Regression

ML: learn a Function that minimizes the loss

- Start with random function parameters
- Repeat intelligent guessing/approximation of the Function parameters such that the difference between the Predicted Output the Expected Output (i.e., Loss) is reduced

Linear Regression with One Variable

Model Representation

Housing price prediction.

Supervised Learning "right answers" given

Regression: Predict continuous valued output (price)

Training	set of
housing	prices

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	•••

Notation:

m = Number of training examples

$$x =$$
"input" variable / features

(x, y) – single training example $(x^{(i)}, y^{(i)})$ – the i^{th} training example

$$x^{(1)} = 2104$$

$$x^{(2)} = 1416$$

$$y^{(1)} = 460$$

Training Set Learning Algorithm Y hat X Size of **Estimated** house price

How do we represent f?

$$f(x) = wx + b$$

w, b are parameters (coefficients)to learn from the training set

Linear regression with one variable Univariate linear regression

Given a training set, learn a function f so that f(x) is a "good" predictor for the corresponding value of y

Linear Regression with One Variable

$$f(x) = wx + b$$

How to choose w and b?

Idea: Choose w and b so that f(x) is close to y for our training examples (x, y)

Find w, b: $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$

Cost (mean squared error)

Function:

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^2$$

Goal: minimize J(w, b)

With m = number of training examples

Function:

$$f(x) = wx + b$$

Parameters:

w, b

Cost Function:

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^2$$

Goal: minimize J(w, b)

Simplified

$$f(x) = wx$$

W

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^{2}$$

 $\underset{w}{\text{minimize }} J(w)$

$$f(x) = wx$$

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^{2}$$
$$= \frac{1}{2m} (0^{2} + 0^{2} + 0^{2}) = 0$$

$$f(x) = wx$$

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^2$$
$$= \frac{1}{2m} ((0.5 - 1)^2 + (1-2)^2 + (1.5-3)^2)$$
$$= \frac{1}{2 \times 3} (3.5) = \frac{3.5}{6} = 0.58$$

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^{2}$$
$$= \frac{1}{2m} (1^{2} + 2^{2} + 3^{2})$$
$$= \frac{1}{2 \times 3} (14) = \frac{14}{6} = 2.3$$

$$f(x) = wx + b$$

$$f(x) = 50 + 0.06x$$

J(w, b)

$$f(x) = wx + b$$

J(w, b)

$$f(x) = wx + b$$

J(w,b)

$$f(x) = wx + b$$

J(w, b)

$$f(x) = wx + b$$

J(w,b)

$$f(x) = wx + b$$

J(w,b)

$$f(x) = wx + b$$

J(w, b)

$$f(x) = wx + b$$

J(w,b)

$$f(x) = wx + b$$

J(w,b)

$$f(x) = wx + b$$

J(w,b)

Linear Regression with One Variable

Gradient decent

```
Have a cost function J(w, b)

Want \min_{w,b} J(w, b)
```

Outline:

- Start with some w, b (say 0, 0)
- Keep changing w, b to reduce J(w, b) until we hopefully end up at a minimum

Gradient descent algorithm

Repeat until convergence

Learning rate Derivative

Simultaneously update w and b

Correct: Simultaneous update

$$tmp_{w} = w - \alpha \frac{\partial}{\partial w} J(w, b)$$

$$tmp_{b} = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

$$w = tmp_{w}$$

$$b = tmp_{b}$$

$$\overline{tmp_{-}w = w - \alpha \frac{\partial}{\partial w}} J(w, b)$$

Simplified

Gradient descent algorithm

repeat until convergence { $w = w - \alpha \frac{d}{dw} J(w)$ }

$$w = w - \alpha \frac{d}{dw} J(w)$$

If α is too small, gradient descent can be slow

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$w = w - \alpha \frac{d}{dw} J(w)$$

As we approach a local minimum, gradient descent will automatically take smaller steps (the slope gets smaller). So, no need to decrease α over time

Linear Regression with One Variable

Linear regression model Cost function

$$f_{w,b}(x) = wx + b$$

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

Gradient descent algorithm

repeat until convergence {

$$w = w - \alpha \frac{\partial}{\partial w} J(w, b) \longrightarrow \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(w, b) \longrightarrow \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples, m

	$oldsymbol{x}$ size in feet 2	y price in \$1	000's	$\sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$
(1)	2104	400		$\sum_{i=1}^{\infty} O_{i}(w,b) = 0$
(2)	1416	232		J(w,b)
(3)	1534	315	800	
(4)	852	178	(a) 500 (b) 400 300 200 100	
 (47)	 3210	 870	20 15 10 5 b	0 -5 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 w

Linear Regression with multiple variables

(multivariate linear regression)

Gradient descent for multiple features

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••	•••	•••	•••	•••

Notation:

n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

Hypothesis:

Previously: $h_w(x) = w_0 + w_1 x$

Now: Multivariate linear regression.

$$h_w(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

For convenience of notation, define $x_0 = 1$.

$$h_w(x) = W^T x = w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Parameters: $W_0, W_1, ..., W_n$

Cost function:

$$J(w_0, w_1, \dots, w_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

repeat {

$$w_j \coloneqq w_j - \alpha \frac{\partial}{\partial w_j} J(w_0, \dots, w_n)$$

(simultaneously update for every j = 0, ..., n)

Gradient Descent

Previously (n=1):

Repeat {
$$w_0 \coloneqq w_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) \frac{\partial}{\partial w_0} J(w)$$

$$w_{1} \coloneqq w_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{w}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

$$\frac{\partial}{\partial w_{i}} J(w)$$

(simultaneously update w_0 and w_1)

New algorithm $(n \ge 1)$:

Repeat {
$$w_{j} \coloneqq w_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{w}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$\frac{\partial}{\partial w_{j}} J(w)$$
 (simultaneously update w_{j} for $j = 0, ..., n$) }

$$w_0 \coloneqq w_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$w_1 \coloneqq w_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$w_2 \coloneqq w_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

....

Gradient descent in practice:

- Feature Scaling
- Debugging
- Learning rate
- Linear Regression with multiple variables
- Normal equation
- Other optimization algorithms
- Regularization
- Regression Evaluation

Feature Scaling: divide the input values by the range (i.e. the maximum value minus the minimum value) of the input variable, resulting in a new range of just 1.

The idea: Make sure features are on a similar scale. So that the gradient descent converges faster.

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$
 $x_2 = \frac{\text{number of bedrooms}}{5}$

Rule-of-thumb: Get every feature into approximately a $-1 \le x_i \le 1$ range, $-0.5 \le x_i \le 0.5$, or other similar small ranges.

Mean normalization

• Replace x_i to make features have approximately zero mean (Do not apply to $x_0 = 1$):

$$x_i \coloneqq \frac{x_i - \mu_i}{s_i}$$

Where μ_i is the **average** of all the values for feature (i) (**in the training set**) and s_i is the range of values (max - min), or s_i is the standard deviation.

$$x_1 = \frac{size - 1000}{2000}$$
 (average size of the houses is 1000, and ranges from 0 to 2000)

$$x_2 = \frac{\text{\#bedrooms}-2}{4}$$
 (average # of bedrooms is 2, and the range is from 1 to 5)

$$-0.5 \le x_1 \ge 0.5, -0.5 \le x_2 \ge 0.5,$$

Debugging:

Making sure gradient descent is working correctly.

automatic convergence test: Declare convergence if J(w)decreases by less than 10^{-3} in one iteration.

Learning rate:

Gradient descent not working.

Use smaller α .

- For sufficiently small α , J(w) should decrease on every iteration.
- If α is too small, gradient descent can be slow to converge.
- If α is too large: J(w) may not decrease on every iteration; may not converge.

To choose α , try

..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...

Linear Regression with multiple variables

Polynomial regression

$$w_0 + w_1 x + w_2 x^2 + w_3 x^3$$

$$w_0 + w_1 x + w_2 x^2$$

 $h_w(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$ = $w_0 + w_1 (size) + w_2 (size)^2 + w_3 (size)^3$

$$x_1 = (size)$$

$$x_2 = (size)^2$$

$$x_3 = (size)^3$$

Scales:

Size: 1 - 1000

Size²: 1 - 1000,000

Size 3 : 1 – 10 9

Use feature scaling.

$$h_w(x) = w_0 + w_1(size) + w_2(size)^2$$

 $h_w(x) = w_0 + w_1(size) + w_2\sqrt{(size)}$

Normal equation

Gradient Descent

Normal equation: Method to solve for w analytically.

Intuition: If 1D $(w \in \mathbb{R})$

$$J(w) = aw^2 + bw + c$$

To minimize this function

$$\frac{\partial}{\partial w}J(w) = \dots = 0$$

Solve for w

$$W \in \mathbb{R}^{n+1} \qquad J(w_0, w_1, \dots, w_n) = \frac{1}{2m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)})^2$$
$$\frac{\partial}{\partial w_j} J(w) = \dots = 0 \quad \text{(for every } j\text{)}$$

Solve for $w_0, w_1, ..., w_n$

Examples: m = 4.

	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	. 852	2	1	36	178

$$y = Xw$$

$$X^{T}y = XTXw$$

$$(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}Xw$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix} \quad X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

y is (m x 1) matrix, X is (m by n) matrix, w is (n by 1) matrix

$$\left(X^TX\right)^{-1}X^Ty = w$$

 $(X^T X)^{-1} X^T y = I w$

m training examples, n features.

Gradient Descent

- Need to choose α .
- Needs many iterations.
- Works well even when n is large.

Normal Equation

- No need to choose α .
- Don't need to iterate.
- Need to compute $(X^TX)^{-1}$ O(n^3)
- Slow if n is very large.
- No need for features scaling

Linear Regression with multiple variables

Normal equation and non-invertibility

Normal equation
$$w = (X^T X)^{-1} X^T y$$

- What if X^TX is non-invertible? (singular/ degenerate)
- Redundant features (linearly dependent).

E.g.
$$x_1 = \text{size in feet}^2$$

 $x_2 = \text{size in m}^2$

• Too many features (e.g. m < n).

Solution:

Delete some features.

Other Optimization algorithms than "Gradian descent"

- Conjugate gradient
- BFGS
- L-BFGS

- ...

Advantages:

- No need to manually pick α
- Often faster than gradient descent.

Disadvantages:

- More complex

Regularization

The problem of overfitting

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $\int_{0}^{\infty} \int_{0}^{\infty} (h_w(x^{(i)}) - y^{(i)})^2 \approx 0$), but fail to generalize to new examples (predict prices on new examples).

Addressing overfitting:

```
x_1 =  size of house x_2 =  no. of bedrooms x_3 =  no. of floors x_4 =  age of house x_5 =  average income in neighborhood x_6 =  kitchen size \vdots
```


Addressing overfitting:

Options:

- 1. Reduce number of features.
 - Manually select which features to keep.
 - Use feature selection algorithm.
- 2. Regularization.
 - Keep all the features, but reduce magnitude/values of parameters w_i .
 - Works well when we have a lot of features, each of which contributes a bit to predicting \boldsymbol{y} .

Regularization

Cost function

Intuition

Suppose we penalize and make w_3 , w_4 really small.

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2 + 1000 w_3^2 + 1000 w_4^2$$
$$w_3 \approx 0, \quad w_4 \approx 0$$

Regularization.

Small values for parameters $w_0, w_1, ..., w_n$

- "Simpler/smoother" hypothesis
- Less prone to overfitting

Housing:

- Features: $x_1, x_2, ..., x_{100}$
- Parameters: $w_0, w_1, w_2, ..., w_{100}$

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2$$

$$J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j^2 \right]$$

$$\min_{w} J(w)$$

In regularized linear regression, we choose w to minimize

$$J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

$$w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$$

$$w_1 \approx 0$$
, $w_2 \approx 0$, $w_3 \approx 0$, $w_4 \approx 0$

Regularized linear regression

$$J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j^2 \right]$$

$$\min_{w} J(w)$$

Gradient descent

Repeat {
$$w_0 \coloneqq w_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$w_j \coloneqq w_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) x_j^{(i)} - \frac{\lambda}{m} w_j \right]$$

$$(j = \mathbf{X}, 1, 2, 3, \dots, n) \qquad \frac{\partial}{\partial w_j} J(w) \text{ "Regularized"}$$

$$w_j \coloneqq w_j \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

 $1 - \alpha \frac{\lambda}{m} < 1$

Regression Evaluation

- Performance measured by
 - Mean Squared Error (MSE)

$$MSE = \frac{1}{n}\sum (y - \hat{y})^2$$

Root-Mean-Squared-Error (RMSE)

$$RMSE = \sqrt{\frac{(y - \hat{y})^2}{n}}$$

Mean-Absolute-Error (MAE)

$$MAE = \frac{1}{n} \sum |y - \widehat{y}|$$

— ...others