

WORKSHOP GRATUITO EN ESPAÑOL

NLP de 0 a 100 con Hugging Face

Apúntate en eventbrite

7 SESIONES MARTES (quincenal)
DEL 13/07 AL 5/10 (18-18:40 CET)

Imparten:

- María Grandury
- Manuel Romero
- Omar Sanseviero
- Lewis Tunstall

iSÍGUENOS!

- @ NLP_en_ES
- @ Spain_Al_

Enlaces útiles

@nlp-en-es/nlp-de-cero-a-cien

#nlp-de-cero-a-cien

playlist: NLP de 0 a 100 con

@spain ai

@nlp en es

@company/spainai

@company/nlp-en-es

spain-ai.com

nlp-en-es.org

Sobre Manuel Romero omrm8488

NLP/NLG Engineer at Narrativa

Plan

- → Pre-training (teoría)
- → Cómo hacer Pre-training con HuggingFace
- → Fine-tuning un GPT-2 en Español para generar texto

Pre-training: ¿Por qué?

- → Adquisición de conocimiento "general" de cómo funciona el lenguaje.
 - Corpus/dataset "enorme"
 - Gran consumo de recursos HW
 - ◆ BERT:
 - Wikipedia + BookCorpus (16 GB)
 - 4 días con de 4 a 16 Cloud TPUs
- → Adaptabilidad a tareas específicas (fine-tuning)
 - ◆ Eficacia
 - Rapidez

Pre-training: ¿Cómo?

- → 2 estrategias:
 - ◆ MLM:
 - Se "enmascara" un porcentaje de "tokens" (15%) de la frase de entrada y el modelo intenta descifrar esos "tokens".
 - ◆ NSP:
 - Se generan frases pares de frases de las cuáles unas pertenecen al mismo contexto y otras no (NLI, QA).

Pre-training: ¿Cómo? II

- → 2 estrategias:
 - ◆ MLM:
 - Input: El hombre fue a la [MASK1] . Compró un [MASK2] de leche.
 - Labels: [MASK1] = tienda; [MASK2] = litro
 - ◆ NSP:
 - Frase A: El hombre fue a la tienda.
 - Frase B: Compró un litro de leche.
 - Label: IsNextSentence
 - Frase A: El hombre fue a la tienda.
 - Frase B: En verano suele hacer calor.
 - Label: NotNextSentence

Pre-training: Benchmarks

Glue Benchmark Leaderboard

System	MNLI-(m/mm) 392k	QQP 363k	QNLI 108k	SST-2 67k	CoLA 8.5k	STS-B 5.7k	MRPC 3.5k	RTE 2.5k	Average -
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERTBASE	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

Pre-training: Conclusiones (BERT)

- → Las mejoras que se obtienen al aplicar "transfer learning" para una tarea determinada demuestran que el pre-training (no supervisado y sobre un gran corpus) es una parte clave para los sistemas de NLU.
- → Beneficia especialmente a tareas donde los recursos son limitados (Dataset/HW).

Pre-training: Otras estrategias

- → Estrategias:
 - ◆ ROBERTa: (BERT optimizado)
 - Enmascaramiento dinámico de tokens durante el entrenamiento
 - No hay NSP
 - Lotes ("batches") más grandes y mayor corpus (BERT x 10)
 - ◆ ELECTRA:
 - Enfoque "GAN" (generador y discriminador)
 - Generador: reemplaza tokens de la entrada (entrenado como MLM)
 - Discriminador: intenta detectar qué tokens son "fake" (el modelo en sí)
 - Ventaja: Resultados SOTA de manera eficiente a nivel de recursos HW

Pre-training: Pasos

- → Elegir una arquitectura
 - ◆ BERT, RoBERTa, ELECTRA, GPT-2, Seq2Seq
- → Elegir un corpus
 - ◆ Tamaño y calidad (sampling?)
- → Crear un vocabulario y tokenizar el corpus
 - ◆ Tipo de tokenizer (BPE, sentencepiece)
- → Entrenar el modelo
 - Establecer hiperparámetros
 - Tamaño del "batch", "learning rate", tiempo, etc

Pre-training: Pasos con HuggingFace

- → Elegir una arquitectura
 - ◆ HF implementa las arquitecturas más conocidas (config.json)
- → Elegir un corpus
 - ◆ HF <u>Datasets</u> (streaming mode)
- → Crear un vocabulario y tokenizar el corpus
 - ◆ HF <u>Tokenizers</u> (implementación en Rust)
- → Entrenar el modelo
 - HF <u>examples/Notebooks</u>
 - ◆ Colab de ejemplo

Pre-training: Pasos con <u>HuggingFace</u> II

```
from datasets import load dataset
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
# load dataset
dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train")
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=1000):
    for i in range(0, len(dataset), batch_size):
        yield dataset[i: i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[
    "<s>",
    "<pad>",
    "</s>",
    "<unk>",
    "<mask>",
1)
# Save files to disk
tokenizer.save("./tokenizer.json")
```


Pre-training: Pasos con <u>HuggingFace</u> III

```
from transformers import RobertaConfig

config = RobertaConfig.from_pretrained("roberta-base", vocab_size=50265)
config.save_pretrained("./")
```


Pre-training: Pasos con <u>HuggingFace</u> IV

```
./run_mlm_flax.py \
   --output_dir="./" \
   --model type="roberta" \
   --config_name="./" \
   --tokenizer_name="./" \
   --dataset_name="oscar" \
   --dataset_config_name="unshuffled_deduplicated_no" \
   --max seq length="128" \
   --weight_decay="0.01" \
   --per_device_train_batch_size="128" \
   --per_device_eval_batch_size="128" \
   --learning_rate="3e-4" \
   --warmup_steps="1000" \
   --overwrite_output_dir \
   --num_train_epochs="18" \
   --adam_beta1="0.9" \
   --adam beta2="0.98" \
   --logging steps="500" \
   --save_steps="2500" \
   --eval steps="2500" \
   --push_to_hub
```


Pre-training: BERTIN (caso práctico)

- → Arquitectura: RoBERTa
- → Corpus: *mC4* **es** (sampling)
- → Entrenamiento: Flax/Jax Google & HuggingFace Community Event (TPUs VMs)

