2023 年春《人机交互技术》课程设计: 无训练场景下 SSVEP 分类

1 范式介绍

稳态视觉诱发电位(Steady-State Visual Evoked Potential, SSVEP)指当人眼受到一个固定频率的视觉刺激时,大脑皮层相关区域的电位活动会呈现出一个相关的响应,这个响应通常包含与刺激频率相同的成分和高次谐波成分。如图 1 所示,典型的 SSVEP 系统中,通常会有多个目标排列在屏幕上,每个目标以不同的频率和初始相位闪烁。用户在使用时会注视其中一个目标,此时用户 EEG 信号会呈现出与该目标相关的频率信息。图 1 (b) 与 (c) 以一段注视 10Hz 刺激目标的信号为例,信号为多段重复实验的平均值,从波形即可看出明显的频率特征,从频谱图则更直观看到在 10Hz 及倍频处的幅值明显高于其他频率。因此,算法只需要检测用户当前 EEG 信号中的频率信息,即可确定用户关注的目标。

图 1 SSVEP 脑机接口系统示意图: (a) 典型的 SSVEP 字符输入系统; (b) 10Hz 刺激下 SSVEP 信号波形; (c) 对应的傅里叶变换频谱图

2 数据采集介绍

本次使用如下刺激界面:

图 2 刺激界面

各个目标的频率、初始相位以及对应标签如下表所示:

表 1 刺激目标信息对照表

字符	'('	')'	· . ·	,%,	'<'
标签	1	2	3	4	5
频率 (Hz)	8	8.3	8.6	8.9	9.2
相位 (π)	0	0.5	1	1.5	0
字符	'7'	'8'	' 9'	, +,	' . '
标签	6	7	8	9	10
频率 (Hz)	9.5	9.8	10.1	10.4	10.7
相位 (π)	0.5 1		1.5	0	0.5
字符	'4'	'5'	'6'	·_·	'×'
标签	11	12	13	14	15
频率 (Hz)	11	11.3	11.6	11.9	12.2
相位 (π)	1	1.5	0	0.5	1
字符	'1'	'2'	'3'	'0'	; ='
标签	16	17	18	19	20
频率 (Hz)	12.5	12.8	13.1	13.4	13.7
相位 (π)	1.5	0	0.5	1	1.5

采集过程中,受试者坐在电脑前的椅子上。采集开始后,每个 trial 开始前,

系统会在目标下给出提示,受试者将视线转移到该目标上,并集中注意力。Trial 开始后,屏幕上各个刺激目标以不同频率闪烁 4 s,4 s 后,系统根据受试者的脑电信号分析其注视的目标并反馈在频幕上。然后,会有 3 s 左右的休息时间,紧接着开始下一个 trial。整体流程如下图所示。

图 3 实验流程

3 无训练场景介绍

本课程设计对应 SSVEP 范式中更为常见的无训练场景,即不提供被试的训练数据,使新用户能够直接使用系统,在一定程度上实现系统的即插即用。SSVEP 信号具有较强的频率特征,因此可根据已知每个类别对应的刺激频率进行算法设计,可参考以下文献:

- [1] Z. Lin, C. Zhang, W. Wu, X. Gao. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans. on Biomedical Engineering, 2006, 53(12):2610–2614.
- [2] Y. Zhang, P. Xu, K. Cheng, D. Yao. Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface. Journal of Neuroscience Methods, 2014, 221:32–40.
- [3] X. Chen, Y. Wang, S. Gao, T.-P. Jung, X. Gao. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. Journal of Neural Engineering, 2015, 12(4):046008.

4 数据集

数据来自 5 名健康受试者,每个受试者均有 2 个 block,均为测试数据。每

个 block 中有随机目标 22 个。脑电信号以 1000Hz 进行采样,提供 11 个通道,其中,前 10 个通道为数据通道,最后一个通道为标签通道,各个标签对应含义如下:

250	242	1	241	243	251	
实验开始	block 开始	trial 开始	trial 结束	block 结束	实验结束	

其中,真实标签均被替换为 1。有效数据为 1-241 之间的 4s 数据,需自行截取,可自行决定使用 4s 中的任意区间。

数据以.mat 格式提供,包含:

● data:原始脑电信号,维度[通道数*采样点数]。

5 数据处理建议

原始信号为 1000Hz,建议进行降采样。原始信号中包含 50Hz 工频噪声,建议滤除,同时建议使用带通滤波去除高低频噪声。

6 作业提交和评分:

2023 年 6 月 14 日中午 12:00 之前把报告 Word 或 PDF 文件(命名为"学号_姓名.doc"或"学号_姓名.pdf")、CSV 结果文件(命名为"学号_姓名.csv")和代码(程序语言不限;命名为"学号_姓名.zip"或命名为"学号_姓名.rar")上传至课程QQ 群 433123183。晚一天扣 2 分,以 QQ 群上传时间为准。可参考已公开发表的文献,但请勿抄袭或参考其他同学工作。发现作弊按不及格处理。

报告格式请说明使用的方法。格式建议参考学术论文,比如《自动化学报》,但是不需要英文题目和摘要 http://www.aas.net.cn/。

CSV 结果文件只包含 10 列,每一列即测试 block 上的 22 个 trial 的真实标签,如下所示:

1	S1block1	S1block2	S2block1	S2block2	S3block1	S4block2	S4block1	S4block2	S5block1	S5block2	
2	1	1	1	1	1	1	1	1	1	1	
3	1	1	1	1	1	1	1	1	1	1	
4	1	1	. 1	1	1	1	. 1	1	1	1	
5	1	1	1	1	1	1	1	1	1	1	
6	1	1	1	1	1	1	1	1	1	1	
7	1	1	1	1	1	1	1	1	1	1	
8	1	1	1	1	1	1	1	1	1	1	
9	1	1	. 1	1	1	1	1	1	1	1	
10	1	1	. 1	1	1	1	. 1	1	1	1	
11	1	1	1	1	1	1	1	1	1	1	
12	1	1	1	1	1	1	1	1	1	1	
13	1	1	1	1	1	1	1	1	1	1	

评分: 成绩排名+报告质量