Introduction to Machine Learning with Python

2019 0000 옥현빈 2019 2650 이정훈

Contents

1. What is Machine Learning?

2. Supervised & Unsupervised

3. Problems

4. Impressions

What is Machine Learning?

What is Machine Learning?

Tom Mitchell (1998)

- T = Task
- P = Probability

Well-posed Learning Problem

A computer program is said to learn from experience E

with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience

What is Machine Learning?

Traditional Approach

Machine Learning Approach

Installing Sckit Learn

\$ pip install numpy scipy matplotlib ipython scikit-learn pandas pillow

Numpy

Pandas

Matplotlib

Installing Sckit Learn

\$ pip install numpy scipy matplotlib ipython scikit-learn pandas pillow

Numpy Pandas Matplotlib

Installing Sckit Learn

\$ pip install numpy scipy matplotlib ipython scikit-learn pandas pillow

Numpy

Pandas

Matplotlib

	Age	Location	Name
0	24	New York	John
1	13	Paris	Anna
2	53	Berlin	Peter
3	33	London	Linda

Installing Sckit Learn

\$ pip install numpy scipy matplotlib ipython scikit-learn pandas pillow

Numpy

Pandas

Matplotlib

```
%matplotlib inline
import matplotlib.pyplot as plt

# Generate a sequence of numbers from -10 to 10 with 100 steps in between
x = np.linspace(-10, 10, 100)
# Create a second array using sine
y = np.sin(x)
# The plot function makes a line chart of one array against another
plt.plot(x, y, marker="x")
```

```
0.5

0.0

-0.5

-1.0

-1.0

-5

0 5
```

Supervised Learning

Given input, and we have examples of input / output pairs

Ex) $32 \times 44 / 3 \times 5 = 1408 / 15 -> 9 \times 3 = 27$

Classification

- 1. Binary Classification: Discrete valued output 0 or 1
- 2. Multiple Class Classification: apple, lemon, grape, etc ...

Regression

- Predict continuous valued out put
- Real number or an arbitrary number rather than 0 and 1(like Binary Classification)

Unsupervised Learning

Input has not Right Answer for data set of output Not Given Data set Clustering Algorithm

Unsupervised Learning

Input has not Right Answer for data set of output Not Given Data set Clustering Algorithm

Underfitting

Underfitting

Overfitting

Solutions

$$\hat{y} = \sum_{i=0}^d x^i w_i$$

Solutions

$$y = 5 + 1.2x - 3.4 \frac{x^2}{2!} + 5.6 \frac{x^3}{3!} + \epsilon \text{ where } \epsilon \sim \mathcal{N}(0, 0.1)$$

$$(n! = \Gamma(n+1))$$

Impressions

Thank You