Signals and Systems.

Teemu Weckroth, September 7, 2023

Complex numbers.

$$j := \sqrt{-1}$$

$$e^{ja} = \cos a + j \sin a$$

$$z = a + jb = r \cdot e^{j\theta}$$

$$z^* = a - jb = r \cdot e^{-j\theta}$$

$$r = \sqrt{a^2 + b^2}$$

$$\theta = \arctan\left(\frac{b}{a}\right)$$

$$a = r \cdot \cos \theta$$

$$b = r \cdot \sin \theta$$

For special case r = 1:

$$z = e^{j\theta} = \cos\theta + j\sin\theta$$

$$z^* = e^{-j\theta} = \cos\theta - j\sin\theta$$

$$\cos\theta = \frac{1}{2} \left(e^{j\theta} + e^{-j\theta} \right)$$

$$\sin\theta = \frac{1}{2j} \left(e^{j\theta} - e^{-j\theta} \right)$$

Operations with complex numbers.

Take
$$z_1 = a_1 + jb_1 = r_1e^{j\theta_1}$$
 and $z_2 = a_2 + jb_2 = r_2e^{j\theta_2}$:

$$z_1 + z_2 = (a_1 + b_2) + j(b_1 + b_2)$$

$$z_1 \cdot z_2 = (a_1a_2 - b_1b_2) + j(a_1b_2 + a_1b_2)$$

$$= r_1r_2e^{j(\theta_1 + \theta_2)}$$

$$\frac{1}{z_1} = \frac{1}{a_1 + jb_1} = \frac{1}{r_1}e^{-j\theta_1}$$

$$\frac{z_2}{z_1} = \frac{r_2}{r_1}e^{j(\theta_2 - \theta_1)}$$

$$|z_1|^2 = z_1 \cdot z_1^*$$

Harmonic functions and phasors.

We often deal with signals of the form

$$x_a(t) = A\cos(\omega t + \phi)$$

or

$$x_b(t) = A_1 \cos(\omega t + \phi_1) + A_2 \cos(\omega t + \phi_2)$$

We can write $x_a(t)$ as

$$x_a(t) = \text{Re}(Ae^{j(\omega t + \phi)}) = \text{Re}(e^{j\omega t} \cdot Ae^{j\phi})$$

and $x_b(t)$ as

$$x_h(t) = \operatorname{Re}(e^{j\omega t} \cdot (A_1 e^{j\phi_1} + A_2 e^{j\phi_2}))$$

Signal with delay.

Signal y(t) delayed by τ can be written as

$$y(t) = k \cdot x(t - \tau)$$

or as a convolution

$$y(t) = x(t) * h(t)$$

with

$$h(t) = k \cdot \delta(t - \tau)$$

Moving average.

The signal can be written as

$$y(t) = k \cdot \frac{1}{T_0} \int_{t-T_0}^t x(\alpha) \cdot d\alpha$$

or as a convolution

$$y(t) = x(t) * h(t)$$

with

$$h(t) = \frac{k}{T_0} \Pi \left(\frac{t - T_0/2}{T_0} \right)$$

Unit step function u(t).

Describes something starting at t = 0:

$$u(t) = \begin{cases} 0 & \text{for } t < 0\\ 1 & \text{for } t \ge 0 \end{cases}$$

Unit pulse function $\Pi(t)$.

Describes something lasting for one second and centred at t = 0:

$$\Pi(t) = \begin{cases} 1 & \text{for } |t| \le \frac{1}{2} \\ 0 & \text{elsewhere} \end{cases}$$

Discrete-time unit impulse $\delta[n]$.

Describes something lasting for one sample and centred at n = 0:

$$\delta[n] = \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{elsewhere} \end{cases}$$

Sinc function sinc(t).

$$\operatorname{sinc}(t) = \frac{\sin(\pi \cdot t)}{\pi \cdot t}$$

Sampling the sinc function with sampling intervals $T_s = 1$ gives us the discrete unit pulse $\delta[n] = \text{sinc}(1 \cdot n)$.

Triangle function $\Lambda\left(\frac{t}{T}\right)$.

$$\Lambda\left(\frac{t}{T}\right) = \begin{cases} 1 - \left|\frac{t}{T}\right| & \text{for } t \in [-T, T] \\ 0 & \text{elsewhere} \end{cases}$$

We encounter this while studying the convolution

$$\frac{1}{T} \cdot \Pi\left(\frac{t}{T}\right) * \Pi\left(\frac{t}{T}\right) = \Lambda\left(\frac{t}{T}\right)$$

Periodic signals.

Periodic signals repeat after period $T_0 = \frac{1}{f_0} = \frac{2\pi}{\omega_0}$:

$$x(t) = x(t+T_0) = x(t+n\cdot T_0)$$

Phasors.

Take

$$x(t) = 2 \cdot \cos\left(2\pi \cdot 10 \cdot t + \frac{\pi}{4}\right)$$

Using Euler's theorem:

$$x(t) = \text{Re}\left\{ \left(2 \cdot e^{j(2\pi \cdot 10 \cdot t + \frac{\pi}{4})} \right) \right\}$$
$$= \frac{1}{2} \left(2 \cdot e^{j(2\pi \cdot 10 \cdot t + \frac{\pi}{4})} + 2 \cdot e^{-j(2\pi \cdot 10 \cdot t + \frac{\pi}{4})} \right)$$

Dirac delta function $\delta(t)$.

Properties that define it:

$$\delta(t) = 0$$
 for $t \neq 0$

$$\int_{-\infty}^{\infty} \delta(t) \, dt = 1$$

Consequences:

$$u(t) = \int_{-\infty}^{t} \delta(\tau) \, d\tau$$

$$\int_{-\infty}^{\infty} x(\tau) \cdot \delta(t - \tau) d\tau = \int_{-\infty}^{\infty} x(t - \tau) \cdot \delta(\tau) d\tau$$
$$= x(t)$$

Energy and power of a signal.

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

Formally it is

$$E = \lim_{T \to \infty} \int_{-T/2}^{T/2} |x(t)|^2 dt$$

For signals with infinite energy:

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt$$

For periodic signals:

$$P = \frac{1}{T_0} \int_{< T_0>} |x(t)|^2 dt$$

Systems defined by simple ODEs.

For a system described by

$$\frac{dy(t)}{dt} + k \cdot y(t) = k \cdot x(t)$$

where $x(t) = T_0 u(t)$, the solution y(t) is given by

$$y(t) = T_0 \left(1 - e^{-kt} \right) \cdot u(t)$$

The output of a system where the input is $\delta(n)$ is called the impulse response h(t). In this case:

$$y(t) = h(t) = k \cdot e^{-kt} \cdot u(t)$$

Variant vs invariant systems.

For a time-invariant system with input-output pair x(t) and y(t) and any time-shift τ :

$$x(t-\tau) \to \boxed{\text{Time-invariant system}} \to y(t-\tau)$$

Example.

$$y(t) = \frac{1}{T_0} \cdot \int_{t-T_0}^t x(\alpha) \, d\alpha$$

Give the input as signal $x_1(t) = x(t - \tau)$:

$$y_1(t) = \frac{1}{T_0} \cdot \int_{t-T_0}^t x_1(\alpha) \, d\alpha$$

Variable change: $\beta = \alpha - \tau$, so that $\alpha = \beta + \tau$ and $d\alpha = d\beta$. Substitute and change the integration limits:

$$y_1(t) = \frac{1}{T_0} \cdot \int_{(t-\tau)-T_0}^{(t-\tau)} x(\beta) \, d\beta = y(t-\tau)$$

Linear systems.

A system is linear if, for any constants a and b and inputs $x_1(t)$ and $x_2(t)$:

$$\mathcal{H}[a\cdot x_1(t)+b\cdot x_2(t)]=a\cdot \mathcal{H}[x_1(t)]+b\cdot \mathcal{H}[x_2(t)]$$

Causal systems.

A system is causal if the output signal does not depend on future inputs. Example: $y(t) = \frac{1}{T_0} \cdot \int_{t-T_0}^{t} x(\alpha) d\alpha$.

Counter-example:
$$\mathcal{H}[x(t)] = x(t+1), \mathcal{H}[x(t)] = \frac{1}{T_0} \cdot \int_t^{t+T_0} x(\alpha) d\alpha.$$

LTI systems, impulse response, and the convolution.

$$\delta(t) \to \boxed{\text{System}} \to h(t)$$
$$x(t) \to \boxed{\text{System}} \to \int_{-\infty}^{\infty} x(\tau) \cdot h(t - \tau) \, d\tau = x(t) * h(t)$$

Temporal length of the output = length of input + length of h(t).

Computing convolutions by hand.

· Sketch functions.

· Identify cases/intervals

• Solve integral as a function of t.

Properties of the convolution.

Commutative: x(t) * y(t) = y(t) * x(t)

Associative: $x(t) * h_1(t) * h_2(t) = x(t) * (h_1(t) * h_2(t))$

Distributive: $x(t) * h_1(t) + x(t) * h_2(t) = x(t) * (h_1(t) + h_2(t))$

Frequency response.

$$x(t) = e^{j2\pi f_0 t} \to \boxed{\mathbf{H}(\mathbf{f})} \to e^{j2\pi f_0 t} \cdot \mathbf{H}(f_0)$$
$$x(t) * h(t) = \int_{-\infty}^{\infty} h(\tau) \cdot e^{j2\pi f_0 (t-\tau)} d\tau$$
$$= e^{j2\pi f_0 t} \int_{-\infty}^{\infty} h(\tau) \cdot e^{-j2\pi f_0 \tau} d\tau$$

H(f): frequency response. The frequency response is the Fourier transform of the impulse response.

$$H(f) = \int_{-\infty}^{\infty} h(\tau) \cdot e^{-j2\pi f \tau} d\tau = \int_{-\infty}^{\infty} h(t) \cdot e^{-j2\pi f t} dt$$

Constructing periodic signals.

$$x_0(t) = a_0 + \sum_{k=1}^n a_k \cos(k\omega_0 t) + \sum_{k=1}^n b_k \sin(k\omega_0 t)$$
$$= \sum_{n=-N}^N X_n e^{jn\omega_0 t}$$

Synthesis and analysis equations.

A non-pathological periodic function with period T_0 can be expressed as

$$x(t) = \sum_{n=0}^{\infty} a_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} b_n \sin(n\omega_0 t)$$

with

$$a_0 = \frac{1}{T_0} \int_{< T_0 >} x(t) dt = \frac{1}{T_0} \int_0^{T_0} x(t) dt = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) dt$$

$$a_n = \frac{2}{T_0} \int_{< T_0 >} x(t) \cdot \cos(n\omega_0 t) dt$$

$$b_n = \frac{2}{T_0} \int_{< T_0 >} x(t) \cdot \sin(n\omega_0 t) dt$$

 a_0 is the mean value. $\cos(n\omega_0 t)$ are even functions of t(x(t) = x(-t)). $\sin(n\omega_0 t)$ are odd functions of t(x(t) = -x(-t)).

A signal x(t) can always be decomposed in an even and an odd component:

$$x(t) = x_{\text{even}}(t) + x_{\text{odd}}(t)$$

Complex Fourier series.

Since

$$\cos(n\omega_0 t) = \frac{1}{2}e^{-jn\omega_0 t} + \frac{1}{2}e^{jn\omega_0 t}$$

and

$$\sin(n\omega_0 t) = \frac{j}{2}e^{-jn\omega_0 t} - \frac{j}{2}e^{jn\omega_0 t},$$

we can rewrite the Fourier series as

$$x(t) = \sum_{n=0}^{\infty} a_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} b_n \sin(n\omega_0 t) = \sum_{n=-\infty}^{\infty} X_n \cdot e^{jn\omega_0 t}$$

with

$$X_n = \frac{1}{T_0} \int_{CT_n} x(t) \cdot e^{-jn\omega_0 t} dt$$

Symmetry property.

For real-valued signals:

$$X_n = X_{-n}^*$$

Real part is even function of n.

Imaginary part is odd function of n.

Amplitude $|X_n|$ is even function.

Phase is odd.

Altogether this is called Hermitian symmetry.

Differentiation.

$$x(t) \rightarrow \boxed{\frac{d}{dt}} \rightarrow \mathcal{H}[x(t)] = \frac{dx(t)}{dt} = \dot{x}(t)$$

Per definition:

$$h(t) = \dot{\delta}(t)$$

Thus:

$$\mathcal{H}[x(t)] = x(t) * \dot{\delta}(t) = \int_{-\infty}^{\infty} x(\tau) \cdot \dot{\delta}(t - \tau) dt = \dot{x}(t)$$

$$\begin{split} e^{jk\omega_0t} & \rightarrow \boxed{\frac{d}{dt}} \rightarrow jk\omega_0 \cdot e^{jk\omega_0t} \\ X_l e^{jl\omega_0t} + X_k e^{jk\omega_0t} & \rightarrow \boxed{\frac{d}{dt}} \rightarrow jl\omega_0 X_l e^{jl\omega_0t} + jk\omega_0 X_k e^{jk\omega_0t} \\ & \sum_{k=0}^{\infty} X_k e^{jk\omega_0t} \rightarrow \boxed{\frac{d}{dt}} \rightarrow \sum_{k=0}^{\infty} jk\omega_0 X_k e^{jk\omega_0t} \end{split}$$

Thus the derivative of a complex Fourier series is another one with new coefficients

$$X_k' = jk\omega_0 X_k$$

Response of LTI system to periodic signal.

$$\sum_{k=-\infty}^{\infty} X_k e^{jk\omega_0 t} \to \begin{bmatrix} h(t) \\ H(\omega) \end{bmatrix} \to \sum_{k=-\infty}^{\infty} H(k\omega_0) \cdot X_k e^{jk\omega_0 t}$$

Thus the response of a LTI system to a periodic signal is another periodic signal with the same fundamental period and coefficients

$$\tilde{X}_k = H(k\omega_0) \cdot X_k$$

E.g. differentiation: $H(\omega) = j\omega$.

Parseval's theorem.

$$P = \frac{1}{T_0} \int_0^{T_0} |x(t)|^2 dt = \frac{1}{T_0} \int_0^{T_0} x(t) \cdot x(t)^* dt$$
$$= \sum_{n=-\infty}^{\infty} X_n^* \cdot X_n = \sum_{n=-\infty}^{\infty} |X_n|^2$$

For trigonometric series:

$$P = \frac{1}{T_0} \int_0^{T_0} |x(t)|^2 dt = \frac{1}{T_0} \int_0^{T_0} x(t) \cdot x(t)^* dt$$
$$= a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} a_n^2 + \frac{1}{2} \sum_{n=1}^{\infty} b_n^2$$

Time and frequency.

As the signal becomes shorter in the time domain, we need higher frequencies to synthesize it.

Short/concentrated in time ↔ long/extended in frequency

Long/extended in time ↔ short/concentrated in frequency

Fourier transform.

Fourier Transform:
$$X(f)=\int_{-\infty}^{\infty}x(t)\cdot e^{-j2\pi ft}\;dt$$

Inverse Fourier Transform: $x(t)=\int_{-\infty}^{\infty}X(f)\cdot e^{j2\pi ft}\;df$

Duality.

Given the Fourier transform pair

$$\mathcal{F}\left\{x(t)\right\} = X(f)$$

we also have the following one:

$$\mathcal{F}\{X(t)\}=x(-f)$$

Convolution and product theorems.

Time domain	Frequency domain
x(t) * h(t)	$X(f) \cdot H(f)$
$x(t) \cdot y(t)$	X(f) * Y(f)

 $Y(f) = H(f) \cdot X(f)$

Fourier transforms are slight extensions of Fourier series:

$$x(t) = \int_{-\infty}^{\infty} X(f) \cdot e^{j2\pi ft} df \to h(t)$$

$$H(f)$$

$$H(f)$$

$$H(f) \cdot X(f) \cdot e^{j2\pi ft} df$$

Energy of signal after going through system.

Parseval's theorem:

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df$$

$$x(t)$$
 with $E_x \to h(t) \to y(t)$ with E_y

$$E_{y} = \int_{-\infty}^{\infty} |y(t)|^{2} dt = \int_{-\infty}^{\infty} |Y(f)|^{2} df$$

First route: calculate y(t) = x(t) * h(t) and continue from there. Second route: $Y(f) = H(f) \cdot X(f)$, thus

$$E_{y} = \int_{-\infty}^{\infty} \left| H(f) \right|^{2} \left| X(f) \right|^{2} df$$

Filters.

Low-pass Butterworth filter example:

$$H_{\text{Butter}}(f) = \frac{1}{B_n \left(j \cdot \frac{f}{f_c} \right)}$$

where $B_n(s)$ are the Butterworth polynomials of order n.

E.g.
$$B_2(s) = s^2 + \sqrt{2}s + 1$$
.

In general:

$$\left|H_{\text{Butter}}(f)\right|^2 = \frac{1}{1 + \left(\frac{f}{f_c}\right)^{2n}}$$

At f_c (or f_1 , f_2) we have $|H(f_c)|^2 = \frac{1}{2}$.

 $Higher\ order\ filter \to sharper\ in\ frequency\ domain$

→ longer impulse response

→ more complexity

Fourier transform vs DFT.

Fourier Transform.

Physical world: continuous time signals x(t) for $t \in [-\infty, \infty]$.

$$X(f) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j2\pi ft} dt$$
$$x(t) = \int_{-\infty}^{\infty} X(f) \cdot e^{j2\pi ft} df$$

X(f) is continuous, $f \in [-\infty, \infty]$.

Discrete Fourier Transform.

Typical digital world: discrete time signals x[n] for n = 0, 1, ..., N - 1.

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{k \cdot n}{N}}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi \frac{k \cdot n}{N}}$$

X[k] is discrete. Discrete angular frequencies $0, \frac{2\pi}{N}, \frac{2\pi \cdot 2}{N}, ..., \frac{2\pi \cdot (N-1)}{N}$.

Discrete Fourier Transform.

Very often x[n] are samples of a continuous time signal:

$$x[n] = x(n \cdot T_s)$$

In those cases, the discrete frequencies correspond to continuous time frequencies

$$f_k = \frac{k}{N} \cdot F_s = \frac{k}{N \cdot T_s} = \frac{k}{T_{\text{meas}}}$$

Frequency resolution:

$$\Delta f = \frac{F_s}{N} = \frac{1}{N \cdot T_s} = \frac{1}{T_{\text{meas}}}$$

DFT treats signals as periodic: we take N samples of a continuous time signal. Since we do not know what happens before or after, we can assume that the signal is periodic.

First N/2 values of DFT: positive frequencies.

Second N/2 values of DFT: negative frequencies.

DFT vs FFT.

The Fast Fourier Transform is a family of algorithms to efficiently compute the DFT: number of operations for DFT according to formula is $\mathcal{O}\left(N^2\right)$; number of operations for FFT is $\mathcal{O}(N \cdot \log N)$.

Aliasing

Causes different signals to become indistinguishable (or aliases to one another) when sampled.

Possible aliases for $x(t) = \cos(2\pi \cdot 4.5 \cdot t)$ sampled at $F_s = 15$ Hz:

Nyquist Theorem.

To perfectly reconstruct a signal, the sampling frequency F_s needs to be at least twice the highest frequency W of a given signal:

$$\overline{r}_s > 2 \cdot W$$

Simple sampling scheme: Sample and Hold.

Sample and Hold: retain values of signal at instants

$$t_n = n \cdot T_s$$

During sampling, this operation gives the Digital to Analog Converter (DAC) time to do the quantization of the signal.

Ideal sampling.

We can model sampling as multiplying a continuous time signal x(t) with a train of Dirac-deltas:

$$x_s(t) = x(t) \cdot \sum_{n = -\infty}^{\infty} T_s \cdot \delta(t - n \cdot T_s)$$
$$= T_s \sum_{n = -\infty}^{\infty} x(n \cdot T_s) \cdot \delta(t - n \cdot T_s)$$

$$x_s(t) = x(t) \cdot T_s \sum_{n = -\infty}^{\infty} \delta(t - n \cdot T_s) \xrightarrow{\mathcal{F}} X_s(f) = X(f) * \sum_{k = -\infty}^{\infty} \delta(f - k \cdot F_s)$$

$$x_{s}(t) = T_{s} \sum_{n=-\infty}^{\infty} x (n \cdot T_{s}) \cdot \delta (t - n \cdot T_{s}) \xrightarrow{\mathcal{F}} X_{s}(f) = \sum_{k=-\infty}^{\infty} X (f - k \cdot F_{s})$$

Ideal reconstruction.

Given a properly sampled signal $(F_s > 2 \cdot W)$ we can reconstruct the original perfectly using a Sinc interpolation (essentially the same as using a low pass filter):

$$x(t) = \sum_{n = -\infty}^{\infty} x[n] \cdot \operatorname{sinc}\left(\frac{t - n \cdot T_s}{T_s}\right)$$

$$x[n] \to \boxed{\text{DAC}} \xrightarrow{T_s \sum_{n=-\infty}^{\infty} x[n]\delta(t-nT_s)} \xrightarrow{\text{Ideal LPF}} \xrightarrow{\sum_{n=-\infty}^{\infty} x[n]\operatorname{sinc}(t-nT_s) = x(t)}$$

Various Fourier transforms.

From Fourier series to Fourier transform.

$$x(t) = \sum_{n = -\infty}^{\infty} X_n \cdot e^{jn\omega_0 t}$$

$$X_n = \frac{1}{T_0} \int_{< T_0 >} x(t) \cdot e^{-jn\omega_0 t} dt$$

Move $\frac{1}{T_0}$ to x(t), use $\omega_0 = 2\pi f_0$, and rewrite.

$$x(t) = \sum_{n = -\infty}^{\infty} X[n] \cdot e^{j2\pi n f_0 t} \frac{1}{T_0}$$
$$X[n] = \int_{< T_0 >} x(t) \cdot e^{-j2\pi n f_0 t} dt$$

Write X[n] as a continuous function of f and use $f_0 = \frac{1}{T_0}$.

$$x(t) = \sum_{n=-\infty}^{\infty} X(nf_0) \cdot e^{j2\pi nf_0 t} f_0$$
$$X(nf_0) = \int_{\langle T_0 \rangle} x(t) \cdot e^{-j2\pi nf_0 t} dt$$

Now: we let $T_0 \to \infty$, or $f_0 \to 0$; we call this df; use $f = n \cdot f_0$; and the summation becomes an integral.

Inverse Fourier Transform:
$$x(t) = \int_{-\infty}^{\infty} X(f) \cdot e^{j2\pi ft} df$$

Fourier Transform: $X(f) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j2\pi ft} dt$

Fourier transform of Dirac delta.

$$\mathcal{F}\left\{\delta(t)\right\} = \int_{-\infty}^{\infty} \delta(t) \cdot e^{-j2\pi f t} dt$$

Apply shifting property.

$$\mathcal{F}\{\delta(t)\} = \int_{-\infty}^{\infty} \delta(t) \cdot e^{-j2\pi ft} dt = 1$$

Did we know this?

$$x(t) \to \boxed{\delta(t)} \to x(t)$$

We knew the expression of the frequency response:

$$H(f) = \int_{-\infty}^{\infty} h(t) \cdot e^{-j2\pi ft} dt$$
$$= \int_{-\infty}^{\infty} \delta(t) \cdot e^{-j2\pi ft} dt = 1$$

Fourier transform of a delay.

$$\mathcal{F}\left\{\delta(t-\tau)\right\} = \int_{-\infty}^{\infty} \delta(t-\tau) \cdot e^{-j2\pi ft} dt$$
$$= \int_{-\infty}^{\infty} \delta(t-\tau)e^{-j2\pi ft} dt$$
$$= e^{-j2\pi f\tau}$$

Duality example.

$$X(f) = \delta(F)$$

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df = \int_{-\infty}^{\infty} \delta(f) \cdot e^{j2\pi ft} df = 1$$

$$1 \underset{\mathcal{F}^{-1}}{\longleftrightarrow} \delta(f)$$

What is the Fourier transform of

$$x_1(t) = \frac{1}{10 + j2\pi t}$$

From the Fourier transform pair table:

$$\mathscr{F}\left\{e^{-\alpha t}\cdot u(t)\right\} = \frac{1}{\alpha + j2\pi f} = X(f)$$

Take $\alpha = 10$, then we have $x_1(t) = X(f)$, therefore

$$\begin{split} \mathcal{F}\{x_1(t)\} &= \mathcal{F}\{X(f)\} = e^{-\alpha(-f)} \cdot u(-f) \\ \mathcal{F}\left\{\frac{1}{10 + j2\pi t}\right\} &= e^{10f} \cdot u(-f) \end{split}$$

Fourier Transform theorems.

	Time domain	Frequency domain
Superposition	$a_1 x_1(t) + a_2 x_2(t)$	$a_1 X_1(f) + a_2 X_2(f)$
Time delay	$x(t-t_0)$	$e^{-j2\pi f t_0}X(f)$
Scaling	$x(a \cdot t)$	$\frac{1}{ a }X\left(\frac{f}{a}\right)$
Time reversal	x(-t)	X(-f)
Frequency translation	$x(t) \cdot e^{j2\pi f_0 t}$	$X(f-f_0)$
Modulation	$\cos 2\pi f_0 t \cdot x(t)$	$\frac{1}{2}X(f - f_0) + \frac{1}{2}X(f + f_0)$
Differentiation	$\frac{d}{dt}x(t)$	$j2\pi fX(f)$
Integration	$\int_{-\infty}^{t} x(\alpha) d\alpha$	$\frac{1}{i2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$

Fourier transform of unit pulse.

$$\mathcal{F}\left\{\Pi\left(\frac{t}{A}\right)\right\} = A\operatorname{sinc}(f \cdot A)$$

Fourier transform of sinc.

$$x(t) = \operatorname{sinc}(2Wt)$$

Use duality to write

$$\begin{split} \mathscr{F}\{A \cdot \mathrm{sinc}(t \cdot A)\} &= \Pi\left(-\frac{f}{A}\right) = \Pi\left(\frac{f}{A}\right) \\ &\frac{1}{2W} \mathscr{F}\{2W \cdot \mathrm{sinc}(2Wt)\} = \frac{1}{2W} \Pi\left(\frac{f}{2W}\right) \\ \mathscr{F}\{\mathrm{sinc}(2Wt)\} &= \frac{1}{2W} \Pi\left(\frac{f}{2W}\right) \end{split}$$

Fourier transform of train of deltas.

To find the Fourier transform of

$$T_s \sum_{n=-\infty}^{\infty} \delta(t - n \cdot T_s)$$

we are going to use Fourier series:

$$T_{s} \sum_{n=-\infty}^{\infty} \delta(t - n \cdot T_{s}) = \sum_{k=-\infty}^{\infty} X_{k} \cdot e^{j2\pi k F_{s}t}$$
$$= \sum_{k=-\infty}^{\infty} e^{j2\pi k F_{s}t}$$

Thus

$$\mathcal{F}\left\{T_{S}\sum_{n=-\infty}^{\infty}\delta\left(t-n\cdot T_{S}\right)\right\} = \mathcal{F}\left\{\sum_{k=-\infty}^{\infty}e^{j2\pi kF_{S}t}\right\}$$
$$= \sum_{k=-\infty}^{\infty}\delta\left(f-kF_{S}\right)$$