

[] Fz x,(x2(x3+X4)+X5)X6+X1X2X3

(W/L), 2 5 pm/0.8 pm (W/L), 2 5 pm/0.8 pm (W/L); 2 M1/2 (W/L) P

	~ (Mm)	L yum
)	5 /	8.0
2	5	0.8
3	2.5	8.0
y'	S	0.8
5	5	0.8
8	5	0.8
	<u>-</u>	8.0
7	7.5 5	0.4
b 9		0.1
	5	0.8
10	7.5	0.6
11	7.5	
	20	0.8

1

VIH -

$$\frac{1}{2} \text{Kn} (2(V_{AS} - V_{EN})V_{DS} - V_{DS}^{2}) = \frac{1}{2} \text{Kp} (V_{AS} - V_{EP})^{2}$$

$$\frac{1}{2} \text{Kn} (\frac{1}{2} 2(V_{in} - V_{EN})V_{out} - V_{out}^{2}) = \frac{1}{2} \text{Kp} ((V_{in} - V_{DD}) - V_{EP})^{2}$$

$$\frac{1}{2} \text{Kn} (2V_{out} + 2(V_{in} - V_{EN}) \frac{1}{4} V_{out} - 2V_{out} \frac{1}{4} V_{out}) = \frac{1}{2} \text{Kp} ((V_{in} - V_{DD}) - V_{EP})^{2}$$

Vighted Vinzl.2 Vjl21.17

1 Kp (2(Vin-Voo + Vto) Von-Voo) - (Von-Voo) 2 = Kn (Vin-Ven) 2

[Kp (2(Vin+Voo) + 2(Vin-Von-Vep) d Von+ 2 (Von+Von) d Von) = Kn (Vin-Ve) d Von d Vin 2 Kn (Vin-Ve)

1

NMH23.3-1,222.1 NML21,17-021,17

Vp12Vg12Vp2ZVg2

VSDIZVSGI -> VSDIZVSGI-VTPI VDSZZVGSZ VSSZ VSGI-Vtn

10,2102

MPCex [VSA-1VEP] = MCex [VGS-VEH] 2 VG2VEH 21.32