The obstacles and potential solution clues of prime editing applications in tomato

Tien Van Vu^{1,2,*}, Ngan Thi Nguyen¹, Jihae Kim¹, Swati Das¹, Jinsu Lee¹, Jae-Yean Kim^{1,3,4*}

¹Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea.

²National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Km 02, Pham Van Dong Road, Co Nhue 1, Bac Tu Liem, Hanoi 11917, Vietnam.

³Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea.

⁴ Nulla Bio Inc, 501 Jinjudaero, Jinju 660-701, Republic of Korea.

*Correspondence: Tien Van Vu (tienvu.agi@gmail.com; ORCID: 0000-0002-6369-7664). Jae-Yean Kim (kimjy@gnu.ac.kr; ORCID ID: 0000-0002-1180-6232).

Keywords: Prime editor; CRISPR/SpCas9; Precision gene editing; Prime editing; DSB-independent gene editing, Geminiviral replicon.

SUPPLEMENTAL FIGURES, TABLES AND REFERENCES

Supplemental Figures, Tables and References

Supplemental item	Page
Supplemental Figure 1: Failure of prime editing in tobacco cells in transient assays	3-4
Supplemental Figure 2: <i>Agrobacterium</i> -mediated transformation protocol used in this work.	5
Supplemental Figure 3: PE targeting maps of the first three loci. (A) SIHKT1;2. (B) SIEPSPS1. (C) SIOr.	6
Supplemental Figure 4: PE constructs for editing the SIHKT1;2, SIEPSPS1 and SIOr loci by PE2 and PE3 approaches.	7
Supplemental Figure 5: Constructs used for the assessment of indel mutation formation by different combinations of either Cas9-RT or Cas9 with either sgRNAs or pegRNAs at the SIBMP21, SIALC, SIDMR6 and SIALS1 loci.	8
Supplemental Figure 6: MFOLD-predicted secondary structures of pegRNAs and sgRNAs of SIBMP21, SIALC, SIDMR6-1 and SIALS1.	9-10
Supplemental Figure 7. Modifications of the pegRNAs for improving PE performance	11
Supplemental Table 1. Sequences and primers used in this study.	12-13
Supplemental Table 2. Base editing efficiency obtained in the tobacco leaf infiltration assay.	14
Supplemental Table 3. PE targets in tomato used in the study.	15
Supplemental Table 4. Comparisons of indel mutation efficiency of the Cas9	16
complexes containing the PE components compared to the normal complex.	
Supplemental Table 5. Comparisons of indel mutation efficiency of the Cas9	17
complexes containing the PE components compared to the normal complex.	
Supplemental Table 6. Targeted deep sequencing data revealed from PE tools using	18
shortened PBS and mismatched PBS	
Supplemental references	19

Supplemental Figure 1: Failure of prime editing in tobacco cells in transient assays. (a) Schematic processes of primed editing. The nontargeted strand is nicked by CRISPR/Cas9 nickase (H840A), and the 3' nicked end binds to a complementary RNA (priming binding site, PBS, 13-15 nt) introduced by extending the 3' end of the sgRNA (RT template) and primes reverse transcription by the nCas9-fused RT using its free OH group. RT copies the genetic information from the RNA template that is complementary to the sequence downstream from the nicked site and includes intentionally introduced base modifications (indicated by red and bright orange lines). The RT product appears as a 3'-flap sequence that competes with the full complement of the original 5'-flap during the repair process, and a precisely edited sequence could be fixed to the targeted site after 5'-flap removal and subsequent replication of the DNA. A second nick is introduced during the improvement of the prime editor for supporting 3'-edited flap fixation. (b) Selected synthetic target and pegRNA design, pegRNA and its 3' extension and second nick spacer sequences are indicated. A PmCDA1-based C->T editing tool is designed in parallel for comparison, and its spacer sequence is also shown. Intended base modifications are denoted and explained. (c) Vector arrangements for the study. The nCas9(D10A)-PmCDA1 base editing system is designed with the control plasmid (pCEc, -gRNA), T-DNA (pCE1), and replicon (pCE2)based editors. The prime editors are designed with a dual vector system for T-DNA (pPEsubc1 + pPEsub1) and replicon (pPEsubc2 + pPEsub2)-based tools for editing C->T and C->A (shown in b). (d-e) Sequencing data showing C->T editing by T-DNA- (d) and replicon-based (e) tools (Supplemental Table 2, (e)). The -sgRNA (pCEc) chromatogram represents all the temperature tested. (f) Editing efficiency of the base editors. The T-DNA construct represents the pCE1 plasmid, and the replicon construct is for the pCE2 plasmid. The editing efficiencies at different temperatures are plotted for the 15th, 17th, and 19th bases counted from the PAM site to its upstream spacer sequence. (g-h) Failure of the T-DNA- (g) and replicon-based (g) prime editors to edit the intended bases. The -pegRNA (pPEsubc1) and -pegRNA (pPEsubc2) chromatograms represent for all the temperature tested. Discontinuous red boxes denote the intended modifications in each of the editing conditions (25, 31, and 37°C) for the editors and the control.

Stage	Germination	Pre-culture, callus induction	Co-cultivation, callus induction	Selection, callus induction and shoot regeneration	Selection, callus induction and shoot regeneration	Selection, shoot formation and elongation	Selection, root formation
Medium	1/2MSO	PREMC	ABM-MS+AS	SEL4-80	SEL4-80	SEL4-80	RIM
Temperature (°C)	25±2	25±1	25±1	28±1 for 5 days and then 25±2	25±2	25±2	25±2
Photoperiod	3 days-dark and then 4days 16L/8D	1 day dark	2 days-dark	5 days-8L/16D and then 9 days-16L/8D	14 days 16L/8D	14 days 16L/8D	10-14 days 16L/8D
Data collection (if needed)	-	-			Sampling at 10dpt		Sampling at plant stage

Supplemental Figure 2: *Agrobacterium*-mediated transformation protocol used in this work. The step-by-step protocol is presented with each number in the circles indicating the number of days after seed sowing (upper panel), and the treatments used in each step are shown in the lower panel.

Supplemental Figure 3: PE targeting maps of the first three loci. (A) SIHKT1;2. (B) SIEPSPS1. (C) SIOr.

Supplemental Figure 4: PE constructs for editing the SIHKT1;2, SIEPSPS1 and SIOr loci by PE2 and PE3 approaches.

Supplemental Figure 5: Constructs used for the assessment of indel mutation formation by different combinations of either Cas9-RT or Cas9 with either sgRNAs or pegRNAs at the SIBMP21, SIALC, SIDMR6 and SIALS1 loci. All the component were expressed with the geminiviral replicon system.

Supplemental Figure 6: MFOLD-predicted secondary structures of pegRNAs and sgRNAs of SIBMP21, SIALC, SIDMR6-1 and SIALS1. The pegRNA structures (left panel) and sgRNA structures (right panel) were predicted using MFOLD software. The deltaG (dG) of each structure is denoted at the bottom of it. The discontinuous light blue boxes indicate the intermolecular annealing of the PBS and spacer sequences.

No.	Locus	pegR name	PBS (nt)	RT template	Tm of PBS- spacer (oC)	pegRNA (5'-3')
1		pegR.BMPm0	11	13	30	AGCTCCTTCAACGTTCTCAAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCC GTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTATCTTACCTTTAAGAACGTTGAA
2		pegR.BMPm1	13	13	30	AGCTCCTTCAACGTTCTCAAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAAGTGGCACCGAGTCGGTGCTATCTTACCTTTTAAGAACGTTGAACC
3	SIBMP21	pegR.BMPm2	13	13	32	AGCTCCTTCAACGTTCTCAAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAAGTGGCACCGAGTCGGTGCTATCTTACCTTTTAAGAACGTTGCAGC
4		pegR.BMPm3	10	13	22	AGCTCCTTCAACGTTCTCAAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCC GTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTATCTTACCTTTaAGAACGTTAC
5	pegR.BMPm4 10		10	13	24	AGCTCCTTCAACGTTCTCAAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCC GTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTATCTTACCTTTaAGAACGCTGC
6		pegR.ALCm0	11	12	32	GTTCCACCGGAAGTAAAAACGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCC GTTATCAACTTGAAAAAAGTGGCACCGAGTCGGTGGACAAGCCGGaTTTTACTTCCGG
7	pegR.ALCm1 13			12	32	GTTCCACCGGAAGTAAAAACGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCC GTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGGACAAGCCGGaTTTTACTTCCGGCA
8	SIALC	pegR.ALCm2	13	12	30	GTTCCACCGGAAGTAAAAACGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGGGTCGGTGGACAAGCCGGGTTTTACTTCCTGTA
9		pegR.ALCm3	10	12	20	GTTCCACCGGAAGTAAAAACGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCC GTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGGACAAGCCGGGTTTTACTTCAT
10		pegR.ALCm4	10	12	22	GTTCCACCGGAAGTAAAAACGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAAGTGGCACCGAGTCGGTGGACAAGCCGGATTTTACTCCCT
11		pegR.ALSm0	10	13	30	CTATTACAGGTCAAGTGCCAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCC GTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGTCATCCTCCTTGaCACTTGACCT
12		pegR.ALSm1	13	13	34	CTATTACAGGTCAAGTGCCAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGTCATCCTCCTTGACACTTGACCCTGCT
13	SIALS1	pegR.ALSm2	13	13	34	CTATTACAGGTCAAGTGCCAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGTCATCCTCCTTGACACTTGACCCGTT
14		pegR.ALSm3	10	13	24	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
15		pegR.ALSm4	10	13	26	CTATTACAGGTCAAGTGCCAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCC GTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGTCATCCTCCTTGaCACTTGTCCC

Supplemental Figure 7. Modifications of the pegRNAs for improving PE performance. At each locus, four modifications that introduce mismatches (purple font) to the original PBS sequences (13 nt in length, pegR.BMPm1, pegR.BMPm2, pegR.ALCm1, pegR.ALCm2, pegR.ALS1m1 and pegR.ALS1m2 for the BMP21, ALC, and ALS1) or shortened PBS (10nt, pegR.BMPm3, pegR.BMPm4, pegR.ALCm3, pegR.ALCm4, pegR.ALS1m3 and pegR.ALS1m4 for the BMP21, ALC, and ALS1) with mismatches. As controls, shortened and exactly matched PBS with Tm ~30°C (pegR.BMPm0, pegR.ALCm0, and pegR.ALSm0) were also used at each locus. The PBS and RT lengths and calculated Tm of the PBS-spacer pairing are also shown. In the pegRNA sequences, the red font letters denote spacer sequences; black font letters are SpCas9 gRNA scaffold sequences; orange font letters represent the RT template sequences; blue font letters are PBS sequences, and small red letters are introduced bases.

Supplemental Table 1. Sequences and primers used in this study

No.	Name	Sequence (5'-3')	Note
Prime	ers for PCR ampli	fication of sequences flanking targeted sites	
1	t35S-F1	TGTGTGAGTAGTTCCCAGATAAG	Sequences flanking the (CA)n
2	RRA-R8	CTGACGAGGACTGGATGTTATC	substrate of pCEc and pCE02
3	RB-qF2	CTCTTAGGTTTACCCGCCAATA	Sequences flanking the (CA)n
4	PmCDA1-R1	GATGGTTTCCGAGCACTATCA	substrate of pCE01
5	RT-F1	AGGCTAGAGGTAACCGGATG	Sequences flanking the (CA)n
6	PE-R1	TCGGTCACATGTGCATCCTC	substrate of pEsubc1
7	RT-F1	AGGCTAGAGGTAACCGGATG	Sequences flanking the (CA)n
8	PE-R2	CTGCGATATTACCGAGGACTAC	substrate of pEsubc2
9	t35S-sF1	TAGGGTTTCGCTCATGTGTTG	sequencing
Prime	ers for targeted d	eep sequencing sample preparation	
9	HKPE-F1	ACAAAGATTATGAGCTAGGGAATGT	First PCR for SIHKT1;2
10	HKPE-R1	CCTTCAGAATTCCACTCCAATGA	
11	HKPE-F2	ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Second PCR for SIHKT1;2
		CGCCAAACAAATCCTTGACC	
12	HKPE-R2	GTGACTGGAGTTCAGACGTGTGCTCTTCCGAT	
		CTTGAGGGATAAGAATGAGAAGAAGAC	
13	EPPE-F1	TGAGTTACTTACAACCTTGTGCT	First PCR for SIEPSPS1
14	EPPE-R1	GTAATTTATCACCAGGGCAACTATTATC	
15	EPPE-F2	ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Second PCR for SIEPSPS1
		GGCAGTTTCCTGTCGGTAA	
16	EPPE-R2	GTGACTGGAGTTCAGACGTGTGCTCTTCCGAT	
		CTAAACAAATGGCACGAAGAAGG	
17	ORPE-F1	ATGCGAATCGTAGAAATGGAATTAG	First PCR for SIOr
18	ORPE-R1	ACTCGTTTCTTCGGTCCTTAAT	
19	ORPE-F2	ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Second PCR for SIOr
		AGGACCTGAGACAGTAGA	
20	ORPE-R2	GTGACTGGAGTTCAGACGTGTGCTCTTCCGAT	
		CTAGACATCACAGTAATAAATACGA	
21	BMP-F1	CCGGTTAGTGATACTCAGGTATTG	First PCR for SIBMP21
22	BMP -R1	TGACTGCTTCCTAAGATGCTAAA	
23	BMP-F2	ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Second PCR for SIBMP21
		CTCGACGTTTTTCTCTTTCAACAGAT	
24	BMP-R2	GTGACTGGAGTTCAGACGTGTGCTCTTCCGAT	
		CT CACTTATTAAAAACTTATGTAAATCTAAC	
25	WH9-F1	GGAGTCTATATAAGAAGTGTGTTAGGG	First PCR for SIWH9
26	WH9-R1	TCATTAAGAAGAAGTCCAGAAGAAGA	
27	WH9-F2	ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Second PCR for SIWH9
		CAGAGCCAAAGCCTCGAT	

28	WH9-R2	GTGACTGGAGTTCAGACGTGTGCTCTTCCGAT	
		CTAGCATCACCTACTTGACCATATT	
29	KD1-F1	TTTGGTTACAACGTGTGAGATAAC	First PCR for SIKD1
30	KD1-R1	ACCATGTATAGTAGTCGTGTATGTT	
31	KD1-F2	ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Second PCR for SIKD1
		ACACACAATCTGTAACAATGATAGTAAT	
32	KD1-R2	GTGACTGGAGTTCAGACGTGTGCTCTTCCGAT	
		CT CCTGACTAGTTTGAAGGGTATGT	
33	PRD-F1	GTGAATATTATTGCTGGCCTGTT	First PCR for SIPRD
34	PRD-R1	CAACTAGTACAACAGGTCTCGT	
35	PRD-F2	ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Second PCR for SIPRD
		GGTGCTGTTTCTTCAGGGAA	
36	PRD-R2	GTGACTGGAGTTCAGACGTGTGCTCTTCCGAT	
		CT TAGCCATCTCAAGCTGTTCAAG	
37	ALC-F1	AAGTAGTGGACAAACATAAAGTAGTGG	First PCR for SIALC
38	ALC-R1	AATAATCTATGTCGAACCTCTTTCGG	
39	ALC-F2	ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Second PCR for SIALC
		ATATCCTAACGGGGCGAGGCCAAAT	
40	ALC-R2	GTGACTGGAGTTCAGACGTGTGCTCTTCCGAT	
		CT GCATGATCCAATTAGTTTTTACCCCT	
41	DMR-F1	CTTTCAGGTTCTTATCGTTGGATTC	First PCR for SIDMR6-1
42	DMR-R1	AGGTTAGCTAGGTAGATTAGGTAGT	
43	DMR-F2	ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Second PCR for SIDMR6-1
		GGAGACAGTTCATAATTGGAGAGATTAT	
44	DMR-R2	GTGACTGGAGTTCAGACGTGTGCTCTTCCGAT	
		CT TTGAAGTATGACTCAGATAGCA	
45	ALS-F1	CCTCACCATCTCCATGTTTCTC	First PCR for SIALS1
46	ALS-R1	GTCTCAGCTCCTCACTTGATTG	
47	ALS-F2	ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Second PCR for SIALS1
		GCTACAAATCTTGTTAGTGGTCTTG	
48	ALS-R2	GTGACTGGAGTTCAGACGTGTGCTCTTCCGAT	
		CT GCTTCGTAATAGATCTCGTTACCTC	
49	HKT12-sF1	CAAAGATTATGAGCTAGGGAATGT	Sequencing primer for the
			SIHKT1;2 targeted site
50	EPSPS1-sF3	GGAGATATTTGTTAGAGTACCATCA	Sequencing primer for the
			SIEPSPS1 targeted site
51	WH9-sR1	CACCGAAGAAGTAGGAGAATTGA	Sequencing primer for the
			SIWH9 targeted site
52	ALC-sF1	CATGTGTTTAACGCAGCTAAGG	Sequencing primer for the SIALC
			targeted site
53	ALS1-sF1	CCCAGAAAGGGTTGTGATGT	Sequencing primer for the
			SIALS1targeted site

Supplemental Table 2. Base editing efficiency obtained in the tobacco leaf infiltration assay

Position		T-DNA		Replicon			
counted from PAM	25°C	31°C	37°C	25°C	31°C	37°C	
15th	4.57 ± 0.14	3.37 ± 0.55	3.64 ± 1.5	7.06 ± 0.41	5.59 ± 0.25	2.82 ± 1.02	
17th	1.38 ± 0.21	0.36 ± 0.22	0.70 ± 1.5	13.67 ± 1.74	10.55 ± 1.63	5.84 ± 2.03	
19th	1.63 ± 0.41	1.73 ± 0.10	1.86 ± 0.03	10.46 ± 0.10	9.87 ± 0.57	11.36 ± 0.83	

Supplemental Table 3. PE targets in tomato used in the study

No.	Gene/allele name	Accession no.	Genotype vs WT	Phenotype	Reference
1	jointless- 2/SIMBP21	Solyc12g038510	L169Stop (T->A)	Absence of abscission layer in Pedicels/short pedicels	Roldan et al., 2017
2	WUSCHEL HOMEOBOX 9 (SIWH9)/compo und inflorescence (s)	Solyc02g077390.1	G69D (s-classic)	Mutant alleles of s dramatically increase branch and flower number	Lippman et al., 2008
3	Petroselinum (Pts) allele/KNOTTED 1-LIKE HOMEOBOX (KNOX)/SIKD1 (TOMATO KNOX-LIKE HOMEODOMAI N PROTEIN 1)	<i>AF375969/</i> Solyc06g072480.1	1 bp deletion at 1266 bp upstream of the open reading frame (ORF)	A semidominant KD1 mutant in tomato with multiply compound leaves. TKD1 silencing delay absicion.	Kimura et al., 2008
4	PROCERA D/DELLA D allele (SIPRD)	Solyc11g011260	A46 deletion: DELLAVLG to DELLVLG	Dwarf/gibberellin-responsive dominant dwarf DELLA allele	Nir et al., 2017; Tomlinson et al., 2019
5	SIALC (Alcobaca)	FJ404469	ALC to alc allele: T to A; V106D	Long-shelf life	Garg et al., 2008
6	SIDMR6-1	Solyc03g080190.2	small deletions in the SIDMR6-1 gene that result in frameshift and premature truncation of the protein	No significant detrimental effects in terms of growth and development under greenhouse conditions and show disease resistance against different pathogens, including <i>P. syringae</i> , <i>P. capsici</i> and <i>Xanthomonas</i> spp.	Thomazella et al., 2016
7	SIALS1 gene	Solyc03g044330	Any substitution to change Pro186 amino acid to Ser, Ala or Thr residues	Strong resistance to chlorsulfuron. After two weeks, explants were transferred onto a fresh culture medium with 40 ng/mL chlorsulfuron.	Yu et al., 2009

Supplemental Table 4. Comparisons of indel mutation efficiency of the Cas9 complexes containing the PE components compared to the normal complex.

Gene/allele		Control in	PBS	RT	Total	Indel mutation efficiency (%)					p value** (Uncorrected Fisher's LSD)
name	Accession no.	Construction	length (nt)	length (nt)	reads	Replicate 1	Replicate 2	Replicate 3	Average	SEM	
		_*	-	-	49819	0.026	-	-	0.026	-	-
		Cas9-RT + pegR_BMP21	13	13	132955	0.018	0.007	0.023	0.016	0.005	0.0877
SIBMP21	Solyc12g038510	Cas9 + pegR_BMP21	13	13	139784	0.092	0.190	0.058	0.113	0.040	0.3248
		Cas9 + gR_BMP21	0	0	127696	0.355	0.238	0.089	0.227	0.077	
		Cas9-RT + gR_BMP21	0	0	128919	0.411	0.023	0.038	0.158	0.127	0.5375
		-	-	-	51907	0.075	-	-	0.075	-	-
		Cas9-RT + pegR_ALC	13	12	140946	0.119	0.108	0.093	0.107	0.007	0.2103
SIALC	FJ404469	Cas9 + pegR_ALC	13	12	140852	0.170	0.155	0.114	0.146	0.017	0.2748
		Cas9 + gR_ALC	0	0	129357	0.714	0.111	0.349	0.391	0.175	
		Cas9-RT + gR_ALC	0	0	121087	0.091	0.808	0.102	0.334	0.237	0.7896
		-	-	-	37540	0.019	-	-	0.019	-	-
		Cas9-RT + pegR_DMR6- 1	13	13	108382	0.010	0.021	0.020	0.017	0.004	0.0023
SIDMR6-1	Solyc03g080190	Cas9 + pegR_DMR6- 1	13	13	106969	0.254	0.161	0.025	0.147	0.067	0.0332
		Cas9 + gR_DMR6-1	0	0	124113	0.423	0.382	0.181	0.329	0.075	
		Cas9-RT + gR_DMR6-1	0	0	106991	0.006	0.017	0.019	0.014	0.004	0.0022
		-	-	-	56500	0.000	-	-	0.000	-	-
		Cas9-RT + pegR_ALS1	13	13	131194	0.000	0.032	0.023	0.018	0.009	<0.0001
SIALS1	Solyc03g080190	Cas9 + pegR_ALS1	13	13	145331	0.033	0.106	0.018	0.052	0.027	<0.0001
		Cas9 + gR_ALS1	0	0	144979	1.055	1.513	0.884	1.151	0.188	
		Cas9-RT + gR_ALS1	0	0	129222	0.039	0.057	0.031	0.042	0.008	<0.0001

^{*}WT sample. **Multiple comparisons were conducted between the normal Cas9+gRNA combination and the complex containing either or both the PE components with the Uncorrected Fisher's LSD test using the Graphpad 9.0 software.

Supplemental Table 5. Comparisons of indel mutation efficiency of the Cas9 complexes containing the PE components compared to the normal complex.

		T of				p value*		
Locus	PBS sequence (5'-3')	Tm of PBS (oC)	Replicate 1	Replicate 2	Replicate 3	Average	SEM	(Uncorrected Fisher's LSD)
	AGAACGTTGAAGG	38	0.024	0.009	0.045	0.026	0.010	
	AGAACGTTGAACC**	30	0.017	0.031	0.016	0.021	0.005	0.5505
SIBMP21	AGAACGTTGCAGC	32	0.020	0.016	0.025	0.020	0.003	0.4705
	AGAACGTTAC	22	0.022	0.020	0.026	0.023	0.002	0.6684
	AGAACGCTGC	24	0.026	0.024	0.025	0.025	0.001	0.8973
	TTTACTTCCGGTG	38	0.020	0.024	0.000	0.015	0.007	
	TTTACTTCCGGCA	32	0.019	0.024	0.019	0.020	0.002	0.3563
SIALC	TTTACTTCCTGTA	30	0.014	0.009	0.023	0.015	0.004	0.9166
	TTTACTTCAT	20	0.012	0.009	0.023	0.015	0.004	>0.9999
	TTTACTCCCT	22	0.010	0.015	0.016	0.014	0.002	0.8752
	CACTTGACCTGTA	38	0.109	0.082	0.041	0.077	0.020	
	CACTTGACCTGCT	34	0.098	0.113	0.040	0.084	0.022	0.8227
SIALS	CACTTGACCCGTT	34	0.128	0.079	0.046	0.084	0.024	0.8044
	CACTTGACCC	24	0.113	0.072	0.052	0.079	0.018	0.9529
	CACTTGTCCC	26	0.086	0.083	0.052	0.074	0.011	0.8967

^{*}Multiple comparisons were conducted between PE complexes with the original PBS containing pegRNAs and that of the complexes containing modified PBS sequences with the Uncorrected Fisher's LSD test using the Graphpad 9.0 software. **red font: mismatches introduced between the PBSs and spacers.

Supplemental Table 6. Targeted deep sequencing data revealed from PE tools using shortened PBS and mismatched PBS

		Tm of PBS- Replicate 1					Replicate 2			
Locus	PBS sequence (5'-3')	spacer (oC)	Total reads	PE efficiency (%)	Indel efficiency (%)	Total reads	PE efficiency (%)	Indel efficiency (%)		
	AGAACGTTGAA	30	39192	0.015	0.013	22412	0.031	0.022		
	AGAACGTTGAACC*	30	47378	0.019	0.015	25443	0.039	0.000		
BMP	AGAACGTTGCAGC	32	55099	0.015	0.018	27979	0.032	0.025		
	AGAACGTTAC	22	52535	0.015	0.017	23439	0.026	0.013		
	AGAACGCTGC	24	54017	0.020	0.015	26156	0.031	0.011		
	TTTACTTCCGG	32	50025	0.014	0.056	25835	0.012	0.081		
	TTTACTTCCGGCA	32	52284	0.019	0.069	31389	0.019	0.076		
ALC	TTTACTTCCTGTA	30	38566	0.026	0.078	23446	0.013	0.060		
	TTTACTTCAT	20	47192	0.030	0.087	26248	0.015	0.057		
	TTTACTCCCT	22	46943	0.013	0.066	29077	0.014	0.079		
	CACTTGACCT	30	47374	0.103	0.017	29667	0.101	0.007		
	CACTTGACCTGCT	34	47803	0.096	0.013	25106	0.068	0.028		
ALS	CACTTGACCCGTT	34	47225	0.104	0.017	26736	0.094	0.022		
	CACTTGACCC	24	44622	0.083	0.011	26242	0.088	0.015		
	CACTTGTCCC	26	41949	0.098	0.019	25926	0.093	0.004		

^{*}red font: mismatches introduced between the PBSs and spacers.