Exercice 1

Dans chaque cas, déterminer si les événements A et B sont indépendants.

1.
$$P(A) = 0, 2, P(B) = 0, 8 \text{ et } P(A \cap B) = 0, 2.$$

2.
$$P(A) = 0, 3, P(B) = 0, 7 \text{ et } P(A \cap B) = 0, 21.$$

3.
$$P(A) = 0, 5, P(B) = 0, 3$$
 et $P(A \cup B) = 0, 65$.

4.
$$P(A) = 0,48, P(B) = 0,25$$
 et $P(A \cup B) = 0,73$.

1.
$$P(A) \times P(B) = 0, 2 \times 0, 8 = 0, 16 \neq 0, 2 = P(A \cap B)$$

Donc A et B ne sont pas indépendants.

2.
$$P(A) \times P(B) = 0, 3 \times 0, 7 = 0, 21 = 0, 21 = P(A \cap B)$$

Donc A et B sont indépendants.

3.
$$P(A \cap B) = P(A) + P(B) - P(A \cup B) = 0, 5 + 0, 3 - 0, 65 = 0, 15$$

 $P(A) \times P(B) = 0, 5 \times 0, 3 = 0, 15 = 0, 15 = P(A \cap B)$
Donc A et B sont indépendants.

4.
$$P(A \cap B) = P(A) + P(B) - P(A \cup B) = 0,48 + 0,25 - 0,73 = 0$$
 $P(A) \times P(B) = 0,48 \times 0,25 = 0,12 \neq 0 = P(A \cap B)$ Donc A et B ne sont pas indépendants.

Exercice 2

Soient A et B deux événements indépendants tels que $P(\overline{A})=0,6$ et $P(A\cap B)=0,3$. Calculer P(A) puis P(B).

$$P(A)=1-P(\overline{A})$$

$$=1-0,6$$

$$=\frac{P(A\cap B)}{P(A)}$$

$$=\frac{P(A\cap B)}{P(A)}$$

$$=\frac{0,3}{0,4}$$

$$=0,75$$

Exercice 3 🖈

A et B sont deux événements incompatibles de probabilité non nulle. Démontrer que A et B ne sont pas indépendants.

A et B sont incompatibles donc $A \cap B = \emptyset$ et $P(A \cap B) = 0$.

$$P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{0}{P(B)} = 0 \neq P(A)$$

Donc A et B ne sont pas indépendants.

Exercice 4

On lance un dé non truqué à six faces et on note les événements suivants :

- A: « le résultat est 4; 5 ou 6 ».
- B : « le résultat est un nombre pair ».

Les événements A et B sont-ils indépendants?

On a $A \cap B$ est l'événement « le résultat est 4 ou 6 ».

D'où
$$P(A) = \frac{3}{6} = \frac{1}{2}$$
, $P(B) = \frac{3}{6} = \frac{1}{2}$ et $P(A \cap B) = \frac{2}{6} = \frac{1}{3}$.

$$P(A) \times P(B) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \neq \frac{1}{3} = P(A \cap B).$$

Donc A et B ne sont pas indépendants.

Exercice 5

Dans un magasin de décoration, 20 % des clients à la caisse achètent de la peinture, les autres achètent du papier peint.

Parmi les clients qui achètent de la peinture, la moitié paie à crédit. Parmi les clients qui achètent du papier peint, les trois quarts paient à crédit. On choisi au hasard un client à la caisse.

- 1. Décrire la situation par un arbre de probabilité ou un tableau.
- 2. Les événements « le client achète de la peinture » et « le client paye à crédit » sont-ils indépendants ?
- 1. On note P l'événement «le client achète de la peinture» et C l'événement «le client paye à crédit».

On obtient l'arbre de probabilité suivant :

2.
$$P(P \cap C) = P(P) \times P_P(C)$$
 $P(P) = 0, 2$ $P(P) \times P(C) = 0, 2 \times 0, 7$
 $= 0, 2 \times 0, 5$ $= 0, 1$ $P(C) = P(P \cap C) + P(\overline{P} \cap C)$ $= 0, 14$
 $= 0, 1 + 0, 8 \times 0, 75$ $\neq P(P \cap C)$
 $= 0, 7$

Donc Les événements « le client achète de la peinture » et « le client paye à crédit » ne sont pas indépendants.

Exercice 6

André est un piètre pêcheur : la probabilité qu'il réussisse à pêcher un poisson est égale à 0,3 chaque jour.

- 1. En supposant que le résultat de sa pêche est indépendant du résultat du jour précédent, déterminer la probabilité qu'il attrappe un poisson quatre jours de suite.
- 2. En supposant cette fois que la probabilité d'une pêche fructueuse augmente de 0,5 le jour suivant un échec et de 0,15 le jour suivant une réussite (et vaut 1 si ce nombre devait dépasser 1 avec les instructions précédentes), calculer la probabilité qu'il attrape un poisson chacun des deux premiers jours puis la probabilité qu'il en attappe un chacun des trois premiers jours.
- 1. La probabilité qu'André attrape un poisson quatre jours de suite est $0,3^4=0,0081$.
- 2. On note P_i l'évenement «André attrape un poisson le jour i ». On obtient l'arbre suivant :

- La probabilité qu'André attrape un poisson chacun des deux premiers jours est $0, 3 \times 0, 45 = 0, 135$.
- La probabilité qu'André attrape un poisson chacun des trois premiers jours est $0, 3 \times 0, 45 \times 0, 6 = 0,081$.

Exercice 7

Soit $x \in [0; 1]$.

On considère deux événements A et B tels que P(A)=x, P(B)=1-x et $P(A\cap B)=\frac{1}{4}$. Déterminer les valeurs de x pour lesquelles A et B sont indépendants.

$$A \text{ et } B \text{ sont indépendants } \iff P(A) \times P(B) = P(A \cap B)$$

$$\iff x \times (1-x) = \frac{1}{4}$$

$$\iff x - x^2 = \frac{1}{4}$$

$$\iff -x^2 + x - \frac{1}{4} = 0$$

$$\iff x^2 - x + \frac{1}{4} = 0$$

$$\iff x^2 - x + \frac{1}{4} = 0$$

$$\iff (x - \frac{1}{2})^2 = 0$$

Exercice 8

Soit $p \in]0$; 1[. On considère deux événements A et B tels que

 $\iff x = \frac{1}{2}$

$$P(A) = p$$
, $P(B) = P(\overline{A})$ et $P(A \cap B) = 0, 2p + 0, 15$.

- **1.** Résoudre dans **R** l'équation $-x^2 + 0, 8x 0, 15 = 0$.
- 2. En déduire les valeurs de p pour lesquelles A et B sont indépendants.
- 1. On calcule le discriminant du polynome $-x^2 + 0, 8x 0, 15$:

$$\Delta = 0,8^2 - 4 \times (-1) \times (-0,15)$$
$$= 0,64 - 0,6$$
$$= 0,04$$

Calculons les racines du polynome :

$$x_1 = \frac{-0.8 - \sqrt{\Delta}}{-2} \qquad x_2 = \frac{-0.8 + \sqrt{\Delta}}{-2}$$
$$= \frac{-0.8 - 0.2}{-2} \qquad = \frac{-0.8 + 0.2}{-2}$$
$$= 0.5 \qquad = 0.3$$

D'où $S = \{0, 3; 0, \}.$

2.
$$A$$
 et B sont indépendants $\iff P(A) \times P(B) = P(A \cap B)$ $\iff p \times P(\overline{A}) = 0, 2p + 0, 15$ $\iff p \times (1-p) = 0, 2p + 0, 15$ $\iff -p^2 + p = 0, 2p + 0, 15$ $\iff -p^2 + 0, 8p - 0, 15 = 0$ $\iff p = 0, 3 \text{ ou } p = 0, 5$

Donc A et B sont indépendants si, et seulement si p = 0, 3 ou p = 0, 5.

Exercice 9 **

On considère deux événements A et B tels que $P(A \cap B) = 0.8$ et $P(A \cup B) = 0.9$.

- 1. Résoudre dans R l'équation $x^2 1, 7x + 0, 8 = 0$.
- 2. Monter que A et B ne peuvent pas être indépendants.
- **1.** On calcule le discriminant du polynome $x^2 1, 7x + 0, 8$:

$$\Delta = (-1,7)^2 - 4 \times 1 \times 0,8$$
$$= 2,89 - 3,2$$
$$= -0,31$$

 $\Delta < 0$ donc le polynome n'a pas de racine réelle et l'équation $x^2 - 1, 7x + 0, 8 = 0$ n'a pas de solution dans R.

2. • Montrons que A et B sont deux événements tels que $P(A) \neq 0$ et $P(B) \neq 0$:

Supposons par l'absurde que P(A) = 0 ou P(B) = 0.

Alors A ou B et l'événement impossible et $P(A \cap B) = 0$.

Il y a une contradiction avec l'énoncé, donc $P(A) \neq 0$ et $P(B) \neq 0$.

• Supposons par l'absurde que A et B sont indépendants.

On a:
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Donc
$$0.9 = P(A) + P(B) - 0.8$$

Et
$$P(A) + P(B) = 1,7$$

Comme on a supposé que A et B sont indépendants, $P(A\cap B)=P(A)\times P(B)=0,8$ Donc $P(A)=\frac{0,8}{P(B)}$

Donc
$$P(A) = \frac{0.8}{P(B)}$$

Et
$$P(A) + P(B) = 1,7$$
 donne $\frac{0,8}{P(B)} + P(B) = 1,7$.

Posons p = P(B).

p est solution de l'équation $\frac{0,8}{p}+p=1,7$

Soit p un réel strictement positif.

$$\frac{0,8}{p} + p = 1,7 \iff 0,8 + p^2 = 1,7p$$
$$\iff p^2 - 1,7p + 0,8 = 0$$

D'après la question précédente, cette équation n'a pas de solution dans R.

Il y a une contradition. Donc A et B ne peuvent pas être indépendants.