Analyzing the effect of multicollinearity and position of relevant components

STAT 360, 2019

Raju Rimal

april 10, 2023

Norges miljø- og biovitenskapelige universitet

Browsersync: connected

Linear Model

Relevant and irrelevant space in linear model

Linear Model

The Model:

$$egin{bmatrix} y \ \mathbf{x} \end{bmatrix} \sim \mathsf{N} \left(egin{bmatrix} \mu_y \ oldsymbol{\mu}_x \end{bmatrix}, egin{bmatrix} \sigma_y^2 & oldsymbol{\sigma}_{yx} \ oldsymbol{\sigma}_{xy} & oldsymbol{\Sigma}_{xx} \end{bmatrix}
ight)$$

Linear Regression:

$$y = \mu_y + oldsymbol{eta}^t(\mathbf{x} - oldsymbol{\mu}_x) + arepsilon, \; arepsilon \sim \mathsf{N}(0, \sigma^2)$$

Regression Coefficients:

$$oldsymbol{eta} = oldsymbol{\Sigma}_{xx}^{-1} oldsymbol{\sigma}_{xy}$$

Linear Model

Let us make a transformation as $z = \mathbf{R}x$ where \mathbf{R} is an orthogonal matrix, i.e. $\mathbf{R}^t = \mathbf{R}^{-1}$.

New Model

$$egin{bmatrix} y \ \mathbf{z} \end{bmatrix} \sim \mathsf{N} \left(egin{bmatrix} \mu_y \ oldsymbol{\mu}_z \end{bmatrix}, egin{bmatrix} \sigma_y^2 & oldsymbol{\sigma}_{yz} \ oldsymbol{\sigma}_{zy} & oldsymbol{\Sigma}_{zz} \end{bmatrix}
ight) = \mathsf{N} \left(egin{bmatrix} \mu_y \ oldsymbol{\mu}_z \end{bmatrix}, egin{bmatrix} \sigma_y^2 & oldsymbol{\sigma}_{yx} \mathbf{R}^t \ \mathbf{R} oldsymbol{\sigma}_{xx} \mathbf{R}^t \end{bmatrix}
ight)$$

Linear Regression

$$y = \mu_y + oldsymbol{lpha}^t(\mathbf{z} - oldsymbol{\mu}_z) + \epsilon, \; \epsilon \sim \mathsf{N}(0, au^2)$$

Regression Coefficients

$$oldsymbol{lpha} = \mathbf{R}oldsymbol{eta} = oldsymbol{\Sigma}_{zz}^{-1}oldsymbol{\sigma}_{zy} = \Lambda^{-1}oldsymbol{\sigma}_{zy} = \sum_{i=1}^p rac{\sigma_{z_iy}}{\lambda_i}$$

Simulation

Design gamma relpos 1 Design 1 0.1 1:5 2 Design 2 0.1 5:10 3 Design 3 1.2 1:5 4 Design 4 1.2 5:10

Relevant Components

Sample

Low Multicollinearity

Simulation

Design gamma relpos 1 Design 1 0.1 1:5 2 Design 2 0.1 5:10 3 Design 3 1.2 1:5 4 Design 4 1.2 5:10

Relevant Components

Components

Predictors

High Multicollinearity

Correlation Structure

Structure of Simulated Data

у	x.1	x.2	x.3	x.4	6	x.27	x.28	x.29	x.30
-1.162	-0.234	0.017	-0.242	0.033		0.054	0.013	-0.090	-0.015
0.395	-0.173	0.092	0.015	0.167		-0.072	0.306	0.124	-0.095
1.701	0.140	0.144	0.481	-0.021		-0.176	0.360	0.210	-0.089
0.849	0.117	0.011	0.229	-0.102		-0.061	0.030	0.020	0.005
-1.158	0.002	0.046	-0.282	0.002		0.082	-0.195	-0.084	-0.015
1.547	-0.219	-0.016	-0.543	-0.025		0.168	-0.259	-0.228	0.079
-0.782	0.223	-0.026	0.370	0.056		-0.073	0.115	0.190	-0.052
0.671	-0.052	0.120	0.097	0.064		-0.111	0.193	0.065	-0.049
-0.984	0.420	-0.091	0.355	-0.327		0.023	-0.182	-0.002	0.083
-0.179	0.002	-0.078	-0.153	-0.082		0.114	-0.135	-0.072	0.040

Prediction Performance

Principal Component Regression

Prediction Error from PCR Methods Averaged over 10 replicated fit

Prediction Performance

Partial Least Square Regression

Prediction Error from PLS Methods Averaged over 10 replicated fit

Error Comparison

Design	gamma	relpos	Method	Component	RMSEE	RMSEP
1	0.1	1:5	PCR	12	0.670	0.628
1	0.1	1:5	PLS	3	0.682	0.622
2	0.1	5:10	PCR	12	0.973	0.728
2	0.1	5:10	PLS	4	1.000	0.723
3	1.2	1:5	PCR	5	1.501	0.512
3	1.2	1:5	PLS	5	2.399	0.513
4	1.2	5:10	PCR	10	53.366	0.663
4	1.2	5:10	PLS	10	63.169	0.683

Estimation and Prediction Error

Prediction Error:

$$\mathsf{E}\left[(eta-\hat{eta})^t(X_\circ X_\circ^t)^{-1}(eta-\hat{eta})
ight]$$

Estimation Error:

$$\mathsf{E}\left[(eta-\hat{eta})^t(eta-\hat{eta})
ight]$$

References

Almøy, T. (1996). "A simulation study on comparison of prediction methods when only a few components are relevant". In: *Computational Statistics & Data Analysis* 21.1, pp. 87-107. DOI: 10.1016/0167-9473(95)00006-2. URL: https://doi.org/10.1016/0167-9473(95)00006-200006-2).

Helland, I. S. and T. Almøy (1994). "Comparison of prediction methods when only a few components are relevant". In: *Journal of the American Statistical Association* 89.426, pp. 583-591.

Helland, I. S., S. Sæbø, T. Almøy, et al. "Model and estimators for partial least squares regression". In: *Journal of Chemometrics*, p. e3044.

Rimal, R., T. Almøy, and S. Sæbø (2018). "A tool for simulating multi-response linear model data". In: *Chemometrics and Intelligent Laboratory Systems* 176, pp. 1-10.

Sæbø, S., T. Almøy, and I. S. Helland (2015). "simrel - A versatile tool for linear model data simulation based on the concept of a relevant subspace and relevant predictors". In: *Chemometrics and Intelligent Laboratory Systems*.

Installation

R-Package

```
install.packages("simrel")

if (!require(devtools)) install.packages("devtools")
devtools::install_github("simulatr/simrel")
```

Shiny Application

if (!require(simrel)) install.packages("simrel")
shiny::runGitHub("simulatr/AppSimulatr")

