Bayesian Statistics Introduction

Shaobo Jin

Department of Mathematics

Parametric Statistical Model

Suppose that the vector of observations $x = (x_1, ..., x_n)$ is generated from a probability distribution with density $f(x \mid \theta)$, where θ is the vector of parameters.

• For example, if we further assume the observations are iid, then

$$f(x \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta).$$

A parametric statistical model consists of the observation x of a random variable X, distributed according to the density $f(x \mid \theta)$, where the parameter θ belongs to a parameter space Θ of finite dimension.

Likelihood Function

Definition

For an observation x of a random variable X with density $f(x \mid \theta)$, the likelihood function $L(\cdot \mid x) : \Theta \to [0, \infty)$ is defined by $L(\theta \mid x) = f(x \mid \theta)$.

Example

If $X = \begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix}^T$ is a sample of independent random variables, then

$$L(\theta \mid x) = \prod_{i=1}^{n} f_i(x_i \mid \theta),$$

as a function in θ conditional on x.

Likelihood Function: Example

• If $X_1, ..., X_n$ is a sample of i.i.d. random variables according to $N(\theta, \sigma^2)$, then

$$L(\theta \mid x) = \prod_{i=1}^{n} \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ -\frac{(x_i - \mu)^2}{2\sigma^2} \right\} \right].$$

② If $X_1, ..., X_n$ is a sample of i.i.d. random variables according to Binomial (k, θ) , then

$$L(\theta \mid x) = \prod_{i=1}^{n} \left[\binom{k}{x_i} \theta^{x_i} (1-\theta)^{n-x_i} \right].$$

Likelihood Function: Another Example

Consider the case

- For $i \neq j$, $\begin{bmatrix} X_{i1} & \cdots & X_{in} \end{bmatrix}$ and $\begin{bmatrix} X_{j1} & \cdots & X_{jn} \end{bmatrix}$ are independent and identically distributed.
- For each $i, X_{i1}, ..., X_{ip}$ are not necessarily independent.

Then, the likelihood is

$$L(\theta \mid x) = \prod_{i=1}^{n} f(x_{i1}, \dots, x_{ip} \mid \theta),$$

where $f(x_{i1}, \dots, x_{ip} \mid \theta)$ is the joint density of $[X_{i1} \dots X_{ip}]$.

Inference Principle

In the frequentist context,

- likelihood principle: the information brought by observation x is entirely contained in the likelihood function $L(\theta \mid x)$.
- **2** sufficiency principle: two observations x and y factorizing through the same value of a sufficient statistic T as T(x) = T(y) must lead to the same inference on θ .

Bayes Formula

If A and E are two events, then

$$P(A \mid E) = \frac{P(E \mid A) P(A)}{P(E)}$$
$$= \frac{P(E \mid A) P(A)}{P(E \mid A) P(A) + P(E \mid A^c) P(A^c)}.$$

If X and Y are two random variables, then

$$f\left(y\mid x\right) \;\; = \;\; \frac{f\left(x\mid y\right)f\left(y\right)}{f\left(x\right)} = \frac{f\left(x\mid y\right)f\left(y\right)}{\int f\left(x\mid y\right)f\left(y\right)dy}.$$

Prior and Posterior

A Bayes model consists of a distribution $\pi(\theta)$ on the parameters, and a conditional probability distribution $f(x \mid \theta)$ on the observations.

- The distribution $\pi(\theta)$ is called the prior distribution.
- The unknown parameter θ is a random parameter.

By Bayes formula,

$$\pi\left(\theta\mid x\right) = \frac{f\left(x\mid\theta\right)\pi\left(\theta\right)}{m\left(x\right)} = \frac{f\left(x\mid\theta\right)\pi\left(\theta\right)}{\int f\left(x\mid\theta\right)\pi\left(\theta\right)d\theta},$$

where the conditional distribution $\pi(\theta \mid x)$ is the posterior distribution and m(x) is the marginal distribution of x.

Update Our Knowledge on θ

The prior often summarizes the prior information about θ .

• From similar experiences, the average number of accidents at a crossing is 1 per 30 days. We assume

$$\pi(\theta) = 30 \exp(-30\theta), \quad [\text{day}]^{-1}.$$

Our experiment resulted in an observation x.

• Three accidents have been recorded after monitoring the roundabout for one year. The likelihood is

$$f(X = 3 \mid \theta) = \frac{(365\theta)^3}{3!} \exp(-365\theta).$$

We use the information in x to update our knowledge on θ .

• By Bayes' formula

$$\pi(\theta \mid x) = \frac{f(X = 3 \mid \theta) \pi(\theta)}{m(x)}.$$

Distributions

In a Bayesian model, we will have many distributions

- prior distribution: $\pi(\theta)$.
- conditional distribution $X \mid \theta$ (likelihood): $f(x \mid \theta)$.
- joint distribution of (θ, X) : $f(x, \theta) = f(x \mid \theta) \pi(\theta)$.
- posterior distribution: $\pi(\theta \mid x)$.
- marginal distribution of X: $m(x) = \int f(x \mid \theta) \pi(\theta) d\theta$.

We most of the time use $\pi(\cdot)$ and $m(\cdot)$ as generic symbols. But in several cases, they are tied to specific functions.

Use Bayes Formula To Obtain Posterior

Example

Find the posterior distribution.

- Suppose that we have an iid sample $X_i \mid \theta \sim \text{Bernoulli}(\theta)$, i = 1, ..., n. The prior is $\theta \sim \text{Beta}(a_0, b_0)$.
- ② Suppose that we have an iid sample $X_i \mid \mu \sim N(\mu, \sigma^2)$, i = 1, ..., n, where σ^2 is known. The prior is $\mu \sim N(\mu_0, \sigma_0^2)$.
- Suppose that we have an iid sample $X_i \mid \mu, \sigma^2 \sim N(\mu, \sigma^2)$, i = 1, ..., n. The priors are $\mu \mid \sigma^2 \sim N(\mu_0, \sigma^2/\lambda_0)$ and $\sigma^2 \sim \text{InvGamma}(a_0, b_0)$, where

$$\pi\left(\sigma^{2}\right) = \frac{b_{0}^{a_{0}}}{\Gamma\left(a_{0}\right)} \frac{1}{\left(\sigma^{2}\right)^{a_{0}+1}} \exp\left(-\frac{b_{0}}{\sigma^{2}}\right).$$

Bayesian Inference Principle

Bayesian Inference Principle

Information on the underlying parameter θ is entirely contained in the posterior distribution $\pi(\theta \mid x)$. That is, all statistical inference are based on the posterior distribution $\pi(\theta \mid x)$.

Some examples are

- posterior mean: $E[\theta \mid x]$.
- **2** posterior mode (MAP): θ that maximizes $\pi(\theta \mid x)$.
- predictive distribution of a new observation:

$$f(y \mid x) = \int f(y \mid x, \theta) \pi(\theta \mid x) d\theta.$$

From Univariate to Multivariate Normal

Let $Z \sim N(0,1)$. Then, $X = \sigma Z + \mu \sim N(\mu, \sigma^2)$, where $E[X] = \mu$ and $Var(X) = \sigma^2$.

Let $Z = \begin{bmatrix} Z_1 & Z_2 & \cdots & Z_p \end{bmatrix}^T$ be a random vector, each $Z_j \sim N(0, 1)$, and Z_j is independent of Z_k for any $j \neq k$. Then,

$$X = \Sigma^{1/2} Z + \mu \in \mathbb{R}^p$$

follows a p-dimensional multivariate normal distribution, denoted by $X \sim N_p(\mu, \Sigma)$, where $E[X] = \mu$ and $Var(X) = \Sigma$.

From Univariate to Multivariate Normal: Density

The density function of the random variable $X \sim N(\mu, \sigma^2)$ with $\sigma > 0$ can be expressed as

$$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{\left(x-\mu\right)^2}{2\sigma^2}\right\} = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2}\left(x-\mu\right)\frac{1}{\sigma^2}\left(x-\mu\right)\right\}.$$

A p-dimensional random variable $X \sim N_p(\mu, \Sigma)$ with $\Sigma > 0$ has the density

$$f(x) = \frac{1}{(2\pi)^{p/2} \sqrt{\det(\Sigma)}} \exp\left\{-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right\}.$$

Some Useful Properties

- Linear combination of normal remains normal: Suppose that $X \sim N_p(\mu, \Sigma)$, then $AX + d \sim N_q(A\mu + d, A\Sigma A^T)$, for every $q \times p$ constant matrix A, and every $p \times 1$ constant vector d.
- **2** Marginal normal + independence imply joint normal: If X_1 and X_2 are independent and are distributed $N_p(\mu_1, \Sigma_{11})$ and $N_q(\mu_2, \Sigma_{22})$, respectively, then

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N_{p+q} \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} \end{bmatrix} \right).$$

3 Conditional distribution: Let $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N_{p+q} \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right)$. Then the conditional distribution of X_1 given that $X_2 = x_2$, is

$$X_1 \mid X_2 \sim N \left\{ \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2), \ \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \right\}.$$

Multivariate Normal In Bayesian Statistics

Example

Suppose that $X \mid \theta \sim N_p(C\theta, \Sigma)$, where $C_{p \times q}$ and $\Sigma > 0$ are known. The prior is $N_q(\mu_0, \Lambda_0^{-1})$. Find the posterior of θ .

We can in fact use the property of the conditional distribution of a multivariate normal distribution to simplify the steps.

Result

If we know $X_1 \mid X_2 \sim N_p\left(CX_2, \Sigma\right)$ and $X_2 \sim N_q\left(m, \Omega\right)$, then

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N_{p+q} \left(\begin{bmatrix} Cm \\ m \end{bmatrix}, \begin{bmatrix} \Sigma + C\Omega C^T & C\Omega \\ \Omega C^T & \Omega \end{bmatrix} \right).$$