Regression: Line Predicting House Prices

Predicting house prices

How much is my house worth?

How much is my house worth?

Look at recent sales in my neighborhood

How much did they sell for?

Plot recent house sales (Past 2 years)

Terminology:

- x feature,covariate, orpredictor
- y observation or response

Predict your house by similar houses

No house sold recently had *exactly* the same sq.ft.

Predict your house by similar houses

- Look at average price in range
- Still only 2houses!
- Throwing out info from all other sales

Linear regression

Use a linear regression model

Use a linear regression model

Which line?

"Cost" of using a given line

Find "best" line

Predicting your house price

Adding higher order effects

Fit data with a line or ...?

Fit data with a line or ...?

What about a quadratic function?

What about a quadratic function?

Even higher order polynomial

Do you believe this fit?

Evaluating overfitting via training/test split

Do you believe this fit?

What about a quadratic function?

How to choose model order/complexity

- Want good predictions, but can't observe future
- Simulate predictions
- 1. Remove some houses
- 2. Fit model on remaining
- 3. Predict heldout houses

Training/test split

Terminology: - training set 1

test set

Training error

Test error

Training/Test Curves

Adding other features

Predictions just based on house size

Add more features $f_{w}(x) = w_0 + w_1 \text{sq.ft.}$ + w₂ #bath price (\$) square feet (sq.ft.)

How many features to use?

- Possible choices:
 - Square feet
 - # bathrooms
 - # bedrooms
 - Lot size
 - Year built
 - ...
- See Regression Course!

Other regression examples

Salary after ML specialization

- How much will your salary be? (y = \$\$)
- Depends on x = performance in courses, quality of capstone project, # of forum responses, ...

Salary after ML specialization

hard work

$$\hat{y} = \hat{w}_0 + \hat{w}_1$$
 performance + \hat{w}_2 capstone $+ \hat{w}_3$ forum

informed by other students who completed specialization

Stock prediction

- Predict the price of a stock
- Depends on
 - Recent history of stock price
 - News events
 - Related commodities

Tweet popularity

- How many people will retweet your tweet?
- Depends on # followers,
 # of followers of followers,
 features of text tweeted,
 popularity of hashtag,
 pastretweets,...

Smart houses

- Smart houses have many distributed sensors
- What's the temperature at your desk? (no sensor)
 - Learn spatial function to predict temp
- Also depends on
 - Thermostat setting
 - Blinds open/closed or window tint
 - Vents
 - Temperature outside
 - Time of day

Summary for regression

What you can do now...

- Describe the input (features) and output (real-valued predictions) of a regression model
- Calculate a goodness-of-fit metric (e.g., RSS)
- Estimate model parameters by minimizing RSS (algorithms to come...)
- Exploit the estimated model to form predictions
- Perform a training/test split of the data
- Analyze performance of various regression models in terms of test error
- Use test error to avoid overfitting when selecting amongst candidate models
- Describe a regression model using multiple features
- Describe other applications where regression is useful