

Isotopes du radon

Le **radon** (**Rn**, numéro atomique **86**) possède 35 isotopes connus, tous <u>radioactifs</u>. Le plus stable d'entre eux est le <u>radon 222</u> avec une <u>demi-vie</u> de 3,823 jours, il représente la quasi-totalité du radon naturel. Plusieurs isotopes sont présents à l'état de trace dans la nature car faisant partie des principales chaînes de désintégration.

Isotopes notables

Radon 218

Le **radon 218** fait partie d'une voie très minoritaire de la chaîne de désintégration $\frac{1}{2}$ de l'uranium 238 (désintégration β^- de l'astate 218 à 0,1 % de probabilité, luimême issu de la désintégration β^- du polonium 218 à 0,02 %). Il a une demi-vie de 35 ms, il n'existe donc qu'à l'état de traces infimes dans la nature.

Radon 219

Le **radon 219** était historiquement appelé **actinon** (noté **An**), ou parfois **émanation d'actinium**, en raison de sa présence comme descendant de l'actinium dans la chaîne de désintégration de l'uranium 235. Sa demi-vie d'à peine 4 s explique qu'il ait été nommé d'après son dernier ancêtre à longue demi-vie, plus facile à isoler.

$$^{235}_{92}\mathrm{U} \xrightarrow{\alpha} \xrightarrow{231}_{90}\mathrm{Th} \xrightarrow{\beta^{-}} \xrightarrow{231}_{91}\mathrm{Pa} \xrightarrow{\alpha} \xrightarrow{\alpha} \xrightarrow{227}_{89}\mathrm{Ac} \xrightarrow{\beta^{-}} \xrightarrow{927}_{90}\mathrm{Th} \xrightarrow{\alpha} \xrightarrow{323}_{88}\mathrm{Ra} \xrightarrow{\alpha} \xrightarrow{219}_{86}\mathrm{Rn}$$

Radon 220

Historiquement appelé **thoron** ou **émanation de thorium** (et parfois noté en conséquence **Tn**) en raison de sa présence dans la chaîne de désintégration ³ du ²³²Th, le **radon 220** a une demi-vie de 55 s.

$$^{232}_{90}\text{Th} \xrightarrow{\alpha \atop 1,41\times 10^{10}} \overset{228}{88} \text{Ra} \xrightarrow{\beta^-} \overset{228}{89} \text{Ac} \xrightarrow{\beta^-} \overset{228}{90} \text{Th} \xrightarrow{\alpha \atop 1,91 \text{ ans}} \overset{224}{88} \text{Ra} \xrightarrow{\alpha \atop 3,62 \text{ jours}} \overset{220}{86} \text{Rn}$$

Son descendant de plus longue période, le <u>plomb 212</u>, a une demi-vie de 10,6 h, toute contamination par le radon 220 est donc éliminée par décroissance en une semaine.

Radon 222

Le **radon 222** fait partie de la chaîne de désintégration de l'uranium 238. Entre la relative abondance de l'uranium 238 et la demi-vie du radon 222 (3,8 jours), considérablement plus longue que les demi-vies des autres isotopes naturels, il représente la quasi-totalité du radon naturel.

$$^{238}_{92} U \xrightarrow{\alpha} \xrightarrow{234}_{90} Th \xrightarrow{\beta^-} \xrightarrow{234m}_{91} Pa \xrightarrow{\beta^-} \xrightarrow{924}_{92} U \xrightarrow{\alpha} \xrightarrow{230}_{90} Th \xrightarrow{\alpha} \xrightarrow{226}_{88} Ra \xrightarrow{\alpha} \xrightarrow{222}_{86} Rn$$

Il a plusieurs désignations historiques : **émanation de radium** (il en est l'isotope-fils), **émanon**, **émanation**, ou **niton** (de symbole **Nt**). Ce dernier nom lui vient de William Ramsay et Robert Whytlaw-Gray, il est issu du latin *nitens* qui signifie « brillant », en raison de sa radioluminescence. Le nom a été proposé en 1910 lorsqu'ils ont isolé cet élément, mais l'IUPAC lui préfère la dénomination radon en 1923. Le nom de cet isotope reste celui de l'élément.

Table des isotopes

Symbole de l'isotope	Z (<u>p</u>) N (<u>n</u>)		masse isotopique	Dami via	Mode(s) de	Isotope(s)	Cnin musidai
		Énergie	d'excitation	Demi-vie	Mode(s) de _{5, n 1} désintégration	fils	Spin nucléaire
¹⁹⁵ Rn	86	109	195,00544(5)	6 ms			3/2-#
^{195m} Rn	50	(50) keV	,	6 ms			13/2+#
¹⁹⁶ Rn	0.6	110	106 002115(16)	4,7(11) ms [4,4(+13-9) ms]	α	¹⁹² Po	0+
	86 11	110	196,002115(16)		β ⁺ (rare)	¹⁹⁶ At	
197p	86	111	197,00158(7)	66(16) ms [65(+25-14) ms]	α	¹⁹³ Po	3/2-#
¹⁹⁷ Rn					β ⁺ (rare)	¹⁹⁷ At	
^{197m} Rn	200(60)# keV			21(5) ms [19(+8-4) ms]	α	¹⁹³ Po	(13/2+)
-57KII					β ⁺ (rare)	¹⁹⁷ At	
¹⁹⁸ Rn	86	112	197,998679(14)	65(3) ms	α (99 %)	¹⁹⁴ Po	0+
	80				β+ (1 %)	¹⁹⁸ At	0+
¹⁹⁹ Rn	86	112	198,99837(7)	620(30) ms	α (94 %)	¹⁹⁵ Po	3/2-#
NII	00	113			β+ (6 %)	¹⁹⁹ At	
^{199m} Rn	10	0(70) ke	V	320(20) ms	α (97 %)	195 _{Po}	13/2+#
KII	10	0(70) KE			β+ (3 %)	¹⁹⁹ At	
²⁰⁰ Rn	86	114	199,995699(14)	0,96(3) s	α (98 %)	¹⁹⁶ Po	0+
					β+ (2 %)	²⁰⁰ At	
²⁰¹ Rn	86	115	200,99563(8)	7,0(4) s	α (80 %)	¹⁹⁷ Po	(3/2-)
					β+ (20 %)	²⁰¹ At	
	280(90)# keV			3,8(1) s	α (90 %)	197 _{Po}	(13/2+)
^{201m} Rn					β+ (10 %)	²⁰¹ At	
					TI (< 1 %)	²⁰¹ Rn	
²⁰² Rn	86	116	201,993263(19)	9,94(18) s	α (85 %)	¹⁹⁸ Po	0+
					β+ (15 %)	²⁰² At	
²⁰³ Rn	86	117	202,993387(25)	44,2(16) s	α (66 %)	¹⁹⁹ Po	(3/2-)
					β+ (34 %)	²⁰³ At	
^{203m} Rn	363(4) keV			26,7(5) s	α (80 %)	¹⁹⁹ Po	13/2(+)
					β+ (20 %)	²⁰³ At	
²⁰⁴ Rn	86	118	203,991429(16)	1,17(18) min	α (73 %)	²⁰⁰ Po	0+
					β+ (27 %)	²⁰⁴ At	
²⁰⁵ Rn	86	119	204,99172(5)	170(4) s	β+ (77 %)	²⁰⁵ At	5/2-
					α (23 %)	²⁰¹ Po	
²⁰⁶ Rn	86	120	205,990214(16)	5,67(17) min	α (62 %)	²⁰² Po	0+
					β+ (38 %)	²⁰⁶ At	
²⁰⁷ Rn	86	121	206,990734(28)	9,25(17) min	β+ (79 %)	²⁰⁷ At	5/2-
					α (21 %)	²⁰³ Po	
^{207m} Rn	89	9,0(10)	keV	181(18) μs			(13/2+)
²⁰⁸ Rn	86	122	207,989642(12)	24,35(14) min	α (62 %)	²⁰⁴ Po	0+
					β+ (38 %)	²⁰⁸ At	
²⁰⁹ Rn	86	123	208,990415(21)	28,5(10) min	β+ (83 %)	²⁰⁹ At	5/2-
IMI	30	123	200,550715(21)	20,3(10) 111111	α (17 %)	²⁰⁵ Po	
^{209m1} Rn	1173,98(13) keV			13,4(13) μs			13/2+
^{209m2} Rn	3636,78(23) keV			3,0(3) µs			(35/2+)
²¹⁰ Rn	86	124	209,989696(9)	2,4(1) h	α (96 %)	²⁰⁶ Po	0+
		127		-, /	β+ (4 %)	²¹⁰ At	
^{210m1} Rn	16	90(15) k	reV	644(40) ns			8+#

^{210m2} Rn	383	37(15) k	ceV	1,06(5) μs			(17)-
210m3 _{Rn}	6493(15) keV			1,04(7) μs			(22)+
²¹¹ Rn	86	125	210,990601(7)	14,6(2) h	α (72,6 %)	²⁰⁷ Po	1/2
					β+ (27,4 %)	²¹¹ At	1/2-
²¹² Rn	86	126	211,990704(3)	23,9(12) min	α	²⁰⁸ Po	0.
					β ⁺ β ⁺ (rare)	²¹² Po	0+
²¹³ Rn	86	127	212,993883(6)	19,5(1) ms	α	²⁰⁹ Po	(9/2+)
²¹⁴ Rn	86	128	213,995363(10)	0,27(2) μs	α	²¹⁰ Po	0+
					β ⁺ β ⁺ (rare)	²¹⁴ Po	0+
^{214m} Rn	4595,4 keV			245(30) ns			(22+)
²¹⁵ Rn	86	129	214,998745(8)	2,30(10) μs	α	²¹¹ Po	9/2+
²¹⁶ Rn	86	130	216,000274(8)	45(5) μs	α	²¹² Po	0+
²¹⁷ Rn	86	131	217,003928(5)	0,54(5) ms	α	²¹³ P ₀	9/2+
²¹⁸ Rn	86	132	218,0056013(25)	35(5) ms	α	²¹⁴ Po	0+
²¹⁹ Rn	86	133	219,0094802(27)	3,96(1) s	α	²¹⁵ Po	5/2+
²²⁰ Rn	86	134	220,0113940(24)	55,6(1) s	α	²¹⁶ Po	0.
					β^- , β^- (rare)	²²⁰ Ra	0+
²²¹ Rn	86	135	221,015537(6)	25,7(5) min	β- (78 %)	²²¹ Fr	7/2/)
					α (22 %)	²¹⁷ Po	7/2(+)
²²² Rn	86	136	222,0175777(25)	3,8235(3) j	α	²¹⁸ Po	0+
²²³ Rn	86	137	223,02179(32)#	24,3(4) min	β-	²²³ Fr	7/2
²²⁴ Rn	86	138	224,02409(32)#	107(3) min	β-	²²⁴ Fr	0+
²²⁵ Rn	86	139	225,02844(32)#	4,66(4) min	β-	²²⁵ Fr	7/2-
²²⁶ Rn	86	140	226,03089(43)#	7,4(1) min	β-	²²⁶ Fr	0+
²²⁷ Rn	86	141	227,03541(45)#	20,8(7) s	β-	²²⁷ Fr	5/2(+#)
²²⁸ Rn	86	142	228,03799(44)#	65(2) s	β-	²²⁸ Fr	0+
²²⁹ Rn	86	143	229,0426536(141)	12 s			

1. Abréviation :

TI: transition isomérique.

Remarques

- Les valeurs marquées # ne sont pas purement dérivées des données expérimentales, mais aussi au moins en partie à partir des tendances systématiques. Les spins avec des arguments d'affectation faibles sont entre parenthèses.
- Les incertitudes sont données de façon concise entre parenthèses après la décimale correspondante. Les valeurs d'incertitude dénotent un écart-type, à l'exception de la composition isotopique et de la masse atomique standard de l'IUPAC qui utilisent des incertitudes élargies.

Notes et références

- 1. « Isotope data for Radon218 in the Periodic Table » (http://www.periodictable.com/Isotopes/086.218/index2.full.prod.html), sur www.periodictable.com (consulté le 14 mars 2016)
- 2. « Isotope data for Radon219 in the Periodic Table » (http://www.periodictable.com/Isotopes/086.219/index2.full.prod.html), sur www.periodictable.com (consulté le 15 mars 2016)
- 3. « Isotope data for Radon220 in the Periodic Table » (http://www.periodictable.com/Isotopes/086.220/index2.full.prod.html), sur www.periodictable.com (consulté le 15 mars 2016)
- 4. « Isotope data for Radon222 in the Periodic Table » (http://www.periodictable.com/Isotopes/086.222/index2.full.prod.html), sur www.periodictable.com (consulté le 15 mars 2016)
- 5. (en)Universal Nuclide Chart (http://www.nucleonica.net/unc.aspx)
 - Masse des isotopes depuis :
 - (en) G. Audi, A. H. Wapstra, C. Thibault, J. Blachot and O. Bersillon, « The NUBASE evaluation of nuclear and decay properties », Nuclear Physics A, vol. 729, 2003, p. 3–128
 (DOI 10.1016/j.nuclphysa.2003.11.001 (https://dx.doi.org/10.1016/j.nuclphysa.2003.11.001),
 Bibcode 2003NuPhA.729....3A (https://ui.adsabs.harvard.edu/abs/2003NuPhA.729....3A), lire en ligne (http://www.nndc.bnl.gov/amdc/nubase/Nubase2003.pdf))
 - Compositions isotopiques et masses atomiques standards :
 - (en) J. R. de Laeter, J. K. Böhlke, P. De Bièvre, H. Hidaka, H. S. Peiser, K. J. R. Rosman and P. D. P. Taylor, « Atomic weights of

the elements. Review 2000 (IUPAC Technical Report) », $\underline{Pure\ and\ Applied\ Chemistry}$, vol. 75, no 6, 2003, p. 683–800 (DOI 10.1351/pac200375060683 (https://dx.doi.org/10.1351/pac200375060683), lire en ligne (http://www.iupac.org/publications/pac/75/6/0683/pdf/))

- (en) M. E. Wieser, « Atomic weights of the elements 2005 (IUPAC Technical Report) », Pure and Applied Chemistry, vol. 78, no 11, 2006, p. 2051–2066 (DOI 10.1351/pac200678112051 (https://dx.doi.org/10.1351/pac200678112051), résumé (http://old.iupac.org/news/archives/2005/atomic-weights_revised05.html), lire en ligne (http://iupac.org/publications/pac/78/11/2051/pdf/))
- Demi-vies, spins et données sur les isomères sélectionnés depuis les sources suivantes :
 - (en) G. Audi, A. H. Wapstra, C. Thibault, J. Blachot and O. Bersillon, « The NUBASE evaluation of nuclear and decay properties », *Nuclear Physics A*, vol. 729, 2003, p. 3–128
 (DOI 10.1016/j.nuclphysa.2003.11.001 (https://dx.doi.org/10.1016/j.nuclphysa.2003.11.001),
 Bibcode 2003NuPhA.729....3A (https://ui.adsabs.harvard.edu/abs/2003NuPhA.729....3A), lire en ligne (http://www.nndc.bnl.gov/amdc/nubase/Nubase2003.pdf))
 - (en) National Nuclear Data Center, « NuDat 2.1 database » (http://www.nndc.bnl.gov/nudat2/), Brookhaven National Laboratory (consulté en septembre 2005)
 - (en) N. E. Holden et D. R. Lide (dir.), *CRC Handbook of Chemistry and Physics*, CRC Press, 2004, 85^e éd., 2712 p. (ISBN 978-0-8493-0485-9, lire en ligne (https://books.google.com/books?id=WDll8hA006AC&printsec=frontcover)), « Table of the Isotopes », Section 11
- (en) Cet article est partiellement ou en totalité issu de l'article de Wikipédia en anglais intitulé « Isotopes of radon (https://en.wikipedia.org/wiki/Isotopes_of_radon?oldid=446357310) » (voir la liste des auteurs (https://en.wikipedia.org/wiki/Isotopes_of_radon?action=history)).

 $\label{lem:composition} \textbf{Ce document provient de } \textbf{w} \ \underline{\textbf{https://fr.wikipedia.org/w/index.php?title=Isotopes_du_radon\&oldid=197381480}} \ \ \textbf{w.} \\ \textbf{a.s.} \ \textbf{a.s.} \ \textbf{a.s.} \ \textbf{b.s.} \ \textbf{a.s.} \$