Mathématiques financières (M2-SA)

TD Martinagles-Mouvement Brownien

Présenté par : M. HAMMAD

04 Janvier 2021

Exercice 1:

Soient $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, \mathbb{P})$ un espace de probabilité filtré, τ et ν deux temps d'arrêt de la filtration $(\mathcal{F}_n)_{n\geq 0}$, \mathcal{F}_{τ} (resp. \mathcal{F}_{ν}) la tribu des événements antérieurs à τ (resp. ν). Montrer les propriétés suivantes :

- i) $\tau \wedge \nu$, $\tau \vee \nu$, $\tau + \nu$ sont des temps d'arrêts pour la même filtration.
- ii) Si $\tau \leq \nu$, alors $\mathcal{F}_{\tau} \subset \mathcal{F}_{\nu}$.
- iii) $\mathcal{F}_{\tau \wedge \nu} = \mathcal{F}_{\tau} \cap \mathcal{F}_{\nu}$.
- iv) $\{\tau < \nu\}$ et $\{\tau = \nu\}$ appartiennent à $\mathcal{F}_{\tau} \cap \mathcal{F}_{\nu}$.

Exercice 2:

- Soit $Y \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ (intégrable sur l'espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$). On définit la suite (X_n) par $X_n = \mathbf{IE}(Y|\mathcal{F}_n)$.
- $-X_1,\ldots,X_n$ une famille de v.a sur $(\Omega,\mathcal{F},\mathbb{P}),\,X_n\in\mathcal{L}^1(\Omega,\mathcal{F},\mathbb{P})\,\forall n\in\mathbb{N}$, centrée et indépendantes 2 à 2. On pose $S_i=X_1+\cdots+X_i$.

Montrer que $(X_n)_n$ et $(S_n)_n$ sont des martingales.

Exercice 3:

Soit $(X_n; n \in \mathbb{N})$ une suite de variables aléatoires i.i.d (indépendantes et de même loi).

on note
$$m = \mathbf{IE}(X_1) < +\infty$$
 et $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ et $Y_n = \sum_{i=1}^n iX_i - \frac{n(n+1)}{2}m$.

- Calculer $\mathbf{IE}(Y_{n+1}|\mathcal{F}_n)$.
- Que peut-on dire du processus $(Y_n)_{n\geq 1}$?.

Exercice 4:

Soit $(X_n)_{n\geq 0}$ une suite de v.a. à valeurs [0,1]. On pose $\mathcal{F}_n=\sigma(X_0,\ldots,X_n)$. On suppose que $X_0=a\in[0,1]$ et que

$$\mathbb{P}(X_{n+1} = \frac{X_n}{2} | \mathcal{F}_n) = 1 - X_n, \quad \mathbb{P}(X_{n+1} = \frac{1 + X_n}{2} | \mathcal{F}_n) = X_n.$$

- 1) Montrer que $(X_n)_{n>0}$ est une martingale.
- 2) Montrer que

$$\mathbf{IE}((X_{n+1} - X_n)^2) = \frac{1}{4}\mathbf{IE}(X_n(1 - X_n)).$$

Exercice 5:

Soit $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n>0}, \mathbb{P})$ un espace de probabilité filtré sur lequel on considère une martingale réelle $(M_n)_{n\geq 0}$ telle que, pour tout $n\geq 0$, $|M_n|\leq K$. On pose

$$X_n = \sum_{k=1}^{n} \frac{1}{k} (M_k - M_{k-1})$$

Montrer que $(X_n)_{n\geq 1}$ est une $(\mathcal{F}_n)_{n\geq 1}$ -martingale.

Exercice 6:

Soit $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n>0}, \mathbb{P})$ un espace de probabilité filtré sur lequel on considère deux martingales $(X_n)_{n\geq 0}$ et $(Y_n)_{n\geq 0}$ de carré intégrable (éventuellement identiques).

- 1. Montrer que, pour $m \leq n$, on a $\mathbf{IE}(X_m Y_n | \mathcal{F}_m) = X_m Y_m \ p.s.$
- 2. Montrer que $\mathbf{IE}(X_nY_n) \mathbf{IE}(X_0Y_0) = \sum_{k=1}^{n} \mathbf{IE}((X_k X_{k-1})(Y_k Y_{k-1})).$
- 3. Montrer que $Var(X_n) = Var(X_0) + \sum_{k=1}^{n} Var(X_k X_{k-1})$.
- 4. Montrer que les v.a. $X_0, X_k X_{k-1}, k \ge 1$ sont deux à deux orthogonales dans L^2 .

Exercice 7:

Soit $(B_t)_{t\geq 0}$ est un \mathcal{F}_t -mouvement brownien standard, montrer que :

- B_t est une \mathcal{F}_t -martingale.
- $B_t^2 t$ est une \mathcal{F}_t -martingale. $\exp(\sigma B_t \frac{\sigma^2}{2}t)$ est une \mathcal{F}_t -martingale.

Exercice 8:

Soit $(B_t, t \ge 0)$ un mouvement brownien réel issu de 0 et on note $(\mathcal{F}_t)_{t\ge 0}$ sa filtration naturelle.

- 1. Calculer pour tout couple (s,t) les quantitées $\mathbf{E}(B_s B_t^2)$, $\mathbf{E}(B_t | \mathcal{F}_s)$ et pour $t \geq s \mathbf{E}(B_t|B_s).$
- 2. Calculer $\mathbb{E}(B_t^2 B_s^2)$ sachant que pour une v.a. gaussienne centrée Z de variance σ^2 , on a **IE** $(Z^4) = 3\sigma^4$.
- 3. Quelle est la loi de $B_t + B_s$?.
- 4. Soit θ_s une v.a. bornée \mathcal{F}_s -mesurable. Calculer pour tout $t \geq s$, $\mathbf{IE}[\theta_s(B_t - B_s)]$ et $\mathbf{IE}[\theta_s(B_t - B_s)^2]$.

Exercice 9:

Montrer qu'un processus X est un mouvement Brownien si et seulement si

- a) Pour tout $t_0 < t_1 < \cdots < t_n$, le vecteur $(X_{t_0}, X_{t_1}, \dots, X_{t_n})$ est un vecteur gaussien centré.
- b) $\mathbf{IE}(X_t X_s) = s \wedge t$.
- c) $X_0 = 0$.

Exercice 10:

Soit $(B_t)_{t\geq 0}$ un mouvement brownien standard réel et on note $(\mathcal{F}_t)_{t\geq 0}$ sa filtration naturelle. Parmi les processus suivants, quels sont ceux qui sont des martingales.

1.
$$M_t = B_t^3 - 3 \int_0^t B_s ds$$
.

2.
$$Z_t = B_t^3 - 3tB_t$$
.

3.
$$X_t = tB_t - \int_0^t B_s ds$$
.

4.
$$U_t = \sin B_t - \int_0^t B_s(\cos s) ds$$
.

5.
$$V_t = \sin B_t + \frac{1}{2} \int_0^t \sin(B_s) ds$$
.

6.
$$Y_t = t^2 B_t - 2 \int_0^t B_s ds$$
.