Exercise 3.1.1. Show that $t^3 + t + 1$ is irreducible in $\mathbb{F}_2[t]$.

Solution. Assume, for the sake of contradiction, that $f(t) = t^3 + t + 1$ is reducible over $\mathbb{F}_2[t]$. Then, f(t) = g(t)h(t) for some $g(t), h(t) \in \mathbb{F}_2[t]$. Without loss of generality, $\deg g(t) = 2$ and $\deg h(t) = 1$. Since $\deg h(t) = 1$ over $\mathbb{F}_2[t]$, we have that either h(t) = t or h(t) = t + 1. However, notice that $f(1) \neq 0$ and $f(0) \neq 0$. Thus f(t) has no linear factors, contradicting that $\deg h(t) = 1$. Therefore $f(t) = t^3 + t + 1$ must be irreducible over the field $\mathbb{F}_2[t]$.

Exercise 3.1.2. Consider the quotient ring $L := \mathbb{F}_2[t] / \langle t^3 + t + 1 \rangle$ and compute its size.

Solution. Let $f = t^3 + t + 1$.

Then the factor ring $\mathbb{F}_2[t]/\langle f \rangle$ partitions elements of $\mathbb{F}_2[t]$ into the following equivalence classes:

$$[0], [1], [t], [t+1], [t^2], [t^2+1], [t^2+t], [t^2+t+1]$$

Hence |L| = 8.

Exercise 3.1.3. Take g = t + 1 and prove the set $\{0, g, g^2, \dots, g^7\}$ coincides with L.

Solution. Obviously this set has 8 elements, which agrees with our result in Exercise 3.1.2. It remains to show that each element corresponds to a unique equivalence class from above (taken mod f).

$$\begin{array}{lll} 0 \equiv 0 & (\mod f) \implies 0 \in [0] \\ g \equiv t+1 & (\mod f) \implies g \in [t+1] \\ g^2 \equiv t^2+1 & (\mod f) \implies g^2 \in [t^2+1] \\ g^3 \equiv t^2 & (\mod f) \implies g^3 \in [t^2] \\ g^4 \equiv t^2+t+1 & (\mod f) \implies g^4 \in [t^2+t+1] \\ g^5 \equiv t & (\mod f) \implies g^5 \in [t] \\ g^6 \equiv t^2+t & (\mod f) \implies g^6 \in [t^2+t] \\ g^7 \equiv 1 & (\mod f) \implies g^7 \in [1] \end{array}$$

Thus there is a clear bijection between the set $\{0, g, g^2, \dots, g^7\}$ and L.

Exercise 3.2. Let K be a field and $p, q \in K[t]$ be irreducible polynomials over K, $\langle p \rangle \neq \langle q \rangle$ (this is equivalent to the statement that p is coprime to q). Consider the field $\mathbb{F} := K(t)$ and the polynomial $g(x) = x^n + px + pq \in \mathbb{F}[x]$. Prove that g is irreducible over \mathbb{F} .

Solution. From lecture, F[t] is a Euclidean domain for any field F and any Euclidean domain is also a unique factorization domain, so $\mathbb{F}[x]$ is a UFD. Next, it is easy to see that $\gcd(g(x)) = \gcd(1, p, pq) = 1$. Notice that for the irreducible polynomial $p \in \mathbb{F}$, we have that $p \mid p, p \mid pq, p \nmid 1$ and obviously $p^2 \nmid pq$ (otherwise $p^2 \mid pq \implies p \mid q$ contradicts that they are coprime). Thus by Eisenstein's Criterion g is irreducible over \mathbb{F} .

Exercise 3.3. Prove that $t^2 - 7$ is irreducible over $\mathbb{Q}(\sqrt{5})$.

Solution. Let $f(t) = t^2 - 7$. Assume for the sake of contradiction that f is reducible. By definition of reducible, f must equal the product of polynomials with strictly lower degree, so $f = gh \implies \deg(g) = \deg(h) = 1$. This means g and h are linear factors, which implies that $\exists x \in \mathbb{Q}(\sqrt{5})$ such that f(x) = 0. Since $x \in \mathbb{Q}(\sqrt{5}) \implies x = a + b\sqrt{5}$ for $a, b \in \mathbb{Q}$, notice

$$f(x) = 0 \implies (a + b\sqrt{5})^2 - 7 = 0$$

$$\implies a^2 + 2ab\sqrt{5} + 5b^2 - 7 = 0$$

$$\implies a^2 + 5b^2 - 7 = -2ab\sqrt{5}$$

$$\implies \frac{a^2 + 5b^2 - 7}{-2ab} = \sqrt{5} \implies \sqrt{5} \in \mathbb{Q}$$

which is obviously a contradiction. Thus $f(t) = t^2 - 7$ is irreducible over $\mathbb{Q}(\sqrt{5})$.

Exercise 3.4.1. Let $\alpha = 2^{1/6}$ and $\varepsilon_3^3 = 1$, $\varepsilon_3 \neq 1$. Find the minimal polynomials of α over

a)
$$\mathbb{Q}$$
, b) $\mathbb{Q}(\alpha)$, c) $\mathbb{Q}(\alpha^2)$, d) $\mathbb{Q}(\alpha\varepsilon_3)$.

Solution. a) In \mathbb{Q} ,

$$\alpha = 2^{1/6} \implies x = 2^{1/6}$$

$$\implies x^6 = 2$$

$$\implies x^6 - 2 = 0.$$

Let $f(x) = x^6 - 2$. By Eisenstein (using p = 2), f is irreducible. Thus $\mu_{\alpha}^{\mathbb{Q}}(x) = x^6 - 2$.

b) In $\mathbb{Q}(\alpha) = \mathbb{Q}(2^{1/6})$,

$$\alpha = 2^{1/6} \implies x = 2^{1/6}$$
$$\implies x - 2^{1/6} = 0.$$

Let $g(x) = x - 2^{1/6}$. Since $\deg(x - 2^{1/6}) = 1$, it can not be decomposed into polynomials of smaller degree and is therefore irreducible by definition. Thus $\mu_{\alpha}^{\mathbb{Q}(\alpha)}(x) = x - 2^{1/6}$.

c) In $\mathbb{Q}(\alpha^2) = \mathbb{Q}(2^{1/3})$,

$$\alpha^2 = 2^{1/3} \implies x^2 = 2^{1/3}$$

 $\implies x^2 - 2^{1/3} = 0.$

Let $h(x) = x^2 - 2^{1/3}$. Assuming h is reducible, it must decompose into linear factors. However, notice h does not have any roots in $\mathbb{Q}(2^{1/3})$, since h only has 2 solutions by the Fundamental Theorem of Algebra, but $\pm \alpha \notin \mathbb{Q}(2^{1/3})$. Thus h can not be reduced into linear factors, whence $\mu_{\alpha}^{\mathbb{Q}(\alpha^2)}(x) = x^2 - 2^{1/3}$.

d) Let $\beta = \alpha \varepsilon_3$. In $\mathbb{Q}(\beta)$,

$$\beta = \alpha \varepsilon_3 \implies \beta^3 = \alpha^3 \varepsilon^3$$

$$\implies \alpha^3 - \beta^3 = 0$$

$$\implies x^3 - \beta^3 = 0$$

$$\implies (x - \beta)(x^2 + \beta x + \beta^2) = 0.$$

Let $p(x) = x - \beta$ and $q(x) = x^2 + \beta x + \beta^2$. We know α must satisfy at least one of these, but notice $\alpha - \beta = 0 \implies \alpha = \beta$, which is obviously a contradiction since $\beta = \alpha \varepsilon_3$ and $\varepsilon_3 \neq 1$. Thus α satisfies

q(x) and not p(x). Now, supposing q(x) is reducible, it must decompose into linear factors. However, we can easily see that the only roots of q(x) are $\pm \alpha$ but $\pm \alpha \notin \mathbb{Q}(\beta)$, otherwise $\varepsilon_3 \in \mathbb{Q}(\beta)$ which is obviously not true. Therefore $q(x) = x^2 + \beta x + \beta^2$ must be irreducible over $\mathbb{Q}(\beta) = \mathbb{Q}(\alpha \varepsilon_3)$, whence $\mu_{\alpha}^{\mathbb{Q}(\alpha \varepsilon_3)}(x) = x^2 + \beta x + \beta^2 = x^2 + \alpha \varepsilon_3 x + \alpha^2 \varepsilon_3^2$.

Exercise 3.4.2. In each case (a—d), find the conjugate elements of all roots of $x^6 - 2$.

Solution. a) In \mathbb{Q} , we have that $\mu_{\alpha}^{\mathbb{Q}}(x) = x^6 - 2$. By the Fundamental Theorem of Algebra, this equation has 6 solutions. Thus, the conjugates of α over \mathbb{Q} are $\{\alpha \varepsilon_6^k \mid 0 \le k < 6\}$, where $\varepsilon_6 = \exp(\frac{i\pi}{3}) = \frac{1}{2} + \frac{i\sqrt{3}}{2}$.

- b) In $\mathbb{Q}(\alpha)$, we have that $\mu_{\alpha}^{\mathbb{Q}(\alpha)}(x) = x 2^{1/6}$. By FTA, this equation only has one solution. Thus the sole conjuage of α over $\mathbb{Q}(\alpha)$ is itself, α .
- c) In $\mathbb{Q}(\alpha^2)$, we have that $\mu_{\alpha}^{\mathbb{Q}(\alpha^2)}(x) = x^2 2^{1/3}$. By FTA, this equation has 2 solutions. It is trivial to see that the conjuates of α over $\mathbb{Q}(\alpha^2)$ are $\pm \alpha$.
- d) In $\mathbb{Q}(\alpha\varepsilon_3)$, we have that $\mu_{\alpha}^{\mathbb{Q}(\alpha\varepsilon_3)}(x) = x^2 + \alpha\varepsilon_3 x + \alpha^2\varepsilon^2$. By FTA, this equation has 2 solutions. We know that one solution to this equation is $x_1 = \alpha$, so by Vieta's formulae we have $x_2 = -\alpha\varepsilon_3 \alpha = -\alpha(\varepsilon_3 + 1)$. Notice that $\varepsilon_3^3 = 1 \implies \varepsilon_3^3 1 = 0$. We know $\varepsilon_3 \neq 1$, so we can factor out the linear term for which the solution is 1. That is, $\varepsilon_3^3 1 = (\varepsilon_3 1)(\varepsilon_3^2 + \varepsilon_3 + 1)$. So our root of unity must satisfy $\varepsilon_3^2 + \varepsilon_3 + 1 = 0 \implies \varepsilon_3^2 = -(\varepsilon_3 + 1)$. Thus we can substitute this into our previous equation to find $x_2 = \alpha\varepsilon_3^2$, whence our algebraic conjugates of α are $\alpha, \alpha\varepsilon_3^2$.