

Introduction to Unsupervised Learning: Basic Clustering

Thanakorn Thaminkaew

Data Scientist

Unsupervised Learning

- Machine learning tasks that attempts to uncover an underlying truth from the data.
- In other words, "given the data, what information can we extract from it?"
- Example tasks: Clustering, Dimensionality Reduction

Clustering

Clustering is the task of dividing the population or data points into a number of groups such that data points in the same groups are more similar to other data points in the same group and dissimilar to the data points in other groups.

It is basically a collection of objects on the basis of similarity and dissimilarity between them.

- Centroid-based clustering organizes the data into non
 - hierarchical clusters, in contrast to hierarchical clustering.
- Centroid-based algorithms are efficient but sensitive to initial conditions and outliers.

- Density-based clustering connects areas of high example density into clusters. This allows for arbitrary-shaped distributions as long as dense areas can be connected.
 - These algorithms have difficulty with data of varying densities and high dimensions. Further, by design, these algorithms do not assign outliers to clusters.

- Distribution-based clustering, as distance from the distribution's center increases, the probability that a point belongs to the distribution decreases. The bands show that decrease in probability.
 - When you do not know the type of distribution in your data, you should use a different algorithm.

- Hierarchical clustering creates a tree of clusters. Hierarchical clustering, not surprisingly, is well suited to hierarchical data, such as taxonomies.
- In addition, another advantage is that any number of clusters can be chosen by cutting the tree at the right level.

k-Means

k-Means

- Organize data into groups in such a way that the data within each groups are as close to the centroids as possible.
- The idea: "data that are close to each other are likely to be similar and form natural groups"
- Pros:
 - Simple, fast, and scalable
 - Results are relatively simple to explain
- Cons:
 - k chosen manually.
 - Dependent on values at initializations
 - Suffered from outliers and Curse of Dimensionality

Figure 9-2. An unlabeled dataset composed of five blobs of instances

k-Means: the Algorithm

- 1. Partition object into k nonempty subsets
- 2. Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., mean point, of the cluster)
- 3. Assign each object to the cluster with the nearest seed point
- 4. Go back to Step 2, stop when no more new assignment

Demo: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

k-Means: the Algorithm

Figure 9-5. Suboptimal solutions due to unlucky centroid initializations

What are the proper clusters?

k-Means will try to pick the most appropriate clusters for a given k

What about this? How many clusters are there?

How can we know?

How do we decide?: The elbow method

- To decides on number of clusters, we observes the overall distances from each point to its cluster center
- In this case, we plot the inertia of each clustering result
 - Inertia: sum of squared distances of samples to their closest cluster center
- Pick k at the "elbow" where splitting into more groups
 no longer provides noticeable improvements

Note on picking proper clusters

- Questions: I picked the number of groups at the elbow. Am I done?
- Answer: Maybe? There isn't always a clear right answer.
- Good clusters are clusters that provide us with actionable insights
- Sometimes, the magnitude of the overall distances from centroids may not be the most representative measure for clustering.
 - A lot of times, it would also be helpful for us if we can look at it
 - However, when data is in higher dimensions, visualization isn't always an option
 - There are many other metrics that can help us evaluate clusters.
 - One example of these metrics is Silhouette Score

Note on picking proper clusters

Figure 9-7. Bad choices for the number of clusters: when k is too small, separate clusters get merged (left), and when k is too large, some clusters get chopped into multiple pieces (right)

Figure 9-8. Plotting the inertia as a function of the number of clusters k

Silhouette Score

 Silhouette Coefficient is a measure of the level of cohesion of a cluster, given by a formula

$$S = \frac{b-a}{\max(a,b)}$$
 ,where

- a is the mean intra-cluster distance
- b is the mean nearest-cluster distance
- Silhouette Score is the mean of Silhouette Coefficient of all samples.
- The more positive, the better!
 - More positive generally means that the groups are tighter and better separated
- Can be helpful for visualization

Figure 9-9. Selecting the number of clusters k using the silhouette score

Figure 9-10. Analyzing the silhouette diagrams for various values of k

Python Tutorial

• Colab!

• 4 kMeans (Mall_Customers)

Thank You

Follow us on

Twitter

Blockdit

govbigdata

YouTube

Government Big Data Institute (GBDi)

Line Official

@gbdi

Follow us on

Website

Facebook

Blockdit

Twitter

