HM4

Mu Cheng

3/15/2021

Problem1

```
Step1: Call the Original Dataframe of the Life_Expectancy getwd()
```

```
## [1] "/Users/mucheng/Desktop/5110/HM4"
setwd("~/Desktop/5110/HM4/ddf--gapminder--systema_globalis-master/countries-etc-datapoints")
library("readr")
library(ggplot2)
library(RSQLite)
library(dbplyr)
library(DBI)
life_expectancy_ori <- read_csv("ddf--datapoints--life_expectancy_years--by--geo--time.csv")</pre>
life_expectancy_ori <- na.omit(life_expectancy_ori)</pre>
setwd("~/Desktop/5110/HM4/ddf--gapminder--systema globalis-master/countries-etc-datapoints")
infant mortality ori <- read csv(</pre>
  "ddf--datapoints--infant_mortality_rate_per_1000_births--by--geo--time.csv")
infant_mortality_ori <- na.omit(infant_mortality_ori)</pre>
setwd("~/Desktop/5110/HM4/ddf--gapminder--systema globalis-master/countries-etc-datapoints")
murder ori <- read csv(</pre>
  "ddf--datapoints--murder_per_100000_people--by--geo--time.csv")
murder_ori <- na.omit(murder_ori)</pre>
setwd("~/Desktop/5110/HM4/ddf--gapminder--systema_globalis-master/countries-etc-datapoints")
GDP_inflation_ori <- read_csv(</pre>
  "ddf--datapoints--total_gdp_us_inflation_adjusted--by--geo--time.csv")
GDP_inflation_ori <- na.omit(GDP_inflation_ori)</pre>
setwd("~/Desktop/5110/HM4/ddf--gapminder--systema globalis-master/countries-etc-datapoints")
MD ori <- read csv(
 "ddf--datapoints--medical_doctors_per_1000_people--by--geo--time.csv")
MD_ori <- na.omit(MD_ori)</pre>
setwd("~/Desktop/5110/HM4/ddf--gapminder--systema globalis-master/countries-etc-datapoints")
```

```
poverty_rate_ori <- read_csv(</pre>
  "ddf--datapoints--poverty_percent_people_below_550_a_day--by--geo--time.csv")
poverty_rate_ori <- na.omit(poverty_rate_ori)</pre>
con <- dbConnect(SQLite(), ":memory:")</pre>
dbWriteTable(con, "life_expectancy_ori", life_expectancy_ori)
dbWriteTable(con, "infant mortality ori", infant mortality ori)
dbWriteTable(con, "murder_ori", murder_ori)
dbWriteTable(con, "GDP_inflation_ori", GDP_inflation_ori)
dbWriteTable(con, "MD_ori", MD_ori)
dbWriteTable(con, "poverty_rate_ori", poverty_rate_ori)
LE_data1 <-dbGetQuery(con, "SELECT DISTINCT</pre>
infant_mortality_ori.geo,
infant_mortality_ori.time,
infant_mortality_ori.infant_mortality_rate_per_1000_births,
life_expectancy_ori.life_expectancy_years
FROM life_expectancy_ori
INNER JOIN infant_mortality_ori
WHERE infant_mortality_ori.geo = life_expectancy_ori.geo
AND infant_mortality_ori.time=life_expectancy_ori.time")
dbWriteTable(con, "LE_data1", LE_data1)
LE data2 <-dbGetQuery(con, "SELECT DISTINCT
murder ori.geo,
murder_ori.time,
murder_ori.murder_per_100000_people,
GDP_inflation_ori.total_gdp_us_inflation_adjusted
FROM GDP_inflation_ori
INNER JOIN murder_ori
WHERE murder_ori.geo=GDP_inflation_ori.geo
AND murder_ori.time=GDP_inflation_ori.time")
dbWriteTable(con, "LE_data2", LE_data2)
LE_data3 <-dbGetQuery(con, "SELECT DISTINCT
MD_ori.geo,
MD ori.time,
MD_ori.medical_doctors_per_1000_people,
poverty_rate_ori.poverty_percent_people_below_550_a_day
FROM poverty rate ori
INNER JOIN MD ori
WHERE MD_ori.geo = poverty_rate_ori.geo
AND MD_ori.time=poverty_rate_ori.time")
dbWriteTable(con, "LE_data3", LE_data3)
LE_data4 <- dbGetQuery(con, "SELECT</pre>
LE_data1.geo,
LE_data1.time,
LE_data1.infant_mortality_rate_per_1000_births,
```

```
LE_data1.life_expectancy_years,
LE_data2.murder_per_100000_people,
LE data2.total gdp us inflation adjusted
FROM LE data1
JOIN LE data2
WHERE LE_data2.geo=LE_data1.geo
AND LE_data2.time=LE_data1.time
")
dbWriteTable(con, "LE_data4", LE_data4)
LE_data <- dbGetQuery(con, "SELECT</pre>
LE_data4.geo,
LE_data4.time,
LE_data4.infant_mortality_rate_per_1000_births,
LE_data4.life_expectancy_years,
LE_data4.murder_per_100000_people,
LE_data4.total_gdp_us_inflation_adjusted,
LE_data3.medical_doctors_per_1000_people,
LE_data3.poverty_percent_people_below_550_a_day
FROM LE data4
JOIN LE data3
WHERE LE_data3.geo=LE_data4.geo
AND LE_data3.time=LE_data4.time
dbWriteTable(con, "LE_data", LE_data)
```

le1: life_expectancy_years against infant_mortality_rate_per_1000_births. Log10 transformation on both variables.

The higher life-expectancy the lower infant mortality rate over time period (18

le2: life_expectancy_years against murder_per_100000_people. Log10 transformations on both variables.

As life expectancy increases in years, murder rate goes down during (1800-2

le3: life_expectancy_years against total_gdp_us_inflation_adjusted. Log10 transformations on x variable.

No Specific relation is found between life expectancy and gdp inflation b

le4: life_expectancy_years against medical_doctors_per_1000_people. Log10 transformations on both variables.

More medical doctors continue to be needed as life expectancy increases

le5: life_expectancy_years against poverty_percent_people_below_550_a_day. Log10 transformations on x variable.

Poverty rate in general decreases as life expectancy increases during (180)

Problem2

Based on previous graphs, the response variable, Murder per 10000 people, has the best linearity among all the plots. Therefore, Murder per 10000 people is utilized here as a predictor.

Life Expectancy Years

1.85

1.90

Residual graph demonstrates a clear pattern(increasing line) when plotting without log transformation, with r squared value around 0.3115. It's in violation of model assumptions(linearity) Therefore, adjustment of adding log10() to both variables is made. Then the value of r squared is better with 0.6112. After making the adjustments, the plotted residual graph with a better model (fit1) is then normal in demonstration.

Step 1. Compare better fit vs. bad fit's summary stats.

1.75

```
library(tidyverse)
library(modelr)
library(broom)
murder_graph <- ggplot(LE_data, aes(x=log10(life_expectancy_years),</pre>
                                    y=log10(murder_per_100000_people))) +
  geom_point(alpha=0.1) + geom_smooth() + geom_smooth(method="lm", color="red") +
  labs(x="Life Expectancy in Years",
       y="Number of murder per 10000 people",
   title="As life expectancy increases in years, murder rate goes down during (1800-2015)") +
  geom_smooth(method="lm", color="red") + theme_minimal()
murder_graph
```

As life expectancy increases in years, murder rate goes down during (1800–2


```
##
## Call:
## lm(formula = log10(life_expectancy_years) ~ log10(murder_per_100000_people),
##
      data = LE_data)
##
## Residuals:
                         Median
##
        Min
                   1Q
                                       3Q
  -0.115893 -0.011049 0.000667 0.011518 0.050269
##
## Coefficients:
                                    Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                   1.8921275 0.0007043 2686.50
## log10(murder_per_100000_people) -0.0468496 0.0014932 -31.38
                                                                 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.01625 on 626 degrees of freedom
## Multiple R-squared: 0.6113, Adjusted R-squared: 0.6107
## F-statistic: 984.5 on 1 and 626 DF, p-value: < 2.2e-16
glance(fit1)
## # A tibble: 1 x 12
    r.squared adj.r.squared sigma statistic p.value df logLik
                                                                      AIC
                                                                             BIC
```

```
##
         <dbl>
                       <dbl> <dbl>
                                         <dbl>
                                                   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1
         0.611
                       0.611 0.0163
                                          984. 1.45e-130
                                                             1 1697. -3388. -3375.
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
fitbad <- lm(life_expectancy_years ~ murder_per_100000_people,</pre>
           data=LE_data)
summary(fitbad)
##
## Call:
## lm(formula = life_expectancy_years ~ murder_per_100000_people,
##
       data = LE data)
##
## Residuals:
       Min
                1Q Median
                                 ЗQ
                                        Max
##
                     0.592
## -19.203 -2.598
                             2.802 36.236
## Coefficients:
                             Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             77.99415
                                         0.16909 461.25
                                                            <2e-16 ***
## murder_per_100000_people -0.49028
                                         0.02913 -16.83
                                                            <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.7 on 626 degrees of freedom
## Multiple R-squared: 0.3115, Adjusted R-squared: 0.3104
## F-statistic: 283.3 on 1 and 626 DF, p-value: < 2.2e-16
glance(fitbad)
## # A tibble: 1 x 12
     r.squared adj.r.squared sigma statistic p.value
                                                           df logLik
                                                                       AIC
##
         <dbl>
                       <dbl> <dbl>
                                        <dbl>
                                                 <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1
         0.312
                       0.310 3.70
                                         283. 1.03e-52
                                                            1 -1712. 3429. 3443.
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
Step 2. Compare both fit and bad models on both residual plots, then check the normality of the two residuals
by using qq_plot, finally check the residual outlier with olsrr package.
library("olsrr")
bad residual <- LE data %>%
  add_residuals(fitbad, "resid") %>%
  ggplot(aes(x=log10(life_expectancy_years))) +
  geom_point(aes(y=resid), alpha=0.1) +
  labs(x="life expectancy in years", y="residuals") +
  theme_minimal()
```

bad_residual


```
bad_residual_qq <- LE_data %>%
  add_residuals(fitbad, "resid") %>%
  ggplot(aes(sample=resid)) +
  geom_qq() +
  theme_minimal()
bad_residual_qq
```


bad_residual_box <- ols_plot_resid_box(fitbad)</pre>

Residual Box Plot

bad_residual_box

Residual Box Plot


```
better_residual <- LE_data %>%
  add_residuals(fit1, "resid") %>%
  ggplot(aes(x=log10(life_expectancy_years))) +
  geom_point(aes(y=resid), alpha=0.1) +
  labs(x="life expectancy in years", y="residuals") +
  theme_minimal()
better_residual
```



```
better_residual_qq <- LE_data %>%
  add_residuals(fit1, "resid") %>%
  ggplot(aes(sample=resid)) +
  geom_qq() + labs(y="sample", x="theoretical")
  theme_minimal()
```

```
## List of 93
##
  $ line
                                :List of 6
    ..$ colour
                    : chr "black"
##
     ..$ size
                     : num 0.5
    ..$ linetype
                     : num 1
##
    ..$ lineend
                    : chr "butt"
##
##
    ..$ arrow
                     : logi FALSE
     ..$ inherit.blank: logi TRUE
##
##
    ..- attr(*, "class")= chr [1:2] "element_line" "element"
##
   $ rect
                               :List of 5
                     : chr "white"
##
    ..$ fill
     ..$ colour
                     : chr "black"
##
##
    ..$ size
                     : num 0.5
##
     ..$ linetype
                    : num 1
##
     ..$ inherit.blank: logi TRUE
    ..- attr(*, "class")= chr [1:2] "element_rect" "element"
##
                               :List of 11
##
   $ text
                    : chr ""
##
    ..$ family
                     : chr "plain"
##
     ..$ face
##
    ..$ colour
                    : chr "black"
     ..$ size
                    : num 11
##
```

```
: num 0.5
##
    ..$ hjust
##
    ..$ vjust
                    : num 0.5
    ..$ angle
                   : num 0
##
##
    ..$ lineheight : num 0.9
                   : 'margin' num [1:4] Opoints Opoints Opoints
##
    ..$ margin
##
    .. ..- attr(*, "unit")= int 8
##
    ..$ debug
                   : logi FALSE
##
    ..$ inherit.blank: logi TRUE
##
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
## $ title
                             : NULL
## $ aspect.ratio
                              : NULL
## $ axis.title
                              : NULL
## $ axis.title.x
                              :List of 11
##
   ..$ family : NULL
##
    ..$ face
                   : NULL
##
    ..$ colour
                   : NULL
##
    ..$ size
                   : NULL
                   : NULL
##
    ..$ hjust
##
    ..$ vjust
                    : num 1
                    : NULL
##
    ..$ angle
    ..$ lineheight : NULL
##
##
    ..$ margin
                   : 'margin' num [1:4] 2.75points Opoints Opoints
##
    .. ..- attr(*, "unit")= int 8
                    : NULL
##
    ..$ debug
##
    ..$ inherit.blank: logi TRUE
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
## $ axis.title.x.top
                             :List of 11
##
    ..$ family : NULL
##
    ..$ face
                   : NULL
##
    ..$ colour
                   : NULL
##
                    : NULL
    ..$ size
                   : NULL
##
    ..$ hjust
##
    ..$ vjust
                   : num 0
##
    ..$ angle
                    : NULL
##
    ..$ lineheight : NULL
    ..$ margin
                   : 'margin' num [1:4] Opoints Opoints 2.75points Opoints
##
    .. ..- attr(*, "unit")= int 8
##
##
    ..$ debug
                    : NULL
##
    ..$ inherit.blank: logi TRUE
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
## $ axis.title.x.bottom : NULL
                              :List of 11
## $ axis.title.y
    ..$ family : NULL
##
##
    ..$ face
                   : NULL
##
    ..$ colour
                   : NULL
##
    ..$ size
                    : NULL
##
    ..$ hjust
                    : NULL
##
    ..$ vjust
                   : num 1
##
    ..$ angle
                    : num 90
##
    ..$ lineheight : NULL
##
                   : 'margin' num [1:4] Opoints 2.75points Opoints Opoints
    ..$ margin
    .. ..- attr(*, "unit")= int 8
##
##
    ..$ debug
                    : NULL
    ..$ inherit.blank: logi TRUE
##
```

```
..- attr(*, "class")= chr [1:2] "element_text" "element"
## $ axis.title.y.left
                              : NULL
## $ axis.title.y.right
                               :List of 11
    ..$ family
                   : NULL
##
##
    ..$ face
                    : NULL
##
    ..$ colour
                    : NULL
##
    ..$ size
                    : NULL
                    : NULL
##
    ..$ hjust
                     : num 0
##
    ..$ vjust
                    : num -90
##
    ..$ angle
##
    ..$ lineheight : NULL
##
                    : 'margin' num [1:4] Opoints Opoints Opoints 2.75points
    ..$ margin
    .. ..- attr(*, "unit")= int 8
##
##
    ..$ debug
                    : NULL
    ..$ inherit.blank: logi TRUE
##
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
##
   $ axis.text
                               :List of 11
    ..$ family
##
                    : NULL
##
    ..$ face
                    : NULL
    ..$ colour
                    : chr "grey30"
##
                    : 'rel' num 0.8
##
    ..$ size
##
    ..$ hjust
                    : NULL
##
    ..$ vjust
                    : NULL
##
    ..$ angle
                     : NULL
                    : NULL
##
    ..$ lineheight
##
    ..$ margin
                     : NULL
                    : NULL
##
    ..$ debug
    ..$ inherit.blank: logi TRUE
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
   $ axis.text.x
                               :List of 11
    ..$ family
##
                    : NULL
##
    ..$ face
                    : NULL
##
    ..$ colour
                    : NULL
##
    ..$ size
                    : NULL
##
    ..$ hjust
                     : NULL
##
    ..$ vjust
                    : num 1
##
    ..$ angle
                    : NULL
##
    ..$ lineheight
                   : NULL
                     : 'margin' num [1:4] 2.2points Opoints Opoints
##
     ..$ margin
##
    .. ..- attr(*, "unit")= int 8
##
    ..$ debug
                   : NULL
    ..$ inherit.blank: logi TRUE
##
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
   $ axis.text.x.top
                               :List of 11
    ..$ family
                   : NULL
##
    ..$ face
                     : NULL
##
    ..$ colour
                    : NULL
##
    ..$ size
                    : NULL
##
    ..$ hjust
                    : NULL
##
                     : num 0
    ..$ vjust
                    : NULL
##
    ..$ angle
##
    ..$ lineheight : NULL
                   : 'margin' num [1:4] Opoints Opoints 2.2points Opoints
##
    ..$ margin
    .. ..- attr(*, "unit")= int 8
##
```

```
##
    ..$ debug
                : NULL
##
    ..$ inherit.blank: logi TRUE
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
## $ axis.text.x.bottom : NULL
                              :List of 11
## $ axis.text.y
##
    ..$ family
                   : NULL
##
    ..$ face
                   : NULL
                   : NULL
##
    ..$ colour
                   : NULL
##
    ..$ size
##
    ..$ hjust
                   : num 1
##
    ..$ vjust
                   : NULL
                    : NULL
##
    ..$ angle
##
    ..$ lineheight : NULL
    ..$ margin
##
                   : 'margin' num [1:4] Opoints 2.2points Opoints Opoints
##
    .. ..- attr(*, "unit")= int 8
##
    ..$ debug
                    : NULL
##
    ..$ inherit.blank: logi TRUE
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
## $ axis.text.y.left
                             : NULL
## $ axis.text.y.right
                             :List of 11
##
    ..$ family : NULL
##
    ..$ face
                   : NULL
    ..$ colour
                   : NULL
##
##
    ..$ size
                    : NULL
                   : num 0
##
    ..$ hjust
##
    ..$ vjust
                   : NULL
##
    ..$ angle
                    : NULL
    ..$ lineheight : NULL
##
##
                   : 'margin' num [1:4] Opoints Opoints Opoints 2.2points
    ..$ margin
    ...- attr(*, "unit")= int 8
                   : NULL
##
    ..$ debug
##
    ..$ inherit.blank: logi TRUE
##
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
## $ axis.ticks
                             : list()
    ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##
                            : NULL
## $ axis.ticks.x
## $ axis.ticks.x.top
                             : NULL
## $ axis.ticks.x.bottom
                            : NULL
## $ axis.ticks.y
                             : NULL
## $ axis.ticks.y.left
                            : NULL
## $ axis.ticks.y.right
                             : NULL
## $ axis.ticks.length
                            : 'simpleUnit' num 2.75points
   ..- attr(*, "unit")= int 8
## $ axis.ticks.length.x
                            : NULL
## $ axis.ticks.length.x.top : NULL
## $ axis.ticks.length.x.bottom: NULL
## $ axis.ticks.length.y
                             : NULL
## $ axis.ticks.length.y.left : NULL
## $ axis.ticks.length.y.right : NULL
## $ axis.line
                             : list()
   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##
## $ axis.line.x
                            : NULL
## $ axis.line.x.top
                             : NULL
## $ axis.line.x.bottom
                          : NULL
```

```
: NULL
## $ axis.line.v
## $ axis.line.y.left
                              : NULL
## $ axis.line.y.right
                              : NULL
## $ legend.background
                               : list()
    ..- attr(*, "class")= chr [1:2] "element_blank" "element"
## $ legend.margin
                               : 'margin' num [1:4] 5.5points 5.5points 5.5points
   ..- attr(*, "unit")= int 8
   $ legend.spacing
                               : 'simpleUnit' num 11points
##
##
    ..- attr(*, "unit")= int 8
##
   $ legend.spacing.x
                               : NULL
## $ legend.spacing.y
                               : NULL
## $ legend.key
                               : list()
   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##
## $ legend.key.size
                               : 'simpleUnit' num 1.2lines
##
   ..- attr(*, "unit")= int 3
##
   $ legend.key.height
                              : NULL
## $ legend.key.width
                              : NULL
## $ legend.text
                              :List of 11
##
    ..$ family
                    : NULL
                     : NULL
##
    ..$ face
                    : NULL
##
    ..$ colour
##
    ..$ size
                    : 'rel' num 0.8
                    : NULL
##
    ..$ hjust
##
    ..$ vjust
                     : NULL
##
                    : NULL
    ..$ angle
                   : NULL
##
    ..$ lineheight
                     : NULL
##
     ..$ margin
                     : NULL
##
    ..$ debug
##
    ..$ inherit.blank: logi TRUE
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
   $ legend.text.align
                              : NULL
##
   $ legend.title
                               :List of 11
##
    ..$ family
                    : NULL
##
    ..$ face
                    : NULL
                    : NULL
##
    ..$ colour
##
    ..$ size
                    : NULL
##
    ..$ hjust
                    : num 0
##
    ..$ vjust
                    : NULL
##
    ..$ angle
                     : NULL
    ..$ lineheight
##
                    : NULL
##
    ..$ margin
                    : NULL
##
    ..$ debug
                    : NULL
    ..$ inherit.blank: logi TRUE
##
##
     ..- attr(*, "class")= chr [1:2] "element_text" "element"
## $ legend.title.align
                              : NULL
## $ legend.position
                              : chr "right"
## $ legend.direction
                              : NULL
## $ legend.justification
                              : chr "center"
## $ legend.box
                              : NULL
## $ legend.box.just
                              : NULL
## $ legend.box.margin
                               : 'margin' num [1:4] Ocm Ocm Ocm Ocm
## ..- attr(*, "unit")= int 1
## $ legend.box.background
                              : list()
## ..- attr(*, "class")= chr [1:2] "element_blank" "element"
```

```
$ legend.box.spacing
                         : 'simpleUnit' num 11points
   ..- attr(*, "unit")= int 8
##
## $ panel.background
                              : list()
    ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##
## $ panel.border
                              : list()
##
   ..- attr(*, "class")= chr [1:2] "element blank" "element"
## $ panel.spacing
                               : 'simpleUnit' num 5.5points
   ..- attr(*, "unit")= int 8
##
   $ panel.spacing.x
##
                              : NULL
##
  $ panel.spacing.y
                              : NULL
   $ panel.grid
                              :List of 6
    ..$ colour
##
                   : chr "grey92"
                    : NULL
    ..$ size
##
##
    ..$ linetype
                   : NULL
##
    ..$ lineend
                    : NULL
##
    ..$ arrow
                    : logi FALSE
##
    ..$ inherit.blank: logi TRUE
    ..- attr(*, "class")= chr [1:2] "element_line" "element"
##
## $ panel.grid.major
                              : NULL
## $ panel.grid.minor
                              :List of 6
##
    ..$ colour
                  : NULL
##
    ..$ size
                   : 'rel' num 0.5
                   : NULL
##
    ..$ linetype
##
    ..$ lineend
                    : NULL
##
    ..$ arrow
                   : logi FALSE
    ..$ inherit.blank: logi TRUE
##
    ..- attr(*, "class")= chr [1:2] "element_line" "element"
   $ panel.grid.major.x
                              : NULL
##
## $ panel.grid.major.y
                              : NULL
## $ panel.grid.minor.x
                              : NULL
## $ panel.grid.minor.y
                              : NULL
## $ panel.ontop
                              : logi FALSE
## $ plot.background
                             : list()
    ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##
                              :List of 11
## $ plot.title
##
    ..$ family
                    : NULL
##
    ..$ face
                    : NULL
##
    ..$ colour
                    : NULL
                    : 'rel' num 1.2
##
    ..$ size
##
    ..$ hjust
                    : num 0
##
    ..$ vjust
                    : num 1
##
    ..$ angle
                    : NULL
##
    ..$ lineheight : NULL
##
                   : 'margin' num [1:4] Opoints Opoints 5.5points Opoints
    ..$ margin
##
    .. ..- attr(*, "unit")= int 8
##
    ..$ debug
                    : NULL
    ..$ inherit.blank: logi TRUE
##
##
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
## $ plot.title.position
                             : chr "panel"
## $ plot.subtitle
                              :List of 11
                   : NULL
##
    ..$ family
##
   ..$ face
                   : NULL
## ..$ colour
                   : NULL
                    : NULL
##
    ..$ size
```

```
##
    ..$ hjust
                    : num 0
##
    ..$ vjust
                     : num 1
                    : NULL
##
    ..$ angle
##
     ..$ lineheight : NULL
                     : 'margin' num [1:4] Opoints Opoints 5.5points Opoints
##
     ..$ margin
##
    .. ..- attr(*, "unit")= int 8
##
    ..$ debug
                    : NULL
    ..$ inherit.blank: logi TRUE
##
##
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
   $ plot.caption
                               :List of 11
##
    ..$ family
                     : NULL
##
    ..$ face
                     : NULL
                     : NULL
##
    ..$ colour
##
    ..$ size
                    : 'rel' num 0.8
##
    ..$ hjust
                    : num 1
##
    ..$ vjust
                     : num 1
##
    ..$ angle
                    : NULL
##
    ..$ lineheight : NULL
                    : 'margin' num [1:4] 5.5points Opoints Opoints
##
    ..$ margin
    .. ..- attr(*, "unit")= int 8
##
##
    ..$ debug
                     : NULL
##
    ..$ inherit.blank: logi TRUE
##
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
   $ plot.caption.position
                             : chr "panel"
## $ plot.tag
                               :List of 11
##
    ..$ family
                    : NULL
                     : NULL
##
    ..$ face
##
    ..$ colour
                    : NULL
##
    ..$ size
                    : 'rel' num 1.2
##
                    : num 0.5
    ..$ hjust
##
                     : num 0.5
    ..$ vjust
                    : NULL
##
    ..$ angle
##
                   : NULL
    ..$ lineheight
##
    ..$ margin
                    : NULL
                     : NULL
##
    ..$ debug
    ..$ inherit.blank: logi TRUE
##
    ..- attr(*, "class")= chr [1:2] "element text" "element"
## $ plot.tag.position
                              : chr "topleft"
                               : 'margin' num [1:4] 5.5points 5.5points 5.5points
## $ plot.margin
##
   ..- attr(*, "unit")= int 8
## $ strip.background
                               : list()
   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##
## $ strip.background.x
                              : NULL
## $ strip.background.y
                               : NULL
## $ strip.placement
                               : chr "inside"
## $ strip.text
                               :List of 11
##
   ..$ family
                    : NULL
##
    ..$ face
                    : NULL
                    : chr "grey10"
##
    ..$ colour
##
                    : 'rel' num 0.8
    ..$ size
##
    ..$ hjust
                    : NULL
##
    ..$ vjust
                    : NULL
##
    ..$ angle
                    : NULL
    ..$ lineheight : NULL
##
```

```
: 'margin' num [1:4] 4.4points 4.4points 4.4points 4.4points
##
     .. ..- attr(*, "unit")= int 8
##
##
                    : NULL
     ..$ debug
##
     ..$ inherit.blank: logi TRUE
     ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
## $ strip.text.x
                              : NULL
                               :List of 11
   $ strip.text.y
     ..$ family
##
                    : NULL
##
     ..$ face
                    : NULL
     ..$ colour
##
                    : NULL
##
     ..$ size
                    : NULL
##
     ..$ hjust
                    : NULL
##
     ..$ vjust
                    : NULL
                    : num -90
##
     ..$ angle
     ..$ lineheight : NULL
##
##
     ..$ margin
                     : NULL
##
     ..$ debug
                     : NULL
     ..$ inherit.blank: logi TRUE
##
     ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
                               : 'simpleUnit' num 2.75points
## $ strip.switch.pad.grid
    ..- attr(*, "unit")= int 8
##
## $ strip.switch.pad.wrap
                               : 'simpleUnit' num 2.75points
   ..- attr(*, "unit")= int 8
##
##
   $ strip.text.y.left
                               :List of 11
    ..$ family : NULL
##
##
    ..$ face
                    : NULL
                    : NULL
##
     ..$ colour
##
     ..$ size
                    : NULL
##
     ..$ hjust
                    : NULL
##
     ..$ vjust
                    : NULL
                     : num 90
##
     ..$ angle
                    : NULL
##
     ..$ lineheight
##
     ..$ margin
                   : NULL
                    : NULL
##
     ..$ debug
    ..$ inherit.blank: logi TRUE
##
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
## - attr(*, "class")= chr [1:2] "theme" "gg"
## - attr(*, "complete")= logi TRUE
## - attr(*, "validate")= logi TRUE
better_residual_qq
```


better_residual_box <- ols_plot_resid_box(fit1)</pre>

Residual Box Plot

better_residual_box

Removing outliers. TO BE REMOVED. Not so much of the difference.

Problem3

Using total_gdp_us_inflation_adjusted as the one additional predictor after comparing the 4 different predictors. The adjusted R^2 increases to 0.6311 from 0.6112.

```
pred_infant <- LE_data %>%
   add_residuals(fit1, "resid") %>%
   ggplot(aes(x=infant_mortality_rate_per_1000_births, y=resid)) +
   geom_point() + geom_smooth() +
   labs(x="infant_mortality_rate_per_1000_births", y="Residuals") +
   theme_minimal()
pred_infant
```



```
pred_gdp <- LE_data %>%
  add_residuals(fit1, "resid") %>%
  ggplot(aes(x=total_gdp_us_inflation_adjusted, y=resid)) +
  geom_point() + geom_smooth() +
  labs(x="total_gdp_us_inflation_adjusted", y="Residuals") +
  theme_minimal()
pred_gdp
```



```
pred_dc <- LE_data %>%
  add_residuals(fit1, "resid") %>%
  ggplot(aes(x=medical_doctors_per_1000_people, y=resid)) +
  geom_point() + geom_smooth() +
  labs(x="medical_doctors_per_1000_people", y="Residuals") +
  theme_minimal()
pred_dc
```



```
pred_poverty <- LE_data %>%
  add_residuals(fit1, "resid") %>%
  ggplot(aes(x=poverty_percent_people_below_550_a_day, y=resid)) +
  geom_point() + geom_smooth() +
  labs(x="poverty_percent_people_below_550_a_day", y="Residuals") +
  theme_minimal()
pred_poverty
```



```
##
## Call:
## lm(formula = log10(life_expectancy_years) ~ log10(murder_per_100000_people) +
      total_gdp_us_inflation_adjusted, data = LE_data)
##
##
## Residuals:
        Min
                   1Q
                         Median
                                       3Q
  -0.115818 -0.010728  0.000948  0.010728  0.050190
##
## Coefficients:
##
                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                   1.890e+00 7.567e-04 2497.815 < 2e-16 ***
## log10(murder_per_100000_people) -4.604e-02 1.460e-03 -31.543 < 2e-16 ***
## total_gdp_us_inflation_adjusted 2.699e-15 4.517e-16
                                                           5.975 3.86e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01582 on 625 degrees of freedom
## Multiple R-squared: 0.6323, Adjusted R-squared: 0.6311
## F-statistic: 537.4 on 2 and 625 DF, p-value: < 2.2e-16
better_residual <- LE_data %>%
 add_residuals(fit2, "resid") %>%
 ggplot(aes(x=log10(life_expectancy_years))) +
```

```
geom_point(aes(y=resid), alpha=0.1) +
  labs(x="life expectancy in years", y="residuals") +
  theme_minimal()
better_residual
   0.05
   0.00
residuals
   -0.05
  -0.10
                                      1.80
                   1.75
                                                         1.85
                                                                             1.90
                                      life expectancy in years
better_residual_qq <- LE_data %>%
  add_residuals(fit2, "resid") %>%
  ggplot(aes(sample=resid)) +
  geom_qq() + labs(y="sample", x="theoretical", title="Normal Residual Graph")
  theme minimal()
## List of 93
## $ line
                                 :List of 6
##
     ..$ colour
                     : chr "black"
     ..$ size
##
                     : num 0.5
##
     ..$ linetype
                     : num 1
                      : chr "butt"
##
     ..$ lineend
##
     ..$ arrow
                     : logi FALSE
     ..$ inherit.blank: logi TRUE
     ..- attr(*, "class")= chr [1:2] "element_line" "element"
##
##
    $ rect
                                 :List of 5
    ..$ fill
                     : chr "white"
##
                     : chr "black"
##
     ..$ colour
##
     ..$ size
                      : num 0.5
                      : num 1
##
    ..$ linetype
     ..$ inherit.blank: logi TRUE
##
     ..- attr(*, "class")= chr [1:2] "element_rect" "element"
```

```
## $ text
                             :List of 11
                  : chr ""
##
    ..$ family
    ..$ face
##
                  : chr "plain"
##
    ..$ colour
                  : chr "black"
##
    ..$ size
                   : num 11
                  : num 0.5
##
    ..$ hjust
##
    ..$ vjust
                  : num 0.5
##
    ..$ angle
                  : num 0
##
    ..$ lineheight : num 0.9
##
    ..$ margin : 'margin' num [1:4] Opoints Opoints Opoints
##
    .. ..- attr(*, "unit")= int 8
##
                : logi FALSE
    ..$ debug
    ..$ inherit.blank: logi TRUE
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
## $ title
                            : NULL
                            : NULL
## $ aspect.ratio
## $ axis.title
                            : NULL
## $ axis.title.x
                            :List of 11
    ..$ family : NULL
##
                  : NULL
    ..$ face
##
    ..$ colour
                  : NULL
##
##
    ..$ size
                  : NULL
##
    ..$ hjust
                  : NULL
##
    ..$ vjust
                   : num 1
##
    ..$ angle
                  : NULL
##
    ..$ lineheight : NULL
##
    ..$ margin
                   : 'margin' num [1:4] 2.75points Opoints Opoints
##
    .. ..- attr(*, "unit")= int 8
##
                   : NULL
    ..$ debug
    ..$ inherit.blank: logi TRUE
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
##
   $ axis.title.x.top :List of 11
##
    ..$ family : NULL
##
    ..$ face
                  : NULL
                  : NULL
    ..$ colour
##
                  : NULL
##
    ..$ size
##
    ..$ hjust
                  : NULL
##
    ..$ vjust
                  : num 0
                   : NULL
##
    ..$ angle
##
    ..$ lineheight : NULL
##
    ..$ margin : 'margin' num [1:4] Opoints Opoints 2.75points Opoints
    .. ..- attr(*, "unit")= int 8
##
##
    ..$ debug
                   : NULL
##
    ..$ inherit.blank: logi TRUE
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
   $ axis.title.x.bottom : NULL
##
   $ axis.title.y
                             :List of 11
##
##
   ..$ family
                  : NULL
                  : NULL
##
    ..$ face
##
    ..$ colour
                  : NULL
                  : NULL
##
    ..$ size
                  : NULL
##
    ..$ hjust
##
    ..$ vjust
                  : num 1
##
    ..$ angle
                  : num 90
```

```
##
    ..$ lineheight : NULL
##
    ..$ margin : 'margin' num [1:4] Opoints 2.75points Opoints
    .. ..- attr(*, "unit")= int 8
##
##
                   : NULL
    ..$ debug
##
    ..$ inherit.blank: logi TRUE
##
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
## $ axis.title.y.left
                             : NULL
   $ axis.title.y.right
                              :List of 11
##
    ..$ family : NULL
##
##
    ..$ face
                   : NULL
##
    ..$ colour
                   : NULL
##
                    : NULL
    ..$ size
##
    ..$ hjust
                   : NULL
##
    ..$ vjust
                   : num 0
##
    ..$ angle
                   : num -90
    ..$ lineheight : NULL
##
##
                  : 'margin' num [1:4] Opoints Opoints Opoints 2.75points
    ..$ margin
    .. ..- attr(*, "unit")= int 8
##
##
                    : NULL
    ..$ debug
    ..$ inherit.blank: logi TRUE
##
##
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
   $ axis.text
                              :List of 11
                   : NULL
##
    ..$ family
##
    ..$ face
                    : NULL
##
    ..$ colour
                   : chr "grey30"
##
    ..$ size
                   : 'rel' num 0.8
##
    ..$ hjust
                    : NULL
##
    ..$ vjust
                    : NULL
##
                    : NULL
    ..$ angle
##
    ..$ lineheight : NULL
                    : NULL
##
    ..$ margin
                    : NULL
##
    ..$ debug
##
    ..$ inherit.blank: logi TRUE
##
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
   $ axis.text.x
                              :List of 11
##
    ..$ family
                   : NULL
                   : NULL
##
    ..$ face
##
    ..$ colour
                   : NULL
##
    ..$ size
                    : NULL
                    : NULL
##
    ..$ hjust
##
    ..$ vjust
                    : num 1
##
    ..$ angle
                    : NULL
##
    ..$ lineheight : NULL
##
    ..$ margin
                   : 'margin' num [1:4] 2.2points Opoints Opoints
##
    .. ..- attr(*, "unit")= int 8
    ..$ debug
##
                    : NULL
##
    ..$ inherit.blank: logi TRUE
##
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
   $ axis.text.x.top
                              :List of 11
    ..$ family
                 : NULL
##
                   : NULL
##
    ..$ face
##
    ..$ colour
                   : NULL
##
    ..$ size
                   : NULL
    ..$ hjust
                   : NULL
##
```

```
: num 0
##
     ..$ vjust
##
     ..$ angle
                    : NULL
     ..$ lineheight : NULL
##
                    : 'margin' num [1:4] Opoints Opoints 2.2points Opoints
##
     ..$ margin
##
     .. ..- attr(*, "unit")= int 8
                    : NULL
##
     ..$ debug
     ..$ inherit.blank: logi TRUE
     ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
   $ axis.text.x.bottom
                             : NULL
## $ axis.text.y
                               :List of 11
                    : NULL
    ..$ family
                    : NULL
##
     ..$ face
                    : NULL
##
    ..$ colour
##
    ..$ size
                    : NULL
##
     ..$ hjust
                    : num 1
##
     ..$ vjust
                    : NULL
##
     ..$ angle
                    : NULL
##
     ..$ lineheight : NULL
                   : 'margin' num [1:4] Opoints 2.2points Opoints Opoints
##
     ..$ margin
     .. ..- attr(*, "unit")= int 8
##
##
    ..$ debug
                    : NULL
##
    ..$ inherit.blank: logi TRUE
     ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
## $ axis.text.y.left
## $ axis.text.y.right
                             : NULL
                              :List of 11
                  : NULL
    ..$ family
##
     ..$ face
                    : NULL
##
    ..$ colour
                   : NULL
##
    ..$ size
                   : NULL
##
    ..$ hjust
                   : num 0
                    : NULL
##
     ..$ vjust
##
     ..$ angle
                    : NULL
##
     ..$ lineheight : NULL
##
                   : 'margin' num [1:4] Opoints Opoints Opoints 2.2points
     ..$ margin
     .. ..- attr(*, "unit")= int 8
##
    ..$ debug
##
                    : NULL
##
    ..$ inherit.blank: logi TRUE
##
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
   $ axis.ticks
                              : list()
   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##
## $ axis.ticks.x
                              : NULL
## $ axis.ticks.x.top
                              : NULL
## $ axis.ticks.x.bottom
                              : NULL
## $ axis.ticks.y
                              : NULL
## $ axis.ticks.y.left
                              : NULL
## $ axis.ticks.y.right
                               : NULL
                           : 'simpleUnit' num 2.75points
## $ axis.ticks.length
##
   ..- attr(*, "unit")= int 8
## $ axis.ticks.length.x
                              : NULL
## $ axis.ticks.length.x.top : NULL
## $ axis.ticks.length.x.bottom: NULL
## $ axis.ticks.length.y
                             : NULL
## $ axis.ticks.length.y.left : NULL
## $ axis.ticks.length.y.right : NULL
```

```
## $ axis.line
                               : list()
   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##
## $ axis.line.x
                              : NULL
## $ axis.line.x.top
                               : NULL
## $ axis.line.x.bottom
                               : NULL
## $ axis.line.y
                               : NULL
## $ axis.line.y.left
                               : NULL
## $ axis.line.y.right
                               : NULL
   $ legend.background
                               : list()
##
   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
  $ legend.margin
                               : 'margin' num [1:4] 5.5points 5.5points 5.5points
##
    ..- attr(*, "unit")= int 8
                               : 'simpleUnit' num 11points
## $ legend.spacing
##
   ..- attr(*, "unit")= int 8
## $ legend.spacing.x
                               : NULL
## $ legend.spacing.y
                               : NULL
## $ legend.key
                               : list()
   ..- attr(*, "class")= chr [1:2] "element blank" "element"
##
                               : 'simpleUnit' num 1.2lines
## $ legend.key.size
    ..- attr(*, "unit")= int 3
##
## $ legend.key.height
                               : NULL
## $ legend.key.width
                               : NULL
## $ legend.text
                               :List of 11
##
    ..$ family
                     : NULL
##
    ..$ face
                     : NULL
                    : NULL
##
    ..$ colour
##
    ..$ size
                     : 'rel' num 0.8
                     : NULL
##
    ..$ hjust
##
    ..$ vjust
                    : NULL
##
    ..$ angle
                    : NULL
##
     ..$ lineheight
                    : NULL
##
    ..$ margin
                     : NULL
##
                     : NULL
    ..$ debug
##
    ..$ inherit.blank: logi TRUE
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
##
   $ legend.text.align
                               : NULL
                               :List of 11
##
   $ legend.title
##
    ..$ family
                     : NULL
##
    ..$ face
                     : NULL
##
    ..$ colour
                    : NULL
##
    ..$ size
                     : NULL
##
     ..$ hjust
                     : num 0
                     : NULL
##
    ..$ vjust
##
    ..$ angle
                     : NULL
##
                    : NULL
    ..$ lineheight
##
                     : NULL
    ..$ margin
##
    ..$ debug
                     : NULL
##
    ..$ inherit.blank: logi TRUE
     ..- attr(*, "class")= chr [1:2] "element_text" "element"
## $ legend.title.align
                               : NULL
## $ legend.position
                               : chr "right"
## $ legend.direction
                               : NULL
## $ legend.justification
                               : chr "center"
## $ legend.box
                               : NULL
```

```
## $ legend.box.just
## $ legend.box.margin
                              : 'margin' num [1:4] Ocm Ocm Ocm Ocm
## ..- attr(*, "unit")= int 1
## $ legend.box.background
                              : list()
   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
## $ legend.box.spacing
                              : 'simpleUnit' num 11points
   ..- attr(*, "unit")= int 8
   $ panel.background
##
                               : list()
##
   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##
   $ panel.border
                              : list()
    ..- attr(*, "class")= chr [1:2] "element_blank" "element"
                              : 'simpleUnit' num 5.5points
## $ panel.spacing
   ..- attr(*, "unit")= int 8
##
## $ panel.spacing.x
                              : NULL
## $ panel.spacing.y
                              : NULL
## $ panel.grid
                               :List of 6
##
   ..$ colour
                   : chr "grey92"
##
    ..$ size
                   : NULL
##
                   : NULL
    ..$ linetype
##
    ..$ lineend
                    : NULL
##
    ..$ arrow
                    : logi FALSE
##
    ..$ inherit.blank: logi TRUE
    ..- attr(*, "class")= chr [1:2] "element_line" "element"
##
##
   $ panel.grid.major
                             : NULL
## $ panel.grid.minor
                              :List of 6
##
    ..$ colour
                 : NULL
##
    ..$ size
                    : 'rel' num 0.5
##
    ..$ linetype
                   : NULL
##
    ..$ lineend
                   : NULL
    ..$ arrow : logi FALSE
##
##
    ..$ inherit.blank: logi TRUE
##
    ..- attr(*, "class")= chr [1:2] "element_line" "element"
## $ panel.grid.major.x
                             : NULL
## $ panel.grid.major.y
                              : NULL
## $ panel.grid.minor.x
                              : NULL
                              : NULL
## $ panel.grid.minor.y
## $ panel.ontop
                              : logi FALSE
## $ plot.background
                             : list()
   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##
## $ plot.title
                              :List of 11
##
    ..$ family
                    : NULL
##
    ..$ face
                    : NULL
                    : NULL
##
    ..$ colour
##
                    : 'rel' num 1.2
    ..$ size
##
    ..$ hjust
                    : num 0
##
     ..$ vjust
                    : num 1
##
    ..$ angle
                    : NULL
##
    ..$ lineheight : NULL
##
    ..$ margin
                   : 'margin' num [1:4] Opoints Opoints 5.5points Opoints
    .. ..- attr(*, "unit")= int 8
##
##
                    : NULL
    ..$ debug
    ..$ inherit.blank: logi TRUE
##
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
## $ plot.title.position : chr "panel"
```

```
$ plot.subtitle
                              :List of 11
    ..$ family
##
                     : NULL
##
    ..$ face
                    : NULL
##
    ..$ colour
                    : NULL
##
    ..$ size
                     : NULL
##
    ..$ hjust
                    : num 0
##
    ..$ vjust
                    : num 1
##
                     : NULL
     ..$ angle
                    : NULL
##
    ..$ lineheight
##
                   : 'margin' num [1:4] Opoints Opoints 5.5points Opoints
     ..$ margin
##
     .. ..- attr(*, "unit")= int 8
##
                     : NULL
     ..$ debug
    ..$ inherit.blank: logi TRUE
##
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
##
   $ plot.caption
                               :List of 11
##
    ..$ family
                     : NULL
##
    ..$ face
                    : NULL
                    : NULL
##
    ..$ colour
    ..$ size
##
                    : 'rel' num 0.8
##
    ..$ hjust
                     : num 1
##
    ..$ vjust
                     : num 1
##
    ..$ angle
                     : NULL
##
    ..$ lineheight
                   : NULL
##
                     : 'margin' num [1:4] 5.5points Opoints Opoints
    ..$ margin
##
    .. ..- attr(*, "unit")= int 8
##
    ..$ debug
                     : NULL
##
    ..$ inherit.blank: logi TRUE
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
## $ plot.caption.position
                              : chr "panel"
##
   $ plot.tag
                               :List of 11
##
    ..$ family
                    : NULL
##
    ..$ face
                    : NULL
##
                    : NULL
    ..$ colour
##
                    : 'rel' num 1.2
    ..$ size
##
    ..$ hjust
                     : num 0.5
                    : num 0.5
##
    ..$ vjust
##
    ..$ angle
                    : NULL
##
    ..$ lineheight
                    : NULL
##
    ..$ margin
                     : NULL
##
    ..$ debug
                     : NULL
##
    ..$ inherit.blank: logi TRUE
     ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
   $ plot.tag.position
                               : chr "topleft"
##
## $ plot.margin
                               : 'margin' num [1:4] 5.5points 5.5points 5.5points
    ..- attr(*, "unit")= int 8
##
   $ strip.background
                               : list()
   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##
## $ strip.background.x
                              : NULL
## $ strip.background.y
                               : NULL
## $ strip.placement
                               : chr "inside"
## $ strip.text
                               :List of 11
##
                    : NULL
   ..$ family
##
    ..$ face
                    : NULL
                    : chr "grey10"
##
    ..$ colour
```

```
: 'rel' num 0.8
##
     ..$ size
##
     ..$ hjust
                    : NULL
##
     ..$ vjust
                    : NULL
##
     ..$ angle
                    : NULL
     ..$ lineheight : NULL
##
##
     ..$ margin
                    : 'margin' num [1:4] 4.4points 4.4points 4.4points 4.4points
##
     ...- attr(*, "unit")= int 8
     ..$ debug
##
                     : NULL
##
     ..$ inherit.blank: logi TRUE
##
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
   $ strip.text.x
                              : NULL
##
   $ strip.text.y
                               :List of 11
    ..$ family
##
                    : NULL
##
    ..$ face
                    : NULL
##
    ..$ colour
                    : NULL
##
     ..$ size
                    : NULL
##
     ..$ hjust
                    : NULL
##
     ..$ vjust
                    : NULL
##
     ..$ angle
                    : num -90
##
     ..$ lineheight : NULL
##
    ..$ margin
                    : NULL
##
    ..$ debug
                     : NULL
##
     ..$ inherit.blank: logi TRUE
    ..- attr(*, "class")= chr [1:2] "element text" "element"
   $ strip.switch.pad.grid
                              : 'simpleUnit' num 2.75points
    ..- attr(*, "unit")= int 8
## $ strip.switch.pad.wrap
                               : 'simpleUnit' num 2.75points
    ..- attr(*, "unit")= int 8
## $ strip.text.y.left
                               :List of 11
##
   ..$ family : NULL
##
     ..$ face
                    : NULL
                   : NULL
    ..$ colour
##
##
     ..$ size
                    : NULL
##
     ..$ hjust
                    : NULL
##
                    : NULL
     ..$ vjust
                    : num 90
##
    ..$ angle
##
    ..$ lineheight : NULL
##
    ..$ margin
                    : NULL
                     : NULL
##
    ..$ debug
##
    ..$ inherit.blank: logi TRUE
   ..- attr(*, "class")= chr [1:2] "element text" "element"
## - attr(*, "class")= chr [1:2] "theme" "gg"
## - attr(*, "complete")= logi TRUE
## - attr(*, "validate")= logi TRUE
better_residual_qq
```

Normal Residual Graph

Problem4

The better model from problem3 has a smaller cv RMSE at 0.01565241 whereas the original model has a larger cv RMSE at 0.0161054. It's not surprising as we know the more variables we add the better model will show a smaller CV RMSE.

```
LE_data_cv <- crossv_kfold(LE_data, 10)</pre>
LE_data_cv
## # A tibble: 10 x 3
##
      train
                   test
                                 .id
##
      <named list> <named list> <chr>
                   <resample>
##
   1 <resample>
                                 01
##
    2 <resample>
                   <resample>
                                 02
    3 <resample>
                   <resample>
                                 03
##
##
   4 <resample>
                   <resample>
                                 04
    5 <resample>
                   <resample>
                                 05
##
    6 <resample>
                   <resample>
                                 06
##
   7 <resample>
                    <resample>
                                 07
##
   8 <resample>
                    <resample>
##
                                 80
##
    9 <resample>
                    <resample>
                                 09
## 10 <resample>
                    <resample>
cv_better_model <- LE_data_cv %>%
 mutate(fit = purrr::map(train,
                           ~lm(log10(life_expectancy_years) ~
                                 log10(murder_per_100000_people) +
             total_gdp_us_inflation_adjusted, data=.)),
```

```
rmse=purrr::map2_dbl(fit, test, ~rmse(.x, .y)))
cv_better_model
## # A tibble: 10 x 5
##
      train
                                .id
                                      fit
                                                      rmse
##
      <named list> <named list> <chr> <named list> <dbl>
##
   1 <resample>
                   <resample>
                                       <1m>
                                                    0.0145
## 2 <resample>
                                      <1m>
                   <resample>
                                                    0.0157
## 3 <resample> <resample>
                                      <1m>
                                03
                                                    0.0147
## 4 <resample>
                                      <1m>
                   <resample>
                                04
                                                    0.0142
                                      <1m>
## 5 <resample>
                  <resample>
                                05
                                                    0.0209
## 6 <resample>
                   <resample>
                                06
                                      <1m>
                                                    0.0172
## 7 <resample>
                   <resample>
                                07
                                      <1m>
                                                    0.0145
                                80
                                      <1m>
## 8 <resample>
                   <resample>
                                                    0.0135
## 9 <resample>
                   <resample>
                                09
                                      <1m>
                                                    0.0181
## 10 <resample>
                   <resample>
                                10
                                      <1m>
                                                    0.0135
cv original <- LE data cv %>%
  mutate(fit = purrr::map(train,
                          ~lm(log10(life_expectancy_years) ~
                                log10(murder_per_100000_people), data=.)),
         rmse=purrr::map2_dbl(fit, test, ~rmse(.x, .y)))
cv_original
## # A tibble: 10 x 5
##
                                .id
      train
                                      fit
                                                      rmse
##
      <named list> <named list> <chr> <named list> <dbl>
## 1 <resample>
                 <resample>
                                      <1m>
                                                    0.0158
## 2 <resample> <resample>
                                      <1m>
                                                    0.0161
                                02
## 3 <resample> <resample>
                                      <1m>
                                                    0.0147
## 4 <resample>
                  <resample>
                                      <1m>
                                                    0.0141
                                04
## 5 <resample>
                   <resample>
                                05
                                      <1m>
                                                    0.0209
## 6 <resample>
                   <resample>
                                06
                                      <1m>
                                                    0.0184
## 7 <resample>
                   <resample>
                                07
                                      <1m>
                                                    0.0149
## 8 <resample>
                   <resample>
                                80
                                      <1m>
                                                    0.0136
## 9 <resample>
                   <resample>
                                09
                                      <1m>
                                                    0.0184
                                10
                                      <1m>
                                                    0.0144
## 10 <resample>
                   <resample>
mean(cv_better_model$rmse)
## [1] 0.01567992
mean(cv_original$rmse)
## [1] 0.01613559
Problem5
Partitioning
set.seed(10)
LE_data_part <- resample_partition(LE_data,</pre>
                                   p=c(train=0.5,
                                       valid=0.25,
                                       test=0.25))
LE_data_part
```

```
## $train
## <resample [313 x 8] > 11, 12, 19, 22, 24, 25, 26, 28, 29, 30, ...
## $valid
## <resample [157 x 8] > 2, 3, 4, 5, 7, 8, 10, 13, 17, 18, ...
##
## $test
## <resample [158 x 8] > 1, 6, 9, 14, 15, 16, 23, 39, 45, 46, ...
step1 <- function(response, predictors, candidates, partition)</pre>
  rhs <- paste0(paste0(predictors, collapse="+"), "+", candidates)</pre>
  formulas <- lapply(paste0(response, "~", rhs), as.formula)</pre>
  rmses <- sapply(formulas,</pre>
                   function(fm) rmse(lm(fm, data=partition$train),
                                      data=partition$valid))
  names(rmses) <- candidates</pre>
  attr(rmses, "best") <- rmses[which.min(rmses)]</pre>
  rmses
}
model <- NULL
step1
preds <- "1"
cands <- c("log10(infant mortality rate per 1000 births)",</pre>
            "log10(murder_per_100000_people)",
            "total_gdp_us_inflation_adjusted",
            "log10(medical_doctors_per_1000_people)",
            "poverty_percent_people_below_550_a_day")
s1 <- step1("log10(life_expectancy_years)", preds, cands, LE_data_part)</pre>
model <- c(model, attr(s1, "best"))</pre>
s1
## log10(infant_mortality_rate_per_1000_births)
##
                                       0.01398428
##
                 log10(murder_per_100000_people)
##
                                       0.01991172
##
                 total_gdp_us_inflation_adjusted
##
                                       0.02735699
##
         log10(medical_doctors_per_1000_people)
##
                                       0.02669927
##
         poverty_percent_people_below_550_a_day
##
                                       0.01903142
## attr(,"best")
## log10(infant_mortality_rate_per_1000_births)
##
                                       0.01398428
Step2 adding log10(infant_mortality_rate_per_1000_births)
preds <- "log10(infant_mortality_rate_per_1000_births)"</pre>
cands <- c("log10(murder_per_100000_people)",</pre>
            "total_gdp_us_inflation_adjusted",
           "log10(medical_doctors_per_1000_people)",
            "poverty_percent_people_below_550_a_day")
```

```
s2 <- step1("log10(life_expectancy_years)", preds, cands, LE_data_part)</pre>
model <- c(model, attr(s2, "best"))</pre>
          log10(murder per 100000 people)
##
                                                   total_gdp_us_inflation_adjusted
##
                                0.01323456
                                                                         0.01373380
## log10(medical_doctors_per_1000_people) poverty_percent_people_below_550_a_day
##
                                0.01440880
                                                                         0.01402275
## attr(,"best")
## log10(murder_per_100000_people)
                         0.01323456
Step 3 Adding "log10(murder per 100000 people)"
preds <- c("log10(infant mortality rate per 1000 births)",</pre>
"log10(murder_per_100000_people)")
cands <- c("total gdp us inflation adjusted",
           "log10(medical_doctors_per_1000_people)",
           "poverty_percent_people_below_550_a_day")
s3 <- step1("log10(life_expectancy_years)", preds, cands, LE_data_part)
model <- c(model, attr(s3, "best"))</pre>
s3
          total_gdp_us_inflation_adjusted log10(medical_doctors_per_1000_people)
##
##
                                0.01298784
                                                                         0.01365805
## poverty_percent_people_below_550_a_day
                                0.01312733
##
## attr(,"best")
## total_gdp_us_inflation_adjusted
                         0.01298784
Step 4 Adding total_gdp_us_inflation_adjusted
preds <- c("log10(infant mortality rate per 1000 births)",</pre>
"log10(murder_per_100000_people)", "total_gdp_us_inflation_adjusted")
cands <- c("log10(medical doctors per 1000 people)",
           "poverty_percent_people_below_550_a_day")
s4 <- step1("log10(life_expectancy_years)", preds, cands, LE_data_part)
model <- c(model, attr(s4, "best"))</pre>
s4
## log10(medical_doctors_per_1000_people) poverty_percent_people_below_550_a_day
                                                                         0.01294285
                                0.01344301
## attr(,"best")
## poverty_percent_people_below_550_a_day
                                0.01294285
Step 5 Adding poverty_percent_people_below_550_a_day. Then stop at step 5 due to the increasing
RMSE value of log(medical_doctors_per_1000_people).
preds <- c("log10(infant_mortality_rate_per_1000_births)",</pre>
"log10(murder_per_100000_people)", "total_gdp_us_inflation_adjusted",
"poverty_percent_people_below_550_a_day")
cands <- c("log10(medical_doctors_per_1000_people)")</pre>
s5 <- step1("log10(life_expectancy_years)", preds, cands, LE_data_part)
```

```
model <- c(model, attr(s5, "best"))</pre>
## log10(medical_doctors_per_1000_people)
##
                                0.01340655
## attr(,"best")
## log10(medical_doctors_per_1000_people)
                                0.01340655
Plotting
step_model <- tibble(index=seq_along(model),</pre>
                      variable=factor(names(model), levels=names(model)),
                      RMSE=model)
ggplot(step_model, aes(y=RMSE)) +
  geom_point(aes(x=variable)) +
  geom_line(aes(x=index)) +
  labs(title="Stepwise model selection") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle=90, vjust=0.5, hjust=1))
```

Stepwise model selection

