IEEE Conference on Decision and Control 2013

A Decentralized Algorithm for Stability Analysis of Nonlinear Systems

Reza Kamyar, Matthew M. Peet

Cybernetic Systems and Controls Laboratory (CSCL)

Arizona State University

Dec/12/2013

Solving large-scale problems in control

 We designed decentralized algorithms to decide the stability of the linear systems

$$\dot{x} = A(\alpha)x(t), \quad \alpha \in \Delta \text{ simplex}$$

with 100+ states. We set-up and solved the LMI conditions given by Polya's theorem (TAC2013)

• We designed decentralized algorithms to decide the stability of

$$\dot{x} = A(\alpha)x(t), \quad \alpha \in \Phi \text{ hypercube}$$

We set-up and solved the LMI conditions given by a multi-simplex version of Polya's theorem (CDC2012)

 Our goal to extend our algorithms to decide the local stability of nonlinear systems:

$$\dot{x} = f(x, \alpha) \quad \alpha \in \Phi$$

Nonlinear systems with polynomial vector fields

We examine the local stability of the systems of nonlinear ODEs

$$\dot{x}(t) = f(x) = A(x)x(t), \quad x(t) \in \mathbb{R}^n$$

$$A(x) = \sum_{|\alpha| \le d_a} A_{\alpha} x^{\alpha}$$

- $A_{\alpha} \in \mathbb{R}^{n \times n}$ are the coefficients
- d_a is the degree of A(x)
- $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ are the monomials of A(x)
- $\alpha \in \mathbb{N}^n$ are the exponent vectors, $|\alpha| \equiv \sum_{i=1}^n \alpha_i$.

Our method can be readily used to analyze the stability of

$$\dot{x} = A(x, \gamma)x(t)$$

with parametric uncertainty γ in a compact set

We search for Lyapunov polynomials on hypercubes

Define a Hypercube as

$$\Phi_r^n := \{ x \in \mathbb{R}^n : |x_i| \le r_i, i = 1, \dots, n \}$$

Given r, we search for a $V \in \mathbb{R}[x]$ that satisfies the Lyapunov result:

If there exists a polynomial $V \in \mathbb{R}[x]$ such that

$$V(0)=0 \quad \text{and} \quad V(x)>0 \quad \text{on} \quad \Phi^n_r \setminus \{0\}$$

and

$$\nabla V(x)^T A(x) x < 0 \quad \text{on} \quad \Phi_r^n \setminus \{0\},$$

then $\dot{x}(t) = A(x)x(t)$ is asymptotically stable on

$$\{x: \{y: V(y) \le V(x)\} \subset \Phi_r^n\}.$$

The optimization problem is NP-hard

Our goal is to estimate the Region of Attraction by solving:

Problem statement:

$$\max_{V,r} ||r||_1$$
s.t. $V(0) = 0$, $V(x) > 0$ on $\Phi_r^n \setminus \{0\}$
s.t. $\nabla V(x)^T A(x) x < 0$ on $\Phi_r^n \setminus \{0\}$.

Then $\{x:\{y:V^*(y)\leq V^*(x)\}\subset \Phi^n_{r^*}\}$ is an estimate of ROA.

A fact: It is NP-hard to decide the non-emptiness of

$$P = \{x : p_i(x_1, \dots, x_n) \ge 0, p_i \in \mathbb{R}[x], i = 1, \dots, m\}.$$

By quantifier elimination algorithms, the decision costs $m^{n+1}d^{O(n)}$ flops

We look for a sequence of convex conditions for V to exist

In this work: Instead of directly solving

$$\max_{V,r} \quad ||r||_1$$
 s.t. $V(0) = 0, \ V(x) > 0 \text{ on } \Phi_r^n \setminus \{0\}$ s.t. $\nabla V(x)^T A(x) x < 0 \text{ on } \Phi_r^n \setminus \{0\},$

for every bisection iterate of r, we construct a **sequence** $\{LMI_k\}$ of increasingly less conservative LMI conditions, *sufficient* for the existence of a V:

$$V(0) = 0, \ V(x) > 0 \ \text{on} \ \Phi_r^n \setminus \{0\}$$

$$\nabla V(x)^T A(x) x < 0 \ \text{on} \ \Phi_r^n \setminus \{0\}.$$

The sequence $\{LMI_k\}$ is a result of **Polya's theorem**.

Polya's original theorem

Polya's theorem defines a systematic way to test the strict positivity of homogeneous polynomials on the positive orthant.

Polya's Theorem: If the homogeneous polynomial F(x) is *strictly* positive on $\{x \in \mathbb{R}^l : x_i \geq 0, \sum_{i=1}^l x_i \neq 0\}$, then there exist G and H homogeneous polynomials with only positive coefficients such that

$$H(x) F(x) = G(x).$$

For sufficiently large d, one may take $H(x) := (\sum_{i=1}^{l} x_i)^d$.

Example:
$$F(x) = x_1^2 - 1.1x_1 x_2 + x_2^2 = (x_1 - 0.55x_2)^2 + 0.6975x_2^2$$
 $(x_1 + x_2)^1 F(x) = x_1^3 - 0.3x_1^2 x_2 - 0.3x_1 x_2^2 + x_2^3$ $(x_1 + x_2)^2 F(x) = x_1^4 + 0.7x_1^3 x_2 - 0.6x_1^2 x_2^2 + 0.7x_1 x_2^3 + x_2^4$ $(x_1 + x_2)^3 F(x) = x_1^5 + 1.7x_1^4 x_2 + 0.1x_1^3 x_2^2 + 0.1x_1^2 x_2^3 + 1.7x_1 x_2^4 + x_2^5$

Polya's theorem (simplex version)

Unit simplex:

$$\Delta^l := \{ x \in \mathbb{R}^l : \sum_{i=1}^l x_i = 1, x_i \geqslant 0 \}$$

Polya's Theorem (simplex version):

If matrix-valued homogeneous polynomial $F(x) \succ 0$ for all $x \in \Delta^l$, then for sufficiently large d,

$$\left(\sum_{i=1}^{l} x_i\right)^d F(x)$$

has all positive definite coefficients.

Our approach to certify positivity on hypercubes

- Polya's theorem is not readily applicable to positivity problems on hypercubes
- In the following slides
 - 1. For every polynomial defined on hypercube Φ_r^n , we construct an equivalent **multi-homogeneous** polynomial

$$F(x) = \sum_{|h_1| \le d_1} \cdots \sum_{|h_N| \le d_n} P_{\{h_i\}} x_1^{h_1} \cdots x_n^{h_n}$$

defined on a product of simplices

$$x \in \Delta^2 \times \cdots \times \Delta^2$$
 (multi-simplex)

2. We use a version of Polya's theorem which certifies positivity on the product of simplices, and as a corollary on hypercubes

Constructing hypercubes with simplices

By defining the multi-homogeneous representation

$$F(x) = \sum_{|h_1| \le d_1} \cdots \sum_{|h_N| \le d_n} P_{\{h_i\}} x_1^{h_1} \cdots x_n^{h_n}$$

on a multi-simplex, each variable can vary independently inside $[0 \ 1]$.

$$x \in \Delta^2 \times \cdots \times \Delta^2$$
 (multi-simplex)

Multi-homogeneous representation of $A(x), x \in \Phi_r^l$

Claim:

For every $A(x), x \in \Phi^l_r$, there exists a multi-homogeneous

$$A_H(y), y \in \underline{\Delta^2 \times \cdots \times \Delta^2}$$

such that

$${A(x): x \in \Phi_r^l} = {A_H(y): y \in \underline{\Delta^2 \times \cdots \times \Delta^2}}$$

Sketch of proof:

To construct $A_H(y)$:

- 1. Scaling: Define $y_{i,1} = \frac{x_i r_i}{2r_i} \in [0 \ 1]$ for $i = 1, \dots, l$
- 2. Define $y_{i,2} = 1 y_{i,1}$ for $i = 1, \dots, l$, so that $(y_{i,1}, y_{i,2}) \in \Delta^2$
- 3. **Shifting:** Define B(y) by substituting y for x in A(x)
- 4. **Homogenizing:** Make B(y) multi-homogeneous by multiplying its monomials by $(y_{i,1} + y_{i,2})^b$ with suitable b

Multi-homogeneous representation of $A(x), x \in \Phi^l_r$

Example:
$$A(x) = 2x_1x_2^3 - 5x_1^2x_2$$
 $x \in \Phi^2 := \{x \in \mathbb{R}^2 : |x_1| \le 2 \text{ and } |x_2| \le 0.5\},$

find multi-homogeneous $A_H(y)$:

$${A(x) : x \in \Phi^2} = {A_H(y) : y \in \Delta^2 \times \Delta^2}$$

Procedure:

- **1. Scaling:** Define $y_{1,1} := \frac{x_1-2}{4}$ and $y_{2,1} := x_2 0.5$
- 2. Define new variables $y_{1,2} := 1 y_{1,1}$ and $y_{2,2} := 1 y_{2,1}$
- 3. **Shifting:** Substitute $y_{1,1}$ and $y_{2,1}$ for x_1 and x_2 in A(x):

$$B(y) := 2(4y_{1,1} + 2)(y_{2,1} + 0.5)^3 - 5(4y_{1,1} + 2)^2(y_{2,1} + 0.5)$$

4. Homogenizing: Make B(y) multi-homogeneous:

$$A_H(y) := 2(4y_{1,1} + 2)(y_{1,1} + y_{1,2})(y_{2,1} + 0.5)^3 - 5(4y_{1,1} + 2)^2(y_{2,1} + 0.5)(y_{2,1} + y_{2,2})^2$$

Polya's theorem (multi-simplex version)

Polya's Theorem (multi-simplex version):

If matrix-valued multi-homogeneous polynomial $F(x) \succ 0$ for all $x \in \Delta^{l_1} \times \cdots \times \Delta^{l_N}$, then for some $d \in \mathbb{N}$, G has only PD coeffs.

$$G := \prod_{i=1}^{N} \left(\sum_{j=1}^{l_i} x_{i,j} \right)^d F(x)$$

Example:

$$((x_1, x_2), (y_1, y_2)) \in \Delta^2 \times \Delta^2$$

Iteration 1:

$$F(x,y) = x_1^2 y_1 + x_1^2 y_2 - x_1 x_2 y_1 - x_1 x_2 y_2 + x_2^2 y_1 + x_2^2 y_2$$

Iteration 2:

$$(x_1 + x_2)(y_1 + y_2)F(x, y) = x_1^3 y_1^2 + x_2^3 y_1^2 + 2x_1^3 y_1 y_2 + 2x_2^3 y_1 y_2 + x_1^3 y_2^2 + x_2^3 y_2^2$$

For d=1, all of the resulting coefficients are positive $\Rightarrow F>0$ on $\Delta^2\times\Delta^2$

The Lyapunov inequalities

We search for a $P \in \mathbb{R}[x]$:

$$V(x) = x^T P(x) x > 0, x \in \Phi_r^n$$

$$\Leftrightarrow P(x) \succ 0, x \in \Phi_r^n$$

and

$$\dot{V}(x) = \nabla V(x)^T A(x) x < 0, \ x \in \Phi_r^n$$

$$\begin{vmatrix} A^{T}(x)P(x) + P(x)A(x) + \frac{1}{2} \left(A^{T}(x) \begin{bmatrix} x^{T} \frac{\partial P(x)}{\partial x_{1}} \\ \vdots \\ x^{T} \frac{\partial P(x)}{\partial x_{n}} \end{bmatrix} + \begin{bmatrix} x^{T} \frac{\partial P(x)}{\partial x_{1}} \\ \vdots \\ x^{T} \frac{\partial P(x)}{\partial x_{n}} \end{bmatrix}^{T} A(x) \right) \prec 0$$

$$x \in \Phi_{r}^{n}$$

Applying Polya's theorem to Lyap. inequalities

Step 1 (Multi-homogenizing): Represent $P(x), x \in \Phi^n_r$ in multi-homogeneous form

$$P_H(y) = \sum_{|h_1| \le d_1} \cdots \sum_{|h_n| \le d_n} P_{\{h_i\}} y_1^{h_1} \cdots y_n^{h_n}, \quad y \in \Delta^2 \times \cdots \times \Delta^2$$

with degree vector $[d_1, \cdots, d_n]$.

Step 2 (Degree elevation): Multiply by $\prod_{i=1}^n \left(y_{i,1}+y_{i,2}\right)^{\lambda}$

$$\prod_{i=1}^{n} (y_{i,1} + y_{i,2})^{\lambda} P_{H}(y) =$$

$$\sum_{|\gamma_1| \le d_1 + \lambda} \cdots \sum_{|\gamma_n| \le d_n + \lambda} \left(\sum_{|h_1| \le d_1} \cdots \sum_{|h_n| \le d_n} \beta_{\{h_i, \gamma_i\}} P_{\{h_i\}} \right) y_1^{\gamma_1} \cdots y_n^{\gamma_n}$$

Coefficients

Applying Polya's theorem to Lyap. inequalities

Step 3 (constraints for V>0): Define $\mathrm{LMI}_{\lambda}^{(1)}$ with variables $P_{\{h_i\}}\in\mathbb{R}^{n\times n}$ as

$$\left(\begin{array}{c} \sum_{|h_1| \leq d_1} \cdots \sum_{|h_n| \leq d_n} \beta_{\{h_i, \gamma_{i,1}\}} P_{\{h_i\}} \\ \cdots \\ \sum_{|h_1| \leq d_1} \cdots \sum_{|h_n| \leq d_n} \beta_{\{h_i, \gamma_{i,L}\}} P_{\{h_i\}} \end{array}\right) \succ 0$$
Step 4 (constraints for $\dot{V} < 0$): Similarly define LMI⁽²⁾ by applying

Step 4 (constraints for $\dot{V}<0$): Similarly, define LMI $_{\lambda}^{(2)}$ by applying Polya's theorem to $\dot{V}<0$.

Step 5 (Solving for $P_{\{h_i\}}$): If for some λ there exist $P_{\{h_i\}}$ such that

$$\begin{bmatrix} \mathsf{LMI}_{\lambda}^{(1)} & 0 \\ 0 & -\mathsf{LMI}_{\lambda}^{(2)} \end{bmatrix} \succ 0,$$

then $V = x^T P(x) x$ is a Lyapunov function.

Decentralization scheme: Calculating \dot{V}

To calculate a part of \dot{V} , i.e., P(x)A(x):

$$P(x) = \underbrace{P_1 x_1}_{\text{CPU \#1}} + \underbrace{P_2 x_1 x_2}_{\text{CPU \#2}} + \underbrace{P_3}_{\text{CPU \#3}} \qquad A(x) = \underbrace{A_1 x_1}_{\text{CPU \#1}} + \underbrace{A_2}_{\text{CPU \#2}}$$

1. Each processor calculates its P(x)A(x):

CPU #1 :
$$P_1A_1x_1^2 + P_1A_2x_1$$

CPU #2 :
$$P_2A_1x_1^2x_2 + P_2A_2x_1x_2$$

CPU #3 :
$$P_3A_1x_1 + P_3A_2$$

2. Each processor multi-homogenizes its P(x)A(x):

$$\begin{array}{c} \text{CPU \#1}: (P_{1}A_{1} + P_{1}A_{2})x_{1}^{2}x_{2} + (P_{1}A_{1} + P_{1}A_{2})x_{1}^{2}\overline{x}_{2} + P_{1}A_{2}x_{1}\overline{x}_{1}x_{2} \\ & + P_{1}A_{2}x_{1}\overline{x}_{1}\overline{x}_{2} \quad \text{(4 monomials)} \\ \text{CPU \#2}: P_{2}A_{1}x_{1}^{2}x_{2} + P_{2}A_{2}x_{1}^{2}x_{2} + P_{2}A_{2}x_{1}\overline{x}_{1}x_{2} \quad \text{(3 monomials)} \end{array}$$

$$\begin{array}{l} \text{CPU \#3}: (P_3A_1 + P_3A_2)x_1^2x_2 + (P_3A_1 + P_3A_2)x_1^2\overline{x}_2 + (P_3A_1 + 2P_3A_2)x_1\overline{x}_1x_2 \\ + (P_3 + A_12P_3A_2)x_1\overline{x}_1\overline{x}_2 + P_3A_2\overline{x}_1^2x_2 + P_3A_2\overline{x}_1^2\overline{x}_2 \end{array} \tag{5 monomials}$$

Decentralization scheme: Calculating \dot{V}

3. Redistribute the monomials to maintain the load balance:

$$\begin{array}{l} \text{CPU \#1}: (P_1A_1 + P_1A_2)x_1^2x_2 + (P_1A_1 + P_1A_2)x_1^2\overline{x}_2 + P_1A_2x_1\overline{x}_1x_2 \\ + P_1A_2x_1\overline{x}_1\overline{x}_2 \end{array} \tag{4 monomials}$$

$$\begin{array}{l} \text{CPU \#2}: P_2A_1x_1^2x_2 + P_2A_2x_1^2x_2 + P_2A_2x_1\overline{x}_1x_2(P_3A_1 + P_3A_2)x_1^2x_2 \\ & + (P_3A_1 + P_3A_2)x_1^2\overline{x}_2 \end{array} \tag{4 monomials}$$

CPU #3 :
$$(P_3A_1 + 2P_3A_2)x_1\overline{x}_1x_2 + (P_3 + A_12P_3A_2)x_1\overline{x}_1\overline{x}_2 + P_3A_2\overline{x}_1^2x_2 + P_3A_2\overline{x}_1^2\overline{x}_2$$
 (4 monomials)

Senders

	11000000		
	CPU 1	CPU 2	CPU 3
CPU 1	Ø	A_1	A_1
CPU 2	A_2	Ø	A_2
CPU 3	Ø	P_3	Ø

Raciavars

Remarks on our decentralization

- Using Similar schemes, we perform Scaling, shifting, degree elevation and differentiation on the monomials of V and \dot{V}
- For arbitrary number of monomials and processors, we have designed a set of **communication rules** (refer to paper).
- ullet *Per core* communication complexity for setting up the LMIs scales polynomially (n^2) in SS dimension and exponentially (2^d) in degrees of P and A
- We use our parallel SDP solver (Kamyar, Peet, TAC 2013) to solve the LMIs.

Example: Accuracy increases with dp

Consider Van der Pol oscillator in reverse time

$$\dot{x}_1(t) = -x_2(t), \quad \dot{x}_2(t) = x_1(t) + x_2(t) \left(x_1^2(t) - 1\right).$$

For hypercubes of radii

$$r_1 = [1, 1], r_2 = [1.5, 1.5], r_3 = [1.7, 1.8], r_4 = [1.9, 2.4]$$

we want to solve

$$\min_{P,d} \ d \qquad \text{subject to}$$

$$V(x) = x^T P(x) x > 0, x \in \Phi_{r_i} \text{ and with } d_p = [d,d]$$

$$\dot{V} < 0, \quad x \in \Phi_{2,r_i}$$

Example: ROA estimations for different degrees of P

Ongoing works

- ullet Optimizing the set-up algorithm to improve its **speed-up** and its **scalability** with SS dimension and degree of V
- Extension to the analysis on convex polyhedral regions using affine basis functions
- **Decentralized computation** for H_2 and H_∞ controllers for uncertain systems:

We will set-up the general form of LMIs

$$\sum_{i} A_{i}(\alpha) X(\alpha) B_{i}(\alpha) + B_{i}(\alpha)^{T} X(\alpha) A_{i}(\alpha)^{T} + Q_{i}(\alpha) \succ 0$$

GPU implementation of set-up and solver algorithms