

فصل دوم

معماری اجمالی یک سیستم فرضی مبتنی بر ریزپردازنده،

سرفصل مطالب

- بلوک دیاگرام یک ریزپردازنده فرضی
 - واکشی و اجرای دستورالعمل
 - پرچمها
- انواع سیکلهای باس (سیکل ماشین)

بلوک دیاگرام یک ریزپردازنده فرضی

ریزپردازنده ۱

محمد مهدی همایون یور

بعضی از پرچمها در ۸۰۸۶

نام	عملكرد
پرچم	
CF	پرچم Carry: اگر بر بیت پر ارزش نتیجه، Carry یا Borrow اتفاق افتد، این پرچم 1 شده و در غیر اینصورت 0 خواهد بود.
PF	پرچم Parity: این پرچم 1 می شود اگر تعداد بیتهای ۱ در بیتهای نتیجه، زوج باشد. در غیر
	اینصورت 0 میشود.
AF	اگر از چهار بیتِ کم ارزش Carry ،AL یا Borrow اتفاق افتد، مقدار این پرچم برابر 1 و گرنه 0
	می شود.
ZF	پرچم Zero: اگر نتیجه صفر باشد، این پرچم 1 و گرنه 0 می شود
SF	پرچم Sign: این پرچم مقدار پرارزش ترین بیت نتیجه را می گیرد. (بیت علامت)
IF	پرچم Interrupt-enable: وقتی این پرچم 1 شود، وقفه های قابل mask شدن باعث می شوند که CPU، کنترل برنامه را به مکان بردار وقفه منتقل کند.

انواع سیکلهای باس (سیکل ماشین)

آجرای یک دستورالعمل با اجرای یک یا چند سیکل باس صورت می گیرد.

انواع سیکلهای باس

- سیکل خواندن از حافظه (MR)
- سیکل نوشتن در حافظه (MW)
 - سيكل خواندن از I/O((IOR) •
- سیکل نوشتن در I/O (IOW) •
- سیکل باس بیکار (ldle) (عملیات داخل CPU انجام می شود که نیازی به دسترسی به باس ندارد)

INC AX

Bus cycles: MR (Opcode read)

MOV AX, [SI] ; $AX \leftarrow [SI]$ Machine code: 8B 04

Bus cycles: MR (Opcode read), MR (Reading the content of SI location in memory)

MOV[SI], AX; $[SI] \leftarrow AX$

Bus cycles: MR (Opcode read), MW (Writing AX in the SI memory location)

IN AH, 50H ; AH \leftarrow Content of Port 50H

Bus cycles: MR (Opcode read), IOR (Reading the content of port No. 50H)

OUT 50H, AH ; Port 50H \leftarrow AH

Bus cycles: MR (Opcode read), IOW (Writing AH in the port No. 50H)

INC BYTE PTR[SI]

فرمت یک دستورالعمل در زبان اسمبلی

Label: Instruction operands ;Comments

Instruction؛ كد حفظي (mnemonic) دستورالعمل مورد نظر. مثل NOP ،INC ،ADD و مانند آن

Operands: عملوندها که میتواند هیچ، یک یا دو عملوند که میتواند یک داده بلافصل، یک ثبات، آدرس داده مورد نظر در حافظه، یک آدرس در حافظه، شماره یک پورت و مانند آن باشد.

Comments: توضيحات دستورالعمل كه بايد بعد از; بيايد.

شبه دستورالعملها مانند ORG ،EQU ،DB و

مثال:

ORG 1000H

EQU Value 10H

MOV AH, 23H; ; Fill AX with and Immediate value;

MOV CX, Value ; CX is used as a counter

LoopBegin: NOP ; No operation, An Instruction with no operand

MOV AX, [SI] ; Transfer data from address in memory indicated by [SI] to AX

INC SI: : Increment SI

OUT 50H, AX; Transfer AX to output port (port address: 50H)

DEC CX ; Decrement CX

JNZ LoopBegin ; Jump if Z flag is not set

معرفي چند شبهدستورالعمل

شبه دستوراالعمل	توضيحات
ORG Address	مشخص کننده آدرس قرارگیری کد در حافظه
EQU	یک شناسه را به یک مقدار ثابت منتسب می کند
DB, DW, DD, DQ, DT	رزرو فضا در حافظه برای متغیرها و و مقداردهی آنها
.model	مدل حافظه: اندازه حافظه برنامه و داده
.data .code .extra .stack	مشخص کردن سگمنت مورد نظر
.stack size	مشخص كردن حجم پشته

مثال

.model memory_model

انواع memory_model

tiny: code+data <= 64K (.com program) small: code<=64K, data<=64K, one of each medium: data<=64K, one data segment compact: code<=64K, one code segment large: multiple code and data segments huge: allows individual arrays to exceed 64K

flat: no segments, 32-bit addresses, protected mode only (80386 and higher)

معرفي چند شبه دستورالعمل (ادامه)

مثال:

;Note: EQUated symbols are not variables

Count EQU 10 Element EQU 5

MyString EQU "Maze of twisty passages"

مثال

; Names can be associated with storage locations, These names are called variables.

; DB, DW, DD, DQ and DT are used for reserving space in memory for variables

; Word, doubleword, and quadword data are stored in <u>reverse byte order</u> (in memory)

.data

DB 255,?,-128,'X'

; ? represents an uninitialized storage location

numRows DB 25

videoBase DW 0800h

MyWord DW 256 ; 00 01

MyDoubleWord DD 1234567h ; 67 45 23 01

MyQuadWord DQ 10 ; 0A 00 00 00 00 00 00 aTOm DB "ABCDEFGHIJKLM" ; Asccii of characters are used

معرفي چند شبهدستورالعمل (ادامه)

مثال:

```
ANum DB -4
DW 17
ONE
UNO DW 1
X DD ?
```

The above names are variables:

ANum refers to a byte storage location, initialized to FCh=-4D The next word has no associated name ONE and UNO refer to the same word X is an uninitialized doubleword

نمونهای از پایههای یک ریزپردازنده (۸۰۸۶)

شکل ۴