D-60438, Frankfurt am Main, Germany

Max-von-Laue-Straße 1

2014

ш

ш

5

LINAC14

ERENCE,

R CONFI

LINEAR ACCE

 $p_c \, [\mathrm{kW/m}]$

 $Z_a [M\Omega/m]$

24,18

22,18

Transition section

R&D of the 17 MeV MYRRHA Injector*

D. Mäder, M. Basten, D. Koser, H. C. Lenz, N. F. Petry, H. Podlech, A. Schempp, M. Schwarz, M. Vossberg IAP, Goethe Universität Frankfurt am Main, Germany C. Zhang, GSI Helmholtzzentrum, Darmstadt, Germany * Project supported by the EU, FP7 MAX, Contract No. 269565

Beam Dynamics Design

Transversal Beam Envelopes

Energy Gain & Voltage Distribution

Longitudinal Beam Envelopes

Emittances

	2012 ref. design	2014 ref. design
٤ _{n,x,rms,in}	0,220 mm mrad	0,206 mm mrad
ε _{n,x,rms,out}	0,279 mm mrad	0,247 mm mrad
ε _{n,y,rms,in}	0,216 mm mrad	0,210 mm mrad
ε _{n,y,rms,out}	0,272 mm mrad	0,247 mm mrad
ε _{n,z,rms,in}	1,007 ns keV	0,639 ns keV
ε _{n,z,rms,out}	1,390 ns keV	0,707 ns keV

Proton Beam Output Distributions

200

-200

SC CH section

x/mm

CH8 CH9 CH10 CH11 CH12

838,69

968,90

0,164

306,67

50

566

33836

919,82

1043,15

0,180

315,17

50

569

34583

738,01

0,145

296,09

50

570

33464

new reference design (2012)

Room Temperature Cavities

CH7

329,82

959,32

30

CH7

0,1012

0,1065

0,1113

1,109

1,156

18096

21,83

22,76

59,30

61,81

26,77

27,07

57,35

65,06

28,25

21,90

48,38

26,60

36,18

26,96

31,11

56,91

Surface Current Density of CH 5

CH Prototype Cavity

Superconducting CH Structures

 $L_{\beta\lambda-def.}$ [mm]

L [mm]

 β_{design}

R [mm]

 N_{Spalte}

 $a \mid mm \mid$

 $R_a/Q_0 \ [\Omega]$

 $R_a R_S \left[\Omega^2\right]$

293,87

444,89

0,115

330,00

40

19219

533,47

0,127

293,49

684,32 | 875,95

L J					
Parameter	CH8	СН9	CH10	CH11	CH12
β_{eing} .	0,1113	0,1190	0,1342	0,1542	0,1734
$\beta_{ausg.}$	0,1190	0,1342	0,1542	0,1734	0,1893
$\phi_{s,mittel}$ [°]	-29,5	-20,4	-19,7	-19,0	-29,4
f [MHz]	176,1	176,1	176,1	176,1	176,1
U_a [MV]	0,97	2,0	3,0	3,3	3,3
$E_a [\mathrm{MV/m}]$	3,301	3,749	4,065	3,935	3,588
E_p/E_a	5,38	5,36	5,94	5,34	5,82
B_p/E_a	7,78	10,14	12,61	14,45	14,99
$R_SQ [\Omega]$	56	58	59	60	61

389

22524