Capítulo 10

Series de números

10.1. Definición de serie numérica y convergencia

Definición 10.1.1. Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión. Diremos que la sucesión $\{a_n\}_{n\in\mathbb{N}}$ es sumable, o que la serie $\sum_{n=1}^{\infty} a_n$ converge (o es convergente), si el límite $\lim_{N\to\infty} \sum_{n=1}^{N} a_n \in \mathbb{R}$. Si dicho límite no existe o es infinito, diremos que la serie $\sum_{n=1}^{\infty} a_n$ diverge (o es divergente).

Ejemplo 10.1.2. La serie $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ es convergente si, y solo si, $\alpha > 1$.

10.2. Algunos criterios de convergencia

Teorema 10.2.1. (Criterio del resto). Si la serie $\sum_{n=1}^{\infty} a_n$ es convergente, entonces $\lim_{n\to\infty} a_n = 0$ o, equivalentemente, si $\lim_{n\to\infty} a_n \neq 0$, o no existe, entonces la serie $\sum_{n=1}^{\infty} a_n$ es divergente.

Ejemplo 10.2.2.

- 1. La serie $\sum_{n=3}^{\infty} \frac{n+1}{n-2}$ no converge, ya que $\lim_{n\to\infty} \frac{n+1}{n-2} = 1$.
- 2. El recíproco no es cierto, ya que $\lim_{n\to\infty}\frac{1}{n}=0$ y, sin embargo, la serie $\sum_{n=1}^{\infty}\frac{1}{n}$ no converge.

Teorema 10.2.3. (Criterio del cociente). Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión con $a_n>0$ para todo $n\in\mathbb{N}$ tal que $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l$. Entonces se verifica:

- 1. Si l < 1, entonces la serie $\sum_{n=1}^{\infty} a_n$ es convergente.
- 2. Si l > 1, entonces la serie $\sum_{n=1}^{\infty} a_n$ es divergente.
- 3. Si l = 1, no se puede concluir nada.

Ejemplo 10.2.4. Consideremos la serie $\sum_{n=1}^{\infty} \frac{n}{e^n}$.

Como $a_n = \frac{n}{e^n} > 0$ para todo $n \in \mathbb{N}$ es tal que

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{n+1}{e^{n+1}}}{\frac{n}{e^n}} = \lim_{n \to \infty} \frac{e^n(n+1)}{e^{n+1}n} = \lim_{n \to \infty} \frac{n+1}{en} = \frac{1}{e} < 1$$

entonces, por el criterio del cociente, la serie $\sum_{n=1}^{\infty}\,\frac{n}{e^n}$ converge.

Teorema 10.2.5. (Criterio de la raíz). Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión con $a_n\geq 0$ para todo $n\in\mathbb{N}$ tal que $\lim_{n\to\infty} \sqrt[n]{a_n}=l$. Entonces se verifica:

- 1. Si l < 1, entonces la serie $\sum_{n=1}^{\infty} a_n$ es convergente.
- 2. Si l > 1, entonces la serie $\sum_{n=1}^{\infty} a_n$ es divergente.
- 3. Si l = 1, no se puede concluir nada.

Ejemplo 10.2.6. La serie $\sum_{n=1}^{\infty} \frac{2^n}{3^n}$ es convergente ya que, por el criterio de la raíz, se tiene que $\lim_{n\to\infty} \sqrt[n]{\frac{2^n}{3^n}} = \lim_{n\to\infty} \frac{2}{3} = \frac{2}{3} < 1$.

Teorema 10.2.7. (Criterio de comparación). Sean $\{a_n\}_{n\in\mathbb{N}}$ y $\{b_n\}_{n\in\mathbb{N}}$ dos sucesiones tales que $0 \le a_n \le b_n$ para todo $n \in \mathbb{N}$, con $n \ge n_0$, donde $n_0 \in \mathbb{N}$. Entonces se verifica:

- 1. Si $\sum_{n=1}^{\infty} a_n$ es divergente, entonces $\sum_{n=1}^{\infty} b_n$ es divergente.
- 2. Si $\sum_{n=1}^{\infty} b_n$ es convergente, entonces $\sum_{n=1}^{\infty} a_n$ es convergente.

Ejemplo 10.2.8.

1. Consideremos la serie $\sum_{n=2}^{\infty} \frac{1}{n-1}$.

Como n-1 < n para todo $n \in \mathbb{N}$, entonces $0 < \frac{1}{n} < \frac{1}{n-1}$ para todo $n \ge 2$, con lo que la serie $\sum_{n=2}^{\infty} \frac{1}{n-1}$ es divergente, al ser la serie $\sum_{n=2}^{\infty} \frac{1}{n}$ divergente.

2. Veamos ahora que la serie $\sum_{n=1}^{\infty} \frac{3}{2n^2+n+1}$ es convergente.

En efecto, como $n^2 < 2n^2 + n + 1$ para todo $n \in \mathbb{N}$, entonces $0 < \frac{3}{2n^2 + n + 1} < \frac{3}{n^2}$ para todo $n \in \mathbb{N}$.

Ahora bien, como la serie $\sum_{n=1}^{\infty} \frac{1}{n^2}$ es convergente, entonces la serie $\sum_{n=1}^{\infty} \frac{3}{n^2}$ también es convergente, ya que $\sum_{n=1}^{\infty} \frac{3}{n^2} = 3 \sum_{n=1}^{\infty} \frac{1}{n^2}$ y, por el criterio de comparación, la serie $\sum_{n=1}^{\infty} \frac{3}{2n^2+n+1}$ es convergente.

El resultado anterior se puede mejorar.

Teorema 10.2.9. (Criterio de comparación en el límite). Sean $\{a_n\}_{n\in\mathbb{N}}$ y $\{b_n\}_{n\in\mathbb{N}}$ dos sucesiones de términos positivos tales que $\lim_{n\to\infty}\frac{a_n}{b_n}=l$. Entonces se verifica:

- 1. Si $l \in (0, \infty)$ entonces las series $\sum_{n=1}^{\infty} a_n \ y \sum_{n=1}^{\infty} b_n$ tienen el mismo carácter, es decir, si una de ellas es convergente la otra también lo es y, si una de ellas es divergente, la otra también lo es.
- 2. Supongamos que l = 0. Si $\sum_{n=1}^{\infty} b_n$ es convergente, entonces $\sum_{n=1}^{\infty} a_n$ es convergente y, si $\sum_{n=1}^{\infty} a_n$ es divergente, entonces $\sum_{n=1}^{\infty} b_n$ es divergente.
- 3. Supongamos que $l = \infty$. Si $\sum_{n=1}^{\infty} a_n$ es convergente, entonces $\sum_{n=1}^{\infty} b_n$ es convergente y, si $\sum_{n=1}^{\infty} b_n$ es divergente, entonces $\sum_{n=1}^{\infty} a_n$ es divergente.

Ejemplo 10.2.10.

1. Por el criterio de comparación, podemos afirmar que la serie $\sum_{n=1}^{\infty} \frac{1}{e^n}$ es convergente, ya que

$$\lim_{n \to \infty} \frac{\frac{1}{e^n}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2}{e^n} = 0$$

y sabemos que la serie $\sum_{n=1}^{\infty} \frac{1}{n^2}$ es convergente.

2. Como la serie $\sum_{n=1}^{\infty} \frac{1}{n^2}$ es convergente, entonces la serie $\sum_{n=1}^{\infty} \frac{1}{n^n}$ es también convergente, ya que

$$\lim_{n \to \infty} \frac{\frac{1}{n^2}}{\frac{1}{n^n}} = \lim_{n \to \infty} \frac{n^n}{n^2} = \lim_{n \to \infty} n^{n-2} = \infty.$$

Luego, aplicando el criterio de comparación en el límite, tenemos que la serie $\sum_{n=1}^{\infty} \frac{1}{n^n}$ es convergente.

Observación 10.2.11. Los criterios vistos hasta ahora son válidos para series de términos positivos. Las series cuyos términos sean negativos se tratan de la misma manera, ya que

$$\sum_{n=1}^{\infty} a_n = -\sum_{n=1}^{\infty} (-a_n).$$

Sin embargo, no sabemos aún nada sobre series cuyos términos sean tanto negativos como positivos.

Definición 10.2.12. Sea $\sum_{n=1}^{\infty} a_n$ una serie cualquiera. Se dice que la serie $\sum_{n=1}^{\infty} a_n$ es absolutamente convergente si $\sum_{n=1}^{\infty} |a_n|$ es convergente.

Teorema 10.2.13. Toda serie absolutamente convergente es convergente.

Ejemplo 10.2.14. Estudiar la convergencia de la serie $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$.

Como $\sum_{n=1}^{\infty} \left| (-1)^n \frac{1}{n^2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2}$ es convergente, entonces la serie $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$ es absolutamente convergente y, por tanto, convergente.

Definición 10.2.15. Sea $\sum_{n=1}^{\infty} a_n$ una serie cualquiera. Se dice que la serie $\sum_{n=1}^{\infty} a_n$ es condicionalmente convergente si es convergente pero no es absolutamente convergente.

Teorema 10.2.16. (Criterio de Leibniz). Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión tal que $a_n \geq a_{n+1} \geq a_{n+2} \geq ... \geq 0$ para todo $n \in \mathbb{N}$, con $n \geq n_0$, donde $n_0 \in \mathbb{N}$, es decir, $\{a_n\}_{n\in\mathbb{N}}$ es una sucesión positiva y decreciente a partir de un cierto $n_0 \in \mathbb{N}$. Si $\lim_{n\to\infty} a_n = 0$, entonces la serie $\sum_{n=1}^{\infty} (-1)^n a_n$ es convergente.

Ejemplo 10.2.17. Consideremos la serie $\sum_{n=1}^{\infty} (-1)^n e^{-n}$.

Como $e^{-n} = \frac{1}{e^n}$, entonces $\lim_{n \to \infty} e^{-n} = 0$. Además, como la función e^x es estrictamente creciente, entonces $a_n = \frac{1}{e^n} > \frac{1}{e^{n+1}} = a_{n+1}$ para todo $n \in \mathbb{N}$.

Luego, por el criterio de Leibniz, la serie $\sum_{n=1}^{\infty} (-1)^n e^{-n}$ es convergente.

Ejercicios

- 1. Sea $\sum_{n=1}^{\infty} a_n$ una serie de términos positivos.
 - a) Demuestra que si $\sum_{n=1}^{\infty} a_n$ converge, entonces $\sum_{n=1}^{\infty} a_n^2$ converge.
 - b) Encuentra un ejemplo donde $\sum_{n=1}^{\infty} a_n^2$ converge, pero $\sum_{n=1}^{\infty} a_n$ no converge.
- 2. Estudia la convergencia de las siguientes series:

1)
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{2n-1} \right)^n$$

8)
$$\sum_{n=1}^{\infty} \operatorname{sen}\left(\frac{1}{n^2}\right)$$

2)
$$\sum_{n=1}^{\infty} \left(\frac{\arctan(n)}{1+n^2} \right)^n$$

9)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n+1}}$$

3)
$$\sum_{n=1}^{\infty} (\sqrt{n} - \sqrt{n-1})^n$$

10)
$$\sum_{n=1}^{\infty} \frac{2n}{(2n)!}$$

4)
$$\sum_{n=1}^{\infty} \frac{3^n}{5^n}$$

11)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$

$$5) \sum_{n=2}^{\infty} \frac{1}{\log(n)^n}$$

12)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \operatorname{sen}\left(\frac{1}{n}\right)$$

6)
$$\sum_{n=1}^{\infty} \frac{1}{3n-1}$$

$$13) \sum_{n=1}^{\infty} \frac{\arctan(2n)}{n^3}$$

$$7) \sum_{n=1}^{\infty} \left(\frac{4}{3}\right)^n$$

14)
$$\sum_{n=1}^{\infty} \frac{1}{n^{\log(n)}} (*)$$

- (*) usar que existe $m \in \mathbb{N}$ tal que para todo n > m, se verifica que $2 < \log(n)$.
- 3. Estudia la convergencia absoluta y condicional de las siguientes series:

$$1) \sum_{n=2}^{\infty} \frac{(-1)^n}{\log(n)}$$

4)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n(n+1)}}$$

$$2) \sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n}$$

5)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$

3)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n!}{n^n}$$

6)
$$\sum_{n=1}^{\infty} \frac{\operatorname{sen}\left(\frac{(2n-1)\pi}{2}\right)}{n^2}$$

4. Las series geométricas son de la forma

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \dots + ar^{n-1} + \dots,$$

donde $a, r \in \mathbb{R}$. Si $a \neq 0$, demuestra que la serie $\sum_{n=1}^{\infty} ar^{n-1}$ converge si, y solo si, |r| < 1.