

Symbol

X4-Class Power MOSFET™

IXTA130N15X4 IXTA130N15X4-7

 $\mathbf{V}_{\mathtt{DSS}}$ 150V 130A D25 0.0m Ω R_{DS(on)}

N-Channel Enhancement Mode Avalanche Rated

Test Conditions

. 69	3

Maximum Ratings

GS
D (Tab)

G = Gate	D	=	Drain
S = Source	Tab	=	Drain

TO-263 (7-Leads)

TO-263 AA

Pins: 1 - Gate 2, 3, 5, 6, 7 - Source 4 (Tab) - Drain

V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	150	V
\mathbf{V}_{DGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GS} = 1M\Omega$	150	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _C = 25°C	130	A
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	240	Α
I _A	T _C = 25°C	65	Α
E _{as}	$T_{c} = 25^{\circ}C$	800	mJ
dv/dt	$I_{_{S}} \le I_{_{DM}}, \ V_{_{DD}} \le V_{_{DSS}}, \ T_{_{J}} \le 150^{\circ}C$	10	V/ns
$\overline{\mathbf{P}_{\scriptscriptstyle \mathrm{D}}}$	T _C = 25°C	400	W
T		-55 +150	°C
T_{JM}		150	°C
T _{stg}		-55 +150	°C
T _L	Maximum Lead Temperature for Soldering	g 300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
F _c	Mounting Force	10.65 / 2.214.6	N/lb
Weight	TO-263 TO-263 (7Leads)	2.5 3.0	g g

Features

- International Standard Packages
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- · Robotics and Servo Controls

Symbol Test Conditions Characteristic Values (T₁ = 25°C, Unless Otherwise Specified) Тур. Max. $V_{GS} = 0V, I_{D} = 250\mu A$ 150 **BV**_{DSS} $V_{DS} = V_{GS}, I_{D} = 250\mu A$ 2.5 V 4.5 V_{GS(th)} $V_{GS} = \pm 20V, V_{DS} = 0V$ ±100 nA GSS $V_{DS} = V_{DSS}, V_{GS} = 0V$ 5 μΑ l_{DSS} T₁ = 125°C 200 μΑ 7.0 $\boldsymbol{R}_{\text{DS}(\underline{\text{on}})}$ $V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Notes 1&2$ $8.0~\text{m}\Omega$

-,			acteristic Values	
$(T_{J} = 25^{\circ}C, L)$	Jnless Otherwise Specified)	Min.	Тур.	Max
g_{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	70	120	S
R_{gi}	Gate Input Resistance		3.4	Ω
C _{iss}			4770	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		710	pF
C _{rss}			3.5	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\begin{cases} V_{GS} = 0V \\ V_{DS} = 0.8 \bullet V_{DSS} \end{cases}$		560	pF
$C_{o(tr)}$	Time related $V_{DS} = 0.8 \cdot V_{DSS}$		1850	pF
t _{d(on)}	Resistive Switching Times		20	ns
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		27	ns
t _{d(off)}	40 20 20 2		100	ns
t _f	I II G = OSE (External)		10	ns
Q _{g(on)}			87	nC
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 0.5 \cdot I_{D25}$		24	nC
Q _{gd}			23	nC
R _{thJC}				0.31 °C/W

Source-Drain Diode

Symbol (T _J = 25°C, U	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max	
I _s	$V_{GS} = 0V$			130	Α
I _{SM}	Repetitive, pulse Width Limited by T_{JM}			520	Α
V _{SD}	$I_{F} = 100A, V_{GS} = 0V, Note 1$			1.4	V
$\left. egin{array}{c} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight. ight.$	$I_F = 65A$, -di/dt = 100A/ μ s $V_R = 75V$		93 310 6.7		ns nC A

Notes: 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

2. On through-hole packages, $R_{\rm DS(on)}$ Kelvin test contact location must be 5mm or less from the package body.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

0

0

0.2

0.4

0.6

V_{DS} - Volts

0.8

1.2

Fig. 2. Extended Output Characteristics @ T_J = 25°C 400 V_{GS} = 10V 350 8V 300 - Amperes 200 <u>-</u> 150 100 50 0 0 5 10 15 20 25 V_{DS} - Volts

Fig. 3. Output Characteristics @ T_J = 125°C V_{GS} = 10V 120 8V 100 6V lo - Amperes 80 60 40 20 0 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 2.2

100

150

200

I_D - Amperes

250

300

350

400

0.5

0

50

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 14. Forward-Bias Safe Operating Area 1000 R_{DS(on)} Limit 25µs 100 100µs lo - Amperes 10 1 $T_J = 150^{\circ}C$ 10ms $T_C = 25^{\circ}C$ DC Single Pulse 0.1 10 1,000 V_{DS} - Volts

Fig. 15. Maximum Transient Thermal Impedance

SYM	INCHES		MILLIMETERS	
2114	MIN	MAX	NIM	MAX
Α	.160	.190	4.06	4.83
A1	.080	.110	2.03	2.79
Ь	.020	.039	0.51	0.99
b2	.045	.055	1.14	1.40
С	.016	.029	0.40	0.74
c2	.045	.055	1.14	1.40
D	.340	.380	8.64	9.65
D1	.315	.350	8.00	8.89
Ε	.380	.410	9.65	10.41
E1	.245	.320	6.22	8.13
е	.100 BSC		2.54	BSC
L	.575	.625	14.61	15.88
L1	.090	.110	2.29	2.79
L2	.040	.055	1.02	1.40
L3	.050	.070	1.27	1.78
L4	0	.005	0	0.13

