Name: Nimra Nasir Reg No: 19- CP-35

Operating System

Lab: 13 (Example)

Examples:

Example: 1

consider the following table of system.

Process		Allo cation				M	an	Available				
	Ri	R2	R3	Ry	Rı	Ri	R ₃	R4	R,	Rz	R ₃	Ry
Pr	0	0	1	2	0	0	1	2	2	1	0	0
P2	2	0	0	0	2	7	5	0				
P ₃	0	0	3	4	6	6	5	0				
Py Ps	2	3	5	Ч	4	3	5	6				
15	0	3	3	2	0	6	5	2				

compute Need matrix.

Is the system in safe stale? Justify

Answer: Need matrix [i] = Man [i] - Allocated [i]

Process		Alloc	ation			Max				Need			
	R,	R2	R3	Ry	RI	RL	R3	R4	Ri	R ₂	Rz	Ru	
P ₁	0	0	-1	2	0	0	1	2	0	0	0	0	
P2	2	0	0	0	2	7	5	0	0	7	5	0	
P3	0	0	3	4	6	6	5		6	6	2	2	
Pu	2	3	5	4	4	3	5	6	2	0	0	4	
Ps	0	3	3	2	0	6	5	2	0	3	2	4	

```
Is the system is safe state?
By applying the Banker's Algorithm:
  let Avail = Available, ie Avail (2,1,0,0)
Iteration: 1
      check all the processes from Pi to Ps
For Pi:

if (Pi Need < Avail) -> True
       then calculate
   Avail = Avail + Allocated [Pi]
          (2,1,0,0) (0,0,1,2)
  Avail = (2,1,1,2)
Iteration: 1
For P2:

if (P2 Need < Avail) -+ False
      then check for nent process
   if (P3 Need < Avail) - False
     then check for next process
Iteration: 1
For Py:
   If (Py Need < Avail) -> True
   then calculate
   Avail = Avail + Allocated [P4]
           (2,1,1,2) (2,3,5,4)
         = (4,4,6,6)
Iteration:
For Ps:
  if (Ps Need < Avail) - True
     then calculate
```

Avail = Avail + Allocated [Ps]

(4,4,6,6) (0,3,3,2)

Avail = (4,7,9,8)

Iteration: 2

check only process P2 to P3

For P2:

if (P2 Need < Avail) - True then calculate

> Avail = Avail + Allocated [P2] (4,7,9,8) (2,0,0,0)

Avail = (6,7,9,8)

Iteration: 2

For B:

If (P3 Need < Avail) -> True

then calculate

Avail = Avail + Allocated [P3]

(6,7,9,8) (0,0,3,4)

Avail = (6, 7, 12, 12) = system capacity

Since, all the processes got True marked, no further iterations are required

There fore, safe sequence = P1, P4, P5, P2, P3

Therefore, the system is in the safe state

Example: 2

5 processes Po through P4

3 resource types A (10 units), B (5 units), c (7 units).

Process	Al	loca	lion	M	lan	Available			
	A	B	C	A	В	C	A	B	c
Po	0	1	0	7	5	3	3	3	2
Pı	2	0	0	3	2	2			
P2	3	٥	2	9	0	2			
Pz	2	1	1	2	2	2			
R	0	0	2	4	3	3			

Process	Allocation			Max			Need		
	A	В	c	A	В	C	A	В	C
Po	0	1	0	7	5	3	7	4	3
Pı	2	0	0	3	2	2	1	2	2
P2	3	0	2	9	0	2	6	0	0
P ₃	2	1	-	2	2	2	0	- 1	1
P4	0	0	2	4	3	3	4	3	1

The system is in a safe state since the sequence < P1, P3, P4,
P2, P6 > satisfies safety criteria

Now P, requests (1,0,2):

check that request \leq Available (that is, $(1,0,2) \leq (3,3,2)$) \Rightarrow True

Process	Allocation			Nee	d		Ava	Available			
	A	В	C	A	B	C	A	В	C		
Po	0	-	0	7	4	3	2	3	0		
Pi	3	0	2	0	2	0					
P2	3	0	2	6-1	0	0	2 300				
Pa	2	- 1	1	0	1	1	H				
P4	0	0	2	4	3	1					