BIOL 3295 – Population and Evolutionary Ecology

Instructor Information

Instructor: Dr. Amy Hurford Office: SN-1093 (x8301)

Email: Please email me via Brightspace

Office hours: M 9-11am

Course Information

<u>Lecture</u> <u>Lab</u> TR 12.00-12.50pm W 2-5pm

F 1-1.50pm SN-4117, 4116F and 3000

SN-2067

<u>Course description:</u> <u>Population and Evolutionary Ecology</u> is an introduction to the theory and principles of evolutionary ecology and population dynamics. Pre-requisites: BIOL 2600; at least one of BIOL 2010, 2122 or 2210.

Course format:

Prior to lecture. Readings are to be completed before some lectures (see 1.1 Lecture Schedule and 1.3 Readings for more details).

Lecture. There are 3 x 50 minute lectures each week. Lectures will be a combination of *me* lecturing and *you* problem solving, running simulations, and analyzing data to understand how to answer research questions in population and evolutionary ecology.

Plan to bring a laptop computer with the recommended software installed (see 1.5 Software for installation instructions).

Labs. There are 8 x 3 hour labs. See 1.2 Lab Schedule.

<u>Course expectations:</u> Any students that are disruptive, violating university policies, or acting in a potentially unsafe way will be warned and asked to leave.

Learning goals

- Understand key concepts
- Perform calculations
- Know how to gain knowledge and assess information sources
- Gain some experience running simulations and coding

Required Text and Readings

- I will conduct a computing resources survey on the first day of class. Please notify me if you have limited access to computing resources.
- All readings are available online via the links in 1.3 Readings, or can be accessed via the library website.

BIOL 3295: Dr. Amy Hurford

- Brightspace will be used: a) to make announcements (in addition to in class); b) for class-related emails; c) to disseminate grades; d) for students to post questions on the readings.
- Github Lecture slides, Labs, and other resources will be available to download at https://github.com/ahurford/BIOL-3295

Method of Evaluation

- Assignments 20%
- Midterm (take home) 20%
- Labs 20%
- Final exam 40%

Late assignments, labs, and missed midterms, and final exams will be accommodated as described by University Regulation 6.7.3 and 6.7.5 (see https://www.mun.ca/regoff/calendar/sectionNo=REGS-0474 for Regulations). The Final exam will cover all Lecture material and readings, but not Labs. Specific regulations governing final examinations are described by University Regulation 6.8. Lecture participation is highly recommended and practice problems completed during lectures may appear on Assignments.

1.1 Lecture schedule

1.1 Lecture schedule				
Week 1	What is a population and why does is matter?			
Fri Sept 6				
Week 2	What is evolutionary ecology?			
Tues Sept 10	Björklund, 2019.			
	Estimating population size			
	• Sacchi et al., 2002.			
	(Skalski et al., 2005. 8.1.2 Basic Sampling Methods and 8.2 Description of			
	Common Indices. p363-394 – Read only if you are interested in additional details)			
Week 3	Discrete and continuous time population dynamics Assignment 1 se	t		
Tues Sept 17	Exponential/geometric growth			
	 Vandermeer and Goldberg, 2013. p1-8 (beginning after the Exercises on p4) 			
Week 4	Density dependence			
Tues Sept 24				
	 Vandermeer and Goldberg, 2013. Density dependence in discrete time 			
	models. p28-29 Assignment 1 du	e		
Week 5	Evolution in low- and high-density populations Assignment 2 se	ŧt.		
Tues Oct 1	"Zombie ideas in ecology," 2011			
	• Pianka, 1970			
	Travis et al., 2013			
Week 6	Age structure			
Tues Oct 8	 Vandermeer and Goldberg, 2013. Elementary Age Structured Projection Matrices. p30-39 			

	Stage structure		
	Stage structure		
	Vandermeer and Goldberg, 2013. Non-Age Structure: Stage projection		
	models. p39-47		
	Kendall et al., 2019		
	Assignment 2 due		
	MIDTERM AVAILABLE		
Midterm	Evolution of life history strategies		
break	 Vandermeer and Goldberg, 2013. Life History Analysis. p63-72 		
Week 7			
Thurs Oct 17			
Week 8	Evolution of life history strategies		
Tues Oct 22	Structured populations - space		
	 Vandermeer and Goldberg, 2013. Metapopulations. p142-151 		
Week 9	Structured populations – space MIDTERM DUE		
Tues Oct 29*	• Andow et al., 1990		
	Evolution in spatially structured populations		
	Lion and Baalen, 2008		
Week 10	Population dynamics in seasonal environments Assignment 3 set		
Tues Nov 5	Saunders et al., 2019		
	Population dynamics in a warming world		
	• Walsh et al., 2019		
	• Baltar et al., 2019		
Week 11	Evolution in a warming world		
Tues Nov 12	Edelaar and Bolnick, 2019		
	Assignment 3 due		
Week 12	Stochastic population dynamics		
Tues Nov 19	Chapter 13: Probabilistic Models https://www.zoology.ubc.ca/biomath/		
	Evolution in fluctuating environments		
	Sæther and Engen, 2015		
Week 13	Big questions in evolutionary ecology		
Tues Nov 26	Reading TBD		

^{*}Oct 30 is the last day to drop fall semester courses without academic prejudice.

1.2 Lab schedule

- For labs you should, bring your own laptop computer with software installed to work on (recommended; see *1.4 Software*).
- On Sept 16, Lab 2a will require, walking to and through bush in Pippy Park. Please dress appropriately.
- You will need a Github account to contribute data and code for Labs 5 and 7. (see 1.4 Software)

Sept 11	Lab 1: Getting started in R/Duck data	R/RStudio
	collection	
Sept 18	Lab 2a: Pippy park – data collection*	-

Sept 25	Lab 2b: Pippy park – data analysis	R/RStudio
Oct 2	Lab 3: Testing for density dependence	R/RStudio
Oct 9	Lab 4: Stage structure	R/RStudio
Oct 23	Lab 5: Life history evolution	R/RStudio; Github
Oct 30	Lab 6: Spatial and stochastic population	R/RStudio; Netlogo
	dynamics	
Nov 13	Lab 7: Ducks on Burton's pond	R/RStudio; ImageJ

1.3 Readings

- All of the readings are available as online resources available from the MUN library website.
 The journal articles should be accessible via the links, but you might also be able to access them via Web of Science from the library website.
- See 1.1 Lecture Schedule for the timing of the readings and see 1.4 References for full bibliographic information.
- Prior to the day that a reading is due, you should post any questions or comments you have on the reading to the *Discussion* on BrightSpace. If you are having trouble viewing any of the required readings, please contact myself, or a teaching assistant.
- Please consult "How to Read a Scientific Paper" (2014) for the recommended approach to 'reading' journal articles. Steps 1,2, and 4 are good advice, but step 3 may not be relevant for some readings.
- Readings from textbooks (i.e., Vandermeer and Goldberg, 2013) can be read linearly (from beginning to end).

1.4 References (It is recommended to cut and paste links into a web browser to access journal articles; alternatively follow the instructions from 'Guide for accessing readings.docx')

- Andow, D.A., Kareiva, P.M., Levin, S.A., Okubo, A., 1990. Spread of invading organisms. Landsc. Ecol. 4, 177–188. https://doi.org/10.1007/BF00132860
- Baltar, F., Bayer, B., Bednarsek, N., Deppeler, S., Escribano, R., Gonzalez, C.E., Hansman, R.L., Mishra, R.K., Moran, M.A., Repeta, D.J., Robinson, C., Sintes, E., Tamburini, C., Valentin, L.E., Herndl, G.J., 2019. Towards Integrating Evolution, Metabolism, and Climate Change Studies of Marine Ecosystems. Trends Ecol. Evol. 0. https://doi.org/10.1016/j.tree.2019.07.003
- Björklund, M., 2019. Lamarck, the Father of Evolutionary Ecology? Trends Ecol. Evol. S0169534719301909. https://doi.org/10.1016/j.tree.2019.06.010
- Edelaar, P., Bolnick, D.I., 2019. Appreciating the Multiple Processes Increasing Individual or Population Fitness. Trends Ecol. Evol. 34, 435–446. https://doi.org/10.1016/j.tree.2019.02.001
- How to Read a Scientific Paper [WWW Document], 2014. Research4Life. URL https://www.research4life.org/blog/how-to-read-a-scientific-paper/ (accessed 9.3.19).
- Kendall, B.E., Fujiwara, M., Diaz-Lopez, J., Schneider, S., Voigt, J., Wiesner, S., 2019. Persistent problems in the construction of matrix population models. Ecol. Model. 406, 33–43. https://doi.org/10.1016/j.ecolmodel.2019.03.011
- Lion, S., Baalen, M. van, 2008. Self-structuring in spatial evolutionary ecology. Ecol. Lett. 11, 277–295. https://doi.org/10.1111/j.1461-0248.2007.01132.x
- Pianka, E.R., 1970. On r- and K-Selection. Am. Nat. 104, 592–597.
- Sacchi, R., Gentilli, A., Razzetti, E., Barbieri, F., 2002. Effects of building features on density and flock distribution of feral pigeons *Columba livia* var. *domestica* in an urban environment. Can. J. Zool. 80, 48–54. https://doi.org/10.1139/z01-202

- Sæther, B.-E., Engen, S., 2015. The concept of fitness in fluctuating environments. Trends Ecol. Evol. 30, 273–281. https://doi.org/10.1016/j.tree.2015.03.007
- Saunders, S.P., Ries, L., Neupane, N., Ramírez, M.I., García-Serrano, E., Rendón-Salinas, E., Zipkin, E.F., 2019. Multiscale seasonal factors drive the size of winter monarch colonies. Proc. Natl. Acad. Sci. 116, 8609–8614. https://doi.org/10.1073/pnas.1805114116
- Skalski, J.R., Ryding, K.E., Millspaugh, J.J., Millspaugh, J., 2005. Wildlife Demography: Analysis of Sex, Age, and Count Data. Elsevier Science & Technology, Burlington, UNITED STATES. https://ebookcentral-proquest-com.ge2a-proxy.mun.ca/lib/mun/detail.action?docID=269552
- Travis, J., Leips, J., Rodd, F.H., Reznick, S.E.D.N., 2013. Evolution in Population Parameters: Density-Dependent Selection or Density-Dependent Fitness? Am. Nat. 181, S9–S20. https://doi.org/10.1086/669970
- Vandermeer, J.H., Goldberg, D.E., 2013. Population Ecology: First Principles (Second Edition). Princeton University Press, Princeton, UNITED STATES.
- Walsh, B.S., Parratt, S.R., Hoffmann, A.A., Atkinson, D., Snook, R.R., Bretman, A., Price, T.A.R., 2019. The Impact of Climate Change on Fertility. Trends Ecol. Evol. 34, 249–259. https://doi.org/10.1016/j.tree.2018.12.002
- Zombie ideas in ecology: r and K selection, 2011. Oikos Blog. URL https://oikosjournal.wordpress.com/2011/06/29/zombie-ideas-in-ecology-r-and-k-selection/ (accessed 8.28.19).

1.5 Software

The following computing resources will be used during the course. Below are the links to download these software.

R: https://www.r-project.org/

RStudio: https://www.rstudio.com/products/rstudio/#Desktop

Github: https://github.com/join

Github Desktop: https://help.github.com/en/desktop/getting-started-with-github-desktop/installing-

github-desktop

Netlogo: https://ccl.northwestern.edu/netlogo/ ImageJ: https://imagej.nih.gov/ij/download.html

Additional Policies

Accommodation of students with disabilities

Memorial University of Newfoundland is committed to supporting inclusive education based on the principles of equity, accessibility and collaboration. Accommodations are provided within the scope of the University Policies for the Accommodations for Students with Disabilities (www.mun.ca/policy/site/policy.php?id=239). Students who may need an academic accommodation are asked to initiate the request with the Glenn Roy Blundon Centre at the earliest opportunity (www.mun.ca/blundon).

Academic misconduct

Students are expected to adhere to those principles, which constitute proper academic conduct. A student has the responsibility to know which actions, as described under Academic Offences in the University Regulations, could be construed as dishonest or improper. Students found guilty of an academic offence may be subject to a number of penalties commensurate with the offence including reprimand, reduction of grade, probation, suspension or expulsion from the University. For more information regarding this policy, students should refer to University Regulation 6.12.

BIOL 3295: Dr. Amy Hurford

Equity and Diversity

A safe learning environment will be provided for all students regardless of race, colour, nationality, ethnic origin, social origin, religious creed, religion, age, disability, disfigurement, sex (including pregnancy), sexual orientation, gender identity, gender expression, marital status, family status, source of income or political opinion.

You should not photograph or record myself, teaching assistants, or other students in the class without first obtaining permission. Accommodation will be made for students with special needs.

The sound should be turned off on phones and computers during class.

Additional Supports

Resources for additional support can be found at:

- www.mun.ca/currentstudents/student/
- https://munsu.ca/resource-centres/