$$Z_{\alpha}$$
) $B = \frac{2\pi}{N}$, $N \in \{25, 50, 100, 200, 400\}$, $\lambda = 2\pi$

N	B
25	.751
50	.126
100	,063
200	.031
400	,016

As expected, B decreases as

2c.) $\lambda = 2\pi$, c = 1, h = .1, $\sigma = .5$ $1 - \sigma + \sigma \cos B$ $1 - .5 + .5 \cos A = .9975$ Fou: $|9| = \sqrt{11 - r + \sigma \cos B^2} + ... (\sigma \sin B)^2}$ $\sigma^2 \sin^2 B = .00249$ $= \sqrt{.9975/^2 + \sigma^2 \sin^2 B}$ $= \sqrt{.995 + .00249}$ $|3| = .99875^N = N = \frac{10.5}{10.99875} = .555$ $99875^N = .5$

First order upwind requires 555 steps before the amplitude is a of the exact solution.

$$|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta} + |\sigma \sin \beta|^{2}$$

$$|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta} + |\sigma \sin \beta|^{2}$$

$$|S| = \sqrt{|S|^{2} + (\sigma \sin \beta)^{2}}$$

Lox-wendroff requires 296247 steps before the amplitude is to of the exact solution.

2d.) Fou: 191=11-0+0cos Bit + 10sin Bi

 $|g| = \sqrt{||-\sigma^2 + \sigma^2 \cos B|^2 + (\sigma \sin B)^2}$ $|g| = \sqrt{9999972602}$

. 99999 72607 = \((1-.5+.5cosh)2+(.5sinh)2

,99999 45204= (,5+,5cos/h))2+ (,5sin(h))2

h= .0043

27h

This h will require 1462 points in each dimension.

In 3D, our number of points becomes N3, Lax-Wendroff becomes advantageous as you add dimensions becomes the number of required points is significantly lower.