

Microcontroladores

USART

USART

Universal Synchronous Asynchronous Receiver Transmitter

Como funciona uma comunicação serial?

E209 – Sistemas Microcontrolados e Microprocessados

 Necessita de um sinal de clock para sincronizar a recepção e a transmissão;

E209 – Sistemas Microcontrolados e Microprocessados

 Não necessita de um sinal de clock para sincronizar a recepção e a transmissão;

DATASHEET

UART

- Configuraço do pacote (Frame de Dados):
 - 1 start bit;
 - 5, 6, 7, 8 ou 9 bits para dados;
 - Bit de paridade;
 - 1 ou 2 bits de parada;

Baud Rate

- O Baud Rate define a taxa real de comunicação entre do sistema, além de limitar a distância máxima entre TX/RX;
- Os valores comuns de Baud Rate são:
 - 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 56000 e

115200;

UART no ATmega328P

Configuração do UART

UBRRO – Baud Rate Register

- Configura o Baud Rate da transmissão;
- Existem dois registradores: UBRROLe UBRROH. UBRROLé configurável nos 8 bits e o UBRROH nos 4 primeiros bits;

Operating Mode	Equation for Calculating Baud Rate(1)	Equation for Calculating UBRRn Value
Asynchronous Normal mode (U2Xn = 0)	$BAUD = \frac{f_{OSC}}{16(UBRRn + 1)}$	$\mathbf{UBRR}n = \frac{f_{\mathrm{OSC}}}{16\mathrm{BAUD}} - 1$
Asynchronous Double Speed mode (U2Xn = 1)	$BAUD = \frac{f_{OSC}}{8(\mathbf{UBRR}n + 1)}$	$\mathbf{UBRR}n = \frac{f_{\mathrm{OSC}}}{8\mathrm{BAUD}} - 1$
Synchronous Master mode	$BAUD = \frac{f_{OSC}}{2(\mathbf{UBRR}n + 1)}$	$\mathbf{UBRR}n = \frac{f_{\mathrm{OSC}}}{2\mathrm{BAUD}} - 1$

 Registro de configuração do pacote a ser transmitido e modo de operação da USART;

Bit	7	6	5	4	3	2	1	0
	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01 /	UCSZ00 /	UCPOL0
						UDORD0	UCPHA0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	1	1	0

 Bit 7 e 6 (USART Mode Select) - Configuram o modo de operação da USART;

UMSEL0[1:0]	Mode		
00	Asynchronous USART		
01	Synchronous USART		
10	Reserved		
11	Master SPI (MSPIM) ⁽¹⁾		

• Bit 5 e 4 (USART Parity Mode) - Configuram o bit de paridade do

frame;

UPM0[1:0]	ParityMode
00	Disabled
01	Reserved
10	Enabled, Even Parity
11	Enabled, Odd Parity

• O bit de paridade serve como uma forma de checagem. Ele mostra se a quantidade de bits "1" existentes no pacote na hora da transmissão é par ou ímpar;

 Bit 3 (USART Stop Bit) - Configura o número de stop bits no frame a ser transmitido;

USBS0	Stop Bit(s)
0	1-bit
1	2-bit

• Bit 0 (Clock Polarity) - É utilizado apenas no modo síncrono de transmissão. Dessa forma, este configura o tipo de borda do clock que ser utilizado;

UCPOL0	Transmitted Data Changed (Output of TxD0 Pin)	Received Data Sampled (Input on RxD0 Pin)
0	Rising XCK0 Edge	Falling XCK0 Edge
1	Falling XCK0 Edge	Rising XCK0 Edge

• Bit 2 e 1 (USART Character Size / Data Order) - Em conjunto com o bit 2 do registrador UCSROB configuram o número de bits de

dados do frame;

UCSZ0[2:0]	Character Size
000	5-bit
001	6-bit
010	7-bit
011	8-bit
100	Reserved
101	Reserved
110	Reserved
111	9-bit

 Registro de configuração e verificação, ou seja, este indica o estado da comunicação;

Bit	7	6	5	4	3	2	1	0
	RXC0	TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	MPCM0
Access	R	R/W	R	R	R	R	R/W	R/W
Reset	0	0	1	0	0	0	0	0

- Bit 7 (USART Receive Complete) Se estiver em nível lógico "0", significa que o registrador está vazio (não recebeu nada). Se estiver em nível lógico "1", significa que o registrador tem dados que foram recebidos, mas ainda não foram lidos (recebeu, mas não leu);
- Bit 6 (USART Transmit Complete) Se estiver em nível lógico "1", significa que todo o conteúdo que estava no registrador de dados foi transmitido;

- Bit 5 (USART Data Register Empty) Se estiver em nível lógico "1", significa que o buffer está vazio. Esse bit pode ser utilizado para gerar uma interrupção de registrador de dados vazio;
- Bit 4 (Frame Error) Indica um erro no frame;
- Bit 3 (Data OverRun) Um Data OverRun ocorre quando o buffer de recepção e o registrador de deslocamento de recepção estão cheios e um novo bit de início (de recepção) é detectado no RX;

- Bit 2 (USART Parity Error) Se estiver em nível lógico "1", significa que o conteúdo no buffer de recepção contém um erro de paridade;
- Bit 1 (Double the USART Transmission Speed) Se estiver utilizando o modo síncrono, esse bit deve estar em "0". Se estiver utilizando o modo assíncrono, escrever "1" nesse bit duplica o baud rate;

Registro de configuração;

Bit	7	6	5	4	3	2	1	0
	RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ02	RXB80	TXB80
Access	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
Reset	0	0	0	0	0	0	0	0

- Bit 7 (RX Complete Interrupt Enable 0) Se estiver em nível lógico "1", a interrupção de recepção esta habilitada. Quando receber todos os bits, uma interrupção será gerada. Se estiver em nível lógico "0", a interrupço est desabilitada;
- Bit 6 (TX Complete Interrupt Enable 0) Se estiver em nível lógico "1", a interrupção de transmissão estará habilitada. Quando tranmitir todos os bits, uma interrupção será gerada. Se estiver em nível lógico "0", a interrupção esta desabilitada;

- Bit 5 (USART Data Register Empty Interrupt Enable 0) Se estiver em nível lógico "1", a interrupção estará habilitada. Quando o UDRO estiver vazio, uma interrupção será gerada. Se estiver em nível lógico "0", a interrupço estará desabilitada;
- Bit 4 (Receiver Enable 0) Habilita a recepção de informação;
- Bit 3 (Transmitter Enable 0) Habilita a transmissão de informação;

 Bit 2 (Character Size 0) - Em conjunto com os bits 2 e 1 do registrador UCSROC configuram o número de bits de dados do frame;

UDRO – USARTI/O Data Register 0

• É o registrador (8 bits) de transmissão e recepção de dados. Dessa forma, ele armazena o dado a ser transmitido ou que foi recebido;

Obrigado!

