离散数学

Discrete Mathematics

第2章 关系

宋牟平 <u>songmp@zju.edu.cn</u> 玉泉校区 行政楼 325 助教: 贾宁 18888911516 玉泉校区 行政楼 327

第2章 关系

关系的概念也是最基本的。

自然界和日常生活中的事物常常是相互关联的,存在着各种各样的关 系。如师生关系,同学关系,同事关系,亲戚关系,同乡关系。自然 数集N中的数满足1<2,2<3,3<4,4<5,5<6....。

2.1 笛卡尔积

<u>定义2-1</u> 有序n元组:由n个具有<u>给定次序</u>的元素 a_1 , a_2 , ..., a_n 组成的序 列,记(a_1 , a_2 , ..., a_n)。注意

- 1) $(a,b,c) \neq (b,a,c)$
- 2) $(a,a,a) \neq (a,a) \neq (a,a)$

<u>定义2-2</u> 有序n元组相等:设($a_1, a_2, ..., a_n$)和($b_1, b_2, ..., b_n$) 是两个有序n元组,若 $a_1=b_1$, $a_2=b_2$,…, $a_n=b_n$,则

$$(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$$

<u>定义2-3</u> 笛卡尔积:设 A_1 , A_2 , ..., A_n 是任意集合,<u>所有有序n元组(a_1 </u>, _{下午1时44分} <u>a₂,...,a_n)的集合</u>称为A₁,A₂,...,A_n的**笛卡尔积**,记

$$A_1 \times A_2 \times \cdots \times A_n (\underset{i=1}{\overset{n}{\times}} A_i) = \{ (a_1, a_2, \cdots a_n) \mid a_i \in A_i, i = 1, 2, \cdots n \}$$

也称n阶笛卡积。若A_i相同,可记为

$$\underbrace{A \times A \times \cdots \times A}_{n} = A^{n}$$

笛卡积元素的数目

$$\#(\mathop{\times}_{i=1}^{n}A_{i})=\prod_{i=1}^{n}\#A_{i}$$

例 $A_1=\{0, 2\}, A_2=\{2, 3\}, A_3=\{1, 4\}$

 $A1\times A2\times A3=\{(0,2,1),(0,2,4),(0,3,1),(0,3,4),(2,2,1),(2,2,4),(2,3,1),(2,3,4)\}$

例 二维实数平面可以看作实数R构成的笛卡积

$$R \times R = \{(x,y)|, x,y \in R\}$$

(x,y)为平面上的一个点。

例 三维空间可以看作实数R构成的三阶笛卡积

$$R \times R \times R = \{(x,y,z) | x,y,z \in R\}$$

(x,y,z)是空间中的一个点。

对二阶笛卡尔积可以证明有分配律成立

- (1) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- (2) $(B \cap C) \times A = (B \times A) \cap (C \times A)$
- (3) $(A-B)\times C=(A\times C)-(B\times C)$
- (4) $A \subseteq C$, $B \subseteq D \Leftrightarrow A \times B \subseteq C \times D$

但交换律不成立

(5) $A \times B \neq B \times A$

书中给出了(1)的证明, (2)和(3)的证明为书中的习题。

二阶笛卡积也可用文氏图表示

如
$$(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$$

2.2 关系

自然界和日常生活中的事物存在着各种各样的关系。<u>这些关系可以用集</u>合来表示。(*最终要分解到0—1关系*)

定义2-4 关系: n阶笛卡尔积 $A_1 \times A_2 \times ... \times A_n$ 的<u>任一个子集</u> ρ 称为 A_1 , A_2 ,..., A_n 上的一个n元关系。即,若

$$\rho \subseteq A_1 \times A_2 \times ... \times A_n$$

则 ρ 是 A_1 , A_2 , ..., A_n 上的一个n元关系。特别地,若n=2, ρ 称为A、B上的**二元关系**。

 $\rho = \{(x,y) | x,y \in R, x^2 + y^2 = 1\}$

ρ⊆R×R,是R上的一个二元关系,是实数平面上半径为1的圆的点集。

<u>关系也常用表格</u>表示,如数据库中的数据。

部门	姓名	性别	部门电话
水产部	史文心	男	2786
石油部	罗林	男	2482
工业部	卢依人	女	3133
石油部	秦如	女	2482
石油部	李英	男	2482
工业部	王义	男	3133
电力部	王小英	女	3025

$$\rho \subseteq A_1 \times A_2 \times A_3 \times A_4$$

A₁={水产部,石油部,工业部,电力部}
A₂={史文心,罗林,卢依人,秦如,李英,王义,王小英}
A₃={男,女}

 $A_4 = \{2786, 2482, 3133, 3025\}$

特殊关系

空关系

 $\rho = \emptyset;$

满关系

ρ=A₁×A₂×…×A_n 笛卡尔积

定义2-5 A,B上的二元关系也称为A到B的二元关系,对二元关系p有定义

定义域

 $Dρ={a|a∈A, 存在b∈B, 使得(a,b)∈ρ}$

值域

 $Rρ={b|b∈B, 存在a∈A, 使得(a,b)∈ρ}$

显然

 $D\rho \subseteq A$, $R\rho \subseteq B$

定义2-6 逆关系: 若ρ是A到B的关系,则B到A的关系

逆关系

$$\widetilde{\rho} = \{(b, a) \mid (a, b) \in \rho\}$$

称为p的**逆关系**。

例 ρ ={(2,2),(4,2),(6,2)}的逆关系为 $\tilde{\rho}$ = {(2,2),(2,4),(2,6)}

例 工资单

成员	工资
张扬	3000
黎明	2500
王凡	5000

工资	成员		
3000	张扬		
2500	黎明		
5000	王凡		

上面的表格互为逆关系。由左表查某成员的工资,由右表查拿某挡工资的成员。

A到A的二元关系称为<u>A上的二元关系</u>。对A上的二元关系,有<mark>恒等关系</mark>

特殊关系

$$I_A \!\!=\!\! \{(a_i,\!a_i)|a_i \!\in\! A\}$$

例

$$I_R = \{(x,y) | x,y \in R, x=y\}$$

关系的表示方法

关系除了用**集合的定义**表示外,还可用**表格、图示**和**矩阵**表示。表格在前面已提到,如工资单、成绩单、报名表等。关系图,如家谱、目录、地图、联络图等。矩阵,如计算机里存储数据。

例 A={a,b,c,d}, B={1,2,3,4}

$$M_{\rho} = \begin{bmatrix} a & 0 & 0 & 1 & 1 \\ b & 1 & 1 & 0 & 0 \\ c & 0 & 0 & 0 & 1 \\ d & 1 & 0 & 0 & 0 \end{bmatrix}$$

A上二元关系图

例 A={0,1,2,3}, A上二元关系ρ={(0,0),(0,3),(2,3),(3,2),(2,1),(2,0)}

三种关系表示方法各有特点,用于不同场合。

集合A上的关系: 由集合A到A自身的关系(是A²的一个子集)。

特殊二元

<u>普遍关系</u>: 若 ρ = A²,用 U_A 表示, U_A ={(a_i, a_j) | $a_i, a_j \in A$ }

关系 <u>恒等关系</u>: A上的恒等关系用 I_A 表示, $I_A = \{(a_i, a_i) \mid a_i \in A\}$

2.3 关系的复合

二元关系运算

设 ρ_1 和 ρ_2 都是A到B的关系

(1)
$$\rho_1 \cup \rho_2$$
;

(2)
$$\rho_1 \cap \rho_2$$

(3)
$$\rho_1 - \rho_2$$
;

(4)
$$\rho'=(A\times B)-\rho$$

$$(5) \tilde{\rho}$$

关系运算的性质

<u>关系是集合,集合的运算定律都适用</u>,下面是**逆运算(不是补)的性质**。

$$(1) \quad \tilde{\tilde{\rho}} = \rho$$

$$(2) \overline{(\rho_1 \cup \rho_2)} = \overline{\rho_1} \cup \overline{\rho_2}$$

$$(3) \overline{(\rho_1 \cap \rho_2)} = \overline{\rho_1} \cap \overline{\rho_2}$$

$$(4) \overline{(\rho_1 - \rho_2)} = \overline{\rho_1} - \overline{\rho_2}$$

(5)
$$\widetilde{A \times B} = B \times A$$

(6)
$$\rho_1 \subseteq \rho_2 \Leftrightarrow \tilde{\rho}_1 \subseteq \tilde{\rho}_2$$

关系的复合运算

 $A_1 \rightarrow \rho_1 \rightarrow A_2$; $A_2 \rightarrow \rho_2 \rightarrow A_3 \rightarrow A_1 \rightarrow \rho_1 \rho_2 \rightarrow A_3$

定义2-7 复合关系:设 ρ_1 是一个 A_1 到 A_2 的关系, ρ_2 是一个 A_2 到 A_3 的关系,则 ρ_1 和 ρ_2 的复合关系 ρ_1 - ρ_2 是一个 A_1 到 A_3 的关系,定义为<u>当且仅当存</u>在某个 a_k \in A_2 时,使得 a_i ρ_1 a_k , a_k ρ_2 a_i 时,有 a_i (ρ_1 - ρ_2) a_i 。

$$\rho_1 \cdot \rho_2 = \{(a_i, a_j) \mid (a_i, a_k) \in \rho_1 \exists \exists (a_k, a_j) \in \rho_2\}$$

例
$$A_1=\{1,2,3,4,\}, A_2=\{2,3,4\}, A_3=\{1,2,3\}$$

$$\rho_1 = \{(a_i, a_k) | a_i + a_k = 5\} = \{(1, 4), (2, 3), (3, 2)\}$$

$$\rho_2 = \{(a_k, a_j) | a_k - a_j = 2\} = \{(3, 1), (4, 2)\}$$

$$\rho_1 \cdot \rho_2 = \{(1,2), (2,1)\}$$

路径1→4→2, 2→3→1。 4、3是中间结点。

例 选课

 $A={$ 张华 a_1 ,王岳 a_2 ,陈平 a_3 ,李兰 a_4 } 学生

B={ 软件b₁,,硬件b₂,自动化b₃,遥感b₄} 专业

 $C=\{ \text{工程制图} c_1, \text{ 电子线路} c_2, 操作系统 c_3, 离散数学 c_4 \}$ 课程

$$\rho_1$$
={(a₁,b₁),(a₁,b₃),(a₂,b₂),(a₂,b₄),(a₃,b₃),(a₃,b₄),(a₄,b₁),(a₄,b₄)} 学生选双学位专业的情况

$$\rho_2$$
={(b₁,c₃),(b₁,c₄),(b₂,c₂),(b₂,c₃),(b₂,c₄),(b₃,c₁),(b₃,c₂),(b₄,c₂),(b₄,c₄)} 本学期各专业的必修课

$$\rho_3 = \rho_1 \cdot \rho_2$$
={(a₁,c₁), (a₁,c₂), (a₁,c₃), (a₁,c₄), (a₂,c₂), (a₂,c₃), (a₂,a₄), (a₃,c₁), (a₃,c₂), (a₃,c₄), (a₄,c₂), (a₄,c₃), (a₄,a₄)}
学生本学期必修的课程

定理2-1 设 ρ 是集合A到B的关系,则 $I_A \cdot \rho = \rho \cdot I_B = \rho$

定理2-2 设 ρ_1 是集合 A_1 到 A_2 的关系, ρ_2 是集合 A_2 到 A_3 的关系, ρ_3 是集合 A_3 到 A_4 的关系,则有 $(\rho_1 \cdot \rho_2) \cdot \rho_3 = \rho_1 \cdot (\rho_2 \cdot \rho_3)$

证明 根据复合关系的定义, $(\rho_1 \cdot \rho_2) \cdot \rho_s$ 和 $\rho_1 \cdot (\rho_2 \cdot \rho_s)$ 同是 $+ A_1$ 到 A_s 的关系。

下面证明 $(\rho_1 \cdot \rho_2) \cdot \rho_3 \subseteq \rho_1 \cdot (\rho_2 \cdot \rho_3)$.

没 $(a,d) \in (\rho_1 \cdot \rho_2) \cdot \rho_3$,由复合关系的定义,必有 $c \in A_3$ 使得 $a(\rho_1 \cdot \rho_2)c$, $c\rho_3d$,又由 $a(\rho_1 \cdot \rho_2)c$,必有 $b \in A_2$ 使得 $a\rho_1b$, $b\rho_2c$,由 $b\rho_2c$, $c\rho_3d$,可得 $b(\rho_2 \cdot \rho_3)d$,于是由 $a\rho_1b$, $b(\rho_2 \cdot \rho_3)d$,可得 $a(\rho_1 \cdot (\rho_2 \cdot \rho_3))d$,即 $(a,d) \in \rho_1 \cdot (\rho_2 \cdot \rho_3)$,故有 $(\rho_1 \cdot \rho_2) \cdot \rho_3 \subseteq \rho_1 \cdot (\rho_2 \cdot \rho_3)$ 。

类似地可以证明 $\rho_1 \cdot (\rho_2 \cdot \rho_3) \subseteq (\rho_1 \cdot \rho_2) \cdot \rho_2$.

由此 $(\rho_1 \cdot \rho_2) \cdot \rho_3 = \rho_1 \cdot (\rho_2 \cdot \rho_3)$ 得证。

2.4 复合关系的关系矩阵和关系图

用上面的方法运算比较麻烦,也很难用计算机进行。

关系矩阵与关系的运算,引入布尔运算

逻辑乘•: 0 • 0=0, 0 • 1=0, 1 • 0=0, 1 • 1=1

逻辑非 $\overline{}$: $\overline{0} = 1$, $\overline{1} = 0$

设 A={
$$a_1, a_2, ..., a_n$$
},B={ $b_1, b_2, ..., b_m$ }
$$\rho_1 = (r_{ij}^{(1)}) 和 \rho_2 = (r_{ij}^{(2)}) 是 A 到 B 的 关系。 \rho_1 =$$

则
$$\rho_1 \cup \rho_2 = (r_{ij}^{(1)}) + (r_{ij}^{(2)})$$

$$\rho_1 \cap \rho_2 = (r_{ij}^{(1)}) \cdot (r_{ij}^{(2)})$$

$$\rho_1' = (\bar{r}_{ij}^{(1)})$$

$$\rho_1 - \rho_2 = (r_{ij}^{(1)}) \cdot (\bar{r}_{ij}^{(2)})$$

$$\rho_{1} = \begin{bmatrix} a_{1} & 1 & 0 & 1 & 0 \\ a_{2} & 0 & 1 & 0 & 1 \\ a_{3} & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ b_{1} & b_{2} & b_{3} & b_{4} \end{bmatrix}$$

$$\rho_{2} = \begin{bmatrix} a_{1} & 0 & 0 & 1 & 1 \\ a_{2} & 0 & 1 & 1 & 1 \\ a_{3} & 1 & 1 & 0 & 0 \\ a_{4} & 0 & 1 & 0 & 1 \\ b_{1} & b_{2} & b_{3} & b_{4} \end{bmatrix}$$

$$\rho_1 \cup \rho_2 = \begin{bmatrix} a_1 & 0 & 1 & 1 \\ a_2 & 0 & 1 & 1 & 1 \\ a_3 & 1 & 1 & 1 & 1 \\ a_4 & 1 & 1 & 0 & 1 \end{bmatrix}$$

$$a_1 \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ b_1 & b_2 & b_3 & b_4 \end{bmatrix}$$

定义2-8 关系矩阵与关系的复合运算

设
$$A=\{a_1, a_2, ..., a_n\}$$
, $B=\{b_1, b_2, ..., b_m\}$, $C=\{c_1, c_2, ..., c_l\}$

$$\rho_1 = (r_{ij}^{(1)})_{n \times m}$$
是A到B的关系, $\rho_2 = (r_{ij}^{(2)})_{m \times l}$ 是B到C的关系。

与普通矩阵乘法的公式一样,只是将普通加法改为布尔加,普通乘法改为布尔乘。

选课的例子

$$\rho_{1} = \begin{bmatrix} a_{1} & 1 & 0 & 1 & 0 \\ a_{2} & 0 & 1 & 0 & 1 \\ a_{3} & 0 & 0 & 1 & 1 \\ a_{4} & 1 & 0 & 0 & 1 \end{bmatrix} \qquad \rho_{2} = \begin{bmatrix} b_{1} & 0 & 0 & 1 & 1 \\ b_{2} & 0 & 1 & 1 & 1 \\ b_{3} & 1 & 1 & 0 & 0 \\ b_{4} & 0 & 1 & 0 & 1 \end{bmatrix} \qquad \rho_{3} = \rho_{1} \circ \rho_{2} = \begin{bmatrix} a_{1} & 1 & 1 & 1 & 1 \\ a_{2} & 0 & 1 & 1 & 1 \\ a_{3} & 1 & 1 & 0 & 1 \\ a_{4} & 0 & 1 & 1 & 1 \end{bmatrix}$$

行标姓名,列标课程,或打印成两维表格。用计算机处理很方便。

定理2-3 设 ρ_1 是A到B的关系, ρ_2 是B到C的关系(这里的A、B和C都是有限集),它们的关系矩阵分别为 $M_{\rho 1}$ 、 $M_{\rho 2}$,则**复合关系的关系矩阵**

$$M_{\rho 1 \rho 2} = M_{\rho 1} \cdot M_{\rho 2}$$

定理2-4 设 ρ_1 是 A_1 到 A_2 的关系, ρ_2 是 A_2 到 A_3 的关系,…, ρ_n 是 A_n 到 A_{n+1} 的关系(这里的 A_1 , A_2 ,…, A_{n+1} 都是有限集),它们的关系矩阵分别为 $M_{\rho 1}$ 、 $M_{\rho 2}$,…, $M_{\rho n}$ 则复合关系 ρ_1 ρ_2 … ρ_n 的关系矩阵

$$M_{\rho 1 \ \rho 2} \dots \rho_n = M_{\rho 1} \cdot M_{\rho 2} \cdot \dots \cdot M_{\rho n}$$

定理2-5 设 ρ 是有限集A上的一个具有关系矩阵 M_{ρ} 的关系,则复合关系 ρ ⁿ的 关系矩阵

$$M_{\rho^n} = M_{\rho}^n$$

A上二元关系的关系图与复合运算

下午1时44分

2.5 关系的性质与闭包运算

A上二元关系的性质

设ρ是集合A上的二元关系

(1) <u>自反</u>与反自反、非自反:

 $\forall a \in A$, $f(a,a) \in \rho$, 则称 ρ 是**自反的**, 否则是**非自反的**。

 $\forall a \in A$, 有 $(a,a) \notin \rho$, 则称 ρ 是反自反的。

 $\underline{\mathbb{L}}$ $\underline{\mathbb{L}}$ ρ $\underline{\mathbb{L}}$ $\underline{\mathbb{L}}$ ρ $\underline{\mathbb{L}}$ $\underline{\mathbb{L}$

从关系矩阵看,其对角线元素均为1,例如

$$\rho = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$I_A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

从关系图上看所有点都有自环,例如

(2)对称、反对称、非对称

若有(a, b) \in ρ,必有(b, a) \in ρ,则称ρ是**对称的**,否则是**非对称的**。 若有(a,b) \in ρ和(b,a) \in ρ,必有a=b,则称ρ是**反对称的**。

反对称的等价定义

若a≠b,且(a,b)∈ρ,则必有(b,a)∉ρ,即(a,b)和(b,a)不能同时属于ρ。

下午1时44分

ρ 对称 \Leftrightarrow $\rho = \tilde{\rho} \Leftrightarrow \rho \cup \tilde{\rho} = \rho$

其**关系矩阵是对称矩阵**,例如 ρ_s 对称的, ρ_t 是反对称

$$\rho_{s} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix} \qquad \rho_{t} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\rho_t = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

关系图

ρ 反对称 $\Leftrightarrow \rho \cap \tilde{\rho} \subseteq I_A$

IA既是对称的,又是反对称的。

若关系既是对称的,又是反对称的,必有对角线外的元素都为0。

(3) 传递性

 $\underline{\Xi(a,b)},(b,c)\in \rho$,则 $(a,c)\in \rho$,称 ρ 是**可传递的**,否则是**不可传递的**。

注意: 若 $(a,b) \in \rho$,但 $(b,c) \notin \rho$,则 $(a,c) \in \rho$ 是否满足,都不影响传递性。

$$\rho_1$$
={(a,b),(b,c),(a,c)} 可传递的

$$\rho_2$$
={(a,b),(a,c)} 可传递的

$$\rho_3$$
={(a,b),(b,c)} 不可传递的

ρ传递 ⇔ ρ²⊆ρ

下午1时44分

例 A={a,b,c,d}, ρ₁={(a,b),(c,d)}, 可传递、反对称、反自反

例 ρ₂={(a,b)|a≤b, a,b∈N} 小于等于关系
 对一切的a∈N,必有a=a,即(a,a)∈ρ₂,ρ₂自反;
 对任意的a,b∈N,若(a,b)、(b,a)∈ρ₂,即a≤b,b≤a,则必有a=b,ρ₂反对称;
 对任意的a,b,c∈N,若(a,b),(b,c)∈ρ₂,即a≤b,b≤c,则必有a≤c,故
 (a,c)∈ρ₂,ρ₂可传递。
 小于等于关系是自反的、反对称的、传递的

例 ρ₃={(a,b)| a|b, a,b∈N} 整除关系

对一切的 $a \in N$,必有a|a,即 $(a,a) \in \rho_3$,自反; 对任意的 $a,b \in N$,若a|b且b|a,则a=b,反对称; 对任意的 $a,b,c \in N$,若a|b且b|c,则a|c,故 $(a,c) \in \rho_3$,传递。

整除关系是自反、反对称、传递

例 判断下图的性质

对称的

反对称的

自反的 反对称的 可传递的

对称的

闭包运算

闭包

对某一个关系 ρ ,若它不具备自反、对称、传递性质中的某性质,我们可将它扩充,增加一些元素使它具备这一性质。<u>则增加最少元素、使它具备这一性质的关系,称之为 ρ 的具有该性质的闭包。</u>

$$定义2-10$$
 自反闭包
$$r(\rho)=\rho\cup I_A$$
 对称闭包
$$s(\rho)=\rho\cup \widetilde{\rho}$$
 传递闭包
$$t(\rho)=\bigcup_{i=1}^{\infty}\rho^i$$

定理2-6 ρ 是集合A上的一个关系,则 ρ 的自反闭包 $r(\rho) = \rho \cup I_A$:

- (1) $\rho \subseteq r(\rho)$
- (2) r(ρ)是自反的
- (3) 对于A上任何自反关系ρ_r,若 ρ⊆ ρ_r,则 r(ρ)⊆ ρ_r,

称r(ρ)是**自反闭包**。

自反闭包 $\mathbf{r}(\rho)=\rho UI_A$ 的证明。

证明:

- (1) 显然 ρ⊆ρ UI_A
- (2) 因 I_A⊆ρUI_A,所以ρUI_A自反
- (3) 对A上的任意自反关系 ρ_r ,有

 $I_A \subseteq \rho_r$

若 $\rho \subseteq \rho_r$,

则 $\rho \cup I_A \subseteq \rho_r$

故r(ρ)=ρUI_A是自反闭包

定理2-7 ρ 是集合A上的一个关系,则 ρ 的对称闭包s(ρ))= $\rho \cup \tilde{\rho}$:

- (1) $\rho \subseteq S(\rho)$
- (2) r(ρ)是是对称的
- (3) 对于A上任何对称关系ρ_s,
 若ρ⊆ρ_s, 则 s(ρ)⊆ρ_s,
 称 s(ρ)是对称闭包。

定理2-8 ρ 是集合A上的一个关系,则 ρ 的传递反闭包t(ρ)= $\bigcup_{i=1}^{i} \rho^{i}$:

- (1) $\rho \subseteq t(\rho)$
- (2) t(ρ)是传递的
- (3) 对于A上任何传递关系ρ_t,若 ρ⊆ρ_t, 则 t(ρ)⊆ ρ_t,称t(ρ)是传递闭包

对称闭包 $\mathbf{s}(\rho)=\rho \cup \tilde{\rho}$ 的证明

证明:

- (1) 显然 ρ⊆ρ U ρ̈́
- (2) $\overline{(\rho \cup \overline{\rho})} = \overline{\rho} \cup \overline{\overline{\rho}} = \rho \cup \overline{\rho}$ 对称
- (3) 对A上的任意对称关系 ρ_s ,有

$$\rho_s = \tilde{\rho}_s$$

若 $\rho \subseteq \rho_s$, 则 $\tilde{\rho} \subseteq \tilde{\rho}_s$

因此 $\rho \cup \tilde{\rho} \subseteq \rho_s \cup \tilde{\rho}_s = \rho_s$

故 $\mathbf{s}(\rho)=\rho \cup \tilde{\rho}$ 是对称闭包。

传递闭包
$$t(\rho) = \bigcup_{i=1}^{\infty} \rho^{i}$$
证明

证明:

(1) 显然 $\rho \subseteq \bigcup_{i=1}^{\infty} \rho^{i}$ (2) 设(a,b),(b,c) $\in \bigcup_{i=1}^{\infty} \rho^{i}$ 则必存在h和k,使

$$(a,b)\in\rho^h$$
, $(b,c)\in\rho^k$

因此,

$$(a,c) \in \rho^{h+k} \subseteq \bigcup_{i=1}^{\infty} \rho^{i}$$

(3) 设 ρ_t 是A上的任意一个传递关系,且 $\rho \subseteq \rho_t$,

则对任意

$$(a,b) \in \bigcup_{i=1}^{\infty} \rho^{i}$$
,

必有

$$(a,b) \in \rho^k$$

因此必存在元素

$$b_1, b_2, ..., b_{k-1} \in A,$$

使

$$(a,b_1),(b_1,b_2),...,(b_{k-1},b) \in \rho$$

但ρ**⊆**ρ_t ,所以

$$(a,b_1),(b_1,b_2),\ldots,(b_{k-1},b) \in \rho_t$$

而 $ρ_t$ 是传递的,所以 (a,b) $∈ρ_t$,即

$$\mathop{\cup}_{i=1}^{\infty} \rho^{i} \!\!\! \subseteq \!\! \rho_{t}$$

对#A=n,则存在k≤n,使

$$t(\rho) = \bigcup_{i=1}^{n} \rho^{i}$$

2.6 等价关系

等价关系

集合A上的关系ρ,如果它是<u>自反的</u>、<u>对称的</u>、<u>可传递的</u>,则称ρ为A上的等价关系。

三角形的相似关系,直线间的平行关系,在一个城市"住同一条街的居民",都是等价关系的例子。

例 A是学生的集合,定义 ρ 为当且仅当a与b住同一寝室时, $(a,b) \in \rho$ 。

例 设A={0,1,2,3,4,5}, 定义A上的关系 ρ={(0,0), (1,1), (2,2), (3,3), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (4,4), (4,5), (5,4), (5,5)}

0	1	0	0	0	0	0
1	0	1	1	1	0	0
2	0	1	1	1	0 0 0 0 1 1 4	0
3	0	1	1	1	0	0
4	0	0	0	0	1	1
5	0	0	0	0	1	1
	0	1	2	3	4	5

等价关系恰好把元素分成三部分: 0; 1、2、3; 4、5。这使我们联想到分划,彼此有关联的元素构成分划的块,这个块称为等价类。

元素等价:设 ρ 是集合A上的等价关系,若(a,b) $\in \rho$,称a与b等价,记a=b。

等价类:设 ρ 是集合A上的等价关系,a是A中某个元素,则A中等价于a的所有元素的集合称为a所生成的等价类,记[a] $_{\rho}$ 。

$$[a]_{\rho} = \{b|b \in A, (a,b) \in \rho\}$$

从举的例子看出等价关系定义的等价类恰好构成A的一个分划。

定理2-11: 设ρ是集合A上的等价关系,则等价类的集合构成A的一个分划:

$$\pi_{\rho}^{A} = \{[a]_{\rho} | a \in A\}$$

$$\pi_{p}^{A} = \{[0], [1], [4]\} = \{\{0\}, \{1,2,3\}, \{4,5\}\}$$

<u>反之</u>,设 π ={A_i} $_{i \in K}$ 是集合A的一个分划,则存在A上的等价关系ρ,使 π 是A上由ρ导出的等价关系。

证明: 先(等价关系>分划)

(1) 对一切的 $\mathbf{a} \in \mathbf{A}$,有 $(\mathbf{a}, \mathbf{a}) \in \rho$,即 $\mathbf{a} \in [\mathbf{a}]_{\rho}$,所以

$$A \subseteq \bigcup_{a \in A} [a]_{\rho}$$

而

$$\bigcup_{a \in A} [a]_{\rho} \subseteq \mathsf{A}$$

所以

$$A = \bigcup_{a \in A} [a]_{\rho}$$

(2)由(1)可知[a]₀非空,且

$$[a]_{\rho} \neq [b]_{\rho}$$

则 $[a]_{\rho} \cap [b]_{\rho} = \emptyset$ 否则必存在一个元素x,使

 $x \in [a]_{\rho} \cap [b]_{\rho}$

有等价类的定义可知

 $(a,x)\in\rho$, $(b,x)\in\rho$

由等价关系的对称性可知

 $(x,b) \in \rho$

由传递性可知,有

 $(a,x)\in\rho$, $(x,b)\in\rho$

必有

(a,b)∈ρ

即

 $[a]_{\rho} = [b]_{\rho}$

第二部分的证明(分划→等价关系)

设

 $\pi = \{A_i\}_{i \in K}$

定义关系

 $\rho = \{(a,b) | a,b \in A_i\}$

(1) 对一切的a∈A,有a,a∈A _i ,所以		
	(a,a)∈ ρ	自反
(2) 若(a,b)∈ρ,由ρ的定义		
当然	a,b∈A _i	
—1300 —1300	b,a∈A _i	
因此	(b,a)∈ρ	对称
(3) 若(a,b),(b,c)∈ρ,则	(b ,a)=p	\(\frac{1}{4}\frac{1}{4}\frac{1}{4}\)
即	$a,b\in A_i$, $b,c\in A_i$	
ΙΖĺΊ	a,b,c∈A _i	
所以		/ / / 光
	(a,c)∈ ρ	传递

定义2-11 **商集**: A上等价关系导出的分划 π_{ρ}^{A} 也称为**A关于\rho的商集**,记 $A/\rho = \{[a]_{\rho}|a \in A\}$

秩: A/ρ的基数。

显然<u>恒等关系 I_A 和满关系 U_A 都是等价关系</u>, I_A 对应"最细"分划, U_A 对应最粗分划。

同余关系也是等价关系,如

ρ={(a,b)|a≡b(mod3), a,b∈l} 模3同余

若ρ是等价关系,可以证明

 $\rho^n = \rho$

相容关系: 若ρ是自反的、对称的,称ρ是相容关系。显然等价关系是相容关系。

2.7 偏序

定义2-16 **偏序关系**:集合A上的一个关系 ρ ,若 ρ 是<u>自反的</u>、<u>反对称的</u>、 <u>可传递的</u>,称 ρ 为**偏序关系**,常用符号" \leq "表示。

- (1) 对所有的a ∈A,有a ρ a;
- (2) 对所有的a, b ∈ A, 若a ρ b且b ρ a, 就必有a=b;
- (3) 对所有的a, b, c \in A, 若a ρ b且b ρ c, 就必有a ρ c。
- <u>一个偏序的逆也是一个偏序</u>,通常用符号"≥"表示。

例
$$A=\{1,2,3,4,5,6,7,8,9\}$$

$$\rho_1=\{(a,b) \mid a \le b, a,b \in A\}$$

$$\rho_2=\{(a,b) \mid a \mid b, a,b \in A\} \text{ a整除b}$$
例 $B=\{a,b,c\}$

 $\rho_3 = \{(s_1, s_2) \mid s_1 \subseteq s_2, s_1, s_2 \in 2^B\}$

定义2-17 **全序**: 一个集合A上的偏序, <u>若对于所有的a,b \in A,有a \leq b</u> 或b \leq a,则称它为A上的一个全序。

例,任意实数都是可比较大小, $\{R; \le\}$ 。但复数 $\{C; \le\}$? 定义2-18 **良序**: 一个集合A上的偏序,若对于A的每一个非空子集 $S \subseteq A$,在S中<u>存在一个元素as(称为S的**最小元素**),</u>使得对于所有的 $s \in S$,有 $a_s \le s$,则称它为A上的一个良序。

例,任意自然数集都有最小数{[n1, n2];≤}。但实数{(r1, r2);≤}、复数?

例

定义在<u>实数集R上的"小于或等于"关系</u>,是R上的偏序关系,也是一个全序,但它不是R上的良序。例如开区间(0,1)是R的子集,但其没有最小元素。

定义在<u>正整数集N上的"小于或等于"关系≤</u>,是N上的偏序关系,也是一个全序和良序。

实数集R上的小于关系"<"和大于关系">"都不是偏序关系。

可以用前面讨论的关系图来表示有限集A上的偏序关系,但通常是使用次序图(Hasse图)

- 1. 有#A个结点,每个结点代表A的一个元素,画作一个带有元素标号的小圆圈;
- 2. 若结点a≠b且a≤b,则结点a出现在结点b的下面;
- 3. 边(线段)连接两个结点 $a \rightarrow b$ 且 $a \leq b$,且不存在任何其它元素c,使得 $a \leq c \leq b$;
- 4. 所有边的方向都是从下朝上,略去边的方向。

下午1时44分

例 6 J={2,3,4,6,8,12,36,60}上的整除关系 | 是一个偏序,图 2-6 给出了该偏序的次序图。

例7 定义在全集合U的幂集上的包含关系 \subseteq 是一个偏序。设 $U = \{a, b, c\}$,则该偏序的次序图由图 2-7 给出。

例8 设 A={1,2,3,4}, ≤ 是 "小于或等于"关系,则< 是集合 A上的一个全序。其次序图由图 2-8 给出。

显然,全序的次序图仅由一条竖直边上结点的序列组成。

作业

• 1, 3(3), 6, 12, 15, 16, 19, 21, 34, 35, 40

小结

1. 集合的笛卡尔积

- 有序 n 元组(a_1, a_2, \dots, a_n);
- •有序二元组(a,b),亦称为序偶;
- n 个集合的笛卡尔积

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \cdots, a_n) \mid a_i \in A_i, i = 1, 2, \cdots, n\};$$

• 两个集合的笛卡尔积

$$A \times B = \{(a,b) | a \in A, b \in B\}.$$

2. 关系

- 由集合 A 到集合 B 的关系;
- •集合A上的关系;
- 恒等关系和普遍关系;
- 关系的逆关系;
- 复合关系;
- •集合 A 上关系 ρ 的传递闭包、对称闭包和自反闭包.

3. 关系的表示方法

- •集合表示法——列举法和描述法;
- 矩阵表示法——用矩阵表示由有限集 A 到有限集 B 的关系;
- · 关系图表示法——用有向图表示有限集 A 上的关系;
- · 次序图——用无向图来特定地表示有限集 A 上的偏序关系.

4. 关系的复合运算和闭包运算

- •由给定的关系 ρ_1 和 ρ_2 ,求复合关系 ρ_1 ρ_2 ;
- 由给定的集合 A 上的关系 ρ ,求复合关系 ρ^{n} ;
- 由给定的集合 A 上的关系 ρ ,求传递闭包 $t(\rho)$ 求对称闭包 $S(\rho)$ 、求自反闭包 $r(\rho)$.

$$t(\rho) = \bigcup_{i=1}^{\infty} \rho^{i}$$
 $s(\rho) = \rho \cup \widetilde{\rho}$ $r(\rho) = \rho \cup I_{A}$

5. 集合 A 上关系的性质

- •集合 A 上的自反关系;
- 集合 A 上的对称关系;
- •集合 A 上的反对称关系;
- ·集合 A 上的可传递的关系.

上述这些具有特殊性质的关系的定义及判别.

6. 集合 A 上两类重要的关系

- 等价关系、等价类和等价分划;
- 偏序关系、全序和良序.

下午1时44分

例题讲解

例 2-1 集合 $\{1,3,5,9\} = \{3,9,5,1\} = \{9,5,1,3\}$,但有序四元组(1,3,5,9) $\neq (3,9,5,1) \neq (9,5,1,3)$.

n 个集合的笛卡尔积是一个以有序 n 元组为元素的集合,因此两个集合的笛卡尔积就是一个以序偶为元素的集合.

例 2-2 设
$$A = \{1,3\}, B = \{1,2,4\}, 则$$

 $A \times B = \{(1,1),(1,2),(1,4),(3,1),(3,2),(3,4)\};$
 $B \times A = \{(1,1),(2,1),(4,1),(1,3),(2,3),(4,3)\}.$

注意到 $(1,2)\neq(2,1)$, $(1,4)\neq(4,1)$,…,所以 $A\times B\neq B\times A$,即笛卡尔积不满足交换律.

例 2-3 设
$$A = \{1,2,4,7,8\}, B = \{2,3,5,7\},$$
定义由 A 到 B 的关系
$$\rho = \left\{ (a,b) \left| \frac{a+b}{5} \right| \text{ E整数} \right\},$$

试问ρ由哪些序偶组成?

解 根据 ρ 的定义 $,\rho$ 中的序偶 (a,b) 应满足三个条件 ,a ∈ A;b ∈ B;a + b 能被 5 整除. 于是

$$\rho = \{(2,3),(7,3),(8,2),(8,7)\}.$$

集合 $A \setminus B$ 的基数分别是 $\sharp A = 5$, $\sharp B = 4$,因此笛卡尔积 $A \times B$ 的基数 $\sharp (A \times B) = \sharp A \times \sharp B = 20$. 即集合 $A \times B$ 由所有 20 个可能的序偶组成. 而 ρ 中的四个序偶只是其中的一部分,即 $\rho \subseteq A \times B$. $A \times B$ 还有许多其他的子集,如 $\{(1,3),(2,5),(4,7),(8,7)\}$ 、 $\emptyset \setminus A \times B$ 等均可看做是由 A 到 B 的关系.

例 2-7 例 2-3 中由集合
$$A$$
 到 B 的关系 ρ 的逆关系 $\tilde{\rho} = \{(3,2),(3,7),(2,8),(7,8)\},$ 它是一个由集合 B 到 A 的关系.

例 2-4 设有集合 A,B,# A = n,# B = m,试问由 A 到 B 有多少个不同的关系?

解 因为笛卡尔积 $A \times B$ 的任意一个子集都称为由 A 到 B 的一个关系,所以该问题等价于计算 $A \times B$ 有多少个子集. 由幂集的定义,该问题又等价于计算 $A \times B$ 的幂集的基数是多少.

$$\sharp (2^{A \times B}) = 2^{\sharp (A \times B)} = 2^{\sharp A \times \sharp B} = 2^{mn}$$

故由 A 到 B 有 2^{m} 个不同的关系.

若集合 A 和 B 中至少有一个是无限集,则 $A \times B$ 是无限集.因此 $A \times B$ 有无限多个子集,这也就意味着由 A 到 B 有无限多个不同的关系.

例 2-6 设 $\rho_1 = \{(1,2),(2,4),(3,3)\}, \rho_2 = \{(1,3),(2,4),(4,2)\},$ 试求出 $D_{\rho_1}, D_{\rho_2}, D_{\rho_1 \cup \rho_2}, R_{\rho_1}, R_{\rho_2}$ 和 $R_{\rho_1 \cap \rho_2}$.

解 虽然本题没有给出 ρ_1 和 ρ_2 是由什么集合到什么集合的关系,但是这对解答此题是无关紧要的. 事实上,不论 ρ_1 和 ρ_2 是定义在什么样的集合上的关系,根据 D_ρ 和 R_ρ 的定义,均有

$$D_{\rho_1} = \{1,2,3\}, \quad R_{\rho_1} = \{2,3,4\};$$

$$D_{\rho_2} = \{1,2,4\}, \quad R_{\rho_2} = \{2,4,3\}.$$
 又因为
$$\rho_1 \cup \rho_2 = \{(1,2),(2,4),(3,3),(1,3),(4,2)\};$$

$$\rho_1 \cap \rho_2 = \{(2,4)\},$$
 所以
$$D_{\rho_1 \cup \rho_2} = \{1,2,3,4\}; \quad R_{\rho_1 \cap \rho_2} = \{4\}.$$

下午1时44分

例 2-8 设有集合 $A = \{4,5,8,15\}$, $B = \{3,4,5,9,11\}$, $C = \{1,6,8,13\}$, ρ_1 是由 A 到 B 的关系, ρ_2 是由 B 到 C 的关系, 分别定义为

$$\rho_1 = \{ (a,b) \mid |b-a| = 1 \},$$

$$\rho_2 = \{ (b,c) \mid |b-c| = 2 \text{ dist} |b-c| = 4 \}.$$

试求复合关系 $\rho_1 \cdot \rho_2$.

解 由题意知

$$\rho_1 = \{ (4,3), (4,5), (5,4), (8,9) \},$$

$$\rho_2 = \{ (3,1), (4,6), (4,8), (5,1), (9,13), (11,13) \}.$$

根据复合关系的定义知

$$\rho_1 \cdot \rho_2 = \{(4,1),(5,6),(5,8),(8,13)\}.$$

关系 ρ_1 , ρ_2 以及复合关系 ρ_1 • ρ_2 如图 2-1 所示.

例 2-9 对于例 2-8 中的关系 ρ_1 , ρ_2 和复合关系 ρ_1 • ρ_2 , 分别求出其逆关系 $\widetilde{\rho_1}$, $\widetilde{\rho_2}$ 和 $\widetilde{\rho_1}$ • ρ_2 ,再求出复合关系 $\widetilde{\rho_2}$ • ρ_1 . 试问 $\widetilde{\rho_1}$ • ρ_2 与 $\widetilde{\rho_2}$, $\widetilde{\rho_1}$ 有什么关系?

解 根据逆关系的定义, ρ_1 是由 B 到 A 的关系, ρ_2 是由 C 到 B 的关系, ρ_1 • ρ_2 是由 C 到 A 的关系. 它们分别为

$$\tilde{\rho}_{1} = \{(3,4),(5,4),(4,5),(9,8)\},
\tilde{\rho}_{2} = \{(1,3),(6,4),(8,4),(1,5),(13,9),(13,11)\},
\widetilde{\rho}_{1} \cdot \rho_{2} = \{(1,4),(6,5),(8,5),(13,8)\}.$$

根据复合关系的定义, $\rho_2 \cdot \rho_1$ 是由 C 到 A 的关系,且

$$\tilde{\rho}_2 \cdot \tilde{\rho}_1 = \{(1,4),(6,5),(8,5),(13,8)\}.$$

 $\rho_1 \cdot \rho_2 = \tilde{\rho}_2 \cdot \tilde{\rho}_1$ 都是由 C 到 A 的关系,且由完全相同的四个序偶所组成,因此 $\rho_1 \cdot \rho_2 = \tilde{\rho}_2 \cdot \tilde{\rho}_1$.即 $\rho_1 \cdot \rho_2 = \tilde{\rho}_2 \cdot \tilde{\rho}_1$.

在一般情形下,等式 $\rho_1 \cdot \rho_2 = \rho_2 \cdot \rho_1$ 也是成立的,将在后面给出其证明(参见本章例 2-26).

例 2-10 设
$$A = \{a,b,c,d,e\}$$
, A 上的关系 ρ 定义为 $\rho = \{(a,b),(b,a),(a,c),(c,e),(d,b)\}$,

试对所有的 n∈N(N 表示正整数集),求出 ρⁿ.

由于关系的复合运算满足结合律,因此 ρ^3 可以看做是 $\rho \cdot \rho^2$,也可看做是 $\rho^2 \cdot \rho$,故

$$\rho^{3} = \rho \cdot \rho^{2} = \{(a,b),(a,c),(b,a),(b,e),(d,b),(d,c)\}.$$

类似地,

$$\rho^{4} = \rho \cdot \rho^{3} = \rho^{2} \cdot \rho^{2} = \rho^{3} \cdot \rho$$

$$= \{ (a,a), (a,e), (b,b), (b,c), (d,a), (d,e) \};$$

$$\rho^{5} = \rho \cdot \rho^{4} = \rho^{2} \cdot \rho^{3} = \rho^{3} \cdot \rho^{2} = \rho^{4} \cdot \rho$$

$$= \{ (a,b), (a,c), (b,a), (b,e), (d,b), (d,c) \}.$$

关系 ρ 由上可知, $\rho^5 = \rho^3$. 根据复合关系的定义,则有

$$ho^6 =
ho^5 \cdot
ho =
ho^3 \cdot
ho =
ho^4,$$
 $ho^7 =
ho^6 \cdot
ho =
ho^4 \cdot
ho =
ho^5 =
ho^3,$
 $ho^8 =
ho^7 \cdot
ho =
ho^5 \cdot
ho =
ho^6 =
ho^4, \cdots$
 $ho^3 =
ho^5 =
ho^7 =
ho^9 = \cdots$
 $ho^4 =
ho^6 =
ho^8 =
ho^{10} = \cdots$
 $ho^{2n-1} =
ho^3,$
 $ho^{2n} =
ho^4.$

于是有

即当 $n \geqslant 3$ 时,

例 2-11 试求出例 2-10 中关系 ρ 的传递闭包 ρ^+ .

$$\rho, \rho^2, \rho^3, \rho^4, \rho^5, \rho^6, \rho^7, \cdots$$

中,除 ρ 、 ρ^2 、 ρ^3 和 ρ^4 这四个关系互不相同外,其他关系均与关系 ρ^3 或 ρ^4 相同,由集合并运算的等幂律

$$\rho^{+} = \rho \cup \rho^{2} \cup \rho^{3} \cup \rho^{4}$$

$$= \{(a,a), (a,b), (a,c), (a,e), (b,a), (b,b), (b,c), (b,e), (c,e), (d,a), (d,b), (d,c), (d,e)\}.$$

例 2-12 设 $A = \{5,4,35,49\}$, $B = \{8,15,7\}$, 由 A 到 B 的关系 P 定义为 $\rho = \{(a,b) | a 与 b 互素\}$,

试写出 ρ 的关系矩阵 M_{ρ} .

解 由定义 ρ ={(5,8),(5,7),(4,15),(4,7),(35,8),(49,8),(49,15)},所以关系矩阵

$$\mathbf{M}_{\rho} = \begin{bmatrix} 5 & 1 & 0 & 1 \\ 0 & 1 & 1 \\ 35 & 1 & 0 & 0 \\ 49 & 1 & 1 & 0 \end{bmatrix}.$$

例 2-13 设 $A = \{5,4,35,49\}$,定义 A 上的关系 $\rho = \{(a_i,a_j) | a_i + a_j \leq 53\}$,

试画出 ρ 的关系图.

解 由定义 $\rho = \{(5,5),(5,4),(5,35),(4,5),(4,4),(4,35),(4,49),(35,5),(35,4),(49,4)\}$. 因此 ρ 的关系图如图 2-2 所示.

例 2-14 设
$$A = \{4,6,9,10\}, \rho_1$$
 和 ρ_2 是 A 上的两个关系

试求 $\rho_1 \cup \rho_2$, $\rho_1 \cap \rho_2$, ρ'_1 , $\rho_1 - \rho_2$.

解

$$\rho_1 = \{ (6,4), (10,4), (10,6) \};$$

$$\rho_2 = \{ (9,6), (10,4) \};$$

因此

$$\rho_1 \cup \rho_2 = \{ (6,4), (9,6), (10,4), (10,6) \};$$

$$\rho_1 \cap \rho_2 = \{ (10,4) \};$$

$$\rho_{1}' = (A \times A) - \rho_{1}$$

$$= \{ (4,4), (4,6), (4,9), (4,10), (6,6), (6,9), (6,10), (9,4), (9,6), (9,9), (9,10), (10,9), (10,10) \};$$

$$\rho_{1} - \rho_{2} = \{ (6,4), (10,6) \}.$$

因为 ρ_1 和 ρ_2 都是 A 上的关系, $\rho_1 \subseteq A \times A$, $\rho_2 \subseteq A \times A$,所以 $\rho_1 \cup \rho_2 \subseteq A \times A$, ρ_1 $\bigcap \rho_2 \subseteq A \times A$, $\rho_1' \subseteq A \times A$, $\rho_1 - \rho_2 \subseteq A \times A$, 即 $\rho_1 \bigcup \rho_2$, $\rho_1 \bigcap \rho_2$, ρ_1' , $\rho_1 - \rho_2$ 也都是集合 A下午1时44上的关系. 对这些关系也可用描述法定义如下:

$$\rho_1 \cup \rho_2 = \left\{ (a,b) \left| \frac{a-b}{2} \right| \text{ 是正整数或者} \frac{a-b}{3} \right| \text{ 是正整数} \right\};$$

$$\rho_1 \cap \rho_2 = \left\{ (a,b) \left| \frac{a-b}{2} \right| \text{ 和} \frac{a-b}{3} \right| \text{ 均为正整数} \right\};$$

$$\rho_1' = \left\{ (a,b) \left| \frac{a-b}{2} \right| \text{ 不是正整数} \right\};$$

$$\rho_1 - \rho_2 = \left\{ (a,b) \left| \frac{a-b}{2} \right| \text{ 是正整数}, \left| \frac{a-b}{3} \right| \text{ 不是正整数} \right\}.$$

例 2-15 设
$$A = \{a,b,c,d\}$$
, A 上的关系 $\rho = \{(a,a),(a,b),(b,d),(c,a),(d,c)\}$,

试求复合关系 ρ^2 .

解法一 根据关系 ρ 中所列出的序偶,按复合关系的定义求出 ρ^2 中的序偶. 只要有 $(x,y) \in \rho$ 和 $(y,z) \in \rho$,便有 $(x,z) \in \rho^2$. 因此

$$\rho^2 = \{(a,a),(a,b),(a,d),(b,c),(c,a),(c,b),(d,a)\}.$$

这里特别要注意 $(a,a) \in \rho^2$ 不要遗漏,它是由 $(a,a) \in \rho$, $(a,a) \in \rho$ 而得来的.

解法二 构造出 ρ 的关系矩阵 M_{ρ} ,利用 ρ^2 的关系矩阵 $M_{\rho^2} = M_{\rho} \cdot M_{\rho}$ 求出 M_{ρ^2} ,从而得到 ρ^2 . 在进行关系矩阵的乘法运算时,矩阵中元素的相乘和相加均使用布尔运算.

$$m{M}_{
ho} = egin{bmatrix} a & b & c & d \ a & 1 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ d & 0 & 0 & 1 & 0 \end{bmatrix},$$

$$\boldsymbol{M}_{\rho^2} = \boldsymbol{M}_{\rho} \cdot \boldsymbol{M}_{\rho} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} a & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ d & 1 & 0 & 0 & 0 \end{bmatrix}.$$

解法三 构造出 ρ 的关系图,在图中从每一结点 x 出发,找出经过长为 2 的路径能够到达的所有结点 y_1,y_2,\dots,y_r ,于是在 ρ^2 的关系图中有 r 条边(x,y_1),(x,y_2),…,(x,y_1).

本例 ρ 的关系图如图 2-3 所示. 从结点 a 出发,经过长为 2 的路径可以到达的结点分别是 a,b 和 d;从结点 b 出发,经过长为 2 的路径可以到达的结点仅有 c 一个;从结点 c 出发,经过长为 2 的路径可以到达的结点分别是 a 和 b;从结点 d 出发,经过长为 2 的路径仅可以到达结点 a. 于是 ρ^2 的关系图的构造如图 2-4 所示.

图 2-3 ρ的关系图

图 2-4 ρ^2 的关系图

例 2-16 设有集合 $A = \{2,3,4\}, B = \{4,6,7\}, C = \{8,9,12,14\}, \rho_1$ 是由 A 到 B 的关系, ρ_2 是由 B 到 C 的关系,分别定义为

$$\rho_1 = \{(a,b) | a 是素数且 a 整除 b\},$$
 $\rho_2 = \{(b,c) | b 整除 c\};$

试用关系矩阵表示法求复合关系 $\rho_1 \cdot \rho_2$.

解

$$\rho_1 = \{(2,4),(2,6),(3,6)\};$$

$$\rho_2 = \{(4,8),(4,12),(6,12),(7,14)\}.$$

因此

$$\mathbf{M}_{\rho_1} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{M}_{\rho_2} = \begin{bmatrix} 4 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 7 & 0 & 0 & 0 & 1 \end{bmatrix},$$

$$\mathbf{M}_{\rho_1} \cdot {}_{\rho_2} = \mathbf{M}_{\rho_1} \cdot \mathbf{M}_{\rho_2} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 12 & 14 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 4 & 0 & 0 & 0 & 0 \end{bmatrix},$$

$$\rho_1 \cdot \rho_2 = \{(2,8), (2,12), (3,12)\}.$$

例 2-17 用构造 ρ^+ 的关系图的方法,求例 2-10 中关系 ρ 的传递闭包 ρ^+ . **解** (1) 先构造出 ρ 的关系图(见图 2-5).

图 2-5 ρ的关系图

图 2-6 ρ^+ 的关系图

- (2) 在 ρ 的关系图中,对每一结点 x,找出从 x 出发能到达的所有结点. 从结点 a 出发可分别到达 a,b,c,e,从结点 b 出发可分别到达结点 a,b,c,e,从结点 c 出发可分别到达结点 e,从结点 d 出发可分别到达 b,a,c,e.
 - (3) 构造 ρ^+ 的关系图(见图 2-6).
 - (4) 根据 ρ^+ 的关系图写出 ρ^+ 的相应序偶.

$$\rho^{+} = \{(a,a), (a,b), (a,c), (a,e), (b,a), (b,b), (b,c), (b,e), (c,e), (d,a), (d,b), (d,c), (d,e)\}.$$

例 2-18 设 $A = \{a,b,c,d\}$.

(1) 判断下列关系是否自反关系.

$$\rho_{1} = \{(a,b),(b,c)\};
\rho_{2} = \{(a,a),(b,b),(c,c),(d,a)\};
\rho_{3} = \{(a,a),(a,b),(d,d),(c,c),(b,b)\};
\rho_{4} = \{(a,a),(b,b),(d,d),(c,c)\}.$$

(2) 判断下列关系是否对称关系或反对称关系.

$$\rho_{5} = \{(a,b), (a,a), (b,a), (b,c), (c,b)\};
\rho_{6} = \{(a,b), (a,a), (b,c), (d,c)\};
\rho_{7} = \{(c,b), (a,a), (d,c), (c,d)\};
\rho_{8} = \{(b,b), (d,d)\}.$$

(3) 判断下列关系是否可传递的关系.

$$\rho_{9} = \{(b,c),(c,c),(c,d),(b,d)\};$$

$$\rho_{10} = \{(b,c),(c,b),(b,b),(a,d)\};$$

$$\rho_{11} = \{(b,c),(d,a),(d,c)\}.$$

解 (1) ρ_1 不是自反关系,因为对于所有的 $x \in A$, (x,x) 均不在 ρ_1 中.

 ρ_2 不是自反关系,因为(d,d) $\in \rho_2$.

 ρ_3 是自反关系,但不是恒等关系.

 ρ_4 是自反关系,也是恒等关系.

(2) ρ_5 是对称关系. 它不是反对称关系,因为 $a \neq b$,但(a,b)和(b,a)均出现在 ρ_5 中. 同样 $b \neq c$,但(b,c)和(c,b)均出现在 ρ_5 中.

 ρ_6 不是对称关系,因为 $(a,b) \in \rho_6$,但 $(b,a) \notin \rho_6$. 同样 $(b,c) \in \rho_6$,但 $(c,b) \notin \rho_6$, $(d,c) \in \rho_6$ 但 $(c,d) \notin \rho_6$. 而上述这几条原因正好说明 ρ_6 是反对称关系.

 ρ_7 不是对称关系,因为 $(c,b) \in \rho_7$ 但 $(b,c) \notin \rho_7$. 它也不是反对称关系,因为 $c \neq d$,但(c,d)和(d,c)均在 ρ_7 中.

 ρ_8 既是对称关系,也是反对称关系.

(3) ρ_9 是可传递的关系.

 ρ_{10} 不是可传递的关系. 因为 $(c,b) \in \rho_{10}$, $(b,c) \in \rho_{10}$, $U(c,c) \in \rho_{10}$.

 ρ_{11} 是可传递的关系. 在此例中没有出现 $(x,y) \in \rho_{11}$ 同时 $(y,z) \in \rho_{11}$ 的情形,因此也就无所谓 $(x,z) \in \rho_{11}$ 的要求.

例 2-19 设
$$A = \{a,b,c,d\}, \rho_1$$
 和 ρ_2 是 A 上的关系
$$\rho_1 = \{(d,c),(c,a),(b,b),(d,a)\},$$

$$\rho_2 = \{(b,c),(c,d),(c,b)\},$$

试求 ρ_1^+ , ρ_2^+ .

解 因为 $ρ_1 \subseteq ρ_1$ 且 $ρ_1$ 是可传递的,而 $ρ_1$ 显然是满足(1),(2)这两条件中最小的关系,所以 $ρ_1^+ = ρ_1$.

 ρ_2 不是可传递的,因为有 $(b,c) \in \rho_2$, $(c,d) \in \rho_2$,但 $(b,d) \notin \rho_2$.所以必须添加(b,d).类似地道理,也必须添加(b,b)和(c,c).

注意到序偶(b,d),(b,b)和(c,c)是必须添加的,否则无法使 ρ_2 变成可传递关系.而添加了这三个序偶后, ρ_2 变成可传递了,因此不能再添加其它的序偶,故 $\rho_2^+ = \{(b,c),(c,d),(c,b),(b,d),(b,b),(c,c)\}.$

例 2-20 设
$$A = \{a,b,c,d,e\}, A$$
 上的关系

$$\rho_{1} = \{(a,a),(b,a),(b,b),(d,e),(a,b),(e,d),(d,d),(c,c),(e,e)\},\$$

$$\rho_{2} = \{(b,b),(b,a),(a,b),(d,d),(d,e),(c,c)\},\$$

试判断 ρ_1 和 ρ_2 是否是等价关系.

 ρ_1 是等价关系. 因为它具有自反性、对称性和可传递性.

 ρ_2 不是等价关系. 原因是:1)(a,a) $\in \rho_2$,(e,e) $\in \rho_2$,所以 ρ_2 不具有自反性;2)(d,e) $\in \rho_2$,但(e,d) $\in \rho_2$,所以 ρ_2 不具有对称性;3)(a,b) $\in \rho_2$,(b,a) $\in \rho_2$,但(a,a) $\in \rho_2$,所以 ρ_2 不具有可传递性.

虽然有以上三条原因,然而其中单独任何一条均可使得 ρ_2 不成为等价关系. 例如

$$\rho_3 = \{ (b,a), (a,b), (b,e), (a,c), (b,b), (a,a), (e,b), (c,a), (c,c), (d,d), (e,e) \}$$

是 A 上的自反且对称的关系,但因 ρ_3 不是可传递的,所以 ρ_3 不是等价关系.

例 2-21 试对例 2-20 中等价关系 ρ_1 写出集合 A 中每一个元素生成的等价类.

解 对于元素 a,因为 $(a,a) \in \rho_1$, $(b,a) \in \rho_1$,所以 a 生成的等价类 $[a]_{\rho_1} = \{a,b\}$.

对于元素 b,因为(b,b) $\in \rho_1$,(a,b) $\in \rho_1$,所以 b生成的等价类[b] $_{\rho_1} = \{a$, $b\}$.

类似地, $[c]_{\rho_1} = \{c\}$, $[d]_{\rho_1} = \{e,d\}$, $[e]_{\rho_1} = \{e,d\}$.

由上看出 $[a]_{\rho_1} = [b]_{\rho_1}$, $[d]_{\rho_1} = [e]_{\rho_1}$,这说明不同的元素可能生成的等价类是相同的.

例如,上例中集合 A 上由 ρ_1 导出的等价分划是 $\Pi_{\rho_1}^A = \{\{a,b\},\{c\},\{d,e\}\} = \{[a]_{\rho_1},[c]_{\rho_1},[d]_{\rho_1}\}.$

例 2-22 设 $A = \{2,3,4,6,8\}$, ρ 是 A 上的关系,定义为 $\rho = \{(a,b) | a$ 整除 $b\}$.

试问 ρ 是偏序关系吗?

解 由 ρ 的定义, ρ 由以下序偶组成:

 $\rho = \{(2,2),(2,4),(2,6),(2,8),(3,3),(3,6),(4,4),(4,8),(6,6),(8,8)\}.$

因为(2,2),(3,3),(4,4),(6,6),(8,8)均在 ρ 中,所以 ρ 是自反的.

当 $a \neq b$ 时,序偶(a,b)和(b,a)至多只有一个在 ρ 中,所以 ρ 是反对称的.

检查每一对序偶可以看出,每当有(a,b),(b,c) $\in \rho$ 时,便有(a,c) $\in \rho$. 例如(2,4),(4,8) $\in \rho$,也有(2,8) $\in \rho$. 所以 ρ 是可传递的.

由上可知, ρ 是 A 上的偏序关系.

事实上,只要 A 是由一些正整数组成的集合,则 A 上的整除关系一定是偏序关系.

例 2-23 分别用关系图和次序图表示例 2-22 中的偏序关系 ρ . **解** 偏序关系 ρ 的关系图和次序图分别如图 2-7 和图 2-8 所示.

图 2-7 ρ的关系图

图 2-8 ρ的次序图

偏序关系又称为部分序关系,它使得集合 A 中部分元素之间呈现一种次序关 下午1时44系.这种次序关系在关系图中体现不出来,但在次序图中却表现得很清楚. **例 2-30** 设 ρ_1 和 ρ_2 是集合 A 上的两个关系,试证明 $\rho_1^+ \cup \rho_2^+ \subseteq (\rho_1 \cup \rho_2)^+$.又 $(\rho_1 \cup \rho_2)^+ \subseteq \rho_1^+ \cup \rho_2^+$ 成立吗?为什么?

证法一(根据 ρ^+ 的定义进行推理)

 $\mathcal{C}(a,b) \in \rho_1^+ \cup \rho_2^+, \mathcal{M}(a,b) \in \rho_1^+$ 或 $(a,b) \in \rho_2^+$.

$$a\rho_1 a_{i_1}, a_{i_1} \rho_1 a_{i_2}, \cdots, a_{i_{k-1}} \rho_1 b.$$

因为 $\rho_1 \subseteq \rho_1 \cup \rho_2$, 所以又有

$$a(\rho_1 \cup \rho_2)a_{i_1}, a_{i_1}(\rho_1 \cup \rho_2)a_{i_2}, \cdots, a_{i_{k-1}}(\rho_1 \cup \rho_2)b,$$

于是

$$a(\rho_1 \cup \rho_2)^k b$$
, $\mathbb{P}(a,b) \in (\rho_1 \cup \rho_2)^k$.

由 $(\rho_1 \cup \rho_2)^k \subseteq (\rho_1 \cup \rho_2)^+$,因此

$$(a,b) \in (\rho_1 \bigcup \rho_2)^+$$
.

证法二(根据 ρ^+ 的性质进行推理)

根据传递闭包的性质, ρ_1^+ 包含于每一个包含 ρ_1 的可传递关系中,由于($\rho_1 \cup \rho_2$)⁺是 A 上包含 ρ_1 的可传递关系,所以 $\rho_1^+ \subseteq (\rho_1 \cup \rho_2)^+$.

类似地,可以证明 $\rho_2^+ \subseteq (\rho_1 \cup \rho_2)^+$.

因此

$$ho_1^+ igcup
ho_2^+ \subseteq (
ho_1 igcup
ho_2)^+$$
 .

 $\mathcal{Z}(\rho_1 \cup \rho_2)^+ \subseteq \rho_1^+ \cup \rho_2^+$ 不成立. 可举反例如下.

设 $A = \{1,2,3\}$, A 上的关系 $\rho_1 = \{(1,2)\}$, $\rho_2 = \{(2,3)\}$, 则 $\rho_1^+ = \{(1,2)\}$, $\rho_2^+ = \{(2,3)\}$, 于是

$$\rho_1^+ \bigcup \rho_2^+ = \{(1,2),(2,3)\}.$$

而 $(\rho_1 \cup \rho_2)^+ = \{(1,2),(2,3),(1,3)\},$ 显然

$$(\rho_1 \bigcup \rho_2)^+ \not\subseteq \rho_1^+ \bigcup \rho_2^+$$
.

End of Chapter 2