# TTIC 31230, Fundamentals of Deep Learning

David McAllester, Winter 2020

Stochastic Gradient Descent (SGD)

Continuous Time Noise

# Modeling the Noise

Can we analytically solve for stationary distributions?

Is the stationary distribution some kind of Gibbs Distribution?

It is possible to model both the stationary distribution and non-stationary stochastic dynamics with a continuous time stochastic differential equation.

Consider SGD with batch size 1.

$$\Phi_{i+1} = \Phi_i - \eta \hat{g}_i$$

To model noise we consider holding  $\eta > 0$  fixed.

As in gradient flow, taking "time" to be the sum of the learning rates over the updates. For N steps of SGD we define  $\Delta t = N\eta$  or equivalently

$$\Phi(t) = \Phi_{i(t)}$$

$$i(t) = \lfloor t/\eta \rfloor$$

We consider  $\Delta t$  large compared to  $\eta$  so that  $\Delta t$  corresponds to many SGD updates.

We consider  $\Delta t$  small enough so that the gradient distribution does not change during the many-update interval  $\Delta t$ .

If the mean gradient  $g(\Phi)$  is approximately constant over the interval  $\Delta t = N\eta$  we have

$$\Phi(t + \Delta t) \approx \Phi(t) - g(\Phi)\Delta t + \eta \sum_{i=1}^{N} (g(\Phi) - \hat{g}_i)$$

The random variables in the last term have zero mean.

By the law of large numbers a sum (not the average) of N random vectors will approximate a Gaussian distribution where the standard deviation grows like  $\sqrt{N}$ .

Let  $\Sigma$  be the covariance matrix of the random variable  $\hat{g}$  and assume this is approximately constant over the interval  $\Delta t$ . Let  $\epsilon$  be a zero mean Gaussian random variable with the same covariance matrix  $\Sigma$ .

$$\Phi(t + \Delta t) \approx \Phi(t) - g(\Phi)\Delta t + \eta \sum_{j=1}^{N} (g(\Phi) - \hat{g}_i)$$

$$\approx \Phi(t) - g(\Phi)\Delta t + \eta \epsilon \sqrt{N}$$

$$= \Phi(t) - g(\Phi)\Delta t + \eta \epsilon \sqrt{\frac{\Delta t}{\eta}}$$

$$\Phi(t + \Delta t) \approx \Phi(t) - g(\Phi)\Delta t + \epsilon \sqrt{\eta \Delta t} \qquad \epsilon \sim \mathcal{N}(0, \Sigma)$$
$$= \Phi(t) - g(\Phi)\Delta t + \epsilon \sqrt{\Delta t} \qquad \epsilon \sim \mathcal{N}(0, \eta \Sigma)$$

We can take this last equation to hold for all (arbitrarily small)  $\Delta t$  in which case we get a continuous time stochastic process. This process can be written as

$$d\Phi = -g(\Phi)dt + \epsilon\sqrt{dt}$$
  $\epsilon \sim \mathcal{N}(0, \eta\Sigma)$ 

For  $g(\Phi) = 0$  and  $\Sigma = I$  we get Brownian motion.

$$\Phi(t + \Delta t) \approx \Phi(t) - g(\Phi)\Delta t + \epsilon \sqrt{\Delta t}$$
  $\epsilon \sim \mathcal{N}(0, \eta \Sigma)$ 

Note that for  $\eta \to 0$  the noise term vanishes. If we then take  $\Delta t \to 0$  (at a slower rate) we are back to gradient flow.

To model noise we hold  $\eta > 0$  fixed.

### **Stationary Distributions**

SGD (at batch size 1) defines a Markov process

$$\Phi_{i+1} = \Phi_i - \eta \hat{g}_i$$

We will model the stationary distribution as a continuous density in parameter space.

If the noise covariance matrix is isotropic (all eigenvalues are the same) we get a Gibbs distribution.

### The 1-D Stationary Distribution

Consider SGD on a single parameter.

Let p be a probability density on x.

Assume that the gradient  $\hat{g}$  has variance  $\sigma$  everywhere.

There is a diffusion flow proportional to  $\eta^2 \sigma^2 dp/dx$ .

There is a gradient flow equal to  $\eta p \ d\mathcal{L}/dx$ .

For a stationary distribution the two flows cancel giving.

$$\alpha \eta^2 \sigma^2 \frac{dp}{dx} = -\eta p \frac{d\mathcal{L}}{dx}$$

## The 1-D Stationary Distribution

$$\alpha \eta^{2} \sigma^{2} \frac{dp}{dx} = -\eta p \frac{d\mathcal{L}}{dx}$$

$$\frac{dp}{p} = \frac{-d\mathcal{L}}{\alpha \eta \sigma^{2}}$$

$$\ln p = \frac{-\mathcal{L}}{\alpha \eta \sigma^{2}} + C$$

$$p(x) = \frac{1}{Z} \exp\left(\frac{-\mathcal{L}(x)}{\alpha \eta \sigma^{2}}\right) \quad \alpha \approx 1/10$$

We get a Gibbs distribution!

## A 2-D Stationary Distribution

Let p be a probability density on two parameters (x, y).

We consider the case where x and y are completely independent with

$$\mathcal{L}(x,y) = \mathcal{L}(x) + \mathcal{L}(y)$$

For completely independent variables we have

$$p(x,y) = p(x)p(y)$$

$$= \frac{1}{Z} \exp \left( \frac{-\mathcal{L}(x)}{\alpha \eta \sigma_x^2} + \frac{-\mathcal{L}(y)}{\alpha \eta \sigma_y^2} \right)$$

# A 2-D Stationary Distribution

$$p(x,y) = \frac{1}{Z} \exp \left( \frac{-\mathcal{L}(x)}{\alpha \eta \sigma_x^2} + \frac{-\mathcal{L}(y)}{\alpha \eta \sigma_y^2} \right)$$

$$= \frac{1}{Z} \exp \left(-\beta_x \mathcal{L}(x) - \beta_y \mathcal{L}(y)\right)$$

This is not a Gibbs distribution!

It has two different temperature parameters!

### Noise Models and RMSProp

Suppose we use parameter-specific learning rates  $\eta_x$  and  $\eta_y$ 

$$p(x,y) = \frac{1}{Z} \exp\left(\frac{-\mathcal{L}(x)}{\alpha \eta_x \sigma_x^2} + \frac{-\mathcal{L}(y)}{\alpha \eta_y \sigma_y^2}\right)$$

Setting  $\eta_x = \eta'/\sigma_x^2$  and  $\eta_y = \eta'/\sigma_y^2$  gives

$$p(x,y) = \frac{1}{Z} \exp\left(\frac{-\mathcal{L}(x)}{\alpha \eta'} + \frac{-\mathcal{L}(y)}{\alpha \eta'}\right)$$
$$= \frac{1}{Z} \exp\left(\frac{-\mathcal{L}(x,y)}{\alpha \eta'}\right) \quad \text{Gibbs!}$$

### Noise Models and RMSProp

Suppose we use parameter-specific learning rates  $\eta_x$  and  $\eta_y$ Setting  $\eta_x = \eta'/\sigma_x^2$  and  $\eta_y = \eta'/\sigma_y^2$  gives

$$p(x,y) = \frac{1}{Z} \exp\left(\frac{-\mathcal{L}(x,y)}{\alpha \eta'}\right)$$
 Gibbs!

RMSProp sets  $\eta_x = \eta'/\sigma_x$  rather than  $\eta_x = \eta'/\sigma_x^2$ . Empirically RMSProp seems better than the more theoretically motivated algorithm.

# $\mathbf{END}$