SRM Institute of Science and Technology Department of Mathematics 18MAB204T-Probability and Queueing Theory Module – I Tutorial Sheet - 1

	Tutorial Sheet - 1
S.No.	Questions
5.110.	Part – A
1	For a probability distribution of X given below: $ \begin{array}{c cccccc} x & 1 & 2 & 3 & 4 \\ \hline p(x) & 4k & k & 2k & 3k \end{array} $ Find (i) k (ii) $P\left(\frac{1}{2} < X < 5 / X > 1\right)$
2	If $f(x) = kx^2$, $0 < x < 3$ is a pdf, find (i) the value of k . (ii) $P(X < 1/2)$ (iii) $P(\frac{1}{4} < X < \frac{1}{2})$
3	The probability mass function of a R.V X is given by $p(x) = \begin{cases} \frac{1}{4} for \ x = -2 \\ \frac{1}{4} for \ x = 0 \\ \frac{1}{2} for \ x = 5 \\ 0, otherwise \end{cases}$ Find (i) $P(X \ge 2)$ (ii) $P(0 \le X \le 10)$ (iii) Cumulative Distribution Function
4	If the CDF of a Random variable X is $F(x) = \begin{cases} 0, x \le 0 \\ 2x^2 - x^3, 0 < x < 1 \end{cases}$ Find the pdf of X and $1, x \ge 1$ $P\left(\frac{1}{2} < X < \frac{2}{3}\right) \text{ using pdf and CDF}$
	Part - B
5	The probability mass function of a random variable X is given below.
6	A random variable <i>X</i> has the following pdf, where $k > 0$. $f(x) = \begin{cases} 0, x < 1 \\ k(x-1), 1 \le x \le 2 \\ k(3-x), 2 \le x \le 3 \\ 0, x > 3 \end{cases}$ Find (i) the value of <i>k</i> (ii) CDF of <i>X</i> .
7	The CDF of a discrete RV X is given by $F(x) = \begin{cases} 0, x < 0 \\ \frac{1}{4}, & 0 \le x < 1 \\ \frac{3}{4}, & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$ Find (i) the probability distribution
8	A random variable X has the pdf $f(x) = \begin{cases} 2x, 0 < x < 1 \\ 0, elsewhere \end{cases}$ Find (i) $P\left(X < \frac{1}{2}\right)$, (ii) $P\left(\frac{1}{4} < X < \frac{1}{2}\right)$ And (iii) $P\left(X < \frac{3}{4} X > \frac{1}{2}\right)$