Logic and Proof		Hilary 2016
	Exercise Sheet 1	

Dr James Worrell

- 1. Let F, G and H be formulas and let S be a set of formulas. Which of the following statements are true? Justify your answer.
 - (a) If F is unsatisfiable, then $\neg F$ is valid.
 - (b) If $F \to G$ is satisfiable and F is satisfiable, then G is satisfiable.
 - (c) $P_1 \rightarrow (P_2 \rightarrow (P_3 \rightarrow \dots (P_n \rightarrow P_1) \dots))$ is valid.
 - (d) $S \models F$ and $S \models \neg F$ cannot both hold.
 - (e) If $S \models F \lor G$, $S \cup \{F\} \models H$ and $S \cup \{G\} \models H$, then $S \models H$.
- 2. Let F and G be two formulas.
 - (a) Explain the difference between F and G being equivalent and them being logically equivalent.
 - (b) Explain very briefly the difference between $F \leftrightarrow G$ and $F \equiv G$.
- 3. Give an equational proof of the following equivalence, justifying each step with reference to the Boolean algebra axioms and the Substitution Rule as appropriate.

$$\neg((\neg P \vee Q) \wedge P) \vee Q \equiv \mathbf{true}$$

- 4. Suppose that F and G are formulas such that $F \models G$.
 - (a) Show that if F and G have no variable in common then either F is unsatisfiable or G is valid.
 - (b) Now let F and G be arbitrary formulas. Show that there is a formula H, mentioning only propositional variables common to F and G, such that $F \models H$ and $H \models G$.
 - **Hint.** Recall that every truth table is realised by some propositional formula and consider what the truth table of H ought to look like: under which assignments must H be true and under which assignments must H be false?
- 5. A **perfect matching** in an undirected graph G = (V, E) is a subset of the edges $M \subseteq E$ such that every vertex $v \in V$ is an endpoint of exactly one edge in M. Given a finite graph G, describe how to obtain a propositional formula φ_G such that φ_G is satisfiable if and only if G has a perfect matching. The formula φ_G should be computable from G in time polynomial in |V|.
- 6. Fix a non-empty set U. A U-assignment is a function from the collection of propositional variables to the power set of U, that is, \mathcal{A} maps each propositional variable to a subset of U. Such an assignment is extended to all formulas as follows:

1

- $\mathcal{A}[[false]] = \emptyset$ and $\mathcal{A}[[true]] = U$;
- $\bullet \ \mathcal{A} \llbracket F \wedge G \rrbracket = \mathcal{A} \llbracket F \rrbracket \cap \mathcal{A} \llbracket G \rrbracket;$
- $\mathcal{A}\llbracket F \vee G \rrbracket = \mathcal{A}\llbracket F \rrbracket \cup \mathcal{A}\llbracket G \rrbracket$;
- $\mathcal{A}\llbracket \neg F \rrbracket = U \setminus \mathcal{A}\llbracket F \rrbracket$.

Say that a formula F is U-valid if $\mathcal{A}\llbracket F \rrbracket = U$ for all U-assignments \mathcal{A} .

(a) Show that if F is U-valid then F is valid with respect to the standard semantics defined in the lecture notes.

Hint: Show that each standard assignment \mathcal{A} can be "simulated" by a certain U-assignment \mathcal{A}' .

(b) Show that if F is valid then F is U-valid.

Hint: Fix an arbitrary $u \in U$ and argue that $u \in \mathcal{A}[\![F]\!]$.

- 7. (a) Write down a **DNF**-formula equivalent to $(P_1 \vee Q_1) \wedge (P_2 \vee Q_2) \wedge \cdots \wedge (P_n \vee Q_n)$.
 - (b) Prove that any **DNF**-formula equivalent to the above formula must have at least 2^n clauses.