Math 591 Lecture 29

Professor Alejandro Uribe-Ahumada

Transcribed by Thomas Cohn

11/9/20

Motivation: Integration

How do we integrate on a manifold? Start with calc 3. Let $U \subseteq \mathbb{R}^n$ be an open set. Then we can change variables with

$$\int_{U} f(x) dx = \int_{V} f(x(y)) \underbrace{\det\left(\frac{\partial x}{\partial y}\right)}_{\text{if positive}} dy$$

for x = x(y).

Now, for the general interpretation: let $F: V \to U$ be a diffeomorphism. Then $\left(\frac{\partial x}{\partial y}\right)$ is the Jacobian of F. We'll $y \mapsto x = x(y)$

interpret this as the pullback of the RHS integral by $F - F^*(dx^1, \ldots, dx^n) = ?$. But what does det mean in general? It's an alternating, multilinear function, so let's work with that.

Defn: Let V be a n-dimensional vector space, and $k \in \mathbb{N}$. A $\underline{k$ -covector or \underline{k} -form on V is a multilinear map $\alpha : \underbrace{V \times \cdots \times V}_{k} \to \mathbb{N}$

 \mathbb{R} that is alternating (i.e. if you swap two elements, the sign flips).

Observe: Let $\sigma \in S_k$ (the symmetric group). Given v_1, \ldots, v_k , α alternating, we have

$$\alpha(v_{\sigma(1)}, \dots, v_{\sigma(k)}) = \underbrace{(-1)^{\sigma}}_{=\operatorname{sgn}(\sigma)} \alpha(v_1, \dots, v_k)$$

Observe: If $\{v_1, \ldots, v_k\}$ is linearly dependent, and α is alternating, then $\alpha(v_1, \ldots, v_k) = 0$.

Proof: Say $v_1 = \lambda_2 v_2 + \cdots + \lambda_k v_k$. Then

$$\alpha(v_1, \dots, v_k) = \alpha\left(\sum_{i=2}^k \lambda_i v_i, v_2, \dots, v_k\right) = \sum_{i=2}^k \lambda_i \alpha(v_i, v_2, \dots, v_i, \dots, v_k) = 0$$

Defn: $\bigwedge^k V^*$ is the set of alternating \mathbb{R} -multilinear functions on V^k . We say that k is the degree.

Observe: k-forms can be pulled back by linear maps.

Defn: If $F: V \to W$ is linear, and $\alpha \in \bigwedge^k W^*, v_1, \dots, v_k \in V$, then

$$(F^*\alpha)(v_1,\ldots,v_k)=\alpha(F(v_1),\ldots,F(v_k))$$

and $F^*\alpha \in \bigwedge^k V^*$.

Defn: Let $(\mathcal{E}^1, \dots, \mathcal{E}^n)$ be an ordered basis of V^* . Let $A = \{a_1 < \dots < a_k\} \subset \{1, \dots, n\}$. Define $\mathcal{E}^A : V \times \dots \times V \to \mathbb{R}$ by $\mathcal{E}^A(v_1, \dots, v_k) = \det \left(\mathcal{E}^{a_i}(v_j)\right)_{(i,j)}$

Ex: Say $V = \mathbb{R}^3$ with the standard basis. Then $\mathcal{E}^{13}((x_1, x_2, x_3), (y_1, y_2, y_3)) = \det \begin{pmatrix} x_1 & y_1 \\ x_3 & y_3 \end{pmatrix}$.

Prop: For a given V and k, and an ordered basis $(\mathcal{E}^1, \dots, \mathcal{E}^n)$ of V^* , the set $\{\mathcal{E}^I : I \subset \{1, \dots, n\}, \#I = k\}$ is a basis of $\bigwedge^k V^*$. In particular, dim $\bigwedge^k V^* = \binom{n}{k}$.

1

Observe: If k > n, $\bigwedge^k V^* = \{0\}$. If k = n, dim $\bigwedge^k V^* = 1$. If k = 1, $\bigwedge^1 V^* = V^*$.

As a warmup, let k = 2; Let $\{e_1, \ldots, e_n\}$ be a basis of V, and $\{\mathcal{E}^1, \ldots, \mathcal{E}^n\}$ the corresonding dual basis of V^* . Note that $\mathcal{E}^{i}(e_{j}) = \delta_{ij}$. Say $\alpha \in \bigwedge^{2} V^{*}$, $v_{1} = \sum_{a=1}^{n} v_{1}^{a} e_{a}$, $v_{2} = \sum_{b=1}^{n} v_{2}^{b} e_{b}$. Then

$$\alpha(v_1, v_2) = \alpha \left(\sum_{a=1}^n v_1^a e_a, \sum_{b=1}^n v_2^b e_b \right)$$

$$= \sum_{a=1}^n v_1^a \alpha \left(e_a, \sum_{b=1}^n v_2^b e_b \right)$$

$$= \sum_{a=1}^n \sum_{b=1}^n v_1^a v_2^b \alpha(e_a, e_b)$$

$$= \sum_{1 \le a < b \le n} v_1^a v_2^b \alpha(e_a, e_b) + v_1^b v_2^a \alpha(e_b, e_a)$$

$$= \sum_{1 \le a < b \le n} \underbrace{(v_1^a v_2^b - v_1^b v_2^a)}_{= \left| v_1^a \quad v_2^b \right|} \alpha(e_a, e_b)$$

$$= \left| v_1^a \quad v_2^a \right|_{= \left| v_1^a \quad v_2^b \right|} = \mathcal{E}^{ab}(v_1, v_2)$$

$$= \sum_{I = \{a < b\}} \alpha(e_a, e_b) \mathcal{E}^I(v_1, v_2)$$

In general, $\alpha = \sum_{1 \le a \le b \le n} \alpha(e_a, e_b) \mathcal{E}^{ab}$.

Now, for general $k \in \mathbb{N}$, fix $\alpha \in \bigwedge^k V^*$. For i = 1, ..., k, let $v_i = \sum_{a=1}^n v_i^a e_a$. Then

$$\alpha(v_1, \dots, v_k) = \alpha \left(\sum_{a_1=1}^n v_1^{a_1} e_{a_1}, \dots, \sum_{a_k}^n v_k^{a_k} e_{a_k} \right)$$

$$= \sum_{a_1, \dots, a_k=1}^n \left(\prod_{j=1}^k v_j^{a_j} \right) \alpha(e_{a_1}, \dots, e_{a_k})$$

$$= \sum_{1 \le a_1 < \dots < a_k \le n} \left(\sum_{\sigma \in S_k} \left(\prod_{j=1}^k v_j^{\sigma(a_i)} \right) (-1)^{\sigma} \right) \alpha(e_{a_1}, \dots, e_{a_k})$$

$$= \det \left(v_j^{a_i} \right)_{(i,j)} = \mathcal{E}^A(v_1, \dots, v_k), A = \{a_1, \dots, a_k\}$$

$$= \sum_{A = \{a_1 < \dots < a_k\}} \alpha(e_{a_1}, \dots, e_{a_k}) \mathcal{E}^A(v_1, \dots, v_k)$$

So in general, $\alpha = \sum_{A=\{a_1,\dots,a_k\}} \alpha(e_{a_1},\dots,e_{a_k}) \mathcal{E}^A$.

The Wedge Product

We want to take a k-form and an ℓ -form and make a $k + \ell$ -form.

Defn: For $\alpha \in \bigwedge^k V^*$, $\beta \in \bigwedge^\ell V^*$, define the <u>wedge product</u> of α and β , $\alpha \wedge \beta \in \bigwedge^{k+\ell} V^*$, by

$$(\alpha \wedge \beta)(v_1, \dots, v_{k+\ell}) \stackrel{\text{def}}{=} \frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} (-1)^{\sigma} \alpha(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \beta(v_{\sigma(k+1)}, \dots, v_{\sigma(k+\ell)})$$
$$= \sum_{\sigma \in \text{Sh}(k,\ell)} (-1)^{\sigma} \alpha(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \beta(v_{\sigma(k+1)}, \dots, v_{\sigma(k+\ell)})$$

Defn: Sh (k,ℓ) is the set of $k-\ell$ shuffles, which are permutations $\sigma \in S(k+\ell)$ such that $\sigma(1) < \cdots < \sigma(k)$ and $\sigma_{k+1} < \cdots < \sigma_{k+\ell}$.

The Skew-Symmetrizer

Given $\alpha \in \bigwedge^k V^*$ and $\beta \in \bigwedge^\ell V^*$, we can define

$$(\alpha \otimes \beta)(v_1, \dots, v_{k+\ell}) = \alpha(v_1, \dots, v_k)\beta(v_{k+1}, \dots, v_{k+\ell})$$

As a map, $\alpha \otimes \beta : V^{k+\ell} \to \mathbb{R}$ is $k + \ell$ -multilinear, but not alternating/skew-symmetric.

Defn: The skew-symmetrizer of a multilinear map $f: V^m \to \mathbb{R}$ is defined by

$$A(f)(v_1,\ldots,v_m) = \frac{1}{m!} \sum_{\sigma \in S_m} (-1)^{\sigma} f(v_{\sigma(1)},\ldots,v_{\sigma(m)})$$

Lemma: A(f) is skew-symmetric/alternating, and if f is already skew-symmetric, A(f) = f.

Proof: Let $\tau \in S_m$. Then

$$A(f)(v_{\tau(1)}, \dots, v_{\tau(m)}) = \frac{1}{m!} \sum_{\sigma \in S_m} (-1)^{\sigma} f(v_{\sigma(\tau(1))}, \dots, v_{\sigma(\tau(m))})$$

$$\stackrel{(1)}{=} \frac{1}{m!} \sum_{\mu \in S_m} \underbrace{(-1)^{\mu \tau}}_{=(-1)^{\tau}(-1)^{\mu}} f(v_{\mu(1)}, \dots, v_{\mu(m)})$$

$$= (-1)^{\tau} A(f)$$

with (1) true because if $\mu = \sigma \tau$, then $\sigma = \mu \tau^{-1}$. \square

Thus, we have $\alpha \wedge \beta = \frac{(k+\ell)!}{k!\ell!} A(\alpha \otimes \beta)$.

Ex: $k = \ell = 1$. Then $Sh(1, 1) = S_2$, so

$$(\alpha \wedge \beta)(v_1, v_2) = \alpha(v_1)\beta(v_2) - \alpha(v_2)\beta(v_1).$$

Ex: $k=1, \ell=2$. Then the elements of S_3 are

$\sigma(1)$	$\sigma(2)$	$\sigma(3)$	$\in Sh(1,2)$?	sgn
1	2	3	Yes	+
1	3	2	No	
2	1	3	Yes	_
2	3	1	No	
3	1	2	Yes	+
3	2	1	No	

so
$$Sh(1,2) = \{(123), (213), (312)\},$$
 so

$$(\alpha \wedge \beta)(v_1, v_2, v_3) = \alpha(v_1)\beta(v_2, v_3) - \alpha(v_2)\beta(v_1, v_3) + \alpha(v_3)\beta(v_1, v_2)$$

If $\beta = \gamma \wedge \delta$, then we get

$$(\alpha \wedge (\gamma \wedge \delta))(v_1, v_2, v_3) = \alpha(v_1)(\gamma(v_2)\delta(v_3) - \gamma(v_3)\delta(v_2)) \\ - \alpha(v_2)(\gamma(v_1)\delta(v_3) - \gamma(v_3)\delta(v_1)) \\ + \alpha(v_3)(\gamma(v_1)\delta(v_2) - \gamma(v_2)\delta(v_1)) \\ = \begin{vmatrix} \alpha(v_1) & \alpha(v_2) & \alpha(v_3) \\ \gamma(v_1) & \gamma(v_2) & \gamma(v_3) \\ \delta(v_1) & \delta(v_2) & \delta(v_3) \end{vmatrix}$$

Lemma: $\mathcal{E}^I \wedge \mathcal{E}^J = \mathcal{E}^{IJ}$.

Lemma: $\mathcal{E}^I = \mathcal{E}^{I_1} \wedge \cdots \wedge \mathcal{E}^{I_k}$ (\wedge is associative).

Prop: The wedge product is

- Bilinear

- Anti-commutative: $\beta \wedge \alpha = (-1)^{k\ell} \alpha \wedge \beta$, for $\alpha \in \bigwedge^k$, $\beta \in \bigwedge^\ell$ If $F: V \to W$, $\alpha \in \bigwedge^k W^*$, $\beta \in \bigwedge^\ell W^*$, then $F^*(\alpha \wedge \beta) = (F^\alpha) \wedge (F^*\beta)$