Introduction to Computational Complexity	Problem Set 3
CS 4814, Spring 2020	Due 11:59pm Tuesday, 18th February

Hand in your solutions electronically using CMS. Each solution should be submitted as a separate file. Collaboration is encouraged while solving the problems, but:

- 1. list the names of those with whom you collaborated;
- 2. you must write up the solutions in your own words;

Remember that when a problem asks you to design an algorithm, you must also prove the algorithm's correctness and analyze its running time. The running time must be bounded by a polynomial function of the input size.

- (1) (10 points) Define the language TWICE-SAT = $\{\phi \text{ is a 3CNF: } \phi \text{ has at least 2 satisfying assignments}\}$. Prove that TWICE-SAT is NP-complete.
- (2) (10 points) Let ϕ be a 3CNF formula on n variables. An \neq -assignment $z \in \{0,1\}^n$ to the variables of ϕ is such that each clause contains two literals that evaluate to unequal truth values (under the assignment z).
 - 1. Show that the negation of any \neq -assignment to ϕ is also an \neq -assignment.
 - 2. Let \neq SAT be the collection of 3CNF formulas that have an \neq -assignment. Prove that \neq SAT is NP-complete.
- (3) (10 points) A cut in an undirected graph G = (V, E) is a partition of the vertices into two disjoint sets S and $\overline{S} = V \setminus S$. The size of the cut is the number of edges that have one endpoint in S and the other in \overline{S} . Define the language MAX-CUT= $\{\langle G, k \rangle : G \text{ has a cut of size at least } k\}$. Prove that MAX-CUT is NP-complete.

[Hint: Reduce \neq SAT (defined in Problem 2, HW3) to MAX-CUT. Let ϕ be a 3CNF formula on n variables with ℓ clauses. For each *literal* y, create 3ℓ nodes. Connect all nodes labelled x_i to all nodes labelled $\neg x_i$. For each clause C_i in ϕ , create a triangle by adding edges between literals appearing in the clause C_i . Do not use the same node for more than one clause. Note that the constructed undirected graph is on 6n nodes and has $9\ell^2n + 3\ell$ edges.]