实验四 形态学运算及图像分割

Thr /ar
班级:
学号:
姓名:
一、实验目的
 了解二值形态学的基本运算 掌握基本形态学运算的实现
3. 掌握图像分割的基本方法
二、实验环境
Python3.7 以上版本、WIN XP 或 WIN2000 计算机
三、相关知识
1. 结构元
opencv 提供 getStructuringElement()函数来获得结构元,其参数如
下:
kernel=cv2.getStructuringElement(shape,ksize,anchor)
shape:核的形状
cv2.MORPH_RECT: 矩形
cv2.MORPH_CROSS: 十字形(以矩形的锚点为中心的十字
架)
cv2.MORPH_ELLIPSE:椭圆(矩形的内切椭圆)
ksize:核的大小,矩形的宽,高格式为(width,height)
anchor:核的锚点,默认值为(-1,-1),即核的中心点

2. 腐蚀

opencv 提供 erode()函数进行腐蚀操作,其对应参数如下:

dst=cv2.erode(src, kernel, anchor, iterations, borderType, bor derValue):

src: 输入图像对象矩阵, 为二值化图像

kernel:进行腐蚀操作的核,可以通过函数

getStructuringElement()获得

anchor:锚点,默认为(-1,-1)

iterations:腐蚀操作的次数,默认为1

borderType: 边界种类,有默认值

borderValue:边界值,有默认值

3. 膨胀图像

opencv 提供 dilate()函数进行膨胀操作, 其对应参数如下:

dst =

cv2.dilate(src,kernel,anchor,iterations,borderType,border
Value)

src: 输入图像对象矩阵, 为二值化图像

kernel:进行腐蚀操作的核,可以通过函数

getStructuringElement()获得

anchor:锚点,默认为(-1,-1)

iterations:腐蚀操作的次数,默认为1

borderType: 边界种类

4、开运算,闭运算,顶帽,顶帽

开运算: 先进行腐蚀操作,后进行膨胀操作,主要用来去除一些较亮的部分,即先腐蚀掉不要的部分,再进行膨胀。

闭运算: 先进行膨胀操作, 后进行腐蚀操作, 主要用来去除一些较暗的部分。

形态学梯度:膨胀运算结果减去腐蚀运算结果,可以拿到轮廓信息。

顶帽运算:原图像减去开运算结果。

底帽运算:原图像减去闭运算结果。

进行开运算,闭运算,顶帽运算,底帽运算,形态学梯度,opency 提供了一个统一的函数 cv2.morphologyEx(),其对应参数如下:

dst =

cv2.morphologyEx(src,op,kernel,anchor,iterations,borderTy
pe,borderValue)

src: 输入图像对象矩阵, 为二值化图像

op:形态学操作类型

cv2.MORPH OPEN 开运算

cv2.MORPH CLOSE 闭运算

cv2.MORPH GRADIENT 形态梯度

cv2.MORPH TOPHAT 顶帽运算

cv2.MORPH BLACKHAT 底帽运算

kernel:进行腐蚀操作的核,可以通过函数

getStructuringElement()获得

anchor:锚点,默认为(-1,-1)

iterations:腐蚀操作的次数,默认为1

borderType: 边界种类

borderValue:边界值

三、实验题目(要求写出程序或命令的注释,给出实验结果)

- 1. 将图像转换为二值图像,并对二值图像分别进行方形模板 3*3 和 5*5 的膨胀和腐蚀操作,显示结果。
- 2. 拍摄一张自己的指纹图像,设计程序去除指纹图像中的噪声,显示结果。
- 3. 对一幅自拍照,采用不同大小和形状的结构元提取边缘,显示结果;使用梯度的方法对同一幅图像提取边缘,将这两种应用不同方法的结果进行显示比较。4. 对于给定的 fog 图像,使用形态学的方法与已知的图像增强和图像复原的方法
- 相结合,去除图像中的噪声,将结果进行显示。 5. 对给定的 leaf 图片进行顶帽变换和底帽变换,比较结果。
- 6. 对车牌图像分别利用基本的全局阈值处理方法和 Otsu 算法法进行图像中汽车及车牌的分割,显示处理前、后图像;思考不同的阈值处理算法对分割效果的影响?

四、实验代码及结果

五、实验总结