Reinforcement Learning – COMS4061A/7071A

Dynamic Programming

Prof. Benjamin Rosman

Benjamin.Rosman1@wits.ac.za / benjros@gmail.com

Last week

• MDP: $\langle S, A, P, R, \gamma \rangle$

• Policies: $\pi(a \mid s)$ or $\pi: S \to A$

• Value Functions: $v_{\pi}(s)$, $q_{\pi}(s,a)$

• Optimality: $v_*(s)$, $q_*(s,a)$, π_*

This week

- How do we compute these quantities?
 - (Optimal) value functions
 - (Optimal) policies
- We will assume known dynamics and reward function: $\langle S, A, P, R, \gamma \rangle$
 - Pros and cons?

Later relax this condition

Dynamic Programming

Class of algorithms for problems with two properties

1) Optimal substructure

Can decompose into subproblems to solve optimally

2) Overlapping subproblems

Subproblems recur many times

Shortest Path?

		G

$$distance(s) = 1 + \min_{neighbours(s)} distance(s)$$

The Bellman Equation

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a)[r + v_{\pi}(s')]$$

- 1) Recursive decomposition
- 2) Value function stores and reuses solutions

Prediction vs control

- Prediction:
 - Given a policy, what will happen?
 - How much return will I get?
 - Policy evaluation $\rightarrow v_{\pi}/q_{\pi}$?
- Control:
 - How to act optimally?
 - Compute $v_*/q_*/\pi_*$

Policy evaluation

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a)[r + \gamma v_{\pi}(s')]$$

- Solve this iteratively.
 - Turn Bellman equation into an update rule

$$v_{k+1}(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a)[r + \gamma v_k(s')]$$
 with v_0 arbitrary

Iterative policy evaluation

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$

Gridworld Example

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

 $R_t = -1$ on all transitions

- Undiscounted episodic MDP ($\gamma = 1$)
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Agent follows uniform random policy

v_k for the random policy

$$k = 0$$

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

$$k = 3$$

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

$$k = \infty$$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Control

• How can we use v_{π} to learn optimal policies?

- For some state s, is it better to pick $\alpha \neq \pi(s)$?
 - But for all other states stick with π ?
- The value of picking this action a at s?

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(s_{t+1}) \mid S_{t} = s, A_{t} = a]$$

= $\sum_{s',r} p(s', r \mid s, a)[r + \gamma v_{\pi}(s')]$

Policy improvement

- Consider new policy π' where $q_{\pi}(s, \pi'(s)) \geq v_{\pi}(s)$
- Then $v_{\pi'}(s) \ge v_{\pi}(s)$ (Policy Improvement thm)
- Simplest case: imagine $\pi' = \pi$ except at state s
 - If it is better to pick action according to π' here, then π' is as good as or better than $\pi\colon v_{\pi'}\geq v_{\pi}$

Policy improvement

Extend to all states and all actions

• Consider $\pi'(s) = \operatorname{argmax}_a q_{\pi}(s, a)$

• By construction, $q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s)$ $\Rightarrow v_{\pi'}(s) \ge v_{\pi}(s)$

• So the new policy π' is at least as good as π

Policy improvement

$$\pi'(s) = \operatorname{argmax}_{a} q_{\pi}(s, a)$$

$$= \operatorname{argmax}_{a} \sum_{s',r} p(s', r \mid s, a) [r + \gamma v_{\pi}(s')]$$

- ullet This is a one-step lookahead according to v_π
- If $v_{\pi'}=v_{\pi}$, then from above we have

$$v_{\pi'}(s) = \max_{a} \sum_{s',r} p(s',r \mid s,a)[r + \gamma v_{\pi'}(s')]$$

Bellman optimality eqn!

Summary of policy improvement

• Given a policy π , compute π' by acting greedily w.r.t. v_{π}

• π' is better or equal to π

• If $\pi' = \pi$ or $v_{\pi'} = v_{\pi}$, then π' must be optimal

Policy iteration

- This gives us a way of learning an optimal policy:
- 1. Start with an arbitrary policy
- 2. Compute its value function (policy evaluation)
- 3. Compute a new greedy policy w.r.t the value function (policy improvement)
- 4. Go to step 2 with the new policy
- Guaranteed to converge to optimal policy

Policy iteration

- Policy evaluation
 - Estimate value function
- Policy improvement
 - Act greedily

Policy iteration (Gridworld)

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

$$R_t = -1$$
 on all transitions

Early stopping?

	0.0	0.0	0.0	0.0
k = 0	0.0	0.0	0.0	0.0
k = 0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0
	0.0	-1.0	-1.0	-1.0

k = 10

 $k = \infty$

$$k = 1$$

$$0.0 | -1.0 | -1.0 | -1.0 | -1.0$$

$$-1.0 | -1.0 | -1.0 | -1.0 | -1.0$$

$$-1.0 | -1.0 | -1.0 | 0.0$$

$$k = 2$$

$$\begin{vmatrix}
0.0 & | -1.7 & | -2.0 & | -2.0 \\
-1.7 & | -2.0 & | -2.0 & | -2.0 \\
-2.0 & | -2.0 & | -2.0 & | -1.7 \\
-2.0 & | -2.0 & | -1.7 & | 0.0
\end{vmatrix}$$

~

We evaluated the policy, then acted greedily. Must we wait?

Value Iteration

- One iteration of policy evaluation (one update of each state)
- Followed by greedy improvement step

- Combine these into a single update state
 - No explicit policy!

Value iteration

Policy evaluation:

$$v_{k+1}(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) [r + \gamma v_k(s')]$$

Policy improvement:

•
$$\pi'(s) = \underset{argmax_a}{\operatorname{argmax}} \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$$

Combine into:

- Value iteration:
 - $v_{k+1}(s) = \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v_k(s')]$

Value iteration

- Combines one sweep of policy evaluation and policy improvement
- Converges to v_*

Complexity

- For both policy evaluation and value iteration, a single iteration is $O(|S|^2|A|)$
 - Number of iterations is exponential in the discount factor

- Policy iteration is strongly polynomial in the number of state-action pairs (Ye, 2011)
 - Value iteration is not (Feinberg and Huang, 2014)

Y. Ye. The simplex and policy-iteration methods are strongly polynomial for the Markov decision problem with a fixed discount rate. *Mathematics of Operations Research* 36.4 (2011): 593-603.

E. Feinberg, , and J. Huang. The value iteration algorithm is not strongly polynomial for discounted dynamic programming. *Operations Research Letters* 42.2 (2014): 130-131.

Also see https://rltheory.github.io/lecture-notes/planning-in-mdps/lec4/

Asynchronous DP

So far, all states are updated evenly

 But what if some states are more important than others?

- Asynchronous DP backs up states in an order
 - Reduce computation
- Converges if all states continue to be selected in the limit

Prioritised Sweeping

 Backup the state with the largest remaining Bellman error (use priority queue)

$$\left| \max_{a} \sum_{s',r} p(s',r \mid s,a) [r + \gamma v(s')] - v(s) \right|$$

Recompute error of affected states each time

Real-Time DP

Update only states relevant to agent

- e.g. Keep track of all states ever visited by the agent
 - Update only those states

Summary

- Given full knowledge of the MDP, we can compute the optimal policy with dynamic programming
- Policy iteration interleaves policy evaluation with policy improvement
 - In practice, preferred to value iteration
- Can be used to solve MDPs with millions of states
 - Turns out "millions" isn't that big
- Next lecture will look at when we do not know the dynamics (TD learning)

Homework

- Modify the gridworld you created last week to create a 4x4 version
 - No obstacles
 - Rewards of -1 on all transitions
 - Goal in the top left corner entering the goal state ends the episode
- Given this environment and a uniform random policy, implement 2 versions of policy evaluation
 - The in-place version, as presented in the book
 - A two-array version, which only updates the value function after looping through all states (see pg 75)
 - Use a threshold value of $\theta = 0.01$
 - NB: Careful of how you handle the terminal state!!
- For a given γ , record the number of iterations of policy evaluation until convergence

By next week's lecture, submit on Moodle (groups of up to 4):

- 1. A 2d heatmap plot of the value function for $\gamma = 1$
- 2. A combined plot of both versions of policy evaluation for different discount rates
 - 1. The x-axis should be the discount rate. The range of discounts should be specified by np.logspace(-0.2, 0, num=20)
 - 2. The y-axis should be the number of iterations to convergence
- 3. Your code