Algorithm of the Ore-version of equitable coloring

May 18, 2018

Theorem 1. If G is a graph with $\theta(G) \leq 2r + 1$, then G can be equitably colored with r + 1 colors in polynomial time.

Proof. Let G be a graph with $\theta(G) \leq 2r+1$ and |G|=n. Without loss of generality, assume n=(r+1)s.

First order V(G) such that $d(v_i) \ge d(v_{i+1})$ for $i \in [n-1]$.

Then we can coloring V(G) greedily with r+1 colors:

- 1. For vertex vsuch that $d(v) \ge r + 1$, it can be colored with 1.
- 2. For vertex vsuch that $d(v) \leq r$, it can be colored with some color not used by its neighbors.

Let the coloring above be f.

Now define a directed graph \mathcal{H} , where $V(\mathcal{H})$ is the color class of f and $V_1V_2 \in E(\mathcal{H})$ if and only if there is some vertex $v \in V_1$ such that $N_{V_2}(v) = \emptyset$. Initial set up:

Let \mathcal{A}_0 be the family of color class U such that $|U| \leq s - 1$. Note that if $\mathcal{A}_0 = \emptyset$, then we are done.

Let \mathcal{B}_0 be the family of color class U such that $|U| \geq s + 1$.

Let R be the family of color class U such that |U| = s.

Let \mathcal{A} be the family of accessible color class in R, i.e., for any $U \in \mathcal{A}$, $U \in R$ and there is a path from U to some color class in \mathcal{A}_0 .

Let $\mathcal{B} = V(\mathcal{H}) \setminus \mathcal{A}$ and $\mathcal{D} = \emptyset$. Note that $\mathcal{B}_0 \subseteq \mathcal{B}$.

Let $A = \bigcup_{U \in \mathcal{A}} U$, $B = \bigcup_{U \in \mathcal{B}} U$, $D = \bigcup_{U \in \mathcal{D}} U$, $a = |\mathcal{A}|$ and $b = |\mathcal{B}|$.

Note that for any $y \in B$ and $U \in A$, $d_U(y) \ge 1$ and so $d_A(y) \ge a$.

Thus, for graph G'=G[B], we have $\theta(G')\leq 2r+1-2a=2b-1=2(b-1)+1.$

Then we will check some color class and do the following steps based on it. After each step, we will check A_0 and stop the algorithm if $A_0 = \emptyset$.

Step 1: Check the color classes in \mathcal{B}_0 .

• If there is some accessible color class $Y \in \mathcal{B}_0$, then we move the witness along the path from Y to some color class in \mathcal{A} .

- After taking care of all color classes in $\mathcal{B}_0 \cap \mathcal{A}$, we check the color class in \mathcal{A} . Assume $U \in \mathcal{A}$ is not accessible now.
 - If $U \in \mathcal{B}_0$, then move U to \mathcal{B} .
 - If U can be reached some color class in \mathcal{B}_0 , then move U to B.
 - Otherwise, add U to D.
- Update a and b.
- Otherwise go to step 2.

Note that after step 1, the size of all color classes in A is at most s.

Step 2: Check the color classes in $R \cap A$.

- If there is some color class $X \in R \cap \mathcal{A}$ such that X has a path to some color class $U \in \mathcal{A}_0$ with $|U| \leq s 2$, then we move the witness along the path from X to U.
- Check the colors classes in \mathcal{A} . If $U \in \mathcal{A}$ is not accessible anymore, then add U to D.
- Otherwise go to step 3.

This step to make each color class in A_0 as big as possible.

Step 3: Consider the vertices in $(A - D) \cup B$.

- 1. Let $\mathcal{M}(U)$ be the set of color classes in \mathcal{A} that is not accessible in $\mathcal{A}-U$.
 - (a) Check $|\mathcal{M}(U)|$ for all $U \in \mathcal{A} \mathcal{D}$.
 - (b) Find the color class $U \in \mathcal{A} \mathcal{D}$ such that $|\mathcal{M}(U)|$ is minimal and define $\mathcal{A}' = \mathcal{M}(U)$. Then the color class in \mathcal{A}' is terminal.
 - (c) Let $A' = \bigcup_{U \in \mathcal{A}'} U$ and $a' = |\mathcal{A}'|$. Then for any $x \in A'$, $d_A(x) \ge a a' 1$.
- 2. Find the special y and x such that
 - (a) $x \in S^y$, where S^y is the set of solo neighbors of y in A' D.
 - (b) Let $c_y=\max\{d_B(x)|x\in S^y\}$ and $c_y'=\{d_B(x)|x\in A'-D-S^y\}$. Then either $c_y\geq b$ or $c_y'\geq 2b+1$.
- Step 3.1: Check whether x is movable. Let U_x be the color class containing x. If x is movable to some color class $X \in \mathcal{A}$, then we move witness along the path in $\mathcal{A}-U_x$ from X+x to some color class in \mathcal{A}_0 and move y to U_x . Otherwise go to step 3.2.

Step 3.2: Check the vertices in B - y.

- 1. If there is some vertex $y' \in B y$ such that $x \in S^{y'}$ and $yy' \notin E(G)$, then we move the witness along the path from U_x to A_0 . Suppose the witness of U_x be w.
 - (a) If $U_x w$ is accessible to \mathcal{A}_0 , then we take x outside and move the witness along the path from $U_x w x + y + y'$ to \mathcal{A}_0 .
 - (b) If $U_x w$ is not accessible to \mathcal{A}_0 , then we take x outside and move y to U x.

Keeping checking until no such y' exists and then move x to B.

2. Otherwise take x out side, move y to U_x and then move x to B.

Now check the colors classes in $\mathcal A$ again. If $U\in\mathcal A$ is not accessible anymore, then add U to D.

Update A_0 , B_0 , B_0 , B_0 , B_0 , and B_0 . Repeat Step 1, 2 and 3 until $A_0 = \emptyset$.