Modelado de precisión finita

Javier Valls

Modelado de precisión finita

- 1. Introducción ¿necesidad y utilidad del modelado de precisión finita?
- 2. Codificación binaria
- 3. Formatos de punto fijo
- 4. Efectos de la precisión finita
- 5. Operaciones con precisión finita
- 6. Ejemplo de aplicación
- 7. Modelado de algoritmos con precisión finita y flujo de verificación

¿Modelado de precisión finita?

- Computar algoritmos en un dispositivo FPGA
 - implementación de operadores con tamaños de palabra fijos
- Reducir el tamaño de los operadores afecta a la implementación HW:
 - reducción área
 - mejora la frecuencia de operación
 - reducción de consumo de potencia
- Es necesario evaluar el comportamiento con precisión finita
 - el algoritmo debe mantener las prestaciones deseadas
- Disponer de un modelo de precisión finita facilita la verificación del HW:
 - proporciona vectores de test con los que comparar los modelos
 HDL del HW

Codificación binaria

- En los sistemas digitales los números se almacenan en formatos binarios
- El tipo de codificación de los datos determina:
 - el rango de valores representables
 - y la resolución con la que se puede operar
- Rango: conjunto de valores representables con un tipo de codificación
 - Los números fuera del rango dinámico se representan dentro del rango al cuantificarlo
- La resolución es la mínima distancia entre dos números cuantificados
- Sistemas de codificación:
 - Punto flotante
 - Punto fijo

Codificación binaria

Punto fijo

- Rango dinámico limitado
- Resolución fija
- Operaciones básicas sencillas

Palabra binaria de N bits

Punto flotante

- Rango dinámico grande
- Resolución variable
- Operaciones básicas complejas

Signo	Mantisa	Exponente
S	M	E
Valor=S·1.M·2 ^(E-cte)		1_M.2 ^(E-cte)

Si el número de bits de la codificación es N

Codificación sin signo:

Rango: $[0, (2^{N}-1)]$

Resolución: 1

$$X = \sum_{i=0}^{N-1} x_i 2^i$$

Ejemplo: N=5, rango ⊂ [0,31]

$$2^4 2^3 2^2 2^1 2^0$$
 $0 1 1 0 X=2^3+2^2+2^1=14$

Si el número de bits de la codificación es N

 Codificación con signo en complemento a dos:

Rango : $[-2^{N-1}, (2^{N-1}-1)]$

Resolución: 1

$$X = -x_{N-1}2^{N-1} + \sum_{i=0}^{N-2} x_i 2^i$$

Ejemplo: N=5, rango ⊂ [-16,15]

$$5.4 = (101.01100110011...)_2$$

Codificación:

- 6 bits con 3 fraccionales: $5.4 \approx 5.375 = (101.011)_2$
- 5 bits con 2 fraccionales: $5.4 \approx 5.25 = (101.01)_2$
- 4 bits con 1 fraccionales: $5.4 \approx 5 = (101.0)_2$

$$V_R \cong V_Q = V_E \cdot Q$$

 $V_R \cong V_Q = V_{E^*}Q$ $\begin{cases} V_R: \text{Valor real} \\ V_Q: \text{Valor codificado, aproximado de } V_R \\ V_E: \text{Número entero que codifica } V_Q \\ Q: \text{Escalado} \end{cases}$

Escalado de "b" bits $Q = 2^{-b}$:

- peso del bit menos significativo
- "b" indica la posición del punto fraccionario

$$5.4 = (101.01100110011...)_2$$

Codificación:

- 6 bits con 3 fraccionales: $5.4 \approx 5.375 = (101.011)_2 = 43.2^{-3}$
- 5 bits con 2 fraccionales: $5.4 \approx 5.25 = (101.01)_2 = 21.2^{-2}$
- 4 bits con 1 fraccionales: $5.4 \approx 5 = (101.0)_2 = 10.2^{-1}$

Si el número de bits de la codificación es N y b son fraccionales: [N,b]

Codificación sin signo:

Rango: [0, (2^N-1)·Q] Resolución: Q=2^{-b}

$$X = (\sum_{i=0}^{N-1} x_i 2^i) \cdot Q$$

Ejemplo: N=5, b=2, formato [5,2], rango \subset (0,7.75), resolución=2⁻²=0.25

Si el número de bits de la codificación es N y b son fraccionales: [N,b]

 Codificación con signo en complemento a dos:

Rango : $[-2^{N-1} \cdot Q, (2^{N-1}-1) \cdot Q]$

Resolución: Q=2-b

$$X = (-x_{N-1}2^{N-1} + \sum_{i=0}^{N-2} x_i 2^i) \cdot 2^{-b}$$

 $Q=2^{-b}$ \Leftrightarrow $Q=2^{-b}$ $Q=2^{-1}\cdot Q$ $Q=2^{-1}\cdot Q$ $Q=2^{-1}\cdot Q$

Ejemplo: N=5, b=2, formato [5,2], rango \subset (-4,3.75), resolución=2⁻²=0.25

Efectos de la precisión finita

- Un ADC sólo digitaliza la señal analógica dentro de un rango y con una resolución determinada por su número de bits
- Al realizar operaciones aritméticas los datos crecen o aumenta su resolución
 - ⇒ no suele ser conveniente dejar crecer siempre los operadores
 - ⇒ crece el área, aumenta el consumo de potencia y disminuye la frecuencia de operación
- Limitar el número de bits tiene consecuencias:
 - Disminuir el número de bits enteros reduce el rango
 - ⇒ ¡Puede ser catastrófico!
 - Disminuir el número de bits fraccionales reduce la resolución
 - ⇒ Siempre introduce ruido
 - ⇒ Se busca que no deteriore las prestaciones

Efectos de la precisión finita

Cuantificación

Función densidad de probabilidad de error

Varianza de ruido

$$\sigma_{Q}^{2} = \int_{-\infty}^{+\infty} e^{2} p(e) de = \frac{e^{3}}{3q} \Big|_{-\frac{q}{2}}^{+\frac{q}{2}} = \frac{q^{2}}{12}$$

Ruido de cuantificación: ruido blanco que se extiende por toda la banda

Efectos de la cuantificación

Resolución (Q=2-b):

peso del bit menos significativo de la representación (b # bits frac)

• Truncar:

Redondear hacia abajo

Error
$$\leq -Q = -2^{-b}$$

Error medio $= -\frac{Q}{2} = -2^{-b-1}$
 $\sigma_Q^2 = \frac{Q^2}{42} = \frac{2^{-2b}}{42}$

Redondear:

Redondear hacia el más cercano

$$|\operatorname{Error}| \le \left| \frac{Q}{2} \right| = 2^{-b-1}$$

$$\operatorname{Error medio} = 0$$

$$\sigma_{Q}^{2} = \frac{Q^{2}}{12} = \frac{2^{-2b}}{12}$$

Cuantificación en matlab

- floor(x)/round(x) trunca/redondea la parte entera de x
- Para truncar/redondear en un bit arbitrario (fraccional) hay que hacer la siguiente operación:

```
Xt = floor(X*2^b)*2^-b;

Xr = round(X*2^b)*2^-b;
```

• Ejemplo: trucar dejando hasta el bit fraccional b=3

$$X = 0.1.01001001 = 1.28515625$$

 $X \cdot 2^3 = 0.1010.01001 = 10.28125$
 $floor(X \cdot 2^3) = 0.1010. = 10$
 $floor(X \cdot 2^3) \cdot 2^{-3} = 0.1010$
Binario Decimal

Efectos de la cuantificación

Modelado con matlab

Tsim=1000;

b=3; % Bits de escalado (bits fraccionales) 0.5

Resolución =2^-b

t=[1:1:Tsim];

y=(1-2^-b)*sin(2*pi*t/Tsim);

• Truncar:

Redondear:

yr = round(y*2^b)*2^-b;

Redondeo: round vs. nearest

Ejemplo: redondear la parte entera sumando el MSB que se trunca

¿Qué ocurre con -x.5?

round: redondeo simétrico con error medio nulo

Al sumar solo el MSB que se trunca, se calcula la operación "nearest".

Para hacer el "round" es necesario detectar el caso especial:

bit de signo 1 (números negativos) y cadena "1000...0" en bits truncados.

Efectos del desbordamiento (overflow)

y=1.5*sin(2*pi*t/Tsim);

N=4; %Numero de bits

b=3; % Bits de escalado

Formato [4,3] \Rightarrow rango: [-1, 1-2⁻³]

Wrap:

Elimina bits superiores

$$1.125 (01.001)_{2C}$$

 $\rightarrow -0.875 (1.001)_{2C}$

Satura:

Si la señal es mayor que el valor máximo representable, se le asigna ese valor

$$1.125 (01.001)_{2C}$$

 $\rightarrow 0.875 (0.111)_{2C}$

Matlab: objeto "quantizer"

q=quantizer(Format, Mode, Roundmode, Overflowmode)

Values sorted by property name:

'Format'

[wordlength fractionlength] - The format for fixed and ufixed mode.

'Mode'

'fixed' - Signed fixed-point mode.

'ufixed' - Unsigned fixed-point mode.

'Roundmode'

'floor' - Round towards negative infinity.

'round' - Round towards nearest integer with greater absolute value

'nearest' - Round towards positive infinity.

'Overflowmode'

'saturate' - Saturate at max value on overflow.

'wrap' - Wrap on overflow.

Matlab: "quantizer" object

q=quantizer(Format, Mode, Roundmode, Overflowmode)

```
Se declara el objeto quantizer q=quantizer([8 7],'fixed','saturate','round');
% Se aplica con la función quantize a=0.87
aq=quantize(q,a);
```

```
- Resultado: aq = 0.867187500000000
```

Funciones asociadas: range, num2bin, bin2num

Simulink:

Operaciones con precisión finita

- Modificación de la resolución/escalado
- Modificación del rango
- Suma/resta
- Sumatorio
- Multiplicación
- Multiplica y suma
- Suma de productos
- Recursividad y precisión finita

Modificación de la resolución/escalado

Ampliación de la resolución / reducción de escalado

Ejemplo:
$$A=2.625 = (010.101)_2$$

A [6,3] $A=Ae \cdot 2^{-3} \Rightarrow Ae=21 = (010101)_2$
A' [8,5] $A'=Ae' \cdot 2^{-5} \Rightarrow Ae'=84 = (01010100)_2$
 $\Rightarrow A = A' = 2.625$

Reducción de la resolución / aumento de escalado

Ejemplo: A=2.625 =
$$(010.101)_2$$

A [6,3] A=Ae·2⁻³ \Rightarrow Ae=21 = $(010101)_2$
A' [4,1] A'=Ae'·2⁻¹ \Rightarrow Ae'=5 = $(0101)_2$
Ae'=floor(Ae·2⁻²)=5 \Rightarrow A'=5·2⁻¹ = 2.5
† se multiplica por 2⁻² para pasar de esc. 2³ a 2¹

 \rightarrow Modelado directo: A'=floor(A·2¹)·2⁻¹ = 2.5 \Rightarrow A \neq A' = 2.5

Modificación del rango

Ampliación del rango

Ejemplo:
$$A=2.625 = (010.101)_2$$

A [6,3] $A=Ae \cdot 2^{-3} \Rightarrow Ae=21 = (010101)_2$
A' [8,3] $A'=Ae' \cdot 2^{-3} \Rightarrow Ae'=21 = (00010101)_2$
 $\Rightarrow A = A' = 2.625$

Ejemplo: $A = -1.375 = (11.0101)_2$ A [6,3] $A = Ae \cdot 2^{-3} \Rightarrow Ae = -11 = (110101)_2$ A' [8,3] $A' = Ae' \cdot 2^{-3} \Rightarrow Ae' = -11 = (11110101)_2$ $\Rightarrow A = A' = -1.375$

dos

Modificación del rango

Reducción del rango

Ejemplo con wrap:
$$A=2.625 = (010.101)_2$$

 $A = [6,3]$ $A=Ae \cdot 2^{-3} \Rightarrow Ae=21 = (010101)_2$
 $A' = [5,3]$ $A'=Ae' \cdot 2^{-3} \Rightarrow Ae'=-11 = (10101)_2$
 $A \neq A' = -1.375$

Ejemplo con saturación: $A=2.625 = (010.101)_2$ A [6,3] $A=Ae \cdot 2^{-3} \Rightarrow Ae=21 = (010101)_2$ A' [5,3] $A'=Ae' \cdot 2^{-3} \Rightarrow Ae'=15 = (01111)_2$

A' [5,3] A'=Ae'
$$\cdot$$
2⁻³ \Rightarrow Ae'=15 = (01111)₂
 \Rightarrow A \neq A' = 1.875

 ⇒ Usar WRAP si se puede dimensionar el rango para que NUNCA se produzca OVERFLOW;
 ⇒ si no es posible, usar SATURACIÓN

Suma/resta: S=A±B

```
A [Na, a]
B [Nb, b]
S [Ns, s]
```

```
A=Ae·2<sup>-a</sup>
B=Be·2<sup>-b</sup>
S=Se·2<sup>-s</sup>
```

Sólo se puede hacer la suma si ambos operandos tienen el mismo tamaño y escalado (a=b=s) S=A+B=(Ae+Be) 2-a=Se-2-a

$$Ns = max{(Na-a),(Nb-b)}+1 + max{a,b}$$

Formato de salida de la suma:

- ⇒ El mismo escalado que el del operando con menor escalado
- ⇒ Amplia el rango del operador con mayor rango en 1 bit

Suma/resta: S=A±B

```
Ejemplo: A[6,5]; B[8,2] ;S=A+B [12,5]
         A=0.53125=Ae \cdot 2^{-5} \implies Ae=17
                                                          (010001)_2
         B=3.25=Be \cdot 2^{-2} \implies Be=13
                                                       (00001101)_2
Hay que cambiar la escala de B a 2<sup>-5</sup> (nuevo formato de B [11,5])
         B=3.25=Be' \cdot 2^{-5} \Rightarrow Be'=104 (00001101000)<sub>2</sub> \longrightarrow Se
```

Ahora se puede calcular la suma a través de sus enteros equivalentes

Se=Ae+Be'=17+104=121
$$\Rightarrow$$
 S=Se·2⁻⁵=3.78125 (=A+B)

En Matlab lo modelaríamos directamente: S = A + B = 3.78125

- ⇒ Si en la operación se respetan los crecimientos naturales de los operadores, no hay pérdida de precisión:
 - ✓ no hay diferencia entre operar con el número real o con el formato de precisión finita
 - ✓ no hay que incluir nada en el modelo (de Matlab) para forzar el formato numérico de precisión finita

Suma/resta: S=A±B

Si limitamos el tamaño del operador manteniendo el escalado del operador que mayor escalado tiene, se pierde precisión en el cálculo

Ejemplo: A[6,5]; B[8,2]; S=A+B [9,2]
$$A=0.53125=Ae\cdot 2^{-5} \Rightarrow Ae=17$$

$$B=3.25=Be\cdot 2^{-2} \Rightarrow Be=13$$
Hay que cambiar la escala de A a 2^{-2} (nuevo formato de A [3,2])
$$Ae'=floor(Ae\cdot 2^{-3})=2 \text{ (se multiplica por } 2^{-3} \text{ para pasar de esc. } 2^5 \text{ a } 2^2)$$
Ahora se puede calcular la suma a través de sus enteros equivalentes
$$Se=Ae'+Be=2+13=15 \Rightarrow S=Se\cdot 2^{-2}=3.75 \text{ ($\approx A+B$)}$$

En Matlab lo modelaríamos directamente:

$$S = floor(A*2^2)*2^{-2} + B = 3.75$$

Sumatorio: $S=\Sigma P$

Suma de M palabras con el mismo formato

P [Np,p] P=Pe
$$\cdot 2^{-p}$$
 S [Ns,s] S=Se $\cdot 2^{-s}$

$$S = \sum_{i=0}^{M-1} P_i$$

Formato de salida de la suma:

- ⇒ Se mantiene el escalado
- ⇒ Hay que ampliar el rango

Multiplicación: P=A·B

A [Na, a] B [Nb, b] P [Np, p]

A=Ae \cdot 2^{-a} B=Be \cdot 2^{-b} P=Pe \cdot 2^{-p}

El tamaño del multiplicador sólo depende del tamaño de sus operandos

 $P=A\cdot B=(Ae\cdot Be)\cdot 2^{(-a-b)}$

Np=Na+Nb p=a+b Formato de salida de la multiplicación: ⇒ Se amplía el rango y la resolución

Multiplicación: P=A·B

Ejemplo: A[6,5]; B[8,2]; P=A·B [14,7]

 $A=0.53125=Ae \cdot 2^{-5} \Longrightarrow Ae=17$

 $B=3.25=Be\cdot 2^{-2} \Rightarrow Be=13$

 $(010001)_2$ $(00001101)_2$ Pe

Se puede calcular la multiplicación a través de sus enteros equivalentes

$$Pe=Ae \cdot Be=17 \cdot 13=221 \Rightarrow P=Pe \cdot 2^{-7}=1.7265625 (P=A \cdot B)$$

⇒ Frecuentemente se recorta la precisión de la salida

Ejemplo: Pr=A·B [12,5]

A través de sus enteros equivalentes:

Pre=floor(Pe·2⁻²)= $55 \Rightarrow$ Pr=Pre·2⁻⁵=1.71875

(se multiplica por 2⁻² para pasar de escala 2⁷ a 2⁵)

Directamente:

$$Pr=floor(A \cdot B \cdot 2^5) \cdot 2^{-5} = 1.71875$$

Multiplicación: P=A·B, caso extremo

El rango en 2'C es asimétrico:

■
$$[N,b] \rightarrow \text{rango } [-2^{(N-1)}, 2^{(N-1)}-1]$$

Caso extremo: de todas las combinaciones de números en A (de Na bits) y B (de Nb bits) solo hay una cuyo producto P=A·B requiere Na+Nb bits:

•
$$A = B = -2^{(N-1)}$$

Ej. Números con formato [4,3] tienen un rango [-1,0.875]

- Si multiplicamos (-1)x(-1) = 1⇒ se necesitan 2 bits enteros para representar la salida [8,6]
- Ningún otro caso de multiplicación requiere 2 bits enteros a la salida.
- ⇒ Si se sabe que no se puede dar ese caso se puede dimensionar la salida con 1 bit entero
- ⇒ Se puede evitar aplicando una saturación simétrica a la entrada de la cadena de procesado

Multiplicación por cte: P=A·K

A [Na, a] K [Nk, k] P [Np, p]

A=Ae $\cdot 2^{-a}$ K=Ke $\cdot 2^{-k}$ P=Pe $\cdot 2^{-p}$

El crecimiento de los datos de salida depende del valor de la constante K

Np=Na+ceil(log₂(Ke)) p=a+b

Multiplica y suma: S=A·B+C

```
S=P+C=A·B+C

A [Na,a] A=Ae·2^{-a}

B [Nb,b] B=Be·2^{-b}

P [Np,p] P=Pe·2^{-p}

C [Nc,c] C=Ce·2^{-c}

S [Ns,s] B=Be·2^{-s}
```

```
Como P=A\cdot B=(Ae\cdot Be)\cdot 2^{(-a-b)}, si c<(a+b), C debe tener escalado 2^{(-a-b)} para realizar correctamente la suma: C=Ce\cdot 2^{(-a-b)}
```

$$S=A\cdot B+C=(Ae\cdot Be+Ce)\cdot 2^{(-a-b)}$$

```
s=max(p,c)
Ns=max{(Np-p),(Nc-c)}+max{p,c}+1
```

```
Ejemplo: A [8,7]; B [9,8]; C [8,7]

P=A·B=(Ae·Be)2-(a+b) \Rightarrow[17,15]

C \Rightarrow C' [17,15]

S \Rightarrow [18,15]
```


Multiplica y suma: S=A·B+C

```
Ejemplo: A[6,5]; B[8,2]; C [5,4]; S=A·B+C [15,7]
A=0.53125=Ae \cdot 2^{-5} \Rightarrow Ae=17
B=3.25=Be \cdot 2^{-2} \Rightarrow Be=13
C=0.3125=Ce \cdot 2^{-4} \Rightarrow Ce=5
A través de sus enteros equivalentes
Pe=Ae \cdot Be=17 \cdot 13=221
Ce hay que ponerlo en la misma escala que P
Ce'=Ce \cdot 2^3=40
```

 \Rightarrow Se=Pe+Ce'=221+40=261 \Rightarrow S=Se·2⁻⁷=2.0390625 (S=A·B+C)

Suma de productos: $S = \Sigma(A_i \cdot B_i)$

A [Na,a]
$$A=Ae \cdot 2^{-a}$$

B [Nb,b] $B=Be \cdot 2^{-b}$
S [Ns,s] $S=Se \cdot 2^{-s}$

Ejemplo: A [8,7]; B [9,8]; M=5
P=A·B=(Ae·Be)2-(a+b)
$$\Rightarrow$$
[17,15]
S \Rightarrow [20,15]

$$S = \sum_{i=0}^{M-1} (A_i \cdot B_i)$$

Si uno de los operadores son coeficientes conocidos en la fase de diseño (ej. Filtro FIR), se puede conocer el crecimiento de los datos y reducir los bits de guarda

Recursividad y precisión finita

Ejemplo: Integrador

$$y(n) = x(n) + Ay(n-1)$$

Ejemplo:

$$X, Y \Rightarrow [9,7]$$

$$A \Rightarrow [9,8]$$

$$P=Y\cdot A=(Ye\cdot Ae)2^{-(x+a)} \Longrightarrow [18,15]$$

$$P_Q = Q(P \cdot 2^{-a}) = Pe_Q 2^{-x} \Longrightarrow [9,7]$$

$$Ye(n) = Xe(n) + floor(Ye(n) * Ae *2-a)$$

V1: Cómputo sin pérdida de precisión

- Formato A, B, C, D:
 - S[16,15], rango [-1,1-2⁻¹⁵]
- Formato R
 - rango de posibles R [-4,4]
 - casos extremos A=B=-1, C=D=0
 o A=B=0, C=D=-1
 - S[34,30], rango [-8,8-2⁻³⁰]

- Formato A, B, C, D:
 - S[16,15] con **saturación simétrica**, rango [-1+2⁻¹⁵,1-2⁻¹⁵]
- Formato R
 - rango de posibles R]-4,4[
 - casos extremos A=B=1-2⁻¹⁵, C=D=0
 o A=B=0, C=D=1-2⁻¹⁵
 - S[33,30], rango [-4,4-2⁻³⁰]

V1: Cómputo sin pérdida de precisión

V1: Cómputo sin pérdida de precisión

V2: Sin pérdida de precisión interna y salida

truncada a [16,12]

a	0.003265380859375	0.000366210937500	0.017181396484375	-1
b	0.000213623046875	0.015258789062500	0.121887207031250	-1
С	0.000518798828125	0.006103515625000	0.047698974609375	0
d	0.094818115234375	0.000121421180665	0.017181396484375	0
r	-0.009277343750000	0	0.014892578125000	4
ΓΑ	107	12	563	-32768
015 B	7	500	3994	-32768
$x2^{15} \rightarrow C$	17	200	1563	0
D	3107	163	563	0
$x2^{12}$ R	-38	0	61	16384

V2: Sin pérdida de precisión interna y salida

В

R

truncada a [16,12]

module RESTA_SUM_CUAD2 (A,B,C,D,R); input signed [15:0] A,B,C,D; output wire signed[15:0] R;

wire signed [16:0] S1,S2; wire signed [33:0] M1,M2,Rc;

assign S1 = A+B;

assign S2 = C+D;

assign M1 = S1*S1;

assign M2 = S2*S2;

assign Rc = M1-M2;

assign R=Rc[33:18];

endmodule

107	12	563	-32768
7	500	3994	-32768
17	200	1563	0
3107	163	563	0
-38	0	61	16384

V3: Sin pérdida de precisión interna y salida redond.

con *nearest* a [16,12]

a	0.003265380859375	0.000366210937500	0.017181396484375	-1
b	0.000213623046875	0.015258789062500	0.121887207031250	-1
c	0.000518798828125	0.006103515625000	0.047698974609375	0
d	0.094818115234375	0.000121421180665	0.017181396484375	0
r	-0.009033203125000	0	0.015136718750000	4
$ \begin{array}{c} \textbf{x2}^{15} = \begin{bmatrix} \textbf{A} & \\ \textbf{B} & \\ \textbf{C} & \\ \textbf{D} & \\ \textbf{X2}^{12} & \\ \textbf{R} & \\ \end{array} $	107	12	563	-32768
	7	500	3994	-32768
	17	200	1563	0
	3107	163	563	0
	-37	0	62	16384

V3: Sin pérdida de precisión interna y salida redond.

con *nearest* a [16,12]

Al sumar solo el MSB que se trunca, se calcula la operación "nearest".

V4: Con multiplicador truncado a [19,15] y salida

[34,30]

redondeada a [16,12]

V4: Con multiplicador truncado a [19,15] y salida

redondeada a [16,12]

Verilog

module RESTA_SUM_CUAD4(A,B,C,D,R); input signed [15:0] A,B,C,D; output wire signed [15:0] R;

wire signed [16:0] S1,S2; wire signed [33:0] M1,M2; wire signed [18:0] Rc;

assign S1 = A+B; assign S2 = C+D; assign M1 = S1*S1; assign M2 = S2*S2;

assign Rc = M1[33:15]-M2[33:15];

assign R = ((Rc[18] & (Rc[2:0])) = 3'b100) ? Rc[18:3] : (Rc[18:3] + Rc[2]);

endmodule

round: redondeo simétrico con error medio nulo

В

D

R

Al sumar solo el MSB que se trunca, se calcula la operación "nearest".

Para hacer el "round" es necesario detectar el caso especial:

bit de signo 1 (números negativos) y cadena "1000...0" en bits truncados.

V5: Con multiplicador truncado a [19,15] y salida

redond. y sat. a [16,13]

```
Matlab
m1=floor((a+b)^2*2^15)*2^-15;
m2=floor((c+d)^2*2^15)*2^-15;
rr=round((m1-m2)*2^13)*2^-13;
if rr >= 4-2^{-13}
  r = 4-2^{1}3;
elseif rr < -4
  r = -4;
else r = rr;
end
qm=quantizer([19 15],'fixed','wrap','floor')
qs=quantizer([16 13],'fixed', 'saturate','round')
m1=quantize(qm,(a+b)^2);
m2=quantize(qm,(c+d)^2);
r=quantize(qs,(m1-m2));
```



```
r -0.009033203125000 -74
0.000122070312500 x2<sup>13</sup> 1
0.015136718750000 124
3.999877929687500 32767
```

Verilog module RESTA_SUM_CUAD5(A,B,C,D,R); input signed [15:0] A,B,C,D; output wire signed [15:0] R; wire signed [16:0] S1,S2; wire signed [33:0] M1,M2; wire signed [18:0] Rc; wire signed [16:0] Rr: wire signed [16:0] SATpos = 32767; wire signed [16:0] SATneg = -32768; assign S1 = A+B; assign S2 = C+D; assign M1 = S1*S1; assign M2 = S2*S2: assign Rc = M1[33:15]-M2[33:15];

124

```
assign Rr = (Rc[18] & (Rc[1:0]==2'b10)) ? Rc[18:2] : (Rc[18:2] + Rc[1]);
assign R = (Rr > SATpos) ? SATpos[15:0] : (Rr<SATneg) ? SATneg[15:0] : Rr[15:0];
```

-74

endmodule

32767

Esquemas RTL: $R=(A+B)^2-(C+D)^2$

Esquemas RTL: $R=(A+B)^2-(C+D)^2$

V4

Redondeo round a [16,12]

V5

Redondeo saturación a [16,13]

La selección del formato numérico no sólo afecta a los resultados numéricos También afecta al área y tiempo de propagación del circuito que se implementa

Modelado con precisión finita de algoritmos

- Objetivo:
 - ⇒ Limitar los tamaños de palabra sin que se vean deterioradas las prestaciones
- ¿Cómo sabemos que no se deterioran las prestaciones?
 - ⇒ Se necesita un modelo de referencia "golden model" para compararse
 - ⇒ Hay que establecer la medida de "calidad": exactitud, SNR, BER...
- Método de aplicación:
 - 1. Codificar el modelo de referencia
 - Excitarlo con las señales típicas de la aplicación
 - Utilizar amplitudes máximas y mínima admisibles
 - Visualizar variables intermedias para conocer su crecimiento
 - 2. Cuantificar coeficientes y comparar con el modelo de referencia
 - Una vez decidida la cuantificación de coeficientes, dejarlos cuantificados para evaluar la cuantificación de la ruta de datos
 - 3. Cuantificar datos y comparar con el modelo de referencia

Modelado con precisión finita de algoritmos

- Método de aplicación:
 - La aplicación de 2 y 3 es secuencial:
 - Se empieza aplicándolo desde la entrada y propagándolo hacia la salida
 - Cada vez que se cuantifica un coeficiente o variable se debe comprobar que el modelo sigue siendo correcto
 - La aplicación de 2 y 3 es iterativa:
 - Suele ser común el volver atrás y ajustar las cuantificaciones
- ⇒ Realizar modelos de precisión finita es un proceso laborioso que consume mucho tiempo de diseño y simulación

Flujo de verificación

Flujo de verificación

Conclusiones

- En los dispositivos FPGA los algoritmos se implementan con precisión finita (mayoritariamente con formato de punto fijo)
- El modelado de precisión finita de los algoritmos es necesario para:
 - determinar si el algoritmo alcanza las prestaciones deseadas al implementarse con precisión finita
 - para facilitar la depuración y verificación del sistema
- En este tema:
 - se han presentado las herramientas y metodología para modelar algoritmos con precisión finita
 - y se ha presentado el flujo de verificación hardware de un módulo que implemente un algoritmo, utilizando su modelo de precisión finita