COMP3121 Assignment1

Fiona Lin z5131048

March 6, 2019

1. [20 marks] You're given an array A of n integers, and must answer a series of n queries, each of the form: "How many elements a of the array A satisfy $L_k \leq a \leq R_k$?", where L_k and $R_k(1 \leq k \leq n)$ are some integers such that $L_k \leq R_k$. Design an $O(n \log n)$ algorithm that answers all of these queries.

Solution The $O(n \log n)$ algorithm is as following:

Given an array A of n integers, and sort them in to ascending order. Therefore, perform binary search on Array A for the indexes of L_k and R_k ; the binary search is a divide and conquor algorithm, it will achieve the $O(n \log n)$ performance.

Since there is no operation required when n = 0, there is always zero elements a of the Array satisfy that condition.

Let's assuming n > 0;

- Case a) When L_k and R_k are elements in Array A, L_k and R_k are retrived by the binary search on Array A. The number of elements a of Array A satisfy $L_k \leq a \leq R_k$ is one plus the difference on the indexes of L_k and R_k .
- Case b) When either of L_k and R_k are elements in Array A, L_k and R_k are never retrived by the binary search. Hence the R_k should be terminate on the last index binary search on Array A, which is less than R_k . Similarly, the L_k should be terminate on the last index binary search on Array A, which is greater than L_k . The number of elements a of Array A satisfy $L_k \leq a \leq R_k$ is still one plus the difference on the indexes of L_k and R_k .

```
#! /usr/bin/python3
import math

def numOfa(A, L_k, R_k):
   if len(A) == 0:
      return 0
   inLk = binarySearchIndex(A, L_k)
   inRk = binarySearchIndex(A, R_k)
```

```
if A[inRk] in A and A[inLk] in A:
    return inRk - inLk + 1
  else:
    return inRk - inLk
def binarySearchIndex(A, target):
 low = 0
  hig = len(A)
 mid = math. floor (hig / 2)
  while target != A[mid]:
    if low != mid and A[mid] < target:
      low = mid
    elif hig != mid and A[mid] > target:
      hig = mid
    else:
      break
    mid = math. floor ((hig + low)/2)
 return mid
```

- **2.** [20 marks, both (a) and (b) 10 marks each] You are given an array S of n integers and another integer x.
- (a) Describe an $O(n \log n)$ algorithm (in the sense of the worst case performance) that determines whether or not there exist two elements in S whose sum is exactly x.
- (b) Describe an algorithm that accomplishes the same task, but runs in O(n) expected (i.e., average) time. Note that brute force does not work here, because it runs in $O(n^2)$ time.

Solution (a)

- 1. Take a element k in the array and let j be the difference of sum x and element k
- 2. Then binary sort Array S is $O(n \log n)$ and binary search j in Array S. It is ideal to skip those j outside the range of Array S. Performing this binary search is $O(n \log n)$
- 3. If j is in Array S, then there exist the sum of two element exactly equal to x in S, vice versa.

```
#! /usr/bin/python3
import math
def existSum(A, x):
   if len(A) == 0:
      return False
   res = False
```

```
for i in range (0, len(A)):
    t = x - A[i]
    if t < A[0] or t > A[-1]:
      continue
    if binarySearchIndex(A, t) == t:
      res = True
      break
 return res
def binarySearchIndex(A, target):
 low = 0
  hig = len(A)
 mid = math.floor(hig/2)
  while target != A[mid]:
    if low != mid and A[mid] < target:
      low = mid
    elif hig != mid and A[mid] > target:
      hig = mid
    else:
      break
    mid = math.floor((hig + low)/2)
 return mid
(b)
```

 $A = \mathbf{sorted}(A)$

- 1. Put every element k of Array S into Set A, this performs O(n)
- 2. Take every element k in the array and let j be the difference of sum x and element k. Since it is for every element k, this also takes O(n)
- 3. Checking j in Set A takes O(1). If j is in Array S, then there exist the sum of two element exactly equal to x in S, verse vice.

```
#! /usr/bin/python3
import math

def existSum(A, x):
   if len(A) == 0:
      return False
   res = False
   A = sorted(A)
   for i in range(0,len(A)):
      t = x - A[i]
      if t < A[0] or t> A[-1]:
```

- 3. [20 marks, both (a) and (b) 10 marks each; if you solve (b) you do not have to solve (a)] You are at a party attended by n people (not including yourself), and you suspect that there might be a celebrity present. A celebrity is someone known by everyone, but does not know anyone except themselves. You may assume everyone knows themselves. Your task is to work out if there is a celebrity present, and if so, which of the n people present is a celebrity. To do so, you can ask a person X if they know another person Y (where you choose X and Y when asking the question).
- (a) Show that your task can always be accomplished by asking no more than 3n-3 such questions, even in the worst case.
- (b) Show that your task can always be accomplished by asking no more than $3n |\log_2 n| 2$ such questions, even in the worst case.
- **4. [20 marks, each pair 4 marks]** Read the review material from the class website on asymptotic notation and basic properties of logarithms, pages 38-44 and then determine if $f(n) = \Omega(g(n))$, f(n) = O(g(n)) or $f(n) = \Theta(g(n))$ for the following pairs. Justify your answers. You might find the following inequality useful: if f(n), g(n), c > 0 then f(n) < cg(n); if and only if $\log f(n) < \log c + \log g(n)$.

f(n)	g(n)
$(\log_2 n)^2$	$\log_2\left(n^{\log_2 n}\right) + 2\log_2 n$
n^{100}	$2^{n/100}$
\sqrt{n}	$2^{\sqrt{log_2n}}$
$n^{1.001}$	$nlog_2n$
$n^{(1+\sin(\pi n/2))/2n}$	\sqrt{n}

Solution

(a)
$$f(n) = (\log_2 n)^2$$
, $g(n) = \log_2 (n^{\log_2 n}) + 2 * \log_2 n$
 $Since \ g(n) = \log_2 (n^{\log_2 n}) + 2 * \log_2 n = \log_2 n * \log_2 n + 2 * \log_2 n = (\log_2 n)^2 + 2 * \log_2 n$
 $When \ n_0 = 1, f(1) = (\log_2 1)^2 = 1, \ g(1) = (\log_2 1)^2 + 2 * \log_2 1 = 0$
 $let \ c > \frac{1}{3} \ and \ n = 2, \ f(2) - c * g(2) \le 0 \Rightarrow c \ge \frac{1}{3}$

Therefore
$$c \ge \frac{1}{3}$$
, $n \ge n_0 = 1$, $f(n) = (\log_2 n)^2 < c * g(n) = c * ((\log_2 n)^2 + 2\log_2 n)$
Hence, $c \ge \frac{1}{3}$, $n \ge n_0 = 1$, $f(n) = O(g(n))$

(b)
$$f(n) = n^{100}, \ g(n) = 2^{\frac{n}{100}}$$

 $When \ c > 0 \ and \ n_0 = 1,$
 $f(n_0) - c * g(n_0) = n_0^{100} - c * (2^{\frac{n_0}{100}}) = 1^{100} - c * (2^{\frac{1}{100}}) \ge 0,$
 $\Rightarrow c = 2^{\frac{-1}{100}} \approx 0.9930.924... > 0$
 $Therefore, \ when \ c > 0 \ and \ n \ge n_0 = 1, \ 0 \le c * g(n) \le f(n)$
 $Hence, \ when \ c > 0 \ and \ n \ge n_0 = 1, \ f(n) = \Omega(g(n))$

(c)
$$f(n) = \sqrt{n}$$
, $g(n) = 2^{\sqrt{\log_2 n}}$
 $Since \ f(n) - g(n) = \sqrt{n} - 2^{\sqrt{\log_2 n}} \ge 0 \Rightarrow n > 16$
 $Therefore, \ exist \ c_1 = c_2 = 1 \ and \ n > n_0 = 16, \ 0 \le c_1 * g(n) \le f(n) \le c_2 * g(n)$
 $Hence, \ f(n) = \Theta(g(n))$

(d)
$$f(n) = n^{1.001}$$
, $g(n) = n * \log_2 n$
 $When n = 1$,
 $g(1) - f(1) = n * \log_2 n - n^{1.001} = \log_2 1 - 1^{1.001} = 0 - 1 = -1 < 0$
 $Then when n \geq 2$,
 $c * g(n) - f(n) = c * (n * \log_2 n) - n^{1.001} > 0 \Rightarrow c > 2^{0.001} \approx 1.00069339...$
 $Therefore, when c = 2 \text{ and } n \geq 2, c * g(n) \geq f(n)$
 $Hence, f(n) = O(g(n))$

(e)
$$f(n) = n^{\frac{1+\sin(\frac{\pi n}{2})}{2n}}, \ g(n) = \sqrt{n}$$

If $f(n), \ g(n), \ c > 0 \ then \ f(n) < c * g(n); \ if \ and \ only \ if \ \log f(n) < \log c + \log g(n)$

When $c = 1, \ \log c = 0,$

$$\log f(n) = \log \sqrt{n},$$

$$\log g(n) = \log \sqrt{(n)}^{\frac{1+\sin\frac{n\pi}{2}}{2}}$$
Then we have

$$\begin{split} \log c + \log g(n) - \log f(n) &= \log c + \log \sqrt(n)^{\frac{1+\sin\frac{n\pi}{2}}{n}} - \log \sqrt{n} = \log c + (\frac{n+1+\sin\frac{n\pi}{2}}{n}) \log \sqrt(n) \\ We \ need \ \log c + \log g(n) - \log f(n) &> 0, \ then \ we \ can \ solve \ n \ with : \\ \log c + \log g(n) - \log f(n) &= (\frac{n+1+\sin\frac{n\pi}{2}}{n}) \log \sqrt(n) > 0 \Rightarrow \ n \ \geq \ 1 \end{split}$$

Therefore, c = 1, $n > n_0 = 1$, $\log c + \log g(n) - \log f(n) \iff 0 \le f(n) < c * g(n)$ Hence, c = 1, $n > n_0 = 1$, f(n) = O(n)

- **5.** [20 marks, each recurrence 5 marks] Determine the asymptotic growth rate of the solutions to the following recurrences. If possible, you can use the Master Theorem, if not, find another way of solving it.
 - (a) $T(n) = 2T(n/2) + n(2 + \sin n)$
 - (b) $T(n) = 2T(n/2) + \sqrt{n} + \log n$
 - (c) $T(n) = 8T(n/2) + n^{\log n}$
 - (d) T(n) = T(n1) + n

Solution

- (a) $T(n) = 2T(n/2) + n(2 + \sin n)$ $As \ a = 2 \ and \ b = 2, \quad then \quad n^{\log_b a} = n^{\log_2 2} = n$ $And \ f(n) = n(2 + \sin n), \quad then$ $\sin n \in [-1, 1] \ \Rightarrow 2 + \sin n \in [1, \ 3] \ \Rightarrow f(n) = n(2 + \sin n) \in [n, \ 3n]$ $Since \quad n^{\log_b a} = n \quad and \quad f(n) \in [n, \ 3n], f(n) = n(2 + \sin n) = \Theta(n)$ $Condition \ of \ case \ 2 \ is \ satisfied; \ and \ so :$ $T(n) = \Theta\left(n^{\log_2 2} \log n\right) = \Theta\left(n \log n\right)$
- (b) $T(n) = 2T(n/2) + \sqrt{n} + \log n$ $As \ a = 2 \ and \ b = 2, \quad then \quad n^{\log_b a} = n^{\log_2 2} = n$ $When \ n \in (1, \infty), \ f(n) \in (0, \infty], f(n) \ is \ a \ non-decreasing \ function$ $Since \quad n^{\log_b a} = n \quad and \quad f(n) = \sqrt{n} + \log n$ $f(n) = \sqrt{n} + \log n$ $O?\Theta?\Omega?(n^{4+-\epsilon})$
- (c) $T(n) = 8T(n/2) + n^{\log n}$ $As \ a = 8 \ and \ b = 2, \quad then \quad n^{\log_b a} = n^{\log_2 8} = n^4$ $Since \quad g(n) = n^{\log_b a} = n^4 \quad and \quad f(n) = n^{\log n}$ $= \Theta(n^{4-\epsilon}) \ for \ any \ \epsilon < 3$ $O?\Theta?\Omega?(n^{4+-\epsilon})$
- (d) T(n) = T(n-1) + n

To apply Master Theorem, $a \ge 1$ and b > 1.

Since b = 1, it is not applicable to determine asymptotic growth rate of this recurrences.