Recursion Code.

David Ponarovsky

February 23, 2023

Abstract

None

1 Construction.

Definition 1. Let Δ be an integer greater than 2 and consider an algorithm \mathcal{A} that for any n that is power of 3 construct a Δ -regular graph over n vertices. Now, let G be Δ -regular graph over n vertices generated by \mathcal{A} . Define the **third graph obtained by** G, labeled by G^{\sim} to be the graph which \mathcal{A} returns over $\frac{1}{3}n$ such that any of the edges could be associate by puncturing a $\frac{2}{3}$ fraction of the edges of each vertex.

Definition 2. Let G be a Δ -regular graph, such that each edge is associated with integer in $\left[\frac{1}{2}\Delta\right]$ and no vertex adjoins to two different indexed edges. For example consider a Cayley graph defined by $\frac{1}{2}\Delta$ generators $\left\{g_0, g_1, g_2, \cdots g_{\frac{1}{2}\Delta}\right\}$, then the undirected graph is Δ -regular and any edge could be labeled by the function $f\left(g_i, g_i^{-1}\right) \to i$.

Define the [a,b]-fraction graph obtained by G, labeled by $G^{[a,b]}$ to be the graph which obtained taken only the edges such their label's are in the range [a,b].

For convenient, we will denote by $G^{\frac{1}{3}}$, $G^{\frac{2}{3}+}$ and $G^{\frac{2}{3}-}$ the fraction graph correspond to taking the middle third edges and the higher and the lower 2-third edges.

Definition 3 (Recursion Code). Let $C_0 = \Delta[1, \rho_0, \delta_0]$ be a binary linear code. We will define the recursion code in recursive manner. First for a sufficiently large integer n_0 , which is also power of 3, $C(n_0)$ defined to be the Tanner code defined by the C_0 and graph $A(n_0)$. Then let n_0 be any power of 3, such that $n > n_0$, denote by G the graph that constructed by the running of A(n). Then let C(n) be the code obtained by the joining the parity check matrix of the Tanner code $T(G, C_0)$ and by the checks of the C(n/3) over the bits associated with the G^{\sim} . We will call to that code family the **recursion code**.

Lemma 1. If $\rho_0 > \frac{2}{3}$, then the recursion code has a positive rate.

Proof. By counting the restrictions we have that:

$$H\left(n\right) = \Delta n \left(1 - \rho_0\right) + H\left(n/3\right) \le \frac{3}{2} \Delta \left(1 - \rho_0\right) \Delta n$$

So we dimension of the code is at least $\frac{1}{2}\Delta n - H(n)$ which is

$$\frac{1}{2}n\Delta - \frac{3}{2}\Delta\left(1 - \rho_0\right)\Delta n = \frac{1}{2}\Delta n\left(3\rho_0 - 2\right)$$

So for any $\rho_0 > \frac{2}{3}$ we have that the rate of the C_n is grater than constant.

Recursion Decoder. balabla

- 1 Decode $G^{\frac{2}{3}+}$
- 2 Decode $G^{\frac{2}{3}}$
- **3** Decode $G^{\frac{1}{3}}$