### 2009 VCAA Specialist Math Exam 2 Solutions

© Copyright 2009 itute.com Free download and print from www.itute.com

#### Section 1

|   |   |   |   | _ |   | _ | 0 | _ | 10 |   |
|---|---|---|---|---|---|---|---|---|----|---|
|   |   |   |   |   |   |   |   |   | 10 |   |
| Е | D | D | A | C | A | C | E | В | В  | C |

| 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|----|----|----|----|----|----|----|----|----|----|----|
| Е  | A  | В  | С  | D  | D  | В  | Α  | Е  | D  | В  |

Q1 Sketch graph: addition of ordinates.



Q2 Sketch the ellipse and the hyperbola.



Q3 
$$-1 \le x - b \le 1$$
,  $b - 1 \le x \le b + 1$ ,  $b - 1 = 2$ ,  $b = 3$ .  
 $a\pi = 6\pi$ ,  $a = 6$ .

Q4 
$$\sec t = \frac{x+1}{2}$$
,  $\tan t = \frac{y-1}{3}$ ,  $\sec^2 t = 1 + \tan^2 t$ ,

$$\left(\frac{x+1}{2}\right)^2 = 1 + \left(\frac{y-1}{3}\right)^2, \ \therefore \frac{(x+1)^2}{4} - \frac{(y-1)^2}{9} = 1$$

Q5 
$$x^2 + 2ax + 2y^2 + 4by = -16$$
,  $x^2 + 2ax + 2(y^2 + 2by) = -16$ ,  
 $(x+a)^2 + \frac{(y+b)^2}{\frac{1}{2}} = const$ .  $\therefore a = -3$  and  $b = 2$ .

Q6 Distance between z and 
$$-\overline{z} = |z - (-\overline{z})| = |z + \overline{z}| = |2\operatorname{Re}(z)|$$

Q7 The conjugate 
$$z = -2 - i$$
 is also a root of  $P(z) = 0$ .

Q8 
$$(1+i)^n = ai$$
,  $(1+i)^{2n+2} = ((1+i)^n)^2 (1+i)^2 = (ai)^2 (2i) = -2a^2i$   
E

Q9 
$$\frac{(x-6)^2}{a^2} + \frac{(y-3)^2}{b^2} = 1$$
.

Implicit differentiation:  $\frac{2(x-6)}{a^2} + \frac{2(y-3)}{b^2} \frac{dy}{dx} = 0$ 

$$\therefore \frac{dy}{dx} = -\frac{b^2(x-6)}{a^2(y-3)} = \frac{b^2(6-x)}{a^2(y-3)}.$$

Q10

Е



Area = 
$$3 \times \int_{0}^{\pi} (\sin x)^3 dx = 3 \times \int_{0}^{\pi} (\sin x)^2 \sin x dx$$

Area = 
$$3 \times \int_{0}^{\pi} (\sin x)^3 dx = 3 \times \int_{0}^{\pi} (\sin x)^2 \sin x dx$$
  
=  $3 \times \int_{0}^{\pi} (1 - \cos^2 x) \sin x dx$  Let  $u = \cos x$ ,  $-\frac{du}{dx} = \sin x$ 

$$= -3 \times \int_{1}^{1} (1 - u^{2}) du = 3 \times \int_{-1}^{1} (1 - u^{2}) du$$
 B

Q11 f'(x) > 0 and f''(x) < 0, the graph of f'(x) would be



and a corresponding graph of f(x) would be



C

1

Q12 
$$v = f(x)$$
,  $a = v \frac{dv}{dx} = f(x)f'(x)$ 

Q13 Let Q = 100x kg be the amount of salt in the tank at time t minutes (Note: t seconds in the question). Rate of salt input = 0, and rate of salt output = 10x kg per min.

$$\therefore \frac{dQ}{dt} = -10x , 100 \frac{dx}{dt} = -10x , \therefore 10 \frac{dx}{dt} + x = 0$$

# 

Q14  $\widetilde{u} = \widetilde{v} = \widetilde{w}$  when  $m = 1 . . . . 2\widetilde{u} - \widetilde{v} - \widetilde{w} = \widetilde{0}$  as an example. Hence they are linearly dependent.

Q15



Q16  $\tilde{c} \bullet \tilde{a} = 0$ ,  $\tilde{c} \bullet \tilde{b} = 0$ ,  $\therefore \tilde{a}$  and  $\tilde{b}$  are perpendicular to  $\tilde{c}$ .

Q17 
$$\tilde{c} + \tilde{b} = \tilde{a}$$
,  $\therefore \tilde{c} = \tilde{a} - \tilde{b}$   
 $\therefore \tilde{c} \bullet \tilde{c} = (\tilde{a} - \tilde{b}) \bullet (\tilde{a} - \tilde{b}) = \tilde{a} \bullet \tilde{a} - 2\tilde{a} \bullet \tilde{b} + \tilde{b} \bullet \tilde{b}$   
 $\therefore |\tilde{c}|^2 = |\tilde{a}|^2 + |\tilde{b}|^2 - 2|\tilde{a}||\tilde{b}|\cos 120^\circ$   
 $\therefore |\tilde{c}|^2 = |\tilde{a}|^2 + |\tilde{b}|^2 + |\tilde{a}||\tilde{b}|$ 

Q18



Force of friction =  $\mu N = 0.1 \times \sqrt{3} g = \frac{\sqrt{3} g}{10}$ F = ma,  $g - \frac{\sqrt{3} g}{10} = 2a$ ,  $g \left( 1 - \frac{\sqrt{3}}{10} \right) = 2a$ 

Q19 Vertical:  $u = 20 \sin 45^\circ = +10\sqrt{2}$ ,  $v = -10\sqrt{2}$ , a = -g.

Substitute into v = u + at,  $-10\sqrt{2} = 10\sqrt{2} - gt$ ,  $t = \frac{20\sqrt{2}}{g}$ 

Q20 v = x,  $\frac{dx}{dt} = x$ ,  $\frac{dt}{dx} = \frac{1}{x}$ ,  $t = \log_e x + c$ .

When t = 3, x = 1, c = 3 and  $t = \log_e x + 3$ .

Hence  $x = e^{t-3}$ .

Q21 u = +4, a = +2, s = +21, to find v, substitute into  $v^2 = u^2 + 2as$ . v = +10. Magnitude of momentum =  $5 \times 10 = 50$  kg ms<sup>-1</sup>

Q22 To find the distance from the starting point, firstly find the displacement from the starting point = signed area bounded by the graph and the t-axis.

$$s = \frac{1}{2} \times 10 \times 2 - \frac{1}{2} (1+4)5 + \frac{1}{2} \times 10 \times 4 = 17.5$$

#### **Section 2**

Q1a



Q1b Distance = 
$$\int_{0}^{9} t^{\frac{3}{2}} dt = \left[ \frac{2t^{\frac{5}{2}}}{5} \right]_{0}^{9} = 97.2 \text{ m}$$

Q1c Distance = 
$$\int_{39}^{51} 27 \cos\left(\frac{\pi}{24}(t-39)\right) dt$$
  
=  $\left[\frac{24 \times 27 \sin\left(\frac{\pi}{24}(t-39)\right)}{\pi}\right]_{39}^{51} = \frac{648}{\pi} = 206.3 \text{ m}$ 

Q1d Average speed = 
$$\frac{total.dis \tan ce}{time.taken}$$
$$= \frac{97.2 + 27 \times 30 + 206.3}{51} = 21.8 \text{ ms}^{-1}$$

Q1e Let 
$$t^{\frac{3}{2}} = \frac{200}{9}$$
,  $t = t_1 = \left(\frac{200}{9}\right)^{\frac{2}{3}} \approx 7.9 \text{ s}$   
Let  $27 \cos\left(\frac{\pi}{9} \left(t - 30\right)\right) = \frac{200}{9}$  we sale to find  $t = 4$ 

Let  $27\cos\left(\frac{\pi}{24}(t-39)\right) = \frac{200}{9}$ , use calc. to find  $t = t_2 = 43.6$  s

Q1f Let T be the time in seconds, where 9 < T < 39 (refer to the graph).

Distance by motorcycle = distance by car 20T = 97.2 + 27(T - 9),

 $T = 20.829 \approx 20.8 \text{ s}$  and distance =  $20T = 20 \times 20.829 \approx 417 \text{ m}$ 

Q2a Let 
$$z = 0$$
,  $\left| -1 \right| = 1$ ,  $\left| -\frac{1}{2} - \frac{\sqrt{3}}{2}i \right| = 1$ .

 $\therefore$  (0,0) lies on L.

Q2b Let 
$$z = x + yi$$
.  $|(x-1) + yi| = \left(x - \frac{1}{2}\right) + \left(y - \frac{\sqrt{3}}{2}\right)i$ 

$$(x-1)_2 + y^2 = \left(x - \frac{1}{2}\right)^2 + \left(y - \frac{\sqrt{3}}{2}\right)^2.$$

Expand and simplify to  $y = \frac{1}{\sqrt{3}}x$ .

### 

Q2c



Q2d 
$$|z| = 2$$
 is  $x^2 + y^2 = 4$  .....(1)

*L* is 
$$y = \frac{1}{\sqrt{3}}x$$
 .....(2)

Substitute (2) into (1):  $x^2 + \frac{x^2}{3} = 4$ ,  $\therefore x^2 = 3$ ,  $x = \pm \sqrt{3}$  and  $y = \pm 1$ .

The points of intersection are  $(-\sqrt{3},-1)$  and  $(\sqrt{3},1)$ .

Q2e



Q2f



Shaded area = 
$$\frac{1}{12} (\pi 2^2 - \pi 1^2) = \frac{\pi}{4}$$
 square units.

Q3a 
$$\tilde{r} = 5\sin\left(\frac{\pi}{6}t\right)\tilde{i} + 5\cos\left(\frac{\pi}{6}t\right)\tilde{j} + \left(24.5 - \frac{t^2}{8}\right)\tilde{k}$$
.

The height above the ground at time t is given by  $24.5 - \frac{t^2}{8}$ . At t = 0, height = 24.5 metres.

Q3b Let 24.5 
$$-\frac{t^2}{8} = 0$$
,  $t = 14$  s.

Q3c Period of one loop =  $\frac{2\pi}{\frac{\pi}{6}}$  = 12 s, time taken = 12 s.

Q3d 
$$\tilde{r} = \frac{5\pi}{6} \cos\left(\frac{\pi}{6}t\right) \tilde{i} - \frac{5\pi}{6} \sin\left(\frac{\pi}{6}t\right) \tilde{j} - \frac{t}{4} \tilde{k}$$

Q3e At 
$$t = 14$$

$$\tilde{r} = \frac{5\pi}{6} \cos\left(\frac{7\pi}{3}\right) \tilde{i} - \frac{5\pi}{6} \sin\left(\frac{7\pi}{3}\right) \tilde{j} - \frac{7}{2} \tilde{k}$$

$$=1.309\tilde{i}-2.267\tilde{j}-3.5\tilde{k}$$
.

Speed = 
$$|\tilde{r}| = \sqrt{1.309^2 + 2.267^2 + 3.5^2} \approx 4.4 \text{ ms}^{-1}$$
.

Q3f 
$$\tilde{a} = \tilde{r} = -\frac{5\pi^2}{36} \sin\left(\frac{\pi}{6}t\right) \tilde{i} - \frac{5\pi^2}{36} \cos\left(\frac{\pi}{6}t\right) \tilde{j} - \frac{1}{4}\tilde{k}$$

$$\left|\widetilde{a}\right| = \sqrt{\left(\frac{5\pi^2}{36}\sin\left(\frac{\pi}{6}t\right)\right)^2 + \left(\frac{5\pi^2}{36}\cos\left(\frac{\pi}{6}t\right)\right)^2 + \frac{1}{16}}$$

$$= \sqrt{\left(\frac{5\pi^2}{36}\right)^2 \left(\sin^2\left(\frac{\pi}{6}t\right) + \cos^2\left(\frac{\pi}{6}t\right)\right) + \frac{1}{16}}$$

$$= \sqrt{\left(\frac{5\pi^2}{36}\right)^2 + \frac{1}{16}}$$
 is a constant.

Q3gi 
$$\tilde{r} = \frac{5\pi}{6} \cos\left(\frac{\pi}{6}t\right) \tilde{i} - \frac{5\pi}{6} \sin\left(\frac{\pi}{6}t\right) \tilde{j} - \frac{t}{4} \tilde{k}$$
,

$$\left| \tilde{r} \right| = \sqrt{\frac{25\pi^2}{36} + \frac{t^2}{16}} .$$

Distance from start to finish =  $\int_{0}^{14} \sqrt{\frac{25\pi^2}{36} + \frac{1}{16}t^2} dt$ .

Q3gii Evaluate the definite integral by graphics calc. Distance  $\approx 45.7$  metres.

Q4a Let  $\frac{x^4 - 1}{x^2} = -10$ , use graphics calc. to find

Let  $\frac{x^4 - 1}{x^2} = 10$ , use graphics calc. to find  $x \approx \pm 3.2$ .  $\therefore [b, a] \approx [0.3, 3.2], \therefore a \approx 3.2$  and  $b \approx 0.3$ .

## 

Q4b Let  $\frac{x^4 - 1}{x^2} = 0$  to find the x-intercepts.  $x = \pm 1$ .

 $y = \frac{x^4 - 1}{x^2} = x^2 - \frac{1}{x^2}$ . Sketch by addition of ordinates.



Q4c 
$$x^4 - yx^2 - 1 = 0$$
,  $(x^2)^2 - yx^2 - 1 = 0$ ,

$$\therefore x^2 = \frac{-(-y) \pm \sqrt{(-y)^2 - 4(1)(-1)}}{2(1)} = \frac{y \pm \sqrt{y^2 + 4}}{2}.$$

Since  $x^2 > 0$ , [note:  $x \ne 0$  (refer to  $y = \frac{x^4 - 1}{x^2}$ )],

$$x^2 = \frac{y - \sqrt{y^2 + 4}}{2}$$
 is rejected.

$$\therefore x^2 = \frac{y + \sqrt{y^2 + 4}}{2}$$

Q4di 
$$V = \int_{-10}^{10} \pi x^2 dy = \int_{-10}^{10} \frac{\pi}{2} \left( y + \sqrt{y^2 + 4} \right) dy$$

Q4dii Use graphics calc. to evaluate the definite integral,  $V = 174.7 \text{ cm}^3$ .

Q4e 
$$\frac{dV}{dt} = +1.5 \text{ cm}^3 \text{ s}^{-1}, \frac{dV}{dv} = \pi x^2.$$

$$\frac{dy}{dt} = \frac{dy}{dV} \times \frac{dV}{dt} = \frac{1}{\pi x^2} \times \frac{dV}{dt}.$$

When the surface is 6 cm from the top, y = 4 and

$$x^2 = \frac{4 + \sqrt{16 + 4}}{2} = 4.236 \ .$$

$$\therefore \frac{dy}{dt} = \frac{1}{\pi \times 4.236} \times 1.5 \approx 0.11 \text{ cm per second.}$$

Q5a

$$\begin{array}{c}
4v \\
\sqrt{v \text{ ms}^{-1}}
\end{array}$$

$$a = \frac{F}{m} = \frac{2g - 4v}{2} = g - 2v$$
.

© Copyright 2009 itute.com

Q5b 
$$a = g - 2v$$
,  $\frac{dv}{dt} = g - 2v$ ,  $\frac{dt}{dv} = \frac{1}{g - 2v}$ ,  $t = \int \frac{1}{g - 2v} dv$ ,  $t = -\frac{\log_e(g - 2v)}{2} + c$ .

$$v = 0$$
 when  $t = 0$ ,  $\therefore c = \frac{\log_e g}{2}$  and  $t = 0.5 \log_e \left(\frac{g}{g - 2v}\right)$ .

Q5c  $a = g - 2v \rightarrow 0$  when  $v \rightarrow \frac{g}{2}$ , the limiting velocity.

Q5d When 
$$v = \frac{g}{4}$$
,

$$t = 0.5 \log_e \left(\frac{g}{g - \frac{g}{2}}\right) = 0.5 \log_e 2 = \log_e \sqrt{2}$$
 s after its release.

Q5e  $v = \frac{g}{2}(1 - e^{-2t})$ ,  $\frac{dx}{dt} = \frac{g}{2}(1 - e^{-2t})$ , where x metres is the displacement from the surface.

$$x = \int_{0}^{180} \frac{g}{2} (1 - e^{-2t}) dt = 879.6$$
, evaluated by graphics calc.

The ocean is 880 metres at that location.

Q5f When 
$$v = \frac{g}{3}$$
,  $t = 0.5 \log_e \left( \frac{g}{g - \frac{2g}{3}} \right) = 0.5 \log_e 3 = \log_e \sqrt{3}$ ,

$$x = \int_{0}^{\log_e \sqrt{3}} \frac{g}{2} (1 - e^{-2t}) dt \approx 1.1$$
, evaluated by graphics calc.

The device is 1.1 m below the surface.

Q5g 
$$\frac{dx}{dt} = \frac{g}{2} (1 - e^{-2t}),$$

$$x = \frac{g}{2} \int (1 - e^{-2t}) dt = \frac{g}{2} \left( t + \frac{e^{-2t}}{2} \right) + c.$$

$$x = 0$$
 when  $t = 0$ ,  $\therefore x = \frac{g}{2} \left( t + \frac{e^{-2t}}{2} \right) - \frac{g}{4}$ .

$$x = 1200$$
,  $1200 = \frac{g}{2} \left( t + \frac{e^{-2t}}{2} \right) - \frac{g}{4}$ .

By graphics calc. t = 245.398 s.



Please inform mathline@itute.com re conceptual, mathematical and/or typing errors