Algorithm Project 1

Description: Analysis for Lawnmower and Alternate algorithms. Submission for project 1>

Group Members:

Joseph Trujillo Sandoval (<u>joeysandoval@csu.fullerton.edu</u>) Melissa Huynh (melissahuynh26@csu.fullerton.edu)

Sort Alternate Disk Pseudocode:

```
def sort_alternate(const &<input obj>)
    numOfSwap = 0
    n = <count of input obj> / 2
    new obj after = <input obj> // create copy of obj

for i = 1 to n do
    for j = i to 2n-1 step 2
        if (<after[j] equals disk_dark AND after[j+1] equals disk_light>)
            swap(after[j])
            numOfSwap++

return <sorted disk after>
```

Sort Alternate Disk Step-count:

S.C =
$$(15n^2)/2 - 5n/2 + 4$$

Sort Alternate Disk Mathematical Analysis (Proof by Definition):

Sort Lawnmower Pseudocode:

Sort Lawnmower Step-count:

IUNIT	E oln ²)		
C=1	14 no=		
Igu td	£ 19n2		
	N ₀ =1		
10 69	2 19		
	19219	true by	def E o(n²)
		(0069	E o(n?)