Tiempo límite: 2 días

Serie única - NFA hacia DFA

Para la resolución de esta tarea debe dejar constancia de su procedimiento y/o justificar sus respuestas:

1. (50 Puntos) Considere el autómata descrito en la figura

- ¿Es un autómata finito determinista? ¿Por qué?
- En caso NO sea un autómata finito determinista, produzca paso a paso su equivalente a DFA.

Solución:

- a) NO es un autómata finito determinista, existen estados que hacen transición a más de un estado con el mismo símbolo, por ejemplo q0 hace transición con 0 hacia q0 y también hacia q1.
- b) Buscar transiciones con ϵ desde el estado inicial, en este caso q0, y no existen transiciones con ϵ por tanto:

$$A = \{q0\}$$

revisamos transacciones con los elementos del alfabeto desde el estado inicial alfabeto = $\{0,1\}$

move(A,0) = $\{q0,q1\}$ => transiciones con (ϵ -closure) $\{q0,q1\}$ = B entonces

Universidad Rafael Landivar Compiladores Tarea 2

Tiempo límite: 2 días

move $(A,1) = \{q1\} => transiciones con (\epsilon-closure) \{q1\} = C$

Analizamos el estado B $move(B,0) = \{q0,q1\} => (\epsilon\text{-closure}) \{q0,q1\} = B$

move(B,1) = $\{q0,q1\}$ => $(\epsilon$ -closure) $\{q0,q1\}$ = B

Tiempo límite: 2 días

Analicemos el estado C

move(C,0) =
$$\{\phi\}$$

move(C,1) = $\{q0,q1\}$ => $(\epsilon$ -closure) $\{q0,q1\}$ = B

el estado de aceptación q1 está tanto en B como en C, por tanto:

Tarea 2

Tiempo límite: 2 días

2. (50 Puntos) Considere el autómata descrito en la figura

- ¿Es un autómata finito determinista? ¿Por qué?
- En caso NO sea un autómata finito determinista, produzca paso a paso su equivalente a DFA.

Solución:

- a) NO es un autómata finito determinista, existen estados que hacen transición a más de un estado con el mismo símbolo, por ejemplo estado 1 hace transición con 0 hacia estado 2 y también hacia estado 3.
- b) Buscar transiciones con ϵ desde el estado inicial, en este caso estado 1, y no existen transiciones con ϵ por tanto:

$$A = \{1\}$$

move(A,0) = $\{2,3\}$ => transiciones con (ϵ -closure) $\{2,3\}$ = B entonces

 $move(A, 1) = \{\phi\}$

Tarea 2

Tiempo límite: 2 días

Analizamos estado B

 $move(B,0) = \{1,3\} => transiciones con (\epsilon-closure) \{1,3\} = C$

 $move(B,1) = \{2,3\} => transiciones con (\epsilon-closure) \{2,3\} = B$

Analizamos estado C

move(C,0) = $\{1,2,3\}$ => transiciones con (ϵ -closure) $\{1,2,3\}$ = D

Universidad Rafael Landivar Compiladores

Tarea 2

Tiempo límite: 2 días

 $move(C,1) = \{2,3\} => transiciones con (\epsilon-closure) \{2,3\} = B$

Analizamos el estado D

 $move(D,0) = \{1,2,3\} => transiciones con (\epsilon-closure) \{1,2,3\} = D$

Tiempo límite: 2 días

move(D,1) = $\{2,3\}$ => transiciones con (ϵ -closure) $\{2,3\}$ = B

B,C y D contienen el estado de aceptación 3, por tanto los 3 son estados de aceptación.

