Techniques for Sample Size

Russ Lenth University of Iowa russell-lenthQuiowa.edu

Software is available at

http://www.stat.uiowa.edu/~rlenth/Power/

Army Conference on Applied Statistics October 22, 2004

Power basics

Power function

Given a test T of a parameter θ (scalar or vector)

$$\pi(\theta, n, \alpha, \phi) = \Pr(T \text{ is "significant"} \mid \theta, n, \alpha, \phi)$$

where α is the significance level, n is the sample size, and φ represents other parameters (e.g., σ^2)

Power basics

Sample-size determination

$$n(\theta^*) = \min\{n : \pi(\theta^*, n, \alpha, \phi) \ge \pi_0\}$$

with θ^* set at a clinically [scientifically] important value of θ . Typically, people choose $\pi_0 = .8$, $\alpha = .05$.

Two-sample t test of significance

$$\star \theta = \mu_T - \mu_C$$
, treatment vs. control

*
$$n = \{n_T, n_C\}$$
 (often, constrain $n_T = n_C = n$)

$$\star \Phi = {\sigma_T, \sigma_C}$$
 (often, constrain $\sigma_T = \sigma_C = \sigma$)

* Test statistic for $H_0^s: \mu_T = \mu_C$ vs. $H_1^s: \mu_T \neq \mu_C$:

$$U_s = \hat{\theta}/\hat{SE}(\hat{\theta}) \sim t'(\nu, \theta/SE(\hat{\theta}))$$

with d.f. ν (may be estimated, approximate)

* Power function:

$$\pi_s(\theta, n_T, n_C, \alpha, \sigma_T, \sigma_C) \quad = \quad \Pr(U_s < -t_{\alpha/2, \nu}) + \Pr(U_s > t_{\alpha/2, \nu})$$

Two-sample t test of equivalence

- **★** Same sampling situation
- * Let τ be a threshold for "smallness"
- * Test statistic for $H_0^e: |\mu_T \mu_C| \ge \tau$ vs. $H_1^e: |\mu_T \mu_C| < \tau$:

$$U_e = \frac{\min\{\widehat{\theta} + \tau, \tau - \widehat{\theta}\}}{\widehat{SE}(\widehat{\theta})} = \frac{\tau - |\widehat{\theta}|}{\widehat{SE}(\widehat{\theta})}$$

* Power function:

$$\pi_e(\theta, n_T, n_C, \alpha, \sigma_T, \sigma_C) = Pr(U_e > t_{\alpha, \nu})$$

* This is equivalent to two one-sided t tests of size α ; combined test is conservative.

Practical example

Strength of two materials

- ***** Goals
 - Want ability to detect a 15% difference ($\theta^* = \log_e 1.15 = 0.14$)
 - A difference of less than 15% is negligible ($\tau = \log_e 1.15 = .14$)
 - Tests with $\alpha = .05$, power goal of $\pi_0 = 80$
- * Pilot data on $Y = \log_e \text{ strength: } \sigma \approx .20 \text{ independent of mean.}$
- **★** Using GUI...
 - Sample size for each test
 - Graphs
 - Budget-based calculations

Just the FAQs

Most e-mail questions I get center on two issues

- * Sample size for a "medium" effect (per J. Cohen books)
- * Retrospective (observed) power

I have some opinions about these...

Retrospective power

Compute power based on...

- **★** Observed effect size
- * Observed SD(s)
- **★** Same sample size and significance level

Rationale: If result is nonsignificant, is it because...

- ★ Effect size is too small? ← high retrospective power
- **★** Sample size is too small? ← low retrospective power

Retrospective power

Compute power based on...

- * Observed effect size
- * Observed SD(s)
- ★ Same sample size and significance level

Rationale: If result is nonsignificant, is it because...

- **★** Effect size is too small?
- ★ Sample size is too small?
- * Answer: The power is *always* small in this case (duh!)

Retrospective power—another approach

Given...

- * Observed effect size
- ★ Observed SD(s)
- ★ Same sample size and significance level

Then the outcome of the test is also known

- * Recall that power = $Pr\{Reject H_0\}$

Power of a two-sample t test depends on $d = |\mu_1 - \mu_2| / \sigma$

* Small: d = .15

* Medium: d = .25

* Large: d = .40

Power of a two-sample t test depends on $d = |\mu_1 - \mu_2| / \sigma$

* Small: d = .15

* Medium: d = .25

* Large: d = .40

Q. Who is the T-shirt supposed to fit?

* Human? $\sigma = 1$, say Medium: $|\mu_1 - \mu_2| = .25$ in

Power of a two-sample t test depends on $d = |\mu_1 - \mu_2| / \sigma$

* Small: d = .15

 \star Medium: d = .25

* Large: d = .40

Q. Who is the T-shirt supposed to fit?

* Human? $\sigma = 1$ Medium : $|\mu_1 - \mu_2| = .25$ in

* Hippo? $\sigma = 25$ Medium : $|\mu_1 - \mu_2| = 6.25$ in

Power of a two-sample t test depends on $d = |\mu_1 - \mu_2| / \sigma$

* Small: d = .15

* Medium: d = .25

*** Large:** d = .40

Q. Who is the T-shirt supposed to fit?

* Human? $\sigma = 1$ Medium : $|\mu_1 - \mu_2| = .25$ in

* Hippo? $\sigma = 25$ Medium : $|\mu_1 - \mu_2| = 6.25$ in

*** Mouse?** $\sigma = .04$ Medium : $|\mu_1 - \mu_2| = .01$ in

A definitive study

... is not based on generic criteria

- * Specify effect size on the actual scale of measurement, based on well-considered scientific goals
- ★ Need to know σ, approximately *
- * If you can't do these things, reaching the bottom line is a matter of luck
- * Except possibly in cases where σ defines population norms

Planning a pilot study

One simple approach

- * Control the probability of under-estimating N by a specified percentage P
- * Percentage by which N is underestimated = percentage by which σ^2 is underestimated
- * In normal case,

$$Pr(S^{2} \le (1 - P)\sigma^{2}) = Pr(\nu S^{2}/\sigma^{2} \le (1 - P)\nu)$$

= $Pr(Q \le (1 - P)\nu)$

where S^2 has ν d.f. and $Q \sim \chi^2_{\nu}$

Chart for planning (or fudging)

Example: Semiconductor experiment

Structure

- * Response measure: Oxide thickness of silicon wafers
- **★** Three whole-wafer treatments
- * n lots of three wafers each: one wafer per treatment
- * Three sites per wafer

Target effect sizes (for power .80, .05 sig. level)

- * Difference of ± 10 between two treatments
- * Difference of ± 5 between two site means
- * Difference of ± 15 between two treatment*site means

Available data

(From R package nlme) 4 lots of 3 wafers each from each of two sources; 3 sites/wafer

```
Error: Lot
source × site
                       Df Sum Sq Mean Sq F value Pr(>F)
                        1 1830.1 1830.1 1.5261 0.2629
             Source
             Residuals 6 7195.2 1199.2
LOT
             Error: Lot:Wafer
WAFER
                       Df Sum Sq Mean Sq F value Pr(>F)
             Residuals 16 1922.67 120.17
             Error: Within
                         Df Sum Sq Mean Sq F value Pr(>F)
                          2 15.44 7.72 0.6416 0.5313
             Site
             Source: Site 2 58.33 29.17 2.4234 0.1004
             Residuals 44 529.56 12.04
```

SD estimates

- * SD(LOT) $\approx \sqrt{(1200 120)/9} \approx 11.0$ (not really needed)
- * SD(WAFER in LOT) $\approx \sqrt{(120-12)/3} = 6.0 \rightarrow \text{SD(LOT} \times \text{treat)}$
- * SD(ERROR) $\approx \sqrt{12} \approx 3.5$

Summary

- ★ Power/sample size is technically messy
- **★** Often have multiple objectives
- **★** Sometimes need to re-define goals
- * A flexible user interface can help

