Seminární úlohy 12

1. Dokažte, že očekávaná hodnota χ^2 rozdělení s k stupni volnosti je k.

Řešení:

Hustota pravděpodobnosti χ^2 rozdělení s k stupni volnosti je $f(y|k) = \frac{1}{2^{k/2} \Gamma(\frac{k}{2})} y^{k/2-1} e^{-y/2}$.

Očekávaná hodnota tohoto rozdělení je $\mu = E[y] = \int_0^\infty y f(y|k) \, dy = \frac{1}{2^{k/2} \Gamma(\frac{k}{2})} \int_0^\infty y^{k/2} e^{-y/2} \, dy$.

Tento integrál můžeme spočítat metodou per partes
$$\frac{1}{2^{k/2} \Gamma\left(\frac{k}{2}\right)} \int_0^\infty y^{k/2} e^{-y/2} dy = \frac{1}{2^{k/2} \Gamma\left(\frac{k}{2}\right)} \left(\left[-2y^{k/2} e^{-y/2} \right]_0^\infty + 2\frac{k}{2} \int_0^\infty y^{k/2-1} e^{-y/2} dy \right)$$

Protože
$$\left[-2y^{k/2}e^{-y/2}\right]_0^{\infty} = 0$$

Dostáváme $\mu = \frac{1}{2^{k/2}\Gamma(\frac{k}{2})} 2^{\frac{k}{2}} \int_0^{\infty} y^{k/2-1}e^{-y/2} dy = k \int_0^{\infty} \frac{1}{2^{k/2}\Gamma(\frac{k}{2})} y^{k/2-1}e^{-y/2} dy.$

Protože f(y|k) musí být normovaná, je $\int_0^\infty \frac{1}{2^{k/2} \Gamma(\frac{k}{2})} y^{k/2-1} e^{-y/2} dy = 1$

a tedy hledaná očekávaná hodnota je $\mu = k$.

2. V experimentu byly naměřeny následující hodnoty závislosti náhodné proměnné y na x. Metodou nejmenších čtverců nafitujte tuto závislost přímkou. Pomocí χ^2 testu rozhodněte jestli je závislost y na x možno považovat za lineární.

\boldsymbol{x}	У	$\sigma_{\!\scriptscriptstyle \! y}$
1.0000	1.1000	0.2000
2.0000	2.7000	0.5000
3.0000	3.8000	0.2000
4.0000	5.5000	0.4000
5.0000	5.5000	0.2000
6.0000	5.7000	0.5000
7.0000	7.1000	0.5000
8.0000	8.5000	0.2000
9.0000	8.8000	0.3000
10.0000	8.7000	0.7000

Řešení:

modelová funkce je $\lambda(x|\boldsymbol{\theta}) = \theta_0 + \theta_1 x$, Odhady parametrů:

$$\theta_{0} = \frac{\langle x^{2} \rangle \langle y \rangle - \langle x \rangle \langle xy \rangle}{\langle 1 \rangle \langle x^{2} \rangle - \langle x \rangle^{2}} \qquad \theta_{1} = \frac{\langle 1 \rangle \langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle 1 \rangle \langle x^{2} \rangle - \langle x \rangle^{2}}$$

Kde symbol $\langle \rangle$ znamená vážený součet všech hodnot s váhami $1/\sigma^2$.

např.
$$\langle 1 \rangle = \sum_{i=1}^{N} \frac{1}{\sigma_i^2}$$
, $\langle xy \rangle = \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2}$, atd.

Po dosazení číselných hodnot dostaneme: $\hat{\theta}_0 = 0.6099$, $\hat{\theta}_1 = 0.9585$ Přímka s těmito parametry je nakreslená červenou čarou na obrázku.

Nyní provedeme χ^2 test kvality fitu

$$\chi^{2} = \sum_{i=1}^{N} \frac{\left(y_{i} - \hat{\theta}_{0} - \hat{\theta}_{1} x_{i}\right)^{2}}{\sigma_{i}^{2}} = 25.14$$

Počet stupňů volnosti je k = 10-2 = 8. Očekávaná hodnota χ^2 rozdělení je tedy 8.

Z tabulky uvedené v přednášce dostáváme P ($\chi^2 > 25.14$) < 0.01 Uvedená data nejsou tedy v souladu s hypotézou lineární závislostí.