

Michael Lehn Tobias Speidel SoSe 2019 Blatt 7, 38 Punkte

Übungen zur Höheren Mathematik II *

Abgabe am 11.06.2019 vor Beginn der Übung im Hörsaal 2

28. Bestimmen Sie die Länge der Kurven Γ und Ξ mit den folgenden Parameterdarstellungen und stellen Sie beide Kurven in einer geeigneten Skizze dar.

a)
$$\Gamma: \gamma(\varphi) = r \begin{pmatrix} \varphi - \sin \varphi \\ 1 - \cos \varphi \end{pmatrix}$$
 mit $0 \le \varphi \le 2\pi$ und $r > 0$. (Zykloide)

b)
$$\Xi : \boldsymbol{\xi}(\varphi) = re^{k\varphi} \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$$
 mit $0 \le \varphi \le c$ und $k, r, c > 0$.

(Logarithmische Spirale)

(je 4 Punkte)

29. Es sei r(t) ein Vektor mit ||r(t)|| = c > 0 für alle t > 0. Zeigen Sie, dass dann r'(t) orthogonal zu r(t) ist. Was bedeutet das für die Relation zwischen Tangential- und Normalenvektor?

(3 Punkte)

30. Berechnen Sie die folgenden Kurvenintegrale.

a)
$$\int_{\Gamma} \mathbf{f} \cdot d\mathbf{x}$$
, mit $\mathbf{f}(x,y) = \begin{pmatrix} y + 2xy \\ x^2 - x \end{pmatrix}$ und Γ dem positiv orientierten Einheitskreis.

b)
$$\int_{\Psi} \boldsymbol{g}(\boldsymbol{x}) \cdot d\boldsymbol{x}, \text{ mit } \boldsymbol{g}(\boldsymbol{x}) = \frac{\log \|\boldsymbol{x}\|^2}{\|\boldsymbol{x}\|} \boldsymbol{x} \text{ und } \Psi : t \mapsto \boldsymbol{x}(t) = (\cos t, \sin t, t)^T \text{ wobei } 0 \le t \le \sqrt{e^2 - 1} \text{ ist.}$$
(je 3 Punkte)

31. Berechnen Sie die folgenden Kurvenintegrale im \mathbb{R}^2 bzw. \mathbb{R}^3 .

a)
$$\int_{\Gamma} \|\boldsymbol{x}\|^2 ds \text{ mit } \Gamma : t \mapsto \boldsymbol{x}(t) := (\cos t, \sin t, t)^T \text{ und } 0 \le t \le \alpha,$$

b)
$$\int_{\Gamma} f \, ds$$
 mit $f(x,y) = xy$ und Ψ der Strecke entlang des negativ orientierten Kreises $x^2 + y^2 = 4$.

c)
$$\int_{\Gamma_{\nu}} \mathbf{f} \cdot d\mathbf{x}$$
 mit $\nu = 1, 2$ und $\mathbf{f}(x, y) = \frac{1}{1 + x^2 + y^2} \begin{pmatrix} y \\ -x \end{pmatrix}$ entlang

- i.) Γ_1 der oberen Hälfte des Einheitskreises in positiver Durchlaufrichtung.
- ii.) Γ_2 der unteren Hälfte des Einheitskreises in negativer Durchlaufrichtung.

(3+3+5) Punkte

32. Entscheiden Sie jeweils, ob das Kurvenintegral $\int \mathbf{f}$ in G wegunabhängig ist, und finden Sie gegebenenfalls eine Stammfunktion F von \mathbf{f} in G:

a)
$$\mathbf{f}(x,y,z) = \left(\frac{y}{x^2 + y^2} - 2x, \frac{-x}{x^2 + y^2}, e^z\right)^T$$
, $G = \{(x,y,z)^T \in \mathbb{R}^3 \mid x^2 + y^2 \neq 0\}$.

b)
$$f$$
 wie in a), $G = \{(x, y, z)^T \in \mathbb{R}^3 \mid x > 0\}.$

c)
$$\mathbf{f}(x,y) = (x^2 - y^2, 1 - 2xy)^T, G = \mathbb{R}^2.$$

(3+4+3) Punkte)

^{*} Allgemein gilt: Ergebnisse sind immer zu begründen. Des Weiteren sind falsche Aussagen durch ein Gegenbeispiel zu widerlegen. Ergebnisse sind nachvollziehbar darzustellen und analytisch so weit wie möglich zu vereinfachen.

Ergänzende Aufgaben

A. Berechnen Sie die Länge der folgenden Kurve und fertigen Sie eine Skizze für ein geeignetes r>0 und α an.

$$x(t) = \begin{pmatrix} r\cos t \\ r\sin t \\ \alpha t \end{pmatrix}$$
 mit $t \in [a, b]$ und $a < b$.

B. Berechnen Sie die Kurvenintegrale

i.)
$$I_{\nu} := \int_{\gamma_{\nu}} dx + (y - x) dy$$
 ii.) $J_{\nu} := \int_{\gamma_{\nu}} dx + (x - y) dy$

für $\nu = 1, 2$, wobei

i.) γ_1 der Polygonzug durch die Punkte $(0,0)^T,\,(1,0)^T$ und $(1,1)^T$ sei.

ii.) γ_2 der Weg längs der Normalparabel $y=x^2$ von $(0,0)^T$ nach $(1,1)^T$ sei.

C. Entscheiden Sie jeweils, ob das Kurvenintegral $\int_{\Gamma} f$ in G wegunabhängig ist, und berechnen Sie gegebenenfalls eine Stammfunktion von f in G.

a)
$$f(x,y) = (1 - x^2 + y^2, 2xy), G = \mathbb{R}^2$$
.

b) Berechnen Sie das Kurvenintegral mit f wie in a) über die entgegen dem Uhrzeigersinn durchlaufene Kurve mit der impliziten Gleichung $4x^2 + y^2 = 4$.

c)
$$f(x, y, z) = (2xyz + ye^{xy}, xe^{xy}, ze^{xy}), G = \mathbb{R}^3.$$

D. Zeigen Sie, dass das Kraftfeld in kartesischen Koordinaten definiert durch

$$\mathbf{F}(x,y,z) = \begin{pmatrix} k_1 y \\ k_2 y \\ k_3 z \end{pmatrix}$$

mit $k_i \neq 0$ nicht konservativ ist.