PS Bootstrap Binary Standardization

Hun & Amy

2/9/2022

The goal of this document is to combine a lot of the functions that Hun has made and made them into functions that can easily to called for the main loop of the simulations function.

Function to find the intercept to attain the desired treatment rate

```
treatment_rate_coef <- function(desired_prop, seq_try, df, logit_formula) {</pre>
  # setting up data setting variables
  seq_select = tibble(seq_try, mean_A = rep(0, length(seq_try)))
  # for loop that goes through all intercept options.
  for(i in c(1:length(seq_try))) {
   beta_0_treat = seq_try[i]
    # this will be where the beta is updated. Must have beta_O_treat in formula
   A_logit <- eval(parse(text=logit_formula))</pre>
           <- exp(A_logit)/(1+ exp(A_logit))
            <- rbinom(N, 1, p_A) # this decides treat and and non treated
    # getting the mean treated
   seq_select$mean_A[i] = mean(A)
  }
  # # plotting visualizing check
  # seq_select %>%
     ggplot(aes(x=seq\_try, y=mean\_A))+
      geom_point()
  # selecting coeff that gives desired treated untreated proportion
  if (sum(seg select$mean A == desired prop) > 0) {
   beta_0_treat = seq_select %>% filter(mean_A == desired_prop ) %>% pull(seq_try)
  } else {
   beta_0_treat = seq_select %>%
      filter(mean_A < desired_prop + 0.01) %>%
      filter(mean_A > desired_prop - 0.01) %>%
      summarise(
        avg = mean(seq_try)
      ) %>% pull(avg)
  }
  # returning the beta value
  return(mean(beta_0_treat))
```

}

Finding the right beta_effect estimate for binary data

```
binary_outcome_rate <- function(desired_diff, seq_try, df, logit_formula ) {</pre>
  seq_select = tibble(seq_try, prop_save = rep(0, length(seq_try)))
  for(i in c(1:length(seq_try))) {
    beta_effect = seq_try[i]
    # binary outcome
    y_logit <-eval(parse(text=logit_formula ))</pre>
    p_outcome <- exp(y_logit)/(1+ exp(y_logit))</pre>
    y_binary <- rbinom(N, 1, p_outcome)</pre>
    # finding difference between groups
    prop = tibble(y_binary, A = df$A) %>%
      group_by(A) %>%
      summarise( mean_out = mean(y_binary)) %>%
     pivot_wider(
       names_from = A,
        values_from = mean_out
      ) %>%
      mutate (diff = `1`-`0`) %>%
      pull(diff)
    # having the difference
    seq_select$prop_save[i] = prop
  }
  # graphing
  # seq_select %>%
  # ggplot(aes(x=seq_try, y=prop_save))+
     geom_point()
 # saving the best beta.
 beta_effect = seq_select %>%
    filter(prop_save < desired_diff + 0.01) %>%
    filter(prop_save > desired_diff - 0.01) %>%
    summarise(
     avg = mean(seq_try)
    ) %>% pull(avg)
return( beta effect)
}
\# logit\_formula \leftarrow "beta\_effect*df$A + 0.5*df$L2 + 0.3*df$L3"
\# seq_try = seq(-4,4, 0.01)
# desired_diff = 0.4
# beta_effect = binary_outcome_rate(desired_diff, seq_try, df, logit_formula)
```

Generating data

```
data_gen <- function(N, desired_prop) {</pre>
  # Setting the Observed Variables
 L1 <- rnorm(N, 0, 1)
 L2 \leftarrow rnorm(N, 0, 1)
 L3 <- rnorm(N, 0, 1)
  # adding the covaraites to dataset
  df <- tibble(L1, L2, L3)</pre>
  #desired_prop = 0.2 # TM - is this correct as a constant or should it be a variable?
              = seq(-2,2, 0.01)
  seq_try
  logit_formula <- "beta_0_treat+ 0.5*df$L1 + 0.4*df$L2"</pre>
  # get the desited treatment rate
  beta_0_treat = treatment_rate_coef(desired_prop, seq_try, df, logit_formula)
  # Creating the treatment assignment
  A_logit \leftarrow beta_0_treat + 0.5*df$L1 + 0.4*df$L2
 p_A
          <- exp(A_logit)/(1+ exp(A_logit))
          <- rbinom(N, 1, p_A)
  # adding the treated untreated data to the dataset
  df$A = A
  # continuous outcome
  y_{continuous} < 1*df$A + 0.5*df$L2 + 0.3*df$L3 + rnorm(N, 0,1)
 df$y_continous = y_continous
  # binary outcome
  logit_formula <- "beta_effect*df$A + 0.5*df$L2 + 0.3*df$L3"</pre>
  seq_{try} = seq(-4,4, 0.01)
  desired diff = 0.4
  beta_effect = binary_outcome_rate(desired_diff, seq_try, df, logit_formula)
  y_logit <-eval(parse(text=logit_formula ))</pre>
  p_outcome <- exp(y_logit)/(1+ exp(y_logit))</pre>
  y_binary <- rbinom(N, 1, p_outcome)</pre>
 df$y_binary = y_binary
  # propensity scores
  exposureModel <- glm(A ~ L1 + L2 + L3, data = df, family = "binomial")</pre>
  #Note that Pr[A=0/L] = 1-Pr[A=1/L]
  #getting estimated propensity score
  df$ps <- predict(exposureModel, df, type = "response")</pre>
 return(df)
```

```
# calling the data gen function
N = 500
desired_prop = 0.2
df = data_gen(N, desired_prop)
```

This is in response to Waveley's notion that logit(desired_prop) = alpha_0

Nearest neighbor propensity score matching

simple bootstrap binary

```
nboot <- 100
simple_bootstap_binary <- function(nboot, matched_df) {</pre>
  # set up a matrix to store results
  boots <- data.frame(i = 1:nboot,</pre>
                       se_ATE = NA,
                       se_{OR} = NA,
                       log_OR = NA,
                       mean1 = NA,
                       mean0 = NA,
                       difference = NA
  # loop to perform the bootstrapping
  for (i in 1:nboot) {
    # sample with replacement
    sampl <- matched_df %>% filter(subclass %in% sample(levels(subclass),500, replace = TRUE))
    bootmod <- glm(y_binary ~ A + ps, data = sampl,</pre>
                    weights = weights, family = binomial)
    # create new data sets
    sampl.treated <- sampl %>% mutate(A = 1)
    sampl.untreated <- sampl %>% mutate(A = 0)
    # predict values
    sampl.treated$pred.y <- predict(bootmod, sampl.treated, type = "response")</pre>
    sampl.untreated$pred.y <- predict(bootmod, sampl.untreated, type = "response")</pre>
    # output results
    boots[i, "log_OR"] <- summary(bootmod)$coeff[2,1]</pre>
    boots[i, "se_OR"] <- summary(bootmod)$coeff[2,2]</pre>
    boots[i, "se_ATE"] <-</pre>
      sqrt((summary(bootmod)$coeff[2,2]*mean(sampl.treated$pred.y) *
          (1 - mean(sampl.treated$pred.y)))^2 +
      (summary(bootmod)$coeff[2,2]*mean(sampl.untreated$pred.y) *
          (1 - mean(sampl.untreated$pred.y)))^2)
    boots[i, "mean1"] <- mean(sampl.treated$pred.y)
boots[i, "mean0"] <- mean(sampl.untreated$pred.y)</pre>
    boots[i, "difference"] <- boots[i, "mean1"] - boots[i, "mean0"]</pre>
```

```
}
    mean log OR
                        <- mean(boots$log OR)
    Empirical se ATE
                        <- sd(boots$difference)
                        <- mean(boots$se ATE)
    mean_se_ATE
    Empirical_se_log_OR <- sd(boots$log_OR)</pre>
    mean_se_log_OR
                        <- mean(boots$se_OR)
    ATE
                        <- mean(boots$difference)
    lower CI ATE
                        <- ATE - 1.96*Empirical se ATE
    upper_CI_ATE
                        <- ATE + 1.96*Empirical_se_ATE
                        <- mean_log_OR - 1.96*mean_se_log_OR</pre>
    lower_CI_log_OR
                        <- mean_log_OR + 1.96*mean_se_log_OR</pre>
    upper_CI_log_OR
    return(tibble(mean_log_OR, Empirical_se_ATE, mean_se_ATE,
           Empirical_se_log_OR, mean_se_log_OR, ATE,
           lower_CI_ATE, upper_CI_ATE, lower_CI_log_OR,
           upper_CI_log_OR))
}
simple_bootstap_binary(100, matched_df)
## # A tibble: 1 x 10
     mean_log_OR Empirical_se_ATE mean_se_ATE Empirical_se_lo~ mean_se_log_OR
##
                                         <dbl>
##
           <dbl>
                             <dbl>
                                                          <dbl>
                                                                          <dbl> <dbl>
## 1
            1.79
                           0.00420
                                         0.101
                                                          0.0296
                                                                          0.408 0.284
## # ... with 4 more variables: lower_CI_ATE <dbl>, upper_CI_ATE <dbl>,
      lower_CI_log_OR <dbl>, upper_CI_log_OR <dbl>
```

simple bootstrap continous

```
nboot <- 100
simple_bootstap_continous <- function(nboot, matched_df) {</pre>
  # set up a matrix to store results
 boots <- data.frame(i = 1:nboot,</pre>
                      se = NA,
                      mean1 = NA,
                      mean0 = NA,
                      beta1 = NA,
                      ATE = NA
  # loop to perform the bootstrapping
  for(i in 1:nboot) {
    # sample with replacement
    sampl <- matched_df %>% filter(subclass %in% sample(levels(subclass),500, replace = TRUE))
    bootmod <- glm(y_continous ~ A + ps, data = sampl,
                   weights = weights)
    # create new data sets
    sampl.treated <- sampl %>%
```

```
mutate(A = 1)
    sampl.untreated <- sampl %>%
      mutate(A = 0)
    # predict values
    sampl.treated$pred.y <-</pre>
      predict(bootmod, sampl.treated)
    sampl.untreated$pred.y <-</pre>
      predict(bootmod, sampl.untreated)
     # output results
    boots[i, "beta1"] <- summary(bootmod)$coeff[2,1]</pre>
    boots[i, "se"] <- summary(bootmod)$coeff[2,2]</pre>
    boots[i, "mean1"] <- mean(sampl.treated$pred.y)</pre>
    boots[i, "mean0"] <- mean(sampl.untreated$pred.y)</pre>
    boots[i, "ATE"] <- boots[i, "mean1"] - boots[i, "mean0"]</pre>
  }
  Empirical_sd <- sd(boots$ATE)</pre>
  ATE
                <- mean(boots$ATE)
                <- mean(boots$se)
  mean se
  lower_CI_ATE <- ATE - 1.96*mean_se</pre>
  upper_CI_ATE <- ATE + 1.96*mean_se
  ATE_from_beta <- mean(boots$beta1)</pre>
  return(tibble(Empirical_sd,ATE, mean_se, lower_CI_ATE,
                 upper_CI_ATE, ATE_from_beta))
}
simple_bootstap_continous(nboot, matched_df)
## # A tibble: 1 x 6
     Empirical_sd ATE mean_se lower_CI_ATE upper_CI_ATE ATE_from_beta
                           <dbl>
##
                                          <dbl>
                                                        <dbl>
                                                                       <dbl>
```

```
<dbl> <dbl>
## 1
           0.0129 1.06
                          0.158
                                       0.749
                                                     1.37
                                                                   1.06
```