Module Interface Specification for LODES (Library of ODE Solvers)

Paul Aoanan

November 26, 2017

1 Revision History

Date		Version	Notes
November 2017	26,	1.0	Initial draft.

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at the following Github link: https://github.com/aoananp/cas741/blob/master/Doc/SRS/CA.pdf

Contents

1	Revision History	i
2	Symbols, Abbreviations and Acronyms	ii
3	Introduction	1
4	Notation	1
5	Module Decomposition	1
6	MIS of External Interface Module	3
	6.1 Module	3
	6.2 Uses	3
	6.3 Syntax	3
	6.4 Semantics	3
	6.4.1 State Variables	3
	6.4.2 Access Routine Semantics	4
—	MIC (C4) - Daniel C4 - Daniel	-
7	MIS of the Equation String Parser 7.1 Module	5 5
	7.2 Uses	5
	7.3 Syntax	5
	7.4 Semantics	5
	7.4.1 State Variables	5
	7.4.2 Access Routine Semantics	5
8	MIS of Euler's Method	6
	8.1 Module	6
	8.2 Uses	6
	8.3 Syntax	6
	8.4 Semantics	6
	8.4.1 State Variables	6
	8.4.2 Access Routine Semantics	7
9	MIS of Trapezoidal Method	8
	9.1 Module	8
	9.2 Uses	8
	9.3 Syntax	8
	9.4 Semantics	8
	9.4.1 State Variables	8
	9.4.2 Access Routine Semantics	

	of Heun Method
	$Module \dots \dots$
10.2	Uses
10.3	Syntax
10.4	Semantics
	10.4.1 State Variables
	10.4.2 Access Routine Semantics
	of Runge-Kutta 4 Method
11.1	$Module \dots \dots$
11.2	Uses
11.3	Syntax
11.4	Semantics
	11.4.1 State Variables
	11.4.2 Access Routine Semantics
2 MIS	of the Output Module
12.1	Module
12.2	Uses
12.3	Syntax
12.4	Semantics
	12.4.1 State Variables
	12.4.2 Access Routine Semantics
	of the Hardware Hiding Module
13.1	$Module \dots \dots$
13.2	Uses
13.3	Syntax
13.4	Semantics
	13.4.1 State Variables
	13.4.2 Access Routine Semantics
4 MG	to MIS Traceability Matrix
5 A pp	endiy
о дрр	Chaix
List (of Tables
1	Module Hierarchy
2	Trace Between Module Guide and Module Interface Specification

3 Introduction

The following document details the Module Interface Specifications for LODES, the Library of ODE Solvers.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at the following link: https://github.com/aoananp/cas741.

4 Notation

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by LODES.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$

The specification of LODES uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, LODES uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	
Behaviour-Hiding Module	External Interface Module Euler's Method Module Trapezoidal Method Module Heun's Method Module Runge-Kutta's Method Module
Software Decision Module	Equation String Parser Module Output Format Module

Table 1: Module Hierarchy

6 MIS of External Interface Module

This module is the interface exposed to the external world or driver program. It provides access to the library and returns the solution to the ODE IVP.

6.1 Module

lodes

6.2 Uses

EqParse (Section 7), Euler (Section 8), Trap (Section 9), Heun (Section 10), RK (Section 11), Output (Section 12)

6.3 Syntax

Name	In	Out	Exceptions
ODE_method	${ m ODE_method}$	-	inputerror
	$\in \{1, 2, 3, 4\}$		
ODE_eq	string	-	badODEEq
x_0	\mathbb{R}	-	$\mathrm{bad}\mathrm{X0}$
y_0	\mathbb{R}	-	badY0
x_k	\mathbb{R}	-	$\mathrm{bad}\mathrm{X}\mathrm{K}$
h	h such that $h \in \mathbb{R}$ and	-	$\mathrm{bad}\mathrm{H}$
	h > 0		
plot	bool	-	-
displayResult	bool	-	-
X	_	$[1 \times n] \in \mathbb{R}$	-
y	_	$[1 \times n] \in \mathbb{R}$	-
success	-	BOOL	-

6.4 Semantics

6.4.1 State Variables

lodes(ODE_method, ODE_eq, x_0, y_0, x_k, h, plot):

```
• Pseudocode:
  function f, bool eq_{-}OK := EqParse(ODE\_eq);
  if NOT(eq_OK)
        return badODEEq := true, success := false;
  if NOT(ISREAL(x_0))
        return badX0 := true, success := false;
  if NOT(ISREAL(y<sub>-</sub>0))
        return badY0 := true, success := false;
  if NOT(ISREAL(x_k))
        return\ badXK := true, success := false;
  if NOT(ISREAL(h) \text{ and } h > 0)
       return badH := true, success := false;
  Select ODE_method:
        Case: 1
             x, y, success := euler(f, x_0, y_0, x_k, h);
        Case: 2
             x, y, success := trap(f, x_0, y_0, x_k, h);
        Case: 3
             x, y, success := heun(f x_0, y_0, x_k, h);
        Case: 4
             x, y, success := rk(f, x_0, y_0, x_k, h);
        Case: else
             return inputerror := true, success := false;
  End Select
  output(x, y, plot, displayResult);
  return x, y, success;
```

7 MIS of the Equation String Parser

This module handles the implementation of the Equation String Parser module.

7.1 Module

eqParse

7.2 Uses

none

7.3 Syntax

Name	In	Out	Exceptions
ODE_eq	string	-	_
f	-	Machine-interpreted	-
		equation	
eqOK	-	bool	-

7.4 Semantics

7.4.1 State Variables

none

7.4.2 Access Routine Semantics

eqParse(ODE_eq):

• Pseudocode:

try

 $f := parse(ODE_eq);$ %convert the ODE equation string to a machine-interpretable string return f, eq_OK := true;

catch

return f := 0, eq_OK := false;

8 MIS of Euler's Method

This module handles the implementation of solving an ODE IVP using Euler's Method.

8.1 Module

euler

8.2 Uses

None applicable.

8.3 Syntax

Name	In	Out	Exceptions
f	Machine-interpreted	-	-
	equation		
x_0	\mathbb{R}	-	-
y_0	\mathbb{R}	-	-
x_k	\mathbb{R}	-	-
h	h such that $h \in \mathbb{R}$ and	-	-
	h > 0		
X	-	$[1 \times n] \in \mathbb{R}$	-
у	-	$[1 \times n] \in \mathbb{R}$	-
success	-	BOOL	-

8.4 Semantics

8.4.1 State Variables

 $euler(f, x_0, y_0, x_k, h)$:

• Pseudocode:

9 MIS of Trapezoidal Method

This module handles the implementation of solving an ODE IVP using the Trapezoidal Method.

9.1 Module

trap

9.2 Uses

None applicable.

9.3 Syntax

Name	In	Out	Exceptions
f	Machine-interpreted	-	=
	equation		
x_0	\mathbb{R}	-	-
y_0	\mathbb{R}	-	-
x_k	\mathbb{R}	-	-
h	h such that $h \in \mathbb{R}$ and	-	-
	h > 0		
X	-	$[1 \times n] \in \mathbb{R}$	-
у	-	$[1 \times n] \in \mathbb{R}$	-
success	-	BOOL	-

9.4 Semantics

9.4.1 State Variables

 $euler(f, x_0, y_0, x_k, h)$:

• Pseudocode:

```
\begin{array}{l} \operatorname{success} := \operatorname{false}; \\ \operatorname{double} \ \operatorname{yNext} = 0.0; \\ x(1) := x\_0; \\ y(1) := y\_0; \\ N := (x\_0 - x\_k) \ / \ h; \\ \operatorname{for} \ n = 1 \ \operatorname{to} \ N \\  \qquad \qquad x(n+1) := x(n) + h; \\  \qquad \% \operatorname{Solve} \ \operatorname{for} \ \operatorname{yNext}, \ \operatorname{then} \ \operatorname{store} \ \operatorname{in} \ y(n+1) \\  \qquad \qquad y(n+1) := \operatorname{solve}(y\operatorname{Next} := y(n) + (h/2) \ ^* \ f(x(n+1), \, y\operatorname{Next}), \, y\operatorname{Next}) \\ \operatorname{end} \ \operatorname{for} \\ \operatorname{success} := \operatorname{true}; \\ \operatorname{return} \ x, \ y, \ \operatorname{success}; \\ \end{array}
```

10 MIS of Heun Method

This module handles the implementation of solving an ODE IVP using Heun's Method.

10.1 Module

heun

10.2 Uses

None applicable.

10.3 Syntax

Name	In	Out	Exceptions
f	Machine-interpreted	-	-
	$\operatorname{equation}$		
$x_{-}0$	\mathbb{R}	-	-
y_0	\mathbb{R}	-	-
x_k	\mathbb{R}	-	-
h	h such that $h \in \mathbb{R}$ and	-	-
	h > 0		
X	-	$[1 \times n] \in \mathbb{R}$	-
У	-	$[1 \times n] \in \mathbb{R}$	-
success	-	BOOL	-

10.4 Semantics

10.4.1 State Variables

 $heun(f, x_0, y_0, x_k, h)$:

• Pseudocode:

```
\begin{split} & success := false; \\ & x(1) := x\_0; \\ & y(1) := y\_0; \\ & N := (x\_0 - x\_k) \ / \ h; \\ & for \ n = 1 \ to \ N \\ & \quad x(n+1) := x(n) \ + \ h; \\ & \quad y(n+1) := y(n) \ + \ (h/2) \ * \ (f(x(n) + h, \ y(n) + h \ * \ f(x(n), \ y(n))); \\ & end \ for \\ & success := true; \\ & return \ x, \ y, \ success; \end{split}
```

11 MIS of Runge-Kutta 4 Method

This module handles the implementation of solving an ODE IVP using the Runge-Kutta 4 Method.

11.1 Module

rk

11.2 Uses

None applicable.

11.3 Syntax

Name	In	Out	Exceptions
f	Machine-interpreted	-	-
	equation		
x_0	\mathbb{R}	-	-
$y_{-}0$	\mathbb{R}	-	-
x_k	\mathbb{R}	-	-
h	h such that $h \in \mathbb{R}$ and	-	-
	h > 0		
X	-	$[1 \times n] \in \mathbb{R}$	-
У	-	$[1 \times n] \in \mathbb{R}$	-
success	-	BOOL	-

11.4 Semantics

11.4.1 State Variables

rk(f, x_0, y_0, x_k, h):

• Pseudocode:

```
 \begin{aligned} & success := false; \\ & x(1) := x\_0; \\ & y(1) := y\_0; \\ & double \ k1, \ k2, \ k3, \ k4; \\ & N := (x\_0 - x\_k) \ / \ h; \\ & for \ n = 1 \ to \ N \\ & x(n+1) := x(n) + h; \\ & k1 := f(x(n), \ y(n)); \\ & k2 := f(x(n) + h/2, \ y(n) + h \ * (k1/2)); \\ & k3 := f(x(n) + h/2, \ y(n) + h \ * (k2/2)); \\ & k4 := f(x(n) + h, \ y(n) + h \ * k3); \\ & y(n+1) := y(n) + (h/6) \ * (k1 + 2*k2 + 2*k3 + k4); \\ end \ for \\ success := true; \\ return \ x, \ y, \ success; \end{aligned}
```

12 MIS of the Output Module

This module handles the implementation of the Output module.

12.1 Module

output

12.2 Uses

Hardware Hiding (Section 13)

12.3 Syntax

Name	In	Out	Exceptions
plot	BOOL	-	=
displayResult	BOOL	-	=
X	$[1 \times n]$	-	-
У	$[1 \times n]$	-	-

12.4 Semantics

12.4.1 State Variables

none

12.4.2 Access Routine Semantics

output(x, y, plot, displayResult):

```
    Pseudocode:
        if (plot)
            plot(x, y);
        if (displayResult)
            print(x);
            print(y);
        end if
```

13 MIS of the Hardware Hiding Module

This module handles the implementation of the Output module.

13.1 Module

hardwarehiding

13.2 Uses

none

13.3 Syntax

Name	In	Out	Exceptions
X	$[1 \times n]$	-	-
y	$[1 \times n]$	-	-

13.4 Semantics

13.4.1 State Variables

none

13.4.2 Access Routine Semantics

plot(x, y):

• Pseudocode: displayPlotToScreen(x, y); %display x vs. y graph on screen

display(x):

• Pseudocode: outputToScreen(x); %display array on screen

14 MG to MIS Traceability Matrix

MG Module	MIS Module
M1 - Hardware Hiding	Section 13 - Hardware Hiding
M2 - External Interface	Section 6 - External Interface
M3 - Equation String Parser	Section 7 - Equation String Parser
M4 - Output Format Module	Section 12 - Output
M5 - Euler's Method	Section 8 - Euler's Method
M6 - Trapezoidal Method	Section 9 - Trapezoidal Method
M7 - Heun's Method	Section 10 - Heun's Method
M8 - Runge-Kutta 4 Method	Section 11 - Runge-Kutta 4 Method

Table 2: Trace Between Module Guide and Module Interface Specification

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.

15 Appendix

Not applicable.