

Gram-Schmidtová ortogonalizácia

Peter Cyprich

Pôvodné dáta

Časový rad zobrazuje hodnoty akcií spoločnosti EA Dáta som rozdelil na 4 časti rovnakej veľkosti

Porovnanie jednotlivých častí

Časti 1 až 4 na jednom časovom úseku Môžeme vidieť, že dáta v 3. časti (žltá) sú viditeľne nižšie, ako napr. dáta v 1. časti (modrá)

Porovnanie jednotlivých častí

Časti 1 až 4 na jednom časovom úseku - vycentrované pre lepšiu vizualizáciu Môžeme vidieť, že dáta jednotlivých častí sú pomerne odlišné

Ortonormálna mocninová báza

Ortonormálna mocninová báza 6-rozmerného podpriestoru

Koeficienty priemetu

Nižšie sú vypísané koeficienty priemetu dát na bázické vektory jednotlivých podpriestorov

Riadky predstavujú jednotlivé časti dát (1. časť až 4. časť) Stĺpce predstavujú rozmer príslušného podpriestoru (1-rozmerný až 6-rozmerný podpriestor)

Tieto údaje budú lepšie viditeľné na nasledujúcich grafoch

0.0000	2.9073	-2.1562	3.1643	2.9703	-2.9703
-0.0000	-22.2510	1.4800	2.7103	0.1270	-0.1231
0.0000	-7.0129	4.4958	-4.2769	-2.2041	2.2056
-0.0000	21.4219	-2.2509	2.1414	0.4146	-0.4181

Priemet dát na bázický vektor 2-rozmerného podpriestoru Môžeme vidieť, že iba prvá a posledná časť má kladný koeficient, čiže rastú

1. časť	2.9073	
2. časť	-22.2510	
3. časť	-7.0129	
4. časť	21.4219	

Priemet dát na bázický vektor 3-rozmerného podpriestoru Môžeme vidieť, že prvá a posledná časť má záporný koeficient, čiže sú konkávne

1. časť	-2.1562	
2. časť	1.4800	
3. časť	4.4958	
4. časť	-2.2509	

Priemet dát na bázický vektor 4-rozmerného podpriestoru Na časti 3 môžeme vidieť, ako záporný koeficient ovplyvňuje polynóm 3. stupňa

1. časť	3.1643	
2. časť	2.7103	
3. časť	-4.2769	
4. časť	2.1414	

Priemet dát na bázický vektor 5-rozmerného podpriestoru Môžeme vidieť, že 2. a 4. časť majú v porovnaní s ostatnými časťami výrazne nižší koeficient

1. časť	2.9703	
2. časť	0.1270	
3. časť	-2.2041	
4. časť	0.4146	

Priemet dát na bázický vektor 6-rozmerného podpriestoru Môžeme vidieť, že 2. a 4. časť majú v porovnaní s ostatnými časťami výrazne nižší koeficient

1. časť	-2.9703	
2. časť	-0.1231	
3. časť	2.2056	
4. časť	-0.4181	

Aproximácia pomocou <u>prvých dvoch</u> najvýznamnejších mocninových trendov Môžeme vidieť aj porovnanie s pôvodným priemetom

Aproximácia pomocou <u>prvých troch</u> najvýznamnejších mocninových trendov Môžeme vidieť aj porovnanie s pôvodným priemetom Pribúdajúcim počtom mocninových trendov sa aproximácia zlepšuje

Aproximácia pomocou <u>prvých štyroch</u> najvýznamnejších mocninových trendov Môžeme vidieť aj porovnanie s pôvodným priemetom Čím vyšší bol koeficient priemetu, tým viac je ovplyvnená aproximácia

Aproximácia pomocou <u>prvých piatich</u> najvýznamnejších mocninových trendov Môžeme vidieť aj porovnanie s pôvodným priemetom

Druhá časť (koef. priemetu ~0.12) sa takmer vôbec nezmenila v porovnaní s prvou časťou (koef. priemetu ~2.97)

