

PROFMAT

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Números e Funções Reais — Avaliação 2

Prof. Adriano Barbosa 08/07/2022

1	
2	
3	
4	
5	
Nota	

	<i>,</i> ,																			
Aluno((a)	:	 																	

- 1. Um time de futebol joga num estádio com capacidade para 15.000 espectadores. Com o ingresso custando R\$15,00, a média de público nos jogos é de 10.000 pessoas. Uma pesquisa de mercado indicou que o público aumentaria em 1.000 pessoas em cada jogo para cada R\$ 1,00 diminuido no valor do ingresso. Qual deve ser o preço do ingresso para que o faturamenteo com a venda de ingressos seja o maior possível?
- 2. Dada a função quadrática $f(x) = ax^2 + bx + c$, consideremos as funções afins g(x) = mx + t, onde m é fixo e t será escolhido convenientemente. Prove que existe uma (única) escolha de t para a qual a equação f(x) = g(x) tem uma, e somente uma, raiz x.
- 3. Seja p(x) um polinômio cujo grau n é um número ímpar. Mostre que existem números reais x_1, x_2 tais que $p(x_1) > 0$ e $p(x_2) < 0$. Conclua daí que todo polinômio de grau ímpar admite pelo menos uma raiz real.
- 4. (a) Encontre uma expressão para sen(3x) como um polinômio de coeficientes inteiros em termos de sen x.
 - (b) Mostre que sen 10° é raiz de um polinômio com coeficientes inteiros.
- 5. Mostre que, para todo m > 0, a equação $\sqrt{x} + m = x$ tem exatamente uma raiz.
- 6. A grandeza y se exprime como $y=ba^t$ em função de t. Sejam d o acrescimo que se deve dar a t para que y dobre e m (meia-vida de y) o acrescimo de t necessário para que y se reduza à metade. Mostre que m=-d e $y=b2^{t/d}$, logo $d=\log_a 2=\frac{1}{\log_2 a}$.
- 7. A expressão $M(t)=200e^{-(t\ln 2)/30}$ dá a massa em gramas do césio 137 que restará de uma quantidade inicial após t anos de decaimento radionativo.
 - (a) Quantos gramas havia inicialmente?
 - (b) Quantos gramas permanecem depois de 10 anos? Use, caso necessário, $\frac{1}{\sqrt[3]{2}} \approx 0,794$.
 - (c) Quantos anos levará para reduzir pela metade a quantidade inicial de césio 137?
- 8. Se $\operatorname{tg} x + \sec x = \frac{3}{2}$, calcule $\operatorname{sen} x = \cos x$.