Serie1 Série Chronologique

Exercice 1

I) Le tableau ci-dessous contient le nombre de pannes d'une machine relevées sur 9 mois.

	t_1	t_2	t_3	t_4	t_5	t_6	t_7	t_8	t_9
Ì	4	6	5	3	7	5	4	3	6

- 1. Calculer les moyennes mobiles d'ordre 3: $MM_3(X_t)$ ensuite d'ordre 5 $MM_3(X_t)$.
- 2. Représenter sur un même graphique la série originale et les deux séries générées par les moyennes mobiles.
- 3. Calculer les moyennes mobiles d'ordre 4.

Exercice 2

I) Soit la série chronologique de données enregistrées semestriellement

X_t	0	-1	4	3	4	5	6	5
-------	---	----	---	---	---	---	---	---

- 1. Tracer le graphe de la série.
- 2. En supposant un modèle additif à tendance linéaire, estimer la tendance et les coefficients saisonniers.
- 3. Prévoir les valeurs de la série pour l'année suivante.
- 4. Faire une prévision par LES avec $\alpha = 0.7$.

Exercice 3

Soit la série chronologique Y_t représentant la consommation semestrielle d'électricité en milliards de kwh. Nous disposons de huit semestres numérotés de 1 à 8.

Y_t	66.5	58	71.5	63	76	65.5	81	69
-------	------	----	------	----	----	------	----	----

- 1. Tracer Y_t .
- 2. Pour simplifier, on étudiera la série temporelle $X_t = Y_t 58$. Tracer X_t . Calculer l'estimation de :
- a. La tendance T_t associé à X_t .
- b. La composante saisonnière S_t associée à X_t .
- c. $T_t + S_t$
- d. la série corrigée des variations saisonnières $X_t S_t$
- e. l'Aléas

Tracer sur le graphe de X_t , les graphes de T_t , de $(X_t - S_t)$ et de $T_t + S_t$.

3. Donner les estimations prévisionnelles de Y_t pour les semestres 9 et 10.