1 Definiţii

Definiție:

Fie Σ_1 , Σ_2 două alfabete. O substituție (vezi pagina 33 din PDF) este o funcție $\sigma: \Sigma_1^* \to 2^{\Sigma_2^*}$ cu două proprietăți:

1.
$$\sigma(\lambda) = \{\lambda\}$$
;

2.
$$\sigma(x \cdot y) = \sigma(x) \cdot \sigma(y)$$
.

Evident, definirea funcției G pe literele din Σ_1 o definește complet pe σ . Se poate extinde la limbaje :

$$\sigma(L) = \bigcup_{x \in L} \sigma(x)$$
, pentru $L \subseteq \Sigma_1^*$

Exemplu : $\Sigma_1=\{a,b\}\,, \Sigma_2=\{a,b,c\}$ și o subtituție $\sigma:\Sigma_1^*\to 2^{\Sigma_2^*}$

$$\sigma(a) = \{ab, ac, b\}, \ \sigma(b) = \{b, ba\}$$

$$\sigma(ba) = \{b, ba\} \cdot \{ab, ac, b\} = \{bab, bac, bb, baab, baac\}$$

O substitutie $f: \Sigma_1^* \to 2^{\Sigma_2^*}$ se numește morfism dacă $|f(a)| = 1, \forall a \in \Sigma_1$ (adică fiecare literă are asociat un limbaj de un cuvânt)

Morfismele se definesc și ca: $k: \Sigma_1^* \to \Sigma_2^*$ cu proprietățile :

1.
$$k(\lambda) = \lambda$$

2.
$$k(x \cdot y) = k(x) \cdot k(y), \forall x, y \in \Sigma_1^*$$

2 Închiderea la substituții și morfisme inverse

Fie k: $\Sigma_1^* \to \Sigma_2^*$ un morfism . Pentru w $\in \Sigma_2^*, k^{-1}(w) = \{x \mid x \in \Sigma_1^*, k(x) = w\}$

extindem la limbaje :
$$k^{-1}(L) = \{x \mid k(x) \in L, x \in \Sigma_1^*\}, L \subseteq \Sigma_2^*$$

Teoremă : Limbajele regulate sunt închise la :

- 1. Substiții regulate
- 2. Morfisme
- 3. Morfisme inverse

Demonstratie:

1. REG închisă la substitutii regulate :

Fie $\sigma: \Sigma_1^* \to 2^{\Sigma_2^*}$ substituție cu proprietatea că $\sigma(a)$ este regulat, $\forall a \in \Sigma_1$. Fie $L1 \subseteq \Sigma_1^*$ un limbaj regulat.

Trebuie să demonstrăm că $\sigma(L1)$ este regulat.

Deoarece L1 este regulat, există o expresie regulată r_1 care descrie L1.

Deci L(r1) = L1. Deoarece fiecare $\sigma(a)$ este regulat există expresiile r_a expresii regulate care descriu $\sigma(a), \forall a \in \Sigma_1$.

r1 este ER peste Σ_1 , r este ER peste Σ_2 .

Construim expresia r_2 din r_1 înlocuind fiecare simbol a din r_1 cu expresia r_a . Pentru că r_1 este ER și toate r_a -urile sunt expresii regulate, rezultă că și r_2 este expresie regulată, (formată din \bigcup , ·, * de expresii regulate), peste Σ_2

Trebuie să demonstrăm că $L(r_2) = \sigma(L1) \iff L(r_2) = \sigma(L(r_1))$

Demonstrăm prin inductie după numărul de operatori din r_1 :

```
Baza: r_1 are 0 operatori \implies r_1 \in \{\emptyset, \lambda\} \bigcup \Sigma_1

Daca: r_1 = \emptyset \implies r_2 = \emptyset \implies L(r_2) = L(\emptyset) = \emptyset = \sigma(\emptyset)

r_1 = \lambda \implies r_2 = \lambda \implies L(r_2) = L(\lambda) = \{\lambda\} = \sigma(\{\lambda\})

r_1 = a \in \Sigma_1 \implies r_2 = r_a \implies L(r_a) = \sigma(a) din definitia lui r_a
```

Ipoteza inductivă : Presupunem că $L(r_2) = \sigma(L_1)$ pentru expresia r_1 cu cel mult k operatori Saltul inductiv : Demonstrăm pentru k+1 operatori : $L(r_2)$

Caz 1 : $r_1 = r_1' + r_1''$ (sau $r_1 = r_1' \bigcup r_2''$). Din construcția lui r_2 avem că $r_2 = r_2' + r_2''$ (daca inlocuim in r_1' si r_1'' fiecare $a \in \Sigma_1$ cu r_a).

```
Din ipoteza inductivă rezultă că L(r_2') = \sigma(L(r_1')) și L(r_2'') = \sigma(L(r_1'')).

Așadar L(r_2) \stackrel{def.R.E.}{=} L(r_2') \bigcup L(r_2'') \stackrel{I.I.}{=} \sigma(L(r_1')) \bigcup \sigma(L(r_1'')) \stackrel{def.subst.}{=} \sigma(L(r_1') \bigcup L(r_1'')) \stackrel{def.R.E.}{=} \sigma(L(r_1')) \stackrel{def.R.E.}{=} \sigma(L(r_1')).

Caz 2: r_1 = r_1' \cdot r_2'' \implies r_2 = r_2' \cdot r_2'' similar

Caz 3: r_1 = r_1'^* \implies r_2 = r_2'^*
L(r_2) \stackrel{def.R.E.}{=} (L(r_2'))^* \stackrel{I.I.}{=} (\sigma(L(r_1'))^* = \sigma(L(r_1'))^*) = \sigma(L(r_1')) = \sigma(L(r_1))
```

Demonstratie 2: Reg este inchisă la morfisme:

Fie $L \subseteq \Sigma_1^*$ limbaj regulat si $h: \Sigma_1^* \to \Sigma_2^*$ morfism. Se demonstrează ca $h(L) \in Reg$. Este imediat din demonstrația 1 pentru ca limbajele finite sunt regulate, deci caz particular pentru demonstrația anterioară.

Demonstratie 3: Reg este inchisă la morfisme inverse:

Fie $L \subseteq \Sigma_2^*$ limbaj regulat si $h: \Sigma_1^* \to \Sigma_2^*$ morfism. Se demonstrează ca $h^{-1}(L) \in Reg$. Fie $A = (Q, \Sigma_2, \delta, q_0, F)$ un DFA cu L(A) = L. Construim automatul M cu $L(M) = h^{-1}(L)$. $M = (Q, \Sigma_1, \delta', q_0, F)$ unde $\delta'(q, a) = \delta(q, h(a)) \in Q$. \leftarrow extinderea lui δ la cuv $\forall q \in Q$, $\forall a \in \Sigma 1$.

Demonstrăm ca $\delta'(q, x) = \delta(q, h(x)), \forall x \in \Sigma_1^* \leftarrow \text{ extinderile lui } \delta' \text{ si } \delta \text{ la cuvinte.}$

Inducție dupa lungimea lui x:

$$|x| = 0 \implies x = \lambda \implies \delta'(q, \lambda) = q = \delta(q, \lambda), \text{ h morfism } \implies h(\lambda) = \lambda.$$

Presupunem adevărat pentru n. Demonstrăm pentru n+1:

Fie
$$|x| = n + 1, x = x'a, \forall a \in \Sigma_1$$
.

$$\delta'(q,x) = \delta'(q,x'a) = \delta'(\delta'(q,x'),a) \stackrel{I.I.}{=} \delta'(\delta(q,h(x')),a) \stackrel{def.\delta'}{=} \delta(\delta(q,h(x')),h(a)) \stackrel{def.ext.\delta}{=} \delta(q,h(x')\cdot h(a)) \stackrel{h.morfism}{=} \delta(q,h(x'a)) = \delta(q,h(x)).$$

Deci
$$\delta'(q, x) = \delta(q, h(x))$$
 pentru orice $q \in Q$ si $x \in \Sigma_1^*$.
Avem ca $\delta'(q_0, w) \in F \iff \delta(q_0, h(w)) \in F$ deci $w \in L(M) \iff h(w) \in L$.
 $\implies L(M) = h^{-1}(L)$. q.e.d.

Cum se folosește:

Să se demonstreze ca $L = \{a^n b a^n \mid n \ge 1\}$ nu e regulat.

Presupunem ca L este regulat \implies pentru orice morfism h avem $h^{-1}(L)$ este regulat:

Fie
$$h_1: \{a, b, c\}^* \to \{a, b, c\}^*$$
 cu $h_1(a) = a$,

$$h_1(b) = ba,$$

 $h_1(c) = a$
 $\implies h_1^{-1}(L)$ este regulat.

$$h_1^{-1}(L)=\{x^nby^{n-1}\mid x,y\in\{a,c\}, n\geq 1\}$$
 este regulat.

$$h_1(abc) = abaa$$

Fie incă un morfism $h_2: \{a, b, c\}^* \to \{0, 1\}^*, h_2(a) = 0, h_2(b) = 1, h_2(c) = 1.$

Atunci
$$h_2(h_1^{-1}(L)) \cap 0^*1^* = \{0^n1^n \mid n \ge 1\}$$

sau
$$h_1^{-1}(L) \cap a^*bc^* = \{a^nbc^{n-1} \mid n \ge 1\} = L'$$
. $h_2(L') = \{0^n1^n \mid n \ge 1\}$, deci contradicție.

3 Minimizarea DFA

1. Echivalență pe cuvinte:

Pentru $L \subseteq \Sigma^*$ un limbaj definim \equiv_L astfel:

$$x \equiv_L y \iff \forall z \in \Sigma^* \text{ avem } xz \in L \iff yz \in L.$$

 \equiv_L este relație de echivalență.

2. Invarianța la dreapta la concatenare:

O relație se numește invariantă la dreapta față de concatenare dacă $xRy \implies \forall z \in \Sigma^*, xzRyz.$

3. Echivalenta dată de un automat:

Fie $M = (Q, \Sigma, \delta, q_0, F)$ un DFA. Definim \equiv_M :

$$x \equiv_M y \iff \delta(q_0, x) = \delta(q_0, y).$$

 \equiv_M este relație de echivalentă si invariantă la dreapta.

4. Indicele unei relații de echivalență:

 $|\Sigma^*/R|$ = numărul de clase de echivalență ale relației.

 \equiv_M este de indice finit (numarul de stări din M care sunt accesibile). Evident in clasa unei stări $q \in Q$ avem cuvintele $x \in \Sigma^*$ cu $\delta(q_0, x) = q$.

Teorema Myhill-Nerode:

Următoarele trei propozții sunt echivalente:

- 1. $L \subseteq \Sigma^*$ este regulat
- 2. L este reuniunea unor clase de echivalență ale unei relații de echivalență invariantă la dreapta de indice finit
- 3. Relația \equiv_L definită pentru L este de indice finit

Demonstrația teoremei:

 $1 \implies 2$: L'este regulat \implies există un DFA $M = (Q, \Sigma, \delta, q_0, F)$ astfel incât L(M) = L.

Construim M' din M eliminând stările inaccesibile și îl facem pe automat complet.

Relația $\equiv_{M'}$ este relație de echivalență invariantă la dreapta de indice finit.

Folosim $\equiv_{M'}$ pentru 2: $L = \bigcup_{q \in F} [q'] = \{x \in \Sigma^* \mid \delta(q_0, x) = f \in F\}$ pentru ca L(M') = L.

Deci L se poate scrie ca reuniune de clase de echivalență ale relației $\equiv_{M'}$.

 $2 \implies 3$: Demonstrăm că orice relație R care satisface 2 este o rafinare a relației \equiv_L .

Adică $xRy \implies x \equiv_L y$, cu alte cuvinte: clasele de echivalență ale lui R sunt incluse în clasele lui \equiv_L . În acest caz $|\Sigma^*/R| \ge |\Sigma^*/\equiv_L|$, deci am avea că \equiv_L este de indice finit.

Fie $xRy \stackrel{invarianta}{\Longrightarrow} \forall z \in \Sigma^* \ xzRyz.$

Pentru că L este reuniunea unor clase de echivalență ale lui R si pentru că $\forall z, xzRyz \implies xz$ si yz sunt în aceeasi clasă de echivalență $\implies xz \in L \iff yz \in L \implies x \equiv_L y$.

 $3 \implies 1$: Demonstrăm că \equiv_L este invariantă la dreapta : Fie $x \equiv_L y$ și fie $z \in \Sigma^*.$ $xz \equiv_L yz$?

 $\forall w \in \Sigma^*, (xz)w \in L \iff (yz)w \in L \text{ pentru că } x(zw) \in L \iff y(zw) \in L \text{ (din } \equiv_L).$

Deci $xz \equiv_L yz \implies \equiv_L$ este invariantă la dreapta.

Fie [x] clasa lui $x : [x] = \{w \mid w \equiv_L x\}.$

 \equiv_L are clasele : $[\lambda], [x_1], [x_2], ..., [x_n]$ (indice finit).

 $\overline{Q} = \{ [\lambda], [x_1], [x_2], ..., [x_n] \}.$

Observație : dacă $x \in L \implies \forall y \in [x]$ avem $y \in L$ pentru că $y \equiv_L x, \lambda \in \Sigma^* \implies y\lambda \in L \iff x\lambda \in L$,

 $x \in L$

 $\implies y \in L$

Definim automatul: $A = (\overline{Q}, \overline{\Sigma}, \overline{\delta}, [\lambda], \overline{F})$ cu

 $\overline{Q} = \{ [\lambda], [x_1], [x_2], ..., [x_n] \}$ finita.

 $\overline{F} = \{ [x] \mid x \in L \}$

 $\overline{\delta}([x], a) = [xa]$ este bine definită pentru că \equiv_L este invariantă la dreapta (adică pentru $x \equiv_L y, \overline{\delta}([x], a) = \overline{\delta}([y], a)$).

Din definiția lui $\overline{\delta}$ avem $\overline{\delta}([\lambda], x) = [x]$, deci $x \in L(A) \iff [x] \in \overline{F} \iff x \in L$. Deci L este regulat q.e.d.

Teoremă! Minimizarea DFA:

Automatul DFA cu număr minim de stări care acceptă L este unic abstracție de un izomorfism și este dat de automatul A de mai sus.

Demonstrație:

Am văzut că pentru orice DFA $M = (Q, \Sigma, \delta, q_0, F)$ cu L(M) = L, automatul M definește \equiv_M echivalență invariantă la dreapta de indice finit $(1 \implies 2)$.

Din 2 \implies 3 am văzut că \equiv_M rafinează \equiv_L .

Numărul de stări din $M \geq |\Sigma^*/\equiv_M|$ (egalitate dacă M nu are stări inaccesibile) și $|\Sigma^*/\equiv_M| \geq |\Sigma^*/\equiv_L| \implies$ orice automat M cu L(M) = L are cel puțin atâtea stări ca automatul A din $3 \implies 1$.

Dacă numărul de stări din M= numărul de stări din $A\Longrightarrow |\Sigma^*/\equiv_M|=|\Sigma^*/\equiv_L|$ si \equiv_M era o rafinare a $\equiv_L\Longrightarrow x\equiv_M y\Longrightarrow x\equiv_L y\Longrightarrow \equiv_M=\equiv_L$.

Definim izomorfismul dintre M si A: $f:Q\to \overline{Q}$ si $f(q)=[x]\iff \delta(Q_0,x)=q$ functia f este bine definită, izomorfism.

Teorema ne dă existența și unicitatea automatului minim, dar nu și cum să îl găsim.

Dăm un algoritm de complexitate $O(|\Sigma| \cdot |Q|^2) \to \Sigma$ alfabet, Q stările

Cel mai bun algoritm cunoscut: Algoritmul lui Hopcroft $O(|\Sigma| \cdot |Q| \cdot log|Q|)$.

Pentru limbaje finite : Krinoi, Revuz $O(|\Sigma| \cdot |Q|)$.

Echivalența pe stări : pentru $M = (Q, \Sigma, \delta, q_0, F)$ un DFA fără stări inaccesibile. $p \equiv q \iff (\forall w \in \Sigma^*, \delta(p, w) \in F \iff \delta(q, w) \in F)$. \equiv este relație de echivalență și avem o bijecție φ de la clasele lui \equiv la \overline{Q} : $\varphi(\widehat{q}) = [w] \iff \delta(q_0, w) \in \widehat{q}$.

Deci, putem construi $A=(\overline{Q},\overline{\Sigma},\overline{\delta},[\lambda],\overline{F})$ dacă calculăm clasele lui \equiv . Căutăm stările neechivalente (in acest fel găsim echivalențele de stări) $p\not\equiv q\iff\exists\ x\in\Sigma^*$ cu $\delta(p,x)\in F$ și $\delta(q,x)\not\in F$ sau invers. Algoritm :

- 1. pentru $p \in F$ si $q \in Q F$ pun 1 în matricea A[p,q],0 altfel
- 2. pentru $p, q \in Q$ construiesc o listă goală
- 3. pentru orice pereche (p,q) nemarcată in A (A[p,q] == 0).
- 4. dacă $\exists a \in \Sigma$ astfel incât $(p', q') = (\delta(p, a), \delta(q, a))$ este marcată in $A(A[\delta...\delta] == 1)$
- 5. marcăm (p,q) (A[p,q]=1). (p'',q'')-(p''',q''')
- 6. marcăm toate perechile de stări din listele (p,q) și din listele perechilor marcate in acest pas.
- 7. altfel, pentru toate $a \in \Sigma$ punem (p,q) în lista lui $(\delta(p,a), \delta(q,a))$.

Structuri folosite: matrice $|Q| \times |Q|$ în care marcăm cu 1 stările neechivalente pentru fiecare pereche (p,q) o listă L_{pq} de perechi de stări : perechile neechivalente DACĂ aflăm că p și q sunt neechivalente.

Lema : pentru un DFA $A=(Q,\Sigma,\delta,q_0,F).$ $p\not\equiv q\iff$ in matricea calculată de algoritm la poziția (p,q) avem 1.

Demonstratie: inducție după lungimea șirului cel mai scurt care face diferența.

Lema : complexitatea algoritmului este $O(|\Sigma| \cdot |Q|^2)$:

Demonstrație : Liniile 1, 2 : $O(|Q|^2)$

Liniile 3-9 executate de $O(|Q|^2)$.

Linia 6 : în timp proporțional cu lungimile tuturor listelor. Fiecare pereche (p_1, p_2) apare cel mult în $O(|\Sigma|)$ liste \implies în total linia 6 se execută in $O(|\Sigma| \cdot |Q|^2)$.

Am găsit stările echivalente, cum minimizăm?

 $p \equiv q \implies \text{putem elimina } q : \forall r \in Q \text{ cu } \delta(r, a) = q \text{ definim } \delta'(r, a) = p.$

$$\widehat{M} = (Q/\equiv, \Sigma, \widehat{\delta}, \widehat{q_0}, F/\equiv)$$
 cu $Q/\equiv = \{\widehat{q} \mid q \in Q\}, \ \widehat{q} = \{p \mid p \equiv q, p \in Q\}$

$$F/ \equiv = \{\widehat{f} \mid f \in F\}$$

$$\widehat{\delta}(\widehat{q}, a) = \widehat{\delta(q, a)}.$$

acest automat este bine definit si izomorf cu automatul minimal pentru L.

Demonstrație:

$$\begin{split} q &\equiv p \implies \delta(q,a) = \delta(p,a) \; \forall q,p \in Q \; \forall a \in \Sigma \\ \widehat{\delta}(\widehat{q_0},w) &= \widehat{\delta(q_0,w)} \implies L(M) = L(\widehat{M}). \end{split}$$

Pentru minimizarea lui \widehat{M} :

Presupunem că \widehat{M} are mai multe stări decat automatul minimal $\implies \exists p,q \in M \text{ cu } \widehat{p} \neq \widehat{q}$ și $\exists x,y,\in \Sigma^* \text{ cu } x\equiv_L y \text{ și } \delta(q_0,x)=p,\ \delta(q_0,y)=q.$

Din $\widehat{p} \neq \widehat{q} \implies \exists w \in \Sigma^* \text{ cu } \delta(q, w) \in F \text{ si } \delta(p, w) \notin F \text{ sau invers } \implies \delta(q_0, xw) \in F \text{ si } \delta(q_0, yw) \notin F \text{ sau invers } \implies (xw, yw) \notin \Xi_{L(M)}$

Constradicție pentru că $\equiv_{L(M)}$ este invariantă la dreapta. q.e.d.

v0.4 21.4.2020