Anna Marciniec

Podstawy Uczenia Maszynowego lab 5- **Marginesy i kernele Raport**

Do wykonania zadania wygenerowałam zbiór danych wzorowany na zbiorze pokazanym w zadaniu.

do wykonania zadania wybrałam następujące współczynniki c: [1e-6, 1e-5, 1e-4,1e-3,1e-2,1e-1,1, 10,100,1000]

Losowałam zbiór testowy i treningowy w proporcji 70:30 wyliczyłam trafność i szerokość marginesu tę czynność powtórzyłam 20 razy, uśredniłam i wyliczyłam odchylenie standardowe przedstawione w postaci error barów.

Standardowe SVM

SVM z kernelem wielomianowym, stopnia trzeciego.

Następne obliczenia wykonywałam tylko 5 razy i uśredniałam wyniki.

SVM z kernelem rbf dla gamma = 0.0001

SVM z kernelem rbf dla gamma = 0.01

SVM z kernelem rbf dla gamma = 1

0.9994

SVM z kernelem rbf dla gamma = 10

Wizualizacja klasyfikacji SVM Im bliżej płaszczyzny podziału tym jaśniejsze punkty im dalej tym ostrzejsze. Czerwone punkty, zaklasyfikowane jako klasa 0, niebieskie jako klasa 1.

Klasyfikacja SVM z kernelem wielomianowym stopnia 3ciego c = 0.0001

Klasyfikacja SVM z kernelem wielomianowym stopnia 3ciego c = 0.1

Klasyfikacja SVM z kernelem wielomianowym stopnia 3ciego c = 1

Klasyfikacja SVM z kernelem wielomianowym stopnia 3ciego c = 10

classification of rbf kernel svm with c = 0.0001, gamma = 0.0001

classification of rbf kernel svm with c = 0.1, gamma = 0.0001

Wnioski:

- SVM sobie radzi w klasyfikacji dwóch zbiorów.
- Tradycyjny SVM sobie nie radził z "wyspą" jednej klasy w innej, po prostu podzielił i tyle, widać, że nadaje się tylko do klasyfikacji danych gdzie nie ma szumów.
- SVM z kernelem z funkcji rbf dla gamma=0.01 jest w stanie sobie podzielić klasyfikację z szumami, jak widać zaklasyfikował dobrze "wyspę" punktów klasy 0 wewnątrz klasy 1.
- Dla dużych c przy standardowym SVM i z kernelem wielomianowym margines maleje.
- Dla najmniejszego c = 0.0001 przy SVM z kernelem rbf wszystko zostało zaklasyfikowane do klasy 0. Natomiast dla największego gamma=10 granice dla c = 1, c=0.1, c=10 stały się rozległe i tylko kilka punktów zostało zaklasyfikowane do klasy 1