Chapter 15: Continuous-Time Topics

Kerry Back BUSI 521/ECON 505 Spring 2024 Rice University

Risk Neutral Probabilities

Risk-Neutral Probabilities in Continuous Time

- Consider $T < \infty$.
- Let R denote the money market account price with $R_0 = 1$.
- Let *M* be an SDF process. Assume *MR* is a martingale so

$$E[M_T R_T] = R_0 = 1$$

Define

$$\mathbb{Q}(A) = \mathsf{E}[M_T R_T 1_A]$$

for each event A that is distinguishable at date T, where $1_A = 1$ when the state of the world is in A and 0 otherwise.

ullet It follows that $\mathbb Q$ is a probability (measure) and

$$\mathsf{E}^*[X_T] = \mathsf{E}[M_T R_T X_T]$$

for any random variable X_T depending on date-T information, where E^* denotes expectation with respect to \mathbb{Q} .

Risk-Neutral Valuation

 Let W be such that MW is a martingale under the physical probability. Because we changed the probability using MR, a theorem in probability theory tells us that

$$\frac{MW}{MR}$$

is a \mathbb{Q} -martingale.

• So, W/R is a \mathbb{Q} -martingale. Thus,

$$W_t = R_t \mathsf{E}_t^* \left[\frac{W_T}{R_T} \right] = \mathsf{E}_t^* \left[\exp \left(- \int_t^T r_u \, \mathrm{d}u \right) W_T \right].$$

- In other words, asset values are expected discounted values, taking expectations with respect to the risk neutral probability and discounting at the instantaneous risk-free rate.
- It follows that expected returns under the RNP equal the risk-free rate.

Girsanov's Theorem

• Let *M* be an SDF process with

$$\frac{\mathrm{d}M}{M} = -r\,\mathrm{d}t - \lambda'\,\mathrm{d}B$$

Here, r and λ can be stochastic processes.

- Define the risk-neutral probability $\mathbb Q$ using the martingale MR.
- ullet The vector B is not a vector of Brownian motions under ${\mathbb Q}$
 - Its drift is nonzero.
 - But, we still have quadratic variation (dB)(dB)' = I dt, so it is "close" to being a vector of Brownian motions.
- ullet Girsanov's theorem states that B^* defined by $B_0^*=0$ and

$$dB^* = dB + \lambda dt$$

is a vector of independent Brownian motions under the risk-neutral probability $\mathbb{Q}.$

Asset Returns under a Risk-Neutral Probability

· Recall that the vector of asset returns is

$$\frac{\mathrm{d}S}{S} = \mu \, \mathrm{d}t + \sigma \, \mathrm{d}B$$

• Define $dB^* = dB + \lambda dt$. Substitute to obtain

$$\frac{\mathrm{d}S}{S} = \mu \, \mathrm{d}t + \sigma \left(\mathrm{d}B^* - \lambda \, \mathrm{d}t \right)$$
$$= \left(\mu - \sigma \lambda \right) \mathrm{d}t + \sigma \, \mathrm{d}B^*$$
$$= r\iota \, \mathrm{d}t + \sigma \, \mathrm{d}B^*$$

- Let $f(t, S_t)$ denote the value at t of some future payoff (e.g., the value of $(S_T K)1_A$).
- It is convenient to use the risk-neutral probability. The RN expected rate of return is the risk-free rate:

$$\frac{\text{drift of } f}{f(t, S_t)} = r$$

- Let $f(t, S_t)$ denote the value at t of some future payoff (e.g., the value of $(S_T K)1_A$).
- It is convenient to use the risk-neutral probability. The RN expected rate of return is the risk-free rate:

$$\frac{\text{drift of } f}{f(t, S_t)} = r$$

$$df = f_t dt + f_S dS + \frac{1}{2} f_{SS} (dS)^2$$

$$= f_t dt + f_S (rS dt + \sigma S dB^*) + \frac{1}{2} f_{SS} (S^2 \sigma^2 dt)$$

- Let $f(t, S_t)$ denote the value at t of some future payoff (e.g., the value of $(S_T K)1_A$).
- It is convenient to use the risk-neutral probability. The RN expected rate of return is the risk-free rate:

$$\frac{\text{drift of } f}{f(t, S_t)} = r$$

$$df = f_t dt + f_S dS + \frac{1}{2} f_{SS} (dS)^2$$

$$= f_t dt + f_S (rS dt + \sigma S dB^*) + \frac{1}{2} f_{SS} (S^2 \sigma^2 dt)$$

So

drift of
$$f = f_t + rSf_S + \frac{1}{2}\sigma^2S^2f_{SS}$$

The fundamental PDE is

$$f_t + rSf_S + \frac{1}{2}\sigma^2 S^2 f_{SS} = rf$$

(*)