Linear Data Analysis Quiz 2 Review

Cain Susko

Queen's University School of Computing

February 17, 2022

Main Concepts

- Standardization of data
- Projecting a vector to a subspace
- Linear regression (essentially vector projection)
- Validation of linear regression
- cross-validation by k-fold training and testing
- Singular-value decomposition (SVT)
- How the SVD can be used to describe matrix subspaces

Vector Standatdization

- 1. Transform vector $\vec{a} \in \mathbb{R}^m$ to zero-mean \vec{m}
- 2. Transform \vec{m} to unit variance \vec{z}

This is done by:

$$\overline{a} = \frac{\vec{1}^{\top} \vec{a}}{m}$$
 Find the mean of a vector in a matrix $\vec{m} = \vec{a} - \vec{1} \vec{a}$ find the zero-mean from the mean $\sigma^2 = \frac{||\vec{m}||^2}{m-1}$ find the unit variance of \vec{a} from the mean $\vec{z} = \frac{\vec{m}}{\sigma}$ derive the z-score/z-vector for \vec{a} .

Note: m is the size of the vector; \vec{m} is the zero mean of a vector. Additionally, note that it is σ used in the final equation, not σ^2

Projection

Projection is the process of taking a vector \vec{c} to subspace \mathbb{U} , spanned by the vectors \vec{a}_i . The result of this process is a vector \vec{p} .

$$\vec{e} = ^{defined} \vec{c} - \vec{p}$$
 error vector \vec{w} the weight vector $[A^{\top}A]\vec{w} = A^{\top}\vec{c}$ find \vec{w} using the normal equation

Thus, projection is:

$$\vec{p} = A\vec{w} = A[A^{T}A]^{-1}A^{T}\vec{c} = P\vec{c}.$$

Note: there is a special case where: if A is singular, use a basis of $\mathbb U$ rather than an ordinary span of $\mathbb U$ like \vec{a}_j

Linear Regression

Linear Regression is the process of projecting observations \vec{c} to the column space of A.

$$\vec{w}$$
 weight vector $\vec{e}(\vec{w}) = \vec{c} - A\vec{w}$ error vector $RMS(A, \vec{c}; \vec{w}) = \frac{||\vec{e}(\vec{w})||}{\sqrt{m}}$ error of \vec{e} using Root Mean Square

Cross Validation

Validation is the process of confirming that the outputs of a model are acceptable using RMS error (see above). Cross validation is the process of dividing data into a training and validation sets and then validating the model \vec{w} using both sets. In k-fold cross validation, divide the data into k sets we then:

- 1. Train on k-1 sets and validate on 1 set, for all sets
- 2. accumulate RMS errors for analysis

Singular Value Decomposition

for any matrix $A \in \mathbb{R}^{m \times n}$ with all real entries of rank r, the SVD of A is:

$$A = U\Sigma V^{\top}$$
.

where:

- $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal
- $\Sigma \in \mathbb{R}^{m \times n}$ is 'diagonal', the singular values (the values in this matrix) are:

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0.$$

- \vec{u}_j of $\sigma_j \neq 0$ is the basis for $\mathbb U$ which is the column space of A
- \vec{v}_j of $\sigma_j = 0$ is the basis for the nullspace of A
- \vec{u}_j of σ_j is the orthogonal complement of \mathbb{U} , which is represented as $\perp \mathbb{U}$

Preparation

One should have the data and working code for:

- Assignment 2 (regression and k-fold cross validation)
- Homework for week 1, especially 'your' data matrix
- Homework for week 4, projections
- Homework for week 5, Cross Validation (CV) and SVD