Suites arithmétiques et géométriques

Exercice 1 Reconnaître une suite arithmétique ou géométrique avec une formule de récurrence

Les suites suivantes sont-elles arithmétiques? géométriques? Si oui, en donner la raison.

1.
$$(u_n)$$
 définie par :
$$\left\{ \begin{array}{lcl} u_0 & = & 2 \\ u_{n+1} & = & u_n-7 \quad \text{pour tout } n \in \mathbf{N} \end{array} \right.$$

2.
$$(v_n)$$
 définie par :
$$\left\{ \begin{array}{lcl} v_0 &=& 14 \\ v_{n+1} &=& \frac{v_n}{7} \end{array} \right.$$
 pour tout $n \in \mathbf{N}$

3.
$$(w_n)$$
 définie par :
$$\left\{ \begin{array}{lcl} w_0 &=& 14 \\ w_{n+1} &=& w_n+n \end{array} \right.$$
 pour tout $n \in \mathbf{N}$

4.
$$(z_n)$$
 définie par $\left\{ egin{array}{ll} z_0&=&2\\ z_{n+1}&=&z_n imes 2^n \end{array}
ight.$ pour tout $n\in {\bf N}$

5.
$$(t_n)$$
 définie par $\left\{ \begin{array}{lcl} t_0 &=& 1 \\ t_{n+1} &=& 2t_n+7 \end{array} \right.$ pour tout $n \in \mathbf{N}$

Exercice 2 Reconnaître une suite arithmétique ou géométrique avec une formule explicite

Les suites suivantes sont-elles arithmétiques? géométriques? Si oui, en donner la raison.

1.
$$(u_n)$$
 définie sur N par : $u_n = 6 - n$.

2.
$$(v_n)$$
 définie sur **N** par : $v_n = 6 + 3n$

3.
$$(w_n)$$
 définie sur N par : $w_n = 6n$.

1.
$$(u_n)$$
 définie sur N par : $u_n = 6 - n$.
 4. (z_n) définie sur N par : $z_n = \frac{6}{n}$.

 2. (v_n) définie sur N par : $v_n = 6 + 3n$.
 5. (t_n) définie sur N par : $t_n = 3 \times 6^n$.

 3. (w_n) définie sur N par : $w_n = 6n$.
 6. (s_n) définie sur N par : $s_n = \frac{6}{3^n}$.

5.
$$(t_n)$$
 définie sur N par : $t_n = 3 \times 6^n$.

6.
$$(s_n)$$
 définie sur **N** par : $s_n = \frac{6}{3^n}$

Exercice 3 Calculer un terme d'une suite arithmétique ou géométrique

Pour chacune des suites suivantes, calculer u_{20} .

1.
$$(u_n)$$
 est une suite arithmétique de premier terme 10 et de raison -3 .

2.
$$(u_n)$$
 est une suite géométrique de premier terme -1 et de raison 2 .

3. La suite
$$(u_n)$$
 est définie par :
$$\begin{cases} u_0 &= 2048 \\ u_{n+1} &= \frac{1}{2}u_n \quad \text{pour tout } n \in \mathbf{N} \end{cases}$$

4. La suite
$$(u_n)$$
 est définie par :
$$\left\{ \begin{array}{lcl} u_0 &=& 30 \\ u_{n+1} &=& u_n-3 \quad \text{pour tout } n \in \mathbf{N} \end{array} \right.$$

Exercice 4

Dans le repère orthonormé ci-contre, on a représenté quelques termes de trois suites arithmétiques (u_n) , (v_n) et (w_n) . Pour chacune d'elles, donner :

- 2. Une formule explicite permettant de la définir;
- 3. Les termes de rang 3 et de rang 6.

Modéliser à l'aide d'une suite arithmétique ou géométrique

Exercice 5

Une famille décide de d'épargner afin de s'offrir un voyage.

En 2022, elle a économisé 500 €. Chaque mois à partir du 1^{er} janvier 2023, elle augmente la somme épargnée de 100 €.

Pour chaque entier n, on note s_n la somme épargnée après n mois.

- **1.** Déterminer s_0, s_1 et s_2
- **2.** Pour tout $n \in \mathbb{N}$, exprimer s_{n+1} en fonction de s_n .
- 3. En déduire l'expression de s_n en fonction de l'entier n.
- **4.** Le voyage que prépare la famille coûte 4200 €. Déterminer à partir de quelle date la famille pourra partir en voyage.

Exercice 6 En médecine

Afin de greffer 10 cm² de peau à une personne brûlée, on lui en prélève 20 mm². La culture permet d'augmenter de 15 % la surface de peau chaque jour.

On cherche à déterminer au bout de combien de jour la greffe sera possible.

- 1. Calculer la surface de peau après un jour et deux jours de culture.
- 2. Pour tout entier naturel n, v_n modélise la surface de peau après n jours de culture. Écrire une relation entre v_{n+1} et v_n .
- **3.** Quelle est la nature de la suite (v_n) ?
- **4.** Donner l'expression de v_n en fonction de n.
- 5. Répondre au problème posé.

Sens de variation

Exercice 7 Sens de variation d'une suite arithmétique

Déterminer les variations des suites définies ci-dessous :

$$\textbf{1.} \, \left\{ \begin{array}{lll} u_0 & = & 2 \\ u_{n+1} & = & u_n + \pi - 3 \quad \text{pour tout } n \in \textbf{N} \end{array} \right. \quad \left| \begin{array}{lll} \textbf{2.} \, \left\{ \begin{array}{ll} v_0 & = & 12 \\ v_{n+1} & = & v_n + 1 - \sqrt{2} \quad \text{pour tout } n \in \textbf{N} \end{array} \right. \right. \right.$$

Exercice 8 Sens de variation d'une suite géométrique

Donner les variations des suites géométriques définies ci-dessous :

1.
$$(u_n)$$
 de premier terme 2 et de raison 0,3.

2.
$$(v_n)$$
 de premier terme 3 et de raison -5 .

3.
$$(w_n)$$
 de premier terme -6 et de raison 14. 6. (r_n) de premier terme 0 et de raison 12.

4.
$$(z_n)$$
 de premier terme 3 et de raison $\sqrt{2}$.

2.
$$(v_n)$$
 de premier terme 3 et de raison -5 . **5.** (t_n) de premier terme -5 et de raison $\sqrt{\frac{10}{\pi^2}}$.

6.
$$(r_n)$$
 de premier terme 0 et de raison 12

Somme des premiers termes d'une suite arithmétique ou géométrique

Exercice 9

Soit u la suite définie par : pour tout $n \in \mathbb{N}$, $u_n = 3 + 4n$.

1. Calculer $u_0 + u_1 + \ldots + u_{40}$.

2. Calculer
$$\sum_{k=0}^{20} u_k$$
.

3. Calculer de deux manières $u_{21} + u_{22} + \ldots + u_{40}$.

Exercice 10

Un étudiant loue une chambre pendant 2 ans. Le loyer initial est de 200 euros par mois mais tous les mois il augmente de 2%.

- 1. Exprimer les loyers à l'aide d'une suite géométrique.
- 2. En déduire la somme totale que l'étudiant aura à payer sur deux ans.
- 3. Quel est le loyer moyen payé par l'étudiant sur deux ans?

Exercice 11

Le film Avatar est sorti aux États-Unis le 18 décembre 2009. La recette lors de la première semaine s'est élevée à 77 millions de dollars. Cette recette a ensuite diminué en moyenne de 15% chaque semaine. Le réalisateur James Cameron a investi 500 millions de dollars pour la réalisation du film. Pour les calculs, l'unité est le million de dollars.

3

- **1.** Soit R_0 la recette obtenue la première semaine. Calculer R_1 et R_2 (ne pas justifier).
- **2.** Pour tout $n \in \mathbb{N}$, exprimer R_{n+1} en fonction de R_n en justifiant.
- **3.** Exprimer R_n en fonction de n et de R_0 .
- **4.** Quel est le sens de variation de la suite (R_n) ? Justifier.
- 5. Quelle est la recette pour la vingtième semaine (arrondir au centième)?
- **6.** Exprimer en fonction de n le total T_n des recettes engrangées de la première semaine à la (n+1)-ième de la manière la plus simple possible.
- 7. Quand n devient très grand, de quelle valeur limite T_n se rapproche-t-il?
- **8.** On considère l'algorithme ci contre : Que fait cet algorithme?
- **9.** On l'exécute et l'algorithme affiche 22. Interpréter ce résultat.

Python

Pour approfondir

Exercice 12

On considère la suite (u_n) définie par $u_1=1$ et pour tout $n\in \mathbb{N}^*$, $u_{n+1}=\frac{nu_n+4}{n+1}$.

- **1.** Calculer u_2 et u_3 .
- 2. Démontrer que la suite (v_n) définie sur N^* par $v_n = nu_n$ est une suite arithmétique dont on précisera le premier terme et la raison.
- 3. En déduire l'expression du terme général de (v_n) .
- **4.** En déduire l'expression du terme général de (u_n) .

Exercice 13

n est un entier naturel. À l'aide de suites arithmétiques :

- **1.** Calculer $0+1+\cdots+(2n-1)+2n$, somme des entiers de 0 à 2n.
- 2. Calculer $0+2+4+\ldots(2n-2)+2n$, somme des entiers pairs de 0 à 2n.
- 3. En déduire $1+3+5+\ldots+(2n-3)+(2n-1)$, somme des entiers impairs compris entre 0 et 2n.

Exercice 14

n est un entier naturel. Calculer $2 \times 2^2 \times 2^3 \dots \times 2^n$.