- 1. In proof of Proposition 1 (class 4th august) where did we use the fact that P([a,b]) = b a?
- 2. Suppose $\Omega = [0,1]$ and \mathcal{F} is the collection of all subsets of Ω . Can you find examples of Probability $P: \mathcal{F} \to [0,1]$ so that

$$P(A \oplus r) = P(A),$$

where $r \in \mathbb{Q}, A \oplus r = \{x+r: x \in A, x+r \leq 1\} \cup \{x+r-1: x \in A, x+r > 1\}.$

3. Let N > 0 be a fixed natural number. Let

$$\Omega_N = \{ \omega = (\omega_1, \omega_2, \dots, \omega_N) : \omega_i \in \{-1, 1\} \} \equiv \{-1, 1\}^N$$

and \mathcal{A}_N is the collection of all subsets of Ω_N . Define $P: \mathcal{A}_N \to [0,1]$, by

$$P(A) = \frac{|A|}{2^N}.$$

For $1 \le k \le N$, let $X_k : \Omega_N \to \{-1, 1\}$ given by $X_k(\omega) = \omega_k$ denote the displacement in the k-th step of the walk and for $1 \le n \le N$ let

$$S_n(\omega) = \sum_{k=1}^n X_k(\omega),$$

denote the position of the random walk at time n.

- (a) Show that P is a probability on $(\Omega_N A_N)$.
- (b) Show that $P(X_k = 1) = P(X_k = -1) = \frac{1}{2}$ for all $1 \le k \le n$ and that $X_1, X_2, \dots X_N$ are independent.
- (c) Suppose $0 < k_1 < k_2 < k_3 < N$. Show that $S_{k_2} S_{k_1}$ and $S_{k_3} S_{k_2}$ are independent.
- (d) Suppose for $0 < k < m < N, a, b \in \mathbb{Z}$ we have $P(S_k = a) > 0$ then show that

$$P(S_m = b \mid S_k = a) = P(S_{m-k} = b - a).$$