UNCLASSIFIED

AD NUMBER AD231509 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; Oct 1959. Other requests shall be referred to Quartermaster Research & Engineering Command, Quartermaster Research & Engineering Center, Natick, MA. **AUTHORITY** US Army Natick Labs ltr dtd 24 Oct 1968

20030609130

UNDASSIFIED

Best Available Copy

Reproduced

Armed Services Technical Information Agency

ARLINGTON HALL STATION; ARLINGTON 12 VIRGINIA

SOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U.S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WEATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, PURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY INPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY REGITS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

UNCLASSIFIED

HEADQUARTERS QUARTESSESTER RESEARCH & ENGINEERING COMMAND QUARTERMASTER RESEARCH & ENGINEERING CENTER, US ARMY MATICE, MASSACHUSETTS

23

Sp. 7

TEXTILE DIEING LABORATORY RESEARCH REPORT NO. 114

23

DEVELOPMENT OF BEACTROMAGNITICALLY SHIELDED PORTABLE SHEETS.

Prank J. Risso Alvin O. Remeley Textile Dysing Laboratory Branch

> Frank O. Johnson Tentage and Equipage Branch

TEXTILE, CLOTHING & PROTURAR DIVISION

Project: 7-93-18-020 Textile and Leather Materials

1. . .

Language and the state of the second

October 1959

POREMORO

Interference of electromagnetic radiation from radar transmitters with electronic computing devices may introduce errors into computations which are used in conjunction with artillary and missile firing. Conditions of field operation may require that computing equipment be housed in shalters that can be moved as a military situation requires. This report discusses the development of portable shelters which incorporate in their design the feature of shielding electromagnetic radiation of microwave frequencies. The shielding is also necessary in order to pretect sparating personnel from the high intensity energy which is characteristic of some of the never developments in radar.

The cooperation of personnel is both the Testage and Musipage Branch and the Testale Dysing Laboratory Branch was essential. In addition to the authors, Massers Convey W. Meihert, Allen M. Moody, Chester I. Hoses, and Villiam T. Burns made important constricutions to the study.

FRAME J. RIEMO Chief Textile Dywing Laboratory Brench

CONTENTS

Ab	stract	Page
	Part I: Klectromagnetic Shielding Materials for Shelters	
	Alvin O. Rearley	
1.	Introduction	1
2.	Experimental Observations	2
3,	Discussion of Results	<u>L</u>
4.	Conclusions	4
5.	Acknowledgements	L.
6.	References	5
	Part II: Description of Test Shelter Frank O. Johnson Alvin O. Remalay	
1.	Introduction	7
2.	General Design Concepts	7
3.	Design of Combined Barrier	8
4.	Assembly and Suspension of Barrier	8
	Part III: Evaluation of Test Shelter Prenk J. Risso Frank O. Johnson Alvin O. Reseley	
1.	Introduction	IJ
2.	Summary of Test Results	IJ
3.	Recommended Design	15
4.	Reference	17

ABSTRACT

This report describes the various steps in the development of a design for portable rhelters which afford shielding from microwave radiation. The shelters were designed to house electronic computing devices and operating personnel in proximity to radar transmitters. Shielding from microwave radiation is necessary to prevent interference and consequent malfunction of electronic squipment and to insure safety to operating personnel.

Reflectivity to microwave radiation was measured for several flexible materials. A silverized nylon fabric and aluminized polyester film were found to be more effective in reflecting the energy than the other materials studied.

A scale model of the shelters was constructed of materials suggested for use in the final design. The model was submitted for evaluation to a field type test to determine levels of attenuation within the shelters when illuminated with microwave radiation at three frequencies. It was found that leakage at over-lapping joints limited attenuation to an average of about 10 db for L band, 33 db for "s" band, and 26 db for "x" band.

Designs are suggested for improving the closure at over-lapping joints which should raise the level of attenuation.

Part I: Rictromagnetic Shielding Materials for Shelters Alvin O. Ramsley

1. Introduction

The Quartermaster Research and Engineering Command was requested through a transfer of funds from Rome Air Dvelopment Command, to construct four shelters for housing operational electronic equipment. In the field this equipment is often used in proximity to radar transmitters, which may interfere with the proper functioning of the electronic equipment in the shelters. The Air Force had requested that "maximum electrical shielding" be provided to assure that interference from the radar transmitter be held to sufficiently low levels.

Radar signals consist of microwave radiation which comprises the region of the electromagnetic spectrum between radio waves and infrared radiation. Portions of the spectrum, e.g., infrared, visible, x-ray, and radio waves, have become recognized as distinct fields of study. However, all electromagnetic radiation obeys the same basic laws of propagation, refraction, reflection and differ from one area to another only in frequency and wavelength and the manner in which the radiation interacts with matter. Delineation of the various regions has come about primarily because different methods are required for their production and detection. These different techniques stem from the mechanisms by which radiation in various wavelength regions of the spectrum interacts with matter.

A suggesty of the differences between various spectral regions in regard to wavelength and the manner of interaction with matter is shown in Table I. Since considerable o'er-lapping of wavelengths from one region to another and interactions in machanisms occur, the tabulation is only approximate.

Table I: Incluence of Various Spectral Regions

Spectral Region	A (cm)	Response of Matter
Cama rays X-rays Ultraviolet Visible Near infrared	10_8 - 10_6 10_6 - 1 × 10_5 1 - 7 × 10_5 7 × 10_5 - 2.5 × 10_4	Muclear vibration Inner electrons Valence electrons Valence electrons Overtones of molecular
Infrared Far infrared Microsave	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	vibration Mclecular vibration Molecular rotation Molecular rotation and polarisation

Table II lists the various frequency bands for radar commonly in use. By comparison the frequency of visible light is 100 - 800 maga-magacycles. per second.

Table II: Designation and Approximate Spectroscopic Properties of

	Various Facer muse	•	Alternate Designations	
Bend	Proquency (mc/sec)	davelength (cm)		
P L	25 - 39 39 - 1550	770 - 1200 20 - 770	10 mater band 1 mater band	
S	1550 - 5200	5.8 - 20	10 centimeter band	
I K	5200 - 11,000 11,000 - 30,000	2.7 - 5.8	3 centimeter band 1 centimeter band	
millimeter	30,000 - 600,000	0.05 - 1	millimeter band	

Radar signals, which operate in the microwave region of the electromagnetic spectrum, travel in straight lines at the speed of light. They may be feffected, absorbed, or transmitted at the surface of the shelter in a manner analogous to visible light. Only that portion of the incident radiation which is transmitted can interfere with instruments within the shelter. Consequently, shielding will be possible only if the signal is absorbed or reflected. In discussions with personnel of the Engineer Research and Development Laboratories it soon became apparent that shielding of electronic equipment could best be accomplished by reflection. Use of absorbing systems would be uneconomical in terms of money, weight, and bulk. This part of the report consists of an exemination of a number of materials with respect to reflectivity at various frequencies of microwave radiation.

2. Experimental observations

At our request reflectances of a series of fabrics and related materials were made by ERUL personnel at 3 cm and by the group at the Naval Research Laboratory at 10 cm. These are summarized in Table III.

Table III: Reflectance (5) at Two Mavelengths and Direct Gurrent Resistance of Seven Fabric Systems

	Fabric	3 cm*	10 cm	d, c, resistances
1.	Swift fabric - silver on mylon	95	200	0.8
2.	Carbon black on cotton satesn	(1	<1	>10 <u>′</u>
3.	Carded cotton sateun, 00 107	<1	<1	> 10 ⁷
4.	Cotton sheeting with vacuum	<1	<1	>107
	deposited aluminum			_
5.	Cotton drill with *milium*	41	41	>107
6.	Vacuum aluminised mylar	95	100	4. 0
7.	Aluminum foil bonded to paper and nylon mesh	95	100	0.1

^{*} Reflectance relative to a solid sheet of iron as 100%.

^{**} Ohms per square.

Reflectances of 12 fabric systems were measured at three frequencies 1000, 3000, and 10,000 megacycles by Pickard and Burns, Needham, Massachusetts under contract with the Command. These data represent measurements of microwave energy reflected from a sample illuminated at normal incidence. Table IV summarises the data obtained on the 12 samples.

Table IVr Microwave Reflectivity of Twelve Pabric Systems at Three Frequencies

		Percent Power Reflected			
Samp	10	"L" BAND	"S" RAND		
No	. Description	1,000 = 6/8	3.000 mc/s	10,000 mc/s	
1.	Aluminised Mylar on Poplin.	100	100	100	
2.	Aluminum Poil on Serim.	100	100	100	
3.	Carbon Black on Dyncl.	0	. 0	0	
Ŀ.	Aluminum Foil on Paper.	100	100	100	
5.	Aluminised Hylar on Sheeting.	100	100	95.5	
6.	Vacuum Aluminised Cotton Sheeting.	• 0	0	0	
7.	Smift Cloth (Silver, Parachute mylon)	100	100	100	
8.	Milium on Cotton.	0	0	0	
9.	Aluminised Coated Hylon.	0	10	67	
10.	Aluminised Rubberised Fabric.	٥	•	11	
11.	Aluminised Hylar Alone	100	94	91	
12.	Aluminized Hylar on Paper.	200	100	100	

The shelters are designed to provide a high order of thermal insulation, for which purpose a double layer of 1 inch fiber-glass batting will be used. It thus appears, by reference to the data of fable IV, that placing our or two layers of aluminized mylar between the layers of fiber-glass should be effective in reflecting incident radiation. Table V shows data from Pickard and Burns for three different thicknesses of mylar film which had been aluminized and a model of insulating batting containing a double layer of aluminized mylar between a double layer of the fiber-glass. Data were also obtained on double thicknesses of mylar samples alone.

Table V: Microwave Reflectivity of Three Aluminised Mylar Films of Different Thickness and a Model of an Insulating Batting

		Percentage of Power Reflected			
Sample		"L" BAND	"S" BAND	"X" BAND	
No.	Description	1,000 mc/s	3,000 mc/s	10,000 mc/s	
7.	1/4 mil Hylar	100	95	720	
2.	1/2 mil Hylar	1.00	95	. 93	
3.	1 mil Mylar	100	100	95	
4.	Assembled Batting	100	100	95	
5.	1/4 mil Myler - 2 layers	100	95	72=	
6.	1/2 mil Mylar - 2 layers	100	95	93	
7.	1 mil Mylar - 2 layers	100	100	95	

The low percent of reflectivity of this sample at X-Band is probably due to surface abrasion resulting from e-cessive flexing and working of the materials and consequent wrinkling, actual reflectance is probably 90 - 95%.

3. Discussion of results

The results of all three swites of measurements indicate that rather uniform surfaces of high electrical wanductivity have the property of reflecting microwave radiation. In the referenced letter report from Pickard and Burns, 2 Glynn suggests that Samples 5 and 11 exhibit typical results as a function of frequency for materials in which electrical conductivity is slightly less than ideal. Evidently, the conductivity of these samples is less than for Samples 1, 2, h, 7, and 12 which were reported as having 100% reflectance. He suggests that the particulate nature of the aluminum deposition was such as to produce a small order of non-uniformity of electrical conductance in the nurface. The negligible reflectance of samples 3, 6, and 8 are presumably due to an even lower order of continous conduction between small conducting particles (see Table III). The reasons for the "anomalous" behavior of Samples 9 and 10 are not clear but may be due to a degree of continuity intermediate between the "very poor" and the "rather good" (5 and 11). For various "practical" reasons such as cost, availability of materials, comparative case of handling, resistance of microbial degradation and influence on insulation, a model size shelter was constructed using the fiber-glass/aluminised mylar combination described above. The dimensions of the scale model were lith those of the interded size of the prototypes. This scale model shelter has been submitted for actual field-type testing by Pickard and Burns. The design and construction of this prototype model shelter is described in Part II of this report, Evaluation of the shielding characteristics of this shelter are reported by Pickard and Burns3 and susmarised in Part III.

4. Conclusions

The data presented show that light weight naterials are commercially available to enable the engineer to design a shelter which has the desired shielding characteristics. The results of the study show that either aluminised mylar or aluminum foil, either alone or bonded to paper or fabric, meet the electrical requirements. Furthermore, the Swift fabric, silver deposited on a mylon fabric, is also satisfactory.

It is concluded, therefore, that by using any of the above materials, the remaining problems are of design and production. It was for the purpose of considering this aspect that the scale model was constructed and tested.

5. Acknowledgements

The writer wishes to acknowledge the considerable assistance he received from many organisations and individuals.

a. For assistance in developing a sufficient fundamental background the writer is indebted to:

Mr. Adloph Humphreys, Chief, Camouflage Branch ERDL, Ft. Belvoir, Va. Mr. Robert Descle, Camouflage Branch, ERDL, Ft. Eelvoir, Va.

Mr. David Gee, Camouflage Branch, ERUL, Ft. Belvoir, Va. Mr. O. M. Kaltese, Lincoln Laboratories (MIT), Bedford, Mass. Mr. James J. Slynn, Pickard and Burns, Inc., Needham, Mass.

b. The whiter wishes to thank the individuals in various organisations for making the reflectance measurements discussed in this report.

Mr. David Gee, Camouflage Branch, ERDL, Ft. Belvoir, Va. Mr. James J. Glynn, Pickard and Rurns, Inc., Needham, Mass. Dr. Reefus Wright, Naval Research Laboratories, Washington 25, D. C.

c. For their assistance in the end use aspects of the study the writer wishes to thank the following individuals in the QM Research and Engineering Coswand.

Mr. Commay W. Weikert, Chief, Tentage and Equipage Branch, Textile, Clothing and Footrear Division. Mr. Allen M. Moody, Tentage and Equipage Branch, Textile, Clothing and Footrear Division. Mr. Harold H. Branit, Textile Engineering Branch, Textile, Clothing and Footrear Division. Mr. Stanley J. Shurtleff, Elastoner Branch, Chemicals and Plastics Division.

The writer wishes especially to thank Mr. Frank J. Risso, Chief, Textile Dyeing Laboratory Branch, Textile, Clothing and Footsear Div. for his general guidance in the program and for his helpful comments in preparing the report.

6. References

- 1. Glynn, J. J. Ltr: Pickard and Burns to QH R&E Command, Subject: Letter Report for Analysis of Pliable Microwave Reflecting Naturials Study (P200-32), dated. 24 October 1958.
- 2. Ltr: Pickard and Burns to QN RAE Command, Subject: Letter Report for Analysis of Pliable Ricrowave Reflecting Materials Study (P-200-35), dated, 23 December 1958.
- 3. Measurements of Electromagnetic Nave Attenuation Characteristics of Portable Shelters Composed of Pliable Reflecting Materials, P&B Pub. No. 523, Pickard & Burns, 210 Highland Ave., Needham 94, Massachusetts. Prepared for QM R&E Command 15 April 59.

Part II: Description of Tost Shelter

Frank O. Johnson

Alvin O. Ranchey

1. Introduction

As a result of the findings reported in Part I of this report, a small model of a shelter was constructed for submittal to a field-type test of radio frequency attenuation. The model measured 6 feet in width, a feet in height and 6 feet in depth. These dimensions are about one fourth those of one of the shelters under consideration. Aluminized mylar film was used as the reflective element. The previous results indicate this material should provide good shielding and that remaining problems were those of design.

The purpose of this part of the report is to describe the shelter that was submitted to Pickard and Burns Inc., for analysis under Purchase Order C.I. 3093-59N. Preparatory to construction of the test shelter, a conference was held between personnel of the Tantage, Equipage and Parachute Branch and Textile Dyeing Laboratory Branch in order to coordinate construction aspects and electrical requirements. Based on this conference which considered the advice offered by Mr. James J. Glynn of Pickard and Burns during the work described in Part I, the design for preliminary tests was agreed upon.

2. General Design Concepts

The most obvious approach to the solution was the use of a separate, light-weight liner to be suspended inside the thermal insulation barrier. In Part I it was shown that a metallized nylon fabric (Swift Cloth) could function effectively.

An alternate consideration suggested that the electromagnetic shield be incorporated in the thermal shield. It was hoped that adequate shielding could be achieved when the reflective element (aluminised mylar) was inserted between layers of the fiber glass insulation. Furthermore, it was considered that use of a separate liner for the specific purpose of providing electromagnetic shielding would be less economical in cost, weight and bulk storage.

The general design of the prototype submitted for testing was based on use of aluminized mylar included directly as part of the thermal insulation system. In the final shelters it was intended to suspend the combined thermal and electromagnetic barrier within a metal frame. Enclosing the frame and barrier will then be accomplished by a neoprene coated nylon outer layer.

3. Design of combined berria

The combined barrier included two layers of fiber glass insulation, each 1/2" in thickness. Retween these were placed two layers of 1-mil sylar film which had been vacuum aluminised on one side to produce a surface resistance of about 5 olum per square. In order to minimise abrasion of the effective surfaces, the aluminised surfaces were placed face-to-face, thereby placing the unaluminised surfaces in contact with the fiber glass. A layer of neoprens coated nylon was used to enclose this system. Figure 1 illustrates the arrangement which was used.

4. Assembly and suspension of barrier

for the prototype shelter submitted for test the berrier was constructed of three pieces. The front and of the shelter was seem directly to the front half of the sids-wall. These two halves were suspended from a tubular aluminum frame with nylos cord through grommets, over-lapping the two halves of the shelter about 1° at the centur. This is illustrated in Figure 2.

The bottom edges of the two ends and side punels were carried 12° beyond the floor level and the aprons so formed were turned inward. A ground cloth was placed on the floor and over-lapped the apron from the side well and ends. In the ground cloth the thermal insulation was omitted, and thus it contained a double layer of aluminized mylar enclosed within an envelope of reopress coated nylow.

Figure 3 moves the interior of the shelter with the ground cloth in place. From this illustration it is seen that the front end of the shelter was provided with a slide fastener closure. This was necessary for the test only to permit entry of personnel and equipment. In a final design entry will be made through an alumnum door and frame, which in itself should pose no shielding problem.

Preliminary results indicated that an improved closure with better shielding properties was necessary at the center over-lap and at the ground cloth over-lap. Two changes were made in order to improve the design. A beckett closure with a 6" spacing replaced the simple grounds closure, although growness were still used as suspension points. The other change was to continue the aluminised sylar film out of the insulating bat and fold it over in a manner shown in Figure 4. By these two changes it was hoped that a more continuous reflecting surface could be obtained.

S N O O

INSULATION / /

Solid line - Outer Skin

Deshed line - Aluminized Mylar - double layer with aluminum surfaces in contact.

Figure 1: Construction of side-well bats, first attempt

f gure 2: Exterior view of test shelter shawing general Arrangement and mode of suspensions.

Solid line - Outer Skin

Dashed line - Uluminized mylar - double layer with aluminum sunfaces in contact

Insulation is not shown

Figure 4: Modified arrangement of layers in test hats.

Part III: Evaluation of Test Shelter

Frank J. Risso Frank O. Johnson Alvin O. Remalay

1. Introduction

The purpose of this part of the report is to evaluate the performance of the test shelter described above in terms of military needs for electromagnetic shielding. It is recognised that the results of the study using the 1/4-scale size test structure can not be translated directly into performance of a full size structure. Thus, a second purpose is to develop those essential aspects which can lead to a recommended design of a full scale model.

2. Summary of Test Results

The field study led to the conclusion that adequate shielding is possible with minor changes in construction design. From a materials point of view the aluminised mylar permits attainment of the objectives. Data from the field study show that the ground cover is essential for highest effectiveness.

It was noted that leakage of radio frequency radiation occurred in areas where one section over-lapped another. Leakage was observed at over-lap areas at the center seam and where the ground cloth met the side wall. This indicates that excellent shielding would be provided, if the aluminal surface of the sylar film could be made continuously conducting. Ho ever, no leakage was observed in areas shows refine-ting surfaces were brought into close proximity by a seem seam. In such regions the reflecting surfaces were probably about 1/8° apart. Thus, although absolute electrical continuity might provide assured shielding, it does not appear to be absolutely essential.

The leakage observed at the sippered entry does not apply to the general problem because no such structures would be used in a full scale shelter. An aluminum door and jamb are intended for use as the entry.

Figure 1 illustrates the angles of illumination used. Petectors were placed within the shelter and the probe moved to find the highest reading for a given illumination condition.

Table I summarises the data obtained for the test condition in which the ground cloth was in place.

LEGER

- Horisontal ray directed midway up side at center overlap.
 Horisontal ray directed at seen corner.
 Horisontal ray glancing off center overlap.
 Horisontal ray glancing off seem corner.
 Horisontal ray normal to front at slide fastener.
 Oblique ray directed down at base of center overlap.
 Oblique ray directed down at base of center overlap.

Figure 1: Directions of illumination referred to in Table I.

Table I: Attenuation of Historius Rediation by Test Shelter with Orount Cloth in Flace.

		Signal Lovel at		Protection afforded		
frequency (Mas)	Test Post tion	Outer Surface	Incide Shelter	-beller	, hearts	
1000	1 2 3 4 5 6	78.6 m 77.2 m 76.5 m 75.0 m 76.0 m 79.6 m	16.5 de 13.0 de 13.0 de 14.0 de 16.0 de 16.0 de 16.5 de	-12.1 do -14.5 do -13.0 do -30.0 do -39.0 do -13.1 do	AM/AFR - L Tec. Direct Reading in DB	
3000	1 2 3 1 5 5 5 7	65.0 db 58.0 db 51.0 db 56.0 db 73.0 db 69.5 db	34.0 db 27.0 db 26.0 db 11.0 db 36.0 db 14.0 db	-31.0 db -36.0 db -35.0 db -36.0 db -36.0 db -30.0 db -37.5 db	AM/AFR-L Rec. Direct Reading in DB	
10,000	1 2 3 4 5 6	7.0 3.0 9.7 30.0 90.0 85.0 3.0	0.01 0.01 0.7 0. 1.00 0.90 0.005	-26.15 m -21.77 m -29.86 m -31.77 m -19.51 m -19.77 m -27.78 m	PALL DE= 10 log PATH PMS Medal 60 Belometer Amplifier	

3. Recommended Design

Financial support was withdrawn before the indicated refinements in design could be made. Therefore, this study will terminate with recommendations for the following changes in design which will isprove the shielding offectiveness of the model discussed above. These recommendations are based on a careful review of the results of the experimental work, experience in construction of portable shelters and discussion with electronic engineering personnel of Pickard and Burns.

a. The corrective measures taken to improve the shielding are shown in Figure 4 of the previous part. Although sufficient funds were not available to analyse this change thoroughly, a spot check indicated some slight improvement. The design of the combined thermal and electromagnetic barrier which is now recommended is illustrated in Figure 2. The essential feature is that electrical continuity depends on areas in contact which, in turn, depend on pressures produced by the closure system. The reason for the inadequacy of the design shown in Figure 4 was buckling of the mat and the manner in which the becket lines provided contact pressure.

Solid line - outer skin of batting

Dashed line - aluminized mylar - double layer with aluminum surfaces in contact

Figure 2: Recommended design for betting in areas where sections join.

b. One suggestion for a combined suspension and closure system is shown in Figure J. The support bands should be made of an appropriate metal (or other material) which would provide constant pressure against t. frame.

Adoption of these two techniques should insure that attenuation of at least 40 d.b. would be provided throughout the shelter at L-band frequencies. This compares favorably with attenuation realised by commercial, all metalshielded rooms. The type of closure shown in Figures 6 and 7 would contribute materially to the effeciency of the thermal insulation.

It should be pointed out that the protection afforded by the test shelter is expressed in decibels, a logarithmic unit defined as

Where P is power (maximum outside shelter and minimum inside) in appropriate units. The negative sign indicates a power decrease. In terms of power transmitted a protection of -40 db corresponds to a transmission factor of 0.0001 (0.01%); protection of -30 db corresponds to a transmission factor of 0.001 (0.1%).

In view of the results it may be appropriate to reconsider the alternative approach using a separate lining attached to the inside of the structure after placement of the outer shell and separate insulating bats. Such a liner, made of silver treated facric (e.g. dynel), would provide adequate shielding with fewer design problems. Since it was shown by Pickard and Burns' that an ordinary slide fastener, itself, act as a slot atemma, the tape used in any slide fastener in such a system would have to be metallised in the same manner as the liner proper. A one-piece liner of such design would cost more than use of sylar in the insulating bats; with special slide fasteners the cost would be even higher. Furthermore, a substantial increase in overall weight of a complete shelter would result.

4. Reference

1. Olynn, J.J., Measurements of electromagnetic characteristics of portable shelters composed of pliable reflecting materials, Pub. No. Pickard and Burns, 240 Highland Ave., Needham 94, Mass., 15 April 1959.

Figure 3: Suggested method or attachment of hadin with train

UNCLASSIFIED

UNCLASSIFIED