计算机组成原理与系统结构

第4章 运算方法与运算器

- 4.1 定点数的加减运算及实现
- 4. 定点数的乘法运算及实现
- 4.3 定点数除法运算及

实现

- 4.4 定点运算器的组成与结构
- 4. 浮点运算及运算器
- 4. 浮点运算器举例
 - 本章小结

4.2 定点数的乘法运算及实现

- ❖由于计算机的软硬件在逻辑上具有一定的等价性 ,因此实现乘除法运算,可以有三种方式:
- ❖ Ⅰ. 用软件实现。
 - 硬件上: 设计简单, 没有乘法器和除法器。
 - 指令系统:没有乘除指令,但有加/减法和移位指令
 - 实现: 乘除运算通过编制一段子程序来实现
 - 算法:程序中运用串行乘除运算算法,循环累加、右移指令→乘法,循环减、左移指令→除法。
 - 运算速度:较慢。
 - 适用场合:单片机。

4.2 定点数的乘法运算及实现

- ❖Ⅱ.用硬件乘法器和除法器实现。
 - 硬件上: 设置有并行加法器、移位器和若干循环、计数控制逻辑电路搭成的串行乘除法器。
 - 指令系统: 具有乘除法指令。
 - 实现:乘除运算通过微程序一级(硬件+微程序)来实现。
 - 算法:在微程序中依据串行乘除运算算法,循环累加、右移指令→乘法,循环减、左移指令→除法。
 - 运算速度: 有所提高,但硬件设计也相对复杂。
 - 适用场合:低性能 CPU。

4.2 定点数的乘法运算及实现

- ❖Ⅲ.用高速的阵列乘法器和阵列除法器来实现。
 - 硬件上:设置有专用的、并行运算的阵列乘法 器和阵列除法器。
 - 指令系统: 具有乘除法指令。
 - 实现:完全通过硬件来实现。
 - 算法:并行乘/除法。
 - 运算速度: 很快,但硬件设计相当复杂。
 - 适用场合: 高性能 CPU。

乘除法运算的3种实现方法

对比	软件实现	串行乘除法 器	并行乘除法 器
运算器硬 件	只有加减法器和 移位器	有乘法器和 除法器	并行乘、除 法器
乘除指令	无,但有加减法 指令和移位指令	有	有
实现方法	使用子程序实现	硬件+微程 序	硬件
工作原理	串行乘除法算法	串行算法	并行算法
运算速度	慢	较慢	快
适用场合	早期单片机	低性能单片 机	高性能 CPU

The Engl