The Living World

Chromosomes & CELL DIVISION

CELL REPRODUCTION

- Cell Division: process by which a cell divides to form two new cells (daughter cells)
- Three types of cell division, or cell reproduction
 - Prokaryotes (bacteria)
 - Binary fission divides forming two new identical cells
 - Eukaryotes
 - Mitosis
 - Cell or organism growth
 - Replacement or repair of damaged cells
 - Meiosis
 - formation of sex cells, or gametes

PROKARYOTIC CELL DIVISION

- Binary fission
 - 1: DNA Replication DNA is copied, resulting in 2 identical chromosomes
 - 2: Chromosome Segregation 2 chromosomes separate, move towards ends (poles) of cell
 - 3: Cytokinesis cytoplasm divides, forming 2 cells
 - Each new daughter cell is *genetically identical* to parent cell

Eukaryotic Cell Cycle

Like prokaryotic cell cycle, in that...

- Cell grows.
- DNA is replicated.
- <u>Mitotic cell division</u> produces daughter cell identical to the parent.

Different from <u>prokaryotic</u> cell cycle, in that...

- Eukaryotic cells have more DNA on many linear chromosomes.
- The timing of <u>replication</u> and cell division is highly regulated.

Discovery of chromosomes

- Chromosomes were first observed by the German embryologist Walther Fleming in 1882
- when he was examining the rapidly dividing cells of salamander larvae.
- Chromosomes are thread like structures that appear inside the nucleus at the time of cell division.

What is a Chromosome?

- Chromosome is the highly condensed form of DNA
- Wrapped into nucleosomes
- Wrapped into chromatin fiber
- Condensed during metaphase into the familiar shape
- Humans have 22 autosomal pairs
- And one pair of sex chromosomes

Chromosome Types:

- 1. Telocentric no p arm; centromere is on end
- Acrocentric very small p arm; centromere is very near end
- Submetacentric p arm just a little smaller than q arm; centromere in middle
- 4. Metacentric p and q arms are exactly the same length; centromere in exact middle of chromosome

Chromosome Types:

Functions of chromosomes

- Chromosomes contain genes and all the hereditary information is located in the genes.
- Chromosomes control the synthesis of structural proteins and thus help in cell division and growth
- They control cellular differentiation

- By directing the synthesis of particular enzymes, chromosomes control cell metabolism
- Chromosomes form link between off springs and parents.
- Some chromosomes called as sex chromosomes determine the sex of the individuals
- Through the process of crossing-over, chromosomes introduce variations
- Mutations are produced due to changes in gene chemistry.

Autosomes/ Sex chromosomes

Human and animal chromosomes are categorized as **autosomes** or **sex chromosomes**.

Sex Chromosomes determine and organisim's sex.

All of the others are called autosomes

Typical human male

44 autosomes,1 X sex chromosome1 Y sex chromosome

Typical human female

44 autosomes,2 X sex chromosomes

Questions

- 1. Define chromosomes and genes? What is the structure of chromosome?
- 2. What are the different types of chromosomes based on the position of centromere?
- 3. Explain sex chromosomes (allosomes) and autosomes?
- 4. What are the functions of chromosomes?
- 5. Define: Alleles, phenotype, geneotype, dominant and recessive genes

Questions

- 1. Define nucleotides and nucleosides? What are the composition of different nucleic acids?
- 2. What are the different bonds present in DNA and how are they formed?
- 3. What are the differences between DNA and RNA?
- 4. What are the salient features of the double helical structure of DNA proposed by Watson and Crick?
- 5. Explain Chargaff's rule with and example?
- 6. What are the functions of different types of RNA?

Mitosis Cell growth **G**₁ phase Cytokinesis Telophase Anaphase Interphase Cell Mitosis M phase Metaphase division DNA replication S phase Prophase G_2 phase Preparation for mitosis

Meiosis

A division of the nucleus that reduces chromosome number by half.

•Important in sexual reproduction

•Involves combining the genetic information of one parent with that of the other parent to produce a genetically distinct individual

Cell Division – Meiosis

- the process in which the number of chromosomes in the original cell is <u>reduced</u> by <u>HALF</u> through the separation of <u>homologous</u> chromosomes
 - Meiosis occurs in <u>sex</u> organs only
 - Males (XY) sex organs are the testes in humans
 - Females (XX) sex organs are the <u>ovaries</u> in humans
 - Meiosis also occurs in the sex organs of other

animals, plants, fungi, etc...

Terminology

- *Diploid* two sets of chromosomes (2n), in humans 23 pairs or 46 total
- *Haploid* one set of chromosomes (n) gametes or sex cells, in humans 23 chromosomes

Chromosome Pairing

- Homologous pair
 - each chromosome in pair are identical to the other (carry genes for same trait)
 - only one pair differs sex chromosomes X or Y

WRONG!!!

anaphase I (2c, n + 2c, n)

74

telophase I (2c, n + 2c, n)

Thank You

