

SAT Solving with distributed local search

Guangping Li - uzdif@student.kit.edu

Institute of Theoretical informatics, Algorithmics II

Outline

Propositional Satisfiability Problem (SAT)

- Notations
- Local search in SAT problem

Solving SAT by swpSolver

- Basic scheme
- Our improvements

Our Parallel SAT-solver

- The pure portfolio approach
- Two failures
- Initialization with a guide of formula partitioning

Conclusion

Outline

Propositional Satisfiability Problem (SAT)

- Notations
- Local search in SAT problem

Solving SAT by swpSolver

- Basic scheme
- Our improvements

Our Parallel SAT-solver

- The pure portfolio approach
- Two failures
- Initialization with a guide of formula partitioning

Conclusion

Propositional Satisfiability Problem

Notations

- propositional variable: variable with two possible logical values true or false
- literal: an atomic formula either be a positive literal v or a negative literal \bar{v} .
- clause: disjunction of literals.
- CNF-formula: conjunction of clauses.
- **assignment:** $V \rightarrow \{ \textit{true}, \textit{false} \}$
- SAT problem: to determine whether a given formula is satisfiable or not.

Here is an example of SAT problem:

$$F = (v_1 \lor \bar{v_3}) \land (v_2 \lor v_1 \lor \bar{v_1})$$

$$Vars(F) = \{v_1, v_2, v_3\}$$

$$numV(F) = |Vars(F)| = 3$$

$$Lits(F) = \{v_1, \bar{v_1}, v_2, v_3, \bar{v_3}\}$$

$$Cls(F) = \{C_1, C_2\}$$

$$numC(F) = |Cls| = 2$$

$$C_1 = \{v_1, \bar{v_3}\}$$

$$C_2 = \{v_2, v_3, \bar{v_1}\}$$

 $A(v_1)$ = true, $A(v_2)$ = false, $A(v_3)$ = true, A is an assignment satisfying F.

 $\hat{A}(v_1) = true$, $\hat{A}(v_2) = false$, $\hat{A}(v_3) = false$, \hat{A} is an assignment with conflict in C_2 .

Local search in SAT problem

Local Search

- an instance I of a hard combinational Problem P
- a set of solutions S(I)
- an object function (score or cost) Γ
- to find the solution with minimum cost by applying local changes.

Algorithmus 1: Focused Local Search

input : A CNF Formula F

parameter : Timeout

output : a satisfying assignment A1 A ← random generated assignment A

- **2 while** $(\exists$ *unsatisfied clause* \land *Timeout does not occur*) **do**
- $c \leftarrow \text{random selected unsatisfied clause}$
- $4 \quad x \leftarrow pickVar(A, c)$
- $5 \mid A \leftarrow flip(A, x)$

Local search in SAT problem

Stochastic Local Search (SLS)

- use the probability distribution of the scores of candidate solutions
- the more advantageous a move is, the higher is the probability of choosing that move

Algorithmus 2 : PickVar in probSAT

input: current assignment *A*, unsatisfied clause *c*

output : a variable *x* in *c* to be flipped

- 1 **for** *v in c* **do**
- 2 | Evaluate v with function $\Gamma(A, v)$;
- 3 $x \leftarrow$ randomly selected variable v in c with probability

$$p(v) = \frac{\Gamma(A, v)}{\sum_{u \in c} \Gamma(A, u)}$$

Local search in SAT problem

Random walk in local search

- originally introduced in 1994
- By introducing "uphill noises", the walkSAT combines greedy local search and random walk.

Algorithmus 3: PickVar in walkSAT

input: current assignment *A*, unsatisfied clause *c*

parameter: probability p

output: a variable x in c to be flipped

- 1 **for** *v in c* **do**
- 2 Evaluate v with function $\Gamma(A, v)$;
- 3 with probability $p: x \leftarrow v$ with maximum $\Gamma(A, v)$;
- 4 with probability 1 p: $x \leftarrow$ randomly selected v in c.

Outline

Propositional Satisfiability Problem (SAT)

- Notations
- Local search in SAT problem

Solving SAT by swpSolver

- Basic scheme
- Our improvements

Our Parallel SAT-solver

- The pure portfolio approach
- Two failures
- Initialization with a guide of formula partitioning

Conclusion

Solving SAT by swpSolver

Basic scheme

Algorithmus 4: Our Local Search

: A CNF Formula F input

parameter: Timeout

output: a satisfying assignment A

- 1 $A \leftarrow initAssign(F)$;
- 2 while (∃ unsatisfied clause ∧ Timeout does not occur) do
- $c \leftarrow pickCla(A)$:
- $x \leftarrow pickVar(A, c)$:
- $A \leftarrow flip(A, x);$

Evaluation

- 180 benchmark instances used in our experiments are the 180 instances (UNIF) in random benchmark categories in SAT competition 2017.
- all the clause have the same length in a UNIF problem file
- to construct one clause, k literals are randomly chosen from the 2n possible literals
- at least 60 (33%) problems form our 180 benchmark collections are unsatisfiable
- each experiment is repeated three times
- PAR-2 runtime for a whole kSAT set

initAssign(F)

- RandomInit: buid a complete assignment randomly
- BiasInit: assign true to a variable if the number of occurrences of its positive literal is larger than that of its negative literal.
- Bias-RandomInit: assign true to variable v_i with probability posOccurences[i] posOccurences[i]+negOccurences[i].

initAssign(F)

k	RandomInit	BiasInit	Bias-RandomInit
3	9221.9	9157.76	9078.27
	55	54	55
5	7143.9	4351.09	4582.54
	82	87	87
7	6238.51	5421.9	6310.7
	60	60	60

3SAT: RandomInit

5SAT and 7SAT: BiasInit

pickVar(A,c)

- combine the random walk and stochastic selection
- \blacksquare pick greedy flips with zero breakcounts with a certain probability p.
- using the *probSAT* with probability (1 p)

Algorithmus 5 : Our pickVar

```
input : current assignment A, unsatisfied clause c
```

parameter: probability p

output: a variable x in c to be flipped

- 1 *greedyVs* ← \emptyset ;
- 2 for all v in c do
- $\mathbf{3} \mid \mathbf{if} (break(A, v) = 0) \mathbf{then}$
- 5 with probability p: x ← randomly selected variable v ∈ greedyVs;
- 6 with probability (1 p): $x \leftarrow$ randomly selected variable v in c with probability $\frac{\Gamma(A, v)}{\sum_{u \in C} \Gamma(A, u)}$

Variant 1: Walk

- a statistic list S to record how many times each variable is chosen for flipping.
- The candidate with the small statistic value will be chosen.

 Getting the random literals using stochastic process consumes the most runtime.

Variant 2: GreedyBreak

- permitted greedy literal: literal with zero breakcount and its statistic value is under a certain threshold t
- choose a permitted greedy literal randomly for flipping.
- if no permitted greefy literal exists, we pick a literal using probSAT heuristic.
- 1.approach *Average*: $t = \alpha \times \frac{numF}{numV}$
- 2.approach *Random-Flip*: $t = \alpha \times r$ with $r \in [0, numF]$.

PickVar(A,c) with simulated annealing

Simulated Annealing

- proposed by Kirkpatrick, Gelatt, and Vecchi.
- guide local search with a controlling parameter temperature.
- The temperature varies according to the score of the current situation.
- Higher temperature allows uphill moves with higher probability.

• Walk:
$$p = \alpha \times \frac{s(randomV)}{s(greedyV) + s(randomV)}$$

- Average: $t = \alpha \times \frac{numF}{numV}$
- Random-Flip: $t = \alpha \times r$ with $r \in [0, numF]$.
- two variants of q(A):
 - $q_{global}(A) = unsatN(A)$
 - $q_{local}(A) = |\{v | v \in c \land break(v) = 0\}|$

Evaluation

pickVar

- The 68 graphs used in our experiments are from the DIMACS benchmark collection.
- The single-threaded experiments were run on computers that had four AMD(R) Opteron(R) processors 6168 (1.9 Ghz with 12 cores) and 256GB RAM. The computers ran the 64-bit version of Ubuntu 12.04.
- The multi-threaded experiments were run on fat nodes InstitutsClusterII. IC2 is a distributed memory parallel computer with 480 16-way so-called thin compute nodes and 5 32-way so-called fat compute nodes. The thin nodes are equipped with 16 cores, 64 GB main memory, whereas the fat nodes are equipped with 32 cores, 512 GB main memory.

Evaluation

An advantage plot shows the advantage of an algorithms to another algorithm. The y-axis gives the ordered percentage differences.

Our improvements

Basic scheme

- Step 1: Initialize Coloring (How to initialize coloring?)
- Step 2: Solve k-VCP (How to improve Tabucol?)
- Step 3: Reduce a color (How to reconstruct coloring?)

Step 1:How to initialize coloring?

Our Node-index initialization vs Random initialization

- **Node-index initialization** is to use c: $v_i \rightarrow i$ as the initial solution.
- **Random initialization** is to build a coloring randomly.

Step 2: How to improve Tabucol?

Our column-traverse vs row-traverse of solution matrix

- To find next move, the maximum element in the solution matrix must be found.
- If more than one candidate exists, the first found one is chosen as the next step.
- This matrix can be traversed row by row or column by column.

Step 2: How to improve Tabucol?

Statistic matrix

- The Tabucol algorithm uses a tabu list to avoid short-term cycling.
- To recognize long-term cycling, a statistic matrix S is added.
- The S_{ii} represents how many times a one-step move [i, j] was chosen as the next step.
- The candidate with the smallest statistic value will be chosen in the next step.

Step 3: How to reconstruct new coloring?

An observation

It seems that the solution loses its potential in the process of reducing colors iteratively. So it should be helpful to use a new and perhaps more potential coloring.

Replace by a randomly generated solution

We replace the current illegal solution occasionally by a new randomly generated coloring of the same size.

Outline

The vertex coloring problem

- k-VCP
- VCP

The Tabucol algorithm Solving VCP by Tabucol

- Basic scheme
- Our improvements

Our Parallel GCP-solver

- Parameter combinations
- Our approaches

Conclusion

Parameter combinations

- Most graphs get better results with the our suggestions.
- Some graphs get better results with the original GCP-solver.
- The agents run with different combinations of the suggestions (L, α , the search directions and whether a statistic matrix is introduced).

Parameter combinations

Index	Ĺ	α	Initialization	Replace	Traverse	Statistic
1	9	0.38	Node-Index	true	Column	true
2	1	0.77	Node-Index	true	Column	true
3	11	0.90	Node-Index	true	Column	true
4	17	0.59	Random	true	Column	true
5	18	0.42	Node-Index	false	Column	false
6	4	0.92	Node-Index	true	Column	true
7	16	0.76	Node-Index	false	Row	false
8	17	0.47	Node-Index	false	Column	false
9	2	0.60	Node-Index	true	Column	false
10	2	0.54	Node-Index	false	Column	true
11	5	0.46	Random	true	Column	true
12	11	0.63	Random	true	Column	true
13	7	0.83	Node-Index	true	Column	true
14	8	0.98	Node-Index	false	Row	true
15	18	0.58	Node-Index	true	Column	false
16	13	0.90	Node-Index	false	Column	true

Parameter combinations

Index	L	α	Initialization	Replace	Traverse	Statistic
17	20	0.56	Node-Index	true	Column	false
18	10	0.95	Node-Index	true	Column	true
19	15	0.55	Node-Index	true	Row	true
20	17	0.39	Node-Index	true	Column	true
21	18	0.52	Node-Index	false	Column	true
22	11	0.32	Node-Index	true	Column	true
23	15	0.62	Node-Index	false	Column	true
24	6	0.94	Random	true	Column	true
25	9	0.94	Node-Index	false	Column	false
26	12	0.96	Node-Index	true	Column	true
27	16	0.58	Node-Index	false	Column	true
28	9	0.45	Node-Index	false	Column	true
29	19	0.95	Node-Index	true	Column	true
30	18	0.31	Node-Index	true	Column	false
31	6	0.50	Node-Index	false	Column	false
32	15	0.93	Node-Index	false	Column	false

1st Approach: The pure portfolio approach

- The agents run the GCP solver with different parameter combinations.
- After collecting the solutions found by each agent, the search takes the coloring of the minimum size as the result.

2nd Approach: Forced color reducing

- This approach is based on the pure portfolio approach.
- The agents share the minimum size.
- One agent has already found a k-coloring and broadcasts it.
- With this notification, all agents search for a legal k-1 coloring.

3rd Approach: Tabu sharing

- A tabu list records the search path to avoid short-term cycling.
- The agents share the "traps" of local search loops.

4th Approach: Statistic sharing

- To recognize long-term cycling, a *statistic matrix S* is added.
- The S_{ij} represents how many times a one-step move $[v_i, j]$ was chosen as the next step.
- The candidate with the smallest statistic value will be chosen in the next step.
- The agents use one common statistic matrix.

Problem

Outline

The vertex coloring problem

- k-VCP
- VCP

The Tabucol algorithm Solving VCP by Tabucol

- Basic scheme
- Our improvements

Our Parallel GCP-solver

- Parameter combinations
- Our approaches

Conclusion

Conclusion

Our improvement:

- An algorithm solves the VCP with parallel Tabucol searches.
- The statistic matrix recognizes long-term cycling and brings improvement to our algorithm.
- Certain information exchange (minimum size, statistic matrix) can improve the performance of the parallel search.

Comparison of our GCP-solver with DSATUR, PASS, TRICK:

- 50 of 68 (73%) benchmark graphs get best results with our solver.
- 20 of 68 (29%) benchmark graphs get unique best results with our solver

Further work

- Using different search strategies
- Using different cooperation strategies
- Using different algorithms in agents

THANK YOU FOR YOUR ATTENTION ANY QUESTIONS?