

EM EDUCAÇÃO PROFISSIONAL E INOVAÇÃO TECNOLÓGICA

Redes de Computadores

Modelos e Protocolos de Redes

O que são Modelos de Redes?

- Modelos de redes servem como uma estrutura conceitual para descrever como a comunicação ocorre entre dispositivos.
- Dois modelos principais: Modelo OSI e Modelo TCP/IP.
- Definem as regras e padrões de comunicação.

O q

- Mod conc∈ ocorr€
- Dois TCP/II
- Defir

Aplicação

Apresentação

Sessão

Transporte

Rede

Enlace

Física

Transporte

Aplicação

Internet

Acesso a Rede

Importância dos Protocolos de Redes?

- Protocolos garantem que dispositivos diferentes possam se comunicar.
- Definem regras como endereçamento, formatação de dados e controle de erros.
- Exemplos: HTTP, FTP, SMTP, TCP, UDP, IP. comunicação.

Impor

 Protoco diferent

- Definen formata

- Exemplo: comunica

Arquitetura TCP/IP

Camadas:

Aplicação: HTTP, FTP, SMTP.

Transporte: TCP, UDP.

Internet: IP, ICMP.

Acesso à Rede: Ethernet, Wi-Fi.

Comparativo com o Modelo OSI.

TCP/IP foi desenvolvido para a Internet e é mais prático do que o modelo OSI.

Arquitetura TCP/IP

TCP / IP

Camada da Arquitetura

Protocolos

4

Aplicação

FTP, SMTP, TELNET, HTTP, HTTPS, POP3

3

Transporte

TCP, UDP

2

Internet

IP (IPv4, IPv6)

1

Acesso a Rede

Ethemet, Frame Relay

Redes de Computadores

IPv4 e IPv6

O que é IP?

IPv4 e IPv6

IPv4 (Internet Protocol version 4) é a quarta versão do Protocolo de Internet, amplamente utilizado para identificação e localização de dispositivos na rede. Foi desenvolvido nos anos 1980 e se tornou o padrão para comunicação na Internet.

Importância: IPv4 é a base da maioria das redes atuais, sendo responsável por permitir a comunicação entre dispositivos de forma confiável e eficiente.

IPv6 (Internet Protocol version 6) é a sexta versão do Protocolo de Internet, projetado para substituir o IPv4 devido à exaustão de endereços IP disponíveis no IPv4. IPv6 foi desenvolvido nos anos 1990 e se tornou o padrão emergente para comunicação na Internet, trazendo várias melhorias em relação ao IPv4.

Importância: IPv6 é crucial para o futuro da Internet, pois oferece um espaço de endereçamento muito maior. Suporta o crescimento contínuo da Internet e a proliferação de dispositivos conectados, como smartphones, IoT (Internet das Coisas) e outros.

Estrutura do Endereço

Um endereço IPv4 é um número de **32 bits**, dividido em **quatro octetos**. Representado em notação decimal com pontos.

192.168.1.12

11000000 . 10101000 . 00000001 . 00001100

Um endereço IPv6 é um número de **128 bits**, dividido em **oito grupos** de **16 bits**, chamado de duocteto. Cada grupo é representado por 4 dígitos hexadecimais (O - F).

2001 : Odb8 : 85a3 : 0000 : 0000 : 8a2e : 0370 : 7334

Exercício de Fixação

Transforme os endereços IPv4 abaixo em binário.

- a) 172.16.0.194
- b) 10.108.200.33
- c) 192.169.253.45
- d) 35.215.58.98
- e) 173.253.227.4

Exercício de Fixação

Transforme os endereços IPv4 abaixo em binário.

- a) 172.16.0.194
 - 10101100.00010000.00000000.11000010
- b) 10.108.200.33
 - 00001010.01101100.11001000.00100001
- c) 192.169.253.45
 - 11000000.10101001.11111101.00101101
- d) 35.215.58.98
 - 00100101.11010111.00111010.01100010
- e) 173.256.227.4
 - 10101101.11111101.11100011.00000100

Classes de Endereços

Classe A:

• Endereços de 0.0.0.0 a 127.255.255.255. Grandes redes, com poucos bits para a rede e muitos para os hosts.

Classe B:

 Endereços de 128.0.0.0 a 191.255.255.255. Redes de tamanho médio.

Classe C:

 Endereços de 192.0.0.0 a 223.255.255.255. Redes pequenas, com muitos bits para a rede e poucos para os hosts.

Classe D:

 Endereços de 224.0.0.0 a 239.255.255.255. Usados para multicast.

Classe E:

• Endereços de 240.0.0.0 a 255.255.255.255. Reservados para pesquisa e testes.

Endereços Especiais

Redes locais: Faixas de endereços como

10.0.0.0 - 10.255.255.255,

172.16.0.0 - 172.31.255.255 e

192.168.0.0 - 192.168.255.255

são reservadas para uso em redes privadas e não podem ser roteadas na internet pública.

Multicast: Endereços multicast são usados para enviar um único pacote de dados para um grupo de destinos simultâneos.

Endereço de Loopback: 127.0.0.1. Usado para testar a pilha de rede local.

Máscaras de Sub-rede

Uma máscara de sub-rede é usada para dividir uma rede IP em sub-redes menores, o que facilita a organização e o gerenciamento da rede. Ela define qual parte do endereço IP é a parte da rede e qual parte é a parte do host. A notação CIDR (Classless Inter-Domain Routing) é uma maneira de representar a máscara de sub-rede, como /24, que indica que os primeiros 24 bits do endereço IP são usados para a rede.

Rede Original: 192.168.1.0/24

- •Endereço IP: 192.168.1.0
- •Máscara de sub-rede: 255.255.255.0 (ou /24)
- •Número de endereços na rede: 2^(32-24) = 2^8 = 256
- •Endereços disponíveis para hosts: 256 2 (rede e broadcast) = 254

Másca

Um menores, o parte do er CIDR (Class sub-rede, c para a rede

Rec

- Endereço
- •Máscara d
- •Número d
- Endereços

CIDR	Decimal	Número de Hosts
/30	255.255.255.252	4
/29	255.255.255.248	8
/28	255.255.255.240	16
/27	255.255.255.224	32
/26	255.255.255.192	64
/25	255.255.255.128	128
/24	255.255.255.0	256
/16	255.255.0.0	65.536
/8	255.0.0.0	16.777.216

n **sub-redes** define qual A notação a máscara de P são usados

NAT (Network Address Translation)

Técnica que permite a um conjunto de endereços IP privados serem mapeados para um endereço IP público, ajudando a economizar endereços IPv4.

NAT Estático, NAT Dinâmico e PAT (Port Address Translation)

NAT Estático é um tipo de tradução de endereços de rede onde um endereço IP privado é mapeado para um endereço IP público de forma fixa e permanente. Esse mapeamento é configurado manualmente pelo administrador da rede.

NAT Dinâmico, também conhecido como NAT Overload, é um tipo de tradução de endereços de rede onde múltiplos endereços IP privados são mapeados para um conjunto de endereços IP públicos de forma dinâmica.

PAT, também conhecido como NAT Overloading, é um tipo de tradução de endereços de rede onde múltiplos endereços IP privados compartilham um único endereço IP público, utilizando diferentes números de portas TCP ou UDP.

CGNAT (Carrier-Grade Network Address Translation)

CGNAT (Carrier-Grade Network Address Translation) é uma técnica utilizada por provedores de serviços de Internet (ISPs) para gerenciar a escassez de endereços IPv4 públicos. CGNAT permite que múltiplos clientes compartilhem um único endereço IPv4 público, utilizando NAT (Network Address Translation) em uma escala muito maior do que a tradicionalmente utilizada em redes domésticas ou corporativas.

IPv6

Os endereços IPv6 são longos e compostos por 128 bits, geralmente representados em oito grupos de quatro dígitos hexadecimais, separados por dois pontos. Para facilitar a leitura e a escrita, IPv6 permite a contração ou abreviação de endereços, utilizando regras específicas.

Regras de Contração

Omissão de Zeros à Esquerda;

Substituição de Sequências de Grupos de Zeros por "::"

Exemplo 1:

- •Endereço Completo: 2001:0db8:0000:0000:0000:ff00:0042:8329
- •Passo 1 (Omissão de Zeros à Esquerda): 2001:db8:0:0:0:ff00:42:8329
- •Passo 2 (Substituição de Sequência de Zeros): 2001:db8::ff00:42:8329

Resumo das Faixas de Endereços Especiais no IPv6

Tipo de Endereço	Faixa	Descrição	Exemplo
Unicast Global	2000::/3	Roteamento global na Internet	2001:0db8::1
Link-Local	fe80::/10	Comunicação dentro de um único link	fe80::1
Unicast Local (ULA)	fc00::/7	Comunicação dentro de uma organização	fd00::1
Loopback	::1/128	Envio de pacotes a si mesmo	::1
Multicast	ff00::/8	Envio de pacotes para múltiplos destinos	ff02::1:ffXX
Anycast	Varia	Envio de pacotes ao membro mais próximo	Qualquer endereço unicast configurado como anycast
Documentação	2001:db8::/32	Uso em exemplos e documentação	2001:db8::1
Temporários	Varia	Preservação de privacidade	Varia conforme o uso
Transição (6to4)	2002::/16	Encapsulamento IPv6 em IPv4	2002:ac10:fe01::
Transição (Teredo)	2001::/32	Encapsulamento IPv6 em IPv4 UDP	2001::abcd:1234:5678:9abc

Elaboração

Celso Giusti

CFP 4.01 Itu

SENAI

SIGA-NOS EM NOSSAS REDES SOCIAIS

<u>Clique aqui</u> para acessar o site e ficar por dentro das noticias do SENAI Itu