Sushmitha Yelamakonda

S555058

Example: Banking

Input Data (Transaction Data):

Customer Name	Amount (\$)	Branch Location	Timestamp
Jeevan	1500	Dallas	2023-01-01 02:00 AM
Raghav	3000	Las Vegas	2023-01-01 02:30 AM
Vidya	2500	Charleston	2023-01-01 03:15 AM
Varun	650	St. Louis	2023-01-01 03:45 AM
Jeeva	700	Illinois	2023-01-01 04:05 AM
Jaya	300	Omaha	2023-01-01 04:30 AM
Rolex	200	Charleston	2023-01-01 05:15 AM
Surya	400	St. Joseph	2023-01-01 05:45 AM
Jaya	1000	Dallas	2023-01-01 06:10 AM
Roshan	2000	Las Vegas	2023-01-01 06:30 AM
Vidya	5000	Maryville	2023-01-01 07:00 AM
Varun	6050	St. Louis	2023-01-01 07:45 AM
Jeeva	7000	Illinois	2023-01-01 08:10 AM
Jaya	3500	Omaha	2023-01-01 08:30 AM
Rolex	200	Maryville	2023-01-01 09:15 AM
Surya	650	St. Joseph	2023-01-01 10:00 AM

Splitting:

The input data is first divided into smaller chunks to be processed by individual mappers. Each transaction record represents a line of data, and we split the data based on the branch location.

Input is divided into four groups based on time intervals (every 2 hours).

Mapping:

In the mapping phase, each Mapper processes its assigned data chunk and emits key-value pairs. The key is the branch location, and the value is the transaction amount.

Dallas: 1500

Las Vegas: 3000

Charleston: 2500

St. Louis: 650

Illinois: 700

Omaha: 300

Charleston: 200

St. Joseph: 400

Dallas: 1000

Las Vegas: 2000

Maryville: 200

St. Louis: 6050

Illinois: 7000

Omaha: 3500

St. Joseph: 650

Shuffling and Sorting:

The Shuffling and Sorting Phase will group and sort the key-value pairs by the key branch location). All records with the same key are grouped together.

Reducing:

The Reducer will calculate the total transaction amounts for each branch location, providing a summary of the overall transaction activity at each branch. Here MapReduction Function is "Sum".

Dallas: 1500 + 1000.

Las Vegas: 3000 + 2000.

Charleston: 2500 + 200.

St. Louis: 650 + 6050.

Illinois: 700 + 7000.

Omaha: 300 + 3500.

Maryville: 200 + 200.

St. Joseph: 400 + 650.

Output:

The outcome consists of branch-specific reports that include the total transaction amounts for each branch.

Dallas 2500

Las Vegas 5000

Charleston 2700

St. Louis 6700

Illinois 7700

Omaha 3800

Maryville 400

St. Joseph 1050

This above example shows how MapReduce can be used to analyze banking data across different branches, helping financial institutions gain insights into branch-specific performance, customer behavior, and transaction trends.

Typ