

Forms of Electricity

- Static electricity = Electrical energy created by interaction of charged objects in close proximity
- Electrochemistry = Conversion of chemical energy into charge
 - Form of electricity generated by batteries
- Photoelectricity = Conversion of light into electricity
- Piezoelectric effect = Arises from mechanical strain put on certain types of crystals
 - Used commonly in medical sensing equipment

Thermoelectric effect = Conversion of temperature differences into electricity

Forms of Electricity

Nuclear electricity = Conversion of energy that binds nucleus of atoms together into electrical charge, either by breaking atom apart (fission) or combining atoms together (fusion)

Electromagnetic induction = Uses motion of magnets in close proximity to wires to convert mechanical energy into electricity

Static Electricity

- First observed form of electrical activity
 - Seen in lightning, shock between fingertip and doorknob, static cling in clothes
- 2 types of charges
 - Negative charges result from build-up of electrons
 - Positive charges result from build-up of protons
- Net charge = Equal electrons and protons

Static Electricity

- Like charges repel each other, while opposite charges pull toward each other
- Voltage = Potential difference in energy between charges
 - Symbol = V
- Coulomb's Law = How close the objects need to be for an interaction is based on strength of the charges
 - The greater the charges, the greater the attraction or repulsion between the 2 objects
 - The greater the distance between objects, the weaker the attraction or repulsion between objects

Electricity Principles

- Charge is always conserved
 - Cannot be lost or created but can be rearranged
- Electrochemical electricity
 - Cells in body generate electrical energy by controlling quantity of positively charged sodium ions and negatively charged potassium ions inside and outside cell membrane

Electricity Principles

Photoelectricity

Photon = Particle in a light wave

- Massless and neutral charge
- When absorbed, energy is increased
- The more intense the light, the greater the energy

Thermoelectric Effect

Arises from difference in temperature across a charge-carrying medium

 Change in temperature is measure of change of energy

Seeback effect = On unevenly heated surface, free electrons from warm side move to cooler area and create voltage difference

Electricity Principles

- Piezoelectric Effect
 - Comes from deformation of certain types of crystals
 - Deformation generates electrical energy

Electronic Circuits

- Combination of conductive materials and electronic components assembled to perform one or more functions
- Closed circuit = Current pathway is connected
- Open circuit = Current pathway is disrupted

Short circuit

Electronic Circuits

- Special case of closed circuit is short circuit
 - Occurs when loop is closed before current can travel intended path

Simple and complex circuits are used in PSG

Current Flow

- Motion of charged particles through conductive medium
- In electronics, current is motion of electrons through conductive medium moving from lower voltage to higher voltage
 - Voltage difference = Electromotive force (EMF)
- Direct current (DC) = Voltage potential remains the same across given circuit
 - Electrons flow in single direction in circuit
 - Only one direction of flow
 - Either on or off

Current Flow

- Alternating current (AC) = Constant alternation of positive and negative terminals in circuit
 - Often created by electromagnetic induction
- Hertz (Hz) = Number of rotations in given time frame (frequency)
 - Also known as cycles per second (cps)
 - Standard frequency = 60 Hz
 - Consistent frequency needed for reliable power delivery for AC devices

Current Flow

- Charles Coulomb described relationship of charged particles, distance, and force between them
 - Electron and proton have same value of charge but opposite signs
 - Based on coulomb (C)
- Current (I) is measured in amperes (A)
 - One ampere is equal to one coulomb passing through a point in an electrical circuit in one second

Introduction to Electrical Components

- Conductor = Any material that permits the flow of electrons
 - Metals are often excellent conductors
 - Commonly used metals for electronics:
 - Copper
 - Lead
 - Silver
 - Gold
 - Water is a poor conductor without salt
 - Usually surrounded by insulators
 - Rubber, glass, and plastic

Introduction to Electrical Components

- Resistance = Ability of material to impede the flow of electrons
 - Denoted by R
 - Measured in Ohms
 - Good conductor = poor resistor
 - Poor conductor = good resistor
- Ohm's law: Current (I) = Voltage (V) ÷ Resistance (R)
 - ↑ voltage, ♥ resistance
 - ↑ current, ↑ the effects of shock

- Current = Flow or movement of electricity
 - Measured in amperes (Amps)
- Voltage = Electrical tension
 - Difference in electrical potential between 2 points
 - Amplitude is measurement
 - Measured in Volts
 - Biologic potentials measured in uV
 - Determined by equation of V = IR

- Voltage Resistance = Degree to which object resists electrical current
 - Measured in Ohms
 - R = V/I
- Goal in PSG = Minimize resistance (impedance) to <5000 Ohms
 - Higher impedance = lower signal quality
- Polarity = + or nature of electrical signal
- Capacitor Stores and releases energy in AC circuit

- Leakage current = Current is lost or generated by various properties of the circuit itself
- Ground = Point in electric circuit with assumed potential value of zero
 - Provide intentional and safe paths of departure for current in a circuit
 - In PSG, grounding occurs in at least 2 places:
 - Earth ground wire in 3-wire plug from wall outlet to amplifier
 - Chassis ground on patient's scalp

Electrical Grounding

- Ground = Multiple meanings
 - Reference point by which other electrical signals or voltages are measured
 - Common return path for current = physical connection to earth
 - Path of least resistance
 - Common reference for all other electrodes

- 3-hole electrical socket:
 - 1st branch = Earth ground (green wire)
 - Helps ensure any excess current in amplifiers is discharged away from patient
 - 2nd branch = Neutral (white wire)
 - 3rd branch = Hot wire (black wire)
- Power Isolation helps to prevent unwanted noise in a circuit
 - This is why there is a chassis and earth ground on PSG equipment

MHE Gacl M=nM 10=1(x-X)

Electrical Grounding

- If O1 (G1) = 25 uV and M2 (G2) = 40 uV, output would = -15 uV
 - O1 = 25 uV more than ground
 - M2 = 40 uV more than ground
- Ground loop = Using 2 ground leads on patient

Overview of Ancillary Equipment

- Includes any device incorporated into sleep testing in addition to that needed for detecting physiologic sleep
 - Most represent a type of transducer (device that converts 1 form of energy into another)
- Pressure transducers and thermocouples monitor airflow
- Respiratory-induced plethysmography (RIP) and piezoelectric belts monitor respiratory effort
- Piezo devices can monitor snoring
- Oximeter uses mix of photoelectric and plethysmographic devices to detect O2 levels in blood
 - This and capnograph are typically DC devices

- Thermocouples
 - Measures airflow by detecting temperature change using 2 dissimilar metals with different levels of expansion
 - Generates own electricity

- Thermistors
 - Measures airflow by detecting changes in temperature between room air and expired air
 - Signal amplified using wheatstone bridge circuit

- Pressure transducers
 - Measures airflow through cannula
 - Volume of expired air measured
 - Sends signal to DC amplifier

- Oximeters
 - Estimates amount of hemoglobin in blood saturated by O2
 - Oxygenated blood absorbs infrared light more than deoxygenated blood
 - Deoxygenated blood absorbs more red light than oxygenated blood

- Snore sensors and microphones
 - Sensors record vibrations from upper airway
 - Microphones detect noise from snores

- Body Position Sensors
 - DC devices
 - Usually attached to chest belt

- Capnometer
 - Measures CO2 in sample of air by measuring absorption of infrared light

- Capnograph
 - Receives signal from capnometer
 - Measures end-tidal CO2

- Transcutaneous CO2 monitors
 - Measures gases in blood using heated sensor placed on skin
 - Must move sensor due to heat

- Respiratory effort belts
 - Senses resistance from belts stretching

- Respiratory Effort Recording Methods:
 - Inductive Plethysmography
 - Expansion and contraction of chest and abdomen recorded through frequency oscillators distributed to demodulator device
 - Expensive
 - Piezo-electic Crystal Belts
 - Used most frequently
 - Mercury Strain Gauges
 - Dangerous due to potential breakage and leakage

- Cardio-Pneumography
 - 2 chest electrodes
 - Thoracic effort and EKG combined into 1 channel
- Pneumatic Respiration Transducers
 - Uses cuff bladder and pressure transducer system to detect respiratory effort
- Intercostal EMGs
 - EMG activity of intercostal muscles during chest wall expansion

- Esophageal Balloons and Water-filled Catheters
 - Rarely used
 - Inserted through nose into esophagus
- Other Monitoring Devices:
 - pH probes
 - Used to detect esophageal reflux
 - Actigraphs
 - Circadian rhythm monitoring
 - Motion detectors