(à n'utiliser que pour les commandes de reproduction)

21 Nº d'enregistrement national :

99 10942

(51) Int Cl⁷: **C 08 F 8/14**, C 08 F 220/10, C 09 K 11/06, C 07 C 69/54, D 06 L 3/12

(12)

DEMANDE DE BREVET D'INVENTION

A1

- 2 Date de dépôt : 31.08.99.
- 30 Priorité :

- (71) Demandeur(s): COMMISSARIAT A L'ENERGIE ATO-MIQUE Etablissement de caractère scientifique technique et industriel — FR.
- Date de mise à la disposition du public de la demande : 02.03.01 Bulletin 01/09.
- (56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule
- 60 Références à d'autres documents nationaux apparentés :
- 10 Inventeur(s): DENIS CHRISTINE, RAIMOND PAUL, FIORINI CELINE et NUNZI JEAN MICHEL.
- 73 Titulaire(s) :
- Mandataire(s): BREVATOME.

COPOLYMERES A BASE D'AZURANT OPTIQUE, LEUR FABRICATION ET MONOMERE POLYMERISABLE UTILE POUR CETTE FABRICATION.

L'invention concerne un copolymère formé de motifs A et de motifs B comportant un azurant optique C lié de façon covalente aux motifs B, ledit copolymère comprenant 5 à 30 % en poids d'azurant optique C par rapport au poids du copolymère total.

Ce copolymère peut répondre à la formule globale suivante:

Il présente une émission de fluorescence maximale pour une teneur en azurant optique de 4 à 30 % en masse.

COPOLYMERES A BASE D'AZURANT OPTIQUE, LEUR FABRICATION ET MONOMERE POLYMERISABLE UTILE POUR CETTE FABRICATION.

DESCRIPTION

Domaine technique

15

La présente invention a pour objet des copolymères comportant des azurants optiques, utilisables dans l'industrie en particulier dans l'industrie textile, dans l'industrie du papier et dans l'industrie des matières plastiques.

10 État de la technique antérieure

envisagé de réaliser des déjà On copolymères comportant azurants des polymères et optiques afin de blanchir les polymères et d'obtenir des produits blancs résistant aux lavages et solvants, pour diverses applications, notamment pour le blanchiment des textiles, du papier et des matières plastiques, par exemple pour la fabrication d'objets d'usage courant tels que des jouets, des articles de papeterie, etc.

On rappelle que les azurants optiques sont des agents de blanchiment par voie optique, constitués par des composés chimiques dotés d'une fluorescence bleue, qui absorbent dans l'ultra-violet (absorption maximale à une longueur d'onde inférieure à 400 nm) et réémettent de l'énergie par fluorescence dans le visible (émission dans le bleu vers 400 nm).

Pour éviter leur dispersion dans divers milieux, on peut fixer ces azurants sur des polymères ou copolymères.

Ainsi, I. Grabchev et T. Philipova ont décrit dans Die Angewandte Makromolekulare Chemie 263, 5 1998, 1-4, page 4508 [1], des copolymères de styrène et dérivés de triazine-stilbène, soit de dérivés comprenant 0,5 % en poids d'azurant optique, triazine-stilbène, qui présentent des propriétés 10 d'absorption maximale à 338-342 nm et des propriétés de fluorescence maximale à 416-422 nm.

T. N. Konstantinova et I. K. Grabchev ont décrit dans Polymer International 43, 1997, pp. 39-44 [2] des copolymères de styrène ou d'acrylonitrile avec des dérivés d'un azurant optique, le 1,8-naphtalimide, contenant 0,1 à 0,3 % en poids de cet azurant optique.

15

20

25

30

Des copolymères de ce type ne présentent pas une intensité lumineuse de fluorescence suffisante pour certaines applications. Aussi, on a envisagé de réaliser des polymères à azurant optique uniquement à partir de dérivés d'azurants optiques polymérisables tels que ceux des documents mentionnés ci-dessus, mais on a constaté que leur émission de fluorescence était particulièrement médiocre alors que l'absorption était importante, et que cette émission était par ailleurs décalée vers le rouge par rapport à l'azurant optique utilisé.

De plus, on a remarqué que la plupart des azurants optiques étaient peu solubles dans les solvants organiques, ce qui pose certains problèmes

pour les utiliser dans des procédés de polymérisation radicalaire.

La présente invention a précisément pour objet des copolymères comportant des azurants optiques fixés sur la chaîne du copolymère par des liaisons covalentes, qui présentent une émission de fluorescence d'intensité lumineuse maximale dans la région bleuviolet du spectre visible et qui peuvent être fabriqués par des procédés faciles à mettre en œuvre à partir de monomères polymérisables solubles dans des solvants organiques.

Exposé de l'invention

5

10

20

25

Selon l'invention, le copolymère est formé de motifs A et de motifs B comportant un azurant optique C lié de façon covalente aux motifs B, et il comprend 4 à 30 % en poids d'azurant optique C par rapport au poids du copolymère total.

Selon l'invention, on a ainsi trouvé que l'intensité lumineuse de l'émission fluorescente était maximale quand on limitait à une plage précise la teneur en azurant optique du copolymère.

effet, avec les teneurs en optique des copolymères décrits dans les références [1] et [2], l'intensité lumineuse de fluorescence est très faible. En revanche, lorque la teneur en azurant optique du copolymère dépasse 30 % en poids, on observe ou « quenching » phénomène du extinction fluorescence, celle-ci étant particulièrement faible formé homopolymère un polymère est lorsque le

uniquement de motifs monomère comportant un groupe azurant optique.

L'azurant optique fixé dans ce copolymère peut être choisi parmi les azurants optiques connus et utilisés jusqu'à présent pour le blanchiment.

On peut utiliser en particulier un azurant optique choisi dans le groupe constitué :

1) des bis(benzoxazol-2-yl) de formule :

$$A^2$$
 A^1 A^2 A^2

dans laquelle A^1 est un groupe aromatique, hétérocyclique ou alcoylène, et A^2 est un atome d'hydrogène ou un groupe alkyle;

2) des coumarines de formule :

5

15

$$A^3 \qquad O \qquad O \qquad (II)$$

20 dans laquelle A³ est un groupe hétérocyclique ;

3) des bis(styryl)biphényle de formule :

$$A^4$$
 $CH = CH$
 B^1
 $CH = CH$
 A^6
 A^7
(III)

dans laquelle A⁴, A⁵, A⁶, A⁷, B¹ et B² qui peuvent être identiques ou différents, représentent indépendamment un atome d'hydrogène, —SO₃Na ou un groupe alkyle; et

4) des dérivés de triazine-stilbène de formule :

$$\begin{array}{c|c}
A^{8} & & \\
A^{9} & & \\
\end{array}$$

$$\begin{array}{c|c}
N & \\
\end{array}$$

$$\begin{array}{c}
A^{12} \\
N & \\
\end{array}$$

$$\begin{array}{c}
N$$

dans laquelle A^8 , A^9 , A^{12} et A^{13} représentent indépendamment un atome d'hydrogène, un groupe $-SO_3Na$ ou un groupe phénylamino, dialkylamino ou morpholino, et A^{10} et A^{11} représentent indépendamment un atome d'hydrogène ou $-SO_3Na$.

Dans les formules données ci-dessus, les 10 groupes aromatiques utilisés peuvent être des groupes comportant un ou plusieurs noyaux benzéniques, par groupes phényle, biphényle, des exemple substitués ou des groupes aromatiques formés à partir d'hydrocarbures aromatiques polycycliques, comme les 15 phénanthryle, anthracényle, naphtyle, groupes fluoranthényle, etc.

hétérocycliques sont des groupes Les groupes hydrocarbonés, saturés ou insaturés, comportant un ou plusieurs hétéroatomes tels que 0, N et S. A titre d'exemple de groupes hétérocycliques, on peut thiényle, furyle, pyrannyle, groupes citer les isobenzothiényle, pyrrolyle, isobenzofurannyle, pyridyle, pyrazolyle.

20

25

Les groupes alcoylène utilisés peuvent être linéaires ou ramifiés et comporter de 3 à 16 atomes de carbone.

Les groupes alkyle susceptibles d'être utilisés sont des groupes linéaires ou ramifiés, ayant

de préférence de 1 à 16 atomes de carbone. On utilise en particulier le groupe tert-butyle.

Lorsque dans la formule (IV), A^8 , A^9 , A^{12} et/ou A^{13} représentent un groupe dialkylamino, les groupes alkyle ont de préférence de 1 à 12 atomes de carbone.

A titre d'exemple, l'azurant optique peut répondre à la formule (III) dans laquelle A^4 et A^5 représentent un groupe alkyle, par exemple le groupe tert-butyle, et A^6 , A^7 , B^1 et B^2 représentent un atome d'hydrogène.

On peut aussi utiliser un azurant optique répondant à la formule (I) dans laquelle ${\tt A}^1$ représente le groupe :

15

20

25

10

5

et A² représente le groupe-tert-butyle.

On peut encore utiliser un azurant optique répondant à la formule (IV) dans laquelle A^{10} et A^{11} représentent $-SO_3Na$ et A^8 , A^9 , A^{12} et A^{13} représentent le groupe phénylamino.

Dans le copolymère de l'invention, les motifs A et B peuvent être issus de divers monomères polymérisables de structures similaires ou différentes. Ainsi, la succession des motifs A et B peut correspondre au squelette d'un polymère naturel tel que les hydroxyéthers de cellulose, les polysaccharides, les esters de cellulose, des protéines modifiées et des hydrolysats de protéines. De préférence, les motifs A

et B sont des motifs de polymères synthétiques, par exemple des motifs issus de monomères acryliques, méthacryliques, vinyliques, oléfiniques et/ou styréniques.

Selon un mode de réalisation particulier, le copolymère comprend des motifs A issus du méthacrylate de méthyle et des motifs B issus du méthacrylate de l'azurant optique.

5

30

A titre d'exemple, le copolymère peut 10 répondre à la formule globale :

$$\begin{array}{c|c}
 & CH_{3} \\
 & CH_{2} \\
 & CH_{2}
\end{array}$$

$$\begin{array}{c|c}
 & CH_{3} \\
 & CH_{2}
\end{array}$$

$$\begin{array}{c|c}
 & CH_{3} \\
 & CH_{2}
\end{array}$$

$$\begin{array}{c|c}
 & Y
\end{array}$$

$$\begin{array}{c|c}
 & Y
\end{array}$$

$$\begin{array}{c|c}
 & Y
\end{array}$$

$$\begin{array}{c|c}
 & Y
\end{array}$$

20 dans laquelle x et y sont tels que la proportion massique de groupes azurants optiques C de formule :

$$CH = CH - CH = CH - C(CH_3)_3$$
 (VI)

représente 4 à 30 % en poids du copolymère total.

Dans cette formule, les motifs A sont formés du méthacrylate de méthyle et les motifs B du méthacrylate de l'azurant optique. Ils sont répartis de façon aléatoire dans la chaîne du copolymère.

De préférence, la proportion massique de groupes azurants optiques C représente 8 à 10 % en poids du copolymère total.

Les copolymères de l'invention peuvent être préparés par des procédés classiques, par exemple par copolymérisation radicalaire d'un monomère A' et d'un monomère B'sur lequel est fixé l'azurant optique C par une liaison covalente. Cette copolymérisation radicalaire est généralement effectuée en solution organique en présence d'un amorceur de polymérisation tel que l'azoisobutyronitrile.

5

10

20

25

On peut aussi préparer le copolymère de l'invention par un procédé comprenant les étapes suivantes :

- a) préparer un copolymère comportant des groupes pendants susceptibles de réagir avec l'azurant optique C, et
 - b) faire réagir les groupes pendants avec l'azurant optique C pour fixer celui-ci sur le copolymère en quantité telle qu'il représente 4 à 30 % du poids du copolymère modifié.

Dans ce cas, le copolymère peut être préparé également par copolymérisation radicalaire de deux monomères dont l'un comporte les groupes pendants. Cette polymérisation peut être effectuée également en solution au moyen des mêmes amorceurs de polymérisation.

Les proportions de monomères mis en présence pour la fabrication du copolymère dans les deux modes de mise en œuvre du procédé sont telles que

l'on puisse obtenir la proportion voulue d'azurant optique dans le copolymère final.

L'invention a encore pour objet un monomère polymérisable, utilisable dans le procédé de copolymérisation décrit ci-dessus, qui présente l'avantage d'être plus soluble dans les solvants organiques que les azurants optiques connus.

5

20

Ce monomère polymérisable répond à la formule :

L'invention concerne également un procédé de fabrication de monomères polymérisables utilisables pour la préparation des copolymères de l'invention, répondant à la formule :

$$A^4$$
 $CH = CH$
 $CH = CH$
 $(VIII)$

dans laquelle A^4 et A^5 sont des groupes alkyl et R^1 représente l'un des groupes suivants :

qui comprend les étapes suivantes :

5

25

1) couplage d'un acide boronique de formule :

$$(HO)_2B \longrightarrow CH = CH \longrightarrow A^4$$

$$A^5$$

$$(IX)$$

dans laquelle ${\bf A}^4$ et ${\bf A}^5$ sont tels que définis ci-dessus avec le dérivé bromé de formule :

$$CH = CH - CX$$
HO

pour obtenir le composé de formule : CH = CH CH = CH A^4 A^5 A^5

2) réaction du composé de formule (XI) avec le composé de formule R^1H où R^1 est tel que défini cidessus.

L'acide boronique de formule (IX) utilisé dans ce procédé peut être préparé à partir de 4-bromo-3',5'-dialkyl-stilbène par réaction avec du butyl-lithium dans du tétrahydrofuranne à -78°C, suivie d'une réaction avec B(OBu)3 et d'une hydrolyse acide.

Le 4-bromo-3',5'-dialkyl-stilbène peut être préparé à partir du dialkyl toluène correspondant par bromation, suivie d'une réaction avec du triéthylphosphite puis avec le bromo-4-benzaldéhyde.

L'invention concerne encore un procédé de fabrication de monomères polymérisables utilisables pour la préparation de copolymères de l'invention, répondant à la formule :

5 $A^{4} \longrightarrow CH = CH \longrightarrow CH = CH \longrightarrow (XXII)$

dans laquelle ${\tt A}^4$ et ${\tt A}^5$ sont des groupes 10 alkyle et ${\tt R}^2$ représente l'un des groupes suivants :

15 qui comprend les étapes suivantes :

1) couplage d'un acide boronique de formule :

$$(HO)_2B \longrightarrow CH = CH \longrightarrow A^4$$

$$A^5 \qquad (IX)$$

20 dans laquelle A⁴ et A⁵ sont tels que définis ci-dessus avec le dérivé bromé de formule :

$$CH = CH - CH - (XXIII)$$

25 pour obtenir le composé de formule :

$$CH = CH$$
 $CH = CH$
 A^4
 A^5
 $CH = CH$
 A^5

2) réduction du composé de formule (XXIV) pour obtenir le composé de formule :

5
$$CH = CH$$
 $CH = CH$ A^4 (XXV)

3) réaction du composé de formule (XXV) avec l'acide acrylique ou l'acide méthacrylique.

D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui suit d'exemples de réalisation donnés bien entendu à titre illustratif et non limitatif.

Brève description des dessins

15

25

La figure 1 illustre les spectres d'absorption UV-visible des différents copolymères à base d'azurant optique, sous forme de film.

20 La figure 2 illustre les spectres d'émission de fluorescence des différents copolymères de la figure 1, sous forme de film.

La figure 3 illustre les variations de l'intensité lumineuse réémise en fonction de la fraction molaire en monomère B avec azurant optique du copolymère.

La figure 4 illustre les spectres de fluorescence des copolymères de la figure 1, sous forme de poudres.

30 La figure 5 illustre les variations de l'intensité lumineuse réémise en fonction de la proportion massique en monomère B avec azurant optique du copolymère.

Exposé détaillé des modes de réalisation

Les exemples qui suivent illustrent la synthèse d'un monomère polymérisable comportant un azurant optique C, utilisable pour la fabrication de copolymères conformes à l'invention, et la fabrication de copolymères à partir de ce monomère.

10 Exemple 1 : Préparation du méthacrylate de formule :

a) synthèse du 4-bromo-3',5'-ditert-butyl-

stilbène de formule :

20

25

Cette synthèse correspond au schéma réactionnel suivant :

- Préparation du bromure de 3,5-ditertbutylbenzyle (XIV).

Dans un ballon de 500 ml contenant 50 g (0,25 mole) de 3,5-ditert-butyltoluène (XIII) et 160 ml de tétrachlorure de carbone, on fait couler une solution de 13 ml de brome (soit 40,5 g/0,25 mole) dans 40 ml de CCl₄ sur une durée d'une heure. On agite à température ambiante pendant 12 heures, puis on évapore le solvant. Le liquide jaune visqueux résiduel est distillé sous vide (1 mm/Hg). On obtient 48 g d'un liquide incolore correspondant au composé (XIV), le rendement est de 68 %.

5

10

20

- Préparation du 3,5-ditert15 butylbenzylphosphonate d'éthyle (XV).

On chauffe 47,4 g (0,17 mole) de bromure de 3,5-ditert-butylbenzyle (XIV) avec 31,5 g (0,19 mole) de phosphite de triéthyle à 160°C (graduellement) pendant 5 heures (puis à 20°C, pendant 18 heures). On élimine les produits volatils sous vide mais le produit n'est pas distillé à cause de son point d'ébullition élevé. On obtient 54 g d'un liquide visqueux jaune pâle constitué du composé (XV); le rendement est de 94 %.

4-bromo-3',5'-ditert-25 Préparation du butylstilbène (XII). 4de dissout 3,6 g (20 mM) 6,8 (20 mM) de bromobenzaldéhyde et g ditertbutylbenzylphosphonate d'éthyle (XV) dans 10 ml N, N-diméthylformamide distillé. Le 30 réactionnel est plongé dans un bain d'eau fraîche. On coule alors 22 ml d'une solution de tertiobutylate de potassium 1M dans le THF (22 mM). On agite le mélange pendant 22 heures à température ambiante. On hydrolyse le mélange réactionnel par 500 ml d'eau désionisée. Le solide précipité est filtré, rincé, puis cristallisé dans l'acétonitrile (45 ml pour 6,9 g de produit brut). On obtient 4,88 g de cristaux beiges du composé (XII). Le rendement est de 66 %.

b) synthèse du 3-((4-bromophényl)vinyl)phénol de formule (XVI) :

5

20 Cette synthèse correspond au schéma réactionnel suivant :

On chauffe à 110°C pendant 10 heures, un mélange de 100 g (0,4 mole) de bromure de 4-35 bromobenzyle (XVII) et de 69,95 g (0,4 mole) de phosphite de triéthyle. Le produit est alors distillé sous vide (1 mm Hg environ). On obtient 110 g d'un

liquide incolore (XVIII) ; le rendement est de 95 %. Contrôle par RMN du proton.

3-((4du Préparation bromophényl) vinyl) phénol (XVI).

3-(20 mM) de dissout 2,57 g On 4de (52 mM) 6,4 hydroxybenzaldéhyde et bromobenzylphosphonate d'éthyle (XVIII) dans 10 mL de tétrahydrofurane sec. Le ballon réactionnel est plongé dans un bain d'eau fraîche. On coule alors 105 mL d'une solution de tertiobutylate de potassium 0,4 M dans le THF (42 mM). On agite le mélange pendant 22 heures à température ambiante. On ajoute ensuite 12 ml d'acide sulfurique 6N (72 mM), puis 20 mL d'eau. Le solvant est évaporé sous vide (20 mm Hg), le solide apparu est filtré. Le produit est purifié par chromatographie 15 liquide sur colonne (silice, éluant : dichlorométhane), puis cristallisé dans 15 ml de toluène. On obtient 4 g de produit (XVI). Point de fusion 139-40°C.

Rendement: 73 %.

20

5

10

Préparation de l'acide boronique de formule (XIX) :

25

30

Cette préparation est effectuée à partir du 4-bromo-3',5'-ditert-butyl-stilbène de formule (XII), selon le schéma réactionnel suivant :

- Préparation de l'acide 4-((3,5-ditertbutylphényl)vinyl)phénylboronique.

10

15

20

25

4-bromode mMole) (20 7,57 (XII) sont dissous dans 80 ml 3',5'ditertbutylstilbène de tétrahydrofurane anhydre. On refroidit le milieu réactionnel à -70°C et coule en 15 minutes 10 mL d'une solution de n-butyllithium 2,2 M dans l'hexane (soit 22 mM). Après une heure d'agitation à basse température, on charge 6mL (22 mMole) de borate de butyle dissous dans 2 mL de THF sec. On laisse la température revenir doucement à l'ambiante en agitant pendant 16 heures. On 12 mL puis mL d'eau, 40 par hydrolyse sulfurique 6N (72 mMole), on évapore le solvant sous vide, et on décante la phase organique apparue. Le borate résiduel est éliminé sous vide en dessicateur.

On obtient 6,24 g d'un solide beige clair (composé (XIX)), rendement :93 %.

d) Préparation du précurseur de formule

OH

par couplage de l'acide boronique de formule (XIX) et du dérivé bromé de formule (XVI). Ce couplage est effectué de la façon suivante.

On agite sous atmosphère d'argon 2,11 g mMole) de 3-((4-bromophényl)vinyl)phénol (XVI), 5 (7,7)tétrakis(triphénylmMole) de $\{0, 3\}$ 0,35 q de 1,2-25 mLdans phosphine) palladium (0)diméthoxyéthane sec. On porte le milieu réactionnel à 70°C. Après 10 minutes, on charge 2,82 g (8,4 mMole) 4-((3,5-diterbutylphényl)vinyl)phénylboronique d'acide 10 (XIX). Cinq minutes après, on ajoute 16 mL de solution 2M de carbonate de potassium. Le chauffage est maintenu pendant 8 heures. Après refroidissement, on ajoute de l'éther éthylique et de l'acétate d'éthyle, acidifie le milieu réactionnel. On extrait en ampoule à 15 décanter et récupère la phase organique.

Le produit brut est cristallisé dans 150 mL de toluène. Le solide beige-jaune obtenu est essoré et séché. On obtient 2,17 g (et 0,79 g par chromatographie des eaux-mères) du composé (XX). Rendement global (cristallisation + chromatographie) : 79 %.

20

30

(XX)

e) <u>Estérification du précurseur de formule</u> (XX) par l'acide méthacrylique.

25 Cette réaction correspond au schéma réactionnel suivant :

(VII)

2,17 g (4,5 mMole) de l'azurant (3-[4'-(3,5-ditertbutylphénylvinyl)biphényl-4-yl-vinyl]phénol (XX) et 0,6 q (7 mMole) d'acide méthacrylique sont température ambiante dans 40 dissous à dichlorométhane sec. On ajoute alors 0,12 g (1 mMole) 5 de 4-diméthylaminopyridine, puis 1,21 g (5,9 mMole) de N, N'-dicyclohexylcarbodiimide. agite jusqu'au On filtre la N,N'-dicyclohexylurée formée, lendemain, évapore le solvant et reprend le produit brut par 30 ml de cyclohexane bouillant. Après refroidissement, 10 le purifie est essoré. On par apparu solide chromatographie liquide (silice, élution : dichlorométhane/cyclohexane, 50/50 en volume).

On obtient 2,29 g de produit blanc, le méthacrylate de formule (VII). Une forme allotropique jaune pâle citron apparaît spontanément après un certain temps.

Rendement: 93 %.

25

20 Exemple 2 : Préparation de copolymères à partir du méthacrylate de formule (VII).

Dans cet exemple, on utilise différentes proportions de méthacrylate de formule (VII) et de méthacrylate de méthyle pour obtenir un copolymère par polymérisation radicalaire en solution.

Cette réaction est effectuée dans du toluène sec, à une température de 70°C, en utilisant l'azoisobutyronitrile comme initiateur de radicaux libres.

30 Elle correspond au schéma réactionnel suivant:

Dans ce copolymère, les motifs A et B

correspondant respectivement aux monomères méthacrylate
de méthyle et méthacrylate de l'azurant optique, sont
répartis dans la chaîne de façon aléatoire, et les
teneurs x et y sont telles que l'on obtient des
copolymères ayant des teneurs différentes en azurant
optique. Le tableau l qui suit illustre les copolymères
obtenus qui correspondent à différents taux massiques
de méthacrylate d'azurant optique et par là même
d'azurant optique.

Dans le cas du copolymère à 9 % en masse de méthacrylate d'azurant, on opère de la façon suivante. On chauffe à 70°C la solution de 0,13 g (0,23 mmole) de méthacrylate d'azurant (VII), de 1,3 g (13 mmole) de méthacrylate de méthyle (XXI) distillé, 3,2 mg d'AIBN (2,2'-(azobisisobutyronitrile)) dans 15 ml de solvant (N,N-diméthylformamide ou toluène). Après 48 heures, on laisse refroidir, et précipite le polymère en coulant

goutte à goutte la solution dans l'éthanol à 95 %. Le solide est essoré, séché, puis remis en solution dans le toluène pour une seconde précipitation dans l'éthanol. On obtient alors 1,2 g de poudre blanche amorphe (rendement 84 %).

On procède de façon similaire pour les autres copolymères.

On vérifie par spectrométrie de résonance magnétique nucléaire du proton, que les fractions molaires de motifs B dans les copolymères obtenus, correspondent pratiquement à celles qui ont été engagées.

Exemple 3

5

10

15

20

Dans cet exemple, on étudie les propriétés des copolymères 1 à 5 obtenus dans l'exemple 2. Pour réaliser cette étude, on met les copolymères sous la forme de films par la méthode de la « tournette » le polymère (spin-coating), en déposant centrifugation à partir d'une solution du copolymère conditions de 1,1,2-trichloroéthane. Les le réalisation films à la tournette sont les des suivantes:

Accélération (tours/min/s)	Vitesse (tours/min)	Durée (s)
600	1200	15
2000	3000	50

Pour chacun des copolymères, on prépare une 1,1,2-trichloroéthane du dans q/133 solution agitation, filtre on après puis, commercial, solution sur filtre Millex Millipore 5 μm et on réalise ensuite le dépôt à la tournette sur une lame de verre recuit On effectue un nettoyée. préalablement 10 minutes à 80-100°C pour éliminer les traces solvant résiduel. On conserve ensuite les films à l'abri de la lumière.

5

15

On détermine tout d'abord l'épaisseur des films sur un profilomètre DEKTAK. Les résultats obtenus sont les suivants :

Copolymère	Epaisseur
1	0,19 μm
2	0,17 μm
3	0,18 μm
4	0,16 μm
5	0,21 µm

On détermine ensuite les spectres d'absorption UV-visible des films sur un spectrophotomètre Perkin-Elmer Lambda 19 entre 300 et 800 nm.

Ces spectres sont représentés sur la figure

1 qui illustre la densité optique en fonction de la
longueur d'onde (en nm). Sur cette figure, on constate
que l'absorption la plus élevée est obtenue avec le
copolymère n°5 qui comporte 60 % en masse de motifs B
du monomère à azurant optique, ce qui s'explique par la
plus forte proportion en molécule active. En revanche,
la densité optique diminue lorsque la teneur en azurant
optique du copolymère diminue. On remarque ainsi que la

densité optique est directement proportionnelle à la concentration en azurant optique conformément à la loi de Beer DO = ϵ l c, où c est la concentration en azurant optique, l la longueur du trajet optique et ϵ le coefficient d'absorption molaire.

Ainsi, plus la proportion en azurant optique est grande, plus la densité optique est élevée, ce qui est conforme à l'effet attendu.

On détermine également les spectres 10 d'émission de fluorescence des films sur un spectrophotomètre de fluorescence Hitachi F-4500 dans les conditions suivantes :

Longueur d'onde d'excitation : 350 nm

Fente (exc/em) : 2,5 nm/2,5 nm

15 Vitesse de balayage : 240 nm/min

5

20

30

Tension PMT: 700 Volts

Ces spectres sont illustrés sur la figure 2 où l'on remarque que l'intensité lumineuse réémise est la plus élevée dans le cas du copolymère 2 comportant 9 % en masse de motif B avec azurant optique et qu'elle est la plus faible dans le cas du copolymère n°5 comportant 60 % en masse de motif B à azurant optique.

On observe ainsi une inhibition ou 25 « quenching » de la fluorescence lorsque la densité en sites fluorescents est très importante.

Ainsi, l'optimum d'émission de fluorescence correspond à une proportion en azurant optique de 5 à 20 % en masse, le copolymère n°3 qui comprend 20 % de monomères actifs, a une émission supérieure de façon

significative à celle du copolymère à 5 % de monomères actifs.

La figure 3 illustre ces résultats sous la forme de la variation de l'intensité lumineuse réémise maximale en fonction de la proportion molaire en motif B.

Sur cette figure, il apparaît nettement un phénomène de « quenching » dès que la quantité de motif B à azurant optique dépasse 20 %.

On a également réalisé les spectres d'émission de fluorescence des copolymères sous forme de poudre dans les conditions suivantes :

Longueur d'onde d'excitation : 350 nm

Fente (exc/em) : 2,5 nm/2,5 nm

15 Vitesse de balayage : 240 nm/min

Tension PMT: 950 Volts

25

30

La figure 4 illustre les spectres de fluorescence ainsi obtenus. Ces spectres sont semblables à ceux de la figure 2.

20 Ainsi, le copolymère n°2 présente l'émission de fluorescence la plus importante.

Sur cette figure, on a également représenté le spectre obtenu avec le polymère n°6 comprenant 100 % de motif B obtenu par polymérisation radicalaire du monomère de formule (VII) dans les mêmes conditions.

On remarque que ce copolymère n°6 présente l'émission de fluorescence la plus faible.

Par ailleurs, on remarque un décalage de la longueur d'onde d'émission maximale vers le rouge (vers la droite) quand le taux de motifs B actifs augmente,

soit quand le phénomène de « quenching » apparaît. Le spectre s'aplatit alors nettement.

illustre la variation fiqure 5 La l'intensité lumineuse maximale réémise en fonction du taux de motifs B actifS. On obtient une courbe très des cas dans le à celle obtenue ressemblante échantillons sous forme de film, avec un optimum pour un taux en motifs B de l'ordre de 8 à 9 %, soit 6 à 8 % en poids d'azurant optique C.

10

15

20

5

Exemples comparatifs 1 à 3

Dans ces exemples, on prépare plusieurs échantillons constitués par une matrice inerte en polyméthacrylate de méthyle (PMMA) dans laquelle est incorporé un azurant optique à raison de 10 % en masse.

Dans ce but, on prépare trois solutions à 33 g/l de polyméthacrylate de méthyle commercial (masse moyenne 25 000) dans du 1,1,2-trichloroéthane et y ajoute 10 % en masse de l'un des azurants optiques suivants :

- le méthacrylate de l'azurant optique de formule (VII) décrit ci-dessus,
- l'azurant optique commercial TINOPAL SOP qui répond à la formule (IV) donnée ci-dessus avec A¹⁰ et A¹¹ représentant —SO₃Na et A⁸, A⁹, A¹² et A¹³ représentant le groupe phénylamino, et
- l'azurant optique commercial UVITEX qui répond à la formule (I) ci-dessus avec ${\hbox{\bf A}}^1$ représentant :

30

25

et A² représentant le groupe tert-butyle.

On filtre chaque solution sur filtre Millex 5 μm , puis on les dépose à la tournette sur des lames de verre et on recuit à 80°C pendant 10 minutes. On obtient ainsi les films de polymères suivants :

5

10

15

Polymère n°7	PMMA + 10 % d'azurant optique (VII)
Polymère n°8	PMMA + 10 % de TINOPAL SOP
Polymère n°9	PMMA + 10 % d'UVITEX

Les spectres d'absorption UV-visible de ces films sont obtenus sur un spectrophotomètre Perkin Elmer entre 300 et 600 nm. Les densités optiques maximales sont données dans le tableau 2.

Dans ce tableau 2, on a également reporté les résultats obtenus avec un film du polymère n°6, homopolymère du composé (VII), préparé de la même façon. Ainsi, on remarque la forte absorption du film de polymère n°6 par rapport aux autres films et un décalage spectral vers le rouge (la droite) pour les films des polymères 8 et 9 avec les composés TINOPAL SOP et UVITEX.

On détermine maintenant les spectres d'émission de ces films ainsi que celle du film de polymère n°6 sur un spectrofluorimètre HITACHI F-4500 dans les conditions suivantes :

Longueur d'onde d'excitation : 340 nm

Fente (ex/en): 2,5 nm/2,5 nm

25 Vitesse de balayage : 240 nm/min

Tension PMT : 700 Volts

Réponse : 0,5 s

Les résultats obtenus sont donnés dans le tableau 3.

résultats montrent que le film Ces polymère 6 (homopolymère du composé VII) a une très faible fluorescence émise et que le film du polymère 7 a une émission de fluorescence plus importante que celle des films des polymères 8 et 9.

de l'émission étudié aussi On a fluorescence du polymère n° 6, des molécules TINOPAL SOP et UVITEX et de la molécule (VII), sous forme de poudre pour les comparer au copolymère n°2 également sous forme de poudre. Les spectres de fluorescence ont été déterminés dans les conditions suivantes :

Longueur d'onde d'excitation : 350 nm

Fente (ex/em): 1 nm/1 nm

Vitesse de balayage : 240 nm/min

Tension PMT: 950 Volts 15

5

10

20

30

Les résultats obtenus sont donnés dans le tableau 4 annexé.

On remarque ainsi que l'intensité lumineuse réémise est très intense pour les échantillons de poudre du copolymère 2 et des molécules TINOPAL SOP et UVITEX par rapport aux échantillons de poudre du polymère 6 et de la molécule (VII), et que la longueur le bleu décalée vers d'onde d'émission est copolymère 2 par rapport de l'échantillon échantillons de poudre des molécules TINOPAL SOP et 25 UVITEX.

Ces exemples comparatifs prouvent ainsi la supériorité de l'azurant optique MA de formule (VII) par rapport aux produits commerciaux UVITEX et TINOPAL SOP.

l'invention, on obtient d'autres avantages en fixant cet azurant sur la chaîne polymère par une liaison covalente.

En effet, ceci évite la possibilité de le milieu libération de l'azurant optique dans 5 environnant, ce qui le rend compatible avec divers milieux hydrophiles ou hydrophobes. Cette fixation le rend ainsi insensible aux réactions chimiques et le rend compatible avec d'autres colorants, si nécessaire.

Enfin, un autre avantage de l'invention est de limiter la quantité d'azurant optique du produit (à des valeurs de 8-10 % en masse) tout en obtenant l'effet maximal de fluorescence réémise. Ceci permet de diminuer le coût des produits dans lesquels on incorpore cet azurant optique. 15

10

Références citées.

- [1] : I. Grabchev et T. Philipova, Die Angewandte Makro molekulare Chemie 263, 1998, 1-4, page 4508. 20
 - [2] : T. N. Konstantinova et I. K. Grabchev, Polymer International 43, 1997, pp. 39-44.

Tableau 1

Copolymère	% en poids de Motif A (% en mole) (méthacrylate de méthyle	% en poids de Motif B (% en mole) (méthacrylate d'azurant optique)	% en poids d'azurant optique	% en m déterm par R	inée
				A	В
1	95 (99)	5 (1)	4,23	99	1
2	91 (98)	9 (2)	7,6	97	3
3	80 (95,5)	20 (4,4)	17	95	5
4	65 (91)	35 (9)	29,6	90	10
5	40 (79)	60 (21)	50,79	73	27

5

Tableau 2

Polymère	Longueur max	DO max
6. homopolymère de (VII)	345	2,3
7. PMMA + 10 % de (VII)	350	0,32
8. PMMA + 10 % TINOPAL SOP	360	0,34
9. PMMA + 10 % UVITEX	360	0,30

Tableau 3

Echantillon sous forme de film	λ _{max} d'émission (nm)	Intensité lumineuse réémise (u. arb.)
6. Homopolymère de (VII)	440	360
7. PMMA + 10 % de (VII)	405-425	1800-2030
8. PMMA + 10 % TINOPAL SOP	450	435
9. PMMA + 10 % UVITEX	420-440	325-525

Tableau 4

Echantillon sous forme de poudre	λ _{max} d'émission (nm)	Intensité lumineuse réémise (u. arb.)
2. Copolymère (V) avec y = 0,02	434	2822
6. Homopolymère de (VII)	446	1395
7bis. (VII)	444	270
8bis. TINOPAL SOP	446	1248
9bis. UVITEX	453	2123

5

REVENDICATIONS

- 1. Copolymère formé de motifs A et de motifs B comportant un azurant optique C lié de façon covalente aux motifs B, ledit copolymère comprenant 4 à 30 % en poids d'azurant optique C par rapport au poids du copolymère total.
- 2. Copolymère selon la revendication 1, dans lequel l'azurant optique est choisi dans le groupe
- 10 1) des bis(benzoxazol-2-yl) de formule :

5

$$A^2$$
 A^1 A^2 A^2

 A^1 aromatique, est groupe un laquelle dans A^2 alcoylène, est atome et un hétérocyclique ou 15 d'hydrogène ou un groupe alkyle ;

2) des coumarines de formule :

dans laquelle A³ est un groupe hétérocyclique ;

3) des bis(styryl)biphényle de formule :

25
$$A^{4} \longrightarrow CH = CH \longrightarrow CH = CH \longrightarrow A^{6}$$

$$B^{1} \longrightarrow B^{2}$$

$$(III)$$

dans laquelle A^4 , A^5 , A^6 , A^7 , B^1 et B^2 qui peuvent être identiques ou différents, représentent indépendamment un atome d'hydrogène, —SO₃Na ou un groupe alkyle ; et

4) des dérivés de triazine-stilbène de formule :

dans laquelle A^8 , A^9 , A^{12} et A^{13} représentent indépendamment un atome d'hydrogène, un groupe $-SO_3Na$ ou un groupe phénylamino, dialkylamino ou morpholino, et A^{10} et A^{11} représentent indépendamment un atome d'hydrogène ou $-SO_3Na$.

3. Copolymère selon la revendication 2, dans lequel l'azurant optique répond à la formule (III) dans laquelle A^4 et A^5 représentent un groupe alkyle et A^6 , A^7 , B^1 et B^2 représentent un atome d'hydrogène

4. Copolymère selon la revendication 3, dans lequel ${\tt A}^4$ et ${\tt A}^5$ représentent le groupe tert-butyle.

5. Copolymère selon la revendication 2, dans lequel l'azurant optique répond à la formule (I) dans laquelle A¹ représente le groupe :

25 et A² représente le groupe-tert-butyle.

6. Copolymère selon la revendication 2, dans lequel l'azurant optique répond à la formule (IV)

dans laquelle A^{10} et A^{11} représentent $-SO_3Na$ et A^8 , A^9 , A^{12} et A^{13} représentent le groupe phénylamino.

7. Copolymère selon l'une quelconque des revendications 1 à 6, dans lequel les motifs A et B sont des motifs issus de monomères acryliques, méthacryliques, vinyliques, oléfiniques et/ou styréniques.

5

8. Copolymère selon la revendication 7, dans lequel le motif A est issu du méthacrylate de 10 méthyle et le motif B est issu du méthacrylate de l'azurant optique.

9. Copolymère selon la revendication 8, qui répond à la formule globale :

$$\begin{array}{c|c}
 & CH_3 & CH_3 \\
 & CH_2 & C \\
 & C & C \\
 &$$

20 dans laquelle x et y sont tels que la proportion massique de groupes azurants optiques C de formule :

$$C(CH_3)_3$$
 $CH = CH$
 $C(CH_3)_3$
 $C(CH_3)_3$

représente 4 à 30 % en poids du copolymère total.

10. Copolymère selon la revendication 9, dans lequel la proportion massique de groupes azurants

optiques C représente 8 à 10 % en poids du copolymère total.

11. Procédé de préparation d'un copolymère selon l'une quelconque des revendications 1 à 10, qui comprend la copolymérisation radicalaire d'un monomère A' et d'un monomère B' sur lequel est fixé par une liaison covalente l'azurant optique C.

5

20

25

- 12. Procédé de préparation d'un copolymère selon l'une quelconque des revendications 1 à 10, qui comprend les étapes suivantes :
 - a) préparer un copolymère comportant des groupes pendants susceptibles de réagir avec l'azurant optique C, et
- b) faire réagir les groupes pendants avec 15 l'azurant optique C pour fixer celui-ci sur le copolymère en quantité telle qu'il représente 4 à 30 % du poids du copolymère modifié.
 - 13. Monomère polymérisable utilisable dans le procédé de la revendication 11 répondant à la formule :

14. Procédé de fabrication d'un monomère polymérisable de formule :

$$A^4$$
 $CH = CH$
 $CH = CH$
 $(VIII)$

dans laquelle A^4 et A^5 sont des groupes alkyle et R^1 représente l'un des groupes suivants :

qui comprend les étapes suivantes :

couplage d'un acide boronique de formule :

10
$$(HO)_2B$$
— $CH = CH$ A^4 A^5

dans laquelle ${\bf A}^4$ et ${\bf A}^5$ sont tels que définis ci-dessus avec le dérivé bromé de formule :

15
$$CH = CH - CX$$

$$HO$$

pour obtenir le composé de formule :

$$CH = CH$$

$$CH = CH$$

$$A^{5}$$

$$(XI)$$

25

- 2) réaction du composé de formule (XI) avec le composé de formule R^1H où R^1 est tel que défini cidessus.
- 15. Procédé selon la revendication 14, dans lequel A^4 et A^5 représentent le groupe tert-butyle et R^1 représente :

$$-$$
O $-$ C $-$ C = CH₂
 \parallel \parallel
O CH₃

10 16. Procédé de fabrication d'un monomère polymérisable de formule :

$$A^{4}$$

$$CH = CH$$

$$CH = CH$$

$$(XXII)$$

dans laquelle A^4 et A^5 sont des groupes alkyle et R^2 représente l'un des groupes suivants :

qui comprend les étapes suivantes :

25

couplage d'un acide boronique de formule :

$$(HO)_2B \longrightarrow CH = CH \longrightarrow A^4$$

$$A^5 \qquad (IX)$$

dans laquelle ${\textbf A}^4$ et ${\textbf A}^5$ sont tels que définis ci-dessus avec le dérivé bromé de formule :

$$CH = CH - CH = CH - (XXIII)$$

10 pour obtenir le composé de formule :

$$CH = CH$$

$$CH = CH$$

$$A^{4}$$

$$(XXIV)$$

$$A^{5}$$

2) réduction du composé de formule (XXIV) pour obtenir le composé de formule :

$$CH = CH$$

$$CH = CH$$

$$A^{4}$$

$$(XXV)$$

$$A^{5}$$

25
3) réaction du composé de formule (XXV) avec l'acide acrylique ou l'acide méthacrylique.

FIG. 1

FIG. 2

FIG. 3

FIG. 5

INSTITUT NATIONAL

RAPPORT DE RECHERCHE PRELIMINAIRE

N° d'enregistrement national

de la PROPRIETE INDUSTRIELLE

établi sur la base des demières revendications déposées avant le commencement de la recherche FA 575990 FR 9910942

DUCC	IMENTS CONSIDERES COMME PE	dolo	endications emées demande	
atégorie	Citation du document avec indication, en cas de bed des parties pertinentes	oin, de la exam	ninée	
X	US 5 286 803 A (G. LINDSAY) 15 février 1994 (1994-02-15) * colonne 2, ligne 59 - colonr 26; revendications 1-27 *	11	2,7,8,	
X	EP 0 735 055 A (BAYER AG) 2 octobre 1996 (1996-10-02) * revendications 1-6 *		2,7,8,	
Y	FR 2 388 024 A (CIBA-GEIGY AG) 17 novembre 1978 (1978-11-17) * page 12, ligne 18 - page 13, * page 15, ligne 7 - page 17, revendications 1-20 *	ligne 1 *	12	
Y	EP 0 791 680 A (HOECHST AG) 27 août 1997 (1997-08-27) * page 4, ligne 22 - ligne 58 revendications 1-5 *	;	12	
Y	BE 850 473 A (CIBA-GEIGY AG) 18 juillet 1977 (1977-07-18) * page 10, ligne 3 - page 12, revendications 1-18 *		-12	DOMAINES TECHNIQUES RECHERCHES (Int.CL.7) C08F C08K
D,Y	I. GRABCHEV: "POLYMERIZATION IN THE PRESENCE OF SOME TRIAZ FLUORESCENT BRIGHTENERS" DIE ANGEWANDTE MAKROMOLEKULAR vol. 263, no. 4508, décembre 1998 (1998-12), page XP000793499 * page 1 - page 4 *	INE-STILBENE E CHEMIE,	-12	
A	FR 2 349 634 A (ESSILOR INTER 25 novembre 1977 (1977-11-25) * revendications 1-9 *	NATIONAL) 1		
		-/		
		rement de la recherche	Peri	Exeminateur nentier, W
X:pa Y:pa au A:pe	CATEGORIE DES DOCUMENTS CITES rticulièrement pertinent à lui seul rticulièrement pertinent en combinaison avecun tre document de la même catégorie rtinent à l'encontre d'au moins une revendication arrière-plan technologique général	T : théorie ou principe à l E : document de brevet it à la date de dépôt et de dépôt ou qu'à une D : cité dans la demande L : cité pour d'autres rais	la base de l'îr bénéficiant d'o qui n'a été pu date postérie	nvention une date antérieure abliéqu'à cette date
O:di	amere-plan technologique general vulgation non-écrite cument intercalaire	& : membre de la même	famille, docu	ment correspondant

INSTITUT NATIONAL de la

1

RAPPORT DE RECHERCHE **PRELIMINAIRE**

N° d'enregistrement national

FA 575990 FR 9910942

PR

	de la établi sur la base des demières redéposées avant le commencement	vendications de la recherche	FA 575990 FR 9910942
DOCL	IMENTS CONSIDERES COMME PERTINENTS	Revendications concernées	
atégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	de la demande examinée	
A	DE 33 13 332 A (HOECHST AG) 18 octobre 1984 (1984-10-18) * revendications 1-4 *	1	
A	EP 0 680 996 A (GENERAL ELECTRIC COMPANY) 8 novembre 1995 (1995-11-08) * revendications 1-26 *		,
A	GB 828 831 A (J. R. GEIGY AG.) * page 1, ligne 67 - page 2, ligne 20; revendications 1-4 *	1	
A	CH 560 736 A (CIBA-GEIGY AG) 15 avril 1975 (1975-04-15) * colonne 40 - colonne 42 *	1	
A	DE 44 01 471 A (CIBA-GEIGY AG) 28 juillet 1994 (1994-07-28) * revendications 1-16 *	1	
A	EP 0 322 708 A (F. HOFFMANN-LA ROCHE & CO.) 5 juillet 1989 (1989-07-05) * revendications 1-14 *	1,13,16	DOMAINES TECHNIQUES RECHERCHES (Int.CL.7)
A	US 4 166 109 A (B. JACQUET) 28 août 1979 (1979-08-28) * revendications 1-11 *	1,16	
	Dete d'achèvement de la recherche		Examinatour
	10 mai 2000	Perm	mentier, W
X:pe Y:pa au A:pe	irticulièrement pertinent à lui seul à la date de de driculièrement pertinent en combinaison avec un tre document de la même catégorie D: câté dans la ritinent à l'encontre d'au moine une revendication arrière—plan technologique général	utres raisons	ine date anterieure blléqu'à cette date ure.
O:dh	vulgation non-écrite & : membre de cument intercalaire	la même famille, docur	ment correspondant

page 2 de 2