# Numerical Methods-Lecture XII: CGE Modelling

(See Harberger 1962, Shoven & Whalley 1984, Gallen & Mulligan 2016)

Trevor Gallen

- Federal Insurance Contributions Act funds Social Security & Medicare
- ▶ In 2015, 7.65% employer, 7.65% employee
- ▶ Every so often, a temporary cut or permanent hike
- Example: in 2010 and 2011, FICA employee portion reduced to 5.65%
- Who benefits?

# HARBERGER 1962: MOTIVATION









- Incidence is important
- ▶ What if we had two industries, two types of labor?
- Labor demand for one depends on labor demand for other (CES)
- Free labor supply means after-tax wages must be equal within type
- Harberger:
  - Two factors: labor and capital
  - ► Two industries: "corporate" and "noncorporate"

|               | Labor | Capita |
|---------------|-------|--------|
| Corporate     | $L_a$ | $K_a$  |
| Non-corporate | $L_b$ | $K_b$  |

Corporate  $L_a$   $K_a$  Non-corporate  $L_b$   $K_b$ 

▶ Who bears the incidence? Is capital harmed? Is labor harmed?

Corporate 
$$L_a$$
  $K_a$  Non-corporate  $L_b$   $K_b$ 

- ▶ Who bears the incidence? Is capital harmed? Is labor harmed?
- ▶ What if  $K_a + K_b$ ,  $L_a + L_b$ , and  $P_a Y_a + P_b Y_b$  stays the same?

$$\begin{array}{ccc} & Labor & Capital \\ Corporate & L_a & \textit{K}_a \\ Non-corporate & L_b & \textit{K}_b \end{array}$$

- ▶ Who bears the incidence? Is capital harmed? Is labor harmed?
- ▶ What if  $K_a + K_b$ ,  $L_a + L_b$ , and  $P_a Y_a + P_b Y_b$  stays the same?
- Ans: Capital can actually benefit, labor harmed!

Corporate 
$$L_a$$
  $K_a$  Non-corporate  $L_b$   $K_b$ 

- ▶ Who bears the incidence? Is capital harmed? Is labor harmed?
- ▶ What if  $K_a + K_b$ ,  $L_a + L_b$ , and  $P_a Y_a + P_b Y_b$  stays the same?
- Ans: Capital can actually benefit, labor harmed!
- ► Why?

- ► Basic idea:
  - Say taxed sector was heavy in untaxed input L
  - With tax, sector shrinks
  - ▶ As taxed sector shrinks, other sector absorbs its K and L
  - Taxed sector releases little K and lots of L
  - If untaxed sector can't absorb much L, price falls, potentially a lot
  - Example
    - ▶ Taxed sector has production function  $min(10L_b, K_b)$
    - Untaxed sector has production function  $L_b^{\alpha} K_b^{1-\alpha}$
    - Elasticity of demand for taxed sector good is very high
    - For untaxed sector to absorb L, wages (all wages!) must decline precipitously

- ► Harberger 1968 gave analytical formulas
- Numerical examples with Cobb-Douglas and Leontief are possible
- ▶ What if we want to go further?
- Want to write down a CGE model

# CGE Models

- Assume functional forms
- ► Interacting agents (agent FOC's)
- Markets clear
- Everything adds up

# CGE Models



### CGE EXAMPLE: GALLEN & MULLIGAN 2016

- Want to understand PPACA
- Two sectors: taxed and untaxed
- ► Two types of labor: low-skill and high-skill
- Many types of firms, some primarily low-skill, some primarily high-skill

#### Gallen & Mulligan 2016

- ► At core, firms differ in two ways
  - Their ability to offer healthcare (administrative overhead)
  - ► Their (ideal) skill composition
- Firms either lose production by administrating healthcare or by not having healthcare

### Gallen & Mulligan 2016: Firs

Firm production for type *i* is:

$$y(i) = z(i)e^{-\delta(i)Ins(i) - (1 - Ins(i))\chi} \left[ (1 - \alpha(i))K(i)^{\frac{\sigma - 1}{\sigma}} + \alpha(i)A(i)L(i)^{\frac{\sigma - 1}{\sigma}} \right]^{\frac{\sigma}{\sigma - 1}}$$

- z(i) is overall productivity
- $\delta(i)$  is insurance cos
- $\triangleright \chi$  is non-insurance cost
- ► *Ins*(*i*) is binary insurance decision
- $ightharpoonup \alpha(i)$  is skill weight
- K(i) is high-skilled labor
- ► *L*(*i*) is low-skilled labor
- $ightharpoonup \sigma$  is elasticity of substitution
- A(i) is low-skill technology
- ▶  $i \in [0, 1]$ , administrative cost distribution quantiles  $\delta(i)$  (also z(i),  $\alpha(i)$ , A(i)).

### GALLEN & MULLIGAN 2016: TAXES

▶ Taxes in sector *i* on factors *L* and *K* (firms):

$$(1+\tau_{iL})w$$
,  $(1+\tau_{iK})r$ 

Reward to work for low- and high-skilled labor:

$$(1-s_L)w$$
,  $(1-s_K)r$ 

# Gallen & Mulligan 2016: Household Preferences

Representative household's utility:

$$\begin{split} &\log\left(\int_{0}^{1}e^{\rho(i)}y(i)^{\frac{\lambda-1}{\lambda}}di\right)^{\frac{\lambda}{\lambda-1}}\\ &-\gamma_{L}\frac{\eta}{1+\eta}\left(\int_{0}^{1}L(i)di\right)^{\frac{1+\eta}{\eta}}\\ &-\gamma_{K}\frac{\eta}{1+\eta}\left(\int_{0}^{1}K(i)di\right)^{\frac{1+\eta}{\eta}} \end{split}$$

- $\triangleright$   $\rho(i)$  reflects consumer preferences over sectors
- lacktriangleright  $\lambda$  is elasticity of substitution over sectoral output
- $\blacktriangleright$   $\eta$  is the Frisch elasticity of labor supply
- $ightharpoonup \gamma_L$  and  $\gamma_K$  are the disutility of work

# Gallen & Mulligan 2016: Household B.C.

Budget constraint:

$$\int_0^1 p(i)y(i)di = (1-s_L)w \int_0^1 L(i)di + (1-s_K)r \int_0^1 K(i)di + b$$

- ▶ Where p(i) is sectoral price
- b is a lump-sum transfer

# Gallen & Mulligan 2016: Equilibrium - I

- Need to know tax rates for {Io − skill, hi − skill} × {none, NGI, ESI}
- ▶ Need to know taste parameters  $\eta, \lambda, \gamma_L, \gamma_H$
- ▶ Need to know distributions for  $\alpha(i)$ ,  $\delta(i)$ ,  $\rho(i)$ , A(i), z(i).
- Our equilibrium will find r and w and firm decisions for employment, output, prices, and coverage such that:
  - industry patterns of employment and consumption maximize utility
  - subject to the HH B.C.
  - Industry employment, output, and coverage are consistent with their utility function
  - Coverage decision comes at minimum production cost
  - Each industry has zero profits

### Gallen & Mulligan 2016: Simple Calibration

- ► Look up initial quantities of labor by sector in March 2012 CPS
- ▶ Assume elasticity of substitution high vs. low-skill labor of 1.5.
- Assume elasticity of ESI offering with respect to price
- Measure tax rates

# Gallen & Mulligan 2016: Tax Rates

ACA Tax Rates

| Employer Type | without ACA |           | with ACA   |           |
|---------------|-------------|-----------|------------|-----------|
|               | High skill  | Low Skill | High skill | Low skill |
|               | Tax Amounts |           |            |           |
| ESI           | -2,554      | -2,421    | -1,562     | 7,363     |
| NGI           | 0           | 0         | 2,694      | 2,295     |
| Uninsured     | 0           | 0         | 6,027      | 13,192    |
| Employer Type | Tax Rates   |           |            |           |
| ESI           | 4.6%        | 0.2%      | 5.8%       | 36.8%     |
| NGI           | 7.7%        | 7.7%      | 11.2%      | 15.6%     |
| Uninsured     | 7.7%        | 7.7%      | 15.8%      | 65.9%     |

# Gallen & Mulligan 2016: Functional forms

- ▶ Assume consumer preferences over sector  $\rho(i)$  is linear
- Assume skill intensity  $\alpha(i)$  and cost of administrating health insurance  $\delta(i)$  are linear.
- ▶ Set A(i) to a constant  $(\alpha(i))$  will cause low skill to vary).

### Gallen & Mulligan 2016: Matching Moments

- ▶ Need to set constant and slope of  $\rho$ ,  $\alpha$ , and  $\delta$ .
- ▶ Don't need to set levels of  $\delta(i) \xi$  and the level parameter for taste  $\rho(i)$  bc irrelevant.
- ▶ Set slope of  $\delta(i)$  such that elasticity of ESI offering wrt price is -1/3
- ▶ Set level of  $\alpha$ , slope of  $\alpha$ , and slope of  $\rho$  so that:
  - Proportion of high-skilled and low-skilled labor demanded is correct
  - 2. Average ESI coverage rate is correct
  - 3. Low-wkilled ESI coverage rate is correct

# Gallen & Mulligan 2016: Matching Moments-I

Figure 3. Compensation Ratios and the Surplus from ESI



# Gallen & Mulligan 2016: Matching Moments-II



# Gallen & Mulligan 2016: Matching Moments-II



### Gallen & Mulligan 2016: Results-I



### Gallen & Mulligan 2016: Results-II



### Gallen & Mulligan 2016: Results-II



#### Gallen & Mulligan 2016: Results

- ▶ Less ESI, as  $\sim$ 8% of firms drop out of ESI
- ► A lot less low-skill ESI, as low-skill (non-ESI) firms become more intensive in low-skill workers
- More high-skill ESI, as high-skill (ESI) firms become more intensive in high-skill workers
- $ho \sim 3\%$  less working hours, as low-skill step out of labor force
- $\, {\sim}\, 2\%$  less output, as firms skill mix becomes distorted and low-skill step out of work
- 20 million people (10 million workers) leave ESI
- ► Effects are *extremely* nonlinear, depend on implementation rate

Firms, workers are making a joint decision

- Firms, workers are making a *joint* decision
- Workers in one sector impact workers from another sector

- Firms, workers are making a *joint* decision
- ▶ Workers in one sector impact workers from another sector
- Normally, we might not care about this, but differential rewards are dramatic!

- Firms, workers are making a *joint* decision
- ▶ Workers in one sector impact workers from another sector
- Normally, we might not care about this, but differential rewards are dramatic!
- Any elasticity of substitution (and difference) and you're cooking with gas

- Firms, workers are making a *joint* decision
- ▶ Workers in one sector impact workers from another sector
- Normally, we might not care about this, but differential rewards are dramatic!
- Any elasticity of substitution (and difference) and you're cooking with gas
- Some industries "win," some industries "lose"

- Firms, workers are making a *joint* decision
- Workers in one sector impact workers from another sector
- Normally, we might not care about this, but differential rewards are dramatic!
- Any elasticity of substitution (and difference) and you're cooking with gas
- Some industries "win," some industries "lose"
- ► Calibration is important! Massachusetts is high skill state with primarily high skill industries