Hatványsorok

Hatványsor: "Végtelen fokú" polinom

Legyen
$$P(x) = c_0 + c_1 x + \cdots + c_n x^n \ldots = \sum_{n=0}^{\infty} c_n x^n, (c_n) \subset \mathbb{R}.$$

Kicsit általánosabban:

Definíció. A hatványsor:

$$\sum_{n=0}^{\infty} c_n(x-x_0)^n, \quad \forall c_n \in \mathbb{R}.$$

Az egyszerűség kedvéért egyelőre feltesszük, hogy $x_0 = 0$.

Konvergencia halmaz

Definíció. Adott egy
$$\sum_{n=0}^{\infty} c_n x^n$$
 hatványsor.

Ennek KONVERGENCIA HALMAZA (konvergencia tartománya):

$$\mathcal{H}=\{x\in\mathbb{R}:\ \sum_{n=0}^{\infty}c_nx^n<\infty\}.$$

Röviden: "Ahol konvergens"

Konvergencia halmaz, példák

1. Példa.
$$c_n = 1 \ \forall n$$
-re. $\sum_{n=0}^{\infty} x^n$ hol konvergens? $\mathcal{H} = ? \ (-1,1)$

2.
$$P\'{e}lda$$
. $c_n = \frac{1}{n!} \forall n$ -re. $\sum_{n=0}^{\infty} \frac{1}{n!} x^n$ hol konvergens? $\mathcal{H} = ? \mathbb{R}$

3. Példa.
$$c_n = n^n \ \forall n$$
-re. $\sum_{n=0}^{\infty} n^n x^n$ hol konvergens? $\mathcal{H} = ? \{0\}$

Konvergencia sugár

Definíció. Tegyük fel, hogy $\exists \xi \neq 0$, melyre $\xi \in \mathcal{H}$, és $\exists \eta \notin \mathcal{H}$

A hatványsor KONVERGENCIA SUGARA

$$\rho := \sup\{|x|: x \in \mathcal{H}\}, \qquad \rho > 0.$$

Megjegyzés. "rho" betű ho vagy arrho.

Definíció. Kiegészítés.

- Ha $\mathcal{H} = \{0\}$, akkor $\rho := 0$. (Azaz $\nexists \xi \neq 0$, $\xi \in \mathcal{H}$.)
- Ha $\mathcal{H} = \mathbb{R}$, akkor $\rho := \infty$. (Azaz $\nexists \eta \notin \mathcal{H}$)

Konvergencia halmaz

Következmény. A konvergencia halmaz intervallum.

A következő három eset lehetséges:

- 1. $\mathcal{H} = \{0\}.$
- $\mathcal{H} = \mathbb{R}$.
- 3. $\mathcal{H} = [(-\rho, \rho)].$

3. eset. A konvergencia halmaz: $\mathcal{H} = [(-\rho, \rho)]$.

Ez röviden azt jelenti, hogy ha $0 < \rho < \infty$, akkor

a konvergencia halmaz végpontjairól nem tudunk semmit.

Tehát a következő esetek bármelyike lehetséges:

$$\mathcal{H} = [-\rho, \rho]$$
 $\mathcal{H} = (-\rho, \rho]$

$$\mathcal{H} = [-\rho, \rho)$$
 $\mathcal{H} = (-\rho, \rho)$

Adjunk példát olyan hatványsorra, melynek konvergencia halmaza $\mathcal{H}=(ho,
ho]$ alakú,

Konvergencia sugár meghatározása.

Ismétlés.

Gyengített gyökkritérium (hányadoskritérium) számsorokra.

Tfh a
$$\sum_{n=1}^{\infty} a_n$$
 számsor esetén

$$\exists A = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$
 (vagy $\exists A = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$).

Akkor

- A > 1 esetén a sor divergens,
- és A < 1 esetén a sor (abszolút) konvergens.

$$\exists A = \lim_{n \to \infty} \sqrt[n]{|a_n|}.$$

Alkalmazzuk ezt a hatványsorra konkrét x esetén:

$$\sum_{n=0}^{\infty} c_n x^n \quad \Longrightarrow \quad a_n = c_n x^n.$$

Ekkor
$$\sqrt[n]{|a_n|} = \sqrt[n]{|c_n|} \cdot |x|$$
. Tfh $\exists \lim_{n \to \infty} \sqrt[n]{|c_n|} =: \gamma$.

Ekkor
$$A = \lim_{n \to \infty} \sqrt[n]{|c_n x^n|} = \gamma \cdot |x|$$
, ezért ha $\gamma \neq 0$ akkor

- $|x| < 1/\gamma$ esetén a hatványsor konvergens,
- $|x| > 1/\gamma$ esetén a hatványsor divergens.

$$A = \lim_{n \to \infty} \sqrt[n]{|c_n x^n|} = \gamma \cdot |x|$$

Következmény. Tfh \exists az alábbi határérték: (esetleg 0 vagy $+\infty$)

$$\gamma = \lim_{n \to \infty} \frac{|c_{n+1}|}{|c_n|}, \qquad \gamma = \lim_{n \to \infty} \sqrt[n]{|c_n|}$$

Ekkor

- $\gamma = 0$ esetén $\rho = \infty$. A hatványsor mindenütt konvergens.
- $\gamma = \infty$ esetén $\rho = 0$. A hatványsor csak 0-ban konvergens.
- $0 < \gamma < \infty$ esetén a hatványsor konvergencia sugara:

$$ho = rac{1}{\gamma}$$

Következmény. γ a konvergenciasugár "reciproka".