6998-2 Advanced Machine Learning for Personalization Home Work #2

va2361: Vishal Anand

March 25, 2018

Contextual bandit: LinUCB

UNI: va2361

Max Percentage: 94.762%

α search			
α	Cumulative-Take-Rate	Reward	Match
$1/\sqrt{t}$	0.91763	947	1032
$0.1/\sqrt{t}$	0.94589	979	1035
$0.09/\sqrt{t}$	0.94762	977	1031
$8.08/\sqrt{t}$	0.94547	971	1027
$0.085/\sqrt{t}$	0.94731	971	1025
$0.095/\sqrt{t}$	0.94762	977	1031
$10.088/\sqrt{t}$	0.60176	615	1022
0.5088/t	0.91185	931	1021
5.5088/t	0.93641	972	1038
3.6088/t	0.93695	966	1031
50.6088/t	0.91023	943	1036
50.6088/2t	0.91779	949	1034
$25.6088/(\sqrt{t}+2t)$	0.93030	961	1033
10.6088/ (\sqrt{t}) +2t	0.93743	974	1039
$18.6088/(\sqrt{t}+t^3)$	0.92210	947	1027
$0.085/t^{0.25}$	0.92843	960	1034
$0.0085/t^{0.25}$	0.94680	979	1034
$0.0085/t^{0.125}$	0.94731	971	1025
$0.0085/t^{0.2975}$	0.94498	979	1036
$0.0085/t^{0.2999}$	0.94083	970	1031

Table 1: Alphas and Cumulative-Take-Rates

Algorithm 1 LinUCB with disjoint linear models modified for current dataset

```
1: Inputs: \alpha \in \mathbb{R}_+
 2: for t = 1, 2, 3, ..., T do
            Observe features of all arms a \in \mathbb{A}_t : x_{t,a} \in \mathbb{R}^d
 4:
           for all a \in \mathbb{A}_t do
                 if a is new then
 5:
                       A_a \leftarrow I_d (d-dimensional identity matrix)
 6:
                       b_a \leftarrow 0_{d \times 1} (d-dimensional zero matrix)
 7:
                 end if
 8:
                 \hat{\boldsymbol{\theta}} \leftarrow \mathbb{A}_a^{-1} b_a
 9:
                 p_{t,a} \leftarrow \hat{\boldsymbol{\theta}}^T x_t + \alpha \sqrt{x_t^T \mathbb{A}_a^{-1} x_t}
10:
           end for
11:
           Choose arm a_t = \arg max_a \in \mathbb{A}_t p_{t,a} with ties broken arbitrarily, and observe a real-
12:
      valued payoff r_t
           \mathbb{A}_{a_t} \leftarrow \mathbb{A}_{a_t} + x_t x_t^T
13:
           b_{a_t} \leftarrow b_{a_t} + r_t x_t
14:
15: end for
```

Algorithm 2 Policy evaluator (with finite data stream)

```
1: bandit algorithm A; stream of events S of length L
 2: h_0 \leftarrow \emptyset An initially empty history
 3: \hat{\mathbb{G}}_A \leftarrow 0 An initially zero total payoff
 4: T \leftarrow 0 An initially zero counter of valid events
 5: for t = 1, 2, 3, ..., T do
         Get the t-th event (x, a, r_a) from S
         if A(h_{t-1}, x) = a then
 7:
              h_t \leftarrow CONCATENATE(h_{t-1}, (a, a, r_a))
 8:
              \hat{\mathbb{G}}_A \leftarrow \hat{\mathbb{G}}_A + r_a
 9:
              T \leftarrow T + 1
10:
              b_a \leftarrow 0_{d \times 1} (d-dimensional zero matrix)
11:
12:
         else
13:
              h_t \leftarrow h_{t-1}
         end if
14:
15: end for
16: Output: \hat{\mathbb{G}}_A/T
```

Graphs

Algorithms adapted from [1] and [2]

Code is attached with the zip file, and the same is also at https://github.com/vishalanand/ 6998-HW2-linUCB

References

- [1] Lihong Li, Wei Chu, John Langford and Robert E. Schapire A Contextual-Bandit Approach to Personalized News Article Recommendation https://arxiv.org/abs/1003.0146
- [2] Lihong Li, Wei Chu and John Langford An Unbiased, Data-Driven, Offline Evaluation Method of Contextual Bandit Algorithms https://arxiv.org/abs/1003.5956