Logic and Axiomatic Semantics

Homework #3, CSCI 322, Winter 2016

Due: Monday, February 15, at midnight.

Part I, Formal logic: Provide formal proofs, as illustrated in the class notes, for the following theorems:

1.
$$((P \Rightarrow R) \land (Q \Rightarrow S)) \Rightarrow ((P \land Q) \Rightarrow (R \land S))$$

2.
$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (Q \Rightarrow (P \Rightarrow R))$$

3.
$$(P \Rightarrow (P \Rightarrow Q)) \Rightarrow (P \Rightarrow Q)$$

4.
$$((P \Rightarrow Q) \Rightarrow Q) \Rightarrow ((Q \Rightarrow P) \Rightarrow P)$$

5.
$$(P \Rightarrow Q) \lor (Q \Rightarrow P)$$

6.
$$((P \Rightarrow R) \lor (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

7.
$$(P \land Q \Rightarrow R) \Rightarrow ((P \Rightarrow R) \lor (Q \Rightarrow R))$$

Part II, Axiomatic Semantics: Provide formal proofs of the following triples.

8.
$$\{x > 5\}$$
 x = 2 * x $\{x > 8\}$

9.
$$\{y > 0\}$$
 if x > y then y = x + y $\{y > 0\}$

Part III, Concurrency:

10. Provide a formal proof of the following. Show both the annotated code, and proofs of all necessary triples.

$$\begin{cases} x = 2 \land y = 3 \\ \text{co x = y; // y = 4; oc} \\ \{x = 3 \lor x = 4 \} \end{cases}$$

I provide here an example using the natural deduction package for \LaTeX Eurther examples are in the lectures.

Prove: $(P \Rightarrow Q) \Rightarrow ((P \land R) \Rightarrow (Q \land R))$

1.	$P \Rightarrow Q$
2.	$P \wedge R$
3.	P
4.	R
5.	Q
6.	$Q \wedge R$
7.	$(P \land R) \Rightarrow (Q \land R)$

8.
$$(P \Rightarrow Q) \Rightarrow ((P \land R) \Rightarrow (Q \land R))$$

assumption for conditional proof

assumption for conditional proof

- 2, simplification
- 2, simplification
- 1, 3, modus ponens
- 4, 5, conjunction

 $conditional\ proof$

conditional proof