Modulendprüfung THFL+SY, FS14, 27.6.2014

Für eine hervorragende Bewertung müssen Sie nicht alle Aufgaben vollständig lösen.

Teil 1: Ohne Unterlagen und ohne Hilfsmittel [34 Punkte]

Bezeichnen Sie alle Blätter mit Ihrem	Name, Vorname:
Namen!	

Aufgabe 1: Vergleich zwischen Otto- und Diesel-Prozess

[Punkte: 6]

a. Skizzieren Sie im untenstehenden p,v-Diagramm die Kreisprozesse für einen Otto- und einen Dieselmotor.

b. Geben Sie an, welcher Unterschied in der Wärmezufuhr vorhanden ist und erklären Sie den Grund/Gründe dafür. Welche Rolle spielt hier das Verdichtungsverhältnis?

c. Der Wirkungsgrad eines Dieselprozesses ist in der Regel höher als der des Ottoprozesses. Erklären Sie anhand eines T, s-Diagramms warum. Begründen Sie die getroffenen Annahmen für Ihre Erklärung.

Aufgabe 2: Gasturbinenanlage mit Rekuperator

[Punkte: 5]

a. Für die Vorheizung des verdichteten Gases kann eine Gasturbine mit Rekuperator Abwärme nutzen. Erklären Sie anhand des gegebenen T, s-Diagramms, warum eine Gasturbine mit Rekuperator einen höheren Wirkungsgrad als eine Gasturbine ohne Rekuperator aufweist.

b. Skizzieren Sie dazu das Anlagenschema.

Aufgabe 3: Prandtl-Zahl

[Punkte: 4]

Wir betrachten eine erzwungene laminare Strömung von Wasser über eine ebene beheizte Platte. Die Prandtl-Zahl von flüssigem Wasser bei 10° C liegt im Bereich zwischen $13.6~(0^{\circ}$ C) und $1.74~(100^{\circ}$ C).

a. Skizzieren Sie ein ausgebildetes Strömungs- und Temperaturprofil über der Platte und zeichnen Sie die Strömungsgrenzschicht und Temperaturgrenzschicht ein.

b. Machen Sie anhand der Definition der Prandtl-Zahl eine Aussage über das Verhältnis von Strömungsgrenzschicht zur Temperaturgrenzschicht im obigen Fall.

Aufgabe 4: Wärmestrom durch eine Hauswand

[Punkte: 5]

Wir betrachten den untenstehenden Bereich einer Hauswand mit Fenster im Winter.

- a. Zeichnen Sie in Analogie zum Ohm'schen Gesetz die dazugehörige Schaltung der Wärmeübertragungswiderstände.
- b. Berechnen Sie algebraisch den Wärmestrom \dot{Q}_{Ges} aus den im Bild gegebenen Angaben.

Aufgabe 5: Wärmepumpen und Kälteanlagen

[Punkte: 8]

- a. Zeichnen Sie den Kreisprozess folgender Wärmepumpe bzw. Kälteanlage qualitativ in das untenstehende $\log p$, h-Diagramm. Treffen Sie folgende Annahmen:
 - Keine Druckverluste in Verdampfer und Kondensator
 - Adiabate, dissipationsbehaftete Verdichtung
 - Überhitzung und Unterkühlung des Kältemittels
 - Isenthalpe Drosselung

Zeichnen Sie den Verlauf der Isothermen an den Zustandspunkten unmissverständlich ein.

- b. Wie ist die innere Leistungszahl der Wärmepumpe ε_{WP} und Kälteanlage ε_{KA} definiert? Verwenden Sie exakt Ihre Bezeichnungen aus dem $\log p, h$ -Diagramm.
- c. Es gilt folgender Zusammenhang zwischen den inneren Leistungszahlen: $\varepsilon_{WP} = \varepsilon_{KA} + 1$. Leiten Sie diesen Zusammenhang her! Bitte verwenden Sie wiederum Ihre Bezeichnungen aus dem $\log p$, h-Diagramm.
- d. Gilt der obige Zusammenhang auch für die äussere Betrachtung, d.h. für den COP-Wert der Wärmepumpe und Kälteanlage? Begründen Sie Ihre Antwort!

	Name:	
Lösung:		

Aufgabe	6:	Aussagen	zur	Wärmepumpe
riuisabc	\mathbf{v}	1 L UDBUG CII	Zui	vv ai iiicpaiiipc

[Punkte: 6]

Markieren Sie unmissverständlich mit einem Kreuz die zutreffende(n) Antwort(en) zu folgenden Aussagen. Es können mehrere Antworten richtig sein!

a.	Welche Veränderungen treten ein, wenn bei einer Wärmepumpe mit volumetrisch förderndem Kompressor (d.h. $\dot{V}=$ konst.) bei konstant bleibender Kondensationstemperatur die Verdampfungstemperatur reduziert wird?
	 □ Der Kältemittelmassenstrom nimmt zu □ Der Kältemittelmassenstrom nimmt ab □ Der COP-Wert nimmt zu □ Der COP-Wert nimmt ab □ Die Heizleistung nimmt zu □ Die Heizleistung nimmt ab □ Der Öffnungsgrad des Expansionsventils nimmt zu
b.	Welche Aussagen treffen bei einer Wärmepumpe mit volumetrisch förderndem Kompressor (d.h. $\dot{V}=$ konst.) zu?
	 □ Die Effizienz der Wärmepumpe kann durch Vergrösserung der Unterkühlung am Kondensatoraustritt erhöht werden □ Die Effizienz der Wärmepumpe wird durch Vergrösserung der Unterkühlung am Kondensatoraustritt reduziert □ Ein effizienter Betrieb der Wärmepumpe bedingt eine möglichst geringe Sauggasüberhitzung am Kompressoreintritt □ Ein effizienter Betrieb der Wärmepumpe bedingt eine möglichst grosse Sauggasüberhitzung am Kompressoreintritt
c.	Welche Aufgabe/n hat das Expansionsventil einer Wärmepumpe? ☐ Regelung der Unterkühlung am Kondensatoraustritt ☐ Regelung der Überhitzung am Verdampferaustritt ☐ Regelung der Heizleistung ☐ Entspannung des flüssigen Kältemittels ☐ Entspannung des gasförmigen Kältemittels

d. Was passiert bei einer Ein/Aus-geregelten Sole/Wasser-Wärmepumpe (d.h. Drehzahl des Verdichters konstant), wenn das Gebäude bei höheren Umgebungstemperaturen geringere Heizwasservorlauftemperaturen und Heizleistungen benötigt?
□ Die von der Wärmepumpe erzeugte Heizwasservorlauftemperatur und Heizleistung sind kleiner als die erforderlichen, aufgrund tieferen Kondensationstemperaturen
□ Die von der Wärmepumpe erzeugte Heizwasservorlauftemperatur und Heizleistung sind grösser als die erforderlichen, aufgrund tieferen Kondensationstemperaturen
□ Da die von der Wärmepumpe erzeugte Heizleistung höher ist als die erforderliche Heizleistung, muss die Wärmepumpe getaktet werden

Modulendprüfung THFL+SY, HS14, 27.6.2014

Für eine hervorragende Bewertung müssen Sie nicht alle Aufgaben vollständig lösen.

Teil 2: Mit handgeschriebener, je 12-seitiger Zusammenfassung aus THFL+GRU und THFL+SY sowie Taschenrechner [66 Punkte]

Bezeichnen Sie alle Blätter und ev. Zusatzblätter mit Ihrem Namen!	Name, Vorname:

Hinweis: Verwenden Sie ausschliesslich die angegebenen Stoffdaten!

Aufgabe 7: Gasturbinenanlage ohne bzw. mit Zwischenüberhitzung für GUD-Anlagen [Punkte: 22]

Sie möchten eine neue Generation stationärer Gasturbinenanlagen für GUD-Anlagen entwickeln und überprüfen zwei Konzepte anhand einer **idealisierten** Betrachtung. Die neue Gasturbine soll ein sehr hohes Druckverhältnis aufweisen, wesentlich mehr als bis jetzt ($\pi = 40$). Zu vergleichen ist eine herkömmliche Anlage ohne Zwischenüberhitzung (einfache GT) mit einer GT mit Zwischenüberhitzung, welche eine Hochdruckturbine mit einem Druckverhältnis von 2 aufweist.

Angaben für Luft: $c_p = 1005.4 \text{ J/kg K}, \kappa = 1.4$

Angaben für Wasser: Siehe T, s-Diagramm (S.13) und Dampftafeln (S.14/15)

- a. Skizzieren Sie die beiden Prozesse im T, s-Diagramm auf der folgenden Seite ($T_1 = 300$ K, $p_1 = 1$ bar(a), $T_3 = T_5 = T_{max} = 1600$ K). Die Zwischenüberhitzung (ZÜ) erfolgt auch bis zur maximalen Temperatur.
- b. Bestimmen Sie den Wirkungsgrad für die einfache Gasturbinenanlage sowie für diejenige mit Zwischenüberhitzung (Berechnen Sie die Daten und tragen Sie diese in die untenstehende Tabelle ein. Das T, s-Diagramm soll nur als Kontrolle dienen). ($\eta_{th} = 0.651$)

GT mit ZÜ	1	2	3	4	5	6
$p\left[\mathrm{bar(a)}\right]$	1	40				1
T [K]	300		1600		1600	

Der wesentliche Vorteil der GT mit Zwischenüberhitzung ist, dass die Turbinenaustrittstemperatur höher ist als in der einfachen GT. Deswegen wird die Variante mit Zwischenüberhitzung für die GUD-Anlage ausgewählt.

Die Dampfturbinenanlage wird ohne Zusatzfeuerung betrieben und hat einen 12-mal kleineren Massenstrom als die Gasturbinenanlage. Die Austrittstemperatur des Abgases nach dem Verdampfer beträgt 400 K.

- c. Bestimmen Sie die Temperatur des Frischdampfes, der einen Druck von 100 bar(a) aufweist. Dabei soll die Temperaturzunahme in der Pumpe vernachlässigt werden und die Wärmezufuhr bei einem Kondensat-Druck von 0.1 bar(a) betrachtet werden. $(T_D = 580^{\circ} C)$
- d. Welche Endnässe wird erreicht, wenn die Dampfturbine ebenfalls idealisiert betrachtet wird? (x=0.825)

THFL+SY, FS14, B. Wellig, J. Worlitschek, E. Casartelli

Name:

Wasserdampftafel für Nassdampf

, p	t oc	v'	v''	h'	h''	r	S'	s"
bar	°C	m³/kg	m ³ /kg	kJ/kg	kJ/kg	kJ/kg	kJ/kg K	kJ/kg K 9,1577
0,0061 0,01	0 6,98	0,0010002 0,0010001	206,3 129,20	-0.04 29,34	2501,6 2514,4	2501,6 2485,0	-0,0002 $0,1060$	8,9767
0,02	17,51	0,0010012	67,01	73,46	2533,6	2460,3	0,2607	8,7246
0,03	24,10	0,0010027	45,67	101,00	2545,6	2444,6	0,3544	8,5785
0,04	28,98	0,0010040	34,80	121,41	2554,5	2433,1	0,4225	8,4755
0,05	32,90	0,0010052	28,19	137,77	2561,6 2567,5	2423,8 2416,0	0,4763 0,5209	8,3960 8,3312
0,06 0,07	36,18 39,03	0,0010064	23,74 20,53	151,50 163,38	2507,5 2572,6	2416,0	0,5209	8,2767
0,08	41,53	0,0010084	18,10	173,86	2577,1	2403,2	0,5925	8,2296
0,09	43,79	0,0010094	16,20	183,28	2581,1	2397,9	0,6224	8,1881
0,1	45,83	0,0010101	14,67	191,83	2584,8	2392,9	0,6493	8,1511
0,2	60,09	0,0010172	7,650	251,45	2609,9	2358,4	0,8321	7,9094
0,3 0,4	69,12 75,89	0,0010223	5,229 3,993	289,30 317,65	2625,4 2636,9	2336,1 2319,2	0,9441 1,0261	7,7695 7,6709
0,5	81,35	0,0010301	3,240	340,56	2646,0	2305,4	1,0912	7,5947
0,6	85,95	0,0010333	2,732	359,93	2653,6	2293,6	1,1454	7,5327
0,7	89,96	0,0010361	2,365	376,77	2660,1	2283,3	1,1921	7,4804
0,8	93,51	0,0010387	2,087 1,869	391,72 405,21	2665,8 2670,9	2274,0 2265,6	1,2330 1,2696	7,4352 7,3954
0,9 1,0	96,71 99,63	0,0010412	1,694	403,21	2675,4	2265,6	1,3027	7,3598
1,1	102,32	0,0010455	1,549	428,84	2679,6	2250,8	1,3330	7,3277
1,2	104,81	0,0010476	1,428	439,36	2683,4	2244,1	1,3609	7,2984
1,3	107,13	0,0010495	1,325	449,19	2687,0	2237,8	1,3868	7,2715
1,4 1,5	109,32 111,37	0,0010513	1,236 1,159	458,42 467,13	2690,3 2693,4	2231,9 2226,2	1,4109 1,4336	7,2465 7,2234
2,0	120,23	0,0010608	0,8854	504,70	2706,3	2201,6	1,5301	7,1268
3,0	133,54	0,0010005	0,6056	561,43	2724,7	2163,2	1,6716	6,9909
4,0	143,62	0,0010839	0,4622	604,67	2737,6	2133,0	1,7764	6,8943
6,0	158,84	0,0011009	0,3155	670,42	2755,5	2085,0	1,9308	6,7575
8,0	170,41	0,0011150	0,2403	720,94	2767,5	2046,5	2,0457	6,6594
10	179,88 198,29	0,0011274 0,0011539	0,1943	762,6 844,7	2776,2 2789,9	2013,6 1945,2	2,1382 2,3145	6,5828 6,4406
20	212,37	0,0011766	0,0995	908,6	2797,2	1888,6	2,4469	6,3367
30	233,84	0,0012163	0,0666	1007,4	2802,3	1793,9	2,6455	6,1837
40	250,33	0,0012521	0,0498	1087,4	2800,3	1712,9	2,7965	6,0685
50	263,91	0,0012858	0,0394 0,0324	1154,5 1213,7	2794,2 2785,0	1639,7 1517,3	2,9206 3,0273	5,9735 5,8908
60 70	275,55 285,79	0,0013187 0,0013513	0,0324	1213,7	2773,5	1506,0	3,0273	5,8162
80	294,97	0,0013842	0,0235	1317,1	2759,9	1442,8	3,2076	5,7471
90	303,31	0,001418	0,0205	1363,7	2744,6	1380,9	3,2867	5,6820
100	310,96	0,001453	0,0180	1408,0	2727,7	1319,7	3,3605	5,6198
110 120	318,05 324,65	0,001489 0,001527	0,0160 0,0143	1450,6 1491,8	2709,3 2689,2	1258,7 1197,4	3,4304 3,4972	5,5595 5,5002
130	330,83	0,001527	0,0143	1532,0	2667,0	1135,0	3,5616	5,3002
140	336,64	0,001611	0,0115	1571,6	2642,4	1070,7	3,6242	5,3803
150	342,13	0,001658	0,0103	1611,0	2615,0	1004,0	3,6859	5,3178
160	347,34	0,001710	0,0093	1650,5	2584,9	934,3	3,7471	5,2531
180 200	356,96 365,70	0,001840 0,002037	0,0075 0,0059	1734,8 1826,5	2513,9 2418,4	779,1 591,9	3,8765 4,0149	5,1128 4,9412
210	369,78	0,002202	0,0050	1886,3	2347,6	461,3	4,1048	4,8223
220	373,69	0,002671	0,0037	2011,1	2195,6	184,5	4,2947	4,5799
221,2	374,15	0,0	0317		07,4	0	4,4	29

Wasserdampftafel für überhitzten Dampf

p	t	v	h	s	t	v	h	S
bar	°C	m³/kg	kJ/kg	kJ/kg K	°C	m ³ /kg	kJ/kg	kJ/kg K
10	200	0,2059	2826,8	6,6922 6,9259	450	0,3303	3370,8	7,6190
	250 300	0,2327 0,2580	2943,0 3052,1	7,1251	500 550	0,3540 0,3775	3478,3 3587,1	7,7627 7,8991
	350	0,2824	3158,5	7,3031	600	0,4010	3697,4	8,0292
	400	0,3065	3264,4	7,4665	650	0,4244	3809,3	8,1537
15	200	0,1324	2794,7	6,4508	450	0,2191	3364,3	7,4253
	250 300	0,1520	2923,5	6,7099	500 550	0,2350 0,2509	3472,8	7,5703
	350	0,1697 0,1865	3038,9 3148,7	6,9207 7,1044	600	0,2309	3582,4 3693,3	7,7077 7,8385
	400	0,2029	3256,6	7,2709	650	0,2824	3805,7	7,9636
20	250	0,1114	2902,4	6,5454	500	0,1756	3467,1	7,4323
	300	0,1255	3025,0	6,7696	550	0,1876	3577,6	7,5706
	350 400	0,1386 0,1511	3138,6 3248,7	6,9596 7,1296	600 650	0,1995 0,2114	3689,2 3802,1	7,7022 7,8279
	450	0,1634	3357,8	7,2859	700	0,2232	3916,5	7,9485
30	250	0,07055	2854,8	6,2857	500	0,11608	3456,2	7,2345
	300	0,08116	2995,1	6,5422	550	0,12426	3567,2	7,3748
	350 400	0,09053 0,09931	3117,5 3232,5	6,7471 6,9246	600 650	0,13234 0,14036	3681,0 3795,0	7,5079 7,6349
	450	0,10779	3344,6	7,0854	700	0,14832	3910,3	7,7564
40	300	0,05883	2962,0	6,3642	550	0,09260	3558,6	7,2333
	350	0,06645	3095,1	6,5870	600	0,09876	3672,8	7,3680
	400 450	0,07338 0,07996	3215,7 3331,2	6,7733 6,9388	650 700	0,10486 0,11090	3787,9 3904,1	7,4961 7,6187
	500	0,08634	3445,0	7,0909	750	0,11689	4021,4	7,7363
60	300	0,03614	2885,0	6,0692	550	0,06094	3539,3	7,0285
	350	0,04222	3045,8	6,3386	600	0,06518	3656,2	7,1664
	400 450	0,04738 0,05210	3180,1 3303,5	6,5462 6,7230	650 700	0,06936 0,07348	3773,5 3891,7	7,2971 7,4217
	500	0,05659	3422,2	6,8818	750	0,07755	4010,7	7,5409
80	300	0,02426	2786,8	5,7942	550	0,04510	3519,7	6,8778
	350	0,02995	2989,9	6,1349	600	0,04839	3639,5	7,0191
	400 450	0,03431 0,03814	3141,6 3274,3	6,3694 6,5597	650 700	0,05161 0,05477	3759,2 3879,2	7,1523 7,2790
	500	0,03814	3398,8	6,7262	750 750	0,05788	3999,9	7,3999
100	350	0,02242	2925,8	5,9489	600	0,03832	3622,7	6,9013
	400	0,02641	3099,9	6,2182	650	0,04096	3744,7	7,0373
	450 500	0,02974 0,03276	3243,6 3374,6	6,4243 6,5994	700 750	0,04355 0,04608	3866,8 3989,1	7,1660 7,2886
	550	0,03560	3499,8	6,7564	800	0,04858	4112,0	7,4058
150	350	0,01146	2694,8	5,4467	600	0,02488	3579,8	6,6764
	400	0,01566	2979,1	5,8876	650	0,02677	3708,3	6,8195
	450 500	0,01845 0,02080	3159,7 3310,4	6,1468 6,3487	700 750	0,02859 0,03036	3835,4 3962,1	6,9536 7,0806
	550	0,02080	3448,3	6,5213	800	0,03030	4088,6	7,0000
200	400	0,00995	2820,5	5,5485	650	0,01967	3671,1	6,6554
	450	0,01271	3064,3	5,9089	700	0,02111	3803,8	6,7953
	500 550	0,01477 0,01655	3241,1 3394,1	6,1456 6,3374	750 800	0,02250 0,02385	3935,0 4065,3	6,9267 7,0511
	600	0,01833	3535,5 3535,5	6,5043	ouu	0,02363	4005,5	1,0311
	000	-,		-,,-				L

Aufgabe 8: Analyse einer Wärmepumpe

[Punkte: 22]

Effizient und nachhaltig geheizt wird heute mit Wärmepumpen. Eine grosse Herausforderung ist die kostengünstige Bereitstellung von Umweltwärme als Wärmequelle für die Wärmepumpe. Mit einem so genannten "Anergienetz" kann Umweltwärme aus verschiedenen Quellen (Erdwärme, Abwärme usw.) gesammelt und in einem geschlossenen Netz an die Wärmepumpen verteilt werden.

Wir betrachten die folgende Wärmepumpe, welche aus einem solchen Netz Wärme bezieht und Wärme an ein Heizsystem abgibt:

Die erzeugte Heizleistung wird mit einer einfachen hydraulischen Schaltung an die Fussbodenheizungen (FBH) und den Schichtspeicher, der von oben nach unten geladen wird, abgegeben. Im Schema finden Sie Angaben zu Temperaturen und Massenströmen. Zudem sind folgende weiteren Daten bekannt:

- Kältemittel: R134a, $\log p, h$ -Diagramm siehe S. 19
- Schrauben-Verdichter der Wärmepumpe:
 - Isentropen-Wirkungsgrad $\eta_{sV} = 0.70$
 - Verdichter-Wirkungsgrad (mechanisch und elektrisch zusammen) $\eta_V = 0.85$
- Sauggasüberhitzung des Kältemittels im Verdampfer: 5 K
- Kondensatunterkühlung des Kältemittels im Kondensator: 3 K

- Temperatur differenzen in Verdampfer und Kondensator:
 - Verdampfer: Wasser Austritt zu Verdampfung: 4 K
 - Kondensator: Kondensation zu Heizwasser Austritt: 1 K
- Die Druckverluste im Verdampfer und Kondensator können vernachlässigt werden
- Die Drosselung erfolg isenthalp
- Spezifische Wärmekapazität Wasser (Anergienetz und Heizsystem): $c_{pW}=4.2~\mathrm{kJ/kg\,K}$
- Dichte Wasser: $\rho_W = 1000 \text{ kg/m}^3$

Aufgaben:

a. Zeichnen Sie den Kreisprozess der Wärmepumpe in das $\log p$, h-Diagramm auf S. 19 ein und füllen Sie die untenstehende Tabelle mit den Zustandspunkten gemäss Schema aus!

	p [bar(a)]	θ [°C]	h [kJ/kg]
1			
2			
2s			
3			
4			

- b. Wie gross ist die elektrische Leistungsaufnahme des Verdichters? $(P_{el} = 25.66 \text{ kW})$
- c. Wie gross ist die von der Wärmepumpe abgegebene Heizleistung \dot{Q}_{HW} (Kondensatorleistung) und der Heizwasser-Massenstrom \dot{m}_{HW} ? ($\dot{Q}_{Kond}=141.81~kW$)
- d. Zur Beurteilung der Effizienz der Wärmepumpe sind folgende Kennwerte zu berechnen: die innere Leistungszahl ε_{WP} , der Coefficient of Performance COP und der Gütegrad ζ .
- e. Wie lange dauert es, bis der Schichtspeicher "komplett geladen" ist (35°C), wenn dieser zum Zeitpunkt des Einschaltens der Wärmepumpe "komplett leer" war (29°C)?
 - Hinweis: Falls Sie den Heizwasser-Massenstrom \dot{m}_{HW} aus c) nicht rechnen konnten, nehmen Sie $\dot{m}_{HW}=6$ kg/s an. Die Massenströme und Leistungen sind über den betrachteten Zeitraum als konstant zu betrachten. (t=7969~s)
- f. Im benachbarten Gebäude soll die gleiche Wärmepumpe eingesetzt werden, die ebenfalls aus dem Anergienetz Wärmeenergie bezieht. Es sind dort jedoch 10 K höhere Heizwassertemperaturen erforderlich. Schätzen Sie den COP dieser Wärmepumpe ab! Sie können annehmen, dass der Gütegrad unabhängig vom Temperaturhub ist.
 - *Hinweis:* Falls Sie den Gütegrad ζ aus d) nicht rechnen konnten, nehmen Sie $\zeta = 0.5$ an.

THFL+SY, FS14, B. Wellig, J. Worlitschek, E. Casartelli

Aufgabe 9: Wärmeübertragung: Auslegung eines Wärmepumpen-Verdampfers [Punkte: 22]

Nachdem Sie die Wärmepumpe für eine Überbauung aus Aufgabe 8 dimensioniert haben, erhalten Sie den Auftrag, den Verdampfer der Wärmepumpe auszulegen.

Als Design für den Verdampfer wird ein 1-2-Mantel-Rohrbündel-Wärmeübertrager gewählt. Der Rohrbündel-Wärmeübertrager (Verdampfer) wird in den Rohren innen mit Wasser des kalten Fernwärmenetzes durchflossen und dient als Wärmequelle für die Verdampfung aussen an den Rohren (im Mantelraum).

Die folgenden Angaben liegen vor:

Die Eintrittstemperatur des Wassermassenstroms der kalten Fernwärme in den Wärmeübertrager beträgt $\vartheta_{1\alpha}=14^{\circ}\mathrm{C}$ und wird im Wärmeübertrager auf $\vartheta_{1\omega}=9^{\circ}\mathrm{C}$ abgekühlt. Die Verdampfung erfolgt bei 5°C. Die Sauggasüberhitzung im Verdampfer kann dabei vernachlässigt werden. Für den Betrieb der Wärmepumpe muss eine Verdampferleistung von 120 kW gewährleistet werden.

Für die Auslegung sollen konstante Stoffwerte angenommen werden.

- Anzahl Rohre im Verdampfer: 50 Stück
- Stoffdaten des Wassers bei 10°C: $\rho_{H2O} = 999.7 \text{ kg/m}^3, c_{pH2O} = 4.195 \text{ kJ/kg K}, Pr_{H2O} = 9.45, \lambda_{H2O} = 0.58 \text{ W/m K}, kinematische Viskosität: <math>\nu_{H2O} = 1.306 \cdot 10^{-6} \text{ m}^2/\text{s}$
- Wärmeübertrager Innenrohr: $D_i=3$ cm (Innendurchmesser), $\delta_{Wand}=1.5$ mm, $\lambda_{Rohr}=30$ W/mK
- Zur Abschätzung des Wärmeübergangskoeffizienten innen kann eine vereinfachte Korrelation für die Nu-Zahl verwendet werden:

$$Nu = 0.023 \cdot Re^{0.8} Pr^{1/3}$$

- Der Wärmeübergangskoeffizient für den Verdampfungsvorgang aussen am Rohr kann mit $\alpha_2 = 5000 \text{ W/m}^2 \text{ K}$ angenommen werden.
- Der Korrekturfaktor des 1-2-Mantel-Rohrbündel-Wärmeübertragers ist $F_T = 0.6$.

Aufgaben:

a. Skizzieren Sie in das untenstehende Diagramm die Temperaturverläufe im Wärmeübertrager über die Fläche A.

1-2-Mantel-Rohrbündel-Wärmeübertrager

- b. Bestimmen Sie den notwendigen Wassermassenstrom durch alle Wärmeübertragerrohre und und zusätzlich den Massenstrom pro Rohr. Sie dürfen annehmen, dass sich der gesamte Massenstrom gleichmässig auf die einzelnen Rohre verteilt. $(\dot{m}_{H_2O,Rohr}=0.114~kg/s)$
- c. Bestimmen Sie die mittlere logarithmische Temperaturdifferenz ΔT_m .
- d. Bestimmen Sie den Wärmeübergangskoeffizienten α_1 innen in den Wärmeübertragerrohren.
- e. Bestimmen Sie den Wärmedurchgangskoeffizient k. $(k=577.8\ W/m^2K)$
- f. Bestimmen Sie die Wärmeübertragerfläche A_{Rohr} pro Rohr und daraus die gesamte notwendige Wärmeübertragerfläche $A.~(A=65.13~m^2)$