

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190808703V01

IC REPORT

(WIFI)

Applicant: PAX Technology Limited

Address of Applicant: Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road,

Wanchai, Hong Kong

Equipment Under Test (EUT)

Product Name: Communication Module

Model No.: CM20

Trade mark: PAX

FCC ID: V5PCM204GW

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 23 Aug., 2019

Date of Test: 24 Aug., to 16 Sep., 2019

Date of report issued: 18 Oct., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description	
00	18 Oct., 2019	Original	
01	18 Oct., 2019	Update page 8	

Tested by: Mike. 01 Date: 18 Oct., 2019

Test Engineer

Reviewed by: Date: 18 Oct., 2019

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	20
	6.6	BAND EDGE	
	6.6.		
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2		
7	TES	T SETUP PHOTO	54
Q	FUT	CONSTRUCTIONAL DETAILS	55

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

All measurement data were performed in accordance with ANSI C63.10: 2013 and KDB 558074 D01 15.247 Meas Guidance v05r02 of test method.

Remark

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	PAX Technology Limited
Address:	Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong
Manufacturer:	PAX Computer Technology (Shenzhen) Co., Ltd.
Address:	401-402 No.3 Building, Software Park, Nanshandistrict, Shenzhen, Guangdong, P.R.C.

5.2 General Description of E.U.T.

Product Name:	Communication Module
Model No.:	CM20
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20)) 2422MHz~2452MHz (802.11n(HT40))
Channel numbers:	11 for 802.11b/802.11g/802.11(HT20) 7 for 802.11n(HT40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	External Antenna
Antenna gain:	1.5dBi
Power supply:	Model No: GLH0901000 Input: AC100-240V, 50/60Hz, 0.5A Output: DC 9.0V, 1.0A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 5 of 55

^{1.} For 802.11n-HT40 mode, the channel number is from 3 to 9;

Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			

lest mode

Transmitting mode Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(HT20)	6.5Mbps			
802.11n(HT40)	13.5Mbps			

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
LENOVO	Laptop	SL510	2847A65	DoC

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date		
				(mm-dd-yy)	(mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020		
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019		
EMI Test Software	AUDIX	E3	Version: 6.110919b		b		
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020		
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020		
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020		
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020		
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A		
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0			

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020		
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2021		
Cable	HP	10503A	N/A	03-18-2019	03-17-2020		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an External antenna which cannot replace by end-user, the best case gain of the antenna is 3.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207				
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kl	 Н7				
Limit:	Frequency range	Limit (dRu\/\			
Limit.	(MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the loga	arithm of the frequency.				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 					
Test setup:	AUX Equipment Test table/Insula Remark: E.U.T. Equipment Under: LISN: Line Impedence State Test table height=0.8m	E.U.T EMI Receiver	ilter — AC power			
Test Instruments:	Refer to section 5.8 for d	etails				
Test mode:	Refer to section 5.3 for d	etails				
Test results:	Passed					

Measurement Data:

Product name:	Communication Module	Product model:	CM20
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
<u> </u>	MHz	dBu∀	₫B	₫B	dBu₹	dBu₹	<u>d</u> B	
1	0.162	20.43	-0.44	10.77	30.76	55.34	-24.58	Average
2	0.186	33.88	-0.42	10.76	44.22	64.20	-19.98	QP
3	0.481	32.03	-0.39	10.75	42.39	56.32	-13.93	QP
1 2 3 4 5 6 7 8 9	0.595	24.26	-0.38	10.77	34.65	46.00	-11.35	Average
5	0.614	33.62	-0.38	10.77	44.01	56.00	-11.99	
6	0.747	33.45	-0.38	10.79	43.86	56.00	-12.14	QP
7	0.747	19.82	-0.38	10.79	30.23	46.00	-15.77	Average
8	1.005	18.20	-0.38	10.87	28.69		-17.31	Average
9	1.037	29.24	-0.38	10.87	39.73	56.00	-16.27	
10	2.448	17.38	-0.42	10.94	27.90	46.00	-18.10	Average
11	15.718	24.34	-0.73	10.90	34.51		-25.49	
12	16.055	16.48	-0.75	10.91	26.64			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Communication Module	Product model:	CM20
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	<u>dB</u>	₫B	dBu₹	dBu∀	<u>d</u> B	
1	0.158	39.07	-0.68	10.77	49.16	65.56	-16.40	QP
2	0.474	40.65	-0.65	10.75	50.75	56.45	-5.70	QP
3	0.474	31.30	-0.65	10.75	41.40	46.45	-5.05	Average
4	0.555	33.86	-0.65	10.76	43.97	46.00		Average
5	0.561	40.57	-0.65	10.76	50.68	56.00		
1 2 3 4 5 6 7 8 9	0.608	32.83	-0.64	10.77	42.96	46.00		Average
7	1.000	27.68	-0.63	10.87	37.92	46.00		Average
8	1.043	38.90	-0.63	10.88	49.15	56.00	-6.85	
9	1.619	34.39	-0.66	10.93	44.66	56.00	-11.34	1 CO
10	1.619	26.58	-0.66	10.93	36.85	46.00		Average
11	2.461	26.13	-0.67	10.94	36.40	46.00		
12	2.540	33.89	-0.67	10.94	44.16	56.00	-11.84	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Measurement Data:

Test CH	Ma	Limit(dBm)	Result			
Test CH	802.11b	802.11g	802.11n(HT20) 802.11n(HT40)		LIIIII(UDIII)	Result
Lowest	16.51	14.38	13.02	13.30		
Middle	16.52	14.55	13.30	13.47	30.00	Pass
Highest	16.76	14.67	13.40	13.65		

Test plot as follows:

6.4 Occupy Bandwidth

Measurement Data:

Test CH		6dB Emission	Limit/kU=)	Result					
Test Cn	802.11b	802.11g	802.11n(HT20) 802.11n(HT40)		Limit(kHz)	Result			
Lowest	9.20	16.48	17.44	36.16					
Middle	9.20	16.56	17.52	36.16	>500	Pass			
Highest	9.20	16.56	17.44	36.48					
Test CH		99% Occupy I	Lippit/Idla	Result					
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(kHz)	Result			
Lowest	12.16	17.04	18.00	36.80					
Middle	12.08	17.04	18.00	36.64	N/A	N/A			
Highest	12.08	16.96	18.00	36.64					

Test plot as follows:

6.5 Power Spectral Density

Measurement Data:

Toot CU		Power Spectral Density (dBm)						
Test CH	802.11b	802.11g	802.11n(HT20)	Limit(dBm)	Result			
Lowest	7.05	1.00	-0.17	-2.38				
Middle	6.88	1.32	0.19	-1.93	8.00	Pass		
Highest	7.09	1.13	0.16	-1.89				

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

6.6.2 Radiated Emission Method

6.6.2 Radiated Emission N					1		
Test Requirement:	FCC Part 15 C	FCC Part 15 C Section 15.209 and 15.205					
Test Frequency Range:	2.3GHz to 2.5G	2.3GHz to 2.5GHz					
Test Distance:	3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
111.79	Fraguena	RMS	1MHz nit (dBuV/m @	3MHz	Average Value Remark		
Limit:	Frequenc	*	54.00		verage Value		
	Above 1GH	Hz -	74.00		Peak Value		
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						
Test setup:	150cm	AE EUT (Turntable)	Ho 3m Ground Reference Plane	orn Antenna To	ower		
Test Instruments:	Refer to section	5.8 for detail	S				
Test mode:	Refer to section						
Test results:	Passed						

802.11b mode:

Product Name:	Communication Module	Product model:	CM20
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu∀	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000					58.33 46.22	A 000-77 TO 11-79 TO		

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Communication Module	Product model:	CM20
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

		ReadAntenna			Cable Preamp			Over		
	Freq MHz	Freq Lev		Level Factor		Loss Factor	Level	Line	Limit	Remark
		MHz dBuV d	dB/m	m dB	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
1	2390.000									
2	2390.000	11.63	27.08	4.69	0.00	45.08	54.00	-8.92	Average	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Communication Module	Product model:	CM20	
Test By:	Mike	Test mode:	802.11b Tx mode	
Test Channel:	Highest channel Polarization:		Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

	Freq	ReadAntenna Freq Level Factor					Limit Line		
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBu√/m	dB	
1 2	2483.500 2483.500					58.85 46.89			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Communication Module	Product model:	CM20
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	ReadAntenna		Cable	Cable Preamp			Over	NAME 16
Freq MHz	Level	Factor						Remark
	MHz dBuV	dB/m						
	MHz 2483.500	Freq Level MHz dBuV 2483.500 24.11	Freq Level Factor MHz dBuV dB/m 2483.500 24.11 27.35	### Freq Level Factor Loss MHz dBuV dB/m dB	### Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 2483.500 24.11 27.35 4.81 0.00	### Freq Level Factor Loss Factor Level ##################################	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 2483.500 24.11 27.35 4.81 0.00 57.97 74.00	Freq Level Factor Loss Factor Level Line Limit

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Product Name:	Communication Module	Product model:	CM20
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor				Limit Line		Remark
	MHz	MHz dBuV	-dB/m $-dB$	dB dB	dBuV/m	dBuV/m	dB		
1 2	2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Communication Module	Product model:	CM20
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	ReadAnte Freq Level Fac						Limit Line		
	MHz	MHz dBuV dB/m	dB	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>		
1 2	2390.000 2390.000					56.88 44.00			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Communication Module	Product model:	CM20	
Test By:	Mike	Test mode:	802.11g Tx mode	
Test Channel:	Highest channel Polarization:		Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	

		ReadAntenna		Cable	Cable Preamp			Over	
		Level	Level Factor		Loss Factor		Line	Limit	Remark
		MHz dBuV dB/m	dB/m	dB dE	dB	dBuV/m	dBuV/m	dB	
	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Communication Module	Product model:	CM20
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

			Ant enna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	MHz dBuV dB		₫B	d₿	dBuV/m	dBuV/m	₫B	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

Product Name:	Communication Module	Product model:	CM20
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

		Read	ReadAnt enna		Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	MHz dBuV	BuV dB/m d	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:		Communication Mode	ule	Product model: CM20			
Test By:		Mike		Test mode:		802.11n(HT20) Tx mode	
est Channel:		Lowest channel	owest channel Polarization: Hor		Polarization:		
est Voltage:		AC 120/60Hz		Environment:		Temp: 24℃	Huni: 57%
110 Level (dBu	V/m)						
100							
80						ICES#03 CL/	ASS B (PK)
60	~~	mmmm	~~~~~	mm	n	VIGES003 CL/	ASS B (AV)
40					2		
20							
0 2310 232	20	23	50 Frequency	(MHz)			2422
	Freq	ReadAntenna Level Factor	Cable Prea Loss Fact	mp or Level	Limit Line		nark

			HALL CAMERON				THE REAL PROPERTY.		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2390,000								
2	2390.000	10.08	27.08	4.69	0.00	43.53	54.00	-10.47	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Communication Module	Product model:	CM20		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	nnel: Highest channel I		Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Communication Module	Product model:	CM20
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

		ReadAnt enna		Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	2483,500 2483,500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Product Name:	Communication Module	Product Model:	CM20		
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Re Freq Lev		Antenna Factor						
	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Communication Module	Product Model:	CM20
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					Remark
	MHz	MHz dBuV dB/m	dB	<u>dB</u>	dBu√/m	dBuV/m	 	
1 2	2390.000 2390.000							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Communication Module	Product Model:	CM20		
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

		ReadAnt enna			Cable Preamp			Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	MHz dBuV	dB/m	B/m dB	₫B	dBuV/m	dBuV/m	dB	
1	2483.500	31.42	27.36	4.81	0.00	65.29	74.00	-8.71	Peak
2	2483.500	18.17	27.36	4.81	0.00	52.04	54.00	-1.96	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Communication Module	Product Model:	CM20
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	channel Polarization: H	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

		ReadAntenna		Cable	Cable Preamp			Over	
		Level	Factor	Loss	Factor	Level	Line	Limit	Remark
		MHz dBuV dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

0.7.1 Conducted Linission							
Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spre spectrum intentional radiator is operating, the radio frequency power the is produced by the intentional radiator shall be at least 20 dB below that the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limit based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under the paragraph shall be 30 dB instead of 20 dB.						
Test setup:							
	Spectrum Analyzer						
	E.U.T						
	Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2	Radiated Emission Me	ethod							
	Test Requirement:	FCC Part 15 C S	ection 15	5.209 a	and 15.205				
	Test Frequency Range:	9kHz to 25GHz							
	Test Distance:	3m							
	Receiver setup:	Frequency	Detec	ector RBW		VBW		Remark	
	·	30MHz-1GHz	Quasi-p	oeak	120KHz	300	KHz	Quasi-peak Value	
		Above 1GHz	Peal		1MHz	3MHz		Peak Value	
		RMS 1MHz 3MHz Average Valu							
	Limit:	Frequency		Limit	(dBuV/m @3	m)		Remark	
		30MHz-88MH			40.0			uasi-peak Value	
		88MHz-216MH 216MHz-960M			43.5 46.0			uasi-peak Value uasi-peak Value	
		960MHz-1GH			54.0			uasi-peak Value	
					54.0			Average Value	
		Above 1GHz	<u>'</u>		74.0		,	Peak Value	
		The table was highest radia 2. The EUT was antenna, who tower. 3. The antennathe ground to Both horizon make the med. 4. For each suscase and the meters and to find the med. 5. The test-reconspecified Base. 6. If the emission the limit spend of the EUT whave 10dB med.	as rotated ation. as set 3 maich was reased and versuremental and versuremental and versuremental and the rotate aximum eiver syspandwidth on level of cified, the would be margin were at the argin were syspandwidth and sever sys	neters mount s varied in the vertical ent. emissing able were adirected with Moof the entes report ould b	away from the don the toped from one remaximum valued from one to maximum valued from the EUT was turned from the from t	metermone into of a meter value s of the was a control of the mode stoppie the ne by	erferent variable to four of the fine ante arrange white froughts	meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees	
	Test setup:	Below 1GHz Turn Table Ground I	e 0.8m	4m					

Measurement Data (worst case):

Below 1GHz:

Product Name:	Communication Module	Product model:	CM20
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq	Level	Footor						
		ractur	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∜	dB/m	dB	dB	dBu√/m	$\overline{dBuV/m}$	dB	
41.860	52.42	12.36	1.24	29.88	36.14	40.00	-3.86	QP
46.666	51.48	12.24	1.28	29.85	35.15	40.00	-4.85	QP
52.945	52.99	11.80	1.32	29.81	36.30	40.00	-3.70	QP
59.859	54.11	11.41	1.38	29.77	37.13	40.00	-2.87	QP
99.878	47.24	12.41	1.94	29.53	32.06	43.50	-11.44	QP
128.563	48.96	10.25				43.50	-11.36	QP
	41.860 46.666 52.945 59.859 99.878	41.860 52.42 46.666 51.48 52.945 52.99 59.859 54.11 99.878 47.24	41.860 52.42 12.36 46.666 51.48 12.24 52.945 52.99 11.80 59.859 54.11 11.41 99.878 47.24 12.41	41.860 52.42 12.36 1.24 46.666 51.48 12.24 1.28 52.945 52.99 11.80 1.32 59.859 54.11 11.41 1.38 99.878 47.24 12.41 1.94	41.860 52.42 12.36 1.24 29.88 46.666 51.48 12.24 1.28 29.85 52.945 52.99 11.80 1.32 29.81 59.859 54.11 11.41 1.38 29.77 99.878 47.24 12.41 1.94 29.53	41.860 52.42 12.36 1.24 29.88 36.14 46.666 51.48 12.24 1.28 29.85 35.15 52.945 52.99 11.80 1.32 29.81 36.30 59.859 54.11 11.41 1.38 29.77 37.13 99.878 47.24 12.41 1.94 29.53 32.06	41.860 52.42 12.36 1.24 29.88 36.14 40.00 46.666 51.48 12.24 1.28 29.85 35.15 40.00 52.945 52.99 11.80 1.32 29.81 36.30 40.00 59.859 54.11 11.41 1.38 29.77 37.13 40.00 99.878 47.24 12.41 1.94 29.53 32.06 43.50	41.860 52.42 12.36 1.24 29.88 36.14 40.00 -3.86 46.666 51.48 12.24 1.28 29.85 35.15 40.00 -4.85 52.945 52.99 11.80 1.32 29.81 36.30 40.00 -3.70 59.859 54.11 11.41 1.38 29.77 37.13 40.00 -2.87 99.878 47.24 12.41 1.94 29.53 32.06 43.50 -11.44

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Communication Module	Product model:	CM20
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	dB	<u>dB</u>	dBu√/m	dBu√/m	dB	
1	58.819	47.39	11.45	1.38	29.78	30.44	40.00	-9.56	QP
2	100.229	47.55	12.50	1.94	29.53	32.46	43.50	-11.04	QP
1 2 3 4 5 6	140.342	46.41	9.50	2.41	29.27	29.05	43.50	-14.45	QP
4	250.301	42.44	12.70	2.81	28.54	29.41	46.00	-16.59	QP
5	287.990	39.70	13.41	2.91	28.47	27.55	46.00	-18.45	QP
6	851.035	33.66	22.59	4.18	28.00	32.43	46.00	-13.57	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz	•			802.11b								
			Toet ch									
Test channel: Lowest channel Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	49.05	30.94	6.81	41.82	44.98	74.00	-29.02	Vertical				
4824.00	49.01	30.94	6.81	41.82	44.94	74.00	-29.06	Horizontal				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	39.46	30.94	6.81	41.82	35.39	54.00	-18.61	Vertical				
4824.00	39.17	30.94	6.81	41.82	35.10	54.00	-18.90	Horizontal				
			Test ch	nannel: Mido	dle channel							
		T		tector: Peak	v Value		ı					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	49.12	31.20	6.85	41.84	45.33	74.00	-28.67	Vertical				
4874.00	49.08	31.20	6.85	41.84	45.29	74.00	-28.71	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	38.69	31.20	6.85	41.84	34.90	54.00	-19.10	Vertical				
4874.00	38.47	31.20	6.85	41.84	34.68	54.00	-19.32	Horizontal				
			Test ch	annel: High	est channel							
			De	tector: Peak	Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	48.81	31.46	6.89	41.86	45.30	74.00	-28.70	Vertical				
4924.00	49.69	31.46	6.89	41.86	46.18	74.00	-27.82	Horizontal				
		,	Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	38.96	31.46	6.89	41.86	35.45	54.00	-18.55	Vertical				
4924.00	38.39	31.46	6.89	41.86	34.88	54.00	-19.12	Horizontal				
		-			-							

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11g								
			Test ch	nannel: Lowe	est channel							
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	48.97	30.94	6.81	41.82	44.90	74.00	-29.10	Vertical				
4824.00	49.03	30.94	6.81	41.82	44.96	74.00	-29.04	Horizontal				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	38.76	30.94	6.81	41.82	34.69	54.00	-19.31	Vertical				
4824.00	39.54	30.94	6.81	41.82	35.47	54.00	-18.53	Horizontal				
			Test ch	nannel: Mido	dle channel							
				tector: Peak								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	49.06	31.20	6.85	41.84	45.27	74.00	-28.73	Vertical				
4874.00	49.27	31.20	6.85	41.84	45.48	74.00	-28.52	Horizontal				
			Dete	ctor: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	38.96	31.20	6.85	41.84	35.17	54.00	-18.83	Vertical				
4874.00	38.94	31.20	6.85	41.84	35.15	54.00	-18.85	Horizontal				
			Test ch	annel: High	est channel							
			De	tector: Peak	Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	48.89	31.46	6.89	41.86	45.38	74.00	-28.62	Vertical				
4924.00	49.72	31.46	6.89	41.86	46.21	74.00	-27.79	Horizontal				
			Dete	ctor: Avera	ge Value							
Frequency (MHz)	Read Level	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
()	(dBuV)	(ub/III)	(45)	()								
4924.00	(dBuV) 39.35	31.46	6.89	41.86	35.84	54.00	-18.16	Vertical				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11n(HT	[20]							
			Test ch	nannel: Low								
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	48.98	36.06	6.81	41.82	50.03	74.00	-23.97	Vertical				
4824.00	48.69	36.06	6.81	41.82	49.74	74.00	-24.26	Horizontal				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	38.64	36.06	6.81	41.82	39.69	54.00	-14.31	Vertical				
4824.00	38.49	36.06	6.81	41.82	39.54	54.00	-14.46	Horizontal				
				nannel: Midd								
		T T		tector: Peal	k Value		T					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	48.76	36.32	6.85	41.84	50.09	74.00	-23.91	Vertical				
4874.00	48.35	36.32	6.85	41.84	49.68	74.00	-24.32	Horizontal				
		,	Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	38.92	36.32	6.85	41.84	40.25	54.00	-13.75	Vertical				
4874.00	38.94	36.32	6.85	41.84	40.27	54.00	-13.73	Horizontal				
			Test ch	annel: High	est channel							
		,	De	tector: Peak	v Value		T					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	48.75	36.58	6.89	41.86	50.36	74.00	-23.64	Vertical				
4924.00	49.32	36.58	6.89	41.86	50.93	74.00	-23.07	Horizontal				
				ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	39.47	36.58	6.89	41.86	41.08	54.00	-12.92	Vertical				
4924.00	38.58	36.58	6.89	41.86	40.19	54.00	-13.81	Horizontal				
Remark.												

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11n(HT	40)								
	Test channel: Lowest channel												
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4844.00	48.95	36.06	6.81	41.82	50.00	74.00	-24.00	Vertical					
4844.00	48.72	36.06	6.81	41.82	49.77	74.00	-24.23	Horizontal					
Detector: Average Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4844.00	38.74	36.06	6.81	41.82	39.79	54.00	-14.21	Vertical					
4844.00	38.69	36.06	6.81	41.82	39.74	54.00	-14.26	Horizontal					
Test channel: Middle channel													
			De	tector: Peal	k Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4874.00	48.95	36.32	6.85	41.84	50.28	74.00	-23.72	Vertical					
4874.00	48.67	36.32	6.85	41.84	50.00	74.00	-24.00	Horizontal					
			Dete	ector: Avera	ge Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4874.00	38.56	36.32	6.85	41.84	39.89	54.00	-14.11	Vertical					
4874.00	38.91	36.32	6.85	41.84	40.24	54.00	-13.76	Horizontal					
			Test ch	annel: High	est channel								
			De	tector: Peal	Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4904.00	48.95	36.45	6.87	41.85	50.42	74.00	-23.58	Vertical					
4904.00	48.37	36.45	6.87	41.85	49.84	74.00	-24.16	Horizontal					
			Dete	ector: Avera	ge Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4904.00	38.64	36.45	6.87	41.85	40.11	54.00	-13.89	Vertical					
4904.00	38.52	36.45	6.87	41.85	39.99	54.00	-14.01	Horizontal					
Remark:													

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

7 Test Setup Photo

8 EUT Constructional Details

Reference to the test report No.: CCISE190808701

-----End of report-----