

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2001-056418
 (43)Date of publication of application : 27.02.2001

(51)Int.CI. G02B 6/32
 G02B 6/38

(21)Application number : 11-232369 (71)Applicant : ANRITSU CORP
 (22)Date of filing : 19.08.1999 (72)Inventor : TSUDA YUKIO

(54) OPTICAL SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To simplify manufacture without necessitating precise working and to make coincident the optical axis of exit light or incident light deviated by an obliquely polished ferrule.

SOLUTION: The optical system 1 wherein light outputted from an optical fiber cord 2 is converted into parallel light to exit or the parallel light is condensed to the optical fiber cord 2 is provided with the obliquely polished ferrule 3 which is provided in the end part of the optical fiber cord 2 and the end surface 3a of which is obliquely polished, a lens 4, the obliquely polished optical element 5 both end surfaces 5a, 5b of which are obliquely polished in parallel, and the holder 6 which fixes the obliquely polished ferrule 3, the lens 4 and the obliquely polished optical element 5 in the sequence of these parts at the prescribed interval. The obliquely polished optical element 5 is defined in the shape and the refractive index of material so that the optical axis of exit light or incident light coincides with the central axis L5 of the holder 6.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2001-56418

(P2001-56418A)

(43)公開日 平成13年2月27日 (2001.2.27)

(51)Int.Cl.⁷

G 02 B 6/32
6/38

識別記号

F I

G 02 B 6/32
6/38

テ-マコード(参考)
2 H 0 3 6
2 H 0 3 7

審査請求 未請求 請求項の数2 O.L (全7頁)

(21)出願番号

特願平11-232369

(22)出願日

平成11年8月19日 (1999.8.19)

(71)出願人 000000572

アンリツ株式会社

東京都港区南麻布5丁目10番27号

(72)発明者 津田 幸夫

東京都港区南麻布五丁目10番27号 アンリツ株式会社内

(74)代理人 100067323

弁理士 西村 教光 (外1名)

F ターム(参考) 2H036 MA05 QA14 QA21 QA29
2H037 CA10 CA16 DA04 DA06 DA15

(54)【発明の名称】 光学系

(57)【要約】

【課題】 精密な加工を必要とすることなく製作の簡易化を図り、斜研磨フェルールによりずれる出射光又は入射光の光軸を一致させる。

【解決手段】 光ファイバコード2から出力される光を平行光に変換して出射、又は平行光を光ファイバコード2へ集光する光学系1は、光ファイバコード2の端部に設けられ端面3aが斜めに研磨された斜研磨フェルール3と、レンズ4と、両端面5a, 5bが平行に斜め研磨された斜研磨光学素子5と、斜研磨フェルール5、レンズ4、斜研磨光学素子5の順にこれらの部品を所定間隔を置いて固定するホルダー6とを備えて構成される。斜研磨光学素子5は、出射又は入射される光の光軸がホルダー6の中心軸L5と一致するように形状及び材質の屈折率が規定されている。

【特許請求の範囲】

【請求項1】 光ファイバコード(2)から出力される光を平行光に変換して出射、又は平行光を前記光ファイバコードへ集光する光学系(1)において、前記光ファイバコードの端部に設けられ、端面(3a)が斜めに研磨された斜研磨フェルール(3)と、レンズ(4)と、両端面(5a, 5b)が平行に斜め研磨された斜研磨光学素子(5)と、前記斜研磨フェルール、前記レンズ、前記斜研磨光学素子の順にこれらの部品を所定間隔をおいて固定するホルダー(6)とを備えており、出射又は入射される光の光軸が前記ホルダーの中心軸と一致するように、前記斜研磨光学素子の形状及び材質の屈折率が規定されていることを特徴とする光学系。

【請求項2】 前記斜研磨フェルール、前記レンズ及び前記斜研磨光学素子はそれぞれ円柱状をなしており、前記ホルダー(6)は割スリーブからなることを特徴とする請求項1記載の光学系。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、光ファイバコードから出射される光を平行光に変換し、平行光を光ファイバコードへ集光するコリメート／集光光学系に関する。

【0002】

【従来の技術】 従来、光ファイバコードのコア中を伝搬する光のパワーや波長帯域を制限する場合、図7に示すような構成の光学系が一般的に採用されている。

【0003】 図7に示す光学系21では、光ファイバコード22のコア中を伝搬する光をレンズ23を用いて空気中での平行な光に変換した後、所望の減衰素子24あるいはフィルタ素子25を通過させ、その後レンズ26にて再び光ファイバコード27へ集光している。

【0004】 ところで、近年、光ファイバコード22, 27の先端部に設けられるフェルール28としては、図8に示すように、端面28aが斜めにカットされた斜研磨フェルール28Aが使用されつつある。これにより、端面28aで反射した光が再び光ファイバコード22, 27へ入射し、戻り光として光源の安定度に影響を及ぼさないようにしている。

【0005】 しかしながら、光ファイバコード22, 27のフェルール28として斜研磨フェルール28Aを用いると、図8に示すように、出射された光の光軸L10は、斜研磨フェルール28Aの中心軸L11と一致しなくなる。通常使用されるフェルール28の光軸はコアの中心と一致している。

【0006】 そして、一対のコリメート／集光光学系を組み立てる場合、出射側の光学系を組み立てた後、光学部品を配置し、最後に受け側である集光側の光学系の軸合わせを行っている。

【0007】

【発明が解決しようとする課題】 しかしながら、上述した軸合わせ作業には熟練が必要であった。この問題を解決するため、図9(a), (b)に示すように、円筒状ホルダー31と出射光光軸とが一致するように斜研磨フェルール28Aとレンズ23(又は26)を円筒状ホルダー31に固定したコリメート／集光光学系が提案されている。

【0008】 このコリメート／集光光学系では、図9(a), (b)に示す如く、円筒状ホルダー31の外形の中心軸と光軸とが一致するように、円筒状ホルダー31の内径の中心を外形の中心からずらして切削されている。

【0009】 そして、上記のような軸外し円筒状ホルダー31に斜研磨フェルール28Aとレンズ23(又は26)とが組み込まれたコリメータ／集光光学系を、図10に示すようなコの字型の保持台32にドリルを貫通させてあけた2箇所の穴33に対して用いると、円柱状ホルダー31の外形中心と光軸とを一致させることができる。これにより、光軸調整を行わなくても、損失の小さい光学系を製作することができる。

【0010】 しかしながら、上記のような従来の軸外し円筒状ホルダー31を用いた光学系では、外形と内径の中心をわずかにずらせるという精密な加工を必要とする欠点があった。

【0011】 そこで、本発明は、上記問題点に鑑みてなされたものであり、精密な加工を必要とすることなく製作の簡易化を図って斜研磨フェルールによりずれる出射光又は入射光の光軸を一致させることができる光学系を提供することを目的としている。

【0012】

【課題を解決するための手段】 上記目的を達成するため、請求項1の発明は、光ファイバコード2から出力される光を平行光に変換して出射、又は平行光を前記光ファイバコードへ集光する光学系1において、前記光ファイバコードの端部に設けられ、端面3aが斜めに研磨された斜研磨フェルール3と、レンズ4と、両端面5a, 5bが平行に斜め研磨された斜研磨光学素子5と、前記斜研磨フェルール、前記レンズ、前記斜研磨光学素子の順にこれらの部品を所定間隔をおいて固定するホルダー6とを備えており、出射又は入射される光の光軸が前記ホルダーの中心軸と一致するように、前記斜研磨光学素子の形状及び材質の屈折率が規定されていることを特徴とする。

【0013】 請求項2の発明は、請求項1の光学系において、前記斜研磨フェルール、前記レンズ及び前記斜研磨光学素子はそれぞれ円柱状をなしており、前記ホルダー6は割スリーブからなることを特徴とする。

【0014】

【発明の実施の形態】 図1は本発明による光学系の実施

の形態を示す図である。

【0015】図1に示すように、本例における光学系1は、光ファイバコード2の先端部に設けられる斜研磨フェルール3、レンズ4、斜研磨光学素子5、ホルダー6を備えて構成される。单一のホルダー6内には、斜研磨フェルール3、レンズ4、斜研磨光学素子5の順にこれらの部品3、4、5が所定間隔をおいて固定されている。そして、斜研磨光学素子5は、出射又は入射される光の光軸がホルダー6の中心軸と一致するように、形状及び材質の屈折率が規定されている。

【0016】本例における光学系1では、斜研磨フェルール3側から光が入射されると、その光をレンズ4を介して平行光に変換して斜研磨光学素子5から出射している。これに対し、斜研磨光学素子5側から平行光が入射されると、その平行光をレンズ4を介して斜研磨フェルール3のコア中心軸(図中一点鎖線で示すL1)上に集光している。

【0017】ホルダー6は、部品加工精度を吸収することを目的として、円筒状の割スリーブが用いられる。ホルダーをなす割スリーブ6には、円筒の中心軸と平行で、かつ中心軸に沿って貫通したスリット状の切れ目6aが形成されている。

【0018】円柱状をなす斜研磨フェルール3は、先端面3aがコア中心軸L1と直交する面に対し、例えは4°～8°程度の角度を持って斜めにカットされている。これにより、先端面3aで反射した光が再び光ファイバコード2へ入射し、戻り光として光源の安定度に影響を及ぼさないようにしている。斜研磨フェルール3は、先端面3aがレンズ4側に向くように割スリーブ6内に設置して固定されている。

【0019】レンズ4は、斜研磨フェルール3側から入射された光を平行光に変換して出力し、斜研磨光学素子5から入射された平行光を斜研磨フェルール3のコア中心軸L1上に集光している。レンズ4は、例えは図1に示すような両端面が凸状の球面をなす円柱状のドラムレンズの他、セルフォックレンズ等のコリメータレンズで構成することができる。レンズ4は、斜研磨フェルール3と斜研磨光学素子5との間で割スリーブ6内のほぼ中心位置で、かつ先端面3aからレンズの主点までの距離が焦点距離となる位置に設置して固定されている。

【0020】斜研磨光学素子5は、両端面が平行に斜め研磨された円柱状の光学素子で構成される。斜研磨光学素子5は、一方の斜研磨面がレンズ4側に向くように割スリーブ6内に設置して固定されている。斜研磨光学素子5は、光が入出射する二つの面(両端面)5a、5bが互いに高精度に平行であり、出射又は入射される光の光軸が割スリーブ6の中心軸と一致するように、その形状、材質の屈折率、斜研磨角度、長さ、斜研磨フェルールとの距離、光軸との角度、軸回りの設置角等が規定されている。

【0021】ここで、上記斜研磨光学素子5の両端面5a、5bの平行度は高精度に仕上げられている必要があり、特に長い距離に亘って平行光を伝搬する場合には、特に重要となる。例えは円柱状の光学素子の両端面を独立して斜研磨した場合には、その平行度は非常に悪く、実用的に用いることが出来ない。

【0022】このため、上記円柱状の斜研磨光学素子5は、以下に説明する加工方法の手順によって作製される。

【0023】まず、図2(a)に示すように、高精度に仕上げられた平面平板11を四角柱状に切り出す。続いて、図2(b)に示すように、四角柱状に切り出したもの12を一般的な加工精度で斜め8°に傾いた四角柱状に切り分ける。この時、円柱状に切り出す必要はない。その後、図2(c)に示すように、斜め8°に傾いた四角柱状に切り分けたもの13を円筒ホルダ14内に挿入し、回りを接着固定する。これにより、円柱状の斜研磨光学素子5が完成する。

【0024】次に、上記斜研磨光学素子5の具体例を図3(a)～(c)に基づいて説明する。

【0025】図3(a)に示すように、斜研磨フェルール3のコア部分の屈折率をn0(=1.5)、先端面3aの斜研磨角度をθ0(=8°)、空気の屈折率をn1(=1)とすると、出射光の回折角θ1は、スネルの法則より、 $n_0 \cdot \sin \theta_0 = n_1 \cdot \sin \theta_1$ 、 $\theta_1 = \sin^{-1}(n_0/n_1 \cdot \sin \theta_0) \approx 12^\circ$ となる。よって、振れ角φ(斜研磨フェルール3のコア中心軸L1と出射光軸L2とがなす角)は、 $\phi = \theta_1 - \theta_0 = 4^\circ$ となる。

【0026】図3(b)に示すように、斜研磨フェルール3の先端面3aに対するレンズ4の焦点距離をf(=2mm)とすると、平行光軸のずれ量x(斜研磨フェルール3のコア中心軸L1-L1から平行光の光軸L3-L3までの距離)は、 $x = f \cdot \tan \phi \approx 0.14\text{mm}$ となる。

【0027】斜研磨光学素子5として、屈折率n3(=1.5)のBK7(ホウケイ酸クラウンガラス)を、斜研磨角度θ2(=8°)にて研磨したものを用いる場合の素子の長さLを以下の手順にて求める。

【0028】光軸L4と入射面5aとの交点を点A、光軸L4と出射面5bとの交点を点B、点Aから斜研磨フェルール3のコア中心軸L1に下した垂線との交点を点C、入射面5aと斜研磨フェルール3のコア中心軸L1との交点を点Dとする。

【0029】屈折角θ3は、スネルの法則より、 $n_1 \cdot \sin \theta_2 = n_3 \cdot \sin \theta_3$ 、 $\theta_3 = \sin^{-1}(n_1/n_3 \cdot \sin \theta_2) \approx 5.3^\circ$ となる。

【0030】よって、∠CABは、 $\angle CAB = 90^\circ - \theta_2 + \theta_3 \approx 87.3^\circ$ となる。また、辺CBの長さは、 $CB = x \cdot \tan \angle CAB \approx 2.97\text{mm}$ となる。

さらに、辺DCの長さは、 $DC = x \cdot \tan \theta_2 \approx 0.02 \text{ mm}$ となる。

【0031】よって、斜研磨光学素子5の長さIは、 $I = CB + DC \approx 3 \text{ mm}$ となる。

【0032】ところで、図10に示すような光学系において、コア径 $10 \mu\text{m}$ で先端面の斜研磨角度が 8° に形成された斜研磨フェルール28Aと、焦点距離 2 mm のレンズ23（又は26）とを用いた場合、平行光の軸ずれ量と結合効率の関係を計算すると、図4の様な特性を示す。

【0033】そして、上記光学系のように、斜研磨光学素子5を用いない場合の軸ずれ量の最悪値は $140 \mu\text{m} \times 2 = 280 \mu\text{m}$ となる。従って、斜研磨光学素子5を用いない光学系では、最悪 10 dB 近くの損失を発生することになる。

【0034】これに対し、本例では、斜研磨フェルール3及びレンズ4に加えて斜研磨光学素子5を同一の割スリーブ（ホルダー）6に固定して光学系1を構成し、以下に説明するように、損失を抑えて十分実用に耐えられるようになっている。

【0035】まず、斜研磨光学素子5の長さIの加工精度が結合効率に及ぼす影響について説明すると、斜研磨光学素子5の長さIと軸ずれ量xは比例関係にあり、長さIの変化量 ΔI に対する軸ずれ量xの変化量 Δx は、 $\Delta x / x = \Delta I / I$ と表される。この式に、前記の値 $x = 140 \mu\text{m}$ 、 $I = 3 \text{ mm}$ 、及び、一般的な加工精度として $\Delta I = \pm 0.1 \text{ mm}$ 程度を代入すると、 $\Delta x \approx \pm 4.7 \mu\text{m}$ となる。

【0036】従って、両コリメート間の軸ずれ量は $10 \mu\text{m}$ 以下、損失の最悪値は 0.02 dB 以下と非常に小さいものであり、十分実用に用いる事が出来る。

【0037】次に、斜研磨光学素子5の斜研磨角度 θ_2 の加工精度が結合効率に及ぼす影響について説明すると、斜研磨光学素子5の斜研磨角度 θ_2 の加工精度は $\pm 0.5^\circ$ 程度である。この時の屈折角 θ_3 の変化量 $\Delta \theta_3$ は、 θ_3 を求める式を θ_2 にて微分することにより求められ、 $\theta_3 \approx \pm 0.33^\circ$ である。そして、この時の軸ずれ量xの変化量 Δx は、 $\Delta x \approx BC / \cos \theta_3 \cdot \tan \theta_2 \approx \pm 1.7 \mu\text{m}$ となる。

【0038】従って、両コリメート間の軸ずれ量は $3.5 \mu\text{m}$ 以下、損失の最悪値は前記平行軸ずれの場合よりは大きくなり 0.2 dB 以下である。しかしながら、実用に用いる場合でも十分許容できる範囲である。

【0039】次に、軸回りの回転トレランスについて説明する。斜研磨フェルール3と斜研磨光学素子5が割スリーブ6の中心軸L5に対して相対的に回転すると、出射光軸L6が中心軸L5と一致しなくなる。図5の破線で示すように、出射光軸L6は、出射側から光学系1を見ると、一端が中心軸L5を通り半径 $140 \mu\text{m}$ の円周上に位置する。相対回転角を微少角 α とすると、軸ずれ

量xの変化量 Δx は、 $\Delta x \approx x \cdot \alpha$ 、但し α はradなので、加工（調整）精度を $\pm 2^\circ$ とすると、 $\Delta x \approx 5 \mu\text{m}$ となる。

【0040】従って、平行軸ずれの場合と同様に、損失の最悪値は 0.02 dB 以下と非常に小さいものであり、十分実用に用いる事が出来る。

【0041】ところで、光学系1を設計する場合においては、多重反射の影響を考慮に入れなければならない。

【0042】具体的には、図6に示すように、斜研磨フェルール3の端面3aと斜研磨光学素子5の端面5a間の多重反射、斜研磨光学素子5の両端5a、5b間の多重反射、それらの複合多重反射、上記以外の面における多重反射等々を考慮する必要がある。

【0043】この多重反射の影響は、結合効率の波長依存性の劣化として現れたり、光源へ戻り光として戻る場合には光源の安定性の劣化として現れたりする。

【0044】そこで、主光ビームおよび多重反射光のビーム径、多重反射光の軸ずれ量、多重反射光の角度ずれ量、反射面における反射率、透過率等から受光系に対する結合効率（および戻り光の比率）を計算し、系に影響を及ぼさない値となるように、斜研磨光学素子5の材質（屈折率）、斜研磨角度、長さ、減反射コーティング、斜研磨フェルール3との距離等を決定する。

【0045】このように、本実施の形態の光学系1では、斜研磨フェルール3及びレンズ4の構成に加え、両端5a、5bが平行に斜研磨されている斜研磨光学素子5を同一のホルダー（割スリーブ）6に収容固定している。そして、斜研磨光学素子5は、出射又は入射される光の光軸がホルダー6の中心軸L5と一致するように形状及び材質の屈折率が規定されている。これにより、従来のような精密な加工を必要とすることなく光学系の製作の簡易化が図れ、斜研磨フェルール3によりずれる出射光又は入射光の光軸を一致させることができる。

【0046】そして、光ファイバコードを伝搬する光のパワーや波長帯域を制限する場合には、各構成部品（斜研磨フェルール3、レンズ4、斜研磨光学素子5）が対称に配置されるように、図10の破線で囲む部分（保持台32の2箇所の穴33、33）に本例の光学系1を対にして取り付けければ、特別な光軸調整を行うことなく、損失の小さい平行光学系を構成することができる。

【0047】

【発明の効果】以上の説明で明らかのように、本発明によれば、従来のような高精度の加工技術を用いなくても、斜研磨フェルールによりずれる出射光又は入射光の光軸を一致させることができ、製作の簡易化が図れるという効果を奏する。

【0048】特に、請求項2の光学系によれば、各部品（斜研磨フェルール、レンズ、斜研磨光学素子）の加工精度を吸収した状態で、従来のような高精度の加工技術を用いることなく、斜研磨フェルールによりずれる出射

光又は入射光の光軸を一致させることができる。

【図面の簡単な説明】

【図1】本発明による光学系の実施の形態を示す側断面図

【図2】(a)～(c) 斜研磨光学素子の加工手順を示す図

【図3】(a)～(c) 斜研磨光学素子の具体例を説明するための図

【図4】斜研磨光学素子を用いない場合の軸ずれ量に対する損失の特性図

【図5】本発明による光学系を出射側から見た図

【図6】(a) 斜研磨フェルール端面と斜研磨光学素子端面間の多重反射を示す図

(b) 斜研磨光学素子両端面間の多重反射を示す図

【図7】光ファイバコードを伝搬する光のパワーや波長

【図1】

【図2】

带域を変換するときに採用される一般的な光学系の構成図

【図8】斜研磨フェルールを有する光ファイバコードの側面図

【図9】(a) 出射光の光軸合わせに円筒状ホルダーを採用した従来の光学系の側断面図

(b) 円筒状ホルダーを出射側から見た断面図

【図10】図9の円筒状ホルダーを採用した光学系を保持台に取り付けた状態の断面図

【符号の説明】

1…光学系、2…光ファイバコード、3…斜研磨フェルール、3a…先端面、4…レンズ、5…斜研磨光学素子、5a、5b…入出射面、6…ホルダー(割スリープ)、6a…切れ目。

【図3】

【図4】

【図5】

【図6】

【図8】

【図10】

【図7】

【図9】

