Project 10366-10

Prepared for: Hubbell Building Automation, Inc. 9601 Dessau Road, Suite 100 Austin, Texas 78754

Ву

Professional Testing (EMI), Inc. 1601 N. A.W. Grimes Blvd., Suite B Round Rock, Texas 78665

September 9, 2010

CERTIFICATION
Wireless Test Report
Hubbell Building Automation, Inc.
WiHubb

Revision History

Revision History					
Revision Number	Date				
00	First Revision of Test Report	July 7, 2010			
01	Amend to add Conducted Emissions Data	August 2, 2010			
02	Amend to correct Peak Power, Occupied	August 12, 2010			
	Bandwidth, Harmonic Emissions data, Band				
	Edge measurements				
03	Amend to correct Occupied Bandwidth,	September 9, 2010			
	Number of channels /Channel Separation,				
	Timing				

10366-10 Page 2 of 39

Table of Contents

Title 1	Page	1
Table	of Contents	2
Certif	ficate of Compliance	4
Revisi	ion History	2
1.0	Introduction	
1.1	Scope	
1.2	EUT Description	
1.3	EUT Operation	
1.4	Test Site	6
1.5	Applicable Documents	7
2.0	Power Line Conducted Emissions	8
2.1	Test Procedure	
2.2	Test Criteria	8
3.0	Peak Output Power	
3.1	Test Procedure	
3.2	Test Criteria	8
4.0	Occupied Bandwidth	9
4.1	Test Procedure	
4.2	Test Criteria	9
5.0	Timing, Channel Separation and Number of Hopping Channels	9
5.1	Test Procedure	
5.2	Test Criteria	9
6.0	Conducted Spurious Emissions	
6.1	Test Procedure	10
6.2	Test Criteria	10
7.0	Band Edge Spurious Emissions	
7.1	Test Procedure	10
7.2	Test Criteria	10
8.0	Out of Band Spurious Emissions	10
8.1	Test Procedure	10
8.2	Test Criteria	11
9.0	Antenna Requirements	11
9.1	Evaluation Procedure	11
9.2	Evaluation Criteria	
10.0	Limit for SAR Waiver	
11.0	Receiver Spurious Emissions	
12.0	Modifications	
13.0	Test Equipment	

Appendix A	Test Setup Diagrams	14
Appendix B	Test Results	.17

$THIS\ REPORT\ SHALL\ NOT\ BE\ REPRODUCED\ EXCEPT\ IN\ FULL,\ WITHOUT\ THE\ WRITTEN\ APPROVAL\ OF\ PROFESSIONAL\ TESTING\ (EMI),\ INC.$

NOTICE: (1) This Report must not be used to claim product endorsement, by NVLAP, NIST, the FCC or any other Agency. This report also does not warrant certification by NVLAP or NIST.

- (2) This report shall not be reproduced except in full, without the written approval of Professional Testing (EMI), Inc.
- (3) The significance of this report is dependent on the representative character of the test sample submitted for evaluation and the results apply only in reference to the sample tested. The manufacturer must continuously implement the changes shown herein to attain and maintain the required degree of compliance.

10366-10 Page 4 of 39

Applicant: Hubbell Building Automation, Inc.

Applicant's Address: 9601 Dessau Road, Suite 100

Austin, TX 78754

FCC ID: YH9WIHUBB

IC Number: 9044AWIHUBB

Project Number: 10366-10

Test Dates: July 29, August 11- 12, September 2, 2010

The **Hubbell Building Automation, Inc. WiHubb** was tested to and found to be in compliance with FCC 47 CFR Part 15 and IC RSS-210 issue 7.

The highest emissions generated by the above equipment are listed below:

Parameter	Frequency (MHz)	Level		Limit	Margin (dB)
Mains Conducted	N/A	N/A		N/A	N/A
Radiated Spurious	1855	42.9 dBμV/m		63.5 dBµV/m	-20.6
Peak Power	902.74	19.7 dBm	93.33 mW	+30 dBm	-10.3

Occupied Bandwidth		Emission Designator	Channel Separation	Number of Hopping	
20 dB	26 dB	Zimssion z osignator	chamer separation	Channels	
374.9 kHz	424.3 kHz	424KFXD	500 kHz	50	

I, Jason Anderson, for Professional Testing (EMI), Inc., being familiar with the FCC rules and test procedures have reviewed the test setup, measured data and this report. I believe them to be true and accurate.

Jason Anderson EMC Engineer

This report has been reviewed and accepted by Hubbell Building Automation, Inc.. The undersigned is responsible for ensuring that this device will continue to comply with the FCC and IC rules.

10366-10 Page 5 of 39

1.0 Introduction

1.1 Scope

This report describes the extent of the Equipment Under Test (EUT) conformance to the Intentional Radiator requirements of the USA and Canada.

1.2 EUT Description

The WiHubb RF Module is the basis for Hubbell Building Automation's next generation of networked lighting controls. The WiHubb RF Module combines a highly integrated CMOS ISM transceiver operating from 902.74MHz to 927.74MHz with a CIP-51 microcontroller core and 19 pins of digital and analog I/O. A 30MHz onboard crystal is included for the RF section and a 32.768KHz crystal is included for real time clock control. Board-level connections to a simple wire antenna or a board-edge SMA connector are provided. Two 12-pin, 1.27mm-pitch male headers are provided for integration of the module with various carrier boards to create wirelessly networked lighting controls products that include switchstations, power-packs, photocells (for daylight harvesting), occupancy sensors, and relay modules.

1.3 EUT Operation

The EUT was tested while in a continuous transmit mode. The EUT was tuned to a low, middle, and high channel to perform power, occupied bandwidth, and spurious/harmonic tests. The EUT was tested in 3 orthogonal axes to maximize emissions as required by ANSI 63.4. For conducted emissions the device was tuned to its center frequency. The EUT continuously transmitted at maximum power. The system tested consisted of the following:

Manufacturer	Model	FCC ID Number	IC Identifier
Hubbell Building	Willish	YH9WIHUBB	9044A-
Automation, Inc.	WiHubb	INSWINUDD	WIHUBB

The following rules apply to the operation of the EUT:

Guidelines	FCC Rules	IC Rules	
Guidennes	Part 15	RSS-GEN Issue 1	RSS-210 Issue 7
Transmitter Characteristics	15.247	4.1-4.6, 7	2.2, 2.6-2.7, A2.9, A8, A9
Spurious Radiated Power	15.209	4.2, 4.7, 4.8, 6, 7	2.2, 2.6-2.7, A2.9, A8, A9
Power Line Conducted	15.207	4.2, 4.7, 7.2	
Antenna Requirement	15.203	7.1, 7.1.4	

1.4 Test Site

Measurements were made at the PTI semi-anechoic facility designated Site 45 (FCC 459644, IC 3036B-1) in Austin, Texas. This site is registered with the FCC under Section 2.948 and Industry Canada per RS-212 and is subsequently confirmed by laboratory accreditation (NVLAP). The test site is located at 11400 Burnett Rd., Austin, Texas, 78758 while the main office is located at 1601 N. A.W. Grimes Blvd., Suite B, Round Rock, Texas, 78665. Professional Testing (EMI), Inc. (PTI), follows the guidelines of NIST for all uncertainty calculations, estimates and expressions thereof for EMC testing. The procedure of ANSI C63.4:2009 and FCC Public Notice DA 00-705 were utilized for making all emissions measurements.

10366-10 Page 6 of 39

1.5 Applicable Documents

The data collected for this report are presented entirely in Appendix B.

Document	Title	Release
ANSI C63.4	American National Standard for Methods of	2009
	Measurement of Radio-Noise Emissions from Low	
	Voltage Electrical and Electronic Equipment.	
47 CFR	Part 15 – Radio Frequency Devices	
	Subpart C -Intentional Radiators	
FCC Public Notice DA	Filing and Measurement Guidelines for Frequency	March 30, 2000
00-705	Hopping Spread Spectrum Systems	
RSS-210	Low-power License-exempt Radio communication	Issue 7
	Devices (All Frequency Bands): Category I	
	Equipment	
RSS-Gen	General Requirements and Information for the	Issue 2
	Certification of Radio communication Equipment	

10366-10 Page 7 of 39

2.0 Power Line Conducted Emissions

2.1 Test Procedure

The EUT was configured and operated in a manner consistent with typical applications. The EUT power cord in excess of one meter was folded back and forth forming a bundle 30 to 40 cm long in the approximate center of the cable. Power supply cords for the peripheral equipment were powered from an auxiliary LISN. Excess interface cable lengths were separately bundled in a non-inductive arrangement at the approximate center of the cable with the bundle 30 to 40 centimeters in length. The conducted emissions were maximized, by varying the operating states and configuration of the EUT.

The tests were performed in an 8' x 8' RayProof modular shielded room. The EUT was placed on a non-metallic table 0.4 meters from a vertical metal reference plane and 0.8 meters from a horizontal metal reference plane. A drawing showing the test setup is given as Figure 1.

2.2 Test Criteria

The FCC Part 15 Class B conduction limits are given below.

Frequency	Conducted Limits (dBuV)		
(MHz)	Average	Quasi-Peak	
0.1550	66-56*	56 – 46*	
.50 - 5	56	46	
5 – 30	60	50	

The tighter limit shall apply at the edge between two frequency bands.

3.0 Peak Output Power

Peak power measurements were made on selected fundamental transmit frequencies of the EUT for the lowest, most center, and highest transmit frequency.

3.1 Test Procedure

The EUT was directly connected to a spectrum analyzer with a calibrated measurement cable. The RBW of the Spectrum analyzer was 1 MHz and the peak detector was employed.

3.2 Test Criteria

The maximum peak output power is 1 W for FHSS devices operating in the frequency range 902-928 MHz employing at least 50 hopping channels according to FCC 15.247 and RSS-210.

10366-10 Page 8 of 39

^{*}Decreases with the logarithm of the frequency.

4.0 Occupied Bandwidth

Occupied bandwidth measurements were performed on the EUT to determine compliance with FCC 15.247(a)(2) and RSS-210.

4.1 Test Procedure

The occupied bandwidth was measured with a spectrum analyzer connected to a double-ridged guide horn while the EUT was operating in continuous transmit mode at the appropriate center frequency. The analyzer center frequency was set to the EUT carrier frequency. Display line and marker delta functions were used to measure the occupied bandwidth of the EUT. However, the 20 or 26 dB bandwidth is referenced to a peak power measurement taken at the entire bandwidth or more for RBW, then using 1% RBW for the 20 or 26 dB bandwidth. Measurements were made at three frequencies.

4.2 Test Criteria

The 20 dB bandwidth must be measured and reported for the FCC and the 26 dB bandwidth must be measured and reported for IC.

5.0 Timing, Channel Separation and Number of Hopping Channels

Plots were captured of the all hopping channels and the time occupied on each channel. The bandwidth between the channels was measured from the plot of all the hopping channels in order to determine compliance with FCC 15.247 and RSS-210.

5.1 Test Procedure

In order to measure the number of channels and the channel separation the EUT was transmitting in its normal mode the spectrum analyzer was set to max hold while being tuned across the entire band.. Approximately 10 minutes is given to allow all of the channels to be captured. Delta markers were used to measure the channel separation.

In order to measure the timing the spectrum analyzer was set to the frequency of one of the channels while in zero span. The occupancy time on the channel was also monitored for a total of 30 seconds to ensure all transmissions in a 20 second period are accounted for. Plots are given in Appendix B.

5.2 Test Criteria

According to section FCC 15.247 and RSS-210 the system must use at least 25 hopping channels since the channel bandwidth is greater than 250 kHz (determined by the 20 dB occupied bandwidth). The channels must be separated by at least the channel bandwidth. The maximum occupancy time on nay channel may not exceed 0.4 seconds in any 10 second period.

6.0 Conducted Spurious Emissions

Peak spurious measurements were made in the frequency range of 500 MHz to 10 GHz while the EUT was tuned to the lowest, middle, and highest channels.

10366-10 Page 9 of 39

6.1 Test Procedure

The EUT was directly connected to a spectrum analyzer with a calibrated measurement cable. The RBW of the Spectrum analyzer was 1 MHz and the peak detector was employed.

6.2 Test Criteria

All spurious emissions emanating from the antenna port of the EUT must be 20 dB below the fundamental.

7.0 Band Edge Spurious Emissions

Band edge spurious emissions measurements were performed on the EUT to determine compliance to FCC 15.247(c) and RSS-210.

7.1 Test Procedure

The EUT was placed on a non-conductive table 0.8 meters above the ground plane. The table was centered on a rotating turntable at a distance of 10 meters from the measurement antenna.

For spurious emissions below 1 GHz quasi-peak detection is used with a resolution bandwidth of 120 kHz. All measurements below 1 GHz were normalized to 3 meters using a 20 dB/decade distance extrapolation. The emissions were maximized by rotating the EUT and raising and lowering the measurement antenna from 1-4 meters. The test setup is included in Appendix A.

7.2 Test Criteria

The band edge spurious emissions will meet criteria if they are attenuated below the limits specified in FCC 15.209 or RSS-210 Table 3. For this test the adjacent restricted band measurement included measurements of the band edge emissions and compared to 15.209.

8.0 Out of Band Spurious Emissions

Out of band spurious/harmonic emissions measurements were performed on the EUT to determine compliance to FCC sections 15.247(c), 15.209 and RSS-210.

8.1 Test Procedure

The EUT was placed on a non-conductive table 0.8 meters above the ground plane. The table was centered on a rotating turntable at a distance of 10 meters from the measurement antenna.

For spurious emissions below 1 GHz quasi-peak detection is used with a resolution bandwidth of 120 kHz. All measurements below 1 GHz were normalized to 3 meters using a 20 dB/decade distance extrapolation. The emissions were maximized by rotating the EUT and raising and lowering the measurement antenna from 1-4 meters. The test setup is included in Appendix A.

Spurious/harmonic emissions above 1 GHz peak are measured with average and peak detection with a resolution bandwidth of 1 MHz and measured at a distance of 1 meter. Average detection is used to determine compliance of the EUT if the peak does not meet the average limit. Non-harmonic emissions must satisfy the average limit and the peak limit (20 dB above average). The test setup is included in Appendix A.

10366-10 Page 10 of 39

Above 1 GHz testing was completed at 3 transmit frequencies to determine compliance.

8.2 Test Criteria

The radiated limits of FCC 15.209 and RSS-210 are shown below. The limits specified are at 3 meters. The limits are quasi-peak for emissions below 1 GHz and average for emissions above 1 GHz. Also above 1 GHz the peak limit is 20 dB above the average limit.

Frequency	Test Distance	Field Strength	
MHz	(Meters)	$(\mu V/m)$	$(dB\mu V/m)$
30 to 88	3	100	40.0
88 to 216	3	150	43.5
216 to 960	3	200	46.0
Above 960	3	500	54.0

9.0 Antenna Requirements

An antenna evaluation was performed on the EUT determine compliance with FCC sections 15.203, 15.247(b) and RSS-210.

9.1 Evaluation Procedure

The design of the EUT antenna is evaluated for conformance to engineering requirements for gain and to prevent substitution of unapproved antennae. Gain of the antenna is assessed by reviewing the antenna manufacturer's data sheet.

9.2 Evaluation Criteria

The antenna design must meet at least one of the following criteria:

- a) Antenna is permanently attached to the unit.
- b) Antenna must use a unique type of connector to attach to the EUT.
- c) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

Section 15.247(b)(4)(i) states that if the transmitting antenna has a directional gain greater than 6 dBi the power shall be reduced the amount in dB that the directional gain is greater than 6 dBi.

10.0 Limit for SAR Waiver

The peak power was evaluated for exemption with the SAR limits.

11.0 Receiver Spurious Emissions

This device does not contain a separate receive function. The nature of this RFID system is that it will only receive while transmitting. Therefore, the spurious emissions produced in transmit mode are the spurious emissions produced in receive mode.

10366-10 Page 11 of 39

12.0 Modifications

N/A

13.0 Test Equipment

A list of the test equipment utilized to perform the testing is given below. The date of calibration is given for each.

Conducted Test Equipment

A 4 H	3.4	3.6 11.11	D ' '	
Asset #	Manufacturer	Model #	Description	Calibration Due
1277	HP	85650A	Quasi-peak Adapter	October 27, 2010
0045	HP	85662A	85662A Spectrum Analyzer Display	
1284	HP	8568B	Spectrum Analyzer	January 13, 2011
1088	PTI	PTI-ALF4	Attenuator, Limiter, Filter	March 31, 2011
0027	Emco	3825/2	Line Impedance Stabilization Network	November 4, 2010
0081	ELGAR	1751SL	AC Power Supply	NCR
1683	TESEQ	T800	ISN	November 24, 2010
1173	PTI	100KHz HPF	High Pass Filter	February 5, 2011

Radiated Test Equipment

Asset #	Manufacturer	Model #	Description	Calibration Due
1280	HP	85650A	Quasi-peak Adapter (high band)	October 27, 2010
0949	HP	85662A	Spectrum Analyzer Display (high band)	NCR
1841	HP	8566B	Spectrum Analyzer (high band)	June 8, 2011
0990	HP	85685A	RF Preselector (high band)	March 24, 2011
1281	HP	85650A	Quasi-peak Adapter (low band)	January 13, 2011
1629	HP	85662A	Spectrum Analyzer Display (low band)	NCR
1129	HP	8568B	Spectrum Analyzer (low band)	September 5, 2010
1035	HP	85685A	RF Preselector (low band)	March 3, 2011
1454	HP	8447D	RF Preamplifier	July 06, 2011
1497	Emco	3108	Biconical Antenna	August 4, 2011
1486	Emco	3147	Log Periodic Dipole Array Antenna	August 4, 2011
C026	none	none	Coaxial Cable (low band)	August 02, 2011
C027	none	none	Coaxial Cable (high band)	August 02, 2011

Asset #	Manufacturer	Model #	Description	Calibration Due
0267	EMCO	3115	Ridge Guide Antenna	October 19, 2010
1529	Miteq	Antenna Mounted	Microwave Preamplifier (preamp 1)	July 16, 2011

10366-10 Page 12 of 39

1841	HP	8566B	Spectrum Analyzer	June 8, 2011	
1273	HP	85662A	Spectrum Analyzer Display	NCR	
1530	Miteq	None	Microwave Preamplifier (preamp 2)	July 16, 2011	
C030	None	None	Coaxial Cable (MRE band)	July 27, 2010	

Microwave Radiated Test Equipment

Asset #	Manufacturer	Model #	Description	Calibration Due
0582	EMCO	3115	Ridge Guide Antenna	October 19, 2010
1529	Miteq	Antenna Mounted	Microwave Preamplifier (preamp 1)	July 16, 2011
1841	HP	8566B	Spectrum Analyzer	June 8, 2011
1273	HP	85662A	Spectrum Analyzer Display	NCR
1530	Miteq	None	Microwave Preamplifier (preamp 2)	July 16, 2011
C030	None	None	Coaxial Cable (MRE band) July 27, 2	

Asset #	Manufacturer	Model #	Description	Calibration Due	
XXXX	Pasternack	LLS	2 sections, total 12ft	June 21, 2011	
0582	EMCO	3115	Ridge Guide Antenna	October 19, 2010	
1594	Miteq	AFS44-00102650	Microwave Preamplifier (preamp 1)	March 2, 2011	
1342	Rohde & Schwarz	ESMI	EMI Test Receiver	December 4, 2010	
1343	Rohde & Schwarz	ESMI	EMI Test Receiver Display	December 4, 2010	
Rental Unit	Rohde & Schwarz	FSQ40	Spectrum Analyzer	August 24, 2011	

10366-10 Page 13 of 39

10366-10 Page 14 of 39

FIGURE 1: Conducted Emissions Test Setup

10366-10 Page 15 of 39

FIGURE 2: Radiated Emissions Test Setup

10366-10 Page 16 of 39

10366-10 Page 17 of 39

Mains Conducted Emissions Data Sheet 150 kHz ... 30 MHz

PROJECT #	DATE	CLASS	LINE	RBW	VBW	DETECTOR
10366-10	July 29, 2010	FCC B	Neutral	CISPR 9 kHz	100 kHz	Quasi-Peak/Avg

COMMENT	Transmitting

Frequency Reading (MHz)	Quasi- peak Reading (dBuV)	Average Reading (dBuV)	Quasi- peak Limit (dBuV)	Quasi-peak Margin (dB)	Average Limit (dBuV)	Average Margin (dB)
0.44817	44.3	35.6	56.9	-12.7	46.9	-11.3
0.44966	44.4	35.7	56.9	-12.5	46.9	-11.1
0.45215	44	35.4	56.8	-12.9	46.8	-11.5
0.6431	36.1	28.3	56	-19.9	46	-17.7
0.6452	36.3	28.3	56	-19.7	46	-17.7
0.653	36.4	28.5	56	-19.6	46	-17.5
5.1242	25.3	17.5	60	-34.7	50	-32.5
5.4267	22.5	16.8	60	-37.5	50	-33.2
5.8712	22.3	16.9	60	-37.7	50	-33.1
6.0604	22.1	16.6	60	-37.9	50	-33.4

10366-10 Page 18 of 39

Mains Conducted Emissions Data Sheet 150 kHz ... 30 MHz

PROJECT#	DATE	CLASS	LINE	RBW	VBW	DETECTOR
10366-10	July 29, 2010	FCC B	Phase	CISPR 9 kHz	100 kHz	Quasi-Peak/Avg

COMMENT	Transmitting

Frequency Reading (MHz)	Quasi- peak Reading (dBuV)	Average Reading (dBuV)	Quasi- peak Limit (dBuV)	Quasi-peak Margin (dB)	Average Limit (dBuV)	Average Margin (dB)
0.44759	41.8	33.5	56.9	-15.1	46.9	-13.4
0.4494	41.9	33.3	56.9	-15	46.9	-13.6
0.44963	41.8	33.4	56.9	-15	46.9	-13.5
0.500938	32.7	24.7	56	-23.3	46	-21.3
0.6491	34.2	26.8	56	-21.8	46	-19.2
0.6671	33.8	26.3	56	-22.2	46	-19.7
5.1527	21	16.3	60	-39	50	-33.7
5.2218	21.1	16.2	60	-38.9	50	-33.8
6.2833	20.5	16.1	60	-39.5	50	-33.9
6.3811	20.4	16.1	60	-39.6	50	-33.9

10366-10 Page 19 of 39

Peak Power Data Sheet

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	August 11, 2010	15.247	N/A	Direct	1 MHz	1 MHz	Peak

COMMENT	Transmitting

Conducted

Frequency (MHz)	Recorded Level (dBm)	Cable Loss (dB)	Corrected Level (dBm)	Limit (dBm)	Margin (dB)
902.74	17.4	2.3	19.7	30	-10.3
915	17.3	2.3	19.6	30	-10.4
927.74	17	2.3	19.3	30	-10.7

Result: PASS

NOTE: An investigation of the peak power indicated no changes from the previous recorded data.

10366-10 Page 20 of 39

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	September 2, 2010	15.247	N/A	Direct	30 kHz	300 kHz	Peak

COMMENT	Transmitting 20 dB Bandwidth – 374.99 kHz

Low Channel

Date: 2.SEP.2010 18:19:10

10366-10 Page 21 of 39

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	September 2, 2010	15.247	N/A	Direct	30 kHz	300 kHz	Peak

COMMENT	Transmitting 26 dB Bandwidth – 424.27 kHz

Low Channel

Date: 2.SEP.2010 18:21:29

10366-10 Page 22 of 39

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	September 2, 2010	15.247	N/A	Direct	30 kHz	300 kHz	Peak

COMMENT	Transmitting 20 dB Bandwidth – 362.98 kHz

Middle Channel

Date: 2.SEP.2010 18:30:52

10366-10 Page 23 of 39

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	September 2, 2010	15.247	N/A	Direct	30 kHz	300 kHz	Peak

COMMENT	Transmitting 26 dB Bandwidth – 411.06 kHz

Middle Channel

26 dB

Date: 2.SEP.2010 18:31:42

10366-10 Page 24 of 39

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	September 2, 2010	15.247	N/A	Direct	30 kHz	300 kHz	Peak

COMMENT	Transmitting 20 dB Bandwidth – 358.17 kHz
---------	---

High Channel

20 dB

Date: 2.SEP.2010 18:38:28

10366-10 Page 25 of 39

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	September 2, 2010	15.247	N/A	Direct	30 kHz	300 kHz	Peak

COMMENT	Transmitting 26 dB Bandwidth – 385.82 kHz
---------	---

High Channel

26 dB

Date: 2.SEP.2010 18:39:17

10366-10 Page 26 of 39

Timing Data Sheet

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	August 11, 2010	15.247	N/A	Direct	10 kHz	1 MHz	Peak

COMMENT Transmitting Channel occupation in a 20 second period: 0.0353 s

Date: 2.SEP.2010 17:59:52

Date: 2.SEP.2010 17:53:59

Result: PASS

10366-10 Page 27 of 39

Number of Hopping Channels and Channel Separation Data Sheet

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	September 2, 2010	15.247	N/A	Direct	30 kHz	100 kHz	Peak

COMMENT	Transmitting Number of Channels: 50
	Channel Separation: 500 kHz

Date: 2.3EP.2010 15:49:05

10366-10 Page 28 of 39

Date: 2.3EP.2010 17:01:47

Result: PASS

10366-10 Page 29 of 39

Conducted Spurious Emissions Data Sheet 500 MHz ... 10 GHz

PROJECT#	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	August 11, 2010	N/A	Direct Connect	N/A	100 kHz	300 kHz	Peak

COMMENT	Transmitting
COMMENT	Low Channel

NOTE: An investigation of the conducted spurious emissions indicated no changes from the previous recorded data.

10366-10 Page 30 of 39

Conducted Spurious Emissions Data Sheet $$500\ MHz\dots 10\ GHz$

PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	August 11, 2010	N/A	Direct Connect	N/A	100 kHz	300 kHz	Peak

	Transmitting
COMMENT	Transmung
COMMENT	Middle Channel

NOTE: An investigation of the conducted spurious emissions indicated no changes from the previous recorded data.

10366-10 Page 31 of 39

Conducted Spurious Emissions Data Sheet 500 MHz ... 10 GHz

PROJECT#	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	August 11, 2010	N/A	Direct Connect	N/A	100 kHz	300 kHz	Peak

COMMENT	Transmitting
COMMENT	High Channel

NOTE: An investigation of the conducted spurious emissions indicated no changes from the previous recorded data.

10366-10 Page 32 of 39

Spurious Radiated Emissions Data Sheet 30 MHz ... 1 GHz

PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	August 12, 2010	FCC B	10 m	Bicon Log	CISPR 120 kHz	1 MHz	Quasi-Peak

COMMENT	Transmitting

Horizontal

Frequency (MHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dBuV)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
245.6	123	4	20.3	31.0	12.4	2.2	3.8	37	-33.2
369.6	185	4	24.6	30.9	15.3	2.8	11.8	37	-25.2
432	166	4	26.6	31.2	17.6	3.1	16.1	37	-20.9

NOTE: An investigation of the radiated spurious emissions indicated no changes from the previous recorded data.

10366-10 Page 33 of 39

Spurious Radiated Emissions Data Sheet 30 MHz ... 1 GHz

PR	OJECT#	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
1	10366-10	August 12, 2010	FCC B	10 m	Bicon Log	CISPR 120 kHz	1 MHz	Quasi-Peak

COMMENT	Transmitting

Vertical

Frequency (MHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dBuV)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
96.64	105	1	20	26.2	8.5	1.0	3.3	30	-26.7
245.6	164	1	21.5	31.0	12.4	2.2	5.0	37	-32.0
514.4	157	1	27.9	31.1	19.0	3.5	19.3	37	-17.7

NOTE: An investigation of the radiated spurious emissions indicated no changes from the previous recorded data.

10366-10 Page 34 of 39

Band Edge Spurious Emissions Data Sheet 902 to 928 MHz

PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	August 11, 2010	FCC B	10 m	Log	CISPR 120 kHz	1 MHz	Peak

COMMENT	Transmitting
---------	--------------

Horizontal

Frequency (MHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dBuV)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Distance Correction (dB)	Corrected Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
902	18	2	27.1	31.9	23.1	5.2	10.5	34	46	-12
928	285	3	29.2	31.9	23.8	5.3	10.5	36.9	46	-9.1

Vertical

Frequency (MHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dBuV)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Distance Correction (dB)	Corrected Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
902	105	1.2	27.9	31.9	23.1	5.2	10.5	34.8	46	-11.2
928	56	1.2	27.7	31.9	23.8	5.3	10.5	35.4	46	-10.6

10366-10 Page 35 of 39

Spurious/Harmonic Emissions Data Sheet $1~\mathrm{GHz}\dots 10~\mathrm{GHz}$

PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	August 11, 2010	FCC B	1 m	Horn	1 MHz	1 MHz	Peak

COMMENT	Transmitting Low Channel
---------	--------------------------

Horizontal

Frequency (GHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dBµV)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dBµV /m)	Limit (dBµV /m)	Margin (dB)
1.80568	Max	1	59.6	40.2	27.6	2.9	49.9	63.5	-13.6
2.70852	Max	1	52.1	40.6	29.4	3.0	43.9	63.5	-19.6
3.61136	noise	floor	51.9	40.7	32.1	3.3	46.6	63.5	-16.9
4.5142	noise	floor	51.9	41.5	32.0	3.9	46.3	63.5	-17.2
5.41704	noise	floor	52.2	42.3	34.7	4.7	49.3	63.5	-14.2
6.31988	noise	floor	50.6	42.9	35.4	4.7	47.8	63.5	-15.7
7.22272	noise	floor	49.5	42.5	36.8	5.1	48.9	63.5	-14.6
8.12556	noise	floor	50.6	41.9	37.4	4.7	50.8	63.5	-12.7
9.0284	noise	floor	51.1	40.5	37.6	4.9	53.1	63.5	-10.4

Vertical

Frequency (GHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dBµV)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dBµV /m)	Limit (dBµV /m)	Margin (dB)
1.80568	Max	1	65.3	40.2	27.6	2.9	55.6	63.5	-7.9
2.70852	Max	1	55.6	40.6	29.4	3.0	47.4	63.5	-16.1
3.61136	noise	floor	52.3	40.7	32.1	3.3	47.0	63.5	-16.5
4.5142	noise	floor	51.82	41.5	32.0	3.9	46.2	63.5	-17.3
5.41704	noise	floor	51.4	42.3	34.7	4.7	48.5	63.5	-15.0
6.31988	noise	floor	51.2	42.9	35.4	4.7	48.4	63.5	-15.1
7.22272	noise	floor	49.3	42.5	36.8	5.1	48.7	63.5	-14.8
8.12556	noise	floor	50.7	41.9	37.4	4.7	50.9	63.5	-12.6
9.0284	noise	floor	52.2	40.5	37.6	4.9	54.2	63.5	-9.3

NOTE: An investigation of the spurious / harmonic emissions indicated no changes from the previous recorded data.

10366-10 Page 36 of 39

Spurious/Harmonic Emissions Data Sheet

1 GHz ... 10 GHz

PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	August 11, 2010	FCC B	1 m	Horn	1 MHz	1 MHz	Peak

COMMENT	Transmitting Middle Channel
---------	-----------------------------

Horizontal

Frequency (GHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dBµV)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dBµV /m)	Limit (dBµV /m)	Margin (dB)
1.83168	max	1	56.9	40.2	27.7	2.9	47.2	63.5	-16.3
2.74752	max	1	55	40.6	29.4	3.0	46.8	63.5	-16.7
3.66336	max	1	55.6	40.7	32.1	3.3	50.3	63.5	-13.2
4.5792	noise	floor	52.6	41.5	32.0	3.9	47.0	63.5	-16.5
5.49504	noise	floor	52.9	42.3	34.7	4.7	50.0	63.5	-13.5
6.41088	noise	floor	50.9	42.9	35.6	4.5	48.0	63.5	-15.5
7.32672	noise	floor	50.2	42.5	36.8	5.1	49.6	63.5	-13.9
8.24256	noise	floor	49.5	41.4	37.2	5.0	50.2	63.5	-13.3
9.1584	noise	floor	51.1	40.5	37.6	4.9	53.1	63.5	-10.4

Vertical

Frequency (GHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dBµV)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dBµV /m)	Limit (dBµV /m)	Margin (dB)
1.83168	max	1	62.5	40.2	27.7	2.9	52.8	63.5	-10.7
2.74752	max	1	54.3	40.6	29.4	3.0	46.1	63.5	-17.4
3.66336	noise	floor	53.1	40.7	32.1	3.3	47.8	63.5	-15.7
4.5792	noise	floor	51.3	41.5	32.0	3.9	45.7	63.5	-17.8
5.49504	noise	floor	53.4	42.3	34.7	4.7	50.5	63.5	-13.0
6.41088	noise	floor	51.5	42.9	35.6	4.5	48.6	63.5	-14.9
7.32672	noise	floor	50.9	42.5	36.8	5.1	50.3	63.5	-13.2
8.24256	noise	floor	49.7	41.4	37.2	5.0	50.4	63.5	-13.1
9.1584	noise	floor	50.5	40.5	37.6	4.9	52.5	63.5	-11.0

NOTE: An investigation of the spurious / harmonic emissions indicated no changes from the previous recorded data.

10366-10 Page 37 of 39

Spurious/Harmonic Emissions Data Sheet 1 GHz ... 10 GHz

PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
10366-10	August 11, 2010	FCC B	1 m	Horn	1 MHz	1 MHz	Peak

COMMENT	Transmitting High Channel
---------	---------------------------

Horizontal

Frequency (GHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dBµV)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dBµV /m)	Limit (dBµV /m)	Margin (dB)
1.85568	max	1	59.1	40.2	27.7	2.9	49.4	63.5	-14.1
2.78352	noise	floor	52.3	40.6	29.5	3.0	44.1	63.5	-19.4
3.71136	noise	floor	53.4	40.7	32.1	3.3	48.1	63.5	-15.4
4.6392	noise	floor	55.1	41.6	32.7	4.2	50.3	63.5	-13.2
5.56704	noise	floor	51.7	42.3	34.7	4.7	48.8	63.5	-14.7
6.49488	noise	floor	51.6	42.9	35.6	4.5	48.8	63.5	-14.7
7.42272	noise	floor	48.9	42.6	37.3	4.5	48.1	63.5	-15.4
8.35056	noise	floor	48.3	41.4	37.2	5.0	49.0	63.5	-14.5
9.2784	noise	floor	51.2	40.4	37.6	5.2	53.6	63.5	-9.9

Vertical

Frequency (GHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dBµV)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dBµV /m)	Limit (dBµV /m)	Margin (dB)
1.85568	max	1	66.9	40.2	27.7	2.9	57.2	63.5	-6.3
2.78352	noise	floor	56.2	40.6	29.5	3.0	48.0	63.5	-15.5
3.71136	noise	floor	55.8	40.7	32.1	3.3	50.5	63.5	-13.0
4.6392	noise	floor	54.6	41.6	32.7	4.2	49.8	63.5	-13.7
5.56704	noise	floor	54.4	42.3	34.7	4.7	51.5	63.5	-12.0
6.49488	noise	floor	50	42.9	35.6	4.5	47.2	63.5	-16.3
7.42272	noise	floor	49.8	42.6	37.3	4.5	49.0	63.5	-14.5
8.35056	noise	floor	50	41.4	37.2	5.0	50.7	63.5	-12.8
9.2784	noise	floor	51.7	40.4	37.6	5.2	54.1	63.5	-9.4

NOTE: An investigation of the spurious / harmonic emissions indicated no changes from the previous recorded data.

10366-10 Page 38 of 39

Antenna Assessment

PROJECT #	DATE
10366-10	August 11, 2010

COMMENT	Reverse Polarity SMA connector
---------	--------------------------------

Result: Pass

10366-10 Page 39 of 39