Topici speciale în logică și securitate l

Ioana Leuștean

Master anul II, Sem. I, 2019-2020

Cuprins

- Mulţimi parţial ordonate
- 2 Latici
- 3 Teoreme de punct fix
- 4 Aplicaţii

Mulțimi parțial ordonate

Relații binare

A multime, $R \subseteq A \times A$

Relația binară R se numește:

- reflexivă: $(x, x) \in R$ or. $x \in A$
- simetrică: $(x, y) \in R$ implică $(y, x) \in R$ or. $x, y \in A$
- antisimetrică: $(x,y) \in R$ și $(y,x) \in R$ implică x = y or. $x, y \in A$
- tranzitivă: $(x, y) \in R$ și $(y, z) \in R$ implică $(x, z) \in R$ or. $x, y, z \in A$
- relație de preordine: reflexivă, tranzitivă
- relație de ordine: reflexivă, antisimetrică, tranzitivă
- relaţie de echivalenţă: reflexivă, simetrică, tranzitivă

Mulțimi parțial ordonate

O mulțime parțial ordonată (**mpo**) este o pereche (A, R), unde A este o mulțime și R este o relație de ordine pe A.

Exemple.

- $(\mathcal{P}(T),\subseteq)$ unde T este o mulțime,
- (\mathbb{N}, \leq) , $(\mathbb{N}, |)$ cu | relația de divizibilitate,
- $(Pf(A, B), \prec)$ unde

A, B sunt mulțimi,

$$Pf(A, B) = \{f : A \rightarrow B | f \text{ functie parțială} \},$$

 $f \prec g \Longrightarrow dom(f) \subseteq dom(g) \text{ si } f(a) = g(a) \text{ or. } a \in dom(f)$

Relațiile de ordine sunt uzual notate cu \leq . Dacă (A, \leq) este **mpo** si $\geq := \leq^{-1}$ atunci (A, \geq) este **mpo**.

Mulțimi total ordonate

Fie (A, \leq) *mpo*. Două elemente a_1 , $a_2 \in A$ se numesc **comparabile** dacă $a_1 \leq a_2$ sau $a_2 \leq a_1$.

Exemplu. In $(\mathbb{N},|)$ elementele 2 si 4 sunt comparabile, dar elementele 3 si 7 nu sunt comparabile.

O relație de ordine parțială se numește **totală** (**liniară**) dacă oricare două elemente sunt comparabile. O **mulțime total ordonată** este o pereche (A, \leq) unde A este o mulțime și \leq este o relație de ordine totală pe A. Pentru mulțimile total ordonate este folosită și denumirea de **lan**ț.

Exemplu. $(\mathcal{LR}, \leq_{lex})$ este lanţ, unde \mathcal{LR} este mulţimea cuvintelor din DEX, iar \leq_{lex} este relaţia de ordine lexicografică.

Produsul cartezian de lanţuri

Fie (A_1, \leq_1) , (A_2, \leq_2) lanţuri.

• Pe $A_1 \times A_2$ definim relația de ordine pe componente $(x_1,x_2) \leq (y_1,y_2) \Leftrightarrow x_1 \leq_1 y_1 \text{ si } x_2 \leq_2 y_2.$ $(A_1 \times A_2, \leq)$ este mpo. Dacă $|A_1|$, $|A_2| \geq 2$ atunci $(A_1 \times A_2, \leq)$ nu e lanț.

Exemplu. In $\mathbb{R} \times \mathbb{R}$ elementele (2,3) si (4,1) nu sunt comparabile.

• Pe $A_1 \times A_2$ definim **relația de ordine lexicografică** $(x_1, x_2) \leq_{\mathit{lex}} (y_1, y_2) \Leftrightarrow (x_1 \leq_1 y_1 \text{ si } x_1 \neq y_1) \text{ sau}$ $(x_1 = y_1 \text{ si } x_2 \leq_2 y_2).$ $(A_1 \times A_2, \leq)$ este **lanț**.

Exercitiu. Definiți relația de ordine lexicografică pe produsul cartezian a n lanțuri $(A_1, \leq_1), \dots, (A_n, \leq_n)$.

Elemente minimale si maximale

Fie (A, \leq) **mpo**. Un element $e \in A$ se numește

- element minimal dacă ($a \le e \Rightarrow a = e$);
- prim element (minim) dacă $e \le a$ or $a \in A$;
- element maximal dacă $(e \le a \Rightarrow a = e)$;
- ultim element (maxim) dacă $a \le e$ or $a \in A$.

Exemplu. In **mpo** $(\{2,4,5,10,12,20,25\},|)$, elementele minimale sunt 2 si 5, iar elementele maximale sunt 12, 20, 25.

Orice minim (maxim) este element minimal (maximal). Invers nu este adevărat.

Diagrame Hasse

Exemplu. $(\{2,4,5,10,12,20,25\},|)$ este reprezentata prin

Sortarea topologică

Este folosită în probleme de planificare. Presupunem că un project este format din mai multe procese care se conditioneaza intre ele: procesul p nu poate începe decât după terminarea procesului q. Mulțimea proceselor devine astfel mulțime parțial ordonată (P,\leq) . Se pune problema găsirii unei secvențe de execuție a proceselor.

O relație de ordine totală $\triangleleft \subseteq P \times P$ este compatibilă cu relația de ordine parțială \le dacă $x \le y \Rightarrow x \triangleleft y$ oricare $x, y \in P$. Determinarea unei relații de ordine totale compatibile cu o relație de ordine parțială dată se numește **sortare topologică**.

Algoritm de sortare topologică

```
Intrare: (P, \leq) mpo, n = |P| k := 1 while P \neq \emptyset { p_k := un element minimal al lui P; P := P \setminus \{p_i\}; k := k + 1 }
```

lesire: $p_1 \triangleleft \cdots \triangleleft p_n$ este o ordonare totala compatibilă

Sortare topologică

Sortare topologică

Infimum si supremum

Fie (A, \leq) **mpo**. Un element $a \in A$ se numește

- minorant al lui X daca $a \le x$ or. $x \in X$;
- majorant al lui X daca $x \le a$ or. $x \in X$;
- infimum al lui X daca a este cel mai mare minorant (a este ultim element in multimea minoranţilor lui X);
- supremum al lui X dacă a este cel mai mic majorant (a este prim element in multimea majoranților lui X).

Exercițiu. Infimumul (supremumul) unei mulțimi, dacă există, este unic.

Infimumul (supremumul) lui X îl vom nota $\inf X$ ($\sup X$). Dacă $X = \{x_1, x_2\}$ atunci notăm $\inf\{x_1, x_2\}$, $\sup\{x_1, x_2\}$.

Exemple

- •(\mathbb{R}, \leq), $X=(3,4], Y=\mathbb{N}$ mulțimea majoranților lui X este $[4,\infty)$, 4 este ultim element pt. X, mulțimea minoranților lui X este $(-\infty,3]$, 3 este infimum pt. X, Y nu are majoranți (ultim element, supremum), mulțimea minoranților lui Y este $(-\infty,0)$, 0 este prim element pt. Y.
- $ullet(\mathbb{N}, |), X = \{n_1, n_2\}$ $\sup X = \sup\{n_1, n_2\} = cmmmc\{n_1, n_2\}$ $\inf X = \inf\{n_1, n_2\} = cmmdc\{n_1, n_2\}$
- $\bullet (\{2,4,5,10,12,20,25\},|), \ \textit{X} = \{12,20,25\} \\ \textit{X} \ \text{nu are minoranți si nici majoranți}$
- $\bullet (\mathcal{P}(T), \subseteq), \ \mathcal{X} \subseteq \mathcal{P}(T)$ sup $\mathcal{X} = \bigcup \{Y | Y \in \mathcal{X}\}, \ \inf \ \mathcal{X} = \bigcap \{Y | Y \in \mathcal{X}\}$

Latici

Latici

Definitia L1.

O **mpo** (L, \leq) este latice dacă $\sup\{x_1, x_2\}$, $\inf\{x_1, x_2\}$ există oricare $x_1, x_2 \in L$.

Infimumul (supremumul) devin operații pe *L*:

$$\forall: L \times L \to L, x_1 \vee x_2 := \sup\{x_1, x_2\}, \\ \land: L \times L \to L, x_1 \wedge x_2 := \inf\{x_1, x_2\}.$$

Propoziție

Următoarele identități sunt satisfăcute:

asociativitate:

$$(x \lor y) \lor z = x \lor (y \lor z), (x \land y) \land z = x \land (y \land z),$$

- comutativitate: $x \lor y = y \lor x$, $x \land y = y \land x$,
- absorbţie: $x \lor (x \land y) = x$, $x \land (x \lor y) = x$.

Demonstrație. exercitiu.

Laticea (L, \leq) devine structură algebrică (L, \vee, \wedge) .

Definiția algebrică a Laticilor

Definitia L2.

O **latice** este o structură algebrică (L, \vee, \wedge) unde \vee si \wedge sunt operații binare asociative, comutative și care verifică proprietățile de absorbție.

Lema. $x \lor y = y \Leftrightarrow x \land y = x \text{ or. } x, \ y \in L.$ Demonstrație. Daca $x \lor y = y$, atunci $x = x \land (x \lor y) = x \land y$.

Propozitie

Fie (L, \vee, \wedge) in sensul Definiției L2. Definim $x \le y \Leftrightarrow x \vee y = y \Leftrightarrow x \wedge y = x$. Atunci (L, \le) este latice in sensul Definiției L1. In plus $\sup\{x,y\} = x \vee y$, $\inf\{x,y\} = x \wedge y$ or. $x, y \in L$.

Latici marginite

O latice este marginită dacă are prim și ultim element. Primul element se notează cu 0, iar ultimul element se notează cu 1.

O latice marginită va fi notata prin $(L,\leq,0,1)$, iar ca structură algebrică prin $(L,\vee,\wedge,0,1)$. Se observă că:

$$x \lor 0 = x$$
, $x \land 0 = 0$, $x \lor 1 = 1$, $x \land 1 = x$ or. $x \in L$.

Elementul x este **complement** al lui y daca $x \lor y = 1$ si $x \land y = 0$.

O latice este complementată dacă orice element are cel puțin un complement.

Exemplu. Determinați elementele complementate în laticile:

Algebre Boole

O latice (L, \vee, \wedge) este **distributivă** dacă, or $x, y \in L$: $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$ și $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$.

Lemă

Într-o latice distributivă și marginită, un element are cel mult un complement. Demostrație. Fie y_1 , y_2 complemente pentru x. Obținem $y_1 = y_1 \land 1 = y_1 \land (y_2 \lor x) = y_1 \land y_2 = y_2 \land (y_1 \lor x) = y_2 \land 1 = y_2$

O algebra Boole este o latice distributivă și complementată cu prim si ultim element. Dacă B este o algebră Boole, atunci pentru orice element există un unic complement. Putem defini o operație

 $\bar{x}: B \to B$ prin $\bar{x}:=$ complementul lui x.

O algebră Boole este o structură algebrică

$$(B, \vee, \wedge, ^-, 0, 1).$$

George Boole - *The Mathematical Analysis of Logic* (1847) Analiza raționamentelor prin metode asemănătoare calculului algebric.

Teoreme de punct fix

CPO. Latici

CPO

O **mpo completă** (CPO) este o mulțime parțial ordonată (C, \leq) cu proprietățile:

- C are prim element \perp ,
- $\sup X$ există pentru orice lanț $X \subseteq C$.

Exemplu. $(Pf(A, B), \prec)$ este CPO.

Latice

```
O mpo (L, \leq) este latice dacă \sup\{x_1, x_2\} si \inf\{x_1, x_2\} există oricare ar fi x_1, x_2 \in L. Laticea (L, \leq) este completă dacă \inf X si \sup X există oricare ar fi X \subseteq L. Exemplu. (\mathcal{P}(A), \subseteq) este latice completă.
```

Exercițiu.

- (a) Orice latice completă este CPO.
- (b) Orice latice completă are prim si ultim element.

Funcție crescătoare. Puncte fixe.

Funcție crescătoare

Dacă (A, \leq_A) si (B, \leq_B) sunt **mpo** atunci o funcție $f: A \to B$ este **crescătoare** dacă $a_1 \leq_A a_2 \Rightarrow f(a_1) \leq_B f(a_2)$ or. $a_1, a_2 \in A$.

Funcție continuă

Dacă (A, \leq_A) si (B, \leq_B) sunt CPO atunci o funcție $f: A \to B$ este **continuă** dacă pentru orice lanț $\{a_n | n \in \mathbb{N}\}$ din A $f(\sup\{a_n | n \in \mathbb{N}\}) = \sup\{f(a_n) | n \in N\}.$

Exercitiu. Orice functie continuă este crescătoare.

Punct fix

Un element $a \in A$ este **punct fix** al unei funcții $f: A \to A$ dacă f(a) = a.

Teoreme de punct fix

Teorema Kleene pentru latici complete

Fie (L, \leq) latice completă și $\mathbf{F}: L \to L$ o funcție crescătoare. Atunci $a = \inf\{x \in L | \mathbf{F}(x) \leq x\}$ este cel mai mic punct fix al funcției \mathbf{F} .

Teorema Knaster-Tarski pentru CPO

Fie (C, \leq) o CPO si $\mathbf{F}: C \to C$ o funcție continuă. Atunci $a = \sup\{\mathbf{F}^n(\bot) | n \in \mathbb{N}\}$ cel mai mic punct fix al funcției \mathbf{F} .

Observăm că în ipotezele ultimei teoreme secvența $\mathbf{F}^0(\bot) = \bot \leq \mathbf{F}(\bot) \leq \mathbf{F}^2(\bot) \leq \cdots \leq \mathbf{F}^n(\bot) \leq \cdots$ este un lanț, deci *a* există.

Teoreme de punct fix

Exemplu.

$$\begin{split} & \textit{Pf}(\mathbb{N},\mathbb{N}) \; \mathsf{CPO}, \; \bot : \mathbb{N} \to \mathbb{N}, \; \bot(k) \; \mathsf{nedefinit" a or.} \; \; k \in \mathbb{N} \\ & \mathbf{F} : \textit{Pf}(\mathbb{N},\mathbb{N}) \to \textit{Pf}(\mathbb{N},\mathbb{N}) \\ & \mathbf{F}(g)(k) := \left\{ \begin{array}{ll} 1, & k = 0 \\ k * g(k-1), & k > 0 \; \mathsf{si} \; g(k-1) \; \mathsf{e} \; \mathsf{definit" a} \\ \mathsf{nedefinit}, & \mathsf{altfel} \end{array} \right. \end{split}$$

Deoarece ${\bf F}$ este continuă, conform Teoremei Knaster-Tarski, cel mai mic punct fix al funcției ${\bf F}$ este $f=\sup\{{\bf F}^n(\bot)|n\in\mathbb{N}\}.$

$$\mathit{f}(\mathit{k}) = \mathbf{F}(\mathit{f})(\mathit{k}) := \left\{ \begin{array}{ll} 1, & \mathit{k} = 0 \\ \mathit{k} * \mathit{f}(\mathit{k} - 1), & \mathit{k} > 0 \text{ si } \mathit{f}(\mathit{k} - 1) \text{ e definită} \\ \mathsf{nedefinit}, & \mathsf{altfel} \end{array} \right.$$

f este funcția factorial.

Teoremele de punct fix sunt folosite in semantica denotațională pentru a defini semantica instrucțiunii while.

Knaster-Tarski pentru CPO

Demonstrație.

```
Fie (C, \leq) CPO si \mathbf{F}: C \to C funcție continuă.

(I) a = \sup\{\mathbf{F}^n(\bot) | n \in \mathbb{N}\} este punct fix.

\mathbf{F}(a) = \mathbf{F}(\sup\{\mathbf{F}^n(\bot) | n \in \mathbb{N}\})
= \sup\{\mathbf{F}(\mathbf{F}^n(\bot)) | n \in \mathbb{N}\} \text{ (continuitate)}
= \sup\{\mathbf{F}^{n+1}(\bot) | n \in \mathbb{N}\}
= \sup\{\mathbf{F}^n(\bot) | n \in \mathbb{N}\} = a
```

(II) a este cel mai mic punct fix.

Fie b un alt punct fix, i.e. $\mathbf{F}(b)=b$. Demonstrăm prin inducție după $n\geq 1$ că $\mathbf{F}^n(\bot)\leq b$. Pentru n=0, $\mathbf{F}^0(\bot)=\bot\leq b$ deoarece \bot este prim element. Dacă $\mathbf{F}^n(\bot)\leq b$, atunci $\mathbf{F}^{n+1}(\bot)\leq \mathbf{F}(b)$, deoarece \mathbf{F} este crescătoare. Dar $\mathbf{F}(b)=b$, deci $\mathbf{F}^{n+1}(\bot)\leq b$.

Kleene pentru latici complete

Demonstrație.

Fie (L, \leq) latice completă și $\mathbf{F}: C \to C$ funcție crescătoare.

(I) $a = \inf\{x \in L | \mathbf{F}(x) \le x\}$ este punct fix.

Fie $X:=\{x\in L|\mathbf{F}(x)\leq x\}$ si fie $x\in X$. Atunci $a\leq x$, deci $\mathbf{F}(a)\leq \mathbf{F}(x)\leq x$. Am demonstrat ca $\mathbf{F}(a)\leq x$ oricare $x\in X$, deci $\mathbf{F}(a)$ este un minorant pentru X. În consecință, $\mathbf{F}(a)\leq a$. Observăm că $\mathbf{F}(a)\in X$, deci $a\leq \mathbf{F}(a)$. Din $\mathbf{F}(a)\leq a$ și $a\leq \mathbf{F}(a)$ rezulta $\mathbf{F}(a)=a$.

(II) a este cel mai mic punct fix.

Fie b un alt punct fix, i.e. $\mathbf{F}(b) = b$. Atunci $b \in X$, deci $a \le b$.

Aplicații

Ce este analiza statică?

Analiza statică presupue analiza proprietăților programelor fără a le rula.

Exemple de proprietăți: analiza tipurilor, pointeri nuli, atribuiri nefolosite, vulnerabilităti de cod (de exemplu depășiri de indici), etc.

- Mulţimi parţial ordonate
- 2 Latici
- 3 Teoreme de punct fix
- 4 Aplicaţii

Veți studia mai multe probleme de analiză statică în al doilea modul!

Control Flow Graphs (CFG)

```
x = 10;
y = 1;
if (x < y) z = x;
    else z = y;
print z
```


Control Flow Graphs (CFG)

```
x = 10;
y = 1;
if (x < y) z = x;
    else z=y;
print z
```

Adăugăm etichete pentru nodurile grafului.

https://cs420.epfl.ch/c/06_dataflow-analysis.html

O variabilă este activă (live) într-un punct al programului dacă este posibil ca valoarea curentă variabilei să fie citită înainte de a fi rescrisă.

Pentru un nod n din CFG vom nota cu v_n mulțimea variabilelor care sunt *live* înaintea lui.

Observám că

$$v_n = \left(\bigcup \{v_i \mid i \text{ succesor al lui } n\} \setminus \textit{Written}(n)\right) \cup \textit{Read}(n)$$

Written(n) este mulțimea variabilelor care primesc valori în nodul n, Read(n) este mulțimea variabilelor care sunt citite în nodul n.

Ținând cont de condiția găsită obținem un sistem de constrângeri:

Rezolvând sistemul, găsim o soluție:

$$\begin{array}{rcl}
 v_1 & = & \emptyset \\
 v_2 & = & \{x\} \\
 v_3 & = & \{x, y\} \\
 v_4 & = & \{x\} \\
 v_5 & = & \{y\} \\
 v_6 & = & \{z\}
 \end{array}$$

CFG - observații

- În analiza problemei anterioare, fiecărui nod din graful de control al fluxului i-am asociat o mulțime de variabile, ce reprezintă soluția unui sistem de ecuații in $\mathcal{P}(Var)$, unde Var este mulțimea variabilelor din program.
- În general, analiza unei probleme poate conduce la un sistem de ecuații într-o latice oarecare L. Există o metodă generală de rezolvare a unui astfel de sistem?

Laticea produs

Fie L o latice și $n \ge 1$.

Laticea produs L^n

Pe L^n definim relația de ordine pe componente:

$$(x_1,\ldots,x_n) \leq (y_1,\ldots,y_n)$$
 ddacă $x_i \leq y_i$ pt. orice $i \in \{1,\ldots,n\}$

Observăm că (L^n,\leq) este latice. În plus, dacă L este latice completă atunci și L^n este latice completă.

Sisteme de ecuații în latici complete

Fie L o latice completă, $n \ge 1$ și

 $F_1, \ldots, F_n : L^n \to L$ funcții monotone.

Vrem să rezolvăm sistemul

$$x_1 = F_1(x_1, \dots, x_n)$$

 $x_2 = F_2(x_1, \dots, x_n)$
 \dots

$$x_n = F_n(x_1, \ldots, x_n)$$

 $\operatorname{cu} x_1, \ldots, x_n \in L.$

Definim funcția $F:L^n\to L^n$ prin

$$F(x_1,...,x_n) = (F_1(x_1,...,x_n),...,F_1(x_1,...,x_n))$$

și observăm că sistemul se poate scrie

$$F(x_1,\ldots,x_n)=(x_1,\ldots,x_n)$$

Sistemul de ecuații poate fi rezolvat folosind Teorema de punct fix!

În consecință, a rezolva sistemul:

$$v_1 = v_2 \setminus \{x\}
 v_2 = v_3 \setminus \{y\}
 v_3 = v_4 \cup v_5 \cup \{x, y\}
 v_4 = (v_6 \setminus \{z\}) \cup \{x\}
 v_5 = (v_6 \setminus \{z\}) \cup \{y\}
 v_6 = \{z\}$$

revine la a găsi o soluție a ecuației:

$$F(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}) = (x_{2} \setminus \{x\}, x_{3} \setminus \{y\}, x_{4} \cup x_{5} \cup \{x, y\}, (x_{6} \setminus \{z\}) \cup \{x\}, (x_{6} \setminus \{z\}) \cup \{y\}, \{z\})$$
în laticea completă ($\mathcal{D}(Var) \subset (A, Var)$

în laticea completă $(\mathcal{P}(\mathit{Var}),\subseteq,\emptyset,\mathit{Var}).$

Rezolvarea folosind teorema de punct fix

$$F(x_1, x_2, x_3, x_4, x_5, x_6) = (x_2 \setminus \{x\}, x_3 \setminus \{y\}, x_4 \cup x_5 \cup \{x, y\}, (x_6 \setminus \{z\}) \cup \{x\}, (x_6 \setminus \{z\}) \cup \{y\}, \{z\})$$

Determinarea celui mai mic punct fix:

	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆
	Ø	Ø	Ø	Ø	Ø	Ø
$F(\perp)$	Ø	Ø	$\{x,y\}$	{ <i>x</i> }	{ <i>y</i> }	{ <i>z</i> }
$F^2(\perp)$	Ø	{ <i>x</i> }	$\{x,y\}$	{ <i>x</i> }	{ <i>y</i> }	{z}
$F^3(\perp)$	Ø	{ <i>x</i> }	$\begin{cases} x, y \\ \{x, y\} \\ \{x, y\} \end{cases}$	{ <i>x</i> }	{ <i>y</i> }	{ <i>z</i> }

unde
$$\bot = (\emptyset, \dots, \emptyset)$$

Exemplu: Semantica urmelor trace semantics

Semantica urmelor (trace semantics)

Semantica urmelor definește comportamentul programului printr-un sistem de tranziții între stări.

$$\begin{aligned} &\textit{Nodes} = \{1, 2, 3, 4\}, \; \textit{Var} = \{x\}, \\ &\mathbb{Z}^{\textit{Var}} \simeq \mathbb{Z} \\ &\textit{St} = \mathbb{Z} \times \textit{Nodes} \\ &\tau : \mathcal{P}(\textit{St}) \rightarrow \mathcal{P}(\textit{St}) \\ &\tau(\{(x, 1)\}) = \{(x, 2)\} \\ &\tau(\{(x, 2)\}) = \{(x, 3)\} \; \mathsf{dac\check{a}} \; x < 100 \\ &\tau(\{(x, 2)\}) = \{(x, 4)\} \; \mathsf{dac\check{a}} \; x \geq 100 \\ &\tau(\{(x, 3)\}) = \{(x + 2, 2)\} \\ &\tau(\textit{S}) = \bigcup_{s \in \mathcal{S}} \tau(\textit{s}) \end{aligned}$$

Fie $I \subseteq St$ mulţimea stărilor iniţiale.

Definim
$$\Phi_I : \mathcal{P}(St) \to \mathcal{P}(St) \ \Phi_I(S) = I \cup \tau(S)$$

Aplicând Teorema de punct fix obţinem $R = \mathit{lfp}(\Phi_I)$, cel mai mic punct fix al funcţiei Φ .

R este mulțimea stărilor accesibile din mulțimea de stări inițiale I.

Exemplu: Interpretări abstracte

Semantica urmelor este o semantica concretă, comportamentul unui program poate fi descris ca un șir de tranziții și asociază unei mulțimi de stări o altă mulțime de stări.

Dorim să analizăm comportamentul programului din punctul de vedere al unei proprietăți satisfăcute de o mulțime de stări. Acest proces se numește abtractizare și poate fi reprezentat matematic printr-o funcție

$$\alpha: \mathcal{P}(\mathit{St}) \to \mathit{A}$$

unde A este domeniul abstract prin care reprezentăm proprietatea pe care o analizăm. Procesul invers se numește concretizare și poate fi reprezentat printr-o funcție

$$\gamma: A \to \mathcal{P}(St)$$

În teoria interpretărilor abstracte, α și γ definesc o conexiune Galois:

$$\mathcal{P}(St) \stackrel{\gamma}{\underset{\alpha}{\longleftrightarrow}} A$$

Conexiune Galois

Fie (C, \leq_C) și (A, \leq_A) mulțimi parțial ordonate. O conexiune Galois este definită de două funcții $C \leftrightarrows_{\alpha}^{\gamma} A$ care satisfac următoarea proprietate:

$$\alpha(c) \leq_{\mathcal{A}} a \operatorname{ddacă} c \leq_{\mathcal{C}} \gamma(a)$$

pentru orice $a \in A$ și $c \in C$.

Proprietăți:

- α și γ sunt funcții crescătoare
- $c \le \gamma(\alpha(c))$ pentru orice $c \in C$

Exemplu: interpretări abstracte

Domeniul abstract este $(A = \{pos, neg, zero, \bot, \top\}, \le)$ cu relația de ordine:

 $\bot \le a \le \top$ pentru orice $a \in \{pos, neg, zero\}$.

Fie $St = \mathbb{Z} \times Nodes$ din exemplul anterior. Definim

$$\begin{array}{l} \alpha(\emptyset) = \bot \\ \alpha(S) = pos \ \mathrm{daca} \ x > 0 \ \mathrm{oricare} \ (x,n) \in S \\ \alpha(S) = zero \ \mathrm{daca} \ x = 0 \ \mathrm{oricare} \ (x,n) \in S \\ \alpha(S) = neg \ \mathrm{daca} \ x < 0 \ \mathrm{oricare} \ (x,n) \in S \\ \alpha(S) = \top \ \mathrm{altfel}. \\ \gamma : A \to \mathcal{P}(St) \\ \gamma(\bot) = \emptyset, \ \gamma(\top) = St, \\ \gamma(pos) = \{(x,n) \in St \mid x > 0\}, \\ \gamma(neg) = \{(x,n) \in St \mid x < 0\}, \end{array}$$

 $\gamma(zero) = \{(0, n) \mid n \in Nodes\}.$

 $\alpha: \mathcal{P}(St) \to A$

$$\mathcal{P}(St) \stackrel{\gamma}{\underset{\alpha}{\rightleftharpoons}} A$$

Transformări abstracte

Am calculat stările aplicând folosind teorema de punct fix pentru funția $\Phi_I: \mathcal{P}(St) \to \mathcal{P}(St)$.

Un exemplu de transformare abstractă este $\Phi_I^\#:A\to A$ definită prin $\Phi_I^\#=\alpha\circ\Phi_I\circ\gamma$

Se observă că și pentru $\Phi_I^\#$ se poate aplica teorema de punct fix. În plus, $\alpha(\mathit{lfp}(\Phi_I)) = \mathit{lfp}(\Phi_I^\#).$

În abordarea concretă $\mathit{lfp}(\Phi_I)$ calculează starile în care se poate ajunge dintr-o stare inițială dată.

În abordarea abstractă $\mathit{lfp}(\Phi_I^\#)$ calculează semnul pe care îl vor avea variabilele după execuția programului.

În consecință, o valoare concretă (o mulțime concretă de stări) este aproximată printr-un element din domeniul abstract ales (un element din laticea semnelor).