# Pre-Lab 10: Characterization of the MOSFET

Name: Wan-Yu Liao

ECEN 325 Section 514

TA: Mandela

Date: November 7, 2019

### **Simulations**

#### (1) NMOS using 2N7000G



**Figure 1:** Schematic for NMOS using 2N7000G ▲



Figure 2: Simulation of NMOS characterization circuit using DC sweep of V1 from 0 to 2.5V,



Figure 3: Excel plot of NMOS characterization circuit using DC sweep of V1 from 0 to 2.5V,

while V2 = 5V, where Id = (5-Vd)/1000



**Figure 4:** Excel plot of NMOS characterization of derivative of Id' vs. Vgs ▲

Threshold Voltage Vt = 2.23V

Transconductance parameter = (0.023218-0)/(2.5-2.23) = 0.086

#### (2) NMOS using CD4007N



Figure 5: Schematic for NMOS using CD4007N ( $\beta$ =102mA/V2, V<sub>TN</sub>=2.0V)  $\blacktriangle$ 



Figure 6: Simulation of NMOS characterization circuit using DC sweep of V1 from 0 to 2.5V,



Figure 7: Excel plot of NMOS characterization circuit using DC sweep of V1 from 0 to 2.5V,

while 
$$V2 = 5V$$
, where  $Id = (5-Vd)/1000 \blacktriangle$ 



Figure 8: Excel plot of NMOS characterization of derivative of Id' vs. Vgs  $\blacktriangle$  Threshold Voltage Vt = 2V

Transconductance parameter = (0.03009-0)/(2.3-2) = 0.1003

## (3) PMOS using CD4007P



**Figure 9:** Schematic for PMOS using CD4007P ( $\beta$ =102mA/V2, V<sub>TN</sub>=2.0V)  $\blacktriangle$ 



Figure 10: Simulation of PMOS characterization circuit using DC sweep of V1 from -2.5 to 0V,





Figure 11: Excel plot of PMOS characterization circuit using DC sweep of V1 from -2.5 to 0V,

while 
$$V2 = -5V$$
, where  $Id = (Vd+5)/1000 \blacktriangle$ 



Figure 12: Excel plot of PMOS characterization of derivative of Id' vs. Vgs  $\blacktriangle$  Threshold Voltage Vt = 2.01V

Transconductance parameter = (0.03009-0)/(2.3-2.01) = 0.1037