代数 2 期中考试

Yueke

2022/4/14

几点声明:

- 1、此试卷为考生回忆版,不保证问题顺序的准确性与问题陈述的严谨性。
 - 2、考试时间为 2022 年 4 月 14 日 9:50 至 11:50。
- 1.State and prove Sylow's 3rd theorem.
- 2. Classify group with order 455.
- 3. For group G, C denote the minimal subgroup of G which contains all the element of the form $xyx^{-1}y^{-1}$. Find the subgroup C when $G = S_n, n \ge 4$.
- 4.G is a finite non-abelian group, $N = \{(x,y) \in G \times G | xy = yx\}, c(G)$ denote the number of conjugacy classes of G.
 - (a)Prove $|N| = c(G) \cdot |G|$.
 - (b)Prove $[G: Z(G)] \geq 4$.
 - (c)Prove $c(G) \leq \frac{5}{8}|G|$.
- 5. $v_1, ..., v_k \in \mathbb{R}^n$, orthonormal respect to dot product in \mathbb{R}^n , $M = [v_1, ..., v_k]$. Find $det(I_k - 2M^T \cdot M)$ and $det(I_n - 2M \cdot M^T)$.
- 6.A is a real positive definite symmetric matrix. Prove that for any integer $m \neq 0, \exists$ matrix B s.t. $B^m = A$.

 $7.S=\mathbb{Z}/n\mathbb{Z}, V=\mathcal{L}(S,\mathbb{C}),$ a Hermitian form defined on V is given by:

$$\langle f, g \rangle = \frac{1}{n} \sum_{x=0}^{n-1} f(\bar{x}) g(x)$$

- (a)Prove that $\{e_x\}_{0 \le x \le n-1}$ is an orthonormal basis of V where $e_x(y) = e^{2\pi i \frac{xy}{n}}$.
- (b) $W = \{ f \in V | f(x) = f(-x) \}$. Find a orthonormal basis for W and W^{\perp} .
 - (c) f(x) = x, find $\sum_{x=0}^{n-1} |\hat{f}(x)|^2$ where $\hat{f}(x) = \langle e_x, f \rangle$.