Predicting NFL Scores using Sportsbook Odds

Nick Colvin

CS 6375 Fall 2022

Introduction

The dataset used for this prediction problem comprises 4219 NFL games from the beginning of the 2007-2008 season to the most recently completed week (Week 13) of the 2022-2023 season. It includes regular season and playoff games. According to the source website, data is sourced from various offshore and Nevada based sportsbooks. Results are updated weekly.

Methods

Two models were used for this problem: MLPRegressor from scikit-learn and my own implementation. The data was reorganized into a more interpretable format for the models. Team names were encoded into integer labels, and every sample was normalized according to the test and training sets. The training set size was 75% of the overall dataset size, and was selected arbitrarily for brevity by choosing a split that performed well with both models. Hyperparameters were also chosen in an ad hoc manner: different configurations of 1-3 hidden layers consisting of 10-200 neurons using either tanh, sigmoid, or ReLU activation functions and MSE or MAE loss functions were tested. Ultimately, a single hidden layer of 100 neurons using ReLU activation was used along with a learning rate of 0.003 over 100 training iterations for the following analysis of features.

In order to judge the relative importance of each feature to the model predictions, the models were trained on the same dataset each time with a single feature removed. This process was repeated 10 times in order to calculate averages and standard deviations for the scores, records, and profits using the modified datasets.

Additionally, bar charts were generated in order to gain insight as to which features were weighed more heavily by my implementation of the model. Each bar represents a sample, and the 25 best predictions are shown. The size of each section represents the norm of the product of feature weights and sample value. These charts were generated after the performance table, and do not reflect the weights for those models. However, they provide similar examples of what a single training session might generate. Features were removed in the same order as in the table.

ResultsScikit-learn MLPRegressor

Removed	R2	MAE	MSE	ML	ML Profit	Spread	Spread	Over/Under	Over/Under
Feature				Record		Record	Profit	Record	Profit
None	0.029	0.763	0.971	670	-35.5	478	-23.7	480	-32.2
	stddev=0.149	stddev=0.009	stddev=0.149	331	stddev=6.81	459	stddev=13.8	468	stddev=17.5
				3		20		10	
				51		98		97	
Advantage	0.033	0.764	0.967	675	-33.3	474	-34.1	489	-29.0
	stddev=0.121	stddev=0.008	stddev=0.121	330	stddev=6.77	465	stddev=15.7	474	stddev=21.6
				3		20		11	
				47		96		81	
Name	0.054	0.759	0.946	676	-43.9	454	-32.7	466	-50.1
	stddev=0.053	stddev=0.005	stddev=0.053	329	stddev=7.13	445	stddev=17.8	474	stddev=21.1
				3		17		10	
				47		139		105	
ML	-0.038	0.791	1.04	551	-19.3	515	-7.1	476	-40.5
	stddev=0.094	stddev=0.006	stddev=0.094	390	stddev=14.8	475	stddev=15.8	474	stddev=21.4
				3		22		10	
				111		43		95	
Spread	0.078	0.758	0.922	679	-24.3	480	-1.76	480	-37.0
Open	stddev=0.036	stddev=0.004	stddev=0.036	325	stddev=8.59	438	stddev=15.2	473	stddev=18.0
				3		19		10	
				48		117		92	
Spread	0.044	0.763	0.956	682	-31.4	472	-26.2	482	-37.6
Close	stddev=0.044	stddev=0.004	stddev=0.044	329	stddev=8.17	455	stddev=21.3	476	stddev=21.1
				3		18		10	
				41		110		87	
Total	0.113	0.758	0.887	677	-26.8	480	-14.2	491	-16.3
Open	stddev=0.005	stddev=0.003	stddev=0.005	326	stddev=12.0	450	stddev=19.8	563	stddev=19.6
				3		18		9	
				49		106		92	
Total	0.031	0.769	0.970	679	-38.7	479	-3.46	506	-21.5
Close	stddev=0.027	stddev=0.003	stddev=0.027	334	stddev=6.69	439	stddev=13.9	482	stddev=14.7
				3		20		11	
	_		_	39		116		56	

Own Implementation

Removed	R2	MAE	MSE	ML	ML Profit	Spread	Spread	Over/Under	Over/Under
Feature				Record		Record	Profit	Record	Profit
None	0.116	0.753	0.884	678	-35.6	448	-49.3	483	-8.50
	stddev=0.003	stddev=0.001	stddev=0.003	329	stddev=7.21	456	stddev=17.3	447	stddev=11.7
				3		17		8	
ı				45		134		117	
Advantage	0.084	0.754	0.916	669	-54.7	440	-53.4	510	-27.1
	stddev=0.012	stddev=0.001	stddev=0.012	336	stddev=3.40	453	stddev=16.9	491	stddev=7.87
				3		17		11	
				46		145		43	
Name	0.096	0.751	0.904	692	-44.0	404	-41.2	515	-34.0
	stddev=0.005	stddev=0.0006	stddev=0.005	337	stddev=2.56	408	stddev=9.86	502	stddev=4.74
				3		14		12	
				23		229		26	
ML	0.038	0.780	0.962	525	-18.8	511	-16.9	496	-26.3
	stddev=0.023	stddev=0.002	stddev=0.023	369	stddev=8.88	481	stddev=9.89	477	stddev=9.19
				3		23		9	
				157		39		74	
Spread	0.108	0.750	0.892	670	-46.8	454	-21.0	507	-27.8
Open	stddev=0.006	stddev=0.001	stddev=0.006	333	stddev=4.41	433	stddev=14.2	489	stddev=5.96
				3		18		11	
				49		150		48	
Spread	0.096	0.753	0.904	683	-51.1	443	-59.9	512	-30.5
Close	stddev=0.016	stddev=0.002	stddev=0.016	344	stddev=3.94	462	stddev=17.7	496	stddev=8.23
				3		20		10	
				25		130		37	
Total	0.113	0.751	0.887	673	-46.9	447	-49.2	522	-16.4
Open	stddev=0.002	stddev=0.0008	stddev=0.002	332	stddev=5.41	456	stddev=14.0	491	stddev=8.81
				3		18		10	
				47		134		32	
Total	0.029	0.767	0.971	681	-48.1	433	-45.9	535	20.6
Close	stddev=0.021	stddev=0.003	stddev=0.021	336	stddev=4.55	440	stddev=14.7	465	stddev=8.44
				3		17		10	
				35		165		45	

Analysis and Conclusion

The most important features for my model on average were the moneyline, team IDs, closing total, and closing spread. This coincides with lower R2 values when those features were removed from the dataset. However, while scores were worse, returns were better without moneyline in the dataset. It was also a bit surprising that MAE was lower without team names, but an explanation is that the model can afford greater degrees of freedom with respect to the other features. The biggest surprise from my model was an average profit of over 20 units betting the total when the closing total was removed. This was the only positive return made by any of the models, and a reasonable standard deviation suggests it was not entirely by chance. The MLPRegressor from Scikit-learn also appeared to place the greatest weight on the moneyline, and removing it from the dataset was the only time the R2 score was lowered. Removing the opening total seemed to have a positive effect on R2, MAE, and MSE. Moreover, removing either opening or closing total from both models made a positive impact on returns. This is peculiar behavior that could be explained by the models having greater freedom to predict different totals. Overall, both models performed reasonably similar with respect to scores and returns, which is not surprising given their similar implementations. However, the standard deviation of returns was lower for my model than Scikit-learn's.

One drawback of my model was training time. This was a bottleneck in terms of getting the best performance. Ideally, these models would have been averaged over 10 sessions using 1000 iterations, however it simply took too long. There did not appear to be any evidence of overfitting even with such a large number of iterations. Another possible improvement would be some sort of loss function to factor in the returns on the training set. Lower error did not necessarily imply higher returns, so it seems like a reasonable consideration.