Unit 5: Trigonometry

Subunit 5.5: Solving trigonometric equations

1 (a)	Solve the equation $3 \tan^2 x - 5 \tan x - 2 = 0$ for $0^\circ \le x \le 180^\circ$.	[4]
(b)	Find the set of values of k for which the equation $3 \tan^2 x - 5 \tan x + k = 0$ has no solution	
		•••••
(c)	For the equation $3 \tan^2 x - 5 \tan x + k = 0$, state the value of k for which there are three in the interval $0^{\circ} \le x \le 180^{\circ}$, and find these solutions.	e solutions
	in the finerval of \$1 \$100, and find these solutions.	[3]

5 Solve the equation

$\tan \theta + 3 \sin \theta$	$n\theta + 2$	2
$\tan \theta - 3 \sin \theta$	$\frac{1}{n\theta+1}$	_

for $0^{\circ} \le \theta \le 90^{\circ}$.	[5]

Solve the equation $\frac{\tan \theta + 2\sin \theta}{\tan \theta - 2\sin \theta} = 3$ for $0^{\circ} < \theta < 180^{\circ}$.	[4]

(a)	Show that	SIII O +	Z COS O	$\sin \theta - 2 \cos \theta$	9_ 4			[4]
(a)	Show that	$\cos \theta$ –	$-2\sin\theta$	$-\frac{\sin\theta - 2\cos\theta}{\cos\theta + 2\sin\theta}$	$\frac{\partial}{\partial \theta} = \frac{1}{5\cos^2\theta - 4}$	- .		[+]
			• • • • • • • • • • • • • • • • • • • •				•••••	
	•••••			• • • • • • • • • • • • • • • • • • • •				
	•••••		•••••					
	••••••							
					•••••			
	•••••							
	•••••		•••••					
			•••••					
	•••••							
				•••••			•••••	
	•••••							
(b)	Hence sol	ve the e	quation	$\sin \theta + 2\cos \theta$	$\sin \theta - 2 \cos \theta$	$\frac{\theta}{\theta} = 5 \text{ for } 0^{\circ} < \theta$) < 180°	[3]
(6)	Tience sor	ve the e	quation	$\cos \theta - 2 \sin \theta$	$\cos \theta + 2 \sin \theta$	θ = 3 for θ < θ	. 100 .	[5]
	•••••		• • • • • • • • • • • • • • • • • • • •					

(a) By first obtaining a quadratic equation in $\cos \theta$, solve the equation $\tan \theta \sin \theta = 1$ for $0^{\circ} < \theta < 360^{\circ}$. [5] **(b)** Show that $\frac{\tan \theta}{\sin \theta} - \frac{\sin \theta}{\tan \theta} \equiv \tan \theta \sin \theta$. [3]

.....

	Show that $3 \tan^2 \theta + 5 \sin^2 \theta \equiv \frac{8 \sin^2 \theta - 5 \sin^4 \theta}{1 - \sin^2 \theta}$.	
		•••••
(b)	Hence solve the equation $3 \tan^2 \theta + 5 \sin^2 \theta = 9$ for $0^{\circ} < \theta < 270^{\circ}$.	

DO NOT WRITE IN THIS I

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

WRITE IN THIS MARGIN

	Express the equation $3\cos\theta = 8\tan\theta$ as a quadratic equation in $\sin\theta$.	[3]
b)		
	Hence find the acute angle, in degrees, for which $3\cos\theta = 8\tan\theta$.	[2]
	Hence find the acute angle, in degrees, for which $3\cos\theta = 8\tan\theta$.	[2]
	Hence find the acute angle, in degrees, for which $3\cos\theta = 8\tan\theta$.	[2]
	Hence find the acute angle, in degrees, for which $3\cos\theta = 8\tan\theta$.	

(0)	Show that $\tan \theta$ $\tan \theta$	_ 2	[4]
(a)	Show that $\frac{\tan \theta}{1 + \cos \theta} + \frac{\tan \theta}{1 - \cos \theta}$	$\frac{\partial}{\partial t} = \frac{1}{\sin \theta \cos \theta}$.	[4]
	tan		
(b)	Hence solve the equation $\frac{\tan x}{1+c}$	$\frac{\theta}{\cos \theta} + \frac{\tan \theta}{1 - \cos \theta} = \frac{6}{\tan \theta}$ for $0^{\circ} < \theta < 180^{\circ}$.	[4]

(b)

(c)

(a) Show that the equation

$$\frac{\tan x + \sin x}{\tan x - \sin x} = k,$$

where k is a constant, may be expre	essed as	
	$\frac{1+\cos x}{1-\cos x}=k.$	[2]
Hence express $\cos x$ in terms of k .		[2]
Hence solve the equation $\frac{\tan x + \sin x}{\tan x - \sin x}$	$\frac{n x}{n x} = 4 \text{ for } -\pi < x < \pi.$	[2]

(a)	The curve $y = \sin x$ is transformed to the curve $y = 4\sin(\frac{1}{2}x - 30^{\circ})$.	
	Describe fully a sequence of transformations that have been combined, making clear the in which the transformations are applied.	e order [5]
(b)	Find the exact solutions of the equation $4\sin(\frac{1}{2}x - 30^\circ) = 2\sqrt{2}$ for $0^\circ \le x \le 360^\circ$.	[3]

(e)	Given that $k = 3$, find the exact solutions of the equation $f(x) = 0$.	[5
(a)	Given that $k = 5$, find the exact solutions of the equation $T(x) = 0$.	[3
		••••••
		••••••
,)	Use the quadratic formula to show that, when $k > 5$, the equation $f(x) = 0$ has no so	olutions [5]
,	Use the quadratic formula to show that, when $k > 3$, the equation $T(k) = 0$ has no se	orations. [5]

Solve the equation $4 \sin \theta + \tan \theta = 0$ for $0^{\circ} < \theta < 180^{\circ}$.	[3]

(a)	(i)	By first expanding $(\cos \theta + \sin \theta)^2$, find the three solutions of the equation	
		$(\cos\theta + \sin\theta)^2 = 1$	
		for $0 \le \theta \le \pi$.	[3]
	(ii)	Hence verify that the only solutions of the equation $\cos \theta + \sin \theta = 1$ for $0 \le 0$ and $\frac{1}{2}\pi$.	[2]
(b)	Prov	we the identity $\frac{\sin \theta}{\cos \theta + \sin \theta} + \frac{1 - \cos \theta}{\cos \theta - \sin \theta} \equiv \frac{\cos \theta + \sin \theta - 1}{1 - 2\sin^2 \theta}$.	[3]

(b)

(a)

Show that the equation
$3\tan^2 x - 3\sin^2 x - 4 = 0$
may be expressed in the form $a\cos^4 x + b\cos^2 x + c = 0$, where a , b and c are constants to be found.
Hence solve the equation $3 \tan^2 x - 3 \sin^2 x - 4 = 0$ for $0^\circ \le x \le 180^\circ$. [4]

3	(a)	Show that the equation $\frac{7 \tan \theta}{\cos \theta} + 12 = 0$ can be expressed as	
		$12\sin^2\theta - 7\sin\theta - 12 = 0.$	[3]
	(b)	Hence solve the equation $\frac{7 \tan \theta}{\cos \theta} + 12 = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$.	[3]

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

RITE IN THIS MARGIN

(a)	Show the $a\sin^2\theta +$		-	-						written	in	the	form [3]
							•••••	 	 		•••••		
							•••••	 	 				
							•••••	 	 				
								 	 		•••••		
							•••••	 	 	•••••	•••••		
								 	 		•••••		
								 	 	•••••			
(b)	Hence so	lve the	equation	on cos	2x(71	tan 2x -	- 5 cos			80°.			[3]
							•••••	 	 				
						•••••		 	 				
							•••••	 	 				
		•••••				•••••	•••••	 •••••	 •••••		•••••		
						•••••		 	 		•••••		
							•••••	 	 				
							•••••	 •••••	 	•••••	•••••		

DO NOT WRITE IN THIS I	1	Solve the equation $6 \sin \theta = 1 + \frac{2}{\sin \theta}$ for $-180^{\circ} < \theta < 180^{\circ}$.	[4]
WRITE			
O NOT			
DO NOT WRITE IN THIS MARGIN			
/RITE I			
NOT			
00			
DO NOT WRITE IN THIS MARGIN			
00			
MARGIN			
DO NOT WRITE IN THIS MAF			
NIS			
S MAR			
WRITE IN THIS MARGIN			
WRITE			