

Outline

- Bayes Classifier
- Bayesian Networks

What Is Bayes Classifier?

- A statistical classifier
 - Perform probabilistic prediction (i.e., predict the probability of a class membership)
- ☐ Foundation Based on Bayes' Theorem
- ☐ <u>Performance</u>: A simple Bayes classifier, *naïve Bayes classifier*, has comparable performance with decision tree and many other classification methods
- Incremental
 - Each training example can incrementally increase/decrease the probability that a hypothesis is correct: Prior knowledge can be combined with observed data
- Theoretical Standard
 - Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Bayes' Theorem: Basics

☐ Total probability Theorem:

$$p(B) = \sum_{i} p(B|A_i)p(A_i)$$

□ Bayes' Theorem:

- X: A data sample ("evidence")
- H: X belongs to class C

Prediction can be done based on Bayes' Theorem:

Classification is to derive the maximum posteriori

Naïve Bayes Classifier: Making a Naïve Assumption

- □ Practical difficulty of Bayes classifier: It requires initial knowledge of many probabilities, which may not be available or involving significant computational cost
- A Naïve special case
 - Make an additional assumption to simplify the model, but achieve comparable performance

Attributes are conditionally independent (i.e., no dependence relation between attributes)

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \cdots \cdot p(x_n|C_i)$$

- Only need to count the class distribution w.r.t. features
- Naive Bayes classifier: Combines the independent feature model with a decision rule
 - □ The MAP (maximum a posteriori) decision rule: Pick the hypothesis that is most probable

Naïve Bayes Classifier: Categorical vs. Continuous Valued Features

□ If feature x_k is categorical, $p(x_k = v_k | C_i)$ is the # of tuples in C_i with $x_k = v_k$, divided by $|C_{i,D}|$ (# of tuples of C_i in D)

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \cdots \cdot p(x_n|C_i)$$

 \square If feature x_k is continuous-valued, $p(x_k = v_k | C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

$$p(x_{k} = v_{k} | C_{i}) = N(x_{k} | \mu_{C_{i}}, \sigma_{C_{i}}) = \frac{1}{\sqrt{2\pi}\sigma_{C_{i}}} e^{-\frac{(x - \mu_{C_{i}})^{2}}{2\sigma^{2}}}$$

Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer = 'yes'

C2:buys_computer = 'no'

Data to be classified:

X = (age <= 30, Income = medium,

Student = yes, Credit_rating = Fair)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayes Classifier: An Example

- \square P(C_i):
- Comi

```
P(age
```

$$P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6$$

P(student = "yes" | buys computer = "yes") =
$$6/9 = 0.667$$

P(student = "yes" | buys computer = "no") =
$$1/5 = 0.2$$

X = (age <= 30, income = medium, student = yes, credit_rating = fair)</p>

$$P(X|C_i)$$
: $P(X|buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044$

$$P(X|buys_computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$$

$$P(X|C_i)*P(C_i): P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$$

Therefore, X belongs to class ("buys computer = yes")

): P(buys_computer = "yes") = 9/14 = 0.643	<=30	high	no	excellent	no
npute P(X C _i) for each class		high	no	fair	yes
		medium	no	fair	yes
		low	yes	fair	yes
ge = "<=30" buys_computer = "yes") = 2/9 = 0.222	>40	low	yes	excellent	no
ge = "<= 30" buys_computer = "no") = 3/5 = 0.6	3140	low	yes	excellent	yes
come = "medium" buys_computer = "yes") = $4/9 = 0.444$		medium		fair	no
come = "medium" buys_computer = "no") = $2/5 = 0.4$	<=30	low	yes	fair	yes
· · · · · · · · · · · · · · · · · · ·	>40	medium	yes	fair	yes
udent = "yes" buys_computer = "yes") = 6/9 = 0.667	<=30	medium	yes	excellent	yes
udent = "yes" buys_computer = "no") = 1/5 = 0.2	3140	medium	no	excellent	yes
edit_rating = "fair" buys_computer = "yes") = 6/9 = 0.667	3140	high	yes	fair	yes
	. 40	and a ality and		assa all assa	

age <=30

high

meaium

income student credit_rating buys_computer

no

no

fair

no

no

excellent

Avoiding the Zero-Probability Problem

- □ Naïve Bayesian prediction requires each conditional probability be **non-zero**
 - Otherwise, the predicted probability will be zero

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \dots \cdot p(x_n|C_i)$$

☐ Example. Suppose a dataset with 1000 tuples:

```
income = low (0), income = medium (990), and income = high (10)
```

- ☐ Use **Laplacian correction** (or Laplacian estimator)
 - Adding 1 to each case

$$Prob(income = low) = 1/(1000 + 3)$$

Prob(income = medium) =
$$(990 + 1)/(1000 + 3)$$

Prob(income = high) =
$$(10 + 1)/(1000 + 3)$$

The "corrected" probability estimates are close to their "uncorrected" counterparts

Naïve Bayes Classifier: Strength vs. Weakness

- Strength
 - Easy to implement
 - Good results obtained in most of the cases
- Weakness
 - Assumption: Attributes conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - □ E.g., Patients: Profile: Age, family history, etc.
 - Symptoms: Fever, cough, etc.
 - Disease: Lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayes Classifier
- ☐ How to deal with these dependencies?
 - Use Bayesian Belief Networks