Lecture 10

Author

Tom Jeong

February 10, 2025

Contents

1	From Previous Lecture	2
	1.1 L/K Field Extension	2

1 From Previous Lecture

Discussion of $\mathbb{Q}(\sqrt[4]{2})$:

- $\sqrt[4]{2}$ is a root of $x^4 2$
- Consider $-\sqrt[4]{2}$

Interesting maps $\mathbb{Q}(\sqrt[4]{2}) \to \mathbb{Q}(\sqrt[4]{2})$ that fix \mathbb{Q} :

- 1. $\sqrt[4]{2} \rightarrow \sqrt[4]{2}$ (identity homomorphism)
- 2. $\sqrt[4]{2} \to -\sqrt[4]{2}$

Intermediate subfields:

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[4]{2})$$

1.1 L/K Field Extension

Aut(L:K) or Aut(L/K) or Aut(L,K) = Automorphisms of L fixing K

Definition 1.1 (In case you forgot). Automorphisms are isomorphisms to itself:

 $Aut(L:K) = \{\sigma: L \to L: \sigma \text{ is an isomorphism and } \sigma(x) = x \text{ for all } x \in K\}$

Note: Aut(L, K) is a group under composition (the book calls this the Galois group of L/K).

In our example:

$$Aut(\mathbb{Q}(\sqrt[4]{2}),\mathbb{Q}) = \mathbb{Z}_2$$

Working with finite degrees $[L:K] < \infty$:

- $\alpha \in L$ has a minimal polynomial $f_{\alpha} \in K[x]$
- f_{α} has same roots in L
- For $\sigma \in Aut(K, L)$, σ permutes the roots of $f_{\alpha} \in L$

$$f_{\alpha}(r) = 0 \Rightarrow f_{\alpha}(\sigma(r)) = 0$$

For $f(x) \in K[x]$ and f(r) = 0, then

$$f(\sigma(r)) = 0 \text{ for all } \sigma \in Aut(L:K)$$

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

$$f(r) = a_0 + a_1 r + \dots + a_n r^n = 0$$

$$f(\sigma(r)) = a_0 + a_1 \sigma(r) + \dots + a_n \sigma(r)^n = 0$$

$$= a_0 + a_1 \sigma(r) + \dots + a_n \sigma(r)^n = 0 \text{ (by the definition of } \sigma)$$

$$= \sigma(a_0) + \sigma(a_1)\sigma(r) + \sigma(a_2)\sigma(r^2) + \dots + \sigma(a_n)\sigma(r^n) = 0$$

$$= \sigma(a_0 + a_1 r + \dots + a_n r^n) = \sigma(0) = 0$$

Since we have that $\sigma(r^k)=[\sigma(r)]^k$ because $\sigma(r^2)=\sigma(r)\cdot\sigma(r)$ Question:

- 1. How big can this group be ?
- 2. For now we will show that |Aut(L:K)| is finite if $[L:K] < \infty$

Theorem 1.1. If $[L:K]<\infty$, then $|Aut(L:K)|<\infty$

Proof.

 $L = K(\alpha_1, \dots, \alpha_n)$

 $\sigma \in Aut(L:K)$ has minimal polynomial f_{α_i}

 $\forall \alpha \in Aut(L:K)$ is sepcific if we know $\sigma(\alpha_1), \ldots, \sigma(\alpha_n)$

 σ permutes the roots of f_{α_i} in L

 $\Rightarrow \forall \alpha_i$ there are infinitely many possiblities for $\sigma(\alpha_i)$

 \Rightarrow finitely many possibilities for $\sigma \in Aut(L:K)$

 \Rightarrow Not every possible permutation of roots leads to a field automorphism