

PROPRIEDADES DE UMA SUBSTÂNCIA PURA

Substância Pura

É aquela que tem composição química invariável e homogênea.

Pode existir em mais de uma fase.

Água líquida + vapor ou água líquida + gelo.

Ar líquido + ar gasoso não é uma substância pura (composições diferentes).

Como uma mistura gasosa pode exibir, desde que não haja mudança de fase, algumas características de uma substância pura ela é considerada como tal.

MÁQUINAS TÉRMICAS

Equilíbrio de Fases de uma Substância Pura

a.
$$P = 0.1$$
 MPa e $T = 15$ °C — calor $\rightarrow P = cte$; $T = \uparrow$; vol.espec. = \uparrow

b.
$$P = 0.1$$
 MPa e $T = 99.6$ °C — calor \rightarrow mudança de fase: $P = cte$; $T = cte$; vol.espec. = \uparrow

c. P = 0,1 MPa e vapor — calor
$$\rightarrow$$
 P = cte; T \uparrow > 99,6 °C; vol.espec. = \uparrow

$$T = 99,6$$
 °C – Temperatura de saturação a $P = 0,1$ MPa .

Substância pura tem uma relação definida entre pressão de saturação e temperatura de saturação.

Curva de Pressão de Vapor de uma Substância Pura

Líquido saturado - líquido a temperatura e pressão de saturação.

Líquido sub-resfriado - temperatura do líquido mais baixa que a temperatura de saturação.

Líquido comprimido – pressão maior que a pressão de saturação.

Vapor saturado - vapor a temperatura e pressão de saturação.

Vapor superaquecido - temperatura do vapor mais alta que a temperatura de saturação.

Saturação: Mistura = x% (m) de vapor + (1-x)% (m) água – x = título (steam quality).

Vapor superaquecido - temperatura e pressão são independentes.

Gases são vapores altamente superaquecidos.

Engenharia Mecânica

MÁQUINAS TÉRMICAS

Pressão constante = 0,1 MPa

A – estado inicial (15 $^{\circ}$ C).

B – líquido saturado (100 °C).

AB – Processo de aquecimento até saturação.

C – Vapor saturado.

BC – Processo de mudança de fase (T = cte).

CD – Processo de superaquecimento do vapor.

Pressão constante = 0,7 MPa

E − estado inicial (15 °C); volume pouco menor.

F – líquido saturado (164,2 °C).

EF – Processo de aquecimento até saturação.

G – Vapor saturado.

FG – Energia $(F \rightarrow G) < (B \rightarrow C)$

GH – Processo de superaquecimento do vapor.

Pressão constante = 70 kgf/cm^2

Linha IJKL − Temp. saturação = 284,5 °C

Pressão constante = 225,4 kgf/cm²

A linha MNO não é de evaporação a temperatura constante, mas o ponto N é um ponto de inflexão com inclinação nula.

N – Ponto crítico; os estados de líquido saturado e vapor saturado são idênticos.

$$P_{crítico} = 225,4 \text{ kgf/cm}^2$$
; $T_{crítico} = 374 \text{ °C}$

Um processo a pressão constante maior que a pressão crítica é representado pela linha PQ. Nunca haverá duas fases presentes: quando teremos líquido e quando teremos vapor?

Alguns dados no ponto crítico

	Temperatura crítica, °C	Pressão crítica, MPa	Volume crítico, m³/kg
Água	374,14	22,09	0,003155
Dióxido de carbono	31,05	7,39	0,002143
Oxigênio	-118,35	5,08	0,002438
Hidrogênio	-239,85	1,30	0,032192

Equilíbrio sólido — líquido — vapor Ponto Triplo da Água.

MÁQUINAS TÉRMICAS

Consideremos uma experiência com o conjunto êmbolo-cilindro. Suponhamos que o cilindro contenha 1 kg de gelo à -20°C e 100 kPa.

Quando calor é transferido ao gelo, a pressão permanece constante, o volume específico aumenta ligeiramente e a temperatura cresce até atingir 0 °C, ponto no qual o gelo funde enquanto a temperatura permanece constante. Linha EF.

Nesse estado o gelo é denominado sólido saturado.

O volume específico da maioria das substâncias cresce durante o processo de fusão mas a água é uma exceção. O volume específico da água líquida é menor do que o volume específico da água sólida.

Quando todo o gelo tiver fundido, qualquer transferência de calor adicional provoca um aumento na temperatura do líquido.

Se a pressão inicial do gelo a -20°C for 0,260 kPa, uma transferência de calor ao gelo resulta primeiramente num aumento da temperatura até -10 °C. Neste ponto, entretanto, o gelo passa diretamente da fase sólida para a de vapor, num processo conhecido como sublimação. Qualquer transferência de calor adicional implica no superaquecimento do vapor. Linha AB.

MÁQUINAS TÉRMICAS

Consideremos que a pressão e a temperatura iniciais do gelo sejam iguais a 0,6113 kPa e -20°C. Linha CD.

Como resultado da transferência de calor, a temperatura cresce até 0,01 °C. Entretanto, ao atingir esse ponto (denominado ponto triplo), qualquer transferência adicional de calor poderá resultar numa parte do gelo passando a líquido e outra passando a vapor (neste ponto é possível a existência das três fases em equilíbrio).

O ponto triplo é definido como o estado no qual as três fases podem coexistir em equilíbrio.

A pressão e a temperatura do ponto triplo, para algumas substâncias puras , estão apresentadas na Tabela a seguir. <u>Slide 10</u>

Ao longo da linha de sublimação, as fases sólida e vapor estão em equilíbrio, ao longo da linha de fusão as fases sólida e líquida estão em equilíbrio e ao longo da linha de vaporização estão em equilíbrio as fases líquida e vapor. O único .ponto no qual todas as três fases podem existir em equilíbrio é o ponto triplo. A linha de vaporização termina no ponto crítico porque não existe uma distinção clara entre as fases líquida e vapor acima deste ponto.

Na linha GH, não existe distinção entre as fases líquida e vapor.

Alguns dados no ponto triplo

	Temperatura, °C	Pressão, kPa
Hidrogênio (normal)	-259	7,194
Oxigênio	-219	0,15
Nitrogênio	-210	12,53
Mercúrio	-39	0,000 000 13
Água	0,01	0,611 3
Zinco	419	5,066
Prata	961	0,01
Cobre	1083	0,000 079

A temperatura absoluta do hidrogênio, nas condições ambientes, é da ordem de 20 vezes maior do que sua temperatura crítica.

A temperatura crítica da água é 374,14 °C (647,29 K).

Assim, na condição ambiente, a temperatura da água é menor do que a metade da temperatura crítica.

A maioria dos metais apresenta temperatura crítica muito mais alta do que a da água.

Ao se considerar o comportamento de uma substância num dado estado, é sempre interessante comparar este dado estado com o crítico ou com o ponto triplo.

Por exemplo, se a pressão for maior que a crítica, será impossível ter as fases líquida e vapor em equilíbrio.

Outro exemplo: os estados em que é possível a fusão a vácuo de um dado metal podem ser determinados pela observação das propriedades do ponto triplo. O ferro, para uma pressão um pouco acima de 5 Pa (pressão de ponto triplo), fundir-se-á a uma temperatura de aproximadamente 1.535 °C (temperatura do ponto triplo).

Uma substância pura pode existir em diferentes fases sólidas.

A mudança de uma fase sólida para outra é chamada transformação alotrópica.

A Fig. mostra um diagrama pressão temperatura para o ferro onde estão indicadas três fases sólidas, a fase líquida e a fase vapor.

A Fig. mostra algumas fases sólidas da água.

É evidente que uma substância pura pode apresentar diversos pontos triplos, mas somente um envolvendo sólido, líquido e vapor em equilíbrio.

Outros pontos triplos para uma substância pura podem envolver duas fases sólidas e uma líquida, duas fases sólidas e uma vapor, ou três fases sólidas.

Propriedades Independentes de uma Substância Pura

O estado de uma substância pura simples compressível é definido por duas propriedades (variáveis de estado) independentes.

No estado de saturação, pressão e temperatura não são independentes. Duas propriedades independentes, tal como volume específico e pressão são requeridas para definir o estado de saturação da substância pura.

O estado do ar, que é uma mistura de gases de composição definida, que não é uma substância pura, é determinado pela especificação de duas propriedades, desde que permaneça na fase gasosa e desta forma pode ser tratado como uma substância pura.

15

Equações de Estado para a Fase Vapor de uma **Substância Compressível Simples**

A partir de observações experimentais estabeleceu-se que o comportamento p-v-Tdos gases a baixa massa específica é dado, com boa precisão, pela seguinte equação de estado:

$$p\overline{v} = \overline{R}T$$

onde a constante universal dos gases vale:

$$\overline{R} = 8314.5 \frac{N \text{ m}}{\text{kmol } K} = 8,3145 \frac{\text{kN m}}{\text{kmol } K} = 8,3145 \frac{\text{kJ}}{\text{kmol } K}$$

Dividindo por *M*, o peso molecular do gás, obtém-se a equação de estado na base mássica:

$$\frac{p\overline{v}}{M} = \frac{\overline{R}T}{M} \Rightarrow pv = RT \text{ onde } R = \frac{\overline{R}}{M}$$

R é a constante para um gás particular. (valores tabelados).

Equação de estado a partir do volume total:

$$pV = n\overline{R}T = mRT$$
 ou $\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2}$

Os gases que apresentam massa específica baixa seguem, com boa aproximação, as conhecidas leis de Boyle e Charles, os quais basearam suas afirmações em observações experimentais (rigorosamente falando, nenhuma dessas afirmações deveria ser chamada de lei já que são apenas aproximadamente verdadeiras e, mesmo assim, só são válidas quando o valor da massa específica for baixo).

Lei de **Boyle** - A temperatura constante, o volume ocupado por uma quantidade fixa e um gás é inversamente proporcional à sua pressão. $P \cdot V = k = constante$.

Lei de Charles e Gay-Lussac - A volume constante, a pressão de uma massa fixa de um gás varia linearmente com a temperatura .

17

QUAL A MASSA DE AR DENTRO DA SALA?

MÁQUINAS TÉRMICAS

Exemplo: Qual a massa de ar contida numa sala de 6 m x 10 m x 4 m se a pressão e a temperatura forem iguais a 100 kPa e 25°C? Admita que o ar se comporta como um gás perfeito.

$$R_{ar} = 0.287 \frac{kN m}{kg K}$$

$$m = \frac{pV}{RT} = \frac{100kN / m^2 * 240m^3}{0,287kN \ m / kg \ K * 298,2K} = 280,5 \ kg$$

Exemplo: Um tanque com capacidade de 0,5 m³ e contém 10 kg de um gás perfeito que apresenta peso molecular igual a 24. A temperatura é de 25°C. Qual é a pressão no gás?

$$R = \frac{\overline{R}}{M} = \frac{8,3145 \text{ kN m/kmol } K}{24 \text{ kg/kmol}} = 0,34644 \text{kN m/kg } K$$
$$p = \frac{mRT}{V} = \frac{10 \text{ kg} * 0,34644 \text{kN m/kg } K * 298,2 K}{0,5 \text{ m}^3} = 2066 \text{ kPa}$$

MÁQUINAS TÉRMICAS

A equação de estado anterior é chamada equação de estado dos gases perfeitos.

Todos os gases e vapores apresentam comportamento próximo daquele do gás perfeito quando a massa específica apresenta valores muito baixos.

Nestas condições podemos utilizar a equação de estado dos gases perfeitos para avaliar o comportamento p-v-T destes gases e vapores.

Em situações onde a massa específica apresenta valores maiores, o comportamento p- v –T pode desviar substancialmente do previsto pela equação de estado dos gases perfeitos.

O uso dessa equação é bastante conveniente, nos cálculos termodinâmicos, devido a sua simplicidade.

No entanto, duas questões podem ser levantadas:

Primeira: O que é uma baixa massa específica? Ou, em outras palavras, em qual faixa de massa específica a equação dos gases perfeitos simula o comportamento do gás real com uma boa precisão?

Segunda: em quanto o comportamento de um gás real, a uma dada pressão e uma dada temperatura, desvia daquele do gás perfeito?

20

Para responder a ambas as questões, introduzimos o conceito de fator de compressibilidade Z, que é definido pela relação

$$Z = \frac{p\overline{v}}{\overline{R}T} \implies p\overline{v} = Z\overline{R}T$$

Observe que, para um gás perfeito, Z = 1 e que o afastamento de Z em relação à unidade é uma medida do desvio de comportamento do gás real em relação ao previsto pela equação de estado dos gases perfeitos.

TABELAS DE PROPRIEDADES TERMODINÂMICAS

Existem tabelas de propriedades termodinâmicas para muitas substâncias e, em geral, todas elas são apresentadas da mesma forma.

Vamos nos referir às tabelas de vapor d'água.

O vapor d'água é largamente empregado em instalações geradoras e processos industriais. Uma vez entendidas as tabelas de vapor, as outras tabelas termodinâmicas podem ser usadas imediatamente.

Antes de discutirmos detalhadamente as tabelas de vapor é interessante examinar as idéias que propiciaram a construção destas tabelas e também explorar as dificuldades que os estudantes frequentemente encontram no início do estudo da termodinâmica.

As tabelas de vapor são compostas por 4 tabelas separadas, como por exemplo, as tabelas *A, B,* C e D da Fig. ao lado.

Cada uma destas está relacionada com uma região diferente e referente a um certa faixa de valores de *T* e *p*.

Para cada conjunto de pontos T e p (um estado), a tabela também contém valores de quatro outras propriedades termodinâmicas, ou seja: v, u, h e s.

Se os valores de T e p são fornecidos, podemos compara-los com os valores de fronteira (T' e P') e assim determinaremos em qual das quatro tabelas (A, B, C, D) estão os valores adequados para v, u, h e s.

Por exemplo: A tabela A é a correta somente se T < T' e p > P'.

A principal dificuldade é que qualquer estado termodinâmico pode ser especificado por qualquer par de propriedades (p, *T, v, u, h* e *s*) independentes. Assim, o nosso objetivo é a determinação das quatro propriedades restantes a partir das duas propriedades independentes fornecidas.

Se as propriedades fornecidas não são a temperatura e a pressão, pode não ser óbvia a escolha da tabela onde se encontra o estado fornecido.

Além do problema de se obter a tabela de propriedades adequada, existe um outro problema que é o da interpolação.

Esta é necessária quando uma ou as duas propriedades termodinâmicas dadas não são exatamente iguais aos valores que constam na tabela.

As tabelas computadorizadas não apresentam os problemas anteriormente descritos, mas o estudante precisa aprender o significado, o método de construção das tabelas e as limitações destas.

O motivo para esta afirmação é: a possibilidade de ocorrer situações onde será necessário utilizar tabelas impressas ainda é muito grande.

Faculdade de	orio	MEC 011				Engenharia		
Para		T ℃	200	250	300	350	400	ca _
	Vg 0.2149	V	0.2305	0.2597	0.2874	0.3144	0.3410	
9	Ug 2581	U	2628	2714	2796	2877	2959	
	hg 2774	h	2835	2948	3055	3160	3266	
(175°C)	S ₉ 6.623	S	6.753	6.980	7.176	7.352	7.515	
	vg 0.1944	٧	0.2061	0.2328	0.2582	0.2825	0.3065	
10	Ug 2584	4	2623	2711	2794	2875	2957	
	hg 2778	h	2829	2944	3052	3158	3264	
(180,c)	5,6.586	S	6.695	6.926	7.124	7.301	7.464	
	Vg 1317	V	0.1324	0.1520	0.1697	0.1865	0.2029	
15	Ug 2595	V	2597	2697	2784	2868	2952	
15	hg 2792	h	2796	2925	3039	3147	3526	
(198°C)	s, 6.445	s	6.452	6.711	6,919 wiki How	7, \ 02 Do a Double Lin	7 268 par Interpolation	

Faculdade de	MEC	011	1	Engenharia
(175°C)	S ₉ 6.623	S	6.753	6.98 Ca
	Vg 0.1944	V	0.2061	0.2328
10	Ug 2584	Ч	2623	271
	hg 2778	h	2829	294
(185°)	5,6.586	S	6.695	6.921
	Vg 1317	\vee	0.1324	0.152
1	Ug 2595	U	2597	269
15	hg 2792	h	2796	292
(198°C)	s, 6.445	S	6.452 wiki How to Do a Double	6.7\'a

¥	Faculdade de	MEC (011		Engenharia
<u>`</u>	(1750)	Sg 6.623	S	6.753	6.98 Ca
		Vg 0.1944	V	0.2061	0.2328
	10 —	237534	Ч	2623	271
		hg 2778	h	2829	294
	(1869)	5,6.586	S	6.695	6.921
		Vo 1317	\vee	0.1324	0.1520
	1	Ug 2595	V	2597	269
	15	hg 2792	h	2796	292
	(198°C)	s, 6.445	S	6.452 wiki How to Do a Double	6.71'

Faculdade de	MEC (011		Engenharia
(1750)	S ₉ 6.623	S	6.753	6.98 ca
	Vg 0.1944	V	0.2061	0.2328
10 —	237584	Ч	2623	271
	hg 2778	h	2829	294
(186°))	5,6.586	S	6.695	6.921
	Vg 1317	\vee	0.1324	0.1520
1	Ug 2595	N	2597	269
15-	ng Z/CR	h	2796	292
(198°C)	s, 6.445	S	6.452	6.71

Facu	ldade de	ME	C 011		<u>Engenh</u> a
T %	200	250	300:32	5.350	4
V	0.2305	0.2597	0.2874	0.3144	0.3
И	2628	2714	2796	2877	2
h	2835	2948	3055	3160	3
S	6.753	6.980	7.176	7.352	7
V	0.2061	0.2328	0.2582	0.2825	0.3
Ч	2623	2711	2794	2875	2
			wiki	low to Do a Double Linear In	terpolation

Faculdade de

Engenharia Enganharia 300:325:350 200 0.3144 0.2597 0.2305 2714 2877 2628 3055 3160 2835 2948 7.176 6.753 6.980 7.352 0.2061 0.2582 0.2825 0.2328 2711 2623 2875 2794 wiki How to Do a Double Linear Interpolation

) P	Facu	Idade de	ME	C 011	Engenharia			
_	− °	200	250	300:32	5.350	4		
	~	0.2305	0.2597	03874	0344	0.3		
	U	2628	2714	2/96	29.77	2		
	h	2835	2948	3055	3160	3		
	S	6.753	6.980	7.176	7.352	7		
	V	0.2061	0.2328	0.2582	0.2825	0.3		
	ч	2623	2711	2794	2875	2		
				wiki	low to Do a Double Linear In	terpolation		

Engenharia

Faculdade de MEC 011

Para		T ℃	200	250	300:32	25:350	400
	Vg 0.2149	~	0.2305	0.2597	0.2874	0.3144	0.3410
9	Ug 2581	4	2628	2714	2796	2877	2959
	hg 2774	h	2835	2948	3055	3160	3266
(175°C)	S ₉ 6.623	S	6.753	6.980	7.176	7.352	7.515
	Vg 0.1944	٧	0.2061	0.2328	0.2582	0.2825	0.3065
10	Ug 2584	ч	2623	2711	2794	2875	2957
	hg 2778	h	2829	2944	3052	3158	3264
(480)	5.6.586	S	6.695	6.926	7.124	7.301	7.464
1.4	Vg 1317	V	0.1324	0.1520	0.1697	0.1865	0.2029
45	Ug 2595	V	259	2697	279A	2868	2952
15	hg 2792	h	2-19	125	129	3/47	3526
(198°C)	s, 6.445	S	6.452	6.711	6,919 wiki How t	7.107 o Do a Double Lin	7 268 ear Interpolation

			33						
Faculdade de	aria		ME	C 011		Engenhari			
Para		T ℃	200	250	300:32	25:350	400	_	
	Vg 0.2149	V	0.2305	0.2597	0.2874	0.3144	0.3410		
9	Ug 2581	U	2628	2714	2796	2877	2959		
	hg 2774	h	2835	2948	3055	3160	3266		
(175°C)	S ₉ 6.623	S	6.753	6.980	7.176	7.352	7.515		
	Vg 0.1944	٧	0.2061	0.2328	0.2582	0.2825	0.3065		
10	Ug 2584	ч	2623	2711	2794	2875	2957		
10	hg 2778	h	2829	2944	3052	3158	3264		
(180)	5.6.586	S	6.695	6.926	7.124	7.301	7.464		
1.4	Vg 1317	V	0.1324	0.1520	0.1697	0.1865	0.2029		
45	Ug 2595	U	259	267	2279A	2868	2952		
15	hg 2792	h	2-19	625	1/29	3/47	3526		
(10000)	c 61/15		6/152	6711	6 910	7102	7.268		

Faculdade de Enganharia

MEC 011

Engenharia

P		T °C	200	250	300:32	25:350	400
	Vg 0.2149	V	0.2305	0.2597	0.287	10.3144	0.3410
9	Ug 2581	4	2628	2714	2198	2877	2959
9	hg 2774	h	2835	2948	3055	3160	3266
(175°C)	S ₉ 6.623	S	6.753	6.980	7. 76	7.352	7.515
	Vg 0.1944	V	0.2061	0.2328	0.2182	0.2825	0.3065
10	Ug 2584	A	2623	2711	2 94	2875	2957
10	hg 2778	h	2020	2011	3052	3158	3264
(180)	5,6.586	S	6.695	6.926	7.124	7.301	7.464
1.4	Vg 1317	V	0.1324	0.1520	0.1697	0.1865	0.2029
15	Ug 2595	U	2597	2697	2784	2868	2952
15	hg 2792	h	2796	2925	3039	3147	3526
(198°C)	s, 6.445	S	6.452	6.711	6,919 wiki How t	7.107 o Do a Double Lin	7 268 ear Interpolation

Faculdade de Engenharia

Faculdade de	aria		ME	C 011		ń	Engent	naria
Para		T°C	200	250	300:3	25:350	400	_
	Vg 0.2149	~	0.2305	0.2597	0.287	0.3144	0.3410	
9	Ug 2581	4	2628	2714	2798	2877	2959	
	hg 2774	h	2835	2948	3(55	3160	3266	
(175°C)	Sg 6.623	S	6.753	6.980	7. 76	7.352	7.515	
	Vg 0.1944	V	0.2061	0.2328	0.2482	0.2825	0.3065	
10	Ug 2584	A	2623	2711	2794	2875	2957	
10	hg 2778	h	2020	2011	3052	= 6158	3264	
(180)	5,6.586	S	6.695	6.926	7.124	7.501	7.464	
1.4	Vg 1317	V	0.1324	0.1520	0.1697	0.1865	0.2029	
15	Ug 2595	V	2597	2697	2784	2868	2952	
15	hg 2792	h	2796	2925	3039	3147	3526	
(198°C)	s, 6.445	S	6.452	6.711	6,919 wikiHow	7.107 to Do a Double Lin	7 268 ear Interpolation	

Faculdade de	ario	MEC 011				Engenha		
Para		T°C	200	250	300:32	25:350	400	са
	Vg 0.2149	~	0.2305	0.2597	0.2874	0.34	3410	
9	Ug 2581	4	2628	2714	2796	2877	2959	
	hg 2774	h	2835	2948	3055	3 60	3266	
(175°C)	S ₉ 6.623	S	6.753	6.980	7.176	7.352	7.515	
	Vg 0.1944	٧	0.2061	0.2328	0.2582	0.2825	0.3065	
10	Ug 2584	A	2623	2711	2794	2875	2957	
10	hg 2778	1	2020	2011	3052	3158	3264	
(180)	5,6.586	S	6.695	6.926	7.124	7.301	7.464	
1.4	Vg 1317	V	0.1324	0.1520	0.1697	0.1865	0.2029	
15	Ug 2595	u	2597	2697	2784	2868	2952	
15	hg 2792	h	2796	2925	3039	3147	3526	
(198°C)	s, 6.445	S	6.452	6.711	6,919 wiki How t	7 \ 07 o Do a Double Lin	7 268 ear Interpolation	

Faculdade de Engenharia

MEC 011

Engenharia

Para		T °C	200	250	300:32	25:350	400
	Vg 0.2149	~	0.2305	0.2597	0.2874	0.34	3 3410
9	Ug 2581	u	2628	2714	2796	237	2959
	hg 2774	h	2835	2948	3055	3 60	3266
(175°C)	Sg 6.623	S	6.753	6.980	7.176	7.352	7.515
	Vg 0.1944	V	0.2061	0.2328	0.2582	0.2825	0.3065
10	Ug 2584	A	2623	2711	2794	2875	2957
,0	hg 2778	1	2020	2011	3052	-3158	3264
(489)	5,6.586	S	6.695	6.926	7.124	7.101	7.464
1.4	Vg 1317	V	0.1324	0.1520	0.1697	7.7805	0.2029
15	Ug 2595	Ŋ	2597	2697	2784	2868	2952
15	hg 2792	h	2796	2925	3039	3147	3526
(198°C)	s, 6.445	S	6.452	6.711	6,919 wiki How t	7.107 o Do a Double Line	7 268 ear Interpolation

Faculdade de Fngenharia

MEC 011

Engenharia

Para		T °C	200	250	300	325:350	400
	Vg 0.2149	~	0.2305	0.2597	0.287	0.3144	0.3410
9	Ug 2581	U	2628	2714	2796	2877	2959
9	hg 2774	h	2835	2948	3 55	3160	3266
(175°C)	Sg 6.623	S	6.753	6.980	7. 76	7.352	7.515
	Vg 0.1944	V	0.2061	0.2328	0,2582	0.2825	0.3065
10	Ug 2584	Ч	2623	2711	2 94	2875	2957
	hg 2778	h	2829	2944	3 52	3158	3264
(180)	Sg 6.586	S	6.695	6.926	7. 24	7.301	7.464
1.4	V ₉ 1317	V	0.1324	0.1520	0.1097	0.1865	0.2029
15	Ug 2595	A	2597	2697	2184	2868	2952
15	hg 2792	7	2796	2025	-303	3 3147	3526
(198°C)	s, 6.445	S	6.452	6.711	6 910 wiki Hor	7 1 07 w to Do a Double Lin	7 268

Faculdade de	rio		MEC	C 011			ń	Engeni	naria
Para		T °C	200	250	30	0:32	25:350	400	
	Vg 0.2149	~	0.2305	0.2597	0.28	B	10.3144	0.3410	
9	Ug 2581	4	2628	2714	2	98	2877	2959	
	hg 2774	h	2835	2948	3	55	3160	3266	
(175°C)	Sg 6.623	S	6.753	6.980	7.	76	7.352	7.515	
	Vg 0.1944	٧	0.2061	0.2328	0,2	82	0.2825	0.3065	
10	Ug 2584	Ч	2623	2711	2	94	2875	2957	
10	hg 2778	h	2829	2944	3	52	3158	3264	
(480)	5,6.586	S	6.695	6.926	7.	24	7.301	7.464	
1.4	Vg 1317	V	0.1324	0.1520	0.10	97	0.1865	0.2029	
15	Ug 2595	A	2597	2697	2	184	7508	2452	
15	hg 2792	1	2796	2025	-30	39	= 6147	3526	
(198°C)	s, 6.445	S	6.452	6.711	6 c	19 How t	7 (07 o Do a Double Lin	7 268 ear Interpolation	

Faculdade de Engenharia

Faculdade de Engenharia			MEC	C 011		ń	Engent	naria
Para		T °C	200	250	300:32	25:350	400	_
	Vg 0.2149	~	0.2305	0.2597	0.2874	0.314	3 3410	
9	Ug 2581	4	2628	2714	2796	287	2959	
9	hg 2774	h	2835	2948	3055	3 60	3266	
(175°C)	S ₉ 6.623	S	6.753	6.980	7.176	7.352	7.515	
	vg 0.1944	٧	0.2061	0.2328	0.2582	0.2825	0.3065	
10	Ug 2584	ч	2623	2711	2794	2875	2957	
10	hg 2778	h	2829	2944	3052	3'58	3264	
(480)	5,6.586	S	6.695	6.926	7.124	7:301	7.464	
1.4	Vg 1317	V	0.1324	0.1520	0.1697	0.1865	0.2029	
15	Ug 2595	A	2597	2697	2784	2868	2952	
15	hg 2792	1	2796	2025	3039	3147	3526	
(198°C)	s, 6.445	3	6.452	6.711	6,919 wiki How t	7.107 o Do a Double Lin	7 268 ear Interpolation	

Faculdade de

Faculdade de	MEC 011				Engenharia			
Para		T ℃	200	250	300:32	25:350	400	_
	Vg 0.2149	V	0.2305	0.2597	0.2874	0.314	3410	
9	Ug 2581	4	2628	2714	2796	2877	2959	
	hg 2774	h	2835	2948	3055	3 60	3266	
(175°C)	S ₉ 6.623	S	6.753	6.980	7.176	7.352	7.515	
	Vg 0.1944	V	0.2061	0.2328	0.2582	0.2825	0.3065	
10	Ug 2584	ч	2623	2711	2794	2875	2957	
10	hg 2778	h	2829	2944	3052	3'58	3264	
(180)	5,6.586	S	6.695	6.926	7.12	77.01	7.464	
1.4	Vo 1317	V	0.1324	0.1520	0.169	04674	0.2029	
15	Ug 2595	A	2597	2697	2784	21168	2952	
15	hg 2792	1	2796	2025	3039	3147	3526	
(198°C)	s, 6.445	S	6.452	6.711	6,919 wiki How t	7.107 o Do a Double Lin	7 268 ear Interpolation	

(equation 1)

$$C =$$

$$\left[\left(\frac{B2-B}{B2-B1} \right) C1,1 + \left(\frac{B-B1}{B2-B1} \right) C1,2 \right] \left(\frac{A2-A}{A2-A1} \right) + \\
\left[\left(\frac{B2-B}{B2-B1} \right) C21 + \left(\frac{B-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B}{B2-B1} \right) C21 + \left(\frac{B-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B}{B2-B1} \right) C21 + \left(\frac{B-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B}{B2-B1} \right) C21 + \left(\frac{B-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B}{B2-B1} \right) C21 + \left(\frac{B-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B}{B2-B1} \right) C21 + \left(\frac{B-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B}{B2-B1} \right) C21 + \left(\frac{B-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B}{B2-B1} \right) C21 + \left(\frac{B-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B}{B2-B1} \right) C21 + \left(\frac{B-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B}{B2-B1} \right) C21 + \left(\frac{B-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B}{B2-B1} \right) C21 + \left(\frac{B2-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B1}{B2-B1} \right) C21 + \left(\frac{B2-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B1}{B2-B1} \right) C21 + \left(\frac{B2-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B1}{B2-B1} \right) C21 + \left(\frac{B2-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B1}{B2-B1} \right) C21 + \left(\frac{B2-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B1}{B2-B1} \right) C21 + \left(\frac{B2-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B1}{B2-B1} \right) C21 + \left(\frac{B2-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B1}{B2-B1} \right) C21 + \left(\frac{B2-B1}{B2-B1} \right) C22 \right] \left(\frac{A2-A1}{A2-A1} \right) + \\
\left[\left(\frac{B2-B1}{B2-B1} \right) C22 + \left(\frac{B2-B1}{B2-B1} \right) C22 + \\
\left(\frac{B2-B1$$

$$(B2-B1)^{C2/1} + (B-B1)^{C2/2} (A-A1)^{C2/2} (B2-B1)^{C2/2} (A-A1)^{C2/2}$$

(equation 2)

$$C =$$

$$\left[\left(\frac{350-325}{350-300}\right)3052+\left(\frac{325-300}{350-300}\right)3158\right]\left(\frac{15-12}{15-10}\right)+$$

$$\left[\left(\frac{350 - 325}{350 - 300} \right) 3039 + \left(\frac{325 - 300}{350 - 300} \right) 3147 \right] \left(\frac{12 - 10}{15 - 10} \right)$$

$$\Rightarrow C = 3100.2$$

	B1	В	B2
A1	C11		C12
Α		С	
A2	C21	8	C22

TABELA COMPUTADORIZADA

CATT 3

Baixe no Site da editora www.blucher.com.br/termo