

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summary

What is Al

What Is ML

Al Jargo

ML Obsession

Use cases of ML i Astronomy

References

end

UNLOCKING AI ESSENTIEL CONCEPTS FOR ML MYSTERY

MAJDOUB Adnane

EAIC Co-Training Head
Second-year AI Engineering Student

ENSIAS AI Club x Astronomies

December 13, 2023

Summary

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summary

What is AI ?

What Is ML

Al Jargo

ML Obsession

Use cases of ML in Astronomy

References

- 1 What is Al?
- 2 What Is ML?
- 3 Al Jargon
- 4 ML Obsession
- 5 Use cases of ML in Astronomy

Al definition

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summary

What is AI ?

What Is MI

Al Jargo

MI Obsession

Use cases of ML in Astronomy

References

end

Artificial Intelligence

Artificial intelligence is the simulation of human intelligence processes by machines, especially computer systems

Types of Al

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summary

What is AI ?

What Is ML

Al Jargo

ML Obsession

Use cases of ML in Astronomy

Reference

ML Definition

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summary

What is Al ?

What Is ML?

Al Jargo

ML Obsession

Use cases of ML i

Reference

end

Machine Learning

The process of making the machine able to learn from the data it got, thus without the intervention of human beings.

Learning From Experience

Data from the past + Algorithm \rightarrow Find module (parameters) \rightarrow Prediction of the future

Types of ML

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summary

VVIIat IS AI

What Is ML?

Al Jargo

IVIL Obsession

Use cases of ML in Astronomy

References

Types of ML

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summary

What is AI ?

What Is ML?

Al Jargo

ML Obsession

Use cases of ML is Astronomy

References

AI & ML & DL

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summary

What is AI?

What Is ML?

Al Jargo

ML Obsession

Use cases of ML i

References

Algorithm

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summary

What is AI

What Is ML

Al Jargon

ML Obsession

Use cases of ML i Astronomy

Reference

end

An Algorithm

A finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation

Algorithm 1 Check Even or Odd

1: **procedure** CHECKEVENORODD(n) ▷ Input: Integer

2: **if** n is divisible by 2 **then**

3: **Output:** "Even"

4: else

5: **Output:** "Odd"

6: **end if**

7: end procedure

DATA & DATASet

Essentiel Concepts for ML Mystery

Al Jargon

DATA

Facts and statistics collected together for reference or analysis.

Data set

A data set (or dataset) is a collection of data.

Entity

An entity is something that exists and can be distinctly identified. For example, in a database of employees, each employee is an entity.

Attributes

An attribute is a characteristic of an entity. For instance, in the context of an employee entity, attributes might include name, employee ID, age, and salary

Examples: Tabular Data

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summar

What is Al

What Is MI

Al Jargon

ML Obsession

Use cases of ML Astronomy

References

end

Titanic Data Set

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld											
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	s
888	- 1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	s
889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	s
890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

Examples: Tabular Data

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summary

What is Al

What Is ML

AI Jargon

ML Obsession

Use cases of ML in Astronomy

References

end

Features (Input Variables) The attributes that the model uses to make predictions or classifications

Target (Output Variables) The variable that the model is trying to predict or classify. It's what you want your machine learning model to learn and make predictions about

Exempels: Images Data

Essentiel Concepts for ML Mystery

MA IDOUB Adnane

Summar

What is Al

\\/\bar\ |= \\/\|

Al Jargon

ML Obsession

Use cases of ML i Astronomy

Reference

end

MNIST Data Set

Objectif: Classification vs Regression

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summary

What is Al ?

What Is ML

Al Jargon

ML Obsession

Use cases of ML i Astronomy

Reference

end

Is it a Classification or Regression task?

Fahrenheit

Train Test

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summary

What is AI ?

What Is ML

Al Jargon

ML Obsession

Use cases of ML i

Reference

end

How to evaluate our model?

Error

Difference between a single actual value and a single predicted value

Lost

The average error over training data

Does this task really required ML?

Essentiel Concepts for ML Mystery

MA IDOUB Adnane

Summary

What is Al

vvnat is iviL

Al Jargo

ML Obsession

Use cases of ML in Astronomy

References

When to Use Machine Learning?

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summary

What is AI ?

What Is ML

Al Jargo

ML Obsession

Use cases of ML in Astronomy

References

- There exists a pattern that can be learned, leading to potential performance improvement.
- No straightforward programmable solution is available.
- Sufficient data is available for the model to learn from.

Decision Trees for Automated Identification of Cosmic-Ray Hits in Hubble

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summary

What is Al ?

What Is MI

Al Jargo

ML Obsession

Use cases of ML in Astronomy

References

end

Publications of the Astronomical Society of the Pacific 107: 279-288, 1995 March

Decision Trees for Automated Identification of Cosmic-Ray Hits in *Hubble Space Telescope* Images

STEVEN SALZBERG1

Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 Electronic mail: salzberg@cs.jhu.edu

RUPALI CHANDAR

Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 Electronic mail: rupali⊕jhufos.pha.jhu.edu

HOLLAND FORD

Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218

Electronic mail: ford@stsci.edu

SREERAMA K. MURTHY

Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218

Electronic mail: murthy@cs.jhu.edu

RICHARD WHITE

Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218
Electronic mail: rlw@stscl.edu

Received 1994 April 18: accepted 1994 November 30

ABSTRACT. We have developed several algorithms for classifying objects in astronomical images. These algorithms have been used to label stars, galaxies, constituein gray, plate defects, and other types of objects in sky surveys and other image databases. Our primary goal has been to develop techniques that classify with high accuracy, in order to ensure that celestail objects are not stored in the wrong catalogs, in addition, classification time must be fast due to the large number of classifications and to future needs for on-line classification in the strong catalogs. In addition, or commict put his in *Habble Spare Telescope* images. This method produces classifies with over 55% accuracy using data from a single, unquired image. Our experiments indicate that this accuracy will get even higher if methods for climinating background noise improve.

k-Nearest Neighbors for automated classification of celestial objects

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summary

What is Al

What Is ML

Al Jargo

ML Obsession

Use cases of ML in Astronomy

References

end

Science in China Series G: Physics, Mechanics & Astronomy

© 2008 SCIENCE IN CHINA PRESS

© 2008 SCIENCE IN CHINA PRESS

Springer-Verlag

www.scichina.com phys.scichina.com www.springerlink.com

k-Nearest Neighbors for automated classification of celestial objects

LI LiLi^{1,2,3†}, ZHANG YanXia¹ & ZHAO YongHeng¹

National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China;

² Department of Physics, Hebei Normal University, Shijiazhuang 050016, China;

3 Weishanlu Middle School, Tianjin 300222, China

The nearest neighbors (NNs) classifiers, especially the k-Nearest Neighbors (kNns) algorithm, are among the simplest and yet most efficient classification rules and widely used in practice. It is a nonparametric method of pattern recognition. In this paper, k-Nearest Neighbors, one of the most commonly used machine learning methods, work in automatic classification of multi-wavelength astronomical objects. Through the experiment, we conclude that the running speed of the kNN classier is rather fast and the classification accuracy is up to 97.73%. As a result, it is efficient and applicable to discriminate active objects from stars and normal galaxies with this method. The classifiers trained by the kNN method can be used to solve the automated classification problem faced by astronomy and the virtual observatory (VO).

c-Nearest Neighbors data analysis classification astronomical catalogues

Li, Zhang, and Zhao 2023

First Over Black Hole Image Reconstruction

Essentiel Concepts for ML Mystery

MAJDOUB Adnance

Summary

What is Al

\A/I--- I- N/II

A 1 1

ML Obsession

Use cases of ML in Astronomy

References

end

Supermassive black hole M87

"First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole" 2019

References I

Essentiel Concepts for ML Mystery

MA IDOUB Adnane

Summary

What is Al

What Is ML

Al Jargo

ML Obsession

Use cases of ML in Astronomy

References

end

"First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole" (Apr. 2019). In: *The Astrophysical Journal Letters*. DOI: 10.3847/2041-8213/ab0c57.

Li, LiLi, YanXia Zhang, and YongHeng Zhao (2023). "k-Nearest Neighbors for Automated Classification of Celestial Objects". In: *National Astronomical Observatories, Chinese Academy of Sciences*. URL: https://doi.org/10.1234/jastro.2023.xxx.x.

Salzberg, Steven et al. (Mar. 1995). "Decision Trees for Automated Identification of Cosmic-Ray Hits in Hubble Space Images". In: Publications of the Astronomical Society of the Pacific. DOI: 10.1086/133592. eprint: https://iopscience.iop.org/article/10.1086/133592.

Essentiel Concepts for ML Mystery

MAJDOUB Adnane

Summar

What is Al

What Is ML

Al Jargo

ML Obsession

Use cases of ML in Astronomy

References

end

UNLOCKING AI ESSENTIEL CONCEPTS FOR ML MYSTERY

MAJDOUB Adnane

EAIC Co-Training Head
Second-year AI Engineering Student

ENSIAS AI Club x Astronomies

December 13, 2023