C B3C051 Total pages:2

| Vame: |
|-------|
| I     |

### APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION, JANUARY 2017

Course Code: EC203

Course Name: SOLID STATE DEVICES (AE, EC)

Max. Marks: 100 Duration: 3 Hours

#### PART A

## Question No. 1 is compulsory. Answer question No. 2 or 3

- 1. (a) Derive the expression  $n_0p_0 = n_i^2$  from fundamentals. (5)
  - (b) A germanium sample is doped with  $10^{16}$  boron atoms per cm<sup>3</sup>. Find the electron concentration. Intrinsic carrier concentration of germanium is  $2.5 \times 10^{13}$ /cm<sup>3</sup>at300K.

(5)

- (c) An n- type silicon sample with  $N_d=10^{15}$  /cm<sup>3</sup> is steadily illuminated such that  $g_{op}=10^{20}$  EHP/cm<sup>3</sup>-sec. If  $\tau_n=\tau_p=1\mu sec$  for this excitation. Draw the energy band diagram with the quasi Fermi levels at 300K. Intrinsic carrier concentration of silicon is  $1.5 \times 10^{10}$  /cm<sup>3</sup>
- 2. (a) Explain the temperature dependence of carrier concentration of an extrinsic semiconductor with the help of grapn. (5)
  - (b) What is Hall Effect? Derive the expression for finding the carrier concentration of a semiconductor from Hall voltage. (10)

# OR

3. (a) What is Einstein Relation? Derive the expression.

- (5)
- (b) Derive Continuity equation. Find the expression for the distribution of carriers in a semi-infinite semiconductor bar if steady injection of carriers occurs at one end. (10)

#### PART B

# Question No. 4 is compulsory. Answer question No. 5 or 6

- 4. (a) Draw the charge density and electric field distribution within the transition region of a PN Junction with  $N_d < N_a$ . Label all the details. (5)
  - (b) An abrupt silicon PN junction has  $N_d = 10^{15}$  /cm  $^3$  and  $N_a = 10^{17}$  /cm  $^3$ . Draw the energy band diagram of the junction at equilibrium at 300K and find its contact potential

