Portefeuilles Obligataires Optimisation de Portefeuille Obligataire

P. Hénaff

Version: 17 Dec 2024

Objectif de gestion

- $ightharpoonup L(t_i), i = 1, \dots n$ cashflow au passif
- Construire un portefeuille obligataire à même de financer les flux $L(t_i)$, quelque soit l'évolution future des taux.

Deux grandes catégories de méthodes:

- Adossement flux-à-flux
- Immunisation

... les deux peuvent être combinées.

Adossement Flux à Flux

```
q_i quantité de titre i, achetée en t=0 C(t) liquidités en t F_i(t) cash flow du titre i en t. P_i prix du titre i
```

Equilibre des flux:

$$C(t) = (1+r)C(t-1) + \sum_{i} q_{i}F_{i}(t) - L(t)$$

Optimisation du cout

$$\min \sum_{i} q_i P_i \tag{1}$$

s.t.

$$(1+r)C(t-1) + \sum_{i} q_{i}F_{i}(t) - C(t) = L(t) \quad \forall t$$
 (2)

$$q_i >= 0, i = 1, ..., n$$

 $C(t) >= 0, t = 1, ..., T$

Imunisation

Soit deux titres A et B et un passif de valeur P_L et de risque $PV01_L$:

$$V_L = q_A P_A + q_B P_B$$

 $PV01_L = q_A PV01_A + q_B PV01_B$

Maximisation du rendement avec N titres

$$\max \sum_{i} q_{i} r_{i} \mathcal{P} \mathcal{V} 01_{i} \tag{3}$$

s.t.

$$\sum_{i} q_{i} \mathcal{P} \mathcal{V} 01_{i} = \mathcal{P} \mathcal{V} 01_{L}$$

$$\sum_{i} q_{i} P_{i} = P_{L}$$
(5)

$$\sum_{i} q_i P_i = P_L \tag{5}$$

$$q_i >= 0, i = 1, ..., n$$

(6)