BEST AVAILABLE SOFY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-345615

(43) Date of publication of application: 14.12.2001

(51)Int.CI.

H01Q 1/22 B60R 25/00 E05B 1/00

(21)Application number: 2000-163100

(71)Applicant: AISIN SEIKI CO LTD

(22)Date of filing:

31.05.2000

(72)Inventor: MURAKAMI YUICHI

KAMO MITSUHIRO **MUSHIAKI EIJI** MORI KAZUYOSHI

(54) ANTENNA BUILT IN DOOR HANDLE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a structure of antenna which can be housed within a door handle by utilizing a limited space in the door handle, is given no influence due to impact by an vehicle, and is provided with a waterproof measure.

SOLUTION: An antenna 10 is provided with a bobbin 111 made of resin in which a ferrite 12 is arranged in the inside. Coils 13, 13a, and 14 are wound around its outer circumference, and it functions as an antenna by supplying an electric power to the coils 13, 13a, and 14, The antenna 10 is housed in a metallic door handle 2 having an opening 22, and the opening 22 is covered with a door handle cover 2c made of resin. In such an antenna 1 built in the door handle, a terminal 6 is formed on the one side of the bobbin 11 along the lengthwise direction of the door handle 2, so that one end of the terminal 6 is connected with the end of the coils 13 and 14, while the other end thereof is used to supply an electric power to the coils 13, 13a, and 14 therethrough.

LEGAL STATUS

[Date of request for examination]

08.02.2002

[Date of sending the examiner's decision of

16.12.2003

rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision 2004-01242

特開2001-345615 (P2001-345615A)

(43)公開日 平成13年12月14日(2001.12.14)

(51) Int.Cl.7	識別記号	FI	テーマコード(参考)	
H01Q 1/22		H01Q 1/22	A 5J047	
B60R 25/00	606	B 6 0 R 25/00	606	
E05B 1/00	3 0 1	E05B 1/00	301B	

審査請求 未請求 請求項の数5 OL (全 7 頁)

	00000011	(71)出願人	特顧2000-163100(P2000-163100)	(21)出願番号
	アイシン精機株式会社			
	愛知県刈谷市朝日町2丁目1番地		平成12年5月31日(2000.5.31)	(22)出顧日
	村上 裕一	(72)発明者	•	
アイシ	爱知県刈谷市朝日町2丁目1番地			
	ン精機株式会社内			
	加茂 光広	(72)発明者		
アイシ	愛知県刈谷市朝日町2丁目1番地			
	ン精機株式会社内			
	虫明 栄司	(72)発明者		
アイシ	愛知県刈谷市朝日町2丁目1番地			
	ン精機株式会社内			

ドアハンドル内蔵アンテナ (54) 【発明の名称】

(57)【要約】

【課題】 ドアハンドル内の限られたスペースを有効利 用し、ドアハンドル内に配設が可能であり、車両の衝撃 等でアンテナが影響を受けず、確実な防水対策が施され たアンテナ構成とする。

【解決手段】 フェライト12が内部に配設され、フェ ライト12の外周にコイル13, 13a, 14が巻かれ た樹脂性のボビン11をもち、コイル13, 13a, 1 4に給電を行うことによりアンテナ10として機能させ る。そのアンテナ10を開口部22を有する金属性のド アハンドル2内に配設し、開口部22が樹脂性のドアハ ンドルカバー 2 c で覆うドアハンドル内蔵アンテナ1に おいて、ボビン11の片面にドアハンドル2の長手方向 に沿う端子6を設け、その端子6の一端でコイル13, 14の端部との接続、他端で外部からコイル13, 13 a, 14への給電が夫々なされるようにした。

【特許請求の範囲】

【請求項1】 フェライトが内部に配設され、外周にコイルが巻かれた樹脂性のボビンが、開口部を有する金属性のドアハンドル内に配設され、前記コイルに給電がなされることによりアンテナとして機能するドアハンドル内蔵アンテナにおいて、

前記ボビンの一側に前記ドアハンドルの長手方向に沿う 端子を設け、該端子の一端で前記コイルの端部との接 続、他端で外部から前記コイルへの給電が夫々なされる ようにしたことを特徴とするドアハンドル内蔵アンテ ナ。

【請求項2】 前記ポピンを樹脂性のケースに収めて固定し、ポッティングを施したことを特徴とする請求項1 に記載のドアハンドル内蔵アンテナ。

【請求項3】 前記ボビンの一端にフランジを設け、該フランジと前記端子により共振容量を挟持し固定したことを特徴とする請求項2に記載のドアハンドル内蔵アンテナ。

【請求項4】 前記端子とアンテナ外部との接続点をドアハンドル前方に集中させたことを特徴とする請求項3 に記載のドアハンドル内蔵アンテナ。

【請求項5】 前記端子の端部を段部形状として、前記接続点は段部にて固定したことを特徴とする請求項4に記載のドアハンドル内蔵アンテナ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両ドアを開閉するドアハンドルにアンテナが内蔵されたドアハンドル内 蔵アンテナに係わる。

[0002]

【従来の技術】従来、2つの異なる磁界成分が発生するようにしたアンテナの構成は、例えば、特開平11-340734号公報に示されている。この公報に示されるアンテナ(ループアンテナ)は、フェライトに巻かれたコイルと直列に接続された共振容量C1により直列共振回路を形成する第1アンテナと、第1アンテナの外側に巻かれたコイルおよびフェライトに巻かれたリンクコイルが直列接続されて共振容量C2が並列接続され並列共振回路を形成する第2アンテナを設け、第1アンテナに直列に給電がなされることにより、2つの異なる磁界成分が発生するアンテナとして機能する。

[0003]

【本発明が解決しようとする課題】しかしながら、上記の構造を有するループアンテナを車両のドアハンドル等に設けた場合、極めて限られたスペースに配設しなくてはならない。例えば、上記公報に示されるように、フェライト、ボビン、コイルがあればアンテナの一要素を構成するが、ボビンに巻かれたコイルの端部とアンテナ外部との接続点の形状や接続点の方向等により、ループアンテナ全体の外形が大きくなってしまい、特定のスペー

ス内に配設しきれなくなってしまう。

【0004】また、ドアハンドルは意匠面から見栄えの 向上を目的として、通常では金属から成る部材の表面に メッキが施されているが、メッキは導体であるため、車 両の衝撃等によりメッキ部位がアンテナとショートしな いような構成にして、アンテナに影響を与えないように することが必要となる。

【0005】更に、ドアハンドルは車両の外部に設けられることから、ドアハンドル内部にアンテナを設ける場合には確実な防水対策が必要となる。

【0006】よって、本発明は上記の問題点に鑑みてなされたものであり、ドアハンドル内の限られたスペースを有効利用し、ドアハンドル内に配設が可能なアンテナ装置とすること、車両の衝撃等でアンテナが影響を受けない構成とすること、確実な防水対策が施された構成とすること、を技術的課題とする。

[0007]

【課題を解決するための手段】上記の課題を解決するために講じた技術的手段は、フェライト(12)が内部に配設され、外周にコイル(13,14)が巻かれた樹脂性のボビン(11)が、開口部(22)を有する金属性のドアハンドル(2)内に配設され、前記コイル(13,14)に給電がなされることによりアンテナ(10として機能するドアハンドルカバー(2c)により覆われた内蔵型のドアハンドル内蔵アンテナ(1)において、前記ボビン(11)の一側に前記ドアハンドル

- (2) の長手方向に沿う端子(6) を設け、該端子
- (6)の一端で前記コイル(13, 14)の端部との接続、他端で外部から前記コイルへの給電が夫々なされるようにしたことである。

【0008】これによれば、ボビンの一側にドアハンドルの長手方向に沿う端子を設け、端子の一端でコイルの端部との接続、他端で外部からコイルへの給電が夫々なされるようにしたことにより、ボビンの一側にコイルに対して給電を行う給電ラインを集中させ、ドアハンドル内に配設が可能なドアハンドル内蔵アンテナとすることが可能となる。つまり、給電ラインをまとめ、ドアハンドル内のスペースを有効利用し、端子を介して外部からコイルへ給電し、フェライトの周囲にコイルが巻かれたものをアンテナとして機能させることが可能である。

【0009】この場合、ボビン(11)を樹脂性のケース(5)に収めて固定し、ポッティングを施せば、コイルが巻かれたボビンはケース内に固定して収められたアンテナはポッティングにより確実に固定され、ケース内での防水が行える。また、ポッテッングにより確実に固定されるので、車両の衝撃等で金属性のドアハンドルに、例えば、コイル同士あるいはコイルとコイル周辺に位置する導電部材(例えば、ドアハンドル等)との短絡が防止され、アンテナに影響を与えない構成とすることが可能となる。

【0010】また、ボビン(11)の一端にフランジ (11f)を設け、フランジ (11f)と端子(6)に より共振容量(C2)を挟持し固定すれば、アンテナの 共振容量がコイルが巻かれたボビンの一端に設けられる ことから、共振容量に接続されるラインが短くなり、ノイズ等がのることが防止され、アンテナに対する発振が 安定する。

【0011】更に、端子(6)とアンテナ外部との接続点(CP)をドアハンドル前方に集中させれば、ドアハンドルがグリップハンドルの場合には、ドアハンドルの前部は回動範囲が後部に比べて少ないため、接続点でのストレスがかかりにくい。

【0012】更にその上、端子(6)の端部を段部形状として、接続点は段部(SP)にて固定すれば、ドアハンドルの形状が湾曲していても、ドアハンドル内の空いたスペースを有効利用したアンテナの配設が行える。

[0013]

【発明の実施の形態】以下、本発明の一実施形態を図面 を参照して説明する。

【0014】図1は本発明のドアハンドル内蔵アンテナ 1を、車両ドア(ボデー)3に取付けられるドアハンドル(2)内に配設した図を示している。本実施形態では、一例としてドアハンドル2をグリップ型ハンドルとして以下説明を行うが、これに限定されないものとする。

【0015】車両に取付けられるドアハンドル2は、通常、乗降時に開閉される車両ドア3の後方に設けられている。ドアハンドル2は図1,図2に示されるように、ベース部2aから車両ドア3の内側に連続的に延びるアーム2bを軸としてグリップ部GPの開閉動作を行うことにより、車両ドア3を開閉することができる。車両ドア3を開状態にしたいときには、車両ドア3の凹部3aに手を入れ、ドアハンドル2のグリップ部GPを握り、後方(リア)を車両外方(図1の半時計方向)に回動させることにより、車両ドア3を開状態にすることができ、閉める場合には車両ドア3を開方向とは逆方向に押せば良い。

【0016】ドアハンドル2は前後に厚みをおびたベース部2aをもち、意匠面を向上させることを目的として中心部にいくに従って緩やかに湾曲した形状を呈している。また、ドアハンドル2は強度を持たせるため、金属性(例えば、亜鉛等)のダイキャストより作られており、外表面にクロム等のメッキが施されている。ドアハンドル2は外方(取付け時に外側となる方向)に開口部22を有し、そこに後述するアンテナ10が配設される。ドアハンドル内に配設されるアンテナ10は、開口部22が風雨にさらされてもアンテナ機能に影響がない様に、開口部22全体が樹脂性のドアハンドルカバー2cで覆われている。ドアハンドルカバー2cは外形がドアハンドルの湾曲した外形に一致するよう作られてお

り、前方にてドアハンドルカバー2cの内面に設けられた段付きの突起2pがドアハンドル2の取付け孔に挿入され、熱かしめにより固定され、後方にてビス等の固定部材によりドアハンドル2に対して固定される。

【0017】ドアハンドル2の前方に設けられたアーム2bには開口部22からつながる孔2baが貫通して設けられている。この孔2baの中をハーネス7が通り、アンテナ10への給電ラインとなるハーネス7を介して、車両ドア3とドア内パネルの間に設けられた共振容量C1および発振器OCを含んだ給電装置と外部接続される。それ故、ハーネス7を介して外部から給電を行うことによって、ドアハンドル2のグリップ部内部に設けられた構造体はアンテナ10として機能する。

【0018】次に、アンテナ10について説明する。図3は本実施形態で採用したアンテナ10の構成を解かり易く示した説明図である。ここで使用するアンテナ10は、コイル13,13a,14が巻かれた第1アンテナANT1および第2アンテナANT2を備えている。この第1アンテナANT1は、アンテナ効率を良くするためにマンガンジンク、ニッケルジンク系等の材料から成る円筒形もしくは直方体形状をした薄いフェライト12に、導電性の良い材質(例えば、銅等)から成るコイル(第1コイル)14が巻かれている。

【0019】第2アンテナANT2はフェライト12の 外側に設けられ、フェライト12の長手方向の外周にフ ェライト12と所定の空隙を保った状態でフェライト1 2に対して相似形となっており、ABS樹脂やポリカー ボネート等の樹脂により形成されたボビン11に導電性 の良い材質から成るコイル (第2コイル) 13が巻かれ ている。この場合、第2アンテナANT2のボビン11 に巻かれるコイル13の一部 (一端) は近接した位置で フェライト12へと延び、フェライト12に所定回数だ け巻かれ、フェライト12に対してリンクコイル (結合 コイルともいう) 13aとなっている。従って、第2ア ンテナANT2にはコイル13のみが巻かれる状態とな るが、フェライト12にはリンクコイル13aとコイル 14とが巻かれた状態となる(図3の(b)参照)。 尚、図3の(b)は、第1アンテナANT1、第2アン テナANT 2に対しての、コイル13、14およびリン

テナANT 2 に対しての、コイル13、14およびリンクコイル13aの巻き方を示した単なる説明図であり、 実際の組付けの外形形状を示すものではない。 【0020】この構成において、第2アンテナANT2

【0020】この構成において、第2アンテナANT2 を構成するコイル13に巻かれた一端2とコイル13か らフェライト12へと延びるリンクコイル13aの一端 (2')に共振容量(コンデンサ)C2を接続し、フェ ライト12に巻かれたコイル14の両端(1),

(1') にコンデンサC1と電源(発振器) OCを直列 接続する。

【0021】つまり、フェライト12に巻かれたコイル14と直列に接続された共振容量C1により直列共振回

路を形成する第1アンテナANT1と、第1アンテナANT1の外側にフェライト12と相似形で巻かれたコイル13およびフェライト12に巻かれたリンクコイル13aが直列接続されて共振容量C2が並列接続され並列共振回路を形成する第2アンテナANT2を設け、第1アンテナANT1に直列に給電することで、2つの磁界を直交させることができる。この場合、図3の(c)に示すようにリンクコイル13aとコイル14が直列接続された等価回路となる。(この図において、L1、L21、L22はコイル14、13a、13のインダクタンスを示す)。

【0022】この等価回路で、電源OCにより電圧(例えば、高周波電圧)を印加すると、図3の(d)に示されるように、x方向に磁界が形成されて第1アンテナANT1側からフェライト12に巻かれたリンクコイル13aが励振されて、コイル13に電流が流れる。この場合、リンクコイル13aおよびコイル14により発生する磁界方向はHx(x方向)となり、コイル13により発生する磁界方向はHz(z方向)となり、2つの磁界成分Hx,Hzは互いに直交するものとなる。

【0023】このとき、2つのコイルの結合度(リアクタンスL21)はリンクコイル13aの巻き数で自由に設定することができ、フェライト12に巻かれたコイルは使用周波数 f で直列共振となるように、 $f=1/(2\pi \sqrt{(L\cdot C)})$ という関係式により共振容量C1、C2を設定することができる。

【0024】具体的には、ボビン11を72×14×4.5mmの中に、所定間隔1mmだけ離してフェライト(66×8×2.5mm)12を配設し、コイル13を26回(インダクタンスが64 μ H)、リンクコイル13aを5回巻き、コイル14を21回巻き(インダクタンスが30 μ H)、コンデンサC1(0.047 μ F)、C2(0.022 μ F)として、134KHzの周波数を印加すれば、互いに直交する磁界Hx,Hzが発生する。

【0025】このような構成をとれば、アンテナ構造が 簡単になり、アンテナに起因しない空間をなくし、小型 化が可能となる。しかも、コイルの巻き方による簡単な 構成で2つのアンテナANT1, ANT2から発生する 磁界が互いに直交するアンテナとなる。

【0026】そこで、このような巻き方を施したアンテナ10を使用して、アンテナ10をドアハンドル内に設けた具体的な構成について、図4から図6を参照して詳細に説明する。

【0027】本実施形態では、アンテナ10のコイル13,13a,14への給電は端子6により行われるようになっている。銅に錫メッキが施された端子6を4本使用し、端子6はドアハンドル2の長手方向に基本的沿った形で細長い形状をしている。その内2本の端子(外側の端子)6の一端は、端部近傍に段部SPを1箇所に有

し、残りの2本の端子(内側の端子)6の 端は同様に 端部近傍に1箇所の段部SPを有している。一方、端子 6の他端はそれぞれ直角に曲がっており、直角に曲がっ た部位にはコイル13,13a,14の巻付け時に、コ イル13,13a,14を巻付けて、引っかけられる引 っかけ部6a,6bをそれぞれ有しており、また、引っ かけ部6a,6bの中央にはコイル13,13a,14 の端部を挟み込んでカシメが行なわれるカシメ部6a a,6ab.6ba,6bbを有している。

【0028】このような段部SPを有する4本の端子6 を金型内に平行に並べ、平行に並べた状態でインサート 成形により、液晶ポリマーやPBT等の流動性の良い樹 脂材を金型に流し込んで、端子6が一面にインサートさ れた直方体のボビン11を使用している(図4ではボビ ン11の一側を示す)。このように、ボビン成形直後に は一方の端(ハーネス接続側)は細長い形状をした段部 SPを有する開放端となり、それぞれが4本略平行に並 んだ状態となる。立方体形状をしたボビン11は図6に 示されるように板厚方向においては、内部にフェライト 12が配設される凹部を有し、ボビン11に形成された 凹部に直方体形状のフェライト12が隙間なく挿入さ れ、フェライト12が挿入された凹部の開口をボビンカ バーで覆う(図6に示すフェライト12のハッチング部 分をポピンカバーにより覆う)。よって外部からはフェ ライト12が実質的に見えないようになっている。この ようにボビン内にフェライト12が設けられたボビン1 1に対して、2軸方向の磁界を発生させる第1アンテナ ANT1および第2アンテナANT2を形成するため、 コイル13, 13a, 14により巻線が施される。ボビ ン11に巻かれる巻線形態は、図3で上記した巻線のし かたをとっており、図3の(b)に示される巻線の端部 (1),(1'),(2),(2')は、 図4においてカシメ部6aa, 6ab, 6ba, 6bb の位置となるように巻かれ、そこでカシメにより固定さ れる。

【0029】このように、コイル13,13a,14が巻かれたボビン11の一端(前方側)にはフランジ11fが同方向2箇所に設けられており、フランジ11fと一方が開放端となった端子6との間に共振容量C2がらは内方向に曲がった上字型の端子20が2本でており、共振容量C2の端子20は4本ある端子6の内側2本と抵抗溶接により接合される。この場合、内側の2本の端子6は端部近傍が段部SPになっていることから、段部SPにて端子6の端部6eと共振容量C2の端子20の端部20aはそれぞれ抵抗溶接により接合される。従って、共振容量C2はコイル13にできるだけ近い位置に配設することにより、共振容量C2に接続されるラインを短くし、そのラインにノイズがのることが防止されることから、アンテナ10としての発振を安定化させることがで

きる。

【0030】一方、残りの外側2本の端子6も同じく段部SPを有し、4本ある端子6のうち外側と内側のそれぞれ2本の端子6は端部6dにてハーネス7にカシメられた端子9と抵抗溶接により固定されている。端子6の共振容量C2に電気的に接続される端部6eとハーネス7に接続される端部6dは、互いに短絡しないように共振容量C2に接続される端子6の端部6eとハーネス7に接続される端子6の端部6eとハーネス7に接続される端子6の端部6eとハーネス7に接続される端子6の端部6eとハーネス7に接続される端子6の端部6eとハーネス7に接続される端子6の端部6eとハーネス7に接続される端子6の端部6eとハーネス7に接続される端子6の端部6eとハーネス7に接続される端子6の端部6eとハーネス7に接続される端子6の端部6e、6dをコイル13、13a、14が巻かれる部位よりも板厚方向において薄くすることができる(図6参照)。

【0031】このように、フェライト12の周辺にコイ

ル13,13a,14が巻かれたボビン一体型の端子6 にハーネス7が取付けられたものが液晶ポリマーから成 る樹脂性のケース5に収められている。ケース5は図5 および図6に示されるように、直方体形状のものがハー ネスは配設されるハーネス部で板厚方向および幅方向に 次第に薄くなる細長い形状を呈しており、端子6および コイル13, 13a, 14が巻かれたボビン11を完全 に覆うことが可能となっている。ケース5は図6に示す 下側は開口を有している。このケース5にハーネス7が 取付けられたボビン11は収められるが、この場合、ボ ピン11の一端はケース内側の側壁から延在する支持部 5 dに支持され、ボビン11の端子6が設けられる側 (図6に示す上側)は、ケース5の内壁に当接する。ケ ース5の内壁にはボビン11を固定する3箇所の突起部 5 a が設けられている。それぞれの突起部 5 a は共振容 量C2の配設位置とハーネス7のカシメ部間に存在し、 更に、ケース内部には開口をウレタン系のポッティング 材によりポッティングする場合、ポッティング剤が外部 へと流れないように、ハーネス側に凹部形状の側壁 5 b が区画され設けられている。ボビン11をケース内に収 める場合、ケース内部に設けられた2つの突起5aはハ ーネス7の先端にカシメられた端子9の〇形状の孔の中 に入れ、1つの中央に設けられた突起部5aが内側2本 の端子6の間を貫通した状態で、3つの突起部5aのそ れぞれの先端が熱カシメにより固定される。よって、ボ ビン11はコイル側の一端がケース側壁から延在する支 持部5aにより支持され、他端が3箇所で熱カシメによ り固定されるので、ケース内での保持が可能となる。こ のような状態下で、閉口内のコイル13, 13a, 14 が巻かれたボビン11、共振容量C2及びハーネス(ケ ース5の開口内において区画された側壁5bまでの領 域)をウレタン系のポッティング剤をケース開口の空間 内に注入し、ポッティング剤を固化させて固定する。こ のポッティングにより、アンテナ10の防水が行える。 尚、このようにケース内に収められたアンテナ10はサ

ブアッセンブリー化が可能である。

【0032】サブアッセンブリーされたアンテナ10はハーネス7をドアハンドル2の前部に設けられた孔2baに通し、ケース5の前部に設けられた孔5cにドアハンドルカバー2cの突起2pを挿通させ、アンテナ10を所定位置に固定させた後、ドアハンドルカバー2cをドアハンドル2の外面から覆せて突起2pを熱カシメし、その反対側をピス等の固定部材により固定を行えば、アンテナ10にとっては2重の防水対策が行われることなる。更に、このようにドアハンドル2内に設けられたアンテナ10から延びるハーネス7に、共振容量C1および発振器OCを接続すれば、ドアハンドル内蔵アンテナとなる。

【0033】よって、車両側の共振容量C1および給電装置へと至るハーネス7は、アウトサイドハンドル2の比較的可動量の少ない前方から引き出されるため、端子6からの引出しを車両前方となるよう配置したので、ハーネス7は引き回しし易くなる。

【0034】また、アウトサイドドアハンドルの外面は 湾曲していることから、ドアハンドル2のグリップ部G Pの中央よりも両サイドの方が比較的スペースを確保し 易いので、端子6と共振容量C2との接続点CPをケース5の前方に設け、接続点CPとコイル巻線との間に共 振容量C2を配置することにより、有効にグリップハン ドル内のアンテナスペースを使用することができる。

【0035】更に、端子6の端部6e,6dはお互いの接触を避けるため、所定間隔を離し、4本の平行に走るライン間には側壁5bを介在させるようにしているので、ライン間の短絡が防止される。端子6の端部6d,6eとの接続にはいづれも抵抗溶接を使用しているため、衝撃に強く、信頼性を確保できる。また、この抵抗溶接は半田付けと比較した場合に、板厚方向の溶接部の大きさが安定し、他の端子との接続やハーネスとのクリアランスが比較的小さい場合であっても、互いに接触を避けることができる。

【0036】尚、上記したドアハンドル内蔵アンテナ1 は、乗客(例えば、ドライバー)が車両に接近した場 合、ドライバーがドアハンドル2に手を近づけ乗車意志 を示した場合、ドライバーが車両ドア3をロックせずに 車両から離れて行ってしまった場合等において、自動的 に車両ドア3のロックを行うドアロック装置の施解錠を 行う電子キーシステムに適用できる。

[0037]

【効果】本発明によれば、ボビンの一側にドアハンドルの長手方向に沿う端子を設け、端子の一端でコイルの端部との接続、他端で外部からコイルへの給電が夫々なされるようにしたことにより、ボビンの一側にコイルに対して給電を行う給電ラインを集中させ、ドアハンドル内に配設が可能なドアハンドル内蔵アンテナとすることができる。

【0038】この場合、ポビンを樹脂性のケースに収め

て固定し、ポッティングを施せば、コイルが巻かれたボ ィングにより確実に固定され、ケース内での防水が行え る。また、ポッテッングにより確実に固定されるので、 車両の衝撃等で金属性のドアハンドルへの短絡が防止で き、アンテナに影響を与えない構成とすることができ る。

【0039】また、ボビンの一端にフランジを設け、フ ランジと端子により共振容量を挟持し固定すれば、アン テナの共振容量がコイルが巻かれたボビンの一端に設け られることから、共振容量に接続されるラインが短くな り、ノイズ等がのることが防止され、アンテナに対する 発振を安定させることができる。

【0040】更に、端子とアンテナ外部との接続点をド アハンドル前方に集中させれば、ドアハンドルがグリッ プハンドルの場合には、ドアハンドルの前部は回動範囲 が後部に比べて少ないため、接続点でのストレスがかか りにくくなり、ハーネスの断線が防止できる。

【0041】更にその上、端子の端部を段部形状とし て、接続点は段部にて固定すれば、ドアハンドルの形状 が湾曲していても、ドアハンドル内の空いたスペースを 有効利用したアンテナの配設が行えるものとなる。

【図面の簡単な説明】

【図1】 本発明の一実施形態におけるドアハンドル内 蔵アンテナのアンテナを車両へ取付けた場合の要所部分 断面図である。

【図2】 本発明の一実施形態におけるドアハンドル内

【図3】 本発明の一実施形態におけるドアハンドル内 蔵アンテナのアンテナの構成を示した説明図である。

【図4】 本発明の一実施形態におけるドアハンドル内 蔵アンテナのポピン上に設けられた端子に対して端子に 接続されるハーネスとコイルとの接続関係を示した図で

【図5】 本発明の一実施形態におけるドアハンドル内 蔵アンテナのアンテナの構成を示す正面図である。

【図6】 図5に示す側面図である。

【符号の説明】

- 1 ドアハンドル内蔵アンテナ
- 2 ドアハンドル
- 2 c ドアハンドルカバー
- 5 ケース
- 6 端子
- 10 アンテナ
- 11 ボピン
- 11f フランジ
- 12 フェライト
- 13, 14 コイル
- 13a リンクコイル (コイル)
- 22 開口部
- CP 接続部
- SP 段部

【図1】

【図4】

【図6】

フロントページの続き

(72)発明者 森 和良 愛知県刈谷市昭和町2丁目3番地 アイシ ン・エンジニアリング株式会社内

F ターム(参考) 5J047 AA06 AA07 AA14 AA15 EA01 EA05

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS	· •
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
FADED TEXT OR DRAWING	
BLURED OR ILLEGIBLE TEXT OR DRAWING	-
SKEWED/SLANTED IMAGES	
☐ COLORED OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QU	ALITY
OTHER:	

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox