Betweenness

Definition 1 (Betweenness). Let \mathcal{P} be an incidence geometry. We say that a ternary relation $[\cdot \cdot \cdot]$ on the set of points of \mathcal{P} is a betweenness relation if the following properties hold.

- B1. If [xyx], then x = y, for all points x and y.
- B2. If x and y are distinct points and [xzy], then [yzx] and $z \in \overrightarrow{xy}$.
- B3. If x, y, and z are distinct points, then at most one of [xyz], [yzx], and [zxy] is true.

Definition 2 (Segment, Ray). Let x and y be distinct points in an incidence geometry $\mathcal{P} = (P, L)$.

• The set

$$\overline{xy} = \{ z \in P \mid z = x \text{ or } z = y \text{ or } [xzy] \}$$

is called the segment with endpoints x and y. If $z \in \overline{xy}$ and $z \neq x$ and $z \neq y$, we say that z is interior to \overline{xy} .

• The set

$$\overrightarrow{xy} = \{z \in P \mid z = x \text{ or } z = y \text{ or } [xzy] \text{ or } [xyz]\}$$

is called the ray with vertex x toward y.

Proposition 1. If \mathcal{P} is an incidence geometry and $[\cdot \cdot \cdot]$ a betweenness relation on \mathcal{P} , then the following hold.

- 1. $\overline{xy} = \overline{yx}$ for all distinct points x and y.
- 2. $\overline{xy} \subseteq \overrightarrow{xy} \subseteq \overrightarrow{xy}$ for all distinct points x and y.
- 3. If ℓ is a line and x and y distinct points, then $\overline{xy} \cap \ell$ is either \overline{xy} , \varnothing , or $\{p\}$ for some point p.
- 4. $\overrightarrow{xy} \cap \overrightarrow{yx} = \overline{xy}$ for all distinct points x and y.

Examples

 \mathbb{R}^2

 \mathcal{A}

The Trichotomy Property

Definition 3. We say that a betweenness relation $[\cdot \cdot \cdot]$ on an incidence geometry \mathcal{P} has the Trichotomy Property if, whenever x, y, and z are distinct, collinear points, exactly one of [xyz], [yzx], and [zxy] is true. That is, given three collinear points, exactly one is between the other two.

Proposition 2. Suppose \mathcal{P} is an incidence geometry and $[\cdots]$ a betweenness relation with the Trichotomy Property. Then the following hold.

1. For all distinct points x and y,

$$\overrightarrow{xy} = \{z \mid z = x \text{ or } z = y \text{ or } [zxy] \text{ or } [xzy] \text{ or } [xyz]\}.$$

2. $\overrightarrow{xy} \cap \overrightarrow{yx} = \overline{xy}$ for all distinct points x and y.

The 4-Point Property

First for some shorthand: if x, y, z, and w are distinct points, we will say [xyzw] precisely when [xyz], [xyw], [xzw], and [yzw]. More generally, if x_1, \ldots, x_n are distinct points, then $[x_1x_2 \ldots x_n]$ means that $[x_ix_jx_k]$ for all triples (i, j, k) with $1 \le i < j < k \le n$.

Definition 4 (The 4-Point Property). We say that a betweenness relation $[\cdot \cdot \cdot]$ on an incidence geometry \mathcal{P} has the 4-Point Property if the following hold for all distinct points x, y, z, and w.

- 1. If [xyz] and [xzw], then [xyw] and [yzw].
- 2. If [xyz] and [yzw], then [xyz] and [xzw].

Proposition 3. Suppose \mathcal{P} is an incidence geometry and $[\cdots]$ a betweenness relation on \mathcal{P} having the 4-Point Property. If x, y, and z are distinct points such that [xyz], then the following hold.

- 1. $\overline{xy} \cup \overline{yz} = \overline{xz}$
- 2. $\overline{xy} \cap \overline{yz} = \{y\}$
- 3. $\overrightarrow{yx} \cap \overrightarrow{yz} = \{y\}$
- 4. $\overrightarrow{xy} = \overrightarrow{xz}$

Proposition 4. If \mathcal{P} is an incidence geometry with a betweenness relation having both the Trichotomy Property and the 4-Point Property, and if x, y, and z are distinct points such that [xyz], then $\overrightarrow{yx} \cup \overrightarrow{yz} = \overleftarrow{xz}$.

The Interpolation Property

Definition 5. We say that a betweenness relation $[\cdots]$ on an incidence geometry \mathcal{P} has the Interpolation Property if for all distinct points x and y in \mathcal{P} , there exist points z_1 , z_2 , and z_3 such that $[z_1xy]$, $[xz_2y]$, and $[xyz_3]$.

Proposition 5. If \mathcal{P} is an incidence geometry with a betweenness relation having both the Interpolation Property and the 4-Point Property, then every line in \mathcal{P} has infinitely many points.