In the Name of God

Report of Communication System I Project

By: A. Sedaghat

ID: 9432488

Teacher: Dr. Farhang

First Part:

Applying functions on a sinusoidal waveform to see the output signal spectrum:

Imagine our initial (Message) signal is $\sin(2\pi t)$

A) AM Modulation and AM Demodulation:

Sampling rate = 300 sample per second Carrier signal Frequency = 40 Hz Without Noise:

Sampling rate = 300 sample per second Carrier signal Frequency = 40 Hz With Noise:

Sampling rate = 200 sample per second Carrier Frequency = 40 Hz Without Noise:

Sampling rate = 200 sample per second Carrier Frequency = 40 Hz With Noise:

Sampling rate = 300 sample per second Carrier frequency = 20 Hz Without Noise:

Sampling rate = 300 sample per second Carrier frequency = 20 Hz With Noise:

Sampling rate = 200 sample per second Carrier frequency = 20 Hz Without Noise:

Sampling rate = 200 sample per second Carrier frequency = 20 Hz With Noise:

Recorded Voice with Noise and $f_c = 40 KHz$ and $f_s = 800 KHz$ This is the original signal (message signal that we want to send it)

B) FM Modulation and Demodulation

Sampling rate = 300 sample per second Carrier Frequency = 40 Hz Frequency Deviation = 10 Without Noise:

Sampling rate = 300 sample per second Carrier Frequency = 40 Hz Frequency Deviation = 10 With Noise:

Sampling rate = 200 sample per second Carrier Frequency = 40 Hz Frequency Deviation = 10 Without Noise:

Sampling rate = 200 sample per second Carrier Frequency = 40 Hz Frequency Deviation = 10 With Noise:

Sampling rate = 300 sample per second Carrier Frequency = 20 Hz Frequency Deviation = 10 Without Noise:

Sampling rate = 300 sample per second Carrier Frequency = 20 Hz Frequency Deviation = 10 With Noise:

Sampling rate = 300 sample per second Carrier Frequency = 40 Hz Frequency Deviation = 20 Without Noise:

Sampling rate = 300 sample per second Carrier Frequency = 40 Hz Frequency Deviation = 20 With Noise:

Sampling rate = 200 sample per second Carrier Frequency = 20 Hz Frequency Deviation = 10 Without Noise:

Sampling rate = 200 sample per second Carrier Frequency = 20 Hz Frequency Deviation = 10 With Noise:

Sampling rate = 200 sample per second Carrier Frequency = 40 Hz Frequency Deviation = 20 Without Noise:

6th Spectrum of the FM Modulated Signal(Changing Sampling rate and Deviation Frequency)

Sampling rate = 200 sample per second Carrier Frequency = 40 Hz Frequency Deviation = 20 With Noise:

Sampling rate = 300 sample per second Carrier Frequency = 20 Hz Frequency Deviation = 20 Without Noise:

7th Spectrum of the FM Modulated Signal(Changing Carrier Frequency and Deviation Frequency)

Sampling rate = 300 sample per second Carrier Frequency = 20 Hz Frequency Deviation = 20 With Noise:

Sampling rate = 200 sample per second Carrier Frequency = 20 Hz Frequency Deviation = 20 Without Noise:

Sampling rate = 200 sample per second Carrier Frequency = 20 Hz Frequency Deviation = 20 With Noise:

Recorded Voice with Noise and $f_c=40~Hz$ and $f_s=300~sample~per~second$ And Frequency~Deviation=10

C) PM Modulation and Demodulation

Sampling rate = 300 sample per second Carrier Frequency = 40 Hz Phase Deviation = 10 Without Noise:

Sampling rate = 300 sample per second Carrier Frequency = 40 Hz Phase Deviation = 10 With Noise:

Sampling rate = 200 sample per second Carrier Frequency = 40 Hz Frequency Deviation = 10 Without Noise:

Sampling rate = 200 sample per second Carrier Frequency = 40 Hz Frequency Deviation = 10 With Noise:

Sampling rate = 300 sample per second Carrier Frequency = 20 Hz Frequency Deviation = 10 Without Noise:

Sampling rate = 300 sample per second Carrier Frequency = 20 Hz Frequency Deviation = 10 With Noise:

Sampling rate = 300 sample per second Carrier Frequency = 40 Hz Frequency Deviation = 20 Without Noise:

Sampling rate = 300 sample per second Carrier Frequency = 40 Hz Frequency Deviation = 20 With Noise:

Sampling rate = 200 sample per second Carrier Frequency = 20 Hz Frequency Deviation = 10 Without Noise:

5th Spectrum of the PM Demodulated Signal(Changing Sampling rate and Carrier Frequency)

Sampling rate = 200 sample per second Carrier Frequency = 20 Hz Frequency Deviation = 10 With Noise:

Sampling rate = 200 sample per second Carrier Frequency = 40 Hz Frequency Deviation = 20 Without Noise:

6th Spectrum of the PM Demodulated Signal(Changing Sampling rate and Deviation Phase)

Sampling rate = 200 sample per second Carrier Frequency = 40 Hz Frequency Deviation = 20 With Noise:

Sampling rate = 300 sample per second Carrier Frequency = 20 Hz Frequency Deviation = 20 Without Noise:

Sampling rate = 300 sample per second Carrier Frequency = 20 Hz Frequency Deviation = 20 With Noise:

Sampling rate = 200 sample per second Carrier Frequency = 20 Hz Frequency Deviation = 20 Without Noise:

Sampling rate = 200 sample per second Carrier Frequency = 20 Hz Frequency Deviation = 20 With Noise:

Recorded Voice with Noise and $f_c=40~Hz$ and $f_s=300~sample~per~second$ And Phase~Deviation=10

D) SSB Modulation and Demodulation

Our initials assumptions are:

- 1- We send our signal in Lower Band SSB and receive it respectively
- 2- Our initial sampling rate is 300 sample per second
- 3- Our initial carrier frequency is 40 Hz
- 4- Our initial phase is zero

Without Noise:

Lower SSB
Sampling rate = 300 sample per second
Carrier Frequency = 40 Hz
With Nosie:

Lower SSB Sampling rate = 200 sample per second Carrier Frequency = 40 Hz Without Noise:

Lower SSB
Sampling rate = 200 sample per second
Carrier Frequency = 40 Hz
With Noise:

Lower SSB
Sampling rate = 300 sample per second
Carrier frequency = 20 Hz
Without Noise:

Lower SSB Sampling rate = 300 sample per second Carrier frequency = 20 Hz Without Noise:

Lower SSB Sampling rate = 200 sample per second Carrier frequency = 20 Hz Without Noise:

Lower SSB
Sampling rate = 200 sample per second
Carrier frequency = 20 Hz
Without Noise:

Recorded Voice with Noise and $f_c = 40 KHz$ and $f_s = 800 KHz$ This is the original signal (message signal that we want to send it)

Second Part:

Simulink

Our initial waveform is sinusoidal waveform with 1 Hz frequency and our carrier frequency is $10\ Hz$

DSB AM Modulators and Demodulators (Without Noise):

DSB AM Modulators and Demodulators (With Noise):

DSBSC AM Modulator and Demodulator (Without Noise):

DSBSC AM Modulator and Demodulator (With Noise):

FM Modulator and Demodulator (Without Noise):

FM Modulator and Demodulator (With Noise):

PM Modulator and Demodulator (Without Noise):

PM Modulator and Demodulator (With Noise):

SSB AM Modulator and Demodulator (Without Noise):

SSB AM Modulator and Demodulator (With Noise):

