lunes, 10 de mayo de 2021 07:00

2.4.2. Derivada direccional

||v|| = 1

Definición 26 Sea $f: U \subset \mathbb{R}^n \to \mathbb{R}$ una función y $x_0 \in U$. Sea $\vec{v} \in \mathbb{R}^n$ un vector unitario dado. Se define la derivada de la función f en la dirección del vector \vec{v} como el límite

$$\sum_{v} f(x_0) = \frac{\partial f(x_0)}{\partial \vec{v}} = \lim_{t \to 0} \frac{f(x_0 + t\vec{v}) - f(x_0)}{t}$$

siempre que tal límite exista.

Observamos que

(1)
$$\frac{2f(x,y)}{2i} = \lim_{t \to 0} \frac{f(x,y)+t(y,0)-f(x,y)}{t}$$

$$= \lim_{t \to 0} \frac{f(x+t,y)-f(x,y)}{t}$$

$$= \frac{2f(x,y)}{2x}$$

$$= \lim_{t \to 0} \frac{f((x,y)+t(0,x))-f(x,y)}{t}$$

$$= \lim_{t \to 0} \frac{f((x,y)+t(0,x))-f(x,y)}{t}$$

$$= \lim_{t \to 0} \frac{f((x,y)+t(0,x))-f(x,y)}{t}$$

$$= \frac{2f}{2x}(x,y)$$

2.4.3. Diferenciabilidad

Definición 27 Se dice que la función $f: U \subset \mathbb{R}^n \to \mathbb{R}$, es diferenciable en el punto $P_0 = (x_{1_0}, x_{2_0}, \dots, x_{n_0}) \in U$, si existen las derivadas parciales de f en P_0 .

$$\frac{\partial f(P_0)}{\partial x_1}$$
, $\frac{\partial f(P_0)}{\partial x_2}$, ..., $\frac{\partial f(P_0)}{\partial x_n}$

y si el residuo $r(h_1, h_2, ..., h_n)$ definido en la expresión

$$f[P_0 + (h_1, h_2, \dots, h_n)] = f(P_0) + \frac{\partial f(P_0)}{\partial x_1} h_1 + \dots + \frac{\partial f(P_0)}{\partial x_n} h_n + \underbrace{r(h_1, h_2, \dots, h_n)}_{\text{out}})$$

satisface:

$$\lim_{(h_{1},h_{2},...,h_{n})\to(0,0,...,0)} \frac{r(h_{1},h_{2},...,h_{n})}{||(h_{1},h_{2},...,h_{n})||} = 0.$$

$$\lim_{(h_{1},...,h_{n})\to(0,...,0)} \frac{f(P_{0}+(h_{1},...,h_{n})) - f(P_{0}) - \frac{2f}{3x_{1}}(P_{0})h_{1} - ... - \frac{2f}{3x_{n}}(P_{0})h_{n}}{\sqrt{h_{1}+h_{2}+..+h_{n}}} = 0$$

Proposición 2.4.1 Si la función $f: U \subset \mathbb{R}^n \to \mathbb{R}$, es diferenciable en el punto $P_0 \in U$, entonces, las derivadas parciales existen y son continuas en dicho punto.

2.4.4. Gradiente

Definición 28 Sea $f:U\subset\mathbb{R}^n\to\mathbb{R}$ una función diferenciable, se define el gradiente de la función f en el punto $P_0 \in U$ como el vector $\nabla f(P_0)$ de \mathbb{R}^n dado por:

$$\inf_{\mathbf{0}} \left(\mathbf{f} \right) \left(\mathbf{P_0} \right) = \nabla f(P_0) = \left(\frac{\partial f(P_0)}{\partial x_1}, \frac{\partial f(P_0)}{\partial x_2}, \dots, \frac{\partial f(P_0)}{\partial x_n} \right).$$

Ahora veremos una forma más fácil de calcular la derivada direccional.

Proposición 2.4.2 La derivada direccional de una función $f:U\subset\mathbb{R}^n\to\mathbb{R}$ diferenciable en el punto $P_o \in U$, en la dirección del vector unitario $v \in \mathbb{R}^n$, está dada por

$$\frac{\partial f}{\partial v}(P_o) = \underbrace{\nabla f(P_o) \bullet v}_{\text{bevor years}}.$$

 Newtor unitar (0)

Observación

Como ||v|| = 1 se puede decir que cuando una función f es diferenciable en un punto P_o , la derivada direccional $\frac{\partial f}{\partial v}(P_o)$ es la componente del vector $Proy_v \nabla f(P_o)$.

Sea $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable. El vector $\nabla f(x_o, y_o)$ es un vector ortogonal a la curva de nivel que pasa por $(x_o, \underline{y_o})$.

Vf(Po)

Ejercicios

- 26. Utilice la definición para obtener la derivada direccional de la función dada en el punto P.
 - (a) $f(x,y) = 2x^2 + 3xy$; P = (2,1) en la dirección v = (-1,2)
 - (b) $f(x, y, z) = x^2y y^2x z^2$; P = (1, 2, -3) en la dirección v = (-1, 2, 1) Rpta.0
- 27. Determine el gradiente de f en los puntos indicados
 - (a) $f(x,y) = \sqrt{x^2 + y^2}$; P = (2,1) Rpta. $(2/\sqrt{5}, 1/\sqrt{5})$ (b) $f(x,y,z) = z^2 e^{3x} seny$; $P = (0,\pi/2,-3)$ Rpta.(27,0,-6)

Solicián

26 () Vector dirección:
$$\vec{M} = \vec{M} = \vec{M}$$

•
$$\frac{2f}{2\pi}(2,1) = \lim_{t \to 0} \frac{f(2,1) + \tan^2 - f(2,1)}{t} = \lim_{t \to 0} \frac{f(2-1)t}{t} + \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{5}} - f(2,1)$$

•
$$\frac{2f}{2h}(2,1) = \lim_{t \to 0} \frac{f((2,1) + til) - f(e_{1}t)}{t} = \lim_{t \to 0} \frac{f(2-tit) + til) - f(e_{1}t)}{t} = \lim_{t \to 0} \frac{f(e_{1}t) - f(e_{1}t)}{t} = \lim_$$

27. Columbre el gradiente de $(b) \quad f(x,y,z)=z^2e^{3x}seny \qquad ; \quad P=(0,\pi/2,-3) \quad \text{Rpta. } (27,0,-6) \not \subseteq (0,\pi/2,-3)$

$$(b) f(x, y, z) = z^2 e^{3x} seny$$

$$P = (0, \pi/2, -3)$$
 Rpta. $(27, 0, -6)$

$$\nabla f(x,y,z) = \left(\frac{2f}{2x}(x,y,z), \frac{3f}{2y}(x,y,z), \frac{2f}{2z}(x,y,z)\right) = \left(3e^{\frac{3x}{2}} \frac{e^{\frac{3x}{2}}}{2} \frac{e^{\frac{3x}{2}}}{2$$