Pattern Recognition & Machine Learning

K Sri Rama Murty

IIT Hyderabad

ksrm@ee.iith.ac.in

January 5, 2022

Prerequisites

- Linear algebra
- Calculus
- Probability & random variables
- Basic understanding of random processes & DSP

Prerequisites

- Linear algebra
- Calculus
- Probability & random variables
- Basic understanding of random processes & DSP
- Course codes
 - EE5610 PRML Elective for EE PG & UG students
 - EE2802 ML Softcore for EE BTech 2nd Yr students
 - AI5000 Foundations of ML AI PG Students
 - Al3102 Sequence models (5-6 segments) Al UG

Prerequisites

- Linear algebra
- Calculus
- Probability & random variables
- Basic understanding of random processes & DSP
- Course codes
 - EE5610 PRML Elective for EE PG & UG students
 - EE2802 ML Softcore for EE BTech 2nd Yr students
 - AI5000 Foundations of ML AI PG Students
 - Al3102 Sequence models (5-6 segments) Al UG
- Similar courses
 - EE7390 Renumbered as EE5610 (100% overlap)
 - AI5000 (80% overlap)
 - EE5600, EE5601 & EE5602 (60-70% overlap)

Pattern

- Pattern
 - Dictionary: The regular way in which something happens or is done, a regular arrangement of lines, shapes, colours

Pattern

- Dictionary: The regular way in which something happens or is done, a regular arrangement of lines, shapes, colours
- Facial features, hand-written characters, spoken words, musical notes, call records, share market trends, medical reports etc.,

Pattern

- Dictionary: The regular way in which something happens or is done, a regular arrangement of lines, shapes, colours
- Facial features, hand-written characters, spoken words, musical notes, call records, share market trends, medical reports etc.,
- Natural variations are inevitable realizations don't match exactly

Pattern

- Dictionary: The regular way in which something happens or is done, a regular arrangement of lines, shapes, colours
- Facial features, hand-written characters, spoken words, musical notes, call records, share market trends, medical reports etc.,
- Natural variations are inevitable realizations don't match exactly
- Human beings are good at recognizing patterns, can't explain how.

Pattern

- Dictionary: The regular way in which something happens or is done, a regular arrangement of lines, shapes, colours
- Facial features, hand-written characters, spoken words, musical notes, call records, share market trends, medical reports etc.,
- Natural variations are inevitable realizations don't match exactly
- Human beings are good at recognizing patterns, can't explain how.
- Learning

Pattern

- Dictionary: The regular way in which something happens or is done, a regular arrangement of lines, shapes, colours
- Facial features, hand-written characters, spoken words, musical notes, call records, share market trends, medical reports etc.,
- Natural variations are inevitable realizations don't match exactly
- Human beings are good at recognizing patterns, can't explain how.

Learning

• To gain knowledge from experience (studying, being taught)

Pattern

- Dictionary: The regular way in which something happens or is done, a regular arrangement of lines, shapes, colours
- Facial features, hand-written characters, spoken words, musical notes, call records, share market trends, medical reports etc.,
- Natural variations are inevitable realizations don't match exactly
- Human beings are good at recognizing patterns, can't explain how.

Learning

- To gain knowledge from experience (studying, being taught)
- Machine learning is used when it is too difficult/expensive to program

Pattern

- Dictionary: The regular way in which something happens or is done, a regular arrangement of lines, shapes, colours
- Facial features, hand-written characters, spoken words, musical notes, call records, share market trends, medical reports etc.,
- Natural variations are inevitable realizations don't match exactly
- Human beings are good at recognizing patterns, can't explain how.

Learning

- To gain knowledge from experience (studying, being taught)
- Machine learning is used when it is too difficult/expensive to program
- Get the computer to "program itself" by showing examples of ip & op

PRMI

Pattern

- Dictionary: The regular way in which something happens or is done, a regular arrangement of lines, shapes, colours
- Facial features, hand-written characters, spoken words, musical notes, call records, share market trends, medical reports etc.,
- Natural variations are inevitable realizations don't match exactly
- Human beings are good at recognizing patterns, can't explain how.

Learning

- To gain knowledge from experience (studying, being taught)
- Machine learning is used when it is too difficult/expensive to program
- Get the computer to "program itself" by showing examples of ip & op
- Write a "parameterized" program, and let the "learning algorithm" find the best set of parameters to approximate the desired behavior

Learning Paradigms

- Supervised learning (learning with a teacher)
 - Given training examples of input-output pairs, produce "correct" output for a new input
 - Regression: The output takes continuous values
 - Classification: The output admits only a discrete set of values
 - 3D image reconstruction, character recognition, signal enhancement, disease detection

Learning Paradigms

- Supervised learning (learning with a teacher)
 - Given training examples of input-output pairs, produce "correct" output for a new input
 - Regression: The output takes continuous values
 - Classification: The output admits only a discrete set of values
 - 3D image reconstruction, character recognition, signal enhancement, disease detection
- Unsupervised learning (learning without a teacher)
 - Given the data, discover the hidden structure in it.
 - Clustering, density estimation, novelty detection, compression,

Learning Paradigms

- Supervised learning (learning with a teacher)
 - Given training examples of input-output pairs, produce "correct" output for a new input
 - Regression: The output takes continuous values
 - Classification: The output admits only a discrete set of values
 - 3D image reconstruction, character recognition, signal enhancement, disease detection
- Unsupervised learning (learning without a teacher)
 - Given the data, discover the hidden structure in it.
 - Clustering, density estimation, novelty detection, compression,
- Reinforcement learning (learning with a critic)
 - Take inputs from the environment and perform actions
 - Actions may be suitably rewarded or punished
 - Perform a sequence of actions that maximize the reward

- Linear models
 - Regression Least squares estimate, Maximum-likelihood estimate,
 Maximum a posteriori estimate, predictive distribution

Linear models

- Regression Least squares estimate, Maximum-likelihood estimate,
 Maximum a posteriori estimate, predictive distribution
- Classification Bayes decision theory, generative vs discriminative models - linear discriminant functions, Fisher discriminant analysis, perceptron, SVM, ML and MAP approaches, logistic regression

Linear models

- Regression Least squares estimate, Maximum-likelihood estimate,
 Maximum a posteriori estimate, predictive distribution
- Classification Bayes decision theory, generative vs discriminative models - linear discriminant functions, Fisher discriminant analysis, perceptron, SVM, ML and MAP approaches, logistic regression

Nonlinear models

 Cover's theorem, Nonlinear kernel transformation, fixed vs data-driven kernels, feed-forward neural networks, error back-propagation, practical issues in training DNNs

Linear models

- Regression Least squares estimate, Maximum-likelihood estimate,
 Maximum a posteriori estimate, predictive distribution
- Classification Bayes decision theory, generative vs discriminative models - linear discriminant functions, Fisher discriminant analysis, perceptron, SVM, ML and MAP approaches, logistic regression
- Nonlinear models
 - Cover's theorem, Nonlinear kernel transformation, fixed vs data-driven kernels, feed-forward neural networks, error back-propagation, practical issues in training DNNs
- (If time permits) Unsupervised learning
 - Clustering, density estimation, Gaussian mixture models, dimensionality reduction, autoencoders and its variants

- Sequence models (V1)
 - Linear dynamical systems, Kalman filter, Markov model, hidden Markov model (HMM), convolutional neural networks (CNN), intro to recurrent architectures

- Sequence models (V1)
 - Linear dynamical systems, Kalman filter, Markov model, hidden
 Markov model (HMM), convolutional neural networks (CNN), intro to recurrent architectures
- Sequence models (V2)
 - Convolutional neural networks (CNN), recurrent neural networks (RNN), long-short term memory (LSTM), gated recurrent units (GRU), attention mechanism, autoregressive feed-forward networks and transformers
- Either V1 or V2 will be followed in 5-6 segments

Evaluation Criteria

- Homework 20%
 - Summarize every lecture in your own words/examples
 - Complete all partial derivations/proofs
 - Hand written summary should be submitted on the same day of lecture
- Programming assignments 20%
 - Programming assignments have to be done in Python.
 - Skeleton structure of the code will be posted on Google Colab
- Class tests 20%
 - Periodic class tests on completed topics
- Project & viva-voce 20%
 - Project theme has to be finalized by the end of the third segment
- Endexam 20%

Evaluation Criteria

- Homework 20%
 - Summarize every lecture in your own words/examples
 - Complete all partial derivations/proofs
 - Hand written summary should be submitted on the same day of lecture
- Programming assignments 20%
 - Programming assignments have to be done in Python.
 - Skeleton structure of the code will be posted on Google Colab
- Class tests 20%
 - Periodic class tests on completed topics
- Project & viva-voce 20%
 - Project theme has to be finalized by the end of the third segment

- Endexam 20%
- Delayed submissions will be penalized with a factor of 0.5 per day

Thank You!