1

GATE 2023-EC

EE23BTECH1205 - Avani Chouhan*

Question: 14

The value of the contour integral, $\oint_C \frac{z+2}{z^2+2z+2} dz$, where the contour C is $\{z : |z+1-\frac{3}{2}i|=1\}$, taken in the counter clockwise direction, is

- (A) $-\pi(1+j)$
- (B) $\pi(1+j)$
- (C) $\pi(1-j)$
- (D) $-\pi(1-j)$

(GATE ST 2023)

Solution: To evaluate the contour integral, let's first parameterize the contour C. Given that $|z+1-\frac{3}{2}i|=1$, we can rewrite this as $|z-(-1+\frac{3}{2}i)|=1$, which represents a circle centered at $-1+\frac{3}{2}i$ with radius 1.

We can parameterize this circle as $z = -1 + \frac{3}{2}i + e^{it}$, where t varies from 0 to 2π to cover the entire contour C in the counterclockwise direction.

Now, let's compute the integral:

$$\oint_{C} \left(\frac{z+2}{z^{2}+2z+2} \right) dz = \int_{0}^{2\pi} \frac{-1 + \frac{3}{2}i + e^{it} + 2}{(-1 + \frac{3}{2}i + e^{it})^{2} + 2(-1 + \frac{3}{2}i + e^{it}) + 2} \cdot ie^{it} dt
= \int_{0}^{2\pi} \frac{1 + e^{it}}{(e^{it})^{2} + 2(e^{it}) + 2} \cdot ie^{it} dt
= \int_{0}^{2\pi} \frac{1 + e^{it}}{e^{2it} + 2e^{it} + 2} \cdot ie^{it} dt
= \int_{0}^{2\pi} \frac{1}{(e^{it} + 1)^{2} + 1} \cdot idt + \int_{0}^{2\pi} \frac{e^{it}}{(e^{it} + 1)^{2} + 1} \cdot idt
= \int_{0}^{2\pi} \frac{1}{(e^{it} + 1)^{2} + 1} \cdot idt + \int_{0}^{2\pi} \frac{e^{it}}{(e^{it} + 1)^{2} + 1} \cdot idt
= \pi(1 + i)$$
(6)

So, the correct answer is (B) $\pi(1+i)$.