Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Омский государственный технический университет»

Факультет информационных технологий и компьютерных систем Кафедра «Прикладная математика и фундаментальная информатика»

Пояснительная записка

по дисциплине «Проектная деятельность»

Студента	Курпенова Куата Ибраимовича		
	фамилия, имя, отчество полностью		
Курс	3, группа ФИТ-222		
Направление	02.03.02 Фундаментальная информатика		
	и информационные технологии		
	код, наименование		
Руководитель	ь доц., канд. физмат. на		
	должность, ученая степень, звание		
	Девятерикова М. В.		
	фамилия, инициалы		
Выполнил			
	дата, подпись студента		
Проверил			
	дата, подпись руководителя		

СПИСОК ИСПОЛНИТЕЛЕЙ

	Курпенов К. И.
дата, подпись исполнителя	
ентальная информатика и	информационные

РЕФЕРАТ

Пояснительная записка N с., M рис., K источн., L прилож. ПРОЕКТ, КОМПЬЮТЕРНОЕ ЗРЕНИЕ, СТЕРЕОЗРЕНИЕ, ЛИДАР, КАРТА ГЛУБИНЫ, PYTHON, OPENCV.

Объект проекта — определение расстояний до препятствий при автопилотировании.

Цель проекта — создать заменяющее лидар устройство, которое не будет уступать ему в функциональности и цене.

В процессе выполнения проекта я изучил основные принципы стереоскопического зрения и запрограммировал устройство для построения карты глубины.

В результате выполнения проекта было создано устройство, которое может определять расстояния до различных объектов.

СОДЕРЖАНИЕ

BI	ВВЕДЕНИЕ		5
1	Постановка задачи		6
2 Решение			6
	2.1	Описание математического аппарата стереозрения	6
	2.2	Описание устройства	6
	2.3	Создание АРІ для работы с камерой	6
	2.4	Калибровка камеры	7
	2.5	Получение разницы изображений	7
	2.6	Настройка параметров получения разницы	7
	2.7	Фиксация параметров. Запуск приложения	7
3	Теку	ищее состояние проекта и планы по дальнейшему развитию	7
3 <i>A</i>	КЛЮ	ОЧЕНИЕ	8
CI	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ		9
П	РИЛС	ЖЕНИЕ А	10

ВВЕДЕНИЕ

Так как целью более масштабного проекта (робота-уборщика) является построение такого робота, который сможет самостоятельно передвигаться - требуется распознавать препятствия до объектов и определять расстояния до них. Эту проблему решает лидар - устройство, использующее невидимые для глаза лучи ИК-спектра для определения расстояний путём отражения лучей от объектов. Однако у данного решения есть большая проблема - он имеет существенную цену и плохо работает при плохих погодных условиях, например, в дождь или снег.

Цель проекта - создать устройство для определения расстояний, которое по своим характеристикам будет сравнимо с лидаром и будет лишено его главного недостатка - цены.

Для достижения поставленной цели требуется выполнить шаги из следующих задач:

- Изучить техническую литературу из данной области (законы оптики, геометрия оптики, стереозрение)
- Приобрести стереокамеру для проеведения опытов
- Реализовать построение карты глубины на устройстве

1 Постановка задачи

Все лучшие решения человеческих проблем подсмотрены у природы. Задача с определением расстояния - не исключение. Так уж вышло, что компьютерное стереозрение является полным аналогом зрения человеческого. Как же оно работает?

Предположим, миг для человека - это конкретная картинка перед глазами с конкретными значениями "пикселов" в матрице координат. Наш мозг буквально "накладывает" данные изображения друг на друга и получает разницу. Чем больше разница, тем объёмнее кажется один и тот же объект.

Следовательно, задача создания прибора сводится к получению разницы между двумя картинками с двух различных камер. Какие подзадачи отсюда возникают? Камеры должны быть жёстко закреплены друг с другом (хотя эта проблема нивелируется аксиомой о двух точках на прямой). Фокусное расстояние у двух камер должно быть одинаковым, чтобы не получать различные значения пикселов (из-за размытия) для одинаковой зоны изображения. Так же требуется провести калибровку камер, так как линзы не являются идеальными и в матрице ошибок требуется указать эти проблемы. Помимо решения проблемы неидеальных линз, калибровка позволяет увидеть какую зону камеры покрывают одновременно - это поможет определиться с разрешением выходной карты глубины.

2 Решение

2.1 Описание математического аппарата стереозрения

Чертежи, схемы, формулы для определения расстояний.

2.2 Описание устройства

Здесь неплохо было бы описать стереокамеру. Физические выводы, разрешение, привести скриншоты технической документации, фотографии самой камеры.

2.3 Создание АРІ для работы с камерой

Пример изображения склейки с двух камер.

2.4 Калибровка камеры

Условное описание процесса калибровки и зачем оно нужно. Почему шахматная доска? Калибровочные изображения. Итоговая матрица.

2.5 Получение разницы изображений

Описание OpenCV фукнции для получения разницы.

2.6 Настройка параметров получения разницы

Экран с настройкой.

2.7 Фиксация параметров. Запуск приложения

3 Текущее состояние проекта и планы по дальнейшему развитию

На данном этапе основной функционал завершён и приложение можно использовать. Однако есть некоторые улучшения, которые хотелось бы добавить: жёсткая фиксация параметров камеры, получение конкретного расстояния до объекта, автоматической подбор параметров для любой стереокамеры.

ЗАКЛЮЧЕНИЕ

В ходе разработки данного проекта было реализовано устройство, которое позволяет на допустимых для робота дистанциях определять расстояния до препятствий.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Евгений Михайлович Ландау, Лев Давидович и Лифшиц. *Теоретическая физика*. Рипол Классик, 1958.

Unknown. Usage statistics of content languages for websites, 2017. URL http://w3techs.com/technologies/overview/content_language/all. Last accessed 16 September 2017.

Donald E. Knuth. Literate programming. *The Computer Journal*, 27(2):97--111, 1984.

ПРИЛОЖЕНИЕ А