Математические модели обработки сигналов

Tема 2: SVD

Лектор: Кривошеин А.В.

Мотивация

Ряд тем будет связан с представлением сигналов в различных базисах. Как правило, при работе с сигналами, полученными из одного источника или из нескольких схожих источников, оказывается, что полученные сигналы в некотором смысле "похожи".

Это может выражаться в том, что при представлении сигналов в подходящем базисе координаты этих сигналов будут содержать большое количество нулей или значений близких к нулю. Тогда несущественные координаты можно отбросить, что фактически позволяет представить исходные сигналы с помощью векторов сравнительно малой размерности.

Такого типа обработка сигналов называется снижением размерности данных и может использоваться для сжатия сигналов. Снижение размерности также может быть полезно как первый шаг иных алгоритмов обработки сигналов в задачах анализа сигналов, в задачах классификации, кластеризации и пр.

Алгоритм, который позволяет строить подходящий, лучший в некотором смысле базис для представления сигналов по имеющемуся набору сигналов, является алгоритм, основанный на сингулярном разложении матриц (англ. Singular Value Decomposition, SVD).

В данном случае матрица может представлять собой совокупность сигналов одной длины, где сигналы записаны в строках матрицы. Либо это может быть матрица данных, где записаны числовые признаки некоторого набора объектов. То есть каждый объект описывается в матрицы числовым вектором-строкой.

Далее, матрицу данных будем обозначать $A \in \mathbb{C}^{m \times n}$.

Спектральное разложение

Напомним понятие спектрального разложения квадратных матриц. Для матрицы $A \in \mathbb{C}^{m \times m}$ матрицу $A^* = \overline{A^T}$ называют эрмитово-сопряжённой.

Спектральным разложением квадратной матрицы A называют представление этой матрицы с помощью её собственных чисел и собственных векторов.

Напомним, что матрицу $A \in \mathbb{C}^{m \times m}$ называют нормальной, если $AA^* = A^*A$.

Известно, что матрица A нормальна тогда и только тогда, когда имеет место представление

$$A = Q \Lambda Q^*$$

где Q унитарная матрица (то есть Q $Q^* = I_m$ или $Q^{-1} = Q^*$), а Λ диагональная матрица с собственными числами матрицы A на диагонали. Это представление и является спектральным разложением.

Иными словами, нормальные матрицы диагонализуемы (и только они).

Кроме того, столбцы $q_1, ..., q_m$ матрицы Q образуют ОНБ пространства \mathbb{C}^m из собственных векторов матрицы A. В этом базисе матрица A имеет наиболее простой диагональный вид.

Если матрица A вещественная и симметричная (то есть $A^T = A$), то все собственные числа этой матрицы вещественны и матрица Q ортогональна (то есть $Q Q^T = I_m$ или $Q^{-1} = Q^T$).

Сингулярное разложения матриц (далее SVD) является аналогом спектрального разложения, который применим в более общем случае, а именно, **применим для любой прямоугольной матрицы**. SVD широко используется в задачах анализа данных и задачах снижения размерности данных, например, для реализации метода главных компонент (англ. Principal Component Analysis, PCA).

Пусть A прямоугольная матрица размера $m \times n$, определим её SVD. Рассмотрим квадратную матрицу B размера $m \times m$ вида $B = AA^*$

Матрицу B называют матрицей Грамма для матрицы A (поскольку матрица B является матрицей Грамма линейного отображения, действие которого задаётся матрицей A).

Ясно, что матрица B является самосопряжённой, то есть $B = B^*$. Значит матрица B нормальна и диагонализуема. При этом матрица B положительно полу-определена. Действительно,

$$\langle Bx, x \rangle = \langle AA^*x, x \rangle = \langle A^*x, A^*x \rangle = ||A^*x||^2 \ge 0 \quad \forall \ x \in \mathbb{C}^m.$$

То есть все собственные числа матрицы B неотрицательны.

Запишем спектральное разложение для матрицы B:

$$B = U \Lambda U^*,$$

где Λ диагональная матрица с собственными числами матрицы B на диагонали, а U унитарная матрица, столбцы которой порождают ОНБ из собственных векторов матрицы B. Обозначим собственные числа за $\lambda_i, j = 1, ..., m$, а соответствующие собственные вектора-столбцы за u_i , то есть

$$\Lambda = \operatorname{diag} \{\lambda_1, ..., \lambda_m\}, \quad U = (u_1, ..., u_m), \quad B u_j = \lambda_j u_j.$$

Эти матрицы имеют размер $m \times m$. Как отмечено выше, $\lambda_i \ge 0$. Будем также считать, что собственные числа расположены по убыванию значений. Положим $\lambda_j = \sigma_j^2$, где

$$\sigma_1 \ge \dots = \sigma_r > \sigma_{r+1} = \dots = 0$$

с соглашением, что $\{\sigma_{r+1}, ..., \sigma_m\}$ является пустым множеством при r=m. Эти значения σ_i называют **сингулярными числами** матрицы A. Таким образом,

$$\Lambda = \text{diag} \{ \sigma_1^2, ..., \sigma_r^2, 0, ..., 0 \}.$$

Обозначим за $S_r:=\mathrm{diag}\,\{\sigma_1,\;...,\;\sigma_r\}$, рассмотрим матрицу размера $m\times n$

$$\Sigma = \begin{pmatrix} S_r & \mathbb{O}_{r \times (n-r)} \\ \mathbb{O}_{(m-r) \times r} & \mathbb{O}_{(m-r) \times (n-r)} \end{pmatrix}.$$

При этом $\Lambda = \Sigma \Sigma^*$ и верны равенства

$$B = U \Lambda U^* = (U \Sigma) (U \Sigma)^*$$
, причём $\operatorname{rank}(\Sigma) = \operatorname{rank}(\Lambda) = \operatorname{rank}(B) = r$.

Теорема (о полном SVD). Пусть A является матрицей размера $m \times n$ с рангом $\operatorname{rank} A = r$. Тогда найдутся унитарные матрицы Uразмера $m \times m$ и V размера $n \times n$, такие что

$$A = U \Sigma V^*,$$

где матрица Σ определена выше.

Матрица U в SVD совпадает с матрицей U полученной из спектрального разложения матрицы B, а матрица V получается специальным построением. Причём, если $r < \min\{m, n\}$, то матрицы U, V можно получить не единственным образом.

При этом, если матрица A вещественна, то и унитарные матрицы U, V можно выбрать вещественными.

Проиллюстрируем теорему о полном SVD.

Матрица A размера $m \times n$ с рангом $\operatorname{rank} A = r$.

Матрицы U размера $m \times m$ и V размера $n \times n$ унитарны.

$$A = U \Sigma V^*, \quad \Sigma = \begin{pmatrix} S_r & \mathbb{O}_{r \times (n-r)} \\ \mathbb{O}_{(m-r) \times r} & \mathbb{O}_{(m-r) \times (n-r)} \end{pmatrix}.$$

Пусть m > n, то есть матрица данных такова, что объектов больше, чем признаков.

Из иллюстрации ясно, что нет необходимости хранить те столбцы матриц U и V, которые умножаются на нули из центральной матрицы. Это является мотивацией для неполного SVD (англ. economy SVD).

Теорема (теорема о неполном SVD). Пусть A является матрицей размера $m \times n$ с рангом $\operatorname{rank} A = r$. Тогда найдутся матрицы U_r размера $m \times r$ и V_r размера $n \times r$, удовлетворяющие равенствам

$$U_r^* U_r = I_r$$
, $V_r^* V_r = I_r$, такие что $A = U_r S_r V_r^*$,

где
$$S_r = \operatorname{diag}(\sigma_1, ..., \sigma_r), \sigma_1 \ge ... \ge \sigma_r > 0.$$

При этом если матрица A вещественна, то и матрицы U_r, V_r можно выбрать вещественными.

В теореме о неполном SVD матрицы U_r , V_r находятся единственным образом:

 U_r — это первые r столбцов матрицы U,

$$V_r = A^* U_r S_r^{-1}$$
.

Ниже проиллюстрированы случаи полного и неполного SVD, когда m > n.

Главные компоненты матрицы

Пусть A является матрицей размера $m \times n$ с рангом $\operatorname{rank} A = r$. Рассмотрим неполное SVD $A = U_r S_r V_r^*$.

Пусть $u_1, ..., u_r$ вектора-столбцы матрицы $U_r, v_1, ..., v_r$ вектора-столбцы матрицы V_r .

Пару векторов-столбцов $(u_i, v_i), j = 1, ..., r$, называют парой **левых и правых сингулярных** векторов матрицы A, ассоциированных с сингулярным значением σ_i .

Пару векторов (v_1, u_1) соответствующих наибольшему сингулярному числу σ_1 , также называют (первой) **главной компонентой** матрицы A. Аналогично определяются i-ые **главные компоненты** матрицы A.

Переписав вид SVD можно представить матрицу A как специальную сумму главных компонент.

Пусть
$$S_r = S_{r,1} + S_{r,2} + ... + S_{r,r}$$
, где $S_{r,i} = \operatorname{diag}(0, ..., 0, \sigma_i, 0, ..., 0)$. Тогда

$$A = U_r S_r V_r^* = \sum_{i=1}^r U_r S_{r,i} V_r^* = u_1 \sigma_1 v_1^* + u_2 \sigma_2 v_2^* + ... + u_r \sigma_r v_r^*.$$

Слагаемыми являются матрицы ранга 1.

Экстремальное свойство SVD: обозначения

Существует множество различных разложений матрицы. Однако, SVD обладает некоторым экстремальным свойством.

Определение. Нормой Фробениуса (или также говорят нормой Гильберта-Шмидта) матрицы $A \in \mathbb{C}^{m \times n}$ называют норму

$$||A||_F = \left(\sum_{j=1}^m \sum_{k=1}^n |a_{j,k}|^2\right)^{1/2}.$$

Теорема (норма Фробениуса равна ℓ_2 -норме сингулярных чисел). Пусть $A \in \mathbb{C}^{m \times n}$ с рангом $\operatorname{rank} A = r$. Тогда

$$||A||_F = \left(\sum_{i=1}^r \sigma_j^2\right)^{1/2}, \;\;$$
где $\sigma_1, \; ..., \; \sigma_r$ сингулярные числа матрицы $A.$

Доказательство. Пусть $B = A A^*$. Сначала отметим, что норма Фробениуса матрицы B согласуется со следом матрицы B.

$$\operatorname{Tr} B = \sum_{j=1}^{m} b_{j,j} = \sum_{j=1}^{m} \left(\sum_{k=1}^{n} a_{j,k} \, \overline{a_{j,k}} \right) = \sum_{j=1}^{m} \sum_{k=1}^{n} |a_{j,k}|^2 = ||A||_F^2,$$

Как известно, след матрицы ${
m Tr}\, B$ является суммой собственных чисел матрицы B. Причём собственные числа матрицы B являются квадратами сингулярных чисел матрицы A

$$\lambda_j = \sigma_j^2, \ \ j = 1, \ ..., \ m.$$
 Значит $\|A\|_F = \sqrt{\operatorname{Tr} B} = \sqrt{\sum_{j=1}^m \sigma_j^2} = \sqrt{\sum_{j=1}^r \sigma_j^2}, \ \$ так как $\sigma_{r+1} = \ldots = \sigma_m = 0.$ \bullet

Экстремальное свойство SVD: низкоранговые приближения

Под **наилучшим низкоранговым приближением** матрицы A понимается матрица того же размера, что и матрица A, но которая имеет меньший ранг и ближе к исходной матрице по некоторой метрике среди всех других матриц того же ранга.

Рассмотрим метрику, порождённую нормой Фробениуса. Тогда именно SVD решает задачу низкорангового приближения в этой метрике.

SVD матрицы A имеет вид : $A = U \Sigma V^* = U_r S_r V_r^*$

где U, V унитарные матрицы размера $m \times m$, $n \times n$, матрицы $U_r = (u_1, ..., u_r)$, $V_r = (v_1, ..., v_r)$ получены из U, V сохранением первых r столбцов, σ_i сингулярные числа матрицы A, расположенные по убыванию на диагонали матрицы S_r , $S_r = \operatorname{diag}(\sigma_1, ..., \sigma_r)$.

Если матрице S_r сохранить только d наибольших сингулярных чисел, $d \le r$, то так и будет получено оптимальное приближение матрицы A с помощью матрицы ранга d.

Экстремальное свойство SVD: низкоранговые приближения

Обозначим за $S_r(d)$ матрицу размера $r \times r$ вида $S_r(d) = \operatorname{diag} \{ \sigma_1, ..., \sigma_d, \sigma_1, ..., \sigma_d \}$.

SVD матрицы A имеет вид : $A = U_r S_r V_r^*$

Обозначим за A(d) матрицу: $A(d) = U_r S_r(d) V_r^* = U_d S_d V_d^*$,

где U_d , V_d — это матрицы, составленные из первых d столбцов матриц U_r , V_r ,

 $S_d = \operatorname{diag} \{ \sigma_1, ..., \sigma_d \}.$

Матрицу A(d) ещё называют сокращённым SVD (англ.truncated SVD). Она решает задачу низкорангового приближения.

Ниже проиллюстрировано различие между неполным и сокращённым SVD.

$$A = \begin{bmatrix} U_r \\ \end{bmatrix}$$

$$A(d) = \begin{bmatrix} U_d & \cdots & S_d & 0 & V_d^* & \\ 0 & 0 & \cdots & \vdots & \vdots \\ U_d & \cdots & \vdots & \vdots & \vdots \\ U_d & \cdots & \vdots & \vdots & \vdots \\ U_d & \cdots & \vdots & \vdots & \vdots \\ U_d & \cdots & \vdots & \vdots & \vdots \\ U_d & \cdots & \vdots & \vdots & \vdots \\ U_d & \cdots & \vdots & \vdots & \vdots \\ U_d & \cdots & \vdots & \vdots & \vdots \\ U_d & \cdots & \vdots & \vdots & \vdots \\ U_d & \cdots & \vdots & \vdots & \vdots \\ U_d & \cdots & \vdots & \vdots & \vdots \\ U_d & \cdots & \vdots & \vdots & \vdots \\ U_d & \cdots & \vdots & \vdots & \vdots \\ U_d & \cdots & \vdots & \vdots & \vdots \\ U_d & \cdots & \vdots & \vdots & \vdots \\ U_d & \cdots & \vdots & \vdots & \vdots \\ U_d & \cdots & \vdots \\$$

Экстремальное свойство SVD: низкоранговые приближения

Теорема (о низкоранговых приближениях). Пусть $A \in \mathbb{C}^{m \times n}$ матрица с рангом $\operatorname{rank} A = r$ и сингулярными числами $\sigma_1 \ge ... \ge \sigma_r > \sigma_{r+1} = ... = 0$. Тогда для любого числа d матрица сокращённого SVD вида $A(d) = U_r S_r(d) V_r^*$

обеспечивает наилучшее приближение матрицы A с помощью множества всех матриц ранга не выше d в норме Фробениуса, при этом величина ошибка равна

$$||A - A(d)||_F^2 = \sum_{j=d+1}^r \sigma_j^2.$$

Иными словами.

$$\underset{\hat{A}, \text{ rank}(\hat{A})=d}{\operatorname{argmin}} \left\| A - \hat{A} \right\|_F = A(d) = U_r \, S_r(d) \, V_r^*, \quad \text{где } S_r(d) - \text{ матрица размера } r \times r, \quad S_r(d) = \operatorname{diag} \left\{ \sigma_1, \dots, \sigma_d, \, \mathbf{0}, \, \dots, \, \mathbf{0} \right\}.$$

Более того, известно, что SVD даёт ещё и оптимальное приближение в операторной норме (или спектральной норме).

$$\underset{\hat{A}, \text{ rank}(\hat{A})=d}{\operatorname{argmin}} \left\| A - \hat{A} \right\|_2 = A(d) = U_r S_r(d) \ V_r^*, \quad \text{причём} \ \left\| A - \hat{A} \right\|_2 = \sigma_{d+1}.$$

Эта теорема также известна как теорема Экарта-Юнга.