

Kỳ THI KẾT THÚC HỌC KỲ I NĂM Môn thi: Toán 11 – Ban Cơ bản

Thời gian: 90 phút (không kể thời gian phát đề)

Tập xác định của hàm số $y = \tan x$ là: Câu 1:

A.
$$\mathbb{R}\setminus\{0\}$$
.

B.
$$\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\right\}$$
. C. \mathbb{R} .

D. $\mathbb{R}\setminus\{k\pi,k\in\mathbb{Z}\}$.

Lời giải

Điều kiện xác định: $\cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi$

Vậy tập xác định: $D = R \setminus \left\{ \frac{\pi}{2} + k\pi, k \in Z \right\}$.

Trong các hàm số sau, hàm số nào là hàm chẵn? Câu 2:

A.
$$y = \cos\left(x + \frac{\pi}{3}\right)$$
. **B.** $y = |\sin x|$.

$$\mathbf{B.} \ \ y = \left| \sin x \right|$$

$$\mathbf{C.} \ y = 1 - \sin x$$

C. $y = 1 - \sin x$. D. $y = \sin x + \cos x$.

Lời giải

TXĐ: $D = \mathbb{R}$, $\forall x \in \mathbb{R} \Rightarrow -x \in \mathbb{R}$.

Mặt khác, ta có $y(-x) = |\sin(-x)| = |-\sin x| = |\sin x| = y(x)$.

Vậy hàm số trên là hàm số chẵn.

Câu 3: Hằng ngày, mực nước của con kênh lên xuống theo thủy triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t(h) được cho bởi công thức $h = 3\cos\left(\frac{\pi t}{6} + \frac{\pi}{3}\right) + 12$. Khi nào mực nước của kênh là cao nhất với thời gian ngắn nhất?

A.
$$t = 22(h)$$
.

B.
$$t = 15(h)$$
.

C.
$$t = 14(h)$$
.

D.
$$t = 10(h)$$
.

Lời giải

Ta có
$$\cos\left(\frac{\pi t}{6} + \frac{\pi}{3}\right) \le 1$$
 suy ra $h = 3\cos\left(\frac{\pi t}{6} + \frac{\pi}{3}\right) + 12 \le 15$

Mực nước của kênh cao nhất khi và chỉ khi

$$\cos\left(\frac{\pi t}{6} + \frac{\pi}{3}\right) = 1 \Leftrightarrow \frac{\pi t}{6} + \frac{\pi}{3} = k2\pi \Leftrightarrow t = -2 + 12k, k \in \mathbb{Z}$$

Vì $t > 0 \Rightarrow -2 + 12k > 0 \Leftrightarrow k > \frac{1}{6}$. Thời gian ngắn nhất chọn $k = 1 \Rightarrow t = 10h$.

Có bao nhiều giá trị nguyên của tham số m để giá trị lớn nhất của hàm số $y = \frac{m \sin x + 1}{\cos x + 2}$ nhỏ Câu 4: hon 3.

A. 5.

B. 4.

C. 3.

D. 7.

Ta có
$$y = \frac{m \sin x + 1}{\cos x + 2} \Leftrightarrow m \sin x - y \cos x + 1 - 2y = 0$$
 (1).

Điều kiện phương trình (1) có nghiệm là $y^2 + m^2 \ge (1 - 2y)^2 \Leftrightarrow 3y^2 - 4y + 1 - m^2 \le 0$ $\Rightarrow y \leq \frac{2 + \sqrt{1 + 3m^2}}{2}$ Do đó, giá trị lớn nhất của hàm số là $\frac{2+\sqrt{1+3m^2}}{3}$ Theo giả thiết, ta có $\frac{2+\sqrt{1+3m^2}}{2} < 3 \Leftrightarrow m^2 < 16 \Leftrightarrow -4 < m < 4$. Mà $m \in \mathbb{Z} \Rightarrow m \in \{-3, -2, -1, 0, 1, 2, 3\}$. Vậy có 7 giá trị nguyên của m. Giải phương trình $\cos x = 1$ ta được họ nghiệm là **A.** $x = \frac{k\pi}{2}$, $k \in \mathbb{Z}$. **B.** $x = k\pi$, $k \in \mathbb{Z}$. C. $x = \frac{\pi}{2} + k2\pi, \ k \in \mathbb{Z}$. **D.** $x = k2\pi$, $k \in \mathbb{Z}$. Lời giải Ta có $\cos x = 1 \Leftrightarrow x = k2\pi$, $k \in \mathbb{Z}$. Có bao nhiều giá trị nguyên của tham số m để phương trình $3\sin 2x - m^2 + 5 = 0$ có nghiệm? **A.** 6. **B.** 2. Lời giải Phương trình đã cho tương đương với phương trình $\sin 2x = \frac{m^2 - 5}{2}$ Phương trình đã nghiệm khi và chỉ khi: $\frac{m^2 - 5}{3} \in [-1; 1] \Leftrightarrow m^2 \in [2; 8] \Leftrightarrow \begin{bmatrix} -2\sqrt{2} \le m \le -\sqrt{2} \\ \sqrt{2} \le m \le 2\sqrt{2} \end{bmatrix}$ Vậy có 2 giá trị nguyên của tham số m.

Câu 7: Tính tổng các nghiệm trong đoạn [0;30] của phương trình $\tan x = \tan 3x$.

A.
$$55\pi$$
.

Câu 5:

Câu 6:

B.
$$\frac{171\pi}{2}$$
.

D.
$$\frac{190\pi}{2}$$
.

Lời giải

Điều kiện:
$$\begin{cases} \cos x \neq 0 \\ \cos 3x \neq 0 \end{cases} \Leftrightarrow \begin{cases} x \neq \frac{\pi}{2} + k\pi \\ x \neq \frac{\pi}{6} + \frac{k\pi}{3} \end{cases} (*)$$

Khi đó, phương trình $\tan x = \tan 3x \Leftrightarrow 3x = x + k\pi \Leftrightarrow x = \frac{k\pi}{2}$ so sánh với đk (*) ta thấy nghiệm

của phương trình là $\begin{bmatrix} x = k2\pi \\ x = \pi + k2\pi \end{bmatrix}$; $k \in \mathbb{Z}$.

Theo giả thiết $x \in [0;30]$ nên ta tìm được các nghiệm là $x \in \{0;\pi;2\pi;....;9\pi\}$.

Vậy, tổng các nghiệm trong đoạn [0;30] của phương trình bằng 45π .

Tìm m để phương trình $(3\cos x - 2)(2\cos x + 3m - 1) = 0$ có 3 nghiệm phân biệt thuộc khoảng Câu 8: $\left(0;\frac{3\pi}{2}\right)$?

A.
$$-\frac{1}{3} < m < 1$$
.

B.
$$\frac{1}{3} < m < 1$$

A.
$$-\frac{1}{3} < m < 1$$
. **B.** $\frac{1}{3} < m < 1$. **C.** $\begin{bmatrix} m < -\frac{1}{3} \\ m > 1 \end{bmatrix}$ **D.** $\begin{bmatrix} m < \frac{1}{3} \\ m > 1 \end{bmatrix}$

D.
$$m < \frac{1}{3}$$
 $m > 1$

Lời giải

Phương trình $(3\cos x - 2)(2\cos x + 3m - 1) = 0$ (*)

Đặt $t = \cos x$, ta chú ý rằng (quan sát hình vẽ):

Nếu t = -1 thì tồn tại 1 giá trị $x = \pi$.

Nếu với mỗi $t \in (-1,0)$ thì tồn tại 2 giá trị $x \in (\frac{\pi}{2}, \frac{3\pi}{2}) \setminus \{\pi\}$.

Nếu với mỗi $t \in [0;1)$ thì tồn tại 1 giá trị $x \in [0;\frac{\pi}{2}]$.

Phương trình (*) trở thành: $(3t-2)(2t+3m-1)=0 \Leftrightarrow \begin{bmatrix} t=\frac{2}{3} & (1) \\ t=\frac{1-3m}{2} & (2) \end{bmatrix}$

Phương trình (1) có 1 nghiệm $t \in [0;1)$ nên phương trình (*) có 1 nghiệm $x \in [0;\frac{\pi}{2}]$.

Vậy phương trình (*) có 3 nghiệm phân biệt thuộc khoảng $\left(0; \frac{3\pi}{2}\right)$ khi và chỉ khi phương trình (2) phải có 1 nghiệm $t \in (-1,0)$.

Suy ra $-1 < \frac{1-3m}{2} < 0 \Leftrightarrow -2 < 1-3m < 0 \Leftrightarrow \frac{1}{2} < m < 1$.

Cho phương trình $(2\sin x - 1)(\sqrt{3}\tan x + 2\sin x) = 3 - 4\cos^2 x$. Gọi T là tập hợp các nghiệm Câu 9: thuộc đoạn $[0;20\pi]$ của phương trình trên. Tính tổng các phần tử của T.

A.
$$\frac{570}{3}\pi$$
.

B.
$$\frac{875}{3}\pi$$

C.
$$\frac{880}{3}\pi$$
.

B.
$$\frac{875}{3}\pi$$
. **C.** $\frac{880}{3}\pi$. **D.** $\frac{1150}{3}\pi$.

Lời giải

Điều kiện: $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$.

Phương trình đã cho tương đương với $(2\sin x - 1)(\sqrt{3}\tan x + 2\sin x) = 4\sin^2 x - 1$.

$$\Leftrightarrow$$
 $(2\sin x - 1)(\sqrt{3}\tan x - 1) = 0$.

$$\Leftrightarrow \begin{bmatrix} \sin x = \frac{1}{2} \\ \tan x = \frac{1}{\sqrt{3}} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = \frac{5\pi}{6} + k2\pi \\ x = \frac{\pi}{6} + k\pi \end{bmatrix} \begin{cases} x = \frac{5\pi}{6} + k2\pi \\ x = \frac{\pi}{6} + k\pi \end{cases}, (k \in \mathbb{Z}) \text{ (thỏa mãn điều kiện)}.$$

Trường họp 1: Với $x = \frac{5\pi}{6} + k2\pi$, $(k \in \mathbb{Z})$. (1)

$$x \in \left[0; 20\pi\right] \Leftrightarrow 0 \le \frac{5\pi}{6} + k2\pi \le 20\pi \iff \frac{-5}{12} \le k \le \frac{115}{12}. \text{ Mà } k \in \mathbb{Z} \text{ nên } k \in \left\{0; 1; 2, \dots; 9\right\}.$$

 \Rightarrow Tổng tất cả các nghiệm thuộc đoạn $[0;20\pi]$ của họ nghiệm (1) là:

$$S_1 = \sum_{k=0}^{9} \left(\frac{5\pi}{6} + k2\pi \right) = \frac{295\pi}{3}$$
.

Trường hợp 2: Với $x = \frac{\pi}{4} + k\pi$, $(k \in \mathbb{Z})$. (2)

$$x \in [0; 20\pi] \Leftrightarrow 0 \le \frac{\pi}{6} + k\pi \le 20\pi \Leftrightarrow \frac{-1}{6} \le k \le \frac{119}{6}$$
. Mà $k \in \mathbb{Z}$ nên $k \in \{0; 1; 2, ...; 19\}$.

 \Rightarrow Tổng tất cả các nghiệm thuộc đoạn $[0;20\pi]$ của họ nghiệm (2) là:

$$S_2 = \sum_{k=0}^{19} \left(\frac{\pi}{6} + k\pi \right) = \frac{580\pi}{3}$$
.

Vậy tổng các phần tử của T là $S_1 + S_2 = \frac{875}{3}\pi$

Câu 10: Tìm m để phương trình $3\sin x - 4\cos x = 2m$ có nghiệm?

A.
$$-\frac{5}{2} < m \le \frac{5}{2}$$
. **B.** $m \le -\frac{5}{2}$.

B.
$$m \le -\frac{5}{2}$$
.

C.
$$m \ge \frac{5}{2}$$
.

C.
$$m \ge \frac{5}{2}$$
. D. $-\frac{5}{2} \le m \le \frac{5}{2}$.

Lời giải

Phương trình có nghiệm $\Leftrightarrow 3^2 + (-4)^2 \ge (2m)^2 \Leftrightarrow 4m^2 \le 25 \Leftrightarrow -\frac{5}{2} \le m \le \frac{5}{2}$.

Câu 11: Số nghiệm thuộc khoảng (0;2019) của phương trình $\sin^4 \frac{x}{2} + \cos^4 \frac{x}{2} = 1 - 2\sin x$ là

A. 642.

B. 643.

Lời giải

Ta có $\sin^4 \frac{x}{2} + \cos^4 \frac{x}{2} = 1 - 2\sin x \Leftrightarrow 1 - \frac{1}{2}\sin^2 x = 1 - 2\sin x \Leftrightarrow \sin x (\sin x - 4) = 0$

$$\Leftrightarrow \begin{bmatrix} \sin x = 0 \\ \sin x = 4 \ (VN) \end{bmatrix} (\text{do } -1 \le \sin x \le 1) \Leftrightarrow x = k\pi \ (k \in \mathbb{Z}).$$

Theo giả thiết, ta có $x \in (0;2019)$ nên $k\pi \in (0;2019), k \in \mathbb{Z} \Leftrightarrow 0 < k\pi < 2019, k \in \mathbb{Z}$.

$$\Leftrightarrow$$
 0 < $k \le 642, k \in \mathbb{Z}$.

Do đó có 642 giá trị của k.

Vậy phương trình có 642 nghiệm thuộc (0;2019).

Câu 12: Trên đường tròn lượng giác số điểm biểu diễn tập nghiệm của phương trình $2\sin 3x - \sqrt{3}\cos x = \sin x$ là

A. 2.

B. 6.

C. 8.

D. 4.

Lời giải

Ta có $2\sin 3x - \sqrt{3}\cos x = \sin x \Leftrightarrow 2\sin 3x = \sin x + \sqrt{3}\cos x$

$$\Leftrightarrow \sin 3x = \frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x \Leftrightarrow \sin 3x = \sin\left(x + \frac{\pi}{3}\right)$$

$$\Leftrightarrow \begin{bmatrix} 3x = x + \frac{\pi}{3} + k2\pi \\ 3x = \pi - \left(x + \frac{\pi}{3}\right) + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k\pi \\ x = \frac{\pi}{6} + k\frac{\pi}{2} \end{cases} \Leftrightarrow x = \frac{\pi}{6} + k\frac{\pi}{2} (k \in \mathbb{Z})$$

Vậy có 4 điểm biểu diễn tập nghiệm của phương trình trên đường tròn lượng giác.

Chú ý: Họ nghiệm $x = \alpha + k \frac{2\pi}{n} (k \in \mathbb{Z})$ có n điểm biểu diễn trên đường tròn lượng giác.

Câu 13: Gọi A là tập hợp tất cả các số nguyên m để phương trình $\sin^{2019} x + \cos^{2019} x = m$ có vô số nghiệm thực phân biệt. Số phần tử của tập hợp A là

A. 1.

B. 5.

C. 0.

D. 3.

Lời giải

$$\text{Dặt } f(x) = \sin^{2019} x + \cos^{2019} x.$$

Ta sẽ chứng minh $-1 \le f(x) \le 1 \ \forall x \in \mathbb{R}$.

Thật vậy, với mọi $x \in \mathbb{R}$, ta có:

$$-1 \le \sin x \le 1 \Rightarrow -1 \le \sin^{2017} x \le 1 \Rightarrow -\sin^2 x \le \sin^{2019} x \le \sin^2 x \quad (1)$$

$$-1 \le \cos x \le 1 \Rightarrow -1 \le \cos^{2017} x \le 1 \Rightarrow -\cos^2 x \le \cos^{2019} x \le \cos^2 x \quad (2).$$

Cộng (1) và (2) theo vế, ta được: $-(\sin^2 x + \cos^2 x) \le \sin^{2019} x + \cos^{2019} x \le \sin^2 x + \cos^2 x$

$$\Rightarrow -1 \le f(x) \le 1 \ \forall x \in \mathbb{R}$$
.

$$f(x) = -1 \Leftrightarrow \begin{bmatrix} \sin x = -1 \\ \cos x = -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{2} + k2\pi \\ x = \pi + k2\pi \end{bmatrix}.$$

$$f(x) = 1 \Leftrightarrow \begin{bmatrix} \sin x = 1 \\ \cos x = 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{2} + k2\pi \\ x = k2\pi \end{bmatrix}.$$

Do đó, phương trình f(x) = m có vô số nghiệm thực phân biệt $\Leftrightarrow -1 \le m \le 1$.

$$\Rightarrow A = \{-1;0;1\}$$
.

Vậy số phần tử của A là 3.

Câu 14: Trong đội văn nghệ nhà trường có 8 học sinh nam và 6 học sinh nữ. Hỏi có bao nhiều cách chọn một đôi song ca nam-nữ?

A. 91.

B. 182.

C. 48.

D. 14.

	Ta có $20 = 1 + 19 = 3 + 17 = 5 + 15 = 7 + 13 = 9 + 11$. Vì các viên bi giống nhau nên tất cả có 5 cách chia 20 viên bi đó thành 2 phần mà số bi ở mỗi					
Câu 16·	phần đều là số lẻ. Có bao nhiều số tự nhiệ	n có 4 chữ số được	e viết từ các chữ số 1, 2, 3,	4 5 6 7 8 9 sao cho		
Cau 10.	số đó chia hết cho 15?	ii co 4 ciiu so duo	e vict tu cac chu so 1, 2, 3,	7, 5, 0, 7, 0, 7 sao cho		
	A. 234.	B. 132.	C. 243.	D. 432.		
			Lời giải			
	Gọi số cần tìm là $N = abcd$. Do N chia hết cho 15 nên N phải chia hết cho 3 và 5, vì vậy d có 1 cách chọn là bằng 5 và $a+b+c+d$ chia hết cho 3. Do vai trò các chữ số a , b , c như nhau, mỗi số a và b có 9 cách chọn nên ta xét các trường					
	hợp:					
	TH1: $a+b+d$ chia hết	cho 3, khi đó $c : 3$	$\Rightarrow c \in \{3; 6; 9\}$, suy ra có 3 o	cách chọn c .		
	TH2: $a+b+d$ chia 3 du 1, khi đó c chia 3 du $2 \Rightarrow c \in \{2,5,8\}$, suy ra có 3 cách chọn c .					
	TH3: $a+b+d$ chia 3 du 2, khi đó c chia 3 du $1 \Rightarrow c \in \{1,4,7\}$, suy ra có 3 cách chọn c .					
	Vậy trong mọi trường hợp đều có 3 cách chọn c nên có tất cả: $9.9.3.1 = 243$ số thỏa mãn.					
Câu 17:	Từ hai chữ số 1 và 8 lập được bao nhiêu cố tự nhiên có 8 chữ số sao cho không có hai chữ số					
	1 đứng cạnh nhau?			_		
	A. 54.	B. 110.	C. 55.	D. 108.		
			Lời giải			
	Để không có hai chữa số 1 đứng cạnh sau thì số chữ số 1 phải nhỏ hơn 5. TH1: Không có số 1: có 1 số gồm 8 số 8.					
	TH2: Có 1 số 1: $C_8^1 = 8$ số					
	TH3: Có 2 số 1: $C_7^2 = 21$ số (Xếp hai số 1 vào 7 ô trống được tạo từ 6 số 8)					
	TH4: Có 3 số 1: $C_6^3 = 20$ số (Xếp ba số 1 vào 6 ô trống được tạo từ 5 số 8)					
	TH5: Có 4 số 1: $C_5^4 = 3$	số (Xếp bốn số 1	vào 5 ô trống được tạo từ 4	số 8)		
	Vậy có 1+8+21+20+	5 = 55 sô.				
Câu 18:	Cho một đa giác đều có	Cho một đa giác đều có 10 cạnh. Có bao nhiều tam giác có 3 đỉnh thuộc các đỉnh của đa giác				
	đã cho.		~ 100	T 410		
	A. 720 .	B. 35.	C. 120.	D. 240.		
			Lời giải			
	Ta có đa giác đều có 10 cạnh nên đa giác đều có 10 đỉnh.					
	Mỗi tam giác là một tổ hợp chập 3 của 10 phần tử. Vậy có $C_{10}^3 = 120$ tam giác.					

Chọn 1 học sinh nữ từ 6 học sinh nữ có 6 cách. Chọn 1 học sinh nam từ 8 học sinh nam có 8 cách.

đều là số lẻ?

A. 90.

Áp dụng quy tắc nhân có 6.8 = 48 cách chọn đôi song ca thỏa đề.

B. 5.

Câu 15: Có 20 viên bi nhau. Hỏi có bao nhiều cách chia số bi đó thành 2 phần sao cho số bi ở mỗi phần

C. 180.

Lời giải

D. 10.

	Số đường chéo trong đa giác n đỉnh là: $C_n^2 - n$					
	Theo giả thiết, ta có: $C_n^2 - n = 135 \Leftrightarrow \frac{n!}{2!(n-2)!} - n = 135 \Leftrightarrow \frac{n(n-1)}{2} - n = 135 \Leftrightarrow \begin{bmatrix} n = 18 \\ n = -15 \end{bmatrix}$ Do $n \ge 3$ và $n \in \mathbb{N} \Rightarrow n = 18$. Câu 20: Cho hai đường thẳng d_1 và d_2 song song với nhau. Trên d_1 có 10 điểm phân biệt, trên d_2 co					
Câu 20:						
	điểm phân biệt $(n \ge 2)$. Biết rằng có 1725 tam giác có đỉnh là ba trong số các điểm thuộc d_1 và d_2 nói trên. Tìm tổng các chữ số của n .					
	A. 4.	B. 3. Lời	C. 6. i giải	D. 5.		
	Mỗi tam giác được tạo thành bằng cách lấy 2 điểm trên d_1 , 1 điểm trên d_2 hoặc lấy 2 điểm trên d_2 và 1 điểm trên d_1 . Số tam giác tạo thành là $C_{10}^2.C_n^1+C_{10}^1.C_n^2$.					
	Theo giả thiết có $C_{10}^2.C_n^1 + C_{10}^1.C_n^2 = 1725 \Leftrightarrow 45n + 10.\frac{n(n-1)}{2} = 1725$ $\Leftrightarrow n^2 + 8n - 345 = 0 \Leftrightarrow \begin{bmatrix} n = -23 \\ n = 15 \end{bmatrix}.$ Kết hợp điều kiện ta được $n = 15$. Vậy tổng các chữ số của n là 6 .					
Câu 21:	_		_	giác, biết rằng số cách để		
	4 đỉnh lấy ra tạo thành một tứ giác có tất cả các cạnh đều là các đường chéo của đa giác đã cho					
	là 450. Mệnh để nào sau đây là đúng? A. $n \in [13;16]$. B. $n \in [9;12]$. C. $n \in [6;8]$. D. $n \in [17;20]$.					
	Lời giải					
	Số phần tử của không gian mẫu là $\left \Omega\right =C_{\scriptscriptstyle n}^4$.					
	Để thành lập một tứ giác như yêu cầu ta làm như sau (Giả sử $A_1A_iA_jA_k$ là một tứ giác có các cạnh là các đường chéo của đa giác ban đầu). + Chọn một đỉnh A_1 có n cách chọn.					
	+ Do $3 \le i < j - 1 < k - 2$	$n \le n - 3$, nên ba đỉnh	A_i, A_j, A_k được chọn tro	ong số $n-5$ đỉnh của đa		
	giác. Suy ra số cách chọ	n ba đỉnh A_i, A_j, A_k là	C_{n-5}^3 .			
	Úng với mỗi một tứ giác như thế, vai trò của 4 đỉnh là như nhau nên số tứ giác lập được là: $\frac{n.C_{n-5}^3}{4}.$					
	Theo giả thiết ta có: $\frac{n.C}{2}$	$\frac{n^3}{n-5} = 450 \iff n = 15.$				
Câu 22:	Trong khai triển nhị thứ	$(a+2)^{n+6}$, với n là số	5 tự nhiên và $a \neq 0$, có t	tất cả 17 số hạng. Vậy n		
	bằng	D 10	G 12	D 15		
	A. 11.	B. 10.	C. 12.	D. 17.		

Câu 19: Cho đa giác đều n đỉnh, $n \ge 3$ và $n \in \mathbb{N}$. Tìm n, biết rằng đa giác đã cho có 135 đường chéo.

C. 8.

Lời giải

D. 15.

B. 18.

A. 27.

Ta có, trong khai triển nhị thức $(a+2)^{n+6}$ có (n+6)+1 hạng tử Theo giả thiết, $(n+6)+1=17 \Rightarrow n=10$.

Câu 23: Tìm số hạng chứa x^7 trong khai triển $\left(x - \frac{1}{x}\right)^{13}$.

A.
$$-C_{13}^3$$
.

B.
$$-C_{13}^3x^7$$
.

$$\mathbf{C.} - C_{13}^4 x^7$$
.

D.
$$C_{13}^3 x^7$$
.

Lời giải

$$X \notin \left(x - \frac{1}{x}\right)^{13} = \sum_{k=0}^{13} C_{13}^k x^{13-k} \cdot \left(-\frac{1}{x}\right)^k = \sum_{k=0}^{13} C_{13}^k \cdot \left(-1\right)^k x^{13-2k}.$$

Hệ số của x^7 trong khai triển tương ứng với $13-2k=7 \Leftrightarrow k=3$.

Vậy số hạng chứa x^7 trong khai triển là $C_{13}^3 \cdot (-1)^3 x^7 = -C_{13}^3 x^7$.

Câu 24: Giả sử $(1-x+x^2)^n = a_0 + a_1x + a_2x^2 + ... + a_{2n}x^{2n}$. Đặt: $s = a_0 + a_2 + a_4 + ... + a_{2n}$, khi đó s bằng

A.
$$\frac{3^n+1}{2}$$
.

B.
$$\frac{3^n}{2}$$
.

C.
$$\frac{3^n-1}{2}$$
.

D.
$$2^n + 1$$
.

Lời giải

Xét khai triển $(1-x+x^2)^n = a_0 + a_1x + a_2x^2 + ... + a_{2n}x^{2n}$.

Với x = 1 ta có $a_0 + a_1 + a_2 + ... + a_{2n} = 1$ (1)

Với x = -1 ta có $a_0 - a_1 + a_2 - ... + a_{2n} = 3^n$ (2)

$$(1)+(2) \Longrightarrow 2(a_0+a_2+a_4+..+a_{2n})=2s=1+3^n \Longrightarrow s=\frac{1+3^n}{2}.$$

Câu 25: Biết n là số tự nhiên thỏa $C_n^0 + C_n^1 + C_n^2 = 29$. Tìm hệ số của x^7 trong khai triển $(2 - x + 3x^2)^n$ thành đa thức.

A. -53173.

B. -38053.

C. -53172.

D. -38052.

Lời giải

Ta có
$$C_n^0 + C_n^1 + C_n^2 = 29 \iff 1 + n + \frac{n(n-1)}{2} = 29 \implies n = 7$$
.

Với n = 7, xét khai triển $(2 - x + 3x^2)^7 = [2 + x(3x - 1)]^7 = \sum_{k=0}^7 C_7^k \cdot 2^{7-k} \cdot x^k \cdot (3x - 1)^k$.

$$=\sum_{k=0}^{7}C_{7}^{k}.2^{7-k}.x^{k}.\sum_{m=0}^{k}C_{k}^{m}.3^{m}.x^{m}\left(-1\right)^{k-m}=\sum_{k=0}^{7}\sum_{m=0}^{k}C_{7}^{k}C_{k}^{m}2^{7-k}3^{m}\left(-1\right)^{k-m}x^{m+k}.$$

Yêu cầu bài toán khi và chỉ khi $\begin{cases} m+k=7\\ 0 \le m \le k \le 7\\ m,k \in \mathbb{N} \end{cases}$

Ta tìm được m = 0, k = 7; m = 1, k = 6; m = 2, k = 5; m = 3, k = 4 là các cặp số thỏa mãn.

Vậy hệ số của x^7 là :

$$C_7^7.C_7^0.2^0.3^0\left(-1\right)^7 + C_7^6.C_6^1.2^1.3^1\left(-1\right)^5 + C_7^5.C_5^2.2^2.3^2\left(-1\right)^3 + C_7^4.C_4^3.2^3.3^3\left(-1\right)^1 = -38053.$$

Câu 26:	Gọi X là tập hợp gồm các số 1; 2; 3; 5; 6; 7; 8 . Lấy ngẫu nhiên một số. Tính xác suất để số được				
	chọn là số chẵn.				
		4	3	1	
	A. $\frac{3}{7}$.	B. $\frac{4}{7}$.	$C. \frac{3}{8}$.	D. $\frac{1}{2}$.	
	,	·	Lời giải	_	
			8		
	Ta có $ \Omega = 7$.				
	Gọi A là biến cố "chọn được số chẳn" thì $ \Omega_A = 3$.				
	Xác suất biến cố A là	$\frac{3}{7}$.			
Câu 27:	Bạn Tít có một hộp bi g	gồm 2 viên đỏ và 8	viên trắng. Bạn Mít cũng	g có một hộp bi giống như	
	của bạn Tít. Từ hộp của mình, mỗi bạn lấy ra ngẫu nhiên 3 viên bi. Tính xác suất để Tít và Mít				
	lấy được số bi đỏ như nhau.				
	A. $\frac{7}{15}$.	B. $\frac{12}{25}$.	C. $\frac{11}{25}$.	D. $\frac{1}{120}$.	
	15	23	23	120	
		I	Lời giải		
	Số phần tử của không gian mẫu là: $ \Omega = C_{10}^3 \cdot C_{10}^3 = 14400$.				
	Số phần tử của không gian thuận lợi là: $ \Omega_A = (C_2^1 . C_8^2)^2 + (C_2^2 . C_8^1)^2 + (C_8^3)^2 = 6336$				
	Xác suất biến cố A là: $P(A) = \frac{11}{25}$.				
Câu 28:	23				
Cuu 201	cho 3". Tính xác suất $P(A)$ của biến cố A .				
	A. $P(A) = \frac{99}{300}$.	B. $P(A) = \frac{2}{3}$.	C. $P(A) = \frac{124}{300}$.	D. $P(A) = \frac{1}{3}$.	
	Lời giải				
	Gọi X là tập hợp các số tự nhiên nhỏ hơn 300 khi đó số phần tử của X là $\left[\frac{300}{3}\right] = 100$. Số phần tử của không gian mẫu là $n(\Omega) = C_{300}^1 = 300$, số kết qủa thuận lợi cho biến cố \overline{A} là				
	$n(\overline{A}) = C_{100}^1 = 100 \Rightarrow P(\overline{A}) = \frac{1}{3} \Rightarrow P(A) = 1 - P(\overline{A}) = \frac{2}{3}.$				
Câu 29:	Cho đa giác đều 20 đỉnh	h nội tiếp trong đường	g tròn tâm O . Chọn ngẫu	nhiên 4 đỉnh của đa giác.	

Câu 29: Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác.
Xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật bằng

A.
$$\frac{2}{969}$$
.

B. $\frac{3}{323}$.

C. $\frac{4}{9}$.

D. $\frac{7}{216}$.

Lời giải

Xét phép thử: "Chọn ngẫu nhiên 4 đỉnh của đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O" $\Rightarrow n(\Omega) = C_{20}^4 = 4845$.

Gọi A là biến cố:" 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật"

Đa giác có 20 đỉnh sẽ có 10 đường chéo đi qua tâm mà cứ 2 đường chéo qua tâm sẽ có 1 hình chữ nhật nên số HCN là: $n(A) = C_{10}^2 = 45$.

$$P(A) = \frac{45}{4845} = \frac{3}{323}$$

Câu 30: Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật OMNP với M(0;10), N(100;10), P(100;0)Gọi S là tập hợp tất cả các điểm A(x,y) với $x, y \in Z$ nằm bên trong kể cả trên cạnh của *OMNP* . Lấy ngẫu nhiên 1 điểm $A(x, y) \in S$. Tính xác suất để $x + y \le 90$.

A.
$$\frac{86}{101}$$
.

B.
$$\frac{473}{500}$$
.

C.
$$\frac{169}{200}$$
.

D.
$$\frac{845}{1111}$$
.

Lời giải

Tập hợp S gồm có 11.101 = 1111 điểm.

Ta xét $S' = \{(x, y) : x + y > 90\} \text{ với } 0 \le x \le 100 \text{ và } 0 \le y \le 10$

Khi $y = 0 \implies x > 90 \implies x = \overline{91;100} \implies \text{c\'o} 10$ giá trị của x

Khi $y = 1 \implies x > 89 \implies x = 90;100 \implies \text{co} 11 \text{ giá trị của } x$

Khi $y = 10 \implies x > 90 \implies x = \overline{91;100} \implies \text{có } 20 \text{ giá trị của } x$

Như vậy S' có 165 phần tử. Vậy xác suất cần tìm là : $\frac{1111-165}{1111} = \frac{86}{101}$.

Câu 31: Cho $\vec{v} = (-1,5)$ và điểm M'(4,2). Biết M' là ảnh của M qua phép tịnh tiến $T_{\vec{v}}$. Tìm M.

A.
$$M(5;-3)$$
. **B.** $M(-3;5)$.

B.
$$M(-3;5)$$

C.
$$M(3;7)$$
.

D.
$$M(-4;10)$$
.

Lời giải

$$\begin{cases} x' = x + a \\ y' = y + b \end{cases} \Rightarrow \begin{cases} 4 = x - 1 \\ 2 = y + 5 \end{cases} \Rightarrow M(5; -3)$$

Câu 32: Cho đường thẳng d có phương trình x + y - 2 = 0. Phép hợp thành của phép đối xứng tâm Ovà phép tịnh tiến theo $\vec{v} = (3,2)$ biến d thành đường thẳng nào sau đây?

A.
$$2x + y + 2 = 0$$
.

B.
$$x + y - 3 = 0$$
.

C.
$$x + y - 4 = 0$$
.

D.
$$3x + 3y - 2 = 0$$
.

Lời giải

Giả sử d' là ảnh của d qua phép hợp thành trên $\Rightarrow d': x + y + c = 0$.

Lấy $M(1;1) \in d$.

Giả sử M' là ảnh của M qua phép đối xứng tâm $O \Rightarrow M'(-1;-1)$.

Giả sử $T_{\bar{v}}(M') = N \implies N(2;1)$.

Ta có $N \in d' \Rightarrow 1+1+c=0 \Rightarrow c=-3$.

Vậy phương trình d': x + y - 3 = 0.

Câu 33: Cho hình chóp S.ABCD. Gọi I là trung điểm của SD, J là điểm trên SC và không trùng trung điểm SC. Giao tuyến của hai mặt phẳng (ABCD) và (AIJ) là:

A. AG, G là giao điểm IJ và AD.

B. AF, F là giao điểm IJ và CD.

C. AK, K là giao điểm IJ và BC.

D. AH, H là giao điểm IJ và AB.

A là điểm chung thứ nhất của (ABCD) và (AIJ).

IJ và CD cắt nhau tại F, còn IJ không cắt BC, AD, AB nên F là điểm chung thứ hai của (ABCD) và (AIJ). Vậy giao tuyến của (ABCD) và (AIJ) là AF.

Câu 34: Trong mặt phẳng Oxy cho đường tròn (C) có phương trình $(x-1)^2 + (y+2)^2 = 4$. Hỏi phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng qua trục Oy và phép tịnh tiến theo vector $\vec{v} = (2;3)$ biến (C) thành đường tròn nào trong các đường tròn có phương trình sau?

A.
$$(x-2)^2 + (y-6)^2 = 4$$
.

B.
$$(x-2)^2 + (x-3)^2 = 4$$
.

C.
$$(x-1)^2 + (y-1)^2 = 4$$
.

D.
$$x^2 + y^2 = 4$$
.

Lời giải

Đường tròn (C) có tâm I(1;-2) và bán kính R=2.

$$\Theta_{Ov}(I) = I' \Rightarrow I'(-1; -2).$$

$$T_{\vec{v}}(I') = I'' \Rightarrow \overrightarrow{I'I''} = \overrightarrow{v} \Rightarrow I''(1;1)$$
.

Đường tròn cần tìm nhận I''(1;1) làm tâm và bán kính R=2.

Câu 35: Cho tam giác đều tâm O. Hỏi có bao nhiều phép quay tâm O góc quay α , $0 < \alpha \le 2\pi$ biến tam giác trên thành chính nó?

A. Bốn.

B. Môt.

C. Hai.

D. Ba.

Lời giải

Có 3 phép quay tâm O góc α , $0 < \alpha \le 2\pi$ biến tam giác trên thành chính nó là các phép quay với góc quay bằng: $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, 2π .

Câu 36: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi A' là điểm trên SA sao cho $\overrightarrow{A'A} = \frac{1}{2} \overrightarrow{A'S}$. Mặt phẳng (α) qua A' cắt các cạnh SB, SC, SD lần lượt tại B', C', D'. Tính

giá trị của biểu thức $T = \frac{SB}{SB'} + \frac{SD}{SD'} - \frac{SC}{SC'}$.

A.
$$T = \frac{3}{2}$$
.

B. $T = \frac{1}{3}$.

 $C_{\bullet} T = 2$.

D. $T = \frac{1}{2}$.

Gọi O là giao của AC và BD. Ta có O là trung điểm của đoạn thẳng AC, BD. Các đoạn thẳng SO, $A^{\prime}C^{\prime}$, $B^{\prime}D^{\prime}$ đồng quy tại I.

Ta có:
$$S_{SA'I} + S_{SC'I} = S_{SA'C'} \Leftrightarrow \frac{S_{SA'I}}{S_{SAC}} + \frac{S_{SC'I}}{S_{SAC}} = \frac{S_{SA'C'}}{S_{SAC}} \Leftrightarrow \frac{S_{SA'I}}{2S_{SAO}} + \frac{S_{SC'I}}{2S_{SCO}} = \frac{S_{SA'C'}}{S_{SAC}} \Leftrightarrow \frac{S_{SA'I}}{2S_{SAO}} + \frac{S_{SC'I}}{2S_{SCO}} = \frac{S_{SA'C'}}{S_{SAC}} = \frac{S_{SA'C'}}{S_{SAC}} \Leftrightarrow \frac{S_{SA'I}}{S_{SAC}} + \frac{S_{SC'I}}{S_{SAC}} = \frac{S_{SA'C'}}{S_{SAC}} = \frac{S_{SA'C'}}{S_{SAC}} = \frac{S_{SA'I}}{S_{SAC}} + \frac{S_{SC'I}}{S_{SAC}} = \frac{S_{SA'C'}}{S_{SAC}} = \frac{S_{SA'C'}}{S_{S$$

$$\Leftrightarrow \frac{SA'}{2SA} \cdot \frac{SI}{SO} + \frac{SC'}{2SC} \cdot \frac{SI}{SO} = \frac{SA'}{SA} \cdot \frac{SC'}{SC} \Leftrightarrow \frac{SI}{2SO} \left(\frac{SA'}{SA} + \frac{SC'}{SC} \right) = \frac{SA'}{SA} \cdot \frac{SC'}{SC} \Leftrightarrow \frac{SA}{SA'} + \frac{SC}{SC'} = 2 \cdot \frac{SO}{SI}.$$

Turong tự:
$$\frac{SB}{SB'} + \frac{SD}{SD'} = 2.\frac{SO}{SI}$$

Suy ra:
$$\frac{SB}{SB'} + \frac{SD}{SD'} - \frac{SC}{SC'} = \frac{SA}{SA'} = \frac{3}{2}$$
.

Câu 37: Cho hình chóp S.ABCD. Gọi M, N, P, Q, R, T lần lượt là trung điểm AC, BD, BC, CD, SA , SD. Bốn điểm nào sau đây đồng phẳng?

A. M, N, R, T.

B. P, Q, R, T.

C. M, P, R, T. **D.** M, Q, T, R.

Lời giải

Ta có RT là đường trung bình của tam giác SAD nên $RT/\!/AD$.

MQ là đường trung bình của tam giác ACD nên MQ//AD.

Suy ra RT//MQ. Do đó M, Q, R, T đồng phẳng.

Câu 38: Trong mặt phẳng tọa độ Oxy, cho điểm A(3;-1). Tìm tọa độ điểm B sao cho điểm A là ảnh của điểm B qua phép tịnh tiến theo véctor $\vec{u}(2;-1)$.

A. B(1;0).

B. B(5;-2). **C.** B(1;-2). **D.** B(-1;0).

Ta có
$$T_{\vec{u}}(B) = A \Leftrightarrow \overrightarrow{BA} = \vec{u} \Leftrightarrow \begin{cases} 3 - x = 2 \\ -1 - y = -1 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 0 \end{cases} \Rightarrow B(1;0).$$

Câu 39: Cho hình thang ABCD, với $\overrightarrow{CD} = -\frac{1}{2}\overrightarrow{AB}$. Gọi I là giao điểm của hai đường chéo AC và BD

. Xét phép vị tự tâm I tỉ số k biến \overline{AB} thành \overline{CD} . Mệnh đề nào sau đây là đúng?

A.
$$k = 2$$
.

B.
$$k = -\frac{1}{2}$$
. **C.** $k = \frac{1}{2}$. **D.** $k = -2$.

C.
$$k = \frac{1}{2}$$
.

D.
$$k = -2$$
.

Lời giải

Từ giả thiết, suy ra
$$\begin{cases} V_{(I,k)}(A) = C \\ V_{(I,k)}(B) = D \end{cases} \Leftrightarrow \begin{cases} \overrightarrow{IC} = k \overrightarrow{IA} \\ \overrightarrow{ID} = k \overrightarrow{IB} \end{cases}.$$

Suy ra $\overrightarrow{ID} - \overrightarrow{IC} = k \left(\overrightarrow{IB} - \overrightarrow{IA} \right) \Leftrightarrow \overrightarrow{CD} = k \overrightarrow{AB}$. Kết hợp giả thiết suy ra $k = -\frac{1}{2}$.

Câu 40: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây đúng?

A. d qua S và song song với DC.

B. d qua S và song song với AB.

C. d qua S và song song với BD.

D. d qua S và song song với BC.

Lời giải

Ta có
$$\begin{cases} AD \subset (SAD) \\ BC \subset (SAC) \\ d = (SAD) \cap (SAC) \end{cases} \Rightarrow d//BC$$

$$AD//BC$$

(Theo hệ quả của định lý 2: Giao tuyến của ba mặt phẳng).

Câu 41: Trong mặt phẳng với hệ trục tọa độ Oxy. Cho đường thẳng $\Delta: x+2y-1=0$ và điểm I(1;0).

Phép vị tự tâm I tỉ số k biến đường thẳng Δ thành Δ' có phương trình là

A.
$$x + 2y - 1 = 0$$
.

B.
$$2x - y + 1 = 0$$
.

C.
$$x + 2y + 3 = 0$$
. **D.** $x - 2y + 3 = 0$.

D.
$$x-2v+3=0$$
.

Lời giải

Nhận thấy, tâm vị tự I thuộc đường thẳng Δ nên phép vị tự tâm I tỉ số k biến đường thẳng Δ thành chính nó. Vậy Δ' có phương trình là: x + 2y - 1 = 0.

	A. (4;8).	B. (-3;4).	C. (-4; -8).	D. (4;-8).	
	Lời giải				
	$M' = V_{(O,-2)}(M) \Leftrightarrow \overrightarrow{OM'} = -2\overrightarrow{OM} = -2(-2;4) = (4;-8) \Rightarrow M'(4;-8)$.				
Câu 43:	Chọn khẳng định sai trong các khẳng định sau? A. Nếu ba điểm phân biệt M, N, P cùng thuộc hai mặt phẳng phân biệt thì chúng thẳng hàng. B. Hai mặt phẳng có một điểm chung thì chúng còn có vô số điểm chung khác nữa. C. Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất. D. Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất. Lời giải				
	Hai mặt phẳng có một đ thẳng chung \Rightarrow B sai.	iểm chung thì chúng có	thể trùng nhau. Khi đó	, chúng có vô số đường	
Câu 44:	Trong mặt phẳng tọa độ	Oxy, cho đường thẳng	d: 3x - y + 2 = 0. Viết p	hương trình đường thẳng	
	d' là ảnh của d qua phép quay tâm O góc quay -90° . A. $d': 3x - y - 6 = 0$. B. $d': x - 3y - 2 = 0$. C. $d': x + 3y + 2 = 0$. D. $d': x + 3y - 2 = 0$. Lời giải				
	Qua phép quay tâm O góc quay -90° đường thẳng d biến thành đường thẳng d' vuông giái với d .				
	Phương trình đường thẳng d' có dạng: $x + 3y + m = 0$.				
	Lấy $A(0;2) \in d$. Qua phép quay tâm O góc quay -90° , điểm $A(0;2)$ biến thành điểm $B(2;0) \in d'$. Khi đó $m=-2$.				
	Vậy phương trình đường d' là $x+3y-2=0$.				
Câu 45:	Cho hình bình hành $ABCD$. Gọi Bx , Cy , Dz là các đường thẳng song song với nhau lần lượt đi qua B , C , D và nằm về một phía của mặt phẳng $(ABCD)$ đồng thời không nằm trong mặt				
	phẳng $(ABCD)$. Một mặt phẳng đi qua A cắt Bx , Cy , Dz lần lượt tại B' , C' , D' với $BB' = 2$, $DD' = 4$. Khi đó độ dài CC' bằng bao nhiều?				
	A. 5.	B. 6.	C. 3. i giải	D. 4.	

Câu 42: Trong mặt phẳng (Oxy) cho điểm M(-2;4). Phép vị tự tâm O tỉ số k=-2 biến điểm M thành

điểm nào trong các điểm sau?

Gọi O là tâm của hình bình hành ABCD. Dựng đường thẳng qua O song song BB' và cắt B'D'

Theo cách dựng trên, ta có OO' là đường trung bình của hình thang BB'D'D

$$\Rightarrow OO' = \frac{BB' + DD'}{2} = 3$$
.

Ngoài ra ta có OO' là đường trung bình của tam giác ACC' $\Rightarrow CC' = 2OO' = 6$.

Câu 46: Cho tứ giác lồi *ABCD* và điểm S không thuộc mp (*ABCD*). Có nhiều nhất bao nhiều mặt phẳng xác định bởi các điểm A, B, C, D, S?

A. 5.

B. 6.

C. 7.

D. 8.

Lời giải

Có $C_4^2 + 1 = 7$ mặt phẳng.

Câu 47: Trong mặt phẳng với hệ trục tọa độ Oxy. Cho phép tịnh tiến theo $\vec{v} = (-2, -1)$, phép tịnh tiến theo \vec{v} biến parabol (P): $y = x^2$ thành parabol (P'). Khi đó phương trình của (P') là?

A.
$$y = x^2 + 4x + 3$$
. **B.** $y = x^2 - 4x + 5$. **C.** $y = x^2 + 4x + 5$. **D.** $y = x^2 + 4x - 5$.

B.
$$y = x^2 - 4x + 5$$
.

C.
$$y = x^2 + 4x + 5$$
.

D.
$$y = x^2 + 4x - 5$$

Lời giải

Theo định nghĩa ta có biểu thức tọa độ của phép tịnh tiến là:

$$\begin{cases} x' = x + a = x - 2 \\ y' = y + b = y - 1 \end{cases} \Leftrightarrow \begin{cases} x = x' + 2 \\ y = y' + 1 \end{cases}.$$

Thay vào phương trình đường thẳng (P) ta có: $y = x^2 \Leftrightarrow y' + 1 = (x' + 2)^2 \Leftrightarrow y' = x'^2 + 4x' + 3$.

Vậy: phép tịnh tiến theo \vec{v} biến parabol (P): $y = x^2$ thành parabol (P'): $y = x^2 + 4x + 3$.

Câu 48: Cho tứ diện ABCD, G là trọng tâm $\triangle ABD$ và M là điểm trên cạnh BC sao cho BM = 2MC. Đường thẳng MG song song với mặt phẳng

A.
$$(ACD)$$
.

B. (ABC).

C. (*ABD*).

D. (*BCD*).

Gọi P là trung điểm AD

Ta có:
$$\frac{BM}{BC} = \frac{BG}{BP} = \frac{3}{2} \Rightarrow MG//CP \Rightarrow MG//(ACD)$$
.

- Câu 49: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O. M là trung điểm của OC, Mặt phẳng (α) qua M song song với SA và BD. Thiết diện của hình chóp với mặt phẳng (α) là:
 - A. Hình tam giác.
- B. Hình bình hành.
- C. Hình chữ nhật.
- D. Hình ngũ giác.

Lời giải

Ta có:
$$\begin{cases} M \in (\alpha) \cap (ABCD) \\ (\alpha)//BD \subset (ABCD) \end{cases} \Rightarrow (\alpha) \cap (ABCD) = EF//BD \ (M \in EF, E \in BC, F \in CD).$$
 Lại có:
$$\begin{cases} M \in (\alpha) \cap (SAC) \\ (\alpha)//SA \subset (SAC) \end{cases} \Rightarrow (\alpha) \cap (SAC) = MN//SA(N \in SC).$$

Lại có:
$$\begin{cases} M \in (\alpha) \cap (SAC) \\ (\alpha)//SA \subset (SAC) \end{cases} \Rightarrow (\alpha) \cap (SAC) = MN//SA(N \in SC).$$

Vậy thiết diện cần tìm là tam giác NEF.

Câu 50: Cho tứ diện ABCD có các cạnh cùng bằng a, M là điểm thuộc cạnh AC sao cho 2MC = MA, N là trung điểm của AD, E là điểm nằm trong tam giác BCD sao cho (MNE)/AB. Gọi S là diện tích thiết diện của hình tứ diện khi cắt bởi mặt phẳng (MNE). Mệnh đề nào sau đây đúng?

A.
$$S = \frac{5a^2\sqrt{51}}{72}$$
. **B.** $S = \frac{5a^2\sqrt{51}}{144}$. **C.** $S = \frac{7a^2\sqrt{3}}{48}$. **D.** $S = \frac{7a^2\sqrt{6}}{72}$.

B.
$$S = \frac{5a^2\sqrt{51}}{144}$$

C.
$$S = \frac{7a^2\sqrt{3}}{48}$$

D.
$$S = \frac{7a^2\sqrt{6}}{72}$$

Lời giải

Do mặt phẳng (MNE)//AB nên $(ABD) \cap (MNE) = NP//AB(P \in PD)$, $(ABC) \cap (MNE) = MQ//AB(Q \in BC)$.

Thiết diện cần tìm là hình thang cân MNPQ . Gọi H là chân đường cao kẻ từ M .

Ta có
$$MQ = \frac{a}{3}$$
; $NP = \frac{a}{2} \Rightarrow NH = \frac{1}{2} \left(\frac{a}{2} - \frac{a}{3}\right) = \frac{a}{12}$

Do đó $MH = \sqrt{MN^2 - NH^2}$.

Trong tam giác MCD có $MD^2 = MC^2 + CD^2 - 2MC.CD.\cos 60^\circ = \frac{7a^2}{9} \Rightarrow MD = \frac{a\sqrt{7}}{3}$.

Do $M\!N$ là trung tuyến của tam giác $AM\!D$ nên

$$MN^2 = \frac{AM^2 + MD^2}{2} - \frac{AD^2}{4} = \frac{13a^2}{36} \Rightarrow MN = \frac{a\sqrt{13}}{6}.$$

Suy ra $MH = \frac{\sqrt{51}}{12}$.

Vậy diện tích cần tìm là: $S = \frac{1}{2} \left(\frac{a}{2} + \frac{a}{3} \right) \cdot \frac{\sqrt{51}a}{12} = \frac{5a^2 \sqrt{51}}{144}$.