Programme de la semaine 27 (du 20/05 au 26/05).

Ensembles finis, dénombrement

- Ensembles finis, cardinal (définition intuitive, propriétés admises).
- Cardinal d'une réunion disjointe, du complémentaire, d'une différence et d'une réunion de deux ensembles, d'un produit cartésien, de $\mathcal{P}(E)$.
- Dénombrement : définition et nombre de *p*-listes, de *p*-arrangements, de permutations, de *p*-combinaisons d'un ensemble fini.

Espaces probabilisés finis, variables aléatoires

- Expérience aléatoire, univers (finis), événements. Opérateurs non, et, ou, événements incompatibles, famille d'événements deux à deux incompatibles, système complet d'événements.
- Variable aléatoire sur un espace probabilité fini, événements associés. Exemple d'une fonction indicatrice. Système complet d'événements associé à une variable aléatoire
- Définition d'une probabilité sur un univers fini, propriétés. Détermination d'une probabilité par les événements élémentaires. Probabilité uniforme. Indépendance de deux, de n événements.
- Proba conditionnelle : définition, P_A est une probabilité sur Ω , formule des probas composées, formule des probabilités totales et formule de Bayes.
- Loi d'une variable aléatoire. Fonction d'une variable aléatoire X, loi d'une fonction de X.
- Loi usuelles: uniforme, Bernouilli, binomiale.
- \bullet Couple de variables aléatoires, loi conjointe, lois marginales, loi conditionnelle de Y sachant X.
- Indépendance de deux variables aléatoires, de n variables aléatoires. Lemme des coalitions. La somme de variables de Bernoulli indépendantes de même paramètre est une variable binomiale.

L'espérance et la variance ne sont pas encore au programme.

Questions de cours

Demander:

- une définition ou un énoncé du cours;
- une petite décomposition en éléments simple dans le cadre du programme (fonctions rationnelles à pôles simples de degré < 0).
- et l'une des démonstrations suivantes :
 - Preuve combinatoire de : $p\binom{n}{p} = n\binom{n-1}{p-1}$ (bien introduire p et n).
 - Formule des probabilités totales et formule de Bayes.
 - Dans une urne avec 6 boules numérotées de 1 à 6, on tire une boule, et on note X le numéro.
 On remet cette boule dans l'urne et on retire toutes les boules dont le numéro était strictement supérieur à X. On tire alors à nouveau une boule dans l'urne, on note Y son numéro.
 Déterminer la loi de Y.

Semaine suivante : Probabilités, espérance, variance.