

教师姓名	沈炜炜	学生姓名		首课时间		本课时间	
学习科目	数学	上课年级	高一	教材	版本	人教力	A 版
课题名称	函数及其性质						
重点难点	函数的单调性						

课前检测

填写下表,写出各函数的定义域、值域、单调性以及奇偶性.

f(x)	定义域	值域	单调性	奇偶性
x				
x^2				
$\log_2 x$				
3^x				
$\frac{1}{x}$				
\sqrt{x}				
$\log_x 2$				

一、函数的概念与表示

定义 一般地, 有:

设 A, B 是非空的数集, 如果按照某种确定的对应关系 f, 使对于集合 A 中的任意一个数 x, 在集合 B 中都有唯一确定的数 f(x) 和它对应, 那么就称 $f: A \mapsto B$ 为从集合 A 到集合 B 的一个函数,记作

$$y = f(x), \qquad x \in A.$$

其中, x 叫做自变量, x 的取值范围 A 叫做函数的定义域; 与 x 的值相对应的 y 值叫做函数 值,函数值的集合 $\{f(x)|x\in A\}$ 叫做函数的值域,值域是集合 B 的子集.

- 函数是两个数集间的一种对应关系;
- 未指明定义域的情况下, 默认定义域取使得对应关系有意义的所有实数. 具体如下:
 - ① 分式的分母不为 0;
 - ② 偶次根式的被开方数不小于 0;
 - ③ 零次或负次指数次幂的底数不为零;

(红海园)83208050

- ④ 对数的真数大于 0;
- ⑤ 指数、对数函数的底数大于 0 且不等于 1;
- ⑥ 实际问题对自变量的限制.
- 若函数 f(x) 定义域为 D, 且 f(A) 存在,则 $A \in D$.

1.1 函	数 $f(x) = \sqrt{2^x - 1}$ 的定义域是		()
A. [0,	$+\infty$) B. $[1,+\infty)$	C. $(-\infty, 0]$	D. $(-\infty, 1]$	
1.2 函	数 $f(x) = \frac{1}{\sqrt{(\log_2 x)^2 - 1}}$ 的定义域为.		()
,	$\left(\frac{1}{2}\right)$ B. $(2,+\infty)$	/ \		
1.3 已	即函数 $f(x)$ 的定义域为 $(-1,0)$,则函数	数 $f(2x+1)$ 的定义域为	()
	/ 1\		/1 \	

B. $\left(-1, -\frac{1}{2}\right)$ C. (-1, 0)D. $\left(\frac{1}{2},1\right)$

A.
$$\left(-\frac{3}{2}, -\frac{1}{4}\right)$$
 B. $\left(-1, \frac{3}{2}\right)$ C. $(-3, 2)$ D. $(-3, 3)$

1.5 下列函数中,其定义域和值域分别与函数 $y = 10^{\lg x}$ 的定义域和值域相同的是)

A.
$$y = x$$
 B. $y = \lg x$ C. $y = 2^x$ D. $y = \frac{1}{\sqrt{x}}$

二、函数的奇偶性

A. (-1,1)

几何定义 一般地,图像关于 y 轴对称的函数称为偶函数,图像关于原点对称的函数称为奇函数.

代数定义 若对于函数 f(x) 定义域内任意一个 x, 都有 f(-x) = f(x), 则函数 f(x) 称为偶函数; 若对于函数 f(x) 定义域内任意一个 x, 都有 f(-x) = -f(x), 则函数 f(x) 称为奇函数; 奇函数与偶函数的定义域关于原点对称

• 奇函数左右对应中会有负号, 偶函数没有负号, 此处的规律可以参考"负负得正"(以 性质 下假设奇偶函数都不恒为 0)

- ① 奇士奇=奇;偶士偶=偶;奇士偶=非奇非偶
- ② $\div \times (\div)$ $\div = (+)$ (+)
- ③ 当复合函数的内外两层函数都具有奇偶性时,有偶即偶,两奇为奇.
- 奇(偶)函数在关于原点对称的两个区间上具有相同(相反)的单调性;
- 若奇函数 f(x) 在原点有定义,则 f(x) = 0.

2.1	设奇函数 $f(x)$ 在 $(0,+\infty)$ 上增函数且 $f(1)=$	0 ,则不等式 $\frac{f(x)-f(-x)}{x}$;) < 0 的解集为()
		B. $(-\infty, -1) \bigcup (0, 1)$	
С.	$(-\infty, -1) \bigcup (1, +\infty)$	D. $(-1,0) \bigcup (0,1)$	
2.2	奇函数 $f(x)$ 的定义域为 R, 若 $f(x+2)$ 为作	禺函数,且 $f(1) = 1$,则	$f(8) + f(9) = \dots ($
A.	−2 B. −1	C. 0	D. 1
2.3	设函数 $f(x), g(x)$ 的定义域都为 R, 且 $f(x)$	(r) 是奇函数, g(x) 是偶i	函数,则下列结论正确的
是			()
A.	f(x)g(x) 是偶函数	B. $ f(x) g(x)$ 是奇函数	
С.	f(x) g(x) 是奇函数	D. $ f(x)g(x) $ 是奇函数	
2.4	已知函数 $f(x) = \ln \left(\sqrt{1 + 9x^2} - 3x \right) + 1$,则	$f(\lg 2) + f\left(\lg \frac{1}{2}\right)$ 等于.	()
A.	-1 B. 0	C. 1	D. 2
2.5	已知函数 $f(x)$ 是定义在 R 上的偶函数, 且在 R	区间 $[0,+\infty)$ 上单调递增	,若实数 a 满足 $f(\log_2 a)$ +
f($\log_{\frac{1}{2}} a) \le 2f(1)$,则 a 的取值范围是		()
Α.	[1,2] B. $\left(0,\frac{1}{2}\right]$	$C. \left[\frac{1}{2}, 2\right]$	D. (0, 2]
2.6	已知函数 $f(x)$ 是定义在 \mathbb{R} 上的奇函数, $g(x)$	是定义在 ℝ 的偶函数, 且	$f(x) - g(x) = 1 - x^2 - x^3$
则	g(x) 的解析式为		()
A.	$1 - x^2$ B. $2 - 2x^2$	C. $x^2 - 1$	D. $2x^2 - 2$
2.7	若 $f(x) = x \ln(x + \sqrt{a + x^2})$ 为偶函数,则 a	=	

三、函数的单调性

定义 一般地,设函数 f(x) 的定义域为 I:

- 1) 如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x_1 , x_2 , 当 $x_1 < x_2$ 时,都有 $f(x_1) < f(x_2)$,那么就说函数 f(x) 在区间 D 上是增函数;
- 2) 如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x_1 , x_2 , 当 $x_1 < x_2$ 时,都有 $f(x_1) > f(x_2)$,那么就说函数 f(x) 在区间 D 上是减函数.

如果函数 f(x) 在区间 D 上是增函数或减函数,那么就说函数 f(x) 在区间 D 具有(严格的)单调性,区间 D 叫做函数 f(x) 的单调区间.

- 函数的单调性是定义在区间上的,即单调性是函数在某个区间上的性质;
- 单调区间是定义域的子集;

- 单调区间的写法: 尽可能地使用闭区间 (不能写成闭区间的三种情形: ∞ 符号旁; 端点不在 函数定义域内:端点处函数增减性发生变化);
- 自变量量和函数值:变化趋势相同时,函数单调增;变化趋势相反时,函数单调减;简记 为: 同增异减.

单调递增
$$\Leftrightarrow$$
 $(x_1 - x_2)[f(x_1) - f(x_2)] > 0 \Leftrightarrow \frac{f(x_1) - f(x_2)}{x_1 - x_2} > 0$

单调递减
$$\Leftrightarrow (x_1 - x_2)[f(x_1) - f(x_2)] < 0 \Leftrightarrow \frac{f(x_1) - f(x_2)}{x_1 - x_2} < 0$$

判定 函数单调性的判断目前有以下几种常见方法:

- 根据图像判断;
- 根据定义;由定义证明函数 f(x) 在给定区间 D 上单调性的步骤:
 - ① 取值: 任取 $x_1, x_2 \in D$, 且 $x_1 < x_2$;
 - ② 作差或作商: $f(x_1) f(x_2)$ 或 $f(x_1)/f(x_2)$; (当 f(x) 在区间 D 内恒大于 0 或恒小于 0时才可使用作商法)
 - ③ 变形: 因式分解、配方、通分、根式有理化等等, 化简至能够简单判断正负号的式子;
 - ④ 定号: 判断 $f(x_1) f(x_2)$ 的正负 (或 $f(x_1)/f(x_2)$ 与 1 比大小), 进一步判断 $f(x_1)$ 与 $f(x_2)$ 的大小值关系;
 - ⑤ 得出结论: $f(x_1) < f(x_2)$ 时函数 f(x) 单调递增; $f(x_1) > f(x_2)$ 时函数 f(x) 单调递 减.
- 根据单调性已知的函数,并利用函数单调性的几个结论判断:
 - ① f(x) 与 f(x) + C(C 是常数) 具有相同的单调性;
 - ② k > 0 时, kf(x) 与 f(x) 单调性相同; k < 0 时, kf(x) 与 f(x) 单调性相反;
 - ③ 在公共定义域内,两增函数相加仍为增函数;减函数相减仍为减函数;
 - ④ 对于复合函数,"同增异减",即:

若 $\mu = g(x)$ 在 [a,b] 上是增 (減) 函数, 函数 $y = f(\mu)$ 在区间 [g(a),g(b)] (或区间 [g(b), g(a)]) 上是增 (减) 函数, 那么复合函数 y = f[g(x)] 在区间 [a,b] 上一定是单调 的,且若 $f(\mu)$ 与 g(x) 单调性相同,则复合函数 y=f[g(x)] 单调递增;若 $f(\mu)$ 与 g(x)单调性相反,则复合函数 y = f[q(x)] 单调递减.

3.1 设 f(x), g(x) 都是单调函数,有如下四个命题:

①若 f(x) 单调递增, g(x) 单调递增, 则 f(x) - g(x) 单调递增;

②若 f(x) 单调递增, g(x) 单调递减, 则 f(x) - g(x) 单调递增;

(台江)83310089

③若 $f(x)$ 单调递减	g(x) 单调递增,则 f	f(x) - g(x) 单调递减;			
④若 $f(x)$ 单调递减	, g(x) 单调递减,则 f	f(x) - g(x) 单调递减;			
其中, 正确的命题是	己			()	
A. ①③	В. ФФ	C. 23	D. 24		
3.2 函数 $y = -\sqrt{1-2}$	4x2 的单调递减区间是	· · · · · · · · · · · · · · · · · · ·		()	
A. $\left(-\infty, \frac{1}{2}\right]$	B. $\left[\frac{1}{2}, +\infty\right)$	$C. \left[-\frac{1}{2}, 0 \right]$	D. $\left[0, \frac{1}{2}\right]$		
3.3 (福州八中 15-16	高一期中考,2) 设偶函	数 $f(x)$ 的定义域为 \mathbb{R} ,		是增函	
数,则 $f(-2)$, $f(\pi)$	·),f(-3) 的大小关系是	클		()	
A. $f(\pi) > f(-3) >$	f(-2)	B. $f(\pi) > f(-2) > f(-3)$			
C. $f(\pi) < f(-3) <$	f(-2)	D. $f(\pi) < f(-2) < f(-3)$			
B.4(福州高级中学 1	6-17 高一期中考,11) 兌	E义在 $ℝ$ 上的偶函数 $f(x)$	x), $\stackrel{.}{=} x \in [1,2]$ 时, $f(x)$	< 0 且	
f(x) 增函数,给出	下列四个结论:				
(1) $f(x)$ 在 $[-2,-1]$	l] 上单调递增;	$(2) \stackrel{\text{def}}{=} x \in [-2, -1]$	时,有 $f(x) < 0$;		
(3) $f(-x)$ 在 $[-2, -1]$	-1] 上单调递减;	(4) $ f(x) $ 在 $[-2, -$	1] 上单调递减.		
其中正确的结论是.				()	
A. $(1)(3)$	B. $(2)(4)$	C. $(2)(3)$	D. $(3)(4)$		
3.5【2016 师大附中	18】(本小题满分 12 分	$f(x)$ 已知函数 $f(x)$ 为 \mathbb{R}	上的偶函数. $x \leq 0$ 时	f(x) =	
$4^{-x} - a \cdot 2^{-x}, (a > a)$	0)				
(I) 求函数 $f(x)$ 在	$(0,+\infty)$ 上的解析式; ((II) 求函数 $f(x)$ 在 $[0,+$	∞) 上的最小值.		

- 3.6 (福州市格致中学 2016-2017 高一上期中考试数学学科试卷 22) 已知二次函数 $f(x) = ax^2 + bx + 3$ 是偶函数,且过点 (-1,4), g(x) = x + 4 .
- (I) 求 f(x) 的解析式;
- (II) 求函数 $F(x) = f(2^x) + g(2^{x+1})$ 的值域;
- (III) 若 $f(x) \ge g(mx+m)$ 对 $x \in [2,6]$ 恒成立,求实数 m 的取值范围.

四、课后作业

4.1	如果 $f(x)$ 是定义	〈在 R 上的奇函数,那么下	例函数中一定是偶函数的	的是 ()	
Α.	x + f(x)	B. $xf(x)$	C. $x^2 + f(x)$	D. $x^2 f(x)$	
4.2	已知函数 $g(x) =$	f(x) - x 是偶函数,且 $f(x) = f(x)$	$3) = 4$, \emptyset $f(-3) = \dots$	(ļ
Α.	-4	B2	C. 0	D. 4	
4.3	设函数 $f(x), g(x)$;) 的定义域都为 R, 且 f	(x) 是奇函数, $g(x)$ 是任	禺函数,则下列结论正确的	1
				(
Α.	f(x) + g(x) 是化	禺函数	B. $f(x) - g(x) $ 是奇	函数	
С.	f(x) + g(x) 是化	禺函数	D. $ f(x) - g(x)$ 是奇	函数	
4.4	(福州格致中学 1	6-17 高一期中考,10) 若 f($x) = -x^2 + 2ax - g(x) =$	$= \frac{a}{x+1}$ 在区间 [1,2] 上都是	
				()
Α.	$(-1,0) \cup (0,1)$	B. $(-1,0) \cup (0,1]$	C. $(0,1)$	D. $(0,1]$	
4.5	设函数 $f(x) = \lg x$	$3\frac{2+x}{2-x}$, $\mathbb{N} f\left(\frac{x}{2}\right) + f\left(\frac{2}{x}\right)$	的定义域为	()
Α.	$(-4,0)\bigcup(0,4)$	B. $(-4, -1) \bigcup (1, 4)$	C. $(-2, -1) \bigcup (1, 2)$	D. $(-4, -2) \bigcup (2, 4)$	
4.6	(2009 四川卷文理	$\mathbb{E}[12]$ 已知函数 $f(x)$ 是定义	人在实数集 ℝ 上的不恒为	7零的偶函数,且对任意实数	•
x	都有 $xf(x+1) =$	$(1+x)f(x)$, 则 $f(\frac{5}{2})$ 的值	是	()
Α.	. 0	B. $\frac{1}{2}$	C. 1	D. $\frac{5}{2}$	
4.7	若函数 $f(x) = \ln x$	$a(e^{3x}+1)+ax$ 为偶函数,	则 $a = $		
4.8	若 $f(x)$ 是定义在	ER上的奇函数,当 $x \le 0$	时, $f(x) = 2x^2 - x$,则	$f(1) = \underline{\qquad}.$	
4.9	设函数 $f(x)$ 在 ($(-\infty, +\infty)$ 内有定义,下列	函数:		
1	y = - f(x)	$ 2 y = xf(x^2); $			
3	y = -f(-x)	y = f(x) - f(-x).			
中	必为奇函数的有_	(要求填写正	确答案的序号)		
4.10	0【2016 福州三中	17】(本小题满分 12 分) i	已知函数 $f(x) = \log_3 9x$	$\log_3 x + 2, x \in [\frac{1}{9}, 3].$	
(1) 求 f(x) 最小值和	和最大值;			
(2) 若不等式 f(x) -	- 2m + 1 > 0 恒成立,求实	数 m 的取值范围.		

- 4.11 (福州八中 2015—2016 高一上学期期中考试 23) 设 f(x) 是定义在 \mathbb{R} 上的奇函数,且对任意 $a,b\in\mathbb{R}$,当 $a+b\neq 0$ 时,都有 $\frac{f(a)+f(b)}{a+b}>0$
- (1) 若 a > b , 试比较 f(a) 与 f(b) 的大小关系;
- (2) 若 $f(9^x 2 \cdot 3^x) + f(2 \cdot 9^x k) > 0$ 对任意 $x \in [0, \infty)$ 恒成立,求实数 k 的取值范围.

- 4.12 (福州市屏东中学 2016-2017 高一上期中 22) 已知函数 $f(x) = 2^x 2^{-2}$,定义域为 \mathbb{R} ;函数 $g(x) = 2^{x+1} 2^{2x}$,定义域为 [-1,1].
- (1) 判断函数 f(x) 的奇偶性,不用证明;
- (2) 求函数 g(x) 的最值;
- (3) 若不等式 $f(g(x)) \le f(-3am + m^2 + 1)$ 对 $x \in [-1, 1], a \in [-2, 2]$ 上恒成立,求 m 的取值范围.

五、参考答案

- 1.1 A
- 1.2 C
- 1.3 B
- 1.4 C
- 1.5 D
- 2.1 D
- 2.2 D
- 2.3 C
- 2.4 D
- 2.5 C
- _...
- 2.6 C
- $2.7 \ 1$
- 3.1 C
- 3.2 C
- 3.3 A
- 3.4 C

3.5 (I)
$$x \in (0, +\infty)$$
 H, $f(x) = f(-x) = 4^x - a \cdot 2^x$; (II) $a \ge 2$ H, $f(x)_{\min} = f(\frac{a}{2}) = -\frac{a^2}{4}$;

0 < a < 2 时, $f(x)_{\min} = f(0) = 1 - a$

- 3.6 (I) $f(x) = ax^2 + 3$; (II) $(7, +\infty)$; (III) $m \le 1$
- 4.1 B
- 4.2 B
- 4.3 C
- 4.4 D
- 4.5 B
- 4.6 A
- $4.7 \frac{3}{2}$
- 4.8 3
- 4.10 (1) $f_{\min}(x) = f(\frac{1}{3}) = 1$ $f_{\max}(x) = f(3) = 5$ (2) $m \in (-\infty, 1)$
- 4.11 (1)f(a) > f(b); (2)k < 1.
- 4.12 (1) 增函数; (2) $g_{\max}(t) = g(1) = 1$; $g_{\min}(t) = g(2) = 0$; (3) $m \in (-\infty, -6) \cup [6, +\infty) \cup \{0\}$