

Université Libre de Bruxelles

INFO-F302 Informatique Fondamentale

Synthèse

Étudiants :Hugo Callens

Enseignants:
E. FILIOT

29 septembre 2023

Contents

1	Logi	Logique propositionnelle 2								
	1.1	Constr	ruction de formules	2						
	1.2	Séman	itique	2						
	1.3	3 Validité et Stabilité								
		1.3.1	Définitions	2						
		1.3.2	Conséquence logique	3						
		1.3.3	Equivalence	3						
		1.3.4	Lien entre satisfaisabilité et validité	3						
		1.3.5	Tableaux sémantiques	4						

1 Logique propositionnelle

1.1 Construction de formules

Le vocabulaire du langage de la logique propositionnelle est composé de :

- 1. de propositions x, y, z, ...; ou X, Y, Z, ...;
- 2. de deux constantes vrai (\top ou 1) et faux (\bot ou 0);
- 3. d'un ensemble de connecteurs logiques : \neg , \wedge , \vee , \rightarrow , \leftrightarrow .
- 4. de paranthèses ().

1.2 Sémantique

La sémantique d'une formule est la valeur de vérité de cette formule. La valeur de vérité d'une formule Φ formée àpd propositions d'un ensemble X, évaluée avec la fonction d'interprétation V, est notée $\llbracket \Phi \rrbracket_V$. La fonction $\llbracket \Phi \rrbracket_V$ est définie par induction sur la syntaxe de Φ de la façon suivante :

- $[\![\top]\!]_V = 1; [\![\bot]\!]_V = 0; [\![x]\!]_V = V(x)$
- $[\neg \Phi]_V = 1 [\![\Phi]\!]_V$
- $\llbracket \Phi_1 \vee \Phi_2 \rrbracket_V = \max(\llbracket \Phi_1 \rrbracket_V, \llbracket \Phi_2 \rrbracket_V)$
- $[\![\Phi_1 \wedge \Phi_2]\!]_V = \min([\![\Phi_1]\!]_V, [\![\Phi_2]\!]_V)$
- $\llbracket \Phi_1 \leftarrow \Phi_2 \rrbracket_V = \max(1 \llbracket \Phi_1 \rrbracket_V, \llbracket \Phi_2 \rrbracket_V)$
- $[\![\Phi_1 \leftrightarrow \Phi_2]\!]_V = \min([\![\Phi_1 \to \Phi_2]\!]_V, [\![\Phi_2 \to \Phi_1]\!]_V)$

Nous notons $V \vDash \Phi \Leftrightarrow \llbracket \Phi \rrbracket_V = 1$ soit "V satisfait Φ ."

L'information contenue dans la définition est souvent représentée sous forme de table de verité :

Φ_1	Φ_2	$\Phi_1 \vee \Phi_2$	$\Phi_1 \wedge \Phi_2$	$\Phi_1 \to \Phi_2$	$\Phi_1 \leftrightarrow \Phi_2$
0	0	0	0	1	1
0	1	1	0	1	0
1	0	1	0	0	0
1	1	1	1	1	1

Dans l'implication suivante : $\Phi_1 \to \Phi_2$, la cas où Φ_1 est faux ne nous intéresse pas. Dans ce cas, l'implication est toujours vraie.

1.3 Validité et Stabilité

1.3.1 Définitions

Une formule propositionnelle Φ est **satisfaisable** \Leftrightarrow il existe une fonction d'interprétation V pour les propositions de Φ , telle que $V \vDash \Phi$.

Une formule propositionnelle Φ est **valide** \Leftrightarrow pour toute fonction d'interprétation V pour les propositions de Φ , $V \vDash \Phi$.

1.3.2 Conséquence logique

Soit $\Phi_1, ..., \Phi_n, \Phi$ des formules. On dira que Φ est une **conséquence logique** de $\Phi_1, ..., \Phi_n$, noté $\Phi_1, ..., \Phi_n \models \Phi$, si $(\Phi_1 \land ... \land \Phi_n) \rightarrow \Phi$ est valide.

1.3.3 Equivalence

Deux formules, Φ et Ψ , sont **équivalentes** si la formule $\Phi \leftrightarrow \Psi$ est valide. On notera $\Phi \equiv \Psi$.

Pour toutes formules Φ_1, Φ_2, Φ_3 :

- $\neg \neg \Phi_1 \equiv \Phi_1$
- $\neg(\Phi_1 \land \Phi_2) \equiv (\neg \Phi_1 \lor \neg \Phi_2)$
- $\neg(\Phi_1 \lor \Phi_2) \equiv (\neg \Phi_1 \land \neg \Phi_2)$
- $\Phi_1 \wedge (\Phi_2 \vee \Phi_3) \equiv (\Phi_1 \wedge \Phi_2) \vee (\Phi_1 \wedge \Phi_3)$
- $\Phi_1 \vee (\Phi_2 \wedge \Phi_3) \equiv (\Phi_1 \vee \Phi_2) \wedge (\Phi_1 \vee \Phi_3)$
- $\Phi_1 \to \Phi_2 \equiv (\neg \Phi_1 \lor \Phi_2)$

1.3.4 Lien entre satisfaisabilité et validité

Une formule Φ est valide $\Leftrightarrow \neg \Phi$ est insatisfaisable.

Figure 1.1 – Lien entre satisfaisabilité et validité

1.3.5 Tableaux sémantiques

Un littéral est une proposition x ou la négation d'une proposition $\neg x$.

La méthode des tableaux sémantiques est un algorithme pour tester la satisfaisabilité d'une formule. Elle consiste à construire un arbre dont les noeuds sont des formules et les feuilles sont des littéraux. On construit l'arbre de la façon suivante :

- On place la formule à tester à la racine de l'arbre.
- On applique les règles suivantes jusqu'à ce que l'arbre soit complet :
 - o Si la formule à tester est une constante, on arrête.
 - Si la formule à tester est une conjonction, on ajoute les deux conjoncteurs comme fils de la formule à tester.
 - Si la formule à tester est une disjonction, on ajoute un fils avec le premier disjoncteur et un autre fils avec le deuxième disjoncteur.
 - Si la formule à tester est une implication, on ajoute un fils avec la négation de l'antécédent et un autre fils avec le conséquent.
 - Si la formule à tester est une équivalence, on ajoute un fils avec la négation de la première formule et un autre fils avec la deuxième formule.
 - Si la formule à tester est une négation, on ajoute un fils avec la négation de la formule à tester.