Exp.No: 7 Stability analysis of linear systems using Bode plot

19BEE0160 VARRNIT JAISWAL

Date: 06.10.2020

Aim and PROBLEM STATEMENT:

- i) Draw the bode plot
- ii) determine stability of the system through gain margin and phase margin

Problem-1: The open loop transfer function of certain unity feedback control system is given by

$$G(S) = \frac{K}{S(S+2)^2}$$

Draw the bode plot and determine gain margin and phase margin.

Problem-2: The open loop transfer function of certain unity feedback control system is given by

$$G(S) = \frac{K}{S(1+S)(1+2S)}$$

Draw the bode plot and determine gain margin and phase margin.

MANUAL CALCULATION:

755555555555555555555

> 0.25 (gw)(1+gw-0.21 w)

Step 2: > w = 0.2 , w = 2; w = 20

factors y read state charge in slope deld.

Step-3 $A_1(at we) = 20 \log_{\frac{0.25}{w}} = 1.938db$ $A_2(at we) = 20 \log_{\frac{0.25}{w}} = -18.062 db$

As (at won) = A2 + (Slape from we town) log won

= -18.06 + (-60 log 20)

=) -78.062db

(w (rad /s)	0-2	2	20
Acdo)	1-938	-18.062	-78. 082

Step-4: phase Angle Collulation: φ = [C4 (900) H (900) ; 9 (900) H (900) = 0-25 900 (149 0 < 00)² = -900-21an-10.5 W φ, = -90° - tan-1 (w w w (wn=2) $C_{12} = -90^{\circ} - (180^{\circ} + tan^{-1} \omega) \omega_{1} \omega_{1}$ 0.2 1 2 5 10 20 -101.4°-145° -180° -226.4° -247° -2586 N : Com = +18db PM = +70° System is stable, and closed loop.

Program And MATLAB Output

1:

2:

Inference:

