

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Computación

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Diseño digital

Tercero	025034	85
SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS

OBJETTVO(S) GENERAL(ES)DE LA ASIGNATURA

Otorgar los conocimientos fundamentales para el análisis, diseño e implementación de circuitos lógicos, con base en componentes integrados a pequeña y mediana escala de integración.

TEMAS Y SUBTEMAS

- 1. Introducción y Conceptos Básicos
 - 1.1. Sistemas numéricos, binario, octal, hexadecimal.
 - 1.2.Conversiones de bases.
 - 1.3.Complementos y operaciones aritméticas.
 - 1.4.Introducción a los circuitos lógicos combinatorios y secuenciales.
- 2. Métodos para el análisis y síntesis de circuitos lógicos.
 - 2.1. Funciones de conmutación.
 - 2.2. Álgebra de Boole: Definiciones, axiomas, teoremas, formas canónicas.
 - 2.3. Mínimización a nivel de compuertas: Mapas de Karnaugh y método de Quine-McCluskey.
 - 2.4.Circuitos integrados de baja escala de integración: Familias lógicas, compuertas universales, OR
 - 2.5. Herramientas CAD para simulación de circuitos digitales.

3.Lógica combinacional

- 3.1.Metodología de Diseño.
- 3.2.Sumadores y restadores.
- 3.3.Codificadores / Decodificadores.
- 3.4. Multiplexores / Demultiplexores.
- 3.5.Comparadores.
- 3.6. Simulación e implementación de circuitos combinacionales.

4.Lógica secuencial.

- 4.1. Circuitos síncronos y asíncronos.
- 4.2. Elementos de memoria: Latches y Flip-Flops.
- 4.3. Registros de corrimiento.
- 4.4.Contadores.
- 4.5. Máquinas de estados finitos.
- 4.6. Máquinas secuenciales síncronas.
- 4.7. Máquinas secuenciales asíncronas.
- 4.8. Simulación e implementación de circuitos secuenciales.

5. Memorias.

- 5.1. Terminología.
- 5.2. Operación básica.
- 5.3. Memorias ROMS, PROMS, EPROMS, EEPROMS y RAMS.
- 5.4. Mapas de memorias.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor tanto en el aula como en el laboratorio.

- Uso de TICs como apoyo en la comprensión de conceptos y realización de simulaciones.
- Validación de la teoría a través del desarrollo de prácticas, con un uso continuo de componentes y equipo electrónico.
- Desarrollo de aplicaciones de sistemas digitales que busquen dar solución a problemas reales, buscando un enfoque analítico por parte de los estudiantes.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACIÓN

Para aprobar el curso se realizarán tres evaluaciones parciales (50 %) y una evaluación final (50%). Para cada evaluación se realizará un examen y se evaluarán tareas y proyectos. El examen tendrá un valor mínimo de 50% y las tareas y proyectos un valor máximo de 50%. Adicionalmente se recomienda:

- Considerar el trabajo extra clase, la participación durante las sesiones del curso y la asistencia a las asesorías, como elementos para la evaluación del alumno.
- Para las evaluaciones parciales deberá considerarse un examen oral o escrito, así como el desarrollo de prácticas, tareas y participación en clase.
- Para las prácticas debe tomarse en cuenta su realización exitosa y la documentación de la solución.
- La evaluación final deberá incluir un examen oral o escrito, así como el desarrollo de un proyecto final en el que se busque aplicar los diferentes conocimientos revisados en el curso, proponiendo una solución a un problema real.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Digital Design: With an Introduction to the Verilog HDL (5th ed.). Morris, M. México: Pearson. 2012. 1.
- Fundamentos de lógica digital con diseño VHDL (2a ed.), Brown, S. & Zvonko V. McGraw Hill. 2006. 2.
- Síntesis de circuitos digitales: un enfoque algorítmico. Deschamps, J. P. Thomson Editores. 2002. 3.
- Dispositivos lógicos programables: diseño práctico de aplicaciones (1a ed.), García, J.M. & Pérez E. J. Alfaomega Ra-Ma, 2006.

Consulta:

- Dispositivos lógicos programables y sus aplicaciones, Mandado E., Álvarez L. J. & Valdés M.D. Thomson 1. Editores, 2002.
- Digital Systems: Principles and Applications (11th ed.). Tocci, R. J., Widmer N. S. & Moss, G. Pearson. 2010. 2.
- Fundamentos del Diseño Lógico (5a ed.). Roth, C. H. México: International Thomson. 2005. 3.
- Sistemas Electrónicos Digitales (9a ed.). Mandado, E., Mandado, Y., Marcombo Ediciones Técnicas. 2008.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero en Electrónica, Maestría o Doctorado en Electrónica, con especialidad en Sistemas Digitales.

VICE-RECTOR ACADÉMICO

VICE-RECTORIA **ACADÉMICA**

JEFATURA DE CARRERA INGENIERIA EN COMPUTACION