

PYTHON PROGRAMMING FOR DATA SCIENCE – PART 2 MASSIMILIANO IZZO & NICHOLAS DAY

Data preparation

- Feature engineering, where appropriate:
 - Discretize continuous features.
 - Decompose features (e.g., categorical, date/time, etc.).
 - Add promising transformations of features
 - Aggregate features into promising new features.
- Feature scaling:
 - Standardize or normalize features.
- Dimensionality Reduction (optional)
 - Principal Component Analysis (PCA)

Regression Performance Measure

•
$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

•
$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(y_i - \widehat{y}_i)^2}$$

•
$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \widehat{y}_i|$$

•
$$MedAE = median(|y_1 - \widehat{y_1}|, |y_2 - \widehat{y_2}|, ..., |y_N - \widehat{y_N}|)$$

•
$$R^2 = 1 - \frac{MSE(model)}{MSE(baseline)} = 1 - \frac{\sum_{i=1}^{N} (y_i - \widehat{y_i})^2}{\sum_{i=1}^{N} (y_i - \overline{y})^2}$$

Choose some Algorithms

- Linear Regression: Ordinary Least Squares
 - Closed form solution (Normal Equation)
 - Gradient Descent
- Polynomial Regression
- Regularized Models
 - Ridge Regression
 - Lasso Regression
- Decision Trees Regression
- Something else (Support Vector Machines, Neural Networks...)
- Ensemble Models, Random Forests

Linear Regression

- Find the best linear model that fits our data
- This means finding two parameters: slope (β 1) and intercept (β 0)

Once trained, we can use the model to make predictions => machine learning!!

Close form solution: Normal Equation

$$\widehat{\boldsymbol{\beta}} = \arg\min \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2$$
 $\boldsymbol{\beta}$

$$\underline{X}^T\underline{X}\,\widehat{\boldsymbol{\beta}}=\underline{X}^T\,\underline{\boldsymbol{y}}$$

$$\widehat{\boldsymbol{\beta}} = \left(\underline{\boldsymbol{X}}^T \underline{\boldsymbol{X}}\right)^{-1} \underline{\boldsymbol{X}}^T \underline{\boldsymbol{y}}$$

Find the value of β that minimizes the squared sum of the estimation errors ϵ

The issue here is the computational complexity of the explicit solution, especially the complexity of computing with respect to the number of features $(X^TX)^{-1} \Rightarrow O(n^{2.4}) \div O(n^3)$

A different approach would be to use an optimisation algorithm to find the optimal solution

Gradient Descent

- Tweak the weights β iteratively in order to minimize a cost function.
- Measure the local gradient of the error function with respect to the weights β , and tweak β in the direction of descending gradient.
- Once the gradient equals zero, you have reached a minimum.

Gradient Descent

Let's consider the Mean Squared Error as our performance metric. The

Hence, the gradient descent at each iteration is: $\theta^{n+1} = \theta^n - \eta \nabla_{\theta} MSE(\theta)$

Stochastic Gradient Descent

- Note that this formula involves calculation over the full training set X at each Gradient Descent step. This is why the algorithm is called Batch Gradient Descent.
- The solution is to use *Stochastic Gradient Descent (SGD)*: pick a random instance in the training set at every step and computes the gradients based only on that single instance
- SGD: faster algorithm but slower to converge

source: https://wikidocs.net/3413

Polynomial Regression and Regularisaton

- My data is often more complex than a straight line (or a hyperplane) => need to add Polynomial Features to our fitting model
- P.R. is prone to overfitting => Regularization techniques are often needed
- Ridge Regression
- Lasso Regression
 - tends to eliminate the weights of the least important features
- ElasticNet (Ridge + Lasso)

Weekly Oxford Worldwide Early Stopping

A very different way to regularize iterative learning algorithms such as Gradient Descent is to stop training as soon as the validation error reaches a minimum.

Cross-validation

