ТЕХНОЛОГИИ ОБРАБОТКИ ИНФОРМАЦИИ

ЛЕКЦИЯ 6

ЗАЩИТА ИНФОРМАЦИИ

Что?

Зачем?

Почему?

А надо ли?

Шифрование?

Криптография?

КРИПТОГРАФИЯ

Криптография — это раздел математики, в котором изучаются и разрабатываются системы изменения письма с целью сделать его непонятным для непосвященных лиц.

Простейшая система шифрования — это замена каждого знака письма на другой знак по выбранному правилу.

ШИФРЫ И КРИПТОСИСТЕМЫ

- Шифры простой замены
- Шифры-перестановки
- Симметричное
- Асимметричное шифрование
- Криптосистемы без передачи ключей
- Криптосистемы с открытым ключом
- Электронная подпись

СИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

Симметричные криптосистемы - способ шифрования, в котором для шифрования и расшифровывания применяется один и тот же криптографический ключ.

ШИФР ПРОСТОЙ ЗАМЕНЫ

ШИФРЫ-ПЕРЕСТАНОВКИ

Исходный текст

E	K	Н	0	P	Ь
1	2	3	4	5	6
Т	3	В	A	0	С
С	Α	Т	Н	С	Т
Я	С	Р	И	T	A
3	Е	Α	E	0	С
Α	Д	ю	C	И	Ъ

После перестановки

ЭНИГМА

КРИПТОГРАФИЯ С ОТКРЫТЫМ КЛЮЧОМ

Асимметричное шифрование с открытым ключом базируется на следующих принципах:

- Можно сгенерировать пару очень больших чисел (открытый ключ и закрытый ключ) так, чтобы, зная открытый ключ, нельзя было вычислить закрытый ключ за разумный срок. При этом механизм генерации является общеизвестным.
- Имеются надёжные методы шифрования, позволяющие зашифровать сообщение открытым ключом так, чтобы расшифровать его можно было только закрытым ключом. Механизм шифрования является общеизвестным.
- Владелец двух ключей никому не сообщает закрытый ключ, но передает открытый ключ контрагентам или делает его общеизвестным.

КРИПТОГРАФИЯ С ОТКРЫТЫМ КЛЮЧОМ

Идея криптографии с открытым ключом очень тесно связана с идеей односторонних функций, то есть таких функций f(x), что по известному x довольно просто найти значение f(x), тогда как определение x из f(x) невозможно за разумный срок.

Имя	f (имя_пароль)	
АЛИСА	РОМАШКА	
БОБ	НАРЦИСС	

Вход в систему теперь выглядит так:

Имя:	АЛИСА
Пароль:	ГЛАДИОЛУС

СХЕМА ШИФРОВАНИЯ С ОТКРЫТЫМ КЛЮЧОМ

АТАКА НА СИСТЕМУ С ОТКРЫТЫМ КЛЮЧОМ

АЛГОРИТМ ШИФРОВАНИЯ RSA

RSA (аббревиатура от фамилий Rivest, Shamir и Adleman) — криптографический алгоритм с открытым ключом, основывающийся на вычислительной сложности задачи факторизации больших целых чисел.

RSA-ключи генерируются следующим образом:

- 1) выбираются два различных случайных простых числа *р* и *q* заданного размера (например, 1024 бита каждое);
- 2) вычисляется их произведение n = pq, которое называется модулем;
- 3) вычисляется значение функции Эйлера от числа n: $\varphi(n) = (p-1)(q-1)$
- 4) выбирается целое число e (1 < e < $\varphi(n)$ }1<e<\varphi (n)), взаимно простое со значением функции {\displaystyle \varphi (n)}\varphi (n);

АЛГОРИТМ ШИФРОВАНИЯ RSA

5) вычисляется число d, мультипликативно обратное к числу e по модулю $\varphi(n)$, то есть число, удовлетворяющее сравнению:

```
de = 1 \pmod{\varphi(n)}
```

- 6) пара (e,n) публикуется в качестве открытого ключа RSA
- 7) пара (d,n) играет роль закрытого ключа RSA

ШИФРОВАНИЕ И ДЕШИФРОВАНИЕ

есть открытый ключ Алисы

владеет своим закрытым ключом

Алгоритм шифрования[16]:

- ullet Взять *открытый ключ* (e,n) Алисы
- ullet Взять *открытый текст* m
- Зашифровать сообщение с использованием открытого ключа Алисы:

$$c=E(m)=m^e\mod n$$
 (1)

Алгоритм расшифрования:

- ullet Принять зашифрованное сообщение c
- ullet Взять свой *закрытый ключ* (d,n)
- Применить закрытый ключ для расшифрования сообщения:

$$m = D(c) = c^d \mod n$$
 (2)

ИСПОЛЬЗОВАНИЕ СЕАНСОВОГО КЛЮЧА

Алгоритм:

- Взять *открытый ключ* (e,n) Алисы
- ullet Создать случайный сеансовый ключ m
- Зашифровать сеансовый ключ с использованием открытого ключа Алисы:

$$c=E(m)=m^e\mod n$$

• Расшифровать сообщение C с помощью сеансового ключа симметричным алгоритмом:

$$M_A = D_m(C)$$

Алгоритм:

- ullet Принять зашифрованный сеансовый ключ Боба c
- ullet Взять свой *закрытый ключ* (d,n)
- Применить закрытый ключ для расшифровывания сеансового ключа:

$$m=D(c)=c^d\mod n$$

• Зашифровать сообщение M_A с помощью сеансового ключа симметричным алгоритмом:

$$C=E_m(M_A)$$

ЭЛЕКТРОННАЯ ЦИФРОВАЯ ПОДПИСЬ

Алгоритм:

- ullet Взять открытый текст m
- Создать цифровую подпись s с помощью своего секретного ключа $\{d,n\}$:

$$s=S_A\left(m
ight)=m^d\mod n$$

• Передать пару $\{m,s\}$, состоящую из сообщения и подписи.

Алгоритм:

- ullet Принять пару $\{m,s\}$
- ullet Взять открытый ключ $\{e,n\}$ Алисы
- Вычислить прообраз сообщения из подписи:

$$m' = P_A\left(s\right) = s^e \mod n$$

• Проверить подлинность подписи (и неизменность сообщения), сравнив m и m'

Шифрующая файловая система EFS

Encrypting File System (EFS) — система шифрования данных, реализующая шифрование на уровне файлов в операционных системах Microsoft Windows NT. Данная система предоставляет возможность «прозрачного шифрования» данных, хранящихся на разделах с файловой системой NTFS, для защиты потенциально конфиденциальных данных от несанкционированного доступа при физическом доступе к компьютеру и дискам.

EFS использует симметричное шифрование для защиты файлов, а также шифрование. По умолчанию закрытый ключ пользователя защищён с помощью шифрования пользовательским паролем, и защищённость данных зависит от стойкости пароля пользователя.