Grundlagen der Programmierung (Vorlesung 10)

Ralf Möller, FH-Wedel

- Vorige Vorlesung: Prädikatenlogik
- Inhalt dieser Vorlesung
 - Prädikatenlogik mit speziellen Theorien
 - I natürliche Zahlen, ganze Zahlen, reelle Zahlen
 - Elemente von Programmiersprachen:
 - Variablen, Felder
- Lernziele
 - Grundlagen der systematischen Programmentwicklung

Noch einmal: Funktionen

- In der Semantik der Prädikatenlogik:
 - Spezifikation von I_A durch: $f^A = \{ (x, y), (y, z), ... \}$
 - Schreibweise: f(x) = y (x heißt Argument oder Parameter, y heißt Wert)
- Extensionale Definition problematisch da Tupelmenge potentiell unendlich
- Daher: Angabe der Tupelmenge durch Prädikatenlogische Formel (Beispiel)
 - $f^{A} = \{ (x, y) | y = x + 2 \}$
 - Schreibweise: f(x) = x + 2

Prädikate als Boole'sche Funktionen

- Prädikatsnamen bezeichnen Mengen von Tupeln:
 - Struktur (U_A, . ^{I^A})
 - Beispiel: $U_A = \{u, v, w\}$
 - Beispiel: PA = { (u, v), (v, w) }
- Darstellung von Prädikaten als Funktionen:

 - P^A = { (u, v, 1), (v, w, 1), (u, w, 0), (u, u, 0), (v, v, 0), (v, u, 0), (w, u, 0), (w, v, 0), (w, w, 0) }

Prädikatenlogik für "Arithmetik"

- Festlegung des Universums der Struktur
- Definition von Prädikaten mit Hilfe von "eingebauten", vorausgesetzten Funktionen

Zahlen

 N_0 auch: N unsigned int, cardinal: natürliche Zahlen ab 0

 N_1 natürliche Zahlen ab 1

Z Intg, integer: ganze Zahlen

R real, float: reelle Zahlen

Operationen

auf natürlichen Zahlen

elementare Prädikate

$$=: N_0 \times N_0 \longrightarrow B$$

$$\neq$$
: $N_0 \times N_0 \longrightarrow B$

elementare Operationen

$$+1: N_0 \longrightarrow N_0$$

$$-1: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$$

Arithmetik

$$+: \mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0$$

$$-: \mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0$$

$$\cdot: \mathsf{N}_0 \times \mathsf{N}_0 \longrightarrow \mathsf{N}_0$$

$$div : N_0 \times N_0 \longrightarrow N_0$$

$$\mathsf{mod} : \mathsf{N}_0 \times \mathsf{N}_0 \longrightarrow \mathsf{N}_0$$

+, totale Funktionen

-,div,mod partielle Funktionen

Algebraische Axiome für +, *

- Einselemente
- Kommutativität
- Distributivität
- Assoziativität
-

Axiome ermöglichen Umformulierungen von Termen

Weitere "eingebaute" Prädikate

Vergleiche

 $\geq : \mathsf{N}_0 \times \mathsf{N}_0 \longrightarrow \mathsf{B}$

 $>: N_0 \times N_0 \longrightarrow B$

 \geq ,> totale Funktionen

Wie hängen die Funktionen und Prädikate zusammen?

- Festlegung der Eigenschaften durch sog. Axiome
- Aus den durch Axiome festgelegten Eigenschaften sind Folgerungen (⊨) möglich
- Menge von Axiomen heißt auch "Theorie"
- Ublich: Notation der Axiome als Formeln
- Zusammenhang zwischen "→" und " ⊨ "

Ungleichungen

Rechnen mit Ungleichungen i, j, k seien ganze Zahlen

Axiome:

$${
m transitiv}$$

$$i \le j \land j \le i \quad \Rightarrow \quad i = j$$

 $i < j \land j < k \rightarrow i < k$

$$i \le j \land 0 \le k \rightarrow i * k \le j * k$$

$$i < j \land j < k \rightarrow i < k$$

Weitere Axiome:

$$\neg(i < i)$$

$$\neg(i < j \land j < i)$$

$$i < j \rightarrow i + k < j + k$$

$$i < j \land 0 \le k \rightarrow i * k \le j * k$$

$$i < j \land 0 < k \rightarrow i * k < j * k$$

$$i < j \land 0 < k \rightarrow i * k < j * k$$

$$i < j \rightarrow i + 1 \le j$$

Noch einmal: Natürliche Zahlen

- Wir betrachten Strukturen $A = (U_A, I_A)$
- Ausgezeichnete Menge N (auch N_0 genannt) der natürlichen Zahlen einschließlich $O, N \subseteq U_A$
- Annahme: Prädikat N zum Test, ob ein Objekt $n \in U_A$ aus N ist

Vereinbarung von abkürzenden Schreibweisen

- Arr ∨ n Arr N . P(n) für \forall n (N(n) Arr P(n)) (dto. für Z)
- \forall a \Box n \Box b . P(n) für \forall n (((N(n) \Box (a \Box n)) \Box (n \Box b)) \Box P(n))
- $\forall x \square M . F(x)$

- $\exists n \square N . P(n) \text{ für } \exists n (N(n) \square P(n)) \text{ (dto. für } Z)$
- $\exists a \square n \square b . P(n) f \ddot{u}r \exists n (((N(n) \square (a \square n)) \square (n \square b)) \square P(n))$
- $\exists x \square M . F(x)$

Beispiel "alle Aldi-PCs sind schlecht gebaut" Aussage PCsGrundmenge elementare Prädikate vonAldi(x)qut(x)Formel mit All-Quantor $\forall pc \in PCs \bullet vonAldi(pc) \Rightarrow \neg gut(pc)$

"es gibt eine gerade Primzahl" Aussage Grundmenge N_0 elementare Prädikate gerade(x)prim(x)Formel mit Existenz-Quantor $\exists n \in \mathbb{N}_0 \bullet gerade(n) \land prim(n)$

Tautologien/Gesetze (1)

(1)
$$\forall i \in \{\} \bullet P(i) \iff \text{true}$$

$$\exists i \in \{\} \bullet P(i) \iff \mathsf{false}$$

$$\exists i \in M \bullet \neg P(i) \iff \neg \forall i \in M \bullet P(i)$$

$$\forall i \in M \bullet \neg P(i) \iff \neg \exists i \in M \bullet P(i)$$

Verallgemeinerung von de Morgan

$$(4) \qquad \forall i \in M \bullet P(i) \land j \in M \rightarrow P(j)$$

(5)
$$j \in M \land P(j) \rightarrow \exists i \in M \bullet P(i)$$

Tautologien/Gesetze (2)

Grundmenge	$i \in S$
Intervall	häufiger Sonderfall von Mengen: Intervall aus den ganzen Zahlen
Notation	$a \le i < b$
alternative Notation	für Formeln mit Quantoren
	$\forall a \leq i < b \bullet P(i)$ halb offenes Intervall $\forall a \leq i \leq b \bullet P(i)$ abgeschlossenes Intervall $\forall a \leq i \bullet P(i)$ unbeschränktes Intervall
Felder	$f: \operatorname{array} \ [0 \mathinner{\ldotp\ldotp} n-1] \ \ \operatorname{of} \ Element$
	f ist eine Variable zum Speichern einer ganzen Menge von Werten
Referenzierung	$f[i], f(i), f_i$ Zugriff auf i-te Element in f
Indexbereich	ein Intervall (hier $0 \le i < n$)

Beispiele	für Prädikate mit ∀-Quantoren
gegeben	zwei Felder a und b vom Typ array $[0n-1]$ of Z
Aufgabe	Wie sehen die zugehörigen Prädikate aus?
(1)	a ist eine exakte Kopie von b , alle Elemente sind gleich
(2)	Für alle i ist das i -te Element von a kleiner als das i -te Element von b
(3)	Jedes Element von a ist kleiner als jedes Element von b

(4)	Wenn die Elemente von a in aufsteigender Reihenfolge sortiert sind, so auch die Elemente von b
(5)	Alle Elemente von a sind untereinander verschieden
(6)	Jedes Element von a ist von jedem Element von b verschieden

Beispiele	für Prädikate mit \exists - und \forall -Quantoren
gegeben	zwei Felder a und b vom Typ array $[0n-1]$ of Z
Aufgabe	Wie sehen die zugehörigen Prädikate aus?
(1)	Einige Elemente von a sind ungleich 0
(2)	das Feld a ist nicht in aufsteigender Reihenfolge sortiert
(3)	mindestens ein Element von a ist größer als alle Elemente von b
(4)	Jedes Element von b ist eine Kopie eines Elements von a

(5)	b enthält alle Zahlen von 0 bis $n-1$ (eine Permutation aller Zahlen von 0 bis $n-1$)
(6)	b zeigt die numerische Ordnung von a an, d.h. $b[0]$ ist der Index auf das kleinste Element von a , $b[1]$ der Index auf das zweitkeinste Element usw.
(7)	Wenn alle Elemente in a paarweise verschieden sind, dann enthält b die Elemente von a in sortierter Reihenfolge
(8)	b enthält die Elemente von a in sortierter Reihenfolge

Negation	von Prädikaten mit Quantoren
${\bf Aussage}$	"alle Aldi-PCs sind schlecht gebaut"
Frage	Welche der folgenden Aussagen ist die Negation dieser Aussage
(1)	Alle nicht-Aldi-PCs sind gut gebaut
(2)	Alle Aldi-PCs sind gut gebaut
(3)	Einige Aldi-PCs sind gut gebaut
(4)	Einige Aldi-PCs sind schlecht gebaut
(5)	Einige nicht-Aldi-PCs sind schlecht gebaut
(6)	Einige nicht-Aldi-PCs sind gut gebaut

Algorithmen vs. Funktionen

- Statt extensionaler Spezifikation einer Funktion
- Spezifikation mit Hilfe einer Formel bzw. eines Prädikates (intensionale Spezifikation)
- Algorithmen berechnen Funktionen
- Berechnungsvorschrift (ggf. für jeden möglichen Parameter) erforderlich (-> Algorithmus)
- Berechnungsvorschrift u.U. nicht einfach zu finden (-> Korrektheit, Vollständigkeit, Terminierung)
- Systematische Entwicklung notwendig

Algorithmen

- Verwendung einer beliebigen Menge von "Variablen" {x, y, z, ...}
- Elementare Anweisungen
 - Zuweisung (Bsp. "x := 2")
 - Fallunterscheidung
 - Schleife
- Algorithmus: Sequenz von elementaren Anweisungen
- Idee: Nach Ausführung des Algorithmus steht Funktionswert in festgelegter Variable

Zusammenfassung, Kernpunkte

- Prädikatenlogik mit Axiomen z.B. für natürliche L
 Zahlen
- Elemente von Programmiersprachen
 - Variablen, Felder
- Spezifikationen

Was kommt beim nächsten Mal?

- Elemente von Programmiersprachen:
 - Kontrollstrukturen
- Verifikation von Programmen