ANALYSIS OF SEQUENTIAL CIRCUITS

The next state values of a sequential circuit that uses JK or T flip-flops can be derived from:

- The characteristic table, or
- The characteristic equation.
- Determine the flip-flop input equations in terms of the present state and input variables.
- List the binary values of each equation.
- Use the flip-flop characteristic table to find the next state values in the state table.

As an example consider the following circuit:

The circuit can be specified by the flip-flop input equations:

$$J_A = B \hspace{1cm} K_A = B x'$$

$$J_B = x' \hspace{1cm} K_B = A' x + A x' = A \oplus x$$

		. 1 1	
The	state	tah	A 10.

Present State		Input	Next State		Ffip-Flop Inputs			
Α	В	x	Α	В	JA	KA	JB	K _B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

The next state of each flip-flop is determined from the corresponding J and K inputs and the characteristic table of the JK flip-flop listed below:

JK Flip-Flop				
J	K	Q(t + 1)		
0	0	Q(t)	No change	
0	1	0	Reset	
1	0	1 Set		
1	1	Q'(t)	Complement	

- Determine the flip-flop input equations in terms of the present state and input variables.
- Substitute the input equations into the flip-flop characteristic equation to obtain the state equations.
- Use the corresponding state equations to determine next state values in the state table.

Again the input equations for the two flip-flops are:

$$J_A = B$$
 $K_A = Bx'$
 $J_B = x'$ $K_B = A'x + Ax' = A \oplus x$

The characteristic equations for the flip-flops are obtained are obtained by substituting A or B for the name of the flip-flop instead of Q:

$$A(t+1) = JA' + K'A$$

$$B(t+1) = JB' + K'B$$

Substituting the values of JA and KA from the input equations, the state equation for A is

obtained

$$A(t+1) = BA' + (Bx')'A = A'B + AB' + Ax$$

Similarly, the state equation for flip-flop B can be derived from the characteristic equation by substituting the values of J_B and K_B :

$$B(t+1) = x'B' + (A \oplus x)'B = B'x + ABx + A'Bx'$$

The above state equation provides the bit values for the column under "next state" in the state table. The state diagram of the sequential circuit is as follows:

Note that since the circuit has no outputs, the directed lines out of the circles are marked with one binary number only to denote the value of input x.