March 2, 2004

Lecture 7

Lecturer: Michel X. Goemans Scribe: Jan Vondrák

1 Gallai's Conjecture

In this lecture, we will be concerned with graph coverings by a collection of paths or cycles. The goal will be to cover all the vertices by a small number of either paths or cycles, and this number will be bounded by the independence number $\alpha(G)$. ($\alpha(G)$ is the maximum size of an independent, or stable, set, i.e. a set of vertices inducing no edges.) For a directed graph D, $\alpha(D)$ refers to the corresponding undirected graph. Let's start with the following statement, proved by Gallai and Milgram in 1960.

Theorem 1 (Gallai-Milgram) In every directed graph D, the vertices can be partitioned into $\alpha(D)$ vertex-disjoint directed paths.

Observe that we may able to partition V with fewer directed paths, as it is the case for example for a directed cycle (one path suffices but $\alpha(D) = \lfloor n/2 \rfloor$).

Consequently, Gallai suggested a related conjecture, which has been recently proved by Bessy and Thomassé.

Theorem 2 (Bessy-Thomassé) In every strongly connected digraph D, the vertices can be covered by at most $\alpha(D)$ directed cycles.

In contrast to the Gallai-Milgram theorem, the directed cycles cannot be always chosen to be vertex-disjoint, and this explains the "covering" instead of "partitioning" in teh statement. Below is an example of a directed graph D which has $\alpha(D)=3$, and it can be covered by 2 cycles, but there are no two disjoint cycles in D.

Before we proceed to the proofs, let's note a few connections to other theorems.

- Gallai-Milgram implies Dilworth's theorem. For any poset, there is a digraph naturally associated with it, where (i,j) is an arc if i < j. Paths correspond to chains and stable sets to antichains which implies that the poset can be partitioned into $\alpha(D)$ chains where $\alpha(D)$ is the maximum size of an antichain.
- Bessy-Thomassé implies that every digraph can be covered by at most $\alpha(D)$ directed paths. (Add a new vertex connected to everything in both directions, which makes the graph strongly connected. Then find a cycle covering and turn the cycles into paths, removing the new vertex if necessary.) However, this is weaker than Gallai-Milgram, because the paths are not necessarily disjoint (so this is a cover and not a partition).

• For a tournament, Gallai-Milgram implies the existence of a hamiltonian path. For a strongly connected tournament, Bessy-Thomassé implies the existence of a hamiltonian cycle. These are theorems previously proved by Rédei (1934) and Camion (1960).

Now we turn to the proof of Gallai-Milgram. The theorem is proved by repeated application of the following lemma (starting with a trivial partitioning into n (singleton) paths).

Lemma 3 Let π be a partitioning of the vertices of D into directed paths $P_1, P_2, \dots P_l$, $l > \alpha(D)$. Let $S(\pi)$ denotes the starting vertices, and $F(\pi)$ the ending vertices of $P_1, \dots P_l$. Then there is a partitioning π' into l-1 directed paths such that $S(\pi') \subset S(\pi)$ and $F(\pi') \subset F(\pi)$.

Proof: We proceed by induction on the size of D. Since $|F(\pi)| > \alpha(D)$, there must be an arc (v, u) with $u, v \in F(\pi)$. Consider the paths P_u, P_v whose endpoints are u and v, respectively.

- 1. If P_u has length 0, we can just remove it and extend P_v by the arc (v, u), which yields a covering π' of l-1 paths.
- 2. If P_u has length at least 1, let w be the vertex on P_u preceding u. We remove vertex u and apply the inductive hypothesis on the remaining digraph \hat{D} . The partition π can be also restricted to a partition $\hat{\pi}$ by removing u from P_u . Note that now $v, w \in F(\hat{\pi})$, since v remains in \hat{D} and w was the last vertex on P_u before u. Since $\alpha(\hat{D}) \leq \alpha(D)$, by induction there is a partitioning of \hat{D} into l-1 paths $\hat{\pi}'$, such that $F(\hat{\pi}')$ contains all the vertices of $F(\hat{\pi})$ except one. If $w \in F(\hat{\pi}')$, then we extend the path ending at w by (w, u). Otherwise $v \in F(\hat{\pi}')$, and we extend the path ending at v by (v, u). Either way, we obtain a partitioning π' where $F(\pi') \subset F(\pi)$.

In the rest of the lecture, we prepare the ground for the proof of Bessy-Thomassé.

Definition 1 For a directed graph D = (V, A), consider enumerations of the vertex set, such as $(v_1, v_2, \dots v_n)$. We define a cyclic ordering as an equivalence class of enumerations with respect to the following equivalence relations:

- $(v_1, v_2, \dots v_{n-1}, v_n) \sim (v_2, v_3, \dots, v_n, v_1)$
- $(v_1, v_2, \dots v_n) \sim (v_2, v_1, \dots v_n)$ if $(v_1, v_2) \notin A$ and $(v_2, v_1) \notin A$.

For an enumeration, we call an arc (v_i, v_j) forward if i < j, and backward if i > j. Also, we can visualize all arcs as going clockwise around the circle, and then backward arcs are those which cross the boundary between v_n and v_1 .

For a cyclic ordering \mathcal{O} and a directed cycle C, let $i_{\mathcal{O}}(C)$ denote the number of backward arcs in C. Note that $i_{\mathcal{O}}(C)$ depends on the cyclic ordering, but not on a specific enumeration within the equivalence class; $i_{\mathcal{O}}(C)$ can be also viewed as the number of times the cycle loops around the circle.

We call a cyclic ordering valid, if every arc is contained in a directed cycle of index $i_{\mathcal{O}}(C) = 1$. S is a cyclic stable set with respect to \mathcal{O} , if it is a stable set which is consecutive in some enumeration of \mathcal{O} .

Theorem 4 For every strongly connected directed graph, there exists a valid cyclic ordering.

Proof: Let \mathcal{O} be a cyclic ordering, minimizing the sum of indices over all directed cycles, $\sum_{C} i_{\mathcal{O}}(C)$. Suppose that \mathcal{O} is not valid, i.e. some arc is not in any directed cycle of index 1. Consider such an arc (v_j, v_i) and an enumeration such that (v_j, v_i) is a backward arc and j - i is as small as possible. Since there is no cycle of index 1 containing (v_j, v_i) , there is no forward path from v_i to v_j . First assume that j - i > 1. One implication of this is that (v_{k+1}, v_k) is never an arc. Let k be the maximum smaller than j, such that v_k can be reached by a forward path from v_i .

- 1. k = i: there is no arc between v_i and v_{i+1} , so we can swap v_i with v_{i+1} , which moves v_i closer to v_j (contradiction).
- 2. $k \neq i$: there are no arcs from v_k to v_l , $k < l \leq j$. Also, there are no arcs from v_l to v_k for the same indices l; otherwise the existence of this arc would contradict the minimality of j-i. Therefore we can swap v_k with v_{k+1} , then with v_{k+2} , until we swap v_k with v_j , which creates an enumeration where v_i and v_j are closer to each other (contradiction).

Thus we can assume that j-i=1. In this case, we switch v_i and v_j , which creates a different cyclic ordering. Every directed cycle which contains (v_j, v_i) decreases its index by 1. No other cycle is affected. Therefore we find a cyclic ordering \mathcal{O}' with a smaller value of $\sum_C i_{\mathcal{O}'}(C)$, which is a contradiction.

A corollary is Camion's theorem for strongly connected tournaments.

Corollary 5 For a strongly connected tournament, there is a cyclic ordering $(v_1, v_2, \dots v_n)$ such that all the edges (v_i, v_{i+1}) are oriented clockwise, i.e. there is a hamiltonian cycle.