Instrumentação e Projeto de Circuitos

Trabalho Prático nº 5: Circuitos RC com Onda Quadrada e Sinusoidal

Preparação dos Trabalho Práticos

Objetivos:

- Conhecer o conteúdo dos guias
- Identificar as matérias envolvidas
- Perceber a lógica do guia
- Identificar dificuldades previamente
- Rentabilizar o tempo disponível no laboratório

Responda às seguintes questões:

- i. Calcule a constante de tempo (τ) do circuito da figura 1.
- ii. Tendo em consideração a alínea 1b), calcule o valor do período T da onda quadrada com frequência de 1 kHz.
 Compare os valores de 5τ e T/2.
- iii. Calcule a frequência de corte (f_c) para o circuito da alínea 3a), utilizando a fórmula abaixo:

$$f_c = \frac{1}{2\pi R_1 C}$$

- iv. Para o circuito do item 3, apresente as fórmulas do ganho Av, em dB, e do desfasamento α , em graus em função de R1, C e da frequência f.
- v. Indique qual é o valor teórico do ganho de tensão A_V , em dB, e do desfasamento α , em graus, para a frequência de corte, correspondentes às alíneas 3d) e 3e).

LETI 2021/2022

INSTRUMENTAÇÃO E PROJETO DE CIRCUITOS

Trabalho Prático nº 5: Circuitos RC com Onda Quadrada e Sinusoidal

Objetivos:

- Realizar medições de sinais com o osciloscópio em sincronismo, utilizando os dois canais
- Analisar as relações entre sinais de entrada e saída em termos de amplitude e fase
- Explicar a resposta de um circuito RC a uma onda quadrada
- Determinar a frequência de corte em filtros RC
- Medir o ganho e o desfasamento entre sinais sinusoidais
- Desenhar a resposta em frequência de filtros
- 1. Monte o circuito da figura 1 com $\mathbf{R_1}$ = 10 k Ω e \mathbf{C} = 10 nF. Aplique na entrada (u_{in}) uma **onda quadrada** de 8 V_{pp} (ou o valor que o seu gerador de sinal dê, caso não permita a regulação da amplitude) com uma frequência de $\mathbf{1}$ kHz.

- a) Observe em simultâneo no osciloscópio as tensões de entrada u_{in}(t), no canal 1, e de saída u_C(t), no canal 2, e **desenhe-as no papel, em sincronismo**, conforme a figura 2, de forma que as possa relacionar.
- b) Meça o tempo que u_C leva a atingir 63,2% do valor de pico-a-pico de u_{in}. Qual é a relação entre o valor obtido e os valores dos componentes da figura 1?
- c) Sem mexer nas pontas de prova do osciloscópio, consegue visualizar a tensão na resistência u_{R1}(t)? Diga como.
- d) Aumente a frequência do sinal de entrada para **10 kHz**. Registe a forma de onda do sinal de saída uC(t) e meça a sua amplitude (valor mínimo e máximo). Explique a mudança no aspeto e amplitude do sinal.
- e) **Troque as posições** de **R1** e **C** no circuito da figura 1 e volte a aplicar na entrada uma onda quadrada de **1 kHz**. Observe em simultâneo no osciloscópio as tensões $u_{in}(t)$, no canal 1, e $u_{R1}(t)$, no canal 2, e desenheas no papel, em sincronismo. Explique o valor encontrado para a amplitude de pico do sinal $u_{R1}(t)$.

LETI 2021/2022

- 2. Monte um circuito **divisor de tensão** com **R**₁ = **R**₂ = 10 kΩ. Aplique na entrada (u_{in}) uma **onda sinusoidal** de 8 V_{pp} (ou o valor que o seu gerador de sinal dê, caso não permita a regulação da amplitude) e **100 Hz**
 - a) Observe em simultâneo no osciloscópio as tensões de entrada $u_{in}(t)$, no canal 1, e de saída $u_{R2}(t)$, no canal 2, e desenhe-as no papel, em sincronismo. Qual é o desfasamento entre os dois sinais?
 - b) Meça a amplitude do sinal u_{R2}(t) e compare com o valor teórico esperado.
 - c) Aumente a frequência de entrada para 10 kHz e volte a medir a amplitude e o desfasamento do sinal de saída u_{R2}(t). O que conclui?
- 3. Volte a montar o circuito da figura 1 com $\mathbf{R}_1 = 10 \text{ k}\Omega$ e $\mathbf{C} = 10 \text{ nF}$.
 - a) Calcule a **frequência de corte** (f_c) deste circuito.
 - b) Aplique na entrada (u_{in}) uma **onda sinusoidal** de 8 V_{pp} (ou o valor que o seu gerador de sinal dê, caso não permita a regulação da amplitude) e **frequência** f_c .
 - c) Observe em simultâneo no osciloscópio as tensões de entrada $u_{in}(t)$, no canal 1, e de saída $u_{C}(t)$, no canal 2, e desenhe-as no papel, em sincronismo.
 - d) Meça a amplitude do sinal $u_C(t)$. Calcule o **ganho de tensão** $Av = V_{out}/V_{in}$ e compare com o valor teórico esperado. Calcule o ganho A_V em dB pela fórmula abaixo.

$$A_V(dB) = 20 \log A_V$$

- e) Meça o **desfasamento** *α* entre o sinal de saída e o sinal de entrada, em μs. Converta este valor para graus usando a regra de três, em que o período do sinal (T) está para 360°. Compare o valor obtido com o valor teórico esperado.
- f) **Registe numa tabela** a resposta em frequência deste circuito, através da medição do ganho $A_V = V_{out}/V_{in}$, para os seguintes valores da frequência: 30 Hz, 100 Hz, 300 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz e 100 kHz. Registe no gráfico também o ganho para a frequência f_c .
- g) Com base nos valores da tabela do ponto anterior, desenhe o gráfico da **resposta em frequência** deste circuito, colocando do eixo Y o **ganho** Av **em dB** (calculado conforme a fórmula abaixo) e no eixo X a **frequência em escala logarítmica**, como no exemplo da figura 3.
- h) Com base na resposta em frequência observada, diga se este circuito é um filtro passa-baixo, passa-alto ou passa-banda.

Figura 3

LETI 2021/2022