2. Les lecteurs et les rédacteurs

Interface	Conditons d'acceptation	Variables d'état	Prédicat
Demander_Lecture DL	pas d'écriture en cours	nbLecteurs : nat (nL)	nR = 0
Terminer_Lecture TL			true
Demander_Ecriture DE	pas de lecture ni d'écriture	nbRedacteur : nat (nR)	$nL = 0 ^nR = 0$
Terminer_Ecriture TE		nbRedAtt : nat	true

Code d'une activité (bon comportements) : ((DL; TL) + (DE; TE))*

```
inv nR \le 1^{n} (nL = 0 \ v \ nR = 0)
```

Variables Conditions

AccèsLecture AccèsEcriture

Codage

DL

TL

DE

Stratégie FIFO

Méthodologie pour FIFO :

- suivre méthodologie classique
- mais une seule variable condition (FIFO)
- · identifier les bugs
- bidouiller

Interface	Conditons d'acceptation	Variables d'état	Prédicat
DL	pas d'écriture en cours	nbLecteurs : nat (nL)	nR = 0
TL			true
DE	pas de lecture ni d'écriture	nbRedacteur : nat (nR)	$nL = 0 ^nR = 0$
TE		(nAtt : nat)	true

```
inv nL = 0 v nR = 0; nR \le 1
inv nAtt > 0 \Rightarrow nL > 0 v nR > 0
```

Variable Condition

Accès (FIFO) Sas

Codage

DL

DE

ΤE

```
{nL = 0 ^ nR = 1}
nR--
{nL = 0 ^ nR = 0}
Accès.signal
finSi
```

Vérification

vérifier que chaque préconditions à VC.signal => postconditions VC.wait

```
2 => 1: ✓
2 => 4: ×
3 => 1: ✓
3 => 4: ✓
5 => 1: ✓
```

```
si Sas.empty alors
Accès.signal
sinon
Sas.signal
finSi
```

<- retour

#TD/SC