Cholesky Decomposition for Positive Definite Matrices

Positive Definite Matrices: An $n \times n$ real matrix A is said to be (symmetric) positive definite if the following hold:

- 1. A is symmetric, that is, $A^T = A$;
- 2. $x^T Ax > 0$ for all $x \in \mathbb{R}^n$ with $x \neq 0$.

Positive Definite Matrices: An $n \times n$ real matrix A is said to be (symmetric) positive definite if the following hold:

- 1. A is symmetric, that is, $A^T = A$;
- 2. $x^T Ax > 0$ for all $x \in \mathbb{R}^n$ with $x \neq 0$.

In the literature very often positive definite matrices are defined as those satisfying only 2. Such matrices need not be symmetric.

Positive Definite Matrices: An $n \times n$ real matrix A is said to be (symmetric) positive definite if the following hold:

- 1. A is symmetric, that is, $A^T = A$;
- 2. $x^T Ax > 0$ for all $x \in \mathbb{R}^n$ with $x \neq 0$.

In the literature very often positive definite matrices are defined as those satisfying only 2. Such matrices need not be symmetric. Find an example!

Positive Definite Matrices: An $n \times n$ real matrix A is said to be (symmetric) positive definite if the following hold:

- 1. A is symmetric, that is, $A^T = A$;
- 2. $x^T Ax > 0$ for all $x \in \mathbb{R}^n$ with $x \neq 0$.

In the literature very often positive definite matrices are defined as those satisfying only 2. Such matrices need not be symmetric. Find an example!

However, in application real matrices that satisfy 2 are most often also symmetric. In accordance with the textbook, we will refer to symmetric positive definite matrices as (just) positive definite matrices.

Positive Definite Matrices: An $n \times n$ real matrix A is said to be (symmetric) positive definite if the following hold:

- 1. A is symmetric, that is, $A^T = A$;
- 2. $x^T Ax > 0$ for all $x \in \mathbb{R}^n$ with $x \neq 0$.

In the literature very often positive definite matrices are defined as those satisfying only 2. Such matrices need not be symmetric. Find an example!

However, in application real matrices that satisfy 2 are most often also symmetric. In accordance with the textbook, we will refer to symmetric positive definite matrices as (just) positive definite matrices.

The counterpart of transpose $(^T)$ for complex matrices is complex conjugate transpose $(^*)$. If an $n \times n$ matrix is non real, that is it is a complex matrix with non zero imaginary part, then 2 with T replaced by * implies that $A^* = A$, that is, A is Hermitian.

Positive Definite Matrices: An $n \times n$ real matrix A is said to be (symmetric) positive definite if the following hold:

- 1. A is symmetric, that is, $A^T = A$;
- 2. $x^T Ax > 0$ for all $x \in \mathbb{R}^n$ with $x \neq 0$.

In the literature very often positive definite matrices are defined as those satisfying only 2. Such matrices need not be symmetric. Find an example!

However, in application real matrices that satisfy 2 are most often also symmetric. In accordance with the textbook, we will refer to symmetric positive definite matrices as (just) positive definite matrices.

The counterpart of transpose $\binom{T}{}$ for complex matrices is complex conjugate transpose $\binom{*}{}$. If an $n \times n$ matrix is non real, that is it is a complex matrix with non zero imaginary part, then 2 with T replaced by * implies that $A^* = A$, that is, A is Hermitian. Prove this!

Positive Definite Matrices: An $n \times n$ real matrix A is said to be (symmetric) positive definite if the following hold:

- 1. A is symmetric, that is, $A^T = A$;
- 2. $x^T Ax > 0$ for all $x \in \mathbb{R}^n$ with $x \neq 0$.

In the literature very often positive definite matrices are defined as those satisfying only 2. Such matrices need not be symmetric. Find an example!

However, in application real matrices that satisfy 2 are most often also symmetric. In accordance with the textbook, we will refer to symmetric positive definite matrices as (just) positive definite matrices.

The counterpart of transpose $(^T)$ for complex matrices is complex conjugate transpose $(^*)$. If an $n \times n$ matrix is non real, that is it is a complex matrix with non zero imaginary part, then 2 with T replaced by * implies that $A^* = A$, that is, A is Hermitian. Prove this!

Therefore if A is an $n \times n$ non real matrix , then A is said to be positive definite if $x^*Ax > 0$ for all nonzero $x \in \mathbb{C}^n$.

Positive definite matrices arise in many applications involving optimization and discretization of partial differential equations. Consider systems Ax = b.

Positive definite matrices arise in many applications involving optimization and discretization of partial differential equations. Consider systems Ax = b.

- ▶ When associated with electrical circuits with x representing loop currents, $x^T A x$ is the total power drawn by the resistors.
- ▶ When associated with mass spring systems, $(x^T Ax)/2$ is the strain energy of the system.

Positive definite matrices arise in many applications involving optimization and discretization of partial differential equations. Consider systems Ax = b.

- ▶ When associated with electrical circuits with x representing loop currents, $x^T A x$ is the total power drawn by the resistors.
- ▶ When associated with mass spring systems, $(x^T Ax)/2$ is the strain energy of the system.

(For examples see Section 1.2 of *D. S. Watkins, Fundamentals of Matrix Computations (second edition)*)

Positive definite matrices arise in many applications involving optimization and discretization of partial differential equations. Consider systems Ax = b.

- ▶ When associated with electrical circuits with x representing loop currents, $x^T A x$ is the total power drawn by the resistors.
- ▶ When associated with mass spring systems, $(x^T Ax)/2$ is the strain energy of the system.

(For examples see Section 1.2 of *D. S. Watkins, Fundamentals of Matrix Computations (second edition)*)

Important properties:

Positive definite matrices arise in many applications involving optimization and discretization of partial differential equations. Consider systems Ax = b.

- ▶ When associated with electrical circuits with x representing loop currents, $x^T A x$ is the total power drawn by the resistors.
- ▶ When associated with mass spring systems, $(x^T Ax)/2$ is the strain energy of the system.

(For examples see Section 1.2 of *D. S. Watkins, Fundamentals of Matrix Computations (second edition)*)

Important properties:

A positive definite matrix is a nonsingular matrix.

Positive definite matrices arise in many applications involving optimization and discretization of partial differential equations. Consider systems Ax = b.

- ▶ When associated with electrical circuits with x representing loop currents, $x^T A x$ is the total power drawn by the resistors.
- ▶ When associated with mass spring systems, $(x^T Ax)/2$ is the strain energy of the system.

(For examples see Section 1.2 of *D. S. Watkins, Fundamentals of Matrix Computations (second edition)*)

Important properties:

- A positive definite matrix is a nonsingular matrix.
- If A is an $n \times n$ positive definite matrix, then for any nonsingular $n \times n$ matrix $X, X^T A X$ is also positive definite.

Positive definite matrices arise in many applications involving optimization and discretization of partial differential equations. Consider systems Ax = b.

- ▶ When associated with electrical circuits with x representing loop currents, $x^T A x$ is the total power drawn by the resistors.
- ▶ When associated with mass spring systems, $(x^T Ax)/2$ is the strain energy of the system.

(For examples see Section 1.2 of *D. S. Watkins, Fundamentals of Matrix Computations (second edition)*)

Important properties:

- A positive definite matrix is a nonsingular matrix.
- If A is an n × n positive definite matrix, then for any nonsingular n × n matrix X, X^TAX is also positive definite.
- All principal submatrices of positive definite matrices are positive definite.

Positive definite matrices arise in many applications involving optimization and discretization of partial differential equations. Consider systems Ax = b.

- ▶ When associated with electrical circuits with x representing loop currents, $x^T A x$ is the total power drawn by the resistors.
- ▶ When associated with mass spring systems, $(x^T Ax)/2$ is the strain energy of the system.

(For examples see Section 1.2 of D. S. Watkins, Fundamentals of Matrix Computations (second edition))

Important properties:

- A positive definite matrix is a nonsingular matrix.
- If A is an $n \times n$ positive definite matrix, then for any nonsingular $n \times n$ matrix X, $X^T A X$ is also positive definite.
- All principal submatrices of positive definite matrices are positive definite.

To know more about the theory and applications of positive definite matrices, check out the following link:

MIT OCW on Symmetric Positive Definite Matrices

Cholesky Decomposition for Positive Definite Matrices

Let A be a positive definite matrix. Then there exists a unique upper triangular matrix G with positive diagonal entries such that $A = G^T G$. This is called the **Cholesky Decomposition** of A and G is called the Cholesky factor of A.

Cholesky Decomposition for Positive Definite Matrices

Let A be a positive definite matrix. Then there exists a unique upper triangular matrix G with positive diagonal entries such that $A = G^T G$. This is called the **Cholesky Decomposition** of A and G is called the Cholesky factor of A.

André-Louis Cholesky (1875-1918)

Theorem An $n \times n$ matrix A is positive definite if and only if there exists an upper triangular matrix G with positive diagonal entries such that

$$A = G^T G$$
.

Theorem An $n \times n$ matrix A is positive definite if and only if there exists an upper triangular matrix G with positive diagonal entries such that

$$A = G^T G$$
.

Proof: Suppose $A = G^T G$ for some upper triangular matrix G with positive diagonal entries. Then

$$A^T = (G^T G)^T = G^T G = A.$$

For any
$$x \neq 0$$
, $x^T A x = x^T G^T G x = (G x)^T (G x) = ||G x||_2^2 \ge 0$.

Theorem An $n \times n$ matrix A is positive definite if and only if there exists an upper triangular matrix G with positive diagonal entries such that

$$A = G^T G$$
.

Proof: Suppose $A = G^T G$ for some upper triangular matrix G with positive diagonal entries. Then

$$A^T = (G^T G)^T = G^T G = A.$$

For any $x \neq 0$, $x^T A x = x^T G^T G x = (G x)^T (G x) = \|G x\|_2^2 \ge 0$.

As G is upper triangular with positive diagonal entries, it is nonsingular. Therefore as $x \neq 0$, $Gx \neq 0 \Rightarrow \|Gx\|_2 > 0$ and from above, $x^TAx > 0$ for all $x \neq 0$.

Theorem An $n \times n$ matrix A is positive definite if and only if there exists an upper triangular matrix G with positive diagonal entries such that

$$A = G^T G$$
.

Proof: Suppose $A = G^T G$ for some upper triangular matrix G with positive diagonal entries. Then

$$A^T = (G^T G)^T = G^T G = A.$$

For any $x \neq 0$, $x^T A x = x^T G^T G x = (G x)^T (G x) = \|G x\|_2^2 \ge 0$.

As G is upper triangular with positive diagonal entries, it is nonsingular. Therefore as $x \neq 0$, $Gx \neq 0 \Rightarrow \|Gx\|_2 > 0$ and from above, $x^TAx > 0$ for all $x \neq 0$.

Conversely, suppose A is an $n \times n$ positive definite matrix. Then A is nonsingular and all its leading principal submatrices are also positive definite and hence nonsingular. Moreover $x^TAx > 0$ for all $x \in \mathbb{R}^n \setminus \{0\}$.

Theorem An $n \times n$ matrix A is positive definite if and only if there exists an upper triangular matrix G with positive diagonal entries such that

$$A = G^T G$$
.

Proof: Suppose $A = G^T G$ for some upper triangular matrix G with positive diagonal entries. Then

$$A^{\mathsf{T}} = (G^{\mathsf{T}}G)^{\mathsf{T}} = G^{\mathsf{T}}G = A.$$

For any $x \neq 0$, $x^T A x = x^T G^T G x = (G x)^T (G x) = ||G x||_2^2 \ge 0$.

As G is upper triangular with positive diagonal entries, it is nonsingular. Therefore as $x \neq 0$, $Gx \neq 0 \Rightarrow \|Gx\|_2 > 0$ and from above, $x^TAx > 0$ for all $x \neq 0$.

Conversely, suppose A is an $n \times n$ positive definite matrix. Then A is nonsingular and all its leading principal submatrices are also positive definite and hence nonsingular. Moreover $x^TAx > 0$ for all $x \in \mathbb{R}^n \setminus \{0\}$.

Therefore, there is a unique unit lower triangular matrix L and a matrix $D = \text{diag}(d_{11}, \dots, d_{nn}) \ d_{ii} > 0$, such that $A = LDL^T$.

Theorem An $n \times n$ matrix A is positive definite if and only if there exists an upper triangular matrix G with positive diagonal entries such that

$$A = G^T G$$
.

Proof: Suppose $A = G^T G$ for some upper triangular matrix G with positive diagonal entries. Then

$$A^T = (G^T G)^T = G^T G = A.$$

For any $x \neq 0$, $x^T A x = x^T G^T G x = (G x)^T (G x) = ||G x||_2^2 \geq 0$.

As G is upper triangular with positive diagonal entries, it is nonsingular. Therefore as $x \neq 0$, $Gx \neq 0 \Rightarrow \|Gx\|_2 > 0$ and from above, $x^TAx > 0$ for all $x \neq 0$.

Conversely, suppose A is an $n \times n$ positive definite matrix. Then A is nonsingular and all its leading principal submatrices are also positive definite and hence nonsingular. Moreover $x^TAx > 0$ for all $x \in \mathbb{R}^n \setminus \{0\}$.

Therefore, there is a unique unit lower triangular matrix L and a matrix $D = \operatorname{diag}(d_{11}, \dots, d_{nn})$ $d_{ii} > 0$, such that $A = LDL^T$. Let $G = D^{1/2}L^T$ where, $D^{1/2} = \operatorname{diag}(\sqrt{d_{11}}, \dots, \sqrt{d_{nn}})$.

Theorem An $n \times n$ matrix A is positive definite if and only if there exists an upper triangular matrix G with positive diagonal entries such that

$$A = G^T G$$
.

Proof: Suppose $A = G^T G$ for some upper triangular matrix G with positive diagonal entries. Then

$$A^T = (G^T G)^T = G^T G = A.$$

For any $x \neq 0$, $x^T A x = x^T G^T G x = (Gx)^T (Gx) = ||Gx||_2^2 \geq 0$.

As G is upper triangular with positive diagonal entries, it is nonsingular. Therefore as $x \neq 0$, $Gx \neq 0 \Rightarrow \|Gx\|_2 > 0$ and from above, $x^TAx > 0$ for all $x \neq 0$.

Conversely, suppose A is an $n \times n$ positive definite matrix. Then A is nonsingular and all its leading principal submatrices are also positive definite and hence nonsingular. Moreover $x^TAx>0$ for all $x\in\mathbb{R}^n\setminus\{0\}$.

Therefore, there is a unique unit lower triangular matrix L and a matrix $D = \operatorname{diag}(d_{11}, \cdots, d_{nn}) \ d_{ii} > 0$, such that $A = LDL^T$. Let $G = D^{1/2}L^T$ where, $D^{1/2} = \operatorname{diag}(\sqrt{d_{11}}, \cdots, \sqrt{d_{nn}})$. Then G is upper triangular with positive diagonal entries such that $A = G^TG$. Hence the proof. \Box

Algorithms for Computing Cholesky Decomposition

Inner Product Form

Suppose

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{nn} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} g_{11} & & & & \\ g_{12} & g_{22} & & & \\ \vdots & \vdots & \ddots & & \\ g_{1n} & g_{2n} & \cdots & g_{nn} \end{bmatrix} \begin{bmatrix} g_{11} & g_{12} & \cdots & g_{1n} \\ g_{22} & \cdots & g_{2n} \\ & \ddots & \vdots \\ & & & & & & \\ g_{nn} \end{bmatrix}$$

$$=:A$$

Equating entries on both sides for j = 1 : n,

$$\sum_{k=1}^{j} g_{kj}^{2} = a_{jj} \& \sum_{i=1}^{j} g_{ij}g_{ik} = a_{jk};$$

$$\Rightarrow g_{jj} = \underbrace{\left(a_{jj} - \sum_{k=1}^{j-1} g_{kj}^{2}\right)^{1/2}}_{\text{costs } 2(j-1) \text{ flops + one square root}} \& g_{jk} = \underbrace{\left(a_{jk} - \sum_{i=1}^{j-1} g_{ij}g_{ik}\right) / g_{jj}}_{\text{costs } 2j-1 \text{ flops for each } k};$$

This is the *inner product formulation* for finding the Cholesky factor *G* one row at a time.

Flop count: $n^3/3 + O(n^2)$ flops. (Exercise!)

Outer Product Form

Let

$$b = A(1,2:n), \widehat{A} = A(2:n,2:n),$$

 $g = G(1,2:n), \widehat{G} = G(2:n,2:n).$

Then

$$\left[\begin{array}{c|c} a_{11} & b^T \\ \hline b & \widehat{A} \end{array}\right] = \left[\begin{array}{c|c} g_{11} \\ \hline g & \widehat{G}^T \end{array}\right] \left[\begin{array}{c|c} g_{11} & g^T \\ \hline & \widehat{G} \end{array}\right] \Rightarrow \left\{\begin{array}{c|c} g_{11} = \sqrt{a_{11}} \\ g = b/g_{11} \\ \widehat{G}^T \widehat{G} = \widehat{A} - gg^T \end{array}\right]$$

Outer Product Form

Let

$$b = A(1,2:n), \widehat{A} = A(2:n,2:n),$$

 $g = G(1,2:n), \widehat{G} = G(2:n,2:n).$

Then

$$\left[\begin{array}{c|c} a_{11} & b^T \\ \hline b & \widehat{A} \end{array}\right] = \left[\begin{array}{c|c} g_{11} \\ \hline g & \widehat{G}^T \end{array}\right] \left[\begin{array}{c|c} g_{11} & g^T \\ \hline & \widehat{G} \end{array}\right] \Rightarrow \left\{\begin{array}{c|c} g_{11} = \sqrt{a_{11}} \\ g = b/g_{11} \\ \widehat{G}^T \widehat{G} = \widehat{A} - gg^T \end{array}\right]$$

which gives the pseudocode

- 1. Compute $g_{11} = \sqrt{a_{11}}$.
- 2. Compute $g = b/g_{11}$.
- 3. Compute the Cholesky factor \widehat{G} of $\widehat{A} gg^T$.

for a recursive algorithm to find the Cholesky factor of A.

This is the *outer product formulation* for finding the Cholesky factor as it involves the outer product gg^T .

Outer Product Form

Let

$$b = A(1,2:n), \widehat{A} = A(2:n,2:n),$$

 $g = G(1,2:n), \widehat{G} = G(2:n,2:n).$

Then

$$\left[\begin{array}{c|c} a_{11} & b^T \\ \hline b & \widehat{A} \end{array}\right] = \left[\begin{array}{c|c} g_{11} \\ \hline g & \widehat{G}^T \end{array}\right] \left[\begin{array}{c|c} g_{11} & g^T \\ \hline & \widehat{G} \end{array}\right] \Rightarrow \left\{\begin{array}{c|c} g_{11} = \sqrt{a_{11}} \\ g = b/g_{11} \\ \widehat{G}^T \widehat{G} = \widehat{A} - gg^T \end{array}\right]$$

which gives the pseudocode

- 1. Compute $g_{11} = \sqrt{a_{11}}$.
- 2. Compute $g = b/g_{11}$.
- 3. Compute the Cholesky factor \widehat{G} of $\widehat{A} gg^T$.

for a recursive algorithm to find the Cholesky factor of A.

This is the *outer product formulation* for finding the Cholesky factor as it involves the outer product gg^T .

Verify that this also costs $n^3/3 + O(n^2)$ flops!

Bordered Form

For j = 2:n let

$$A_{j-1} = A(1:j-1, 1:j-1); c = A(1:j-1,j)$$

 $G_{j-1} = G(1:j-1;1:j-1); h = G(1:j-1,j)$

Bordered Form

For j = 2:n let

$$A_{j-1} = A(1:j-1, 1:j-1); c = A(1:j-1,j)$$

 $G_{j-1} = G(1:j-1;1:j-1); h = G(1:j-1,j)$

Then for j = 2:n

$$A = G^{\mathsf{T}}G \Rightarrow \begin{bmatrix} A_{j-1} & c \\ c^{\mathsf{T}} & a_{jj} \end{bmatrix} = \begin{bmatrix} G_{j-1}^{\mathsf{T}} & \\ h^{\mathsf{T}} & g_{jj} \end{bmatrix} \begin{bmatrix} G_{j-1} & h \\ & g_{jj} \end{bmatrix}$$
$$\Rightarrow A_{j-1} = G_{j-1}^{\mathsf{T}}G_{j-1}; \ c = G_{j-1}^{\mathsf{T}}h; \ a_{jj} = h^{\mathsf{T}}h + g_{jj}^{2};$$

Bordered Form

For i = 2:n let

$$A_{j-1} = A(1:j-1, 1:j-1); c = A(1:j-1,j)$$

 $G_{j-1} = G(1:j-1;1:j-1); h = G(1:j-1,j)$

Then for j = 2:n

$$A = G^{\mathsf{T}}G \Rightarrow \begin{bmatrix} A_{j-1} & c \\ c^{\mathsf{T}} & a_{jj} \end{bmatrix} = \begin{bmatrix} G_{j-1}^{\mathsf{T}} \\ h^{\mathsf{T}} & g_{jj} \end{bmatrix} \begin{bmatrix} G_{j-1} & h \\ g_{jj} \end{bmatrix}$$
$$\Rightarrow A_{j-1} = G_{j-1}^{\mathsf{T}}G_{j-1}; \ c = G_{j-1}^{\mathsf{T}}h; \ a_{jj} = h^{\mathsf{T}}h + g_{jj}^{2};$$

This gives the following pseudocode for computing G:

1. Set
$$G = zeros(n, n)$$
; & $G(1, 1) = \sqrt{A(1, 1)}$;

2. for j = 2:n
Solve
$$G(1:j-1,1:j-1)^T h = A(1:j-1,j)$$
 for h.
Set $G(1:j-1,j) = h$;
Set $G(j,j) = \sqrt{A(j,j) - h^T h}$;

end

This is the *bordered* form of finding G which also $costs n^3/3 + O(n^2)$ flops

Solving a Positive Definite System of Equations

Pseudocode for solving an $n \times n$ system Ax = b where A is a positive definite matrix:

- 1. Find the Cholesky factor G of A. (costs $n^3/3 + O(n^2)$ flops)
- 2. Solve $G^T y = b$ for y. (costs n^2 flops)
- 3. Solve Gx = y for x. (costs n^2 flops)

Total cost is $n^3/3 + O(n^2)$ flops.