94-L:-1(1;:u1 IN
Drinking Water Surveillance Program
CAMBRIDGE
WELL SUPPLY
REPORT FOR 1991 AND 1992

® Ontario

1991/1992 District Contacts for West Central Ontario

District contacts

Lee Van Biesbrouck (416) 521-7593 Hamilton District Office DWSP study

Cayuga Delhi Dunnville

Haldimand-Norfolk

Hamilton Port Dover Port Rowan Simcoe

Alison Braith Waite/
Robert Slattery
(905) 732-0816 (Ext 231/234)
Welland District Office

Fort Erie
Grimsby
Niagara Falls
Port Colborne
St. Catharines
Welland

Jeff Taylor (519) 622-8121 Cambridge District Office

Brantford
Cambridge
Elmira
Guelph
Kitchener
Kitchener Mannheim
Ohsweken
Orangeville
Waterloo

CAMBRIDGE WELL SUPPLY DRINKING WATER SURVEILLANCE PROGRAM REPORT FOR 1991 AND 1992

MAY 1994

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1994

This publication may be reproduced for non-commercial purposes with appropriate attribution.

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

CAMBRIDGE WELL SUPPLY 1991 AND 1992 REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

The Cambridge well supply has a groundwater source containing 22 wells in numerous aquifers. Iron sequestering is practiced at 2 wells. Disinfection is the only other treatment provided. The combined system has a maximum pumping capacity of 63 x 1000 m³/day and is operated by the Regional Municipality of Kitchener Waterloo. The Cambridge well supply serves a population of approximately 77,800.

Raw water at three wells and treated water from one reservoir and one tower was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, metals), organic (chloroaromatics, chemistry and field chlorophenols, pesticides and PCB, phenolics, hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the facilities in and Energy Environment Radionuclides were analyzed by the Ministry of Labour.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

Due to the many wells supplying this water system and the relatively few sample locations on DWSP, this report does not provide a complete picture of the drinking water quality.

The Cambridge well supply, for the sample years 1991 and 1992, produced acceptable quality water. No samples were taken in the distribution system for this sampling period.

TABLE A
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

SUMMARY TABLE BY SCAN

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE
A '.' INDICATES THAT NO SAMPLE WAS TAKEN

	WELL G3	63			P11		WELL P15	10		RESERVOIR	R	
SCAN	RAW	POSITIVE %POSITIVE	OSITIVE	RAW TESTS	POSITIVE %POSITIVE	SITIVE	RAW	POSITIVE XPOSITIVE	OSITIVE	ST ANDRI	ST ANDREW TOWER TESTS POSITIVE X	%POS111VE
RACTER 101 OG 1 CA 1	C7	12	α _C	6 6 6	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	 			0 0 V		3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	7	7.	3	1	-	n	2	>	>	3	7	71
CHEMISTRY (FIELD)	30	30	100	22	22	100	7	7	100	K	63	%
CHEMISTRY (LABORATORY)	354	290	81	263	215	8	95	07	%	353	278	78
METALS	360	185	51	564	102	38	87	02	41	360	173	87
CHLOROAROMATICS	168	0	0	112	0	0	.28	0	0	140	0	0
CHLOROPHENOLS	9	0	0	9	0	0				•	0	0
PESTICIDES AND PCB	384	0	0	258	0	0	69	0	0	338	0	0
PHENOLICS	15	0	0	Ξ	0	0	2	ē	20	15	-	9
POLYAROMATIC HYDROCARBONS	135	0	0	101	0	0				101	0	0
SPECIFIC PESTICIDES	16	0	0	16	0	0				16	0	0
VOLATILES	773	53	Ξ	321	0	0	99	0	0	443	104	23
RADIONUCLIDES	7	-	14							7	2	28
	1,960	125		1,407	340		292	99		1,868	623	

TOTAL

TABLE A
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

SUMMARY TABLE BY SCAN

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE

RESERVOIR
RAHMANS
TESTS POSITIVE %POSITIVE

1		30	29	83	75	0	0	0	14	0	0	0	
TESTS POSITIVE MESSICE	1 1 1 1 1 1 1	7	31	280	142	0	0	0	2	0	0	0	657
TESTS PUS	1	13	97	336	336	154	9	362	14	-29	16	412	1.762
	SCAN	BACTERIOLOGICAL	CHEMISTRY (FIELD)	CHEMISTRY (LABORATORY)	METALS	CHLOROAROMATICS	CHLOROPHENOLS	PESTICIDES AND PCB	PHENOL I CS .	POLYAROMATIC HYDROCARBONS	SPECIFIC PESTICIDES	VOLATILES	

TOTAL

DRINKING WATER SURVEILLANCE PROGRAM

CAMBRIDGE WELL SUPPLY 1991 AND 1992 REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Cambridge well supply in January 1991. This is the first published DWSP report.

PLANT DESCRIPTION

The Cambridge well supply has a groundwater source containing 22 wells in numerous aquifers. Iron sequestering is practiced at 2 wells. Disinfection is the only other treatment provided. The combined system has a maximum pumping capacity of 63 x 1000 m³/day and is operated by the Regional Municipality of Kitchener Waterloo. The Cambridge well supply serves a population of approximately 77,800.

The average daily pumping rate was 41 x 1000 m³/day.

General plant information is presented in Table 1.

SAMPLING AND ANALYSES

Stringent DWSP sampling protocols were followed to ensure that all samples were collected in a uniform manner (see Appendix B).

Sample lines at the wells and reservoirs were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

Municipal operating personnel routinely analyzed parameters for process control (see Table 2 if data is provided).

At all distribution system locations, two types of samples were obtained, a standing and a free flow. The standing sample consisted

of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples, therefore, were laboratory chemistry and metals. The free flow sample represented fresh water from the distribution system main, since the sample tap was flushed for five minutes prior to sampling.

Raw water from three wells and treated water from a reservoir and a tower was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between the raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary of all results by parameter and by water type. If a parameter was not detected, the total number of negative sample results is given. In contrast, if a parameter was detected at any location, the detailed results for all samples are provided.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment and Energy laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 4 and 5. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

IN REPORTS FOR GROUNDWATER SUPPLIES WHERE:

- -TREATMENT CAN BE LIMITED TO DISINFECTION;
- -MANY WELLS CAN FEED INTO THE DISTRIBUTION SYSTEM INDEPENDENTLY; AND
- -TREATED SAMPLES, WHEN AVAILABLE, ARE TAKEN FROM RESERVOIRS; THIS SECTION WILL DISCUSS:
 - -RESULTS FROM RAW, TREATED, AND DISTRIBUTED WATERS;
 - -THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES;
 - -POSITIVE ORGANIC PARAMETERS DETECTED.

In this report comments are combined for all sample locations for each parameter discussed. Due to the many wells supplying this water system and the relatively few sample locations on DWSP, this report does not provide a complete picture of the drinking water quality.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Standard plate count was the only bacteriological analysis conducted on the treated and distributed water. No results were above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (LABORATORY)

Calcium exceeded the European Economic Community Aesthetic Guideline Level of 100 mg/L in 11 of 14 treated water samples at one tower with a maximum reported value of 117.1 mg/L.

Colour in drinking water may be due to the presence of natural or synthetic substances as well as certain metallic ions. Colour is measured in Hazen units (HZU).

Colour exceeded the ODWO Aesthetic Objective of 5 HZU in 1 of 14 treated water samples at one reservoir with a maximum reported value of 6.0 HZU.

Elevated conductivity is often associated with high hardness levels.

Conductivity exceeded the European Economic Community Aesthetic Guideline Level of 400 umho/cm in all 29 treated water samples with a maximum reported value of 1,218 umho/cm.

The ODWos indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and possess a tendency to form scale deposits and result in excessive soap consumption. \cdot

Hardness exceeded the ODWO Recommended Operational Guideline of 80-100 mg/L and also exceeded 200 mg/L in all 28 treated water samples with a maximum reported value of 448 mg/L.

Magnesium exceeded the European Economic Community Aesthetic Guideline Level of 30.0 mg/L in 21 of 28 treated water samples with a maximum reported value of 33.3 mg/L.

The European Economic Community has an Aesthetic Guideline Level of 0.05 mg/L for total ammonium.

Total ammonium exceeded the European Economic Community Aesthetic Guideline Level of 0.05~mg/L in 2 of 30 treated water samples with a maximum reported value of 0.14~mg/L.

Dissolved solids (residue filtrate from Table 4) exceeded the ODWO Aesthetic Objective of 500 mg/L in 15 of 29 treated water samples with a maximum reported value of 826 mg/L.

Turbidity in water is caused by the presence of suspended matter such as clay, silt, colloidal particles, plankton and other microscopic organisms. The most important potential health effect of turbidity is its interference with disinfection in the treatment plant and the maintenance of a chlorine residual. The ODWO Maximum Acceptable Concentration for turbidity is 1.0 Formazin Turbidity Unit (FTU) and applies to the water leaving the treatment facility.

Turbidity exceeded the ODWO Maximum Acceptable Concentration of 1.0 FTU in 6 of 14 treated water samples at one reservoir with a maximum reported value of 2.7 FTU. The more reliable field turbidity results were not reported. In ground water samples, turbidity can increase if the samples are not analyzed immediately in the field. This is frequently caused by precipitating iron but

can also be due to precipates formed from sulphides or calcium. The Municipality was advised of the situation.

METALS

Iron exceeded the ODWO Aesthetic Objective of 300 ug/L in 3 of 14 treated water samples at one reservoir with a maximum reported value of 610 ug/L.

Manganese, in high concentrations, can contribute to laundry staining and undesirable tastes.

Manganese exceeded the ODWO Aesthetic Objective of 50 ug/L in 3 of 14 treated water samples at one reservoir with a maximum reported value of 78.0 ug/L.

ORGANIC

CHLOROAROMATICS

The results of the chloroaromatic scan showed that none were detected.

CHLOROPHENOLS

The results of the chlorophenol scan showed that none were detected.

PESTICIDES AND PCB

The results of the pesticide and PCB scan showed that none were detected above trace levels. Atrazine, at trace levels, was detected in one well and in the tower.

PHENOLICS

Phenolic compounds are present in the aquatic environment as a result of natural and/or industrial processes. The ODWOs have been revised to replace the phenolic aesthetic objective with objectives for specific phenols.

Phenolics were found at positive levels in 2 of the 29 treated water samples analyzed. The maximum observed level was 1.6 ug/L.

POLYAROMATIC HYDROCARBONS

The results of the polyaromatic hydrocarbon scan showed that none were detected.

SPECIFIC PESTICIDES

The results of the specific pesticide scan showed that none were detected.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology. Trace levels of styrene are considered to be laboratory artifacts resulting from the sample shipping containers.

1,1,1-Trichloroethane was found at positive levels in all 15 raw well water samples and all 15 treated water samples from the tower which is supplied by this well. The maximum observed level was 4.6 ug/L. This was below the United States Environmental Protection Agency Maximum Contaminant Level of 200 ug/L.

Trichloroethylene was found at positive levels in all 15 raw well water samples and all 15 treated water samples from the tower which is supplied by this well. The maximum observed level was 9.2 ug/L. This was below the ODWO Maximum Acceptable Concentration of 50 ug/L.

Tetrachloroethylene was found at positive levels in all 15 raw well water samples and all 15 treated water samples from the tower which is supplied by this well. The maximum observed level was 1.1 ug/L. This was below the ODWO Health Related Guidance Value of 65 ug/L.

Cis 1,2-dichloroethylene was added to the volatile organic scan by the MOEE laboratory in November 1991. Prior to this date the presence of cis 1,2-dichloroethylene was reported in a note attached to the laboratory results and were therefore not included in the DWSP data base. These results are listed below.

Sample	Cambridge Well S	upply
Date	Well G3 Raw St	Andrews Tower
Jan 1991	1.90 ug/L	1.80 ug/L
Feb 1991	1.80 ug/L	1.80 ug/L
Mar 1991	1.80 ug/L	1.80 ug/L
Apr 1991	1.65 ug/L	1.70 ug/L
May 1991	1.70 ug/L	1.75 ug/l
Jun 1991	1.70 ug/L	1.70 ug/L
Jul 1991	1.70 ug/L	1.70 ug/L
Aug 1991	1.75 ug/L	1.70 ug/L
Sep 1991	1.70 ug/L	1.60 ug/L
Oct 1991 .	1.80 ug/L	1.60 ug/L

Cis 1,2-dichloroethylene was found, after November 1991, at positive levels in all 5 raw well water samples and all 5 treated water samples from the tower which is supplied by this well. The

maximum observed level was 1.9 ug/L. This was below the United States Environmental Protection Agency Maximum Contaminant Level of 70 ug/L.

1,1-Dichloroethylene and 1,2-dichloroethane were detected at trace levels in almost all raw well water samples and all treated water samples from the tower which is supplied by this well.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THM results are discussed. Starting in 1991, samples from the distribution system were quenched with sodium thiosulphate to stop the further production of THMs in the sample bottle. This provided a more representative estimation of the THMs consumed in tap water.

Total trihalomethanes were found at positive levels in 11 of 29 treated water samples analyzed. The maximum observed level was 28.5 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

RADIOLOGICAL

RADIONUCLIDES

There are more than 200 radionuclides, some of which occur naturally and others which originate from the activities of society. The radionuclides currently of greater interest from a health view-point are tritium, strontium-90, iodine-131, cesium-137 and radium-226. The gross beta and gross alpha determinations are suitable for preliminary screening except for tritium which must be measured separately. Radionuclides are measured in becquerels per litre (Bq/L). No results were above the available guidelines.

CONCLUSIONS

Turbidity exceeded the ODWO Maximum Acceptable Concentration in 4 treated water samples. The more reliable field turbidity results were not reported. In well water samples not analyzed immediately, turbidity can increase due to the natural precipitation of iron and other minerals. The Municipality was advised of the situation.

No other known health related guidelines were exceeded.

Due to the many wells supplying this water system and the relatively few sample locations on DWSP, this report does not provide a complete picture of the drinking water quality.

The Cambridge well supply, for the sample years 1991 and 1992, produced acceptable quality water. No samples were taken in the distribution system for this sampling period.

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

PLANT NAME:

CAMBRIDGE WELL SUPPLY

WORKS #:

220000166

UTM #:

DISTRICT: REGION:

CAMBRIDGE WEST CENTRAL

DISTRICT OFFICER: J. TAYLOR

SUPERINTENDENT:

BRIAN PETT

ADDRESS:

2069 OTTAWA STREET SOUTH

KITCHENER, ONTARIO

N2E 3K3

519-571-6204

MUNICIPALITY:

WATERLOO REGION .

AUTHORITY:

MUNICIPAL

SUPPLY INFORMATION

TOTAL NUMBER OF WELLS: 22

MAXIMUM PUMPING CAPACITY: 63.000 (X 1000 M3/DAY)

MUNICIPALITY

POPULATION

CAMBRIDGE

77,843

KEY TO TABLE 4 and 5

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
 - 5. Health Related Guidance Value
- B HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - 3. Interim MAC
 - 4. Aesthetic Objective (AO)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

•	No Sample Taken
BDL	Below Minimum Measurement Amount
<t< td=""><td>Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)</td></t<>	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
!48	No Data: Sample Age Exceeded 48 Hours
!AR	No Data: No Numeric Results
! AW	No Data: Analysis Withdrawn
!BT	No Data: Sample Broken In Transit
!cs	No Data: Contamination Suspected
!EF	No Data: Laboratory Equipment Failure
!IR	No Data: Insufficient Sample
!IS	No Data: Insufficient Sample
!LA	No Data: Laboratory Accident
!NP	No Data: No Procedure
!NR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
!PE	No Data: Procedure Error: Sample Discarded
!PR	No Data: Preservative Required
! QU	No Data: Quality Control Unacceptable
!RE	No Data: Received Empty
!RO	No Data: No Numeric Results
!sm	No Data: Sample Missing
!ss	No Data: Sample Improperly Preserved
!U	No Data: Sample Unsuitable For Analysis
!UB	No Data: Bottle Broken

!UN No Data: Result Unreliable

Dage 11

! UR	No Data: Unpreserved Sample Required
A	Approximate Value
A3C	Approximate, Total Count Exceeded 300 Colonies
A>	Approximate Value, Exceeded Normal Range
APS	Additional Peak, Less Than, Not Priority Pollutant
ARO	Additional Information In Laboratory Report
CRO	Calculated Result Only
NAF	Not All Required Tests Found
RID	Ioncal Calculated on Incomplete Data Set
RMP	P and M-Xylene Not Separated
RRR	Result Obtained by Repeat Analysis
RRV	Rerun Verification
SFA	Sample Filtered: Filtrate Analyzed
SIL	Sample Incorrectly Labelled
SPS	Several Peaks, Small, Not Priority Pollutant
U48	Unreliable: Sample Age Exceeded 48 Hours
UAL	Unreliable: Sample Age Exceeded Limit
UAU	Unreliable: Sample Age Unknown
UCS	Unreliable: Contamination Suspected
WSD	Wrong Sample Description On Bottle

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

RESERVOIR RESERVOIR ST ANDREW TOWER RAHMANS

WELL P15 RAW

WELL P11 RAW

WELL G3 ... RAW .

•		•					•							GUIDELINE = 500 (A3)	3 <=> 11	3 <=> 0 <=>	1 <=> 1	2 <=> 1 <=>	<=> 0	3 <=> 1 <=>	2 <=> 1 <=>	0 <=>	13 6 <=	2 <=> 2 <=>	0 <=> 3 <=	. <=> 5	1 <=> 270	12 23
							•		٠			0	•	DET'N LIMIT = 0		٠	٠	*	•	•		•	•	•		٠		
0	0	0	0	0	0	0	0	0	0	٠	٠	٠	0	1 1 1 1 1 1		٠		٠			٠	٠	٠		٠	٠	٠	٠
0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	T MF (CT/ML)				٠		•	•	•			٠	٠		b
1991 JAN	1991 FEB	1991 MAR	1991 APR									1992 APR		STANDRD PLATE CNT MF (CT/ML		1991 FEB		791 APR	1991 MAY		1991 JUL				791 NOV	1992 JAN	992 APR	792 JUL 264

TABLE 4 ORINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

RESERVOIR

RESERVOIR

WELL P15

WELL P11

WELL G3

BACIERIOLOG	BACTERIOLOGICAL	22	c	GIIDELINE = 57100ML (A1)
L COLITORE ME	7 70007 70			
1991 JAN			٠	٠
	0	. 0	Þ	•
	0			
1991 APR			0	
1991 MAY	0		٠	٠
1991 JUN	0		۰	
	m		P	
	_		P	•
1991 SEP	0			•
	0			۰
	0		٠	
	0		٠	٠
	0	0	٠	•
	0			٠
T COLIFORM BCKGRD MF (CT/100ML)	IF (CT/100ML)	DET'N LIMIT =	0 GUIDELINE = N/A	E = N/A
1991 JAN	-			٠
1991 FEB	0			٠
	0		٠	•
	2		٠	٠
	0		٠	
	_		٠	
	2		•	
	-		٠	
	0		••	٠
1991 OCT	-		٠	٠
	M	٠	•	
992 JAN	0	٠	٠	٠
992 APR	0	0	٠	٠
	•	•		

RESERVOIR RESERVOIR ST ANDREW TOWER RAHMANS

WELL P15 RAW

WELL P11 RAW

WELL G3 RAW

GUIDELINE = N/A	0000.	. 010 . LINE = N/A	000.
GUIDE	100 100 100 100 100 100 100 100 100 100	.000 .050 .850 GÜIDELINE	.000 .000 .000 .010 .000 .000 .000 .200 .2
DET'N LIMIT = 0.		DET'N LIMIT = 0	
CHEMISTRY (FIELD) FLD CHLORINE (COMB) (MG/L)	1991 JAN 1991 FEB 1991 APR 1991 JUN 1991 JUL 1991 AUG 1991 OCT 1991 OCT		1991 JAN 1991 FEB 1991 APR 1991 APR 1991 JUL 1991 AUG 1991 SEP 1991 OCT 1992 JAN 1992 APR 1992 OCT

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

RESERVOIR

RESERVOIR

WELL P15

WELL P11

WELL G3

																5 (A4)							•								
GUIDELINE = N/A	000.	000.	•	000.	000.	• !	000.	٠		•	٠	٠	٠	•	.030	GUIDELINE = 6.5-8.5 (A4)	7.300	2.400	2.400	7.300	7.400	2.400	7.200	2.400	7.400	7.400	2.400	٠	7.200	2.400	7 200
GUIDE	001.	200	. 200	.010	000.	. 100	. 100	. 200	. 200	.030	.300	.200	.120	. 100	3,550	0100	7.100	7.200	7.200	7.200	7.200	7.200	7.200	7.200	. 007.2	7.200	2.400	7.200	2.000	2.400	7 000
DET'N LIMIT = 0	•		e	ę	٠	٠						٠		٠		DET'N LIMIT = N/A	٠	ø	٠	•	٠		٠	•	٠	٠	٠	•	7.400	•	002 2
0)	•	٠	•		٠	,	4	٠	٠	٠	٠	٠	٠	*	٠		7.200	7.400	7.400	7.400	7.400	7.400	7.200	7.200	7.200	7.400	٠	٠	٠	7.400	
CHEMISTRY (FIELD) FLO CHLORINE (101AL) (MG/L)	٠	٠	٠		٠	٠	•		٠			٠	•	•	٠	ESS)	7.100	7.400	7.200	7.200	7.200	7.200	7.400	7.200	7.400	7.400	7.200	7.400	7.100	7.400	2000
CHLORINE	1991 JAN	1991 FEB		1991 APR	1991 HAY	1991 JUN		1991 AUG			1991 NOV	1992 JAH	1992 APR	1992 JUL	1992 OCT	FLO PH (DMNSLESS	1991 JAN	1991 FEB	1991 MAR	1991 APR				1991 AUG				1992 JAN		1992 JUL	-

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

RESERVOIR RAHMANS	GUIDELINE = 15 (A3)	6.500	000.6	8,000	000.6	000.6	000.6	10.000	10.000	9.500	000.6	8,700		10.000	9.500	GUIDELINE = 1.0 (A1)	.870
RESERVOIR ST ANDREW TOWER	90109	7.500	000.6	8.000	10.000	12.000	13.000	14.000	14.000	14.600	11.000	002.6	7.500	10,000	11.200	QIND	.150
WELL P15 RAW	DET'N LIMIT = N/A	٠	•		٠	•	•	•	•		•	•	٠	000.6	8.200	DET'N LIMIT'= N/A	٠
WELL P11 RAW	1ELD)	8.000	10.000	0.500	000.6	000.6	000.6	10.000	9.500	0.500	000.6					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 480
WELL G3 · RAW	. CHEMISTRY (FIELD)	8.500	12.000	11.000	10.000	11,000	11.000	11.000	11.000	10.800	11.000	10.500	10.500	11.000	13.000	FTU)	.100
. a.	FLO TEMPERATURE (DEG.C										1991 OCT					FLD TURBIDITY (FTU	1992 JUL

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

RESERVOIR ST ANDREW TOWER RAHMANS

WELL P15

WELL P11 RAU

WELL G3 RAU

283.000 279.200 275.900 275.900 278.700 275.900 211.500 266.800 274.500 266.800 274.500 266.800 274.500 266.800 274.500 266.800 274.500 266.800 274.500 266.800 274.500 266.800 274.500 266.800 274.500 266.800 271.300 267.900 271.300 86.400 112.000 86.600 112.000 88.200 111.900 77.000 81.200 81.200 112.200 88.200 111.900 88.200 112.200 88.200 112.200 88.200	276 200	GUIDELINE = 30-500 (A4)
279.900 241.500 266.800 266.800 286.400 286.400 286.400 286.400 286.400 286.400 274.900 274.900 275.700 276.600 86.400 86.400 86.400 88.200 88.200 88.200	2000	270.700
278.700 241.500 279.400 264.800 216.200 268.700 273.800 286.500 266.800 274.900 266.800 274.900 266.800 274.900 267.900 274.900 261.800 262.300 261.800 262.300 271.300 86.400 112.400 87.000 65.000 77.000 65.000 77.000 65.000 77.000 112.000 86.600 111.900 88.200 111.900 88.200 111.200 88.200	276.300	269.000
277.500 266.800 277.800 266.800 277.800 286.700 266.800 277.900 266.800 277.900 268.000 277.900 269.000 267.900 261.800 267.900 261.800 267.900 261.800 267.900 261.800 267.900 261.800 267.900 271.300 86.400 112.000 86.600 111.900 77.000 112.200 88.200 111.900 88.200 111.200 88.200 112.200 88.200 112.200 88.200	005.072	248 000
247.200 268.700 274.500 288.400 274.500 288.500 268.000 274.900 268.000 274.900 268.000 274.900 269.000 284.400 261.200 285.400 112.400 88.400 112.000 88.200 111.900 88.200 111.900 88.200 111.900 88.200 111.200 88.200	002.012	27.2 500
245.200 286.400 286.400 274.500 286.400 286.400 286.400 286.500 286.400 286.500 286.400 286.400 286.400 286.400 286.400 286.400 286.400 286.400 286.400 286.400 286.400 286.400 286.600 286.600 286.600 286.600 286.600 286.600 286.600 286.600 286.600 286.600 286.20	214 000	252 800
274.500 286.500 266.800 274.900 268.000 284.400 268.000 284.400 268.000 284.400 261.800 262.300 271.300 262.300 112.400 86.400 113.700 87.000 65.000 77.700 65.000 77.700 61.000 88.500 111.900 88.200 111.900 88.200 111.900 88.200 111.500 88.200 111.500 88.200	000.012	000.555
266.800 274.900 268.000 284.400 268.000 284.400 265.500 284.400 267.800 284.400 267.800 262.300 271.300 262.300 113.700 86.400 113.700 87.000 65.000 77.000 112.000 84.000 111.900 88.200 111.900 88.200 111.900 88.200 111.900 88.200 111.250 88.250	007.72	200.000
266.800 274.900 268.400 268.000 268.40	274.600	264.500
268.000 284.400 265.500 209.000 250.000 250.000 250.000 250.300 250.300 271.300 250.30	255.200	271.000
265.500	267.100	259.600
262.600	267.600	252.700
262.600 262.300 271.300 271.300 271.300 86.400 113.700 85.400 113.700 87.000 65.000 775.700 62.600 112.000 84.000 111.900 88.200 111.900 88.200 111.900 88.200 111.250 82.450	203.000	•
261.800 262.300 271.300 271.300 271.300 86.400 85.400 113.700 85.400 70.500 65.000 775.700 62.600 775.700 84.000 112.000 84.000 111.900 88.200 111.900 81.200 81.200 112.250 82.450	263.000	228.300
271.300	261.000	280.900
112.400 86.400 113.700 85.400 105.200 87.000 65.000 70.600 107.000 75.700 62.600 74.400 112.000 84.000 112.000 88.200 111.900 88.200 111.900 88.200 111.900 88.200	274.100	271.600
86.400 85.400 87.000 70.600 75.700 74.400 84.000 79.000 88.200 88.200	0.20	GUIDELINE = 100 (F2)
113.700 85.400 105.200 87.000 65.000 70.600 107.000 75.700 112.000 86.600 112.000 88.200 111.900 88.200 111.900 88.200 111.200 88.200 111.200 88.200	113.100	92.700
105.200 87.000 65.000 70.600 107.000 75.700 112.000 86.600 111.900 88.200 111.900 88.200 111.900 81.200 112.250 82.450	117.100	92.000
70.600 75.700 74.400 84.000 79.000 88.200 88.200	105.900	81.900
75.700 74.400 86.600 79.000 88.200	79.800	75.200
74.400 86.600 84.000 77.000 88.200 	111.600	73.800
86.600 84.000 77.000 88.200 	115	77.600
112.000 84.000 110.000 79.000 112.000 88.200 111.900	114.000	87.200
110.000 79.000 112.000 88.200 111.900 81.200 107.800 82.450	112.300	85.400
88.200	95.000	89.000
	110.000	83.600
82.450	112.200	83,500
82.450	75.400	
82.450	108.500	66.250
	110,650	90.850
108.000 . 93.800	112.000	82.200
CYANIDE (MG/L) DET'N LIMIT = 0.001	5 5 6 6 7 7	GUIDELINE = 0.2 (A1)

TABLE 4 DRINKING-WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

RESERVOIR RAHMANS	GUIDELINE = 250 (A3)	45.700 36.300 28.600 11.600 37.000	37.900 35.700 40.600 38.500 41.900 41.900 20.300 . 32.600	GUIDELINE = 5 (A3) 2.000 <t 1.500="" 1.500<="" 2.000="" 2.500="" 3.000="" 3.500="" 4.000="" 4.500="" 5.000="" 6.000="" <t="" td=""></t>
RESERVOIR ST ANDREW TOWER	0100	151.000 1.1R 169.000 178.000	173.000 172.000 174.000 164.000 165.000 152.000 174.000	2.500 4.000 3.500 3.500 3.000 3.000 3.000 2.000 2.000 2.000 2.000 2.000
WELL P15 RES	DET'N LIMIT = 0.20		46.700	0ET'N LIMIT = 0.50
WELL P11 RAW	ATORY) .	11.500 11.900 12.000 35.300 13.500	12.500 12.800 14.200 13.700 13.000 8.000	2.500 3.000 3.000 3.000 3.000 3.000 3.000
WELL G3 RAW	CHEMISTRY (LABORATORY)	161.000 11R 170.000 145.000 169.000	154,000 167,000 178,000 181,000 168,000 168,000 157,000 162,000	3.000 3.500 3.500 3.500 4.000 4.000 4.000 5.500 5.500 2.500 2.500
	CHLORIDE (MG/L		1	1991 JAN 1991 FEB 1991 MAR 1991 MAY 1991 JUL 1991 JUL 1991 AUG 1991 OCT 1991 NOV 1992 JAN 1992 JAN 1992 OCT

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

RESERVOIR RESERVOIR ST ANDREW TOWER RAHMANS

WELL P15 RAW

WELL P11 RAU

WELL G3 RAU

GUIDELINE = 400 (F2)	789	929	571	586	637	289	929	670	169	672	999		959	\$7	642	GUIDELINE = 5.0 (A3)	1.100	1.000	1.400	1.600	1.200	006.	006.	1.000	1.400	1,100	1.000	h	1.200	1.400	1.000
Q11D	1145	1174	1150	1174	1125	1218	1160 .	1176	1189	1194	1179	1191	1101	1188	1126	0110	1.600	1.900	1.700	1.500	1.300	1.400	1.600	1.600	1,700	1.600	1.400	1.500	1.700	1.500	1.200
DET'N LIMIT = 1.0	٠	٠	٠	٠	٠	Þ	Þ	٠	ь	Þ	٠	٠	099	٠	706	DET'N LIMIT = 0.10	•			٠	*	٠	•	0	,	٠	Þ		.800		.300 <1
(LABORATORT)	065	591	\$9\$	652	577	619	265	109	619	612	٠	٠	۰	575	•	6 b 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1.600	1.500	1.700	1.100	1.400	1.400	1.400	1.500	2.200	1.600			٠	1.100	٠
) ()	1163	1167	1152	1181	1123	1212	1158	1173	1205	1196	1176	1162	1001	1185	1128	(WG/L)	1.600	1.600	1.700	1.600	1.500	1.500	1.600	1.600	1.900	1.600	1.500	1.500	1.700	1.600	1.200
CONDUCTIVITY (UMHO/CM	1991 JAN					1991 JUN		1991 AUG			1991 NOV		1992 APR	1992 JUL		SS ORG CARBON (MG/L	1991 JAN	1991 FEB	_		1991 MAY	1991 JUN			1991 SEP			1992 JAN			

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

RESERVO1R RAHMANS	GUIDELINE = 1.5 (A1)	.160	.160	.160	.140	.180	.160	.160	.140	. 180	.180	.180	٠	200	.200	. 180	GUIDELINE = 80-100 (A4)	366.200	354,900	326.000	302.000	308.900	320.000	343.000	336.600	350,000	327.000	330,200		. 293.000	448.210	327.000
RESERVOIR ST ANDREW TOWER	ano	.280	.260	.240	.260	.260	.260	.260	.260	.280	.280	.280	. 280	.260	.280	.260	GUID	419,700	425.200	397.000	329.000	412,500		416.000	412.100	370.000	406,000	409.500	317,900	404000	409,630	410,000
WELL P15 RAW	DET'N LIMIT = 0.01		٠				٠	•		•		•	•	.280		080	DET'N LIMIT = 0.5	:	٠	•		•	•	•	•			•	٠	314,000		395.000
WELL P11 RAW	LABORATORY)	. 160	.160	.140	.160	. 160	.140	.160	.140	. 180	. 140	٠	•	•	.200	•	- a a a a p p p p p p p p p p p p p p p	332,700	327,400	331,400	302.000	304.000	301,000	331.000	322.600	312.000	332,000	٠			318.220	0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WELL G3 RAW	CHEMISTRY (LABORATORY)	.260	.240	.240	. 260	.240	.240	.240		.280	.260	.260	.260	.240	.300	.240	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	414.600	414.900	397.300	162.000	397.800	286.000	410.000	409.100	408.000	410.000	000.607	329.900	399.000	412.440	399.000
	FLUORIDE (MG/L	1991 JAN		1991 MAR										-	1992 JUL	_	HARONESS (MG/L			_			1991 JUN								1992 JUL	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

RESERVOIR

RESERVOIR

WELL P15

WELL P11

WELL G3

		NAF	R10	NAF		IF.	15		15	IF					<u>ال</u>																
GUIDELINE = N/A	2.424	.842 NA		4.272 NA	4.112	4.335 NAF	1.448 NAF	4.063	1.455 NAF	3.989 NAF	3.478	•	4.282	3.488	4.719 HAF	IE = 10 (F2)	1,410	1,290	1.340	1,300	1,390	1.250	1.200	1.240	1.300	1,350	1.020	٠	1.408	1.441	1 701
GUIDELIN	2.548	.000 NAF	1.752 NAF	4.302 NAF	1,550	.000 NAF	.368 NAF	.453	4.442 NAF	1.613 NAF	.011	4.462	3.932	2.742	1.207 NAF	GUIDELINE	2.920	3.170	3.150	2.700	3.250	118	2.900	3.140	3.200	3.150	3.150	3.247	3.155	3.073	7 074
DET'N LIMIT = N/A	۰	٠	. •		٠						•	•	7.654		3.476 NAF	DET'N LIMIT = 0.01		٠	٠	٠	٠	٠		٠		٠	٠	٠	1.257	٠	1 / 7.7
(LABORATORY) DET	1.897	.230 NAF	3.051 R10	4.285 NAF	2.431	3.584 NAF	.547 NAF		2.857 NAF	.400 NAF	٠	٠	٠	4.100	٠	DET	1,480	1.580	1.490	1.250	1.640	1.350	1.400	1.560	1.600	1.650	٠		٠	1.469	
CHEMISIKI (LABON	.705	.000 NAF	.914 NAF.		3.989	4.377 NAF	.S42 NAF	1.023	2.013 NAF	1.065 NAF	.148	4.302	4.365	3.937	4.729 NAF		2.980	3.210	3.040	2.700	3.240	2.800	3.000	3.170	3.300	3.200	3.130	3.290	3.220	3,114	200 2
TOWCAL (DMNSLESS	1991 JAN	1991 FEB	1991 MAR	1991 APR	1991 MAY	1991 JUN			1991 SEP	1991 001	1991 4:00	1992 JAN	1992 APR		1992 001	POTASSIUM (MG/L	1991 JAN	1991 FEB	1991 MAR	-	1991 MAY	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 JAN	1992 APR	1992 JUL	

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

																																٠
RAHMANS	GUIDELINE = N/A	1.194	.940 NAF	1.112 RID	1.155	.920	622.	1.133 NAF	.869	1.097	1.072	1.150		962.	.883	1.045	GUIDELINE = 30.0 (F2)	32.750	30.400	29.450	27.600	30.250	30.700	30.400	30.000	31.000	28.700	29.600	٠	31.080	29.760	29.500
ST ANDREW TOWER	GUIDE	1.348	.921 NAF	1.331	1.056	1.007	٠	1.245 NAF	.870	1.175	1.128	1.298	.965	0%6°	.861	1.010	GUIDE	33.350	32.250	32.250	31.400	32.500	SII	31.700	32.000	32.300	31.800	31.400	31.400	32.340	32.400	31.800
RAW	DET'N LIMIT = N/A			•			•			٠	•	٠	•	.858	•	1.090	DET'N LIMIT = 0.1		٠			•		•		•	•		•	31,320	0	39.100
RAW	BORATORY)	1.293		1.220 RID	1.088	. 779.	.769	1.205 NAF	.891	1.085	1,108				.867	٠	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28.450	27.700	27.750	30.600	27.950	28.000	28.000	27.400	27.800	27.000				27.300	•
RAW	CHEMISTRY (LABORATORY)	1.364	.938 NAF	1.339	666.	1.009	067.	1.278 NAF	.848	1.207	1.077	1.284	.991	296.	.788	1.040	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32.500	31.800	32.750	31.700	31.750	31.500	31.400	31.500	32.300	31.500	31,450	30.800	31.620	32.100	31.400
CX.	CHEMISTRY CHEMISTRY CHEMISTRY CHEMISTRY	1991 JAN		1991 MAR		1991 MAY		1991 JUL						1992 APR	1992 JUL	1992 OCT	MAGNESIUM (MG/L			1991 MAR					1991 AUG					1992 APR		

1ABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

RESERVOIR

RESERVOIR

WELL PIT WELL PTS

WELL 63

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	(74)	00	00	00	00	00	00	00	00	00	00	00		02	20	00	= 0.05 (F2)	70	83	70	12	57	28	32	70	90),	75		.010	70	0.4 < 7
	GUIDELINE = 200 (A4)	13.700	0.00	8.30	9.40	10.40	10.00	9.80	10.10	10.40	9.80	10.30		11.770	7.9	10.60	GUIDELINE = 0.0	BOL	70.	BDL	0.	0.	20.	0.	98	.1	18	71.		0.	98	Č
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0110	90.000	96.800	009.66	97.000	110.500	115	98.800	99.700	99.200	93.000	93.600	94.120	98.040	93.360	94.100	175	720.	720.	.020	.014	.014		T> 900.		T> 200.	B01	BOL	T> 200.	.010	BOL	100
8 8 8 8 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	DET .N LIMIT = 0.20	٠	٠	٠		٠		٠	٠	٠	٠	٠	٠	15.410	•	34.200	DET'N LIMIT = 0.002	٠	٠	٠	۰	٥	۰	٥	٠	٠	٠	0	•	970.		056
SOPATORY		007.9	6.100	6.200	11.000	7.500	7.200	7.000	7.100	7.800	7.000	۰	٠	٠	4.850	٠	4 d d d d d d d d d d d d d d d d d d d	BOL	.012	T> 800.	.002 <t< td=""><td>.022</td><td>T> 800.</td><td>.018</td><td>108</td><td>.018</td><td>T> 800.</td><td>٠</td><td>٠</td><td></td><td>T> 800.</td><td></td></t<>	.022	T> 800.	.018	108	.018	T> 800.	٠	٠		T> 800.	
CHEMICIPY / LABORATORY	()	94.200	99.200	100.700	007.96	116.000	105.000	97.800	100.000	100.000	92.200	009.76	94.100	100.440	095.76	93.600	(MG/L)	.028	.030	.022	.022	.016	108	.006 <t< td=""><td>108</td><td>.002 <1</td><td>108</td><td>.006 <1</td><td>.018</td><td>.006 <1</td><td>. 002 <t< td=""><td>T. 900</td></t<></td></t<>	108	.002 <1	108	.006 <1	.018	.006 <1	. 002 <t< td=""><td>T. 900</td></t<>	T. 900
	1/9W) W0100S		1991 FEB	1991 MAR	1991 APR	1991 MAY	1991 JUN		1991 AUG				1992 JAN			_	AMMONIUM TOTAL (MG/L	1991 JAN		1991 MAR		_	1991 JUN		1991 AUG					1992 APR	1992 JUL	-

RESERVOIR RESERVOIR ST ANDREW TOWER RAHMANS

WELL P15 RAW

WELL P11 RAW

WELL G3 RAW

NE = 1.0 (A1)	BDL .045 .004 <7 .001 <7 .064 .066 .083 .005 .005 .005 .005	NE = 10.0 (A1) 1.020 1.020 1.710
GUIOELINE	000. 000. 000. 000. 000. 000. 000. 000	GUIDELINE .980 1.180 1.330 1.240 1.110 .960 .935 .935 .910 1.400 1.300 .780
0ET'N LIMIT = 0.001	.002 <1	DET'N LIMIT = 0.005
3ATORY)	801 47 800 47 800 47 900 67 900 67	1.790 1.790 1.720 1.110 1.620 1.540 1.540 1.540 1.540 1.580
CHEMISTRY (LABORATORY)	BDL .001 <t .001 <t .003 <t .036 .045 .043 .043 .048 .012 .007 .003 <t .003 <t< td=""><td>(MG/L) 1.070 1.240 1.330 1.330 1.110 .955 .925 .925 .925 .910 1.080 1.430 1.437</td></t<></t </t </t </t 	(MG/L) 1.070 1.240 1.330 1.330 1.110 .955 .925 .925 .925 .910 1.080 1.430 1.437
NITRITE (MG/L	1991 JAN 1991 FEB 1991 MAR 1991 APR 1991 JUN 1991 JUN 1991 SEP 1991 OCT 1992 JAN 1992 JAN 1992 JUL 1992 CCT	1991 JAN 1991 JAN 1991 FEB 1991 MAR 1991 MAY 1991 JUN 1991 JUN 1991 OCT 1991 OCT 1992 JAN 1992 JAN 1992 JUL

Page 25

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

																(7)															
RESERVOIR RAHMANS	GUIDELINE = N/A	1> 090 .	1 100		120		1> 090.	. 150	091.	011.	.210	• (.120	. 150	071.	GUIDELINE = 6.5-8.5 (A4)	8.270	8.020	8.290	8.320	8.140	7.960	8.240	2.990	8.190	8.210	8.300	•	8.090	7.950	8.170
RESERVOIR ST ANDREW TOWER	901106	.170	180	210	. 170	.160	. 180	.150	200.	190	170	190	.210	. 150	. 180	GU101	8.350	7.910	8.360	8.330	8.010	7.880	8.250	7.880	8.290	8.160	8.320	8.280	7.980	7.900	8.020
RAW S	DET'N LIMIT = 0.02		•	•	• •	ø	٠	*		٠	٠	• !	.100	٠	.140	DET'N LIMIT = N/A	٠		٠	٠	٠			٠		٠	٠	٠	8.070	٠	8.150
RAU RAU	(LABORATORY)	.150	130		. 180	.120	.120	100	071.	. 150	٠	•	*	.130	٠	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.380	8.000	8.310	8.330	8.140	7.940	8.280	7.980	8.220	8.180	٠	٠	٠	8.000	٠
WELL GS RAW	TRY	.180	200	. 100	230	. 180	. 180	. 190	180	190	. 190	.210	. 190	. 150	.170	• 8 d d d d d d d d d d d d d d d d d d	8.360	7.940	8.370	8.360	8.030	7.860	8.290	7.860	8.240	8.100	8.310	8.260	8.010	7.820	8.070
	CHEMIS CHEMIS NITROGEN TOT KJELD (MG/L		1991 FEB	1001 ABB									1992 APR		1992 OCT	PH (DMNSLESS)	1991 JAN	1991 FEB	_	1991 APR	1991 MAY		1991 JUL	1991 AUG	1991 SEP	1991 OCT		1992 JAN	1992 APR	1992 JUL	_

RESERVOIR RESERVOIR ST ANDREW TOWER RAHMANS

WELL P15 RAW

WELL P11 RAW

WELL G3 RAV

N/A	BOL	500	1> 700	.001 <t< th=""><th>2005</th><th>.002 <t< th=""><th></th><th>1> 100.</th><th></th><th>. 000</th><th>.004</th><th>•</th><th>BOL</th><th>.001 <t< th=""><th>BDL</th><th>= 0.40 (F2)</th><th>BDL.</th><th></th><th>.004 <t< th=""><th></th><th>.004 <7</th><th></th><th>.003 <1</th><th></th><th></th><th></th><th>.007 <t< th=""><th></th><th></th><th>.008 <t< th=""><th>BOL</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	2005	.002 <t< th=""><th></th><th>1> 100.</th><th></th><th>. 000</th><th>.004</th><th>•</th><th>BOL</th><th>.001 <t< th=""><th>BDL</th><th>= 0.40 (F2)</th><th>BDL.</th><th></th><th>.004 <t< th=""><th></th><th>.004 <7</th><th></th><th>.003 <1</th><th></th><th></th><th></th><th>.007 <t< th=""><th></th><th></th><th>.008 <t< th=""><th>BOL</th></t<></th></t<></th></t<></th></t<></th></t<>		1> 100.		. 000	.004	•	BOL	.001 <t< th=""><th>BDL</th><th>= 0.40 (F2)</th><th>BDL.</th><th></th><th>.004 <t< th=""><th></th><th>.004 <7</th><th></th><th>.003 <1</th><th></th><th></th><th></th><th>.007 <t< th=""><th></th><th></th><th>.008 <t< th=""><th>BOL</th></t<></th></t<></th></t<></th></t<>	BDL	= 0.40 (F2)	BDL.		.004 <t< th=""><th></th><th>.004 <7</th><th></th><th>.003 <1</th><th></th><th></th><th></th><th>.007 <t< th=""><th></th><th></th><th>.008 <t< th=""><th>BOL</th></t<></th></t<></th></t<>		.004 <7		.003 <1				.007 <t< th=""><th></th><th></th><th>.008 <t< th=""><th>BOL</th></t<></th></t<>			.008 <t< th=""><th>BOL</th></t<>	BOL
GUIDELINE = N	BOL			√				<u>_</u>	_ ≺	-	. ✓	.002 <t< td=""><td></td><td></td><td>B0L</td><td>GUIDELINE = (</td><td></td><td><u> </u></td><td></td><td></td><td></td><td>Ţ</td><td></td><td></td><td>_</td><td></td><td></td><td>BOL</td><td></td><td>.002 <t< td=""><td></td></t<></td></t<>			B0L	GUIDELINE = (<u> </u>				Ţ			_			BOL		.002 <t< td=""><td></td></t<>	
DET'N LIMIT = 0.0005	•							٠				•	.001 <1	•	BOL	DET'N LIMIT = 0.002					~ •		•	•	•	٠	٠	٠	BOL	•	.037
	BDL	.001 <t< td=""><td>.001 <t< td=""><td>.002 <1</td><td>T> 200.</td><td>. 000 <t< td=""><td>T> 100.</td><td>.000 <t< td=""><td></td><td>T> 000.</td><td>,*</td><td>٠</td><td>٠</td><td>.001 <t< td=""><td></td><td>6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td><td>BDL</td><td>.005 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>.005 <t< td=""><td>BOL</td><td></td><td></td><td></td><td>T> 400.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.001 <t< td=""><td>.002 <1</td><td>T> 200.</td><td>. 000 <t< td=""><td>T> 100.</td><td>.000 <t< td=""><td></td><td>T> 000.</td><td>,*</td><td>٠</td><td>٠</td><td>.001 <t< td=""><td></td><td>6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td><td>BDL</td><td>.005 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>.005 <t< td=""><td>BOL</td><td></td><td></td><td></td><td>T> 400.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.002 <1	T> 200.	. 000 <t< td=""><td>T> 100.</td><td>.000 <t< td=""><td></td><td>T> 000.</td><td>,*</td><td>٠</td><td>٠</td><td>.001 <t< td=""><td></td><td>6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td><td>BDL</td><td>.005 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>.005 <t< td=""><td>BOL</td><td></td><td></td><td></td><td>T> 400.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 100.	.000 <t< td=""><td></td><td>T> 000.</td><td>,*</td><td>٠</td><td>٠</td><td>.001 <t< td=""><td></td><td>6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td><td>BDL</td><td>.005 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>.005 <t< td=""><td>BOL</td><td></td><td></td><td></td><td>T> 400.</td><td></td></t<></td></t<></td></t<></td></t<>		T> 000.	,*	٠	٠	.001 <t< td=""><td></td><td>6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td><td>BDL</td><td>.005 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>.005 <t< td=""><td>BOL</td><td></td><td></td><td></td><td>T> 400.</td><td></td></t<></td></t<></td></t<>		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	BDL	.005 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>.005 <t< td=""><td>BOL</td><td></td><td></td><td></td><td>T> 400.</td><td></td></t<></td></t<>	BOL	BOL	BOL	BOL	BOL	BDL	.005 <t< td=""><td>BOL</td><td></td><td></td><td></td><td>T> 400.</td><td></td></t<>	BOL				T> 400.	
CHEMISTRY (LABORATORY) REACT (MG/L)	BDL	.001 <t< td=""><td>.001 <1</td><td>.002 <t< td=""><td>.002</td><td>T> 000.</td><td>. 000 <t< td=""><td>.000 <t< td=""><td>.001 <t< td=""><td>T> 000.</td><td>.001 <t< td=""><td>T> 000.</td><td>BOL</td><td>.002 <1</td><td>.003 <t< td=""><td>r (MG/L)</td><td>.002 <7</td><td></td><td>.003 <t< td=""><td>BOL</td><td>.003 <t< td=""><td>.002 <t< td=""><td>BDL</td><td>.002 <t< td=""><td>.002 <t< td=""><td>T> 700.</td><td>.002 <t< td=""><td>T> 700.</td><td>BOL</td><td>.003 <t< td=""><td>T> 700</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.001 <1	.002 <t< td=""><td>.002</td><td>T> 000.</td><td>. 000 <t< td=""><td>.000 <t< td=""><td>.001 <t< td=""><td>T> 000.</td><td>.001 <t< td=""><td>T> 000.</td><td>BOL</td><td>.002 <1</td><td>.003 <t< td=""><td>r (MG/L)</td><td>.002 <7</td><td></td><td>.003 <t< td=""><td>BOL</td><td>.003 <t< td=""><td>.002 <t< td=""><td>BDL</td><td>.002 <t< td=""><td>.002 <t< td=""><td>T> 700.</td><td>.002 <t< td=""><td>T> 700.</td><td>BOL</td><td>.003 <t< td=""><td>T> 700</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.002	T> 000.	. 000 <t< td=""><td>.000 <t< td=""><td>.001 <t< td=""><td>T> 000.</td><td>.001 <t< td=""><td>T> 000.</td><td>BOL</td><td>.002 <1</td><td>.003 <t< td=""><td>r (MG/L)</td><td>.002 <7</td><td></td><td>.003 <t< td=""><td>BOL</td><td>.003 <t< td=""><td>.002 <t< td=""><td>BDL</td><td>.002 <t< td=""><td>.002 <t< td=""><td>T> 700.</td><td>.002 <t< td=""><td>T> 700.</td><td>BOL</td><td>.003 <t< td=""><td>T> 700</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.000 <t< td=""><td>.001 <t< td=""><td>T> 000.</td><td>.001 <t< td=""><td>T> 000.</td><td>BOL</td><td>.002 <1</td><td>.003 <t< td=""><td>r (MG/L)</td><td>.002 <7</td><td></td><td>.003 <t< td=""><td>BOL</td><td>.003 <t< td=""><td>.002 <t< td=""><td>BDL</td><td>.002 <t< td=""><td>.002 <t< td=""><td>T> 700.</td><td>.002 <t< td=""><td>T> 700.</td><td>BOL</td><td>.003 <t< td=""><td>T> 700</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.001 <t< td=""><td>T> 000.</td><td>.001 <t< td=""><td>T> 000.</td><td>BOL</td><td>.002 <1</td><td>.003 <t< td=""><td>r (MG/L)</td><td>.002 <7</td><td></td><td>.003 <t< td=""><td>BOL</td><td>.003 <t< td=""><td>.002 <t< td=""><td>BDL</td><td>.002 <t< td=""><td>.002 <t< td=""><td>T> 700.</td><td>.002 <t< td=""><td>T> 700.</td><td>BOL</td><td>.003 <t< td=""><td>T> 700</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 000.	.001 <t< td=""><td>T> 000.</td><td>BOL</td><td>.002 <1</td><td>.003 <t< td=""><td>r (MG/L)</td><td>.002 <7</td><td></td><td>.003 <t< td=""><td>BOL</td><td>.003 <t< td=""><td>.002 <t< td=""><td>BDL</td><td>.002 <t< td=""><td>.002 <t< td=""><td>T> 700.</td><td>.002 <t< td=""><td>T> 700.</td><td>BOL</td><td>.003 <t< td=""><td>T> 700</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 000.	BOL	.002 <1	.003 <t< td=""><td>r (MG/L)</td><td>.002 <7</td><td></td><td>.003 <t< td=""><td>BOL</td><td>.003 <t< td=""><td>.002 <t< td=""><td>BDL</td><td>.002 <t< td=""><td>.002 <t< td=""><td>T> 700.</td><td>.002 <t< td=""><td>T> 700.</td><td>BOL</td><td>.003 <t< td=""><td>T> 700</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	r (MG/L)	.002 <7		.003 <t< td=""><td>BOL</td><td>.003 <t< td=""><td>.002 <t< td=""><td>BDL</td><td>.002 <t< td=""><td>.002 <t< td=""><td>T> 700.</td><td>.002 <t< td=""><td>T> 700.</td><td>BOL</td><td>.003 <t< td=""><td>T> 700</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BOL	.003 <t< td=""><td>.002 <t< td=""><td>BDL</td><td>.002 <t< td=""><td>.002 <t< td=""><td>T> 700.</td><td>.002 <t< td=""><td>T> 700.</td><td>BOL</td><td>.003 <t< td=""><td>T> 700</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.002 <t< td=""><td>BDL</td><td>.002 <t< td=""><td>.002 <t< td=""><td>T> 700.</td><td>.002 <t< td=""><td>T> 700.</td><td>BOL</td><td>.003 <t< td=""><td>T> 700</td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	.002 <t< td=""><td>.002 <t< td=""><td>T> 700.</td><td>.002 <t< td=""><td>T> 700.</td><td>BOL</td><td>.003 <t< td=""><td>T> 700</td></t<></td></t<></td></t<></td></t<>	.002 <t< td=""><td>T> 700.</td><td>.002 <t< td=""><td>T> 700.</td><td>BOL</td><td>.003 <t< td=""><td>T> 700</td></t<></td></t<></td></t<>	T> 700.	.002 <t< td=""><td>T> 700.</td><td>BOL</td><td>.003 <t< td=""><td>T> 700</td></t<></td></t<>	T> 700.	BOL	.003 <t< td=""><td>T> 700</td></t<>	T> 700
CHEMISTR PHOSPHORUS FIL REACT (MG/L		1991 FEB		991 APR											992 OCT	PHOSPHORUS TOTAL (MG/L	991 JAN			1991 APR						1991 OCT				1992 JUL	

RESERVOIR RAHMANS	GUIDELINE = 500 (A3)	445.000 CRO 425.000 CRO 431.000 CRO 414.000 CRO 426.000 CRO 435.000 CRO 43.930 44.770 49.040 49.040
RESERVOIR ST ANDREW TOWER	9109	692.000 763.000 811.000 812.000 812.000 812.000 673.000 774.000 775.000 775.000 775.000 775.000 775.000 115.870 106.200 117.800 111.180 106.300 106.300
WELL P15 R	DET'N LIMIT = N/A	429.000 CRO 581.000 0ET'N LIMIT = 0.20 49.990
RAU RAU R	6 8 8 1 1 1 4	384.000 CR0 384.000 CR0 356.000 CR0 422.000 CR0 402.000 CR0 402.000 CR0 391.000 CR0 391.00
WELL G3	CHEMISTRY (LABORATORY) E (MG/L)	699,000 759,000 730,000 815,000 771,000 772,000 686,000 675,000 772,000
	PESIOUE FILTRATE	1991 JAN 1991 FEB 1991 MAY 1991 JUN 1991 JUN 1991 JAN 1992 JAN 1992 JAN 1991 JAN 1991 JAN 1991 JAN 1991 JAN 1991 JAN 1991 JUN 1991 JUN 1992 JUN

	WELL G3 RAW	WELL P11 RAW	WELL P15 RAW	RESERVOIR SI ANDREW TOWER	RESERVOIR RAHMANS
1 1 1 1 1 1 1 0 0	CHEMISTRY (L	(LABORATORY)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 9 8 9 8 8 8 8 8 8 8 8 9
TURBIDITY (FTU	^		DET'N LIMIT = 0.05		GUIDELINE = 1.0 (A1)
	.570	1.100 RRV	٠.	.860	.720
991 FEB	.120	060.		.080	1.850 RRV
	080	.150	•	.120	1.820
	.150 <t< td=""><td>1.400</td><td></td><td>. 140 <t< td=""><td>. 100 <t< td=""></t<></td></t<></td></t<>	1.400		. 140 <t< td=""><td>. 100 <t< td=""></t<></td></t<>	. 100 <t< td=""></t<>
1991 MAY	. 150 <t< td=""><td>.430</td><td>•</td><td>. 200 <t< td=""><td>1.920 RRV</td></t<></td></t<>	.430	•	. 200 <t< td=""><td>1.920 RRV</td></t<>	1.920 RRV
	.120	. 150	•	.160	2,100
	.030	020.		. 040	1.200
	090.	0,000	. •	.030	.550
	.050	090.	•	.100	2,700 RRV
	1> 070.	.340	•	BOL	. 190 <Ŧ
	. 180 <t< td=""><td></td><td>•</td><td>. 160 <t< td=""><td>006.</td></t<></td></t<>		•	. 160 <t< td=""><td>006.</td></t<>	006.
	. 120 <t< td=""><td>•</td><td>•</td><td>110 <1</td><td></td></t<>	•	•	110 <1	
	150 <1	٠	2.000	.290	.810
	7> 091.	.710	٠	170 <1	.890
	.270	•	39.000	.210 <t< td=""><td>086°</td></t<>	086°

RESERVOIR RESERVOIR ST ANDREW TOWER RAHMANS

WELL P15

VELL P11

NE = N/A	801 801 801 801 801	801 801 801 801 801 801 900	GUIDELINE = 100 (A4) 3.400 1.300 1.300 1.300 2.200 2.800 3.300 1.200 6.500 <t 1.200="" 1.200<="" 5.500="" 6.500="" <t="" td=""></t>
GUIDELINE =	108 108 108	108 108 108 108	2.700 1.100 1.300 1.400 1.400 1.200 3.500 1.000 <7 7.80 <7 7.930 <7 7.930 <7 7.50 <7 7
DET*N LIMIT = 0.05			3.300 1.900
	108	108	1.200 1.300 2.400 2.700 1.000 <1 4.900 1.200 3.200
			\$ \$\$\$\$
METALS	108	108 108 108 108 108 108 108	2.400 1.300 1.100 1.700 5.500 1.700 6.600 6.600 6.600 7.700 1.400
SILVER (UG/L	1993 JAN 1993 JAN 1993 JAN 1993 JAN		1991 JAN 1991 FEB 1991 MAR 1991 MAR 1991 JUL 1991 JUL 1991 JUL 1991 JUL 1991 OCI 1992 JAN 1992 JAN 1992 JAN 1992 OCI

	:																															
RESERVOIR RAHMANS	GUIDELINE = 25 (A1)	BDL	.340 <t< td=""><td>.740 <t< td=""><td>.250 <t< td=""><td>BOL</td><td>.580 <t< td=""><td>T> 099.</td><td>.420 <t< td=""><td>.520 <t< td=""><td>T> 095.</td><td>T> 099.</td><td>٠</td><td>T> 089.</td><td>T> 097.</td><td>.390 <t< td=""><td>GUIDELINE = 1000 (A2)</td><td>170,000</td><td>180.000</td><td>140,000</td><td>000.96</td><td>170.000</td><td>170.000</td><td>170.000</td><td>160.000</td><td>170.000</td><td>160.000</td><td>230.000</td><td>•</td><td>140.000</td><td>130.000</td><td>140.000</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.740 <t< td=""><td>.250 <t< td=""><td>BOL</td><td>.580 <t< td=""><td>T> 099.</td><td>.420 <t< td=""><td>.520 <t< td=""><td>T> 095.</td><td>T> 099.</td><td>٠</td><td>T> 089.</td><td>T> 097.</td><td>.390 <t< td=""><td>GUIDELINE = 1000 (A2)</td><td>170,000</td><td>180.000</td><td>140,000</td><td>000.96</td><td>170.000</td><td>170.000</td><td>170.000</td><td>160.000</td><td>170.000</td><td>160.000</td><td>230.000</td><td>•</td><td>140.000</td><td>130.000</td><td>140.000</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.250 <t< td=""><td>BOL</td><td>.580 <t< td=""><td>T> 099.</td><td>.420 <t< td=""><td>.520 <t< td=""><td>T> 095.</td><td>T> 099.</td><td>٠</td><td>T> 089.</td><td>T> 097.</td><td>.390 <t< td=""><td>GUIDELINE = 1000 (A2)</td><td>170,000</td><td>180.000</td><td>140,000</td><td>000.96</td><td>170.000</td><td>170.000</td><td>170.000</td><td>160.000</td><td>170.000</td><td>160.000</td><td>230.000</td><td>•</td><td>140.000</td><td>130.000</td><td>140.000</td></t<></td></t<></td></t<></td></t<></td></t<>	BOL	.580 <t< td=""><td>T> 099.</td><td>.420 <t< td=""><td>.520 <t< td=""><td>T> 095.</td><td>T> 099.</td><td>٠</td><td>T> 089.</td><td>T> 097.</td><td>.390 <t< td=""><td>GUIDELINE = 1000 (A2)</td><td>170,000</td><td>180.000</td><td>140,000</td><td>000.96</td><td>170.000</td><td>170.000</td><td>170.000</td><td>160.000</td><td>170.000</td><td>160.000</td><td>230.000</td><td>•</td><td>140.000</td><td>130.000</td><td>140.000</td></t<></td></t<></td></t<></td></t<>	T> 099.	.420 <t< td=""><td>.520 <t< td=""><td>T> 095.</td><td>T> 099.</td><td>٠</td><td>T> 089.</td><td>T> 097.</td><td>.390 <t< td=""><td>GUIDELINE = 1000 (A2)</td><td>170,000</td><td>180.000</td><td>140,000</td><td>000.96</td><td>170.000</td><td>170.000</td><td>170.000</td><td>160.000</td><td>170.000</td><td>160.000</td><td>230.000</td><td>•</td><td>140.000</td><td>130.000</td><td>140.000</td></t<></td></t<></td></t<>	.520 <t< td=""><td>T> 095.</td><td>T> 099.</td><td>٠</td><td>T> 089.</td><td>T> 097.</td><td>.390 <t< td=""><td>GUIDELINE = 1000 (A2)</td><td>170,000</td><td>180.000</td><td>140,000</td><td>000.96</td><td>170.000</td><td>170.000</td><td>170.000</td><td>160.000</td><td>170.000</td><td>160.000</td><td>230.000</td><td>•</td><td>140.000</td><td>130.000</td><td>140.000</td></t<></td></t<>	T> 095.	T> 099.	٠	T> 089.	T> 097.	.390 <t< td=""><td>GUIDELINE = 1000 (A2)</td><td>170,000</td><td>180.000</td><td>140,000</td><td>000.96</td><td>170.000</td><td>170.000</td><td>170.000</td><td>160.000</td><td>170.000</td><td>160.000</td><td>230.000</td><td>•</td><td>140.000</td><td>130.000</td><td>140.000</td></t<>	GUIDELINE = 1000 (A2)	170,000	180.000	140,000	000.96	170.000	170.000	170.000	160.000	170.000	160.000	230.000	•	140.000	130.000	140.000
RESERVOIR ST ANDREW TOWER	GUIDE	BOL	BOL	BOL	801	BOL	.300 <t< td=""><td>B0L</td><td>. 180 <t< td=""><td>.250 <1</td><td>.500 <t< td=""><td>.570 <</td><td>T> 009.</td><td>.260 <1</td><td>.500 <1</td><td>1.200</td><td>GU106</td><td>100.000</td><td>92.000</td><td>87.000</td><td>84.000</td><td>92.000</td><td>88.000</td><td>81.000</td><td>88.000</td><td>92.000</td><td>85.000</td><td>110.000</td><td>85.000</td><td>97.000</td><td>71.000</td><td>76.000</td></t<></td></t<></td></t<>	B0L	. 180 <t< td=""><td>.250 <1</td><td>.500 <t< td=""><td>.570 <</td><td>T> 009.</td><td>.260 <1</td><td>.500 <1</td><td>1.200</td><td>GU106</td><td>100.000</td><td>92.000</td><td>87.000</td><td>84.000</td><td>92.000</td><td>88.000</td><td>81.000</td><td>88.000</td><td>92.000</td><td>85.000</td><td>110.000</td><td>85.000</td><td>97.000</td><td>71.000</td><td>76.000</td></t<></td></t<>	.250 <1	.500 <t< td=""><td>.570 <</td><td>T> 009.</td><td>.260 <1</td><td>.500 <1</td><td>1.200</td><td>GU106</td><td>100.000</td><td>92.000</td><td>87.000</td><td>84.000</td><td>92.000</td><td>88.000</td><td>81.000</td><td>88.000</td><td>92.000</td><td>85.000</td><td>110.000</td><td>85.000</td><td>97.000</td><td>71.000</td><td>76.000</td></t<>	.570 <	T> 009.	.260 <1	.500 <1	1.200	GU106	100.000	92.000	87.000	84.000	92.000	88.000	81.000	88.000	92.000	85.000	110.000	85.000	97.000	71.000	76.000
WELL P15 · RE	DET'N LIMIT = 0.10		•	•		•	•	•	•	•		•	•	.870 . <t< td=""><td>•</td><td>2.000</td><td>DET'N LIMIT = 0.05</td><td></td><td>٠</td><td>•</td><td>•</td><td>•</td><td>٠</td><td>•</td><td>•</td><td></td><td>٠</td><td>٠</td><td>٠</td><td>200.000</td><td>•</td><td>340.000</td></t<>	•	2.000	DET'N LIMIT = 0.05		٠	•	•	•	٠	•	•		٠	٠	٠	200.000	•	340.000
WELL P11 RAW	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.470 <1	.210 <t< td=""><td></td><td>.370 <1</td><td>108</td><td>.540 <t< td=""><td></td><td>.300 <t< td=""><td></td><td>.390 <t< td=""><td></td><td></td><td></td><td>T> 067.</td><td>•</td><td></td><td>110.000</td><td>100.000</td><td>95.000</td><td>140.000</td><td>98.000</td><td>000*26</td><td>000.66</td><td>93.000</td><td>97.000</td><td>96.000</td><td>٠</td><td>•</td><td>٠</td><td>110.000</td><td></td></t<></td></t<></td></t<></td></t<>		.370 <1	108	.540 <t< td=""><td></td><td>.300 <t< td=""><td></td><td>.390 <t< td=""><td></td><td></td><td></td><td>T> 067.</td><td>•</td><td></td><td>110.000</td><td>100.000</td><td>95.000</td><td>140.000</td><td>98.000</td><td>000*26</td><td>000.66</td><td>93.000</td><td>97.000</td><td>96.000</td><td>٠</td><td>•</td><td>٠</td><td>110.000</td><td></td></t<></td></t<></td></t<>		.300 <t< td=""><td></td><td>.390 <t< td=""><td></td><td></td><td></td><td>T> 067.</td><td>•</td><td></td><td>110.000</td><td>100.000</td><td>95.000</td><td>140.000</td><td>98.000</td><td>000*26</td><td>000.66</td><td>93.000</td><td>97.000</td><td>96.000</td><td>٠</td><td>•</td><td>٠</td><td>110.000</td><td></td></t<></td></t<>		.390 <t< td=""><td></td><td></td><td></td><td>T> 067.</td><td>•</td><td></td><td>110.000</td><td>100.000</td><td>95.000</td><td>140.000</td><td>98.000</td><td>000*26</td><td>000.66</td><td>93.000</td><td>97.000</td><td>96.000</td><td>٠</td><td>•</td><td>٠</td><td>110.000</td><td></td></t<>				T> 067.	•		110.000	100.000	95.000	140.000	98.000	000*26	000.66	93.000	97.000	96.000	٠	•	٠	110.000	
WELL G3 RAW	METALS .	BDL	BOL	BOL	BDL	B0L	T> 004.	8DF	.230 <1	.270 <1	.260 <7	T> 069.	T> 055.	BDL	.930 <ī	.930 <t< td=""><td>^</td><td>110.000</td><td>94.000</td><td>87.000</td><td>85.000</td><td>95.000</td><td>000.06</td><td>83.000</td><td>89.000</td><td>97.000</td><td>90.00</td><td>110.000</td><td>89.000</td><td>000.96</td><td>75.000</td><td>77.000</td></t<>	^	110.000	94.000	87.000	85.000	95.000	000.06	83.000	89.000	97.000	90.00	110.000	89.000	000.96	75.000	77.000
	ARSENIC (UG/L					1991 MAY	1991 JUN					1991 NOV			1992 JUL	1992 oct	BARIUM (UG/L	1991 JAN						1991 JUL					1992 JAN		1992 JUL	

1ABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

0 6 0	A1)		<1		٠	*1	•		7 5								(70)	<1														
RAHMANS	GUIDELINE = 5000 (A1)			20.000 <	10.000 <	10.000 <	25.000						. 00 / 0	2 000.00	35.000	13.000 <	GUIDELINE = 6800 (04)		BOL	BDL	BOL	BOL	108	BOL	BOL	BOL	108	BOL	•	BOL	108	108
ST ANDREW TOWER	GUID	120.000	43.000	58.000	41.000	53.000	000.07	7 000	000.63	25.000	000.25	26.000	20.000	69.000	000.07	000.72	3105 2010	. 130 <t< td=""><td>108</td><td>BOL</td><td></td><td>170 <1</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>801</td><td>BOL</td><td>BDL</td><td>BOL</td><td>BDL</td></t<>	108	BOL		170 <1	BOL	BOL	BOL	BOL	BOL	801	BOL	BDL	BOL	BDL
RAW SI	DET'N LIMIT = 2.00	P	٠	٠	0	٠	٠	٠	•	•	•		• 6	8.000 <1	6	1> 007.6	DET'N LIMIT = 0.05		٠	٠		٠	٠			٠	٠	٠	٠	BDL	6	B0L
RAU PIE	E D D D D D D D D D D D D D D D D D D D	75.000	11.000 <t< td=""><td>23.000</td><td>9.700 <1</td><td>0.800 <1</td><td>27.000</td><td>16.000 <1</td><td>15.000 <1</td><td>15.000.51</td><td>34.000</td><td></td><td>٠</td><td>٠</td><td>27.000</td><td></td><td>8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td>.220 <1</td><td>BDL</td><td>BOL</td><td>108</td><td>BOL</td><td>BDL</td><td>108</td><td>108</td><td>BDL</td><td>801</td><td>٠</td><td></td><td></td><td>108</td><td>٠</td></t<>	23.000	9.700 <1	0.800 <1	27.000	16.000 <1	15.000 <1	15.000.51	34.000		٠	٠	27.000		8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	.220 <1	BDL	BOL	108	BOL	BDL	108	108	BDL	801	٠			108	٠
RAU CO	METALS	110.000	77.000	000.09	75.000	53.000	55.000	76.000	000.09	23.000	000.7/	000.67	63.000	20.000	72.000	7.000		T> 001.	801	BOL	108	108	108	708	1> 090.	908	BOL	108	1> 090.	108	109	.080 <1
	BOROW (UG/L	1991 JAN	1991 FEB		1991 APR	1991 MAY								1992 APR		1992 OCT	BERYLLIUM (UG/L	1991 JAN			1991 APR	1991 MAY		1991 JUL	1991 AUG		1991 OCT	1991 NOV	1992 JAN	1992 APR		1992 OCT

																			•				٠							
RESERVOIR RAHMANS	NE = 5.0 (A1)	BOL	Bol	BDL	T> 090.	BOL	80L	80L	BOL	200		.080 <t< th=""><th>BDL</th><th>BDL</th><th>NE = N/A</th><th>.130 <t< th=""><th>.560 <t< th=""><th>BOL</th><th>.380 <t< th=""><th>BDL</th><th>T> 070</th><th>1.800</th><th></th><th>140 <t< th=""><th>.120 <t< th=""><th>.200 <1</th><th></th><th>.550 <t< th=""><th>.470 <t< th=""><th>7.000</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	BDL	BDL	NE = N/A	.130 <t< th=""><th>.560 <t< th=""><th>BOL</th><th>.380 <t< th=""><th>BDL</th><th>T> 070</th><th>1.800</th><th></th><th>140 <t< th=""><th>.120 <t< th=""><th>.200 <1</th><th></th><th>.550 <t< th=""><th>.470 <t< th=""><th>7.000</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.560 <t< th=""><th>BOL</th><th>.380 <t< th=""><th>BDL</th><th>T> 070</th><th>1.800</th><th></th><th>140 <t< th=""><th>.120 <t< th=""><th>.200 <1</th><th></th><th>.550 <t< th=""><th>.470 <t< th=""><th>7.000</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	BOL	.380 <t< th=""><th>BDL</th><th>T> 070</th><th>1.800</th><th></th><th>140 <t< th=""><th>.120 <t< th=""><th>.200 <1</th><th></th><th>.550 <t< th=""><th>.470 <t< th=""><th>7.000</th></t<></th></t<></th></t<></th></t<></th></t<>	B DL	T> 070	1.800		140 <t< th=""><th>.120 <t< th=""><th>.200 <1</th><th></th><th>.550 <t< th=""><th>.470 <t< th=""><th>7.000</th></t<></th></t<></th></t<></th></t<>	.120 <t< th=""><th>.200 <1</th><th></th><th>.550 <t< th=""><th>.470 <t< th=""><th>7.000</th></t<></th></t<></th></t<>	.200 <1		.550 <t< th=""><th>.470 <t< th=""><th>7.000</th></t<></th></t<>	.470 <t< th=""><th>7.000</th></t<>	7.000
RESERVOIR ST ANDREW TOWER RAI	GUIDELINE =	.130 <t< td=""><td>. orr.</td><td>.120 <t< td=""><td></td><td>T> 090.</td><td></td><td>.100 <1</td><td>100 /T</td><td></td><td>. 15 1.</td><td>180 <t< td=""><td></td><td>BDL</td><td>= eniperine</td><td>1.100</td><td>1.500</td><td>.520 <t< td=""><td>.530 <t< td=""><td>BDL</td><td>· 1> 067°</td><td>2.600</td><td>1.200</td><td>1.200</td><td>.570 <t< td=""><td>.590 <t< td=""><td></td><td>1.200</td><td>1.200</td><td>J.40U</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. orr.	.120 <t< td=""><td></td><td>T> 090.</td><td></td><td>.100 <1</td><td>100 /T</td><td></td><td>. 15 1.</td><td>180 <t< td=""><td></td><td>BDL</td><td>= eniperine</td><td>1.100</td><td>1.500</td><td>.520 <t< td=""><td>.530 <t< td=""><td>BDL</td><td>· 1> 067°</td><td>2.600</td><td>1.200</td><td>1.200</td><td>.570 <t< td=""><td>.590 <t< td=""><td></td><td>1.200</td><td>1.200</td><td>J.40U</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		T> 090.		.100 <1	100 /T		. 15 1.	180 <t< td=""><td></td><td>BDL</td><td>= eniperine</td><td>1.100</td><td>1.500</td><td>.520 <t< td=""><td>.530 <t< td=""><td>BDL</td><td>· 1> 067°</td><td>2.600</td><td>1.200</td><td>1.200</td><td>.570 <t< td=""><td>.590 <t< td=""><td></td><td>1.200</td><td>1.200</td><td>J.40U</td></t<></td></t<></td></t<></td></t<></td></t<>		BDL	= eniperine	1.100	1.500	.520 <t< td=""><td>.530 <t< td=""><td>BDL</td><td>· 1> 067°</td><td>2.600</td><td>1.200</td><td>1.200</td><td>.570 <t< td=""><td>.590 <t< td=""><td></td><td>1.200</td><td>1.200</td><td>J.40U</td></t<></td></t<></td></t<></td></t<>	.530 <t< td=""><td>BDL</td><td>· 1> 067°</td><td>2.600</td><td>1.200</td><td>1.200</td><td>.570 <t< td=""><td>.590 <t< td=""><td></td><td>1.200</td><td>1.200</td><td>J.40U</td></t<></td></t<></td></t<>	BDL	· 1> 067°	2.600	1.200	1.200	.570 <t< td=""><td>.590 <t< td=""><td></td><td>1.200</td><td>1.200</td><td>J.40U</td></t<></td></t<>	.590 <t< td=""><td></td><td>1.200</td><td>1.200</td><td>J.40U</td></t<>		1.200	1.200	J.40U
WELL P15 RESI	DET'N LIMIT = 0.05						•		•	•		180		BDL	DET'N LIMIT = 0.02			•	•	٠			•	•	•	•	• !	.170 <t< td=""><td>• 60</td><td>2.000</td></t<>	• 60	2.000
WELL P11 RAW	0	BDL	108 801	BDL	180 <1	BDL	BDL	80F	. 108	BDL		•	BDL			1> 087.	.920 <t< td=""><td>. 290 <t< td=""><td>.110 <t< td=""><td>BDL</td><td>.420 <t< td=""><td>2,000</td><td></td><td></td><td>T> 040.</td><td></td><td></td><td>• !</td><td>.340 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<>	. 290 <t< td=""><td>.110 <t< td=""><td>BDL</td><td>.420 <t< td=""><td>2,000</td><td></td><td></td><td>T> 040.</td><td></td><td></td><td>• !</td><td>.340 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	.110 <t< td=""><td>BDL</td><td>.420 <t< td=""><td>2,000</td><td></td><td></td><td>T> 040.</td><td></td><td></td><td>• !</td><td>.340 <t< td=""><td></td></t<></td></t<></td></t<>	BDL	.420 <t< td=""><td>2,000</td><td></td><td></td><td>T> 040.</td><td></td><td></td><td>• !</td><td>.340 <t< td=""><td></td></t<></td></t<>	2,000			T> 040.			• !	.340 <t< td=""><td></td></t<>	
WELL G3 RAW	METALS	1> 051.	110 <1	150 <1	BDL			100 <1	.060	120 4		120 <1		BDL		1.200	1.600	.610 <t< td=""><td>T> 099.</td><td></td><td>1> 056.</td><td>3.000</td><td>1.900</td><td>2.000</td><td>1.800</td><td>1.700</td><td>1.200</td><td>1.600</td><td>1.900</td><td>2.100</td></t<>	T> 099.		1> 056.	3.000	1.900	2.000	1.800	1.700	1.200	1.600	1.900	2.100
	CADMIUM (UG/L	1991 JAN	1991 FEB			1991 JUN		1991 AUG		1991 001			1992 JUL		COBALT (UG/L	1991 JAN			1991 APR		1991 JUN					1991 NOV	1992 JAN	1992 APR	1992 JUL	1992 001

	N AN	RAU	RAW	ST ANDREW TOWER RAH	RAHMANS
CHROMIUM (UG/L	METALS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET*N LIMIT = 0.50	GUIDELINE	E = 50.0 (A1)
JAN	9.700	12.000	٠	11.000	11.000
FEB	801	3.000 <t< td=""><td>P</td><td>.580 <t< td=""><td>1.400 <t< td=""></t<></td></t<></td></t<>	P	.580 <t< td=""><td>1.400 <t< td=""></t<></td></t<>	1.400 <t< td=""></t<>
MAR.	5.900	7.100	٠	2.600	5.800
APR	BOL	1.700 <t< td=""><td>٠</td><td>BDL</td><td>2.600 <t< td=""></t<></td></t<>	٠	BDL	2.600 <t< td=""></t<>
MAY	2.900 <t< td=""><td>3.700 <1</td><td></td><td>1.700 <t< td=""><td>3.400 <t< td=""></t<></td></t<></td></t<>	3.700 <1		1.700 <t< td=""><td>3.400 <t< td=""></t<></td></t<>	3.400 <t< td=""></t<>
JUN	7.600	11.000	٠	T> 099.	9.000
201	6.100	7.300	٠	4.900 <t< td=""><td>4.700 <t< td=""></t<></td></t<>	4.700 <t< td=""></t<>
AUG	2.700 <t< td=""><td>4.500 <t< td=""><td>٠</td><td>3,300 <t< td=""><td>2.600 <t< td=""></t<></td></t<></td></t<></td></t<>	4.500 <t< td=""><td>٠</td><td>3,300 <t< td=""><td>2.600 <t< td=""></t<></td></t<></td></t<>	٠	3,300 <t< td=""><td>2.600 <t< td=""></t<></td></t<>	2.600 <t< td=""></t<>
SEP	1.300 <t< td=""><td>3.200 <t< td=""><td>٠</td><td>. 720 <1</td><td>1.600 <7</td></t<></td></t<>	3.200 <t< td=""><td>٠</td><td>. 720 <1</td><td>1.600 <7</td></t<>	٠	. 720 <1	1.600 <7
OCT	8.000	10.000	٠	1.500 <t< td=""><td>2.600 <t< td=""></t<></td></t<>	2.600 <t< td=""></t<>
NOV	.550 <t< td=""><td>٠</td><td>٠</td><td>1.200 <1</td><td>.610 <t< td=""></t<></td></t<>	٠	٠	1.200 <1	.610 <t< td=""></t<>
JAN	7.200	۰	٠	1.400 <t< td=""><td>٠</td></t<>	٠
APR	BOL	٠	BDL	BOL	BOL
JUL	108	4.100 <t< td=""><td>٠</td><td>801</td><td>5.700</td></t<>	٠	801	5.700
00.1	5.300	٠	.870 <t< td=""><td>5.300</td><td>2.000 <t< td=""></t<></td></t<>	5.300	2.000 <t< td=""></t<>
COPPER (UG/L		a b b c c c c c c c c c c c c c c c c c	DET'N LIMIT = 0.50	GUIDELINE	IE = 1000 (A3)
NAC	2.800 <t< td=""><td>1> 078</td><td></td><td>3,000 <7</td><td>1.800 <1</td></t<>	1> 078		3,000 <7	1.800 <1
FEB	2,200 <t< td=""><td>.820 <t< td=""><td>•</td><td>2.400 <1</td><td></td></t<></td></t<>	.820 <t< td=""><td>•</td><td>2.400 <1</td><td></td></t<>	•	2.400 <1	
KAR.	1.900 <t< td=""><td>. 710 <t< td=""><td>. 0</td><td>2.200 <t< td=""><td>1.200 < T</td></t<></td></t<></td></t<>	. 710 <t< td=""><td>. 0</td><td>2.200 <t< td=""><td>1.200 < T</td></t<></td></t<>	. 0	2.200 <t< td=""><td>1.200 < T</td></t<>	1.200 < T
APR	1.900 <1	1.800 <t< td=""><td>٠</td><td>2.400 <7</td><td>.850 <t< td=""></t<></td></t<>	٠	2.400 <7	.850 <t< td=""></t<>
M.A.Y	3.100 <1	. 960 <t< td=""><td>٠</td><td>4.800 <t< td=""><td>.730 <1</td></t<></td></t<>	٠	4.800 <t< td=""><td>.730 <1</td></t<>	.730 <1
JUK	1.700 <7	.740 <t< td=""><td>٠</td><td>2.500 <t< td=""><td>.590 <t< td=""></t<></td></t<></td></t<>	٠	2.500 <t< td=""><td>.590 <t< td=""></t<></td></t<>	.590 <t< td=""></t<>
JUL	3.100 <t< td=""><td>T> 079.</td><td>٠</td><td>3.300 <7</td><td>1.100 <7</td></t<>	T> 079.	٠	3.300 <7	1.100 <7
AUG	3.800 <t< td=""><td>T> 088.</td><td>٠</td><td>3.400 <7</td><td>BDL</td></t<>	T> 088.	٠	3.400 <7	BDL
SEP	1.800 <t< td=""><td>. 730 <t< td=""><td>٥</td><td>2.000 <t< td=""><td>BDL</td></t<></td></t<></td></t<>	. 730 <t< td=""><td>٥</td><td>2.000 <t< td=""><td>BDL</td></t<></td></t<>	٥	2.000 <t< td=""><td>BDL</td></t<>	BDL
120	2,100 <1	.780 <1	٠	2.200 <t< td=""><td>.820 <1</td></t<>	.820 <1
MOV	2,300 <1		٠	2.500 <t< td=""><td>BDL</td></t<>	BDL
JAN	1.700 <1	٠	٠	1.600 <1	•
APR	1.900 <1	۰	108	2.200 <t< td=""><td>.890 <t< td=""></t<></td></t<>	.890 <t< td=""></t<>
JUL	1.900 <t< td=""><td>3.100 <t< td=""><td>٠</td><td>1,900 <t< td=""><td>T> 088.</td></t<></td></t<></td></t<>	3.100 <t< td=""><td>٠</td><td>1,900 <t< td=""><td>T> 088.</td></t<></td></t<>	٠	1,900 <t< td=""><td>T> 088.</td></t<>	T> 088.
DC I	10 000		1 300 <7	1 500 17	700

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

	X X X	a, 4.	RAU	ST ANDREW TOWER	RAHMANS
MANGANESE (UG/L	METALS	0 0 0 0 0 0 0 4 4 4 4 5 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	DET'N LIMIT = 0.05	OINO	GUIDELINE = 50.0 (A3)
1991 JAK	30.000	86.000	٠	29.000	24.000
	25.000	83.000		25.000	34,000
1991 MAR	21.000	70.000	٠	21.000	30.000
1991 APR	21.000	31.000	٠	21.000	78.000
1991 MAY	25.000	78.000	٠	25.000	31.000
1991 JUN	26.000	76.000	۰	19.000	31.000
1991 JUL	28.000	87.000	٠	23.000	31,000
1991 AUG	33.000	85.000	٠	25.000	35.000
1991 SEP	36.000	83.000	٠	23.000	42.000
1991 OCT	36.000	96.000	٠	14,000	41.000
1991 NOV	32.000	٠	٠	10,000	53.000
1992 JAN	21.000		٠	11.000	٠
1992 APR	25.000		7.500	20,000	78.000
1992 JUL	29.000	24.000	٠	18.000	76.000
1992 OCT	22.000	٠	16.000	11,000	43.000
MOL YBDE NUM (UG/L		6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET*N LIMIT = 0.05	GUID	GUIDELINE = N/A
1991 JAN	3.200	.590	٠	3,300	1.100
1991 FEB	3.000	.510	٠	2.900	1,100
	2.900	.530	٠	2.700	079.
1991 APR	2.800	.890	٠	2.700	.570
991 MAY	1.800	.430 <7		2.300	.820
991 JUN	3.000	.580	,	3.000	096.
991 JUL	2.900	. 530	٠	2.800	.880
	3.600	.570	٠	3.700	.910
1991 SEP	4.100	T> 027.		3.800	.890
1991 OCT	3.500	T> 065.	٠	3.500	.980
1991 NOV	4.200	٠	٠	4.300	1.200
	3.400	٠	*	3.400	
1992 APR	3.600	٠	.730	3.700	1.000
	3.000	079.	٠	2.900	.820
1992 DCT	2 600		DUI	2 500	6/0

RESERVOIR ST ANDREW TOWER RAHMANS

WELL P15 RAW

WELL P11 RAW

INE = 350 (03)	3.400 BDL .630 <t BDL .630 <t BDL 2.700 1.300 <t BDL 2.700 1.100 <t 8.500</t </t </t </t 	INE = 10 (A1) BDL .100 <t .060="" .070="" .07<="" .190="" <t="" bdl="" td=""></t>
GUIDELINE	5.100 9.200 7.400 6.200 9.200 6.200 10.000 8.000 8.000	GUIDELINE .410 <7 .390 <7 .240 <7 .270 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .260 <7 .26
DET'N LIMIT = 0.20	1.900 <1	06T'N LIMIT = 0.05
	3.400 3.400 80L 80L 80L 3.700 1.300 <t .390 <t< td=""><td>801 801 .300 <7 .270 <7 .060 <7 .060 <7 .070 <7</td></t<></t 	801 801 .300 <7 .270 <7 .060 <7 .060 <7 .070 <7
METĄLS)	5.800 8.900 4.300 4.500 6.500 5.400 5.000 <t 6.000 10.000 6.800 8.100</t 	560 .520 .400 <1 .430 <1 .430 <1 .380 <1 .390 <1 .500 <1 .540 <1 .520 .520 .570 .570
NICKEL (UG/L	1991 JAN 1991 FEB 1991 MAR 1991 MAY 1991 JUN 1991 AUG 1991 SEP 1991 OOV 1992 JAN 1992 JAN 1992 OCT	LEAD (UG/L 1991 JAN 1991 FEB 1991 MAR 1991 MAY 1991 JUL 1991 JUL 1991 OCT 1991 OCT 1992 JAN 1992 JAN 1992 JAN 1992 OCT

RESERVOIR ST ANDREW TOWER RAHMANS

WELL P15

WELL P11 RAW

ANTIMONY (UG/L			DET*N LIMIT = 0.05	GUIDELIN	GUIDELINE = 146 (04)
	099.	.310 <t< th=""><th>٠</th><th>.650</th><th>.370 <t< th=""></t<></th></t<>	٠	.650	.370 <t< th=""></t<>
91 FEB	.740	T> 022.	•	.770	1> 027.
1991 MAR	.920	.470 <t< td=""><td>٠</td><td>.950</td><td>079.</td></t<>	٠	.950	079.
	.870	.550	•	.830	.380 <t< td=""></t<>
91 MAY	096.	.570	٠	.720	079.
PJ JUN	.800	1> 072.	٠	.810	T> 077.
	.920	.620	٠	1.100	.760
	006	.430 <t< td=""><td>٠</td><td>.880</td><td>1> 067.</td></t<>	٠	.880	1> 067.
91 SEP	.930	L> 097.	٠	.880	T> 097.
	076	1> 074.	٠	.880	.530
	.750	٠	,	.800	009.
	.950	٠	٠	.840	
1992 APR	.650	۰	.380 <1	.800	1> 072.
	.800	.510	٠	.770	1> 007
1992 OCT	. 750	٠	.320 <t< td=""><td>.780</td><td>.550</td></t<>	.780	.550
SELENIUM (UG/L	^		DET*N LIMIT = 1.00	GUIDELINE	E = 10 (A1)
NAL TOO	1.100 <1	BOL	٠	1.400 <t< td=""><td>BOL</td></t<>	BOL
1991 FEB	BDL	BDL	•	801	BOL
	BOL	BDL		BDL	BOL
	1.500 <1	BOL	•	1.200 <t< td=""><td>BOL</td></t<>	BOL
1991 MAY	BOL	BDL	•	801	BOL
NUL 1991	BOL	BDL	۵	1,100 <t< td=""><td>BOL</td></t<>	BOL
1991 JUL	1.300 <1	BOL	٠	BDL	BOL
	BOL	BDL	z	BDL	BDL
	BOL	BDL	٠	1,500 <t< td=""><td>1.200 <1</td></t<>	1.200 <1
1991 001	BOL	BOL	٠	2.000 <t< td=""><td>BOL</td></t<>	BOL
	1,100 <t< td=""><td>۰</td><td>٠</td><td>1.900 <t< td=""><td>BOL</td></t<></td></t<>	۰	٠	1.900 <t< td=""><td>BOL</td></t<>	BOL
	BOL	٠	•	1.200 <t< td=""><td>٠</td></t<>	٠
	BDL	٠	801	BDL	BOL
1992 JUL	BOL	801	ò	BOL	BOL
	7. 700 <7		T> 000 7	7 200 Z	7 000 0

RESERVOIR RAHMANS

RESERVOIR ST ANDREW TOWER

WELL P15 RAW

WELL P11 RAW

RESERVOIR	LINE = 13 (04)	108 108 108 108 108 108 108 108 108 108	1.400 .780 1.200 1.600 1.600 .720 .920 .840 .860 .860 .860 .860 .860 .980 .550
RESERVOIR SI ANDREW TOWER	GUIDELINE	130 < 1	GUIDELINE 1.000 .770 .830 .840 .460 <1 .850 .850 .890 .920 1.200 .970 .970
WELL P15	DET'N LIMIT = 0,05	708 	DET'N LIMIT = 0.05
WELL P11	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108 108 108 108 108 108 108 108 108 108	1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500
WELL G3	METALS	1100 <1 1100 <	1.000 1.000 7.70 7.70 8.80 8.80 9.80 9.80 9.80 9.90 9.70 9.70 9.70 9.70
<i>a a</i>	THALLIUM (UG/L	1991 JAN 1991 FEB 1991 AAR 1991 AUG 1991 AUG 1991 SEP 1992 JAN 1992 JAN 1992 JAN 1992 JAN 1992 OCT	URANIUM (UG/L 1991 JAN 1991 APR 1991 APR 1991 JUL 1991 SEP 1991 SCT 1991 OCT 1991 NOV 1992 JAN 1992 APR 1992 OCT

RESERVOIR
ST ANDREW TOWER RAHMANS

WELL P15

WELL P11

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	(70								9		= 38000 (07)				1)		(50)		0 0 0 0		(70) 00072 =			
	(70) 057 =	BDL	= N/A	BDL	= N/A	BDL	= N/A	BOL	= 10000 (1)	108	38000	BDL	= N/A	BDL	= 10 (C1)	BOL	= 1900 (04)	BDL	N/A	BDL	74000	BDL	H/A	BDL
0															ii ii				B H		H H			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		CUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE = N/A		GUIDELINE		GUIDELINE	0 0 3 0 0 2
0		108		108		BDL	0 0 3 2 0 0 0	BDL		900		BDL		BDL		BDL		801	0 0 0 2 0 0 0 0	8DL		80r		108
	1.000		DET'N LIMIT = 5.000		DET'N LIMIT = 1.000		DET'N LIMIT = 1.000		DET'N LIMIT = 5.000		DET'N LIMIT = 1.000		DET'N LIMIT = 5.000		DET'N LIMIT = 1.000		DET'N LIMIT = 1.000		DET'N LIMIT = 1.000		DET'N LIMIT = 1.000		DET'N LIMIT = 5.000	8 6 8 9
	DET'N LIMIT =	108	LIMIT	BDL	LIMIT	BDL	LIMIT	BDL	CIMIT	BDL	LIMIT	BDL	LIMIT	BDL	LIMIT	BDL	LIMIT	BDL	LIMIT	BDL	LIKIT	108	LIMIT	BDL
	DET		DET		DETIN		DET		DET 'N		DET "N		DET'N		DET'N		DET'N		DET 'N		DET 'N		DET 'N	
1		108	0 0 0 0 0 0 0	BDL	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	109	8 8 8 9 9 5 6 9 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	BDL	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	0 0 0 0 0 0 0 0 0	BDL		BDL		BDL	1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL		BDL		108
	ATICS								^		^				^									0 3 3 3 3
	CHLORDAROMATICS E (NG/L)	BDL	L/G/L	108	1/9x)	BDL	CNG/L	BDL	1/9N)	80r	1/9N)	109	CNG/L	BDL	1/1	108	7	108	1/5	108	1/9/r	108	1/9N)	BDL
	CHLOROBUTADIENE (NG/L	S	123-TRICHLOROBENZENE (NG/L	S	1234 TETCLOROBENZENE (NG/L	S	1235-TETCLOROBENZENE (NG/L	S	124-TRICHLOROBENZEME (NG/L	S	1245 - TETCLOROBENZENE (NG/L	S	135-TRICHLOROBENZENE (NG/L	S	HEXACHLOROBENZENE (NG/L	S	HEXACHLOROETHANE (NG/L	S	OCTACHLOROSTYRENE (NG/L	S	PENTACHLOROBENZENE (NG/L	S	236-TRICHLOROTOLUENE	S
	LCHL OROBU	43 SAMPLES	TRICHLOR	43 SAMPLES	C-TETCLOR	43 SAMPLES	S-TETCLOR	43 SAMPLES	TRICHLOR	43 SAMPLES	S-TETCLOR	43 SAMPLES	TRICHLOR	43 SAMPLES	ACHLOROBE	43 SAMPLES	ACHLORDE1	43 SAMPLES	ACHLOROS	43 SAMPLES	TACHLORO	43 SAMPLES	- TRICHLO	43 SAMPLES
	HEX	7	123	4	1234		123	4	124	4	1245	4	135	4	MEXO		MEX		00.1		DEN		236	5 5 5

RESERVOIR ST ANDREW TOWER RAHMANS	GUIDELINE = N/A	BDL BDL	GUIDELINE = N/A	BDL 8DL	
WELL P15 RESERVOIR RAW ST ANDREW	DET'N LIMIT = 5.000	BDL	. DET'N LIMIT = 5.000	801	
WELL P11 RAW	71CS	BOL	^	BDL	
WELL G3 RAW	CHLOROAROMATICS 245-TRICHLOROTOLUENE (NG/L) DET'N LIMIT = 5.000 GUIDE	43 SAMPLES BDL BDL BDL BDL	26A-TRICHLOROTOLUENE (NG/L	43 SAMPLES BOL BDL BOL BDL BDL	

RESERVOIR
ST ANDREW TOWER RAHMANS

WELL P15

WELL P11

GUIDELINE = N/A	801	GUIDELINE = N/A	8DL	GUIDELINE = N/A	80L	GUIDELINE = 2600000 (04)	8DL	GUIDELINE = 5000 (A1)	801	GUIDELINE = 60000 (A1)	80r	
3	B01	3	BOL	3	108	ਲ	BOL	3	108	3	B01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DET'N LIMIT = 100.0	٠	DET'N LIMIT = 20.0		0ET'N LIMIT = 10.0	٠	DET'N LIMIT = 100.0		DET'N LIMIT = 20.0	٠	DET'N LIMIT = 10,00		* 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
0 0 0 0 0 0	BDL	0 0 0 0 0 0	BDL	0 6 0 0 0	BDL		BDL	0 0 0 0 0 0	B0L		B0L	0 0 0 0 0
NOLS						^				^		0 0 0 0 0 0 0 0 0
CHLOROPHENOLS	BDL	T (NC/L	BDL	L (NG/L	108	CNG/L	B01	T/9N)	8DL	NG/L	BOL	0 0 0 0
CHLOROPHENOL (NG/L	4 SAMPLES	2345-TETCHLOROPHENOL (NG/L	4 SAMPLES	2356-TETCHLOROPHENOL (MG/L	4 SAMPLES	245-TRICHLOROPHENOL (MG/L	4 SAMPLES	246-1RICHLOROPHENOL (NG/L	4 SAMPLES	PENTACHLOROPHENOL (NG/L	4 SAMPLES	

											•																		
RESERVOIR RAHMANS	GUIDELINE = 700 (A1)	BDL	LINE = 700 (G)	BDL	LINE = 300 (G)	BOL	B0L	80L	2 2	80F	iAW	i Au	. Au	108	100	BOL	BDL	BDL	LINE = 4000 (A1)	. BOL	LINE = 7000 (A1)	108	LINE = 7000 (A1)	801	LINE = 700 (A1)	BDL	LINE = 900000 (A1)	BDL	
RESERVOIR ST ANDREW TOWER	GUIDE	BDL	GUIDEL INE	BDL	GUIDELINE	108	BOL	WS.	80L 3.000 <t< td=""><td></td><td>i AW</td><td>i AM</td><td>AM:</td><td>BOL</td><td>801</td><td>BOL</td><td></td><td>BOL</td><td>GUIDELINE</td><td>BOL</td><td>GUIDELINE</td><td>B0L</td><td>GUIDELINE</td><td>BOL</td><td>GUIDELINE</td><td>BDL</td><td>GUIDELINE</td><td>BOL</td><td></td></t<>		i AW	i AM	AM:	BOL	801	BOL		BOL	GUIDELINE	BOL	GUIDELINE	B0L	GUIDELINE	BOL	GUIDELINE	BDL	GUIDELINE	BOL	
WELL P15 RESERV RAW ST AND	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 1.000	, BOL	DET'N LIMIT = 1.00		٠	•		, ,	•	٠	•	•		BDL	•	BOL	DET'N LIMIT = 1.000	B0L	DET'N LIMIT = 2.000	108	DET'N LIMIT = 2.00	BOL	DET'N LIMIT = 2.00	BOL	DET'N LIMIT = 5.0	BOL	
WELL P11 RAW .) PCB	30L		BDL		BDL	BDL	801	BOL	108 80F	i AV	IAW	i Au	RDL	•		BDL	٠	7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	BOL		BOL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BOL	0 3 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	. BOL		BOL	
WELL G3 RAW	PESTICIDES AND PCB	108	^	801		BDL	BDL	80L	3.000 <t< td=""><td></td><td>BDL</td><td>i AW</td><td>IAW</td><td><u> </u></td><td>80 E</td><td>108 801</td><td></td><td>BOL</td><td>HC) (NG/L)</td><td>BOL</td><td>(NG/L)</td><td>BOL</td><td>(NG/L)</td><td>BOL</td><td></td><td>BDL</td><td>י/ר)</td><td>BOL</td><td></td></t<>		BDL	i AW	IAW	<u> </u>	80 E	108 801		BOL	HC) (NG/L)	BOL	(NG/L)	BOL	(NG/L)	BOL		BDL	י/ר)	BOL	
3 &	ALDRIN (NG/L	43 SAMPLES	ALPHA BHC (NG/L	43 SAMPLES	BETA BHC (NG/L	-			1991 APK					1991 001				1992 OCT	LINDANE (GAMMA BHC) (NG/L	43 SAMPLES	ALPHA CHLORDANE (NG/L	43 SAMPLES	GAMMA CHLORDANE (NG/L	43 SAMPLES	DIELDRIN (NG/L	43 SAMPLES	METHOXYCHLOR (NG/L	43 SAMPLES	

RESERVOIR RAHMANS	(70) 00072 = 3	BOL	(70) 00072 =	BDL	= 1600 (03)	BDL	= N/A	BOL	E = 3000 (A1)	BOL	E = 3000 (A1)	BOL	E = N/A	BDL	E = N/A	BDL	GUIDELINE = 30000 (A1)	BOL	E = 3000 (A2)	BDL	E = 30000 (A1)	308	E = 30000 (A1)	BOL
	GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		1		GUIDELINE		GUIDELINE		GUIDELINE	0 0 0 0 0
RESERVOIR ST ANDREW TOWER		BDL	0 0 1 0 0	BDL		BDL	0 0 0 0 0 0 0 0 0	BOL		BDL		800		BDL		801		BDL		801		108		108
P15	DET'N LIMIT = 2.00	BDL	DET 'N LIMIT = 5.000	801	DET'H LIMIT = 5.000		DET . K LIMIT = 5.00	BDL	DET'N LIMIT = 1.000	BDL	DET 'N LIMIT = 1.000	108	DET 'N LIMIT = 5,000	BDL	DET'N LIMIT = 2.000	BOL	-	BDL	DET 'N LIMIT = 20.00	BDL	DET 'N LIMIT = 5.000	108	DET'N LIMIT = 1.000	108
RAU	DET -		DET -		DET -		DET 1		DET		DET		DET		DET		DET.		DET.		DET		DET	0 0 0 0 0 0
WELL P11	AND PCB	BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL		108	- 0 0 0 5 5 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0	BDL		BOL		108	P 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	108	5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	108		108	5	000000000000000000000000000000000000000
1 63	PESTICIDES AND PCB	BDL		109		BOL	E (NG/L	BDL	1/9N)	BDL		109	0 0 0 0 0 0 0 0	BDL	^	108		BDL	6 6 6 0 0 6 6 0 6 6	BDL		BOL	(108
WELL	ENDOSULFAN 1 (NG/L	LES	ENDOSULFAN II (NG/L	43 SAMPLES	ENDRIN (NG/L)	43 SAMPLES	ENDOSULFAN SULPHATE (NG/L	43 SAMPLES	HEPTACHLOR EPOXIDE (NG/L	30 SAMPLES	HEPTACHLOR (NG/L	43 SAMPLES	MIREX (NG/L)	43 SAMPLES	OXYCHLORDANE (NG/L	43 SAMPLES	0,P-50T (NG/L	43 SAMPLES	PCB (NG/L)	41 SAMPLES	P,P-DDD (NG/L	43 SAMPLES	P, P-DDE (NG/L	43 SAMPLES

RESERVOIR RESERVOIR SI ANDREW TOWER RAHMANS

WELL P15 RAW

WELL P11 RAW

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CAMBRIDGE WELL SUPPLY

SOIR	52500 (03)	BDL	= 700000 (D3)	108	1000 (A2)	BDL	80000 (A1)	BDL	= 10000 (A2)	BDL	2000 (BDL	50000 (A2)	BDL	206000	BDL	BDL	80L	BDL	BDL	A C	2 2	BDL	BDL	. 101	3 2	90	8 8 8 8 8 8 8
RESERVOIR ST ANDREW TOWER RAHMANS	GUIDELINE = 52500 (D3)	BDL	GUIDELINE =	BDL	GUIDELINE =	BDL	GUIDELINE =	BDL	GUIDELINE =	BDL	GUIDELINE =	BDL	GUIDELINE =	BDL	GUIDELINE =	BDL	BDL	E 28	BDL	BDL	AU.	A 2	BDL	8.000 <t< td=""><td>BDL</td><td>3</td><td>.001</td><td>8 8 8 8 8 8 8 8 8 8</td></t<>	BDL	3	.001	8 8 8 8 8 8 8 8 8 8
WELL P15 RESERVOIR RAW ST ANDREW	DET** LIMIT = 50.000	BDL	DET'N LIMIT = 50.000	BDL	DET'N LIMIT = 50.000	BDL	DET*N LIMIT = 100.0	BDL	DET'N LIMIT = 50.00	BDL	DET'N LIMIT = 500.0	108	DET'N LIMIT = 500.0	108	DET'N LIMIT = 5.00			٠				*			. 2	3	.001	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
WELL P11	9 DC 8	BDL	5	108	0 b b c c c c c c c c c c c c c c c c c	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL		108		BDL	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	108	c c c c c c c c c c c c c c c c c c c	BDL	108		801	BDL	IAU	2 4	BDL	٠		. [2]	•	
WELL G3 RAU	PESTICIDES AND PCB	108		108	(1/	108	NCOR) (NG/L)	801	^	109	O) (NG/L)	108	(7/9	BDL	3 8 8 8	BOL	BDL	108	108	BDL	108	2 4 2	109	BOL	300	000	1001	
	PROMETONE (NG/L	35 SAMPLES	PROPAZINE (NG/L	35 SAMPLES	PROMETRYNE (NG/L	35 SAMPLES	METRIBUZIN (SENCOR) (NG/L	35 SAMPLES	SIMAZINE (NG/L	35 SAMPLES	ALACHLOR (LASSO) (NG/L	35 SAMPLES	METOLACHLOR (NG/L	35 SAMPLES	HEXACLCYCLOPENTADIEN (NG/L	1991 JAN		1001 APP				1991 AUG				1992 APK	1992 OCT	0 0 0 0 0 0 0

GUIDELINE = N/A	T> 008.	BDL	BOL	BOL	7> 008.	1.000	BDL	BOL	B0L	1> 007.	1> 007.	•	1.600	T> 009.	T> 008.
GUIDELI	T> 009.	BDL	B0L	BOL	T> 004.	.800 <t< td=""><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>B0L</td><td>BOL</td><td>1.400</td><td>BOL</td><td>BDL</td></t<>	BOL	BOL	BDL	BDL	B0L	BOL	1.400	BOL	BDL
0.2	:														
DET'N LIMIT =	•	٠	. •						•				1.400	•	BDL
	T> 007.	B0L	BOL	BDL	.800 <t< td=""><td>T> 007.</td><td>B0L</td><td>BOL</td><td>BOL</td><td>T> 007.</td><td></td><td></td><td></td><td>BOL</td><td>٠</td></t<>	T> 007.	B0L	BOL	BOL	T> 007.				BOL	٠
PHENOLICS)	T> 009.	BOL	B01	B0L	.800 <t< td=""><td>T> 004.</td><td>B0L</td><td>T> 004.</td><td>BOL</td><td>T> 004.</td><td>T> 004.</td><td>B0L</td><td>.800 <t< td=""><td>BOL</td><td>BOL</td></t<></td></t<>	T> 004.	B0L	T> 004.	BOL	T> 004.	T> 004.	B0L	.800 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
PHENOLICS (UG/L						1991 JUN									

RESERVOIR RESERVOIR ST ANDREW TOWER RAHMANS

WELL P15 RAW

WELL P11 RAW

RESERVOIR ST ANDREU TOWER RAHMANS	GUIDELINE = N/A	80L 8DL	GUIDELINE = N/A	BDL BDL	GUIDELINE = 42000 (04)	BDL BDL	GUIDELINE = N/A	801		BDL BDL	GUIDELINE = N/A	8DL 8DL	GUIDELINE = N/A	8DL 8DL	GUIDELINE = N/A	108 108	GUIDELINE = N/A	8DL 8DL	GUIDELINE = N/A	BDL BDL		8DL 8DL	GUIDELINE = 10 (A1)	801
WELL P15 RESERVOIR RAW ST ANDREW	DET:N LIMIT = 10.0	۰	DET'N LIMIT = 1.0		DET'N LIMIT = 20.0	٠	DET 'N LIMIT = 20.0	P	DET'N LIMIT = 20.0	•	DET'N LIMIT = 50.0	à	DET'N LIMIT = 5.0		DET'N LIMIT = 50.0		DET'N LIMIT = 10.0	•	DET'N LIMIT = 10.0	٠	DET'N LIMIT = 1.0	٠	DET'N LIMIT = 5.0	5 5 8 9 9 9 9 9 9 9 9 9 9
WELL P11	POLYAROMATIC HYDROCARBONS	108	8 9 8 9 8 9 8 9 9 9 9 9 9 9 8 8 8 8 9 9 8 8 8 8 8 9 9 8 8 8 8 8 8 9 9 8 8 8 8 8 8 9 9 8 8 8 8 8 9 9 8 8 8 8 8 9 9 8 8 8 8 8 9 9 8 8 8 8 8 9 9 8 8 8 8 8 9 9 8 8 8 8 8 9 9 8 8 8 8 9 9 8 8 8 8 8 9 9 9 8 8 8 8 9 9 9 8 8 8 8 9 9 9 9 8 8 8 8 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 9 8 8 8 9	108	6 P P P P P P P P P P P P P P P P P P P	108	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	^	108	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	108	^	108	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	108	^	108		108		BOL		108
WELL G3	POLYAROMATI	24 SAMPLES 801	ANTHRACENE (NG/L)	20 SAMPLES BDL	FLUORANTHENE (NG/L)	24 SAMPLES BDL	PYRENE (NG/L)	24 SAMPLES BDL	BENZO(A)ANTHRACENE (NG/L	24 SAMPLES BOL	CHRYSENE (NG/L)	24 SAMPLES BOL	DIMETH. BENZ(A)ANTHR (NG/L	24 SAMPLES 80L	BENZO(E) PYRENE (NG/L)		BENZO(B) FLUORANTHEN (NG/L	24 SAMPLES 80L	PERYLENE (NG/L)	24 SAMPLES BOL	BENZO(K) FLUORANTHEN (NG/L	24 SAMPLES BDL	BENZO(A) PTRENE (NG/L)	24 SAMPLES BDL

RESERVOIR RESERVOIR ST ANDREW TOWER RAHMANS

WELL P15 RAW

WELL P11 RAW

										1 9 1 1
GUIDELINE = N/A	BOL	GUIDELINE = N/A	BDL	GUIDELINE = N/A	, 8DL	GUIDELINE = N/A	BDL	GUIDELINE = N/A	BDL	
0.01	BDL	no	BOL	105 105	BDL	- B	BDL	กอ	BDL	- - - - - - - - - - - - - - - - - - -
DET'N LIMIT = 20.0 GUIDELINE = N/A		DET!N LIMIT = 10.0		DET'N LIMIT = 20.0	•	DET'N LIMIT = 2.0	٠	DET'N LIMIT = 10.0	٠	***************************************
POLYAROMATIC HYDROCARBONS EN (NG/L)	BDL	(BDL	^	BDL	•	BDL		BDL	, , , , , , , , , , , , , , , , , , ,
POLYAROMAT	BDL	HRAC (NG/L	BDL) PY (NG/L	BDL	IE (NG/L	BDL		BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
BENZO(G,H,I) PERYLEN (NG/L	24. SAMPLES	DIBENZO(A, H) ANTHRAC (NG/L	24 SAMPLES	INDENO(1,2,3-C,D) PY (NG/L	24 SAMPLES	BENZO(B) CHRYSENE (NG/L	24 SAMPLES	CORONENE (NG/L	. 24 SAMPLES	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RESERVOIR ST ANDREW TOWER RAHMANS

WELL P15

VELL P11

GUIDELINE = 5000 (A1)	BDL BDL	GUIDELINE = 280000 (A1)	BDL BDL	GUIDECINE = 100000 (A1)	BDL BDL	GUIDELINE = N/A	801 80F	GUIDELINE = N/A	8DL 8DL	GUIDELINE = 120000 (A1)	80f	GUIDELINE = 10000 (A1)	108 108	GUIDELINE = 90000 (A1)	108 108	GUIDELINE = 350000 (G)	. 108 TO8	GUIDELINE = N/A	8DL 8DL	GUIDELINE = N/A	108	GUIDELINE = N/A	801
DET'N LIMIT = 500.0	BDL	DET'N LIMIT = 50.0	108	DET'N LIMIT = 100.0		DET'N LIMIT = 200.0	. 108	DET'N LIMIT = 100.0		DET'N LIMIT = 50.0	. 108	DET'N LIMIT = 20.00	. 108	DET'N LIMIT = 2000.0		0ET'N LIMIT = 2000.0	BDL	DET'N LIMIT = 2000,0	BOL	DET'N LIMIT = 2000.0	8DL .	DET*N LIMIT = 2000.0	
TOXAPHENE (NG/L)	8 SAMPLES BDL B	2,4,5-1 (NG/L)	4 SAMPLES BDL	2,4-0 (NG/L)	BDT PDF 7	2,4-DB (NG/L)	8 PDI 8 SAMPLES 4	2,4 D PROPIONIC ACID (NG/L)	4 SAMPLES BDL	DICAMBA (NG/L)	4 SAMPLES BDL	2,4,5-TP (SILVEX) (NG/L)	4 SAMPLES BDL	CARBOFURAN (NG/L)	4 SAMPLES BDL	CHLORPROPHAM (CIPC) (NG/L)	3 SAMPLES BOL	DIALLATE (NG/L)	4 SAMPLES BDL	EPTAM (NG/L)	BDT TOB	IPC (NG/L)	108 SAMPLES

PROPOXUR (NG/L	SPECIFIC PESTICIDES)		DET'N LIMIT = 2000.0	6U1	GUIDELINE = 140000 (03)
4 SAMPLES	BOL	BOL		BDL	108
CARBARYL (NG/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT'= 200.0	GUI	GUIDELINE = 90000 (A1)
4 SAMPLES	108	BOL		BDL	108
BUTYLATE (NG/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 8 8 8	DET'N LIMIT = 2000.0	GUI	GUIDELINE = 245000 (03)
4 SAMPLES	108	BOL	•	108	108

RESERVOIR RESERVOIR ST ANDREW TOWER RAHMANS

WELL P15 RAW

WELL P11 RAW

œ	5 (A1)	BDL	24 (A3)	BOL	BDL	BOL	108	B01	108	BOL	BOL	.200 <1	BOL	. 20	BOL	80r	BUL	2.4 (A3)	80L	.050 <1	. 100 <t< th=""><th>80T</th><th>1> 007</th><th>RNI</th><th>.050 <1</th><th>. 100 < 7</th><th>,100 <t< th=""><th>.150 <t< th=""><th>•</th><th>. 150 <1</th><th>.200 <t< th=""><th>80r</th><th>= 300 (A3*)</th><th>108</th></t<></th></t<></th></t<></th></t<>	80T	1> 007	RNI	.050 <1	. 100 < 7	,100 <t< th=""><th>.150 <t< th=""><th>•</th><th>. 150 <1</th><th>.200 <t< th=""><th>80r</th><th>= 300 (A3*)</th><th>108</th></t<></th></t<></th></t<>	.150 <t< th=""><th>•</th><th>. 150 <1</th><th>.200 <t< th=""><th>80r</th><th>= 300 (A3*)</th><th>108</th></t<></th></t<>	•	. 150 <1	.200 <t< th=""><th>80r</th><th>= 300 (A3*)</th><th>108</th></t<>	80r	= 300 (A3*)	108
RESERVOIR RESERVOIR SI ANDREW TOWER RAHMANS	GUIDELINE = 5	BDL	= 2					BOL					<t></t>		108		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GUIDELINE = 2	BOL				. 050 .	7	<		-T>		·	<	-T	.050 <t< td=""><td>GUIDELINE = 3</td><td>RDI</td></t<>	GUIDELINE = 3	RDI
WELL P15 RESERVOIR RAW ST ANDREW	DET'N LIMIT = 0.05	108	DET'N LIMIT = 0.05		ð	٠		٠		٠	ō	٠	٠	• 6	308		BOL	DET'N LIMIT = 0.05	٠		٠		٠	•	o (á	٠	. 100 < 7	* .	801	DET'N LIMIT = 0.10	BD1
WELL P11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108	BDL	108	108	BOL	801	108	BDL	. 100 <t< td=""><td>٠</td><td>a</td><td>. 100</td><td>BUL</td><td></td><td></td><td>801</td><td>108</td><td>108</td><td>108</td><td>1000</td><td>15 050</td><td>RDL</td><td>1> 050</td><td>. 100 <7</td><td></td><td>٠</td><td></td><td>. 150 <7</td><td>•</td><td>6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>ROI</td></t<>	٠	a	. 100	BUL			801	108	108	108	1000	15 050	RDL	1> 050	. 100 <7		٠		. 150 <7	•	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROI
WELL G3 WE	VOLATILES	BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108	BDL	BDL	BDL	BOL	108	108	108	PDF	. 100 <t< td=""><td>108</td><td>108</td><td>108</td><td>108</td><td>(1</td><td>108</td><td>BDL</td><td>108</td><td>108</td><td>1> 001.</td><td>301</td><td>801</td><td>801</td><td>. 100 <t< td=""><td>1> 001.</td><td>1000 <1</td><td></td><td>. 150 <1</td><td>801</td><td></td><td>801</td></t<></td></t<>	108	108	108	108	(1	108	BDL	108	108	1> 001.	301	801	801	. 100 <t< td=""><td>1> 001.</td><td>1000 <1</td><td></td><td>. 150 <1</td><td>801</td><td></td><td>801</td></t<>	1> 001.	1000 <1		. 150 <1	801		801
7 8	BENZENE (UG/L	57 SAMPLES	TOLUENE (UG/L	1991 JAN				1991 MAY								100 766L	1992 OCT	ETHYLBENZENE (UG/L	1991 JAN	1991 FEB				NO. 1991		-						1992 OCT	P-XTLENE (UG/L	S7 SAMPLES

																٠									•								
RESERVOIR RAHMANS	GUIDELINE = 300 (A3*)		BOL	BDL	BOL	BDL	BDL	BDI	BDL	BDL	BDL	BDL	BOL	•	BOL	BDL	BDL	NE = 300 (A3*)	BDL	BDL	BDL	BDL	BDL	BDL	. 801	BDL	BD1 .	BDL	BDL	٠	BDL	. 108	BDL
KESEKVOIK ST ANDREW TOWER RA	GUIDELI		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	. BDL	BOL	.100 <t< td=""><td>BOL</td><td>GUIDELINE</td><td>BDL</td><td>BDL</td><td>. 108</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BOL</td><td>BDL</td><td>.050 <t< td=""><td>· B0L .</td></t<></td></t<>	BOL	GUIDELINE	BDL	BDL	. 108	BDL	BDL	BDL	BOL	BDL	BDL	BOL	BDL	BOL	BDL	.050 <t< td=""><td>· B0L .</td></t<>	· B0L .
RAW ST	DET'N LIMIT = 0.10		•		•				•	٠	٠	•	٠	•	BDL		BDL	DET'N LIMIT = 0.05	٠	٠		•	•	•	•	•	•		•	•	BDL	•	BDL
RAW	0 0 0 0 5 0 0 0 0 0 0 1 0 0 1		BDL	BDL	BDL	BDL	BDL	BDL	BOL	BDL	BDL	BDL		•	•	BDL		8 E E E E E E E E E E E E E E E E E E E	BDL	BDL	BDL	· BDL	BDL	BDL	. BDL	BOL	BDL	BDL	•	•	٠	BDL	٠
RAW	VOLATILES .	į	BDL	108 .	BOL	BDL	BDL	BDL	. 801	BDL	BDL	BDL	BDL	BDL	BDL .	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	M-XYLENE (UG/L		1991 JAN				1991 MAY		1991 JUL		1991 SEP		1991 NOV		1992 APR	1992 JUL	1992 OCT	O-XYLENE (UG/L		1991 FEB		1991 APR			1991 JUL						1992 APR		

RAHMANS	GUIDELINE = 100 (01)	4				.050 ×T	. 250 <t< th=""><th>. 150 <t< th=""><th>108</th><th></th><th>.200 <t< th=""><th>.200 <t< th=""><th>.250 <1</th><th></th><th>.300 <t< th=""><th>.250 <t< th=""><th>108</th><th>INE = 7 (01)</th><th>801</th><th>108</th><th>108</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>108</th><th>108</th><th>BOL</th><th>108</th><th></th><th>108</th><th></th><th>801</th><th>INE = 50 (A1)</th><th>108</th><th>LINE = 70 (D1)</th><th>BOI</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	. 150 <t< th=""><th>108</th><th></th><th>.200 <t< th=""><th>.200 <t< th=""><th>.250 <1</th><th></th><th>.300 <t< th=""><th>.250 <t< th=""><th>108</th><th>INE = 7 (01)</th><th>801</th><th>108</th><th>108</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>108</th><th>108</th><th>BOL</th><th>108</th><th></th><th>108</th><th></th><th>801</th><th>INE = 50 (A1)</th><th>108</th><th>LINE = 70 (D1)</th><th>BOI</th></t<></th></t<></th></t<></th></t<></th></t<>	108		.200 <t< th=""><th>.200 <t< th=""><th>.250 <1</th><th></th><th>.300 <t< th=""><th>.250 <t< th=""><th>108</th><th>INE = 7 (01)</th><th>801</th><th>108</th><th>108</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>108</th><th>108</th><th>BOL</th><th>108</th><th></th><th>108</th><th></th><th>801</th><th>INE = 50 (A1)</th><th>108</th><th>LINE = 70 (D1)</th><th>BOI</th></t<></th></t<></th></t<></th></t<>	.200 <t< th=""><th>.250 <1</th><th></th><th>.300 <t< th=""><th>.250 <t< th=""><th>108</th><th>INE = 7 (01)</th><th>801</th><th>108</th><th>108</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>108</th><th>108</th><th>BOL</th><th>108</th><th></th><th>108</th><th></th><th>801</th><th>INE = 50 (A1)</th><th>108</th><th>LINE = 70 (D1)</th><th>BOI</th></t<></th></t<></th></t<>	.250 <1		.300 <t< th=""><th>.250 <t< th=""><th>108</th><th>INE = 7 (01)</th><th>801</th><th>108</th><th>108</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>108</th><th>108</th><th>BOL</th><th>108</th><th></th><th>108</th><th></th><th>801</th><th>INE = 50 (A1)</th><th>108</th><th>LINE = 70 (D1)</th><th>BOI</th></t<></th></t<>	.250 <t< th=""><th>108</th><th>INE = 7 (01)</th><th>801</th><th>108</th><th>108</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>108</th><th>108</th><th>BOL</th><th>108</th><th></th><th>108</th><th></th><th>801</th><th>INE = 50 (A1)</th><th>108</th><th>LINE = 70 (D1)</th><th>BOI</th></t<>	108	INE = 7 (01)	801	108	108	BOL	BOL	BOL	BOL	108	108	BOL	108		108		801	INE = 50 (A1)	108	LINE = 70 (D1)	BOI
ST ANDREW TOWER R	COLOEL		108	108	108		. 100 <t< td=""><td>. 150 <t< td=""><td>BDL</td><td>.300 <7</td><td>. 150 <t< td=""><td></td><td>.200 <7</td><td>. 150 <t< td=""><td>108</td><td></td><td>100 <1</td><td>CUIDELINE</td><td>.200 <1</td><td>.200 <t< td=""><td>. 200 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>. 200 <t< td=""><td>1> 002.</td><td>. 200 < 7</td><td>GUIDELINE</td><td>108</td><td>GUIDELINE</td><td>RNI</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 150 <t< td=""><td>BDL</td><td>.300 <7</td><td>. 150 <t< td=""><td></td><td>.200 <7</td><td>. 150 <t< td=""><td>108</td><td></td><td>100 <1</td><td>CUIDELINE</td><td>.200 <1</td><td>.200 <t< td=""><td>. 200 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>. 200 <t< td=""><td>1> 002.</td><td>. 200 < 7</td><td>GUIDELINE</td><td>108</td><td>GUIDELINE</td><td>RNI</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	.300 <7	. 150 <t< td=""><td></td><td>.200 <7</td><td>. 150 <t< td=""><td>108</td><td></td><td>100 <1</td><td>CUIDELINE</td><td>.200 <1</td><td>.200 <t< td=""><td>. 200 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>. 200 <t< td=""><td>1> 002.</td><td>. 200 < 7</td><td>GUIDELINE</td><td>108</td><td>GUIDELINE</td><td>RNI</td></t<></td></t<></td></t<></td></t<></td></t<>		.200 <7	. 150 <t< td=""><td>108</td><td></td><td>100 <1</td><td>CUIDELINE</td><td>.200 <1</td><td>.200 <t< td=""><td>. 200 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>. 200 <t< td=""><td>1> 002.</td><td>. 200 < 7</td><td>GUIDELINE</td><td>108</td><td>GUIDELINE</td><td>RNI</td></t<></td></t<></td></t<></td></t<>	108		100 <1	CUIDELINE	.200 <1	.200 <t< td=""><td>. 200 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>. 200 <t< td=""><td>1> 002.</td><td>. 200 < 7</td><td>GUIDELINE</td><td>108</td><td>GUIDELINE</td><td>RNI</td></t<></td></t<></td></t<>	. 200 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>. 200 <t< td=""><td>1> 002.</td><td>. 200 < 7</td><td>GUIDELINE</td><td>108</td><td>GUIDELINE</td><td>RNI</td></t<></td></t<>										. 200 <t< td=""><td>1> 002.</td><td>. 200 < 7</td><td>GUIDELINE</td><td>108</td><td>GUIDELINE</td><td>RNI</td></t<>	1> 002.	. 200 < 7	GUIDELINE	108	GUIDELINE	RNI
RAW	DET'N LIMIT = 0.05		ě		٠	b	0	٠	٠	٠		٠	٠	٠	. 150 <t< td=""><td></td><td>T> 050.</td><td>DET*N LIMIT = 0.100</td><td>٠</td><td></td><td></td><td>b</td><td></td><td>٠</td><td>b</td><td>•</td><td></td><td>٠</td><td>٠</td><td>٠</td><td>108</td><td>٠</td><td>108</td><td>DET'N LIMIT = 0.50</td><td>108</td><td>DET'N LIMIT = 0.10</td><td>BNI</td></t<>		T> 050.	DET*N LIMIT = 0.100	٠			b		٠	b	•		٠	٠	٠	108	٠	108	DET'N LIMIT = 0.50	108	DET'N LIMIT = 0.10	BNI
RAN	6 6 8 8 8 8 8 8			1> 050.		T> 050.	. 100 <t< td=""><td>150 <1</td><td>1000.</td><td>BOL</td><td>150 <7</td><td>.250 <1</td><td>٠</td><td>٠</td><td>٠</td><td>150 <1</td><td>٠</td><td></td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>۰</td><td>۰</td><td>٠</td><td>BOL</td><td>٠</td><td>0 0 0 0 0 0 0 0 0 0</td><td>108</td><td>8 8 9 8 8 8 8 8 8 8</td><td>(Ca)</td></t<>	150 <1	1000.	BOL	150 <7	.250 <1	٠	٠	٠	150 <1	٠		BOL	BOL	BOL	BOL	BDL	BOL	BDL	BOL	BOL	BDL	۰	۰	٠	BOL	٠	0 0 0 0 0 0 0 0 0 0	108	8 8 9 8 8 8 8 8 8 8	(Ca)
RAU	VOLATILES)	1		. 100 <1	BOL	108	. 150 <t< td=""><td>BDL</td><td>BDL</td><td>BOL</td><td>108</td><td>.200 <t< td=""><td>.250 <t< td=""><td>.150 <7</td><td>.300 <t< td=""><td>.200 <t< td=""><td>108</td><td>(1/90)</td><td>.200 <t< td=""><td>.200 <t< td=""><td>.200 <1</td><td></td><td>.200 <1</td><td>.200 <t< td=""><td></td><td></td><td>.200 <1</td><td>BOL</td><td></td><td>.200 <t< td=""><td></td><td></td><td>.200 <t< td=""><td>06/L)</td><td>B01</td><td>(7/90)</td><td>-</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	BDL	BOL	108	.200 <t< td=""><td>.250 <t< td=""><td>.150 <7</td><td>.300 <t< td=""><td>.200 <t< td=""><td>108</td><td>(1/90)</td><td>.200 <t< td=""><td>.200 <t< td=""><td>.200 <1</td><td></td><td>.200 <1</td><td>.200 <t< td=""><td></td><td></td><td>.200 <1</td><td>BOL</td><td></td><td>.200 <t< td=""><td></td><td></td><td>.200 <t< td=""><td>06/L)</td><td>B01</td><td>(7/90)</td><td>-</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.250 <t< td=""><td>.150 <7</td><td>.300 <t< td=""><td>.200 <t< td=""><td>108</td><td>(1/90)</td><td>.200 <t< td=""><td>.200 <t< td=""><td>.200 <1</td><td></td><td>.200 <1</td><td>.200 <t< td=""><td></td><td></td><td>.200 <1</td><td>BOL</td><td></td><td>.200 <t< td=""><td></td><td></td><td>.200 <t< td=""><td>06/L)</td><td>B01</td><td>(7/90)</td><td>-</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.150 <7	.300 <t< td=""><td>.200 <t< td=""><td>108</td><td>(1/90)</td><td>.200 <t< td=""><td>.200 <t< td=""><td>.200 <1</td><td></td><td>.200 <1</td><td>.200 <t< td=""><td></td><td></td><td>.200 <1</td><td>BOL</td><td></td><td>.200 <t< td=""><td></td><td></td><td>.200 <t< td=""><td>06/L)</td><td>B01</td><td>(7/90)</td><td>-</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.200 <t< td=""><td>108</td><td>(1/90)</td><td>.200 <t< td=""><td>.200 <t< td=""><td>.200 <1</td><td></td><td>.200 <1</td><td>.200 <t< td=""><td></td><td></td><td>.200 <1</td><td>BOL</td><td></td><td>.200 <t< td=""><td></td><td></td><td>.200 <t< td=""><td>06/L)</td><td>B01</td><td>(7/90)</td><td>-</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	108	(1/90)	.200 <t< td=""><td>.200 <t< td=""><td>.200 <1</td><td></td><td>.200 <1</td><td>.200 <t< td=""><td></td><td></td><td>.200 <1</td><td>BOL</td><td></td><td>.200 <t< td=""><td></td><td></td><td>.200 <t< td=""><td>06/L)</td><td>B01</td><td>(7/90)</td><td>-</td></t<></td></t<></td></t<></td></t<></td></t<>	.200 <t< td=""><td>.200 <1</td><td></td><td>.200 <1</td><td>.200 <t< td=""><td></td><td></td><td>.200 <1</td><td>BOL</td><td></td><td>.200 <t< td=""><td></td><td></td><td>.200 <t< td=""><td>06/L)</td><td>B01</td><td>(7/90)</td><td>-</td></t<></td></t<></td></t<></td></t<>	.200 <1		.200 <1	.200 <t< td=""><td></td><td></td><td>.200 <1</td><td>BOL</td><td></td><td>.200 <t< td=""><td></td><td></td><td>.200 <t< td=""><td>06/L)</td><td>B01</td><td>(7/90)</td><td>-</td></t<></td></t<></td></t<>			.200 <1	BOL		.200 <t< td=""><td></td><td></td><td>.200 <t< td=""><td>06/L)</td><td>B01</td><td>(7/90)</td><td>-</td></t<></td></t<>			.200 <t< td=""><td>06/L)</td><td>B01</td><td>(7/90)</td><td>-</td></t<>	06/L)	B01	(7/90)	-
N A A	STYRENE (UG/L)						1991 MAY	1991 JUN			1991 SEP	1991 001	1991 NOV	1992 JAN	1992 APR	1992 JUL	1992 OCT	1, 1-DICHLOROETHYLENE	1991 JAN	1991 FEB			_										1992 OCT	METHYLENE CHLORIDE (UG/L	S7 SAMPLES	T12-DICHLOROETHYLENE (UG/L	C7 CAMDIFC

RESERVOIR RAHMANS	INE = N/A	BDL	BDL	BDL	108	BDL	BOL	BDL	BOL	BOL		BOL	BOL	BOL	INE = 350 (A1+)	BOL	BOL	801	BOL	BOL	80F	801	.200 <t< td=""><td>B0L</td><td>B0L</td><td>.200 <t< td=""><td>•</td><td>B0L</td><td>BDL</td><td>801</td></t<></td></t<>	B0L	B0L	.200 <t< td=""><td>•</td><td>B0L</td><td>BDL</td><td>801</td></t<>	•	B0L	BDL	801
RESERVOIR ST ANDREW TOWER RA	GUIDELINE	. 600 <1				. 700 1> 007.			T> 009.	.700 <1		.700 <ī		.700 <t< td=""><td>GUIDELINE =</td><td>.800 <t< td=""><td>.800 <t< td=""><td>T> 006.</td><td>.900 <t< td=""><td>1.000</td><td>1.600</td><td>1.100</td><td>1.900</td><td>1.500</td><td>2.800</td><td>5.500</td><td>2.300</td><td>1.500</td><td>2.100</td><td>3.600</td></t<></td></t<></td></t<></td></t<>	GUIDELINE =	.800 <t< td=""><td>.800 <t< td=""><td>T> 006.</td><td>.900 <t< td=""><td>1.000</td><td>1.600</td><td>1.100</td><td>1.900</td><td>1.500</td><td>2.800</td><td>5.500</td><td>2.300</td><td>1.500</td><td>2.100</td><td>3.600</td></t<></td></t<></td></t<>	.800 <t< td=""><td>T> 006.</td><td>.900 <t< td=""><td>1.000</td><td>1.600</td><td>1.100</td><td>1.900</td><td>1.500</td><td>2.800</td><td>5.500</td><td>2.300</td><td>1.500</td><td>2.100</td><td>3.600</td></t<></td></t<>	T> 006.	.900 <t< td=""><td>1.000</td><td>1.600</td><td>1.100</td><td>1.900</td><td>1.500</td><td>2.800</td><td>5.500</td><td>2.300</td><td>1.500</td><td>2.100</td><td>3.600</td></t<>	1.000	1.600	1.100	1.900	1.500	2.800	5.500	2.300	1.500	2.100	3.600
WELL P15 RES	DET'N LIMIT = 0.100											BDL		BOL	DET'N LIMIT = 0.10			•				,			•	•	•	BOL		BOL
WELL P11		80L	801	. 108	BDL	BDL BDL	BDL	BOL	. BDL		٠		BDL	•		BDL	108	108	BDL	80L	BDL	B0L	108	BDL	B0L	•	٠	•	801	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WELL G3 RAW	VOLATILES FE (UG/L)	7> 007.				. 700 ×								.800 <t< td=""><td>^</td><td>BOL</td><td>BOL</td><td>.100 <t< td=""><td>.100 <1</td><td>BOL</td><td>BOL</td><td>B0L</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t<></td></t<>	^	BOL	BOL	.100 <t< td=""><td>.100 <1</td><td>BOL</td><td>BOL</td><td>B0L</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t<>	.100 <1	BOL	BOL	B0L	BOL	BOL	BOL	BOL	BOL	BOL	BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R R	VOLATII 1,1-DICHLOROETHANE (UG/L	1991 JAN 1991 FFR				1991 JUL				1991 NOV			1992 JUL	_	CHLOROFORM (UG/L		1991 FEB	1991 MAR		1991 MAY	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 OCT				1992 JUL	

RESERVOIR RAHMANS	LINE = 200 (D1)	100	1> 070	108	108	BDL	108	108	108	901	BDL	BDL	* 4	BDL	108	108	LINE = 5 (A1)	801	LINE = 5 (A1)	900	LINE = 5 (D1)	801	GUIDELINE = 50 (A1)	BDL	BDL	BOL	108	BDL	801	801	80L	801	BDL		108	801	108
RESERVOIR ST ANDREW TOWER	GUIDELINE	000 /	7.200	4.180	4.020	7.200	3.900	3.900	4.220	4.100	007.7	4.340	7.500	7.200	090.7	7.080	GUIDELINE	BOL	GUIDELINE	108	GUIDELINE	108	GUIDE	7.500	8.300	8.000	8.500	0000	7.100	2 200	7 200	7.300	6.800	7.000	7.200	6.300	0.800
WELL P15 RE	0E1'N LIMIT = 0.02		•	• •		٠	٠	٠	٠	٠	*	٠	* (108	٠	308	DET'N LIMIT = 0.05	BDL	DET W LIMIT = 0.20	108	DET'N LIMIT = 0.05	108	DET'N LIMIT = 0.10	•	•	٠	٠	٠	٠		٠		٠	٠	108	* 4	901
WELL PIT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	BUI	108	T> 070.	BOL	108	BDL	BDL	108	108	٠		٠	108	•	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	708 .	* * * * * * * * * * * * * * * * * * *	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOB	6 # # # # # # # # # # # # # # # # # # #	801	801	108	BDL	108	801	300	BOL	801	٠	٠	٥	108	٠
WELL G3	VOLATILES ANE (UG/L	002	035.2	7.180	7 . 000	4.360	7.100	4.020	4.380	4.200	7.600	7.560	7.620	007.7	7.380	7.540	(NE (UG/L)	108	0R1DE (UG/L	108	ANE CUG/L	108	(1/5/1)	8,100	8.400	8.000	8.500	9.200	7.500	7 700	7 400	8.100	7.200	7.200	7.500	6.800	7.600
3 4	VOLATILI 111, TRICHLOROETHANE (UG/L		1001												1992 JUL	1992 001	1,2 DICHLOROETHANE	57 SAMPLES	CARBON TETRACHLORIDE (UG/L	S7 SAMPLES	1,2-DICHLOROPROPANE (UG/L	57 SAMPLES	TRICHLOROETHYLENE (UG/L	1001 JAN							1991 AUG					1992 JUL	1992 001

RAW ST ANDREW TOWER RAHMANS	DET'N LIMIT = 0.05 GUIDELINE = 65 (A5)	708 052.				108 002.				1.000 80L		800	BDL .950 BDL	DET'N LIMIT = 0.20 GUIDELINE = 350 (A1+)	. BOL 80L	<1		1 000 <1 BUL	₽ .	<t></t>	2.200 801			801 + 600 × 1 801	3.200	BDL 2.200 BDL	DET'N LIMIT = 0.05 GUIDELINE = 0.17 (04)	108 108	DET'N LIMIT = 0.100 GUIDELINE = 2 (01)	108 108 109	DET'N LIMIT = 0.100 GUIDELINE = 70 (01)	. 1.700	1.650	1,500
RAU) DET'N	BDL	801	108	BDL	108	301	BDL	BOL			801	٠	N . L 30	801	BOL	108	300	108 100	300	801	801		•	80.) DET*N	901	N-130	BDL) 0ET'N	٠	٠	BDL
RAW VOI ATTERS	TETRACHLOROETHYLENE (UG/L	1991 JAN . 800		APR	MAY	1991 JUN 7001	ALIC	SEP	00.1	NOV	1992 APR 1-100	101	1 0001	BROMOFORM (UG/L)	JAN	FEB	1991 MAR 1991 APR		JUN	JUL	1991 SFP BDL	100	NON	1992 JAN BDL 1992 APR BDI		0007	1122-TETCHLORDETHANE (UG/L	57 SAMPLES BOL	VINTL CHLORIDE (UG/L)	14 SAMPLES BOL	C12-DICHLOROETHYLENE (UG/L	NOV	1992 JAN 1,700	JUL

								ı												,					
GUIDELINE = 1510 (D3)	BDL	= 5 (A1)	BDL	GUIDELINE = 3750 (03)	BDL	= 200 (A1)	BDL	= 50 (01)	BDL	= 350 (A1)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL
GUIDELINE	BDL	GUIDELINE = 5 (A1)	BOL	GUIDELINE	BDL	GUIDELINE = 200 (A1)	BDL	©UIDELINE =	BDL	GUIDELINE =	2.150 <t< td=""><td>3.150 <t< td=""><td>3.200 <t< td=""><td>4.100 <t< td=""><td>9.000</td><td>006.6</td><td>5.550</td><td>2.950</td><td>2.300</td><td>000.6</td><td>8.500</td><td>3.700</td><td>. 002.9</td><td>18.250</td><td>1.650</td></t<></td></t<></td></t<></td></t<>	3.150 <t< td=""><td>3.200 <t< td=""><td>4.100 <t< td=""><td>9.000</td><td>006.6</td><td>5.550</td><td>2.950</td><td>2.300</td><td>000.6</td><td>8.500</td><td>3.700</td><td>. 002.9</td><td>18.250</td><td>1.650</td></t<></td></t<></td></t<>	3.200 <t< td=""><td>4.100 <t< td=""><td>9.000</td><td>006.6</td><td>5.550</td><td>2.950</td><td>2.300</td><td>000.6</td><td>8.500</td><td>3.700</td><td>. 002.9</td><td>18.250</td><td>1.650</td></t<></td></t<>	4.100 <t< td=""><td>9.000</td><td>006.6</td><td>5.550</td><td>2.950</td><td>2.300</td><td>000.6</td><td>8.500</td><td>3.700</td><td>. 002.9</td><td>18.250</td><td>1.650</td></t<>	9.000	006.6	5.550	2.950	2.300	000.6	8.500	3.700	. 002.9	18.250	1.650
DET'N LIMIT = 0.10	BDL .	DET'N LIMIT = 0.1D	BOL	DET'N LIMIT = 0.10	7 08 .	DET'N LIMIT = 0.05	BDL	DET'N LÍMIT = 0.05	BDL	DET'N LIMIT = 0.50	٠	•	٠	•••			٠						BDL		8DL 2
	BDL		BDL		BDL		BDL		BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	•	• ,	•	BDL	
		^		^				^		^															
VOLATILES L)	BDL	1/9n)	108	, 1/9n)	BDL	1/9n)	BDL	1/90)	BDL	S (UG/L	BDL	801	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	,
V CHLOROBENZENE (UG/L	57 SAMPLES	1,4-DICHLOROBENZENE (UG/L	57 SAMPLES	1,3-DICHLOROBENZENE (UG/L	57 SAMPLES	1,2-DICHLOROBENZENE (UG/L	57 SAMPLES	ETHYLENE DIBROMIDE (UG/L	57 SAMPLES	TOTL TRIHALOMETHANES (UG/L	1991 JAN		1991 MAR			1991 JUN		1991 AUG			1991 NOV	1992 JAN	1992 APR	1992 JUL	1992 OCT

RESERVOIR RESERVOIR ST ANDREW TOWER RAHMANS

WELL P15 RAW

WELL P11

RESERVOIR RESERVOIR ST ANDREW TOWER. RAHMANS

WELL P15

WELL P11 RAW

GUIDELINE = N/A		GUIDELINE = N/A	. TOB	GUIDELINE = 50 (A1)		GUIDELINE = 0.55 (01)	. 108	GUIDELINE = N/A	. 070	GUIDELINE = 40000 (A1)	10.000	GUIDELINE = 10 (A1)	
DET'N LIMIT = 0.70	٠	DET'N LIMIT = 0.70		DET'N LIMIT = 0.70	٠	DET'N LIMIT = 0.04		DET'N LIMIT = 0.04		DET'N LIMIT = 7.00		DET'N LIMIT = 0.70	
RADIONUCLIDES)	108		708		108	(80/г)	108	(80/1)	060.	^	801		BDL
COBALT 60 (80/L	2 SAMPLES	CESIUM 134 (80/L	2 SAMPLES	CESIUM 137 (80/L	2 SAMPLES	GROSS ALPHA COUNT (BO/L	2 SAMPLES	GROSS BETA COUNT (BO/L	1992 JAN	TRITIUM (80/L	1992 JAN	1001NE 131 (80/L	2 SAMPLES

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
BACTERIOLOGICAL				
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0		(A1)
STANDARD PLATE COUNT MEMBRANE FILT.	CT/ML	0	500/HL	(A3)
TOTAL COLIFORM BACKGROUND MF TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML CT/100ML	0 .	N/A 5/100ML	(A1)
TOTAL COLIFORM MEMBRANE FILTRATION	CITIOUML	Ÿ	37 TOORL	(01)
CHEMISTRY (FLD)			٠	
FIELD COMBINED CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD TOTAL CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD FREE CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD PH	DMNSLESS	N/A	6.5-8.5	-
FIELD TEMPERATURE FIELD TURBIDITY	DEG.C FTU	N/A N/A	15.0 1.0	
FIELD TOKBIDITY	FIU	. N/A	1.0	(01)
CHEMISTRY (LAB)				
ALKALINITY	MG/L	0.20	30-500	(A4)
AMMONIUM TOTAL	MG/L	0.002		(F2)
CALCIUM	MG/L	0.20	100.0	
CHLORIDE	MG/L	0.20	. 250.0	
COLOUR	TCU	0.50 1.00	400.0	(A3)
CONDUCTIVITY	UMHO/CM MG/L	0.001		(A1)
DISSOLVED ORGANIC CARBON	MG/L	0.10		(A3)
FLUORIDE	MG/L	0.01		(A1)
HARDNESS	MG/L	0.50	80-100	(A4)
IONCAL	DMNSLESS	N/A	N/A	
LANGELIERS INDEX	DMNSLESS	N/A	N/A	
MAGNESIUM	MG/L	0.10	30.0	
NITRATES (TOTAL)	. MG/L ' MG/L	0.005 0.001	10.0	(A1) (A1)
NITROGEN TOTAL KJELDAHL	MG/L MG/L	0.02	N/A	(MI)
PH ROCEA TOTAL ROCEDANC	DMNSLESS	N/A	6.5-8.5	(A4)
PHOSPHORUS FIL REACT	MG/L	0.0005	N/A	
PHOSPHORUS TOTAL	MG/L	0.002		(F2)
POTASSIUM	MG/L	0.010	10.0	
RESIDUE FILTRATE (CALCULATED TDS)	MG/L	N/A	500.0	
SODIUM	MG/L	0.20 0.20	200.0 500.0	
SULPHATE TURBIDITY	MG/L FTU	0.20		(A4) (A1)
10/010111	710			

^{*} The Maximum Acceptable Concentration (MAC) for <u>naturally occurring fluoride</u> in drinking water is 2.4 mg/L.

CHLOROAROMATICS

1,2,3-TRICHLOROBENZENE	NG/L	5.0	N/A	
1,2,3,4-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1.2.3.5-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,4-TRICHLOROBENZENE	NG/L	5.0	10000	(1)
1.2.4.5-TETRACHLOROBENZENE	NG/L	1.0	38000	(D4)
1.3.5-TRICHLOROBENZENE	NG/L	5.0	N/A	
2.3.6-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2.4.5-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2.6A-TRICHLOROTOLUENE	NG/L	5.0	N/A	
HEXACHLOROBENZENE (HCB)	NG/L	1.0	10	(C1)
HEXACHLOROBUTADIENE	NG/L	1.0	450	(D4)
HEXACHLOROETHANE	NG/L	1.0	1900	(D4)
OCTACHLOROSTYRENE	NG/L	1.0	N/A	
PENTACHLOROBENZENE	NG/L	1.0	74000	(D4)
CHLOROPHENOLS				
2.3.4-TRICHLOROPHENOL	NG/L	100.0	N/A	
2,3,4,5-TETRACHLOROPHENOL	NG/L	20.0	N/A	
2,3,5,6-TETRACHLOROPHENOL	NG/L	10.0	N/A	

SCAN/PARAMETER	UNIT	DETECTION	GUIDELINE	
2.4.5. 70.10.0.000.00.00.00	NG/L	100.0	2600000	(04)
2,4,5-TRICHLOROPHENOL 2,4,6-TRICHLOROPHENDL	NG/L	20.0	5000	(A1)
PENTACHLOROPHENOL	NG/L	10.0	60000	(A1)
PERTACITEDADE				
METALS				
ALUHINUH	UG/L	0.10	100	(A4)
ANT I HONY	UG/L	0.05		(D4)
ARSENIC	UG/L	0.10	25 1000	(A1) (A2)
BARIUM	UG/L	0.05 0.05	6800	(D4)
BERYLLIUM BORON	UG/L UG/L	2.00	5000	(A1)
CADMIUM	UG/L	0.05	5	(A1)
CHROMIUM	UG/L	0.50	50	(A1)
COBALT	UG/L	0.02	N/A	
COPPER	UG/L	0.50	1000	(A3)
IRON	UG/L	6.00	300	(A3)
LEAD	UG/L	0.05	10 50	(A1)
MANGANESE	UG/L	0.05 0.02	1	(A3)
MERCURY	UG/L UG/L	0.05	N/A	(///
MOLYBDENUM NICKEL	UG/L	0.20	350	(D3)
SELENIUM	UG/L	1.00	10	(A1)
SILVER	UG/L	0.05	N/A	
STRONTIUM	UG/L	0.10	N/A	
THALLIUM	UG/L	0.05	13	(D4)
TITANIUH	UG/L	0.50	N/A	
URAHTUM	UG/L	0.05	100	(A1)
VANADIUH	UG/L	0.05	N/A 5000	(A3)
ZINC	UG/L	_ 0.20	3000	(()
POLYNUCLEAR AROMATIC HYDROCARBONS ANTHRACENE	NG/L	1.0	N/A	
BENZD(A) ANTHRACENE	NG/L	20.0	N/A 10	(41)
BENZO(A) PYRENE	NG/L	5.0 2.0	H/A	(A1)
BENZO(B) CHRYSENE	NG/L NG/L	10.0	N/A	
BENZO(B) FLUORANTHENE BENZO(E) PYRENE	NG/L	50.0	N/A	
BENZO(G,H,I) PERYLENE	NG/L	20.0	N/A	
BENZO(K) FLUORANTHENE	NG/L	1.0	N/A	
CHRYSENE	NG/L	50.0	N/A	
CORONENE	NG/L	10.0	H/A	
DIBENZO(A, H) ANTHRACENE	NG/L	10.0	N/A	
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0 20.0	N/A 42000	(D4)
FLUORANTHENE	NG/L NG/L	20.0	N/A	(04)
INDENO(1,2,3-C,D) PYRENE PERYLENE	NG/L	10.0	N/A	
PHENANTHRENE	NG/L	10.0	N/A	
PYRENE	· NG/L	20.0	N/A	
PESTICIDES & PCB				
ALACHLOR (LASSO)	NG/L	500.0	5000	(A2)
ALDRIN	NG/L	1.0	700	(A1)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	700	(G)
ALPHA CHLORDANE	NG/L	2.0	7000	(A1)
AMETRINE	NG/L	50.0	300000	(03)
ATRATONE	NG/L	50.0 50.0	60000	(A2)
ATRAZINE	NG/L NG/L	200.0	60000	(A2)
DESETHYL ATRAZINE BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	300	(6)
CYANAZINE (BLADEX)	NG/L	100.0	10000	
DIELDRIN	NG/L	2.0	700	(A1)
ENDOSULFAN 1 (THIODAN 1)	NG/L	2.0	74000	(04)
ENDOSULFAN 2 (THIODAN II)	NG/L	5.0	74000	(04)
ENDOSULFAN SULPHATE (THEODAN SULPHATE)	NG/L	5.0	N/A	
	•			

		DETECTION		
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE	
FURRIN	NG/L	5.0	1600	(03)
ENDRIN	NG/L NG/L	2.0	7000	(A1)
GAMMA CHLORDANE HEPTACHLOR	NG/L	1.0	3000	(A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	3000	(A1)
HEXACHLOROCYCLOPENTAD I ENE	NG/L	- 5.0	206000	(D4)
LINDANE (GAMMA BHC)	NG/L	1.0	4000	(A1)
METHOXYCHLOR	NG/L	5.0	900000	(A1)
METOLACHLOR	NG/L	500.0	50000	(A2)
METRIBUZIN (SENCOR)	NG/L	100.0	80000	(A1)
MIREX	NG/L	5.0	N/A	4445
P,P-000	NG/L	5.0	30000	(A1)
O,P-DDT	NG/L	5.0 5.0	30000 30000	(A1) (A1)
P,P-DDT	NG/L NG/L	1.0	30000	(A1)
P,P-00E OXYCHLORDANE	NG/L	2.0	N/A	(41)
PCB	NG/L	20.0	3000	(A2)
PROMETONE	NG/L	50.0	52500	(03)
PROMETRYNE	NG/L	50.0	1000	(A2)
PROPAZINE	NG/L	50.0	700000	(D3)
SIMAZINE	NG/L	50.0	10000	(A2)
DESETHYL SIMAZINE	NG/L	200.0	10000	(A2)
TOXAPHENE	NG/L	500.0	5000	(A1)
		•		
PHENOLICS				
DHENOLICS (INELL TERED REACTIVE)	UG/L	0.2	N/A	
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	n/A	
SPECIFIC PESTICIDES				
0.20., 10., 10., 10., 10., 10., 10., 10., 1				
2,4 D PROPIONIC ACID	NG/L	100.0	N/A	
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.0	280000	(A1)
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.0	100000	(A1)
2,4-DICHLORORPHENOXYBUTYRIC ACID (2,4-DB)		200.0	N/A	
2,4,5-TP (SILVEX)	NG/L	20.0	10000	(A1)
BUTYLATE (SUTAN)	NG/L	2000.0	245000	(03)
CARBARYL (SEVIN)	NG/L NG/L	200.0 2000.0	90000 90000	(A1) (A1)
CARBOFURAN CHLORPROPHAM (CIPC)	NG/L	2000.0	350000	(G)
CHLORPYRIFOS (DURSBAN)	NG/L	20.0	N/A	(-,
DIALLATE	NG/L	2000.0	N/A	
DIAZINON	NG/L	20.0	20000	(A1)
DICAMBA	NG/L	50.0	120000	(A1)
DICHLOROVOS	NG/L	20.0	N/A	
EPTAM	NG/L	2000.0	N/A	
ETHION	NG/L	20.0	35000	(G)
IPC	NG/L	2000.0	N/A	4445
	· NG/L	20.0	190000	(A1)
METHYL PARATHION	NG/L	50.0	9000	(03)
METHYLTRITHION	NG/L	20.0 20.0	N/A N/A	
MEVINPHOS	NG/L NG/L	20.0	50000	(A1)
PARATHION PHORATE (THIMET)	NG/L	20.0	2000	(A2)
PICHLORAM	NG/L	100.0	190000	(A2)
PROPOXUR (BAYGON)	NG/L	2000.0	140000	(03)
RELDAN .	NG/L	20.0	N/A	
RONNEL	NG/L	20.0	N/A	
VOLATILES		•		
1,1-DICHLOROETHANE	UG/L	0.10	N/A	
1,1-DICHLOROETHYLENE	UG/L	0.10	7	(01)
1,2-01CHLOROBENZENE	UG/L	0.05	200	(A1)
1,2-DICHLOROETHANE	UG/L	0.05	5	(A1)
1,2-DICHLOROPROPANE	UG/L	0.05	5	(01)
1,3-DICHLOROBENZENE	UG/L	0.10	3750	(03)
1,4-DICHLOROBENZENE	UG/L	0.10	200	(A1)
1,1,1-TRICHLOROETHANE	UG/L	0.02	200	(D1) 6 (D4)
1,1,2-TRICHLOROETHANE	UG/L	0.05 0.05		17 (D4)
1,1,2,2-TETRACHLOROETHANE	UG/L	0.05	0.	11 (04)

		DETECTION		
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE	
BENZENE	UG/L	0.05		(A1)
BROMOFORM	UG/L	0.20		(A1+)
CARBON TETRACHLORIDE	UG/L	0.20		(A1)
CHLOROBENZENE	UG/L	0.10		(03)
CHLOROO I BROHOMETHANE	UG/L	0.10		(A1+)
CHLOROFORM	UG/L	0.10		(A1+)
CIS 1,2-DICHLOROETHYLENE	UG/L	0.10		(D1)
D LCHLOROBROMOMETHANE	UG/L	0.05		(A1+)
ETHYLENE DIBROMIDE	UG/L	0.05		(D1)
ETHYLBENZENE	UG/L	0.05		4 (A3)
M-XYLENE	UG/L	0.10		(A3*)
METHYLENE CHLORIDE	UG/L	0.50		(A1)
O-XYLENE	UG/L	0.05	300	(A3*)
P-XYLENE	UG/L	0.10	300	(A3*)
STYRENE	UG/L	0.05	100	(D1)
TETRACHLOROETHYLENE	UG/L	0.05	65	(A5)
TRANS 1,2-DICHLOROETHYLENE	UG/L	0.10	70	(D1)
TOLUENE	UG/L	0.05	24	(A3)
TOTAL TRIHALOMETHANES	UG/L	0.50	350	(A1)
TRICHLOROETHYLENE	UG/L	0.10	50	(A1)
VINYL CHLORIDE	UG/L	0.10	2	(D1)
RADIONUCLIDES				
	00/1	7.0	40000	(A1)
TRITIUM	BQ/L			55# (01)
GROSS ALPHA COUNT	BQ/L	0.04		33# (01)
GROSS BETA COUNT	BQ/L	0.04	N/A	
COBALT 60	BQ/L	0.70	N/A	
CESTUM 134	8Q/L	0.70	H/A	/445
CESIUM 137	8Q/L	0.70		(A1)
1001NE 131	8Q/L	0.70	10	(A1)

[#] Equal to 15.D Picocuries/litre

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1992, 109 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment and Energy (MOEE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOEE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOEE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- i/ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant, preferably a lab area; and
- iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake, discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOEE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOEE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOEE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOEE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

PARAMETER REFERENCE INFORMATION

NAME: BENZENE

CAS#: 71-43-2

MOLECULAR FORMULAE: C6H6

DETECTION LIMIT: (FOR METHOD POCODO) 0.05 μ g/L

SYNONYMS: BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27)

CYCLOHEXATRIENE (41)

CHARACTERISTICS: COLOURLESS TO LIGHT-YELLOW, MOBILE, NONPOLAR LIQUID, OF

HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN

WITH SMOKING FLAME (30)

PROPERTIES: SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41)

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATER THRESHOLD TASTE: 0.5 mg/L IN WATER (39)

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM

SOILS OR ARE DEGRADED RATHER QUICKLY (80)

SOURCES: COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR

DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES;

COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES: DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER

COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY; DEGREASING AND CLEANSING

AGENT; GASOLINE.

REMOVAL: THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING

BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION,

OXIDATION

ADDITIONAL PROPERTIES: MOLECULAR WEIGHT: 78.12

MELTING POINT: 5.5°C (27) BOILING POINT: 80.1°C (27)

SPECIFIC GRAVITY: 0.8790 AT 20°C (27) VAPOUR PRESSURE: 100 MM AT 26.1°C (27)

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41)

LOG OCT./WATER PARTITON COEFFICIENT: 1.95 TO 2.13 (39)
CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41)

SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white seal on cap

-do <u>not</u> rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Volatiles (duplicates) -45 mL glass vial with septum

(OPOPUP)

(teflon side must be in contact with sample)

-do not rinse bottle

-fill bottle completely without bubbles

Organics

(OWOC), (OWTRI)

-1 L amber glass bottle per scan

-do <u>not</u> rinse bottle

-fill to 2 cm from top

Specific Pesticides

(OWCP), (PEOP), (PECAR)

-as per Organics

-three extra bottles must be filled

Polyaromatic. hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do <u>not</u> rinse bottle

-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Cyanide (Treated only)

-500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury

-250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO₃) and potassium dichromate (K₂Cr₂O₇) (Caution: HNO₃&K₂Cr₂O₇ are corrosive)

-250 mL glass bottle Phenols

-do not rinse bottle, preservative has been added

-fill to top of label

-4 L plastic jug Radionuclides

-do not rinse, carrier added (as scheduled)

-fill to 5 cm from top

Organic Characterization

(GC/MS - once per year)

(PBVOL), (PBEXT)

-1 L amber glass bottle; instructions

as per organic -250 mL glass bottle

-do not rinse bottle -fill completely without bubbles

Steps:

1. Let sampling water tap run for an adequate time to clear the sample line.

2. Record time of day on submission sheet.

3. Record temperature on submission sheet.

4. Fill up all bottles as per instructions.

5. Record chlorine residuals (free, combined and total for treated water only) turbidity and pH on submission sheet.

6. No smoking in area of sample location.

ii) Distribution Samples (standing water)

-500 mL plastic bottle (PET 500) General Chemistry

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

-500 mL plastic bottle (PET 500) Metals

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO3) (Caution: HNO, is corrosive)

Steps:

- 1. Record time of day on submission sheet. .
- 2. Place bucket under tap and open cold water.
- 3. Fill to predetermined volume.
- 4. After mixing the water, record the temperature on the submission sheet.

- 5. Fill general chemistry and metals bottles.
- 6. Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with white seal on cap

-do <u>not</u> rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO₃ (Caution: HNO₃ is corrosive)

Volatiles (duplicate)

(OPOPUP)

-45 mL glass vial with septum

(teflon side must be in contact with sample)

-do not rinse bottle, preservative has been added

-fill bottle completely without bubbles

Organics (OWOC)

-1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

Polyaromatic Hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Steps:

- 1. Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

	,		

