Quicksort

Fastest Sorting Algorithm on Average, How To Prove That

Quicksort: Different Kind Of Divide & Conquer

- So far, "divide" was straightforward, and "conquer" was involved.
- In sorting, can we make "conquer" part easy (almost nothing), by doing more on "divide" part?
 - CLRS 7.1 "Divide": **Partition** (rearrange) the array A[p..r] into two (either one of the two may be empty) subarrays A[p..q-1] and A[q+1..r] such that:
 - $A[i] \le A[q]$ for any $p \le i < q$, and
 - A[j] > A[q] for any $q < j \le r$.
 - CLRS 7.1 "Conquer": Then conquering becomes straightforward:
 - Sort A[p..q-1] recursively
 - Sort A[q + 1...r] recursively

```
QUICKSORT(A, p, r)
1 if p < r
       q = PARTITION(A, p, r)
       QUICKSORT (A, p, q - 1)
       QUICKSORT(A, q + 1, r)
```

To sort an entire array A, the initial call is QUICKSORT (A, 1, A. length).

PARTITION(A, p, r) Illustration

Partition(A, p, r)

PARTITION() Can Be Recursive As Well

Maybe more overhead, but maybe easier to understand

- If $A[p] \le A[r]$, return PARTITION(A, p + 1, r)
- Otherwise, 3-way swap between A[p], A[r], and A[r-1]
 - A[p] to A[r], A[r] to A[r-1], A[r-1] to A[p], then return PARTITION(A,p,r-1)
 - Definitely more swaps (so more overhead), but still correct (and same asymptotic notation) with easier derivation of the recurrence relation

•
$$T(n) = T(n-1) + \Theta(1) \rightarrow T(n) = \Theta(n)$$

• Base case: If p = r, return r.

Quicksort Analysis

Quicksort(A, p, r)1 **if** p < r

- 2 q = PARTITION(A, p, r)
- 3 QUICKSORT (A, p, q 1)
- 4 QUICKSORT (A, q + 1, r)

- From the QUICKSORT() pseudocode, $T_{qsort}(n) =$
- It's obvious that $T_{partition}(n) = \Theta(n)$.
- So, $T(n) = T(n_1) + T(n_2) + \Theta(n)$ where $n_1 + n_2 + 1 = n$
- Worst case: $n_1 = 0$ or $n_2 = 0$ all the time (bad split/partition) \rightarrow
 - $T(n) = T(n-1) + \Theta(n) \rightarrow T(n) = \Theta(n^2)$
 - When would this happen? What's the insertion/bubble sort performance in that case?
- Best case: $n_1 \cong n_2$ as much as possible (even split) \rightarrow
 - $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) \rightarrow T(n) = \Theta(n \lg n)$

Balanced Splits, Even Skewed (CLRS Fig. 7.4)

- 9-to-1 splits all the time
- In fact, doesn't
 matter what x & y
 in x-to-y splits, as
 long as x & y are
 fixed.

Randomized Quicksort (CLRS Section 7.3)

- To avoid worst case as much as possible,
 - Pick the pivot from a random index, not from a fixed one at the end.
 - Still rely on the original PARTITION() after swapping the randomly picked pivot with the original fixed pivot.

```
RANDOMIZED-PARTITION (A, p, r)

1  i = \text{RANDOM}(p, r)

2  exchange A[r] with A[i]

3  return Partition (A, p, r)

RANDOMIZED-QUICKSORT (A, p, r)

2  q = \text{RANDOMIZED-PARTITION}(A, p, r)

3  RANDOMIZED-QUICKSORT (A, p, q - 1)

4  RANDOMIZED-QUICKSORT (A, q + 1, r)
```

Formal Proofs of RANDOMIZED-QUICKSORT Time Complexities (CLRS Section 7.4)

- Lots of algebraic derivations. We won't focus on those.
- Also random probabilistic analysis and derivations for randomized case. We won't focus on those either.
- Just read through CLRS Section 7.4 and see how they go.

Brief Summary

- Worst-case: $T(n) = \max_{0 \le q \le n-1} (T(q) + T(n-q-1)) + \Theta(n)$
 - We can show $T(n) \le cn^2$ for some c and large enough n, showing $T(n) = O(n^2)$ (This is done in textbook)
 - Can also show $T(n) \ge cn^2$ for some c and large enough n, showing $T(n) = \Omega(n^2)$ (Exercise 7.4-1)
 - Therefore, worst-case $T(n) = \Theta(n^2)$.
- Average-case (expected running time) of RANDOMIZED-QUICKSORT()
 - Probabilities of possible cases, number of comparisons becoming random variable, derive the expected average of the random variable.
 - $E[X] = \cdots = O(n \log n)$

Median Finding Algorithm

No Need To Sort Entire Array

Medians and Order Statistics

- Given a set A of n elements,
 - Minimum (first in the ordered sequence), maximum (last), median (mid)
 - If n is even, there could be 2 medians. For simplicity, we mean the lower median.
- General i-th order statistic: The i-th smallest element of A
 - Minimum: A's 1st order statistic, maximum: A's n-th order statistic
 - Median: A's $\lfloor (n+1)/2 \rfloor$ -th order statistic
- Algorithm to find the i-th order statistic of A for any given A and i
 - Simple (Naïve): Sort A, return A[i]: $O(n \lg n)$
 - Do we really need to sort the entire array? Aren't we doing more than necessary?

Average Linear Time Selection Algorithm

• CLRS 9.2 RANDOMIZED-SELECT() (pp. 216)

```
RANDOMIZED-SELECT (A, p, r, i)

1 if p == r

2 return A[p]

3 q = \text{RANDOMIZED-PARTITION}(A, p, r)

4 k = q - p + 1

5 if i == k // the pivot value is the answer

6 return A[q]

7 elseif i < k

8 return RANDOMIZED-SELECT (A, p, q - 1, i)

9 else return RANDOMIZED-SELECT (A, q + 1, r, i - k)
```

Time Complexity Analysis of RAND-SEL

- Worst case: $\Theta(n^2)$, just like quicksort
- Average (expected) case
 - Requires random variable analysis, just like in quicksort
 - Assume probabilities, find expected running time, show it's at most O(n)
 - Details in CLRS 9.2
 - We don't need to do this all the time.
 - I'd say intuition is more important than formal proof.
 - Think about balanced splits-case (e.g., 2:3), and derive running time, confirm it's O(n).
- Can we achieve O(n) in worst case as well?
 - Surprisingly, yes. Study CLRS 9.3 (left as optional).
 - Time complexity analysis of SELECT() is more interesting and involved.

Lower Bounds For Sorting

How Fast Can We Do Sorting By Comparing

Sorting based on Comparisons

- All sorting algorithms we learned so far are based on:
 - Repeatedly <u>comparing</u> two elements of the given array.
- We've seen as good as $\Theta(n \lg n)$ comparison sorting algorithms.
 - Merge sort (all cases), quicksort (average/expected cases), heapsort (will be covered later, all cases)
- Is there any better comparison sorting algorithms?
 - Surprisingly (or not) no.
 - It's proven by analyzing any comparison-based sorting algorithm:
 - A sequence of comparisons, determining the final total order.
 - Starting from one pair, its comparison determining next comparison, ...
 - We get a so-called decision tree.

Decision-Tree Model

Lower Bound For Worst Case

- "Takes at least this long in the worst case"
 - The height of the decision tree!
- There are n! permutations for any given input array of size n.
 - Every permutation must show up as a leaf in the decision tree:
 - $n! \le L$ (L is the number of leaves in the decision tree)
 - For a binary tree of height h, there are at most 2^h leaves:
 - L ≤ 2^h
- Therefore, we get $n! \leq 2^h$.
- Solving for h, we get:
 - $h \ge \log_2(n!) = \log_2 n + \log_2(n-1) + \dots = \Omega(n \lg n)$ (eq. (3.19) in pp. 58)
- "Takes at least this long in the worst case"
 - The height of the decision tree!
- There are n! permutations for any given input array of size n.
 - Every permutation must show up as a leaf in the decision tree:
 - $n! \le L$ (L is the number of leaves in the decision tree)
 - For a binary tree of height h, there are at most 2^h leaves:
 - $L < 2^h$
- Therefore, we get $n! \leq 2^h$.
- Solving for *h*, we get:
 - $h \ge \log_2(n!) = \log_2 n + \log_2(n-1) + \dots = \Omega(n \lg n)$ (eq. (3.19) in pp. 58)

Sorting In Linear Time

Do We Always Have To Compare To Sort?

Counting Sort

- When there are a lot more elements than possible distinct values
 - E.g.: $1,0,2,0,0,1,1,2,0,1,2,0 \leftarrow Only 3$ possible distinct values, but 12 elements
- Count the number of occurrences of each value, create the "counts" array:

• Then reproduce the sorted sequence out of the counts

• Experiment counting sort at http://visualgo.net/sorting

Example: 2, 5, 3, 0, 2, 3, 0, 3 (CLRS Fig. 8.2)

2 3 4 5 6 7 8

2

5 | 3 | 0 |

2 | 3 | 0

```
COUNTING-SORT (A, B, k)
                                                                             2 | 3 |
                                                                                      3
                                                                                         5
                                                                                    3
    let C[0..k] be a new array
   for i = 0 to k
        C[i] = 0
    for j = 1 to A.length
 5
        C[A[j]] = C[A[j]] + 1
    // C[i] now contains the number of elements equal to i.
                                                                        2 | 0 | 2 | 3 | 0
                                                                     C
    for i = 1 to k
        C[i] = C[i] + C[i-1]
 8
    /\!\!/ C[i] now contains the number of elements less than or equal to i.
    for j = A. length downto 1
11
         B[C[A[j]]] = A[j]
        C[A[j]] = C[A[j]] - 1
12
```

Counting Sort Time Complexity

- Initializing counts array: $\Theta(k)$ (k is the largest possible value)
- Counting/constructing part: $\Theta(n)$
- Therefore, $\Theta(k+n)$.
- If k = O(n), then $\Theta(n)$.
 - The premise (k = O(n)) is important!
 - If k is arbitrarily large (e.g., a double value) and n is not that big (e.g., 100), you don't want to use this algorithm!
- CLRS pp. 195 COUNTING-SORT() pseudocode
 - More involved to meet the "stability" requirement
 - Important for radix sort.

Radix Sort

- ullet Sort <u>discrete</u> values digit-by-digit repeatedly in d passes
 - However, start from least-significant digit, and move up! (Counterintuitive)
- Experiment radix sort at http://visualgo.net/sorting
- Example: 329, 457, 657, 839, 436, 720, 355

- Why does it work? How to prove? Use induction on # digits
 - "Stability" in digit-by-digit sorting is important!
- Time complexity: $\Theta(d(n+k))$. If d and k are constants, it's $\Theta(n)$.

Bucket Sort

- Only good for input array when its values are <u>uniformly distributed</u> over the interval [min, max]
 - ullet Divide the interval into n equal-sized subintervals, or "buckets"
 - Distribute the *n* input numbers into the buckets
 - Because of the "uniformly distributed" assumption, each bucket shouldn't contain too many elements
 - Thus, sorting elements in each bucket should be bound to a constant.
 - Final sorting is to collect elements from each bucket one-by-one after sorting elements in each bucket.
- Time complexity analysis: Another probability & random var. analysis
 - $\Theta(n)$, on average, again only under the <u>uniformly distributed</u> assumption

Bucket Sort Example and Code (CLRS Fig. 8.4)

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2) \quad \text{E}[T(n)] = \text{E}\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)\right]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} \text{E}\left[O(n_i^2)\right]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} \text{E}\left[O(n_i^2)\right]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} O\left(\text{E}\left[n_i^2\right]\right)$$

$$= O(n) + \sum_{i=0}^{n-$$

Balancing the Work

How we optimize some divide and conquer problems?

Search in a Sorted Array with Limited Resources

- What is the tallest floor from which I can drop an egg without breaking it? Say you have n floors and k eggs
- If there is only one egg, we must do sequential search from the bottom floor
- If we have many eggs, say k at least $\log_2 n$, we can use binary search.
- In between, we can divide the building in *a* parts and solve the problem recursively, dropping the egg from the top of each part.
- Then we have:

$$T(n,k) = a + T(n/a,k-1)$$
 & $T(n,1) = n$.

Search in a Sorted Array with Limited Resources

• Expanding we have:

$$T(n,k) = a + a + T(n/a^{2},k-2)$$
......

 $T(n,k) = a + a + \dots + a + T(n/a^{k-1},1)$

$$k-1$$

$$T(n,k) = a + a + \dots + a + n/a^{k-1}$$

- Balancing to optimize: all eggs should do the same work: $a = n/a^{k-1}$
- Hence: $a = n^{1/k}$ and then $T(n,k) = k n^{1/k}$
- For example for k=2, we have $T(n,2) = O(\sqrt{n})$