Platin Privacy Protocol Private location verification with incentivization

in-progress

Vadym Fedyukovych https://platin.io/

June 1, 2018

Abstract

We design an interactive proof system for "location is close enough" statement, in the form of specification for further implementation.

1 Definitions

Node proves the statement "distance is within a threshold" (less or equal) for node coordinates (x_n, y_n, z_n) , given location (x_l, y_l, z_l) , and some threshold d (all integers):

$$d^{2} - ((x_{n} - x_{l})^{2} + (y_{n} - y_{l})^{2} + (z_{n} - z_{l})^{2}) = a_{1}^{2} + a_{2}^{2} + a_{3}^{2} + a_{4}^{2}$$
 (1)

We rely on 4-squares Lagrange theorem to prove equality statement (Lipmaa). Proofs for integer relations are possible in hidden group order setup (Camenisch-Stadler).

2 Proof setup

Let g be a generator of a proper group of a hidden order, and h be a group element (Pedersen commitment scheme). We use multiplicative group of invertible residue classes modulo a composite n such that n = pq, p = 2p' + 1, q = 2q' + 1 and p, q, p', q' primes (Idemix).

3 Signals harvesting

Node picks random (r_x, r_y, r_z) , creates commitment (s_x, s_y, s_z) to it's coordinates

$$s_x = g^{x_n} h^{r_x}, \qquad s_y = g^{y_n} h^{r_y}, \qquad s_z = g^{z_n} h^{r_z}$$
 (2)

and keeps coordinates-randoms pairs (x_n, y_n, z_n) , (r_x, r_y, r_z) private.

3.1 Representation-based commitment

Following U-Prove, consider commitment scheme resulting in a single group element:

$$s_U = g_x^{x_n} g_y^{y_n} g_z^{z_n} h^r (3)$$

where g_x, g_y, g_z are group elements, and r is a random. This scheme admits a proof of knowledge with the same responses required form threshold location verification. This scheme can be extended with additional components.

3.2 Two-level commitment

To achive expected properties of Merkle-tree based scheme while keeping an option to run location proof protocols, representationbased commitments could be leaves of Merkle tree.

4 Proof

Sigma-protocol with 3 messages. Public information is node location commitment, given location, threshold, proof parameters. Private information is node location and randomness to commitment.

1. Prover (node) picks random $\alpha_j, \beta_x, \beta_y, \beta_z, \rho_0, \rho_1, \eta_x, \eta_y, \eta_z$ and computes initial commitments b_0, b_1, t_x, t_y, t_z (f_0 and f_1 explained at Background section)

$$b_0 = g^{f_0} h^{\rho_0}, \qquad b_1 = g^{f_1} h^{\rho_1}$$
 (4)

$$t_x = g^{\beta_x} h^{\eta_x}, \qquad t_y = g^{\beta_y} h^{\eta_y}, \qquad t_z = g^{\beta_z} h^{\eta_z}$$
 (5)

2. Challenge c

3. Prover computes responses

$$X_n = cx_n + \beta_x, \quad Y_n = cy_n + \beta_y, \quad Z_n = cz_n + \beta_z$$
 (6)

$$R_x = cr_x + \eta_x$$
, $R_y = cr_y + \eta_y$, $R_z = cr_z + \eta_z$ (7)

$$A_j = ca_j + \alpha_j, \ j = 1..4 \tag{8}$$

$$R_a = c\rho_1 + \rho_0 \tag{9}$$

4. Proof verification

$$g^{c^2d - ((X_n - cx_l)^2 + (Y_n - cy_l)^2 + (Z_n - cz_l)^2) - (A_1^2 + A_2^2 + A_3^2 + A_4^2)} h^{R_a} = b_1^c b_0$$
(10)

$$g^{X_n}h^{R_x}s_x^{-c} = t_x, \quad g^{Y_n}h^{R_y}s_y^{-c} = t_y, \quad g^{Z_n}h^{R_z}s_z^{-c} = t_z$$
 (11)

5 Background

Consider quadratic (degree 2 in v) polynomial

$$f_V(v) = f_2 v^2 + f_1 v + f_0 =$$

$$v^2 d - (((vx_n + \beta_x) - vx_l)^2 + ((vy_n + \beta_y) - vy_l)^2 + ((vz_n + \beta_z) - vz_l)^2)$$

$$- ((va_1 + \alpha_1)^2 + (va_2 + \alpha_2)^2 + (va_3 + \alpha_3)^2 + (va_4 + \alpha_4)^2)$$
 (12)

This polynomial is actually linear ($f_2 = 0$, degree-one in v) if, and only if statement about distance (1) holds for node coordinates that are hidden from verifier. We evaluate this polynomial at a random point chosen as the challenge of verifier. It follows, distance verification equation (10) only needs constant b_0 and degree-one b_1^c components.

$$f_0 = -\beta_x^2 - \beta_y^2 - \beta_z^2 - \alpha_1^2 - \alpha_2^2 - \alpha_3^2 - \alpha_4^2$$
 (13)

$$f_1 = -2(x_n - x_l)\beta_x - 2(y_n - y_l)\beta_y - 2(z_n - z_l)\beta_z$$
$$-2a_1\alpha_1 - 2a_2\alpha_2 - 2a_3\alpha_3 - 2a_4\alpha_4 \quad (14)$$

Prover calculates b_0, b_1 from f_0, f_1 .

6 Not-at-location proof

Proving a negative location statement is a valid usecase, that could be demonstrated with "not at the grocery store" scenario. Rather that priving "distance is smaller than" (1), complementary "is larger" proof is given. In the following, we only show changes required to the main protocol.

$$((x_n - x_l)^2 + (y_n - y_l)^2 + (z_n - z_l)^2) - d^2 = a_1^2 + a_2^2 + a_3^2 + a_4^2$$
(15)
$$q^{((X_n - cx_l)^2 + (Y_n - cy_l)^2 + (Z_n - cz_l)^2) - c^2 d - (A_1^2 + A_2^2 + A_3^2 + A_4^2)} h^{R_a} = b_1^c b_0$$
(16)

$$f_V(v) = f_2 v^2 + f_1 v + f_0 =$$

$$(((vx_n + \beta_x) - vx_l)^2 + ((vy_n + \beta_y) - vy_l)^2 + ((vz_n + \beta_z) - vz_l)^2) - v^2 d$$

$$- ((va_1 + \alpha_1)^2 + (va_2 + \alpha_2)^2 + (va_3 + \alpha_3)^2 + (va_4 + \alpha_4)^2)$$
(17)

7 Logical-OR threshold location

Consider a franchise operating multiple stores, and a usecase of proving location is "at Starbucks" without telling which one of K known. We define each such store with it's center (x_k, y_k, z_k) and radius (size) d_k , $k \in [1..K]$. We elaborate basic threshold proof such that prover can produce 4-squares representation for center-size of some store k = p, and pick arbitrary 4-tuples for all other stores $k \neq p$.

$$\prod_{k=1} \left((d_k^2 - ((x_n - x_k)^2 + (y_n - y_k)^2 + (z_n - z_k)^2) - (a_{1,k}^2 + a_{2,k}^2 + a_{3,k}^2 + a_{4,k}^2) \right) = 0 \quad (18)$$

Verifier is testing that polynomial $f_{KV}(v)$ is of degree 2K-1, not 2K.

$$f_{KV}(v) = \sum_{j=0}^{2K} f_j v^j = \prod_{k=1}^{K} (v^2 d_k - (((vx_n + \beta_x) - vx_k)^2 + ((vy_n + \beta_y) - vy_k)^2 + ((vz_n + \beta_z) - vz_k)^2) - ((va_{1,k} + \alpha_1)^2 + (va_{2,k} + \alpha_2)^2 + (va_{3,k} + \alpha_3)^2 + (va_{4,k} + \alpha_4)^2))$$
(19)

8 Private incentivization

To engage users, verifier (map service) is giving tokens in exchange for verifying location proofs. To keep privacy of users, proof verification and token issuance are separated with intermediate tokens. Intermediate tokens should unlink locations that users were confirming.

Intermediate token is a Schnorr proof instance, non-interactive variant (Fiat-Shamir), in another group of a known prime order q

generated by g_i . Issuing (private) key x_i and public key X_i of map service.

A new blinded intermediate token is sent to user on each successful location verification. Users unblind their intermediate tokens and periodically exchange them for Platin tokens.

1. Issuer (map service) chooses random γ and sends \tilde{w} to Recipient

$$\tilde{w} = g_i^{\gamma} \tag{20}$$

2. Recipient (node) chooses random blinding (δ, μ) , produces blinded challenge \tilde{c}_i and sends it to Issuer

$$w = \tilde{w}g_i^{-\delta}X_i^{\mu} \tag{21}$$

$$\tilde{c}_i = H(w) + \mu \pmod{q} \tag{22}$$

3. Issuer produces blinded response \tilde{r}_i and sends it to Recipient

$$\tilde{r}_i = \tilde{c}_i x_i + \gamma \pmod{q}$$
 (23)

4. Recipient verifies validity of response received and unblinds challenge and response

$$\tilde{c}_i = H(g_i^{\tilde{r}_i} X_i^{-\tilde{c}_i}) \tag{24}$$

$$c_i = \tilde{c}_i - \mu \pmod{q} \tag{25}$$

$$r_i = \tilde{r}_i - \delta \pmod{q} \tag{26}$$

Intermediate token is (c_i, r_i) .

5. Intermediate token verification (while exchange for Platin tokens)

$$c_i = H(g_i^{r_i} X_i^{-c_i}) (27)$$

9 Intermediate token properties

Both components of intermediate token are statistically (unconditionally) independent from blinded intermediate token.

Consider an Adversary trying to distinguish two pairs of unblinded intermediate tokens (c_1, r_1) and (c_2, r_2) , matching them to issuing session identified with \tilde{w} . View of Issuer is $(\tilde{c}_i, \tilde{r}_i, c_j, r_j)$ for j = 1, 2.

$$g_i^{r_j} X_i^{-c_i} \stackrel{?}{=} \tilde{w} g_i^{-\delta_j} X_i^{\mu_j} = \tilde{w} g_i^{r_j - \tilde{r}_i} X_i^{\tilde{c}_i - c_j} = (\tilde{w} g_i^{-\tilde{r}_i} X_i^{\tilde{c}_i}) (g_i^{r_j} X_i^{-c_j}) \quad (28)$$

It could be seen that the only possible relation does not depend on issuing session identifier \tilde{w} , resulting in unconditional privacy for intermediate tokens.

10 Todo

"Trajectrories are close enough" proof

Introduce accumulator for a set of time-locations, as a feasible alternative for Merkle tree.

Specify ranges for random numbers.

Design enforcement for "just one single location at a time".

Add references (bibliography).