

A Character-level Convolutional Neural Network for Distinguishing Similar Languages and Dialects

Yonatan Belinkov, James Glass

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA {belinkov,glass}@mit.edu

1. Overview

- Discriminating closely-related language varieties
- DSL shared-task with two sub-tasks:
- 1. Similar languages, journalistic texts
- 2. Arabic dialects, speech transcriptions
- Previous work mostly used sequences of characters and words, with simple machine learning algorithms (SVM, MaxEnt)
- We use a fully character-level convolutional neural network

2. Approach

Multi-class classification

- Given pairs of texts and labels, $\{t^{(i)}, l^{(i)}\}$, learn predictor $f: t \rightarrow l$
- Implement predictor as a neural network
- Represent text as sequence of characters: $t := c_1, ..., c_L$

Architecture Output layer Softmax h'Hidden layer Fully-connected hPooling Max-over-time $h_1, ..., h_L$ Multiple parallel convolutional layers Conv Conv Conv $x_1, ..., x_L$ Input layer Embedding $c_1, ..., c_L$

3. Implementation Details

- Cross-entropy loss with mini-batches, Adam optimizer
- Early stopping on dev set with a 10 epoch patience
- Implemented in Keras with the TensorFlow backend
- Hyper-parameters tuned on 10% of the Arabic train set
- \bullet ρ_{emb} =0.2, ρ_{fc} =0.5, L=400, d_{emb} =50, d_{fc} =250
- Conv filters: {1*50, 2*50, 3*100, 4*100, 5*100, 6*100, 7*100}

4. Submitted Runs

- Sub-task 2 (Arabic dialects)
- Run 1: 90% of train for training, 10% for development
- Run 2: 100% of train for training, stop based on Run 1
- Run 3: 10 models trained on different 90% / 10% splits
- Sub-task 1 (languages): Run 1 similar; Run 2 more filters; Run 3 more hidden units and dropout in FC layer

6. Error Analysis

- 1. Competing features: *AllbnAnyp, hmA, -An;* verb-subject word order: *AndlEt AlHrb*
- 2. Mixing: >h HDrp, bdy vs hl syHdv
- 3. Morphology: *Alm\$kwk fyh*
- 4. Word vs char: *AlmAlky*, *AlhA\$my*
- 5. ASR mistakes: *byt>vr* vs *byt>tr*
- 6. Rare features: *<HnA wyAhm*. But: *bqyt* common in NA

5. Results and Discussion

Test Set	Track	Run	Accuracy	F1 (micro)	F1 (macro)	F1 (weighted)
A	closed	Baseline	0.083			
A	closed	run1	0.8042	0.8042	0.8017	0.8017
A	closed	$\operatorname{run} 2$	0.825	0.825	0.8249	0.8249
A	closed	run3	0.8307	0.8307	0.8299	0.8299
A	closed	Best	0.8938			0.8938
С	closed	Baseline	0.2279			
\mathbf{C}	closed	$\operatorname{run} 1$	0.4487	0.4487	0.4442	0.4449
\mathbf{C}	closed	$\operatorname{run} 2$	0.4357	0.4357	0.4178	0.4181
\mathbf{C}	closed	run3	0.4851	0.4851	0.4807	0.4834
С	closed	Best	0.5117			0.5132

(b) Sub-task 2, test set C, Run 3

Results

- 6/18 in sub-task 2; 2nd to last in sub-task 1
- Spanish most difficult, Malay/Indonesian easiest
- Gulf most confusing Arabic dialect, MSA easiest

Discussion of the Arabic task

- Transcribed texts, Buckwalter transliteration
- MSA confusion, news broadcasts
- Linguistic vs geographic proximity

Predicted AndlEt AlHrb AllbnAnyp EAm 1975 >Syb bxybp >ml whmA yrwyAn kyf ynhArwn wqthA MSA Levantine >h HDrp AlEmyd AlAHtkAk bdy dm\$q AlEASmp AlsyAdyp AlEASmp AlsyAsyp fy fy >kvr mn mrp wbEmlyp nwEyp 2 MSA Egyptian kbyrp jdA hl syHdv AlmnErj fy h*h AlmwAjhp >mA xrjt ElY tlfzywn Aldwlp fy Alywm AltAly lvwrp wqlt lh HAfZ ElY tAryx >ql AlwzArp Alywm Thr AlbrlmAn mn 3 MSA Gulf AlEDwyAt Alm\$kwk fyh <dY msyrp Al<SlAH wbdA h*A qbl SlAp AljmEp North African >wlA Al Al Alsyd AlmAlky ytmnY mn TArq AlhA\$my Alxrwj wlA yEwd >nA bEmrnA ftrp mn HyAty snp Al>xyrp mtEwd ElY wqf Altfrd AHtlAly tEtbr llmsjd gryb mn mjls AlwzrA' wmjls Egyptian Gulf Al\$Eb wAl\$wrY wnqAbp AlmHAmyn wxlAfh fkAn >y wAlAHtjAjyp byt>vr bhA Almsjd b\$>n Al>wDAE North Gulf \$Ahd tglb wAjb |xr mr Ebr EddA mn brnAmjh <HnA wyAhm lA ymnE xrwj bAlb\$r ftzydh whlA Em lxrwqAt AlHq Al\$yx xAld Hqq mEy lA yglq fyjb hdf AlnAtw bAlAxtyAr mn Altwqf lA tqAs bqyt Endk nsmH lkl \$y' HtY tqrr trHb African

Table 1: Example errors made by our system on the Arabic data set.

7. Future Work

- Combine word and char features
- Add word white-lists
- Combine acoustic and phonetic features