Contents

1	Logic and Proofs		
	1.1	Propositional Logic	1
		Application of Propositional Logic	2

1 Logic and Proofs

1.1 Propositional Logic

Proposition is a statement that is **either** true or false, but not both at the same time. We usually represent it with variables like p, q, and r.

e.g. "The sky is blue." is a proposition, but "Listen to me" is not.

Logical Connectives

• Negation: $\neg p$. It is not the case that p.

• Conjunction: $p \wedge q$. "and"

• Disjunction: $p \vee q$. "or"

• Implication: $p \to q$. If p then q, q if p, q is a consequence of p, p only if q

• biconditional: $p \leftrightarrow q$. $(p \to q) \land (q \to p)$, p if and only if q

Truth Table

p	q	$p \lor q$
Τ	Τ	${ m T}$
\mathbf{T}	F	${ m T}$
\mathbf{F}	Т	${ m T}$
\mathbf{F}	F	${ m F}$

p	q	$p \wedge q$
Τ	Τ	T
Τ	\mathbf{F}	F
\mathbf{F}	${ m T}$	F
\mathbf{F}	F	F

$$\begin{array}{c|ccc} p & q & p \rightarrow q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

Example

Find the truth value of $(p \lor q) \to \neg r$

p	q	r	$p \lor q$	$\neg r$	$(p \lor q) \to \neg r$
\overline{T}	Т	Т	Т	F	F
Τ	\mathbf{T}	F	Τ	Т	T
${ m T}$	\mathbf{F}	${ m T}$	Τ	F	F
${ m T}$	\mathbf{F}	F	${ m T}$	T	m T
\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	F	F
\mathbf{F}	${ m T}$	F	${ m T}$	T	m T
\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	F	${ m T}$
\mathbf{F}	F	F	\mathbf{F}	\mathbf{T}	${ m T}$

Logical Equivalence (L.E.)

Two statements are logically equivalent if they always have the same truth value in every possible scenario.

e.g. p and q are biconditional, i.e. $p \leftrightarrow q$, means that p and q are logically equivalent.

There are two ways to prove L.E., one is by truth table, the other is by applying logical laws.

Show that $p \to q$ is logically equivalent to $\neg q \to \neg p$

p	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$
$\overline{\mathrm{T}}$	Т	T	T
${\rm T}$	F	F	${ m F}$
\mathbf{F}	Γ	T	${ m T}$
F	F	${ m T}$	${ m T}$

1.2 Application of Propositional Logic