Solution Approach of BigMart Sales Prediction Using XGBoost:

1 Data Understanding

The dataset consists of two files:

- Train.csv → Contains sales data with target values (Item_Outlet_Sales).
- **Test.csv** → Contains the same features but **without** sales values (this is what we predict).

⋄ Key Features in the Dataset:

- Product Information: Item_Weight, Item_Fat_Content, Item_Type,
 Item_MRP
- **Store Information**: Outlet_Size, Outlet_Location_Type, Outlet_Type, Outlet_Establishment_Year
- Target Variable: Item_Outlet_Sales (only in the training set)

Data Preprocessing & Feature Engineering

Handling Missing Values

- Item_Weight → Replaced missing values with the mean.
- Outlet_Size → Filled missing values with 'Medium' (most frequent category).

♦ Standardizing Categorical Data

• Inconsistent Labels in Item_Fat_Content (low fat, LF, reg) were fixed.

♦ Creating a New Feature

 num_years → We calculated how many years have passed since each store was established.

♦ Encoding Categorical Variables

- We converted categorical variables into numeric format using One-Hot Encoding.
- The same encoding was applied to the test set to ensure both datasets have the **same feature structure**.

Model Selection & Training

We used the **XGBoost Regressor**, which is a powerful gradient boosting model.

♦ Splitting Data

Before training, we split the dataset into training and validation sets.

Training XGBoost

We trained the model with optimized hyperparameters for better accuracy.

4 Model Evaluation

After training, we evaluated performance using **RMSE** (Root Mean Squared Error) and R² Score.

- **Lower RMSE** → Better predictions.
- **Higher R²** → Model explains more variance in the data.

5 Solving the Negative Predictions Issue

During testing, we found that **XGBoost can sometimes predict negative** sales, which is not valid.

To fix this, we used **post-processing** to ensure all predictions are non-negative.

6 Generating Final Predictions

Once predictions were corrected, we saved them in a CSV file for submission.

7 Visualizing Predictions

We plotted the **distribution of predicted sales** to ensure they look reasonable.

© Conclusion

This project successfully builds an **XGBoost-based sales prediction model** for **BigMart stores**. The model captures key relationships between product attributes and sales trends, and produces **realistic predictions**.