Interactive Speaker Recognition

Применение обучения с подкреплением для решения задачи распознавания диктора

Вячеслав Головин Евгений Шуранов (руководитель)

Huawei CBG AI и ФКН ВШЭ СП6

16.05.2023

Задача: повышение точности систем верификации / идентификации диктора. Такая система может, например, быть использована для подтверждение личности на мобильных устройствах.

Требования к системе:

- короткие запросы (не раздражаем пользователя),
- разнообразные запросы (не боимся спуфинга),
- высокая точность (без комментариев).

Предлагаемое решение: использование RL-агента для выбора запрашиваемых слов.

Новизна дипломной работы:

- переход от идентификации к верификации,
- более гибкая система для выбора слов.

Interactive Speaker Recognition

Метод был предложен в статье A Machine of Few Words — Interactive Speaker Recognition with Reinforcement Learning, Mathieu Seurin et al., INTERSPEECH 2020, arXiv:2008.03127v1.

Важные особенности:

- Рассматривается только задача идентификации.
- Набор слов строго фиксирован.
- Разные нейронные сети для двух задач SR Module запроса слов (Enquirer) и идентификации диктора (Guesser).

Блок Guesser

Архитектура

Входные данные:

- эмбеддинги дикторов $G = [g_1; g_2; \dots g_K]$
- эмбеддинги слов $X = [x_1; x_2; ... x_T]$

Выходные данные:

ullet вероятности $\{P(g_i=g^*) \mid i=1..K\}$

Обозначения

- К количество гостей / дикторов
- Т количество запрашиваемых слов

Блок Guesser

Псевдокод 1 итерации обучения

Обозначения

```
К количество гостей / дикторов
```

- Т количество запрашиваемых слов
- V размер словаря число доступных для запроса слов

Блок Enquirer

Архитектура

Входные данные:

- среднее эмб. дикторов $\hat{g} = \frac{1}{K} \sum_{i=1}^{K} g_k$
- эмбеддинги слов $X = [x_1; x_2; ...; x_t]$

Выходные данные:

 вероятность выбрать каждое из слов

Обозначения

- К количество гостей / дикторов
- Т количество запрашиваемых слов
- t количество запрошенных слов, $0 \le t \le T$

Блок Enquirer

Псевдокод 1 эпизода ISR-игры

```
speaker_ids = speakers.sample(size=K)
G = voice_prints.get(speaker_ids)
target = randrange(0, K)
g_hat = G.mean(dim=0)
x_i = start_tensor
X = []
for i in range(T):
   probs = enquirer.forward(g_hat, x_i)
    if training:
        word_inds = multinomial(probs).sample()
    else:
        word_ind = argmax(probs)
   x i = word vocab.get(speaker=speaker ids[target], word=word ind)
   X.append(x_i)
prediction = guesser.predict(G, X)
reward = 1 if prediction == target else 0
```

Входные данные

Для обучения использовался датасет **TIMIT**:

- 630 дикторов из США, 8 акцентов;
- каждый диктор произносит 10 предложений: 8 уникальных и 2 общих.

В качестве эмбеддингов использовались x-vectors, полученные с помощью нейронной сети, обученной на аугментированных датасетах для распознавания диктора Switchboard, $Mixer\ 6$ и NIST.

- Эмбеддинги дикторов g получались с помощью усреднения эмбеддингов 8 уникальных предложений.
- Эмбеддинги слов x извлекались с помощью 2 общих предложений, т.е. сначала вырезались записи одиночных слов, которые затем пропускались через нейронную сеть.

Результаты из статьи

K=5 дикторов и T=3 слова

RL-агент при выборе запрашиваемых слов учитывает контекст — он опережает не только случайного агента, но и эвристического, выбирающего из подмножества "лучших" слов.

Преимущество RL-агента невелико и проявляется только при небольшом числе запрашиваемых слов.

Обучение и тестирование Guesser

K = 5 дикторов и T = 3 слова при обучении

Вероятно, главная причина расхождения результатов — увеличение размерности эмбеддингов (512 вместо 128 в статье). Неизвестно, как и зачем в статье производилось понижение размерности.

Обучение и тестирование Enquirer

K = 5 дикторов и T = 3 слова при обучении

Для обучения использовалась **PPO**. Выбор слова при обучении и тестировании проводился по-разному:

- train сэмплирование из распределения,
- test arg max по не использованным ранее словам.

Эвристический агент

Алгоритм работы

- Рассчитываем точность на валидационной выборке.
- 2 Сэмплируем из слов с самой высокой точностью.

Эвристический агент

Сравнение c Enquirer

- ullet Обучение в режиме с K=5 дикторами и T=3 запрашиваемыми словами.
- При T=1 Enquirer работает плохо. Можно обучать на 1 слове, но такая система плохо работает в других режимах.

Верификация

Как преобразовать Guesser

- ullet только 1 диктор $\implies \hat{g} = g_0$
- ullet softmax o sigmoid
- при T=3 точность 0.91 (\sim как в классификации с K=7 гостями)
- ullet MLP o CosineSimilarity тоже работает, но хуже

Верификация

Как преобразовать Enquirer

- ullet только 1 диктор $\implies \hat{g} = g_0$
- архитектуру менять не нужно
- можно взять веса для идентификации

Результаты (T = 3 слова):

Выбор слов	Точность	
случайный	0.895	
Enquirer	0.933	
эвристика	0.917	

Обучение в более тяжелом режиме

Выбор слов	Режим обучения	Точность
случайный Enquirer эвристика	K = 5 T = 3	0.937 0.982 0.984
случайный Enquirer эвристика	K = 20 T = 2	0.951 0.989 0.988

Таблица: Точность идентификации, K=5 дикторов, T=3 запрашиваемых слова

Обучение в более тяжелом режиме

Выбор слов	Режим обучения	Точность
случайный		0.895
Enquirer	T=3	0.933
эвристика		0.917
случайный		0.913
Enquirer	T=2	0.947
эвристика		0.945

Таблица: Точность верификации, T=3 запрашиваемых слова

CodebookEnquirer

Мотивация и принцип работы

Очевидный недостаток архитектуры Enquirer — строго фиксированный набор слов, при любом его изменении нужно обучать заново или делать fine-tuning.

Предлагаемые изменения:

- MLP возвращает эмбеддинг слова, а не вероятности;
- добавляется Codebook набор (фиксированных) эмбеддингов слов;
- вероятность выбрать слово из Codebook обратно пропорциональна расстоянию между эмбеддингами.

CodebookEnquirer

Результаты

Выбор слов	Режим обучения	Точность
случайный		0.937
Enquirer	K = 5	0.982
CodebookEnquirer	T=3	0.964
CodebookEnquirer (половина слов)		0.970
Enquirer		0.951
Enquirer	K = 20	0.989
CodebookEnquirer	T=2	0.990
CodebookEnquirer (половина слов)		0.980

Таблица: Точность идентификации, K=5 дикторов, T=3 запрашиваемых слова