МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ І СПОРТУ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ»

КАФЕДРА КОНСТРУЮВАННЯ КЕОА

3BIT

з лабораторної роботи №3 по курсу «Аналогова електроніка» на тему

«Дослідження польового МДН транзистора з індукованим п-каналом»

Виконав: студент гр. ДК-61 Шваюк М.В. Перевірив: доцент

Короткий Є. В.

Завдання 1

Дослідження залежності І с (U зв) для nканального польового МДН транзистора 2N7000

Моделювання в LTSpice:

Отриманий внаслідок симуляції графік залежності Іс (U зв):

Таблиця залежності І с (U зв):

	T I
Uзв, V	Iвс, mА
0,20	0
1,00	0
1,60	0
1,70	0,84
1,80	3,30
1,84	5,08
1,90	7,37
1,95	9,97
2,00	12,94
2,05	16,30
2,10	20,00

Horz:	200mV	Vert: 239.88748fA
Horz:	1V	Vert: 1.0396446pA
Horz:	1.6V	Vert: 1.641544pA
Horz:	1.7V	Vert: 839.33229μA
Horz:	1.8V	Vert: 3.3159687mA
Horz:	1.8483333V	Vert: 5.088502mA
Horz:	1.9V	Vert: 7.3706699mA
Horz:	1.95V	Vert: 9.9722436mA
Horz:	2V	Vert: 12.947684mA
Horz:	2.05V	Vert: 16.290519mA
Horz:	2.1V	Vert: 19.994467mA

Тепер визначимо Uп та коефіцієнт b:

(g) Suynovenus rolphyseum b:

$$J_c = \frac{b}{2} \left(U_{58} - U_{n} \right)^2 = >$$

 $=> b = 2 \cdot \left(\frac{J_c}{\left(U_{58} - U_n \right)^2} \right)$
 $J_c = \frac{J_c}{\left(U_{58} - U_n \right)^2}$
 $J_c = \frac{J_c}{\left(U_{58} - U_n \right)^2}$
 $J_c = \frac{J_c}{\left(U_{58} - U_n \right)^2} = \frac{J_c}{\left($

Отож, маємо такі результати:

Коеф. b = 0,150

Un = 1,58 V

Отож, апроксимуюча формула матиме вигляд:

$$Ic = 0.075 * (U3B - 1.58)^2$$

Як ми бачимо з графіку, Формула ідеально Апроксимує поведінку Транзистора при Uзв > Uп

А ось таблиця, де я порівняв значення, отримані у результаті моделювання та за апроксимуючою формулою:

<u> </u>	<u>Івс, тА,</u> модель	<u>Івс, mA</u> за формулою
0,20	0,00	142,8
1,00	0,00	25,2
1,60	0,00	0,0
1,70	0,84	1,1
1,80	3,30	3,6
1,90	7,37	7,7
1,95	9,97	10,3
2,00	12,94	13,2
2,05	16,30	16,6
2,10	20,00	20,3

Як можете бачити, дані вийшли доволі точні, як для такої примітивної моделі (до напруги *Uп* формула не працює).

Дослідження реальної схеми:

	mA	U
	3	1,424
Розрахунок Ипорогового	12	1,61
	1,238	
b	0,1734305	

Вийшли такі результати:

b = *0.1734* (похибка у порівнянні із симуляцією: *15.6%*)

U_{порог} = **1.238 B** (похибка у порівнянні із симуляцією: **21%**)

Похибки задовільні, бо модель у LTSpice не ідеально точна і ці транзистори мають дуже великий допуск.

Завдання 2

Дослідження залежності Іс (U вс) для n - канального польового МДН транзистора

2N7000

Схема:

Отриманий внаслідок симуляції графік залежності **Іс (U вс)** для різних значень напруг на затворі :

Дослідження факту зупинки росту <u>Іс</u> (досягнення струму насичення) коли <u>Ивс > Изв – Ип</u>:

<u>Uп</u> = 1.58 V

1. *U36 = 1,7 B*.

Насичення досягнуто при Uec = 0.1 B < 1.7 B - 1.58B = 0.12 B

2. U36 = 1.8 B.

Насичення досягнуто при *Uec = 0,20 B* < 1,8 B – 1,58B = *0,22B*

3. *U3e = 1,9 B*.

Насичення досягнуто при *Uвс* = 0,30 B < 1,9 B - 1,58B = 0,32B

4. U36 = 2,0 B.

Насичення досягнуто при *Uвс* = *0,40 B* < 2.0B − 1,58B = *0,42B*

5. U36 = 2,1 B.

Насичення досягнуто при Uec = 0,50 B < 2.1B - 1,58B = 0,52B

Висновок: Отримані результати підтверджують факт досягнення струму насичення при умові *Uвс > Uзв – Uп.* Отрималася невелика похибка через можливі похибки у моделі LTSpice та не абсолютно точне значення *Uп*, отримане під час минулого етапу лабораторної.

Завдання 3

Дослідження підсилювача з загальним витоком на польовому МДН транзисторі 2N7000

Схема:

C1 = C2 = 10 uF

$$V2 = DC 5 V$$
 $V1 = \sin amn \pi j t y y a = 20 mV частота = 1 kHz$

Моделювання:

1. 3 відключеним генератором V1

$$U_{3B0} = 1.84 V$$

$$U_{BC0} = 3.55 V$$

$$I_{c\,0} = 4.83 \, \text{mA}$$

Це параметри робочої точки спокою підсилювача, які визначають його коефіцієнт підсилення.

2. Підключили V1 = sin амплітуда = 20 mV частота = 1 kHz

Через велику різницю між амплітудами сигналів, у реальному масштабі нічого не видно:

Тому проявимо кмітливість:

Зверху – сигнал на вході підсилювача (зелений)

Знизу — сигнал на виході підсилювача (синій)

Як бачите, сигнали знаходяться в протифазі, а отже зсув за фазою = 180°

Тепер визначимо Ки:

$$Ku = Uout / Uin = 0.226 / 0.02 = 11.3$$

3. Пошук спотворень:

Вже за напруги генератора **V1 = 100 mV** починають з'являтися помітні нелінійні спотворення вихідного сигналу (вони виражаються у вигляді «зрізання» та заокруглення верхівки синусоїди:

Синій, верхній — вихід при V1 = 20 mV, <u>без</u> спотворень

Червоний, нижній – вихід при V1 = 100 mV, де помітні спотворення

4. Визначення передаточної провідності транзистора

Збільшимо опір **R2** з 175 до 185 кОм, на 10 кОм

Зміна **U**_{зв}:

$$\mathcal{U}_{3B_0}$$
 yru $(R_2 = 175 \text{ KOW}) = 1,86 \text{ B}$
 \mathcal{U}_{3B_1} yru $(R_2 = 185 \text{ KOW}) = 1,92 \text{ B}$

Зміна **І**_с :

$$\int_{C_1} upu \left(R_2 = 175 \text{ KOu} \right) = 5,65 \text{ mA}$$
 $\int_{C_1} upu \left(R_2 = 185 \text{ KOu} \right) = 8,74 \text{ mA}$

Обчислення **дельт** ΔU_{3B} та ΔIc :

$$\Delta U_{SB} = 1,92 - 1,86 = 0,06 B$$

$$\Delta J_{C} = 8,74 - 5,65 = 3,09 \text{ MA}$$

Тепер розрахуємо передаточну провідність двома різними формулами:

- Спочатку на основі даних отриманих шляхом **моделювання**:

$$gm = \frac{\Delta f_c}{\Delta M_{38}} = \frac{3.09 \cdot 10^{-3}}{0.06} = 51.5 \cdot 10^{-3} = 0.052$$

- Потім на основі теоретичних даних:

$$gm = b (M_{380} - M_n) =$$

$$= 0,15 (1,84 - 1,58) = 0,039$$

Отримані значення відрізняються на **25** %. Похибка знаходиться у допустимих межах. Причина такої похибки — неточність моделі на похибки, при обчисленні **Un** та коефіцієнта **b**.

5. Розрахунок теоретичного Ки

$$K_U = \frac{u_{\text{BHX}}}{u_{\text{BX}}} = -R_3 \cdot g_m$$

R3 = 0.3 kOm = 300 Om

Порахуємо його з двома отриманими значеннями gm:

- gm моделювання (gm = 0.052) :

$$Ku = -R3 * gm = -300 * 0.052 = -15.6$$

- gm теоретичний (gm = 0.039) :

$$Ku = -R3 * gm = -300 * 0.039 = -11.7$$

Отримані значення відрізняються на 25%, так само, як gm.

При чому при застосуванні **gm теоретичного** точність вийшла дуже висока (похибка в порівнянні із розрахованим раніше Ku = 3.5 %).

Дослідження реальної схеми:

3.2 Спочатку знайшли значення робочої точки:

	раб точка			
1:	Істока	3,2	mA	
•	UBC	3,2	V	
	Uзв	1,3	V	

3.3 Потім порахували **Ки**експериментальне = 311/20= **15.55**

Реальний результат майже не відрізняється від теоретичного, $\mathbf{noxu6\kappa a} = \mathbf{0.3\%}$

Блакитне – вхід, жовте - вихід

3.4 Потім були знайдені спотворення сигналу:

Початок спотворень при 80мВ

спотворення

при 100мВ

Дуже сильні спотворення при 120мВ

3.5 Розрахували *Ки* та *gm* за формулою:

	задание 3.5				
Істоку	0,0009	Α	0,0021	Α	
Uзв	1,32	V	1,39	V	
gm	0,017143				
kU	8,571429				

Отримані значення:

Ки = 8.57 (похибка з реальним = 45%, що свідчить про неточність формули)

gm = 0.017 (похибка з теоретичним = 56%)