問題

次のフィールド定義にしたがう行動履歴ログテーブルが存在します。 この行動履歴テーブルを用いて、一緒に購入されやすい商品を見つけるアソシエーション分析を行い ます。

行動履歴テーブル:

あるウェブサイトでのユーザの行動履歴に関するテーブルです。 操作を行った時間、ユーザを識別するためのID、行った操作、操作を行った商品が記録されていま す。

• テーブル定義

フィールド	説明	データベ ースでの 型
action_time	操作を行った時間。yyyy-MM-dd HH:mm:ss	TEXT
uu_id	ユーザを識別するためのID	TEXT
action_type	ユーザが行った操作を示す。ACTIONの種類はPV(閲 覧),MYLIST(お気に入り登録), CV(購入)のいずれか	TEXT
item_id	操作を行った商品を識別するためのID	TEXT

• サンプル

action_time	uu_id	action_type	item_id
2020-05-02 12:48:35	6208f02039cee35638c4d8a	PV	A0001
2020-05-02 12:50:27	6208f02039cee35638c4d8a	MYLIST	A0001
2020-05-02 12:52:34	6208f02039cee35638c4d8a	PV	B0002
2020-05-02 12:54:10	6208f02039cee35638c4d8a	CV	B0002
2020-05-02 17:01:11	6208f02039cee35638c4d8a	CV	A0001
2020-05-10 10:56:45	6208f02039cee35638c4d8a	CV	A0001
2020-05-03 20:20:31	478f256076a7fc9ad20c859	PV	B0002
2020-05-03 21:34:10	478f256076a7fc9ad20c859	CV	B0002
2020-05-03 14:53:08	478f256076a7fc9ad20c859	PV	C1002
2020-05-03 15:26:05	478f256076a7fc9ad20c859	CV	C1002

• サンプルデータ

data/database.sqlite の access_log テーブルに行動履歴テーブルのサンプルデータを格納しています。またSQL実行のサンプルクエリは sample.sql です。必要な場合は、SQLite3 (==3.28.0)をインストールの上、sample.sql を書き直し、クエリの実行を行ってください。

実行方法

\$ sqlite3 data/database.sqlite < sample.sql</pre>

注意事項:

- 本問題に出てくるSQLは標準SQL規格に準拠したものです。
- 本問題内で出てくるSQLは簡略化のため、 CREATE TABLE 'テーブル名' AS という表現を省略しています。
- 各問題内では、同じ選択肢を複数回選択しても良いものとします。

問1

以下は今回のアソシエーション分析に用いる指標に関する説明です。空欄(A)~(D)に当てはまるものとして適切なものを選択肢1~8の中から選んでください。なお、以下の説明文では、商品1を購入したユーザの集合をX、商品2を購入したユーザの集合をY、全体のユーザの集合をZとします。

支持度(Support)は、全ユーザのうち、商品1と商品2の両方を購入したユーザの割合として定義され、数式を用いて下記のように表現される。

$$Support = (A)$$

確信度・信頼度(Confidence)は、商品1を購入したユーザのうち、商品2も購入したユーザの割合として定義され、数式を用いて下記のように表現される。

$$Confidence = (B)$$

リフト (Lift) は、商品1を購入したユーザのうち商品2も購入したユーザの割合を、全体のうち商品2を購入するユーザの割合で割った値として定義され、数式を用いて下記のように表現される。

$$Lift = \frac{(C)}{(D)}$$

- 1. $\frac{|X|}{|Z|}$
- 2. $\frac{|Y|}{|Z|}$
- 3. $\frac{|X \cap Y|}{|Z|}$
- 4. $\frac{|X \cup Y|}{|Z|}$
- 5. $\frac{|X \cap Y|}{|X|}$
- 6. $\frac{|X \cap Y|}{|X|}$
- 7. $\frac{|X \cup Y|}{|X|}$
- 8. $\frac{|X \cup Y|}{|Y|}$

問2-1

アソシエーション分析を行うために、まず 行動履歴テーブル から、ユーザが過去に購入したことのある商品のみを抽出した、下記のような 購入商品テーブル を作成します。

購入商品テーブル:

• サンプル

uu_id	item_id
6208f02039cee35638c4d8a	A0001
6208f02039cee35638c4d8a	B0002
478f256076a7fc9ad20c859	B0002
478f256076a7fc9ad20c859	C1002

ただし、同一ユーザが同一商品を複数回購入するケースも存在するので、 uu_id 、 $item_id$ が重複したレコードはユニークにする必要があります。

このような操作をするSQLとして、**不適切な**ものを下記から1つ選びなさい。

1

2

4

```
SELECT

uu_id,
item_id

FROM

「行動履歴テーブル」

GROUP BY

uu_id,
item_id,
action_type

HAVING
action_type = "CV"
```

問2-2

問2-1で作成した 購入商品テーブル に、各商品を購入したユーザのユニーク数を示した num_cv_uu 、 購入商品テーブルに記録されたユーザのユニーク数を示した num_total_uu を付与した下記のような ユニークユーザ数付与済み購入商品テーブル を作成します。

ユニークユーザ数付与済み購入商品テーブル:

• サンプル

uu_id	item_id	num_cv_uu	num_total_uu
6208f02039cee35638c4d8a	A0001	1	2
6208f02039cee35638c4d8a	B0002	2	2
478f256076a7fc9ad20c859	B0002	2	2
478f256076a7fc9ad20c859	C1002	1	2

この ユニークユーザ数付与済み購入商品テーブル を下記のSQLで作成します。(A), (B)に当てはまるものとして、1~6の選択肢からそれぞれ正しいものを選びなさい。

```
SELECT

uu_id,
item_id,
(A) num_cv_uu,
num_total_uu

FROM

「購入商品テーブル table1

INNER JOIN

(
SELECT

(B) num_total_uu

FROM

「購入商品テーブル )

table2
```

- 1. COUNT(1)
- 2. COUNT(1) OVER()
- 3. COUNT(1) OVER(PARTITION BY item id)
- 4. COUNT(1) OVER(PARTITION BY uu_id)
- 5. COUNT(DISTINCT uu id)
- 6. COUNT(DISTINCT item_id)

問3

問3-1

問2-2で作成した ユニークユーザ数付与済み購入商品テーブル を自己結合することで、商品1、商品2の両方を購入したユーザのユニーク数を集計したテーブルである 商品共起テーブル を作成します(ただし商品1≠商品2)。また同時に問1で回答した支持度(Support)、確信度・信頼度(Confidence)、リフト(Lift)の計算も行います。ただし、支持度、確信度・信頼度、リフトは四捨五入し、小数点以下5桁までの数字とします。

商品共起テーブル:

● テーブル定義

フィールド	説明
item_id1	商品1を識別するためのID
item_id2	商品2を識別するためのID
num_cv_uu1	商品1を購入したユーザのユニーク数
num_cv_uu2	商品2を購入したユーザのユニーク数
num_total_uu	全ユーザのユニーク数
support	支持度
confidence	確信度・信頼度
lift	リフト

この 商品共起テーブル を下記のSQLで作成します。(A)~(F)に当てはまるものとして、下記の選択肢から それぞれ正しいものを選びなさい。

```
SELECT
 table1.item_id item_id1,
 table2.item_id item_id2,
 table1.num cv uu num cv uu1,
 table2.num_cv_uu num_cv_uu2,
 table1.num_total_uu num_total_uu,
 ROUND((A), 5) support,
 ROUND((B), 5) confidence,
 ROUND((C), 5) lift
 `ユニークユーザ数付与済み購入商品テーブル` table1
INNER JOIN
 `ユニークユーザ数付与済み購入商品テーブル` table2
 (D)
WHERE
 (E)
GROUP BY
 (F)
```

● (A)~(C)の選択肢

- 1. CAST(COUNT(1) AS REAL) / CAST(table1.num_total_uu AS REAL)
- 2. CAST(COUNT(1) AS REAL) / CAST(table1.num_cv_uu AS REAL)
- 3. CAST(COUNT(1) AS REAL) / CAST(table2.num cv uu AS REAL)

- 4. CAST(table1.num cv uu AS REAL) / CAST(table1.num total uu AS REAL)
- 5. CAST(table2.num_cv_uu AS REAL) / table1.num_total_uu
- 6. CAST(table1.num_cv_uu * table1.num_total_uu AS REAL) / CAST(table2.num_cv_uu * COUNT(1) AS REAL)
- 7. CAST(table2.num_cv_uu * table1.num_total_uu AS REAL) / CAST(table1.num_cv_uu * COUNT(1) AS REAL)
- 8. CAST(COUNT(1) * table1.num_total_uu AS REAL) / CAST(table1.num_cv_uu * table2.num cv uu AS REAL)
- 9. CAST(table1.num_cv_uu * table2.num_cv_uu AS REAL) / CAST(table1.num_total_uu * COUNT(1) AS REAL)
- (D)、(E)の選択肢
- 1. table1.item id = table2.item id
- 2. table1.item id <> table2.item id
- 3. table1.uu id = table2.uu id
- 4. table1.uu id <> table2.uu id
- (F)の選択肢
- 1. table1.item_id, table2.item_id
- 2. table1.item id, table2.item id, table1.num cv uu
- 3. table1.item_id, table2.item_id, table1.num_cv_uu, table2.num_cv_uu
- 4. table1.item_id, table2.item_id, table1.num_cv_uu, table2.num_cv_uu, table1.num total uu

問3-2

問3-2で作成した 商品共起テーブル のLiftの値を元に、item_id1に対してLiftが高い順にitem_id2を上位 3件並べたものを1行とする アソシエーションルールテーブル を作成します。ただし、Lift値が同率の item_id2が複数存在した場合は、item_id2の値が小さいものを上位とします。また、item_id1に紐づくitem_id2が3件以上ない場合は、存在しないitem_idをnullとして出力します。さらにレコードは item id1の昇順にソートして出力します。

アソシエーションルールテーブル:

● テーブル定義

フィールド	説明
item_id1	商品1を識別するためのID
item_id21	item_id1に紐づくitem_id2のうち、1番Liftが高いitem_id2
item_id22	item_id1に紐づくitem_id2のうち、2番目にLiftが高いitem_id2
item_id23	item_id1に紐づくitem_id2のうち、3番目にLiftが高いitem_id2

このアソシエーションルールテーブルを下記のSQLで作成します。(A)~(K)に当てはまるものとして、下記の選択肢からそれぞれ正しいものを選びなさい。

```
SELECT
 item id1,
 (A)((B) (C) lift_rank = 1 (D) item_id2 (E) null (F)) item_id21,
  (A)((B) (C) lift_rank = 2 (D) item_id2 (E) null (F)) item_id22,
 (A)((B) (C) lift_rank = 3 (D) item_id2 (E) null (F)) item_id23
FROM
  (
     SELECT
       item id1,
       item id2,
       ROW_NUMBER() OVER(PARTITION BY (G) ORDER BY (H) DESC, (I) ASC)
lift rank
     FROM
       `商品共起テーブル`
 )
GROUP BY
  (J)
ORDER BY
 (K)
```

● (A)~(F)の選択肢

- 1. CASE
- 2. COUNT
- 3. ELSE
- 4. END
- 5. MATCH
- 6. MAX
- 7. THAN
- 8. THEN
- 9. WHEN

● (G)~(K)の選択肢

- 1. item_id1
- 2. item_id2
- 3. num_cv_uu1
- 4. num_cv_uu2
- 5. num_total_uu
- 6. support
- 7. confidence
- 8. lift
- 9. lift rank