INTRODUCTION TO MACHINE LEARNING

LINEAR REGRESSION

Mingon Kang, Ph.D.

Department of Computer Science @ UNLV

^{*} Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington

Correlation (r)

- Linear association between two variables
- Show how to determine both the nature and strength of relationship between two variables
- Correlation lies between +1 to -1
- Zero correlation indicates that there is no relationship between the variables
- Pearson correlation coefficient
 - most familiar measure of dependence between two quantities

Correlation (r)

Correlation (r)

$$ho_{X,Y} = \mathrm{corr}(X,Y) = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y} = rac{E[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X \sigma_Y},$$

where *E* is the expected value operator, cov(,) means covariance, and corr(,) is a widely used alternative notation for the correlation coefficient

Samples with ONE independent variable

Samples with TWO independent variables

Given examples $(x_i, y_i)_{i=1...n}$

Predict y_{n+1} given a new point x_{n+1}

Samples with ONE independent variable

Samples with TWO independent variables

- How to represent the data as a vector/matrix
 - We assume a model:

$$\mathbf{y} = \mathbf{b}_0 + \mathbf{b}\mathbf{X} + \boldsymbol{\epsilon},$$

where b_0 and b are intercept and slope, known as coefficients or parameters. ϵ is the error term (typically assumes that $\epsilon \sim N(\mu, \sigma^2)$

- Simple linear regression
 - A single independent variable is used to predict
- Multiple linear regression
 - Two or more independent variables are used to predict

- How to represent the data as a vector/matrix
 - Include bias constant (intercept) in the input vector
 - $\mathbf{X} \in \mathbb{R}^{n \times (p+1)}$, $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^{p+1}$, and $\mathbf{e} \in \mathbb{R}^n$

$$y = X \cdot b + e$$

$$\mathbf{X} = \{\mathbf{1}, \mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_p}\}, \mathbf{b} = \{b_0, b_1, b_2, ..., b_p\}^{\mathrm{T}}$$

 $\mathbf{y} = \{y_1, y_2, ..., y_n\}^{\mathrm{T}}, \mathbf{e} = \{e_1, e_2, ..., e_n\}^{\mathrm{T}}$
· is a dot product

equivalent to

$$y_i = 1 * b_0 + x_{i1}b_1 + x_{i2}b_2 + \dots + x_{ip}b_p \ (1 \le i \le n)$$

Find the optimal coefficient vector **b** that makes the most similar observation

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{bmatrix} \begin{bmatrix} b_0 \\ \vdots \\ b_p \end{bmatrix} + \begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix}$$

Ordinary Least Squares (OLS)

$$y = Xb + e$$

- Estimate the unknown parameters (b) in linear regression model
- Minimizing the sum of the squares of the differences between the observed responses and the predicted by a linear function

Sum squared error =

$$\sum_{i=1}^{n} (y_i - \mathbf{x}_{i*} \mathbf{b})^2$$

Ordinary Least Squares (OLS)

Optimization

Need to minimize the error

$$\min J(\mathbf{b}) = \sum_{i=1}^{n} (y_i - \mathbf{x}_{i,*} \mathbf{b})^2$$

To obtain the optimal set of parameters (b),
 derivatives of the error w.r.t. each parameters must
 be zero.

Optimization

$$J = \mathbf{e}^{\mathrm{T}} \mathbf{e} = (\mathbf{y} - \mathbf{X}\mathbf{b})'(\mathbf{y} - \mathbf{X}\mathbf{b})$$

$$= (\mathbf{y}' - \mathbf{b}'\mathbf{X}')(\mathbf{y} - \mathbf{X}\mathbf{b})$$

$$= \mathbf{y}'\mathbf{y} - \mathbf{y}'\mathbf{X}\mathbf{b} - \mathbf{b}'\mathbf{X}'\mathbf{y} + \mathbf{b}'\mathbf{X}'\mathbf{X}\mathbf{b}$$

$$= \mathbf{y}'\mathbf{y} - 2\mathbf{b}'\mathbf{X}'\mathbf{y} + \mathbf{b}'\mathbf{X}'\mathbf{X}\mathbf{b}$$

$$\frac{\partial \mathbf{e}' \mathbf{e}}{\partial \mathbf{b}} = -2\mathbf{X}' \mathbf{y} + 2\mathbf{X}' \mathbf{X} \mathbf{b} = 0$$
$$(\mathbf{X}' \mathbf{X}) \mathbf{b} = \mathbf{X}' \mathbf{y}$$
$$\mathbf{b} = (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{y}$$

The Happiness Formula

$$\Box$$
 H = (G + DH + C + 3R) / 6

- Happiness ("H") is equal to
 - your level of Gratitude ("G") +
 - the degree to which you are living consistent with your own personal Definition of Happiness ("DH") +
 - how much you Contribute to others ("C") +
 - your success in what I call the 3 R's of happiness ("3R")

Ref: http://www.behappy101.com/happiness-formula.html

Linear regression with categorical variables

- We assumed that all variables are continuous variables
- Categorical variables:
 - Ordinal variables Encode data with continuous values
 - Evaluation: Excellent (5), Very good (4), Good (3), Poor (2), Very poor (1)
 - Nominal variables Use dummy variables
 - Department: Computer, Biology, Physics

	Computer Biology		Physics
Computer	1	0	0
Biology	0	1	0
Physics	0	0	1

Linear regression for classification

- For binary classification
 - Encode class labels as $y = \{0, 1\}$ or $\{-1, 1\}$
 - Apply OLS
 - Check which class the prediction is closer to
 - If class 1 is encoded to 1 and class 2 is -1.

class 1 if
$$f(x) \ge 0$$

class 2 if $f(x) < 0$

- Linear models are NOT optimized for classification
- Logistic regression

Linear regression for classification

ROC for classification

$$f(x) \stackrel{\geq}{<} \lambda$$

If f(x) is less than λ , class 1. Otherwise class 2. How can we know the optimal λ ?

□ Let's revisit EVALUATION.

Linear regression for classification

- Multi-label classification
 - Encode classes label as:

	Computer	Biology	Physics
Computer	1	0	0
Biology	0	1	0
Physics	0	0	1

- Perform linear regression multiple times for each class
- Consider y and b as matrix

Assumptions in Linear regression

- Linearity of independent variable in the predictor
 - normally good approximation, especially for highdimensional data
- Error has normal distribution, with mean zero and constant variance
 - important for tests
- Independent variables are independent from each other
 - Otherwise, it causes a multicollinearity problem; two or more predictor variables are highly correlated.
 - Should remove them

Think more!

	Feature 1	Feature 2	Feature 3	Feature 4
Coefficient	5.2	0.1	-6.6	0

- □ How can we interpret this model?
- What is the most useless feature?
 - Is it always useless to explain the dependent variable?
- What do negative coefficients represent?
- What is the most informative feature?

Different views between Statistics and CS

- In Statistics, description of the model is often more important.
 - Which variables are more informative and reliable to describe the responses? → p-values
 - How much information do the variables have?
- In Computer Science, the accuracy of prediction and classification is more important.
 - How well can we predict/classify?

Discussion

- What if data is imbalanced data?
- Why does OLS take squares instead of absolute values?