Problem

Prove that if NEXPTIME ≠ EXPTIME, then P ≠ NP. You may find the function pad, defined in Problem 9.13, to be helpful.

Step-by-step solution

Step 1 of 1

If $EXPTIME \neq NEXPTIME$ then $P \neq NP$ can be proved by taking its contra positive . If P = NP is assumed then EXPTIME = NEXPTIME will have to proof.

- $L \in \mathrm{NTIME}\left(2^{2^{c}}\right) \\ \text{then the following language} \quad L_{\mathrm{pad}} = \left\{ < x, 1^{2|x|^{c}} >: x \in L \right\} \\ \text{is in} \quad \mathrm{NP}_{\text{(in fact in }} \\ \mathrm{NTIME}(n). \\ \text{This process of adding a string of symbols to each string in the language is called } \\ \mathbf{padding}.$
- Hence, if $P = NP_{then}$ L_{pad} is in P_{then} but if L_{pad} is in P_{then} L_{then} is in EXPTIME.
- To conclude whether an input x is in L, it just pads the input and decides whether it is in L_{pad} . This can be achieved by using the polynomial-time machine for L_{pad} .

Therefore, it can be said that if P = NP is assumed then EXPTIME = NEXPTIME. Thus, from the above explanation it may also be concluded that if $EXPTIME \neq NEXPTIME$ then $P \neq NP$.

Comment