

By @kakashi_copiador

Estratégia Concursos

CORRELAÇÃO

CORRELAÇÃO POSITIVA

CORRELAÇÃO POSITIVA PERFEITA

CORRELAÇÃO NEGATIVA

https://t.me/kakashi_copiador

CORRELAÇÃO NEGATIVA PERFEITA

CORRELAÇÃO NULA

MÉTODO DOS MÍNIMOS QUADRADOS ORDINÁRIOS

$$\beta = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n\bar{x}^2}$$

$$\beta = \frac{COV(X;Y)}{VAR(X)}$$

$$\beta = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n\bar{x}^2}$$

$$\beta = \frac{COV(X;Y)}{VAR(X)}$$

SE
$$\alpha = 0$$
 $\beta = \frac{\sum_{i \neq j} xy}{\sum_{i \neq j} x^2}$

PASSA PELA ORIGEM

- RETA DA REGRESSÃO

Estratégia

amostra	Х	У	X.y	χ^2
1	100	60	6000	10.000
2	80	40	3200	6400
3	90	40	3600	8 100
4	120	50	6000	14 400
5	110	60	6600	12100
TOTAL	500	250	25400	51.000

$$\beta = \frac{\sum xy - n.\overline{x}.\overline{y}}{\sum x^2 - n.\overline{x}^2}$$

$$\beta = \frac{25400 - 5.100.50}{51000 - 5.100^{2}}$$

$$\beta = \frac{25400 - 25000}{51.000 - 50.000}$$

$$\beta = \frac{400}{1.00}$$

$$\overline{\chi} = 100$$

$$\overline{y} = 50$$

$$n=5$$
 $\sum xy = 25400$

$$\sum_{1}^{2} x^{2} = 51.000$$

https://t.me/kakashi_copiador

Para fazer uma regressão linear da forma $Y = \alpha + \beta X$, um analista usando o método dos mínimos quadrados, encontrou, a partir de 20 amostras, os seguintes somatórios

$$\Sigma X=300; \Sigma Y=400; \Sigma X^2=6.000; \Sigma e \Sigma(XY)=8.400$$

$$\overline{\chi} = 15$$

$$\overline{\gamma} = 20$$

$$\beta = \frac{51 \times y - n.\overline{\chi}}{51 \times 2 - n.\overline{\chi}}$$

$$\beta = \frac{8400 - 20.15.20}{6000 - 20.15^{2}}$$

$$\beta = \frac{8400 - 6000}{6000 - 4500}$$

	Х	у
MÉDIA	8	10
DESVIO PADRÃO	(2)	3
COV (X;Y)		(3)

$$y = x + \beta X + \epsilon$$

 $\beta = \frac{COV(XY)}{VAR(X)}$

CÁLCULO DO **INTERCEPTO**

$$y = \alpha + \beta x$$

$$y - \beta x = \alpha$$

$$\alpha = y - \beta x$$

CÁLCULO DO INTERCEPTO

Para fazer uma regressão linear da forma $Y = \alpha + \beta X$, um analista, usando o método dos mínimos quadrados, encontrou, a partir de 20 amostras, os seguintes somatórios

$$\Sigma X=300; \Sigma Y=400; \Sigma X^2=6.000; \Sigma e \Sigma(XY)=8.400$$

$$\beta = \frac{\sum_{1} x y - n. \overline{x}. \overline{y}}{\sum_{1} x^2 - n. \overline{x}^2} \qquad \qquad x = \overline{y} - \beta. \overline{x}$$

$$\beta = \frac{8400 - 20.15.20}{6000 - 20.15^2} \qquad x = 20 - 16.15$$

$$\beta = 1.6 \qquad x = -4$$

https://t.me/kakashi copiador

CÁLCULO DO INTERCEPTO

)×	У
MÉDIA	8	(10)
DESVIO PADRÃO	2	3
COV (X;Y)	_	3

$$\beta = \frac{\text{COV}(xy)}{\text{VAR}(x)}$$

$$\propto = \overline{y} - \beta \overline{\chi}$$

$$\frac{3}{4}$$
 $\alpha = 10 - 0,75.8$

https://t.me/kakashi_copiador

CÁLCULO DA EQUAÇÃO

Um grupo de 5 pessoas ingressou em um plano de dieta com o objetivo de reduzir peso. Obtenha a equação de regressão estimada que relacione a quantidade de peso perdida, Y em kg, e o número de semanas de cada um dos participantes no plano, X, sabendo que os valores registrados foram:

$$\Sigma X=15$$
, $\Sigma Y=35$, $\Sigma XY=123$, $\Sigma X^2=55$.

CÁLCULO DA EQUAÇÃO

A tabela a seguir apresenta uma amostra aleatória simples formada por 5 pares de valores (X_i, Y_i) , em que $i = 1, 2, ..., 5, X_i$ é uma variável explicativa e Y_i é uma variável dependente.

i	1	2	3	4	5
X _i	0	1	2	3	4
Y _i	0,5	2,0	2,5	5,0	3,5

CÁLCULO DA EQUAÇÃO

Considere o modelo de regressão linear simples na forma $Y_i=bX_i+\epsilon_i$, no qual ϵ representa um erro aleatório normal com média zero e variância σ^2 e b é o coeficiente do modelo.

Com base nos dados da tabela e nas informações apresentadas, é correto afirmar que o valor da estimativa de mínimos quadrados ordinários do coeficiente b é igual a

- A. 0,75.
- B. 0,9.
- C. 1,2.
- D. 1,35.
- E. 1,45.

 εi é o componente aleatório de Yi que descreve os erros (ou desvios) cometidos quando tentamos aproximar uma série de observações Xi por meio de uma reta Yi.

i)
$$E(\varepsilon i) = 0$$
.

 A média dos erros é igual a zero. Ou seja, os desvios "para cima da reta" igualam o valor dos desvios "para baixo da reta" na média.

ii)
$$Var(\varepsilon i) = \sigma^2$$
.

 A variância dos erros é constante. Essa propriedade é denominada de homocedasticia.

iii)
$$Cov(\varepsilon i, \varepsilon j) = 0 \ para \ i \neq j$$
.

 Os erros cometidos não são correlacionados, isto é, os desvios εi são variáveis aleatórias independentes.

Estratégia Concursos

