

Universidade Federal de Santa Catarina

Centro Tecnológico

Sistemas Digitais

INE 5406

Aula 2-T

1. Projeto de Unidade Lógico-Aritmética (ULA). O subtrator e o somador-subtrator, *overflow*. Estrutura de uma ULA simples. Mais operações lógicas e aritméticas. Funcionamento e características temporais de flip-flops.

Prof. José Luís Güntzel guntzel@inf.ufsc.br

www.inf.ufsc.br/~guntzel/ine5406/ine5406.html

Representação de Inteiros em Binário

Convenção: Negativos em Complemento de 2

Circuitos Aritméticos

Exercício 4: Usando o somador *carry-ripple*, projetar um circuito combinacional que troca o sinal de um número inteiro de 4 bit.

Interfaces:

Circuitos Aritméticos

Exercício 4: Solução

Trocar o sinal significa aplicar as regras do complemento de dois ao número, ou seja:

- 1. Negar ("NOT") bit a bit o número
- 2. Somar uma unidade ao resultado do passo anterior

Circuitos Aritméticos

Exercício 4: Solução nº 1

Circuitos Aritméticos

Exercício 4: Solução nº 2

Subtração de Números Inteiros em Binário Princípio

$$A - B = A + (-B)$$

Onde -B é o número B de sinal trocado!
Ora, que coincidência!! (Ou não?)

Subtrator Paralelo (de 4 bits)

$$A - B = A + (-B)$$

Subtrator Paralelo (de 4 bits)

Diagrama de Blocos (Nível Lógico)

Símbolos no Nível RT

Prof. José Luís Güntzel

INE/CTC/UFSC

Sistemas Digitais - semestre 2010/2

Subtrator/Subtrator Paralelo (de 4 bits)

INE/CTC/UFSC
Sistemas Digitais - semestre 2010/2

Slide 2T.10

Prof. José Luís Güntzel

Subtrator/Subtrator Paralelo (de 4 bits)

Como uni-los em um único circuito, configurável?

Subtrator/Subtrator Paralelo (de 4 bits)

Resposta!!!

Subtrator/Subtrator Paralelo (de 4 bits)

Símbolo no Nível RT

Tabela de Operação

controle	operação	
0	S=A+B	
1	S=A-B	

ULA Simples

Suponha que se necessite de uma Unidade Lógico-Aritmética (ULA) capaz de realizar as seguintes operações

C 1	C0	operação	comentário
0	0	S = A + B	adição
0	1	S = A - B	subtração
1	0	S = A AND B	"E" bit a bit
1	1	S = A OR B	"OU" bit a bit

Símbolo no nível RT

Obs: o sinal de overflow pode ou não ser necessário...

ULA Simples

Visão de um bit desta ULA (os demais bits serão similares)

C1	C0	operação
0	0	S = A + B
0	1	S = A - B
1	0	S = A AND B
1	1	S = A OR B

ULA Simples

Multiplexador no Nível RT...

ULA Simples

Mas onde foi parar o overflow?

Voltando ao projeto do todo...

B

Deslocador Combinacional

Um deslocador (shifter) com uso de multiplexadores 2:1

- Se desloca=1, este circuito desloca cada bit uma posição para a esquerda
- Qual é o significado desta operação?

Deslocador Combinacional

Outro deslocador (shifter) com uso de multiplexadores 2:1

- Se desloca=1, este circuito desloca cada bit uma posição para a direita
- Qual é o significado desta operação?

Multiplicação com Circuito Combinacional

O Multiplicador Matricial

- É uma implementação direta do esquema ao lado
- Cada bit dos produtos parciais é gerado por meio de um "E" lógico

Multiplicação com Circuito Combinacional

Multiplicação com Circuito Combinacional

O Multiplicador Matricial (p/ Números s/ Sinal)

O Símbolo no Nível RT

Unidades Funcionais para Mais de Dois Operandos de Entrada

Exemplo: Adição para 4 operandos. Solução Combinacional

Unidades Funcionais para Mais de Dois Operandos de Entrada

Exemplo: Adição para 4 operandos. Solução Sequencial

Tipos de Circuitos Digitais

1. Circuitos Combinacionais:

Não são capazes de reter os sinais (dados) gerados em suas saídas (tampouco os sinais que são aplicados em suas de entradas). "As saídas dependem apenas das entradas."

Usados para construção de:

- •Circuitos aritméticos e lógicos (somadores, subtratores, deslocadores, ULAs, comparadores, multiplexadores, decodificadores ...)
- •Lógica de próximo estado e lógica de saída, nos circuitos de controle

Tipos de Circuitos Digitais

2. Circuitos Sequenciais:

São capazes de armazenar os sinais de entrada (enquanto estiverem alimentados com energia). "As saídas dependem das entradas e do estado que está armazenado."

Usados para construção de:

• Registradores (latches e flip-flops)

Flip-flop D Disparado Pela Borda Ascendente (ou sensível à borda ascendente ou à borda de subida...)

símbolo

tabela de transição de estados

C	D	Q_{t+1}
≠ ↑	X	Q_{t}
1	0	0
1	1	1

circuito com portas nand

Flip-flop D Disparado Pela Borda Ascendente Exemplo de funcionamento

tabela de transição de estados

C	D	Q_{t+1}
≠ ↑	X	Q_{t}
1	0	0
<u></u>	1	1

Obs: Nesta disciplina assumiremos que o atraso da saída Q' é idêntico ao atraso da saída Q. Assim, a saída Q' será o "espelho" da saída Q.

Flip-flop D Disparado Pela Borda Descendente Exemplo de funcionamento

tabela de transição de estados

С	D	Q_{t+1}
≠↓	X	Q _t
\downarrow	0	0
\downarrow	1	1

Flip-flop D Disparado Pela Borda Ascendente, com Reset Assíncrono

Exemplo de funcionamento

tabela de transição de estados

clear	C	D	Q_{t+1}
0	≠ ↑	X	Q _t
0	1	0	0
0	1	1	1
1	X	X	0

Características Temporais de Flip-flops

Supor um Flip-flop D disparado pela Borda de Subida

tsu = Tempo de Preparação (setup time)

"Tempo antes da borda ativa de ck (subida, neste caso) durante o qual a entrada D já deve estar em seu valor estável."

Características Temporais de Flip-flops

Supor um Flip-flop D disparado pela Borda de Subida

th = Tempo de Manutenção (hold time)

"Tempo, a partir da borda ativa de ck (subida, neste caso), durante o qual a entrada D deve permanecer estável."

Características Temporais de Flip-flops

Supor um Flip-flop D disparado pela Borda de Subida

tco (ou td) = Time from clock to output (ou Tempo ou Atraso de Carga)

"Atraso, em relação à borda ativa de ck (subida, neste caso), para o valor amostrado a partir da entrada D aparecer nas saídas Q e Q."