VARIETA DI KÄHLER E I LORO PARENTI

(in collaborazione con Antonio J. Di Scala)

Parma, 21 Novembre 2006

Definizione 1 Sia r un intero positivo. Due varietà di Kähler M_1 and M_2 sono dette rparenti se esiste S varietà di Kähler r-dimensionale e due immersioni di Kähler $h_1:S\to M_1$ e $h_2:S\to M_2$.

Definizione 2 Due varietà di Kähler M_1 and M_2 non sono parenti se non esiste una varietà S, dim $S \ge 1$ che soddisfa la Definizione 1.

Definizione 3 Sia r un intero positivo. Due varietà di Kähler M_1 and M_2 sono dette debolmente r-parenti se esistono due varietà r-dimensionali di Kähler S_1 e S_2 localmente isometriche e due immersioni di Kähler $h_1: S_1 \to M_1$ e $h_2: S_2 \to M_2$.

Definizione 4 Due varietà di Kähler M_1 and M_2 <u>non sono deb. parenti</u> se <u>non</u> esistono due varietà S_1 e S_2 , dim S_1 = dim $S_2 \ge 1$ che soddisfano la Definizione 3.

Osservazione Dal punto di vista Riemanniano la definizione di essere parenti è sempre verificata in quanto la geometria Riemanniana di una curva reale è banale.

Osservazione Se due varietà di dimensione complessa 1 sono 1-deb. parenti (cioè esiste un'isometria tra loro) allora sono anche 1-parenti. Infatti l'isometria è olomorfa o antiolomorfa.

Osservazione Se due varietà di Kähler M_1 e M_2 sono r- parenti allora sono anche s-parenti per s < r. Lo stesso discorso <u>non</u> si applica alle varietà deb. parenti.

Ispirazione Lavoro di Umehara e D'Angelo.

Esempio Sia X una K3 con la metrica di Calabi-Yau. Siano J_1 and J_2 due strutture complesse parallele che non appartengono a alla stessa orbita di Iso(X). Allora (X, J_1) e (X, J_2) sono debolmente 2-parenti ma non 2-parenti.

Teorema A Uno spazio Hermitiano simmetrico di tipo noncompatto $(D, g = cg_B)$ e $\mathbb{C}P^m$ non sono debolmente parenti.

Corollario Uno spazio Hermitiano simmetrico di tipo noncompatto e uno spazio Hermitiano simmetrico di tipo compatto non sono debolmente parenti.

Congettura Uno spazio Hermitiano simmetrico di tipo <u>noncompatto</u> e lo spazio Euclideo non sono debolmente parenti.

Metrica di Bergman (1)

Sia $D\subset \mathbb{C}^n$ un dominio limitato e $K_B(z,z)$ il Bergman kernel di D, cioè

$$K_B(z,z) = \sum_{j=0}^{+\infty} |F_j(z)|^2$$

dove $F_j, j=0,1,\ldots$ è una base ortonormale per lo spazio di Hilbert \mathcal{H} delle funzioni olomorfe L^2 -integrabili su D.

Segue che \mathcal{H} contiene tutti i polinomi. Applicando il procedimento di Gram-Schmidt alla successione z_1^k possiamo assumere che esista una successione di polinomi linearmente indipendenti $P_k(z_1), k=0,1\dots$ tali che

$$P_0(z_1) = F_0(z_1, \dots, z_n) = \lambda_0 \in \mathbb{C}^*$$

e

$$P_k(z_1) = F_k(z_1, \dots, z_n), \forall k = 1, \dots$$

Metrica di Bergman (2)

Consideriamo l'applicazione olomorfa

$$\phi: D \to l^2(\mathbb{C}), z = (z_1, \dots, z_n) \mapsto (P(z_1), Q(z)),$$

dove $P(z_1) = (P_0(z_1), P_1(z_1), \dots)$ e $Q(z)$ sono
i termini della successione F_j meno i termini
della successione $P(z_1)$.

Vediamo $l^2(\mathbb{C})\subset \mathbb{C}P^\infty$ come una carta affine $Z_0\neq 0$ dello spazio proiettivo complesso $\mathbb{C}P^\infty$ dotato delle coordinate omogenee $[Z_0,\ldots,Z_j,\ldots]$. La metrica di Fubini-Study g_{FS}^∞ di $\mathbb{C}P^\infty$ si restringe alla metrica di Kähler

$$\frac{i}{2}\partial\bar{\partial}\log(1+\sum_{j=1}^{+\infty}|w_j|^2)\ ,\ w_j=\frac{Z_j}{Z_0}$$

su $l^2(\mathbb{C})$.

Possiamo quindi definire un'immersione di Kähler

$$\Phi(z) = [P(z_1), Q(z)] : (D, g_B) \to (\mathbb{C}P^{\infty}, g_{FS}^{\infty})$$

Applicazioni non-degeneri (1)

Definizione 5 Un'applicazione olomorfa $\Psi: S \to \mathbb{C}P^{\infty}$ è detta *non-degenere* se $\Psi(S)$ non è contenuto in $\mathbb{C}P^N \subset \mathbb{C}P^{\infty}, N < \infty$.

Lemma A Sia $S \subset \mathbb{C}^n$ un sottoinsieme aperto \mathbb{C}^n e sia

$$\Psi: S \to \mathbb{C}P^{\infty}: z \mapsto [\psi_0(z), \psi_1(z), \ldots]$$

una mappa olomorfa indotta da

$$\psi: S \to l^2(\mathbb{C}): z \mapsto (\psi_0(z), \psi_1(z), \ldots)$$

dove $\psi_j, j = 0, 1 \dots$ è una successione infinita di funzioni olomorfe di S. Se esiste una sottosuccessione $\psi_{j\alpha}$ of ψ_j , di funzioni linearmente indipendenti tali che per ogni $s \in S$ esiste una funzione di questa sottosuccessione che non si annulla in s. Allora Ψ è non-degenere. Inoltre se Ψ è non-degenere e $\tilde{\Psi}: S \to \mathbb{C}P^{\infty}$ è un'applicazione olomorfa tale che $\Psi^*(g_{FS}) = \tilde{\Psi}^*(g_{FS})$, allora per il Teorema di rigidità di Calabi $\tilde{\Psi}$ è non-degenere.

Dimostrazione del Teorema A (caso particolare)

Siano $f: S \to D$ e $h: S \to \mathbb{C}P^m$, $0 \in S \subset \mathbb{C}$. Possiamo assumere che $\frac{\partial f_1}{\partial \xi}(0) \neq 0$, $f = (f_1, \ldots, f_n)$. L'applicazione $\Phi \circ f: S \to \mathbb{C}P^{\infty}$, è non-degenere. Infatti

$$(\Phi \circ f)(\xi) = [P(f_1(\xi)), Q(f_1(\xi), \dots, f_n(\xi))]$$

e per il Lemma A basta dimostrare che

$$P_k(f_1(\xi)), k = 0, 1, \dots$$

sono linearmente indipendenti $\forall \xi \in S$. Sia q un intero positivo e supponiamo che esista q e numeri complessi a_0, \ldots, a_q tali che

$$a_0 P_0(f_1(\xi)) + \cdots + a_q P_q(f_1(\xi)) = 0, \ \forall \xi \in S.$$

Segue che $f_1(S)$ è aperto in \mathbb{C} . Quindi la precedente è soddisfatta su tutto \mathbb{C} , e siccome $P_1, \ldots P_q$ sono indipendenti tutti gli a_j 's sono uguali a zero. L'applicazione $i \circ h : S \to \mathbb{C}P^\infty$ (dove $i : \mathbb{C}P^m \hookrightarrow \mathbb{C}P^\infty$ è l'inclusione naturale) è degenere. La contraddizione segue dalla seconda parte del Lemma A.

Dimostrazione del Teorema A (1) Cominciamo a dimostrare il seguente

Lemma Sia $(D, g = cg_B)$ uno spazio Hermitiano simmetrico di tipo noncompatto. Se (D, g) e $\mathbb{C}P^m$ sono debolmente parenti allora sono anche parenti.

dimostrazione Sia $L:S_1\to S_2$ l'isometria locale tra S_1 e S_2 e $h_1:S_1\to D$ $h_2:S_2\to \mathbb{C}P^m$ le immersioni di Kähler corrispondenti. Possiamo assumere che L sia un'isometria globale e che dal punto vista Riemanniano

$$S_1 = S_2 = F \times I_1 \times \ldots \times I_k,$$

dove F è un sottoinsieme aperto di uno spazio Euclideo con la metrica piatta e $I_j, j = 1, ..., k$ sono varietà Riemanniane irriducibili. Siccome S_2 è proiettiva F è banale. Inoltre nessun I_j è Ricci piatto. Infatti I_j Ricci piatto implica piatto (vedi Proposizione 1 sotto).

Sia I, dim I>0, un fattore irriducibile di S_1 e L(I) il corrispondente fattore irriducibile di S_2 . Allora $L:I\to L(I)$ o la sua coniugata $\bar L$ è olomorfa (vedi Proposizione 2 sotto) e quindi (D,g) e $\mathbb{C}P^m$ sono parenti e questo conclude la dimostrazione del Lemma B.

Sia \mathcal{H}_k lo spazio di Hilbert delle funzioni olomorfe f su D tale che

$$\int_{D} \frac{|f|^2}{K_B^{kc}} dz < +\infty,$$

dove dz è la misura di Lebesgue su D e k è un intero positivo. Sia F_j^k una base ortonormale di \mathcal{H}_k . Allora $\frac{\sum_{j=0}^{+\infty}|F_j^k(z)|^2}{K_B^{kc}(z,z)}$ è invariante per l'azione dei biolomorfismi isometrici di (D,g) e quindi

$$\sum_{j=0}^{+\infty} |F_j^k(z)|^2 = c_k K_B^{kc}(z, z), c_k > 0.$$
 (1)

Per k sufficientemente, \mathcal{H}_k contiene tutti i polinomi. Fissiamo un tale k e costruiamo la

mappa olomorfa

$$\Phi_k: D \to \mathbb{C}P^{\infty}, z = (z_1, \dots, z_n) \mapsto [P^k(z_1), Q^k(z)],$$
(2)

dove $P^k(z_1) = (P_0^k(z_1), P_1^k(z_1), \ldots)$ è una successione infinita di polinomi linearmente indipendenti nella variabile z_1 e $P_0^k(z_1)$ è un numero complesso diverso da zero.

Osserviamo che: $\Phi_k^*(g_{FS}^{\infty}) = kg$.

Consideriamo la mappa olomorfa $V_k: \mathbb{C}P^m \to \mathbb{C}P^{\binom{m+k}{m}}$ tale che $V_k^*(g_{FS}) = kg_{FS}$.

Se per assurdo (D,g) e $\mathbb{C}P^m$ sono debolmente parenti allora per il lemma precedente sono parenti. Quindi esiste $S \subset \mathbb{C}$ e due immersioni di Kähler $f:S \to D$ e $h:S \to \mathbb{C}P^m$. Allora (D,kg) e $(\mathbb{C}P^m,kg_{FS})$ sono parenti. Quindi $\Phi_m \circ f:S \to \mathbb{C}P^\infty$ è non-degenere mentre $i \circ V_m \circ h:S \to \mathbb{C}P^\infty$, (dove $i:\mathbb{C}P^{\binom{N+m}{N}} \hookrightarrow \mathbb{C}P^\infty$ è l'inclusione naturale) è degenere, contraddicendo il Lemma A.

Prima di dimostrare le Proposizioni 1 e 2 ricordo che il tensore di Ricci si può definire come segue:

$$Ricc(X,Y) = \frac{1}{2}tr(R(X,JY) \circ J)$$

Quindi la forma di Ricci

$$\rho(X,Y) = Ricc(X,JY) =$$

$$-\frac{1}{2}tr(R(X,Y) \circ J) = \frac{1}{2}\langle R(X,Y), J \rangle$$

ossia

$$\rho(X,Y) = \frac{1}{2} \langle R(X,Y), J \rangle \tag{3}$$

Dove stiamo definendo il prodotto scalare di due matrici antisimmetriche A, B come $\langle A, B \rangle = -tr(AB)$.

Proposizione 1 Una sottovarietà di Kähler I Ricci piatta di uno spazio omogeneo di Kähler D con curvatura olomorfa bisezionale non positiva è piatta.

dimostrazione Per la Proposition 9.2 p. 176 in Kobayshi–Nomizu (vol. II):

$$R^{D}(X, JX, Y, JY) = R^{I}(X, JX, Y, JY) + 2 \|\alpha(X, Y)\|^{2},$$

dove R^I and R^D sono i tensori di curvatura di I e D, X e Y sono campi di vettori su M, J la struttura quasi complessa di I (e D) e α la seconda forma fondamentale. Sia e_1, \ldots, e_{2n} un riferimento locale in I. Allora

$$\sum_{j=1}^{2n} R^{D}(X, JX, e_{j}, Je_{j}) =$$

$$= \sum_{j=1}^{2n} R^{I}(X, JX, e_j, Je_j) + 2 \sum_{j=1}^{2n} \|\alpha(X, e_j)\|^2 =$$

$$= -tr(R^{I}(X, JX) \circ J) + 2 \sum_{j=1}^{2n} \|\alpha(X, e_{j})\|^{2} =$$

$$= -2Ricc(X, JX) + 2 \sum_{j=1}^{2n} \|\alpha(X, e_j)\|^2 =$$

$$= 2 \sum_{j=1}^{2n} \|\alpha(X, e_j)\|^2 =$$

Siccome $R^D(X, JX, JY, Y)$ è non positiva

$$\sum_{j=1}^{2n} \|\alpha(X, e_j)\|^{|} = 0,$$

quindi $\alpha=0$ i.e. I è totalmente geodetica in M. Una sottovarietà tot. geod. di uno spazio loc. omogeneo è loc. omogeneo (infatti la proiezione di un campo di Killing su una tot. geodetica è un campo di Killing come segue dalle relazioni

$$\nabla_X^D Y = \nabla_X^I Y + \alpha(X, Y) = \nabla_X^I Y,$$

$$(\mathcal{L}_X g)(Y, Z) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$$

(cfr. relazione di Claireaut)) ma un loc. omogeneo e Ricci piatto è aperto di un omogeneo (Spiro) è un Ricci piatto omogeneo è piatto (Alekseevsky).

Proposizione 2 Sia $L:(M_1,J_1)\to (M_2,J_2)$ un'isometria tra varietà di Kähler irriducubili che <u>non</u> sono Ricci piatte. Allora L oppure \bar{L} sono olomorfe, cioè $L^*(J_2)=\pm J_1$.

Per dimostrare la Proposizione 2 abbiamo bisogno del seguente teorema dovuto a Lichnerowicz.

Teorema L Sia M una varietà Riemanniana che sia irriducibile in $q \in M$. Sia $N \subset \Phi_q^{loc}(M)$ il normalizzatore in $SO(T_qM)$ del gruppo di olonomia locale $\Phi_q^{loc}(M)$. Allora $\operatorname{Lie}(\Phi_q^{loc}(M))$ è strettamente contenuta in $\operatorname{Lie}(N)$ se e solo se M è Ricci piatta e Kähler intorno a q.

dimostrazione Proposizione 2 Sia $A = L^*(J_2)$. Allora $\nabla A = 0$ e quindi $A_q : T_q M_1 \to T_q M_1$ commuta con Lie $(\Phi_q^{loc}(M_1))$, $\forall q \in M_1$.

Siccome $\nabla J_1=0$ allora J_1 commuta con $\mathrm{Lie}(\Phi_q^{loc}(M_1))$ allora per il Teorema L, J_1 appartiene a $\mathrm{Lie}(\Phi_q^{loc}(M_1))$. Segue che A_q si può identificare $(J_M(q)=i)$ con un operatore da \mathbb{C}^n . Siccome $\mathrm{Lie}(\Phi_q^{loc}(M_1))$ agisce irriducibilmente su T_qM_1 per il Lemma di Schur $A_q=\lambda Id$, $\lambda\in\mathbb{C}$. Dalla relazione $A^2=-Id$ segure che $\lambda=\pm J_1(q)$

Lemma di Schur: Sia $A:\mathbb{C}^n\to\mathbb{C}^n$ un'applicazione lineare che commuta con un gruppo G che agisce irriducibilmente su \mathbb{C}^n . Allora $A=\lambda Id,\ \lambda\in\mathbb{C}.$

dimostrazione sia V_{λ} un autospazio di A siccome A commuta con G allora V_{λ} è invariante per G e quindi $V_{\lambda} = \mathbb{C}^n$ ossia $A = \lambda I$.

Olonomia e dimostrazione del Teorema L Sia M una varietà Riemanniana e $p \in M$. Il trasporto parallelo lungo un cammino chiuso in p definisce un' isometria di T_pM . L'insieme generato da queste isometrie è un sottogruppo del gruppo ortogonale $O(T_pM)$, chiamato il gruppo di olonomia di M nel punto p e deno-

$$\Phi_q(M) = \tau_{\gamma} \Phi_p(M) \tau_{\gamma}^{-1},$$

tato con $\Phi_p(M)$. Se q è un altro punto di M

e γ un cammino da p a q allora

dove τ_{γ} è il trasporto parallelo da p a q lungo γ . Quindi i gruppi di olonomia $\Phi_{q}(M)$ e $\Phi_{p}(M)$ sono coniugati e parleremo del gruppo di olonomia senza specificare il punto iniziale. L'olonomia è strettamente collegata alla curvatura di M. Il Teorema di Ambrose–Singer afferma che $Lie(\Phi_{q}(M))$ è generata da $R(X_{q},Y_{q})$ insieme agli elementi della forma $\tau_{\gamma}R(X_{p},Y_{p})\tau_{\gamma}^{-1}$. Vale il seguente fatto: se una varietà Riemanniana è irrriducibile in q allora il gruppo di olonomia agisce in modo irriducibile in $T_{q}M$.

dimostrazione del Teorema L Siano $\tilde{g}=$ Lie $(\Phi_q^{loc}(M))$ e $\tilde{n}=$ Lie(N). Siccome N è compatto esiste un complemento ortogonale \tilde{t} a \tilde{g} in \tilde{n} cioè

$$\tilde{n} = \tilde{g} \oplus \tilde{t}$$

tale che $[\tilde{g},\tilde{t}]=0$. Inoltre \tilde{g} e \tilde{t} sono ideali di \tilde{n} . Se \tilde{g} è strettamente contenuto in \tilde{n} allora esiste $0 \neq J \in \tilde{t}$. Ora J commuta con \tilde{g} quindi lo stesso è vero per J^2 che è simmetrico. Quindi ammette un autospazio non banale ma siccome \tilde{g} agisce irriducibilmente allora per il Lemma di Schur $J^2=cId$. Osserviamo che c è negativo: infatti J è antisimmetrico (rispetto alla metrica) quindi per ogni $X \neq 0$ si ha

$$0 < g(JX, JX) = -g(J^2X, X) = -cg(X, X) > 0.$$

Quindi si può assumere c=-1. Inoltre estendendere J per parallelismo si ottiene una struttura parallela e quindi integrabile intorno a q. Siccome \tilde{t} è ortogonale a \tilde{g} e siccome R(X,Y)

appartiene all'olonomia segue che \tilde{t} è ortogonale a R(X,Y) e quindi dalla formula (3) Ricci=0. Viceversa se la varietà M è di Kähler e Ricci piatta intorno a q per la formula (3), per il Teorema di Ambrose—Singer e per il fatto che la struttura complessa J è invariante per trasporto parallelo segue che J è ortogonale \tilde{g} e quindi definisce un elemento in \tilde{n} che non sta in \tilde{g} . Più precisamente

$$\langle \tau_{\gamma} R(X_p, Y_p) \tau_{\gamma}^{-1}, J_q \rangle = \langle \tau_{\gamma} R(X_p, Y_p) \tau_{\gamma}^{-1}, \tau_{\gamma} J_p \tau_{\gamma}^{-1} \rangle$$
$$= \langle R(X_p, Y_p), J_p \rangle = 2\rho(X_p, Y_p) = 0$$