MP307 Practical 2017/2018: Discrete Population Models

This practical uses the Maple worksheet discrete.mw that may be downloded from the MP307 Blackboard pages.

Notice

Solutions to all questions marked with (*) has to be shown (and explained) to the instructor at the practicals in order to get 4% that count towards the overall mark.

- 1. (*) **Geometric Model for Populations.** Consider the geometric population model $P_{n+1} = (1+r)P_n$ for $n=0,1,\ldots$ with solution $P_n = P_0e^{sn}$ for $s=\log(1+r)$ as a model of Sweden's population from 1750 to 1960 and the US population from 1790 to 1990. The data for this are given in the worksheet discrete.mw. Explain what you see.
- 2. (*) **The Non-Linear Verhulst Model.** The general Verhulst model of population growth is as follows

$$P_{n+1} = \frac{1+r}{1+\frac{rP_n}{K}}P_n$$

where $P_n \to K$ as $n \to \infty$. For the choice of parameters $P_0 = 2.79$, r = 0.35 and K = 300 compare the Verhulst model to the US population from 1790 to 1990. Explain what you see.

- 3. (*) **Population Model with Age Distribution.** Consider the human population divided into three age groups 0-14, 15-39 and ≤ 40 with population size P_i , i=1,2,3 and yearly birth rates of 0, 0.06 and 0 and death rates of 0.005, 0.01 and 0.015, respectively.
 - (a) Show that $\mathbf{P}(t+1) = \mathbf{AP}(t)$ where

$$\mathbf{P} = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix}, \ \mathbf{A} = \begin{bmatrix} 0.92867 & 0.06 & 0 \\ 0.0663 & 0.9504 & 0 \\ 0 & 0.0396 & 0.985 \end{bmatrix}$$

- (b) Find the largest eigenvalue of ${\bf A}$ and describe the long-term behaviour of this system.
- (c) Consider the growth of the population with the following initial populations. How long does it take for the total population to double in each case?

1

i.
$$P_1 = 200, P_2 = P_3 = 400.$$

ii.
$$P_1 = 400, P_2 = P_3 = 300.$$

iii.
$$P_1 = 200$$
, $P_2 = 500$ and $P_3 = 300$.

Explain what you see.

4. (*) Chaotic Models. Consider the Ricker model of Salmon population size as follows

$$P_{n+1} = re^{-\frac{P_n}{K}}P_n$$

where r is the rate and K is another parameter. For simplicity choose K=500 and consider the behaviour of this system for

- (a) r < 1, with initial population of 1000.
- (b) $1 < r < e^2$, for initial population 100, 500 and 1000.
- (c) $r > e^2$, for initial population 100, 500 and 1000.

Explain what you see.