

Vision par ordinateur du mouvement Projet Vidéo

Dr. Jean-Christophe CEXUS

ENSTA-Bretagne

Laboratoire STIC/REMS - LabSTICC UMR CNRS 6286

Jean-christophe.cexus@ensta-bretagne.fr

Bureau : E103

Janvier 2020

Planning du cours

Projet Vidéo:

Autour de la vidéo : vision par ordinateur du mouvement

- Introduction
- Projet vidéo
 - Etude d'un thème précis en groupe
 - Restitution :
 - Présentation type power-point
 - Présentation d'un démonstrateur (preuve de concept)

Estimation/suivi de pose – Modélisation 3D (Réalité virtuelle – Réalité augmentée)

[Vacchetti et al., 2003]

[Comport et al., 2008]

[Hugues et al., 2011]

[Plaenkers & Fua, 2003]

[Sudderthet al., 2004]

[Sidenbladhet al., 2000]

Projet vidéo 2020

Détection / suivi d'objets

[Viola and Jones, 2001]

[Okuma et al., 2004]

[Lehuger et al., 2007]

[Gengembre and Pérez, 2006]

[Pérezet al., 2002]

[Farah et al., 2009 (master II)]

Projet vidéo 2020

Recherche / résumé dans une vidéo

Film prétraité : extraction des points d'intérêts, caractérisation,

Requête: recherche d'un 'objet' (puis extension par suivi)

Résultat : recherche d'autres instances de l'objet dans le film (ou d'autres vidéos)

Résumés : extraction d'une ou plusieurs images clés par séquence

[Sivic et al., 2004] "VideoGoogle" at Oxford Visual Geometry Group

[Vermaak et al., 2002]

[N. Peyrard et al., 2005]

Post-traitements : élimination 'objets, stabilisation, ...

Outils: estimation du mouvement, suivi, synthèse de texture par l'exemple

Applications: restauration, corrections, effets spéciaux (resize, extraction, compresion, ...)

[Grossauer et al., 2006]

[Berthomier et al., 2014 (projet indus)]

[Wexlerb *et al.*, 2007]

[Rubinstein, Shamir et al., 2008]

Projet vidéo 2020

Post-traitements : analyse de gestes sportifs, analyse de la marche

Outils: estimation du mouvement, suivi, synthèse de texture par l'exemple Applications : vitesse, trajectoire par suivi, alignement de séquences,

CV Lab at EPFL with DartFish [Fua et al., 2003]

DARTFISH

Autres applications : larges spectres Autres capteurs (optroniques, médicale...)

Surveillance de zone (vidéo surveillance)

[Kilger *et al.*, 1992]

Domaine militaire (infra-rouge, radar)

Navigation robotique (AUV)

[Biswas et al., 2019]

Domaine météorologique

[Corpetti et al., 2001]

[Chen Z. et al., 2019]

Surveillance de feu

[Antoun et al., 2019]

e

Domaine médicale (scanner)

Poursuite automatique

(pistage)

Quelle information extraire?

Quantité d'information

[Crivelli et al., 2016]

Precision

Les grandes problématiques

DETECTION

Objectif: identifier dans chaque image les pixels appartenant à des objets mobiles (identiques).

- Continuité temporelle du mvt
- Mouvement de la caméra (ou pas)

ESTIMATION

Objectif : calculer le mouvement apparent (vitesse instantanée) de chaque pixel.

- Continuité temporelle
- Problématique des petits déplacement vs grands déplacements

POURSUITE (suivi)

Objectif: apparier certaines structures spatiales pour chaque couple d'images.

- Discontinuité temporelle
- Problématique des objets rigides vs objets non-rigides

Focus sur la détection

Détection du mouvement

- Détection de changement (recherche des singularités dans les séries temporelles)
- Problématique du fond (représentation, modélisation, histogramme)
- Des cas plus ou moins compliqué, complexité des algorithmes

- Camera mobile (modélisation du mvt de la caméra)
- Objets mobiles (son mvt) et déformables (ou pas)

Notions de Fond et d'objets

- Fond (Background): Scène fixe (mais pas forcément statique!)
- Objets (Foreground): Objets mobiles (mais pas en permanence!)

*

Fond

Notion & Concepts

- Traitement de séries temporelles (gradient temporelle, statistiques temporelles),
- Classification Foreground / Background (binarisation dans des espaces de représentation type HSV, YUV ...)
- Estimation robuste, non-stationnaire, modélisation du fond, problématique de régularisation (optimisation / bruit)
- Complexité: compromis coût de calcul (temps, mémoire), algorithmique,

Estimation du mouvement

- Mise en correspondance des pixels entre deux images (recalage)
- Quels éléments d'une image correspondent aux éléments de l'image suivante ?

[Odobez *et al*,1997]

Deux approches possibles

- Petits déplacements : méthodes différentielles basées sur l'analyse du mouvement apparent
- **Grands déplacements** : méthodes (très nombreuses) basées sur l'extraction de primitives (point d'intérêt, structures des objets connus ...) → Problématique avec la poursuite

Notions de mouvement apparent

• **Hypothèse :** malgré le mouvement, l'intensité lumineuse de l'objet reste constante

Notion & Concepts

- Équation de Contrainte du Mouvement Apparent (ECMA)
- Notion de base du flux optique (estimation dense)
- Estimation du mouvement dominant de la caméra si elle est en mouvement (pan, tilt, roll, zoom, ...)

$$I(x, y, t) = I(x + dx, y + dy, t + 1)$$

Poursuite – Suivi - Tracking

- Algorithme de suivi est généralement composé de deux étapes :
 - ➤ **Prédiction**: hypothèse initiale de localisation de l'objet basé sur un *modèle dynamique* (cinématique de l'objet, de la caméra)
 - ➤ **Détection** : localiser l'objet à partir d'observations extraites de l'images (modèle d'apparence) → mesure de (di)similarité
- Complexité algorithmiques, coût de calcul

Contexte

- Camera fixe ou mobile
- Mouvements des objets / Déformation des objets

Objectifs

• Suivre et localiser un objet défini initialement (comment ? manuellement ou non) en estimant dans chaque image le support spatial (lequel ?) englobant l'objet

Notion & Concepts

- Support spatial de l'objet : flexible, fidélité, complexité, **invariances, ...**
- Challenges du suivi vis-à-vis de la déformation, complexité du fond (variabilité, illumination, faible contraste), occultations, mouvement de la caméra (flou de bougé restauration)
- Notion de filtrage prédictif (filtre de Kalman ou filtre particulaire)

BdD challenge [VOT14].

[Jalal et al., 2012]

Mesure de similarité

- Les mesures de (di)similarité globale s'applique entre deux vecteurs **T** et **X** de même dimension **n**, dont l'un représente le modèle (**template**) de l'objet sous la forme (en général) d'une imagette rectangulaire, et l'autre une imagette extraite de l'image courante correspondant à une hypothèse de localisation.
- L'algorithme de détection consiste à parcourir un espace d'hypothèses de localisation $\{X^h\}_{h\in H}$ pour trouver celle qui minimise (ou maximise) la (di)similarité :

$$I = \arg\min D_k(T, X^h)$$

Exemple de la distance de Minkowski (min)

$$D_k(T,X) = \sum_{i \le n} |T_i - X_i|^k$$

- Sensible aux déformations, aux variations d'illuminations
- Facile à mettre en œuvre

Exemple du coefficient de corrélation normalisé (max)

$$D_k(T,X) = \frac{\sum_{i \leq n} (T_i - \widetilde{T}_i) ((X_i - \widetilde{X}_i))}{\sqrt{\sum_{i \leq n} (T_i - \widetilde{T}_i)^2} \sqrt{\sum_{i \leq n} (X_i - \widetilde{X}_i)^2}} \cdot$$

- Sensible aux déformations
- robuste aux variations d'illuminations

Focus sur la poursuite

Poursuite et recalage dans le cas de grands déplacements

Lorsque l'amplitude du déplacement est grande, l'estimation directe par les méthodes d'appariement ou les méthodes différentielles sont souvent vouées à l'échec principalement pour deux raisons :

- Le déplacement apparent peut être supérieur aux périodes spatiales présentes dans les images (aliasing temporel).
- La scène peut-être soumise à des déformations géométriques complexes qui invalident l'hypothèse de translation locale.

Conséquences:

- Il est important de disposer de descripteurs qui soit le plus invariants possible aux transformations géométriques : rotation, homothétie, transformation affine.
 - → Cela passe très souvent par un calcul *multi-échelle*.
- Les descripteurs fournis ont un caractère beaucoup moins local, voire global, et on ne dispose plus d'un champ dense (flot optique), mais au mieux d'un champ épars.

Méthodes:

- Transformation globale : méthodes fréquentielles (Transformée de Fourier)
- Appariement par descripteurs : points anguleux (intérêt, saillant...) Harris, SIFT ...

Descripteur SIFT: histogramme d'orientation

Le projet vidéo : Déroulement

- **Etude d'un thème précis avec une réalisation (démonstrateur)**
 - Tracking par Flot Optique (FO)
 Tracking par Mean-Shift (MS)
- Deux salles informatiques disponibles durant 3 créneaux de 4 heures
 - F016 : 16 étudiants → 4 groupes de 4 étudiants
 - F015 : 17 étudiants → 3 groupes de 4 étudiants et 1 groupes de 5

Dates	Horaire	Séquencement des 3 séances
Vendredi 24 janvier	08h10 - 12h15	Introduction – Constitution du groupe - Découverte du thème
Lundi 17 février	13h30 – 17h30	Poursuite de l'étude thématique
Jeudi 20 février	08h10 - 12h15	Finalisation – Restitution des groupes (ppt & démonstrateur)

Constitution des groupes de 4 étudiants : (mélange des différents cursus par groupe) (constitution des groupes avant la fin de la première séance avec le professeur)

Dans chaque salle

Groupe : thème	Etudiant 1	Etudiant 2	Etudiant 3	Etudiant 4	Etudiant 5
Groupe 1 : FO (1)	Joe (FIPA)	William (PSO)	Jack (ROB)	Averell (FIPA)	Luke (S-W)
Groupe 2 : MS (2)					-
Groupe 3 : FO (3)					-
■ Groupe 4 : MS (4)					-

Le projet vidéo : Objectifs pour chaque groupe

- ➢ Réalisation d'un support de type PowerPoint contenant les points suivants : (~10 à 15 planches)
 - Contexte et objectifs
 - Hypothèse(S) de travail (par exemple webcam fixe, ...)
 - Explications théoriques (un peu de mathématiques)
 - Présentation du démonstrateur : structures du programmes via un diagramme
 - Simulations et résultats : avantages et inconvénients
 - Conclusions vers quelques extensions ...
 - Références liens internet

Dépôt sous Moodle

20 février

dans la journée

- Démonstrateur (petit preuve de concept)
 - Implémentation en Python ou Matlab
 - Obligation de mise en œuvre d'une webcam (ou camera sur ordinateur)
 - Possible d'utiliser des bibliothèques se trouvant sur internet : citer vos sources
- > Restitution (~20 min) pour chaque groupe : jeudi 20 février
 - Présentation d'un groupe à un autre groupe : FO(i) → MS(i+1) puis MS(i+1) → FO(i) avec i=1 ou 3

Présentation : 10 min, Démonstrateur : 5 min, Questions/Réponses : 5 min

Dans les deux salles
JC.Cexus & A. Toumi

Gr. présente à Gr.		Début	Fin
FO(1)	MS(2)	11h10	11h30
FO(3)	MS(4)	11h10	11h30
MS(2)	FO(1)	11h40	12h00
MS(4)	FO(3)	11h40	12h00

Le suivi d'objet dans une vidéo : flot optique

Le calcul d'un mouvement apparent global (mise en correspondance) entre deux images correspond à l'estimation des paramètres d'une transformation affectant tous les points de l'image : translation, rotation, homothétie, affinité

Le calcul du mouvement apparent local consiste à associer à chaque pixel (x, y, t) de I un vecteur ($v_x(t)$, $v_y(t)$) représentant la vitesse apparente du pixel (x,y) à l'instant t.

→ Calcul du flot optique (= Champ de mouvement apparent / Appariement local des points)

Flot optique

- Champ dense de vitesse décrivant le mouvement apparent des motifs d'intensités de l'image sous l'hypothèse d'illumination constante et de petits mouvements.
- Problème inverse mal posé? Estimation des caractéristiques physiques de l'environnement à partir d'informations ne permettant que de les retrouver partiellement
- Nécessaire d'utiliser des information complémentaire (a priori) : régularisation spatiale et temporelle

Deux approches basées sur les variations temporelles de I(x, y, t)

- Flot optique approche de Lucas-Kanade (1981)
- Flot optique approche de Horn-Schunk (1981)

gradient tempore

→ Application à la poursuite

≥ Le suivi d'objet dans une vidéo : Mean-Shift

Formulation du suivi entre deux images est basée sur la recherche des paramètres de déformation permettant de conserver les descripteurs de la région (de l'objet) d'une image à une autre : principe des mesures de (di)similarité, filtrage particulaire ou encore des approches basées sur le Mean-Shift ...

Mean-Shift

- L'objet (la région) définie par une ellipse (un noyaux).
- Description de la région basée sur un histogramme (des couleurs)
- Principe de base : les paramètres de l'ellipse étant connus à l'instant t, il s'agit de trouver les paramètres à t+1 de telle manière à minimiser les distances entre les histogrammes

$$I = \arg\min B(H(X, I_t), H(X^h, I_{t+1}))$$

• Avec **B**(.,.) classiquement la distance (ou index) de Bhattacharyya permettant de mesurer **la similarité entre deux distributions** (ici des histogrammes normalisés).

Avantages / inconvénients :

- Robuste à tout type de déformation
- Sensible aux variations d'illumination
- Peu discriminant sur le plan géométrique

[Comaniciu et al., 2003]

→ Application à la poursuite

Projet vidéo

Le projet vidéo : si nous avions à évaluer l'étude – Théoriquement

Formulation et modélisation du problème traité

- ➤ A. Formule le problème à travers un modèle dont toutes les hypothèses sont clairement définies.
- **B.** Formule le problème à travers un modèle dont la plupart des hypothèses sont spécifiées.
- C. Introduit le modèle mathématique associé au problème traité
- > **D.** Le lien entre le problème traité et le modèle considéré est confus

Méthodes de résolution du problème traité

- A. Explique les points-clés associés à la résolution théorique du problème
- B. Fournit des éléments d'explication sur la résolution théorique du problème
- C. Décrit la solution théorique de résolution du problème
- > **D.** Ne fournit pas d'éléments théoriques sur la résolution du problème
- Un challenge entre les différents groupes travaillant sur le même thème !

Le projet vidéo : si nous avions à évaluer l'étude – Expérimentalement

Mise en œuvre algorithmique

- ➤ A. Etablit et explique les liens entre le modèle considéré et sa mise en œuvre algorithmique, y compris vis-à-vis des hypothèses-clés du modèle et d'autres algorithmes classiques
- ➤ B. Décrit correctement la mise en œuvre algorithmique et repère les liens entre le modèle considéré et les principales étapes algorithmiques
- C. Décrit correctement l'algorithme proposé pour résoudre le problème traité
- D. Ne décrit pas un algorithme permettant de résoudre le problème de traité

Evaluation expérimentale

- ➤ A. Synthétise l'évaluation expérimentale réalisée et en fournit une analyse critique vis-à-vis de différents modèles et/ou solutions algorithmiques
- **B.** Synthétise l'évaluation expérimentale réalisée (plan d'expérience, critère d'évaluation)
- C. Fournit des éléments d'évaluation expérimentale de la méthode proposée
- > **D.** Ne décrit pas un algorithme permettant de résoudre le problème de traité

Quelques éléments de bibliographie

Bibliographie - Détection

A. Elgammal, et al.

Non-parametric Model for Background Substruction Proc. of ICCV '99 FRAME-RATE Workshop (1999)

C. Stauffer & C. Grimson Learning patterns of activity using real-time tracking. IEEE Trans. on PAMI 22(8), 747-757. (2000)

P. Power & J. Schonees Understanding background mixture models for foreground segmentation.

Imaging and Vision Computing New Zealand, Auckland (2002)

B.D. Lucas & T. Kanade

An iterative image registration technique with an application to stereo vision International Journal of Computer Vision and Artificial, Intelligence 674-679 (1981)

B.K.P Horn & B. Schunck **Determining Optical Flow »** Artificial Intelligence 23, 185-203 (1981) Bibliographie - Suivi

A.S. Jalal & V. Singh The State-of-the-Art in Visual Object Tracking Informatica 36 (2012) 227-248

M. Kristan et al. The Visual Object Tracking VOT2014 challenge results Visual Object Tracking Workshop 2014, 2014

G. Welsh & G. Bishop An Introduction to the Kalman Filter Tutorial of ACM SIGGRAPH (2001)

> D Comaniciu, V. Ramesh & P. Meer Kernel-based object tracking Pattern Analysis and Machine Intelligence, 25(5), 564-575 (2003)

http://petercorke.com/wordpress/books/book

D.H. Ballard & C.M Brown Computer Vision, Prentice Hall (1982) R. Jain, et al. Machine Vision, McGraw-Hill Inc. (1995)

2020