mp00ac

Solves for magnetic vector potential given $\boldsymbol{\mu} \equiv (\Delta \psi_t, \Delta \psi_p, \mu)^T$.

[called by: ma02aa.]

contents

mp00ac		
1.1	unpacking fluxes, helicity multiplier	
1.2	construction of linear system	
1.3	solving linear system	
1.4	unpacking,	
1.5	construction of "constraint" function	
	1.5.1 plasma region	
	1.5.2 vacuum region	
1.6	early termination	

[calls: packab, curent and tr00ab.]

1.1 unpacking fluxes, helicity multiplier

1. The vector of "parameters", μ , is unpackxi. (Recall that μ was "packxi" in ma02aa.) In the following, $\psi \equiv (\Delta \psi_t, \Delta \psi_p)^T$.

1.2 construction of linear system

1. The equation $\nabla \times \mathbf{B} = \mu \mathbf{B}$ is cast as a matrix equation,

$$\mathcal{M} \cdot \mathbf{a} = \mathcal{R},\tag{1}$$

where **a** represents the degrees-of-freedom in the magnetic vector potential, $\mathbf{a} \equiv \{A_{\theta,e,i,l}, A_{\zeta,e,i,l}, \ldots\}$.

2. The matrix \mathcal{M} is constructed from $\mathcal{A} \equiv dMA$ and $\mathcal{D} \equiv dMD$, which were constructed in matrix, according to

$$\mathcal{M} \equiv \mathcal{A} - \mu \mathcal{D}. \tag{2}$$

Note that in the vacuum region, $\mu = 0$, so \mathcal{M} reduces to $\mathcal{M} \equiv \mathcal{A}$.

- 3. The construction of the vector \mathcal{R} is as follows:
 - i. if Lcoordinatesingularity=T, then

$$\mathcal{R} \equiv -\left(\mathcal{B} - \mu \mathcal{E}\right) \cdot \psi \tag{3}$$

ii. if Lcoordinatesingularity=F and Lplasmaregion=T, then

$$\mathcal{R} \equiv -\mathcal{B} \cdot \psi \tag{4}$$

iii. if Lcoordinatesingularity=F and Lvacuumregion=T, then

$$\mathcal{R} \equiv -\mathcal{G} - \mathcal{B} \cdot \psi \tag{5}$$

The quantities $\mathcal{B} \equiv dMB$, $\mathcal{E} \equiv dME$ and $\mathcal{G} \equiv dMG$ are constructed in matrix.

1.3 solving linear system

- 1. If Lposdef=0, then it is not assumed that the linear system is positive definite and NAG: F04AEF is used to solve the linear system.
- 2. If Lposdef=1, then it is assumed that the linear system is positive definite and NAG: F04ABF is used to solve the linear system.

1.4 unpacking, . . .

- 1. The magnetic degrees-of-freedom are "unpackxi" by packab.
- 2. The error flag, ImagneticOK, is set that indicates if the Beltrami fields were successfully constructed.

1.5 construction of "constraint" function

1. The construction of the function $f(\mu)$ is required so that iterative methods can be used to construct the Beltrami field consistent with the required constraints (e.g. on the enclosed fluxes, helicity, rotational-transform, . .). See ma02aa for additional details.

1.5.1 plasma region

(a) For Lcoordinatesingularity = T, the returned function is:

$$\mathbf{f}(\mu, \Delta \psi_p) \equiv \begin{cases} \begin{pmatrix} 0 & , & 0 \end{pmatrix}^T, & \text{if Lconstraint} & = & -1 \\ (& 0 & , & 0 \end{pmatrix}^T, & \text{if Lconstraint} & = & 0 \\ (& \iota(+1) - \mathbf{iota(lvol)}) & , & 0 \end{pmatrix}^T, & \text{if Lconstraint} & = & 1 \\ (& ? & , & ? \end{pmatrix}^T, & \text{if Lconstraint} & = & 2 \end{cases}$$

$$(6)$$

(b) For Lcoordinatesingularity = F, the returned function is:

$$\mathbf{f}(\mu, \Delta \psi_p) \equiv \begin{cases} \begin{pmatrix} 0 & , & 0 & \end{pmatrix}^T, & \text{if Lconstraint} & = & -1 \\ (& 0 & , & 0 & \end{pmatrix}^T, & \text{if Lconstraint} & = & 0 \\ (& \iota(-1) - \mathsf{oita(lvol-1)} & , & \iota(+1) - \mathsf{iota(lvol)} & \end{pmatrix}^T, & \text{if Lconstraint} & = & 1 \\ (& ? & , & ? & \end{pmatrix}^T, & \text{if Lconstraint} & = & 2 \end{cases}$$
(7)

1.5.2 vacuum region

(a) For the vacuum region, the returned function is:

$$\mathbf{f}(\Delta\psi_t, \Delta\psi_p) \equiv \begin{cases} (& 0 & , & 0 &)^T, & \text{if Lconstraint} & = & -1 \\ (& I - \text{curtor} & , & G - \text{curpol} &)^T, & \text{if Lconstraint} & = & 0 \\ (& \iota(-1) - \text{oita(lvol-1)} & , & G - \text{curpol} &)^T, & \text{if Lconstraint} & = & 1 \\ (& ? & , & ? &)^T, & \text{if Lconstraint} & = & 2 \end{cases}$$
(8)

2. The rotational-transform, t, is computed by tr00ab; and the enclosed currents, I and G, are computed by current.

1.6 early termination

1. If $|\mathbf{f}| < \text{mupftol}$, then early termination is enforced (i.e. iflag is set to negative integer). (See ma02aa for details of how mp00ac is called iteratively.)

mp00ac.h last modified on 7-07-20 15:11:44.00;

SPEC subroutines;