Conjuntos parcialmente ordenados y retículos Sesión de Problemas No. 1 DIAS 2017

Rafael S. González D'León

Ejercicios para trabajar en la sesión

- 1. Dibuje todos los posets sin etiquetas (clases de isomorfismo) que hay en un conjunto de uno, dos, tres o cuatro elementos. Cuantos posets diferentes hay en los conjuntos [1], [2], [3] y [4]?
- 2. Verifique que el conjunto Π_n de particiones del conjunto [n] junto con la relación de refinamiento forman un conjunto parcialmente ordenado. Describa las relaciones de cobertura.
- 3. Sea G un grafo conexo con n vertices y sea Π_G el subposet inducido de Π_n formado por el conjunto de particiones $\pi \in \Pi_n$ con la propiedad de que para cada bloque $B \in \pi$, el subgrafo inducido $G|_B$ es conexo. Muestre que cuando G = T es un árbol (un grafo conexo sin loops ni ciclos) $\Pi_T \cong \mathbb{B}_{n-1}$, o sea Π_T es un poset isomorfo al álgebra de Boole \mathbb{B}_{n-1} .
- 4. Verifique que si $f: P \to Q$ y $g: Q \to R$ son mapas monótonos entonces $g \circ f: P \to R$ también lo es.
- 5. Dé un ejemplo de una biyección monótona $f: P \to Q$ que no sea un isomorfismo de posets. Dé un ejemplo de una biyección monótona $f: P \to P$ que no sea un automorfismo de posets. Que condición tiene que cumplir P en este caso?
- 6. Dé un ejemplo de un poset finito que no sea graduado.
- 7. Demuestre la siguiente proposición:
 - **Proposición** Si P es un poset finito graduado entonces existe una función bien definida $\rho: P \to \mathbb{N}_0$ tal que $\rho(x) = 0$ siempre que $x \in \mathcal{M}in(P)$ y si $x \lessdot y$ entonces $\rho(y) = \rho(x) + 1$.
- 8. Encuentre una fórmula en términos de productos de polinomios para la función generadora por grados del álgebra de Boole $F(\mathbb{B}_n, t)$.

Conjuntos parcialmente ordenados y retículos Sesión de Problemas No. 2 DIAS 2017

Rafael S. González D'León

Ejercicios para trabajar en la sesión

- 1. Dé un ejemplo concreto (utilizando diagramas de Hasse) de cada una de las operaciones $P+Q,\ P\oplus Q,\ P\times Q,\ P\otimes Q$ y Q^P . Cuales de estas operaciones son simétricas, o sea, $P\circledast Q\cong Q\circledast P$?
- 2. Muestre que $\mathbb{B}_n \cong \mathbf{2} \times \mathbf{2} \times \cdots \times \mathbf{2} = \mathbf{2}^n$. Calcule $F(\mathbb{B}_n, t)$ usando esta relación y la conclusión del ejercicio 7.
- 3. Cuales de los posets en uno, dos, tres, cuatro o cinco elementos son retículos?.
- 4. Determine la estructura de J(P) cuando P es una cadena, una anticadena o la suma directa de cadenas.
- 5. Muestre que Π_n es un retículo. Describa para un par de particiones $\pi, \pi' \in \Pi_n$ su concurrencia $\pi \wedge \pi'$ y su juntura $\pi \vee \pi'$.
- 6. Muestre que un retículo, \vee y \wedge cumplen con las leyes de absorción $x \wedge (x \vee y) = x$ y $x \vee (x \wedge y) = x$.

Ejercicios adicionales

- 7. Muestre que $F(P \times Q, t) = F(P, t)F(Q, t)$.
- 8. Sea n un entero positivo con decomposición en primos $n = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$. Muestre que $D_n \cong \mathbf{n_1} + \mathbf{1} \times \mathbf{n_2} + \mathbf{1} \times \cdots \times \mathbf{n_k} + \mathbf{1}$. Encuentre $F(D_n, t)$ usando esta relación.
- 9. Muestre que las operaciones fundamentales entre posets satisfacen las siguientes relaciones:
 - $P \times (Q + R) \cong (P \times Q) + (P \times R).$
 - $P^{Q+R} \cong P^Q \times P^R.$
 - $(P^Q)^R \cong P^{Q \times R}.$
- 10. Muestre que $J(P+Q) \cong J(P) \times J(Q)$.
- 11. Muestre que en un retículo L las operaciones \vee y \wedge son asociativas (así expresiones como $x \wedge y \wedge z$ tienen sentido), conmutativas e idempotentes $(x \vee x = x)$.
- 12. Verifique que si L y M son retículos entonces también lo son L^* , $L \times M$, $L \oplus M$ y $\widehat{L+M}$, en donde $\widehat{L+M} := \{\widehat{0}\} \oplus (L+M) \oplus \{\widehat{1}\}.$

Conjuntos parcialmente ordenados y retículos Sesión de Problemas No. 3 DIAS 2017

Rafael S. González D'León

Ejercicios para trabajar en la sesión

- 1. Calcule los valores $\mu([\hat{0},x])$ de la función de Möbius para \mathbb{B}_3 y Π_3 .
- 2. Compute varios ejemplos de los valores $\mu([\hat{0}, x])$ de la función de Möbius para D_n . Conjeture y pruebe una formula para $\mu(D_n)$. Sugerencia: Use el siguiente hecho demostrado en la sesión 2

Sea n un entero positivo con descomposición en primos $n = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$. Entonces es un producto de cadenas $D_n \cong \mathbf{n_1} + \mathbf{1} \times \mathbf{n_2} + \mathbf{1} \times \cdots \times \mathbf{n_k} + \mathbf{1}$.

- 3. Utilice las leyes de absorción $x \wedge (x \vee y) = x$ y $x \vee (x \wedge y) = x$ que se cumplen en todo retículo para mostrar que un retículo satisface la ley distributiva (D1) si y sólo si satisface la ley distributiva (D2).
- (D1) $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$ para todo $x, y, x \in L$.
- (D2) $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ para todo $x, y, x \in L$.
- 4. Sea P un poset. Muestre que existe una colección S de conjuntos que si los ordenamos por inclusión, o sea $A \leq B$ siempre que $A \subseteq B$, tenemos que $P \cong S$.

Conjuntos parcialmente ordenados y retículos Sesión de Problemas No. 4 DIAS 2017

Rafael S. González D'León

Ejercicios para trabajar en la sesión

- 1. Utilice la fórmula de Weisner para calcular los valores de la función de Möbius en \mathbb{B}_n .
- 2. Sean ζ la función en I(P) definida para todo $x \leq y$ en P por $\zeta([x,y]) = 1$ y ϵ la función en I(P) definida por

$$\epsilon([x,y]) = \begin{cases} 1 & \text{si } x = y \\ 0 & \text{en cualquier otro caso.} \end{cases}$$

Encuentre una fórmula para los valores de $(2\epsilon-\zeta)^2([x,y])$ cuando $\ell([x,y])=1,$ $\ell([x,y])=2$ y $\ell([x,y])\geq 3.$

3. Es la función

$$(\zeta - \epsilon)([x, y]) = \begin{cases} 1 & \text{si } x < y \\ 0 & \text{en cualquier otro caso.} \end{cases}$$

invertible en I(P)? Porqué?

4. a) Demuestre la siguiente fórmula recursiva alternativa para calcular la función de Möbius:
Proposición (Definición dual recursiva de la función de Möbius) La función de Möbius μ puede definirse recursivamente para un intervalo [x, y] como

$$\mu([x,y]) = \begin{cases} 1 & \text{si } x = y \\ -\sum_{x < z \le y} \mu([z,y]) & \text{en cualquier otro caso.} \end{cases}$$

Sugerencia: recuerde que μ es la función definida como la inversa de ζ , es decir, satisface $\zeta \star \mu = \epsilon$ y $\mu \star \zeta = \epsilon$.

- b) Utilice la fórmula alternativa de la primera parte para calcular $\mu(\mathbb{B}_4)$ y $\mu(\Pi_4)$. Son estos valores los mismos que si hubiéramos calculado μ con la definición recursiva original?
- c) Utilice lo observado en las dos partes anteriores para concluir que para todo poset finito acotado P (recuerde que acotado significa que P tiene un elemento base $\hat{0}$ y un elemento tope $\hat{1}$, es decir, P es el intervalo cerrado $[\hat{0}, \hat{1}]$)

$$\mu(P) = \mu(P^*).$$

Sugerencia: Haga uso de las dos definiciones recursivas de μ .

Conjuntos parcialmente ordenados y retículos Sesión de Problemas No. 5 DIAS 2017

Rafael S. González D'León

Ejercicios para trabajar en la sesión

- 1. Determine cual es el complejo de orden $\Delta(\mathbf{n})$ de la cadena con n elementos. Calcule la característica reducida de Euler $\tilde{\chi}(\Delta(\mathbf{n}))$ utilizando el teorema de Philip Hall.
- 2. Un desarreglo es una permutación de [n] (una biyección $\sigma:[n] \to [n]$) que no contiene puntos fijos, es decir puntos tal que $\sigma(i) = i$. Teniendo en cuenta que hay n! permutaciones de [n], demuestre que el número d(n) de desarreglos de [n] puede ser calculado con la formula

$$n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}$$
.

(Sugerencia: Utilice el teorema de inversión binomial y la fórmula $\binom{n}{k} := \frac{n!}{k!(n-k)!}$)

- 3. Para un complejo simplicial Γ definimos su subdivisión baricéntrica como $\Delta(L(\Gamma) \setminus \emptyset)$, en donde $L(\Gamma) \setminus \emptyset$ es el poset formado por las caras no vacías de Γ ordenadas por inclusión.
 - a) Determine cual es la subdivisión baricéntrica del simplex Δ_2 de dimensión 2 (Dibuje el complejo simplicial resultante).
 - b) Calcule la característica de Euler de Δ_2 .
 - c) Calcule la característica de Euler de $\Delta(L(\Delta_2) \setminus \emptyset)$ usando la función de Möbius. Sugerencia agregue un $\hat{0}$ y un $\hat{1}$ a $L(\Delta_2) \setminus \emptyset$ y utilice el Teorema de Philip Hall.
 - d) Que conclusión podemos conjeturar de las partes (b) y (c)?