Diffeomorphic Temporal Alignment Nets

Ron Shapira Weber¹, Matan Eyal¹, Nicki Skafte Detlefsen², Oren Shriki¹ and Oren Freifeld¹

- 1. Ben-Gurion University
- 2. Technical University of Denmark

October 2019 Author's summary (NeurIPS 2019)

Outline

- Nonlinear Misalignment
- Preliminaries
- 3 Diffeomorphic Temporal Alignment Nets
- Experiments and Results
- Conclusion

Problem Formulation - Time-Series Joint Alignment

- Time-series data often presents a significant amount of nonlinear misalignment.
- This may include simple phase-shift between similar instances, artifacts due to sampling methods and/or stretching and squeezing of different regions of the signal.
- Even trivial task such as computing the arithmetic mean (i.e. average signal) is hard under nonlinear misalignment.

Problem Formulation - Time-Series Joint Alignment

• Let $(U_i)_{i=1}^N$ be a set of N time-series observations. The nonlinear misalignment could be written as:

$$(U_i)_{i=1}^N = (V_i \circ W_i)_{i=1}^N$$
 (1)

- Where U_i is the i^{th} misaligned signal, V_i is the i^{th} latent aligned signal and W_i is a latent warp of the domain of V_i .
- ullet For technical reasons, the misalignment is usually viewed in terms of $T_i \triangleq W_i^{-1}$, the inverse warp of W_i , implicitly suggesting W_i is invertible.
- It is also typically assumed that $(T_i)_{i=1}^N$ belong to some nominal family of warps, parametrized by θ :

$$(\mathbf{V}_i)_{i=1}^N = (\mathbf{U}_i \circ T^{\boldsymbol{\theta}_i})_{i=1}^N, \quad T_i = T^{\boldsymbol{\theta}_i} \in \mathcal{T} \ \forall i \in (1, \dots, N).$$
 (2)

Shapira Weber et al. DTAN Oct 2019 4/17

Problem Formulation - Time-Series Joint Alignment

 We argue that this problem should be seen as a learning one, mostly due to the need for generalization, and define:

Definition (the joint-alignment problem)

Given the observations $(U_i)_{i=1}^N$, infer the latent $(T^{m{ heta}_i})_{i=1}^N \subset \mathcal{T}$.

- To solve the joint alignment problem one must define a:
 - Warp family T
 - Model capable of generalizing the learned alignment.
 - Metric measuring the misalignment.
- We will define each in following slides.

Preliminaries - Spatial/Temporal Transformer Nets

- Introduced by Jaderberg et al. (2015), the Spatial Transformer Nets (STN) is an end-to-end differential module that allows for certain invariances to spatial warps.
- Paramerized by any differential transformation family (i.e. Affine), the STN Learns input-depended spatial transformation to allow for robuts spatial invariance in deep neural networks.

Preliminaries - Spatial/Temporal Transformer Nets

- Temporal Transformer Nets (TTN), the time-series analog of STN.
- In more detail, let U denote the input of the TT layer. Its output consists of $\theta = f_{\mathrm{loc}}(U)$ and $V = U \circ T^{\theta}$ (the latter, *i.e.*, the warped signal, is what is being passed downstream the TTN), where $T^{\theta} \in \mathcal{T}$ is a 1D warp parameterized by θ . The function $f_{\mathrm{loc}}: U \mapsto \theta$ is itself a neural net called the localization net.

Figure taken from: Skafte et al. CVPR (2018)

Preliminaries - Diffeomorphisms

ullet As previously mentioned, $\mathcal T$ needs to be specified. In the context of time warping, diffeomorphisms are a natural choice (Mumford & Desolneux, 2010).

Definition (Diffeomorphisms)

A diffeomorphism is a differentiable invertible map with a differentiable inverse.

- Unfortunately, most representations of highly-expressive diffeomorphisms are complicated and computationally expensive.
- In our case, since the proposed method explicitly incorporates them in a DL architecture, it is even more important to drastically reduce the computational difficulties.

Preliminaries - CPAB

- We now define the warp family to be incorporated in our model.
- Following Skafte et al. (CVPR, 2018) incorporation of diffeomorphisms in STNs, the CPAB warps that had been proposed by Freifeld et al. (ICCV, 2015; PAMI, 2017) and are also used in this work.
- While any diffeomorphism could be integrated into DTAN, we chose CPAB warps since they:
 - Are highly expressive and efficient.
 - ② Offer an efficient and highly-accurate way to evaluate $x \mapsto \nabla_{\theta} T^{\theta}(x)$ (i.e. CPAB gradient).

Preliminaries - CPAB

- The name CPAB, short for CPA-Based, is due to the fact that these warps are based on Continuous Piecewise-Affine (CPA) velocity fields. The term "piecewise" is w.r.t. a partition, denoted by Ω , of the signal's domain into subintervals.
- Let $\mathcal V$ denote the linear space of CPA velocity fields w.r.t. such a fixed Ω , let $d=\dim(\mathcal V)$, and let $v^{\boldsymbol \theta}:\Omega\to\mathbb R$, a velocity field parametrized by ${\boldsymbol \theta}\in\mathbb R^d$, denote the generic element of $\mathcal V$, where ${\boldsymbol \theta}$ stands for the coefficient w.r.t. some basis of $\mathcal V$ is

$$\mathcal{T} \triangleq \{ T^{\boldsymbol{\theta}} : x \mapsto \phi^{\boldsymbol{\theta}}(x; 1) \text{ s.t. } \phi^{\boldsymbol{\theta}}(x; t) = x + \int_0^t v^{\boldsymbol{\theta}}(\phi^{\boldsymbol{\theta}}(x; \tau)) \, d\tau \}; \quad (3)$$

Preliminaries - CPAB

• Left: An illustration of a CPAB warp (relative to the identity transformation) with its corresponding CPA velocity field (above). Right: a sine wave before (top) and after (bottom) being warped by the presented CPAB transformation.

Diffeomorphic Temporal Alignment Nets

- As mentioned before, to solve the joint alignment problem one must define a:
 - ullet Warp family ${\mathcal T}$
 - Model capable of generalizing the learned alignment.
 - Metric measuring the misalignment.
- Thus, we set:
 - Warp family CPAB.
 - Model Temporal Transformer Nets (TTN).
 - Metric measuring the misalignment least squares (to be define below).

Loss Function

- Definition 1 requires the specification of $\mathcal T$ and a loss function for estimating $(T^{\pmb{\theta}_i})_{i=1}^N.$
- Let U_i denote an input signal, let $\theta_i = f_{loc}(U_i, w)$ denote the corresponding output of the localization net $f_{loc}(\cdot, w)$ of weights w, and let V_i denote the result of warping U_i by $T^{\theta_i} \in \mathcal{T}$; i.e., $V_i = U_i \circ T^{\theta_i}$.

Loss Function

• As the variance of the observed $(U_i)_{i=1}^N$ is (at least partially) explained by the latent warps, $(T^{\theta_i})_{i=1}^N$, we seek to minimize the empirical variance of the warped signals, $(V_i)_{i=1}^N$. In other words, our data term in this setting is

$$F_{\text{data}}\left(\boldsymbol{w}, (\boldsymbol{U}_{i})_{i=1}^{N}\right) \triangleq \frac{1}{N} \sum_{i=1}^{N} \left\| \boldsymbol{V}_{i}(\boldsymbol{U}_{i}; \boldsymbol{w}) - \frac{1}{N} \sum_{j=1}^{N} \boldsymbol{V}_{j}(\boldsymbol{U}_{j}; \boldsymbol{w}) \right\|_{\ell_{2}}^{2}$$
(4)

 For multi-class problems, our data term is the sum of the within-class variances:

$$F_{\text{data}}\left(\boldsymbol{w}, (\boldsymbol{U}_{i})_{i=1}^{N}\right) \triangleq \sum_{k=1}^{K} \frac{1}{N_{k}} \sum_{i:z_{i}=k} \left\|\boldsymbol{V}_{i}\left(\boldsymbol{U}_{i}; \boldsymbol{w}\right) - \frac{1}{N_{k}} \sum_{j:z_{j}=k} \boldsymbol{V}_{j}(\boldsymbol{U}_{j}; \boldsymbol{w})\right\|_{\ell_{2}}^{2}$$

• where K is the number of classes, z_i takes values in $\{1, \ldots, K\}$.

Loss Function - Regularization

• In both the single- and multi-class cases, we also use a regularization term on the warp

$$F_{\text{reg}}(\boldsymbol{w}, (\boldsymbol{U}_i)_{i=1}^N) = \sum_{i=1}^N (\boldsymbol{\theta}_i(\boldsymbol{w}, \boldsymbol{U}_i))^T \boldsymbol{\Sigma}_{\text{CPA}}^{-1} \boldsymbol{\theta}_i(\boldsymbol{w}, \boldsymbol{U}_i)$$
 (5)

- ullet Where Σ_{CPA} is a CPA covariance matrix (proposed by Freifeld et al. (ICCV, 2015; PAMI, 2017) associated with a zero-mean Gaussian smoothness prior over CPA fields.
- ullet Σ_{CPA} has two parameters: λ_{var} , which controls the overall variance, and λ_{smooth} , which controls the smoothness of the field.
- ullet A small λ_{var} favors small warps (i.e., close to the identity); similarly, the larger $\lambda_{\mathrm{smooth}}$ is, the more it favors CPA velocity fields that are almost purely affine.
- ullet Our loss function, to be minimized over w, is

$$F(\mathbf{w}, (\mathbf{U}_i)_{i=1}^N) = F_{\text{data}}(\mathbf{w}, (\mathbf{U}_i)_{i=1}^N) + F_{\text{reg}}(\mathbf{w}, (\mathbf{U}_i)_{i=1}^N).$$
 (6)

Diffeomorphic Temporal Alignment Nets

- Diffeomorphic Temporal Alignment Nets (DTAN) Allows for time-series nonlinear joint alignment in an input-dependent manner.
- In a single-class case, the method is unsupervised: the ground-truth alignments are unknown.
- In the multi-class case, it is semi-supervised in the sense that class labels (but not the ground-truth alignments) are used during learning.
- During test, however, the class labels are unknown.

Recurrents DTANs

- We also propose a recurrent varition of DTAN, R-DTAN.
- inspired by, how Lin et al. (CVPR, 2017) used a recurrent net with affine 2D warps, we propose the iteratively warp the input signal by DTAN, using the same localization net.
- By enforcing a zero-boundary condition (U[0] = V[0], U[n] = V[n], where n is the signal's length), we can propagate the signal itself, thus avoiding the need for inverse composition.
- ullet This allows for increasing the expressiveness of the CPAB diffeomorphisms without increasing the number of trainable weights or the partition $\Omega.$

- O. Freifeld, S. Hauberg, K. Batmanghelich, and J. W. Fisher III. Highly-expressive spaces of well-behaved transformations: Keeping it simple. In *ICCV*, 2015.
- O. Freifeld, S. Hauberg, K. Batmanghelich, and J. W. Fisher III. Transformations based on continuous piecewise-affine velocity fields. *IEEE TPAMI*, 2017.
- M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks. In *Advances in neural information processing systems*, pages 2017–2025, 2015.
- C.-H. Lin and S. Lucey. Inverse compositional spatial transformer networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 2568–2576, 2017.
- D. Mumford and A. Desolneux. *Pattern theory: the stochastic analysis of real-world signals.* AK Peters/CRC Press, 2010.
- N. Skafte Detlefsen, O. Freifeld, and S. Hauberg. Deep diffeomorphic transformer networks. In *CVPR*, 2018.