Yasham Amar Mundada

■ 814-769-0867 | wyasham30.mundada@gmail.com | mww.linkedin.com/in/yasham-mundada | portfolio

Education

Pennsylvania State University (PSU)

State College, PA

Master of Science - Additive Manufacturing and Design, GPA: 3.97/4.0

Aug 2022 - May 2024

Awards: Academic Excellence Award 2023, Graduate Fellowship and College of Engineering Scholarship

Indian Institute of Technology Gandhinagar (IITGn)

Gandhinagar, India

Bachelor of Technology (Honours) - Materials Science and Engineering

Jul 2017 - May 2021

Professional Experience

Research and Development Intern, EOS North America (Austin, TX)

August 2024 - Present

- \odot Developed a streamlined process for rapid qualification of laser powder bed fusion parts, using in-situ monitoring with thermal and optical data, reducing testing times by 50%
- O Programmed and operated EOS M290 for DoE-based experiments, including full cycle additive manufacturing tasks from design to post-processing on Titanium parts, adhering to standard operating procedures

Materials Design Engineer Intern, QuesTek Innovations (Evanston, IL)

June 2023 - August 2023

- O Developed a new TEBC coating material for turbine blades using CALPHAD modeling, predicting reactions between coatings and particulates; performed fracture toughness testing that demonstrated an 18% improvement over current industry standards
- O Created a thermomechanical model to design heat treatment strategy for HY-80 cast replacement parts in wire arc additive manufacturing, optimizing thermal profiles to achieve desired material phases

Analyst, IQVIA (Pune, India)

June 2021 - May 2022

- O Performed big data analytics using Alteryx to calculate KPIs and presenting recommendations to upper Management to drive strategic actions that resulted in a 13% increase in Aimmune's drug sales
- O Received Spotlight Award for showing strong work ethics, professionalism, and competency in delivering quality client deliverables

Key AM Research Projects

Failure Analysis and Quality Control of Additively Manufactured Samples (Thesis)

Oct 2023 - May 2024

- O Formulated a statistical function to predict failure location in laser powder bed fused AlSi10Mg specimens with 81% accuracy using pore features extracted from image processing (OpenCV) of Computed Tomography (XCT) data
- O Validated failure locations through fractography study using optical microscopy on tensile-tested samples

Direct Ink Writing of Smart Ceramics and Development of Parameter Selection Map

Aug 2022 - Sept 2023

- O Built custom 3D printer to handle high-viscosity ceramics for electronic applications
- O Conducted a DoE-based slurry composition study, managing powder batching, mixing, and thermal processing to optimize ceramic slurry parameters for crack-free, low-porosity prints
- Engineered a COMSOL simulation model of the DIW process to study the effect of process parameters on deposition reducing experiments by more than 75%

Design of Microstructure Selection Map for LDED of Al-Sc-Si Alloy

Jan 2020 - May 2021

- O Designed FORTRAN based Laser-Directed Energy Deposition simulation model of Al-Sc-Si alloy to understand key process variable like thermal profile and validated the model with experimental results
- O Developed Python algorithm to predict the microstructure of printed parts for a diverse set of process parameters

Skills and Certifications

Relevant Courses: Design for Additive Manufacturing (DfAM), Additive Manufacturing Processes

Design/Modeling: SOLIDWORKS (3D CAD), nTopology (Topology Optimization), Fusion 360 (Generative Design)

Analysis: Materialize Magics, COMSOL, PanX, Thermo-Calc, Image-J, AVIZO

3D Printers: Prusa, Ender 3D, Form 3 (SLA)

Material Characterization: Optical Microscopy, Microhardness, Rheology, Metallography

Programming Languages: Python, MATLAB

Other Tools: OpenCV, LATEX, Alteryx, MS-Office (Excel, Word, Powerpoint), Minitab

Publications

- O Investigation of temperature distribution and solidification morphology in multilayered directed energy deposition of Al-0.5 Sc-0.5 Si alloy. International Journal of Heat and Mass Transfer, 186, p.122492.
- Microstructure engineering during directed energy deposition of Al-0.5 Sc-0.5 Si using heated build platform. International Journal of Heat and Mass Transfer, 202, p.123679.

Teaching

Teaching Assistant, PSU

O ME201: Introduction to Thermal Science (300 Students) - (Spring'24 and Fall'23)