Exercício Prático 01

Aluna: Thais Andreatta da Silva Carmo

1. Monte um ½ somador no logisim.

2. Verifique a tabela verdade.

a0	b0	Soma	CarryOut
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- 3. Identifique através de um datasheet (use a web) os componentes que possuem as portas lógicas necessárias para a construção de um meio somador (portas XOR, AND e OR).
- **4.** Procure os pinos de alimentação (VCC e GND) e os pinos de entrada e saída de cada porta lógica.
- 5. Procure no simulador-97 os mesmos componentes. Atenção: Identificar os pinos que representam as entradas (A e B), as saídas (Y) e a alimentação do componente (5V = VCC e 0V = GND) através do datasheet. Utilize as chaves para as entradas e os Leds para as saídas.

Pergunta 1: O que acontece se um dos terminais de entrada de uma porta lógica não estiver conectado em 0 ou 1 (eletricamente ele deverá estar flutuando, ou seja não conectado a nenhum nível lógico).

Se um dos terminais de entrada de uma porta lógica não estiver conectado em 0 ou 1, a porta AND produzirá o resultado 1 mesmo sem a outra entrada for 0, enquanto a porta XOR produz o resultado 0 e a porta OR produz o resultado 1 nas mesmas condições.

6. Monte agora o ½ somador realizado no logisim, no simulador-97.

7. Usando outra porta do mesmo chip, monte outro ½ somador e teste para verificar o funcionamento.

8. Una os 2 meio-somadores e construa um circuito somador completo de 1 bit. *097:*

9. Levantar a tabela verdade.

somador completo

Tabela verdade:

a0	b0	ci0	s0	coO
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

10. Explicar agora o funcionamento de um somador de 4 bits. Apresentar esse somador no logisim.

Perguntas:

2) Qual o problema de tempo associado a esse tipo de somador (pense no carry), considere o atraso médio de cada porta lógica de 10 ns.

Só é possível obter um sinal confiável para o carry depois de 30ns da inserção dos sinais de entrada no circuito. Quando vários somadores são conectados entre si, estes tempos são somados e o tempo total gasto para realizar a conta do problema começa a ficar grande.

3) Qual o tempo necessário para a computação de uma soma e do vai um em um somador de 4 bits.

São gastos 120ns para gerar os 4 carrys dos 4 bits.

4) O que seria necessário para um somador de 32 bits?

Seriam necessários 32 somadores conectados entre si. Analogamente, o tempo de resposta seria de 32ns*32 = 960 ns.

5) Considerando esses tempos acima, calcule a frequência de operação de um somador de 32 bits.

$$T = 960ns$$

$$F = \frac{1}{960.10^{-9}s}$$

$$F = \frac{1}{96} \cdot 10^8 Hz$$

$$F \sim = 1 \cdot 10^6 = Hz$$

 $F = 1 MHz$

6) Você consegue propor alguma forma de tornar essa soma mais veloz?

Seria possível pegar a tabela verdade do somador completo e gerar a Soma de

produtos, e então, simplifica-la. Ou, no caso de somadores com um número maior de bits,

montar a tabela verdade do somador completo, gerar as grandes expressões das mesmas e,
então, as simplificar...