

Practice Enterprise 2 (PE2)

tips and guidelines

Agenda for today

- Purpose of PE2
- Requirements
- Evaluation
- Composition of the teams
- Brainstorm about the project topic

Purpose of PE2

- Practice Enterprise is a multidisciplinary project assignment Integration of knowledge and skills from different subjects and searching, finding, applying, lifelong learning, ...
- "Soft skills" collaborate / communicate / present
 - Progress reporting / report and presentation, ...
- Projectmanagement: planning !!!
- "Learning trajectory" PE1 → PE2 → Bachelor jury exam
 - Degree of finish and/or complexity
 - Proof of concept → Prototype → Near product
 - Preparing for Bachelor jury exam / Job

PE2 requirements

- Minimum
 - PCB design
 - Software development
 - Preferably C on a µController
 - The project does something useful.

- Important
 - Safety

ÈSP32, ...

- Cost
- Preferably not based on:
 - ArduinoRPILittle learning value(Arduino)

- Maximum freedom of choice!
- But your subject needs to be approved.

Tip 1:

Keep in mind delivery times of PCB and Components.

Try (if possible) to order key components during the first semester.

Artikelnr. fabrikant	Ordercode	Beschrijving / Fabrikant ▲ ▼	Beschikbaarheid
STM32F 733ZEI6	2758801 Data Sheet Co Rohs	ARM MCU, STM32 Family STM32F7 Series Microcontrollers, ARM Cortex-M7, 32bit, 216 MHz, 512 KB STMICROELECTRONICS	Niet langer op voorraad
STM32F 723ZCI6	2758795 Data Sheet Cof RoHS Date/Lot Code	ARM MCU, STM32 Family STM32F7 Series Microcontrollers, ARM Cortex-M7, 32bit, 216 MHz, 256 KB STMICROELECTRONICS Bestsellers	Beschikbaar voor nabestelling. We hebben meer op voorraad in de week vanaf 17/10/22
STM32F 730R8T6	2980932 Data Sheet O*RoHS Date/Lot Code	ARM MCU, STM32 Family STM32F7 Series Microcontrollers, ARM Cortex-M7, 32bit, 216 MHz, 64 KB STMICROELECTRONICS Bestsellers	Beschikbaar voor nabestelling. Wachten op levering door 22/04/22
STM32F 765IGK6	3365385 Data Sheet G*RoHS Date/Lot Code	ARM MCU, STM32 Family STM32F7 Series Microcontrollers, ARM Cortex-M7F, 32bit, 216 MHz, 1 MB STMICROELECTRONICS	Beschikbaar voor nabestelling. Wachten op levering door 22/04/22
STM32F 722RET7	3365373 Data Sheet **G**RoHS**	ARM MCU, STM32 Family STM32F7 Series Microcontrollers, ARM Cortex-M7F, 32bit, 216 MHz, 512 KB STMICROELECTRONICS	Niet langer op voorraad

Tip 2:

- Bear in mind additional costs for online orders:
 - Import costs
 - Transport costs
 - VAT (some sites show prices ex. VAT)
 - VAT = BTW in Belgium

Tip 3:

- Don't be afraid of SMD (hand) soldering.
 - But do look at what is possible. BGA/LGA is a bit more difficult.
 - We are standardized on 0603 imperial for decoupling capacitors and resistors.

Tip 4:

- Manual assembly :
 - Don't solder everything on the PCB and then power it up.
 - Instead, assemble selectively and then test it with a power supply that has a configurable current limit.
 - If not possible to assemble selectively: provide a solder bridge jumper in line with the power supply.

Tip 5:

- If you want to assemble with our pick-and-place machine.
 - Come and have a chat. Before drawing the PCB!
 - Only if necessary (e.g. many components)
 - On your PCB, provide 3 fiducials and a 10 mm break edge (at the top and bottom)
 - Supply your components on rolls

break edge

Tip 6:

Consider your enclosure before you start drawing your PCB.
 Buy existing enclosures:

- https://www.hammfg.com/
- https://www.fischerelektronik.de/en/
- https://www.camdenboss.com/
- https://www.polycase.com/
- https://www.newageenclosures.com/
- https://www.takachi-enclosure.com/
- https://www.budind.com/
- Consider how you will attach your PCB. (mounting holes, click system, glue...)

Small Enclosures Diecast Enclosures Plastic Enclosures Extruded Enclosures General Purpose, Powder Miniature, Hand-Held, General Purpose, Water-Coated, Stomp Boxes, UL General Purpose, Project Tight, EMI Shielded, or Heat **Listed Options** Boxes **Dissipation Options**

Tip 7:

- Usually, it is a good idea to develop code on PC or evaluation platform while "waiting for" or "creating the" PCB. (even if you are working alone)
- Also provide a debug UART on your PCB.
- Make sure you can debug your code (breakpoints, view variables, ...)
 See what programmer's dongle you need and how to connect it: Pickit 3 (Microchip), MKII (AVR), STLINK-V3MINIE(STM32)

STLINK-V3MINIE(STM32)

Pads on board to CN2 BTB card edge connector

The pads on the board have the same function as the STDC14 connector. The user can select a BTB card edge connector to connect STLINK-V3MINIE and the target board. The board-to-board card edge connector reference is 009159010061911 from AVX.

Table 3. Pads on board to CN2 BTB card edge connector

Side	Pin number	Pin description	Туре
ТОР	1	Reserved ⁽¹⁾	-
	2	T_JTDI/NC ⁽²⁾	0
	3	T_JTMS/T_SWDIO	I/O
	4	T_JCLK/T_SWCLK	0
	5	T_JTDO/T_SWO ⁽³⁾	I I
воттом	6	GND	S
	7	T_VCP_RX	0
	8	T_VCP_TX	Ī
	9	T_NRST	0
	10	T_VCC	I

- 1. Do not connect on target.
- 2. NC means not required for SWD (Serial Wire Debug) connection.
- 3. SWO (Serial Wire Output) is optional, and only required for SWV (Serial Wire Viewer) trace.

Tip 7:

- Makerspace on campus
 - 3D printen
 - Laser Cutting
 - CNC
 - Handtools
- Useful for the enclosure or mechanics

Examples

- DMX ledbar (2020) movie
- UniTune (2019) movie
- Led watch (2018) photo
- RobuCup (2017) movie
- SmartAlarmClock (2016) photo

Choosing your project

- Best done based on:
 - Interests (subject)
 - (Still to acquire/improving) Knowledge
 - Future job (Helps with your job interview)

Evaluation

- Practice Enterprise (theory) 30%
 - Project Proposal (including completeness of specification and requirements)
 - How you used GIT
 - Presentation
- Practice Enterprise (lab) 70%
 - Proper operation according to specification and requirements
 - Documentation
 - Demonstration (final presentation)
 - Oral Defence

Teams

- Groups per 2
- Alone is possible but only if you have a good reason
- Good communication = important
- Task allocation = important

What is expected (in total)

- Working project (preferably up to and including housing)
- Project proposal / Plan of action (deadline)
- Logbook (calculations, sketches, measurements, problems, ...)
 - GIT -> markdown file in doc folder
 - Time accounting (who, hours, item, ...)
- Final report (PDF)
- Project documentation on Github
- Pictures and a demo movie (youtube link)
- Presentation, demo and defence in front of a jury
- Demo during at least one open doors day/infoday

What is expected by Deadline

- Project proposal / Plan of action
 - Team members (Names)
 - Title
 - Brief description
 - Block diagram
 - In detail description of the blocks
 - Component / tool choice
 - Results of market research
 What already exists?
 - Results of technology exploration
 - Budget estimate

Lots of work!

Discuss it with your teacher up front!

Use drawings, sketches, wire frames where necessary

Submit via Canvas

What is expected by first Lab class (2nd semester)

- Ordered components have arrived
- Planning (preferably in the form of Gantt-chart)

Think of: number of weeks, vacations, delivery time PCB, open day

Idea what you are going to do in the first lesson.

Preferably not:

- Which components are we going to use?
- Look up ...

But do:

- Component testing / concept testing
- Code writing
- •

Should already have happened

Only for 2023-2024: STM32F301C8T6TR

 You can get a microcontroller for free from the school (only for a.y. 2023-2024): STM32F301C8T6TR (3 pieces)

Core: Arm[®] 32-bit Cortex[®]-M4 CPU with FPU (72 MHz max.), single-cycle multiplication and HW division, DSP instruction

Memories

- 32 to 64 Kbytes of Flash memory
- 16 Kbytes of SRAM on data bus

CRC calculation unit

Reset and power management

- V_{DD}, V_{DDA} voltage range: 2.0 to 3.6 V
- Power-on/Power down reset (POR/PDR)
- Programmable voltage detector (PVD)
- Low-power: Sleep, Stop, and Standby
- V_{BAT} supply for RTC and backup registers

Clock management

- 4 to 32 MHz crystal oscillator
- 32 kHz oscillator for RTC with calibration
- Internal 8 MHz RC with x 16 PLL option
- Internal 40 kHz oscillator

Up to 51 fast I/O ports, all mappable on external interrupt vectors, several 5 V-tolerant

Interconnect matrix

7-channel DMA controller supporting timers, ADCs, SPIs, I²Cs, USARTs and DAC

 $1\times ADC~0.20~\mu s$ (up to 15 channels) with selectable resolution of 12/10/8/6 bits, 0 to 3.6 V conversion range, single ended/differential mode, separate analog supply from 2.0 to 3.6 V

Temperature sensor

1 x 12-bit DAC channel with analog supply from 2.4 to 3.6 V

Three fast rail-to-rail analog comparators with analog supply from 2.0 to 3.6 V

1 x operational amplifier that can be used in PGA mode, all terminal accessible with analog supply from 2.4 to 3.6 V

