Geometría Básica Capítulo IV: Ángulos

Jackie Harjani y Belén López.

UNED, C.A. Las Palmas

Marzo 2011

ENUNCIADO

Ejercicio 4.9

Sea $\rho \in \operatorname{Isom}(\mathbf{P})$ una rotación de centro C, pero no una media vuelta. Sean P_1 y P_2 dos puntos del plano distintos de C. Sean $t_1 = \triangle\{C, P_1, \rho(P_1)\}$ y $t_2 = \triangle\{C, P_2, \rho(P_2)\}$. Probar que el ángulo $\angle t_1 C$ y el ángulo $\angle t_2 C$ son congruentes. La clase de congruencia del ángulo $\angle t_1 C$ se denomina ángulo de rotación $\angle \rho$ de ρ . Para la media vuelta el ángulo de rotación es el ángulo llano. (Sigue una importante observación, ver pág 80).

Solución

La siguiente figura muestra las condiciones del enunciado.

Sean \bar{r}_1 (en la figura r_1) la semirrecta de vértice C pasando por P_1 y \bar{s}_1 (en la figura s_1) la semirrecta de vértice C pasando por $\rho(P_1)$. Análogamente se definirían \bar{r}_2 (en la figura r_2) y \bar{s}_2 (en la figura s_2).

Existe una rotación φ de centro C que envía \bar{r}_1 a \bar{r}_2

Sabemos que las rotaciones del plano con centro ${\cal C}$ junto con la identidad, forman un grupo conmutativo, de donde se obtiene:

$$\varphi(\bar{s}_1) = \varphi(\rho(\bar{r}_1)) = \rho(\varphi(\bar{r}_1)) = \rho(\bar{r}_2) = \bar{s}_2$$

De esta manera, hemos encontrado una isometría φ tal que:

$$\varphi(\angle\{\bar{r}_1,\bar{s}_1\}) = \angle\{\bar{r}_2,\bar{s}_2\}$$

es decir, ambos ángulos son congruentes.

A la clase formada por todos los ángulos congruentes a $\angle\{\bar{r}_1, \bar{s}_1\}$ la llamamos ángulo de rotación de ρ , $\angle \rho$.