Státnicový okruh 1: Matematické metody

19. května 2015

Obsah

1 Množiny

Množina je objekt, který se skládá z jiných objektů tzv. **prvků** té množiny. Množiny zpravidla značíme velkými písmeny (A, B, ..., Z), jejich prvky pak malými písmeny (a, b, ..., z). Fakt, že x je prvkem množiny A značíme $x \in A$. Není-li prvkem A značíme $x \notin A$.

Množina je jednoznačné dána svými prvky. Prvek do množiny buď patní nebo ne. Nemá tedy smysl hovořit o pořadí prvků a také nemá smysl zabývat se tím kolikrát se daný prvek v množině nachází. Speciální množinou je tzv. **prázdná množina** značíme \emptyset . Tato množina neobsahuje žádné prvky tedy pro všechna x platí, že $x \notin \emptyset$.

1.1 Dělení množin

Množiny dělíme na **konečné** a **nekonečné**. Množina A se nazývá konečná právě když existuje přirozené číslo n tak že prvky této množiny můžeme očíslovat čísly $1, 2, \ldots, n$. Číslo n nazveme počet prvků množiny a značíme jej |A| Pokud $|A| = \infty$ nazveme množinu nekonečnou a říkáme, že má nekonečně mnoho prvků.

1.2 Zapisování množin

Množiny můžeme zapisovat následujícími způsoby:

- 1. **Výčtem prvků** Množinu která obsahuje prvky a_1, a_2, \ldots, a_n zapíšeme následovně $\{a_1, a_2, \ldots, a_n\}$.
- 2. **Pomocí charakteristické vlastnosti** Množina obsahuje právě ty prvky, které splňují vlastnost $\varphi(x)$ zapisujeme $\{x|\varphi(x)\}$. Vlastnost $\varphi(x)$ může být popsána i slovně. Příklad $\varphi(x)$: číslo x je sudé.

1.3 Vztahy mezi množinami

Základními vztahy mezi množinami jsou rovnost (=) a inkluze (\subseteq)

A=Bznamená, že pro každé $x:x\in A$ právě když $x\in B$

 $A\subseteq B$ znamená, že pro každé x: jestliže $x\in A$ pak $x\in B$

 $A \neq B$ znamená že neplatí A = B

 $A \not\subseteq B$ znamená, že neplatí $A \subseteq B$

Množina jejichž prvky jsou právě všechny podmnožiny dané množiny X, nazýváme **potenční množina** množiny X značí se $\mathscr{P}(X)$ nebo také 2^X . Tedy $2^X = \{A | A \subseteq X\}$.

1.4 Operace s množinami

Mezi základní operace s množinami patří průnik (značí se \cap), sjednocení (značí se \cup), rozdíl (značí se \setminus).

Jsou-li A, B množiny, definujeme množiny $A \cup B, A \cap B, A \setminus B$ následovně:

$$A \cap B = \{x | x \in A \text{ a } x \in B\}$$

$$A \cup B = \{x | x \in A \text{ nebo } x \in B\}$$

$$A \setminus B = \{x | x \in A \text{ a } x \notin B\}$$

Množiny nazýváme navzájem disjunktní právě když $A \cap B = \emptyset$.

1.4.1 Vlastnosti operací

- $A \cap \emptyset = \emptyset$, $A \cup \emptyset = A$, $A \cap A = A$
- $A \cup B = B \cup A$, $A \cap B = B \cap A$
- $(A \cup B) \cup C = A \cup (B \cup C)$

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$

2 Relace

Pojem relace je matematickým protějškem pojmu *vztah*. Různé objekty jsou nebo nejsou v různých vztazích. Například číslo 3 je ve vztahu "být menší" s číslem 5. Vztah je také určen aritou tj. počtem objektů které do vztahu vstupují, výše uvedený příklad má aritu 2 protože porovnáváme 2 čísla. Takovou relaci nazveme binární. Dále máme unární (jeden prvek), ternární (tři prvky), ...

Definice 1. Kartézský součin množin X_1, X_2, \ldots, X_n je množina $X_1 \times X_2 \times \cdots \times X_n$ definovaná předpisem

$$X_1 \times \cdots \times X_n = \{\langle x_1, \dots x_n \rangle | x_1 \in X_1, \dots, x_n \in X_n \}$$

Kartézský součin n množin je množina všech uspořádaných n-tic prvků z těchto množin. Je-li $X_1=\cdots=X_n=X$ pak $X_1\times\cdots\times X_n$ značíme také X^n (n-tá kartézská mocnina množiny X)

Definice 2. Nechť X_1, \ldots, X_n jsou množiny. Relace mezi X_1, \ldots, X_n je libovolná podmnožina kartézského součinu $X_1 \times \cdots \times X_n$.

Příklad 1. Mějme množinu $A = \{1, 2, 3, 4\}$ a množinu $B = \{a, b, c, d\}$. Relace $R, S \subseteq A \times B$ mohou vypadat následovně.

$$R = \{ \langle 1, a \rangle, \langle 1, b \rangle, \langle 3, d \rangle, \langle 4, a \rangle \}$$
$$S = \{ \langle 3, a \rangle, \langle 1, c \rangle \}$$