

Week-11 K-Mode Clustering Solution

Answer the following Multiple-Choice Questions

- 1. What is K-modes clustering?
 - a) A Supervised Learning method
 - b) An Unsupervised Learning Method
 - c) None of the above
 - d) Both of the above
- 2. Which of the following metric is used for measuring K-Mode Clustering?
 - a) Hamming Distance
 - b) Euclidean distance
 - c) Similarity Cosine
 - d) None of the above
- 3. What initialization method is chosen in K-Mode Clustering?
 - a) K-means Initialization
 - b) Density based Initialization.
 - c) Random Initialization
 - d) None of the above
- 4. K-means clustering is good for continuous data whereas K-mode clustering is good for categorical data
 - a) True
 - b) False
- 5. What is the role of parameter K in the K-mode Clustering?
 - a) determines the differences to be used
 - b) determines the distance to be used
 - c) determines the initialization method to be used
 - d) determines the number of clusters to be formed

- 6. What is the advantage of K-Mode clustering over K-Means clustering?
 - a) K-Mode Clustering can handle categorical data.
 - b) K-Mode is faster than K-Means Clustering
 - c) K-Mode Clustering is more accurate than K-Means Clustering
 - d) All of the above
- 7. There can be multiple Centroids in one cluster.
 - a) True
 - b) False

Answer the following Question

Assuming you are given with a dataset, contains 16 records in it.

Record	Gender	Age Range	Education Level		
1	Female	20-30	Bachelor's Degree		
2	Male	30-40	High School Diploma		
3	Female	20-30	Master's Degree		
4	Female	20-30	Bachelor's Degree		
5	Male	30-40	High School Diploma		
6	Male	40-50	Master's Degree		
7	Female	30-40	High School Diploma		
8	Male	20-30	Master's Degree		
9	Female	30-40	Bachelor's Degree		
10	Male	20-30	High School Diploma		
11	Female	40-50	Master's Degree		
12	Male	30-40	Bachelor's Degree		
13	Female	20-30	High School Diploma		
14	Male	40-50	Master's Degree		
15	Female	30-40	Bachelor's Degree		
16	Female	20-30	Master's Degree		

Manually group these data into three clusters using the k-modes clustering algorithm.

Answer:

K-modes is a clustering algorithm that works on categorical data. We have 16 records in our dataset, and we want to cluster them into 3 groups using k-modes clustering.

To perform k-modes clustering manually, we can use the following steps:

- Choose k = 3 as the number of clusters.
- Randomly assign each record to one of the three clusters.
- 3. Calculate the mode for each cluster for each categorical variable.
- For each record, calculate the distance to each cluster by counting the number of variables for which it differs from the mode of that cluster.
- 5. Assign each record to the cluster for which it has the smallest distance.
- Repeat steps 3-5 until the clusters no longer change.

Using this method, we can manually cluster the 16 records as follows:

Initial clustering:

Cluster 1: [1, 4, 9, 12]

Cluster 2: [3, 8, 11, 14, 16]

Cluster 3: [2, 5, 6, 7, 10, 13, 15]

Mode for each cluster:

Cluster 1: Female, 20-30, Bachelor's Degree

Cluster 2: Female, 30-40, Bachelor's Degree

Cluster 3: Male, 30-40, Master's Degree

Distance from each record to each cluster:

Record	Cluster 1	Cluster 2	Cluster 3
1	0	1	3
2	3	2	0
3	3	0	3
4	0	1	3
5	3	2	2
6	3	3	1
7	3	0	3
8	3	0	2
9		1	3
10	3	2	2
11	3	0	1
12	0	1	3
13	3	3	1
14	3	Ö	3
15	3	3	1
16	3	0	3

Assign each record to the cluster for which it has the smallest distance.

Cluster 1: [1, 4, 9, 12]

Cluster 2: [3, 5,6,7,10, 11, 14, 16]

Cluster 3: [2, 6, 13, 15]

Repeat steps 3-5 until the clusters no longer change.