Subtyping via distributive lattices

Stephen Dolan

6th November, 2019

stedolan@stedolan.net

Subtyping

Subtyping

Subtyping gives functions better types:

select
$$p \ v \ d = if (p \ v)$$
 then v else d

Subtyping

Subtyping gives functions better types:

select
$$p \ v \ d = if (p \ v)$$
 then v else d

ML says the type is:

$$\forall \alpha. (\alpha \to \mathsf{bool}) \to \alpha \to \alpha \to \alpha$$

Data flow in select

select $p \ v \ d = if (p \ v)$ then v else d

More types for select

With subtyping, we can give a more precise type:

$$\forall \alpha, \beta \text{ where } \alpha \leq \beta. \ (\alpha \to \text{bool}) \to \alpha \to \beta \to \beta$$

More types for select

With subtyping, we can give a more precise type:

$$\forall \alpha, \beta \text{ where } \alpha \leq \beta. \ (\alpha \to \text{bool}) \to \alpha \to \beta \to \beta$$

but now our subtyping definition has to include constraints.

More types for select

With subtyping, we can give a more precise type:

$$\forall \alpha, \beta \text{ where } \alpha \leq \beta. \ (\alpha \to \text{bool}) \to \alpha \to \beta \to \beta$$

but now our subtyping definition has to include constraints.

When are two constrained types equal? When is one more general?

What are type variables, anyway?

How do we even define subtyping with type variables?

What are type variables, anyway?

How do we even define subtyping with type variables?

Type variables?

 $\sigma \leq \tau$ if $\rho(\sigma) \leq \rho(\tau)$ for every ρ mapping type variables to ground types.

5

What are type variables, anyway?

How do we even define subtyping with type variables?

Type variables?

 $\sigma \leq \tau$ if $\rho(\sigma) \leq \rho(\tau)$ for every ρ mapping type variables to ground types.

This is a bad 1 , bad 2 idea.

¹Polymorphism, Subtyping, and Type Inference in MLsub, Dolan and Mycroft, 2017

 $^{^2} Set\text{-}theoretic$ Foundation of Parametric Polymorphism and Subtyping, Castagna and Xu, 2011

Type variables by quantification over ground types

Is this true?³

$$A \to \bot \leq A \implies (\bot \to \top) \to \bot \leq A$$

³ Type inference in the presence of subtyping: from theory to practice, Pottier, 1998

Type variables by quantification over ground types

Is this true?³

$$A \to \bot \leq A \implies (\bot \to \top) \to \bot \leq A$$

Just applying the subtyping rules doesn't get us anywhere.

³ Type inference in the presence of subtyping: from theory to practice, Pottier, 1998

$$A \to \bot \le A \implies (\bot \to \top) \to \bot \le A$$

We prove it by case analysis on A.

$$A \to \bot \leq A \implies (\bot \to \top) \to \bot \leq A$$

We prove it by case analysis on A.

If it's \top , then:

$$(\bot \to \top) \to \bot \le \top = A$$

$$A \to \bot \leq A \implies (\bot \to \top) \to \bot \leq A$$

We prove it by case analysis on A.

If it's \top , then:

$$(\bot \to \top) \to \bot \le \top = A$$

Otherwise, $A \leq \bot \to \top$ and

$$A \leq (\bot \to \top)$$

$$\Longrightarrow (\bot \to \top) \to \bot \leq A \to \bot \leq A$$

$$A \to \bot \leq A \implies (\bot \to \top) \to \bot \leq A$$

We prove it by case analysis on A.

If it's \top , then:

$$(\bot \to \top) \to \bot \le \top = A$$

Otherwise, $A \leq \bot \to \top$ and

$$A \le (\bot \to \top)$$

$$\implies (\bot \to \top) \to \bot \le A \to \bot \le A$$

So it does hold, for all A.

Let's add a new type of function $\tau_1 \stackrel{\circ}{\to} \tau_2$.

Let's add a new type of function $\tau_1 \stackrel{\circ}{\to} \tau_2$.

It's a supertype of $au_1
ightarrow au_2$

"function that may have side effects"

Let's add a new type of function $\tau_1 \stackrel{\circ}{\to} \tau_2$.

It's a supertype of $au_1
ightarrow au_2$

"function that may have side effects"

Now we have a counterexample:

$$A = (\top \stackrel{\circ}{\rightarrow} \bot) \stackrel{\circ}{\rightarrow} \bot$$

Let's add a new type of function $\tau_1 \stackrel{\circ}{\to} \tau_2$.

It's a supertype of $au_1
ightarrow au_2$

"function that may have side effects"

Now we have a counterexample:

$$A = (\top \xrightarrow{\circ} \bot) \xrightarrow{\circ} \bot$$

Pottier's example is true only by case analysis.

Composing subtyping relations is hard

If we specify subtyping for several fragments of a language, it is difficult to compose the relations.

Composing subtyping relations is hard

If we specify subtyping for several fragments of a language, it is difficult to compose the relations.

Composing subtyping relations is hard

If we specify subtyping for several fragments of a language, it is difficult to compose the relations.

Now we have $A \leq X$, $B \leq X \Longrightarrow C \leq X$.

Did we want this relationship between A, B, C?

Deciding subtyping relations is hard

How do we go from a definition to a decision procedure?

Deciding subtyping relations is hard

How do we go from a definition to a decision procedure?

This rule hurts a lot:

$$\frac{A \le X \quad X \le B}{A \le B}$$

Subtyping is hard...

```
...to specify (constraints, type variables)
```

...to compose (unexpected relations)

...to decide (non-obvious algorithms, transitivity)

Lattices

Lattices help to specify subtyping

A subtyping order forms a *lattice* if it has:

 $\mathbf{A} \vee \mathbf{B}$ The least common supertype of A and B

 $\mathbf{A} \wedge \mathbf{B}$ The greatest common subtype of A and B

(not necessarily union and intersection of values)

Constraints via lattices

The lattice operators turn subtyping constraints into equations:

$$A \le B$$
 \equiv $A = A \land B$ \equiv $A \lor B = B$

Constraints via lattices

The lattice operators turn subtyping constraints into equations:

$$A \le B$$
 \equiv $A = A \land B$ \equiv $A \lor B = B$

$$\forall \alpha, \beta \text{ where } \alpha \leq \beta. \ (\alpha \to \text{bool}) \to \alpha \to \beta \to \beta$$

can become

$$\forall \alpha, \beta. (\alpha \to \mathtt{bool}) \to \alpha \to \beta \to (\alpha \vee \beta)$$

Lattices help to compose subtyping

There is a most general way to combine two lattices, without introducing any new relations: the *lattice coproduct*.

Lattices help to compose subtyping

There is a most general way to combine two lattices, without introducing any new relations: the *lattice coproduct*.

We can introduce a type variable α by taking coproducts with the three-element lattice $\{\bot,\alpha,\top\}$

Lattices help to decide subtyping

Whitman's algorithm decides ordering in a free lattice:

$$a \land b \le c \lor d \text{ iff one of:} \begin{array}{c} a \le c \lor d \\ b \le c \lor d \\ a \land b \le c \\ a \land b \le d \end{array}$$

Lattices make subtyping easier

```
...to specify (no constraints, free lattices)
...to compose (coproducts)
...to decide (Whitman's algorithm)
```

Specifying subtyping relations is still hard

How should the lattice operations interact:

• with type constructors? Is $A \to (B \land C) = (A \to B) \land (A \to C)$?

Specifying subtyping relations is still hard

How should the lattice operations interact:

- with type constructors? Is $A \to (B \land C) = (A \to B) \land (A \to C)$?
- with each other?
 Is A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C)?

(Some cases we get for free: $(A \lor B) \land A = A$ from lattice theory)

Composing subtyping relations is still hard

Composing subtyping relations is still hard

Lattice coproducts are weird.

Deciding subtyping relations is still hard

$$a \land b \le c \lor d \text{ if } \begin{cases} a \le c \lor d \\ b \le c \lor d \\ a \land b \le c \end{cases}$$
$$a \land b \le d$$

Whitman's algorithm decides ordering in a free lattice

Deciding subtyping relations is still hard

$$a \leq c \lor d$$

$$a \land b \leq c \lor d \text{ if } \begin{cases} b \leq c \lor d \\ a \land b \leq c \end{cases}$$

$$a \land b \leq d$$

Whitman's algorithm decides ordering in a free lattice ... and only in a free lattice

Subtyping is still hard

```
...to specify (interactions are still tricky)
```

...to compose (lattice coproduct strangeness)

...to decide (Whitman's does not generalise)

Example: Intersection types

Intersection types

BCD types⁴ are of the form:

$$A ::= A \rightarrow A \mid A \land A \mid \top \mid \mathtt{base}$$

(No type variables, no \vee , no \perp)

⁴A Filter Lambda Model and the Completeness of Type Assignment., Barendregt, Coppo and Dezani-Ciancaglini, 1983

BCD subtyping

Subtyping is a partial order with a top element:

$$\frac{A \le A}{A \le A} \qquad \frac{A \le B \quad B \le C}{A \le C} \qquad \frac{A \le \top}{A \le \top}$$

BCD subtyping

Subtyping is a partial order with a top element:

$$\frac{A \leq A}{A \leq A} \qquad \frac{A \leq B \quad B \leq C}{A \leq C} \qquad \frac{A \leq \top}{A \leq \top}$$

and binary meets:

$$\frac{A \land B \leq A}{A \land B \leq B} \qquad \frac{A \leq A \land A}{A \leq A \land A} \qquad \frac{A \leq A' \quad B \leq B'}{A \land B \leq A' \land B'}$$

BCD subtyping

Subtyping is a partial order with a top element:

$$\frac{A \le A}{A \le A} \qquad \frac{A \le B \quad B \le C}{A \le C} \qquad \frac{A \le \top}{A \le \top}$$

and binary meets:

$$\frac{A \land B \leq A}{A \land B \leq B} \qquad \frac{A \leq A \land A}{A \leq A \land A} \qquad \frac{A \leq A' \quad B \leq B'}{A \land B \leq A' \land B'}$$

and arrow types:

$$\frac{A' \le A \quad B \le B'}{A \to B \le A' \to B'} \qquad \frac{}{\top \le \top \to \top}$$
$$\overline{(A \to B) \land (A \to C) \le A \to (B \land C)}$$

Laurent⁵ presents BCD as a relation $\Gamma \vdash A$ between a finite set of types Γ and a type A.

⁵Intersection Subtyping with Constructors, Olivier Laurent, 2018

Laurent⁵ presents BCD as a relation $\Gamma \vdash A$ between a finite set of types Γ and a type A.

Intuitively, $\{B_1, \ldots, B_n\} \vdash A \text{ iff } B_1 \land \ldots \land B_n \leq A.$

"Variables" and "Weakening"

$$\frac{1 \vdash A}{\Gamma, A \vdash A} \qquad \frac{\Gamma \vdash A}{\Gamma, \Delta \vdash A}$$

⁵Intersection Subtyping with Constructors, Olivier Laurent, 2018

Laurent⁵ presents BCD as a relation $\Gamma \vdash A$ between a finite set of types Γ and a type A.

Intuitively, $\{B_1, \ldots, B_n\} \vdash A \text{ iff } B_1 \land \ldots \land B_n \leq A.$

"Variables" and "Weakening"

$$\frac{\Gamma \vdash A}{\Gamma, A \vdash A} \qquad \frac{\Gamma \vdash A}{\Gamma, \Delta \vdash A}$$

Meet and \top :

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \qquad \frac{\Gamma, A, B \vdash C}{\Gamma, A \land B \vdash C} \qquad \overline{\Gamma \vdash \top}$$

⁵Intersection Subtyping with Constructors, Olivier Laurent, 2018

Laurent⁵ presents BCD as a relation $\Gamma \vdash A$ between a finite set of types Γ and a type A.

Intuitively, $\{B_1, \ldots, B_n\} \vdash A \text{ iff } B_1 \land \ldots \land B_n \leq A.$

"Variables" and "Weakening"

$$\frac{\Gamma \vdash A}{\Gamma, A \vdash A} \qquad \frac{\Gamma \vdash A}{\Gamma, \Delta \vdash A}$$

Meet and \top :

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \qquad \frac{\Gamma, A, B \vdash C}{\Gamma, A \land B \vdash C} \qquad \overline{\Gamma \vdash \top}$$

Arrow types:

$$\frac{C \vdash A_1 \ldots C \vdash A_k \quad B_1, \ldots, B_k \vdash D}{A_1 \to B_1, \ldots, A_k \to B_k \vdash C \to D} (k \ge 1) \qquad \frac{\vdash B}{\vdash A \to B}$$

⁵ Intersection Subtyping with Constructors, Olivier Laurent, 2018

One theorem: Cut-elimination

Cut is admissible

$$\frac{\Gamma \vdash A \quad \Delta, A \vdash C}{\Gamma, \Delta \vdash C}$$

One theorem: Cut-elimination

Cut is admissible

$$\frac{\Gamma \vdash A \quad \Delta, A \vdash C}{\Gamma, \Delta \vdash C}$$

Transitivity is a consequence.

Subformula property

In the cut-free calculus, each type used in the conclusion is a subformula of types used in the hypothesis.

Subformula property

In the cut-free calculus, each type used in the conclusion is a subformula of types used in the hypothesis.

Nontriviality $\top \not\vdash \mathtt{base}$

Subformula property

In the cut-free calculus, each type used in the conclusion is a subformula of types used in the hypothesis.

Nontriviality $\top \not\vdash \mathtt{base}$

Inversion If $A \to B \vdash A' \to B'$, then $A' \vdash A$, $B \vdash B'$.

Subformula property

In the cut-free calculus, each type used in the conclusion is a subformula of types used in the hypothesis.

Nontriviality $\top \not\vdash \mathtt{base}$

Inversion If $A \to B \vdash A' \to B'$, then $A' \vdash A$, $B \vdash B'$.

Decidability Try every rule until one works or you run out.

Decidability

The subformula property makes the decision algorithm work.

Decidability

The subformula property makes the decision algorithm work.

Two optimisations help:

• Apply reversible rules first

$$\frac{\Gamma,A,B\vdash C}{\Gamma,A\land B\vdash C}$$

Decidability

The subformula property makes the decision algorithm work.

Two optimisations help:

• Apply reversible rules first

$$\frac{\Gamma, A, B \vdash C}{\Gamma, A \land B \vdash C}$$

• Memoize repeated subderiviations

Semi-Scott relations

Say that a relation $\Gamma \vdash A$ between a finite set of types Γ and a type A is semi-Scott if:

$$\frac{\Gamma \vdash A}{\Gamma, A \vdash A} \qquad \frac{\Gamma \vdash A}{\Gamma, \Delta \vdash A} \qquad \frac{\Gamma \vdash A \quad \Delta, A \vdash B}{\Gamma, \Delta \vdash B}$$

Semi-Scott relations

Say that a relation $\Gamma \vdash A$ between a finite set of types Γ and a type A is semi-Scott if:

$$\frac{\Gamma \vdash A}{\Gamma, A \vdash A} \qquad \frac{\Gamma \vdash A}{\Gamma, \Delta \vdash A} \qquad \frac{\Gamma \vdash A \quad \Delta, A \vdash B}{\Gamma, \Delta \vdash B}$$

Every \land -semilattice gives rise to a semi-Scott relation:

$$\{B_1,\ldots,B_n\}\vdash A \text{ iff } B_1\wedge\ldots\wedge B_n\leq A$$

Semilattices from semi-Scott relations

Given a semi-Scott relation $\Gamma \vdash A$, define

$$\Gamma \leq \Delta$$
 iff $\forall A \in \Delta$. $\Gamma \vdash A$

We have:

- $\Gamma \leq \Delta$ (by Var)
- $\Gamma \le \Delta, \Delta \le \Xi$ implies $\Gamma \le \Xi$ (by induction on $|\Delta|$, using Weak and Cut)

Equivalence classes of \leq form a semilattice.

A recipe for Laurent-style presentations

There is a Laurent-style presentation of *every* intersection type system:

A recipe for Laurent-style presentations

There is a Laurent-style presentation of *every* intersection type system:

The only rules to choose are those for type constructors.

The only theorem to prove is cut-elimination.

A lattice is *distributive* iff \wedge and \vee distribute:

$$(A \wedge B) \vee C = (A \vee C) \wedge (B \vee C)$$
$$(A \vee B) \wedge C = (A \wedge C) \vee (B \wedge C)$$

A lattice is distributive iff it does not contain:

A lattice is *distributive* iff it has an interpretation in sets:

$$\phi(A \land B) = \phi(A) \cap \phi(B)$$
$$\phi(A \lor B) = \phi(A) \cup \phi(B)$$

Composing distributive lattices

The coproduct of distributive lattices is well-behaved.

Free distributive lattices exist, even complete ones.

Scott entailment relations

Say that a relation $\Gamma \vdash \Delta$ between finite sets of types is $Scott^6$ if:

$$\frac{\Gamma \vdash \Delta}{\Gamma, A \vdash A, \Delta} \qquad \frac{\Gamma \vdash \Delta}{\Gamma, \Gamma' \vdash \Delta, \Delta'} \qquad \frac{\Gamma \vdash A, \Delta \quad \Gamma, A \vdash \Delta}{\Gamma \vdash \Delta}$$

¹Entailment relations and distributive lattices, Cederquist and Coquand, 2000

Scott entailment relations

Say that a relation $\Gamma \vdash \Delta$ between finite sets of types is $Scott^6$ if:

$$\frac{\Gamma \vdash \Delta}{\Gamma, A \vdash A, \Delta} \qquad \frac{\Gamma \vdash \Delta}{\Gamma, \Gamma' \vdash \Delta, \Delta'} \qquad \frac{\Gamma \vdash A, \Delta \quad \Gamma, A \vdash \Delta}{\Gamma \vdash \Delta}$$

Every distributive lattice gives rise to a Scott relation,

¹Entailment relations and distributive lattices, Cederquist and Coquand, 2000

Scott entailment relations

Say that a relation $\Gamma \vdash \Delta$ between finite sets of types is $Scott^6$ if:

$$\frac{\Gamma \vdash \Delta}{\Gamma, A \vdash A, \Delta} \qquad \frac{\Gamma \vdash \Delta}{\Gamma, \Gamma' \vdash \Delta, \Delta'} \qquad \frac{\Gamma \vdash A, \Delta \quad \Gamma, A \vdash \Delta}{\Gamma \vdash \Delta}$$

Every distributive lattice gives rise to a Scott relation, and every Scott relation to a distributive lattice.

¹Entailment relations and distributive lattices, Cederquist and Coquand, 2000

Composing distributive lattices

If \vdash_1, \vdash_2 present distributive lattices D_1, D_2 ,

Composing distributive lattices

If \vdash_1, \vdash_2 present distributive lattices D_1, D_2 , then \vdash presents the coproduct $D_1 + D_2$:

$$\frac{\Gamma \vdash_1 \Delta}{\mathsf{inj}_1 \; \Gamma \vdash \mathsf{inj}_1 \; \Delta} \qquad \frac{\Gamma \vdash_2 \Delta}{\mathsf{inj}_2 \; \Gamma \vdash \mathsf{inj}_2 \; \Delta}$$

Free distributive lattice

The presentation of the free distributive lattice generated by type variables is:

Free distributive lattice

The presentation of the free distributive lattice generated by type variables is:

$$\overline{\alpha \vdash \alpha}$$

Order connectives in sequent style

The rules for \wedge , \vee look like sequent calculus:

$$\frac{\Gamma \vdash A, \Delta \qquad \Gamma \vdash B, \Delta}{\Gamma \vdash A \land B, \Delta}$$

$$\frac{\Gamma, A \vdash \Delta \qquad \Gamma, B \vdash \Delta}{\Gamma, A \lor B \vdash \Delta} \qquad \qquad \frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A \lor B}$$

 $\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta}$

Top and bottom in sequent style

The rules for \bot and \top look like False and True in sequent calculus:

$$\frac{\Gamma \vdash \Delta}{\Gamma, \top \vdash \Delta} \qquad \frac{\Gamma \vdash \top, \Delta}{\Gamma \vdash \bot, \Delta}$$

Distributive lattices make subtyping easy!

```
...to specify (Scott entailment relation + cut elimination)
```

...to compose (Coproducts by combining Scott relations)

...to decide (Subformula property)

Example 1: Intersection types

$$\frac{C \vdash A_1 \ldots C \vdash A_k \quad B_1, \ldots, B_k \vdash D}{A_1 \to B_1, \ldots, A_k \to B_k \vdash C \to D} (k \ge 1) \qquad \frac{\vdash B}{\vdash A \to B}$$

Example 2: Semantic subtyping

Function subtyping⁷:

$$\frac{C \vdash A_1, \dots, A_n \qquad \forall I' \subsetneq [1..n]. \ C \vdash \{A_i \mid i \in I'\} \text{ or } \{B_i \mid i \notin I'\} \vdash D}{A_1 \to B_1, \dots, A_n \to B_n \vdash C \to D}$$

¹ The Relevance of Semantic Subtyping Dezani-Ciancaglini, Frisch, Giovannetti and Motohama, 2003

Example 2: Semantic subtyping

Function subtyping⁷:

$$\frac{C \vdash A_1, \dots, A_n \qquad \forall I' \subsetneq [1..n]. \ C \vdash \{A_i \mid i \in I'\} \text{ or } \{B_i \mid i \not\in I'\} \vdash D}{A_1 \to B_1, \dots, A_n \to B_n \vdash C \to D}$$

Negation types:

$$\frac{\Gamma \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta} \qquad \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta}$$

¹ The Relevance of Semantic Subtyping Dezani-Ciancaglini, Frisch, Giovannetti and Motohama, 2003

Example 3: MLsub

$$\frac{C_1,\ldots,C_m\vdash A_1,\ldots,A_n\quad B_1,\ldots,B_n\vdash D_1,\ldots,D_m}{A_1\to B_1,\ldots,A_n\to B_n\vdash C_1\to D_1,\ldots,C_m\to D_m}$$

Distributive lattices make subtyping easy!

```
...to specify (Scott entailment relation + cut elimination)
```

...to compose (Coproducts by combining Scott relations)

...to decide (Subformula property)

Thanks!

Questions?

stedolan@stedolan.net