

Amateurfunk

Weltweites Experiment mit Freunden

ÖVSV

Österreichischer Versuchssenderverband

repräsentiert Österreich in der

IARU www.iaru.org

The International Amateur Radio Union

Since 1925, the Federation of National Amateur Radio Societies Representing the Interests of Two-Way Amateur Radio Communication

Organisation ÖVSV:

9 Landesverbände + AMRS

Tirol: Ortstellen in allen Bezirken

Was ist AMATEURFUNK?

- Technisch-experimenteller Funkdienst
- Selbstbau von Sendern, Antennen usw.
- Weltweite Kommunikation
- Not- und Katastrophenfunkverkehr
- In internationalen völkerrechtlichen

Verträgen der UN geregelt

Was ist ein FUNKAMATEUR?

"Funkamateur"

ist eine Person,

welche sich mit der Funktechnik und dem Funkbetrieb aus persönlicher Neigung, jedoch nicht in Verfolgung anderer, insbesondere wirtschaftlicher oder politischer Zwecke, befasst.

AMATEURFUNK versus CB-Funk

Unbegrenzte Möglichkeiten

Amateur funk

CB - Funk

PMR446

LPD Low Power Device

Meine Freunde sagen immer:

"Sag, du brauchst da Antennen, eine Prüfung und ein Funkgerät um rund um die Welt zu funken…!"

Ich kann das mit meinem Mobiltelefon, ohne große Antenne und Aufwand...

Dann nimm dein Telefon und ruf jemanden in Australien an!

Ich kenne niemanden!

Siehst Du! Mit mir funken und experimentieren mehr als 3 Millionen Funkamateure weltweit!

Davon ca. 6000 in Österreich -600 in Tirol (davon 52 Frauen)

Weltweiter Funkverkehr über Kurzwelle

© ÖVSV

Morsen ist cool

Relais in Tirol

Relais in Österreich

Selbstbau

Selbstbau

Selbstbau

Funkverkehr auf Höchstfrequenzen

Mobilfunk

EME - Erde Mond Erde

www.martin-wagner.org

Echolink

Linking Example

APRS

(automatic packet reporting system)

ATV (amateur television)

Amateurfunksatelliten

Amateurfunkpeilen (ARDF)

Amateurfunkpeilen (ARDF)

© ÖVSV

Raumstation ISS

Schulen kontaktieren die Astronauten direkt mittels Amateurfunk und stellen Fragen

Datenfunk - HAMNET

Funkamateure haben ein eigenes Funknetz aufgebaut. Es ermöglicht Emails und Chat in entlegenen Gebieten der Erde oder Informationen aus Bulletinboards per Funk über große Entfernungen abzurufen.

Ballonprojekte

Funkamateure starten Stratosphärenballone mit Telemetriesendern oder Transpondern. So können Flugdaten zur Erde gesendet und ausgewertet oder sogar europaweite Funkverbindungen über die Nutzlast im Ballon hergestellt

werden.

Flugzeuge sehen mit der Soundkarte

Reflexionen an Flugzeugen können mit der Soundkarte dargestellt werden.

Dopplerverschiebung zeigt Richtung / Geschwindigkeit

Lichtfunk

Funkamateure versuchen Funkverbindungen auf höchsten Frequenzen - sogar sichtbares Licht ermöglicht Sprechfunk über 100km!

Q\$L-Karten

Aus aller Welt...

...bestätigen die Funkverbindung

Amateurfunk mehr als ein Hobby?

Umsetzen des Wissens aus Schule, Studium und Beruf in die Praxis.

- Umweltdaten messen, weiterleiten und auswerten
 - z.B. Hochwasserwarnung
- Eine Antenne berechnen und in der Praxis testen.

@ ÖVSV

Not- und Katastrophenfunk

Not kennt keine Grenzen!

Bild: Lawinenkatastrophe Galtür, 23.2.1999

Amateurfunk bietet weltweit grenzenlose Kommunikation.

Amateurfunkpraxis Katastropheneinsatz

- □ Hurricane Katrina / New Orleans 23.8.2005
 - Über 1000 Funkamateure im Einsatz
- □ Tsunamikatastrophe / Andamanen 6.1.2005
 - Notfunkverkehr durch indische Funkamateure
- □ World Trade Center / New York 11.9.2001
 - Funkinfrastruktur zerstört
 - Notbetrieb innerhalb v. Stunden durch Funkamateure
- □ Lawinenkatastrophe Galtür 23.2.1999
 - Katastrophenfunkbetrieb über Zugspitzrelais

Amateurfunkpraxis Notfunkeinsatz

- □ Monte Lema / Schweiz/Italien 01/2008
 - 6 Ukrainische Flüchtlinge in Bergnot
 - Schweizer Funkamateur empfängt Notruf
 - Lokalisierung durch gemeinsame Peilung mit italienischem Funkamateur noch vor Dunkelheit
- ☐ Pfitscherjoch / Nordtirol 24.8.2008
 - Erschöpfter Wanderer
 - Kein Mobiltelefonnetz erreichbar
 - Alarmierung Rettungshubschrauber durch Funkamateure über Relais

Amateurfunk mehr als Hobby?

Jetzt kommt die wichtigste Frage:

Wie wird man Funkamateur?

Amateurfunkprüfung:

- RECHT
- TECHNIK
- BETRIEBSTECHNIK

Lizenzklassen - warum?

- Amateurfunkgenehmigungen werden in verschiedenen Klassen eingeteilt
- □ vgl. unterschiedlichen Klassen für Führerscheine
- □ Schon mit geringen technischen Kenntnissen kann man am Amateurfunk teilnehmen
- □ Ein Beherrschen des Morsealphabets ist in Österreich seit 2004 <u>nicht</u> mehr Voraussetzung.
- □ In Abhängigkeit der Zustimmung der einzelnen Länder zu den CEPT-Bestimmungen gelten die nationalen Amateurfunkgenehmigungen in vielen Ländern automatisch.

Bewilligungsklassen in Österreich

□ Bewilligungsklasse 1 (CEPT-Lizenz):

- Alle zulässigen Frequenzbereiche
- Kurzwelle 160m bis 10m
- UKW 6m, 2m, 70cm, 23cm, 13cm...
- max. 400W (1000W nur an Klubstationen)
- Auch selbstgebaute bzw. umgebaute kommerzielle Sendeanlagen dürfen betrieben werden.
- Lizenz gilt weltweit in allen Ländern, die diese CEPT Klasse anerkennt (derzeit 48)

Bewilligungsklassen in Österreich

□ Bewilligungsklasse 3:

- Frequenzbereiche 144-146MHz, 430-440MHz
- max. 100W
- nur kommerziell gefertigte Sendeanlagen
- Lizenz nur in Österreich gültig
- Nur ca. 50 Lizenzinhaber in Österreich (Tirol : nur 6)
- Neue Alternative: CEPT Novizenlizenz
 Bewilligungsklasse 4 seit 12.11.2008

Bewilligungsklassen in Österreich

- Bewilligungsklasse 4 (CEPT Novizen-Lizenz)
 - seit 12.11.2008
 - Ausgewählte Frequenzbänder in KW und UKW:

Kurzwelle: 160m, 80m, 15m, 10m

UKW: 2m, 70cm

- max. 100W
- nur kommerziell gefertigte Sendeanlagen
- Lizenz in 22 Ländern gültig, die auch eine derartige Lizenzklasse haben :

http://www.erodocdb.dk/doks/implement_doc_adm.aspx?docid=2136

Prüfungsmodule

Prüfungsmodule für Amateurfunk Lizenzklassen in OE

UPGRADE Möglichkeiten

Nur der jeweils fehlende Prüfungsblock ist abzulegen

Prüfung – Rechtliche Bestimmungen

- □ Telekommunikationsgesetz
- □ Internationaler Fernmeldevertrag
- □ Vollzugsordnung für den Funkdienst (VO Funk)
- □ Einschlägige Bestimmungen der CEPT
- □ Amateurfunkgesetz
- Amateurfunkverordnung

Prüfung - Technische Grundlagen

- □ Allgemeine elektrotechnische Grundlagen
- □ Wirkungsweise der Bauelemente
- □ Schaltkreise
- □ Empfangsgeräte
- □ Sendegeräte
- □ Antennen und Antennenleitungen
- □ Nebeneinrichtungen und Kontrollgeräte
- □ Störungen und Störfestigkeit
- □ Sicherheit beim Betrieb

Prüfung - Betrieb und Fertigkeiten

- □ Grundlagen der Funkausbreitung
- □ Abkürzung und Codes
- □ Not- und Katastrophenfunkverkehr
- □ Rufzeichen
- □ Führung eines Funktagebuches
- □ Bandpläne
- □ Abwicklung des Amateurfunkverkehrs

Lernstoff Beispiel: Bandplan

	-									
		Bereich					Leistungs-		vo	
Band		Anfang E		Ende		Status	klasse	KI.	Funk	Bemerkungen
136	kHz	135,7	kHz	137,8	kHz	S	Α	1	LF	
160	m	1.810	kHz	1.950	kHz	S	A, tlw. B	1,4	MF	1.810-1.830 und 1.850-1.950 kHz nur A; Bew.Kl. 4 nur A
80	m	3.500	kHz	3.800	kHz	P	A,B,C,D	1,4	HF	Bew.Kl. 4 nur A
40	m	7.000	kHz	7.200	kHz	Pex,S	A,B,C,D	1	HF	7100-7200kHz nur Sekundär und nur A,B
30	m	10.100	kHz	10.150	kHz	S	A,B	1	HF	WARC Band
20	m	14.000	kHz	14.350	kHz	Pex	A,B,C,D	1	HF	
17	m	18.068	kHz	18.168	kHz	Pex	A,B,C,D	1	HF	WARC Band
15	m	21.000	kHz	21.450	kHz	Pex	A,B,C,D	1,4	HF	Bew.Kl. 4 nur A
12	m	24.890	kHz	24.990	kHz	Pex	A,B,C,D	1	HF	WARC Band
10	m	28.000	kHz	29.700	kHz	Pex	A,B,C,D	1,4	HF	Bew.Kl. 4 nur A
6	m	50	MHz	52	MHz	S	Α	1	VHF	
2	m	144	MHz	146	MHz	Pex	A,B,C,D	1,3,4	VHF	Bew.Kl. 3 und 4 nur A
70	cm	430	MHz	440	MHz	Р	A,B	1,3,4	UHF	439,1-440 Sekundär nur Empfangsbetrieb; Kl.3,4 nur A
23	cm	1,240	GHz	1,300	GHz	S	A,B	1	UHF	
13	cm	2,304	GHz	2,450	GHz	S	Α	1	UHF	
6	cm	5,650	GHz	5,850	GHz	S	Α	1	SHF	
3	cm	10,368	GHz	10,500	GHz	S	Α	1	SHF	10,368-10,370 GHz max. EIRP 40dbW
1,2	cm			24,250			Α	1	SHF	nur 24-24,05 GHz Primär
6	mm	,	_	47,200			A	1	EHF	
_	mm	,		,			A	1	EHF	nur 77,5-78,0 GHz Primär
				123,000	_		A	1	EHF	
				141,000			A	1	EHF	nur 134-136 GHz Primär
1,2	mm	241,000	GHz	250,000	GHz	P,S	Α	1	EHF	nur 248-250 GHz Primär
ISM:		,		434,790	_					ISM (Industrial, Scientific and Medical) Band
		2,400	_		_					ISM (Industrial, Scientific and Medical) Band
		5,725	_							ISM (Industrial, Scientific and Medical) Band
		24,000	_		_					ISM (Industrial, Scientific and Medical) Band
		244,000	GHz	246,000	GHz					ISM (Industrial, Scientific and Medical) Band

Ist die Prüfung schwer?

Hera 11 Jahre und Florian 10 Jahre

Was kostet der Amateurfunk?

Prüfungsgebühr € 14,53

Prüfungszeugnis € 13,00

<u>Amateurfunkbewilligung</u> € 13,00

Summe einmalige Kosten: € 40,53

Monatliche Kosten:

Leistungsklasse A (100W) € 1,45

Leistungsklasse B (200W) € 2,91

Leistungsklasse C (400W) € 4,36

Klubheim ÖVSV LV Tirol

Amateurfunk im Internet

www.oe7.oevsv.at

www.oevsv.at

wiki.oevsv.at

afu.mauler.info

Weitere Informationen:

Österreichischer Versuchssenderverband

ÖVSV - Landesverband Tirol

Email: <u>lv7@oevsv.at</u>

Web: www.oe7.oevsv.at

Vielen Dank für Ihre Aufmerksamkeit

Manfred Mauler / OE7AAI

Email: oe7aai@oevsv.at