New restaurant in Charleston, SC

Table of contents

- 1. Introduction
- 2. Data section
- 3. Methodology section
- 4. Results section
- 5. Discussion section
- 6. Conclusion section

Description of the problem and the background

Charleston is the oldest and largest city in the U.S. state of South Carolina. It was founded in 1670 as Charles Town, honoring King Charles II of England. Known for its rich history, well-preserved architecture, distinguished restaurants, and hospitable people, Charleston is a popular tourist destination. It has received numerous accolades, including "America's Most Friendly City" (https://www.travelandleisure.com/slideshows/americas-friendliest-cities#charleston) in 2016 by Travel & Leisure. The city is known for its unique culture, which blends traditional Southern U.S., English, French, and West African elements. The downtown

peninsula has gained a reputation for its art, music, local cuisine, and fashion. What's also interesting, in 2013, the Milken Institute ranked the Charleston region as the ninth-best performing economy in the US because of its growing IT sector.

Not surprisingly, to find and to rent a place for a restaurant is not an easy task. An investor is my friend so I decided helping him in making the decison, by using Foursquare venues data and some Data Science magic. Using the list of avaliable properties I have clustered them into different categories, based on the separate list of sorrounding venues. In order to do that I had to do at least the following:

- 1. Get the geo-coordinates for given adresses
- 2. Get the list of venues with additional information
- 3. Visualise and explore the data
- 4. Preproces the datasets in order to use ML algorithm
- 5. Run unsupervised ML algorithm (K-means) to find clusters
- 6. Visualize results and make conclusions

In [92]:

```
import numpy as np # library to handle data in a vectorized manner
import pandas as pd # library for data analsysis
from pandas.io.json import json_normalize # tranform JSON file into a pandas dataframe
import json # library to handle JSON files
import requests # library to handle requests
import folium # map rendering library
import matplotlib.pyplot as plt # Matplotlib and associated plotting modules
import matplotlib.colors as cm
import matplotlib.colors as colors
from sklearn.cluster import KMeans # import k-means from clustering stage
print("Libraries imported.")
```

Libraries imported.

```
<h3><a id=data></a>Description of the data and how it was used to solve the problem</h3>
I have worked on two datasets:
list of potential addresses avaliable for rent,
   list of nearby venues.
Regarding the first list, since avaliable automatic methods does not work well or you
have to pay for that kind of services I decided to get and enter geo-coordinates
manually, using <A href="www.latlong.net">www.latlong.net</a>. Using MS Windows notepad
prepare a dataset in .CSV file format and download it into the pandas dataframe. The
<b>16 given locations</b> ware spreaded across Charleston area. The second dataset was
created by downoading a list of <b>nearby venues within the 500 m radius</b>, through <a
href="www.foursquare.com">Foursquare.com</a> API. It containes:*
<l
venue name,
venue latitude,
venue longitude,
venue category.
Both datasets ware finally merged and preprocesed in order to aplly K-means ML
algorithm. On each stage of this assignment the data was visualized using Folium Python
library or Matplotlib charts.
<i><font size=1>* I wanted to get more data, like: price, rating, stats of the venues,
however it was not possible with a free Forsquare subsription.</font></i>
```

List of potential addresses avaliable for rent

In [93]:

```
df_addresses = pd.read_csv("CharlestonAddresses.csv")
print("Dataframe shape:", df_addresses.shape)
df_addresses
```

Dataframe shape: (16, 7)

Out[93]:

	Address	City	State	Country	Latitude	Longtitude	Source
0	10 Murry Blvd	Charleston	South Carolina	USA	32.769940	-79.933240	https://www.latlong.net/
1	8 Queen St	Charleston	South Carolina	USA	32.778690	-79.927850	https://www.latlong.net/
2	12 Huger St	Charleston	South Carolina	USA	32.799390	-79.949980	https://www.latlong.net/
3	67 Line St	Charleston	South Carolina	USA	32.794708	-79.943268	https://www.latlong.net/
4	5 Columbus St	Charleston	South Carolina	USA	32.794330	-79.940710	https://www.latlong.net/
5	8 Mount Pleasant St	Charleston	South Carolina	USA	32.812400	-79.954900	https://www.latlong.net/
6	9 Davis St	Charleston	South Carolina	USA	32.840100	-79.956850	https://www.latlong.net/
7	2 Carr St	Charleston	South Carolina	USA	32.785220	-79.873420	https://www.latlong.net/
8	18 Ocean Boulevard	Charleston	South Carolina	USA	32.780800	-79.798240	https://www.latlong.net/
9	4 Middle Street	Charleston	South Carolina	USA	32.778740	-79.868810	https://www.latlong.net/
10	77 Fort Johnson Road	Charleston	South Carolina	USA	32.751610	-79.898500	https://www.latlong.net/
11	5 Dills Bluf Road	Charleston	South Carolina	USA	32.737060	-79.943570	https://www.latlong.net/
12	96 East Bay Street	Charleston	South Carolina	USA	32.775520	-79.926971	https://www.latlong.net/
13	58 Gordon Street	Charleston	South Carolina	USA	32.803600	-79.959900	https://www.latlong.net/
14	49 Houston Northcutt Boulevard	Charleston	South Carolina	USA	32.800930	-79.890500	https://www.latlong.net/
15	8 Smythe Street	Charleston	South Carolina	USA	32.843780	-79.906320	https://www.latlong.net/

In [201]:

```
# creating map of Charleston using latitude and longitude values
charleston_map = folium.Map(location=[32.784618, -79.940918], zoom_start=12, control_scale=
#visualising all the initial point on the Charleston map
for lat, lng, address, city in zip(df_addresses.Latitude, df_addresses.Longtitude, df_addressel= '{}, {}'.format(address, city)
    folium.CircleMarker([lat, lng], popup=label, radius=5, color="red").add_to(charleston_map)
charleston_map
```

Out[201]:

- 18 potential addresses fur new business endavour.
- 6 are very close to the ocean, probably because of the views and the fact, that during the season, usually "by the see" areas are more popular.
- 8 are located directly in a popular turism distric of the Charleston penisula. Usually the most crowded area.
- There is clear that part of locations ar concentrated on the penisula directy while the others (7) are spreaded far from the typical tourists penisula area

List of nearby venues

Passing credentials to Foursqare API.

In [206]:

```
CLIENT_ID = "*************** # my Foursquare ID
CLIENT_SECRET = "*********** # my Foursquare Secret
VERSION = '20181122' # Foursquare API version
LIMIT = 100 #Just in case
print('My credentails:')
print('CLIENT_ID: ' + CLIENT_ID)
print('CLIENT_SECRET:' + CLIENT_SECRET)
```

Preparing the API query function.

In [99]:

```
def getNearbyVenues(names, latitudes, longitudes, radius=500):
    venues_list=[]
    for adress, lat, lng in zip(df_addresses.Address, df_addresses.Latitude, df_addresses.L
        print(adress)
        # create the API request URL
        url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&
            CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT)
        # make the GET request
        results = requests.get(url).json()["response"]['groups'][0]['items']
        # return only relevant information for each nearby venue
        venues_list.append([(adress, lat, lng,
            v['venue']['name'],
            v['venue']['location']['lat'],
            v['venue']['location']['lng'],
            v['venue']['categories'][0]['name']) for v in results])
    df_nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_l
    df nearby venues.columns = ['Address',
                  'Latitude',
                  'Longitude',
                  'Venue Name',
                  'Venue Latitude',
                  'Venue Longitude',
                  'Venue Category']
    return(df_nearby_venues)
```

Executing the function and geting the data into the pandas dataframe.

In [100]:

df_charleston_venues = getNearbyVenues(names=df_addresses.Address, latitudes=df_addresses.Longtitude)

```
10 Murry Blvd
```

8 Queen St

12 Huger St

67 Line St

5 Columbus St

8 Mount Pleasant St

9 Davis St

2 Carr St

18 Ocean Boulevard

4 Middle Street

77 Fort Johnson Road

5 Dills Bluf Road

96 East Bay Street

58 Gordon Street

49 Houston Northcutt Boulevard

8 Smythe Street

The venues dataset exploration.

In [101]:

```
print("Dataframe shape:", df_charleston_venues.shape)
df_charleston_venues.head()
```

Dataframe shape: (339, 7)

Out[101]:

	Address	Latitude	Longitude	Venue Name	Venue Latitude	Venue Longitude	Venue Category
0	10 Murry Blvd	32.76994	-79.93324	The Battery	32.770012	-79.929460	Scenic Lookout
1	10 Murry Blvd	32.76994	-79.93324	White Point Gardens	32.769963	-79.930176	Park
2	10 Murry Blvd	32.76994	-79.93324	The Gazebo At The Battery	32.769864	-79.930220	Historic Site
3	10 Murry Blvd	32.76994	-79.93324	Calhoun Mansion	32.771461	-79.930224	Historic Site
4	10 Murry Blvd	32.76994	-79.93324	Two Meeting Street	32.770500	-79.930099	Bed & Breakfast

In [145]:

```
df_charleston_venues.groupby('Address')["Venue Name"].count().sort_values(ascending=True).p
plt.style.use('ggplot')
plt.title("Number of venues in 500m radius")
plt.ylabel("")
plt.show()
```


In [102]:

```
pd.value_counts(df_charleston_venues["Venue Category"])[0:10].sort_values(ascending=True).p
plt.style.use('ggplot')
plt.title("Top 10 category of venues")
plt.ylabel("")
plt.show()
```


The most popular venues nearby are restaurants, hotels and bars. Information about the most popular types of restaurants can be used as an indication of which cuisine to serve and where to localize the restaurant to differentiate and at the same time, to be in a convenient location, full of potential customers. Let's dig a bit deeper...

In [133]:

```
dfg = pd.DataFrame(df_charleston_venues.groupby(["Address", "Venue Category"])["Venue Category
dfg.rename(columns={"Venue Category":"Count"}, inplace=True)
dfg[dfg["Count"] > 3] #by changing the count number you can filter this temporary dataframe
```

Out[133]:

		Count
Address	Venue Category	
10 Murry Blvd	Bed & Breakfast	4
18 Ocean Boulevard	Beach	4
E Columbus St	Bar	5
5 Columbus St	Hotel	4
67 Line St	St Bar	4
	Bar	4
	Breakfast Spot	4
0 O Ct	Hotel	6
8 Queen St	Seafood Restaurant	8
	Southern / Soul Food Restaurant	8
	Steakhouse	4

The above data could be usefull in restaurant location decision. In example it clearly show that 8 Queen St is the most diversified and lively area from the list. More hotels means also more clients right behind the corner. However, we want to now how many and what kind of competition we would have. So let's dig a bit more to find out more, particulary about restaurants...

In [144]:

```
dfgr = pd.DataFrame(df_charleston_venues[df_charleston_venues["Venue Category"].str.contair
dfgr.rename(columns={"Venue Category":"Count"}, inplace=True)
print("...et voilà!")
dfgr[dfgr["Count"] > 1] #by changing the count number you can filter this temporary datafra
```

...et voilà!

Out[144]:

		Count
Address	Venue Category	
12 Huger St	Restaurant	2
18 Ocean Boulevard	American Restaurant	2
49 Houston Northcutt Boulevard	Fast Food Restaurant	2
	American Restaurant	2
	French Restaurant	2
5 Columbus St	Restaurant	2
	Seafood Restaurant	3
	Tapas Restaurant	2
	American Restaurant	2
	French Restaurant	2
C7 Line C4	Italian Restaurant	2
67 Line St	Restaurant	2
	Seafood Restaurant	2
	Tapas Restaurant	2
	American Restaurant	3
	New American Restaurant	3
8 Queen St	Restaurant	3
	Seafood Restaurant	8
	Southern / Soul Food Restaurant	8
	American Restaurant	2
96 East Bay Street	Seafood Restaurant	2
	Southern / Soul Food Restaurant	2

For the formalities I added a map with the visualization of all potential new restaurant addresses and all the venues.

In [202]:

Out[202]:

