Nome:	; № de aluno:	; Turma:	;
Curso: LEIC □ LEETC □ LEIM □ LEIRT □ MEET □	I MFIC □ MFRCM □	Docente: VA \square . IF \square .	IS \square . JV \square

Instituto Superior de Engenharia de Lisboa

Área Departamental de Engenharia de Eletrónica e Telecomunicações e de Computadores

(LEIC/LEETC/LEIM/LEIRT/MEIC/MEET/MERCM)

Redes de Internet - 1º Teste - 04/11/2019

- As perguntas de escolha múltipla podem ter uma ou mais respostas certas. Assinalar todas as respostas certas

•	e erradas com V ou F, respetivamente.
•	As perguntas de desenvolvimento devem ser respondidas de forma precisa e concisa, mas devidamente justificadas, no espaço após as perguntas, nas costas do enunciado, em folhas A4 brancas ou em folha de teste.
•	A folha de ajuda deve ser manuscrita, não impressa, não pode conter perguntas e/ou respostas, ter o número do aluno no canto superior direito e ser assinada, tal como todas as folhas de rascunho que utilizar.
•	Não pode haver telemóveis à vista devendo estes encontrarem-se sem som e guardados.
1)	Indique qual a finalidade do campo FCS numa trama Ethernet?
	☐ Deteção de erros #
	☐ Correção de erros
	☐ Indicação do fim da trama
	☐ Indicação do porto destino
2)	Um hub:
	☐ Utiliza o ARP para decidir por onde enviar cada trama que recebe
	☐ Reenvia as tramas que recebe por uma interface por todas as interfaces
	☐ Aprende e depois apenas reenvia uma trama recebida por uma interface na direção da máquina destino
	☐ Reenvia as tramas que recebe por uma interface por todas as interfaces, exceto pela interface por onde as recebeu#
3)	Um <i>switch</i> que já tenha aprendido onde estão as máquinas e quais os respetivos endereços MAC e que funcione no modo <i>cut-through</i> :
	☐ Assim que começa a receber bits de uma trama começa a enviá-los para a sua porta destino
	☐ Começa a enviar os bits da trama que está a receber para a sua porta destino após receber 64 bytes
	☐ Começa a enviar os bits da trama que está a receber para a sua porta destino após receber o endereço MAC
	destino #
	☐ Começa a enviar os bits da trama que está a receber para a sua porta destino após receber toda a trama e esta não apresentar bits errados
4)	Como procederia para possibilitar a comunicação entre dois PC que estão ligados ao mesmo <i>switch</i> mas em portas pertencentes a VLAN distintas (redes IPv4 distintas)?
	☐ Usar um <i>router</i> # Ter-se-ia de colocar um <i>router</i> para possibilitar a comunicação entre as VLAN.
	☐ Ligar duas portas em modo <i>trunk</i> onde passem ambas as VLAN
	☐ Ligar uma porta em modo acesso associada a uma das VLAN a outra porta no modo acesso associada à outra VLAN
	☐ Nenhuma das respostas
5)	Relativamente às VLAN:
	☐ Por cada VLAN existe um domínio de <i>broadcast</i> #
	☐ A VLAN de omissão (VLAN 1) tem que ser sempre utilizada
	☐ A sua utilização permite criar várias redes da camada 2 do modelo de TCP/IP #
	□ Ao ligar uma porta configurada em modo de acesso a uma porta configurada em modo <i>trunk</i> as tramas que saem da porta em modo de acesso ficam associadas à VLAN de menor índice do <i>trunk</i> , e vice-versa, e as tramadas das restantes VLAN são descartadas
6)	Num troço Ethernet entre <i>switches</i> , tipo ligação <i>trunk</i> , como é que um <i>switch</i> que recebe uma trama Ethernet sabe se a mesma inclui ou não uma <i>tag</i> IEEE 802.1Q indicativa de qual a VLAN a que pertence?
	A trama inclui no primeiro campo type o valor 0x8100 o qual indica que inclui no campo a seguir uma tag.

Nome:	; № de aluno:	; Turma:;
Curso: LEIC ☐ LEETC ☐ LEIM ☐ LEIRT ☐ MEET ☐ MEIC ☐ N	MERCM 🗆	Docente: VA \square , JF \square , JS \square , JV \square
7) No STP em que estados das portas são enviados BPDI Disable Blocking Listening# Learning#	U:	
☐ Forwarding # 8) No RSTP:		
 O No KSTP. □ Uma porta Alternate ou Backup não aceita BPDU □ As portas Edge transitam imediatamente para o es □ Utiliza os mesmos timers do STP mas com valores r □ Todos os switches geram e enviam um novo BPDU Sem ser a root bridge, quantas portas/interfaces do t 	muito inferiores a cada " <i>hello-time</i> " #	
bridges/switches?	ipo root port associat	aas a uma umca vean pouem ter as
 ☐ Uma # ☐ Tantas quantas as suas portas/interfaces ☐ Tantas quantas forem configuradas manualmente ☐ Tantas quantas as portas ligadas a segmentos do la 10) Uma root bridge numa determinada VLAN pode ter p Sim, se existirem duas ou mais portas dela que se ligudelas ficará no estado blocking. 	ido da <i>root bridge</i> Portas no estado <i>bloci</i>	_
11) Um <i>switch</i> que tenha as suas portas associadas a 3 VI	AN quantas árvoras	(snanning trees) torá do processor se
utilizar a norma: STP?1 PVST?3 MSTP?	z ii v quantas ai voi es	(spammig trees) tera de processar se
12) Como é eleita uma <i>root bridge</i> em STP? Todas as bridges inicialmente enviam C-BPDU. Comportas/interfaces, usando na comparação campos incentrada no <i>switch</i>), <i>Bridge ID</i> , <i>Port ID</i>), e também <i>Por</i> destes conjuntos de valores ganha. Quando uma bridenviar os C-BPDU. Apenas a <i>root bridge</i> gera e envia 6 BPDU.	cluídos na mensagem t ID da porta por ond ge deteta um valor c	C-BPDU (<i>Root Path Cost</i> (atualizado à le entrou o BPDU no <i>switch</i> . O menor onjunto menor do que o seu pára de
 13) Qual dos equipamentos da figura seguinte é eleito ro ☐ Hub ☐ Switch0 ☐ Switch1# ☐ Switch2 	ot bridge?	

Nome:	; Nº de aluno:	; Turma:	;
Curso: LEIC ☐ LEETC ☐ LEIM ☐ LEIRT ☐ MEET ☐ MEIC ☐	□ MERCM □	Docente: VA \square , JF \square ,	JS □, JV □
14) Para garantir o switch 0 da figura seguinte como ro	oot bridge poderia?		
☐ Colocar a prioridade do switch 0 a 0#			
☐ Colocar a prioridade do switch 0 a 20480#			
☐ Colocar a prioridade do <i>switch</i> 1 e 2 a 36864#			
☐ Executar no switch 0 o comando "spanning-tree	vlan 1 root primary" #		

- 15) Na rede da figura o algoritmo utilizado é o RSTP. O *switch* 0 tem prioridade 32768, o *switch* 1, 20480 e o *switch* 2, 28672. As portas do *hub* são todas FastEthernet. As interfaces têm todas prioridades iguais sendo numeradas desde a Fa0/1 (1) até à Fa0/24 (24), Gi0/1 (25) e Gi0/2 (26). As ligações a 100Mbps têm um custo de 19, as a 1.000Mbps um custo de 4. Assuma que o valor do MAC *address* é proporcional ao número do *switch*.
 - [3 x] Preencha a tabela com os valores da configuração após estabilização da topologia ativa. Na coluna RPC coloque o custo total e entre parêntesis as várias parcelas que contribuíram para esse custo com início na *root bridge*, exemplo: [42 = 19+4+19].

Porta	PC	RPC	DPC	RP	DP	Alternate	Backup
SW0//Fa0/1	19	19	38=19+19			Х	
SW0//Fa0/2	19	38=19+19	4		X		
SW0//Gi0/1	4	4	38=19+19	X			
SW0//Gi0/2	4	38=19+19	4		X		
SW1//Fa0/1	19	-	0		X		
SW1//Fa0/2	19	-	0		X		
SW1//Fa0/3	19	-	0				Х
SW1// Gi0/1	4	-	0		Х		
SW2//Fa0/1	19	23=4+19	19			Х	
SW2//Fa0/2	19	23=4+19	19			Х	
SW2//Fa0/3	19	19	23=4+19	х			
SW2//Fa0/4	19	19	23=4+19				Х

Nome:	; Nº de aluno:	; Turma:	;			
Curso: LEIC ☐ LEETC ☐ LEIM ☐ LEIRT ☐ MEET ☐ MEIC ☐	MERCM □	Docente: VA □, JF □,	JS □, JV □			
16) Indique como é possível saber qual a classe a que pertence um endereço IPv4?						
De 0 a 4 dos bits de maior peso no endereço IPv4 indicam a classe.						
17) Considere o endereçamento IPv4:						
☐ O endereço 192.168.20.0/24 é um endereço de re	ede público					
☐ O endereço 10.255.0.0/16 é um endereço de rede	e privado #					
☐ O endereço 169.254.10.10/16 é um endereço priv	vado de atribuição autom	nática (APIPA) #				
☐ O endereco 201.20.2.15 é um endereco da gama	de <i>multicast</i>					

18) Sumarize as seguintes redes: 192.168.110.0/24, 192.168.112.0/24, 192.168.113.0/24, 192.168.114.0/24,

192.168.115.0/24, 192.168.116.0/24, 192.168.117.0/24, 192.168.118.0/24, 192.168.119.0/24.

192.168.110.0/24 e 192.168.112.0/21

19) Considere a infraestrutura de rede da imagem junta a qual tem a rede 162.168.220.0/23 atribuída. Utilizando VLSM atribua endereços a cada uma das redes tendo em conta o número de utilizadores indicados na tabela seguinte e sabendo que a rede N6 é uma ligação ponto a ponto e que utiliza os endereços mais altos.

Rede	Endereço de rede (CIDR)	N.º de utilizadores
N1	162.168.220.0/24	160
N2	162.168.221.0/25	99
N3	162.168.221.128/26	52
N4	162.168.221.192/27	20
N5	162.168.221.224/28	8
N6	162.168.221.252/30	-

20) Tendo em conta a rede da pergunta anterior e a distribuição dos endereços, e estando os *routers* configurados com o protocolo de *routing* RIPv2 com o comando "no auto-summary" preencha a tabela de *routing* do processo de RIP do *router* 3, assumindo que a rede já convergiu. Os *routers* têm atribuídos os endereços mais altos em cada bloco.

Destino (prefixo)	Próximo Salto	Métrica
162.168.220.0/24	162.168.221.253	3
162.168.221.0/25	162.168.221.126	1
162.168.221.128/26	162.168.221.190	1
162.168.221.192/27	162.168.221.253 ou .189	2
162.168.221.224/28	162.168.221.253	2
162.168.221.252/30	162.168.221.254	1

Nome:	, 11- ac alano	, raima,
Curso: LEIC ☐ LEETC ☐ LEIM ☐ LEIRT ☐ MEET ☐ MEIC ☐ MER	см 🗆	Docente: VA \square , JF \square , JS \square , JV \square
21) Indique qual o motivo por que não se pode utilizar RIPv1 Não seria possível utilizar o RIPv1 dado este ser <i>classfull</i> e a <i>classfull</i> e por ter sido utilizado VLSM	, -	
22) Como é que o RIPv2 procede para acelerar a convergênc	ia da rede quando	o um dos <i>routers</i> "morre"?
A "morte" de um <i>router</i> quando detetada por outro <i>rout</i> envia aos outros a sua tabela de <i>routing</i> com as rotas qu Coloca as mesmas na sua tabela com o valor de infinito e	e passam pelo "de	efunto" com um valor de infinito (16).
23) Numa rede usa-se OSPFv2 e RIPv2 em simultâneo. Um rovia RIPv2 e via OSPFv2. Das duas rotas recebidas ele colo ☐ RIPv2 ☐ OSPFV2 # ☐ Ambas (ECMP - Equal Cost MultiPath) ☐ Nenhuma	ocará na tabela de	routing a rota:
A rota aprendida via OSPFv2 dado este protocolo ter um 24) Como é que um <i>router</i> a correr OSPFv2 anuncia aos outr ☐ LSA tipo 1 #		
☐ LSA tipo 2 ☐ LSA tipo 3		
 □ LSA tipo 4 25) Os LSA que informam os routers de outra área sobre as r □ LSA tipo 2 	otas inter área são	o os:
☐ LSA tipo 3 # ☐ LSA tipo 4 ☐ LSA tipo 5		
26) Como é que os <i>routers</i> em OSPFv2 se tornam adjacentes Tornam-se vizinhos (usam <i>multicast</i> IP para transportare <i>multicast</i> ao nível data link) verificando os parâmetros co pertencem, o Hello time (HelloInterval), o Hold time (Rou vizinhos(Neighbor) e a seguir trocam entre eles os LSA (<i>L</i> idênticas.	em as mensagens o omuns como área uterDeadInterval),	a que as respetivas interfaces comuns , o reconhecimento como
27) Como é que um <i>router</i> a correr OSPFv2 pode tomar co domínio contiguo ao seu, ligado via um ASBR, onde estej		

Redistribuição de rotas no ASBR, do protocolo de routing usado no outro domínio, para o OSPFv2.

Nome:	; Nº de aluno:	; Turma:;
Curso: LEIC ☐ LEETC ☐ LEIM ☐ LEIRT ☐ MEET ☐ MEIC [□ MERCM □	Docente: VA \square , JF \square , JS \square , JV \square