Pragmatic machine learning for business

Jakub Nowacki

DataMass 2018

whoami

Lead Machine Learning Engineer @ Sotrender (sotrender.com)

Trainer @ Sages (sages.com.pl)

I can code, I do maths

@jsnowacki

What is Machine Learning?

Machine learning is a subset of artificial intelligence in the field of computer science that often uses statistical techniques to give computers the ability to "learn" with data, without being explicitly programmed.

Wikipedia, https://en.wikipedia.org/wiki/Machine_learning

Data Science process Ask Communicate Get Model Explore

How Machine Learning usually works?

Clean data

Validate

Build model

Is it hard?

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Source: https://xkcd.com/1425/

AI APIs

Source: https://aws.amazon.com/rekognition/

Available models

Source: https://dev.to/swyx/serverless-machine-learning-at-google-cp9

Available data

Source: https://en.wikipedia.org/wiki/MNIST_database

https://dumps.wikimedia.org/

What should we do now?

- Data cleaning
- Data annotation
- Model training
- Transfer learning
- Model deployment

Source: https://www.coursera.org/learn/machine-learning

Data cleaning

Source: https://towardsdatascience.com/intro-to-data-analysis-for-everyone-part-3-d8f02690fba0

Data annotatnion

Source: http://brat.nlplab.org/

Custom model

```
model = Sequential()
model.add(Conv2D(32, kernel size=(3, 3), activation='relu', input shape=input shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num classes, activation='softmax'))
model.compile(loss=keras.losses.categorical crossentropy,
optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1,
validation data=(x test, y test))
```


MINST accuracy: 99.25%

Custom model

"Finishing a 90-epoch ImageNet-1k training with ResNet-50 on a NVIDIA M40 GPU takes 14 days."

Yang You et al., ImageNet Training in Minutes, 2018

Custom model - TensorFlow Distributed

Source: http://www.pittnuts.com/2016/08/glossary-in-distributed-tensorflow/

Source: https://towardsdatascience.com/using-docker-to-set-up-a-deep-learning-environment-on-aws-6af37a78c551

Transfer learning

Source: https://cloud.google.com/tpu/docs/inception-v3-advanced

-Transfer learning – TensorFlow Estimator & Hub

```
module =
hub.Module("https://tfhub.dev/google/imagenet/inception v3/feature vector/1")
input layer = adjust image(features["x"])
outputs = module(input layer)
logits = tf.layers.dense(inputs=outputs, units=10)
predictions = {
  "classes": tf.argmax(input=logits, axis=1),
  "probabilities": tf.nn.softmax(logits, name="softmax tensor")
if mode == tf.estimator.ModeKeys.PREDICT:
      return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
```

Source: https://github.com/shu-yusa/tensorflow-hub-sample/blob/master/inceptionv3.py

Deployment – model embedding

Deployment – model in containers

Deployment - TensorFlow Serving

CONTINUOUS TRAINING PIPELINE

Source: https://www.tensorflow.org/serving/ Source: https://cloud.google.com/products/machine-learning/

