12. Exponenciální a logaritmické funkce

Úloha 1. Určete předpisy následujících ("posunutých") exponenciálních funkcí.

Úloha 2. U funkcí *k* a *l* z Úlohy 1 určete souřadnice průsečíků s osami soustavy souřadnic.

Úloha 4. U funkcí k a l z Úlohy 3 určete souřadnice průsečíků s osami soustavy souřadnic.

Úloha 3. Určete předpisy následujících ("posunutých") logaritmických funkcí.

Úloha 5. Načrtněte grafy funkcí:

(a)
$$y = 2^{x-2}$$

(b)
$$y = 2 - 2^x$$

(c)
$$y = 2^{-x} + 1$$

(d)
$$y = \log_2(x+1)$$

(e)
$$y = \log_2(-x)$$

(f)
$$y = 2 + \log_{\frac{1}{2}}(x - 3)$$

Úloha 6. Funkce f má předpis tvaru $y=a^{x+b}$, kde a, b jsou reálná čísla, a>0. Určete tento předpis, pokud víte, že platí

(a)
$$f(1) = 8$$
, $f(2) = 16$

(b)
$$f(3) = 3$$
, $f(5) = 9$

Úloha 7. Určete předpisy inverzních funkcí k následujícím funkcím:

(a)
$$y = 3^x$$

(d)
$$y = 3 \cdot 2^{2x+3} - 1$$

(b)
$$y = 2^{x-1}$$

(e)
$$y = \log_3 x$$

(c)
$$y = (\sqrt{2})^{x+3} - 2$$

(f)
$$y = 2 + \log_2 x$$

(g)
$$y = 3 - \log_{\frac{1}{4}} x$$

(h)
$$y = \log_7(2x + 3)$$

(i)
$$y = 2 \cdot \log_5(\frac{2}{3}x - 4) - 1$$

Úloha 8. Rozhodněte bez vyčíslování, zda je větší první číslo, nebo druhé: (a) 13^{50} ; $13^{50,5}$ (b) $(1,001)^{-4}$; $(1,001)^{-5}$ (c) $\left(\frac{5}{7}\right)^{666}$; $\left(\frac{5}{7}\right)^{777}$ (d) $\log_{123} 4$; $\log_{123} 5$ (e) $\ln 0,012$; $\ln 0,0122$ (f) $\log_{\frac{1}{4}} 10^{-4}$; $\log_{\frac{1}{4}} 10^{-5}$

 \star Úloha 9. Dokažte následující tvrzení: pro kladná reálná čísla $a,\,b,\,x,$ navíc splňující $a,b\neq 1$ platí

$$\log_a x = \frac{\log_b x}{\log_b a}.$$

1. $f(x) = 2^x$, $g(x) = 4^x$, $h(x) = \left(\frac{1}{3}\right)^x$, $i(x) = \left(\sqrt[3]{2}\right)^x$, $j(x) = 2^x - 1$, $k(x) = \left(\frac{1}{4}\right)^{x+1} - 2$, $l(x) = -3^{x-2} + 4$, $m(x) = -\left(\frac{1}{5}\right)^{x-5} + 3$

2. $k: P_x\left[-\frac{3}{2}; 0\right], P_y\left[0; -\frac{7}{4}\right]; l: P_x\left[2 + \log_3 4; 0\right], P_y\left[0; \frac{35}{9}\right]$

4. $k: P_x\left[-\frac{8}{3}; 0\right], P_y[0; 2]; l: P_x[3; 0], P_y[0; \log_2 5 - 1]$

3. $f(x) = \log_2 x$, $g(x) = \log_7 x$, $h(x) = \log_{\frac{1}{4}} x$, $i(x) = \log_{1/\sqrt{5}} x$, $j(x) = \log_3 (x-2)$,

 $k(x) = \log_3(x+3) + 1, \quad l(x) = \log_2(5-x) - 1$

6. (a) $y = 2^{x+2}$ (b) $y = (\sqrt{3})^{x-1}$

7. (a) $y = \log_3 x$ (b) $y = \log_2 x + 1$ (c) $y = \log_{\sqrt{2}}(x+2) - 3$ (d) $y = \frac{1}{2}(\log_2 \frac{x+1}{3} - 3)$ (e) $y = 3^x$

(f) $y = 2^{x-2}$ (g) $y = \left(\frac{1}{4}\right)^{-x+3}$ neboli $y = 4^{x-3}$ (h) $y = \frac{1}{2}(7^x - 3)$ (i) $y = \frac{3}{2}\left(5^{\frac{x+1}{2}} + 4\right)$

8. (a) druhé (b) první (c) první (d) druhé (e) druhé (f) druhé