

Adaptive Correspondence Scoring for Unsupervised Medical Image Registration

Xiaoran Zhang, John C. Stendahl, Lawrence Staib, Albert J. Sinusas, Alex Wong, James S. Duncan

Yale University

Tracking Anatomies Over Time

MRI video with only ED label

Estimated displacement

MRI video with propagated labels

Unsupervised image registration enables accurate tracking of changes, label propagation, improved diagnosis, and enhanced treatment planning.

Unsupervised Image Registration

Target I_t

Unsupervised objective: $\mathcal{L} = rac{1}{|\Omega|} \sum_{x \in \Omega} \left[I_t(x) - I_s(x + \hat{u}(x))
ight]^2 + \lambda \| \nabla \hat{u}(x) \|^2$

High

Violations of Basic Assumptions

violations of basic Assumpt

MRI video

Target

Error map

High

Violations of Basic Assumptions

0

Target

Error map

Reconstructed target

Occlusions

Heteroscedastic noise

... and many others

A Closer Look

A Closer Look

Our approach:

Method

Displacement estimator loss:

$$rac{1}{|\Omega|} \sum_{x \in \Omega} \lfloor \hat{S}(x)
floor [I_t(x) - I_s(x + \hat{u}(x))]^2 + \lambda \|
abla \hat{u}(x)\|^2$$

Method

Avoid trivial solution:

$$rac{1}{|\Omega|}\sum_{x\in\Omega}[1-\hat{S}(x)]^2$$

Scores correspond to surfaces that are locally smooth:

$$rac{1}{|\Omega|} \sum_{x \in \Omega} \|
abla \hat{S}(x)\|^2$$

Method

Momentum term: $b_T = \cos \frac{\pi}{2} \mu_T; m_T = \gamma m_{T-1} + (1-\gamma)b_T$

**Note: The displacement and scoring estimators are optimized in separate alternating steps (1)

Average residuals:

Average scores:

Results on ACDC and CAMUS

Our estimated scoring map identifies spurious error residuals and prevents parameter drift during training.

Results on ACDC and CAMUS

Quantitative evaluation

	ACDC			CAMUS			
	$\overline{\mathrm{DSC}}\uparrow$	HD↓	ASD ↓	DSC ↑	$\mathrm{HD}\downarrow$	ASD ↓	
Undeformed	47.98	7.91	2.32	66.77	10.87	2.61	
Elastix	77.26	4.95	1.28	80.18	10.02	1.81	
Voxelmorph	79.48	4.79	1.27	81.50	8.72	1.74	
NLL	76.49	5.46	1.45	75.24	11.05	2.20	
β -NLL AdaFrame	78.74	5.07	1.33	79.75	9.39	1.93	
5 AdaFrame	66.38	5.80	1.67	77.88	10.54	1.93	
AdaReg	78.75	5.13	1.33	79.31	9.78	1.88	
AdaCS (Ours)	80.50	4.69	1.23	81.74	8.55	1.72	
Transmorph	76.94	5.51	1.30	79.24	10.30	1.79	
$\stackrel{\text{Fi}}{\text{H}}$ NLL $\stackrel{\text{Fi}}{\text{O}}$ NLL $\stackrel{\text{Fi}}{\text{SR}}$ AdaFrame $\stackrel{\text{Fi}}{\text{H}}$ AdaReg	73.12	7.22	1.27	75.08	11.60	1.79	
ξβ-NLL	75.74	6.12	1.29	77.39	10.99	1.86	
AdaFrame	67.95	5.72	1.59	78.06	9.86	1.91	
్ల AdaReg	76.22	5.68	1.29	78.12	10.62	1.84	
AdaCS (Ours)	78.39	5.40	1.32	79.64	9.85	1.79	
Diffusemorph	67.38	5.80	1.67	75.23	9.80	2.07	
g NLL	66.24	5.84	1.73	74.78	10.62	2.15	
$\stackrel{\cdot}{\mathbf{g}} \beta$ -NLL	66.31	5.93	1.74	73.27	9.85	2.25	
NLL Θβ-NLL H AdaFrame	59.78	6.46	1.93	75.04	10.41	2.10	
\Box AdaReg	69.41	6.25	1.78	74.36	10.66	2.21	
AdaCS (Ours)	72.09	5.35	1.53	77.65	9.82	1.99	

Comparison to robust losses

		ACDC			CAMUS			
_		$DSC \uparrow$	HD ↓	$ASD \downarrow$	$DSC \uparrow$	HD ↓	ASD ↓	
	NCC	78.55	4.94	1.29	77.01	10.23	1.89	
	MI	78.04	5.25	1.35	78.18	9.83	1.99	
В	TBL	79.31	4.64	1.23	81.18	8.91	1.72	
vxm	MAE	78.27	5.36	1.43	78.59	10.23	1.97	
	MSE	79.48	4.79	1.27	81.50	8.72	1.74	
	AdaCS	80.50	4.69	1.23	81.74	8.55	1.72	
	NCC	73.77	6.64	1.12	73.03	11.87	1.70	
	MI	73.57	6.57	1.11	74.83	11.94	1.83	
E	TBL	78.23	5.11	1.27	79.12	9.75	1.84	
$^{\mathrm{tsm}}$	MAE	74.30	6.36	1.28	75.96	11.35	1.89	
	MSE	76.94	5.51	1.30	79.24	10.30	1.79	
	AdaCS	78.39	5.40	1.32	79.64	9.85	1.79	
	NCC	70.25	5.29	1.58	75.67	10.75	2.06	
	MI	71.16	5.40	1.56	76.19	10.09	2.16	
Ħ	TBL	69.12	5.73	1.63	76.05	9.54	2.06	
£	MAE	66.30	5.75	1.71	77.30	10.36	2.09	
	MSE	67.38	5.80	1.67	75.23	9.80	2.07	
	AdaCS	72.09	5.35	1.53	77.65	9.82	1.99	

Smoothness

	AC	DC	CAMUS			
	DSC ↑	$ J_{\hat{u}} \leq 0 \downarrow$	$T_{ m train}$	DSC ↑	$ J_{\hat{u}} \leq 0 \downarrow$	$T_{ m train}$
Voxelmorph AdaCS (Ours)	79.48 ± 9.23 80.50 ± 8.58	$0.29 \\ 0.22$	$0.26 \\ 0.43$	81.50 ± 5.58 81.74 ± 5.36	0.60 0.30	$0.26 \\ 0.43$
Transmorph AdaCS (Ours)	76.94 ± 8.93 78.39 ± 9.06	$0.76 \\ 0.57$	$0.60 \\ 0.87$	79.24 ± 6.06 79.64 ± 6.37	$\frac{1.41}{0.70}$	$0.59 \\ 0.70$
Diffusemorph AdaCS (Ours)	67.38 ± 15.65 72.09 \pm 13.60	0.05 0.06	1.08 1.86	75.23 ± 8.71 77.65 \pm 7.64	0.05 0.08	1.06 1.91

Ablation

	Loss		ACDC			CAMUS			
	$\mathcal{L}_{ ext{reg}}$	$\mathcal{L}_{\mathrm{smooth}}$	DSC ↑	HD↓	$ASD \downarrow$	DSC ↑	$\mathrm{HD}\downarrow$	$\overline{\mathrm{ASD}}\downarrow$	
vxm	√ ✓	X _/	80.24 80.50		1.23 1.23	81.58 81.74		1.74 1.72	
tsm	✓	X ✓	77.84 78.39		1.33 1.32	79.58 79.64		1.81 1.79	
dfm	✓ ✓	Х ✓	71.62 72.09	5.56 5.35	1.58 1.53	77.32 77.65	9.71 9.82	2.00 1.99	

Our proposed approach consistently outperforms baselines in various architectures and datasets and produces reasonably smooth displacement.

Application - Cardiac Strain Analysis

- (A) Segmented clinical echo (rest)
- (B) Rest radial strain overlayed with estimated displacement revealing akinetic septal and inferior walls

Conclusion

 We identify the limitation of the widely used unsupervised training objective

 Our proposed approach can be plugged-and-played into existing frameworks with no extra cost during inference

Xiaoran Zhang
https://xiaoranzhang.com/

Paper

Visit us in poster #152