4 - SPAZI VETTORIALI \mathbb{R}^n

- 1. Verificare che in \mathbf{R}^4 vettori : $\mathbf{u} = (1,0,0,1)$, $\mathbf{v} = (2,0,1,1)$, $\mathbf{w} = (1,0,1,0)$ sono linearmente dipendenti e scrivere uno di essi come combinazione lineare degli altri due.
- 2. Trovare un sottospazio di \mathbb{R}^3 che contiene i vettori $\mathbf{u} = \mathbf{i} \mathbf{k}$ e $\mathbf{v} = \mathbf{i} + \mathbf{j}$.
- 3. I vettori $\mathbf{u} = \mathbf{i} \mathbf{j}$, $\mathbf{v} = \mathbf{j}$, $\mathbf{w} = 2\mathbf{j}$ generano un sottospazio di \mathbf{R}^3 (quale?). Il vettore $\mathbf{t} = 2\mathbf{j} + 3\mathbf{k}$ sta in tale sottospazio?
- 4. Dati in \mathbf{R}^4 i vettori : $\mathbf{u} = (1,0,0,1)$, $\mathbf{v} = (2,0,1,1)$, $\mathbf{w} = (1,0,1,0)$, verificare che il vettore (3,0,1,2) appartiene al sottospazio $V = \mathcal{L}(\mathbf{u}, \mathbf{v}, \mathbf{w})$, mentre il vettore (3,1,1,2) non vi appartiene.
- 5. Verificare che l'insieme $\{V=(x,y,z)\in\mathbf{R}^3:x-y+z+1=0,x=0\}$ non è un sottospazio di \mathbf{R}^3 .
- 6. Studiando i generatori, dire se i seguenti sottospazi di ${\bf R}^4$ coincidono o no:

$$\mathcal{L}((1,2,-1,3),(2,4,1,-2),(3,6,3,-7))$$

 $\mathcal{L}((1,2,-4,11),(2,4,-5,14))$

- 7. Verificare che l'insieme $\{V=(x,y,z)\in {\bf R}^3: x-y+z=0, x=0\}$ è un sottospazio di ${\bf R}^3$ e trovarne una base .
- 8. Consideriamo i seguenti vettori di \mathbb{R}^4 :

$$\mathbf{w}_1 = (1, 0, 1, 0), \mathbf{w}_2 = (2, h, 2, h), \mathbf{w}_3 = (1, h, 1, 2h)$$

Trovare la dimensione di $\mathcal{L}(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3)$ al variare del parametro reale h.

9. Verificare che $\mathbf{u} = \mathbf{i} - \mathbf{k}$, $\mathbf{v} = \mathbf{i} + \mathbf{j}$, $\mathbf{w} = \mathbf{i}$ sono una base per i vettori applicati in O. Trovare le componenti del vettore $\mathbf{t} = 2\mathbf{j} + 3\mathbf{k}$ rispetto a tale base.

- 10. In ${\bf R^4}$ si considerino i vettori $a=(3,-1,2,0),\,b=(3,0,1,-1)$ e c=(0,-2,2,2). Quale delle seguenti affermazioni è vera?
 - (a) $\dim(\mathcal{L}(a, b, c)) = 3$.
 - (b) $\dim(\mathcal{L}(a, b, c)) = 2$.
 - (c) $a b + 5c \notin \mathcal{L}(a, b)$.
 - (d) Esiste $d \in \mathbf{R}^4$ tale che (a, b, c, d) sia una base di \mathbf{R}^4 .
- 11. Siano dati i vettori di \mathbf{R}^3 : $\mathbf{u} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 2 \\ t \\ 0 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$ Quale delle seguenti affermazioni è vera?
 - (a) $dim \mathcal{L}(\mathbf{u}, \mathbf{v}, \mathbf{w}) = \mathbf{3}$ per ogni $t \in \mathbf{R}$.
 - (b) Esiste $t \in \mathbf{R}$ tale che $\mathbf{w} \in \mathcal{L}(\mathbf{u}, \mathbf{v})$.
 - (c)
 $\mathbf{u},\,\mathbf{v},\,\mathbf{w}$ sono linearmente dipendenti per ogni
 $t\in\mathbf{R}.$
 - (d) Esiste $t \in \mathbf{R}$ tale che $\mathbf{u} \in \mathcal{L}(\mathbf{v}, \mathbf{w})$.
- 12. Sia V il sottinsieme di ${\bf R^3}$ definito da

$$V := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{R^3} \mid \begin{array}{c} x - y + 2z = 0 \\ x + y + z = 0 \end{array} \right\}$$

Quale delle seguenti affermazioni è vera?

- (a) V contiene 3 vettori linearmente indipendenti.
- (b) V è un sottospazio di \mathbb{R}^3 di dimensione 2.
- (c) V è un sottospazio di \mathbb{R}^3 di dimensione 1.
- (d) V è l'insieme vuoto.

4 - SOLUZIONI

- 9. $a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0}$ se e solo se a + b + c = 0, b = 0, -a = 0, quindi $\mathbf{u}, \mathbf{v}, \mathbf{w}$ sono linearmente indipendenti e siccome sono in numero pari alla dimensione di \mathbf{R}^3 , sono una base. Per trovare le componenti di \mathbf{t} rispetto a $(\mathbf{u}, \mathbf{v}, \mathbf{w})$, basta cercare i coefficienti a, b, c tali che $\mathbf{t} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$; si trovano le componenti (-3, 2, 1).
- 10(b).
- 11(d).
- 12(c).