第3学年 電気電子工学実験実習報告書

0		RLC回路			
	_				
		7			
		班	学生番号	氏名	
		2	3322	高橋 広旭	
		共同実験者名			
				備考	評価
予定日	5/12	1/6 [1]		C. turk	н ш
提出日	,				

東京都立産業技術高等専門学校 電気電子エ学コース

- 1 目的
- 2 原理
- 3 方法
- 3.1 実験装置

実験に使用した装置を表1に示す。

表 1: 使用器具

27 27 17 111 27						
使用器具名	製造元	型番				
オシロスコープ	KEYSIGHT	MSO-X 2012A				
ファンクションジェネレータ	GWINSTEK	MEG-2260M				
電流計	不明	不明				

3.2 RLC 直列回路の測定

- 1. 図1に示す回路を作成する。
- 2. 100[Hz] から 2000[Hz] まで 100[Hz] 間隔で回路全体の電流値、A-B 間と A-C 間のオシロスコープ で電圧波形を測定する。
- 3. インピーダンスの大きさ、偏角、周波数変化時の軌跡を求め、グラフを作成する。

図 1: RLC 直列回路

3.3 RLC 並列回路の測定

- 1. 図2に示す回路を作成する。
- 2. 100[Hz] から 4000[Hz] まで 100[Hz] 間隔で回路全体の電流値、A-B 間と B-C 間のオシロスコープ で電圧波形を測定する。

3. インピーダンスの大きさ、偏角、周波数変化時の軌跡を求め、グラフを作成する。

図 2: RLC 並列回路

4 結果

4.1 RLC 直列回路

表 2 は、測定した電流値と、オシロスコープの波形から計算したインピーダンスの大きさ、偏角、周波数変化時の実軸、虚軸ごとの値の変化を表したものである。

図 3 は、RLC 直列回路のインピーダンスの大きさの計算結果を示したものである。計算に用いた式は $|\dot{Z}|=Vm/\sqrt{2}/I$ である。図 3 より、約 800[Hz] のとき抵抗の値と近似していることが分かる。

図 4 は、RLC 直列回路の合成インピーダンスの偏角の大きさのを示したものである。A-B 間の電圧波形は、抵抗に掛かる電圧波形である。従って、電流波形と同相である。これを電流波形とみなし、A-C 間の電圧波形との位相差から求めた。図 4 より、周波数が約 800[Hz] を超えると偏角がマイナスからプラスに変化することが分かる。

図 5 は、RLC 直列回路の合成インピーダンスの軌跡の計算結果を示したものである。計算に用いた式は実軸が $Re=|\dot{Z}|\cos\theta z$, 虚軸が $Re=|\dot{Z}|\sin\theta z$ である。図 5 より、軌跡は直線になることが分かる。

表 2: RLC 直列回路の測定・計算結果

	I[A]	$ Z [\Omega]$	$\theta z[rad]$	軌跡 Re	軌跡 Im
100	0.039	182.674	-0.992	100	-152.872
200	0.059	120.376	-0.590	100	-67.011
300	0.067	105.687	-0.330	100	-34.202
400	0.070	101.068	-0.146	100	-14.656
500	0.071	100.001	-0.004	100	-0.415
600	0.070	100.622	0.111	100	11.173
700	0.069	102.232	0.209	100	21.246
800	0.068	104.510	0.295	100	30.371
900	0.066	107.287	0.371	100	38.865
1000	0.064	110.459	0.439	100	46.916
1100	0.062	113.957	0.500	100	54.646
1200	0.060	117.732	0.556	100	62.135
1300	0.058	121.745	0.607	100	69.439
1400	0.056	125.964	0.654	100	76.596
1500	0.054	130.366	0.697	100	83.637
1600	0.052	134.927	0.736	100	90.584
1700	0.051	139.631	0.772	100	97.452
1800	0.049	144.462	0.806	100	104.255
1900	0.047	149.405	0.838	100	111.004
2000	0.046	154.450	0.867	100	117.706

図 3: RLC 直列回路のインピーダンスの大きさ

図 4: RLC 直列回路の偏角の大きさ

図 5: RLC 直列回路のインピーダンスの軌跡

4.2 RLC 並列回路

表 3 は、測定した電流値と、オシロスコープの波形から計算したインピーダンスの大きさ、偏角、周波数変化時の実軸、虚軸ごとの値の変化を表したものである。

図 6 は、RLC 並列回路の合成インピーダンスの軌跡の計算結果を示したものである。計算に用いた式は $|\dot{Z}|=Vm/\sqrt{2}/I$ である。図 6 より、約 $2000[{\rm Hz}]$ のときインピーダンスの値が一番高くなっていることが分かる。

図 7 は、RLC 並列回路の合成インピーダンスの偏角の大きさの計算結果を示したものである。A-B 間の電圧波形は、抵抗 R_0 に掛かる電圧波形である。従って、電流波形と同相である。これを電流波形とみなし、B-C 間の電圧波形との位相差から求めた。図 7 より、周波数が約 2000[Hz] を超えると偏角がプラスからマイナスに変化することが分かる。

図 8 は、RLC 並列回路の合成インピーダンスの軌跡の計算結果を示したものである。計算に用いた式は実軸が $Re = |\dot{Z}|\cos\theta z$, 虚軸が $Re = |\dot{Z}|\sin\theta z$ である。図 8 より、軌跡が円になることが確認できた。

表 3: RLC 並列回路の測定・計算結果

	I[A]	$ Z [\Omega]$	$\theta z[rad]$	軌跡 Re	軌跡 Im
100	1.981	3.569	1.552	3.567	0.097
200	0.489	14.464	1.533	14.459	0.387
300	0.213	33.275	1.513	33.263	0.879
400	0.116	61.041	1.493	61.020	1.590
500	0.071	99.364	1.471	99.331	2.551
600	0.047	150.568	1.448	150.520	3.804
700	0.032	217.966	1.423	217.899	5.411
800	0.023	306.246	1.395	306.155	7.455
900	0.017	422.076	1.364	421.957	10.046
1000	0.012	575.024	1.329	574.869	13.333
1100	0.009	778.964	1.288	778.767	17.509
1200	0.007	1054.229	1.240	1053.982	22.816
1300	0.005	1430.795	1.183	1430.490	29.537
1400	0.004	1952.609	1.113	1952.241	37.931
1500	0.003	2682.035	1.026	2681.604	48.045
1600	0.002	3699.171	0.917	3698.697	59.201
1700	0.001	5078.597	0.778	5078.130	68.917
1800	0.001	6803.980	0.601	6803.606	71.349
1900	0.001	8593.382	0.384	8593.188	57.660
2000	0.001	9809.627	0.138	9809.598	23.698
2100	0.001	9874.648	-0.112	9874.630	-19.336
2200	0.001	8891.069	-0.339	8890.913	-52.681
2300	0.001	7458.941	-0.528	7458.624	-68.778
2400	0.001	6065.240	-0.678	6064.815	-71.776
2500	0.001	4903.319	-0.795	4902.847	-68.039
2600	0.002	3991.922	-0.887	3991.444	-61.790
2700	0.002	3290.220	-0.960	3289.758	-55.120
2800	0.003	2749.524	-1.019	2749.089	-48.889
2900	0.003	2328.945	-1.067	2328.541	-43.376
3000	0.004	1997.565	-1.107	1997.192	-38.608
3100	0.004	1732.842	-1.141	1732.498	-34.520
3200	0.005	1518.478	-1.171	1518.162	-31.019
3300	0.005	1342.656	-1.196	1342.363	-28.016
3400	0.006	1196.723	-1.218	1196.452	-25.429
3500	0.007	1074.273	-1.237	1074.022	-23.189
3600	0.007	970.502	-1.254	970.270	-21.239
3700	0.008	881.763	-1.269	881.547	-19.533
3800	0.009	805.251	-1.283	805.049	-18.031
3900	0.010	738.784	-1.296	738.596	-16.703
4000	0.010	680.647	-1.307	680.470	-15.523

図 6: RLC 並列回路のインピーダンスの大きさ

図 7: RLC 並列回路の偏角の大きさ

図 8: RLC 並列回路のインピーダンスの軌跡

5 考察

5.1 RLC 直列回路

1. 測定した回路と同じ回路を Excel で計算し実測値と比較せよ。 RLC 直列回路のインピーダンスの大きさは

$$|Z| = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2} \tag{1}$$

RLC 直列回路の偏角の大きさは

$$\theta = \arctan(\frac{\omega L - \frac{1}{\omega C}}{R}) \tag{2}$$

RLC 直列回路のインピーダンスの軌跡は

$$Re = |Z|\cos\theta \tag{3}$$

$$lm = |Z|\sin\theta\tag{4}$$

で求められる。図 9 は、RLC 直列回路の計算値を、図 10 は、RLC 直列回路の偏角の大きさを、図 11 は、RLC 直列回路のインピーダンスの軌跡を表したものである。全て実測値と比較して概ね正しいといえる。従って、概ね正確な測定や計算ができたといえる。

"考察課題の狙い"

RLC 直列回路の計算方法について理解する。

図 9: RLC 直列回路のインピーダンスの大きさ

図 10: RLC 直列回路の偏角の大きさ

図 11: RLC 直列回路のインピーダンスの軌跡

2. 合成インピーダンスの値が最小になるときの値を計算式で求めよ。この回路の合成インピーダンスは

$$Z = R + j(\omega L - \frac{1}{\omega C}) \tag{5}$$

である。直列回路であるためで周波数変化時に値が変化する $\omega L - \frac{1}{\omega C}$ が最小の時合成インピーダンスの値が最小になる。この時の合成インピーダンスの値は

$$Z = R \tag{6}$$

従って 100[Ω] となる。

"考察課題の狙い"

RLC 直列回路の共振について理解する。

5.2 RLC 並列回路

1. 測定した回路と同じ回路を Excel で計算し実測値と比較せよ。

RLC 並列回路のインピーダンスの大きさは

$$|Z| = \frac{1}{\sqrt{\frac{1}{R^2} + (\frac{1}{\omega L} - \omega C)^2}}$$
 (7)

RLC 並列回路の偏角の大きさは

$$\theta = \arctan(R(\frac{1}{\omega L} - \omega C)) \tag{8}$$

RLC 並列回路のインピーダンスの軌跡は

$$Re = |Z|\cos\theta \tag{9}$$

$$lm = |Z|\sin\theta \tag{10}$$

で求められる。図 12 は、RLC 並列回路の計算値を、図 13 は、RLC 並列回路の偏角の大きさを、図 14 は、RLC 並列回路のインピーダンスの軌跡を表したものである。全て実測値と比較して概ね正しいといえる。従って、概ね正確な測定や計算ができたといえる。

"考察課題の狙い"

RLC 並列回路の計算方法について理解する。

2. 合成インピーダンスの値が最大になるときの値を計算式で求めよ

この回路の合成インピーダンスは

$$Z = \frac{1}{\frac{1}{R} + \frac{1}{j}(\frac{1}{\omega L} - \omega C)}$$
 (11)

である。並列回路であるため周波数変化時に値が変化する $\frac{1}{\omega L} - \omega C$ が最小になるとき合成インピーダンスが一番大きくなる。従って虚部の値は 0 になる。この時の合成インピーダンスの値は

$$Z = R \tag{12}$$

従って 100[Ω] となる。

"考察課題の狙い"

RLC 並列回路の共振について理解する。

6 結論

図 12: RLC 並列回路のインピーダンスの大きさ

図 13: RLC 並列回路の偏角の大きさ

図 14: RLC 並列回路のインピーダンスの軌跡