## Mathématiques actuarielles IARD-1 ACT-2005 Notes de cours

Gabriel Crépeault-Cauchon Nicholas Langevin

14 novembre 2018

# Table des matières

| Ι | $\mathbf{M}$                    | atière  | pour l'examen partiel                                    | 1  |  |  |
|---|---------------------------------|---------|----------------------------------------------------------|----|--|--|
| 1 | Qua                             | antités | des distributions à connaître                            | 2  |  |  |
|   | 1.1                             | Mome    | nts                                                      | 2  |  |  |
|   | 1.4                             | Queue   | e de distribution                                        | 5  |  |  |
|   |                                 | 1.4.1   | Classification selon les moments                         | 5  |  |  |
|   |                                 | 1.4.2   | Classification selon les comportements limites des ailes |    |  |  |
|   |                                 |         | de distribution                                          | 5  |  |  |
|   |                                 | 1.4.3   | Classification basée sur la fonction de Hazard           | 6  |  |  |
| 2 | Fré                             | quence  | et sévérité avec modifications aux contrats              | 7  |  |  |
|   | 2.2                             | Déduc   | tibles                                                   | 7  |  |  |
|   |                                 | 2.2.1   | Ordinary deductible                                      | 7  |  |  |
|   |                                 | 2.2.2   | Franchise deductible                                     | 9  |  |  |
|   | 2.3                             | Loss E  | Elimination Ratio                                        | 10 |  |  |
|   | 2.4                             | Policy  | Limits                                                   | 12 |  |  |
|   |                                 | 2.4.1   | Définitions                                              | 12 |  |  |
|   |                                 | 2.4.2   | Fonctions reliées                                        | 12 |  |  |
|   | 2.5                             | Coassi  | urance, déductible et limites                            | 13 |  |  |
| 3 | Estimation de données complètes |         |                                                          |    |  |  |
|   | 3.2                             | Estim   | ation de données complètes                               | 14 |  |  |
|   |                                 | 3.2.1   | Estimation de la fonction de répartition empirique       | 14 |  |  |
|   |                                 | 3.2.2   | Cumulative hazard-rate function                          | 15 |  |  |
|   |                                 | 3.2.3   | Notation à utiliser pour la distribution empirique       | 16 |  |  |
|   |                                 | 3.2.4   | Estimateur de Nelson Åalen                               | 16 |  |  |
|   | 3.3                             |         |                                                          |    |  |  |
|   |                                 | 3.3.1   | Fonction OGIVE                                           | 17 |  |  |

| 4  | Est                          | imation de données modifiées                                  | 20        |  |  |  |
|----|------------------------------|---------------------------------------------------------------|-----------|--|--|--|
|    | 4.1                          | Point estimation                                              | 20        |  |  |  |
|    |                              | 4.1.1 Définitions importante                                  | 20        |  |  |  |
|    | 4.2                          | Espérance, Variance et et intervalle d'estimation             | 22        |  |  |  |
| II | $\mathbf{N}$                 | latière pour l'examen final                                   | <b>23</b> |  |  |  |
| 5  | Cor                          | atinuous models (5)                                           | 24        |  |  |  |
|    | 5.1                          | Multiplication par une constante                              | 24        |  |  |  |
|    | 5.2                          | Raising to a power                                            | 25        |  |  |  |
|    | 5.3                          | Exponentiation                                                | 26        |  |  |  |
|    | 5.4                          | Mélanges                                                      | 26        |  |  |  |
|    | 5.5                          | Frailty models                                                | 27        |  |  |  |
|    | 5.6                          | Splicing                                                      | 28        |  |  |  |
| 6  | Modèle de perte aggrégée (9) |                                                               |           |  |  |  |
|    | 6.1                          | Modèle composé (fréquence-sévérité) pour les pertes aggrégées | 29        |  |  |  |

## Résumé

Ce document résume les notes de cours prises en classe dans le cours de Mathématiques actuarielles IARD-1, ainsi que des notions prises du livre  $LOSS\ MODELS$  - From Data to Decisions,  $4^{th}$  edition.

# Première partie Matière pour l'examen partiel

# Quantités des distributions à connaître

Chapitre 3 du Loss Models

## 1.1 Moments

 $\pmb{Raw\ moments}$  On représente le  $k^{\rm e}$  moment par  $\mu_k',$  soit

$$\mu_k' = \mathrm{E}\left[X^k\right] \tag{1.1}$$

Moments centra<br/>ux Le  $k^{\rm e}$  moment central est représenté par

$$\mu_k = \mathrm{E}\left[ (X - \mu)^k \right] \tag{1.2}$$

## Exemple 1.1.1 Quelques exemples de moments centraux

Ç

La variance est le 2<sup>e</sup> moment central :

$$Var(X) = \mu_2 = E\left[ (X - \mu)^2 \right]$$

Le  $3^{\rm e}$  moment centré, qui est utilisé pour calculer le coefficient d'asymétrie :

$$\mu_3 = \mathrm{E}\left[ (X - \mu)^3 \right]$$

Coefficient de variation

$$CV = \frac{\sigma}{\mathrm{E}[X]} \tag{1.3}$$

Coefficient d'asymétrie Le coefficient d'asymétrie, aussi appelé skewness, est défini par

 $\gamma_1 = \frac{\mu_3}{\sigma^3} \tag{1.4}$ 

Soit le 3<sup>e</sup> moment standarisé. Si  $S_k = 0$ , alors la distribution tend vers une loi normale, telle qu'on le voit sur la figure ci-dessous :



Coefficient d'applatissement Le coefficient d'applatissement, aussi appelé *Kurtosis*, se définit par

$$Kurtosis = \frac{\mu_4}{\sigma^4} \tag{1.5}$$

Cette quantité permet de mesurer l'épaisseur de l'aile (tail) de la distribution. Si E [ $z^4$ ] = 3, alors la distribution tend vers une loi normale  $N(\mu, \sigma^2)$ .

**Mean Excess Loss** On définit la variable aléatoire  $Y^P$ , qui représente le montant de perte en excès d'un déductible d, sachant que la perte est au delà de ce montant. On peut définir l'espérance des coûts de cette variable alétaoire :

$$e(d) = \operatorname{E}\left[Y^{P}\right] = \operatorname{E}\left[X - d|X \ge d\right] = \frac{\int_{d}^{\infty} S_{X}(x)}{S_{X}(d)}$$
(1.6)

Note : cette variable est dite tronquée à gauche et *shifted*. On entend parfois aussi *Per-payment* 

Left censored and shifted variable Soit la v.a.  $Y^L$ , qui représente le montant payé par l'assureur par perte. La variable est donc dite censurée à gauche et shifted. On peut aussi en calculer l'espérance :

$$E[Y^L] = E[(X-d)_+] = \int_d^\infty (x-d)f_X(x)dx$$
 (1.7)

De plus, on peut facilement déduire la relation suivante :

$$E[(X - d)_{+}] = e(d)(1 - F_X(d))$$

Limited Loss Variable Finalement, on peut définir la variable Y, qui représente le paiement de l'assureur avec une limite de u à la police. Son espérance est définie par

$$E[X \wedge u] = \int_0^u f_X(x)dx \tag{1.8}$$

À l'aide d'intégration par partie, on peut trouver la forme suivante :

$$E[X \wedge u] = \int_0^u S_X(x) dx$$

La v.a. Y est dite censurée à droite et shifted



## 1.4 Queue de distribution

#### 1.4.1 Classification selon les moments

- > On peut déterminer si une distribution a une *heavy-tail* en vérifiant si ses moments existent.
- > On peut aussi comparer des distributions entre-eux en utilisant des quantités standarisées, telles que le Coefficient de variation, le coefficient d'asymétrie (skewness) ou encore le coefficient d'applatissement (Kurtosis)

# 1.4.2 Classification selon les comportements limites des ailes de distribution

- > On peut faire le ratio de deux distributions avec leurs fonction de survie (S(x)) ou leur fonction f de densité pour vérifier laquelle des 2 a la plus grosse aile de distribution (tail).
- 1. Sois  $f_1(x)$  une fonction tels que les 3 premiers moment existe :  $E[x^4] = \infty$
- 2. Sois  $f_2(x)$  une fonction tels que les 2 premiers moment existe :  $E[x^2] = \infty$

Alors,

$$\lim_{x \to \infty} r(x) = \frac{f_1(x)}{f_2(x)} = \begin{cases} \infty, \ f_1(x) \text{a une aile plus lourde que} f_2(x) \\ 0, \ f_2(x) \text{a une aile plus lourde que} f_1(x) \end{cases}$$

#### Exemple 1.4.1

Sois  $f_{x_1}(x_1) \sim pareto(\alpha, \theta)$  et  $f_{x_2}(x_2) \sim gamma(\alpha, \lambda)$ 

$$\lim_{x \to \infty} r(x) = \lim_{x \to \infty} \frac{f_{x_1}(x_1)}{f_{x_2}(x_2)}$$

$$= \frac{\frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha+1}}}{\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}}$$

$$= C \frac{e^{-\lambda x}}{x^{\alpha-1} (x+\theta)^{\alpha+1}}$$

$$= \infty$$

### 1.4.3 Classification basée sur la fonction de Hazard

### Définition 1.4.1 Hazard rate function

E

La fonction de hazard (aussi appelée force de mortalité  $(\mu(x))$  ou le failure rate  $(\lambda(x))$ , est définie par

$$h_X(x) = \frac{f_X(x)}{S_X(x)} \tag{1.9}$$

On peut aussi exprimer la fonction  $h_X(x)$  comme

$$h_X(x) = -\ln(S_X(x))$$

Soit une distribution ayant fonction de densité  $f_X(x)$  et fonction de hazard  $h_X(x)$ . Alors,

- > Si  $h(x) \nearrow$ , light-tailed
- $\rightarrow$  Si  $h(x) \searrow$ , heavy-tailed
- > Note : on peut aussi comparer les distributions entre-elles : si une distribution voit son  $h_1(x)$  augmenter plus rapidement que l'autre (i.e.  $h_2(x)$ ), alors la deuxième distribution a une aile de distribution plus lourde.

# Fréquence et sévérité avec modifications aux contrats

Chapitre 8 du Loss Models

## 2.2 Déductibles

## 2.2.1 Ordinary deductible

#### **Définition**

Soit un contrat d'assurance avec déductible d. Lors d'une perte, l'assureur va payer tout montant en excédent du montant d. Alors, pour la variable per-payment,

$$Y^{L} = (X - d)_{+} = \begin{cases} 0 & , X \le d \\ X - d & , X > d \end{cases}$$
 (2.1)

$$Y^{P} = (X - d)_{+} = \begin{cases} \text{Non-défini} & , X \leq d \\ X - d & , X > d \end{cases}$$
 (2.2)

#### Fonctions reliées

Et on peut aussi déduire toutes les fonctions qui y sont reliées :

$$f_{YP}(y) = \frac{f_X(y+d)}{S_X(d)}$$

$$S_{YP}(y) = \frac{S_X(y+d)}{S_X(d)}$$

$$F_{YP}(y) = \frac{F_X(y+d) - F_X(d)}{S_X(d)}$$

$$h_{Y^P}(y) = h_X(y+d)$$

Pour la v.a.  $Y^L$  per-loss  $^1$ ,

$$f_{YL}(y) = f_X(y+d)$$

$$S_{Y^L}(y) = S_X(y+d)$$

$$F_{Y^L}(y) = F_X(y+d)$$

## Espérance

$$\mathrm{E}\left[Y^{L}\right] = \mathrm{E}\left[(X - d)_{+}\right] = \mathrm{E}\left[X\right] - \mathrm{E}\left[X \wedge d\right] \tag{2.3}$$

$$\mathrm{E}\left[Y^{P}\right] = \frac{\mathrm{E}\left[(X-d)_{+}\right]}{S_{X}(d)} = \frac{\mathrm{E}\left[X\right] - \mathrm{E}\left[X \wedge d\right]}{S_{X}(d)} \tag{2.4}$$

<sup>1.</sup> Il est à noter que la fonction de Hazard n'est pas définie à 0.

Cette espérance s'appelle la prime Stop-Loss, et elle est définie par

$$E[Y] = E[(X - d)_{+}]$$

$$= \int_{d}^{\infty} (x - d)f(x)dx$$

$$= \underbrace{\int_{d}^{\infty} xf(x)dx}_{\text{Intégration par partie}} -d \int_{d}^{\infty} f(x)dx$$

$$= -xS(x)\Big|_{d}^{\infty} + \int_{d}^{\infty} S(x)dx - sS(d)$$

$$= 0 + S(d) + \int_{d}^{\infty} S(x)dx - S(d)$$

$$= \int_{d}^{\infty} S(x)dx$$

#### 2.2.2 Franchise deductible

#### **Définitions**

Lorsque la perte dépasse le déductible franchise de montant d, l'assureur assume l'entièreté des coûts  $^2$ . Pour la v.a.  $Y^L$ , on a

$$Y^L = \begin{cases} 0 & , X \le d \\ X & , X > d \end{cases}$$

Pour la v.a.  $Y^P$ ,

$$Y^{P} = \begin{cases} \text{non-défini} & X \leq d \\ X & , X > d \end{cases}$$
 (2.5)

#### Fonctions reliées

Les fonctions de la v.a.  $Y^L$  sont

$$f_{Y^L}(y) = \begin{cases} F_X(d) & , y = 0 \\ f_X(y) & , y > 0 \end{cases}$$

<sup>2.</sup> On voit plus souvent ce type de déductible dans un contexte d'invalidité : si on est absent plus d'un certain nombre de jours du travail, on se fait rembourser toutes ses absences en salaire.

$$F_{Y^L}(y) = \begin{cases} F_X(d) & , 0 < y \le d \\ F_X(y) & , y \ge d \end{cases}$$
$$S_{Y^L}(y) = \begin{cases} S_X(d) & , 0 < y \le d \\ S_X(x) & , y > d \end{cases}$$
$$h_{Y^L}(y) = \begin{cases} h_X(d) & , 0 < y \le d \\ h_X(x) & , y > d \end{cases}$$

Pour la fonction  $Y^P$  (per-payment),

$$f_{YP}(y) = \frac{f_X(d)}{S_X(d)}$$

$$F_{YP}(y) = \begin{cases} F_X(d) & , y = 0 \\ F_X(d) & , 0 < y \le d \\ \frac{F_X(y) - F_X(d)}{S_X(d)} & , y > d \end{cases}$$

$$S_{YP}(y) = \begin{cases} 1 & , 0 \le y \le d \\ \frac{S_X(y)}{S_X(d)} & , y > d \end{cases}$$

$$h_{YP}(y) = \begin{cases} 0 & , 0 < y \le d \\ h_X(y) & , y > d \end{cases}$$

Espérance

$$\operatorname{E}\left[Y^{L}\right] = \operatorname{E}\left[(X - d)_{+}^{F}\right] = \operatorname{E}\left[X\right] - \operatorname{E}\left[X \wedge d\right] + dS_{X}(d) \tag{2.6}$$

$$E[Y^P] = E[(X-d)_+^F] = \frac{E[X] - E[X \wedge d]}{S_X(d)} + d \qquad (2.7)$$

## 2.3 Loss Elimination Ratio

#### **Définition 2.3.1** Loss Eliminating Ratio

Le Loss Eliminating Ratio (LER), nous permet d'obtenir le pourcentage de perte qu'on ne paiera pas grâce au déductible d:

$$LER = \frac{E[X] - E[(X - d)_{+}]}{E[X]}$$

Mais on sait que

$$E[(X - d)_{+}] = E[X] - E[X \wedge d]$$

Alors,

$$LER = \frac{E[X \wedge d]}{E[X]}$$
 (2.8)

**Note sur l'inflation** Il arrive en exercice qu'on nous demande de comparer ce ratio avec et sans inflation. Soit un contrat avec r % d'inflation. Alors, on peut trouver  $\mathbb{E}\left[(X-d)_+\right]$  qui tient compte de cette inflation :

$$\mathrm{E}\left[(X-d)_{+}^{I}\right] = (1+r)\left(\mathrm{E}\left[X\right] - \mathrm{E}\left[X \wedge \frac{d}{1_{r}}\right]\right)$$

Démonstration.

$$E[Y] = (1+r) \int_{\frac{d}{1+r}}^{\infty} x f_X(x) dx - d \int_{\frac{d}{1+r}}^{\infty} f_X(x) dx$$

En ajoutant un terme,

$$=\underbrace{(1+r)\int_{0}^{\frac{d}{1+r}}xf_{X}(x)dx + \int_{\frac{d}{1+r}}^{\infty}xf_{X}(x)dx}_{\text{E}[X]} - \underbrace{\int_{0}^{\frac{d}{1+r}}xf_{X}(x)dx - \frac{d}{1+r}\int_{\frac{d}{1+r}}^{\infty}f_{X}(x)dx}_{\text{E}[X \wedge \frac{d}{1+r}]}$$

$$= \text{E}[X] - \text{E}\left[X \wedge \frac{d}{1+r}\right]$$

## 2.4 Policy Limits

#### 2.4.1 Définitions

Soit un contrat d'assurance où il est conclu que l'assureur débourse un maximum de u dans le montant de la perte. Ce type de modification au contrat créé une v.a. censurée à droite, i.e. le montant déboursé est maximisé à u. On définit Y comme étant

$$Y = \begin{cases} X & , X \le u \\ u & , Y > u \end{cases} \tag{2.9}$$

#### 2.4.2 Fonctions reliées

On peut déduire les fonctions reliées suivantes :

$$f_Y(y) = \begin{cases} f_X(y) & , y < u \\ S_X(u) & , y = u \end{cases}$$

$$F_Y(y) = \begin{cases} F_X(y) & , y \le u \\ 1 & , y > u \end{cases}$$

**Note sur l'inflation** Si on a r % d'inflation, alors

$$E[X \wedge u] = (1+r)E\left[X \wedge \frac{u}{1+r}\right]$$

Démonstration.

$$E[Y] = \int_0^{\frac{u}{1+r}} (1+r)x f_X(x) dx + u \int_{\frac{u}{1+r}}^{\infty} f_X(x) dx$$

$$= (1+r) \int_0^{\frac{d}{1+r}} f f_X(x) dx + s S_X \left(\frac{u}{1+r}\right)$$

$$= (1+r) \left(\int_0^{\frac{u}{1+r}} x f_X(x) dx + \frac{u}{1+r} S_X \left(\frac{u}{1+r}\right)\right)$$

$$= (1+r) E\left[X \wedge \frac{u}{1+r}\right]$$

## 2.5 Coassurance, déductible et limites

#### **Définitions**

Le livre nous donne une fonction de perte qui englobe 4 éléments en même temps : l'inflation, les déductibles, la coassurance  $^3$  et les limites de police. Pour la v.a.  $Y^L$ ,

$$Y^{L} = \begin{cases} 0 & , \ x < \frac{d}{1+r} \\ \alpha \left( (1+r)x - d \right) & , \ \frac{d}{1+r} \le x < \frac{u}{1+r} \\ \alpha (u-d) & , \ x \ge \frac{u}{1+r} \end{cases}$$
 (2.10)

et pour  $Y^P$ ,

$$Y^{L} = \begin{cases} \text{Non-défini} &, x < \frac{d}{1+r} \\ \alpha \left( (1+r)x - d \right) &, \frac{d}{1+r} \le x < \frac{u}{1+r} \\ \alpha (u-d) &, x \ge \frac{u}{1+r} \end{cases}$$
 (2.11)

#### Espérance

$$E[Y^{L}] = \alpha(1+r)\left(E\left[X \wedge \frac{u}{1+r}\right] - E\left[X \wedge \frac{d}{1+r}\right]\right)$$
 (2.12)

$$E\left[Y^P\right] = \frac{E\left[Y^L\right]}{S_X\left(\frac{d}{1+r}\right)} \tag{2.13}$$

$$E[Y] = \int_{\frac{d}{1+r}}^{\frac{u}{1+r}} ((1+r)x - d) f_X(x) dx + \int_{\frac{u}{1+r}}^{\infty} (u - d) f_X(x) dx$$
$$= (1+r) \left( E\left[X \wedge \frac{u}{1+r}\right] - E\left[X \wedge \frac{d}{1+r}\right] \right)$$

<sup>3.</sup> Dans ce type de contrat, la compagnie paie une proportion  $\alpha$  de la perte, et le  $(1-\alpha)$  restant est assumé par le titulaire de la police.

# Estimation de données complètes

Chapitre 11 du Loss Models

## 3.2 Estimation de données complètes

# 3.2.1 Estimation de la fonction de répartition empirique

On cherche à estimer F(t) ou S(t), lorsque nos données sont complètes (i.e.  $x_1, ..., x_n$  qui sont iid). Alors, l'estimateur non paramétrique pour F(t):

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i \le t\}}$$
(3.1)

où  $\mathbb{1}_{\{.\}}$  représente une fonction indicatrice.  $F_x(t)$  aura donc la forme suivante :

$$F_n(t) = \begin{cases} 0 & , t < x_{(1)} \\ \frac{1}{n} & , x_{(1)} \le t < x_{(2)} \\ \frac{2}{n} & , x_{(2)} \le t < x_{(3)} \\ \dots & \\ 1 & , t \ge x_{(n)} \end{cases}$$
(3.2)

où  $t \in [0, x_{(n)}].$ 



#### Remarques

- (1) Lorsque  $F_n(t) \to F(t)$ , alors
- (2) Puisqu'on a

$$\sum_{i=1}^{n} 1_{[x_i \le t]} \sim Bin(n, \Pr(X \le t))$$

Alors,

$$E[F_n(t)] = \frac{1}{n} n F(t)$$

$$= F(t) \quad \text{(C'est un estimateur sans biais)}$$

$$Var(F_n(t)) = \frac{1}{n^2} n F(t) S(t)$$

$$= \frac{F(t) S(t)}{n}$$

$$= 0$$

## $3.2.2 \quad Cumulative \ hazard-rate \ function$

On utilise cette fonctoin pour pouvoir réussir à estimer la fonction de densité et le hazard rate empirique. En effet, puisque la distribution empirique est

discrète, on ne peut pas dériver  $F_n(x)$  pour obtenir  $f_n(x)$  et  $h_n(x)$ . La fonction de hazard cumulative se définit par

$$H_X(x) = -\ln S_X(x) \tag{3.3}$$

### 3.2.3 Notation à utiliser pour la distribution empirique

- >  $y_1 < y_2 < ... < y_k$ : les k valeurs uniques qui apparaissent dans l'échantillon de n. Note :  $k \le n$ .
- $\boldsymbol{>}$   $s_j$  : nombre de fois que l'observation  $y_j$  est observée dans l'échantillon. On a

$$\sum_{j=1}^{k} s_j = 1$$

 $r_j$ : nombre d'observations qui sont plus grandes ou égales à  $y_j$ . On a

$$r_j = \sum_{i=j}^k s_i$$

> Avec cette nouvelle notation, on peut ré-écrire la fonction de répartition empirique :

$$F_n(x) = \begin{cases} 0 & , x < y \\ 1 - \frac{r_j}{n} & , y_{j-1} \le x \le y_j \quad j = 2, ..., k \\ 1 & , x \ge y_k \end{cases}$$
 (3.4)

## 3.2.4 Estimateur de Nelson Åalen

Pour pouvoir estimer la *Cumulative hazard-rate function*, on doit utiliser un estimateur qui se base sur la notation utilisée à la sous-section précédente, soit le *Nelson Åalen estimate*:

$$\hat{H}(x) = \begin{cases} 0 & , x < y_1 \\ \sum_{i=1}^{j-1} \frac{s_i}{r_i} & , y_{j-1} \le x \le y_j \quad j = 2, ..., k \\ \sum_{i=1}^{k} \frac{s_i}{r_i} & , x \ge y_k \end{cases}$$
(3.5)

## 3.3 Distribution empirique avec données groupées

## 3.3.1 Fonction OGIVE

### CETTE MATIÈRE NE SERA PAS TESTÉE À L'EXAMEN intra A2018

Dans certains contextes, on a n données qui sont groupées en intervalles. La fonction OGIVE permet d'interpoler entre 2 points  $c_{j-1}$  et  $c_j$ .

$$c_{j-1} \le x \le c_j$$
  
$$F_n(c_{j-1}) \le F_n(x) \le F_n(c_j)$$

On peut déterminer la valeur empirique de  $F_n(x)$  aux bornes des classes, avec

$$F_n(x) = \frac{\sum_{i=1}^j n_i}{n}$$

où  $n_i$  est le nombre d'observations qui sont entre  $c_{j-1}$  et  $c_j$ . Toutefois, pour les valeurs entre deux bornes  $c_0 < c_1 < ... < c_k$ , il faut approximer avec la fonction OGIV ci-dessous :

$$F_n^{\text{OGIVE}}(x) = \frac{c_j - x}{c_j - c_{j-1}} F_n(c_j - 1) + \frac{x - c_{j-1}}{c_j - c_{j-1}} F_n(c_j)$$
(3.6)

#### Remarques

(1) Si  $x = c_{j-1}$ ,

$$F_n(c_{j-1}) = F_n^{\text{OGIVE}}(c_{j-1})$$

(2) Si  $x = c_j$ ,

$$F_n(c_j) = F_n^{\text{OGIVE}}(c_j)$$

(3) En dérivant (3.6), on obtient

$$f_n(x) = \frac{\partial}{\partial x} F_x(x)$$

$$= \frac{1}{c_j - c_{j-1}} F_x(c_j) - \frac{1}{c_j - c_{j-1}} F_n(c_{j-1})$$

$$= \frac{F_n(c_j) - F_n(c_{j-1})}{c_j - c_{j-1}}$$

#### Exemple 3.3.1 Fonction R ogive

(3.7)

Du package actuar, on peut utiliser la fonction ogive() pour calculer les probabilités empiriques à des points précis de nos données lorsqu'elles sont groupées, mais aussi interpoler entre 2 valeurs :

```
## Fonction OGIVE du package actuar de Vincent Goulet
## Exemple numéro 5.2 du Loss Models
## page 68, 4e édition
library(actuar)
```

## On définit le vecteur cj des bornes et ## un vecteur nj des fréquences empiriques # note : il faut forcer une borne supérieure cj <- c(0, 300, 350, 400, 450, 500, 600, 2000) nj <- c(42, 3, 5, 5, 0, 5, 40)

# On calcule la fonction ogive avec la fonction du même nom  $Fn \leftarrow ogive(cj, nj)$ 

y <- 500 / (1.1)^3
# On calcule la probabilité demandée
1 - Fn(y)
[1] 0.5243426</pre>

# On peut aussi faire un graphique de la
## fonction empirique OGIVE
plot(Fn)



# Estimation de données modifiées

Chapitre 12 du Loss Models

## 4.1 Point estimation

## 4.1.1 Définitions importante

Un vocabulaire spécifique aux données modifiées est utilisé, soit

| Définition        | Terme anglais        | Explication         |
|-------------------|----------------------|---------------------|
| Tronquée à gauche | left truncated at d  | si la valeur ob-    |
|                   |                      | servée est plus     |
|                   |                      | basse dque $d$ ,    |
|                   |                      | elle n'est pas en-  |
|                   |                      | registrée           |
| Tronquée à droite | right truncated at u | si la valeur ob-    |
|                   |                      | servée est plus     |
|                   |                      | grande que $u$ ,    |
|                   |                      | elle n'est pas en-  |
|                   |                      | registrée           |
| Censurée à gauche | left censured at d   | si la valeur ob-    |
|                   |                      | servée est plus     |
|                   |                      | basse que $d$ , on  |
|                   |                      | indique $d$ dans    |
|                   |                      | les données mo-     |
|                   | _                    | difiées             |
| Censurée à droite | right censored at u  | si la valeur ob-    |
|                   |                      | servée est plus     |
|                   |                      | grande que $u$ , on |
|                   |                      | indique $u$ dans    |
|                   |                      | les données mo-     |
|                   |                      | difiées             |

**Note**: Il arrive aussi que les données soient *shifted at d*, ce qui veut dire qu'on soustrait *d* aux données (souvent en présence d'un déductible).

#### Notation

- >  $y_1 < y_2 < \dots < y_k$ : les k valeurs uniques qui apparaissent dans l'échantillon.
- $\succ x_j$ : la  $j^{\rm e}$  données non-censurée qui apparait dans l'échantillon
- >  $d_j$ : le montant auquel  $x_j$  est tronquée. Si il n'y a pas de troncage, alors  $d_j = 0$ .
- $> u_j$ : la j e données censurée qui apparait dans l'échantillon.
- >  $r_j$ : nombre d'observations qui sont plus grandes ou égales à  $y_j$  (risk set)

$$r_j = \# \text{ of } x_i + \# \text{ of } u_i - (\# \text{ of } d_i \ge y_j)$$

 $\gt s_i$ : nombre de décès au temps i.

#### Estimateur de Kaplan-Meier

Cet estimateur est une version modifiée de l'estimateur de Nelson-Åalen vu à la section 3.2.4. Avec l'information des données et en utilisant la notation vue à la sous-section précédente, on peut estimer la fonction de survie empirique :

$$\hat{S}_n(t) = \begin{cases} 1 & , 0 \le t < y_1 \\ \prod_{i=1}^{j-1} \left(\frac{r_i - s_i}{r_i}\right) & , y_{j-1} \le t < y_j \quad j = 2, ..., k \\ \prod_{i=1}^k \left(\frac{r_i - s_i}{r_i}\right) & t \ge y_k \end{cases}$$

$$(4.1)$$

# 4.2 Espérance, Variance et et intervalle d'estimation

#### Contexte

On s'intéresse à l'espérance et la variance de la fonction de survie  $S_n$ , qui suite une binomiale (i.e.  $S_n(x) \sim Bin(n, S(x))$ . Si on connaissait S(x), on pourrait facilement déduire l'espérance et la variance avec les formules qu'on connaît. Toutefois, puisqu'on cherche souvent à estimer S(x), il faudra aussi estimer l'espérance et la variance.

Section à compléter

# Deuxième partie Matière pour l'examen final

# Continuous models (5)

## 5.1 Multiplication par une constante

Soit X la v.a. représentant les pertes et  $\theta$  un paramètre d'échelle ( $scale\ parameter$ ). On peut définir la v.a. Y par

$$Y = \theta X$$

Alors,

$$F_{Y}(y) = \Pr(Y \leq y)$$

$$= \Pr(\theta X \leq y)$$

$$= \Pr\left(X \leq \frac{y}{\theta}\right)$$

$$= F_{X}\left(\frac{y}{\theta}\right)$$
(5.1)

Et on peut aussi trouver que

$$f_Y(y) = \frac{\partial}{\partial y} F_Y(y)$$

$$= \frac{\partial}{\partial y} \left\{ F_X \left( \frac{y}{\theta} \right) \right\}$$

$$= \frac{1}{\theta} f_X \left( \frac{y}{\theta} \right)$$
(5.2)

À noter Si on doit appliquer une transformation impliquant une puissance (raising to a power, voir section section 5.2), on applique cette dernière transformation avant d'appliquer le paramètre d'échelle  $\theta$ .

## 5.2 Raising to a power

Soit X une v.a. représentant la perte avec une loi de probabilité quelquonque et la v.a. Y tel que

$$Y = X^{\frac{1}{\tau}}$$

avec  $\tau > 0$ . On peut trouver  $F_Y(y)$  ainsi que  $f_Y(y)$ :

$$F_Y(y) = \Pr(Y \le y)$$

$$= \Pr(X^{\frac{1}{\tau}} \le y)$$

$$= \Pr(X \le y^{\tau})$$

$$= F_X(y^{\tau})$$
(5.3)

et

$$f_Y(y) = \frac{\partial}{\partial y} F_y(y)$$

$$= \frac{\partial}{\partial y} F_X(y^{\tau}) \tau y^{\tau - 1} f_X(y^{\tau})$$
(5.4)

**Note** On préfère toujours des paramètres positifs, donc on va ajuster les formules avec des constantes négatives dans certains cas.

## Exemple 5.2.1 Notation dans le livre Loss Models



La notation utilisée par le livre est la suivante :

 $\rightarrow$  si  $\tau > 0$ : transformed

 $\rightarrow$  si  $\tau = -1$ : inverse

 $\rightarrow$  si  $\tau < 0$  et  $\tau \neq 1$ : inverse-transformed

## 5.3 Exponentiation

Soit X une v.a. représentant la perte. On définit Y comme

$$Y = \exp(X)$$

Alors, on trouve

$$F_Y(y) = \Pr(Y \le y)$$

$$= \Pr(e^X \le y)$$

$$= \Pr(X \le \ln y)$$

$$= F_x(\ln y)$$
(5.5)

et

$$f_Y(y) = \frac{\partial}{\partial y} F_Y(y)$$

$$= \frac{\partial}{\partial y} \{ F_X(\ln y) \}$$

$$= \frac{1}{y} f_X(\ln y)$$
(5.6)

**Note** La loi Log-Normale est en fait une transformation exponentielle de la Loi Normale.

## 5.4 Mélanges

On peut créer des lois mélanges. En effet, il arrive qu'on ait une distribution dont l'un des paramètres est lui-même distribué aléatoirement selon une autre distribution, tel que

$$X|\Lambda \sim$$
 une certaine loi

 $\Lambda \sim$  une autre loi (ou la même!)

On peut trouver les fonctions de densité et de répartition de ces différentes lois :

$$f_X(x) = \int_{-\infty}^{\infty} f_{X|\Lambda}(x|\lambda) f_{\Lambda}(\lambda) d\lambda$$
 (5.7)

$$F_X(x) = \int_{-\infty}^{\infty} F_{X|\Lambda}(x|\lambda) f_{\Lambda}(\lambda) d\lambda$$
 (5.8)

De plus, on peut trouver l'espérance et la variance de ces lois mélanges avec les théorèmes de l'espérance et la variance conditionnelle :

$$E[X] = E[E[X|\Lambda]] \tag{5.9}$$

$$Var(X) = E[Var(X|\Lambda)] + Var(E[X|\Lambda])$$
(5.10)

## 5.5 Frailty models

Est sur le syllabus des examens professionnels, mais ne semble pas être à l'étude pour le cours IARD1 ...

Soit un paramètre  $\Lambda>0$  (frailty random variable) qu'on va utiliser pour tryouer la hazard-rate conditionnel  $h_{X|\Lambda}$  tel que

$$h_{X|\Lambda}(x|\lambda) = \lambda a(x) \tag{5.11}$$

où a(x) est une fonction quelquonque et la distribution de  $\Lambda = \lambda$  est connu. Alors, on peut trouver la fonction de survie de  $S_{X|\Lambda}(x|\lambda)$  avec des des propriétés que l'on connait :

$$S_{X|\Lambda}(x|\lambda) = e^{-\int_0^x h_{X|\Lambda}(t|\lambda)dt}$$

$$= e^{-\lambda A(x)}$$

$$= M_{\Lambda}(-A(x))$$

$$= \mathcal{L}_{\Lambda}(A(x))$$

## 5.6 Splicing

Soit  $X_1,...,X_k$  les différentes distributions que peut prendre la v.a. X et  $\alpha_i$  la probabilité que  $X\sim X_i$ , i=1,2,...,k. Pour  $\sum_{\alpha}=1$ , on a donc

$$f_X(x) = \begin{cases} \alpha_1 f_1(x) &, c_0 < x < c_1 \\ \alpha_2 f_2(x) &, c_2 < x < c_2 \\ \dots & \\ \alpha_k f_1(k) &, c_{k-1} < x < c_k \end{cases}$$

Note Dans un problème, on peut soit demander de calculer la fonction de répartition à un certain point, ou encore nous demander de trouver les coefficients  $\alpha_i$  en connaissant les différentes fonctions de répartition et les probabilités rattachées.

# Modèle de perte aggrégée (9)

# 6.1 Modèle composé (fréquence-sévérité) pour les pertes aggrégées

On définit les variables aléatoires suivantes :

- $\rightarrow$  S: Perte totale pour le portefeuille au complet;
- $\rightarrow N$ : Nombre de réclamations observées dans l'intervalle de temps. (**fréquence**);
- $X_1,...,X_n$ : Montant de perte relié à la  $i^e$  réclamation (sévérité).

On a donc

$$S = X_1 + ... X_n$$

et on peut trouver diverses quantités, tel que la fonction de répartition :

$$F_S(x) = \sum_{n=0}^{\infty} F_X^{*n}(x) \Pr(N=n)$$
 (6.1)

où  $F_X^{*n} = \Pr(X_1 + ... + X_n \le n)$ .

On peut aussi obtenir la fonction gnératrice des moments :

$$\mathcal{M}_{S}(t) = \mathcal{P}_{N}\left(\mathcal{M}_{X}(t)\right) \tag{6.2}$$

<sup>1.</sup> Les  $X_i$  sont iid et indépendants de N.

L'espérance et la variance peuvent être obtenues avec les propriétés d'espérance et variance conditionnelle :

$$E[S] = E[E[S|N]]$$

$$= E\left[E\left[\sum_{i=1}^{n} X_{i}\right]\right]$$

$$= E\left[\sum_{i=1}^{n} E[X_{i}]\right]$$

$$\stackrel{iid}{=} E[NE[X]]$$

$$= E[N] E[X]$$

$$(6.3)$$

$$\operatorname{Var}(S) = \operatorname{Var}\left(\operatorname{E}\left[S|N\right]\right) + \operatorname{E}\left[\operatorname{Var}\left(S|N\right)\right]$$

$$= \operatorname{Var}\left(\operatorname{E}\left[\sum_{i=1}^{n}X_{i}\right]\right) + \operatorname{E}\left[\operatorname{Var}\left(\sum_{i=1}^{n}X_{i}\right)\right]$$

$$\operatorname{Var}\left(\sum_{i=1}^{n}\operatorname{E}\left[X_{i}\right]\right) + \operatorname{E}\left[\sum_{i=1}^{n}\operatorname{Var}\left(X_{i}\right)\right] \quad , \text{ par indépendance des } X_{i}$$

$$\stackrel{iid}{=}\operatorname{Var}\left(N\operatorname{E}\left[X\right]\right) + \operatorname{E}\left[N\operatorname{Var}\left(X\right)\right]$$

$$= \operatorname{E}\left[X\right]^{2}\operatorname{Var}\left(N\right) + \operatorname{E}\left[N\right]\operatorname{Var}\left(X\right)$$

$$(6.4)$$

# Frequentist estimation

7.1 Méthode des moments