Definite Integrals and Applications of Integrals

AI24BTECH11013-Geetha charani

I. G.Comprehension Based Questions

A. PASSAGE-1

Let the definite integral be defined by the formula $\int_a^b f(x) dx = \frac{b-a}{2} (f(a) + f(b))$. For a more accurate result for $c \in (a,b)$, we can use $\int_a^b f(x) dx =$ $\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = F(c) \text{ so that for } c = \frac{a+b}{2},$ we get $\int_a^b f(x) dx = \frac{b-a}{4} (f(a) + f(b) + 2f(c)).$

1)
$$\int_0^{\frac{\pi}{2}} \sin x \, dx =$$
 (2006- 5M -2)

- (a) $\frac{\pi}{8}(1 + \sqrt{2})$ (b) $\frac{\pi}{4}(1 + \sqrt{2})$ (c) $\frac{\pi}{8\sqrt{2}}$ (d) $\frac{\pi}{4\sqrt{2}}$

- 2) $\lim_{x\to a} \frac{\int_a^x f(t)dt (\frac{x-a}{2})(f(x)+f(a))}{(x-a)^3} = 0$, then f(x) is of maximum degree (2006-5M-2)
 - (a) 4
 - (b) 3
 - (c) 2
 - (d) 1
- 3) If $f''(x) < 0 \ \forall \ x \in (a, b)$ and c is a point such that a < c < b, and (c, f(c)) is the point lying on the curve for which F(c) is maximum, then f'(c) is equal to (2006-5M-2)
 - (a) $\frac{f(b)-f(a)}{a}$
 - (b) $\frac{2(f(b)-f(a))}{(b)-f(a)}$
 - (c) $\frac{2f(b)-\overline{f(a)}}{2f(b)-f(a)}$
 - (d) 0

B. PASSAGE - 2

Consider the functions defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line. If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real-valued differentiable function y = f(x). If $x \in (-2, 2)$, the equation implicitly defines a unique real valued differentiable function y = g(x) satisfying g(0) = 0.

4) If $f(-10\sqrt{2}) = 2\sqrt{2}$, then $f''(-10\sqrt{2}) = 2008$

- 5) The area of the region bounded by the curve y = f(x), the x-axis, and the lines x = a and x = b, where $-\infty < a < b < -2$, is 2008

1

- a) $\int_{a}^{b} \frac{x}{3((f(x))^{2}-1)} dx + bf(b) af(a)$ b) $-\int_{a}^{b} \frac{x}{3((f(x))^{2}-1)} dx + bf(b) af(a)$ c) $\int_{a}^{b} \frac{x}{3((f(x))^{2}-1)} dx bf(b) + af(a)$ d) $-\int_{a}^{b} \frac{x}{3((f(x))^{2}-1)} dx bf(b) + af(a)$
- 6) $\int_{-1}^{1} g'(x) dx =$ 2008
 - a) 2g(-1)
 - b) 0
 - c) -2g(1)
 - d) 2g(1)

C. PASSAGE-3

Consider the function $f: (-\infty, \infty) \to (-\infty, \infty)$ defined by $f(x) = \frac{x^2 - ax + 1}{x^2 + ax + 1}$, 0 < a < 2. 7) Which of the following is true?

- 2008
 - a) $(2+a)^2 f''(1) + (2-a)^2 f''(1)$
 - b) $(2+a)^2 f''(1) (2-a)^2 f''(1)$
 - c) $f'(1)f'(-1) = (2-a)^2$
 - d) $f'(1)f'(-1) = -(2+a)^2$
- 8) Which of the following is true? 2008
 - a) f(x) is decreasing on (-1, 1) and has a local minimum at x=1
 - b) f(x) is increasing on (-1, 1) and has a local minimum at x=1
 - c) f(x) is increasing on (-1, 1) but has neither a local maximum nor a local minimum at x=1
 - d) f(x) is decreasing on (-1, 1) but has neither a local maximum nor a local minimum at
- 9) Let $g(x) = \int_0^{e^x} \frac{f'(t)}{1+t^2} dt$. Which of the following
 - a) g'(x) is positive on $(-\infty, 0)$ and negative on $(0,\infty)$

- b) g'(x) is negative on $(-\infty, 0)$ and positive on $(0, \infty)$
- c) g'(x) changes sign on both $(-\infty, 0)$ and $(0, \infty)$
- d) g'(x) does not change sign on $(-\infty, \infty)$

D. PASSAGE-4

Consider the polynomial $f(x) = 1 + 2x + 3x^2 + 3x$ $4x^3$. Let s be the sum of all distinct real roots of f(x) and let t = |s|. 2010

- 10) The real numbers lies in the interval
 - a) $\left(-\frac{1}{4}, 0\right)$
 - b) $(-11, -\frac{3}{4})$ c) $(-\frac{3}{4}, -\frac{1}{2})$ d) $(0, \frac{1}{4})$
- 11) The area bounded by the curve y = f(x) and the lines x = 0, y = 0 and x = t, lies in the interval

 - a) $(\frac{3}{4}, 3)$ b) $(\frac{21}{64}, \frac{11}{16})$ c) (9, 10)
 - d) $(0, \frac{21}{64})$
- 12) The function f'(x) is
 - a) increasing in $(-t, -\frac{1}{4})$ and decreasing in
 - b) decreasing in $(-t, -\frac{1}{4})$ and increasing in $(-\frac{1}{4},t)$
 - c) increasing in (-t, t)
 - d) decreasing in (-t, t)

E. PASSAGE-5

Given that for each $a \in (0, 1)$, $\lim_{h \to 0^+} \int_h^{1-h} t^{-a} (1$ $t)^{a-1} dt$ exists. Let this limit be g(a). In addition, it is given that the function g(a) is differentiable on (0, 1). JEE Adv.2014

- 13) The value of $g(\frac{1}{2})$ is
 - a) π
 - b) 2π
 - c) $\frac{\pi}{2}$ d) $\frac{\pi}{4}$
- 14) The value of $g'(\frac{1}{2})$ is

 - b) π
 - c) $-\frac{\pi}{2}$
 - d) 0