5.2 Хеширование цепочками

Хеширование цепочками — один из наиболее популярных методов реализации хеш-таблиц на практике. Ваша цель в данной задаче — реализовать такую схему, используя таблицу с m ячейками и полиномиальной хеш-функцией на строках

$$h(S) = \left(\sum_{i=0}^{|S|-1} S[i]x^i \bmod p\right) \bmod m,$$

где S[i] — ASCII-код i-го символа строки S, $p=1\ 000\ 000\ 007$ — простое число, а x=263. Ваша программа должна поддерживать следующие типы запросов:

- add string: добавить строку string в таблицу. Если такая строка уже есть, проигнорировать запрос;
- del string: удалить строку string из таблицы. Если такой строки нет, проигнорировать запрос;
- find string: вывести «yes» или «no» в зависимости от того, есть в таблице строка string или нет;
- check і: вывести i-й список (используя пробел в качестве разделителя); если i-й список пуст, вывести пустую строку.

При добавлении строки в цепочку, строка должна добавляться **в начало** цепочки.

Формат входа. Первая строка размер хеш-таблицы m. Следующая строка содержит количество запросов n. Каждая из последующих n строк содержит запрос одного из перечисленных выше четырёх типов.

Формат выхода. Для каждого из запросов типа find и check выведите результат в отдельной строке.

Ограничения. $1 \le n \le 10^5$; $\frac{n}{5} \le m \le n$. Все строки имеют длину от одного до пятнадцати и содержат только буквы латинского алфавита.

Пример.

Вход:

```
12
add world
add HellO
check 4
find World
find world
del world
check 4
del HellO
add luck
add GooD
check 2
del good
```

Выход:

```
HellO world
no
yes
HellO
GooD luck
```

ASCII коды букв 'w', 'o', 'r', 'l', 'd' равны 119, 111, 114, 108, 100, соответственно. Поэтому

$$\begin{split} h(\texttt{world}) = (119 + 111 \times 263 + 114 \times 263^2 + 108 \times 263^3 + \\ 100 \times 263^4 \bmod{1\ 000\ 000\ 007}) \bmod{5} = 4 \,. \end{split}$$

Оказывается, что h(Hell0) тоже равно четырём. Поскольку новые строки добавляются в начало списка, после второго запроса add список содержит строки Hell0 и world (именно в таком порядке). Строка World не находится, а world находится. После удаления строки world в цепочке 4 остаётся только строка Hell0. И так далее.

Пример.

Вход:

```
4
8
add test
add test
find test
del test
find test
find Test
add Test
find Test
```

Выход:

```
yes
no
no
yes
```

Пример.

Вход:

```
12
check 0
find help
add help
add del
add add
find add
find del
del del
find del
check 0
check 1
check 2
```

Выход:

```
no
yes
yes
no
add help
```

Обратите внимание на то, что нужно выводить пустую строку в случае, если соответствующая цепочка пуста. Строки в запросах могут совпадать с названиями запросов.

Указания.

- Будьте осторожны с переполнением целого типа. Используйте long long в C++ и long в Java при необходимости. При вычислении значения многочлена по модулю p берите результат по модулю p после каждой арифметической операции.
- Будьте осторожны с отрицательными числами по модулю p. Во многих языках программирования $(-2)\%5 \neq 3\%5$. Один

из способов избежать этого — использовать $x \leftarrow ((a\%p) + p)\%p$ вместо $x \leftarrow a\%p$.