E2 205: Error-Control Coding Chapter 5: Bounds on the Parameters of Codes

Navin Kashyap

Indian Institute of Science

The Sphere-Packing Bound

This extends the Hamming bound to arbitrary block codes.

Theorem (The sphere-packing bound)

For any (n, M, d) block code over an alphabet \mathbb{F} of size q, we have

$$\sum_{i=0}^{\lfloor \frac{d-1}{2} \rfloor} \binom{n}{i} (q-1)^i \leq \frac{1}{M} q^n.$$

The Sphere-Packing Bound

This extends the Hamming bound to arbitrary block codes.

Theorem (The sphere-packing bound)

For any (n, M, d) block code over an alphabet $\mathbb F$ of size q, we have

$$\sum_{i=0}^{\lfloor \frac{d-1}{2} \rfloor} \binom{n}{i} (q-1)^i \leq \frac{1}{M} q^n.$$

► For a given blocklength *n* and minimum distance *d*, this yields an upper bound on *M*:

$$M \leq \frac{q^n}{\sum_{i=0}^{\lfloor \frac{d-1}{2} \rfloor} \binom{n}{i} (q-1)^i}.$$

▶ The Hamming bound for an [n, k, d] linear code is a special case of this bound, obtained by setting $M = q^k$.

Proof of the Sphere-Packing Bound

- ▶ Recall that the Hamming balls $B(\mathbf{c}, t)$ of radius $t = \lfloor \frac{d-1}{2} \rfloor$ centered at the codewords \mathbf{c} of an (n, M, d) block code must be disjoint.
- ▶ Each such Hamming ball contains $\sum_{i=0}^{t} \binom{n}{i} (q-1)^i$ words from \mathbb{F}_q^n :
 - $\mathbf{y} \in B(\mathbf{c}, t) \iff w_H(\mathbf{y} \mathbf{c}) \leq t$
 - ▶ So, $|B(\mathbf{c},t)| = \#$ vectors $\mathbf{e}(=\mathbf{y} \mathbf{c})$ such that $w_H(\mathbf{e}) \le t$
- ▶ Then, the union of all the M balls $B(\mathbf{c},t)$, $\mathbf{c} \in \mathcal{C}$, contains $M \cdot \sum_{i=0}^t \binom{n}{i} (q-1)^i$ words from \mathbb{F}_q^n . This cannot exceed the total number of words in \mathbb{F}_q^n , yielding

$$M \cdot \sum_{i=0}^{t} \binom{n}{i} (q-1)^i \leq q^n. \quad \Box$$

What is the largest possible number of codewords in a single-error-correcting binary block code of length 6? (Not necessarily linear)

What is the largest possible number of codewords in a single-error-correcting binary block code of length 6? (Not necessarily linear)

- ▶ Single-error-correcting \implies $d \ge 3$
- ▶ By the sphere-packing bound, a single-error-correcting $(6, M, d \ge 3)$ binary block code must satisfy

$$\sum_{i=0}^{\lfloor \frac{d-1}{2} \rfloor} {6 \choose i} \leq \frac{1}{M} 2^6,$$

which implies that $\binom{6}{0}+\binom{6}{1}\leq \frac{64}{M}$, and hence, $M\leq \lfloor 64/7\rfloor=9$.

What is the largest possible number of codewords in a single-error-correcting binary block code of length 6? (Not necessarily linear)

- ▶ Single-error-correcting \implies $d \ge 3$
- ▶ By the sphere-packing bound, a single-error-correcting $(6, M, d \ge 3)$ binary block code must satisfy

$$\sum_{i=0}^{\lfloor \frac{d-1}{2} \rfloor} {6 \choose i} \leq \frac{1}{M} 2^6,$$

which implies that $\binom{6}{0} + \binom{6}{1} \le \frac{64}{M}$, and hence, $M \le \lfloor 64/7 \rfloor = 9$.

▶ But does there exist a $(6, 9, d \ge 3)$ binary block code?

The Johnson Bound

An improvement to the sphere-packing bound . . .

Theorem (The Johnson bound)

For a binary (n, M, d) block code, with $t = \lfloor \frac{d-1}{2} \rfloor$, we have

$$\sum_{i=0}^{t} \binom{n}{i} + \binom{n}{t} \cdot \left(\frac{\frac{n-t}{t+1} - \lfloor \frac{n-t}{t+1} \rfloor}{\lfloor \frac{n}{t+1} \rfloor} \right) \leq \frac{1}{M} 2^{n}.$$

▶ For n = 6 and t = 1, as in the last example, we obtain $M \le 8$.

Example (cont'd)

What is the largest possible number of codewords in a single-error-correcting binary block code of length 6?

By the Johnson bound, such a code can have at most 8 codewords.

Example (cont'd)

What is the largest possible number of codewords in a single-error-correcting binary block code of length 6?

- By the Johnson bound, such a code can have at most 8 codewords.
- ▶ Indeed, such a code with 8 codewords is possible for example, the [6, 3, 3] binary linear code with parity-check matrix

$$H = \left[\begin{array}{cccccc} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right].$$

Theorem (The Singleton bound) $\text{For any } (n,M,d) \text{ block code over } \mathbb{F}_q, \text{ we have}$ $d \leq n - \lceil \log_q M \rceil + 1.$

Theorem (The Singleton bound)

For any (n, M, d) block code over \mathbb{F}_q , we have

$$d \le n - \lceil \log_q M \rceil + 1.$$

Proof: Set $\ell = \lceil \log_q M \rceil - 1$. Then, $\ell < \log_q M$, i.e., $q^{\ell} < M$.

- ▶ Consider the first ℓ coordinates of a codeword. There are q^{ℓ} possible ways of filling the first ℓ coords with symbols from \mathbb{F}_q .
- ▶ Since there are $M > q^{\ell}$ codewords, by the pigeonhole principle, some pair of codewords, say \mathbf{c} and \mathbf{c}' , must agree in their first ℓ coordinates.
- ▶ Then, **c** and **c**' can *differ* in at most $n \ell$ coordinates

$$\implies d_{H}(\mathbf{c}, \mathbf{c}') \leq n - \ell$$
$$\implies d_{\min} < n - \ell.$$

Corollary: For any [n, k, d] linear code over \mathbb{F}_q , we have

$$d \le n - k + 1$$
.

Proof: Set $M = q^k$ in the previous theorem.

Corollary: For any [n, k, d] linear code over \mathbb{F}_q , we have

$$d \le n - k + 1$$
.

Proof: Set $M = q^k$ in the previous theorem.

Alt. Proof: Let H be a parity-check matrix of an [n, k] linear code. Then,

$$rank(H) = n - k$$

- \implies any set of n-k+1 columns of H is linearly dependent
- \implies there exists some codeword of weight $\leq n-k+1$

$$\implies d_{\min} \leq n-k+1.$$

Corollary: For any [n, k, d] linear code over \mathbb{F}_q , we have

$$d \le n - k + 1$$
.

Proof: Set $M = q^k$ in the previous theorem.

Alt. Proof: Let H be a parity-check matrix of an [n, k] linear code. Then,

$$rank(H) = n - k$$

 \implies any set of n-k+1 columns of H is linearly dependent

 \implies there exists some codeword of weight $\leq n - k + 1$

 $\implies d_{\min} \leq n-k+1.$

Definition: An [n, k, d] linear code that satisfies d = n - k + 1 is called a maximum distance separable (MDS) code.

Examples of MDS Codes

The following are all examples of MDS codes, over any field \mathbb{F} :

- ▶ \mathbb{F}^n , which is an [n, n, 1] code
- ▶ the single parity-check code, defined by the parity-check matrix $H = [1 \ 1 \ ... \ 1]$ this is an [n, n-1, 2] code
- ▶ the [n, 1, n] repetition code, generated by $G = [1 \ 1 \ \dots \ 1]$

Examples of MDS Codes

The following are all examples of MDS codes, over any field \mathbb{F} :

- ▶ \mathbb{F}^n , which is an [n, n, 1] code
- ▶ the single parity-check code, defined by the parity-check matrix $H = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}$ this is an [n, n-1, 2] code
- ▶ the [n, 1, n] repetition code, generated by $G = [1 \ 1 \ \dots \ 1]$

The above are, in fact, the only MDS codes possible when $\mathbb{F} = \mathbb{F}_2$.

Over non-binary fields, we have a wide variety of other examples; a particularly important one is the family of Reed-Solomon codes.

Examples of MDS Codes

The following are all examples of MDS codes, over any field \mathbb{F} :

- ▶ \mathbb{F}^n , which is an [n, n, 1] code
- ▶ the single parity-check code, defined by the parity-check matrix $H = [1 \ 1 \ ... \ 1]$ this is an [n, n-1, 2] code
- ▶ the [n, 1, n] repetition code, generated by $G = [1 \ 1 \ \dots \ 1]$

The above are, in fact, the only MDS codes possible when $\mathbb{F} = \mathbb{F}_2$.

Over non-binary fields, we have a wide variety of other examples; a particularly important one is the family of Reed-Solomon codes.

MDS codes have some interesting properties. For example,

ightharpoonup C is MDS iff C^{\perp} is MDS.

The Gilbert-Varshamov (GV) Bound

The inequalities relating the parameters $[n, k, d]_q$ or $(n, M, d)_q$ given so far provide necessary conditions for codes with those parameters to exist.

We next give an important sufficient condition on code parameters that guarantees the existence of a linear code with those parameters.

The Gilbert-Varshamov (GV) Bound

The inequalities relating the parameters $[n, k, d]_q$ or $(n, M, d)_q$ given so far provide necessary conditions for codes with those parameters to exist.

We next give an important sufficient condition on code parameters that guarantees the existence of a linear code with those parameters.

Theorem (The Gilbert-Varshamov bound)

Let \mathbb{F}_q be a finite field, and let n, k and d be positive integers such that

$$\sum_{\ell=0}^{d-2} \binom{n-1}{\ell} (q-1)^{\ell} < q^{n-k}.$$

Then, there exists an [n, k] linear code over \mathbb{F}_q , with $d_{\min} \geq d$.

Proof of GV Bound

The idea is to construct an $(n-k) \times n$ parity-check matrix H with the property that no d-1 (or fewer) columns are linearly dependent over \mathbb{F}_q .

The construction is recursive:

- ▶ Pick the first column \mathbf{h}_1 to be any non-zero vector in \mathbb{F}_a^{n-k} .
- ▶ Suppose that, for some $i \ge 2$, we have picked the first i-1 columns $\mathbf{h}_1, \dots, \mathbf{h}_{i-1}$.

We then pick \mathbf{h}_i so that it cannot be obtained as a linear combination of any d-2 (or fewer) columns from $\mathbf{h}_1, \ldots, \mathbf{h}_{i-1}$.

Proof of GV Bound

The idea is to construct an $(n-k) \times n$ parity-check matrix H with the property that no d-1 (or fewer) columns are linearly dependent over \mathbb{F}_q .

The construction is recursive:

- ▶ Pick the first column \mathbf{h}_1 to be any non-zero vector in \mathbb{F}_q^{n-k} .
- ▶ Suppose that, for some $i \ge 2$, we have picked the first i 1 columns $\mathbf{h}_1, \dots, \mathbf{h}_{i-1}$.

We then pick \mathbf{h}_i so that it cannot be obtained as a linear combination of any d-2 (or fewer) columns from $\mathbf{h}_1, \dots, \mathbf{h}_{i-1}$.

▶ The number of linear combinations that can be formed from $\leq d-2$ of the columns $\mathbf{h}_1, \ldots, \mathbf{h}_{i-1}$ is

$$V_i \triangleq \sum_{i=1}^{d-2} {i-1 \choose \ell} (q-1)^{\ell}.$$

▶ So, if $V_i < q^{n-k}$, there exists a vector in \mathbb{F}_q^{n-k} that is not expressible as a linear combination of d-2 or fewer columns from $\mathbf{h}_i, \ldots, \mathbf{h}_{i-1}$. This vector can be taken to be \mathbf{h}_i .

Proof of GV Bound

- Note that $V_1 \leq V_2 \leq \cdots \leq V_n$, and the hypothesis of the theorem asserts that $V_n < q^{n-k}$.
- ▶ Hence, for each $i \in \{1, 2, ..., n\}$, we have $V_i < q^{n-k}$ being satisfied, and we can pick a column \mathbf{h}_i as desired.
- ▶ The required $(n k) \times n$ parity-check matrix H can thus be constructed.

Using the GV Bound

We often want to know the answer to the following question:

Given integers n and d, what is the largest (linear) code over \mathbb{F}_q having blocklength n and $d_{min} \geq d$?

The GV bound gives us a means of showing the existence of linear codes with large dimension:

For the given values of n and d, find the largest k for which the GV bound is satisfied.

Using the GV Bound

We often want to know the answer to the following question:

Given integers n and d, what is the largest (linear) code over \mathbb{F}_q having blocklength n and $d_{min} \geq d$?

The GV bound gives us a means of showing the existence of linear codes with large dimension:

For the given values of n and d, find the largest k for which the GV bound is satisfied.

However, the proof is non-constructive, meaning that it does not give a practical algorithm for code construction.

▶ q = 2, n = 6, d = 3. LHS of GV bound is 6. The largest k such that $6 < 2^{6-k}$ is k = 3. So, a [6, 3, 3] binary linear code exists.

▶ q = 2, n = 6, d = 3. LHS of GV bound is 6.

The largest k such that $6 < 2^{6-k}$ is k = 3. So, a [6, 3, 3] binary linear code exists.

Of course, we already know how to construct such a code: use the generator matrix

$$G = \left[\begin{array}{ccccccc} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{array} \right].$$

▶ q = 2, n = 6, d = 3. LHS of GV bound is 6.

The largest k such that $6 < 2^{6-k}$ is k = 3. So, a [6,3,3] binary linear code exists.

Of course, we already know how to construct such a code: use the generator matrix

$$G = \left[\begin{array}{cccccc} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{array} \right].$$

▶ q = 2, n = 1000, d = 201. i.e., a 100-error-correcting binary linear code of length 1000.

The largest value of k satisfying the inequality in the GV bound is 280; so a [1000, 280, $d_{\min} \ge 201$] code over \mathbb{F}_2 exists.

Estimates of Sums

Evaluating a sum of the form $\sum_{\ell=0}^{d-2} \binom{n-1}{\ell} (q-1)^{\ell}$ is not easy for large n,d; so we give some useful bounds on such sums.

Define the *q*-ary entropy function

$$h_q(x) \triangleq -x \log_q x - (1-x) \log_q (1-x) + x \log_q (q-1), \text{ for } 0 \le x \le 1.$$

Lemma:

(a) For
$$0 < m/n < 1 - 1/q$$
,

$$\sum_{\ell=0}^m \binom{n}{\ell} (q-1)^{\ell} \leq q^{nh_q(m/n)}.$$

(b) For
$$0 < m/n < 1$$
,

$$\sum_{\ell=0}^{m} \binom{n}{\ell} (q-1)^{\ell} \geq \binom{n}{m} (q-1)^{m} \geq \frac{1}{\sqrt{8m(1-m/n)}} q^{nh_{q}(m/n)}.$$

Hence, for
$$0 \le \frac{m}{n} \le 1 - \frac{1}{q}$$
, $\sum_{\ell=0}^{m} \binom{n}{\ell} (q-1)^{\ell} = q^{nh_q(m/n) + O(\log n)}$.

Proof Sketch of Lemma

(a) Let $\theta = \frac{m}{n}$. We then have

$$\begin{split} q^{-nh_q(\theta)} & \sum_{\ell=0}^m \binom{n}{\ell} (q-1)^\ell \\ & = \ \theta^m (1-\theta)^{n-m} (q-1)^{-m} \sum_{\ell=0}^m \binom{n}{\ell} (q-1)^\ell \\ & \leq \ \theta^m (1-\theta)^{n-m} (q-1)^{-m} \sum_{\ell=0}^m \binom{n}{\ell} (q-1)^\ell \left[\frac{\theta}{(1-\theta)(q-1)} \right]^{\ell-m} \\ & \qquad \qquad \text{this is } \leq 1 \\ & \qquad \qquad \text{for } \theta \leq 1 - \frac{1}{q} \end{split}$$

$$& \leq \ \theta^m (1-\theta)^{n-m} (q-1)^{-m} \sum_{\ell=0}^n \binom{n}{\ell} (q-1)^\ell \left[\frac{\theta}{(1-\theta)(q-1)} \right]^{\ell-m} \\ & = \ \sum_{\ell=0}^n \binom{n}{\ell} \theta^\ell (1-\theta)^{n-\ell} \ = \ \left[\theta + (1-\theta) \right]^n \ = \ 1. \end{split}$$

(b) follows from Stirling's formula.

 $q=2,\ n=1000,\ d=201.$ i.e., a 100-error-correcting binary linear code of length 1000.

- ▶ To apply the GV bound, we need to evaluate (or estimate) the sum $\sum_{\ell=0}^{199} \binom{999}{\ell}$.
- ▶ By part (a) of the prev. lemma, $\sum_{\ell=0}^{199} {999 \choose \ell} \le 2^{999 \cdot h_2(199/999)}$.
- ▶ So, if k is such that $2^{999 \cdot h_2(199/999)} < 2^{1000-k}$, then the inequality $\sum_{\ell=0}^{199} \binom{999}{\ell} < 2^{1000-k}$ in the GV bound would also be satisfied.
- ▶ Hence, for any $k < 1000 999 \cdot h_2(199/999) \approx 280.4$, the inequality in the GV bound would be satisfied.
- ▶ In particular, the GV bound is satisfied for k = 280, showing that a $[1000, 280, d_{min} \ge 201]$ binary linear code exists.

The Plotkin Bound for Linear Codes

Theorem: For an [n, k, d] linear code over \mathbb{F}_q , we have

$$d \leq \frac{n(q^k - q^{k-1})}{q^k - 1}.$$

For q=2, this reduces to $d \leq \frac{n \cdot 2^{k-1}}{2^k-1}$.

The Plotkin Bound for Linear Codes

Theorem: For an [n, k, d] linear code over \mathbb{F}_q , we have

$$d \leq \frac{n(q^k - q^{k-1})}{q^k - 1}.$$

- ▶ For q = 2, this reduces to $d \leq \frac{n \cdot 2^{k-1}}{2^k 1}$.
- ▶ Asymptotics: As $n \to \infty$, if k also goes to ∞ , then

$$\delta = \frac{d}{n} \leq \frac{q^k - q^{k-1}}{q^k - 1} = 1 - \frac{1}{q} + o(1).$$

In particular, for binary linear codes, $\delta \leq \frac{1}{2} + o(1)$.

The Plotkin Bound for Linear Codes

Theorem: For an [n, k, d] linear code over \mathbb{F}_q , we have

$$d \leq \frac{n(q^k - q^{k-1})}{q^k - 1}.$$

- For q=2, this reduces to $d \leq \frac{n \cdot 2^{k-1}}{2^k-1}$.
- ▶ Asymptotics: As $n \to \infty$, if k also goes to ∞ , then

$$\delta = \frac{d}{n} \le \frac{q^k - q^{k-1}}{q^k - 1} = 1 - \frac{1}{q} + o(1).$$

In particular, for binary linear codes, $\delta \leq \frac{1}{2} + o(1)$.

▶ An alternative view of this: As $n \to \infty$,

either
$$R = \frac{k}{n} \longrightarrow 0$$
 or $\delta = \frac{d}{n} \le 1 - \frac{1}{q} + o(1)$.

Proof of Plotkin Bound for Linear Codes

Let C be an [n, k, d] linear code over \mathbb{F}_q .

We count in two different ways the sum of the Hamming weights of all the codewords:

$$W := \sum_{\mathbf{c} \in \mathcal{C}} w_H(\mathbf{c})$$

Proof of Plotkin Bound for Linear Codes

Let C be an [n, k, d] linear code over \mathbb{F}_q .

We count in two different ways the sum of the Hamming weights of all the codewords:

$$W := \sum_{\mathbf{c} \in \mathcal{C}} w_H(\mathbf{c})$$

▶ On the one hand, since $w_H(\mathbf{c}) \ge d$ for all codewords $\mathbf{c} \ne \mathbf{0}$, we have

$$W \geq (|\mathcal{C}|-1)d = (q^k-1)d.$$

Let C be an [n, k, d] linear code over \mathbb{F}_q .

We count in two different ways the sum of the Hamming weights of all the codewords:

$$W := \sum_{\mathbf{c} \in \mathcal{C}} w_H(\mathbf{c})$$

▶ On the one hand, since $w_H(\mathbf{c}) \ge d$ for all codewords $\mathbf{c} \ne \mathbf{0}$, we have

$$W \geq (|\mathcal{C}|-1)d = (q^k-1)d.$$

For another way of evaluating W, we list out the q^k codewords in the rows of an $q^k \times n$ array.

codeword 1 codeword 2	
 : codeword <i>a^k</i>	

 ${\it W}$ is equal to the number of non-zero symbols in the array.

- ▶ Consider the *i*th column of this array (for any $i \in \{1, ..., n\}$).
 - ▶ There are q^k entries in this column, of which some are 0s.
 - The number of 0 entries in this column is equal to the number of codewords in the subcode

$$C' = \{(c_1, c_2, \ldots, c_n) \in C : c_i = 0\}.$$

 $ightharpoonup \mathcal{C}'$ is a linear code with dimension at least k-1.

This can be seen by noting that a parity-check matrix, H', for \mathcal{C}' can be obtained by appending an extra row to a parity-check matrix H for \mathcal{C} :

$$H' = \begin{bmatrix} H & H & \\ 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

- ▶ Consider the *i*th column of this array (for any $i \in \{1, ..., n\}$).
 - ▶ There are q^k entries in this column, of which some are 0s.
 - ► The number of 0 entries in this column is equal to the number of codewords in the subcode

$$C' = \{(c_1, c_2, \ldots, c_n) \in C : c_i = 0\}.$$

• C' is a linear code with dimension at least k-1.

This can be seen by noting that a parity-check matrix, H', for \mathcal{C}' can be obtained by appending an extra row to a parity-check matrix H for \mathcal{C} :

$$H' = \begin{bmatrix} & & H & \\ 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

$$\dim(\mathcal{C}') = n - \operatorname{rank}(H') \geq n - (\operatorname{rank}(H) + 1) = k - 1.$$

- ▶ Thus, the number of 0 entries in the *i*th column of the array is $|\mathcal{C}'| \geq q^{k-1}$.
- ► Consequently, the number of non-zero entries in the *i*th column is at most $q^k q^{k-1}$.

- ▶ Thus, the number of 0 entries in the *i*th column of the array is $|C'| \ge q^{k-1}$.
- ► Consequently, the number of non-zero entries in the *i*th column is at most $q^k q^{k-1}$.
- ► Therefore, the total number of non-zero symbols across all *n* columns of the array is

$$W \leq n(q^k - q^{k-1})$$

- ▶ Thus, the number of 0 entries in the *i*th column of the array is $|C'| \ge q^{k-1}$.
- ► Consequently, the number of non-zero entries in the *i*th column is at most $q^k q^{k-1}$.
- ► Therefore, the total number of non-zero symbols across all *n* columns of the array is

$$W \leq n(q^k - q^{k-1})$$

▶ Combining this with the lower bound $W \ge (q^k - 1) d$, we get

$$(q^k-1) d \leq n(q^k-q^{k-1})$$

from which the bound on d follows.

The Plotkin Bound for Block Codes

Theorem: For an (n, M, d) block code over \mathbb{F}_q , we have

$$M \leq \frac{d}{d-\theta n}$$
 for $d > \theta n$,

where $\theta := 1 - \frac{1}{a}$.

• Equivalently, setting $\delta = d/n$,

$$M \le \frac{\delta}{\delta - \theta}$$
 for $\delta > \theta$.

► Thus, again, either

$$\delta \leq \theta = 1 - \frac{1}{a}$$

or M is bounded by $\frac{\delta}{\delta - \theta}$, so that

$$R = \frac{1}{n} \log_q M \longrightarrow 0 \text{ as } n \to \infty.$$

Let C be an (n, M, d) block code over \mathbb{F}_q .

We count in two different ways the sum

$$S := \sum_{\substack{\mathbf{u} \in \mathcal{C} \\ \mathbf{u} \neq \mathbf{v}}} \sum_{\mathbf{v} \in \mathcal{C}} d_H(\mathbf{u}, \mathbf{v})$$

▶ Since $d_H(\mathbf{u}, \mathbf{v}) \ge d$ for all pairs of distinct codewords \mathbf{u} and \mathbf{v} , we have

$$S \geq M(M-1)d$$
.

Let C be an (n, M, d) block code over \mathbb{F}_q .

We count in two different ways the sum

$$S := \sum_{\substack{\mathbf{u} \in \mathcal{C} \\ \mathbf{u} \neq \mathbf{v}}} \sum_{\mathbf{v} \in \mathcal{C}} d_H(\mathbf{u}, \mathbf{v})$$

▶ Since $d_H(\mathbf{u}, \mathbf{v}) \ge d$ for all pairs of distinct codewords \mathbf{u} and \mathbf{v} , we have

$$S \geq M(M-1)d$$
.

For another way of evaluating the sum S, we list out the M codewords in the rows of an $M \times n$ array.

 codeword 1	
 codeword 2	
:	
•	
 codeword <i>M</i>	

- Consider any particular column of this array.
 - ▶ Suppose that symbol $j \in \mathbb{F}_q$ occurs m_i times in this column.
 - ▶ The other $M m_j$ entries in this column are distinct from symbol j; each (j, not-j) pair contributes 1 to the sum S.
 - \triangleright So, the total contribution to S from this particular column is

$$\sum_{j \in \mathbb{F}_q} m_j (M - m_j) \ = \ M \cdot \sum_j m_j - \sum_j m_j^2 \ = \ M^2 - \sum_j m_j^2.$$

- Consider any particular column of this array.
 - ▶ The total contribution to *S* from this particular column is

$$\sum_{j \in \mathbb{F}_q} m_j (M - m_j) \ = \ M \cdot \sum_j m_j - \sum_j m_j^2 \ = \ M^2 - \sum_j m_j^2.$$

▶ Under the restriction that $\sum_{j} m_{j} = M$, the term $\sum_{j} m_{j}^{2}$ is minimized by taking $m_{j} = M/q$ for all j. Hence,

$$M^2 - \sum_j m_j^2 \le M^2 - \sum_j (M/q)^2 = M^2 - M^2/q = M^2\theta.$$

▶ In summary, the contribution to S from this column is $\leq M^2\theta$.

► Therefore, accounting for the contributions from all *n* columns, we have

$$S \leq nM^2\theta$$
.

▶ Combining this with the lower bound $S \ge M(M-1)d$, we obtain

$$M(M-1)d \leq nM^2\theta$$
.

▶ Solving for *M*, we find that

$$M \leq \frac{d}{d-\theta n}$$
 for $d > \theta n$.