Introduction - How to Prove It : Answers to exercises

Scott Brown

August 21, 2013

1.(a.) Factor $2^15 - 1 = 32,767$ into two smaller positive integers 7, 4681

(b.) Find an integer x such that $1 < x < 2^{32767} - 1$ and $2^{32767} - 1$ is divisible by x.

127 i.e. $2^7 - 1$.

	n	Is n prime?	$3^{n}-1$	Is $3^n - 1$ prime?	
2.	2	Y	8	N	Based on the values of the
	3	Y	26	N	
	4	N	80	N	
	5	Y	242	N	
	6	N	728	N	
	7	Y	2186	N	
	8	N	6560	N	
	9	N	19682	N	
	10	N	59048	N	

table I conjecture that $3^n - 1$ is always even, and so is never prime.

3. Euclid's theorem

(a.) Find a prime different from 2,3,5 and 7.

Let m = 2*3*5*7+1 = 211

211 is prime (b.) Find a prime different from 2,5 and 11.

Let m = 2 * 5 * 11 + 1 = 111

111 has the factor 3, which is different to the primes above.

4. Find five consecutive integers that are not prime.

Let n = 5 and let x = (n+1)! + 2 = 722

 $722,\!723,\!724,\!725$ and 726 are not prime.

727 is prime.