

Analysis output: all-atom contacts and geometry for TECTA_775-1063H.pdb

Summary statistics

All-Atom Contacts	Clashscore, all atoms:	82.87		0 th percentile* (N=1784, all resolutions)
	Clashscore is the number of serious steric overlaps (> 0.4 Å) per 1000 atoms.			
Protein Geometry	Poor rotamers	0	0.00%	Goal: <0.3%
	Favored rotamers	250	96.53%	Goal: >98%
	Ramachandran outliers	3	1.05%	Goal: <0.05%
	Ramachandran favored	275	95.82%	Goal: >98%
	MolProbity score [^]	2.67		38 th percentile* (N=27675, 0Å - 99Å)
	Cβ deviations >0.25Å	10	3.68%	Goal: 0
Peptide Omegas	Cis Prolines:	1/7	14.29%	Expected: ≤1 per chain, or ≤5%

In the two column results, the left column gives the raw count, right column gives the percentage.

By adding H to this model and allowing Asn/Gln/His flips, we could *automatically* improve your clashscore by 0.90 points.

Multi-criterion visualizations

View (282 Kb)

Single-criterion visualizations

- Clash list (4.6 Kb): View
- Ramachandran plot kinemage (422 Kb): View in KiNG | Download
- Ramachandran plot PDF (1.7 Mb): View

^{* 100&}lt;sup>th</sup> percentile is the best among structures of comparable resolution; 0th percentile is the worst. For clashscore the comparative set of structures was selected in 2004, for MolProbity score in 2006.

[^] MolProbity score combines the clashscore, rotamer, and Ramachandran evaluations into a single score, normalized to be on the same scale as X-ray resolution.

• Cβ deviation scatter plot (26 Kb): View in KiNG Download						
Continue >						
	About MolProbity Website for the R	ichardson Lab Using ecloud x-H	Internal reference 4.2			