(2020-2021年第2学期)

供 2020 级研究生使用

目 录

(1)	第1次课1
(2)	第 2 次课1
(3)	第 3 次课2
(4)	第 4 次课3
(5)	第 5 次课4
(6)	第 6 次课
(7)	第7次课
(8)	第 8 次课
(9)	第 9 次课
(10)	第 10 次课
(11)	第 11 次课
(12)	第 12 次课
(13)	第 13 次课10
(14)	第 14 次课11

(1) 第1次课

- 1. 已知向量 $\alpha_1 = \begin{bmatrix} 3,1,5,2 \end{bmatrix}^T$, $\alpha_2 = \begin{bmatrix} 10,5,1,10 \end{bmatrix}^T$, $\alpha_3 = \begin{bmatrix} 1,-1,1,4 \end{bmatrix}^T$. 若有方程 $3(\alpha_1 \beta) + 2(\alpha_2 \beta) = 5(\alpha_3 + \beta)$, 求 β .
- 2. 证明: $\left\{ \alpha_1 = \left[1, 1, 0 \right]^T, \alpha_2 = \left[0, 0, 2 \right]^T, \alpha_3 = \left[0, 1, 2 \right]^T \right\}$ 是 \mathbb{R}^3 的 个 基; 并 求 $\beta = \left[5, 7, -2 \right]^T$ 在这个基下的坐标.
- 3. 已知 $\left\{ \alpha_1 = \left[1,1,0,0 \right]^T, \alpha_2 = \left[0,0,1,1 \right]^T, \alpha_3 = \left[1,0,0,-1 \right]^T, \alpha_4 = \left[0,1,1,0 \right]^T \right\}$ 是 \mathbb{R}^4 的 一个基;用 Schmidt 正交化方法求 \mathbb{R}^4 的标准正交基。

(2) 第2次课

4. 已知 AP = PB , 求 A 和 A⁸ 。 其中:

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{P} = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$

- 6. 设 X_1, X_2, X_3 是取自正态总体X 的样本,就下列总体X 给出这个样本的概率函数或概率密度:
 - (1) X 服从参数为 λ 的 Poisson 分布;
 - (2) X 服从参数为 λ 的指数分布,即概率密度为 $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \leq 0. \end{cases}$;

- (3) X在区间(a,b)上服从均匀分布;
- $f\left(x;a,b\right) = \begin{cases} \frac{\Gamma\left(a+b\right)}{\Gamma(a)\Gamma(b)} x^{a-1} \left(1-x\right)^{b-1}, & 0 < x < 1, \\ 0, & \text{其它}. \end{cases} , \quad \mathbb{P} \text{ 概 } \mathbb{E} \text{ 密 } \mathbb{E} \text{ B}$

(3) 第3次课

7. 求可逆矩阵 P,使得 PA为 Hermite 阶梯型矩阵,其中:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 \\ 2 & 2 & 3 & 1 & 4 \\ 1 & 0 & 1 & 1 & 5 \\ 2 & 3 & 5 & 5 & 4 \end{bmatrix}$$

8. 求矩阵A的一个满秩分解,其中:

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 & 0 & -1 \\ 1 & 1 & -2 & 2 & 3 \\ 3 & -1 & 8 & 5 & 1 \\ 1 & 3 & -6 & 4 & 7 \end{bmatrix}$$

- 9. 设x的相对误差为 1%,求 x^n 的相对误差。
- 10. 从总体 $N\left(20;\left(\sqrt{3}\right)^2\right)$ 中抽取容量分别为 10 和 15 的两个相互独立的样本,

求这两个样本均值之差的绝对值小于 0.3 的概率。这里 $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$,

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i} \text{ , } s_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(x_{i} - \overline{x} \right)^{2} \text{ , } s_{y}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(y_{i} - \overline{y} \right)^{2} \text{ } \circ$$

- 11. 设 X_1, \dots, X_5 是取自总体N(0;1)的样本,
 - (1) 求常数 c_1,d_1 ,使 $c_1\left(X_1+X_2\right)^2+d_1\left(X_3+X_4+X_5\right)^2$ 服从 χ^2 分布,并 指出其自由度。

(2) 求常数 c_2,d_2 ,使 $\frac{c_2\left(X_1^2+X_2^2\right)}{d_2\left(X_3+X_4+X_5\right)^2}$ 服从 F 分布 ,并指出其自由度。

(4) 第4次课

12. λ取何值时,线性方程组

$$\begin{cases} (2-\lambda)x_1 + 2x_2 - 2x_3 = 1, \\ 2x_1 + (5-\lambda)x_2 - 4x_3 = 2, \\ -2x_1 - 4x_2 + (5-\lambda)x_3 = -\lambda - 1. \end{cases}$$

有唯一解、无解或无穷多解?在有无穷多解时,求其一般解。

13. 取 $\sqrt{2}\approx 1.4$,欲计算 $\left(\sqrt{2}-1\right)^6$ 的近似值,有下列四个算式可采用:

$$(1)$$
 $\frac{1}{(\sqrt{2}+1)^6}$;

$$(2) (3-2\sqrt{2})^3$$
;

$$(3)$$
 $\frac{1}{(3+2\sqrt{2})^3}$;

$$(4) 99 - 70\sqrt{2}$$
 °

分析这四个算式哪一个所得的误差最小。

14. 如何计算下列函数值才比较准确:

$$(1)$$
 $\frac{1}{1+2x} - \frac{1-x}{1+x}, |x| \ll 1$;

$$(2)$$
 $\sqrt{x+\frac{1}{x}}-\sqrt{x-\frac{1}{x}},|x|\gg 1$;

$$(3) \frac{1-\cos x}{x}, |x| \ll 1;$$

(4)
$$\arctan(x+1) - \arctan(x), |x| \gg 1$$
°

- 15. 设总体 X 服从正态分布 $N\left(12;2^2\right)$,现随机抽取容量为 5 的样本,问:
 - (1) 此样本最小值小于10的概率是多少?
 - (2) 此样本最大值大于15的概率是多少?

(5) 第5次课

16. 已知 3 阶方阵 A 的属于特征值 1,0,-1 的特征向量依次为 $\mathbf{x}_1 = \begin{bmatrix} 1,2,2 \end{bmatrix}^T$, $\mathbf{x}_2 = \begin{bmatrix} 2,-2,1 \end{bmatrix}^T, \mathbf{x}_3 = \begin{bmatrix} -2,-1,2 \end{bmatrix}^T$,求 A 和 A 8 。

17. 求正交矩阵 Q 使 Q-1AQ 为对角矩阵,其中

$$\mathbf{A} = \begin{bmatrix} 5 & -4 & 2 \\ -4 & 5 & -2 \\ 2 & -2 & 2 \end{bmatrix}$$

18. 设
$$\mathbf{A} = \begin{bmatrix} -1 & 2 & 4 \\ 2 & x & 2 \\ 4 & 2 & -1 \end{bmatrix}$$
 与 $\mathbf{B} = \begin{bmatrix} 5 \\ y \\ -5 \end{bmatrix}$ 相似,求 x, y 。

19. 设样本 (1.3, 0.6, 1.7, 2.2, 0.3, 1.1) 是取自具有概率密度

$$f(x;\beta) = \begin{cases} \frac{1}{\beta}, & 0 < x < \beta, \\ 0, & \text{else.} \end{cases}$$

的总体,用矩估计法估计总体均值、总体方差及参数 β。

20. 设总体 X 服从对数正态分布 $LN\left(\mu;\sigma^2\right)$, 其概率函数为

$$f(x;\mu,\sigma^2) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma x}} \exp\left[-\frac{1}{2\sigma^2} \left(\ln x - \mu\right)^2\right], & x > 0, \\ 0, & x \le 0. \end{cases}$$

其中, μ , σ^2 均未知, X_1,X_2,\cdots,X_n 是取自这个总体的样本,求 μ 与 σ^2 的极大似然估计量。

21. 设 X_1, X_2, X_3 是取自总体X的样本,证明下列统计量都是总体均值E(X)的无偏估计量:

$$\begin{array}{l} t_1\left(X_1,X_2,X_3\right) = \frac{2}{5}X_1 + \frac{1}{5}X_2 + \frac{2}{5}X_3; \\ t_2\left(X_1,X_2,X_3\right) = \frac{1}{6}X_1 + \frac{1}{3}X_2 + \frac{1}{2}X_3; \\ t_3\left(X_1,X_2,X_3\right) = \frac{1}{7}X_1 + \frac{3}{14}X_2 + \frac{9}{14}X_3. \end{array}$$

并问哪一个无偏估计量方差最小?

(6) 第6次课

- 22. 用正交线性变换将二次型 $f=x_1^2+2x_2^2+3x_3^2+4x_1x_2-4x_2x_3$ 化为标准型,并给出所用的正交线性变换。
- 23. 问t取何值时,对称矩阵A是正定的,其中

$$\mathbf{A} = \begin{bmatrix} 1 & t & 1 \\ t & 2 & 0 \\ 1 & 0 & 1 - t \end{bmatrix} \ \circ$$

- 24. 随机地从一批钉子中抽取 16 只,测得其长度(单位:厘米)为
 - 2.14, 2.10, 2.13, 2.15, 2.13, 2.12, 2.13, 2.10,
 - 2.15, 2.12, 2.14, 2.10, 2.13, 2.11, 2.14, 2.11

假定钉长分布是正态的,求总体均值 μ的双侧 90%置信区间:

- (1) 若已知 σ =0.01厘米;
- (2)若σ未知。
- 25. 甲乙两位化验员独立地对一种聚合物的含氯量用相同的方法各做了 10 次测定,得 $s_1^2=0.5419, s_2^2=0.6050$ 。求他们测定值的方差比的双侧 90%置信区间,假定测定值服从正态分布。

26. 设从某种型号的一大批晶体管中随机抽取 100 只样品,测得其寿命标准 $\dot{z}_s = 45$ 小时,求这批晶体管寿命标准差 σ 的双侧 95%置信区间。

(7) 第7次课

27. 求可逆矩阵 P使 P-1AP 为 Jordan 矩阵,其中

$$\mathbf{A} = \begin{bmatrix} 5 & 3 & 0 & 1 \\ -1 & 1 & 0 & 0 \\ 1 & 3 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

28. 求 A^k (k是正整数),其中

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix}.$$

29. $求 g(\mathbf{A}) = \mathbf{A}^8 - 9\mathbf{A}^6 + \mathbf{A}^4 - 3\mathbf{A}^3 + 4\mathbf{A}^2 + \mathbf{I}$, 其中

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & -2 \\ -1 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

30. 求下列方阵的最小多项式:

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 1 & 1 \\ -4 & -1 & -1 & 1 \\ & & 2 & 1 \\ & & -1 & 0 \end{bmatrix}.$$

(8) 第8次课

31. 从两批电子元件中随机抽取一些样品,测得它们的电阻(单位:欧姆) 如下:

甲批: 0.140; 0.138; 0.143; 0.142; 0.144; 0.137;

乙批: 0.135; 0.140; 0.142; 0.136; 0.138; 0.140;

假定这两批电子元件的电阻都服从正态分布,问在显著性水平 0.05 下, 能否认为这两个正态总体的方差相等?

- 32. 电话交换台每分钟接到呼唤的次数服从 Poisson 分布 $P(\lambda)$,今观测了 100 个时段,每个时段一分钟,共有 585 次呼唤,问在显著性水平 0.10 下,能否认为该电话交换台每分钟接到呼唤的次数服从 $\lambda=6$ 的 Poisson 分布?
- 33. 设 $\left(X_1,X_2,\cdots,X_n\right)$ 是取自正态总体 $N\left(\mu;1\right)$ 的样本,其中 μ 未知,要检验假设

$$H_0: \mu \geq 0; \ H_1: \mu < 0.$$

在显著性水平 α 下,采用拒绝域为

$$W_1 = \left\{ \left(\left. x_1, x_2, \cdots, x_n \right) \mid \sqrt{n} \cdot \overline{x} \right. < -u_{1-\alpha} \right\}$$

的u检验。

- (1) 求这个u 检验的功效函数 $\beta(\mu)$
- (2) 当 $\alpha=0.05$ 时,如果要求 $\mu\leq-0.1$ 时这个 u 检验的 II 类风险不大于 0.05,那么样本容量 n 至少应取多大?

(9) 第9次课

34. 验证 $\mathbf{A} = \begin{bmatrix} -\sqrt{2}i & -4 \\ 4 & \sqrt{2}i \end{bmatrix}$ 是正规矩阵,并求酉矩阵 \mathbf{U} 使为 $\mathbf{U}^{-1}\mathbf{A}\mathbf{U}$ 对角矩阵。

35. 求
$$\mathbf{A} = \begin{bmatrix} 1+i & 3 \\ 2 & 1-i \end{bmatrix}$$
 的谱半径 $\rho(\mathbf{A})$ 。

36. 用 Gauss 消去法和列主元消去法求解

$$\begin{cases} 4x_1 - 1.24x_2 + 0.3x_3 = -11.04, \\ 2x_1 + 4.5x_2 + 0.36x_3 = 0.02, \\ 0.5x_1 + 1.1x_2 + 3.1x_3 = 6. \end{cases}$$

(准确解是 $x_1 = -2.6, x_2 = 1, x_3 = 2$)

(10) 第10次课

37. 求下列方阵A的函数 e^{A} 和 e^{At} :

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 3 \\ 0 & -1 & 0 \\ 2 & 3 & 1 \end{bmatrix}.$$

38. 证明: $\mathbf{A} = \begin{bmatrix} 4 & -1 & 1 \\ -1 & 4.25 & 2.75 \\ 1 & 2.75 & 3.5 \end{bmatrix}$ 是正定矩阵,并求它的 $\mathbf{LDL}^{\! \mathrm{T}}$ 分解和 Cholesky 分

解。

39. 设

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \\ 2 & 3 & 3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix},$$

证明方程组Ax=b有解,并用QR分解方法解方程组Ax=b。

40. 求矩阵
$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \\ 1 & 0 \end{bmatrix}$$
的奇异值及奇异值分解。

(11) 第11次课

41. 已知 \mathbb{R}^3 的两个基

$$\mathscr{B}_{1} = \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}, \quad \mathscr{B}_{2} = \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

- (1) 求图到 图的基变换矩阵 P;
- (2) 求在異、獨下有相同坐标的所有向量。
- 42. 已知 \mathbf{R}^3 的线性变换 \mathscr{T} 在基 $\mathscr{A}=\left\{ \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} \right\}$ 下的矩阵是

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{bmatrix},$$

求
$$\mathcal{F}$$
 在基 $\mathcal{A}_2 = \left\{ \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix} \right\}$ 下的矩阵 \mathbf{B} 。

(12) 第12次课

43. 利用 Gerschgorin 定理确定方阵

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 5 & 1 \\ -2 & -1 & 9 \end{bmatrix}$$

的特征值范围。判断A的特征值是否都是实数?

44. 已知方程 $x^3 - x^2 - 1 = 0$ 在 $x^{(0)} = 1.5$ 附近有根,将方程改写成:

(1)
$$x=1+\frac{1}{x^2}$$
, 对应的迭代算式为 $x^{(k+1)}=1+\frac{1}{[x^{(k)}]^2}$;

(2)
$$x = \sqrt[3]{1+x^2}$$
, 对应的迭代算式为 $x^{(k+1)} = \sqrt[3]{1+[x^{(k)}]^2}$;

(3)
$$x = \frac{1}{\sqrt{x-1}}$$
, 对应的迭代算式为 $x^{(k+1)} = \frac{1}{\sqrt{x^{(k)}-1}}$ 。

判断上述各种迭代算式在1.5 附近的收敛性。

(13) 第13次课

45. 今有 10 组观测数据如下

x_{i}	0.5	-0.8	0.9	-2.8	6.5	2.3	1.6	5.1	-1.9	-1.5
y_i	-0.3	3 - 1.2	2 1.1	-3.5	4.6	1.8	0.5	2.8	-2.8	0.5

应用正态线性模型 $Y_i=\beta_0+\beta_1x_i+\varepsilon_i$, $\varepsilon_i\sim N\!\left(0,\sigma^2\right)$, $i=1,2,\cdots,10$ 且 $\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_{10}$ 相互独立,

- (1) 求 β_0 , β_1 的最小二乘估计;
- (2) 求 β 1 的置信水平为 0.95 的区间估计;
- (3)在显著性水平 $\alpha=0.01$ 下,假设检验 $\mathbf{H}_0:\beta_1=0$;
- (4) 计算残差方差 $\widehat{\sigma_e^2}$;
- (5) 求 x = 1.2 时 Y 的双侧 95% 的预测区间。
- 46. 养猪场为了估算猪的毛重(单位:公斤)Y与其身长(单位:厘米) x_1 ,

肚围 (单位:厘米) x_2 之间的关系,测量了 14 头猪,得数据如下:

$x_{i,1}$	41	45	51	52	59	62	69	72	78	80	90	92	98	103
$x_{i,2}$	49	58	62	71	62	74	71	74	79	84	85	94	91	95
y_{i}	28	39	41	44	43	50	51	57	63	66	70	76	80	84

- (1) 求经验回归函数;
- (2) 在显著性水平 1%下,检验 $H_0:\beta_1=\beta_2=0$;

- (3) $\bar{x}_1 = 100, x_2 = 80$ 时 Y 的预测值;
- (4) 在显著性水平 5%下,做偏 F 检验, \mathbf{H}_{0j} : $\beta_{j}=0, j=1,2.$

这里,假定猪的毛重 $Y \sim N\left(\beta_0 + \beta_1 x_1 + \beta_2 x_2, \sigma^2\right)$ 。

47. 下表给出了某种化工产品在三种不同浓度(单位:%)与四种不同温度 (单位:°C)下成品的得率,且每对水平搭配做了两次试验的数据:

温度浓度	10	24	38	52
2	10, 14	11, 11	13, 9	10, 12
4	9, 7	10, 8	7, 11	6, 10
6	5, 11	13, 14	12, 13	14, 10

假定数据来自方差相等的正态总体。

- (1)证明:在显著水平25%下,浓度与温度之间的交互效应对该种化工产品的得率无显著影响。
- (2)问在显著性水平 5%下,浓度与温度分别对该种化工产品的得率有无显著影响?

(14) 第14次课

48. 给定数据表

$x_{_i}$	1.2	3.2	4.5
f_{i}	101	112	109

求通过这三个数据点的次数不超过2的插值多项式。

49. 已知数据表

\overline{x}	0.1	0.2	0.3	0.4	0.5
y(x)	0.70010	0.40160	0.10810	-0.17440	-0.43750

用反插值 (即在 y=y(x) 的反函数 x=x(y) 存在的假设下,构造反函数 x=x(y) 的插值多项式) 求 y(x)=0 在 (0.3,0.4) 内的根的近似值。

50. 已知实验数据表

$\overline{x_i}$	19	25	31	38	44
\boldsymbol{y}_i	19.0	32.3	49.0	73.3	97.8

用最小二乘法求形如 $y = a + bx^2$ 的经验公式,并计算均方误差。