Phys 123: Classical Mechanics - Reference Sheet

Karl Hallsby

Last Edited: July 28, 2019

${\bf Contents}$

1	1.1 Vectors	1
2	Kinematics 2.1 1-D Kinematics	1
\mathbf{A}	Physical Constants	2
В	Trigonometry	3
	B.1 Trigonometric Formulas	3
	B.2 Euler Equivalents of Trigonometric Functions	3
	B.3 Angle Sum and Difference Identities	3
	B.4 Double-Angle Formulae	3
	B.5 Half-Angle Formulae	3
	B.6 Exponent Reduction Formulae	
	B.7 Product-to-Sum Identities	
	B.8 Sum-to-Product Identities	
	B.9 Pythagorean Theorem for Trig	
	B.10 Rectangular to Polar	
	B.11 Polar to Rectangular	4
\mathbf{C}	Calculus	5
	C.1 Fundamental Theorems of Calculus	5
D	Complex Numbers	6

1 General Information

1.1 Vectors

2 Kinematics

Defn 1 (Kinematics). *Kinematics* is a way to describe macroscopic motion with equations. This includes anything moving, falling, thrown, shot, launched, etc. This forms the fundamental basis for all of classical mechanics.

2.1 1-D Kinematics

Defn 2 (1-D Displacement). One dimensional displacement is calculated based on the change in position of the 'thing.'

$$s = x_2 - x_1 (2.1)$$

Remark 2.1. Displacement is different than path! Displacement is the change in position of an object. Path is the length of the path takes between its starting and end point.

Defn 3 (1-D Velocity). One dimensional velocity is calculated as the displacement per unit time. There is instantaneous velocity and average velocity. Average velocity is calculated with Equation (2.2).

$$v = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1} \tag{2.2}$$

Instantaneous velocity is calculated by reducing the time interval Δt to 0. This can be summarized in Equation (2.3).

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt} \tag{2.3}$$

Defn 4 (Acceleration). One dimesional acceleration is the change in velocity over time. Again, there is average acceleration and instantaneous acceleration. Average acceleration is calculated with Equation (2.4)

$$a = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1} \tag{2.4}$$

Instantaneous acceleration is calculated by reducing the time interval Δt to 0. This can be summarized by Equation (2.5).

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$
 (2.5)

A Physical Constants

Constant Name	Variable Letter	Value
Boltzmann Constant	R	$8.314 \mathrm{J/mol}\mathrm{K}$
Universal Gravitational	G	$6.67408 \times 10^{-11} \mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2}$
Planck's Constant	h	$6.62607004 \times 10^{-34} \text{mkg/s} = 4.163 \times 10^{-15} \text{eV s}$
Speed of Light	c	$299792458 \text{m/s} = 2.998 \times 10^8 \text{ m/s}$
Charge of Electron	e	1.602×10^{-19} C
Mass of Electron	m_{e^-}	$9.11 \times 10^{-31} \text{kg}$
Mass of Neutron	m_{n^0}	$1.67 \times 10^{-31} \text{kg}$
Mass of Earth	m_{Earth}	$5.972 \times 10^{24} \text{kg}$
Diameter of Earth	d_{Earth}	$12742 \mathrm{km}$

B Trigonometry

B.1 Trigonometric Formulas

$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
 (B.1)

$$\cos(\theta)\sin(\theta) = \frac{1}{2}\sin(2\theta) \tag{B.2}$$

B.2 Euler Equivalents of Trigonometric Functions

$$e^{\pm i\alpha} = \cos(\alpha) \pm i\sin(\alpha)$$
 (B.3)

$$\sin\left(x\right) = \frac{e^{ix} + e^{-ix}}{2} \tag{B.4}$$

$$\cos\left(x\right) = \frac{e^{\imath x} - e^{-\imath x}}{2\imath} \tag{B.5}$$

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
 (B.6)

$$\cosh\left(x\right) = \frac{e^x + e^{-x}}{2} \tag{B.7}$$

B.3 Angle Sum and Difference Identities

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta) \tag{B.8}$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta) \tag{B.9}$$

B.4 Double-Angle Formulae

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha) \tag{B.10}$$

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) \tag{B.11}$$

B.5 Half-Angle Formulae

$$\sin\left(\frac{\alpha}{2}\right) = \sqrt{\frac{1 - \cos\left(\alpha\right)}{2}}\tag{B.12}$$

$$\cos\left(\frac{\alpha}{2}\right) = \sqrt{\frac{1 + \cos\left(\alpha\right)}{2}}\tag{B.13}$$

B.6 Exponent Reduction Formulae

$$\sin^2(\alpha) = \frac{1 - \cos(2\alpha)}{2} \tag{B.14}$$

$$\cos^2(\alpha) = \frac{1 + \cos(2\alpha)}{2} \tag{B.15}$$

B.7 Product-to-Sum Identities

$$2\cos(\alpha)\cos(\beta) = \cos(\alpha - \beta) + \cos(\alpha + \beta) \tag{B.16}$$

$$2\sin(\alpha)\sin(\beta) = \cos(\alpha - \beta) - \cos(\alpha + \beta) \tag{B.17}$$

$$2\sin(\alpha)\cos(\beta) = \sin(\alpha + \beta) + \sin(\alpha - \beta)$$
(B.18)

$$2\cos(\alpha)\sin(\beta) = \sin(\alpha + \beta) - \sin(\alpha - \beta) \tag{B.19}$$

B.8 Sum-to-Product Identities

$$\sin(\alpha) \pm \sin(\beta) = 2\sin\left(\frac{\alpha \pm \beta}{2}\right)\cos\left(\frac{\alpha \mp \beta}{2}\right)$$
 (B.20)

$$\cos(\alpha) + \cos(\alpha) = 2\cos\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right)$$
(B.21)

$$\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$
(B.22)

B.9 Pythagorean Theorem for Trig

$$\cos^2(\alpha) + \sin^2(\alpha) = 1^2 \tag{B.23}$$

B.10 Rectangular to Polar

$$a + ib = \sqrt{a^2 + b^2}e^{i\theta} = re^{i\theta} \tag{B.24}$$

$$\theta = \begin{cases} \arctan\left(\frac{b}{a}\right) & a > 0\\ \pi - \arctan\left(\frac{b}{a}\right) & a < 0 \end{cases}$$
(B.25)

B.11 Polar to Rectangular

$$re^{i\theta} = r\cos(\theta) + ir\sin(\theta) \tag{B.26}$$

C Calculus

C.1 Fundamental Theorems of Calculus

Defn C.1.1 (First Fundamental Theorem of Calculus). The first fundamental theorem of calculus states that, if f is continuous on the closed interval [a, b] and F is the indefinite integral of f on [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
(C.1)

Defn C.1.2 (Second Fundamental Theorem of Calculus). The second fundamental theorem of calculus holds for f a continuous function on an open interval I and a any point in I, and states that if F is defined by

$$F(x) = \int_{a}^{x} f(t) dt,$$

then

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

$$F'(x) = f(x)$$
(C.2)

Defn C.1.3 (argmax). The arguments to the *argmax* function are to be maximized by using their derivatives. You must take the derivative of the function, find critical points, then determine if that critical point is a global maxima. This is denoted as

 $\operatorname*{argmax}_{r}$

D Complex Numbers

$$Ae^{-ix} = A\left[\cos\left(x\right) + i\sin\left(x\right)\right] \tag{D.1}$$