### Fahrzeugmechatronik II Einführung



Prof. Dr.-Ing. Steffen Müller M.Sc. Andreas Hartmann

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Seite 2

### Organisatorisches

Übersicht Anmeldung, Vorlesungs- und Übungstermine Namen und Einführung Kontakte Literatur Sprechzeiten Fahrzeugmechatronik II Internet Prüfung Gastvortrag Studien- und Abschlussarbeiten

### Organisatorisches Anmeldung, Vorlesung- und Übungstermine

- ➤ Anmeldung in ISIS (falls Neuzugang) und über Anmeldeliste in der 3. VL-Woche.
- > Vorlesung und Übung finden im Wechsel statt.

Vorlesung: Do, 14.15 – 15.45 Uhr, TIB13.5, Raum 353 Übung: Do, 16.00 – 17.30 Uhr, TIB13.5, Raum 353

➤ Die aktuellen Vorlesungs- und Übungsinhalte sind im Zeitplan zu finden.

Seite 4

## Organisatorisches



Seite 5

#### Organisatorisches Namen und Kontakte

Vorlesung Prof. Dr.-Ing. Steffen Müller

Geb. TIB13, Raum 341

Tel.: -72970

Email: steffen.mueller@tu-berlin.de

Homepage: <a href="http://www.kfz.tu-berlin.de/menue/home/">http://www.kfz.tu-berlin.de/menue/home/</a>

Übung M.Sc. Andreas Hartmann

Geb. TIB13, Raum 346A

Tel.: -72990

Email: andreas.hartmann@tu-berlin.de

**Sekretariat** Frau Kerstin Ipta

Geb. TIB13, Raum 342

Tel.: -72970

Email: kerstin.ipta@tu-berlin.de

Seite 6

## Organisatorisches Übersicht



### Organisatorisches Sprechzeiten

Prof. Dr.-Ing. Steffen Müller Vorbeikommen oder per Email über Sekretariat

M.Sc. Andreas Hartmann
Vorbeikommen oder Termin per Email

Seite 8

### Organisatorisches



# Organisatorisches Prüfung

- Prüfungsvoraussetzung ist das Bestehen von 3 aus 5 Übungsaufgaben.
- Die VL wird nur als Ganzes (Fahrzeugmechatronik I und II) geprüft, d. h. 8 SWS bzw. 12 ECTS.
- ➤ Die Prüfung findet am 02.10.19 um 13:30Uhr im TIB13B Hörsaal A schriftlich statt. Dauer: 2h.

Studenten sind selbst für die **erfolgreiche** Prüfungsanmeldung (Zeitraum wird in ISIS bekannt gegeben) verantwortlich. Studenten ohne Anmeldung können an der Prüfung nicht teilnehmen.

Seite 10

## Organisatorisches Übersicht



## Organisatorisches Studien- und Abschlussarbeiten

- ➤ Themen für Studien- und Abschlussarbeiten werden ggf. auf der Homepage, am Schwarzen Brett und in der Lehrveranstaltung bekannt gegeben.
- Üblicherweise vergeben wir Studien- und Abschlussarbeiten aber auf Anfrage.

Seite 12

## Organisatorisches Übersicht



### Organisatorisches Skript und Vorlesungsunterlagen

- VL-Folien vom letzten Jahr/Durchgang sind vor der Veranstaltung in ISIS abrufbar.
- Aktuellste VL-Folien sind nach der Veranstaltung in ISIS abrufbar.

Seite 14

## Organisatorisches Übersicht



#### Organisatorisches Internet

#### Zugangsdaten sind identisch zu FM I

- ➤ ISIS2-Kurs "Fahrzeugmechatronik 2018/2019"
- Password für Studenten: fame1819

Seite 16

## Organisatorisches Übersicht



Seite 17

#### Organisatorisches Literatur

[1] Lunze: Regelungstechnik 2, 5. Auflage, Springer-Verlag, 2008.

[2] Lunze: Regelungstechnik 1, 7. Auflage, Springer-Verlag, 2008.

Seite 18

## Organisatorisches Übersicht



### Allgemeine Betrachtungen Aufgaben der Regelungstechnik

Die Regelungstechnik befasst sich mit der Aufgabe, einen sich zeitlich verändernden Prozess oder ein dynamisches System von außen so zu beeinflussen, dass dieser Prozess in einer vorgegebenen Weise abläuft.

Steuereinrichtung und gesteuertes System stehen in ständiger Wechselwirkung und bilden einen "Kreis".

### Allgemeine Betrachtungen Grundstruktur eines Regelkreises

#### **Einfache Grundstruktur:**





### Lineare Eingrößensysteme (SISO) Behandlung von linearen SISO-Systemen im Frequenzbereich ("Single-Input-Single-Output")



### Lineare Eingrößensysteme (SISO) Regelungsaufgabe – PID-Reglerentwurf

$$u(t) = f(e(t))$$

#### Beispiele:

u(t) = 0.4 e(t)



### Lineare Eingrößensysteme (SISO) Regelungsaufgabe – Güteforderungen

- Stabilitätsforderung
  - "Der geschlossene Regelkreis muss stabil sein"
    - ✓ Analyse der freien Schwingungen
- Forderung nach Sollwertfolge
  - "Die Regelgröße soll der Führungsgröße asymptotisch folgen"
    - ✓ Vorgabe von Führungs- und Störsignalen
- Dynamikforderung an das Übergangsverhalten
  - "Definierte Dynamikforderungen sollen erfüllt werden"
    - ✓ Analyse des transienten bzw. Einschwingverhaltens
    - ✓ Anstiegszeit, Überschwingweite,...

# Lineare Eingrößensysteme (SISO) PID-Reglerentwurf

- Heuristische Einstellregeln
   Suche nach günstigen Reglerparametern mit Hilfe von Experimenten.
- Reglerentwurf anhand des PN-Bildes des geschlossenen Kreises ("Wurzelortskurvenverfahren")
   Durch die Auswahl eines geeigneten Reglers werden dem geschlossenen Kreis bestimmte Pole zugewiesen. Hierfür notwendig ist bekannter Zusammenhang zwischen Polstellen und Zeitverhalten des geschlossenen Kreises.
- Reglerentwurf anhand der Frequenzkennlinie der offenen Kette ("Frequenzkennlinienverfahren")

Durch die Auswahl eines geeigneten Reglers wird das Verhalten der Frequenzkennlinien (Bodediagramm) des offenen Kreises gezielt verändert. Hierfür notwendig ist ein bekannter Zusammenhang zwischen Kennwerten des Bodediagramms der offenen Kette und dem Zeitverhalten des geschlossenen Kreises.

### Lineare Eingrößensysteme (SISO) Reglerentwurf

#### Eine einfache heuristische Einstellregel (Ziegler/Nichols)

Voraussetzung: Die Regelstrecke ist stabil und kann zeitweise im grenzstabilen Bereich betrieben werden.

- 1. Der Regelkreis wird mit Hilfe eines P-Reglers geschlossen.
- 2. Die Reglerverstärkung wird solange erhöht, bis der geschlossene Kreis nach einer Sollwertänderung eine Dauerschwingung ausführt. Die dabei eingestellte Reglerverstärkung heißt  $k_{krit}$ , die Periodendauer der Schwingung  $T_{krit}$ .
- 3. Die Reglerparameter werden entsprechend Tabelle 9.1 (unten) festgelegt.

| Kritische Verstär- | P   | $k_{\rm P} = 0.5  k_{\rm krit}$                                                                    |
|--------------------|-----|----------------------------------------------------------------------------------------------------|
| kung und Perioden- | PI  | $k_{\rm P} = 0.45  k_{\rm krit}, \ T_{\rm I} = 0.85  T_{\rm krit}$                                 |
| dauer sind bekannt | PID | $k_{\rm P} = 0.6  k_{\rm krit}, \ T_{\rm I} = 0.5  T_{\rm krit}, \ T_{\rm D} = 0.12  T_{\rm krit}$ |
|                    |     |                                                                                                    |

Seite 26

#### Lineare Mehrgrößensysteme (MIMO) SISO-Systeme versus MIMO-Systeme

#### SISO-System (Eingrößensysteme)



**Eine** Regelgröße wird mit Hilfe **einer** Stellgröße auf einen vorgegebenen Sollwert gebracht.

#### MIMO-System (Mehrgrößensysteme)



Es müssen mehrere Regelgrößen mit Hilfe mehrerer Stellgrößen auf mehrere vorgegebene Sollwerte gebracht werden.

#### Lineare Mehrgrößensysteme (MIMO) Wann ergeben sich z.B. MIMO-Systeme?

- Starke Wechselwirkung von Zuständen der Strecke
  - ✓ z.B. Regelung der Fahrzeugaufbaubewegung (Komfort vs. Fahrzeugsicherheit)
- Regelziele erfordern koordinierten Eingriff mehrerer Stellglieder
  - ✓ z.B. Torque Vectoring (Einzelradantriebe)
- Regelziele müssen für mehrere Zustände spezifiziert werden
  - ✓ z.B. Stabilitätsregelung (Gierrate, Schwimmwinkel)
- Regelungsziele müssen für örtlich verteilte Zustände spezifiziert werden
  - √ z.B. Platooning

#### Seite 28

### Lineare Mehrgrößensysteme (MIMO) Regelkreisstruktur - Standardregelkreis

#### **Grundstruktur SISO-System**



#### **Grundstrukturen MIMO-System**



#### Lineare Mehrgrößensysteme (MIMO) Lösungsmethoden für MIMO-Regelsysteme

#### Verallgemeinerung von SISO-Methoden...

- Beschreibung dynamischer Systeme
   (Zustandsraummodelle, Übertragungsfunktionsmatrizen,...)
- > Charakterisierung dynamischer Systeme (EW und Polstellen)
- Stabilitätsanalyse (Nyquist)
- Reglerentwurf: Einstellregeln auf Basis von Experimenten, Polzuweisung

#### ...plus neue Methoden

- Charakterisierung der Strecke: Steuerbarkeit und Beobachtbarkeit
- Reglerentwurf: Optimale Regelung
- ➤ Entwurf von Beobachtern für Strecke und Regler

## Inhalte der Lehrveranstaltung Überblick

- Analyse von Mehrgrößensystemen
  - Beschreibung und Verhalten
  - Stabilität
  - Steuerbarkeit und Beobachtbarkeit
- Entwurf von Mehrgrößenregelkreisen
  - Strukturen und Eigenschaften
  - Reglerentwurf durch Polzuweisung
  - Optimale Regelung
  - Beobachterentwurf
- > Eigenständige Bearbeitung von Übungsaufgaben

Zeitplan & Literatur

Seite 31

## Inhalte der Lehrveranstaltung Überblick



Seite 32

#### Vielen Dank für Ihre Aufmerksamkeit!