المادة: رياضيات المستوى: سنة ثالثة الشعب العلمية

المألة رقم 01:

 $f(x) = \frac{ax^2 + bx + 1}{x - 1}$: باکن a و b عددین حقیقیین و f دالة معرفة علی a الله علی الله a \bullet $(O; \overrightarrow{i}, \overrightarrow{j})$ مثيلها البياني في مستوي منسوب إلى معلم متعامد ومتجانس (C_I) f(-1) = 0 عين العددين الحقيقيين a و b حتى تكون a

II ـ نضع فيما يلي : 1 = a و 2 = 6 .

 $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x)$

 $egin{equation} egin{equation} \lim_{x \to \infty} f\left(x
ight) & \lim_{x \to \infty} f\left(x
ight) \end{bmatrix} & \lim_{x \to \infty} f\left(x
ight) & \lim_{x \to \infty$

. $f'(x) = \frac{(x+1)(x-3)}{(x-1)^2} : x \in \mathbb{R}/\{1\}$ کل آ اُثبت أنه من أجل کل $x \in \mathbb{R}/\{1\}$ بــ استنتج تغيرات الدالة f ثم شكل جدول تغيراتها .

أ ـ أثبت أن (C_f) يقبل مستقيما مقاربا مائلا (Δ) يطلب تعيين معادلة له .
 ب ـ ادرس الوضع النسبي للمنحنى (C_f) والمستقيم (Δ) .

€ جد إحداثيي ۩ نقّطة تقاطع (△) مع المستقيم المقارب العمودي .

 \cdot (C_f) أثبت أن النقطة Ω هي مركز تناظر للمنحني \bullet

أثبت أنه لايوجد أي مماس للمنحني (C_f) يشمل النقطة Ω.

• بين أن (C_f) يقبل مماسين موازيين للمستقيم ذو المعادلة y=-3x-5 ثم اكتب معادلة كل منهما ${f 0}$

(T) ، المستقيمان المقاربان و المماس (T) .

 $g(x) = \frac{x^2 + 2|x| + 1}{|x| - 1} : - \mathbb{R}/\{-1; 1\}$ بـ : $R/\{-1; 1\}$ الدالة المعرفة على g – III لسابق في نفس المعلم السابق .

 $g(x) = f(|x|): x \in \mathbb{R}/\{-1;1\}$ کل (x): $x \in \mathbb{R}/\{-1;1\}$ کل و اثبت أنه من أجل کل (C_f) أنطلاقا من (C_f) ثم ارسمه و اشرح كيفية رسم (C_g) انطلاقا من (C_f)

g(x) = m : عدد وإشارة حلول المعادلة m عدد وإشارة حلول المعادلة g(x) = m

♦ بالتوفيو فر شمادة البكالوريا ♦ 2024 م

المستوى: سنة ثالثة الشعب العلمية المستوى: سنة ثالثة الشعب العلمية

المسألة رقم 102 باك علوم 2014 - بتصرف بسك -

 $g(x) = 2x^3 - 4x^2 + 7x - 4$: \mathbb{R} and $g = \mathbb{I}$

- $\lim_{x \to -\infty} g(x)$ و $\lim_{x \to +\infty} g(x)$
- و أدرس اتجاه تغير الدالة g على \mathbb{R} ثم شكل جدول تغيراتها \mathcal{G}
- $0.7 < \alpha < 0.8$: حيث $\alpha < 0.8$ عقبل حلا وحيدا α
 - ه آستنتج إشارة g(x) على $oldsymbol{Q}$

 $f\left(x
ight)=rac{x^3-2x+1}{2x^2-2x+1}$: بالمعرفة على $\mathbb R$ بالمعرفة على $\mathbb R$ بالمعرفة على المعرفة على المعرفة على المعرفة على المعرفة متعامد ومتجانس $\left(O;\overrightarrow{i},\overrightarrow{j}
ight)$

- $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x)$
- $f(x) = \frac{1}{2}(x+1) + \frac{1-3x}{2(2x^2-2x+1)}$: x قبت أنه من أجل كل عدد حقيقي x عدد حقيقي أ أ أثبت أنه من أجل كل عدد حقيقي أمثار با مائلا (Δ) يطلب تعيين معادلة له

- (∆) والمستقيم (∆) والمستقيم (∆) .

 $f'(x) = rac{x.g(x)}{(2x^2 - 2x + 1)^2} : x$ عدد حقیقی عدد عقیقی $g'(x) = \frac{x.g(x)}{(2x^2 - 2x + 1)^2}$

بـ استنتج إشارة f'(x) على f'(x) على f'(x) بـ استنتج إشارة f'(x) على f'(x) بـ استنتج إشارة f'(x)

- f(x)=0 أحسب أf(x)=0 ثم حل في f(x)=0 أحسب أ
 - (∆) والمستقيم (∆)

 $h\left(x
ight)=rac{x^{3}-4x^{2}+2x-1}{2x^{2}-2x+1}$: بالدالة المعرفة على \mathbb{R} بـ بالدالة المعرفة على h ـ III . خيلها البياني في نفس المعلم السابق . C_{h}

- h(x)=f(x)-2 : فإن $x\in\mathbb{R}$ كل $x\in\mathbb{R}$ أبد من أجل كل عقق أنه من أجل
- استنج أن المنحنى (Ch) هو صورة المنحنى (Cf) بتحويل نقطى بسيط يطلب تعيينه .
 - h(x) = m : عدد حلول المعادلة m عدد الوسيط الحقيقي m عدد علول المعادلة m

♦ بالتوفيق فسي شماحة البكالوريا ♦ 2024 ♦

المستوى : سنة ثالثة الشعب العلمية المادة : رياضيات

المألة رقم 03:

 $g(x) = x^3 - 3x - 4$ بـ: $g(x) = x^3 - 3x - 4$ بـ التكن و دالة كثير حدود معرفة على x

• $\lim_{x \to +\infty} g(x)$ e $\lim_{x \to +\infty} g(x)$ e $\int_{-\infty}^{\infty} \frac{1}{x} g(x) dx$

أدرس تغيرات الدالة و ثم شكل جدول تغيراتها .

 $m{0}$ أُنبت أن المعادلة $g\left(x
ight)=0$ تقبل حلا وحيدا a حيث : a > a - a أنبت أن المعادلة a العدد الحقيقي a إشارة a على a .

 $f(x) = \frac{x^3 + 2x^2}{x^2 - 1}$: بعتبر الدالة $f(x) = \frac{x^3 + 2x^2}{x^2 - 1}$ بادرالة $f(x) = \frac{x^3 + 2x^2}{x^2 - 1}$

(O; ¬, ¬) تمثيلها البياني في المستوي المنسوب إلى معلم متعامد ومتجانس (O; ¬, ¬)

• أحسب f(x) ، $\lim_{x \to -1} f(x)$ ، $\lim_{x \to -1} f(x)$ ، $\lim_{x \to -1} f(x)$ ، ثم فسر النتائج هندسيا

. $\lim_{x\to+\infty} f(x)$ و أحسب $\lim_{x\to-\infty} f(x)$

• $f'(x) = \frac{xg(x)}{(x^2-1)^2} : x \in \mathbb{R}/\{-1;1\}$ کل أ ـ أثبت أنه من أجل كل \bullet بـ استنتج تغيرات الدالة ٢ ثم شكل جدول تغيراتُها .

و عين دون حساب $\frac{f(x)-f(\alpha)}{x-\alpha}$ ، ثم فسر النتيجة هندسيا .

 $f(x) = ax + b + \frac{cx + d}{x^2 - 1} : x \in \mathbb{R}/\{-1;1\}$ كل $c \in b \in a$ و $c \in b \in a$ و $c \in b$ أ عين الأعداد الحقيقية . با أثبت أن المنحني (C_f) يقبل مستقيم مقارب ماثل (Δ) يطلب تعيين معادلته

- (Δ) بالنسبة للمستقيم (Δ) بالنسبة للمستقيم (Δ)

• (النتائج إلى $f(\alpha) = \frac{3}{2}\alpha + 2$) بين أن : $f(\alpha) = \frac{3}{2}\alpha + 2$ ، ثم استنج حصرا له $f(\alpha)$.

أثبت أن المنحنى (C₁) يقبل مماسين موازيين للمستقيم (△) (لا يطلب كتابة معادلتيهما) .

(∆) و المستقيم (∆) و المستقيم (∆) .

f(x) = m: عدد وإشارة حلول المعادلة m عدد وأشارة علول المعادلة والمرابع f(x)

 $h(x) = \frac{|x|^3 + 2x^2}{x^2 - 1}$: بعتبر الدالة h المعرفة على $\mathbb{R}/\{-1;1\}$ بـ : III ◄ وليكن (Ch) تمثيلها البياني في المعلم السابق.

أثبت أن الدالة ا زوجية .

اشرح طريقة إنشاء (C_h) انطلاقا من (C_f) ثم أنشئه .

بالتوفيق فس شمادة البكالوريا \$ 2024 م

المستوى : سنة ثالثة الشعب العلمية المادة : رياضيات

المألة رقم 04:

 $f(x) = ax + b + \frac{c}{x-2}$ بـ $\mathbb{R}/\{2\}$ بـ $\mathbb{R}/\{2\}$ بـ الله معرفة على $\mathbb{R}/\{2\}$ بـ الله معرفة على $\mathbb{R}/\{2\}$

 \bullet $(O; \overrightarrow{i}, \overrightarrow{j})$ التمثيل البياني للدالة f في مستوي منسوب إلى معلم متعامد ومتجانس للدالة (C_f)

◄ الجدوال الموالى يمثل جدول تغيرات الدالة f :

x	-∞	1		2	3	+∞
f'(x)		- 0	+	+	0	-
f(x)	+∞ <		+∞	/	-2	

اعتمادًا على جدول التغيرات:

و عين قيمة كل من الأعداد الحقيقية a ، 6 و ء .

بين أن (Cr) يقبل مستقيما مقاربا عموديا يطلب تعيين معادلته .

، $f\left(-\frac{1}{3}\right)$ و $f\left(-\frac{1}{2}\right)$ و العددين الحقيقيين Θ

c=-1 و b=2 ، a=-1 : نضع یا a=-1

أ ـ أثبت أن (C_f) يقبل مستقيما مقاربا مائلا (Δ) يطلب تعيين معادلة له .
 ب ـ ادرس الوضع النسبي للمنحنى (C_f) بالنسبة للمستقيم (Δ) .

 $x \in \mathbb{R}/\{2\}$ ، ثم فسر النتيجة هندسيا $x \in \mathbb{R}/\{2\}$ ، ثم فسر النتيجة هندسيا $x \in \mathbb{R}/\{2\}$ ، ثم فسر النتيجة هندسيا

لیکن T₀ و T₁ مماسا (رC) عند x₀ و x₁ من رD حیث T₁ عند x₀

 T_0 جد علاقة بين T_0 و T_0 حتى يكون T_0 و T_0 متوازيبن T_0

أنشئ (C_f) ، (△) والمستقيم المقارب العمودي .

f(x) = m - x : ناقش بيانيا وحسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة m - x

 $g\left(x
ight)=-f\left(-x
ight)$: بالعلاقة على $g-\Pi$ بالعلاقة والدالة المعرفة على $g-\Pi$

لسابق في المعلم السابق .

اشرح كيفية إنشاء (Cg) انطلاقا من المنحني (Cr) ثم أنشئه .

بالتوفيو فير شمادة البكالوريا \$ 2024 \$

المستوى : سنة ثالثة الشعب العلمية المادة: رياضيات

المألة رقم 05:

•
$$f(x) = x - 1 - \sqrt{\frac{x}{x-1}}$$
 : $-\infty$; 0] 0] 0] 1 ; $+\infty$ [على المعرفة على 1 ; $+\infty$ [بالمعرفة على المستوي المنسوب إلى معلم متعامد ومتجانس (C_f) • (C_f)

• أحسب f(x) أنتيجة هندسيا

 $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x)$

 $oldsymbol{e}$ أدرس قابلية اشتقاق الدالة f عند $oldsymbol{e}$ من اليسار ثم فسر النتيجة هندسيا $oldsymbol{e}$

.
$$f'(x) = 1 + \frac{1}{2(x-1)^2 \sqrt{\frac{x}{x-1}}}$$
 : $x \in]-\infty; 0[\cup]1; +\infty[$ کل آب آنب آنه من أجل کل $[0, +\infty]$

بـــ استنتج تغيرات الدالة f ثم شكل جدول تغيراتها .

و أحسب $\lim_{|x|\to+\infty}|f(x)-x+1|$ منسر النتيجة هندسيا .

. (△) النسبي المنحنى (C_f) بالنسبة المستقيم المقارب المائل (△).

 $a \in \left[2; \frac{5}{2}\right]$ عور الفواصل في نقطة وحيدة فاصلتها $a \in \left[2; \frac{5}{2}\right]$ عور الفواصل في نقطة وحيدة فاصلتها $a \in \left[2; \frac{5}{2}\right]$

$$y=\left[1+rac{1}{2(lpha-1)^3}
ight](x-lpha):$$
 بين أن معادلة المماس (T_lpha) للمنحنى (C_f) عند $x_0=lpha$ تكتب على الشكل و (T_lpha)

• (۵) ويوازي A (0; -1) الذي يشمل النقطة A (0; -1) ويوازي (A)

 $m{\Theta}$ أنشئ المنحنى (C_f) والمستقيمين (Δ) و (d) . (d) و (d) . (d) و المنادلة (d) و المنادلة (d) . (d)

$$g(x) = -\left(|x| + 1 + \sqrt{\frac{|x|}{|x| + 1}}\right) : -1$$
 المعرفة على g بـ : -1 المعرفة على g المعرفة على -1 المعرفة وليكن (C_g) تمثيلها البياني في المعلم السابق .

أثبت أن الدالة g زوجية .

اشرح طريقة إنشاء (C_g) انطلاقا من (C_f) ثم أنشئه .

♦ بالتوفيو فر شماحة البكالوريا ♦ 2024 ♦

المستوى : سنة ثالثة الشعب العلمية المستوى : سنة ثالثة الشعب العلمية

المسألة رقم 06:

$$f(x)=rac{1}{2}\left(rac{x}{\sqrt{x^2+1}}-1
ight):$$
ب المعرفة على $\mathbb R$ ب $\mathbb R$ ب المعرفة على $\mathbb R$ ب $\mathbb R$ ب المعرفة على $\mathbb R$ ب $\mathbb R$ ب المعرفة على المعر

النتيجتين هندسيا . $\lim_{x\to +\infty} f(x)$ و $\lim_{x\to +\infty} f(x)$ مفسرا النتيجتين هندسيا

.
$$f'(x) = \frac{1}{2(x^2+1)\sqrt{x^2+1}} : x \in \mathbb{R}$$
 کل کا ابنت أنه من أجل کل g

بـ ـ استنتج تغيرات الدالة f ثم شكل جدول تغيراتها .

$$f''(x) = -\frac{3x}{2(x^2+1)^2\sqrt{x^2+1}} : x \in \mathbb{R}$$
 کی آ ـ آئبت آنه من أجل کل G

 \cdot بـ أثبت أن المنحنى (C_{f}) يقبل نقطة إنعطاف Ω يطلب تعيين إحداثياتها

. Ω عند النقطة Ω عند النقطة Ω

(C_f) أثبت أن النقطة Ω هي مركز تناظر للمنحني (C_f).

(T) والمماس (C_f) والمماس (T)

.
$$\left\{ \begin{array}{l} g\left(x\right)=f\left(\frac{1}{x}\right) \; ; \; x\in \mathbb{R}^* \\ \\ g\left(0\right)=-1 \end{array} \right. : x\in \mathbb{R}$$
 المعرفة على g ب : $g\left(0\right)=-1$

مشيلها البياني في المعلم السابق .

• أثبت أن الدالة g مستمرة عند $x_0 = 0$ من اليسار

• أثبت أن الدالة g غير مستمرة عند $x_0 = 0$ من اليمين

 $oldsymbol{e}$ أدرس قابلية اشتقاق الدالة g عند g عند $a_0=0$ من اليسار ثم فسر النتيجة هندسيا $a_0=0$

أحسب g(x) و $\lim_{x\to +\infty} g(x)$ مفسرا النتيجتين هندسيا .

 $g'(x) = -|x| \, f'(x) : x \in \mathbb{R}^{\bullet}$ کا $g'(x) = -|x| \, f'(x) = 0$ ب استنتج تغیرات الدالة g'(x) = 0 شکل جدول تغیرات ا

 \cdot (C_g) أثبت أن النقطة Ω هي مركز تناظر للمنحنى Θ

• أثبت أن المنحني (C_g) يقبل نقطتي إنعطاف يطلب تعيين إحداثييهما Θ

(C_g) أنثئ المنحنى (O_g)

بالتوفيق في شمادة البكالوريا * 2024 *

المستوى : سنة ثالثة الشعب العلمية المستوى : سنة ثالثة الشعب العلمية

المألة رقم 07:

 $g(x) = x^3 - 4x^2 + 5x + 4$: ب $[-2; +\infty[$ بالجال المجافة على المجال g = I

- $\lim_{x \to +\infty} g(x)$ أحسب $\mathbf{0}$
- $oldsymbol{\Theta}$ أدرس اتجاه تغير الدالة g على المجال $[-2;+\infty]$ ثم شكل جدول تغيراتها
- $-0.6 < \alpha < -0.5$: ثم تحقق أن $[-2; +\infty]$ على المجال α على المجال g(x) = 0 ثم تحقق أن g(x) = 0
 - ، $[-2;+\infty[$ على المجال g(x) على المجال $\mathbf{0}$

 $f(x) = \frac{x^2 + 2x}{x^2 + 1} \sqrt{x + 2}$ بـ [-2; +∞[المعرفة على المجال $f(x) = \frac{x^2 + 2x}{x^2 + 1} \sqrt{x + 2}$ بـ [-2; +∞] بالمعرفة على المجال ($G; \overrightarrow{i}, \overrightarrow{j}$) التمثيل البياني للدالة $f(x) = (-2; +\infty)$ المتعامد والمتجانس ($G; \overrightarrow{i}, \overrightarrow{j}$) التمثيل البياني للدالة $f(x) = (-2; +\infty)$

- $\lim_{x\to +\infty} f(x) \longrightarrow \mathbf{0}$
- أثبت أن الدالة f قابلة للإشتقاق عند $x_0 = -2$ من اليمين ثم فسر النتيجة هندسيا $x_0 = -2$
 - $f'(x) = \frac{\sqrt{x+2} \times g(x)}{2(x^2+1)^2} : x \in]-2; +\infty[$ کل آجل کل آجل کل آجل کا g

بـ أدرس تغيرات الدالة f على المجال $-2;+\infty$ ثم شكل جدول تغيراتها .

- $x_0 = 0$ عند (C_f) للمنحنى (T) عند σ
 - . [-2; $+\infty$] على المجال إشارة f(x) على أدرس إشارة Θ
 - (T) والمماس (C_f)
- $x \geq -2$ من أجل $x \geq -2$: ناقش بيانيا وحسب قيم الوسيط الحقيقي $x \geq -2$ عدد وإشارة حلول المعادلة :

$$x(x+2)^{\frac{3}{2}} = |m|(x^2+1)$$

 $h(x) = f(x) \times |f(x)|$ بـ $[-2; +\infty]$ الدالة المعرفة على المجال المحرفة على المجال المعرفة على المجال

- f'(x) و (x) بدلالة (x) و (f'(x)
- شكل جدول تغيرات الدالة ١١ على المجال [-2; +∞] .

م بالتوفيق في شمادة البكالوريا \$ 2024 م

المستوى : سنة ثالثة الشعب العلمية المستوى : سنة ثالثة الشعب العلمية

<u>المألة رقم 08:</u>

 $f(x) = \sqrt{rac{(x-1)^3}{x+1}}$: بـ $]-\infty;-1[\cup [1;+\infty]$ للعرفة على [x,y] التعامد والمتجانس $[0;\overrightarrow{i},\overrightarrow{j}]$ التمثيل البياني للدالة [x,y] المستوي المنسوب إلى المعلم المتعامد والمتجانس $[0;\overrightarrow{i},\overrightarrow{j}]$

 $\lim_{x\to+\infty} f(x) = \lim_{x\to-\infty} f(x)$

أحسب (x) ا lim النتيجة هندسيا . وأحسب (x)

 $x_0 = 1$ عند $x_0 = 1$ من اليمين ثم فسر النتيجة هندسيا .

• $f'(x) = (x+2)\sqrt{\frac{x-1}{(x+1)^3}} : x \in]-\infty; -1[\cup[1;+\infty[$ 0

بـ أدرس تغيرات الدالة f على $]\infty + [1] \cup [1-\infty]$ ثم شكل جدول تغيراتها .

y=x-2 أ ـ أثبت أن المستقيم (Δ) ذو المعادلة y=x-2 مقارب ماثل للمنحنى (C_f) في جوار y=x-1

،]2; $+\infty$ النسبي المنحنى (C_f) والمستقيم (Δ) على المجال إ α

y = -x + 2 أ ـ أثبت أن المستقيم (Δ') ذو المعادلة y = -x + 2 مقارب مائل للمنحنى (Δ') في جوار ∞ .] $-\infty$; -1 المرس الوضع النسبي للمنحنى (α') والمستقيم (α') على المجال [α'] .

أنثى المنحني (C_f) والمستقيمات المقاربة .

 $g(x) = |x+1| \sqrt{rac{x+1}{x-1}} : -\infty; -1] \cup]1; +\infty$ یا الدالة المعرفة علی $g = [x+1] - \infty; -1] = [x+1]$

، التمثيل البياني للدالة g في المعلم السابق (C_g)

 $g(x) = f(-x) : x \in]-\infty; -1] \cup]1; +\infty[$ بين أنه من أجل كل $g(x) = [-\infty; -1] \cup]1; +\infty[$

إشرح طريقة إنشاء (C_g) انطلاقا من (C_f) ثم أنشئه .

. h(x)=f(x) imes g(x) : با $-\infty;-1[\,\cup\,]1;+\infty[$ للدالة المعرفة على $h=\Pi$

◄ (C_h) التمثيل البياني للدالة h في المعلم السابق .

أثبت أن الدالة ا زوجية .

أثبت أن المنحنى (Ch) هو صورة جزء من منحنى الدالة مربع بتحويل نقطي بسيط يطلب تعيينه .

(C_h) أنثئ المنحنى

بالتوفيق في شمادة البكالوريا \$ 2024 م

المادة : رياضيات المستوى : سنة ثالثة الشعب العلمية

المألة رقم 09:

 $f(x) = \frac{1 - x\sqrt{x^2 - x}}{x}$: بالدالة $f(x) = \frac{1 - x\sqrt{x^2 - x}}{x}$ بد الدالة $f(x) = \frac{1 - x\sqrt{x^2 - x}}{x}$ بد الدالة والمعرفة على المجال المعرفة على المحرفة $(0; \overrightarrow{i}, \overrightarrow{j})$ التمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)

 $\frac{f(x)-1}{x-1} = -\frac{1}{x} - \sqrt{\frac{x}{x-1}} : x \in]1; +\infty[$ کل آجل کل آجل کل آجل کا آجل بـ أدرس قابلة إشتقاق الدالة f عند $x_0=1$ من اليمين ثم فسر النتيجة هندسيا .

• $f'(x) = -\frac{1}{x^2} - \frac{2x-1}{2\sqrt{x^2-x}} : x \in]1; +\infty[$ کل اجل کل این آبت آنه من أجل کل \bullet بـــ أدرس تغيرات الدالة f على المجال]∞+;1] ثم شكل جدول تغيراتها .

 $\cdot \lim_{x \to +\infty} (x - \sqrt{x^2 - x}) = \frac{1}{2}$: أ اثبت أن $\cdot \lim_{x \to +\infty} (x - \sqrt{x^2 - x}) = \frac{1}{2}$. $\cdot +\infty$ بـ أثبت أن المستقيم $\cdot +\infty$ ذو المعادلة $\cdot +\infty$ مقارب مائل للمنحنى $\cdot +\infty$ في جوار $\cdot +\infty$ $x \in [1; +\infty]$ جـ أثبت أنه من أجل كل

$$f(x) - \left(\frac{1}{2} - x\right) = \frac{1}{x} + \frac{1}{2(2x - 1 + 2\sqrt{x^2 - x})}$$

، $[1;+\infty[$ على المجال (C_f) والمستقيم (Δ) على المجال المبتعنى د ـ استنتج الوضع النسبي للمنحنى

€ أثبت أن المنحني (C_f) يقطع محور الفواصل في نقطة وحيدة فاصلتها α حيث 1.4 م.

$$y = \left(\frac{3}{2}\alpha - 2\alpha^2\right)(x - \alpha)$$
 : هي $x_0 = \alpha$ عند (C_f) للمنحنى (T_{α}) للمنحنى (T_{α}) أثبت أن معادلة المماس

أنشئ المنحني (C_f) والمستقيمان المقاربان.

 $g(x) = \frac{1}{1-x} - \sqrt{x^2 - x}$: بالدالة المعرفة على المجال $g = -\infty$ بالدالة المعرفة على المجال $g = -\infty$

لتمثيل البياني للدالة g في المعلم السابق .

• $g(x) = f(1-x) :]-\infty; 0$ بين أنه من أجل كل 0

أثبت أن المنحنى (Cg) يقطع محور الفواصل في نقطة وحيدة فاصلتها β يطلب تعيين حصر لها .

 $y=\left(2lpha^2-rac{3}{2}lpha
ight)(x-eta)$: هي $x_0=eta$ عند (C_g) للمنحنى المنحنى (T_{eta}) للمنحنى المنحنى (T_{eta}) فأثبت أن معادلة المماس

إشرح طريقة إنشاء (Cg) انطلاقا من (Cf) ثم أنشئه .

بالتوفيو فير شماحة البكالوريا * 2024 *

♦ مسائل نموذجية للبكالوريا ♦ الدوال العددية ♦

المستوى : سنة ثالثة الشعب العلمية المستوى : سنة ثالثة الشعب العلمية

المألة رقم 10:

I _ نعتبر الدالة g المعرفة على]0;+0] ∪ [1;+∞ ب :- ا

$$g(x) = 2 - x^2 \sqrt{x^2 - 1}$$

لقابل المقابل البياني للدالة g كما هو موضح في الشكل المقابل .

$$g(\sqrt{2})$$
 و $g(-\sqrt{2})$ و $g(\sqrt{2})$

$$\lim_{x\to+\infty}g\left(x\right)=\lim_{x\to-\infty}g\left(x\right)$$

•
$$\lim_{x \to 1} \frac{g(x) - 2}{x - 1}$$
 و $\lim_{x \to -1} \frac{g(x) - 2}{x + 1}$ و بقراءة بيانية حدد

 $]-\infty;-1]$ \cup $[1;+\infty[$ على g(x) على حدد إشارة g(x)

- $f(x) = 1 x + \frac{2\sqrt{x^2 1}}{x}$: با $]-\infty; -1] \cup [1; +\infty[$ یعتبر الدالة f المعرفة علی f المعرفة علی البیانی الدالة f فی المستوی المنسوب إلی المعلم المتعامد والمتجانس f المعرف البیانی الدالة f فی المستوی المنسوب الی المعلم المتعامد والمتجانس f المعرف البیانی الدالة f فی المستوی المنسوب الی المعلم المتعامد والمتجانس f المعرف المعر
 - أدرس قابلية إشتقاق الدالة f عند f عند اليسار مفسرا النتيجة هندسيا $\mathbf{0}$
 - $m{e}$ أدرس قابلية إشتقاق الدالة f عند f عند اليمين مفسرا النتيجة هندسيا $m{e}$
 - . $f'(x) = \frac{g(x)}{x^2 \sqrt{x^2 1}} : x \in]-\infty; -1[\cup]1; +\infty[$ کل $f'(x) = \frac{g(x)}{x^2 \sqrt{x^2 1}} : x \in]-\infty; -1[\cup]1; +\infty[$

بـــ أدرس تغيرات الدالة f ثم شكل جدول تغيراتها .

- أ ـ أثبت أن المستقيم (Δ) ذو المعادلة y=-x+3 مقارب مائل للمنحنى (C_f) في جوار $+\infty$. $+\infty$ ب ـ أدرس الوضع النسبي للمنحنى ($+\infty$) والمستقيم ($+\infty$) على المجال $+\infty$] .
- y = -x 1 أ ـ أثبت أن المستقيم (Δ') ذو المعادلة y = -x 1 مقارب مائل للمنحنى (Δ') في جوار ω .] - ω ; -1 على المجال [$-\infty$; -1] والمستقيم (Δ') على المجال [$-\infty$; -1]
 - (C_f) مركز تناظر للمنحني (C_f) .
 مركز تناظر للمنحني (C_f) .
- α أ ـ أثبت أن المنحنى (C_f) يقطع محور الفواصل في نقطة وحيدة فاصلتها α تختلف عن 1 حيث : $y=f'(\alpha)$. $x+2f'(\alpha)$ هي $x_0=-\alpha$ عند $x_0=-\alpha$ المنحنى (T) للمنحنى (T) للمنحنى (T) عند T
 - (∆') والمستقيمان (∆) و ((∆') و (∆')
 - $(\sqrt{|m|}-1)x-2\sqrt{x^2-1}=0$: ناقش بيانيا وحسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة : 0

♦ بالتوفيق فعر شمادة البكالوريا ♦ 2024 م