Indicator Variables and Regression

Suppose a hospital is trying to set a benchmark goal of having patients report that nurses always communicate well at least 75% of the time. We now define a nurse communication indicator variable and use simple linear regression to further examine the relationship between nurse communication and the percentage of patients always recommending the hospital.

Open the dataset hospitaldata.dta.

Exercises:

1. Generate a new variable, highnurse, that equals 1 if a hospital had nursealways \geq 75%; and equals 0 if nursealways < 75%.

```
gen highnurse = .
replace highnurse = 1 if nursealways >= 75 & nursealways <= 100
replace highnurse = 0 if nursealways < 75</pre>
```

2. State your model and evaluate the model assumptions.

 $Y_i = {\sf percent}$ of patients who recommend the hospital always $D_i = 1$ if at least 75% of patients at the hospital report that nurses communicate well, and is 0 otherwise

$$Y_i = \alpha + \beta D_i + \epsilon_i$$

where
$$\epsilon_i \sim N(0, \sigma^2)$$
.

The model is identical to a one-way ANOVA therefore the assumputions we make are the same. When we only have two groups, the assumptions are identical to the t-test with equal variances.

3. Fit the model.

So, our fitted model is $Y_i = 62.9 + 10.0 * D_i + \epsilon_i$, where $\epsilon_i \sim N(0, 8.5^2)$.

4. Interpret the coefficients.

 $\hat{\alpha}=62.9$ is $E(Y_i|D_i=0)$. The average percent of patients who always recommend a hospital when less than 75% of patients say nurses always communicated well is 62.9%.

 $\hat{\beta}=10.0$ is $E(Y_i|D_i=1)-E(Y_i|D_i=0)$. Comparing hospitals with at least 75% of patients say nurses always communicated well with those where less than 75% of the patients report that nurses always communicate well, the average difference in percent of patients who always recommend a hospital was 10%.

 $\hat{\alpha} + \hat{\beta} = 72.9$ is $E(Y_i|D_i=1)$. The average percent of patients who always recommend a hospital when at least 75% of patients say nurses always communicated well is 72.9%.

5. Test the null hypothesis that there is no difference in the average percent of patients who always recommend a hospital between hospitals with less than and at least 75% of patients reporting that nurses always communicate well.

```
We test H_0: \beta=0 versus H_A: \beta\neq 0 using a two-sided test with \alpha=0.05.
 We find that \hat{\beta}=10.0, \ \hat{se}(\hat{\beta})=0.3, \ \text{and} \ t=31.7. Under H_0, \ t\sim t_{n-2}, \ \text{and} \ p<0.0001. We conclude that the average percent of patients who always recommend a hospital is greater when at least 75% of patients report that nurses always communicate well.
```

6. Compare the results of the test above to a two-sample t-test with equal variances.

```
. ttest recommendyes, by(highnurse)

Two-sample t test with equal variances

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
```

	+						
0		62.86486	.272132	8.759099	62.33087	63.39886	
1		72.8457		8.449162	72.51657	73.17483	
combined	3570	69.9493	.1617829	9.666443	69.6321	70.2665	
diff		-9.980834			-10.5983	-9.363364	
diff = mean(0) - mean(1) $t = -31.6918$							
Ho: diff = 0 degrees of freedom = 3568							
Ha: di	iff < 0		Ha: diff != 0			Ha: diff > 0	
Pr(T < t)) = 0.0000	Pr(Pr(T > t) = 0.0000			Pr(T > t) = 1.0000	

You should notice some striking similarities!