Discriminazione dei muoni da decadimenti di B e D

Matteo Abis matteo@latinblog.org

Università degli Studi di Padova Scuola Galileiana di Studi Superiori

3 novembre 2009

Dati Monte Carlo

un milione di eventi $pp \to \mu X$

Tagli sulle tracce ricostruite:

- identificazione dei muoni TMLastStationOptimizedLowPtTight:
 - ullet hit nell'ultima camera a μ
 - \bullet almeno due segmenti compatibili nelle camere a μ
 - \bullet segmenti nel tracker ben accoppiati con i segmenti nelle camere a μ
- $p_t > 3 \,\mathrm{GeV/c}$
- $|\eta| < 2.5$

Associazione tracce ricostruite → particelle generate

- minima distanza nello spazio (η, ϕ) . $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$
- ullet ulteriore taglio delle coppie con $\Delta R < 0.1$ o $\Delta p_t/p_t < 0.1$

circolare o lineare

prima ipotesi di studio sul parametro d'impatto d

algoritmo CMSSW 2.2.9

- traccia circolare $\rightarrow RP$
- $dxy(PV) \rightarrow lineare da RP$

studio della risoluzione su d, gen-reco

GenParticle non ha un metodo per d

- C. Favaro → estrapolazione lineare
- $\bullet \ \ \mathsf{P.} \ \ \mathsf{Bortignon} \ \to \ \mathsf{estrapolazione} \ \ \mathsf{circolare}$

circolare anche su reco::Particle?

d fino a $4 \, \mathrm{m}$

Muon::vertex() e Muon::track()

che cosa restituiscono?

```
Muon.h \rightarrow tre tipi di traccia:
```

```
Muon::innerTrack() solo hit nel tracker
```

Muon::outerTrack() solo hit nelle camere a μ

Muon::globalTrack() $tracker + \mu$

Attenzione!

- muon->track() = muon->innerTrack()
- muon->vertex() = muon->globalTrack()->vertex()

pat::Muon sfugge alla gerarchia di CMSSW

- reco::Particle e reco::TrackBase non sono imparentate
- reco::Particle è costruita da variabili cinematiche di track
- pat::Muon eredita da reco::Particle, ma ha tre tracce.
- ullet accedere alle variabili dei μ senza passare da una delle track genera ambiguità.

lineare = circolare

La coda con d fino a 4 m era dovuta non all'approssimazione circolare, ma all'uso di parametri cinematici da globalTrack.

lineare = circolare

```
traccia media (pm) RMS (pm)
global -0.136 5.189
inner -0.094 4.418
```


976 under/overflow per le global, 938 entro $10^{-5}\,\mathrm{cm}$

Distribuzioni in d

Parametri analizzati:

- global track e inner track
- p_t minimo
- luminosità integrata (numero di eventi)

Test di Kolmogorov-Smirnov

probabilità che due campioni provengano dalla stessa popolazione

in funzione del numero di eventi (taglio $p_t > 3\,\mathrm{GeV/c})$

$$5\sigma \to 7 \cdot 10^{-3} \, \mathrm{pb}^{-1} \ (\approx 250 \, 000 \, \mu)$$

Taglio in p_t

il livello di confidenza scende perché diminuisce la significanza statistica del campione.

eliminare la dipendenza dal numero di eventi

ullet distribuzione d dei μ che superano il taglio richiesto

- ullet distribuzione d dei μ che superano il taglio richiesto
- due istogrammi da 10000 GetRandom dalle distribuzioni

- ullet distribuzione d dei μ che superano il taglio richiesto
- due istogrammi da 10000 GetRandom dalle distribuzioni
- test di Kolmogorov

- ullet distribuzione d dei μ che superano il taglio richiesto
- due istogrammi da 10000 GetRandom dalle distribuzioni
- test di Kolmogorov
- si ripete 100 volte, media e RMS sul grafico

- ullet distribuzione d dei μ che superano il taglio richiesto
- due istogrammi da 10000 GetRandom dalle distribuzioni
- test di Kolmogorov
- si ripete 100 volte, media e RMS sul grafico

Conclusioni

- l'approssimazione lineare è ottima ($PV \approx O$)
- inner track discrimina meglio di global track
- luminosità integrata $\rightarrow 5\sigma$: $7 \cdot 10^{-3} \, \mathrm{pb}^{-1} \approx 1$ –12 giorni di LHC¹.
- ullet taglio più alto in p_t non sembra migliorare la discriminazione

 $^{^1}S$ tima della luminosità istantanea tra $10^{30}\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$ e $10^{31}\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$