RWTH AACHEN UNIVERSITY AACHENER VERFAHRENSTECHNIK

Übung 3

Student: Joshua Feld, 406718

Kurs: Material- und Stoffkunde – Professor: Prof. Dr. Gebhardt

Aufgabe 1. (Wärmekapazität)

Bei vielen Lebensmitteln unterscheidet sich die Wärmekapazität im gefrorenen Zustand von der im aufgetauten Zustand. Brokkoli zum Beispiel hat eine Wärmekapazität von $3,85\,\frac{\mathrm{kJ}}{\mathrm{kg\,K}}$ unter der Schmelztemperatur von Wasser und nur $1,84\,\frac{\mathrm{kJ}}{\mathrm{kg\,K}}$ oberhalb der Schmelztemperatur. Wie viel Energie muss man aufwenden, um die Temperatur von $500\,\mathrm{g}$ Brokkoli von $-18\,^{\circ}\mathrm{C}$ auf $50\,^{\circ}\mathrm{C}$ zu erhöhen? Ignorieren sie bei der Berechnung den Einfuss der Schmelzwärme von Wasser.

Lösung.

Aufgabe 2. (Erwärmung von Eisen)

Eisen der Masse 300 g wird durch eine elektrische Heizung mit einer konstanten Leistungsaufnahme von 200 W in einem Isoliermantel aufgeheizt. Berechnen Sie die Temperatur des Eisenblockes nach $t=60\,\mathrm{s}$, wenn man davon ausgeht, dass er zum Zeitpunkt $t=0\,\mathrm{s}$ eine Temperatur von $T_0=298\,\mathrm{K}$ hatte und dass durch die Isolierung keine Wärme über die Oberfäche entweicht.

Hinweis: Elektrische Arbeit kann vollständig in Wärme umgewandelt werden.

Lösung.

Aufgabe 3. (Quentschen von Zink)

Zink der Masse 20 kg wird in einem Wasserbad der Masse 200 kg gequentscht. Das Zink hat eine Anfangstemperatur von 400°C und die Temperatur des Wasserbades beträgt zu Beginn 25°C. Welche Temperatur hat das Wasser nach Beendigung des Prozesses? Die Wärmekapazität des Wasserbehälters und dessen Wärmeabgabe an die Umgebung sei vernachlässigbar klein.

Lösung.

Aufgabe 4. (Schmelzen von Eis)

Sie möchten Getränke möglichst schnell kühlen ohne sie zu verwässern. Sie haben 2 kg Eis bei einer Temperatur von $-20^{\circ}\mathrm{C}$ zur Verfügung. Ihr Dozent in Material- und Stoffkunde erzählt Ihnen, dass der Wärmeübergang in einem Wasserbad wesentlich schneller abläuft als in einem Eisbett. Daher entscheiden Sie sich, Leitungswasser mit einer Temperatur von 15°C zu Ihrem Eis zu mischen bis das entstehende Wasserbad eine Temperatur von 0°C hat. Wie viel Wasser müssen Sie hinzufügen? Nehmen Sie für Eis eine Wärmekapazität von $2\,060\,\frac{\mathrm{J}}{\mathrm{kg\,K}}$ an.

Lösung.

Aufgabe 5. (Erwärmung von Wasser)

Ein großer Topf, der mit 10 L Wasser gefüllt ist wird mit einer konstanten Leistung von 4 kW erhitzt. Die Anfangstemperatur des Wassers beträgt 5°C, die Endtemperatur beträgt 70°C. Der Topf ist nicht isoliert und gibt nachdem das Wasser eine Temperatur von 25°C erreicht hat, eine konstante Wärmeleistung von 500 W an die Umgebung ab. Folgende Stoffdaten sind gegeben und können über den gesamten Temperaturbereich als konstant angenommen werden:

- Dichte von Wasser: $\rho_W = 1\,000\,\frac{\text{kg}}{\text{m}^3}$
- spezifische Wärmekapazität von Wasser: $c_{p,W} = 4\,181\,\frac{\mathrm{J}}{\mathrm{kg}\,\mathrm{K}}$
- a) Wie viele Minuten dauert der Heizvorgang?
- b) Wegen eines Herdausfalls von 10 min sinkt die Temperatur des Wassers wieder. Welche Temperatur wird nach 10 min erreicht?