### **Data Science Capstone Project Presentation**

In fulfillment of Simplilearn Master Data Science Certification course

# Project\_name: Healthcare - NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases)

Presenter: Samuel\_Y.\_Ntsua

Trainer and Mentor: TBD

install packages:

remotezip: for query and downloand zip folder from a url

plotly, seaborn: interactive graphs

cufflinks: connects plotly with pandas to create graphs and charts of dataframes directly

**textblob**: **process textual data** missingno: visualize missing data

scikit-learn: missing data treatment and model evaluation

pandas-profiling: detailed EDA.

g %connect info %copy %ddir %debug %dhist %dirs %doctest mode %echo %ed %edit %env %gui %hist %history

<sup>\*\*</sup> In addition tho these, we will be installing other libraries down the road, as and when they are needed.

llbgscripts %ldir %less %load %load\_ext %loadpy %logoff %logon %logstart %logstate %logstop %ls %lsmagic %ma cro %magic %matplotlib %mkdir %more %notebook %page %pastebin %pdb %pdef %pdoc %pfile %pinfo %pinfo2 %pip %popd %pprint %precision %prun %psearch %psource %pushd %pwd %pycat %pylab %qtconsole %quickref %recall %reh ashx %reload\_ext %ren %rep %rerun %reset %reset\_selective %rmdir %run %save %sc %set\_env %store %sx %system %tb %time %timeit %unalias %unload\_ext %who %who\_ls %whos %xdel %xmode

Available cell magics:

Automagic is ON, % prefix IS NOT needed for line magics.

```
# Ignore harmless warnings
import warnings
warnings.filterwarnings('ignore')
# Imports
import os, pandas as pd, numpy as np, seaborn as sns, plotly.express as px, cufflinks as cf, matplotlib.pyplot as plt, mi
#os.listdir("Project2")
```

\*\* Check the content of the ziped folder located on github

```
# from remotezip import RemoteZip
# with RemoteZip('https://github.com/Simplilearn-Edu/Data-Science-Capstone-Projects/raw/master/Project_2.zip') as hczip:
# for hcfiles in hczip.infolist():
# print(hcfiles.filename)
```

\*\*Now that we see the contents, we can grab the specific file we need for this project.

```
In [6]:
    # with RemoteZip('https://github.com/Simplilearn-Edu/Data-Science-Capstone-Projects/raw/master/Project_2.zip') as hczip:
    # hczip.extract('Project 2/Healthcare - Diabetes/health care diabetes.csv')
```

The file is now downloaded to my local machine at 'Project 2/Healthcare - Diabetes/health care diabetes.csv'

We can now load it with pandas

```
In [7]: hc_df = pd.read_csv('Project 2/Healthcare - Diabetes/health care diabetes.csv')
```

## **Exploratory Data Analysis**

\*\* Descriptive analysis and data understanding

```
hc df.shape
 In [8]:
 Out[8]: (768, 9)
 In [9]:
           type(hc df)
 Out[9]: pandas.core.frame.DataFrame
In [10]:
           hc_df.dtypes
Out[10]: Pregnancies
                                          int64
          Glucose
                                          int64
          BloodPressure
                                          int64
          SkinThickness
                                          int64
          Insulin
                                          int64
                                        float64
          BMI
          DiabetesPedigreeFunction
                                        float64
                                          int64
          Age
          Outcome
                                          int64
          dtype: object
         ** Visual exploration and checking for missing data
         The project instruction indicates that a value of 0 in
         Glucose, BloodPressure, SkinThickness, Insulin, BMI are actually missing values
         So let's go ahead and set the 0s to np.nan
In [11]:
           # hc df.columns = hc df.columns.map(str.lower) # all column names to lowercase
           zcol = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']
           #hc_df=hc_df[hc_df[zcol].astype(float)]
           #hc df=hc df.astype({'Glucose':float, 'BloodPressure':float, 'SkinThickness':float, 'Insulin':float, 'BMI':float})
In [12]:
           hc df
Out[12]:
               Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
            0
                        6
                               148
                                              72
                                                            35
                                                                    0 33.6
                                                                                              0.627
                                                                                                     50
                                                                                                                1
                        1
                                85
                                              66
                                                            29
                                                                    0 26.6
                                                                                              0.351
                                                                                                     31
                                                                                                                0
            2
                        8
                               183
                                              64
                                                            0
                                                                    0 23.3
                                                                                              0.672
                                                                                                     32
                                                                                                                1
```

|     | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | ВМІ  | DiabetesPedigreeFunction | Age | Outcome |
|-----|-------------|---------|---------------|---------------|---------|------|--------------------------|-----|---------|
| 3   | 1           | 89      | 66            | 23            | 94      | 28.1 | 0.167                    | 21  | 0       |
| 4   | 0           | 137     | 40            | 35            | 168     | 43.1 | 2.288                    | 33  | 1       |
| ••• |             |         |               |               |         |      |                          |     | •••     |
| 763 | 10          | 101     | 76            | 48            | 180     | 32.9 | 0.171                    | 63  | 0       |
| 764 | 2           | 122     | 70            | 27            | 0       | 36.8 | 0.340                    | 27  | 0       |
| 765 | 5           | 121     | 72            | 23            | 112     | 26.2 | 0.245                    | 30  | 0       |
| 766 | 1           | 126     | 60            | 0             | 0       | 30.1 | 0.349                    | 47  | 1       |
| 767 | 1           | 93      | 70            | 31            | 0       | 30.4 | 0.315                    | 23  | 0       |

768 rows × 9 columns

Out[15]: Pregnancies

Glucose

Insulin

BloodPressure

SkinThickness

```
In [13]:
          hc_df[hc_df[zcol]==0]=np.nan
In [14]:
          hc_df.isnull().sum()
Out[14]: Pregnancies
                                        0
          Glucose
                                         5
          BloodPressure
                                        35
          SkinThickness
                                       227
          Insulin
                                       374
          BMI
                                       11
          DiabetesPedigreeFunction
                                        0
          Age
                                         0
          Outcome
                                         0
          dtype: int64
         ** The same information as above, but now in percentge
In [15]:
           round(100*(hc_df.isnull().sum() / len(hc_df)))
```

0.0

1.0

5.0

30.0

49.0

```
BMI
                              1.0
DiabetesPedigreeFunction
                              0.0
                              0.0
Age
Outcome
                              0.0
```

dtype: float64

```
In [16]:
          # %history -g -f cmd_hist.py
```

```
In [17]:
          # %Lsmagic
          %matplotlib inline
```

To visually see how missing value in one column is related to another column, \* let's plot the heatmap of the missingness.

```
In [18]:
          sns.heatmap(hc_df.isnull(),cbar=False)
```

### Out[18]: <AxesSubplot:>



<sup>\*\*</sup> Furthermore, we can use missno's matrix to highlight places in each column where data is missing.

```
In [19]: | missno.matrix(hc_df,figsize=(10,6))
```

Out[19]: <AxesSubplot:>



Dropping missing a missing value from a column leads to dropping all other valid values in the row corresponding to the missing value.

Dropping valid data will then lead to bias in the results.

To avoid such problem, we need to examine how much good data will be thrown out when a targeted missing data is dropped.

A correlation metrix between the missing variables can tell us the how one missing value is related to other non-missing values.

Below, we see the missno heatmap of missingness correlated matrix.



Out[20]: <AxesSubplot:>



<sup>\*\*</sup> Likewise, a dendogram also show how one missing value in one column is related to non-missing value in another column.

```
In [21]: missno.dendrogram(hc_df,figsize=(10,6))
```

Out[21]: <AxesSubplot:>



### From the graphs above we can observe that:

- (1) Insuline and SkinThinckness are correlated (corr coef = 0.7)
- (2) There are more missing data in Insulin and SkinThickness, but each time Insulin is missing SkinThickness is also missing, however, not the other way round.

In theory, given this correlation, the absence of one of Insulin or SkinThickness will not affect the ability to predict the Outcome varibale. That is, one of the correlated variable can be expressed in termes of the other.

But if we were to drop one, further analysis is needed to determine the one that is not a principal component contributing variation to Outcome. Furthermore, when two variables are correlated, it do not necessarily mean one of then is useless.

In fact ,in this dataset, the measures of Insulin or SkinThickness were observed naturally as they occured on the patients.

These observations suggest that dropping these missing values can lead to loosing data pont that would otherwise

### contribute to the accuracy of our analysis results.

So for now we continue our analysis without dropping any variable.

\*\* Going forward, we need to figure out how to handle the missing values then.

### Do we fill them with mean values? Probably not. Why?

Although replacing almost half of the values with the mean value is not going the affect the mean of that same variable,

it however reduces it's standard error, and so affecting its relationship with other variables in the dataset.

Doing so will likely tilt the imputed mean towards the observed mean.

### Replacing missing values with the mean constitute a quick fix that will get me the project

completed quickly, but it comes with flawed prediction capabilities.

### As such, I would not opt for that option.

What else can be done without loosing predictive capability of the data?

### Now let's look at two other treatment methods of missing values:

multiple imputation ( mi ) and maximum likelihood estimate ( mle ).

#### maximum likelihood estimate mle:

mle takes the row on which data is missing, then compare the non-missing values of that row to other non-missing value in the same column (within variable), then determins the closet of the set of non-missing values (the likelyhood), and finally look up the corresponding value in the missing value's column to replace the actual missing value.

Another way to view this is, if two subject have the same values of parameter except that one is missing for a subject, it is logical to replace the missing value with the corresponding parameter of the other subject.

### Problem with mle treatment of missing value

mle does not impute data.

Given the description of the method above, it is clear that the replacement of the missing value is linear in nature, and therefore mle applies to linear models only.

### multiple imputation mi:

As the name suggests, mi imputes multiple times, that is, it takes multiple and different samples (of same size)

from the original data (nonparametric bootstrap), compute an estimator \$\hat{X\_{i}}\$ of the missing value from each sample,

then based on the assumption that, the missing value we are trying to figure out follows the same distribution as \$\hat{X\_{i}}\$,

### we compute an estimate \$\bar{x}\$ of the missing value.

Statistical software like Stata, SAS, SPSS and R implement various computation methods of mi.

\*\* In Python I am going to use scikit-learn implimentation (IterativeImputer), even though it is still experimental as of today.

```
from sklearn.experimental import enable_iterative_imputer
           from sklearn.impute import IterativeImputer
In [23]:
          imp = IterativeImputer(random state=100)
          imp.fit(hc df)
Out[23]: IterativeImputer(random_state=100)
In [24]:
          imputed hc df = pd.DataFrame(imp.transform(hc df), columns=hc df.columns)
In [25]:
           round(100*(imputed hc df.isnull().sum() / len(imputed hc df)))
Out[25]: Pregnancies
                                      0.0
          Glucose
                                      0.0
          BloodPressure
                                      0.0
          SkinThickness
                                      0.0
          Insulin
                                      0.0
                                      0.0
          DiabetesPedigreeFunction
                                      0.0
          Age
                                      0.0
          Outcome
                                      0.0
          dtype: float64
```

### Now that we have full dataset, we can steam forward with more data exploration.

\*\* Let's look at the Mean, std, min, max and quantiles of before imputation, for both Outcome ==0 and Outcome ==1

| In [26]: | hc_df.describe().T |       |            |            |        |          |          |           |        |
|----------|--------------------|-------|------------|------------|--------|----------|----------|-----------|--------|
| Out[26]: |                    | count | mean       | std        | min    | 25%      | 50%      | 75%       | max    |
|          | Pregnancies        | 768.0 | 3.845052   | 3.369578   | 0.000  | 1.00000  | 3.0000   | 6.00000   | 17.00  |
|          | Glucose            | 763.0 | 121.686763 | 30.535641  | 44.000 | 99.00000 | 117.0000 | 141.00000 | 199.00 |
|          | BloodPressure      | 733.0 | 72.405184  | 12.382158  | 24.000 | 64.00000 | 72.0000  | 80.00000  | 122.00 |
|          | SkinThickness      | 541.0 | 29.153420  | 10.476982  | 7.000  | 22.00000 | 29.0000  | 36.00000  | 99.00  |
|          | Insulin            | 394.0 | 155.548223 | 118.775855 | 14.000 | 76.25000 | 125.0000 | 190.00000 | 846.00 |

|                          | count | mean      | std       | min    | 25%      | 50%     | 75%      | max   |
|--------------------------|-------|-----------|-----------|--------|----------|---------|----------|-------|
| ВМІ                      | 757.0 | 32.457464 | 6.924988  | 18.200 | 27.50000 | 32.3000 | 36.60000 | 67.10 |
| DiabetesPedigreeFunction | 768.0 | 0.471876  | 0.331329  | 0.078  | 0.24375  | 0.3725  | 0.62625  | 2.42  |
| Age                      | 768.0 | 33.240885 | 11.760232 | 21.000 | 24.00000 | 29.0000 | 41.00000 | 81.00 |
| Outcome                  | 768.0 | 0.348958  | 0.476951  | 0.000  | 0.00000  | 0.0000  | 1.00000  | 1.00  |

The above output of mean and max implies that there are some extremes values in the dataset.

For instance, Pregnancies has a max value of 17.

This suggests someone in the dataset was pregnant 17 times! Is this realistc?

Insulin also seems to have an extreme case.

Let's look at the historgram of the variable to see if there are extreme cases to worry about.

```
In [27]: plt.figure(figsize=(10, 10))

for i, c in enumerate(hc_df.columns):
    plt.subplot(5,2,i+1)
    sns.histplot(hc_df[c])
    plt.title('Distribution plot for field:' + c)
    plt.xlabel('')
    plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
```



Out[28]

Looking at the graph above, two cases of Pregnancies and Insulin need explanation:

Pregnancies: Even though it seems unusual for humans to be pregnant 17 times, the the graph shows no gap between the max value of 17 and the rest of the group. This suggest it is not an outlier case.

Insulin: there are a few observations in the same region as the max value of 846.

Even though these values are extremely high, the 75 percentile shows that 75% of the data has value less than 190 Furthermore, the mean of 155 and standard deviation of 118 shows that the bulk of the data are within normal range. Thus, the values of Insulin in the region of 800 will not significantly affect the overall statistical validity of that variable. SkinThickness and MBI seem a little skewed, but not to the level that warrant correction before analysis.

<sup>\*\*</sup> Mean, std, min, max and quantiles of before imputation, for Outcome==0

| In [28]: | hc_df[hc_df['Outcome']==0].describe().T |
|----------|-----------------------------------------|
|----------|-----------------------------------------|

| :     |                        | count | mean       | std        | min    | 25%      | 50%     | 75%       | max     |
|-------|------------------------|-------|------------|------------|--------|----------|---------|-----------|---------|
|       | Pregnancies            | 500.0 | 3.298000   | 3.017185   | 0.000  | 1.00000  | 2.000   | 5.00000   | 13.000  |
|       | Glucose                | 497.0 | 110.643863 | 24.776906  | 44.000 | 93.00000 | 107.000 | 125.00000 | 197.000 |
|       | BloodPressure          | 481.0 | 70.877339  | 12.161223  | 24.000 | 62.00000 | 70.000  | 78.00000  | 122.000 |
|       | SkinThickness          | 361.0 | 27.235457  | 10.026491  | 7.000  | 19.00000 | 27.000  | 33.00000  | 60.000  |
|       | Insulin                | 264.0 | 130.287879 | 102.482237 | 15.000 | 66.00000 | 102.500 | 161.25000 | 744.000 |
|       | вмі                    | 491.0 | 30.859674  | 6.560737   | 18.200 | 25.60000 | 30.100  | 35.30000  | 57.300  |
| Diabe | etes Pedigree Function | 500.0 | 0.429734   | 0.299085   | 0.078  | 0.22975  | 0.336   | 0.56175   | 2.329   |
|       | Age                    | 500.0 | 31.190000  | 11.667655  | 21.000 | 23.00000 | 27.000  | 37.00000  | 81.000  |
|       | Outcome                | 500.0 | 0.000000   | 0.000000   | 0.000  | 0.00000  | 0.000   | 0.00000   | 0.000   |

<sup>\*\*</sup> Mean, std, min, max and quantiles of before imputation , for Outcome==1

| In [29]: | hc_df[hc_df['Outcome' | ]==1].d | escribe(). | Т        |       |        |       |       |       |
|----------|-----------------------|---------|------------|----------|-------|--------|-------|-------|-------|
| Out[29]: |                       | count   | mean       | std      | min   | 25%    | 50%   | 75%   | max   |
|          | Pregnancies           | 268.0   | 4.865672   | 3.741239 | 0.000 | 1.7500 | 4.000 | 8.000 | 17.00 |

|                          | count | mean       | std        | min    | 25%      | 50%     | 75%     | max    |
|--------------------------|-------|------------|------------|--------|----------|---------|---------|--------|
| Glucose                  | 266.0 | 142.319549 | 29.599199  | 78.000 | 119.0000 | 140.000 | 167.000 | 199.00 |
| BloodPressure            | 252.0 | 75.321429  | 12.299866  | 30.000 | 68.0000  | 74.500  | 84.000  | 114.00 |
| SkinThickness            | 180.0 | 33.000000  | 10.327595  | 7.000  | 27.0000  | 32.000  | 39.000  | 99.00  |
| Insulin                  | 130.0 | 206.846154 | 132.699898 | 14.000 | 127.5000 | 169.500 | 239.250 | 846.00 |
| ВМІ                      | 266.0 | 35.406767  | 6.614982   | 22.900 | 30.9000  | 34.300  | 38.925  | 67.10  |
| DiabetesPedigreeFunction | 268.0 | 0.550500   | 0.372354   | 0.088  | 0.2625   | 0.449   | 0.728   | 2.42   |
| Age                      | 268.0 | 37.067164  | 10.968254  | 21.000 | 28.0000  | 36.000  | 44.000  | 70.00  |
| Outcome                  | 268.0 | 1.000000   | 0.000000   | 1.000  | 1.0000   | 1.000   | 1.000   | 1.00   |

Differences of (Mean, std, min, max and quantiles) before and after inputation:

• We compute and compare the differences for Outcome==0 and Outcome==1

<sup>\*\*</sup> Computation for Outcome==0

| In [30]: | <pre>round(imputed_hc_df[imputed_hc_df['Outcome']==0].describe().T - hc_df[hc_df['Outcome']==0].describe().T ,4)</pre> |  |
|----------|------------------------------------------------------------------------------------------------------------------------|--|
|          |                                                                                                                        |  |

| Out[30]:         |           | count | mean    | std      | min      | 25%    | 50%     | 75%     | max |
|------------------|-----------|-------|---------|----------|----------|--------|---------|---------|-----|
| Pre              | gnancies  | 0.0   | 0.0000  | 0.0000   | 0.0000   | 0.0000 | 0.0000  | 0.0000  | 0.0 |
|                  | Glucose   | 3.0   | -0.0608 | -0.0550  | 0.0000   | 0.0000 | 0.0000  | 0.0000  | 0.0 |
| Blood            | Pressure  | 19.0  | -0.0802 | -0.1986  | 0.0000   | 0.4921 | 0.0000  | 0.0000  | 0.0 |
| Skin             | Thickness | 139.0 | -0.2774 | -0.8908  | 0.0000   | 1.0000 | -0.2169 | -0.8233 | 0.0 |
|                  | Insulin   | 236.0 | -3.3301 | -18.9441 | -34.5017 | 7.8282 | 7.5000  | -4.6201 | 0.0 |
|                  | BMI       | 9.0   | -0.0049 | -0.0590  | 0.0000   | 0.1500 | 0.1147  | 0.0000  | 0.0 |
| DiabetesPedigree | Function  | 0.0   | 0.0000  | 0.0000   | 0.0000   | 0.0000 | 0.0000  | 0.0000  | 0.0 |
|                  | Age       | 0.0   | 0.0000  | 0.0000   | 0.0000   | 0.0000 | 0.0000  | 0.0000  | 0.0 |
|                  | Outcome   | 0.0   | 0.0000  | 0.0000   | 0.0000   | 0.0000 | 0.0000  | 0.0000  | 0.0 |

<sup>\*\*</sup> Comment for Outcome==0:

Out[31]:

- count: We successfully augmented the count for SkinThickness, Insulin, BloodPressure, Glucose and MBI as shown in the first column of the table above
- mean, std, min, max and quantiles: Given the magnitude of range (max min) shown in the before inputation,
   744-14 for Insulin, for instance, it appears the before/after difference for mean, std, min, max and quantiles are quite small.
- \*\* Computation for Outcome==1

In [31]:
 round(imputed\_hc\_df[imputed\_hc\_df['Outcome']==1].describe().T - hc\_df[hc\_df['Outcome']==1].describe().T ,4)

|                          | count | mean    | std      | min | 25%    | 50%     | 75%     | max |
|--------------------------|-------|---------|----------|-----|--------|---------|---------|-----|
| Pregnancies              | 0.0   | 0.0000  | 0.0000   | 0.0 | 0.0000 | 0.0000  | 0.0000  | 0.0 |
| Glucose                  | 2.0   | 0.0003  | -0.1110  | 0.0 | 0.0000 | 0.5000  | 0.0000  | 0.0 |
| BloodPressure            | 16.0  | -0.0706 | -0.3211  | 0.0 | 0.0000 | -0.5000 | -2.0000 | 0.0 |
| SkinThickness            | 88.0  | -0.4615 | -1.1542  | 0.0 | 0.0000 | 0.0000  | -1.1387 | 0.0 |
| Insulin                  | 138.0 | -6.1658 | -29.5186 | 0.0 | 3.4362 | 8.5752  | 0.9089  | 0.0 |
| ВМІ                      | 2.0   | -0.0049 | -0.0239  | 0.0 | 0.0000 | 0.0000  | -0.1500 | 0.0 |
| DiabetesPedigreeFunction | 0.0   | 0.0000  | 0.0000   | 0.0 | 0.0000 | 0.0000  | 0.0000  | 0.0 |
| Age                      | 0.0   | 0.0000  | 0.0000   | 0.0 | 0.0000 | 0.0000  | 0.0000  | 0.0 |
| Outcome                  | 0.0   | 0.0000  | 0.0000   | 0.0 | 0.0000 | 0.0000  | 0.0000  | 0.0 |

<sup>\*\*</sup> Comment for Outcome==1:

- count: We successfully augmented the count for SkinThickness, Insulin, BloodPressure, Glucose and MBI as shown in the first column of the table above
- mean, std, min, max and quantiles: Given the magnitude of range (max min) shown in the before inputation, 846-14 for Insulin, for instance, it appears the before/after difference for mean, std, min, max and quantiles are quite small.

In conclusion, we can say the imputation has successfully improved the data without loosing any case.

### But that does not mean that a thoughfully imputed dataset garantees a representative analysis result.

If there are significantly more of a particular outcome that others, the analysis results will be skeweb

### if the dataset is not balance or a probability weight is not introduced.

Let's see how balanced is the data after imputation.



The graph above show that about 2/3 of Outcome is 0 or negative outcome.

This implies that if we were to predict a 0 (negative outcome), we would have achieve an accuracy of 75% with the imbalanced data.

The data is imbalanced. Data imbalance can be addressed during (a) the analysis and interpretation of results, including resampling methods or (b) at the model performance and evaluation metrics level, including chaging the metric and penalizing the algorithm computing the metric.

# For this project, we are going to utilize the resampling method

### to balance the dataset.

# ! pip install imbalanced-learn

```
In [34]:
          from sklearn.utils import resample
          outcome maj = imputed hc df[imputed hc df.Outcome==0]
          outcome min = imputed hc df[imputed hc df.Outcome==1]
           upsample outcome min = resample(outcome min, replace = True, n samples = outcome maj.shape[0], random state= 9876)
           #We can now put the balanced and imputed dataset together
          bal imp hc df = pd.concat([outcome maj, upsample outcome min])
           # Count
In [35]:
          print('Count of the values of Outcome :\n',bal imp hc df.Outcome.value counts())
          Count of the values of Outcome :
           0.0
                  500
          1.0
                 500
         Name: Outcome, dtype: int64
In [36]:
           sns.countplot(bal imp hc df.Outcome)
           plt.xlabel('Outcome types')
           plt.ylabel('Count of Outcome types')
Out[36]: Text(0, 0.5, 'Count of Outcome types')
```



After oversampling the minority class, we now have Outcome values to be 50/50.

```
In [37]:
          print('The shape of the data after oversampling \n {}'.format(bal imp hc df.shape))
         The shape of the data after oversampling
          (1000, 9)
In [38]:
          bal_imp_hc_df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 1000 entries, 1 to 124
         Data columns (total 9 columns):
              Column
                                        Non-Null Count Dtype
              -----
          0
              Pregnancies
                                        1000 non-null
                                                        float64
          1
              Glucose
                                        1000 non-null
                                                        float64
              BloodPressure
                                        1000 non-null
                                                        float64
              SkinThickness
                                        1000 non-null
                                                        float64
          4
              Insulin
                                        1000 non-null
                                                        float64
          5
              BMI
                                        1000 non-null
                                                       float64
              DiabetesPedigreeFunction 1000 non-null
                                                        float64
          7
                                        1000 non-null
                                                        float64
              Age
              Outcome
                                        1000 non-null
                                                        float64
         dtypes: float64(9)
         memory usage: 94.3 KB
In [39]:
          sns.pairplot(bal_imp_hc_df, hue='Outcome', diag_kind='kde', kind = 'reg')
          plt.title('Pair scatter plots between variables')
```

Out[39]: Text(0.5, 1.0, 'Pair scatter plots between variables')





Frem the pairplot above, it appears there is a slight correlation between:

- a-) Glucose and Insulin
- b-) SkinThickness and BMI

Let's graph the correlation matrix too to confirm the above observation.

```
# Correlation heatmap
plt.figure(dpi=120)
sns.heatmap(bal_imp_hc_df.corr(), annot=True,cmap='Greens')
```

Out[40]: <AxesSubplot:>



```
In [41]: bal_imp_hc_df.corr()['Outcome']
```

Out[41]: Pregnancies 0.287039
Glucose 0.497589
BloodPressure 0.204070

 SkinThickness
 0.291594

 Insulin
 0.344833

 BMI
 0.308442

 DiabetesPedigreeFunction
 0.160550

 Age
 0.300631

 Outcome
 1.000000

Name: Outcome, dtype: float64

As expected, the correlation matrix show the highest correlated pairs are :

Glucose and Insulin 0.68 SkinThickness and BMI 0.7

The lest correlated pair are Age and DiabetesPedigreeFunction 0.0057.

Taking the factors individually, the most correlated to Outcome is Glucose (no surprise there) followed by Insulin , then BMI , then Age , then Pregnancies and Skinthickness and the least correlated with Outcome is DiabetesPedigreeFunction .

This ranking also gives us a rought indication of the princial components that, together, would bring the most variations to Outcome, thus the best prediction power.

### **Data Modeling**

Our data has labels, that is, Outcome variable.

We can therefore use a supervised learning algorithms to try to understand the relationship between:

- (a) 'Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age' on one side and
- (b) Outcome on the other side.

Given the variables in (a), we are trying to determine if a patient has diabetes (Outcome ==1) or not (Outcome==0) This is a classification problem.

Now, which of the classification algorithms will give us the best prediction model?

The figure below from scikit-lean website shows us the path decide.



To figure out which classification model will yield the best prediction of Outcome, we can train test a few classification model then evaluate the performance then choose the highest performing model.

# Strategies for model building and selection.

We will attempt several models to see their performance using Area Under the Curve score (AUC). We will then choose the best performing model (or combination of model).

- \*\* Following scikit-learn's diagram above, I will model the data with the following 5 estimators :
- 1) Support Vector machines (SVM)
- 2) KNeighbors Classifier
- 3) three (3) Ensemble Classifiers (RandomForestClassifier, ExtraTreesClassifier and XGBoost)

In the first round of model selection, I will look at the performance report card of the estimators :

precision, recall and f1-score. The top 3 estimators will then be further evaluated by parameter tuning for their individual best performance on the data

Then they will be ranked by their AUC score.

\*\* Split, Train and evaluate

```
In [42]:
          ## Model algorights to test on data
          from sklearn.svm import SVC
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
          import xgboost as xgb # !pip install xgboost (if not already installed)
          from xgboost import XGBClassifier
          # Methods for model Selection
          from sklearn.model selection import train test split, KFold, cross val score, GridSearchCV
          # Methods for model performance evaluation
          from sklearn.metrics import classification report, roc auc score, accuracy score, mean squared error
In [43]:
          X, y = bal imp hc df.drop('Outcome',axis=1), bal imp hc df['Outcome']
          X train, X test, y train, y test = train test split( X , y, test size=0.3, random state=9876)
In [44]:
          print(f'Shape of the training and testing splits: \n X train ==> {X train.shape} \n X test ==> {X test.shape} \n y train
         Shape of the training and testing splits:
          X \text{ train} ==> (700, 8)
          X \text{ test} ==> (300, 8)
          y train ==> (700,)
          y test ==> (300,)
```

### Performance report card:Precision, recall and f1-score

### Performance report card: Support Vector Machines

```
In [45]:
        model = SVC()
        model.fit(X train, y train)
        y train hat = model.predict(X train)
        y test hat = model.predict(X test)
        print(model)
        print(f'Train performance \n ==========' )
        print(classification report(y train, y train hat))
        print(f'Test performance \n =========')
        print(classification report(y test, y test hat))
        print(f'Roc auc score \n =========' )
        print(roc auc score(y test, y test hat))
       SVC()
       Train performance
        ______
                  precision
                            recall f1-score
                                          support
              0.0
                      0.80
                             0.69
                                     0.74
                                              346
                      0.73
                             0.83
                                              354
              1.0
                                     0.78
                                             700
          accuracy
                                     0.76
         macro avg
                      0.77
                             0.76
                                     0.76
                                              700
       weighted avg
                      0.77
                             0.76
                                     0.76
                                              700
       Test performance
        ______
                  precision
                            recall f1-score
                                          support
              0.0
                      0.76
                             0.64
                                     0.69
                                             154
              1.0
                      0.67
                             0.79
                                     0.73
                                             146
                                     0.71
                                              300
          accuracy
         macro avg
                      0.72
                             0.71
                                     0.71
                                              300
                             0.71
       weighted avg
                      0.72
                                     0.71
                                              300
       Roc auc score
        ______
       0.7120174346201744
```

Performance report card: K-Neighbors

```
In [46]: | model = KNeighborsClassifier()
```

```
model.fit(X train, y train)
y train hat = model.predict(X train)
y test hat = model.predict(X test)
print(model)
print(f'Train performance \n =========' )
print(classification report(y train, y train hat))
print(f'Test performance \n ==========' )
print(classification report(y test, y test hat))
print(f'Roc auc score \n =========' )
print(roc auc score(y_test, y_test_hat))
KNeighborsClassifier()
Train performance
______
          precision
                    recall f1-score
                                   support
      0.0
              0.88
                      0.75
                              0.81
                                      346
                      0.90
      1.0
              0.79
                              0.84
                                      354
                                      700
   accuracy
                              0.83
  macro avg
              0.83
                      0.82
                              0.82
                                      700
weighted avg
              0.83
                      0.83
                              0.82
                                      700
Test performance
______
          precision
                    recall f1-score
                                   support
      0.0
              0.84
                      0.66
                              0.74
                                      154
              0.71
                      0.86
                              0.78
      1.0
                                      146
```

0.76 300 accuracy 0.76 macro avg 0.77 0.76 300 0.76 weighted avg 0.77 0.76 300 Roc auc score

\_\_\_\_\_\_ 0.7626756804838997

### Performance report card: Random Forest

```
In [47]:
          model = RandomForestClassifier(n jobs=-1,random state=9876)
          model.fit(X train, y train)
          y train hat = model.predict(X train)
          y test hat = model.predict(X test)
```

```
print(model)
print(f'Train performance \n ==========' )
print(classification report(y train, y train hat))
print(f'Test performance \n =========')
print(classification_report(y_test, y_test_hat))
print(f'Roc auc score \n =========' )
print(roc_auc_score(y_test, y_test_hat))
RandomForestClassifier(n jobs=-1, random state=9876)
Train performance
______
          precision
                    recall f1-score
      0.0
              1.00
                      1.00
                              1.00
                                      346
      1.0
              1.00
                      1.00
                              1.00
                                      354
                              1.00
                                      700
   accuracy
              1.00
                      1.00
                              1.00
                                      700
  macro avg
weighted avg
              1.00
                      1.00
                              1.00
                                      700
Test performance
______
          precision
                    recall f1-score
                                   support
      0.0
              0.94
                      0.76
                              0.84
                                      154
      1.0
              0.79
                      0.95
                              0.86
                                      146
                              0.85
                                      300
   accuracy
  macro avg
              0.86
                      0.85
                              0.85
                                      300
weighted avg
              0.86
                      0.85
                              0.85
                                      300
Roc auc score
```

### Performance report card: Extra Trees

0.8524728695961572

\_\_\_\_\_\_

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0.0          | 1.00      | 1.00   | 1.00     | 346     |
| 1.0          | 1.00      | 1.00   | 1.00     | 354     |
| accuracy     |           |        | 1.00     | 700     |
| macro avg    | 1.00      | 1.00   | 1.00     | 700     |
| weighted avg | 1.00      | 1.00   | 1.00     | 700     |

#### Test performance

|               | =======   | ======= | =======  | ======= |
|---------------|-----------|---------|----------|---------|
|               | precision | recall  | f1-score | support |
| 0.0           | 0.91      | 0.80    | 0.85     | 154     |
| 1.0           | 0.81      | 0.92    | 0.86     | 146     |
| accuracy      |           |         | 0.86     | 300     |
| macro avg     | 0.86      | 0.86    | 0.86     | 300     |
| weighted avg  | 0.86      | 0.86    | 0.86     | 300     |
| weighted avg  | 0.80      | 0.00    | 0.80     | 200     |
| Roc_auc score |           |         |          |         |
| ========      | =======   | ======= | =======  | ======= |

0.8582547589396905

### Performance report card: XGBoost

```
print(f'Roc auc score \n ==========' )
print(roc auc score(y test, y test hat))
[00:01:43] WARNING: C:/Users/Administrator/workspace/xgboost-win64 release 1.4.0/src/learner.cc:1095: Starting in XGBoost
1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Exp
licitly set eval metric if you'd like to restore the old behavior.
XGBClassifier(base score=0.5, booster='gbtree', colsample bylevel=1,
            colsample bynode=1, colsample bytree=1, gamma=0, gpu id=-1,
            importance type='gain', interaction constraints='',
            learning rate=0.300000012, max delta step=0, max depth=6,
            min child weight=1, missing=nan, monotone constraints='()',
            n estimators=100, n jobs=8, num parallel tree=1,
            random state=9876, reg alpha=0, reg lambda=1, scale pos weight=1,
            subsample=1, tree method='exact', validate parameters=1,
            verbosity=None)
Train performance
______
                       recall f1-score
            precision
                                        support
       0.0
                1.00
                         1.00
                                  1.00
                                            346
       1.0
                1.00
                         1.00
                                  1.00
                                            354
                                  1.00
                                            700
   accuracy
                                            700
  macro avg
                1.00
                         1.00
                                  1.00
weighted avg
                1.00
                         1.00
                                  1.00
                                            700
Test performance
______
                       recall f1-score
            precision
       0.0
                0.93
                         0.75
                                  0.83
                                            154
       1.0
                0.78
                         0.94
                                  0.85
                                            146
                                  0.84
                                            300
   accuracy
                0.86
                         0.85
                                  0.84
                                            300
  macro avg
weighted avg
                0.86
                         0.84
                                  0.84
                                            300
Roc auc score
______
0.8458014588151574
```

# Parameter tuning: Model optimization.

Out of the 5 algorithms tested above, I will retain the best 3 AUC score. Random forest, XGBoost and ExtraTrees I will tune their parameters to increase AUC score, by uing cross-validation method GridSearchCV.

```
In [50]: from sklearn.model_selection import GridSearchCV, KFold
```

### Parameter tuning: Random forest

Best score for Random Forest:, 0.9211961442955007

Best parameters found for Random Forest: {'criterion': 'gini', 'max\_leaf\_nodes': None, 'min\_samples\_leaf': 1, 'min\_samples split': 2, 'n estimators': 400}

#### **AUC score: Randon Forest**

```
In [52]:
          from sklearn.metrics import roc auc score
          from sklearn.metrics import roc curve
          rf roc auc = roc auc score(y test, rf gs.predict(X test))
          fpr, tpr, thresholds = roc curve(y test, rf gs.predict proba(X test)[:,1])
          plt.figure()
          plt.plot(fpr, tpr, label='Random Forest (area = %0.2f)' % rf roc auc)
          plt.plot([0, 1], [0, 1], '--')
          plt.xlim([0.0, 1.05])
          plt.ylim([0.0, 1.05])
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Random Forest ROC curve with best parameters')
          plt.legend(loc="lower right")
          plt.savefig('RF ROC')
          print('Area Under Curve: %.3f' % rf roc auc)
          plt.show()
```

Area Under Curve: 0.853



### Parameter tuning: XGBoost

```
params = {
          'n_estimators': [100, 200, 400],
          'learning_rate': [0.01,0.05,0.1],
          'booster': ['gbtree', 'gblinear'],
          'gamma': [0, 0.5, 1],
          'reg_alpha': [0, 0.5, 1],
          'base_score': [0.2, 0.5, 1]
}

xgb_gs = GridSearchCV(XGBClassifier(n_jobs=-1, random_state=9876), params, n_jobs=-1, cv=KFold(n_splits=3), scoring='roc_xgb_gs.fit(X_train, y_train)
    print(f'Best score for XGBoost:, {xgb_gs.best_score_} \n Best parameters found for XGBoost: {xgb_gs.best_params_}')
```

[00:06:11] WARNING: C:/Users/Administrator/workspace/xgboost-win64\_release\_1.4.0/src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Exp licitly set eval\_metric if you'd like to restore the old behavior.

Best score for XGBoost:, 0.8942791755040348

Best parameters found for XGBoost: {'base\_score': 0.2, 'booster': 'gbtree', 'gamma': 0, 'learning\_rate': 0.1, 'n\_estimat ors': 200, 'reg\_alpha': 1}

#### **AUC score: XGBoost**

```
xgb_roc_auc = roc_auc_score(y_test, xgb_gs.predict(X_test))
fpr, tpr, thresholds = roc_curve(y_test, xgb_gs.predict_proba(X_test)[:,1])
```

```
plt.figure()
plt.plot(fpr, tpr, label='XGBoost (area = %0.2f)' % xgb_roc_auc)
plt.plot([0, 1], [0, 1],'--')
plt.xlim([0.0, 1.05])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('XGBoost ROC curve with best parameters')
plt.legend(loc="lower right")
plt.savefig('XGB_ROC')
print('Area Under Curve: %.3f' % xgb_roc_auc)
plt.show()
```

Area Under Curve: 0.819



### Parameter tuning: Extra Trees

```
In [55]:
    params = {
        'n_estimators': [100, 200, 400],
        'criterion': ['gini', 'entropy'],
        'min_samples_split': [1,2,4,6],
        'min_samples_leaf': [1,2,4,6],
        'max_leaf_nodes': [4,10,20,40,None]
}
et_gs = GridSearchCV(ExtraTreesClassifier(n_jobs=-1, random_state=9876), params, n_jobs=-1, cv=KFold(n_splits=3), scoring
```

```
et_gs.fit(X_train, y_train)
print(f'Best score for ExtraTrees:, {et_gs.best_score_} \n Best parameters found for ExtraTrees: {et_gs.best_params_}')
```

Best score for ExtraTrees:, 0.9333230375818872

Best parameters found for ExtraTrees: {'criterion': 'entropy', 'max\_leaf\_nodes': None, 'min\_samples\_leaf': 1, 'min\_samples\_split': 2, 'n\_estimators': 400}

#### **AUC score: Extra Trees**

```
In [56]:
    et_roc_auc = roc_auc_score(y_test, et_gs.predict(X_test))
    fpr, tpr, thresholds = roc_curve(y_test, et_gs.predict_proba(X_test)[:,1])

plt.figure()
    plt.plot(fpr, tpr, label='Extra Trees (area = %0.2f)' % et_roc_auc)
    plt.plot([0, 1], [0, 1],'--')
    plt.xlim([0.0, 1.05])
    plt.ylim([0.0, 1.05])
    plt.ylim([0.0, 1.05])
    plt.ylabel('True Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Extra Trees ROC curve with best parameters')
    plt.legend(loc="lower right")
    plt.savefig('ET_ROC')
    print('Area Under Curve: %.3f' % et_roc_auc)
    plt.show()
```

Area Under Curve: 0.855



# **Conclusion: Model selection**

We can see that Extra Trees has the best ability to predict with this dataset.

With a AUC score of 86%, Extra Trees perfomed better than Random Forest 85%, then XGBoost with 82%.

KNN didn't even make ti to the top 3

| In [ ]: |  |  |
|---------|--|--|
|         |  |  |