DDBI Lecture 4: Machine Learning Methods for Multivariate Time Series Forecasting

A Hands-On Introduction & Preparation for Lab

Dr. Stavros K. Stavroglou

December 23, 2024

Outline

- Introduction & Goals
- 2 Support Vector Regression (SVR)
- K-Nearest Neighbors (KNN)
- Decision Trees & Random Forests
- 5 Simple vs. Rolling Forecasts
- 6 Pitfalls & Best Practices
- Conclusion & Next Steps

2/18

Lecture Objectives

In this lecture, you will:

- Explore the use of various Machine Learning (ML) techniques for forecasting a target climate index (ENSO) using multiple regressors (e.g. AAO, AO, NAO, PNA, and lagged ENSO).
- Understand each model's theoretical foundation, including strengths and weaknesses: 5Support Vector Regression (SVR)K-Nearest Neighbors (KNN)Decision TreeRandom Forest
- Compare **simple out-of-sample forecasts** vs. **rolling forecasts**, discussing the trade-offs of each approach.
- Prepare for the coding lab session, where you will implement and evaluate these methods.

SVR: Core Concept

Support Vector Regression (SVR) is an adaptation of Support Vector Machines (SVM) for regression tasks:

- Attempts to fit a function within an ϵ -tube around the data (i.e. an ϵ margin of tolerance).
- Minimizes model complexity (via $\|\mathbf{w}\|^2$) subject to penalties for points lying outside the ϵ -tube.
- Can use kernel functions (RBF, polynomial, sigmoid, etc.) for non-linear relationships.

Pros:

- Handles high-dimensional or complex feature spaces well.
- ullet Often robust to outliers, depending on ${\bf C}$ and ϵ settings.

- Hyperparameter tuning (e.g. kernel type, C, γ) can be non-trivial.
- Performance may suffer on **very large** datasets due to complexity.

SVR Forecasting Workflow (1/2)

• Data Preparation:

- Select regressors: AAO, AO, NAO, PNA, possibly ENSO with lags.
- Split into train and test sets (e.g. 80-20 split).

• Model Training:

- Choose kernel (rbf, linear, poly, etc.).
- Tune **C** (penalty factor), ϵ , and kernel-specific parameters (e.g. γ for RBF).

• Evaluation:

- Generate **out-of-sample** predictions for the test period.
- Possibly compute **confidence intervals** via residual-based bootstrapping.
- We'll see an example of the final forecasts on the next slide.

SVR Forecasting Workflow (2/2)

KNN: Intuition

- Distance-Based approach:
 - \bullet For a new sample, find its K closest neighbors (by Euclidean or other distance).
 - Predict by averaging (or weighting) the neighbors' target values.
- Completely non-parametric (stores training data and uses it at prediction time).

Pros:

- Conceptually simple and easy to explain.
- No explicit model parameterization (beyond K).

- Slow for large datasets (distance computations).
- Scaling matters: Variables on larger scales can dominate distance.
- No built-in handling of time-based lags unless you explicitly engineer them.

KNN Forecast Example

- Steps:
 - ① Choose K (e.g. 5, 10).
 - Scale features if needed.
 - Ompute predictions for test set; observe and compare the results.
- Can produce **chunky** or **step-like** forecasts if the data is smooth.

8 / 18

Decision Tree: Basics

- Splits the feature space at various thresholds (e.g. AO < 0.5, etc.).
- Final prediction is often the mean of target values in the corresponding leaf node.

Pros:

- Very interpretable (you can visualize the tree).
- Automatically captures non-linearities and interactions.

- High variance, can overfit if too deep.
- Sensitive to small changes in training data.

Random Forest: Why Ensemble?

- Random Forest is an ensemble of many Decision Trees:
 - Each tree is built on a **bootstrap sample** of the training data.
 - Random subsets of features are used at each split.
- Reduces variance: By averaging many diverse trees, we get a smoother and often more accurate prediction.

Pros:

- Typically more robust than a single tree.
- Good at capturing complex interactions among regressors.

- Less interpretable (we lose the simple tree structure).
- Still possible to overfit if not properly tuned (e.g. max_depth, n_estimators).

Forest Forecast

- Steps in training:
 - Choose n_estimators (# of trees) and max_depth.
 - 2 Train on the historical data, then generate out-of-sample predictions.
- Often yields smooth but flexible forecasts.

Simple Out-of-Sample Forecast

- Procedure:
 - Fit the model on the entire training set.
 - 2 Predict the *entire* test set *in one shot*.
- Pros:
 - Simpler, faster to compute.
 - Good for an initial benchmark.
- Cons:
 - Model never sees updated data once the test period starts.
 - May be **overly optimistic** if the data is non-stationary.

Rolling Forecast Approach

Rolling (or iterative) forecast is more realistic:

- Fit the model on the training set.
- 2 Predict one step (e.g. next month) in the test period.
- **3** Add that actual observation to your training data.
- Retrain or update the model.
- Predict the next step, repeat until done.

Pros:

- Simulates real-time updating.
- May improve forecasts as new data arrives.

- Computationally expensive (model fit repeated many times).
- Implementation complexity.

Pitfalls in Practice

Be mindful of:

- Overfitting:
 - Especially true for Decision Trees and Random Forest if max_depth is large.
 - KNN can also overfit if K is too small.
- Feature Scaling/Engineering:
 - Distance-based methods (KNN, some kernels in SVR) are sensitive to unscaled data.
 - Time series often benefit from lagged features, rolling means, and seasonal indicators.
- Hyperparameter Choice:
 - Blind guesses of C, γ (SVR) or n_estimators, max_depth (RF) can lead to poor results.
 - Use a validation set or cross-validation approach (e.g. time series split).

Best Practices to Follow

- Experiment with simpler models first (baseline):
 - A simple linear model or naive forecast sets a reference point.
 - Then see if ML models improve on that baseline.
- Incorporate domain knowledge:
 - Climate indices may have known seasonality or cyclical patterns.
 - Feature engineering can drastically improve performance.
- Employ structured hyperparameter tuning:
 - Grid search, random search, or Bayesian optimization.
 - Use metrics relevant to your domain (e.g. MASE if comparing across scales).
- Consider rolling windows or expanding windows for validation:
 - Time series cross-validation is different from random splitting.
 - Mimics real-world forecast scenarios.

Key Takeaways

- SVR, KNN, Decision Trees, Random Forests can each handle multivariate time series forecasting, but with different biases and complexity.
- Rolling vs. Simple forecasts provide different perspectives:
 - Rolling = more realistic, more computation.
 - Simple = quick, but may not reflect real-time updates.
- Hyperparameter Tuning is essential to unlock the models' full potential.
- Evaluate models with multiple approaches (baseline comparisons, domain insights, and cross-validation).

Next Steps & Lab Preview

• In the coding session, you will:

- Load combined_climate_indices_2024.csv.
- Implement each ML model (SVR, KNN, Decision Tree, Random Forest).
- Compare forecast performance in **simple** and **rolling** scenarios.
- Experiment with hyperparameters to see how results change.

• Additional Explorations:

- Feature engineering (e.g. lagging ENSO, creating rolling averages).
- Incorporating domain-specific insights (seasonality, etc.).
- Trying advanced methods (e.g. Gradient Boosting, Neural Networks).

Get ready to code!

Thank you! Questions?