Strategies for correlated covariates in distance sampling

David Lawrence Miller

CREEM, University of St Andrews

Covariates in distance sampling

- ► CDS: P(observing an object) depends on distance
- ▶ MCDS: what about other factors?
 - per animal (sex, size,...)
 - environmental effects (weather, time of day, habitat,...)
 - observer effects (individual, team, pilot,...)
 - (group size not addressed here)

Detection functions

Models of the form

$$g(x; \theta, z) = \mathbb{P}(\text{detected}|\text{observed } x, z_1, \dots, z_J)$$

- distances x
- \triangleright estimate parameters θ
- covariates z, that affect detection
- covariates enter model via scale parameter:

$$\sigma(z_1,\ldots,z_J)=\exp(\beta_0+\sum_j z_j\beta_j)$$

Constraints and particulars

- g has fixed functional form
- ▶ usually <5 covariates</p>
- covariates independent from distance (in population)
- ▶ inference on likelihood *conditional* on observed covars

What can go wrong?

- from linear model literature:
 - fitting problems
 - prediction fine
 - high(er) variance
 - non-interpretable covariates
- important for DS:
 - fitted values $(\hat{p}_i(\mathbf{z}_j))$ important
 - ► rarely "predict"
 - variance important
 - covariates are nuisance

Example

- half-normal detection function
- ▶ 1 "real" continuous covariate− beta(0.1,0.4)
- 2 correlated "fake" covariates
- select terms by AIC
- $ightharpoonup \sim$ 95 samples per realisation

Example - CV(p)

Stealing ideas from regression

- Obvious possibilities:
 - ▶ Ridge regression
 - Lasso
 - PCA
- Shrinkage methods require estimate shrinkage!
 - change in fitting procedure

Simple solutions

- Principle components
 - fast, simple, most people know about it
 - "derived" covariates no change in fitting procedure
 - only covariates, not distance
- ightharpoonup standardise covariates $\Rightarrow \mathcal{Z}$
- ▶ take $Z^TZ = U^T \Lambda U$
- new covariates $z_i^* = \mathcal{Z}\mathbf{u}_j$
- select new PCA covars in order
 - using all gives same fit as no-PCA model

Simulation revisit - CV(p)

Simulation revisit - AIC

Black bears

- Black bear data from Alaska
- ▶ 301 observations from Piper Super Cub
- double observer ignored
- heavily left truncated (99m for this analysis)
- 3 covariates:
 - "search distance" (composite measure)
 - % foliage cover
 - ▶ % snow cover
- ▶ 1 covariate correlated 0.9 search distance

Black bears - results

- fitting 3 covariate model (observed covars)
 - 2 PCs better AIC than 1 PC
 - ▶ 3 PC (full model) better than 2 in AIC
 - ightharpoonup 2 PC model give \sim 2% saving in var
- fitting 4 covariates (observed + 1 correlated)
 - 3 PC model better AIC than 2 or 1
 - ightharpoonup 3 PC model give $\sim 10\%$ saving in var

What's going on?

In terms of $\hat{N_c}$:

$$\operatorname{var}(\hat{N}_{c}) = w^{2} \sum_{i} \hat{f}(0|\mathbf{z})^{2} - \hat{N}_{c} + \left[\frac{\partial N_{c}}{\partial \theta}\right]^{\mathsf{T}} H^{-1} \left[\frac{\partial N_{c}}{\partial \theta}\right]$$
$$= \sum_{i} \frac{1 - \hat{p}_{i}}{\hat{p}_{i}^{2}} + \left[\frac{\partial \hat{N}_{c}}{\partial \hat{\theta}}\right]^{\mathsf{T}} H^{-1} \left[\frac{\partial \hat{N}_{c}}{\partial \hat{\theta}}\right]$$

Further work

- what about other situations?
 - ▶ hazard-rate, etc. detection functions
 - factor covariates
- is it ever "bad" to do this?
- is ridge/lasso more "efficient"?
- is anyone here doing "large" analyses?

Talk available at: http://converged.yt/talks/dscorrcovar