

Corrègé Happa de la séné d'exos nº 4

Exon: $C_1 = 0^{2} \stackrel{\text{cte}}{=} P$ C_1 est $F_0 : \{0,52\}$ -mesurable Raisonnons par recurrence que C_n est F_{n-1} -mesurable Lipposons, alors que C_n est F_{n-1} -mesurable pour un certair $n = 1, 2, \ldots$ V où:

 $\begin{cases} C_n = 0, X_n < \partial_t U \rbrace C_n = 1, X_n \leq b \rbrace \in \mathcal{F}_n \\ \mathcal{F}_{n-1} - mes \end{cases} \xrightarrow{\mathcal{F}_{n-1} - mes} \mathcal{F}_{n-1} - mes \end{cases} \xrightarrow{\mathcal{F}_{n-1} - mes} \mathcal{F}_n$

et par cea signifie que : $C_{n+2} = \iint_{C_n=0, X_n < a} U_{C_n=1, X_n < b},$

est Fn- mesurable.

Conclusion: (Cn) est une stratégie de jeu.

1

$E \times 02$:
Pour une surmantingale positive:
sup E(Xn) = sup EXn < EX = E(X) < 00
Cen; (EXy)).
Done par le the de la cuse de part de Dros Versone luite
Donc par le the de la cuse de part de Dros entraîne que Xn cuse ps vers une luite in légroble.
in légrable.
EXAMPLE IXNI < E XnI
Exo3: On 2: They lit de Jusen.
of more do nort.
et d'après le Thi de la créger des mont. de Dorb. Xn - x XEL p.S.
et Daports linégalité maximale de Dud de L':
et Dapris linegalité maximale de this des Z. E ([sup Xm]]) \leq \begin{pmatrix} P -1 \\ P-1 \end{pmaximale} \leq \begin{pmatrix} P \\ P-1 \end{pmaximale} \req \leq \end{pmaximale}.
LOSMEN JOB
ln 7
E/m/P < 00 et m/ sup/Xn)
E/m/ < 00 et m/ Sup/Xn) => lim E/m/= E(lim/m)= E(sup/Xn) i.e. Sup/Xn/ = LP Scanned with CamScanner
Scanned with CamScanner

Nils, Bengland.

6.3. CONVERGENCE DANS L^P , P > 1

43

<u>Exo3</u>

Théorème 6.3.1 (Convergence d'une martingale dans L^p). Soit X_n une martingale telle que $\sup_n \mathbb{E}(|X_n|^p) < \infty$ pour un p > 1. Alors X_n converge vers une variable aléatoire X presque sûrement et dans L^p .

DÉMONSTRATION. On a $(\mathbb{E}(X_n^+))^p \leq (\mathbb{E}(|X_n|))^p \leq \mathbb{E}(|X_n|^p)$. Donc par le Théorème 6.2.2, X_n converge presque sûrement vers une variable X. Par le corollaire (5.2.7), (5.2.7), (5.2.7)

$$\mathbb{E}\left(\left[\sup_{0 \le m \le n} |X_m|\right]^p\right) \le \left(\frac{p}{p-1}\right)^p \mathbb{E}\left(|X_n|^p\right). \tag{6.3.1}$$

Faisant tendre n vers l'infini, le théorème de la convergence monotone montre que $\sup_n |X_n|$ est dans L^p . Comme $|X_n - X|^p \leq (2 \sup_n |X_n|)^p$, le théorème de la convergence dominée montre que $\mathbb{E}(|X_n - X|^p) \to 0$.

Dans la suite, nous considérons plus particulièrement le cas p=2. Rappelons que si une martingale X_n est dans L^2 , on peut définir son processus croissant

$$\langle X \rangle_n = \sum_{m=1}^n \mathbb{E}((X_m - X_{m-1})^2 | \mathcal{F}_{m-1}).$$
 (6.3.2)

La croissance implique que

$$\lim_{n \to \infty} \langle X \rangle_n =: \langle X \rangle_{\infty} \tag{6.3.3}$$

existe dans $\mathbb{R}_+ \cup \{\infty\}$. Cette quantité s'interprète comme la variance totale de la trajectoire $X_n(\omega)$.

Proposition 6.3.2. Soit X_n une martingale dans L^2 telle que $X_0 = 0$. Alors

Exercice Syplemetrice

$$\mathbb{E}\left(\sup_{n} X_{n}^{2}\right) \leqslant 4\mathbb{E}\left(\langle X \rangle_{\infty}\right). \tag{6.3.4}$$

DÉMONSTRATION. L'inégalité du maximum L^2 donne

$$\mathbb{E}\left(\sup_{0\leqslant m\leqslant n}X_m^2\right)\leqslant 4\mathbb{E}\left(X_n^2\right)=4\mathbb{E}(\langle X\rangle_n)\;,\tag{6.3.5}$$

puisque $\mathbb{E}(X_n^2) = \mathbb{E}(M_n) + \mathbb{E}(\langle X \rangle_n)$ et $\mathbb{E}(M_n) = \mathbb{E}(M_0) = \mathbb{E}(X_0^2) = 0$. Le résultat suit alors du théorème de convergence monotone.

Théorème 6.3.3. La limite $\lim_{n\to\infty} X_n(\omega)$ existe et est finie presque sûrement sur l'ensemble $\{\omega \colon \langle X \rangle_{\infty}(\omega) < \infty\}$.

DÉMONSTRATION. Soit a > 0. Comme $\langle X \rangle_{n+1} \subseteq \mathcal{F}_n$, $N = \inf\{n : \langle X \rangle_{n+1} > a^2\}$ est un temps d'arrêt. Comme $\langle X \rangle_{N \wedge n} < a^2$, la proposition ci-dessus appliquée à $X_{N \wedge n}$ donne

$$\mathbb{E}\left(\sup_{n}|X_{N\wedge n}|^{2}\right) \leqslant 4a^{2}. \tag{6.3.6}$$

Par conséquent, le théorème 6.3.1 avec p=2 implique que la limite de $X_{N \wedge n}$ existe et est finie presque sûrement. Le résultat suit alors du fait que a est arbitraire.

Exo3 (8/16):ef comme 1xn-x1 = [2 sup1 xn] P EL1 Zn → 0 P.S Dapres le The Crye dominéé: EZn-10 "CE E/X-X/8->0 Caid, Xu LP X.