

데이터 전처리 (Data Pre-processing)

practice 인공지능,머신러닝 • 2024. 10. 13. 14:09

데이터 전처리 (Data Pre-processing)

데이터 전처리는 모델 학습 전에 데이터를 정제(filter-이상한거 거름)하고 준비하는 과정입니다.

전처리가 잘 안되면 성능이 떨어질 가능성이 있다.

- 1. 데이터 정제: 결측값, 이상치, 중복 데이터를 처리하는 과정입니다.
- 2. **데이터 변환**: 정규화(데이터 범위를 조정)나 표준화(평균 0, 분산 1로 조정)와 같은 변환을 수행하며, 범주형 데이터를 숫자로 변환(예: One-Hot Encoding)합니다.
- 3. **차원 축소**: 불필요한 변수를 줄이는 방법으로 주성분 분석(PCA) 등이 있습니다.
- 4. 데이터 분할: 데이터를 학습용. 검증용. 테스트용으로 나누어 모델 성능을 평가합니다.
- 5. 특징 추출 및 생성: 의미 있는 새로운 특징을 생성합니다.
- 6. **불균형 데이터 처리**: 클래스 불균형 문제를 해결하기 위한 방법으로 샘플링 기법을 사용합니다.

데이터 전처리는 데이터 품질을 높이고, 모델 성능을 향상시키기 위한 중요한 단계입니다.

예) one hot encoding

1. 데이터 정제(Data Cleaning)

데이터 정제는 결측값, 이상치, 중복 데이터 등을 처리하는 과정입니다.

- **결측값 처리(Missing Values)**: 결측값은 다양한 이유로 발생할 수 있으며, 이를 처리하는 방법은 여러 가지입니다. 대표적인 방법으로는 <mark>결측값을 제거하거나 평균, 중간값, 최빈값</mark> 등으로 대체하는 방식이 있습니다.
 - 예: df.fillna(mean_value) 또는 df.dropna()
- 이상치 처리(Outliers): 데이터에서 정상 범위에서 <mark>벗어난 값들을 감지하고 처리하는 단계 입니다. 이상치를 제거하거나 수정해야 모델의 성능을 저해하지 않습니다.</mark>
- **중복 데이터 처리**: 동일한 레코드가 중복되었을 때 이를 제거하여 데이터의 일관성을 유지합니다.

2. 데이터 변환(Data Transformation)

데이터를 모델이 학습할 수 있는 형태로 변환하는 과정입니다.

- 정규화(Normalization): 데이터의 범위를 0과 1 사이로 조정하여 스케일의 차이를 줄이는 과정입니다. 특히 거리 기반 모델에서 중요합니다.
 - 방법: 최소-최대 정규화(Min-Max Normalization)

 $Xnorm=X-XminXmax-XminX_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}Xnorm=Xmax-XminX-Xmin}$

• 표준화(Standardization): 데이터의 평균을 0, 분산을 1로 변환하여 분포의 차이를 줄이는 과정입니다. 특히, 선형 회귀나 신경망과 같은 모델에서 자주 사용됩니다.

• 방법: Z-스코어 정규화(Z-score Normalization)

Xstd=X- μ σX_{std} = \frac{X - \mu}{\sigma}Xstd= σ X- μ 여기서 μ \mu μ 는 평균, σ \sigma a σ 는 표준 편차입니다.

- **범주형 데이터 인코딩(Categorical Data Encoding)**: 범주형 데이터를 수치 데이터로 변환하는 방법입니다.
 - Label Encoding: 범주형 값을 정수로 변환하는 방식입니다.
 - One-Hot Encoding: 범주형 데이터를 이진 벡터로 변환하는 방식입니다. 예: pd.get _dummies()

3. 차원 축소(Dimensionality Reduction)

많은 변수로 구성된 데이터셋의 경우, <mark>불필요한 변수들을 제거하여 차원을 줄임으로써</mark> 모델의 성능을 높이고 계산 효율성을 향상시킵니다.

- <mark>주성분 분석(PCA, Principal Component Analysis):</mark> 데이터를 주성분으로 변환하여 차원을 축소하는 기법입니다.
- 특징 선택(Feature Selection): 모델의 성능에 중요한 변수만을 선택하는 과정입니다.

4. 데이터 분할(Data Splitting)

모델을 학습하기 위해 데이터를 학습용과 평가용으로 분할하는 과정입니다.

- **훈련 데이터(Training Set**): 모델을 학습시키는 데 사용됩니다.
- 검증 데이터(Validation Set): 모델을 평가하고 하이퍼파라미터 튜닝에 사용됩니다.
- 테스트 데이터(Test Set): 최종적으로 모델 성능을 평가하는 데 사용됩니다.
 - 일반적인 비율: 훈련 70%, 검증 15%, 테스트 15% 또는 훈련 80%, 테스트 20%.

5. 특징 추출 및 생성(Feature Extraction & Engineering)

특징 추출은 기<mark>존 데이터를 기반으로 새로운 특징을 생성하거나 필요한 정보를 추출하</mark>는 과정 입니다. 도메인 지식에 기반하여 의미 있는 정보를 뽑아내는 것이 중요합니다.

6. 균형 조정(Handling Imbalanced Data)

클래스 간 데이터가 불균형할 때, 이를 해결하기 위해 언더샘플링, 오버샘플링, SMOTE 등의 기법을 사용하여 데이터를 균형 있게 조정합니다.

• • •

데이터 전처리는 모델 학습에 앞서 필수적으로 수행되어야 하며, 데이터 품질이 모델 성능에 직접적인 영향을 미치기 때문에 매우 중요합니다. 적절한 전처리 과정을 통해 모델이 더 정확하고 신뢰성 있는 결과를 낼 수 있도록 돕습니다.

' <u>practice_인공지능,머신러닝</u> ' 카테고리의 다른 글	
<u>감독학습 vs 비지도학습 (Supervised vs Unsupervised): 분류, 군집화</u> (0)	2024.10.13
<u>GPT3</u> (0)	2024.10.12
<u>Transformer, RNN 차이</u> (0)	2024.10.12
Adam Optimizer (1)	2024.10.12
Batch Normalization (3)	2024.10.12

관련글 <u>관련글 더보기</u>

댓글 0

