שאלות להגשה

- :ו. אם \mathcal{M} מבנה עבור חתימה Σ , ו- ϕ , ψ -ו חתימה Σ , הוכיחו: .1
- $.\phi^{\mathcal{M}}$ יכת ל-xשייכת שלהן הרחבה שכל הרחבה שכל ההשמות עבור אייכת ל- $\mathscr{V}(\phi)\setminus\{x\}$ שייכת ל-ההשמות אייכת ל-x
 - $(\exists x \langle \phi \rightarrow \psi \rangle)^{\mathcal{M}} = \langle \forall x \phi \rightarrow \exists x \psi \rangle^{\mathcal{M}} \quad (\exists)$
- עת אתו את ווויון). תארו את הנוסחא $y\exists z\langle y=z+z\lor y=z+z+x\rangle$ (בחתימה עם סימן פונקציה דו-מקומי + ושוויון). תארו את הקבוצה ϕ , כאשר ϕ , הוא המבנה עם שוויון $(\mathbb{Z},+)$. הראו שהתיאור נכון, על-ידי תאור הקבוצות והפונקציות המופיעות בכל שלבי ההגדרה. מהי הקבוצה שאותה נוסחא מגדירה ב- $(\mathbb{Z}^2,+)$?
- הבאים הבאים שהתנאים הוכיחו ($\phi\in\mathbb{T}$ אז $\mathbb{T}\models\phi$ אז הוכיחו ארירה לוגית (כלומר, אם ספיקה, שסגורה תחת גרירה לוגית (כלומר, אם אם $\mathbb{T}\models\phi$ אז שהתנאים הבאים שקולים:
 - $(\mathbb{T} \models \neg \phi$ או $\mathbb{T} \models \phi$ מתקיים ϕ מתקיים, לכל (כלומר, לכל פסוק \mathbb{T} .1
- $\phi^{\mathcal{M}}=1$ עבורם ϕ עבורם הפסוקים איא קבוצת, \mathcal{M} , התורה של החורה עבורם $\mathbb{T}=\mathsf{Th}(\mathcal{M})$.2
 - $\mathrm{Th}(\mathcal{M})=\mathrm{Th}(\mathcal{N})$ מתקיים של \mathbb{T} מתקיים \mathcal{M} ו-3.
 - הודל מודל שיש להן מודל בין התורות שיש להן מודל \mathbb{T}