

Chapter 3 Data Regression

Assoc. prof. TRAN MINH QUANG quangtran@hcmut.edu.vn http://researchmap.jp/quang

CONTENT

- 1. Introduction
- 2. Linear regression Hồi qui tuyến tính
- 3. Non-Linear regression
- 4. Applications
- 5. Problems with regression
- 6. Summary

REFERENCES

- [1] Jiawei Han, Micheline Kamber, and Jian Pei, "Data Mining: Concepts and Techniques", 3rd Edition, Morgan Kaufmann Publishers, 2012.
- [2] David Hand, Heikki Mannila, Padhraic Smyth, "Principles of Data Mining", MIT Press, 2001.
- [3] David L. Olson, Dursun Delen, "Advanced Data Mining Techniques", Springer-Verlag, 2008.
- [4] Graham J. Williams, Simeon J. Simoff, "Data Mining: Theory, Methodology, Techniques, and Applications", Springer-Verlag, 2006.
- [5] ZhaoHui Tang, Jamie MacLennan, "Data Mining with SQL Server 2005", Wiley Publishing, 2005.
- [6] Oracle, "Data Mining Concepts", B28129-01, 2008.
- [7] Oracle, "Data Mining Application Developer's Guide", B28131-01, 2008.
- [8] Ian H.Witten, Eibe Frank, "Data mining: practical machine learning tools and techniques", 2nd Edition, Elsevier Inc, 2005.
- [9] Florent Messeglia, Pascal Poncelet & Maguelonne Teisseire, "Successes and new directions in data mining", IGI Global, 2008.
- [10] Oded Maimon, Lior Rokach, "Data Mining and Knowledge Discovery Handbook", 2nd Edition, Springer Science + Business Media, LLC 2005, 2010.

Price (\$1k)

- + Can we model the house price distribution based on their sizes?
- + Can we predict a house price based on its size?

The market basket analysis problem

→ Can we find out association rules between products in

tinned meat transactions? ice cream mozzarella coffee rice tomato sauce milk brioches (frozen fish frozen vegetables juices beer crackers pasta yoghurt oil tunny coke water

biscuits

- Analyzing the factors that impact on the quality of e-banking services (based on surveys from users)
 - Easy to use (+0.209)
 - Fast response (+0.261)
 - The ability to link with other billing services (+0.199)
 - Feelings of individuality (+0.15)
 - Privacy and security issues (-0.25)
 - •

Regression

- J. Han et al (2001, 2006): Regression is a statistic mechanism that allows predicting real/numeric and continuous values
- Wiki (2009): Regression analysis is a statistic mechanism that allows estimating the correlation between independent variables
- R. D. Snee (1977): Regression is a statistic mechanism in data analytics and building models from experiments, it allows prediction, control, and learning the rules to which data is generated.
- Regression: Numeric data prediction (real-valued output)
- Classification: "prediction" for discrete values

- Regression model: Describe the relationship between a set of predictors/independent variables and one or some responses/dependent variables
- Regression equation

$$\mathbf{Y} = f(\mathbf{X}, \, \boldsymbol{\Theta})$$

X: a set of predictors/independent variables; describes the changes of responses/dependent variables Y

Y: responses/dependent variables; Describes the interesting facts/events

θ: Regression coefficients; Describes the relative effects of X on Y

Categories:

- Linear v.s nonlinear
 - ✓ Linear in parameters: Linear association between parameters that affect Y
 - Nonlinear in parameters: Non-linear association between parameters that affect Y
- Single variable v.s multiple variables
 - ✓ Single: $X = (X_1)$ v.s. Multiple: $X = (X_1, X_2, ..., X_k)$
- Parametric v.s nonparametric and semiparametric
- Symmetric v.s asymmetric
 - ✓ Symmetric: descriptive regression models (e.g., log-linear models)
 - ✓ Asymmetric: predictive regression models (e.g., generalized linear models)

 Dr. Tran Minh Quang quangtran@hcmut.edu.vn

- o Parametric, nonparametric, and semiparametric
 - Parametric: regression models with finite parameters
 - Nonparametric: regression models with infinite parameters
 - Semiparametric: regression models with finite interesting parameters

Regression model	Description
Parametric	$Y = \theta_0 + \theta_1 * X$
Nonparametric	$Y = \theta_0 + f(X)$
Semiparametric	$Y = \theta_0 + \theta_1 * X_1 + f(X_2)$

11

2. LINEAR REGRESSION

- Single variable (Univariate)
- Multiple variables (Multivariate)

Notations

- N: size of training examples
- x: input variable/feature
- ✓ y: output/target variable
- $(x^{(i)}, y^{(i)})$: i^{th} learning sample
- $\checkmark (x^{(1)}, y^{(1)}) = (2100, 450)$

${f Size\ feet^2}$	Price (\$1k)
(x)	(y)
2100	450
1416	232
1534	315
852	178
• • •	• • •

Training Set

Learning Algorithm

14

- Hypothesis (h)
- y = h(x); h is a mapping from x to y
- \circ How to model h?

- Hypothesis (h): $h_{\theta}(x) = \theta_0 + \theta_1 x =$ identify θ_i ?
- Method: "try_and_error", evaluate the ability of the regression line in describing sample data.

$$h_{\theta}(\mathbf{x}) = \theta_{0} + \theta_{1}\mathbf{x}$$

$$2 \quad \times \quad \times$$

$$1 \quad \times \quad \times$$

$$0 \quad 1 \quad 2 \quad 3$$

$$\theta_{0} = 2$$

- Chose (θ_0, θ_1) so that $h_{\theta}(x^{(i)}) \simeq y^{(i)}$; i=1...N
 - o residual/prediction error

$$e = h_{\theta}(x^{(i)}) - y^{(i)}$$

MSE

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

• Cost function $J(\theta_0, \theta_1) => minimize$

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

• Examine a simple case: $\theta_0 = 0$, $h_{\theta}(x) = \theta_1 x$

•
$$\theta_{1} = 1 \Rightarrow J(\theta_{1}) = 0$$
; $\theta_{1} = 0.5 \Rightarrow J(\theta_{1}) = 0.58$; $\theta_{1} = 0 \Rightarrow J(\theta_{1}) = 2.3$

• An example with $h_{\theta}(x) = \theta_0 + \theta_1 x$

18

$$h_{\theta}(x)$$

$$h_{\theta}(x)$$

•Gradient descent method => find our the point that minimize $J(\theta_0, \theta_1)$

•Method:

- Initiate with a random parameter (θ_0, θ_1) , ex. $(\theta_0=0, \theta_1=0)$
- ii. Change (θ_0, θ_1) to reduce $J(\theta_0, \theta_1)$
- iii. Iterate step ii until $J(\theta_0, \theta_1)$ is (or we believe/accept that it is) minimum

Gradient descent algorithm

Repeat until convergence{

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 // for j=0 and j=1, simultaneously }
Learning rate

Correct: Simultaneously update

$$\begin{array}{ll} \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) & \operatorname{temp0} := \theta_0 \\ \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) & \theta_0 := \operatorname{temp0} \\ \theta_0 := \operatorname{temp0} & \operatorname{temp1} := \theta_1 \\ \theta_1 := \operatorname{temp1} & \theta_1 := \operatorname{temp1} \end{array}$$

Wrong:

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := temp1$$
26

UNIVARIATE LINEAR REGRESSION

• Gradient descent algorithm: minimize $J(\theta_0, \theta_1)$

$$J(\theta_{0}, \theta_{1}) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \frac{\partial}{\partial \theta} J(\theta_{0}, \theta_{1})$$

$$J(\theta_0,\theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \frac{\partial}{\partial \theta_0} J(\theta_0,\theta_1)$$

$$\text{Repeat until convergence} \{$$

$$\theta_0 = \theta_0 - \alpha \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 = \theta_1 - \alpha \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\frac{\partial}{\partial \theta_1} J(\theta_0,\theta_1)$$

$$Update \ \theta_0 \ and \ \theta_1 \ simultaneously$$

$$\}$$

× Training data

Current hypothesis

Size (feet²)

$$h_{\theta}(x)$$

(function of the parameters $\; heta_0, heta_1 \;)$

$$h_{\theta}(x)$$

(function of the parameters $\; heta_0, heta_1 \;$)

$$h_{\theta}(x)$$

$$h_{\theta}(x)$$

$$h_{\theta}(x)$$

$$h_{\theta}(x)$$

$$h_{\theta}(x)$$

$$h_{\theta}(x)$$

(for fixed θ_0, θ_1 , this is a function of x)

(function of the parameters θ_0, θ_1

• Learning rate α

$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

✓ Too small: Learn slowly

✓ Too big: Difficult to converge to the point where $J(\theta_0, \theta_1)$ is minimum

J(0,)

- o Summary: Given N samples, a univariate regression model is described as follow (e, describes the change of Y which is not explainable from X)
 - Straight line form

$$y_i = h_\theta(x_i) = \theta_0 + \theta_1 x_i + e_i, i = 1, 2, ..., N$$

Parabol form

$$y_i = h_\theta(x_i) = \theta_0 + \theta_1 x_i + \theta_2 x_i^2 + e_i, i = 1, 2, ..., N$$

• Estimating (θ_0, θ_1) by gradient descent method or can be quickly estimated by:

$$\theta_1 = \frac{\sum_{i=1}^{N} (x^{(i)} - \overline{x})(y^{(i)} - \overline{y})}{\sum_{i=1}^{N} (x^{(i)} - \overline{x})^2} \qquad \theta_0 = y - \theta_1 x$$

Income vs Average Working Hours

$$\bullet Y = \theta_0 + \theta_1^* X1 \rightarrow Y = 0.636 + 2.018^* X$$

•The sign of θ_1 describes the effect direction (positive/negative) of X on Y.

Quantity Sold	Price(\$)
8500	2
4700	5
5800	
7400	2
6200	5
7300	
5600	4

y=quantySold=9323-823*price

Figure 11.1, [2], pp. 372. Expired ventilation plotted against oxygen uptake in a series of trials, with fitted straight line: $y = \theta_0 + \theta_1 x$.

Figure 11.2, [2], pp. 373. The data from Figure 11.1 with a model that includes a term in x^2 : $y = \theta_0 + \theta_1 x + \theta_2 x^2$.

Dr. Tran Minh Quang - quangtran@hcmut.edu.vn

• The house prices is affected by several variables/factors

	Number of			
$Size (feet^2)$	rooms	${f Floors}$	\mathbf{Age}	Price(\$1K)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••	•••	• • •	• • •	• • •

n: number of input attributes (e.g., n = 4)

x⁽ⁱ⁾: input (features) of the ith training sample

x_i(i): value of attribute j in the training sample ith

y⁽ⁱ⁾: ith output in the training dataset

E.x.,
$$x^{(1)} = \begin{bmatrix} 2014 \\ 5 \\ 1 \\ 45 \end{bmatrix}; x_3^{(1)} = 1$$

ΛΛ

• Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

$$h_{\theta}(x) = 100 + 3x_1 + 2x_2 + 1.5x_3 - 2x_4$$

• Presenting in a matrix form $(x_0=1)$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}; \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix}; \theta^T = [\theta_0, \theta_1, \theta_2, \dots, \theta_n]$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n = \theta^T x$$

• Gradient descent:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n = \theta^T x$$

- Coefficients $\theta(\theta_0, ..., \theta_n)$: an n+1 vector
- Minimize: $J(\theta) = J(\theta_0, ..., \theta_n)$

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Repeat until convergence{

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$
 // simultaneously update for every j=0,...,n

2.2. Hồi Qui Tuyến Tính Đa Biến

Repeat until convergence{

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \text{ // simultaneously update for every j=0,...,n}$$

$$\theta_0 = \theta_0 - \alpha \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)} x_0^{(i)} = 1$$

$$\theta_1 = \theta_1 - \alpha \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 = \theta_2 - \alpha \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

....

- Feature scaling: to assure that all input features are in the same scale
 - E.g., $x_1 = \text{size } (0 2000 \text{ feet}^2)$ $x_2 = \text{number of rooms } (1 - 5)$
 - => They are not in the same scale. The convergence speed is affected because of this imbalance scaling.

• Assure that features are in the same scale

E.g. $x_1 = \text{size } (0-2000 \text{ feet}^2)$ $x_2 = \text{number of bedrooms } (1-5)$ Scaled: $x_1 = size/2000$

 x_2 = number of bedrooms /5

Source: Andrew Ng

- Feature scaling
 - Normalize all feature to a range of [-1, 1]
 - Ex., $x_0 = 1$; $0 \le x_1 \le 3$; $-2 \le x_2 \le 0.5 => \mathbf{OK}$ -100 $\le x_3 \le 100$; $-0.0001 \le x_4 \le 0.0001 => \mathbf{Normalize}$

- Apply normalization methods in chapter 2
 - Ex.

$$v' = \frac{v - v}{\sigma v}$$

$$v' = \frac{v - \overline{v}}{V_{\text{max}} - V_{\text{min}}}$$

- Validate the Gradient descent algorithm
 - $J(\theta)$ must decrease after each iteration
 - We can plot $J(\theta)$ by θ for intuitively check the convergence ability of the algorithm

• Un-converged gradient descent

-α too small: slow convergence

-α too large: $J(\theta)$ may not reduce at each

iteration => the algorithm may no converge

- **try** α: 0.001, 0.003, 0.01, 0.03, 0.1, 0.3,...

 \circ Use normal equation to identify θ

Gradient Descent

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} = 0; \forall j = 1..n$$

$$\theta = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{Y}$$

Examples: N = 4, X: an Nx(n+1) matrix; y: an Nx1 matrix

	size (feet²)	No. of rooms	Floors	Years	Price (\$1K)
$\underline{} x_0$	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$\theta = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{Y}$$

• Given a training dataset: N examples, n features

<u>Gradient descent</u>

- must select α
- needs a large number of iterations
- workable event with a large n (e.g., n = 10⁶)

Normal equation

- don't need to select α
- don't need iterations
- Must compute (X^TX)⁻¹
- May not work when n is large (when n = 10⁴ then gradient descent should be used)

o Note: the non-invertible issue in the normal equation method, i.e., (X^TX) is not invertible

• Resolve:

- Check the linear dependence of variables. Ex., the size in meter (x_1) and the size in feet $(x_2) => remove$ dependent variables
- Too much features (n > N). Ex., n = 20, N = 10 => reduce the number of features; find surrogate features; correct more data samples,...

• Another example:

Quantity Sold	Price(\$)	Advertising (\$)
8500	2	2800
4700	5	200
5800	3	400
7400	2	500
6200	5	3200
7300	3	1800
5600	4	900

SUMMARY OUTPUT

Regression	Statistics
Multiple R	0.980681
R Square	0.96174
Adjusted R Square	0.942604
0	040 5000

Standard Error 310.5239

Observations 7

y = Quantity Sold = 8536.214 -835.722 * Price + 0.592 * Advertising

ANOVA

	df	SS	MS	F	Significance F
Regression	2	9694300	4847150	50.26854	0.0014641
Residual		385700.4	96425.11		
Total	6	10080000			

		Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	8536.21	386.9117	22.06243	2.5E-05	7461.974654	9610.453	7461.975	961 <mark>0.453</mark>
Price(\$)	-835.72	99.65304	-8.38632	0.001106	-1112.40356	-559.041	-1112.4	-559.041
Advertising (\$)	0.59223	0.104347	5.675579	0.004755	0.302515325	0.881942	0.302515	0.881942

Dr. Tran Minh Quang – quangtran@hcmut.edu.vn

3. Non-linear regression

$\mathbf{o} \mathbf{Y} = \mathbf{f}(\mathbf{X}, \boldsymbol{\theta})$

- Y is a non-linear function in terms of relationship between parameters θ .
- Ex: Exponential, logarithmic function, Gauss, ...

$$f(x,\theta) = \frac{\theta_1 x}{\theta_2 + x}$$

- \circ Identify optimal θ : Optimization algorithms
 - Local optimization
 - Global optimization (using sum of squared residuals/errors)

4. APPLICATIONS

- Data mining
 - Data preprocessing: Smoothing, noise removal,...
 - Mining tasks: numerical-values prediction, descriptive analysis
- Apply in many domains: biology, agriculture, social issues, economy, business, finances, insurance, e-commerce, marketing, security, science, robotics, control systems, automation,...

- Assumptions
 - Data distribution: the relationship between predictors and dependent variables
 - Independence of predictors
 - Continuous values of variables (both predictor & responses)
 - Errors: How to identify them?
- The amount of data processed is not large
- How to identify the regression model
- Advanced techniques for regression:
 - Artificial Neural Network (ANN)
 - Support Vector Machine (SVM)

- Evaluation of a regression model:
 - Collect new data to evaluate the prediction results
 - Use the existing data (as testing dataset) for evaluation
 - Data splitting
 - Training data: To build the model
 - ✓ Testing data → validate/evaluate the model
 - K-fold cross-validation
 - ✓ Iterate k times:
 - ✓ Training data: (k-1) portions of data
 - ✓ Test data: the k^{th} portion of data → accuracy
 - ✓ Average(accuracy) of k times

- Evaluation of the regession model:
 - Accuracy
 - ✓ Sum of squared errors (SSE)
 - -> Overall measure of errors: smaller is better

$$SSE = \sum_{i=1}^{n} (y_i - y_i)^2$$

✓ Mean squared error (MSE): measure of the variability in the response variable left unexplained by the regression: **smaller is better**

$$MSE = \frac{SSE}{n-m-1}$$

(n: sample size, m: number of regression coefficients)

- OAccuracy (Con't)
 - ✓ The standard error of the estimate (S)
 - ✓ Đánh giá sai số thông thường trong quá trình dự đoán, sự sai lệch giữa giá trị dự đoán và giá trị thực của biến đáp ứng
 - ✓ Measure the common error in the prediction process. It is the mean difference between the predicted and the actual values.
 - ✓ Presents the precision of the prediction generated by the regression model _____

$$S = \sqrt{MSE} = \sqrt{\frac{SSE}{n - m - 1}}$$

- Factors affect the success of building regression models
 - ✓ Proper problem formulation
 - Selection of important variables and model form
 - ✓ Good dataset (both in volume and quality)
 - ✓ The use of good coefficient estimation procedures (e.g., gradient descent)
 - ✓ Model validation techniques

6. SUMMARY

Regression

- A statistical technique, applied to continuous attributes/features
- Simple yet useful, applicable in various domains
- One of example showing the contribution of statistics in data mining
- Types: Linear/non-linear, Univariate/Multivariate, Parametric/Non-parametric/Semi-parametric,
 Symmetric/Assymetric

quangtran@hcmut.edu.vn