Contents

Week 6	
Monday, November 9 - Quiz 16	2

Week 6

Monday, November 9 - Quiz 16

1. Which of the following molecules is not capable of existing in cis and trans isomeric forms?

> All of the above

- o Option 1 and 3 both have a π bonded carbon (sp²), which has two hydrogens as the substituents—compounds with same substituents on both sides are unable to be cis-trans.
- Likewise, option 2, has CH_3 on both sides of one end of the π bond, making them the have same substituents.
- 2. Which of the following molecules corresponds to a cis isomer?

- A, B, and C all cannot be cis-trans isomers due to double hydrogen substituents.
- 3. What condition causes a carbon center to be classified as asymmetric?

> The C must have four different groups bonded to it

- Asymmetric carbon center = chiral center, i.e., a tetrahedral carbon that bears four different groups.
- 4. Suppose a sample of 2-methyl-1-butanol (see lecture notes), when placed in plane polarize light, showed a rotation of -4.32° . What is the enantiomeric excess of the enantiomer that rotates light to the left?

> 75.1%

$$\circ \ \% \ ee = rac{|\mathsf{observed}\ (lpha)|}{|\mathsf{specific}\ [lpha]|} imes 100\%$$

o (from slides) 2-methyl-1-butanol: specific $[\alpha]_D^{20\,^\circ C}=\pm 5.75$; observed $(\alpha)=-4.32$.

$$\circ \ \textit{ee} = \frac{4.32^{\circ}}{5.75^{\circ}} \times 100\% = 75.1\%$$

5. While nature, i.e., enzymes, synthesize molecules with chiral centers in 100% enantiomeric purity, that often proves very difficult for synthetic organic chemists to do. What most often results in the lab is a mixture containing equal concentrations of both enantiomers. What term is used to describe this mixture?

> Racemic mixture

- (from notes) Racemic mixtrue: a solution containing equal amounts of both enantiomers, resulting in an optically inactive appearance.
- 6. What physical properties distinguish the R enantiomer from the S enantiomer of a molecule?
 - > they rotate plane polarized light in equal, but opposite, directions
 - ▶ Relevant notes:
 - Specific rotation for enantiomers are equal in magnitude but opposite in direction.
 - dextrorotaory: a compound exhibiting positive rotation.
 - levorotatory: a compound exhibiting negative rotation.
 - No direct relationship between R/S system of nomenclature, as that is independent of conditions, but dependent on observation angle.
 - The direction of polarized light, however, is dependent on conditions, and can change based on temperature or wavelength even with the same given configuration.