UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA DISCIPLINA: CIRCUITOS ELÉTRICOS I

DISCH LINA. CINCULTOS ELETRICOS I	Data
Aluno(a):	Matrícula:

Avalia	ıção	1º]	Está	gio

Doto:

1 – Para o circuito da figura 1, complete os espaços na tabela de modo que a LKC e a LKT

sejam satisfeitas. Na coluna "Cons./Forn." indique se o componente consome (CONS) ou fornece (FOR) energia. (CONS \rightarrow Pot>0), (FORN \rightarrow Pot<0). (2.5)

		1	I
Elemento	Tensão	Corrente	Cons./Forn.
	(V)	(A)	
A	150		
В		-1.4	
C	100		
D		0.8	
Е		-2.0	
F	-300		

- 2 Para o circuito da figura 2, determine os valores de R1, R2 e R3 de modo que as tensões v1, v2 e v3, com relação ao terminal comum, sejam, respectivamente, 12V, 4V e -12V. Sabe-se que o resistor R3 dissipa máxima potência, cujo valor é 1W. (1.5)
- a) Se forem conectadas cargas aos terminais de v1, v2 e v3, com relação ao terminal comum, haverá mudança nos valores das tensões? Justifique (1.0)
- b) Se forem conectadas cargas aos terminais de v1, v2 e v3, com relação ao terminal comum, pode-se garantir que o resistor R3 permanecerá recebendo máxima potência? Justifique (1.0)

- 3- O resistor variável R_O no circuito da figura 3 é ajustado para absorver a máxima potência do circuito.
- a) Determine o valor de Ro. (1.5)
- b) Determine a potência máxima. (1.0)
- c) Determine a porcentagem da potência total gerada no circuito que é fornecida Ro. (1.5)

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA DISCIPLINA: CIRCUITOS ELÉTRICOS I

DISCIPLINA: CIRCUITOS ELÉTRICOS I	Data:
Aluno(a):	Matrícula:

	Avaliação	1º Estágio
--	-----------	------------

1 – Para o circuito da figura 1, complete os espaços na tabela de modo que a LKC e a LKT

sejam satisfeitas. Na coluna "Cons./Forn." indique se o componente consome (CONS) ou fornece (FOR) energia. (CONS \rightarrow Pot>0), (FORN \rightarrow Pot<0). (2.5)

Elemento	Tensão	Corrente	Cons./Forn.
	(V)	(A)	
A	150		
В		-1.4	
С	100		
D		0.8	
Е		-2.0	
F	-300		

Figura 1

- 2 Para o circuito da figura 2, determine os valores de R1, R2 e R3 de modo que as tensões v1, v2 e v3, com relação ao terminal comum, sejam, respectivamente, -12V, -4V e 12V. Sabe-se que o resistor R3 dissipa máxima potência, cujo valor é 1W. (1.5)
- a) Se forem conectadas cargas aos terminais de v1, v2 e v3, com relação ao terminal comum, haverá mudança nos valores das tensões? Justifique (1.0)
- b) Se forem conectadas cargas aos terminais de v1, v2 e v3, com relação ao terminal comum, pode-se garantir que o resistor R3 permanecerá recebendo máxima potência? Justifique (1.0)

- 3- O resistor variável R_O no circuito da figura 3 é ajustado para absorver a máxima potência do circuito.
- a) Determine o valor de Ro. (1.5)
- b) Determine a potência máxima. (1.0)
- c) Determine a porcentagem da potência total gerada no circuito que é fornecida Ro. (1.5)

