МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М. В. ЛОМОНОСОВА ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ

ОТЧЕТ ПО ЗАДАНИЮ №6

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант 4/4/1

Выполнила: студентка 102 группы Кыштымова А. Ю.

> Преподаватель: Кулагин А. В.

Содержание

Постановка задачи	2
Математическое обоснование	3
Результаты экспериментов	6
Структура программы и спецификация функций	7
Сборка программы (Make-файл)	9
Отладка программы, тестирование функций	10
Программа на Си и на Ассемблере	11
Анализ допущенных ошибок	12
Список цитируемой литературы	13

Постановка задачи

В данной работе требовалось реализовать вычисление площади плоской фигуры, ограниченной тремя кривыми, определенными численными методами так, чтобы итоговая точность была равна 0.001. Точки пересечения кривых вершины фигуры — по заданию должны были искаться комбинированным методом (методом хорд и касательных), а площадь под графиком функции на определенном отрезке должна была искаться помощью прямоугольников. При этом отрезки, на которых ищутся точки пересечения кривых (то есть корни уравнения f(x) - g(x) = 0, где f(x) и g(x) — функции данных кривых), должны были быть вычислены аналитически, как и точности eps1 и eps2, с которыми вычисляются точки пересечения кривых и интегралы от функций соответственно.

Математическое обоснование

Рисунок 1: Графики заданных уравнений

Рисунок 2: Плоская фигура, ограниченная заданными кривыми

Математическое обоснование границ отрезков, на которых ищутся точки пересечения кривых:

Очевидно, что на $(-\infty;0)$ функции непрерывны. Нужные нам точки пересечения кривых находятся там же. Все следующие рассуждения будут относиться именно к этому промежутку (и могут быть неверны при x>=0, но возможные корни в этой области нам не нужны).

Производные функций находятся элементарно и равны $f1'(x)=e^x$, $f2'(x)=\frac{1}{x^2}$, $f3'(x)=\frac{-2}{3}$.

Для начала заметим, что точки пересечения f2 и f3 можно легко найти, домножим уравнение $\frac{-1}{x} + \frac{2(x+1)}{3} = 0$ на x и решив квадратное уравнение. Его корнями являются числа $\frac{-1+\sqrt{7}}{2} \approx 0,8229$ и $\frac{-1-\sqrt{7}}{2} \approx -1.8229$. По графику видно, что нам нужен только отрицательный корень, а границы отрезка для поиска этого корня можно определить как -2 и -1.5. То, что функция y(x) = f2(x) - f3(x) принимает в этих точках разные знаки, можно легко проверить подстановкой.

Из того, что f3 строго убывает, а f1 строго возрастает, можем выяснить, что пересекаются они только раз. Грубую оценку границ отрезка, на котором следует искать корень, можно выполнить следующим образом: $e^{-6}+2<1+2<\frac{10}{3}$ (x=-6), $e^{-3}+2>2>\frac{4}{3}$ (x=-3). Таким образом, в точке x=-6 f1 < f3, в точке x=-3 f1 > f3.

Из графика очевидно, что f1 и f2 пересекаются только раз. Концами отрезка для поиска корня функции f1(x)-f2(x) можно выбрать -0.5 и -0.2, так как $e^{-0.5}$ +2>2 , $e^{-0.2}$ +2<5 .

Из-за особенностей выбранного метода нахождения корня функции, который зависит от знака выражения y'(x)y''(x) (где y(x) — функция, у которой мы ищем корень y(x) = 0), удобнее, чтобы для всех трех функций, у которых мы ищем корень, этот знак был одинаковым. Поэтому уравнения для нахождения точек пересечения кривых принимают следующий вид:

Для кривых 1 и 2: y(x) = f1(x)-f2(x) (y'(x) < 0, y''(x) < 0)

Для кривых 1 и 3: y(x) = f3(x)-f1(x) (y'(x) < 0, y''(x) < 0)

Для кривых 2 и 3: y(x) = f2(x)-f3(x) (y'(x) > 0, y''(x) > 0)

Выбор eps1 и eps2:

Для начала обозначим, как определяется точность.

При нахождении корня считается, что корень найден с точностью eps1, если от найденного корня до настоящего расстояние меньше eps1. Найдя такие а и b, что знаки функции (у которой мы ищем корень) в них разные, мы

понимаем, что настоящий корень лежит где-то между ними, и точка (a+b)/2 отдалена от него не более чем на eps1, если $a-b \le 2$ eps1.

При нахождении интеграла мы используем правило Рунге. Пусть I(n) — интеграл, полученный при разбиении отрезка на n частей, I(2n) — интеграл, полученный при разбиении отрезка на 2n частей. Если мы считаем интеграл методом средних прямоугольников, то правило Рунге гласит, что погрешность величины I(2n) равна |I(2n) - I(n)|/3. Значит, достаточно посчитать интеграл два раза и сравнить |I(2n)-I(n)| с 3*eps2. Если получившаяся величина больше или равна 3*eps2, то вычислить |I(4n)-I(2n)|, и так далее.

Итоговая точность должна быть равна 0.001, то есть полученный результат должен отличаться от настоящего не более чем на эту величину. Рассмотрим, как eps1 и eps2 влияют на конечный результат:

Предположим, что мы идеально подобрали точки пересечения кривых. Так как итоговый результат вычисляется как I1-I2-I3 (где I1, I2, I3 — интегралы от функций f1, f2, f3 на соответствующих отрезках, чьи концы определяются как точки пересечения этой кривой с другими), то в таком случае полученный результат будет отличаться от настоящего не более чем на 3*eps2.

Пусть гооt12 = x12 + eps1, гооt13 = x13 + eps1, гооt23 = x23 + eps1, где + eps1 означает, что вычисленный гооt может отличаться от настоящего корня x не более чем на eps1. Интегралы, вычисленные с идеальной точностью, будут отличаться от настоящих интегралов не более чем на eps1*(|f1(x)-f2(x)| + |f1(x)-f3(x)| + |f2(x)-f3(x)|). Чтобы не вычислять значения этих модулей после нахождения корня, для удобства можно поставить дополнительное ограничение на точность нахождения корня — не только «горизонтальное» (насколько отличаются а и b, концы отрезка, на котором находится настоящий корень), но и «вертикальное» (насколько отличаются у(а) и у(b)). Пусть эта величина равна k*eps1, тогда лишний «кусочек» площади под функцией (после того, как мы вычли интегралы друг из друга) будет иметь площадь не более eps1*(k*eps1). Всего у нас есть три точки пересечения, значит, три таких «кусочка». Получаем:

 $3*k*eps1^2+3*eps2 < 0.001$

Взяв, например, eps1 = 0.0001, eps2 = 0.0001, мы можем взять k = 10 (судя по графику, величина $|y(a)-y(b)| < 10^*|a-b|$ в точках, близких к корню, для любой из трех y(x)).

Тогда $3*(10*10^{-8}+10^{-4})$ < 10^{-3} , ч.т.д. Подходящая точность найдена и доказана.

Результаты экспериментов

Кривые	X	y
1 и 2	-0.3718	2.6895
2 и 3	-1.8229	0.5486
1 и 3	-4.0267	2.0178

Таблица 1: Координаты точек пересечения

Функция	От	До	Значение	
			интеграла	
$f 1 = e^x + 2$	-4.0267	-0.3718	7.9815	
$f 2 = \frac{-1}{x}$	-1.8229	-0.3718	1.5898	
$f3 = -2\frac{(x+1)}{3}$	-4.0267	-1.8229	2.8279	

Таблица 2: Значения интегралов функций

Результатом (площадью фигуры, ограниченной заданными кривыми) является I1-I2-I3 = 3.5638, что приблизительно равно 3.564.

Структура программы и спецификация функций

Количество ключей, массив с хранящимися в нем ключами, массив для отметки того, какие ключи активированы. Последний сделан глобальной переменной, чтобы была возможность обращаться к нему из функции root, не передавая значения ключей как параметры функции.

Значения ключей:

-help

Выводит все находящиеся в массиве keys ключи, завершает работу программы.

-abscissas

При вызове функции гоот выводит значение найденного корня.

-iterations

При вызове функции root выводит число итераций цикла, понадобившееся для нахождения корня.

-test

Функция для тестирования, после которой идет нужное число аргументов: номер функции (один номер для integral, два номера для root), левый конец отрезка, правый конец отрезка, точность. Например, -test root 1 2 -1 -0.1 0.001 вычисляет значение функции root(f1, f2, t1, t2, -1, -0.1, 0.001) и выводит его. Число итераций также можно получить, указав - iterations до -test. Аналогично, -test integral 3 —1.5 1.5 0.001 вычислит и выведет значение integral(f3, -1.5, 1.5, 0.001). После выполнения вышенаписанного программа завершает свою работу.

```
extern double f1 (double x) extern double f2 (double x) extern double f3 (double x)
```

Функции, написанные в ассемблерном файле. Возвращают значения f1(x), f2(x) и f3(x) соответственно.

```
extern double t1 (double x)
extern double t2 (double x)
extern double t3 (double x)
```

Функции, написанные в ассемблерном файле. Возвращают значения f1'(x), f2'(x), f3'(x) соответственно.

Возвращает найденную методом хорд и касательных асбциссу точки пересечения кривых f(x) и g(x) (корень функции y(x) = f(x)-g(x)) на отрезке от а до b с точностью eps1 (найденный корень отличается от настоящего не более чем на eps). С ключом -abscissas выводит значение найденного корня, с ключом -iterations выводит число итераций, понадобившихся для того, чтобы найти ответ с заданной точностью.

double integral(double f(double), double a, double b,
double eps2)

Возвращает интеграл от функции f(x) на отрезке от а до b с точностью eps2 (найденное значение отличается от настоящего значения интеграла на заданном отрезке не более чем на eps2).

int main(int argc, char* argv[])

- 1. Обработка поступивших в командной строке ключей. Если присутствует ключ -help, вывод всех существующих ключей и завершение работыю Если присутствует ключ -test, запуск соответствующего тестирования, вывод полученного значения и завершение работы.
- 2. Поиск точек пересечения кривых. При наличии ключей -abscissas и -iterations выводит соответствующие значения.
- 3. Вычисление интегралов заданных функций на нужных промежутках.
- 4. Вычисление и вывод результата искомой площади фигуры ограниченной заданными кривыми.

Рисунок 3: Связи между компонентами программы

Сборка программы (Маке-файл)

```
Текст Make-файла:
all: main.o functions.o
gcc -m32 -o program main.o functions.o -lm
main.o: main.c
gcc -m32 -std=c99 -c -o main.o main.c

functions.o: functions.asm
nasm -f elf32 -o functions.o functions.asm

clean:
rm -rf *.o
```


Рисунок 4: Зависимости между модулями программы

Отладка программы, тестирование функций

Функция 1	Функция 2	a	b	eps	Настоящий корень	Найденны й корень
$f 2 = \frac{-1}{x}$	$f3 = -2\frac{(x+1)}{3}$	-10	-1	0.00001	$\frac{-1-\sqrt{7}}{2} \approx -1,822876$	-1.82288
$f3 = -2\frac{(x+1)}{3}$	$f 2 = \frac{-1}{x}$	0.5	2	0.000001	$\frac{-1+\sqrt{7}}{2}\approx 0,822876$	0.822876
$f 2 = \frac{-1}{x}$	$f 1 = e^x + 2$	-1	-0.1	0.01	Примерно 0.37 (можно проверить вручную)	-0.37

Таблица 3: Тестирование функции root

Функция	Интеграл	a	b	eps	Настоящее	Найденное
					значение	значение
$f 1 = e^x + 2$	$e^x + 2x + C$	0	1	0.000001	<i>e</i> +1≈3,718282	3.718282
$f 2 = \frac{-1}{x}$	$-\ln x +C$	5	10	0.000001	$\ln \frac{1}{2} \approx -0,693147$	-0.693147
$f3 = -2\frac{(x+1)}{3}$	$-x\frac{(x+2)}{3}+C$	-1.2	3.6	0.000001	-7,04	-7.040000

Таблица 4: тестирование функции integral

Программа на Си и на Ассемблере

Исходные тексты программы имеются в архиве, который приложен к этому отчету.

Анализ допущенных ошибок

Ошибок не замечено.

Список цитируемой литературы

- [1] Ильин В. А., Садовничий В. А., Сендов Бл. Х. Математический анализ. Т. 1 Москва: Наука, 1985
- [2] Березин И. С., Жидков Н.П. Методы вычислений, 3 изд., Т. 1 Москва, 1966