

PH451, PH551 January 28, 2025

Announcements

- HS #1 due today at 1pm
- HS #2 this week, due on Tue. Feb. 4
- Textbook: Read Chapters 4, 5

Machine Learning

Algorithm choice sets hypothesis Class H

- Goal: find the best function within H
 - eg. one that makes the fewest "mistakes"
 - Optimization problem via a learning process
- Evaluate?
 - Loss (Risk) Function on training data
 - Many possible loss functions:
 - Squared
 - Absolute choice depends on the problem!
 - Cross-entropy

Regression

Getting Started Prediction Competition

House Prices - Advanced Regression Techniques

Predict sales prices and practice feature engineering, RFs, and gradient boosting

Kaggle · 4,937 teams · Ongoing

How Long Will I Live?

Developed by Professors at the University of Pennsylvania and Featured in

TIME

THE WALL STREET JOURNAL

U.S.News

https://www.blueprintincome.com/tools/lifeexpectancy-calculator-how-long-will-i-live/

Regression

Modify evaluation in induction algorithm

Maximum separation

Minimal variance

Linear Regression

Linear Regression model prediction

•
$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$
 (Eqn. 4-1)

Vectorized form:

• $y = h_{\theta}(x) = \theta \cdot x$ (Eqn. 4-2)

Linear Regression

$$y = h_{\theta}(x) = \theta \cdot x$$

- **\theta** is the model's parameter vector:
 - bias term θ_0 and the feature weights θ_1 to θ_n
- **x** is the instance's feature vector: x_0 to x_n
 - x₀ always equal to 1
- θ · x is the **dot product** of the vectors θ and x h_{θ} is the hypothesis function using the model parameters θ .

Training Linear Regression

Recall that: RMSE(X, h) =
$$\sqrt{\frac{1}{m}} \sum_{i=1}^{m} (h(\mathbf{x}^{(i)}) - y^{(i)})^2$$

We can then minimize

$$MSE(\mathbf{X}, h_{\boldsymbol{\theta}}) = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}^{(i)} - y^{(i)})^{2|}$$

How well does the model fit the data?

Least Squares

Fit by minimizing squares of errors (variance)

Iterative optimization algorithm to get to an optimal solution or minimize a cost function

- Measure local gradient of the error function
- Follow the steepest gradient down
 - With each step try to decrease the cost function
 - Until you converge to a minimum

Cost

Feature Scaling

Improve learning by making sure all features have similar scales (feature scaling)

Gradient Descent converges much faster

Feature Scaling

Example:

 Rescale features to have zero mean and unit variance, i.e.

$$x_j^{(i)} \leftarrow \frac{x_j^{(i)} - \mu_j}{s_j}$$
 where mean $\mu_j = \frac{1}{n} \sum_{i=1}^n x_j^{(i)}$

and s_i is **standard deviation** of feature j

Batch GD

- Use full training dataset (batch)
- Can be slow

Stochastic GD

- Use random instance
 - Shuffle instances
 - Gradually reduce LR
- Fast, can get out of local minima

Mini-Batch GD

Use mini-batches

Cost

Polynomial Regression

 Train powers of features with linear regression

- Watch out for under or overfitting
 - How do you know which?

Learning Curves

Validation vs. Training Error:

Underfitting Model

Learning Curves

Validation vs. Training Error:

Overfitting Model

Bias Variance Trade-Off

Sources of generalization error:

- Bias:
 - (Wrong) assumptions about data and model
- Variance:
 - Model DoF and sensitivity to variations in training dataset (many dof, high variance - overfitting model)
- Resolution (Irreducible error):
 - Noisy data

Trade-off! e.g. Increase model complexity:

reduce bias, increase variance and vice versa

Hands-on Activity