

Kierunek: Elektronika i Telekomunikacja Specjalność: Teleinformatyka

Praca dyplomowa inżynierska

Stacja meteorologiczna oparta o ESP8266

Damian Zaręba Nr albumu 8389

Promotor: dr inż. Tadeusz Leszczyński

Mława 2019r.

Spis treści

Spis treści		2
1	Wstęp	3
2	Elementy składowe projektu 2.1 ESP8266EX 2.2 BME280	4 4
3	Schemat funkcjonalny	7
4	Schemat elektryczny	8
5	Kod źródłowy	9
6	Opis anemometru	10
7	Infografika	11
Sp	is rysunków	12
Sp	is tabel	13
8	Spis załączników	14
9	Bibliografia	15
10	Streszczenie	16

1. Wstęp

Założeniem pracy jest stworzenie stacji meteorologicznej opartej o mikroprocesor ESP8266, złożonej z kilku modułów. Tymi elementami są:

- Płyta główna z mikrokontrolerem ESP8266EX dla przetwarzania informacji z sensorów oraz sterowania zasilaniem całego urządzenia;
- Samodzielnie wykonany anemometr ultradźwiękowy do pomiaru kierunku i prędkości wiatru ze względów na koszty, ponieważ gotowe są zbyt drogie w stosunku do reszty;
- Sensor firmy BOSCH o nazwie BME280, który służy do odczytu temperatury, ciśnienia i wilgotności powietrza;
- Sensor firmy PLANTOWER o nazwie PMS7003, który mierzy ilość pyłu zawieszonego w powietrzu, o wielkości PM1.0, PM2.5 oraz PM10, mierzone w μg/m³.

Jednym z elementów pracy jest schemat blokowy urządzenia oraz ogólny opis poszczególnych modułów wykorzystanych do zbudowania tego urządzenia, wliczając w to charakterystyki głównych komponentów dla każdego modułu. Udokumentowane zostanie m.in. skonfigurowanie środowiska, które zostały wykorzystane do stworzenia tego projektu.

Następnie przejdę do analizy schematu urządzenia, a konkretnie płyty głównej, bazy z mikroprocesorami i zasilaniem dla wykorzystanych sensorów. Poddana dokładnej analizie będzie każda z części schematu, takie jak sekcja zasilania czy połączeniowa między płytą główną a sensorami.

W kolejnym etapie pracy przedstawię kod źródłowy do wykorzystanego mikroprocesora. Dokładnie go omówię, wraz z algorytmami użytymi do jego napisania. Wykonuje on wiele zadań, m.in. odczytuje dane z sensorów czy kontroluje układy zasilania poszczególnych części.

W przedostatnim punkcie przedstawię krótko projekt anemometru ultradźwiękowego służącego do pomiaru prędkości i kierunku wiatru. Omówiony zostanie schemat blokowy urządzenia i jego elektryczna reprezentacja.

Ostatnim elementem projektu będzie ukazanie działania stacji. Pokażę to na przykładzie zdjęć sprzętu oraz zrzutów ekranu z aplikacji Blynk, służącej do interakcji z urządzeniem.

2. Elementy składowe projektu

2.1 ESP8266EX

ESP8266EX to mikroukład z pełnym stosem TCP/IP oraz mikrokontrolerem wyprodukowanym przez Espressif w Szanghaju, Chiny.

Istnieje jego odmiana o nazwie ESP8285 z 1 MiB wbudowanej pamięci typu flash, co umożliwiało wykorzystanie go jako pojedynczego układu zdolnego do podłączenia się do sieci Wi-Fi, po podłączeniu zasilania. W odróżnieniu od rodziny mikrokontrolerów AVR nie może być zasilany napięciem 5V, jedynie 3.3 wolta.

Rysunek 2.1: Zdjęcie przedstawiające układ ESP8266EX

Źródło:http://www.alphamicrowireless.com/media/562039/esp8266ex_370px.gif

ESP8266 posiada 32 bitowy procesor oparty o rdzeń Xtensa Diamond Standard 106Micro (LX106) firmy Tensillica o nominalnej wartości zegara wynoszącym 80 MHz oraz charakteryzuje się następującymi funkcjami:

- 16 pinów GPIO
- SPI
- I²C (programowa implementacja)
- I²S z funkcją Direct Memory Access (współdzieli piny z GPIO)
- UART na wyznaczonych pinach GPIO oraz dodatkowy UART na GPIO2 służący jedynie do wysyłania danych
- 10-bitowy ADC oparty o sukcesywną aproksymację.

 Wbudowana obsługa Wi-Fi o standardach b/g/n według IEEE 802.11 z wbudowanym przełącznikiem TR,LNA,Balunem, wzmacniaczem mocy oraz siecią dopasowującą oraz możliwością podłączenia się lub tworzenia sieci z zabezpieczeniami WEP lub WPA/WPA2

Pamięć ulotna tego mikrokontrolera jest podzielona w następujący sposób:

- 32 KiB RAM dla instrukcji
- 32 KiB RAM typu cache dla instrukcji
- 80 KiB RAM dla danych użytkownika
- 16 KiB RAM typu ETS dla danych "systemowych"

Obsługuje pamięć nieulotną typu flash po protokole SPI do pojemności 16 MiB, choć zazwyczaj korzysta się z pamięci o rozmiarach 512 KiB lub 4 MiB.

Rysunek 2.2: Zdjęcie przedstawiające wyprowadzenia układu ESP8266EX Źródło: https://learn.acrobotic.com/uploads/esp8266 pinout.png

2.2 BME280

3. Wykorzystane protokoły komunikacyjne

4. Schemat funkcjonalny

5. Schemat elektryczny

6. Kod źródłowy

7. Opis anemometru

8. Infografika

Spis rysunków

2.1	ESP8266EX	2
2.2	ESP8266EX	4

Spis tabel

9. Spis załączników

10. Bibliografia

11. Streszczenie