Doble Grado en Ingeniería Informática y Matemáticas

Cálculo I - Evaluación 4

- 1. Supongamos que $\{x_n\}$ es una sucesión mayorada y sean $A_n=\{x_k:k\geqslant n\},$ $\beta_n=\sup(A_n).$ Sea $A=\{n\in\mathbb{N}:\beta_n\in A_n\}.$ Prueba que:
 - i) Si el conjunto A es finito entonces $\{x_n\}$ tiene una sucesión parcial estrictamente creciente.
 - ii) Si el conjunto A es infinito entonces $\{x_n\}$ tiene una sucesión parcial decreciente.
- 2. Sea $\{x_n\}$ una sucesión acotada y α, β , números reales. Se verifica entonces que:
 - i) $\alpha=\varliminf\{x_n\}$ si, y sólo si, para todo $\varepsilon>0$ el conjunto $\{n\in\mathbb{N}:x_n<\alpha-\varepsilon\}$ es finito y el conjunto $\{n\in\mathbb{N}:x_n<\alpha+\varepsilon\}$ es infinito.
 - ii) $\beta = \overline{\lim}\{x_n\}$ si, y sólo si, para todo $\varepsilon > 0$ el conjunto $\{n \in \mathbb{N} : x_n > \beta + \varepsilon\}$ es finito y el conjunto $\{n \in \mathbb{N} : x_n > \beta \varepsilon\}$ es infinito.
- 3. Calcula los límites de las sucesiones:

a)
$$x_n = \left(1 + \log \frac{n^2 + 1}{n^2 + n + 1}\right)^n$$
; b) $y_n = \frac{\frac{1}{2\log 2} + \frac{1}{3\log 3} + \dots + \frac{1}{n\log n}}{\log(\log(n+1))}$