Machine Learning para Inteligencia Artificial

Gaussian Naive Bayes

Universidad ORT Uruguay

11 de Junio, 2025

Modelo Discriminativo

El modelo intenta aprender $p(y \mid x)$

Modelo Generativo

El modelo intenta aprender p(x, y)Podemos deducir $p(y \mid x)$ y $p(x \mid y)$

 $p(y|\mathbf{x})$

 $p(\mathbf{x}, y) = p(y|\mathbf{x}) \ p(\mathbf{x})$

 $p(blue|\mathbf{x})$ is high and $p(\mathbf{x})$ is low = uncertain decision!

Fórmula de Bayes

En aprendizaje supervisado se usa Bayes de la siguiente forma:

$$p(\mathsf{target} \mid \mathsf{feature}) = \frac{p(\mathsf{feature} \mid \mathsf{target}) \cdot p(\mathsf{target})}{p(\mathsf{feature})}$$

■ En clasificación con $\{c_1, \ldots, c_m\}$ clases, concretamente queda:

Dado el input
$$x \rightsquigarrow p(y = c_i \mid x) = \frac{p(x \mid y = c_i)p(y = c_i)}{p(x)}$$

 \blacksquare La marginal de x se puede calcular usando probabilidad total:

$$p(x) = \sum_{i=1}^{m} p(x \mid y = c_i) p(y = c_i)$$

Prior - Likelihood - Posterior

Basta considerar las siguiente probabilidades:

Class Prior: $p(y = c_i)$

Probabilidad a priori de la clase c_i , antes de observar las features x.

■ Feature Likelihood: $p(x \mid y = c_i)$

Verosimilitud (credibilidad) de las features x dado que la clase es c_i .

■ Class Posterior: $p(y = c_i \mid x)$

Probabilidad a posteriori de que la clase sea c_i si observamos las features x.

Naive Bayes

Dado un conjunto de datos de entrenamiento $T = \{(x, y)\}$

Class Prior: se estima contando

$$p(y = c_i) = \frac{\#\{(x, y) \in T : y = c_i\}}{\#T} = \frac{N_i}{N}$$

Naive Assumption: las features son condicionalmente independientes dada una clase:

$$p(x \mid y = c_i) = p(x^{(1)}, ..., x^{(D)} \mid y = c_i) = \prod_{k=1}^{D} p(x^{(k)} \mid y = c_i)$$

Según sea el caso $p(x^{(k)} | y = c_i)$ puede modelarse de diferentes maneras.

Gaussian Naive Bayes

- Se asume que la likelihood de las features es Gaussiana (normal).
- Los parámetros de la Gaussiana para cada clase c_i y se estiman mediante máxima verosimilitud:
 - \blacksquare Media (μ): $\hat{\mu}_{ki} = \frac{1}{N_i} \sum_{(\boldsymbol{x}, y): y = c_i} x^{(k)}$
 - Varianza (σ^2) : $\hat{\sigma}_{ki}^2 = \frac{1}{N_i} \sum_{(\mathbf{x},y):y=c_i} (x^{(k)} \hat{\mu}_i)^2$
- Recordar que la función de densidad de la Gaussiana es:

$$p(x \mid y = c_i) = \frac{1}{\sqrt{2\pi\sigma_{ki}^2}} \exp\left(-\frac{(x - \mu_{ki})^2}{2\sigma_{ki}^2}\right)$$

donde μ_{ki} y σ_{ki}^2 son la media y varianza de la feature k para la clase c_i .