Os exercícios foram elaborados visando analisar a forma de abordagem a situações que demandam, conhecimento matemático, raciocínio lógico e sua lógica de programação.

Na maioria das vezes existem mais de uma maneira de solucionar um problema, sem se preocupar com a respostar, mas explicite os passos utilizados.

Use seu conhecimento de Python para descrever como você resolveria as seguintes situações (não se esqueça de dizer quais bibliotecas serão utilizadas).

Boa sorte a todos!!!!!

PARTE 01 -SQL

Exercício 1:Utilizando a tabela INDEX_WEIGHTS abaixo

TICKE	R INDICE	FONTE	QTD_TEORICA	PESO
1VALE3	IBOV	В3	4.270.903.023	12,0693
2 PETR4	IBOV	В3	4.431.132.660	7,4851
3 ITUB4	IBOV	В3	4.455.161.368	7,3277
4 PETR3	IBOV	В3	2.448.348.744	4,5171
5 BBDC4	IBOV	В3	5.129.958.973	3,6428
6 BBAS3	IBOV	В3	2.842.613.858	3,4972
7 WEGE3	BOV	В3	1.269.032.828	3,3214
8 ELET3	IBOV	В3	1.780.013.881	3,2058
9 SBSP3	IBOV	В3	683.508.570	2,9119
10 ITSA4	IBOV	В3	5.504.638.590	2,7373
11 B3SA3	IBOV	В3	5.511.401.013	2,7355
12 ABEV3	IBOV	В3	4.394.835.131	2,6356
13 BPAC1	1 IBOV	В3	1.287.247.964	1,9468
14 RENT3	IBOV	В3	977.700.485	1,9461
15 EQTL3	IBOV	В3	1.244.602.400	1,8817
16JBSS3	IBOV	В3	1.142.696.472	1,8816
17 EMBR3	BOV	В3	734.632.601	1,7056
18 SUZB3	IBOV	В3	630.821.784	1,6991
19 RDOR3	IBOV	В3	1.145.289.019	1,5982

20 PRIO3	IBOV	В3	798.909.771	1,5551
21 RADL3	IBOV	В3	1.279.770.315	1,5122
22 RAIL3	IBOV	В3	1.215.994.115	1,0751
23 VBBR3	IBOV	В3	1.023.392.529	1,0642
24 GGBR4	IBOV	В3	1.242.683.687	1,0563
25 UGPA3	IBOV	В3	1.090.134.379	1,0362

Crie um Select que gere os 10 maiores Pesos do IBOV.

Resposta:

SELECT * FROM SRM_INDEX_WEIGHTS

ORDER BY PESO DESC

LIMIT 10;

Exercício 2:

Utilizando a tabela do Exercício 1, adicionar os seguintes registros.

TICKER	INDICE	FONTE	QTD_TEORICA	PESO	
ENEV3	IBOV	В3	1.579.821.370) :	1,0324
BBSE3	IBOV	В3	637.332.335	;	1,0238
VIVT3	IBOV	В3	407.257.128	3	1,0213
CMIG4	IBOV	В3	1.858.636.840) (0,9616
BRFS3	IBOV	В3	814.523.002	2 (0,9244

Resposta:

INSERT INTO SRM_INDEX_WEIGHTS (ATIVO, INDICE, BOLSA, QTD_TEORICA, PESO)

VALUES

('ENEV3', 'IBOV', 'B3', 1579821370, 1.0324),

```
('BBSE3', 'IBOV', 'B3', 637332335, 1.0238),
('VIVT3', 'IBOV', 'B3', 407257128, 1.0213),
('CMIG4', 'IBOV', 'B3', 1858636840, 0.9616),
('BRFS3', 'IBOV', 'B3', 814523002, 0.9244);
Exercício 3:
Escreva a query que atualize o peso do ativo ABEV3 para 3,5% na tabela INDEX_WEIGHTS.
Resposta:
UPDATE INDEX_WEIGHTS
SET PESO = 3.5
WHERE ATIVO = 'ABEV3'
Exercício 4:
Escreva a query que apague o registro de ITUB4 da tabela INDEX_WEIGHTS.
Resposta:
DELETE FROM INDEX_WEIGHTS
```

WHERE ATIVO = 'ITUB4'

PARTE 02 – PYTHON

Exercício 1:

Python (crie um script): Insira em um *dataframe* (manualmente) a seguinte tabela. Essa tabela representa a posição de DI1 em três dias distintos.

DATA	ATIVO	QTD
03/03/2020	DI1F21	10500
03/03/2020	DI1J21	3500
03/03/2020	DI1N21	2435
03/03/2020	DI1F22	4545
03/03/2020	DI1F25	180
04/03/2020	DI1F21	9500
04/03/2020	DI1J21	3500
04/03/2020	DI1N21	2100
04/03/2020	DI1F22	4800
04/03/2020	DI1F25	180
04/03/2020	DI1F27	330
05/03/2020	DI1F21	8000
05/03/2020	DI1J21	3300
05/03/2020	DI1N21	2050
05/03/2020	DI1F22	6300
05/03/2020	DI1F25	250
05/03/2020	DI1F29	1110

- 1. Escreva um script que:
 - a. Transforme uma variável de data (*datetime*) em uma data no formato Excel (números inteiros -> 1 represente 01/01/1900 e assim por diante).
 - b. Transforme o número 43101 em uma variável datetime.

Resposta:

```
import pandas as pd
# Dados fornecidos
data = {
  'DATA': ['03/03/2020', '03/03/2020', '03/03/2020', '03/03/2020', '03/03/2020',
       '04/03/2020', '04/03/2020', '04/03/2020', '04/03/2020', '04/03/2020',
'04/03/2020',
       '05/03/2020', '05/03/2020', '05/03/2020', '05/03/2020', '05/03/2020',
'05/03/2020'],
  'ATIVO': ['DI1F21', 'DI1J21', 'DI1N21', 'DI1F22', 'DI1F25',
       'DI1F21', 'DI1J21', 'DI1N21', 'DI1F22', 'DI1F25', 'DI1F27',
       'DI1F21', 'DI1J21', 'DI1N21', 'DI1F22', 'DI1F25', 'DI1F29'],
  'QTD': [10500, 3500, 2435, 4545, 180,
      9500, 3500, 2100, 4800, 180, 330,
      8000, 3300, 2050, 6300, 250, 1110]
}
# Criação do dataframe
df = pd.DataFrame(data)
# Função para converter data para formato Excel
def date_to_excel(date):
  start_date = pd.Timestamp('1900-01-01')
  return (pd.Timestamp(date) - start_date).days + 2
#Aplica a função no dataframe
df['EXCEL'] = df['DATA'].apply(date_to_excel)
df
```

A)

```
B)
# Número no formato Excel
excel_number = 43101

# Função para converter número Excel para datetime
def excel_to_date(excel_number):
    start_date = pd.Timestamp('1900-01-01')
    return start_date + pd.Timedelta(days=excel_number - 1)

# Conversão
date = excel_to_date(excel_number)
print(date)
```

Exercício 2:

Crie um script que resolva os seguintes exercícios:

- 1. Leia um arquivo **Teste_Specialisterne_Oct2024.***csv* que contenha texto com variáveis especiais (ã, ç, etc). (tabela anexada).
- 2. Alterar o nome das colunas para formato de dados sem caracteres especiais (Cliente, Acao, QTD e Preco)
- 3. Tratar as informações para gerar a tabela que indica quanto cada cliente tem de financeiro em ações.

Cliente	Ação	QTD	PREÇO
1	PETR4	2000	20
1	ABEV3	3500	16
2	ITUB4	1000	30
2	BRFS3	10000	22
3	USIM5	500	11
3	BBDC4	500	30

Cliente	Financeiro em ações
1	???
2	???
3	???

Resposta:

import pandas as pd

Leitura do arquivo CSV

df = pd.read_csv('Teste_Specialisterne_Oct2024.csv', delimiter=';', encoding='latin1')

Alteração dos nomes das colunas

df.columns = ['Cliente', 'Acao', 'QTD', 'Preco']

Cálculo do valor financeiro total em ações para cada cliente

df['Financeiro'] = df['QTD'] * df['Preco']

resultado = df.groupby('Cliente')['Financeiro'].sum().reset_index()

Exibição do resultado

print(resultado)

PARTE 03 - Matemática e Lógica

Lógica

Exercício 1:

O quilo da maçã num mercado em Taubaté é 20% mais barato que o quilo da maçã em São José dos Campos; o quilo da maçã em São Paulo é 20% mais caro que em São José dos Campos. Comprei maçã em Taubaté por R\$6,00 o quilo. Quanto custa o quilo da maçã em São Paulo?

Resposta:

Um dos modos é chegar no diferencial de preços entre São Paulo e Taubaté. Se: Taubaté = 6,00, sendo que Taubaté = 80% do valor de SJC São José dos Campos = 7,50 (Taubaté / 0,80) São Paulo = SJC * 1,2 = 9,00

Um Modo mais direto seria dividir os ratios entre os preços A (Taubaté / SJC) 80% ou 0,80 B (SP/SJC) 120% ou 1,20 A/B = 1,20 / 0,80 = 1,50

Preço São Paulo = 1,50 * 6,00 = 9,00

Exercício 2:

O campeonato brasileiro de futebol (série A) é disputado por 20 times em um sistema de pontos corridos, da seguinte forma:

- i. Cada time joga com cada um dos adversários duas vezes (uma vez em casa, e outra na casa do adversário)
- ii. Em cada jogo, cada time faz um certo número de gols. Quem fizer mais gols vence a partida, e caso o número de gols dos dois times seja igual ocorre empate.
- iii. Um time ganha 3 pontos para cada vitória, 1 ponto para cada empate, e nenhum ponto por uma derrota.
- iv. No final do torneio, os times são classificados pelo número de pontos em ordem decrescente (o primeiro lugar sendo o time que fez mais pontos), e caso dois ou mais times tenham o mesmo número de pontos, são classificados de acordo com os seguintes critérios, nessa ordem:
 - 1. Número de vitórias;
 - 2. Saldo de gols: a diferença entre o número de gols que o time fez e o número de gols que o time sofreu no campeonato inteiro;
 - 3. Gols pró: o número de gols que o time fez no campeonato inteiro
 - 4. Se o empate persistir, sorteio.
- v. O primeiro lugar após a classificação dos times é o campeão do torneio.
- vi. Além disso, os quatro últimos (ou seja, os que ocuparem as posições de 17 a 20) são rebaixados para a divisão inferior.

Responda as perguntas abaixo:

a) Quantas partidas são jogadas por um time no campeonato inteiro?

- b) Considerando todos os times e o campeonato inteiro, quantas partidas ocorrem no total?
- c) Considerando as regras (inclusive critérios de desempate) descritos acima, e considerando todos os possíveis resultados que podem ocorrer nas partidas, qual é a menor pontuação possível com que um time pode ser campeão?
- d) Qual é a maior pontuação possível com a qual um time ainda pode ser rebaixado?

Resposta:

- a) Cada time joga em Turno e Returno contra os outros 19 times, então Número Total de Jogos = Número de Oponentes * Turnos, 19 * 2 = 38 Jogos
- Número de Partidas do Campeonato = Número de Participantes * Número de Jogos / Participantes por Jogo.
 20 * 38 / 2 = 380 jogos
- c) Se todos os times apenas empatarem, todos os times teriam 38 pontos e o mesmo saldo de gols (dado que só houve empates), então o campeão teria que ser decidido via um sorteio, mas se quisermos 1 único campeão, podemos assumir que 1 único clube ganhou uma única partida e com isso esse time teria 40 pontos, e teríamos 18 clubes com 38 pontos e o último colocado com 37.
- d) (Essa questão é mais exploratória), Mas segue uma solução: Um time que tenha 47 pontos ainda pode ser rebaixado a depender da combinação de resultados, mas se levarmos para um limite onde os 3 últimos colocados não tenham ganho nenhum ponto, eles geram um total de 342 pontos a serem distribuídos entre os outros times. O total de pontos no campeonato é de 1,140 (380 * 3), se tirarmos os 342 pontos dos últimos 3 (que serão distribuídos aos 16 primeiros), sobramos com 798 pontos a serem distribuídos entre os outros 17 participantes, o que resulta em 47 pontos por equipe e essa seria a pontuação do 17º colocado.

Probabilidade

Exercício 3:

Jogamos dois dados idênticos, não-viesados e independentes sobre uma mesa (de forma aleatória).

- 1. Qual a probabilidade de a soma dos números na face de cima nos dois dados ser ímpar?
- 2. Qual a probabilidade de o produto dos números na face de cima dos dois dados ser ímpar?
- 3. Qual a probabilidade de a soma dos números dos dois dados ser menor ou igual a 5?

Resposta:

- Soma Ímpar requer q um dado seja par e o outro ímpar, qualquer outra combinação o resultado é par. Então, temos (A) para o 1o dado Par + 2º dado Ímpar, 3/6 * 3/6 = 9/36, e (B) para 1º dado Ímpar + 2º dado Par, 3/6*3/6 = 9/36
 Probabilidade de uma soma Ímpar é A+B, 9/36 + 9,36 = 18/36 = 0,50 ou 50%
- 2. Produto Ímpar requer que a os números da face de cima dos dados seja Ímpar, logo temos do 1º dado 3/6 e do 2º dado 3/6, 9/36 = 0,25 ou 25%

- 3. Probabilidade da soma dos números dos dois dados ser menor ou igual a 5: Combinações possíveis de soma menor ou igual a 5:
 - a. (1,1) = 2
 - b. (1,2), (2,1) = 3
 - c. (1,3), (2,2), (3,1) = 4
 - d. (1,4), (2,3), (3,2), (4,1) = 5

Existem 10 combinações favoráveis. Como há um total de 36 combinações possíveis (6 faces no primeiro dado * 6 faces no segundo dado), a probabilidade é: 10 / 36 = 0,2778 ou 27,78%

Exercício 4:

Em uma urna, há 54 bolas vermelhas e 18 bolas azuis.

Inicialmente, tiramos uma bola ao acaso da urna, olhamos a sua cor, e deixamos fora. Depois, continuamos tirando bolas ao acaso da urna até obter a primeira bola com cor diferente da primeira - quando isso ocorrer, devolvemos essa última bola (a primeira com cor diferente) a urna e recomeçamos o processo.

Para exemplificar, suponha que a primeira bola que retiramos seja vermelha - removemos a bola vermelha, de forma que temos 53 vermelhas e 18 azuis na urna. A segunda também é vermelha, logo retiramos e temos 52 vermelhas e 18 azuis. A terceira é azul, logo devolvemos essa bola a urna e o número de bolas não se altera, e o jogo "zera", recomeçando, mas agora com 52 bolas vermelhas e 18 azuis.

Qual a probabilidade de a última bola retirada ser azul?

Resposta:

A probabilidade de retirar uma bola azul a qualquer momento é a mesma da 1ª tentativa, dado que após uma bola azul ser retirada o jogo recomeça, com isso temos,

Bolas Azuis = 18 Bolas Vermelhas = 54

Total de Bolas = 72 bolas

Bola Azul ser retirada = 18/72 = 0,25 ou 25%