

Nombre de Mina :	MARIA ELENA	Código :	100
Nombre del Titular :		Año de Abandono:	1988
Departamento:	HUANCAVELICA	Cuenca:	RIO PISCO

Acceso:

Ubicación : EN LA MARGEN DERECHA DEL RIO HUAYTARA, CERCA AL POBLADO DE PAMPANO. UBICADO EN LA

PROVINCIA DE HUAYTARA, DEPARTAMENTO DE HUANCAVELICA.

COORDENADAS U.T.M.

Norte: 8,496,730.0 Este: 448,697.0 Zona: 18 Altitud: 1,940

ASPECTOS DE

Geología : LA MINA FILONEANA SE EMPLAZA EN UNA LADERA DE ROCA ANDESITICA.

Mineralogía: MINERALIZACION PRINCIPALMENTE DE COBRE Y EN MENOR PROPORCION PLOMO Y ZINC.

Geomorfología: TOPOGRAFIA ESCARPADA CON UN DESNIVEL CON RESPECTO AL CURSO DEL RIO HUAYTARA DE

APROXIMADAMENTE 600 MTS.

Hidrología : LA ZONA MUESTRA ESCASA PRECIPITACIONES.

Desmonte : LA MINA MUESTRA UNA BOCAMINA PRINCIPAL CON UNA LABOR VISIBLE DE 80 MTS. AL FRENTE DE LA

BOCAMINA OCURREN ACUMULACIONES DE MINERAL Y EN LA LADERA INFERIOR DESMONTES CON FUERTES

PENDIENTES DEL ORDEN DE 45°.

Agua de Drenaje : ACTUALMENTE LAS AGUAS DRENAN HACIA EL RIO HUAYTARA.

Depósito Relaves:

Contaminación : EL PLAN DE MITIGACION COMPRENDERIA EL CIERRE DE LA BOCAMINA, ADEMAS DE LA RENIVELACION Y

RECUBRIMIENTO DEL MATERIAL ACUMULADO DE 50,000 TM. CON MATERIAL COLUVIAL LIBRE DE SULFUROS.

Observaciones : DE LOS VALORES DEL PNN OBSERVAMOS QUE EL MINERAL DE MINA ACUMULADO, TIENE POSIBILIDADES DE

GENERAR DRENAJE ACIDO EN CONDICIONES DE PRECIPITACIONES EXTREMAS.

COSTO DE MITIGACION US\$

Desmonte (erosión) 130,000

Relave (Estab.Talud)

Drenaje Acido

Total US\$ 130,000

ROCA CAJA ANDESITICA CON SULFUROS DISEMINADOS.

Fuente:

UNI-1998

0.005 mg/l 0.005 mg/l 710.000 uS/cm 0.096 mg/l 0.011 mg/l 0.053 mg/l

636.000 mg/l

MINA INACTIVA

RESULTADO DE ANALISIS

Muestreo en :	DESMONTE			
	Azufre	S	0.048	%
	Potencial Neto de Neutralización	PNN	40.390	KgCaCo3/TM
	Potencial de Acidez	PA	1.500	KgCaCo3/TM
	Potencial de Neutralización	PN	41.890	KgCaCo3/TM
Muestreo en :	MINERAL DE MINA			
	Azufre	S	7.490	%
	Potencial Neto de Neutralización	PNN	-205.670	KgCaCo3/TM
	Potencial de Acidez	PA	234.060	KgCaCo3/TM
	Potencial de Neutralización	PN	28.390	KgCaCo3/TM
Muestreo en :	MINERAL DE ROCA ENCAJONANTE			
	Azufre	S	0.021	%
	Potencial Neto de Neutralización	PNN	43.420	KgCaCo3/TM
	Potencial de Acidez	PA	0.650	KgCaCo3/TM
	Potencial de Neutralización	PN	44.070	KgCaCo3/TM
Muestreo en :	RIO HUAYTARA A 500 METROS AGUAS ABA	JO		
	Arsenico	AS	0.001	mg/l

eo en .	RIO HUATTARA A 500 METROS AGUAS ABAJO						
	Arsenico	AS					
	Cadmio	CD					
	Cobre	CU					
	Conductividad Electrica	CE					
	Hierro	FE					
	Manganeso	MN					
	Plomo	PB					
	Solidos Total Disueltos	STD					

Solidos Total Suspendidos STS 64.000 mg/l Sulfato SO4 84.490 mg/l Temperatura Т 21.100 oC Turbidez TU 6.450 mg/l Zinc 0.042 mg/l ΖN рΗ РΗ 7.900 U.E.

- Skip							14.		
	MINA INACTIVA								
Nombre de Mina : Nombre del Titular : Departamento :	HUANCAVELICA	1	DEDECHA DEL I	BIO HI IAY	Código : Año de Abandono : Cuenca : TARA POR UN LAPSO !	RIO PISCO			
Acceso:	SE KEALIZA FOR	LA MARGEN	JEKEUNA DEL I	KIU HUAT	AKA PUR UN LAF 30 I	JE 3 HUKAS.			
Ubicación :	EN LA PARTE ALT DEPARTAMENTO			ARA. UBIC	CADO EN LA PROVINCI	A DE HUAYTARA	٨,		
		COC	ORDENADAS	B U.T	. M .				
Norte : 8,499,7	700.0	Este :	448,200.0		Zona : 18	Alti	itud : 2,200		
			SPECT		DE				
Geología :	EL YACIMIENTO A VOLCANICAS, AN		_		RA UNA BOCAMINA EM	PLAZADA EN RC	DCAS		
Mineralogía :	MINERALIZACION	PRIMORDIAL	. DE COBRE, LU	IEGO PLON	ЛО Y ZINC.				
Geomorfología :	FUERTE MICROFA	CTURAMIEN	TO, ALTERACIO	N Y DISEN	MINACION DE SULFUR	OS.			
	LAG PRECIPITAGE	01150 001111							
Hidrología :	LAS PRECIPITACI	ONES SON M	UY ESCASAS.						
Desmonte :	OCURREN ACUM	JLACIONES F	RINCIPALMENT	ΓE DE REM	IANENTES DE MINERA	L DE MINA.			
Agua de Drenaje :									
Depósito Relaves :									
Contaminación :		OLUVIAL. SU	TONELAJE APR		IA NIVELACION DE LOS SERIA DE 28,000 TM [
Observaciones:		RIAL ES INES	STABLE QUIMICA		IULADO INDICA UN VA 'TIENE TENDENCIA A				
COCTO DE MITICACIO	NUICO								
COSTO DE MITIGACIO									
Desmonte (erosión) Relave (Estab.Talud)	50,000								
Drenaje Acido									
Total US\$	50,000								
Total God	30,000								

RESULTADO DE ANALISIS

Muestreo en: MINERAL DE MINA

Azufre S 6.890 %

Potencial Neto de NeutralizaciónPNN-337.270KgCaCo3/TMPotencial de AcidezPA215.310KgCaCo3/TMPotencial de NeutralizaciónPN-121.960KgCaCo3/TM

332	<u> </u>							4.6	
		MI	NA INA	CTIV	'A				
Nombre de Mina :	DIANA				Código :		102		
Nombre del Titular :	DIAITA			=	_	.bandono :	102		
Departamento :	HUANCAVELICA			_	Cuenca:		RIO PISCO		
Acceso:	POR LAS LADERAS	DE BAJO ANO	GULO EN LA MA	ARGEN DI				S ARRIBA F	OF LA
Acceso.	MINA MARIA ELENA ASFALTADA QUE N	A, POR UN CAI OS LLEVA A F	MINO DE HERRA IUAYTARA.	ADURA D	DURANTE 5				
Ubicación :	PROVINCIA DE HUA	YTARA, DEPA	ARTAMENTO DE	E HUANC	AVELICA.				
		COOF	RDENADAS	U.T	. M .				
Norte : 8,498,4	404.0	Este :	452,219.0		Zona :	18	Al	Ititud :	3,100
2, 22,			PECTO	S	DE				-,
Geología :	PRESENTA TOPOG 35°, EL AREA TIENE						NTES QUE VAI	RIAN ENTF	RE 30 A
Mineralogía :	ES UNA MINA POLIN ESFALERITA Y OXID			BRE), CC	ONSTITUIDA	PRINCIPAL	MENTE POR C	SALENA,	
Geomorfología :	OCURREN EMPLAZ	AMIENTOS DI	E MINERAL DE 1	MINA COI	N DISEMIN <i>E</i>	CION DE SI	II FUROS		
Geomonologia .	OCCIVILIA EM EME	THE PROPERTY OF THE PROPERTY O	<u> </u>	<u> </u>	<u> </u>	101011 02 00	<u> </u>		
Hidrología :	PRESENCIA ESPOR	ADICA DE LL	UVIAS.						
Desmonte :	CONSTITUIDA POR PRINCIPALMENTE (S DE ESFALER	ITA, GALI	ENA, CALCO	OPIRITA, PIF	RITA Y CARBO	NATOS	
Agua de Drenaje :	MODERADO.								
Depósito Relaves :									
Contaminación :	COMPRENDERIA UI RECUBIERTOS CON		~			S CON UN T	ONELAJE DE	18,000 TM.	Y SER
Observaciones :	LA EXISTENCIA DE POR LA PRESENCIA ESTRECHO EN LA F	A ESPORADIC	A DE LLUVIAS Y	Y DADA L	A TOPOGR	AFIA ACCIDI	ENTADA Y VAL	LLE MUY	ΓADA
COSTO DE MITIGACIO	N US\$								
Desmonte (erosión)	50,000								
` , _	30,000								
Relave (Estab.Talud)									
Drenaje Acido									
Total US\$	50,000								

RESULTADO DE ANALISIS

Muestreo en: MINERAL DE MINA

Azufre S 6.640 %

Potencial Neto de NeutralizaciónPNN-296.040KgCaCo3/TMPotencial de AcidezPA207.500KgCaCo3/TMPotencial de NeutralizaciónPN-88.540KgCaCo3/TM

	MINA INACTIVA								
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	HUANCAVELICA POR LA ZONA DE	HUAYACUND			Cuenca :	Abandono :	103 RIO PISCO		
Ubicación :	PARTE ALTA RESI HUAYTARA, DEPA				JNIDAD LITOL	OGICA ANDI	ESITICA. PROVINC	IA DE	
		COC	ORDENAD	\neg	.T.M.				
Norte : 8,499,1	00.0	Este :	452,503 P E C		Zona :	18	Altitud	1:	2,650
Geología :	TIPO FILONEANA					DAS.			
Mineralogía :	MINERALIZACION	POLIMETALIO	CA DE PLOI	MO, ZINC Y	COBRE.				
Geomorfología :	SE OBSERVA LA C SULFUROS.	OCURRENCIA	DE UNA BO	OCAMINA QI	UE MUESTRA	EN SUS CAJ	JAS DISEMINACION	N DE	
Hidrología :	ESCASA PRECIPIT	TACION EN LA	A ZONA.						
Desmonte :	EN SU ENTORNO	EXTERIOR E	MPLAZAMIE	NTO DE DE	SMONTES OX	(IDADOS.			
Agua de Drenaje :									
Depósito Relaves :									
Contaminación :	CORRESPONDER SU CUBRIMIENTO				DE MATERIAL I	DE DESMON	ITE APROXIMADO	DE 5,000	TM. Y
Observaciones :	DADA LA ESCASA SALVO CASOS EX		ION EN LA	ZONA LA PO)SIBILIDAD DE	: UN FUERTE	E DRENAJE ACIDO	ES LIMIT	ADA,
COSTO DE MITIGACION Desmonte (erosión) Relave (Estab.Talud) Drenaje Acido Total US\$	40,000 40,000								

RESULTADO DE ANALISIS

Muestreo en: MINERAL DE MINA

Azufre S 5.290 %

Potencial Neto de NeutralizaciónPNN-314.130KgCaCo3/TMPotencial de AcidezPA165.310KgCaCo3/TMPotencial de NeutralizaciónPN-148.820KgCaCo3/TM

	MINA INACTIVA								
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	DORIS HUANCAVELICA SIGUIENDO LA RU		POR LA ZONA DE	Cuenc	Abandono:	104 RIO PISCO			
Ubicación :	PROVINCIA DE HU	JAYTARA, DEPA	RTAMENTO DE H	UANCAVELICA	·-				
		COOR	DENADAS	U.T.M.					
Norte : 8,501,	000.0	Este :	454,001.0	Zona	. 18	Altitud :	2,700		
		ASI	PECTOS	DE					
Geología :	PRESENTA TOPO DIANA.	GRAFIAS ABRU	PTAS, PRESENTA	NDO SIMILARE	S FORMACIO	NES A LA MINA ACCOCAS	AY		
Mineralogía :	MINA POLIMETALI	CA (PLOMO, ZIN	NC, COBRE).						
Geomorfología :	SE PRESENTA CO	MO GALENA, E	SFALERITA Y OXII	DOS DE COBR	E. EXISTE UNA	A BOCAMINA.			
Hidrología :	AUSENCIA DE PR	ECIPITACIONES							
Desmonte :	CORRESPONDE A	MINERAL DE M	IINA CON DISEMIN	NACION DE SU	LFUROS.				
Agua de Drenaje :	NO PRESENTA DE	RENAJE DE AGU	IA.						
Depósito Relaves :									
Contaminación :						CUBRIMIENTO CON MATE ADO ES DE 15,000 TM.	RIAL		
Observaciones :	ACTUALMENTE NO CONDICIONES DE					CION; SIN EMBARGO BAJ RIO HUAYTARA.	Э		
COSTO DE MITIGACIO	N US\$								
Desmonte (erosión)	50,000								
Relave (Estab.Talud)	30,000								
Drenaje Acido									
Total US\$	50,000								

RESULTADO DE ANALISIS

Muestreo en: MINERAL DE MINA

Azufre S 3.650 %

Potencial Neto de NeutralizaciónPNN-427.480KgCaCo3/TMPotencial de AcidezPA114.060KgCaCo3/TMPotencial de NeutralizaciónPN-313.420KgCaCo3/TM

Asuntos Ambientales						Lilei	jia y iviii ias
		M	INA INAC	ΓΙVΑ			
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	ACUARIO 2 FERNANDO TIJE HUANCAVELICA			Código : Año de A Cuenca :	bandono :	110 RIO PISCO	
Ubicación :	EN LA MARGEN DE	ERECHA DEL	RIO PISCO A LA AL	TURA DEL PUEBL	O HUACHA	C CORREGIDOR.	
		COO	RDENADAS (J.T.M.			
Norte : 8,510,4	00.0	Este :	449,200.0	Zona :	18	Altitud :	2,200
			PECTOS				
Geología :	EL YACIMIENTO EN	N VETA SE EN	MPLAZA EN ROCAS	INTRUSIVAS MO	STRANDO L	IN HALO DE OXIDACION	<u>l.</u>
Mineralogía :	MINERALIZACION I	DE ORO ASO	CIADO A CUARZO Y	PIRITA.			
Geomorfología :	OCURRE 2 BOCAM CALCOPIRITA.	IINAS FUERT	EMENTE ALTERADO	OS A OXIDOS DE	HIERRO DE	BIDO A LA ALTERACION	N DE LA
Hidrología :							
Desmonte :	CONSTITUIDO POP LIMONITAS, CALCI	R CUARZO LE TA, YESO.	ECHOSO OXIDADO \	GRANOS FINOS	DE CALCO	PIRITA, GALENA, ADEM	AS DE
Agua de Drenaje :							
Depósito Relaves :							
Contaminación :	EL MATERIAL ACU TONELAJE DE 300		RRESPONDE A FRA	GMENTOS DE CU	JARZO CON	SULFUROS OXIDADOS	EN UN
Observaciones :	SEGUN EL PNN EL OXIDACION.	MATERIAL G	SENERARIA DRENAJ	E ACIDO BAJO C	ONDICIONE	S DE SATURACION AC	JOSA Y
	OXIDACION.						
COSTO DE MITIGACIOI	N US\$						
Desmonte (erosión)	50,000						
Relave (Estab.Talud)							
Drenaje Acido							
Total US\$	50,000						

RESULTADO DE ANALISIS

Muestreo en: **DESMONTE**

Azufre S 9.530 %

Potencial Neto de Neutralización PNN -307.190 KgCaCo3/TM Potencial de Acidez PA 297.810 KgCaCo3/TM

Potencial de Neutralización PN -9.380 KgCaCo3/TM

Muestreo en: **DESMONTE OXIDADO**

Azufre S 6.450 %

Potencial Neto de Neutralización PNN -208.260 KgCaCo3/TM Potencial de Acidez PA 201.560 KgCaCo3/TM

Potencial de Neutralización PN -6.700 KgCaCo3/TM

		N	ANIN	INACT	ΓIV	Α			
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	ASUNCION HUANCAVELICA	A				Código : Año de Abandono : Cuenca :	RIO PISCO		
Ubicación :						NO DE HERRADURA A NTO DE HUANCAVELIO		ERECHA	DEL RIO
		CO	ORDENA	ADAS L	J . T .	. М .			
Norte : 8,525,0	20.0	Este :	451,2			Zona : 18	Al	titud :	2,380
			SPEC			DE			
Geología :	YACIMIENTO EN \	ETA EMPLA	AZADO EN F	ROCAS INTE	RUSIV	AS.			
Mineralogía :	MINERALIZACION	DE ORO Y (COBRE.						
Geomorfología :									
Hidrología :									
Desmonte :	FRAGMENTOS DE SULFUROS DISEM	CUARZO L IINADOS.	ECHOSO, C)XIDADOS F	RECUE	BIERTOS POR LIMONI	TAS, ADEMAS [DE ARCILI	_AS CON
Agua de Drenaje :									
Depósito Relaves :									
Contaminación :	PLAN DE MITIGAC	ION ORIEN	TADO A ES	TABILIZAR I	LOS D	ESMONTES CON UN	TONELAJE DE 2	200 TM.	
Observaciones :	LA PREDICCION D	EL DRENAJ	JE ES RELA	TIVAMENTE	E DEB	IL EN LA GENERACIOI	N DE SOLUCIO	NES ACID	AS.
COSTO DE MITIGACION	NUS\$								
Desmonte (erosión)	30,000								
Relave (Estab.Talud)									
Drenaje Acido									
Total US\$	30,000								
10101 000									

RESULTADO DE ANALISIS

Muestreo en: **DESMONTE**

Azufre S 0.620 %

Potencial Neto de NeutralizaciónPNN-23.960KgCaCo3/TMPotencial de AcidezPA19.370KgCaCo3/TMPotencial de NeutralizaciónPN-4.590KgCaCo3/TM

	MINA INACTIVA							
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	VIRREYNA HUANCAVELICA POR UNA TROCHA	QUE SE INI	CIA A LA ALTU	JRA DEL TUI	Código : Año de Abandor Cuenca : NEL (CHACOYA).	no :	113 RIO PISCO	
Ubicación :	SE EMPLAZA CERO HUANCAVELICA.	A AL PUEBL	O DE CHACO	YA. PROVIN	CIA DE CASTROVII	RREY	YNA, DEPARTAMENT	O DE
		coc	RDENADA	S U.T	. M .			
Norte : 8,523,70	0.00	Este :	457,020.0		Zona : 1	18	Altitud :	3,900
		A S	PECT	0 \$	DE			
Geología :	YACIMIENTO EMPL	AZADO EN F	ROCAS VOLCA	ANICAS AND	ESITICAS.			
Mineralogía :	MINA POLIMETALIO	CA CON MINE	RALIZACION	DE PLOMO,	ZINC, COBRE.			
Geomorfología :	EXISTE UNA BOCA	MINA DE GR	AN DESARRO)LLO.				
Hidrología :								
Desmonte :	CONSTITUIDO POR DISEMINADOS.	R FRAGMENT	TOS DE ROCA	. ANDESITA	CON CUARZO LEC	HOS	O, OXIDADO Y CON	SULFURO
Agua de Drenaje :	NO EXISTE DRENA	JE.						
Depósito Relaves :								
Contaminación :	EL PLAN DE MITIGA ACUMULADOS EN				//A DE ESTABILIZA	CION	I FISICA DE LOS DES	MONTES
Observaciones :	ACTUALMENTE NO TEMPORADA DE LI		ENAJE ACIDO,	, PERO LA P	REDICCION DEL D	REN	AJE ACIDO ES POSIE	3LE EN LA
COSTO DE MITIGACION Desmonte (erosión) Relave (Estab.Talud) Drenaje Acido Total US\$	90,000							

RESULTADO DE ANALISIS

Muestreo en : **DESMONTE**

Azufre S 0.120 %

Potencial Neto de Neutralización PNN 7.210 KgCaCo3/TM Potencial de Acidez PA 3.750 KgCaCo3/TM

Potencial de Neutralización PN 10.960 KgCaCo3/TM

Muestreo en: **DESMONTE OXIDADO**

Azufre S 0.170 %

Potencial Neto de NeutralizaciónPNN1.530KgCaCo3/TMPotencial de AcidezPA5.310KgCaCo3/TM

Potencial de Neutralización PN 6.840 KgCaCo3/TM

Asamos / Ambientales						211019	ia y iiiiiao
		MI	NA INACT	IVA			
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	CARMEN HUANCAVELICA			Código : Año de A Cuenca :	bandono :	114 RIO PISCO	
Ubicación :			PERIORES DE LA LA FERA EN CAMIONET			HORA DE LA PROVINCI. ANCAVELICA.	A DE
		COOF	RDENADAS U	.T.M.			
Norte: 8,542,5	40.0	Este :	472,348.0	Zona :	18	Altitud :	4,420
Geología :	YACIMIENTO.	AS	PECTOS	DE			
Mineralogía :	MINA POLIMETALIC	CA MAYORMEN	NTE DE CALCOPIRIT	A (MINERAL DE	COBRE) Y C	OTROS SULFUROS.	
Geomorfología :	TOPOGRAFIA DE P	ENDIENTE MO	DDERADA.				
Hidrología :							
Desmonte :	CONSTITUIDO POR	ROCAS INTR	USIVAS OXIDADAS,	LIMONITAS Y D	DISEMINACIO	N DE PIRITA.	
Agua de Drenaje :	DRENAJE ACIDO.						
Depósito Relaves :							
Contaminación :	EL PROGRAMA CO OCURREN EN EL E	MPRENDERIA NTORNO; EL I	UNA NIVELACION D MATERIAL ACUMULA	DE LOS MATERIA ADO CORRESPO	ALES Y CUBI ONDE A 1,50	RIMIENTO CON CALIZA: 0 TM.	S QUE
Observaciones :		NAJE ACIDO A				SOLUBILIZA LOS SULF S CUYO DRENAJE FINA	
COSTO DE MITIGACIO							
Desmonte (erosión) Relave (Estab.Talud)	150,000						
Drenaje Acido							
Total US\$	150,000						

RESULTADO DE ANALISIS

Muestreo en: **DESMONTE**

Azufre S 0.190 %

Potencial Neto de Neutralización PNN -3.750 KgCaCo3/TM Potencial de Acidez PA 5.940 KgCaCo3/TM

Potencial de Neutralización PN 2.190 KgCaCo3/TM

Muestreo en: MINERAL DE CANCHA

Azufre S 1.630 %

Potencial Neto de Neutralización PNN -48.590 KgCaCo3/TM Potencial de Acidez PA 50.940 KgCaCo3/TM

Potencial de Neutralización PN 2.350 KgCaCo3/TM

Nombre de Mina :	LIRA	Código :	115
Nombre del Titular :		Año de Abandono:	
Departamento :	HUANCAVELICA	Cuenca:	RIO PISCO

Acceso:

Ubicación : EMPLAZADO EN UNA DE LAS LADERAS DE LA LAGUNA PACOCOCHA. PROVINCIA DE CASTROVIRREYNA,

DEPARTAMENTO DE HUANCAVELICA.

COORDENADAS U.T.M.

Norte: 8,542,540.0 Este: 472,680.0 Zona: 18 Altitud: 4,420

ASPECTOS DE

Geología: EL YACIMIENTO POLIMETALICO SE EMPLAZA EN ROCAS VOLCANICAS.

Mineralogía: MINERALIZACION DE SULFUROS SIMPLES A COMPLEJOS.

Geomorfología : EXISTEN 3 BOCAMINAS Y UN PIQUE CUYA PROFUNDIDAD ASCIENDE A 800 M., LAS BOCAMINAS SE

ENCUENTRAN PARCIALMENTE CERRADAS POR LOS DESMONTES EXISTENTES EN LA ZONA.

Hidrología:

Desmonte: FRAGMENTOS DE ROCA ANDESITA, CUARZO LECHOSO, LIMONITAS Y SULFUROS COMO PIRITA, CALCOPIRITA

Y GALENA.

Agua de Drenaje : DRENAJE DE AGUA ACIDA.

Depósito Relaves:

Contaminación : EN EL AREA EXISTEN 2,000 TM. DE MATERIAL DE DESMONTE Y 1,000 TM. DE MINERAL DE CANCHA, LAS

CUALES NECESITAN UNA PROTECCION PERIMETRAL CON FRANJA DE CALIZA Y RECUBRIMIENTO CON

MATERIAL CALCAREO PARA EVITAR LA GENERACION ACIDA.

Observaciones: DE UNA DE LAS BOCAMINAS DRENA AGUA ACIDA CON CAUDAL DE 4 L/SEG. CUYAS AGUAS VAN A LA LAGUNA

PACOCOCHA.

COSTO DE MITIGACION US\$

Desmonte (erosión) 200,000

Relave (Estab.Talud)

Drenaje Acido

Total US\$ 200,000

DRENAJE ACIDO HACIA LA LAGUNA PACOCOCHA.

Fuente:

UNI-1998

RESULTADO DE ANALISIS

Muestreo en :	DESMONTE	
---------------	----------	--

Azufre S 6.170 %

Potencial Neto de NeutralizaciónPNN-179.840KgCaCo3/TMPotencial de AcidezPA192.810KgCaCo3/TMPotencial de NeutralizaciónPN12.970KgCaCo3/TM

Muestreo en : DRENAJE SUBTERRANEO DE MINA A LAGUNA PACOCOCHA

Arsenico 0.001 mg/l Cadmio CD 0.106 mg/l Cobre CU 0.176 mg/l Conductividad Electrica CE 4,100.000 uS/cm Hierro FΕ 0.192 mg/l MN 100.260 mg/l Manganeso ΡВ Plomo 0.129 mg/l Solidos Total Disueltos STD 2,558.000 mg/l Solidos Total Suspendidos STS 220.000 mg/l Sulfato SO₄ 1,003.660 mg/l Turbidez 394.000 mg/l TU Zinc ΖN 38.100 mg/l

PΗ

5.800 U.E.

Muestreo en: LAGUNA PACOCOCHA AL BORDE DE MINA

Arsenico AS 0.001 mg/l Cadmio CD 0.000 mg/l Cobre CU 0.001 mg/l Conductividad Electrica CE 210.000 uS/cm FΕ Hierro 0.064 mg/l Manganeso MN 0.349 mg/l Mercurio HG 0.000 mg/l Plomo PΒ 0.010 mg/l Solidos Total Disueltos STD 220.000 mg/l Solidos Total Suspendidos STS 12.000 mg/l Turbidez TU 1.730 mg/l Zinc ΖN 0.322 mg/l рН PH 7.000 U.E.

Muestreo en: MINERAL DE CANCHA

рΗ

Azufre S 1.470 %

Potencial Neto de Neutralización PNN -38.720 KgCaCo3/TM Potencial de Acidez PA 45.940 KgCaCo3/TM Potencial de Neutralización PN 7.220 KgCaCo3/TM

				1000
MINA INACTIVA				
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	SAN PABLO HUANCAVELICA		Código : Año de Abandono : Cuenca :	116 RIO PISCO
Ubicación :	EN LA LADERA DE LA HUANCAVELICA.	A LAGUNA LA VIRREYNA. PRO	VINCIA DE CASTROVIRREYN	NA, DEPARTAMENTO DE
			U.T.M.	
Norte : 8,541,0	000.0 E	A S P E C T O S	Zona : 18 D E	Altitud : 4,410
Geología :	YACIMIENTO EMPLA	ZADO EN ROCAS VOLCANICA		
Mineralogía :	POLIMETALICO PREI	DOMINANDO EL COBRE.		
Geomorfología :	ES RELATIVAMENTE	DE PENDIENTE MODERADA (QUE VARIA DE 10A 15º.	
Hidrología :				
Desmonte :	CONSTITUIDO POR F PIRITA Y OXIDOS NE	ROCAS SILICIFICADAS Y SULF GRUZCOS.	UROS COMO ESFALERITA N	MARMATITICA, CALCOPIRITA,
Agua de Drenaje :				
Depósito Relaves :				
Contaminación :	RENIVELACION DE M	MATERIALES CON UN TONELA.	JE DE 2,500 TM. Y CUBRIMIE	NTO CON CALIZAS Y SUELOS.
Observaciones :	VIRREYNA, DEBIDO	AR DEL PNN QUE NO EXISTE L AL ESTANCAMIENTO DE SUS A D VERDOSA A SUS AGUAS.		
COSTO DE MITIGACIO	N US\$			
Desmonte (erosión)	100,000			
Relave (Estab.Talud)				
Drenaje Acido				
Total US\$	100,000			

RESU	TADO		AIA	LICIC
RESU	ΙΙΔΙ)()	1)F 4	NA	1515

	RESULTADO DE A	ANALISIS		
Muestreo en :	DESMONTE			
	Azufre	S	0.980	%
	Potencial Neto de Neutralización	PNN	154.300	KgCaCo3/TM
	Potencial de Acidez	PA	30.630	KgCaCo3/TM
	Potencial de Neutralización	PN	184.930	KgCaCo3/TM
Muestreo en :	LAGUNA LA VIRREYNA AL BORDE DE MINA			
	Arsenico	AS	0.001	mg/l
	Cadmio	CD	0.003	mg/l
	Cobre	CU	0.002	mg/l
	Conductividad Electrica	CE	200.000	uS/cm
	Hierro	FE	0.008	mg/l
	Manganeso	MN	9.146	mg/l
	Mercurio	HG	0.000	mg/l
	Plomo	РВ	0.005	mg/l
	Solidos Total Disueltos	STD	198.000	mg/l
	Solidos Total Suspendidos	STS	26.000	mg/l
	Sulfato	SO4	24.080	mg/l
	Temperatura	T	10.400	оС
	Turbidez	TU	2.050	mg/l
	Zinc	ZN	1.138	mg/l
	pH	PH	6.800	U.E.
Muestreo en :	MINERAL DE CANCHA			
	Azufro	9	1 250	0/

Azufre S 1.250 %

Potencial Neto de NeutralizaciónPNN13.480KgCaCo3/TMPotencial de AcidezPA39.060KgCaCo3/TMPotencial de NeutralizaciónPN52.540KgCaCo3/TM

Nombre de Mina :	RELIQUIA	Código :	117
Nombre del Titular :		Año de Abandono:	
Departamento :	HUANCAVELICA	Cuenca:	RIO PISCO

Acceso:

Ubicación : EMPLAZADA EN UNA DE LAS MARGENES LATERALES DE LA LAGUNA LA VIRREYNA. PROVINCIA DE

CASTROVIRREYNA, DEPARTAMENTO DE HUANCAVELICA.

COORDENADAS U.T.M.

Norte : 8,540,130.0 Este : 473,769.0 Zona : 18 Altitud : 4,410

ASPECTOS DE

Geología: ROCA VOLCANICA.

Mineralogía : YACIMIENTO POLIMETALICO.

Geomorfología:

Hidrología:

Desmonte: CONSTITUIDO POR FRAGMENTOS DE ROCA ANDESITA, CUARCITA, CUARZO LECHOSO Y PIRITA CON

CALCOPIRITA FINA DISEMINADA

Agua de Drenaje : UNA BOCAMINA CON DRENAJE CUYO CAUDAL ES DE 5 L/SEG., DISCURRIENDO SUS AGUAS EN LA LAGUNA LA

VIRREYNA.

Depósito Relaves:

Contaminación : EL MATERIAL ACUMULADO EN EL EXTERIOR ES DEL ORDEN DE 800 TM. EL CUAL NECESITA RENIVELARSE Y

RELLENAR CON MATERIAL CALCAREO LA BOCAMINA Y POSTERIORMENTE SELLARLA CON CONCRETO PARA

EVITAR EL DRENAJE.

Observaciones : EL DESMONTE ACTUALMENTE NO ES GENERADOR DE AGUA ACIDA. EL MINERAL DE CANCHA MUESTRA UN

POTENCIAL GENERADOR DE DRENAJE ACIDO.

COSTO DE MITIGACION US\$

Desmonte (erosión) 80,000

Relave (Estab.Talud)

Drenaje Acido

Total US\$ 80,000

LABOR ABANDONADA CON DRENAJE.

Fuente:

UNI-1998

RESULTADO DE ANALISIS

KESULTADO DE	ANALISIS		
AGUA DE DRENAJE DE BOCAMINA			
Arsenico	AS	0.001	mg/l
Cadmio	CD	0.095	mg/l
Cobre	CU	0.062	mg/l
Conductividad Electrica	CE	910.000	uS/cm
Hierro	FE	0.053	mg/l
Manganeso	MN	97.994	mg/l
Plomo	PB	0.042	mg/l
Solidos Total Disueltos	STD	848.000	mg/l
Solidos Total Suspendidos	STS	72.000	mg/l
Sulfato	SO4	550.250	mg/l
Temperatura	T	10.800	оС
Turbidez	TU	7.440	mg/l
Zinc	ZN	34.080	mg/l
рН	PH	6.400	U.E.
DESMONTE			
Azufre	S	1.310	%
Potencial Neto de Neutralización	PNN	10.980	KgCaCo3/TM
Potencial de Acidez	PA	40.940	KgCaCo3/TM
Potencial de Neutralización	PN	51.920	KgCaCo3/TM
MINERAL DE CANCHA			
Azufre	S	10.140	%
Potencial Neto de Neutralización	PNN	-278.420	KgCaCo3/TM
Potencial de Acidez	PA	316.870	KgCaCo3/TM
Potencial de Neutralización	PN	38.450	KgCaCo3/TM
	AGUA DE DRENAJE DE BOCAMINA Arsenico Cadmio Cobre Conductividad Electrica Hierro Manganeso Plomo Solidos Total Disueltos Solidos Total Suspendidos Sulfato Temperatura Turbidez Zinc pH DESMONTE Azufre Potencial Neto de Neutralización Potencial de Acidez Potencial Neto de Neutralización MINERAL DE CANCHA Azufre Potencial Neto de Neutralización Potencial Neto de Neutralización	Arsenico Cadmio CD Cobre CU Conductividad Electrica CE Hierro FE Manganeso MN Plomo PB Solidos Total Disueltos STD Solidos Total Suspendidos STS Sulfato SO4 Temperatura T Turbidez TU Zinc ZN pH PH DESMONTE Azufre S Potencial Neto de Neutralización PNN MINERAL DE CANCHA Azufre S Potencial Neto de Neutralización PNN MINERAL DE CANCHA Azufre S Potencial Neto de Neutralización PNN Potencial Neto de Neutralización PNN MINERAL DE CANCHA Azufre S Potencial Neto de Neutralización PNN Potencial Neto de Neutralización PNN MINERAL DE CANCHA Azufre S Potencial Neto de Neutralización PNN	AGUA DE DRENAJE DE BOCAMINA Arsenico AS 0.001 Cadmio CD 0.095 Cobre CU 0.062 Conductividad Electrica CE 910.000 Hierro FE 0.053 Manganeso MN 97.994 Plomo PB 0.042 Solidos Total Disueltos STD 848.000 Solidos Total Suspendidos STS 72.000 Sulfato SO4 550.250 Temperatura T 10.800 Turbidez TU 7.440 Zinc ZN 34.080 pH PH 6.400 DESMONTE Azufre S 1.310 Potencial Neto de Neutralización PN 51.920 MINERAL DE CANCHA S 10.140 Azufre S 10.140 Potencial Neto de Neutralización PNN -278.420 Potencial de Acidez PA 316.870

7 (Suritos 7 (Inibieritales		,ac			
MINA INACTIVA					
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	POR FIN CAYO Código: Año de Abandono: HUANCAVELICA Cuenca: RIO PISCO				
Ubicación :	SE EMPLAZA EN LA PARTE ALTA DE LA LAGUNA LA VIRREYNA. PROVINCIA DE CASTROVIRREYNA, DEPARTAMENTO DE HUANCAVELICA.				
	COORDENADAS U.T.M.				
Norte : 8,539,		4,445			
Geología :	YACIMIENTO EN VETA EMPLAZADO EN ROCA VOLCANICA ANDESITICA.				
Mineralogía :	MINERALIZACION POLIMETALICA.				
Geomorfología :	EXISTEN 2 BOCAMINAS CUYAS DIMENSIONES SON DE 3X3 Y UNA PROFUNDIDAD DE 1 KM. EN DESARRO HORIZONTAL, ADEMAS EXISTE UN PIQUE PARA VENTILACION.	LLO			
Hidrología :					
Desmonte :	CONSTITUIDO POR FRAGMENTOS DE ROCA DE ANDESITA PORFIRITICA CON DISEMINACION DE ESFALIGALENA, CALCOPIRITA, PIRITA, LIMONITAS Y CUARZO LECHOSO.	ERITA,			
Agua de Drenaje :	DE UNA DE LAS BOCAMINAS DRENA AGUA CUYO CAUDAL ES DE 3 L/SEG.				
Depósito Relaves :					
Contaminación :	ESTABILIZACION FISICA DE LOS MATERIALES DE DESMONTE Y MINERAL DE CANCHA ESTIMADOS EN 2, TM. Y SELLADO DE BOCAMINAS.	000			
Observaciones :	EL MATERIAL ACUMULADO EN EL EXTERIOR TIENE CAPACIDAD DE GENERAR DRENAJE ACIDO EN CONDICIONES DE SATURACION ACUOSA Y OXIDACION.				
COSTO DE MITIGACIO	DN US\$				
Desmonte (erosión)	150,000				
Relave (Estab.Talud)					
Drenaje Acido Total US\$	150,000				

RESUI	TADO	DE A	NI A I	ICIC
RESUL	IAINI		иді	-

Muestreo en :	DESMONTE
---------------	----------

Azutre	S	2.120	%
Potencial Neto de Neutralización	PNN	-53.790	KgCaCo3/TM
Potencial de Acidez	PA	66.250	KgCaCo3/TM
Potencial de Neutralización	PN	12.460	KgCaCo3/TM

Muestreo en: DRENAJE DE AGUA DE MINA

AS		
10	0.001	mg/l
CD	0.005	mg/l
CU	0.003	mg/l
CE	510.000	uS/cm
FE	0.042	mg/l
MN	0.357	mg/l
PB	0.032	mg/l
STD	482.000	mg/l
STS	18.000	mg/l
SO4	122.480	mg/l
Γ	10.800	оС
ΓU	0.490	mg/l
ZN	0.127	mg/l
PH	7.300	U.E.
	CD CU CE EE MN PB STD STS GO4	CD 0.005 CU 0.003 CE 510.000 CE 0.042 MN 0.357 CB 0.032 CTD 482.000 CTS 18.000 CO 10.800 CU 0.490 CN 0.127

Muestreo en: MINERAL DE CANCHA

Azufre	S	1.080 %

Potencial Neto de NeutralizaciónPNN-29.170KgCaCo3/TMPotencial de AcidezPA33.750KgCaCo3/TMPotencial de NeutralizaciónPN4.580KgCaCo3/TM

	<u> </u>						- 1	164	
MINA INACTIVA									
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	RECHAZO HUANCAVELICA				Código : Año de A Cuenca :	bandono :	119 RIO PISCO		
Ubicación :	EMPLAZADO EN LA DEPARTAMENTO D	DE HUANCAVE	LICA.			ROVINCIA D	E CASTROVIRI	REYNA,	
			RDENADAS	U.T					
Norte : 8,539,	529.0	Este :	473,040.0 P E C T C	.	Zona :	18	Alt	titud :	4,460
Geología :	YACIMIENTO EN VI					ICA.			
Mineralogía :	MINERALIZACION F	POLIMETALICA	. .						
Geomorfología :	3 BOCAMINAS DE I OBSERVA UNA CHI ZONA.								
Hidrología :									
Desmonte :	FORMADOS POR F	RAGMENTOS	DE ROCA AND	DESITA PO	RFIRITICAS	CON FUER	TE OXIDACION	1 Y LIMON	NITAS.
Agua de Drenaje :									
Depósito Relaves :									
Contaminación :	EL MATERIAL ACUI DEBE RENIVELARS					: APROXIMA	DAMENTE A 2,	000 TM.;	EL CUAL
Observaciones :	DADO QUE LA ACU ACIDO DEBE CENT LAGUNA.								
COSTO DE MITIGACIO									
Desmonte (erosión)	100,000								
Relave (Estab.Talud)									
Drenaje Acido									
Total US\$	100,000								

71.250 KgCaCo3/TM

44.400 KgCaCo3/TM

MINA INACTIVA

	RESULTADO DE	ANALISIS		
Muestreo en :	DESMONTE			
	Azufre	S	0.560	%
	Potencial Neto de Neutralización	PNN	36.830	KgCaCo3/TM
	Potencial de Acidez	PA	17.500	KgCaCo3/TM
	Potencial de Neutralización	PN	54.330	KgCaCo3/TM
Muestreo en :	LAGUNA RECHAZO AL PIE DE LA MIN			
	Mercurio	HG	0.000	mg/l
Muestreo en :	LAGUNA RECHAZO AL PIE DE LA MINA			
	Arsenico	AS	0.001	mg/l
	Cadmio	CD	0.000	mg/l
	Cobre	CU	0.001	mg/l
	Conductividad Electrica	CE	130.000	uS/cm
	Hierro	FE	0.016	mg/l
	Manganeso	MN	0.026	mg/l
	Plomo	PB	0.005	mg/l
	Solidos Total Disueltos	STD	240.000	mg/l
	Solidos Total Suspendidos	STS	20.000	mg/l
	Sulfato	SO4	25.950	mg/l
	Temperatura	T	12.100	оС
	Turbidez	TU	3.950	mg/l
	Zinc	ZN	0.054	mg/l
	рН	PH	6.600	U.E.
Muestreo en :	MINERAL DE CANCHA			
	Azufre	S	2.280	%
	Potencial Neto de Neutralización	PNN	-26.850	KgCaCo3/TM

Potencial de Acidez

Potencial de Neutralización

PΑ

PN

3/6	776°								
MINA INACTIVA									
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	BEATITA MELCHORITA Código: 120 Año de Abandono: Cuenca: RIO PISCO								
Ubicación :	EN UNA DE LAS MARGENES SUPERIORES LATERALES DE LA LAGUNA LA VIRREYNA. PROVINCIA DE CASTROVIRREYNA, DEPARTAMENTO DE HUANCAVELICA.								
	COORDENADAS U.T.M.								
Norte : 8,541,0	D15.0 Este: 474,016.0 Zona: 18 Altitud: 4,430								
	A S P E C T O S D E								
Geología :	YACIMIENTO EN VETA EMPLAZADO EN ROCA ANDESITICA.								
Mineralogía :	MINERALIZACION POLIMETALICA.								
Geomorfología :	OCURRE UNA BOCAMINA								
Hidrología :									
Desmonte :	CONSTITUIDO POR FRAGMENTOS DE ROCA ANDESITA Y DISEMINACION DE PIRITA CON GRANOS DE CUARZO CRISTALINO, ADEMAS DE LIMONITAS.								
Agua de Drenaje :	SIN DRENAJE DE AGUA.								
Depósito Relaves :	CONSTITUIDO POR GRANOS FINOS DE CALCOPIRITA, CUARZO, PIRITA Y CARBONATOS.								
Contaminación :	EL MATERIAL ACUMULADO DE DESMONTES, MINERAL DE CANCHA Y RELAVES ASCIENDE A 1,500 TM., LO CUAL DEBE SER RESTAURADO CON RENIVELACION Y RECUBRIMIENTO.								
Observaciones:	ES NECESARIO LA MITIGACION DEL MATERIAL ACUMULADO EN EL EXTERIOR DE LA BOCAMINA A FIN DE ELIMINAR EL DRENAJE ACIDO HACIA LA LAGUNA LA VIRREYNA.								
COSTO DE MITIGACIO	N US\$								
Desmonte (erosión)	100,000								
Relave (Estab.Talud)									
Drenaje Acido									
Total US\$	100,000								

RESULTADO DE ANALISIS

Muestreo en : DI	ESMONTE
------------------	---------

AzufreS2.310%Potencial Neto de NeutralizaciónPNN-57.410KgCaCo3/TMPotencial de AcidezPA72.190KgCaCo3/TMPotencial de NeutralizaciónPN14.780KgCaCo3/TM

Muestreo en: MINERAL DE CANCHA

AzufreS1.750%Potencial Neto de NeutralizaciónPNN-20.340KgCaCo3/TMPotencial de AcidezPA54.690KgCaCo3/TMPotencial de NeutralizaciónPN34.350KgCaCo3/TM

Muestreo en: RELAVE

Azufre S 6.870 %
Potencial Neto de Neutralización PNN -224.530 KgCaCo3/TM

Potencial de Acidez PA 214.690 KgCaCo3/TM Potencial de Neutralización PN -9.840 KgCaCo3/TM

39	<u>(C </u>			1000				
	MINA INACTIVA							
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	LA PERSEGUIDA HUANCAVELICA		Código : Año de Abandono Cuenca :	121 D: RIO PISCO				
Ubicación :	EMPLAZADA EN UN FLANCO SU DEPARTAMENTO DE HUANCAVE		IA LA VIRREYNA. PROV	'INCIA DE CASTROVIRREYNA,				
			Т.М.					
Norte : 8,540	,240.0 Este :	474,481.0 PECTOS	Zona : 18	Altitud : 4,445				
Geología :	YACIMIENTO EN VETA EMPLAZA							
Mineralogía :	MINERALIZACION POLIMETALIC	Α.						
Geomorfología :	EXISTEN 3 BOCAMINAS DE 3X3 ROCA CAJA ESTA CONSTITUIDA			O HORIZONTAL DE 400 M. LA				
Hidrología :								
Desmonte :	FORMADO POR ANDESITA ALTE	RADA, CUARZO Y DIS	EMINACION DE CALCO	PIRITA, ESFALERITA Y PIRITA.				
Agua de Drenaje :	EXISTE DRENAJE DE UNA DE LA	AS BOCAMINAS CUYO	CAUDAL ES DE 1 L/SE	3.				
Depósito Relaves :								
Contaminación :	ORIENTADO A MITIGAR LOS DES UNA NIVELACION Y RECUBRIMII			TONELAJE DE 900 TM. REALIZANDO ELLADO DE LAS BOCAMINAS.				
Observaciones :	LOS MINERALES ACUMULADOS LAGUNA LA VIRREYNA.	EN EL EXTERIOR MUI	ESTRAN CAPACIDAD D	E DRENAJE ACIDO HACIA LA				
COSTO DE MITIGACIO	SSU NC							
Desmonte (erosión)	120,000							
Relave (Estab.Talud)								
Drenaje Acido								
Total US\$	120,000							

RESUI	TADO	Ь	A 1.4 A	11010
KESUI	141)()		$\Delta N \Delta$	1515

Muestreo en :	DESMONTE
---------------	----------

AzufreS3.870%Potencial Neto de NeutralizaciónPNN-81.710KgCaCo3/TMPotencial de AcidezPA120.940KgCaCo3/TMPotencial de NeutralizaciónPN39.230KgCaCo3/TM

Muestreo en: DRENAJE DE AGUA DE BOCAMINA

Arsenico AS 0.001 mg/l Cadmio CD 0.034 mg/l Cobre CU 0.055 mg/l 460.000 uS/cm Conductividad Electrica CE 0.010 mg/l Hierro FΕ Manganeso MN 13.380 mg/l РΒ Plomo 0.005 mg/l Solidos Total Disueltos STD 386.000 mg/l Solidos Total Suspendidos STS 80.000 mg/l Sulfato SO4 99.860 mg/l Temperatura 8.800 oC Τ Turbidez TU 8.180 mg/l Zinc ΖN 5.688 mg/l рΗ РΗ 6.800 U.E.

Muestreo en: MINERAL DE CANCHA

Azufre S 12.910 %

Potencial Neto de NeutralizaciónPNN-383.500KgCaCo3/TMPotencial de AcidezPA403.440KgCaCo3/TMPotencial de NeutralizaciónPN19.940KgCaCo3/TM

Nombre de Mina : RELAVERA PACOCOCHA-P.VIRREYNA Código : 122

Nombre del Titular : JESUS ARIAS DAVILA Año de Abandono : Departamento : HUANCAVELICA Cuenca : RIO PISCO

Acceso:

Ubicación : SE EMPLAZA EN UNA DE LAS MARGENES DE LA LAGUNA PACOCOCHA. PROVINCIA DE CASTROVIRREYNA,

DEPARTAMENTO DE HUANCAVELICA.

COORDENADAS U.T.M.

Norte: 8,539,580.0 Este: 472,163.0 Zona: 18 Altitud: 4,400

ASPECTOS DE

Geología : NO MUESTRA ESPEJOS DE AGUA Y ESTANDO EL PIE DE LA RELAVERA EN CONTACTO CON LAS AGUAS DE LA

LAGUNA PACOCOCHA.

Mineralogía:

Geomorfología: TIENE UNA LONGITUD DE 600 M. POR UN ANCHO DE 100 M. Y UNA ALTURA DE 40 M. CUYO VOLUMEN

ASCIENDE A 2'400,000 M3 Y UN TONELAJE APROXIMADO DE 7'200,000 TM.

Hidrología:

Desmonte:

Agua de Drenaje:

Depósito Relaves : CONSTITUIDO POR GRANOS DE CUARZO LECHOSO, CARBONATOS, CALCOPIRITA, PIRITA Y OXIDOS DE

HIERRO.

Contaminación : SE RECOMIENDA LA CONSTRUCCION DE UN DIQUE CALCAREO Y UNA FRANJA DE CALIZA NEUTRALIZANTE AL

BORDE LA LAGUNA PARA EVITAR EL DRENAJE ACIDO DEL RELAVE HACIA LA LAGUNA.

Observaciones : ACTUALMENTE LA LAGUNA ESTA RECIBIENDO DRENAJE ACIDO DE LA RELAVERA Y SUS AGUAS TENDIENDO

A SER ESTERILES EN FAUNA Y FLORA.

COSTO DE MITIGACION US\$

Desmonte (erosión) 300,000

Relave (Estab.Talud)

Drenaje Acido

Total US\$ 300,000

Fuente: UNI-1998

DRENAJE AL PIE DE RELAVERA A LAGUNA PACOCOCHA.

RESULTADO DE ANALISIS

	RESULTADO DE ANALISIS						
Muestreo en :	AGUA DE LAGUNA PACOCOCHA AL PIE DE LA RELAVERA						
	Arsenico	AS	0.001	mg/l			
	Cadmio	CD	0.011	mg/l			
	Cobre	CU	0.007	mg/l			
	Conductividad Electrica	CE	340.000	uS/cm			
	Hierro	FE	0.021	mg/l			
	Manganeso	MN	14.666	mg/l			
	Mercurio	HG	0.002	mg/l			
	Plomo	PB	0.026	mg/l			
	Solidos Total Disueltos	STD	316.000	mg/l			
	Solidos Total Suspendidos	STS	96.000	mg/l			
	Sulfato	SO4	54.680	mg/l			
	Temperatura	T	15.600	оС			
	Turbidez	TU	29.800	mg/l			
	Zinc	ZN	2.540	mg/l			
	рН	PH	6.600	U.E.			
Muestreo en :	RELAVE						
	Azufre	S	2.160	%			
	Potencial Neto de Neutralización	PNN	-62.590	KgCaCo3/TM			
	Potencial de Acidez	PA	67.500	KgCaCo3/TM			
	Potencial de Neutralización	PN	4.910	KgCaCo3/TM			
Muestreo en :	SEDIMENTO DE LAGUNA PACOCOCHA						
	Azufre	S	1.310	%			
	Potencial Neto de Neutralización	PNN	-26.060	KgCaCo3/TM			
	Potencial de Acidez	PA	40.940	KgCaCo3/TM			
	Potencial de Neutralización	PN	14.880	KgCaCo3/TM			

3/10								15-73	454	
	MINA INACTIVA									
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	3 PAISANOS HUANCAVELICA POR UN DESVIO C		E DE LA CA	ARRETER/	A QUE SI	Código : Año de Aband Cuenca : IGUE A HUANCA\		123 RIO PISCO		
Ubicación :	SE EMPLAZA EN L CASTROVIRREYN						CO, PR	OVINCIA DE		
	COORDENADAS U.T.M.									
Norte : 8,537,9	80.0	Este :		1,075.0	-	Zona :	18	Al	ltitud :	4,450
Geología :	YACIMIENTO EMP DE OXIDOS DE HI	PLAZADO E		OLCANICA			MINAC	ION FINA DE P	IRITA; ADI	EMAS
Mineralogía :										
Geomorfología :	OCURRE UNA BO	CAMINA MO	OSTRANDO	O SU FUEI	RTE OXII	DACION.				
Hidrología :										
Desmonte :	CONSTITUIDO PO LECHOSO Y LIMO		ENTOS DE	ROCA AN	DESITIC	A ALTERADA CO	N DISE	MINACION DE	PIRITA, C	CUARZO
Agua de Drenaje :										
Depósito Relaves :										
Contaminación :	ORIENTADO AL SI Y SUELO.	ELLADO DE	E LA BOCA	MINA Y NI	IVELACIO	ON DEL DESMON	TE CO	N RECUBRIMIE	ENTO COM	N CALIZA
Observaciones :	ES NECESARIO EI CONTAMINACION TRUCHAS Y PRES	DE LA LAG	SUNA SAN	FRANCISO	CO, DON					AR LA
COSTO DE MITIGACION	N <u>US\$</u>									
Desmonte (erosión)	50,000									
Relave (Estab.Talud)	30,000									
Drenaje Acido										
Total US\$	50,000									
Total Cop	00,000									

RESULTADO DE ANALISIS

Muestreo en	:	DESM	IONTE

Azufre S 0.360 %

Potencial Neto de NeutralizaciónPNN-1.310KgCaCo3/TMPotencial de AcidezPA11.250KgCaCo3/TMPotencial de NeutralizaciónPN9.940KgCaCo3/TM

Muestreo en: DRENAJE DE AGUA DE MINA A LAGUNA SAN FRANCISCO

Arsenico 0.001 mg/l Cadmio CD 0.004 mg/l Cobre CU 0.001 mg/l Conductividad Electrica CE 350.000 uS/cm Hierro FΕ 0.128 mg/l Manganeso MN 0.662 mg/l ΡВ Plomo 0.006 mg/l Solidos Total Disueltos STD 306.000 mg/l Solidos Total Suspendidos STS 52.000 mg/l Sulfato SO₄ 27.840 mg/l Temperatura 9.200 oC Τ Turbidez TU 5.430 mg/l Zinc ΖN 0.030 mg/l рΗ PΗ 6.800 U.E.

Muestreo en: LAGUNA SAN FRANCISCO FRENTE A MINA

Arsenico AS 0.001 mg/l Cadmio CD 0.003 mg/l Cobre CU 0.002 mg/l Conductividad Electrica CE 260.000 uS/cm Hierro FΕ 0.009 mg/l Manganeso MN 0.026 mg/l Mercurio HG 0.000 mg/l Plomo PΒ 0.003 mg/l Solidos Total Disueltos STD 204.000 mg/l 48.000 mg/l Solidos Total Suspendidos STS Sulfato SO₄ 18.610 mg/l Temperatura Т 12.700 oC Turbidez TU 42.900 mg/l Zinc ΖN 0.027 mg/l рΗ PH 7.400 U.E.

- SW				"res"
	MI	NA INACTIV	/A	
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	DOLLAR HUANCAVELICA		Código : Año de Abandono : Cuenca :	124 RIO PISCO
Ubicación :	EN UN EXTREMO DE LA LAGUNA CASTROVIRREYNA, DEPARTAME			ARTE SUPERIOR. PROVINCIA DE
	COOR	DENADAS U.T	. M .	
Norte : 8,537,9	80.0 Este :	474,075.0	Zona : 18	Altitud: 4,450
	ASI	PECTOS	DE	
Geología :	YACIMIENTO EN VETA EMPLAZAD	DO EN ROCA VOLCANIO	CA ANDESITICA.	
Mineralogía :	MINERALIZACION POLIMETALICA			
Geomorfología :	OCURREN 2 BOCAMINAS.			
Hidrología :				
Desmonte :	CONSTITUIDO POR FRAGMENTO GALENA, OXIDOS DE HIERRO, LIN			INACION DE CALCOPIRITA,
Agua de Drenaje :	DRENAJE DE UNA BOCAMINA CO	ON UN CAUDAL DE 5 L/S	EG. HACIA LA LAGUNA	DE SAN FRANCISCO.
Depósito Relaves :				
Contaminación :	EL MATERIAL ACUMULADO ES DE BOCAMINAS, NIVELACION Y RECI			PRENDE EL SELLADO DE LAS
Observaciones :	DADO QUE LOS MATERIALES LOS MITIGARLOS A FIN DE EVITAR LA ESTA EN UN PUNTO CRITICO DE	CONTAMINACION DE L		
COSTO DE MITIGACIO	NUS\$			
Desmonte (erosión)	200,000			
` ' _	200,000			
Relave (Estab.Talud)				
Drenaje Acido				
Total US\$	200,000			

UNI-1998

RESI	II TA	DO	DE	ΛN	IAI	1616
RESI	JLIP	NU	UE	AIN	AL	1010

	KLOULIADO	DE ANALISIS		
Muestreo en :	DESMONTE			
	Azufre	S	1.810	%
	Potencial Neto de Neutralización	PNN	-36.790	KgCaCo3/TM
	Potencial de Acidez	PA	56.560	KgCaCo3/TM
	Potencial de Neutralización	PN	19.770	KgCaCo3/TM
Muestreo en :	DRENAJE DE AGUA DE BOCAMINA			
	Arsenico	AS	0.001	mg/l
	Cadmio	CD	0.141	mg/l
	Cobre	CU	0.733	mg/l
	Conductividad Electrica	CE	800.000	uS/cm
	Hierro	FE	0.268	mg/l
	Manganeso	MN	38.880	mg/l
	Mercurio	HG	0.000	mg/l
	Plomo	PB	0.080	mg/l
	Solidos Total Disueltos	STD	610.000	mg/l
	Solidos Total Suspendidos	STS	104.000	mg/l
	Sulfato	SO4	232.370	mg/l
	Temperatura	Т	9.500	оС
	Turbidez	TU	34.800	mg/l
	Zinc	ZN	32.370	mg/l
	pH	PH	3.400	U.E.
Muestreo en :	MINERAL DE CANCHA			

Azufre	S	1.340	%
Potencial Neto de Neutralización	PNN	-26.910	KgCaCo3/TM
Potencial de Acidez	PA	41.870	KgCaCo3/TM
Potencial de Neutralización	PN	14.960	KgCaCo3/TM

	MINA INACTIVA
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	SECCES Código: 125 Año de Abandono: HUANCAVELICA Cuenca: RIO PISCO DESDE LA CIUDAD DE CASTROVIRREYNA.
Ubicación :	CERCA AL POBLADO DE CRUZ PATA. PROVINCIA DE CASTROVIRREYNA, DEPARTAMENTO DE HUANCAVELICA.
	COORDENADAS U.T.M.
Norte : 8,546,3	00.0 Este : 463,800.0 Zona : 18 Altitud : 3,420
	A S P E C T O S D E
Geología :	YACIMIENTO EN VETA EMPLAZADO EN ROCA VOLCANICA.
Mineralogía :	MINERALIZACION POLIMETALICA.
Geomorfología :	OCURRE UNA BOCAMINA MOSTRANDO OXIDACION Y ACUMULACION DE MATERIALES EN SU EXTERIOR.
Hidrología :	
Desmonte :	CONSTITUIDO POR FRAGMENTOS DE ROCA VOLCANICA CON DISEMINACION DE SULFUROS.
Agua de Drenaje :	
Depósito Relaves :	
Contaminación :	COMPRENDE EL SELLADO DE LA BOCAMINA Y ESTABILIZACION FISICA DE LOS DESMONTES (200 TM).
Observaciones :	DADO QUE EL PNN ES INFERIOR A -20 ES NECESARIO EL PROGRAMA DE MITIGACION.
COSTO DE MITIGACION Desmonte (erosión) Relave (Estab.Talud) Drenaje Acido Total US\$	30,000

UNI-1998

RESULTADO DE ANALISIS

Muestreo en: **DESMONTE**

Azufre S 1.500 %

Potencial Neto de NeutralizaciónPNN-31.680KgCaCo3/TMPotencial de AcidezPA46.880KgCaCo3/TMPotencial de NeutralizaciónPN1.520KgCaCo3/TM

		MIN	NA INAC	ΓΙVΑ			
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	ENSUEÑO HUANCAVELICA POR UN DESVIO		A CARRETERA Q	Cuenca :		126 RIO PISCO	
Ubicación :	AL NORTE DE LA HUANCAVELICA.	CIUDAD DE CAST	FROVIRREYNA. P	ROVINCIA DE C	ASTROVIRRE	EYNA, DEPARTAMEN	NTO DE
		COORE	DENADAS U	J.T.M.			
Norte : 8,535,10	00.0	Este :	467,600.0	Zona :	18	Altitud :	4,300
			ECTOS	DE			
Geología :	YACIMIENTO EN \	ETA EMPLAZADO	O EN ROCA VOLO	CANICA.			
Mineralogía :	MINERALIZACION	POLIMETALICA.					
Geomorfología :	OCURRE UNA BO	CAMINA CON DIS	SEMINACION DE S	SULFURO EN SU	S CAJAS.		
Hidrología :							
Desmonte :	CONSTITUIDO PO	R FRAGMENTOS	DE ROCA VOLC	ANICA Y DISEMII	NACION DE S	SULFUROS.	
Agua de Drenaje :							
Depósito Relaves :							
Contaminación :	LOS DESMONTES BOCAMINA Y NIVE	ACUMULADOS A	ASCIENDEN A 700 BRIMIENTO DE R	TM.; NECESITA ELAVES CON CA	NDOSE REA ALIZA Y SUE	LIZAR UN SELLADO LO.	DE LA
Observaciones :	DADO QUE ES PO	SIBLE UN DRENA	AJE ACIDO SE RE	COMIENDA SU I	MITIGACION		
COSTO DE MITIGACION	<u>\US\$</u>						
Desmonte (erosión)	40,000						
Relave (Estab.Talud)							
Drenaje Acido							
Total US\$	40,000						

UNI-1998

RESULTADO DE ANALISIS

Muestreo en: **DESMONTE**

Azufre S 0.800 %

Potencial Neto de NeutralizaciónPNN-21.000KgCaCo3/TMPotencial de AcidezPA25.000KgCaCo3/TMPotencial de NeutralizaciónPN4.000KgCaCo3/TM

332								4.64	
		MI	NA II	NACTI	VA				
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	MONTERREY HUANCAVELICA				Código : Año de A Cuenca :	Abandono :	RIO PISCO]	
Ubicación :	PARTE ALTA DE L HUANCAVELICA.	A LAGUNA DE	SAN FRAN	CISCO. PRC	VINCIA DE C	ASTROVIRR	EYNA, DEPAR	RTAMENTO	O DE
		COO	RDENAD	AS U.	T.M.				
Norte : 8,538,8	390.0	Este :	478,028.	0	Zona :	18	А	Altitud :	4,380
		A S	PEC	TOS	DE				
Geología :	YACIMIENTO EN V	ETA EMPLAZA	ADO EN RO	CA VOLCAN	ICA.				
Mineralogía :	MINERALIZACION	PREDOMINAN	ITE DE PLO	MO, ZINC Y	PLATA.				
Geomorfología :	EXISTE UNA BOCA	AMINA FUERTE	EMENTE AL	.TERADA, FF	RACTURADA	Y OXIDADA.			
Hidrología :									
Desmonte :	CONSTITUIDO PO ESFALERITA, ENA			AS VOLCAN	IICAS Y DISE	MINACION D	E SULFUROS	COMO GA	ALENA,
Agua de Drenaje :									
Depósito Relaves :									
Contaminación :	SE REQUIERE UN TM).	SELLADO DE	LA BOCAMI	NA Y ESTAE	BILIZACION FI	ISICA Y QUIN	VICA DE LOS I	DESMONT	ES (600
Observaciones :	EL VALOR DEL PN	IN INDICA UNA	MITIGACIO	ON DE LOS [DESMONTES.				
	,								
COSTO DE MITIGACIO	N US\$								
Desmonte (erosión)	50,000								
Relave (Estab.Talud)									
Drenaje Acido									
Total US\$	50,000								

UNI-1998

RESULTADO DE ANALISIS

Muestreo en: **DESMONTE**

Azufre S 1.100 %

Potencial Neto de NeutralizaciónPNN-21.780KgCaCo3/TMPotencial de AcidezPA34.380KgCaCo3/TMPotencial de NeutralizaciónPN12.600KgCaCo3/TM

	Marie Company						1005	
		MI	NA INA	CTIVA	4			
Nombre de Mina : Nombre del Titular Departamento : Acceso :	SOL DE ICA : HUANCAVELICA	4			Código : Año de <i>A</i> Cuenca :	Abandono :	128 RIO PISCO	
Ubicación :	EN UN FLANCO D HUANCAVELICA.	E LA LAGUNA (ORCOCOCHA. PI	ROVINCIA	DE CAST	ROVIRREYN	IA, DEPARTAMENTO) DE
		COOF	RDENADAS	U.T.	М.	_		
Norte : 8,54	1,074.0	Este :	480,264.0		Zona :	18	Altitud :	4,590
Geología :	YACIMIENTO EN \ TETRAHEDRITA.		PECTO		, CONSTI	TUIDA POR (GALENA, ESFALERI	TA Y
Mineralogía :								
Geomorfología :	EXISTE UNA BOC	AMINA DE 3X2	M. CON UNA PRO	OFUNDIDA	D DE DE	SARROLLO I	HORIZONTAL DE 10	M.
Hidrología :								
Desmonte :	CONSTITUIDO PO CALCOPIRITA, GA	OR FRAGMENTO ALENA, ESFALE	OS DE ROCA AN	DESITA CO	ON DISEN	IINACION DE	E SULFUROS COMO	1
Agua de Drenaje :								
Depósito Relaves :								
Contaminación :	ORIENTADO AL S	ELLADO DE LA	BOCAMINA Y ES	STABILIZAG	CION FISI	CA Y QUIMIC	CA DE DESMONTES	(500 TM).
Observaciones :	EL PROGRAMA DI PRINCIPALMENTE						OS Y EL DRENAJE A	ACIDO
COSTO DE MITIGACI	ION US\$							
Desmonte (erosión)	45,000							
Relave (Estab.Talud)								
Drenaje Acido								
Total US\$	45,000							

UNI-1998

RESULTADO DE ANALISIS

	RESULTADO D	E ANALISIS		
Muestreo en :	AGUA DE LAGUNA ORCOCOCHA CERCA	A SANTA INES		
	Arsenico	AS	0.002	mg/l
	Cadmio	CD	0.013	mg/l
	Cobre	CU	0.310	mg/l
	Conductividad Electrica	CE	260.000	uS/cm
	Hierro	FE	0.011	mg/l
	Manganeso	MN	10.540	mg/l
	Mercurio	HG	0.000	mg/l
	Plomo	PB	0.053	mg/l
	Solidos Total Disueltos	STD	218.000	mg/l
	Solidos Total Suspendidos	STS	16.000	mg/l
	Sulfato	SO4	27.370	mg/l
	Turbidez	TU	0.690	mg/l
	Zinc	ZN	2.950	mg/l
	рН	PH	4.800	U.E.
Muestreo en :	AGUA DE LAGUNA ORCOCOCHA FRENTE	A MINA		
	Arsenico	AS	0.001	mg/l
	Cadmio	CD	0.015	mg/l
	Cobre	CU	0.305	mg/l
	Conductividad Electrica	CE	260.000	uS/cm
	Hierro	FE	0.010	mg/l
	Manganeso	MN	10.340	mg/l
	Mercurio	HG	0.000	mg/l
	Plomo	PB	0.048	mg/l
	Solidos Total Disueltos	STD	236.000	mg/l
	Solidos Total Suspendidos	STS	18.000	mg/l
	Sulfato	SO4	28.790	mg/l
	Turbidez	TU	0.620	mg/l
	Zinc	ZN	2.610	mg/l
	рН	PH	5.000	U.E.
Muestreo en :	DESMONTE			
	Azufre	S	1.300	%
	Potencial Neto de Neutralización	PNN	-25.330	KgCaCo3/TM
	Potencial de Acidez	PA	40.630	KgCaCo3/TM
	Potencial de Neutralización	PN	15.300	KgCaCo3/TM

Nombre de Mina :	GRAU	Código :	129
Nombre del Titular :		Año de Abandono:	
Departamento :	HUANCAVELICA	Cuenca:	RIO PISCO

Acceso:

Ubicación : EN UN FLANCO DE LA LAGUNA CHOCLOCOCHA. PROVINCIA DE CASTROVIRREYNA, DEPARTAMENTO DE

HUANCAVELICA.

			CORDENADAS	U . I . WI .			
Norte :	8,542,983.0	Este :	486,994.0	Zona :	18	Altitud :	4,410
			ACDECTO	e DE			

Geología: YACIMIENTO EN VETA EN ROCAS VOLCANICAS.

Mineralogía: MINERALIZACION POLIMETALICA.

Geomorfología : OCURRE UNA BOCAMINA MOSTRANDO SU CAJA DISEMINACION DE SULFUROS Y ACUMULACION DE

DESMONTE EN EL EXTERIOR.

Hidrología:

Desmonte: CONSTITUIDO POR FRAGMENTOS DE ROCAS VOLCANICAS CON DISEMINACION DE TETRAHEDRITA, GALENA,

ESFALERITA, CALCOPIRITA.

Agua de Drenaje:

Depósito Relaves:

Contaminación : COMPRENDE EL SELLADO DE LA BOCAMINA Y ESTABILIZACION DE DESMONTES (550 TM).

Observaciones: ES NECESARIO UNA ESTABILIZACION FISICA DE LOS DESMONTES A FIN DE EVITAR SU DISPERSION Y SU

DRENAJE A LA LAGUNA CHOCLOCOCHA.

COSTO DE MITIGACION US\$

AL FONDO LA MINA GRAU EMPLAZADA EN VOLCANICOS.

Fuente:

UNI-1998

RESULTADO DE ANALISIS

	KE	SULTADO DE ANALISIS		
Muestreo en :	AGUA DE LAGUNA CHOCLO	COCHA ALEJADO DE SANTA INES		
	Arsenico	AS	0.001	mg/l
	Cadmio	CD	0.004	•
	Cobre	CU	0.001	mg/l
	Conductividad Electrica	CE	250.000	-
	Hierro	FE	0.036	
	Manganeso	MN	0.027	-
	Mercurio	HG	0.000	-
	Plomo	РВ	0.008	-
	Solidos Total Disueltos	STD	220.000	-
	Solidos Total Suspendidos	STS	76.000	mg/l
	Sulfato	SO4	31.690	mg/l
	Turbidez	TU	11.200	mg/l
	Zinc	ZN	0.028	mg/l
	рН	PH	7.500	U.E.
Muestreo en :	AGUA DE LAGUNA CHOCLOC	COCHA CERCA DE SANTA INES		
	Arsenico	AS	0.001	mg/l
	Cadmio	CD	0.006	mg/l
	Cobre	CU	0.001	mg/l
	Conductividad Electrica	CE	230.000	uS/cm
	Hierro	FE	0.008	mg/l
	Manganeso	MN	0.314	mg/l
	Mercurio	HG	0.000	mg/l
	Plomo	РВ	0.010	mg/l
	Solidos Total Disueltos	STD	184.000	mg/l
	Solidos Total Suspendidos	STS	38.000	mg/l
	Sulfato	SO4	39.670	mg/l
	Turbidez	TU	1.320	mg/l
	Zinc	ZN	0.180	mg/l
	рН	PH	7.200	U.E.
Muestreo en :	AGUA DE LAGUNA PULTOC I	DONDE NACE EL RIO PISCO		
	Arsenico	AS	0.001	mg/l
	Cadmio	CD	0.003	mg/l
	Cobre	CU	0.002	mg/l
	Conductividad Electrica	CE	70.000	uS/cm
	Hierro	FE	0.058	mg/l
	Manganeso	MN	0.033	•
	Mercurio	HG	0.000	-
	Plomo	РВ	0.013	mg/l
	Solidos Total Disueltos	STD	78.000	mg/l
	Solidos Total Suspendidos	STS	62.000	mg/l
	Sulfato	SO4	6.510	mg/l
	Turbidez	TU	6.730	-
	Zinc	ZN	0.008	mg/l
	pH	PH	7.400	U.E.
Muestreo en :	DESMONTE			
	Azufre	S	0.500	%
	Potencial Neto de Neutralización	PNN	2.770	KgCaCo3/TM
	Potencial de Acidez	PA		KgCaCo3/TM
	Potencial de Neutralización	PN	18.400	KgCaCo3/TM

Nombre de Mina :	QUELLOMACHAY	Código :	130
Nombre del Titular :		Año de Abandono:	
Departamento :	HUANCAVELICA	Cuenca:	RIO PISCO

Acceso:

Ubicación : CERCA DE LA LAGUNA ORCOCOCHA. PROVINCIA DE CASTROVIRREYNA, DEPARTAMENTO DE

HUANCAVELICA.

 COORDENADAS
 U.T.M.

 Norte:
 8,542,310.0

 Este:
 486,653.0

 Zona:
 18

 Altitud:
 4,380

ASPECTOS DE

Geología: YACIMIENTOS EN VETAS CON ROCA CAJA VOLCANICA.

Mineralogía : MINERALIZACION POLIMETALICA.

Geomorfología : OCURRE UNA BOCAMINA Y DESMONTE EN SU EXTERIOR.

Hidrología:

Desmonte: CONSTITUIDOS POR FRAGMENTOS DE ROCAS VOLCANICAS, CUARCITAS Y DISEMINACION DE SULFUROS

COMO GALENA, ESFALERITA Y TETRAHEDRITA.

Agua de Drenaje:

Depósito Relaves:

Contaminación : SE RECOMIENDA EL NIVELADO DE DESMONTE (500 TM) Y RECUBRIMIENTO CON MATERIAL CALCAREO

SEGUIDO DE MATERIAL ORGANICO Y SELLADO DE LA BOCAMINA.

Observaciones: DEL ANALISIS DE LA MUESTRA DE DESMONTES SE HA OBTENIDO UN PNN MENOR QUE -20, LO QUE NOS

INDICA QUE EL MATERIAL ES POTENCIALMENTE GENERADOR DE ACIDO.

COSTO DE MITIGACION US\$

Desmonte (erosión) 80,000

Relave (Estab.Talud)

rtolavo (Eolas, raida)

Drenaje Acido

Total US\$ 80,000

Fuente: UNI-1998

RIO QUE UNE LAGUNAS OROCOCHA Y CHOCLOCOCHA.

RESULTADO DE ANALISIS

Muestreo en: **DESMONTE**

Azufre S 0.750 %

Potencial Neto de NeutralizaciónPNN-21.640KgCaCo3/TMPotencial de AcidezPA23.440KgCaCo3/TMPotencial de NeutralizaciónPN1.800KgCaCo3/TM

- Shaka	<u></u>	1987.)
	MINA INACTIVA	
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	LUISITA Códig Año d HUANCAVELICA Cuend	le Abandono :
Ubicación :	EN UN FLANCO DE LA QUEBRADA HUACHOCOLPA. PROVINCIA HUANCAVELICA.	DE CASTROVIRREYNA, DEPARTAMENTO DE
	COORDENADAS U.T.M.	
Norte : 8,557,4	400.0 Este : 514,900.0 Zona	a: 18 Altitud: 4,310
	A S P E C T O S D E	
Geología :	YACIMIENTOS EN VETAS CON ROCA CAJA VOLCANICA.	
Mineralogía :	MINERALIZACION POLIMETALICA.	
Geomorfología :	EXISTE UNA BOCAMINA DE 3X3 M. DE PROFUNDIDAD DE DESAR	RROLLO HORIZONTAL QUE ASCIENDE A 8 M.
Hidrología :		
Desmonte :	CONSTITUIDOS POR FRAGMENTOS DE ROCAS VOLCANICAS, C COMO GALENA, ESFALERITA Y TETRAHEDRITA.	UARCITAS Y DISEMINACION DE SULFUROS
Agua de Drenaje :	NO SE OBSERVO DRENAJE ACIDO.	
Depósito Relaves :		
Contaminación :	SE RECOMIENDA UNA CUBIERTA CON MATERIAL CALCAREO DE QUIMICAMENTE EL DRENAJE ACIDO QUE PUEDE OCURRIR EN L RECOMIENDA EL SELLADO DE MINA.	EL DESMONTE (400 TM) PARA ESTABILIZAR LA TEMPORADA DE LLUVIAS. ASIMISMO SE
Observaciones :	DEL ANALISIS DE LA MUESTRA DE DESMONTES DE HA OBTENIO INDICA QUE EL MATERIAL ES POTENCIALMENTE GENERADOR D	
COSTO DE MITIGACIO	NUS\$	
Desmonte (erosión)	70,000	
Relave (Estab.Talud)		
Drenaje Acido		
Total US\$	70,000	

UNI-1998

RESULTADO DE ANALISIS

Muestreo en: **DESMONTE**

Azufre S 1.700 %

Potencial Neto de NeutralizaciónPNN-33.120KgCaCo3/TMPotencial de AcidezPA53.120KgCaCo3/TMPotencial de NeutralizaciónPN20.000KgCaCo3/TM

7 Suntos 7 (Inibicritales							and the same of th	
		IV	II ANII	NACTI	VA			
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	CHARO HUANCAVELICA	4			Código : Año de A Cuenca :	Abandono :	132 RIO PISCO	
Ubicación :	EN UN FLANCO D	E CERRO ALI	MACASA. PRO	OVINCIA DE	ANGARAES,	DEPARTAM	MENTO DE HUANCA	VELICA.
		CO	ORDENADA	AS U.	T.M.			
Norte : 8,564,7	780.0	Este :	523,500.0		Zona :	18	Altitud :	3,750
			SPECI		DE			
Geología :	YACIMIENTO EN \	/ETA EN ROC	CAS VOLCANI	CAS.				
Mineralogía :	MINERALIZACION	POLIMETALI	CA.					
Geomorfología :	OCURRE UNA BO				MINACION DE	SULFUROS	S (CALCOPIRITAS) Y	(
Hidrología :								
Desmonte :	CONSTITUIDOS P	OR FRAGME	NTOS DE RO	CAS VOLCA	NICAS CON I	DISEMINACI	ION DE CALCOPIRIT	Ā.
Agua de Drenaje :								
Depósito Relaves :								
Contaminación :	LA OCURRENCIA ESTABILIZACION	DE UNA BOC FISICA Y QUI	AMINA Y DE : MICA.	300 TM. DE	DESMONTES	, LOS CUAL	ES REQUIEREN	
Observaciones :	PODEMOS NOTAR DE GENERACION						E CON RESPECTO A AMIENTO.	L MATERIAL
COSTO DE MITIGACIO	N US\$							
Desmonte (erosión)	50,000							
Relave (Estab.Talud)								
Drenaje Acido								
Total US\$	50,000							

UNI-1998

RESULTADO DE ANALISIS

Muestreo en: **DESMONTE**

Azufre S 0.600 %

Potencial Neto de NeutralizaciónPNN1.290KgCaCo3/TMPotencial de AcidezPA18.750KgCaCo3/TMPotencial de NeutralizaciónPN20.040KgCaCo3/TM

	IVITNA TNACTIVA								
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	PORVENIR HUANCAVE	LICA			Código : Año de Abandono : Cuenca :	133 RIO PISCO			
Ubicación :	CERCA AL PO		MPAHUASI. PROVII						
Norte : 8,590,9	900.0	Este :	505,275.0 S P E C T (n s	Zona : 18 D E	Altitud :	4,050		
Geología :	YACIMIENTO		OCAS VOLCANICA		<u> Б</u> Е				
Mineralogía :	MINERALIZAC	CION POLIMETA	ILICA.						
Geomorfología :	OCURRE UNA	A BOCAMINA MO ON DE DESMON	OSTRANDO SU CA TE EN SU EXTERIO	JA DISEM OR.	NACION DE SULFURC	OS (CALCOPIRITAS) Y			
Hidrología :									

Agua de Drenaje:

Desmonte:

Depósito Relaves :

COMPRENDE EL SELLADO DE LA BOCAMINA Y LA ESTABILIZACION FISICA DE LOS DESMONTES (450 TM). Contaminación:

EL VALOR DE PNN SE ENCUENTRA EN UN RANGO DE INCERTIDUMBRE, POR LO CUAL ES NECESARIO Observaciones:

ASEGURAR LA MITIGACION A FIN DE EVITAR EL DRENAJE ACIDO. ADEMAS EL RIO ICHU COMO FUENTE

CONSTITUIDO POR FRAGMENTOS DE ROCAS VOLCANICAS CON DISEMINACION DE CALCOPIRITA.

RECEPTORA MUESTRA UN PH ALCALINO.

COSTO DE MITIGACION US\$

Desmonte (erosión)	60,000
Relave (Estab.Talud)	
Drenaje Acido	
Total US\$	60,000

AGUAS ABAJO DE HUANCAVELICA, CON DRENAJE DEL DISTRITO MINERO DE MERCURIO.

Fuente:

UNI-1998

RESU	TADO	DE	A	ICIC
RESU	IIAIJO		ANAI	1313

	RESUL	I ADO DE ANALISIS		
Muestreo en :	AGUAS ABAJO DEL RIO ICHU			
	Arsenico	AS	0.028	mg/l
	Cadmio	CD	0.004	mg/l
	Cobre	CU	0.001	mg/l
	Conductividad Electrica	CE	1,020.000	uS/cm
	Hierro	FE	0.086	mg/l
	Manganeso	MN	0.307	mg/l
	Mercurio	HG	0.000	mg/l
	Plomo	PB	0.009	mg/l
	Solidos Total Disueltos	STD	728.000	mg/l
	Solidos Total Suspendidos	STS	65.000	mg/l
	Sulfato	SO4	175.270	mg/l
	Turbidez	TU	6.120	mg/l
	Zinc	ZN	0.023	mg/l
	рН	PH	7.900	U.E.
Muestreo en :	AGUAS ARRIBA DEL RIO ICHU			
	Arsenico	AS	0.004	mg/l
	Cadmio	CD	0.001	mg/l
	Cobre	CU	0.002	mg/l
	Conductividad Electrica	CE	730.000	uS/cm
	Hierro	FE	0.072	mg/l
	Manganeso	MN	0.329	mg/l
	Mercurio	HG	0.000	mg/l
	Plomo	РВ	0.011	mg/l
	Solidos Total Disueltos	STD	444.000	mg/l
	Solidos Total Suspendidos	STS	46.000	mg/l
	Sulfato	SO4	139.870	mg/l
	Turbidez	TU	2.970	mg/l
	Zinc	ZN	0.028	mg/l
	рН	PH	7.700	U.E.
Muestreo en :	DESMONTE			
	Azufre	S	0.480	%
	Potencial Neto de Neutralización	PNN	3.600	KgCaCo3/TM
	Potencial de Acidez	PA	15.000	KgCaCo3/TM
	Potencial de Neutralización	PN	18.600	KgCaCo3/TM

Nombre de Mina :	PAMPAMALE	Código :	134
Nombre del Titular :		Año de Abandono :	
Departamento:	HUANCAVELICA	Cuenca:	RIO PISCO
Acceso:			
Ubicación :	CERCA DEL POBLADO DE HUARACAPATA. PROVINCIA D	E HUANCAVELICA.	

Acceso:								
Ubicación :	CERCA DEL POBLADO DE HUARACAPATA. PROVINCIA DE HUANCAVELICA.							
	COORDENADAS U.T.M.							
Norte : 8,589,0	60.0 Este : 502,410.0 Zona : 18 Altitud : 3,880							
	A S P E C T O S D E							
Geología :	YACIMIENTO EN VETA EMPLAZADO EN ROCA VOLCANICA.							
Mineralogía :	MINERALIZACION PREDOMINANTE DE PLOMO, ZINC, PLATA, COBRE.							
Geomorfología :	EXISTE UNA BOCAMINA FUERTEMENTE ALTERADA, FRACTURADA Y OXIDADA.							
Hidrología :								
Desmonte :	CONSTITUIDO POR FRAGMENTOS DE ROCAS VOLCANICAS Y DISEMINACION DE SULFUROS COMO GALENA,							
	ESFALERITA, ENARGITA, TETRAHEDRITA.							

Agua de Drenaje :

Depósito Relaves :

Contaminación : COMPRENDE EL SELLADO DE LA BOCAMINA, NIVELACION Y RECUBRIMIENTO CON CALIZA Y SUELO DEL

DESMONTE (650 TM).

Observaciones : LA PREDOMINANCIA DE SULFUROS HACE NECESARIO UN PROGRAMA DE ESTABILIZACION FISICA Y QUIMICA

DE LOS DESMONTES A FIN DE EVITAR LOS IMPACTOS NEGATIVOS EN LA ZONA.

COSTO DE MITIGACION US\$

Desmonte (erosión)	70,000
Relave (Estab.Talud)	
Drenaje Acido	
Total US\$	70,000

Fuente: UNI-1998

VOLCANICOS FM. CAUDALOSA QUE EMPLAZA MINAS LUISITA Y CHARO.

RESULTADO DE ANALISIS

Muestreo en: **DESMONTE**

Azufre S 1.500 %

Potencial Neto de NeutralizaciónPNN-34.870KgCaCo3/TMPotencial de AcidezPA46.870KgCaCo3/TMPotencial de NeutralizaciónPN12.000KgCaCo3/TM

	MINA INACTIVA								
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	RELAMPAGO HUANCAVELICA				Código : Año de Aband Cuenca :	dono :	135 RIO PISCO		
Ubicación :									
		COOR	RDENADAS	U.T.	. M .				
Norte : 8,618,85	50.0	Este :	500,603.0		Zona :	18	Altitud	:	3,800
		AS	PECTO	S [D E				
Geología :									
Mineralogía :	MINERALIZACION	DE PLATA Y CO	DBRE, EN GALEN	IA ARGE	NTIFERA Y CA	LCOPIR	ITA.		
Geomorfología :									
Hidrología :									
	CONSTITUIDO POF SULFUROS.	RFRAGMENTO	S DE ROCA VOL	CANICA	ANDESITICA Y	CUARC	CITAS CON DISEMI	NACION	1 DE
Agua de Drenaje :									
Contaminación :	(450 TM).								
Observaciones :	IMPORTANCIA DE	LA ESTABILID <i>E</i>	AD FISICA DURAI	NTE LA I	MITIGACION.				
COSTO DE MITIGACION Desmonte (erosión) Relave (Estab.Talud) Drenaje Acido Total US\$	40,000								

UNI-1998

RESULTADO DE ANALISIS

Muestreo en: **DESMONTE**

Azufre S 0.450 %

Potencial Neto de NeutralizaciónPNN5.340KgCaCo3/TMPotencial de AcidezPA14.060KgCaCo3/TMPotencial de NeutralizaciónPN19.400KgCaCo3/TM

MINA INACTIVA Nombre de Mina: **CORAZON DE JESUS #6** Código: 455 Nombre del Titular: Año de Abandono: HUANCAVELICA **MANTARO** Departamento: Cuenca: Acceso: Ubicación: COORDENADAS U.T.M. 8,661,252.0 497,099.0 Zona: 18 Altitud: Norte: Este: 4,560 ASPECTOS DE CORRESPONDE A OCURRENCIAS POLIMETALICAS Geología: Mineralogía: Geomorfología: Hidrología: Desmonte: Agua de Drenaje: Depósito Relaves : Contaminación: Observaciones: **COSTO DE MITIGACION US\$** Desmonte (erosión) Relave (Estab.Talud) Drenaje Acido Total US\$

MANTARO-1997

MINA INACTIVA Nombre de Mina: **CORAZON DE JESUS #8** Código: 456 Nombre del Titular : Año de Abandono: HUANCAVELICA **MANTARO** Departamento: Cuenca: Acceso: Ubicación: COORDENADAS U.T.M. 8,661,927.0 494,741.0 Zona: 18 Altitud: Norte: Este: 4,590 ASPECTOS DE MUESTRA AFLORAMIENTOS POLIMETALICOS FUERTEMENTE OXIDADOS. Geología: Mineralogía: Geomorfología: Hidrología: Desmonte: Agua de Drenaje: Depósito Relaves : Contaminación: Observaciones: **COSTO DE MITIGACION US\$** Desmonte (erosión) Relave (Estab.Talud) Drenaje Acido Total US\$

MANTARO-1997

MINA INACTIVA Nombre de Mina: **CORAZON DE JESUS # 10** Código: 457 Nombre del Titular : Año de Abandono: HUANCAVELICA **MANTARO** Departamento: Cuenca: Acceso: Ubicación: COORDENADAS U.T.M. 8,559,808.0 495,647.0 Zona: 18 Altitud: Norte: Este: 4,420 ASPECTOS DE AFLORAMIENTOS ESPORADICOS CON POLIMETALICOS. Geología: Mineralogía: Geomorfología: Hidrología: Desmonte: Agua de Drenaje: Depósito Relaves : Contaminación: Observaciones: **COSTO DE MITIGACION US\$** Desmonte (erosión) Relave (Estab.Talud) Drenaje Acido Total US\$

MANTARO-1997

							14.65	
			MINA INA	CTIV	Ά			
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	HUANCAVELICA		2		Código : Año de A Cuenca :	sbandono :	458 MANTARO	
Ubicación :								
		CC	OORDENADAS	U.T	. М .			
Norte : 8,663,1	25.0	Este :	493,441.0		Zona :	18	Altitud :	4,576
		Α	SPECTO	S I	DE			
Geología :	ZONA CON ALTER	RACIONES '	Y AFLORAMIENTOS	OXIDADO	DS.			
Mineralogía :								
Geomorfología :								
Hidrología :								
Desmonte :								
Agua de Drenaje :								
Depósito Relaves :								
Contaminación :								
Observaciones:								
COSTO DE MITIGACION	NIIS¢							
Desmonte (erosión)								
Relave (Estab.Talud)								
Drenaje Acido								
Total US\$								

MANTARO-1997

34						Target.	
			MINA	INACTI	VA		
Nombre de Mina : Nombre del Titular : Departamento : Acceso :	RESTAURADOR HUANCAVELICA				Código : Año de Abandono : Cuenca :	459 MANTARO	
Ubicación :							
		C	OORDENA	DAS U.	T.M.		
Norte : 8,661,2	82.0	Este :	495,7	38.0	Zona : 18	Altitud :	4,495
		Α	SPEC	CTOS	DE		
Geología :	CORRESPONDE A	A OCURRE	NCIAS DE AF	LORAMIENTO	S CON POSIBILIDADES F	POLIMETALICAS.	
Mineralogía :							
Geomorfología :							
Hidrología :	ESCORRENTIAS I	DEBILES.					
Desmonte :							
Agua de Drenaje :							
Depósito Relaves :							
Contaminación :							
Observaciones :							
COSTO DE MITIGACION	vust						
Desmonte (erosión)							
Relave (Estab.Talud)							
Drenaje Acido							
=							
Total US\$							

MANTARO-1997

MINA INACTIVA Nombre de Mina: **ATOCC** Código: 460 Nombre del Titular: Año de Abandono: Departamento: HUANCAVELICA Cuenca: **MANTARO** Acceso: Ubicación: COORDENADAS U.T.M Norte 8,629,974.0 Este: 516,720.0 18 Altitud: 3,415 ASPECTOS D YACIMIENTO ESTRATIFORME CON MINERALIZACION DE CALCOPIRITA EN CAJAS DE PIZARRAS-LUTITAS. Geología: OCURREN VARIAS LABORES ABONDANADAS CON LONGITUDES DE 10 A 20 METROS. Mineralogía: Geomorfología: Hidrología: ES MUY POCO, DADO QUE EL MATERIAL HA SIDO UTILIZADO EN EL AFIRMADO DEL CAMINO QUE SE Desmonte: ENCUENTRA DELANTE DE LAS LABORES. CORRESPONDE AL AGUA QUE DISCURRE POR TODA LA ZONA Y ES COLECTADA POR UN RIACHUELO Agua de Drenaje: CERCANA A LAS LABORES Y QUE ES UTILIZADO EN LAS PARTES INFERIORES EN AGRICULTURA (PAPAS) Y GANADERIA (OVINOS Y VACUNOS) Depósito Relaves: Contaminación: Observaciones:

COSTO DE MITIGACION US\$

Desmonte (erosión) Relave (Estab.Talud) Drenaje Acido

MINA ATOCC, LABORES EN CAJA DE LIMOLITAS.

Fuente:

Total US\$

MANTARO-1997

MINA INACTIVA Nombre de Mina: HUILTO 461 Nombre del Titular: Año de Abandono: Departamento: HUANCAVELICA Cuenca: **MANTARO** Acceso: Ubicación: COORDENADAS U.T.M 18 Norte: 8,633,494.0 Este: 514,472.0 Altitud: 3,965 ASPECTOS DE YACIMIENTO ESTRATIFORME CON MINERALIZACION DE CALCOPIRITA EN CAJAS DE PIZARRAS-LUTITAS; Geología: MOSTRANDO ALTERACION DE LA CALCOPIRITA A OXIDOS Y CARBONATOS (MALAQUITA). Mineralogía: Geomorfología: Hidrología: ES MUY POCO, DADO QUE EL MATERIAL HA SIDO UTILIZADO EN EL AFIRMADO DE TROCHAS QUE SE Desmonte: ENCUENTRAN DEBAJO DE LAS ZONAS MINERALIZADAS. CORRESPONDE AL AGUA QUE DISCURRE POR TODA LA ZONA Y ES COLECTADA EN LA PARTE INFERIOR POR Agua de Drenaje: **EL RIO PAMPAS** Depósito Relaves: Contaminación:

COSTO DE MITIGACION US\$

Observaciones:

Desmonte (erosión) Relave (Estab.Talud) Drenaje Acido Total US\$

MINA HUILTO, AFLORAMIENTOS DE ESTRUCTURAS MINERALIZADAS.

Fuente:

MANTARO-1997

RESULTADO DE ANALISIS

Muestreo	en:	DRENAJE
----------	-----	---------

- · · - · · · · · · · · · · · · · ·			
Arsenico	AS	0.018	mg/l
Cadmio	CD	0.000	mg/l
Conductividad Electrica	CE	280.000	uS/cm
Plomo	PB	0.006	mg/l
Solidos Total Disueltos	STD	250.000	mg/l
Solidos Total Suspendidos	STS	36.000	mg/l
Sulfato	SO4	38.200	mg/l
Temperatura	Т	17.500	оС
Turbidez	TU	11.100	mg/l
pH	PH	7.100	U.E.

MINA INACTIVA Nombre de Mina: Código: LOURDES 462 Nombre del Titular: Año de Abandono: Departamento: HUANCAVELICA Cuenca: **MANTARO** Acceso: Ubicación: COORDENADAS U.T.M. 8,629,257.0 18 Norte: Este: 529,624.0 Zona: Altitud: 3,915 ASPECTOS DE CANTERA DE CALIZA FUERTEMENTE SILICIFICADA EN CAJAS DE LUTITAS CON ALTO GRADO DE Geología: METAMORFISMO Mineralogía: Geomorfología: Hidrología: LA CALIZA OCURRE EN TAMAÑOS DESDE BLOQUES A GRAVAS FUERTEMENTE ALTERADAS Y SILICIFICADAS. Desmonte: CORRESPONDE A ESCORRENTIAS QUE CRUZAN HIDROLIZANDO LOS DESMONTES DE CALIZA. Agua de Drenaje: Depósito Relaves: Contaminación:

COSTO DE MITIGACION US\$

Observaciones:

Desmonte (erosión)

Relave (Estab.Talud)

Drenaje Acido

Total US\$

MANTARO-1997 MINA LOURDES. CANTERA DE CALIZA SILICIFICADA Y OXIDADA.

RESULTADO DE ANALISIS

Muestreo en: DRENAJE

Arsenico	AS	0.016	mg/l
Cadmio	CD	0.005	mg/l
Conductividad Electrica	CE	640.000	uS/cm
Plomo	PB	0.048	mg/l
Solidos Total Disueltos	STD	312.000	mg/l
Solidos Total Suspendidos	STS	60.000	mg/l
Sulfato	SO4	100.400	mg/l
Temperatura	Т	22.900	оС
Turbidez	TU	8.400	mg/l
рН	PH	8.200	U.E.

Nombre de Mina :	SANTA BARBARA	Código :	463
Nombre del Titular :		Año de Abandono	:
Departamento:	HUANCAVELICA	Cuenca:	MANTARO

Acceso:

Ubicación:

						00	ORD	\FN	4 D 4			T.1	NA.				
Norte :		8,584,55	1.0		Este				501.0		υ.	1.1	Zona :	18		Altitud :	4,285
Geología	:		CORRES CUARCIT			ACIMI		DE	MER	CURI	O QU	E OC) CINAB	RIO EN L	OS POROS	DE ROCAS
Mineralo	gía :																
Geomorfo	ología :																
Hidrologí	a:																
Desmont	e:		OCURRE VOLCANI													S METAMO	RFICAS Y
Agua de	Drenaje	•	CORRES MINERAL	-		_		_			_					ATRAVIESA TE.	AN LA ZONA
Depósito	Relaves	3 :															
Contamir	nación :																
Observad	ciones :																

COSTO DE MITIGACION US\$

Desmonte (erosión)

Relave (Estab.Talud)

Drenaje Acido

Total US\$

Fuente: MANTARO-1997

MINA SANTA BARBARA, BANCOS DE CUARCITA CON CINABRIO OXIDADOS E INUNDADOS.

RESULTADO DE ANALISIS

Muestreo en	ΠR	FN	AJE
Mucsuco CII	\mathbf{r}		AJE

Arsenico	AS	0.023	mg/l
Cadmio	CD	0.012	mg/l
Conductividad Electrica	CE	1,420.000	uS/cm
Plomo	PB	0.122	mg/l
Solidos Total Disueltos	STD	1,010.000	mg/l
Solidos Total Suspendidos	STS	54.000	mg/l
Sulfato	SO4	398.200	mg/l
Temperatura	Т	4.500	оС
Turbidez	TU	14.200	mg/l
рН	PH	2.700	U.E.

MINA INACTIVA Nombre de Mina: RESTAURADA Código: 464 Nombre del Titular: Año de Abandono: Departamento: HUANCAVELICA Cuenca: MANTARO Acceso: Ubicación:

			COC	RDENADA	S U.T	. M .			
Norte :	8,580,0	17.0	Este :	502,819.0		Zona :	18	Altitud :	4,440
			A S	PECT	0 S	DE			
Geología :		YACIMIENTO DE CONTACTO CON						CA CUARCITICA EN ETC.	١
Mineralogí	a :								
Geomorfol	ogía :								
Hidrología	:								
Desmonte	:	OCURRE DESDE	E BLOQUES A G	RAVAS DE RO	CAS CUAR	CITICAS MO	STRANDO OXID	ACIONES DE HIER	RO.
Agua de D	renaje :							ADA Y LLEGA A LA I PLOTACION ABAND	
Depósito F	Relaves :								

COSTO DE MITIGACION US\$							
Desmonte (erosión)							
Relave (Estab.Talud)							
Drenaje Acido							
Total US\$							

Contaminación:

Observaciones:

Fuente: MANTARO-1997

DRENAJE ACIDO DE LABOR A LAGUNA SOITOCOCHA.

RESULTADO DE ANALISIS

Muestreo en: DRENAJE

Arsenico	AS	0.021	mg/l
Cadmio	CD	0.133	mg/l
Conductividad Electrica	CE	3,480.000	uS/cm
Plomo	PB	0.098	mg/l
Solidos Total Disueltos	STD	3,034.000	mg/l
Solidos Total Suspendidos	STS	1,102.000	mg/l
Sulfato	SO4	2,173.000	mg/l
Temperatura	Т	5.200	оС
Turbidez	TU	1,596.000	mg/l
pH	PH	3.200	U.E.

Energía y Minas MINA INACTIVA Nombre de Mina: POTOCCI Código: 465 Nombre del Titular: Año de Abandono: Departamento: HUANCAVELICA Cuenca: **MANTARO** Acceso: Ubicación: COORDENADAS U.T.M. 8,587,316.0 18 Norte: Este: 503,099.0 Zona: Altitud: 3,700 ASPECTOS DE CANTERA DE CALIZA CON LABOR SUBTERRANEA DE APROXIMADAMENTE 10 METROS DE LONGITUD. Geología:

Hidrología:

CORRESPONDE A TAMAÑOS ENTRE BLOQUES A GRAVAS DE CALIZA SILICIFICADA A MANERA DE MATERIAL Desmonte: COLUVIAL

CORRESPONDE AL AGUA QUE DRENA DE LA LABOR. Agua de Drenaje:

Depósito Relaves:

Contaminación:

Mineralogía:

Geomorfología:

Observaciones:

COSTO DE MITIGACION US\$

Desmonte (erosión) Relave (Estab.Talud) Drenaje Acido Total US\$

MANTARO-1997 Fuente: MINA POTOCCI, LABOR DE CANTERA DE CALIZA SILICIFICADA.

RESULTADO DE ANALISIS

Muestreo en: DRENAJE

Arsenico	AS	0.023	mg/l
Cadmio	CD	0.007	mg/l
Conductividad Electrica	CE	1,320.000	uS/cm
Plomo	PB	0.040	mg/l
Solidos Total Disueltos	STD	806.000	mg/l
Solidos Total Suspendidos	STS	72.000	mg/l
Sulfato	SO4	182.300	mg/l
Temperatura	Т	15.300	оС
Turbidez	TU	20.000	mg/l
pH	PH	7.100	U.E.

Energía y Minas MINA INACTIVA Código: Nombre de Mina: **BALCON PATA** 466 Nombre del Titular: Año de Abandono: Departamento: HUANCAVELICA Cuenca: **MANTARO** Acceso: Ubicación: COORDENADAS U.T.M. 18 Norte: 8,610,675.0 Este: 564,140.0 Altitud: 3,380 ASPECTOS DE YACIMIENTO FILONEANO MOSTRANDO MINERALIZACION HIDROTERMAL EN INTRUSIVOS CUARZOSOS Geología: CONTENIENDO PIRITA, ARSENOPIRITA Y POSIBLE ORO EMPLAZADOS EN ROCAS METAMORFICAS PIZARROSAS Y ESQUISTOSAS Mineralogía: Geomorfología: Hidrología: Desmonte: Agua de Drenaje: CORRESPONDE A MATERIAL CUARZOSO FINO CON ABUNDANTE OXIDOS DE HIERRO LIMONITIZADOS. Depósito Relaves: Contaminación: Observaciones:

COSTO DE MITIGACION US\$

Desmonte (erosión) Relave (Estab.Talud)

Drenaje Acido

Total US\$

MINA BALCON PATA, AFLORAMIENTOS DE VETAS Y DEPOSITO DE RELAVES.

Fuente:

MANTARO-1997

Nombre de Mina :	SANTA ROSA	Código :	467
Nombre del Titular :		Año de Abandono :	
Departamento:	HUANCAVELICA	Cuenca :	MANTARO

Ubicación : COORDENADAS U.T.M.								
						Norte :	8,603,787.0	Este :
			ASPEC	TOS	DE			
Geología :	_	IMIENTO FILONEANO I ROCAS METAMORFICA		-		ROTERMAL DE II	NTRUSIVOS EMPLA	ZADOS
Mineralogía :	LA M	MINERALIZACION ESTA	CONSTITUIDA	POR: PIRIT	A, CALCOPIRIT	TA Y POSIBLE O	RO.	
Geomorfología	a:							
Hidrología :								
Desmonte :		IRRE COMO ACUMULA RTEMENTE ALTERADO		MAÑOS DE	SDE BLOQUES	A GRAVAS DE I	ROCAS INTRUSIVAS	;
Agua de Dren	ujo.	RESPONDE A ESCORI ERALIZADA.	RENTIAS QUE (CRUZAN HII	DROLIZANDO L	AS ESTRUCTUF	RAS DE LA ZONA	
Depósito Rela		ERIAL FINO CONSTITU IMENTADOS Y SIN ESF			IDOS DE HIER	RO LIMONITIZAD	OOS FUERTEMENTE	
Contaminació	n:							
Observacione	e:							

COSTO DE MITIGACION US\$

Desmonte (erosión) Relave (Estab.Talud) Drenaje Acido Total US\$

MANTARO-1997 Fuente: MINA SANTA ROSA, RELAVES CON ABUNDANTE LIMONITAS Y CAMPAMENTO.

RESULTADO DE ANALISIS

Muestreo en: DRENAJE

Arsenico	AS	0.012	mg/l
Cadmio	CD	0.023	mg/l
Conductividad Electrica	CE	390.000	uS/cm
Plomo	PB	0.034	mg/l
Solidos Total Disueltos	STD	298.000	mg/l
Solidos Total Suspendidos	STS	60.000	mg/l
Sulfato	SO4	96.100	mg/l
Temperatura	T	12.500	οС
Turbidez	TU	13.300	mg/l
pH	PH	6.200	U.E.