SUPERVISED LEARNING - REGRESSION

JENS BAETENS

LINEAIRE REGRESSION

	feature	output
0	15.923194	232.602081
1	4.294681	81.283221
2	18.450278	217.219276
3	1.454430	39.722608
4	15.529496	230.239091
5	0.994415	33.785656
6	17.832737	204.194535
7	9.533831	127.256491
8	11.308549	169.846785
9	1.165202	53.876601

Voorspel het resultaat in de output kolom op basis van de inputs (hier de feature kolom)

Output wordt ook vaak target genoemd Trainingsset = 10 training examples

Output is een (continue) variabele

WAT IS HET BESTE MODEL?

ENKELVOUDIGE LINEAIRE REGRESSIE

Zoek verband feature en output 250

Lineaire trendlijn f(x)

Enkelvoudig of univariate

ENKELVOUDIGE LINEAIRE REGRESSIE

De trendlijn = Het verband tussen twee waarden

$$f_w(x) = w_0 + w_1 x =$$
target

Regressie zoekt de optimale waarden voor w₀ en w₁

Deze waarden worden gewichten genoemd (weights) of de te trainen parameters

- Gecombineerd voorgesteld als vector $\mathbf{w} = [\mathbf{w}_0, \mathbf{w}_1]$

Het zoeken van het trendlijn / model / hypothese = training / learning

WAT IS HET BESTE MODEL?

WAT IS HET BESTE MODEL?

Beste model wordt gekozen door minimalisatie van een kostenfunctie.

Bvb: Least Mean Squares (LMS) voor N examples met input x^i en targets y^i

$$L(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\mathbf{w}}(x^{i}) - y^{i})^{2}$$

GRADIENT DESCENT

GRADIENT DESCENT – LOKAAL MINIMUM?

LMS-functie is convex

- Hierdoor altijd global minimum

Bij neurale netwerken kan het wel

GRADIENT DESCENT – LEARNING RATE

Bepaalt hoe snel je het optimum benaderd.

"De grootte van de stappen"

TRAINEN VAN HET MODEL

Zelf implementeren of gebruik maken van bestaande frameworks (sklearn)

Construct model => Fit model => Make predictions

MEERDERE FEATURES

In de praktijk zijn er normal meer features beschikbaar.

- Meervoudige of multiple regression

Bovenstaande formules aan te passen met meer gewichten.

Hoeveel extra gewichten per feature nodig?

EVALUEREN VAN HET MODEL

Gemiddelde kwadratische fout $MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$

Gemiddelde absolute fout
$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

Determinatie coëfficiënt $R^2 = \frac{\sum_{i=1}^{N} (y_i - y_i)^2}{\sum_{i=1}^{N} (y_i - y_i)^2}$

FEATURE ENGINEERING - NORMALISATION

Herschaal elke kolom (behalve target) zodat

- Gemiddelde gelijk aan 0
- Standaardafwijking is 1

Andere vormen:

- Delen door het maximum
- Schalen naar het interval 0-1

```
scaler = StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
```

FEATURE ENGINEERING – HIGHER ORDER

FEATURE ENGINEERING – EXTRA FEATURES

Bedenken van nieuwe features

- Oppervlakte op basis van breedte en lengte
- Uit start en eindpunt de afstand halen
- Snelheid bereken op basis van afgelegde afstand en duur van de rit
- Dag van de week of welke maand het is uit de datum halen.
- ...

UNDERFITTING

Model is te eenvoudig om de data correct te modelleren

OVERFITTING

OVERFITTING - REGULARISATIE

Extra term in de kostenfunctie voor het gebruik van features te penaliseren

$$L(\boldsymbol{w}) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\boldsymbol{w}}(x^i) - y^i)^2 + \lambda R(\boldsymbol{w})$$

De parameter λ is de mate waarin er regularisatie is

- 0 -> geen regularisatie
- ∞-> alle gewichten zijn nul

OVERFITTING – L2NORM

Regularisatieterm = $\sum_{i=1}^{N} w_i^2$

Merk op dat de som begint vanaf 1

De bias wordt niet in rekening gebracht

OVERFITTING - L1NORM

Regularisatieterm = $\sum_{i=1}^{N} |w_i|$

Voordeel is dat gewichten op nul gezet kunnen worden

https://towards data science.com/l1- and-l2-regularization-explained-874 c3b 03f 668

GLOSSARY

- Supervised
- Unsupervised
- Reinforcement Learning
- Regression
- Overfitting
- Underfitting
- Learning Rate
- Loss Function

- Feature Engineering
- Normalisation
- Regularisation
- Trainen van een model

Teyrossie -> Verbond rocken tusen inputs a outputs -> Doel: Nieuwe input
Voorspelling = Weinkil Verband = Model opbouwer > # parameters

-gewickta ??

-f ()()=w, +w, x # Hyperparameters -ML techniek -parometers v.ol. tekniek - antal - complexiteit -learning rate model -Lin Roger: # para = #features + 1 1) Kiesa hyporparenetors Istructuros organitase 2) Model troinen: fitten fito La Parameters orangama - trial xerros 5 cm een bot te minimalisera -> 175 E : gem - efstæmblen - font - hwadratis-ch -> vermijden La gradient à les cart 3) Model evalueren les accurats let? -> 15 E : Roog -> Slecht mobil

Show let verbond niet weryen - Frainingsilater : laag : niet noodzakelijk goed/

- Festolator -> oleel v. il data apart -> Niet gebruikt in de fit -> troum-test_split () LoMSE = lang -> goed model - Roog (blouwe Cijnvorige slike) -> overfitting - je lært te veel over traingsdocke -> oplossing a - moer olata - regularisatre bejohn sporameters gaan reminer