D.	3	3
T _m X		

Ex. 3.3 Gauss–Markov theorem:

- (a) Prove the Gauss–Markov theorem: the least squares estimate of a parameter $a^T\beta$ has variance no bigger than that of any other linear unbiased estimate of $a^T\beta$ (Section 3.2.2).
- (b) The matrix inequality $\mathbf{B} \preceq \mathbf{A}$ holds if $\mathbf{A} \mathbf{B}$ is positive semidefinite. Show that if $\hat{\mathbf{V}}$ is the variance-covariance matrix of the least squares estimate of β and $\tilde{\mathbf{V}}$ is the variance-covariance matrix of any other linear unbiased estimate, then $\hat{\mathbf{V}} \prec \tilde{\mathbf{V}}$.

a) Notons que $\tilde{O} = c^T y$ une estimation linéaire non biaisée de $a^T \beta$ où $c = a(x^T x)^{-1} x^T + d$

Pour l'espérance E [c Ty] = a T B + d X B

On sait que y= XB+E où E[E]=0

donc: E[c+y] = c+E[Y] = c+XB

En remplaçant c: E[cTy]=(a(xTx)-1xT+d)XB

= a(x x) -1 x x x B + d x B

= aTB+dXB

la condition de Mon-bioris implique dX=0, conne indiqué-

Var (cTY):

On sait que Var (4) = 0-2

Var (cTy) = cT Var (y)c

Var (CTY) = 02 ctc On remplace C: Var (cTy)= 02 (a(xTx)-1xT+d) (a(xTx)-1xT+d) $= \nabla^2 (a^{T}(X^{T}X)^{-1}a + d^{T}d)$ $Var(c^{T}y) = \sigma^{2}(Var(a^{T}\beta) + d^{T}d)$ Cette décomposition montre que la var de l'estimateur est la somme de: La variance de l'estimateur des moindres carrés ordinaires (Var (aTB)) Un terme additionel (d^Td) qui représente la pénalité pour s'écorter de l'estimateur des moindres carrés ordinaires. b) On a Cy comme estimateur linéaire non biaise de Bon: . C matrice px N $\cdot C = (x^{T}X)^{-1}X^{T} + D$ La condition de non-biais DX = 0 doit être sahisfaite. Pour la matria de vour-covour V:

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$(x^{T}X)^{-1}X^{T}(x^{T}X)^{-1}X^{T} = V \text{ (matrice de Vour-Covar)}$ $(x^{T}X)^{-1}X^{T}D^{T} = (DX(X^{T}X)^{-1})^{T} = 0^{T} \text{ car } DX = 0$
$D(X^{T}X)^{-1}X^{T} = (DX(X^{T}X)^{-1})^{T} = 0 \text{ (1)}$ le dernier terme DDT reste tel quel Donc on obhient: $V = V + DD^{T}$
les résultats suivent pou ce que DDT est semé définis possitive.