Devoir à la maison n° 13 : corrigé

SOLUTION 1.

1. a. On a évidemment $[(1-X)+X]^{2n-1}=1$. En développant le membre de gauche à l'aide de la formule du binôme de Newton, on obtient

$$\sum_{k=0}^{2n-1} {2n-1 \choose k} X^k (1-X)^{2n-1-k} = 1$$

En séparant la somme en deux parties, on a également

$$\sum_{k=0}^{n-1} \binom{2n-1}{k} X^k (1-X)^{2n-1-k} + \sum_{k=n}^{2n-1} \binom{2n-1}{k} X^k (1-X)^{2n-1-k} = 1$$

ou encore

$$(1-X)^n \sum_{k=0}^{n-1} \binom{2n-1}{k} X^k (1-X)^{n-1-k} + X^n \sum_{k=n}^{2n-1} \binom{2n-1}{k} X^{k-n} (1-X)^{2n-1-k} = 1$$

Il suffit donc de poser

$$F_n = \sum_{k=0}^{n-1} \binom{2n-1}{k} X^k (1-X)^{n-1-k} \qquad \qquad G_n = \sum_{k=n}^{2n-1} \binom{2n-1}{k} X^{k-n} (1-X)^{2n-1-k}$$

 F_n et G_n ainsi définis sont des combinaisons linéaires de polynômes de $\mathbb{R}_{n-1}[X]$ donc des polynômes de $\mathbb{R}_{n-1}[X]$.

b. Soit (F,G) un couple de polynômes de $\mathbb{R}_{n-1}[X]$ vérifiant

$$(1-X)^nF + X^nG = 1$$

Alors

$$(1-X)^{n}(F-F_{n})+X^{n}(G-G_{n})=0$$

Ainsi X^n divise $F-F_n$. Or $\deg(F-F_n)\leqslant n-1$ donc $F=F_n$. De même, $(1-X)^n$ divise $G-G_n$ mais $\deg(G-G_n)\leqslant n-1$ donc $G=G_n$.

2. a. En substituant 1-X à X dans l'égalité $(1-X)^n F_n(X) + X^n G_n(X) = 1$, on obtient

$$(1-X)^n G_n(1-X) + X^n F_n(1-X) = 1$$

Mais l'unicité des polynômes F_n et G_n prouvée à la question **1.b** montre que $F_n(1-X) = G_n(X)$ et que $G_n(1-X) = F_n(X)$.

b. En évaluant l'égalité $(1-X)^n F_n(X) + X^n G_n(X) = 1$ en 0, on obtient $F_n(0) = 1$. En évaluant cette même égalité en $\frac{1}{2}$, on obtient

$$\frac{1}{2^n} F_n\left(\frac{1}{2}\right) + \frac{1}{2^n} G_n\left(\frac{1}{2}\right) = 1$$

Or $G_n\left(\frac{1}{2}\right) = F_n\left(1 - \frac{1}{2}\right) = F_n\left(\frac{1}{2}\right)$ d'après la question **2.a**. Ainsi $F_n\left(\frac{1}{2}\right) = 2^{n-1}$. Enfin, on a prouvé à la question **1.a** que

$$F_n = \sum_{k=0}^{n-1} {2n-1 \choose k} X^k (1-X)^{n-1-k}$$

Ainsi $F_n(1) = \binom{2n-1}{n-1} = \binom{2n-1}{n}$.

3. a. Pour $x \neq 1$,

$$F_{n}(x) = \frac{1}{(1-x)^{n}} - \frac{x^{n}G_{n}(x)}{(1-x)^{n}} = \frac{1}{(1-x)^{n}} - x^{n-1}\frac{xG_{n}(x)}{(1-x)^{n}}$$

Or $\lim_{x\to 0} \frac{xG_n(x)}{(1-x)^n} = 0$ car G_n est continue en 0. Il s'ensuit donc que

$$F_n(x) = (1-x)^{-n} + o(x^{n-1})$$

b. Le développement limité de $x \mapsto (1+x)^{\alpha}$ en 0 est usuel.

$$(1-x)^{-n} = \sum_{k=0}^{n-1} \frac{\prod_{j=0}^{k-1} (-n-j)}{k!} (-x)^k + o(x^{n-1})$$

$$= \sum_{k=0}^{n-1} \frac{(-1)^k \prod_{j=0}^{k-1} (n+j)}{k!} (-x)^k + o(x^{n-1})$$

$$= \sum_{k=0}^{n-1} \frac{\prod_{j=0}^{k-1} (n+j)}{k!} x^k + o(x^{n-1})$$

$$= \sum_{k=0}^{n-1} \frac{(n+k-1)!}{k!(n-1)!} x^k + o(x^{n-1})$$

$$= \sum_{k=0}^{n-1} \frac{(n+k-1)!}{k!(n-1)!} x^k + o(x^{n-1})$$

Puisque deg $F_n \leq n-1$, on a par unicité du développement limité, on a pour x au voisinage de 0

$$F_n(x) = \sum_{k=0}^{n-1} \binom{n+k-1}{k} x^k$$

Comme tout voisinage de 0 est infini

$$F_n = \sum_{k=0}^{n-1} \binom{n+k-1}{k} X^k$$

4. a. Première méthode : En dérivant la relation $(1-X)^n + X^n G_n = 1$, on obtient

$$-n(1-X)^{n-1}F_n + (1-X)^nF'_n + nX^{n-1}G_n + X^nG'_n = 0$$

ou encore

$$(1-X)^{n-1} \left(n F_n - (1-X) F_n' \right) = X^{n-1} \left(n G_n + F_n' \right)$$

Comme X^{n-1} et $(1-X)^{n-1}$ sont premiers entre eux, X^{n-1} divise $\mathfrak{nF}_{\mathfrak{n}}-(1-X)F'_{\mathfrak{n}}$. De plus,

$$\deg(nF_n - (1-X)F'_n \leqslant n - 1$$

donc il existe $k \in \mathbb{R}$ tel que $nF_n - (1-X)F_n' = kX^{n-1}$. En évaluant cette égalité en 1, on obtient $k = nF_n(1) = n\binom{2n-1}{n}$.

Seconde méthode : D'après 3.b, $F_n = \sum_{k=0}^{n-1} \binom{n+k-1}{k} X^k.$ Ainsi

$$\begin{split} nF_n - (1-X)F_n' &= n\sum_{k=0}^{n-1} \binom{n+k-1}{k} X^k - (1-X)\sum_{k=1}^{n-1} k \binom{n+k-1}{k} X^{k-1} \\ &= n + \sum_{k=1}^{n-1} \binom{n+k-1}{k} X^k - \sum_{k=1}^{n-1} k \binom{n+k-1}{k} X^{k-1} + \sum_{k=1}^{n-1} k \binom{n+k-1}{k} X^k \\ &= n + \sum_{k=1}^{n-1} (n+k) \binom{n+k-1}{k} X^k - \sum_{k=1}^{n-1} k \binom{n+k-1}{k} X^{k-1} \\ &= n + \sum_{k=1}^{n-1} (k+1) \binom{n+k}{k+1} X^k - \sum_{k=0}^{n-2} (k+1) \binom{n+k}{k+1} X^k \\ &= \sum_{k=0}^{n-1} (k+1) \binom{n+k}{k+1} X^k - \sum_{k=0}^{n-2} (k+1) \binom{n+k}{k+1} X^k \\ &= n \binom{2n-1}{n} X^{n-1} \end{split}$$

- $\begin{aligned} \mathbf{b.} \ \ &\mathrm{Le} \ \mathrm{polyn\^{o}me} \ X^{n-1} (1-X)^{n-1} \ \mathrm{admet} \ \mathrm{\acute{e}videmment} \ \mathrm{une} \ \mathrm{primitive} \ P_n \in \mathbb{R}[X]. \ \mathrm{Alors}, \ \mathrm{en} \ \mathrm{posant} \ H_n = P_n P_n(0), \\ &\mathrm{on} \ \mathrm{a} \ \mathrm{bien} \ H_n' = X^{n-1} (1-X)^{n-1} \ \mathrm{et} \ H_n(0). \\ &\mathrm{Si} \ K_n \in \mathbb{R}[X] \ \mathrm{v\acute{e}rifie} \ K_n' = X^{n-1} (1-X)^{n-1} \ \mathrm{et} \ K_n(0) = 0 \ \mathrm{alors} \ K_n' = H_n' \ \mathrm{donc} \ H_n \ \mathrm{et} \ K_n \ \mathrm{sont} \ \mathrm{\acute{e}gaux} \ \mathrm{\grave{a}} \ \mathrm{une} \\ &\mathrm{constante} \ \mathrm{additive} \ \mathrm{pr\grave{e}s}. \ \mathrm{Puisque} \ H_n(0) = K_n(0), \ H_n \ \mathrm{et} \ K_n \ \mathrm{sont} \ \mathrm{\acute{e}gaux}. \ \mathrm{On} \ \mathrm{en} \ \mathrm{d\acute{e}duit} \ \mathrm{l'unicit\acute{e}} \ \mathrm{de} \ H_n. \end{aligned}$
- c. En utilisant la question 4.a,

$$\begin{split} \left((1-X)^n F_n \right)' &= -n (1-X)^{n-1} F_n + (1-X)^n F_n' \\ &= -(1-X)^{n-1} \left(n F_n - (1-X) F_n' \right) \\ &= -n \binom{2n-1}{n} (1-X)^{n-1} X^{n-1} \\ &= -n \binom{2n-1}{n} H_n' = \left(1 - n \binom{2n-1}{n} H_n \right)' \end{split}$$

Les polynômes $(1-X)^n F_n$ et $1-n{2n-1 \choose n} H_n$ sont donc égaux à une constante additive près. Par ailleurs, puisque $F_n(0)=1$ et $H_n(0)=0$, ces deux polynômes coïncident en 0: ils sont donc égaux.

- **5.** a. Puisque $(1-X)^n F_n = 1 n \binom{2n-1}{n} H_n$, on obtient $H_n(1) = \frac{1}{n \binom{2n-1}{n}}$.
 - $\textbf{b.} \ \ \text{Rappelons que pour tout} \ x \in \mathbb{R}, \ H_n'(x) = x^{n-1}(1-x)^{n-1}.$
 - ▶ Si n est impair, H'_n est positive sur \mathbb{R} et ne s'annule qu'en 0 et 1. H_n est donc strictement croissante sur \mathbb{R} . De plus, deg $H_n = 2n 1 \ge 1$ donc les limites de H_n en $-\infty$ et $+\infty$ sont infinies. Les variations de H_n imposent $\lim_{-\infty} H_n = -\infty$ et $\lim_{+\infty} H_n = +\infty$.
 - ▶ Si n est pair, H'_n est négative sur $]-\infty,0]$, positive sur [0,1], négative sur $[1,+\infty[$ et ne s'annule qu'en 0 et 1. Ainsi H_n est strictement décroissante sur $]-\infty,0]$, strictement croissante sur [0,1] et strictement décroissante sur $[1,+\infty[$. Pour les mêmes raisons que précédemment, les limites de H_n en $-\infty$ et $+\infty$ sont infinies et les variations de H_n imposent $\lim_{-\infty} H_n = +\infty$ et $\lim_{+\infty} H_n = -\infty$.
 - c. Puisque $(1-X)^n F_n = 1 n \binom{2n-1}{n} H_n$ et que $F_n(1) \neq 0$, les racines réelles de F_n sont exactement les antécédents distincts de 1 de $\frac{1}{n \binom{2n-1}{n-1}}$ par H_n .
 - ▶ Si n est impair, les variations et la continuité de H_n montrent que $\frac{1}{n\binom{2n-1}{n}}$ admet un unique antécédent par H_n . Puisque $H_n(1) = \frac{1}{n\binom{2n-1}{n}}$, 1 est l'unique antécédent de $\frac{1}{n\binom{2n-1}{n}}$ par H_n . Mais celui-ci est à exclure puisque $F_n(1) \neq 0$. Ainsi F_n n'admet pas de racine réelle.
 - ▶ Si n est pair, les variations et la continuité de H_n montrent que $\frac{1}{n\binom{2n-1}{n}}$ admet un unique antécédent par H_n sur $]-\infty,0]$. Puisque $H_n(1)=\frac{1}{n\binom{2n-1}{n}}$, les variations de H_n montrent que le seul autre antécédent de $\frac{1}{n\binom{2n-1}{n}}$ par H_n est 1. Mais celui-ci est à exclure puisque $F_n(1)\neq 0$. Ainsi F_n admet une unique racine réelle et on peut même préciser que celle-ci est strictement négative.