電子學 (二) 期末考 Chapter 10, 11, 12.2~3, 13.2 202 (if not specified, $v_d = v_1 - v_2$, $v_{cm} = (v_1 + v_2)/2$ for differential amplifiers) <u>必須</u>要有計算過程。

(18%) Consider the Widlar current-source circuit with multiple output transistors shown in Figure 1. Assume V_{BE1}(on) = 0.7 V, R₁ = 20 kΩ, and all base currents are negligible. (a) Find the value of I_{REF}(4%). (b) Determine values of R_{E2} such that I_{O2} = 20 μA (4%). (c) Determine the value of I_{O3} if R_{E3} = 2 kΩ(5%). (d) Assuming that β = 120 and V_A = 100 V, what is the output resistance of this circuit (equivalent resistance looking into the collector of transistor Q₃)(5%)?

2. (15%) The parameters of the transistors in Figure 2 are $V_{TN} = 0.6 \text{ V}$, $V_{TP} = -0.6 \text{ V}$, $k_n' = 80 \text{ }\mu\text{A/V}^2$, $k_p' = 40 \text{ }\mu\text{A/V}^2$, and $\lambda_n = \lambda_p = 0.02 \text{ V}^{-1}$. The width-to-length ratios of M₁ and M₂ are 50, and those of all other transistors are 100. The values of V_{GSQ} is such that $I_{DQ1} = 80 \text{ }\mu\text{A}$, and all transistors are biased in saturation region. (a) Determine the effective resistance looking into the drain of M₃. (b) Determine the small signal voltage gain $A_v = v_o/v_i$. (c) What is the possible highest value of the output voltage V_O .

Figure 2

- 3. (17%) For the transistors in the circuit in Figure 3, the transistor parameters are $K_n = 0.2 \text{ mA/V}^2$, $V_{TN} = 2 \text{ V}$, and $\lambda = 0.02 \text{ V}^{-1}$. (a) Determine the value of bias current I_Q (3%) and the output resistance looking into current mirror (4%). (b) Determine $A_d = v_{o2}/v_d$ (5%). (c) Determine $A_{cm} = v_{o2}/v_{cm}$ (5%).
- 4. (12%) Simplified input stage of uA741is shown in Figure 4. (a) Use BJT small-signal parameters such as β_n, β_p, r_{π1}~r_{π4}, g_{m1}~g_{m4} to write the equation of differential-mode input resistance R_{id} (6%).
 (b) If the supply voltage (V⁺&V⁻) of uA741 is changed from ±15V to ±5V, will R_{id} become larger, smaller, or unchanged (2%)? Why (4%)?

Figure 3 Figure 4

5. (20%) Consider the Darlington pair and output stage of the circuit in Figure 5. The parameters are $I_{C7} = I_Q = 0.4$ mA, $I_{C8} = 2$ mA, $R_4 = 5$ k Ω , $R_3 = 0.1$ k Ω , $\beta = 100$ for all transistors and early voltages $V_A = 80$ V for $Q_1 \sim Q_7$ and Q_{11} . (a) Calculate the small-signal voltage gain of the differential amplifier $(A_{v1} = v_{o2}/v_d)$. (b) Determine the input resistance of the Darlington pair R_i . (c) Calculate the small-signal voltage gain of the Darlington pair $(A_{v2} = v_{o3}/v_{o2})$. (d) Find the output resistance (R_o) .

Figure 5

6. (12%) Two feedback configuration are shown in Figure 6. The close-loop gain is $A_{vf} = v_o/v_i = 20$ for both circuits. (a) Determine β_1 and β_2 . (b) For both circuits, estimate the percent change in the close-loop gain for both configuration if A_2 is decreases by 10%.

7. (6%) What kind of feedback configuration is this (2%)? Why (4%)?

