南昌大学物理实验报告

课程名称:		<u> 通物理实验(3</u>)	
实验名称:		霍尔效应		
学院:	<u>理学院</u>	专业班级:_	物理学 151 班	
学生姓名:	黄泽豪	学号:	5502115014	
实验地点:	B515	座位号:	14	
实验时间:			9:45 开始	

【实验目的】

- 1.了解霍尔效应法测磁感应强度的原理和方法
- 2.学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法

【实验原理】

1. 霍尔效应

霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场 E_H . 如图 12-1 所示的半导体试样,若在 x 方向通以电流 I_S ,在 z 方向加磁场 B,则在 y 方向即试样 A、A' 两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图 12-1(a)所示的 n 型试样,霍尔电场逆 y 方向,图(b)的 p 型试样则沿 y 方向。即有

$$E_H(Y)X < 0 \Rightarrow (n型)$$

 $E_H(Y)X > 0 \Rightarrow (p型)$

显然,霍尔电场 E_H 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力 eE_H 与洛仑磁力evB相等,样品两侧电荷的积累就达到动态平衡,故有

$$eE_H = -evB \tag{1}$$

其中 E_H 为霍尔电场,v是载流子在电流方向上的平均漂移速度。 设试样的宽为b,厚度为d,载流子浓度为n,则

$$I_{s} = nevbd$$
 (2)

由式(1)和式(2)可得

$$V_H = E_H b = \frac{1}{ne} \frac{I_S B}{d} = R_H \frac{I_S B}{d} \tag{3}$$

即霍尔电压 V_H (A、A'之间的电压)与 I_SB 乘积成正比与试样厚度 d 成反比。比例系数 $R_H = \frac{1}{ne}$ 称为霍尔系数,它是反映材料霍尔效应强弱的重要参量。只要测出 V_H 以及知道 I_S 、B和 d 可按下式计算 R_H :

$$R_H = \frac{V_H d}{I_s B} \times 10^4 \tag{4}$$

2. 霍尔系数 R_H 与其他参量间的关系

根据 R_H 可进一步确定以下参量

(1)由 R_H 的符号(或霍尔电压的正负)判断样品的导电类型。判别的方法是按图 12-1 所示的 I_S 和B 的方向,若测得的 $V_H = V_{A'A} < 0$,即点 A 点电势高于点 A' 的电势,则 R_H 为负,样品属 n 型;反之则为 p 型。

- (2) 由 R_H 求载流子浓度 n。即 $n = \frac{1}{|R_H|e}$ 。
- (3) 结合电导率的测量,求载流子的迁移率 μ 。电导率 σ 与载流子浓度 μ 之间有如下关系

$$\sigma = ne\mu$$
 (5)

即 $\mu = |R_{H}|\sigma$, 测出 σ 值即可求 μ 。

【实验仪器】

霍尔元件测螺线管轴向磁场装置、多量程电流表、电压表、双路直流稳压电源、双刀双 掷开关、连接导线

【实验内容及步骤】

- 1. 掌握仪器性能,连接测试仪与实验仪之间的各组连线
- (1) 开、关机之前,测试仪的" I_{S} 调节" 和" I_{M} 调节"旋钮均置零位。
- (2) 按图 12-2 连接测试仪与实验仪之间各组连线。
- (3)接通电源,预热数分钟,电流表显示".000"或"0.00"
- (4) 置"测量选择"于 I_s 挡,电流表所示值随" I_s 调节"旋钮顺时转动而增大, I_s 换向, V_s 极性改号。
- (5) 置 "测量选择" 于 I_M 挡,顺时针转动 " I_M 调节" 旋钮, V_H 值随 I_M 增大而增大, I_M 换向, V_H 极性改号。
- (6)放开测量选择键,再测 I_S ,将 " V_H , V_σ 输出"切换开关拨向 V_σ 一侧,测量 V_σ 电压, I_S 换向, V_σ 极性改号。
 - 2. 测绘 $V_H I_S$ 曲线

保持 $I_{\scriptscriptstyle M}$ 值不变(取 $I_{\scriptscriptstyle M}=0.600\mathrm{A}$),改变 $I_{\scriptscriptstyle S}$ 的值,记录实验数据。

3. 测绘 $V_H - I_M$ 曲线

保持 $I_{\scriptscriptstyle S}$ 值不变(取 $I_{\scriptscriptstyle S}=3.00{
m mA}$),改变 $I_{\scriptscriptstyle M}$ 的值,记录实验数据。

- 4. 测量 V_{σ} 值
- 5. 确定样品导电类型
- 6. 求样品的 $R_{\rm H}$ 、n、 σ 和 μ 值
- 7. 测单边水平方向磁场分布

【数据处理】

1. 测绘 $V_H - I_S$ 曲线($I_M = 0.600 \mathrm{A}$)

I /m A	V_1 / mV	V_2/mV	V_3 / mV	V_4 /mV	V /mV	
I_S/mA	$+B,+I_S$	$-B,+I_S$	- B,-I _S	+ B,-I _S	V_H/mV	
1.00	-3.49	3.40	-3.41	3.49	-3.4475	
1.50	-5.21	5.07	-5.08	5.20	-5.14	
2.00	-6.95	6.77	-6.78	6.94	-6.86	
2.50	-8.71	8.48	-8.49	8.69	-8.5925	
3.00	-10.43	10.17	-10.18	10.42	-10.30	
3.50	-12.19	11.87	-11.89	12.18	-12.0325	
4.00	-13.91	13.55	-13.56	13.90	-13.73	

2. 测绘 $V_H - I_M$ 曲线($I_S = 3.00 \mathrm{mA}$)

I_M / mA	V_1 / mV	V_2 / mV	V_3 / mV	V_4 / mV	V /mV	
	$+B,+I_S$	$-B,+I_S$	- B,-I _S	$+B,-I_S$	V_H/mV	
0.300	-5.30	4.98	-4.99	5.29	-5.14	
0.400	-6.98	6.70	-6.72	6.96	-6.84	
0.500	-8.69	8.42	-8.43	8.67	-8.5525	
0.600	-10.41	10.13	-10.14	10.4	-10.27	
0.700	-12.10	11.85	-11.86	12.10	-11.9775	
0.800	-13.80	13.54	-13.55	13.79	-13.67	

3. 电导率 σ

$$b = 4.0mm, d = 0.5mm, l = 3.0mm, I_S = 2.00mA, V_{AC} = 136.9mV$$

$$\sigma = \frac{I_S l}{b dV_{AC}} = 21.91 \text{m}^{-1} \cdot \Omega^{-1}$$

4. 样品的导电类型为 n型。

5. 求
$$R_{\scriptscriptstyle H}$$
 、 n 和 μ 值

$$B = 5.01 \frac{\text{KGS}}{\text{A}} I_M$$

$$I_{\scriptscriptstyle S} = 2.00 mA, I_{\scriptscriptstyle M} = 0.600 A, \ \ V_{\scriptscriptstyle H} = -6.86 mV$$

$$R_H = \frac{V_H d}{I_S B} \times 10^4 = 5.71 m^3 / C$$

$$e = 1.6 \times 10^{-19} C$$

$$n = \frac{1}{|R_H|e} = 1.09 \times 10^{18} \,\mathrm{m}^{-3}$$

$$\mu = \frac{\sigma}{ne} = |R_H|\sigma = 125.1061m^2 \cdot C^{-1} \cdot \Omega^{-1}$$

6. 磁场分布
$$V_H - x$$
图

x / mm	-34.6	-29.1	-24.1	-19.0	-14.2	-9.0	-4.0	1.0	8.0
V_H / mV	-0.53	-0.76	-1.28	-3.07	-6.52	-6.93	-6.95	-6.96	-6.97
x/mm	15.0	20.0	25.0	30.2	35.0	40.1	45.1	50.6	
V_H / mV	-6.96	-6.95	-6.93	-6.52	-3.07	-1.28	-0.76	-0.53	

由于 V_H 为负值,所以图像下凹。

【实验结果分析与小结】

- 1. 由于霍尔效应存在几个副效应,这几个副效应因霍尔原件的温度分布不均匀、载流子速度不同和电压输出引线焊点不对称而产生。所以这次实验非常巧妙的使用了对称测量的办法,通过改变磁场和电流方向的方法予以消除。
- 2. 由 V_H 和 V_σ 可知,在霍尔元件中的电势场呈二维分布,霍尔原件边缘的电势都不相同,但是霍尔原件垂直于电流和磁场方向两端的电势差为一定值 V_H 。

【原始数据】(见下页)

学生姓名:		_学号:	专>	业班级:	
实验类型:口!	验证 □综合 □ i	设计 □创新	实验日期:	实验成绩:_	
Im = 0.60	o A				
1s/mA.	Vi/mV	V2/mV	V3/mV	V4/mV	
(.00	-3.49	3.40	-3.4	3.69	
1.50	-5.71	5.07	-5.08	5.20	
2,00	- 6.95	6.77	-6.78	6.94	
>50	17.8 -	8.48	-8.49	8.64	
3,00	-10.4}	(0.1)	-10.18	10.42	
3.50	-12.19	(1.87	-11.89	12,18	
4,00	-13.91	13.55	-13.56	13.90	(1.1
ls = 3,00 r	n A		*		7(1)
IM/A	U./mV	V2/mV	V3/mV	V6/mV	178
0.300	-5.30	4.98	-4.99	5.29	
0.400	-6.98	6.70	- 6.72	6.96	
0.500	-8.69	8.42	- 8· t}	8.67	
0,600	-10.41	10.13	-10.14	10.40	
0.700	-12.10	28.11	-11.86	12.10	
0.800	-13.80	13.54	-13.55	13.79	

学生姓名:	学号:		专业班级:_		
实验类型: 口验证	□综合□设计□创新	所 实验日期:_	实验	硷成绩:	
	(5.0 20.0 2				
VH/mV -6.97	-6.96 -6.95 -6	5.93 -6.52	-3,07	-1.28	
X/mm 45.1	50.6				
V1+/mV -0.76	-0.53				
		€.	Commission of the control of the con		
	*	,			