1. Задание № 187

Из точки A к окружности проведены касательные AB и AC и секущая AM, проходящая через центр окружности О. Точки В, С, М лежат на окружности (см. рис.). Известно, что BK = 4, AC = 9. Найдите длину отрезка AK.

1) 4 2)
$$\sqrt{97}$$
 3) 65

5)
$$\sqrt{65}$$

2. Задание № 374

В окружности радиуса 13 проведена хорда АВ. Точка М делит хорду АВ на отрезки длиной 10 и 12. Найдите расстояние от точки M до центра окружности.

3. Задание № **282**

На клетчатой бумаге с клетками размером 1 см х 1 см изображена фигура. Известно, что площадь этой фигуры составляет 28% площади некоторой трапеции. Найдите площадь трапеции в квадратных сантиметрах.

1) 504 cm² 2)
$$64\frac{2}{7}$$
 cm² 3) 35 cm² 4) $72\frac{3}{4}$ cm² 5) $155\frac{5}{9}$ cm²

4)
$$72\frac{3}{4}$$
 cm²

5)
$$155\frac{5}{9}$$
 cm²

4. Задание № <u>67</u>

Найдите площадь фигуры, изображенной на рисунке.

- 1) 54 cm^2 2) 36 cm^2 3) 34 cm^2 4) 27.5 cm^2
- 5) 27 cm^2

5. Задание № <u>330</u>

В остроугольном треугольнике ABC проведены высоты BE и CD. Найдите длину CB, если ED = 12 и радиус окружности, описанной вокруг AED равен 10.

6. Задание № 45

В прямоугольном треугольнике $ACB\ (\angle ACB = 90^\circ)\ CH$ и CK — высота и медиана соответственно, проведенные к гипотенузе (см. рис.). Найдите площадь прямоугольного треугольника ACB, если CK = 8, $\sin \angle CKH = \frac{3}{4}$.

7. Задание № 181

Прямые а и b, пересекаясь, образуют четыре угла. Известно, что сумма трех углов равна 210°. Найдите градусную меру меньшего угла.

2) 15°

- 1) 150°
- 3) 30°
- 4) 10°
- 5) 105°

8. Задание № <u>492</u>

Используя данные рисунка, найдите градусную меру угла 1 треугольника АВС.

- 1) 45°
- 2) 50°
- 3) 55°
- 4) 60°
- 5) 65°

9. Задание № <u>257</u>

В равнобедренную трапецию, площадь которой равна $36\frac{1}{8}$, вписана окружность. Сумма двух углов трапеции равна 60°. Найдите периметр трапеции.

10. Задание № 161

Найдите длину средней линии прямоугольной трапеции с острым углом 60°, у которой большая боковая сторона и большее основание равны 10.

1)
$$5\sqrt{3}$$

- 1) $5\sqrt{3}$ 2) $10\sqrt{3}$ 3) 15
- 4) 5
- 5) 7,5

11. Задание № 164

 $ABCDA_1B_1C_1D_1$ — прямоугольный параллелепипед такой, что AB = 12, AD = 3. Через середины ребер AA_I и BB_I проведена плоскость (см.рис.), составляющая угол 60° с плоскостью основания АВСД. Найдите площадь сечения параллелепипеда этой плоскостью.

- 1) 72
- 2) $36\sqrt{3}$
- 3) 36
- 4) 18
- 5) $36\sqrt{2}$

12. Задание № <u>190</u>

Объем конуса равен 5, а его высота равна $\frac{1}{2}$. Найдите площадь основания конуса.

- 1) $\frac{5}{6}$ 2) $\frac{10}{3}$ 3) 10 4) 30 5) $\frac{15}{2}$

13. Задание № 298

Найдите площадь полной поверхности прямой треугольной призмы, описанной около шара, если площадь основания призмы равна 7,5.

14. Задание № 440

Основанием прямой треугольной призмы $ABCA_1B_1C_1$ является треугольник ABC, в котором $\angle A=20^\circ,\ \angle C=25^\circ,\ a$ радиус описанной около него окружности равен $\sqrt{7}$. Найдите длину диагонали грани $AA_1C_1C_2$, если площадь этой грани равна $2\sqrt{35}$.

1)
$$3\sqrt{3}$$

1)
$$3\sqrt{3}$$
 2) $2\sqrt{5}$ 3) $2\sqrt{6}$ 4) $4\sqrt{6}$ 5) $9\sqrt{3}$

$$(2\sqrt{6})$$

4)
$$4\sqrt{6}$$

5)
$$9\sqrt{3}$$

15. Задание № 450

Площадь боковой поверхности цилиндра равна 15π . Найдите объем V цилиндра, если известно, что радиус его основания больше высоты на 3,5. В ответ запишите значение выражения $\frac{6 \cdot V}{\pi}$

16. Задание № 39

 $ABCDA_1B_1C_1D_1$ — прямоугольный параллелепипед, у которого AB = 9, BC = 12, $BB_1 = 2\sqrt{13}$. Найдите длину пространственной ломаной $ADBC_1$ (см. рис.).

2) 42 3)
$$21 + 2\sqrt{13}$$

17. Задание № 572

Радиус основания цилиндра равен 13. Плоскость, параллельная оси цилиндра, пересекает цилиндр по прямоугольнику с площадью, равной 108. Найдите значение выражения $\frac{V}{\pi}$, где V — объем цилиндра, если расстояние от плоскости сечения до оси цилиндра равно $2\sqrt{22}$.

18. Задание № 575

 $ABCA_1B_1C_1$ — правильная треугольная призма, все ребра которой равны 6. Точки P и K — середины ребер B_1C_1 и CC_1 соответственно, $M \in AA_1, A_1M : A_1A = 1 : 3$ (см. рис.). Найдите увеличенный в 25 раз квадрат длины отрезка, по которому плоскость, проходящая через точки M, K, P, пересекает грань AA_1B_1B .

