Nome: Guilherme Miyata Corrêa RA: 69695

Nome: Thiago Rodrigo Bucalão RA: 68962

Projeto No. 2: Relógio Digital

Primeiramente é montado as tabelas verdades do circuito:

Tabela verdade do contador das unidades.

Q_3	Q_2	Q_1	Q_0	J_3	K ₃	J_2	K ₂	J_1	K ₁	J_0	K_0
0	0	0	0	0	X	0	X	0	X	1	X
0	0	0	1	0	X	0	X	1	X	X	1
0	0	1	0	0	X	0	X	X	0	1	X
0	0	1	1	0	X	1	X	X	1	X	1
0	1	0	0	0	X	X	0	0	X	1	X
0	1	0	1	0	X	X	0	1	X	X	1
0	1	1	0	0	X	X	0	X	0	1	X
0	1	1	1	1	X	X	1	X	1	X	1
1	0	0	0	X	0	0	X	0	X	1	X
1	0	0	1	X	1	0	X	0	X	X	1
1	0	1	0	X	X	X	X	X	X	X	X
1	0	1	1	X	X	X	X	X	X	X	X
1	1	0	0	X	X	X	X	X	X	X	X
1	1	0	1	X	X	X	X	X	X	X	X
1	1	1	0	X	X	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X	X	X

O contador das unidades deve contar de zero a nove, e para isso é necessário 4 *flip-flops*, com 4 *bits*, para fazer a contagem em binário e converter para decimal através de um conversor BCD e um *display* de 7 segmentos para mostrar os números. Como serão necessários apenas os números de 0 a 9 (0000 a 1001), os outros podem ser considerados como estado irrelevante (1010 a 1111).

Tabela verdade do contador das dezenas.

Q_6	Q_5	Q_4	J_6	K ₆	J_5	K ₅	J_4	K ₄
0	0	0	0	X	0	X	1	X
0	0	1	0	X	1	X	X	1
0	1	0	0	X	X	0	1	X
0	1	1	1	X	X	1	X	1
1	0	0	X	0	0	X	1	X
1	0	1	X	1	0	X	X	1
1	1	0	X	X	X	X	X	X
1	1	1	X	X	X	X	X	X

A tabela verdade do contador das dezenas é semelhante ao das unidades, mas como são necessários apenas os números de 000 (0) a 101 (5), pode ser usado apenas 3 bits (3 flip-flops). Também será usado um conversor BCD e um display de 7 segmentos. Como serão usados apenas os números de 0 a 5, os outros poderão ser considerados como estado irrelevante.

Expressões simplificadas por Mapa de Karnaugh:

		Q_1	Q_1		
Q_3	0	0	0	0	Q ₂ '
	0	0	1	0	Q_2
	X	X	X	X	
Q_3	X	X	X	X	Q2'
	Q_0	(Q_0	Q_0	

 $J_3 = Q_2.Q_1.Q_0$

		Q_1	Q_1		
Q_3	X	X	X	X	Q2'
	X	X	X	X	Q_2
	X	X	X	X	
Q_3	0	1	X	X	Q2'
	Q_0	(Q_0	Q_0	1

 $K_3 = Q_0$

		Q_1	Q_1		
Q_3	0	0	1	0	Q_2
	X	X	X	X	Q_2
	X	X	X	X	
Q_3	0	0	X	X	Q2'
	Q_0	(Q_0	Q_0	1

 $J_2 = Q_1.Q_0$

		Q_1	Q_1		
Q_3	X	X	X	X	Q2'
	0	0	1	0	Q_2
	X	X	X	X	
Q_3	X	X	X	X	Q ₂ '
	Q_0	(Q_0	Q_0	1

 $K_2 = Q_1.Q_0$

		Q_1	Q_1		
Q_3	0	1	X	X	Q ₂ '
	0	1	X	X	Q_2
	X	X	X	X	
\mathbf{Q}_3	0	0	X	X	Q ₂ '
	Q_0	(Q_0	Q_0	1

 $J_1 = Q_3'.Q_0$

		Q_1	Q_1		
Q_3	X	X	1	0	Q2'
	X	X	1	0	Q_2
	X	X	X	X	
Q_3	X	X	X	X	Q2'
	Q_0	(Q_0	Q_0	1

 $K_1 = Q_0 \\$

		Q_1	Q_1		
Q_3	1	X	X	1	Q_2
	1	X	X	1	Q_2
	X	X	X	X	
Q_3	1	X	X	X	Q2'
	Q_0	(Q_0	Q_0	1

 $J_0=1$

		Q_1	Q_1		
Q_3	X	1	1	X	Q2'
	X	1	1	X	Q_2
	X	X	X	X	
\mathbf{Q}_3	X	1	X	X	Q ₂ '
	Q_0	(Q_0	Q_0	1

 $K_0 = 1$

		Q_5	Q_5	
Q_6	0	0	1	0
Q_6	X	X	X	X
	Q ₄ '	(Q ₄	Q ₄ '

 $J_6 = Q_5.Q_4$

		Q_5	Q_5	
Q_6	X	X	X	X
Q_6	0	1	X	X
	Q ₄ '	(Q ₄	Q ₄ '

 $K_6 = Q_4$

	Q_5		Q_5	
Q_6	0	1	X	X
Q_6	0	0	X	X
	Q ₄ '		Q ₄	Q ₄ '

$$J_5 = Q_6$$
'. Q_4

		Q_5	Q_5		
Q_6	X	X	1	0	

		~	ζ.	
Q_6	X	X	1	0
Q_6	X	X	X	X
•	Q ₄ '	Q_4		Q ₄ '

$$K_5 = Q_4 \\$$

	Q ₅ '		Q_5	
Q_6	1	X	X	1
Q_6	1	X	X	X
	Ω_4	()4	O_4

 $J_4=1$

	Q_5		Q_5	
Q_6	X	1	1	X
Q_6	X	1	X	X
	Q ₄ '		Q ₄	Q ₄ '

$$K_4 = 1$$

Para usar os dois contadores juntos, é necessário usar as saídas do primeiro contador (unidades) como clock do segundo (dezenas).

Q ₃	Q_2	Q_1	Q_0	CK
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

		Q_1	Q_1		
Q_3	0	0	0	0	Q_2
	0	0	0	0	Q_2
	X	X	X	X	
Q_3	0	1	X	X	Q2'
	Q_0	(Q_0	Q_0	1

 $CK = Q_3.Q_0$

Circuito resultante:

Bibliografia

TANENBAUM, A. S. **ORGANIZAÇÃO ESTRUTURADA DE OMPUTADORES**. EDITORA PRENTICE-HALL DO BRASIL LTDA., 1992.

TOCCI, RONALD J.; WIDMER, NEAL S.; MOSS, GREGORY L. **SISTEMAS DIGITAIS: PRINCÍPIOS E APLICAÇÕES**. EDITORA: PEARSON PRENTICE HALL, 10^a EDIÇÃO, 2007.

CAPUANO, FRANCISCO GABRIEL E IDOETA, IVAN V. **ELEMENTOS DE ELETRÔNICA DIGITAL**. EDITORA ÉRICA, 40ª EDIÇÃO, 2006.

UYEMURA, JOHN PAUL. **SISTEMAS DIGITAIS: UMA ABORDAGEM INTEGRADA**. EDITORA THOMSON PIONEIRA, 1ª EDIÇÃO, 2002.