

Format d'entrega

Aquest document s'ha realitzat mitjançant Markdown¹ amb l'ajuda de l'entorn de desenvolupament RStudio² utilitzant les característiques que aquest ofereix per a la creació de documents R reproduïbles.

La documentació generada en la realització de la pràctica es troba allotjada en **GitHub** al següent repositori:

https://github.com/rsanchezs/data-minig

En aquest repositori es poden trobar els següents fitxers:

- Aquest document en formats **pdf** i **docx** amb el nom rsanchezs_PAC2.
- Un document **R Markdown**³ que es pot utilitzar per a reproduir tots els exemples presentats a la PAC.
- El conjunt de dades utilitzades.

¹ La documentació oficial es pot trobar a: **http://www.sthda.com/english/** rpkgs/factoextra.

² https://www.rstudio.com/

³ https://rmarkdown.rstudio.com/

Exercici 1

Exercici 2

Requisits

Per començar, per a la realització del nostre anàlisi necessitarem els següents paquets:

- cluster per a la computació dels algoritmes d'agregació.
- factoextra per a la visualitació de resultats d'agregació i que es fonamenta en el paquet ggplot2.⁴

El paquet **factoextra** conté funcions per anàlisi de *clustering* i visualització dels resultats:

Funció	Descripció
<pre>dist(fviz_dist, get_dist)</pre>	Visualització i computació de la matriu de distàncies
<pre>get_clust_tendency</pre>	Avaluació de la tendencia d´agregació
<pre>fviz_nbclust(fviz_gap_stat)</pre>	Determinació del nombre òptim de clústers
fviz_dend	Visualització de dendrogrames
fviz_cluster	Visualització dels resultats d´agrupament
fviz_mclust	Visualització dels resultats del model d´agrupament
<pre>fviz_silhouette</pre>	Visualització de la informació de la silueta
hkmeans	K-means jerarquic

⁴ La documentació oficial es pot trobar a: **http://www.sthda.com/english/** rpkgs/factoextra.

3

eclust

Visualització de l'anàlisi de agrupament

Podem instal·lar els dos paquets com es mostra en la següent línia de codi:

```
# Instalació paquets clustering
install.packages(c("cluster", "factoextra"))
```

En acabat, ens caldrà carregar les llibreries a la sessió R:

```
# Carreguem les llibreries
library(cluster)
library(factoextra)
```

Preparació de les dades

D´entrada, per a realitzar una anàlisi d´agregació en R cal assegurar-se d´unes quantes coses:

- Que les files es corresponen a observacions (individuals) i les columnes a variables.
- Qualsevol valor desconegut en el nostre conjunt de dades ha de ser o bé eliminat o bé substituït per exemple amb el valor de la mitjana o per el valor més freqüent.
- Les dades han de ser estar discretitzades.

Per il·lustrar l'anàlisi d'agregació farem ús del conjunt de dades USArrests, que conté dades estadístiques d'agressions, assassinats i violacions en cada un dels 50 estats d'USA l'any 1973.

```
data("USArrests")
df <- USArrests</pre>
```

En primer lloc, podem eliminar els valors desconeguts en el nostre conjunt de dades com es mostra a continuació:

```
# Eliminem valor desconeguts
df <- na.omit(df)</pre>
```

En segon lloc, discretitzarem les nostres dades estandaritzant-les amb l'ajuda de la funció scale():

```
# Estandaritzem les variables

df <- scale(df)

head(df, n = 3)

## Murder Assault UrbanPop Rape

## Alabama 1.24256408 0.7828393 -0.5209066 -0.003416473

## Alaska 0.50786248 1.1068225 -1.2117642 2.484202941

## Arizona 0.07163341 1.4788032 0.9989801 1.042878388
```


Determinació del nombre de clústers

Per a determinar el nombre de clústers farem ús de la funció fviz_nbclust() del paquet factoextra que calcula els mètodes Elbow, Silhouhette i Gap.

El prototip de la funció es el següent:

```
fviz_nbclust(x, FUNcluster, method = c("silhouette", "wss", "gap_stat"))
```

onels arguments són els següents:

- x: matriu o data frame.
- FUNcluster: una funció d´agregació. Valors possibles: kmeans, pam, clara i hcut.
- **method:** mètode per a determinar el nombre òptim de clústers. Valors possibles: **Elbow**, **Silhouhette** i **Gap**

A continuació, es mostra com determinar el nombre òptim de particions per al mètode *k-means*.

```
# Mètode elbow
fviz_nbclust(df, kmeans, method = "wss") +
  geom_vline(xintercept = 4, linetype = 2) +
  labs(x = "Nombre de particions k", y = "Total intra-clúster suma de qu
```



```
adrats",
          title = "Nombre òptim de particions",
          subtitle = "Mètode Elbow") +
          theme_gray()
```

Nombre òptim de particions

Mètode Elbow

Nombre òptim de particions

Mètode Silhouette 0.4 perint of the state of the state

Nombre òptim de particions Mètode Gap

Com podem observar en els gràfics:

- El mètode Elbow ens suggereix 4 clústers.
- El mètode Silhoutte ens suggereix 2 clústers.
- El mètode Gap ens sugereix 4 clústers.

Així és que, segons aquestes observacions podem considerar k = 4 com el nombre òptim de clústers.

Mètode d'agregació k-means

A causa de que, l'algoritme *k-means* comença seleccionant un centroide aleatoriament, es recomanable fer ús de la funció set.seed() a l'efecte de conseguir resultats reproduibles. Així el lector d'aquest document obtindrà els mateixos resultats que es presenten tot seguit.

A continuació es mostra com aplicar l'algorisme k-means amb k = 4:

```
# Computa k-means amb k = 4
set.seed(123)
kmeansFit <- kmeans(df, 4, nstart = 25)</pre>
```

Podem mostrar per pantalla els resultats amb la següent línea de codi:

```
# Mostrem els resultats
print(kmeansFit)
## K-means clustering with 4 clusters of sizes 13, 16, 13, 8
##
## Cluster means:
        Murder
                Assault UrbanPop
## 1 -0.9615407 -1.1066010 -0.9301069 -0.96676331
## 2 -0.4894375 -0.3826001 0.5758298 -0.26165379
## 3 0.6950701 1.0394414 0.7226370 1.27693964
## 4 1.4118898 0.8743346 -0.8145211 0.01927104
##
## Clustering vector:
         Alabama
                        Alaska
                                      Arizona
                                                     Arkansas
California
##
                              3
                                             3
               4
                                                            4
```


444	Calamada	Commontiant	Dalawana	Elanida		
## Georgia	Colorado	Connecticut	Delaware	Florida		
##	3	2	2	3		
4	3	2	2	3		
##	Hawaii	Idaho	Illinois	Indiana		
Iowa	Hawaii	Idano	111111013	Indiana		
##	2	1	3	2		
1	_	_		_		
##	Kansas	Kentucky	Louisiana	Maine		
Maryland		,				
##	2	1	4	1		
3						
## Mass	achusetts	Michigan	Minnesota	Mississippi		
Missouri						
##	2	3	1	4		
3						
##	Montana	Nebraska	Nevada	New Hampshire		
New Jers						
##	1	1	3	1		
2						
	lew Mexico	New York	North Carolina	North Dakota		
Ohio	2	2	4	4		
##	3	3	4	1		
2	Oklahama	Onogon	Donneylyania	Dhada Taland C		
## th Carol	Oklahoma	oregon	Pennsylvania	Rhode Island S	oou	
##	.111a 2	2	2	2		
4	2	2	2	2		
	th Dakota	Tennessee	Texas	Utah		
Vermont	Ten Bakoca	remessee	rexus	ocan		
##	1	4	3	2		
1						
##	Virginia	Washington	West Virginia	Wisconsin		
Wyoming	J	· ·	J			
##	2	2	1	1		
2						
##						
## Within cluster sum of squares by cluster:						
## [1] 11.952463 16.212213 19.922437 8.316061						
<pre>## (between_SS / total_SS = 71.2 %)</pre>						
##						


```
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iter"
## [9] "ifault"
```

Podem observar en la sortida el següent:

- La mitjana de clústers: una matriu, on les files són el nombre de clúster i les columnes són les variables.
- El vector de particions: un vector d´enters (de 1:k) que indica el clúster on cada observació ha sigut agrupada.

Així mateix, és recomanable realitzar un gràfic amb els resultats del model. Ja sigui, per a escollir el nombre de clústers, ja sigui per a comparar diferents anàlisis.

Una possible opció és visualitzar les dades en un diagrama de dispersió acolorint cada observació d'acord al grup assignat.

El problema és que el nostre conjunt de dades conté més de 2 variables i no és possible representar el model en dues dimensions.

Una possible solució és reduir la dimensionalitat fent ús d'un algoritme de reducció del nombre d'atributs, com per exemple **Principal Component Analysis (PCA)**.

En aquest sentit, farem ús de la funció **fviz_cluster()** que ens permetrà visualitzar els clústers i que utilitza PCA quan el nombre de variables és més gran de 2. Passarem com a arguments els resultats del model i el conjunt de dades original:


```
# Visualitzem els clústers
fviz_cluster(kmeansFit, data = df,
    palette = c("#2E9FDF", "#00AFBB", "#E7B800", "#FC4E07"),
    ellipse.type = "euclid", # Agrupacions en elipses
    star.plot = TRUE, # Afegeix rectes des de els centroides a les obs
ervacions
    repel = TRUE,
    ggtheme = theme_gray()
)
```

Cluster plot

Podem observar en el gràfic que les observacions són representades mitjançant punts i que en el nostre cas s´ha usat PCA. A més, s´han dibuixat el.lipses per tal de diferenciar cada clúster.

Bibliografia

- [1] Daniel T. Larouse, Chantal D. Larouse: Data Mininig and Predictive Analytics.USA, John Wiley & Sons, 2015, ISBN 978-1-118-11619-7
- [2] Jordi Gironés Roig, Jordi Casas Roma, Julià Minguillón Alfonso, Ramon Caihuelas Quiles: Minería de Datos: Modelos y Algoritmos. Barcelona, Editorial UOC, 2017, ISBN: 978-84-9116-904-8.
- [3] Jiawe Han, Michellie Chamber & Jian Pei: Data mining: concepts and techniques. 3° Edition. USA, Editorial Elsevier, 2012, ISBN 978-0-12-381479-1