

Instituto Tecnológico y de Estudios Superiores de Monterrey Campus Puebla

Actividad 3.1 Regresión No lineal

José Manuel Morales Escalante

Materia:

Analítica de datos y herramientas de inteligencia artificial I

Fecha:

11 de abril de 2025

Tabla con los coeficientes obtenidos:

Variable	Modelo 1 (Tipo)	R Modelo 1	Modelo 2 (Tipo)	R Modelo 2
host_response_rate	Cuadrático	0.22	Valor absoluto	0.14
host_acceptance_rate	Cuadrático	0.23	Valor absoluto	0.19
host_total_listings_count	Polinomial inversa	0.30	Lineal con producto	0.49
accommodates	Polinomial inversa	0.19	Cociente polinomial	0.39
reviews_per_month	Polinomial inversa	0.45	Cociente polinomial	0.55
price	Polinomial inversa	0.34	Cociente polinomial	0.55

host_response_rate:

Modelo 1 función cuadrática

Modelo 2 función valor absoluto

host_acceptance_rate:

Modelo 1 función cuadrática

Modelo 2 función valor absoluto

host_total_listings_count

Modelo 1 función polinomial inversa

Modelo 2 función lineal con producto de coeficientes

accommodates

Modelo 1 función polinomial inversa

Modelo 2 función cociente entre polinomios

reviews_per_month

Modelo 1 función polinomial inversa

Modelo 2 función cociente entre polinomios

price
Modelo 1 función polinomial inversa

Modelo 2 función cociente entre polinomios

Resultados Generales

El análisis de regresión no lineal aplicado a las variables del dataset reveló que, en la mayoría de los casos, los modelos no lineales no lograron un ajuste significativamente mejor que un modelo lineal básico.

Comparación con Modelos Lineales

Dado que los modelos no lineales no mejoraron significativamente el ajuste, un modelo lineal simple podría ser igual o incluso más efectivo en estos casos.

Sin embargo, en situaciones donde la relación entre variables es claramente no lineal (como crecimiento exponencial o relaciones curvilíneas), los modelos no lineales pueden ser útiles.

Ventajas de Modelos No Lineales

- Capturan relaciones complejas: Útiles cuando la relación entre variables no sigue una tendencia recta (ej. crecimiento logístico, curvas de saturación).
- Flexibilidad: Pueden adaptarse a patrones más variados que un simple modelo lineal.
- Aplicaciones específicas: En economía, biología o ingeniería, muchos fenómenos requieren modelos no lineales para ser descritos correctamente.

A pesar de que se tuvo que experimentar con distintos modelos, se logró que las regresiones no lineales tuviesen coeficientes similares o superiores a los obtenidos en la actividad 2 donde se probaron modelos lineales.