CLAIMS:

5

15

20

25

- 1. A method of coding a data stream (S1,S2), the method comprising: channel coding (11) respective partitions of a given part of the data stream with different error protection rates to obtain a coded data stream (WS1, WS2), and including (14, 20) length information (lf) concerning respective lengths of the respective partitions in the coded data stream (WS1, WS2).
 - 2. A method as claimed in claim 1, wherein the length information (lf) comprises the lengths of the partitions before channel coding.
- 10 3. A method as claimed in claim 1, wherein the length information (lf) comprises the lengths of the partitions after channel coding.
 - 4. A method as claimed in claim 1, wherein the length information (lf) is included in a field just after a resync marker (H5) of the given part of the data stream (S1, S2).
 - 5. A method as claimed in claim 1, wherein the data stream (S1, S2) comprises at least one marker (H1... H5) out of a predetermined set of at least two mutually different markers (H1... H5), the marker indicating a start of a given part of the data stream, the method further comprising:

representing (13) the at least one marker (H1... H5) with a higher robustness word (WH1... WH5) having a higher robustness to channel errors than the at least one marker; and

- outputting (14) the data stream with the at least one marker represented with the higher-robustness word (WH1... WH5).
 - 6. A method of decoding a coded data stream (WS1, WS2), in which coded data stream respective partitions of a given part of the coded data stream have been channel encoded with different error protection rates, the coded data stream further comprising length

5

20

25

30

12 13.07.2001

information (If) concerning respective lengths of the respective partitions in the coded data stream, the method comprising:

reading (40) the length information (lf), and channel decoding (31) the coded data stream (WS1, WS2) using the length information (lf) to obtain a decoded data stream (S1, S2).

- 7. A method as claimed in claim 6, the method further comprising: deleting (40, 31, 34) the length information (lf) from the coded data stream.
- 10 8. An encoder for coding a data stream (S1, S2), the encoder comprising:
 a channel encoder (11) for channel coding respective partitions of a given part
 of the data stream with different error protection rates to obtain a coded data stream (WS1,
 WS2), and

means (14, 20) for including length information (lf) concerning respective lengths of the respective partitions in the coded data stream (WS1, WS2).

9. A decoder for decoding a coded data stream (WS1, WS2), in which coded data stream respective partitions of a given part of the coded data stream have been channel encoded with different error protection rates, the coded data stream further comprising length information (lf) concerning respective lengths of the respective partitions in the coded data stream, the decoder comprising:

means (40) for reading the length information, and means (31) for channel decoding the coded data stream (WS1, WS2) using the length information (lf) to obtain a decoded data stream (S1, S2).

10. A transmitter for transmitting a coded data stream (WS1, WS2), the transmitter comprising:

an encoder as claimed in claim 8; and means (14) for transmitting the coded data stream (WS1, WS2).

11. A receiver for receiving a coded data stream (WS1, WS2), the receiver comprising:

means (30) for receiving the coded data stream; and a decoder as claimed in claim 9;

5

13 13.07.2001

- 12. A coded data stream (WS1, WS2) in which respective partitions of a given part of the coded data stream have been channel encoded with different error protection rates, the coded data stream further comprising length information (lf) concerning respective lengths of the respective partitions in the coded data stream
- 13. A storage medium (15) on which a coded data stream (WS1, WS2) as claimed in claim 12 has been stored.