ature phase cannot be described using an expansion in terms of the low–temperature order parameter. A recent very detailed simulation study of a family of three–dimensional dimer models with ordered ground states and high–temperature Coulomb phases found a rich variety of continuous and discontinuous phase transitions, including double phase transitions where monopole excitations condense out of the Coulomb phase to give a conventional paramagnet at intermediate temperatures⁵².

The present understanding of these phenomena is that the gauge field associated with Coulomb phase is minimally coupled to a matter field which condenses in the ordered phase, following an Anderson–Higgs mechanism^{50–52}. In fact it is also possible to study zero temperature (quantum) phase transitions from Coulomb to ordered phases in three–dimensional *quantum* dimer models⁵⁶. These can in principle be continuous, occurring through the condensation of monopole excitations in the Coulomb phase⁵⁷, but numerical simulations suggest that the transition is first order³⁷.

Less is known about transitions in spin models, but one interesting scenario exists for a continuous transition in an extended Heisenberg model on a pyrochlore lattice from a Coulomb phase to a four–sublattice ordered state⁵³. This transition is found to be in the same universality class as a uniaxial ferroelectric with dipolar interactions, for which the upper critical dimension is three⁵⁸. This makes possible to continuous transitions with mean-field exponents (up to log corrections) — a scenario which closely resembles the transition from plateau-liquid into vector-quadrupole phase discussed below. Generically, however, transitions from Coulomb liquids into ordered states seem to be first order⁵³, a fact which may be explained by interactions between fluctuations of associated gauge field⁵⁴.

We conclude by noting that the complex forms of order which can occur in Heisenberg models on the pyrochlore lattice as a result of the interplay between farther–neighbor interactions and thermal fluctuations are also a topic of current interest²⁶. In finite magnetic field, these lead to a half–magnetization plateau which can be tuned at will between different forms of order²⁷. A similar fluctuation driven plateau, but with a uniquely defined form of order, is also expected to occur for the edge sharing tetrahedra of the FCC lattice⁵⁹.

We now return to the model in question.

B. Transition from plateau-liquid to ordered uuud state

For $h\simeq 4,\,T\lesssim b,\,{\rm Eq.}\,(1)$ exhibits the plateau–liquid state described in Sec. IIIC [cf. Fig. 2(b)]. Inclusion of a FM third–neighbor interaction J_3 [Eq. (2)] causes it to order at low temperatures. We consider first the conventional limit where both $|J_3|$ and b are "large", choosing parameters $J_3=-0.06$ and b=0.6. In this case there is strongly first order transition from paramagnet to four–sublattice plateau state for $T_N\approx 0.70$. This can be seen very clearly in simulation results for the heat capacity and the order parameter $\lambda_{\rm T_2}^{\rm global}$, and its susceptibility $\chi_{\rm T_2}^{\rm global}$, presented in Fig. 19. If we now decrease $|J_3|$, the transition temperature T_N must also decrease,

FIG. 19: (Color online) Temperature dependence of (a) heat capacity defined by Eqs. (31), (b) and (c) the related measure of local correlation $\lambda_{T_2}^{\rm local}$ and its susceptibility defined by Eqs. (10) and (11), and (d) and (e) the global order parameter $\lambda_{T_2}^{\rm global}$ and its susceptibility defined by Eqs. (8) and (9) for $b=0.6,\,h=4$ and a range of values of system size. The results are for $J_3=-0.06,$ showing a single first order transition into the ordered phase at $T_N=0.70(1)$ (indicated by the vertical dashed line).

and for sufficiently small $|J_3|$ it will become smaller than the crossover temperature $T^*\approx b$ associated with the plateau liquid.

In this case, there are anomalies in thermodynamic quantities at two distinct temperatures as demonstrated in Fig. 20. There is a broad maximum in $\chi_{T_2}^{\text{local}}$ at $T^* \approx 0.6$ [Fig. 20(c)], signaling the onset of the plateau liquid state, accompanied by a broad peak in the heat capacity C_v at a slightly lower temper-