Introduction to Text Analysis

Arieda Muço

Central European University

"Usual" Data

- A spreadsheet with continuous and discrete variables (ready for analysis!?), fixed number of columns
 - Real data is messy and almost never ready for analysis
- Data can come from images, audio, video, text and there is no (fixed) number of columns

Common data

<DOC>

Mr. NIDEN. We should do that. I get the feeling-maybe because it is the Christmas season and I want to believe it—there is a growing recognition that rail service in our neak? of the woods, as well as other parts of the country, are as essential to our interests as water is a seasontial. I thank my colleagues for their commitment and absolutely close by asying to Senator BYBD that I appreciate the feat that he understands, maybe better than anyone in this place, when another colleague care about an issue that he believes is absolutely indepensable for his region. I thank him for akmouldedgment of that are in the carbon temperature of the property and are the property and are the property and the pro

Committee, and the ranking member of the Commerce Committee, if we cannot get it done, then shame on us.

I thank all of my colleagues, Sorry to have taken so much time, but as my colleagues said all day, this is a big, big, big, big deal to me personally, to my
State, and I think to the Nation.

I visid the floor.

</TEXT>

</TEXT>

			1985					
Város, városi jogu nagyközség	Állandó vándorlások		Ideiglenes vándorlások és visszavándorlások		A népesség növekedése /+/, illetve csökkenése /-/			
	odavándor- lások	elvándor- lások	odávándor- lások	elvándor- lások	az	állandó	az ideig- lenes és vissza-	a belföld
					vándorlások következtében			
MEGYESZÉKHELYEK								TRANSPORT
Budapest	25212	14746	83254	78883		10466	+ 9371	
Békéscsaba	1242	1084	2568	2437		158	+ 131	+14837
Debrecen	4346	2983	10858	9806		1363	+ 1052	+ 289
Eger	1302	1096	3400	3211	+	206	+ 189	+ 2415
Győr	2125	1696	5080	4866		429	+ 214	+ 395
Kaposvár Kecskezát	1649	1516	2935	2777	+	133	+ 158	+ 643
Miskolc	2046	1442	4245	3978		604	+ 267	+ 291 + 871
Nyiregyháza	3422	3653	10035	9689	1	231	+ 346	+ 871
Pécs Pécs	2466	1903	4988	5669	+	563	- 681	- 118
Salgótarján	3384	2766	9489	8343		618	+ 1146	+ 1764
Szeged	952	752	1546	1821	+	200	- 275	- 75
Szekszárd	3466	2042	10706	8587	+	1929	+ 2119	+ 3543
Székesfehérvár	10 10 23 69	880	1809	1813	+	130	- 4	+ 126
Szolnok	1977	1874	5034	4557	+	495	+ 477	+ 972
Szombathely	1977	1733	4401	3977	+	244	+ 424	+ 668
Tatabinya	1458	1312	3184	3245	+	196	- 61	+ 85
Veszprés	1305	1584	2985	3219	_	279	- 234	- 513
Zalaejerszeg	1781	1396	3078	2754	+	385	+ 324	+ 709
maracherored	1311	746	2174	2254		565	- 80	+ 485

Also common data

nsorteio	municipio	abb_uf	nr_fiscaliz	tot_fiscaliz	nr_pages	nr_programs	id
102	lauro de freitas	BA					
101	pedro ii	PI					
1	rio preto da eva	AM			11		01-AM-Rio_Preto_da_Eva
1	castelandia	GO GO			13		01-GO-Castelandia
1	colonia do piaui	PI			12		01-PI-Colonia_do_Piaui
1	balneario arroio do silva	SC			8		01-SC-Balmeario_Arroio_do_Silva
1	ribeirao corrente	SP			10		01-SP-Ribeirao_Corrente
2	marechal thaumaturgo	AC		2555313	78	76	02-AC-Marechal_Thaumaturgo
2	japaratinga	AL	74	2234636	61	74	02-AL-Japaratinga
2	alvaraes	AM	68	2371811	64	68	02-AM-Alvaraes
2	pracuuba	AP	44	543222.3	33	44	02-AP-Pracuuba
2	presidente tancredo neves	BA	106	7978503	52	106	02-BA-Presidente_Tancredo_Neves
2	santa quiteria	CE	89	6232543	94	89	02-CE-Santa_Quiteria
2	jaguare	ES	118	3788544	48	118	02-ES-Jaguare
2	inaciolandia	GO			28	68	02-GO-Inaciolandia
2	apicum acu	MA	121	2649186	81	93	02-MA-Apicum_Acu
2	sao joao das missoes	MG		33292.78	85	86	02-MG-Sao_Joao_das_Missoes
2	vicentina	MS	81	2337215	88	81	02-MS-Vicentina
2	pontal do araguaia	MT	73	2083512	75	73	02-MT-Pontal_do_Araguaia
2	abel figueiredo	PA	76	1688877	49	76	02-PA-Abel_Figueiredo
2	pitimbu	PB	116	4833256	116	116	02-PB-Pitimbu
2	alagoinha	PE	116	4833256	42	110	02-PE-Alagoinha
2	alvorada do gurgueia	PI	78	2289395	46	87	02-PI-Alvorada_do_Gurgueia
2	prudentopolis	PR	129	7448459	75	129	02-PR-Prudentopolis
2	porciuncula	RJ		6424618	113	110	02-RJ-Porciuncula
2	barauna	RN	108	3699752	65	108	02-RN-Barauna
2	ouro preto do oeste	RO	140	2.68e+07	100	140	02-R0-Ouro_Preto_do_Oeste
2	amajari	RR	74	2626137	88	74	02-RR-Amajari
2	independencia	RS	97	1536579	134	97	02-RS-Independencia

Text as Data

- Classify an email message as either a legitimate email or spam
- Learn about the opinion of a politician on the topic of immigration
- The content of the text will certainly contain important information for the task
- Text data is usually represented as concatenation of characters. In any of the examples just given, the length of the text data will vary
- This feature is clearly very different from the numeric features, and we will need to process the data before we can apply algorithms to it

Preprocessing

- Make it useful for our purposes
- Simplify and lower dimensionality

Document - Term

$$X = \begin{pmatrix} 1 & 0 & 0 & \dots & 3 \\ 0 & 2 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 5 \end{pmatrix}$$

 $X = N \times K$ matrix

- N = Number of documents

- K = Number of features

Preprocessing for Quantitative Text Analysis

Recipe for preprocessing: retain useful information

- Remove capitalization, punctuation
- Discard stop words
- Discard Word Order (Bag of Words Assumption)
- Create Equivalence Class: Stem, Lemmatize, or synonym
- Discard less useful features (depends on application)
- Other reduction, specialization

Output: Count vector, each element counts occurrence of stems

Stop Words

Stop Words: English Language place holding words

- the, it, if, a, able, at, be, because...
- Add "noise" to documents (without conveying much information)
- Discard stop words: focus on substantive words
- Caution: Exercise caution when discarding stop words. You may need to customize your stop word list.

Creating an Equivalence Class of Words

Reduce dimensionality further (create equivalence class between words)

- Words used to refer to same basic concept.
 - ▶ family, families, familial \rightarrow famili
- Stemming/Lemmatizing algorithms: Many-to-one mapping from words to stem/lemma

Stemming vs Lemmatization

- Stemming algorithm:
 - Consists of chopping off end of word
 - ▶ Porter stemmer, Lancaster stemmer, Snowball stemmer
- Lemmatizing algorithm:
 - ► Condition on part of speech (noun, verb, etc)
 - Verify result is a word

Stemming vs Lemmatization

- Stemming algorithm:
 - Word representations may not have any meaning
 - ► Takes less time
 - ▶ Use stemming when meaning of words is not important for analysis. Example: Spam detection.
- Lemmatizing algorithm:
 - ▶ Word representations have meaning
 - ► Takes more time than Stemming
 - ▶ Use lemmatization when meaning of words is important for analysis. Example: question answering application.

Stemming -vs- Lemmatization

Additional read

Stemming and Lemmatization - Stanford NLP https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

Preprocessing reduces dimensionality where it causes problems for inference (stopwords, stemming) and sometimes increases dimensionality when it makes our inferences better (bigram, ngrams)

A Complete Example

Assume our document contains the following sentence: "I love cats and dogs"

- Bag of Words (BoW): We retain each word discarding their order
- ngram: An analyst may want to combine words into a single term that can be analyzed. If you think "love" and "cats" should be together we form a bigram

Bag of words

[I], [love], [cats], [and], [dogs]

• Each word is represented as a token

Remove stopwords

[love], [cats], [dogs]

• Remove Stopwords: Removing terms that do not convey important information. Different schools of thought

Stemming -Lemmatization

• **Stemming**: Takes the ends of conjugated verbs or plural nouns, leaving just the stem.

Assume we have a second document

Document 2: "Cats are adorable."

Document Term Matrix

Original Documents:

Document 1: "I love cats and dogs."

Document 2: "Cats are adorable."

Document-Term Matrix:

Γ	cat	dog	love	adorable	are
Document 1	1	1	1	0	0
Document 2	1	0	0	1	1

All steps together

- 1. Remove capitalization and punctuation
- 2. Discard word order (Bag of Words)
- 3. Remove stop words
- 4. Applying Stemming Algorithm
- 5. Create count vector or one hot encoded vector

Vectorization a simple example

You have 2 documents:

- 1. Blue House
- 2. Red House

Our corpus will consist of all the words in the documents namely: Red, Blue, House. The vector representation in the "Bag of Words" approach:

- "Blue House" -> (red, blue, house) -> (0, 1, 1)
- "Red House" -> (red, blue, house) -> (1, 0, 1)

Once we have vector representation, we can do analysis. Algorithms can handle numbers (vectors)

Cosine Similarity

Cosine similarity is a measure of similarity between two non-zero vectors of an inner product space. The cosine similarity is particularly used in positive space, text data, where the outcome is neatly bounded in [0,1]

$$sim(A, B) = cos(\Theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

Term Frequency and Inverse Document Frequency

- Improve on Bag of Words by adjusting word counts based on their frequency in corpus (the group of all the documents)
- Use Term Frequency Inverse Document Frequency (TF-IDF)

TF-IDF

TF-IDF term x in document y

$$TF_{x,y} \times log(\frac{N}{DF_x})$$

- $TF_{x,y}$ = frequency of x in y
- DF_x = number of documents containing x
- N total number of documents

TF-IDF

- TF Term- Frequency is the raw frequency of a word normalized by the number of words in the document
- IDF Inverse Document Frequency is the number of documents normalized by the number of documents that contain the term. For terms that are present in every document, this will lead to an IDF value of zero (that is, $\log(1)$). For this reason, one of the possible normalizations for IDF is $1+\log(N/DF_x)$

TF-IDF

The intuition behind TF-IDF is that words which are too frequent or too rare are not representative

How can this work?

- Speech may contain sarcasm:
 - ► The Star Wars prequels were amazing because everyone loves a good discussion about trade policy
- Subtle Negation
 - ▶ They have not succeeded, and will never succeed, in breaking the will of this valiant people
- Order Dependence
 - ▶ Peace, no more war
 - ▶ War, no more peace

How Could This Possibly Work?

- 1. It might not: Validation is critical (task specific)
- 2. Central Tendency in Text: Words often imply what a text is about war, civil, union or tone consecrate, dead, died, lives. Likely to be used repeatedly: create a theme for an article
- 3. Human supervision: Inject human judgement (coders): helps methods identify subtle relationships between words and outcomes of interest

It is easier to capture some things than others