1. $A = \{b, a, d\}, B = \{a, c\}$ のとき、 $A \land B$ の和集合 $A \cup B$ 、 $A \land B$ の和集合 $A \cap B$ 、 $A \land B$ の直積集合 $A \times B$ と、A のべき集合 $A \land B$ をそれぞれ外延的記法で書きなさい(要素を省略せずに書くこと)。

 $A \cup B = A \cap B = A \times B = A \times$

 $2^{A} =$

2. 以下の下線部を埋めなさい。

(a)	語 ba	لح	bcb	の連結は	_である。
-----	------	----	-----	------	-------

- (b) $(acb)^3 =$
- (c) $acb^3 =$
- (d) |babcb| = ___
- (e) $| \lambda | =$ ___
- 3. $\Sigma = \{0, 1\}$ のとき、 Σ 上の言語 $A = \{\lambda, 0, 10\}$ について、以下の問いに答えなさい。
 - (1) A²を外延的記法で書きなさい。(要素を省略せずに書くこと)。
 - (2) A*の長さ3以下の要素だけからなる集合を外延的記法で書きなさい(要素を省略せずに書くこと)。
- 4. Σ ={0, 1}とするとき、関数 f: $\Sigma \times \Sigma \to P(\Sigma)$ の定義域と値域をそれぞれ外延的記法で書きなさい(要素を省略せずに書くこと)。
- 5. 下記の状態遷移図であらわされる有限オートマトン M_1 を 5 つ組で書きなさい。アルファベットは、図に現れている記号だけからなると考えてよい。

- 6. 問 5 の有限オートマトン M₁ に以下の語が入力された時の動作を様相を使って書きなさい。
 - (a) xyy
 - (b) yxyy

これらの動作を参考にして、問 5 の有限オートマトン M_1 が受理する言語 $L(M_1)$ を書きなさい。 $L(M_1)$ =

さらに、間 1 の有限オートマトン M_1 が受理する言語 $L(M_1)$ に属する、長さ 3 以下の語の集合を書きなさい。

7. 言語 $L_3 = \{ w \in \{ s, v \}^* \mid \#s(w) \neq 2 \mod 4 \}$ を受理する有限オートマトンの状態遷移図を書きなさい $(\#_s(w) \neq 2 \mod 4 \text{ は、語 } w$ に現れる記号 s の個数を 4 で割った余りが 2 ではないという意味)。 ヒント: はじめに、言語 $\{ w \in \{ s, v \}^* \mid \#_s(w) = 2 \mod 4 \}$ を受理する有限オートマトンの状態遷移図を書いてみるとよい。

8. 以下の状態遷移図で表される有限オートマトンを 5 つ組で書きなさい。アルファベットは、図に現れている 記号だけからなると考えてよい。遷移関数は、等式の形で書いても表の形で書いてもよい。

9. 以下の状態遷移図で表される有限オートマトンが受理する言語を書きなさい。

10. 言語 {0}*{00, 11}{0, 1}*を受理する非決定性有限オートマトンの状態遷移図を書きなさい。

11. $\Sigma = \{0,1\}$ のとき、言語 $\{w \in \Sigma^* \mid w \text{ の最後から 2 番目に 0 が現れる }\}$ を受理する、状態の個数が 3 個以下である nfa の状態遷移図を書きなさい。