Ricci curvature for graphs etc

TBD

(First revision, February 2, 2020)

The description is self-contained and requires minimal outside source.

1 Standard but useful notations and terminologies

Input is a connected undirected unweighted graph G = (V(G), E(G)) (or simply G = (V, E)) with the following notations:

- ▶ For a node $v \in V$, $Nbr(v) = \{u | \{v, u\} \in E\}$ denotes the set of neighbors of v, and deg(v) = |Nbr(v)| denotes the degree of v.
- ightharpoonup dist(u, v) (or simply dist(u, v)) denote the *distance* (i.e., number of edges in a shortest path) between the nodes u and v in G.

2 Ricci curvature for an edge $\{u, v\}$ (denoted by Ric(u, v))

Consider an edge $\{u, v\}$ of G. Note that u has deg(u) neighbors and v has deg(v) neighbors, and suppose that they have ℓ neighbours in common. In other words, Nbr(u) and Nbr(v) looks likes this:

$$\mathsf{Nbr}(u) = \{ \underbrace{p_1, p_2, \dots, p_k, q_1, q_2, \dots, q_\ell}_{k+\ell = \mathsf{deg}(u) \ge \ell + 1 \ \mathsf{nodes}} \}$$

$$\{ \underbrace{q_1, q_2, \dots, q_\ell, r_1, r_2, \dots, r_m}_{\ell \ge 0 \ \mathsf{common}} \} = \mathsf{Nbr}(v)$$

$$\underbrace{\ell \ge 0 \ \mathsf{common}}_{m+\ell = \mathsf{deg}(v) \ge \ell + 1 \ \mathsf{nodes}}$$

Note that:

- \triangleright $\ell = 0$ is possible; in that case u and v have no common neighbors.
- \triangleright Without loss of generality, we assume that $deg(u) \le deg(v)$.

Now, assign weights (numbers) to the nodes, once from the point of view of node u and another from the point of view of node v, as follows:

► From the point of view of node *u* ("red" nodes, colored red for convenience only):

	nodes	p_1	p_2	•••	p_k	q_1	q_2	•••	q_ℓ	и	
•	new names for these nodes	x_1	x_2		x_k	x_{k+1}	x_{k+2}		$x_{k+\ell}$	$x_{k+\ell+1} = x_{\deg(u)+1}$	
•	numbers	$w(x_1) = \frac{1}{\deg(u)+1}$	$w(x_2) = \frac{1}{\deg(u)+1}$		$w(x_k) = \frac{1}{\deg(u)+1}$	$w(x_{k+1}) = \frac{1}{\deg(u)+1}$	$w(x_{k+2}) = \frac{1}{\deg(u)+1}$		$w(x_{k+\ell}) = \frac{1}{\deg(u)+1}$	$w(x_{k+\ell}) = \frac{1}{\deg(u)+1}$	sums to 1

 \blacktriangleright From the point of view of node v ("blue" nodes, colored blue for convenience only):

nodes	q_1	q_2	 q_ℓ	r_1	r_2	 r_m	v	
new names for these nodes	<i>y</i> ₁	<i>y</i> ₂	 \mathcal{Y}_ℓ	<i>Yℓ</i> +1	<i>y</i> ℓ+2	 $y_{\ell+m}$		
numbers	$w(y_1) = \frac{1}{\deg(v)+1}$	$w(y_2) = \frac{1}{\deg(v)+1}$	 $w(y_{\ell}) = \frac{1}{\deg(v)+1}$	$w(y_{\ell+1}) = \frac{1}{\deg(v)+1}$	$w(y_{\ell+2}) = \frac{1}{\deg(v)+1}$	 $w(y_{\ell+m}) = \frac{1}{\deg(v)+1}$	$w(y_{\ell+m+1}) = \frac{1}{\deg(v)+1}$	sums to 1

Then, Ric(u, v) is *one minus* the objective value in an optimal solution to the following linear programming (LP) problem¹:

Problem name: assign any name you wish (say Earth Mover Distance or EMD)

Reminder: $dist(x_i, y_j)$ is the distance between nodes x_i and y_j in G.

Variables: $z_{i,j}$ for i = 1, 2, ..., deg(u) + 1 and j = 1, 2, ..., deg(v) + 1.

Number of variables: $(\deg(u) + 1) \times (\deg(v) + 1)$.

The linear program

$$\begin{array}{ll} \textit{minimize} & \sum\limits_{i=1}^{\deg(u)+1} \sum\limits_{j=1}^{\deg(v)+1} \operatorname{dist}(x_i,y_j) z_{i,j} \\ \end{array} \qquad (* \text{ minimize total transportation cost } *) \end{array}$$

(* the minimum objective value will be subsequently denoted by EMD(u, v), thus Ric(u, v) = 1 - EMD(u, v)*) subject to

$$\sum_{j=1}^{\deg(v)+1} z_{i,j} = w(x_i), \text{ for } i = 1, 2, \dots, \deg(u) + 1$$
 (* take from x_i exactly as much as it has *)
$$\sum_{j=1}^{\deg(u)+1} z_{i,j} = w(y_j), \text{ for } j = 1, 2, \dots, \deg(v) + 1$$
 (* ship to y_j exactly as much as it needs *)
$$z_{i,j} \geq 0, \text{ for all } i \text{ and } j$$

3 Ricci curvature for a node u (denoted by Ric(u))

Suppose that u has neighbors v_1, v_2, \ldots, v_s . Then,

$$\operatorname{Ric}(u) = \frac{\operatorname{Ric}(u, v_1) + \operatorname{Ric}(u, v_1) + \dots + \operatorname{Ric}(u, v_s)}{s}$$

¹Comments are enclosed by (* and *).

4 Some simple observations for Ric(u, v)

For two vectors (of numbers) $\vec{\alpha} = (\alpha_1, \dots, \alpha_t)$ and $\vec{\beta} = (\beta_1, \dots, \beta_t)$, each having exactly the same number t of components, define the following quantity (usually called the total-variation (TV) distance, but names are not important):

$$\|\vec{\alpha} - \vec{\beta}\|_{TV} = \frac{|\alpha_1 - \beta_1| + \dots + |\alpha_t - \beta_t|}{2}$$

Now, consider the following two vectors corresponding to nodes *u* and *v*:

first vector (for node
$$u$$
) $\vec{u} = \begin{pmatrix} \frac{1}{\deg(u)+1} & \cdots & \frac{1}{\deg(u)+1} & \frac{1}{\deg(u)+1} & \cdots & \frac{1}{\deg(v)+1} & \frac{1}{\deg(v)+1} & 0 & \cdots & 0 & \frac{1}{\deg(v)+1} \end{pmatrix}$
second vector (for node v) $\vec{v} = \begin{pmatrix} 0 & \cdots & 0 & \frac{1}{\deg(v)+1} & \cdots & \frac{1}{\deg(v)+1} & \frac{1}{\deg(v)+1} & \frac{1}{\deg(v)+1} & \cdots & \frac{1}{\deg(v)+1} & \frac{1}{\deg(v)+1} & \cdots & \frac{1}{\deg(v)+1} & \cdots & \frac{1}{\deg(v)+1} & \cdots & \frac{1}{\deg(v)+1} & \cdots & \cdots & \cdots \end{pmatrix}$

By straightforward calculation (remember that by our assumption $deg(u) \le deg(v)$ and therefore $\frac{1}{deg(u)+1} \ge \frac{1}{deg(v)+1}$):

$$\|\vec{u} - \vec{v}\|_{TV} = \frac{1}{2} \times \underbrace{\left(\underbrace{\frac{1}{\deg(u)+1} + \dots + \frac{1}{\deg(u)+1}}_{k \text{ times}} + \underbrace{\frac{1}{\deg(v)+1} + \dots + \frac{1}{\deg(v)+1}}_{m \text{ times}} + \underbrace{\left(\underbrace{\frac{1}{\deg(u)+1} - \frac{1}{\deg(v)+1}}_{\ell + 2 \text{ times}} \right) + \dots + \underbrace{\left(\underbrace{\frac{1}{\deg(u)+1} - \frac{1}{\deg(v)+1}}_{\ell + 2 \text{ times}} \right)}_{\ell + 2 \text{ times}} \right)}_{\ell + 2 \text{ times}}$$

$$= \frac{k/2}{\deg(u)+1} + \frac{m/2}{\deg(v)+1} + \frac{\ell+2}{2} \times \left(\frac{1}{\deg(u)+1} - \frac{1}{\deg(v)+1} \right) = \frac{\frac{k+\ell}{2}+1}{\deg(u)+1} + \frac{\frac{m-\ell}{2}-1}{\deg(v)+1}$$

Observation 1. Ric $(u, v) \le 1 - \|\vec{u} - \vec{v}\|_{TV}$. Morever, since $1 \le \text{dist}(x_i, y_j) \le 3$ unless x_i and y_j are the same node, we are led to the following bound:

$$1 - 3 \times \|\vec{u} - \vec{v}\|_{TV} \le \text{Ric}(u, v) \le 1 - \|\vec{u} - \vec{v}\|_{TV}$$

Observation 2. Suppose that $\operatorname{dist}(x_i, y_j)$ is exactly equal to some fixed value γ for all i and j. In that case, $\operatorname{Ric}(u, v) = 1 - \gamma \times ||\vec{u} - \vec{v}||_{TV}$.

Observation 3. Suppose that G is a tree. Thus, G has no cycles, implying $\ell = 0$. Moreover, $\operatorname{dist}(x_i, y_j) = 3$ for all i and j. Thus, using Observation 2 it follows that

$$\begin{aligned} \operatorname{Ric}(u,v) &= 1 - 3 \times \|\vec{u} - \vec{v}\|_{TV} = 1 - \frac{\frac{3k}{2} + 3}{\deg(u) + 1} - \frac{\frac{3m}{2} - 3}{\deg(v) + 1} \\ &= 1 - \frac{\frac{3\deg(u) - 3}{2} + 3}{\deg(u) + 1} - \frac{\frac{3\deg(v) - 3}{2} - 3}{\deg(v) + 1} = \frac{6}{\deg(v) + 1} - 2 \end{aligned}$$

Thus, $-2 < \text{Ric}(u, v) \le 0$ and Ric(u, v) can be trivially computed in linear time, i.e., in $O(\deg(u) + \deg(v))$ time. Note that $\ell = 0$ and $\operatorname{dist}(x_i, y_j) = 3$ for all i and j also holds for any graph G that does not have a cycle of 5 or fewer edges, so the above calculations also hold for those graphs.

5 Some research questions for Ric(u, v)

For notational convenience, let $\delta_1 = \deg(u)$ and $\delta_2 = \deg(v)$. The LP for computing $\operatorname{Ric}(u,v)$ involves $O(\delta_1 \times \delta_2)$ variables and $O(\delta_1 + \delta_2)$ constraints. Standard LP solvers seem to take at least quadratic time, *i.e.*, in our case $\Omega\left((\delta_1 \times \delta_2)^2\right)$ time. Observation 1 indicates that a 3-approximation of $\operatorname{Ric}(u,v)$ in linear (*i.e.*, $O(\delta_1 + \delta_2)$) time is trivial. This begs questions of the following types:

- ▶ (Basic computational complexity questions) Can we compute $\operatorname{Ric}(u, v)$ exactly in sub-quadratic time, *e.g.*, in $O((\delta_1 + \delta_2) \log(\delta_1 + \delta_2))$ time or even in $O((\delta_1 + \delta_2)^{2-\varepsilon})$ time for some constant $\varepsilon > 0$. If not, can we compute a very good (much better than 3) approximation fast?
 - Note that, by Observation 3, $\operatorname{Ric}(u, v)$ can we computed in linear $(O(\delta_1 + \delta_2))$ time for any graph G that does not have a cycle of 5 or fewer edges.
- ▶ (Relevant questions for large graphs or dynamic graphs) Suppose that we have already computed Ric(u, v) and an edge (or a few edges) of the graph G gets deleted. How fast we can re-compute the new value of Ric(u, v)? The same question applies when one or more nodes gets deleted or perhaps a collection of edges and nodes get deleted?

6 Some research questions for Ric(u)

For notational convenience, let $\delta = \deg(u)$. Suppose that $\operatorname{Ric}(u, v)$ can be computed in $O(\Delta)$ time. Then, trivially, $\operatorname{Ric}(u)$ can be computed in $O(\Delta \times \delta)$ time. Can we do significantly better? The questions for large and dynamic graphs in the previous section are also applicable in this setting.

7 Some research questions for Ric(u) for the entire graph

Can we do better than just computing it node-by-node for the entire graph?

References

[1] No reference at all.