Pandas Cheatsheet: Data Cleaning

Duplicates	DataScientYst.com	
Detect and	Remove duplicates	
d uplicates		
df.diet.nunique()	number of unique values in column	
df.diet.unique()	unique values in column	
df['col_1'].value_counts(dropna=False)	return series of unique values and counts in column	
df.duplicated(keep='last')	find duplicates and keep only the last record	
df.drop_duplicates(subset=['col_1'])	drop duplicates from column(s)	
df[df.duplicated(keep=False)].index	get indexes of all detected duplications:	

Missing values	DataScientYst.coi
Working	g with missing data
	NaN
df.isna()	return True or False for missing values
df['col_1'].notna()	return True or False for non-NA data
df.isna().all() s[s == True]	Columns which contains only NaN values
df.isna().any()	Detect columns with NaN values
df['col_1'].fillna(0)	Fill NaN with string or 0
<pre>import seaborn as sns sns.heatmap(df.isna(),cmap = 'Greens')</pre>	plot missing values
s.loc[0] = None s.loc[0] = np.nan	Insert missing data
df.dropna(axis=0)	droping rows with missing data
df.dropna(axis=1, how='any')	Drop columns with NaN values

Replacing	DataScientYst.com
Replace dat	a in DataFrame
-	
df['col'] = df['col'].str.replace(' M', '')	replace string from column
<pre>df['col'].str.replace(' M', '')\n .fillna(0).astype(int)</pre>	replace and convert column to integer
df['col'].str.replace('A7', '7', regex=False)	Replace values in column - no regex
df.replace(r'\r+ \n+ \t+','', regex=True)	Find and replace line breaks - new line, tab - regex
df['col'].str.replace('\s+', '', regex=True)	Replace multiple white spaces
df['col'].str.rstrip('\r\n')	Replace line breaks from the right
p = r'<[^<>]*>' df['col1'].str.replace(p, '', regex=True)	Replace HTML tags

Wrong data	DataScientYst.com
Detect	wrong data
	×
df[df['col_1'].str.contains(r'[@#&\$%+-/*]')]	Detect special symbols
df[df['col_1'].map(lambda x: x.isascii())]	Detect (non) ascil characters
df['col']\ .loc[~df['col'].str.match(r'[0-9.]+')]	find pattern with regex
<pre>import numpy as np np.where(df['col']=='',df['col2'],df['col'])</pre>	detect empty spaces
df[df['col_1'].str.contains('[A-Za-z]')]	Detect latin symbols
df.applymap(np.isreal)	detect non numeric rows
df['city'].str.len().value_counts()	Count values by lenght

Outliers	DataScientYst.c
Detect and remove outliers	
• 🛏	•••
df['col_1'].describe()	detecting outliers with describe()
import seaborn as sns sns.boxplot(data=df[['col_1', 'col_2']])	detect outliers with boxplot
q_low = df['col'].quantile(0.01) q_hi = df['col'].quantile(0.99) df[(df['col'] < q_hi)&(df['col'] > q_low)]	remove outliers with quantiles
<pre>import numpy as np ab = np.abs(df['col']-df['col'].mean()) std = (3*df['col'].std()) df[ab <= std]</pre>	remove outliers with standart deviation

Drop	DataScientYst.cor
Drop rows, co	olumns, index, condition
•	→
df.drop('col_1', axis=1, inplace=True)	Drop one column by name
df.drop(['col1', 'col2'], axis=1)	Drop multiple columns by name
df.dropna(axis=1, how='any')	Drop columns with NaN values
df.drop(θ)	Drop rows by index - 0
df.drop([0, 2, 4])	drop multiple rows
df[(df['col1'] > 0) & (df['col2'] != 'open')	1 drop rows by condition
df.reset_index()	drop index

