Deepfake Detection - Project Report

Author: El Abassi Tamer Alexandru

1. Introduction

In this report, I will present all the models I tried for detecting deepfake images. Specifically, a K-Nearest Neighbors (KNN) model and a Convolutional Neural Network (CNN) model. I will also describe how I processed the data and tuned the hyperparameters, including failed attempts. It's worth noting that I initially built a simple KNN model with low accuracy (~65%), after which I implemented a CNN model.

1.1 Dataset

```
\rightarrow training set: 12.500 images (.png, size 100 x 100)
```

- \rightarrow validation set: 1.250 images (.png, size 100 x 100)
- \rightarrow test set: 6.500 images (.png, size 100 x 100)

2. Modelul CNN - modelul ales

2.1 Procesarea datelor & Augmentarea datelor

- → Resize:
- 120 x 120 \rightarrow first version, performed well since the original images were 100 x 100
- 160 x 160 \rightarrow final version, slightly better than 120 x 120
- 224 x 224 \rightarrow performed significantly worse, unless a 5th CNN layer was added
- → Pixel Normalization:
- normalized pixel values to the [0, 1] range to maintain small, consistent input scales
- **→ Data Augmentation:**

Designed to diversify the image data and prevent overfitting:

- horizontal flip (on 50% of images), to avoid overfitting on orientation
- brightness variation (± 10%) → to simulate lighting changes
- contrast variation (0.9% 1.1%)
- rotation (± 15%)
- **zoom** (0.9% 1.1%)
- translation (\pm 10%) \rightarrow to make the model invariant to object position

2.2 CNN Arhitecture

→ Input

• RGB Image tensor (H, W, 3)

→ 4 Convolational Blocks

- Conv2D: kernel 3x3, padding = "same", filters = [32, 64, 128, 256], activation = ReLU
- BatchNormalization
- MaxPooling2D: downsampling 2x2
- Dropout (0.25): randomly disables 25% of feature maps to prevent overfitting
- Final layers: GlobalAveragePooling, Dense(512) → BatchNorm → Dropout, Dense (256) → BatchNorm → Dropout, Dense (5) with Softmax (for 5-class classification)

→ Dense Block 1:

- Dense(512), activation = ReLU
- BatchNormalization
- Dropout $(0.6) \rightarrow high dropout$, tried 0.3 but accuracy decreased

→ Dense Block 2:

- Dense(256), activation = ReLU
- BatchNormalization
- **Dropout** $(0.4) \rightarrow \text{tried } 0.2$, but accuracy decreased

→ Final Layer

• Dense (5) + Softmax for final classification (with L2 regularization)

2.3 Hyperparameters Tested

• Resolution: 120, 160 si 224

• Batch Size: 32, 64, 128

• Learning Rate: 1e-3, 2e-3, 5e-4

• Optimizer: Adam, AdamW

• Number of Convolational Blocks: 4, 5

Experiment ID	Resolution	Batch	LR	Optimizer	Depth	Val Acc	Concluzii
E1	120	64	1e-3	Adam	4	0.86	Solid baseline.
E2	160	32	1e-3	Adam	4	0.89	Rezolutia 1 better.
E3	224	64	1e-3	Adam	4	0.84	Resolution 224 is too large, originals & 100 x 100.
E4	224	64	1e-3	Adam	5	0.85	Not even or more convolation block is enough to justify 224 resolution.

E5	160	128	1e-3	Adam	5	0.87	Batch 128 likely too large.
E6	160	64	2e-3	Adam	4	0.90	Changing learning ra leads to slight improvement
E7	160	64	5e-4	Adam	4	0.89	Not optimal
E8	160	64	1e-3	AdamW	4	0.88	AdamW doesr help.
E9	160	64	1e-3	Adam	4	0.91	Best combination
E10	224	64	1e-3	AdamW	5	0.88	Not better than E9.

Final chosen model: E9.

2.4 Confusion Matrix

3. KNN Model - First Model Approach

3.1 Data Prepocessing

→ Bins: (8,8,8)

• vector of 512 dimensions

→ Image loading

• image loaded via tf.io.read_file + tf.image.decode_image, converted to N x 3 vector and L1-normalized

3.2 Structura KNN

- \rightarrow BINS = (8,8,8)
- compact 3D histogram (512 dims), enough to capture color without high complexity
- \rightarrow NEIGHBORS = 5
- \bullet tested with 1, 3, 5, 7, 9 \rightarrow 5 was most balanced against noise, underfitting and overfitting
- → **SEED** = 42
- for reproducibility
- → Metric = Euclidian
- standard for continous spaces

3.3 Hyperparameters Results

k	Validation Accuracy
1	0.62
3	0.65
5	0.67
7	0.65
9	0.64

3.4 Confusion Matrix

