Sentiment Analysis on Airline Tweets Dataset

Problem Statement / Opportunity

- The airline industry is a very competitive market
- Tradition customer feedback forms are tedious and time consuming
- Tweeter data serves as a good source to gather customer feedback
- Tweeter is a gold mine of data with nearly 100 million subscribers
- More than half a billion tweets are tweeted, and keeps growing

Trough machine learning and text analytics, sentiment analysis is used to determine sentiments such as positive, neutral or negative.

Benefit of Sentiment Analysis

- Sorting Data at Scale
- Real-Time Analysis

Business Impact

- Real-time sentiment analysis helps monitor social media mentions and proactively manage negative comments.
- It also offers insights into customer reactions to marketing campaigns and product launches.
- Periodic sentiment analysis helps understand customer preferences and concerns related to specific business aspects

Sentiment Analysis using Data Science

Data Pre-processing Steps

- Tokenization (e.g. convert to words or n-grams).
- Removing Stopwords (remove uninformative words).
- Lexicon Normalization: Either Stemming or Lemmatization (reduce vocabulary to essense)
- POS Tagging (parameterize information beyond words -- noun, verb, etc.).

Airline Tweets Dataset

 we worked on a dataset comprising of tweets for 6 major US Airlines and performed a multi-class sentiment analysis.

#	Column	Non-Null Count	Dtype	
0	tweet_id	14640 non-null	int64	
1	airline_sentiment	14640 non-null	object	
2	airline_sentiment_confidence	14640 non-null	float64	
3	negativereason	9178 non-null	object	
4	negativereason_confidence	10522 non-null	float64	
5	airline	14640 non-null	object	
6	airline_sentiment_gold	40 non-null	object	
7	name	14640 non-null	object	
8	negativereason_gold	32 non-null	object	
9	retweet_count	14640 non-null	int64	
10	text	14640 non-null	object	
11	tweet_coord	1019 non-null	object	
12	tweet_created	14640 non-null	object	
13	tweet_location	9907 non-null	object	
14	user_timezone	9820 non-null	object	
dtypes: float64(2), int64(2), object(11)				
memorv usage: 1.7+ MB				

- ✓ This dataset contains 14,640 observations and 15 features.
- ✓ We will focus on "Text" and "airline_sentiment"
- ✓ Some feathers "Negative Reason" and "Airline" are also useful for model building
- ✓ Other feature "tweet_id" ,"tweet_creation" are less important.

Missing values detection

tweet_id	0.000000		
airline_sentiment	0.000000		
airline_sentiment_confidence	0.000000		
negativereason	0.373087		
negativereason_confidence	0.281284		
airline	0.000000		
airline_sentiment_gold	0.997268		
name	0.000000		
negativereason_gold	0.997814		
retweet_count	0.000000		
text	0.000000		
tweet_coord	0.930396		
tweet_created	0.000000		
tweet_location	0.323292		
user_timezone	0.329235		
dtype: float64			

Exploratory Data Analysis

Exploratory Data Analysis

Sentiment Rating by Airline

Exploratory Data Analysis

Bag of Words – Before stopwords removal

Bag of Words – After Stopwords removal

Model building

- Train test split: test size 0.33
- Logistic regression: C = 0.1

train accuracy: 0.83 test accuracy: 0.77

• KNN: K=50

train accuracy: 0.48 test accuracy: 0.43

Decision tree: max_depth=6

train accuracy: 0.69 test accuracy: 0.69

Challenges and Next Steps

- Continue cleaning the data using tweet preprocessor library
- Incorporate other features such negative reason (confidence) as predictors
- Use word embedding: word2vec
- Customize tokenizer not only punctuation removal/lowcasing
- Try different classification strategies:

Decision Tree, Random Forest, SVM, K-Nearest Neighbors, Logistic

Regression, Gaussian Naïve Bayes and AdaBoost.