

Bibliographic Fields**Document Identity**

(19) 【発行国】	(19) [Publication Office]
日本国特許庁（JP）	Japan Patent Office (JP)
(12) 【公報種別】	(12) [Kind of Document]
公開特許公報（A）	Unexamined Patent Publication (A)
(11) 【公開番号】	(11) [Publication Number of Unexamined Application]
特開平6-25357	Japan Unexamined Patent Publication Hei 6 - 25357
(43) 【公開日】	(43) [Publication Date of Unexamined Application]
平成6年(1994)2月1日	1994 (1994) February 1 day

Public Availability

(43) 【公開日】	(43) [Publication Date of Unexamined Application]
平成6年(1994)2月1日	1994 (1994) February 1 day

Technical

(54) 【発明の名称】	(54) [Title of Invention]
新規なプロピレン系共重合体およびその製造方法	NOVEL PROPYLENE-BASED COPOLYMER AND ITS MANUFACTURING METHOD
(51) 【国際特許分類第5版】	(51) [International Patent Classification, 5th Edition]
C08F210/06 MJH 9053-4J	C08F210/06 MJ H 905 3- 4J
4/658 MFG 9053-4J	4/658 MFG 905 3- 4J
10/06	10/06
【請求項の数】	[Number of Claims]
2	2
【全頁数】	[Number of Pages in Document]
6	6

Filing

【審査請求】	[Request for Examination]
未請求	Unrequested
(21) 【出願番号】	(21) [Application Number]
特願平3-275457	Japan Patent Application Hei 3 - 275457
(22) 【出願日】	(22) [Application Date]
平成3年(1991)10月23日	1991 (1991) October 23 days

Parties**Applicants**

(71) 【出願人】	(71) [Applicant]
------------	------------------

【識別番号】

0 0 0 0 0 3 · 1 · 2 6

【氏名又は名称】

三井東圧化学株式会社

【住所又は居所】

東京都千代田区霞が関三丁目2番5号

Inventors

(72) 【発明者】

【氏名】

井上 則英

【住所又は居所】

神奈川県横浜市栄区笠間町1190番地
三井東圧化学株式会社内

(72) 【発明者】

【氏名】

神野 政弘

【住所又は居所】

神奈川県横浜市栄区笠間町1190番地
三井東圧化学株式会社内

(72) 【発明者】

【氏名】

潮村 哲之助

【住所又は居所】

神奈川県横浜市栄区笠間町1190番地
三井東圧化学株式会社内**Abstract**

(57) 【要約】

【構成】

プロピレンおよび少なくとも一種の炭素数6~25の一つの末端二重結合および一つ内部二重結合を有するアルカジエンからなり、¹³C-NMRで測定したアイソタクチックペントッド分率が0.5以上であり、上記アルカジエンの含有率が0.01~30モル%であり、135 deg Cのテトラリン溶液で測定した極限粘度[η]が0.01~10dl/gであり、ゲル・パーミエイション・クロマトグラフィー(GPC)で測定した

[Identification Number]

3,126

[Name]

MITSUI TOATSU CHEMICALS INC. (DB 69-053-6982)

[Address]

Tokyo Prefecture Chiyoda-ku Kasumigaseki 3-Chome 2-5

(72) [Inventor]

[Name]

Inoue rule England

[Address]

Inside of Kanagawa Prefecture Yokohama City Sakae-ku
Kasama-cho 119 0 Mitsui Toatsu Chemicals Inc. (DB 69-053-6982)

(72) [Inventor]

[Name]

Kamino Masahiro

[Address]

Inside of Kanagawa Prefecture Yokohama City Sakae-ku
Kasama-cho 119 0 Mitsui Toatsu Chemicals Inc. (DB 69-053-6982)

(72) [Inventor]

[Name]

Tide village Tetsunosuke

[Address]

Inside of Kanagawa Prefecture Yokohama City Sakae-ku
Kasama-cho 119 0 Mitsui Toatsu Chemicals Inc. (DB 69-053-6982)

(57) [Abstract]

[Constitution]

isotactic pentad content which consisted of terminal double bond of one of carbon number 6~25 of propylene and at least one kind, and alkadiene which possesses one internal double bond measured with <sup>13C-nmr being 0.5 or greater , content of above-mentioned alkadiene with 0.01 - 30 mole % , intrinsic viscosity [η] which was measured with the tetralin solution of 135 deg C with 0.01 - 10 dl/g , novel propylene-based copolymer and its manufacturing method. where molecular weight degree of dispersal (Mw/Mn) which was

分子量分散度(Mw/Mn)が1.5~4.0であることを特徴とする新規プロピレン系共重合体およびその製造方法。

【効果】

このプロピレン系共重合体は容易に変性できるため種々の用途に利用できる。

Claims

【特許請求の範囲】

【請求項1】

プロピレンおよび少なくとも一種の炭素数6~25の一つの末端二重結合および一つ内部二重結合を有するアルカジエンからなり、¹³C-NMRで測定したアイソタクチックペントッド分率が0.5以上であり、上記アルカジエンの含有率が0.01~30モル%であり、135 deg Cのテトラリン溶液で測定した極限粘度[η]が0.01~10dl/gであり、ゲル・パーミエイション・クロマトグラフィー(GPC)で測定した分子量分散度(Mw/Mn)が1.5~4.0であることを特徴とする新規プロピレン系共重合体。

【請求項2】

(A)シクロ pentadienyl 基、インデニル基、フルオレニル基、またはそれらの誘導体を配位子とする周期律表4族の遷移金属化合物

(B)助触媒

からなる触媒の存在下プロピレンと少なくとも一種の炭素数6~25の一つの末端二重結合および一つ内部二重結合を有するアルカジエンとを共重合させることを特徴とする特許請求の範囲第一項記載の新規プロピレン系共重合体の製造方法。

Specification

【発明の詳細な説明】

【0001】

【産業上の利用分野】

本発明は新規プロピレン系共重合体およびその製造方法に関する。

詳しくはプロピレンと特定のアルカジエンとの共重合体およびその製造方法に関する。

【0002】

【従来技術】

ポリプロピレン、特にアイソタクチックポリプロピレンはその優れた性質のために多くの

measured with the gel * permeation * chromatography (GPC) is and 1.5 - 4.0 makes feature

[Effect(s)]

As for this propylene-based copolymer easily modified because it is possible, it can utilize in various application.

[Claim(s)]

[Claim 1]

isotactic pentad content which consisted of terminal double bond of one of carbon number 6~25 of propylene and at least one kind, and alkadiene which possesses one internal double bond measured with ¹³C-nmr being 0.5 or greater, content of above-mentioned alkadiene with 0.01 - 30 mole %, intrinsic viscosity [η] which was measured with the tetralin solution of 135 deg C with 0.01 - 10 dl/g, novel propylene-based copolymer. where molecular weight degree of dispersal (Mw/Mn) which was measured with gel * permeation * chromatography (GPC) is and 1.5 - 4.0 makes feature

[Claim 2]

transition metal compound of Periodic Table Group 4 which designates (A) cyclopentadienyl group, indenyl group, fluorenyl group, or those derivative as ligand

(B) cocatalyst

Under existing of catalyst which consists of terminal double bond of one of carbon number 6~25 of propylene and at least one kind and alkadiene which possesses one internal double bond are copolymerized manufacturing method. of novel propylene-based copolymer which is stated in Claims first which is made feature

[Description of the Invention]

[0001]

[Field of Industrial Application]

this invention regards novel propylene-based copolymer and its manufacturing method.

Details regard copolymer and its manufacturing method of propylene and specific alkadiene.

[0002]

[Prior Art]

polypropylene, especially isotactic polypropylene that is used for many application because of property which is

用途に使用されているが、接着性、染色性が低いという欠点を有している。

【0003】

一方、これらの接着性、染色性を改良する目的でポリマー鎖中に不飽和結合を導入する試みがなされている。

特開昭55-165907号公報、特開昭56-55409号公報、特開昭62-115008号公報には、チタンのハロゲン化物を主成分とするいわゆる立体規則性チーグラー・ナッタ触媒を用いてプロピレンと分岐1,4-ジエン共重合体やプロピレン、エチレン、分岐1,4-ジエン共重合体を製造する方法が記載されている。

また、特開昭59-155426号公報には、チタンのハロゲン化物を主成分とするいわゆる立体規則性チーグラー・ナッタ触媒を用いて得られる不飽和結合を有するプロピレン系のブロック共重合体が開示されている。

【0004】

一方、シクロペンタジエニル基、インデニル基、フルオレニル基、またはそれらの誘導体を配位子とする遷移金属化合物、いわゆるメタロセン化合物は、助触媒、例えばアルミニノキサンと共に使用して α -オレフィンを重合することによりポリ- α -オレフィンが製造できることが知られている。

【0005】

特開昭58-19309号公報には、

$(\text{シクロペンタジエニル})_2 \text{MeRHal}$

(ここで、Rはシクロペンタジエニル、C₁~C₆のアルキル、ハロゲンであり、Meは遷移金属であり、Halはハロゲンである)で表される遷移金属化合物とアルミニノキサンからなる触媒の存在下エチレンおよび/または α -オレフィンを重合または共重合させる方法が記載されている。

【0006】

特開昭60-35008号公報には、少なくとも2種のメタロセン化合物とアルミニノキサンからなる触媒を用いることにより幅広い分子量分布を有するポリ- α -

superior, but it has possessed deficiency that the adhesiveness、 dyeing behavior is low.

[0003]

On one hand, attempt which introduces unsaturated bond in polymer chain with objective which improves these adhesiveness、 dyeing behavior has done.

method which produces propylene and branch 1, 4- diene copolymer and propylene、 ethylene、 branch 1, 4- diene copolymer making use of so-called stereoregularity Ziegler-Natta catalyst which designates halide of titanium as main component is stated in Japan Unexamined Patent Publication Showa 55-165907 disclosure、 Japan Unexamined Patent Publication Showa 56-55409 disclosure、 Japan Unexamined Patent Publication Showa 6 2- 115008 disclosure .

In addition, block copolymer of propylenic which possesses unsaturated bond which is acquired making use of so-called stereoregularity Ziegler-Natta catalyst which designates halide of the titanium as main component is disclosed in Japan Unexamined Patent Publication Showa 59-155426 disclosure .

[0004]

On one hand, cyclopentadienyl group、 indenyl group、 fluorenlyl group、 or with cocatalyst、 for example aluminoxane using, poly ;al -olefin can produce transition metal compound、 so-called metallocene compound which designates those derivative as ligand, is informed by polymerizing the;al -olefin.

[0005]

In Japan Unexamined Patent Publication Showa 58-19309 disclosure ,

$(\text{cyclopentadienyl})_{<\text{sub}>2} \text{MeRHal}$

Under existing of catalyst which consists of transition metal compound and aluminoxane which are displayed with (Here, as for R with alkyl、 halogen of cyclopentadienyl、 C₁~C₆, as for Me with transition metal , as for Hal it is a halogen.) polymerization or copolymerization is done method which has been stated ethylene and/or ;al -olefin.

[0006]

poly ;al which possesses broad molecular weight distribution by using metallocene compound of at least 2 kinds and catalyst which consists of aluminoxane it can produce -olefin it is stated in Japan Unexamined Patent Publication Showa 60-

オレフィンが製造できることが記載されている。

【0007】

特開昭61-

130314号公報には、立体的に固定したジルコニウム・キレート化合物およびアルミニノキサンからなる触媒を用いてポリオレフィンを製造する方法が記載されている。

また、同公報には、遷移金属化合物としてエチレン-ビス-(4、5、6、7-テトラヒドロ-1-インデニル)ジルコニウムジクロリドを使用することにより、アイソタクチック度の高いポリオレフィンが製造する方法が記載されている。

特開昭64-

66124号公報には、珪素で架橋したシクロペンタジエニル化合物を配位子とする遷移金属化合物およびアルミニノキサンを有効成分とする立体規則性オレフィン重合体製造用触媒が開示されている。

【0008】

35008 disclosure .

[0007]

method which produces polyolefin making use of catalyst which consists of zircon * chelate compound and aluminoxane which are locked in steric isstated in Japan Unexamined Patent Publication Showa 6 1- 130 31 4 disclosure .

In addition, method which polyolefin where degree of isotactic ishigh by using ethylene-bis- (4, 5, 6 and 7 - tetrahydro -1- indenyl) zirconium dichloride as transition metal compound, produces is stated insame disclosure .

catalyst for stereoregularity olefin polymer manufacture which designates transition metal compound and aluminoxane whichdesignate cyclopentadienyl compound which crosslinking is done to Japan Unexamined Patent Publication Showa 6 4- 66124 disclosure , with thesilicon as ligand as active ingredient is disclosed.

[0008]

たシクロペンタジエニル環であり;各R_nは同一又は異なっていてもよく、1~20炭素原子を有するヒドロカルビル残基であり;各R^m

は同一又は異なっていてもよく、1~20炭素原子を有するヒドロカルビル残基であり;R"は触媒に立体剛性をもたらすCp環の間の構造的架橋であり;Meは元素の周期律表の4b, 5b, 又は6b族の金属であり;各Qは1~20炭素原子を有するヒドロカルビル残基又はハロゲンであり;0≤k≤3;0≤n≤4;及び1≤m≤4であり;及びR'_mは(CpR'_m)が(CpR_n)と立体的に相違しているように選択される、によって表記されるシンジオタクチックポリオレフィンを製造するために使用されるメタロセン触媒。

を一成分とする触媒を使用することによってシンジオタクティシティーの良好なポリ- α -オレフィンが製造できることが記載されている。

【0009】

また、同公報には上記メタロセン化合物を2種以上使用することにより幅広い分子量分布を有するシンジオタクチックポリ- α -オレフィンが製造できることが記載されている。

【0010】

特開平2-274703号公報には、下記式(化1)

【0011】

【化1】

【式中、M¹】

はチタニウム、ジルコニウム、バナジウム、ニオブまたはタンタルであり、R¹およびR²は互いに同じでも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のアリール基、炭素原子数6~20のアリールオキシ基、炭素原子数2~1

It is with cyclopentadienyl ring : as for each R_n alike or different to be good, with the hydrocarbyl residue to which: each R'_m alike or different is good with hydrocarbyl residue which possesses 1 - 20 carbon atom, possesses 1 - 20 carbon atom; as for R" with structural crosslinking between Cp ring which brings steric stiffness to catalyst: as for Me with 4 b,5b, of Periodic Table of element or metal of Group 6b; As for each Q with hydrocarbyl residue or halogen which possesses 1 - 20 carbon atom; 0 <= k 3:0 n 4: and 1 <=; and R'_m in order (CpR'_m) (CpR_n) with to be different to steric, is selected with m 4 , with the transcription metallocene catalyst, which is used in order to produce syndiotactic polyolefin which is done

Satisfactory poly ;al of syndiotacticity it can produce -olefin it is stated catalyst which is made one component is used by .

【0009】

In addition, syndiotactic poly ;al which possesses broad molecular weight distribution by 2 kinds or more using above-mentioned metallocene compound in same disclosure it can produce -olefin it is stated .

【0010】

In Japan Unexamined Patent Publication Hei 2- 274703 disclosure , below-mentioned Formula (Chemical Formula 1)

【0011】

[Chemical Formula 1]

{In Formula, as for M¹ with titanium, zirconium, vanadium, niobium or tantalum, as for the R¹ and R² being mutually same, differing, it is possible to be, alkyl aryl group of aryl alkyl group, number of carbon atoms 7~40 of alkenyl group, number of carbon atoms 7~40 of aryloxy group, number of carbon atoms 2~10 of aryl group, number of carbon atoms 6~20 of alkoxy group, number of carbon atoms 6~20 of alkyl group, number of carbon atoms

0のアルケニル基、炭素原子数7~40のアリールアルキル基、炭素原子数7~40のアルキルアリール基または炭素原子数8~40のアリールアルケニル基を意味し、R³ およびR⁴は異なっており、中心原子M¹と一緒にサンドイッチ構造を形成し得る単核-または多核炭化水素基を意味し、R⁵は]

[0012]

【化2】

=BR⁶, =AlR⁶, -Ge-, -Sn-, -O-, -S-, =SO, =SO₂, =NR⁶, =CO, =PR⁶ または=P(O)R⁶ を意味し、その際R⁶、R⁷ およびR⁸ は互いに同じでも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~10のフルオロアルキル基、炭素原子数6~10のフルオロアリール基、炭素原子数6~20のアリール基、炭素原子数1~10のアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数7~40のアリールアルキル基、炭素原子数8~40のアリールアルケニル基または炭素原子数7~40のアルキルアリール基を意味するかまたは、R⁶ およびR⁷ またはR⁶ およびR⁸ はそれぞれそれらの結合する原子と一緒に成って環を形成し、そしてM² は珪素、ゲルマニウムまたは錫である。

]で表される遷移金属成分およびアルミニノキサンからなる触媒の存在下にオレフィンを重合することにより高分子量のシンジオタクチックポリオレフィンを製造する方法が記載されている。

[0013]

また、特開平2-

274704号公報には、同様のハフニウム化合物を用いて高分子量のシンジオタクチックポリオレフィンを製造する方法が記載されている。

一方、上記のようないわゆるカミンスキ型触媒の活性種が [Cp'₂MR]⁺ (ここでCp'=シクロペントジエニル誘導体、M=Ti,Zr,Hf, R=アルキル)で表されるような遷移金属カチオンであることが示唆されて以来、アルミニ

1~10 of hydrogen atom, halogen atom, number of carbon atoms 1~10 or aryl alkenyl group of number of carbon atoms 8~40 means, R³ and R⁴ differ, To mean single nucleus- or multinuclei hydrocarbon group which can form sandwich structure in center atom M¹ and simultaneous, as for R⁵ }

[0012]

[Chemical Formula 2]

=BR⁶, =AlR⁶, -Ge-, -Sn-, -O-, -S-, =SO, =SO₂, =NR⁶, =CO, =PR⁶ or =P(O)R⁶ is meant, at that occasion R⁶, R⁷ and R⁸ may be being mutually same, differing, aryl alkenyl group of the aryl alkyl group, number of carbon atoms 8~40 of alkenyl group, number of carbon atoms 7~40 of alkoxy group, number of carbon atoms 2~10 of aryl group, number of carbon atoms 1~10 of fluoroalkyl group, number of carbon atoms 6~20 of fluoroalkyl group, number of carbon atoms 6~10 of alkyl group, number of carbon atoms 1~10 of hydrogen atom, halogen atom, number of carbon atoms 1~10 or alkyl aryl group of number of carbon atoms 7~40 mean or or, R⁶ and R⁷ or R⁶ and R⁸ atom which those connect respectively and becoming simultaneous, form ring, and M² is silicon and germanium or tin.

method which produces syndiotactic polyolefin of high molecular weight) with by polymerizing olefin under existing of catalyst which consists of transition metal component and aluminoxane which are displayed is stated.

[0013]

In addition, method which produces syndiotactic polyolefin of high molecular weight making use of similar hafnium compound is stated in Japan Unexamined Patent Publication Hei 2- 274704 disclosure .

On one hand, as description above active species of so-called Kaminsky catalyst {Cp'₂MR } ⁺, is kind of transition metal cation which is displayed with (Here Cp'=cyclopentadienyl derivative, M=Ti,Zr,Hf,R=alkyl), since being suggested , also catalyst system which does not

キサン類を助触媒としない触媒系もいくつか報告されている。

【0014】

Taube らは、J. Organometall. Chem., 347, C9 (1988) に $[Cp_2\ TiMe(THF)]^+$ $[BPh_4^-]$ ($Me=$ メチル基、 $Ph=$ フェニル基)で表される化合物を用いてエチレン重合に成功している。

【0015】

Jordan らは、J. Am. Chem. Soc., 109, 4111 (1987) で、 $[Cp_2\ ZrR(L)]^+$ ($R=$ メチル基、ベンジル基、 $L=$ ルイス塩基)のようなジルコニウム錯体がエチレンを重合することを示している。

【0016】

特表平1-501950号公報、特表平1-502036号公報にはシクロペンタジエニル金属化合物およびシクロペンタジエニル金属カチオンを安定化することのできるイオン性化合物とからなる触媒を用いてオレフィンを重合する方法が記載されている。

Zambelli らは、Macromolecules, 22, 2186 (1989) に、シクロペンタジエンの誘導体を配位子とするジルコニウム化合物と、トリメチルアルミニウムとフルオロジメチルアルミニウムとを組み合わせた触媒により、アイソタクチックポリプロピレンが製造できることを報告している。

特開平3-179005号公報には、a)メタロセン化合物、b)アルミニウムアルキル、およびc)ルイス酸からなるオレフィン重合用触媒が開示されている。

【0017】

【発明が解決しようとする課題】

上記のようなチーグラー・ナッタ型触媒を用いて不飽和結合を有するプロピレン系共重合を製造する方法は、共重合効率が悪く、生成ポリマー中に不飽和結合を導入するためには大量のジェンコモノマーを重合系内に導入する必要がある。

そのうえ、得られる共重合体は分子量分布が広く、透明性、力学物性に劣っていた。

【0018】

designate aluminoxane as cocatalyst is reported several.

【0014】

Taube and others has succeeded in ethylene polymerization $\{Cp_2\ TiMe(THF)\}^+ \{BPh_4\}^-$ making use of compound which is displayed with ($Me=methyl$ group, $Ph=phenyl$ group) to J. Organometall. Chem., 347, C9 (1988).

【0015】

Journal of the American Chemical Society (0002 - 7863, JACSAT), with 109 and 4111 (1987), $\{Cp_2\ ZrR(L)\}^+$ zirconium complex like ($R=methyl$ group, benzyl group, $L=Louis$ base) polymerizes ethylene has shown Jordan and others.

【0016】

In Japanese Publication of International Patent Application 1-501950 disclosure, Japanese Publication of International Patent Application 1-502036 disclosure cyclopentadienyl metal compound and cyclopentadienyl metal cation method which polymerizes the olefin making use of catalyst which consists of ionic compound which can bestabilized is stated.

Macromolecules (0024 - 9297, MAMOBX), isotactic polypropylene can produce Zambelli and others, hasreported to 22 and 2186 (1989), with catalyst which combines zirconium compound and trimethyl aluminum and fluoro dimethyl aluminum which designate derivative of cyclopentadien as ligand.

Catalyst for olefin polymerization which consists of a) metallocene compound, b) aluminum alkyl, and c) Lewis acid is disclosed in Japan Unexamined Patent Publication Hei 3- 179005 disclosure .

【0017】

【Problems to be Solved by the Invention】

In order as for method which produces propylenic copolymerizationwhich possesses unsaturated bond as description above making use of the Ziegler-Natta catalyst, also polymerization efficiency is bad, to introduce unsaturated bond in produced polymer it is necessary to introduce diene comonomer of large scale into polymerization system.

On that, copolymer which is acquired molecular weight distribution was wide, was inferiorto transparency, dynamic property.

【0018】

【課題を解決するための手段】

本発明者らは上記課題を解決し、優れた物性を有するアイソタクチックプロピレン・ジエン共重合体を効率よく製造する方法について鋭意検討した結果、特定の触媒の存在下プロピレンとジエン化合物とを共重合させることにより、前述の目的が達成されることを見出し本発明を完成するに至った。

【0019】

すなわち本発明は、プロピレンおよび少なくとも一種の炭素数6~25の一つの末端二重結合および一つ内部二重結合を有するアルカジエンからなり、 ^{13}C -NMRで測定したアイソタクチックペントッド分率が0.5以上であり、上記アルカジエンの含有率が0.01~30モル%であり、135 deg Cのテトラリン溶液で測定した極限粘度 [η] が0.01~10dL/gであり、ゲル・パーミエイション・クロマトグラフィー(GPC)で測定した分子量分散度(Mw/Mn)が1.5~4.0であることを特徴とする新規プロピレン系共重合体を提供し、さらに本発明は、

(A)シクロペンタジエニル基、インデニル基、フルオレニル基、またはそれらの誘導体を配位子とする周期律表4族の遷移金属化合物

(B)助触媒

からなる触媒の存在下プロピレンと少なくとも一種の炭素数6~25の一つの末端二重結合および一つ内部二重結合を有するアルカジエンとを共重合させることを特徴とする前記新規プロピレン系共重合体の製造方法である。

【0020】

本発明の新規プロピレン系共重合体は、プロピレンと0.01~30モル%、好ましくは0.1~20モル%含有率の少なくとも一種の炭素数6~25の一つの末端二重結合および一つ内部二重結合を有するアルカジエンからなる。

実質的にアイソタクチック構造を有するプロピレン系共重合体である。

【0021】

また、本発明の新規プロピレン系共重合体は、 ^{13}C -NMRで測定したメチル基のアイソタクチックペントッド連鎖分率が0.5以上、好ましくは0.6以上であり、135 deg Cのテトラリン溶液で測定した極限粘度 [η]

[Means to Solve the Problems]

these inventors solves above-mentioned problem, aforementioned objective is achieved result of diligent investigation, by under existing of specific catalyst copolymerizing propylene and diene compound concerning method which produces isotactic propylene-diene copolymer which possesses property which is superiorefficiently, to discover, completing this invention it reached point of.

[0019]

Namely isotactic pentad content where this invention consisted of terminal double bond of one of carbon number 6~25 of propylene and at least one kind, and alkadiene which possesses one internal double bond measured with ^{13}C -nmr being 0.5 or greater , content of theabove-mentioned alkadiene with 0.01 - 30 mole % , intrinsic viscosity [;et] which wasmeasured with tetralin solution of 135 deg C with 0.01 - 10 dL/g , To offer novel propylene-based copolymer where molecular weight degree of dispersal (Mw/Mn) which was measured with the gel * permeation * chromatography (GPC) is and 1.5 - 4.0 makes feature, furthermore as for this invention,

transition metal compound of Periodic Table Group 4 which designates (A) cyclopentadienyl group、 indenyl group、 fluorenyl group、 or those derivative as ligand

(B) cocatalyst

Under existing of catalyst which consists of terminal double bond of one of carbon number 6~25 of propylene and at least one kind and alkadiene which possesses one internal double bond are copolymerized are manufacturing method of aforementioned novel propylene-based copolymer which is made feature.

[0020]

novel propylene-based copolymer of this invention consists of terminal double bond of one of carbon number 6~25 of at least one kind of propylene and 0.01 - 30 mole %, preferably 0.1~20 mole % content and alkadiene whichpossesses one internal double bond.

It is a propylene-based copolymer which substantially possesses isotactic structure.

[0021]

In addition, as for novel propylene-based copolymer of this invention, isotactic pentad linkage content of methyl group which was measured with ^{13}C -nmr being 0.5 or greater, preferably 0.6 or greater , as for intrinsic viscosity [;et]which was measured with tetralin solution of 135 deg C molecular weight degree of dispersal (Mw/Mn) which

] は0.01~10dl/g、好ましくは0.1~10dl/gの値を持ち、ゲル・ペーミエイション・クロマトグラフィー(GPC)で測定した分子量分散度(M w/Mn)が1.5~4.0、好ましくは2.0~3.5の値を持つ。

【0022】

本発明の新規プロピレン系共重合体は、前記示したような(A)シクロ pentadienyl基、インデニル基、フルオレニル基、またはそれらの誘導体を配位子とする周期律表4族の遷移金属化合物、および(B)助触媒からなる触媒の存在下プロピレンとアルカジエンとを共重合させることにより製造できる。

【0023】

本発明において(A)成分として使用される遷移金属化合物は、実質的にアイソタクチック構造のポリプロピレンを与えることのできるメタロセン化合物である。

そのようなメタロセン化合物は、例えば、特開昭61-130314号公報、特開平1-197490号公報、特開平1-203409号公報、特開平1-275608号公報、特開平1-301704号公報、特開平2-131488号公報、特開平3-12406号公報、特開平3-12407号公報などに記載されているような公知の化合物を挙げることができる。

より具体的には、例えば、エチレンビス(1-インデニル)ジルコニウムジクロリド、エチレンビス(4,5,6,7-テトラヒドロ-1-インデニル)ジルコニウムジクロリド、ジメチルシリレンビス(1-インデニル)ジルコニウムジクロリド、ジメチルシリレンビス(メチルシクロ pentadienyl)ジルコニウムジクロリド、ジメチルシクロ pentadienyl等のジルコニウム化合物の他に同様のハフニウム化合物を挙げることができる。

【0024】

遷移金属化合物とともに使用される助触媒としては、先に述べたようなメタロセン化合物とともに使用されている公知の助触媒を本発明の共重合の際にも使用することができる。

was measured with gel * permeation * chromatography (GPC) with value of 0.01 - 10 dl/g, preferably 0.1 ~ 10 dl/g, 1.5 - 4.0, has value of preferably 2.0 ~ 3.5.

[0022]

It can produce novel propylene-based copolymer of this invention, description above transition metal compound, of Periodic Table Group 4 which designates (A) cyclopentadienyl group, indenyl group, fluorenyl group, or those kind of derivative which is shown as ligand and by under existing of catalyst which consists of (B) cocatalyst copolymerizing propylene and alkadiene .

[0023]

Regarding to this invention, as for transition metal compound which is used as (A) component, it is a metallocene compound which substantially can give polypropylene of the isotactic structure.

That kind of metallocene compound, can list compound of kind of public knowledge which is stated in for example Japan Unexamined Patent Publication Showa 61- 130 31 4 disclosure, Japan Unexamined Patent Publication Hei 1- 197490 disclosure, Japan Unexamined Patent Publication Hei 1- 203409 disclosure, Japan Unexamined Patent Publication Hei 1- 275608 disclosure, Japan Unexamined Patent Publication Hei 1- 301704 disclosure, Japan Unexamined Patent Publication Hei 2- 1 31 488 disclosure, Japan Unexamined Patent Publication Hei 3- 12406 disclosure, Japan Unexamined Patent Publication Hei 3- 12407 disclosure etc.

More concretely, similar hafnium compound to other than for example ethylene bis (1-indenyl) zirconium dichloride, ethylene bis (4, 5, 6 and 7-tetrahydro-1-indenyl) zirconium dichloride, dimethyl silylene bis (1-indenyl) zirconium dichloride, dimethyl silylene bis (methyl cyclopentadienyl) zirconium dichloride, dimethyl silylene bis (dimethyl cyclopentadienyl) zirconium dichloride or other zirconium compound can be listed.

[0024]

With kind of metallocene compound which is expressed before with transition metal compound as the cocatalyst which is used, cocatalyst of public knowledge which is used can be used even case of copolymerization of this invention.

そのような助触媒としては例えば、公知のアルミニノキサンの他に、特表平1-501950号公報、特表平1-502036号公報に記載されているようなイオン性の化合物、特開平3-179005号公報に記載されているようなアルミニウムアルキルおよびルイス酸からなる助触媒を挙げることができる。

アルミニノキサン類としては一般式

【0025】

【化3】

および/または

(ここでRは炭素数1~3の炭化水素基、nは2以上の整数を示す。)で表される化合物であり、特にRがメチル基であるメチルアルミニノキサンでnが5以上、好ましくは10以上のものが利用される。

上記アルミニノキサン類には若干のアルキルアルミニウム化合物が混入していても差し支えない。

【0026】

本発明において上記遷移金属化合物に対するアルミニノキサンの使用割合としては10~10000モル倍、通常50~10000モル倍である。

本発明において共重合の際プロピレンとともに供給されるアルカジエンは炭素数6~25の一つの末端二重結合および一つ内部二重結合を有するアルカジエンであり、その中でも分岐状アルカジエンがプロピレンとの共重合性が良好で好適に利用される。

そのような好適なアルカジエンの具体例としては、例えば4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、2-メチル-2,7-

, cocatalyst which consists of aluminum alkyl and kind of Lewis acid which are stated in kind of ionic compound, Japan Unexamined Patent Publication Hei 3- 179005 disclosure which is stated in Japanese Publication of International Patent Application 1- 501950 disclosure, Japanese Publication of International Patent Application 1- 502036 disclosure can be listed to other than aluminoxane of for example public knowledge, as that kind of cocatalyst.

As aluminoxane General Formula

【0025】

【Chemical Formula 3】

With compound which is displayed with (As for R as for hydrocarbon group, n of carbon number 1~3 integer of 2 or more is shown here.), n those of 5 or greater, preferably 10 or more is utilized with methyl aluminoxane where especially R is the methyl group.

Somewhat alkyl aluminum compound having mixed to above-mentioned aluminoxane, it does not become inconvenient.

【0026】

Regarding to this invention, they are 10 - 10000 molar multiple, usually 50 - 10000 molar multiple as portion used of aluminoxane for above-mentioned transition metal compound.

Regarding to this invention, case of copolymerization with propylene, alkadiene which is supplied is utilized with terminal double bond of one of carbon number 6~25 and alkadiene which possesses one internal double bond, even among those branched alkadiene copolymerizability of propylene being satisfactory, ideally.

As embodiment of that kind of preferred alkadiene, you can list for example 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 2-methyl-2,7-octadiene etc.

オクタジエンなどが挙げられる。

これらのアルカジエンの使用量としては目的とする共重合体中のアルカジエン含有率によって異なるが、通常、プロピレンの1/10000~1/10である。

[0027]

本発明の方法で行われる重合方法および重合条件については特に制限はなく α -オレフィンの重合で行われる公知の方法が用いられ、不活性炭化水素媒体を用いる溶媒重合法、または実質的に不活性炭化水素媒体の存在しない塊状重合法、気相重合法も利用でき、重合温度としては-100~200 deg C、重合圧力としては常圧~100kg/cm²で行うのが一般的である。

好ましくは-50~100 deg C、常圧~50kg/cm²である。

[0028]

本発明における触媒成分の処理あるいは重合に際し使用される炭化水素媒体としては例えばブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサン、シクロオクタンなどの飽和炭化水素の他に、ベンゼン、トルエン、キシレンなどの芳香族炭化水素も使用することができる。

[0029]

本発明においては、プロピレンの単独重合のみならず、実質的にシンジオタクチック構造を有する限り、例えばプロピレンとエチレン、プロピレンと1-ブテンなどの炭素数2~25程度のエチレンまたは α -オレフィンとの共重合体を製造する際にも利用できる。

[0030]

本発明による共重合体は分子鎖中に不飽和結合を有しているので、これに例えば特開昭57-57726、特開昭57-59934号公報に開示されているようなポリマー反応による極性基を有するポリマーの合成、EPDMで行われているような架橋反応に利用することができ、特に高分子量の共重合体が容易に得られるので優れた物性のポリマーが得られ、工業的に価値が高い。

[0031]

It differs in alkadiene content in copolymer which is made objective as the amount used of these alkadiene, but usually, propylene 1/10000 - 1/10 is.

[0027]

It can use known method where concerning polymerization method and polymerization condition which are done with method of this invention solvent polymerization method, where there is no especially restriction and the: al -olefin is done with the polymerization, uses inert hydrocarbon solvent or be able to utilize also massive polymerization method, vapor phase polymerization method where inert hydrocarbon solvent does not exist substantially, as polymerization temperature it is general to do with ambient pressure~100 kg/cm², - as 100 - 200 deg C, polymerization pressure.

It is a preferably-50~100 deg C, ambient pressure~50 kg/cm².

[0028]

You can use also benzene, toluene, xylene or other aromatic hydrocarbon for other than for example butane, pentane, hexane, heptane, octane, nonane, decane, cyclopentane, cyclohexane or other saturated hydrocarbon, as hydrocarbon media which is used at time of treatment or polymerization of catalyst component in this invention.

[0029]

Regarding to this invention, if homopolymerization of propylene furthermore, it possesses syndiotactic structure substantially, when for example ethylene and propylene, propylene and 1 -butene or other carbon number 2~25 extent the ethylene or the: al -olefin producing copolymer even, it can utilize.

[0030]

Because with this invention copolymer has had unsaturated bond in molecular chain, it utilizes in kind of crosslinking reaction which is done with synthesis and the EPDM of polymer which possesses polar group with polymer kind of reaction which in this is disclosed in for example Japan Unexamined Patent Publication Showa 57-57726, Japan Unexamined Patent Publication Showa 57-59934 disclosure it to be possible, because copolymer of especially high molecular weight is acquired easily, polymer of property which is superior is acquired, value is high in industrially.

[0031]

【実施例】

以下に本発明を実施例によって具体的に説明する。

実施例1

充分窒素置換した1.5リットルのオートクレーブに特開昭61-130314号公報記載の方法により合成したエチレンビス(1-インデニル)ジルコニウムジクロリド3.0mgおよび東ソー・アクゾ社製メチルアルミニキサン(重合度17.7)0.8gを装入し、さらに液体プロピレン0.75lおよび特開昭60-89436号公報記載の方法により合成したメチル-1,4-ヘキサジエン21.9g加えた。

40 deg Cで1時間重合を行った後、得られたポリマーをヘプタンで洗浄、乾燥することにより77.5gのプロピレン-ジエンコポリマーを得た。

このコポリマーの135 deg Cのテトラリン溶液で測定した極限粘度(以下 $[\eta]$ と略記する)は0.18dl/g、ゲル・パーセンエイション・クロマトグラフィー(GPC)で測定した分子量分散度(Mw/Mn)は2.7であった。

¹³C-

NMRで求めたアイソタクチックペンタッド分率は0.811、¹H-NMR測定で、ベンゼン-d₆を溶媒としテトラメチルシランを基準として5.0~5.2ppmに観測されるピーク強度より求めたジエン含有率は1.1モル%であった。

【0032】

実施例2

メチル-1,4-ヘキサジエンの代わりに2-メチル-2,7-オクタジエン(シェル化学社製)22.4gを用いた以外は実施例1と同様にして重合を行った。

得られたコポリマーは61.4g、このコポリマーの $[\eta]$ は0.20dl/g、Mw/Mnは2.6、アイソタクチックペンタッド分率は0.820、ジエン含有率は0.4モル%であった。

【0033】

実施例3

エチレンビス(1-インデニル)ジルコニウムジクロリドの代わりにジメチルシリレンビス(ジメチルシクロペンタジエニル)

[Working Example(s)]

Below this invention is explained concretely with Working Example.

Working Example 1

ethylene bis (1-indenyl) zirconium dichloride 3.0 mg and Tosoh Akzo Corp. (DB 69-076-7637) supplied methyl aluminoxane which are synthesized with method which in autoclave of 1.5 liter which satisfactory nitrogen substitution are done stated in Japan Unexamined Patent Publication Showa 61-130314 disclosure (degree of polymerization 17.7) it loaded 0.8 g, methyl-1,4-hexadiene 21.9g which is synthesized furthermore with method which is stated in liquid propylene 0.75l and Japan Unexamined Patent Publication Showa 60-89436 disclosure it added.

After doing 1 hour polymerization with 40 deg C, with heptane washing and propylene-diene copolymer of 77.5 g was acquired by dries polymer which is acquired.

As for intrinsic viscosity (Below [;et] with you briefly describe.) which was measured with tetralin solution of 135 deg C of this copolymer molecular weight degree of dispersal (Mw/Mn) which was measured with 0.18 dl/g, gel * permeation * chromatography (GPC) was 2.7.

Is observed to 5.0 - 5.2 ppm diene content which was sought was 1.1 mole % from peak intensity where isotactic pentad content which was sought with ¹³C-nmr 0.811 and ¹H-nmr with measurement, designates benzene-d₆ as solvent and with tetramethylsilane as standard.

【0032】

Working Example 2

Other than 2-methyl-2,7-octadiene (Shell Chemical Co. make) using 22.4 g in place of methyl-1,4-hexadiene, you polymerized with as similar to Working Example 1.

As for copolymer which it acquires as for [;et] of this copolymer of 61.4 g, as for 0.20 dl/g, Mw/Mn 2.6, as for isotactic pentad content 0.820, as for diene content they were 0.4 mole %.

【0033】

Working Example 3

Other than using dimethyl silylene bis (dimethyl cyclopentadienyl) zirconium dichloride 2.0 mg in place of ethylene bis (1-indenyl) zirconium dichloride, you polymerized with as similar to Working Example 1.

ジルコニウムジクロリド2.0mgを使用した以外は実施例1と同様にして重合を行った。

得られたポリマーは94.6g、このポリマーの $[\eta]$ は0.84dl/g、Mw/Mnは2.8、アイソタクチックペントッド分率は0.937であった。

ジエン含有率は0.9モル%であった。

【0034】

実施例4

メチル-1,4-ヘキサジエンの代わりに2-メチル-2,7-オクタジエン(シェル化学社製)22.4gを用いた以外は実施例3と同様にして重合を行った。

得られたコポリマーは107.2g、このコポリマーの $[\eta]$ は0.77dl/g、Mw/Mnは2.7、アイソタクチックペントッド分率は0.905、ジエン含有率は1.7モル%であった。

【0035】

実施例5

用いるメチル-1,4-ヘキサジエンの量を7.3gとした以外は実施例3と同様にして重合を行った。

得られたポリマーは89.2g、このポリマーの $[\eta]$ は0.97dl/g、Mw/Mnは2.4、アイソタクチックペントッド分率は0.956、ジエン含有率は0.3モル%であった。

【0036】

実施例6

用いる2-メチル-2,7-オクタジエンの量を7.5gとした以外は実施例4と同様にして重合を行った。

得られたポリマーは114.2g、このポリマーの $[\eta]$ は0.96dl/g、Mw/Mnは2.3、アイソタクチックペントッド分率は0.932、ジエン含有率は0.9モル%であった。

【0037】

比較例1

固体触媒成分の調製

塩化マグネシウム20g、フタル酸ジイソブチル6ml、四塩化チタン7mlを振動ミルを用いて40時間共粉砕した後、沸騰トルエンにて処理することにより固体触媒成分を得た。

【0038】

As for polymer which it acquires as for [:et] of this polymer of 94.6 g, as for 0.84 dl/g, Mw/Mn 2.8, as for isotactic pentad content 0.937 was.

diene content was 0.9 mole %.

[0034]

Working Example 4

Other than 2 -methyl-2,7-octadiene (Shell Chemical Co. make) using 22.4 g in place of methyl-1, 4- hexadiene, youpolymerized with as similar to Working Example 3.

As for copolymer which it acquires as for [:et] of this copolymer of 107.2 g, as for 0.77 dl/g, Mw/Mn 2.7, as for isotactic pentad content 0.905, as for the diene content they were 1.7 mole %.

[0035]

Working Example 5

Other than designating quantity of methyl-1, 4- hexadiene which it uses as 7.3 g you polymerized with as similar to Working Example 3.

As for polymer which it acquires as for [:et] of this polymer of 89.2 g, as for 0.97 dl/g, Mw/Mn 2.4, as for isotactic pentad content 0.956, as for diene content they were 0.3 mole %.

[0036]

Working Example 6

Other than 2 -methyl-2,7-octadiene where it uses designate quantity as 7.5 g you polymerized with as similar to Working Example 4.

As for polymer which it acquires as for [:et] of this polymer of 114.2 g, as for 0.96 dl/g, Mw/Mn 2.3, as for isotactic pentad content 0.932, as for the diene content they were 0.9 mole %.

[0037]

Comparative Example 1

Manufacturing solid catalyst component

magnesium chloride 20g, diisobutyl phthalate 6 ml, titanium tetrachloride 7 ml making use of vibrating mill solid catalyst component was acquired 40 hour cogrinding after doing, by treating with boiling toluene .

[0038]

重合

上記調製した固体触媒成分10mg、ジフェニルジメトキシシラン0.03ml、トリエチルアルミニウム0.1mlを触媒として使用した以外は実施例1と同様にしてプロピレンとメチル-1,4-ヘキサジエンとの共重合を試みた。

しかしながら、生成ポリマーを¹H-NMR測定した結果、不飽和結合に帰属されるピークは観測されなかった。

【0039】

比較例2

触媒として、丸紅ソルベイ社製三塩化チタン50mgおよびジエチルアルミニウムクロリド27mgを使用した以外実施例1と同様にしてプロピレンとメチル-1,4-ヘキサジエンとの共重合を試みた。

しかしながら、生成ポリマーを¹H-NMR測定した結果、不飽和結合に帰属されるピークは観測されなかった。

【0040】

【発明の効果】

本発明の方法を実施することにより、効率良くポリマー中に不飽和結合を有するポリプロピレン系共重合体を得ることができる。

また、本発明の共重合体は分子鎖中に不飽和結合を有するため、ポリマー中の不飽和結合を変性する公知の方法によって性質の改良されたポリマーを得ることができる。

Polymerization

Description above other than using solid catalyst component 10 mg, biphenyl dimethoxy silane 0.03 ml, triethyl aluminum 0.1 ml which is manufactured as catalyst, copolymerization with propylene and the methyl-1, 4-hexadiene was tried with as similar to Working Example 1.

But, result ¹H-nmr of measuring produced polymer did not observe the peak which assignment is done in unsaturated bond.

【0039】

Comparative Example 2

Copolymerization with propylene and methyl-1, 4-hexadiene was tried as catalyst, other than using Marubeni Solvay supplied titanium trichloride 50 mg and diethyl aluminum chloride 27 mg, to similar to Working Example 1.

But, result ¹H-nmr of measuring produced polymer did not observe the peak which assignment is done in unsaturated bond.

【0040】

[Effects of the Invention]

polypropylene type copolymer which possesses unsaturated bond efficiently in polymer by executing method of this invention, can be acquired.

In addition, copolymer of this invention in order to possess unsaturated bond in molecular chain, can acquire polymer where property is improved with the known method which unsaturated bond in polymer modified is done.

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平6-25357

(43) 公開日 平成6年(1994)2月1日

(51) Int.Cl. ⁵ C 08 F 210/06 4/658 10/06	識別記号 M J H M F G	序内整理番号 9053-4 J 9053-4 J	F 1	技術表示箇所
--	------------------------	--------------------------------	-----	--------

審査請求 未請求 請求項の数2(全6頁)

(21) 出願番号 特願平3-275457	(71) 出願人 三井東庄化学株式会社 東京都千代田区霞が関二丁目2番5号
(22) 出願日 平成3年(1991)10月23日	(72) 発明者 井上 則英 神奈川県横浜市栄区笠間町1190番地 三井 東庄化学株式会社内
	(72) 発明者 神野 政弘 神奈川県横浜市栄区笠間町1190番地 三井 東庄化学株式会社内
	(72) 発明者 潮村 哲之助 神奈川県横浜市栄区笠間町1190番地 三井 東庄化学株式会社内

(54) 【発明の名称】 新規なプロピレン系共重合体およびその製造方法

(57) 【要約】

【構成】 プロピレンおよび少なくとも一種の炭素数6～25の一つの末端二重結合および一つ内部二重結合を有するアルカジエンからなり、¹³C-NMRで測定したアソタクチックペンタッド分率が0.5以上であり、上記アルカジエンの含有率が0.01～30モル%であり、135℃のテトラリン溶液で測定した極限粘度[η]が0.01～10dl/gであり、ゲル・パーミエイション・クロマトグラフィー(GPC)で測定した分子量分散度(Mw/Mn)が1.5～4.0であることを特徴とする新規プロピレン系共重合体およびその製造方法。

【効果】 このプロピレン系共重合体は容易に変性できるため種々の用途に利用できる。

【特許請求の範囲】

【請求項1】 プロピレンおよび少なくとも一種の炭素数6～25の一つの末端二重結合および一つ内部二重結合を有するアルカジエンからなり、 $^{13}\text{C-NMR}$ で測定したアイソタクチックペントッド分率が0.5以上であり、上記アルカジエンの含有率が0.01～30モル%であり、135°Cのテトラリン溶液で測定した極限粘度[η]が0.01～10dl/gであり、ゲル・パーミエイション・クロマトグラフィー(GPC)で測定した分子量分散度(Mw/Mn)が1.5～4.0であることを特徴とする新規プロピレン系共重合体。

【請求項2】 (A) シクロペンタジエニル基、インデニル基、フルオレニル基、またはそれらの誘導体を配位子とする周期律表4族の遷移金属化合物

(B) 助触媒

からなる触媒の存在下プロピレンと少なくとも一種の炭素数6～25の一つの末端二重結合および一つ内部二重結合を有するアルカジエンとを共重合させることを特徴とする特許請求の範囲第一項記載の新規プロピレン系共重合体の製造方法。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は新規プロピレン系共重合体およびその製造方法に関する。詳しくはプロピレンと特定のアルカジエンとの共重合体およびその製造方法に関する。

【0002】

【従来技術】 ポリプロピレン、特にアイソタクチックポリプロピレンはその優れた性質のために多くの用途に使用されているが、接着性、染色性が低いという欠点をしている。

【0003】 一方、これらの接着性、染色性を改良する目的でポリマー鎖中に不飽和結合を導入する試みがなされている。特開昭55-165907号公報、特開昭56-55409号公報、特開昭62-115008号公報には、チタンのハロゲン化物を主成分とするいわゆる立体規則性チーグラー・ナッタ触媒を用いてプロピレンと分岐1,4-ジエン共重合体やプロピレン、エチレン、分岐1,4-ジエン共重合体を製造する方法が記載されている。また、特開昭59-155426号公報には、チタンのハロゲン化物を主成分とするいわゆる立体規則性チーグラー・ナッタ触媒を用いて得られる不飽和結合を有するプロピレン系のブロック共重合体が開示されている。

【0004】 一方、シクロペンタジエニル基、インデニル基、フルオレニル基、またはそれらの誘導体を配位子とする遷移金属化合物、いわゆるメタロセン化合物は、助触媒、例えばアルミニウムと共に使用してα-オレフィンを重合することによりポリ-α-オレフィンが製造できることが知られている。

【0005】 特開昭58-19309号公報には、(シクロペンタジエニル)： MeRHa

(ここで、Rはシクロペンタジエニル、C₁～C₆のアルキル、ハロゲンであり、Meは遷移金属であり、Haはハロゲンである)で表される遷移金属化合物とアルミニウムからなる触媒の存在下エチレンおよび/またはα-オレフィンを重合または共重合させる方法が記載されている。

【0006】 特開昭60-35008号公報には、少なくとも2種のメタロセン化合物とアルミニウムからなる触媒を用いることにより幅広い分子量分布を有するポリ-α-オレフィンが製造できることが記載されている。

【0007】 特開昭61-130314号公報には、立体的に固定したジルコン・キレート化合物およびアルミニウムからなる触媒を用いてポリオレフィンを製造する方法が記載されている。また、同公報には、遷移金属化合物としてエチレン-ビス-(4,5,6,7-テトラヒドロ-1-インデニル)ジルコニウムジクロリドを使用することにより、アイソタクチック度の高いポリオレフィンが製造する方法が記載されている。特開昭64-66124号公報には、珪素で架橋したシクロペンタジエニル化合物を配位子とする遷移金属化合物およびアルミニウムを有効成分とする立体規則性オレフィン重合体製造用触媒が開示されている。

【0008】 特開平2-41303号公報には、下記式

$R''(\text{Cp R}_1)(\text{CpR}'_1)\text{MeQ}_1$

(但し、各Cpはシクロペンタジエニル又は置換されたシクロペンタジエニル環であり；各R₁は同一又は異なっていてもよく、1～20炭素原子を有するヒドロカルビル残基であり；各R'₁は同一又は異なっていてもよく、1～20炭素原子を有するヒドロカルビル残基であり；R''は触媒に立体剛性をもたらすCp環の間の構造的架橋であり；Meは元素の周期律表の4b, 5b, 又は6b族の金属であり；各Q₁は1～20炭素原子を有するヒドロカルビル残基又はハロゲンであり；0≤k≤3；0≤n≤4；及び1≤m≤4であり；及びR'₁は(CpR'₁)_nが(CpR₁)_mと立体的に相違しているように選択される、によって表記されるシンジオタクチックポリオレフィンを製造するために使用されるメタロセン触媒。を一成分とする触媒を使用することによつてシンジオタクティシティーの良好なポリ-α-オレフィンが製造できることが記載されている。

【0009】 また、同公報には上記メタロセン化合物を2種以上使用することにより幅広い分子量分布を有するシンジオタクチックポリ-α-オレフィンが製造できることが記載されている。

【0010】 特開平2-274703号公報には、下記式(化1)

【0011】

3

4

【化1】

〔式中、M' はチタニウム、ジルコニウム、バナジウム、ニオブまたはタンタルであり、R¹ およびR² は互いに同じでも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1～10のアルキル基、炭素原子数1～10のアルコキシ基、炭素原子数6～20のアリール基、炭素原子数6～20のアリールオキシ基、炭素原子数2～10のアルケニル基、炭素原子数7～40のアリ*

=BR⁶, =AlR⁶, =Ge-, =Sn-, =O-, =S-, =SO, =SO₂, =NR⁶, =CO, =PR⁶ または=P(O)R⁶ を意味し、その際R⁶、R¹ およびR² は互いに同じでも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1～10のアルキル基、炭素原子数1～10のフルオロアルキル基、炭素原子数6～10のフルオロアリール基、炭素原子数6～20のアリール基、炭素原子数1～10のアルコキシ基、炭素原子数2～10のアルケニル基、炭素原子数7～40のアリールアルキル基、炭素原子数8～40のアリールアルケニル基または炭素原子数7～40のアルキルアリール基を意味するかまたは、R¹ およびR² またはR⁶ およびR⁸ はそれぞれそれらの結合する原子と一緒にになって環を形成し、そしてM' は珪素、ゲルマニウムまたは錫である。〕で表される遷移金属成分およびアルミニノキサンからなる触媒の存在下にオレフィンを重合することにより高分子量のシンジオタクチックポリオレフィンを製造する方法が記載されている。

【0013】また、特開平2-274704号公報には、同様のハフニウム化合物を用いて高分子量のシンジオタクチックポリオレフィンを製造する方法が記載されている。一方、上記のようないわゆるカミニスキーモード触媒の活性種が[Cp':MR]⁻（ここでCp'=シクロペンタジエニル誘導体、M=Tl, Zr, Hf, R=アルキル）で表されるような遷移金属カチオンであることが示唆されて以来、アルミニノキサン類を助触媒としない触媒系もいくつか報告されている。

【0014】Taubeらは、J. Organometall. Chem., 347, C9 (1988) に [Cp: TiMe (THF)]⁻ (BPh₄)⁻ (Me=メチル基、Ph=フェニル基) で表される化合物を用いてエチレン重合に成功している。

【0015】Jordanらは、J. Am. Chem. Soc., 109, 41 50

*一ルアルキル基、炭素原子数7～40のアルキルアリール基または炭素原子数8～10のアリールアルケニル基を意味し、R³ およびR⁴ は異なっており、中心原子M' と一緒にサンドイッチ構造を形成し得る单核または多核炭化水素基を意味し、R⁵ は

【0012】

【化2】

11 (1987) で、[Cp: ZrR(L)]⁻ (R=メチル基、ベンジル基、L=ルイス塩基) のようなジルコニウム錯体がエチレンを重合することを示している。

【0016】特表平1-501950号公報、特表平1-502036号公報にはシクロペンタジエニル金属化合物およびシクロペンタジエニル金属カチオンを安定化することのできるイオン性化合物とからなる触媒を用いてオレフィンを重合する方法が記載されている。Zambelliらは、Macromolecules, 22, 2186 (1989) に、シクロペンタジエンの誘導体を配位子とするジルコニウム化合物と、トリメチルアルミニウムとフルオロジメチルアルミニウムとを組み合わせた触媒により、アイソタクチックポリプロピレンが製造できることを報告している。特開平3-179005号公報には、a) メタロセン化合物、b) アルミニウムアルキル、およびc) ルイス酸からなるオレフィン重合用触媒が開示されている。

【0017】

【発明が解決しようとする課題】上記のようなチーグラーナ・ナック型触媒を用いて不飽和結合を有するプロピレン系共重合を製造する方法は、共重合効率が悪く、生成ポリマー中に不飽和結合を導入するためには大量のジェンモノマーを重合系内に導入する必要がある。そのうえ、得られる共重合体は分子量分布が広く、透明性、力学物性に劣っていた。

【0018】

【課題を解決するための手段】本発明者は上記課題を解決し、優れた物性を有するアイソタクチックプロピレン-ジエン共重合体を効率よく製造する方法について観察検討した結果、特定の触媒の存在下プロピレンとジェン化合物とを共重合させることにより、前述の目的が達成されることを見出し本発明を完成するに至った。

【0019】すなわち本発明は、プロピレンおよび少な

5

くとも一粒の炭素数6～25の一つの末端二重結合および一つ内部二重結合を有するアルカジエンからなり、¹³ C-NMRで測定したアイソタクチックペンタッド分率が0.5以上であり、上記アルカジエンの含有率が0.01～30モル%であり、135℃のテトラリン溶液で測定した粘度〔η〕が0.01～10dl/gであり、ゲル・パーミエイション・クロマトグラフィー(GPC)で測定した分子量分布度(Mw/Mn)が1.5～4.0であることを特徴とする新規プロピレン系共重合体を提供し、さらに本発明は、

(A) シクロペンタジエニル基、インデニル基、フルオレニル基、またはそれらの誘導体を配位子とする周期律表4族の遷移金属化合物

(B) 助触媒

からなる触媒の存在下プロピレンと少なくとも一粒の炭素数6～25の一つの末端二重結合および一つ内部二重結合を有するアルカジエンとを共重合させることを特徴とする前記新規プロピレン系共重合体の製造方法である。

【0020】本発明の新規プロピレン系共重合体は、プロピレンと0.01～30モル%、好ましくは0.1～20モル%含有率の少なくとも一粒の炭素数6～25の一つの末端二重結合および一つ内部二重結合を有するアルカジエンからなる。実質的にアイソタクチック構造を有するプロピレン系共重合体である。

【0021】また、本発明の新規プロピレン系共重合体は、¹³C-NMRで測定したメチル基のアイソタクチックペンタッド分率が0.5以上、好ましくは0.6以上であり、135℃のテトラリン溶液で測定した粘度〔η〕は0.01～10dl/g、好ましくは0.1～10dl/gの値を持ち、ゲル・パーミエイション・クロマトグラフィー(GPC)で測定した分子量分布度(Mw/Mn)が1.5～4.0、好ましくは2.0～3.5の値を持つ。

【0022】本発明の新規プロピレン系共重合体は、前記示したような(A)シクロペンタジエニル基、インデニル基、フルオレニル基、またはそれらの誘導体を配位子とする周期律表4族の遷移金属化合物

* ニル基、フルオレニル基、またはそれらの誘導体を配位子とする周期律表4族の遷移金属化合物、および(B)助触媒からなる触媒の存在下プロピレンとアルカジエンとを共重合させることにより製造できる。

【0023】本発明において(A)成分として使用される遷移金属化合物は、実質的にアイソタクチック構造のポリプロピレンを与えることのできるメタロセン化合物である。そのようなメタロセン化合物は、例えば、特開昭61-130314号公報、特開平1-197490号公報、特開平1-203409号公報、特開平1-275608号公報、特開平1-301704号公報、特開平2-131488号公報、特開平3-12406号公報、特開平3-12407号公報などに記載されているような公知の化合物を挙げることができる。より具体的には、例えば、エチレンビス(1-インデニル)ジルコニウムジクロリド、エチレンビス(4,5,6,7-テトラヒドロ-1-インデニル)ジルコニウムジクロリド、ジメチルシリレンビス(1-インデニル)ジルコニウムジクロリド、ジメチルシリレンビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、ジメチルシクロペンタジエニル)ジルコニウムジクロリド等のジルコニウム化合物の他に同様のハフニウム化合物を挙げることができる。

【0024】遷移金属化合物とともに使用される助触媒としては、先に述べたようなメタロセン化合物とともに使用されている公知の助触媒を本発明の共重合の場合にも使用することができる。そのような助触媒としては例えば、公知のアルミニノキサンの他に、特表平1-501950号公報、特表平1-502036号公報に記載されているようなイオン性の化合物、特開平3-179005号公報に記載されているようなアルミニウムアルキルおよびルイス酸からなる助触媒を挙げることができる。アルミニノキサン類としては一般式

【0025】

【化3】

および/または

(ここでRは炭素数1～3の炭化水素基、nは2以上の整数を示す。)で表される化合物であり、特にRがメチル基であるメチルアルミニノキサンでnが5以上、好ましく50

くは10以上のものが利用される。上記アルミニノキサン類には若干のアルキルアルミニウム化合物が混入しても差し支えない。

【0026】本発明において上記遷移金属化合物に対するアルミニノキサンの使用割合としては10～100000モル倍、通常50～10000モル倍である。本発明において共重合の際プロピレンとともに供給されるアルカジエンは炭素数6～25の一つの末端二重結合および一つ内部二重結合を有するアルカジエンであり、その中でも分岐状アルカジエンがプロピレンとの共重合性が良好で好適に利用される。そのような好適なアルカジエンの具体例としては、例えば4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、2-メチル-2,7-オクタジエンなどが挙げられる。これらのアルカジエンの使用量としては目的とする共重合体中のアルカジエン含有率によって異なるが、通常、プロピレンの1/10000～1/10である。

【0027】本発明の方法で行われる重合方法および重合条件については特に制限はなく α -オレフィンの組合で行われる公知の方法が用いられ、不活性炭化水素媒体を用いる溶媒重合法、または実質的に不活性炭化水素媒体の存在しない塊状重合法、気相重合法も利用でき、重合温度としては-100～200℃、重合圧力としては常圧～100kg/cm²で行うのが一般的である。好ましくは-50～100℃、常圧～50kg/cm²である。

【0028】本発明における触媒成分の処理あるいは重合に際し使用される炭化水素媒体としては例えばブタン、ベントン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロペタン、シクロヘキサンなどの飽和炭化水素の他に、ベンゼン、トルエン、キシレンなどの芳香族炭化水素も使用することができる。

【0029】本発明においては、プロピレンの単独重合のみならず、実質的にシンジオタクチック構造を有する限り、例えばプロピレンとエチレン、プロピレンと1-ブテンなどの炭素数2～25程度のエチレンまたは α -オレフィンとの共重合体を製造する際にも利用できる。

【0030】本発明による共重合体は分子鎖中に不飽和結合を有しているので、これに例えば特開昭57-57726、特開昭57-59934号公報に開示されているようなポリマー反応による極性基を有するポリマーの合成、EPDMで行われているような架橋反応に利用することができ、特に高分子量の共重合体が容易に得られるので優れた物性のポリマーが得られ、工業的に価値が高い。

【0031】

【実施例】以下に本発明を実施例によって具体的に説明する。

実施例1

充分空素置換した1.5リットルのオートクレーブに特開昭61-130314号公報記載の方法により合成したエチレンビス(1-インデニル)ジルコニウムジクロリド3.0mgおよび東ソー・アクゾ社製メチルアルミニ

7
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8

⁹
られたポリマーは114.2g、このポリマーの $[\eta]$ は0.96dl/g、Mw/Mnは2.3、アイソタクチックペントッド分率は0.932、ジエン含有率は0.9モル%であった。

【0037】比較例1

固体触媒成分の調製

塩化マグネシウム20g、フタル酸ジイソブチル6ml、四塩化チタン7mlを振動ミルを用いて10時間共粉砕した後、沸騰トルエンにて処理することにより固体触媒成分を得た。

【0038】重合

上記調製した固体触媒成分10mg、ジフェニルジメトキシシラン0.03ml、トリエチルアルミニウム0.1mlを触媒として使用した以外は実施例1と同様にしてプロピレンとメチル-1,4-ヘキサジエンとの共重合を試みた。しかしながら、生成ポリマーを¹H-NMR測定した結果、不飽和結合に帰属されるピークは観測されなかった。

¹⁰
R測定した結果、不飽和結合に帰属されるピークは観測されなかった。

【0039】比較例2

触媒として、丸紅ソルベイ社製三塩化チタン50mgおよびジエチルアルミニウムクロリド27mgを使用した以外実施例1と同様にしてプロピレンとメチル-1,4-ヘキサジエンとの共重合を試みた。しかしながら、生成ポリマーを¹H-NMR測定した結果、不飽和結合に帰属されるピークは観測されなかった。

【0040】

【発明の効果】本発明の方法を実施することにより、効率良くポリマー中に不飽和結合を有するポリプロピレン系共重合体を得ることができる。また、本発明の共重合体は分子鎖中に不飽和結合を有するため、ポリマー中の不飽和結合を変性する公知の方法によって性質の改良されたポリマーを得ることができる。