optional logo could be planted here

TITLE

subtitle

Maximilian Hartmann

example@mail.com

institution

11. Februar 2021

Inhalt

1 Einleitung

- 2 Turbulenter Impulstransport
 - SST-Modell

- 3 Turbulenter Wärmetransport
 - Übersicht

Einleitung

Motivation und Ziele

- ► Turbulenz hat maßgeblichen Einfluss auf Impuls- und Wärmetransport
- ► Allgemeiner Ansatz: statistische Beschreibung der Auswirkungen von Turbulenz
 - subitem 1
 - subitem 2

Einleitung

Motivation und Ziele

- ► Turbulenz hat maßgeblichen Einfluss auf Impuls- und Wärmetransport
- ▶ Allgemeiner Ansatz: statistische Beschreibung der Auswirkungen von Turbulenz
 - subitem 1
 - subitem 2

Februar 2021

Einleitung

Motivation und Ziele

- ► Turbulenz hat maßgeblichen Einfluss auf Impuls- und Wärmetransport
- ▶ Allgemeiner Ansatz: statistische Beschreibung der Auswirkungen von Turbulenz
 - subitem 1
 - subitem 2

Februar 2021

SST-Modell

- Modellierung des turbulenten Spannungstensors: $\tau_{t,ij}$
- ► Shear-Stress-Transport Modell (Menter, 2003)
- Nombination zwischen k- ε -Modell in wandferne und k- ω -Modell in wandnähe (ohne CDT)

$$\frac{\mathrm{D}\rho k}{\mathrm{D}t} = P_k - \beta^* \rho \omega k + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_k \mu_t) \frac{\partial k}{\partial x_j} \right] \tag{1}$$

$$\frac{D\rho\omega}{Dt} = \frac{\gamma}{\nu_t} P_k - \beta \rho \omega^2 + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_\omega \mu_t) \frac{\partial \omega}{\partial x_j} \right] + 2\rho (1 - F_1) \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j} + \frac{\partial \omega}{\partial x_j} \frac{\partial \omega}{\partial x_j} \right]$$
(2)

$$\phi = F_1 \phi_1 + (1 - F_1) \phi_2 \tag{3}$$

		0.44	

SST-Modell

- ► Modellierung des turbulenten Spannungstensors: $\tau_{t,ij}$
- ➤ Shear-Stress-Transport Modell (Menter, 2003)
- Nombination zwischen k- ε -Modell in wandferne und k- ω -Modell in wandnähe (ohne CDT)

$$\frac{\mathrm{D}\rho k}{\mathrm{D}t} = P_k - \beta^* \rho \omega k + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_k \mu_t) \frac{\partial k}{\partial x_j} \right] \tag{1}$$

$$\frac{D\rho\omega}{Dt} = \frac{\gamma}{\nu_t} P_k - \beta \rho \omega^2 + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_\omega \mu_t) \frac{\partial \omega}{\partial x_j} \right] + 2\rho (1 - F_1) \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j} + \frac{2\rho (1 - F_1) \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j}}{cor} \right]$$
(2)

$$\phi = F_1 \phi_1 + (1 - F_1) \phi_2 \tag{3}$$

		0.44	

SST-Modell

- ► Modellierung des turbulenten Spannungstensors: $\tau_{t,ij}$
- ► Shear-Stress-Transport Modell (Menter, 2003)
- ► Kombination zwischen k- ε -Modell in wandferne und k- ω -Modell in wandnähe (ohne CDT)

$$\frac{D\rho k}{Dt} = P_k - \beta^* \rho \omega k + \frac{\partial}{\partial x_j} \left[\left(\mu + \sigma_k \mu_t \right) \frac{\partial k}{\partial x_j} \right]$$
 (1)

$$\frac{D\rho\omega}{Dt} = \frac{\gamma}{\nu_t} P_k - \beta \rho \omega^2 + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_\omega \mu_t) \frac{\partial \omega}{\partial x_j} \right] + 2\rho (1 - F_1) \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j}$$
(2)

$$\phi = F_1 \phi_1 + (1 - F_1) \phi_2 \tag{3}$$

4/5

Februar 2021

		0.44	

SST-Modell

- ► Modellierung des turbulenten Spannungstensors: $\tau_{t,ij}$
- ► Shear-Stress-Transport Modell (Menter, 2003)
- ► Kombination zwischen k- ε -Modell in wandferne und k- ω -Modell in wandnähe (ohne CDT)

$$\frac{\mathrm{D}\rho k}{\mathrm{D}t} = P_k - \beta^* \rho \omega k + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_k \mu_t) \frac{\partial k}{\partial x_j} \right]$$
 (1)

$$\frac{\mathrm{D}\rho\omega}{\mathrm{D}t} = \frac{\gamma}{\nu_t} P_k - \beta \rho \omega^2 + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_\omega \mu_t) \frac{\partial \omega}{\partial x_j} \right] + 2\rho (1 - F_1) \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j}$$
(2)

		$F_1\phi_1$	+(1	$-F_1)\phi_2$	(3)
--	--	-------------	-----	---------------	-----

		0.44	

SST-Modell

- Modellierung des turbulenten Spannungstensors: $\tau_{t,ij}$
- ► Shear-Stress-Transport Modell (Menter, 2003)
- ► Kombination zwischen k- ε -Modell in wandferne und k- ω -Modell in wandnähe (ohne CDT)

$$\frac{\mathrm{D}\rho k}{\mathrm{D}t} = P_k - \beta^* \rho \omega k + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_k \mu_t) \frac{\partial k}{\partial x_j} \right]$$
 (1)

$$\frac{\mathrm{D}\rho\omega}{\mathrm{D}t} = \frac{\gamma}{\nu_t} P_k - \beta \rho \omega^2 + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_\omega \mu_t) \frac{\partial \omega}{\partial x_j} \right] + 2\rho (1 - F_1) \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j}$$
(2)

$\phi =$	$F_1\phi_1$	+(1	$-F_{1})\phi_{2}$	(3)
Ψ	* 1 Y I	1 (+	* 1) \PZ	(5)

φ	β	σ_k	σ_{ω}	γ	a_1	β^*
ϕ_1	0.075	0.5	0.5	5/9	0.31	0.09
ϕ_2	0.0828	1	0.856	0.44	0.31	0.09

Anhang

Überblick der Modellkonstanten

Zusammenfassen der Konstanten:

$$\blacktriangleright C_{P1} = \left(\frac{C_{P1}f_{P1}}{2} - 1\right)_{AKN}$$

$$\blacktriangleright C_{D1} = \left(\frac{C_{D1}f_{D1}}{2} - 1\right)_{AKN}$$

$$C_{D2} = (C_{D2}f_{D2})_{AKN}$$

Autor	C_{λ}	C_{P1}	$C_{D1}\beta_{\theta}^*$	C_{P2}	$C_{D2}\beta^*$	$\sigma_{k_{\theta}}$	$\sigma_{\omega_{\theta}}$	$C_{\mu} = \beta^*$	β_{θ}^*
Rochhausen	0.147	-0.35	0.07	0.28	0.05	5	5	0.09	0.135
Cerroni	0.1	0.1	0.036	0.6	0.072	1.4	1.4	0.09	0.09
Abe	0.1	-0.05	0	0.6	0.081	1.6	1.6	0.09	0.09

Tabelle: Modellkonstanten des Wirbelleitfähigkeitsmodells

Anhang

Wandrandbedingung

Wandrandbedingung aus Abe:

$$\varepsilon_{\theta,wall} = \alpha \left(\frac{\partial \sqrt{T'^2}}{\partial n} \right)^2 \approx \frac{\nu_w}{Pr} \frac{\overline{T'^2}}{y^2}$$
(4)

mit $\alpha = \nu / \Pr$, $T'^2 = 2k_\theta$ und $\varepsilon_{\theta,wall} = \beta_\theta^* k_\theta \omega_{\theta,wall}$:

$$\omega_{\theta,wall} = \frac{\nu_w}{Pr} \frac{2k_\theta}{\beta_\theta^* k_\theta y^2} = \frac{\nu_w}{Pr} \frac{2}{\beta_\theta^* y^2}$$
 (5)