Matematică - Calcul diferențial și integral Seminar - Săptămâna 2

*Exerciţii recomandate: 2.1(a-f), 2.2, 2.3(a,b), 2.4(b), 2.5(a,b), 2.6(a), 2.7(a), 2.10, 2.11, 2.12, 2.16

S2.1 Determinați valorile următoarelor limite de șiruri:

a)
$$\lim_{n\to\infty} \frac{2n^3 - n}{n^3 + n^2 + 1}$$
; b) $\lim_{n\to\infty} [\ln(n^2 + 2n + 3) - \ln(3n^2 + n - 6)]$; c) $\lim_{n\to\infty} \frac{3^n + 5^n}{3^{n+1} + 5^{n+1}}$;

d)
$$\lim_{n \to \infty} (3n^2 + 5) \ln \left(1 + \frac{1}{n^2} \right)$$
; e) $\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}}{1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n}}$; f) $\lim_{n \to \infty} \frac{2^2 + 4^2 + \dots + (2n)^2}{1^2 + 3^2 + \dots + (2n - 1)^2}$;

g)
$$\lim_{n \to \infty} \left(n - \sqrt[3]{n^3 - 3n^2 + 2} \right)$$
; h) $\lim_{n \to \infty} \frac{\frac{1}{2} \ln 2 + \frac{1}{3} \ln 3 + \dots + \frac{1}{n} \ln n}{n\sqrt{n}}$.

S2.2 Să se arate că șirul $(x_n)_{n\in\mathbb{N}^*}\subset\mathbb{R}$, definit prin $x_1=1$ și

$$x_{n+1} = \left(1 - \frac{1}{3n^2}\right) x_n, \ \forall \ n \in \mathbb{N}^*,$$

este convergent.

S2.3 Să se studieze convergența următoarelor șiruri:

a)
$$x_n = (1 + \cos n\pi) \frac{n}{n+1}, n \in \mathbb{N};$$
 b) $x_{n+1} = \frac{x_n^2}{1+x_n}, n \in \mathbb{N}, x_0 = 2;$

c)
$$x_{n+1} = \sqrt{2 + x_n}, n \in \mathbb{N}, x_0 \ge -2;$$
 d) $x_n = \frac{(-1)^n n^3 - 3^{-n}}{n^3}, n \in \mathbb{N}^*;$

S2.4 Să se stabilească dacă următoarele șiruri sunt fundamentale:

a)
$$x_n = \frac{\cos x}{3} + \frac{\cos 2x}{3^2} + \dots + \frac{\cos nx}{3^n}, n \in \mathbb{N}^*, x \in \mathbb{R};$$
 b) $x_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}, n \in \mathbb{N}^*.$ c) $x_n = \frac{n^2}{n+1}, n \in \mathbb{N};$ d) $x_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n \cdot (n+1)}, n \in \mathbb{N}^*;$

S2.5 Să se determine $L(x_n)$ pentru fiecare din şirurile cu termenul general x_n , unde:

a)
$$x_n = \frac{(-1)^n}{1 + \frac{1}{n} + e^{\frac{1}{n}}}, n \in \mathbb{N}^*$$
; b) $x_n = 2 + (-1)^n + \sin \frac{n\pi}{2}, n \in \mathbb{N}$; c) $x_n = \frac{(-1)^n + n \operatorname{tg} \frac{n\pi}{4}}{n}, n \in \mathbb{N}^*$.

S2.6 Să se calculeze următoarele limite

a)
$$\lim_{n \to \infty} \sqrt[n]{\frac{(3n)!}{(n!)^3}};$$
 b) $\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n};$ c) $\lim_{n \to \infty} \frac{\sqrt[n]{(n+1)(n+2)\dots(n+n)}}{n}$

1

S2.7 Să se calculeze următoarele limite

^{*}Rezerve: 2.1(g,h), 2.4(a,c),2.5(b), 2.7(b), 2.14, 2.15, 2.17

a)
$$\lim_{n \to \infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \ldots + \sqrt[n]{n}}{n}$$
; b) $\lim_{n \to \infty} \sqrt[n]{\sin \frac{\pi}{2} \cdot \sin \frac{\pi}{3} \cdot \ldots \cdot \sin \frac{\pi}{n}}$; c) $\lim_{n \to \infty} \left(1 + \frac{(-1)^n}{n}\right)^{\frac{1}{\sin(\pi\sqrt{1+n^2})}}$.

S2.8* Să se arate că șirul cu termenul general

$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} - \ln n, \ \forall \ n \in \mathbb{N}^*$$

este convergent în \mathbb{R} (limita sa fiind așa numita constantă a lui Euler, c=0,577215...).

S2.9 Să se găsească $L(x_n)$ pentru şirul $(x_n)_{n\in\mathbb{N}^*}\subset\mathbb{R}$, unde

$$x_n = [1 + (-1)^n] \cdot n^{(-1)^n} + \cos \frac{n\pi}{6}, \ \forall \ n \in \mathbb{N}^*.$$

S2.10 Se consideră polinomul de gradul al doilea $f \in \mathbb{R}[X]$, astfel încât f(1) = 4, f(-1) = 7, f(2) = 12.

- a) Să se determine forma algebrică a polinomului f.
- b) Să se determine restul împărțirii polinomului f la X + 3.

S2.11 Se consideră polinoamele $f, g \in \mathbb{R}[X]$, cu $f = X^3 - 3X + a$ și $g = X^2 - 3X + 2$, unde $a \in \mathbb{R}$.

- a) Pentru a=2, rezolvați în \mathbb{R} ecuația f(X)=g(X).
- b) Să se determine valorile parametrului $a \in \mathbb{R}$ știind că polinomul f admite o rădăcină dublă pozitivă. Care sunt rădăcinile reale ale lui f în acest caz?

S2.12 Se consideră polinomul $f \in \mathbb{C}[X]$, $f(X) = X^4 - 6X^3 + 18X^2 - 30X + 25$.

- a) Să se demonstreze că polinomul f se divide cu $X^2 2X + 5$.
- b) Să se arate că polinomul f nu are rădăcini reale.
- c) Să se arate că toate rădăcinile polinomului f au același modul.

S2.13 Resturile împărțirii polinomului $f \in \mathbb{R}[X]$ la binoamele X + 2, X + 4, X - 2 sunt respectiv 38,112 și 10. Să se afle restul împărțirii polinomului f la $(X^2 - 4)(X + 4)$.

S2.14 Să se determine polinomul $f \in \mathbb{R}[X]$ care satisface relația $2f(X) = Xf(X) - 2X^3 + 10X^2 - 16X + 8$.

S2.15 Câturile împărțirii polinomului $f \in \mathbb{R}[X]$ la X-a şi X-b sunt respectiv X^2-3X+4 şi X^2-4X+2 . Determinați valorile parametrilor $a,b\in\mathbb{R}$ şi polinomul f, ştiind că termenul liber al polinomului este 1.

S2.16 Determinați valorile parametrilor reali a, b știind că polinomul $f = aX^4 + bX^3 - 3$ este divizibil cu $(X - 1)^2$.

S2.17 Se consideră polinomul $f \in \mathbb{C}$, $f = (X+i)^{2020} + (X-i)^{2020}$, care are forma algebrică

$$f = a_{2020}X^{2020} + a_{2019}X^{2019} + \dots + a_1X + a_0.$$

- a) Să se calculeze $a_{2020} + a_{2019}$.
- b) Să se determine restul împărțirii polinomului f la $X^2 1$.

Bibliografie recomandată

- 1. Anca Precupanu Bazele analizei matematice, (§1.5), ediția a III-a, Ed. Polirom, Iași, 1998.
- **2.** A. Croitoru, M. Durea, C. Văideanu, *Analiza matematică. Probleme*, Ed. Tehnopress, Iași, 2015.
 - 3. E. Popescu Analiză matematică. Calcul diferențial, Ed. Matrix Rom, București, 2006.
 - 4. V. Postolică Eficiență prin matematica aplicată, Ed. Matrix Rom, București, 2006.
- **5.** C. Drăguşin, O. Olteanu, M. Gavrilă *Analiză matematică. Probleme (Vol. I)*, Ed. Matrix Rom, București, 2006.
- **6.** S. Chiriță *Probleme de matematici superioare*, Editura Didactică și Pedagogică, București, 1989.