MAŠINSKI FAKULTET UNIVERZITETA U BEOGRADU KATEDRA ZA PROCESNU TEHNIKU

Merenje emisije zagađujućih komponenata

Merenja emisija iz termoenergetskih i drugih postrojenja se zahtevaju u cilju:

- •analize materijalnih bilansa materijala i energije jednog izvora zagadjenja;
- •odredjivanje uticaja izvora na zagadjenje ambijentnog vazduha;
- •odredjivanja emisionih faktora za odredjivanja katastara (popisa) emisija;
- •obezbedjivanje saglasnosti (podobnosti) izvora sa emisionim standardima;
- •procena i odredjivanje stepena efikasnosti tehnologija kontrole (smanjenja) emisije.

Emisija zagadjujućih komponenata zavisi od tehnologije procesa, eksploatacionih karakteristika postrojenja i tehničkog stanja uredjaja u okviru postrojenja. Kontrola emisije obuhvata merenje koncentracije čvrstih, tečnih i gasovitih zagadjujućih komponenata.

MERENJE EMISIJE

- Merenje emisije vrši se mernim uređajima, na mernim mestima, primenom propisanih metoda merenja i standarda
- Merenja koja se vrše u cilju određivanja emisije, obavljaju se tako da rezultati merenja reprezentuju emisiju postrojenja i da se mogu međusobno upoređivati kod srodnih postrojenja i pogonskih uslova
- Na izvoru emisije obezbeđuju se merna mesta za bezbedno merenje emisije i uzimanje uzoraka i odgovarajući prostor za smeštaj merne opreme

Uzorkovanje i analiza zagadjujućih komponenata

Primarni cilj svake tehnike uzorkovanja je da obezbedi uzorak koji je zaista reprezentativan

Uslovi uzorkovanja

- izbor mernog mesta
- izbor vremena uzorkovanja
- izbor opreme (materijali, čišćenje, provera zaptivenosti, temperatura, čuvanje uzoraka)
- vrste aparatura za uzorkovanje
- postupci analize uzoraka
- kontrola kvaliteta i provera tačnosti
- prikazivanje emisije i koncentracija

ZAKONODAVSTVO

PRAVILNIK O GRANIČNIM VREDNOSTIMA EMISIJE, NAČINU I ROKOVIMA MERENJA I EVIDENTIRANJA PODATAKA (PRAVILNIK 30/97)

- □ Pravilnik određuje GVE štetnih i opasnih materija u vazduh na mestu izvora zagađivanja, način i rokove merenja i evidentiranja podataka o izvršenim merenjima emisije
- U smislu ovog Pravilnika, GVE jeste najviši dozvoljeni nivo količina i koncentracija štetnih i opasnih materija na mestu izvora zagađivanja

MERENJE EMISIJE

- GARANCIJSKO MERENJE merenje nakon izgradnje ili rekonstrukcije objekta, radi dobijanja dozvole za rad
- POJEDINAČNO MERENJE merenje radi povremenih kontrola prema utvrđenom planu merenja, a najmanje jednom u toku godine
- KONTINUALNO MERENJE merenje kod postrojenja i uređaja, odnosno objekata, kod kojih postoji mogućnost prekoračenja granične vrednosti emisije
- GODIŠNJE KONTROLNO MERENJE merenje radi provere podataka o vrednostima emisija

IZRAŽAVANJE GRANIČNIH VREDNOSTI EMISIJE

- □masena koncentracija mg/m³
- □maseni protok kg/h
- ☐ faktor emisije masa emitovanih materija u odnosu na masu proizvedenog produkta, mg/h ili kg/t
- □stepen emitovanja odnos mase emitovane količine i količine iste materije koja ulazi u proces, %

Po pravilu se meri koncentracija i količina štetnih i opasnih materija pri sledećim uslovima

- □temperatura 273 K (0 °C)
- □pritisak 101,3 kPa
- □suvi otpadni gas

SVOĐENJE NA REFERENTNE USLOVE

Koncentracije zagađujućih komponenata izražavaju se na referentim uslovima

To znači da se veličine, koje se dobiju merenjem, moraju preračunati!

Referentni uslovi

IZMERENA VELIČINA

JEDNAČINA ZA PRERAČUNAVANJE : koncentracija kiseonika

temperatura

pritisak

vlaga

$$C_{\text{Corrected}} = C_{\text{Raw value}} \times \frac{21 - O_{\text{2Reference}}}{21 - O_{\text{2measured}}} \times \frac{T_{\text{measured}} + 273}{T_{\text{Reference}} + 273} \times \frac{p_{\text{Reference}}}{p_{\text{measured}}} \times \frac{100 - f_{\text{Reference}}}{100 - f_{\text{measured}}}$$

NAČIN PRERAČUNAVANJA

ppm – milioniti deo nečega – npr. mg/kg ili cm3/m3

```
Primeri izračunavanja masenih koncentracija: 1 mg/m³ = 1 ppm X p
                      CO [mg/m^3] = CO [ppm] X 1,250
                      NO [mg/m^3] = NO [ppm] X 1,340
                     NO_2 [mg/m<sup>3</sup>] = NO_2 [ppm] X 2,054
              NO_{x} [mg/m^{3}] = {NO [ppm] + NO_{2} [ppm]} X 2,054
                     SO_2 [mg/m<sup>3</sup>] = SO_2 [ppm] X 2,860
             SO_x [mg/m^3] = {SO_2 [ppm] + SO_3 [ppm]} X 2,860
                TOC [mg/m^3] = TOC(metan) [ppm] X 0,536
                TOC [mg/m^3] = TOC(propan) [ppm] X 1,608
                     HCI [mg/m^3] = HCI [ppm] X 1,628
                      HF [mg/m^3] = HF [ppm] X 0,893
```

MERNO MESTO ZA SVAKI STACIONARNI IZVOR, MORA BITI

- neprekidan protok kroz poprečni presek
- bez poremećaja struje
- lako pristupačno
- tako opremljeno i izabrano, da omogućuje reprezentativno, tehnički odgovarajuće i bez opasnosti izvođenje merenja emisije
- u dubini 1/3 HD (uopšteno)
- mrežno merenje za prašinu
- bezbedno

MERNO MESTO ZAHTEV NEZAVISAN OD VRSTE MERENJA

Po pravilu se gas uzorkuje u dubini jedne trećine hidrauličkog prečnika (HD) kanala

Za merno mesto (kanal) se zahteva da ne dolazi do promena:

- dimenzije kanala
- smera kanala
- oblika kanala

UZORKOVANJE MERENJE EMISIJE (GASOVA)

Obzirom na način uzimanja uzorka:

- neekstraktivna (in-situ, in line, non-extractive), merenje se izvodi direktno u kanalu
- ekstraktivna (ex-situ, on line, extractive), iz kanala se oduzima uzorak gasa

Zbog toga se instrumenti za analize gasova koji rade prema svim gore opisanim principima mogu u osnovi podeliti u dve grupe:

- •Instrumenti koji zahtevaju uzimanje uzorka gasa (kontinualno-automatski uredjaji ili periodično),
- •Instrumenti koji se postavljaju direktno na dimni kanal ili dimnjak i rade bez uzorkovanja gasova.

Mnoge od prikazanih tehnika su predmet nacionalnih standarda (JUS, DIN, Britanski standard, EN-evropski, ISO i sl.) ili uputstava u jednoj ili više zemalja (VDI, EPA).

Prema prethodno pomenutom pravilniku merenja emisije mogu biti:

- Merenja zasnovana na korišćenju automatskih uredjaja za merenje trenutnih koncentracije zagadjujuće komponente,
- Merenja zasnovana na odredjivanju koncentracije zagadjujuće komponente koje se vrši u uzorku izdvojenom tokom odredjenog vremenskog intervala - odredjivanje srednje vrednosti koncentracije tokom odredjenog vremenskog intervala uzorkovanja.

Linija za uzorkovanje gasa

1 – sonda; 2 – filtar; 3 – cevovod sa grejačem; 4 – hladnjak; 5 – pranje gasa; 6 – slavina; 7 – pumpa; 8 – fini filtar; 9 – rotametar; 10 – analizator.

Termoelektrana

Merna mesta

Termoelektrana

Merene veličine – zahtevi

Merno mesto	Zadatak	Merena veličina
1	Optimizacija plamena	CO - O ₂
2	Monitoring sagorevanja	CO-NO-CO ₂ -O ₂
3	DENOX efikasnost	NO NO - NO ₂ - NH ₃
4	Monitoring elektrostatičkog filtra	CO-O ₂
5	Doziranje kreča ili krečnog mleka	SO ₂
6	Stepen izdvajanja sumpornih oksida	SO ₂ - O ₂
7	Monitoring emisije	CO-NO-SO ₂ -O ₂
8	Monitoring bunkera uglja	со
9	Monitoring turbo-generatora	H ₂