Method of Characteristics

General Form

• [Set Up] $U \subseteq \mathbb{R}^d$ open, $\partial U \in C^1$, $\Gamma \subseteq \partial U$, $F: U \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$, $u: U \to \mathbb{R}$

$$\circ \quad x \in U \subseteq \mathbb{R}^d, \, u(x) \in \mathbb{R}, \, \nabla u = \begin{bmatrix} \partial_{x_1} u \\ \vdots \\ \partial_{x_d} u \end{bmatrix} \in \mathbb{R}^d$$

- $\circ F(x,u(x),\nabla u(x)) = 0 \text{ in } U$
- \circ u = g on Γ
- o Idea: want to find $(\dot{x}(s), \dot{z}(s), \dot{p}(s)) = Q(x(s), z(s), p(s))$, so as to apply ODE
- [Procedure]
 - Write ODE for x(s) and z(s)
 - $\forall y \in \Gamma$, find trajectory $x_{\nu}(s)$ and $z_{\nu}(s)$ such that:

Linear First-Order Scalar Equations

• $U \subseteq \mathbb{R}^d$, $a: U \to \mathbb{R}$, $b: U \to \mathbb{R}^d$, $\Gamma \subseteq \partial U$

$$\circ \quad a(x)u + b(x) \cdot \nabla u - f(x) = 0 \text{ in } U$$

- \circ $u = g \text{ on } \Gamma$
- x(s): path parametrized by s s.t. $x(0) \in \Gamma \subseteq \partial U$
- z(s) = u(x(s)): value function along the path x(s)
- $p(s) = (\nabla u)(x(s))$: gradient of value function evaluated at point x(s)

$$\circ \quad p_j(s) = \left(\partial_{x_j} u\right) \left(x(s)\right)$$

$$\circ \quad \dot{z} = (\nabla u)(x) \cdot \dot{x} = p \cdot \dot{x}$$

 Solve system of ODEs via x in terms of s first, then z in terms of s

∘ Pick
$$y \in \Gamma$$

o
$$x_y(0) = y$$
, $z_y(0) = u(x_y(0)) = g(y)$

o Invert
$$(s, y) \mapsto x_y(s) \in U$$
 to solve for $u(x) \ \forall x \in U$

$$z_{y}(s') = z_{y}(0) + \int_{0}^{s'} \left(\frac{\mathrm{d}}{\mathrm{d}s}z(s)\right) \mathrm{d}s$$

Expanded	Compact
• $\frac{d}{ds}x(s) = b(x(s))$ • $\frac{d}{ds}z(s) = -a(x(s))z(s) + f(x(s))$	$ \bullet \dot{x} = b(x) \bullet \dot{z} = -a(x)z + f(x) $

- Examples:
 - [Transport / Advection] $\partial_t u + b(x) \cdot \nabla_x u = 0$

Quasilinear Equations

- Equations that are linear with respect to higher order derivatives.
 - \circ $a(x,u)u + b(x,u) \cdot \nabla u = 0$ in U
 - \circ u = g on $\Gamma = \partial U$
- Choose x(s) such that $\dot{x} = b(x, z)$

Expanded	Compact	
• $\frac{d}{ds}x(s) = b(x(s), z(s))$ • $\frac{d}{ds}z(s) = -a(x(s), z(s))$	$ \bullet \dot{x} = b(x, z) \\ \bullet \dot{z} = -a(x, z) $	

- Examples:
 - o [Burger] $\partial_t u + u \partial_x u = 0$

Fully Nonlinear Scalar Equations

- $F(x, u(x), \nabla u(x)) = 0$ in U
- u = g on Γ
- $\dot{p}_j(s) = \frac{\mathrm{d}}{\mathrm{d}s} \left(\partial_{x_j} \right) \left(x(s) \right) = \sum_{k=1}^d \left(\partial_{x_j} \partial_{x_k} u \right) \left(x(s) \right) \dot{x}_k(s)$
- $0 = \partial_{x_j} (F(x, z, p)) = (\partial_{x_j} F)(x, z, p) + (\partial_z F)(x, z, p) p_j(s) + \sum_{k=1}^d (\partial_{p_k} F)(x, z, p) \partial_{x_j} \partial_{x_k} u(x(s))$
- Pick x(s) s.t. $\dot{x}_k(s) = (\partial_{p_k} F)(x(s), z(s), p(s))$

$\begin{array}{lll} & \text{Expanded} & \text{Compact} \\ & \bullet & \dot{x}_k(s) = \left(\partial_{p_k} F\right) \big(x(s), z(s), p(s)\big) & \bullet & \dot{x} = \left(\nabla_p F\right) (x, z, p) \\ & \bullet & \dot{p}_j(s) = -\left(\partial_{x_j} F\right) \big(x(s), z(s), p(s)\big) - \\ & & p_j(s) (\partial_z F) \big(x(s), z(s), p(s)\big) & \bullet & \dot{z} = p \cdot \left(\nabla_p F\right) (x, z, p) \\ & \bullet & \dot{z}(s) = \sum_{j=1}^d p_j \left(\partial_{p_j} F\right) \big(x(s), z(s), p(s)\big) & \bullet & \dot{p} = -(\nabla_x F) (x, z, p) - p(\partial_z F) (x, z, p) \\ \end{array}$

- Pick $y \in \partial U$, then set $x_y(0) = y$, $z_y(0) = g(y)$
- $p_{\nu}(0)$ is the solution to:
 - o $F(x_{y}(0), z_{y}(0), p_{y}(0) = 0$
 - $∀ν tangent to Γ at <math> y, \underline{v \cdot p_y(0)} = v \cdot \nabla g$

Scalar Conservation Law

- Let $u: t, x \to \mathbb{R}$, $f: t, x \to \mathbb{R}$
 - o *u*: density, *f*: flux
 - o [1D Conservation Law] $\partial_t u + \partial_x f = 0$
- [1D Scalar Conservation Law] f: R → R, quasilinear PDE
 - $\circ \quad \partial_t u + f'(u)\partial_x u = 0 \text{ in } U$
 - \circ $u = g \text{ on } \Gamma$
- All characteristics are straight lines.
 - $\circ \quad x_y(s) = \begin{bmatrix} 1 \\ f'(g(y)) \end{bmatrix} s + \begin{bmatrix} 0 \\ y \end{bmatrix}$
 - $\circ z_{\nu}(s) = g(y)$
 - o u(t,x) = g(y) for some y such that x = tf'(g(y)) + y

Singularity Formation

- [Bounded Integral Solution] A bounded and locally integrable function is a function $u:(0,\infty)_t\times\mathbb{R}\to\mathbb{R}$ is an <u>integral solution</u> if $\int_0^\infty\int_{\mathbb{R}_x}(u\,\partial_t\phi+f(u)\,\partial_x\phi)\,\mathrm{d}x\,\mathrm{d}t+\int_{\mathbb{R}_x}g(x)\phi(0,x)\,\mathrm{d}x=0\;\forall\phi\in C_0^\infty(\mathbb{R}_t\times\mathbb{R}_x)$
 - o If $u \in C^1([0,\infty) \times \mathbb{R})$ is bounded, then u is a classical solution and hence is a bounded integral solution.
- [Lemma] Let $f \in C^2(\mathbb{R})$ and $g \in C^1(\mathbb{R})$. Assume that $\exists x_0 \in \mathbb{R}$ s.t. $f''\big(g(x_0)\big)g'(x_0) < 0$, then $\sup_{x \in \mathbb{R}} |\partial_x u(t,\cdot)| \to +\infty$ as $t \to T^-$ where $T = -\frac{1}{f''(g(x_0))g'(x_0)}$
- [Shock Curve] The shock curve is a curve $\{(t,x)|x=\sigma(t)\}$ where the solution u is not continuous i.e. there is a jump discontinuity.
- [Rankine-Hugonoit] For a shock solution u(t,x), the speed of the shockwave $\sigma'(t)$ is given by $\sigma'(t) = \frac{f(u_+(t)) f(u_-(t))}{u_+(t) u_-(t)}$

$$\circ \quad u_+(t) = \lim_{x \to \sigma(t)^+} u(t, x)$$

- $u_{-}(t) = \lim_{x \to \sigma(t)^{-}} u(t, x)$ Characteristic lines crash into the shock curve from left and right
- Example: Burger's equation

Line of Attack

General Form

- Method of characteristics
 - Any PDE of the form $F(x, u, \nabla u) = 0$
- Separation of Variables
 - Try a solution of the form u(t, x) = T(t)X(x)
 - o Beware: this might not comprise all solutions
- Fourier Transform
 - \circ Keep t, transform x
- See if variant of Heat / Wave / Laplacian
- Inverse of a distribution