

Problem:

If we assume Azzz is a real matrix, and V, is a complex eigenvector of A wich complex eigenvalue ∂_1 . $\mathcal{V}_2 = \overline{\mathcal{V}}_1$, $\partial_2 = \overline{\mathcal{V}}_1$, where $\overline{\mathcal{V}}_1$ and $\overline{\mathcal{V}}_2$. are the corresponding complex conjugate of 19, and 3, respectively. Show that $A \mathcal{V}_{\perp} = 72. \mathcal{V}_{2}$. (*)

We assume that $\partial_1 = a + bi$, $\mathcal{V}_1 = \mathcal{V}_1 + q \cdot i$, where $a, b \in \mathbb{R}$, $\mathcal{V}_1, q \in \mathbb{R}^2$. Since V, is an eigenvector of A wooh eigenvalue >1, $Av_i = >_i v_i$

$$\Rightarrow$$
 $A(p+qi)=(a+bi)(p+qi)$

$$\Rightarrow Ap + Aqi = (ap - bq) + (aq + bp)i$$

$$\Rightarrow \int_{Ag}^{Ap} = \alpha p - bq$$

$$Ag = \alpha q + bp$$

$$\Rightarrow LHS \text{ of } (*) = A(p-qi) = Ap - Aq \cdot i$$

$$= ap - bq - (aq + bp) \cdot i$$

$$= ap - bq - aqi - bpi$$

RHS of
$$(*)$$
 = $(a-bi)(p-gi)$
= $ap-bq-agi-bpi$
= LHS of $(*)$
 $\Rightarrow Ab2 = >_2 b_2$

Method 2:

Azzz is a real matrix $\implies \overline{A} = A$. Since 7, is an eigenvector of A wooh eigenvalue >1, $A\mathcal{V}_{i} = \mathcal{S}_{i}\mathcal{V}_{i}$

Taking complex conjugate on both sides to get

 $\Rightarrow \overline{A} \, \overline{\mathcal{Y}}_{i} = \overline{\gamma}_{i} \cdot \overline{\mathcal{Y}}_{i} \quad (as the complex conjugate of product = the product of complex conjugate.)$ $\Rightarrow A \cdot 19_{2} = \lambda_{2} \cdot 19_{2}.$