Problem 2.2 - Uncertainty Analysis, Case B

Get["UCAnalysis.m", Path → {NotebookDirectory[]}]

$$\frac{(d_1 \; \text{in})^{\,2} \, \pi}{4} \; v_1 \; \mapsto \; \begin{pmatrix} d_1 & 0.5 \pm 0.5 \times 0.05 & \text{Uniform} \mathcal{D} \\ v_1 & 2.0 \pm 0.05 & \text{Uniform} \mathcal{D} \\ \text{in} & 25.4 \times 10^{-3} \end{pmatrix}$$

Evaluated Functional Relationship

QAnalysisEnvironment

$$y = \frac{1}{4} \pi x_1^2 x_2 x_3^2$$

Vari	able	Uncertainty Interval	Distribution	∂f/∂x _i
x ₁ x ₂	d ₁	$(5.00 \pm 0.25) \times 10^{-1}$ $(2.00 \pm 0.05) \times 10^{0}$	Uniform Uniform	1.01341×10^{-3} 1.26677×10^{-4}
x ₃	in	2.54 × (exact) 10 ⁻²		1.99491×10^{-2}

У	0.000253353739548749	
Ymin Ymax	0.000222935456194177 0.000286305560298808	= y - 0.0000304183 = y + 0.0000329518
ε_{max} y ± ε_{max}	$\begin{array}{c} 0.0000316692174435936 \\ (2.5 \pm 0.3) \times 10^{-4} \end{array}$	$= 12.5 \%$ $= 2.5(3) \times 10^{-4}$
u _c y ± u _c	$\begin{array}{c} 0.0000150775633174256 \\ \left(2.5 \pm 0.2\right) \times 10^{-4} \end{array}$	= 5.95 % = 2.5(2) \times 10 ⁻⁴

Absolute Maximum Uncertainty

$$\varepsilon_{\text{max}} = \sum_{i=1}^{n} |\partial_{\mathbf{x}_{i}} \mathbf{f}[\mathbf{x}]| \varepsilon_{i}; \quad \mathbf{f}[\mathbf{x}] \pm \varepsilon_{\text{max}} // \text{QUCE}$$

```
0.000253353739548749 ± 0.0000316692

\in [0.00022168; 0.00028502]

\simeq (2.5 \pm 0.3) \times 10^{-4} = 2.5(3) \times 10^{-4}
```

Combined Standard Uncertainty

$$\mathbf{u}_{c} = \left(\sum_{i=1}^{n} \left(\partial_{\mathbf{x}_{i}} \mathbf{f}[\mathbf{x}]\right)^{2} \mathbf{u}_{i}^{2}\right)^{1/2}; \quad \mathbf{f}[\mathbf{x}] \pm \mathbf{u}_{c} \text{ // QUCA}$$

```
0.000253353739548749 ± 0.0000150776

\in [0.00023828; 0.00026843]

\simeq (2.5 \pm 0.2) \times 10^{-4} = 2.5(2) \times 10^{-4}
```

Monte Carlo Simulation

```
Block[{data, trials = 10<sup>6</sup>},
    data = f@@Table[RandomReal[fDist[i], {trials}], {i, 1, n}];
    Mean[data] ± StandardDeviation[data]] // QUCA

0.000253600718358152 ± 0.0000150813

∈ [0.00023852; 0.00026868]

≃ (2.5 ± 0.2) × 10<sup>-4</sup> = 2.5(2) × 10<sup>-4</sup>
```