第五讲 极限存在准则 两个重要极限

- ◆ 极限存在准则
- ◆ 两个重要极限
- ◆ 小结 思考题 作业

一、极限存在准则

1. 夹逼准则

准则I 如果数列 $\{x_n\},\{y_n\}$ 及 $\{z_n\}$ 满足下列条件:

(1)
$$y_n \le x_n \le z_n$$
 $(n = 1, 2, 3 \cdots),$

(2)
$$\lim_{n\to\infty} y_n = a$$
, $\lim_{n\to\infty} z_n = a$,

那么数列 $\{x_n\}$ 的极限存在,且 $\lim_{n\to\infty} x_n = a$.

上述数列极限存在的准则可以推广到函数的极限.

准则I'如果

(2)
$$\lim_{\substack{x \to x_0 \\ (x \to \infty)}} g(x) = A$$
, $\lim_{\substack{x \to x_0 \\ (x \to \infty)}} h(x) = A$,

那么 $\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x)$ 存在,且等于A.

准则I和 准则I' 称为夹逼准则.

例求
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \cdots + \frac{1}{\sqrt{n^2+n}}\right).$$

$$\lim_{n\to\infty} \frac{n}{\sqrt{n^2+1}} = \lim_{n\to\infty} \frac{1}{\sqrt{1+\frac{1}{n^2}}} = 1, \quad \text{in the proof of th$$

$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}}\right) = 1.$$

利用夹逼准则是求极限的一个重要手段,将复杂的函数 f(x) 做适当的放大和缩小化简,找出有共同极限值又容易求极限的函数 g(x) 和h(x)即可.

2. 单调有界准则

如果数列 $\{x_n\}$ 满足条件

$$x_1 \le x_2 \cdots \le x_n \le x_{n+1} \le \cdots$$
,单调增加 $x_1 \ge x_2 \cdots \ge x_n \ge x_{n+1} \ge \cdots$,单调减少 $x_1 \ge x_2 \cdots \ge x_n \ge x_{n+1} \ge \cdots$,单调减少

准则 || 单调有界数列必有极限.

几何解释:

$$x_1$$
 x_2 x_3x_n x_{n+1} x_n x_n

对数列 $\{x_n\}$:

单调有界 云有极限 云 有界

例 证明数列 $x_n = \sqrt{3 + \sqrt{3 + \sqrt{\dots + \sqrt{3}}}}$ (n重根式)的 极限存在.

- 证 (1) 显然 $x_{n+1} > x_n$,
 - x_n }是单调增加的
 - (2) $:: x_1 = \sqrt{3} < 3$, 假定 $x_k < 3$,

$$x_{k+1} = \sqrt{3 + x_k} < \sqrt{3 + 3} < 3,$$

- $\therefore \{x_n\}$ 是有界的;
- $\therefore \lim_{n\to\infty} x_n$ 存在.

证明数列 $x_n = \sqrt{3 + \sqrt{3 + \sqrt{\dots + \sqrt{3}}}}$ (n重根式)的极限存在.

$$(3) \ \ \mathop{ \vdots h} \limits_{n \to \infty} x_n = A$$

$$x_{n+1} = \sqrt{3 + x_n}, \ x_{n+1}^2 = 3 + x_n,$$

$$\lim_{n\to\infty} x_{n+1}^2 = \lim_{n\to\infty} (3+x_n), \quad A^2 = 3+A,$$

解得
$$A = \frac{1+\sqrt{13}}{2}$$
, $A = \frac{1-\sqrt{13}}{2}$ (舍去)

$$\lim_{n\to\infty}x_n=\frac{1+\sqrt{13}}{2}.$$

准则 || 单调有界数列必有极限.

函数极限也有类似的准则. 对于自变量的不同变化过程 $(x \to x_0^-, x \to x_0^+, x \to -\infty, x \to +\infty)$, 准则有不同的形式.

准则II^{*} 设函数 f(x)在点 x_0 的某个右邻域内单调并且有界,则f(x)在点 x_0 右极限 $f(x_0^+)$ 必定存在.

二、两个重要极限

作为准则I'的应用

(1)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

设单位圆O,圆心角 $\angle AOB = x$, $(0 < x < \frac{\pi}{2})$ 作单位圆的切线,得 $\triangle ACO$.

扇形OAB的圆心角为x, ΔOAB 的高为BD,

于是有 $\sin x = BD$, x =弧AB, $\tan x = AC$,

 ΔAOB 的面积<圆扇形AOB的面积< ΔAOC 的面积

$$\exists 1 \quad \frac{1}{2}\sin x < \frac{1}{2}x < \frac{1}{2}\tan x$$

 $\therefore \sin x < x < \tan x, \, \mathbb{P} \cos x < \frac{\sin x}{} < 1.$ X

上式对于
$$-\frac{\pi}{2}$$
< x < 0 也成立.

$$\therefore \lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to 0} \frac{x}{\sin x} = 1$$

该极限的特点:(1) 型未定式;

(2)sin 与分数线另一侧的变量 形式一致.

$$\lim_{x\to\infty}\frac{\sin x}{x}$$
 × 1

$$\lim_{x \to \infty} \frac{\sin x}{x} \times 1 \quad (\because \pm \frac{0}{0}$$
型未定式.)

正确
$$\lim_{x\to\infty}\frac{\sin x}{x}=0$$

一般有
$$\lim_{\varphi(x)\to 0} \frac{\sin \varphi(x)}{\varphi(x)} = 1$$

例1.
$$\lim_{x\to 0} \frac{x}{\tan x} = \lim_{x\to 0} \frac{x}{\sin x} \cdot \cos x = 1$$

推广:
$$\lim_{\square \to 0} \frac{\tan\square}{\square} = 1$$
, $\lim_{\square \to 0} \frac{\square}{\tan\square} = 1$.

例2.
$$\lim_{x\to 0} \frac{\sin 4x}{x} = \lim_{x\to 0} \frac{\sin 4x}{4x} \cdot 4 = 4$$

例3.
$$\lim_{n\to\infty} n \sin\frac{2}{n} = \lim_{n\to\infty} 2 \frac{\sin\frac{2}{n}}{\frac{2}{n}} = 2$$

例4.
$$\lim_{x\to 0} \frac{\sin^3 \sqrt[3]{x}}{3x} = \frac{1}{3} \lim_{x\to 0} \left(\frac{\sin \sqrt[3]{x}}{\sqrt[3]{x}} \right)^3 = \frac{1}{3}$$

195.
$$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x} = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \frac{5x}{\tan 5x} \cdot \frac{3}{5} = \frac{3}{5}$$

例6.
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \lim_{x\to 0} \frac{2\sin^2\frac{x}{2}}{x^2} = \frac{1}{2}\lim_{x\to 0} \left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2 = \frac{1}{2}$$

二倍角公式

 $1 - \cos 2x = 2\sin^2 x$ $1 - \cos x = 2\sin^2 \frac{x}{2}$

例7.
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$

令
$$u = \arcsin x$$
, 当 $x \to 0$ 时, 有 $u \to 0$,

$$\lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{u \to 0} \frac{u}{\sin u} = 1$$

例8.
$$\lim_{x \to 3} \frac{\sin(x^2 - 9)}{x - 3} = \lim_{x \to 3} \frac{\sin(x^2 - 9)}{x^2 - 9} \cdot (x + 3)$$
$$= \lim_{x \to 3} \frac{\sin(x^2 - 9)}{x^2 - 9} \cdot \lim_{x \to 3} (x + 3)$$
$$= 1 \times 6$$
$$= 6$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} / \frac{1}{2}$$

$$(1) 求 \lim_{x \to \pi} \frac{1 + \cos x}{(\pi - x)^2}$$

 \mathbf{p} \mathbf{p}

$$\lim_{x \to \pi} \frac{1 + \cos x}{(\pi - x)^2} = \lim_{t \to 0} \frac{1 + \cos(\pi - t)}{t^2}$$

$$=\lim_{t\to 0}\frac{1-\cos t}{t^2}$$

$$=\frac{1}{2}$$

$$(2) \cancel{R} \lim_{x \to 0} \frac{\sqrt{1 + \tan x} - \sqrt{1 + \sin x}}{\sin^3 x}$$

解

原式 =
$$\lim_{x \to 0} \frac{(\sqrt{1 + \tan x} - \sqrt{1 + \sin x})(\sqrt{1 + \tan x} + \sqrt{1 + \sin x})}{(\sqrt{1 + \tan x} + \sqrt{1 + \sin x})\sin^3 x}$$

$$= \lim_{x \to 0} \frac{\tan x - \sin x}{(\sqrt{1 + \tan x} + \sqrt{1 + \sin x})\sin^3 x}$$

$$= \lim_{x \to 0} \frac{1}{(\sqrt{1 + \tan x} + \sqrt{1 + \sin x})} \cdot \frac{1}{\cos x} \cdot \frac{1 - \cos x}{\sin^2 x}$$

$$= \frac{1}{2} \cdot 1 \cdot \lim_{x \to 0} \frac{\sin^2 \frac{x}{2}}{\left(\frac{x}{2}\right)^2} \cdot \frac{x^2}{\sin^2 x}$$

