1

Quiz 6

S Nithish

Abstract—This document contains the solution of the question from NCERT 12th standard chapter 10 exercise 10.3 problem 14

1 Exercise 10.3

1) If either $\mathbf{a} = 0$ or $\mathbf{b} = 0$, then $\mathbf{a}^{\mathsf{T}}\mathbf{b} = 0$. But the converse need not be true. Justify your answer with an example.

If either $\mathbf{a} = 0$ or $\mathbf{b} = 0$, then either $a_i = 0 \ \forall i$ or $b_i = 0 \ \forall i$. This implies,

$$a_i b_i = 0 \forall i \Rightarrow \sum_i a_i b_i = 0 \tag{1.0.1}$$

$$\mathbf{a}^{\mathsf{T}}\mathbf{b} = \sum_{i} a_{i}b_{i} = 0 \tag{1.0.2}$$

The converse need not be true, i.e if $\mathbf{a}^{\mathsf{T}}\mathbf{b}$ then it is possible that both \mathbf{a} and \mathbf{b} are non zero, and perpendicular to each other.

Example:

$$\mathbf{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{1.0.3}$$

$$\mathbf{a}^{\mathsf{T}}\mathbf{b} = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{1.0.4}$$

$$= 1 - 1$$
 (1.0.5)

$$=0 (1.0.6)$$

We, have $\mathbf{a}^{\mathsf{T}}\mathbf{b} = 0$ but $\mathbf{a} \neq 0$ and $\mathbf{b} \neq 0$.