Cours Logarithme

Delhomme Fabien

6 octobre 2021

I Les puissances

I.1 Definition

n rappelle que la notation a^n désigne le calcul :

$$a^n = \underbrace{a \times \ldots \times a}_{\text{n fois}}$$

II La fonction puissance

II.1 Definition

On peut regarder la fonction puissance de 10. Par exemple :

puissance de 10 de ce nombre	nombre de départ
10	1
31.622	1.5
100	2
1000	3
10000	4
10 ^x	x

Cette fonction est définie par :

$$f(x) = 10^x$$

On peut définir des puissances qui ne sont pas entières. Par exemple :

$$10^{1.5} \approx 31.6227766017$$

Si vous commencez avec une puissance qui n'est pas entière, vous avez peu de chance de tomber sur un nombre entier. Ici, on a pris comme puissance 1.5, et le résultat, 31,622 n'est pas entier.

III La fonction logarithme décimale

 $\#+ begin_{defi} \{Fonction logarithme\}$ Cette fonction est la fonction qui «lit» le tableau de la fonction puissance dans l'autre sens. Cette fonction se note log. $\#+ end_{defi}$

nombre de départ	logarithme décimale de ce nombre
10	1
31.622	1.5
100	2
1000	3
10000	4
x	$\log x$

Donc, on peut en déduire les expressions suivantes :

$$\log(10) = 1 \quad \log(31, 622)$$
 $\approx 1, 5$
 $\log(100) = 2 \quad \log(1000)$ $= 3$

Le logarithme décimale permet de «mesurer» entre quelle puissance de dix un nombre se trouve. Par exemple :

$$5 < \log(318327) < 6$$