

# basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

# NATIONAL SENIOR CERTIFICATE

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

**NOVEMBER 2014** 

**MEMORANDUM** 

MARKS/PUNTE: 150

This memorandum consists of 23 pages. *Hierdie memorandum bestaan uit 23 bladsye.* 

### **NOTE:**

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum.
- Assuming answers/values in order to solve a problem is NOT acceptable.

#### NOTA:

- As 'n kandidaat 'n vraag TWEEKEER beantwoord, merk slegs die EERSTE poging.
- As 'n kandidaat 'n poging om die vraag te beantwoord, doodgetrek het en nie dit oorgedoen het nie, merk die doodgetrekte poging.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienmemorandum toegepas.
- Aanvaarding van antwoorde/waardes om 'n probleem op te los, is ONaanvaarbaar.

| 1.1 | $\overline{x} = \frac{816}{12} = 68$                                           | $\begin{array}{ c c c c } \hline \sqrt{816} \\ \hline 12 \\ \sqrt{68} \end{array}$ |
|-----|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|     |                                                                                | (2)                                                                                |
| 1.2 | $\sigma = 18,42$                                                               | ✓ answer/antw (1)                                                                  |
| 1.3 | (68-18,42;68+18,42)=(49,58;86,42)                                              | ✓✓ interval                                                                        |
|     | 6 candidates had a mark within one standard deviation of the                   | ✓ answer/antw                                                                      |
|     | mean/6 kandidate het 'n punt binne een standaardafwyking vanaf die gemiddelde. | (3)                                                                                |
| 1.4 | a = 22,828 = 22,83                                                             | ✓ value of a/                                                                      |
|     |                                                                                | waarde van a                                                                       |
|     | b = 0,66429 = 0,66                                                             | ✓ value of $b$ /                                                                   |
|     |                                                                                | waarde van b                                                                       |
|     | $\hat{y} = 0.66x + 22.83$ <b>OR/OF</b> $\hat{y} = 22.83 + 0.66x$               | ✓ equation/vgl                                                                     |
| 1.5 | ^ 0.66 + 22.92                                                                 | (3)                                                                                |
| 1.5 | $\hat{y} = 0.66x + 22.83$                                                      | ( subs of 60 into                                                                  |
|     | y = 0.66(60) + 22.83                                                           | ✓ subs of 60 into equation                                                         |
|     | 62,43% ≈ 62%                                                                   | ✓ answer/antw                                                                      |
|     | OR/OF                                                                          | (2)                                                                                |
|     | UK/UF                                                                          |                                                                                    |
|     | 62,69% ≈ 63%                                                                   | ✓✓ answer/antw                                                                     |
|     | 02,0770 ~ 0370                                                                 | (2)                                                                                |
| 1.6 | (82; 62)                                                                       | ✓ answer/antw                                                                      |
|     |                                                                                | (1)                                                                                |
|     |                                                                                | [12]                                                                               |

| 2.1   |                                                    | $2/OF$ $50 \le x < 6$   |                                             | ✓ answer/antw                                                      |
|-------|----------------------------------------------------|-------------------------|---------------------------------------------|--------------------------------------------------------------------|
|       | between 50 and                                     | 60/tussen 50 en 6       | 00                                          | (1)                                                                |
| 2.2.1 | Class<br>Klas                                      | Frequency<br>Frekwensie | Cumulative frequency Kumulatiewe frekwensie |                                                                    |
|       | $20 < x \le 30$                                    | 1                       | 1                                           |                                                                    |
|       | $30 < x \le 40$                                    | 7                       | 8                                           | ✓ 8                                                                |
|       | $40 < x \le 50$                                    | 13                      | 21                                          |                                                                    |
|       | $50 < x \le 60$                                    | 17                      | 38                                          |                                                                    |
|       | $60 < x \le 70$                                    | 9                       | 47                                          |                                                                    |
|       | $70 < x \le 80$                                    | 5                       | 52                                          |                                                                    |
|       | $80 < x \le 90$                                    | 2                       | 54                                          | / 55                                                               |
|       | $90 < x \le 100$                                   | 1                       | 55                                          | √ 55 (2)                                                           |
| 2.2.2 |                                                    |                         |                                             | ,                                                                  |
|       | 60                                                 |                         |                                             | ✓ grounding at (20; 0)/ anker                                      |
|       | 50                                                 |                         |                                             | by (20; 0)  ✓ plotting at  upper limits/  plot by boonste  limiete |
|       | 40                                                 |                         |                                             | ✓ smooth shape of curve/gladde kurwe                               |
|       | Cumulative Frequency/ Kumulatiewe frekwensie 01 02 |                         |                                             |                                                                    |
|       | Cumulativ<br>Kumulatien<br>ot                      |                         |                                             |                                                                    |
|       | 0 0                                                |                         | 40 50 60 70 80 90 100                       |                                                                    |
|       |                                                    |                         | in km per hour/<br>d in km per uur          | (3)                                                                |
| 2.3   | 55 – 44 (accept                                    | ot/aanvaar 43 – 4       |                                             | √ 44                                                               |
| 2.5   | $\approx 11 \text{ motorists/}m$                   |                         | ,                                           | √ 11                                                               |
|       |                                                    | 10 – 12 motorist        | s/motoriste)                                | (2)                                                                |
|       |                                                    | 15 12 motorist          |                                             | [8]                                                                |



| 3.1   | r = MN = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ✓ answer/antw (1)                                                                                                             |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 3.2   | $(x-5)^2 + (y-4)^2 = 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ✓equation/vgl (1)                                                                                                             |
| 3.3   | $A(x; 0)$ $(x-5)^{2} + (0-4)^{2} = 25$ $x^{2} - 10x + 25 + 16 = 25$ $x^{2} - 10x + 16 = 0$ $(x-5)^{2} + (0-4)^{2} = 25$ $(x-5)^{2} + 16 = 25$ $(x-5)^{2} + 16 = 25$ $(x-5)^{2} + 3 = 2$ $(x-5)^{2} + 3 = 3$ | ✓ substitute into eq/ vervang in vgl y = 0 ✓ standard form/ standaardvorm or perfect square form/kwadr vorm ✓ answer/antw (3) |
| 3.4.1 | $m_{\text{MB}} = \frac{4 - 0}{5 - 8}$ $= -\frac{4}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ✓ subst M and B<br>into form/vervang<br>M and B in form<br>✓ $m_{\text{MB}} = -\frac{4}{3}$ (2)                               |

| 3.4.2 | $m_{\rm MB} \times m_{\rm PB} = -1$ (tangent $\perp$ radius/ $rkl \perp radius$ )                                                               | <b>√</b>                                                                   |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|       | $m_{\rm PB} = \frac{3}{4}$                                                                                                                      | $m_{\mathrm{MB}} \times m_{\mathrm{PB}} = -1$                              |
|       | +                                                                                                                                               | $\sqrt{m_{\rm PB}} = \frac{3}{4}$                                          |
|       | $y = \frac{3}{4}x + c$ <b>OR/OF</b> $y - y_1 = \frac{3}{4}(x - x_1)$                                                                            | 4                                                                          |
|       | $0 = \frac{3}{4} (8) + c \qquad y - 0 = \frac{3}{4} (x - 8)$                                                                                    |                                                                            |
|       |                                                                                                                                                 |                                                                            |
|       | $y = \frac{3}{4}x - 6$ $y = \frac{3}{4}x - 6$                                                                                                   | ✓ equation/vgl                                                             |
|       |                                                                                                                                                 | (3)                                                                        |
| 3.5   | $y_K = y_M + r = 4 + 5$<br>y = 9                                                                                                                | ✓ 9<br>✓ equation/vgl                                                      |
|       | y = 9                                                                                                                                           | (2)                                                                        |
| 3.6   | At/By L:                                                                                                                                        |                                                                            |
|       | $\frac{3}{4}x - 6 = 9$                                                                                                                          | ✓ equating                                                                 |
|       | 3x - 24 = 36                                                                                                                                    | simultaneously                                                             |
|       | 3x = 60                                                                                                                                         | ✓ simplification                                                           |
|       | x = 20                                                                                                                                          | (2)                                                                        |
| 2.7   | ∴ L(20; 9)                                                                                                                                      | (2)                                                                        |
| 3.7   | L(20; 9)                                                                                                                                        | ✓ correct subst                                                            |
|       | ML = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ OR/OF ML = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$                                                   | into distance                                                              |
|       | $=\sqrt{(20-5)^2+(9-4)^2} \qquad \qquad =\sqrt{(15)^2+(5)^2}$                                                                                   | formula/<br>korrekte subst                                                 |
|       | $=\sqrt{225+25} \qquad \qquad =\sqrt{(5)^2(9+1)}$                                                                                               | in afstand-                                                                |
|       | $= \sqrt{250}  or/of  5\sqrt{10} \qquad \qquad = \sqrt{250}  or/of  5\sqrt{10}$                                                                 | formule ✓ answer in surd                                                   |
|       |                                                                                                                                                 | form/antw in wortelvorm                                                    |
|       |                                                                                                                                                 | (2)                                                                        |
| 3.8   | $\mathbf{MK} \perp \mathbf{KL}  \mathbf{OR/OF}  \mathbf{MKL} = 90^{\circ}  (\text{radius} \perp \text{tangent}/\text{radius} \perp \text{rkl})$ | ✓ S                                                                        |
|       | ∴ML is a diameter as it subtends a right angle/ML is middellyn                                                                                  | ✓ value                                                                    |
|       | $r = \frac{\text{ML}}{2} = \frac{\sqrt{250}}{2} = \sqrt{\frac{125}{2}}$ or 7,91                                                                 | of/waarde                                                                  |
|       | Centre of circle = midpoint of ML/Midpt van sirkel = midpt v ML                                                                                 | van r                                                                      |
|       | $x = \frac{5+20}{2} = \frac{25}{2} = 12,5$ $y = \frac{4+9}{2} = \frac{13}{2} = 6,5$                                                             | $\begin{array}{c} \checkmark  x = 12,5 \\ \checkmark  y = 6,5 \end{array}$ |
|       | Centre/ <i>midpt</i> : (12,5; 6,5)                                                                                                              | y = 0.3                                                                    |
|       | Equation of the circle KLM /Vgl van sirkel KLM:                                                                                                 | ✓ answer in                                                                |
|       | $\therefore (x-12,5)^2 + (y-6,5)^2 = \frac{250}{4} = \frac{125}{2} = 62,5$                                                                      | form/ antw in                                                              |
|       | 7 2                                                                                                                                             | korrekte vorm                                                              |
|       | OR/OF                                                                                                                                           | (5)                                                                        |
|       |                                                                                                                                                 |                                                                            |
|       |                                                                                                                                                 |                                                                            |

 $MK \perp KL \quad OR/OF \quad MKL = 90^{\circ}$ (radius  $\perp$  tangent/radius  $\perp$  rkl)

:. ML is a diameter as it subtends a right angle/ML is middellyn

Centre of circle = midpoint of ML/Midpt van sirkel = midpt v ML

$$x = \frac{5+20}{2} = \frac{25}{2} = 12,5$$
  $y = \frac{4+9}{2} = \frac{13}{2} = 6,5$ 

Centre/*midpt*: (12,5; 6,5)

Equation of the circle KLM /Vgl van sirkel KLM:

$$(x-12.5)^2 + (y-6.5)^2 = r^2$$

subst (5; 4):  $(5-12.5)^2 + (4-6.5)^2 = r^2$ 

$$62.5 = r^2$$

$$\therefore (x-12,5)^2 + (y-6,5)^2 = \frac{250}{4} = \frac{125}{2} = 62,5$$

OR/OF

By symmetry about LM/deur simmetrie om LM:

 $MK \perp KL \quad OR/OF \quad M\hat{K}L = 90^{\circ}$ (radius  $\perp$  tangent/radius  $\perp$  rkl)

:. ML is a diameter as it subtends a right angle/ML is middellyn

ML is a diameter /ML is 'n middellyn

$$r = \frac{ML}{2} = \frac{\sqrt{250}}{2} = \sqrt{\frac{125}{2}}$$
 or /of 7,91

Centre of circle = midpoint of ML/Midpt van sirkel = midpt v ML

$$x = \frac{5+20}{2} = \frac{25}{2} = 12,5$$
  $y = \frac{4+9}{2} = \frac{13}{2} = 6,5$ 

$$y = \frac{4+9}{2} = \frac{13}{2} = 6,5$$

Centre/*midpt*: (12,5; 6,5)

Equation of the circle KLM /Vgl van sirkel KLM:

$$\therefore (x-12,5)^2 + (y-6,5)^2 = \frac{250}{4} = \frac{125}{2} = 62,5$$

 $\checkmark S$ 

$$\sqrt{x} = 12,5$$

$$\sqrt{y} = 6.5$$

✓ value of/waarde  $van r^2$ 

✓ answer in correct

form/antw in korrekte vorm (5)

 $\checkmark S$ 

✓ value of/waarde van r

$$\sqrt{x} = 12,5$$
  
 $\sqrt{y} = 6.5$ 

✓ answer in correct

form/antw in korrekte vorm

(5)

[21]



| 4.1 | y = 0: $3x + 8 = 0$                                                                                                           | ✓ y-value/waarde                         |
|-----|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|     | $x = -\frac{8}{3}$                                                                                                            | ✓ x-value/waarde                         |
|     | $\therefore \operatorname{E}\left(-2\frac{2}{3};0\right) \mathbf{OR}/\mathbf{OF} \operatorname{E}\left(-\frac{8}{3};0\right)$ | (2)                                      |
| 4.2 | $\tan D\hat{\mathbf{E}}\mathbf{O} = m_{\mathrm{DE}} = 3$                                                                      | ✓ tan DÊO = 3                            |
|     | $ \therefore \hat{DEO} = 71,565 = 71,57^{\circ}  \hat{DAE} = 71,565^{\circ} - 45^{\circ} $                                    | ✓ 71,565°                                |
|     | DAE = 71,303 43<br>= 26,57°                                                                                                   | ✓ 26,57° (3)                             |
| 4.3 | $m_{\rm AB} = \tan 26,57^{\circ}$                                                                                             | $\checkmark m_{AB} = \tan 26,57^{\circ}$ |
|     | $=\frac{1}{2}$                                                                                                                | $\checkmark m_{AB} = \frac{1}{2}$        |
|     | $y = \frac{1}{2}x + c$ <b>OR/OF</b> $y - y_1 = \frac{1}{2}(x - x_1)$                                                          | ✓ subst of $m$ and (1; 5)into formula/   |
|     | $5 = \frac{1}{2}(1) + c 	 y - 5 = \frac{1}{2}(x - 1)$                                                                         | subst m en (1 ; 5) in formule            |
|     | $y = \frac{1}{2}x + 4\frac{1}{2}$ $y = \frac{1}{2}x + \frac{9}{2}$                                                            | ✓ equation/vgl                           |
|     |                                                                                                                               | (4)                                      |

4.4 Solve x - 2y + 9 = 0 and y = 3x + 8 simultaneously: x - 2(3x+8) + 9 = 0✓ subst/vervang

x - 6x - 16 + 9 = 0-5x = 7

 $x = -1\frac{2}{5}$ 

 $\therefore y = 3(-1\frac{2}{5}) + 8 \quad \mathbf{OR}/\mathbf{OF} \quad -1\frac{2}{5} - 2y + 9 = 0$ 

 $y = 3\frac{4}{5}$ 

 $y = 3\frac{4}{5}$  $\therefore D(-1\frac{2}{5}; 3\frac{4}{5})$ 

✓ *x*-value/*waarde* 

✓ subst/vervang

✓ y-value/waarde

(4)

OR/OF

x = 2y - 9y = 3(2y - 9) + 8

y = 6y - 27 + 8 $\therefore y = 3\frac{4}{5}$ 

 $x = 2(3\frac{4}{5}) - 9$  **OR/OF**  $3\frac{4}{5} = 3x + 8$ 

 $x = -1\frac{2}{5}$ 

 $x = -1\frac{2}{5}$ 

 $\therefore D(-1\frac{2}{5}; 3\frac{4}{5})$ 

✓ subst/vervang

✓ y value/*waarde* 

✓ subst/vervang

✓ *x*-value/*waarde* 

OR/OF

 $3x + 8 = \frac{1}{2}x + 4\frac{1}{2}$ 

6x + 16 = x + 95x = -7

 $\therefore x = -1\frac{2}{5}$ 

 $y = 3\frac{4}{5}$ 

 $\therefore y = 3(-1\frac{2}{5}) + 8$  **OR/OF**  $y = \frac{1}{2}(-1\frac{2}{5}) + 4\frac{1}{2}$ 

 $y = 3\frac{4}{5}$ 

 $\therefore D(-1\frac{2}{5}; 3\frac{4}{5})$ 

✓ equating/gelyk stel

✓ *x* value/*waarde* 

✓ subst/vervang

✓ y-value/waarde

(4)

(4)

OR/OF

| $x - 2y = -9 \dots (1)$ $-6x + 2y = 16 \dots (2)$ $(1) + (2):$ $-5x = 7$ $\therefore x = -1\frac{2}{5}$ $\therefore -1\frac{2}{5} - 2y = -9 \qquad \mathbf{OR/OF}  y = 3(-1\frac{2}{5}) + 8$ | ✓ adding/optelling ✓ x-value/waarde                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| $y = 3\frac{4}{5}$ $\therefore D(-1\frac{2}{5}; 3\frac{4}{5})$                                                                                                                               | ✓ subst/vervang ✓ y-value/waarde                         |
| OR/OF $y = 3x + 8$ (1) $6y = 3x + 27$ (2) $(1) - (2)$ : $-5y = -19$ $\therefore y = 3\frac{4}{5}$                                                                                            | (4)  ✓ subtracting/aftrekking                            |
| $3\frac{4}{5} = 3x + 8 \qquad x = 2(3\frac{4}{5}) - 9$ $x = -1\frac{2}{5} \qquad x = -1\frac{2}{5}$ $\therefore D(-1\frac{2}{5}; 3\frac{4}{5})$                                              | ✓ y-value/waarde  ✓ subst/vervang  ✓ x-value/waarde  (4) |



| 4.5 | area DMOE = area $\triangle$ AMO – area $\triangle$ ADE<br>$x_A = 2(0) - 9$ $\therefore$ A(-9; 0)                                                                                                                                                                                                               | ✓ correct method/  korrekte metode  ✓ $x_A = -9$                                                                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|     | area $\triangle AMO$ area $\triangle ADE$ $= \frac{1}{2} \cdot AO \cdot OM \qquad = \frac{1}{2} \cdot AE \cdot y_{D}$ $= \frac{1}{2} \cdot (9)(4\frac{1}{2}) \qquad = \frac{1}{2} \cdot (AO - EO) \cdot y_{D}$ $= 20,25 \qquad = \frac{1}{2} \left(9 - 2\frac{2}{3}\right) \left(3\frac{4}{5}\right)$ $= 12,03$ | $\sqrt{\frac{1}{2}}(9)(4\frac{1}{2})$ $\sqrt{AE} = 9 - 2\frac{2}{3} = 6\frac{1}{3}$ $\sqrt{y_D} = 3\frac{4}{5}$ |
|     | OR/OF<br>area $\triangle$ ADE<br>$= \frac{1}{2} \text{AD.AE.sin D} \hat{A}E$ $= \frac{1}{2} \left(\frac{19\sqrt{5}}{5}\right).6\frac{1}{3}.\sin 26,57^{\circ}$ $= 12,03$                                                                                                                                        | OR/OF $\checkmark AD = \frac{19\sqrt{5}}{5}$ $\checkmark AE = 6\frac{1}{3}$                                     |
|     | ∴ area DMOE = 8,22 square units/ $vk$ eenh  OR/ $OF$                                                                                                                                                                                                                                                            | ✓ answer/antw (6)                                                                                               |

area DMOE = area rectangle DCOG + area  $\triangle$ DMG + area  $\triangle$ DEC  $= (1\frac{2}{5} \times 3\frac{4}{5}) + \frac{1}{2}(1\frac{2}{5})(\frac{7}{10}) + \frac{1}{2}(3\frac{4}{5})(\frac{19}{15})$  = 8,22 square units/ vk eenh

✓ correct method/ korrekte metode

✓  $3\frac{4}{5}$ ✓  $1\frac{2}{5}$  ✓ 0,7✓  $\frac{19}{15}$ ✓ answer

(6)

### OR/OF

area DMOE = area  $\triangle$ EDO + area  $\triangle$ ODM =  $\frac{1}{2} \left( \text{EO} \times y_{\text{D}} \right) + \frac{1}{2} \left( \text{OM} \times -x_{\text{D}} \right)$ =  $\frac{1}{2} \left[ \left( \frac{8}{3} \times \frac{19}{5} \right) + \left( \frac{9}{2} \times \frac{7}{5} \right) \right]$ =  $\frac{1}{2} \left( \frac{304 + 189}{30} \right)$ =  $\frac{493}{60}$  or/of  $8\frac{13}{60}$  or/of 8,22 square units/vk eenh

# ✓ correct method/ korrekte metode ✓ $y_D = \frac{19}{5}$ or $3\frac{4}{5}$ ✓ $EO = \frac{8}{3}$ ✓ $-x_D = \frac{7}{5}$ ✓ $OM = \frac{9}{2}$ or $4\frac{1}{2}$ ✓ answer/antw (6)

### OR/OF

area DMOE = area  $\triangle$ EOF – area  $\triangle$ DMF =  $\frac{1}{2}$ (EO×OF) –  $\frac{1}{2}$ (OF – OM)(- $x_D$ ) =  $\frac{1}{2}$ [ $\left(\frac{8}{3}\times 8\right)$  +  $\left(\frac{7}{2}\times \frac{7}{5}\right)$ ] =  $\frac{1}{2}$ ( $\frac{640-147}{30}$ ) =  $\frac{493}{60}$  or  $8\frac{13}{60}$  or 8,22 square units/vk eenh

OR/OF

✓ correct method/ korrekte metode ✓  $y_F = 8$ ✓  $EO = \frac{8}{3}$ ✓  $-x_D = \frac{7}{5}$ ✓  $FM = 3\frac{1}{2}$ ✓ answer/antw

area 
$$\Delta EOM = \frac{1}{2}(EO \times OM)$$

$$= \frac{1}{2} \left(\frac{8}{3} \times \frac{9}{2}\right)$$

$$= 6 \text{ sq units/} vk \text{ eenh}$$

$$ED = \sqrt{\left(-\frac{7}{5} + \frac{8}{3}\right)^2 + \left(\frac{19}{5}\right)^2} \text{ and } DM = \sqrt{\left(\frac{7}{5}\right)^2 + \left(\frac{9}{2} - \frac{19}{5}\right)^2}$$

$$= \frac{19\sqrt{10}}{15} \text{ or } 4,005... = \frac{7\sqrt{5}}{10} \text{ or } 1,565..$$

$$\text{area } \Delta EDM = \frac{1}{2} \left(ED \times DM \times \sin EDM\right)$$

$$= \frac{1}{2} \left(\frac{19\sqrt{10}}{15}\right) \left(\frac{7\sqrt{5}}{10}\right) \sin 135^\circ$$

$$= \frac{133}{60} \text{ or } 2,216...$$

$$\therefore \text{ area } DMOE = \text{ area } \Delta EOM + \text{ area } \Delta EDM$$

$$= 6 + 2,216...$$

$$= \frac{493}{60} \text{ or/} of 8 \frac{13}{60} \text{ or/} of 8,22 \text{ square units/} eenh^2$$

$$\checkmark \text{ area } \Delta EDM$$

$$\checkmark \text{ orrect method/} korrekte \text{ metode}$$

$$\checkmark \text{ answer/} antw$$

$$(6)$$





| 5.1 | $\sin C\hat{A}P = \frac{CP}{AP}$ $\sin x = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2}$ $x = 60^{\circ}$                                                                                                                                | ✓ correct sine ratio/  korrekte sin-verh  ✓ $\frac{\sqrt{3}}{2}$                                           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|     | OR/OF $\frac{\sin 90^{\circ}}{8} = \frac{\sin x}{4\sqrt{3}}$ $\sin x = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2}$ $x = 60^{\circ}$                                                                                                    | $(2)$ $\checkmark \text{ correct sine ratio/}$ $korrekte \text{ sin-verh}$ $\checkmark \frac{\sqrt{3}}{2}$ |
|     | $\lambda = 00$                                                                                                                                                                                                                       | (2)                                                                                                        |
| 5.2 | $C\hat{P}A = D\hat{P}A = 30^{\circ} \qquad (AP \text{ bisects } D\hat{P}C)$ $AD^{2} = AP^{2} + DP^{2} - 2.AP.DP.\cos A\hat{P}D$ $= 8^{2} + 4^{2} - 2(8)(4)\cos 30^{\circ}$ $= 8^{2} + 4^{2} - 2(8)(4)(\frac{\sqrt{3}}{2})$ $= 24,57$ | ✓ DPA = 30°  ✓ correct subst into cosine rule/ korrekte subst in cos-reël  ✓ 24 57                         |
|     | AD = 4,96                                                                                                                                                                                                                            | ✓ 24,57<br>✓ 4,96 (4)                                                                                      |

| 5.3 | $\frac{\sin D\hat{A}P}{DP} = \frac{\sin A\hat{P}D}{AD}$ $\frac{\sin y}{4} = \frac{\sin 30^{\circ}}{4,96}$ $\sin y = \frac{4\sin 30^{\circ}}{4,96}$ $= 0,403$ $y = 23,78^{\circ}$ | ✓ correct subst into sine rule/ korrekte subst in sin-reël ✓ sin y subject ✓ 23,78° (3) |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|     | OR/OF                                                                                                                                                                            |                                                                                         |
|     | $AD^2 = AP^2 + DP^2 - 2.AP.DP.\cos D\hat{A}P$                                                                                                                                    |                                                                                         |
|     | $4^2 = 8^2 + (4,96)^2 - 2(8)(4,96).\cos y$                                                                                                                                       | ✓ correct subst into cosine rule/ korrekte subst in cos-reël                            |
|     | $\cos y = \frac{8^2 + (4,96)^2 - 4^2}{2(8)(4,96)}$                                                                                                                               | ✓ cos y subject                                                                         |
|     | $\cos y = 0.9148$                                                                                                                                                                |                                                                                         |
|     | $y = 23.82^{\circ}$                                                                                                                                                              | ✓ 23,82°                                                                                |
|     |                                                                                                                                                                                  | (3)<br>[ <b>9</b> ]                                                                     |

| 6.1 | $\cos^2(180^\circ + x) + \tan(x - 180^\circ)\sin(720^\circ - x)\cos x$                                                       |                                                                                                 |
|-----|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|     | $= (-\cos x)^2 + [-(-\tan x)](-\sin x)(\cos x)$                                                                              | $\sqrt{(-\cos x)^2 \operatorname{or} \cos^2 x}$                                                 |
|     |                                                                                                                              | $\checkmark \tan x \text{ or } -(-\tan x)$<br>$\checkmark -\sin x$                              |
|     | $= \cos^2 x + \left(\frac{\sin x}{\cos x}\right)(-\sin x)(\cos x)$                                                           |                                                                                                 |
|     | $=\cos^2 x - \sin^2 x$                                                                                                       | $\checkmark \tan x = \frac{\sin x}{\cos x}$                                                     |
|     | $=\cos x - \sin x$<br>$=\cos 2x$                                                                                             | $\sqrt{\cos^2 x - \sin^2 x}$                                                                    |
|     | - COS 2x                                                                                                                     | $\int_{0}^{\infty} \cos x - \sin x $ (5)                                                        |
| 6.2 | $\sin(\alpha - \beta)$                                                                                                       | ✓ rewrite as/herskryf                                                                           |
|     | $=\cos[90^{\circ}-(\alpha-\beta)]$                                                                                           | $\cos[(90^{\circ} - \alpha) + \beta]$                                                           |
|     | $=\cos[(90^{\circ} - \alpha) + \beta]$                                                                                       | ✓ expansion/                                                                                    |
|     | $= \cos(90^{\circ} - \alpha)\cos\beta - \sin(90^{\circ} - \alpha)\sin\beta$                                                  | uitbreiding                                                                                     |
|     | $= \sin \alpha \cos \beta - \cos \alpha \sin \beta$                                                                          | ✓ simpl/vereenv                                                                                 |
|     |                                                                                                                              | (3)                                                                                             |
|     | OR/OF                                                                                                                        |                                                                                                 |
|     | $\sin(\alpha-\beta)$                                                                                                         | ✓ rewrite as/herskryf                                                                           |
|     | $=\cos[90^{\circ}-(\alpha-\beta)]$                                                                                           | $\cos[(90^{\circ} + \beta) + (-\alpha)]$                                                        |
|     | $=\cos[(90^{\circ}+\beta)+(-\alpha)]$                                                                                        | ✓ expansion/                                                                                    |
|     | $= \cos(90^{\circ} + \beta)\cos(-\alpha) - \sin(90^{\circ} + \beta)\sin(-\alpha)$                                            | uitbreiding                                                                                     |
|     | $= (-\sin\beta)\cos\alpha - \cos\beta(-\sin\alpha)$                                                                          | ✓ simpl/vereenv                                                                                 |
|     | $= \sin \alpha \cos \beta - \cos \alpha \sin \beta$                                                                          | (3)                                                                                             |
| 6.3 | $x^2 - y^2$                                                                                                                  |                                                                                                 |
|     | $= \sin^2 76^\circ - \cos^2 76^\circ$                                                                                        | 2760 : 2760                                                                                     |
|     | $= -(\cos^2 76^\circ - \sin^2 76^\circ)$                                                                                     | $\checkmark$ -( cos <sup>2</sup> 76° − sin <sup>2</sup> 76°)<br>$\checkmark$ recognition of cos |
|     | $= -\cos 2(76^{\circ})$<br>= $-\cos 152^{\circ}$                                                                             | double angle                                                                                    |
|     | $\begin{vmatrix} -\cos 132 \\ -(-\cos 28^{\circ}) & \mathbf{OR}/\mathbf{OF} = -\cos (90^{\circ} + 62^{\circ}) \end{vmatrix}$ | $\sqrt{-\cos 152^{\circ}}$                                                                      |
|     | $= \cos 28^{\circ}$ $= -(-\sin 62^{\circ})$                                                                                  |                                                                                                 |
|     | $=\cos(90^\circ - 62^\circ) \qquad = \sin 62^\circ$                                                                          | ✓ cos 28°                                                                                       |
|     | $= \sin 62^{\circ}$                                                                                                          |                                                                                                 |
|     | ODIOE                                                                                                                        | (4)                                                                                             |
|     | $R = \frac{\mathbf{OR}}{\mathbf{OF}}$                                                                                        | (4)                                                                                             |
|     | $\begin{vmatrix} x - y \\ = \sin^2 76^\circ - \cos^2 76^\circ \end{vmatrix}$                                                 | ✓ cos 14°                                                                                       |
|     | $= \sin 76^{\circ} \sin 76^{\circ} - \cos 76^{\circ} \cos 76^{\circ}$                                                        | ✓ sin 14°                                                                                       |
|     | $= \sin 76^{\circ} \cos 14^{\circ} - \cos 76^{\circ} \sin 14^{\circ}$                                                        | ✓ recognition of sine                                                                           |
|     | $= \sin (76^{\circ} - 14^{\circ})$                                                                                           | compound angle                                                                                  |
|     | $=\sin 62^{\circ}$                                                                                                           | $\checkmark \sin(76^{\circ} - 14^{\circ})$                                                      |
|     | 07/07                                                                                                                        |                                                                                                 |
|     | $\mathbf{OR}/\mathbf{OF}$                                                                                                    | (4)                                                                                             |
|     | $\begin{vmatrix} x - y \\ = \sin^2 76^\circ - \cos^2 76^\circ \end{vmatrix}$                                                 | $\sqrt{\cos^2 14^\circ}$                                                                        |
|     | $= \cos^2 14^\circ - \sin^2 14^\circ$                                                                                        | $\sqrt{\sin^2 14^\circ}$                                                                        |
|     | $= \cos 2(14^{\circ})$                                                                                                       | ✓ recognition of cos                                                                            |
|     | $=\cos 28^{\circ}$                                                                                                           | double angle                                                                                    |
|     | $= \sin 62^{\circ}$                                                                                                          | √ cos 28°                                                                                       |
|     |                                                                                                                              | (4)                                                                                             |
|     |                                                                                                                              | [12]                                                                                            |

| 7.1 | $0 < y < 2$ or $y \in [0, 2]$                                                                | ✓ critical values/                                                                                     |
|-----|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| /.1 | $0 \le y \le 2 \text{ or } y \in [0; 2]$                                                     | kritieke waardes                                                                                       |
|     |                                                                                              | ✓ notation/notasie                                                                                     |
|     |                                                                                              | (2)                                                                                                    |
| 7.2 | $\sin x + 1 = \cos 2x$                                                                       | (2)                                                                                                    |
| 1.2 | $\sin x + 1 = \cos 2x$ $\sin x + 1 = 1 - 2\sin^2 x$                                          | $\sqrt{1-2\sin^2x}$                                                                                    |
|     | $2\sin^2 x + \sin x = 0$                                                                     | $\sqrt{1-2\sin x}$<br>$\sqrt{\sin x}$ st form/st vorm                                                  |
|     | $\sin x + \sin x = 0$<br>$\sin x(2\sin x + 1) = 0$                                           | $\begin{array}{c c} \mathbf{v} & \text{st 101111/3} \mathbf{t} & \mathbf{vorm} \\ \end{array} \tag{2}$ |
| 7.3 | $\sin x(2\sin x + 1) = 0$ $\sin x(2\sin x + 1) = 0$                                          | $\sqrt{\sin x} = 0$ or                                                                                 |
| 7.5 | 1                                                                                            |                                                                                                        |
|     | $\sin x = 0 \qquad or \qquad \sin x = -\frac{1}{2}$                                          | $\sin x = -\frac{1}{2}$                                                                                |
|     | $x = 0^{\circ} + k .360^{\circ} \text{ or } $ $x = 210^{\circ} + k .360^{\circ} \text{ or }$ | $\checkmark 0^{\circ}; 180^{\circ} $ OR/OF                                                             |
|     | x = 0 + k .500  or $x = 210 + k .500  or$                                                    | $x = k.180^{\circ}$                                                                                    |
|     | $x = 180^{\circ} + k.360^{\circ}$ $x = 330^{\circ} + k.360^{\circ}, k \in \mathbb{Z}$        | √ 210°; 330°                                                                                           |
|     | 0R/OF                                                                                        | $\checkmark k.360^{\circ}, k \in \mathbb{Z}$                                                           |
|     | $x = k.180^{\circ}, k \in \mathbb{Z}$                                                        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                 |
| 7.4 | A = M.100 , N.C.2                                                                            | (4)                                                                                                    |
| '   |                                                                                              | ✓ y-intercept/afsnit                                                                                   |
|     |                                                                                              | $\checkmark$ x-intercepts/afsnitte                                                                     |
|     |                                                                                              | ✓ min/max points/                                                                                      |
|     |                                                                                              | min/maks punte                                                                                         |
|     |                                                                                              | 7                                                                                                      |
|     |                                                                                              |                                                                                                        |
|     | -90 A5 45 90 135 180 225 270                                                                 |                                                                                                        |
|     |                                                                                              |                                                                                                        |
|     |                                                                                              |                                                                                                        |
|     |                                                                                              |                                                                                                        |
|     |                                                                                              |                                                                                                        |
|     |                                                                                              |                                                                                                        |
|     |                                                                                              |                                                                                                        |
|     |                                                                                              | (3)                                                                                                    |
| 7.5 | f(x) = g(x)  at/by:                                                                          |                                                                                                        |
|     | $x = -30^{\circ}$ ; $0^{\circ}$ ; $180^{\circ}$ ; $210^{\circ}$                              | ✓ -30°; 0°; 180°; 210°                                                                                 |
|     | $\therefore f(x+30^\circ) = g(x+30^\circ) \text{ at/by:}$                                    | // (00 200                                                                                             |
|     | $x = -60^{\circ} ; -30^{\circ} ; 150^{\circ} ; 180^{\circ}$                                  | √√ -60°; -30°;                                                                                         |
|     |                                                                                              | 150°; 180°                                                                                             |
| 7.6 | G : '11 'C/D 1 11                                                                            | (3)                                                                                                    |
| 7.6 | Series will converge if/Reeks sal konvergeer as: $-1 < r < 1$                                | $\sqrt{-1} < r < 1$                                                                                    |
|     | $-1 < 2\cos 2x < 1$                                                                          | $\checkmark r = 2\cos 2x$                                                                              |
|     | $\left  -\frac{1}{2} < \cos 2x < \frac{1}{2} \right $                                        | $\sqrt{-\frac{1}{2}} < \cos 2x < \frac{1}{2}$                                                          |
|     | 2 2                                                                                          | 2 2                                                                                                    |
|     | 200 (200 )                                                                                   | ( ( 200                                                                                                |
|     | $\therefore 30^{\circ} < x < 60^{\circ} \text{ or } x \in (30^{\circ}; 60^{\circ})$          | $\checkmark \checkmark 30^{\circ} < x < 60^{\circ}$                                                    |
|     |                                                                                              | (5)                                                                                                    |
|     |                                                                                              | [19]                                                                                                   |

8.1



| 8.1.1 | x = 96°                                                   | $(\angle \text{ at centre} = 2\angle \text{ at circumference}/$<br>$\angle \text{ by midpt} = 2\angle \text{ by omtrek})$ | ✓ S ✓ R | (2) |
|-------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 8.1.2 | $\hat{C}_2 + \hat{B}_2 = 180^\circ - 96^\circ = 84^\circ$ | (sum of $\angle$ s in $\Delta$ / som $v\angle e$ in $\Delta$ )                                                            | √ S     |     |
|       | $y = \hat{B}_2 = 42^{\circ}$                              | $(\angle s \text{ opp} = \text{sides}/\angle e \text{ teenoor} = sye)$                                                    | ✓ S     |     |
|       |                                                           |                                                                                                                           |         | (2) |



| 8.2.1 | $\hat{F}_1 = 90^{\circ}$ | (line from centre to midpt chord/  lyn vanaf midpt na midpt kd)    | ✓ S ✓ R | (2) |
|-------|--------------------------|--------------------------------------------------------------------|---------|-----|
| 8.2.2 | ABC = 150°               | (opposite $\angle$ s of cyclic quad/<br>tos $\angle$ e v koordevh) | ✓ S ✓ R | (2) |



| 8.3.1 (a) | tangent $\perp$ radius/diameter / raaklyn $\perp$ radius/middellyn | ✓ R                    |
|-----------|--------------------------------------------------------------------|------------------------|
|           |                                                                    | (1)                    |
| 8.3.1 (b) | tangents from common pt <b>OR</b> tangents from same pt /          | ✓ R                    |
|           | raaklyne v gemeensk pt <b>OF</b> raaklyne vanaf dies pt            | (1)                    |
| 8.3.2     | $AB^2 + BC^2 = AC^2$                                               | $AB^2 + BC^2 = AC^2$   |
|           | $x^2 + (x+7)^2 = 13^2$ (Theorem of/Stelling vanPythagoras)         | ✓                      |
|           | $x^2 + x^2 + 14x + 49 = 169$                                       | $x^2 + (x+7)^2 = 13^2$ |
|           | $2x^2 + 14x - 120 = 0$                                             | ✓ standard form        |
|           | $x^2 + 7x - 60 = 0$                                                |                        |
|           | (x-5)(x+12) = 0                                                    |                        |
|           | $x = 5  (x \neq -12)$                                              | ( 0.000000             |
|           |                                                                    | ✓ answer (4)           |
|           |                                                                    | [14]                   |



| Same base (DE) and same height (between parallel lines)  Dieselfde basis (DE) en dieselfde hoogte (tussen ewewydige lyne) | ✓ same base/dies basis between    lines/ tussen   / lyne  (1)                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AD                                                                                                                        | ✓ S                                                                                                                                                                                                                                                                                                                                                                                    |
| DB                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                        |
| $\frac{1}{2}AE \times k$                                                                                                  | ✓ S                                                                                                                                                                                                                                                                                                                                                                                    |
| 1                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                        |
| $\frac{1}{2}EC \times k$                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                        |
| But/Maar area $\triangle DEB = \text{area } \triangle DEC$                                                                | ✓ S                                                                                                                                                                                                                                                                                                                                                                                    |
| (Same base and same height/dieselfde basis en dieselfde hoogte)                                                           | √ R                                                                                                                                                                                                                                                                                                                                                                                    |
| $\frac{\text{area } \Delta ADE}{\Delta ADE} = \frac{\text{area } \Delta ADE}{\Delta ADE}$                                 |                                                                                                                                                                                                                                                                                                                                                                                        |
| ·· area ΔDEB area ΔDEC                                                                                                    | ✓ S                                                                                                                                                                                                                                                                                                                                                                                    |
| $\therefore \frac{AD}{DR} = \frac{AE}{FC}$                                                                                | (5)                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                           | Dieselfde basis (DE) en dieselfde hoogte (tussen ewewydige lyne) $\frac{AD}{DB}$ $\frac{1}{2}AE \times k$ $\frac{1}{2}EC \times k$ But/Maar area $\Delta DEB = \text{area } \Delta DEC$ (Same base and same height/dieselfde basis en dieselfde hoogte) $\therefore \frac{\text{area } \Delta ADE}{\text{area } \Delta DEB} = \frac{\text{area } \Delta ADE}{\text{area } \Delta DEC}$ |



| 9.2.1 | $\frac{EM}{AM} = \frac{FD}{AD}$ $\frac{EM}{AM} = \frac{3}{7}$                                                                                                                                                                                     | (Line parallel one side of $\Delta$ OR  prop th; EF     BD)  (Lyn ewewydig aan sy $\nu \Delta$ OF eweredigst; EF   BD) | ✓ S ✓ R  ✓ answer/antw  (3)                                                        |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 9.2.2 | $\frac{CM = AM}{\frac{CM}{ME}} = \frac{AM}{ME} = \frac{7}{3}$                                                                                                                                                                                     | (diags of parm bisect/hoekl parm halv) (from 9.2.1/vanaf 9.2.1)                                                        | $\checkmark$ S $\checkmark$ R $\checkmark$ answer/antw (3)                         |
| 9.2.3 | $h \text{ of } \Delta FDC = h \text{ of } \Delta BDC$ $\frac{\text{area } \Delta FDC}{\text{area } \Delta BDC} = \frac{\frac{1}{2} FD.h}{\frac{1}{2} BC.h}$ $= \frac{FD}{AD}$ $= \frac{3}{7}$                                                     | (AD     BC)  (opp sides of parm =)  (tos sye v parm =)                                                                 | ✓ AD     BC  ✓ subst into area form/ subst in opp formule  ✓ S  ✓ answer/antw  (4) |
|       | OR/OF $\frac{\text{area } \Delta \text{FDC}}{\text{area } \Delta \text{ADC}} = \frac{\text{FD}}{\text{AD}} = \frac{3}{7}$ But Area \Delta ADC = Area \Delta $\frac{\text{area } \Delta \text{FDC}}{\text{area } \Delta \text{BDC}} = \frac{3}{7}$ | (same heights) (dieselfde hoogtes)  BDC (diags of parm bisect area) (hoekl v parm halv opp)                            | ✓ S ✓ R  ✓ S  ✓ answer/antw  (4)  [16]                                             |



| 10.1.1 | Tangent chord theorem/Raakl                | lyn-koordstelling                                                             | ✓ R                         |      |
|--------|--------------------------------------------|-------------------------------------------------------------------------------|-----------------------------|------|
|        |                                            |                                                                               |                             | (1)  |
| 10.1.2 | Tangent chord theorem/Raakl                | lyn-koordstelling                                                             | ✓ R                         |      |
|        |                                            |                                                                               | . –                         | (1)  |
| 10.1.3 | Corresponding angles equal/C               | Ooreenkomstige ∠e gelyk                                                       | ✓ R                         | (1)  |
| 10.1.4 | ( ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    | <b>N</b> ( )                                                                  | / D                         | (1)  |
| 10.1.4 | ∠s subtended by chord PQ                   | _                                                                             | ✓ R                         | (1)  |
| 10.1.7 |                                            | koord <b>OF</b> ∠e in dieselfde segment                                       | ( 5                         | (1)  |
| 10.1.5 | alternate ∠s/verwisselende ∠s              | e; WT     SP                                                                  | ✓ R                         | (1)  |
| 10.0   |                                            |                                                                               |                             | (1)  |
| 10.2   | $\frac{RW}{M} = \frac{RT}{M}$              | (Line parallel one side of $\Delta$ <b>OR</b>                                 | $\checkmark S \checkmark R$ |      |
|        | RS RP                                      | -                                                                             |                             |      |
|        |                                            | prop th; WT     SP)                                                           |                             |      |
|        | $\therefore RT = \frac{WR.RP}{RS}$         | (Lyn ewewydig aan sy $v \Delta$ <b>OF</b>                                     |                             | (2)  |
|        | RS                                         | eweredighst: WT / / SP)                                                       |                             |      |
|        | ODIOE                                      |                                                                               |                             |      |
|        | OR/OF                                      |                                                                               |                             |      |
|        | ΔRTW       ΔRPS                            | $(\angle; \angle; \angle)$                                                    | ✓ S                         |      |
|        | $\therefore \frac{RW}{RS} = \frac{RT}{RP}$ | (ΔRTW       ΔRPS)                                                             | ✓ S                         |      |
|        | $\frac{1}{RS} - \frac{1}{RP}$              | $(\Delta \mathbf{K}^{T} \mathbf{W} \mid    \Delta \mathbf{K}^{T} \mathbf{S})$ | , S                         |      |
|        | $\therefore RT = \frac{RW.RP}{R}$          |                                                                               |                             | (2)  |
|        | $RI = \frac{RI}{RS}$                       |                                                                               |                             | (-)  |
| 10.3   | $y = \hat{T}_2 = \hat{R}_3$                | (tan chord theorem/Rkl-koordst)                                               | ✓ S ✓ R                     |      |
|        | $y = \hat{R}_3 = \hat{Q}_1$                | (∠s in same segment/∠e in dieselfde                                           | $\checkmark S \checkmark R$ |      |
|        | 3 1                                        | segment)                                                                      |                             | (4)  |
|        |                                            | ~~~~                                                                          | 1                           | ( '/ |



| 10.4 | $\hat{Q}_3 = P\hat{S}R$                                | $(\text{ext} \angle \text{ of cyc quad}/buite \angle v kdvh})$ | ✓ S ✓ R                    |     |
|------|--------------------------------------------------------|----------------------------------------------------------------|----------------------------|-----|
|      | $\hat{PSR} = \hat{W}_2$                                | $(corresp \angle s/ooreenk \angle e ; WT     SP)$              | ✓ S                        |     |
|      | $\therefore \hat{\mathbf{Q}}_3 = \hat{\mathbf{W}}_2$   |                                                                |                            | (3) |
|      | OR/OF                                                  |                                                                |                            |     |
|      | $\hat{\mathbf{Q}}_2 = x$                               | (∠s in same segment/∠e in dies segment)                        | √ R                        |     |
|      | $\hat{\mathbf{Q}}_3 = 180^{\circ} - (x + y)$           | (∠s on straight line/∠e op reguitlyn)                          | ✓ S                        |     |
|      | $\hat{\mathbf{W}}_2 = 180^\circ - (x+y)$               | $(\angle s \text{ of } \Delta WRT/\angle e \ v \ \Delta WRT)$  | ✓ S                        | (3) |
|      | $\therefore \hat{\mathbf{Q}}_3 = \hat{\mathbf{W}}_2$   |                                                                |                            | (3) |
| 10.5 | In $\triangle$ RTS and $\triangle$ RQP:                |                                                                | _                          |     |
|      | $\hat{\mathbf{R}}_3 = \hat{\mathbf{R}}_2 = \mathbf{y}$ | (proven above/hierbo bewys)                                    | ✓ S                        |     |
|      | $\hat{\mathbf{S}}_2 = \hat{\mathbf{P}}_2$              | (∠s in same segment/∠e in dies segment)                        | ✓ S/R                      |     |
|      | $R\hat{T}S = R\hat{Q}P$                                | $(3^{rd} \text{ angle of } \Delta)$                            | ✓ S OR/OF                  |     |
|      | ∴ ∆RTS       ∆RQP                                      | $(\angle; \angle; \angle)$                                     | $(\angle; \angle; \angle)$ |     |
|      |                                                        |                                                                |                            | (3) |

| 10.6 | D                                                                                     |                                          | / C                                                               |
|------|---------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------|
| 10.6 | $\frac{RT}{R} = \frac{RS}{RR}$                                                        | $(\Delta RTS \mid \mid \mid \Delta RQP)$ | ✓ S                                                               |
|      | RQ RP                                                                                 |                                          | RS                                                                |
|      | $\frac{RS}{RP} \times \frac{RS}{RP} = \frac{RT}{RQ} \times \frac{RS}{RP}$             |                                          | $\checkmark \times \frac{RS}{RP}$ on both                         |
|      |                                                                                       |                                          | sides                                                             |
|      | $\left(\frac{RS}{RP}\right)^2 = \left(\frac{RT}{RP}\right)\left(\frac{RS}{RQ}\right)$ |                                          | (RT)(RS)                                                          |
|      | $= \left(\frac{RW}{RS}\right) \left(\frac{RS}{RQ}\right)$                             | (proven in 10.2/bewys in 10.2)           | $\sqrt{\left(\frac{RT}{RP}\right)\left(\frac{RS}{RQ}\right)}$ (3) |
|      | $=\frac{RW}{RQ}$                                                                      |                                          |                                                                   |
|      | OR/OF                                                                                 |                                          |                                                                   |
|      | $\frac{RT}{RQ} = \frac{RS}{RP}$                                                       | $(\Delta RTS \mid \mid \mid \Delta RQP)$ | ✓ S                                                               |
|      | But $RT = \frac{WR.RP}{RS}$                                                           | (proven in 10.2/bewys in 10.2)           | $\checkmark RT = \frac{WR.RP}{RS}$                                |
|      | $\therefore \frac{RT}{RQ} = \frac{WR.RP}{RQ.RS} = \frac{RS}{RP}$                      |                                          |                                                                   |
|      | $WR.RP^2 = RQ.RS^2$                                                                   |                                          | ✓multiplication/                                                  |
|      |                                                                                       |                                          | vermenigvuldig                                                    |
|      | $\therefore \frac{WR}{RQ} = \frac{RS^2}{RP^2}$                                        |                                          | (3)                                                               |
|      | OR/OF                                                                                 |                                          |                                                                   |
|      | $\frac{RT}{RS} = \frac{RQ}{RP}$                                                       | $(\Delta RTS \mid \mid \mid \Delta RQP)$ | ✓ S                                                               |
|      | $RQ = \frac{RT.RP}{RS}$                                                               |                                          |                                                                   |
|      | and WR = $\frac{RT.RS}{RP}$                                                           | (proven in 10.2/bewys in 10.2)           | $\checkmark$ WR = $\frac{RT.RS}{RP}$                              |
|      | $\frac{RT.RS}{RP}$                                                                    |                                          |                                                                   |
|      | $\frac{WR}{RQ} = \frac{RP}{RT.RP}$                                                    |                                          |                                                                   |
|      | RS                                                                                    |                                          | ✓ simplification/                                                 |
|      | $=\frac{RT.RS}{R} \times \frac{RS}{R}$                                                |                                          | vereenvoudiging                                                   |
|      | RP RT.RP                                                                              |                                          |                                                                   |
|      | $=\frac{RS^2}{RP^2}$                                                                  |                                          |                                                                   |
|      | IXI                                                                                   |                                          | (3)                                                               |
|      |                                                                                       | TOTAL/I                                  | [20]<br>FOTAAL: 150                                               |

TOTAL/TOTAAL:

**150**