JAO: Języki, automaty i obliczenia, egzamin 18 Czerwca 2014

(każdą odpowiedź należy uzasadnić, nie dotyczy to zadania 1)

1. Narysować minimalny automat deterministyczny dla następującego języka, pomijając stan "śmietnik".

$$\{x_1x_2x_3x_4 \in \{0,1\}^4 : (x_3 \Rightarrow x_1) \land (x_4 \Rightarrow x_1) \land (x_4 \Rightarrow x_2)\}$$

Rozwiązanie Stany automatu przedstawiają klasy abstrakcji kongruencji wyznaczonej przez powyższy język.

2. Dla skończonego automatu niedeterministycznego A niech $\tilde{L}(A)$ będzie zbiorem słów, które automat akceptuje niejednoznacznie (istnieje więcej niż jedno obliczenie akceptujące). Czy $\tilde{L}(A)$ jest zawsze regularny?

Rozwiązanie Tak, w ten sposób określony język jest zawsze regularny. Dla automatu $A = (\Sigma, Q, \delta, Q_0, F)$ pokażemy automat $\tilde{A} = (\Sigma, Q', \delta', Q'_0, F')$, rozpoznający język $\tilde{L}(A)$. Przyjmiemy

- $\bullet \ Q' = Q \times Q \times \{0,1\}$
- $\delta' = \{ (q_1, q_2, i) \xrightarrow{a} (q'_1, q'_2, 1) \mid q_1 \xrightarrow{a} q'_1, q_2 \xrightarrow{a} q'_2, q'_1 \neq q'_2 \} \cup \{ (q_1, q_2, i) \xrightarrow{a} (q', q', i) \mid q_1 \xrightarrow{a} q', q_2 \xrightarrow{a} q' \}$
- $\bullet \ Q_0' = Q_0 \times Q_0 \times \{0\}$
- $F' = F \times F \times \{1\}$

Jeśli automat \hat{A} akceptuje słowo w, to na pierwszych dwóch współrzędnych musi się pojawić stan końcowy A, zaś na trzeciej współrzędnej musi się pojawić wartość 1. Automat \hat{A} symuluje na pierwszych dwóch współrzędnych wykonanie A, więc uzyskanie tych stanów jest możliwe tylko w wyniku powstania dwóch symulacji przebiegu A. Pojawienie się 1 na trzeciej współrzędnej jest tylko możliwe, o ile w którymś kroku \hat{A} stany w dwóch pierwszych współrzędnych będą różne. W ten sposób uzyskujemy dwa różne przebiegi A dla słowa w. Z kolei, jeśli dwa różne przebiegi istnieją, to można je zasymulować na pierwszych dwóch współrzędnych, pierwszą różnicę zaznaczyć przejściem do 1 na trzeciej współrzędnej i w ten sposób dotrzeć do stanu akceptującego.

3. Czy następujący język jest bezkontekstowy. Jeśli tak to podać gramatykę bezkontekstową generującą ten język:

$$\{a^ib^{i+j}c^j : i,j \geqslant 0\}$$

Rozwiązanie Powyższy język jest bezkontekstowy i jest generowany przez gramatykę

$$S \to PL$$
, $P \to aPb$, $P \to \varepsilon$, $L \to bLc$, $L \to \varepsilon$.

Produkcja P generuje słowa postaci a^ib^i dla $i\geqslant 0$. Podobnie produkcja L generuje słowa postaci b^jc^j dla $j\geqslant 0$. Ich konkatenacja realizowana w produkcji S daje żądany język.

 Czy następujący język jest bezkontekstowy. Jeśli tak to podać gramatykę bezkontekstowa generującą ten język:

$$\{a^i b^{i+j} c^j : i, j \ge 0 \& i \le j\}$$

Rozwiązanie Ten język nie jest bezkontekstowy. Skorzystamy z lematu Ogdena. Dowód przez sprzeczność. Załóżmy, że ten język, nazwijmy go L, jest bezkontekstowy. Niech C będzie zależną od języka liczbą z lematu Ogdena. Rozważmy słowo $a^N b^{2N} c^N$, gdzie N > C i umieśćmy wszystkie C znaczników w ciągu liter a. Niech uvwxy będzie dekompozycją tego słowa wynikającą z lematu Ogdena. Jeśli v i x mają zawierać przynajmniej jedną zaznaczoną pozycję, to przynajmniej jedna z tych części musi zawierać litery a. Jednocześnie granica między ciągiem liter a i b nie może przebiegać ani we wnetrzu słowa v, ani we wnetrzu słowa x, bo inaczej wynik pompowania uvvwxxy bedzie zawierał więcej niż jedno przejście od liter a do liter b, a więc nie będzie należał do L. Analogicznie sprawa ma się dla granicy między b i c. Fragment vwx nie może cały znaleźć się w zakresie ciągu liter a, b ani c, gdyż wtedy przy pompowaniu zmieniłaby się liczba liter odpowiednio a, b i c, ale nie zmieniłaby się odpowiednio liczba liter b, a i b, więc słowo wynikowe nie mogłoby należeć do L. Pozostaje sytuacja, gdy v znajduje się wewnatrz ciągu liter a, zaś x wewnatrz ciągu liter b lub wewnatrz ciągu liter c. W tej sytuacji jednak słowo postaci uvvwxxy, o ile bedzie postaci $a^ib^{i+j}c^j$, bedzie w istocie postaci $a^i b^{i+N} c^N$ lub postaci $a^i b^{2N} c^j$. W pierwszym przypadku jednak i > N, co stoi w sprzeczności z założeniem, iż $i \leq j$, zaś w drugim suma i+j nie będzie równa 2N, zatem doszliśmy do sprzeczności.

- 5. Czy rozstrzygalne są następujące dwa problemy? W obu problemach dana na wejściu jest deterministyczna maszyna Turinga M i słowo wejściowe w.
 - (a) M wykona więcej niż 2014 zmian pojedynczych symboli.
 - (b) M wykona więcej niż 2014 zmian symbolu na 1-szej pozycji.

Rozwiązanie (a) Tak, ten problem jest rozstrzygalny. Załóżmy, że M po podaniu wna wejściu ma przebieg o co więcej niż k zmianach pojedynczych symboli. Rozważmy tą część przebiegu, która kończy się na k+1 zmianie. Niech v_0, \ldots, v_k będą słowami reprezentującymi zawartość taśmy maszyny M przed odpowiednio pierwszą, drugą,..., k+1-szą modyfikacją. (Przez zawartość rozumiemy tutaj pierwsze n komórek taśmy, gdzie n jest najdalszą pozycją na taśmie odwiedzaną do k+1-szej modyfikacji jej zawartości włącznie.) Możemy teraz w każdym z tych słów v_i z każdą pozycją i na prawo od |w| związać zbiór $W_{i,j}$ stanów, jakie M przyjęła, gdy jej głowica znajdowała się w tej pozycji między j-tą a j+1-szą modyfikacją symbolu na taśmie. Zauważmy teraz, że jeśli istnieją pozycje $i_1 < i_2$, takie że $v_i[i_1, i_2]$ składa się z samych blanków oraz $W_{i_1,j} = W_{i_2,j}$, to istnieje obliczenie M na słowie $v_j[1,i_1-1]v[i_2,|v_j|]$. Niech teraz $l_1 < l_2 < \ldots < l_p$ będą wszystkimi pozycjami, na których występuje zmiana symbolu na prawo od |w|. Gdyby dla jakiegoś i zachodziło $l_{i+1} - l_i - 1 > 2^{C(k+1)}$, gdzie C jest rozmiarem zbioru stanów M, to istniałaby taka para pozycji i_1, i_2 , że $l_i < i_1 < i_2 < l_{i+1}$ oraz $W_{i_1,j} = W_{i_2,j}$ dla wszystkich $j=0,\ldots,k$. Można byłoby zatem całe obliczenie z k+1 zmianami skrócić między pozycjami i_1 i i_2 . To jest jednak niemożliwe, bo M jest deterministyczna. Dzięki temu uzyskujemy ograniczenie |w| +

- $(k+2)2^{C(k+1)}$ na wielkość taśmy potrzebnej do zrealizowania obliczenia do k+1 zmiany symbolu na taśmie. Liczba konfiguracji maszyny M w tak ograniczonej przestrzeni jest ograniczona. Można zatem niedeterministycznie ustawić je w ciąg i sprawdzić, czy jego początkowy fragment stanowi obliczenie z k+1 modyfikacjami, co daje terminującą procedurę sprawdzającą warunek z zadania.
- (b) Ten problem jest nierozstrzygalny. Gdyby był rozstrzygalny moglibyśmy za jego pomocą rozwiązywać nierozstrzygalny problem stopu. Możliwe byłoby to w następujący sposób. Dla danej maszyny N i słowa v, dla których chcemy sprawdzić własność stopu, wykonalibyśmy przekształcenie sprawiające, że całe swoje obliczenie wykonywałaby ona poza pierwszą pozycją taśmy (przesunęlibyśmy obliczenie o 1 "w prawo"), następnie dodalibyśmy po przejściu do stanu końcowego N procedurę dokonującą 1025 zmian symbolu na pierwszej pozycji, zaś słowo v uzupełnilibyśmy do #v, gdzie # byłby świeżym symbolem. Tak spreparowana maszyna wykona więcej niż 2014 zmian symbolu na pierwszej pozycji wtedy i tylko wtedy, gdy N zatrzyma się na v.