منين سرب سين

· تابع نير. يا خمار فعرب ميم مار ٢٦١ ه سند برا مرستم على و يابيار بون را برس ليند .

a)
$$h_{\text{Enj}}: \left(\frac{1}{5}\right)^n u_{\text{Enj}} = \int_{0}^{\infty} u_{\text{Enj}} du_{\text{Enj}} du_{\text{Enj}} = \int_{0}^{\infty} u_{\text{Enj}} du_{\text{Enj}} du_{\text{Enj}} du_{\text{Enj}} du_{\text{Enj}} du_{\text{Enj}} = \int_{0}^{\infty} \frac{\left(\frac{1}{5}\right)^n - \left(\frac{1}{5}\right)^n - \left(\frac{1}{5}\right)^{n+1}}{1 - \frac{1}{5}} du_{\text{Enj}} du_{\text{En$$

b)
$$h_{\text{Enj}} = \left(\frac{1}{2}\right)^n u_{\text{Enj}} = \left(\frac{1}{2}\right)^n u_{\text{Enj}} = \left(\frac{1}{2}\right)^n u_{\text{Enj}} = \frac{1}{2} = \infty$$

C) hend =
$$n(\frac{1}{3})^n u \in n-1$$
 $\sum_{n=1}^{\infty} \frac{1}{n} = 0$ for $n < 0$

d) henj =
$$5^n u [3-n]$$
 \longrightarrow henj ± 0 for $n < 0$
 \square) $| u |_{\infty} \longrightarrow \sum_{n=-\infty}^{\infty} 5^n = \frac{5^{-\infty} \cdot 5^{+1}}{1-5} = -156.25 < \infty$

e) hen
$$J = e^{2n}$$
 II) Civil $\longrightarrow hen J \neq 0$ for $n < 0$
 II) Civil $\longrightarrow hen J \neq 0$ for $n < 0$
 II) Civil $\longrightarrow hen J \neq 0$ for $n < 0$
 II) Civil $\longrightarrow hen J \neq 0$ for $n < 0$
 II) Civil $\longrightarrow hen J \neq 0$ for $n < 0$
 $\longrightarrow hen J = e^{2n}$
 $\longrightarrow hen J$

$$f) h(t) = e \quad u(t-2)$$

$$\boxed{1} \quad \text{ind} \quad \Rightarrow \quad h(t) = 0 \quad \text{for} \quad t < 0$$

$$\boxed{1} \quad \text{ind} \quad \Rightarrow \quad \int_{2}^{\infty} e^{-4t} dt = -\frac{1}{4} e^{-4t} \Big|_{2}^{\infty} = -\frac{1}{4} \left(e^{-4(2)} \right) < \infty$$

h) heti=te u(t)
$$= \frac{1}{1}$$
 [I) [I] $= \frac{50}{1}$ hoti= o for t<0

 $\varphi_{xy} = \sum_{m=-x}^{+x} x [m+n]y[m], \quad \varphi_{xx} [n] = \sum_{m=-x}^{+x} x [m+n] \times [m]$ $\varphi_{xy} = \sum_{m=-x}^{+x} x [m+n]y[m], \quad \varphi_{xx} [n] = \sum_{m=-x}^{+x} x [m+n] \times [m]$ $\varphi_{xy} = \sum_{m=-x}^{+x} x [m+n]y[m], \quad \varphi_{xx} [n] = \sum_{m=-x}^{+x} x [m] \times [m]$ $\varphi_{x,x} [n] = \sum_{n=-x}^{+x} x [n], \quad \varphi_{x,x} [n] = \sum_{n=-x}^{+x} x [n]$ $\varphi_{x,x} [n] = \sum_{n=-x}^{+x} x [n], \quad \varphi_{x,x} [n] = \sum_{n=-x}^{+x} x [n]$ $\varphi_{x,x} [n] = \sum_{n=-x}^{+x} x [n], \quad \varphi_{x,x} [n] = \sum_{n=-x}^{+x} x [n]$ $\varphi_{x,x} [n] = \sum_{n=-x}^{+x} x [n], \quad \varphi_{x,x} [n] = \sum_{n=-x}^{+x} x [n]$ $\varphi_{x,x} [n] = \sum_{n=-x}^{+x} x [n], \quad \varphi_{x,x} [n] = \sum_{n=-x}^{+x} x [n]$