Problema 4: Propietats elàstiques d'una molla [R]

Albert Ribes

12 de novembre de 2017

Volem determinar les propietats elàstiques d'una molla usant diferents pesos i mesurant la deformació que es produeix. La llei de Hooke relaciona la longitud l i la força F que exerceix el pes com:

$$e + kF = l$$

on e, k són constants de la llei, que es volen determinar. S'ha realitzat un experiment i obtingut les dades:

 $1.\ Plantegeu el problema com un problema de mínims quadrats$

La ecuación que plantearemos es:

$$l = y(F; w) = w_0 \phi_0(F) + w_1 \phi_1(F)$$

De modo que w_0 será e y w_1 será k. Para poder establecer la equivalencia con la fórmula indicada hay que elegir unas funciones de base en particular. Definimos la variable objetivo (l), los datos de entrada (F), y las funciones de base $(\phi_0, \phi_1, \phi y \Phi)$

$$F = \begin{bmatrix} 1\\2\\3\\4\\5 \end{bmatrix} \qquad \phi = \begin{bmatrix} 1\\x \end{bmatrix}$$

$$l = \begin{bmatrix} 7.97\\10.2\\14.2\\16.0\\21.2 \end{bmatrix} \qquad \phi_0(x) = 1 \qquad \Phi = \begin{bmatrix} 1&1\\1&2\\1&3\\1&4\\1&5 \end{bmatrix}$$

Y ahora con estos datos habría que encontrar w mediante la resolución de la ecuación:

$$\Phi^T \Phi w = \Phi^T l$$

2. Resoleu-lo amb el métode de la matriu pseudo-inversa Hay que resolver:

$$w = (\Phi^T \Phi)^{-1} \Phi^T l$$

Si ponemos los datos en R, dice que:

$$\Phi^T \Phi = \begin{bmatrix} 5 & 15 \\ 15 & 55 \end{bmatrix} \qquad (\Phi^T \Phi)^{-1} \Phi^T = \begin{bmatrix} 0.8 & 0.5 & 0.2 & -0.1 & -0.4 \\ -0.2 & -0.1 & 0.0 & 0.1 & 0.2 \end{bmatrix}$$
$$(\Phi^T \Phi)^{-1} = \begin{bmatrix} 1.1 & -0.3 \\ -0.3 & 0.1 \end{bmatrix} \qquad (\Phi^T \Phi)^{-1} \Phi^T l = \begin{bmatrix} 4.236 \\ 3.226 \end{bmatrix}$$

De modo que $e = w_0 = 4.236$ y $k = w_1 = 3.226$

3. Resoleu-lo amb el métode basat en la SVD

Si llamamos al método svd() de R con la matriz de diseño Φ nos retorna:

$$V = \begin{bmatrix} 0.1600071 & 0.7578903 \\ 0.2853078 & 0.4675462 \\ 0.4106086 & 0.1772020 \\ 0.5359094 & -0.1131421 \\ 0.6612102 & -0.4034862 \end{bmatrix}$$

$$\Delta = \begin{bmatrix} 7.691213 & 0.0000000 \\ 0.000000 & 0.9193696 \end{bmatrix}$$

De modo que tenemos que resolver:

$$w = (\Phi^T \Phi)^{-1} \Phi^T l = ((U\Delta V)^T (U\Delta V))^{-1} (U\Delta V)^T l$$

$$w = V\Delta^{-1} U^T l$$

$$w = \begin{bmatrix} 0.8 & 0.5 & 2.0000000e - 01 & -0.1 & -0.4 \\ -0.2 & -0.1 & 2.081668e - 17 & 0.1 & 0.2 \end{bmatrix} l$$

$$w = \begin{bmatrix} 4.236 \\ 3.226 \end{bmatrix}$$

Se llega a la misma conclusión que en el apartado anterior, puesto que en este problema la resolución de la inversa directamente no daba demasiados problemas.