CSE422 Problem Set: Logistic Regression

Instructor: Ipshita Bonhi Upoma

Part 1: Mathematical Basics

The parameters of the hypothesis function, in logistic regression are updated in gradient descent algorithm as,

$$w_j = w_j + \alpha \frac{\partial Loss}{\partial w_i} \tag{1}$$

Calculate $\alpha \frac{\partial Loss}{\partial w_i}$ for,

1. Loss-function is of the MSE form,

$$\mathbf{Loss} = \sum_{i}^{m} (h(x^{(i)}) - y^{(i)})^{2}$$
 (2)

2. Loss function is of the Binary-Cross Entropy form,

$$\mathbf{Loss} = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log(h(x^{(i)}) + (1 - y^{(i)}) \log(1 - h(x^{(i)})) \right]$$
(3)

where:

- m is the number of training examples.
- $y^{(i)}$ is the actual class label of the *i*-th training example, which can be 0 or 1.
- $h(x^{(i)})$ is the predicted probability that the *i*-th training example belongs to the class with label 1, calculated as $h(x^{(i)}) = \sigma(z)$, where σ is the sigmoid function, $z = \mathbf{W} \cdot \mathbf{X} + b$ and b is the bias.

Part 2: Simulation on Datasets

Task: Simulate the gradient descent algorithm for logistic regression, performing up to two iterations. Instructions:

- Initial Parameters: Set all model parameters to an initial value of 1.
- Learning Rate: Use the learning rate $\alpha = \frac{1000}{1000+t}$ where, t is the iteration number.
- Loss Function: Employ the binary cross-entropy loss function to measure the model's performance.

Dataset 1: Email Spam Classification This dataset is used to classify emails as spam or not spam based on keyword frequency and email length.

Keyword Frequency (%)	Email Length (1000s of characters)	Spam (1) or Not Spam (0)
20	2	1
5	3	0
30	1	1
7	2	0
25	1	1
3	4	0
15	1.5	1
4	3.5	0

Table 1: Dataset for classifying emails as spam or not spam.

Dataset 2: University Admission Prediction This dataset predicts whether a student will be admitted to a university based on their GRE score and GPA.

GRE Score (out of 340)	GPA (out of 4.0)	Admitted (1) or Not Admitted (0)
330	3.9	1
315	3.5	1
300	3.2	0
320	3.8	1
310	3.0	0
305	3.3	0
325	3.7	1
318	3.6	1

Table 2: Dataset for predicting university admissions.

Dataset 3: Loan Default Prediction This dataset predicts whether a borrower will default on a loan based on their annual income and loan amount.

Annual Income (\$1000s)	Loan Amount (\$1000s)	Default (1) or Not Default (0)
45	15	0
85	20	0
50	30	1
60	22	0
30	25	1
100	35	0
40	18	1
75	28	0

Table 3: Dataset for predicting loan defaults.

Part 3: Find out the answers to these conceptual questions.

- 1. What is a decision boundary in logistic regression? Discuss how different parameter values can affect the position and shape of the decision boundary.
- 2. Why is it better to use binary-cross entropy as a loss-function instead of the mean squared error used in linear regression?
- 3. In logistic regression, how are the outputs of the model interpreted as probabilities?
- 4. Describe the role of the sigmoid function in logistic regression. Why is it used instead of a linear function?
- 5. What is logistic regression and in what type of machine learning problems is it most appropriately used? Explain how it differs from linear regression.