Asian-European Journal of Mathematics Vol. 11, No. 2 (2018) 1850031 (14 pages) © World Scientific Publishing Company DOI: 10.1142/S1793557118500316

On primitive normal elements over finite fields

Anju* and R. K. Sharma†

Department of Mathematics
Indian Institute of Technology Delhi

New Delhi 110016, India

*anjugju@gmail.com

†rksharmaiitd@gmail.com

Communicated by Jiping Zhang
Received April 28, 2016
Accepted March 3, 2017
Published May 15, 2017

Let \mathbb{F}_{q^n} be an extension of the field \mathbb{F}_q of degree n, where $q=p^k$ for some positive integer k and prime p. In this paper, we establish a sufficient condition for the existence of a primitive element $\alpha \in \mathbb{F}_{q^n}$ such that $\alpha^2 + \alpha + 1$ is also primitive as well as a primitive normal element α of \mathbb{F}_{q^n} over \mathbb{F}_q such that $\alpha^2 + \alpha + 1$ is primitive.

Keywords: Finite field; normal element; primitive element; character.

AMS Subject Classification: 12E20, 11T23

1. Introduction

Let \mathbb{F}_q be a finite field of order $q=p^k$, for some prime p and some positive integer k. Consider an extension \mathbb{F}_{q^n} of \mathbb{F}_q of degree n. An element $\alpha \in \mathbb{F}_{q^n}$ is called a normal element of \mathbb{F}_{q^n} over \mathbb{F}_q , if $\{\alpha, \alpha^q, \ldots, \alpha^{q^{n-1}}\}$ is a basis of \mathbb{F}_{q^n} over \mathbb{F}_q . This basis is called a normal basis. Normal bases are widely used in applications of finite fields such as coding theory, cryptography, signal processing [1, 17, 18]. The advantage of using normal basis representation yields efficient exponentiation, as the qth powers of elements are given by a cyclic-bit-shift of the corresponding co-ordinate vector. It is well known [16, Theorem 2.35] that \mathbb{F}_{q^n} always contains a normal basis generator over \mathbb{F}_q . For basics on normal bases over finite fields, reader is referred to [2].

Further, for any finite field \mathbb{F}_q , its multiplicative group \mathbb{F}_q^* is cyclic. The generators of \mathbb{F}_q^* are called *primitive elements* of \mathbb{F}_q . Any field \mathbb{F}_q has $\phi(q-1)$ primitive elements, where ϕ is the Euler's phi-function. Many authors have studied primitive elements over finite fields such as Carlitz and Davenport [3, 10]. Primitive

^{*}Corresponding author.

elements are widely used in cryptography, coding theory and design theory. Primitive elements play a very important role in cryptosystems based on the multiplicative cyclic groups of nonzero elements of a finite field, for example ElGamal cryptosystem, and Diffie-Hellman key exchange protocol as a primitive element is an element of highest possible order and describes the field fully. The discrete log problem on such a group with primitive element as the generator will require maximum computation. It is a central problem in computational number theory to construct a primitive element in a finite field. Even determining a primitive element in a finite field is hard. There is no polynomial time algorithm to compute a primitive element, though there are $\phi(q-1)$ primitive elements in a finite field of q-elements, finding one may be difficult. In this paper, we prove the existence of a primitive element in terms of another primitive element, thus making a choice between them for an application. An element is called *primitive normal* if it is both primitive and normal. A primitive normal basis is a normal basis generated by a primitive element. Firstly, Carlitz [3] studied primitive normal bases. More precisely, in [3, 4], he proved that except for finitely many exclusive values of q, every finite field \mathbb{F}_{q^n} contains a primitive normal element over \mathbb{F}_q . The existence of a primitive normal element of \mathbb{F}_{q^n} over \mathbb{F}_q when q is a prime, was proved by Davenport [10]. Lenstra and Schoof [14] completely resolved the question of the existence of primitive normal elements for all field extensions \mathbb{F}_{q^n} over \mathbb{F}_q . Cohen and Huczynska [7] gave the first computer-free proof of the result of Lenstra and Schoof.

In general, for any primitive element $\alpha \in \mathbb{F}_q$, $f(\alpha)$ (where f is any rational function) need not be primitive in \mathbb{F}_q , for example, if we take the polynomial function f(x) = x + 1 over the field \mathbb{F}_2 of order 2. Then 1 is the only primitive element of \mathbb{F}_2 , but f(1) = 0 is not primitive. But for $f(x) = \frac{1}{x}$, $f(\alpha)$ is primitive in \mathbb{F}_q whenever α is. Many researchers have worked in this direction. In 1985, Cohen [6] proved the existence of two consecutive primitive elements in a finite field \mathbb{F}_q , with q>3, $q\not\equiv 7$ mod 12 and $q \not\equiv 1 \mod 60$. He and Han [12] studied primitive elements in the form of $\alpha + \alpha^{-1}$ over finite fields. In 2012, Wang et al. [21] gave a sufficient condition on the existence of α such that α and $\alpha + \alpha^{-1}$ are both primitive for the case 2|q. Liao et al. [15] generalized their results to the case that q is any prime power. In 2014, Cohen [9] completed the existence results obtained by Wang et al. [21] for finite fields of characteristic 2. Tian and Qi [19] proved that there exists a primitive element $\alpha \in \mathbb{F}_{q^n}$, such that both α and α^{-1} are normal elements of \mathbb{F}_{q^n} over \mathbb{F}_q , when $n \geq 32$. Later, Cohen and Huczynska [8] proved that for any prime power q and any integer $n \geq 2$, there exists an element $\alpha \in \mathbb{F}_{q^n}$ such that both α and α^{-1} are primitive normal over \mathbb{F}_q except when (q,n) is one of the pairs (2,3), (2,4), (3,4), (4,3), (5,4). Chou and Cohen [5] completely resolved the question whether there exists a primitive element α such that α and α^{-1} both have trace zero over \mathbb{F}_q . In 2014, Kapetanakis [13], proved that with a few exceptions, for every $q, n \text{ and } a, b, c, d \in \mathbb{F}_q$, there exists some primitive $x \in \mathbb{F}_{q^n}$ such that both x and (ax+b)/(cx+d) produce a normal basis of \mathbb{F}_{q^n} over \mathbb{F}_q . In this paper, we study the question of the existence of a primitive element $\alpha \in \mathbb{F}_{q^n}$, such that for the rational expression $f(x) = x^2 + x + 1$, $f(\alpha)$ is also a primitive element of \mathbb{F}_{q^n} . We also study the question of the existence of a primitive normal element α of \mathbb{F}_{q^n} over \mathbb{F}_q such that $\alpha^2 + \alpha + 1$ is also a primitive element of \mathbb{F}_{q^n} . Throughout the paper, we shall use the notation \mathfrak{P} for the set of (q, n), such that \mathbb{F}_{q^n} contains a primitive element α such that $\alpha^2 + \alpha + 1$ is also primitive and \mathfrak{N} for the set of (q, n) such that \mathbb{F}_{q^n} contains a primitive normal element α such that $\alpha^2 + \alpha + 1$ is also primitive. For any positive integer m > 1 and any $g \in \mathbb{F}_q[x]$, $\omega(m)$ and $\Omega_q(g)$ are used to denote the number of prime divisors of m, and the number of monic irreducible divisors of g over \mathbb{F}_q , respectively.

2. Preliminaries

In this section, q is an arbitrary prime power. For any divisor e of q-1, call $\xi \in \mathbb{F}_q^*$ e-free if, for any d|e, $\xi = \gamma^d$, $\gamma \in \mathbb{F}_q$, implies d=1 i.e. if $\gcd(d, \frac{q-1}{\operatorname{ord}_q(\alpha)}) = 1$. Hence, an element $\alpha \in \mathbb{F}_q^*$ is primitive if and only if it is (q-1)-free.

The additive group of \mathbb{F}_{q^n} is an $\mathbb{F}_q[x]$ -module under the rule,

$$f \circ x = \sum_{i=1}^{t} f_i x^{q^i}; \quad \text{for } x \in \mathbb{F}_{q^n} \quad \text{and} \quad f(x) = \sum_{i=1}^{t} f_i x^i \in \mathbb{F}_q[x].$$

For $\xi \in \mathbb{F}_{q^n}$, the \mathbb{F}_q -order of ξ is defined to be the monic \mathbb{F}_q -divisor g of x^n-1 of minimal degree such that $g \circ \xi = 0$. If $\xi \in \mathbb{F}_{q^n}$ has \mathbb{F}_q -order g, then $\xi = h \circ v$ for some $v \in \mathbb{F}_{q^n}$, where $h = \frac{x^n-1}{g}$. Let M be a divisor of x^n-1 . If $\alpha = h \circ v$ (where $v \in \mathbb{F}_{q^n}$, h is a divisor of M) implies h = 1, we say that α is M-free in \mathbb{F}_{q^n} . Hence, an element of \mathbb{F}_{q^n} is normal over \mathbb{F}_q if and only if its \mathbb{F}_q -order is x^n-1 .

Next, we give the definition of a character of a finite abelian group and some results related to that.

Definition 2.1. A character χ of a finite abelian group G is a homomorphism from G into the multiplicative group U of complex numbers of absolute value 1. The characters of G form a group under multiplication, which is isomorphic to G and denoted by \widehat{G} . Furthermore, the character χ_0 , where $\chi_0(g) = 1$ for all $g \in G$ is the trivial character of G.

In a finite field \mathbb{F}_q , there are two types of finite abelian groups, the additive group \mathbb{F}_q and the multiplicative group \mathbb{F}_q^* . So we talk about two types of characters of a finite field, characters of \mathbb{F}_q are called *additive characters* and characters of \mathbb{F}_q^* are called *multiplicative characters*. The multiplicative characters are extended to zero using the rule,

$$\chi(0) := \begin{cases} 0 & \text{if } \chi \neq \chi_0 \\ 1 & \text{if } \chi = \chi_0. \end{cases}$$

Since $\widehat{\mathbb{F}_q^*} \cong \mathbb{F}_q^*$, we have that $\widehat{\mathbb{F}_q^*}$ is cyclic and for any divisor d of q-1, there are exactly $\phi(d)$ characters of order d in $\widehat{\mathbb{F}_q^*}$. Following Cohen and Huczynska [7, 8],

it can be shown that for any m|q-1, the characteristic function for the subset of m-free elements of \mathbb{F}_q^* is defined by

$$\rho_m : \alpha \mapsto \theta(m) \sum_{d \mid m} \frac{\mu(d)}{\phi(d)} \sum_{\chi_d} \chi_d(\alpha),$$

where $\theta(m) := \frac{\phi(m)}{m}$, μ is Möbius function, and χ_d stands for any multiplicative character of order d. Further, $\widehat{\mathbb{F}_{q^n}}$ is an $\mathbb{F}_q[x]$ -module under the rule $\psi \circ f(\alpha) = \psi(f \circ \alpha)$, for $\psi \in \widehat{\mathbb{F}_{q^n}}$, $f \in \mathbb{F}_q[x]$, and $\alpha \in \mathbb{F}_{q^n}$. For any (monic) \mathbb{F}_q -divisor g of $x^n - 1$, a typical additive character ψ_g of \mathbb{F}_q -order g is one such that $\psi_g \circ g$ is the trivial character in \mathbb{F}_{q^n} , and g is minimal (in terms of degree) with this property. Further, there are $\Phi_q(g)$ characters ψ_g , where $\Phi_q(g) = (\mathbb{F}_q[x]/g\mathbb{F}_q[x])^*$ is the analogue of Euler function on $\mathbb{F}_q[x]$.

In an analogy to the above, the characteristic function for the set of g-free elements in \mathbb{F}_{q^n} , for any $g|x^n-1$ is given by

$$\kappa_g : \alpha \mapsto \Theta(g) \sum_{h|g} \frac{\mu'(h)}{\Phi(h)} \sum_{\psi_h} \psi_h(\alpha),$$

where $\Theta(g) := \frac{\Phi(g)}{q^{\deg(g)}}$, the internal sum runs over additive characters ψ_h of \mathbb{F}_q -order h, and μ' is the analogue of the Möbius function which is defined by the rule,

$$\mu'(g) := \begin{cases} (-1)^s & \text{if } g \text{ is a product of } s \text{ distinct monic irreducible polynomials} \\ 0 & \text{otherwise.} \end{cases}$$

We shall need the following results.

Lemma 2.1 ([16, Theorem 5.4]). If χ is any nontrivial character of a finite abelian group G and ξ is a nontrivial element of G, then

$$\sum_{\xi \in G} \chi(\xi) = 0 \quad and \quad \sum_{\chi \in \widehat{G}} \chi(\xi) = 0.$$

Lemma 2.2 ([16, Theorem 5.11]). Let χ be a nontrivial multiplicative character and ψ be a nontrivial additive character of \mathbb{F}_q , then

$$\left| \sum_{\alpha \in \mathbb{F}_q^*} \chi(\alpha) \psi(\alpha) \right| = q^{1/2}.$$

Lemma 2.3 ([20]). Let χ_1 and χ_2 be two multiplicative nontrivial characters of the finite field \mathbb{F}_q . Let $f_1(x)$ and $f_2(x)$ be two monic pairwise prime polynomials in $\mathbb{F}_q[x]$, such that none of $f_i(x)$ is of the form $g(x)^{\operatorname{ord}(\chi_i)}$ for i=1,2, where $g(x) \in \mathbb{F}_q[x]$ with degree at least 1. Let n_1 and n_2 be the degrees of largest square free divisors of f_1 and f_2 , respectively. Then we have

$$\left| \sum_{\alpha \in \mathbb{F}_q} \chi_1(f_1(\alpha)) \chi_2(f_2(\alpha)) \right| \le (n_1 + n_2 - 1) \sqrt{q}.$$

Lemma 2.4 ([16, Theorem 5.41]). Let χ be a multiplicative character of \mathbb{F}_q of order m > 1 and let $f \in \mathbb{F}_q[x]$ be a monic polynomial of positive degree such that f(x) is not of the form $g(x)^m$, where $g(x) \in \mathbb{F}_q[x]$ with degree at least 1. Let d be the number of distinct roots of f in its splitting field over \mathbb{F}_q . Then for every $a \in \mathbb{F}_q$, we have

$$\left| \sum_{c \in \mathbb{F}_q} \chi(af(c)) \right| \le (d-1)q^{1/2}.$$

The next lemma is a consequence of [11, Theorem 5.6 and Remark 5.7].

Lemma 2.5 ([11]). Let $f_1(x), f_2(x), \ldots, f_s(x) \in \mathbb{F}_{q^n}[x]$ be distinct irreducible polynomials over \mathbb{F}_{q^n} , and g(x) be a rational function over \mathbb{F}_{q^n} . Let $\chi_1, \chi_2, \ldots, \chi_s$ be multiplicative characters of \mathbb{F}_{q^n} , and let ψ be a nontrivial additive character of \mathbb{F}_{q^n} . Suppose that g(x) is not of the form $r(x)^q - r(x)$ in $\mathbb{F}_q(x)$. Then

$$\left| \sum_{\substack{\alpha \in \mathbb{F}_{q^n}, \\ f_i(\alpha) \neq 0, g(\alpha) \neq \infty}} \chi_1(f_1(\alpha)) \chi_2(f_2(\alpha)) \cdots \chi_s(f_s(\alpha)) \psi(g(\alpha)) \right|$$

$$\leq (n_1 + n_2 + n_3 + n_4 - 1)q^{n/2},$$

where $n_1 = \sum_{j=1}^s \deg(f_j)$, $n_2 = \max(\deg(g), 0)$, n_3 is the degree of the denominator of g(x) and n_4 is the sum of degrees of those irreducible polynomials dividing the denominator of g, but distinct from $f_j(x)$ (j = 1, ..., s).

Lemma 2.6 ([14]). Let n > 1, l > 1 be integers and Λ be a set of primes $\leq l$. Set $L = \prod_{r \in \Lambda} r$. Assume that every prime factor r < l of n is contained in Λ . Then

$$\omega(n) \le \frac{\log n - \log L}{\log l} + |\Lambda|. \tag{2.1}$$

Let m be a positive integer and p_m be the mth prime. Now if we take $l = p_m$, and then Λ is the set of primes no more than p_m , $|\Lambda| = m$, so the inequality (2.1) becomes

$$\omega(N) \le \frac{\log N - \sum_{i=1}^{m} \log p_i}{\log p_m} + m. \tag{2.2}$$

Lemma 2.7 ([14]). Let q be a prime power and n be a positive integer. Let $\Omega = \Omega_q(x^n - 1)$. Then we have $\Omega \leq \{n + \gcd(n, q - 1)\}/2$. In particular, $\Omega \leq n$, and $\Omega = n$ if and only if n|q - 1. Moreover, $\Omega \leq \frac{3}{4}n$ if q - 1 is not divisible by n.

3. Main Results

Let $N_q(m_1, m_2)$ be the number of $\alpha \in \mathbb{F}_q$, such that α is m_1 -free and $\alpha^2 + \alpha + 1$ is m_2 -free and $N_q(m_1, m_2, g)$ be the number of $\alpha \in \mathbb{F}_q$, such that α is m_1 -free and g-free and $\alpha^2 + \alpha + 1$ is m_2 -free, where m_1, m_2 are positive integers and g is any

polynomial over \mathbb{F}_q . In this section, we shall use the notation χ_1 to denote the trivial multiplicative character as it has order 1.

Theorem 3.1 Let $q = p^k$ for some prime $p \neq 3$ and n be a positive integer and let $\omega = \omega(q^n - 1)$. If $q^{\frac{n}{2}} > 2^{2\omega + 1}$, then $(q, n) \in \mathfrak{P}$.

Proof. By definition

$$\begin{split} N_{q^n}(q^n-1,q^n-1) &= \sum_{\alpha \in \mathbb{F}_{q^n}^*} \rho_{q^n-1}(\alpha) \rho_{q^n-1}(\alpha^2 + \alpha + 1) \\ &= \theta(q^n-1)^2 \sum_{\alpha \in \mathbb{F}_{q^n}^*} \sum_{d,h|q^n-1} \frac{\mu(d)\mu(h)}{\phi(d)\phi(h)} \sum_{\chi_d,\chi_h} \chi_d(\alpha) \chi_h(\alpha^2 + \alpha + 1) \\ &= \theta(q^n-1)^2 (S_1 + S_2 + S_3 + S_4), \end{split}$$

where

$$S_{1} = \sum_{\alpha \in \mathbb{F}_{q^{n}}^{*}} \sum_{d=1=h} \frac{\mu(d)\mu(h)}{\phi(d)\phi(h)} \sum_{\chi_{d},\chi_{h}} \chi_{d}(\alpha)\chi_{h}(\alpha^{2} + \alpha + 1)$$

$$= \sum_{\alpha \in \mathbb{F}_{q^{n}}^{*}} \left(\frac{\mu(1)}{\phi(1)}\right)^{2} \sum_{\chi_{1}} \chi_{1}(\alpha)\chi_{1}(\alpha^{2} + \alpha + 1)$$

$$= \sum_{\alpha \in \mathbb{F}_{q^{n}}^{*}} 1 = q^{n} - 1.$$

$$|S_{2}| = \left|\sum_{\alpha \in \mathbb{F}_{q^{n}}^{*}} \sum_{1 \neq d \mid q^{n} - 1} \frac{\mu(d)}{\phi(d)} \sum_{\chi_{d}} \chi_{d}(\alpha)\chi_{1}(\alpha^{2} + \alpha + 1)\right|$$

$$= \left|\sum_{\alpha \in \mathbb{F}_{q^{n}}^{*}} \sum_{1 \neq d \mid q^{n} - 1} \frac{\mu(d)}{\phi(d)} \sum_{\chi_{d}} \chi_{d}(\alpha)\right|$$

$$\leq \sum_{1 \neq d \mid q^{n} - 1} \frac{|\mu(d)|}{\phi(d)} \sum_{\chi_{d}} \left|\sum_{\alpha \in \mathbb{F}_{q^{n}}^{*}} \chi_{d}(\alpha)\right|.$$

Using Lemma 2.1, we get

$$|S_2| = 0.$$

$$|S_3| = \left| \sum_{\alpha \in \mathbb{F}_{q^n}^*} \sum_{1 \neq h \mid q^n - 1} \frac{\mu(h)}{\phi(h)} \sum_{\chi_h} \chi_h(\alpha^2 + \alpha + 1) \chi_1(\alpha) \right|$$

$$\leq \sum_{\substack{1 \neq h \mid q^n - 1, \\ h \text{ sourrefree}}} \frac{1}{\phi(h)} \sum_{\chi_h} \left| \sum_{\alpha \in \mathbb{F}_{q^n}} \chi_h(\alpha^2 + \alpha + 1) - \chi_h(1) \right|.$$

By Lemma 2.4, we have $|\sum_{\alpha \in \mathbb{F}_{q^n}} \chi_h(\alpha^2 + \alpha + 1)| \leq q^{n/2}$, using this and the facts that $\sum_{\chi_h} 1 = \phi(h)$ and $\sum_{\substack{1 \neq h \mid q^n - 1, \\ h \text{ squarefree}}} 1 = 2^{\omega} - 1$, we get

Using Lemma 2.3, we get

$$|S_4| \le \sum_{\substack{1 \ne d, h \mid q^n - 1, \\ d, h \text{ squarefree}}} \frac{1}{\phi(d)\phi(h)} \sum_{\chi_d, \chi_h} 2q^{n/2}$$
$$= 2q^{n/2}(2^w - 1)^2.$$

Hence, we have

$$|N_{q^n}(q^n - 1, q^n - 1) - \theta(q^n - 1)^2(q^n - 1)|$$

$$\leq \theta(q^n - 1)^2 \{ (q^{n/2} + 1)(2^\omega - 1) + 2q^{n/2}(2^\omega - 1)^2 \}.$$
(3.1)

So, our aim is to find (q, n) for which $N_{q^n}(q^n - 1, q^n - 1) > 0$. From (3.1), it is clear that $N_{q^n}(q^n - 1, q^n - 1)$ will be greater than 0, if we have $q^n - 1 > (q^{n/2} + 1)(2^{\omega} - 1) + 2q^{n/2}(2^{\omega} - 1)^2$, which can be obtained if we take

$$q^{n/2} > 2^{2\omega + 1}. (3.2)$$

Hence, the desired result is obtained.

Corollary 3.1. Let $q = 2^k$ and n be a positive integer. If $n \ge 14$ and $k \ge 5$, then $(q, n) \in \mathfrak{P}$.

Proof. By Lemma 2.6, we have

$$\omega(q^n - 1) \le \frac{\log(q^n - 1) - \sum_{i=1}^m \log p_i}{\log p_m} + m < \frac{n \log q - \sum_{i=1}^m \log p_i}{\log p_m} + m. \tag{3.3}$$

Equation (3.2) is equivalent to,

$$\omega < \frac{n\log q}{\log 16} - \frac{1}{2}.\tag{3.4}$$

From (3.3), it is clear that (3.4) holds true if

$$\frac{n\log q}{\log 16} - \frac{n\log q}{\log p_m} > m + \frac{1}{2} - \frac{\sum_{i=1}^m \log p_i}{\log p_m}.$$
 (3.5)

Since $\frac{1}{\log 16} - \frac{1}{\log p_m} > 0 \Leftrightarrow m \geq 7$, we may choose any $m \geq 7$ to check (3.5).

Table 1.

k =	1	2	3	4
$n \ge$	70	35	24	18

If we choose m = 20, then left side of (3.5) is positive, so we have

$$n > \frac{m + \frac{1}{2} - \frac{\sum_{i=1}^{m} \log p_i}{\log p_m}}{\frac{\log q}{\log 16} - \frac{\log q}{\log p_m}}.$$
 (3.6)

Since $\sum_{i=1}^{m} \log p_i \leq m \log p_m$, the right-hand side of (3.6) is a decreasing function of q. It is easy to check that the inequality (3.6) is true if we take q = 32 and $n \geq 14$. Hence if $q \geq 32$ and $n \geq 14$, then $(q, n) \in \mathfrak{P}$.

Remark 3.1. When $2^k < 32$ i.e. k < 5, the values of n such that $(2^k, n) \in \mathfrak{P}$, are obtained by using software Mathematica 4.1 and listed in Table 1.

Remark 3.2. The proof of Theorem 3.1 is not valid for p=3 as in this case $f(x) = x^2 + x + 1 = (x-1)^2$, and $2|q^n - 1$. So Lemma 2.4 is not applicable in that case, which is a key requirement in the proof of Theorem 3.1. In fact, for p=3, we have $\alpha^2 + \alpha + 1 = (\alpha - 1)^2$, which cannot be primitive.

The following lemma provide us an estimation of the size of $2^{\omega(I)}$ for any positive integer I. The proof of the Lemma is obvious using multiplicativity.

Lemma 3.1. For any positive integer I, $2^{\omega(I)} < C(I)I^{1/5}$, where C(I) < 11.25. Moreover,

$$C(I) < \begin{cases} 7.77 & \text{if } 5 \not\mid I \\ 8.31 & \text{if } 7 \not\mid I. \end{cases}$$

Corollary 3.2. Let $q = p^k$, where k is a positive integer and p > 3 is a prime. If n is a positive integer such that $nk \ge 30$, then $(q, n) \in \mathfrak{P}$.

Proof. By Lemma 3.1 and Theorem 3.1, we see that $N_{q^n}(q^n-1,q^n-1)>0$ if

$$q^{n/10} > 2C(q^n - 1)^2. (3.7)$$

Equation (3.7) holds true for all $p \ge 11$ and $nk \ge 23$, since $C(q^n - 1) < 11.25$. If p = 7, then $C(q^n - 1) < 8.31$ and (3.7) holds for all $nk \ge 26$. If p = 5, then $C(q^n - 1) < 7.77$ and (3.7) is true for all $nk \ge 30$. Hence $(q, n) \in \mathfrak{P}$ for all $p \ge 5$ and $nk \ge 30$.

Theorem 3.2. Let $q = p^k$ for some prime $p \neq 3$ and positive integer k. Let n be any positive integer. If $q^{n/2} > 3 \cdot 2^{2\omega + \Omega}$, then $(q, n) \in \mathfrak{N}$, where $\Omega = \Omega_q(x^n - 1)$ and $\omega = \omega(q^n - 1)$.

Proof.

$$\begin{split} N_{q^n}(q^n-1,q^n-1,x^n-1) &= \sum_{\alpha \in \mathbb{F}_{q^n}^*} \rho_{q^n-1}(\alpha)\rho_{q^n-1}(\alpha^2+\alpha+1)\kappa_{x^n-1}(\alpha) \\ &= \theta(q^n-1)^2 \Theta(x^n-1) \sum_{\alpha \in \mathbb{F}_{q^n}^*} \sum_{d,h|q^n-1} \sum_{g|x^n-1} \frac{\mu(d)\mu(h)\mu'(g)}{\phi(d)\phi(h)\Phi(g)} \\ &\sum_{\chi_d,\chi_h} \sum_{\psi_g} \sum_{\alpha \in \mathbb{F}_{q^n}^*} \chi_d(\alpha)\chi_h(\alpha^2+\alpha+1)\psi_g(\alpha) = \theta(q^n-1)^2 \Theta(x^n-1) \left(\sum_{i=1}^8 S_i'\right), \\ \text{where, } \Phi(g) &= \Phi_q(g), \\ S_1' &= \sum_{\alpha \in \mathbb{F}_{q^n}^*} \sum_{d=1=h} \sum_{g=1} \frac{\mu(d)\mu(h)\mu'(g)}{\phi(d)\phi(h)\Phi(g)} \sum_{\chi_d,\chi_h} \sum_{\psi_g} \chi_d(\alpha)\chi_h(\alpha^2+\alpha+1)\psi_g(\alpha) \\ &= \sum_{\alpha \in \mathbb{F}_{q^n}^*} 1 &= q^n-1. \\ S_2' &= \sum_{\alpha \in \mathbb{F}_{q^n}^*} \sum_{1 \neq d|q^n-1} \frac{\mu(d)}{\phi(d)} \sum_{\chi_d} \chi_d(\alpha)\chi_1(\alpha^2+\alpha+1)\psi_1(\alpha) = S_2. \\ S_3' &= \sum_{\alpha \in \mathbb{F}_{q^n}^*} \sum_{1 \neq d|q^n-1} \frac{\mu(h)}{\phi(h)} \sum_{\chi_h} \chi_h(\alpha^2+\alpha+1)\chi_1(\alpha)\psi_1(\alpha) = S_3. \\ S_4' &= \sum_{\alpha \in \mathbb{F}_{q^n}^*} \sum_{1 \neq d,h|q^n-1} \frac{\mu(d)\mu(h)}{\phi(d)\phi(h)} \sum_{\chi_d,\chi_h} \chi_d(\alpha)\chi_h(\alpha^2+\alpha+1)\psi_1(\alpha) = S_4. \\ |S_5'| &= \left|\sum_{1 \neq g|x^n-1} \sum_{1 \neq g|x^n-1} \frac{\mu'(g)}{\Phi(g)} \sum_{\psi_g} \psi_g(\alpha)\right| \\ &= \left|\sum_{1 \neq g|x^n-1} \frac{\mu'(g)}{\Phi(g)} \sum_{\psi_g} \sum_{\alpha \in \mathbb{F}_{q^n}^*} \psi_g(\alpha)\right|. \\ &\leq \sum_{1 \neq g|x^n-1} \frac{\mu'(g)}{\Phi(g)} \sum_{\psi_g} \left|\sum_{\alpha \in \mathbb{F}_{q^n}^*} \psi_g(\alpha)\right|. \end{aligned}$$

By using Lemma 2.1, the facts $\sum_{\psi_g} 1 = \Phi(g)$ and $\sum_{\substack{1 \neq g \mid x^n - 1, \\ g \text{ squarefree}}} = 2^{\Omega} - 1$, we get

$$|{S_5}'| \le (2^{\Omega} - 1).$$

$$|S_6'| = \left| \sum_{\alpha \in \mathbb{F}_{q^n}^*} \sum_{1 \neq d \mid q^n - 1} \sum_{1 \neq g \mid x^n - 1} \frac{\mu(d)\mu'(g)}{\phi(d)\Phi(g)} \sum_{\chi_d} \sum_{\psi_g} \chi_d(\alpha)\psi_g(\alpha) \right|$$

$$= \left| \sum_{1 \neq d \mid q^n - 1} \sum_{1 \neq g \mid x^n - 1} \frac{\mu(d)\mu'(g)}{\phi(d)\Phi(g)} \sum_{\chi_d} \sum_{\psi_g} \sum_{\alpha \in \mathbb{F}_{q^n}^*} \chi_d(\alpha)\psi_g(\alpha) \right|$$

$$\leq \sum_{\substack{1 \neq d \mid q^n - 1, \ d \text{ squarefree} \ g \text{ squarefree}}} \frac{1}{\phi(d)\Phi(g)} \sum_{\chi_d} \sum_{\psi_g} \left| \sum_{\alpha \in \mathbb{F}_{q^n}^*} \chi_d(\alpha)\psi_g(\alpha) \right|.$$

Using Lemma 2.2, we have

$$|S_{6}'| \leq q^{n/2} (2^{\omega} - 1)(2^{\Omega} - 1).$$

$$|S_{7}'| = \left| \sum_{\alpha \in \mathbb{F}_{q^{n}}^{*}} \sum_{1 \neq h \mid q^{n} - 1} \sum_{1 \neq g \mid x^{n} - 1} \frac{\mu(h)\mu'(g)}{\phi(h)\Phi(g)} \sum_{\chi_{h}} \sum_{\psi_{g}} \chi_{h}(\alpha^{2} + \alpha + 1)\psi_{g}(\alpha) \right|$$

$$= \left| \sum_{1 \neq h \mid q^{n} - 1} \sum_{1 \neq g \mid x^{n} - 1} \frac{\mu(h)\mu'(g)}{\phi(h)\Phi(g)} \sum_{\chi_{h}} \sum_{\psi_{g}} \sum_{\alpha \in \mathbb{F}_{q^{n}}^{*}} \chi_{h}(\alpha^{2} + \alpha + 1)\psi_{g}(\alpha) \right|$$

$$\leq \sum_{1 \neq h \mid q^{n} - 1, \quad 1 \neq g \mid x^{n} - 1, \quad \overline{\phi(h)\Phi(g)}} \sum_{\chi_{h}} \sum_{\psi_{g}} \left| \sum_{\alpha \in \mathbb{F}_{q^{n}}^{*}} \chi_{h}(\alpha^{2} + \alpha + 1)\psi_{g}(\alpha) \right|.$$

By Lemma 2.5, we have $|\sum_{\alpha \in \mathbb{F}_{q^n}^*} \chi_h(\alpha^2 + \alpha + 1) \psi_g(\alpha)| \leq (2q^{n/2} + 1)$, hence, we get

$$\begin{split} |S_7'| &\leq (2q^{n/2}+1)(2^{\omega}-1)(2^{\Omega}-1). \\ |S_8'| &= \left| \sum_{\alpha \in \mathbb{F}_{q^n}^*} \sum_{1 \neq d, h \mid q^n-1} \sum_{1 \neq g \mid x^n-1} \frac{\mu(d)\mu(h)\mu'(g)}{\phi(d)\phi(h)\Phi(g)} \right. \\ &\times \left. \sum_{\chi_d, \chi_h} \sum_{\psi_g} \chi_d(\alpha) \chi_h(\alpha^2 + \alpha + 1) \psi_g(\alpha) \right| \\ &= \left| \sum_{1 \neq d, h \mid q^n-1} \sum_{1 \neq g \mid x^n-1} \frac{\mu(d)\mu(h)\mu'(g)}{\phi(d)\phi(h)\Phi(g)} \sum_{\chi_d, \chi_h} \sum_{\psi_g} \sum_{\alpha \in \mathbb{F}_{q^n}^*} \chi_d(\alpha) \chi_h(\alpha^2 + \alpha + 1) \psi_g(\alpha) \right| \\ &\leq \sum_{\substack{1 \neq d, h \mid q^n-1, \\ d, h \text{ squarefree}}} \sum_{1 \neq g \mid x^n-1} \frac{1}{\phi(d)\phi(h)\Phi(g)} \sum_{\chi_d, \chi_h} \sum_{\psi_g} \\ &\times \left| \sum_{\alpha \in \mathbb{F}_{q^n}^*} \chi_d(\alpha) \chi_h(\alpha^2 + \alpha + 1) \psi_g(\alpha) \right|. \end{split}$$

By Lemma 2.5, we have $|\sum_{\alpha \in \mathbb{F}_{q^n}^*} \chi_d(\alpha) \chi_h(\alpha^2 + \alpha + 1) \psi_g(\alpha)| \leq 3q^{n/2}$, hence, we get

$$|S_8'| \le 3q^{n/2}(2^\omega - 1)^2(2^\Omega - 1).$$

Hence, we have $|N_{q^n}(q^n-1,q^n-1,x^n-1)-\theta(q^n-1)^2\Theta(x^n-1)(q^n-1)| \le \theta(q^n-1)^2\Theta(x^n-1)\{(q^{n/2}+1)(2^{\omega}-1)+2q^{n/2}(2^{\omega}-1)^2+(2^{\Omega}-1)+q^{n/2}(2^{\omega}-1)(2^{\Omega}-1)+(2q^{n/2}+1)(2^{\omega}-1)(2^{\Omega}-1)+3q^{n/2}(2^{\omega}-1)^2(2^{\Omega}-1)\}.$

So in order to have $N_{q^n}(q^n-1,q^n-1,x^n-1)>0$, it is sufficient to have $q^n-1>(q^{n/2}+1)(2^\omega-1)+2q^{n/2}(2^\omega-1)^2+(2^\Omega-1)+q^{n/2}(2^\omega-1)(2^\Omega-1)+(2q^{n/2}+1)(2^\omega-1)(2^\Omega-1)+3q^{n/2}(2^\omega-1)^2(2^\Omega-1)$ and this holds if

$$q^{n/2} > 3 \cdot 2^{2\omega + \Omega},\tag{3.8}$$

which is the desired result.

From (3.3), it is clear that (3.8) holds true if

$$\frac{n\log q}{\log 4} - \frac{2n\log q}{\log p_m} > 2m + \frac{2\log 3}{\log 4} - \frac{2\sum_{i=1}^{m}\log p_i}{\log p_m} + \Omega.$$
 (3.9)

By Lemma 2.7, it is clear that $\Omega \leq an$ for a non-negative integer a, which is decided by whether n|q-1 or not. Using this in (3.9), we get

$$\frac{n \log q}{\log 4} - \frac{2n \log q}{\log p_m} > 2m + \frac{2 \log 3}{\log 4} - \frac{2 \sum_{i=1}^{m} \log p_i}{\log p_m} + na,$$

which is equivalent to

$$\left(\frac{\log q}{\log 4} - \frac{2\log q}{\log p_m} - a\right)n > 2m + \frac{2\log 3}{\log 4} - \frac{2\sum_{i=1}^m \log p_i}{\log p_m}.$$
 (3.10)

The left-hand side of (3.10) must be positive, hence we get $\frac{1}{\log 4} - \frac{2}{\log p_m} > 0 \Rightarrow m \geq 7$. So we can choose a suitable $m \geq 7$ and prove that the most of (q, n) satisfy the above sufficient condition.

Hence, the values of $q = 2^k$ and n such that $(q, n) \in \mathfrak{N}$ can be obtained as in the following corollary.

Corollary 3.3. Let $q = 2^k$ and n be a positive integer with n|q-1. If $n \ge 27$, then $(q,n) \in \mathfrak{N}$.

Proof. By Lemma 2.7, we know that when n|q-1, then $\Omega=n$. Hence a=1. If we choose m=25, then from (3.9), we have

$$\log q > \frac{1 + (2m + \frac{2\log 3}{\log 4} - \frac{2\sum_{i=1}^{m} \log p_i}{\log p_m})/n}{\frac{1}{\log 4} - \frac{2}{\log p_m}}.$$
 (3.11)

Since $\sum_{i=1}^{m} \log p_i \le m \log p_m$, we get that the right-hand side of (12) is a decreasing function of n. It is easy to check that when n = 27, then inequality holds true only

Table 2.

n =	1	3	5	7	9	11	13	15	17	19	21	23	25
$k \ge$	82	31	21	16	14	12	11	11	10	9	9	9	9

if $q \ge 130$. Since q is a power of 2, when $n \ge 27$ and n|q-1, then q has to be greater than 130. Hence $(q, n) \in \mathfrak{N}$, if $n \ge 27$.

Remark 3.3. When n < 25, by using software Mathematica 4.1, we obtain the range of k such that $(2^k, n) \in \mathfrak{N}$, the result is listed in Table 2. In this case, we are considering only odd values of n as n|q-1.

Corollary 3.4. Let $q = 2^k$ and n be a positive integer with $n \nmid q - 1$. If $n \geq 15$ and $k \geq 10$, then $(q, n) \in \mathfrak{N}$.

Proof. As $n \nmid q - 1$ so by Lemma 2.7, we have $\Omega \leq \frac{3}{4}n$, that is $a = \frac{3}{4}$. Choose m = 25, then by (3.10), we have

$$n > \frac{2m - \frac{2\sum_{i=1}^{m} \log p_i}{\log p_m} + \frac{2\log(3)}{\log(4)}}{\frac{\log q}{\log 16} - \frac{2\log q}{\log p_m} - \frac{3}{4}}.$$
 (3.12)

Since $\sum_{i=1}^{m} \log p_i \le m \log p_m$, we get that the right-hand side of (3.12) is a decreasing function of q. It is clear that when $k \ge 10$, and $n \ge 15$, the above inequality is true that is, $(q, n) \in \mathfrak{N}$ if $n \ge 15$ and $k \ge 10$.

Remark 3.4. The left-hand side of (3.10) is positive only if k > 3. Hence when 3 < k < 10, we obtain the values of n such that $(q, n) \in \mathfrak{N}$, by using software Mathematica 4.1 and the result is listed in Table 3.

Remark 3.5. As stated in Remark 3.2, the existence of primitive normal elements $\alpha \in \mathbb{F}_{q^n}$ such that $\alpha^2 + \alpha + 1$ is primitive is not possible when p = 3.

Corollary 3.5. Let $q = p^k$, where k is a positive integer and p > 3 is a prime and n be a positive integer with n|q-1. If $n \geq 39$, then $(q,n) \in \mathfrak{N}$.

Proof. By Lemmas 2.7, 3.1 and Theorem 3.2, we see that $N_{q^n}(q^n-1,q^n-1,x^n-1)>0$ if

$$q^{n/10} > 3C(q^n - 1)^2 2^n. (3.13)$$

Table 3.

k =	4	5	6	7	8	9
$n \ge$	396	64	34	24	19	15

Equation (3.13) is equivalent to

$$\log q > \frac{10\log 379.69}{n} + 10\log 2. \tag{3.14}$$

The right-hand side of (3.14) is a decreasing function of n. It can be easily checked that when n=39 then (3.14) is true for all $q\geq 41$. Since n|q-1, if $n\geq 39$, then q will have to be greater than 41. So $(q,n)\in\mathfrak{N}$ for all $n\geq 39$ and all q such that n|q-1.

Corollary 3.6. Let $q = p^k$, where k is a positive integer and p > 3 is a prime and n be a positive integer with $n \nmid q - 1$. If $p \geq 5$, $k \geq 3$ and $n \geq 48$, then $(q, n) \in \mathfrak{N}$.

Proof. By Lemmas 2.7, 3.1 and Theorem 3.2, we see that $N_{q^n}(q^n-1,q^n-1,x^n-1) > 0$ if

$$q^{n/10} > 3C(q^n - 1)^2 2^{\frac{3}{4}n}. (3.15)$$

Equation (3.15) is equivalent to

$$n > \frac{\log 379.69}{\frac{1}{10}\log q - \frac{3}{4}\log 2}.$$
(3.16)

Clearly, the right-hand side of the (3.16) is a decreasing function of q and it is positive when q > 181. It can be easily checked that if $q = 5^3$, then (3.14) is true for all $n \ge 48$. So $(q, n) \in \mathfrak{N}$ for all $p \ge 5$, $k \ge 3$ and all $n \ge 48$.

Acknowledgments

This work has been supported by CSIR, New Delhi, Govt. of India, Under Grant No. F.No. 09/086(1145)/2012-EMR-1. We would like to thank the referee for his valuable comments and suggestions. These have led to a better presentation and improved the quality of the paper.

References

- G. B. Agnew, R. C. Mullin, I. M. Onyszchuk and S. A. Vanstone, An implementation for a fast public key cryptosystem, J. Cryptology 3 (1991) 63-79.
- I. F. Blake, X. H. Gao, R. C. Mullin, S. A. Vanstone and T. Yaghoobian, Applications of Finite Fields (Kluwer Academic Publishers, Boston, 1993).
- 3. L. Carlitz, Primitive roots in a finite fields, Trans. Amer. Math. Soc. **73**(3) (1952) 373–382.
- L. Carlitz, Some problems involving primitive roots in a finite field, Proc. Natl. Acad. Sci. USA 38(4) (1952) 314–318.
- W. S. Chou and S. D. Cohen, Primitive elements with zero traces, Finite Fields Appl. 7 (2001) 125–141.
- S. D. Cohen, Consecutive primitive roots in a finite field, Proc. Amer. Math. Soc. 93(2) (1985) 189–197.
- S. D. Cohen and S. Huczynska, The primitive normal basis theorem without a computer, J. Lond. Math. Soc. 67(1) (2003) 41–56.

- S. D. Cohen and S. Huczynska, The strong primitive normal basis theorem, Acta Arith. 143(4) (2010) 299–332.
- S. D. Cohen, Pair of primitive elements in fields of even order, Finite Fields Appl. 28 (2014) 22–42.
- 10. H. Davenport, Bases for finite fields, J. Lond. Math. Soc. 43 (1968) 21–39.
- L. Fu and D. Q. Wan, A class of incomplete character sums, Q. J. Math. 65 (2014) 1195–1211.
- 12. L. B. He and W. B. Han, Research on primitive elements in the form $\alpha + \alpha^{-1}$ over \mathbb{F}_q , J. Inf. Eng. Univ. 4(2) (2003) 97–98.
- G. Kapetanakis, Normal bases and primitive elements over finite fields, Finite Fields Appl. 26 (2014) 123–143.
- H. W. Lenstra Jr. and R. J. Schoof, Primitive normal bases for finite fields, Math. Comp. 48 (1987) 217–231.
- Q. Liao, J. Li and K. Pu, On the existence for some special primitive elements in finite fields, Chin. Ann. Math. B 37 (2016) 259–266.
- R. Lidl and H. Niederreiter, Finite Fields, 2nd edn. (Cambridge University Press, Cambridge, 1997).
- J. L. Massey and J. K. Omura, Computational method and apparatus for finite field arithmatic, US Patent 4587627 (1986).
- R. C. Mullin, I. M. Onyszchuk and S. A. Vanstone, Computational method and apparatus for finite field multiplication, US Patent 4745568.
- T. Tian and W. F. Qi, Primitive normal element and its inverse in finite fields, Math. Comp. Acta Math. Sinica (Chin. Ser.) 49(3) (2006) 657–668.
- D. Q. Wan, Generators and irreducible polynomials over finite fields, Math. Comp. 66 (1997) 1195–1212.
- P. P. Wang, X. W. Cao and R. Q. Feng, On the existence of some specific elements in finite fields of characteristic 2, Finite Fields Appl. 18(4) (2012) 800–813.