1 Feature generation procedures

Denote the generated feature vector as ϕ . This vector consists of concatenated row-vectors $\phi = [\phi', \phi'', \ldots]$, which corresponds to time series local histories $\mathbf{s} = [\mathbf{s}', \mathbf{s}'', \ldots]$, modified with set of transformations \mathfrak{G} . The elements $g: \mathbf{s} \to \phi$ of this set are listed below.

1.1 Transformations of local history

The table 1 lists the time series transformation functions. There are non-parametric and parametric procedures to generate features. For the parametric functions $g = g(\mathbf{b}, s)$ the default values of the parameters \mathbf{b} are assigned empirically.

The parametric procedure request two optimization problem statements of the model parameters \mathbf{w} and the primitive function parameters \mathbf{b} . The first one fixes the vector $\hat{\mathbf{b}}$, collected over all the primitive functions $\{g\}$, which generate features $\boldsymbol{\phi}$:

$$\hat{\mathbf{w}} = \arg \min S(\mathbf{w}|\mathbf{f}(\mathbf{w}, \mathbf{x}), \mathbf{y}), \text{ where } [\mathbf{y}, \mathbf{x}] = \phi(\hat{\mathbf{b}}, \mathbf{s}).$$

The second one optimizes the transformation parameters $\hat{\mathbf{b}}$ given obtained model parameters \mathbf{w}

$$\hat{\mathbf{b}} = \arg\min S(\mathbf{b}|\mathbf{f}(\hat{\mathbf{w}}, \mathbf{x}), \mathbf{y}).$$

This procedure repeats two problems until vectors $\hat{\mathbf{w}}$, $\hat{\mathbf{b}}$ converge. The initial values of vector \mathbf{b} (are shown in table 1). Due to the various origins of the time series and their transformations the residual vector should be normalized:

$$oldsymbol{arepsilon'} = rac{\hat{\mathbf{y}}' - \mathbf{y}'}{|\mathbf{y}'| \cdot \|\mathbf{y}'\|_2^1}.$$

It does not change the number elements in the vectors, $|\phi'| = |\mathbf{s}'|$.

1.2 Convolutions, statistics and parameters of local history

The listed feature generation functions convolves time series, so they reduce the dimentionality $|\phi' = \mathbf{g}(\mathbf{s}')| < |\mathbf{s}'|$.

1.3 Parameters of local history forecast

For the time series \mathbf{s}' construct the Hankel matrix with a period k and shift p, so that for $\mathbf{s} = [s_1, \dots, s_T]$ the matrix

$$\mathbf{H}^* = \begin{bmatrix} s_T & \dots & s_{T-k+1} \\ \vdots & \ddots & \vdots \\ s_{k+p} & \dots & s_{1+p} \\ s_k & \dots & s_1 \end{bmatrix}, \text{ where } 1 \geqslant p \geqslant k.$$

Reconstruct the regression to the first column of the matrix $\mathbf{H}^* = [\mathbf{h}, \mathbf{H}]$ and denote its least square parameters as the feature vector

$$\phi' = \arg\min \|\mathbf{h} - \mathbf{H}\phi\|_2^2$$

For the time series $[\mathbf{s}_i',\mathbf{s}_i'',\dots]$ use the parameters $[\boldsymbol{\phi}_i',\boldsymbol{\phi}_i'']$ as the features.

1.4 Distances to centroids of local clusters

This procedure applies the kernel trick to the time series. For given local history time series $\mathbf{s}'_1, \ldots, \mathbf{s}'_m$ compute k-means centroids $\mathbf{c}'_1, \ldots, \mathbf{c}'_p$. With the selected k-means distance function ρ construct the feature vector

$$\phi'_i = [\rho(\mathbf{c}'_1, \mathbf{s}'_i), \dots, \rho(\mathbf{c}'_P, \mathbf{s}'_i)] \in \mathbb{R}_+^P.$$

This k-means of another clustering procedure may use internal parameters, so that there are no parameters to be included to the feature vector or to the forecasting model.

Table 1: List of primitive functions

Function name	Table 1: List of primitive Formula	Output	# of ar-	# of pa-
runction name	rormura	dimen-		rameters
		sion	guments	rameters
Plus		1	2	0
	$x_1 + x_2$		2	
Minus	$x_1 - x_2$	1		0
Product	$x_1 \cdot x_2$	1	2	0
Division	$\frac{x_1}{x_2}$	1	2	0
Quadratic	$w_2x^2 + w_1x + w_0$	1	1	3
Cubic	$w_3x^3 + w_2x^2 + w_1x + w_0$	1	1	4
Linear	$w_1x + w_0$	1	1	2
Add constant	x + w	1	1	1
Nonparametric	$\sin(x)$	1	1	0
sin				
Sin	$\sin(w_0 + w_1 x)$	1	1	2
Square root	\sqrt{x}	1	1	0
Arctangent	$\arctan x$	1	1	0
Nonparametric	$1/(1 + \exp(-x))$	1	1	0
log-sigmoid				
Logarithmic	$\ln x$	1	1	0
Logarithmic sig-	$1/(w_0 + \exp(-w_1 x))$	1	1	2
moid				
Exponent	$\exp x$	1	1	0
Normal	$\frac{1}{w_1\sqrt{2\pi}}\exp\left(\frac{(x-w_2)^2}{2w_1^2}\right)$	1	1	2
Hyperbolic tan-	tanh(x)	1	1	0
gent				
Hyperbolic tan-	$\frac{2}{1-\exp(-wx)} - 1$	1	1	1
gent sigmoid	• (
Multiply by con-	$x \cdot w$	1	1	1
stant				
Monomial	$w_1 x^{w_2}$	1	1	2
Weibull-2	$w_1 w_2 x^{w_2 - 1} \exp{-w_1 x^{w_2}}$	1	1	2
Weibull-3	$w_1 w_2 x^{w_2 - 1} \exp(-w_1 (x - w_3)^{w_2})$	1	1	3

Table 2: Growth rate of monotone functions.

Function name	Formula	Output	# of ar-	# of pa-	Constraints
		dimen-	guments	rameters	
		sion			
Exponential rate	$\exp(w_1x + w_0)$	1	1	2	$w_1 > 0$
Polynomial rate	$\exp(w_1 \ln x + w_0)$	1	1	2	$w_1 > 1$
Sublinear polyno-	$\exp(w_1 \ln x + w_0)$	1	1	2	$0 < w_1 < 1$
mial rate					
Logarithmic rate	$w_1 \ln x + w_0$	1	1	2	$w_1 > 0$
Slow convergence	$w_0 + w_1/x$	1	1	2	$w_1 \neq 0$
Fast convergence	$w_0 + w_1 \cdot \exp(-x)$	1	1	2	$w_1 \neq 0$
Sigmoid	$1/(w_0 + \exp(-w_1 x))$	1	1	2	$w_1 > 0$

Table 3: Variable number of parameters.

Table 5. Validate name of a parameters.						
Quasi-linear	$\sum_{j=1}^{n} a_j g_j(x)$	1	1	n		
Sum of Gaussians	$\sum_{j=1}^{n} a_j \exp\left(-\frac{(x-b_j)^2}{c_j}\right)$	1	1	3n		
Polynomial	$\sum_{j=0}^{n} a_j x^j$	1	1	n		
Rational polyno-	$\frac{\sum_{j=0}^{n} a_j x^j}{x^m + \sum_{j=0}^{m-1} b_j x^j}$	1	1	n+m+1		
mial	,					