AIFS Lecture 1: Bare Minimum Linear Algebra

Suraj Narayanan Sasikumar

Hessian Al Labs

January 26, 2020

Overview

- Sets
- 2 Functions
- Spaces
- 4 Objects in Linear Algebra

Table of Contents

- Sets
- 2 Functions
- Spaces
- 4 Objects in Linear Algebra

Sets

- A set is a well-defined collection of distinct objects.
- Two ways to write a set: Explicit or Implicit
- Explicit: Write the set by explicitly mentioning its members within curly brackets.

Eg: $\{Honda, Ferrari, Renault\}, \{3, 5, 17\}, \emptyset, \{1, 3, \{1, 5\}\}$

• *Implicit*: Write in set-builder notation.

Eg: $A = \{x : x \in H \text{ and } x < 10\}$ where $H = \{94, 324, 1, 9, 50\}$ $A = \{1, 9\}$

The set builder notation is read out loud as:
 x such that x in H and x less than 10

Properties of Sets

- All elements of a set are unique.
- The order of the elements in the set does not matter.
- Sets need not be homogeneous.
- Cardinality: The number of elements in the set. Eg: Let A= $\{3,4\}$, then |A|=2
- *Membership*: Given any object x and a set A, we can ask if x is a member of A. If x is a member then we write $x \in A$, if not we write $x \notin A$. Eg: Let $A = \{4,7\}$, then $4 \in A$ and $9 \notin A$
- Subset: Given some sets B and A, B is a subset of A if all the members of B is in A. It's written as $B \subset A$. Eg: Let $A = \{3, 5, 7\}$ and $B = \{3, 7\}$, then $B \subset A$
- *Power Set*: Given a set S, the power-set of S, denoted by $\mathcal{P}(S)$, is the set of all subsets of S. Eg: Let $S = \{3, 5, 7\}$, then $\mathcal{P}(S) = \{\emptyset, \{3\}, \{5\}, \{7\}, \{3, 5\}, \{3, 7\}, \{5, 7\}, \{3, 5, 7\}\}$

Tuples

- A tuple is a finite ordered list of elements. Eg: (1,3), (1,3,1), (5,5)
- The ordering is important in tuples, and hence the uniqueness property does not hold.
- Based on the length of the tuple it's often referred to as an n-tuple.
 Eg: (1,3) is a 2-tuple. A 2-tuple is also known as an ordered pair.

Operations on Sets

Let $A = \{3, 5, 7, 11, 13\}$, and $B = \{1, 3, 5, 7, 9\}$

- Union: \cup (think joining) $A \cup B = \{1, 3, 5, 7, 9, 11, 13\}$
- Intersection: \cap (think commonality) $A \cap B = \{3, 5, 7\}$
- Difference: \setminus (think subtraction) $A \setminus B = \{11, 13\}$ $B \setminus A = \{1, 9\}$
- Cartesian Product: \times (think combination) $A \times B = \{(x, y) : x \in A \text{ and } x \in B\}$ $A \times B = \{(3, 1), (3, 3), (3, 5), \dots, (5, 1), (5, 3), (5, 5), \dots\}$

Number Systems

- Natural Numbers: $\mathbb{N} = \{1, 2, 3, 4 \dots\}$ or $\{0, 1, 2, 3, 4 \dots\}$
- Integers: $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- Rational Numbers: The set of all numbers that can be written in the form $\frac{a}{b}$ where $b \neq 0$ and $a, b \in \mathbb{Z}$. Denoted by \mathbb{Q}
- Real Numbers: The set of all rational numbers and irrational numbers (such as $\sqrt{2}, \sqrt{5}, \pi$, etc.). Denoted by $\mathbb R$

Table of Contents

- Sets
- 2 Functions
- Spaces
- 4 Objects in Linear Algebra

Functions

- A function is a mapping from one set to another where each element of the first set is mapped exactly to one element in the second
- Notation: A function, f, which maps elements in set X to set Y is written as:

$$f: X \rightarrow Y$$

- Notation: The mapping is explicitly specified as y = f(x) read out loud as "f of x". Here y is the value or output of the function and x is the argument or input to the function.
- Example: Let $X = \{-1, -2, 2, 0, 3\}$ and $Y = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, then forall $x \in X$, $f(x) = x^2$ is a function from X to Y

Functions

- Red set is called the *Domain* of the function.
- Blue set is called the Codomain of the function.
- Yellow set is a subset of the Codomain called the *range* of the function.

Table of Contents

- Sets
- 2 Functions
- Spaces
- 4 Objects in Linear Algebra

1-D Space

2-D Space

x-axis

3-D Space

 \mathbb{R}^3

N-D Space

- A point in \mathbb{R}^n space would have n coordinates.
- A line in \mathbb{R}^2 would be a plane in \mathbb{R}^3 , and a hyper-plane in \mathbb{R}^n
- To visualize an N-D space, think of a 3-D space and call it N-D :)

Table of Contents

- Sets
- 2 Functions
- Spaces
- 4 Objects in Linear Algebra

Scalars and Vectors

- *Scalar*: A single number. Usually written with lower case non-bold variable names. Eg: $3, 4.5, \frac{1}{3}$, a for all $a \in \mathbb{N}$
- Vector: An array of ordered numbers. Can be written as a column of numbers, or as an n-tuple. Usually written with lower case bold variable names.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ OR } \mathbf{x} = (x_1, x_2, \dots, x_n)$$

Cartesian Coordinate View

A vector can be visualized as an object identifying points in space, with each component of the vector giving the coordinate along a different axis.

Vector space

- A real valued vector space is a set V on which two operations + and \cdot are defined, called vector addition and scalar multiplication, and satisfy the following three properties for all scalars $c \in \mathbb{R}$.
- Closure under addition: If \mathbf{u} and \mathbf{v} are vectors in V then $\mathbf{u} + \mathbf{v}$ should also be in V.
- Closure under multiplication: If c is any scalar in \mathbb{R} and \mathbf{u} is a vector in V then $c \cdot \mathbf{u}$ is also in V.
- The zero vector **0** is in *V*.

Vector space

