LSM6DSR

iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope

Datasheet - production data

Features

- Extended full-scale range for gyroscope up to 4000 dps
- · High stability over temperature and time
- · Smart FIFO up to 9 kbytes
- Android compliant
- Auxiliary SPI for OIS data output for gyroscope and accelerometer
- ±2/±4/±8/±16 g full scale
- ±125/±250/±500/±1000/±2000/±4000 dps full scale
- Analog supply voltage: 1.71 V to 3.6 V
- SPI / I²C & MIPI I3CSM serial interface with main processor data synchronization
- Supports sensor synchronization S4S for Qualcomm, full spec compliant (I²C,MIPI I3CSM, SPI)
- Advanced pedometer, step detector and step counter
- Significant Motion Detection, Tilt detection
- Programmable finite state machine: accelerometer, gyroscope, and external sensors
- Standard interrupts: free-fall, wakeup, 6D/4D orientation, click and double-click
- Embedded temperature sensor
- · ECOPACK, RoHS and "Green" compliant

Applications

- · Motion tracking and gesture detection
- · Virtual and augmented reality
- OIS for camera applications
- · Sensor hub
- Indoor navigation
- IoT and connected devices

- Sports applications
- · Vibration monitoring and compensation
- Drones
- Robotics
- · High-precision systems

Description

The LSM6DSR is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope with an extended full-scale range for the gyroscope, up to 4000 dps, and high stability over temperature and time.

The LSM6DSR supports main OS requirements, offering real, virtual and batch sensors with 9 kbytes with FIFO compression up to three times for dynamic data batching.

ST's family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes.

The LSM6DSR has a full-scale acceleration range of $\pm 2/\pm 4/\pm 8/\pm 16$ g and an angular rate range of $\pm 125/\pm 250/\pm 500/\pm 1000/\pm 2000/\pm 4000$ dps.

The LSM6DSR embeds a broad range of advanced functions supporting Android wearable sensors and programmable sensors (suitable for activity recognition).

The LSM6DSR is available in a plastic land grid array (LGA) package.

Table 1. Device summary

Part number	Temp. range [°C]	Package	Packing
LSM6DSR	-40 to +85	LGA-14L	Tray
LSM6DSRTR	-40 to +85	(2.5x3x0.83 mm)	Tape & Reel

Contents LSM6DSR

Contents

1	Ove	rview .		19
2	Emb	edded I	low-power features	20
	2.1	Tilt det	tection	21
	2.2	Signific	cant Motion Detection	21
	2.3	Finite	State Machine	21
3	Pin o	descript	tion	23
	3.1	Pin co	nnections	24
4	Mod	ule spe	cifications	26
	4.1	Mecha	anical characteristics	26
	4.2	Electri	cal characteristics	29
	4.3	Tempe	erature sensor characteristics	30
	4.4	Comm	nunication interface characteristics	31
		4.4.1	SPI - serial peripheral interface	31
		4.4.2	I ² C - inter-IC control interface	32
	4.5	Absolu	ute maximum ratings	33
	4.6	Termin	nology	34
		4.6.1	Sensitivity	34
		4.6.2	Zero-g and zero-rate level	34
5	Digit	tal inter	faces	35
	5.1	I ² C/SP	PI interface	35
		5.1.1	I ² C serial interface	35
		5.1.2	SPI bus interface	38
	5.2	MIPI I3	3C SM interface	42
		5.2.1	MIPI I3C SM slave interface	
		5.2.2	MIPI I3C SM CCC supported commands	42
	5.3	I ² C/I3C	C coexistence in LSM6DSR	44
	5.4		r I ² C interface	
	5.5	Auxilia	rry SPI interface	45

LSM6DSR Contents

6	Func	tionality	46
	6.1	Operating modes	46
	6.2	Gyroscope power modes	46
	6.3	Accelerometer power modes	46
	6.4	Block diagram of filters	47
		6.4.1 Block diagrams of the accelerometer filters	. 47
		6.4.2 Block diagrams of the gyroscope filters	. 49
	6.5	OIS	52
	6.6	FIFO	
		6.6.1 Bypass mode	
		6.6.2 FIFO mode	
		6.6.3 Continuous mode	
		6.6.4 Continuous-to-FIFO mode	
		6.6.5 Bypass-to-Continuous mode	
		6.6.6 Bypass-to-FIFO mode	
		6.6.7 FIFO reading procedure	. 56
7	Appli	cation hints	57
	7.1	LSM6DSR electrical connections in Mode 1	57
	7.2	LSM6DSR electrical connections in Mode 2	58
	7.3	LSM6DSR electrical connections in Mode 3 and Mode 4	59
8	Reais	ster mapping	63
9	_	ster description	
	9.1	FUNC_CFG_ACCESS (01h)	66
	9.2	PIN_CTRL (02h)	66
	9.3	S4S_TPH_L (04h)	67
	9.4	S4S_TPH_H (05h)	67
	9.5	S4S_RR (06h)	67
	9.6	FIFO_CTRL1 (07h)	68
	9.7	FIFO_CTRL2 (08h)	68
	9.8	FIFO_CTRL3 (09h)	69
	9.9	FIFO_CTRL4 (0Ah)	
	9.10	COUNTER_BDR_REG1 (0Bh)	

9.11	COUNTER_BDR_REG2 (0Ch)	71
9.12	INT1_CTRL (0Dh)	72
9.13	INT2_CTRL (0Eh)	73
9.14	WHO_AM_I (0Fh)	73
9.15	CTRL1_XL (10h)	74
9.16	CTRL2_G (11h)	75
9.17	CTRL3_C (12h)	76
9.18	CTRL4_C (13h)	77
9.19	CTRL5_C (14h)	78
9.20	CTRL6_C (15h)	79
9.21	CTRL7_G (16h)	80
9.22	CTRL8_XL (17h)	81
9.23	CTRL9_XL (18h)	83
9.24	CTRL10_C (19h)	83
9.25	ALL_INT_SRC (1Ah)	84
9.26	WAKE_UP_SRC (1Bh)	84
9.27	TAP_SRC (1Ch)	85
9.28	D6D_SRC (1Dh)	85
9.29	STATUS_REG (1Eh) / STATUS_SPIAux (1Eh)	86
9.30	OUT_TEMP_L (20h), OUT_TEMP_H (21h)	86
9.31	OUTX_L_G (22h) and OUTX_H_G (23h)	87
9.32	OUTY_L_G (24h) and OUTY_H_G (25h)	87
9.33	OUTZ_L_G (26h) and OUTZ_H_G (27h)	88
9.34	OUTX_L_A (28h) and OUTX_H_A (29h)	88
9.35	OUTY_L_A (2Ah) and OUTY_H_A (2Bh)	89
9.36	OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh)	89
9.37	EMB_FUNC_STATUS_MAINPAGE (35h)	90
9.38	FSM_STATUS_A_MAINPAGE (36h)	90
9.39	FSM_STATUS_B_MAINPAGE (37h)	91
9.40	STATUS_MASTER_MAINPAGE (39h)	91
9.41	FIFO_STATUS1 (3Ah)	92
9.42	FIFO_STATUS2 (3Bh)	92

	9.43	TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h)	93
	9.44	TAP_CFG0 (56h)	94
	9.45	TAP_CFG1 (57h)	95
	9.46	TAP_CFG2 (58h)	95
	9.47	TAP_THS_6D (59h)	96
	9.48	INT_DUR2 (5Ah)	96
	9.49	WAKE_UP_THS (5Bh)	97
	9.50	WAKE_UP_DUR (5Ch)	97
	9.51	FREE_FALL (5Dh)	98
	9.52	MD1_CFG (5Eh)	99
	9.53	MD2_CFG (5Fh)	00
	9.54	S4S_ST_CMD_CODE (60h)	00
	9.55	S4S_DT_REG (61h)	01
	9.56	I3C_BUS_AVB (62h)	01
	9.57	INTERNAL_FREQ_FINE (63h)	02
	9.58	INT_OIS (6Fh)	03
	9.59	CTRL1_OIS (70h)	04
	9.60	CTRL2_OIS (71h)	05
	9.61	CTRL3_OIS (72h)	06
	9.62	X_OFS_USR (73h)	07
	9.63	Y_OFS_USR (74h)	07
	9.64	Z_OFS_USR (75h)	07
	9.65	FIFO_DATA_OUT_TAG (78h)	80
	9.66	FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah) 10	09
	9.67	FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch) 10	09
	9.68	FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh) 10	09
10	Embe	edded functions register mapping	10
11	Embe	edded functions register description11	12
	11.1	PAGE_SEL (02h)	12
	11.2	ADV_PEDO (03h)	12
	11.3	EMB_FUNC_EN_A (04h)	13

11.4	EMB_FUNC_EN_B (05h)	113
11.5	PAGE_ADDRESS (08h)	114
11.6	PAGE_VALUE (09h)	114
11.7	EMB_FUNC_INT1 (0Ah)	114
11.8	FSM_INT1_A (0Bh)	115
11.9	FSM_INT1_B (0Ch)	116
11.10	EMB_FUNC_INT2 (0Eh)	117
11.11	FSM_INT2_A (0Fh)	118
11.12	FSM_INT2_B (10h)	119
11.13	EMB_FUNC_STATUS (12h)	120
11.14	FSM_STATUS_A (13h)	120
11.15	FSM_STATUS_B (14h)	121
11.16	PAGE_RW (17h)	121
11.17	EMB_FUNC_FIFO_CFG (44h)	122
11.18	FSM_ENABLE_A (46h)	122
11.19	FSM_ENABLE_B (47h)	123
11.20	FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)	123
11.21	FSM_LONG_COUNTER_CLEAR (4Ah)	
	FSM_OUTS1 (4Ch)	
	FSM_OUTS2 (4Dh)	
	FSM_OUTS3 (4Eh)	
11.25	FSM_OUTS4 (4Fh)	126
11.26	FSM_OUTS5 (50h)	126
11.27	FSM_OUTS6 (51h)	127
11.28	FSM_OUTS7 (52h)	127
11.29	FSM_OUTS8 (53h)	128
11.30	FSM_OUTS9 (54h)	128
11.31	FSM_OUTS10 (55h)	129
11.32	FSM_OUTS11 (56h)	129
11.33	FSM_OUTS12 (57h)	130
11.34	FSM_OUTS13 (58h)	130
11.35	FSM OUTS14 (59h)	131

LSM6DSR Contents

	11.36	FSM_OUTS15 (5Ah)	1
	11.37	FSM_OUTS16 (5Bh)	32
		EMB_FUNC_ODR_CFG_B (5Fh)	
	11.39	STEP_COUNTER_L (62h) and STEP_COUNTER_H (63h) 13	3
	11.40	EMB_FUNC_SRC (64h)	33
		EMB_FUNC_INIT_A (66h)	
		EMB_FUNC_INIT_B (67h)	
12	Embe	dded advanced features pages13	5
13	Embe	dded advanced features register description	8
	13.1	Page 0 - Embedded advanced features registers	8
		13.1.1 MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh) 13	38
		13.1.2 MAG_OFFX_L (C0h) and MAG_OFFX_H (C1h)	38
		13.1.3 MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h)	}9
		13.1.4 MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h)	39
		13.1.5 MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)	ł0
		13.1.6 MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h)	łO
		13.1.7 MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)	∤1
		13.1.8 MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)14	ļ1
		13.1.9 MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh)	12
		13.1.10 MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h)	
		13.1.11 MAG_CFG_A (D4h)	
		13.1.12 MAG_CFG_B (D5h)	
	13.2	Page 1 - Embedded advanced features registers	4
		13.2.1 FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh) 14	14
		13.2.2 FSM_PROGRAMS (7Ch)	14
		13.2.3 FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh) 14	ŀ5
		13.2.4 PEDO_CMD_REG (83h)	
		13.2.5 PEDO_DEB_STEPS_CONF (84h)	
		13.2.6 PEDO_SC_DELTAT_L (D0h) & PEDO_SC_DELTAT_H (D1h) 14	6
14	Sens	or hub register mapping14	7
15	Sens	or hub register description14	.9
	15.1	SENSOR_HUB_1 (02h)	.9

15.2	SENSOR_HUB_2 (03h)	149
15.3	SENSOR_HUB_3 (04h)	149
15.4	SENSOR_HUB_4 (05h)	150
15.5	SENSOR_HUB_5 (06h)	150
15.6	SENSOR_HUB_6 (07h)	150
15.7	SENSOR_HUB_7 (08h)	151
15.8	SENSOR_HUB_8 (09h)	151
15.9	SENSOR_HUB_9 (0Ah)	151
15.10	SENSOR_HUB_10 (0Bh)	152
15.11	SENSOR_HUB_11 (0Ch)	152
15.12	SENSOR_HUB_12 (0Dh)	152
15.13	SENSOR_HUB_13 (0Eh)	153
15.14	SENSOR_HUB_14 (0Fh)	153
15.15	SENSOR_HUB_15 (10h)	153
15.16	SENSOR_HUB_16 (11h)	154
15.17	SENSOR_HUB_17 (12h)	154
15.18	SENSOR_HUB_18 (13h)	154
15.19	MASTER_CONFIG (14h)	155
15.20	SLV0_ADD (15h)	155
15.21	SLV0_SUBADD (16h)	156
15.22	SLAVE0_CONFIG (17h)	156
15.23	SLV1_ADD (18h)	157
15.24	SLV1_SUBADD (19h)	157
15.25	SLAVE1_CONFIG (1Ah)	157
15.26	SLV2_ADD (1Bh)	158
15.27	SLV2_SUBADD (1Ch)	158
15.28	SLAVE2_CONFIG (1Dh)	158
15.29	SLV3_ADD (1Eh)	159
15.30	SLV3_SUBADD (1Fh)	159
15.31	SLAVE3_CONFIG (20h)	159
15.32	DATAWRITE_SLV0 (21h)	160
15.33	STATUS_MASTER (22h)	160

LSM6DSR	Con	tents
16	Soldering information	161
17	Package information	162
	17.1 LGA-14L package information	162
	17.2 LGA-14 packing information	. 163
18	Revision history	165

List of tables LSM6DSR

List of tables

Table 1.	Device summary	1
Table 2.	Pin description	
Table 3.	Mechanical characteristics	
Table 4.	Electrical characteristics	
Table 5.	Temperature sensor characteristics	
Table 6.	SPI slave timing values (in mode 3)	
Table 7.	I ² C slave timing values	
Table 8.	Absolute maximum ratings	
Table 9.	Serial interface pin description	
Table 10.	I ² C terminology	
Table 11.	SAD+Read/Write patterns	
Table 12.	Transfer when master is writing one byte to slave	
Table 13.	Transfer when master is writing multiple bytes to slave	
Table 14.	Transfer when master is receiving (reading) one byte of data from slave	
Table 15.	Transfer when master is receiving (reading) multiple bytes of data from slave	
Table 16.	MIPI I3C SM CCC commands	
Table 17.	Master I ² C pin details	
Table 18.	Auxiliary SPI pin details	
Table 19.	Gyroscope LPF2 bandwidth selection	
Table 20.	Internal pin status	
Table 21.	Registers address map	
Table 22.	FUNC_CFG_ACCESS register	
Table 23.	FUNC_CFG_ACCESS register description	
Table 24.	PIN_CTRL register	
Table 25.	PIN_CTRL register description	
Table 26.	S4S_TPH_L register	
Table 27.	S4S_TPH_L register description.	
Table 28.	S4S_TPH_H register	
Table 29.	S4S_TPH_H register description	
Table 30.	S4S_RR register	
Table 31.	S4S_RR register description.	
Table 32.	FIFO_CTRL1 register	
Table 33.	FIFO_CTRL1 register description	
Table 34.	FIFO_CTRL2 register	
Table 35.	FIFO_CTRL2 register description	
Table 36.	FIFO_CTRL3 register	
Table 37.	FIFO_CTRL3 register description	
Table 38.	FIFO_CTRL4 register	
Table 39.	FIFO_CTRL4 register description	70
Table 40.	COUNTER_BDR_REG1 register	
Table 41.	COUNTER_BDR_REG1 register description	
Table 42.	COUNTER_BDR_REG2 register	
Table 43.	COUNTER BDR REG2 register description	71
Table 44.	INT1_CTRL register	
Table 45.	INT1_CTRL register description	72
Table 46.	INT2_CTRL register	
Table 47.	INT2_CTRL register description	73
Table 48.	WhoAml register	

Table 49.	CTRL1_XL register	74
Table 50.	CTRL1_XL register description	
Table 51.	Accelerometer ODR register setting	
Table 52.	CTRL2_G register	
Table 53.	CTRL2_G register description	
Table 54.	Gyroscope ODR configuration setting	
Table 55.	CTRL3_C register	
Table 56.	CTRL3_C register description	
Table 57.	CTRL4_C register	
Table 58.	CTRL4_C register description	
Table 59.	CTRL5_C register	
Table 60. Table 61.	Angular rate sensor self-test mode selection	
Table 61.	Linear acceleration sensor self-test mode selection	
Table 62.	CTRL6_C register	
Table 63.	CTRL6_C register description.	
Table 64.	Trigger mode selection	
Table 66.	Gyroscope LPF1 bandwidth selection	
Table 67.	CTRL7 G register	
Table 68.	CTRL7_G register description	
Table 69.	CTRL8_XL register	
Table 70.	CTRL8_XL register description	
Table 71.	Accelerometer bandwidth configurations	
Table 72.	CTRL9_XL register	
Table 73.	CTRL9_XL register description	
Table 74.	CTRL10_C register	
Table 75.	CTRL10_C register description.	
Table 76.	ALL_INT_SRC register	
Table 77.	ALL_INT_SRC register description	
Table 78.	WAKE_UP_SRC register	
Table 79.	WAKE_UP_SRC register description	84
Table 80.	TAP_SRC register	85
Table 81.	TAP_SRC register description	85
Table 82.	D6D_SRC register	85
Table 83.	D6D_SRC register description	
Table 84.	STATUS_REG register	
Table 85.	STATUS_REG register description	
Table 86.	STATUS_SPIAux register	
Table 87.	STATUS_SPIAux description	
Table 88.	OUT_TEMP_L register	
Table 89.	OUT_TEMP_H register	
Table 90.	OUT_TEMP register description	
Table 91.	OUTX_L_G register	
Table 92.	OUTX_H_G register	
Table 93.	OUTX_H_G register description	
Table 94.	OUTY_L_G register	
Table 95.	OUTY_H_G register	
Table 96.	OUTY_H_G register description	
Table 97.	OUTZ_L_G register	
Table 98. Table 99.	OUTZ_H_G register	
	OUTZ_H_G register description	
Table 100.	OUTX_L_A register	oğ

Table 101.	OUTX_H_A register	
Table 102.	OUTX_H_A register description	
Table 103.	OUTY_L_A register	
Table 104.	OUTY_H_A register	
Table 105.	OUTY_H_A register description	
Table 106.	OUTZ_L_A register	
Table 107.	OUTZ_H_A register	
Table 108.	OUTZ_H_A register description	
Table 109.	EMB_FUNC_STATUS_MAINPAGE register	
Table 110.	EMB_FUNC_STATUS_MAINPAGE register description	
Table 111.	FSM_STATUS_A_MAINPAGE register	
Table 112.	FSM_STATUS_A_MAINPAGE register description	
Table 113.	FSM_STATUS_B_MAINPAGE register	
Table 114. Table 115.	FSM_STATUS_B_MAINPAGE register description	
Table 115.	STATUS_MASTER_MAINPAGE register description	
Table 110.	FIFO_STATUS1 register	
Table 117.	FIFO_STATUS1 register description	
Table 110.	FIFO_STATUS2 register	
Table 119.	FIFO_STATUS2 register description	
Table 121.	TIMESTAMP output registers	
Table 121.	TIMESTAMP output register description.	
Table 123.	TAP_CFG0 register	
Table 124.	TAP_CFG0 register description	
Table 125.	TAP_CFG1 register	
Table 126.	TAP_CFG1 register description	
Table 127.	TAP priority decoding	
Table 128.	TAP_CFG2 register	
Table 129.	TAP_CFG2 register description	
Table 130.	TAP_THS_6D register	
Table 131.	TAP_THS_6D register description	
Table 132.	Threshold for D4D/D6D function	
Table 133.	INT_DUR2 register	
Table 134.	INT_DUR2 register description	
Table 135.	WAKE_UP_THS register	97
Table 136.	WAKE_UP_THS register description	97
Table 137.	WAKE_UP_DUR register	
Table 138.	WAKE_UP_DUR register description	97
Table 139.	FREE_FALL register	
Table 140.	FREE_FALL register description	
Table 141.	Threshold for free-fall function	
Table 142.	MD1_CFG register	
Table 143.	MD1_CFG register description	
Table 144.	MD2_CFG register	
Table 145.	MD2_CFG register description	
Table 146.	S4S_ST_CMD_CODE register	
Table 147.	S4S_ST_CMD_CODE register description	
Table 148.	S4S_DT_REG register	
Table 149.	S4S_DT_REG register description	
Table 150.	I3C_BUS_AVB register	
Table 151.	I3C_BUS_AVB register description	
Table 152.	INTERNAL_FREQ_FINE register	J2

Table 153. INTERNAL_FREQ_FINE register description. Table 154. INT_OIS register. Table 155. INT_OIS register description. Table 156. CTRL1_OIS register. Table 157. CTRL1_OIS register description. Table 158. DEN mode selection. Table 159. CTRL2_OIS register. Table 160. CTRL2_OIS register description. Table 161. Gyroscope OIS chain digital LPF1 filter bandwidth selection.	
Table 155. INT_OIS register description. Table 156. CTRL1_OIS register Table 157. CTRL1_OIS register description. Table 158. DEN mode selection. Table 159. CTRL2_OIS register Table 160. CTRL2_OIS register description.	
Table 156. CTRL1_OIS register	
Table 157. CTRL1_OIS register description	104
Table 158. DEN mode selection	
Table 159. CTRL2_OIS register	104
Table 160. CTRL2_OIS register description	· · · · · · · · · · · · · · · · · · ·
_ '	105
Table 161 Cyroscope OIS chain digital LDE1 filter handwidth coloction	
	105
Table 162. CTRL3_OIS register	
Table 163. CTRL3_OIS register description	
Table 164. Accelerometer OIS channel bandwidth and phase	106
Table 165. Self-test nominal output variation	106
Table 166. X_OFS_USR register	107
Table 167. X_OFS_USR register description	107
Table 168. Y_OFS_USR register	107
Table 169. Y_OFS_USR register description	107
Table 170. Z_OFS_USR register	107
Table 171. Z_OFS_USR register description	107
Table 172. FIFO_DATA_OUT_TAG register	108
Table 173. FIFO_DATA_OUT_TAG register description	108
Table 174. FIFO tag	
Table 175. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L registers	109
Table 176. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L register descri	ption 109
Table 177. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L registers	109
Table 178. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L register descri	ption 109
Table 179. FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L registers	109
Table 180. FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L register descri	
Table 101 CDLINT OIC register	
Table 181. SPI_INT_OIS register	109
Table 182. Register address map - embedded functions	109
Table 182. Register address map - embedded functions	
Table 182. Register address map - embedded functions	
Table 182. Register address map - embedded functions	
Table 182. Register address map - embedded functions	
Table 182. Register address map - embedded functions	
Table 182. Register address map - embedded functions. Table 183. PAGE_SEL register	
Table 182. Register address map - embedded functions. Table 183. PAGE_SEL register Table 184. PAGE_SEL register description Table 185. ADV_PEDO register Table 186. ADV_PEDO description Table 187. EMB_FUNC_EN_A register Table 188. EMB_FUNC_EN_A register description Table 189. EMB_FUNC_EN_B register	
Table 182. Register address map - embedded functions. Table 183. PAGE_SEL register	
Table 182. Register address map - embedded functions. Table 183. PAGE_SEL register Table 184. PAGE_SEL register description Table 185. ADV_PEDO register Table 186. ADV_PEDO description Table 187. EMB_FUNC_EN_A register Table 188. EMB_FUNC_EN_A register description Table 189. EMB_FUNC_EN_B register Table 190. EMB_FUNC_EN_B register description Table 191. PAGE_ADDRESS register	
Table 182. Register address map - embedded functions. Table 183. PAGE_SEL register Table 184. PAGE_SEL register description Table 185. ADV_PEDO register Table 186. ADV_PEDO description Table 187. EMB_FUNC_EN_A register Table 188. EMB_FUNC_EN_A register description Table 189. EMB_FUNC_EN_B register Table 190. EMB_FUNC_EN_B register description	
Table 182. Register address map - embedded functions. Table 183. PAGE_SEL register Table 184. PAGE_SEL register description Table 185. ADV_PEDO register. Table 186. ADV_PEDO description Table 187. EMB_FUNC_EN_A register Table 188. EMB_FUNC_EN_A register description Table 189. EMB_FUNC_EN_B register description Table 190. EMB_FUNC_EN_B register description Table 191. PAGE_ADDRESS register Table 192. PAGE_ADDRESS register description Table 193. PAGE_VALUE register	
Table 182. Register address map - embedded functions. Table 183. PAGE_SEL register Table 184. PAGE_SEL register description Table 185. ADV_PEDO register Table 186. ADV_PEDO description Table 187. EMB_FUNC_EN_A register Table 188. EMB_FUNC_EN_A register description Table 189. EMB_FUNC_EN_B register Table 190. EMB_FUNC_EN_B register description Table 191. PAGE_ADDRESS register Table 192. PAGE_ADDRESS register description	
Table 182. Register address map - embedded functions. Table 183. PAGE_SEL register Table 184. PAGE_SEL register description Table 185. ADV_PEDO register Table 186. ADV_PEDO description Table 187. EMB_FUNC_EN_A register Table 188. EMB_FUNC_EN_A register description Table 189. EMB_FUNC_EN_B register Table 190. EMB_FUNC_EN_B register description Table 191. PAGE_ADDRESS register Table 192. PAGE_ADDRESS register description Table 193. PAGE_VALUE register Table 194. PAGE_VALUE register description Table 195. EMB_FUNC_INT1 register	
Table 182. Register address map - embedded functions. Table 183. PAGE_SEL register Table 184. PAGE_SEL register description Table 185. ADV_PEDO register Table 186. ADV_PEDO description Table 187. EMB_FUNC_EN_A register Table 188. EMB_FUNC_EN_A register description Table 189. EMB_FUNC_EN_B register Table 190. EMB_FUNC_EN_B register description Table 191. PAGE_ADDRESS register Table 192. PAGE_ADDRESS register description Table 193. PAGE_VALUE register Table 194. PAGE_VALUE register description Table 195. EMB_FUNC_INT1 register Table 196. EMB_FUNC_INT1 register description	
Table 182. Register address map - embedded functions. Table 183. PAGE_SEL register Table 184. PAGE_SEL register description Table 185. ADV_PEDO register Table 186. ADV_PEDO description Table 187. EMB_FUNC_EN_A register Table 188. EMB_FUNC_EN_A register description Table 189. EMB_FUNC_EN_B register Table 190. EMB_FUNC_EN_B register description Table 191. PAGE_ADDRESS register Table 192. PAGE_ADDRESS register description Table 193. PAGE_VALUE register description Table 194. PAGE_VALUE register description Table 195. EMB_FUNC_INT1 register Table 196. EMB_FUNC_INT1 register description Table 197. FSM_INT1_A register	
Table 182. Register address map - embedded functions. Table 183. PAGE_SEL register Table 184. PAGE_SEL register description Table 185. ADV_PEDO register Table 186. ADV_PEDO description Table 187. EMB_FUNC_EN_A register Table 188. EMB_FUNC_EN_A register description Table 189. EMB_FUNC_EN_B register Table 190. EMB_FUNC_EN_B register description Table 191. PAGE_ADDRESS register Table 192. PAGE_ADDRESS register description Table 193. PAGE_VALUE register Table 194. PAGE_VALUE register description Table 195. EMB_FUNC_INT1 register Table 196. EMB_FUNC_INT1 register description Table 197. FSM_INT1_A register description Table 198. FSM_INT1_A register description	
Table 182. Register address map - embedded functions. Table 183. PAGE_SEL register Table 184. PAGE_SEL register description Table 185. ADV_PEDO register Table 186. ADV_PEDO description Table 187. EMB_FUNC_EN_A register Table 188. EMB_FUNC_EN_A register description Table 189. EMB_FUNC_EN_B register description Table 190. EMB_FUNC_EN_B register description Table 191. PAGE_ADDRESS register Table 192. PAGE_ADDRESS register description Table 193. PAGE_VALUE register Table 194. PAGE_VALUE register description Table 195. EMB_FUNC_INT1 register Table 196. EMB_FUNC_INT1 register description Table 197. FSM_INT1_A register Table 198. FSM_INT1_B register description Table 199. FSM_INT1_B register	
Table 182. Register address map - embedded functions. Table 183. PAGE_SEL register Table 184. PAGE_SEL register description Table 185. ADV_PEDO register Table 186. ADV_PEDO description Table 187. EMB_FUNC_EN_A register Table 188. EMB_FUNC_EN_A register description Table 189. EMB_FUNC_EN_B register Table 190. EMB_FUNC_EN_B register description Table 191. PAGE_ADDRESS register Table 192. PAGE_ADDRESS register description Table 193. PAGE_VALUE register description Table 194. PAGE_VALUE register description Table 195. EMB_FUNC_INT1 register Table 196. EMB_FUNC_INT1 register description Table 197. FSM_INT1_A register description Table 198. FSM_INT1_A register description Table 199. FSM_INT1_B register description Table 199. FSM_INT1_B register description	
Table 182. Register address map - embedded functions. Table 183. PAGE_SEL register Table 184. PAGE_SEL register description Table 185. ADV_PEDO register. Table 186. ADV_PEDO description Table 187. EMB_FUNC_EN_A register Table 188. EMB_FUNC_EN_A register description Table 189. EMB_FUNC_EN_B register Table 190. EMB_FUNC_EN_B register description Table 191. PAGE_ADDRESS register Table 192. PAGE_ADDRESS register description Table 193. PAGE_VALUE register Table 194. PAGE_VALUE register Table 195. EMB_FUNC_INT1 register Table 196. EMB_FUNC_INT1 register description Table 197. FSM_INT1_A register Table 198. FSM_INT1_A register description Table 199. FSM_INT1_B register description Table 200. FSM_INT1_B register description Table 201. EMB_FUNC_INT2 register	
Table 182. Register address map - embedded functions. Table 183. PAGE_SEL register Table 184. PAGE_SEL register description Table 185. ADV_PEDO register Table 186. ADV_PEDO description Table 187. EMB_FUNC_EN_A register Table 188. EMB_FUNC_EN_A register description Table 189. EMB_FUNC_EN_B register Table 190. EMB_FUNC_EN_B register description Table 191. PAGE_ADDRESS register Table 192. PAGE_ADDRESS register description Table 193. PAGE_VALUE register Table 194. PAGE_VALUE register description Table 195. EMB_FUNC_INT1 register Table 196. EMB_FUNC_INT1 register description Table 197. FSM_INT1_A register description Table 198. FSM_INT1_A register description Table 199. FSM_INT1_B register description Table 200. FSM_INT1_B register description Table 201. EMB_FUNC_INT2 register Table 202. EMB_FUNC_INT2 register description	
Table 182. Register address map - embedded functions. Table 183. PAGE_SEL register Table 184. PAGE_SEL register description Table 185. ADV_PEDO register. Table 186. ADV_PEDO description Table 187. EMB_FUNC_EN_A register Table 188. EMB_FUNC_EN_A register description Table 189. EMB_FUNC_EN_B register Table 190. EMB_FUNC_EN_B register description Table 191. PAGE_ADDRESS register Table 192. PAGE_ADDRESS register description Table 193. PAGE_VALUE register Table 194. PAGE_VALUE register Table 195. EMB_FUNC_INT1 register Table 196. EMB_FUNC_INT1 register description Table 197. FSM_INT1_A register Table 198. FSM_INT1_A register description Table 199. FSM_INT1_B register description Table 200. FSM_INT1_B register description Table 201. EMB_FUNC_INT2 register	

Table 205.	FSM_INT2_B register	119
Table 206.	FSM INT2 B register description	
Table 207.	EMB_FUNC_STATUS register	
Table 208.	EMB_FUNC_STATUS register description	
Table 209.	FSM_STATUS_A register	
Table 210.	FSM STATUS A register description	
Table 211.	FSM_STATUS_B register	
Table 212.	FSM_STATUS_B register description	
Table 213.	PAGE_RW register	
Table 214.	PAGE RW register description	
Table 215.	EMB_FUNC_FIFO_CFG register	
Table 216.	EMB_FUNC_FIFO_CFG register description	
Table 217.	FSM_ENABLE_A register	
Table 218.	FSM_ENABLE_A register description	
Table 219.	FSM ENABLE B register	
Table 220.	FSM_ENABLE_B register description	
Table 221.	FSM_LONG_COUNTER_L register	
Table 222.	FSM LONG COUNTER L register description	
Table 223.	FSM LONG COUNTER H register	
Table 224.	FSM_LONG_COUNTER_H register description	
Table 225.	FSM_LONG_COUNTER_CLEAR register	
Table 226.	FSM_LONG_COUNTER_CLEAR register description	
Table 227.	FSM OUTS1 register	
Table 228.	FSM_OUTS1 register description	
Table 229.	FSM_OUTS2 register	
Table 230.	FSM_OUTS2 register description	
Table 231.	FSM_OUTS3 register	
Table 232.	FSM_OUTS3 register description	
Table 233.	FSM_OUTS4 register	
Table 234.	FSM_OUTS4 register description	
Table 235.	FSM_OUTS5 register	
Table 236.	FSM_OUTS5 register description	
Table 237.	FSM_OUTS6 register	
Table 238.	FSM_OUTS6 register description	
Table 239.	FSM_OUTS7 register	
Table 240.	FSM_OUTS7 register description	127
Table 241.	FSM OUTS8 register	
Table 242.	FSM OUTS8 register description	128
Table 243.	FSM_OUTS9 register	128
Table 244.	FSM_OUTS9 register description	128
Table 245.	FSM_OUTS10 register	129
Table 246.	FSM_OUTS10 register description	129
Table 247.	FSM_OUTS11 register	129
Table 248.	FSM_OUTS11 register description	129
Table 249.	FSM_OUTS12 register	130
Table 250.	FSM_OUTS12 register description	
Table 251.	FSM_OUTS13 register	
Table 252.	FSM_OUTS13 register description	130
Table 253.	FSM_OUTS14 register	
Table 254.	FSM_OUTS14 register description	131
Table 255.	FSM_OUTS15 register	
Table 256.	FSM OUTS15 register description	

Table 257.	FSM_OUTS16 register	132
Table 258.	FSM_OUTS16 register description	
Table 259.	EMB_FUNC_ODR_CFG_B register	132
Table 260.	EMB_FUNC_ODR_CFG_B register description	
Table 261.	STEP_COUNTER_L register	133
Table 262.	STEP_COUNTER_L register description	
Table 263.	STEP_COUNTER_H register	
Table 264.	STEP_COUNTER_H register description	
Table 265.	EMB_FUNC_SRC register	133
Table 266.	EMB_FUNC_SRC register description	
Table 267.	EMB_FUNC_INIT_A register	
Table 268.	EMB_FUNC_INIT_A register description	
Table 269.	EMB_FUNC_INIT_B register	
Table 270.	EMB_FUNC_INIT_B register description	
Table 271.	Register address map - embedded advanced features page 0	
Table 272.	Register address map - embedded advanced features page 1	
Table 273. Table 274.	MAG_SENSITIVITY_L register	
Table 274.	MAG_SENSITIVITY_H register	
Table 275.	MAG_SENSITIVITY_H register description	
Table 277.	MAG_OFFX_L register	
Table 278.	MAG_OFFX_L register description	
Table 279.	MAG_OFFX_H register.	
Table 280.	MAG_OFFX_H register description	
Table 281.	MAG_OFFY_L register	
Table 282.	MAG_OFFY_L register description	
Table 283.	MAG_OFFY_H register	
Table 284.	MAG_OFFY_H register description	
Table 285.	MAG_OFFZ_L register	
Table 286.	MAG_OFFZ_L register description	139
Table 287.	MAG_OFFZ_H register	139
Table 288.	MAG_OFFZ_H register description	139
Table 289.	MAG_SI_XX_L register	
Table 290.	MAG_SI_XX_L register description	
Table 291.	MAG_SI_XX_H register	
Table 292.	MAG_SI_XX_H register description	
Table 293.	MAG_SI_XY_L register	
Table 294.	MAG_SI_XY_L register description	
Table 295.	MAG_SI_XY_H register	
Table 296.	MAG_SI_XY_H register description	
Table 297.	MAG_SI_XZ_L register	
Table 298.	MAG_SI_XZ_L register description	
Table 299. Table 300.	MAG_SI_XZ_H register	
Table 300.	MAG_SI_XZ_H register description	
Table 301.	MAG_SI_YY_L register description	
Table 302.	MAG_SI_YY_H register	
Table 303.	MAG_SI_YY_H register description	
Table 304.	MAG_SI_YZ_L register	
Table 305.	MAG_SI_YZ_L register description	
Table 307.	MAG_SI_YZ_H register	
Table 308.	MAG SI YZ H register description	

Table 309.	MAG_SI_ZZ_L register	142
Table 310.	MAG_SI_ZZ_L register description	
Table 311.	MAG_SI_ZZ_H register	142
Table 312.	MAG_SI_ZZ_H register description	142
Table 313.	MAG_CFG_A register	143
Table 314.	MAG_CFG_A description	
Table 315.	MAG_CFG_B register	
Table 316.	MAG_CFG_B description	
Table 317.	FSM_LC_TIMEOUT_L register	
Table 318.	FSM_LC_TIMEOUT_L register description	
Table 319.	FSM_LC_TIMEOUT_H register	
Table 320.	FSM_LC_TIMEOUT_H register description	
Table 321.	FSM_PROGRAMS register	
Table 322.	FSM_PROGRAMS register description	
Table 323.	FSM_START_ADD_L register	
Table 324.	FSM_START_ADD_L register description	
Table 325.	FSM_START_ADD_H register	
Table 326.	FSM_START_ADD_H register description	
Table 327.	PEDO_CMD_REG register	
Table 328.	PEDO_CMD_REG register description	
Table 329.	PEDO_DEB_STEPS_CONF register	
Table 330.	PEDO_DEB_STEPS_CONF register description	
Table 331.	PEDO_SC_DELTAT_L register	
Table 332.	PEDO_SC_DELTAT_H register	
Table 333.	PEDO_SC_DELTAT_H/L register description	
Table 334.	Register address map - sensor hub registers	
Table 335.	SENSOR_HUB_1 register	
Table 336.	SENSOR_HUB_1 register description	
Table 337.	SENSOR_HUB_2 register	
Table 338.	SENSOR_HUB_2 register description	
Table 339.	SENSOR_HUB_3 register	
Table 340.	SENSOR_HUB_3 register description	
Table 341.	SENSOR_HUB_4 register	
Table 342.	SENSOR_HUB_4 register description	
Table 343.	SENSOR_HUB_5 register	
Table 344.	SENSOR_HUB_5 register description	
Table 345.	SENSOR_HUB_6 register	
Table 346.	SENSOR_HOB_6 register description	
Table 347. Table 348.	SENSOR_HUB_7 register description	
Table 349.	SENSOR_HUB_8 register	
Table 349.	SENSOR HUB 8 register description	
Table 350.	SENSOR_HUB_9 register	
Table 351.	SENSOR HUB 9 register description	
Table 352.	SENSOR_HUB_10 register	
Table 353.	SENSOR HUB 10 register description	
Table 354.	SENSOR_HUB_11 register	
Table 355.	SENSOR HUB 11 register description	
Table 350.	SENSOR_HUB_12 register	
Table 357.	SENSOR HUB 12 register description	
Table 359.	SENSOR_HUB_13 register	
Table 360.	SENSOR HUB 13 register description	
. ~~.~ ~~~.		

Table 361.	SENSOR_HUB_14 register	. 153
Table 362.	SENSOR_HUB_14 register description	
Table 363.	SENSOR_HUB_15 register	
Table 364.	SENSOR_HUB_15 register description	. 153
Table 365.	SENSOR_HUB_16 register	
Table 366.	SENSOR_HUB_16 register description	. 154
Table 367.	SENSOR_HUB_17 register	. 154
Table 368.	SENSOR_HUB_17 register description	. 154
Table 369.	SENSOR_HUB_17 register	. 154
Table 370.	SENSOR_HUB_17 register description	. 154
Table 371.	MASTER_CONFIG register	. 155
Table 372.	MASTER_CONFIG register description	
Table 373.	SLV0_ADD register	. 155
Table 374.	SLV_ADD register description	. 155
Table 375.	SLV0_SUBADD register	. 156
Table 376.	SLV0_SUBADD register description	. 156
Table 377.	SLAVE0_CONFIG register	
Table 378.	SLAVE0_CONFIG register description	. 156
Table 379.	SLV1_ADD register	. 157
Table 380.	SLV1_ADD register description	. 157
Table 381.	SLV1_SUBADD register	. 157
Table 382.	SLV1_SUBADD register description	. 157
Table 383.	SLAVE1_CONFIG register	. 157
Table 384.	SLAVE1_CONFIG register description	. 157
Table 385.	SLV2_ADD register	
Table 386.	SLV2_ADD register description	
Table 387.	SLV2_SUBADD register	. 158
Table 388.	SLV2_SUBADD register description	. 158
Table 389.	SLAVE2_CONFIG register	
Table 390.	SLAVE2_CONFIG register description	
Table 391.	SLV3_ADD register	
Table 392.	SLV3_ADD register description	. 159
Table 393.	SLV3_SUBADD register	
Table 394.	SLV3_SUBADD register description	. 159
Table 395.	SLAVE3_CONFIG register	
Table 396.	SLAVE3_CONFIG register description	. 159
Table 397.	DATAWRITE_SLV0 register	. 160
Table 398.	DATAWRITE_SLV0 register description	. 160
Table 399.	STATUS_MASTER register	. 160
Table 400.	STATUS_MASTER register description	
Table 401.	Reel dimensions for carrier tape of LGA-14 package	. 164
Table 402	Document revision history	165

List of figures LSM6DSR

List of figures

Figure 1.	Generic state machine	22
Figure 2.	State machine in the LSM6DSR	22
Figure 3.	Pin connections	23
Figure 4.	LSM6DSR connection modes	24
Figure 5.	SPI slave timing diagram (in mode 3)	31
Figure 6.	I ² C slave timing diagram	32
Figure 7.	Read and write protocol (in mode 3)	38
Figure 8.	SPI read protocol (in mode 3)	
Figure 9.	Multiple byte SPI read protocol (2-byte example) (in mode 3)	39
Figure 10.	SPI write protocol (in mode 3)	40
Figure 11.	Multiple byte SPI write protocol (2-byte example) (in mode 3)	40
Figure 12.	SPI read protocol in 3-wire mode (in mode 3)	41
Figure 13.	I ² C and I3C both active (INT1 pin not connected)	44
Figure 14.	Only I3C active (INT1 pin connected to VDD_IO)	44
Figure 15.	Block diagram of filters	47
Figure 16.	Accelerometer UI chain	47
Figure 17.	Accelerometer composite filter	48
Figure 18.	Accelerometer chain with Mode 4 enabled	
Figure 19.	Gyroscope digital chain - Mode 1 (UI/EIS) and Mode 2	
Figure 20.	Gyroscope digital chain - Mode 3 / Mode 4 (OIS/EIS)	
Figure 21.	Auxiliary SPI full control (a) and enabling primary interface (b)	52
Figure 22.	LSM6DSR electrical connections in Mode 1	
Figure 23.	LSM6DSR electrical connections in Mode 2	58
Figure 24.	LSM6DSR electrical connections in Mode 3 and Mode 4 (auxiliary 3/4-wire SPI)	59
Figure 25.	Accelerometer block diagram	
Figure 26.	LGA-14L 2.5x3x0.86 mm package outline and mechanical data	162
Figure 27.	Carrier tape information for LGA-14 package	163
Figure 28.	LGA-14 package orientation in carrier tape	163
Figure 29	Reel information for carrier tane of LGA-14 nackage	164

LSM6DSR Overview

1 Overview

The LSM6DSR is a system-in-package featuring a high-performance 3-axis digital accelerometer and 3-axis digital gyroscope.

The LSM6DSR delivers best-in-class motion sensing that can detect orientation and gestures in order to empower application developers and consumers with features and capabilities that are more sophisticated than simply orienting their devices to portrait and landscape mode.

This device is suitable for augmented reality and virtual reality applications as well as Optical Image Stabilization and motion-based gaming controllers as a result of its high stability over temperature and time, combined with superior sensing precision.

The LSM6DSR fully supports OIS applications using both the gyroscope and accelerometer sensor. The device can output OIS data through a dedicated auxiliary SPI and includes a dedicated configurable signal processing path for OIS. For both the gyroscope and accelerometer, the UI signal processing path is completely independent from that of the OIS and is readable through FIFO. Moreover, self-test and full scale are available for both the UI and OIS chains.

The event-detection interrupts enable efficient and reliable motion tracking and contextual awareness, implementing hardware recognition of free-fall events, 6D orientation, click and double-click sensing, activity or inactivity, and wakeup events.

The LSM6DSR supports main OS requirements, offering real, virtual and batch mode sensors. In addition, the LSM6DSR can efficiently run the sensor-related features specified in Android. In particular, the LSM6DSR has been designed to implement hardware features such as significant motion, tilt, pedometer functions, timestamping and to support the data acquisition of an external magnetometer.

The LSM6DSR offers hardware flexibility to connect the pins with different mode connections to external sensors to expand functionalities such as adding a sensor hub.

Up to 9 kbytes of FIFO with compression and dynamic allocation of significant data (i.e. external sensors, timestamp, etc.) allows overall power saving of the system.

Like the entire portfolio of MEMS sensor modules, the LSM6DSR leverages the robust and mature in-house manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DSR is available in a small plastic land grid array (LGA) package of $2.5 \times 3.0 \times 0.83$ mm to address ultra-compact solutions.

2 Embedded low-power features

The LSM6DSR has been designed to be fully compliant with Android, featuring the following on-chip functions:

- 9 bytes data buffering, data can be compressed two or three times
 - 100% efficiency with flexible configurations and partitioning
 - Possibility to store timestamp
- Event-detection interrupts (fully configurable):
 - Free-fall
 - Wakeup
 - 6D orientation
 - Click and double-click sensing
 - Activity/inactivity recognition
 - Stationary/Motion detection
- Specific IP blocks with negligible power consumption and high-performance:
 - Pedometer functions: step detector and step counters
 - Tilt
 - Significant Motion Detection
 - Finite State Machine (FSM) for accelerometer, gyroscope, and external sensors
- Sensor hub
 - Up to 6 total sensors: 2 internal (accelerometer and gyroscope) and 4 external sensors
- S4S data rate synchronization with external trigger for reduced sensor access and enhanced fusion

20/166 DocID030186 Rev 1

2.1 Tilt detection

The tilt function helps to detect activity change and has been implemented in hardware using only the accelerometer to achieve targets of both ultra-low power consumption and robustness during the short duration of dynamic accelerations.

The tilt function is based on a trigger of an event each time the device's tilt changes and can be used with different scenarios, for example:

- a) Triggers when phone is in a front pants pocket and the user goes from sitting to standing or standing to sitting;
- b) Doesn't trigger when phone is in a front pants pocket and the user is walking, running or going upstairs.

2.2 Significant Motion Detection

The Significant Motion Detection (SMD) function generates an interrupt when a 'significant motion', that could be due to a change in user location, is detected. In the LSM6DSR device this function has been implemented in hardware using only the accelerometer.

SMD functionality can be used in location-based applications in order to receive a notification indicating when the user is changing location.

2.3 Finite State Machine

The LSM6DSR can be configured to generate interrupt signals activated by user-defined motion patterns. To do this, up to 16 embedded finite state machines can be programmed independently for motion detection such as glance gestures, absolute wrist tilt, shake and double-shake detection.

Definition of Finite State Machine

A state machine is a mathematical abstraction used to design logic connections. It is a behavioral model composed of a finite number of states and transitions between states, similar to a flow chart in which one can inspect the way logic runs when certain conditions are met. The state machine begins with a start state, goes to different states through transitions dependent on the inputs, and can finally end in a specific state (called stop state). The current state is determined by the past states of the system. *Figure 1: Generic state machine* shows a generic state machine.

Figure 1. Generic state machine

Finite State Machine in the LSM6DSR

The LSM6DSR works as a combo accelerometer-gyroscope sensor, generating acceleration and angular rate output data. It is also possible to connect an external sensor (magnetometer) by using the Sensor Hub feature (Mode 2). These data can be used as input of up to 16 programs in the embedded Finite State Machine (*Figure 2: State machine in the LSM6DSR*).

All 16 finite state machines are independent: each one has its dedicated memory area and it is independently executed. An interrupt is generated when the end state is reached or when some specific command is performed.

LSM6DSR ACC [LSB]
GYR [LSB]
SIGNAL
CONDITIONING

EXT. SENSOR (MAG) [LSB]

X = 1..16

Figure 2. State machine in the LSM6DSR

22/166 DocID030186 Rev 1

LSM6DSR Pin description

3 Pin description

Figure 3. Pin connections

Z

Direction of detectable acceleration (top view)

SDO_Aux
OCS_Aux
INT2
VDD

Direction of detectable angular rate (top view)

Pin description LSM6DSR

3.1 Pin connections

The LSM6DSR offers flexibility to connect the pins in order to have four different mode connections and functionalities. In detail:

- **Mode 1**: I²C / MIPI I3CSM slave interface or SPI (3- and 4-wire) serial interface is available:
- **Mode 2**: I²C / MIPI I3CSM slave interface or SPI (3- and 4-wire) serial interface and I²C interface master for external sensor connections are available;
- Mode 3: I²C / MIPI I3CSM slave interface or SPI (3- and 4-wire) serial interface is available for the application processor interface while an auxiliary SPI (3- and 4-wire) serial interface for external sensor connections is available for the gyroscope ONLY;
- **Mode 4:** I²C / MIPI I3CSM slave interface or SPI (3- and 4-wire) serial interface is available for the application processor interface while an auxiliary SPI (3- and 4-wire) serial interface for external sensor connections is available for the accelerometer and gyroscope.

Figure 4. LSM6DSR connection modes

In the following table each mode is described for the pin connections and function.

LSM6DSR Pin description

Table 2. Pin description

		Table	z. Fili description	<u> </u>
Pin#	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function
1	SDO/SA0	SPI 4-wire interface serial data output (SDO) I ² C least significant bit of the device address (SA0)	SPI 4-wire interface serial data output (SDO) I ² C least significant bit of the device address (SA0)	SPI 4-wire interface serial data output (SDO) I ² C least significant bit of the device address (SA0)
2	SDx	Connect to VDDIO or GND	I ² C serial data master (MSDA)	Auxiliary SPI 3/4-wire interface serial data input (SDI) and SPI 3-wire serial data output (SDO)
3	SCx	Connect to VDDIO or GND	I ² C serial clock master (MSCL)	Auxiliary SPI 3/4-wire interface serial port clock (SPC_Aux)
4	INT1	F	Programmable interrupt in I ² C and	SPI
5	VDDIO ⁽¹⁾		Power supply for I/O pins	
6	GND		0 V supply	
7	GND		0 V supply	
8	VDD ⁽¹⁾		Power supply	
9	INT2	Programmable interrupt 2 (INT2) / Data enable (DEN)	Programmable interrupt 2 (INT2)/ Data enable (DEN)/ I ² C master external synchronization signal (MDRDY)	Programmable interrupt 2 (INT2)/ Data enable (DEN)
10	OCS_Aux	Leave unconnected ⁽²⁾	Leave unconnected ⁽²⁾	Auxiliary SPI 3/4-wire interface enable
11	SDO_Aux	Connect to VDD_IO or leave unconnected ⁽²⁾	Connect to VDD_IO or leave unconnected ⁽²⁾	Auxiliary SPI 3-wire interface: leave unconnected ⁽²⁾ Auxiliary SPI 4-wire interface: serial data output (SDO_Aux)
12	CS	I ² C/MIPI I3C SM /SPI mode selection (1: SPI idle mode / I ² C/MIPI I3C SM communication enabled; 0: SPI communication mode / I ² C/MIPI I3C SM disabled)	I ² C/MIPI I3C SM /SPI mode selection (1: SPI idle mode / I ² C/MIPI I3C SM communication enabled; 0: SPI communication mode / I ² C/MIPI I3C SM disabled)	I ² C/MIPI I3C SM /SPI mode selection (1: SPI idle mode / I ² C/MIPI I3C SM communication enabled; 0: SPI communication mode / I ² C/MIPI I3C SM disabled)
13	SCL	I ² C/MIPI I3C SM serial clock (SCL) SPI serial port clock (SPC)	I ² C/MIPI I3C SM serial clock (SCL) SPI serial port clock (SPC)	I ² C/MIPI I3C SM serial clock (SCL) SPI serial port clock (SPC)
14	SDA	I ² C/MIPI I3C SM serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)	I ² C/MIPI I3C SM serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)	I ² C/MIPI I3C SM serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)

^{1.} Recommended 100 nF filter capacitor.

^{2.} Leave pin electrically unconnected and soldered to PCB.

4 Module specifications

4.1 Mechanical characteristics

@ Vdd = 1.8 V, T = 25 °C, unless otherwise noted.

Table 3. Mechanical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
				±2		
LA_FS	Linear acceleration measurement			±4		
LA_FS	range			±8	'	g
				±16		
				±125		
				±250		
G_FS	Angular rate			±500		dne
G_F3	measurement range			±1000		dps
				±2000		
				±4000		
		FS = ±2		0.061		
LA_So	Linear acceleration sensitivity ⁽²⁾	FS = ±4		0.122	n	m <i>g</i> /LSB
LA_50	Linear acceleration sensitivity	FS = ±8		0.244		ilig/LGD
		FS = ±16		0.488		
		FS = ±125		4.375		
	Angular rate sensitivity ⁽²⁾	FS = ±250		8.75		
G_So		FS = ±500		17.50		mdps/LSB
6_50		FS = ±1000		35		
		FS = ±2000		70		
		FS = ±4000		140		
G_So%	Sensitivity tolerance ⁽³⁾	at component level		±1		%
LA_SoDr	Linear acceleration sensitivity change vs. temperature ⁽⁴⁾	from -40° to +85°		±0.01		%/°C
G_SoDr	Angular rate sensitivity change vs. temperature ⁽⁴⁾	from -40° to +85°		±0.007		%/°C
LA_TyOff	Linear acceleration zero-g level offset accuracy ⁽⁵⁾			±10		m <i>g</i>
G_TyOff	Angular rate zero-rate level ⁽⁵⁾			±1		dps
LA_OffDr	Linear acceleration zero-g level change vs. temperature ⁽⁴⁾			±0.1		m <i>g</i> /°C
G_OffDr	Angular rate typical zero-rate level change vs. temperature ⁽⁴⁾			±0.005		dps/°C

Table 3. Mechanical characteristics (continued)

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Rn	Rate noise density in high-performance mode ⁽⁶⁾			5		mdps/√Hz
RnRMS	Gyroscope RMS noise in low-power mode ⁽⁷⁾			90		mdps
An	Acceleration noise density in high-performance mode ⁽⁸⁾			60		μ <i>g</i> /√Hz
RMS	Acceleration RMS noise in low-power mode ⁽⁹⁾⁽¹⁰⁾			1.8		mg(RMS)
				1.6 ⁽¹¹⁾		
				12.5		
				26		
				52		
				104		
LA_ODR	Linear acceleration output data rate			208		
				416		
				833		
				1666		
				3332		
				6667		Hz
				12.5		
				26		
				52		
				104 208		
G_ODR	Angular rate output data rate			208 416		
				833		
				1666		
				3332		
				6667		
	Linear acceleration self-test output change ⁽¹²⁾⁽¹³⁾⁽¹⁴⁾		90		1700	m <i>g</i>
Vst	Angular rate	FS = 250 dps	20		80	dps
	self-test output change ⁽¹⁵⁾⁽¹⁶⁾	FS = 2000 dps	150		700	dps
Тор	Operating temperature range		-40		+85	°C

- 1. Typical specifications are not guaranteed.
- 2. Sensitivity values after factory calibration test and trimming.
- 3. Subject to change.
- 4. Measurements are performed in a uniform temperature setup and they are based on characterization data in a limited number of samples. Not measured during final test for production.
- 5. Values after factory calibration test and trimming.
- 6. Gyroscope rate noise density in high-performance mode is independent of the ODR and FS setting.
- 7. Gyroscope RMS noise in low-power mode is independent of the ODR and FS setting.
- 8. Accelerometer noise density in high-performance mode is independent of the ODR and full scale.
- 9. Accelerometer RMS noise in low-power mode is independent of the ODR.

- 10. Noise RMS related to BW = ODR/2.
- 11. This ODR is available when accelerometer is in low-power mode.
- 12. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in a dedicated register for all axes.
- 13. The linear acceleration self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 0.061 mg at ± 2 g full scale.
- 14. Accelerometer self-test limits are full-scale independent.
- 15. The sign of the angular rate self-test output change is defined by the STx_G bits in a dedicated register for all axes.
- 16. The angular rate self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 70 mdps at ±2000 dps full scale.

4.2 Electrical characteristics

0 Vdd = 1.8 V, T = 25 °C, unless otherwise noted.

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.71	1.8	3.6	V
Vdd_IO	Power supply for I/O		1.62		3.6	V
IddHP	Gyroscope and accelerometer current consumption in high-performance mode			1.2		mA
IddNM	Gyroscope and accelerometer current consumption in normal mode	ODR = 208 Hz		0.7		mA
LA_lddHP	Accelerometer current consumption in high-performance mode			360		μА
LA_lddLM	Accelerometer current consumption in low-power mode	ODR = 52 Hz ODR = 12.5 Hz ODR = 1.6 Hz		32 11 5.5		μА
IddPD	Gyroscope and accelerometer current consumption during power-down			3		μА
Ton	Turn-on time			35		ms
V _{IH}	Digital high-level input voltage		0.7 * VDD_IO			\ \
V _{IL}	Digital low-level input voltage				0.3 * VDD_IO	V
V _{OH}	High-level output voltage	I _{OH} = 4 mA ⁽²⁾	VDD_IO - 0.2			٧
V _{OL}	Low-level output voltage	I _{OL} = 4 mA ⁽²⁾			0.2	V
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

⁴ mA is the minimum driving capability, i.e. the minimum DC current that can be sourced/sunk by the digital pad in order to guarantee the correct digital output voltage levels V_{OH} and V_{OL}.

4.3 Temperature sensor characteristics

@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 5. Temperature sensor characteristics

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
TODR ⁽²⁾	Temperature refresh rate			52		Hz
Toff	Temperature offset ⁽³⁾		-15		+15	°C
TSen	Temperature sensitivity			256		LSB/°C
TST	Temperature stabilization time ⁽⁴⁾				500	μs
T_ADC_res	Temperature ADC resolution			16		bit
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

^{2.} When the accelerometer is in Low-Power mode and the gyroscope part is turned off, the TODR value is equal to the accelerometer ODR.

^{3.} The output of the temperature sensor is 0 LSB (typ.) at 25 $^{\circ}\text{C}.$

^{4.} Time from power ON to valid data based on characterization data.

4.4 Communication interface characteristics

4.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.

Table 6. SPI slave timing values (in mode 3)

Symbol	Parameter	Val	Unit	
	raianietei	Min	Max	Oilit
t _{c(SPC)}	SPI clock cycle	100		ns
f _{c(SPC)}	SPI clock frequency		10	MHz
t _{su(CS)}	CS setup time	5		
t _{h(CS)}	CS hold time	20		
t _{su(SI)}	SDI input setup time	5		
t _{h(SI)}	SDI input hold time	15		ns
t _{v(SO)}	SDO valid output time		50	
t _{h(SO)}	SDO output hold time	5		
t _{dis(SO)}	SDO output disable time		50	

Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production

Figure 5. SPI slave timing diagram (in mode 3)

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.

4.4.2 I²C - inter-IC control interface

Subject to general operating conditions for Vdd and Top.

Table 7. I²C slave timing values

Cumbal	Parameter	I ² C standa	ard mode ⁽¹⁾	I ² C fast	Unit	
Symbol	Parameter	Min	Max	Min	Max	Unit
f _(SCL)	SCL clock frequency	0	100	0	400	kHz
t _{w(SCLL)}	SCL clock low time	4.7		1.3		116
t _{w(SCLH)}	SCL clock high time	4.0		0.6		— μs
t _{su(SDA)}	SDA setup time	250		100		ns
t _{h(SDA)}	SDA data hold time	0	3.45	0	0.9	μs
t _{h(ST)}	START condition hold time	4		0.6		
t _{su(SR)}	Repeated START condition setup time	4.7		0.6		
t _{su(SP)}	STOP condition setup time	4		0.6		– μs
t _{w(SP:SR)}	Bus free time between STOP and START condition	4.7		1.3		

^{1.} Data based on standard I²C protocol requirement, not tested in production.

START

SDA

START

SDA

Teppeated Start

Sta

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.

32/166 DocID030186 Rev 1

Absolute maximum ratings 4.5

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	V
T _{STG}	Storage temperature range	-40 to +125	°C
Sg	Acceleration g for 0.2 ms	20,000	g
ESD	Electrostatic discharge protection (HBM)	2	kV
Vin	Input voltage on any control pin (including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)	-0.3 to Vdd_IO +0.3	V

Note: Supply voltage on any pin should never exceed 4.8 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

4.6 **Terminology**

4.6.1 Sensitivity

Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors (see *Table 2*).

An angular rate gyroscope is a device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time (see Table 2).

4.6.2 Zero-g and zero-rate level

Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on both the X-axis and Y-axis, whereas the Z-axis will measure 1 α , Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2's complement number). A deviation from the ideal value in this case is called zero-g offset.

Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Linear acceleration zero-q level change vs. temperature" in Table 2. The zero-q level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time (see *Table 2*).

LSM6DSR Digital interfaces

5 Digital interfaces

5.1 I²C/SPI interface

The registers embedded inside the LSM6DSR may be accessed through both the I²C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The device is compatible with SPI modes 0 and 3.

The serial interfaces are mapped onto the same pins. To select/exploit the I²C interface, the CS line must be tied high (i.e connected to Vdd_IO).

Pin name	Pin description
CS	SPI enable I ² C/SPI mode selection (1: SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)
SCL/SPC	I ² C Serial Clock (SCL) SPI Serial Port Clock (SPC)
SDA/SDI/SDO	I ² C Serial Data (SDA) SPI Serial Data Input (SDI) 3-wire Interface Serial Data Output (SDO)
SDO/SA0	SPI Serial Data Output (SDO) I ² C less significant bit of the device address

Table 9. Serial interface pin description

5.1.1 I²C serial interface

The LSM6DSR I^2C is a bus slave. The I^2C is employed to write the data to the registers, whose content can also be read back.

The relevant I²C terminology is provided in the table below.

Term	Description			
Transmitter The device which sends data to the bus				
Receiver The device which receives data from the bus				
Master	The device which initiates a transfer, generates clock signals and terminates a transfer			
Slave	The device addressed by the master			

Table 10. I²C terminology

There are two signals associated with the I^2C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both the lines are high.

The I^2C interface is implemented with fast mode (400 kHz) I^2C standards as well as with the standard mode.

In order to disable the I^2C block, ($I2C_disable$) = 1 must be written in $CTRL4_C$ (13h).

Digital interfaces LSM6DSR

I²C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The Slave ADdress (SAD) associated to the LSM6DSR is 110101xb. The SDO/SA0 pin can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is connected to the supply voltage, LSb is '1' (address 1101011b); else if the SDO/SA0 pin is connected to ground, the LSb value is '0' (address 1101010b). This solution permits to connect and address two different inertial modules to the same I²C bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I 2 C embedded inside the LSM6DSR behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted. The increment of the address is configured by the $CTRL3_C$ (12h) (IF_INC).

The slave address is completed with a Read/Write bit. If the bit is '1' (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is '0' (Write) the master will transmit to the slave with direction unchanged. *Table 10* explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.

Command	SAD[6:1]	SAD[0] = SA0	R/W	SAD+R/W	
Read 110101		0	1	11010101 (D5h)	
Write 110101		0	0	11010100 (D4h)	
Read 110101 Write 110101		1	1	11010111 (D7h)	
		1	0	11010110 (D6h)	

Table 11. SAD+Read/Write patterns

Table 12. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 13. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

LSM6DSR Digital interfaces

Table 14. Transfer when master is receiving (reading) one byte of data from slave

Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave

Maste	r ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DAT A		DATA		

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can't receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn't acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge.

Digital interfaces LSM6DSR

5.1.2 SPI bus interface

The LSM6DSR SPI is a bus slave. The SPI allows writing and reading the registers of the device.

The serial interface communicates to the application using 4 wires: CS, SPC, SDI and SDO.

Figure 7. Read and write protocol (in mode 3)

CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are, respectively, the serial port data input and output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of **CS**.

bit 0: $R\overline{W}$ bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive **SDO** at the start of bit 8.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL3_C (12h) (IF_INC) bit is '0', the address used to read/write data remains the same for every block. When the CTRL3_C (12h) (IF_INC) bit is '1', the address used to read/write data is increased at every block.

The function and the behavior of **SDI** and **SDO** remain unchanged.

LSM6DSR Digital interfaces

SPI read

Figure 8. SPI read protocol (in mode 3)

The SPI Read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

bit 16-...: data DO(...-8). Further data in multiple byte reads.

Figure 9. Multiple byte SPI read protocol (2-byte example) (in mode 3)

Digital interfaces LSM6DSR

SPI write

Figure 10. SPI write protocol (in mode 3)

The SPI Write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: WRITE bit. The value is 0.

bit 1 -7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).

bit 16-...: data DI(...-8). Further data in multiple byte writes.

Figure 11. Multiple byte SPI write protocol (2-byte example) (in mode 3)

LSM6DSR Digital interfaces

SPI read in 3-wire mode

A 3-wire mode is entered by setting the *CTRL3_C* (12h) (SIM) bit equal to '1' (SPI serial interface mode selection).

Figure 12. SPI read protocol in 3-wire mode (in mode 3)

The SPI read command is performed with 16 clock pulses:

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

A multiple read command is also available in 3-wire mode.

Digital interfaces LSM6DSR

5.2 MIPI I3CSM interface

5.2.1 MIPI I3CSM slave interface

The LSM6DSR interface includes a MIPI I3CSM SDR only slave interface (compliant with release 1.0 of the specification) with MIPI I3CSM SDR embedded features:

- CCC command
- Direct CCC communication (SET and GET)
- Broadcast CCC communication
- Private communications
- Private read and write for single byte
- Multiple read and write
- In-Band Interrupt request

Error Detection and Recovery Methods (S0-S6)

Note:

Refer to Section 5.3: I²C/I3C coexistence in LSM6DSR for details concerning the choice of the interface when powering up the device.

5.2.2 MIPI I3CSM CCC supported commands

The list of MIPI I3CSM CCC commands supported by the device is detailed in the following table.

Table 16. MIPI I3CSM CCC commands

Command	Command code	Default	Description	
ENTDAA	0x07		DAA procedure	
SETDASA	0x87		Assign Dynamic Address using Static Address 0x6B/0x6A depending on SDO pin	
ENEC	0x80 / 0x00		Slave activity control (direct and broadcast)	
DISEC	0x81/ 0x01		Slave activity control (direct and broadcast)	
ENTAS0	0x82 / 0x02		Enter activity state (direct and broadcast)	
ENTAS1	0x83 / 0x03		Enter activity state (direct and broadcast)	
ENTAS2	0x84 / 0x04		Enter activity state (direct and broadcast)	
ENTAS3	0x85 / 0x05		Enter activity state (direct and broadcast)	
SETXTIME	0x98 / 0x28		Timing information exchange	
GETXTIME	0x99	0x07 0x00 0x05 0x92	Timing information exchange	
RSTDAA	0x86 / 0x06		Reset the assigned dynamic address (direct and broadcast)	
SETMWL	0x89 / 0x08		Define maximum write length during private write (direct and broadcast)	

LSM6DSR Digital interfaces

Table 16. MIPI I3CSM CCC commands

Command	Command code	Default	Description
SETMRL	0x8A / 0x09		Define maximum read length during private read (direct and broadcast)
SETNEWDA	0x88		Change dynamic address
GETMWL	0x8B	0x00 0x08 (2 byte)	Get maximum write length during private write
GETMRL	0x8C	0x00 0x10 0x09 (3 byte)	Get maximum read length during private read
GETPID	0x8D	0x02 0x08 0x00 0x6B 0x10 0x0B	Device ID register
GETBCR	0x8E	0x07 (1 byte)	Bus characteristics register
GETDCR	0x8F	0x00	MIPI I3C SM Device Characteristic Register
GETSTATUS	0x90	0x00 0x00 (2 byte)	Status register
GETMXDS	0x94	0x00 0x38 (2 byte)	Return max data speed

Digital interfaces LSM6DSR

5.3 I²C/I3C coexistence in LSM6DSR

In the LSM6DSR, the SDA and SCL lines are common to both I²C and I3C. The I²C bus requires anti-spike filters on the SDA and SCL pins that are not compatible with I3C timing.

The device can be connected to both I²C and I3C or only to the I3C bus depending on the connection of the INT1 pin when the device is powered up:

- INT1 pin floating (internal pull-down): I²C/I3C both active, see Figure 13
- INT1 pin connected to VDD_IO: only I3C active, see Figure 14

 Address assignment (DAA or ENTDA) must be performed with I²C Fast Mode Plus Timing. When the slave is addressed, the I²C slave is disabled and the timing is compatible with I3C specifications.

Figure 14. Only I3C active (INT1 pin connected to VDD IO)

 When the slave is I3C only, the I²C slave is always disabled. The address can be assigned using I3C SDR timing.

57/

LSM6DSR Digital interfaces

5.4 Master I²C interface

If the LSM6DSR is configured in Mode 2, a master I²C line is available. The master serial interface is mapped in the following dedicated pins.

Table 17. Master I²C pin details

Pin name	Pin description
MSCL	I ² C serial clock master
MSDA	I ² C serial data master
MDRDY	I ² C master external synchronization signal

5.5 Auxiliary SPI interface

If the LSM6DSR is configured in Mode 3 or Mode 4, the auxiliary SPI is available. The auxiliary SPI interface is mapped to the following dedicated pins.

Table 18. Auxiliary SPI pin details

Pin name	Pin description
OCS_Aux	Auxiliary SPI 3/4-wire enable
SDx	Auxiliary SPI 3/4-wire data input (SDI_Aux) and SPI 3-wire data output (SDO_Aux)
SCx	Auxiliary SPI 3/4-wire interface serial port clock
SDO_Aux	Auxiliary SPI 4-wire data output (SDO_Aux)

When the LSM6DSR is configured in Mode 3 or Mode 4, the auxiliary SPI can be connected to a camera module for OIS/EIS support. In this configuration, the auxiliary SPI can write only to the dedicated registers *INT_OIS* (6Fh), CTRL1_OIS (70h), CTRL2_OIS (71h), CTRL3_OIS (72h). All the registers are accessible in Read mode from both the primary interface and auxiliary SPI.

Mode 3 is enabled when the OIS EN SPI2 bit in CTRL1 OIS (70h) register is set to 1.

Mode 4 is enabled when both the OIS_EN_SPI2 bit and the Mode4_EN bit in CTRL1_OIS (70h) register are set to 1.

Functionality LSM6DSR

6 Functionality

6.1 Operating modes

In the LSM6DSR, the accelerometer and the gyroscope can be turned on/off independently of each other and are allowed to have different ODRs and power modes.

The LSM6DSR has three operating modes available:

- · only accelerometer active and gyroscope in power-down or sleep mode
- only gyroscope active and accelerometer in power-down
- both accelerometer and gyroscope sensors active with independent ODR

The accelerometer is activated from power-down by writing ODR_XL[3:0] in CTRL1_XL (10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in CTRL2 G (11h). For combo-mode the ODRs are totally independent.

6.2 Gyroscope power modes

In the LSM6DSR, the gyroscope can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the G_HM_MODE bit in CTRL7_G (16h). If G_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the G_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODRs (12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

6.3 Accelerometer power modes

In the LSM6DSR, the accelerometer can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the XL_HM_MODE bit in *CTRL6_C (15h)*. If XL_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the XL_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODRs (1.6, 12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

LSM6DSR Functionality

6.4 Block diagram of filters

I2C/MIPI I3C Low Pass CS Gyro UI/OIS /SPI SCL/SPC SDA/SDI/SDO SDO/SA0 ADC1 Regs UI Gyro front-end interface S array, FIFO Low Pass ΜЕ Interrupt UI XL XL UI/OIS ΕN mng INT2 M S front-end Low Pass Interrupt s o ADC2 mng OIS Gyro Regs R Temperature array Auxiliary SPC_Aux SDI_Aux SDO_Aux Low Pass sensor SPI OIS XL Trimming circuit and Test interface Voltage and current Clock and phase Power FTP management

Figure 15. Block diagram of filters

6.4.1 Block diagrams of the accelerometer filters

In the LSM6DSR, the filtering chain for the accelerometer part is composed of the following:

- Digital filter (LPF1)
- Composite filter

Details of the block diagram appear in the following figure.

Digital
LP Filter

Composite
Filter

ODR_XL[3:0]

Figure 16. Accelerometer UI chain

Functionality LSM6DSR

Figure 17. Accelerometer composite filter

 The cutoff value of the LPF1 output is ODR/2 when the accelerometer is in high-performance mode and ODR up to 833 Hz. This value is equal to 780 Hz when the accelerometer is in low-power or normal mode.

Note: Advanced functions include pedometer, step detector and step counter, significant motion detection, and tilt functions.

577

LSM6DSR Functionality

The accelerometer filtering chain when Mode 4 is enabled is illustrated in the following figure.

Figure 18. Accelerometer chain with Mode 4 enabled

Note:

Mode 4 is enabled when Mode4 EN = 1 and OIS EN SPI2 = 1 in CTRL1 OIS (70h).

The configuration of the accelerometer UI chain is not affected by enabling Mode 4.

Accelerometer output values are in registers *OUTX_L_A* (28h) and *OUTX_H_A* (29h) through and ODR at 6.66 kHz.

6.4.2 Block diagrams of the gyroscope filters

In the LSM6DSR, the gyroscope filtering chain depends on the mode configuration:

 Mode 1 (for User Interface (UI) and Electronic Image Stabilization (EIS) functionality through primary interface) and Mode 2

Figure 19. Gyroscope digital chain - Mode 1 (UI/EIS) and Mode 2

In this configuration, the gyroscope ODR is selectable from 12.5 Hz up to 6.66 kHz. A low-pass filter (LPF1) is available if the auxiliary SPI is disabled, for more details about the filter characteristics see *Table 65: Gyroscope LPF1 bandwidth selection*.

The digital LPF2 filter cannot be configured by the user and its cutoff frequency depends on the selected gyroscope ODR, as indicated in the following table.

Functionality LSM6DSR

Table 19. Gyroscope LPF2 bandwidth selection

Gyroscope ODR [Hz]	LPF2 cutoff [Hz]
12.5	4.3
26	8.3
52	16.7
104	33
208	67
417	133
833	267
1667	539
3333	1137
6667	3333

Data can be acquired from the output registers and FIFO over the primary $I^2C/I^3C/SPI$ interface.

LSM6DSR Functionality

Mode 3 / Mode 4 (for OIS and EIS functionality)

HP_EN_G **Digital FIFO** P Filter LPF2 **ADC** Digital **HP** Filter ODR_G[3:0] SPI/I2C/ MIPI I3CSM HP_EN_OIS (3) Digital(1)(2) LP Filter LPF1 1 ODR Gyro SPI_Aux @6.6 kHz 0 FTYPE[1:0]_OIS

Figure 20. Gyroscope digital chain - Mode 3 / Mode 4 (OIS/EIS)

- 1. When Mode3/4 is enabled, the LPF1 filter is not available in the gyroscope UI chain.
- 2. It is recommended to avoid using the LPF1 filter in Mode1/2 when Mode3/4 is intended to be used.
- 3. HP_EN_OIS can be used to select the HPF on the OIS path only if the HPF is not used in the UI chain. If both the HP_EN_G bit and HP_EN_OIS bit are set to 1, the HP filter is applied to the UI chain only.

Note: When S4S is enabled in the UI chain, the HPF is not available in the OIS chain.

The auxiliary interface needs to be enabled in CTRL1_OIS (70h).

In Mode 3/4 configuration, there are two paths:

- the chain for User Interface (UI) where the ODR is selectable from 12.5 Hz up to 6.66 kHz
- the chain for OIS/EIS where the ODR is at 6.66 kHz and the LPF1 is available. The LPF1 configuration depends on the setting of the FTYPE_[1;0] _OIS bit in register CTRL2_OIS (71h); for more details about the filter characteristics see Table 160: Gyroscope OIS chain digital LPF1 filter bandwidth selection. Gyroscope output values are in registers 22h to 27h with the selected full scale (FS[1:0]_G_OIS bit in CTRL1_OIS (70h)).

Functionality LSM6DSR

6.5 OIS

This paragraph describes OIS functionality and the dedicated accelerometer-gyroscope DSP chain.

There is a dedicated gyroscope and accelerometer DSP for OIS.

Other features can be configured:

- Self-test on OIS side
- DEN on OIS side

The camera module is completely independent from the application processor as shown in *Figure 21*.

The Auxiliary SPI can configure OIS functionality through *INT_OIS* (6Fh), CTRL1_OIS (70h), CTRL2_OIS (71h), CTRL3_OIS (72h).

Reading from the Auxiliary SPI is enabled only when the OIS_EN_SPI2 bit in the CTRL1_OIS (70h) register is set to '1'. This bit also turns on the gyroscope OIS chain.

The Primary Interface can access the OIS control registers (INT_OIS (6Fh), CTRL1_OIS (70h), CTRL2_OIS (71h), CTRL3_OIS (72h)) in read mode.

Figure 21. Auxiliary SPI full control (a) and enabling primary interface (b)

LSM6DSR Functionality

6.6 FIFO

The presence of a FIFO allows consistent power saving for the system since the host processor does not need continuously poll data from the sensor, but It can wake up only when needed and burst the significant data out from the FIFO.

The LSM6DSR embeds 3 kbytes of data (up to 9 kbytes with the compression feature enabled) in FIFO to store the following data:

- Gyroscope
- Accelerometer
- External sensors (up to 4)
- Step counter
- Timestamp
- Temperature

Writing data in the FIFO can be configured to be triggered by the:

- Accelerometer / gyroscope data-ready signal
- Sensor hub data-ready signal
- Step detection signal

The applications have maximum flexibility in choosing the rate of batching for physical sensors with FIFO-dedicated configurations: accelerometer, gyroscope and temperature sensor batching rates can be selected by the user. External sensor writing in FIFO can be triggered by the accelerometer data-ready signal or by an external sensor interrupt. The step counter can be stored in FIFO with associated timestamp each time a step is detected. It is possible to select decimation for timestamp batching in FIFO with a factor of 1, 8, or 32.

The reconstruction of a FIFO stream is a simple task thanks to the FIFO_DATA_OUT_TAG byte that allows recognizing the meaning of a word in FIFO.

FIFO allows correct reconstruction of the timestamp information for each sensor stored in FIFO. If a change in the ODR or BDR (Batching Data Rate) configuration is performed, the application can correctly reconstruct the timestamp and know exactly when the change was applied without disabling FIFO batching. FIFO stores information of the new configuration and timestamp in which the change was applied in the device.

Finally, FIFO embeds a compression algorithm that the user can enable in order to have up to 9 kbyte data stored in FIFO and take advantage of interface communication length for FIFO flushing and communication power consumption.

The programmable FIFO watermark threshold can be set in *FIFO_CTRL1* (07h) and *FIFO_CTRL2* (08h) using the WTM[8:0] bits. To monitor the FIFO status, dedicated registers (*FIFO_STATUS1* (3Ah), *FIFO_STATUS2* (3Bh)) can be read to detect FIFO overrun events, FIFO full status, FIFO empty status, FIFO watermark status and the number of unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2 pins of these status events, the configuration can be set in *INT1_CTRL* (0Dh) and *INT2_CTRL* (0Eh).

Functionality LSM6DSR

The FIFO buffer can be configured according to six different modes:

- · Bypass mode
- FIFO mode
- Continuous mode
- Continuous-to-FIFO mode
- Bypass-to-continuous mode
- Bypass-to-FIFO mode

Each mode is selected by the FIFO_MODE_[2:0] bits in the FIFO_CTRL4 (0Ah) register.

6.6.1 Bypass mode

In Bypass mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = 000), the FIFO is not operational and it remains empty. Bypass mode is also used to reset the FIFO when in FIFO mode.

6.6.2 FIFO mode

In FIFO mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = 001) data from the output channels are stored in the FIFO until it is full.

To reset FIFO content, Bypass mode should be selected by writing *FIFO_CTRL4* (*0Ah*)(FIFO_MODE_[2:0]) to '000'. After this reset command, it is possible to restart FIFO mode by writing *FIFO_CTRL4* (*0Ah*)(FIFO_MODE_[2:0]) to '001'.

The FIFO buffer memorizes up to 9 kbytes of data (with compression enabled) but the depth of the FIFO can be resized by setting the WTM [8:0] bits in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h). If the STOP_ON_WTM bit in FIFO_CTRL2 (08h) is set to '1', FIFO depth is limited up to the WTM [8:0] bits in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h).

6.6.3 Continuous mode

Continuous mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = 110) provides a continuous FIFO update: as new data arrives, the older data is discarded.

A FIFO threshold flag *FIFO_STATUS2* (3Bh)(FIFO_WTM_IA) is asserted when the number of unread samples in FIFO is greater than or equal to *FIFO_CTRL1* (07h) and *FIFO_CTRL2* (08h)(WTM [8:0]).

It is possible to route the FIFO_WTM_IA flag to *FIFO_CTRL2 (08h)* to the INT1 pin by writing in register *INT1_CTRL (0Dh)*(INT1_FIFO_TH) = '1' or to the INT2 pin by writing in register *INT2_CTRL (0Eh)*(INT2_FIFO_TH) = '1'.

A full-flag interrupt can be enabled, *INT1_CTRL* (*0Dh*)(INT1_FIFO_FULL) = '1' or *INT2_CTRL* (*0Eh*)(INT2_FIFO_FULL) = '1', in order to indicate FIFO saturation and eventually read its content all at once.

If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and the FIFO_OVR_IA flag in *FIFO_STATUS2 (3Bh)* is asserted.

In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples available in FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh)(DIFF_FIFO_[9:0]).

LSM6DSR Functionality

6.6.4 Continuous-to-FIFO mode

In Continuous-to-FIFO mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = 011), FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Single tap
- Double tap
- Wake-up
- Free-fall
- D6D

When the selected trigger bit is equal to '1', FIFO operates in FIFO mode.

When the selected trigger bit is equal to '0', FIFO operates in Continuous mode.

6.6.5 Bypass-to-Continuous mode

In Bypass-to-Continuous mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = '100'), data measurement storage inside FIFO operates in Continuous mode when selected triggers are equal to '1', otherwise FIFO content is reset (Bypass mode).

FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Single tap
- Double tap
- Wake-up
- Free-fall
- D6D

6.6.6 Bypass-to-FIFO mode

In Bypass-to-FIFO mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = '111'), data measurement storage inside FIFO operates in FIFO mode when selected triggers are equal to '1', otherwise FIFO content is reset (Bypass mode).

FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Single tap
- Double tap
- Wake-up
- Free-fall
- D6D

Functionality LSM6DSR

6.6.7 FIFO reading procedure

The data stored in FIFO are accessible from dedicated registers and each FIFO word is composed of 7 bytes: one tag byte (*FIFO_DATA_OUT_TAG (78h)*), in order to identify the sensor, and 6 bytes of fixed data (FIFO_DATA_OUT registers from (79h) to (7Eh)).

The DIFF_FIFO_[9:0] field in the *FIFO_STATUS1* (3Ah) and *FIFO_STATUS2* (3Bh) registers contains the number of words (1 byte TAG + 6 bytes DATA) collected in FIFO.

In addition, it is possible to configure a counter of the batch events of accelerometer or gyroscope sensors. The flag COUNTER_BDR_IA in FIFO_STATUS2 (3Bh) alerts that the counter reaches a selectable threshold (CNT_BDR_TH_[10:0] field in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch)). This allows triggering the reading of FIFO with the desired latency of one single sensor. The sensor is selectable using the TRIG_COUNTER_BDR bit in COUNTER_BDR_REG1 (0Bh). As for the other FIFO status events, the flag COUNTER_BDR_IA can be routed on the INT1 or INT2 pins by asserting the corresponding bits (INT1_CNT_BDR of INT1_CTRL (0Dh) and INT2_CNT_BDR of INT1_CTRL (0Dh)).

In order to maximize the amount of accelerometer and gyroscope data in FIFO, the user can enable the compression algorithm by setting to 1 both the FIFO_COMPR_EN bit in *EMB_FUNC_EN_B* (05h) (embedded functions registers bank) and the FIFO_COMPR_RT_EN bit in *FIFO_CTRL2* (08h). When compression is enabled, it is also possible to force writing non-compressed data at a selectable rate using the UNCOPTR_RATE [1:0] field in *FIFO_CTRL2* (08h).

Meta information about accelerometer and gyroscope sensor configuration changes can be managed by enabling the ODR CHG EN bit in FIFO CTRL2 (08h).

LSM6DSR Application hints

7 Application hints

7.1 LSM6DSR electrical connections in Mode 1

Mode 1 HOST I²C / MIPI I3CSM NC (1) SPI (3/4-w) SDO/SA0 1 11 NC (1) TOP SDx LSM6DSR **VIEW** SCx Vdd INT2 GND or VDDIO 4 8 INT1 VDD GND VDDIO 100 nF I²C configuration GND Vdd_IO R_{pu} Vdd_IO 100 nF SCL GND SDA Pull-up to be added R_{pu}=10kOhm

Figure 22. LSM6DSR electrical connections in Mode 1

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, $C2 = 100 \, nF$ ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I 2 C/MIPI I3C SM interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I 2 C/MIPI I3C SM interface.

Application hints LSM6DSR

7.2 LSM6DSR electrical connections in Mode 2

Mode 2 HOST I²C / SPI (3/4-w) LSM6DSR NC (1) 11 DO/SAO NC (1) TOP MSDA **VIEW** MSCL MDRDY/INT2 4 8 INT1 External VDD sensors 7 C1 GND 100 nF I²C configuration Vdd_IO Vdd_IO 100 nF SCL **GND** SDA Pull-up to be added $R_{pu}=10kOhm$

Figure 23. LSM6DSR electrical connections in Mode 2

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I 2 C/MIPI I3C SM primary interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C/MIPI I3CSM primary interface.

LSM6DSR Application hints

7.3 LSM6DSR electrical connections in Mode 3 and Mode 4

Mode 3 Mode 4 HOST HOST I²C / I²C MIPI I3CSM MIPI I3CSM SPI (3/4-w) NC⁽¹⁾ SDO LSM6DSR 11 LSM6DSR SDI_Aux OCS_Aux TOP SPC_Aux INT2 VIEW For XL and For avro INT1 VDD 8 Camera Camera C1 module module GND GND 100 nF VDDIO GND I²C configuration Vdd_IO C2 Vdd_IO 100 nF GND SCL SDA Pull-up to be added R_{pu}=10kOhm

Figure 24. LSM6DSR electrical connections in Mode 3 and Mode 4 (auxiliary 3/4-wire SPI)

1. Leave pin electrically unconnected and soldered to PCB.

Note:

When Mode 3 and 4 are used, the pull-up on pins 10 and 11 can be disabled (refer to Table 19: Internal pin status). To avoid leakage current, it is recommended to add pull-up resistors on the SPI lines unless the SPI master can be left on while the OIS system is off.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device is selectable and accessible through the SPI/I²C/MIPI I3CSM primary interface.

Measured acceleration/angular rate data is selectable and accessible through the SPI/I 2 C/MIPI I3C SM primary interface and auxiliary SPI.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the $SPI/I^2C/MIPI~I3C^{SM}$ interface.

DocID030186 Rev 1

60/166

1					Table 20. Internal pir	n status		
	pin #	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function	Pin status Mode 1	Pin status Mode 2	Pin status Mode 3/4 ⁽¹⁾
		SDO SPI 4-wire interface SPI 4-wire interface serial data output (SDO) SPI 4-wire interface serial data output (SDO)		•	SPI 4-wire interface serial data output (SDO) Default:		Default:	Default:
	1	SA0 bit ac MIF signi	I ² C least significant bit of the device address (SA0) MIPI I3C SM least significant bit of the static address (SA0)	I ² C least significant bit of the device address (SA0) MIPI I3C SM least significant bit of the static address (SA0)	I ² C least significant bit of the device address (SA0) MIPI I3C SM least significant bit of the static address (SA0)	input without pull-up. Pull-up is enabled if bit SDO_PU_EN = 1 in reg 02h.	input without pull-up. Pull-up is enabled if bit SDO_PU_EN = 1 in reg 02h.	Input without pull-up. Pull-up is enabled if bit SDO_PU_EN = 1 in reg 02h.
	2	SDx	Connect to VDDIO or GND	I ² C serial data master (MSDA)	Auxiliary SPI 3/4-wire interface serial data input (SDI) and SPI 3-wire serial data output (SDO)	Default: input without pull-up. Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).	Default: input without pull-up. Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).	Default: input without pull-up. Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).
	3	SCx	Connect to VDDIO or GND	I ² C serial clock master (MSCL)	Auxiliary SPI 3/4-wire interface serial port clock (SPC_Aux)	Default: input without pull-up. Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).	Default: input without pull-up. Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).	Default: input without pull-up. Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up)
	4	INT1	Programmable interrupt 1 / If device is used as MIPI I3C SM pure slave, this pin must be set to '1'.	Programmable interrupt 1 / If device is used as MIPI I3C SM pure slave, this pin must be set to '1'.	Programmable interrupt 1 / If device is used as MIPI I3C SM pure slave, this pin must be set to '1'.	Default: input with pull-down ⁽²⁾	Default: input with pull-down ⁽²⁾	Default: input with pull-down ⁽²⁾
	5	VDDIO	Power supply for I/O pins	Power supply for I/O pins	Power supply for I/O pins			
	6	GND	0 V supply	0 V supply	0 V supply			
	7	GND	0 V supply	0 V supply	0 V supply			

Table 20. Internal pin status (continued)

pin #	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function	Pin status Mode 1	Pin status Mode 2	Pin status Mode 3/4 ⁽¹⁾
8	VDD	Power supply	Power supply	Power supply			
9	INT2	Programmable interrupt 2 (INT2) / Data enabled (DEN)	Programmable interrupt 2 (INT2) / Data enabled (DEN) / I ² C master external synchronization signal (MDRDY)	Programmable interrupt 2 (INT2) / Data enabled (DEN)	Default: output forced to ground	Default: output forced to ground	Default: output forced to ground
10	OCS_Aux	Leave unconnected	Leave unconnected	Auxiliary SPI 3/4-wire interface enabled	Default: input with pull-up. Pull- up is disabled if bit OIS_PU_DIS = 1 in reg 02h.	Default: input with pull-up. Pull- up is disabled if bit OIS_PU_DIS = 1 in reg 02h.	Default: input without pull-up (regardless of the value of bit OIS_PU_DIS in reg 02h.)
11	SDO_Aux	Connect to VDDIO or leave unconnected	Connect to VDDIO or leave unconnected	Auxiliary SPI 3-wire interface: leave unconnected / Auxiliary SPI 4-wire interface: serial data output (SDO_Aux)	Default: input with pull-up. Pull- up is disabled if bit OIS_PU_DIS = 1 in reg 02h.	Default: input with pull-up. Pull- up is disabled if bit OIS_PU_DIS = 1 in reg 02h.	Default: input without pull-up. Pull-up is enabled if bit SIM_OIS = 1 (Aux_SPI 3-wire) in reg 70h and bit OIS_PU_DIS = 0 in reg 02h.
12	CS	I ² C/SPI mode selection (1:SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	I ² C/SPI mode selection (1:SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	I ² C/SPI mode selection (1:SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	Default: input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in reg 13h and I3C_disable = 1 in reg 18h.	Default: input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in reg 13h and I3C_disable = 1 in reg 18h.	Default: input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in reg 13h and I3C_disable = 1 in reg 18h.

DocID030186 Rev 1

Table 20. Internal pin status (continued)

pin #	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function	Pin status Mode 1	Pin status Mode 2	Pin status Mode 3/4 ⁽¹⁾
13	SCL	I ² C/MIPI I3C SM serial clock (SCL) / SPI serial port clock (SPC)	I ² C/MIPI I3C SM serial clock (SCL) / SPI serial port clock (SPC)	I ² C/MIPI I3C SM serial clock (SCL) / SPI serial port clock (SPC)	Default: input without pull-up	Default: input without pull-up	Default: input without pull-up
14	SDA	I ² C/MIPI I3C SM serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	I ² C/MIPI I3C SM serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	I ² C/MIPI I3C SM serial data (SDA) / SPI serial data input (SDI) / 3- wire interface serial data output (SDO)	Default: input without pull-up	Default: input without pull-up	Default: input without pull-up

^{1.} Mode 3 is enabled when the OIS_EN_SPI2 bit in the CTRL1_OIS (70h) register is set to 1. Mode 4 is enabled when both the OIS_EN_SPI2 bit and the Mode4_EN bit in CTRL1_OIS (70h) register are set to 1.

Internal pull-up value is from 30 k Ω to 50 k Ω , depending on VDDIO.

Note: The procedure to enable the pull-up on pins 2 and 3 is as follows:

1. From the primary I²C/I³C/SPI interface : write 40h in register at address 01h (enable access to the sensor hub registers)

2. From the primary I²C/I³C/SPI interface : write 08h in register at address 14h (enable the pull-up on pins 2 and 3)

3. From the primary I²C/I³C/SPI interface : write 00h in register at address 01h (disable access to the sensor hub registers)

^{2.} INT1 must be set to '0' or left unconnected during power-on if the I²C/SPI interfaces are used.

LSM6DSR Register mapping

8 Register mapping

The table given below provides a list of the 8/16-bit registers embedded in the device and the corresponding addresses.

Table 21. Registers address map

Name	T	Regis	ter address	Defects	Commont
Name	Туре	Hex	Binary	- Default	Comment
FUNC_CFG_ACCESS	RW	01	00000001	00000000	
PIN_CTRL	RW	02	00000010	00111111	
RESERVED	-	03			
S4S_TPH_L	RW	04	00000100	00000000	
S4S_TPH_H	RW	05	00000101	00000000	
S4S_RR	RW	06	00000110	00000000	
FIFO_CTRL1	RW	07	00000111	00000000	
FIFO_CTRL2	RW	08	00001000	00000000	
FIFO_CTRL3	RW	09	00001001	00000000	
FIFO_CTRL4	RW	0A	00001010	00000000	
COUNTER_BDR_REG1	RW	0B	00001011	00000000	
COUNTER_BDR_REG2	RW	0C	00001100	00000000	
INT1_CTRL	RW	0D	00001101	00000000	
INT2_CTRL	RW	0E	00001110	00000000	
WHO_AM_I	R	0F	00001111	01101011	R (SPI2)
CTRL1_XL	RW	10	00010000	00000000	R (SPI2)
CTRL2_G	RW	11	00010001	00000000	R (SPI2)
CTRL3_C	RW	12	00010010	00000100	R (SPI2)
CTRL4_C	RW	13	00010011	00000000	R (SPI2)
CTRL5_C	RW	14	00010100	00000000	R (SPI2)
CTRL6_C	RW	15	00010101	00000000	R (SPI2)
CTRL7_G	RW	16	00010110	00000000	R (SPI2)
CTRL8_XL	RW	17	0001 0111	00000000	R (SPI2)
CTRL9_XL	RW	18	00011000	11100000	R (SPI2)
CTRL10_C	RW	19	00011001	00000000	R (SPI2)
ALL_INT_SRC	R	1A	00011010	output	
WAKE_UP_SRC	R	1B	00011011	output	
TAP_SRC	R	1C	00011100	output	
D6D_SRC	R	1D	00011101	output	

Register mapping LSM6DSR

Table 21. Registers address map (continued)

		Regist	er address		
Name	Туре	Hex	Binary	Default	Comment
STATUS_REG ⁽¹⁾ / STATUS_SPIAux ⁽²⁾	R	1E	00011110	output	
RESERVED	-	1F	00011111		
OUT_TEMP_L	R	20	00100000	output	
OUT_TEMP_H	R	21	00100001	output	
OUTX_L_G	R	22	00100010	output	
OUTX_H_G	R	23	00100011	output	
OUTY_L_G	R	24	00100100	output	
OUTY_H_G	R	25	00100101	output	
OUTZ_L_G	R	26	00100110	output	
OUTZ_H_G	R	27	00100111	output	
OUTX_L_A	R	28	00101000	output	
OUTX_H_A	R	29	00101001	output	
OUTY_L_A	R	2A	00101010	output	
OUTY_H_A	R	2B	00101011	output	
OUTZ_L_A	R	2C	00101100	output	
OUTZ_H_A	R	2D	00101101	output	
RESERVED	-	2E-34			
EMB_FUNC_STATUS_ MAINPAGE	R	35	00110101	output	
FSM_STATUS_A_ MAINPAGE	R	36	00110110	output	
FSM_STATUS_B_ MAINPAGE	R	37	00110111	output	
RESERVED	-	38			
STATUS_MASTER_ MAINPAGE	R	39	00111001	output	
FIFO_STATUS1	R	3A	00111010	output	
FIFO_STATUS2	R	3B	00111011	output	
RESERVED	-	3C-3F			
TIMESTAMP0	R	40	01000000	output	R (SPI2)
TIMESTAMP1	R	41	01000001	output	R (SPI2)
TIMESTAMP2	R	42	01000010	output	R (SPI2)
TIMESTAMP3	R	43	01000011	output	R (SPI2)
RESERVED	-	44-55			
TAP_CFG0	RW	56	01010110	00000000	

LSM6DSR Register mapping

Table 21. Registers address map (continued)

Nama	T	Regist	er address	Defectle	0
Name	Туре	Hex	Binary	- Default	Comment
TAP_CFG1	RW	57	01010111	00000000	
TAP_CFG2	RW	58	01011000	00000000	
TAP_THS_6D	RW	59	01011001	00000000	
INT_DUR2	RW	5A	01011010	00000000	
WAKE_UP_THS	RW	5B	01011011	00000000	
WAKE_UP_DUR	RW	5C	01011100	00000000	
FREE_FALL	RW	5D	01011101	00000000	
MD1_CFG	RW	5E	01011110	00000000	
MD2_CFG	RW	5F	01011111	00000000	
S4S_ST_CMD_CODE	RW	60	01100000	00000000	
S4S_DT_REG	RW	61	01100001	00000000	
I3C_BUS_AVB	RW	62	01100010	00000000	
INTERNAL_FREQ_FINE	R	63	01100011	output	
RESERVED	-	64-6E			
INT_OIS	R	6F	01101111	00000000	RW (SPI2)
CTRL1_OIS	R	70	01110000	00000000	RW (SPI2)
CTRL2_OIS	R	71	01110001	00000000	RW (SPI2)
CTRL3_OIS	R	72	01110010	00000000	RW (SPI2)
X_OFS_USR	RW	73	01110011	00000000	
Y_OFS_USR	RW	74	01110100	00000000	
Z_OFS_USR	RW	75	01110101	00000000	
RESERVED	-	76-77			
FIFO_DATA_OUT_TAG	R	78	01111000	output	
FIFO_DATA_OUT_X_L	R	79	01111001	output	
FIFO_DATA_OUT_X_H	R	7A	01111010	output	
FIFO_DATA_OUT_Y_L	R	7B	01111011	output	
FIFO_DATA_OUT_Y_H	R	7C	01111100	output	
FIFO_DATA_OUT_Z_L	R	7D	01111101	output	
FIFO_DATA_OUT_X_H	R	7E	01111110	output	

^{1.} This register status is read using the primary interface for user interface data.

^{2.} This register status is read using the auxiliary SPI for OIS data.

Register description LSM6DSR

9 Register description

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface.

9.1 FUNC_CFG_ACCESS (01h)

Enable embedded functions register (r/w)

Table 22. FUNC_CFG_ACCESS register

FUNC_CFG_ ACCESS	SHUB_ REG_ ACCESS	0 ⁽¹⁾						
---------------------	-------------------------	------------------	------------------	------------------	------------------	------------------	------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 23. FUNC_CFG_ACCESS register description

FUNC_CFG_ ACCESS	Enable access to the embedded functions configuration registers. Default value: 0 ⁽¹⁾
	Enable access to the sensor hub (I ² C master) registers. Default value: 0 ⁽²⁾

Details concerning the embedded functions configuration registers are available in Section 10: Embedded functions register mapping and Section 11: Embedded functions register description.

9.2 PIN_CTRL (02h)

SDO, OCS AUX, SDO AUX pins pull-up enable/disable register (r/w)

Table 24. PIN_CTRL register

OIS_ PU_DIS SDO_ PU_EN 1 1 1 1 1 1 1 1
--

Table 25. PIN_CTRL register description

	Disable pull-up on both OCS_Aux and SDO_Aux pins. Default value: 0 (0: OCS_Aux and SDO_Aux pins with pull-up; 1: OCS_Aux and SDO_Aux pins pull-up disconnected)
SDO_PU_EN	Enable pull-up on SDO pin (0: SDO pin pull-up disconnected (default); 1: SDO pin with pull-up)

Details concerning the sensor hub registers are available in Section 14: Sensor hub register mapping and Section 15: Sensor hub register description.

9.3 S4S_TPH_L (04h)

Sensor synchronization time frame register (r/w)

Table 26. S4S_TPH_L register

TPH_H_ SEL TPH_L_6 TPH_L_5 TPH_L_4 TPH_L_3 TPH_L_2 TPH_L_1 TPH_L	
--	--

Table 27. S4S_TPH_L register description

TPH_H_SEL	Chooses if the TPH formula must be taken into account (see Equation 1).
TPH_L_[6:0]	S4S time frame expressed in number of samples as described in <i>Equation 1</i> . If TPH_H_SEL=0 and TPH_L_[6:0] = d0, S4S is disabled.

Equation 1

When TPH_H_SEL = 0:

TPH [#Samples] = 2 x TPHL

When TPH H SEL = 1:

TPH [#Samples] = 2 x (TPH_L + 256 x TPH_H)

9.4 S4S_TPH_H (05h)

Sensor synchronization time frame register (r/w)

Table 28. S4S_TPH_H register

TPH_H_	TPH_H_6	TPH_H_5	TPH_H_4	TPH_H_3	TPH_H_2	TPH_H_1	TPH_H_0	١
--------	---------	---------	---------	---------	---------	---------	---------	---

Table 29. S4S_TPH_H register description

	S4S time frame expressed in number of samples. Only if the TPH_H_SEL bit in S4S_TPH_L (04h) is high, is the value of this register is taken into account as
	described in Equation 1.

9.5 S4S_RR (06h)

Sensor synchronization resolution ratio register (r/w)

Table 30. S4S_RR register

|--|

Table 31. S4S_RR register description

RR_[1:0]	(00: S4S, DT resolution 2 ¹¹ ; 01: S4S, DT resolution 2 ¹² ; 10: S4S, DT resolution 2 ¹³ ; 11: S4S, DT resolution 2 ¹⁴)

Register description LSM6DSR

9.6 FIFO_CTRL1 (07h)

FIFO control register 1 (r/w)

Table 32. FIFO_CTRL1 register

WTM7 WTM6 WTM5	WTM4	WTM3	WTM2	WTM1	WTM0
----------------	------	------	------	------	------

Table 33. FIFO_CTRL1 register description

		FIFO watermark threshold, in conjunction with WTM8 in FIFO_CTRL2 (08h)
١,	NTM[7:0]	1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO
'	7V 11VI[7.O]	Watermark flag rises when the number of bytes written in the FIFO is greater than or equal to the threshold level.

9.7 FIFO_CTRL2 (08h)

FIFO control register 2 (r/w)

Table 34. FIFO_CTRL2 register

STOP_ON	ODRCHG _EN 0	UNCOPTR UNCOPTR RATE_1 _RATE_0	VTM8
---------	-----------------	--------------------------------	------

Table 35. FIFO_CTRL2 register description

STOP_ON_ WTM	Sensing chain FIFO stop values memorization at threshold level (0: FIFO depth is not limited (default); 1: FIFO depth is limited to threshold level, defined in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h))					
FIFO_COMPR_ RT_EN ⁽¹⁾	Enables/Disables compression algorithm runtime					
ODRCHG_EN	Enables ODR CHANGE virtual sensor to be batched in FIFO					
UNCOPTR_ RATE_[1:0]	This field configures the compression algorithm to write non-compressed data at each rate. (0: Non-compressed data writing is not forced; 1: Non-compressed data every 8 batch data rate; 2: Non-compressed data every 16 batch data rate; 3: Non-compressed data every 32 batch data rate)					
WTM8	FIFO watermark threshold, in conjunction with WTM_FIFO[7:0] in FIFO_CTRL1 (07h) 1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO Watermark flag rises when the number of bytes written in the FIFO is greater than or equal to the threshold level.					

^{1.} This bit is effective if the FIFO_COMPR_EN bit of $\it EMB_FUNC_EN_B~(05h)$ is set to 1.

9.8 FIFO_CTRL3 (09h)

FIFO control register 3 (r/w)

Table 36. FIFO_CTRL3 register

| BDR_ |
|------|------|------|------|------|------|------|------|
| GY_3 | GY_2 | GY_1 | GY_0 | XL_3 | XL_2 | XL_1 | XL_0 |

Table 37. FIFO CTRL3 register description

Table 37. FIFO_CTRL3 register description							
	Selects Batching Data Rate (writing frequency in FIFO) for gyroscope data. (0000: Gyro not batched in FIFO (default);						
	0001: 12.5 Hz;						
	0010: 26 Hz;						
	0011: 52 Hz;						
	0100: 104 Hz;						
DDD OV 10.01	0101: 208 Hz;						
BDR_GY_[3:0]	0110: 417 Hz;						
	0111: 833 Hz;						
	1000: 1667 Hz;						
	1001: 3333 Hz;						
	1010: 6667 Hz;						
	1011: 6.5 Hz;						
	1100-1111: not allowed)						
	Selects Batching Data Rate (writing frequency in FIFO) for accelerometer data. (0000: Accelerometer not batched in FIFO (default);						
	0001: 12.5 Hz;						
	0010: 26 Hz;						
	0011: 52 Hz;						
	0100: 104 Hz;						
DDD VI [3:0]	0101: 208 Hz;						
BDR_XL_[3:0]	0110: 417 Hz;						
	0111: 833 Hz;						
	1000: 1667 Hz;						
	1001: 3333 Hz;						
	1010: 6667 Hz;						
	1011: 1.6 Hz;						
	1100-1111: not allowed)						

Register description LSM6DSR

9.9 FIFO_CTRL4 (0Ah)

FIFO control register 4 (r/w)

Table 38. FIFO_CTRL4 register

DEC_TS_	DEC_TS_	ODR_T_	ODR_T_	0	FIFO_	FIFO_	FIFO_
		BATCH_1		U	MODE2	MODE1	MODE0

Table 39. FIFO_CTRL4 register description

DEC_TS_ BATCH_[1:0]	Selects decimation for timestamp batching in FIFO. Writing rate will be the maximum rate between XL and GYRO BDR divided by decimation decoder. (00: Timestamp not batched in FIFO (default); 01: Decimation 1: max(BDR_XL[Hz],BDR_GY[Hz]) [Hz]; 10: Decimation 8: max(BDR_XL[Hz],BDR_GY[Hz])/8 [Hz]; 11: Decimation 32: max(BDR_XL[Hz],BDR_GY[Hz])/32 [Hz])
ODR_T_ BATCH_[1:0]	Selects batching data rate (writing frequency in FIFO) for temperature data (00: Temperature not batched in FIFO (default); 01: 1.6 Hz; 10: 12.5 Hz; 11: 52 Hz)
FIFO_ MODE[2:0]	FIFO mode selection (000: Bypass mode: FIFO disabled; 001: FIFO mode: stops collecting data when FIFO is full; 010: Reserved; 011: Continuous-to-FIFO mode: Continuous mode until trigger is deasserted, then FIFO mode; 100: Bypass-to-Continuous mode: Bypass mode until trigger is deasserted, then Continuous mode; 101: Reserved; 110: Continuous mode: if the FIFO is full, the new sample overwrites the older one; 111: Bypass-to-FIFO mode: Bypass mode until trigger is deasserted, then FIFO mode.)

9.10 COUNTER_BDR_REG1 (0Bh)

Counter batch data rate register 1 (r/w)

Table 40. COUNTER_BDR_REG1 register

dataready _pulsed	RST_ COUNTER _BDR	TRIG_ COUNTER _BDR	0	0	CNT_BDR _TH_10	CNT_BDR _TH_9	CNT_BDR _TH_8

Table 41. COUNTER_BDR_REG1 register description

dataready_pulsed	Enables pulsed data-ready mode (0: Data-ready latched mode (returns to 0 only after an interface reading) (default); 1: Data-ready pulsed mode (the data ready pulses are 75 µs long)			
RST_ COUNTER_BDR	Resets the internal counter of batching events for a single sensor. This bit is automatically reset to zero if it was set to '1'.			
TRIG_ COUNTER_BDR	Selects the trigger for the internal counter of batching events between XL and gyro. (0: XL batching event; 1: GYRO batching event)			
CNT_BDR_TH_ [10:8]	In conjunction with CNT_BDR_TH_[7:0] in COUNTER_BDR_REG2 (0Ch), sets the threshold for the internal counter of batching events. When this counter reaches the threshold, the counter is reset and the COUNTER_BDR_IA flag in FIFO_STATUS2 (3Bh) is set to '1'.			

9.11 COUNTER_BDR_REG2 (0Ch)

Counter batch data rate register 2 (r/w)

Table 42. COUNTER_BDR_REG2 register

| CNT_BDR |
|---------|---------|---------|---------|---------|---------|---------|---------|
| _TH_7 | _TH_6 | _TH_5 | _TH_4 | _TH_3 | _TH_2 | _TH_1 | _TH_0 |

Table 43. COUNTER_BDR_REG2 register description

In conjunction with CNT_BDR_TH_[10:8] in COUNTER_BDR_REG1 (0Bh), sets
the threshold for the internal counter of batching events. When this counter
reaches the threshold, the counter is reset and the COUNTER_BDR_IA flag in
FIFO_STATUS2 (3Bh) is set to '1'.

Register description LSM6DSR

9.12 INT1_CTRL (0Dh)

INT1 pin control register (r/w)

Each bit in this register enables a signal to be carried out on INT1 when the MIPI $I3C^{SM}$ dynamic address is not assigned (I^2C or SPI is used). Some bits can be also used to trigger an IBI (In-Band Interrupt) when the MIPI $I3C^{SM}$ interface is used. The output of the pin will be the OR combination of the signals selected here and in $MD1_CFG$ (5Eh).

Table 44. INT1_CTRL register

DEN_ DRDY_ flag	INT1_CNT _BDR	INT1_ FIFO _FULL	INT1_ FIFO_ OVR	INT1_ FIFO_TH	INT1_ BOOT	INT1_ DRDY_G	INT1_ DRDY_XL
-----------------------	------------------	------------------------	-----------------------	------------------	---------------	-----------------	------------------

Table 45. INT1_CTRL register description

DEN_DRDY_flag	Sends DEN_DRDY (DEN stamped on Sensor Data flag) to INT1 pin
INT1_CNT_ BDR	Enables COUNTER_BDR_IA interrupt on INT1
INT1_FIFO_FULL	Enables FIFO full flag interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used.
INT1_FIFO_OVR	Enables FIFO overrun interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used.
INT1_FIFO_TH	Enables FIFO threshold interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used.
INT1_BOOT	Enables boot status on INT1 pin
INT1_ DRDY_G	Enables gyroscope data-ready interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used.
INT1_ DRDY_XL	Enables accelerometer data-ready interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used.

9.13 INT2_CTRL (0Eh)

INT2 pin control register (r/w)

Each bit in this register enables a signal to be carried out on INT2 when the MIPI I3CSM dynamic address in not assigned (I²C or SPI is used). Some bits can be also used to trigger an IBI when the MIPI I3CSM interface is used. The output of the pin will be the OR combination of the signals selected here and in *MD2_CFG* (5Fh).

Table 46. INT2_CTRL register

0	INT2_CNT _BDR	INT2_ FIFO_ FULL	INT2_ FIFO_ OVR	INT2_ FIFO_TH	INT2_DRDY _TEMP	INT2_ DRDY_G	INT2_ DRDY_XL
---	------------------	------------------------	-----------------------	------------------	--------------------	-----------------	------------------

Table 47. INT2_CTRL register description

Enables COUNTER_BDR_IA interrupt on INT2
Enables FIFO full flag interrupt on INT2 pin
Enables FIFO overrun interrupt on INT2 pin
Enables FIFO threshold interrupt on INT2 pin
Enables temperature sensor data-ready interrupt on INT2 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used and INT2_ON_INT1 = '1' in <i>CTRL4_C</i> (13h).
Gyroscope data-ready interrupt on INT2 pin
Accelerometer data-ready interrupt on INT2 pin

9.14 WHO_AM_I (0Fh)

WHO_AM_I register (r). This is a read-only register. Its value is fixed at 6Bh.

Table 48. WhoAml register

0	1	1	0	1	0	1	1
---	---	---	---	---	---	---	---

9.15 CTRL1_XL (10h)

Accelerometer control register 1 (r/w)

Table 49. CTRL1_XL register

ODR_XL3	ODR_XL2	ODR_XL1	ODR_XL0	FS1_XL	FS0_XL	LPF2_XL_ EN	0
---------	---------	---------	---------	--------	--------	----------------	---

Table 50. CTRL1_XL register description

ODR_XL[3:0]	Accelerometer ODR selection (see <i>Table 50</i>)
FS[1:0]_XL	Accelerometer full-scale selection. Default value: 00. (00: ±2 g; 01: ±16 g; 10: ±4 g; 11: ±8 g)
LPF2_XL_EN	Accelerometer high-resolution selection (0: output from first stage digital filtering selected (default); 1: output from LPF2 second filtering stage selected)

Table 51. Accelerometer ODR register setting

ODR_ XL3	ODR_ XL2	ODR_ XL1	ODR_ XL0	ODR selection [Hz] when XL_HM_MODE = 1 in CTRL6_C (15h)	ODR selection [Hz] when XL_HM_MODE = 0 in CTRL6_C (15h)
0	0	0	0	Power-down	Power-down
1	0	1	1	1.6 Hz (low power only)	12.5 Hz (high performance)
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance)	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance)	6.66 kHz (high performance)
1	1	х	х	Not allowed	Not allowed

9.16 CTRL2_G (11h)

Gyroscope control register 2 (r/w)

Table 52. CTRL2_G register

ODR G3	ODR G2	ODR G1	ODR G0	FS1 G	FS0 G	FS 125	FS 4000
I —	_	_	_	_	_	_	_

Table 53. CTRL2_G register description

ODR_G[3:0]	Gyroscope output data rate selection. Default value: 0000 (Refer to <i>Table 53</i>)
FS[1:0]_G	Gyroscope UI chain full-scale selection (00: 250 dps; 01: 500 dps; 10: 1000 dps; 11: 2000 dps)
FS_125	Selects gyro UI chain full-scale 125 dps (0: FS selected through bits FS[1:0]_G; 1: FS set to 125 dps)
FS_4000 ⁽¹⁾	Selects gyro UI chain full-scale 4000 dps (0: FS selected through bits FS[1:0]_G or FS_125; 1: FS set to 4000 dps)

^{1.} This bit has to be set to 0 when the OIS chain is ON (OIS_EN_SPI2 bit =1 in CTRL1_OIS (70h))

Table 54. Gyroscope ODR configuration setting

ODR_G3	ODR_G2	ODR_G1	ODR_G0	ODR [Hz] when G_HM_MODE = 1 in CTRL7_G (16h)	ODR [Hz] when G_HM_MODE = 0 in CTRL7_G (16h)
0	0	0	0	Power down	Power down
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance	6.66 kHz (high performance)
1	0	1	1	Not available	Not available

9.17 CTRL3_C (12h)

Control register 3 (r/w)

Table 55. CTRL3_C register

BOOT BDU H_LACTIVI	PP_OD	SIM	IF_INC	0	SW_RESET
--------------------	-------	-----	--------	---	----------

Table 56. CTRL3_C register description

	Reboots memory content. Default value: 0
BOOT	(0: normal mode; 1: reboot memory content)
	This bit is automatically cleared.
	Block Data Update. Default value: 0
BDU	(0: continuous update;
	1: output registers are not updated until MSB and LSB have been read)
H LACTIVE	Interrupt activation level. Default value: 0
II_LACTIVE	(0: interrupt output pins active high; 1: interrupt output pins active low)
PP_OD	Push-pull/open-drain selection on INT1 and INT2 pins. Default value: 0
FF_OD	(0: push-pull mode; 1: open-drain mode)
SIM	SPI Serial Interface Mode selection. Default value: 0
Silvi	(0: 4-wire interface; 1: 3-wire interface)
IF_INC	Register address automatically incremented during a multiple byte access with a serial interface (I ² C or SPI). Default value: 1
	(0: disabled; 1: enabled)
	Software reset. Default value: 0
SW_RESET	(0: normal mode; 1: reset device)
	This bit is automatically cleared.

9.18 CTRL4_C (13h)

Control register 4 (r/w)

Table 57. CTRL4_C register

0 SLEEP_G INT	_on_ T1 0	DRDY_ MASK	I2C_disable	LPF1_ SEL_G	0
---------------	--------------	---------------	-------------	----------------	---

Table 58. CTRL4_C register description

SLEEP_G	Enables gyroscope Sleep mode. Default value:0 (0: disabled; 1: enabled)
INT2_on_INT1	All interrupt signals available on INT1 pin enable. Default value: 0 (0: interrupt signals divided between INT1 and INT2 pins; 1: all interrupt signals in logic or on INT1 pin)
DRDY_MASK	Enables data available (0: disabled; 1: mask DRDY on pin (both XL & Gyro) until filter settling ends (XL and Gyro independently masked).
I2C_disable	Disables I ² C interface. Default value: 0 (0: SPI, I ² C and MIPI I3C SM interfaces enabled (default); 1: I ² C interface disabled)
LPF1_SEL_G	Enables gyroscope digital LPF1 if auxiliary SPI is disabled; the bandwidth can be selected through FTYPE [2:0] in CTRL6_C (15h). (0: disabled; 1: enabled)

9.19 CTRL5_C (14h)

Control register 5 (r/w)

Table 59. CTRL5_C register

0 ROUNDING1 ROUNDING0 0	ST1_G ST0_G ST1_XL	ST0_XL
-------------------------	--------------------	--------

Table 60. CTRL5_C register description

ROUNDING[1:0]	Circular burst-mode (rounding) read from the output registers. Default value: 00 (00: no rounding; 01: accelerometer only; 10: gyroscope only; 11: gyroscope + accelerometer)
ST[1:0]_G	Angular rate sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to <i>Table 60</i>)
ST[1:0]_XL	Linear acceleration sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to <i>Table 61</i>)

Table 61. Angular rate sensor self-test mode selection

ST1_G	ST0_G	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Not allowed
1	1	Negative sign self-test

Table 62. Linear acceleration sensor self-test mode selection

ST1_XL	ST0_XL	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Negative sign self-test
1	1	Not allowed

9.20 CTRL6_C (15h)

Control register 6 (r/w)

Table 63. CTRL6_C register

TRIG_EN	LVL1_EN	LVL2_EN	XL_HM_MODE	USR_ OFF_W	FTYPE_2	FTYPE_1	FTYPE_0
---------	---------	---------	------------	---------------	---------	---------	---------

Table 64. CTRL6_C register description

TRIG_EN	DEN data edge-sensitive trigger enable. Refer to <i>Table 64</i> .
LVL1_EN	DEN data level-sensitive trigger enable. Refer to <i>Table 64</i> .
LVL2_EN	DEN level-sensitive latched enable. Refer to Table 64.
XL_HM_MODE	High-performance operating mode disable for accelerometer. Default value: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)
USR_OFF_W FTYPE[2:0]	Weight of XL user offset bits of registers X_OFS_USR (73h), Y_OFS_USR (74h), Z_OFS_USR (75h) $0 = 2^{-10}$ g/LSB $1 = 2^{-6}$ g/LSB
	Gyroscope's low-pass filter (LPF1) bandwidth selection <i>Table 64</i> shows the selectable bandwidth values (available if auxiliary SPI is disabled).

Table 65. Trigger mode selection

TRIG_EN, LVL1_EN, LVL2_EN	Trigger mode
100	Edge-sensitive trigger mode is selected
010	Level-sensitive trigger mode is selected
011	Level-sensitive latched mode is selected
110	Level-sensitive FIFO enable mode is selected

Table 66. Gyroscope LPF1 bandwidth selection

FTYPE [2:0]	12.5 Hz	26 Hz	52 Hz	104 Hz	208 Hz	416 Hz	833 Hz	1.67 kHz	3.33 kHz	6.67 kHz	
000	4.3	8.3	16.7	33	67	133	222	274	292	297	
001	4.3	8.3	16.7	33	67	128	186	212	220	223	
010	4.3	8.3	16.7	33	67	112	140	150	153	154	
011	4.3	8.3	16.7	33	67	134	260	390	451	470	
100	4.3	8.3	16.7	34	62	86	96	90	N	NA	
101	4.3	8.3	16.9	31	43	48	49	50	NA		
110	4.3	8.3	13.4	19	23	24.6	25	25	N	A	
111	4.3	8.3	9.8	11.6	12.2	12.4	12.6	12.6	N	A	

9.21 CTRL7_G (16h)

Control register 7 (r/w)

Table 67. CTRL7_G register

G_HM_ MODE	HP_EN_G HPM1_G	HPM0_G	0 ⁽¹⁾	OIS_ON_EN	USR_ OFF_ON _ OUT	OIS_ON	
---------------	----------------	--------	------------------	-----------	-------------------------	--------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 68. CTRL7_G register description

	Disables high-performance operating mode for gyroscope. Default: 0
G_HM_MODE	(0: high-performance operating mode enabled;
	1: high-performance operating mode disabled)
	Enables gyroscope digital high-pass filter. The filter is enabled only if the gyro is
HP_EN_G	in HP mode. Default value: 0
	(0: HPF disabled; 1: HPF enabled)
	Gyroscope digital HP filter cutoff selection. Default: 00
	(00: 16 mHz;
HPM_G[1:0]	01: 65 mHz;
	10: 260 mHz;
	11: 1.04 Hz)
0:0 0:1 =::(1)	Selects how to enable and disable the OIS chain, after first configuration and enabling through SPI2.
OIS_ON_EN ⁽¹⁾	(0: OIS chain is enabled/disabled with SPI2 interface;
	1: OIS chain is enabled/disabled with primary interface)
USR_OFF_ ON_OUT	Enables accelerometer user offset correction block; it's valid for the low-pass path - see <i>Figure 17: Accelerometer composite filter</i> . Default value: 0 (0: accelerometer user offset correction block bypassed; 1: accelerometer user offset correction block enabled)
OIS ON ⁽¹⁾	Enables/disables the OIS chain from primary interface when the OIS_ON_EN bit is '1'.
_	(0: OIS disabled; 1: OIS enabled)

^{1.} First, enabling OIS and OIS configurations must be done through SPI2, with OIS_ON_EN and OIS_ON set to '0'.

9.22 CTRL8_XL (17h)

Control register 8 (r/w)

Table 69. CTRL8_XL register

HPCF_XL	HPCF_XL	HPCF_XL	HP_REF_	FASTSETTL	HP_SLOPE	O ⁽¹⁾	LOW_PASS	
_2	_1	_0	MODE_XL	_MODE_XL	_XL_EN	0 7	_ON_6D	

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 70. CTRL8 XL register description

Table 70: 0 Tite0_XE Toglotel description						
HPCF_XL_[2:0]	Accelerometer LPF2 and HP filter configuration and cutoff setting. Refer to <i>Table 70</i> .					
HP_REF_ MODE_XL	Enables accelerometer high-pass filter reference mode (valid for high-pass path - HP_SLOPE_XL_EN bit must be '1'). Default value: 0 (0: disabled, 1: enabled ⁽¹⁾)					
FASTSETTL _MODE_XL	Enables accelerometer LPF2 and HPF fast-settling mode. The filter sets the second samples after writing this bit. Active only during device exit from power-down mode. Default value: 0 (0: disabled, 1: enabled)					
HP_SLOPE_ XL_EN	Accelerometer slope filter / high-pass filter selection. Refer to Figure 25.					
LOW_PASS _ON_6D	LPF2 on 6D function selection. Refer to <i>Figure 25</i> . Default value: 0 (0: ODR/2 low-pass filtered data sent to 6D interrupt function; 1: LPF2 output data sent to 6D interrupt function)					

^{1.} When enabled, the first output data have to be discarded.

Table 71. Accelerometer bandwidth configurations

Filter type	HP_SLOPE_ XL_EN	LPF2_XL_EN HPCF_XL_[2:0]		Bandwidth ⁽¹⁾
		0	-	ODR/2
			000	ODR/4
			001	ODR/10
			010	ODR/20
Low pass	0	1	011	ODR/45
		1	100	ODR/100
			101	ODR/200
			110	ODR/400
			111	ODR/800
			000	SLOPE (ODR/4)
			001	ODR/10
			010 011	ODR/20
Lligh noon	4			ODR/45
High pass	1	-	100	ODR/100
			101	ODR/200
			110	ODR/400
			111	ODR/800

^{1.} Typical value for ODR up to 833 Hz

Figure 25. Accelerometer block diagram

The cutoff value of the LPF1 output is ODR/2 when the accelerometer is in high-performance mode and ODR up to 833 Hz.
This value is equal to 780 Hz when the accelerometer is in low-power or normal mode.

9.23 CTRL9_XL (18h)

Control register 9 (r/w)

Table 72. CTRL9_XL register

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 73. CTRL9 XL register description

DEN_X	DEN value stored in LSB of X-axis. Default value: 1 (0: DEN not stored in X-axis LSB; 1: DEN stored in X-axis LSB)
DEN_Y	DEN value stored in LSB of Y-axis. Default value: 1 (0: DEN not stored in Y-axis LSB; 1: DEN stored in Y-axis LSB)
DEN_Z	DEN value stored in LSB of Z-axis. Default value: 1 (0: DEN not stored in Z-axis LSB; 1: DEN stored in Z-axis LSB)
DEN_XL_G	DEN stamping sensor selection. Default value: 0 (0: DEN pin info stamped in the gyroscope axis selected by bits [7:5]; 1: DEN pin info stamped in the accelerometer axis selected by bits [7:5])
DEN_XL_EN	Extends DEN functionality to accelerometer sensor. Default value: 0 (0: disabled; 1: enabled)
DEN_LH	DEN active level configuration. Default value: 0 (0: active low; 1: active high)
I3C_disable	Disables MIPI I3C SM communication protocol ⁽¹⁾ (0: SPI, I ² C, MIPI I3C SM interfaces enabled (default); 1: MIPI I3C SM interface disabled)

^{1.} It is recommended to set this bit to '1' during the initial device configuration phase, when the I3C interface is not used.

9.24 CTRL10_C (19h)

Control register 10 (r/w)

Table 74. CTRL10_C register

0	0	TIMESTAMP _EN	0	0	0	0	0
---	---	------------------	---	---	---	---	---

Table 75. CTRL10_C register description

Enables timestamp counter. default value: 0
(0: disabled; 1: enabled) The counter is readable in TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h).

57

9.25 ALL_INT_SRC (1Ah)

Source register for all interrupts (r)

Table 76. ALL_INT_SRC register

TIMESTAMP_ ENDCOUNT	0 SLEEP_ CHANGE_ IA	IP_ 0 CHANGE_ D6D_IA DO	OUBLE_ SINGLE_ TAP TAP	WU_IA	FF_IA
------------------------	---------------------------	-------------------------	---------------------------	-------	-------

Table 77. ALL_INT_SRC register description

TIMESTAMP_ENDCOUNT	Alerts timestamp overflow within 6.4 ms					
SLEEP_CHANGE_IA	Detects change event in activity/inactivity status. Default value: 0					
	(0: change status not detected; 1: change status detected)					
D6D_IA	Interrupt active for change in position of portrait, landscape, face-up, face-down. Default value: 0					
	(0: change in position not detected; 1: change in position detected)					
DOUBLE TAP	Double-tap event status. Default value: 0					
DOOBLE_TAI	(0:event not detected, 1: event detected)					
SINGLE TAP	Single-tap event status. Default value:0					
011022_1711	(0: event not detected, 1: event detected)					
WU IA	Wake-up event status. Default value: 0					
VVO_I/	(0: event not detected, 1: event detected)					
FF IA	Free-fall event status. Default value: 0					
' ' =" '	(0: event not detected, 1: event detected)					

9.26 WAKE_UP_SRC (1Bh)

Wake-up interrupt source register (r)

Table 78. WAKE_UP_SRC register

0	SLEEP_ CHANGE_ IA	FF_IA	SLEEP_ STATE	WU_IA	X_WU	Y_WU	Z_WU	
---	-------------------------	-------	-----------------	-------	------	------	------	--

Table 79. WAKE_UP_SRC register description

SLEEP_ CHANGE_IA	Detects change event in activity/inactivity status. Default value: 0 (0: change status not detected; 1: change status detected)					
FF IA	Free-fall event detection status. Default: 0					
	(0: free-fall event not detected; 1: free-fall event detected)					
SLEEP_	Sleep event status. Default value: 0					
STATE	(0: sleep event not detected; 1: sleep event detected)					
WU IA	Wakeup event detection status. Default value: 0					
VVO_IA	(0: wakeup event not detected; 1: wakeup event detected.)					
x wu	Wakeup event detection status on X-axis. Default value: 0					
_\V0	(0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected)					
Y WU	Wakeup event detection status on Y-axis. Default value: 0					
1_00	(0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected)					
z wu	Wakeup event detection status on Z-axis. Default value: 0					
	(0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected)					

9.27 TAP_SRC (1Ch)

Tap source register (r).

Table 80. TAP_SRC register

0	TAP_IA	SINGLE_ TAP	DOUBLE_ TAP	TAP_SIGN	X_TAP	Y_TAP	Z_TAP

Table 81. TAP_SRC register description

TAP IA	Tap event detection status. Default: 0
101 _10	(0: tap event not detected; 1: tap event detected)
SINGLE TAP	Single-tap event status. Default value: 0
SINGLE_IAI	(0: single tap event not detected; 1: single tap event detected)
DOUBLE TAP	Double-tap event detection status. Default value: 0
DOUBLE_TAP	(0: double-tap event not detected; 1: double-tap event detected.)
	Sign of acceleration detected by tap event. Default: 0
TAP_SIGN	(0: positive sign of acceleration detected by tap event;
	1: negative sign of acceleration detected by tap event)
X TAP	Tap event detection status on X-axis. Default value: 0
__\\\	(0: tap event on X-axis not detected; 1: tap event on X-axis detected)
Y_TAP	Tap event detection status on Y-axis. Default value: 0
	(0: tap event on Y-axis not detected; 1: tap event on Y-axis detected)
Z TAP	Tap event detection status on Z-axis. Default value: 0
L_IAP	(0: tap event on Z-axis not detected; 1: tap event on Z-axis detected)

9.28 D6D_SRC (1Dh)

Portrait, landscape, face-up and face-down source register (r)

Table 82. D6D_SRC register

DEN_DRDY D6D_IA	ZH	ZL	YH	YL	XH	XL
-----------------	----	----	----	----	----	----

Table 83. D6D_SRC register description

DEN_	DEN data-ready signal. It is set high when data output is related to the data coming from a
DRDY	DEN active condition. ⁽¹⁾
D6D_	Interrupt active for change position portrait, landscape, face-up, face-down. Default value: 0
IA	(0: change position not detected; 1: change position detected)
ZH	Z-axis high event (over threshold). Default value: 0
211	(0: event not detected; 1: event (over threshold) detected)
ZL	Z-axis low event (under threshold). Default value: 0
	(0: event not detected; 1: event (under threshold) detected)
YH	Y-axis high event (over threshold). Default value: 0
' ' '	(0: event not detected; 1: event (over-threshold) detected)
YL	Y-axis low event (under threshold). Default value: 0
	(0: event not detected; 1: event (under threshold) detected)
XH	X-axis high event (over threshold). Default value: 0
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(0: event not detected; 1: event (over threshold) detected)
XL	X-axis low event (under threshold). Default value: 0
\\L	(0: event not detected; 1: event (under threshold) detected)

The DEN data-ready signal can be latched or pulsed depending on the value of the dataready_pulsed bit of the COUNTER_BDR_REG1 (0Bh) register.

9.29 STATUS_REG (1Eh) / STATUS_SPIAux (1Eh)

The STATUS_REG register is read by the primary interface SPI/I²C & MIPI I3CSM (r).

Table 84. STATUS_REG register

					_		
0	0	0	0	0	TDA	GDA	XLDA

Table 85. STATUS_REG register description

TDA	Temperature new data available. Default: 0 (0: no set of data is available at temperature sensor output; 1: a new set of data is available at temperature sensor output)
GDA	Gyroscope new data available. Default value: 0 (0: no set of data available at gyroscope output; 1: a new set of data is available at gyroscope output)
XLDA	Accelerometer new data available. Default value: 0 (0: no set of data available at accelerometer output; 1: a new set of data is available at accelerometer output)

The STATUS_SPIAux register is read by the auxiliary SPI.

Table 86. STATUS_SPIAux register

0 0 0 0	0 GYRO_ SETTLING	GDA	XLDA	
---------	---------------------	-----	------	--

Table 87. STATUS_SPIAux description

GYRO_ SETTLING	High when the gyroscope output is in the settling phase
GDA	Gyroscope data available (reset when one of the high parts of the output data is read)
XLDA	Accelerometer data available (reset when one of the high parts of the output data is read)

9.30 OUT_TEMP_L (20h), OUT_TEMP_H (21h)

Temperature data output register (r). L and H registers together express a 16-bit word in two's complement.

Table 88. OUT_TEMP_L register

Temp7	Temp6	Temp5	Temp4	Temp3	Temp2	Temp1	Temp0
Table 89. OUT_TEMP_H register							
Temp15	Temp14	Temp13	Temp12	Temp11	Temp10	Temp9	Temp8

Table 90. OUT_TEMP register description

Temp[15:0]	Temperature sensor output data
iomp[io.o]	The value is expressed as two's complement sign extended on the MSB.

9.31 OUTX_L_G (22h) and OUTX_H_G (23h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (*CTRL2_G* (11h)) of gyro user interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 91. OUTX_L_G register

D7	D6	D5	D4	D3	D2	D1	D0
		Tab	le 92. OUT	K_H_G regi	ster		
D15	D14	D13	D12	D11	D10	D9	D8

Table 93. OUTX_H_G register description

	Pitch axis (X) angular rate value
D[15:0]	D[15:0] expressed in two's complement and its value depends on the interface used: SPI1/I ² C/MIPI I3C SM : Gyro UI chain pitch axis output
	SPI2: Gyro OIS chain pitch axis output

9.32 OUTY_L_G (24h) and OUTY_H_G (25h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (*CTRL2_G* (11h)) of the gyro user interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 94. OUTY_L_G register

D7	D6	D5	D4	D3	D2	D1	D0
		Tabl	e 95. OUT	′_H_G regi	ster		
D15	D14	D13	D12	D11	D10	D9	D8

Table 96. OUTY_H_G register description

	Roll axis (Y) angular rate value
D[15:0]	D[15:0] expressed in two's complement and its value depends on the interface used:
[D[10.0]	SPI1/I ² C/MIPI I3C SM : Gyro UI chain roll axis output
	SPI2: Gyro OIS chain roll axis output

9.33 OUTZ_L_G (26h) and OUTZ_H_G (27h)

Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro user interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 97. OUTZ_L_G register

D7	D6	D5	D4	D3	D2	D1	D0		
Table 98. OUTZ_H_G register									
D15	D14	D13	D12	D11	D10	D9	D8		

Table 99. OUTZ_H_G register description

D[1	15:0]	Yaw axis (Z) angular rate value D[15:0] expressed in two's complement and its value depends on the interface used: SPI1/I ² C/MIPI I3C SM : Gyro UI chain yaw axis output SPI2: Gyro OIS chain yaw axis output
-----	-------	--

9.34 OUTX_L_A (28h) and OUTX_H_A (29h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full-scale and ODR settings (CTRL1_XL (10h)) of the accelerometer user interface.

If this register is read by the auxiliary interface, data are according to the full-scale and ODR (6.66 kHz) settings of the OIS (*CTRL3_OIS* (72h)).

Table 100. OUTX_L_A register

D7	D6	D5	D4	D3	D2	D1	D0	
Table 101. OUTX_H_A register								
D15	D14	D13	D12	D11	D10	D9	D8	

Table 102. OUTX_H_A register description

D[15:0]	X-axis linear acceleration value.
	D[15:0] expressed in two's complement and its value depends on the interface used:
	SPI1/I ² C/MIPI I3C SM : Accelerometer UI chain X-axis output
	SPI2: Accelerometer OIS chain X-axis output

9.35 OUTY_L_A (2Ah) and OUTY_H_A (2Bh)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full-scale and ODR settings (CTRL1 XL (10h)) of the accelerometer user interface.

If this register is read by the auxiliary interface, data are according to the full-scale and ODR (6.66 kHz) settings of the OIS (*CTRL3_OIS* (72h)).

Table 103. OUTY L A re	eaister
------------------------	---------

	D7	D6	D5	D4	D3	D2	D1	D0	
	Table 104. OUTY_H_A register								
Г	D15	D14	D13	D12	 D11	D10	D9	D8	

Table 105. OUTY_H_A register description

	Y-axis linear acceleration value
	D[15:0] expressed in two's complement and its value depends on the interface used: SPI1/I ² C/MIPI I3C SM : Accelerometer UI chain Y-axis output
	SPI2: Accelerometer OIS chain Y-axis output

9.36 OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full-scale and ODR settings (CTRL1_XL (10h)) of the accelerometer user interface.

If this register is read by the auxiliary interface, data are according to the full-scale and ODR (6.66 kHz) settings of the OIS (*CTRL3_OIS* (72h)).

Table 106. OUTZ_L_A register

l	D7	D6	D5	D4	D3	D2	D1	D0			
	Table 107. OUTZ_H_A register										
	D15 D14 D13 D12 D11 D10 D9 D8										

Table 108. OUTZ_H_A register description

D[15:0]	Z-axis linear acceleration value
	D[15:0] expressed in two's complement and its value depends on the interface used:
נט.טן	SPI1/I ² C/MIPI I3C SM : Accelerometer UI chain Z-axis output
	SPI2: Accelerometer OIS chain Z-axis output

9.37 EMB_FUNC_STATUS_MAINPAGE (35h)

Embedded function status register (r).

Table 109. EMB_FUNC_STATUS_MAINPAGE register

IS_FSM_LC	0	IS_ SIGMOT	IS_ TILT	IS_STEP_ DET	0	0	0
-----------	---	---------------	-------------	-----------------	---	---	---

Table 110. EMB_FUNC_STATUS_MAINPAGE register description

	<u>, </u>
IS_FSM_LC	Interrupt status bit for FSM long counter timeout interrupt event. (1: interrupt detected; 0: no interrupt)
IS_SIGMOT	Interrupt status bit for significant motion detection (1: interrupt detected; 0: no interrupt)
IS_TILT	Interrupt status bit for tilt detection (1: interrupt detected; 0: no interrupt)
IS_STEP_DET	Interrupt status bit for step detection (1: interrupt detected; 0: no interrupt)

9.38 FSM_STATUS_A_MAINPAGE (36h)

Finite State Machine status register (r).

Table 111. FSM_STATUS_A_MAINPAGE register

IS_FSM8	IS_FSM7	IS_FSM6	IS_FSM5	IS_FSM4	IS_FSM3	IS_FSM2	IS_FSM1
_	_	_	_	_	_	_	_

Table 112. FSM_STATUS_A_MAINPAGE register description

IS_FSM8	Interrupt status bit for FSM8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM7	Interrupt status bit for FSM7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM6	Interrupt status bit for FSM6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM5	Interrupt status bit for FSM5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM4	Interrupt status bit for FSM4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM3	Interrupt status bit for FSM3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM2	Interrupt status bit for FSM2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM1	Interrupt status bit for FSM1 interrupt event. (1: interrupt detected; 0: no interrupt)

9.39 FSM_STATUS_B_MAINPAGE (37h)

Finite State Machine status register (r).

Table 113. FSM_STATUS_B_MAINPAGE register

IS_F	SM16 IS	S_FSM15	IS_FSM14	IS_FSM13	IS_FSM12	IS_FSM11	IS_FSM10	IS_FSM9
------	---------	---------	----------	----------	----------	----------	----------	---------

Table 114. FSM_STATUS_B_MAINPAGE register description

IS_FSM16	Interrupt status bit for FSM16 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM15	Interrupt status bit for FSM15 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM14	Interrupt status bit for FSM14 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM13	Interrupt status bit for FSM13 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM12	Interrupt status bit for FSM12 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM11	Interrupt status bit for FSM11 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM10	Interrupt status bit for FSM10 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM9	Interrupt status bit for FSM9 interrupt event. (1: interrupt detected; 0: no interrupt)

9.40 STATUS_MASTER_MAINPAGE (39h)

Sensor hub source register (r).

Table 115. STATUS_MASTER_MAINPAGE register

WR_ ONCE_ DONE	SLAVE3_ NACK	SLAVE2_ NACK	SLAVE1_ NACK	SLAVE0_ NACK	0	0	SENS_HUB_ ENDOP
----------------------	-----------------	-----------------	-----------------	-----------------	---	---	--------------------

Table 116. STATUS_MASTER_MAINPAGE register description

WR_ONCE_DONE	When the bit WRITE_ONCE in MASTER_CONFIG (14h) is configured as 1, this bit is set to 1 when the write operation on slave 0 has been performed and completed. Default value: 0
SLAVE3_NACK	This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK	This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK	This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK	This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
SENS_HUB_ENDOP	Sensor hub communication status. Default value: 0 (0: sensor hub communication not concluded; 1: sensor hub communication concluded)

9.41 FIFO_STATUS1 (3Ah)

FIFO status register 1 (r)

Table 117. FIFO_STATUS1 register

| DIFF_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FIFO_7 | FIFO_6 | FIFO_5 | FIFO_4 | FIFO_3 | FIFO_2 | FIFO_1 | FIFO_0 |

Table 118. FIFO_STATUS1 register description

DIFF_	Number of unread sensor data (TAG + 6 bytes) stored in FIFO
FIFO_[7:0]	In conjunction with DIFF_FIFO[9:8] in FIFO_STATUS2 (3Bh).

9.42 FIFO_STATUS2 (3Bh)

FIFO status register 2 (r)

Table 119. FIFO_STATUS2 register

FIFO_	FIFO_	FIFO_	COUNTER	FIFO_OVR_	n(1)	DIFF_	DIFF_
WTM_IA	OVR_IA	FULL_IA	_BDR_IA	LATCHED	0, ,	FIFO_9	FIFO_8

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 120. FIFO_STATUS2 register description

FIFO_ WTM_IA	FIFO watermark status. Default value: 0 (0: FIFO filling is lower than WTM; 1: FIFO filling is equal to or greater than WTM) Watermark is set through bits WTM[8:0] in FIFO_CTRL2 (08h) and FIFO_CTRL1 (07h).
FIFO_ OVR_IA	FIFO overrun status. Default value: 0 (0: FIFO is not completely filled; 1: FIFO is completely filled)
FIFO_ FULL_IA	Smart FIFO full status. Default value: 0 (0: FIFO is not full; 1: FIFO will be full at the next ODR)
COUNTER_ BDR_IA	Counter BDR reaches the CNT_BDR_TH_[10:0] threshold set in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch). Default value: 0 This bit is reset when these registers are read.
FIFO_OVR_ LATCHED	Latched FIFO overrun status. Default value: 0 This bit is reset when this register is read.
DIFF_ FIFO_[9:8]	Number of unread sensor data (TAG + 6 bytes) stored in FIFO. Default value: 00 In conjunction with DIFF_FIFO[7:0] in FIFO_STATUS1 (3Ah)

9.43 TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h)

Timestamp first data output register (r). The value is expressed as a 32-bit word and the bit resolution is 25 μ s.

Table 121. TIMESTAMP output registers

D31	D30	D29	D28	D27	D26	D25	D24
D23	D22	D21	D20	D19	D18	D17	D16
D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 122. TIMESTAMP output register description

D[31:0]	Timestamp output registers: 1LSB = 25 μs	
---------	--	--

The formula below can be used to calculate a better estimation of the actual timestamp resolution:

TS_Res = 1 / (40000 + (0.0015 * INTERNAL_FREQ_FINE * 40000))

where INTERNAL_FREQ_FINE is the content of INTERNAL_FREQ_FINE (63h).

9.44 TAP_CFG0 (56h)

Activity/inactivity functions, configuration of filtering, and tap recognition functions (r/w).

Table 123. TAP_CFG0 register

0

Table 124. TAP_CFG0 register description

vent detection to 1 together
abled, drives
on INT pins)
unctions.
(

9.45 TAP_CFG1 (57h)

Tap configuration register (r/w)

Table 125. TAP_CFG1 register

TAP_PRI	TAP_PRI	TAP_PRIO	TAP_THS	TAP_THS_	TAP_THS_	TAP_THS_	TAP_THS
ORITY_2	ORITY_1	RITY_0	_X_4	X_3	X_2	X_1	_X_0

Table 126. TAP_CFG1 register description

TAP_PRIORITY_[2:0]	Selection of axis priority for TAP detection (see <i>Table 126</i>)
I IAP THS X IA·OI	X-axis tap recognition threshold. Default value: 0 1 LSB = FS_XL / (2 ⁵)

Table 127. TAP priority decoding

TAP_PRIORITY_[2:0]	Max. priority	Mid. priority	Min. priority
000	Х	Y	Z
001	Υ	Х	Z
010	X	Z	Y
011	Z	Y	Х
100	X	Y	Z
101	Υ	Z	Х
110	Z	Х	Y
111	Z	Y	Х

9.46 TAP_CFG2 (58h)

Enables interrupt and inactivity functions, and tap recognition functions (r/w).

Table 128. TAP_CFG2 register

INTERRUPTS_	INACT_	INACT_	TAP_THS	TAP_THS	TAP_THS	TAP_THS	TAP_THS
ENABLE	EN1	EN0	Y 4	Y 3	Ÿ2		\overline{Y} 0

Table 129. TAP_CFG2 register description

INTERRUPTS_ ENABLE	Enable basic interrupts (6D/4D, free-fall, wake-up, tap, inactivity). Default value: 0 (0: interrupt disabled; 1: interrupt enabled)
INACT_EN[1:0]	Enable activity/inactivity (sleep) function. Default value: 00 (00: stationary/motion-only interrupts generated, XL and gyro do not change; 01: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro does not change; 10: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to sleep mode; 11: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to power-down mode)
TAP_THS_ Y_[4:0]	Y-axis tap recognition threshold. Default value: 0 1 LSB = FS_XL / (2 ⁵)

9.47 TAP_THS_6D (59h)

Portrait/landscape position and tap function threshold register (r/w).

Table 130. TAP_THS_6D register

D4D_	CIVID THEA	CIVID THEO	TAP_	TAP_	TAP_	TAP_	TAP_
EN	SIXD_THS1	SIXD_THS0	THS_Z_4	THS_Z_3	THS_Z_2	THS_Z_1	THS_Z_0

Table 131. TAP_THS_6D register description

D4D_EN	4D orientation detection enable. Z-axis position detection is disabled. Default value: 0 (0: enabled; 1: disabled)
SIXD_THS[1:0]	Threshold for 4D/6D function. Default value: 00 For details, refer to <i>Table 131</i> .
TAP_THS_Z_[4:0]	Z-axis recognition threshold. Default value: 0 1 LSB = FS_XL / (2 ⁵)

Table 132. Threshold for D4D/D6D function

SIXD_THS[1:0]	Threshold value
00	80 degrees
01	70 degrees
10	60 degrees
11	50 degrees

9.48 INT_DUR2 (5Ah)

Tap recognition function setting register (r/w).

Table 133. INT_DUR2 register

|--|

Table 134. INT_DUR2 register description

	Duration of maximum time gap for double tap recognition. Default: 0000
DUR[3:0]	When double tap recognition is enabled, this register expresses the maximum time between two consecutive detected taps to determine a double tap event. The default value of these bits is 0000b which corresponds to 16*ODR_XL time. If the DUR[3:0] bits are set to a different value, 1LSB corresponds to 32*ODR_XL time.
	Expected quiet time after a tap detection. Default value: 00
QUIET[1:0]	Quiet time is the time after the first detected tap in which there must not be any overthreshold event. The default value of these bits is 00b which corresponds to 2*ODR_XL time. If the QUIET[1:0] bits are set to a different value, 1LSB corresponds to 4*ODR_XL time.
	Maximum duration of overthreshold event. Default value: 00
SHOCK[1:0]	Maximum duration is the maximum time of an overthreshold signal detection to be recognized as a tap event. The default value of these bits is 00b which corresponds to 4*ODR_XL time. If the SHOCK[1:0] bits are set to a different value, 1LSB corresponds to 8*ODR_XL time.

9.49 WAKE_UP_THS (5Bh)

Single/double-tap selection and wake-up configuration (r/w)

Table 135. WAKE_UP_THS register

SINGLE_ DOUBLE_ TAP USR_C	I WK IHSS	WK_THS4	WK_THS3	WK_THS2	WK_THS1	WK_THS0	
---------------------------------	-----------	---------	---------	---------	---------	---------	--

Table 136. WAKE_UP_THS register description

SINGLE_ DOUBLE_TAP	Single/double-tap event enable. Default: 0 (0: only single-tap event enabled; 1: both single and double-tap events enabled)
USR_OFF_ ON_WU	Drives the low-pass filtered data with user offset correction (instead of high-pass filtered data) to the wakeup function.
WK_THS[5:0]	Threshold for wakeup: 1 LSB weight depends on WAKE_THS_W in WAKE_UP_DUR (5Ch). Default value: 000000

9.50 WAKE_UP_DUR (5Ch)

Free-fall, wakeup and sleep mode functions duration setting register (r/w)

Table 137. WAKE_UP_DUR register

FF DUR5	WAKE_	WAKE_	WAKE_	SLEEP_	SLEEP_	SLEEP_	SLEEP_
FF_DURS	DUR1	DUR0	THS_W	DUR3	DUR2	DUR1	DUR0

Table 138. WAKE_UP_DUR register description

FF_DUR5	Free fall duration event. Default: 0 For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in FREE_FALL (5Dh) configuration.
	1 LSB = 1 ODR_time
WAKE_DUR[1:0]	Wake up duration event. Default: 00 1LSB = 1 ODR_time
WAKE_THS_W	Weight of 1 LSB of wakeup threshold. Default: 0 (0: 1 LSB = FS_XL / (2^6) ; 1: 1 LSB = FS_XL / (2^8))
SLEEP_DUR[3:0]	Duration to go in sleep mode. Default value: 0000 (this corresponds to 16 ODR) 1 LSB = 512 ODR

9.51 FREE_FALL (5Dh)

Free-fall function duration setting register (r/w).

Table 139. FREE_FALL register

	FF DUF	4 FF DUR3	FF DUR2	FF DUR1	FF DUR0	FF THS2	FF THS1	FF THS0
--	--------	-----------	---------	---------	---------	---------	---------	---------

Table 140. FREE_FALL register description

	Free-fall duration event. Default: 0
FF_DUR[4:0]	For the complete configuration of the free fall duration, refer to FF_DUR5 in
	WAKE_UP_DUR (5Ch) configuration
FF THS[2:0]	Free fall threshold setting. Default: 000
FF_1H3[2.0]	For details refer to <i>Table 140</i> .

Table 141. Threshold for free-fall function

FF_THS[2:0]	Threshold value
000	156 mg
001	219 mg
010	250 mg
011	312 mg
100	344 mg
101	406 mg
110	469 mg
111	500 mg

9.52 MD1_CFG (5Eh)

Functions routing on INT1 register (r/w)

Table 142. MD1_CFG register

INT1_	INT1_			NT1_		INT1 EMB	INT1
SLEEP	SINGLE	INT1 WU	INT1 FF	DOUBLE	INT1 6D		_
CHANGE	TAP		_	TAP		_FUNC	SHUB
							i

Table 143. MD1_CFG register description

	Table 140: IND 1_01 & register description
INT1_SLEEP_ CHANGE ⁽¹⁾	Routing of activity/inactivity recognition event on INT1. Default: 0 (0: routing of activity/inactivity event on INT1 disabled; 1: routing of activity/inactivity event on INT1 enabled)
INT1_SINGLE_TAP	Routing of single-tap recognition event on INT1. Default: 0 (0: routing of single-tap event on INT1 disabled; 1: routing of single-tap event on INT1 enabled)
INT1_WU	Routing of wakeup event on INT1. Default value: 0 (0: routing of wakeup event on INT1 disabled; 1: routing of wakeup event on INT1 enabled)
INT1_FF	Routing of free-fall event on INT1. Default value: 0 (0: routing of free-fall event on INT1 disabled; 1: routing of free-fall event on INT1 enabled)
INT1_DOUBLE_TAP	Routing of tap event on INT1. Default value: 0 (0: routing of double-tap event on INT1 disabled; 1: routing of double-tap event on INT1 enabled)
INT1_6D	Routing of 6D event on INT1. Default value: 0 (0: routing of 6D event on INT1 disabled; 1: routing of 6D event on INT1 enabled)
INT1_EMB_FUNC	Routing of embedded functions event on INT1. Default value: 0 (0: routing of embedded functions event on INT1 disabled; 1: routing embedded functions event on INT1 enabled)
INT1_SHUB	Routing of sensor hub communication concluded event on INT1. Default value: 0 (0: routing of sensor hub communication concluded event on INT1 disabled; 1: routing of sensor hub communication concluded event on INT1 enabled)

Activity/Inactivity interrupt mode (sleep change or sleep status) depends on the SLEEP_STATUS_ON_INT bit in TAP_CFG0 (56h) register.

9.53 MD2_CFG (5Fh)

Functions routing on INT2 register (r/w)

Table 144. MD2_CFG register

INT2_ SLEEP_ CHANGE	INT2_ SINGLE_ INT2_WU TAP	NT2_FF DOUBLE_ TAP	OOUBLE_	INT2_6D	INT2_ EMB_ FUNC	INT2_ TIMESTAMP
---------------------------	---------------------------------	-----------------------	---------	---------	-----------------------	--------------------

Table 145. MD2_CFG register description

	ole 140. MD2_01 & register description
INT2_SLEEP_CHANGE ⁽¹⁾	Routing of activity/inactivity recognition event on INT2. Default: 0 (0: routing of activity/inactivity event on INT2 disabled; 1: routing of activity/inactivity event on INT2 enabled)
INT2_SINGLE_TAP	Single-tap recognition routing on INT2. Default: 0 (0: routing of single-tap event on INT2 disabled; 1: routing of single-tap event on INT2 enabled)
INT2_WU	Routing of wakeup event on INT2. Default value: 0 (0: routing of wakeup event on INT2 disabled; 1: routing of wake-up event on INT2 enabled)
INT2_FF	Routing of free-fall event on INT2. Default value: 0 (0: routing of free-fall event on INT2 disabled; 1: routing of free-fall event on INT2 enabled)
INT2_DOUBLE_TAP	Routing of tap event on INT2. Default value: 0 (0: routing of double-tap event on INT2 disabled; 1: routing of double-tap event on INT2 enabled)
INT2_6D	Routing of 6D event on INT2. Default value: 0 (0: routing of 6D event on INT2 disabled; 1: routing of 6D event on INT2 enabled)
INT2_EMB_FUNC	Routing of embedded functions event on INT2. Default value: 0 (0: routing of embedded functions event on INT2 disabled; 1: routing embedded functions event on INT2 enabled)
INT2_TIMESTAMP	Enables routing on INT2 pin of the alert for timestamp overflow within 6.4 ms

Activity/Inactivity interrupt mode (sleep change or sleep status) depends on the SLEEP_STATUS_ON_INT bit in TAP_CFG0 (56h) register.

9.54 S4S_ST_CMD_CODE (60h)

S4S Master command register (r/w)

Table 146. S4S_ST_CMD_CODE register

| ST_CMD_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CODE7 | CODE6 | CODE5 | CODE4 | CODE3 | CODE2 | CODE1 | CODE0 |

Table 147. S4S_ST_CMD_CODE register description

ST_CMD_	Master command code used for S4S. Default value: 0
CODE7[7:0]	IMaster Command Code dised for 545. Default value.

9.55 S4S_DT_REG (61h)

S4S DT register (r/w)

Table 148. S4S DT REG register

DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0

Table 149. S4S_DT_REG register description

DT[7:0]	DT used for S4S. Default value: 0

9.56 I3C_BUS_AVB (62h)

I3C_BUS_AVB register (r/w)

Table 150. I3C_BUS_AVB register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	I3C_Bus_ Avb_Sel1	I3C_Bus_ Avb_Sel0	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
------------------	------------------	------------------	----------------------	----------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 151. I3C_BUS_AVB register description

	These bits are used to select the bus available time when I3C IBI is used. Default value: 00
I3C Bus Avb	(00: bus available time equal to 50 µsec (default);
_Sel[1:0]	01: bus available time equal to 2 µsec;
	10: bus available time equal to 1 msec;
	11: bus available time equal to 25 msec)

9.57 INTERNAL_FREQ_FINE (63h)

Internal frequency register (r)

Table 152. INTERNAL_FREQ_FINE register

| FREQ_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| FINE7 | FINE6 | FINE5 | FINE4 | FINE3 | FINE2 | FINE1 | FINE0 |

Table 153. INTERNAL_FREQ_FINE register description

FREQ_FINE[7:0]	Difference in percentage of the effective ODR (and timestamp rate) with respect to the typical. Step: 0.15%. 8-bit format, 2's complement.
----------------	--

The formula below can be used to calculate a better estimation of the actual ODR:

ODR_Actual = (6667 + ((0.0015 * INTERNAL_FREQ_FINE) * 6667)) / ODR_Coeff

Selected_ODR	ODR_Coeff
12.5	512
26	256
52	128
104	64
208	32
416	16
833	8
1667	4
3333	2
6667	1

The Selected_ODR parameter has to be derived from the ODR_XL selection (*Table 50: Accelerometer ODR register setting*) in order to estimate the accelerometer ODR and from the ODR_G selection (*Table 53: Gyroscope ODR configuration setting*) in order to estimate the gyroscope ODR.

9.58 INT_OIS (6Fh)

OIS interrupt configuration register and accelerometer self-test enable setting. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 154. INT_OIS register

INT2_ DRDY_ OIS	LVL2_OIS	DEN_LH_ OIS	-	-	0	ST1_XL_ OIS	ST0_XL_ OIS	
-----------------------	----------	----------------	---	---	---	----------------	----------------	--

Table 155. INT_OIS register description

INT2_DRDY_ OIS	Enables OIS chain DRDY on INT2 pin. This setting has priority over all other INT2 settings.
LVL2_OIS	Enables level-sensitive latched mode on the OIS chain. Default value: 0
DEN_LH_ OIS	Indicates polarity of DEN signal on OIS chain (0: DEN pin is active-low; 1: DEN pin is active-high)
ST[1:0]_XL_ OIS	Selects accelerometer self-test – effective only if XL OIS chain is enabled. Default value: 00 (00: Normal mode; 01: Positive sign self-test; 10: Negative sign self-test; 11: not allowed)

9.59 CTRL1_OIS (70h)

OIS configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 156. CTRL1_OIS register

0	LVL1 OIS	SIM OIS	Mode4_	FS1_G_	FS0_G_	FS_125_	OIS_EN_
		00.0	EN	OIS	OIS	OIS	SPI2

Table 157. CTRL1_OIS register description

	inner in it is in it
LVL1_OIS	Enables OIS data level-sensitive trigger
SIM_OIS	SPI2 3- or 4-wire interface. Default value: 0 (0: 4-wire SPI2; 1: 3-wire SPI2)
Mode4_EN	Enables accelerometer OIS chain. OIS outputs are available through SPI2 in registers 28h-2Dh. Note: OIS_EN_SPI2 must be enabled (i.e. set to '1') to enable also XL OIS chain.
FS[1:0]_G_ OIS	Selects gyroscope OIS chain full-scale (00: 250 dps; 01: 500 dps; 10: 1000 dps; 11: 2000 dps)
FS_125_OIS	Selects gyroscope OIS chain full-scale 125 dps (0: FS selected through bits FS[1:0]_OIS_G; 1: 125 dps)
OIS_EN_SPI2	Enables OIS chain data processing for gyro in Mode 3 and Mode 4 (mode4_en = 1) and accelerometer data in and Mode 4 (mode4_en = 1). When the OIS chain is enabled, the OIS outputs are available through the SPI2 in registers $OUTX_L_G$ (22h) and $OUTX_H_G$ (23h) through and $STATUS_REG$ (1Eh) / $STATUS_SPIAux$ (1Eh), and LPF1 is dedicated to this chain.

DEN mode selection can be done using the LVL1_OIS bit of register *CTRL1_OIS* (70h) and the LVL2_OIS bit of register *INT_OIS* (6Fh).

DEN mode on the OIS path is active in the gyroscope only.

Table 158. DEN mode selection

LVL1_OIS, LVL2_OIS	DEN mode
10	Level-sensitive trigger mode is selected
11	Level-sensitive latched mode is selected

9.60 CTRL2_OIS (71h)

OIS configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 159. CTRL2_OIS register

- HPM1_ HPM0_	0 FTYPE_1_	FTYPE_0_	HP_EN_
OIS OIS	OIS	OIS	OIS

Table 160. CTRL2_OIS register description

HPM[1:0]_OIS	Selects gyroscope OIS chain digital high-pass filter cutoff. Default value: 00 (00: 16 mHz; 01: 65 mHz; 10: 260 mHz; 11: 1.04 Hz)
FTYPE_[1:0]_OIS	Selects gyroscope digital LPF1 filter bandwidth. <i>Table 160</i> shows cutoff and phase values obtained with all configurations.
HP_EN_OIS	Enables gyroscope OIS chain digital high-pass filter

Table 161. Gyroscope OIS chain digital LPF1 filter bandwidth selection

ODR [Hz]	LPF1 FTYPE_[1:0]_OIS	Total BW [Hz] (phase delay @20 Hz)		
	00	297 Hz (7°)		
6.66 kHz	01	222 Hz (9°)		
0.00 KHZ	10	154 Hz (12°)		
	11	470 Hz (5°)		

9.61 CTRL3_OIS (72h)

OIS configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 162. CTRL3_OIS register

FS1_XL_ OIS

Table 163. CTRL3_OIS register description

	Table 103. CTRES_OIS register description	
FS[1:0]_XL_OIS	Selects accelerometer OIS channel full-scale. Default value: 00.	
F3[1.0]_XL_013	(00: ±2 g; 01: ±16 g; 10: ±4 g; 11: ±8 g)	
FILTER_XL_ CONF_OIS_[2:0]	Selects accelerometer OIS channel bandwidth. See <i>Table 163</i> .	
	Selects gyroscope OIS chain self-test. Default value: 00	
	Table 164 lists the output variation when the self-test is enabled and ST_OIS_CLAMPDIS = '1'.	
ST[1:0]_OIS	(00: Normal mode;	
	01: Positive sign self-test;	
	10: Normal mode;	
	11: Negative sign self-test)	
CT OIC	Disables OIS chain clamp	
ST_OIS_ CLAMPDIS	(0: All OIS chain outputs = 8000h during self-test;	
	1: OIS chain self-test outputs as shown in <i>Table 164</i> .	

Table 164. Accelerometer OIS channel bandwidth and phase

FILTER_XL_CONF_OIS[2:0]	Typ. overall bandwidth [Hz]	Typ. overall phase [°]
000	631	-4.20 @ 20 Hz
001	295	-6.35 @ 20 Hz
010	140	-10.6 @ 20 Hz
011	68.2	-18.9 @ 20 Hz
100	33.6	-17.8 @ 10 Hz
101	16.7	-32.2 @ 10 Hz
110	8.3	-26.2 @ 4 Hz
111	4.14	-26.0 @ 2 Hz

Table 165. Self-test nominal output variation

Full scale	Ouput variation [dps]
2000	400
1000	200
500	100
250	50
125	25

9.62 X_OFS_USR (73h)

Accelerometer X-axis user offset correction (r/w). The offset value set in the X_OFS_USR offset register is internally subtracted from the acceleration value measured on the X-axis.

Table 166. X_OFS_USR register

| X_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| USR_7 | USR_6 | USR_5 | USR_4 | USR_3 | USR_2 | USR_1 | USR_0 |

Table 167. X_OFS_USR register description

X	OFS	_USR_
[7	:0]	

Accelerometer X-axis user offset correction expressed in two's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127 127].

9.63 Y_OFS_USR (74h)

Accelerometer Y-axis user offset correction (r/w). The offset value set in the Y_OFS_USR offset register is internally subtracted from the acceleration value measured on the Y-axis.

Table 168. Y_OFS_USR register

| Y_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| | | | | | | | USR_0 |

Table 169. Y_OFS_USR register description

Y_OFS_	
USR_[7:0]	

Accelerometer Y-axis user offset calibration expressed in 2's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127].

9.64 Z_OFS_USR (75h)

Accelerometer Z-axis user offset correction (r/w). The offset value set in the Z_OFS_USR offset register is internally subtracted from the acceleration value measured on the Z-axis.

Table 170. Z_OFS_USR register

| Z_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| | | USR_5 | | | | | |

Table 171. Z_OFS_USR register description

1 / ()ES	Accelerometer Z-axis user offset calibration expressed in 2's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127].
----------	--

9.65 FIFO_DATA_OUT_TAG (78h)

FIFO tag register (r)

Table 172. FIFO_DATA_OUT_TAG register

TAG_ SENSOR_ 4	TAG_ SENSOR_ 3	TAG_ SENSOR_ 2	TAG_ SENSOR_ 1	TAG_ SENSOR_ 0	TAG_CNT _1	TAG_CNT _0	TAG_ PARITY
----------------------	----------------------	----------------------	----------------------	----------------------	---------------	---------------	----------------

Table 173. FIFO_DATA_OUT_TAG register description

	FIFO tag: identifies the sensor in:			
TAG_SENSOR_[4:0]	FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah), FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch), and FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh) For details, refer to Table 173: FIFO tag			
TAG_CNT_[1:0]	2-bit counter which identifies sensor time slot			
TAG_PARITY	Parity check of TAG content			

Table 174. FIFO tag

TAG_SENSOR_[4:0]	Sensor name
0x01	Gyroscope NC
0x02	Accelerometer NC
0x03	Temperature
0x04	Timestamp
0x05	CFG_Change
0x06	Accelerometer NC_T_2
0x07	Accelerometer NC_T_1
0x08	Accelerometer 2xC
0x09	Accelerometer 3xC
0x0A	Gyroscope NC_T_2
0x0B	Gyroscope NC_T_1
0x0C	Gyroscope 2xC
0x0D	Gyroscope 3xC
0x0E	Sensor Hub Slave 0
0x0F	Sensor Hub Slave 1
0x10	Sensor Hub Slave 2
0x11	Sensor Hub Slave 3
0x12	Step Counter
0x19	Sensor Hub Nack

9.66 FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah)

FIFO data output X (r)

Table 175. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L registers

D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 176. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L register description

D[15:0] FIFO X-axis output

9.67 FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch)

FIFO data output Y (r)

Table 177. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L registers

D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 178. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L register description

D[15:0] FIFO Y-axis output

9.68 FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh)

FIFO data output Z (r)

Table 179. FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L registers

D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 180. FIFO DATA OUT Z H and FIFO DATA OUT Z L register description

D[15:0] FIFO Z-axis output

Table 181. SPI_INT_OIS register

INT2_ DRDY_ OIS	LVL2_OIS	DEN_LH_ OIS	-	-	0	ST1_XL_ OIS	ST0_XL_ OIS
-----------------------	----------	----------------	---	---	---	----------------	----------------

10 Embedded functions register mapping

The table given below provides a list of the registers for the embedded functions available in the device and the corresponding addresses. Embedded functions registers are accessible when FUNC_CFG_EN is set to '1' in FUNC_CFG_ACCESS (01h).

Table 182. Register address map - embedded functions

Nama	T	Registe	er address	Default	Commont
Name	Type	Hex	Binary	Default	Comment
PAGE_SEL	r/w	02	00000010	0000001	
ADV_PEDO	r/w	03	00000011	00000010	
EMB_FUNC_EN_A	r/w	04	00000100	00000000	
EMB_FUNC_EN_B	r/w	05	00000101	00000000	
PAGE_ADDRESS	r/w	08	00001000	00000000	
PAGE_VALUE	r/w	09	00001001	00000000	
EMB_FUNC_INT1	r/w	0A	00001010	00000000	
FSM_INT1_A	r/w	0B	00001011	00000000	
FSM_INT1_B	r/w	0C	00001100	00000000	
EMB_FUNC_INT2	r/w	0E	00001110	00000000	
FSM_INT2_A	r/w	0F	00001111	00000000	
FSM_INT2_B	r/w	10	00010000	00000000	
EMB_FUNC_STATUS	r	12	00010010	output	
FSM_STATUS_A	r	13	00010011	output	
FSM_STATUS_B	r	14	00010100	output	
PAGE_RW	r/w	17	00010111	00000000	
RESERVED		18-43	00011000		
EMB_FUNC_FIFO_CFG	r/w	44	01000100	00000000	
FSM_ENABLE_A	r/w	46	01000110	00000000	
FSM_ENABLE_B	r/w	47	01000111	00000000	
FSM_LONG_COUNTER_L	r/w	48	01001000	00000000	
FSM_LONG_COUNTER_H	r/w	49	01001001	00000000	
FSM_LONG_COUNTER_CLEAR	r/w	4A	01001010	00000000	
FSM_OUTS1	r	4C	01001100	output	
FSM_OUTS2	r	4D	01001101	output	
FSM_OUTS3	r	4E	01001110	output	
FSM_OUTS4	r	4F	01001111	output	
FSM_OUTS5	r	50	01010000	output	

Table 182. Register address map - embedded functions (continued)

Na	T	Regist	er address	Defect	0
Name	Type -	Hex	Binary	Default	Comment
FSM_OUTS6	r	51	01010001	output	
FSM_OUTS7	r	52	01010010	output	
FSM_OUTS8	r	53	01010011	output	
FSM_OUTS9	r	54	01010100	output	
FSM_OUTS10	r	55	01010101	output	
FSM_OUTS11	r	56	01010110	output	
FSM_OUTS12	r	57	01010111	output	
FSM_OUTS13	r	58	01011000	output	
FSM_OUTS14	r	59	01011001	output	
FSM_OUTS15	r	5A	01011010	output	
FSM_OUTS16	r	5B	01011011	output	
RESERVED		5E	01011110		
EMB_FUNC_ODR_CFG_B	r/w	5F	01011111	01001011	
STEP_COUNTER_L	r	62	01100010	output	
STEP_COUNTER_H	r	63	01100011	output	
EMB_FUNC_SRC	r/w	64	01100100	output	
EMB_FUNC_INIT_A	r/w	66	01100110	00000000	
EMB_FUNC_INIT_B	r/w	67	01100111	00000000	

Registers marked as *Reserved* must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

11 Embedded functions register description

11.1 PAGE_SEL (02h)

Enable advanced features dedicated page (r/w)

Table 183. PAGE_SEL register

			-	_			
PAGE_SEL3	PAGE_SEL2	PAGE_SEL1	PAGE_SEL0	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	1 ⁽²⁾

- 1. This bit must be set to '0' for the correct operation of the device.
- 2. This bit must be set to '1' for the correct operation of the device.

Table 184. PAGE_SEL register description

ſ	DVCE	Select the advanced features dedicated page
	FAGE_SEL[3.0]	Default value: 0000

11.2 ADV_PEDO (03h)

Enable/disable pedometer advanced features register (r/w)

Table 185. ADV_PEDO register

0 ⁽¹⁾	PEDO_ FPR_ADF _DIS	0 ⁽¹⁾					
------------------	------------------	------------------	------------------	------------------	------------------	--------------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 186. ADV_PEDO description

	Disable pedometer false-positive rejection block and advanced detection feature block. Default value: 1
PEDO_FPR_ADF_DIS	(0: Pedometer false-positive rejection block and advanced detection feature block enabled;
	Pedometer false-positive rejection block and advanced detection feature block disabled)

11.3 EMB_FUNC_EN_A (04h)

Embedded functions enable register (r/w)

Table 187. EMB_FUNC_EN_A register

0 ⁽¹⁾	0 ⁽¹⁾	SIGN_ MOTION_ EN	TILT_EN	PEDO_EN	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
------------------	------------------	------------------------	---------	---------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 188. EMB FUNC EN A register description

SIGN_MOTION_EN	Enable significant motion detection function. Default value: 0 (0: significant motion detection function disabled; 1: significant motion detection function enabled)
TILT_EN	Enable tilt calculation. Default value: 0 (0: tilt algorithm disabled; 1: tilt algorithm enabled)
PEDO_EN	Enable pedometer algorithm. Default value: 0 (0: pedometer algorithm disabled; 1: pedometer algorithm enabled)

11.4 EMB_FUNC_EN_B (05h)

Embedded functions enable register (r/w)

Table 189. EMB_FUNC_EN_B register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	PEDO_ ADV_EN	FIFO_CO MPR_EN	0 ⁽¹⁾	O ⁽¹⁾	FSM_EN
------------------	------------------	------------------	-----------------	-------------------	------------------	------------------	--------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 190. EMB_FUNC_EN_B register description

PEDO_ADV_EN	Enable pedometer false-positive rejection block and advanced detection feature block. Default value: 0 (0: Pedometer advanced features block disabled; 1: Pedometer advanced features block enabled)			
FIFO_COMPR_EN ⁽¹⁾	Enable FIFO compression feature. Default value: 0 (0: FIFO compression feature disabled; 1: FIFO compression feature enabled)			
FSM_EN	Enable Finite State Machine (FSM) feature. Default value: 0 (0: FSM feature disabled; 1: FSM feature enabled)			

^{1.} This bit is effective if the FIFO_COMPR_RT_EN bit of FIFO_CTRL2 (08h) is set to 1.

11.5 PAGE_ADDRESS (08h)

Page address register (r/w)

Table 191. PAGE_ADDRESS register

| PAGE_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADDR7 | ADDR6 | ADDR5 | ADDR4 | ADDR3 | ADDR2 | ADDR1 | ADDR0 |

Table 192. PAGE_ADDRESS register description

	PAGE ADDRIZ-01	After setting the bit PAGE_WRITE / PAGE_READ in register PAGE_RW (17h), this register is used to set the address of the register to be written/read in the advanced features page selected through the bits PAGE_SEL[3:0] in register
	PAGE_SEL (02h).	

11.6 PAGE_VALUE (09h)

Page value register (r/w)

Table 193. PAGE_VALUE register

| PAGE_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| VALUE7 | VALUE6 | VALUE5 | VALUE4 | VALUE3 | VALUE2 | VALUE1 | VALUE0 |

Table 194. PAGE_VALUE register description

	These bits are used to write (if the bit PAGE_WRITE = 1 in register PAGE_RW
PAGE_VALUE[7:0]	(17h)) or read (if the bit PAGE_READ = 1 in register PAGE_RW (17h)) the data
	at the address PAGE_ADDR[7:0] of the selected advanced features page.

11.7 EMB_FUNC_INT1 (0Ah)

INT1 pin control register (r/w)

Each bit in this register enables a signal to be carried through INT1. The pin's output will supply the OR combination of the selected signals.

Table 195. EMB_FUNC_INT1 register

	INT1_ FSM_ LC	0 ⁽¹⁾	INT1_SIG _MOT	INT1_TILT	INT1_ STEP_ DETECTOR	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	
--	---------------------	------------------	------------------	-----------	----------------------------	------------------	------------------	------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 196. EMB_FUNC_INT1 register description

INT1_FSM_LC ⁽¹⁾	Routing of FSM long counter timeout interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_SIG_MOT ⁽¹⁾	Routing of significant motion event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 TILT ⁽¹⁾	Routing of tilt event on INT1. Default value: 0
_	(0: routing on INT1 disabled; 1: routing on INT1 enabled) Routing of pedometer step recognition event on INT1. Default value: 0
INT1_STEP_ DETECTOR ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)

^{1.} This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

11.8 FSM_INT1_A (0Bh)

INT1 pin control register (r/w).

Each bit in this register enables a signal to be carried through INT1. The pin's output will supply the OR combination of the selected signals.

Table 197. FSM_INT1_A register

| INT1_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| FSM8 | FSM7 | FSM6 | FSM5 | FSM4 | FSM3 | FSM2 | FSM1 |

Table 198. FSM_INT1_A register description

INT1_FSM8 ⁽¹⁾	Routing of FSM8 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM7 ⁽¹⁾	Routing of FSM7 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM6 ⁽¹⁾	Routing of FSM6 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM5 ⁽¹⁾	Routing of FSM5 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM4 ⁽¹⁾	Routing of FSM4 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM3 ⁽¹⁾	Routing of FSM3 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM2 ⁽¹⁾	Routing of FSM2 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM1 ⁽¹⁾	Routing of FSM1 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)

^{1.} This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

11.9 FSM_INT1_B (0Ch)

INT1 pin control register (r/w).

Each bit in this register enables a signal to be carried through INT1. The pin's output will supply the OR combination of the selected signals.

Table 199. FSM_INT1_B register

| INT1_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| FSM16 | FSM15 | FSM14 | FSM13 | FSM12 | FSM11 | FSM10 | FSM9 |

Table 200. FSM_INT1_B register description

INT1_FSM16 ⁽¹⁾	Routing of FSM16 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM15 ⁽¹⁾	Routing of FSM15 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM14 ⁽¹⁾	Routing of FSM14 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM13 ⁽¹⁾	Routing of FSM13 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM12 ⁽¹⁾	Routing of FSM12 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM11 ⁽¹⁾	Routing of FSM11 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM10 ⁽¹⁾	Routing of FSM10 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM9 ⁽¹⁾	Routing of FSM9 interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)

^{1.} This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

477

11.10 EMB_FUNC_INT2 (0Eh)

INT2 pin control register (r/w).

Each bit in this register enables a signal to be carried through INT2. The pin's output will supply the OR combination of the selected signals.

Table 201. EMB_FUNC_INT2 register

INT2_ O(1) INT2_SIG INT2_TILT STEP_ DETECTOR	0 ⁽¹⁾	0 ⁽¹⁾	O ⁽¹⁾
--	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 202. EMB_FUNC_INT2 register description

INT2_FSM_LC ⁽¹⁾	Routing of FSM long counter timeout interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_SIG_MOT ⁽¹⁾	Routing of significant motion event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_TILT ⁽¹⁾	Routing of tilt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_STEP_ DETECTOR ⁽¹⁾	Routing of pedometer step recognition event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)

^{1.} This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

11.11 FSM_INT2_A (0Fh)

INT2 pin control register (r/w).

Each bit in this register enables a signal to be carried through INT2. The pin's output will supply the OR combination of the selected signals.

Table 203. FSM_INT2_A register

| INT2_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| FSM8 | FSM7 | FSM6 | FSM5 | FSM4 | FSM3 | FSM2 | FSM1 |

Table 204. FSM_INT2_A register description

uting of FSM8 interrupt event on INT2. Default value: 0 routing on INT2 disabled; 1: routing on INT2 enabled)
uting of FSM7 interrupt event on INT2. Default value: 0 routing on INT2 disabled; 1: routing on INT2 enabled)
uting of FSM6 interrupt event on INT2. Default value: 0 routing on INT2 disabled; 1: routing on INT2 enabled)
uting of FSM5 interrupt event on INT2. Default value: 0 routing on INT2 disabled; 1: routing on INT2 enabled)
uting of FSM4 interrupt event on INT2. Default value: 0 routing on INT2 disabled; 1: routing on INT2 enabled)
uting of FSM3 interrupt event on INT2. Default value: 0 routing on INT2 disabled; 1: routing on INT2 enabled)
uting of FSM2 interrupt event on INT2. Default value: 0 routing on INT2 disabled; 1: routing on INT2 enabled)
uting of FSM1 interrupt event on INT2. Default value: 0 routing on INT2 disabled; 1: routing on INT2 enabled)

^{1.} This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

577

11.12 FSM_INT2_B (10h)

INT2 pin control register (r/w).

Each bit in this register enables a signal to be carried through INT2. The pin's output will supply the OR combination of the selected signals.

Table 205. FSM_INT2_B register

| INT2_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| FSM16 | FSM15 | FSM14 | FSM13 | FSM12 | FSM11 | FSM10 | FSM9 |

Table 206. FSM_INT2_B register description

INT2_FSM16 ⁽¹⁾	Routing of FSM16 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM15 ⁽¹⁾	Routing of FSM15 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM14 ⁽¹⁾	Routing of FSM14 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM13 ⁽¹⁾	Routing of FSM13 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM12 ⁽¹⁾	Routing of FSM12 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM11 ⁽¹⁾	Routing of FSM11 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM10 ⁽¹⁾	Routing of FSM10 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM9 ⁽¹⁾	Routing of FSM9 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)

^{1.} This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

11.13 EMB_FUNC_STATUS (12h)

Embedded function status register (r).

Table 207. EMB_FUNC_STATUS register

IS_FSM_LC	0	IS_ SIGMOT	IS_ TILT	IS_STEP_ DET	0	0	0
-----------	---	---------------	-------------	-----------------	---	---	---

Table 208. EMB_FUNC_STATUS register description

IS_FSM_LC	Interrupt status bit for FSM long counter timeout interrupt event. (1: interrupt detected; 0: no interrupt)
IS_SIGMOT	Interrupt status bit for significant motion detection (1: interrupt detected; 0: no interrupt)
IS_TILT	Interrupt status bit for tilt detection (1: interrupt detected; 0: no interrupt)
IS_STEP_DET	Interrupt status bit for step detection (1: interrupt detected; 0: no interrupt)

11.14 FSM_STATUS_A (13h)

Finite State Machine status register (r).

Table 209. FSM_STATUS_A register

IS_FSM8	IS_FSM7	IS_FSM6	IS_FSM5	IS_FSM4	IS_FSM3	IS_FSM2	IS_FSM1
_	_	_	_	_	_	_	

Table 210. FSM_STATUS_A register description

IS_FSM8	Interrupt status bit for FSM8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM7	Interrupt status bit for FSM7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM6	Interrupt status bit for FSM6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM5	Interrupt status bit for FSM5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM4	Interrupt status bit for FSM4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM3	Interrupt status bit for FSM3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM2	Interrupt status bit for FSM2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM1	Interrupt status bit for FSM1 interrupt event. (1: interrupt detected; 0: no interrupt)

11.15 FSM_STATUS_B (14h)

Finite State Machine status register (r).

Table 211. FSM_STATUS_B register

	IS FSM16	IS FSM15	IS FSM14	IS FSM13	IS FSM12	IS FSM11	IS FSM10	IS FSM9
--	----------	----------	----------	----------	----------	----------	----------	---------

Table 212. FSM_STATUS_B register description

IS_FSM16	Interrupt status bit for FSM16 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM15	Interrupt status bit for FSM15 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM14	Interrupt status bit for FSM14 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM13	Interrupt status bit for FSM13 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM12	Interrupt status bit for FSM12 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM11	Interrupt status bit for FSM11 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM10	Interrupt status bit for FSM10 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM9	Interrupt status bit for FSM9 interrupt event. (1: interrupt detected; 0: no interrupt)

11.16 PAGE_RW (17h)

Enable read and write mode of advanced features dedicated page (r/w)

Table 213. PAGE_RW register

EMB_ FUNC_LIR	PAGE_ WRITE	PAGE_ READ	0 ⁽¹⁾					
------------------	----------------	---------------	------------------	------------------	------------------	------------------	------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 214. PAGE_RW register description

EMB_FUNC_LIR	Latched Interrupt mode for Embedded Functions. Default value: 0 (0: Embedded Functions interrupt request not latched; 1: Embedded Functions interrupt request latched)
PAGE_WRITE	Enable writes to the selected advanced features dedicated page ⁽¹⁾ . Default value: 0 (1: enable; 0: disable)
PAGE_READ	Enable reads from the selected advanced features dedicated page ⁽¹⁾ . Default value: 0 (1: enable; 0: disable)

^{1.} Page selected by PAGE_SEL[3:0] in PAGE_SEL (02h) register.

11.17 EMB_FUNC_FIFO_CFG (44h)

Embedded functions batching configuration register (r/w).

Table 215. EMB_FUNC_FIFO_CFG register

0 ⁽¹⁾ PEDO_ FIFO_EN 0 ⁽¹⁾	1					
--	------------------	------------------	------------------	------------------	------------------	---

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 216. EMB_FUNC_FIFO_CFG register description

PEDO_FIFO_EN Enable FIFO batching of step counter values. Default value: 0	
--	--

11.18 FSM_ENABLE_A (46h)

FSM enable register (r/w).

Table 217. FSM_ENABLE_A register

	FSM8_EN	FSM7_EN	FSM6_EN	FSM5_EN	FSM4_EN	FSM3_EN	FSM2_EN	FSM1_EN
--	---------	---------	---------	---------	---------	---------	---------	---------

Table 218. FSM_ENABLE_A register description

FSM8_EN	FSM8 enable. Default value: 0 (0: FSM8 disabled; 1: FSM8 enabled)
FSM7_EN	FSM7 enable. Default value: 0 (0: FSM7 disabled; 1: FSM7 enabled)
FSM6_EN	FSM6 enable. Default value: 0 (0: FSM6 disabled; 1: FSM6 enabled)
FSM5_EN	FSM5 enable. Default value: 0 (0: FSM5 disabled; 1: FSM5 enabled)
FSM4_EN	FSM4 enable. Default value: 0 (0: FSM4 disabled; 1: FSM4 enabled)
FSM3_EN	FSM3 enable. Default value: 0 (0: FSM3 disabled; 1: FSM3 enabled)
FSM2_EN	FSM2 enable. Default value: 0 (0: FSM2 disabled; 1: FSM2 enabled)
FSM1_EN	FSM1 enable. Default value: 0 (0: FSM1 disabled; 1: FSM1 enabled)

11.19 **FSM_ENABLE_B** (47h)

FSM enable register (r/w).

Table 219. FSM_ENABLE_B register

	FSM16_EN FSM15_EN	FSM14_EN	FSM13_EN	FSM12_EN	FSM11_EN	FSM10_EN	FSM9_EN
--	-------------------	----------	----------	----------	----------	----------	---------

Table 220. FSM_ENABLE_B register description

FSM16_EN	FSM16 enable. Default value: 0 (0: FSM16 disabled; 1: FSM16 enabled)
FSM15_EN	FSM15 enable. Default value: 0 (0: FSM15 disabled; 1: FSM15 enabled)
FSM14_EN	FSM14 enable. Default value: 0 (0: FSM14 disabled; 1: FSM14 enabled)
FSM13_EN	FSM13 enable. Default value: 0 (0: FSM13 disabled; 1: FSM13 enabled)
FSM12_EN	FSM12 enable. Default value: 0 (0: FSM12 disabled; 1: FSM12 enabled)
FSM11_EN	FSM11 enable. Default value: 0 (0: FSM11 disabled; 1: FSM11 enabled)
FSM10_EN	FSM10 enable. Default value: 0 (0: FSM10 disabled; 1: FSM10 enabled)
FSM9_EN	FSM9 enable. Default value: 0 (0: FSM9 disabled; 1: FSM9 enabled)

11.20 FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)

FSM long counter status register (r/w).

Long counter value is an unsigned integer value (16-bit format); this value can be reset using the LC_CLEAR bit in FSM_LONG_COUNTER_CLEAR (4Ah) register.

Table 221. FSM_LONG_COUNTER_L register

FSM_LC_								
7	6	5	4	3	2	1	0	

Table 222. FSM_LONG_COUNTER_L register description

FSM_LC_[7:0] Long counter current value (LSbyte). Default value: 00000000

Table 223. FSM_LONG_COUNTER_H register

| FSM_LC_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |

Table 224. FSM_LONG_COUNTER_H register description

FSM_LC_[15:8] Long counter current value (MSbyte). Default value: 00000000

11.21 FSM_LONG_COUNTER_CLEAR (4Ah)

FSM long counter reset register (r/w).

Table 225. FSM_LONG_COUNTER_CLEAR register

0 ⁽¹⁾	FSM_LC_ CLEARED	FSM_LC_ CLEAR					
------------------	------------------	------------------	------------------	------------------	------------------	--------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 226. FSM_LONG_COUNTER_CLEAR register description

FSM_LC_ CLEARED	This read-only bit is automatically set to 1 when the long counter reset is done. Default value: 0
FSM_LC_CLEAR	Clear FSM long counter value. Default value: 0

11.22 FSM_OUTS1 (4Ch)

FSM1 output register (r).

Table 227. FSM_OUTS1 register

-								
	P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 228. FSM_OUTS1 register description

P_X	FSM1 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM1 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM1 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM1 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM1 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM1 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM1 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM1 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.23 FSM_OUTS2 (4Dh)

FSM2 output register (r).

Table 229. FSM_OUTS2 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 230. FSM_OUTS2 register description

FSM2 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
FSM2 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
FSM2 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
FSM2 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
FSM2 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
FSM2 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
FSM2 output: positive event detected on the vector. (0: event not detected; 1: event detected
FSM2 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.24 FSM_OUTS3 (4Eh)

FSM3 output register (r).

Table 231. FSM_OUTS3 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 232. FSM_OUTS3 register description

P_X	FSM3 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM3 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM3 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM3 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM3 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM3 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM3 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM3 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.25 FSM_OUTS4 (4Fh)

FSM4 output register (r).

Table 233. FSM_OUTS4 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 234. FSM_OUTS4 register description

	Tuble 204: 1 GM_GG 104 Tegister description
P_X	FSM4 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM4 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM4 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM4 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM4 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM4 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM4 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM4 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.26 FSM_OUTS5 (50h)

FSM5 output register (r).

Table 235. FSM_OUTS5 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 236. FSM_OUTS5 register description

P_X	FSM5 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM5 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM5 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM5 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM5 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM5 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM5 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM5 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.27 FSM_OUTS6 (51h)

FSM6 output register (r).

Table 237. FSM_OUTS6 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 238. FSM_OUTS6 register description

14510 200. 1 0111_00 100 100 100 100 100 100 100 1
FSM6 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
FSM6 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
FSM6 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
FSM6 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
FSM6 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
FSM6 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
FSM6 output: positive event detected on the vector. (0: event not detected; 1: event detected
FSM6 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.28 FSM_OUTS7 (52h)

FSM7 output register (r).

Table 239. FSM_OUTS7 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 240. FSM_OUTS7 register description

P_X	FSM7 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM7 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM7 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM7 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM7 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM7 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM7 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM7 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.29 FSM_OUTS8 (53h)

FSM8 output register (r).

Table 241. FSM_OUTS8 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 242. FSM_OUTS8 register description

	Table 242. 1 GM _ GG 1 GG 1 GG 1 GG 1 GG 1 GG 1 GG
P_X	FSM8 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM8 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM8 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM8 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM8 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM8 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM8 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM8 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.30 FSM_OUTS9 (54h)

FSM9 output register (r).

Table 243. FSM_OUTS9 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 244. FSM_OUTS9 register description

P_X	FSM9 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM9 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM9 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM9 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM9 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM9 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM9 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM9 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.31 FSM_OUTS10 (55h)

FSM10 output register (r).

Table 245. FSM_OUTS10 register

P_	<u>_</u> X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 246. FSM_OUTS10 register description

	14510 2401 0 M_00 10 10 10 10 10 10 10 10 10 10 10 10 1
P_X	FSM10 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM10 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM10 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM10 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM10 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM10 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM10 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM10 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.32 FSM_OUTS11 (56h)

FSM11 output register (r).

Table 247. FSM_OUTS11 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 248. FSM_OUTS11 register description

P_X	FSM11 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM11 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM11 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM11 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM11 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM11 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM11 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM11 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.33 FSM_OUTS12 (57h)

FSM12 output register (r).

Table 249. FSM_OUTS12 register

P_	<u>_</u> X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 250. FSM_OUTS12 register description

	Tuble 200: 1 Cin_CO 10 12 Tegloter description
P_X	FSM12 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM12 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM12 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM12 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM12 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM12 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM12 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM12 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.34 FSM_OUTS13 (58h)

FSM13 output register (r).

Table 251. FSM_OUTS13 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 252. FSM_OUTS13 register description

P_X	FSM13 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM13 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM13 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM13 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM13 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM13 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM13 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM13 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.35 FSM_OUTS14 (59h)

FSM14 output register (r).

Table 253. FSM_OUTS14 register

P_	<u>_</u> X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 254. FSM_OUTS14 register description

	14510 2041 1 0111_00 10 14 10gloter 400011ption
P_X	FSM14 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM14 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM14 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM14 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM14 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM14 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.36 FSM_OUTS15 (5Ah)

FSM15 output register (r).

Table 255. FSM_OUTS15 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 256. FSM_OUTS15 register description

P_X	FSM15 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM15 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM15 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM15 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM15 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM15 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM15 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM15 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.37 FSM_OUTS16 (5Bh)

FSM16 output register (r).

Table 257. FSM_OUTS16 register

P_	<u>_</u> X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 258. FSM_OUTS16 register description

	14510 2001 1 GM_00 10 10 10 10 10 10 10 10 10 10 10 10 1
P_X	FSM16 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM16 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM16 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM16 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM16 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM16 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM16 output: positive event detected on the vector. (0: event not detected; 1: event detected
N_V	FSM16 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.38 EMB_FUNC_ODR_CFG_B (5Fh)

Finite State Machine output data rate configuration register (r/w).

Table 259. EMB_FUNC_ODR_CFG_B register

0 ⁽¹⁾	1 ⁽²⁾	0 ⁽¹⁾	FSM_ ODR1	FSM_ ODR0	0 ⁽¹⁾	1 ⁽²⁾	1 ⁽²⁾
							l

- 1. This bit must be set to '0' for the correct operation of the device.
- 2. This bit must be set to '1' for the correct operation of the device.

Table 260. EMB FUNC ODR CFG B register description

	Finite State Machine ODR configuration:
	(00: 12.5 Hz;
FSM_ODR[1:0]	01: 26 Hz (default);
	10: 52 Hz;
	11: 104 Hz)

11.39 STEP_COUNTER_L (62h) and STEP_COUNTER_H (63h)

Step counter output register (r).

Table 261. STEP_COUNTER_L register

STEP 7	STEP 6	STEP 5	STEP 4	STEP 3	STEP 2	STEP 1	STEP 0
_	_	_	_	_	_	_	_

Table 262. STEP_COUNTER_L register description

Table 263. STEP_COUNTER_H register

STED 15	STED 1/	STEP_13	STED 12	STED 11	STED 10	STED 0	STED 8
3111 _13	3161 _14	3161 _ 13	31L1 _12	3161 - 11	3121 _ 10	3161_9	3111_0

Table 264. STEP_COUNTER_H register description

STEP_[15:8]	Step counter output (MSbyte)
-------------	------------------------------

11.40 EMB_FUNC_SRC (64h)

Embedded function source register (r/w)

Table 265. EMB_FUNC_SRC register

PEDO_ RST_ STEP	0 STEP_ DETECTED	STEP_ COUNT_ DELTA_IA OVERF	 INIER BILL 	0	0	
-----------------------	---------------------	-----------------------------------	--------------------------------	---	---	--

Table 266. EMB_FUNC_SRC register description

PEDO_RST_ STEP	Reset pedometer step counter. Read/write bit. (0: disabled; 1: enabled)
STEP_ DETECTED	Step detector event detection status. Read-only bit. (0: step detection event not detected; 1: step detection event detected)
STEP_COUNT_ DELTA_IA	Pedometer step recognition on delta time status. Read-only bit. (0: no step recognized during delta time; 1: at least one step recognized during delta time)
STEP_ OVERFLOW	Step counter overflow status. Read-only bit. (0: step counter value < 2 ¹⁶ ; 1: step counter value reached 2 ¹⁶)
STEPCOUNTER_ BIT_SET	This bit is equal to 1 when the step count is increased. Read-only bit.

11.41 EMB_FUNC_INIT_A (66h)

Embedded functions initialization register (r/w)

Table 267. EMB_FUNC_INIT_A register

0 ⁽¹⁾ SIG_MOT TILT ST	P_DET 0(1) 0(1) 0(1)
----------------------------------	----------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 268. EMB_FUNC_INIT_A register description

SIG_MOT_INIT	Significant Motion Detection algorithm initialization request. Default value: 0
TILT_INIT	Tilt algorithm initialization request. Default value: 0
STEP_DET_INIT	Pedometer Step Counter/Detector algorithm initialization request. Default value: 0

11.42 EMB_FUNC_INIT_B (67h)

Embedded functions initialization register (r/w)

Table 269. EMB_FUNC_INIT_B register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	FIFO_ COMPR_ INIT	0 ⁽¹⁾	0 ⁽¹⁾	FSM_INIT
------------------	------------------	------------------	------------------	-------------------------	------------------	------------------	----------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 270. EMB_FUNC_INIT_B register description

FIFO_COMPR_INIT	FIFO compression feature initialization request. Default value: 0
FSM_INIT	FSM initialization request. Default value: 0

12 Embedded advanced features pages

The table given below provides a list of the registers for the embedded advanced features page 0. These registers are accessible when PAGE_SEL[3:0] are set to 0000 in PAGE_SEL (02h).

Table 271. Register address map - embedded advanced features page 0

Name	Time	Register	address	Default	Comment
Name	Type	Hex	Binary	Delault	Comment
MAG_SENSITIVITY_L	r/w	BA	10111010	00100100	
MAG_SENSITIVITY_H	r/w	BB	10111011	00010110	
MAG_OFFX_L	r/w	C0	11000000	00000000	
MAG_OFFX_H	r/w	C1	11000001	00000000	
MAG_OFFY_L	r/w	C2	11000010	00000000	
MAG_OFFY_H	r/w	C3	11000011	00000000	
MAG_OFFZ_L	r/w	C4	11000100	00000000	
MAG_OFFZ_H	r/w	C5	11000101	00000000	
MAG_SI_XX_L	r/w	C6	11000110	00000000	
MAG_SI_XX_H	r/w	C7	11000111	00111100	
MAG_SI_XY_L	r/w	C8	11001000	00000000	
MAG_SI_XY_H	r/w	C9	11001001	00000000	
MAG_SI_XZ_L	r/w	CA	11001010	00000000	
MAG_SI_XZ_H	r/w	СВ	11001011	00000000	
MAG_SI_YY_L	r/w	CC	11001100	00000000	
MAG_SI_YY_H	r/w	CD	11001101	00111100	
MAG_SI_YZ_L	r/w	CE	11001110	00000000	
MAG_SI_YZ_H	r/w	CF	11001111	00000000	
MAG_SI_ZZ_L	r/w	D0	11010000	00000000	
MAG_SI_ZZ_H	r/w	D1	11010001	00111100	
MAG_CFG_A	r/w	D4	11010100	00000101	
MAG_CFG_B	r/w	D5	11010101	00000010	

The table given below provides a list of the registers for the embedded advanced features page 1. These registers are accessible when PAGE_SEL[3:0] are set to 0001 in PAGE_SEL (02h).

Table 272. Register address map - embedded advanced features page 1

Name	Туре	Register	address	Default	Comment
Name	туре	Hex	Binary	Delault	
FSM_LC_TIMEOUT_L	r/w	7A	01111010	00000000	
FSM_LC_TIMEOUT_H	r/w	7B	01111011	00000000	
FSM_PROGRAMS	r/w	7C	01111100	00000000	
FSM_START_ADD_L	r/w	7E	01111110	00000000	
FSM_START_ADD_H	r/w	7F	01111111	00000000	
PEDO_CMD_REG	r/w	83	10000011	00000000	
PEDO_DEB_STEPS_CONF	r/w	84	10000100	00001010	
PEDO_SC_DELTAT_L	r/w	D0	11010000	00000000	
PEDO_SC_DELTAT_H	r/w	D1	11010001	00000000	

Registers marked as *Reserved* must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

Write procedure example:

Example: write value 06h register at address 84h (PEDO_DEB_STEPS_CONF) in Page 1

Read procedure example:

Example: read value of register at address 84h (PEDO_DEB_STEPS_CONF) in Page 1

1. Write bit FUNC_CFG_EN = 1 // Enable access to embedded functions registers in FUNC_CFG_ACCESS (01h) 2. Write bit PAGE_READ = 1 // Select read operation mode in PAGE_RW (17h) register 3. Write 0001 in PAGE SEL[3:0] field // Select page 1 of register PAGE_SEL (02h) 4. Write 84h in PAGE_ADDR register (08h) // Set address 5. Read value of PAGE DATA register (09h) // Get register value 6. Write bit PAGE_READ = 0 // Read operation disabled in PAGE_RW (17h) register 7. Write bit FUNC CFG EN = 0 in // Disable access to embedded functions registers FUNC_CFG_ACCESS (01h)

Note:

Steps 1 and 2 of both procedures are intended to be performed at the beginning of the procedure. Steps 6 and 7 of both procedures are intended to be performed at the end of the procedure. If the procedure involves multiple operations, only steps 3, 4 and 5 must be repeated for each operation. If, in particular, the multiple operations involve consecutive registers, only step 5 can be performed.

13 Embedded advanced features register description

13.1 Page 0 - Embedded advanced features registers

13.1.1 MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh)

External magnetometer sensitivity value register for the Finite State Machine (r/w).

This register corresponds to the LSB-to-gauss conversion value of the external magnetometer sensor. The register value is expressed as half-precision floating-point format: SEEEEFFFFFFFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits). Default value of MAG_SENS[15:0] is 0x1624, corresponding to 0.0015 gauss/LSB.

Table 273. MAG_SENSITIVITY_L register

| MAG_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SENS_7 | SENS_6 | SENS_5 | SENS_4 | SENS_3 | SENS_2 | SENS_1 | SENS_0 |

Table 274. MAG_SENSITIVITY_L register description

Table 275. MAG_SENSITIVITY_H register

MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_
SENS_15	SENS_14	SENS_13	SENS_12	SENS_11	SENS_10	SENS_9	SENS_8

Table 276. MAG_SENSITIVITY_H register description

MAG_SENS_[15:8] External magnetometer sensitivity (MSbyte). Default value: 00010110

13.1.2 MAG_OFFX_L (C0h) and MAG_OFFX_H (C1h)

Offset for X-axis hard-iron compensation register (r/w).

Table 277. MAG_OFFX_L register

| MAG_OFF |
|---------|---------|---------|---------|---------|---------|---------|---------|
| X_7 | X_6 | X_5 | X_4 | X_3 | X_2 | X_1 | X_0 |

Table 278. MAG_OFFX_L register description

MAG_OFFX_[7:0] Offset for X-axis hard-iron compensation (LSbyte). Default value: 00000000

Table 279. MAG_OFFX_H register

ſ	MAG_OFF							
	X_15	X_14	X_13	X_12	X_11	X_10	X_9	X_8

Table 280. MAG_OFFX_H register description

13.1.3 MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h)

Offset for Y-axis hard-iron compensation register (r/w).

Table 281. MAG_OFFY_L register

| MAG_OFF |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Y_7 | Y_6 | Y_5 | Y_4 | Y_3 | Y_2 | Y_1 | Y_0 |

Table 282. MAG OFFY L register description

MAG_OFFY_[7:0] Offset for Y-axis hard-iron compensation (LSbyte). Default value: 00000000

Table 283. MAG_OFFY_H register

| MAG_OFF |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Y_15 | Y_14 | Y_13 | Y_12 | Y_11 | Y_10 | Y_9 | Y_8 |

Table 284. MAG_OFFY_H register description

MAG_OFFY_[15:8] Offset for Y-axis hard-iron compensation (MSbyte). Default value: 00000000

13.1.4 MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h)

Offset for Z-axis hard-iron compensation register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 285. MAG_OFFZ_L register

| MAG_OFF |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Z_7 | Z_6 | Z_5 | Z_4 | Z_3 | Z_2 | Z_1 | Z_0 |

Table 286. MAG_OFFZ_L register description

MAG OFFZ [7:0] Offset for Z-axis hard-iron compensation (LSbyte). Default value: 00000000

Table 287. MAG_OFFZ_H register

| MAG_OFF |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Z_15 | Z_14 | Z_13 | Z_12 | Z_11 | Z_10 | Z_9 | Z_8 |

Table 288. MAG_OFFZ_H register description

MAG_OFFZ_[15:8] Offset for Z-axis hard-iron compensation (MSbyte). Default value: 00000000

13.1.5 MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

Table 289. MAG_SI_XX_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XX_7 | XX_6 | XX_5 | XX_4 | XX_3 | XX_2 | XX_1 | XX_0 |

Table 290. MAG_SI_XX_L register description

MAG_SI_XX_[7:0] | Soft-iron correction row1 col1 coefficient (LSbyte). Default value: 00000000

Table 291. MAG_SI_XX_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XX_15 | XX_14 | XX_13 | XX_12 | XX_11 | XX_10 | XX_9 | XX_8 |

Table 292. MAG_SI_XX_H register description

MAG_SI_XX_[15:8] Soft-iron correction row1 col1 coefficient (MSbyte). Default value: 00111100

13.1.6 MAG SI XY L (C8h) and MAG SI XY H (C9h)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

Table 293. MAG_SI_XY_L register

MAG	SI_ MAG	SI_ MAG		_ MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_
XY	7 XY	′ 6 XY	′ 5 XY 4	XY 3	XY 2	XY 1	XY 0

Table 294. MAG_SI_XY_L register description

MAC SI VV [7:0]	Soft-iron correction row1 col2 (and row2 col1) coefficient (LSbyte). Default value: 00000000
IVIAG_3I_X1_[1.0]	value: 00000000

Table 295. MAG_SI_XY_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XY_15 | XY_14 | XY_13 | XY_12 | XY_11 | XY_10 | XY_9 | XY_8 |

Table 296. MAG_SI_XY_H register description

N	1AG_SI_XY_[15:8]	Soft-iron correction row1 col2 (and row2 col1) coefficient (MSbyte). Default value: 00000000
M	IAG_SI_XY_[15:8]	value: 00000000

13.1.7 MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

Table 297. MAG_SI_XZ_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XZ_7 | XZ_6 | XZ_5 | XZ_4 | XZ_3 | XZ_2 | XZ_1 | XZ_0 |

Table 298. MAG_SI_XZ_L register description

MAG_SI_XZ_[7:0]	Soft-iron correction row1 col3 (and row3 col1) coefficient (LSbyte). Default
IVIAG_3I_XZ_[7.0	value: 00000000

Table 299. MAG_SI_XZ_H register

1	MAG_SI_							
	XZ_15	XZ_14	XZ_13	XZ_12	XZ_11	XZ_10	XZ_9	XZ_8

Table 300. MAG_SI_XZ_H register description

MAG_SI_XZ_[15:8]	Soft-iron correction row1 col3 (and row3 col1) coefficient (MSbyte). Default value: 00000000
------------------	--

13.1.8 MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

Table 301. MAG_SI_YY_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| YY_7 | YY_6 | YY_5 | YY_4 | YY_3 | YY_2 | YY_1 | YY_0 |

Table 302. MAG SI YY L register description

MAG_SI_YY_[7:0] | Soft-iron correction row2 col2 coefficient (LSbyte). Default value: 00000000

Table 303. MAG_SI_YY_H register

MAG_SI_	l							
YY_15	YY_14	YY_13	YY_12	YY_11	YY_10	YY_9	YY_8	

Table 304. MAG_SI_YY_H register description

MAG_SI_YY_[15:8] Soft-iron correction row2 col2 coefficient (MSbyte). Default value: 00111100

13.1.9 MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 305. MAG_SI_YZ_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| YZ_7 | YZ_6 | YZ_5 | YZ_4 | YZ_3 | YZ_2 | YZ_1 | YZ_0 |

Table 306. MAG_SI_YZ_L register description

Default value: 00000000			Soft-iron correction row2 col3 (and row3 col2) coefficient (LSbyte). Default value: 00000000	
-------------------------	--	--	--	--

Table 307. MAG_SI_YZ_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| YZ_15 | YZ_14 | YZ_13 | YZ_12 | YZ_11 | YZ_10 | YZ_9 | YZ_8 |

Table 308. MAG_SI_YZ_H register description

MAC SI V7 [15:0]	Soft-iron correction row2 col3 (and row3 col2) coefficient (MSbyte).
WAG_SI_1Z_[13.6]	Soft-iron correction row2 col3 (and row3 col2) coefficient (MSbyte). Default value: 00000000

13.1.10 MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 309. MAG_SI_ZZ_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ZZ_7 | ZZ_6 | ZZ_5 | ZZ_4 | ZZ_3 | ZZ_2 | ZZ_1 | ZZ_0 |

Table 310. MAG SI ZZ L register description

MAG_SI_ZZ_[7:0] Soft-iron correction row3 col3 coefficient (LSbyte). Default value: 00000000

Table 311. MAG_SI_ZZ_H register

MAG_SI_	ı							
ZZ_15	ZZ_14	ZZ_13	ZZ_12	ZZ_11	ZZ_10	ZZ_9	ZZ_8	

Table 312. MAG_SI_ZZ_H register description

MAG_SI_ZZ_[15:8] Soft-iron correction row3 col3 coefficient (MSbyte). Default value: 00111100

DocID030186 Rev 1 142/166

13.1.11 MAG_CFG_A (D4h)

External magnetometer coordinates (Z and Y axes) rotation register (r/w).

Table 313. MAG_CFG_A register

0(1)	MAG_Y_	MAG_Y_	MAG_Y_	O ⁽¹⁾	MAG_Z_	MAG_Z_	MAG_Z_
0, ,	AXIS2	AXIS1	AXIS0	0. /	AXIS2	AXIS1	AXIS0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 314. MAG_CFG_A description

Magnetometer Y-axis coordinates rotation (to be aligned to
accelerometer/gyroscope axes orientation)
(000: Y = Y; (default)
001: Y = -Y;
010: Y = X;
011: Y = -X;
100: Y = -Z;
101: Y = Z;
Others: Y = Y)
Magnetometer Z-axis coordinates rotation (to be aligned to
accelerometer/gyroscope axes orientation)
(000: Z = Y;
001: Z = -Y;
010: Z = X;
011: Z = -X;
100: Z = -Z;
101: Z = Z; (default)
Others: Z = Y)

13.1.12 MAG_CFG_B (D5h)

External magnetometer coordinates (X-axis) rotation register (r/w).

Table 315. MAG_CFG_B register

0 ⁽¹⁾	MAG_X_ AXIS2	MAG_X_ AXIS1	MAG_X_ AXIS0					
------------------	------------------	------------------	------------------	------------------	-----------------	-----------------	-----------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 316. MAG_CFG_B description

	Magnetometer X-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
	(000: X = Y;
	001: X = -Y;
MAG_X_AXIS[2:0]	010: X = X; (default)
	011: X = -X;
	100: X = -Z;
	101: X = Z;
	Others: X = Y)

13.2 Page 1 - Embedded advanced features registers

13.2.1 FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh)

FSM long counter timeout register (r/w).

The long counter timeout value is an unsigned integer value (16-bit format). When the long counter value reached this value, the FSM generates an interrupt.

Table 317. FSM_LC_TIMEOUT_L register

| FSM_LC_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TIMEOUT |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Table 318. FSM_LC_TIMEOUT_L register description

FSM_LC_ TIMEOUT[7:0]	FSM long counter timeout value (LSbyte). Default value: 00000000
-------------------------	--

Table 319. FSM_LC_TIMEOUT_H register

| FSM_LC_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TIMEOUT |
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |

Table 320. FSM_LC_TIMEOUT_H register description

FSM_LC_ TIMEOUT[15:8]	FSM long counter timeout value (MSbyte). Default value: 00000000
--------------------------	--

13.2.2 FSM_PROGRAMS (7Ch)

FSM number of programs register (r/w).

Table 321. FSM_PROGRAMS register

FSM_N_								
PROG7	PROG6	PROG5	PROG4	PROG3	PROG2	PROG1	PROG0	

Table 322. FSM PROGRAMS register description

FSM_N_PROG[7:0]	Number of FSM programs; must be less than or equal to 16. Default value: 00000000

13.2.3 FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh)

FSM start address register (r/w). First available address is 0x033C.

Table 323. FSM_START_ADD_L register

Γ	FSM_							
	START7	START6	START5	START4	START3	START2	START1	START0

Table 324. FSM_START_ADD_L register description

FSM_START[7:0]	FSM start address value (LSbyte). Default value: 00000000
----------------	---

Table 325. FSM_START_ADD_H register

FSM_	FSM_	FSM_	FSM_	FSM_	FSM_	FSM_	FSM_
START15	START14	START13	START12	START11	START10	START9	START8

Table 326. FSM_START_ADD_H register description

FSM_START[15:8] FSM start address value (MSbyte). Default value: 00000000

13.2.4 PEDO_CMD_REG (83h)

Pedometer configuration register (r/w)

Table 327. PEDO_CMD_REG register

	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	CARRY_ COUNT_EN	FP_ REJECTION_ EN	0 ⁽¹⁾	AD_ DET_EN
--	------------------	------------------	------------------	------------------	--------------------	-------------------------	------------------	---------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 328. PEDO_CMD_REG register description

CARRY_COUNT_EN	Set when user wants to generate interrupt only on count overflow event.
FP_REJECTION_EN ⁽¹⁾	Enables the false-positive rejection feature.
AD_DET_EN ⁽²⁾	Enables the advanced detection feature.

^{1.} This bit is effective if the PEDO_ADV_EN bit of EMB_FUNC_EN_B (05h) is set to 1 and the PEDO_FPR_ADF_DIS bit of ADV_PEDO (03h) is set to 0.

13.2.5 PEDO DEB STEPS CONF (84h)

Pedometer debounce configuration register (r/w)

Table 329. PEDO_DEB_STEPS_CONF register

DEB_								
STEP7	STEP6	STEP5	STEP4	STEP3	STEP2	STEP1	STEP0	

Table 330. PEDO_DEB_STEPS_CONF register description

Debounce threshold. Minimum number of steps to increment the step counter (debounce). Default value: 00001010
 (debounce). Default value: 0000 to to

^{2.} This bit is effective if the FP_REJECTION_EN bit in PEDO_CMD_REG (83h) is set to 1, the PEDO_ADV_EN bit of EMB_FUNC_EN_B (05h) is set to 1 and the PEDO_FPR_ADF_DIS bit of ADV_PEDO (03h) is set to 0.

13.2.6 PEDO_SC_DELTAT_L (D0h) & PEDO_SC_DELTAT_H (D1h)

Time period register for step detection on delta time (r/w)

Table 331. PEDO_SC_DELTAT_L register

ĺ	PD SC 7	PD SC 6	PD SC 5	PD SC 4	PD SC 3	PD SC 2	PD_SC_1	PD SC 0
ı						. <u>D_</u>		1 . 5_55_5

Table 332. PEDO_SC_DELTAT_H register

PD_SC_15 | PD_SC_14 | PD_SC_13 | PD_SC_12 | PD_SC_11 | PD_SC_10 | PD_SC_9 | PD_SC_8

Table 333. PEDO_SC_DELTAT_H/L register description

PD_SC_[15:0]	Time period value (1LSB = 6.4 ms)
--------------	-----------------------------------

14 Sensor hub register mapping

The table given below provides a list of the registers for the sensor hub functions available in the device and the corresponding addresses. The sensor hub registers are accessible when bit SHUB_REG_ACCESS is set to '1' in FUNC_CFG_ACCESS (01h).

Table 334. Register address map - sensor hub registers

			- sensor nub		
Name	Туре	Register	address	Default	Comment
	,,,,,	Hex	Binary		
SENSOR_HUB_1	r	02	00000010	output	
SENSOR_HUB_2	r	03	00000011	output	
SENSOR_HUB_3	r	04	00000100	output	
SENSOR_HUB_4	r	05	00000101	output	
SENSOR_HUB_5	r	06	00000110	output	
SENSOR_HUB_6	r	07	00000111	output	
SENSOR_HUB_7	r	08	00001000	output	
SENSOR_HUB_8	r	09	00001001	output	
SENSOR_HUB_9	r	0A	00001010	output	
SENSOR_HUB_10	r	0B	00001011	output	
SENSOR_HUB_11	r	0C	00001100	output	
SENSOR_HUB_12	r	0D	00001101	output	
SENSOR_HUB_13	r	0E	00001110	output	
SENSOR_HUB_14	r	0F	00001111	output	
SENSOR_HUB_15	r	10	00010000	output	
SENSOR_HUB_16	r	11	00010001	output	
SENSOR_HUB_17	r	12	00010010	output	
SENSOR_HUB_18	r	13	00010011	output	
MASTER_CONFIG	rw	14	00010100	00000000	
SLV0_ADD	rw	15	00010101	00000000	
SLV0_SUBADD	rw	16	00010110	00000000	
SLV0_CONFIG	rw	17	0001 0111	00000000	
SLV1_ADD	rw	18	00011000	00000000	
SLV1_SUBADD	rw	19	00011001	00000000	
SLV1_CONFIG	rw	1A	00011010	00000000	
SLV2_ADD	rw	1B	00011011	00000000	
SLV2_SUBADD	rw	1C	00011100	00000000	
SLV2_CONFIG	rw	1D	00011101	00000000	

Table 334. Register address map - sensor hub registers

Name	Type	Register	address	Default	Comment
Name	Type	Hex	Binary	Delault	Comment
SLV3_ADD	rw	1E	00011110	00000000	
SLV3_SUBADD	rw	1F	00011111	00000000	
SLV3_CONFIG	rw	20	00100000	00000000	
DATAWRITE_SLV0	rw	21	00100001	00000000	
STATUS_MASTER	r	22	00100010	output	

Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

15 Sensor hub register description

15.1 SENSOR_HUB_1 (02h)

Sensor hub output register (r)

First byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 335. SENSOR_HUB_1 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub1_7 | Hub1_6 | Hub1_5 | Hub1_4 | Hub1_3 | Hub1_2 | Hub1_1 | Hub1_0 |

Table 336. SENSOR_HUB_1 register description

SensorHub1[7:0]	First byte associated to external sensors
-----------------	---

15.2 SENSOR_HUB_2 (03h)

Sensor hub output register (r)

Second byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 337. SENSOR_HUB_2 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub2_7 | Hub2_6 | Hub2_5 | Hub2_4 | Hub2_3 | Hub2_2 | Hub2_1 | Hub2_0 |

Table 338. SENSOR_HUB_2 register description

SensorHub2[7:0]	Second byte associated to external sensors
-----------------	--

15.3 SENSOR_HUB_3 (04h)

Sensor hub output register (r)

Third byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 339. SENSOR_HUB_3 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub3_7 | Hub3_6 | Hub3_5 | Hub3_4 | Hub3_3 | Hub3_2 | Hub3_1 | Hub3_0 |

Table 340. SENSOR_HUB_3 register description

SensorHub3[7:0]	Third byte associated to external sensors
Senson lubs[1.0]	Third byte associated to external sensors

15.4 SENSOR_HUB_4 (05h)

Sensor hub output register (r)

Fourth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 341. SENSOR_HUB_4 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub4_7 | Hub4_6 | Hub4_5 | Hub4_4 | Hub4_3 | Hub4_2 | Hub4_1 | Hub4_0 |

Table 342. SENSOR_HUB_4 register description

SensorHub4[7:0]	Fourth byte associated to external sensors
-----------------	--

15.5 SENSOR_HUB_5 (06h)

Sensor hub output register (r)

Fifth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 343. SENSOR_HUB_5 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub5_7 | Hub5_6 | Hub5_5 | Hub5_4 | Hub5_3 | Hub5_2 | Hub5_1 | Hub5_0 |

Table 344. SENSOR_HUB_5 register description

SensorHub5[7:0]

15.6 SENSOR_HUB_6 (07h)

Sensor hub output register (r)

Sixth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 345. SENSOR HUB 6 register

Sensor								
Hub6_7	Hub6_6	Hub6_5	Hub6_4	Hub6_3	Hub6_2	Hub6_1	Hub6_0	

Table 346. SENSOR_HUB_6 register description

SensorHub6[7:0]	Sixth byte associated to external sensors
-----------------	---

15.7 SENSOR_HUB_7 (08h)

Sensor hub output register (r)

Seventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 347. SENSOR_HUB_7 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub7_7 | Hub7_6 | Hub7_5 | Hub7_4 | Hub7_3 | Hub7_2 | Hub7_1 | Hub7_0 |

Table 348. SENSOR_HUB_7 register description

SensorHub7[7:0]	Seventh byte associated to external sensors
-----------------	---

15.8 SENSOR_HUB_8 (09h)

Sensor hub output register (r)

Eighth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 349. SENSOR_HUB_8 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub8_7 | Hub8_6 | Hub8_5 | Hub8_4 | Hub8_3 | Hub8_2 | Hub8_1 | Hub8_0 |

Table 350. SENSOR_HUB_8 register description

SensorHub8[7:0]

15.9 SENSOR_HUB_9 (0Ah)

Sensor hub output register (r)

Ninth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 351. SENSOR_HUB_9 register

Sensor	l							
Hub9_7	Hub9_6	Hub9_5	Hub9_4	Hub9_3	Hub9_2	Hub9_1	Hub9_0	

Table 352. SENSOR_HUB_9 register description

SensorHub9[7:0]	Ninth byte associated to external sensors
-----------------	---

15.10 SENSOR_HUB_10 (0Bh)

Sensor hub output register (r)

Tenth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 353. SENSOR_HUB_10 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub10_7 | Hub10_6 | Hub10_5 | Hub10_4 | Hub10_3 | Hub10_2 | Hub10_1 | Hub10_0 |

Table 354. SENSOR_HUB_10 register description

SensorHub10[7:0]	Tenth byte associated to external sensors
------------------	---

15.11 SENSOR_HUB_11 (0Ch)

Sensor hub output register (r)

Eleventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 355. SENSOR_HUB_11 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub11_7 | Hub11_6 | Hub11_5 | Hub11_4 | Hub11_3 | Hub11_2 | Hub11_1 | Hub11_0 |

Table 356. SENSOR_HUB_11 register description

SensorHub11[7:0]	Eleventh byte associated to external sensors
------------------	--

15.12 SENSOR_HUB_12 (0Dh)

Sensor hub output register (r)

Twelfth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 357. SENSOR HUB 12 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub12_7 | Hub12_6 | Hub12_5 | Hub12_4 | Hub12_3 | Hub12_2 | Hub12_1 | Hub12_0 |

Table 358. SENSOR_HUB_12 register description

SensorHub12[7:0]	Twelfth byte associated to external sensors
------------------	---

15.13 SENSOR_HUB_13 (0Eh)

Sensor hub output register (r)

Thirteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 359. SENSOR_HUB_13 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub13_7 | Hub13_6 | Hub13_5 | Hub13_4 | Hub13_3 | Hub13_2 | Hub13_1 | Hub13_0 |

Table 360. SENSOR_HUB_13 register description

SensorHub13[7:0]	Thirteenth byte associated to external sensors
------------------	--

15.14 SENSOR_HUB_14 (0Fh)

Sensor hub output register (r)

Fourteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 361. SENSOR_HUB_14 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub14_7 | Hub14_6 | Hub14_5 | Hub14_4 | Hub14_3 | Hub14_2 | Hub14_1 | Hub14_0 |

Table 362. SENSOR_HUB_14 register description

SensorHub14[7:0] Fourteenth byte associated to external sensors

15.15 SENSOR_HUB_15 (10h)

Sensor hub output register (r)

Fifteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 363. SENSOR_HUB_15 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub15_7 | Hub15_6 | Hub15_5 | Hub15_4 | Hub15_3 | Hub15_2 | Hub15_1 | Hub15_0 |

Table 364. SENSOR_HUB_15 register description

15.16 SENSOR_HUB_16 (11h)

Sensor hub output register (r)

Sixteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 365. SENSOR_HUB_16 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub16_7 | Hub16_6 | Hub16_5 | Hub16_4 | Hub16_3 | Hub16_2 | Hub16_1 | Hub16_0 |

Table 366. SENSOR_HUB_16 register description

SensorHub16[7:0]	Sixteenth byte associated to external sensors
------------------	---

15.17 SENSOR_HUB_17 (12h)

Sensor hub output register (r)

Seventeenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 367. SENSOR_HUB_17 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub17_7 | Hub17_6 | Hub17_5 | Hub17_4 | Hub17_3 | Hub17_2 | Hub17_1 | Hub17_0 |

Table 368. SENSOR_HUB_17 register description

SensorHub17[7:0]	Seventeenth byte associated to external sensors
------------------	---

15.18 SENSOR_HUB_18 (13h)

Sensor hub output register (r)

Eighteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 369. SENSOR_HUB_17 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub18_7 | Hub18_6 | Hub18_5 | Hub18_4 | Hub18_3 | Hub18_2 | Hub18_1 | Hub18_0 |

Table 370. SENSOR_HUB_17 register description

SensorHub18[7:0]	Eighteenth byte associated to external sensors
------------------	--

15.19 MASTER_CONFIG (14h)

Master configuration register (r/w)

Table 371. MASTER_CONFIG register

RST_ MASTER_ REGS	WRITE_ ONCE	START_ CONFIG	PASS_ THROUGH _MODE	SHUB_ PU_EN	MASTER_ ON	AUX_ SENS_ ON1	AUX_ SENS_ ON0	
-------------------------	----------------	------------------	---------------------------	----------------	---------------	----------------------	----------------------	--

Table 372. MASTER_CONFIG register description

RST_MASTER_ REGS	Reset Master logic and output registers. Must be set to '1' and then set it to '0'. Default value: 0
WRITE_ONCE	Slave 0 write operation is performed only at the first sensor hub cycle. Default value: 0 (0: write operation for each sensor hub cycle; 1: write operation only for the first sensor hub cycle)
START_CONFIG	Sensor hub trigger signal selection. Default value: 0 (0: sensor hub trigger signal is the accelerometer/gyro data-ready; 1: sensor hub trigger signal external from INT2 pin)
PASS_THROUGH_ MODE	I ² C interface pass-through. Default value: 0 (0: pass-through disabled; 1: pass-through enabled, main I ² C line is short-circuited with the auxiliary line)
SHUB_PU_EN	Master I ² C pull-up enable. Default value: 0 (0: internal pull-up on auxiliary I ² C line disabled; 1: internal pull-up on auxiliary I ² C line enabled)
MASTER_ON	Sensor hub I ² C master enable. Default: 0 (0: master I ² C of sensor hub disabled; 1: master I ² C of sensor hub enabled)
AUX_SENS_ ON[1:0]	Number of external sensors to be read by the sensor hub. (00: one sensor (default); 01: two sensors; 10: three sensors; 11: four sensors)

15.20 SLV0_ADD (15h)

 I^2C slave address of the first external sensor (Sensor 1) register (r/w).

Table 373. SLV0_ADD register

slave0_	nu 0						
add6	add5	add4	add3	add2	add1	add0	rw_0

Table 374. SLV_ADD register description

slave0_add[6:0]	I ² C slave address of Sensor1 that can be read by the sensor hub. Default value: 0000000
rw_0	Read/write operation on Sensor 1. Default value: 0 (0: write operation; 1: read operation)

15.21 SLV0_SUBADD (16h)

Address of register on the first external sensor (Sensor 1) register (r/w).

Table 375. SLV0_SUBADD register

| slave0_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 376. SLV0_SUBADD register description

slave0_reg[7:0]	Address of register on Sensor1 that has to be read/written according to the rw_0 bit value in <i>SLV0_ADD</i> (15h). Default value: 00000000
-----------------	--

15.22 **SLAVEO_CONFIG** (17h)

First external sensor (Sensor1) configuration and sensor hub settings register (r/w).

Table 377. SLAVE0_CONFIG register

	SHUB_ ODR_1	SHUB_ ODR_0	0 ⁽¹⁾	0 ⁽¹⁾	BATCH_ EXT_SENS_ 0_EN	Slave0_ numop2	Slave0_ numop1	Slave0_ numop0	
--	----------------	----------------	------------------	------------------	-----------------------------	-------------------	-------------------	-------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 378. SLAVE0_CONFIG register description

	Rate at which the master communicates. Default value: 00 (00: 104 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 104 Hz);
SHUB_ODR_[1:0]	01: 52 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 52 Hz); 10: 26 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 26 Hz); 11: 12.5 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 12.5 Hz)
BATCH_EXT_SENS_0_EN	Enable FIFO batching data of first slave. Default value: 0
Slave0_numop[2:0]	Number of read operations on Sensor 1. Default value: 000

15.23 SLV1_ADD (18h)

I²C slave address of the second external sensor (Sensor 2) register (r/w).

Table 379. SLV1_ADD register

Slave1_	r 1						
add6	add5	add4	add3	add2	add1	add0	'-'

Table 380. SLV1 ADD register description

	I ² C slave address of Sensor 2 that can be read by the sensor hub.	
	Slave I_add[0.0]	Default value: 0000000
	r_1	Read operation on Sensor 2 enable. Default value: 0
		(0: read operation disabled; 1: read operation enabled)

15.24 SLV1_SUBADD (19h)

Address of register on the second external sensor (Sensor 2) register (r/w).

Table 381. SLV1_SUBADD register

| Slave1_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 382. SLV1_SUBADD register description

Slave1_reg[7:0]	Address of register on Sensor 2 that has to be read/written according to the r_1 bit value in <i>SLV1_ADD</i> (18h).
-----------------	--

15.25 SLAVE1_CONFIG (1Ah)

Second external sensor (Sensor 2) configuration register (r/w).

Table 383. SLAVE1_CONFIG register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	BATCH_EXT _SENS_1 _EN	Slave1_ numop2	Slave1_ numop1	Slave1_ numop0	
------------------	------------------	------------------	------------------	-----------------------------	-------------------	-------------------	-------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 384. SLAVE1_CONFIG register description

BATCH_EXT_SENS_1_EN	Enable FIFO batching data of second slave. Default value: 0
Slave1_numop[2:0]	Number of read operations on Sensor 2. Default value: 000

15.26 SLV2_ADD (1Bh)

I²C slave address of the third external sensor (Sensor 3) register (r/w).

Table 385. SLV2_ADD register

Slave2_	r 2							
add6	add5	add4	add3	add2	add1	add0	'_4	

Table 386. SLV2_ADD register description

Slave2_add[6:0]	I ² C slave address of Sensor 3 that can be read by the sensor hub.
1r 2	Read operation on Sensor 3 enable. Default value: 0 (0: read operation disabled; 1: read operation enabled)

15.27 SLV2_SUBADD (1Ch)

Address of register on the third external sensor (Sensor 3) register (r/w).

Table 387. SLV2_SUBADD register

| Slave2_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 388. SLV2_SUBADD register description

Slave2 reg[7:0]	Address of register on Sensor 3 that has to be read/written according to the r_2
Slavez_leg[1.0]	bit value in SLV2_ADD (18h).

15.28 SLAVE2_CONFIG (1Dh)

Third external sensor (Sensor 3) configuration register (r/w).

Table 389. SLAVE2_CONFIG register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	BATCH_ EXT_SENS_ 2_EN	Slave2_ numop2	Slave2_ numop1	Slave2_ numop0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 390. SLAVE2_CONFIG register description

BATCH_EXT_SENS_2_EN	Enable FIFO batching data of third slave. Default value: 0	
Slave2_numop[2:0]	Number of read operations on Sensor 3. Default value: 000	

15.29 SLV3_ADD (1Eh)

I²C slave address of the fourth external sensor (Sensor 4) register (r/w).

Table 391. SLV3_ADD register

Slave3_	- 0						
add6	add5	add4	add3	add2	add1	add0	1_3

Table 392. SLV3_ADD register description

Slave3_add[6:0]	I ² C slave address of Sensor 4 that can be read by the sensor hub.				
r_3	Read operation on Sensor 4 enable. Default value: 0 (0: read operation disabled; 1: read operation enabled)				

15.30 SLV3_SUBADD (1Fh)

Address of register on the fourth external sensor (Sensor 4) register (r/w).

Table 393. SLV3_SUBADD register

Slave3_								
reg7	reg6	reg5	reg4	reg3	reg2	reg1	reg0	

Table 394. SLV3_SUBADD register description

Slave3 reg[7:0]	Address of register on Sensor 4 that has to be read according to the r_3 bit value in <i>SLV3_ADD</i> (1Eh).]
	in SLV3_ADD (1En).	

15.31 SLAVE3_CONFIG (20h)

Fourth external sensor (Sensor 4) configuration register (r/w).

Table 395. SLAVE3_CONFIG register

-								
	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	BATCH_ EXT_SENS _3_EN	Slave3_ numop2	Slave3_ numop1	Slave3_ numop0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 396. SLAVE3_CONFIG register description

BATCH_EXT_SENS_3_EN	Enable FIFO batching data of fourth slave. Default value: 0
Slave3_numop[2:0]	Number of read operations on Sensor 4. Default value: 000

57

15.32 DATAWRITE_SLV0 (21h)

Data to be written into the slave device register (r/w).

Table 397. DATAWRITE_SLV0 register

| Slave0_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| dataw7 | dataw6 | dataw5 | dataw4 | dataw3 | dataw2 | dataw1 | dataw0 |

Table 398. DATAWRITE_SLV0 register description

	Data to be written into the slave 0 device according to the rw_0 bit in register
Slave0_dataw[7:0]	SLV0_ADD (15h).
	Default value: 00000000

15.33 STATUS_MASTER (22h)

Sensor hub source register (r).

Table 399. STATUS_MASTER register

Table 400. STATUS_MASTER register description

WR_ONCE_DONE	When the bit WRITE_ONCE in MASTER_CONFIG (14h) is configured as 1, this bit is set to 1 when the write operation on slave 0 has been performed and completed. Default value: 0
SLAVE3_NACK	This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK	This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK	This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK	This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
SENS_HUB_ENDOP	Sensor hub communication status. Default value: 0 (0: sensor hub communication not concluded; 1: sensor hub communication concluded)

16 Soldering information

The LGA package is compliant with the ECOPACK, RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020.

Land pattern and soldering recommendations are available at www.st.com/mems.

Package information LSM6DSR

17 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

17.1 LGA-14L package information

Figure 26. LGA-14L 2.5x3x0.86 mm package outline and mechanical data

17.2 **LGA-14** packing information

E1 1.75<u>±</u>0.10 P2 2.00 ±0.05(I) Po 4.00±0.10(II) Ø 1.50 0.00 0.30±0.05 D1 Ø1.50 MIN R0.20 TYP SECTION Y-Y SECTION X-X Measured from centreline of sprocket hat to cantreline of pocket. Cumulative tolerance of 10 sprocket holes is ± 0.20. Measured from centreline of sprocket hole to centreline of pocket. Other material available.

Figure 27. Carrier tape information for LGA-14 package

(II)

ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Во

3.30

1.00

5.50 8,00 +/- 0.05

+/- 0.10 +/- 0.05 +/- 0.10

+/- 0.30

Forming format : Press form - 17-B

Required length: 170 meter / 22B3 reel

Package information LSM6DSR

Figure 29. Reel information for carrier tape of LGA-14 package

Table 401. Reel dimensions for carrier tape of LGA-14 package

Reel dimensions (mm)		
A (max)	330	
B (min)	1.5	
С	13 ±0.25	
D (min)	20.2	
N (min)	60	
G	12.4 +2/-0	
T (max)	18.4	

LSM6DSR Revision history

18 Revision history

Table 402. Document revision history

Date	Revision	Changes
25-Mar-2019	1	Initial release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

