Getting and Cleaning Data Codebook

By Sergio D'Argenio

Introduction:

The Getting and Cleaning Data Codebook project is based on The Human Activity Recognition Dataset (for a description of the dataset see Sources). Starting from this dataset I wrote a script that performs the following operations:

- 1. Merges the training and the test sets to create one data set.
- 2. Extracts only the measurements on the mean and standard deviation for each measurement.
- 3. Uses descriptive activity names to name the activities in the data set
- 4. Appropriately labels the data set with descriptive variable names.
- 5. From the data set in step 4, creates a second, independent tidy data set with the average of each variable for each activity and each subject.

More details on how to use the script in the readme.md file.

Note: As I have no admin rights on this computer and the time to submit the project is running out, I created this pdf with word – I could not install Latex that is needed to print pdfs from an R Markdown document. In the project description, it was not specified how the pdf should be produced, however I included an Rmd version of the Codebook.

Variables Description

1. Subjects Integer 1..30 Identifier of the subject who carried out the experiment.

2. ActivityLabels String

Labels of the six activities performed by each of the subjects wearing a smartphone (Samsung Galaxy S II) on the waist.

LAYING

SITTING

STANDING

WALKING

WALKING_DOWNSTAIRS WALKING_UPSTAIRS

3. TimeBodyAccelerationStandardDeviationX Decimal Standard Deviation of the accelerometer body signal measured along the Axis X

4. TimeBodyAccelerationStandardDeviationY Decimal Standard Deviation of the accelerometer body signal measured along the Axis Y

5. TimeBodyAccelerationStandardDeviationZ Decimal Standard Deviation of the accelerometer body signal measured along the Axis Z

6. TimeGravityAccelerationStandardDeviationX Decimal Standard Deviation of the accelerometer Gravity signal measured along the Axis X

7. TimeGravityAccelerationStandardDeviationY Decimal

Standard Deviation of the accelerometer Gravity signal measured along the Axis Y

8. TimeGravityAccelerationStandardDeviationZ Decimal Standard Deviation of the accelerometer Gravity signal measured along the Axis Z 9. TimeBodyAccelerationJerkStandardDeviationX Standard Deviation of the accelerometer body Jerk signal measured along the Axis X 10. TimeBodyAccelerationJerkStandardDeviationY Decimal Standard Deviation of the accelerometer body Jerk signal measured along the Axis Y 11. TimeBodyAccelerationJerkStandardDeviationZ Decimal Standard Deviation of the accelerometer body Jerk signal measured along the Axis Z 12. TimeBodyGyroscopeStandardDeviationX Decimal Standard Deviation of the Gyroscope body signal measured along the Axis X 13. TimeBodyGyroscopeStandardDeviationY Decimal Standard Deviation of the Gyroscope body signal measured along the Axis Y 14. TimeBodyGyroscopeStandardDeviationZ Decimal Standard Deviation of the Gyroscope body signal measured along the Axis Z 15. TimeBodyGyroscopeJerkStandardDeviationX Decimal Standard Deviation of the Gyroscope body Jerk signal measured along the Axis X 16. TimeBodyGyroscopeJerkStandardDeviationY Standard Deviation of the Gyroscope body Jerk signal measured along the Axis Y 17. TimeBodyGyroscopeJerkStandardDeviationZ Decimal Standard Deviation of the Gyroscope body Jerk signal measured along the Axis Z 18. TimeBodyAccelerationMagnitudeStandardDeviation Decimal Standard Deviation of the Magnitude accelerometer body signal 19. TimeGravityAccelerationMagnitudeStandardDeviation Decimal Standard Deviation of the Magnitude accelerometer Gravity signal 20. TimeBodyAccelerationJerkMagnitudeStandardDeviation Decimal Standard Deviation of the Magnitude accelerometer body Jerk signal 21. TimeBodyGyroscopeMagnitudeStandardDeviation Decimal Standard Deviation of the Magnitude Gyroscope body signal 22. TimeBodyGyroscopeJerkMagnitudeStandardDeviation Decimal Standard Deviation of the Magnitude Gyroscope body Jerk signal 23. FrequencyBodyAccelerationStandardDeviationX Decimal Standard Deviation of the accelerometer body signal measured along the Axis X

24.	FrequencyBodyAccelerationStandardDeviationY Standard Deviation of the accelerometer body signal measured along th	Decimal e Axis Y
25.	FrequencyBodyAccelerationStandardDeviationZ Standard Deviation of the accelerometer body signal measured along th	Decimal e Axis Z
26.	FrequencyBodyAccelerationJerkStandardDeviationX Standard Deviation of the accelerometer body Jerk signal measured alor	Decimal ng the Axis X
27.	FrequencyBodyAccelerationJerkStandardDeviationY Standard Deviation of the accelerometer body Jerk signal measured alor	Decimal ng the Axis Y
28.	FrequencyBodyAccelerationJerkStandardDeviationZ Standard Deviation of the accelerometer body Jerk signal measured alor	Decimal ng the Axis Z
29.	FrequencyBodyGyroscopeStandardDeviationX Standard Deviation of the Gyroscope body signal measured along the Ax	Decimal cis X
30.	FrequencyBodyGyroscopeStandardDeviationY Standard Deviation of the Gyroscope body signal measured along the Ax	Decimal tis Y
31.	FrequencyBodyGyroscopeStandardDeviationZ Standard Deviation of the Gyroscope body signal measured along the Ax	Decimal cis Z
32.	FrequencyBodyAccelerationMagnitudeStandardDeviation Standard Deviation of the Magnitude accelerometer body signal	Decimal
33.	FrequencyBodyBodyAccelerationJerkMagnitudeStandardDeviation Standard Deviation of the Magnitude accelerometer body Jerk signal	Decimal
34.	FrequencyBodyBodyGyroscopeMagnitudeStandardDeviation Standard Deviation of the Magnitude Gyroscope body signal	Decimal
35.	FrequencyBodyBodyGyroscopeJerkMagnitudeStandardDeviation Standard Deviation of the Magnitude Gyroscope body Jerk signal	Decimal
36.	TimeBodyAccelerationmeanX Mean of the accelerometer body signal measured along the Axis X	Decimal
37.	TimeBodyAccelerationmeanY Mean of the accelerometer body signal measured along the Axis Y	Decimal
38.	TimeBodyAccelerationmeanZ Mean of the accelerometer body signal measured along the Axis Z	Decimal
39.	TimeGravityAccelerationmeanX Mean of the accelerometer Gravity signal measured along the Axis X	Decimal

40. TimeGravityAccelerationmeanY Mean of the accelerometer Gravity signal measured along the Axis Y	Decimal
41. TimeGravityAccelerationmeanZ Mean of the accelerometer Gravity signal measured along the Axis Z	Decimal
42. TimeBodyAccelerationJerkmeanX Mean of the accelerometer body Jerk signal measured along the Axis X	Decimal
43. TimeBodyAccelerationJerkmeanY Mean of the accelerometer body Jerk signal measured along the Axis Y	Decimal
44. TimeBodyAccelerationJerkmeanZ	Decimal
Mean of the accelerometer body Jerk signal measured along the Axis Z 45. TimeBodyGyroscopemeanX Mean of the Gyroscope body signal measured along the Axis X	Decimal
46. TimeBodyGyroscopemeanY Mean of the Gyroscope body signal measured along the Axis Y	Decimal
47. TimeBodyGyroscopemeanZ Mean of the Gyroscope body signal measured along the Axis Z	Decimal
48. TimeBodyGyroscopeJerkmeanX Mean of the Gyroscope body Jerk signal measured along the Axis X	Decimal
49. TimeBodyGyroscopeJerkmeanY Mean of the Gyroscope body Jerk signal measured along the Axis Y	Decimal
50. TimeBodyGyroscopeJerkmeanZ Mean of the Gyroscope body Jerk signal measured along the Axis Z	Decimal
51. TimeBodyAccelerationMagnitudemean Mean of the Magnitude accelerometer body signal	Decimal
52. TimeGravityAccelerationMagnitudemean Mean of the Magnitude accelerometer Gravity signal	Decimal
53. TimeBodyAccelerationJerkMagnitudemean Mean of the Magnitude accelerometer body Jerk signal	Decimal
54. TimeBodyGyroscopeMagnitudemean Mean of the Magnitude Gyroscope body signal	Decimal
55. TimeBodyGyroscopeJerkMagnitudemean Mean of the Magnitude Gyroscope body Jerk signal	Decimal
56. FrequencyBodyAccelerationmeanX	Decimal

Mean of the accelerometer body signal measured along the Axis X

57.	FrequencyBodyAccelerationmeanY Mean of the accelerometer body signal measured along the Axis Y	Decimal
58.	FrequencyBodyAccelerationmeanZ Mean of the accelerometer body signal measured along the Axis Z	Decimal
59.	FrequencyBodyAccelerationMeanFrequencyX Mean Frequency of the accelerometer body signal measured along the	Decimal Axis X
60.	FrequencyBodyAccelerationMeanFrequencyY Mean Frequency of the accelerometer body signal measured along the	Decimal Axis Y
61.	FrequencyBodyAccelerationMeanFrequencyZ Mean Frequency of the accelerometer body signal measured along the	Decimal Axis Z
62.	FrequencyBodyAccelerationJerkmeanX Mean of the accelerometer body Jerk signal measured along the Axis X	Decimal
63.	FrequencyBodyAccelerationJerkmeanY Mean of the accelerometer body Jerk signal measured along the Axis Y	Decimal
64.	FrequencyBodyAccelerationJerkmeanZ Mean of the accelerometer body Jerk signal measured along the Axis Z	Decimal
65.	FrequencyBodyAccelerationJerkMeanFrequencyX Mean Frequency of the accelerometer body Jerk signal measured along	Decimal the Axis X
66.	FrequencyBodyAccelerationJerkMeanFrequencyY Mean Frequency of the accelerometer body Jerk signal measured along	Decimal the Axis Y
67.	FrequencyBodyAccelerationJerkMeanFrequencyZ Mean Frequency of the accelerometer body Jerk signal measured along	Decimal the Axis Z
68.	FrequencyBodyGyroscopemeanX Mean of the Gyroscope body signal measured along the Axis X	Decimal
69.	FrequencyBodyGyroscopemeanY Mean of the Gyroscope body signal measured along the Axis Y	Decimal
70.	FrequencyBodyGyroscopemeanZ Mean of the Gyroscope body signal measured along the Axis Z	Decimal
71.	FrequencyBodyGyroscopeMeanFrequencyX Mean Frequency of the Gyroscope body signal measured along the Axis	Decimal X
72.	FrequencyBodyGyroscopeMeanFrequencyY	Decimal

Mean Frequency of the Gyroscope body signal measured along the Axis Y

73.	FrequencyBodyGyroscopeMeanFrequencyZ Mean Frequency of the Gyroscope body signal measured along the Axis	Decimal Z
74.	FrequencyBodyAccelerationMagnitudemean Mean Frequency of the Magnitude accelerometer body signal	Decimal
75.	FrequencyBodyAccelerationMagnitudeMeanFrequency Mean Frequency of the Magnitude accelerometer body signal	Decimal
76.	FrequencyBodyBodyAccelerationJerkMagnitudemean Mean of the Magnitude accelerometer body Jerk signal	Decimal
77.	FrequencyBodyBodyAccelerationJerkMagnitudeMeanFrequency Mean Frequency of the Magnitude accelerometer body Jerk signal	Decimal
78.	FrequencyBodyBodyGyroscopeMagnitudemean Mean of the Magnitude Gyroscope body signal	Decimal
79.	FrequencyBodyBodyGyroscopeMagnitudeMeanFrequency Mean Frequency of the Magnitude Gyroscope body signal	Decimal
80.	FrequencyBodyBodyGyroscopeJerkMagnitudemean Mean of the Magnitude Gyroscope body Jerk signal	Decimal
81.	FrequencyBodyBodyGyroscopeJerkMagnitudeMeanFrequency Mean Frequency of the Magnitude Gyroscope body Jerk signal	Decimal

Sources:

The Human Activity Recognition Dataset

The experiments have been carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist. Using its embedded accelerometer and gyroscope, we captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments have been video-recorded to label the data manually. The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers was selected for generating the training data and 30% the test data.

The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window). The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low frequency components, therefore a filter with 0.3 Hz cutoff frequency was used. From each window, a vector of features was obtained by calculating variables from the time and frequency domain. See 'features_info.txt' for more details.

For each record it is provided:

- Triaxial acceleration from the accelerometer (total acceleration) and the estimated body acceleration.
- Triaxial Angular velocity from the gyroscope.
- A 561-feature vector with time and frequency domain variables.
- Its activity label.
- An identifier of the subject who carried out the experiment.

The features selected for this database come from the accelerometer and gyroscope 3-axial raw signals tAcc-XYZ and tGyro-XYZ. These time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Similarly, the acceleration signal was then separated into body and gravity acceleration signals (tBodyAcc-XYZ and tGravityAcc-XYZ) using another low pass Butterworth filter with a corner frequency of 0.3 Hz.

Subsequently, the body linear acceleration and angular velocity were derived in time to obtain Jerk signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ). Also the magnitude of these three-dimensional signals were calculated using the Euclidean norm (tBodyAccMag, tGravityAccMag, tBodyGyroMag, tBodyGyroJerkMag).

Finally a Fast Fourier Transform (FFT) was applied to some of these signals producing fBodyAcc-XYZ, fBodyAccJerk-XYZ, fBodyGyro-XYZ, fBodyAccJerkMag, fBodyGyroMag, fBodyGyroJerkMag. (Note the 'f' to indicate frequency domain signals).

These signals were used to estimate variables of the feature vector for each pattern:

'-XYZ' is used to denote 3-axial signals in the X, Y and Z directions.

tBodyAcc-XYZ

tGravityAcc-XYZ

tBodyAccJerk-XYZ

tBodyGyro-XYZ

tBodyGyroJerk-XYZ

tBodyAccMag

tGravityAccMag

tBodyAccJerkMag

tBodyGyroMag

tBodyGyroJerkMag

fBodyAcc-XYZ

fBodyAccJerk-XYZ

fBodyGyro-XYZ

fBodyAccMag

fBodyAccJerkMag

fBodyGyroMag

fBodyGyroJerkMag

The set of variables that were estimated from these signals are:

mean(): Mean value

std(): Standard deviation

mad(): Median absolute deviation

max(): Largest value in array

min(): Smallest value in array

sma(): Signal magnitude area

energy(): Energy measure. Sum of the squares divided by the number of values.

iqr(): Interquartile range
entropy(): Signal entropy

arCoeff(): Autorregresion coefficients with Burg order equal to 4

correlation(): correlation coefficient between two signals

maxInds(): index of the frequency component with largest magnitude

meanFreq(): Weighted average of the frequency components to obtain a mean frequency

skewness(): skewness of the frequency domain signal kurtosis(): kurtosis of the frequency domain signal

bandsEnergy(): Energy of a frequency interval within the 64 bins of the FFT of each window.

angle(): Angle between to vectors.

Additional vectors obtained by averaging the signals in a signal window sample. These are used on the angle() variable:

gravityMean tBodyAccMean tBodyAccJerkMean tBodyGyroMean tBodyGyroJerkMean