Rapport TP 0 Prise en main d'OpenCV

Théo Grillon p1907356, Edouard Thinot p1909945

1 Notes TP0 - Prise en main

1.1 Prérequis

Pour que l'affichage des histogrammes soit plus lissible et agréable on utilise le paquet **gnu- plot**.

sudo apt-get install gnuplot

Notre programme vas chercher les ressources dans le fichier du même nom. Il est donc important de crée un fichier *ressources* à la racine du projet contenant les images traitées par le programme.

Pour lancer le projet : 1. Compiler avec avec la commande **make** 2. Lancer la sortie produit par le compilateur suivie de deux images en niveau de gris (ici Lena et le cameraman).

• Exemple: ./output ./ressources/lena-baw.png ./ressources/cameraman.sure>

1.2 Histogramme

1.2.0.1 Création d'un histogramme Un **histogramme**, pour une image avec la valeur de chaque pixel codé sur **huit bits**, est un tableau de **256 cases** (de l'indice 0 à 255). Chacune de ces cases contient une valeur entière (dans le cas ou l'histogramme n'est pas encore normalisé). Cette valeur correspond au **nombre de pixels** de l'image de **valeur égale à l'indice** de la case de l'histogramme.

Pour créer un histogramme, nous avons utilisé la fonction opency calcHist.

Histogramme non-normalisé obtenu :

Figure 1: Histogramme pour une image en niveaux de gris (Léna)

1.2.0.2 Histogramme Normalisé La **normalisation** (en valeurs de probabilité) revient à **diviser notre histogramme** non normalisé par le **nombre total de pixels** de l'image. Ainsi, la **somme des occurrences** des niveaux de gris est **égale à 1**.

Histogramme normalisé obtenu :

Figure 2: Histogramme normalisé pour une image en niveaux de gris (Léna)

1.2.0.3 Histogramme Cumulé En plus du calcul de l'histogramme normalisé nous allons avoir besoin de l'**histogramme cumulé**. Pour cela, **on somme pour chaque valeur d'indice** i de l'histogramme cumulé (en niveau de gris) **la valeur d'indice i-1** précédemment calculée auquel on ajoute la **valeur à l'indice i** de l'histogramme normalisé.

Histogramme cumulé obtenu :

Figure 3: Histogramme cumulé (Léna)

1.2.1 Étirement d'histogramme

Le processus d'expansion/étirement d'histogramme vise à améliorer la distribution des valeurs d'un histogramme. Cela consiste à prendre un certain Nmin et Nmax, les bornes de l'ensemble qui contient la majorité des valeurs de l'histogramme et à étirer cet ensemble pour qu'il soit compris, non plus entre Nmin et Nmax, mais entre 0 et 255. Plus concrètement, cela permet d'augmenter le contraste d'une image.

Pour la calculer, il faut:

- 1. Récupérer les valeurs **Nmin** et **Nmax** de l'histogramme tel que la majorité des valeurs soit comprise dans l'intervalle [**Nmin,Nmax**].
- 2. On applique une transformation linéaire pour étirer l'histogramme sur toute la plage de valeurs possibles (soit dans notre cas [0, 255]). Tel que la formule ressemble à

• $I2(x,y) = 255 \text{ (I1(x,y)} - \text{Nmin / Nmax} - \text{Nmin)* où } \mathbf{11} \text{ est l'image que l'on souhaite modifié et } \mathbf{12} \text{ l'image résultante de l'étirement.}$

Figure 4: Images/Histogrammes avant et après étirement

Ci-dessus une image de nos résultats avec pour chaque image son histogramme correspondant à droite. On peut constater qu'avec des valeurs mieux réparties sur l'ensemble des différents niveaux de gris, l'image apparaît plus nette.

1.2.2 Égalisation d'histogramme

L'égalisation améliore la visibilité des détails dans une image en ajustant la distribution des niveaux de gris. L'égalisation d'histogramme vise à obtenir une distribution d'intensité plus uniforme, ce qui peut améliorer le contraste de l'image.

Pour le processus d'égalisation d'histogramme, nous avons besoin de **calculer l'histogramme cumulé**. Une fois la **CDG** (Fonction de distribution cumulative) calculée, on applique la nouvelle intensité pour chaque pixel de l'image précédente pour en créer une nouvelle.

Les images ci-dessous montre le résultat obtenu, les contrastes sont beaucoup plus claire.

Figure 5: Images avant et après égalisation

Figure 6: Histogrammes avant et après égalisation

1.3 Produit de convolution et filtrage

Pour le **filtrage**, on parcourt l'image de la case **[1,1]** jusqu'à la case **[largeur-2,hauteur-2]** (en considérant que les indices vont de 0 à largeur/hauteur-1). Sur chacun des pixels parcouru, on effectue un **produit de convolution** entre les pixels de l'image et la **matrice de filtrage**.

Les photos ci-dessous appliquent respectivement au milieu un filtre de floue (**passe-bas**) et à droite un filtre de contour (**passe-haut**).

Figure 7: Résultats des différents produit de convolution