1 Integrazione per parti

Viene usata nei casi come $\int x^k \sin x$

Variante del teorema fondamentale del calcolo 1.1

Proposizione: Sia $h: I \to J$ derivabile e $f: J \to \mathbb{R}$ continua $(I, J \subseteq \mathbb{R})$ intervalli aperti. Definiamo $F:I\to\mathbb{R}$

$$F(x) = \int_{c}^{h(x)} f(t)dt$$

Allora F è derivabile in ogni $x \in I$ e vale F'(x) = f(h(x))h'(x).

Dimostrazione: scrivo

$$I_c(z) = \int_c^z f(t)dt \quad \forall z \in J$$

Allora si scrive $F = I_c \circ h$.

Dalla formula per la derivata di funzioni composte otteniamo

$$F'(x) = I'_c(h(x))h'(x) = f(h(x))h'(x)$$

$\mathbf{2}$ Formula per il cambio variabile

Teorema: I, J intervalli aperti, $h: I \to J$ con derivata h' continua su IAllora $\forall \alpha, \beta \in I$ vale $f: J \to \mathbb{R}$ continua.

$$\int_{h(\alpha)}^{h(\beta)} f(x)dx = \int_{\alpha}^{\beta} f(h(t))h'(t)dt$$

Dimostrazione: siano $F: I \to \mathbb{R}, G: I \to R, F(z) = \int_{h(\alpha)}^{h(z)} f(x) dx, G(z) =$ $\int_{\alpha}^z f(h(t))h'(t)dt$ Le funzioni integrande sono continue, h' è continua. Dunque F e G sono deriv-

Vale F'(z) = f(h(z))h'(z) e G'(z) = f(h(z))h'(z) $\forall z \in I$

Dunque F - G è costante su I.

Poiché $F(\alpha) = 0, G(\alpha) = 0$, si conclude che F(z) = G(z) $z \in I$

3 Integrali generalizzati

Definizione $f: [a, +\infty[\to \mathbb{R} \text{ continua.}]$

Si dice che f è integrabile in senso generalizzato su $[a, +\infty]$ se

$$\exists \lim_{z \to +\infty} \int_{a}^{z} f(x)dx =: \int_{a}^{+\infty} f(x)dx$$

La definizione per $f:]-\infty,b]\to\mathbb{R}$ è omessa perché analoga

Definizione: $f:]a,b] \to \mathbb{R}$, continua. Si dice che f è integrabile in senso generalizzato su]a,b] se

$$\exists \lim_{z \to a^+} \int_z^b f(x) dx =: \int_a^b f(x) dx$$

4 Spazio euclideo

$$\mathbb{R}^n := \{x = (x_1, x_2, \dots, x_n | x_1, x_2, x_n \in \mathbb{R}\}\$$

In \mathbb{R}^n vale

Somma tra vettori $x = (x_1, ..., x_2), y = (y_1, ..., y_n)$

$$x + y = (x_1 + y_1 + \dots + x_n + y_n)$$

Prodotto con scalare dato $x = (x_1, \ldots, x_n), \lambda \in \mathbb{R}$, poniamo

$$\lambda x := (\lambda x_1, \dots, \lambda x_n)$$

Definizione Prodotto scalare euclideo Dati $x, y \in \mathbb{R}^n$, poniamo:

$$\langle x, y \rangle := \sum_{k=1}^{n} x_k y_k$$

4.1 Proprietà:

- 1. $\langle x, y \rangle = \langle y, x \rangle \quad \forall x, y \in \mathbb{R}^n$
- 2. $\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$ e $\langle z, \lambda x + \mu y \rangle = \lambda \langle z, x \rangle + \mu \langle z, y \rangle$ $\forall x, y, z \in \mathbb{R}^n \lambda, \mu \in \mathbb{R}$
- 3. $\langle x, x \rangle \ge 0 \quad \forall x \in \mathbb{R}^n$
- 4. $\langle x, x \rangle = 0 \iff x = \underline{0} = (0, 0, \dots, 0).$

4.2 Definizione Vettori ortogonale

 $x, y \in \mathbb{R}^n$ si dicono ortogonali se $\langle x, y \rangle = 0$

4.3 Definizione Norma euclidea

Dato $x \in \mathbb{R}^n$, poniamo $||x|| := \sqrt{\langle x, x \rangle} \in [0, +\infty[$ Si dice norma di x (viene usata la notazione |x|)

Interpretazione della norma con lunghezza (con il Teorema di Pitagora)

4.3.1 Proprietà della norma

- 1. $|\lambda x| = |\lambda| \cdot |x| \quad \forall \lambda \in \mathbb{R}, x \in \mathbb{R}^n$
- 2. $|x| \ge 0 \quad \forall x \in \mathbb{R}^n \text{ in oltre } |x| = 0 \iff x = 0$
- 3. $|x+y| \leq |x| + |y| \quad for all x, y \in \mathbb{R}^n$ (disuguanza triangolare, con relativa interpretazione)

4.4 Normalizzato di un vettore

Definizione: dato $x \neq 0, x \in \mathbb{R}^n$, il normalizzato di x è il vettore $\frac{x}{|x|}$, l'unico multiplo positivo di x che ha norma 1

4.5 Scrittura del prodotto scalare in coordinate polati in \mathbb{R}^n

Dati $x \in \mathbb{R}^2 \setminus \{0\}$, scriviamo

$$x = |x| \frac{x}{|x|} = r(\cos \theta, \sin \theta)$$

dove r=|x| e $\theta\in\mathbb{R}$ è opportuno. Presi $x=(r\cos\theta,r\sin\theta)$ e $y=(\rho\cos\phi,\rho\sin\phi)$, risulta

$$\langle x, y \rangle = r\rho \cos(\phi - \theta) = |x| \cdot |y| \cos(\phi - \theta)$$

la conseguenza è la disuguaglianza di Clauchy-Schwarz

4.6 La disuguaglianza di Clauchy-Schwarz

 $\forall x, y \in \mathbb{R}^n \text{ vale}$

$$|\langle x, y \rangle| \le |x| \cdot |y|$$

Inoltre vale l'uguaglianza sse x e y sono indipendenti

4.7 Formula del "quadrato di un binomio"

Dati $x, y \in \mathbb{R}^n$ vale

$$|x + y|^2 = |x|^2 + 2\langle x, y \rangle + |y|^2$$

La dimostazione avviene con le proprietà del prodotto scalare. Dalla formula sopra segue che, se $x \perp y$ in \mathbb{R}^n , allora vale

$$|x+y|^2 = |x|^2 + |y|^2$$

Teorema dio Pitagora

4.8 Disuguaglianza triangolare

Ancora della formula del "quadrato di un binomio" si può ottenere la dimostazione della disuguaglianza triangolare

$$|x+y| \le |x| + |y| \quad \forall x, y \in \mathbb{R}^n$$

Infatti

$$|x+y|^2 = |x|^2 + |y|^2 + 2\langle x,y\rangle \leq \text{ (per Clauchy-Schwarz)} \leq |x|^2 + |y|^2 + 2|x| \cdot |y| = \left(|x| + |y|\right)^2 \quad \forall x,y \in \mathbb{R}^n$$

4.9 Definizione distanza

 $\forall x, y \in \mathbb{R}$ la distanza tra $x \in y$ è

$$|x-y|$$

4.10 Intorni sferici o dischi o palle

Dato $x \in \mathbb{R}^n$ (centro) e r > 0 (raggio), poniamo

$$B(x,r) = \{ y \in \mathbb{R}^n \mid |y - x| < r \}$$
 (palla con centro x e raggio r)

4.11 Definizione insieme limitato

Sia $A \subseteq \mathbb{R}^n$, si dice limitato se $\exists R > 0$ t.c $A \subseteq B(0, R)$

4.12 Insieme aperto

Sia $A \subseteq \mathbb{R}^n$ si dice aperto se

$$\forall x \in A \exists r > 0 \text{ t.c } B(x,r) \subseteq A$$

Esempi: Gli intervalli [a, b[, i rettangoli $A = IJ \subseteq \mathbb{R}^2$ con I, J aperti in R.

5 Sucessioni in \mathbb{R}^n

Sia $(x_k)_{k\in\mathbb{N}}$ una sucessione in $\mathbb{R}^n \quad \forall k \in \mathbb{N}$

5.1 Definizione

 $(x_k)_{k\in\mathbb{N}}$ sucessione in \mathbb{R}^n ; $x\in\mathbb{R}^n$ Si dice $x_k\to x$ per $k\to+\infty$ se vale

$$\lim_{k \to +\infty} x_k^j = x^j \quad \forall j \in \{1, 2, \dots, n\}$$

Equivalentemente se vale $\lim_{k\to+\infty} |x_k-x|=0$

6 Funzioni di più variabili

 $A \subseteq \mathbb{R}^n, B \subseteq \mathbb{R}^q$. Data $f: A \to B$, il grafico di f'è

$$Graf(G) = \{(x, f(x)) \mid x \in A\} \subseteq A \times B$$

6.1 Definizione funzione continua

$$f: A \to B \text{ (con } A \subseteq \mathbb{R}^n, B \subseteq \mathbb{R}^q)$$

f si dice continua se \overline{x} se vale quanto segue:

$$\forall (x_k)_{k \in \mathbb{N}}, (x_k) \text{ successione in A, } x_k \xrightarrow[k \to +\infty]{} \overline{x} \implies f(x_k) \to f(\overline{x}) \quad k \to +\infty$$

Si dimostra che la definizione di continuà "per sucessioni" opportuna data è equivalente alla seguente:

$$f: A \to B$$
 continua in $x \in A$ se

$$\forall \varepsilon > 0 \exists \delta \ t.c \ |f(x) - f(\overline{x})| < \varepsilon$$
$$\forall x \in A \cap B(x, \delta)$$

7 Derivate parziale

Def: $A \subseteq \mathbb{R}^2$ aperto, $f: A \to \mathbb{R}, \ (\overline{x}, \overline{y}) \in A$

Poniamo

$$\frac{\partial f}{\partial x}(\overline{x}, \overline{y}) = \lim_{h \to 0} \frac{f(\overline{x} + h, \overline{y}) - f(\overline{x}, \overline{y})}{h}$$

е

$$\frac{\partial f}{\partial y}(\overline{x},\overline{y}) = \lim_{h \to 0} \frac{f(\overline{x},\overline{y}+h) - f(\overline{x},\overline{y})}{h}$$

Se i due limiti esistono (finiti), diciamo che f è derivabile parziamente in $(\overline{x}, \overline{y}).$

Poniamo

$$\nabla f(\overline{x}, \overline{y}) = (\partial_x f(\overline{x}, \overline{y}), \partial_y f(\overline{x}, \overline{y}))$$

gradiente di f

Più in generale, se $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}^n$, $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n) \in A$ e $j \in \{1, \dots, n\}, e_1, \dots, e_n$ basi canoniche in \mathbb{R}^n

Poniamo

$$\frac{\partial f}{\partial x}(\overline{x}) = \lim_{h \to 0} \frac{f(\overline{x} + he_j) - f(\overline{x})}{h}$$

 $(anche \ \partial_j f(\overline{x}))$. Derivate parziali rispetto x_j

8 Derivabilità e continuità

Ci chiediamo se l'esitenza della derivate parziali implichino la continuità. La risposta è negativa grazie al segiente esempio

ES
$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & se \ (x,y) \neq (0,0) \\ 0 & se \ (x,y) = (0,0) \end{cases}$$

- 1. $\exists \partial_x f(0,0), \partial_u f(0,0)$
- 2. f è discontinua in (0,0)

verifica di 1

$$\partial_x f(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h*0}{h^2 + 0^2} - 0}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

Analogamente $\partial_x f(0,0) = 0$

Verifica di 2 Usiamo la definizione "per sucessioni": troviamo, segliendo $(x_n,y_n)=(\frac{1}{n},\frac{1}{n})\to (0,0)$

$$f(x_n, y_n) = \frac{\frac{1}{n} * \frac{1}{n}}{\frac{1}{n^2} + \frac{1}{n^2}} = \frac{1}{2} \xrightarrow[n \to \infty]{} \frac{1}{2} \neq 0 \quad \forall n \in \mathbb{N}$$

Dunque f non è continua in (0,0)

9 Differenziabilità

Ricordiamo che $f: \mathbb{R} \to \mathbb{R}$ è derivabile in \overline{x} con derivata $f'(\overline{x})$ se e solo se

$$f(\overline{x} + h) = f(\overline{x}) + f'(\overline{x})h + o(h)$$

dove il resto o(h) soddisfa

$$\lim_{h \to 0} \left| \frac{o(h)}{h} \right| = 0$$

equivalente

$$\forall \varepsilon > 0 \exists \delta > 0 \ t.c \ \left| \frac{o(h)}{h} \right| < \varepsilon \quad \forall h \in]-\delta, \delta[$$

9.1 Definizione di "o piccolo" in \mathbb{R}^2

Def Sia $A \subseteq \mathbb{R}^n$ un insieme aperto contenete (0,0)

Sia $g: A \subseteq \mathbb{R}$ e sia $p \ge 0$.

Si scrive $g(h,k) = o(\|(h,k)\|)$ per $(h,k) \to (0,0)$ se vale

$$\forall \varepsilon > 0 \exists \delta > 0 \ t.c \ \left| \frac{o(h)}{h} \right| < \varepsilon \quad \forall (h,k) \in A \cap B((0,0),\delta)$$

Esempi:

$$g(h,k) = hk = o(|(h,k)|) \quad per(h,k) \to (0,0)$$

$$\begin{array}{l} {\rm g(h,k)} = \sqrt{|h|^{1/2}} = o(|(h,k)|) = o(1) \\ {\rm g(h,k)} = {\rm h}^2k + k^3 = o(|(h,k)|^2) \quad (h,k) \to (0,0) \end{array}$$

9.2 Def. funzione differenziabile

 $A \subseteq \mathbb{R}^2$, $f: A \to \mathbb{R}$, $(\overline{x}, \overline{y}) \in A$. (A aperto) Si dice che f è differenziabile in $(\overline{x}, \overline{y})$ se

- 1. $\exists \partial_x f(\overline{x}, \overline{y}), \partial_y f(\overline{x}, \overline{y}) \in \mathbb{R}$
- 2. $\forall (h,k) \ t.c \ (\overline{x},\overline{y}) + (h,k) \in A \text{ vale lo sviluppo:}$

$$f((\overline{x}, \overline{y}) + (h, k)) = f(\overline{x}, \overline{y}) + \langle \nabla f(\overline{x}, \overline{y}), (h, k) \rangle + o(|(h, k)|) \quad per(h, k) \to (0, 0)$$

Osservazione: f differenziabile in $(\overline{x}, \overline{y}) \in A \implies f$ continua in $(\overline{x}, \overline{y})$. Basta osservare che $\forall (h_n, k_n) \xrightarrow[n \to \infty]{} (0, 0)$ risulta

$$f(\overline{x}, \overline{y}) + (h_n, k_n) - f(\overline{x}, \overline{y}) = \langle \nabla f(\overline{x}, \overline{y}), (h_n, k_n) \rangle + o(|(h_n, k_n)|)$$

Nelle coordinate $(\overline{x} + h, \overline{y} + k) = (x, y) \in A$ si scrive:

$$f(x,y) = f(\overline{x}, \overline{y}) + \langle \nabla f(\overline{x}, \overline{y}), (x - \overline{x}, y - \overline{y}) \rangle + o(|(x - \overline{x}, y - \overline{y})|) \quad (x,y) \to (\overline{x}, \overline{y})$$

Da questa formula emerge

$$T_1(x,y) = f(\overline{x},\overline{y}) + \langle \nabla f(\overline{x},\overline{y}), (x-\overline{x},y-\overline{y}) \rangle$$

 T_1 = Polinomio di Taylor del primo ordine con punto iniziale $(\overline{x}, \overline{y})$ Infine $\{(x, y, z) \in \mathbb{R}^3 \mid z = T_1(x, y)\}$ è il piano tangente al grafico di f in $(\overline{x}, \overline{y}, f(\overline{x}, \overline{y}))$.

9.3 Teorema della differenziabilità

Se $f \in C^1$ su $A \in \mathbb{R}^2$, A aperto, allora $\forall (\overline{x}, \overline{y}) \in A$ f è differenziabile.

9.3.1 Lemma preliminare

Se $f: A \to \mathbb{R}$ è C^1 sull'aperto $A \subseteq \mathbb{R}^2$, $\forall (\overline{x}, \overline{y}) \in A$, $\forall h, k \in \mathbb{R}$ Tali che $(\overline{x} + h,)$, $(\overline{x}, \overline{y} + k) \in A$, esistono $\theta_1, \theta_2 \in]0, 1[$ tali che

$$f(\overline{x} + h, \overline{y}) - f(\overline{x}, \overline{y}) = \partial_x f(\overline{x} + \theta_1 h, \overline{y}) \quad e$$

$$f(\overline{x}, \overline{y} + h) - f(\overline{x}, \overline{y}) = \partial_y f(\overline{x}, \overline{y} + \theta_2 k)$$

Dim di 1 Per semplicità $A = \mathbb{R}^2$.

Consider la funzione $g: \mathbb{R} \to \mathbb{R}, \ g(t) = f(t, \overline{y})$

Si verifica che g è derivabile e vale

$$g(t) = \partial_x f(t, h) \quad \forall t \in \mathbb{R}$$

Ora uso Lagrange sull'intervallo di estemi \overline{x} e $\overline{x} + h$ per la funzione $g. \Longrightarrow \exists \theta_1 \in]0,1[$ tale che $g(\overline{x} + h) - g(\overline{x}) = g'(\overline{x} + \theta_1,h)h$ Trascrivendo in termini di f, si trova

$$f(\overline{x} + h, \overline{y}) - g(\overline{x}, \overline{y}) = \partial_x f(\overline{x} + \theta_1 h, \overline{y})h$$

Dim 2 è analoga

9.3.2 Dimostrazione del teorema sulla differenziabilità

Per semplicità $A = \mathbb{R}^2$, f: $\mathbb{R}^2\mathbb{R}$ classe C^1 e $(\overline{x}, \overline{y}) \in \mathbb{R}^2$. Per $(h, k) \in \mathbb{R}^2$ vale

$$f(\overline{x}+h,\overline{y}+k)-f(\overline{x},\overline{y}) = [f(\overline{x}+h,\overline{y}+k)-f(\overline{x}+h,\overline{y}]+[f(\overline{x}+h,\overline{y})-f(\overline{x},\overline{y})] := (1)+(2)$$

Grazie al lemma precendente $\exists \theta_1, \theta_2 \in]0, 1[$ tali che

1.
$$= \partial_y f(\overline{x} + h, \overline{y} + \theta_1 k)k$$

$$2. = \partial_x f(\overline{x} + \theta_2 h, \overline{y})h$$

Per concludere, basta mostrare che per $(h, k) \rightarrow (0, 0)$

1. =
$$\partial_u f(\overline{x}, \overline{y})k + o(|(h, k)|)$$

2. =
$$\partial_x f(\overline{x}, \overline{y})k + o(|(h, k)|)$$

In altri termini basta vedere che (qualizziamo (2), ad esempio) $\forall \varepsilon > 0 \ \exists \delta > 0$ tali che

$$\frac{|\partial_x f(u,v) - \partial_x f(\overline{x},\overline{y})| < \varepsilon}{|(h,k)|} \quad \forall (h,k) \neq (0,0) \quad |(h,k) < \delta$$

Siccome $\partial_x f$ è continua, $\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{tali che}$

$$|\partial_x f(u,v) - \partial_x f(\overline{x},\overline{y})| < \varepsilon \quad \forall (u,v) \in B((\overline{x},\overline{y}),\delta)$$

Con questa scelta di δ , usando $\left|\frac{h}{|(h,k)|}\right| \leq 1,$ abbiamo

$$|\partial_x f(\overline{x} + \theta_2 h, \overline{y}) - \partial_x f(\overline{x}, \overline{y})| < \varepsilon$$

perchè $(\overline{x} + \theta_2 h, \overline{y}) \in B((\overline{x}, \overline{y}), f) \ \forall \theta_2 \in]0, 1[, \ \forall (h, k) \in B((0, 0), \delta)$ L'analisi del termine (1) si svolge in modo analogo

10 Forme Quadratiche

10.1 Definizione

Sia
$$A \in \mathbb{R}^{n \times n}$$
 $A = A^T$ considero $q_A : \mathbb{R}^n \to \mathbb{R}$ $q_A(h) = \langle Ah, h \rangle$
 $\forall h = (h_1, \dots, h_n) \in \mathbb{R}$ $A \in \mathbb{R}^{n \times n}, h \in \mathbb{R}^{n \times 1}, Ah \in \mathbb{R}^{n \times 1}$

 q_A è la forma quadratica associata alla matrice quadrata e simmetrica A quadrata: matrice che ha lo stesso numero di righe e colonne simmetrica: matrice che è uguale alla sua trasposta

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} = A^T$$

$$q_A = \langle \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}, \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} \rangle = \langle \begin{bmatrix} ah_1 + bh_2 \\ bh_1 + ch_2 \end{bmatrix}, \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} \rangle = ah_1^2 + 2bh_1h_2 + ch_2^2$$

Caso con n generico:

$$q_A = \sum_{j,k=1}^{n} a_{jk} h_k h_j = \sum_{j=1}^{n} a_{jj} h_j^2 + \sum_{1 \le j < k \le n} a_{jk} h_j h_k$$

Osservazione informale: Abbiamo trovato un polinomio di grado 2, quindi possiamo dire che le forme quadratiche sono delle funzioni associate a delle matrici che rappresentano polinomi

10.2 Segno di una forma quadratica

Definizione: $A^T = A \in \mathbb{R}^{n \times n}$

- 1. Si dice che A è definita positiva se vale $\langle Ah, h \rangle > 0 \ \forall h \neq 0 \in \mathbb{R}^n$
- 2. Si dice che A è definita negativa se vale $\langle Ah,h\rangle < 0 \ \forall h \neq 0 \in \mathbb{R}^n$
- 3. Si dice che A è indefinita se $\exists h^+, h^- \in \mathbb{R}^n$ t.c. $\langle Ah^-, h^- \rangle \leq 0 \leq \langle Ah^+, h^+ \rangle$

Osservazione informale: La matrice A è positiva se per ogni vettore h è positiva, stessa cosa vale per il negativo. Invece si dice indefinita se per alcuni vettori h è negativa e per altri è positiva, quindi non possiamo assegnarli un segno preciso.

Osservazione informale: I segni di disuguaglianza devono essere stretti (< ,>), altrimenti si dice che A è semidefinita positiva.

Forme quadratiche non singolari:

1.
$$A > 0 \Leftrightarrow \begin{cases} a > 0 \\ ac - b^2 > 0 \end{cases}$$
 determinante positivo

2.
$$A < 0 \Leftrightarrow \begin{cases} a < 0 \\ ac - b^2 > 0 \end{cases}$$
 determinante positivo

3. A è indefinita $\Leftrightarrow ac - b^2 < 0$ determinante negativo

Forme quadratiche singolari:

4. se $ac-b^2=0$, quindi determinante nullo, si tratta di una matrice singolare, quindi A è semidefinita

10.3 Proposizione

Se $A = A^T \in \mathbb{R}^{n \times n}$ è definita positiva, allora $\exists m > 0$ t.c.

$$\langle Ah, h \rangle \ge m|h|^2 \quad \forall h \in \mathbb{R}$$

Allo stesso modo se A è definita negativa, allora $\exists m>0$ t.c.

$$\langle Ah, h \rangle \le m |h|^2 \quad \forall h \in \mathbb{R}$$

Dimostrazione: (n=2) Scriviamo $h = (r \cos \theta, r \sin \theta) \cos r \ge 0, r = |h|$ e $\theta \in [0, 2\pi]$

Allora vale $\langle Ah, h \rangle = a_{11} r^2 \cos^2 \theta + 2a_{12} r^2 \cos \theta \sin \theta + a_{22} r^2 \sin^2 \theta = r^2 [a_{11} \cos^2 \theta + 2a_{12} \cos \theta \sin \theta + a_{22} \sin^2 \theta]$

Poniamo $g(\theta) = [\dots]$ per $\theta \in [0, 2\pi]$

Per ipotesi $g(\theta) > 0 \quad \forall \theta \in [0, 2\pi]$ (infatti $r^2 g(\theta) > 0 \quad \forall r > 0 \text{ e } \theta \in [0, 2\pi]$)

Essendo f
 continua su $[0,2\pi]$ per il teorema di Weistrass $\exists \overline{\theta} \in [0,2\pi]$ tale che $g(\overline{\theta}) = \min g$.

Tale minimo è positivo e lo chiamiamo m. Dunque $\langle Ah,h\rangle=r^2g(\theta)\geq r^2m=$ $m|h|^2 \quad \forall h$

11 Formula di Taylor di ordine 2

 $A \subseteq \mathbb{R}^n$ aperto, $f: A \to \mathbb{R}$, fè di classe C^2 Allora vale $\forall \overline{x} \in A$ vale lo sviluppo

$$f(\overline{x}+h) = f(\overline{x}) + \langle \nabla f(\overline{x}), h \rangle + \frac{1}{2} \langle Hf(\overline{x})h, h \rangle + o(|h|^2) \text{ per } h \to 0$$

Dimostrazione: Dimostriamo la seguente formula con resto "non uniforme"

$$\forall v \in \mathbb{R}^n, |v| = 1, \forall x \in A$$

vale la formula

$$f(\overline{x} + tv) = f(\overline{x}) + \langle \nabla f(\overline{x}), tv \rangle + \frac{1}{2} \langle Hf(\overline{x})tv, tv \rangle + o(t^2) \quad \text{per } t \to 0 \in \mathbb{R} \quad (1)$$

Consideriamo la funzione $g:]-\varepsilon, \varepsilon[\to \mathbb{R}, g(t) = f(\overline{x} + tv)$ definita per ε sufficientemente piccolo.

Poichè f è di classe C^2 , si vede che $\exists g'(t) = \langle \nabla f(\overline{x} + tv), v \rangle \ \forall t \in] - \varepsilon, \varepsilon[$ inoltre esiste ed è continua $g''(t) = \langle Hf(\overline{x} + tv)v, v \rangle$

Scriviamo la Taylor in t per g con punto iniziale t = 0. Otteniamo:

$$g(t) = g(0) + g'(0)t + g''(0)\frac{t^2}{2} + o(t^2)$$

Trascrivendo in termini di f si trova esattamente la formula 1 da dimostrare.

12 Teorema di classificazione dei punti critici

Se $f: A \to \mathbb{R}$ è C^2 sull'aperto $A \subseteq \mathbb{R}^n$, vale quanto segue, per $\overline{x} \in A$

1.
$$\begin{cases} \nabla f(\overline{x}) = 0 \\ Hf(\overline{x}) > 0 \end{cases} \implies \overline{x} \text{ è punto di minimo locale}$$
2.
$$\begin{cases} \nabla f(\overline{x}) = 0 \\ Hf(\overline{x}) < 0 \end{cases} \implies \overline{x} \text{ è punto di massimo locale}$$

2.
$$\begin{cases} \nabla f(\overline{x}) = 0 \\ Hf(\overline{x}) < 0 \end{cases} \implies \overline{x} \text{ è punto di massimo locale}$$

3.
$$\begin{cases} \nabla f(\overline{x}) = 0 \\ Hf(\overline{x}) \text{ indefinita} \end{cases} \implies \overline{x} \text{ è punto di sella}$$

Nota: \overline{x} punto critico di f si dice di sella se $\forall r > 0 \ \exists x_+, x_- \in B(\overline{x}, r)$ tale che $f(x_{-}) < f(\overline{x}) < f(x_{+})$

Dimostrazione Sia $A \subseteq \mathbb{R}^n$ aperto e $f: A \to \mathbb{R}$ di classe C^2 . Sia $\overline{x} \in A$ un punto critico con $Hf(\overline{x}) > 0$. Dobbiamo dimostrare che $\exists \delta > 0$ tale che:

$$f(\overline{x} + h) - f(\overline{x}) \ge 0 \quad \forall h \in B(0, \delta)$$

Usiamo la formuala di Taylor.

$$f(\overline{x}+h) - f(\overline{x}) = f(\overline{x}) + \langle \nabla f(\overline{x}), h \rangle + \frac{1}{2} \langle Hf(\overline{x})h, h \rangle + o(|h|^2) \quad \text{per } h \to 0$$

visto che $\nabla f(\overline{x}) = 0$, analizziamo $\frac{1}{2}\langle Hf(\overline{x})h,h\rangle + o\left(|h|^2\right) \geq 0$ Per il teorema sulle forme positive $\exists m>0$ tale che

$$\langle Hf(x)h, h \rangle \ge m|h|^2 \quad \forall h \in \mathbb{R}^2$$

Usando la definizione di o-piccolo con $\varepsilon = \frac{m}{4}, \, \exists \delta > 0$ tale che

$$-\frac{m}{4} \le \frac{o(|h|^2)}{|h|^2} \le \frac{m}{4} \quad \forall h \in B(0, \delta)$$

Dunque, per $|h| < \delta$ vale

$$f(\overline{x}+h) - f(\overline{x}) \ge |h|^2 \left(\frac{1}{2}m + \frac{o\left(|h|^2\right)}{|h|^2}\right) \ge$$
$$\ge |h|^2 \left(\frac{m}{2} - \frac{m}{4}\right) = \frac{m}{4}|h|^2 \ge 0 \quad \forall h \in B(0,\delta)$$

Il teorema è dimostrato. I casi di punto di massimo o sella sono analoghi.

12.1 Condizioni necessarie affinchè \bar{x} sia di minimo

Siamo nel secondo ordine. Se $A\subseteq \mathbb{R}^n$ è aperto, f è C^2 su A e \overline{x} è di minimo, allora:

$$\begin{cases} \nabla f(\overline{x}) = 0 \\ \langle Hf(\overline{x})h, h \rangle \ge 0 \quad \forall h \in \mathbb{R}^n \end{cases}$$

Si dice in tal caso che $Hf(\overline{x})$ è semidefinita positiva