Estructures Algebraiques: Tema 1

December 28, 2017

Contents

1	TOI	DO Grup	3	
2	TODO Interseccio, unio, producte i generacio			
3	Elei	ments d'un grup	3	
	3.1	Definicio Centre	3	
	3.2	Definicio Centralitzador	3	
	3.3	Definicio Normalitzador	3	
		3.3.1 Observacio:	3	
4	TOI	DO Ordre d'un element, grup ciclic	4	
5	TOI	DO Morfismes de grups	4	
6	Clas	sses laterals	4	
	6.1	Definicio	4	
	6.2	Definicio de la classe d'equivalencia	4	
	6.3	Definicio Classe Lateral:	4	
		6.3.1 Observacio:	4	
	6.4	Teorema de Lagrange	4	
		6.4.1 Demo	4	
7	Sub	grup normal, Grup quocient	4	
	7.1	Definicio: Subgrup Normal	4	
	7.2	Lema	5	
		7.2.1 TODO Demo	5	
	7.3	Observacio	5	
	7.4	Observacio	5	
	7.5	Definicio: Operacio interna	5	
	7.6	Corol.lari	5	
	7.7	Exercici: La aplicacio quocient es un morfisme	5	

8	Primer teorema d'isomorfisme						
	8.1	Геоrema:	5				
		8.1.1 TODO demo	6				
		8.1.2 Col·lorari	6				
9	Fla	up multiplicatiu d'un cos finit	6				
9	9.1	Definicio	6				
	9.2	Геогета	6				
	3.2	0.2.1 TODO demo	7				
		7.2.1 1000 demo	'				
10		simples	7				
	10.1	Definicio	7				
	10.2	Proposicio	7				
		10.2.1 TODO Demo	7				
	10.3	Геоrema de Feit-Thompson	7				
	10.4	Геоrеma	7				
		10.4.1 TODO Demo	7				
	10.5	Proposicio	7				
		10.5.1 TODO Demo	7				
11	Gru	resolubles	7				
		Definicio torre normal	7				
		Definicio Grup Resoluble	8				
		Feorema: Segon Teorema d'isomorfisme	8				
	11.0	11.3.1 TODO Demo	8				
	11 /	Feorema: Jordan-Holder	8				
	11.4	11.4.1 TODO Demo	8				
	11 5	Proposicio	8				
	11.5	Toposicio	0				
12	Acc	o d'un grup en un conjunt	8				
	12.1	Definicio: Accio d'un grup en un conjunt	8				
	12.2	Observacio	9				
		Definicio: Orbita d'un element	9				
	12.4	Definicio: L'estabilitzador/grup d'isotropia d' x $\in X$	9				
	12.5	Lema:	9				
		12.5.1 TODO DEMO	9				
	12.6	Proposicio	9				
		12.6.1 TODO DEMO	9				
	12.7	Definicio: punt fix	9				
	12.8	Definicio: Accio Transitiva	9				
	12.9	Definicio: Accio Fidel	10				
		12.9.1 Observacio:	10				
	12.10	Accio per translacio en X, quan $X = G \dots \dots \dots \dots \dots$	10				
		Teorema de Cayley	10				
		12.11.1 TODO Demo	10				
	12.15	Definicio: Accio per conjugacio de G en $X = G$	10				

12.12.1 Centre	10 10
	11
	11
1.0	11
12.15.1 TODO Demo	11
13 Subgrups de Sylow	l1
~ · · · · ·	11
13.2 Teorema:	11
13.2.1 TODO demo	12
14 Teoremas de Sylow	12
·	12
14.2 Definicio	12
	12
14.3 Teorema: Segon Teorema de Sylow	
14.3.1 TODO Demo	12
1 TODO Grup	
2 TODO Interseccio, unio, producte i generacio	
3 Elements d'un grup	
3.1 Definicio Centre	
Sigui G un grup, llavors el Centre G es $\mathcal{Z}(G) = \{a \in G \mid aba^{-1} = b \mid \forall b \in G\} = \{a \in G \mid ab = ba \mid \forall b \in G\}.$	ř
3.2 Definicio Centralitzador	
Sigui G un grup, i H un subgrup de G llavors el Centralitzador de H en G es $\mathcal{Z}_G(H) = \{a \mid aba^{-1} = b \forall b \in H\} = \{a \in G \mid ab = ba \forall b \in H\}.$	\in
3.3 Definicio Normalitzador	
Sigui G un grup, i H un subgrup de G, llavors el normalitzador de H en G es $N_G(H)$ $\{a \in G \mid aHa^{-1} = H\} = \{a \in G \mid aH = Ha\}.$	=
3.3.1 Observacio:	

Normalitzador de H en G = G $\iff H \lhd G$

4 TODO Ordre d'un element, grup ciclic

5 TODO Morfismes de grups

6 Classes laterals

6.1 Definicio

Sigui G un grup i H in subgrup de G. $a, b \in G$. Definim $a \sim b(esquerra) \iff a^{-1}b \in H$

6.2 Definicio de la classe d'equivalencia

$$\bar{a} := \{ b \in G \mid a \sim b \}$$

$$aH := \{ ax \mid x \in H \}$$
Observem que aH = \bar{a}

A més H i aH tenen el mateix cardinal.

6.3 Definicio Classe Lateral:

Anomenem $G/H = \{aH | a \in G\}$ el conjunt de les classes laterals per l'esquerra (conjunt quocient).

Diem també que l'índex de H en G es [G:H] = |G/H| = nombre d'elements de G modul H

6.3.1 Observacio:

- 1. El nombre de classes laterals per l'esquerra es el mateix que el nombre de classes laterals per la dreta.
- 2. L'índex és multiplicatiu. $K \subset H \subset G$. Llavors [G:K] = [G:H] * [H:K]

6.4 Teorema de Lagrange

Sigui G un grup i H un subgrup, G finit. Aleshores $|G| = |G/H| * |H| \iff |G/H| = \frac{|G|}{|H|}$, i a més |H| divideix |G|.

6.4.1 Demo

Tenim G = $\bigsqcup_{i=1}^r x_i$ Unio disjunta de classes laterals. Com $|x_iH_i|=|H|$ Tenim que: $|G|=\sum_{i=1}^r |H|\iff |G/H|=\frac{|G|}{|H|}$, i a mes |H| es divisor de |G|

7 Subgrup normal, Grup quocient

7.1 Definicio: Subgrup Normal

Sigui G un grup, H un subgrup de G. H és subgrup normal de G si $aH = Ha \ \forall \ a \in G$.

7.2 Lema

f: $G_1 \to G_2$ morfime de grups. Aleshores,

1. Si
$$H_1 \triangleleft G1 \implies f(H_1) \triangleleft f(G_1)$$
.

2. Si
$$H_2 \triangleleft G2 \implies f^{-1}(H_2) \triangleleft G_1$$
.

7.2.1 TODO Demo

7.3 Observacio

 $H \subseteq K \subseteq G$, H,K subgrups de G. Aleshores. Si $H \triangleleft G \implies H \triangleleft K$. El reciproc es fals.

7.4 Observacio

si $H \triangleleft G$, aleshores (aH)*(bH) = (ab)H

7.5 Definicio: Operacio interna

Sigui $H \triangleleft G$ i sigui $G/H = \{aH \mid a \in G\}$ el conjunt de classes laterals per l'esquerra modul H. En G/H definim l'operacio interna:

$$G/H \times G/H \rightarrow G/H$$

 $aH \times bH \mapsto (ab)H$

7.6 Corol.lari

G/H es un grup i s'anomena el grup quocient de G per H.

7.7 Exercici: La aplicacio quocient es un morfisme

8 Primer teorema d'isomorfisme

8.1 Teorema:

Sigui $f:G_1\to G_2$ morfisme de grups, Sigui $H\vartriangleleft G_1$, i sigui l'aplicació

$$\tilde{f}: G_1/H \to G_2$$

$$aH \mapsto \tilde{f}(aH) := f(a)$$

Aleshores

1. \tilde{f} ben definida $\iff H \subseteq Ker(f)$

Si esta ben definida: n
2. \tilde{f} es morfisme de grups

1.
$$\tilde{f}$$
 injectiva \iff H = Ker(f)

2.
$$Im(\tilde{f}) = Im(f)$$

En particular, $G_1/Ker(f) \cong Im(f)$

Figure 1: Primer teorema d'isomorfisme

8.1.1 **TODO** demo

8.1.2 Col·lorari

Tots els grups ciclics d'ordre n son isomorfs a $\mathbb{Z}/n\mathbb{Z}$

9 El grup multiplicatiu d'un cos finit

9.1 Definicio

Sigui $\mathbb K$ un cos. El grup multiplicatiu de $\mathbb K$ és

$$\mathbb{K}^* = \mathbb{K} \setminus \{0\} = \{x \in \mathbb{K} \mid x \neq 0\}$$

9.2 Teorema

Sigui $\mathbb K$ un cos. Sigui $\mathbb G$ un subgrup finit de $\mathbb K^*$. Aleshores $\mathbb G$ és cíclic

9.2.1 **TODO** demo

10 Grup simples

10.1 Definicio

Sigui G un grup no trivial. Direm que G es simple si els unics subgrups normals de G son {1} i G.

10.2 Proposicio

Sigui G un grup no trivial. Son equivalents

- 1. G es simple i abelia
- 2. |G| = p, on p es primer
- 3. $G \cong \mathbb{Z}/p\mathbb{Z}$

10.2.1 **TODO** Demo

10.3 Teorema de Feit-Thompson

Sigui G grup simple, Suposem |G| es senar. Aleshores G es ciclic i $G \cong \mathbb{Z}/p\mathbb{Z}$.

10.4 Teorema

Sigui $n \geq 5$, Aleshores A_n es simple

10.4.1 **TODO** Demo

10.5 Proposicio

Sigui G un grup, $H \triangleleft G$. Aleshores, G/H es grup simple \iff H es un element maximal en el conjunt $\{K \mid K \triangleleft G, K \neq G\}$

10.5.1 **TODO** Demo

11 Grup resolubles

11.1 Definicio torre normal

Una torre normal de G es $G = G_0 \triangleright G_1 \triangleright G_2 \triangleright ... \triangleright G_n = \{1\}$ on G es un grup i $G_i \triangleleft G_{i+1}$. Anomenem n la longitud de la torre G_{i-1}/G_i s'anomenen els quocients de la torre

A mes definim:

- Torre normal abeliana: Torre normal amb quocients abelians.
- Torre normal simple/serie de composicio: Torre normal amb quocients abelians

11.2 Definicio Grup Resoluble

Direm que G es resoluble si te una torre normal abeliana.

11.3 Teorema: Segon Teorema d'isomorfisme

Sigui G grup i H,K dos subgrups de G. Suposem $H \triangleleft G$. Aleshores:

- 1. $H \cap K \triangleleft K$
- 2. $H \cdot K$ es subgrup de G
- 3. $H \triangleleft H \cdot K$
- 4. A mes a mes, $K/H \cap K \cong H \cdot K/H$

11.3.1 **TODO** Demo

11.4 Teorema: Jordan-Holder

Sigui G un grup i $\left\{ \begin{array}{l} G = G_0 \rhd G_1 \rhd G_2 \rhd \ldots \rhd G_n = \{1\} \\ G = H_0 \rhd H_1 \rhd H_2 \rhd \ldots \rhd H_m = \{1\} \end{array} \right\}$ Dues series de composicio de G

Aleshores n = m, i $\exists \sigma \in \mathcal{S}_n$ tal que $H_i/H_{i+1} \cong G_{\sigma(i)}/G_{\sigma(i)+1}$.

11.4.1 **TODO** Demo

11.5 Proposicio

Sigui G un grup, H un subgrup de G. Aleshores

- 1. Si G es resoluble \implies H es resoluble
- 2. Si $H \triangleleft G$ i G es resoluble $\implies G/H$ es resoluble
- 3. Si $H \triangleleft G$ i H i G/H son resolubles \implies G es resoluble

12 Accio d'un grup en un conjunt

12.1 Definicio: Accio d'un grup en un conjunt

Sigui G un grup. SIgui X un conjunt. Una accio de G en X es una aplicacio

$$\varphi: G \times X \to X$$
$$(a, x) \mapsto \varphi(a, x) = ax$$

tal que:

1.
$$a \cdot (b \cdot x) = (a \cdot b) \cdot x \quad \forall a, b \in G, \forall x \in X$$

$$2. \ 1 \cdot x = x \quad \forall x \in X$$

12.2 Observacio

Hi ha una bijeccio entre

 $\{\varphi: G \times X \to X \mid \varphi \text{ accio de G en X}\} \leftrightarrow \{\phi: G \to Perm(X) \mid \phi \text{ morfisme de grups}\}$

12.3 Definicio: Orbita d'un element

L'orbita de $x \in X$ es el subconjunt $G \cdot x = \{ax \mid a \in G\} \subseteq X$

12.4 Definicio: L'estabilitzador/grup d'isotropia d' $x \in X$

 $Gx := \{a \in G \mid ax = x\} \subseteq G$, es un subgrup de G.

12.5 Lema:

Si x,y estan en la mateixa orbita, els seus estabilitzadors son conjugats. Concretament, si y = ax $\implies G_y = aG_xa^{-1}$

12.5.1 **TODO DEMO**

12.6 Proposicio

L'aplicacio

$$G \cdot x \to G/G_x$$
$$ax \mapsto a \cdot G_x$$

esta ben definida i es bijectiva. En particular,

- 1. $|G \cdot x| = |G/G_x| = [G : G_x]$
- 2. Si G es finit, $|G \cdot x| ||G|$
- 3. Si X es finit, $|X| = \sum_{i=1}^n |G \cdot x_i| = \sum_{i=1}^n [G : G_{x_i}]$

12.6.1 TODO DEMO

12.7 Definicio: punt fix

 $x \in X$ es un punt fix per l'accio si ax = x $\forall a \in G$. En particular $G \cdot x = \{ax \mid a \in G\} = \{x\}, G_x = \{a \in G \mid ax = x\} = G$

12.8 Definicio: Accio Transitiva

 $G \times X \to X$ es accio transitiva si \forall x,y \in X, \exists a \in G tal que y = ax. En aquest cas. $G \cdot y = X \forall y \in X$.

12.9 Definicio: Accio Fidel

 $G \times X \to X$ es accio fidel si \forall a \neq b, a,b \in G. Aleshores $m_a \neq m_b$, on

$$m_a: X \to X$$

 $x \mapsto ax$

 $m_a \in Perm(x)$

12.9.1 Observacio:

Si be $G \times X \to X \cong m : G \to Perm(x)$ es morfisme de grups, si imposem que es fidel, el morfisme es injectiu. A mes si X es finit l'accio es isomorf a un subgrup del grup simetric.

12.10 Accio per translacio en X, quan X = G

Sigui G un grup, definim

$$G \times G \to G$$

$$a \quad x \mapsto a \cdot x = ax$$

I es efectivament una accio.

12.11 Teorema de Cayley

Sigui G un grup finit, n = |G|. Aleshores G es isomorf a un subgrup del grup simetric S_n

12.11.1 TODO Demo

12.12 Definicio: Accio per conjugacio de G en X = G

$$G \times G \to G$$

$$a \quad x \mapsto a \cdot x = axa^{-1}$$

12.12.1 Centre

 $x \in G$ es punt fix $\iff a \cdot x = x \quad \forall a \in G \iff axa^{-1} = x \forall a \in G \iff ax = xa \quad \forall a \in G \iff x \in \mathcal{Z}(G) = \{x \in G \mid ax = xa \quad \forall a \in G\} = \text{centre de G. El centre de G es subgrup.}$

12.12.2 Centralitzador

L'estabilitzador de $y \in G$ es $G_y = \{a \in G \mid a \cdot y = y\} = \{a \in G \mid aya^{-1} = y\} = \{a \in G \mid ay = ya\} = \mathcal{Z}_G(y)$, centralitzador de G. El centralitzador tambe es un subgrup de G.

12.13 Definicio: Accio per translacio en les classes laterals

Sigui G grup, H subgrup de G i $X = G/H = \{aH \mid a \in G\}$

$$G \times G/H \to G/H$$

 $a \quad bH \mapsto abH$

- Es una accio transitiva.
- si $aH \in X = G/H$: L'estabilitzador de aH es $G_{aH} = \{b \in G \mid b(aH) = aH\} = aHa^{-1}$

12.14 Definicio: Accio per conjugacio en els subgrups

Sigui G grup i $X = \{H \mid H \text{ subgrup de G}\}.$

$$G \times \{ \text{sg. de G} \} \to \{ \text{sg. de G} \}$$
, conjugat de H
 $a \qquad H \mapsto aHa^{-1}$

Si H es subgrup de G, l'orbita d'H es:

 $G \cdot H = \{a \cdot H \mid a \in G\} = \{aHa^{-1} \mid a \in G\}$: els conjugats de H

H es punt fix per l'accio si $a \cdot H = H \iff aHa^{-1} = H \quad \forall a \in G \iff H$ es subgrup normal de G L'estabilitzador de H es: $G_H = \{a \in G \mid a \cdot H = H\} = \{a \in G \mid aHa^{-1} = H\} = N_G(H)$:

Normalitzador de H en G

Sabem que $|G \cdot H| = [G : G_H]$. Per tant.

 $H \triangleleft G \iff$ H es punt fix per l'accio \iff L'orbita de H te un sol punt \iff $|G \cdot H| = 1 \iff [G:G_H] = 1 \iff G_H = G \iff N_G(H) = G$

12.15 Teorema de Cauchy

Sigui G un grup finit, |G| = n. Sigui p primer tal que p|n. ALeshores, $\exists x \in G$ tal que ord(x) = p

12.15.1 TODO Demo

13 Subgrups de Sylow

13.1 Definicio: p-grups: Subgrups de Sylow

Sigui G un grup i p un nombre primer. Aleshores, G es un p-grup \iff $|G|=p^r$ per a algun $r \ge 0$.

13.2 Teorema:

Sigui G un p-grup. Aleshores, $|G| = p^r$, $r \ge 0$, i:

- 1. G no trivial $\iff \mathcal{Z}(G)$ no trivial.
- 2. G es resoluble
- 3. si G es simple, aleshores G $\cong \mathbb{Z}/p\mathbb{Z}$

13.2.1 **TODO** demo

14 Teoremas de Sylow

14.1 Teorema: Primer Teorema de Sylow

Sigui G un grup finit i considerem p primer, $r \ge 0$. Aleshores, si $p^r ||G| \implies G$ conte un subgrup d'ordre p^r

14.2 Definicio

Sigui G grup finit, $|G| = p^r \cdot m$, p primer, $r \ge 0$, p \(m\). Denotem $S_y l_p(G) = \{H \mid H \text{ subgrup de } G, |H| = p^r \}$. Els anomenem els p-subgrups de Sylow de G (p-Sylow de G) i denotem $n_p(G) = \text{cardinal de } S_y l_p(G)$.

14.2.1 Observacio:

- 1. El conjugat d'un p-Sylow es un p-Sylow ja que $|H| = |aHa^{-1}|$.
- 2. Els P-subgrups son $\{H \mid H \text{ subgrup de G}, |H| = p^s, s \leq r\}.$

14.3 Teorema: Segon Teorema de Sylow

Sigui G grup finit, $|G| = p^r \cdot m$, p primer, $r \ge 0$, p \(\frac{1}{2}\) m.

- 1. Si L es un p-subgrup de G ($|L| = p^s, s \le r$). Aleshores $\exists H \in S_y l_p(G)$ tal que $L \subseteq H$
- 2. Si H i P son dos p-Sylow de G. Aleshores $\exists a \in G$ tal que $aHa^{-1} = P$., Es a dir, tots els p-Sylow son conjugats.
- 3. $n_p(G) \equiv 1 \pmod{p} i n_p(G)|m$.

14.3.1 **TODO** Demo