Sixth Homework

Write your answers neatly, in complete sentences. Recopy your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Hand in for the grader Tuesday 17 October:

- 17. Free abelian groups and the rational numbers.
 - (a) Show that the additive group of the rational numbers is not a free abelian group.
 - (b) Show that the multiplicative group of the positive rational numbers is a free abelian group of countable rank.
- 18. Suppose that G is a group of order p^2 , p a prime number. Show that G is either isomorphic to $\mathbb{Z}_p \oplus \mathbb{Z}_p$ or to \mathbb{Z}_{p^2} .
- 19. Let p be a prime number and consider the group

$$U := \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{Z}_p \right\} ,$$

Show that U is a subgroup of $GL(3,\mathbb{Z}_p)$, and that its order is p^3 .

If $p \geq 3$, show that every non-identity element of U has order p. What if p = 2?

What is the centre Z(U) of U? Show that $U/Z(U) \simeq \mathbb{Z}_p \oplus \mathbb{Z}_p$.

When p=2, which group of order 8 (you are familiar with all 5) is U isomorphic to?

20. Show that if $n \neq 6$, then the symmetric group S_n has only inner automorphisms.

Hint: Any automorphism of a group permutes the conjugacy classes. Determine the numbers in the different conjugacy classes of involutions (permutations $\sigma \neq e$ with $\sigma^2 = e$).

What happens when n = 6?

21. Let H be a subgroup of a group G and define the <u>core</u> of H to be

$$\mathrm{core}(H) \; := \; \bigcap \{H^g \mid g \in G\} \,,$$

the intersection of all conjugates of ${\cal H}$ by elements of ${\cal G}.$

Let $S:=\{xH\mid x\in G\}$ be the set of left cosets of H in G. For each $g\in G$, define $g^*\colon S\to S$ by $g^*(xH)=gxH$. Show that the kernel of the group homomorphism $G\to \operatorname{Sym}(S)$ given by $g\mapsto g^*$ is the core of H.