Primary Mathematics

	Beginning Algebra
	intermediate algebra
trigonometry courses	
	course on complex Numbers
	overview of primarily mathematics
	Chris Pope's lecture notes:1, 2
<u></u>	The complex plane, Cauchy theorems and contour integration.
✓ Natural	numbers: 1, 2, 3,
✓ Integer:	s:, -3, -2, -1, 0, 1, 2,
✓ Rationa	l numbers (fractions): 12, 14, 34, 23791773,
Real nu	mbers: Sqrt(2) = 1.4142135 , π = 3.14159265 , e = 2.7182818,
	x numbers: 2+3i, eia= cos(a) + i sin(a), they are very important!
Set the	ory: open sets, compact spaces.
Topolog	gy.You may be surprised to learn that they do play a role indeed in physics!
Algebra	ic equations. Approximation techniques.
Series e	xpansions: the Taylor series.
Solving	equations with complex numbers.
Trigono	metry: sin(2x)=2sin x cos x, etc.
Infinites	simals. Differentiation. Differentiate basic functions (sin, cos, exp).
Integra	tion. Integrate basic functions, when possible.
Differer	ntial equations. Linear equations.
The Fou	rier transformation. The use of complex numbers. Convergence of series.
The cor	nplex plane. Cauchy theorems and contour integration (now this is fun).
The Gar	mma function (enjoy studying its properties).
Gaussia	n integrals.
Probab	ility theory.
Partial o	differential equations. Dirichlet and Neumann boundary conditions.
	Classical Mechanics
	An intermediate level course on Analytical Classical Dynamics

A good set of Lecture notes from Harvard

A short course on Classical Mechanics

	anics (forces, tension); hydrostatics.
Newton's	
_	al orbits of planets. The many-body system
	principle. Hamilton's equations.
_	gean. (Don't skip - extremely important!)
	nic oscillator. The pendulum
Poisson' s	
□ Wave equa	
 Liquids and The Navior	
☐ The Navier☐ Viscosity ar	Stokes equations.
_ 1.2000.07 00	Optics
	A.A. Louro's lecture Notes on Optics
	V. Jones lecture notes on Classical and Quantum Optics
Fraction an	
Lenses and	mirrors
The telesco	pe and the microscope
	n to wave propagation
Doppler ef	ect
	principle of wave superposition
Wave front	S
Caustics	
Statist i	cal Mechanics & Thermodynamic
	The course "Statistical Mechanics"
	Prof. Kelly's lecture notes on Statistical Physics
	Gould/Tobochnik lecture notes
	Intermediate level course on Statistical Mechanics
The first, se	cond and third laws of thermodynamics

☐ The Carnot cycle.		
☐ Entropy.		
☐ Heat engines		
☐ Phase transitions.		
☐ Thermodynamical models		
\square The Ising Model (postpone techniques to solve the 2-dimensional Ising		
Model to later)		
☐ Planck' s radiation law (as a prelude to Quantum Mechanics)		
<u>Electronics</u>		
Lessons In Electric Circuits by T. R. Kuphaldt		
(Only some very basic things about electronic circuits)		
☐ Ohm' s law, capacitors, inductors		
☐ Using complex numbers to calculate their effects		
☐ Transistors, diodes (how these actually work comes later)		
Electromagnetism		
Electromagnetism by James Sparks		
Electromagnetism by James Sparks Notes on Classical Electromagnetism by R. Fritzpatrick		
Notes on Classical Electromagnetism by R. Fritzpatrick		
Notes on Classical Electromagnetism by R. Fritzpatrick Bo Thide's EM Field theory text(advanced)		
Notes on Classical Electromagnetism by R. Fritzpatrick Bo Thide's EM Field theory text(advanced) Worked out exercises from Jackson's book: Selection 1 / Selection 2		
Notes on Classical Electromagnetism by R. Fritzpatrick Bo Thide's EM Field theory text(advanced) Worked out exercises from Jackson's book: Selection 1 / Selection 2 Maxwell' s Theory for electromagnetism:		
Notes on Classical Electromagnetism by R. Fritzpatrick Bo Thide's EM Field theory text(advanced) Worked out exercises from Jackson's book: Selection 1 / Selection 2 Maxwell' s Theory for electromagnetism: Homogeneous and inhomogeneous		
Notes on Classical Electromagnetism by R. Fritzpatrick Bo Thide's EM Field theory text(advanced) Worked out exercises from Jackson's book: Selection 1 / Selection 2 Maxwell' s Theory for electromagnetism: Homogeneous and inhomogeneous Maxwell' s laws in a medium. Boundaries.		
Notes on Classical Electromagnetism by R. Fritzpatrick Bo Thide's EM Field theory text(advanced) Worked out exercises from Jackson's book: Selection 1 / Selection 2 Maxwell' s Theory for electromagnetism: Homogeneous and inhomogeneous Maxwell' s laws in a medium. Boundaries. Solving the equations in:		
Notes on Classical Electromagnetism by R. Fritzpatrick Bo Thide's EM Field theory text(advanced) Worked out exercises from Jackson's book: Selection 1 / Selection 2 Maxwell' s Theory for electromagnetism: Homogeneous and inhomogeneous Maxwell' s laws in a medium. Boundaries. Solving the equations in: Vacumm and homogeneous medium (electromagnetic waves)		
Notes on Classical Electromagnetism by R. Fritzpatrick Bo Thide's EM Field theory text(advanced) Worked out exercises from Jackson's book: Selection 1 / Selection 2 Maxwell' s Theory for electromagnetism: Homogeneous and inhomogeneous Maxwell' s laws in a medium. Boundaries. Solving the equations in: Vacumm and homogeneous medium (electromagnetic waves) In a box (wave guides)		

Computational Physics

Even the pure sang theorist may be interested in some aspects of Computational physics.

Mathematica for Students of Science by James Kelly

Angus MacKinnon, Computational Physics

Prof. Mathews' projects on Numerical Analysis

Quantum Mechanics (Non-relativistic)

Introduction to QM and special relativity: Michael Fowler

Niels Walet lecture course on QM (Manchester)

Lecture Notes on QM from MIT: Undergraduate / Graduate

James Branson, Quantum Physics (UCSD)

MIT: Quantum Theory I

MIT: Quantum Theory2

MIT: Quamtum Physics1

MIT: Quamtum Physics 2

MIT: Quamtum Physics 2

UCSD: Quantum Physics

☐ Bohr's atom
DeBroglie's relations (Energy-frequency, momentum-wave number)
Schrödinger's equation (with electric potential and magnetic field)
Ehrenfest's theorem
☐ A particle in a box
$\hfill \square$ The hydrogen atom, solved systematically. The Zeeman effect. Stark effect
☐ The quantum harmonic oscillator
Operators: energy, momentum, angular momentum,
Creation and annihilation operators

Their commutation rules
☐ Introduction to quantum mechanical scattering.
☐ The S-matrix.
☐ Radio-active decay
Atoms & Molecules
Notes on General Quantum Chemistry from Georgiatech
Lecture notes on Physical Chemistry by Darin J. Ulness
☐ Chemical binding
Orbitals
☐ Atomic and molecular spectra
☐ Emission and absorption of light
Quantum selection rules
☐ Magnetic moments
Solid State Physics
An introduction to Solid State Physics by Yuri M. Galperin
The introduction to Sona State 1 mysics by Turr Mr. Garperin
A course in Solid State Physics by Mark Jarrell
A course in Solid State Physics by Mark Jarrell
A course in Solid State Physics by Mark Jarrell Solid State Physics: notes by Chetan Nayak (UCLA)
A course in Solid State Physics by Mark Jarrell Solid State Physics: notes by Chetan Nayak (UCLA) Crystal groups
A course in Solid State Physics by Mark Jarrell Solid State Physics: notes by Chetan Nayak (UCLA) Crystal groups Bragg reflection
A course in Solid State Physics by Mark Jarrell Solid State Physics: notes by Chetan Nayak (UCLA) Crystal groups Bragg reflection Dielectric and diamagnetic constants
A course in Solid State Physics by Mark Jarrell Solid State Physics: notes by Chetan Nayak (UCLA) Crystal groups Bragg reflection Dielectric and diamagnetic constants Bloch spectra
A course in Solid State Physics by Mark Jarrell Solid State Physics: notes by Chetan Nayak (UCLA) Crystal groups Bragg reflection Dielectric and diamagnetic constants Bloch spectra Fermi level
A course in Solid State Physics by Mark Jarrell Solid State Physics: notes by Chetan Nayak (UCLA) Crystal groups Bragg reflection Dielectric and diamagnetic constants Bloch spectra Fermi level Conductors, semiconductors and insulators
A course in Solid State Physics by Mark Jarrell Solid State Physics: notes by Chetan Nayak (UCLA) Crystal groups Bragg reflection Dielectric and diamagnetic constants Bloch spectra Fermi level Conductors, semiconductors and insulators Specific heat
A course in Solid State Physics by Mark Jarrell Solid State Physics: notes by Chetan Nayak (UCLA) Crystal groups Bragg reflection Dielectric and diamagnetic constants Bloch spectra Fermi level Conductors, semiconductors and insulators Specific heat Electrons and holes
A course in Solid State Physics by Mark Jarrell Solid State Physics: notes by Chetan Nayak (UCLA) Crystal groups Bragg reflection Dielectric and diamagnetic constants Bloch spectra Fermi level Conductors, semiconductors and insulators Specific heat Electrons and holes The transistor

Tive lectures on Nuclear Theory by D. D. Kapian	
A primer in nuclear theory by J. Dobaczewski	
Isotopes	
Radio-activity	
Fission and fusion	
Droplet model	
Nuclear quantum numbers	
Magic nuclei	
Isospin	
Yukawa theory	
Plasma Physics	
Introduction to plasma physics by R. Fritzpatrick	
Magneto-hydrodynamics	_
Alfvén waves	
Advanced Mathematics	
See John Heinbockel, Virginia.	
See Chr. Pope: Methods2.	
Mathematics textbooks list. (Link not working; working on finding an alternative)	
G.'t Hooft: Lie groups in Physics, (now also in English) + exercises.	
For Lie Groups, see also the last section of Chr. Pope's lectures (under "General Relativity"	<u>).</u>
The special functions and polynomials(PDF) (just understand the principles).	
Group theory, and the linear representations of groups	
Lie group theory	
Vectors and tensors	
More techniques to solve (partial) differential and integral equations	
Extremum principle and approximation techniques based on that	
Difference equations	
Generating functions	
Hilbert space	

Special Relativity

Prof. Firk's book on Special Relativity	
1100.111K 5 book on Special Relativity	
☐ The Lorentz transformation	
Lorentz contraction, time dilatation	
\square E = mc2	
4-vectors and 4-tensors	
☐ Transformation rules for the Maxwell field	
Relativistic Doppler effect	
Advanced Quantum Mechanics	
Prof. Stringari's course on Ultracold Fluids.	
Introduction to the Quantum Hall effect by A.H. MacDonald	
Introduction to Coherent States and Quantum Information Theory by K. Fujii	
Tutorial on Quantum information by Peter Zoller	
Intoduction to Quantum Computation by A. Chatterjee	
Advanced QM by Freeman J. Dyson	
K. Schulten's notes on advanced QM	
James Branson, Advanced Quantum Theory	
☐ Hilbert space	
☐ Hilbert space	
☐ Hilbert space ☐ Atomic transitions	
☐ Hilbert space☐ Atomic transitions☐ Emission and absorption of light	
 ☐ Hilbert space ☐ Atomic transitions ☐ Emission and absorption of light ☐ Stimulated emission 	
 ☐ Hilbert space ☐ Atomic transitions ☐ Emission and absorption of light ☐ Stimulated emission ☐ Density matrix 	
 ☐ Hilbert space ☐ Atomic transitions ☐ Emission and absorption of light ☐ Stimulated emission ☐ Density matrix ☐ Interpretation of QM 	

BCS theory for supraconductivity	
Quantum Hall effect	
☐ Advanced scattering theory	
☐ Dispersion relations	
☐ Perturbation expansion	
☐ WKB approximation, Extremum principle	
☐ Bose-Einstein condensation	
☐ Superliquid helium	
Phenomenology	
Lecture notes on phenomenology by R. Casalbuoni.	
Paolo Franzini's notes on elementary particles.	
Subatomic particles (mesons, baryons, photons, leptons, quarks) and cosmic	
rays; property of materials and chemistry; nuclear isotopes; phase transitions;	
astrophysics (planetary system, stars, galaxies, red shifts, supernovae);	
cosmology (cosmological models, inflationary universe theories, microwave	
background radiation); detection techniques.	
General Relativity	
Introduction + exercises by G. 't Hooft	
Sean M. Carrol's lecture notes on GR	
Chr. Pope, Geometry and Group Theory, PDF	
☐ The metric tensor	
☐ Space-time curvature	
☐ Einstein' s gravity equation	
☐ The Schwarzschild black hole	
Reissner-Nordström black hole	
☐ Periastron shift	
☐ Gravitational lensing	
☐ Gravitational lensing☐ Cosmological models	

Cosmology

Cosmology and Astrophysics are relatively young branches of science where a lot is happening. It is recommended to take notice of these important subjects, and devote time on them according to your taste. Indeed you must know that there is feedback from cosmology, astrophysics and astroparticle physics in solving various physics questions. But I can go on this way: what about the physics of other special branches of science: biophysics, geophysics, the physics of music, ... I encourage you to search for other such subjects of interest on the web.

Astro-Physics & Astronomy

Cosmology and Astrophysics are relatively young branches of science where a lot is happening. It is recommended to take notice of these important subjects, and devote time on them according to your taste. Indeed you must know that there is feedback from cosmology, astrophysics and astroparticle physics in solving various physics questions. But I can go on this way: what about the physics of other special branches of science: biophysics, geophysics, the physics of music, ... I encourage you to search for other such subjects of interest on the web.

Quantum Field Theory

Pierre van Baal's notes on QFT.	
The Conceptual Basis of Quantum Field Theory by G. 't Hooft	
A chapter in Handbook of the Philosophy of Science.	
Magnetic monopoles and instantons.	
Classical fields: Scalar, Dirac-spinor, Yang-Mills vector fields.	
☐ Interactions, perturbation expansion. Spontaneous symmetry breaking,	
Goldstone mode, Higgs mechanism.	
Particles and fields: Fock space. Antiparticles. Feynman rules. The Gell-	
Mann-Lévy sigma model for pions and nuclei. Loop diagrams. Unitarity,	
Causality and dispersion relations. Renormalization (Pauli-Villars;	
dimensional ren.) Quantum gauge theory: Gauge fixing, Faddeev-Popov	

determinant, Slavnov identities, BRST symmetry. The renormalization group.
Asymptotic freedom.
Solitons, Skyrmions. Magnetic monopoles and instantons. Permanent quark
confinement mechanism. The 1/N expansion. Operator product expansion.
Bethe-Salpeter equation. Construction of the Standard Model. P and CP
violation. The CPT theorem. Spin and statistics connection. Supersymmetry.

Supersymmetry & Supergravity Astro Particle Physics Super String Theory

<u>Introduction + exercises</u>
E. Kiritsis' Introduction to Superstring Theory
A more general site for superstrings