新疆大学 2018-2019 学年二学期 课程考试试卷答案(A卷)

课程名称:线性代数 考试时间: 120分钟 年级: xxx 级 专业: xxx

题目部分,(卷面共有27题,100分,各大题标有题量和总分)

答案:√

一、选择题(5小题,共10分)
1、设 A 为 n 阶矩阵,且 $\left A\right =2$,则 $\left\ A\right A^{T}\right =$ ()。
A. 2 ⁿ B. 2 ⁿ⁻¹ C. 2 ⁿ⁺¹ D. 4 答案: C
2、设 A 是4阶矩阵且 $\left A\right =\frac{1}{2}$, A^{*} 是 A 的伴随矩阵,则 $\left A^{*}-(2A)^{-1}\right =$ ()
A1; $B.2;$ $C.1;$ $D.0$
答案: D
3 、已知 n 元线性方程组 $Ax = b$,其增广矩阵为 \overline{A} ,当()时,线性方程组有
解。
A. $R(\overline{A}) = n$, B. $R(\overline{A}) \neq n$; C. $R(\overline{A}) = R(A)$; D. $R(A) \neq R(\overline{A})$
答案: C
4、设向量 $\alpha = (-1, 0, 1, 2), \beta = (1, 0, 1, 0), 则 2\alpha + 3\beta = ().$
A. (1, 0, 5, 4) B. (1, 0, -5, 4) C. (-1, 0, 5, 4) D. (1, 0, 5, -6) 答案: A
5、设矩阵 $A = \begin{bmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{bmatrix}$,则以下向量中是 A 的特征向量的是()
A. $(1,1,1)^T$ B. $(1,1,3)^T$ C. $(1,1,0)^T$ D. $(1,0,-3)^T$
答案: A
二、判断(5小题,共10分)
1、以数 k 乘行列式 D ,等于用数 k 乘行列式的某一行(或某一列). (

试卷答案 第 1 页 (共 7 页)

2、n 阶矩阵就是 n 阶行列式. ()

答案: X

3、若线性方程组 Ax = b 的方程的个数大于未知量的个数,则 Ax = b 一定无解. ()

答案:×

4、设 A 为 4 阶方阵,且 r(A)=2,则齐次线性方程组 AX=0 的基础解系包含的解向量的个数为 2. ()

答案:√

5、设 X_1 与 X_2 是 A 的任意两个特征向量,则 X_1+X_2 也是其特征向量()

答案:X

三、填空题(10小题,共20分)

1、设A为3阶方阵,且|A|=4,则 $\left|(\frac{1}{2}A)^2\right|=$ ______

答案: $\frac{1}{4}$

2、设A为三阶矩阵,|A|=-2,将矩阵A按列分块为A= (A_1, A_2, A_3) ,其中 A_j (j=1,2,3) 是A 的第j列,B= $(A_3-2A_1, 3A_2, A_1)$,则|B|=_____.

答案: 6

答案:
$$\begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$$

4、设 A 为 n 阶矩阵,|A|=2, A^* 是 A 的伴随矩阵,则 $|A^*|=$ ______

答案: 2^{*n*-1}

答案: 1

6、设线性方程组
$$\begin{cases} x_1 + 2x_2 + & 3x_4 = 3 \\ 2x_1 + 5x_2 + 2x_3 + 4x_4 = 4 有解,则 t = ____. \\ x_1 + 3x_2 + 2x_3 + & x_4 = t \end{cases}$$

答案: 1

7、设向量(2,-3,5)与向量(-4,6,a)线性相关,则 a=____.

答案: -10

8、若向量组 $\alpha_1,\alpha_2,...$, α_s 线性无关,且可由向量组 $\beta_1,\beta_2,...$, β_t 线性表出,则 s t。(填≥或≤)

答案: ≤

9、设矩阵
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 4 & 0 & 0 \end{pmatrix}$$
,则 A 的全部特征值为_____。

答案: -2,2,2

10、. 设 A 为正交矩阵,则 $|A^TA|$ =_____

答案: 1

四、计算(5小题,共50分)

$$1$$
、求行列式 $\begin{vmatrix} 1+x & 1 & 1 & 1 \\ 1 & 1-x & 1 & 1 \\ 1 & 1 & 1+y & 1 \\ 1 & 1 & 1 & 1-y \end{vmatrix}$ 的值.

答案: 解:
$$\begin{vmatrix} 1+x & 1 & 1 & 1 \\ 1 & 1-x & 1 & 1 \\ 1 & 1 & 1+y & 1 \\ 1 & 1 & 1 & 1-y \end{vmatrix} = \begin{vmatrix} 1+x & 1 & 1 & 1 \\ -x & -x & 0 & 0 \\ 1 & 1 & 1+y & 1 \\ 0 & 0 & -y & -y \end{vmatrix}$$

$$= xy \begin{vmatrix} 1+x & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1+y & 1 \\ 0 & 0 & 1 & 1 \end{vmatrix} = xy \begin{vmatrix} x & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & y & 0 \\ 0 & 0 & 1 & 1 \end{vmatrix} = x^2y^2.$$

2、设矩阵
$$A$$
 和 B 满足关系式 $AB = A + 2B$,且已知 $A = \begin{bmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$,求矩阵 B 。

答案:
$$|A| = \begin{vmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 4 \end{vmatrix} = 13 \neq 0$$
,所以 A 可逆。由条件 $AB = A + 2B$ 知,

$$B = (A - 2E)^{-1}A,$$

$$B = (A - 2E)^{-1}A = \begin{bmatrix} 5 & -2 & -2 \\ 4 & -3 & -2 \\ -2 & 2 & 3 \end{bmatrix}$$

$$3、求非齐次线性方程组 \begin{cases} x_1+x_2-3x_3-x_4=1,\\ 3x_1-x_2-3x_3+4x_4=4, \text{的通解}.\\ x_1+5x_2-9x_3-8x_4=0. \end{cases}$$

答案: 解:
$$(A, \overrightarrow{b}) = \begin{pmatrix} 1 & 1 & -3 & -1 & 1 \\ 3 & -1 & -3 & 4 & 4 \\ 1 & 5 & -9 & -8 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -3 & -1 & 1 \\ 0 & -4 & 6 & 7 & 1 \\ 0 & 4 & -6 & -7 & -1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 1 & -3 & -1 & 1 \\ 0 & 1 & -\frac{3}{2} & -\frac{7}{4} & -\frac{1}{4} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -\frac{3}{2} & \frac{3}{4} & \frac{5}{4} \\ 0 & 1 & -\frac{3}{2} & -\frac{7}{4} & -\frac{1}{4} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

4、求向量组:
$$\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \\ -1 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 2 \\ 5 \\ 2 \\ -1 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 3 \\ 5 \\ -7 \\ -4 \end{bmatrix}$, $\alpha_4 = \begin{bmatrix} -1 \\ 6 \\ 17 \\ 9 \end{bmatrix}$ 的秩及一个极大线

性无关组,并将其余向量通过该极大线性无关组表示出来.

答案:解:向量组对应的矩阵为

$$(\alpha_1 \alpha_2 \alpha_3 \alpha_4) = \begin{pmatrix} 1 & 2 & 3 & -1 \\ 2 & 5 & 5 & 6 \\ -1 & 2 & -7 & 17 \\ -1 & -1 & -4 & 9 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 5 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以矩阵的秩为 3,所以 $\alpha_1,\alpha_2,\alpha_4$ 为一组极大无关组

$$\alpha_3 = -5\alpha_1 + \alpha_2$$

5、设
$$\mathbf{A} = \begin{bmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{bmatrix}$$
,求 \mathbf{P} 使 $\mathbf{P}^{-1}\mathbf{AP}$ 为对角矩阵.

试卷答案 第 5 贞 (共 7 贞)

答案:解:由

$$|A - \lambda E| = \begin{vmatrix} 2 - \lambda & -2 & 0 \\ -2 & 1 - \lambda & -2 \\ 0 & -2 & -\lambda \end{vmatrix} = -\lambda(2 - \lambda)(1 - \lambda) - 4(2 - \lambda) + 4\lambda = (1 - \lambda)(\lambda - 4)(\lambda + 2) = 0$$

得 A 的特征值为: $\lambda_1 = -2, \lambda_2 = 1, \lambda_3 = 4$ 。

当
$$\lambda_1 = -2$$
时, $A - \lambda_1 E = \begin{pmatrix} 4 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 4 & -2 & 0 \\ 0 & 2 & -2 \\ 0 & -2 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 4 & -2 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 0 \end{pmatrix}$

求得特征向量:
$$\xi_1 = \begin{pmatrix} 0.5 \\ 1 \\ 1 \end{pmatrix}$$
, 同理求得: $\xi_2 = \begin{pmatrix} -1 \\ -0.5 \\ 1 \end{pmatrix}$, $\xi_3 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$.

五、证明(2小题,共10分)

1、设 $η_0$ 是非齐次线性方程组 **Ax=b** 的一个特解, $ξ_1$, $ξ_2$,…, $ξ_r$ 是其导出组 **Ax=0** 的一个基础解系.

试证明: η_0 , η_0 + ξ_1 , η_0 + ξ_2 , ..., η_0 + ξ_r 线性无关。

答案: 证明: 考虑 $l_0 \mathbf{\eta}_0 + l_1 (\mathbf{\eta}_0 + \boldsymbol{\xi}_1) + ... + l_r (\mathbf{\eta}_0 + \boldsymbol{\xi}_r) = \mathbf{0}$,

则 $l_0+l_1+...+l_r=0$, 否则 η_0 将是 Ax=0的解, 矛盾。

所以 $l_1\xi_1+...+l_r\xi_r=0$.

又由假设, ξ_1 , ..., ξ_r 线性无关,

所以 l₁=0, ..., l_r=0, 从而 l₀=0.

所以 η_0 , η_0 + ξ_1 , η_0 + ξ_2 , ..., η_0 + ξ_r 线性无关。

设A为m×n实矩阵,E为n阶单位矩阵,已知矩阵

 2 、 $B = \lambda E + A^{T}A$ 、试证: $3\lambda > 0$ 时,矩阵B为正定矩阵

答案:

证明: 因为B^T = $(\lambda E + A^T A)^T = \lambda E + A^T A = B$ 所以B为n阶实对称矩阵. 对任意的实n维向量x,有 $x^T B x = x^T (\lambda E + A^T A) x$ $= \lambda x^T x + x^T A^T A x$ $= \lambda x^T x + (Ax)^T (Ax)$ 当 $x \neq 0$ 时 $x^T x > 0$, $(Ax)^T (Ax) \geq 0$ 因此,当 $\lambda > 0$ 时,对任意 $x \neq 0$, 有 $x^T B x > 0$ B为正定矩阵.