

Flow Interactions and Control

Date: 04 MAR 2013

Dr. Douglas Smith
Program Officer
AFOSR/RTA
Air Force Research Laboratory

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 04 MAR 2013		2. REPORT TYPE		3. DATES COVERED 00-00-2013 to 00-00-2013	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
Flow Interactions and Control				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Office of Scientific Research ,AFOSR/RTA,875 N. Randolph,Arlington,VA,22203				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited			
13. SUPPLEMENTARY NO Presented at the A	otes FOSR Spring Revie	w 2013, 4-8 March,	Arlington, VA.		
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 22	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

2013 AFOSR SPRING REVIEW

NAME: Douglas Smith

BRIEF DESCRIPTION OF PORTFOLIO:

Foundational research examining <u>aerodynamic interactions</u> of laminar/transitional/turbulent <u>flows with structures</u>, rigid or flexible, stationary or moving.

Fundamental understanding is used to develop integrated control approaches to intelligently modify the flow interaction to some advantage.

LIST SUB-AREAS IN PORTFOLIO:

Flow Physics for Control Flow Control Effectors Low Reynolds Number Unsteady Aerodynamics Aeromechanics for MAVs

Overview

Interactions Energy pathways **Transition** Energy Reynolds No. Unsteadiness Time/length scales **Vortices Bio-inspiration** Stability Flexibility Turbulence Separation Flow Control **Boundary layer** Kinematics **Simulations** Flight stabilization **Jets** Shear layer Wakes Experiments Modeling

Portfolio map

Study of Physics-based Control of Jets in Crossflow

K. Mahesh, Minnesota & A. Karagozian, UCLA

Controlled transverse jet mixing requires understanding fundamental instabilities and their response to jet excitation

Exploiting the nonlinear dynamics of near-wall turbulence for skin-friction reduction

M. Graham, Wisconsin

(BRI) Wall Turbulence With Designer Properties: Manipulation of Energy Pathways

McKeon & Tropp, Caltech & Goldstein, UT-Austin & Sheplak, Florida

RIBUTION STATEMENT A - Unclassified, Unlimited Distribution

Portfolio map

Biological Inspiration

Biological Inspiration

From Nature – Attenborough's Life Stories – Life on Camera Courtesy of WETA

Micro Air Vehicle Unsteady Aerodynamics

M. OL, AFRL/RQ

Case-study: Re effects on hovering plate

Re 300

Hovering plate at 45° incidence , rectilinear motion: LEV and TEV production at semi-stroke extremum, but no vortex stability. Vortices at Re = 10,000 almost indistinguishable from Re = 300

Re 10,000

Case-study: rotation vs. translation impulsive-start

Rotating AR=2 plate vs. Translating AR=4 plate Acceleration is linear ramp over 1 chord

At Re = 10000, lift an drag histories are mutually similar, and net aero force is wall-normal. At Re = 60, viscous effects tilt the net aero force aft, far more so for translation than for rotation. This might explain benefits of insect-type flapping at very low

Role of Leading Edge Vortex

Flapping-Wing Vortex Formation and Scaling

M. Ringuette (YIP 2010), Buffalo

For both ARs, **stable LEV** over inboard ~50-60% span **AR-effects**:

outboard LEV detaches for AR = 4 AR = 2 stays close to plate

Flow Structure and Loading on Revolving-Pitching Wings

D. Rockwell, Lehigh

VORTEX SYSTEM ON ROTATING WING

DOWNWASH IN RELATION TO LEADING EDGE VORTEX

High-Resolution Computational Studies and Low-Order Modeling of Agile Micro Air Vehicle Aerodynamics

J. Eldredge, UCLA

AeroVironment 'Nano Hummingbird'

UMD/Daedalus (ARL/MAST)

Linear Quasi-Steady Wingbeat-ave'd

Flight Ctrl

Reduced Maneuverability

DISTRIBUTION STATEMENT A - Unclassified, Unlimited Distribution

Control of Low Reynolds Number Flows with Fluid-**Structure Interactions**

I Gursul, Bath

- Conventional flow control techniques are not practical for MAVs (weight limitation, insufficient space for actuators)
- Attempt to exploit aeroelastic vibrations of flexible wings
- Excite the fluid instabilities with structure

Time-averaged lift measurements

Wing deformation measurements

Understanding the Flow Physics of Energy Extraction from Gusting Flows to Enhance MAV Performance

D. Williams, IIT & T. Colonius, Caltech

 $U_{\infty}(t)$ is at the same peak value for both images, but lift is different

LEV structure controls L'

Deeper insight obtained from numerical simulations shown in next slide

Lift fluctuations for different Reynolds numbers

Instantaneous flow structure (vorticity) on flat-plate airfoil @ Re=500

Physics-based morphology analysis and adjoint optimization of flexible flapping wings

H. Dong, UVa & M. Wei, NMSU

Time-Dependent Fluid-Structure Interaction & Passive Flow Control of Low Reynolds Number Membrane Wings

P. Hubner, A. Lang, Alabama & L. Ukeiley, P. Ifju, Florida

Aerodynamics and Mechanics of Robust Flight in Bats

S. Swartz & K. Breuer, Brown

- Social animals are known to fly (birds & bats) or swim (fish)
- in large groups with diverse géometric arrangements May be fluid dynamic and energetic advantages depending on the circumstances
- For bats, little is known of the group flight dynamics

Flying bats generate wakes that may be sensed by other individuals to control spacing, reduce flight cost, and increase aerodynamic force production.

Cynopterus brachyotis, the lesser dog-faced fruit bat, and the robotic flapping wing based on its anatomy and flight behavior.

Flight power with and without wing folding, with respect to main flapping axis[(a), left] and front-back axis [(b), right]. Plots are mean and 95% CI for 160 wingbeats at 8 Hz and 60° stroke plane; grey shading is downstroke.

Biological Inspiration

Courtesy of Breuer & Swartz, Brown

20

An Integrated Study of Flight Stabilization with Flapping Wings in Canonical Urban Flows

R. Mittal, JHU & Hedrick, UNC

- Stabilization of flapping wing vehicles in complex flows is critical for effective operation of these vehicles.
- Study of flight stabilization in insects could lead to new insights for designing small, agile flying vehicles

