Лабораторная работа 8

Модель TCP/AQM

Оразгелдиев Язгелди

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	16

Список иллюстраций

3.1	Установка контекста	'/
3.2	Параметры моделирования	
3.3	Блоки интегрирования	8
3.4	Блоки интегрирования	9
3.5	Параметры задержки	9
3.6	Выражение в блоке Expression	10
3.7	Параметры CSCOPEXY	10
3.8	Параметры CSCOPE	
3.9	Модель TCP/AQM в xcos	11
3.10	Динамика изменения размера TCP окна W(t) (зеленая линия) и размера	
	очереди Q(t)(Черная линия)	12
3.11	. Фазовый портрет	12
3.12	. Динамика изменения размера TCP окна W(t) и размера очереди Q(t)	
	при С=0.9	13
3.13	В Модель TCP/AQM OpenModelica	13
3.14	Динамика изменения размера TCP окна W(t) (красная линия) и размера	
	очереди Q(t)(синяя линия)	14
3.15	. Фазовый портрет	14
3.16	Mодель TCP/AQM OpenModelica c C=0.9	14
3.17	Динамика изменения размера TCP окна W(t) и размера очереди Q(t)	
	при С=0.9	15
3.18	В Фазовый портрет с C=0.9	15

Список таблиц

1 Цель работы

Реализуйте модель TCP/AQM в xcos и OpenModelica

2 Задание

- 1. Реализуйте модель TCP/AQM в xcos
- 2. Построить графики динамии изменения размера TCP окна W(t) и размера очереди Q(t)
- 3. Построить модель TCP/AQM в OpenModelica

3 Выполнение лабораторной работы

Построим схему хсоs, моделирующую нашу систему с начальными значениями параметров N=1, R=1, K=5.3, C=1, W(0)=0.1, Q(0)=1. Для этого сначала зададим переменные окружения.

Рис. 3.1: Установка контекста

Еще зададим параметры моделирования

Рис. 3.2: Параметры моделирования

Установим начальные значения в блоках интегрирования

Рис. 3.3: Блоки интегрирования

Рис. 3.4: Блоки интегрирования

Установим параметры задержки

Рис. 3.5: Параметры задержки

Запись выражения определяющего Q(t) в блок Expression

Рис. 3.6: Выражение в блоке Expression

Установим параметры регистрирующих устройств для оптимального отображения графиков. Еще у блока CSCOPE ставим параметр refresh period =100, чтобы на графики отобразились результаты моделирования в течение 100 секунд модельного времени.

*	Ввод значений	+ ×
	Set Scope parameters	
	Number of Curves	1
	color (>0) or mark (<0)	10
	line or mark size	1
	Output window number (-1 for automatic)	-1
	Output window position	
	Output window sizes	[600;400]
	Xmin	0
	Xmax	2.5
	Ymin	0
	Ymax	2.5
	Buffer size	2
		ОК Отменить

Рис. 3.7: Параметры CSCOPEXY

Рис. 3.8: Параметры CSCOPE

Затем реализуем модель, разместив блоки интегрирования, суммирования, произведения, контсант, и регистрирующие устройства CSCOPE и CSCOPEXY для фазового портрета

Рис. 3.9: Модель TCP/AQM в хсоs

Получим динамику изменения размера TCP окна W(t) (зеленая линия) и размера очереди Q(t) (Черная линия), а также фазовый портрет который показывает наличие автоколебаний параметров системы - фазовая траектория осциллирует вокруг своей стацнионарной точки

Рис. 3.10: Динамика изменения размера TCP окна W(t) (зеленая линия) и размера очереди Q(t)(Черная линия)

Рис. 3.11: Фазовый портрет

Уменьшим скорость обработки пакетов С до 0.9, увидим, что автоколебания стали

более выраженными

Рис. 3.12: Динамика изменения размера TCP окна W(t) и размера очереди Q(t) при C=0.9

Далее мы реализуем нашу модель в OpenModelica. Зададим параметры, начальные значения и СДУ

```
model lab8

parameter Real N=1;
parameter Real K=1;
parameter Real K=5.3;
parameter Real C=1;
parameter Real W=0.1;
parameter Real W=0.1;
parameter Real (0=1;

Real W(start=W0);
Real Q(start=Q0);
equation

der(W)=1/R-W*delay(W,R)*K*delay(Q,R)/(2*R);
der(Q)=if Q>0 then N*W/R-C else max(N*W/R-C,0);
end lab8;
```

Рис. 3.13: Модель TCP/AQM OpenModelica

Затем установим параметры симуляции - 100 единиц модельного времени. В результате получим динамику изменения размера TCP окна W(t) (красная линия) и размера очереди Q(t)(синяя линия), а также фазовый портрет, показывающий наличие автоколебаний параметров системы - фазовая траектория осциллирует вокруг своей стационарной точки

Рис. 3.14: Динамика изменения размера TCP окна W(t) (красная линия) и размера очереди Q(t)(синяя линия)

Рис. 3.15: Фазовый портрет

Изменим скорость обработки пакетов С до 0.9

```
OpenModelica

Доступный на запись Моdel Вид Текст lab8 /home/openmodelica/mip/OpenModelica/lab8.mo

model lab8

parameter Real N=1;
parameter Real R=1;
parameter Real K=5.3;
parameter Real C=0.9;
parameter Real W0=0.1;
parameter Real W0=0.1;
parameter Real Q0=1;

Real W(start=W0);
Real Q(start=Q0);

requation

der(W)=1/R-W*delay(W,R)*K*delay(Q,R)/(2*R);
der(Q)=if Q>0 then N*W/R-C else max(N*W/R-C,0);

end lab8;
```

Рис. 3.16: Модель TCP/AQM OpenModelica c C=0.9

Увидим как и в хсоѕ, что колебания стали более выраженными

Рис. 3.17: Динамика изменения размера TCP окна W(t) и размера очереди Q(t) при C=0.9

Рис. 3.18: Фазовый портрет с С=0.9

4 Выводы

При выполнении данной лабораторной работы я реализовал модель TCP/AQM в xcos и OpenModelica