Approach of the Nucleophile

Front-side Displacement

Molecular Orbitals Support Back-side Approach

 \triangleright The nucleophile attacks the σ^* orbital of the C-X bond

ΔE (interaction energy): Σ sterics – Σ orbital overlap $(E_{LUMO} - E_{HOMO}) + Σ$ charge interaction

OH + CH₃-CI
$$\longrightarrow$$
 CI + CH₃-OH
$$/ Rate = k [RX] [Nu]$$

The reaction rate will depend on the following four factors:

- 1. Structure of alkyl halide
- 2. Nature of nucleophile 4
- 3 Nature of leaving group 🗸
- 4. Solvent 💪

✓ The rate of S_N 2 reaction is critically dependent on the nature of alkyl halide

structure	Me—X	R_X H H	R H R	R X
type	methyl	primary	secondary	tertiary
S _N 2 reaction?	good	good	yes	no

ΔE (interaction energy) : Σ sterics – Σ orbital overlap/(E_{LUMO} – E_{HOMO}) + Σ charge interaction

Steric Factors in S_N 2 Reactions

CH₃X

 $(CH_3)_3CX$

Nucleophilic Substitution Unimolecular $(S_N 1)$

$$H_2O + (CH_3)_3C-CI \longrightarrow HCI + (CH_3)_3C-OH$$

(t-Alkyl halide)

S_N1: Nucleophilic Substitution Unimolecular

- > The leaving group departs early; a carbocation is formed as the intermediate
- > Step 1 is slow and the rate determining step (rds)

$$H_2O + (CH_3)_3C-Br \longrightarrow HBr + (CH_3)_3C-OH$$

$$| Rate = k [RX] |$$

- ✓ When solvent is the nucleophile, it is called solvolysis
- ✓ Protonation/deprotonation steps are typically fast; small activation energy

E

10/

Reaction coordinate ----->

