

Set B - CT1 question paper

Compiler Design (SRM Institute of Science and Technology)

Scan to open on Studocu

ourse Articulation Matrix:

SRM Institute of Science and Technology College of Engineering and Technology SCHOOL OF COMPUTING

Mode of Exam

OFFLINE

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu

Academic Year:

2022-23

(EVEN) SET-B

est: CLAT-1
purse Code & Title: 18CSC304J COMPILER DESIGN
ear & Sem: III & VI

Date: 17.2.2023 Duration: 1 HOUR Max. Marks: 25

Col	urse Outcome	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO	1	3	3	3									
		Pa	rt – A (5 x 1	= 5 N	Marks)	Instruc	tions:	Answ	er all	48		
	Part – A (5 x 1 = 5 Marks) Instruct Question								Marks		CO	PO	PI
L., 11	he below Fig what is the epsilon closure of State '0' and											Cod	
3°	a) {0} a b) {0,1,; c) {0,1,	what if the control of the control o	(a) (b) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	esilon (closure	of State	e '0' and	1	1	2		2	2.5.2
2	Lex specific a) % c) %}			ns are d	lemarka	ted by		1		1	1	1 1	.6.1
3	Find the nur is Switch(input { Case 1: b=c Default : b=c } a.27 b.29 c.26 d 24	mber of utvalue) *d;brea = b++;b	tokens i					: 1		2			1.3
4	Using Thorequivalent consists of a) 8 b) 9 c	of the r	egular e	xpressic	thod, the	e Epsilor silon/a)b	n NFA *)*	1		2	1		2.1
5	The input ({q0, q1, q} {(q0,b)=q0} (q2,b)=q0	12}, {a,t 0, (q0,a)	0 , δ , $q0$	$, \{q2\})$, where	8 is give	n as	1		1	1	1 1.2	

studocu

D. bbaaabb

This document is available free of charge on

B. ababa C. bbbaaaa

A. aaabbbab

	Part – B (4 x 2 = 8 Mark Instructions: Answer any T					
6	Convert the following NFA diagram to DFA a, b b q q q q p	4	2	1	2	2.1.1
7	Construct €-NFA for the given regular expression using Thompson's construction (a*/b*)*	4	3	1	2	2.2.2
8	Write a short note on the Execution of a program	4	2	1	1 1	1.6.1
	Part - C (1 x 12 = 12 Marks) Instruction	ns: Answ	er any (One		
9	 (i) Design DFA with ∑ = {0, 1} accepts the set of all strings with three consecutive 0's. (ii) Explain the various operations of Regular language. (iii) Explain the machine dependent phases and machine independent phases of a compiler? (4 marks) 	4+4+4	1		2	2.2.1
	or					
10	A pulmonary embolism is a blood clot that blocks and stops blood flow to an artery in the lung. People with this condition will have one or more clot in their deep vein. Write a RE to identify people with two clot in vein. Here the veins with clot are represented as 'a' and without clot are represented as 'b'. Convert the RE into DFA using direct method. (Formation of tree and Finding firstpos and lastpos nullable – 4 marks Finding followpos and table - 4 marks Minimized DFA (dtrans and reducing table – 4 marks)	5	3	1	3	3.3.2

*Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

