Kolmiulotteisen avaruuden jakaminen aliavaruuksiin

Timo Heinonen LuK-tutkielma tietojenkäsittelytiede Turun yliopisto

Lokakuu 2016

Sisältö

1	Johdanto	2
2	Tietokonegrafiikan peruskäsitteitä	2
	2.1 Avaruus \mathbb{R}^3 ja objektit	. 2
	2.2 Näkyvyysongelma	. 2
	2.3 Ray-Tracing tekniikka	. 2
3	Aliavaruushierarkiat	2
	3.1 Binary Space Partitioning	. 2
	3.2 Bounding Volume Hierarchy	. 3
4	Renderoinnin optimoiminen aliavaruuksien avulla	3
	4.1 Aliavaruuspuuta käyttävä rekursiivinen Ray-Tracing algoritm	i 3

1 Johdanto

Hello World!

- 2 Tietokonegrafiikan peruskäsitteitä
- 2.1 Avaruus \mathbb{R}^3 ja objektit
- 2.2 Näkyvyysongelma
- 2.3 Ray-Tracing tekniikka

```
Algoritmi 2.1 (Ray-Tracing -algoritmi)

FOREACH pikselinäytöllä

FOREACH renderointiprimitiivi

ammu säde O+tD kamerasta pikselin läpi avaruuteen

IF säde osui primitiiviin

selvitä varjostus, valon heijastuminen, yms.

aseta pikselin väri primitiivin väriseksi

ELSE

aseta pikselin väri taustan väriseksi

ENDIF

ENDFOR
```

Lause 2.1 (Ray-Tracing algoritmin kompleksisuus) $Seh\ddot{a}n$ on: $O(se\ ny\ riippuu...)$

3 Aliavaruushierarkiat

3.1 Binary Space Partitioning

BSP

3.2 Bounding Volume Hierarchy

BVH

- 4 Renderoinnin optimoiminen aliavaruuksien avulla
- 4.1 Aliavaruuspuuta käyttävä rekursiivinen Ray-Tracing algoritmi