

The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Previously Presented) An electronic metal detector having:
a transmit coil adapted to transmit an alternating magnetic field associated with a reactive
transmit voltage;
transmit electronics adapted to generate a transmit voltage signal which is applied to the
transmit coil; and
receive electronics adapted to receive a magnetic field signal and process received signals
to produce an indicator output,
wherein the transmit voltage signal is selected such that the reactive transmit voltage is
approximately constant for at least a time period during which a magnetic field
signal to be processed is received by the receive electronics, and
wherein a timing of both the transmit electronics and the receive electronics is controlled
by a timing control circuit.

2. (Previously Presented) An electronic metal detector comprising:
a transmit coil adapted to transmit an alternating magnetic field associated with a reactive
transmit voltage;
transmit electronics adapted to generate a transmit voltage signal which is applied to the
transmit coil, said transmit electronics comprising:
a linear amplifier and switching voltage electronics, the switching voltage
electronics being adapted such that the transmit voltage signal
includes a switched voltage component including periods of at
least two different switched voltages, a first switched voltage
during a first period, and second switched voltage during a second
period,
the linear amplifier being adapted such that the transmit voltage signal
includes a component which changes approximately linearly in
time during a third period which is within the said first period; and
receive electronics adapted to receive a magnetic field signal and process received signals
to produce an indicator output, the receive electronics receiving during at least a
period during the third period,
wherein the transmit voltage signal is selected such that the reactive transmit voltage is
approximately constant during the third period for a selected range of transmit
coil effective inductive component impedance.

3. (Original) The electronic metal detector as in claim 2 wherein said switched voltage component includes a sequence of switched voltage periods selected such that Fourier components of this sequence contain at least two frequencies of substantial magnitude, the receive electronics being adapted to be responsive and to receive signals for processing at least the said at least two frequencies, further characterised in that a ratio of reactive transmit voltages at each of the said at least two frequencies is substantially constant for the said selected range of transmit coil effective inductive component impedance.

4. (Original) The electronic metal detector as in claim 3 further characterised in that the reactive transmit voltage is approximately zero during the third period.

5. (Previously Presented) An electronic metal detector comprising:
a transmit coil adapted to transmit an alternating magnetic field associated with a reactive transmit voltage;
transmit electronics adapted to generate a transmit voltage signal which is applied to the transmit coil; and
receive electronics adapted to receive a magnetic field signal and process received signals to produce an indicator output,
wherein the transmit voltage signal is selected such that the reactive transmit voltage is approximately constant for at least a time period during which a magnetic field signal to be processed is received by the receive electronics, and
wherein the transmit electronics is adapted to effect an effective negative resistance which is selected to be approximately equal in magnitude but opposite to the resistance of an effective resistive component impedance met by the transmit voltage signal, the negative effective resistance being in series with the transmit coil.

6. (Original) The electronic metal detector as in claim 2 wherein the transmit electronics is adapted to effect a ramp voltage which is approximately proportional to the integral of the switched voltage component.

7. (Original) The electronic metal detector as in claim 2 wherein the transmit electronics is adapted to effect a ramp current which is approximately proportional to the integral of the switched voltage component.

8. (Original) The electronic metal detector as in claim 6 wherein the said switching voltage electronics includes power supply storage capacitors and wherein a forward transfer gain of the ramp voltage is controlled by a servo-loop which is adapted to maintain low constant current

flow to the switching voltage electronics, the storage capacitors being adapted to store charge, some of which charge will flow back and forth through the switching voltage electronics and transmit coil.

9. (Currently amended) A method of detection of metal for use in environments of varying magnetic permeability, the method including steps of:

transmitting an alternating magnetic field associated with a reactive transmit voltage from a transmit coil;

generating a transmit voltage signal with transmit electronics and applying the signal to the transmit coil, wherein the transmit electronics comprises a linear amplifier and switching voltage electronics, switching voltage electronics being adapted such that transmit voltage signal includes a switched voltage components including periods of at least two different switched voltages, a first switched voltage during a first period, and second switching voltage during a second period, the linear amplifier being adapted such that transmit voltage signal includes a component which changes approximately linearly in time during a third period which is within the said first period;

receiving with receive electronics adapted to receive a magnetic field signal;

processing received signals to produce an indicator output, wherein the receive electronics receives during at least the period during the third period;

selection of the transmit voltage signal such that the reactive transmit voltage is approximately constant during the third period for a selected range of transmit coil effective inductive component impedance,

wherein the switched voltage component includes a sequence of switched voltage periods selected such that Fourier components of this sequence contain at least two frequencies of substantial magnitude, the receive electronics being adapted to be responsive to and receive signals for processing at least the said at least two frequencies, further characterised in that generation of a search signal wherein a ratio of reactive transmit voltages at each of said at least two frequencies is substantially constant for the said selected range of transmit coil effective inductive component impedance.

10. (Original) The method of detection of metal as in claim 9 wherein the search signal is selected such that the reactive transmit voltage is approximately constant for at least a time period during which a magnetic field signal returned from a search environment is being received.

11. (Original) A method of detection of metal for use in environments of varying magnetic permeability, including the use of an electronic metal detector as claimed in claim 1.

12. (cancelled)

13. (cancelled)