演習4:画像の近傍処理

これまでは、結果画像内のある一つの pixel の値は、元画像の一つの pixel から求められた. ここでは、元画像の複数 pixel から決定される場合を扱う. 近傍 9pixel から決定される (求められる) 処理がよく利用される. 以下の様に、結果画像(g)の pixel(i,j)は、元画像(f)の(i,j)を中心とする近傍 9pixel におのおの Du, v の重みを掛けた加重平均として定める. 以下の各演習では、添付画像(sample1-4.bmp)に対してこの処理を行いなさい。

図4-1 近傍からの計算

演習4-1(a):横方向のみの平滑化

平滑化とは、画像の一つの特徴量の変化を滑らかにするための手法,値の変化をなめらかにする手法である。よく利用される特徴量は、「輝度値」(明るさ)である。例えば、横方向のみ考え輝度が(000099990000)と変化する場合、(x0036996300x)となれば、変化が緩やかになる。これは、

out(i)= (in(i-1)+in(i)+in(i+1))/3
とすればよい. これを、マトリクス D で表現すると
となる. 配布 sample4-1 の「処理内容の部分」は

 0
 0

 1/3
 1/3

 0
 0

float gw=(gray(x-1,y)+gray(x,y)+gray(x+1,y))/3;
img_out2.pixels[Pos] = color(gw,gw,gw)

となる。だだし、x,yの変域は1~width-2,0~height-1となる.

演習 4-1 (b):縦横双方向を考慮した平滑化下記のマトリクスとすることにより、

「横方向の平均と縦方向の平均」の平均となる. グレースケール値は以下の通りとなる。

0	1/6	0
1/6	1/3	1/6
0	1/6	0

float gw= ((gray(x-1,y)+gray(x,y)+gray(x+1,y))/3 + (gray(x,y-1)+gray(x,y)+gray(x,y+1))/3)/2;

演習4-2:平均化フィルター

双方向を考慮したフィルターとして下記がある。

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

1/16	2/16	1/16
2/16	4/16	2/16
1/16	2/16	1/16

(a)代表的なフィルター

(b)ガウシャンフィルター

演習4-3:微分フィルター

(a):横方向の微分

マトリクスは、以下の通りである。 この結果は、 ± 127 の範囲の値となる. これに、128 を加えることによりで、

0	0	0
-1/2	0	1/2
0	0	0

画像の変化を 0~255の値として表現できる.よって、結果は、

float gw= (-gray(x-1,y) + gray(x+1,y))/2 + 128;

を描けばよい。この場合、xの範囲は、1~width-2となる

(b):縦方向の微分

マトリクスは、以下の通りである。

0	-1/2	0
0	0	0
0	1/2	0

直前の(a)と同様の考え方で値は求まる. x と y の変化範囲に注意のこと

演習4-4;輪郭抽出

ソーベルフィルターと呼ばれるフィルターで、輪郭が抽出できます.

-1	0	1
-2	0	2
-1	0	1

-1	-2	-1
0	0	0
1	2	1

横方向(fw)

縦方向(fh)

まず、横(x)方向の値(fw)と縦方向の値(fh)を求め、次式で求める。

float gw = sqrt(fw*fw + fh*fh);

注意: fw および fh を上記マトリクス通りに計算すると、±1024 となる。工夫が必要である