Lesson 2.4.1: Domain and Range of Functions

- ▶ Domain: the set of all permissible values of x that give real values for v
- Range: the set of permissible values for y or f(x) that give the values of x real numbers
- Asymptote: a line that the graph of a function approaches but never intersects

Practice Exercises 2.4.1

A. Determine the domain and the range of each graph.

B. Find the domain of each function

1.
$$g(x) = 5x + 1$$

4.
$$g(x) = \sqrt{x-8}$$

2.
$$g(x) = \sqrt{x}$$

2.
$$g(x) = \sqrt{x}$$

3. $g(x) = \frac{x+4}{x-2}$

$$5. g(x) = \frac{3^x}{x+6}$$

Activity 2.4.1

A. Determine the domain and the range of each graph.

B. Find the domain of each function

1.
$$g(x) = x - 7$$

$$\sigma(x) = \sqrt{x+x}$$

2.
$$g(x) = \sqrt{x+1}$$

3.
$$g(x) = \frac{3x+4}{x-1}$$

4.
$$g(x) = \sqrt{2x-4}$$

$$\sigma(x) = \frac{x+4}{x+4}$$

Lesson 2.4.1: Domain and Range of Functions

- **Domain**: the set of all permissible values of x that give real
- Range: the set of permissible values for y or f(x) that give the values of x real numbers
- Asymptote: a line that the graph of a function approaches but never intersects

Practice Exercises 2.4.1

A. Determine the domain and the range of each graph.

B. Find the domain of each function.

1.
$$g(x) = 5x + 1$$

$$4. \ g(x) = \sqrt{x-8}$$

$$g(x) = \sqrt{x}$$

2.
$$g(x) = \sqrt{x}$$

3. $g(x) = \frac{x+4}{x-2}$

$$5. g(x) = \frac{3^x}{x+6}$$

Activity 2.4.1

A. Determine the domain and the range of each graph.

B. Find the domain of each function.

1.
$$g(x) = x - 7$$

2. $g(x) = \sqrt{x+1}$

4.
$$g(x) = \sqrt{2x-4}$$

3.
$$g(x) = \sqrt{x+4}$$

3. $g(x) = \frac{3x+4}{x-1}$

$$5. g(x) = \frac{x+4}{x-1}$$

Lesson 2.4.1: Domain and Range of Functions

- ▶ **Domain**: the set of all permissible values of x that give real values for v
- **Range**: the set of permissible values for y or f(x) that give the values of x real numbers
- Asymptote: a line that the graph of a function approaches but never intersects

Practice Exercises 2.4.1

A. Determine the domain and the range of each graph.

B. Find the domain of each function.

1.
$$g(x) = 5x + 1$$

1.
$$g(x) = 5x + 1$$

2. $g(x) = \sqrt{x}$
4. $g(x) = \sqrt{x - 8}$

3.
$$g(x) = \frac{x+4}{x+3}$$

Activity 2.4.1

A. Determine the domain and the range of each graph.

5. $g(x) = \frac{3^{x}}{x+6}$

B. Find the domain of each function

1.
$$g(x) = x - 7$$

2. $g(x) = \sqrt{x + 1}$

4.
$$g(x) = \sqrt{2x-4}$$

3.
$$g(x) = \frac{3x+4}{x-1}$$

5.
$$g(x) = \frac{x+2}{3x-1}$$

Lesson 2.4.1: Domain and Range of Functions

- **Domain**: the set of all permissible values of x that give real
- Range: the set of permissible values for y or f(x) that give the values of x real numbers
- Asymptote: a line that the graph of a function approaches but never intersects

Practice Exercises 2.4.1

A. Determine the domain and the range of each graph.

B. Find the domain of each function.

1.
$$g(x) = 5x + 1$$

4.
$$g(x) = \sqrt{x-8}$$

2.
$$g(x) = \sqrt{x}$$

2.
$$g(x) = \sqrt{x}$$

3. $g(x) = \frac{x+4}{x-2}$

$$5. g(x) = \frac{3^{X}}{x+6}$$

Activity 2.4.1

A. Determine the domain and the range of each graph.

B. Find the domain of each function.

1.
$$g(x) = x - 7$$

4.
$$g(x) = \sqrt{2x-4}$$

2.
$$g(x) = \sqrt{x+1}$$

5.
$$g(x) = \frac{x+4}{3x-5}$$