# Modelo gráfico probabilístico (PGM)

- Representación gráfica de las relaciones entre múltiples variables aleatorias de una distribución que permiten:
  - visualizar su estructura de manera simple e intuitiva,
  - codificar de manera compacta la distribución,
  - descubrir propiedades del modelo inspeccionando la gráfica (independencias condicionales),
  - ▶ inferir y razonar de manera tratable.

## Tipos de PGM

Gráficas dirigidas: redes bayesianas.



Gráficas no dirigidas: redes de markov.



## Red bayesiana (BN)

- Emplea gráficas acíclicas dirigidas (DAG) para representar una distribucion conjunta donde:
  - los vértices son las variables aleatorias,
  - las aristas son las relaciones condicionales.



 $\bigodot$   $\rightarrow$   $\bigodot$  represent a P(B|A)

#### Factorización I

▶ Dada una distribución conjunta p(C, B, A) podemos factorizar:

$$p(C, B, A) = p(C|B, A)p(B, A),$$
 regla del prod.  
=  $p(C|B, A)p(B|A)p(A).$ 



#### Factorización II

▶ De manera general se conoce como la regla de la cadena:

$$p(X_1,...,X_k) = p(X_k|X_1...,X_{k-1})...p(X_2|X_1)p(X_1).$$

- ▶ Diferentes ordenes de descomposición se corresponden con diferentes gráficas.
- Las aristas ausentes codifican información de independencia condicional sobre la distribución.

- Construye una red bayesiana que modele el estilo de vida de un alumno del IIMAS de acuerdo a las siguientes variables:
  - ▶ Q: hasta el agua se me quema,
  - T: compro seguido vitamina T,
  - ► *G*: soy gamer,
  - B: siempre espero el pumabus,
  - ► A: el ascensor del IIMAS es mi amigo,
  - ► *S*: tengo sobrepeso,
  - ▶ *P*: mis pantalones se encogen.

- Construye una red bayesiana que modele el estilo de vida de un alumno del IIMAS de acuerdo a las siguientes variables:
  - Q: hasta el agua se me quema,
  - T: compro seguido vitamina T,
  - ▶ G: soy gamer,
  - ▶ *B*: siempre espero el pumabus,
  - ► A: el ascensor del IIMAS es mi amigo,
  - S: tengo sobrepeso,
  - P: mis pantalones se encogen.



¿Cuál es la distribución conjunta de este modelo?



Les la distribución conjunta de este modelo?



P(U, V, W, X, T, Y, Z) = P(U)P(V)P(W|U, V)P(X|V)P(T|V)P(Y|W, X)P(Z|T)

¿Cuál es el modelo de esta distribución conjunta?

$$P(U,V,W,X,T,Y,Z) = P(U)P(V)P(W|U)P(X|U,V)P(T|V)P(Y|W,X)P(Z|X,T)$$

¿Cuál es el modelo de esta distribución conjunta?

$$P(U, V, W, X, T, Y, Z) = P(U)P(V)P(W|U)P(X|U, V)P(T|V)P(Y|W, X)P(Z|X, T)$$



#### Independencia condicional

► Decimos que *A* es condicionalmente independiente de B dado *C* si:

$$p(A|B,C) = p(A|C)$$

es decir:

$$p(A, B|C) = p(A|C)p(B|C)$$

#### Cadena causal

▶ Ej. Fumar (F) causa cáncer (C), lo que causa disnea (D).



... dado que se tiene cáncer, no importa si fumo o no.

#### Causa común

► Ej. El cáncer (C) es causa común de rayos X positivos (X) y disnea (D).



... se sufre de disnea dado que se tiene cáncer por lo tanto no son necesarios rayos X.

#### Efecto común

► Ej. El cáncer (C) es efecto común de polución (P) y fumar (F).



... dado que se fuma y se tiene cáncer, no es necesario asumir que el cáncer fue causado por la polución.

### D-separación (I)

- ▶ X y Y son condicionalmente independientes dado Z si:
  - $\triangleright$  X y Y son separados por Z, es decir, no hay caminos activos entre X y Y.
- Un camino es activo si cada tripleta es activa.
  - ▶ cadena causal:  $A \rightarrow B \rightarrow C$  donde B no ha sido observado.
  - $\triangleright$  causa común:  $A \leftarrow B \rightarrow C$  donde B no ha sido observado.
  - efecto común:  $A \rightarrow B \leftarrow C$  donde B o uno de sus descendientes D ha sido observado.

tripletas activas

tripletas inactivas















# D-separación (II)

- ► *X* ⊥⊥ *Y* | *Z* ?
  - ▶ Si hay un camino (no dirigido) activo entre X y Y entonces no se garantiza  $X \perp \!\!\! \perp Y \mid Z$ .
  - ▶ Si no hay caminos (no dirigidos) activos entre X y Y entonces se garantiza  $X \perp \!\!\! \perp Y \mid Z$ .

- ► *V* ⊥⊥ *Z* ?
  - ☐ garantiza independencia
  - no garantiza independencia



- ► *V* ⊥⊥ *Z* ?
  - ☐ garantiza independencia
  - □ no garantiza independencia
- ► Caminos:
  - Activos:
    - $\triangleright$  {V, T, Z}
  - ► Inactivos:



- ► *V* ⊥⊥ *Z* | *T* ?
  - ☐ garantiza independencia
  - no garantiza independencia



- ▶ *V* ⊥⊥ *Z* | *T* ?
  - ☑ garantiza independencia
  - ☐ no garantiza independencia
- ► Caminos:
  - Activos:
  - Inactivos:
    - ▶ {V, T, Z}



- ► *U* ⊥⊥ *V* ?
  - ☐ garantiza independencia
  - $\ \square$  no garantiza independencia



- ► *U* ⊥⊥ *V* ?

  - ☐ no garantiza independencia
- ► Caminos:
  - Activos:
  - Inactivos:
    - ► {U, W(Y), V}
    - ▶ {*U*, **W**, **Y**, **X**, *V*}



- ► *U* ⊥⊥ *V* | *W* ?
  - ☐ garantiza independencia
  - ☐ no garantiza independencia



- ► *U* ⊥⊥ *V* | *W* ?
  - ☐ garantiza independencia
  - ⋈ no garantiza independencia
- ► Caminos:
  - Activos:
    - $\blacktriangleright$  {U, W(Y), V}
  - Inactivos:
    - ▶ {*U*, **W**, **Y**, **X**, *V*}



- ► *U* ⊥⊥ *V* | *X* ?
  - ☐ garantiza independencia
  - □ no garantiza independencia



- ► *U* ⊥⊥ *V* | *X* ?
  - ⋈ garantiza independencia
  - ☐ no garantiza independencia
- ► Caminos:
  - Activos:
  - Inactivos:
    - ► {U, W(Y), V}
    - ▶ {*U*, *W*, **Y**, **X**, **V**}



- ► *U* ⊥⊥ *V* | *Y* ?
  - ☐ garantiza independencia
  - □ no garantiza independencia



- ► *U* ⊥⊥ *V* | *Y* ?
  - ☐ garantiza independencia
  - ⋈ no garantiza independencia
- ► Caminos:
  - Activos:
    - $\blacktriangleright \{U, W(Y), V\}$
    - ▶ {*U*, *W*, *Y*, *X*, *V*}
  - Inactivos:



- ► *U* ⊥⊥ *V* | *Z* ?
  - ☐ garantiza independencia
  - □ no garantiza independencia



- ► *U* ⊥⊥ *V* | *Z* ?
  - ⋈ garantiza independencia
  - ☐ no garantiza independencia
- ► Caminos:
  - Activos:
  - Inactivos:
    - ► {U, W(Y), V}





- ► *W* ⊥⊥ *X* ?
  - ☐ garantiza independencia
    - no garantiza independencia



- ► W ⊥⊥ X ?
  - ☐ garantiza independencia
  - ⋈ no garantiza independencia
- ► Caminos:
  - Activos:
    - $\blacktriangleright$  {W, V, X}
  - Inactivos:
    - ▶ {W, Y, X}



- ► X ⊥⊥ T | V ?
  - ☐ garantiza independencia
  - $\hfill\Box$  no garantiza independencia



- ► X ⊥⊥ T | V ?
  - ⋈ garantiza independencia
  - ☐ no garantiza independencia
- ► Caminos:
  - Activos:
  - Inactivos:
    - ▶ {X, V, T}
    - ▶ {X, Y, W, V, T}



- ► *X* ⊥⊥ *W* | *U* ?
  - ☐ garantiza independencia
  - □ no garantiza independencia



- ► X ⊥⊥ W | U ?
  - ☐ garantiza independencia
  - ⋈ no garantiza independencia
- ► Caminos:
  - Activos:
    - $\triangleright$  {X, V, W}
  - Inactivos:
    - ▶ {X, Y, W}



- ► *Y* ⊥⊥ *Z* ?
  - ☐ garantiza independencia
    - no garantiza independencia



- ► Y ⊥⊥ Z ?
  - ☐ garantiza independencia
  - ⋈ no garantiza independencia
- ► Caminos:
  - Activos:
    - $\blacktriangleright \{Y, X, V, T, Z\}$
    - $\blacktriangleright \{Y, W, V, T, Z\}$
  - Inactivos:



- ► *Y* ⊥⊥ *Z* | *T* ?
  - ☐ garantiza independencia
  - □ no garantiza independencia



- ► Y ⊥⊥ Z | T ?
  - ⋈ garantiza independencia
  - $\ \square$  no garantiza independencia
- ► Caminos:
  - Activos:
  - Inactivos:
    - ▶ {*Y*, *X*, **V**, **T**, **Z**}
    - ► {*Y*, *W*, **V**, **T**, **Z**}



- ► *Y* ⊥⊥ *Z* | *X* ?
  - ☐ garantiza independencia
    - no garantiza independencia



- ► *Y* ⊥⊥ *Z* | *X* ?
  - ☐ garantiza independencia
  - ⋈ no garantiza independencia
- ► Caminos:
  - Activos:
    - $\blacktriangleright$  {Y, W, V, T, Z}
  - Inactivos:
    - ▶ {Y, X, V, T, Z}



- ► *Y* ⊥⊥ *Z* | *V* ?
  - ☐ garantiza independencia
  - □ no garantiza independencia



- ► *Y* ⊥⊥ *Z* | *V* ?
  - ⋈ garantiza independencia
  - ☐ no garantiza independencia
- ► Caminos:
  - Activos:
  - Inactivos:
    - $\blacktriangleright \{Y, X, V, T, Z\}$
    - $\blacktriangleright \{Y, W, V, T, Z\}$



- ► *W* ⊥⊥ *Z* | *V* ?
  - ☐ garantiza independencia
    - no garantiza independencia



- ► *W* ⊥⊥ *Z* | *V* ?
  - ⋈ garantiza independencia
  - ☐ no garantiza independencia
- ► Caminos:
  - Activos:
  - Inactivos:
    - ▶ {W, V, T, Z}
    - $\blacktriangleright$  {W, Y, X, V, T, Z}



- ► *U* ⊥⊥ *Z* ?
  - ☐ garantiza independencia
  - $\hfill\Box$  no garantiza independencia



- ► *U* ⊥⊥ *Z* ?
  - ☑ garantiza independencia
  - ☐ no garantiza independencia
- ► Caminos:
  - Activos:
  - Inactivos:
    - ▶ {**U, W, V**, *T*, *Z*}
    - ▶ {*U*, **W**, **Y**, **X**, *V*, *T*, *Z*}



- ► *U* ⊥⊥ *Z* | *Y* ?
  - ☐ garantiza independencia
  - $\ \square$  no garantiza independencia



- ► *U* ⊥⊥ *Z* | *Y* ?
  - ☐ garantiza independencia
  - $oxed{\boxtimes}$  no garantiza independencia
- ► Caminos:
  - Activos:
    - $\blacktriangleright \{U, W, Y, X, V, T, Z\}$
    - $\blacktriangleright$  {U, W, V, T, Z}
  - Inactivos:

