Line Tracer 06

- PWM & DC Motor -

This lecture is based on

- DC Motors

1. PWM

PWM Principle

We want to adjust the brightness of the LED

- 0V means 0% brightness
- 5V means 100% brightness
- 0.05V means 1% brightness?
 - -> No. Circuit would consider 0.05V as 0V
 We need a way to convert a digital signal into an analog signal

PWM Principle

What is PWM

- Pulse Width Modulation
- Digital to Analog Converter

PWM Principle

PWM Example 1

```
while (1) {
    turn_on_led(LED_RED);
    Clock_Delay1ms(1);
    turn_off_led();
    Clock_Delay1ms(9);
}
```

PWM Freq: 100Hz

Duty Cycle: 10%

```
while (1) {
    turn_on_led(LED_RED);
    Clock_Delay1ms(9);
    turn_off_led();
    Clock_Delay1ms(1);
}
```

PWM Freq: 100Hz

Duty Cycle: 90%

PWM Example 2

```
int delay = 1;
while (1) {
    if (delay >= 10000) delay = 1;

    turn_on_led(LED_RED);
    Clock_Delay1us(10000-delay);
    turn_off_led();
    Clock_Delay1us(delay);

    delay += 100;
}
```

100% brightness -> 0% brightness for every second

Actual Voltage Change

How We See

2. Motor

Motor Port Map

LaunchPad	TI-RSLK chassis board	DRV8838	Description	
P5.5	DIRR	PH	Right Motor Direction	
P3.6	nSLPR	nSLEEP	Right Motor Sleep	
P2.6	PWMR	EN	Right Motor PWM	
P5.4	DIRL	PH	Left Motor Direction	
P3.7	nSLPL	nSLEEP	Left Motor Sleep	
P2.7	PWML	EN	Left Motor PWM	

PH	EN	nSleep	Motor
0	0	1	Stop
1	0	1	Stop
0	1	1	Forward
1	1	1	Back

Motor Initialization

```
void motor init(void) {
   P3->SEL0 &= ~0xC0;
   P3->SEL1 &= ~0xC0; // 1) configure nSLPR & nSLPL as GPIO
   P3->DIR = 0xC0; // 2) make nSLPR & nSLPL as output
   P3->OUT &= ~0xC0; // 3) output LOW
   P5->SEL0 \&= \sim 0x30;
   P5->SEL1 &= ~0x30; // 1) configure DIRR & DIRL as GPIO
   P5->DIR = 0x30; // 2) make DIRR & DIRL as output
   P5->OUT &= ~0x30; // 3) output LOW
   P2->SEL0 \&= \sim 0xC0;
   P2->SEL1 &= ~0xC0; // 1) configure PWMR & PWML as GPIO
   P2->DIR = 0xC0; // 2) make PWMR & PWML as output
   P2->OUT &= \sim 0xC0; // 3) output LOW
```

Motor Example

You should turn on the power!

Motor Speed Control Example

```
// 0 < speed < 10000
int speed = 1000;
while (1) {
    // PWM High
    P5->OUT &= ~0x30;
    P2->OUT \mid = 0xC0;
    P3 \rightarrow OUT \mid = 0xC0;
    Clock_Delay1us(speed);
    // PWM Low
    P2->OUT &= \sim 0xC0;
    Clock Delay1us(10000-speed);
```

3. Motor Activity

Stop at finish line(Not Assignment)

