης ισοδυναμίας R αποτελούν διαμέριση A.
- □ Για κάθε α, β ∈ Α, είτε [α] = [β] είτε [α] ∩ [β] = ∅, (και βέβαια [α], [β] μη κενά).
 - Απαγωγή σε άτοπο: έστω [a] \neq [β] και [a] \cap [β] \neq Ø.
 - $X\beta$ τγ., υποθέτουμε ότι [β] [α] ≠ ∅.
 - Στοιχείο γ ∈ [β], αλλά γ ∉ [α].
 - Θεωρούμε στοιχείο $\delta \in [a] \cap [\beta]$.
 - $(\delta, \beta) \in R$, αφού $(\beta, \delta) \in R$ και συμμετρική, και $(\beta, \gamma) \in R$.
 - \square Μεταβατική: $(\delta, \gamma) \in \mathbb{R}$.
 - - \square Μεταβατική (a, y) ∈ R. Δηλαδή y ∈ [a], άτοπο!
- □ Διαφορετικές κλάσεις ισοδυναμίες: μη κενές, ξένες ανά δυο, και ως ένωση έχουν Α (κάθε στοιχείο ανήκει σε κλάση).

Εκλέπτυνση Ισοδυναμίας

- \square R_1 και R_2 σχέσεις ισοδυναμίας στο σύνολο A, Π_1 και Π_2 αντίστοιχεις διαμερίσεις του A.
- \square Π_1 εκλέπτυνση της Π_2 ($\Pi_1 \leq \Pi_2$) αν $R_1 \subseteq R_2$.
 - **Σ**τοιχεία στο ίδιο σύμπλοκο Π_1 ανήκουν στο ίδιο σύμπλοκο Π_2 .
 - Π.χ. κατοικούν στο ίδιο διαμέρισμα, στην ίδια πολυκατοικία,
 στο ίδιο οικοδομικό τετράγωνο, στην ίδια πόλη.
- \square Γινόμενο $\Pi_1 \cdot \Pi_2$: διαμέριση της σχέσης ισοδυναμίας $R_1 \cap R_2$.
 - Στοιχεία στο ίδιο σύμπλοκο π₁ και π₂, στο ίδιο σύμπλοκο π₁· π₂
 - Γινόμενο $\Pi_1 \cdot \Pi_2$ αποτελεί εκλέπτυνση των Π_1 και Π_2 .
- \square Άθροισμα $\Pi_1 + \Pi_2$: διαμέριση της σχέσης ισοδυναμίας $(R_1 \cup R_2)^*$.
 - **Σ**τοιχεία στο ίδιο σύμπλοκο Π_1 ή Π_2 , στο ίδιο σύμπλοκο $\Pi_1 + \Pi_2$
 - \blacksquare Π_1 και Π_2 αποτελούν εκλεπτύνσεις του αθροίσματος $\Pi_1 + \Pi_2$.