Lösungen - sauer, alkalisch oder neutral?

	Mit Universalindikator flüssig	Mit Bromthymolblau	
Speiseessig	rot-orange	gelb	
Zitronensaft	rot-orange	gelb - sauer	
hautneutrale Seifenlösung	gelb	gelb	
Leitungswasser	grün	grün – neutral	
Zuckerwasser	grün	grün \int neutrai	
Kernseifen-Lösung	blau	blau	
Rohrreiniger-Lösung	blau	blau = alkalisch	

Es gibt saure, alkalische und neutrale Lösungen. Sie färben Indikatoren (indicare = anzeigen) in charakteristischer Weise.

Herstellung einer Säure: Vom Chlorwasserstoff zur Salzsäure

Beobachtung: Nach dem Zutropfen von Schwefelsäure auf Natriumchlorid bildet sich ein Gas (Chlorwasserstoff).

Dieses löst sich in Wasser und färbt Bromthymolblau gelb.

Die Lösung ist nun elektrisch leitfähig.

Ergebnis: Chlorwasserstoffgas löst sich in Wasser und bildet eine saure Lösung, die Salzsäure. Sie enthält bewegliche Ionen.

Erklärung: Vom Chlorwasserstoff zur Salzsäure

Lewis-Schreibweise:

$$H-\overline{CI}$$
 + H H H H H

<u>Summenformeln:</u>

$$HCI + H_2O \longrightarrow CI^-_{(aq)} + H_3O^+_{(aq)}$$

Erklärung: Vom Chlorwasserstoff zur Salzsäure

- 1. Das Chlorwasserstoffmolekül (HCl) gibt sein Wasserstoffatom ab, die Bindungselektronen bleiben jedoch beide beim Chloratom. Dadurch entsteht ein negativ geladenes Chloranion (Chlorid, Cl⁻).
- 2. Das abgespaltene Wasserstoffion (Proton) bindet an das freie Elektronenpaar des Sauerstoffs im Wassermolekül. Dadurch entsteht ein positiv geladenes Oxoniumion (H_3O^+)
- 3. Das Chlorwasserstoffmolekül gibt ein Proton ab und ist daher ein Protonendonator, eine Säure.
- 4. Das Wassermolekül nimmt ein Proton auf und ist daher ein Protonenakzeptor, eine Base.
- 5. Allgemein gilt: Durch die Protonenübertragung (Protolyse) eines Säuremoleküls auf ein Wassermolekül entsteht eine saure Lösung. Sie enthält immer Oxoniumionen und Säurerest-Anjonen.

Merke:

- ✓ Säuren sind Moleküle, die Protonen (H⁺-Ionen) abspalten können ("Protonendonatoren").
- ✓ Mit Wasser reagieren Säuren zu Oxoniumionen (H₃O⁺) und Säurerest-Ionen. Es entstehen saure Lösungen. Sie sind elektrisch leitfähig
- ✓ Alle sauren Lösungen enthalten Oxoniumionen!

Allgemein gilt:

Säure + Wasser → Säurerestion + Oxoniumion

Saure Lösung

Wichtige Säuren

1. Halogenwasserstoffsäuren

Halogenwasserstoff	Saure Lösung		Säurerestion	
Reaktion	Name	Formel	Name	
$F_2(g) + H_2(g) \rightarrow 2 HF(g)$	Fluorwasserstoff- säure (Flusssäure)	HF (aq)	Fluorid-Ion F ⁻	
$\text{Cl}_2(g) + \text{H}_2(g) \rightarrow 2 \text{ HCI}(g)$	Chlorwasserstoff- säure (Salzsäure)	HCI (aq)	Chlorid-Ion CI ⁻	

Wichtige Säuren

2. Säuren von Nichtmetalloxiden

Nichtmetalloxid		Säure		Säurerestion	
Name	Formel	Name	Formel	Name	Formel
Stickstoffoxid	NO ₂	Salpetersäure	HNO ₃	Nitrat-Ion	NO ₃ -
Kohlenstoffdioxid	CO ₂	Kohlensäure	H ₂ CO ₃	Hydrogencarbonat-lon	HCO ₃ -
				Carbonat-Ion	CO ₃ ² -
Schwefeltrioxid	SO ₃	Schwefelsäure	H ₂ SO ₄	Hydrogensulfat-Ion	HSO ₄ -
				Sulfat-Ion	SO ₄ ² -
Phosphoroxid	P ₄ O ₁₀	Phosphorsäure	H ₃ PO ₄	Dihydrogenphosphat-Ion	H ₂ PO ₄ -
			/	Hydrogenphosphat-Ion	HPO ₄ ²⁻
				Phosphat-Ion	PO ₄ ³⁻

Mehrprotonige Säuren: es können mehrere Protonen abgespalten werden

Chemische Eigenschaften von sauren Lösungen

Merke:

Saure Lösungen...

... färben Indikatoren in charakteristischer Weise.

... lösen unedle Metalle auf. Dabei bilden sich Metallsalzlösungen und Wasserstoff.

... lösen Kalk (Calciumcarbonat) auf. Dabei bildet sich Kohlenstoffdioxid.

→ vgl. Praktikum:

A: Kalkstein und Salzsäure;

B: Magnesium (unedles Metall) und Salzsäure