Recurrent Attention Unit with Step-down Optimized by NADAM

Enrique Boswell Nueve IV March 26, 2019

In this document, the author will be providing full deviations for a Recurrent Attention Unit[2]. This unit has been modified with a Step-down Neural network to allow for differences in dimensionality between the inputs and targets. The parameters for the RAU are being updated with the optimization technique NADAM (Nesterov-accelerated adaptive moment estimation)[1].

References

- [1] Dozat, Timothy. "Incorporating nesterov momentum into adam." (2016).
- [2] Zhong, Guoqiang, Guohua Yue, and Xiao Ling. "Recurrent Attention Unit." arXiv preprint arXiv:1810.12754 (2018).

Contents

1	For	ward Pass at Time t	
	1.1	Update Gate	
	1.2	Reset Gate	
	1.3	Candidate Gate	
	1.4	Attention Gate	
	1.5	Probabilistic Vector	
	1.6	Learning Function: General	
	1.7	State Vector	
	1.8	Step Down Network	
	1.9	Error Calculation	
2	Bac	kpropagation of Weights at Time t	
	2.1	Update Gate Present Weights	
	2.2	Update Gate Memory Weights	
	2.3	Candidate Gate Present Weights	
	2.4	Candidate Gate Memory Weights	
	2.5	Reset Gate Present Weights	
	2.6	Reset Gate Memory Weights	
	2.7	Attention Gate Weight	
	2.8	Learning Function Weight	
	2.9	Step-down Network Weight	
3	Backpropagation of State at time t		
	3.1	Past State of Update Gate	
	3.2	Past State of Candidate Gate	
	3.3	Past State of Reset Gate	
	3.4	Past State of Attention Gate	
	3.5	Past State of State Vector	
	3.6	Backpropagation State Value	
4	Par	ameter Update	
	4.1	Update Update Gate	
	4.2	Update Reset Gate	
	4.3	Update Candidate Gate	
	4.4	Update Attention Weight	
	4.5	Update Learning Function Weight	
	4.6	Optimization Technique: NADAM	
5	Act	ivation Functions 8	
	5.1	Sigmoid	
	5.2	Hyperbolic Tangent	
	5.3	Softmax	

Figure 1: Recurrent Attention Unit Diagram[2].

1 Forward Pass at Time t

1.1 Update Gate

$$z_t = \sigma(W_z x_t + U_z h_{t-1})$$

1.2 Reset Gate

$$r_t = \sigma (W_r x_t + U_r h_{t-1})$$

1.3 Candidate Gate

$$\tilde{h_t} = \tanh\left(W_c x_t + (U_c h_{t-1}) \odot r_t\right)$$

1.4 Attention Gate

$$\hat{h_t} = \tanh\left(W_a \gamma_t\right)$$

1.5 Probabilistic Vector

$$\gamma_t = \operatorname{softmax}(\alpha_t)$$

1.6 Learning Function: General

$$\alpha_t = W_{\alpha_t} h_{t-1}^T x_t$$

1.7 State Vector

$$h_t = \left(1 - z_t\right)h_{t-1} + \left(\frac{z_t}{2}\right)\left(\tilde{h_t} + \hat{h_t}\right)$$

1.8 Step Down Network

$$y = \sigma(W^T h_t)$$

1.9 Error Calculation

$$E = \frac{1}{2}(\hat{y_t} - y_t)^2$$

2 Backpropagation of Weights at Time t

2.1 Update Gate Present Weights

$$\begin{split} \frac{\delta E_t}{\delta W_z} &= \frac{\delta E_t}{\delta y_t} \cdot \frac{\delta y_t}{\delta h_t} \cdot \frac{\delta h_t}{\delta z_t^o} \cdot \frac{\delta z_t^o}{\delta z_t^i} \cdot \frac{\delta z_t^i}{\delta W_z} \\ \frac{\delta E_t}{\delta W_z} &= x_t [\left(W[(y-\hat{y})\odot\sigma(W^Th_t)\odot(1-\sigma(W^Th_t))]\right)\odot(\frac{\tilde{h_t}}{2} + \frac{\hat{h_t}}{2} - h_{t-1})\odot(\sigma(W_z x_t + U_z x_t)) \\ &\odot(1-\sigma(W_z x_t + U_z h_{t-1})))]^T \end{split}$$

2.2 Update Gate Memory Weights

$$\begin{split} \frac{\delta E_t}{\delta U_z} &= \frac{\delta E_t}{\delta y_t} \cdot \frac{\delta y_t}{\delta h_t} \cdot \frac{\delta h_t}{\delta z_t^o} \cdot \frac{\delta z_t^o}{\delta z_t^i} \cdot \frac{\delta z_t^i}{\delta U_z} \\ \frac{\delta E_t}{\delta U_z} &= h_{t-1} [\left(W[(y-\hat{y})\odot(W^T h_t)\odot(1-(W^T h_t))]\right)\odot(\frac{\tilde{h_t}}{2} + \frac{\hat{h_t}}{2} - h_{t-1})\odot(\sigma(W_z x_t + U_z x_t)) \\ & \odot (1-\sigma(W_z x_t + U_z h_{t-1})))]^T \end{split}$$

2.3 Candidate Gate Present Weights

$$\begin{split} \frac{\delta E_t}{W_{\tilde{h_t}}} &= \frac{\delta E_t}{\delta y_t} \cdot \frac{\delta y_t}{\delta h_t} \cdot \frac{\delta h_t}{\delta \tilde{h_t}} \cdot \frac{\delta \tilde{h_t^o}}{\delta \tilde{h_t^i}} \cdot \frac{\delta \tilde{h_t^i}}{W_{\tilde{h_t}}} \\ \frac{\delta E_t}{W_{\tilde{h_t}}} &= x_t [\left(W[(y-\hat{y})\odot\sigma(W^Th_t)\odot(1-\sigma(W^Th_t))])\odot(\frac{z_t}{2})\odot(1-\tanh^2(W_{\tilde{h_t}}x_t+(U_{\tilde{h_t}}h_{t-1})\odot r_t)]^T \end{split}$$

2.4 Candidate Gate Memory Weights

$$\begin{split} \frac{\delta E_t}{U_{\tilde{h}}} &= \frac{\delta E_t}{\delta y_t} \cdot \frac{\delta y_t}{\delta h_t} \cdot \frac{\delta h_t}{\tilde{h}_t^{\tilde{o}}} \cdot \frac{\delta \tilde{h}_t^{\tilde{o}}}{\delta \tilde{h}_t^{\tilde{i}}} \cdot \frac{\delta \tilde{h}_t^{\tilde{i}}}{U_{\tilde{h}_t}} \\ \frac{\delta E_t}{U_{\tilde{h}_t}} &= (h_{t-1} \odot r_t) [\left(W[(y - \hat{y}) \odot \sigma(W^T h_t) \odot (1 - \sigma(W^T h_t))] \right) \odot (\frac{z_t}{2}) \\ & \odot (1 - \tanh^2(W_{\tilde{h}_t} x_t + (U_{\tilde{h}_t} h_{t-1}) \odot r_t))]^T \end{split}$$

2.5 Reset Gate Present Weights

$$\begin{split} \frac{\delta E_t}{\delta W_r} &= \frac{\delta E_t}{\delta y_t} \cdot \frac{\delta y_t}{\delta h_t} \cdot \frac{\delta h_t}{\delta \tilde{h}_t^o} \cdot \frac{\delta \tilde{h}_t^o}{\delta \tilde{h}_t^i} \cdot \frac{\delta \tilde{h}_t^o}{\delta r_t^o} \cdot \frac{\delta \tilde{h}_t^o}{\delta r_t^o} \cdot \frac{\delta r_t^o}{\delta r_t^i} \cdot \frac{\delta r_t^i}{\delta W_r} \\ \frac{\delta E_t}{\delta W_r} &= x_t [\left(W[(y - \hat{y}) \odot \sigma(W^T h_t) \odot (1 - \sigma(W^T h_t))] \right) \odot \left(\frac{z_t}{2} \right) \odot (1 - \tanh^2(W_{\tilde{h}_t} x_t + (U_{\tilde{h}} h_{t-1}) \odot r_t)) \\ & \odot \left(U_{\tilde{h}_t} h_{t-1} \right) \odot \left(\sigma(W_r x_t + U_r h_{t-1}) \odot (1 - \sigma(W_r x_t + U_r h_{t-1})) \right)]^T \end{split}$$

2.6 Reset Gate Memory Weights

$$\begin{split} \frac{\delta E_t}{\delta U_r} &= \frac{\delta E_t}{\delta y_t} \cdot \frac{\delta y_t}{\delta h_t} \cdot \frac{\delta h_t}{\delta \tilde{h}_t^{\tilde{o}}} \cdot \frac{\delta \tilde{h}_t^{\tilde{o}}}{\delta r_t^{\tilde{o}}} \cdot \frac{\delta \tilde{h}_t^{\tilde{o}}}{\delta r_t^{\tilde{o}}} \cdot \frac{\delta r_t^{\tilde{o}}}{\delta r_t^{\tilde{o}}} \cdot \frac{\delta r_t^{\tilde{o}}}{\delta U_r} \\ \frac{\delta E_t}{\delta U_r} &= h_{t-1} [\left(W[(y-\hat{y}) \odot \sigma(W^T h_t) \odot (1-\sigma(W^T h_t))]\right) \odot (\frac{z_t}{2}) \odot (1-\tanh^2(W_{\tilde{h}_t} x_t + (U_{\tilde{h}_t} h_{t-1}) \odot r_t)) \\ & \odot (U_{\tilde{h}_t} h_{t-1}) \odot (\sigma(W_r x_t + U_r h_{t-1}) \odot (1-\sigma(W_r x_t + U_r h_{t-1})))]^T \end{split}$$

2.7 Attention Gate Weight

$$\frac{\delta E_t}{\delta W_a} = \frac{\delta E_t}{\delta y_t} \cdot \frac{\delta y_t}{\delta h_t} \cdot \frac{\delta h_t}{\delta \hat{h}_t} \cdot \frac{\delta \hat{h}_t}{\delta W_a}
\frac{\delta E_t}{\delta W_a} = \gamma_t [(W[(y - \hat{y}) \odot \sigma(W^T h_t) \odot (1 - \sigma(W^T h_t))]) \odot (\frac{z_t}{2}) \odot (1 - \tanh^2(W_a \gamma_t))]^T$$

2.8 Learning Function Weight

$$\begin{split} \frac{\delta E_t}{W_{\alpha}} &= \frac{\delta E_t}{\delta y_t} \cdot \frac{\delta y_t}{\delta h_t} \cdot \frac{\delta h_t}{\delta \hat{h}_t} \cdot \frac{\delta \hat{h}_t}{\delta \gamma_t} \cdot \frac{\delta \gamma_t}{\delta \alpha_t} \cdot \frac{\delta \alpha_t}{\delta W_{\alpha}} \\ \frac{\delta E_t}{\delta W_{\alpha}} &= h_{t-1}^T x_t [(\left(W[(y-\hat{y}) \odot \sigma(W^T h_t) \odot (1-\sigma(W^T h_t))]\right) \odot (\frac{z_t}{2}) \odot (1-\tanh^2(W_a \gamma_t)) \\ & \odot softmax'(\alpha_t)]^T \end{split}$$

2.9 Step-down Network Weight

$$\begin{split} \frac{\delta E_t}{\delta W} &= \frac{\delta E_t}{\delta y_t} \cdot \frac{\delta y_t}{\delta W} \\ \frac{\delta E_t}{\delta W} &= h_t [(y - \hat{y}) \odot \sigma(W^T h_t) \odot (1 - \sigma(W^T h_t))]^T \end{split}$$

3 Backpropagation of State at time t

3.1 Past State of Update Gate

$$\begin{split} \frac{\delta E_t}{\delta h_{t-1}} &= \frac{\delta E_t}{\delta y_t} \cdot \frac{\delta y_t}{\delta h_t} \cdot \frac{\delta h_t}{\delta z_t^o} \cdot \frac{\delta z_t^o}{\delta z_t^i} \cdot \frac{\delta z_t^i}{\delta h_{t-1}} \\ \frac{\delta E_t}{\delta h_{t-1}} &= U_z[\left(W[(y-\hat{y})\odot\sigma(W^Th_t)\odot(1-\sigma(W^Th_t))]\right)\odot(\frac{\tilde{h_t}}{2} + \frac{\hat{h_t}}{2} - h_{t-1})\odot(\sigma(W_z x_t + U_z x_t)) \\ & \odot(1-\sigma(W_z x_t + U_z h_{t-1})))] \end{split}$$

3.2 Past State of Candidate Gate

$$\begin{split} \frac{\delta E_t}{h_{t-1}} &= \frac{\delta E_t}{\delta y_t} \cdot \frac{\delta y_t}{\delta h_t} \cdot \frac{\delta h_t}{\delta h_t} \cdot \frac{\delta \tilde{h_t^o}}{\delta \tilde{h_t^i}} \cdot \frac{\delta \tilde{h_t^i}}{\delta \tilde{h_t^i}} \cdot \frac{\delta \tilde{h_t^i}}{h_{t-1}} \\ \frac{\delta E_t}{h_{t-1}} &= (U_{\tilde{h_t}} \odot r_t) [\left(W[(y-\hat{y}) \odot \sigma(W^T h_t) \odot (1-\sigma(W^T h_t))]\right) \odot (\frac{z_t}{2}) \\ & \odot (1-\tanh^2(W_{\tilde{h_t}} x_t + (U_{\tilde{h_t}} h_{t-1}) \odot r_t)] \end{split}$$

3.3 Past State of Reset Gate

$$\begin{split} \frac{\delta E_t}{\delta h_{t-1}} &= \frac{\delta E_t}{\delta y_t} \cdot \frac{\delta y_t}{\delta h_t} \cdot \frac{\delta h_t}{\delta \tilde{h}_t^o} \cdot \frac{\delta \tilde{h}_t^o}{\delta \tilde{h}_t^i} \cdot \frac{\delta \tilde{h}_t^i}{\delta r_t^o} \cdot \frac{\delta r_t^o}{\delta r_t^i} \cdot \frac{\delta r_t^i}{\delta h_{t-1}} \\ \frac{\delta E_t}{\delta h_{t-1}} &= U_r[\left(W[(y-\hat{y})\odot\sigma(W^Th_t)\odot(1-\sigma(W^Th_t))])\odot(\frac{z_t}{2})\odot(1-\tanh^2(W_{\tilde{h}_t}x_t+(U_{\tilde{h}_t}h_{t-1})\odot r_t)) \\ &\odot(U_{\tilde{h}_t}h_{t-1})\odot(\sigma(W_rx_t+U_rh_{t-1})\odot(1-\sigma(W_rx_t+U_rh_{t-1})))] \end{split}$$

3.4 Past State of Attention Gate

$$\frac{\delta E_t}{\delta h_{t-1}} = \frac{\delta E_t}{\delta y_t} \cdot \frac{\delta y_t}{\delta h_t} \cdot \frac{\delta h_t}{\delta \hat{h}_t} \cdot \frac{\delta \hat{h}_t}{\delta h_{t-1}}$$

$$\frac{\delta E_t}{\delta h_{t-1}} = W_{\alpha_t} x_t [(W[(y - \hat{y}) \odot \sigma(W^T h_t) \odot (1 - \sigma(W^T h_t))]) \odot (\frac{z_t}{2}) \odot (1 - \tanh^2(W_a \gamma_t)) \odot softmax'(\alpha_t))]$$

3.5 Past State of State Vector

$$\begin{split} \frac{\delta E_t}{\delta h_{t-1}} &= \frac{\delta E_t}{\delta y_t} \cdot \frac{\delta y_t}{\delta h_{t-1}} \\ \frac{\delta E_t}{\delta h_{t-1}} &= \left(W[(y - \hat{y}) \odot \sigma(W^T h_t) \odot (1 - \sigma(W^T h_t)) \odot (1 - z_t) \right) \end{split}$$

3.6 Backpropagation State Value

$$\frac{\delta E_t}{\delta h_{t-1}} = \frac{\delta E_t}{\delta z_t^i} \cdot \frac{\delta z_t^i}{\delta h_{t-1}} + \frac{\delta E_t}{\delta \tilde{h_t^i}} \cdot \frac{\delta \tilde{h_t^i}}{h_{t-1}} + \frac{\delta E_t}{\delta r_t^i} \cdot \frac{\delta r_t^i}{\delta h_{t-1}} + \frac{\delta E_t}{\delta \hat{h_t}} \cdot \frac{\delta \hat{h_t}}{\delta h_{t-1}} + \frac{\delta E_t}{\delta y_t} \cdot \frac{\delta y_t}{\delta h_{t-1}}$$

4 Parameter Update

4.1 Update Update Gate

$$\nabla_{Wz}E = \sum_{t=0}^{T} \frac{\delta E_t}{\delta W_z}$$
 $\nabla_{Uz}E = \sum_{t=0}^{T} \frac{\delta E_t}{\delta U_z}$

4.2 Update Reset Gate

$$\nabla_{Wr} E = \sum_{t=0}^{T} \frac{\delta E_t}{\delta W_r} \qquad \nabla_{Ur} E = \sum_{t=0}^{T} \frac{\delta E_t}{\delta U_r}$$

4.3 Update Candidate Gate

$$\nabla_{Wc}E = \sum_{t=0}^{T} \frac{\delta E_t}{\delta W_c} \qquad \nabla_{Uc}E = \sum_{t=0}^{T} \frac{\delta E_t}{\delta U_c}$$

4.4 **Update Attention Weight**

$$\nabla_{Wa} E = \sum_{t=0}^{T} \frac{\delta E_t}{\delta W_a}$$

Update Learning Function Weight 4.5

$$\nabla_{W\alpha} E = \sum_{t=0}^{T} \frac{\delta E_t}{\delta W_{\alpha}}$$

Optimization Technique: NADAM

Algorithm 1 Nesterov-accelerated adaptive moment estimation

- $\triangleright \mu = .99$
- > v=.9

- Algorithm 1 Nesterov-acceler 1: $g_t \leftarrow \nabla_{\theta_{t-1}} f(\theta_{t-1})$ 2: $\hat{g}_t \leftarrow \frac{g_t}{1 \prod_{i=1}^t \mu_i}$ 3: $m_t \leftarrow \mu m_{t-1} + (1 \mu) g_t$ 4: $\hat{m}_t \leftarrow \frac{m_t}{1 \prod_{i=1}^{t+1} \mu_i}$ 5: $n_t \leftarrow v n_{t-1} + (1 v) g_t^2$ 6: $\hat{n}_t \leftarrow \frac{n_t}{1 v^t}$ 7: $\bar{m}_t \leftarrow (1 \mu_t) \hat{g}_t + \mu_{t+1} \hat{m}_t$ 8: $\theta_t \leftarrow \theta_{t-1} \eta \frac{\bar{m}_t}{\sqrt{\hat{n}_t} + \varepsilon}$ $\triangleright \varepsilon = 10e^-8$

Activation Functions 5

5.1 Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

5.2Hyperbolic Tangent

$$tanh(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

5.3 Softmax

$$softmax(x)_{j} = \frac{e^{x_{j}}}{\sum_{k=1}^{K} e^{x_{k}}}$$
 for j=1,...,k