Operating Systems and Middleware: Supporting Controlled Interaction

Max Hailperin Gustavus Adolphus College

> Revised Edition 1.1 July 27, 2011

Copyright © 2011 by Max Hailperin.

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit

http://creative commons.org/licenses/by-sa/3.0/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Index

*-property, 490 affinity, processor, 52 3DES, 433 Aho, Alfred V., 268 allocation, delayed, 353 abort, 161 allocation, resource, 55 access, 329 AMD64, 267 access control, 487 Anderson, Dave, 389 access control list, 270, 299 Anderson, Jonathan, 326 Access Control, Discretionary, 293, Anderson, Ross, 508 315 API, 5 Access Control, Mandatory, 293, 315 application layer, 15 access matrix, 291 Application Programming Interface, access point, 392, 426 accountability, 17, 476 application protocol, 395 ACID, 161 ARP, 426 acknowledgment, cumulative, 415 AS/400, 289, 295–298, 325 acknowledgment, selective, 417 ASID, 229 ACL, 299 associativity, full, 250 acquire, 123 associativity, set, 250 activation record, 511 asymmetric-key cryptography, 433 activation record stack, 511 Atlas, 266, 267 Address Resolution Protocol, 426 atomic, 106, 160, 161 address space identifier, 229 atomic transaction, 160 address space, sparse, 219 atomicity, failure, 183 address, linear, 244 attribute, metadata, 339 address, physical, 207, 208 authentication, 17, 477, 486 address, virtual, 207, 208 authentication, biometric, 485 addressable capability, 297 authentication, mutual, 466 Adleman, Leonard M., 433 authentication, two-factor, 485 Advanced Encryption Standard, 433 availability, 17, 476 adversary, 475 avoidance, deadlock, 157 Adya, Atul, 206 AES, 433 B-tree, 361, 363

B5000, Burroughs, 266 C-list, 296 Babaoglu, Ozalp, 268 CA, 464 back door, 499 cache buffers, 335 Banga, Gaurav, 91 cache coherence, 52, 107 barrier synchronization, 116 cache memory, 52, 89, 250 base priority, 66 callee saves, 516 basic authentication, 464 caller saves, 516 batch processing, 55 canonical name, 404 Baumberger, Dan, 90 CAP, 326 Bayer, R., 390 capability, 270, 295 Belady's anomaly, 257 capability, addressable, 297 Belady, L. A., 268 capability, POSIX, 295 Bell, D. E., 509 capacity miss, 251 Bell-LaPadula model, 488 ccNUMA, 250 Bellovin, Steven M., 508 certificate, 464 Berenson, Hal, 206 Certification Authority, 464 Bernstein, Philip A., 20, 204, 205 CFS, 73 best-fit, 354 Chandra, Abhishek, 90 bin hopping, 251 Chase, Jeffrey S., 325 bind, 408 chdir, 337 bindings, 451 checkpoint, 190 biometric authentication, 485 checkpointing, 190 bitmap, 352 Chen, Peter M., 389 Blasgen, Mike, 158 Chen, Shuo, 509 block group, 352 Cheswick, William R., 508 block map, 358 chmod, 339 block, indirect, 357 chown, 339 CIFS, 405 bound, 410 bounded buffer, 113, 157 classification level, 487 BoundedBuffer class, 118, 124 clock replacement, 258 Brinch Hansen, Per, 157 Clojure, 206 broker, 445 close, 336 btrfs, 378, 390 closed, 410 bucket, hash, 240 clustered page table, 268 buffer, 113 clustered paging, 249 buffer, bounded, 113, 157 Codd, E. F., 42, 89 Burroughs B5000, 266 code, erasure, 418 burst, 55 Coffman, E. G., 157 busy waiting, 47, 108 coherence, cache, 52, 107 Byers, J. W., 441 collision, hash, 240

coloring, page, 251 cracker, 145, 480 column, 330 Creasy, R. J., 327 Comer, Douglas, 390 CreateThread, 24 commit, 161 credential, 270 committed, read, 192 cryptographic file system, 381 Common Criteria, 495, 509 cryptographic hash function, 434 Common Internet File System, 405 cryptography, asymmetric-key, 433 Common Object Request Broker Arcryptography, public-key, 433 chitecture, 450 cryptography, symmetric-key, 433 compare-and-set, 141 cumulative acknowledgment, 415 compartment, 487 cylinder, 334 compensating transaction, 170 DAC, 293, 315 Completely Fair Scheduler, 73 Daggett, Marjorie Merwin, 19 concurrent, 21 Daley, Robert C., 19, 325 condition variable, 117, 157 Data Encryption Standard, 433 confidentiality, 17, 476 data warehouse, 191 conflict, 177 database system, 163 conflict miss, 251 datagram, 392, 408 congestion, 416 deadline inheritance, 137 connect, 408 deadlock, 11, 127 connected, 410 deadlock avoidance, 157 consistent, 159, 161 deadlock detection, 129 consumer, 113 deadlock prevention, 157 container, resource, 80, 91 decay, 68 context switching, 36, 37 decay usage scheduling, 68, 90 control block, task, 33 defense in depth, 318 control block, thread, 33 defragmentation, 347 Control Program, 326 delayed allocation, 353 convoy, 138 demand paging, 248 convoy phenomenon, 137, 158 demultiplex, 396 cooperative multitasking, 37 denial of service, 79, 476 copy on write, 216, 272 Denning, Dorothy E., 509 CORBA, 450 Denning, Peter J., 266, 268, 509 Corbató, Fernando J., 19 Dennis, Jack B., 266, 325, 326 correlation ID, 446 DES, 433 Courtois P. J., 157 descriptor, 295 covert channel, 491 descriptor tables, 296 COW, 216, 272 descriptor, file, 336 CP, 326 desktop environment, 5 CP-67, 327

deterministic, 176	error correction, forward, 418
digital signature, 434	error output, standard, 337
digital tree, 239	Eswaran, K. P., 205
Dijkstra, Edsger W., 123, 127, 156-	ESX Server, 309, 326
158	ETag, 402
dining philosophers, 127, 153, 158	Evaluation Assurance Level, 496
directory, 330, 367	exchange, 106
directory, working, 337	exclusion, mutual, 98
dirty, 220	exec family, 273
dirty bit, 220	execl, 273, 275
Discretionary Access Control, 293, 315	
dispatching, 37	execve, 273
DLL, 214	exit, 281
DNS, 398, 402	Explicit Congestion Notification, 417
domain name, 402	Extensible Markup Language, 459
Domain Name System, 398, 402	extent, 347
domain, protection, 291	extent map, 360
Dorward, Sean, 390	external fragmentation, 216, 348
DoS, 79	, ,
dotted decimal, 420	Fabry, R. S., 326
down, 123	fail, 159
Druschel, Peter, 91	failure atomicity, 160, 183
durable, 161	fair-share scheduling, 57, 89
Dykes, Jim, 389	fcntl, 116, 134
dynamic-link library, 214	fetch policy, 247, 248
0	fiber, 23, 284
EAL, 496	FIFO, 256
Earliest Deadline First, 65	FIFO, Segmented, 257
ECN, 417	file, 329
EDEADLK, 134	file description, open, 345
EDF, 65	file descriptor, 336
[8lgm], 158	file I/O, 336
Elphick, M., 157	file offset, 345
email worm, 314	file system, cryptographic, 381
encrypt, 433	file system, journaled, 172
end-to-end principle, 397	file system, journaling, 172
endpoint address, 462	file system, log-structured, 379, 390
energy, 250	file system, virtual, 379
entity tag, 402	file, sparse, 358
erasure code, 418	firewall, 430

first in, first out replacement, 256 hash bucket, 240 first-fit, 354 hash collision, 240 fixed-priority scheduling, 61 hash function, 240 flock, 116 hash function, cryptographic, 434 flow control, 415 hash table, 374 fork, 272 Hashed Message Authentication Code, fork, 272 434 hashed page table, 240 forward error correction, 418 forward-mapped page table, 235 Haskell, 206 Fotheringham, John, 266 Havender, J. W., 157 fragmentation, 347 Hays, Jim, 267 fragmentation, external, 216, 348 head switch, 334 fragmentation, internal, 347 Hellerstein, Joseph L., 90 Herlihy, Maurice, 156, 158 frame, 392, 425 free page list, 254 Heymans, F., 157 fstat, 339 hierarchical page table, 235 ftruncate, 341 high-water mark, 252 Hill, Mark D., 267, 268 full associativity, 250 Hilton, Paris, 509 Gantt chart, 63 history, 175 Garfinkel, Simson, 508 hit, TLB, 226 gateway router, 421 HMAC, 434 getpid, 273 Hoare, C. A. R., 121, 157 global replacement, 254 Hohpe, Gregor, 472 Goodman, Nathan, 205 hold (a lock), 98, 99 Gray, Jim, 194, 204, 206 hole, 358 Gutmann, Peter, 390 Holt, Richard C., 157 Güntsch, Fritz-Rudolf, 266 honeypot, 499 HTM, 206 Habermann, A. N., 157 HTML, 401 Hahn, Scott, 91 HTTP, 399 handle, 295 Huck, Jerry, 267 handle tables, 296 Hydra, 326 hard link, 372 HyperText Markup Language, 401 hard-real-time scheduling, 89 Hypertext Transfer Protocol, 399 hard-real-time system, 62 Härder, Theo, 161, 204 idempotent, 187 Hardware Transactional Memory, 206 identification, 486 Harris, Tim, 206

IDS, 431

importance, 55

Harrison, Michael A., 325

journaling, 377

impurity, phase one, 180 impurity, phase two, 180 index, 330, 367 index node, 355 indirect block, 357 indirect block, single, 357 information-flow control, 487 inheritance, deadline, 137 inheritance, priority, 137 init process, 323 inode, 355 input, standard, 337 instruction pointer, 33 integrity, 17, 476 internal fragmentation, 347 internet, 393 Internet Protocol, 418 interrupt, 38 interrupt handler, 38 intruder, 480 intrusion detection system, 431 inumber, 356 inversion, priority, 70, 136 inverted page table, 267 IP, 33, 418 IPsec, 419 iSeries, 289, 295–298, 325 isolated, 161 isolation, 160 isolation, snapshot, 193 Itanium, 267, 325 Java API, 43 Java API for XML-Based RPC, 462 Java Virtual Machine, 308 JAX-RPC, 462

Jessen, Eike, 266

journaled file system, 172

job, 55

journal, 172

journaling file system, 172 Joy, William, 268 JVM, 308 Kempster, Tim, 206 Kennaway, Kris, 326 kernel, 5 kernel mode, 282 kernel thread, 283 Kessler, R. E., 268 key pair, 431 keylogger, 481 Khalidi, Y. A., 268 kill, 281 Knuth, Donald Ervin, 390 Krebs, Brian, 509 Kurose, James F., 441 La Padula, L. J., 509 label switching router, 422 Lampson, Butler W., 205, 509 LAN, 393 Landwehr, Carl E., 509 Larus, James, 206 latency, rotational, 334 Laurie, Ben, 326 Layland, James W., 63, 65, 89 leaf, 515 Least Recently Used, 256 Lehoczky, John P., 158 Leveson, Nancy G., 154 Levy, Henry, 268 LFS, 390 Li, Tong, 90 Linden, Theodore A., 326 Lindholm, Tim, 326

linear address, 244

link, 371, 392

linear page table, 229

link layer, 15 Mattson, R., 268 link, hard, 372 McCreight, E., 390 link, soft, 372 McWilliams, Brian, 509 link, symbolic, 371 MD5, 434 Liskov, Barbara, 206 Mellor-Crummey, John M., 156 listening, 410 memcpy, 341Liu, C. L., 63, 65, 89 memory management unit, 209 local area network, 393 Memory, Transactional, 206 local replacement, 254 memory, virtual, 12 locality, spatial, 52, 226 Message Authentication Code, 433 locality, temporal, 52, 226 Message Digest 5, 434 lock, 98 message digest function, 434 lock, mutual exclusion, 98 message passing, 214 lock, predicate, 205 message queuing, 444 lock, queue, 156 message-oriented middleware, 167, 444 lock, readers/writers, 115, 157 message-queuing system, 167 lock-free synchronization, 142 messaging, 16 locking, two-phase, 174 messaging system, 167, 444 log, 172 metadata, 14, 172, 354 log, redo, 189 metadata attribute, 339 log, undo, 185 Meyer, R. A., 326 log-structured file system, 379, 390 Michael, Maged M., 158 middleware, 6 logging, write-ahead, 189 lottery scheduling, 72, 80, 89 middleware, message-oriented, 167, 444 low-water mark, 252 minor page fault, 249 LRU, 256 miss, capacity, 251 1seek, 345 miss, conflict, 251 Luby, M., 441 miss, TLB, 226 Mitzenmacher, M., 441 MAC, 293, 315, 433 mlock, 260MAC (Media Access Control) address, mlockall, 260 426 MLS, 487 MacKinnon, R. A., 327 mmap, 263, 339, 341, 344 madvise, 249, 263 MMU, 209 major page fault, 249 mode, 365 malware, 491 modified page list, 252 Mandatory Access Control, 293, 315 modified page writer, 252 map, block, 358 Mogul, Jeffrey C., 91 map, extent, 360 MOM, 167, 444 mask, 421 monitor, 103, 117, 157

MPLS, 422 Multi-Level Security, 487 multicast, 392 Multics, 244, 267, 325, 390 multilevel feedback queue scheduler, 70 multilevel page table, 235 multiplexing, 395 multiprocessor system, 36, 51, 107 Multiprotocol Label Switching, 422 multitasking, cooperative, 37 multitasking, preemptive, 37 multiversion concurrency control, 192 mutex, 98 mutual authentication, 466 mutual exclusion, 98 mutual exclusion lock, 98 MVCC, 192	notifyAll, 118 NUMA, 250 O'Neil, Patrick E., 206 object, 289 object, persistent, 330 offset, file, 345 open, 307, 336, 339 open file description, 345 operating system, 2 operation, 289 OPT, 256 optimal replacement, 256 Orlov, Grigory, 389 OSI (Open Systems Interconnection) reference model, 396 Ousterhout, John K., 390 output, standard, 337
name, canonical, 404 name, domain, 402 NAT, 422 native thread, 284 Navarro, Juan, 267 Need-To-Know, 490 network, 392 Network Address Translation, 422 Network File System, 405 network layer, 15 network protocol, 396 Newcomer, Eric, 204 NFS, 405 nice, 58 niceness, 58, 72, 84 node, index, 355 non-repudiation, 436 nonblocking synchronization, 141 Northcutt, Stephen, 508 notify, 118 notify, 121	P, 123 packet, 392 PAE, 261 page, 211 page cache, 249 page coloring, 251 page directory, 235 page fault, 211 page fault, major, 249 page fault, minor, 249 page fault, soft, 252 page frame, 211 page table walker, 228 page table, clustered, 268 page table, forward-mapped, 235 page table, hierarchical, 235 page table, inverted, 267 page table, linear, 229 page table, multilevel, 235 paging, clustered, 249

paging, demand, 248	proomptive multitedring 27
	preemptive multitasking, 37
paging, shadow, 377	prepaging, 248
Pang, Ruoming, 441	Pretty Good Privacy, 428
parent process, 272	prevention, deadlock, 157
Parmelee, R. P., 327	principal, 289
Parnas, D. L., 157	priority, 55, 61
password wallet, 483	priority inheritance, 137
pathname, 336	priority inversion, 70, 136
PC, 33	priority, base, 66
permission, 305, 318	process, 10, 28, 212, 269
persistence, 329	process ID number, 272
persistent, 186	process switching, 37
persistent object, 330	process, parent, 272
persistent storage, 13	processor affinity, 52
PGP, 428	producer, 113
phantom, 205	program counter, 33
phase one, 180	proportional-share scheduling, 57, 71
phase one impurity, 180	protection domain, 291
phase two, 180	Protection Profile, 495
phase two impurity, 180	protocol, 394
phish, 482	protocol, application, 395
physical address, 207, 208	protocol, network, 396
Physical Address Extension, 261	protocol, transport, 395
physical layer, 15	proxy, 448
pipe, 113	ps, 273
pipeline, 113	pthread, 24
placement policy, 247, 250	pthread_cancel, 41
point-to-point, 444	${\tt pthread_cond_broadcast},122$
polymorphism, 332, 379	$pthread_cond_init, 122$
pop, 512	pthread_cond_signal, 122
port number, 395	pthread_cond_wait, 122
POSIX, 43	pthread_create, 24
POSIX capability, 295	pthread_mutex_destroy, 100
POSIX thread, 24	pthread_mutex_init, 100
posix_madvise, 263	pthread_mutex_lock, 100
power, 250	pthread_mutex_t, 100
PP, 495	pthread_mutex_timedlock, 102
pread, 341, 344	pthread_mutex_trylock, 100
Precision Architecture, 267	pthread_mutex_unlock, 100
predicate lock, 205	pthread_rwlock_init, 116
r	<u>r</u>

Remote Method Invocation, 451 pthread_rwlock_rdlock, 116 pthread_rwlock_unlock, 116 Remote Procedure Call, 16, 447 replacement policy, 248 pthread_rwlock_wrlock, 116 public-key cryptography, 433 resolver, 404 publish/subscribe messaging, 444 resource allocation, 55 pure, 180 resource allocation graph, 131, 157 push, 512 resource container, 80, 91 pwrite, 341, 344 resource manager, 194 resource record, 403 quantum, 67, 89 response time, 54 queue lock, 156 return address, 514 queueing spinlock, 156 return from interrupt, 38 Quinlan, Sean, 390 Reuter, Andreas, 161, 204, 205 Riedel, Erik, 389 race, 96 Rijndael, 433 radix tree, 239 Ritchie, Dennis M., 389 Rago, Stephen A., 325 Rivest, Ronald L., 433 RAID, 389 RMI, 450 Rajkumar, Ragunathan, 90, 158 Robbins, Kay A., 325 Rajwar, Ravi, 206 Robbins, Steven, 325 rate-monotonic scheduling, 63, 89 Rodeh, Ohad, 390 read, 332 root kit, 499 read, 341, 345 Rosenblum, Mendel, 390 read ahead, 249 Rosenkrantz, Daniel J., 205 read around, 249 Ross, Blake, 509 read committed, 192 Ross, Keith W., 441 readers/writers lock, 115, 157 rotational latency, 334 real-time system, 62 round-robin, 62, 67 reap, 280 router, 392, 393 record, 330 router, gateway, 421 record, resource, 403 router, label switching, 422 recovery processing, 187 row, 330 recursive locking, 103 RPC, 16, 447 recvmsg, 296 RSA, 433 redirection, standard I/O, 337 Rubin, Aviel D., 508 redo log, 189 Rudolph, Larry, 156 reference bit, 257 run queue, 47 Regehr, John, 89 runnable, 49 registry, 451 Runnable interface, 24 release, 123

running, 49

runtime environment, 511	segment, 243, 392, 414
runtime stack, 511	segmentation, 211, 242
runtime, virtual, 74	Segmented FIFO, 257
Russinovich, Mark E., 43, 90	selective acknowledgment, 417
Ruzzo, Walter L., 326	SELinux, 491
	semaphore, 123, 157
S/MIME, 428	sendmsg, 296
Saltzer, Jerome H., 325, 508	serial, 174
SANS, 500, 508	serializable, 174
Santry, Douglas S., 390	Server Message Block, 406
Sathaye, Shirish S., 90	set associativity, 250
scheduler, 45	set group ID, 307
scheduling, 45	set user ID, 280, 315–317
scheduling, decay usage, 68, 90	setgid, 307
scheduling, fair-share, 57, 89	setuid, 280, 315–317
scheduling, fixed-priority, 61	SFIFO, 257
scheduling, hard-real-time, 89	Sha, Lui, 90, 158
scheduling, lottery, 72, 80, 89	SHA-1, 434
scheduling, proportional-share, 57, 71	shadow paging, 377
scheduling, rate-monotonic, 63, 89	Shamir, Adi, 433
scheduling, stride, 71, 80, 89	Shapiro, Jonathan S., 509
scheduling, virtual time round-robin,	shared secret, 431
71	Shavit, Nir, 156, 158
scheduling, weighted round-robin, 71	shell, 5
Scholten, Carel S., 157	Shortest Job First, 54
Schroeder, Michael D., 509	Shoshani, A., 157
Schwartz, Alan, 508	shoulder surfing, 481
Scott, Michael L., 156	signal, 118
SCTP, 418	signature, 495
Seawright, L. H., 326, 327	signature, digital, 434
secret, shared, 431	simple security property, 490
sector, 332	single indirect block, 357
Secure Hash Algorithm 1, 434	SJF, 54
Secure Sockets Layer, 428	skeleton, 450
Secure/Multipurpose Internet Mail Ex	Sleep, 24
tensions, 428	smashing the stack, 493
Security Target, 495	SMB, 406
Security-enhanced Linux, 491	snapshot, 378
seek, 334	snapshot isolation, 193
Segall, Zary, 156	sniffer, 481

social engineering, 480 socket, 15, 408 soft link, 372 soft page fault, 252 soft update, 377 software TLB, 242 Software Transactional Memory, 206 Solomon, David A., 43, 90 Soltis, Frank G., 325	Stirling, Colin, 206 STM, 206 storage, persistent, 13 Stream Control Transmission Protocol, 418 stride scheduling, 71, 80, 89 stub, 448 Sturgis, Howard E., 205 subject, 289 supervisor mode, 282 swapping, 255
sparse address space, 219 sparse file, 358 spatial locality, 52, 226	switch, 392 switching, context, 36, 37 switching, process, 37 switching, thread, 30, 37
spinlock, queueing, 156 spoof, 481 spurious wakeup, 157	symbolic link, 371 symmetric-key cryptography, 433 synchronization, 11, 29, 93 synchronization, barrier, 116 synchronization, lock-free, 142
ST, 495 stack, 512	synchronization, nonblocking, 141 synchronization, wait-free, 142 synchronized method, 104
stack pointer, 34, 513 stack, activation record, 511	synchronized statement, 104 synchronous write, 377 system call, 282
Stajano, Frank, 509 standard error output, 337 standard I/O redirection, 337	system mode, 282 System.exit, 281 System/38, 267, 288, 296, 298, 325
standard output, 357 standby page list, 254 star-property, 490 starvation, 115 STDERR_FILENO, 337 STDIN_FILENO, 337 STDOUT_FILENO, 337 Stearns, Richard E., 205 Stevens, W. Richard, 325, 441	table, 330 table, hash, 374 tag, entity, 402 Talluri, Madhusudhan, 267 Tanenbaum, Andrew S., 441 Target of Evaluation, 495 task, 28 task control block, 33 TCB, 33 TCP, 407

TCP Vegas, 417	tran 282
	trap, 282
temporal locality, 52, 226	traverse, 306
TENEX, 390	tree, digital, 239
text, 213	tree, radix, 239
Thanisch, Peter, 206	trie, 239
Therac-25, 97, 154	Tripwire, 499
Thompson, Ken, 327, 389	Trojan horse, 314, 315
thrashing, 255	tuple, 330
thread, 10, 21, 28, 42, 284	turnaround time, 55
Thread class, 24	Turner, Clark S., 154
thread control block, 33	Turner, Rollins, 268
thread switching, 30, 37	two-factor authentication, 485
thread, kernel, 283	two-phase commit, 193
thread, native, 284	two-phase locking, 174
thread, user-level, 23, 284	LIDDI 469
throughput, 51	UDDI, 463
tie, 450	UDP, 407
Time Of Check To Time Of Use, 146,	Ullman, Jeffrey D., 268, 326
158	unbound, 408
time slice, 55, 67, 89	undo log, 185
TLB, 226	unitary, 205
TLB hit, 226	Universal Description, Discovery, and
TLB miss, 226	Integration, 463
TLB, software, 242	up, 123
TM, 206	update, soft, 377
TOCTTOU, 146, 158	urgency, 55
TOE, 495	USENIX, 20
token, 485	User Datagram Protocol, 407
track, 334	user mode, 282
transaction, 12, 160	user-level thread, 23, 284
transaction context, 194	$\mathtt{utime},339$
transaction manager, 194	
transaction, atomic, 160	V, 123
Transactional Memory, 206	valid bit, 229
Transactional Memory, Hardware, 206	Van Horn, Earl C., 325, 326
Transactional Memory, Software, 206	VAX/VMS, 267
translation lookaside buffer, 226	verifier, 309
Transmission Control Protocol, 407	VFS, 379
11 and 11110 21011 COLULT 1 10 to COL, 407	
transport layer 15	virtual address, 207, 208
transport layer, 15 transport protocol, 395	virtual address, 207, 208 virtual file system, 379

Virtual Machine Monitor, 309, 318 wide area network, 393 virtual memory, 12, 207 Wilkes, John, 389 virtual private network, 429 Wilson, Paul, 509 virtual runtime, 74 WNOHANG, 323 virtual time round-robin scheduling, Wool, Avishai, 441 Woolf, Bobby, 472 virus, 492 workflow, 169 VM/370, 327 working directory, 337 VM/ESA, 327 working set, 223 VM/XA, 327 worm, 492 VMM, 309, 318 worm, email, 314 VMS, 267 write, 332 volatile, 161 write, 341, 345Vossen, Gottfried, 204, 205 write, synchronous, 377 VPN, 429 write-ahead logging, 189 VTRR, 71 WRR, 71 WSDL, 459 WAFL, 378 wait, 118 XML, 459 wait, 118 Yellin, Frank, 326 wait queue, 47 wait-free synchronization, 142 z/Architecture, 326 waiting, 49 z/VM, 309, 326 waiting, busy, 47, 108 zero page list, 254 waitpid, 277, 323 zero page thread, 43, 254 wakeup, spurious, 157 ZFS, 378 WAL, 189 zombie, 280 Waldspurger, Carl A., 80, 326 walker, page table, 228 wallet, password, 483 WAN, 393 warehouse, data, 191 Watson, Robert N. M., 326 web service, 16, 455 Web Services Description Language, 459 weighted fair queuing, 71 weighted round-robin scheduling, 71 Weikum, Gerhard, 204, 205

WFQ, 71