

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Metody Obliczeniowe w Nauce i Technice

Sprawozdanie z laboratorium 7 – Układ równań liniowych – Metody bezpośrednie

Michał Szafarczyk

gr. Śr. 17:50 – 19:20

Narzędzia i sprzęt wykorzystany do zrealizowania ćwiczenia

Komputer z systemem Windows 10 x64 Home

Procesor: Intel Core i7-10750H @2.60 GHz / 5.00 GHz

Pamięć RAM: 32 GB

Język: Python 3.9

Środowisko: PyCharm

Użyte biblioteki pythonowskie:

Numpy – do wykonywania różnych operacji na liczbach

Matplotlib – dla rysowania wykresów

1. Zadanie 1. – Zadany układ:

Został nam zadany układ równań liniowych w postaci Ax = b. Macierz A jest określona w zadaniu. Następnie należy skonstruować wektor x losując jego wartości ze zbioru $\{-1,1\}$ i mnożąc przez macierz A utworzyć wektor b. W kolejnym kroku, przy pomocy zadanej metody należy rozwiązać układ, w którym znane są A oraz b, tymczasem szukamy wektora x.

Dla 1 zadania otrzymaliśmy macierz A w postaci:

$$\begin{cases}
a_{i,i} = k \\
a_{i,j} = (-1)^j \frac{m}{j} & dla j > i \\
a_{i,i-1} = \frac{m}{i} \\
a_{ij} = 0 & dla j < i - 1
\end{cases}$$
(1.1)

$$gdzie i, j \in \{1, 2, ..., n\}$$

 $k = 11, m = 2$

2. Metoda Jacobiego:

W tej metodzie iteracyjnej przyjmujemy pewien zadany wektor początkowy x^0 . Znamy również macierz A oraz wektor b. Kolejne przybliżenia rozwiązania będziemy obliczać ze wzoru:

$$x^{n+1} = Mx + Nb (2.1)$$

gdzie M = I - NA

N — pewna macierz kwadratowa I — macierz jednostkowa

$$A = Low + Diag + Upper (2.2)$$

gdzie Low jest częscią macierzy A poniżej jej przekątnej, wyłączając samą przekątną; Diag jest macierzą z elementami macierzy A na przekątnej oraz Upper jest macierzą z elementami wejściowej macierzy powyżej przekątnej, wykluczając samą przekątną.

Ten proces można przedstawić jako:

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & & a_{2,n} \\ \vdots & & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ a_{2,1} & 0 & & 0 \\ \vdots & & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & 0 \end{bmatrix} + \begin{bmatrix} a_{1,1} & 0 & \cdots & 0 \\ 0 & a_{2,2} & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n,n} \end{bmatrix} + \begin{bmatrix} 0 & a_{1,2} & \cdots & a_{1,n} \\ 0 & 0 & & a_{2,n} \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$
(2.3)

Przyjmujemy

$$N = Diag^{-1} (2.4)$$

Wiec

$$M = -Diag^{-1}(Low + Upper) (2.5)$$

Metoda iteracyjna jest zbieżna dla dowolnego początkowego wektora x^0 jeżeli **promień spektralny** (największa bezwzględna wartość własna) macierzy M jest mniejsza od 1 (im bliżej 1, tym wolniej wektor początkowy będzie zbiegał do faktycznego rozwiązania).

3. Kryteria stopu:

Przyjmujemy 2 kryteria stopu dla metody iteracyjnej. Jeżeli uzyskany wektor spełnia jedno z nich (zależy którego użyjemy), oznacza to, że jest on wystarczająco zadowalającym rozwiązaniem.

- $\|x^{(i+1)}-x^{(i)}\|<
 ho$ norma z różnicy ostatniego obliczonego przybliżenia wektora i obecnego przybliżenia. Jeżeli jest ona mniejsza od zadanego parametru ho, oznacza to, że kolejne iteracje wykonują niewielkie kroki i przybliżają nas do faktycznego rozwiązania jedynie o niewielką wartość.
- $||Ax^{(i)} b|| < \rho$ zgodnie z równaniem Ax = b, które przedstawiliśmy w 1 punkcie, wartość tej normy, jeżeli x jest poszukiwanym wektorem, powinna wynosić 0.

Dla testów używać będziemy kryterium pierwszego, jednak w kodzie zaimplementowane są obydwie opcje i można przełączać się między nimi za pomocą globalnej wartości $stop_mode$ zmieniając ją na 0 lub 1.

4. Testowanie i błędy:

Dla testów, które umieścimy w tabeli użyjemy $n \in \{5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 175, 200\}$

Tymczasem dla wykresów porównujących czasy i błędy dla zadanej precyzji użyjemy liczb naturalnych z przedziału [3, 200].

To, jak bliskie prawdziwego jest otrzymane rozwiązanie, będziemy wyznaczać według 2 kryteriów:

 Maksymalna różnica pomiędzy wartościami wektora poszukiwanego i znalezionego, którą liczymy według wzoru:

$$max(|x_i - x'_i|), i \in \{1, 2, ..., n\}$$

gdzie x_i jest wartością w wektorze poszukiwanym, a x_i' wartością w wektorze znalezionym.

W tablicach będziemy ją oznaczać jako max_diff

• Różnica kwadratów pomiędzy wektorem poszukiwanym, a wektorem znalezionym:

$$\sum_{i=0}^{n} [x_i - x'_i]^2$$

W tablicach będziemy ją oznaczać jako sqr_diff

5. Testy dla zadania 1:

sigma=		1.00E-12			1.00E-10			1.00E-08	
n	steps	max_diff	sqr_diff	steps	max_diff	sqr_diff	steps	max_diff	sqr_diff
3	12	0	0	12	0	0	9	0	0
4	9	0	0	10	0	0	11	1.19E-07	2.84E-14
5	11	1.19E-07	3.2E-14	10	1.19E-07	3.55E-14	9	1.19E-07	4.62E-14
6	10	1.19E-07	1.78E-14	10	1.19E-07	3.2E-14	10	1.19E-07	3.2E-14
7	11	1.19E-07	4.62E-14	10	1.19E-07	1.42E-14	10	1.19E-07	3.55E-14
8	11	1.19E-07	5.68E-14	10	1.19E-07	4.62E-14	11	1.19E-07	6.39E-14
9	11	1.19E-07	1.78E-14	10	1.19E-07	7.11E-14	10	1.19E-07	4.26E-14
10	10	1.19E-07	2.13E-14	10	1.19E-07	5.68E-14	9	1.19E-07	4.26E-14
11	10	1.19E-07	4.62E-14	11	1.19E-07	4.26E-14	10	1.19E-07	3.2E-14
12	12	1.19E-07	4.97E-14	10	0	0	10	1.19E-07	6.04E-14
13	10	1.19E-07	9.24E-14	10	1.19E-07	1.07E-13	12	1.19E-07	7.82E-14
14	10	1.19E-07	9.24E-14	10	1.19E-07	1.28E-13	10	1.19E-07	6.39E-14
15	10	1.19E-07	4.62E-14	10	1.19E-07	1.14E-13	10	1.19E-07	7.11E-14
20	11	1.19E-07	9.59E-14	10	1.19E-07	1.07E-13	11	1.19E-07	8.88E-14
30	10	2.38E-07	2.06E-13	10	2.38E-07	1.95E-13	10	1.19E-07	1.39E-13
40	10	1.19E-07	2.27E-13	11	2.38E-07	2.66E-13	10	1.19E-07	1.39E-13
50	10	1.19E-07	2.52E-13	10	2.38E-07	3.62E-13	11	1.19E-07	3.09E-13
60	11	2.38E-07	3.41E-13	11	2.38E-07	4.3E-13	11	2.38E-07	4.23E-13
70	11	1.19E-07	4.3E-13	10	2.38E-07	4.94E-13	10	1.19E-07	4.01E-13
80	11	2.38E-07	4.8E-13	10	2.38E-07	6.39E-13	10	2.38E-07	6.08E-13
90	11	2.38E-07	5.79E-13	11	1.19E-07	4.19E-13	10	2.38E-07	7.64E-13
100	10	2.38E-07	7.96E-13	10	1.79E-07	6.5E-13	11	2.38E-07	6.96E-13
120	10	2.38E-07	1.43E-12	11	2.38E-07	8.6E-13	10	2.38E-07	1.28E-12
150	12	2.38E-07	1.22E-12	10	2.38E-07	1.41E-12	10	2.38E-07	1.23E-12
175	12	2.98E-07	2.23E-12	10	3.58E-07	2.2E-12	10	2.38E-07	1.7E-12
200	11	3.58E-07	1.39E-12	11	2.98E-07	2.1E-12	10	2.38E-07	1.32E-12

Tabela 3.1 – Testy dla float32

sigma=		1.00E-06			1.00E-05			1.00E-04	
n	steps	max_diff	sqr_diff	steps	max_diff	sqr_diff	steps	max_diff	sqr_diff
3	8	1.19E-07	2.84E-14	8	2.38E-07	1.46E-13	7	2.09E-06	8.69E-12
4	9	1.19E-07	1.42E-14	8	1.19E-07	4.26E-14	7	8.34E-07	1.11E-12
5	9	0	0	9	5.96E-08	7.11E-15	7	1.85E-06	4.67E-12
6	9	1.19E-07	1.42E-14	8	5.96E-08	3.55E-15	7	1.19E-06	2.46E-12
7	9	1.19E-07	2.84E-14	8	2.98E-07	1.14E-13	7	7.15E-07	6.89E-13
8	9	0	0	8	2.98E-07	1.35E-13	7	7.15E-07	7.85E-13
9	9	1.19E-07	4.62E-14	8	1.19E-07	1.78E-14	7	3.34E-06	1.64E-11
10	10	1.19E-07	4.62E-14	9	1.19E-07	3.2E-14	7	2.74E-06	1.24E-11
11	9	1.19E-07	1.78E-14	8	1.19E-07	6.04E-14	7	2.26E-06	7.21E-12
12	9	1.19E-07	6.75E-14	8	2.38E-07	1.21E-13	7	2.26E-06	8.24E-12
13	9	1.19E-07	4.97E-14	9	2.38E-07	1.14E-13	7	1.67E-06	5.9E-12
14	9	1.19E-07	1.24E-13	8	4.77E-07	3.55E-13	7	1.31E-06	3.52E-12
15	9	1.19E-07	6.04E-14	9	1.19E-07	2.84E-14	7	4.77E-07	5.44E-13
20	9	2.38E-07	1.81E-13	8	2.38E-07	1.78E-13	7	2.38E-06	8.28E-12
30	9	2.38E-07	2.52E-13	8	2.38E-07	3.06E-13	7	4.77E-07	7.03E-13
40	9	1.19E-07	1.39E-13	8	4.77E-07	4.69E-13	7	1.31E-06	2.93E-12
50	9	2.38E-07	2.24E-13	8	2.38E-07	3.27E-13	7	9.54E-07	1.73E-12
60	9	1.79E-07	3.38E-13	8	2.38E-07	4.69E-13	7	5.96E-07	7.78E-13
70	8	2.38E-07	4.9E-13	8	2.38E-07	4.37E-13	8	4.77E-07	6.75E-13
80	8	2.38E-07	4.76E-13	8	3.58E-07	6.89E-13	7	2.5E-06	1.08E-11
90	9	2.38E-07	7.92E-13	8	2.38E-07	5.29E-13	8	5.96E-07	1.17E-12
100	9	2.38E-07	9.52E-13	9	2.38E-07	5.61E-13	7	1.19E-06	3.79E-12
120	9	2.38E-07	1.2E-12	8	2.38E-07	1.41E-12	7	2.74E-06	1.04E-11
150	9	2.38E-07	1.4E-12	8	2.38E-07	1.04E-12	8	4.77E-07	1.54E-12
175	9	3.58E-07	2.3E-12	8	3.58E-07	2.38E-12	7	2.09E-06	8.05E-12
200	9	3.58E-07	2.48E-12	8	2.38E-07	1.15E-12	7	3.93E-06	2.43E-11

Tabela 3.2 – Testy dla float32

sigma=		1.00E-12			1.00E-10			1.00E-08	
n	steps	max_diff	sqr_diff	steps	max_diff	sqr_diff	steps	max_diff	sqr_diff
3	15	1.38E-14	3.26E-28	13	2.33E-12	9.15E-24	11	1.27E-10	2.6E-20
4	14	1.65E-14	4.58E-28	13	2.79E-12	1.24E-23	11	9.39E-11	1.4E-20
5	15	7.99E-15	1.03E-28	13	3.94E-13	2.55E-25	11	5.29E-11	4.23E-21
6	14	3.91E-14	2.36E-27	13	7.06E-13	8.04E-25	11	2.35E-10	8.76E-20
7	15	4.88E-15	3.91E-29	12	2.91E-12	1.66E-23	11	7.73E-11	9.3E-21
8	14	2.02E-14	7.97E-28	13	1.95E-12	6.01E-24	11	1.66E-10	4.43E-20
9	15	5.11E-15	4.26E-29	13	2.21E-12	7.66E-24	11	1.93E-10	5.77E-20
10	15	1.75E-14	4.81E-28	13	1.75E-12	4.64E-24	11	6.73E-11	8.43E-21
11	15	1.8E-14	5.04E-28	13	1.34E-12	2.78E-24	11	9.88E-11	1.79E-20
12	15	1.84E-14	5.33E-28	13	1.41E-12	3.11E-24	10	2.17E-10	5.88E-20
13	15	1.78E-14	4.91E-28	13	8.33E-13	1.08E-24	11	2.32E-10	8.34E-20
14	15	5.88E-15	5.47E-29	13	1.22E-12	2.32E-24	11	1.88E-10	5.29E-20
15	15	1.27E-14	2.49E-28	13	5.99E-13	5.6E-25	11	6.93E-11	6.99E-21
20	15	3.77E-15	2.38E-29	13	2.04E-12	6.49E-24	11	7.62E-11	9.9E-21
30	15	6.66E-15	7.07E-29	12	2.43E-12	1.02E-23	11	1.71E-10	4.58E-20
40	15	4.44E-15	3.24E-29	13	1.8E-12	5E-24	11	5.93E-11	5.1E-21
50	15	4.44E-15	3.12E-29	13	1.66E-12	4.32E-24	11	2.56E-10	9.83E-20
60	15	1.15E-14	2.07E-28	13	1.71E-12	4.51E-24	11	5.34E-11	3.69E-21
70	15	8.1E-15	9.75E-29	12	3.76E-12	2.17E-23	11	2.29E-10	8E-20
80	15	8.88E-15	1.27E-28	12	2.73E-12	1.48E-23	11	7.24E-11	8.86E-21
90	15	2.66E-14	1.1E-27	13	7.47E-13	9.08E-25	10	2.32E-10	7.92E-20
100	15	1.78E-14	5.11E-28	13	4.71E-13	3.27E-25	11	1.02E-10	1.6E-20
120	14	2.5E-14	1.04E-27	12	2.89E-12	1.19E-23	11	1.03E-10	1.57E-20
150	15	2.33E-14	8.76E-28	13	2.49E-12	9.82E-24	11	1.5E-10	3.61E-20
175	15	1.31E-14	2.67E-28	13	2.31E-12	8.38E-24	11	6.87E-11	6.97E-21
200	15	1.78E-14	5.03E-28	12	3.1E-12	2.17E-23	11	2.66E-10	1.11E-19

Tabela 3.3 – Testy dla float64

sigma=		1.00E-06			1.00E-05			1.00E-04	
n	steps	max_diff	sqr_diff	steps	max_diff	sqr_diff	steps	max_diff	sqr_diff
3	9	1.18E-08	2.49E-16	7	5.42E-07	3.31E-13	7	1.46E-06	3.43E-12
4	9	8.32E-09	1.16E-16	8	2.07E-07	6.96E-14	7	2.49E-06	9.55E-12
5	9	1.79E-08	5.4E-16	8	4.93E-08	4.85E-15	8	3.82E-07	2.37E-13
6	10	3.92E-09	2.49E-17	8	1.44E-07	4.19E-14	7	4.11E-06	2.27E-11
7	9	2.48E-08	1.01E-15	8	2.79E-07	1.36E-13	7	1.54E-06	2.89E-12
8	8	1.86E-08	4.14E-16	8	2.65E-07	1.04E-13	7	1.53E-06	3.03E-12
9	10	4.38E-09	2.99E-17	8	2.17E-07	7.5E-14	7	7.87E-07	1.07E-12
10	9	3.94E-08	2.34E-15	8	3.35E-07	1.91E-13	7	1.8E-06	5.37E-12
11	9	1.39E-08	2.75E-16	8	6.67E-08	7.24E-15	7	3.37E-06	1.77E-11
12	9	2.96E-08	1.37E-15	7	2.65E-07	1.69E-13	8	5.12E-07	4.24E-13
13	8	1.55E-08	3.14E-16	8	4.76E-08	3.22E-15	7	3.15E-06	1.46E-11
14	9	2.49E-08	9.48E-16	8	2.18E-07	8.23E-14	7	1.22E-06	1.76E-12
15	9	1.55E-08	4.11E-16	8	1.35E-07	2.55E-14	7	3.05E-06	1.43E-11
20	9	2.08E-08	6.41E-16	8	6.91E-08	9.02E-15	7	9.58E-07	1.94E-12
30	9	1.6E-08	3.83E-16	8	6.49E-08	5.91E-15	7	3.35E-06	1.82E-11
40	9	3.84E-09	2.05E-17	8	1.37E-07	2.94E-14	8	3.53E-07	2.23E-13
50	9	5.75E-09	6.51E-17	8	3.16E-07	1.62E-13	7	9.4E-07	1.52E-12
60	9	1.73E-08	4.36E-16	8	7.27E-08	7.34E-15	7	3.37E-06	1.69E-11
70	9	3.24E-09	2.76E-17	8	8.14E-08	1.44E-14	7	7.62E-07	1.65E-12
80	9	1.57E-08	4.31E-16	8	6.81E-08	7.63E-15	8	4.31E-07	3E-13
90	9	6.65E-09	8.76E-17	8	2.49E-07	9.59E-14	7	3.23E-07	1.87E-13
100	9	1.81E-08	5.42E-16	8	1.08E-07	1.84E-14	7	2.86E-06	1.44E-11
120	9	1.18E-08	2.08E-16	8	3.9E-08	1.96E-15	8	4.51E-07	3.15E-13
150	9	1.07E-08	1.74E-16	8	3.08E-08	1.62E-15	7	3.46E-06	1.74E-11
175	10	4.16E-09	2.74E-17	8	4.92E-08	4.42E-15	7	2.6E-06	1.4E-11
200	9	3.58E-08	1.9E-15	8	3.44E-08	2.53E-15	7	4.65E-07	6.23E-13

Tabela 3.4 – Testy dla float64

Wykres 3.1 – Float 32

Wykres 3.3 – Float 32

Wykres 3.5 – Float 32

Wykres 3.2 – Float 32

Wykres 3.4 – Float 32

Wykres 3.6 – Float 32

Wykres 3.7 – Float 32

Wykres 3.8 - Float 32

Wykres 3.9 – Float 32

Wykres 3.10 – Float 32

Wykres 3.11 – Float 32

Wykres 3.12 – Float 32

Wykres 3.13 - Float 32

Wykres 3.14 - Float 32

Wykres 3.15 – Float 32

Wykres 3.16 – Float 32

Wykres 3.17 – Float 32

Wykres 3.18 – Float 32

W powyższych tabelach i wykresach wektor początkowy był wybierany losowo – każda wartość w wekorze była losowana z przedziału [-100,100]. Przeprowadzimy testy, aby pokazać, że wybór wektora nie wpływa znacząco na wynik dla zadanej macierzy. Dla każdego z testów wartości wektora początkowego będą pewną ustaloną wartością ze zbioru [-100,100,1000,100000] i wartością $\rho=10^{-12}$.

wartości wektora:		100			-100	
n	steps	max_diff	sqr_diff	steps	max_diff	sqr_diff
3	13	4.92E-14	3.43E-27	13	1.49E-14	6.61E-28
4	14	2.89E-15	1.57E-29	13	1.27E-14	4.22E-28
5	14	4.88E-15	2.86E-29	14	1.67E-15	6.16E-30
6	14	1.55E-15	6.42E-30	14	1.55E-15	5.87E-30
7	14	1.11E-15	3.24E-30	14	1.22E-15	3.67E-30
8	14	1.11E-15	5.04E-30	14	1.33E-15	5.62E-30
9	14	1.33E-15	4.71E-30	14	1.22E-15	3.61E-30
10	14	2.89E-15	2.08E-29	14	2.89E-15	2.15E-29
11	14	1.33E-15	4.52E-30	14	4.55E-15	2.56E-29
12	14	3.11E-15	1.89E-29	14	1.11E-15	5.02E-30
13	14	1.22E-15	3.62E-30	14	1.44E-15	4.29E-30
14	14	4.77E-15	2.73E-29	14	1.55E-15	5.92E-30
15	14	1.33E-15	4.04E-30	14	3E-15	1.76E-29
20	14	3.22E-15	1.91E-29	14	1.55E-15	5.4E-30
30	14	1.55E-15	5.66E-30	14	5.11E-15	3.21E-29
40	14	3.11E-15	1.68E-29	14	4.77E-15	2.9E-29
50	14	1.44E-15	4.71E-30	14	4.66E-15	2.9E-29
60	14	1.33E-15	4.94E-30	14	3.22E-15	1.85E-29
70	14	1.44E-15	5.99E-30	14	4.77E-15	3.03E-29
80	14	1.67E-15	8.8E-30	14	1.67E-15	7.01E-30
90	14	1.44E-15	7.11E-30	14	1.78E-15	8.6E-30
100	14	4.77E-15	3.35E-29	14	3.33E-15	1.97E-29
120	14	1.67E-15	9.13E-30	14	1.44E-15	9.01E-30
150	14	4.33E-15	3.16E-29	14	2.89E-15	2.4E-29
175	13	1.22E-14	7.03E-28	14	1.78E-15	1.5E-29
200	14	1.33E-15	1.62E-29	13	1.28E-14	7.39E-28

Tabela 3.5 – Dla zadanych wektorów początkowych

wartości wektora:		1000			100000	
n	steps	max_diff	sqr_diff	steps	max_diff	sqr_diff
3	14	9.1E-15	1.31E-28	16	2.89E-15	1.71E-29
4	14	1.12E-14	1.66E-28	16	4E-15	3.69E-29
5	14	1.72E-14	4.8E-28	16	9.77E-15	2.35E-28
6	15	7.77E-16	1.95E-30	16	8.22E-15	1.67E-28
7	14	1.49E-14	4.15E-28	16	7.77E-15	1.75E-28
8	14	1.12E-14	5.44E-28	16	9.66E-15	2.58E-28
9	14	1.2E-14	3.71E-28	16	7.99E-15	1.74E-28
10	14	1.5E-14	5.5E-28	16	9.21E-15	2.56E-28
11	14	1.22E-14	3.77E-28	16	7.99E-15	1.68E-28
12	14	1.6E-14	5.4E-28	16	8.88E-15	2.44E-28
13	14	1.44E-14	3.65E-28	16	7.88E-15	1.63E-28
14	14	1.31E-14	4.87E-28	16	8.88E-15	2.35E-28
15	14	1.47E-14	3.65E-28	16	7.88E-15	1.63E-28
20	14	1.37E-14	4.74E-28	16	8.88E-15	2.07E-28
30	14	1.58E-14	4.34E-28	16	8.44E-15	1.88E-28
40	14	1.4E-14	4.61E-28	16	8.44E-15	1.81E-28
50	14	1.42E-14	4.75E-28	16	8.66E-15	1.79E-28
60	14	1.39E-14	4.58E-28	16	8.33E-15	1.8E-28
70	14	1.42E-14	4.69E-28	16	8.44E-15	1.72E-28
80	14	1.73E-14	5.36E-28	16	7.99E-15	1.69E-28
90	14	1.6E-14	4.26E-28	16	8.22E-15	1.8E-28
100	14	1.55E-14	4.15E-28	16	7.99E-15	1.62E-28
120	14	1.72E-14	5.55E-28	16	8.44E-15	1.71E-28
150	14	1.58E-14	4.31E-28	16	8.44E-15	1.66E-28
175	14	1.42E-14	4.76E-28	16	7.99E-15	1.59E-28
200	14	1.77E-14	5.79E-28	16	8.44E-15	1.83E-28

Tabela 3.6 – Dla zadanych wektorów początkowych

Jak widzimy, dla każdego przyjętego wektora początkowego, wartość zbiega do rozwiązania. Liczba kroków do uzyskania zadowalającego rozwiązania jest jedynie nieznacznie większa dla wektora złożonego z wartości 100000 w porównaniu z wektorem złożonego z 0 (który jest bardzo blisko rozwiązania).

6. Podsumowanie: