Lección 17: Mallas regulares y kd-trees

- Motivación
- EEDD multidimensionales y aplicaciones
- Mallas regulares
 - Operaciones con mallas
 - Implementación
- kd-tree
 - Algoritmo de búsqueda
 - Algoritmo de construcción
 - Eficiencia
- Consideraciones finales

Motivación

GPService se ha implantado en Jaén para ofrecer a sus usuarios un sistema para encontrar en cada momento desde el móvil los establecimientos más cercanos, por ejemplo

farmacias

Desea acelerar la búsqueda si tiene que atender *n* peticiones solicitando el servicio para *m* comercios posibles porque los usuarios no permanecen en una posición fija

Motivación

Ha pensado en utilizar un mapa por una de las coordenadas, por ejemplo la X

El problema es que el usuario que está en la posición A está muy lejos de la farmacia B aunque tienen valores similares de coordenada X

EEDD multidimensionales

- Muchas de las entidades existentes son de naturaleza bidimensional o tridimensional
- Hasta el momento las entidades manejadas usaban relaciones de orden en base a una magnitud
 - Por ejemplo: los alumnos se ordenan por DNI
- Sin embargo en muchos campos científicos, existen datos bidimensionales:
 - Las coordenadas de las posiciones de las farmacias
 - Las medidas de un dispositivo con sensor de temperatura y presión

EEDD multidimensionales

- Las EEDD multidimensionales/espaciales permiten organizar los datos por más de un atributo al mismo tiempo
- Esos atributos se interpretan como coordenadas en el plano o el espacio
- Estas EEDD dividen el espacio en regiones disjuntas
- Un dato representado por un punto (p. e. la posición de la farmacia en el mapa) sólo pertenece a una región
- Según el caso, unas regiones pueden dividirse en otras más pequeñas
- El proceso de búsqueda es eficiente porque en cada etapa se descarta parte del plano o espacio que queda por procesar

- Se utilizan en muchas disciplinas relacionadas con las ingenierías, por ejemplo la Informática Gráfica
- Encontrar el/los puntos más cercanos a uno dado
 - Encontrar las farmacias más cercanas a un usuario con móvil y GPS
- Conocer si un punto pertenece o no a una región
 - El punto representa por ejemplo un valor estadístico y la región un conjunto de valores posibles
- Dada una zona o región del plano obtener los puntos que contiene
 - Telescopios virtuales: dado un recuadro del firmamento, ¿cuales son las estrellas que contiene?

Mallas regulares

- 333
- En 2D, el plano se divide en regiones rectangulares todas del mismo tamaño, permitiendo acceso tipo array. Concepto extensible a 3D
- Cada una de estas regiones queda representada mediante una celda de una matriz 2D
- Cada celda mantiene una lista de puntos (punteros a puntos) que contiene el área que representa

Operaciones con mallas

- Crear malla: definir el tamaño del vector
 - Un tamaño muy grande de casilla ubica muchos puntos y haría la búsqueda poco eficiente
 - Un tamaño muy pequeño subdivide mucho el plano (espacio), generando muchas casillas que pueden estar vacías

• **Búsqueda**: localizar un punto $p=(p_x,p_y)$ en una casilla (bay relación matemática)

casilla (hay relación matemática)

- Determinar la fila usando p_y
- Determinar la columna con p_x
- Búsqueda lineal en la casilla

Lección 17: Mallas regulares y Kd-trees

- Insertar: un punto $p = (p_x, p_y)$
 - Localizar la casilla como se hizo en la búsqueda
 - Añadir el nuevo dato a la lista de puntos de dicha casilla
- Borrar: un punto $p = (p_x, p_y)$
 - Localizar la casilla como se hizo en la búsqueda
 - · Localizar el dato mediante búsqueda lineal y eliminarlo

Operaciones con mallas

- Más cercano: de un punto $p=(p_x, p_y)$
 - Localizar la casilla, el punto más cercano puede estar en la misma casilla o en alguna anexa
 - Localizar el más cercano de la casilla donde está p
 - Localizar el más cercano de los 8 vecinos
 - Quedarse con el menor
 - Cuidado: si no hay ningún otro punto en la casilla, extender la búsqueda al siguiente conjunto de vecinos

Operaciones con mallas

 Consiste en obtener todos los valores comprendidos en ese rango

Buscar las casillas correspondientes a (x1,y1) y a

(x2,y2)

 Visitar las casillas comprendidas en ese rango y devolver los puntos que contienen con coordenada (x,y) si x1<x<x2 y y1<y<y2

Lección 17: Mallas regulares y Kd-trees

Implementación de mallas regulares: casilla

```
template <class U>
class Casilla{
    list<U> puntos;
    public:
        friend class MallaRegular<U>;
        Casilla(): puntos(){}
        void inserta (U &dato) { puntos.push_back(dato); }
        bool busca (U &dato);
        bool borra (U &dato);
};
```

```
template <class U>
bool Casilla<U>::busca(U& dato){
   typename list<U>::iterator it;
   it = puntos.begin();
   while (it != puntos.end()){
       if (*it == dato)
            return true;
   }
   return false;
}
```

```
template <class U>
bool Casilla<U>::borra(U& dato){
    typename list<U>::iterator it;
    it = puntos.begin();
    while (it != puntos.end()){
        if (*it == dato)
            puntos.erase(it);
        return true;
    }
    return false;
}
```

búsquedas secuenciales

es y Kd-trees

Implementación: M.R.

Se introduce el tamaño de la superficie $[x_{min}, y_{min}]$ $[x_{max}, y_{max}]$ y el número de divisiones *n*

```
tetemplate <class T>
class MallaRegular {
   float xMin, yMin, xMax, yMax; //tamaño real global
   float tamaCasillax, tamaCasillaY; //tamaño real de cada casilla

   vector<vector<Casilla<T> >> mr; //vector 2D de casillas

   Casilla<T> *obtenerCasilla(float x, float y);

public:
   MallaRegular(int aXMin, int aYMin, int aXMax, int aYMax, int aNDiv);
   void insertarDato(float x, float y, T &dato);
   Casilla<T> *buscarDato(float x, float y, T& dato);
   Casilla<T> *borrarDato(float x, float y, T& dato);
};
```


Implementación: M.R.

```
template <class T>
MallaRegular<T>::MallaRegular(int aXMin, int aYMin, int aXMax, int
aYMax, int aNDiv): xMin(aXMin), yMin(aYMin), xMax(aXMax), yMax(aYMax){
    tamaCasillaX = (xMax-xMin)/aNDiv;
    tamaCasillaY = (yMax-yMin)/aNDiv;
template <class T>
Casilla<T> *MallaRegular<T>::obtenerCasilla (float x, float y){
    int i = (x - xMin) / tamaCasillaX;
    int j = (y - yMin) / tamaCasillaY;
    return &mr[i][j];
template <class T>
void MallaRegular<T>::insertarDato(float x, float y, T& dato){
    Casilla<T> *c = obtenerCasilla(x,y);
    c->inserta(dato);
template <class T>
Casilla<T> *MallaRegular<T>::borrarDato(float x, float y, T& dato){
    Casilla<T> *c = obtenerCasilla(x,y);
    if (c->borra(dato))
        return c:
                                                la búsqueda hace lo mismo,
    return 0;
                                                pero llamando a Casilla::busca()
```

Decerois 17. initiation regulated y 11a trees

- Es extensible a 3D o k-dimensiones de forma sencilla
- Las mallas regulares pueden ser muy eficientes, con tiempo cercano al O(1)
- Pero esto sólo ocurre cuando los datos se distribuyen uniformemente por la malla
- El problema se presenta cuando los datos no se reparten de modo homogéneo:
 - Unas celdas tienen muchos datos sobre los que se realizan búsquedas secuenciales
 - Otras muchas celdas quedan vacías, malgastándose espacio en memoria
- Este problema se mejora con EEDD adaptativas

Kd-tree

- Un Kd-tree es un árbol binario que representa un espacio de k dimensiones
- Trabajaremos en el plano con 2d-trees

 Cada nodo no hoja del árbol representa un eje ortogonal que parte la región del plano representada en 2 sectores

En el ejemplo, l1, l2, l3...

 Estos sectores no tienen por qué ser del mismo <u>14</u> tamaño

 Los nodos hoja representan las regiones divididas un solo dato p2 p4 p5 p7 p8 p9 l6 p1 l7 l3 p3 l7 p6

Lección 17: Mallas regulares y Kd-trees

Kd-tree

Existen dos tipos de nodos interiores (no hoja):

- Nodos x-discriminador en niveles impares
 - Representados por ejes verticales que dividen el plano en izquierda y derecha
 - El subárbol izquierdo del nodo tienen los puntos con menor o igual X
 - En el derecho los de mayor X
- Nodos y-discriminador en niveles pares
 - Dividen arriba y abajo
 - En el subárbol izquierdo los datos con X igual o menor
 - En el derecho los de mayor X Lección 17: Malfas regulares y Kd-trees

Kd-tree

p2

- Los ejes están asociados a un punto
- Este punto se escoge como el punto más central posible para equilibrar el árbol

- El nodo raíz l1, divide el plano en dos mitades de tamaño similar
- A la izquierda de l1 están los puntos con X <= I1
- A la derecha los puntos que cumplen I1 < X

Kd-tree: búsqueda

- Buscar punto p=(px,py)
 - si el nodo es interno de nivel impar y dato q=(qx,qy); si (px<=qx) ir al hijo izquierdo, sino al derecho</p>
 - si el nodo es interno de nivel par y dato q=(qx,qy); si (py<=qy) ir al hijo izquierdo, sino al derecho</p>

Paro al llegar a una hoja

Kd-tree: búsqueda

Buscar en un rango [x1,y1][x2,y2]

```
Algoritmo BuscarKdTree(v,R,O)
Entrada:
   el kd-tree v, el rango R=[x1,y1][x2,y2]
Salida: Q, los puntos dentro de R
INICIO
SI v es nodo hoja conteniendo a q=(qx,qy)
           SI q está dentro de R
ENTONCES
           ENTONCES O+=q
SINO
   SI Izq(v) está todo contenido en R
   ENTONCES ObtenerSubárbol(Izq(v))
   SINO
       SI region(Izq(v)) intersecta con R
       ENTONCES BuscarKdTree(Izq(v),R,Q)
   SI Der(v) está todo contenido en R
   ENTONCES ObtenerSubárbol(Der(v))
    SINO
       SI region(Der(v)) intersecta R
       ENTONCES BuscarKdTree(Der(v),R,Q)
FIN
```


Kd-tree: construcción

```
333
```

```
Algoritmo ConstruirKdTree(P, nivel)
Entrada: P de tamaño n
Salida: El árbol v resultado (su raíz)
TNTCTO
SI Tamaño(P) > 1
ENTONCES
    SI nivel es impar
   ENTONCES encontrar l y partir P en Pl
    (con puntos con menor o igual abscisa
   que 1) y en P2 (con mayor abscisa)
    SINO encontrar l y partir P en P1
    (con puntos con menor o iqual ordenada
   que 1) y en P2 (con mayor ordenada)
   v izda <- ConstruirKdTree(P1, nivel+1)</pre>
   v dech <-ConstruirKdTree(P2, nivel+1)</pre>
   Crear v con hijos v_izda y v_dech
   Devolver (v)
SINO Devolver (v <-P)
FTN
```


- Construcción del árbol: O(nlogn)
 - Coste de encontrar la línea divisoria: O(n) (aunque puede mejorarse utilizando cierto preprocesamiento)
 - La función de complejidad es:

$$T(n) = \begin{cases} O(1) \sin n < =1 \\ 2T(n/2) + \cos \sin n > 2 \end{cases} \quad O(n \log n)$$

- Búsqueda de un rango:
 - ° O(n^{1/2}+k) para k datos en el rectángulo

- Las estructuras de datos multidimensionales o espaciales permiten trabajar eficientemente con dos atributos de un dato al mismo tiempo
- Los ejemplos del tema son 2D, pero tanto las mallas regulares como los 2d-tree son extensibles a tres o más dimensiones
- El problema de las mallas regulares es que no son adaptativas
- Los kd-tree sí son adaptativos pero tienen el inconveniente de que la búsqueda no es logarítmica
 - Se visitan muchos nodos fuera del rectángulo R

- Las estructuras de datos multidimensionales o espaciales permiten trabajar eficientemente con dos atributos de un dato al mismo tiempo
- Los ejemplos del tema son 2D, pero tanto las mallas regulares como los 2d-tree son extensibles a tres o más dimensiones
- El problema de las mallas regulares es que no son adaptativas
- Los kd-tree sí son adaptativos pero tienen el inconveniente de que la búsqueda no es logarítmica
 - Se visitan muchos nodos fuera del rectángulo R