Tema 3

Campo electrostático en medios materiales

José Emilio Prieto Dpto. Física de la Materia Condensada Universidad Autónoma de Madrid

joseemilio.prieto@uam.es

Curso "Electromagnetismo"

Tema 3: Campo *E* en medios materiales

Tipos de materiales

J.E. Prieto

Fuente principal de figuras: "Physics for scientists and engineers" (5th edition), P.A. Tipler, G. Mosca

Comportamiento eléctrico de los materiales

- Hay básicamente dos tipos de materiales en cuanto a su comportamiento eléctrico:
 - Conductores: transportan una corriente eléctrica cuando se les somete a un campo *E*. Ejemplos típicos: metales.
 - Aislantes o dieléctricos: no son capaces de conducir una corriente significativa. Ejemplos típicos: cristales iónicos, sólidos moleculares, plásticos...
- (en realidad hay una tercera categoría...)
 - Semiconductores: propiedades de conductividad intermedias entre conductores y aislantes y fácilmente modificables ¡esenciales en Electrónica! Ej.: Si, GaAs...

Curso "Electromagnetismo"

Tema 3: Campo *E* en medios materiales

Conductores

J.E. Prieto

Fuente principal de figuras: "Physics for scientists and engineers" (5th edition), P.A. Tipler, G. Mosca

Conductores

- Conductores: transportan una corriente eléctrica cuando se les somete a un campo *E*.
 - Se debe a la presencia de cargas libres que se pueden desplazar en respuesta a E: (electrones deslocalizados, no ligados a un átomo en particular)

Conductores en campo ES

- Comportamiento de los conductores en presencia de campos eléctricos *E* estáticos:
 - Conductores: transportan una corriente eléctrica cuando se les somete a un campo E. Dos implicaciones importantes:
 - En el interior de un conductor en situación estática,
 no puede haber campo E (!!) :
 - Si lo hubiera, habría una corriente: no sería una situación estática (!)
 - En la superficie de un conductor en situación estática, sólo puede haber campo E en la dirección perpendicular a la superficie (!!) :
 - Si tuviera componente paralela, habría una corriente paralela: no sería situación estática.

Conductores en campo ES

- Comportamiento de los conductores en presencia de campos eléctricos *E* estáticos:
 - En el interior de un conductor en situación estática, no puede haber campo E.
 - En la superficie de un conductor en situación estática, sólo puede haber campo E en la dirección perpendicular a la superficie.

Potencial de conductores en campo ES

- En la superficie de un conductor, el campo *E* tiene la dirección normal.
 Una implicación importante:
- Sabemos que el campo **E** es siempre perpendicular a las superficies equipotenciales.
- → La superficie de un conductor en electrostática es una superficie equipotencial.
- \rightarrow y el interior está también al mismo potencial (pues ahí E = 0 y V = cte.)
- → Todos los puntos conectados por un conductor en electrostática están al mismo potencial.

Carga en conductores en campo ES

- ¿Dónde puede haber carga eléctrica en un conductor en presencia de campo **E** estático?
- Apliquemos la **Ley de Gauss** a una superficie completamente contenida en el interior del conductor :

$$E = 0 \Rightarrow \Phi = 0 \Rightarrow Q_{vol} = 0$$

- En el interior de un conductor no puede haber carga neta: $Q_{vol} = 0$, $\rho = 0$.
- En un conductor, la carga sólo puede estar en la superficie: σ≠ 0.

Carga en la superficie de un conductor en ES

- ¿Cuánta carga hay en la superficie de un conductor?
- Apliquemos la Ley de Gauss a un pequeño cilindro en la superficie:
 - E es perpendicular a la superficie del conductor → sólo contribuyen las tapas al flujo
 - En la tapa inferior (dentro del conductor) $E = 0 \rightarrow \text{sólo contribuye la tapa superior (con área } \delta S$):

$$\Phi = E \delta S$$

$$\Phi = E \delta S \quad Q_{enc} = \sigma \delta S$$

Surface charge

density o

$$\Phi = \frac{Q_{enc}}{\epsilon_0}$$

En la superficie de un conductor:

$$E = \frac{\sigma}{\epsilon_0} u_n$$

Surface of

Conductor

Conductores

- ¿Por qué sucede todo esto?
 - Si en el interior de un conductor *E* = 0, el conductor está
 "apantallando" perfectamente el campo electrostático *E* :

Apantallamiento: se desplazan cargas q libres dentro del conductor y se colocan en la superficie de forma que el campo inducido que crean \boldsymbol{E}_{ind} cancela al campo externo \boldsymbol{E}_{ext} :

$$E = E_{ext} + E_{ind} = 0$$

Aplicación: jaula de Faraday

En el interior de un conductor E = 0 y V = cte.

→Se utiliza este efecto para proteger equipos, señales eléctricas o personas de campos externos (jaula de Faraday) mediante una caja o malla metálica (conectada a tierra).

Cable coaxial y conector BNC

Resumen: Conductores en campo ES (1)

- En el interior de un conductor en situación estática, E = 0.
- En la superficie de un conductor en situación estática, sólo puede haber campo *E* en la dirección *perpendicular a la superficie*.
 - →La superficie de un conductor en electrostática es una superficie equipotencial.

→ Los puntos conectados por un conductor en electrostática

están al mismo potencial.

• En el *interior* de un conductor no puede haber carga neta: $Q_{vol} = 0, \ \rho = 0.$

- En un conductor, la carga sólo puede estar en la superficie: σ≠ 0:
 - Campo *E* en la superficie de un conductor: relación con la carga superficial *σ*:

$$E = \frac{\sigma}{\epsilon_0} u_n$$

Resumen: Conductores en campo ES (2)

• Apantallamiento: en un conductor se desplazan las cargas q libres de manera que el campo inducido que crean E_{ind} cancela al campo externo E_{ext} :

$$E_{vol} = E_{ext} + E_{ind} = 0$$

 Aplicaciones: jaula de Faraday, apantallamiento de señales:

Cable coaxial y conector BNC