

Exploiting Inter-Flow Relationship for Coflow Placement in Data Centers

Xin Sunny Huang, T. S. Eugene Ng Rice University

This Work

- Optimizing Coflow performance has many benefits such as avoiding application straggles^[1,2] and improving resource utilization^[3,4].
- Coflow placement is an unexplored, important factor to determine Coflow performance.
- 2D-Placement leverages inter-flow relationship to find good placement for Coflows.

Coflow

- Coflow [1]: A set of parallel flows.
- Produced by distributed applications (e.g. Hadoop & Spark).
- Performance is measured by Coflow Completion Time (CCT),
 i.e. the slowest flow's completion time.

Coflow Scheduling

- Prior works demonstrate benefits of Coflow scheduling.
- Limitation: Assume predetermined placement for Coflows,
 i.e. predetermined sender/receiver locations.

Coflow Scheduling

- Prior works demonstrate benefits of Coflow scheduling.
- Limitation: Assume predetermined placement for Coflows,
 i.e. predetermined sender/receiver locations.

 Coflow placement can be flexible (e.g. cluster scheduler to choose machines for tasks in a stage).

 Coflow placement can be flexible (e.g. cluster scheduler to choose machines for tasks in a stage).

 Coflow placement can be flexible (e.g. cluster scheduler to choose machines for tasks in a stage).

- Coflow placement can be flexible (e.g. cluster scheduler to choose machines for tasks in a stage).
- Placement and scheduling decide Coflow performance.

- Coflow placement can be flexible (e.g. cluster scheduler to choose machines for tasks in a stage).
- Placement and scheduling decide Coflow performance.

This work: good placement under optimal scheduling
 to choose manual scheduling

Placement and scheduling decide Coflow performance.

Challenge #1: Intra-Coflow Bottleneck Delay

Challenge #1: Intra-Coflow Bottleneck Delay

Challenge #1: Intra-Coflow Bottleneck Delay

Challenge #2: Inter-Coflow Bottleneck Contentions

Summary: Keys to Coflow Placement

Intra-Coflow Inter-Coflow Avoid delaying critical Avoid contentions among endpoints (bottleneck) critical endpoints.

Intra-Coflow	Inter-Coflow
Step 1: Calculate endpoint demand	
Identify critical endpoints that require better placement.	

Intra-Coflow	Inter-Coflow
Step 1: Calculate endpoint demand	Step 2: Calculate load on ports
Identify critical endpoints that require better placement.	Find ports with less contentions.

Intra-Coflow

Step 1: Calculate endpoint demand

Step 2: Calculate load on ports

Identify critical endpoints that require better placement.

Find ports with less contentions.

Avoid contentions on critical endpoints.

Step 3: Place heavily loaded endpoints on less loaded ports!

Step 3: Place heavily loaded endpoints on less loaded ports!

Step 3: Place heavily loaded endpoints on less loaded ports!

Step 3: Place heavily loaded endpoints on less loaded ports!

Step 3: Place heavily loaded endpoints on less loaded ports!

Step 3: Place heavily loaded endpoints on less loaded ports!

Step 3: Place heavily loaded endpoints on less loaded ports!

Step 3: Place heavily loaded endpoints on less loaded ports!

Simulation setup

- Implemented a flow-level, discrete-event simulator
- Workload^[1]: realistic trace derived from Facebook cluster
 - 1hr traffic trace, > 500 Coflows, > 700,000 flows
- Baseline: flow-by-flow placement for Coflows (Neat [3])
- Coflow schedulers: Aalo [2] (this talk) and Varys [1] (paper), both designed to minimize average CCT by prioritizing small Coflows to avoid HOL blocking.

Improvement in Average CCT

2D-Placement's average-CCT over Neat's average-CCT

2D-Placement improves over Neat by up to 23% under Aalo Scheduling.

Improvement in Individual CCT

Individual CCT Reduction by 2D-Placement from Neat

Ratio of Coflow bottleneck L over link bandwidth B (second)

For large Coflows, 2D-Placement is only 0.85× of Neat under Aalo scheduling.

More in paper:

Results under Varys scheduling, Sensitivity to Schedulers, ...

Conclusions

- First study on **Coflow placement**, which has decisive impact on Coflow performance.
- Coflow placement is more challenging due to inter-flow dependency.
- **2D-Placement** leverages inter-flow relationship to find good placement for Coflows.

Thank You!

Thank You!

Xin Sunny Huang, T. S. Eugene Ng Rice University

Backup slides

Sensitivity to Schedulers

- 2D-Placement's improvement over Neat is usually larger under Aalo scheduling.
 - 1. **Aalo**, due to lack of precise information of Coflow size, may allow temporary violation of the smallest-Coflow-first priority.
 - 2. Neat optimizes placement based on a specific traffic priority used for scheduling. Thus it is prone to error in scheduling dynamics during runtime.
 - 3. **2D-Placement** optimizes placement in a more general case independent of the scheduling.

Improvement in Average CCT

2D-Placement's average-CCT over Neat's average-CCT

2D-Placement improves over Neat by up to 26%.

Improvement in Individual CCT

Individual CCT Reduction by 2D-Placement from Neat

Ratio of Coflow bottleneck L over link bandwidth B (second)

For large Coflows, 2D-Placement is only 0.85× (0.92×) of Neat under Aalo (Varys) scheduling.

Thank You!

Xin Sunny Huang, T. S. Eugene Ng Rice University

