

Benjamin Bach

June 2020 http://benjbach.me https://datavis-online.github.io

-- Not for external use --

John W. Tukey

EXPLORATORY DATA ANALYSIS

Basic Charts

Basic Charts

Outline

- Distributions & Histograms
- Mean, Mode, Average
- Chart types
- Uncertainty
- Pie Charts

Benjamin Bach

June 2020 http://benjbach.me https://datavis-online.github.io

-- Not for external use --

Distributions: Binning

Distributions: Binning

Value

Histogram Binning

Histogram Binning

Histogram Binning

Mode: Most frequent value in data

Mode: Most frequent value in data

Median: splits samples in two equally sized sets (50:50)

Mode: Most frequent value in data

Median: splits samples in two equally sized sets (50:50)

Mean: average value

Standard deviation

Plotting Distributions

Violin plots

Violin plots: measures

Violin plots: measures

Violin plots: measures

Violin plots: example shapes

Violin plots for comparison

Box plots

Bar plots + Error bars

?

No significant difference

Significance difference

Uncertainty

Uncertainty

Comparing plots

Benjamin Bach

June 2020 http://benjbach.me https://datavis-online.github.io

-- Not for external use --

Bad Pie Charts

- Too many values
 Differences hard to understand
- Distribution?
- (Confusing colors)

Bad Pie Charts

- Too many values
 Differences hard to understand
- Distribution?
- (Confusing colors)

Not adding up to 100%

Pie Charts

Pie Charts

Alternatives?

Wilke, Claus O. Fundamentals of data visualization: a primer on making informative and compelling figures. O'Reilly Media, 2019.

Pie chart

Stacked bars

Table 10.1: Pros and cons of common approaches to visualizing proportions: pie charts, stacked bars, and side-by-side bars.

	Pie chart	Stacked bars	Side-by-side bars
Clearly visualizes the data as proportions of a whole	~	V	×

Table 10.1: Pros and cons of common approaches to visualizing proportions: pie charts, stacked bars, and side-by-side bars.

	Pie chart	Stacked bars	Side-by-side bars
Clearly visualizes the data as proportions of a whole	V	~	×
Allows easy visual comparison of the relative proportions	×	×	~

Table 10.1: Pros and cons of common approaches to visualizing proportions: pie charts, stacked bars, and side-by-side bars.

	Pie chart	Stacked bars	Side-by-side bars
Clearly visualizes the data as proportions of a whole	V	~	*
Allows easy visual comparison of the relative proportions	×	×	~
Visually emphasizes simple fractions, such as 1/2, 1/3, 1/4	~	×	×

Table 10.1: Pros and cons of common approaches to visualizing proportions: pie charts, stacked bars, and side-by-side bars.

	Pie chart	Stacked bars	Side-by-side bars
Clearly visualizes the data as proportions of a whole	~	~	*
Allows easy visual comparison of the relative proportions	*	×	~
Visually emphasizes simple fractions, such as 1/2, 1/3, 1/4	~	×	*
Looks visually appealing even for very small datasets	~	×	~

Table 10.1: Pros and cons of common approaches to visualizing proportions: pie charts, stacked bars, and side-by-side bars.

	Pie chart	Stacked bars	Side-by-side bars
Clearly visualizes the data as proportions of a whole	V	~	×
Allows easy visual comparison of the relative proportions	×	×	~
Visually emphasizes simple fractions, such as 1/2, 1/3, 1/4	V	×	×
Looks visually appealing even for very small datasets	~	×	~
Works well when the whole is broken nto many pieces	×	×	~

Table 10.1: Pros and cons of common approaches to visualizing proportions: pie charts, stacked bars, and side-by-side bars.

	Pie chart	Stacked bars	Side-by-side bars
Clearly visualizes the data as proportions of a whole	~	~	*
Allows easy visual comparison of the relative proportions	*	×	~
Visually emphasizes simple fractions, such as 1/2, 1/3, 1/4	~	×	×
Looks visually appealing even for very small datasets	~	×	~
Works well when the whole is broken into many pieces	×	×	~
Works well for the visualization of many sets of proportions or time series of proportions	×	V	×

Wilke, Claus O. Fundamentals of data visualization: a primer on making informative and compelling figures. O'Reilly Media, 2019.

Benjamin Bach

June 2020 http://benjbach.me https://datavis-online.github.io

-- Not for external use --

Line Charts vs. Bar Charts?

Continuous values e.g., time series

Discrete values e.g., countries

https://online-behavior.com/analytics/data-visualization

Benjamin Bach

June 2020 http://benjbach.me https://datavis-online.github.io

-- Not for external use --

Wrap up

- Choose appropriate bin-sizes
- violin plots for compare distributions
- Label error bars
- Don't confound box plots and error bars
- Avoid pie charts
- Line charts for continuous data

Further Readings

- Wilke, Claus O. Fundamentals of data visualization: a primer on making informative and compelling figures. O'Reilly Media, 2019.
 - https://serialmentor.com/dataviz/visualizing-proportions.htm
 - https://serialmentor.com/dataviz/histograms-density-plots.htmll
 - https://serialmentor.com/dataviz/boxplots-violins.html
- Hullman, Jessica, Paul Resnick, and Eytan Adar. "Hypothetical outcome plots outperform error bars and violin plots for inferences about reliability of variable ordering." *PloS one* 10.11 (2015).
- Skau, Drew, and Robert Kosara. "Arcs, angles, or areas: Individual data encodings in pie and donut charts." Computer Graphics Forum. Vol. 35. No. 3. 2016.
- Cairo, Alberto. **The truthful art: data, charts, and maps for communication**. New Riders, 2016.
 - Chapter 6: Exploring Data with Simple Charts
 - Chapter 7: Visualizing Distributions