Canonical Correlation Analysis (CCA)

Foundations of Data Analysis

March 29, 2023

Example: Psych Measures vs. Test Scores

	locus_of_control	self_concept	motivation	read	write	math	science	female
0	-0.84	-0.24	1.00	54.8	64.5	44.5	52.6	1
1	-0.38	-0.47	0.67	62.7	43.7	44.7	52.6	1
2	0.89	0.59	0.67	60.6	56.7	70.5	58.0	0
3	0.71	0.28	0.67	62.7	56.7	54.7	58.0	0
4	-0.64	0.03	1.00	41.6	46.3	38.4	36.3	1

Example: Psych Measures vs. Test Scores

	locus_of_control	self_concept	motivation	read	write	math	science	female
0	-0.84	-0.24	1.00	54.8	64.5	44.5	52.6	1
1	-0.38	-0.47	0.67	62.7	43.7	44.7	52.6	1
2	0.89	0.59	0.67	60.6	56.7	70.5	58.0	0
3	0.71	0.28	0.67	62.7	56.7	54.7	58.0	0
4	-0.64	0.03	1.00	41.6	46.3	38.4	36.3	1

Question: Are these psychological measures related to scores on standardized tests?

Correlation

Covariance between two random samples: $x_i, y_i \in \mathbb{R}$

$$cov(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Measures how x "covaries" with y

Proportional to correlation:

$$corr(x, y) = \frac{cov(x, y)}{sd(x)sd(y)}$$

Pairwise Relationships

Pairwise Correlations:

0.3735 0.2106 0.0606

0.3588 0.2542 0.0194

0.3372 0.1950 0.0535

0.3246 0.1156 0.0698

Canonical Correlation Analysis (CCA)

Group your data table into two sets of variables/datasets:

$$X: n \times d_X$$
 $Y: n \times d_Y$

Find a single dimension in X and single dimension in Y that are maximally correlated.

CCA allows you to analyze correlations between two datasets.

CCA VS. PCA

- CCA focuses on finding linear combinations that account for the most correlation in two datasets.
- PCA focuses on finding linear combinations that account for the most variance in one data set.

CCA

Math of CCA

Unit vector in X data: $u \in \mathbb{R}^{d_X}$, ||u|| = 1Unit vector in Y data: $v \in \mathbb{R}^{d_Y}$, ||v|| = 1

Projected data:

$$\langle x_i - \mu_X, u \rangle, \qquad \langle y_i - \mu_Y, v \rangle$$

Or, using centered data matrices, \tilde{X} , \tilde{Y} :

$$\tilde{X}u$$
, $\tilde{Y}v$

Maximize correlation in projected data:

$$(u', v') = \underset{u,v}{\operatorname{arg max corr}} (\tilde{X}u, \tilde{Y}v)$$

Math of CCA

Let
$$\Sigma_{XX} = \operatorname{cov}(X, X)$$
, $\Sigma_{YY} = \operatorname{cov}(Y, Y)$, $\Sigma_{XY} = \operatorname{cov}(X, Y)$, $\Sigma_{YX} = \operatorname{cov}(Y, X)$

Goal: find u, v that maximize the correlation:

$$\rho = \frac{u^T \Sigma_{XY} v}{\sqrt{u^T \Sigma_{XX} u} \sqrt{v^T \Sigma_{YY} v}}$$

CCA Solution

u is the eigenvector with largest eigenvalue of

$$\sum_{XX}^{-1} \sum_{XY} \sum_{YY}^{-1} \sum_{YX}$$

v is the eigenvector with largest eigenvalue of

$$\Sigma_{YY}^{-1}\Sigma_{YX}\Sigma_{XX}^{-1}\Sigma_{XY}$$

Just like PCA, we can then proceed to find the dimensions with the **second most** correlation, etc.

Example: Psych vs. Test

Pairwise Correlations:

0.3735 0.2106 0.0606

0.3588 0.2542 0.0194

0.3372 0.1950 0.0535

0.3246 0.1156 0.0698

Example: Psych vs. Test

```
Psych Canonical Components:
```

Academic Canonical Components:

```
0 1
Read 0.617204 0.012375
Write 0.743148 0.676109
Math 0.253335 0.021393
Science -0.051115 -0.926878
```

- 0: First canonical component
- 1: Second canonical component

First Canonical Correlation = 0.4464364824283061Second Canonical Correlation = 0.15335902492287964

Example: Psych vs. Test

