Hints (zools)

- Sec. 1.3 #8 Show that If W, and Wz are subspaces of a vector space with W, $NW_z=\{0\}$, then for each vector $X \in W_1 + W_2$ there are unique vectors $w_1 \in W_1$ and $w_2 \in W_2$ such that $w_1 = w_1 + w_2$
 - pf Suppose $x_1 + x_2 = y_1 + y_2$ where $x_1, y_1 \in W_1$ and $x_2, y_2 \in W_1$ Then $x_1 - y_1 = y_2 - x_2$ in W_1 in W_2

We the information WINW2 = {0} to finish the proof

Sect. 4 #8 Let W1 and W2 be subspaces of a verror space satisfying W1NW2=103.

Show that if S, C W1 and Sz C Wz are linearly independent,

then S, USz is linearly independent

Pf. fay $S_1 \cup S_2 = \frac{1}{2} \times_1 \dots \times_n$, $y_1 \dots y_m$ $y_m = 0$ where $Q_1, b_1 \in S_2$ Then $Q_1 \times_1 + Q_2 \times_2 + \dots + Q_n \times_n + b_1 \times_1 + \dots + b_m \times_m = 0$ where $Q_1, b_2 \in \mathbb{N}$ Then $Q_1 \times_1 + Q_2 \times_2 + \dots + Q_n \times_n = -b_1 \times_1 - b_2 \times_2 - \dots - b_m \times_m$ [$\in i \in \mathbb{N}$, $i \in j \in \mathbb{M}$]

in W_1 in W_2

Hints Sec 1.1 #7.

a) Victor addition: f + g = fg Scalar multiplication $C \cdot f = c + f$ $C \cdot (f + g) = c \cdot f + c \cdot g$ For example. c = 2, f = x, $g = x^2$ $C \cdot (f + g) = 2 \cdot (x + x^2) = z + x^3$ $C \cdot g + c \cdot g = 2 \cdot x + 2 \cdot x^2 = (z + x)(2 + x^2) = 4 + 2 \cdot x^2 + 2 \cdot x + x^3$ $2 + x^3 + x^3 + 2 \cdot x^2 - 2 \cdot x + 4$ there are many different examples

Sec 1.5 # 3 (d) $V = 2x_1^2 x + 1$, $S = (x_1^2)$, x_1^2 , x_1^2 in $P_3(112)$ Is $V = 2x_1^2 x + 1$, $S = (x_1^2)$, x_1^2 , x_1^2 in $P_3(112)$

> If $V \in Span(S)$, then there exists $(t_1, t_2, t_3) \in I\mathbb{R}^3$ Such that $2x^3 + x + 1 = t_1(x^3 + 1) + t_2(x^2 + 1) + t_3(x + 1)$

use {1, x, x², x³} is 1:nearly independent.