2 Trabalho de Inteligência Artificial

Problemas de satisfação de restrições

Carlos Palma(46520)

1. Quadrado Mágico

- 1.1) Estados, Variáveis, Domínio:
- No desenvolvimento deste problema decidi representar os estados como e (L1,L2) sendo L1 correspondente à lista de variáveis não instanciadas e L2 a lista de variáveis instanciadas. As variáveis seguem a estrutura v (p(X, Y), D, V) em que X e Y são respetivamente o numero da linha e coluna, D o domínio correspondente (dependendo do tamanho do problema este valores diferem) e V o valor quando instanciado.

1.2) Restrições:

- A nível das restrições criei o predicado ve_restricoes que verifica se a soma dos elementos de uma linha/coluna/diagonal_principal/diagonal_secundária são iguais ao valor da constante mágica (valor da constante depende da dimensão do problema) e que ao mesmo tempo também verifica se todos estes valores são diferentes.
- 1.3) Estado inicial e operador sucessor:
- O estado inicial terá o numero de variáveis consoante o tamanho do quadrado, sendo o numero de variáveis igual ao numero de quadrados (n_quadrados= tamanho de tabuleiro*tamanho de tabuleiro), em relação ao domínio será de 1 a n, sendo n o numero de quadrados.

O operador sucessor é: $sucessor(e([v(N,D,_)|R],E),e(R,[v(N,D,V)|E])):-member(V,D).$

- 1.4) Exemplos:
- 1.4.1) Tamanho do tabuleiro = 3 com backtracking

1.4.2) Tamanho do tabuleiro = 3 com forward check

4	•	8	•	3
9	•	1		5
2	•	6	•	7

2. Sudoku

- 2.1) Estados, Variáveis, Domínio:
- No desenvolvimento deste problema decidi representar os estados como e (L1,L2) sendo L1 correspondente à lista de variáveis não instanciadas e L2 a lista de variáveis instanciadas. As variáveis seguem a estrutura v(p(X,Y),D,V) em que X e Y são respetivamente o numero da linha e coluna, D o domínio correspondente (dependendo do tamanho do problema este valores diferem) e V o valor quando instanciado.

2.2) Restrições:

- A nível das restrições criei o predicado ve_restricoes que verifica se os elementos de uma linha/coluna/quadrantes são todos diferentes, verifica também quais os valores do domínio já presentes em cada quadrante e quais podem ser colocados tendo em conta as restrições.
- 2.3) Estado inicial e operador sucessor:
- O estado inicial terá o numero de variáveis consoante o tamanho do quadrado, sendo o numero de variáveis igual ao numero de quadrados (n_quadrados= tamanho de tabuleiro*tamanho de tabuleiro), em relação ao domínio será de 1 a n, sendo n o numero de quadrados.

O operador sucessor \acute{e} : sucessor($\acute{e}([v(N,D,)|R],E),e(R,[v(N,D,V)|E]))$:- member(V,D).

2.4) Exemplos:

2.4.1) Tamanho do tabuleiro = 9 com backtracking

6	2	9	4	1	-	8	5	7	3
3	4	5	6	7		9	1	8	2
7	1	8	3	5		2	9	6	4
5	3	2	1	8		4	7	9	6
9	7	4	5	3		6	2	1	8
8	6	1	9	2		7	3	4	5
4	9	3	7	6		5	8	2	1
2	5	7	8	4		1	6	3	9
1	8	6	2	9		3	4	5	7

- 2.4.2) Tamanho do tabuleiro = 9 com fowardchecking
- -Global stack overflow, o tamanho do problema é demasiado grande para o tamanho da stack.
- 2.4.3) Tamanho do tabuleiro = 9 com fowardchecking e backtracking

6	2	9	4	1	-	8	5	7	3
3	4	5	б	7		9	1	8	2
7	1	8	3	5		2	9	6	4
5	3	2	1	8		4	7	9	6
9	7	4	5	3		6	2	1	8
8	6	1	9	2		7	3	4	5
4	9	3	7	6		5	8	2	1
2	5	7	8	4		1	6	3	9
1	8	6	2	9		3	4	5	7