GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-VI

Course Title: Metallurgical Thermodynamics

(Course Code: 4362107)

Diploma programmer in which this course is offered	Semester in which offered
Metallurgy Engineering	6 th Semester

1. RATIONALE

Metallurgical thermodynamics deals with the determination of the effect of surrounding on the equilibrium state of a chemical reaction system. Since most metallurgical processes involves physical and chemical changes at high temperature, the understanding of thermodynamics is a must for a metallurgist. It helps in providing information regarding changes in properties of a system during a process; matter and energy exchange during a process; feasibility and driving force of a reaction; stability and transformation of phases; phase equilibria; properties of metallurgical solutions; interfacial phenomena etc. This course is designed for diploma level which covers the theory and calculations of basic concepts and laws of thermodynamics.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop required skills in students so that they are able to acquire following competencies:

Implement the concepts of thermodynamics to predict the feasibility of a reaction and to calculate the changes in the equilibrium state of a system during a metallurgical process.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be performed in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes:

- CO1: Describe a thermodynamic system, its state, properties and changes occurring in it
- **CO2:** Calculate changes in internal energy, enthalpy and entropy of a substance and a reaction applying the relevant concepts of first and second law of thermodynamics
- **CO3:** Apply the relevant concepts of third law of thermodynamics to predict the feasibility and calculate free energy change of a reaction
- **CO4:** Use Ellingham diagram of oxides to determine comparative stability of various compounds

4. TEACHING AND EXAMINATION SCHEME

Teach	ing Sc	heme	Total Credits		Exa	mination S	cheme	
(Ir	1 Hour	·s)	(L+T+P/2)	Theory Marks P		Theory Marks Practical Marks		Total
L	Т	Р	С	CA	ESE	CA	ESE	Marks
2	0	0	2	70	30*	0	0	100

^{(*):} Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; **T**—Tutorial/Teacher Guided Theory Practice; **P** -Practical; **C** — Credit; **CA** — Continuous Assessment; **ESE** -End Semester Examination.

5. AFFECTIVE DOMAIN OUTCOMES

The following sample Affective Domain Outcomes (ADOs) are embedded in many of the above- mentioned COs. More could be added to fulfill the development of this course competency.

- Conserve energy and minimize loses by calculating the energy requirements of a chemical process using the concepts of thermodynamics
- Conserve natural resources by selecting cost effective and efficient reducing agents in extractive metallurgy using Ellingham diagrams
- Conserve natural resources by predicting the behavior of matter as well as feasibility of a reaction prior to the process

6. UNDERPINNING THEORY:

Unit	Major Learning Outcomes	Topics and sub-topics
Unit – I Introduction of Thermodynamics	1.a. Explain different aspects of thermodynamics and its laws 1.b. Define terms involved in thermodynamics and state their significance 1.c. Describe reversible and irreversible changes and equilibrium phenomena	 Introduction to thermodynamics – Definition, importance, applications, limitations Laws of thermodynamics Basic terms used in thermodynamics- reactor, reaction mixture, system and surrounding, types of system, state of system, equation of state, properties of system Reversible & irreversible changes, equilibrium – definition and its types
Unit – II	2.a. Define and classify energy2.b. Describe internal energy and	2.1. Energy – definition and its types 2.2. Internal energy, energy as a state

	its importance as state	property
Energy & First	property	2.3. First law of thermodynamics and
• •	2.c. State and explain first law of	its importance
law of	thermodynamics with its	2.4. Heat capacity – C _p & C _v (exclude
thermodynamics	significance	derivation), Specific heat
	2.d. Define Heat capacity with C _p	2.5. Enthalpy – definition, first law in
	& C _v and specific heat	terms of enthalpy, enthalpy
	2.e. Derive equations to measure	change for a process at constant
	enthalpy changes of a	pressure, enthalpy change with
	substance and chemical	temperature, enthalpy changes
	reaction	due to chemical reactions and its
	2.f. Explain Hess' law	types, Hess' law
	2.g. Solve numerical problem on	2.6. Numerical problems on enthalpy
	enthalpy changes at	changes at constant pressure &
	constant pressure &	temperature, Hess' law, ΔH _r , ΔH _f
	temperature; ΔH_r , ΔH_f and	and ΔH_c
	ΔH _c	
Unit-III	3.a. State and explain second law	3.1. Second law of thermodynamics
Second law of	of thermodynamics	3.2. Entropy – definition, as a state
	3.b. Define entropy and its	property
thermodynamics	importance as a state	3.3. Entropy changes for reversible &
	property	irreversible process
	3.c. Describe entropy changes for reversible & irreversible	3.4. Entropy changes of a substance and for a chemical reaction
	process	3.5. Combined expression for 1 st &
	3.d. Derive equations to measure	2 nd law of thermodynamics
	entropy changes of a	3.6. Numerical problems on entropy
	substance and chemical	changes
	reaction	-
	3.e. Derive combine expression	
	for 1 st & 2 nd law of	
	thermodynamics	
	3.f. Solve numerical problem on	
	entropy changes	
Unit – IV	4.a. Explain the concept of	4.1. Helmholtz free energy, Gibbs free
Eroo operational	Helmholtz free energy and	energy
Free energy and	Gibbs free energy	4.2. Free energy change of a substance
third law of	4.b. Derive equations to measure	and reaction
thermodynamics	free energy change of a substance and chemical	4.3. Free energy as a criteria of
	substance and chemical reaction	equilibrium 4.4. Third law of thermodynamics
	4.c. Describe free energy as a	4.5. Numerical problems on change of
	criteria of equilibrium	free energy
	4.d. Stateand explain third law of	irec cherby
	Stateshia explain tillia law of	

	thermodynamics 4.e. Solve numerical problems on change of free energy	
Unit – V	5.a. Explain the concept of Ellingham diagram	5.1. Concept of Ellingham diagram 5.2. Ellingham diagrams for oxides-
Ellingham	5.b. Use Ellingham diagram	important features
diagram	determine comparative stability of various compounds	5.3. Numerical problems on Ellingham diagram
	5.c. Solve numerical problems on Ellingham diagram	

7. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit		Teaching	Distribution of theory marks				
No.	Unit Title	Hours	R Level	U Level	A Level	Total Marks	
	Interesting of		Levei	Levei	Levei	IVIALKS	
I	Introduction of Thermodynamics	5	6	4	0	10	
	Energy & First law of	8	5	7	8	20	
II	thermodynamics	0				20	
III	Second law of	7	4	5	7	16	
""	thermodynamics	,					
IV	Free energy and third law of	6	5	4	7	16	
l 'v	thermodynamics	0	3	4	/	16	
V	Ellingham diagram	2	2	2	4	8	
	Total	28	22	22	26	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy) **Notes:**

- a) This specification table shall be treated as a general guideline for students and Teachers. The actual distribution of marks in the question paper may slightly vary from the above Table.
- b) Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

8. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related co-curricular activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group.

- 1. Search the applications of thermodynamics in various fields of metallurgy.
- 2. Prepare a list of various notations used in thermodynamics along with their meaning.
- 3. Discuss in group the universal nature of thermodynamics.
- 4. Prepare a table of conversion of SI units of various properties to CGS unit system.

9. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES

Sr. No.	Unit Title	Strategies		
I	Introduction of Thermodynamics			
II	Energy & First law of thermodynamics	Demonstration of model.		
III	Second law of thermodynamics	Movies/Animations.		
IV	Free energy and third law of thermodynamics	Numerical.		
V	Ellingham diagram			

10. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project is group-based. However, in the fifth and sixth semesters, it should be preferably be individually undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should not exceed three.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain a dated work diary consisting of individual contributions in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than 16 (sixteen) student engagement hours during the course. The student ought to submit a micro-project by the end of the semester to develop the industry orientedCOs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- 1. Prepare a list of (i) state functions and path functions (ii) intensive and extensive properties.
- 2. Prepare a list of all the important equations of thermodynamics.
- 3. Select any five metals and predict their possibilities of undergoing oxidation at a particular temperature using free energy data.
- 4. Find out all the possible reducing agents for various metal oxide ores at different temperatures using Ellingham diagram.
- 5. Predict the changes occurring in a selected system in equilibrium with its surrounding when it is placed in a different surrounding.

11. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of Book	Author / Editor	Publication with place, year and ISBN
1	Metallurgical Thermodynamics – Kinetics & Numericals	S. K. Dutta and A. B. Lele	S. Chand, New Delhi, 2012 (ISBN: 81-219-3964-X)
2	Textbook of Materials and Metallurgical Thermodynamics	A. Ghosh	PHI, New Delhi, 2002 (ISBN: 81-203-2091-3)
3	Essentials of Metallurgical Thermodynamics	R. H. Tupkary	Khanna Pub.; 1st Ed., New Delhi, 2016 (ISBN: 93-826-0903-2)
4	Extractive Metallurgy: Processes and Applications	S. K. Dutta, A. B. Lele and Y. B. Chokshi	PHI, New Delhi, 2018 (ISBN: 93-874-7204-3)

12. SOFTWARE/LEARNING WEBSITES

- 1. https://www.doitpoms.ac.uk/tlplib/ellingham diagrams/printall.php
- 2. https://learnmetallurgy.com/study/thermodynamics/
- 3. https://archive.nptel.ac.in/
- 4. https://ocw.mit.edu/
- 5. https://ncert.nic.in/ncerts/l/kech106.pdf
- 6. <a href="https://chem.libretexts.org/Bookshelves/Physical and Theoretical Chemistry Textbook Maps/Supplemental Modules (Physical and Theoretical Chemistry)/Thermodynamics
- 7. https://chemed.chem.purdue.edu/genchem/topicreview/bp/ch21/chemical.php

13. PO-COMPETENCY-CO MAPPING:

Semester VI	Metallurgy Thermodynamics [Course Code: 4362107]							
Semester vi	POs							
	PO 1	PO 2	PO 3 Design /	PO 4	PO 5	PO 6	PO 7	
	Basic &	Problem	development	Engineering	Engineering	Project	Life-	
Competency	Discipline	Analysis	of solutions	tools,	practices for	Management	long	
& Course Outcomes	specific			Experimentation	society,		learning	
	knowledg			& Testing	Sustainability &			
	е				environment			
Competency	Implemen	t the cond	cepts of therm	odynamics to pre	edict the feasibility	y of a reaction (and to	
	calculate t	the chang	es in the equi	librium state of a	system during a r	metallurgical pr	ocess.	
CO1: Describe a								
thermodynamic								
system, its state,	3	2	1		1			
properties and	3		1	_	_	_	_	
changes occurring in								
it								
CO2: Calculate								
changes in internal								
energy, enthalpy and								
entropy of a	2	2	2		2			
substance and a	3	3	3	=	2	-	-	
reaction applying the relevant concepts of								
first and second law								
of thermodynamics								
CO3: Apply the								
relevant concepts of								
third law of								
thermodynamics to	2	2	2		2			
predict the feasibility	3	3	3	-	2	-	-	
and calculate free								
energy change of a								
reaction								
CO4: Use Ellingham								
diagram of oxides to								
determine	3	3	3	-	2		2	
comparative stability								
of various								
compounds								

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

14. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

Sr. No.	Name and Designation	Institute	Email
1.	Mr. Yakshil B. Chokshi, Lecturer Metallurgy	Government Polytechnic, Rajkot	yakshil.chokshi@gmail.com
2.	Ms. Neelam J. Sompura, Lecturer Metallurgy	Government Polytechnic, Rajkot	neelamsompura@gmail.com