1. (1 point) Consider figure 1. Pink points represent class 1 while blue points represent class 2. What will be the label predicted by 3-NN classifier on the new green point? Use Euclidean distance as distance metric. Assume coordinates of all points are integers.

Figure 1:

A. Class 1

B. Class 2

C. can not be determined

Answer: A Solution:

Point	Distance from new point	Class	Rank
(3,3)	$\sqrt{(3-2)^2 + (3-6)^2} = \sqrt{10}$	blue	3
(4,2)	$\sqrt{(4-2)^2 + (2-6)^2} = \sqrt{20}$	blue	5
(5,4)	$\sqrt{(5-2)^2 + (4-6)^2} = \sqrt{13}$	blue	4
(5,6)	$\sqrt{(5-2)^2 + (6-6)^2} = \sqrt{9}$	pink	2
(3,8)	$\sqrt{(3-2)^2 + (8-6)^2} = \sqrt{5}$	pink	1
(5,8)	$\sqrt{(5-2)^2 + (8-6)^2} = \sqrt{13}$	pink	4

Since the three nearest neighbours have labels (pink, pink, blue), hence the predicted label should be pink, i.e. class 1.

- 2. (1 point) What will be the class label for 4-NN classification? Use Euclidean distance as distance metric.
 - A. Class 1
 - B. Class 2
 - C. can not be determined

Answer: B

Solution:

Looking at the table created in solution to previous question, there there two candidate points for 4^{th} neighbour. Hence the predicted label can not be computed deterministically.

3. (1 point) What will be the regression output label associated with the green point, if 3-NN regressor is used? x axis represents feature value and y axis represents corresponding label value. Use Euclidean distance as distance metric. Use mean strategy to compute label from the k nearest neighbours.

Answer: 6

Solution:

x	y	Distance from new point	Rank
3	3	(3-2)=1	1
4	2	(4-2)=2	3
5	4	(5-2)=3	4
5	6	(5-2)=3	4
3	8	(3-2)=1	1
5	8	(5-2)=3	4

Since the mean strategy is used, the predicted label should be $\frac{8+3+2}{3} = 4.33$

4. (1 point) A class of distributions is in the exponential family if it can be written in the form $p(y;\eta) = b(y) \exp(\eta^T T(y) - a(\eta))$. For Bernoulli distribution with mean ϕ

A.
$$T(y) = -y$$
$$a(\eta) = -\log(1 - \phi)$$
$$b(y) = 1$$

B.
$$T(y) = y$$

 $a(\eta) = \log(1 - \phi)$
 $b(y) = 1$

C.
$$T(y) = y$$

 $a(\eta) = -\log(1 - \phi)$
 $b(y) = 1$

D.
$$T(y) = -y$$

 $a(\eta) = \log(1 - \phi)$
 $b(y) = 1$

Answer: C

Solution: Refer to slides for this question.

5. (1 point) Given the following training set:

Point	X	у
A.	(-8,20)	0.4
В.	(-12, 11)	0.6
С.	(0, 26)	0.1
D.	(-5, 5)	1.0
E.	(-1, 22)	0.8
F.	(-7, 1)	-0.3

Then the target value of the test point (-10,0) obtained by performing 1-nearest neighbor regression using the Euclidean metric will be:

- A. 0.4
- B. 0.6
- C. 0.1
- D. 1.0
- E. -0.3
- F. 0.8

Answer: E

Solution:

Point	X	У	Distance
A.	(-8,20)	0.4	$\sqrt{(-8 - (-10))^2 + (20 - 0)^2} > 20$
В.	(-12, 11)	0.6	$\sqrt{(-12-(-10))^2+(11-0)^2} > 11$
С.	(0, 26)	0.1	$\sqrt{(0-(-10))^2+(26-0)^2} > 26$
D.	(-5, 5)	1.0	$\sqrt{(-5-(-10))^2+(5-0)^2} > 5$
E.	(-1, 22)	0.8	$\sqrt{(-1-(-10))^2+(22-0)^2} > 22$
F.	(-7, 1)	-0.3	$\sqrt{(-7 - (-10))^2 + (1 - 0)^2} = 3$

By observing from above table, the closest point is F, hence label F should be the correct answer, i.e. -0.3.

6. (1 point) For the following vectors, select the correct values of Euclidean and Manhattan distances respectively:

$$x = [3, -45, 96, 56, -3.9], y = [33, -102, 7, 0.7, -10]$$

- A. 123.15, 237.4
- B. 100.88, 237.4
- C. 123.15, 237.6
- D. 100.88, 237.6

Answer: A

Solution: Euclidean Distance:

$$\sqrt{(3-33)^2 + (-45-(-102))^2 + (96-7)^2 + (56-0.7)^2 + (-3.9-(-10))^2}$$

$$= \sqrt{900 + 3249 + 7921 + 3058.09 + 37.21}$$

$$=\sqrt{15165.3}$$

$$=123.147$$

Manhattan Distance:

$$\begin{aligned} &|(3-33)|+|(-45-(-102))|+|(96-7)|+|(56-0.7)|+|(-3.9-(-10))|\\ &=30+57+89+55.3+6.1\\ &=237.4 \end{aligned}$$

- 7. (1 point) Which of the following statements are true? (Multiple options may be correct.)
 - A. kNN models with low values of k produce complex decision boundaries.
 - B. kNN models with high values of k produce complex decision boundaries.
 - C. kNN models with low values of k produce simple decision boundaries.
 - D. kNN models with high values of k produce simple decision boundaries.

Answer: A, D

8. (1 point) Find the Manhattan distance between $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ and $\begin{bmatrix} 2\\0\\0 \end{bmatrix}$

Answer: 2

Solution: Manhattan distance can be computed as following:

$$= |1 - 2| + |0 - 0| + |1 - 0|$$

= 2

Connected questions Q9-Q12 Consider the following vector $\begin{bmatrix} 1\\2\\-1\\3 \end{bmatrix}$. Use softmax function to answer the following

- 9. (1 point) Probability associated with first element of the vector is **Answer:** 0.088 (0.086 to 0.091)
- 10. (1 point) Probability associated with second element of the vector is **Answer:** 0.241 (0.238 to 0.244)
- 11. (1 point) Probability associated with third element of the vector is $\mathbf{Answer:}\ 0.012\ (0.010\ \mathrm{to}\ 0.014)$
- 12. (1 point) Probability associated with fourth element of the vector is **Answer:** 0.657 (0.637 to 0.667)

Solution: Solution of connected questions Q9-12: Lets call the pertinent vector **a**.

$$\mathbf{a} = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 3 \end{bmatrix}$$

$$e^{\mathbf{a}} = \begin{bmatrix} 2.718 \\ 7.389 \\ 0.367 \\ 20.085 \end{bmatrix}$$

$$\frac{e^{\mathbf{a}}}{sum(e^{\mathbf{a}})} = \begin{bmatrix} 0.088\\ 0.241\\ 0.012\\ 0.657 \end{bmatrix}$$

- 13. (2 points) Consider a 3-dimensional vector $\mathbf{v} = [2.1 \ 4.8 \ 3.5]$ of arbitrary real values. If you apply the softmax function to this vector, which of the following is the output 3-dimensional vector of real values?
 - A. [0.201 0.461 0.336]
 - B. [0.886 0.0889 0.0242]
 - C. [0.0502 0.7464 0.2034]
 - D. [0.440 0.315 0.244]

Answer: C

Solution:

Using similar approach as in previous question:

$$\mathbf{v} = \begin{bmatrix} 2.1 \\ 4.8 \\ 3.5 \end{bmatrix}$$

$$e^{\mathbf{v}} = \begin{bmatrix} 8.166\\121.510\\33.115 \end{bmatrix}$$

$$\frac{e^{\mathbf{v}}}{sum(e^{\mathbf{v}})} = \begin{bmatrix} 0.050\\0.746\\0.203 \end{bmatrix}$$