COSC 290 Discrete Structures

Lecture 5: Propositional Logic

Prof. Michael Hay Friday, Sep. 8, 2017 Colgate University

> Propositional Logic: Syntax and Semantics

Plan for today

- 1. Propositional Logic: Syntax and Semantics
- 2. Evaluating propositions
- 3. Expressing knowledge in propositional logic

Poll: what is a proposition?

Propositional logic is based around the concept of a proposition. Why isn't

"Where is does COSC 290 lab meet?"

- considered a proposition?
- A) Because only "yes/no" questions can be propositions.
- B) Because questions can never be propositions.
- C) Because the answer changes over time (last semester it was held in a different room).
- D) More than one of the above / None of the above.

Proposition

- A proposition is a sentence that is either true or false.
 - 3 + 4 = 7
 - · My middle name is Herbert or my dog's name is Rufus.
 - · One of these three propositions is true.

These are not propositions:

- Ouestions: is 3 + 4 = 7?
- · Imperatives: You should major in computer science.
- · Opinions: CS majors have more fun.

Semantics of propositional logic

Recall: the semantics defines the rules for determining the *truth* of a sentence

A simple sentence consisting of a single atomic proposition p is either true or false.

For more complex sentences, the truth can be evaluated using these rules:

¬S	is true iff	S	is false		
$S_1 \wedge S_2$	is true iff	S ₁	is true and	S ₂	is true
$S_1 \vee S_2$	is true iff	S ₁	is true or	S ₂	is true
$S_1 \implies S_2$	is true iff	S ₁	is false or	S ₂	is true
$S_1 \iff S_2$	is true iff	$S_1 \implies S_2$	is true and	$S_2 \implies S_1$	is true

In propositional logic, a model is simply an assignment of truth values to the atomic variables.

Syntax of propositional logic

A sentence in propositional logic must conform to the following syntax.

A sentence can consist of a single atomic proposition. Example: "The chair is red." Such propositions are represented using variables p. q. r. etc.

More complex sentences can be constructed from simpler sentences using $logical\ connectives$.

- If S is a sentence, ¬S is a sentence (negation)
- If S₁ and S₂ are sentences, S₁ ∧ S₂ is a sentence (conjunction)
- If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence (disjunction)
- If S_1 and S_2 are sentences, $S_1 \implies S_2$ is a sentence (implication)
- If S₁ and S₂ are sentences, S₃ \iff S₂ is a sentence (iff)

Truth tables

A truth table can be used to compactly represent semantics of a connective. $% \label{eq:connective}%$

р	q	p∧q
Т	Т	?
T F	F	?
F	Т	?
F	F	?

Ex: Consider proposition: "x is prime and even." For what x is it true?

Poll: exclusive vs. inclusive or

There two "or" operators, the "inclusive or" and the "exclusive or."

Inclusive or			
р	q	p∨q	
T	Т	?	
T	F	?	
F	Т	?	
F	F	?	

Exclusive or		
р	q	$p \oplus q$
Т	Т	?
Т	F	?
F	Т	?
F	F	?

In which rows do their truth tables differ?

- A) The TT row
- B) The T F row
- C) The FT row
- D) The FF row
- E) None of the above / More than one of the above

Implication

The proposition $p \implies q$ is true when the truth implies the truth of q. In other words, $p \implies q$ is true unless p is true and q is false.

Implication is useful for encoding rules.

You are drinking alcohol legally \implies you are at least 21.

- If you are drinking alcohol legally, then you must be at least 21.
- · You can legally drink only if you are at least 21.
- · You are at least 21 if you are drinking legally.
- · Being at least 21 is neccessary for drinking legally.
- Knowing that you are drinking legally is sufficient information to conclude you are at least 21.

Exclusive or vs. inclusive or

Inclusive or

iliclusive or		
р	q	p∨q
Т	Т	T
Т	F	T
F	Т	Т .
F	F	l F

Ex: "Bob likes chicken or fish." (He might like both.)

Exclusive or

p q		p⊕q	
Т	Т	F	
Т	F	T	
F	Т	<i>p</i> ⊕ <i>q</i> F T T	
F	F	F	

Ex: "Alice is either in her office or exercising at the gym." (She can't be in both places at once.)

Problem set 4

DLN 3.9. Given.

- p := "x + v is valid Pvthon"
- q := "x * y is valid Python"
- w := "x is a list"

write the following sentence in propositional logic:

"If x + y and x * y are both valid Python only if x is not a list."

$$(p \land q) \implies \neg w$$

Evaluating propositions

Evaluating propositions

Question: How do we know whether a given proposition is true?

- If the answer is, "Well, we have to read the proposition and decide if it seems true on a case-by-case basis," then logic FAIL.
- Truth should be determined based on the form of the proposition, the semantics of logical operators, and the truth of each input variable.

Poll: evaluating propositions

Let p, q, r be the following atomic propositions.

- p = "In COSC 290, Alice earned an A on each lab, the take-home midterm, and the final," (assume this is true)
- q = "Alice's final grade for COSC 290 was an A." (assume this is true)
- r = "7 is prime." (this is true)

Which of the following compound propositions are true?

- A) $p \implies a$
- A) $p \Rightarrow q$ B) $q \Rightarrow p$
- C) $r \implies q$
- D) All of the above
- E) None of the above

Implication and causality

In logic, we are looking at the form of the arguments.

To know if $p \implies q$, it is not necessary for p to cause q.

To determine truth of $p \implies q$, we need to know the truth values of p and q and then consult the truth table.

р	q	$p \implies q$
T	Т	T
Т	F	F
F	Т	T
F	F	Ιт

Example: "7 is prime implies Alice's final grade for COSC 290 was an A" is true because both statements are given as true.

Counter-intuitive nature of implication

A second counter-intuitive aspect is that $p \implies q$ is true whenever p is false.

Example:

- Let ψ = "If Bob earns an A on each lab, the take-home midterm, and the final, then Alice will earn an A"
- · Suppose Bob earns a C on his labs and exams.
- Then \(\psi\) is true.

р	q	$p \implies q$
Т	Т	T
Т	F	F
F	Т	Т
F	F	Т

Poll: evaluating implications, part 2

Let ψ be "If Prof. Gember-Jacobson bikes to work during this semester, then he wears his helmet."

Which of the following facts will allow us to conclude that ψ is true?

- A) Prof. Gember-Jacobson is once seen biking and wearing his helmet.
- B) Prof. Gember-Jacobson is seen wearing a helmet.
- C) At the end of the semester, the pile of dust on Prof. Gember-Jacobson's bicycle seat provides proof that he did not bike even once during the semester.
- Prof. Gember-Jacobson is seen biking every day this semester, and each day he is wearing a helmet.
- E) More than one of the above / None of the above.

Poll: evaluating implications

Let ψ be "If Prof. Gember-Jacobson bikes to work during this semester, then he wears his helmet."

Which of the following facts will allow us to conclude that ψ is false?

- A) Prof. Gember-Jacobson is once seen not wearing a helmet.
- B) At the end of the semester, the pile of dust on Prof. Gember-Jacobson's helmet provides proof that he did not wear the helmet even once during the semester.
- C) Prof. Gember-Jacobson is seen wearing his helmet but not biking.
- D) Prof. Gember-Jacobson is seen biking but not wearing his helmet.
- E) More than one of the above / None of the above.

Truthiness of a sentence

Consider the sentence $p \land (p \implies q) \implies q$.

How do we evaluate whether this sentence is true?

- Represent expression as a tree (relying on operator precedence to correctly parse sentence).
- Assign true/false values to leaves of the tree (atomic propositions p and q)
- Propagate true/false values up tree using properties of logical operators.

Shown on board

(Aside: can this expression be simplified?)

Expressing knowledge in propositional logic

Poll: Wumpus world sentences

Let atomic propositions be denoted as follows:

- · p ii denotes "there is a pit in [i, j]."
- b_{ii} denote "there is a breeze in [i, j]."
- ٠..

Suppose we know that "pits cause breezes in adjacent cells." Which of the following sentences could we add to our KB?

A)
$$p_{2,1} \Longrightarrow (b_{1,1} \wedge b_{2,2} \wedge b_{3,1})$$

- B) $b_{1,1} \implies (p_{1,2} \vee p_{2,1})$
- C) $b_{1,1} \iff (p_{1,2} \lor p_{2,1})$
- C) $b_{1,1} \iff (p_{1,2} \lor D)$ All of the above
- E) None of the above unless we also know that $b_{1,1}$ is true or $p_{2,1}$ is true.

Bonus question: would your answer change if you also knew that pits were the sole cause of breezes?

Poll: Wumpus world sentences

Let atomic propositions be denoted as follows:

- p_{ij} denotes "there is a **p**it in [i, j]."
- · bii denote "there is a breeze in [i, j]."

٠ ...

Write this sentence in propositional logic: "There may be a pit in [1,2] or [2,2] and the wumpus is either in [2,1] or [3,1]."

A)
$$(p_{1,2} \lor p_{2,2}) \land (b_{2,1} \lor b_{3,1})$$

B)
$$(p_{1,2} \lor p_{2,2}) \land (b_{2,1} \oplus b_{3,1})$$

C)
$$(p_{1,2} \oplus p_{2,2}) \wedge (b_{2,1} \oplus b_{3,1})$$

D)
$$(p_{1,2} \wedge p_{2,2}) \vee (b_{2,1} \wedge b_{3,1})$$

E) More than one of the above / None of the above