# Multiple Regression Part 6: Influence and Outliers

STAT 705: Regression and Analysis of Variance



#### **Extreme Observations**

- An 'observation' is one row in the data set
  - Includes the measured Y and all the X's for the subject
  - We call this a 'data point'
- Ways in which an observation can be extreme
  - The combination of X's may be unusual
  - The value of Y, given the X's, may be unusual
  - Both the X's and the Y may be unusual
- Classify rows according to how they affect the model
  - Leverage, Outlier, Influence

## Leverage

- A data point has high leverage if its combination of values for the X's is unusual in relation to all the other rows in the data
- If there is only one X variable, points with high leverage appear separated (to the right or the left) of the other points.
- The Y value is not used in calculating leverage
- The point may or may not seem to follow the least squares line





### **Outliers**

- Are observations that have unusually large or small Y values, in relation to the values of the X's that are recorded for subject
- Measured by the residuals
  - Large positive or large negative
  - Ordinary residuals may have large variance (estimated by MSE)
  - 'Large' residuals are large <u>relative to</u> <u>the MSE</u>



### Studentized Residuals

- By assumption,  $\varepsilon_i \sim N(0,\sigma^2)$
- Error variance is estimated by MSE
- 'Standardize' the residuals
  - Subtract the mean and divide by standard deviation
  - These are not independent, so distribution is not known
- 'Studentize' the residuals
  - Divide the standardized residuals by square root of (1 leverage)
  - These follow an approximate t distribution



# **Identifying Outliers**

#### From normal distribution theory,

- Approximately 95% of observations should fall within 2 std. dev. of the mean
  - Observations that fall outside 2 std. dev. are potential outliers
- Approximately 99.7% of observations should fall with 3 std. dev. of the mean
  - Observations that fall outside 3 std. dev. are extreme outliers
- Studentized residuals have mean 0 and std. dev. 1
  - Potential outliers have studentized residual > 2 or < -2</li>
  - Extreme outliers have studentized residual > 3 or < -3</li>

#### Influence

- The influence of a point is a measure of how much the fitted model would change if the point was removed from the data set
- The influence can be measured as change in
  - the fitted values
  - estimates for the individual coefficients
- A point can be influential because
  - it has high leverage
  - it is an outlier
  - both high leverage and outlier



#### Visualize Influence

The point marked with a red star is influential

If we exclude this point

$$Y = 1.17 + 1.27X$$

$$R^2 = 91.3\%$$



If we include this point

• 
$$R^2 = 0.7\%$$

$$RMSE = 3.55$$

# Identifying Influential Points

- Approach: "Leave one out"
  - Omit a single observation, re-fit the model and evaluate how inference changes
- Criteria for evaluating change in inference:
  - DFFITS Influence on Single Fitted Values
  - Cook's distance Influence on all Fitted Values
  - DFBETAS Influence on Regression Coefficients
- All of these can be generated in SAS

```
proc reg data=fat;
    model bodyfat = triceps midarm /influence press;
run;
```



# Influence: SAS Output

This is the body fat data. The program is 'Influence.BodyFat.sas'
This table is generated by the 'influence' option on the model statement.

| Output Statistics        |          |                 |          |        |                                                   |          |           |        |    |
|--------------------------|----------|-----------------|----------|--------|---------------------------------------------------|----------|-----------|--------|----|
|                          |          |                 | Hat Diag | Cov    |                                                   | DFBETAS  |           |        |    |
| Obs                      | Residual | RStudent        | Н        | Ratio  | <b>DFFITS</b>                                     | Intercep | t triceps | midar  | m  |
| 1                        | -1.8481  | -0.8084         | 0.1785   | 1.2948 | -0.3768                                           | -0.0142  | 0.3087    | -0.215 | 52 |
| 2                        | 3.4606   | 1.4734          | 0.0538   | 0.8654 | 0.3514                                            | 0.0058   | -0.0755   | 0.083  | 37 |
| 3                        | -2.8462  | -1.5271         | 0.3988   | 1.3266 | -1.2439                                           | 1.0563   | 0.0525    | -1.057 | 72 |
|                          |          |                 |          |        |                                                   |          |           |        |    |
| 19                       | -3.0128  | -1.2703         | 0.0648   | 0.9613 | -0.3343                                           | -0.1127  | 0.1537    | -0.032 | 21 |
| 20                       | 0.9583   | 0.3839          | 0.0501   | 1.2284 | 0.0881                                            | 0.0140   | -0.0006   | -0.002 | 24 |
| Studentized<br>Residuals |          | Leverage DFFITS |          | f      | DFBETAS for $\beta_0$ , $\beta_1$ , and $\beta_2$ |          |           |        |    |



# **Evaluate the Output**

- Studentized residuals
  - Values > 3 or < -3</p>
  - Unusual Y value for the observed X's
- Leverage
  - Values >  $\frac{2}{n}$  (# parameters)
  - Unusual combination of X values
- DFBETAS
  - Values >  $\frac{2}{\sqrt{n}}$
  - Observation influences the specific parameter estimate

#### Cook's D

- Results for Cook's distance are shown in a graph
- Taller points above the horizontal line are more influential
- Before analyzing these data, we should make sure there are no errors in observation 3



#### What You Should Know

- How to generate influence measures in SAS
- Identify influential observations

#### Notes:

- These techniques simply identify unusual points in the data.
- We do NOT automatically remove influential points.
- First make sure there are no errors in the data.
- Then determine if there are any unusual conditions under which the observation was collected (that might explain why this point is different).
- Ultimately, it is the experience and knowledge of the researcher that dictates whether to keep or remove a data point.

