Laboratorium 03 - Interpolacja

Dawid Żak

Szymon Hołysz

2025-03-25

Table of contents

A. Macierz Vandermonde'a	. 2
B. Współczynnik uwarunkowania	. 2
C. Interpolacja	. 3
D. Ekstrapolacja	. 3
E. Wielomian interpolachyjny Lagrange'a	. 4
F. Wielomian interpolacyjny Newtona	
G. Wariant interpolacji z zaokrągleniem	. 5
Wnioski	. 8

Populacja Stanów Zjednoczonych na przestrzeni lat przedstawiała się następująco:

	Rok	Populacja
0	1900	76_212_168
1	1910	92_228_496
2	1920	106_021_537
3	1930	123_202_624
4	1940	132_164_569
5	1950	151_325_798
6	1960	179_323_175
7	1970	203_302_031
8	1980	226_542_199

Istnieje dokładnie jeden wielomian ósmego stopnia, który interpoluje po- wyższe dziewięć punktów, natomiast sam wielomian może być reprezentowa- ny na różne sposoby. Rozważamy następujące zbiory funkcji bazowych $\phi_j(t), j=1,...,9$

$$0. \qquad \phi_j(t) = t^{j-1}$$

2.
$$\phi_j(t) = (t - 1900)^{j-1}$$

3.
$$\phi_j(t) = (t - 1940)^{j-1}$$

4.
$$\phi_j(t) = \left(\frac{t - 1940}{40}\right)^{j-1}$$

A. Macierz Vandermonde'a

Dla każdego z czterech zbiorów funkcji bazowych utwórz macierz Vandermonde'a.

B. Współczynnik uwarunkowania

Oblicz współczynnik uwarunkowania każdej z powyższch macierzy.

Najlepiej uwarunkowana okazała się funkcja bazowa nr. 4, która daje najmniejsze współczynniki uwarunkowania macierzy Vandermonde'a.

phil: 3.9828e+36
phi2: 6.3065e+15
phi3: 9.3155e+12
phi4: 1.6054e+03
The index of the function with the lowest condition number is: 4

Poniżej znajduje się jej macierz Vandermonde'a:

	0	1	2	3	4	5	6	7	8
0	1.0	-1.00	1.0000	-1.000000	1.000000	-1.000000	1.000000	-1.000000	1.000000
1	1.0	-0.75	0.5625	-0.421875	0.316406	-0.237305	0.177979	-0.133484	0.100113
2	1.0	-0.50	0.2500	-0.125000	0.062500	-0.031250	0.015625	-0.007812	0.003906
3	1.0	-0.25	0.0625	-0.015625	0.003906	-0.000977	0.000244	-0.000061	0.000015
4	1.0	0.00	0.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
5	1.0	0.25	0.0625	0.015625	0.003906	0.000977	0.000244	0.000061	0.000015
6	1.0	0.50	0.2500	0.125000	0.062500	0.031250	0.015625	0.007812	0.003906
7	1.0	0.75	0.5625	0.421875	0.316406	0.237305	0.177979	0.133484	0.100113
8	1.0	1.00	1.0000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

Następnie wyliczamy współczynniki uwarunkowania macierzy dla tej, która jest najlepiej uwarunkowana:

C. Interpolacja

Używając najlepiej uwarunkowanej bazy wielomianów, znajdź współczynniki wielomianu interpolacyjnego dla danych z zadania. Narysuj wielomian interpolacyjny. W tym celu użyj schematu Hornera i oblicz na przedziale [1900,1990] wartości wielomianu w odstępach jednorocznych. Na wykresie umieść także węzły interpolacji.

Poniżej znajduje się wykres przedstawiającu wartości przewidziane przez wielomian oraz wartości rzeczywiste:

D. Ekstrapolacja

Dokonaj ekstrapolacji wielomianu do roku 1990. Porównaj otrzymaną wartość z prawdziwą wartością dla roku 1990, wynoszącą 248 709 873. Ile wynosi błąd względny ekstrapolacji dla roku 1990?

Przewidziana populacja w roku 1990: 8.2749e+07 Realna wartość populacji w roku 1990: 2.4871e+08 Błąd względny: 0.67

Jak możemy zauważyć, wartości przewidziane przez wielomian dla roku 1990 są bardzo różne od wartości rzeczywistych.

E. Wielomian interpolachyjny Lagrange'a

Wyznacz wielomian interpolacyjny Lagrange'a na podstawie 9 węzłów interpolacji podanych w zadaniu. Oblicz wartości wielomianu w odstępach jednorocznych.

F. Wielomian interpolacyjny Newtona

Wyznacz wielomian interpolacyjny Newtona na podstawie tych samych węzłów interpolacji i oblicz wartości wielomianu w odstępach jednorocznych.

G. Wariant interpolacji z zaokrągleniem

Zaokrąglij dane podane w tabeli do jednego miliona. Na podstawie takich danych wyznacz wielomian interpolacyjny ósmego stopnia, używając najlepiej uwarunkowanej bazy z podpunktu (c). Porównaj wyznaczone współczynniki z współczynnikami obliczonymi w podpunkcie (c). Wyjaśnij otrzymany wynik. Ile wynosi błąd względny ekstrapolacji dla roku 1990 obliczony przy pomocy tak wyznaczonego wielomianu interpolacyjnego?

Poniżej znajduje się tablica z zaokrąglonymi wartościami do 1 000 000:

	Rok	Populacja
0	1900	76000000
1	1910	92000000
2	1920	106000000
3	1930	123000000
4	1940	132000000
5	1950	151000000
6	1960	179000000
7	1970	203000000

Rok Populacja 8 1980 227000000

Wartości uwarunkowania dla różnych zbiorów funkcji bazowych:

```
phi1: 3.9828e+36
phi2: 6.3065e+15
phi3: 9.3155e+12
phi4: 1.6054e+03
The index of the function with the lowest condition number is: 4
```

Przyjmują one prawie identyczne wartości, co te wyliczone z nie zaokrąglonymi wartościami.

	0	1	2	3	4	5	6	7	8
0	1.0	-1.00	1.0000	-1.000000	1.000000	-1.000000	1.000000	-1.000000	1.000000
1	1.0	-0.75	0.5625	-0.421875	0.316406	-0.237305	0.177979	-0.133484	0.100113
2	1.0	-0.50	0.2500	-0.125000	0.062500	-0.031250	0.015625	-0.007812	0.003906
3	1.0	-0.25	0.0625	-0.015625	0.003906	-0.000977	0.000244	-0.000061	0.000015
4	1.0	0.00	0.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
5	1.0	0.25	0.0625	0.015625	0.003906	0.000977	0.000244	0.000061	0.000015
6	1.0	0.50	0.2500	0.125000	0.062500	0.031250	0.015625	0.007812	0.003906
7	1.0	0.75	0.5625	0.421875	0.316406	0.237305	0.177979	0.133484	0.100113
8	1.0	1.00	1.0000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

Wartości współczynników dla najlepiej uwarunkowanej macierzy:

Poniżej znajduje się wykres przedstawiającu wartości przewidziane przez wielomian oraz wartości rzeczywiste:

Współczynniki zaokrąglone i nie zaokrąglone, przymują różne, lecz nie drastycznie wartości.

	Original Coefficients	Rounded Coefficients
0	1.321646e+08	1.320000e+08
1	4.613077e+07	4.595714e+07
2	1.027163e+08	1.001413e+08
3	1.825271e+08	1.811111e+08
4	-3.746147e+08	-3.567556e+08
5	-3.426685e+08	-3.384889e+08
6	6.062912e+08	5.703111e+08
7	1.891756e+08	1.869206e+08
8	-3.151802e+08	-2.941968e+08

Przewidziana wartość populacji dla roku 1990:

Przewidziana populacja w roku 1990: 1.0900e+08 Realna wartość populacji w roku 1990: 2.4871e+08

Błąd względny: 0.56

Wartość jest obarczona istotnie mniejszym błędem od wartości obliczonej bez zaokrąglania, jednak błąd względny jest nadal na tyle duży, że wynik ekstrapolacji nie jest użyteczny.

Wnioski

- Znalezienie odpowiedniej, dobrze uwarunkowanej bazy wielomianów jest kluczowe do stworzenia dobrej interpolacji.
- Interpolacja dla wszystkich 4 metod wykazała podobne poziomy zgodności dla wartości między podanymi punktami, różnice były pomijalne.
- Powyższe metody nie pozwalają na ekstrapolacje danych, gdyż błędy względne dla wartości spoza przedziału zawierającego węzły interpolacji są zbyt duże.
- Zaokrąglenie wartości pozwala uzyskać mniejszy błąd przy ekstrapolacji, mimo w przybliżeniu równego współczynnika uwarunkowania.