On lower bounds for the spectrum width for the routing and spectrum assignment problem

Gustavo FERRÃO FONSECA Pedro Henrique FERNANDES DA SILVA

Responsables: Hervé KERIVIN & Annegret WAGLER

Project Defense $3^{rd}year - F4 - ISIMA$ 03/04/2020

Abstract

- The routing and spectrum assignment problem.
- Lower bound comparison.
- Frameworks.

Contents

- Introduction
 - RSA problem
 - Lower bound chain
 - Superperfect graphs
- 2 State of the art
- 3 Proposal framework
 - Minimum cost multi commodity flow problem
 - Edge-Path formulation
 - RSA framework
- 4 Implementation and tests
 - Implementation
 - Tests
- 6 Concluding remarks

Plan

- Introduction
 - RSA problem
 - Lower bound chain
 - Superperfect graphs
- 2 State of the art
- 3 Proposal framework
 - Minimum cost multi commodity flow problem
 - Edge-Path formulation
 - RSA framework
- 4 Implementation and tests
 - Implementation
 - Tests
- 6 Concluding remarks

RSA problem

Notation:

- Network G = (V; E)
- Set \mathcal{D} of demands between pairs o_k and d_k of nodes in G with w_k of required frequency slots.
- Optical spectrum $S = \{1, \dots, \bar{s}\}$
- P_k route from o_k to d_k valued by w_k for each $k \in \mathcal{D}$.
- Routing of $\mathcal{D}: \mathcal{P} = \{P_k : k \in \mathcal{D}\}$
- Spectrum assignment : $S = \{S_k : k \in \mathcal{D}\}.$

RSA problem

There are 3 conditions in the RSA problem:

- Spectrum continuity
- Spectrum contiguity
- Non-overlapping spectrum

Edge intersection graph

The spectrum assignment can be interpreted as an interval coloring of the edge intersection graph :

- Each path $P_k \in \mathcal{P}$ becomes a node k of $I(\mathcal{P})$ and two nodes k and k' are joined by an edge if the corresponding paths $P_k, P_{k'}$ in G are in conflict as they share an edge.
- Any interval coloring in this graph $I(\mathcal{P})$ weighted with the demands w_k correctly solves the spectrum assignment.

Given G and \mathcal{D} , the minimum spectrum width of any solution equals $\chi_I(G,\mathcal{D}) = \min\{\chi_I(I(\mathcal{P}),\mathbf{w}) : \mathcal{P} \text{ possible routing of demands } \mathcal{D} \text{ in } G\}.$

Lower bound chain

Establishing a chain of lower bounds for $\chi_I(G, \mathcal{D})$:

- $s_R(G, \mathcal{D}) = \min\{w_{\mathcal{P}}(e) : \mathcal{P} \text{ possible routing of demands } \mathcal{D} \text{ in G}\}.$
- $\omega(G, \mathcal{D}) = \min\{\omega(I(\mathcal{P}), \mathbf{w}) : \mathcal{P} \text{ possible routing of demands } \mathcal{D} \text{ in } G\}.$
- $\chi(G, \mathcal{D}) = \min\{\chi(I(\mathcal{P}), \mathbf{w}) : \mathcal{P} \text{ possible routing of demands } \mathcal{D} \text{ in G}\}.$

So, we have

$$s_R(G, \mathcal{D}) \le \omega(G, \mathcal{D}) \le \chi(G, \mathcal{D}) \le \chi_I(G, \mathcal{D}).$$
 (1)

Example

Consider the following instance of the RSA problem with the optical network G shown in Fig. 1 and the following set \mathcal{D} of demands:

k	$o_k \to d_k$	$ w_k $	routing P_k
1	$a \to c$	1	$a \to b \to c$
2	$c \rightarrow e$	3	$c \to b \to d \to e$
3	$e \to f$	3	$e \to d \to f$
4	$f \to g$	3	f o d o g
5	$g \to h$	3	$g \to d \to h$
6	$h \to a$	3	$h \to d \to b \to a$

As the network G is a tree, there is a unique routing \mathcal{P} as indicated above.

Example

Since the load of all edges incident to node d equals 6, $s_R(G, \mathcal{D}) = 6$ follows. The edge intersection graph $I(\mathcal{P})$ of the routing is also shown in Fig. 1. The nodes 1, 2, 6 form a clique of weight 7, hence we have $\omega(G, \mathcal{D}) = 7$.

FIGURE 1 – The network G and $I(\mathcal{P})$ of the routing used in Example 1.

Example

An optimal weighted coloring of $I(\mathcal{P})$ using 8 colors is shown in Fig. 2, but any interval coloring of $I(\mathcal{P})$ needs at least 9 colors, see again Fig. 2. Hence, there are instances of the RSA problem with a gap between any two parameters from the chain.

Figure 2 – Minimal weighted coloring and interval coloring of $I(\mathcal{P})$ in Example 1

Superperfect graphs

- A graph is superperfect if and only if weighted clique number and interval chromatic number coincide for all possible non-negative integral node weights.
- Every superperfect graph is perfect and perfect graphs G satisfy $\omega(G, \mathbf{w}) = \chi_I(G, \mathbf{w})$ for every (0, 1)-weighting \mathbf{w} of its nodes (as in this case any interval coloring is a usual coloring).

The basics minimal non-superperfect graphs

The basic minimal non-superperfect are as follows:

• odd holes C_{2k+1} and odd antiholes \overline{C}_{2k+1} for $k \geq 2$,

odd antiholes

The basics minimal non-superperfect graphs

The basic minimal non-superperfect are as follows:

- odd holes C_{2k+1} and odd antiholes \overline{C}_{2k+1} for $k \geq 2$,
- \overline{A}_1 and \overline{A}_2 ,

The basics minimal non-superperfect graphs

The basic minimal non-superperfect are as follows:

- odd holes C_{2k+1} and odd antiholes \overline{C}_{2k+1} for $k \geq 2$,
- \overline{A}_1 and \overline{A}_2 ,
- the graphs J_k for $k \geq 2$ and J'_k for $k \geq 3$,

The basics minimal non-superperfect graphs

The basic minimal non-superperfect are as follows:

- odd holes C_{2k+1} and odd antiholes \overline{C}_{2k+1} for $k \geq 2$,
- \overline{A}_1 and \overline{A}_2 ,
- the graphs J_k for $k \geq 2$ and J'_k for $k \geq 3$,
- the complements of D_k for $k \geq 2$ and of E_k , F_k for $k \geq 1$.

The basics minimal non-superperfect graphs

The basic minimal non-superperfect are as follows:

- odd holes C_{2k+1} and odd antiholes \overline{C}_{2k+1} for $k \geq 2$,
- \overline{A}_1 and \overline{A}_2 ,
- the graphs J_k for $k \geq 2$ and J'_k for $k \geq 3$,
- the complements of D_k for $k \geq 2$ and of E_k , F_k for $k \geq 1$.

The complete list of all minimal non-superperfect graphs is not yet known.

Plan

- Introduction
 - RSA problem
 - Lower bound chain
 - Superperfect graphs
- 2 State of the art
- 3 Proposal framework
 - Minimum cost multi commodity flow problem
 - Edge-Path formulation
 - RSA framework
- 4 Implementation and tests
 - Implementation
 - Tests
- Concluding remarks

If the network is a path

- There exists exactly one (o_k, d_k) -path P_k in P for every traffic demand.
- The RSA problem is reduced to the spectrum assignment part.
- The edge intersection graph $I(\mathcal{P})$ of the (unique) routing \mathcal{P} of the demands is an *interval graph*.

If the network is a path

Corollary

If the network G is a path, then $s_R(G, \mathcal{D}) = \omega(G, \mathcal{D})$ holds for any set \mathcal{D} of demands.

Corollary

If the network G is a path, then $\omega(G, \mathcal{D}) = \chi(G, \mathcal{D})$ holds for any set \mathcal{D} of demands.

If the network is a path

Theorem (Kerivin and Wagler)

If \mathcal{P} is a set of paths in a path, then $I(\mathcal{P})$ can contain the graphs

- J_k for all $k \geq 2$, J'_k for all $k \geq 3$,
- \bullet \overline{E}_2 ,

but none of the other minimal non-comparability non-superperfect graphs.

If the network is a tree

- There exists exactly one (o_k, d_k) -path P_k in P for every traffic demand.
- The RSA problem is reduced to the spectrum assignment part.
- The edge intersection graph $I(\mathcal{P})$ of the (unique) routing \mathcal{P} of the demands is an EPT graph.

If the network is a tree

Cliques in edge intersection graphs of paths in a tree : For any claw $K = K_{1,3}$ in T, let

$$\mathcal{P}(K) = \{ P \in \mathcal{P} : P \text{ contains two edges of } K \},$$

then $\mathcal{P}(K)$ corresponds to a clique in $I(\mathcal{P})$, called a *claw-clique*.

Theorem (Golumbic and Jamison)

Any maximal clique of the edge intersection graph of paths in a tree T corresponds to an edge-clique $\mathcal{P}(e)$ for some edge e of T or to a claw-clique $\mathcal{P}(K)$ for some claw $K = K_{1,3}$ in T.

If the network is a tree

Superperfection of edge intersection graphs of paths in a tree :

Theorem (Kerivin and Wagler)

If \mathcal{P} is a set of paths in a *tree*, then $I(\mathcal{P})$ can contain \overline{A}_1 , \overline{A}_2 and

- odd holes C_{2k+1} for $k \geq 2$, but no odd antiholes \overline{C}_{2k+1} for $k \geq 3$,
- the graphs J_k for all $k \geq 2$ and J'_k for all $k \geq 3$,
- the graphs \overline{D}_2 , \overline{D}_3 , \overline{E}_1 , \overline{E}_2 , \overline{E}_3 , \overline{F}_1 , \overline{F}_2 , \overline{F}_3 , but none of \overline{D}_k , \overline{E}_k , \overline{F}_k for $k \geq 4$.

If the network is a cycle

- There exist exactly two (u, v)-paths P_{uv} in C for every traffic demand and the number of possible routings is $2^{|\mathcal{D}|}$.
- The edge intersection graphs of paths in a cycle are circular-arc-graphs

There are only two types of cliques in a circular-arc graph:

- subsets \mathcal{P}' of paths in a cycle C = (V, E) that all share a same edge $e \in E$ (edge-cliques).
- pairwise intersect in some edge and whose union covers all edges in E, but whose intersection is empty, that we call cycle-cliques.

If the network is a cycle

For illustration, see a path representation of \overline{D}_2 in Fig. 3.

FIGURE 3 – The graph $\overline{D}_2 = I(\mathcal{P})$ with \mathcal{P} in a cycle; 1cd, 2ac and abd are edge-cliques, acd is a cycle-clique.

If the network is a cycle

Superperfection of edge intersection graphs of paths in a cycle :

Theorem

If \mathcal{P} is a set of paths in a *cycle*, then *circular-arc graph* $I(\mathcal{P})$ can contain \overline{A}_1 but not \overline{A}_2 and

- all odd holes C_{2k+1} and odd antiholes \overline{C}_{2k+1} for $k \geq 2$,
- the graphs J_k for all $k \geq 2$ and J'_k for all $k \geq 3$,
- \overline{D}_2 , \overline{D}_3 , \overline{D}_4 , but not the graphs \overline{D}_k for $k \geq 5$,
- \overline{E}_1 and \overline{E}_2 , but not the graphs \overline{E}_k for $k \geq 3$,
- \overline{F}_2 , but not \overline{F}_1 neither the graphs \overline{F}_k for $k \geq 3$.

If the network is a 1-tree

- Graphs obtained from a tree by adding one edge.
- Present characteristics from trees and cycles.

Cliques in edge intersection graphs of paths in a 1-tree: Edge-cliques, claw-cliques, cycle-cliques and, in addition, pan-cliques, bull-cliques and net-cliques.

If the network is a 1-tree

Superperfection of edge intersection graphs of paths in a 1-tree : If the network is a 1-tree, then all minimal non-superperfect graphs occurring in $I(\mathcal{P})$ when the network is a tree or a cycle can clearly be present.

Theorem

If \mathcal{P} is a set of paths in a 1-tree, then $I(\mathcal{P})$ can contain \overline{A}_1 , \overline{A}_2 and

- all odd holes C_{2k+1} and odd antiholes \overline{C}_{2k+1} for $k \geq 2$,
- the graphs J_k for all $k \geq 2$ and J'_k for all $k \geq 3$,
- \overline{D}_2 , \overline{D}_3 , \overline{D}_4 , but not the graphs \overline{D}_k for $k \geq 5$,
- the graphs \overline{E}_1 , \overline{E}_2 , \overline{E}_3 , \overline{F}_1 , \overline{F}_2 , \overline{F}_3 , but none of \overline{E}_k , \overline{F}_k for $k \geq 4$.

General Case

For modern optical networks we can not assure that specific structures will describe the graph G.

Theorem (Kerivin and Wagler)

All minimal non-comparability non-superperfect graphs can occur in edge intersection graphs $I(\mathcal{P})$ of sets \mathcal{P} of paths in optical networks G.

General Case

Summary:

$$s_R(G, \mathcal{D}) \le \omega(G, \mathcal{D}) \le \chi(G, \mathcal{D}) \le \chi_I(G, \mathcal{D}).$$

Problem

How large can be the large between any two values in the chain?

Plan

- Introduction
 - RSA problem
 - Lower bound chain
 - Superperfect graphs
- 2 State of the art
- 3 Proposal framework
 - Minimum cost multi commodity flow problem
 - Edge-Path formulation
 - RSA framework
- 4 Implementation and tests
 - Implementation
 - Tests
- 5 Concluding remarks

Minimum cost multi commodity flow problem

To compute the $s_R(G, \mathcal{D})$, we can use the min-cost multi-commodity flow problem.

Parameters:

G'(V',E'):V'=V and $E'=\{l,l':e\in E\}$ the directed arcs where l and l' are in opposites directions and share the same vertices of e.

 \mathcal{D} : Set of demands.

Variables:

Cap : the maximal sum of the flow passing by the pair of arcs l and l'.

$$f_k(l) = \begin{cases} 1 & \text{if } l \in P_k \\ 0 & \text{otherwise} \end{cases}$$

Model

 $Minimize \ z = Cap$

s.t.

$$\sum_{l \in \delta^{-}(o_{k})} f_{k}(l) = 1 \qquad \forall \ k \in \mathcal{D}$$
 (2)

$$\sum_{l \in \delta + (d_k)} f_k(l) = 1 \qquad \forall \ k \in \mathcal{D}$$
 (3)

$$\sum_{l \in \delta^{-}(v)} f_k(l) = \sum_{l \in \delta^{+}(v)} f_k(l) \qquad \forall \ k \in \mathcal{D} \ \forall \ v \neq o_k, d_k$$
 (4)

$$\sum_{k \in \mathcal{D}} w_k f_k(l) + \sum_{k \in \mathcal{D}} w_k f_k(l') \leq Cap \qquad \forall \ pairs \ l, l' \in E'$$
 (5)

$$\sum f_k(l)\bar{l}_l \leq \bar{l}_k \qquad \forall \ k \in \mathcal{D} \tag{6}$$

$$f_k(l) \in \{0, 1\} \quad \forall k \in \mathcal{D} \ \forall \ arcs \ l \in E'$$
 (7)

Results

- Minimum capacity that has to be installed on the links of the network for the most balanced routing of the demands.
- Solution for the routing problem.
- Lower bound for the RSA problem.

Edge-Path formulation

To do the assignment of slots of each demand, we can use the Edge-Path formulation.

Parameters:

G=(V,E): Graph of the original network.

 \mathcal{D} : Set of demands.

 $\bar{\mathcal{P}}$: Set of pre-computed paths.

Edge-Path formulation

Variables:

 χ_I : Interval chromatic number.

$$y_{kp} = \begin{cases} 1 & \text{if } P_k \in \mathcal{P} \\ 0 & \text{otherwise} \end{cases}$$

 z_{ks} : for each demand $k \in \mathcal{D}$, z is the slot where the spectrum assignment ends

$$x_{ke} = \begin{cases} 1 & \text{if } e \in P_k \\ 0 & \text{otherwise} \end{cases}$$

$$t_{kes} = \begin{cases} 1 & \text{if } s \in S_k, \ e \in P_k \\ 0 & \text{otherwise} \end{cases}$$

Model

 $Minimize \ z = \chi_I$

s.t.

$$\sum_{p_{c} \in \mathcal{D}} y_{kp} = 1 \qquad \forall \ k \in \mathcal{D} \tag{8}$$

$$\sum_{P \in \bar{\mathcal{P}}_{k}: e \in P} y_{kp} = x_{ke} \qquad \forall \ k \in \mathcal{D}, \ e \in E$$
 (9)

$$\sum_{e \in e} x_{ke} \bar{l}_e \leq \bar{l}_k \qquad \forall \ k \in \mathcal{D} \tag{10}$$

$$\sum_{s \in S: s > = w_k} z_{ks} = 1 \qquad \forall \ k \in \mathcal{D}$$
 (11)

$$\sum_{s=0}^{w_k} z_{ks} = 0 \quad \forall \ k \in \mathcal{D}$$
 (12)

Model

$$\sum_{i=0}^{w_k} z_{k,s+i} + x_{ke} <= t_{kes} + 1 \qquad \forall \ k \in \mathcal{D}, \ e \in E, s \in S$$
 (13)

$$\sum_{e \in S} t_{kes} = w_k x_{ke} \qquad \forall \ k \in \mathcal{D}, \ e \in E$$
 (14)

$$\sum_{e} t_{kes} \le 1 \qquad \forall \ e \in E, \ s \in S \tag{15}$$

$$\sum_{i \in \mathcal{I}} (s+1)z_{ks} \leq \chi_I \qquad \forall \ k \in \mathcal{D}, \ s \in S$$
 (16)

$$y_{kp} \in \{0,1\} \quad \forall \ k \in \mathcal{D}, \ \forall \ P \in \bar{\mathcal{P}}$$

$$x_{ke} \in \{0,1\} \quad \forall \ k \in \mathcal{D}, \ \forall \ e \in E$$
 (18)

$$z_{ks} \in \{0, 1\} \qquad \forall \ k \in \mathcal{D}, \ \forall \ s \in S \tag{19}$$

$$t_{kes} \in \{0, 1\} \quad \forall k \in \mathcal{D}, \forall e \in E, \forall s \in S$$

(17)

Input : an instance $(G, \mathcal{D}, \bar{s})$

Output: a solution $(\mathcal{P}^*, \mathcal{S}^*)$ with span $\chi_I(G, \mathcal{D})$ or a certificate for infeasibility

- Initialize
 - an upper bound by $b_{up} = \bar{s}$,
 - a set of considered paths by $\bar{\mathcal{P}} = \emptyset$,
 - a set of previously used routings by $\mathcal{R} = \emptyset$,
 - a set of non-edge cliques by $Q = \emptyset$.

- ② Compute a min-cost multi-commodity flow f in an auxiliary network G_f (constructed from G by replacing every edge e = uv of G by a pair of arcs $a = uv, \bar{a} = vu$). If no feasible solution has been found then
 - return "instance infeasible (due to transmission reach constraints)"

Else (set a lower bound) : let $b_{low} = s_R(G, \mathcal{D})$. If $b_{low} > \bar{s}$ then

• return "instance infeasible (as $s_R(G, \mathcal{D}) > \bar{s}$)"

3 Determine from this flow f the according routing \mathcal{P}_f and let $\bar{\mathcal{P}} = \bar{\mathcal{P}} \cup \mathcal{P}_f$.

Launch the edge-path formulation with $\bar{\mathcal{P}}$ as set of paths enhanced by

• forbidden clique constraints for all $Q \in \mathcal{Q}$

$$\sum_{P_k \in \mathcal{P}_Q} x_{P_k} \le |Q| - 1$$

• forbidden routing constraints for all $\mathcal{P} \in \mathcal{R}$

$$\sum_{P_k \in \mathcal{P}} x_{P_k} \le |\mathcal{D}| - 1$$

as minimum violation problem where the use of frequency slots

- within $[1, b_{low}]$ does not cause any costs
- within $[b_{low} + 1, b_{up}]$ is penalized

and the objective is to minimize penalties.

If no feasible solution has been found : let $\mathcal{R} = \mathcal{R} \cup \{\mathcal{P}_f\}$ and go to Step 5.

- **1** Evaluate solution $(\mathcal{P}, \mathcal{S})$ found :
 - If $(\mathcal{P}, \mathcal{S})$ has objective function value $z^* = 0$ then
 - return $(\mathcal{P}, \mathcal{S})$ as optimal solution

Else (we have $z^* > 0$ and try to improve b_{up}):

- let $\mathcal{R} = \mathcal{R} \cup \{\mathcal{P}_f, \mathcal{P}\}$ and identify max-used slot $s^* = s_{max}(\mathcal{S})$.
- if $b_{up} > s^*$ then let $b_{up} = s^*$, keep $(\mathcal{P}, \mathcal{S})$ as currently best solution $(\mathcal{P}^*, \mathcal{S}^*)$

If $(\mathcal{P}^*, \mathcal{S}^*)$ does not yet exist, keep $(\mathcal{P}, \mathcal{S})$ as currently best solution $(\mathcal{P}^*, \mathcal{S}^*)$

Determine from $(\mathcal{P}, \mathcal{S})$ the subset $\mathcal{D}_c \subset \mathcal{D}$ of critical demands k whose channel $S_k \in \mathcal{S}$ uses frequency slots within $[b_{low} + 1, b_{up}]$.

For each critical demand $k \in \mathcal{D}_c$:

- construct the subgraph H_k of $I(\mathcal{P})$ induced by N[k]
- find in H_k all cliques Q of weight $w(Q) > b_{low}$ and include them in Q as triple $(\mathcal{P}_Q, E_Q, w(Q))$ with

$$\mathcal{P}_Q = \{ P_k \in \mathcal{P} : k \in Q \}$$

and E_Q subset of edges of G where paths from \mathcal{P}_Q meet.

- **6** Relaunch the multi-commodity flow as feasibility problem
 - with capacity $\leq b_{low}$ for all pairs of arcs and enhanced by
 - forbidden routing constraints associated with $\mathcal{P} \in \mathcal{R}$

$$\sum_{k \in \mathcal{D}} \sum_{a \in A_{\mathcal{P}}^k} f_k(a) \le \sum_{k \in \mathcal{D}} |A_{\mathcal{P}}^k| - 1$$

where $A_{\mathcal{P}}^k$ denotes the subset of arcs with $f_k(a) > 0$ in \mathcal{P}

• forbidden clique constraints associated with $Q \in \mathcal{Q}$

$$\sum_{k \in Q} \sum_{a \in A_Q^k} f_k(a) \le \sum_{k \in Q} |A_Q^k| - 1$$

with A_Q^k subset of arcs a corresponding to edges in E_Q with $f_k(a) > 0$.

If a feasible solution f has been found, then continue with Step 3.

6 Improvement of b_{low} :

If $Q \neq \emptyset$ then

- let $b_{low} = \min\{w(Q) : Q \in \mathcal{Q}\},\$
- remove from Q all cliques Q of (new) weight $w(Q) = b_{low}$

Else (i.e. if $Q = \emptyset$) let $b_{low} = b_{low} + 1$

(this corresponds to the special case that all critical configurations are non-superperfect graphs or no feasible solution has been found so far)

Test for termination:

If (we now have) $b_{low} > b_{up}$ then

• return "instance infeasible (as $\chi_I(G, \mathcal{D}) > \bar{s}$)" (this corresponds to the case that no feasible solution has been found)

If (we now have) $b_{low} = b_{up}$ and $(\mathcal{P}^*, \mathcal{S}^*)$ exists then

• return $(\mathcal{P}^*, \mathcal{S}^*)$ as optimal solution

Else continue with Step 5 (with new b_{low})

Plan

- Introduction
 - RSA problem
 - Lower bound chain
 - Superperfect graphs
- 2 State of the art
- 3 Proposal framework
 - Minimum cost multi commodity flow problem
 - Edge-Path formulation
 - RSA framework
- 4 Implementation and tests
 - Implementation
 - Tests
- Concluding remarks

Implementation

- We forbid in the min-cost multi commodity flow problems the routings previously found by the min-cost multi commodity flow problem and the routings previously found by the edge-path formulation.
- We don't launch feasibility problems.
- We don't look for cliques just in the neighborhood of critical demands but in all demands.
- The clique constraint does not consider only the arcs with flow equal to 1 in the routing but also the other arc in the pair that forms an edge.

Implementation

$$f_k(l) + f_k(l') \leq 1 \quad \forall k \in \mathcal{D} \ \forall pairs \ l, l' \in E'$$
 (22)

$$\sum_{l \in \delta^{-}(v)} f_k(l) \leq 1 \qquad \forall \ k \in \mathcal{D} \ \forall \ v \neq o_k$$
 (23)

Given an optical network G (with all edges of length 1), an optical spectrum $S = \{1, \ldots, \bar{s}\}$ with $\bar{s} = 5$, and a set \mathcal{D} of demands $k = (o_k, d_k, \bar{l}_k, w_k)$:

k	$o_k \to d_k$	$ \bar{l}_k $	$ w_k $
1	$a \to c$	4	2
2	$a \to d$	4	1
3	$b \to f$	4	2
4	$b \rightarrow e$	4	1
5	$d \to f$	4	3

The solution found by the solver is :

```
==== SOLUTION =====
This solution becomes feasible and this iteration will be stopped
Output - RSA Problem -
Interval chromatic number = 4
Routing:
From demand: 1 Between nodes: 1 to 3::1-6-5-4-3:: with length 4
Slots: 1 - 3
From demand: 2 Between nodes: 1 to 4::1-2-3-4:: with length 3
Slots: 0 - 1
From demand: 3 Between nodes: 2 \text{ to } 6::2-3-6:: with length 2
Slots: 1 - 3
From demand: 4 Between nodes: 2 \text{ to } 5::2-1-6-5:: with length 3
Slots: 3 - 4
From demand: 5 Between nodes: 4 to 6::4-6:: with length 1
Slots: 0 - 3
```

Given an optical network G (with indicated edge lengths), an optical spectrum $S = \{1, ..., \bar{s}\}$ with $\bar{s} = 8$, and a set \mathcal{D} of demands $k = (o_k, d_k, \bar{l}_k, w_k)$:

To test your implementation, make a first run with $\bar{l}_k=6$ for all k, make a second run with $\bar{l}_k=7$ for all k,

First run with $\bar{l}_k = 6$ for all k, The solution found by the solver is:

The first iteration of MCMCF is impossible for this instance Problem is infeasible

Second one is with $\bar{l}_k = 7$ for all k. The solution found by the solver is :

```
==== SOLUTION =====
This RSA solution matches the lowerBound
Output - RSA Problem -
Interval chromatic number = 6
Routing:
From demand: 1 Between nodes: 1 to 6::1-3-5-6:: with length 7
Slots: 1 - 4
From demand: 2 Between nodes: 1 to 5::1-3-5:: with length 5
Slots: 0 - 1
From demand: 3 Between nodes: 2 \text{ to } 5 :: 2 - 4 - 5 :: \text{ with length } 6
Slots: 3 - 6
From demand: 4 Between nodes: 2 to 6::2-4-6:: with length 5
Slots: 0 - 1
From demand: 5 Between nodes: 3 \text{ to } 6::3-4-6:: with length 6
Slots: 2 - 5
From demand: 6 Between nodes: 4 \text{ to } 1 :: 4 - 2 - 1 :: \text{ with length } 5
Slots: 1 - 3
```

Given an optical network G (with all edges of length 1), an optical spectrum $S = \{1, \ldots, \bar{s}\}$ with $\bar{s} = 6$, and a set \mathcal{D} of demands $k = (o_k, d_k, \bar{l}_k, w_k)$:

k	$o_k \to d_k$	$ \bar{l}_k $	$ w_k $
1	$a \rightarrow c$	3	2
2	$b \to d$	3	2
3	$c \rightarrow e$	3	2
4	$d \to a$	3	2
5	$e \rightarrow b$	3	2

The solution found by the solver is :

```
==== SOLUTION =====
This solution becomes feasible and this iteration will be stopped
Output - RSA Problem -
Interval chromatic number = 6
Routing:
From demand: 1 Between nodes: 1 to 3::1-2-3:: with length 2
Slots: 2 - 4
From demand: 2 Between nodes: 2 to 4::2-3-4:: with length 2
Slots: 4 - 6
From demand: 3 Between nodes: 3 \text{ to } 5 :: 3 - 4 - 5 :: \text{ with length } 2
Slots: 2 - 4
From demand: 4 Between nodes: 4 \text{ to } 1 :: 4 - 5 - 1 :: \text{ with length } 2
Slots: 4 - 6
From demand: 5 Between nodes: 5 to 2::5-1-2:: with length 2
Slots: 0 - 2
```

Given an optical network G (with all edges of length 1), an optical spectrum $S = \{1, \ldots, \bar{s}\}$ with $\bar{s} = 5$, and a set \mathcal{D} of demands $k = (o_k, d_k, \bar{l}_k, w_k)$:

k	$o_k \to d_k$	$ \bar{l}_k $	$ w_k $
1	$a \rightarrow c$	4	1
2	$b \to d$	4	1
3	$c \rightarrow a$	4	1
4	$d \rightarrow b$	4	1

Slots: 2 - 3

The solution found by the solver is:

```
===== SOLUTION ===== \\ This solution becomes feasible and this iteration will be stopped \\ Output - RSA Problem - \\ Interval chromatic number = 4 \\ Routing: \\ From demand: 1 Between nodes: 1 to <math>3::1 - 5 - 8 - 7 - 3:: with length 4 Slots: 0 - 1 From demand: 2 Between nodes: 2 to 4::2 - 6 - 5 - 8 - 4:: with length 4 Slots: 1 - 2 From demand: 3 Between nodes: 3 to 1::3 - 7 - 6 - 5 - 1:: with length 4 Slots: 3 - 4 From demand: 4 Between nodes: 4 to 2::4 - 8 - 7 - 6 - 2:: with length 4
```

Plan

- Introduction
 - RSA problem
 - Lower bound chain
 - Superperfect graphs
- 2 State of the art
- 3 Proposal framework
 - Minimum cost multi commodity flow problem
 - Edge-Path formulation
 - RSA framework
- 4 Implementation and tests
 - Implementation
 - Tests
- 5 Concluding remarks

Conclusion

- Our objective with this project is to study the lower bounds for the width for the routing and spectrum assignment problem.
- Difficulties
- Learning

Perspectives

- Theoretical studies about the mathematics models.
- Improvements in the actual implementation
- Add in the implementation the theoretical background.