HOMEWORK 2

SAI SIVAKUMAR

Define, for $n \in \mathbb{N}$, the functions $f_n : [0,1] \to \mathbb{R}$ by $f_n(t) = t^n$.

(1) Note $f_n \in C([0,1])$. Does the sequence (f_n) converge in the metric space $(C([0,1]), d_2)$, where, for $g, h \in C([0,1])$,

$$d_2(g,h) = \left[\int_0^1 |g-h|^2 dt \right]^{\frac{1}{2}}$$
?

Prove or disprove.

(2) Let $V = (B([0,1], \|\cdot\|_{\infty}))$ denote the normed vector space of bounded real-valued functions on [0,1] with the norm defined, for $g \in B([0,1])$, by

$$||g||_{\infty} = \sup\{|g(x)| : x \in [0,1]\}.$$

Does the sequence (f_n) converge to 0 in V? Prove or disprove.

Proof. Let $f_n \in C([0,1])$ be given by $f_n(t) = t^n$ for each $n \in \mathbb{N}$.

(1) In the metric space $(C([0,1]), d_2)$, the sequence (f_n) converges to the zero function. We have

$$d_2(f_n, 0) = \left[\int_0^1 |t^n - 0|^2 dt \right]^{\frac{1}{2}}$$
$$= \left[\int_0^1 t^{2n} dt \right]^{\frac{1}{2}}$$
$$= \frac{1}{\sqrt{2n+1}}.$$

Because the square root is monotonically increasing and not bounded above on $[0, \infty]$, we have that the sequence $(d_2(f_n, 0))$ converges to 0 in \mathbb{R} . Hence (f_n) converges to the zero function in $(C([0, 1]), d_2)$.

(2) With $V = (B([0,1], \|\cdot\|_{\infty}))$, let d_{∞} be the metric on B([0,1]) induced by the norm $\|\cdot\|_{\infty}$. It follows that the sequence (f_n) does not converge to 0 in V. We have

$$d_{\infty}(f_n, 0) = ||f_n - 0|| = \sup\{|f_n(x) - 0| \colon x \in [0, 1]\}$$
$$= \sup\{x^n \colon x \in [0, 1]\}$$
$$= 1,$$

where for every $n \in \mathbb{N}$, because f_n is bounded above by 1 and takes on 1 at x = 1, the supremum is always 1. Since the sequence $(1)_{n \in \mathbb{N}}$ does not converge to 0 in \mathbb{R} , it follows that the sequence (f_n) does not converge to 0 in V.