$\begin{array}{c} {\rm Math}\ 409\ {\rm H} \\ {\rm Fall}\ 2016 \end{array}$

Texas A&M University Professor: David Larson

Carothers' Analysis - Chapters 2 and 3 Parth Sarin

1 Introduction

In this paper, I study N. L. Carothers' *Real Analysis* textbook (currently used for Math 446 and 447 at Texas A&M University). The topics covered are: the Cantor Set, Metric Spaces, Normed Vector Spaces, a study of more advanced inequalities, and Limits in Metric Spaces. For each of these, I give solutions for selected homework problems.

2 Chapter 2 - Countable and Uncountable Sets

2.1 The Cantor Set

Exercise 28: Let $f: \Delta \to [0,1]$ be the Cantor function (as originally defined). Check that $f(x) = \sup\{f(y) : y \in \Delta, y \leq x\}$ for any $x \in \Delta$.

Proof. Fix $x \in \Delta$, and let $y \in \Delta$ be variable with y < x. Since f is increasing, this means:

$$f(y) \le f(x) \tag{1}$$

Taking the supremum of both sides of (1) gives:

$$\sup\{f(y) : y \in \Delta, y < x\} < f(x)$$

And when we allow y = x,

$$\sup\{f(y):y\in\Delta,y\leq x\}=f(x)$$

Exercise 32: Deduce from *Theorem 2.17* that a monotone function $f : \mathbb{R} \to \mathbb{R}$ has points of continuity in every open interval.

Proof. Let (a, b) be an open interval with a < b. Apply Theorem 2.17 to obtain an enumeration, (x_n) , of the discontinuities of f in (a, b). Then, since (a, b) is uncountable, and $\{x_n : n \in \mathbb{N}\}$ is countable, $(a, b) \setminus \{x_n : n \in \mathbb{N}\}$ is uncountable. Therefore, f has uncountably many points of continuity in (a, b).

Exercise 35: Let $f:[a,b] \to \mathbb{R}$ be increasing, and let (x_n) be an enumeration of the discontinuities of f(x). For each n, let $a_n = f(x_n) - f(x_n^-)$ and $b_n = f(x_n^+) - f(x_n)$. Define $a_n = 0$ if $x_n = a$ and $b_n = 0$ if $x_n = b$. Show that:

$$\sum_{n=1}^{\infty} a_n \le f(b) - f(a) \text{ and } \sum_{n=1}^{\infty} b_n \le f(b) - f(a)$$

Proof. We prove the inequality for a_n . The proof for b_n is similar, and is left to the reader. Suppose, by contradiction, that $\sum_{n=1}^{\infty} a_n > f(b) - f(a)$. Then, there exists N such that

$$\sum_{n=1}^{N-1} a_n \le f(b) - f(a) < \sum_{n=1}^{N} a_n \implies f(b) < f(a) + \sum_{n=1}^{N} a_n$$

Thus, $f(x_N) \ge f(a) + \sum_{n=1}^N a_n > f(b)$, because f(x) must at least attain the sum of the "left" jump discontinuities provided by $\{a_n\}$. Then, $f(x_N) > f(b)$, but $x_N < b$, a contradiction.

3 Chapter 3 - Metrics and Norms

3.1 Metric Spaces

Exercise 1: Show that:

$$d(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right|$$

defines a metric on $(0, \infty)$.

Proof. We verify all of the properties:

i. (non-negativity) This is trivial since d is enclosed by absolute values and $x \neq 0 \neq u$.

ii. (indiscernibility) Suppose d(x, y) = 0. Then:

$$\left|\frac{1}{x} - \frac{1}{y}\right| = 0 \implies \frac{1}{x} - \frac{1}{y} = 0 \implies \frac{1}{x} = \frac{1}{y} \implies x = y$$

iii. (symmetry) $d(x,y) = \left|\frac{1}{x} - \frac{1}{y}\right| = \left|\frac{1}{y} - \frac{1}{x}\right| = d(y,x)$

iv. (triangle inequality) Compute:

$$d(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right| = \left| \frac{1}{x} - \frac{1}{z} + \frac{1}{z} - \frac{1}{y} \right|$$

$$\leq \left| \frac{1}{x} - \frac{1}{z} \right| + \left| \frac{1}{z} - \frac{1}{y} \right|$$

$$= d(x,z) + d(y,z)$$

Which implies that $d(x, y) \le d(x, z) + d(y, z)$.

Exercise 2: If d is a metric on M, show that $|d(x,z) - d(y,z)| \le d(x,y)$ for any $x, y, z \in M$.

Proof. By the triangle inequality:

$$d(x,z) \le d(x,y) + d(y,z)$$

$$\implies d(x,z) - d(y,z) \le d(x,y)$$
(2)

and:

$$d(y,z) \le d(x,y) + d(x,z)$$

$$\implies d(y,z) - d(x,z) \le d(x,y)$$
(3)

Together (2) and (3) imply that $|d(x,z) - d(y,z)| \le d(x,y)$.

Exercise 3: Suppose $d: M \times M \to \mathbb{R}$ satisfies $d(x,y) = 0 \iff x = y$ and $d(x,y) \le d(x,z) + d(y,z)$ for all $x,y,z \in M$ (indiscernibility and the triangle inequality). Prove that d is a metric for M.

Proof. Let $x, y \in M$. We will show d satisfies the other metric properties. First, let's confirm that $0 \le d(x, y)$. Compute:

$$0 = d(x, x) \le d(x, y) + d(x, y) = 2d(x, y)$$
$$\implies 0 \le d(x, y)$$

Now, we will show that d(x,y) = d(y,x). By the triangle inequality:

$$d(x,y) \le d(x,x) + d(y,x) = d(y,x) \tag{4}$$

$$d(y,x) < d(y,y) + d(x,y) = d(x,y)$$
(5)

Together, (4) and (5) imply that d(x, y) = d(y, x).

Exercise 5: Show that $\rho(a,b) = \sqrt{|a-b|}$, $\sigma(a,b) = \frac{|a-b|}{1+|a-b|}$, and $\tau(a,b) = \min\{|a-b|,1\}$ each define metrics on \mathbb{R} .

Proof. Applying *Exercise 3*, we need only prove that the identity of indiscernibles and the triangle inequality hold.

 $\underline{\rho(a,b)}$: Consider: $\sqrt{|a-b|} = 0 \iff |a-b| = 0 \iff a = b$, proving indiscernibility. Suppose $x,y \in \mathbb{R}$ with $x,y \geq 0$. Then, we have that;

$$x + y \le x + y + 2\sqrt{xy}$$

$$\implies (\sqrt{x+y})^2 \le (\sqrt{x} + \sqrt{y})^2$$

$$\implies \sqrt{x+y} \le \sqrt{x} + \sqrt{y}$$
(6)

We will use this to prove the modified triangle inequality for ρ . Let $a, b, c \in \mathbb{R}$. Compute:

$$\rho(a,b) = \sqrt{|a-b|} = \sqrt{|a-c+c-b|} \le \sqrt{|a-c|+|c-b|}$$

$$\le \sqrt{|a-c|} + \sqrt{|c-b|} \text{ from (6)}$$

$$= \rho(a,c) + \rho(b,c)$$

Thus, the proof for ρ is complete.

 $\sigma(a,b)$: Consider: $1+|a-b|\geq 1$, so we multiply by the denominator to obtain $\overline{|a-b|}=0\iff a=b$, proving indiscernibility. Next, we need to prove the modified triangle inequality. Let:

$$F(t) := \frac{t}{1+t} = \frac{1}{\frac{1}{t}+1} = (1+\frac{1}{t})^{-1}$$
 for $t \neq 0$

We claim that F(t) is increasing. Suppose x>y>0. Then, $\frac{1}{x}<\frac{1}{y}\implies \frac{1}{x}+1<\frac{1}{y}+1\implies (\frac{1}{x}+1)^{-1}>(\frac{1}{y}+1)^{-1}\implies F(x)>F(y)$. Then let $s,t\geq 0$ and compute:

$$F(s+t) = \frac{s+t}{1+s+t} = \frac{s}{1+s+t} + \frac{t}{1+s+t} \le \frac{s}{1+s} + \frac{t}{1+t} = F(s) + F(t) \quad (7)$$

Then, let $a, b, c \in \mathbb{R}$. By the triangle inequality, we have $|a - b| \le |a - c| + |c - b|$. Since F is increasing, we can write:

$$\sigma(a,b) = F(|a-b|) \le F(|a-c| + |c-b|) \le F(|a-c|) + F(|c-b|) = \sigma(a,c) + \sigma(b,c)$$

Thus, the proof for σ is complete.

 $\underline{\tau(a,b)}$: Suppose $\tau(a,b) = 0$. Since $1 \neq 0$, we know that the min function selected $\overline{|a-b|}$, so $|a-b| = 0 \implies a = b$. The other direction is trivial. Now, we will prove the modified triangle inequality. Let:

$$G(t) := \min\{t, 1\} \text{ for } t \ge 0$$

G is very clearly increasing, as can be confirmed by a simple graph of the function. Now, we will prove that the modified triangle inequality holds for G. Let $s,t\geq 0$. We'll consider three cases. First, suppose $s,t\geq 1$. Then, $G(s+t)=1\leq 2=G(s)+G(t)$. Second, suppose $s<1\leq t$. Then, $G(s+t)=1\leq 1=G(t)\leq G(t)+s=G(t)+G(s)$. Third, and finally, suppose s,t<1. Then, if $s+t\geq 1$, $G(s+t)=1\leq s+t=G(s)+G(t)$. If s+t<1, then G(s+t)=s+t=G(s)+G(t). We now apply the same technique from our proof for σ , completing the proof for the modified triangle inequality.

Exercise 8: If d_1 and d_2 are both metrics on the same set M, does $d_1 + d_2$ yield a metric on M? If d is a metric, is d^2 a metric?

<u>Solution</u>: We apply *Problem 3*, and thus, need only show inseparability and the modified triangle inequality.

We claim that $d_1 + d_2$ is a metric.

Proof. Let $a, b \in M$. Compute:

$$d_1(a,b) + d_2(a,b) = 0 \iff d_1(a,b) = -d_2(a,b)$$

Since $d_1, d_2 \ge 0$, the only solution to the above equation is that $d_1(a, b) = 0 = d_2(a, b)$. Then, since both d_1 and d_2 are metrics, a = b. Now, we will prove the modified triangle inequality. Let $a, b, c \in M$. Compute:

$$d_1(a,b) + d_2(a,b) \le d_1(a,c) + d_1(b,c) + d_2(a,b)$$

$$\le d_1(a,c) + d_1(b,c) + d_2(a,c) + d_2(b,c)$$

$$= (d_1 + d_2)(a,c) + (d_1 + d_2)(b,c)$$

We claim that if d is a metric, then d^2 is NOT (necessarily) metric.

Proof. We give a counterexample. Let d be the Euclidean metric on \mathbb{R} . Then, let $x=0,\ y=\frac{1}{2},$ and z=1. Then, compute:

$$d^{2}(x,z) = 1 \leq \frac{1}{4} + \frac{1}{4} = d^{2}(x,y) + d^{2}(z,y)$$

Exercise 9: Recall that $2^{\mathbb{N}}$ denotes the set of sequences of 0s and 1s. Show that $d(a,b) = \sum_{n=1}^{\infty} 2^{-n} |a_n - b_n|$ defines a metric on $2^{\mathbb{N}}$.

5

Proof. We verify inseparability and the modified triangle inequality. Suppose a = b. Then d(a, b) = 0 clearly. Conversely, suppose d(a, b) = 0. Notice that each term in d is nonnegative. That is:

$$2^{-n}|a_n - b_n| \ge 0 \quad \forall n \in \mathbb{N}$$

Thus, d(a,b) = 0 implies each term in its sum is 0. That is:

$$2^{-n}|a_n - b_n| = 0 \quad \forall n \in \mathbb{N}$$

$$\implies |a_n - b_n| = 0 \quad \forall n \in \mathbb{N}$$

$$\implies a_n = b_n \quad \forall n \in \mathbb{N}$$

$$\implies a = b$$

Now, we will verify the triangle inequality. Let $a, b, c \in 2^{\mathbb{N}}$. Then, compute:

$$d(a,b) = \sum_{n=1}^{\infty} 2^{-n} |a_n - b_n|$$

$$\leq \sum_{n=1}^{\infty} 2^{-n} (|a_n - c_n| + |c_n - b_n|)$$

$$= \sum_{n=1}^{\infty} 2^{-n} |a_n - c_n| + 2^{-n} |c_n - b_n|$$

$$= \sum_{n=1}^{\infty} 2^{-n} |a_n - c_n| + \sum_{n=1}^{\infty} 2^{-n} |c_n - b_n|$$

$$= d(a,c) + d(b,c)$$

Thus, d(a,b) is a metric for $2^{\mathbb{N}}$.

Exercise 14: We say that a subset A of a metric space M is bounded if there is some $x_0 \in M$, and some constant $C < \infty$ such that $d(a, x_0) \leq C$ for all $a \in A$. Show that a finite union of bounded sets is again bounded.

Proof. Let $A_1, A_2, \dots, A_n \subseteq M$ be bounded sets. Since they are bounded, we can apply the definition and find $x_1, x_2, \dots, x_n \in M$ and $C_1, C_2, \dots, C_N < \infty$ such that $d(a, x_k) \leq C_k$ for all $a \in A_k$. Let $A := \bigcup_{k=1}^n A_k$. Then, let $C_1^* := \max_{1 \leq i < j \leq n} \{d(x_i, x_j)\}$. That is, C_1^* is the maximum distance between the x_k 's. Then, let $C_2^* := \max\{C_1, \dots, C_n\}$. Let $C := C_1^* + C_2^*$. Then let $x := x_n$. Let $x \in A$. Then, $x \in A_k$ for some $x \in A_k$ for some $x \in A_k$. Let $x \in A_k$ take that value. Then, compute:

$$d(a,x) \le d(a,x_k) + d(x,x_k) \le C_k + C_1^* \le C_2^* + C_1^* = C$$

Thus, A is bounded.

Exercise 15: We define the *diameter* of a nonempty subset A of M by $diam(A) = \sup\{d(a,b): a,b \in A\}$. Show that A is bounded if and only if diam(A) is finite.

Proof. Suppose A is bounded. Then, there exists $x_0 \in M$ and $C < \infty$ such that $d(a, x_0) \leq C$ for all $a \in A$. Suppose by contradiction that $\operatorname{diam}(A)$ is not finite. WLOG, suppose $\operatorname{diam}(A) = \infty$. Then, by the definition of sup, given K > 0, there exist $a, b \in A$ such that $d(a, b) \geq K$. Then, there exist $a, b \in A$ such that

 $d(a,b) \ge 2C+1$. But, $d(a,b) \le d(a,x_0)+d(b,x_0) \le 2C$, a contradiction. Conversely, suppose diam(A) is finite. Then, fix x_0 to be any point in A. Then, $x_0 \in M$. Let $a \in A$ be variable. Then, $d(a,x_0) \le \operatorname{diam}(A)$ by its definition, showing that A is bounded.

3.2 Normed Vector Spaces

Exercise 18: Show that $||x||_{\infty} \leq ||x||_{1}$ for any $x \in \mathbb{R}^{n}$. Also check that $||x||_{1} \leq n ||x||_{\infty}$ and $||x||_{1} \leq \sqrt{n} ||x||_{2}$.

Proof. We'll start by proving $||x||_{\infty} \leq ||x||_{2} \leq ||x||_{1}$ for any $x \in \mathbb{R}^{n}$. We do this by induction on n.

Base Case (n = 1): This is trivial. Clearly $|x_1| = |x_1| = |x_1|$.

<u>Inductive Step:</u> Suppose the hypothesis is true up to n. We will show it holds for n+1. We first prove the left half of the inequality. By its definition, $||x||_{\infty}$ is either equal to $\sup_{k=1,\dots,n} |x_k|$ or $|x_{n+1}|$. If it is the former, then we can apply the inductive hypothesis to obtain:

$$||x||_{\infty} = \sup_{k=1,\dots,n} |x_k| \le \sqrt{|x_1|^2 + |x_2|^2 + \dots + |x_n|^2}$$

$$\le \sqrt{|x_1|^2 + |x_2|^2 + \dots + |x_n|^2 + |x_{n+1}|^2} = ||x||_2$$

If it is the latter, the conclusion is trivial:

$$||x||_{\infty} = |x_{n+1}| = \sqrt{|x_{n+1}|^2} \le \sqrt{|x_1|^2 + |x_2|^2 + \dots + |x_n|^2 + |x_{n+1}|^2} = ||x||_2$$

We now prove the right half of the inequality. It is sufficient to show

$$\sqrt{|x_1|^2 + \dots + |x_{n+1}|^2} \le |x_1| + \dots + |x_{n+1}| \iff |x_1|^2 + \dots + |x_{n+1}|^2 \le (|x_1| + \dots + |x_{n+1}|)^2$$

Compute:

$$(|x_1| + \dots + |x_{n+1}|)^2 = (|x_1| + \dots + |x_n|)^2 + (|x_{n+1}|)^2 + 2(|x_1| + \dots + |x_n|)(|x_{n+1}|)$$

$$\geq (|x_1| + \dots + |x_n|^2 + |x_{n+1}|^2)$$

Then we apply the inductive hypothesis to obtain:

$$(|x_1| + \dots + |x_n|)^2 + |x_{n+1}|^2 \ge |x_1|^2 + \dots + |x_n|^2 + |x_{n+1}|^2$$

Thus $(|x_1| + \cdots + |x_{n+1}|)^2 \ge |x_1|^2 + \cdots + |x_{n+1}|^2 \iff ||x||_2 \le ||x||_1$. Thus, combining both parts, $||x||_{\infty} \le ||x||_2 \le ||x||_1$, completing the proof.

Now we will prove $||x||_1 \le n ||x||_{\infty}$. Since n is finite, $||x||_{\infty} = \sup_{k=1,\dots,n} |x_k| = \max_{k=1,\dots,n} |x_k|$. Then, pick i such that $|x_i| = \max_{k=1,\dots,n} |x_k| = ||x||_{\infty}$. Then, by definition, $|x_i| \ge |x_k|$ for all $k = 1, \dots, n$. Then, compute

$$||x||_1 = |x_1| + \dots + |x_n|$$

 $\leq |x_i| + \dots + |x_i|$
 $= n|x_i| = n ||x||_{\infty}$

Thus, the proof is complete.

Now we will check that $\|x\|_1 \leq \sqrt{n} \|x\|_2$. We want to show that $(|x_1|+\cdots+|x_n|)^2 \leq n(|x_1|^2+\cdots+|x_n|^2)$. It is sufficient to show that $(|x_1|+\cdots+|x_n|)^2+\sum_{1\leq i< j\leq n}(|x_i|-|x_j|)^2=n(|x_1|^2+\cdots+|x_n|^2)$, because $\sum_{1\leq i< j\leq n}(|x_i|-|x_j|)^2$ is non-negative, so our desired conclusion follows. (For simplicity, we write $\sum_{1\leq i< j\leq n}(|x_i|-|x_j|)^2$ in place of $\sum_{j=1}^{n-1}\sum_{i=j}^n(|x_i|-|x_j|)^2$). Compute:

$$(|x_1| + \dots + |x_n|)^2 + \sum_{1 \le i < j \le n} (|x_i| - |x_j|)^2$$

$$= \sum_{i=1}^n |x_i|^2 + \sum_{1 \le i < j \le n} 2|x_i||x_j| + \sum_{1 \le i < j \le n} (|x_i| - |x_j|)^2$$

$$= \sum_{i=1}^n |x_i|^2 + \sum_{1 \le i < j \le n} 2|x_i||x_j| + \sum_{1 \le i < j \le n} (|x_i|^2 + |x_j|^2 - 2|x_i||x_j|)$$

$$= \sum_{i=1}^n |x_i|^2 + \sum_{1 \le i < j \le n} (|x_i|^2 + |x_j|^2)$$

It is easy to verify that every $|x_k|$ appears n-1 times in the expanded version of the sum over $1 \le i < j \le n$ for all $k = 1, 2, \dots, n$. Thus, the equation simplifies to become:

$$(|x_1| + \dots + |x_n|)^2 + \sum_{1 \le i < j \le n} (|x_i| - |x_j|)^2 = \sum_{i=1}^n |x_i|^2 + \sum_{i=1}^n (n-1)|x_i|^2$$
$$= n \sum_{i=1}^n |x_i|^2$$

Thus, the proof is complete.

Exercise 20: Show that $||A|| = \max_{1 \le i \le n} \left(\sum_{j=1}^m |a_{i,j}|^2 \right)^{1/2}$ is a norm on the vector space $\mathbb{R}^{n \times m}$ of all $n \times m$ real matrices $A = [a_{i,j}]$.

Proof. We will refer to $\|\cdot\|$ as "the norm".

- i. The norm is clearly positive.
- ii. If A = 0, ||A|| = 0 clearly. Suppose ||A|| = 0. Then

$$\left(\sum_{j=1}^{m} |a_{k,j}|^2\right)^{1/2} = 0$$

for some k. Notice that the Euclidean norm of a vector in \mathbb{R}^m takes the same form. We thus conclude that $a_{k,1} = a_{k,2} = \cdots = a_{k,m} = 0$. Moreover, if any other row had a nonzero term, the max function would have selected that row. Thus, all rows are 0, so A = 0.

iii. Compute:

$$\|\alpha A\| = \max_{1 \le i \le n} \left(\sum_{j=1}^{m} |\alpha a_{i,j}|^2 \right)^{1/2}$$

$$= \max_{1 \le i \le n} \left(\sum_{j=1}^{m} |\alpha|^2 |a_{i,j}|^2 \right)^{1/2}$$

$$= \max_{1 \le i \le n} \left(|\alpha|^2 \sum_{j=1}^{m} |a_{i,j}|^2 \right)^{1/2}$$

$$= \max_{1 \le i \le n} |\alpha| \left(\sum_{j=1}^{m} |a_{i,j}|^2 \right)^{1/2}$$

And since multiplying by a constant affects all rows equally, we can pull $|\alpha|$ through the max function, concluding that $||\alpha A|| = |\alpha| ||A||$. iv. Let $A, B \in \mathbb{R}^{n \times m}$. Then:

$$||A + B|| = \max_{1 \le i \le n} \left(\sum_{j=1}^{m} |a_{i,j} + b_{i,j}|^2 \right)^{1/2}$$

By the properties of the Euclidean norm, we can simplify this:

$$||A + B|| \le \max_{1 \le i \le n} \left(\left(\sum_{j=1}^{m} |a_{i,j}|^2 \right)^{1/2} + \left(\sum_{j=1}^{m} |b_{i,j}|^2 \right)^{1/2} \right)$$

Then, applying the max function to each term can only make them bigger or cause them to remain the same. It cannot make either term smaller. Thus, we can write:

$$||A + B|| \le \max_{1 \le i \le n} \left(\sum_{j=1}^{m} |a_{i,j}|^2 \right)^{1/2} + \max_{1 \le i \le n} \left(\sum_{j=1}^{m} |b_{i,j}|^2 \right)^{1/2} = ||A|| + ||B||$$

Thus, we have verified all the properties of a norm, so $\|\cdot\|$ is indeed a norm on $\mathbb{R}^{n\times m}$.

3.3 More Inequalities

Exercise 24: The conclusion of *Lemma 3.7* also holds in the case p = 1 and $q = \infty$. Why?

Proof. Let $x \in \ell_1$ and $y \in \ell_\infty$. Then, $||y||_{\infty} = \sup\{|y_n| : n \in \mathbb{N}\}$. That is,

 $|y_i| \leq ||y||_{\infty}$ for all $i \in \mathbb{N}$. Then, compute:

$$\sum_{i=1}^{\infty} |x_i y_i| = \sum_{i=1}^{\infty} |x_i| |y_i|$$

$$\leq \sum_{i=1}^{\infty} |x_i| ||y||_{\infty}$$

$$= ||y||_{\infty} \sum_{i=1}^{\infty} |x_i|$$

$$= ||y||_{\infty} ||x||_{1}$$

Thus, the proof is complete.

3.4 Limits in Metric Spaces

Exercise 27: Show that $diam(B_r(x)) \leq 2r$.

Proof. Let $a, b \in B_r(x)$. Then, $d(a, b) \leq d(a, x) + d(b, x) < r + r = 2r$, so d(a, b) < 2r. Taking the sup of both sides gives $\sup\{d(a, b) : a, b \in B_r(x)\} \leq 2r$. Thus, $\dim(B_r(x)) \leq 2r$.

Exercise 31: Give an example where $\operatorname{diam}(A \cup B) > \operatorname{diam}(A) + \operatorname{diam}(B)$. If $A \cap B \neq \emptyset$ show that $\operatorname{diam}(A \cup B) \leq \operatorname{diam}(A) + \operatorname{diam}(B)$.

Proof. Let A = [-3, -2] and B = [2, 3]. Then, $\operatorname{diam}(A) = \operatorname{diam}(B) = 1$, but $\operatorname{diam}(A \cup B) = (3) - (-3) = 6$. Suppose $A \cap B \neq \emptyset$.

Exercise 33: Prove that limits are unique. [Hint: $d(x,y) \leq d(x,x_n) + d(y,x_n)$]

Proof. Suppose $x_n \to x$ and $x_n \to y$. We will show x = y. Let $\epsilon > 0$ be given. Then, there exists $N_1 \in \mathbb{N}$ such that $d(x, x_n) < \epsilon/2$ for all $n \geq N_1$. Similarly, there exists $N_2 \in \mathbb{N}$ such that $d(y, x_n) < \epsilon/2$ for all $n \geq N_2$. Let $N = \max\{N_1, N_2\}$. Then, compute:

$$d(x,y) \le d(x,x_n) + d(y,x_n)$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

But, since ϵ is arbitrary, d(x, y) = 0, thus, x = y.

Exercise 34: If $x_n \to x$ in (M, d), show that $d(x_n, y) \to d(x, y)$ for any $y \in M$. More generally, if $x_n \to x$ and $y_n \to y$, show that $d(x_n, y_n) \to d(x, y)$.

Proof. Let $\epsilon > 0$ be given. Since $x_n \to x$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $d(x_n, x) < \epsilon$. Compute, (using the euclidean norm in \mathbb{R}):

$$|d(x_n, y) - d(x, y)| \le |d(x_n, x) + d(x, y) - d(x, y)|$$

 $\le |d(x_n, x)| = d(x_n, x) < \epsilon$

Thus, $d(x_n, y) - d(x, y) \to 0$, and since $d(x_n, y), d(x, y) \ge 0$, $d(x_n, y) \to d(x, y)$.

For the more general proposition, let $\epsilon > 0$ be given. Since $x_n \to x$ and $y_n \to y$, we can find $N_1, N_2 \in \mathbb{N}$ such that $n \geq N_1 \implies d(x_n, x) < \epsilon/2$ and $n \geq N_2 \implies d(y_n, y) < \epsilon/2$. Then, let $N = \max\{N_1, N_2\}$. Suppose $n \geq N$. Then, compute:

$$|d(x_n, y_n) - d(x, y)| \le |d(x_n, x) + d(y_n, x) - d(x, y)|$$

$$\le |d(x_n, x) + d(y_n, y) + d(x, y) - d(x, y)| = |d(x_n, x) + d(y_n, y)|$$

$$\le |d(x_n, x)| + |d(y_n, y)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Exercise 35: If $x_n \to x$, then $x_{n_k} \to x$ for any subsequence (x_{n_k}) of (x_n) .

Proof. Let $\epsilon > 0$ be given. Then, there exists $N \in \mathbb{N}$ such that $d(x_n, x) < \epsilon$ for all $n \geq N$. Suppose $n \geq N$. Then, by definition $n_k \geq n \geq N$. Thus, n_k satisfies the limit definition, so $d(x_{n_k}, x) < \epsilon$, so $x_{n_k} \to x$

Exercise 40: Here is a positive result about ℓ_1 that may restore your faith in intuition. Given any (fixed) element $x \in \ell_1$, show that the sequence $x^{(k)} := (x_1, \dots, x_k, 0, \dots) \in \ell_1$ (i.e., the first k terms of x followed by all 0s) converges to x in ℓ_1 -norm. Show that the same holds true in ℓ_2 but give an example showing that it fails (in general) in ℓ_{∞} .

Proof. Let $x \in \ell_1$. Then, compute:

$$||x - x^{(k)}|| = \sum_{i=1}^{\infty} |x_i - x_i^{(k)}|$$

$$= \sum_{i=1}^{k} |x_i - x_i^{(k)}| + \sum_{i=k+1}^{\infty} |x_i - x_i^{(k)}|$$

$$= 0 + \sum_{i=k+1}^{\infty} |x_i - 0|$$

$$= |x_{k+1}| + |x_{k+2}| + \dots = ||x|| - \sum_{i=1}^{k} |x_i| < \infty$$

To verify that $x^{(k)} \to x$ as $k \to \infty$, it suffices to show that $||x - x^{(k)}|| \to 0$ as $k \to \infty$. Note that $||x|| < \infty$ and that $\sum_{i=1}^k |x_i|$ is a monotone increasing sequence. Further, it converges to ||x|| by definition. Thus, as $k \to \infty$, $||x - x^{(k)}|| = ||x|| - \sum_{i=1}^k |x_i| \to 0$.

Similarly, let $x \in \ell_2$. Again, it suffices to verify that $||x - x^{(k)}|| \to 0$ as $k \to \infty$.

Compute:

$$||x - x^{(k)}|| = \left(\sum_{i=1}^{\infty} |x_i - x_i^{(k)}|^2\right)^{1/2}$$

$$= \left(\sum_{i=1}^{k} |x_i - x_i^{(k)}|^2 + \sum_{i=k+1}^{\infty} |x_i - x_i^{(k)}|^2\right)^{1/2}$$

$$= \left(\sum_{i=k+1}^{\infty} |x_i - x_i^{(k)}|^2\right)^{1/2}$$

$$= \left(\sum_{i=k+1}^{\infty} |x_i|^2\right)^{1/2} = \left(||x||^2 - \sum_{i=1}^{k} |x_i|^2\right)^{1/2}$$

Again, by definition, $\sum_{i=1}^{k} |x_i|^2 \to ||x||^2$ as $k \to \infty$. Thus, $||x - x^{(k)}|| \to 0$ in ℓ_2 .

Finally, we give an example showing that this fails in ℓ_{∞} . Consider $x_n = 1 - \frac{1}{n}$. Then, x_n is increasing, so:

$$||x_n - x_n^{(k)}||_{\infty} = \sup\{|x_i - x_i^{(k)}| : i \in \mathbb{N}\} = \sup\{0, \dots, 0, |x_{k+1}|, \dots\} = |x_{k+1}|$$

But, as
$$k \to \infty$$
, $|x_{k+1}| \to 1$ since $x_n \to 1$. Thus, $\|x_n - x_n^{(k)}\|_{\infty} \not\to 0$.

Exercise 41: Given $x, y \in \ell_2$, recall that $\langle x, y \rangle := \sum_{i=1}^{\infty} x_i y_i$. Show that $\langle x^{(k)}, y^{(k)} \rangle \to \langle x, y \rangle$.

Proof. Suppose $x^{(k)} \to x$ and $y^{(k)} \to y$. Then, compute:

$$\langle x^{(k)}, y^{(k)} \rangle = \sum_{i=1}^{\infty} x_i^{(k)} y_i^{(k)}$$

$$= \sum_{i=1}^k x_i^{(k)} y_i^{(k)} + \sum_{i=k+1}^{\infty} x_i^{(k)} y_i^{(k)}$$

$$= \sum_{i=1}^k x_i y_i$$

Thus, as $k \to \infty$, $\langle x^{(k)}, y^{(k)} \rangle \to \sum_{i=1}^{\infty} x_i y_i = \langle x, y \rangle$, and the proof is complete, \square