Arquitectura PCIe

Prof. Jorge Soto

IE-0523 Circuitos Digitales II

Peripheral Component Interface

https://www.passmark.com/support/pcie-test-card-faq.htm
https://www.bhphotovideo.com/c/product/884564-REG/MOTU_9200_PCIe_424_Card_Card.html

Enlace PCIe*

^{*} PCI-SIG; PCI Express® Base Specification Revision 3.0; November 2010

Ejemplo de topología*

Processor **FSB** AGP North Bridge (Intel 440) SDRAM Arbiter PCI-33MHz **SCSI** South Bridge USB ISA 300000 Super Boot Modem Audio Ю Chip ROM Chip COM₁ COM₂

Figure 1-2: 33 MHz PCI Bus Based Platform

^{*} PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008

Transacciones en PCI*

Processor **FSB** 1) Programmed IO AGP North Bridge (Intel 440) SDRAM 2) DMA PCI-33MHz 3) Peer-to-Peer **SCSI** Etherne¹ South Bridge USB ISA Super Modem Audio Boot ROM IO Chip Chip COM₁ COM₂

Figure 1-5: PCI Transaction Model

^{*} PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008

Arbitraje en PCI*

Processor FSB **AGP** North Bridge (Intel 440) SDRAM Arbiter PCI-33MHz SCSI Ethernet **IDE** South Bridge USB ISA

Figure 1-6: PCI Bus Arbitration

↑ Arbitraje utilizando señales REQ(↑) y GNT(↓)

^{*} PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008

Ejemplo topología PCIE

CPU **Root Complex** Bus 0 (Internal) Memory PCI-XP 1 PCI-XP 6 PCI-XP 7 Switch PCI-XP Virtual PCI PCI-XP PCI-XP **Endpoint Endpoint** Bus 2 Bridge To PCI-XP 4 Virtual PCI PCI Bridge PCI-XP Legacy PCI/PCI-X Endpoint Legend ☐ PCI Express Device Downstream Port PCI Express Device Upstream Port

Figure 1-22: PCI Express Topology

^{*} PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008

Diagrama de capas PCIE

Figure 2-11: TLP Origin and Destination

^{*} PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008

Núcleo del dispositivo / Capa de Software (Device Core / Software Layer)

- Núcleo o cerebro del dispositivo.
- No está presente en el estándar ya que está por encima de la capa de transacción.
- Es el destino o la fuente de peticiones, con información como: tipo de transacción, dirección, cantidad de datos, entre otros.
- Comunicación en RX y TX con la capa de transacción.

Transacciones TLP

- Tipos:
 - Memoria
 - Entrada y salida (IO)
 - Configuración
 - Mensajes
- Transacción: combinación de paquete de solicitud (Request) y terminación (Completion)
- Transacción tipo "Non-posted": Espera respuesta
- Transacción tipo "Posted": No espera respuesta (Se revisa con protocolo Ack/Nak en DLL)

Tipos de peticiones

Table 2-1: PCI Express Non-Posted and Posted Transactions

Transaction Type	Non-Posted or Posted
Memory Read	Non-Posted
Memory Write	Posted
Memory Read Lock	Non-Posted
IO Read	Non-Posted
IO Write	Non-Posted
Configuration Read (Type 0 and Type 1)	Non-Posted
Configuration Write (Type 0 and Type 1)	Non-Posted
Message	Posted

^{*} PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008

Tipos de transacciones TLP

Table 2-2: PCI Express TLP Packet Types

TLP Packet Types	Abbreviated Name
Memory Read Request	MRd
Memory Read Request - Locked access	MRdLk
Memory Write Request	MWr
IO Read	IORd
IO Write	IOWr
Configuration Read (Type 0 and Type 1)	CfgRd0, CfgRd1
Configuration Write (Type 0 and Type 1)	CfgWr0, CfgWr1
Message Request without Data	Msg
Message Request with Data	MsgD
Completion without Data	Cpl
Completion with Data	CplD
Completion without Data - associated with Locked Memory Read Requests	CplLk
Completion with Data - associated with Locked Memory Read Requests	CplDLk

^{*} PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008

Capa de Enlace de Datos (Data Link Layer)

- Transmisión (codificación) y recepción (decodificación) de paquetes DLLP.
- Detección y corrección de errores mediante el protocolo Ack/Nak.

Capa Física (PHY) (Physical Layer)

- Creación y recepción de paquetes tipo "Ordered-Set".
- Transmisión y recepción de paquetes TLP y DLLP.
- Contiene la máquina de estados de entrenamiento y estado del enlace (LTSSM).

Diagrama de capas PCIE

Figure 14-1: Link Training and Status State Machine Location

^{*} PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008

Ensamblaje de transacción TLP

Figure 2-12: TLP Assembly

^{*} PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008

Desensamblaje de transacción TLP

Figure 2-13: TLP Disassembly

^{*} PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008

Lectura de Memoria por CPU

Figure 2-6: Non-Posted Memory Read Originated by CPU and Targeting an Endpoint

^{*} PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008

Lectura de Memoria por punto terminal

Figure 2-7: Non-Posted Memory Read Originated by Endpoint and Targeting Memory

^{*} PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008

Escritura de Memoria por CPU

Figure 2-9: Memory Write Transaction Originated by CPU, Targeting Endpoint

^{*} PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008

Calidad de Servicio (QoS)

Figure 2-22: Example Showing QoS Capability of PCI Express

^{*} PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008

Clases de Tráfico y Canales Virtuales

Figure 2-23: TC Numbers and VC Buffers

^{*} PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008

Control de Flujo (FC)

Figure 2-21: Flow Control Process

^{*} PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008