임베디드컴퓨팅

Embedded Computing (0009488)

Passive Infrared sensor

2022년 2학기

정보기술대학 정보통신공학과 김 영 필

ypkim@inu.ac.kr

Passive Infrared sensor

- **(HC-SR501) sensor** provides the feature of the human body detection, also called a
 - sensor.
 - to detect human movement up to 7m within an angle of 110°.
- Consists of three pins
 - **VCC**: A pin that applies + power.
 - Operating voltage = 5 ~ 20V, connect it to the **5V pin** of the Arduino.
 - **GND**: A grounding pin
 - Connected to the GND pin of the Arduino.
 - **Out**: A pin that generates the output signals when a motion is detected.
 - Connects it to the **digital pin** of the Arduino.

(HC-SR501)

Two adjustment controls (potentiometers)

• HC-SR501 generates a **HIGH signal** output when motion is detected.

• Adjust

- Adjust the time delay of HIGH signal from 3 sec to a max. of 5 min.
- Turning it clockwise: increases.
- Turning it counterclockwise: shortens.

• Adjust

- Adjust the detection range from 3 to 7m.
- Turning it clockwise: shortens.
- Turning it counterclockwise: increases.

A jumper to select between two trigger modes

- Single trigger or repeating trigger.
 - For both modes, the output will turn HIGH as soon as motion is detected.
 - The signal will stay HIGH for the time-delay adjusted by the potentiometer.
- Single trigger mode
 - Further movement is not processed during the time delay period
- Repeating trigger mode
 - Any further movement is processed and time-delay is started again

Output signaling

- Phase 1: A motion detection
 - It outputs a HIGH signal for a set time delay.
- Phase 2: Detection blocked
 - It outputs a Low signal for about 2.5 to 3 sec.
 - No motion is detected. Depending on setting the time delay adjustment, it is set to 0 to tens of seconds.

Lab 1: A human motion detector

- Let's write a sketch program to display the result of human motion detection via serial comm. and built-in LED.
- Adjust a time delay and detection range as 3 sec and 3m, respectively.
- Required H/W components

Circuit wiring setup

PIR (HC-SR501)	Arduino board
VCC	5V
GND	GND
OUT	digital 7

Basic setup for motion detector

```
#define PIR□PIN 7
#define BUILTIN\squareLED 13
                                                                          Connect to
void setup() {
                                                                       Digital pin No. 7
  pinMode(PIR□PIN, INPUT);
  pinMode(BUILTIN_LED, OUTPUT);
  Serial.begin(9600);
                                                                 INPUT mode for digital read
void loop() {
 int value = digitalRead(PIR_PIN);
 if(value == HIGH){
                                                                 Read the signal of HC-SR501
   digitalWrite(BUILTIN_LED, HIGH);
   Serial.println("Detected!");
 } else {
   digitalWrite(BUILTIN_LED, LOW);
   Serial.println("Not Detected!");
 delay(1000);
```

Check results

- When a motion is detected
 - For a set time delay, a message "detected" is shown.
 - Built-in LED turns on.

- When a motion is not detected
 - A message "Not detected" is shown.
 - Built-in LED turns off.

Lab 2: Intrusion alarm

- Let's write a sketch program to alarm when a human motion is detected
- Time delay and detect range are same as Lab 1 (3sec, 3min)
- Required H/W components

Circuit wiring setup

PIR (HC-SR501)	Arduino board
VCC	5V
GND	GND
OUT	digital 7

Piezo speaker	Arduino board
+	digital 6
-	GND

Basic setup for intrusion alarm

```
#define PIR PIN 7
#define PIEZO 6
void setup() {
  pinMode(PIR_PIN, INPUT);
  pinMode(PIEZO, OUTPUT);
void loop() {
   int value = digitalRead(PIR_PIN);
  if(value == HIGH){
    for(int i = 0; i < 3; i++){
     tone(PIEZO, 523, 240);
     delay(200);
    tone(PIEZO, 783, 250);
     delay(200);
```

Connect PIR and Piezo to Digital pin No. 7 and 6, respectively

INPUT mode for digital read OUTPUT mode for digital write

Read the signal of HC-SR501

Alert by beep sound

Check results

- When a motion is detected
 - For a set time delay, a message "detected" is shown.
 - A beep sound repeated three times.
- When a motion is not detected
 - A message "Not detected" is shown.
 - No beep sound.

Assignment: Smart Toilet

- In the restroom, you can see a system that changes the color of the LED installed in front of the door depending on whether the toilet is used.
- Let's implement a smart toilet using a PIR and a magnetic switch.
- Requirements
 - When the toilet is in use, LED turns red.
 - No motion AND the door is closed
 - When it is empty, LED turns green.
 - Otherwise
 - A block-type comments in the top of source code w/ "your student no., your name, writing date, etc."
- Results
 - (a source code file) sketch source code ("sketchfilename.ino")
 - (a Arduino board capture file) a photo capture showing how you setup your circuit (max. 1GB file).

Required H/W

Circuit wiring setup (1)

Magnetic Switch (MC-38)	Arduino board
Wire 1	digital 7
Wire 2	GND

PIR (HC-SR501)	Arduino board
VCC	5V
GND	GND
OUT	digital 8

Circuit wiring setup (2)

Tri-color LED	Arduino pin
Red (Pin 1)	13
GND (Pin 2)	GND
Green (Pin 3)	12
Blue (Pin 4)	-

