第9章 多元函数微分法及其应用

9.1 多元函数的基本概念

- 1. 设函数 $f(x,y) = (x+y)^{x-y}$, 则函数 $f(x+y,y) = _____.$
- 2. $\forall f(x+y,x-y) = x^2 y^2 + \varphi(x+y)$, f(x,0) = x, $\forall f(x,y) = \underline{\hspace{1cm}}$
- 3. 函数 $z = \ln(y^2 2x + 1)$ 的定义域为______.
- 4. 函数 $z = \sqrt{x \sqrt{y}}$ 的定义域为_____.
- 5. 函数 $f(x,y) = \frac{\sqrt{4x-y^2}}{\ln(1-x^2-y^2)}$ 的定义域为______.
- 6. 极限 $\lim_{\substack{x \to 1 \\ y \to 2}} \frac{x + y}{xy} =$ ().
 - A. A. $\frac{3}{2}$ B. $-\frac{3}{2}$ C. 1 D. $\ln 2$

- 7.极限 $\lim_{x\to 0} \frac{1-xy}{x^2+y^2} =$ ().

- A. -1 B. 1 C. $\frac{3}{2}$ D. $-\frac{3}{2}$
- 8.极限 $\lim_{x\to 0} (1+xy)^{\frac{1}{x}} = ($).
- A. $-\ln 2$ B. 1 C. $-\frac{1}{4}$ D. $\frac{3}{2}$

- 9.极限 $\lim_{x\to 0} \frac{2-\sqrt{xy+4}}{xy} =$ ().
 - A. $\ln 2$ B. $\frac{3}{2}$
- C. 0 D. $-\frac{1}{4}$
- $10.极限 \lim_{x \to 2 \atop x \to 2} \frac{\tan(xy)}{y} = () .$
- A. 2 B. -1 C. $-\frac{1}{4}$ D. $\frac{3}{2}$
- 11. 极限 $\lim_{x\to 0} (x^2 + y^2) \sin \frac{1}{x^2 + y^2} = ($).

 - A. 0 B. $-\frac{1}{4}$ C. 2
- D. −1

第9章 多元函数微分法及其应用

12. 极限
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{1-\cos(xy)}{x^2y} =$$
 ().

- A. 0 B. $-\frac{1}{4}$ C. $\frac{1}{2}$ D. -1

9.2 偏导数

- 1. 已知理想气体的状态方程 pV = RT (R 为常数),求 $\frac{\partial p}{\partial V} =$ ().
 - A. $-\frac{RT}{V^2}$ B. $\frac{R}{R}$ C. $\frac{V}{R}$ D. -1

- 2. 函数 $z = x^2 + 3xy + y^2$ 在点(1,2)处的偏导数 $\frac{\partial z}{\partial x} =$ ______.
- 3. 函数 $z = x^2 + 3xy + y^2$ 在点(1,2)处的偏导数 $\frac{\partial z}{\partial y} =$ ______.
- 4.函数 $f(x,y) = x + (y-1)\arcsin\sqrt{\frac{x}{y}}$,则 $f_x(x,1) =$ ______.

7. 设 $u = x \ln(xy)$, 求二阶偏导数.

9.3 全微分

1. 函数 f(x,y) 在点(x,y) 可微分是 f(x,y) 在该点连续的 () 条件.

A.必要

- B. 充分
- C. 充要
- D. 无关

2. 函数 z = f(x,y) 在点(x,y)的偏导数 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial z}{\partial y}$ 存在是 f(x,y) 在该点可微分的 () 条件.

A.必要

- B. 充分
- C. 充要
- D. 无关

3. 函数 z = f(x,y) 在点(x,y)的偏导数 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial z}{\partial y}$ 存在且连续是 f(x,y) 在该点可微分的 () 条件.

A.必要

- B. 充分
- C. 充要
- D. 无关

4. 函数 $z = \frac{y}{x}$, 当 x = 2, y = 1, dx = 0.1, dy = -0.2 时的全微分 dz =______.

5. 函数 $z = \frac{y}{x}$, 当 x = 2, y = 1, dx = 0.1, dy = -0.2 时的全增量 $\Delta z =$ ______.

6. 函数 $z = e^{xy}$ 在点(2,1)处的全微分 $dz \Big|_{(2,1)} =$ ______.

7. 函数 $z = x^2 + 3xy^2$ 的全微分 dz =______.

8. 函数 $u = x + \sin \frac{y}{2} + e^{yz}$ 的全微分 du =______.

A.-2 和 2

- B. 2 和-2
- C.-3 和 3
- D. 3 和-3

9.4 多元复合函数的求导法则

第9章 多元函数微分法及其应用

6. 设
$$z = e^u \sin v$$
, 而 $u = xy$, $v = x + y$, 求 $\frac{\partial z}{\partial y}$.

7. 设
$$z = uv + sint$$
, 而 $u = e^t$, $v = cost$, 求 $\frac{dz}{dt}$.

8. 设
$$z = \arctan(xy)$$
,而 $y = e^x$,求 $\frac{dz}{dx}$.

9.5 隐函数的求导公式

1. 已知方程 $x^2 + y^2 - 1 = 0$ 在点(0,1)的某邻域内能唯一确定一个单值可导且x = 0时

$$y=1$$
 的隐函数 $y=f(x)$, 求这函数的一阶导数在 $x=0$ 的值 $\frac{dy}{dx}\Big|_{x=0}$.

3. 己知
$$\ln \sqrt{x^2 + y^2} = \arctan \frac{y}{x}$$
, 求 $\frac{dy}{dx}$.

6. 设
$$e^z - xyz = 0$$
, 求 $\frac{\partial z}{\partial x}$.

9.6 多元函数微分学的几何应用

1. 曲线
$$\begin{cases} x = t - \sin t \\ y = 1 - \cos t \, \text{在点}\left(\frac{\pi}{2} - 1, 1, 2\sqrt{2}\right) \text{处的切线方程是} \end{cases}$$

$$z = 4\sin\frac{t}{2}$$

A.
$$\frac{x - \frac{\pi}{2} + 1}{1} = \frac{y - 1}{1} = \frac{z - 2\sqrt{2}}{\sqrt{2}}$$

B.
$$x + y + \sqrt{2}z - \frac{\pi}{2} - 4 = 0$$

C.
$$\frac{x-1}{\frac{\pi}{2}-1} = \frac{y-1}{1} = \frac{z-\sqrt{2}}{2\sqrt{2}}$$

D.
$$x + y + \sqrt{2}z - 4 = 0$$

- 2. 曲线 $x = t, y = t^2, z = t^3$ 在点(1,1,1)处的切线方程为().
 - A. x + 2y + 3z 6 = 0

B. $\frac{x+1}{1} = \frac{y+1}{2} = \frac{z+1}{2}$

C. $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-1}{2}$

- D. $\frac{x-1}{1} = \frac{y-2}{1} = \frac{z-3}{1}$
- 3. 曲线 $x = t, y = t^2, z = t^3$ 在点(1,1,1) 处的法平面方程为().
 - A. x + 2v + 3z 6 = 0

B. $\frac{x+1}{1} = \frac{y+1}{2} = \frac{z+1}{2}$

C. $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-1}{2}$

- D. $\frac{x-1}{1} = \frac{y-2}{1} = \frac{z-3}{1}$
- 4. 曲面 xyz = 6 在点(1,2,3) 处的切平面方程是().
 - A. 6x + 3y 2y + 1 = 0

B. $\frac{x-1}{6} = \frac{y-2}{2} = \frac{z-3}{2}$

C. 6x + 3y + 2z - 18 = 0

- D. $\frac{x-6}{1} = \frac{y-3}{2} = \frac{z-2}{3}$
- 5. 曲面 $e^z z + xy = 3$ 在点(2,1,0)处的切平面方程是().
 - A. $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{0}$

B. x + 2v + z - 4 = 0

C. $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z}{0}$

- D. x + 2y 4 = 0
- 6. 曲面 $e^z z + xy = 3$ 在点(2,1,0)处的法线方程是(
 - A. $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{0}$

B. x + 2y + z - 4 = 0

C. $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z}{0}$

- D. x + 2v 4 = 0
- 7. 旋转抛物面 $z = x^2 + y^2 1$ 在点(2,1,4)处切平面的一般方程为(
 - A. 4(x-2)+2(y-1)+(z-4)=0 B. $\frac{x-2}{4}=\frac{y-1}{2}=\frac{z-4}{1}$

C. 4x + 2y - z - 6 = 0

- D. 2x + v + 4z 6 = 0
- 8. 旋转抛物面 $z = x^2 + y^2 1$ 在点(2,1,4)处法线方程为(
 - A. 4(x-2)+2(y-1)+(z-4)=0 B. $\frac{x+2}{4}=\frac{y+1}{2}=\frac{z+4}{1}$

C. $\frac{x-2}{4} = \frac{y-1}{2} = \frac{z-4}{-1}$

D. $\frac{x-4}{2} = \frac{y-2}{1} = \frac{z+1}{4}$

9.7 方向导数与梯度

1. 函数 $z = x^2 + y^2$ 在点(1,2)处沿从点(1,2)到点(2,2+ $\sqrt{3}$)方向的方向导数为(

	A. 2	B. 4	C. $2\sqrt{3} + 1$	D. $4\sqrt{3} + 2$	
2.	函数 $z = xe^{xy}$ ā	左点(-3,0)处沿从点(-3,0)到点(-1,3)方向的方	向导数为().	
	A. 1	В. 9	C. $\frac{29}{\sqrt{13}}$	D. 29	
3.	函数 $u = xy + y$	z+zx在点(1,1,2)处沿方向	向角分别为60°、60°、6	60°方向的方向导数为().
	A. 2	B. 4	C. 5	D. $\frac{98}{13}$	
4.	函数 $u = xyz$	连点 $(5,1,2)$ 处沿 $\vec{l}=(4,3,12)$	2)的方向导数为().	
	A. 2	В. 10	C. 5	D. $\frac{98}{13}$	
5.	某金属板上的	电压分布为 $V = 50 - 2x^2 -$	4y²,在点(1,-2)处沿	\vec{l} 方向电压生得最快,则 \vec{l} = ().
	A. $-4\vec{i} + 16\vec{j}$	\vec{j} B. $-2\vec{i} + 4\vec{j}$	C. $4\vec{i} - 16\vec{j}$	D. $2\vec{i} - 4\vec{j}$	
6.	设 $f(x,y) = x^3$	$y-\sin x$,则在点 $(0,1)$ 处	的梯度 $\operatorname{grad} f(0,1) = 0$	().	
	A. $(0,0)$	В. (3,1)	C. $(0,1)$	D. $(-1,0)$	
7.	函数 $f(x,y)$ =	$x^2 - 2xy + y^3$ 在点(2,1)处日	的最大方向导数为		
8.	设 $f(x,y,z)=$	$x^2 + 2y^2 + 3z^2 + xy + 3x - 2y$	$y-6z$, \bigcirc y $gradf(0,0,0)$)=	
		9.8 多元	函数的极值及其	乖陆	
1.	函数 $f(x,y)=$	$4(x-y)-x^2-y^2$ 的驻点为	J ().		
	A. $(0,0)$	B. (3,1)	C. $(2,2)$	D. $(2,-2)$	
2.	函数 $z = x^3 - y$	$x^3 + 3x^2 + 3y^2 - 9x$ 的极小值	i点为().		
	A. $(1,0)$	B. (1,2)	C. (-3.0)	D. (-3,2)	
3.	函数 $z = x^3 - y$	$x^3 + 3x^2 + 3y^2 - 9x$ 的极大值	i点为().		

C. -3 D. -5

A. (1,0) B. (1,2) C. (-3,0) D. (-3,2)

4. 函数 $z = x^3 + y^3 - 3xy$ 的极小值为 ().

B**.** −1

A. 0

- 5. 函数 $z = 4xy x^4 y^4$ 的极大值为 ().
 - A. 0
- B. 1
- C. 2
- D. 3

6. 求函数 $f(x,y) = e^{2x}(x+y^2+2y)$ 的极值.

7. 函数 $f(x,y) = (x^2-1)^2 + y^2$ 的极值.

8. 某工厂要制一个体积 $2 \, \mathrm{m}^3$ 的有盖的长方体水箱,问长、宽、高各取多少尺寸,可使用料最省?最省为多少?

	1 2 2 221/2021 1- 2212 1/- 211
9.	求半径为 R 的球内接长方体的最大体积.

10. 在直线x+y=2上求一点,使得该点到原点的距离最短.

11.从斜边之长为1的一切直角三角形中,求有最大周长的直角三角形.

第9章 多元函数微分法及其应用 12. 求过点(2,3,6)的平面 π,其在三个坐标轴上的截距都是正数,且与三个坐标面所围成四面积为最小,并求最小四面体的体积.	ī 体的体
13. 设生产某种产品的数量与所用两种原料 A 、 B 的数量 x 、 y 间有关系式 $P(x,y) = 0.005 x^2 y$. A	次用 150
元购料,已知 A、B 原料的单价分别为 1 元、2 元,问购进两种原料各多少,可使生产的产品多?	□数量最