Inhaltsverzeichnis

1	Kon	nplexe Zahlen	2
	1.1	Definition	2
	1.2	Veranschaulichung	3
	1.3	Rechenregeln in \mathbb{C}	3
	1.4	Definition Absolutbetrag	4
	1.5	Rechenreglen für den Absolutbetrag	4
	1.6	· · · · · · · · · · · · · · · · · · ·	5
	1.7	Additionstheoreme der Trigonometrie	6
	1.8	geometrische Interpretation der Multiplikation	6
	1.9		6
	1.10		7
	1.11	•	7
		Bemerkung	7
2	Folg	,	7
	2.1		7
	2.2	1	8
	2.3		8
	2.4		9
	2.5	Beispiele	9
	2.6	Satz: Beschränktheit und Konvergenz	0
	2.7	Bemerkung	0
	2.8	Satz (Rechenregeln für konvergente Folgen)	0
	2.9	Satz: Kriterien für Nullfolgen	1
	2.10	Bemerkung	2
	2.11		2
	2.12	Satz: Landausymbole bei Polynomen	3
	2.13	Bemerkung	13
			13
	2.15	Beispiel	3
		•	3
			4
		,	4
			5
			5
			7
		,	7
			17
		1	17
			17
			8
		·	9
			19
		1	9
			9
		Satz: Konvergenz im Cauchy Produkt	

1 KOMPLEXE ZAHLEN

3	Pote	enzreihen	2 0
	3.1	Definition	20
	3.2	Beispiel	20
	3.3	Satz	20
	3.4	Bemerkung	21
	3.5	Die Exponentialreihe	22
4	Ree	lle Funktionen und Grenzwerte von Funktionen	23
	4.1	Definition	24
	4.2	Beispiel	24
	4.3	Definition	26
	4.4	Beispiel	26
	4.5	Definition	26
	4.6	Beispiel	27
	4.7	Satz $(\varepsilon - \delta)$ -Kriterium	29
	4.8	Satz (Rechenregeln für Grenzwerte)	30
	4.9	Beispiel	31
	4.10	Bemerkung	31
	4.11	Beispiel	31
	4.12	Definition	32
	4.13	Beispiel	32
	4.14	Bemerkung	32
	4.15	Definition	32
	4.16	Satz: Grenzwerte gegen unendlich	33
	4.17	Beispiel	34

1 Komplexe Zahlen

1.1 Definition

```
Menge der komplexen Zahlen \mathbb{C} = \{a+bi: a,b \in \mathbb{R}\}

<u>Addition:</u>(a+bi)+(c+di)=(a+c)+(b+d)i

<u>Multiplikation:</u>(a+bi)\cdot(c+di)=(ac-bd)+(ad+bc)i

(Ausmultiplizieren und i^2=-1 beachten)

\mathbb{R} \subset \mathbb{C}

a \in \mathbb{R}: a+0 \cdot i=a

Rein imaginäre Zahlen: bi,b \in \mathbb{R}, (0+bi)

i <u>imaginäre Einheit</u>

z=a+bi \in \mathbb{C}

a=\Re(z) Realteil von z(Re(z))

b=\Im(z) Imaginärteil von z(Im(z))

\bar{z}=a-bi(=a+(-b)i)

Die zu z konjugiert komplexe Zahl
```

1.2 Veranschaulichung

Addition entspricht Vektoraddition

Rechenregeln in \mathbb{C} 1.3

a) Es gelten alle Rechenregeln wie in \mathbb{R} . (z.B Kommutativität bzgl. $+, \cdot : z_1 + z_2 = z_2 + z_1$ und $z_1 \cdot z_2 = z_2 \cdot z_1$

$$z_1 \cdot z_2 = z_2 \cdot z_1$$

b) $z, z_1, z_2 \in \mathbb{C}$:

$$\begin{split} \frac{\bar{z}}{z_1+z_2} &= z\\ \overline{z_1+z_2} &= \bar{z_1} + \bar{z_2}\\ \overline{z_1\cdot z_2} &= \bar{z_1}\cdot \bar{z_2} \end{split}$$

1.4 Definition Absolutbetrag

a) Absolutbetrag von $z = a + bi\mathbb{C}$:

$$|z| = + \underbrace{\sqrt{a^2 + b^2}}_{\in \mathbb{R}, \geq 0}$$

$$|a^2 + b^2 = z \cdot \overline{z}| |z| = + \sqrt{z \cdot \overline{z}}$$

$$|a + bi| \cdot (a - bi) = (a^2 + b^2) + 0i = a^2 + b^2$$

$$|z| = Abstand von z zu 0$$

$$= Länge des Vektors, der z entspricht$$

b) Abstand von $z_1, z_2 \in \mathbb{C}$: $d(z_1, z_2) := |z_1 - z_2|$

1.5 Rechenreglen für den Absolutbetrag

 $z, z_1, z_2 \in \mathbb{C}$

- a) $|z| = 0 \Leftrightarrow z = 0$
- b) $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$
- c) $|z_1 + z_2| \le |z_1| + |z_2|$ $||z_1| - |z_2|| \le |z_1 - z_2| \le |z_1| + |z_2|$ |-z| = |z|

1.6 Darstellung durch Polarkoordinaten

a) Jeder Punkt $\neq (0,0)$ lässt sich durch seine Polarkoordinaten (r,φ) beschreiben:

$$-r \ge 0, r \in \mathbb{R}$$

 $0 \le \varphi \le 2\pi$, wird gemessen von der positiven x-Achse entgegen des Uhrzeigersinnes

Umfang: 2π

 φ in Grad $\hat{=}\frac{2\pi\cdot\varphi}{360}$ im Bogenmaß

Für Punkte mit kartesischen Koordinaten $\neq (0,0)$ werden als Polarkoordinate (r,φ) verwendet.

b) komplexe Zahl z = a + ib

$$r = |z| = +\sqrt{a^2 + b^2}$$

$$a = |z| \cdot \cos(\varphi)$$

$$b = |z| \cdot \sin(\varphi)$$

$$z = |z| \cdot \cos(\varphi) + i \cdot |z| \cdot \sin(\varphi)$$

$$z = |z|(\cos(\varphi) + i \cdot \sin(\varphi))$$

Darstellung von z durch Polarkoordinate

Beispiel:

a)
$$z_1 = 2 \cdot (\cos(\frac{\pi}{4}) + i \cdot \sin(\frac{\pi}{4}))$$

= $2 \cdot (0, 5\sqrt{2} + i \cdot 0.5\sqrt{2})$

b)
$$z_2 = 2 + i$$

 $|z_2| = \sqrt{5}$
 $z_2 = \sqrt{5} \cdot (\frac{2}{\sqrt{5} + \frac{1}{\sqrt{5}}}i)$ Suche φ mit $0 \le 2\pi$ mit $\cos(\varphi) = \frac{2}{\sqrt{5}}, \sin(\frac{1}{\sqrt{5}}z_2 \approx \sqrt{5} \cdot (\cos(0, 46) + i \cdot \sin(0, 46))$

c) Die komplexen Zahlen von Betrag 1 entsprechen den Punkten auf Einheitskreis: $\cos(\varphi) + i\sin(\varphi), 0 \le \varphi \le 2\pi$

1.7 Additionstheoreme der Trigonometrie

- a) $\sin(\varphi + \psi) = \sin(\varphi) \cdot \cos(\psi) + \cos(\varphi) \cdot \sin(\psi)$
- b) $\cos(\varphi + \psi) = \cos(\varphi) \cdot \cos(\psi) \sin(\varphi) \cdot \sin(\varphi) \cdot \sin(\psi)$

1.8 geometrische Interpretation der Multiplikation

a)
$$w = |w| \cdot (\cos(\varphi) + i \cdot \sin(\varphi))$$

 $z = |z| \cdot (\cos(\psi) + i \cdot \sin(\psi))$
 $w \cdot z = |w| \cdot |z| \cdot (\cos(\varphi) \cdot \cos(\psi) - \sin(\varphi) \cdot \sin(\psi)) + i(\sin(\varphi) \cdot \cos(\psi) + \cos(\varphi) \cdot \sin(\psi))$
 $w \cdot z = |w \cdot z|(\cos(\varphi + \psi) + i \cdot \sin(\varphi + \psi))$

b)
$$z = i, w = a + ib$$

 $i \cdot w = -b \cdot ia$
Multiplikation mit i $\hat{=}$ Drehung um 90°

1.9 Bemerkung und Definition

Wir werden später die komplexe Exponentialfunktion einführen. e^z für alle $z \in \mathbb{C}$ e = Euler'sche Zahl $\approx 2,718718...$ $e^{z_1} = cde^{z_2} = e^{z_1 + z_2}, e^{-z} = \frac{1}{e^z}$ Es gilt: $t \in \mathbb{R} : e^{it} = \cos(t) + i \cdot \sin(t)$

Jede komplexe Zahl lässt sich schreiben $z=r\cdot e^{i\cdot \varphi}, r=|z|, \varphi$ Winkel $r \cdot (\cos(\varphi) + i\sin(\varphi))$ ist Polarform von z.

z = a + bi ist kartesische Form von z. $\bullet(r, \varphi)$ Polarkoordinaten

$$\begin{array}{l} |e^{i\varphi}|=+\sqrt{\cos^2(\varphi)+\sin^2(\varphi)}=1\\ e^{i\varphi}, 0\leq\varphi\leq 2\pi, \text{ Punkte auf dem Einheitskreis.}\\ e^{i\pi}=-1\\ \hline{e^{i\pi}+1=0} \text{ Euler'sche Gleichung} \end{array}$$

1.10 Satz

Sei $w = |w| \cdot (\cos(\varphi) + i \cdot \sin(\varphi)) \in \mathbb{C}$

- a) Ist $m \in \mathbb{Z}$, so ist $w^m = |w|^m \cdot (\cos(m \cdot \varphi) + i \cdot \sin(m \cdot \varphi))$ $(m < 0 : w^m = \frac{1}{w^{|m|}}), w \neq 0$
- b) Quadratwurzeln
- c) Ist $n \in \mathbb{N}, w \neq 0$, so gibt es genau n n-te Wurzeln von w: $\sqrt[n]{w} = + \sqrt[n]{|w|} \cdot \left(\cos(\frac{\varphi}{n} + \frac{2\pi \cdot k}{n}) + i\sin(\frac{\varphi}{n} + \frac{2\pi \cdot k}{n})\right), n \in \mathbb{N}, k \in \{0, \dots, n-1\}$

Beweis. a) richtig, wenn m = 0, 1 $m \ge 2$. Folgt aus (\star) m = -a: $w^{-1} = \frac{1}{w} = \frac{1}{|w|^2 \cdot (\cos^2(\varphi) + i \cdot \sin^2(\varphi))} \cdot |w| \cdot \cos(\varphi) - \sin(\varphi)$ $= \frac{1}{w} = \frac{1}{midw| \cdot (\cos^2(\varphi) + i \cdot \sin^2(\varphi))} \cdot |w| \cdot \cos(\varphi) - \sin(\varphi)$ $= \frac{1}{|w|} \cdot (\cos(-\varphi + i \cdot \sin(-\varphi)) = |w|^{-1} \cdot (\cos(-\varphi) + \sin(-\varphi))$

1.11 Beispiel

Quadratwurzel aus i:

$$|i| = 1$$

Nach 1.10 b):
$$\sqrt{i} = \pm(\cos(\frac{\pi}{4} + i \cdot \sin(\frac{\pi}{4})))$$

= $\pm(\frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}i)$

1.12 Bemerkung

Nach 1.10 hat jedes Polynom

$$x^n - w \ (w \in \mathbb{C})$$

eine Nullstelle in \mathbb{C} (sogar n verschiedene wenn $w \neq 0$)

Es gilt sogar : Fundamentalsatz der Algebra

(C. F. Gauß1777-1855)

Jedes Polynom $a_n x^n + \ldots + a_0$

mit irgendwelchen Koeffizienten: $a_n \dots a_0 \in \mathbb{C}$ hat Nullstelle in \mathbb{C}

2 Folgen und Reihen

2.1 Definition

Sei
$$k \in \mathbb{Z}$$
, $A_k := \{m \in \mathbb{Z} : m > k\}$
 $(k = 0A_0 \in \mathbb{N}_0, k = 1, A_n \in \mathbb{N})$
Abbildung $a : A \Rightarrow \mathbb{R}(\text{oder }\mathbb{C})$
 $m \Rightarrow a_n$
heißt Folge reeller Zahlen
 $(a_k, a_{k-1} \dots)$

Schreibweise:

 $(a_m)_{m>k}$ oder einfach (a_m) a_m heißt <u>m-tes Glied</u> der Folge, m <u>Index</u>

2.2 Beispiel

b)
$$a_n = n$$
 für alle $n > 1$
(1,2,3,4,5,6,7,8,9,10,...)

c)
$$a_n = \frac{1}{n}$$

 $(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots)$

d)
$$a_n \frac{(n+1)^2}{2^n}$$
 $(2, \frac{9}{4}, 2, \frac{25}{16}, \ldots)$

e)
$$a_n = (-1)^n$$

 $(-1, 1, -1, 1, -1, 1, \ldots)$

f)
$$a_n = \frac{1}{2}a_{n_1} = \frac{1}{a_{n-1}}$$
 für $n \ge 2, a_1 = 1$ $(1, \frac{3}{2}, \frac{17}{12}, \ldots)$

g)
$$a_n = \sum_{i=1}^n \frac{1}{i}$$

 $(1, \frac{3}{2}, \frac{11}{6}, \dots)$

h)
$$a_n = \sum_{i=1}^n (-1)^i \cdot \frac{1}{i}$$

 $(-1, \frac{-1}{2}, -\frac{-5}{6}, \dots)$

2.3 Definition

Eine Folge $(a_n)_{n>k}$ heißt beschränkt, wenn die Menge der Folgenglieder beschränkt ist. D.h. $\exists D > 0 : -D \le a_n \le D$ für alle n > k.

2.4 Definition

Eine Folge $(a_n)_{n\geq k}$ heißt konvergent gegen $\varepsilon\in\mathbb{R}$ (konvergent gegen ε), falls gilt: $\forall \varepsilon>0 \exists n(\varepsilon)\in\mathbb{N} \forall n\geq n(\varepsilon): |a_n-c|<\varepsilon$ $c=\lim_{n\to\infty}a_n$ (oder einfach $c=\lim a_n$) c heißt Grenzwert (oder Limes) der Folge (a_n) (Grenzwert hängt nicht von endlich vielen Anfangsgliedern ab (der Folge)) Eine Folge die gegen 0 konvertiert, heißt Nullfolge

2.5 Beispiele

a)
$$r \in \mathbb{R} : a_n = r$$
 für alle $n \ge 1$

$$(r, r, \dots)$$

$$\lim_{n \to \infty} = r$$

$$|a_n - r| = 0$$
 für alle n
Für jedes $\varepsilon > 0$ kann man $n(\varepsilon) = 1$ wählen

b)
$$a_n = n$$
 für alle $n \ge 1$
Folge ist nicht beschränkt, konvergiert nicht.

c)
$$a_n = \frac{1}{n}$$
 für alle $n \ge 1$ (a_n) ist Nullfolge.
Sei $\varepsilon > 0$ beliebig. Suche Index $n(\varepsilon)$ mit $|a_n - o| < \varepsilon$ für alle $n \ge n(\varepsilon)$ D.s. es muss gelten. $\frac{1}{n} < \varepsilon$ für alle $n \ge n(\varepsilon)$ Ich brauche : $\frac{1}{n(\varepsilon)} < \varepsilon$ Ich brauche $n(\varepsilon) > \frac{1}{\varepsilon}$ Aus Mathe I folgt, dass solch ein $n(\varepsilon)$ existiert. z.B $n(\varepsilon) - \lceil \frac{1}{2} \rceil + 1 > \frac{1}{\varepsilon}$ Dann: $|a_n - 0| < \frac{1}{n} < \varepsilon$ für alle $n \ge n(\varepsilon)$

d)
$$a_n = \frac{3n^2+1}{n^2+n+1}$$
 für lle $n \ge 1$
Behauptung: $\lim_{n \to \infty} a_n = 3$
 $|a-3| = |\frac{3n^2+1}{n^2+n+1} - 3| = |\frac{3n^2+1-3(n^2+n+1)}{n^2+n+1}|$
 $= |\frac{-3n-2}{n^2+n+1}| = \frac{3n+2}{n^2+n+1}$
Sei $\varepsilon > 0$. Benötigt wird $n(\varepsilon) \in \mathbb{N}$ mit $\frac{3n+2}{n^2+n+1} < \varepsilon$ für alle $n > n(\varepsilon)$.
 $\frac{3n+2}{n^2+n+1} \le \frac{5n}{n^2} = \frac{5}{n}$
Wähle $n(\varepsilon)$ so, dass $n(\varepsilon) > \frac{5}{\varepsilon}$
Dann gilt für alle $n \ge n(\varepsilon)$.
 $|a_n - 3| = \frac{3n+2}{n^2+n+1} \le \frac{5}{n} \le \frac{5}{n(\varepsilon)} < \frac{5\varepsilon}{5} = \varepsilon$
Für alle $n \ge n(\varepsilon)$

e)
$$a_n = (-1)^n$$
 beschränkte Folge $-1 \le a \le 1$ konvergiert nicht. Sei $c \in \mathbb{R}$ beliebig, Wähle $\varepsilon = \frac{1}{2}$

2.6 Satz

Jede konvergente Folge ist beschränkt. (Umkehrung nicht: 2.5_{e_1})

Beweis. Sei $c = \lim a_n$, wähle $\varepsilon = 1$, Es existiert $n(1) \in \mathbb{N}$ mit $|a_n - c| < 1$ für alle $n \ge n(1)$ Dann ist $|a_n| = |a_n - c + c| \le |a_n - c| + |c| < 1 + |c|$ für alle $n \ge n(1)$ $M = \max\{|a_k|, |a_{k+1}|, \dots, |a_{n(1)-1}|, 1 + |c|\}$ Dann: $|a_n| \le M$ für alle $n \ge k$ $-M \le a_n \le M$

2.7 Bemerkung

- a) $(a_n)_{n>1}$ Nullfolge $\Leftrightarrow (|a_n|)_{n>1}$ Nullfolge $(|a_n-0|=|a_n|-||a_n|-0|)$
- b) $\lim_{n\to\infty} a_n = c \Leftrightarrow (a_n c)_{n\geq k}$ ist Nullfolge $\Leftrightarrow (|a_n c|)_{n\geq k}$ ist Nullfolge

2.8 Satz (Rechenregeln für konvergente Folgen)

Seien $(a_n)_{n\geq k}$ und $(b_n)_{n\geq k}$ konvergente Folgen, $\lim a_n=c, \lim b_n=d$.

- a) $\lim |a_n| = |c|$
- b) $\lim(a_n \pm b_n) = c \pm d$
- c) $\lim(a_n \cdot b_n) = c \cdot d$ insbesondere $\lim(r \cdot b_n) = r \cdot \lim b_n = r \cdot d$ für jedes $r \in \mathbb{R}$.
- d) Ist $b_n \neq 0$ für alle $n \geq k$ und ist $d \neq 0$, so $\lim_{n \to \infty} \left(\frac{a_n}{k_n}\right) = \frac{c}{d}$
- e) Ist (b_n) Nullfolge, $b_n \neq 0$ für alle $n \geq k$, so konvergiert $(\frac{1}{b_n} \text{ <u>nicht!})$.</u>
- f) Existiert $m \ge k$ mit $a_n \le b_n$ für alle $n \ge m$, so ist $c \le d$.
- g) Ist $(c_n)_{n\geq k}$ Folge und existiert $m\geq k$ mit $0\leq c_n\leq a_n$ für alle $n\geq m$ und ist (a_n) eine Nullfolge, so ist auch (c_n) eine Nullfolge.
- h) Ist $(c_n)_{n\geq l}$ beschränkte Folge und ist $(a_n)_{n\geq k}$ Nullfolge, so ist auch $(c_n\cdot a_n)_{n\geq k}$ Nullfolge. c_n muss nicht konvergieren!

Beweis. Exemplarisch:

- b) Sei $\varepsilon > 0$. Dann existiert $n_1(\frac{\varepsilon}{2})$ und $n_2(\frac{\varepsilon}{2})$ und $|a_n c| < \frac{\varepsilon}{2}$ für alle $n \ge n_1(\frac{\varepsilon}{2})$ $|b_n d| < \frac{\varepsilon}{2}$ für alle $n \ge n_2(\frac{\varepsilon}{2})$ Suche $n(\varepsilon) = \max(n_1(\frac{\varepsilon}{2}, n_2(\frac{\varepsilon}{2}))$ Dann gilt für alle $n > n(\varepsilon)$: $|a_n + b_n (c + d)| = |(a_n c) + (b_n d)| \le |a_n c| + |b_n d| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$
- f) Angenommen c>d. Setze $\delta=c-d>0$ Es existiert $\tilde{\mathbf{m}}\geq m$ mit $|c-a_n|<\frac{\delta}{2}$ und $|b_n-d|<\frac{\delta}{2}$ für alle $n\geq \tilde{\mathbf{m}}$. Für diese n gilt: $0<\delta\leq \delta+b_n-a_n=c-d+b_n-a_n\geq 0 \text{ nach Voraussetzung}$ $=|c-a_n-d+b_n|\leq |c-a_n|+|d-b_n|$ $\leq \frac{\delta}{2}+\frac{\delta}{2}=\delta \frac{d}{2}$

2.9 Satz

- a) $0 \le q \le 1$ Dann ist $(q^n)_{n>1}$ Nullfolge
- b) Ist $m \in \mathbb{N}$, so ist $((\frac{1}{n^m})_{n \geq 1}$ Nullfolge.
- c) Sei $0 \le q < 1, m \in \mathbb{N}$ Dann ist $(n^m \cdot q^n)_{n \ge 1}$ Nullfolge
- d) Ist $r>1, m\in\mathbb{N},$ so ist $(\frac{n^m}{r^n})_{r>1}$ eine Nullfolge
- e) $P(x) = a_m \cdot x^m + \dots a_0, a_i \in \mathbb{R}, a_m \neq 0$ $Q(x) = b_e \cdot x^e + \dots b_0, b_i \in \mathbb{R}, b_e \neq 0$ Sei $Q(n) \neq 0$ für alle $n \geq k$.
 - Ist m > e, so ist $\frac{P(n)}{Q(n)}$ nicht konvergent
 - Ist m=e, so ist $\lim_{n\to\infty}\frac{P(n)}{Q(n)}=\frac{a_m}{b_e}=\frac{a_m}{b_m}$
 - Ist m < l, so $\operatorname{ist}(\frac{P(n)}{Q(n)})$ ein Nullfolge
- a) Sei $0 \leq q \leq 1$ Dann ist $(q^n)_{n \geq}$ eine Nullfolge

Beweis. a) Richtig für q>0. Sei jetzt q>0. Sei $\varepsilon>0$. Mathe I: Es gibt ein $n(\varepsilon)\in\mathbb{N}$ mit $q^{n(\varepsilon)}<\varepsilon$. Für alle $n\geq n(\varepsilon)$ gilt: $|q^n-o|=q^n< q^{n(\varepsilon)}<\varepsilon$.

- b) 2.5.c): $\frac{1}{n} \ge 1$ Nullfolge Beh. folgt mit 2.8.c)
- c) Richtig für q = 0. Sei jetzt q > 0. $\underbrace{1.\text{Fall}:}_{q} \text{ m} = 1$ $\underbrace{\frac{1}{q} = 1 + t, t > 0}_{q}.$

$$(t+1)^n \underbrace{ = 1 + nt + \frac{n(n+1)}{2}t^2 > \frac{n(n-1)}{2}t^2 \text{ für alle } n \geq 2}_{Binomialsatz} q^n = \frac{1}{(1+t)^n} < \frac{2}{n(n-1)t^2}$$
 $0 \leq n \cdot q^n < \frac{2}{(n-1)t^2} \Leftarrow \text{ Nullfolge } 2.5\text{e}), 2.8\text{e})$ Nach 2.9g) ist $(n \cdot q^n)_{n \geq q}$ Nullfolge, also auch $(n \cdot q^n)_{n \geq 1}$. Setze $0 < q' = \sqrt[n]{q} \in \mathbb{R}$ $n^m \cdot q^n = n^m \cdot (q')^n)^m)^n = (n \cdot (q')^n)^m)^n = (n \cdot (q')^n)^m)^n = 1$ anwenden $0 < q' < 1$ $(n^m + q^n)_{n \geq 1}$ Nullfolge noch Fall $m = 1$ und 2.8e)

d) Folgt aus c) und $q = \frac{1}{r}$

e) Ist
$$m \leq l$$
, so ist $\frac{P(n)}{Q(n)} = \frac{n^m (a_m + a_{m-1} \cdot \frac{1}{n} + \dots + a_1 \cdot \frac{1}{n^m - 1} + a_0 \cdot \frac{1}{n^m})}{n^l (b_l + b_{l-1} \cdot \frac{1}{n} + \dots + b_1 \cdot \frac{1}{n^{l-1}} + b_0 \cdot \frac{1}{n^l})} = \frac{1}{n^{l-m}} \cdot \frac{I}{II}$

$$(I) \longrightarrow a_m, (II) \longrightarrow b_l \frac{(I)}{(II)} \Rightarrow \frac{a_m}{b_l}$$
 $n < l, \frac{1}{n^{l-m}}$ Nullfolge
$$\frac{P(n)}{Q(n)} \Rightarrow 0 \cdot \frac{a_m}{b_l}$$
 $m > l$:

Beh. folgt aus Fall m < l und 2.8e).

2.10 Bemerkung

Betrachte Bijektionsverfahren, die Zahl $x \in \mathbb{R}$ bestimmt.

$$a_0 \le a_1 \le a_2 \le \dots$$

 $b_0 \ge b_1 \ge b_2 \ge \dots$
 $a_n \le x \le b_n$
 $0 < b_n - a_n = \frac{b_0 - a_0}{2^n}$
 $0 \le |x - a_n| \le b_n - a_n = \frac{b_0 - a_n}{2} \iff \text{Nullfolge (2.9b)}$
 $2.8e)(|x - a_n|) \text{ Nullfolge.}$
 $2.7e)$: $\lim_{n \to \infty} a_n = x$
Analog: $\lim_{n \to \infty} b_n = x$

2.9 d) e) sind Beispiele für asymptotischen Vergleich von Folgen

2.11 Definition

a) Eine Folge $(a_n)_{n\geq k}$ heißt strikt positiv, falls $a_n>0$ für alle $n\geq k$. Sei im Folgenden $(a_n)_{n\geq k}$ eine strikt positive Folge.

b)
$$\mathbb{O}(a_n) = \{(b_n)_{n \ge k} : \text{ist beschränkt}\}\$$

= $\{(b_n)_{n \ge k} \exists C > 0 \text{ mit } |b_n| \le C \cdot a_n\}$

c) $O(a_n) = \{(b_n)_{n \geq k} : (\frac{b_n}{a_n} \text{ist Nullfolge}\}$ $(b_n) \in o(a_n)$ heißt Folge (a_n) wächst wesentlich schneller als die Folge (b_n) . Klar: $o(a_n) \subset O(a_n)$ O, o("groß Oh", "klein Oh")

Landau-Symbole

$$\overline{z.B} \quad (n^2) \in o(n^3)$$

$$(n^2 + n + 1) \in O(n^2) \quad n^2 + n + 1 \le 3n^2$$

$$(n^2) \in O(n^2 + n + 1) \quad n^2 \le n^2 + n + 1$$

O(1) = Menge der beschränkten Folgen

o(1) = Menge aller Nullfolgen

Häufig gewählte Schreibweise:

$$n^2 \underbrace{=}_{\text{eig. falsch!}} o(n^2) \text{ statt } (n^2) \in o(n^3)$$
$$n^2 + n + 1 = O(n^2) \text{ statt } (n^2 + n + 1)$$

2.12 Satz

Sei
$$P(x) = a_m \cdot x^m + \ldots + a_1 \cdot x + a_0, m \ge 0, a_m \ne 0.$$

- a) $(P(n)) \in o(n!)$ für alle l > m und $(P(n)) \in O(n')$ für alle $l \ge m$.
- b) ist r > 1, so ist $(P(n)) \in o(r^n)$. $[(r^n)$ wächst deutlich schneller als (P(n))]

Beweis. a) folgt aus 2.9e).
$$m = l (2.6)$$
 b) folgt aus 2.9d) und 2.8 b)c)

2.13 Bemerkung

Algorithmus:

Sei t_n = maximale Anzahl von Reihenschritten des Algorithmus' bei Input der Länge n (binär codiert).

Worst-Case-Komplexität:

Algorithmus hat polynomielle Zeitkomplexität, falls ein $l \in \mathbb{N}$ existiert mit $(t_n) \in O(n^l)$. (gutartig) Algorithmus hat polynomielle Zeitkomplexität, falls ein $l \in \mathbb{N}$ existiert mindestens exponentielle Zeitkomplexität, falls r > 1 exestiert mit $(r^n) \in O(b_n)$ (bösartig)

2.14 Definition

- a) Eine Folge $(a_n)_{n\geq k}$ heißt monoton wachsend (steigend), wenn $a_n\leq a_{n+1}$ für alle $n\geq k$. Sie heißt steng monoton wachsend (steigend), wenn $a_n< a_{n+1}$ für alle $n\geq k$
- b) $(a_n)_{n\geq k}$ heißt monoton fallend, falls $a\geq a_{n+1}$ für alle $n\geq k$

2.15 Beispiel

- a) $a_n = 1$ für alle $n > 1(a_n)$ ist monoton steigend und monoton fallend.
- b) $a_n = \frac{1}{n}$ für alle $n \ge 1$. (a_n) streng monoton fallend.
- c) $a_n = \sqrt{n}$ (positive Wuzel) $(a_n)n \ge 1$ streng monoton steigend.
- d) $a_n = 1 \frac{1}{n}, n \ge 1$ $(a_n)_{n \ge 1}$ streng monoton steigend.
- e) $a_n = (-1)^n, n \ge 1$ (a_n) ist weder monoton steigend noch monoton fallend.

2.16 Satz

a) Ist $(a_n)_{n\geq k}$ monoton steigend und nach oben beschränkt (d.h es existiert $D\in\mathbb{R}$ mit $a_n\leq D$ für alle $n\geq k$), so konvergiert $(a_n)'$ und $\lim_{n\to\infty}a_n=\sup\{a_n:n\geq k\}$

b) $(a_n)_{n\geq k}$ monoton fallend und nach unten beschränkt, so konvergiert $(a_n)_{n\geq k}$ und $\lim_{n\to\infty} a_n = \inf\{a_n : n\geq k\}$.

Beweis. a)

$$c \sup\{a_n : n \geq k\}$$
. existiert (Mathe I). Zeige: $\lim_{a_n} = c$.

Sei
$$\varepsilon > 0$$
. Dann existiert $n(\varepsilon)$ mit $c - \varepsilon < a_{n(\varepsilon)} \le c$

Denn sonst $a_n \leq c - \varepsilon$ für alle $n \geq k$ und $c - \varepsilon$ wäre obere Schranke für $\{a_n : n \geq k\}$ Widerspruch dazu, dass c kleinste obere Schranke. Für alle $n \geq n(\varepsilon)$

$$c - \varepsilon \le a_{n(\varepsilon)} \le a_n \le c$$

$$|a_n - c| < \varepsilon$$
 für alle $n \ge n(\varepsilon)$.

b) analog

2.17 Satz (Cauchy'sches Konvergenzkriterium)

Sei $(a_n)_{n\geq k}$ eine Folge. Dann sind äquivalent:

- (1) $(a_n)_{n\geq k}$ konvergent
- (2) $\forall \varepsilon > 0 \exists N M(\varepsilon) \forall n, m \geq N : |a_n a_m| < \varepsilon$ (Cauchyfolge) Grenzwert muss nicht bekannt sein!

2.18 Definition

a) Sei $(a_i)_{i \geq k}$ eine Folge, $s_n \sum_{i=k}^n a_i, n \geq k$ (Partialsummen der Folge)

Dann heißt $(s_n)_{n\geq k}$ eine <u>unendliche Reihe</u>

$$(k-1: a_1, a_1 + a_2, a_1 + a_2 + a_2, \ldots)$$

Schreibweise : $\sum_{i=k}^{\infty} a_i$

b) Ist die Folge $(s_n)_{n\geq k}$ konvergent mit $\lim_{n\to\infty} s_n = c$,

so schreibt man $\sum_{i=k}^{\infty} a_i = c$. Reihe <u>konvergiert</u>.

Wenn (s_n) nicht konvergiert, so heißt die Reihe $\sum_{i=k}^{\infty} a_i$ divergent.

(Zwei Bedeutungen von $\sum_{i=k}^{\infty} a_i$:

- Folge der Partialsummen
- Grenzwert von (s_n) , falls dieser existiert

$$\sum_{i=k}^{\infty} a_i = \sum_{n=k}^{\infty} a_n = (s_m)_{m \ge k}$$

2.19 Satz

- a) Ist die Reihe $\sum_{i=1}^{\infty} a_1$ konvergent, so ist $(a_1)_{i \geq k}$ eine Nullfolge.
- b) Ist die Folge der Partialsummen $s_n = \sum_{i=k}^{\infty} a_i$ beschränkt und ist $a_i \geq 0$ für alle i, so ist $\sum_{i=k}^{\infty} a_i$ konvergent.

Beweis. a) Sei
$$\sum_{i=k}^{\infty} a_i = c$$
.

Sei
$$\varepsilon > 0$$
 Dann existiert $n(\frac{\varepsilon}{2}) \ge k$ mit $|\sum_{i=k}^{\infty} 2a_i - c| < \frac{\varepsilon}{2}$ für alle $n \ge n(\frac{\varepsilon}{2})$

Dann gilt
$$|a_{n+1} - o| = |a_n + 1| = |\sum_{i=k}^{n+1} a_i + \sum_{i=k}^n a_i| =$$

$$\left| \sum_{i=k}^{n+1} a_i + c - \sum_{i=k}^{n} a_i + c \right| \le \left| \sum_{i=k}^{n+1} a_i + c \right| + \left| \sum_{i=k}^{n} a_i - c \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

b) folgt aus 2.16a), denn (s_n) ist monoton steigend

2.20Beispiele

a) Sei $q \in \mathbb{R}$.

Ist
$$q \neq 1$$
, so ist $\sum_{i=k}^{n} q^i = \frac{q^{n+1}-1}{q-1}$

$$\left[\left(\sum_{i=k}^{n} q^{i}\right) \cdot \left(q-1\right)\right]$$

Sei
$$|q| < 1$$
, d.h $-1 < q < 1$.

$$\begin{split} & \left[\left(\sum_{i=k}^n q^i \right) \cdot \left(q-1 \right) \right] \\ & \text{Sei } |q| < 1, \text{ d.h } -1 < q < 1. \\ & \text{Dann ist } \sum_{i=k}^\infty q^i = \frac{1}{1-q} \text{ (konvergiert)} \end{split}$$

$$s_n = \sum_{i=k}^n q^1 = \frac{q^{n+1}-1}{q-1}$$

$$\lim_{n\to\infty} s_n = \lim_{n\to \infty} \frac{q^{n+1}=1}{q-1}$$

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{q^{n+1} = 1}{q-1}$$
 (q^n) Nullfolge (2.9_a) für $q \ge 0, 2.8_e) + 2.9_a$ für $q < 0, q = -|q|$

Geometrische Reihe

Sei $|q| \ge 1$. Dann ist $\sum_{i=1}^{\infty} q^i$ divergent, da dann (q^i) keine Nullfolge (2.18_a)

b) $\sum_{i=k}^{\infty} \frac{1}{i} \text{ divergient}$ $\frac{\text{harmonische Reihe}}{n}$

$$\frac{\sum_{i=k}^{n} \frac{1}{n}}{n}$$

$$n = 2^{0} = 1 : s_{1} = 1$$

$$n = 2^{1} = 2 : s_{2} = 1 + \frac{1}{2}$$
...
$$n = 2^{3} = 8 : s_{8} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} > s_{7} > s_{6} \dots$$

Per Induktion zu beweisen!

c) $\sum_{i=0}^{\infty} \frac{1}{n^2}$ konvergiert.

Folge der Partialsummen ist monoton steigend.

2.16a) Zeige, dass die Folge der Partialsummen nach aber beschränkt ist.

$$s_{n} \leq s_{2^{n}-1} = 1 + \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{4^{2}} + \frac{1}{5^{2}} + \frac{1}{6^{2}} + \frac{1}{7^{2}}\right) + \dots + \left(\frac{1}{(2^{n-1})^{2}} + \dots + \frac{1}{(2^{n-1})^{2}}\right)$$

$$\leq 1 + 2 \cdot \frac{2}{2^{2}} + 4 \cdot \frac{1}{4^{4}} + \dots + 2^{n-1} \cdot \frac{1}{(2^{n-1})^{2}}$$

$$\leq \sum_{i=0}^{\infty} \frac{1}{2^{i}} = \frac{1}{1 - \frac{1}{2}} = 2$$

2.16a) $\sum_{i=0}^{\infty} \frac{1}{2^i}$ Kgt., Grenzwert ≤ 2 . (später: Grenzwert ist $\frac{\pi^2}{6}$)

Es gilt allgemeiner:

$$s \in \mathbb{N}, s \ge 2 \Rightarrow \sum_{i=0}^{\infty} \frac{1}{i^s}$$
 konvergiert.

Allgemeiner: $s \in \mathbb{R}, s > 1 \Rightarrow \sum_{i=0}^{\infty} \frac{i}{i^2}$ konvergiert

d) $\sum_{i=0}^{\infty} (-1)^i \cdot \frac{1}{i}$ konvergiert:

$$s_{2n} = \underbrace{(-1 + \frac{1}{2})}_{<0} + \underbrace{(-\frac{1}{3} + \frac{1}{4})}_{<0} + \dots \underbrace{(-\frac{1}{2n-1} + \frac{1}{2n})}_{<0}$$

$$s_{2n} \le s2(n+1) \text{ für alle } n \in \mathbb{N}$$

$$(s_{2n})$$
 ist monoton fallend. $s_{2n-1} = -1 + \underbrace{(\frac{1}{2} - \frac{1}{3})}_{>0} + \dots + \underbrace{(\frac{1}{2n-2} - \frac{1}{2n-1})}_{>0}$

 (s_{2n-1}) ist monoton wachsend

Ist k ungerade, so ist $s_k < s_l$: Wähle n so, dass $2n - a \ge k, 2n \ge l$

$$s_k \leq s_{2n-1} < s_{2n} \leq s_l$$

Abstand $s_{2n} - s_{2n-1} = \frac{1}{2n}$ geht gegen 0. $\sup\{s_{2n-1} : n \ge 1\}$

$$\sup\{s_{2n-1}: n \ge 1\}$$

$$\inf\{s_{2n}: n \ge 1\}$$

$$\inf\{s_{2n} : n \ge 1\}$$

$$= \lim_{i \to \infty} (-1^i)^{\frac{1}{i}} \in]-1, -\frac{1}{2}[\text{ (Es gilt } limes = -\ln 2)]$$

Bemerkung

Was bedeutet $0.\bar{8} = 0.88888888...$? (Dezimalsystem)

$$0.\overline{8} = \frac{8}{10} + \frac{8}{100} + \frac{8}{1000} + \dots = 8 \cdot \sum_{i=0}^{\infty} \frac{1}{10^i} = 8 \cdot (\frac{10}{9} - 1) = \frac{8}{9}$$

$$\sum_{i=0}^{\infty} \frac{1}{10^i} = \sum_{i=0}^{\infty} (\frac{1}{10})^i = \frac{1}{1 - \frac{1}{10}} = \frac{10}{9}$$

Satz (Leibniz-Kriterium)

Ist $(a_i)_{i\geq k}$ eine monoton fallende Nullfolge (insbesondere $a_i\geq 0$ falls $i\geq k$), so ist $\sum_{i=k}^{\infty}(-1)^ia_i$ konvergent.

Satz (Majoranten-Kriterium)

Seien $(a_i)_{i\geq k}$, $(b_i)_{i\geq k}$ Folgen, wobei $b_i\geq 0$ für alle $i\geq k$ und $|a_i|\leq b_i$ für alle $i\geq k$. Dann gilt Ist $\sum\limits_{i=k}^{\infty}b_i$ konvergent, so auch $\sum\limits_{i=k}^{\infty}a_i$ und $\sum\limits_{i=k}^{\infty}|a_i|$. Für die Grenzwerte gilt:

$$|\sum_{i=k}^{\infty} a_i| \le \sum_{i=k}^{\infty} |a_i| \le \sum_{i=k}^{\infty} b_i$$

Beweis. Konvergenz

von
$$\sum_{i=k}^{\infty} |a_i|$$
 folgt aus 2.16 a).

$$\sum_{i=k}^{\infty} |a_i| \le \sum_{i=k}^{\infty} b_i \text{ folgt aus } 2.8 \text{ f}).$$

Sei $m > n$:

Sei
$$m > n$$

$$|\sum_{i=k}^{m} a_i - \sum_{i=k}^{m} b_i| = \sum_{i=n+1}^{m} a_i \le \sum_{i=n+1}^{m} |a_i| = |\sum_{i=k}^{m} |a_i| - \sum_{i=k}^{n} |a_i||$$

Mit Cauchy-Kriterium 2.17 folgt daher aus der Konvergenz von $\sum_{i=1}^{m} |a_i|$ auch die von $\sum_{i=1}^{\infty} a_i$.

2.23 Beispiel

$$\begin{array}{l} \sum\limits_{i=1}^{\infty}\frac{1}{+\sqrt{i}}\\ \sqrt{i}\leq i \text{ für alle } i\in\mathbb{N}\\ \frac{1}{\sqrt{i}}\geq\frac{1}{i} \text{ für alle } i\in\mathbb{N} \end{array}$$

Ang.
$$\sum_{i=1}^{\infty} \frac{1}{+\sqrt{i}}$$
 konvergiert. $\Rightarrow \sum_{i=1}^{\infty} \frac{1}{i}$ konvergiert. \nleq

$$a_i = (-1)^{i \frac{1}{i}}$$

2.20d):
$$\sum_{i=1}^{\infty} a_i$$
 konvergiert, aber $\sum_{i=1}^{\infty} |a_i|$ konvergiert nicht. (\star)

2.24 **Definition**

$$\sum\limits_{i=k}^{\infty}a_i$$
heißt absolut konvergent, falls $\sum\limits_{i=k}^{\infty}|a_i|$ konvergiert. (Falls alle $a_i\geq 0$: Konvergent = absolut Konvergent)

Korollar

Ist $\sum_{i=1}^{\infty} a_i$ absolut konvergent, sp ist auch konvergiert. Die Umkehrung gilt im Allgemeinen nicht.

Beweis: 1.Behauptung 2.22 mit $b_i = |a_i|$

Umkehrung siehe (\star)

Bermerkung

Was bedeutet $0, a_1, a_2, a_3, a_4 \dots$ $a_i \in \{0 \dots 9\}$ (Dezimalsystem) $a_1 \cdot \frac{1}{10} a_2 \cdot \frac{1}{100} \dots a_n \cdot \frac{1}{10^n} \leq 9 \cdot \frac{1}{10} 9 \cdot \frac{1}{100} \dots 9 \cdot \frac{1}{10^n}$ $a_i \frac{1}{10} \leq 9 \frac{1}{10}$ $\sum_{i=k}^{\infty} 9 \frac{1}{10} = 9 \cdot (\frac{1}{1-\frac{1}{10}} - 1) = 1 \Rightarrow \sum_{i=k}^{\infty} a_i \frac{1}{10} \text{ konvergiert}$

2.26 Satz

Sei $\sum_{i=k}^{\infty} a_i$ eine Reihe.

a) Wurzelkriterium

Existiert q < 1 und ein Index i_0 , so dass $\sqrt[i]{|a_i|} \le q$ für alle $i \ge i_0$. so konvergiert die Reihe $\sum_{i=k}^{\infty} a_i$ absolut. Ist $\sqrt[i]{|a_i|} \ge 1$ für unendlich viele i so divergiert $\sum_{i=k}^{\infty} a_i$.

b) Quotientenkriterium

Existiert q > 1 und ein Index i_0 , so dass $\left| \frac{a_{i+1}}{a_i} \right| \le \text{für alle } i \ge i_0$, so konvergiert $\sum_{i=k}^{\infty} a_i$ absolut.

Beweis.

a)
$$|a_i| \leq q^i$$
 für alle $i \geq i_0$
$$\sum_{i=i_0}^{\infty} q^i \text{ konvergiert (2.20 a))}$$

$$\Rightarrow \sum_{i=i_0}^{\infty} |a_i|$$
 konvergiert

$$\Rightarrow \sum_{i=k}^{\infty} |a_i|$$
 konvergiert.

$$\sqrt[i]{|a_i|} \ge 1$$
 für unendlich viele i

$$\Rightarrow |a_i| \ge 1$$
 für unendlich viele i

$$\Rightarrow$$
 (a_i) sind keine Nullfolge

$$\Rightarrow \sum_{i=k}^{\infty} a_i$$
 divergiert.

b) Sei
$$i \geq i_0$$
.
$$|\frac{a_i}{a_{i0}}| = |\frac{a_i}{a_{i-1}}| \cdot |\frac{a_i}{a_{i-2}}| \cdot \ldots \cdot |\frac{a_{io+1}}{a_{i0}}| \leq q \cdot q \cdot \ldots \leq = q^{i-i0} = \frac{q^i}{q^{i0}}$$

$$\uparrow \text{ Voraussetzung:}$$

$$|a_i| \leq \underbrace{\frac{|a_i0|}{q^{i0}}}_{=:c} \cdot q^i$$

$$\sum_{i=i_0}^{\infty} c \cdot q^i \text{ konvergent}$$

 $\Rightarrow_{2.22} \sum_{i=i_0}^{\infty} |a_i|$ konvergiert.

$$\Rightarrow \sum_{i=k}^{\infty} |a_i|$$
 konvergiert

2.27Bemerkung

a) Es reicht <u>nicht</u> in 2.26 nur vorauszusetzen, dass $\sqrt[i]{|a_i|} > 1$ für alle $i \ge i_o$ bzw. $\frac{a_{i+1}}{a_i} < 1$ für alle $i \ge i_0$.

z.B. harmonische Reihen : $\sum_{i=1}^{\infty} \frac{1}{i}$ divergiert.

Aber:
$$\sqrt[i]{\frac{1}{i}} > 1$$
 für alle i. $\frac{i}{i+1} < 1$ für alle i

b) Es gibt Beispiele von absolut konvergenten Reihen mit $|\frac{a_{i+1}}{a_i}|$ für unendlich viele i.

2.28Beispiel

Sei $x \in \mathbb{R}$. Dann konvergiert $\sum_{i=0}^{\infty} \frac{x^i}{i!}$ absolut $(0^0 = 1, 0! = 1)$:

Quotientenkriterium:
$$|\frac{x^{i+1} \cdot i!}{(i+1)! \cdot x^i}| = |fracxi+1| = \frac{|x|}{i+1} \text{ W\"ahle } i_o, \text{ so dass } i_0+1>2 \cdot |x|$$
 F¨ur alle $i \geq i_0$:
$$\frac{|x|}{(i+1)} \leq \frac{|x|}{(i_0+1)} < \frac{|x|}{2 \cdot |x|} = \frac{1}{2} = q.$$

2.29 Bemerkung

Gegeben seien zwei endliche Summen

$$\sum_{a_n}^k n = 0, \sum_{b_n}^l n = 0.$$

$$(\sum_{a_n}^k n = 0)(\sum_{b_n}^l n = 0) \quad (\bigstar)$$

Distributivgesetz: Multipliziere a_i mit jedem b_i und addiere diese Produkte.

$$\left(\star\right) = \underbrace{a_0b_0}_{\text{Indexsumme 0}} + \underbrace{\left(a_0b_1 + a_1b_0\right)}_{\text{Indexsumme 2}} + \ldots + \underbrace{a_kb_l}_{\text{Indexsumme k+l}}$$

2.30Definition

Seien $\sum_{i=0}^{\infty} a_n$, $\sum_{i=0}^{\infty} b_n$ unendliche Reihen.

Das <u>Cauchy-Produkt</u>(<u>Faltungsprodukt</u>) der beiden Reihen ist die Reihe $\sum_{i=0}^{\infty} c_n$, wobei $c_n = \sum_{i=0}^{\infty} a_i$ $b_{n-1} = a_0 b_n + a b_{n-1} + \dots a_n b_0$

2.31 Satz

Sind $\sum_{i=0}^{\infty} a_n$, $\sum_{i=0}^{\infty} b_n$ absolut konvergent Reihen mit Grenzwert c, d, so ist das Cauchy Produkt auch absolut konvergent mit Grenzwert $c \cdot d$.

Beweis: [1]

Potenzreihen 3

Definition 3.1

Sei (b_n) eine reelle Zahlenfolge, $a \in \Re$

Dann heißt $\sum_{n=0}^{\infty} b_n \cdot (x-a)^n$ eine <u>Potenzreihe</u> (mit <u>Entwicklungspunkt</u> a)) Speziell: a=0

$$\sum_{n=0}^{\infty} b_n \cdot x^n$$

(Potenzreihe im engeren Sinne)

Hauptfolge: Für welche $x \in \mathbb{R}$ konv. die Potenzreihe (absolut)?

Suche für x = a

Dann Grenzwert $b_0 \; (\mathrm{da} \; 0^0 = 1)$

Ob Potenzreihe für andere x konvergiert, hängt von b_n ab!

3.2Beispiel

a) $\sum_{i=0}^{\infty} x^n (b_n = 1 \text{ für alle } n)$ geometrische Reihe, konvergiert für alle $x\in \]-1,1[$

b) $\sum_{i=0}^{\infty} 2^n \cdot x^n (b_n = 2^n) = \sum_{i=0}^{\infty} (2 \cdot x)^n$ konvergiert genau dann nach a), wenn |2x| < 1, d.h. $|x| < \frac{1}{2}$ d.h.

c)
$$\sum_{i=0}^{\infty} \frac{x^n}{n!} (b_n = \frac{1}{n})$$
 konvergiert für alle $x, x \in]-\infty, \infty[=\mathbb{R}]$

3.3 Satz

Sei $\sum_{i=0}^{\infty} b_n \cdot x^n$ eine Potenzreihe (um 0). Dann gibt es $R \in \mathbb{R} \cup \{\infty\}, R \geq 0$, so dass gilt.

1. Für alle $x \in \mathbb{R}$ und |x| < R konvergiert Potenzreihe absolut (d.h. $\sum_{i=0}^{\infty} b_n \cdot x^n$ konvergiert, dann auch $\sum_{i=0}^{\infty} b_n \cdot x^n$)

Falls $R = \infty$, so heißt das, dass Potenzreihe für alle $x \in \mathbb{R}$ absolut konvergiert.

2. Für alle $x \in \mathbb{R}$ mit |x| > R divergiert $\sum_{i=0}^{\infty} b_n \cdot x^n$

 $(\lim_{n\to\infty} \sqrt[n]{|b_n|} = 0 \Rightarrow R = \infty)$ (Für |x| = R lassen sich keine allgemeine Aussagen treffen).

R heißt der Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty} b_n \cdot x^n$

Konvergenzintervall < -R, R >

besteht aus allen x für die $\sum_{i=0}^{\infty} b_n \cdot x^n$ konvergiert.

< kann [oder] bedeuten.

> kann] oder [bedeuten.

Beweis. $|x_1, x_2| \mathbb{R}, |x_1| \leq |x_2|$

Dann: Falls $\sum_{i=0}^{\infty} |b_n| \cdot |x_n|^n$ konvergiert, so auch $\sum_{i=0}^{\infty} |b_n| \cdot |x_n|^n$ (2.22) \bigstar Falls $\sum b_n \cdot x_n$ für alle x absolut konvergiert, so setze $R = \infty$

Wenn nicht, so setze $R = \sup\{|x| : x \in \mathbb{R}, \sum_{i=0}^{\infty} |b_n| \cdot |x_n| \text{ konvergient}\} < \infty \text{ Nach } (\star) \text{ gilt: } |x| < R \Rightarrow$ $\sum b_n x^n$ konvergiert absolut.

Für |x| > R konvergiert $\sum b_n x^n$ nicht absolut.

Sie konvergiert sogar selbst nicht. ([?])

$$\sqrt[n]{|b_n| \cdot |x|^n} \le q < 1$$
 für alle $n \ge n_0$

$$\Leftrightarrow |x| \cdot \sqrt[n]{|b_n|} \le 1 < 1$$
 für alle $n \ge n_0$

$$\Leftrightarrow \lim_{n \to \infty} |x_n| \cdot \sqrt[n]{|b_n|} < 1$$

$$\uparrow$$
 (setze $\varepsilon = 1 - \lim_{n \to \infty} |x| \cdot \sqrt[n]{|b_n|} > 0$)

$$\Leftrightarrow |x| < \frac{1}{\lim_{x \to \infty} \sqrt[n]{|b_n|}}$$

$$\exists n_0 \forall n \ge n_0 : s - \frac{\varepsilon}{2} < |x| \cdot \sqrt[n]{b_n} \le s + \frac{\varepsilon}{2} =: q < 1$$

3.4 Bemerkung

Konvergenz von Potenzreihen der Form $\sum_{i=0}^{\infty} b_n \cdot (x-a)^n$:

gleichen Konvergenzradius R wie $\sum_{i=0}^{\infty} b_n \cdot x^n$

konvergiert absolut für |x-a| < R, d.h $x \in [a-R, a+R]$ Divergiert für |x-a| > R. Keine Aussage für |x-a|=R, d.h x=a-R oder x=a+RKonvergenzintervall $\langle a - R, a + R \rangle$

3.5 Die Exponentialreihe

a) Exponentialreihe

$$\sum_{i=0}^{\infty} \frac{x^n}{n!} (b_n = \frac{1}{n!})$$

2.28 Reihe konvergiert für alle $x \in \mathbb{R}$.

Setze für $x \in \mathbb{R} : \exp(x) := \sum_{i=0}^{\infty} \frac{x^n}{n!}$ Exponentialfunktion $\exp(0) = \frac{0^n}{0!} = 1$

b) Serien $x, y \in \mathbb{R}$ $\exp(x) \cdot \exp(y) = \lim_{x \to 0} \text{ Limes des Cauchy Produkts der beiden Reihen.}$

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} \frac{x^i}{i!} \cdot \frac{y^{n-i}}{(n-i)!} \right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} \frac{1}{n!} \cdot \frac{n!}{i! \cdot (n-i)!} \cdot x^i \cdot y^{n-i} \right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} {n \choose i} \cdot x \cdot y^{n-i} \right)$$

$$=\sum_{i=0}^{\infty} \frac{1}{i!} \cdot (x+y)^n = \exp(x+y)$$

$$\boxed{\exp(x+y) = \exp(x) \cdot \exp(y) \text{ für alle x,y} \in \mathbb{R}}$$

Daraus folgt:
$$1 = \exp(0) = \exp(x + (-x)) = \exp(x) \cdot \exp(-x)$$

 $\exp(-x) = \frac{1}{\exp(x)}$ für alle $x \in \mathbb{R}$ (\star)

Für alle $x \ge 0 : \exp(x) > 0$. Dann auch wegen (\star)

$$\exp(x) > 0$$
 für alle $x \in \mathbb{R}$

c)
$$\exp(1) = \sum_{i=0}^{\infty} \frac{1}{n!} = e$$

Euler'sche Zahl Approximation
$$e$$
 durch $\sum_{i=0}^{\infty} \frac{1}{n!} \frac{m=2}{m=3}$ $\frac{1+1+\frac{1}{2}}{2} = 2,5$ Es ist: $e \approx \dots m=6$ $\frac{326}{126} + \frac{1}{720} = 2,7180\bar{5}$

$$2,71828...$$
 (irrationale Zahl)

$$\sum_{i=0}^{\infty} \frac{1}{n!}$$
 konvergiert schnell

$$m \in \mathbb{N}$$

$$\exp(m) = \exp(1 + \ldots + 1)$$

$$\exp(1)^m = e^m$$

$$\exp(m) = \exp(1 + \dots + 1)$$

$$\exp(1)^m = e^m$$

$$e^0 = 1 \exp(-m) = \frac{1}{\exp(m)} = e^{-m}$$

$$n \neq 0, n \in \mathbb{N}:$$

$$e = \exp(1) = \exp(\frac{n}{2}) = \exp(\frac{1}{2}n)$$

$$n \neq 0, n \in \mathbb{N}$$
:

$$n \neq 0, n \in \mathbb{N}:$$

$$e = \exp(1) = \exp(\frac{n}{n}) = \exp(\frac{1}{n}^n)$$

$$\exp(\frac{1}{n}) = + \sqrt[n]{e} = e^{\frac{1}{n}}$$

$$\exp(\frac{m}{n}) = e^{\frac{m}{n}}.$$

$$\exp(\frac{1}{n}) = +\sqrt[n]{e} = e^{\frac{1}{n}}$$

$$\exp(\frac{m}{n}) = e^{\frac{m}{n}}$$

Für alle $x \in \mathbb{Q}$ stimmt $\exp(x)$ mit der 'normalen' Potenz e^x überein.

Dann definiert man für beliebige $x \in R$:

$$e^x := \exp(x) = \sum_{i=0}^{\infty} \frac{x^n}{n!}$$

In kürze: Definition a^x für $a > 0, x \in \mathbb{R}$

d) Bei komplexen Zahlen kam
$$e^{it}$$
 $(i^2=-1,t\in\mathbb{R})$ vor als Abkürzung für $\cos(t)+i\sin(t)$

Tatsächlich kann auch für jedes
$$z \in \mathbb{C}$$
 definieren $e^z = \sum_{i=0}^{\infty} \frac{z^n}{n!}$

Dabei: Konvergenz von Folgen/Reihen in \mathbb{C} wie in \mathbb{R} mit komplexem Absolutbetrag. Man kann dann zeigen:

$$\sum\limits_{i=0}^{\infty}\frac{z^n}{n!}$$
konvergiert für alle $z\in\mathbb{C}.$ Dass tatsächlich dann gilt:

$$e^{it} = \sum_{i=0}^{\infty} \frac{(it)^n}{n!} = \cos(t) + \sin(t)$$
. zeigen wir später

2.718...) Man kann zeigen.
$$e = \lim_{n \to \infty} (1 + (\frac{1}{n})^n)$$
 Bedeutung:

- Angelegtes Guthaben G wird in einem Jahr mit 100% verzinst. Guthaben am Ende eines Jahres 2G(=G(1+1)

$$G(1+\frac{1}{2})(1+\frac{1}{2})=2,25G$$

$$G(1+\frac{1}{2})(1+\frac{1}{2})=2,25G$$

n- mal pro Jahr mit $\frac{100}{n}\%$ verzinsen. Am Ende desx Jahres $G(1+\frac{1}{n})^n$. $\lim_{n\to\infty}G(1+\frac{1}{n})^n=e\cdot G\approx 2.718\ldots \cdot G$ (stetige Verzinsung)

$$\lim_{n \to \infty} G(1 + \frac{1}{n})^n = e \cdot G \approx 2.718 \dots G \text{ (stetige Verzinsung)}$$

a% statt $100\% \cdot Ge^{\frac{a}{100}}$

Reelle Funktionen und Grenzwerte von Funktionen 4

4.1 Definition

Reelle Funktionen f in einer Variable ist Abbildung $f: D \to \mathbb{R}$, wobei $D \subset \mathbb{R}$ (D = Definitionsbereich). Typisch: $D = \mathbb{R}$, Intervall, Verschachtelung von Intervallen

4.2 Beispiel

a) Polynomfunktionen (ganzrationale Funktion, Polynome)

$$\begin{cases}
\mathbb{R} \to \mathbb{R} \\
x \to a_n \cdot x^n + \dots a_1 x + a_0 \\
f(x) = a_n \cdot x^n + \dots a_1 \cdot x + q \\
a_n \neq 0 : n = \text{Grad } (f) \text{ } f = 0 \text{ (Nullfunktion), } \text{Grad}(f) = \infty
\end{cases}$$
Grad 0: konstante Funktionen $\neq 0$

- b) $f,g:D\to R$ $(f\pm g)(x):=f(x)\pm g(x)$ für alle $x\in D$ <u>Summe</u>: Differenz, Produkt von f und g. Ist $g(x)\neq 0$ für $x\in D$, so <u>Quotient</u>. $\frac{f}{g}(x):=\frac{f(x)}{g(x)}$ für alle $x\in D$, Quotient von Polynomen = (gebrochen-)rationalen Funktionen |f|(x):=|f(x)| Betrag von f.
- c) Potenzreihe definiert Funktion auf ihrem Konvergenzintervall.

d) Hintereinanderausführung von Funktionen:

$$f: D_1 \to \mathbb{R}, g: D_2 \to \mathbb{R}f(D_1) \subset f(D_2), \text{ dann } g \circ f:$$

$$\begin{cases} D_1 \Rightarrow \mathbb{R} \\ x \to g(f(x)) \end{cases}$$

- e) $f(x) = e^x, g(x) = x^2 + 1$ $f, g: \mathbb{R} \to \mathbb{R}$ $(g \circ f)(x) = g(e^x) = (e^x)^2 + 1 = e^2x + 1$ $(f \circ g)(x) = f(x^2 + 1) = e^{x^2 + 1}$
- f) Trigonometrische Funktionen: Sinus- und Cosinusfunktion (vgl. C)

 $0 \geq x \geq 2\pi$ x = Bogenmaß von φ in Grad, so $x = \frac{\varphi}{360} \cdot \pi$

 $\sin(x) = s, \cos(x) = c$ Für beliebig $x \in \mathbb{R}$:

Periodische Fortsetzung, d.h. $x \in \mathbb{R}.x = x' + k \cdot 2\pi, k \in \mathbb{Z}, x' \in [0, 2\pi]$ $\sin(x) := \sin(x')$

 $\cos(x) := \cos(x')$

 $|\cos(x)|, |\sin(x)| \le 1$

$$\cos^2(x) + \sin^2(x) = 1$$

$$\cos(x) = \sin(x + \frac{\pi}{2})$$

$$\sin(x) = 0 \Leftrightarrow x = k\pi, k \in \mathbb{Z}$$

$$\cos(x) = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$

Tangens und Cotangensfunktion

 $\overline{\tan(x) = \frac{\sin(x)}{\cos(x)} \text{ für alle } x \in \mathbb{R} \text{ mit } \cos(x) \neq 0$

 $\cot(x) = \frac{\cos(x)}{\sin(x)}$ für alle $x \in \mathbb{R}$ mit $\sin(x) \neq 0$

4.3 Definition

Sei $D \subset \mathbb{R}, c \in \mathbb{R}$ heißt Adharenzpunkt von D, falls es eine Folge $(a_n)_n, a_n \in D$, mit $\lim_{n \to \infty} a_n = c$ gibt.

D = Menge der Adharenzpunkte von D

= Abschluss von D

klar: $D \subset \bar{D}$.

 $d \in D$. konstante Folge $(a_n)_{n\geq 1}$ mit $a_n = d$. $\lim_{n\to\infty} a_n = \lim_{n\to\infty} d = d$.

Also: $d \in \bar{D}$.

4.4 Beispiel:

a)
$$a, b \in \mathbb{R}, a > b, D =]a, b[$$

$$\begin{array}{c|c}
 & b
\end{array}$$

$$\bar{D} = [a,b]D \in \bar{D}$$

$$a \in \bar{D}$$

$$a_n = a + \frac{b-a}{n} \in D, n \ge 2$$

$$\lim_{n \to \infty} a_n = a$$

$$\lim a_n = a$$

Also $[a, b] \subset \bar{D}$.

Ist $c \notin [a, b]$, etwa c < a, dann ist $|a_n - c| \ge a - c > 0$ für alle $a_n \in]a, b[$ Also: $\lim_{a \to a} \ne c$

$$\bar{D} = \bar{\mathcal{I}} = [a, b],$$

falls
$$\mathcal{I} = \langle a, b \rangle$$
.

c) $\mathbb{Q} \subset \mathbb{R}$

 $\mathbb{O} = \mathbb{R}$

4.5 Definition

 $f: D \to, c \in \bar{D}$.

 $d \in \mathbb{R}$ heißt Grenzwert von f(x) für x gegen $c,d = \lim$, wenn für jede Folge $(a_n) \in D$, die gegen c konvergiert, die Bildfolge $(f(a_n))_n$ gegen d
 konvergiert.

Beispiel: 4.6

a) Sei $f(x) = b_k x^k + \ldots + b_1 x + b_0$, eine Polynomfunktion, $c \in \mathbb{R}$. Sei (a_n) Folge mit $\lim_{n \to \infty} a_n = c$

$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} b_k x^k + \dots + b_1 x + b_0$$

$$= b_k (\lim_{n \to \infty} a_n)^k + b_{k-1} \cdot (\lim_{n \to \infty} a_n)^{k-1} + \dots + b_0 \quad \text{Rechengeln für Folgen, 2.8}$$

$$= b_k \cdot c^k + b_{k-1} \cdot c^{k-1} + \dots + b_1 \cdot c + b_0 = f(c).$$

b) Sei $f(x) = \frac{x^2 - 1}{x - 1}$, $D = R \setminus \{1\}$

$$D = R \setminus \{1\}$$

Auf D ist $f(x) = \frac{(x+1)(x-1)}{(x-1)} = (x+1)$

$$\bar{D} = \mathbb{R}$$

$$\lim_{x \to 1} f(x) = ?$$

Sei (a_n) Folge mit $D = \mathbb{R} \setminus \{1\}$ mit $\lim_{n \to \infty} a_n = 1$

$$f(a_n) = a_n + 1$$

 $\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} (a_n + 1) = 1 + 1 + 2 \cdot \lim_{x \to 1} = 2.$

c)
$$f(x) = \begin{cases} 1 & \text{für } x > 0 \\ 0 & \text{für } x < 0 \end{cases} D = \mathbb{R}$$

$$\lim_{x \to 0} f(x) ?$$

$$a_n = \frac{1}{n} \cdot \lim a_n = 0.$$

$$\lim_{x \to \infty} f(a_n) = \lim_{n \to \infty} 1 = \underline{1}$$

$$a_n = -\frac{1}{n} \cdot \lim a_n = 0$$

$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} 0 = \underline{0}.$$

$$\lim_{n \to \infty} \text{existiert nicht.}$$

$$-6 \quad -4 \quad -2 \quad 0 \quad 2 \quad 4 \quad 6 \quad a_n = \frac{1}{n\pi}, f(a_n) = \sin(n\pi) = 0$$

$$a'_n = \frac{1}{(2n + \frac{1}{2}\pi)} \to 0, f(a'n) = \sin(2\pi n + \frac{\pi}{2}) = 1$$

$$\lim(a_n) = 0$$

$$\lim(f(a_n)) = \lim 0 = 0 \lim(f(a'_n)) = \lim 1 = 1$$

$$\lim(f(x))_{x \to 0} \text{ existiert nicht}$$

e)
$$f(x) = x \cdot \sin(\frac{1}{2}), D = \mathbb{R} \setminus \{0\}$$

 $\lim_{x \to 0} f(x) = 0 \text{ dann:}$ $\lim_{n \to \infty} f(a_n) \to 0, a_n \in \mathbb{R} \setminus \{0\}$ $\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} a_n \cdot \sin(\frac{1}{a_n}) = 0$

Satz $(\varepsilon - \delta)$ -Kriterium

 $f:D\to\mathbb{R},c\in\bar{D}. \text{ Dann gilt: } \lim_{x\to c}f(x)=d\Leftrightarrow \forall \varepsilon>0 \\ \exists \delta \forall x\in D: |x-c|\leq \delta\to |f(x)-d|\leq \varepsilon$

Beweis. \rightarrow : Angenommen falsch.

Dass heißt $\exists \varepsilon > 0$, so dass für alle $\delta > 0$ (z.B $\delta = \frac{1}{n}$) ein $x_n \in D$ existiert mit $|x_n - c| \leq \frac{1}{n}$ und $|f(x_n) - d| > \varepsilon$

 $\lim_{n \to \infty} x_n = c. \text{ Aber:}$ $\lim_{n \to \infty} f(x_n) \neq d \notin$

 $\Leftarrow: \text{Sei } (a_n) \text{ Folge, } a_n \in D \\ \lim_{n \to \infty} a_n = c. \\ \text{Zu zeigen } : \lim_{n \to \infty} f(a_n) = d, \text{ d.h } \forall \varepsilon > 0 \exists n(\varepsilon) \forall n \ge n(\varepsilon) : |f(a_n) - d| < \varepsilon. \\ \text{Sei } \varepsilon > 0 \text{ beliebig, ex. } d > 0:$

(*****)

Für alle $x \in D$ mit $|x - c| \le \delta$ gilt $|f(x) - d| < \varepsilon$. Da $\lim_{n \to \infty} a_n = c$, existiert n_0 mit $|a_n - c| \ge \delta$ für alle $n \ge n_0$ Nach (\star) gilt: $|f(a_n) - d| < \varepsilon \forall n \ge n_0$.

Bemerkung

 $\lim_{x\to c} f(x) = d \Leftrightarrow \text{Für alle Folgen } (a_n), a_n \in D, \text{ mit } \lim_{n\to\infty} a_n = c \text{ gilt } \lim_{n\to\infty} f(a_n) = e \text{ Wenn man zeigen will, dass } \lim_{x\to c} f(x) \text{ nicht existiert, gibt es 2 Möglichkeiten:}$

- Suche <u>eine</u> <u>bestimmte</u> Folge (a_n) , $\lim_{n\to\infty} a_n = c$, so dass $\lim_{x\to\infty} f(a_n)$ nicht existiert.
- Suche zwei Folgen $(a_n), (b_n), \lim_{x \to \infty} a_n = c, \lim_{x \to \infty} b_n = c \text{ und } \lim_{x \to \infty} f(a_n) \neq \lim_{x \to \infty} f(b_n)$

 $a_n = (-1)^n \cdot \frac{1}{n}$

 $\lim_{n \to \infty} a_n = 0$ $f(a_n) = (101010...)$

 $\lim_{n\to\infty} f(a_n) \text{ existient nicht.}$

 $n\to\infty$ Oder:

 $a_n = \frac{1}{n} \lim_{n \to \infty} a_n = 0$ $b_n = -\frac{1}{n} \lim_{n \to \infty} b_n = 0$

Aber: $\lim_{x \to \infty} f(a_n) \neq \lim_{x \to \infty} f(b_n)$

4.8 Satz (Rechenregeln für Grenzwerte)

 $f, g, D \to \mathbb{R}, c \in \bar{D}$, Existieren die Grenzwerte auf der rechten Seite der folgenden Gleichungen, so auch die auf der linken (und es gilt Gleichheit)

a)
$$\lim_{x \to c} (f \pm / \cdot g) = \lim_{x \to c} f(x) \pm / \cdot \lim_{x \to c} g(x)$$
.

b) Ist $g(x) \neq 0$ für alle $x \in D$ und $\lim_{x \to c} g(x) \neq 0$, so

$$\lim_{x \to c} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$

c)
$$\lim_{x \to c} |f(x)| = |\lim_{x \to c} f(x)|$$

Beweis. Folgt aus den entsprechenden Regeln für Folgen.

4.9 Beispiel:

$$f(x) = \frac{x^3 + 3x + 1}{2x^2 + 1}, D = \mathbb{R}$$

$$\lim_{x \to 2} = \frac{\lim_{x \to 2} (x^3 + 3x + 1)}{\lim_{x \to 2} (2x^2 + 1)}$$

$$= \frac{4 + 6 + 1}{8 + 1} = \frac{11}{9}$$

Bemerkung 4.10

Rechts- und linksseitige Grenzwerte:

Rechtsseitiger Grenzwert:

 $\lim_{x\to c^+} f(x) = d \Rightarrow \forall (a_n)_n, a_n \in D, a_n \geq c \text{ und } \lim_{n\to\infty} a_n = c \text{ gilt: } \lim_{n\to\infty} f(a_n) = d.$ Analog: linksseitiger Grenzwert: $\lim f(x) = d$ $(a_n \leq c)$.

Beispiel: 4.11

$$f(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases} D = \mathbb{R} \setminus \{0\}, c = 0 \in \bar{D}$$

$$\lim_{x \to 0^+} f(x) = 1, \lim_{x \to 0^-} f(x) = 0.$$

$$\lim_{x \to 0^+} f(x) \text{ existiert nicht.}$$

Falls lim und lim existieren

und
$$\lim_{x \to c^+} \inf_{x \to c^-} \inf_{x \to c^-} \inf_{x \to c^-} = d$$

so exisitiert $\lim_{x \to c} \tilde{f}(x) = d$.

Grenzwert: $d \in \mathbb{R}$

 $(z.B D = \mathbb{R})$

Definition 4.12

$$D = \langle b, \infty [, f : D \to \mathbb{R}$$

f konvergiert gegen $d \in \mathbb{R}$ für x gegen unendlich,

 $\lim = d$, falls gilt:

 $\forall \varepsilon > 0 \exists M = M(\varepsilon) \forall x \ge M : |f(x) - d| < \varepsilon.$

(Analog: $\lim_{x \to -\infty} f(x) = d$)

Beispiel 4.13

a)
$$\lim_{x \to \infty} \frac{1}{x} = 0$$

$$-4 - 2 \quad 0 \quad 2 \quad 4$$

Sei $\varepsilon > 0$. Wähle $M = \frac{1}{\varepsilon}$. Dann gilt für alle $x \ge M$:

 $|f(x) - 0| = \left|\frac{1}{x}\right| \le \frac{1}{m} = \varepsilon.$

b) Allgemein gilt:

P, Q Polynome vom Grad k bzw. l $l \ge k$

$$P(x) = a_k \cdot x^k + \dots, Q(x) = b_i \cdot x^i + \dots, a_k \neq 0, b_i \neq 0 \lim_{x \to \infty} \frac{P(x)}{Q(x)} = \begin{cases} 0 & \text{für } l \geq k \\ \frac{a_k}{b_k} & \text{für } l = k \end{cases}$$

(Beweis wie für Folgen $\lim_{x\to\infty} \frac{P(n)}{Q(n)}$) $\lim_{x\to\infty} \frac{7x^5+205x^3+x^2+17}{14x^5+0.5} = \frac{1}{2}$

$$\lim_{x \to \infty} \frac{7x^5 + 205x^3 + x^2 + 17}{14x^5 + 0.5} = \frac{1}{2}$$

4.14 Bemerkung

Die Rechenregeln aus 4.8 gelten auch für $x \to \infty/-\infty$

Definition 4.15

a) $f: D \to \mathbb{R}, c \in \bar{D}$

f geht gegen ∞ für x gegen c,

 $\lim f(x) = \infty$, falls gilt:

$$\forall L > 0 \exists \delta > 0 \forall x \in D : |x - c| \le \delta \Rightarrow f(x) \ge L.$$

b) $< b, \infty [\supset D, f : D \to \mathbb{R}, \underline{f \text{ geht gegen } \infty, \text{ für x gegen } \infty} : \lim_{x \to \infty} f(x) = \infty,$

falls gilt:

$$\forall L > 0 \exists M > 0 \forall x \in D, x \ge M, f(x) \ge L.$$

(Entsprechend: $\lim_{x \to c} f(x) = -\infty$ 0

$$\lim_{x \to \infty} f(x) = -\infty \ 0$$

$$-4 - 2 \ 0 \ 2 \ 4$$

$$\lim_{x \to -\infty} f(x) = \infty \ _{0}$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

$$-4 - 2 \quad 0 \quad 2 \quad 4$$

4.16 Satz

 $f:D\to\mathbb{R}.$

- a) Sei $c \in \bar{D}$, oder $c = \infty, -\infty$ falls $\lim_{x \to c} f(x) = \infty$ oder $-\infty$, so ist $\lim_{x \to c} \frac{1}{f(x)} = 0$.
- b) $c \in \bar{D} \supset \mathbb{R}$. Falls $\lim_{x \to c} f(x) = 0$ und falls s > 0existiert mit f(x) > 0 für alle $x \in [c - s, c + s], (f(x) < 0)$ dann ist $\lim_{x \to c} \frac{1}{f(x)} = \infty(-\infty)$

LITERATUR 4.17 Beispiel

c) Falls $\lim_{x\to\infty}=0$ und falls T>0 existiert mit f(x)>0 $f.ax\geq T$, so (f(x)<0) ist $\lim_{x\to\infty}\frac{1}{f(x)}=\infty(-\infty)$ (Entsprechend für $\lim_{x\to-\infty}$)

4.17 Beispiel

a)
$$f(x) = \frac{1}{x}, D =]0, \infty[$$

$$\lim_{x \to 0} f(x) = \infty$$

•
$$f(x) = \frac{1}{x}, D =]-\infty, 0[$$

$$\lim_{x\to 0} f(x) = -\infty$$

•
$$f(x) = \frac{1}{x}, D =]0, \infty[$$

 $\lim_{x \to 0} f(x) = \infty$

b)
$$\lim_{x \to \infty} \sin(x)$$
 existiert nicht $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ $\begin{bmatrix} -4 & -2 & 0 & 2 & 4 \end{bmatrix}$

c)
$$P(x) = ak_x^k + \ldots + a_0$$
.

$$\lim_{x \to \infty} P(x) = \begin{cases} \infty, \text{falls} & a_k > 0 \\ -\infty, \text{falls} & a_k < 0 \end{cases}$$

$$\lim_{x \to -\infty} P(x) = \begin{cases} \infty, \text{falls} & a_k > 0 \text{k gerade oder } a_k < 0 \text{ k ungerade} \\ -\infty, \text{falls} & a_k < 0 \text{k gerade oder } a_k > 0 \text{ k ungerade} \end{cases}$$

d) P(x) wie in c) $Q(x) = b_l^l + \ldots + b_0$ $\lim_{x \to \infty} \frac{P(x)}{Q(x)} = \begin{cases} \infty, & \text{falls } a_k \text{ und } b_k \text{ gleiche Vorzeichen} \\ -\infty, & \text{falls } a_k \text{ und } b_k \text{ verschiedene Vorzeichen} \end{cases}$

Literatur

[1] Kreußler, Phister Satz 33.16

LITERATUR LITERATUR

[2] WHK 5.37