Solution

(a) Instantaneous Selectivity $S_{D/U}$

Reactions:

Desired:
$$A + B \xrightarrow{k_1} D$$
, $k_1 = 150 \exp\left(-\frac{5000}{T}\right)$
Undesired: $B \xrightarrow{k_2} 2U$, $r_U = k_2 C_B^2$, $k_2 = 300 \exp\left(-\frac{2000}{T}\right)$

For the desired product D:

$$r_D = k_1 C_A C_B$$

For the undesired product U:

$$r_U = k_2 C_B^2$$

The instantaneous selectivity is:

$$S_{D/U} \equiv \frac{r_D}{r_U} = \frac{k_1 C_A C_B}{k_2 C_B^2} = \frac{k_1}{k_2} \cdot \frac{C_A}{C_B}$$

Substituting the Arrhenius forms:

$$\frac{k_1}{k_2} = \frac{150 \, e^{-5000/T}}{300 \, e^{-2000/T}} = \frac{1}{2} e^{-3000/T}$$

Thus:

$$S_{D/U} = \frac{1}{2}e^{-3000/T} \cdot \frac{C_A}{C_B}$$

Interpretation: Higher T increases $S_{D/U}$ since the desired step has higher activation energy. Large C_A and low C_B also improve selectivity.

(b) Reactor Systems and Operating Conditions

- 1. Semibatch Reactor (Charge A, Feed B Slowly)
 - Schematic: Agitated tank with temperature control; charge with excess A at t = 0, feed B continuously.
 - Rationale: $r_U \propto C_B^2$, so keeping C_B low suppresses the undesired second-order pathway while $r_D \propto C_A C_B$ still proceeds efficiently due to high C_A .
 - Operating conditions:
 - Maintain high T (within safety limits) to favor the desired path.
 - Large initial C_A , slow B feed to keep C_B small.
 - Stop the run as soon as A is mostly consumed to avoid further decomposition of B.

2. Plug Flow Reactor (PFR) with Distributed B Injection

- Schematic: Start the reactor with A only; inject small quantities of B at several points along the reactor.
- Rationale: Keeps C_B low at all points in the reactor, ensuring the desired reaction dominates.

• Operating conditions:

- High, uniform temperature profile.
- Split B into multiple side feeds; control feed spacing and rate to cap C_B at a low value.
- Large excess of A at inlet.

General tips for both systems:

- Use dilution or solvent flow to further lower C_B .
- Minimize residence time to avoid excessive $B \to 2U$ conversion.
- Preheat B only immediately before mixing with A to reduce decomposition risk.