Gradient Descent

Algorithms Club 10.7.24

Wanderer above the Sea of Fog

By: Caspar David Friedrich

Minimize a loss/cost function

- Function Requirements

- Function Requirements
 - 1. Differentiable

- Function Requirements
 - 1. Differentiable

- Function Requirements
 - 1. Differentiable
 - 2. Convex

Local Minima and Saddle Points

- Step-size

- Step-size

Partial Derivatives

- Step-size

- Gradient

- Partial Derivatives

- Step-size

- Partial Derivatives

- Gradient

Pseudocode More

- 1. Choose a random starting point
- 2. Calculate the gradient at the point
- 3. Make a scaled step in the opposite direction of the gradient
- 4. Repeat until one of below criteria are met
 - a. Max iterations reached
 - b. Step size smaller than tolerance

References:

https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04 e8115f21

- Khan partial derivatives https://www.youtube.com/watch?v=dfvnCHqzK54

- 3Blue1Brown

https://www.youtube.com/watch?v=IHZwWFHWa-w

Statquest

https://www.youtube.com/watch?v=sDv4f4s2SB8

Blog post

https://colah.github.io/

- Distill https://distill.pub/