

# **COMP9020**

Foundations of Computer Science Term 3, 2024

Lecture 1-2: Introduction, Number Theory

#### Course introduction

- Who are we?
- Why are we here?
- How will you be assessed?

- Number Theory in Computer Science
- Numbers and Numerical Operations
- Divisibility
- Greatest Common Divisor and Least Common Multiple
- Euclidean Algorithm
- Modular Arithmetic
- Euclidean Algorithm (again)

#### Course introduction

- Who are we?
- Why are we here?
- How will you be assessed?

- Number Theory in Computer Science
- Numbers and Numerical Operations
- Divisibility
- Greatest Common Divisor and Least Common Multiple
- Euclidean Algorithm
- Modular Arithmetic
- Euclidean Algorithm (again)

## COMP9020 24T3 Staff

Lectures

Lecturers: Jiaojiao Jiang (LiC), Paul Hunter

Times: Thursday 11-1pm and Friday 11-1pm

**Admin** 

Name: Hao Ren

Course email: cs9020@cse.unsw.edu.au

**Tutorials** 

Tutors: Different tutors each session

Times: Check the detailed timetable on WebCMS

## Links

### Course webpages:

- WebCMS
- Moodle

#### Lectures:

• Recordings available on echo360 (through Moodle)

### Other points of contact:

- Course forums (Ed Forum)
- Email: cs9020@cse.unsw.edu.au

4

#### Course introduction

- Who are we?
- Why are we here?
- How will you be assessed?

- Number Theory in Computer Science
- Numbers and Numerical Operations
- Divisibility
- Greatest Common Divisor and Least Common Multiple
- Euclidean Algorithm
- Modular Arithmetic
- Euclidean Algorithm (again)

## What is this course about?

Computer Science is about exploring the ability, and limitation, of computers to solve problems. It covers:

- What are computers capable of solving?
- How can we get computers to solve problems?
- Why do these approaches work?

This course aims to increase your level of mathematical maturity to assist with the fundamental problem of **finding**, **formulating**, **and proving** properties of programs.

Key skills you will learn:

- Working with abstract concepts
- Giving logical (and rigorous) justifications
- Formulating problems so they can be solved computationally

### Course Structure

The actual content is taken from a list of topics that constitute the basis of the tool box of every serious practitioner of computing:

| • | number theory                          | week 1  |
|---|----------------------------------------|---------|
| • | set theory                             | week 2  |
| • | relation                               | week 3  |
| • | function and boolean                   | week 4  |
| • | propositional and sequence & Induction | week 5  |
| • | mid-term test (no lectures)            | week 6  |
| • | recursion, counting                    | week 7  |
| • | probability and statistics             | week 8  |
| • | graph                                  | week 9  |
| • | algorithm analysis & formal languages  | week 10 |

### Course Material

### Textbooks:

- KA Ross and CR Wright: Discrete Mathematics
- E Lehman, FT Leighton, A Meyer: Mathematics for Computer Science

#### Alternatives:

• K Rosen: Discrete Mathematics and its Applications

### Course introduction

- Who are we?
- Why are we here?
- How will you be assessed?

- Number Theory in Computer Science
- Numbers and Numerical Operations
- Divisibility
- Greatest Common Divisor and Least Common Multiple
- Euclidean Algorithm
- Modular Arithmetic
- Euclidean Algorithm (again)

# Assessment Summary

- **1** online quizzes (weeks 1, 2, 3, 4, 5, 7, 8, 9) max. marks 20
- 2 mid-term test max. marks 20
- 3 final exam max. marks 60

#### **Take Notice**

To pass the course, your overall score must be 50 or higher and your mark for the final exam must be 24 or higher.

### The weekly guiz:

- becomes available after the Thursday lecture each week
- is due Friday, 23:59 in the following week

# Late policy and Special Consideration

All assessments are submitted through the course website

### Lateness policy

- Quizzes: Late submissions not accepted
- Exams: Late submissions not accepted

If you cannot meet a deadline through illness or misadventure you need to apply for Special Consideration.

## Credits

### COMP9020 credit for material goes to:

- Michael Thielscher
- Paul Hunter
- Katie Clinch
- Sebastian Sequoiah-Grayson
- more...

# Pre-course polls



Pre-course questionnaire



Pre-course poll

### Course introduction

- Who are we?
- Why are we here?
- How will you be assessed?

- Number Theory in Computer Science
- Numbers and Numerical Operations
- Divisibility
- Greatest Common Divisor and Least Common Multiple
- Euclidean Algorithm
- Modular Arithmetic
- Euclidean Algorithm (again)

#### Course introduction

- Who are we?
- Why are we here?
- How will you be assessed?

- Number Theory in Computer Science
- Numbers and Numerical Operations
- Divisibility
- Greatest Common Divisor and Least Common Multiple
- Euclidean Algorithm
- Modular Arithmetic
- Euclidean Algorithm (again)

# Reading Material

If you'd like to read more about the topics covered in this lecture, check out the following chapters of the recommended textbooks:

- [RW] is KA Ross and CR Wright: Discrete Mathematics
- [LLM] is Lehman, Leighton, Meyer: Mathematics for Computer Science

# Number Theory in Computer Science

In this course, we are interested in **discrete mathematics**. This is the theory of e.g. the integers.

**Continuous mathematics** instead considers number systems with no "gaps", e.g. the real numbers.

### Applications of discrete number theory include:

- Cryptography/Security (primes, divisibility)
- Large integer calculations (modular arithmetic)
- Date and time calculations (modular arithmetic)
- Solving optimization problems (integer linear programming)
- Interesting examples for future topics in this course

### Question

What is something that is easy to do with real numbers but hard to do with integers?

#### Course introduction

- Who are we?
- Why are we here?
- How will you be assessed?

- Number Theory in Computer Science
- Numbers and Numerical Operations
- Divisibility
- Greatest Common Divisor and Least Common Multiple
- Euclidean Algorithm
- Modular Arithmetic
- Euclidean Algorithm (again)

## Notation for numbers

#### **Definition**

- Natural numbers  $\mathbb{N} = \{0, 1, 2, \ldots\}$
- Integers  $\mathbb{Z} = \{..., -1, 0, 1, 2, ...\}$
- Positive integers  $\mathbb{N}_{>0}=\mathbb{Z}_{>0}=\{1,2,\ldots\}$
- Rational numbers (fractions)  $\mathbb{Q}=\left\{\begin{array}{l} \frac{m}{n}:m,n\in\mathbb{Z},n\neq0\end{array}\right\}$
- Real numbers (decimal or binary expansions)  $\mathbb{R}$   $r = a_1 a_2 \dots a_k \cdot b_1 b_2 \dots$

In  $\mathbb N$  and  $\mathbb Z$  different symbols denote different numbers.

$$1 \neq 2 \neq 3$$

In  $\mathbb Q$  and  $\mathbb R$  the standard representation is not necessarily unique.

$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6}$$

# Floor and ceiling

### **Definition**

- $|.|: \mathbb{R} \longrightarrow \mathbb{Z}$  **floor** of x, the greatest integer  $\leq x$
- $[.]: \mathbb{R} \longrightarrow \mathbb{Z}$  **ceiling** of x, the least integer  $\geq x$

## **Example**

$$\lfloor \pi \rfloor = 3 = \lceil e \rceil$$
  $\pi, e \in \mathbb{R}; \ \lfloor \pi \rfloor, \lceil e \rceil \in \mathbb{Z}$ 

# Floor and ceiling

### **Definition**

- $\lfloor . \rfloor : \mathbb{R} \longrightarrow \mathbb{Z}$  **floor** of x, the greatest integer  $\leq x$
- $[.]: \mathbb{R} \longrightarrow \mathbb{Z}$  **ceiling** of x, the least integer  $\geq x$

## **Example**

$$\lfloor \pi \rfloor = 3 = \lceil e \rceil$$
  $\pi, e \in \mathbb{R}; \ \lfloor \pi \rfloor, \lceil e \rceil \in \mathbb{Z}$ 

### Simple properties

- $\bullet |-x| = -\lceil x \rceil$ , hence  $\lceil x \rceil = |-x|$
- For all  $t \in \mathbb{Z}$ :
  - $\lfloor x + t \rfloor = \lfloor x \rfloor + t$  and

### **Fact**

Let  $k, m, n \in \mathbb{Z}$  such that k > 0 and  $m \ge n$ . The number of multiples of k between n and m (inclusive) is

$$\left\lfloor \frac{m}{k} \right\rfloor - \left\lfloor \frac{n-1}{k} \right\rfloor$$

# Absolute value

### **Definition**

$$|x| = \begin{cases} x & \text{, if } x \ge 0 \\ -x & \text{, if } x < 0 \end{cases}$$

## **Example**

$$|3| = |-3| = 3$$
  $3, -3 \in \mathbb{Z}; |3|, |-3| \in \mathbb{N}$ 

### **Exercises**

### **Exercises**

### RW: 1.1.4

(b) 
$$2 \lfloor 0.6 \rfloor - \lfloor 1.2 \rfloor = 2 \lceil 0.6 \rceil - \lceil 1.2 \rceil =$$
  
(d)  $\lceil \sqrt{3} \rceil - \lceil \sqrt{3} \rceil =$ 

RW: 1.1.19

Give x, y such that  $\lfloor x \rfloor + \lfloor y \rfloor < \lfloor x + y \rfloor$ :

20T2: Q1 (a)

(i) True or false for all  $x \in \mathbb{R}$ :  $\lceil |x| \rceil = |\lceil x \rceil|$ 

### **Exercises**

### **Exercises**

### RW: 1.1.4

(b) 
$$2 \lfloor 0.6 \rfloor - \lfloor 1.2 \rfloor = -1$$
  
 $2 \lceil 0.6 \rceil - \lceil 1.2 \rceil = 0$ 

(d) 
$$\lceil \sqrt{3} \rceil - \lfloor \sqrt{3} \rfloor = 1$$

### RW: 1.1.19

(a) Give 
$$x, y$$
 such that  $\lfloor x \rfloor + \lfloor y \rfloor < \lfloor x + y \rfloor$ :  $x = y = 0.9$ 

(i) True or false for all  $x \in \mathbb{R}$ : |x| = |x| - 1.5

#### Course introduction

- Who are we?
- Why are we here?
- How will you be assessed?

- Number Theory in Computer Science
- Numbers and Numerical Operations
- Divisibility
- Greatest Common Divisor and Least Common Multiple
- Euclidean Algorithm
- Modular Arithmetic
- Euclidean Algorithm (again)

### **Definition**

For  $m, n \in \mathbb{Z}$ , we say m divides n if  $n = k \cdot m$  for some  $k \in \mathbb{Z}$ .

We denote this by m|n

Also stated as: 'n is divisible by m', 'm is a divisor of n', 'n is a multiple of m'

### **Definition**

For  $m, n \in \mathbb{Z}$ , we say m divides n if  $n = k \cdot m$  for some  $k \in \mathbb{Z}$ .

We denote this by m|n

Also stated as: 'n is divisible by m', 'm is a divisor of n', 'n is a multiple of m'

 $m \nmid n$  is the negation of  $m \mid n$ .

#### **Definition**

For  $m, n \in \mathbb{Z}$ , we say m divides n if  $n = k \cdot m$  for some  $k \in \mathbb{Z}$ .

We denote this by m|n

Also stated as: 'n is divisible by m', 'm is a divisor of n', 'n is a multiple of m'

 $m \nmid n$  is the negation of  $m \mid n$ . In other words,  $m \nmid n$  means 'm does not divide n'

### **Definition**

For  $m, n \in \mathbb{Z}$ , we say m divides n if  $n = k \cdot m$  for some  $k \in \mathbb{Z}$ .

We denote this by m|n

Also stated as: 'n is divisible by m', 'm is a divisor of n', 'n is a multiple of m'

 $m \nmid n$  is the negation of  $m \mid n$ . In other words,  $m \nmid n$  means 'm does not divide n'

#### **Take Notice**

Notion of divisibility applies to all integers — positive, negative and zero.

# **Exercises**

### **Exercises**

*True* or *False* for all  $n \in \mathbb{Z}$ :

- 1|n
- -1|n
- 0|*n*
- n|0

# RW: 1.2.2

- (a) n|1
- (b) n|n
- (c)  $n | n^2$

## **Exercises**

### **Exercises**

*True* or *False* for all  $n \in \mathbb{Z}$ :

- 1|n true
- $\bullet$  -1|n true
- 0|n false (only when n=0)
- n|0 true

# RW: 1.2.2

- (a) n|1 false (only when  $n = \pm 1$ )
- (b) n|n true
- (c)  $n|n^2$  true

#### Course introduction

- Who are we?
- Why are we here?
- How will you be assessed?

- Number Theory in Computer Science
- Numbers and Numerical Operations
- Divisibility
- Greatest Common Divisor and Least Common Multiple
- Euclidean Algorithm
- Modular Arithmetic
- Euclidean Algorithm (again)

# gcd and lcm

### **Definition**

Let  $m, n \in \mathbb{Z}$ .

- The greatest common divisor of m and n, gcd(m, n), is the largest positive  $d \in \mathbb{Z}$  such that d|m and d|n.
- The **least common multiple** of m and n, lcm(m, n), is the smallest positive  $k \in \mathbb{Z}$  such that m|k and n|k.
- Exception: gcd(0,0) = lcm(0,n) = lcm(m,0) = 0.

### **Example**

$$gcd(-4,6) = gcd(4,-6) = gcd(-4,-6) = gcd(4,6) = 2$$
  
 $lcm(-5,-5) = \dots = 5$ 

# gcd and lcm

### **Take Notice**

gcd(m, n) and lcm(m, n) are always taken as non-negative even if m or n is negative.

### **Fact**

$$gcd(m, n) \cdot lcm(m, n) = |m| \cdot |n|$$

# Primes and relatively prime

#### **Definition**

- A number n > 1 is **prime** if it is only divisible by  $\pm 1$  and  $\pm n$ .
- m and n are **relatively prime** if gcd(m, n) = 1

- 2, 3, 5, 7, 11, 13, 17, 19 are all the primes less than 20.
- 4 and 9 are relatively prime; 9 and 14 are relatively prime.

#### **Exercises**

RW: 1.2.7(b)  $\gcd(0, n) \stackrel{?}{=}$ 

RW: 1.2.12 Can two even integers be relatively prime?

RW: 1.2.9 Let m, n be positive integers.

- (a) What can you say about m and n if  $lcm(m, n) = m \cdot n$ ?
- (b) What if lcm(m, n) = n?

#### **Exercises**

RW: 1.2.7(b)  $\gcd(0, n) \stackrel{?}{=} |n|$ 

RW: 1.2.12 Can two even integers be relatively prime?

RW: 1.2.9 Let m, n be positive integers.

- (a) What can you say about m and n if  $lcm(m, n) = m \cdot n$ ?
- (b) What if lcm(m, n) = n?

#### **Exercises**

RW: 1.2.7(b)  $\gcd(0, n) \stackrel{?}{=} |n|$ 

RW: 1.2.12 Can two even integers be relatively prime? No. (why?)

RW: 1.2.9 Let m, n be positive integers.

- (a) What can you say about m and n if  $lcm(m, n) = m \cdot n$ ?
- (b) What if lcm(m, n) = n?

#### **Exercises**

RW: 1.2.7(b)  $\gcd(0, n) \stackrel{?}{=} |n|$ 

RW: 1.2.12 Can two even integers be relatively prime? No. (why?)

RW: 1.2.9 Let m, n be positive integers.

(a) What can you say about m and n if  $lcm(m, n) = m \cdot n$ ?

They must be relatively prime since always  $lcm(m, n) = \frac{mn}{\gcd(m, n)}$ 

(b) What if lcm(m, n) = n?

31

#### **Exercises**

RW: 1.2.7(b)  $\gcd(0, n) \stackrel{?}{=} |n|$ 

RW: 1.2.12 Can two even integers be relatively prime? No. (why?)

RW: 1.2.9 Let m, n be positive integers.

(a) What can you say about m and n if  $lcm(m, n) = m \cdot n$ ?

They must be relatively prime since always  $lcm(m, n) = \frac{mn}{\gcd(m, n)}$ 

(b) What if lcm(m, n) = n?

m must be a divisor of n

31

# Outline

#### Course introduction

- Who are we?
- Why are we here?
- How will you be assessed?

# **Number Theory**

- Number Theory in Computer Science
- Numbers and Numerical Operations
- Divisibility
- Greatest Common Divisor and Least Common Multiple
- Euclidean Algorithm
- Modular Arithmetic
- Euclidean Algorithm (again)

**Question.** How do we compute the greatest common divisor gcd(m, n)? Especially when the numbers m, n are large?

**Answer.** Euclid's algorithm gives a way of doing this by repeatedly replacing m and n with smaller numbers. This method is over 2000 years old!

$$\gcd(m, n) = \begin{cases} m & \text{if } m = n \\ \gcd(m - n, n) & \text{if } m > n \\ \gcd(m, n - m) & \text{if } m < n \end{cases}$$

**Question.** How do we compute the greatest common divisor gcd(m, n)? Especially when the numbers m, n are large?

**Answer.** Euclid's algorithm gives a way of doing this by repeatedly replacing m and n with smaller numbers. This method is over 2000 years old!

$$\gcd(m, n) = \begin{cases} m & \text{if } m = n \\ \gcd(m - n, n) & \text{if } m > n \\ \gcd(m, n - m) & \text{if } m < n \end{cases}$$

$$gcd(45, 27) =$$

**Question.** How do we compute the greatest common divisor gcd(m, n)? Especially when the numbers m, n are large?

**Answer.** Euclid's algorithm gives a way of doing this by repeatedly replacing m and n with smaller numbers. This method is over 2000 years old!

$$\gcd(m, n) = \begin{cases} m & \text{if } m = n \\ \gcd(m - n, n) & \text{if } m > n \\ \gcd(m, n - m) & \text{if } m < n \end{cases}$$

$$gcd(45,27) = gcd(18,27)$$
  
=  $gcd(18,9)$   
=  $gcd(9,9)$   
= 9

**Question.** How do we compute the greatest common divisor gcd(m, n)? Especially when the numbers m, n are large?

**Answer.** Euclid's algorithm gives a way of doing this by repeatedly replacing m and n with smaller numbers. This method is over 2000 years old!

$$\gcd(m, n) = \begin{cases} m & \text{if } m = n \\ \gcd(m - n, n) & \text{if } m > n \\ \gcd(m, n - m) & \text{if } m < n \end{cases}$$

$$gcd(108,8) =$$

**Question.** How do we compute the greatest common divisor gcd(m, n)? Especially when the numbers m, n are large?

**Answer.** Euclid's algorithm gives a way of doing this by repeatedly replacing m and n with smaller numbers. This method is over 2000 years old!

$$\gcd(m, n) = \begin{cases} m & \text{if } m = n \\ \gcd(m - n, n) & \text{if } m > n \\ \gcd(m, n - m) & \text{if } m < n \end{cases}$$

$$gcd(108,8) = gcd(100,8)$$
  
=  $gcd(92,8)$   
=  $\cdots = gcd(8,4)$   
=  $gcd(4,4)$   
= 4

**Question.** How do we compute the greatest common divisor gcd(m, n)? Especially when the numbers m, n are large?

**Answer.** Euclid's algorithm gives a way of doing this by repeatedly replacing m and n with smaller numbers. This method is over 2000 years old!

$$\gcd(m, n) = \begin{cases} m & \text{if } m = n \\ \gcd(m - n, n) & \text{if } m > n \\ \gcd(m, n - m) & \text{if } m < n \end{cases}$$

#### **Fact**

For m > 0, n > 0 the algorithm always terminates.

**Question.** How do we compute the greatest common divisor gcd(m, n)? Especially when the numbers m, n are large?

**Answer.** Euclid's algorithm gives a way of doing this by repeatedly replacing m and n with smaller numbers. This method is over 2000 years old!

$$\gcd(m, n) = \begin{cases} m & \text{if } m = n \\ \gcd(m - n, n) & \text{if } m > n \\ \gcd(m, n - m) & \text{if } m < n \end{cases}$$

#### **Fact**

For m > 0, n > 0 the algorithm always terminates.

#### **Fact**

For 
$$m, n \in \mathbb{Z}$$
, if  $m > n$  then  $gcd(m, n) = gcd(m - n, n)$ 

## **Fact**

For  $m, n \in \mathbb{Z}$ , if m > n then gcd(m, n) = gcd(m - n, n)

Proof.

#### **Fact**

For  $m, n \in \mathbb{Z}$ , if m > n then gcd(m, n) = gcd(m - n, n)

#### Proof.

We first show that for all  $d \in \mathbb{Z}$ , (d|m and d|n) if, and only if, (d|m-n and d|n):

34

#### **Fact**

For  $m, n \in \mathbb{Z}$ , if m > n then gcd(m, n) = gcd(m - n, n)

#### Proof.

We first show that for all  $d \in \mathbb{Z}$ , (d|m and d|n) if, and only if, (d|m-n and d|n):

" $\Rightarrow$ ": if d|m and d|n then  $m = a \cdot d$  and  $n = b \cdot d$ , for some  $a, b \in \mathbb{Z}$ , so  $m - n = (a - b) \cdot d$ .

hence d|m-n

#### **Fact**

For  $m, n \in \mathbb{Z}$ , if m > n then gcd(m, n) = gcd(m - n, n)

### Proof.

We first show that for all  $d \in \mathbb{Z}$ , (d|m and d|n) if, and only if, (d|m-n and d|n):

" $\Rightarrow$ ": if d|m and d|n then  $m = a \cdot d$  and  $n = b \cdot d$ , for some  $a, b \in \mathbb{Z}$ , so  $m - n = (a - b) \cdot d$ .

hence d|m-n

"\(\infty\)": if d|m-n and d|n then  $m-n=a\cdot d$  and  $n=b\cdot d$ , for some  $a,b\in\mathbb{Z}$ ,

so 
$$m = (m - n) + n = (a + b) \cdot d$$
,  
hence  $d \mid m$ 



#### **Fact**

For  $m, n \in \mathbb{Z}$ , if m > n then gcd(m, n) = gcd(m - n, n)

### Proof.

We first show that for all  $d \in \mathbb{Z}$ , (d|m and d|n) if, and only if, (d|m-n and d|n):

" $\Rightarrow$ ": if d|m and d|n then  $m = a \cdot d$  and  $n = b \cdot d$ , for some  $a, b \in \mathbb{Z}$ , so  $m - n = (a - b) \cdot d$ ,

hence 
$$d \mid m - n$$

" $\Leftarrow$ ": if d|m-n and d|n then  $m-n=a\cdot d$  and  $n=b\cdot d$ , for some  $a,b\in\mathbb{Z}$ ,

so 
$$m = (m - n) + n = (a + b) \cdot d$$
,  
hence  $d \mid m$ 

Therefore, any common divisor of m and n is a common divisor of m-n and n, and vice versa.

#### **Fact**

For  $m, n \in \mathbb{Z}$ , if m > n then gcd(m, n) = gcd(m - n, n)

### Proof.

We first show that for all  $d \in \mathbb{Z}$ , (d|m and d|n) if, and only if, (d|m-n and d|n):

" $\Rightarrow$ ": if d|m and d|n then  $m = a \cdot d$  and  $n = b \cdot d$ , for some  $a, b \in \mathbb{Z}$ , so  $m - n = (a - b) \cdot d$ ,

hence 
$$d|m-n$$

" $\Leftarrow$ ": if d|m-n and d|n then  $m-n=a\cdot d$  and  $n=b\cdot d$ , for some  $a,b\in\mathbb{Z}$ ,

so 
$$m = (m - n) + n = (a + b) \cdot d$$
,  
hence  $d \mid m$ 

Therefore, any common divisor of m and n is a common divisor of m-n and n, and vice versa.

Therefore, the greatest common divisor of m and n is the greatest common divisor of m-n and n.

# Outline

#### Course introduction

- Who are we?
- Why are we here?
- How will you be assessed?

# **Number Theory**

- Number Theory in Computer Science
- Numbers and Numerical Operations
- Divisibility
- Greatest Common Divisor and Least Common Multiple
- Euclidean Algorithm
- Modular Arithmetic
- Euclidean Algorithm (again)

# Euclid's division lemma

#### **Fact**

For  $m \in \mathbb{Z}$ ,  $n \in \mathbb{Z}_{>0}$  there exists  $q, r \in \mathbb{Z}$  with  $0 \le r < n$  such that

$$m = q \cdot n + r$$

# Euclid's division lemma

#### **Fact**

For  $m \in \mathbb{Z}$ ,  $n \in \mathbb{Z}_{>0}$  there exists  $q, r \in \mathbb{Z}$  with  $0 \le r < n$  such that

$$m = q \cdot n + r$$

## Observe:

• 
$$q = \lfloor \frac{m}{n} \rfloor$$

# Euclid's division lemma

#### **Fact**

For  $m \in \mathbb{Z}$ ,  $n \in \mathbb{Z}_{>0}$  there exists  $q, r \in \mathbb{Z}$  with  $0 \le r < n$  such that

$$m = q \cdot n + r$$

### Observe:

- $q = \lfloor \frac{m}{n} \rfloor$
- $r = m q \cdot n$

## **Definition**

Let  $m, p \in \mathbb{Z}$ ,  $n \in \mathbb{Z}_{>0}$ .

- $m \operatorname{div} n = \lfloor \frac{m}{n} \rfloor$
- $m \% n = m (m \operatorname{div} n) \cdot n$
- m = (n) p if n | (m-p)

37

### **Definition**

Let  $m, p \in \mathbb{Z}$ ,  $n \in \mathbb{Z}_{>0}$ .

- $m \operatorname{div} n = \lfloor \frac{m}{n} \rfloor$
- $m \% n = m (m \operatorname{div} n) \cdot n$
- m = (n) p if n | (m-p)

# Important!

 $m =_{(n)} p$  is **not standard**. More commonly written as

$$m = p \pmod{n}$$

37

# Fact



### **Fact**

- $0 \le (m \% n) < n$ .
- $m =_{(n)} p$  if, and only if, (m % n) = (p % n).

### **Fact**

- $0 \le (m \% n) < n$ .
- $m =_{(n)} p$  if, and only if, (m % n) = (p % n).
- $m =_{(n)} (m \% n)$

38

### **Fact**

- $0 \le (m \% n) < n$ .
- $m =_{(n)} p$  if, and only if, (m % n) = (p % n).
- $m =_{(n)} (m \% n)$
- If  $m =_{(n)} m'$  and  $p =_{(n)} p'$  then:
  - $m + p =_{(n)} m' + p'$  and
  - $m \cdot p =_{(n)} m' \cdot p'$ .

- 42 div 9  $\stackrel{?}{=}$
- 42 % 9 <sup>?</sup>
- $(-42) \text{ div } 9 \stackrel{?}{=}$
- $(-42) \% 9 \stackrel{?}{=}$
- True or False:

$$(a + b) \% n = (a \% n) + (b \% n)$$
?

- 42 div 9  $\stackrel{?}{=}$
- 42 % 9 <sup>?</sup>
- $(-42) \text{ div } 9 \stackrel{?}{=}$
- $(-42) \% 9 \stackrel{?}{=}$
- True or False:

$$(a + b) \% n = (a \% n) + (b \% n)?$$

- 42 div 9  $\stackrel{?}{=}$
- 42 % 9 <sup>?</sup> 6
- $(-42) \text{ div } 9 \stackrel{?}{=}$
- $(-42) \% 9 \stackrel{?}{=}$
- True or False:

$$(a + b) \% n = (a \% n) + (b \% n)$$
?

### **Exercises**

• 
$$(-42) \text{ div } 9 \stackrel{?}{=} -5$$

• 
$$(-42) \% 9 \stackrel{?}{=}$$

True or False:

$$(a + b) \% n = (a \% n) + (b \% n)$$
?

- 42 div 9 <sup>?</sup>
- 42 % 9 <sup>?</sup> 6
- $(-42) \text{ div } 9 \stackrel{?}{=} -5$
- $(-42) \% 9 \stackrel{?}{=} 3$
- True or False:

$$(a + b) \% n = (a \% n) + (b \% n)$$
?

## **Exercises**

• 42 div 9 
$$\stackrel{?}{=}$$

• 
$$42 \% 9 \stackrel{?}{=}$$
 6

• 
$$(-42) \text{ div } 9 \stackrel{?}{=} -5$$

• 
$$(-42) \% 9 \stackrel{?}{=} 3$$

• True or False:

$$(a + b) \% n = (a \% n) + (b \% n)$$
?

False (take 
$$a = b = 1$$
,  $n = 2$ )

### **Exercises**

- $10^3 \% 7 \stackrel{?}{=}$
- $10^6 \% 7 \stackrel{?}{=}$
- $10^{2021} \% 7 \stackrel{?}{=}$
- What is the last digit of 7<sup>2023</sup>?

## **Exercises**

•  $10^3 \% 7 \stackrel{?}{=}$ 

6

- $10^6 \% 7 \stackrel{?}{=}$
- $10^{2021} \% 7 \stackrel{?}{=}$
- What is the last digit of  $7^{2023}$ ?

### **Exercises**

•  $10^3 \% 7 \stackrel{?}{=}$ 

6

•  $10^6 \% 7 \stackrel{?}{=}$ 

1

- $10^{2021} \% 7 \stackrel{?}{=}$
- What is the last digit of 7<sup>2023</sup>?

### **Exercises**

•  $10^3 \% 7 \stackrel{?}{=}$ 

6

•  $10^6 \% 7 \stackrel{?}{=}$ 

1

•  $10^{2021} \% 7 \stackrel{?}{=}$ 

- 5
- What is the last digit of  $7^{2023}$ ?

### **Exercises**

- $10^3 \% 7 \stackrel{?}{=}$  6
- $10^6 \% 7 \stackrel{?}{=}$  1
- $10^{2021} \% 7 \stackrel{?}{=}$  5
- What is the last digit of  $7^{2023}$ ?

#### **Exercises**

#### RW: 3.5.20

- (a) Show that the 4 digit number n = abcd is divisible by 2 if and only if the last digit d is divisible by 2.
- (b) Show that the 4 digit number n = abcd is divisible by 5 if and only if the last digit d is divisible by 5.

### RW: 3.5.19

(a) Show that the 4 digit number n = abcd is divisible by 9 if and only if the digit sum a + b + c + d is divisible by 9.

# Outline

#### Course introduction

- Who are we?
- Why are we here?
- How will you be assessed?

## **Number Theory**

- Number Theory in Computer Science
- Numbers and Numerical Operations
- Divisibility
- Greatest Common Divisor and Least Common Multiple
- Euclidean Algorithm
- Modular Arithmetic
- Euclidean Algorithm (again)

$$\gcd(m, n) = \begin{cases} m & \text{if } m = n \text{ or } n = 0\\ n & \text{if } m = 0\\ \gcd(m \% n, n) & \text{if } m > n > 0\\ \gcd(m, n \% m) & \text{if } 0 < m < n \end{cases}$$

#### **Fact**

For  $m, n \in \mathbb{Z}$ , if m > n then gcd(m, n) = gcd(m % n, n)

## Proof.

Let k = m div n. Then  $m \% n = m - k \cdot n$ .

$$\gcd(108,8) =$$

$$\gcd(108,8) = \gcd(4,8)$$

$$gcd(108,8) = gcd(4,8)$$
  
=  $gcd(4,0)$ 

$$gcd(108,8) = gcd(4,8)$$
  
=  $gcd(4,0)$   
= 4