Γ_1

For a graph G = (V, E), let $\tau(G)$ denote the size of a minimum vertex cover, and $\nu(G)$ the size of a maximum matching. Recall the two linear programs VCLP and MLP. Let $\tau_f(G) := \operatorname{opt}(\operatorname{VCLP}(G))$ and $\nu_f(G) := \operatorname{opt}(\operatorname{MLP}(G))$. Note that

$$\nu(G) \le \nu_f(G) = \tau_f(G) \le \tau(G),$$

where the equality in the middle follows from Strong LP Duality. Also, if G is bipartite, then the equality holds throughout in (1). Let us say a graph G is VCLP exact if $\tau(G) = \tau_f(G)$, and MLP exact if $\nu(G) = \nu_f(G)$. As we already know, a bipartite graph G is both VCLP exact and MLP exact.

From now on, suppose that G is not bipartite but $\tau(G) = \tau_f(G)$.

- 1. Give an example of such a graph G that is not bipartite but still VCLP exact.
- 2. Give an example of a graph G that is MLP exact but not VCLP exact.
- 3. Suppose G is VCLP exact. Let $Y \subseteq V(G)$ be a minimum vertex cover. Let \mathbf{x} be an optimal solution of MLP(G). Show that $x_e = 0$ if $e \subseteq Y$ (i.e., if both endpoints of e are in the cover).
- 4. Show that such a graph G has a matching of size |Y|, and thus is MLP exact, too.

Solution. 1. The example is G_1 in the upper left. It is not bipartite since B, C, D constitute an odd cycle.

The minimum vertex cover of G_1 can be $\{B,C\}$ or $\{B,D\}$, with size 2. So $\tau(G_1)=2$.

 $VCLP(G_1)$ is

minimize
$$y_A + y_B + y_C + y_D$$
subject to
$$y_A + y_B \ge 1$$

$$y_B + y_C \ge 1$$

$$y_B + y_D \ge 1$$

$$y_C + y_D \ge 1$$

$$y_A, y_B, y_C, y_D \ge 0$$

Note that if we add up the constraints $y_A + y_B \ge 1$ and $y_C + y_D \ge 1$, we get $y_A + y_B + y_C + y_D \ge 2$, which gives a lower bound of the target function.

Since $\tau(G_1) = 2$, it follows that the lower bound is tight. Hence $\tau_f(G_1) = \tau(G_1) = 2$.

So G_1 is an example which is not bipartite but still VCLP exact.

2. The example is K_4 in the upper right. The minimum vertex cover can be $\{A, B, C\}$, $\{A, B, D\}$, $\{A, C, D\}$ and $\{B, C, D\}$, with size 3. So $\tau(K_4) = 3$.

However, by setting the value of each vertex to 0.5, we find that all edges are exactly covered $(y_u + y_v = 1 \text{ for edge } (u, v))$. So $\tau_f(K_4) \leq 2$, and thus K_4 is not VCLP exact.

Now consider the maximum matching and MLP. Obviously we can only match 2 pairs of vertices. So $\nu(K_4) = 2$, and $\nu_f(K_4) \geq 2$ follows. Since we already know that $\tau_f(K_4) \leq 2$ and $\nu_f(K_4) = \tau_f(K_4)$ by Strong LP Duality, we can conclude that $\nu(K_4) = \nu_f(K_4) = \tau_f(K_4) = 2$. Therefore K_4 is MLP exact.

So K_4 is an example which is MLP exact but not VCLP exact.

To solve (3) and (4), define a function $N(\cdot)$ relative to a VCLP exact graph G = (V, E) and a minimum vertex cover Y that:

$$N(A) = \begin{cases} & \{v : v \text{ is the neighbor of some } u \in A\} \cap V \setminus Y, \text{if } A \subseteq Y \\ & \{v : v \text{ is the neighbor of some } u \in A\} \cap Y, \text{if } A \subseteq V \setminus Y \end{cases}$$

^{[-}2: Lemma

If
$$A \subseteq Y$$
, then $|A| \leq |N(A)|$. Vise versa, if $A \subseteq V \setminus Y$, then $|A| \geq |N(A)|$.

Proof. If $A \subseteq Y$ and there is |B| < |A| where B = N(A). Consider the solution of VCLP relative to Y(that is, if $v \in Y$, $y_v = 1$, otherwise $y_v = 0$). Let

$$y'_{v} = \begin{cases} y_{v} - \epsilon &, v \in A \\ y_{v} + \epsilon &, v \in B \\ y_{v} &, \text{ otherwise} \end{cases}$$

where $\epsilon < \frac{1}{2}$. To prove that (y'_v) is also a solution for VCLP, we only need to check:

$$\mathbf{a})y_u'+y_v'\geq 1, u,v\in Y. \text{ There is } y_u'+y_v'\geq 1-\epsilon+1-\epsilon=2-2\epsilon>1;$$

b)
$$y'_u + y'_v \ge 1, u \in A, v \in V \setminus B$$
. There is $y'_u + y'_v \ge (1 - \epsilon) + \epsilon = 1$;

The rest constraints remains true since the left hand side is not changed from solution (y_v) .

So $(y_v)'$ is a solution to the VCLP too, but it is $\epsilon(|A|-|B|)$ less than solution (y_v) , which rises a contradiction that Y is a minimum solution.

Likewise, let A = N(B) and use the same method to construct (y'_v) can prove the 'vice versa' part.

Now we begin to prove (3) and (4):

Proof. (3) Consider the optimal solution of MLP be $X = (x_e)$, assume there is $y_1, y_2 \in Y, (y_1, y_2) \in V, x_{y_1y_2} = x \ge 0$. Let $A_0 = \{y_1, y_2\}, B_0 = N(A_0), C_0 = N(B_0)$.

By the lemma above, there is $|B_0| > |C_0|$. Let all edges from C to B be $\{e_1, e_2 \dots e_m\}$, there is:

$$\sum_{i=1}^{m} y_e + 2x \le |C_0| \le |B_0|$$

By the property of vertex cover, any vertex in B can only connected to vertices in C_0 . Let $B = \{b_1, b_2 \dots b_s\}$, and $v(b_i) = \sum_{\forall e \in E: b_i \in e} x_e$, then there is:

$$\sum_{i=1}^{s} v(b_i) = \sum_{i=1}^{m} y_e \le |B_0| - 2x$$

. So there exists $I = \{v_{i_1}, v_{i_2} \dots v_{i_t}\} \subseteq B$, where $\sum_{j=1}^t (1 - v(b_{i_j})) \ge 2x$. We call $1 - v(b_i)$ the capacity of vertex b_i . Let I_1 be all vertices connected to y_1 and in I, and the capacity of I_1 , $c(I_1)$ is the sum of capacity of vertices in I_1 , I_2 likewise.

Let $A_1 = \{y_2\}$, $B_1 = N(A_1)$, $C_1 = N(B_1)$, by the same method, we can prove that the $c(B_1)$ is no less than x. And that means the $c(I_2)$ is no less than x, since I_2 contains all those vertices with positive capacity in B_1

Without loss of generality, we can assume that $c(I_1)$ is more than x.

Now we prove that in different cases we can always modify the optimal solution X to get a better solution.

In each case, we do the same thing first: let $x_{y_1y_2} = 0$ (which gives an decreasement of x in the target). We then define a slack of (y_i, I_j) (i = 1, 2; j = 1, 2, 3, 4, 5) be that:

Increase x_e for each edge e from y_i to I_j until the constraint of at least one side of e is strict.

Let
$$I_3 = I_1 \cap I_2, I_4 = I_1 \setminus I_3, I_5 = I_2 \setminus I_3,$$

a) If the $c(I_5) \ge 0$, do a slack to (y_2, I_5) . Since the $c(I_5 \ge 0)$, the increasement is more than 0. Notice that $c(I_1)$ is not changed, so now we do the slack of (y_1, I_1) and the increasement is not less than x. Not the total increasement is more than x, so the new solution is better.

b)If $c(I_5) = 0$, there is $c(I_2) \ge 0 \to c(I_3) \ge 0$ and $c(I_1) = c(I) \ge 2x$. Now we do slack of (y_2, I_3) but stop as soon as the increasement is x. Now there is $c(I_1) \ge 2x - x = x$, so doing a slack of (y_1, I_1) can get an increasement more than x. In all, the increasement is more than x, so the new solution is better.

Since in each case there is a better solution, there is a contradiction (that (x_e) is already the optimal). So the assumption is incorrect and it is proved.

This part is straightly proved by Hall's Lemma and the lemma above. Remove all edges from Y to Y, then the graph is a bipartite graph: $G = (Y, V \setminus Y)$. By the lemma above, the condition of Hall's Lemma is satisfied. So there is a perfect matching of size |Y|.