Show:
$$g_{\mathcal{R}} \leq a_{\mathcal{R}}$$

STEPS

 $\begin{cases} v \in T_{V} = \mathcal{R}V \end{cases}$

1. Basis $\begin{cases} v \in V_{2}, \dots, v_{n} \end{cases}$
 $\begin{cases} v \in T_{V} = \mathcal{R}V \end{cases}$

$$\mathcal{B} = \{ \{v_1, v_2, ..., v_n \} \}$$

$$3. T: V \rightarrow V$$

$$\mathcal{X}_{+} = (2 - 2)^{k} \mathcal{X}_{g}$$

$$\Rightarrow g_{n} \leq q_{n}$$

enample:

 $q_{\lambda} = 1 \qquad i \quad Q_{\lambda} = 3$

La calculate eigenvalues

corresponding eigenvectors

which gives you the ligen space 6) read off the olg. and geom. multiplicities.

$$\begin{array}{c} 2. a \\ A = \\ 2 \\ 4 \end{array}$$

$$2(a) = (n-1)(n-4) + 2$$

$$= n^2 - 5n + 4 + 2$$

$$= (q-2)(q-3)$$

$$n = 2$$
 and 3

$$a_2 = 1 ? a_7 =$$

$$E_3 = \left\{ \begin{bmatrix} 9 \\ -2n \end{bmatrix}, 9 \in 9 \right\}$$

3. $1^2 = pd$

STEPS

as de compose V. $b_{n} \quad \text{kor} \left(\left\{ + \right\} d \right) = \frac{20}{2}$ $C_{n} \quad \sqrt{\frac{1}{2}} \left(\sqrt{\frac{1}{2}} + \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} \right)$

 $f = id \Leftrightarrow fv = V$ Ver (f-id) = V

4.
$$p \in K[\eta]$$
 minimum degree st
 $p(T) = 0$
a) $p(q) = (n-2)g(q)$
 $g(q) \in K[\eta]$
b) $p(T) = 0$ using (a)
(c) use minimality of p .
 $T = \begin{bmatrix} 1 & 1 & 7 & p(T) = T^3 + T^2 \\ 0 & 1 & p(T) = T^3 + T^2 \\ p = \xi q; q = q; \in K$

6. a)
$$\int (V_{0}) = V_{1}$$

$$\forall V \in V_{0}$$

$$\int V = V_{0}$$

$$\int$$

 $\lambda_1, \lambda_2, \ldots, \lambda_n$ g: M1/12, 00, Mn

9 vo = No Vo 9 | vo = 7; v;

same eigen vectors. different eigenvalues.

7, Ka

 $T: \left(q_{1}, q_{2}, n_{0}, \right)$ $\rightarrow \left(q_{2}, q_{3}, n_{0}, \right)$

- · eigennatures and eigennectors?
- · how does this help?

$$| , T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(17, 9)^{2} (71, 179)^{2}$$
 -20.74