WAVE OPTICS

Interference of waves of intensity I₁ and I₂:

resultant intensity, $I = I_1 + I_2 + 2\sqrt{I_1I_2} \cos(\Delta\phi)$ where, $\Delta\phi$ = phase difference.

 $I_{\text{max}} = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2$ For Constructive Interference:

 $I_{\min} = \left(\sqrt{I_1} - \sqrt{I_2}\right)^2$ For Destructive interference:

If sources are incoherent $I = I_1 + I_2$, at each point.

YDSE:

Path difference, $\Delta p = S_2P - S_1P = d \sin \theta$

if d < < D = $\frac{dy}{D}$

if $y \ll D$

for maxima, $\Delta p = n\lambda$

 $\Rightarrow y = n\beta \qquad n = 0, \pm 1, \pm 2 \dots$

for minima

$$\Delta p = \Delta p = \begin{cases} (2n-1)\frac{\lambda}{2} & n = 1, 2, 3...... \\ (2n+1)\frac{\lambda}{2} & n = -1, -2, -3...... \end{cases}$$

$$\Rightarrow y = \begin{cases} (2n-1)\frac{\beta}{2} & n = 1, 2, 3...... \\ (2n+1)\frac{\beta}{2} & n = -1, -2, -3...... \end{cases}$$

where, fringe width $\beta = \frac{\lambda D}{A}$

Here, λ = wavelength in medium.

 $n_{max} = \left| \frac{d}{\lambda} \right|$ **Highest order maxima:**

total number of maxima = $2n_{max} + 1$

Highest order minima: $n_{max} = \left\lceil \frac{d}{\lambda} + \frac{1}{2} \right\rceil$

total number of minima = $2n_{max}$.

Intensity on screen: $I = I_1 + I_2 + 2\sqrt{I_1I_2} \cos(\Delta\phi)$ where, $\Delta\phi = \frac{2\pi}{\lambda}\Delta p$

If
$$I_1 = I_2$$
, $I = 4I_1 \cos^2\left(\frac{\Delta\phi}{2}\right)$

YDSE with two wavelengths $\lambda_1 \& \lambda_2$:

The nearest point to central maxima where the bright fringes coincide:

$$y = n_1 \beta_1 = n_2 \beta_2 = Lcm \text{ of } \beta_1 \text{ and } \beta_2$$

The nearest point to central maxima where the two dark fringes coincide,

$$y = (n_1 - \frac{1}{2}) \beta_1 = n_2 - \frac{1}{2}) \beta_2$$

Optical path difference

$$\Delta p_{\text{opt}} = \mu \Delta p$$

$$\Delta \phi = \frac{2\pi}{\lambda} \Delta p = \frac{2\pi}{\lambda_{\text{vacuum}}} \Delta p_{\text{opt.}}$$

$$\Delta = (\mu - 1) t. \frac{D}{d} = (\mu - 1) t \frac{B}{\lambda}$$

YDSE WITH OBLIQUE INCIDENCE

In YDSE, ray is incident on the slit at an inclination of θ_0 to the axis of symmetry of the experiental set-up

We obtain central maxima at a point where, $\Delta p = 0$.

or
$$\theta_2 = \theta_0$$
.

This corresponds to the point O' in the diagram.

Hence we have path difference.

$$\Delta p = \begin{cases} d(\sin \theta_0 + \sin \theta) - \text{for points above O} \\ d(\sin \theta_0 - \sin \theta) - \text{for points between O \& O'} \\ d(\sin \theta - \sin \theta_0) - \text{for points below O'} \end{cases} \dots (8.1)$$

THIN-FILM INTERFERENCE

for interference in reflected light

$$=\begin{cases} n\lambda & \text{for destructive interference} \\ = \left\{ (n + \frac{1}{2})\lambda & \text{for constructive interference} \right. \end{cases}$$
 for interference in transmitted light 2 μ d

$$= \begin{cases} n\lambda & \text{for constructive interference} \\ (n + \frac{1}{2})\lambda & \text{for destructive interference} \end{cases}$$

Polarisation

- μ = tan .(brewster's angle) $\theta \rho$ + θ_r = 90°(reflected and refracted rays are mutually perpendicular.)
- Law of Malus.

$$I = I_0 \cos^2$$
$$I = KA^2 \cos^2$$

Optical activity

$$\left[\alpha\right]_{t^{\circ_{\mathbf{C}}}}^{\lambda} = \frac{\theta}{1 \times \mathbf{C}}$$

 θ = rotation in length L at concentration C.

Diffraction

- $a \sin \theta = (2m + 1)/2$ for maxima. where m = 1, 2, 3
- $\sin \theta = \frac{m\lambda}{a}$, $m = \pm 1, \pm 2, \pm 3.....$ for minima.
- Linear width of central maxima = $\frac{2d\lambda}{a}$
- Angular width of central maxima = $\frac{2\lambda}{a}$
- $I = I_0 \left[\frac{\sin \beta / 2}{\beta / 2} \right]^2$ where $\beta = \frac{\pi a \sin \theta}{\lambda}$
- Resolving power.

$$R = \frac{\lambda}{\lambda_2 - \lambda_1} = \frac{\lambda}{\Delta \lambda}$$

where ,
$$\lambda = \frac{\lambda_1 + \lambda_2}{2}$$
 , $\Delta \lambda = \lambda_2 - \lambda_1$