Write a program for performing industrial data analysis using relevant tools and techniques

IIOT LAB - assignment 9

Perform data analysis on industrial safety and health analysis:

- 1. Show correlation using heatmap on all predictors.
- 2. Which country has most and least number of accidents?
- 3. Which industrial sector has most and least number of accidents?
- 4. Among employee and third party who is most likely to get into accident?
- 5. Which gender is most likely to get into accident?
- 6. Perform visualizations like bar plot, count plot, etc.

```
In [1]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Out[2]:

	Unnamed: 0	Data	Countries	Local	Industry Sector	Accident Level	Potential Accident Level	Genre	Employee or Third Party
0	0	2016- 01-01 00:00:00	Country_01	Local_01	Mining	I	IV	Male	Third Party
1	1	2016- 01-02 00:00:00	Country_02	Local_02	Mining	I	IV	Male	Employee
2	2	2016- 01-06 00:00:00	Country_01	Local_03	Mining	I	III	Male	Third Party (Remote)
3	3	2016- 01-08 00:00:00	Country_01	Local_04	Mining	I	I	Male	Third Party
4	4	2016- 01-10 00:00:00	Country_01	Local_04	Mining	IV	IV	Male	Third Party

1. Show correlation using heatmap on all predictors.

```
In [3]: # Select only numeric columns for correlation analysis
    numeric_data = data.select_dtypes(include='number')
    # Calculate the correlation matrix
    correlation_matrix = numeric_data.corr()
    correlation_matrix
```

Out[3]:

	Unnamed: 0	Gender
Unnamed: 0	1.000000	0.051851
Gender	0.051851	1.000000

```
In [4]: # Create a heatmap
plt.figure(figsize=(6, 4))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```


2. Which country has most and least number of accidents?

```
In [5]: most_accidents_country = data['Countries'].value_counts().idxmax()
    least_accidents_country = data['Countries'].value_counts().idxmin()
    print("Country with the most accidents:", most_accidents_country)
    print("Country with the least accidents:", least_accidents_country)
```

Country with the most accidents: Country_01 Country with the least accidents: Country 03

```
In [6]: data['Countries'].value_counts()
```

```
Out[6]: Countries
```

Country_01 251 Country_02 130 Country_03 44

```
In [7]: plt.figure(figsize=(6, 4))
    sns.countplot(x='Countries', data=data)
    plt.title('Accidents by Country')
    plt.xticks(rotation=90)
    plt.show()
```


3. Which industrial sector has most and least number of accidents ?

```
In [8]: most_accidents_sector = data['Industry Sector'].value_counts().idxmax()
    least_accidents_sector = data['Industry Sector'].value_counts().idxmin()
    print("Sector with the most accidents:", most_accidents_sector)
    print("Sector with the least accidents:", least_accidents_sector)
```

Sector with the most accidents: Mining Sector with the least accidents: Others

In [9]: data['Industry Sector'].value_counts()

Out[9]: Industry Sector

Mining 241 Metals 134 Others 50

```
In [10]: plt.figure(figsize=(6, 4))
    sns.countplot(x='Industry Sector', data=data)
    plt.title('Accidents by Industry Sector')
    plt.xticks(rotation=90)
    plt.show()
```


4. Among employee and third party who is most likely to get into accident?

```
In [13]: plt.figure(figsize=(6, 4))
    sns.countplot(x='Employee or Third Party', data=data)
    plt.title('Employee Type in Accidents')
    plt.xticks(rotation=90)
    plt.show()
```


5. Which gender is most likely to get into accident?

```
In [16]: plt.figure(figsize=(6, 4))
    sns.countplot(x='Genre', data=data)
    plt.title('Gender in Accidents')
    plt.show()
```


In []:	
In []:	