Facultatea de Automatica si Calculatoare, Universitatea Politehnica din Bucuresti

Examen Partial MN

Student:	Grupa:

Descriere curs:	MN, An I, Semestrul II	I	Rezultate Examen	
Titlu curs:	Metode Numerice	Sub	Subject Punctaj	
Profesor:	Conf.dr.ing. Florin POP	1		/2
Durata examenului:	90 minute	2		/3
Tip Examen: Materiale Aditionale:	Closed Book Nu! Fara telefoane mobile!!!	3		/2
Numar pagini:		4		/3
Trumai pagiii.		$- \mid \sum$		/10

Subjecte (Seria CB)

Fie matricea
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
.

2 puncte

1. Folosind metoda Cholesky determinați factorizarea $A = LL^T$ [0.50p]. Adaptați metoda Cholesky pentru o matrice simetrică tridiagonală și descrieți noua metodă [0.75p]. Scrieți o funcție MATLAB care implementează această metodă [0.75p].

Bonus: Demonstrați că matricea A este pozitiv definită [0.50p].

3 puncte

2. Descrieți algoritmul Gram-Schmidt folosit pentru factorizarea ortogonală a unei matrice oarecare. Determinați factorizarea ortogonală pentru matricea A, folosind acest algoritm [3.00p].

Bonus: Arătați că norma Frobenius este invariantă la o transformare ortogonală [0.50p].

2 puncte

3. Fie $A(\alpha) = A + \alpha I_3$. În ce condiții metoda Jacobi folosită pentru rezolvarea sistemului $A(\alpha)x = b$, unde $b = [1 \ 4 \ 1]$, este convergentă? [1.00p]. Folosind 3 iterații din metoda Jacobi, pentru cel mai mic număr α natural, calculați aproximația soluției sistemului menționat. Alegeți aproximația inițială $\mathbf{x0} = [1 \ 1 \ 1]$, [1.00p].

Bonus: Să se arate că metoda iterativă Jacobi converge pentru orice matrice 2×2 simetrică și pozitiv definită [0.50p].

3 puncte

4. Calculați $\lambda(A)$ și $\rho(A)$ folosind polinomul caracteristic [0.50p]. Aplicați numeric primii trei pași din MPD cu y0 = [1 1 1]', evaluând valoarea lui λ_1 cu 4 zecimale exacte. Care este eroarea absolută dacă oprim MPD după trei pași? [1.50p]. Scrieți o funcție MATLAB care implementează MPD [1.00p].

Bonus: Calculați valorile și vectorii proprii pentru o matrice de rotație și pentru un reflector elementar [0.50p].