# ECE/CSC 575 Introduction to Wireless Networking Chapter 1 – Introduction

Wenye Wang

Introduction (Ch 1)

- Introduction (Ch 1)
- Wireless Communications (Ch 2)

- Introduction (Ch 1)
- Wireless Communications (Ch 2)
- 3 Application Models and Performance (Ch 3)

- Introduction (Ch 1)
- 2 Wireless Communications (Ch 2)
- 3 Application Models and Performance (Ch 3)
- 4 Celluar Basics: FDM-TDMA (Ch 4)

- Introduction (Ch 1)
- Wireless Communications (Ch 2)
- 3 Application Models and Performance (Ch 3)
- 4 Celluar Basics: FDM-TDMA (Ch 4)
- Cellular CDMA and 2G/3G (Ch 5)

- Introduction (Ch 1)
- 2 Wireless Communications (Ch 2)
- 3 Application Models and Performance (Ch 3)
- 4 Celluar Basics: FDM-TDMA (Ch 4)
- Cellular CDMA and 2G/3G (Ch 5)
- 6 Random Access and Wireless LANs (Ch 7)

- Introduction (Ch 1)
- 2 Wireless Communications (Ch 2)
- 3 Application Models and Performance (Ch 3)
- 4 Celluar Basics: FDM-TDMA (Ch 4)
- 5 Cellular CDMA and 2G/3G (Ch 5)
- 6 Random Access and Wireless LANs (Ch 7)
- Ad Hoc Wireless Sensor Networks (Ch 10)

- 1 Introduction (Ch 1)
- 2 Wireless Communications (Ch 2)
- 3 Application Models and Performance (Ch 3)
- 4 Celluar Basics: FDM-TDMA (Ch 4)
- 5 Cellular CDMA and 2G/3G (Ch 5)
- 6 Random Access and Wireless LANs (Ch 7)
- Ad Hoc Wireless Sensor Networks (Ch 10)
- **3** Celluar OFDMA-TDMA and 3G/4G) (Ch 6)

# What are expected?

 terminologies, preparations for new technologies, basic principles, common sense, reasonable observations, explanation, and justification.

## What are expected?

- terminologies, preparations for new technologies, basic principles, common sense, reasonable observations, explanation, and justification.
- For future research...

## What are expected?

- terminologies, preparations for new technologies, basic principles, common sense, reasonable observations, explanation, and justification.
- For future research...
- For job interview...

## What are expected?

- terminologies, preparations for new technologies, basic principles, common sense, reasonable observations, explanation, and justification.
- For future research...
- For job interview...
- For working as a team member...

## What are expected?

- terminologies, preparations for new technologies, basic principles, common sense, reasonable observations, explanation, and justification.
- For future research...
- For job interview...
- For working as a team member...

# What are NOT expected?

# What are expected?

- terminologies, preparations for new technologies, basic principles, common sense, reasonable observations, explanation, and justification.
- For future research...
- For job interview...
- For working as a team member...

# What are NOT expected?

an expert on any particular subject or field

## What are expected?

- terminologies, preparations for new technologies, basic principles, common sense, reasonable observations, explanation, and justification.
- For future research...
- For job interview...
- For working as a team member...

# What are NOT expected?

- an expert on any particular subject or field
- the most recently developed algorithms, protocols, solutions, standards in any field.
- theories, proofs, specs, data or parameters, etc.

- Introduction (Ch 1)
- Wireless Communications (Ch 2
- 3 Application Models and Performance (Ch 3)
- 4 Celluar Basics: FDM-TDMA (Ch 4)
- Cellular CDMA and 2G/3G (Ch 5)
- 6 Random Access and Wireless LANs (Ch 7)
- Ad Hoc Wireless Sensor Networks (Ch 10)
- 3 Celluar OFDMA-TDMA and 3G/4G) (Ch 6)

#### **Characteristics and Limitations**

• Characteristics:

#### **Characteristics and Limitations**

• Characteristics:

Limitations:

#### **Characteristics and Limitations**

Characteristics:

• Limitations:

- Expectations:
  - •
  - -
    - And more ....

## **Effects of Portability**

- Power consumption operation on battery
  - limited hardware
  - quality
  - others

## **Effects of Portability**

- Power consumption operation on battery
  - limited hardware
  - quality
  - others
- Limited user interfaces compact
  - enough fingers (size)?
  - integration

## **Effects of Portability**

- Power consumption operation on battery
  - limited hardware
  - quality
  - others
- Limited user interfaces compact
  - enough fingers (size)?
  - integration
- Limited memory maximum

# **Terminology**

# Base station or access point

information distribution center for all mobile devices (MDs) within its signaling coverage area.

# **Terminology**

## Base station or access point

information distribution center for all mobile devices (MDs) within its signaling coverage area.

#### Links

- Uplink (Reverse link): Radio channels from an MD to its serving BS/AP.
- Downlink (Forward link): Radio channels from the BS/AP to the MDs.

# **Terminology**

## Base station or access point

information distribution center for all mobile devices (MDs) within its signaling coverage area.

#### Links

- Uplink (Reverse link): Radio channels from an MD to its serving BS/AP.
- Downlink (Forward link): Radio channels from the BS/AP to the MDs.

#### **Wireless Devices**

#### **Wireless Data Rate**



## **Wireless Acccess: Technologies**



## **Physical layer**

Transmission over the propagation channels Modulations, coding/decoding, interferences, multiplexing etc.

## **Physical layer**

Transmission over the propagation channels Modulations, coding/decoding, interferences, multiplexing etc.

## Link layer

- Radio resource management
- Network resource management

# **Physical layer**

Transmission over the propagation channels Modulations, coding/decoding, interferences, multiplexing etc.

## Link layer

- Radio resource management
- Network resource management

## **Networking layer**

- Handoff management
- Location management
- Traffic management

 1970s: Developments of radio and computer technologies for 800/900 MHz mobile communications

- 1970s: Developments of radio and computer technologies for 800/900 MHz mobile communications
- 1976: WARC (World Administrative Radio Conference) allocates spectrum for cellular radio.

- 1970s: Developments of radio and computer technologies for 800/900 MHz mobile communications
- 1976: WARC (World Administrative Radio Conference) allocates spectrum for cellular radio.
- 1979: NTT (Nippon Telephone & Telegraph) introduces the first cellular system in Japan.

- 1970s: Developments of radio and computer technologies for 800/900 MHz mobile communications
- 1976: WARC (World Administrative Radio Conference) allocates spectrum for cellular radio.
- 1979: NTT (Nippon Telephone & Telegraph) introduces the first cellular system in Japan.
- 1981: NMT (Nordic Mobile Telephone) 900 system introduced by Ericsson Radio System AB and deployed in Scandinavia.

## **First Generation Wireless Systems**

- 1970s: Developments of radio and computer technologies for 800/900 MHz mobile communications
- 1976: WARC (World Administrative Radio Conference) allocates spectrum for cellular radio.
- 1979: NTT (Nippon Telephone & Telegraph) introduces the first cellular system in Japan.
- 1981: NMT (Nordic Mobile Telephone) 900 system introduced by Ericsson Radio System AB and deployed in Scandinavia.
- 1984: AMPS (Advanced Mobile Phone Service) introduced by AT&T in North America.

 1982: CEPT (Conference Europeenne des Post et Telecommunications) established GSM to define future Pan-European Cellular Radio Standards

- 1982: CEPT (Conference Europeenne des Post et Telecommunications) established GSM to define future Pan-European Cellular Radio Standards
- 1990: Interim Standard IS-54 (USDC) adopted by TIA (Telecommunications Industry Association)

- 1982: CEPT (Conference Europeenne des Post et Telecommunications) established GSM to define future Pan-European Cellular Radio Standards
- 1990: Interim Standard IS-54 (USDC) adopted by TIA (Telecommunications Industry Association)
- 1990: Interim Standard IS-19B (NAMPS) adopted by TIA
- 1991: Japanese PDC (Personal Digital Cellular) system standardized by the MPT (Ministry of Posts and Telecommunications)
- 1992: Phase I GSM system is operational Interim Standard IS-95 (CDMA) adopted by TIA
- 1994: Interim Standard IS-136 adopted by TIA

- 1982: CEPT (Conference Europeenne des Post et Telecommunications) established GSM to define future Pan-European Cellular Radio Standards
- 1990: Interim Standard IS-54 (USDC) adopted by TIA (Telecommunications Industry Association)
- 1990: Interim Standard IS-19B (NAMPS) adopted by TIA
- 1991: Japanese PDC (Personal Digital Cellular) system standardized by the MPT (Ministry of Posts and Telecommunications)
- 1992: Phase I GSM system is operational Interim Standard IS-95 (CDMA) adopted by TIA
- 1994: Interim Standard IS-136 adopted by TIA
- 1995:PCS Licenses issued in North America
- 1996: Phase II GSM operational
- 1997: North American PCS deploys GSM, IS-54, IS-95
- 1999: IS-54 (North America), IS-95 (North America, Hong Kong, Israel, Japan, China, etc), GSM (110 countries).

## Example: How does my cell phone work?



• It is the standard for wireless LANs.

- It is the standard for wireless LANs.
- It specifies MAC procedures and operate in 2.4 GHz range with data rate of 1Mbps or optionally 2Mbps (Coverage up to 200 m).

- It is the standard for wireless LANs.
- It specifies MAC procedures and operate in 2.4 GHz range with data rate of 1Mbps or optionally 2Mbps (Coverage up to 200 m).
- User demand for higher bit rates and international availability of 2.4 GHz band has resulted in development of a high speed standard in the same carrier frequency range.

- It is the standard for wireless LANs.
- It specifies MAC procedures and operate in 2.4 GHz range with data rate of 1Mbps or optionally 2Mbps (Coverage up to 200 m).
- User demand for higher bit rates and international availability of 2.4 GHz band has resulted in development of a high speed standard in the same carrier frequency range.
- This standard called 802.11b, specifies a PHY layer providing a basic data rate of 11 Mbps (up to 50Mbps currently) and a fall-back rate of 5.5 Mbps.

- It is the standard for wireless LANs.
- It specifies MAC procedures and operate in 2.4 GHz range with data rate of 1Mbps or optionally 2Mbps (Coverage up to 200 m).
- User demand for higher bit rates and international availability of 2.4 GHz band has resulted in development of a high speed standard in the same carrier frequency range.
- This standard called 802.11b, specifies a PHY layer providing a basic data rate of 11 Mbps (up to 50Mbps currently) and a fall-back rate of 5.5 Mbps.
- The IEEE 802.11 and 802.11b standards can be used to provide communication between a number of PSs (Peer Stations) as an ad hoc network using peer to peer mode.

## **Wireless LAN: Network Architecture**



- Introduction (Ch 1)
- 2 Wireless Communications (Ch 2)
- Application Models and Performance (Ch 3)
- 4 Celluar Basics: FDM-TDMA (Ch 4)
- 5 Cellular CDMA and 2G/3G (Ch 5)
- 6 Random Access and Wireless LANs (Ch 7)
- Ad Hoc Wireless Sensor Networks (Ch 10)
- 3 Celluar OFDMA-TDMA and 3G/4G) (Ch 6)

- 1 Introduction (Ch 1)
- Wireless Communications (Ch 2)
- Application Models and Performance (Ch 3)
- 4 Celluar Basics: FDM-TDMA (Ch 4)
- 5 Cellular CDMA and 2G/3G (Ch 5)
- 6 Random Access and Wireless LANs (Ch 7)
- Ad Hoc Wireless Sensor Networks (Ch 10)
- 3 Celluar OFDMA-TDMA and 3G/4G) (Ch 6)

- 1 Introduction (Ch 1)
- Wireless Communications (Ch 2)
- 3 Application Models and Performance (Ch 3)
- 4 Celluar Basics: FDM-TDMA (Ch 4)
- 5 Cellular CDMA and 2G/3G (Ch 5)
- 6 Random Access and Wireless LANs (Ch 7)
- Ad Hoc Wireless Sensor Networks (Ch 10)
- 3 Celluar OFDMA-TDMA and 3G/4G) (Ch 6)

- 1 Introduction (Ch 1)
- Wireless Communications (Ch 2)
- 3 Application Models and Performance (Ch 3)
- 4 Celluar Basics: FDM-TDMA (Ch 4)
- 5 Cellular CDMA and 2G/3G (Ch 5)
- 6 Random Access and Wireless LANs (Ch 7)
- Ad Hoc Wireless Sensor Networks (Ch 10)
- 8 Celluar OFDMA-TDMA and 3G/4G) (Ch 6)

- 1 Introduction (Ch 1)
- Wireless Communications (Ch 2)
- 3 Application Models and Performance (Ch 3)
- 4 Celluar Basics: FDM-TDMA (Ch 4)
- 5 Cellular CDMA and 2G/3G (Ch 5)
- 6 Random Access and Wireless LANs (Ch 7)
- Ad Hoc Wireless Sensor Networks (Ch 10)
- 8 Celluar OFDMA-TDMA and 3G/4G) (Ch 6)

- 1 Introduction (Ch 1)
- Wireless Communications (Ch 2
- 3 Application Models and Performance (Ch 3)
- 4 Celluar Basics: FDM-TDMA (Ch 4)
- 5 Cellular CDMA and 2G/3G (Ch 5)
- 6 Random Access and Wireless LANs (Ch 7)
- Ad Hoc Wireless Sensor Networks (Ch 10)
- 8 Celluar OFDMA-TDMA and 3G/4G) (Ch 6)

- 1 Introduction (Ch 1)
- 2 Wireless Communications (Ch 2)
- 3 Application Models and Performance (Ch 3)
- 4 Celluar Basics: FDM-TDMA (Ch 4)
- 5 Cellular CDMA and 2G/3G (Ch 5)
- 6 Random Access and Wireless LANs (Ch 7)
- Ad Hoc Wireless Sensor Networks (Ch 10)
- 3 Celluar OFDMA-TDMA and 3G/4G) (Ch 6)