Задачи для практических занятий

Математический анализ (базовый уровень) — 1 семестр

Занятие 1. Предел последовательности

- I. последовательность
- II. предел по определению
- III. исследование сходимости последовательности

Источники:

[Ефимов, Демидович] Сборник задач по математике для втузов. В 4-х частях. Ч. 1. Линейная алгебра и основы математического анализа. Под ред. А.В. Ефимова и Б.П. Демидовича. 1993.

[Родина] Т.В. Родина, Е.С.Трифанова. Задачи и упражнения по математическому анализу I (для спец. «Прикладная математика и информатика»). Уч. пособие. СПб: СПбГУ ИТМО, 2011. 208с.

[Бутузов] Бутузов В.Ф. и др. Математический анализ в вопросах и задачах. 2002.

[Кудрявцев] Кудрявцев Л.Д. и др. Сборник задач по математическому анализу. Том 1. 2003.

[Марон] Марон И.А. Дифференциальное и интегральное исчисление в примерах и задачах (1970)

Составила: Рванова А.С.

Редакторы: Лебедева А.Д., Правдин К.В.

В аудитории

І. Последовательность

Задача 1. Написать первые пять членов последовательности.

1.
$$x_n = 1 + (-1)^n \frac{1}{n}$$

2.
$$x_n = n(1 - (-1)^n)$$

Ответы: [Ефимов, Демидович 1.213, 1.214]

1.
$$0, \frac{3}{2}, \frac{2}{3}, \frac{5}{4}, \frac{4}{5}, \dots$$
 2. $2, 0, 6, 0, 10, \dots$

Задача 2. Написать формулу общего члена последовательности.

1.
$$-\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, \dots$$

- 2. 0.2.0.2....
- 3. $1, 0, -3, 0, 5, 0, -7, 0, \dots$

Ответы: [Ефимов, Демидович 1.217, 1.218, 1.220]

1.
$$x_n = \frac{(-1)^n}{n+1}$$
 2. $x_n = 1 + (-1)^n$ 3. $x_n = n \cos \frac{\pi(n-1)}{2}$

II. Предел по определению

Задача 3. Доказать по определению предела, что число 1 является пределом последовательности $x_n = \frac{n}{n+1} \quad \left(\text{т. e. } \lim_{n \to \infty} \frac{n}{n+1} = 1\right)$

[Кудрявцев, пример 1, с. 128 - решение]

Задача 4. Доказать, что $\lim_{n\to\infty} \frac{2\ln n-1}{3\ln n+1} = \frac{2}{3}$, используя определение предела последовательности.

[Родина, пример 3.5, с. 66 - решение]

Задача 5. Доказать, что $\lim_{n \to \infty} \frac{1}{n + \sqrt[3]{n^2 - 26n + 24}} = 0$, используя определение предела последовательности.

[Родина, пример 3.7, с. 66 - решение]

Задачи для практических занятий

Математический анализ (базовый уровень) — 1 семестр

Задача 6. Доказать, что последовательность $x_n = (-1)^n + 1/n$ не имеет предела.

[Кудрявцев, пример 3, с. 129 - решение, Родина, пример 3.8 - решение]

Задача 7. Доказать, что $\lim_{n \to \infty} \frac{4n^2 - 3n}{3n + 6} = +\infty$.

[Аналогично примеру 10 с. 36 лекции – решение]

III. Исследование сходимости последовательности

Задача 8. Дана последовательность a_n . Число A является пределом последовательности при $n \to \infty$. Проведите исследование по плану:

- 1) Постройте график общего члена последовательности в зависимости от номера n.
- 2) Проиллюстрируйте сходимость (расходимость) последовательности:
 - а. вспомните определение предела последовательности, запишите его через $\, \varepsilon, \, \, n_0 \,$ и неравенство;
 - b. выберите три различных положительных числа $\varepsilon_1 > \varepsilon_2 > \varepsilon_3$;
 - с. для каждого такого числа изобразите на графике соответствующую ε -окрестность предела A (« ε -трубу»);
 - d. для каждого выбранного ε найдите на графике номер $n_0=n_0(\varepsilon)$, после которого все члены последовательности попадают в ε -окрестность, или установите, что такого номера нет.
 - (!) Обратите внимание, что для качественной иллюстрации сгущения элементов последовательности a_n вокруг предела A (при $n \to \infty$) значения для ε следует выбирать так, чтобы соответствующие номера $n_0 = n_0(\varepsilon)$ получались действительно большими (например, $n_0(\varepsilon_1) > 10$, $n_0(\varepsilon_2) > 100$, $n_0(\varepsilon_3) > 1000$).

Nº	a_n	Α
1.	$a_n = \frac{3n^2 + 2}{4n^2 - 1}$	$A = \frac{3}{4}$
2.	$a_n = \frac{2n^3}{n^3 - 2}$	A = 2
3.	$a_n = \frac{3n^2}{2 - n^2}$	A = -3
4.	$a_n = \frac{5n+1}{10n-3}$	$A=\frac{1}{2}$
5.	$a_n = \frac{4n-3}{2n+1}$	A = 2
6.	$a_n = \frac{2 - 3n^2}{4 + 5n^2}$	$A = -\frac{3}{5}$
7.	$a_n = \frac{3n^2 + n}{2n^2}$	$A = \frac{3}{2}$
8.	$a_n = \frac{3n-1}{5n+1}$	$A = \frac{3}{5}$

Задачи для практических занятий

Математический анализ (базовый уровень) — 1 семестр

Консультация

Разбор задачи 8 на исследование сходимости последовательности.

Самостоятельно

І. Последовательность

Задача 9. Написать первые пять членов последовательности.

- 1. $x_n = \frac{3n+5}{2n-3}$.
- 2. $x_n = (-1)^n \arcsin\left(\frac{\sqrt{3}}{2}\right) + \pi n$

Ответы: [Ефимов, Демидович 1.215, 1.216]

a. $-8, 11, \frac{14}{3}, \frac{17}{5}, \frac{20}{7}, \dots$ 6. $\frac{2\pi}{3}, \frac{7\pi}{3}, \frac{8\pi}{3}, \frac{13\pi}{3}, \frac{14\pi}{3}, \dots$

Задача 10. Написать формулу общего члена последовательности.

- 1. 2, $\frac{4}{3}$, $\frac{6}{5}$, $\frac{8}{7}$, ...
- 2. $-3, \frac{5}{3}, -\frac{7}{5}, \frac{9}{7}, -\frac{11}{9}, \dots$
- 3. $0, \frac{\sqrt{2}}{2}, 1, \frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2}, -1, -\frac{\sqrt{2}}{2}, 0, \dots$

Ответы: [Ефимов, Демидович 1.219, 1.221, 1.222]

1. $x_n = \frac{2n}{2n-1}$ 2. $x_n = (-1)^n \frac{(2n+1)}{2n-1}$ 3. $x_n = \sin \frac{(n-1)\pi}{4}$

II. Предел по определению

Задача 11. Доказать по определению предела, что число 4 является пределом последовательности $x_n = \frac{4n-1}{n+5}$.

Задача 12. Доказать, что $\lim_{n\to\infty}\frac{5\cdot 3^n}{3^{n}-2}=5$, используя определение предела последовательности.

[Бутузов, с. 18 № 3 - решение]

Задача 13. Доказать, что $\lim_{n\to\infty} \frac{4n^2+3n}{3n^2+6} = \frac{4}{3}$, используя определение предела последовательности.

[Аналогично примеру 8 лекции - решение]

Задача 14. Доказать, что последовательность $x_n = \sin \frac{\pi n}{2}$ не имеет предела.

[Кудрявцев, 13 (3), с. 138]

Задача 15. Доказать, что $\lim_{n\to\infty} \frac{2n-5n^2}{3n+6} = -\infty$.

[Аналогично примеру 10 с. 36 лекции – решение]