Machine Learning Report: Electric Vehicle Charging Infrastructure Trends

1. Introduction

- This report analyzes trends in electric vehicle (EV) charging infrastructure and sales data from the US Government's Alternative Fuels Data Center.
- The objective is to identify correlations between EV sales and the growth of public and private charging ports, providing insights for strategic planning in the EV charging network sector.
- Data includes yearly records of EV charging port installations, station locations (public and private), and EV sales.

2. Data and Methodology

• Data Sources:

- o private ev charging.csv: Private EV charging port and station data.
- o public ev charging.csv: Public EV charging port and station data.
- o ev sales.csv: EV sales data by vehicle model and year.

Methodology:

- O Data import and inspection using Pandas.
- o Data cleaning and preprocessing (handling missing values).
- O Data aggregation and merging to create a comprehensive dataset.
- Visual analysis using Matplotlib and Seaborn to identify trends.
- o Trend consistency check.
- The sales data was grouped by year and summed to create a total yearly sales number.
- The public and private charging data was merged, and then merged again with the total yearly sales data.
- Line plots were created to visualize the change in sales and public and private charging ports over time.

3. Key Findings and Analysis

• Positive Correlation:

- A strong positive correlation exists between EV sales and the number of both public and private charging ports. As EV sales increase, there's a corresponding growth in charging infrastructure.
- This is shown in the graphs that were created, as all three lines on the graph trend upwards together.

Public vs. Private Infrastructure:

- Public charging ports consistently outnumber private ports. This suggests significant public investment in EV charging infrastructure.
- However, private charging port growth is also evident, indicating increasing private sector involvement.

Sales Trends:

- o EV sales have shown a clear upward trend, particularly notable in recent years.
- The visualization clearly shows the increase in sales over the years.

Trend Consistency:

• Vehicle sales and the number of private and public ports show the same trend.

4. Visualizations

• EV Ports and Sales Over Time:

- Line plots illustrating the trends in private ports, public ports, and total EV sales over the years.
- o This visualization highlights the correlation between sales and infrastructure growth.
- The graph clearly shows the public ports having the highest number of ports, then sales, then private ports having the lowest number. All three trend upwards together.

5. Conclusions and Recommendations

- The data supports the conclusion that growth in EV sales is closely linked to the expansion of charging infrastructure.
- Continued investment in both public and private charging infrastructure is crucial to support the increasing adoption of EVs.
- Strategic planning should focus on:
 - Maintaining and expanding public charging networks.
 - o Encouraging private sector investment in charging infrastructure.
 - o Ensuring infrastructure development keeps pace with EV sales growth.
- The trend is the "same" between sales and ports.
- This data shows that EV's are growing in popularity, and that the infrastructure to support them is also growing.

6. Future Work

- Further analysis could explore regional variations in infrastructure growth and sales.
- Predictive modeling could be used to forecast future infrastructure needs based on sales trends.
- Analysis of the types of charging stations being installed could also be useful.