Matching Algorithm

- Input: An X,Y-bigraph G, a matching M in G, and the set U of M-unsaturated vertices in X.
- Output: an M-augmenting path or a vertex cover of size |M|.

- (0) begin by labeling with (*) all vertices in U call all vertices in U unscanned. Go to (1)
- (1) if in the previous step, no new label has been given to a vertex of X, then stop. Otherwise go to (2).
- (2) while there exists a labeled but unscanned vertex of X, select a labeled but unscanned vertex of X, say x_i, and label with (x_i) all vertices in Y which are joined to x_i by an edge not belonging to M and which have not been previously labeled. The vertex x_i is now scanned. If there are no labeled but unscanned vertices go to (3)

- (3) If in step (2), no new label has been given to a vertex of Y, then stop. Otherwise go to (4)
- (4) While there exists a labeled, but unscanned vertex of Y, select a labeled but unscanned vertex of Y, say y_i, and label with (y_i) any vertex of X which is joined to y_i by an edge belonging to M and which has not been previously labeled. The vertex y_i is now scanned. If there are no labeled but unscanned vertices, go to (1).

Breakthrough and non-breakthrough

- Breakthrough: there is a labeled vertex of Y which does not meet an edge of M
- In the case of breakthrough occurring in the algorithm, an M-augmenting path can be find and a matching with one more edge than M can be constructed.
- Non-breakthrough: each vertex of Y which is labeled also meets some edge of M.
- In the case of non-breakthrough, we conclude that M is the max-matching.

Matching Theorem

 Repeatedly applying matching Algorithm to a bipartite graph produces a matching and a vertex cover of equal size

Example

 Determine a maxmatching in the bigraph G by applying the matching algorithm. We input the matching $M^1 =$ $\{(x_2, y_2), (x_3, y_3), (x_4, y_4)\}$ of size 3 and $U = \{x_1, x_5,$ **x**₆}.

- (i) (0) The vertices x_1 , x_5 and x_6 are labeled (*).
- (ii) (2) scan the vertices in U in turn, and label y_3 with (x_1) and y_4 with (x_5) . Since all vertices incident to x_6 already have a label, no vertex of Y get label (x_6) .
- (iii) (4) scan the vertices y_3 and y_4 labeled in (ii), and label x_3 with (y_3) and x_4 with (y_4) .

- (iv) (2) we scan the vertices x_3 and x_4 labeled in (iii), and label y_2 with (x_3)
- (v) (4) scan the vertex y₂
 labeled in (iv), and label x₂
 with (y₂)
- (vi)(2) scan the vertex x₂
 labeled in (v), and label y₁, y₅
 and y₆ with (x₂)
- (4) scan the vertices y₁, y₅ y₆ labeled in (vi), and find that no new labels are possible.

• We have achieved breakthrough. We find the M^1 -augmenting path $r = y_1x_2y_2x_3y_3x_1$ using the labels as a guide. Then

M² = {(x₄, y₄), (y₁, x₂), (y₂, x₃), (y₃, x₁)} is a matching of four edges.

- Continue to apply the algorithm to M². The resulting labeling of the vertices is as shown. In this case breakthrough has not occurred. Hence, M² is a max-matching of size 4, and the set
- S = {x₂, x₃, y₃, y₄} of size 4, consisting of unlabeled vertices of X and labeled vertices of Y is a mincover.

Exercise

 Determine the maxmatching of the right graph by applying the matching algorithm. We choose the red edges and obtain a matching M¹.

Time Complexity of the matching Algorithm

- Let G be an X,Y-bigraph with n vertices and m edges.
- 1. The matching algorithm executes at most n/2 times since c(G)<=n/2.
- 2. Each execution of the algorithm considers each edge at most once.
- ⇒ The execution time of the algorithm is O(mn).