Study sheet 3, Exercise 1

10 November 2016

$\mathbf{E}\mathbf{x} \ \mathbf{1}$

Gegeben

- A1: $E[\epsilon_i] = 0$ oder $E[y] = X\beta$
- A2: $Var[\epsilon_i] = \sigma^2$
- A3: $Cov[\epsilon_i, \epsilon_j] = 0$ for $i \neq j$ A4: $\epsilon = (\epsilon_1, \dots, \epsilon_n)'$ ist multivariatnormal verteilt.

a

A1 = Minimale Voraussetzung.

b

A2 und A3.

$$Var(\varepsilon_i) = \sigma^2; \quad Cov(\varepsilon_i, \varepsilon_j) = 0$$
$$Var(\hat{\beta}) = \sigma^2 I; \quad Var(y) = \sigma^2$$
$$Var(\hat{\beta}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^2 \mathbf{I}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}$$
$$= \sigma^2 (X'X)^{-1}$$

 \mathbf{c}

A1, A2 und A3: Gauß-Markov-Theorem.

 \mathbf{d}

A1, A2, A3 und A4.