

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

AFWAL-TR-85-2093

DETERMINATION OF THE COEFFICIENT OF THERMAL EXPANSION OF JP-4 FUELS

Donovan S. Duvall, Michael D. Hale, Donald J. Lewis, and Arthur D. Snyder

MONSANTO COMPANY
DAYTON LABORATORY
DAYTON, OHIO 45407

December 1985

Interim Report for Period April 1983 - July 1985

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

OTIC FILE COPY

AERO PROPULSION LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

TIMOTHY L. DUES, Project Engineer

Fuels Branch

Fuels and Lubrication Division Aero Propulsion Laboratory CHARLES R. MARTEL, Acting Chief

Fuels Branch

Fuels and Lubrication Division Aero Propulsion Laboratory

BENITO P. BOTTERI, Asst Chief Fuels and Lubrication Division Aero Propulsion Laboratory

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify AFWAL/POSF, W-PAFB, OH 45433 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

	REPORT DOCUME	NTATION PAG	<u> </u>						
18 REPORT SECURITY CLASSIFICATION UNCLASSIFIED		16. RESTRICTIVE N	MARKINGS						
28. SECURITY CLASSIFICATION AUTHORITY AFWAL/CC 26. DECLASSIFICATION/DOWNGRADING SCHED 4 PERFORMING ORGANIZATION REPORT NUM		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for Public Release, Distribution is Unlimited. 5. MONITORING ORGANIZATION REPORT NUMBER(S)							
		AFWAL-TR-85-2093							
6. NAME OF PERFORMING ORGANIZATION Monsanto Company Dayton Laboratory	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MON! Aero Propul		ization atory (AFWAL	/POSF)				
6c. ADDRESS (City. State and ZIP Code) 1515 Nicholas Road Dayton, Ohio 45418	<u> </u>	7b. ADDRESS (City. AF Wright A	State and ZIP Coo		es (AFSC)				
Make of funding/sponsoring organization Fuels & Lubrication Division	8b. OFFICE SYMBOL (If applicable) AFWAL/POS	9. PROCUREMENT (F33615-81-0		ENTIFICATION NU	MBER				
Sc ADDRESS (City, State and ZIP Code)	 	10. SOURCE OF FUI	NDING NOS.						
AF Wright Aeronautical Labor Wright-Patterson Air Force B		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT				
11 TITLE (Include Security Classification) Deter Coefficient of Thermal Expansi	•	1	3048	05	15				
D.S. Duvall, M.D. Hale, D.J.									
13a. TYPE OF REPORT 13b. TIME C		14. DATE OF REPOR	RT (Yr., Mo., Day)	15. PAGE CO					
FIELD GROUP SUB GR 21 02 21 04 19 AGTRACT (Continue on reverse if necessary and Precise density determination Model ADS-55 density measuring ments was performed using a cient of thermal expansion vof the fuels (88 out of 100) correction for crude oils.	Temperature, and the state of t	fficient of the and Statistics, 100 JP-4 jet tistical analytical analytical analytical for each	fuels using sis of the ssion technich fuel at	nsion, Jet for s. g a Mettler/ density mea ique; and co 60°F. A maj	Paar sure- effi- ority				
20 DISTRIBUTION/AVAILABILITY OF ABSTRAC	:т	21. ABSTRACT SECU	IRITY CLASSIFIE	CATION					
UNCLASSIFIED/UNLIMITED - SAME AS RPT.	D DTIC USERS -	UNCLASSIFIED							
Mr. Timothy Dues		226 TELEPHONE NUMBER (Include Area Code) (513) 255-7295 AFWAL/POSF							

FOREWORD

This report was submitted by the Monsanto Company under Contract F33615-81-C-2035. This effort was sponsored by the Aero Propulsion Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio, as requested by the Defense Fuel Supply Center, Cameron Station, Alexandria, Virginia. Mr. Tim Dues was Contract Monitor, while Dr. Arthur D. Snyder of Monsanto served as Contract Monitor on the study which was performed during the period from April 1983 to July 1985.

The authors gratefully acknowledge the excellent guidance provided by Mr. Tim Dues of Wright-Patterson and Mr. Ronald G. Gomes of the Defense Fuel Supply Center in the performance of this task.

TABLE OF CONTENTS

																						Page
I.	INT	RODUCTION	AND :	Summar	Υ.					•		•			•	•	•			•	•	1
		Backgrou Purpose Summary	of St	udy sults	•	•												•				1 2 2
II.	METI	HODOLOGY									•		•	•	•		•	•		•	•	4
	1. 2. 3.	Procurem Density Data Ana	Measu	rement	s .			•														4 4 5
III.	RESU	JLTS AND	DISCU	SSION	•	•		•		•	•	•	•	•	•		•	•		•	•	16
	1.	Density Coeffici																				16 17
IV.	CONC	CLUSIONS				•		•	•	•	•	•		•	•	•	•	•	•	•		22
REFEREN	NCES				. •	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	23
APPEND:	ICES																					
A - 9	Sour	ce of Fue	1s Sai	nples	•	•		•		•		•	•	•	•	•	•	•		•	•	A-1
B - 1		erature-D) JP-4 Fu			on •			•		•				•	•	•	•				•	B-1
C - 1	Гетре	erature-D	ensit	y Data	on	24	Fu	el	Sa	mp	1e	s	•	•	•	•	•	•	•	•	•	C-1
D - 0		ficient o										ty	,									D ₌ 1

LIST OF FIGURES

Number		Page
1	Stem and leaf plot of alpha values at 60°F	18
2	Stem and leaf plot of K ₀ values	19
3	Plot of coefficient of expansion versus density at 60°F	20

LIST OF TABLES

Number		Page
1	Calculated Values Sorted by Sample Number	10
2	Calculated Values Sorted by Alpha	12
3	Calculated Values Sorted by Density	14
4	Geographical Districts	21

SECTION I

INTRODUCTION AND SUMMARY

1. BACKGROUND

The U.S. Department of Defense expends many billions of dollars annually in its acquisition of petroleum-based fuels.

Refined petroleum products are purchased in standard volumetric units, i.e., the U.S. gallon of 231 cubic inches at 60°F. In order to determine petroleum product volumes consistently with this criterion, it is generally necessary to convert apparent volumes observed at temperatures other than 60°F to volumes corrected to the 60°F standard. The process by which this objective is accomplished involves the use of volume correction factors which permit normalization of product volumes, observed within a wide range of temperatures and fuel densities, to volumes at 60°F. Issues of the petroleum measurement tables published prior to the current (1980) edition were based on technical evaluations of petroleum oils performed between 1912 and 1952.

Investigation of this body of technical data, executed by the American Petroleum Institute (API) in conjunction with the U.S. National Bureau of Standards (NBS), resulted in the publication of revised volume correction tables. These volume correction tables, designated as API standard 2540, ASTM D1250, IP-200, and ISO-91, are predicated upon the volumetric coefficients of thermal expansion, as experimentally determined by the NBS, for various categories of petroleum products, as well as a wide spectrum of crude oils. The current volume correction standard is typically used on a world-wide basis by both public and private sector entities, including the U.S. Department of Defense.

The petroleum volume correction tables are principally divided into four series, designated A through D, inclusively.

The tables termed "A" are devised for use with crude oils; "B" with refined products; "D" with lubricants. The "C" series tables are designed to accommodate experimental determination of the volumetric coefficient of thermal expansion for a specific petroleum oil batch or cargo.

2. PURPOSE OF STUDY

Subsequent to the publication of the current edition of the volume correction tables, the API published guidance concerning the application of the tables to several substances, including Aviation Turbine Fuel, Grade JP-4. Specifically, the guidance advocated the application of the volume correction series prepared for crude oils, viz, "A" for JP-4. In recognition of the fact that; (a) this recommendation was based upon the analysis of relatively few JP-4 samples, and (b) the compositional diversity of JP-4 is extensive, this study was initiated to evaluate the extent to which the use of the "A' series tables for JP-4 is applicable.

3. SUMMARY OF RESULTS

A program was carried out where density data were accurately measured at 10 different temperatures for 100 JP-4 jet fuels. Analytical instrumentation used in this work was a Mettler/Paar Model ADS-55 density measuring system having a precision of 1×10^{-5} gm/cm³.

Statistical analysis of the density measurements was performed using a computerized nonlinear regression technique. Coefficient of thermal expansion (α) values were calculated for each fuel at 60°F.

A heavy majority of the JP-4 samples (88 out of 100) had α values more consistent with the "A" (crude group), than with the "B" (generalized products group). These findings are in agreement with the API's published guidance concerning the recommended use of table "A" for JP-4 jet fuels.

SECTION II

METHODOLOGY

1. PROCUREMENT/SOURCE OF FUEL SAMPLES

Fuel samples for this program were provided by the Air Force Contract Monitor. The 100 JP-4 samples were selected to represent a significant proportion of that fuel currently being used by the Air Force. The sources of all the fuels used in this program are listed in Appendix A.

2. DENSITY MEASUREMENTS

The scope of the test plan included the determination of density values on approximately 100 JP-4 fuel samples at the following temperatures: 30, 45, 55, 60, 65, 75, 85, 95, 105, and 120°F. Density measurements were conducted with a Mettler/Paar Model ADS-55 density measuring system. This consisted of a Model DMA-55 vibrating tube density meter with an auto-sampler and a constant temperature bath controlling to + 0.005°C over the temperature range from -10 to +60°C. The temperature of the sample tube was measured using a precision, hermetically glass-encapsulated thermister which had been calibrated over the -10 to +60°C temperature range at 0.05°C intervals. Temperatures were recorded to the nearest 0.01°C. The precision of the ADS-55 system is 1×10^{-5} g/cm³. The analytical protocol and test plan were intended to insure that proper calibration and cleanliness were maintained during the entire measurement sequence. The goal was to make sure that measurements at any temperature could be reproduced to within $+3 \times 10^{-5} \text{ g/cm}^3 \text{ or better.}$

An early problem with density measurement was experienced when some of the fuels "bubbled" at the higher temperatures, i.e., 105° and $120^{\circ}F$. Since the density couldn't be accurately measured when boiling had been initiated, a change in technique was required. A successful alteration of the technique involved the elevation of the initial boiling point of the fuel by subjecting it to a small positive pressure. (This could be done since liquid fuels have insignificant compressibilities.) The pressurizing of the cell with 5 psi of N_2 was easily accomplished using a Teflon 3-way rotary valve.

3. DATA ANALYSIS PROCEDURES

History

The American Society for Testing and Materials (ASTM) published the Petroleum Measurement Tables in 1980 in 10 volumes. Most of the following information is taken from Volume X - Background, Development, and Program Documentation. This document, ASTM D 1250-80, also contains theoretical development which is valuable for evaluating these tables.

The original Petroleum Measurement Tables were developed in the late 1940's. In 1972, Downer and Inkley demonstrated that those tables did not provide a satisfactory representation of many petroleum fluids of current interest. As a result, API and the NBS initiated a research program in 1974. This study was funded by the API. The purpose was to "provide the solid scientific base for the development of more accurate, consequently more equitable, measurement tables."

Precise density data were collected on 349 different fluids, "representing a wide variety of refined products and 66.8 percent of the world crude production in 1974." The study was completed

in March 1979 and cost \$500,000. A working group was formed to study the results and produce the tables mentioned previously. That work is described by Hankinson et al. (1979).

Unfortunately, the JP-4 type fuels were not very well represented by the API study. Only four such samples were included. The present work was undertaken to better characterize this group and to determine whether the JP-4's properly belonged with the "A" table group (generalized crude oils) or with the "B" table group (generalized products).

Theory

The definition for the coefficient of thermal expansion is

$$\alpha = \frac{1}{V} \frac{dV}{dt} \tag{1}$$

where: α = coefficient of thermal expansion

V = volume at any temperature, and

t = temperature.

The working group chose to use the representation:

$$VCF = \frac{V_T}{V} = \frac{\rho}{\rho_T} = EXP - \alpha_T \Delta t [1 + \alpha_T \Delta t (k/2)]$$
 (2)

where: VCF = volume correction factor

t = any temperature

T = base temperature

 $\alpha_m = \alpha$ at the base temperature

 $\Delta t = t - T$

 ρ = density at t

 ρ_{rr} = density at T

V = volume at t

 V_{T} = volume at T

and k is an empirically derived constant, determined by the committee to be 1.6 to best represent the data. Throughout this study, the base temperature, T, was taken to be 60°F.

Further, the group determined that the coefficients of thermal expansion at the base temperature for each group were related to the densities at the base temperature by:

$$\alpha_{\mathbf{T}} = \frac{K_0 + K_1 \rho_{\mathbf{T}}}{\left(\rho_{\mathbf{T}}\right)^2} \tag{3}$$

The data were also examined for internal consistency by computing a percent standard deviation and a maximum percent error. The percent standard deviation is defined by:

$$\sigma = 100 \sqrt{\frac{n_0}{\left(\sum_{i=1}^{n_0} \left(\rho_i - \rho_c\right)/\rho_i\right)^2/(np-1)}}$$
(4)

where: $\sigma = percent standard deviation$

 ρ_i = measured density

 ρ_{c} = calculated density (regression fit)

np = number of points

 n_0 = total number of observations in a group.

The maximum percent error is given by:

$$\max_{i} \left| (\rho_{i} - \rho_{c}) / \rho_{i} \right| / \sigma \tag{5}$$

Analysis of Density Data

The density data for the 100 JP-4 fuel samples were entered into a data base on Monsanto's IBM mainframe computer in St. Louis, Missouri. These data were analyzed using the Statistical Analysis System (SAS), a programming language/statistical analysis package.

Nonlinear regression was used to estimate the parameters in equation 2. The logarithmic form was used, i.e., the model used was:

$$\log(\rho) = \log(\rho_{T}) - \alpha_{T} \Lambda t [1 + \alpha_{T} \Lambda t (k/2)] + e_{i}$$
 (6)

where $\mathbf{e_i}$ is a random variation term. In general, the data fit the assumed model very well. The estimates for the parameters had very small standard deviations except for k. This parameter had very little impact on the regression, and it was determined that using the previously assumed value of 1.6 for k did not perceptibly degrade the regression fit. The estimates for α_T and ρ_T are given in tables 1, 2, and 3, sorted by sample number, alpha-t (α_T) , and base density (ρ_T) , respectively.

Included in each table is the API gravity, given by the equation:

$$^{\circ}API = (141.5 \times 999.012/base density) - 131.5$$
 (7)

Also included are the percent standard deviation and the maximum percent error, as shown in equations 4 and 5. A comparison of these values with the appendix to Table 6C, 11.1.6.7.1, shows that the Monsanto data compare very favorably. No statistical tests were performed to determine whether the appendix data and the Monsanto data differ, however. Such tests would not appear appropriate because the Monsanto data cover a much narrower density range. The appendix data also cover varying temperature ranges.

Nonlinear regression was then applied to determine values for K_0 and K_1 , using the $\alpha_{\rm T}$ and $\rho_{\rm T}$ values shown in the tables to fit equation 3. The nonlinear regression uses an iterative procedure, requiring starting values for the parameters. The values K_0 = 190 and K_1 = 0.3 were used as starting points, since those are the values used at the low end of the gasoline group, and they have similar API values. The procedure converged quickly to give values

of $K_0 = 300 \pm 59$ and $K_1 = 0.05 \pm 0.08$. Since the K_1 term was non-significant, the nonlinear regression was reapplied, setting K_1 to zero. That regression yielded $K_0 = 341.0 \pm 0.5$. The much smaller standard deviation for K_0 is a result of removing K_1 , which was highly correlated with K_0 . Based on these observations, K_0 was calculated for each sample as:

$$K_0 = \alpha_{\mathbf{T}}(\rho_{\mathbf{T}})^2 \tag{8}$$

The right-most column in the three tables lists either 'JET' or 'CRUDE'. This determination was made based on whether the $\alpha_{\mathbf{T}}$ value was closer to the $\alpha_{\mathbf{T}}$ value determined from equation 3 above using the 'JET' coefficients or the 'CRUDE' coefficients. The 'JET' coefficients are K_0 = 330.301 and K_1 = 0. The 'CRUDE' coefficients are K_0 = 341.0957 and K_1 = 0.

TABLE 1. CALCULATED VALUES SORTED BY SAMPLE NUMBER

	Alpha				Percent	Maximum	
Sample	ж 10 ⁶	Density	_		standard	percent	Nearest
No.	at 60°F	(kg/m^3)	°API	K ₀	deviation	error	Group
541	583 757	760 394	54 4039	337 528	0 0092872	0 022652	CRUDE
585	588 734	763 937	53 5417	343 585	0 0065365	-0.01794	CRUDE
588	562 605	772 659	51 4529	335 876	0 0026834	-0 01882	CRUDE
589	598 096	760 916	54 2764	346 293	0 0034705	-0 015651	CRUDE
590	615 538	752 991	56 2316	349 0 07	0 0034969	-0 017306	CRUDE
591	585 201	760 259	54 4369	338 243	0 0053033	0.023479	CRUDE
592	583 451	761 772	54 0676	338 575	0 0034801	0.023473	CRUDE
594	574 962	763 858	53 5608	335 478	0 0068791	-0.021578	JET
595	604 953	757.654	55 0762	347.267	0 0031484	0.021578	CRUDE
5%	581 22 3	764 468	53 4132	339 673	0.0014175	-0.014584	_
5 97	593 574	766 078	53 0245		0 0037204		CRUDE
5 98	5% 013	758 814	54 791	348 354		0 019882	CRUDE
599	607 348	756 772		343 184	0 0039638	0 017863	CRUDE
600	590 813		55 29 36	347 831	0 0036042	0 0171	CRUDE
601	591 473	758 068	54 9743	339 521	0 0036983	-0 016921	CRUDE
602		769 191	52.2778	349 948	0 0029975	0 013027	CRUDE
	607.254	752.711	56 3014	344 054	0 0033419	0.016486	CRUDE
603	580 262	762.208	53 9614	337 11	0 004234	-0 017754	CRUDE
604	571 501	764 339	53 4444	333 879	0 003342	0 015522	<u>JET</u>
605	577 965	754 893	55 7586	329 361	0.0015975	-0 014985	JET
608	599 345	759 381	54 65 19	345.618	0.0045526	-0 017738	CRUDE
6(19	585 362	772 715	51 43%	349 513	0.0023455	-0 015108	CRUDE
610	600 342	755.616	55.5794	342.769	0 0030678	0.01493	CRUDE
611	595 527	756 254	55 4216	340 594	0 0029107	-0 018391	CRUDE
612	579 312	764 431	53 4221	338 524	0 0017838	0 015485	CRUDE
613	574 05	769 266	52 2598	339 706	0.0023722	0 019833	CRUDE
614	367.878	771.436	51.7429	337.952	0 0043604	-0 018738	CRUDE
615	593 62	750 708	56 8025	334 542	0 0040095	-0 016136	JET
616	597.029	753 316	56 1506	338 805	0.0045995	-0.016308	CRUDE
617	601 405	752 126	56 4475	340.211	0 0044769	-0.017306	CRUDE
618	595.278	757.726	55.0585	341.778	0.0039377	-0 017219	CRUDE
624	589 087	763.366	5 3.6 8 01	343.277	0 0043622	-0 017 9 63	CRUDE
625	590.2 06	757.232	55.1802	338.424	0.0064584	-0.019015	CRUDE
626	593 483	752 631	56 3214	336.18	0.0053988	-0 018465	CRUDE
62 7	603.2 07	763.162	53 72%	351.318	0.0043162	-0.017844	CRUDE
628	5% 502	753 5%	56 08 09	338 758	0 0035775	0.020787	CRUDE
629	569.905	771.756	51.667	339 44	0.0135503	0.023324	CRUDE
636	569.182	776.69	50.5034	343.358	0 0043464	0.015334	CRUDE
637	586.634	760.0 07	54 4985	338.846	0.0195866	-0 023701	CRUDE
638	613.289	752 708	56 3022	347 471	0 0112538	0.022379	CRUDE
639	585 527	767.145	52.7679	344.589	0.0107066	0.022607	CRUDE
643	600 151	754 051	55 9677	341.242	0 0097446	0.023231	CRUDE
644	597.611	760 534	34 3697	345.665	0 0099067	0.02316	CRUDE
914	608.807	756 008	55 4824	347.962	0 0055208	0.020128	CRUDE
915	571.281	779.398	49.871	347.031	0.0041162	-0.017647	CRUDE
916	579 312	763.241	53 7104	337 471	0 0019546	-0 016	CRUDE
917	577.57	762 081	53.9924	335 434	0.0108805	-0.017763	JET
918	594 005	752 906	56 2528	336 722	0 0017513	0 017245	CRUDE
919	594 116	752.328	36 397	336.268	0 0017513	0.016515	CRUDE
920	571 549	780 325	49 6555	348 02	0 0047596	0.010313	CRUDE
921	577.101	769.343	32.2414	341.58	0.0022366	0 01999	CRUDE

CONTRACTOR SERVING

TABLE 1 (continued)

_	Alpha				Percent	Maximum percent	Nearest
Sample	ж 10 ⁶	Density	0.57	v	standard	error	Group
No.	at 60°F	(kg/m^3)	°API	K _O	deviation	error	Group
922	573 835	763 667	53 6071	334.653	0 0038613	0 019461	JET
92 3	580 925	765 46	53 1735	340.381	0 0046753	-0.021039	CRUDE
924	583 025	758 271	54 9244	335.225	0 0043259	-0.016294	JET
925	563 948	772 9	51 3958	336.888	0.0057848	0.021449	CRUDE
926	572 015	766 861	52 8361	336.388	0.0197222	0 02227	CRUDE
927	589 643	759 14	54 711	339.807	0.0044831	-0.016435	CRUDE
928	575 157	767 151	52 7665	338 492	0.0066835	-0 015676	CRUDE
929	579 646	765 697	53 1164	339.842	0 0040857	-0.016849	CRUDE
930	572 244	769 01	52 321	338 412	0 0088048	0 023206	CRUDE
931	578 046	764 943	53.2983	338.237	0.0085534	0 022642	CRUDE
932	557 008	774 292	51 067	333 942	0 0080875	0 020282	JET
933	589 484	757.707	55 0631	338 434	0.0076505	0 018399	CRUDE
934	575 677	766 462	52 9321	338 19	0.0055272	0 022409	CRUDE
935	591 324	773 492	51.2559	353.783	0 0051233	0.01623	CRUDE
936	577 56	765 499	53 1641	338 444	0.0074283	0 019122	CRUDE
937	576.069	<i>777.</i> 575	50.2962	348.304	0.0042289	0.018656	CRUDE
938	608 479	754 176	5 5 9366	346 092	0 0042614	0 018523	CRUDE
9 39	5% 37	756.061	55.4693	340.902	0.0042212	0.017746	CRUDE
94 0	597 579	764 411	53 427	349.18	0.0079464	0.017269	CRUDE
941	592 74	756 971	55.2445	339.643	0.0069301	0.020606	CRUDE
99 7	590 478	752.252	56 416	334 142	0.0043057	-0.02004	JET
99 9	5 87 699	757.682	55 0693	337.387	0.0034414	-0.019471	CRUDE
1001	583 511	764 74	53 3474	341.253	0.0020502	-0 015637	CRUDE
1019	602 864	75 6.379	55 .3 9 07	344 904	0.0040695	-0.018105	CRUDE
1021	571 679	765.429	53 181	334.936	0.0694174	-0 028105	ET
1087	606 037	760.09	54 4782	350.13	0.0154985	-0.014262	CRUDE
1088	606 037	760 09	54 4782	350.13	0.0063159	-0.020438	CRUDE
1089	584 783	761.356	54.169	338.977	0.0027566	0.019661	CRUDE CRUDE
1091	592 877	761.874	54 0428	344 137	0 0032064	-0.016656	JET
1093	586.29	755.939	55 4995	335.032	0.0054399	0.013974	CRUDE
1095	589 104	763 599	53 6236	343 497	0 0026258	-0.016592	CRUDE
1096	587.692	763.575	53.6294	342.652	0.0045801	-0.021483	CRUDE
1097	614 811	753.283	56 1588	348 865	0.0031644	0.016485 -0.024625	CRUDE
1157	579 866	761.16	54.2168	335.954	0.0029622 0.0027931	0.014941	CRUDE
1181	581 682	761 362	54.1675	337.185 337.278	0.0027931	-0.017732	CRUDE
1283	571 081	768.502	52.4425		0.0022323	-0.019234	CRUDE
1793	618 307	751.25	36.6667	348.958	0.0051718	-0.019234	CRUDE
1794	583 408	761.152	54.2187	337.999 254.226	0.0028004	0.019395	CRUDE
1795	619 501	756.18	55.4399	354.236 343.587	0.0338125	-0.022537	CRUDE
1796	589.625	763 362	53.6811	336 179	0.0031501	-0.020127	CRUDE
1954	577.798	762.777 742.052	53.8231	336.121	0.0034839	0.021313	CRUDE
1955	577.431	762.953 762.589	53 7803	336.746	0.0038383	-0.017272	CRUDE
1956	579 057	762.589 742.305	53.8688 53.6949	338 811	0.0038383	0.019533	CRUDE
1957	581.515	763 305 760 573	54.3601	340 409	0.0138739	0.024269	CRUDE
1958	588 463 582 234	758.211	54.9391	334.717	0.0138737	0.023968	JET
1 95 9 1 96 0	610 364	751.451	36.6163	344.659	0.0129409	0.023683	CRUDE
1961	599 391	755 153	55.6941	341.806	0 0022506	0.016022	CRUDE
1962	593 399	753. 2 69	5 6.1623	336 703	0.0021075	-0 016778	CRUDE
1963	579.99	768.308	52 489	342 366	0 0025856	-0 013189	CRUDE
1703	3.2.22	, 50 ,500	3 2. 10 3	J		•	

TABLE 2. CALCULATED VALUES SORTED BY ALPHA

	 					 _	
	Alpha				Percent	Maximum	
Sample	ж 10 ⁶	Density			standard	percent	Nearest
No.	at 60°F	(kg/m^3)	OAPI	K _O _	deviation	error	Group
932	55 7.008	774.292	51 067	333 942	0 0080875	0 020282	JET
588	5 62.605	772.659	51.4529	335.876	0.0026834	-0.01882	CRUDE
925	5 63 948	772.9	51.3958	336.888	0.0057848	0 021449	CRUDE
614	5 67.878	771.436	51.7429	337.952	0 0043604	-0 018738	CRUDE
63 6	5 69 182	776.69	50 5034	343.358	0.0043464	0.015334	CRUDE
629	5 69.905	771.756	51 667	339.44	0 0135503	0 023324	CRUDE
1283	571.081	768 502	52 4425	337.278	0 0022525	-0.017732	CRUDE
915	571.281	779.398	49.871	347.031	0.0041162	-0 017647	CRUDE
604	571 501	764 339	53 4444	333.879	0 003342	0.015522	JET
92 0	571 549	780 325	49.6555	348 02	0.0047596	0.017572	CRUDE
1021	571 679	765 429	53 181	334 936	0.0694174	-0 028105	JET
92 6	572.015	766 861	52.8361	336.388	0.0197222	0.02227	CRUDE
9 30	572.244	769 01	52 321	338 412	0.0088048	0.023206	CRUDE
922	573 835	763 667	53.6071	334 653	0 0038613	0 019461	JET .
613	574 05	769.266	52.2598	339 706	0.0023722	0.019833	CRUDE
594	574 962	763 858	53 5608	335 478	0 0068791	-0 021578	JET
928	575.157	767.151	52.7665	338 492	0.0066835	-0.015676	CRUDE
934	575.677	766 462	52 9321	338 19	0 0055272	0 022409	CRUDE
937	576.069	777.575	50.2962	348 304	0.0042289	0.018656	CRUDE
921	577.101	769.343	52 2414	341 58	0 0022566	0.01999	CRUDE
1955	577.431	762 953	53.7803	336.121	0.0034839	0.021313	CRUDE
936	577.56	765 499	53 1641	338 444	0.0074283	0.019122	CRUDE
917	577.57	762.081	53.9924	335.434	0.0108805	-0.017763	JET
1954	577.798	762 777	53 8231	336 179	0 0031501	-0.020127	CRUDE
605	577.965	754.893	55.7586	329 361	0.0015975	-0 014985	<u>JET</u>
931	578 046	764 943	53.2983	338.237	0.0085534	0.022642	CRUDE
1956	579.05 7	762 589	53.8688	336.746	0.0038383	-0.017272	CRUDE
916	579.312	763.241	53.7104	337.471	0.0019546	-0.016	CRUDE
612	579.312	764.431	53.4221	338 524	0.0017838	0.015486	CRUDE
929	579.646	765 697	53 1164	339.842	0.0040857	-0 016849	CRUDE
1157	579.866	761.16	54.2168	335.954	0.0029622	-0.024625	CRUDE
1963	579.99	768 308	52 489	342.366	0.0025856	-0.013189	CRUDE
603	580.262	762.208	53.9614	337.11	0.004234	-0.017734	CRUDE
923	580 925	765.46	53 1735	340.381	0.0046753	-0 021039	CRUDE
596	581.223	764.468	53.4132	339.673	0.0014175	-0.014584	CRUDE
1957	581 515	763.305	53.6949	338.811	0.0028993	0 019533	CRUDE
1181	581.682	761.362	34 1673	337.185	0.0027931	0.014941	CRUDE
1959	582.234	758.211	54 9391	334.717	0 012848	0 023968	JET
924	583 025	758.271	54.9244	335.225	0.0043259	-0.016294	JET
1794	583 408	761.152	54.2187	337. 99 9	0.0043237	-0.021453	CRUDE
592	583.451	761.772	34.0676	338.575	0.0034801	0.014054	CRUDE
1001	583 511	764 74	53.3474	341.253	0 0020502	-0.015637	CRUDE
541	583.75 7	760.394	54.4039	337.528	0.0092872	0.022652	CRUDE
1089	584 .783	761.356	54.169	338 977	0.0032872	0.022632	CRUDE
591	585.2 01	760.259	54.4369	338.243	0.0027366	0.01361	CRUDE
609	585.362	772.715	51.4396	349.513	0.0023455		CRUDE
639	585.52 7	767.145	52.7679	344.589	0.0023455	-0.015108 0.022607	CRUDE
1093	586.29	755.939	55 4995	335.032	0.0054399	0.022607	JET .
637	586.634	76 0. 00 7	54.4985	338.846	0.0193866	-0.023701	CRUDE
1096	387.692	763.575	53.6294	342.652	0.0045801	-0.023/01	CRUDE
-	J	,	JJ. 46 77	J-16.0 JE	TOOCHOO.	-0.061703	CRUDE

TABLE 2 (continued)

	Alpha				Percent	Maximum	
Sample	ж 10 ⁶	Density			standard	percent	Neares
No.	at 60°F	(kg/m^3)	°API	κ _ο	deviation	error	Group
99 9	58 7 69 9	757.682	55 0693	337.387	0 0034414	-0.019471	CRUDE
1958	588 463	760 573	54 3601	340 409	0.0138739	0 024269	CRUDE
5 85	588 734	763 937	53 5417	343.585	0 0065365	-0 01794	CRUDE
624	389 087	763 366	53 6801	343 277	0 0043622	-0 017963	CRUDE
1095	389 104	763 59 9	5 3 6236	343 497	0 0026258	-0.016592	CRUDE
933	589 484	75 7 7 07	55 0631	338 434	0 0076505	0 018399	CRUDE
17 9 6	5 89 625	763 362	53.6811	343.587	0.0338125	-0.022537	CRUDE
927	5 89 643	759 14	54 711	339 807	0.0044831	-0 016435	CRUDE
625	590 2 06	757.232	55.1802	338.424	0.0064584	-0.019015	CRUDE
99 7	590 478	752 252	36 416	334 142	0 0043057	-0 02004	JET
600	590 813	758.068	54.9743	339 521	0.0036983	-0.016921	CRUDE
935	591 324	773 492	51.2559	353.783	0.0051233	0.01623	CRUDE
601	591 473	769.191	52.2778	349.948	0.0029975	0.013027	CRUDE
941	592 74	756 971	55.2445	339 643	0.0069301	0 020606	CRUDE
1091	592 877	761.874	54.0428	344.137	0.0037301	-0 016656	CRUDE
1962	593.399	753.269	56.1623	336 703	0.0032034	-0 016778	CRUDE
62 6	5 93 4 83	752.631	56.3214	336.18	0.0053988	-0.018465	CRUDE
59 7	593 574	766 078	53 0245	348.354	0.0037204	0.019882	CRUDE
615	593.62	750 708	56.8025	334 542	0.0040095	-0.016136	JET
918	594 005	752.906	56 2528	336 722	0.0040033	0.017245	CRUDE
	594 116	752.328	56 397	336.268	0.0030684	0.016515	CRUDE
919		757.726		341.778	0.0039377	-0.017219	CRUDE
618	595 278		55 0585	340 594	0.0039377	-0.018391	CRUDE
611	595 527	756.254	55 4216 54 791	343.184	0.0029107	0.017863	CRUDE
598	396.013	758 814		340 902	0.0039338	0.017746	CRUDE
939	5 96 37	756 061	55.4693	338 758	0.0035775	0.020787	CRUDE
628	596 502	753.5%	56 0809		0.0035775	-0.016308	CRUDE
616	597.029	753.316	56.1506	338.805	0.0079464	0.017269	CRUDE
940	597 579	764 411	53 427	349.18	0.0079464	0.017269	CRUDE
644	597.611	760 534	54 3697	343.665		-0.015651	CRUDE
589	598 096	760.916	54.2764	346 293	0.0034705	-0.017738	CRUDE
608	599.345	759.381	54.6519	345.618	0.0045526 0.0022506	0.017738	CRUDE
1961	599 391	755.153	55 6941	341.806	0.0022308	0.023231	CRUDE
643	600 151	754.051	55 %77	341.242	0.0030678	0.023231	CRUDE
610	600 342	755.616	55.5794	342 769		-0.017306	CRUDE
617	601.405	752.126	56 4475	340.211	0.0044769		CRUDE
1019	602.864	756 379	55 3907	344.904	0.0040695	-0.018105 -0.017844	CRUDE
627	603.207	763.162	53.72%	351 318	0.0043162		CRUDE
595	604.953	757.654	55.0762	347.267	0.0031484	0.015481 -0.014262	CRUDE
1087	606.037	760.09	54.4782	350.13	0.0154985	-0.020438	CRUDE
1088	606.037	760 09	54 4782	350 13	0.0063159		CRUDE
602	607.254	752.711	56.3014	344.054	0.0033419	0.016486	CRUDE
599	607.348	756.772	55.2936	347.831	0.0036042	0.0171	
938	608 479	754.176	55.9366	346.092	0.0042614	0.018523	CRUDE
914	608 807	756 008	55 4824	347.962	0.0055208	0.020128	
1960	610 364	751.451	56.6163	344.659	0.0129409	0.023683	CRUDE
638	613 289	752 708	56 3022	347 471	0.0112538	0.022379	CRUDE
1097	614811	753.283	56.1588	348 865	0.0031644	0 016485	CRUDE
590	615 538	752 991	56.2316	349 007	0.0034969	-0 017306	CRUDE
1793	618 307	751.25	36 6667	348.958	0.0031916	-0.019234	CRUDE
1795	619 501	756.18	55 43 99	354.236	0.0028004	0 019395	CRUDE

TABLE 3. CALCULATED VALUES SORTED BY DENSITY

	Alpha				Percent	Maximum	
Sample	x 10 ⁶	Density			standard	percent	Nearest
No.	at 60°F	(kg/m ³)	°API	κ _o	deviation	error	Group
	at our	(49/111/	NI I	10	deviation		0.000
615	593 62	750 708	56 8025	334 542	0 0040095	-0 016136	<u>je</u> t
1793	618 307	751.25	56 6667	348 958	0 0031916	-0 019234	CRUDE
1960	610 364	751 451	56 6163	344 659	0 0129409	0 023683	CRUDE
617	601.405	752 126	56 4475	340 211	0 0044769	-0 017306	CRUDE
99 7	590 478	752 252	56 416	334 142	0 0043057	-0 02004	JET
919	594.116	752 328	56 397	336 268	0 0030684	0 016515	CRUDE
626	593 483	752 631	56 3214	336 18	0 0053988	-0 018465	CRUDE
638	613.289	752 708	56 3022	347.471	0.0112538	0 022379	CRUDL
602	607.254	752 711	56 3014	344 054	0 0033419	0.016486	CRUDE
918	594.005	752 906	56.2528	336 722	0 0017513	0.017245	CRUDE
590	615 538	752 991	56 2316	349 007	0 0034969	-0 017306	CRUDE
1962	593 399	753.269	56 1623	336.703	0.0021075	-0 016778	CRUDE
1097	614 811	753 28 3	56 1588	348 865	0 0031644	0 016485	CRUDE
616	597.029	753 316	56.1506	338.805	0 0045995	-0.016308	CRUDE
628	5% 502	753 596	56 0809	338 758	0.0035775	0 020787	CRUDE
643	600.151	754.051	55 9677	341.242	0.0097446	0.023231	CRUDE
938	608 479	754 176	55 9366	346 092	0 0042614	0 018523	CRUDE
605	5 77. 9 65	754.893	55.7586	329 361	0.0015975	-0 014985	JET
1961	599 391	755.153	55.6941	341 806	0.0022506	0 016022	CRUDE
610	600 342	755 616	55 5794	342.769	0.0030678	0 01493	CRUDE
1093	586 29	755 939	55 4995	335.032	0.0054399	0 013974	JET .
914	608 807	756 008	55 4824	347.962	0 0055208	0 020128	CRUDE
939	596 37	756 061	55 4693	340 902	0 0042212	0 020123	CRUDE
1795	619 501	756.18	55.4399	354.236	0.0028004	0 017748	CRUDE
611	595 527	756.254	55.4216	340 59 4	0.0029107	-0 018391	CRUDE
1019	602.864			344 904	0.0040695	-	CRUDE
59 9		756.379	55.3907		-	-0.018105 0.0171	CRUDE
-	607 348	756 772	55.2936	347.831	0 0036042		
941	592.74	75 6.971	55.2445	339 643	0.0069301	0.020606	CRUDE
625	590 206	757.232	55.1802	338 424	0 0064584	-0 019015	CRUDE
5 95	604.953	757.654	55.0762	347.267	0.0031484	0 015481	CRUDE
9 99	587.699	757.682	55.0693	337 387	0 0034414	-0 019471	CRUDE
933	589 484	757.707	55.0631	338 434	0.0076505	0 018399	CRUDE
618	595 278	757 726	55 0585	341 778	0 0039377	-0 017219	CRUDE
600	590.813	758.068	54 9743	339.521	0.0036983	-0 016921	CRUDE
1959	582.234	758.211	54 9391	334.717	0 012848	0 023968	<u>JET</u>
924	583 025	758.271	54.9244	335 225	0.0043259	-0.016294	<u>JET</u>
598	596 013	758 814	54 791	343.184	0 0039638	0 017863	CRUDE
927	589.643	759.14	54.711	339.807	0.0044831	-0.016435	CRUDE
608	599 345	759.381	54.6519	345.618	0.0045526	-0.017738	CRUDE
637	586 634	7 60.007	54.4985	338 846	0.0195866	-0 023701	CRUDE
1087	6 06 037	76 0 09	54 4782	35 0 13	0.0154985	-0.014262	CRUDE
1088	6 06.037	760.09	54.4782	350.13	0.0063159	-0.020438	CRUDE
591	585 .201	76 0. 259	54.4369	338 243	0.0053033	0 023479	CRUDE
541	58 3. 75 7	760.394	54 4039	337.528	0.0092872	0.022652	CRUDE
644	59 7.611	760.534	54.3697	345.665	0.0099067	0.02316	CRUDE
1958	588.4 63	76 0. 5 73	54.3601	340 409	0.0138739	0.024269	CRUDE
589	598 096	760.916	54.2764	346.293	0.0034705	-0 015651	CRUDE
1794	58 3 4 08	761 152	54.2187	337.999	0.0063782	-0 021453	CRUDE
1157	579 866	761.16	54 2168	335 954	0 0029622	-0 024625	CRUDE
1089	584.783	761.356	54 169	338 977	0.0027566	0.019661	CRUDE

TABLE 3 (continued)

C	Alpha	D			Percent	Maximum	No.
Sample	ж 10 ⁶	Density	0		standard	percent	Nearest
No.	at 60°F	(kg/m^3)	°API	K _O	deviation	error	Group
1181	581 682	761 362	54 1675	337.185	0 0027931	0 014941	CRUDE
592	583 451	761 772	34 0676	338 575	0.0034801	0 014054	CRUDE
1091	592 877	761 874	54 0428	344 137	0 0032064	-0 016656	CRUDE
917	577 57	762 081	53 9924	335 434	0.0108805	-0 017763	JET
603	580 262	762 208	53 9614	337 11	0 004234	-0 017754	CRUDE
1956	579 057	762 589	33 8688	336.746	0 0038383	-0 017272	CRUDE
1954	577 798	762 777	53 8231	336 179	0 0031501	-0 020127	CRUDE
1955	577.431	762 953	53.7803	336 121	0.0034839	0 021313	CRUDE
627	603 207	763 162	53 72%	351 318	0 0043162	-0 017844	CRUDE
916	579.312	763 241	33 7104	337 471	0 0019546	-0 016	CRUDE
1957	581 515	763 305	53 6949	338 811	0 0028993	0 019533	CRUDE
1796	589 625	763 362	33.6811	343 587	0.0338125	-0 022537	CRUDE
624	589 087	763 366	53 6801	343 277	0 0043622	-0 017963	CRUDE
1096	587 692	763 575	33.6294	342 652	0 0045801	-0.021483	CRUDE
1095	589 104	763 599	53 6236	343 497	0 0026258	-0 016592	CRUDE
922	573.835	763 667	53.6071	334.653	0 0038613	0.019461	JET
594	574 962	763 858	53 5608	335 478	0 0068791	-0 021578	JET
585	588 734	763 937	53.5417	343 585	0.0065365	-0 01794	CRUDE
604	571 501	764 339	53 4444	333 879	0.003342	0.015522	JET
940	597 579	764 411	53 427	349.18	0.0079464	0.017269	CRUDE
612	579 312	764 431	53 4221	338 524	0.0017838	0 015486	CRUDE
596	581.223	764 468	53.4132	339.673	0.0014175	-0.014584	CRUDE
1001	583 511	764 74	53 3474	341 253	0 0020502	-0.015637	CRUDE
931	578 046	764.943	53.2983	338.237	0.0085534	0.022642	CRUDE
1021	571.679	765 429	53 181	334 936	0 0694174	-0.028105	JET
923	580 925	763 46	53 1735	340 381	0.0046753	-0 021039	CRUDE
936	577 56	765 499	53 1641	338 444	0 0074283	0 019122	CRUDE
929	579 646	765 697	53 1164	339 842	0 0040857	-0.016849	CRUDE
597	593 574	766 078	53.0245	348 354	0.0037204	0.019882	CRUDE
934	575 677	766 462	52 9321	338 19	0.0055272	0.022409	CRUDE
926	572 015	766.861	52.8361	336.388	0.0197222	0.02227	CRUDE
639	585 527	767 145	52 7679	344 589	0 0107066	0 022607	CRUDE
928	575 157	767.151	52.7665	338 492	0.0066835	-0.015676	CRUDE
1963	579 99	768 308	52 489	342 366	0.0025856	-0.013189	CRUDE
1283	571.081	768 502	52.4425	337.278	0.0022525	-0.017732	CRUDE
930	572.244	769.01	52 321	338 412	0 0088048	0 023206	CRUDE
601	591 473	769 191	52.2778	349 948	0.0029975	0.013027	CRUDE
613	574 05	769.266	52 2598	339 706	0.0023722	0.019833	CRUDE
921	577 101	769.343	52.2414	341.58	0.0022566	0.01999	CRUDE
614	567 878	771 436	51 7429	337 952	0.0043604	-0.018738	CRUDE
629	569 905	771 756	51.667	339.44	0.0135503	0.023324	CRUDE
588	562 605	772 659	51 4529	335 876	0 0026834	-0.01882	CRUDE
609	585 362	772.715	51 43%	349.513	0 0023455	-0.015108	CRUDE
925	563 948	772 9	51 3958	336 888	0 0057848	0.021449	CRUDE
935	591 324	773 492	51.2559	35 3 783	0.0051233	0.01623	CRUDE
932	557 008	774.292	51 067	333 942	0.0080875	0.020282	JET
636	569 182	776.69	50 5034	343.338	0.0043464	0 015334	CRUDE
937	376 069	777 575	50.2962	348 304	0 0042289	0 018656	CRUDE
915	571 281	779 398	49.871	347.031	0 0041162	-0 017647	CRUDE
920				3			CRUDE

SECTION III

RESULTS AND DISCUSSION

1. DENSITY OF FUELS

Density measurements were made at 10 temperatures for each of 104 JP-4 samples. (There were four sets of blind duplicates, so data were assessed on 100 JP-4 fuels.) The temperature ranged from about 30°F to about 120°F.

Density measurements on JP-4 fuel made during this program are compiled in Appendix B. For each fuel sample the following information is given: (1) fuel number designation; (2) the correlation coefficient for a linear least squares fit of the data; (3) the density value at $60^{\circ}F$ calculated from the least squares equation; and (4) the density values for 10 temperatures ranging from $\sim 30^{\circ}F$ to $\sim 120^{\circ}F$. It can be observed that the linear correlations of these data are excellent with most values being -0.9999, or better.

An additional set of 24 miscellaneous fuels were submitted for analysis. Density measurements made on them are compiled in Appendix C. Coefficient of thermal expansion values were calculated at 60°F and are listed in Appendix D.

Problems were encountered with some of the samples. A shale crude sample, 82-POSF-0325, was so viscous that it was not possible for an aliquot to be drawn up into the instrument for analysis. Two gasoline samples, 84-POSF-2078 and 84-POSF-2079, were so volatile that density measurements could not be made because of "bubbling" even at low temperatures. A third gasoline, 84-POSF-2080, behaved very strangely. Vaporization was observed

at ~ 60 and $65\,^{\circ}$ F, and then again at ~ 105 and $120\,^{\circ}$ F. Density measurements were made at the other 6 temperatures. A reasonably good correlation coefficient was obtained from these results, and a density at $60\,^{\circ}$ F was calculated.

2. COEFFICIENT OF THERMAL EXPANSION

As is evident from examining either Table 1, 2, or 3, most of the samples have $\alpha_{\rm T}$ values more consistent with the 'CRUDE' group (88 to 12 for JP-4 jet fuels). Referring back to equation 3, Section II, this is equivalent to saying that K_0 values, for the most part, lie nearer to 341.0957 than to 330.301.

Figures 1 and 2 are "stem and leaf" plots for the $\alpha_{\rm T}$ and K_0 values, respectively, which show a graphical representation of the frequency distribution of the $\alpha_{\rm T}$ and K_0 values for the 100 JP-4 samples.

Figure 3 is a plot of the coefficient of expansion (α_T) versus density (β_T) at 60°F. A careful examination of the plot reveals that although the plot is reasonably linear, there is some grouping of points by geographical location (number in parentheses in plot indicates geographical district as defined in Table 4). An example of this is that most of the District 5 samples have a higher ρ_T/α_T ratio than most of the other fuel samples.

Stem	<u>Leaf^a</u>
62	0
61	568
61	03
60	5667789
60	00133
59	56667788899
59	000011133334444
58	555667888999
58	00001122233344
57	5566778888899
57	0112222244
56	89
56	34
5 5	7

^aMultiply STEM LEAF by 10.

Note: Each digit in the leaf section represents an alpha data point. [For example, the 56 Stem and Leaf 3, 4, 8, 9 represent 4 data points: 1 between 562.5 and 563.5; 1 between 563.5 and 564.5; 1 between 567.5 and 568.5; and 1 between 568.5 and 569.5]

Figure 1. Stem and Leaf plot of alpha values at 60°F.

Stem	Leaf ^a
354	2
353	8
352	
351	3
350	11
34 9	00259
34 8	00349
347	0358
346	13
345	67
344	11679
343	234566
342	478
341	23688
340	24469
339	04567788
338	0022244445568888
33 7	123455
336	0122347779
33 5	02459
334	15779
333	99
332	
331	
33 0	
329	4

Note: Each digit in the leaf section represents a K₀ data point. [For example, the 342 Stem, and Leaf 4, 7, 8 represent 3 data points: 1 between 342.35 and 342.45; 1 between 342.65 and 342.75; and 1 between 342.75 and 342.85]

Figure 2. Stem and leaf plot of K_0 values.

Figure 3. Plot of coefficient of expansion versus density at 60°F.

TABLE 4. GEOGRAPHICAL DISTRICTS

District 1 East Coast	District 2 Midwest	District 3 South	Rocky Mountain	District 5 Pacific	District 6 Far East	District 7	District 8
Connecticut	Illinois	Alabama	Colorado	Arizona	Guam	Europe	South America
Delaware	Indiana	Arkansas	Idaho	California	Singapore	Near East	West Indies
District of Col.	Iowa	Louisiana	Montana	Nevada	Japan	Africa	Canada
Florida	Kansas	Mississippi	Utah	Oregon			Virgin Islands
Georgia	Kentucky	New Mexico	Wyoming	Washington			
Maine	Michigan	Texas		Alaska			
Maryland	Minnesota			Hawaii			
Massachusetts	Missouri						
New Hampshire	Nebraska						
New Jersey	North Dakota						
New York	Ohio						
North Carolina	Oklahoma						
Pennsylvania	South Dakota						
Rhode Island	Tennessee						
South Carolina	Wisconsin						
Vermont							
West Virginia							
Virginia							

SECTION IV

CONCLUSIONS

The data for the 100 JP-4 fuel samples showed good consistency, both internally and with previous work. The samples by a count of 88 to 12 agree more closely with the generalized crude oil tables ("A" series tables) than with the generalized product tables ("B" series tables). The data also show that base density alone is not enough to determine the "correct" thermal expansion coefficient.

SECTION V

REFERENCES

- Downer, L. and F. A. Inkley, <u>Oil and Gas Journal</u>, <u>70</u>, No. 25,
 p. 52-55, June 19, 1972.
- Hankinson, R. W., R. G. Segers, T. K. Buck, and F. P. Gielzecki,
 Oil and Gas Journal, 77, No. 52, p. 66-70, December 24, 1979.

APPENDIX A SOURCE OF FUEL SAMPLES

82-POSF-0541	MRC-599
JP-4, GEFC-1A	JP-4
J79 Low Smoke	Cities Service, Inc.,
WMG FOF	Lake Charles, LA
MRC-585 JP-4	MRC-600
Indiana Fuel & Asphalt, Hammond, IN	JP-4
indiana ruel a asphale, nammona, in	Conoco, Inc., Ponca City, OK
MRC-588	conoco, me., toned erej, on
JP-4	MRC-601
Amber Refining Inc. Refining Co.	JP-4
Winston, Fort Worth, TX	Conoco, Inc., Ponca City, OK
MRC-589	MRC-602
JP-4	JP-4
Amoco, Whiting, IN	Calcasien Refining Co., CPI
MRC-590	Lake Charles, LA
JP-4	MRC-603
Cibro Petroleum Products, Inc.	JP-4
Port of Albany, NY	Berry Refining Co., Stevens, AR
•	•
MRC-591	MRC-604
JP-4	JP-4
Ashland Petroleum Co.	Atlas Processing Co., Shreveport, LA
St. Paul Park, MN	WDG COE
MRC-592	MRC-605 JP-4
JP-4	Southland Oil Co., Sonderville, MS
Pride Refining Co., Abilene, TX	bodelizand ozz co., bondervzzze, na
trade meranang con, nadacine, an	MRC~608
MRC-594	JP-4
JP-4	Golden Eagle, Carson City, CA
Mobil Oil, Beaumont TX	
	MRC-609
MRC-595	JP-4
JP-4	Arco, Los Angeles, CA
Chevron USA, El Paso, TX	MRC-610
MRC-596	JP-4
JP-4	Amoco, Salt Lake City, UT
Allied Materials Corp., Shoud, OK	impoo, baze adne ozej, e.
	MRC-611
MRC-597	JP-4
JP-4	Amoco, Boise, ID
Navajo, Artesia, NM	
.ma 400	MRC-612
MRC-598	JP-4
JP-4 Delta Mamphia TM	Simons Oil Co., Black Eagle, MT
Delta, Memphis, TN	

MRC-613 JP-4	MRC-629
Exxon Company, USA Refining Dept.	JP-4 Crystal Refining Co.,
Billings, MT	Carson City, MI
MRC-614	MRC-636
JP-4	JP-4
Coastal States Ret. Chem.,	Mobil Torrence Refining,
Corpus Christie, TX	Norwalk, CA
MRC-615	MRC-637
JP-4	JP-4
Koch Refining, Corpus Christie, TX	McConnel AFB, KS
MRC-616	MRC-638
JP-4	JP-4
Lakeshore Terminal Co., Harrisville, MI	Pioneer Refining Ltd., Nixon, TX
	MRC-639
MRC-617	JP-4
JP-4	Amoco Oil Co., Des Moines, IA
Chevron USA, Inc., Pascagoula, MS	
	MRC-643
MRC-618	JP-4
JP-4	Chevron USA, Salt Lake Refining,
Getty, Delaware City, DE	Salt Lake City, UT
MRC-624	MRC-644
JP-4	JP-4
Laketon Asphalt, Inc., Laketon, IN	Phillips Petroleum Co.,
	Wood Crossing, UT
MRC-625	
JP-4	83-POSF-0914
Delaware Storage & Pipeline,	JP-4
Dover, DE	Chevron, El Paso, TX
MRC-626	83-POSF-0915
JP-4	JP-4
Hunt Oil, Tuscaloosa, AL	Copano, Corpus Christie, TX
MRC-627	83-POSF-0916
JP-4	JP-4
Howell Hydrocarbons, San Antonia, TX	Allied, Oklahoma City, OK
MRC-628	83-POSF-0917
JP-4	JP-4
Evvon Raton Pouge IA	Industrial Eugl & Asphalt Whiting IN

83-POSF-0918 83-POSF-0930 JP-4 Oklahoma Ref., Oklahoma City, OK Getty, Delaware City, DE 83-POSF-0919 83-POSF-0931 JP-4 JP-4 Gladieux, Fort Wayne, IN Tonkawa Ref., Oklahoma City, OK 83-POSF-0920 83-POSF-0932 JP-4 JP-4 Contractor unknown, Milwaukee, WI Berry, Shreveport, LA 83-POSF-0921 83-POSF-0933 JP-4 JP-4 Hunt Pan Am, Corpus Christie, TX Winson Ref., Fort Worth, TX 83-POSF-0922 83-POSF-0934 JP-4 JP-4 Allied, Oklahoma City, OK Sun, Corpus Christie, TX 83-POSF-0923 83-POSF-0935 JP-4 Pioneer, San Antonio, TX Hawaiian Ind. Ewa Beach, Hawaii 83-POSF-0924 83-POSF-0936 JP-4 JP-4 Sun Petroleum, Marcus Hook, PA Amoco, Salt Lake City, UT 83-POSF-0925 83-POSF-0937 JP-4 JP-4 Arco-Watson Refinery Peerless, Grand Rapids, MI 83-POSF-0926 83-POSF-0938 JP-4 JP-4 Ashland, Buffalo, NY Phillips, Wood Cross, UT 83-POSF-0927 83-POSF-0939 JP-4 JP-4 Wyoming Ref., Newcastle, WY Aviall, Fort Worth, TX 83-POSF-0940 83-POSF-0928 JP-4 JP-4 Exxon, Baton Rouge, LA Exxon, Benicia, CA 83-POSF-0929 83-POSF-0941 JP-4 JP-4 Ashland, Louisville, KY Conoco, Commerce City, CO

83-POSF-0997 JP-4 JP-4 Koch, Corpus Christie, TX Pioneer, Nixon, TX 83-POSF-1095 83-POSF-0999 JP-4 JP-4 WPAFB, Dayton, OH Coastal States, Corpus Christie, TX 83-POSF-1096 83-POSF-1001 JP-4 JP-4 Laketon, Laketon, IN Exxon, Baton Rouge, LA 83-POSF-1097 83-POSF-1019 JP-4 JP-4 Getty, Delaware City, DE Amerada Hess, Houston, TX aka: 83-POSF-1098 Duplicate (2) 83-POSF-1021 83-POSF-1098 JP-4 Oklahoma Ref., Oklahoma City, OK JP-4 Amerada Hess, Houston, TX 83-POSF-1087 84-POSF-1157 WPAFB, Dayton, OH JP-4 83-POSF-1088 Hahn AFB, Germany JP-4 83-POSF-1181 Howell, San Antonio, TX JP-4 Osan AFB, Korea 83-POSF-1089 JP-4 Amarillo ACFT, Amarillo, TX 83-POSF-1283 JP-4 aka: 83-POSF-1090 Camp New Amsterdam, The Netherlands 83-POSF-1090 83-POSF-1793 Amarillo, ACFT, Amarillo, TX JP-4 Amoco, Whiting, IN aka: 83-POSF-1089 83-POSF-1794 83-POSF-1091 JP-4 JP-4 Mobil, Beaumont, TX Amoco, Whiting, IN aka: 83-POSF-1092 84-POSF-1795 JP-4 83-POSF-1092 Howell, San Antonio, TX JP-4 Amoco, Whiting, IN 84-POSF-1796 83-POSF-1093 JP-4 JP-4 Continental, Laurel, DE

83-POSF-1094

Pioneer, Nixon, TX aka: 83-POSF-1094

84-POSF-1954 84-POSF-1959 JP-4 JP-4 Continental Services, Escanaba, MI S. T. Services, Elmendorf, TX 84-POSF-1955 84-POSF-1960 JP-4 JP-4 Continental Services, Escanaba, MI Gladieux Ref., Ft. Wayne, IN 83-POSF-1956 84-POSF-1961 JP-4 Continental Services, Escanaba, MI Getty, Delaware City, DE 84-POSF-1957 84-POSF-1962 JP-4 Oklahoma Ref., Oklahoma City, OK Sun Ref., Marcus Hook, PA 84-POSF-1958 84-POSF-1963 JP-4 JP-4 Triangle Ref., St. Louis, MO Giant Ref., Gallup, NM

APPENDIX B

TEMPERATURE-DENSITY DATA ON 100 JP-4 FUEL SAMPLES

589 ^a	Calculated at	<u>י</u>	= uota	1		44.91 0.76780	55.24 0.76305	60.23 0.76077	64.38 0.75890	74.82 0.75419	84.64 0.74964	95.47 0.74468	104.39 0.74057	119.55 0.73355	594ª	Calculated at	$60^{\circ}F = 0.76383$	Correlation = -0.99978	9.F	32.90 0.77565	44.91 0.77049	55.24 0.76594	60.23 0.76380	64.38 0.76199	74.82 0.75734	84.64 0.75288	95.76 0.74808	.39	119.55 0.73743
588 ^a	Calculated at	· 1	- uo11	1			55.24 0.77471	60.23 0.77252	64.39 0.77075	74.82 0.76622	84.64 0.76191	95.43 0.75719	104.39 0.75324	119.54 0.74651	592 ^a	Calculated at	$60^{\circ}F = 0.76174$	Correlation = -0.999983	о Е р	32.89 0.77373	44.91 0.76845	55.24 0.76388	60.23 0.76170	64.38 0.75984	74.82 0.75520	84.64 0.75075	95.47 0.74595		119.55 0.73502
585ª	Calculated at	•	1			44.88 0.77077	55.24 0.76602	60.23 0.76384	64.39 0.76194	74.82 0.75721	84.64 0.75272	95.47 0.74792	104.39 0.74387	119.54 0.73692	591 ^a	Calculated at	$60^{\circ}F = 0.76023$	Correlation = -0.999994		32.89 0.77224			<u>.</u>		0	84.64 0.74922	95.47 0.74439	•	119.55 0.73351
82-POSF-0541	Calculated at	260000 U = 40;46[4140]	ŀ	7	>				65.09 0.75809	74.90 0.75376	85.02 0.74923	95.20 0.74471	105.11 0.74026	119.60 0.73368	590ª	Calculated at	$60^{\circ}F = 0.75296$	Correlation = -0.999986	oF.			.75	.20	65.25 0.75055	75.10 0.74599		_	.07 0.	119.88 0.72491

These samples were also used in Contract F08635-85-C-0067, "Distillate Fuel Variability".

(continued)

B-1

598ª	Calculated at	$60^{\circ}F = 0.75878$	Correlation = -0.999982	oF p	32.34 0.77126		55.27 0.76095									Calculated at	atentaled of - 0 2620	?	tion = -0			45.13 0.75951	54.75 0.75515	60.20 0.75260	65.25 0.75030	.10	84.77 0.74135				(continued)
597 ^a] []		Correlation = -0.999985		32.34 0.77860	45.07 0.77283	55.27 0.76822	59.70 0.76618		74.99 0.75930	84.84 0.75476	94.94 0.75012	104.20 0.74581	120.09 0.73846	601	Calculated at		:	n- = uoi3			45.07 0.77594		59.70 0.76930	65.29 0.76681	74.99 0.76237	84.84 0.75785	94.94 0.75323	104.20 0.74893	120.09 0.74156	
596 ^a		`.	Correlation = -0.999991	,						74.82 0.75788	84.64 0.75348	95.39 0.74864	104.39 0.74461	119.55 0.73775	600 ^a	Calculated at	$60^{\circ}F = 0.75804$	Correlation - 0 000000	ı	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			5.27 0.	0	o.	0	o.	0	104.20 0.73813	120.09 0.73086	
595 ^a	Calculated at		= uo13		06. 26.	.91 0.	.24 0		0	·	-	0	.39 0.	119.55 0.73006	599ª	Calculated at	$60^{\circ}F = 0.75673$	Correlation = -0 999985		15	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	.0,	.21 0.	.70 07.	0	o O		0	.20 0.	120.09 0.72885	

608 ^a Calculated at 60°F = 0.75935 Correlation = -0.999978	32.34 0.77189 45.07 0.76613 55.27 0.76152 59.70 0.75949 65.29 0.75701 74.99 0.75258 84.84 0.74805 94.94 0.74342 104.20 0.73170	calculated at 60°F = 0.76440 Correlation = -0.999989 °F 33.10 0.77629 45.17 0.77096 54.75 0.76677 60.20 0.76434 65.26 0.76209 75.13 0.75772 84.76 0.75342 94.58 0.74905 119.88 0.73764
605 ^a Calculated at 60°F = 0.75486 Correlation = -0.99992	33.10 0.76658 45.13 0.76137 54.75 0.75719 60.20 0.75480 65.25 0.75259 75.10 0.74827 84.77 0.74403 94.59 0.73973 119.88 0.72851	Calculated at 60°F = 0.75622 Correlation = -0.999984 °F 33.10 0.76829 45.17 0.76829 45.17 0.7589 54.75 0.75863 60.20 0.75863 65.26 0.75863 75.13 0.74944 84.76 0.74505 94.58 105.07 0.73581
604 ^a Calculated at 60°F = 0.76431 Correlation = -0.999986	113 0.7 7.5 0.7 22 0.7 25 0.7 10 0.7 77 0.7 88 0.7	Calculated at 60°F = 0.75558 Correlation = -0.999984 °F 33.10 0.76773 45.17 0.76230 54.75 0.75803 60.20 0.75803 65.26 0.75555 65.26 0.75555 75.13 0.74874 84.76 0.74433 94.58 0.73985 119.88 0.72815
603 ^a Calculated at 60°F = 0.76218 Correlation = -0.999985	113 0.7 125 0.7 22 0.7 25 0.7 10 0.7 10 0.7 10 0.7 10 0.7 10 0.7 10 0.7	Calculated at 60°F = 0.77268 Correlation = -0.999988 °F 33.10 0.78482 45.17 0.77940 54.75 0.77511 60.20 0.77260 65.25 0.77033 75.10 0.76586 84.77 0.76148 94.59 0.75700 105.07 0.75219

616 ^a	Calculated at 60°F = 0.75328	.ou		32.34 0.76565	45.08 0.76001	55.28 0.75547	59.71 0.75343	64.98 0.75105	74.98 0.74660	84.81 0.74213	94.92 0.73756	104.20 0.73329	120.04 0.72599	625 ^a	Calculated at	$60^{\circ}F = 0.75720$	Correlation = -0.999970		32.97 0.76918	45.20 0.76382	54.71 0.75959	59.91 0.75733	65.09 0.75496	74.90 0.75058	85.02 0.74601	95.20 0.74146	0.	119.59 0.73025	(continued)
615 ^a	Calculated at 60°F = 0.75068	tior		0.7	45.17 0.75725	54.75 0.75309		65.26 0.74836	75.13 0.74399	84.76 0.73963	94.58 0.73523	105.07 0.73046	119.88 0.72373	624 ^a	Calculated at	$60^{\circ}F = 0.76333$	Correlation = -0.999978	O Ło	32.97 0.77542		54.71 0.76576	0	65.09 0.76108	0.	85.02 0.75208	95.20 0.74747	105.12 0.74293	119.59 0.73625	
614 ^a	Calculated at 60°F = 0.77141	Correlation = -0.999986	•	32.34 0.78353	45.08 0.77793	55.28 0.77349	59.71 0.77150	64.98 0.76926	74.98 0.76488	84.81 0.76055	94.92 0.75609	104.20 0.75194	120.04 0.74485	618 ^a	Calculated at	$60^{\circ}F = 0.75769$	Correlation = -0.999979	d 4º	33.10 0.76976			0	65.26 0.75535	0	84.76 0.74654	94.58 0.74205	105.07 0.73725	119.88 0.73040	
613 ^a	Calculated at 60°F = 0.76923	Correlation = -0.999987	d Jo		.08				74.98 0.76267	84.81 0.75828	94.92 0.75377	104.20 0.74960	120.04 0.74248	617 ^a	Calculated at	$60^{\circ}F = 0.75209$	Correlation = -0.999978	o. p		0	0.7	0	· •	0	84.81 0.74085	94.92 0.73627	104.20 0.73200	120.04 0.72454	

629 ^a	Calculated at		Correlation = -0.999988		32.34 0.78380	45.08 0.77820	55.28 0.77376		.98	74.98 0.76516		94.92 0.75635	104.20 0.75222	0	đ	639 ^a	Calculated at	$60^{\circ}F = 0.76711$	Correlation = -0.999983	OF O	87 0.7	45.19 0.77365	54.76 0.76943	59.90 0.76719	65.09 0.76480	74.90 0.76043	85.02 0.75586	95.20 0.75128	105.11 0.74674	119.60 0.74013	(continued)
628 ^a	Calculated at		Correlation = -0.999984	ا ا	32.34 0.76597	45.08 0.76027	55.28 0.75570	.71 0.	64.98 0.75134	74.98 0.74690	84.81 0.74240	94.92 0.73783	104.20 0.73359	120.04 0.72630	n	638	Calculated at	$60^{\circ}F = 0.75267$	Correlation = -0.999981	OF D	.87 <u>0.7</u>	45.19 0.75939	•		65.09 0.75032	74.90 0.74581	85.02 0.74110	95.20 0.73640	105.11 0.73176	119.60 0.72491	
627 ^a	Calculated at		10n = -0.	ı		0	54.71 0.76559	59.91 0.76325	65.09 0.76083		85.02 0.75160	95.20 0.74687	105.12 0.74226	119.59 0.73540	æ	637	Calculated at	$60^{\circ}F = 0.76001$	Correlation = -0.999985				.71	0	0	74.90 0.75336			.11 0.	119.59 0.73325	
626 ^a	Calculated at	. 1	11on = -0	 	.97 0.	.20 0.7	54.71 0.75497	.91	•		85.02 0.74143	95.20 0.73686	105.12 0.73234	119.59 0.72568	ro ;	636~	Ξ	$60^{\circ}F = 0.77666$	Correlation = -0.999981	d 4	.97	.20 0.	.71 0.	0	.00 60.	.90 06.		20 0.	.12 0.	119.59 0.75005	

83-POSF-0915 Calculated at 60°F = 0.77937 Correlation = -0.99984	100	55.26 0.78153 59.58 0.77958 65.03 0.77710		83-POSF-0919 Calculated at 60°F = 0.75230 Correlation = -0.999985 °F 32.95 0.76434 44.51 0.75923 55.26 0.75442 59.58 0.75442 59.58 0.75442 95.84 0.7363 119.39 0.72550 (continued)
83-POSF-0914 Calculated at 60°F = 0.75597 Correlation = -0.999991	100	55.26 0.75824 59.58 0.75619 65.03 0.75368		83-POSF-0918 Calculated at 60°F = 0.75287 Correlation = -0.999989 °F
644 ^a Calculated at 60°F = 0.76050 Correlation = -0.999987	10 0	54.76 0.76285 59.90 0.76056 65.09 0.75816		83-POSF-0917 Calculated at 60°F = 0.76205 Correlation = -0.999962 32.95 44.51 0.76897 55.26 0.77378 74.19 0.76230 65.03 0.7584 84.40 0.65130 95.77 0.74617 105.08 0.73577
643 ^a Calculated at 60°F = 0.75402 Correlation = -0.999986	10 0	54.76 0.75636 59.90 0.75408 65.09 0.75171	0000	83-POSF-0916 Calculated at 60°F = 0.76321 Correlation = -0.999986 °F 32.95 0.77512 44.51 0.77007 55.26 0.76535 59.58 0.76343 65.03 0.76101 74.19 0.75243 95.77 0.74733 120.76 0.73609

83-POSF-0923 Calculated at 60°F = 0.76543 Correlation = -0.99992	7. p 32.95 0.77743 44.51 0.77236 55.26 0.76757 59.58 0.76563 65.03 0.76322 74.19 0.75913 84.43 0.75913 84.43 0.75456 95.84 0.74942 105.04 0.74521	83-POSF-0927 Calculated at 60°F = 0.75911 Correlation = -0.999987 °F 33.08 0.77111 44.56 0.76607 54.52 0.76159 59.81 0.75927 65.21 0.75675 74.88 0.75242 85.62 0.74766 95.88 0.74299 105.46 0.73863 120.81 0.73165
83-POSF-0922 Calculated at 60°F = 0.76367 Correlation = -0.999984	32.95 0.77545 44.51 0.77041 55.26 0.76580 59.58 0.76384 65.03 0.76144 74.19 0.75742 84.43 0.75742 95.84 0.74790 105.04 0.74377	B3-POSF-0926 Calculated at 60°F = 0.76683 Correlation = -0.999954 °F 33.08 0.77871 44.56 0.77871 54.52 0.76929 59.81 0.76696 65.21 0.76449 74.88 0.76022 85.62 0.75553 95.88 0.75090 105.46 0.74658
83-POSF-0921 Calculated at 60°F = 0.76931 Correlation = -0.999988	551 0.7 256 0.7 558 0.7 03 0.7 19 0.7 43 0.7 76 0.7	83-POSF-0925 Calculated at 60°F = 0.77287 Correlation = -0.999992 °F 32.89 0.78464 44.88 0.77957 55.24 0.77957 60.23 0.77278 64.39 0.77278 74.82 0.76641 84.64 0.76207 95.43 0.75332 104.39 0.75344
83-POSF-0920 Calculated at 60°F = 0.78029 Correlation = -0.999994	32.95 0.79236 44.51 0.78724 55.26 0.78242 59.58 0.78048 65.03 0.77808 74.19 0.77397 84.43 0.76942 95.84 0.76420 105.04 0.75365	83-POSF-0924 Calculated at 60°F = 0.75824 Correlation = -0.999994 °F 32.89 0.77024 44.88 0.76495 55.24 0.76032 60.23 0.75818 64.39 0.75818 64.39 0.75633 74.82 0.75168 84.64 0.74251 104.39 0.73855 119.54 0.73170

83-POSF-0931 Calculated at 60°F = 0.76491 Correlation = -0.999992	01 556 0.7 75 0.7 75 0.7 13 0.7 48 0.7 48 0.7 33 0.7 48 48 48 48 48 48 48 48 48 48	83-POSF-0935 Calculated at 60°F = 0.77346 Correlation = -0.999993 °F 33.01 0.78583 44.56 0.78583 44.56 0.77591 59.75 0.77591 59.75 0.77357 65.32 0.77108 74.35 0.76692 84.13 0.76692 84.13 0.76242 95.48 0.75713 105.40 0.75252 119.98 0.74585
83-POSF-0930 Calculated at 60°F = 0.76898 Correlation = -0.99992	56 0.7 75 0.7 75 0.7 32 0.7 13 0.7 46 0.7 36 0.7	83-POSF-0934 Calculated at 60°F = 0.76643 Correlation = -0.999995 °F 33.01 0.77841 44.56 0.77321 54.70 0.76878 59.75 0.76654 65.32 0.76654 65.32 0.76412 74.35 0.7608 84.13 0.75578 95.48 0.75069 105.40 0.74629
83-POSF-0929 Calculated at 60°F = 0.76566 Correlation = -0.999988	33.08 0.77757 44.56 0.77255 54.52 0.76817 59.81 0.76578 65.21 0.76333 74.88 0.75904 85.62 0.75432 95.88 0.74968 105.46 0.74538	83-POSF-0933 Calculated at 60°F = 0.75768 Correlation = -0.999993 °F 33.01
83-POSF-0928 Calculated at 60°F = 0.76712 Correlation = -0.999993	33.08 0.77899 44.56 0.77400 54.52 0.76958 59.81 0.76726 65.21 0.76477 74.88 0.76050 85.62 0.7582 95.88 0.75120 105.46 0.74691	B3-POSF-0932 Calculated at 60°F = 0.77426 Correlation = -0.999992 °F 33.01 0.78596 44.56 0.78091 54.70 0.77655 59.75 0.77439 65.32 0.77203 74.33 0.76807 84.13 0.76807 84.13 0.75886 105.40 0.75886

83-POSF-0939	[n]		Correlation = -0.999988	O.F.	33.03 0.76819								39		0000-3500 -68	Calculated at		757	Correlation = -0.99987	oF p	32.47 0.76990	44.98 0.76434		60.36 0.75753						
83-POSF-0938	_	`.	Correlation = -0.999991		33.03 0.76655	44.55 0.76120			. 29	74.35 0.74759			0	0	83-2095-0997	Calculated at	•	?	Correlation = -0.999987		32.47 0.76445	44.98 0.75891	.72	60.36 0.75209	65.21 0.74991	74.96 0.74561	84.86 0.74119	94.65 0.73681	104.52 0.73233	0.
83-POSF-0937	Calculated at		Correlation = -0.999995				54.69 0.77995	59.75 0.77764		74.35 0.77114	84.11 0.76672	95.51 0.76159	105.39 0.75706	119.98 0.75049	83-POSF-0941	Calculated at	600F = 0.75C0A		rion =	d.								95.51 0.74091	105.39 0.73637	120.04 0.72987
(*)1	Laiculated at 60°F ≈ 0 76547	ċ	ı	Į,	01	.56 0.	.70 0.	.75	29 0.	.35 0.	0		.40 0.	19.98 0.73883	83-POSF-0940	Calculated at	60°F = 0 76438		J	Į,	25	.55	0	.75 0.	. 29 0.	35 0.	11 0.	.51 0.	.39 0.	20.04 0.73673

83-POSF-1087	Calculated at	$60^{\circ}F = 0.75995$	Correlation = -0.999984	0.F	32.47 0.77261								83-8056-1091	Calculated at	60°F = 0 76184	Correlation = -0.999987		32.47 0 77427				65.08 0.75958	74.97 0.75511	84.86 0.75061			
83-POSF-1021	Calculated at	$60^{\circ}F = 0.76561$	16666	OF D	32.47 0.77773	44.98 0.77223		74.96 0.75903		0	104.52 0.74589		83-POSF-1090	Calculated at	$60^{\circ}F = 0.76148$	68666		0.7	44.56 0.76839	54.52 0.76394			74.88 0.75483	85.62 0.75012	95.88 0.74548	105.49 0.74132	
83-P0SF-1019	Calculated at	$60^{\circ}F = 0.75634$	Correlation = -0.999982	d 30	32.47 0.76886			74.96 0.74957	84.86 0.74503		104.52 0.73594	119.96 0.72871	83-POSF-1089	Calculated at	$60^{\circ}F = 0.76132$	Correlation = -0.999986	O Ho					65.11 0.75912			94.65 0.74585	104.51 0.74141	119.96 0.73437
83-POSF-1001	Calculated at	$60^{\circ}F = 0.76471$	Correlation = -0.999989				0	 · •	o.			119.96 0.73770	83-POSF-1088	Calculated at	$60^{\circ}F = 0.76006$	Correlation = -0.999983					· •			0			120.04 0.73213

83-POSF-1095	Calculated at	$60^{\circ}F = 0.76357$		32.47 0 77594				65.08 0.76131	74.97 0.75685	84.86 0.75237	94.65 0.74795	104.51 0.74346			83-POSF-1157	Calculated at	$60^{\circ}F = 0.76113$	Correlation = -0.999992		31 0 7					40					119.27 0.73475
83-POSF-1094	Calculated at	Ö		33.12 0.76779	44.64 0.76280	54.57 0.75842				85.62 0.74466	95.85 0.74001	105.49 0.73581	120.05 0.72924	0001.3300-00	03-r03r-1090		$60^{\circ}F = 0.75332$	Correlation = -0.999987	O Ho	33.12 0.76574		54.57 0.75592	59.74 0.75347	65.21 0.75085	74.88 0.74641		95.85 0.73662			s S
83-POSF-1093	calculated at 60°F = 0.75591	Correlation = -0.999995						o (119.54 0.72932	83-POSF-1097	١,	Calculated at	`. •	Correlation = -0.999986					o O				95.76 0.73659	104.39 0.73260	119.54 0.72541	
83-POSF-1092	_	Correlation = -0.999990	-	.12	. .		, / 4 0.	03.21 0.73948 74 99 0.75514	.00		> 0		120.03 0./3456	83-POSF-1096	Calculated at	60°F = 0 7635A	•	0- = uo13			4. :	24.57 0.76603	59.74 0.76367		o '	· ·	0	0	120.05 0.73637	

84-POSF-1794 Calculated at 60°F = 0.76112 Correlation = -0.999992			74.98 0.75448 84.89 0.74995 94.70 0.74568		취공	$60^{\circ}F = 0.76292$ Correlation = -0.99994		5.23 0. 4.93 0.	59.77 0.76301 65.31 0.76060	75.04 0.75630 85.10 0.75185		105.16 0.74293 119.93 0.73354	(continued)
84-POSF-1793 Calculated at 60°F = 0.75121 Correlation = -0.999983			74.96 0.74429 84.89 0.73966 94.70 0.73507	0 4300		60°F = 0.76275 Correlation = -0.999994	11:	.93 .93	59.77 0.76283 65.31 0.76043	75.04 0.75612 85.10 0.75167	.06 0.	119.92 0.73611	
3-POSF-12 alculated oF = 0.76 tion = -0			75.04 0.76188 85.10 0.75741 94.59 0.75326 104.48 0.74885	0	Calculated at	<pre>bu = 0.75333 Correlation = -0.999993</pre>				74.98 0.75668 84.89 0.75230	94.71 0.74790	0	
3-POSF-11 alculated oF = 0.76 tion = -0	33.31 0.77315 44.58 0.76816 54.81 0.76363	.31 0.	. 10 . 59	0	3 5 1	Ę	32.18 0.76914			74.98 0.74914 84.89 0.74447	94.71 0.73986 304.64 0.73512	0	

served executed territor begans executed sireness statems served and

84-POSF-1959	Calculated at		Correlation = -0.999982		32.77 0.77041	45.28 0.76461	54.93 0.76037				85.10 0.74707		105.28 0.73808	119.93 0.73354	84-POSF-1963	Calculated at		Ē	9.F	33.31 0.78014	44.58 0.77515	54.81 0.77060	59.77 0.76843	65.49 0.76588	75.04 0.76159	85.10 0.75705	94.59 0.75283	104.48 0.74836	119.27 0.74162
84-P0SF-1958	Calculated at		Correlation = -0.999980		32.77 0.77296	45.28 0.76705	54.93 0.76276	59.78 0.76957	65.31 0.75814	75.04 0.75379	85.10 0.74928	95.06 0.74482	105.16 0.74024	119.93 0.73354	84-POSF-1962	Calculated at	$60^{\circ}F = 0.75142$	Ē	d 40	33.31 0.76515	44.58 0.76014	54.81 0.75556	59.77 0.75337	65.49 0.75083	75.04 0.74653	85.10 0.74199	94.59 0.73774	104.48 0.73325	119.27 0.72650
84-POSF-1957	Calculated at		Correlation = -0.999993		33.08 0.77524			59.78 0.76339		75.04 0.75659	85.10 0.75212	95.06 0.74766	105.16 0.74314	119.92 0.73644	84-POSF-1961	Calculated at	$60^{\circ}F = 0.75818$	Correlation = -0.999982	д Д	33.31 0.76718	44.58 0.76209	54.81 0.75750		65.49 0.75269		85.10 0.74372	94.59 0.73943	104.48 0.73487	119.27 0.72805
84-POSF-1956	Calculated at	. ,	Correlation = -0.999991	ا ي	.08	45.23 0.76909	54.93 0.76481	59.77 0.76264	65.31 0.76025	75.04 0.75591	85.10 0.75146	95.06 0.74705	105.16 0.74253	119.92 0.73585	84-POSF-1960	Calculated at	$60^{\circ}F = 0.75142$	Correlation = -0.999982	!	32.77 0.76411	.28 0.	54.93 0.75369	59.78 0.75148	65.31 0.74898	75.04 0.74447	85.10 0.73988	95.06 0.73533	0	119.93 0.72371

APPENDIX C TEMPERATURE-DENSITY DATA ON 24 FUEL SAMPLES

DF-Marine 82-POSF-0184 Calculated at 60°F = 0.84530 Correlation = -0.99984	oF 32.63 0.85610 44.98 0.85126 54.75 0.84737 59.68 0.84544 65.20 0.84325 74.64 0.83565 84.44 0.83565 94.67 0.83160 105.08 0.82742	JP-5 82-POSF-0443 Calculated at 60°F = 0.81261 Correlation = -0.999988 °F P P P 32.63 0.82360 44.98 0.81864 54.75 0.81471 59.68 0.81275 65.20 0.81054 74.64 0.80675 84.44 0.80280 94.67 0.79868 105.08 0.79812
JP-4 82-POSF-0159 Calculated at 60°F = 0.75993 Correlation = -0.999977	oF 32.60 0.77205 44.92 0.76660 54.79 0.76230 59.69 0.75769 74.41 0.75769 74.41 0.75769 84.77 0.74886 94.93 0.74437 105.06 0.73302	Shale Crude 82-POSF-0325 Sample too viscous for measurement
JP-5 82-POSF-0155 Calculated at 60°F = 0.81828 Correlation = -0.999997	9.F p 32.60 0.82935 44.92 0.82935 54.79 0.82039 59.69 0.81844 65.16 0.81620 74.41 0.81246 84.77 0.80825 94.93 0.80416 119.90 0.79395	JP-4 82-POSF-0323 Calculated at 60°F = 0.77997 Correlation = -0.999982 °F 32.61 679217 44.92 0.78234 59.69 0.78014 65.16 0.77772 74.41 0.77360 84.77 0.76885 94.93 0.76434 105.06 0.75295
JP-7 82-POSF-026 Calculated at 60°F = 0.79933 Correlation = -0.999972	32.63 0.81020 44.98 0.80535 54.75 0.80141 59.68 0.79948 65.20 0.79727 74.64 0.79351 84.44 0.78960 94.67 0.78551 105.08 0.78131	92-Posf-0314 Calculated at 60°F = 0.82361 Correlation = -0.999974 °F 32.63 6.83462 44.98 0.82965 54.75 0.82574 59.68 0.82153 74.64 0.81377 94.67 0.80964 105.08 0.79905

(continued)

Jet A 83-POSF-1254 Calculated at 60°F = 0.81005 Correlation = -0.999980 °F	Jet A 83-POSF-1723 Calculated at 60°F = 0.81277 Correlation = -0.999997 °F 0.82389 44.96 0.81889 54.79 0.81491 59.69 0.81292 65.27 0.81064 74.41 0.80693 84.77 0.80269 94.93 0.79856 119.90 0.78831 (continued)
B3-POSF-1051 Calculated at 60°F = 0.84178 Correlation = -0.999992 32.63	Jet A 83-POSF-1530 Calculated at 60°F = 0.79597 Correlation = -0.999976 °F 32.60 0.80221 54.75 0.79816 59.70 0.79816 59.70 0.79816 59.70 0.79816 94.64 0.79386 74.64 0.78591 94.66 0.78591 94.66 0.77125 120.13 0.77078
Jet A 83-POSF-0709 Calculated at 60°F = 0.81167 Correlation = -0.999978 32.63	Jet A 83-POSF-1260 Calculated at 60°F = 0.81345 Correlation = -0.999997 °F
Shale JP-8 82-POSF-0562 Calculated at 60°F = 0.80322 Correlation = -0.99967 °F 32.63	Jet A 83-POSF-1257 Calculated at 60°F = 0.81004 Correlation = -0.999996 °F

JP-5 POSF-2071 culated a = 0.8059 tion = -0	7 32.61 0.81694 44.96 0.81198 54.78 0.80804 59.68 0.80608 65.27 0.80381 74.41 0.80015 84.80 0.79594 94.92 0.79185 119.89 0.78171	Gasoline 84-POSF-2080 Calculated at 60°F = 0.75056 Correlation = -0.999098 °F = 0.76371 44.96 0.75749 54.78 0.75749 54.78 0.75359 59.68 Bubbles 65.27 Bubbles 65.27 Bubbles 14.41 0.74423 84.80 0.73363 105.06 Bubbles
JP-8 84-POSF-2038 Calculated at 60°F = 0.80155 Correlation = -0.999986	32.60 0.81290 44.92 0.80782 54.75 0.80373 59.70 0.80170 65.20 0.79943 74.64 0.79551 84.20 0.79144 94.66 0.78717 105.01 0.78275	Gasoline 84-POSF-2079 This sample so volatile that density measurements could not be made even at temperatures as low as $32^{o}F$.
JP-8 84-POSF-2035 Calculated at 60°F = 0.79871 Correlation = -0.999981	32.60 0.80990 44.91 0.80488 54.75 0.80087 59.70 0.79886 65.20 0.79662 74.64 0.79277 84.20 0.78876 94.66 0.78457 105.01 0.78022 120.20 0.77383	Gasoline 84-POSF-2078 This sample so volatile that density measurements could not be made, even at temperatures as low as $32^{\circ}F$.
JP-7 84-POSF-2003 Calculated at 60°F = 0.79754 Correlation = -0.999997	61 96 96 96 97 97 97 97 97 97 97 97 97 97	JPTS 84-P05F-2075 Calculated at 60°F = 0.79483 Correlation = -0.999987 °F 32.60 0.80605 44.92 0.80102 54.75 0.79700 59.70 0.79497 65.20 0.79497 65.20 0.78866 84.20 0.78484 94.66 0.78625 120.00 0.7629

APPENDIX D

COEFFICIENT OF THERMAL EXPANSION AND DENSITY VALUES FOR MISCELLANEOUS FUELS AT 60°F

Sample No.	Alpha Value at 60°F	Density (kg/m³)	Type of fuel	Nearest Group
26	499.32	799.35	JP-7	Jet
155	493.24	818.31	JP-5	Jet
159	585.32	759.96	JP-4	Crude
184	467.92	845.32	DF-Marine	Jet
314	490.20	823.63	JP-5	Jet
323	572.86	780.00	JP-4	Crude
443	495.45	812.63	JP-5	Jet
562	512.12	803.24	JP-8 (shale)	Jet
709	497.25	811.69	Jet A	Jet
1051	456.70	841.80	DF-2	Jet
1254	502.19	810.08	Jet A	Jet
1257	499.45	810.07	Jet A	Jet
1260	493.31	813.48	Jet A	Jet
1530	520.64	796.00	Jet A	Jet
1723	499.01	812.80	Jet A	Jet
2003	496.84	797.57	JP-7	Jet
2035	512.32	798.74	JP-8	Jet
2038	518.16	801.58	JP-8	Jet
2071	498.38	805.95	JP-5	Jet
2075	516.37	794.85	JPTS	Jet
2080	645.52	750.61	Gasoline	Crude

U.S. GOVERNMENT PRINTING OFFICE 1988 - 541 OF 7/40/13.1