Advanced Calculus

Exercise 1 (Chapter 1 and 2)

- 1. (a) If $r, s \in \mathbb{Q}$ then r + s and rs are rational.
 - (b) If $r \in \mathbb{Q}$ with $r \neq 0$ and $x \in \mathbb{R} \setminus \mathbb{Q}$, then r + x and rx are irrational.
- 2. (a) Show that \mathbb{N} is unbounded above.
 - (b) Show that for any real number x, there exists a positive integer n such that n > x.
 - (c) Using (b) to prove the following **Archimedean property**: If x > 0 and $y \in \mathbb{R}$, then there exists a positive integer n such that nx > y.
 - (d) Using (c) to prove the denseness of \mathbb{Q} in \mathbb{R} : Let $a < b \in \mathbb{R}$ be distinct real numbers, then there exists a rational number $q \in \mathbb{Q}$ such that a < q < b.
- 3. Let A, B be two nonempty sets of \mathbb{R} .
 - (a) Show that $\inf A < \sup A$.
 - (b) Show that $\inf(-A) = -\sup A$ and $\sup(-A) = -\inf(A)$, where $-A = \{-a \mid a \in A\}$.
 - (c) If A, B be two sets of positive numbers which is bounded above. Let $a = \sup A$, $b = \sup B$ and $C = \{ab \mid a \in A, b \in B\}$. Prove that $\sup C = ab$.
- 4. Prove or disprove the following statement by given a counterexample:
 - (a) $\sup(A \cap B) \le \inf\{\sup A, \sup B\}.$
 - (b) $\sup(A \cap B) = \inf\{\sup A, \sup B\}.$
 - (c) $\sup(A \cap B) \ge \sup\{\sup A, \sup B\}.$
 - (d) $\sup(A \cap B) = \sup\{\sup A, \sup B\}$
- 5. Let $A, B \subseteq \mathbb{R}$ such that $\sup A = \sup B$ and $\inf A = \inf B$. Does A = B?
- 6. Prove the following three important inequalities:
 - (a) **(Young)** Let $a, b \ge 0$ and p, q > 0 such that $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

(b) (Hölder) Let $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$, and $1 < p, q < \infty$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$\sum_{j=1}^{n} |x_j y_j| \le \left(\sum_{j=1}^{n} |x_j|^p\right)^{1/p} \left(\sum_{j=1}^{n} |y_j|^q\right)^{1/q}$$

(c) (Minkowski) Let $x=(x_1,x_2,\cdots,x_n), y=(y_1,y_2,\cdots,y_n)\in\mathbb{R}^n$, and $p\geq 1$. Then

$$\left(\sum_{j=1}^{n} |x_j + y_j|^p\right)^{1/p} \le \left(\sum_{j=1}^{n} |x_j|^p\right)^{1/p} + \left(\sum_{j=1}^{n} |y_j|^p\right)^{1/p}$$

7. Prove the following statements of **De Morgan's Laws**: Let A_1, A_2, \ldots, A_n be a collection of sets. Then

(a)
$$(\bigcup_{i=1}^{n} A_i)^c = \bigcap_{i=1}^{n} A_i^c$$

$$(b) \left(\bigcap_{i=1}^{n} A_i\right)^c = \bigcup_{i=1}^{n} A_i^c$$

8. Let $f: X \to Y$ be a function. If $B \subseteq Y$, we denote by $f^{-1}(B)$ the largest subset of X which f maps into B. That is,

$$f^{-1}(B) = \{ x \in X \mid f(x) \in B \}$$

The set $f^{-1}(B)$ is called the **inverse image** of B under f. Prove the following for arbitrary $A, A_1, A_2 \subseteq X$ and $B, B_1, B_2 \subseteq Y$.

- (a) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.
- (b) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$. Given an example such that the inclusion is strict.
- (c) $A \subseteq f^{-1}[f(A)]$ and $f[f^{-1}(B)] \subseteq B$. Given an example such that the inclusion is strict.
- (d) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$ and $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.
- 9. Let S be a relation and let $\mathcal{D}(S)$ be its domain. The relation S is said to be
 - i) reflexive if $a \in \mathcal{D}(S)$ implies $(a, a) \in S$
 - ii) symmetric if $(a, b) \in S$ implies $(b, a) \in S$,
 - iii) transitive if $(a, b) \in S$ and $(b, c) \in S$ implies $(a, c) \in S$.

A relation which is symmetric, reflexive, and transitive is called an equivalence relation.

Determine which of these properties is possessed by S, if S is the set of all pairs of real numbers (x, y) such that

a)
$$x \leq y$$
,

b)
$$x < u$$
.

c)
$$x < |y|$$
,

d)
$$x^2 + y^2 = 1$$
,

b)
$$x < y$$
,
e) $x^2 + y^2 < 0$,

f)
$$x^2 + x = y^2 + y$$
.

- 10. Let S be the collection of all sequences whose terms are the integers 0 and 1. Show that S is uncountable.
- 11. Let S denote the collection of all subsets of a given set T. Let $f: S \to \mathbb{R}$ be a real-valued function defined on S. The function f is called additive if $f(A \cup B) = f(A) + f(B)$ whenever A and B are disjoint subsets of T. If f is additive, prove that for any two subsets A and B we have:

(a)
$$f(A \cup B) = f(A) + f(B - A)$$

(b)
$$f(A \cup B) = f(A) + f(B) - f(A \cap B)$$

