Data Assimilation for Systems and Mathematical Biology

Engelhardt Benjamin ^{1,2,*}, Kahl Dominik³, Weber Andreas⁴, Kschischo Maik^{3,*}

- 1 Rheinische Friedrich-Wilhelms-Universität Bonn, Algorithmic Bioinformatics, Bonn, Germany
- 2 Current Address: AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
- 3 University of Applied Sciences Koblenz, RheinAhrCampus, Department of Mathematics and Technology, Remagen, Germany
- 4 Rheinische Friedrich-Wilhelms-Universität Bonn, Institute for Computer Science, Bonn, Germany

Abstract

Mathematical models are increasingly used as a tool to deal with the tremendous complexity of biological systems. Data Assimilation, defined as the process of combining models with experimental observations, is a key step in order to better align the model outputs with reality. Despite new and improved experimental techniques, it is usually impossible to directly observe all the states of a biological system. This renders Data Assimilation an inverse problem requiring sophisticated mathematical and statistical techniques and the systematic integration of prior knowledge or assumptions.

1 Introduction

2 The Data Assimilation problem

3 Outlook

$$\dot{\boldsymbol{x}} = \underbrace{\begin{pmatrix} k_t B_{max} - k_t x_1 - k_{on} x_1 x_2 + k_{off} x_3 + k_{ex} x_4 \\ -k_{on} x_1 x_2 + k_{off} x_3 + k_{ex} x_4 \\ k_{on} x_1 x_2 - k_{off} x_3 - k_{ex} x_4 \\ k_{ex} x_3 - k_{ex} x_4 - k_{di} x_4 - k_{de} x_4 \\ k_{di} x_4 \\ k_{de} x_4 \end{pmatrix}}_{\boldsymbol{f}(\boldsymbol{x})}$$

$$\mathbf{y} = \underbrace{\begin{pmatrix} \kappa_1 (x_2 + 2x_6) \\ \kappa_2 (x_3) \\ \kappa_3 (x_4 + x_5) \end{pmatrix}}_{\mathbf{h}(\mathbf{x})}$$

$$x_1 : \text{EpoR}$$

$$x_2$$
: Epo

$$x_3$$
: Epo-EpoR
 x_4 : Epo-EpoR_i

$$x_5 : dEpo_i$$

$$x_6: dEpo_e$$

$$y_1 : \text{Epo} + \text{dEpo}_i$$

$$y_2$$
: Epo-EpoR

$$y_3 : \text{Epo-EpoR}_i + \text{dEpo}_i$$

_	_	9	x_4	9	
EpoR	Epo	Epo-EpoR	$\mathrm{Epo} ext{-}\mathrm{EpoR}_i$	$dEpo_i$	$dEpo_e$

y_1	y_2	y_3
$Epo + dEpo_i$	Epo-EpoR	$Epo-EpoR_i + dEpo_i$

^{*}Authors for correspondence: engelhar@bit.uni-bonn.de and kschischo@rheinahrcampus.de

To illustrate different aspects of DA we will use a model for the information processing at the erythropoietin (Epo) receptor (EpoR) as a running example [?]. The state $\mathbf{x} = (x_1, \dots, x_6)^T$ of this model is given by the concentrations of the Epo receptor (x_1) on the cell surface which can bind to Epo (x_2) and build the ligand-receptor complex (x_3) . This complex is able to activate subsequent signaling cascades, e.g. the JAK-STAT signaling pathway. In addition the ligand-receptor complex can be internalized (x_4) and dissociate from Epo which then is degraded (x_5) and transported to the extracellular space (x_5) .

```
\dot{x}_1 = k_t B_{max} - k_t x_1 - k_{on} x_1 x_2 + k_{off} x_3 + k_{ex} x_4 

\dot{x}_2 = -k_{on} x_1 x_2 + k_{off} x_3 + k_{ex} x_4 

\dot{x}_3 = k_{on} x_1 x_2 - k_{off} x_3 - k_e x_3 

\dot{x}_4 = k_e x_3 - k_{ex} x_4 - k_{di} x_4 - k_{de} x_4 

\dot{x}_5 = k_{di} x_4 

\dot{x}_6 = k_{de} x_4 

y_2 = \kappa_1 (x_2 + 2x_6) 

y_1 = \kappa_2 (x_3) 

y_3 = \kappa_3 (x_4 + x_5),
```

The complex regulation of this receptor is characterized by receptor mobilization, turnover and recycling. The rate constants correspond to (i) receptor turnover (k_t) , (ii) ligand-receptor binding (k_{on}) or dissociation (k_{off}) , (iii) ligand-induced endocytosis (k_e) , (iv) recycling (k_{ex}) and (v) internal (k_{di}) or external (k_{de}) degradation of Epo. Only the the Epo concentration in medium (y_1) , on surface (y_2) and in cells (y_3) can be measured up to some scaling paramters κ_j , $j \in \{1, 2, 3\}$.

$$\dot{\boldsymbol{x}} = \underbrace{\begin{pmatrix} k_t B_{max} - k_t x_1 - k_{on} x_1 x_2 + k_{off} x_3 + k_{ex} x_4 \\ -k_{on} x_1 x_2 + k_{off} x_3 + k_{ex} x_4 \\ k_{on} x_1 x_2 - k_{off} x_3 - k_e x_3 \\ k_e x_3 - k_{ex} x_4 - k_{di} x_4 - k_{de} x_4 \\ k_{di} x_4 \\ k_{de} x_4 \end{pmatrix}}_{\boldsymbol{k}_{de} x_4} \underbrace{\begin{array}{c} \text{Epo-EpoR} \\ \text{Epo-EpoR} \\ \text{dEpo}_i \\ \text{dEpo}_e \\ \end{array}}_{\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u})}$$

$$\boldsymbol{y} = \underbrace{\begin{pmatrix} \kappa_1 \left(x_2 + 2x_6 \right) \\ \kappa_2 \left(x_3 \right) \\ \kappa_3 \left(x_4 + x_5 \right) \end{pmatrix}}_{\boldsymbol{k}_3 \left(x_4 + x_5 \right)} \underbrace{\begin{array}{c} \text{Epo-EpoR}_i \\ \text{Epo-EpoR}_i \\ \text{Epo-EpoR}_i + \text{dEpo}_i \\ \text{Epo-EpoR}_i + \text{dEpo}_i \\ \end{array}}_{\boldsymbol{h}(\boldsymbol{x})}$$

A Appendix name