A QCNN for Quantum State Preparation Carnegie Vacation Scholarship

David Amorim

Week 6 (05/08/2024 - 14/08/2024)

Erratum

The slides for the previous weeks showed the wrong placement of the absolute signs in the definition of SAM. The definition should read:

$$\mathsf{SAM}(|x\rangle, |y\rangle) = 1 - \sum_{k} |x_k||y_k|. \tag{1}$$

This has now been corrected. Equivalently for WIM.

David Amorim QCNN State Preparation 14/08/2024 2 / 13

Aims for the Week

The following aims were set at the last meeting (05/08/2024):

Generalise Input States

When training in superposition, feed in a wider range of input states to ensure the network learns as intended.

Work on Code and Documentation

Continue re-structuring and re-documenting the code to ensure a smooth handover.

Table of Contents

• Generalised Input States

2 Code and Documentation

Next Steps

David Amorim QCNN State Preparation 14/08/2024 4 / 13

Generalised Input States

When training in superposition, the QCNN now takes the input state

$$|\psi\rangle_{\mathsf{in}} = \sum_{j=0}^{2^n - 1} c_j |j\rangle \tag{2}$$

where the coefficients $c_j \sim \frac{1}{\sqrt{2n}}$ are randomly sampled each epoch

- The range of the random sampling is controlled by a hyper-parameter δ . $0 < \delta < 1$
- For instance, $\delta=0$ gives $c_j=\frac{1}{\sqrt{2n}}$ while $\delta=1$ gives $c_j\in(0,1)$
- This generalisation should ensure that the network learns the operation $|j\rangle |0\rangle \mapsto |j\rangle |\Psi'(j)\rangle$ as opposed to just learning how to produce a particular fixed state

Amplitudes after applying \tilde{Q} with $\Psi(f) \sim f^2$ and the input register in initial state $\hat{H} |0\rangle$ (L=9, m=3, SAM, 600 epochs):

Figure 1: $\delta = 0$

Figure 2: $\delta = 0.2$

Amplitudes after applying \tilde{Q} with $\Psi(f)\sim f^2$ and the input register in initial state $\hat{H}\left|0\right\rangle$ (L=9, m=3, SAM, 600 epochs):

Figure 3: $\delta = 0.4$

Figure 4: $\delta = 0.6$

David Amorim

Amplitudes after applying \tilde{Q} with $\Psi(f)\sim f^2$ and the input register in initial state $\hat{H}\left|0\right\rangle$ (L=9, m=3, SAM, 600 epochs):

Figure 5: $\delta = 0.8$

Figure 6: $\delta = 1.0$

8 / 13

David Amorim QCNN State Preparation 14/08/2024

- Slightly randomised input states $(\delta=0.2)$ have a positive effect on performance
- More significantly randomised input states ($\delta \geq 0.6$) have an adverse effect
- Notably, no positive effect of non-zero δ is apparent for L=6
- Also notable are the appearance of thin 'stripes' with increasing δ which could be linked to input layer structure
- Equivalent effects are observed for $\Psi(f) \sim f$ and Ψ_{H23}

Figure 7: Comparing the effect of δ values for $\Psi(f) \sim f^2$ ($L=9,\ m=3$, SAM, 600 epochs)

9/13

RUN THINGS FOR L=12 TO COMPARE !! (nearly done with plots .. running delta=1.0 right now)... do plots !! then do more complex pltos
TRY AND DO SOME BARREN PLATEAU ???
document resource tools

Table of Contents

• Generalised Input States

2 Code and Documentation

Next Steps

David Amorim QCNN State Preparation 14/08/2024 11/13

Code and Documentation

Continued work on code documentation: now hosted online here

TO DO:

- integrate encode.py into plotting
- b update doc files on github
- o publish to pypi

add some info here ...

David Amorim QCNN State Preparation 14/08/2024 12 / 13

Table of Contents

• Generalised Input States

2 Code and Documentation

Next Steps

Next Steps

• Start work on poster for Carnegie

David Amorim QCNN State Preparation 14/08/2024 14 / 13