

Basic Principles of

Neural Networks Reloaded

Lecture 9

Introduction to Neural Networks Reloaded

Outline

- Basics of Neural Networks
 - Basic building block perceptron (neuron)
 - Activation functions
 - Training a Neural Network
 - Problem of overfitting (regularization)

- Next Lectures
 - Special Neural Network based approaches used for Language Modeling

Perceptron - Basic Building Block

Perceptron (also called neuron)

Perceptron - Basic Building Block

Perceptron (alternative visualization)

Activation Function

- Activation Function: Makes NN to Universal Function Approximator
 - Should be differentiable (for backpropagation)

$$\hat{y} = g(w_0 + X^T W)$$

• Example: sigmoid function

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

common use case: probability distribution [0..1]

Purpose of Activation Functions

Purpose of activation functions is to introduce non-linearities

Linear activation functions produce linear decision boundaries no matter the network size

Non-linearities allow us to approximate arbitrarily complex functions

See this link for a nice visualization of decision boundaries using different activation functions and network capacities

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

Activation Function: Sigmoid

- Range [0..1]
- Output is not zero centered
 - Makes optimization difficult
 - Zero mean and normalize data
- Vanishing gradient problem (saturate and kill gradients)
- Sigmoids have slow convergence
- Computationally expensive (e^x)
- No practical relevance

$$g(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid Function

Problems: Sigmoid

Compute gradients through backpropagation

$$x$$
 w_1 w_2 \hat{y}

$$\frac{\partial J(\mathbf{W})}{\partial w_1} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

Factors < 1 → vanishing gradients

Factors > 1 → exploding gradients

→ careful weight initialization

repeatedly apply chain rule for every weight in the network using gradients from later layers

- Why is it a problem when the output is not zero centered?
 - Makes optimization difficult
 - Gradients are either all positive or all negative
 - This is also why you want zero-mean data

See also here

Sigmoid Function

Activation Function: Tanh

- Range [-1..1]
- Output is zero centered
- Vanishing gradient problem (saturate and kill gradients)
- Computationally expensive (e^x)

Hyperbolic Tangent

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Activation Function: ReLU

- Converges faster (approx. 6 times faster than tanh)
- Resistant to the vanishing gradient problem
 - At least in the positive region
- Computationally very efficient
- Output is not zero centered
- If x < 0 during the forward pass, the neuron remains inactive and it kills the gradient during the backward pass (can result in Dead Neurons)
 - weights do not get updated, and the network cannot learn anymore
 - Leaky (parametric/randomized) ReLU

$$g(z) = \max(0, z)$$

Activation Function: ReLU

- Why is ReLU non-linear?
 - It bends at the x-axis
 - Allows for building arbitrary shaped curves on the feature plane

A comparison of ReLU and Tanh shaped decision boundaries

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

The Perceptron: Simplified

$$z = w_0 + \sum_{j=1}^m x_j w_j$$

Neural Network with one Hidden Layer

Deep Neural Network


```
import tensorflow as tf

model = tf.keras.Sequential([
   tf.keras.layers.Dense(n1),
   tf.keras.layers.Dense(n2),

tf.keras.layers.Dense(2)
])
```


Example Problem: Will I pass this class?

Example Problem: Will I pass this class?

The **loss** of our network measures the cost incurred from incorrect predictions

Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between 0 and 1

$$J(W) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)} \log \left(f\left(x^{(i)}; W\right) \right) + (1 - y^{(i)}) \log \left(1 - f\left(x^{(i)}; W\right) \right)$$
a minus (-) is missing

Actual

Predicted

Actual

Predicted

Loss Optimization - Gradient Descent

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

Loss Optimization - Gradient Descent

Algorithm

- Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- Compute gradient, $\frac{\partial J(W)}{\partial W}$ Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weights

Compute Gradients: Backpropagation

How does a small change in one weight (e.g. w₁) affect the final loss J(W)?

$$\frac{\partial J(\mathbf{W})}{\partial w_1} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

repeatedly apply chain rule for every weight in the network using gradients from later layers

A lecture on backpropagation using the computational graph

Gradient Descent

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- Loop until convergence:
- 3.
- Compute gradient, $\frac{\partial J(W)}{\partial W}$ Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weights

Can be very computationally intensive to compute!

Stochastic Gradient Descent

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick single data point *i*
- 4. Compute gradient, θj_i(w) θw
- 5. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights

Mini-Batch Gradient Descent

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick batch of B data points

6. Return weights

Fast to compute and a much better estimate of the true gradient!

Loss Optimization - Gradient Descent

Algorithm

- Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- Compute gradient, $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$ Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta$
- 5. Return weights

Setting the Learning Rate

Stable learning rates converge smoothly and avoid local minima

More on learning rate

Gradient Descent Algorithm

Algorithm

- SGD
- Adam
- Adadelta
- Adagrad
- RMSProp

TF Implementation

- tf.keras.optimizers.SGD
- tf keras optimizers Adam
- tf.keras.optimizers.Adadelta
- tf.keras.optimizers.Adagrad
- tf keras optimizers RMSProp

Adam is a good default choice

Additional details on Gradient Descent Algorithms (here and here)

The Problem of Overfitting

Regularization: Dropout

- During training (at every iteration), randomly set some activations to 0
 - E.g. dropout rate of 50%
 - Forces network to not rely on any node

More on dropout and other regularization techniques

Early Stopping

Stop training before we have a chance to overfit

Wrap-Up

The Perceptron

- Structural building blocks
- Nonlinear activation functions

Neural Networks

- Stacking Perceptrons to form neural networks
- Optimization through backpropagation

Training in Practice

- Adaptive learning
- Batching
- Regularization

Questions

