МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики

Направление подготовки «Прикладная математика и информатика» Магистерская программа «Математическая кибернетика»

Отчет по лабораторной работе

Реализация метода обратного распространения ошибки для двуслойной полностью связанной нейронной сети

Выполнила: студентка 381603м3 группы Садова Дарья Дмитриевна

Содержание

1	Постановка задачи	тр. 3
1.1	Задачи	3
2	Архитектура сети и математические выкладки	3
2.1	Прямой проход	3
2.2	Обратный проход	3
3	Программная реализация	4
4	Результаты	4

1 Постановка задачи

Необходимо изучить и реализовать метод обратного распространения ошибки для обучения глубокой нейронной сети на примере двуслойной полностью связанной сети. Нейронная сеть обучается с помощью MNIST-данных 1 для распознавания рукописных цифр. Тренировочный набор ссостоит из 60.000 экземпляров, тестовый - 10.000.

1.1 Задачи

- 1. Изучить общую схему метода обратного распространения ошибки.
- 2. Вывести математические формулы для вычисления градиентов функции ошибки по параметрам нейронной сети и формулы коррекции весов.
- 3. Спроектировать и разработать программную реализацию.
- 4. Протестировать программу и найти оптимальные параметры.

2 Архитектура сети и математические выкладки

Способ обучения состоит из прямого прохождения сети и затем, на каждом шаге, методом обратного распространения ошибки корректируются веса каждого из слоев.

2.1 Прямой проход

Пусть x_1, \dots, x_n - множество входных нейронов, их количество соответствуюет количеству пикселей одного изображения. В случае нашей сети на вход подается 28*28 нейронов. На внутреннем слое количество нейронов m может варьироваться в зависимости от входных параметров сети. На выходном слое столько нейронов u_1, \dots, u_k , на сколько типов классифицируются изображения.

Перед обучением сети инициализируются веса ω_{ij} и смещения \mathbf{b}_j случайными малыми значениями. Обучение происходит с учителем, нам известны правильные классы для обучающей выборки - для каждого изображения дан вектор y_1, \cdots, y_s . Чтобы узнать насколько ответ сети отличается от правильного, используем функцию ошибки кросс-энтропию:

$$E = -\sum_{j=1}^{n} y_j log(u_j) \tag{1}$$

На прямой проход сети каждый входной нейрон отправляет сигнал всем нейронам в следующем скрытом слое

$$s_j = b_{-}j + \sum_{i=1}^m x_i \omega_{ij} \tag{2}$$

и применяется функция активации - гиперболический тангенс. После чего для выходного слоя аналогично находится взвешенная сумма и применяется функция softmax:

$$f(s_j) = \frac{e^{s_j}}{\sum_{j=1}^n e^{s_j}}$$
 (3)

2.2 Обратный проход

Для каждого нейрона выходного слоя рассчитывается ошибка:

$$\frac{\partial E}{\partial s_i} = \sum_{j=1}^n \frac{\partial E}{\partial u_j} \frac{\partial u_j}{\partial s_i}; \quad \frac{\partial E}{\partial u_j} = -\frac{\partial y_j log(u_j)}{\partial u_j} = -\frac{y_j}{u_j}$$
(4)

 $^{^{1}}$ http://yann.lecun.com/exdb/mnist

$$\frac{\partial u_{j}}{\partial s_{i}} = \begin{cases}
\frac{\partial \frac{e^{s_{j}}}{\sum_{k} e^{s_{k}}}}{\partial s_{j}} = \frac{e^{s_{j}} \sum_{k} e^{s_{k}} - (e^{s_{j}})^{2}}{(\sum_{k} e^{s_{k}})^{2}} = \frac{e^{s_{j}}}{\sum_{k} e^{s_{k}}} - \frac{(e^{s_{j}})^{2}}{(\sum_{k} e^{s_{k}})^{2}} = u_{j}(1 - u_{j}), & \text{если } i = j \\
\frac{\partial e^{s_{i}}}{\sum_{k} e^{s_{k}}}}{\partial s_{j}} = \frac{e^{s_{i}} e^{s_{j}}}{(\sum_{k} e^{s_{k}})^{2}} = -u_{i}u_{j}, & \text{если } i \neq j
\end{cases} (5)$$

Получаем:

$$\delta_i = \frac{\partial E}{\partial s_i} = \sum_j u_i y_j - y_i (1 - u_i) = -y_i + y_i u_i + u_i \sum_j y_j = -y_i + u_i (y_i + \sum_j y_j) = u_i - y_i$$
 (6)

Каждый нейрон скрытого слоя суммирует входящие ошибки и умножает величину полученной ошибки на производную активационной функции. Если активационная функция - гиперболический тангенс, то получаем:

$$\phi(s_i) = th(s_i); \frac{\partial \phi}{\partial s_i} = (1 - \phi) * (1 + \phi); \tag{7}$$

Таким образом получаем для нейронов выходного слоя ошибку $\delta_j = u_j - y_j$, а для нейронов скрытого слоя $\delta_j = (1 - \phi) * (1 + \phi)$ На каждом шаге обучения производится коррекция весов:

$$\omega_{ij} = \omega_{ij} - \eta \delta_i u_i \tag{8}$$

Данная процедура повторяется для каждого тренировочного набора. Обучение останавливается после обучения всего тестового набора заданное количество эпох или по достижении заданной ошибки между ожидаемым и реальным выходами по формуле (1).

3 Программная реализация

Программа написана на языке программирования С++ и содержит следующие структуры:

- 1. Knacc NNetwork: реализована архитектура полносвязной нейронной сети.
- 2. Knacc ReadData: происходит чтение из файла тренировочных и тестовых данных.
- 3. Функция таіп: отвечает за создание классов и имеет возможность интерактивного ввода параметров сети.

4 Результаты

Для тестирования обучения сети использовались различные параметры. Точность правильных ответов тренировочной и тестовой выборок в зависимости от параметров показаны в таблице:

Кол-во	Нейронов	Скорость	Макс.	Точность трениро-	Точность тестово-
эпох	в скрытом	обучения	ошибка	вочного набора	го набора
	слое				
20	200	0.05	0.05	0.9432	0.9368
15	200	0.01	0.005	0.9992	0.9792
20	150	0.03	0.005	0.9847	0.9689
20	300	0.006	0.0005	0.999	0.9784
20	200	0.009	0.003	0.9999	0.9797
15	300	0.01	0.005	0.9981	0.9794

Нейронная сеть с наибольшим процентом правильных ответов показала точности:

0.9999 для тренировочного набора;

0.9797 для тестового набора.

```
Accuracy of training set: 0.944317 Accuracy of test set: 0.943
epoch = 1
Accuracy of training set: 0.966333 Accuracy of test set: 0.9625
Accuracy of training set: 0.975983 Accuracy of test set: 0.9698
epoch = 3
Accuracy of training set: 0.980983 Accuracy of test set: 0.9721
epoch = 4
Accuracy of training set: 0.984967 Accuracy of test set: 0.9734
Accuracy of training set: 0.987667 Accuracy of test set: 0.9745
epoch = 6
Accuracy of training set: 0.9899 Accuracy of test set: 0.9756
epoch = 7
Accuracy of training set: 0.992017 Accuracy of test set: 0.9767
epoch = 8
Accuracy of training set: 0.993333 Accuracy of test set: 0.9764
epoch = 9
Accuracy of training set: 0.9945 Accuracy of test set: 0.9765
epoch = 10
Accuracy of training set: 0.995817 Accuracy of test set: 0.9774 epoch = 11
Accuracy of training set: 0.997033 Accuracy of test set: 0.9775 epoch = 12
Accuracy of training set: 0.997583 Accuracy of test set: 0.9788
epoch = 13
Accuracy of training set: 0.998067 Accuracy of test set: 0.9794
```

Рис. 1: Пример работы программы