01076010 เครือข่ายคอมพิวเตอร์ : 2/2563 ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

กิจกรรมที่ 5 : TCP Connection

กิจกรรมครั้งนี้จะเป็นการทำความเข้าใจกับโปรโตคอล TCP (Transmission Control Protocol) ซึ่ง TCP มี คุณสมบัติในการทำงานอยู่ 5 ประการได้แก่

- Reliable, in-order delivery คือ การส่งไม่ผิดพลาดโดยข้อมูลมีการเรียงตามลำดับ
- Connection Oriented คือ ต[้]องมีการสร[้]างการเชื่อมต[่]อก[่]อน และมีการแลกเปลี่ยนข[้]อมูลควบคุม
- Flow Control ควบคุมการไหลของข้อมูลระหว่าง Process ทั้ง 2 ด้าน
- Congestion Control ควบคุมการไหลของข้อมูลผ่านอุปกรณ์เครือข่าย
- Full Duplex data สามารถส่งได้ทั้ง 2 ทาง ในการเชื่อมต่อเดียวกัน

Connection Setup

sc	ource por 2 byt	t number es	destination port number 2 bytes
			e number bytes
			ement number bytes
data offset 4 bits	reserved 3 bits	control flags 9 bits	window size 2 bytes
	check 2 byt		urgent pointer 2 bytes

รูปแสดง TCP Header

ก่อนเริ่มการส่งข้อมูลทุกครั้งของ TCP จะต้องมีการสร้าง Connection ขึ้นมาก่อนโดย Client จะเริ่มสร้างการ เชื่อมต[่]อไปที่ Server ซึ่งประกอบด้วย 3 ขั้นตอน

- Client การส่ง packet SYN ไปที่ Server โดย Client จะมีการสร้างหมายเลข Sequence Number เรียกว่า ISN : Initial Sequence Number ขึ้นมา (ในรูปสมมติว่า 100) ใส่ใน SEQ# แล้วส่ง
- เมื่อ Server ได้รับ packet SYN จะตอบกลับโดย packet SYN-ACK โดย Server จะมีการสร้างหมายเลข ISN ของตนเองขึ้นมาเช่นกัน โดยใส่ใน SEQ# และนำหมายเลข SN:Client+1 แล้วใส่ใน ACK# แล้วส่ง
- มื่อ Client ได้รับ packet SYN-ACK ก็จะตอบกลับโดย packet ACK สุดท้าย โดย Client จะนำ
 SN:Client+1 ใส่ใน SEQ# และนำ SN:Server+1 ใส่ใน ACK# แล้วส่ง เมื่อถึงตรงนี้จะถือว่าผัง Client สร้าง
 การเชื่อมต่อสำเร็จแล้ว ซึ่ง Client สามารถจะเริ่มส่งข้อมูลได้
- เมื่อ Server ได้รับ packet ACK สุดท้าย จะถือว่าฝั่ง Server สร้างการเชื่อมต่อสำเร็จแล้วเช่นกัน

1. ให้เปิดไฟล์ http-browse101d.pcapng ค้นหา 3 way handshake แรกในไฟล์แล้ว บันทึกข้อมูลลงใน ตารางค้านล่าง (ทั้ง Seq# และ Ack# ให้ใช้แบบ raw ในช่อง Flag ให้บอกว่ามี Flag ใดที่ Set บ้าง

SYN		
Src Port :	61598	Dest Port: 80
Seq#:	610997682	
Ack # :	0	
Flags:	0x002	SYN
SYN-A	ACK	
Src Port :	80	Dest Port : 61598

Src Port	: 80	Dest Port: 61598
Seq#:	4134094401	
Ack # :	610997683	
Flags :	0x012	SYN , ACK

ACK

Src Port : 61598	Dest Port: 80
Seq #: 610997683	
Ack #: 4134094402	
Flags: $0x010$	ACK

- ค่าความยาวข้อมูลของ packet ทั้ง 3 เท่ากับเท่าไรบ้าง <u>66,66,54</u>
- ใน packet SYN มีข้อมูลอื่นๆ ส่งมาด้วยหรือไม่ อะไรบ้าง (ดูในคอลัมน์ info) และข้อมูลต่างๆ เหล่านั้นมีความหมายอะไรหรือนำไปใช้อะไร (ให้ค้นหาข้อมูลเพิ่มเติมจากหนังสือ)

ข้อมูล	ความหมาย
Win = 8192	ขนาด window = 8192
MSS = 1460	ขนาดสูงสุดของ segment = 1460
WS = 4	มาตราส่วน window = 4
SACK_PERM = 1	ยอมให้ใช้ selective ACK

ใน packet SYN-ACK มีข้อมูลอื่นๆ ส่งมาด้วยหรือไม่ อะไรบ้าง (ดูในคอลัมน์ info) และข้อมูล ต่างๆ เหล่านั้นมีความหมายอะไรหรือนำไปใช้อะไร

ข้อมูล	ความหมาย
Win = 14300	ขนาด window = 14300
MSS = 1430	ขนาดสูงสุดของ segment = 1430
SACK_PERM = 1	ยอมให้ใช้ selective ACK
WS = 64	มาตราส่วน window = 64

ให้ดู packet ที่ส่งข้อมูล packet แรก (หรือ packet อื่นก็ได้) ให้ตอบว่าในข้อมูลที่ไม่เท่ากันของ Client กับ Server ในการเลือกใช้ข้อมูลหนึ่ง (เนื่องจากทั้ง 2 ด้านต้องใช้พารามิเตอร์เดียวกันใน การส่งข้อมูล) คิดว่ามีหลักในการเลือกอย่างไร เมื่อมีแลกเปลี่ยนพารามิเตอร์ ก็จะต้องเลือกว่าจะใช้ของ client หรือ server

ผมคิดว่าน่าจะเลือกจากฝั่ง server เนื่องจากค่ามีความใกล้เคียงมากกว่า

Connection Terminated

เมื่อสิ้นสุดการส่งข้อมูลแล้ว ใน TCP จะมีการปิด Connection ซึ่งประกอบด้วย 4 ขั้นตอน

- ฝ่ายใดฝ่ายหนึ่งที่ต้องการปิด Connection (ต่อไปจะเรียก A และเรียกอีกฝั่งว่า B) จะส่ง packet ที่มี FIN/ACK flag มา โดยใช้ SEQ# และ ACK# เท่ากับ packet สุดท้ายก่อนจะปิด connection
- ผั่ง B จะตอบด้วย packet ที่มี ACK flag โดยใช้ SEQ# เท่ากับ ACK# ของ FIN/ACK ก่อนหน้า และใช้ ACK# เท่ากับของ SYN# ของ packet ล่าสุด โดยเมื่อ A ได้รับ packet นี้ จะถือว่าเป็นการสิ้นสุด connection ของผั่ง A (หมายเหตุ บางครั้งอาจไม่มีการส่ง packet นี้ โดยอาจรวมไปกับ packet ที่ 3
- ผั่ง B จะเริ่มปิด Connection บ้าง โดยจะส่ง packet ที่มี FIN/ACK flag โดยใช้ SEQ# เท่ากับ ACK# ของ FIN/ACK ก่อนหน้า และใช้ ACK# เท่ากับของ SYN# ของ packet ล่าสุด +1
- ผั่ง A จะตอบกลับการปิด Connection โดยจะส่ง packet ที่มี FIN/ACK flag โดยใช้ SEQ# เท่ากับ ACK#
 ของ FIN/ACK ก่อนหน้า และใช้ ACK# เท่ากับของ SYN# ของ packet ล่าสุด +1 เมื่อถึงจุดนี้จะถือว่าเป็น การสิ้นสุด Connection ของ B
- 2. ให้หา Packet ที่ปิด Connection ของ Connection ในข้อ 1 โดยให้บอกขั้นตอนการหาและป้อนรายละเอียด ลงในตาราง (ข้อมูล Seq# และ Ack # ให้ใช้แบบ Relative)

Packet# 1663	
Src Port : 61598	Dest Port: 80
Seq #: 323	
Ack #: 1127	
Flags: 0x011	FIN , ACK

Packet# 1664	
Src Port: 80	Dest Port: 61598
Seq #: 1127	
Ack #: 324	
Flags: 0x011	FIN, ACK

Packet#	1665	
Src Port :	61598	Dest Port: 80
Seq#:	324	
Ack #:	1128	
Flags :	0x010	ACK

วิธีค้นหา

กดเลือก packet จาก 3 way handshake คลิกขวากดเลือก Follow TCP Stream จะเจอ 3 packets

สุดท้ายที่เป็นการปิด Connection

3. ใน Wireshark เราสามารถจะหา packet ที่มีคุณลักษณะของ flags เฉพาะได้ โดยใช้ display filter tcp.flags เช่น tcp.flags.syn==1 หรือ tcp.flags.ack==1 ซึ่งเราสามารถใช้หา RTT ของ TCP handshake ได้ โดยการหา RTT ของ TCP handshake มี 3 แบบ คือ วัดจากผั่ง Client จะใช้เวลาระหว่าง SYN และ SYN-ACK

และวัดจากฝั่ง Server จะใช้เวลาระหว่าง SYN/ACK กับ ACK

แต่ในกรณีที่วัดจากอุปกรณ์ ควรใช้ระหว่าง SYN และ ACK ตามรูป

- 4. จากไฟล์ http-browse101d.pcapng ให้สร้าง display filter ที่สามารถแสดงเฉพาะ packet ต่อไปนี้ โดยไม่ มี packet อื่นๆ มาปน (<u>นักศึกษาพยายามคิดด้วยตนเอง</u>)
 - packet SYN และ SYN/ACK ของ 3 way handshake (packet ที่ 1 และ 2)
 - packet SYN/ACK และ ACK ของ 3 way handshake (packet ที่ 2 และ 3)
 - packet SYN และ ACK 3 way handshake (packet ที่ 1 และ 3)

1. tcp.stream eq 0 && tcp.flags.syn == 1

2.tcp.stream eq 0 &&(tcp.ack<=1 && tcp.seq<=1)&&!http && tcp.flags.ack == 1

3.tcp.stream eq 0 &&(tcp.ack<=1 && tcp.seq<=1)&&!http &&

! (tcp.flags.ack == 1 && tcp.flags.syn ==1)

รูปเพิ่มเติมอยู่ด้านล่าง

5. เราสามารถใช้ค่า RTT ของ TCP handshaking ตามข้อ 4 มาใช้วัดประสิทธิภาพของ Web Server ได้ เช่นกัน โดย Server ที่มีค่า RTT น้อย แสดงถึงการตอบสนองที่รวดเร็ว ดังนั้นให้ capture ข้อมูลจากเว็บ และใช้ display filter ตามข้อ 4 (ให้นักศึกษาเลือกใช้ตัวที่เหมาะสม) เพื่อหาค่า RTT ของเว็บต่างๆ จำนวน 3 เว็บ แล้วนำค่ามาใส่ตาราง

URL	เวลา
www.instagram.com	0.156164000
www.youtube.com	0.062355000
www.facebook.com	0.046004000

- ให[้]ตอบว่าระหว่าง RTT ที่วัดในครั้งนี้ กับ HTTP RTT ที่วัดในครั้งก่อนหน้านี้ บอกถึงอะไร และ แตกต[่]างกันอย่างไร

RRT ที่วัดได้ในครั้งนี้บอกถึง เวลาที่ client ใช้ในการเชื่อมต่อกับ Server

HTTP RRT ที่วัดได้ในครั้งก่อนหน้า บอกถึงเวลาที่ใช้ในการโหลดข้อมูลจาก server แตกต่างกันที่ RRTในครั้งนี้จะใช้เวลาน้อยกว่า

งานครั้งที่ 6

- การส่งงาน ให้ส่งเป็นไฟล์ PDF จำนวน 1 ไฟล์ เท่านั้น
- ตั้งชื่อไฟล์โดยใช้รหัสนักศึกษา
- ส่วนบนของหน้าแรกให้มี รหัสนักศึกษา และ ชื่อนักศึกษา
- กำหนดส่ง ภายในวันที่ 21 กุมภาพันธ์ 2564

รูปเพิ่มเติมข้อ 4

packet 1, 2

No.	Time	Source	Destination	Protocol	Lengt DNS Delta	Time : Info
	1 0.000000	24.6.173.220	173.194.79.121	TCP	66	0.0 61598 → 80 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4
	2 0.035945	173.194.79.121	24.6.173.220	TCP	66	0.0 80 → 61598 [SYN, ACK] Seq=0 Ack=1 Win=14300 Len=0 MS

packet 2,3

No.	Time	Source	Destination	Protocol	Lengt DNS Delta	Time : Info
	2 0.035945	173.194.79.121	24.6.173.220	TCP	66	0.0 80 → 61598 [SYN, ACK] Seq=0 Ack=1 Win=14300 Len=0 MS
	3 0.036067	24.6.173.220	173.194.79.121	TCP	54	0.0 61598 → 80 [ACK] Seq=1 Ack=1 Win=65780 Len=0

packet 1,3

No.	Time	Source	Destination	Protocol	Lengt DNS Delta	Time : Info
F	1 0.000000	24.6.173.220	173.194.79.121	TCP	66	0.0 61598 → 80 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=-
	3 0.036067	24.6.173.220	173.194.79.121	TCP	54	0.0 61598 → 80 [ACK] Seq=1 Ack=1 Win=65780 Len=0

รูปเพิ่มเติม ข้อ 5

1.

tcp.stream eq 0 &&(tcp.ack<=1 && tcp.seq<=1)&&! (tcp.flags.ack == 1 && tcp.flags.syn ==1) +)+				
No.	Tin	me	Source	Destination	Protocol	Lengt	DNS Delta	RTT	Info					
	170 6.	170 6.186546	192.168.0.27	157.240.10.174	TCP	66		0.000000000	12800 + 443	[SYN]	Seq=0	Win=64246	Len=0	MSS=
0	181 6.	342710	192.168.0.27	157.240.10.174	TCP	54		0.156164000	12800 → 443	[ACK]	Seq=1	Ack=1 Win	=132096	6 Len

2.

tcp.stream eq 13 &&(tcp.ack<=1 && tcp.seq<=1)&&! (tcp.flags.ack == 1 && tcp.flags.syn ==1)									
No.	Time	Source	Destination	Protocol	Lengt DNS Delta	RTT	Info		
	240 2.329097	192.168.0.27	172.217.27.225	TCP	66	0.000000000	13220 → 443 [SYN] Seq=0 Win=64240 Len=0 MS		
g.	298 2.391452	192.168.0.27	172.217.27.225	TCP	54	0.062355000	13220 → 443 [ACK] Seq=1 Ack=1 Win=131584 L		

3.

tcp.stream eq 13 &&(tcp.ack<=1 && tcp.seq<=1)&&! (tcp.flags.ack == 1 && tcp.flags.syn ==1)									
No.	Time	Source	Destination	Protocol	Lengt DNS Delta	RTT	Info		
962	962 3.360420	192.168.0.27	115.67.64.18	TCP	66	0.00000000	13238 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS		
981	1 3.406424	192.168.0.27	115.67.64.18	TCP	54	0.046004000	13238 → 443 [ACK] Seq=1 Ack=1 Win=132096 Le		