Постановка задачи

Найти площадь, образованную функциями

- f(x) = 0.6x + 3
- $g(x) = (x-2)^3 1$
- $u(x) = \frac{3}{x}$

Другими словами, найти площадь фигуры с вершинами 1-3-7 или 1-3-6-4 или 6-7-4.

Аналитическое решение

Значениям площадей соответствуют выражения:

$$S_{137} = \int_{x_2}^{x_7} f(x)dx - \int_{x_5}^{x_7} g(x)dx + \left| \int_{x_1}^{x_3} u(x)dx \right| + \left| \int_{x_3}^{x_5} g(x)dx \right| + \int_{x_1}^{x_2} f(x)dx$$

или

$$S_{674} = \int_{x_4}^{x_7} f(x)dx - \int_{x_4}^{x_6} u(x)dx - \int_{x_6}^{x_7} g(x)dx$$

или

$$S_{1364} = S_{137} - S_{674}$$

Найдем значение x_{1-7} :

- x_1x_4 из уравнения f(x)=u(x) т.е. $0.6x+3=\frac{3}{x}$. Решая получим x_1 = -5.8541, x_4 =0.8541.
- x_2 из уравнения f(x) = 0 т.е. 0.6x + 3 = 0 . Решая получим x_2 = -5.
- $x_3 x_6$ из уравнения g(x) = u(x) т.е. $(x-2)^3 1 = \frac{3}{x}$. Решая получим $x_3 = -0.24393$, $x_6 = 3.2439$.
- x_5 из уравнения g(x) = 0 т.е. $(x-2)^3 1 = 0$. Решая получим $x_5 = 3$.
- x_7 из уравнения g(x) = f(x) т.е. $(x-2)^3 1 = 0.6x + 3$. Решая получим $x_7 = 3.84776$.

Найдем S_{137} , S_{674} , S_{1364}

$$\int_{x_2}^{x_7} f(x)dx = \int_{-5}^{3.84776} (0.6x + 3)dx = 23.4849$$

$$\int_{x_2}^{x_7} g(x)dx = \int_{3}^{3.84776} ((x - 2)^3 - 1)dx = 1.81646$$

$$\int_{x_3}^{x_3} u(x)dx = \int_{-5.8541}^{-0.24393} \left(\frac{3}{x}\right)dx = -9.53405$$

$$\int_{x_3}^{x_5} g(x)dx = \int_{-0.24393}^{3} ((x - 2)^3 - 1)dx = -9.33229$$

$$\int_{x_3}^{x_2} f(x)dx = \int_{-5.8541}^{-5} (0.6x + 3)dx = -0.218846$$

$S_{137} = 23.4849 - 1.81646 + 9.53405 + 9.33229 - 0.218846 = 40.315934$

$$\int_{x_4}^{x_7} f(x)dx = \int_{0.8541}^{3.84776} 0.6x + 3dx = 13.2037$$

$$\int_{x_4}^{x_6} u(x)dx = \int_{0.8541}^{3.2439} \frac{3}{x}dx = 4.00345$$

$$\int_{x_6}^{x_7} g(x)dx = \int_{3.2439}^{3.84776} (x - 2)^3 - 1dx = 1.71184$$

 $S_{1364} = S_{137} - S_{674} = 40.315934 - 7.48841 = 32.827524$

 $S_{674} = 13.2037 - 4.00345 - 1.71184 = 7.48841$