Machine Learning

Session 9 Linear Models for Classification

Introduction

Logistic Regression

Multi-class (soft-max) Logistic Regression

Material taken from Bishop (chapter 4.1.1; 4.1.2,4.1.3, 4.2 (only introduction),4.3, 4.3.2, 4.3.4 and

Classification in context

What digit is this? How can I predict this? What are my input features?

Is this a dog? How can I predict this? What are my input features?

Am I going to pass the exam? How can I predict this? What are my input features?

Discriminative approach:

- Learn the boundary parameters directly
- Examples: Support Vector Machines, logistic regression, SoftMax ...

Generative approach:

- Model the distribution of inputs characteristic of the class $p(\mathbf{x}|y=k)$ and apply Bayes rule
- Better interpretability
- Usually requires more parameters to learn
- Examples: Gaussian models with shared covariances, Naïve Bayes

Linear discriminant functions:

Decision function

$$h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + w_0$$

Classification

if
$$h_{\mathbf{w}}(\mathbf{x}) \geq 0$$
 then \mathbf{x} belongs to class + 1

if
$$h_{\mathbf{w}}(\mathbf{x}) < 0$$
 then \mathbf{x} belongs to class -1

- Decision surface is a hyperplane of D-1 dims, equation $h_{\mathbf{w}}(\mathbf{x})=0$
- **w** is the normal vector to the plane, pointing to the +1 class
- w_0 determines de location of the decision surface

R

Linear discriminant functions:

- Two dimensional example: $h_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1$
- The value $h_{\mathbf{w}}(\mathbf{x})$ gives a **signed** measure of the distance r of \mathbf{x} to the decision surface

$$r = \frac{h_{\mathbf{w}}(\mathbf{x})}{\|\mathbf{w}\|}$$

As in linear regression, we introduce dummy input $x_0 = 1$ and define w_0 as an extra parameter:

$$h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x}$$

3D Example:

$$h_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2$$

Note: $h_{\mathbf{w}}(\mathbf{x})$ gives an ordered (and signed) value according to the distance from the point \mathbf{x} to the hyperplane $h_{\mathbf{w}}(\mathbf{x}) = 0$

Can we do classification using least-squares regression?

Naïve (and wrong) choice:

- Suppose we have a binary problem $y \in \{-1,1\}$
- Use the class output directly as target variable
- Assuming the standard model used for regression:

$$h_w(\mathbf{x}) = \mathbf{w}^\mathsf{T} \mathbf{x}$$

- We obtain $\mathbf{w} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$
- The loss to minimize:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)})^{2}$$

How do I compute a label for a new example?

Our linear classifier can be the sign of $h_{\mathbf{w}}(\mathbf{x})$

The *linear* boundary: $w_0 + \mathbf{w}^T \mathbf{x} = 0$ separates the space into two "half-spaces": in 1D is a value, in 2D is a line, in 3D a plane, etc

Naïve (and wrong) choice: simply do a linear regression from x to y by minimizing the least squares error:

- Least-squares solution decision (wrong choice)
- Logistic regression decision (explained later)

Logistic regression

Instead of sign we take the **Logistic function:**

$$\sigma(a) = \frac{1}{1 + \exp(-a)} = \frac{\exp(a)}{\exp(a) + 1}$$

- Bounded between zero and one
- Symmetric $\sigma(-a) = 1 \sigma(a)$
- Continuous and differentiable
- Its derivative is simple

$$\sigma'(a) = \sigma(a) (1 - \sigma(a))$$

Logistic regression

 Our classifier adds a "new layer". It "squashes" the result of the linear mapping using the logistic function

$$h_{\mathbf{w}}(\mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$
 with $\sigma(a) = \frac{1}{1 + \exp(-a)}$

We are not increasing the number of parameters!

• The output $h_{\mathbf{w}}$ is a **smooth** function of the inputs \mathbf{x} (each coordinate a feature) and the weights \mathbf{w} (a parameter for each feature)

Logistic regression: intuitions

point			class	wTx=x1+x2+0	h_w(x)
x1	-0,50	-0,50	0	-1	0,2689
x2	-1,00	0,25	0	-0,75	0,3208
х3	0,50	0,50	1	1	0,7311
x4	-0,25	1,00	1	0,75	0,6792
x5	1,00	1,00	1	2	0,8808

NOTE: points far from the decision surface are close to zero or close to one. Vector **w** points to the class '1'

- Logistic regression: Probabilistic interpretation
 - For a binary class problem, the logistic sigmoid can be interpreted as posterior probabilities
 - Remember Bayes' Theorem

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)} = \frac{1}{1 + \frac{p(\mathbf{x}|C_2)p(C_2)}{p(\mathbf{x}|C_1)p(C_1)}}$$
$$= \frac{1}{1 + \exp(-a)}$$

for
$$a = \ln \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)} = \ln \frac{p(C_1|\mathbf{x})}{p(C_2|\mathbf{x})} + \ln \frac{p(C_1)}{p(C_2)}$$

$$h_{\mathbf{w}}(\mathbf{x}) = p(C_1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Logistic regression learning (parameter estimation)

For a dataset
$$\{\mathbf{x}^{(n)}, y^{(n)}\}\$$
, where $y^{(n)} \in \{0,1\}$, $n = 1, ..., N$

- Probabilistic interpretation: Outputs $y^{(n)}$ are Bernoulli variables
 - value 1 with probability *p*
 - value 0 with probability 1 p

Ber(Y):
$$P(Y = y) = p^{y}(1-p)^{1-y}$$
, $y = 0.1$

The probabilities are approximated using the logistic model

$$p(y|\mathbf{x}, \mathbf{w}) = h_{\mathbf{w}}(\mathbf{x})^{y} (1 - h_{\mathbf{w}}(\mathbf{x}))^{1-y}$$

where
$$h_{\mathbf{w}}(\mathbf{x}^{(n)}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Logistic regression learning (parameter estimation)

For a dataset
$$\{\mathbf{x}^{(n)}, y^{(n)}\}\$$
, where $y^{(n)} \in \{0,1\}$, $n = 1, ..., N$

 The likelihood function (to be maximized) of the parameters w for the entire dataset can be written (for i.i.d. examples)

$$p(\mathbf{y}|\mathbf{X},\mathbf{w}) = \prod_{n=1}^{N} h_{\mathbf{w}}(\mathbf{x}^{(n)})^{y^{(n)}} \left(1 - h_{\mathbf{w}}(\mathbf{x}^{(n)})\right)^{1 - y^{(n)}}$$

where
$$h_{\mathbf{w}}(\mathbf{x}^{(n)}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)})$$

Logistic regression learning (parameter estimation)

For a dataset
$$\{\mathbf{x}^{(n)}, y^{(n)}\}\$$
, where $y^{(n)} \in \{0,1\}$, $n = 1, ..., N$

 The likelihood function (to be maximized) of the parameters w for the entire dataset can be written (for i.i.d. examples)

$$p(\mathbf{y}|\mathbf{X},\mathbf{w}) = \prod_{n=1}^{N} h_{\mathbf{w}}(\mathbf{x}^{(n)})^{y^{(n)}} \left(1 - h_{\mathbf{w}}(\mathbf{x}^{(n)})\right)^{1 - y^{(n)}}$$

where
$$h_{\mathbf{w}}(\mathbf{x}^{(n)}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)})$$

 Taking logs and changing sign we obtain the error function (to be minimized). Also known as (binary) cross-entropy

$$E(\mathbf{w}) = -\sum_{n=1}^{N} y^{(n)} \ln h_{\mathbf{w}}(\mathbf{x}^{(n)}) + (1 - y^{(n)}) \ln \left(1 - h_{\mathbf{w}}(\mathbf{x}^{(n)})\right)$$

Logistic regression learning (parameter estimation)

For a dataset $\{\mathbf{x}^{(n)}, y^{(n)}\}\$, where $y^{(n)} \in \{0,1\}$, n = 1, ..., N

 Taking logs and changing sign we obtain the error function (to be minimized). Also known as (binary) cross-entropy

$$E(\mathbf{w}) = -\sum_{n=1}^{N} y^{(n)} \ln h_{\mathbf{w}}(\mathbf{x}^{(n)}) + (1 - y^{(n)}) \ln \left(1 - h_{\mathbf{w}}(\mathbf{x}^{(n)})\right)$$
where $h_{\mathbf{w}}(\mathbf{x}^{(n)}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)})$

- No closed-form solution for w
- The gradient of the error function with respect to w

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)}) \cdot \mathbf{x}^{(n)}$$

similar form as the gradient of the least-squares linear regression

Application of Gradient Descent for Logistic regression

D. Mackay book (pag. 477)

Notation differences:

$$\alpha \rightarrow \eta$$
 $E(\mathbf{w}) \rightarrow G(\mathbf{w})$
 $|\mathbf{w}| \rightarrow E_{W}(\mathbf{w})$
 $y \rightarrow a$
 $h_{\mathbf{w}} \rightarrow y$

The magnitude of the weights **increases** with the number of iterations (remember **overfitting**)

Figure 39.4. A single neuron learning to classify by gradient descent. The neuron has two weights w₁ and w₂ and a bias w₀. The learning rate was set to η = 0.01 and batch-mode gradient descent was performed using the code displayed in algorithm 39.5. (a) The training data. (b) Evolution of weights w₀, w₁ and w₂ as a function of number of iterations (on log scale). (c) Evolution of weights w₁ and w₂ in weight space. (d) The objective function G(w) as a function of number of iterations. (e) The magnitude of the weights E_W(w) as a function of time. (f-k) The function performed by the neuron (shown by three of its contours) after 30, 80, 500, 3000, 10 000 and 40 000 iterations. The contours shown are those corresponding to a = 0, ±1, namely y = 0.5, 0.27 and 0.73. Also shown is a vector proportional to (w₁, w₂). The larger the weights are, the bigger this vector becomes, and the closer together are the contours.

Multi-Class Classification Classifying more than 2 classes

Output representation (one-hot encoding)

vectors $\mathbf{y}^{(n)}$ (1-of-K) with $y_k^{(n)}=1$ if $\mathbf{x}^{(n)}$ belongs to class k, and $y_k^{(n)}=0$ otherwise

Example: K = 3 classes $\rightarrow y = [0,0,1]^T$ for an example of class 3

- Naïve (and again wrong) choice: simply do a linear regression from x to y by minimizing the least squares error:
 - Assumes that the target data is generated according to a Gaussian
 - Conditioning on x, the targets y are far from being Gaussian
 - 3- class example

(wrong)

Multi-Class Logistic Regression (explained later)

- Logistic regression for multiple classes (soft-max)
- Generalization to K > 2 classes
- Soft-max function generalizes logistic function.
 It "squashes" K numbers (scores) exponential function
 Provides K normalized (between 0 and 1) outputs

$$\operatorname{softmax}(\mathbf{a}) = \frac{\exp(a_k)}{\sum_{j=1}^K \exp(a_j)}$$

The soft-max function is a "soft" version of the argmax function

- Logistic regression for multiple classes (soft-max)
- Generalization to K > 2 classes
- Soft-max function generalizes logistic function.
 Using a linear model

$$h_{\mathbf{w}}(\mathbf{x}^{(n)}) = p(y_k = 1|\mathbf{x}) = \frac{\exp(\mathbf{w}_k^{\mathsf{T}}\mathbf{x})}{\sum_{j=1}^K \exp(\mathbf{w}_j^{\mathsf{T}}\mathbf{x})}$$

• Requires k parameter vectors $\mathbf{w}_1, ..., \mathbf{w}_K$ (including respective biases $\mathbf{w}_{01}, ..., \mathbf{w}_{0k}$)

We represent them as a matrix **W** of size $(D + 1) \times K$

- Logistic regression for multiple classes (soft-max)
- Generalization to K > 2 classes
- Soft-max function generalizes logistic function.
 As before, outputs can also be interpreted as posterior probabilities

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_{j=1}^K p(\mathbf{x}|C_j)p(C_j)}$$
$$= \frac{\exp(a_k)}{\sum_{j=1}^K \exp(a_j)}$$

for
$$a_k = \ln p(\mathbf{x}|C_k)p(C_k)$$

Logistic regression for multiple classes (soft-max)

Cross-Entropy Error for parameters $\mathbf{W} = [\mathbf{w}_1, ..., \mathbf{w}_K]$:

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} y_k^{(n)} \ln h_{\mathbf{w}}(\mathbf{x}^{(n)})$$

where
$$h_{\mathbf{w}}(\mathbf{x}^{(n)}) = \operatorname{softmax}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)})$$

Again, no closed-form solution for w

Optimization is performed by Gradient Descent

$$\nabla_{\mathbf{w}_k} E(\mathbf{W}) = \sum_{n=1}^N \left(h_k^{(n)} - y_k^{(n)} \right) \cdot \mathbf{x}^{(n)}$$

Multiple classes:

Multi-class Logistic Regression: K linear functions followed by the soft-max (using explicit bias term w_{k0} notation)

$$h_k(\mathbf{x}) = \operatorname{softmax} (\mathbf{w}_k^\mathsf{T} \mathbf{x} + w_{k0})$$
 assign \mathbf{x} to class C_k if $h_k(\mathbf{x}) > h_l(\mathbf{x})$ for all $l \neq k$

- Decision regions are hyperplanes $(\mathbf{w}_k \mathbf{w}_l)^{\mathsf{T}} \mathbf{x} + (w_{k0} w_{l0}) = 0$
- Always singly connected and convex

$$y_k(\mathbf{x}) > y_l(\mathbf{x})$$
, for all $l \neq k$

Example: Green Points $\rightarrow C_1$, Red $\rightarrow C_2$, Blue $\rightarrow C_3$ What is the discriminant function of each class? And the decision surface?

Green line is the **discriminator** of class 1:

Take a green point, always:

$$h_1(\text{green}) \ge h_i(\text{green}), i = 2,3$$

(using explicit bias term w_{k0} notation)

The same for red and blue

Decision boundaries (or D. Regions):

$$DB_{12}\{x \mid h_1(\mathbf{x}) = h_2(\mathbf{x})\}: (\mathbf{w}_1 - \mathbf{w}_2)^{\mathsf{T}}\mathbf{x} + (w_{10} - w_{20}) = 0$$
 is a Hyperplane

- Similarly, DB₁₃ and DB₂₃
- The regions are **convex**

Summary

• Least-Squares Linear Classifier (wrong):

Model
$$h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} \text{ (or } sign \text{ of)}$$

Least-Squares Error $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)} \right)^{2}$
Gradient $\frac{\partial \mathbb{E}(\mathbf{w})}{\partial w_{j}} = \sum_{n=1}^{N} \left(h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)} \right) x_{j}^{(n)}$

• Binary Logistic Regression (one output $\in [0, 1]$):

Model
$$h_{\mathbf{w}}(\mathbf{x}) = P(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x}), \text{ where } \sigma(a) = \frac{1}{1+e^{-a}}$$

Cross-entropy error $E(\mathbf{w}) = -\sum_{n=1}^{N} \left(y^{(n)} \ln h_{\mathbf{w}}(\mathbf{x}^{(n)}) + (1-y^{(n)}) \ln(1-h_{\mathbf{w}}(\mathbf{x}^{(n)}))\right)$
Gradient $\frac{\partial \mathbb{E}(\mathbf{w})}{\partial w_j} = \sum_{n=1}^{N} \left(h_{\mathbf{w}}(\mathbf{x}^{(n)}) - y^{(n)}\right) x_j^{(n)}$

• Multi-Class Logistic Regression (K outputs, one-hot encoding):

Model
$$h_{\mathbf{W}_{k}}(\mathbf{x}) = P(\mathcal{C}_{k}|\mathbf{x}) = \operatorname{softmax}(\mathbf{w}_{k}^{\top}\mathbf{x}) = \frac{e^{\mathbf{w}_{k}^{\top}\mathbf{x}}}{\sum_{j=1}^{K} e^{\mathbf{w}_{j}^{\top}\mathbf{x}}}$$
Cross-entropy error
$$E(\mathbf{W}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} y_{k}^{(n)} \ln h_{\mathbf{W}_{k}}(\mathbf{x}^{(n)})$$
Gradient
$$\frac{\partial \mathbb{E}(\mathbf{W})}{\partial \mathbf{w}_{j}} = \sum_{n=1}^{N} \left(h_{j}^{(n)} - y_{j}^{(n)}\right) x_{j}^{(n)}$$