Advanced Mathematical Reference

Compiled by Claude

October 19, 2024

Contents

1	Vec	tors
	1.1	Vector Definition
		1.1.1 Null Vector
	1.2	Vector Operations
		1.2.1 Addition
		1.2.2 Scalar Multiplication
		1.2.3 Dot Product
2	Line	ear Dependence / Independence
	2.1	Linear Combination
	2.2	Linear Dependence
3	Mat	crices 2
J	3.1	Matrix Multiplication
	3.2	Determinant
	3.3	Properties of Determinants
4	Lin	ear Equations
4		Cramer's Rule
5	Vec	tor Spaces
6	Line	ear Transformations
7	Mu	ti-variate Calculus
•	7.1	Limits and Continuity
	7.2	Partial Derivatives
	7.3	Gradient
	7.3	Directional Derivative
	7.4 - 7.5	Chain Rule
	7.6	
	1.0	Multiple Integrals

3 MATRICES 2

1 Vectors

Explanation

Vectors are fundamental objects in linear algebra, representing quantities with both magnitude and direction.

1.1 Vector Definition

$$\mathbb{R}^n = \{(x_1, \dots, x_n) \mid x_i \in \mathbb{R}\}\$$

1.1.1 Null Vector

$$\vec{0} = (0, 0, \dots, 0)$$

1.2 Vector Operations

1.2.1 Addition

$$(a_1,\ldots,a_n)+(b_1,\ldots,b_n)=(a_1+b_1,\ldots,a_n+b_n)$$

1.2.2 Scalar Multiplication

$$\lambda(a_1,\ldots,a_n)=(\lambda a_1,\ldots,\lambda a_n)$$

1.2.3 Dot Product

$$\vec{a} \cdot \vec{b} = \sum_{i=1}^{n} a_i b_i$$

2 Linear Dependence / Independence

Explanation

Linear dependence and independence are crucial concepts in understanding the relationships between vectors.

2.1 Linear Combination

$$\vec{w} = \sum_{i=1}^{n} \lambda_i \vec{v_i}$$

2.2 Linear Dependence

Vectors are linearly dependent if $\vec{0} = \sum_{i=1}^{n} \lambda_i \vec{v_i}$, with at least one $\lambda_i \neq 0$

3 Matrices

Explanation

Matrices are rectangular arrays of numbers used to represent linear transformations and solve systems of linear equations.

5 VECTOR SPACES 3

3.1 Matrix Multiplication

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

3.2 Determinant

For 3x3 matrix:

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

3.3 Properties of Determinants

- 1. det(AB) = det(A) det(B)
- 2. Row/column swap changes sign of determinant
- 3. det(A) = 0 if A has a row/column of zeros or two identical rows/columns

4 Linear Equations

Explanation

Linear equations form the backbone of many mathematical models in science and engineering.

$$Ax = b$$

4.1 Cramer's Rule

For a system Ax = b, $x_i = \frac{\det(A_i)}{\det(A)}$, where A_i is A with i-th column replaced by b

5 Vector Spaces

Explanation

Vector spaces are abstract mathematical structures that generalize the properties of vectors in Euclidean space.

A set V with vector addition and scalar multiplication satisfying:

- 1. Commutativity and associativity of addition
- 2. Existence of zero vector and additive inverses
- 3. Distributivity of scalar multiplication over vector and field addition
- 4. Associativity of scalar multiplication
- 5. Existence of multiplicative identity for scalars

6 Linear Transformations

Explanation

Linear transformations are functions between vector spaces that preserve vector addition and scalar multiplication.

A function T: $V \to W$ between vector spaces satisfying:

- 1. T(u + v) = T(u) + T(v)
- 2. $T(\alpha v) = \alpha T(v)$

7 Multi-variate Calculus

Explanation

Multi-variate calculus extends the concepts of single-variable calculus to functions of several variables.

7.1 Limits and Continuity

Similar to single-variable calculus, but with multiple variables

7.2 Partial Derivatives

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_n)}{h}$$

7.3 Gradient

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

7.4 Directional Derivative

$$D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u}$$

7.5 Chain Rule

$$\frac{d}{dt}f(x(t),y(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

7.6 Multiple Integrals

$$\int \int_{D} f(x,y) \, dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) \, dy \, dx$$