Operations Research III: Theory Linear Programming Duality

Ling-Chieh Kung

Department of Information Management National Taiwan University

Introduction

- ▶ For business, we study how to formulate LPs.
- ► For engineering, we study how to solve LPs.
- For science, we study mathematical **properties** of LPs.
 - ► We will study **Linear Programming duality**.
 - ▶ It still has important applications.

Road map

- ► Primal-dual pairs.
- ▶ Duality theorems.
- ► Shadow prices.

Upper bounds of a maximization LP

► Consider the following LP

- ► Suppose the LP is very hard to solve.
- Your friend proposes a solution $\hat{x} = (\frac{1}{2}, 1, 1)$ with $\hat{z} = 15$.
 - ▶ If we know z^* , we may compare \hat{z} with z^* .
 - ▶ How to evaluate the performance of \hat{x} without solving the LP?
- ▶ If we can find an **upper bound** of z^* , that works!
 - \triangleright z^* cannot be greater than the upper bound.
 - ▶ So if \hat{z} is close to the upper bound, \hat{x} is quite good.

¹You know 97 is quite high without knowing the highest in this class.

Upper bounds of a maximization LP

▶ How to find an upper bound of z^* for

$$z^* = \max \quad 4x_1 + 5x_2 + 8x_3$$
s.t.
$$x_1 + 2x_2 + 3x_3 \le 6$$

$$2x_1 + x_2 + 2x_3 \le 4$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$
?

▶ How about this: Multiply the first constraint by 2, multiply the second constraint by 1, and then add them together:

$$2(x_1 + 2x_2 + 3x_3) + (2x_1 + x_2 + 2x_3) \le 2 \times 6 + 4$$

$$\Leftrightarrow 4x_1 + 5x_2 + 8x_3 \le 16.$$

- ▶ Compare this with the objective function, we know $z^* \leq 16$.
 - Maybe z^* is exactly 16 (and the upper bound is **tight**). However, we do not know it here.
 - $\hat{z} = 15$ is close to $z^* = 16$, so \hat{x} is quite good.

Upper bounds of a maximization LP

▶ How to find an upper bound of z^* for this one?

$$z^* = \max \quad 3x_1 + 4x_2 + 8x_3$$
s.t.
$$x_1 + 2x_2 + 3x_3 \le 6$$

$$2x_1 + x_2 + 2x_3 \le 4$$

$$x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0.$$

▶ 16 is also an upper bound:

$$3x_1 + 4x_2 + 8x_3$$

 $\leq 4x_1 + 5x_2 + 8x_3$ (because $x_1 \geq 0$, $x_2 \geq 0$)
 $= 2(x_1 + 2x_2 + 3x_3) + (2x_1 + x_2 + 2x_3)$
 $\leq 2 \times 6 + 4 = 16$.

▶ It is quite likely that 16 is not a tight upper bound and there is a better one. How to improve our upper bound?

Better upper bounds?

$$z^* = \max \quad 3x_1 + 4x_2 + 8x_3$$

s.t.
$$x_1 + 2x_2 + 3x_3 \le 6$$
$$2x_1 + x_2 + 2x_3 \le 4$$
$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$$

- Changing coefficients multiplied on the two constraints modifies the proposed upper bound.
 - ▶ Different coefficients result in different linear combinations.
- \blacktriangleright Let's call the two coefficients y_1 and y_2 , respectively:

- ▶ We need $y_1 \ge 0$ and $y_2 \ge 0$ to preserve the "≤".
- ▶ When do we have $z^* \leq 6y_1 + 4y_2$?

Looking for the lowest upper bound

- ▶ So we look for two variables y_1 and y_2 such that:
 - ▶ $y_1 \ge 0$ and $y_2 \ge 0$.
 - ▶ $3 \le y_1 + 2y_2$, $4 \le 2y_1 + y_2$, and $8 \le 3y_1 + 2y_2$.
 - ► Then $z^* \le 6y_1 + 4y_2$.
- ▶ To try our **best** to look for an upper bound, we minimize $6y_1 + 4y_2$. We are solving **another LP**!

- ▶ We call the original LP the **primal** LP and the new one its **dual** LP.
- ► This idea applies to **any** LP. Let's see more examples.

Nonpositive or free variables

► Suppose variables are not all nonnegative:

$$z^* = \max \quad 3x_1 + 4x_2 + 8x_3$$
s.t.
$$x_1 + 2x_2 + 3x_3 \le 6$$

$$2x_1 + x_2 + 2x_3 \le 4$$

$$x_1 \ge 0, \ x_2 \le 0, \ x_3 \text{ urs.}$$

▶ If we want

now we need

$$y_1 + 2y_2 \ge 3$$
 because $x_1 \ge 0$,
 $2y_1 + y_2 \le 4$ because $x_2 \le 0$, and
 $3y_1 + 2y_2 = 8$ because x_3 is free.

Nonpositive or free variables

▶ So the primal and dual LPs are

max
$$3x_1 + 4x_2 + 8x_3$$

s.t. $x_1 + 2x_2 + 3x_3 \le 6$ and $2x_1 + x_2 + 2x_3 \le 4$ $x_1 \ge 0, x_2 \le 0, x_3$ urs.

- ► Some observations:
 - ightharpoonup Primal max \Rightarrow Dual min.
 - ▶ Primal objective ⇒ Dual RHS.
 - ▶ Primal RHS \Rightarrow Dual objective.
- ► Moreover:
 - ▶ Primal " \geq 0" variable \Rightarrow Dual " \geq " constraint.
 - ▶ Primal " ≤ 0 " variable \Rightarrow Dual " \leq " constraint.
 - ▶ Primal free variable ⇒ Dual "=" constraint.
- ▶ What if we have " \geq " or "=" primal constraints?

No-less-than and equality constraints

► Suppose constraints are not all "≤":

$$z^* = \max \quad 3x_1 + 4x_2 + 8x_3$$
 s.t.
$$x_1 + 2x_2 + 3x_3 \ge 6$$

$$2x_1 + x_2 + 2x_3 = 4$$

$$x_1 \ge 0, \ x_2 \le 0, \ x_3 \text{ urs.}$$

► To obtain

$$y_1(x_1 + 2x_2 + 3x_3) + y_2(2x_1 + x_2 + 2x_3) \le 6y_1 + 4y_2,$$

we now need $y_1 \leq 0$. y_2 can be of any sign (i.e., free).

No-less-than and equality constraints

▶ So the primal and dual LPs are

min
$$6y_1 + 4y_2$$

s.t. $y_1 + 2y_2 \ge 3$
 $2y_1 + y_2 \le 4$
 $3y_1 + 2y_2 = 8$
 $y_1 < 0, y_2 \text{ urs.}$

- ► Some more observations:
 - ▶ Primal " \leq " constraint \Rightarrow Dual " \geq 0" variable.
 - ▶ Primal " \geq " constraint \Rightarrow Dual " \leq 0" variable.
 - ▶ Primal "=" constraint ⇒ Dual free variable.

The general rule

▶ In general, if the primal LP is

its dual LP is

▶ Note that the constraint coefficient matrix is "transposed".

Matrix representation

▶ In general, if the primal LP

is in the standard form, its dual LP is

min
$$b_1y_1 + b_2y_2 + b_3y_3$$

s.t. $A_{11}y_1 + A_{21}y_2 + A_{31}y_3 \ge c_1$
 $A_{12}y_1 + A_{22}y_2 + A_{32}y_3 \ge c_2$
 $A_{13}y_1 + A_{23}y_2 + A_{33}y_3 \ge c_3$.

In matrix representation:

$$\max c^T x$$
s.t. $Ax = b$

$$x > 0$$

and

$$min y^T b$$
s.t. $y^T A > c^T$.

The dual LP for a minimization primal LP

- ► For a minimization LP, its dual LP is to maximize the lower bound.
- ▶ Rules for the directions of variables and constraints are **reversed**:

▶ Note that

$$3x_1 + 4x_2 + 8x_3$$

$$\geq (y_1 + 2y_2)x_1 + (2y_1 + y_2)x_2 + (3y_1 + 2y_2)x_3$$

$$\geq (x_1 + 2x_2 + 3x_3)y_1 + (2x_1 + x_2 + 2x_3)y_2$$

$$\geq 6y_1 + 4y_2.$$

The general rule, uniqueness, and symmetry

▶ The general rule for finding the dual LP:

Obj. function	max	min	Obj. function
Constraint	\leq \leq \leq \leq \leq \leq \leq \leq	$\begin{vmatrix} \ge 0 \\ \le 0 \\ \text{urs.} \end{vmatrix}$	Variable
Variable	$\begin{vmatrix} \ge 0 \\ \le 0 \\ \text{urs.} \end{vmatrix}$	> < < =	Constraint

- ▶ If the primal LP is a maximization problem, do it from left to right.
- ▶ If the primal LP is a minimization problem, do it from right to left.

Proposition 1 (Uniqueness and symmetry of duality)

For any primal LP, there is a unique dual, whose dual is the primal.

Examples of primal-dual pairs

Example 1:

Example 2:

Road map

- ▶ Primal-dual pairs.
- ► Duality theorems.
- ▶ Shadow prices.

Duality theorems

- ▶ Duality provides many interesting properties.
- ▶ We will illustrate these properties for standard form primal LPs:

$$\begin{array}{cccc} \max & c^T x \\ \text{s.t.} & Ax = b \\ & x \geq 0. \end{array} \Leftrightarrow \begin{array}{cccc} \min & y^T b \\ \text{s.t.} & y^T A \geq c^T. \end{array} \tag{1}$$

▶ It can be shown that all the properties that we will introduce apply to other primal-dual pairs.

Weak duality

$$\begin{array}{llll} \max & c^T x \\ \text{s.t.} & Ax = b \\ & x \geq 0. \end{array} & \Leftrightarrow & \begin{array}{lll} \min & y^T b \\ \text{s.t.} & y^T A \geq c^T. \end{array}$$

► The dual LP provides an **upper bound** of the primal LP.

Proposition 2 (Weak duality)

For the LPs defined in (1), if x and y are primal and dual feasible, then $c^T x \leq y^T b$.

Proof. As long as x and y are primal and dual feasible, we have

$$c^T x \leq y^T A x \quad (x \geq 0 \text{ and } y^T A \geq c^T)$$

 $\leq y^T b \quad (Ax = b).$

Therefore, weak duality holds.

Sufficiency of optimality

$$\begin{array}{llll} \max & c^T x \\ \text{s.t.} & Ax = b \\ & x \geq 0. \end{array} & \Leftrightarrow & \begin{array}{lll} \min & y^T b \\ \text{s.t.} & y^T A \geq c^T. \end{array}$$

▶ We now have a **sufficient condition** for optimal solutions.

Proposition 3 (Sufficient condition for optimality)

If \bar{x} and \bar{y} are primal and dual feasible and $c^T\bar{x} = \bar{y}^Tb$, then \bar{x} and \bar{y} are primal and dual optimal.

Proof. For all dual feasible y, we have $c^T \bar{x} \leq y^T b$ by weak duality. But we are given that $c^T \bar{x} = \bar{y}^T b$, so we have $\bar{y}^T b \leq y^T b$ for all dual feasible y. This just tells us that \bar{y} is dual optimal. For \bar{x} it is the same.

▶ Given a primal feasible solution \bar{x} , if we can find a dual feasible solution so that there objective values are **identical**, \bar{x} is optimal.

The dual optimal solution

$$\begin{array}{llll} \max & c^T x \\ \text{s.t.} & Ax = b \\ & x \geq 0. \end{array} & \Leftrightarrow & \begin{array}{lll} \min & y^T b \\ \text{s.t.} & y^T A \geq c^T. \end{array}$$

▶ If we have solved the primal LP, the dual optimal solution is there.

Proposition 4 (Dual optimal solution)

For the LPs defined in (1), if \bar{x} is primal optimal with basis B, then $\bar{y}^T = c_B^T A_B^{-1}$ is dual optimal.

Proof. Because B is optimal, the reduced costs $c_B^T A_B^{-1} A_N - c_N^T \ge 0$. As $c_B^T = c_B^T A_B^{-1} A_B$, we have

$$\bar{y}^T A = c_B^T A_B^{-1} A = c_B^T A_B^{-1} \begin{bmatrix} A_B & A_N \end{bmatrix} \ge \begin{bmatrix} c_B^T & c_N^T \end{bmatrix} = c^T$$

and thus \bar{y} is dual feasible. As $\bar{y}^Tb = c_B^TA_B^{-1}b = c_B^Tx_B = c^Tx$, \bar{x} and \bar{y} have the same objective value and are thus both optimal.

Strong duality

$$\begin{array}{lll} \max & c^T x \\ \text{s.t.} & Ax = b \\ & x \geq 0. \end{array} \Leftrightarrow \begin{array}{ll} \min & y^T b \\ \text{s.t.} & y^T A \geq c^T. \end{array}$$

▶ The fact that $c_B^T A_B^{-1}$ is dual optimal implies strong duality:

Proposition 5 (Strong duality)

For the LPs defined in (1), \bar{x} and \bar{y} are primal and dual optimal if and only if \bar{x} and \bar{y} are primal and dual feasible and $c^T\bar{x}=\bar{y}^Tb$.

Proof. To prove this if-and-only-if statement:

- \blacktriangleright (\Leftarrow): By Proposition 3.
- ▶ (⇒): As $c_B^T A_B^{-1}$ is an dual optimal solution, the dual optimal objective value is $c_B^T A_B^{-1} b$, which equals the primal optimal objective value $c^T \bar{x}$. As \bar{y} is dual optimal, $\bar{y}^T b = c_B^T A_B^{-1} b = c^T \bar{x}$.

²As the dual LP may or may not have a unique optimal solution, \bar{y} and $c_B^T A_B^{-1}$ may or may not be identical. In either case, the statement holds.

Implications of strong duality

- ► Strong duality certainly implies weak duality.
 - Weak duality says that the dual LP provides a bound.
 - ► Strong duality says that the bound is **tight**, i.e., cannot be improved.
- ► The primal and dual LPs are equivalent.
- ➤ Given the result of one LP, we may predict the result of its dual:

Primal	Dual					
1 Illiai	Infeasible	Unbounded	Finitely optimal			
Infeasible	$\sqrt{}$	\checkmark	×			
Unbounded	\checkmark	×	×			
Finitely optimal	×	×	\checkmark			

- \triangleright $\sqrt{\text{means possible}}$, \times means impossible.
- ▶ Primal unbounded \Rightarrow no upper bound \Rightarrow dual infeasible.
- ▶ Primal finitely optimal \Rightarrow finite objective value \Rightarrow dual finitely optimal.
- ▶ If primal is infeasible, the dual may still be infeasible (by examples).

► Consider the following primal and dual LPs:

► For the standard form primal LP, we have

$$c^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 and $A = \begin{bmatrix} 2 & -1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$

Let's solve the primal LP to obtain an dual optimal solution.

Primal optimal solution

▶ By using the simplex method, we obtain an optimal tableau

-1	0	0	0	0	0		0	0	$\frac{1}{4}$	$\frac{1}{4}$	0	3
					$x_3 = 4$	$\rightarrow \cdots \rightarrow$	1	0	$\frac{1}{4}$	$\frac{1}{4}$	0	$x_1 = 3$
2	1	0	1	0	$x_4 = 8$		0	1	$\frac{-1}{2}$	$\frac{1}{2}$	0	$x_2 = 2$
0	1	0	0	1	$x_5 = 3$							$x_5 = 1$

- ▶ The associated optimal basis is B = (1, 2, 5).
- ▶ The primal optimal solution is $\bar{x} = (3, 2)$.
- ▶ The associated objective value is $z^* = 3$.

Dual optimal solution

▶ Recall that

$$c^T = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 and $A = \begin{bmatrix} 2 & -1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$.

• Given $x_B = (x_1, x_2, x_5)$ and $x_N = (x_3, x_4)$ we have

$$c_B^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$
 and $A_B = \begin{bmatrix} 2 & -1 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$.

Dual optimal solution

▶ Given the primal optimal basis, we obtain a dual solution

$$\bar{y}^T = c_B^T A_B^{-1} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & 0 \end{bmatrix}.$$

- ► For $\bar{y} = (\frac{1}{4}, \frac{1}{4}, 0)$:
 - ▶ It is dual feasible: $2(\frac{1}{4}) + 2(\frac{1}{4}) \ge 1$ and $-\frac{1}{4} + \frac{1}{4} + 0 \ge 0$.
 - Its dual objective value $w = 4(\frac{1}{4}) + 8(\frac{1}{4}) = 3 = z^*$.
- ▶ Therefore, \bar{y} is dual optimal.

Complementary slackness

 \triangleright Consider v, the slack variables of the dual LP:

min
$$y^T b$$

s.t. $y^T A - v^T = c^T$
 $v \ge 0$. (2)

Proposition 6 (Complementary slackness)

For the LPs defined in (1) and (2), \bar{x} and (\bar{y}, \bar{v}) are primal and dual optimal if and only if they are feasible and $\bar{v}^T \bar{x} = 0$.

Proof. We have $c^T \bar{x} = (\bar{y}^T A - \bar{v}^T) \bar{x} = \bar{y}^T A \bar{x} - \bar{v}^T \bar{x} = \bar{y}^T b - \bar{v}^T \bar{x}$. Therefore, $\bar{v}^T \bar{x} = 0$ if and only if $c^T \bar{x} = \bar{y}^T b$, i.e., \bar{x} and (\bar{y}, \bar{v}) are primal and dual optimal according to strong duality.

- Note that $\bar{v}^T \bar{x} = 0$ if and only if $\bar{v}_i \bar{x}_i = 0$ for all i as $\bar{x} \geq 0$ and $\bar{v} \geq 0$.
- ▶ If a dual (respectively, primal) constraint is **nonbinding**, the corresponding primal (respectively, dual) variable is **zero**.

▶ Consider the primal and dual LPs we have mentioned,

▶ Let s_i and v_j be the slack variables for the primal and dual LPs:

- Let (\bar{x}, \bar{s}) be primal optimal, we have $(\bar{x}, \bar{s}) = (3, 2, 0, 0, 1)$. Let's find a dual optimal solution (\bar{y}, \bar{v}) without solving the dual LP.
- According to complementary slackness, $\bar{x}_1 > 0$, $\bar{x}_2 > 0$, and $\bar{s}_3 > 0$ imply $\bar{v}_1 = 0$, $\bar{v}_2 = 0$, and $\bar{y}_3 = 0$, respectively.
- ▶ The two dual functional equalities are reduced to

- ▶ Solving the above equations results in $\bar{y}_1 = \frac{1}{4}$ and $\bar{y}_2 = \frac{1}{4}$. (\bar{y}, \bar{v}) is then guaranteed to be dual optimal.
 - Note that $z^* = 3 = w^*$.

Why duality?

- ▶ Why duality? Given an LP:
 - ▶ We may solve it directly.
 - ▶ Or we may solve the dual LP and then get the primal optimal solution.
- ► Why bothering?
- ▶ The computation time of the simplex method is roughly proportional to m^3 .
 - \triangleright m is the number of functional constraints of the original LP.
 - \triangleright And n, the number of variables of the original LP, does not matter a lot.
- ▶ If $m \gg n$, solving the dual LP can take a significantly shorter time than solving the primal!
- ▶ There are many other benefits for having duality. We will see some more in this course.

Shadow prices

Road map

- ▶ Primal-dual pairs.
- ▶ Duality theorems.
- ► Shadow prices.

A product mix problem

- ▶ Suppose we produce tables and chairs with wood and labors. In total we have six units of wood and six labor hours.
 - Each table is sold at \$3 and requires 2 units of wood and 1 labor hour.
 - ▶ Each chair is sold at \$1 and requires 1 unit of wood and 2 labor hours.

How may we formulate an LP to maximize our sales revenue?

► The formulation is

 x_1 = number of tables produced x_2 = number of chairs produced.

▶ The optimal solution is $x^* = (3,0)$.

"What-if" questions

- ▶ In practice, people often ask "what-if" questions:
 - ▶ What if the unit price of chairs becomes \$2?
 - ▶ What if each table requires 3 units of wood?
 - ▶ What if we have 10 units of wood?
- ▶ Why what-if questions?
 - ► Parameters may fluctuate.
 - Estimation of parameters may be inaccurate.
 - Looking for ways to improve the business.
- ▶ For realistic problems, what-if questions can be hard.
 - Even though it may be just a tiny modification of one parameter, the optimal solution may change a lot.
- ► The tool for answering what-if questions is **sensitivity analysis**.

Humboldt Redwood

- ▶ Pacific Lumber Company (now Humboldt Redwood) has over 200,000 acres of forests and five mills.
- ▶ Sustainability is important in making operational decisions.
 - ▶ An OR team develops a 120-year forest ecosystem management plan.
 - ▶ The LP optimizes the timberland operations for maximizing profitability while satisfying constraints including sustainability.
 - ▶ The model has around 8,500 functional constraints and 353,000 variables.
- ► The environment may **change!**
 - ▶ E.g., climate, supply and demand, logging costs, and regulations.
 - Sensitivity analysis is applied.³
 - ³L. R. Fletcher, H. Alden, S. P. Holmen, D. P. Angelides, and M. J. Etzenhouser (1999). "Long-term forest ecosystem planning at Pacific Lumber." *Interface* **29**(1) 90-111.

"What-if" questions

- ► In general, what-if questions can always be answered by formulating and solving a new optimization problem **from scratch**.
- ▶ But this may be too time consuming!
- ▶ By sensitivity analysis techniques:
 - ► The original optimal tableau provides useful information.
 - We typically start from the original optimal bfs and do just a few iterations to reach the new optimal bfs.
 - Duality provides a theoretical background.
- ▶ Here we want to introduce just one type of what-if question: What if I have additional units of a certain resource?
- ► Consider the following scenario:
 - ▶ One day, a salesperson enters your office and wants to offer you one additional unit of wood at \$1. Should you accept or reject?

One more unit of wood

➤ To answer this question, you may formulate a new LP:

- The new objective value $z' = 3 \times 3.5 = 10.5$ is larger than the old objective value $z^* = 9$.
- ► It is good to accept the offer (at the unit price \$1).
 - ▶ We earn \$0.5 as our **net benefit**.

One more labor hour

➤ Suppose instead of offering one addition unit of wood, the salesperson offers one additional labor hour at \$1.

- ► The new objective value is **the** same as the old objective value.
- ▶ It is not worthwhile to buy it: The objective value does not increase.
 - ► The net loss is \$1.

Shadow prices

- ► For each resource, there is a **maximum amount of price** we are willing to pay for one additional unit.
 - ▶ That depends on the net benefit of that one additional unit.
 - ▶ For wood, this price is \$1.5. For labor hours, this price is \$0.
- ▶ This motivates us to define **shadow prices** for each constraint:

Definition 1 (Shadow price)

For an LP that has an optimal solution, the shadow price of a constraint is the amount of objective value increased when the RHS of that constraint is increased by 1, assuming the current optimal basis remains optimal.

- ▶ So for our table-chair example, the shadow prices for constraints 1 and 2 are 1.5 and 0, respectively.
- ▶ Note that we **assume** that the current optimal basis does not change.

Assuming the optimal basis does not change

► Consider another example:

$$z^* = \max \quad 3x_1 + x_2 \\ \text{s.t.} \quad x_1 + x_2 \le 4 \\ x_1 + 2x_2 \le 4.5 \\ x_i \ge 0 \quad \forall i = 1, 2.$$

▶ If we want to find the shadow price of constraint 1, we may try to solve a new LP:

- ► Though $z^{**} = 13.5$ and $z^* = 12$, the shadow price is 15 12 = 3, **not** 1.5!
- ► Shadow prices measure the **rate** of improvement.

Signs of shadow prices

▶ As a shadow price measures how the objective value is **increased**, its sign is determined based on how the feasible region changes:

Proposition 7 (Signs of shadow prices)

For any LP, the sign of a shadow price follows the rule below:

Objective function	Constraint					
Objective function	< >		=			
max min	≥ 0	≤ 0 ≥ 0	Free Free			
111111	≥ 0	≥ 0	гтее			

Nonbinding constraints' shadow prices

▶ If shifting a constraint does not affect the optimal solution, the shadow price must be **zero**.⁴

Proposition 8

Shadow prices are zero for constraints that are nonbinding at the optimal solution.

- ▶ Now we know finding shadow prices allows us to answer the questions regarding additional units of resources.
- ▶ But how to find all shadow prices?
 - ightharpoonup Let m be the number of constraints.
 - \triangleright Is there a better way than solving m LPs?
 - Duality helps!

⁴Not all binding constraints has nonzero shadow prices. Why?

Dual optimal solution provide shadow prices

Proposition 9

For any LP, shadow prices equal the values of dual variables in the dual optimal solution.

Proof. Let B be the old optimal basis and $z = c_B^T A_B^{-1} b$ be the old objective value. If b_1 becomes $b'_1 = b_1 + 1$, then z becomes

$$z' = c_B^T A_B^{-1} \left(b + \begin{vmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{vmatrix} \right) = z + \left(c_B^T A_B^{-1} \right)_1.$$

So the shadow price of constraint 1 is $(c_B^T A_B^{-1})_1$. In general, the shadow price of constraint i is $(c_B^T A_B^{-1})_i$. As $c_B^T A_B^{-1}$ is the dual optimal solution, the proof is complete.

An example

▶ What are the shadow prices?

▶ We solve the dual LP

The dual optimal solution is $y^* = (4,0)$.

➤ So shadow prices are 4 and 0, respectively.

Remarks

- ▶ We have learned how to evaluate a change on the RHS values.
 - \triangleright No need to solve m LPs.
 - ▶ Just solve one dual LP is enough.
- ► This task is one kind of **sensitivity analysis**.
 - ► A "what-if" analysis.
 - ► To test how sensitive our optimal solution is facing some "small" changes.