

REPORT ON THE CERTIFICATION TESTING OF A
COMARK Ltd
RF500Lite
WITH RESPECT TO
THE FCC RULES CFR 47, PART 15.247 July 2008
INTENTIONAL RADIATOR SPECIFICATION

TEST REPORT NO: RU1538/8939

COPY NO: 1

ISSUE NO: 1

FCC ID: TVHRF500Lite

REPORT ON THE CERTIFICATION TESTING OF A COMARK Ltd RF500 RF500Lite WITH RESPECT TO THE FCC RULES CFR 47, PART 15.247 July 2008 INTENTIONAL RADIATOR SPECIFICATION

TEST DATE: 18th – 24th November 2008

TESTED BY:	S HODGKINSON

APPROVED BY: ______ J CHARTERS RADIO SECTION

LEADER

DATE: 5th January 2009

Distribution:

Copy Nos: 1. Comark Ltd

2. TCB: TRL COMPLIANCE Ltd

3. TRL Compliance Ltd

THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE

CONTENTS

	PAGE	
CERTIFICATE OF CONFORMITY & COMPLIANCE	4	
APPLICANT'S SUMMARY	5	
EQUIPMENT TEST CONDITIONS	5	
TESTS REQUIRED	6	
TEST RESULTS	7 -16	
	ANNEX	
PHOTOGRAPHS	Α	
PHOTOGRAPH No. 1: Test setup		
PHOTOGRAPH No. 2: AC powerline setup		
PHOTOGRAPH No. 3: Overview		
PHOTOGRAPH No. 4: Connector Overview		
PHOTOGRAPH No. 5: Control PC RF Module Mounted		
PHOTOGRAPH No. 6: RF PCB Top		
PHOTOGRAPH No. 7: RF PCB Bottom		
PHOTOGRAPH No. 8: Power supply mounted to chassis		
PHOTOGRAPH No. 9: Top and Underside view of Power supply PCB		
APPLICANT'S SUBMISSION OF DOCUMENTATION LIST	В	
TEST EQUIPMENT CALIBRATION	С	
MEASUREMENT UNCERTAINTY	D	
POWERLINE CONDUCTIONS GRAPH(s)	Е	
RADIATED SPURIOUS EMISSIONS	F	
RADIATED BANDEDGE COMPLIANCE	G	
6dB BANDWIDTH	Н	
PEAK POWER CONDUCTED	1	
POWER SPECTRAL DENSITY	J	
Notes: 1. Component failure during test	YES [] NO [X]

2. If Yes, details of failure:

3. The facilities used for the testing of the product contain in this report are FCC Listed.

4. The contents of the attached applicants declarations and other supplied information are not covered by the scope of this laboratory's UKAS or FCC accreditations' and is provided in good faith.

RU1538/8939 Page 3 of 48

Compliant to Specif					
Compilant to Opcon	fication				
RF500Lite					
1M58F1D					
Temperature Monit	or				
0.0106W e.i.r.p.					
Unique Antenna Co	nnecto	or			
7.0 dBi Maximum G	ain an	tenna			
2.404GHz					
N/A Wideband char	nnel				
1					
SAW Resonator	[]	Crystal	[]	Synthesise	ər [X]
FHSS	[]	DSSS	[X]	Other	[]
+110Vac					
18 th -24 th Novembe	r 2008				
506627					
Comark Ltd.					
				S HODGKIN	SON
	RF500Lite 1M58F1D Temperature Monit 0.0106W e.i.r.p. Unique Antenna Co 7.0 dBi Maximum G 2.404GHz N/A Wideband char 1 SAW Resonator FHSS +110Vac 18 th -24 th Novembe 506627 Comark Ltd. Comark House Gunnels Wood Par Gunnelswood Road Stevenage Heartforshire SG1 2TS	RF500Lite 1M58F1D Temperature Monitor 0.0106W e.i.r.p. Unique Antenna Connector 7.0 dBi Maximum Gain and 2.404GHz N/A Wideband channel 1 SAW Resonator [] FHSS [] +110Vac 18 th -24 th November 2008 506627 Comark Ltd. Comark House Gunnels Wood Park Gunnelswood Road Stevenage Heartforshire SG1 2TS	RF500Lite 1M58F1D Temperature Monitor 0.0106W e.i.r.p. Unique Antenna Connector 7.0 dBi Maximum Gain antenna 2.404GHz N/A Wideband channel 1 SAW Resonator [] Crystal FHSS [] DSSS +110Vac 18 th -24 th November 2008 506627 Comark Ltd. Comark House Gunnels Wood Park Gunnelswood Road Stevenage Heartforshire SG1 2TS	RF500Lite 1M58F1D Temperature Monitor 0.0106W e.i.r.p. Unique Antenna Connector 7.0 dBi Maximum Gain antenna 2.404GHz N/A Wideband channel 1 SAW Resonator [] Crystal [] FHSS [] DSSS [X] +110Vac 18 th -24 th November 2008 506627 Comark Ltd. Comark House Gunnels Wood Park Gunnelswood Road Stevenage Heartforshire SG1 2TS	RF500Lite 1M58F1D Temperature Monitor 0.0106W e.i.r.p. Unique Antenna Connector 7.0 dBi Maximum Gain antenna 2.404GHz N/A Wideband channel 1 SAW Resonator [] Crystal [] Synthesise FHSS [] DSSS [X] Other +110Vac 18th -24th November 2008 506627 Comark Ltd. Comark House Gunnels Wood Park Gunnelswood Road Stevenage Heartforshire SG1 2TS United Kingdom J CHARTER RADIO SEC

TVHRF500Lite

Certification

FCC IDENTITY:

PURPOSE OF TEST:

APPLICANT'S SUMMARY

EQUIPMENT UNDER TEST (EUT):	RF500Lite
EQUIPMENT TYPE:	Wireless monitoring system
PURPOSE OF TEST:	Certification
TEST SPECIFICATION(s):	FCC RULES CFR 47, Part 15.247 July 2008
TEST RESULT:	COMPLIANT Yes [X] No []
APPLICANT'S CATEGORY:	MANUFACTURER [X] IMPORTER [] DISTRIBUTOR [] TEST HOUSE [] AGENT []
APPLICANT'S ORDER No(s):	506627
APPLICANT'S CONTACT PERSON(s):	Mr P Morrison
E-mail address:	paulmorrison@comarkltd.com
APPLICANT:	Comark Ltd
ADDRESS:	Comark House Gunnels Wood Park Gunnelswood Road Stevenage Heartforshire SG1 2TS United Kingdom
TEL:	+44 1483 367367
FAX:	+44 1483 367400
EUT(s) COUNTRY OF ORIGIN:	United Kingdom
TEST LABORATORY:	TRL Compliance Ltd
UKAS ACCREDITATION No:	0728
TEST DATE(s):	18 th -24 th November 2008
TEST REPORT No:	RU1538/8939

RU1538/8939 Page 5 of 48

EQUIPMENT TEST / EXAMINATIONS REQUIRED

TEST/EXAMINATION	RULE PART	DETECTOR	APPLICABILITY
Intentional Emission Frequency:	15.247	Peak	Yes
Intentional Emission Field Strength:	-	-	No
Intentional Emission Band Occupancy:	15.247(a)1	Peak	Yes
Intentional Emission EIRP (mW):	15.247(b)1	Peak	Yes
Spurious Emissions – Conducted:	15.207	Quasi Peak Average	Yes
Spurious Emissions – Conducted:	15.247	Peak	Yes
Spurious Emissions – Radiated <1000MHz:	15.209 ,15.247	Quasi Peak	Yes
Spurious Emissions – Radiated >1000MHz:	15.247 15.209	Peak average	Yes
Transmitter Carrier Frequency Separation:	15.247(a)(1)	Peak	Yes
Transmitter Maximum Peak Power Output Power:	15.247(b)(1)	Peak	Yes
Transmitter Band Edge Conducted Emissions:	15.247(c)	Peak	Yes
Transmitter Band Edge Radiated Emission:	15.247(c)	Peak	Yes
Extrapolation Factor:	15.31(f)	-	Yes
Maximum Frequency of Search:	15.33	-	Yes
Antenna Arrangements Integral:	15.203	-	Yes
Antenna Arrangements External Connector:	15.204	-	Yes
Restricted Bands:	15.205	-	Yes

2.	Product Description :	1M49F1D	
3.	Temperatures:	Ambient (Tnom)	16°C
4.	Supply Voltages:	Vnom	+110Vac
	Note: Vnom voltages are as stated above unless other	wise shown on the test	report page
5.	Equipment Category:	Single channel Multi-channel	[X] []
6.	Channel spacing:	Narrowband Wideband	[] [X]

RU1538/8939 Page 6 of 48

TRANSMITTER 6dB BANDWIDTH - CONDUCTED - PART 15.247(A)(2)

Ambient temperature = 20°C Relative humidity = 60% Conditions = Radio Lab Supply voltage = +110Vac

Diagram

Frequency	Channel	F _{lower}	F _{Higher}	Measured Bandwidth	Limit
2.404MHz	1	2.404182GHz	2.405769GHz	1.5865MHz	>500kHz

Notes: 1 For analyser plots see annex G.

Test Method: 1 The 6dB bandwidth was recorded with the EUT activity transmitting data.

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	RHODE & SCHWARZ	FSU46	200034	UH281	X
ATTENUATOR	BIRD	8304-100-N-10dB	N/A	TRL222	X
CABLE	TRL	RG223	N/A	TRL373	X

RU1538/8939 Page 7 of 48

TRANSMITTER - MAXIMUM PEAK POWER - CONDUCTED - PART 15.247(B)(3)

Ambient temperature = 16° C Relative humidity = 60%Conditions = Radio Lab Supply voltage = +110Vac

Diagram

Freque MH		Channel	Peak Power dBm	Peak Power Watts	Antenna Gain dBi	Power Watts	Limit Watts
2.40)5	1	3.26	0.00211	7.0	0.0106	1

Notes: 1 Gain of antenna 7.0dBi, maximum gain antenna supplied by manufacturer.

2 For analyser plots see annex H.

Test Method:

1 The EUT was connected to the spectrum analyser via the unique antenna connector a cable and attenuator - if applicable.

The EUT was operated in transmit mode with modulation.

3 The level on the analyser was recorded.

4 The resolution bandwidth of the analyser was set to level greater than the 6dB bandwidth

5 The analyser level is offset to take the attenuator and cable into account.

Test equipment used for Peak Power measurement:

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	RHODE & SCHWARZ	FSU46	200034	UH281	х
ATTENUATOR	BIRD	8304-100-N-10dB	N/A	TRL222	х
CABLE	TRL	RG223	N/A	TRL373	х

RU1538/8939 Page 8 of 48

TRANSMITTER POWER SPECTRAL DENSITY - CONDUCTED - PART 15.247(E)

Ambient temperature = 16°C Relative humidity = 60% Conditions = Radio Lab Supply voltage = +110Vac

Diagram

Frequency	Channel	Measured Power Spectral Density	Power Spectral Density +inc Antenna Gain 7.0 dBi	Limit
2.405MHz	1	-9.94	-2.94dBm	+8 dBm

Notes: 1 For analyser plots see annex E.

Test Method: 1 The EUT was connected to the analyser via the unique antenna connector & a cable

2 The resolution bandwidth on the analyser was set to 3kHz and trace set to max hold.

3 The span is set to 3MHz

4 The sweep time is 1000 seconds (Span/3kHz).

5 The analyser level is offset to take the attenuator and cable into account.

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	RHODE & SCHWARZ	FSU46	200034	UH281	X
ATTENUATOR	BIRD	8304-100-N-10dB	N/A	TRL222	x
CABLE	TRL	RG223	N/A	TRL373	х

RU1538/8939 Page 9 of 48

TRANSMITTER SPURIOUS EMISSIONS - RADIATED - Part 15.247(c) and 15.209

Ambient temperature = 9° C 3m measurements <1GHz [X] Relative humidity = 60% 3m measurements >1GHz [X]

Conditions = Open Area Test Site (OATS)

Supply voltage = +110Vac

	Emission Frequency (MHz)	Meas. Rx. (dBuV)	Cable loss & Pre Amp Gain (dB)	Ant. Factor (dB/m)	Field Strength (dBµV/m)	Extrap. Factor (dB)	Result (µV/m)	Limit (µV/m)
30MHz – 88MHz Restricted bands	Note 5/6							100
88MHz – 216MHz Restricted bands	Note 5/6							150
216MHz – 960MHz Restricted bands	Note 5/6							200
960MHz – 1GHz Restricted bands	Note 5/6							500
1GHz – 26GHz Restricted bands	4810.682	53.90	-33.06	32.9	53.74Pk	-	486.40	500
30MHz -26GHz	Note 5/6							-20dBc

See annex E for initial pre scan results.

Notes: 1 Initial pre scans were performed see Annex E for plots.

2 See annex F for radiated bandedge compliance plots.

- 3 Emissions above 1GHz were measured with both a peak and average detectors.
- 4 Measurements were performed at 3 meters.
- 5 Only emissions with in 20dB of limit are recorded.
- 6 Emissions not directly related to the transmitter are reported under receiver tests.
- 7 Peak result under the average limit.

Test Method:

- 1 As per section 15.247.
- 2 Measuring distances as Note 4 above.
- 3 EUT 0.8 metre above ground plane.
- 4 Emissions maximised by rotation of EUT, on an automatic turntable. Raising and lowering the receiver antenna between 1m & 4m >30MHz. Horizontal and vertical polarisations, of the receive antenna.

EUT orientation in three orthagonal planes. Maximum results recorded.

The test equipment used for the tests is shown overleaf:

RU1538/8939 Page 10 of 48

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
AE, LOOP, Z2, 9kHz - 30MHz	ROHDE & SCHWARZ	HFH2	881058 - 53	07	
HORN ANTENNA	EMCO	3115	9010-3580	138	х
HORN ANTENNA	EMCO	3115	9010-3581	139	
RECEIVER	ROHDE & SCHWARZ	ESHS 10	830051/001	UH03	
RECEIVER	ROHDE & SCHWARZ	ESVS 10	844594/003	352	x
RANGE 1	TRL	3 METRE	N/A	UH06	х
AE, LOOP, Z2, 9kHz - 30MHz	ROHDE & SCHWARZ	HFH2	881058 - 53	07	
BILOG ANTENNA	CHASE	CBL6112	2129	UH93	x
SPECTRUM ANALYSER	ROHDE & SCHWARZ	FSU	200034	UH281	X
PRE AMPLIFIER	AGILENT	8449B	3008A01610	572	x

RU1538/8939 Page 11 of 48

TRANSMITTER and RECEIVER TESTS

TRANSMITTER CONDUCTED EMISSIONS - AC POWER LINE Parts 15.207 & 15.107

SIGNIFICANT EMISSIONS

FREQUENCY (MHz)	MEASUREMENT RECEIVER READING (dBµV)	DETECTOR	CONDUCTOR (L or N)	LIMIT (dBµV)
0.16	49.16	Quasi Peak	Live Line	55.46
0.27	35.11	Average	Neutral Line	50.97
2.13	31.07	Average	Neutral Line	46.00
2.18	31.40	Average	Neutral Line	46.00
2.40	27.70	Average	Neutral Line	46.00
2.70	27.58	Average	Live Line	46.00
3.17	27.97	Average	Neutral Line	46.00
7.05	37.85	Average	Live Line	50.00
8.93	35.57	Average	Live Line	50.00
9.81	36.24	Average	Neutral Line	50.00
12.07	38.87	Average	Neutral Line	50.00
13.72	38.49	Average	Neutral Line	50.00
17.84	43.76	Average	Live Line	50.00
29.23	30.83	Average	Live Line	50.00

Notes: 1 See attached plot annex D

2 EUT in normal operation mode connected to PC.

3 Worst case result recorded.

Test Method: 1 As per Radio – Noise Emissions, ANSI C63.4: 2003

The test equipment used for the Transmitter Conducted Emissions – AC Power Line Part 15.207 test was:

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
RECEIVER	ROHDE & SCHWARZ	ESHS 10	830051/001	UH03	
LISN/AMN	ROHDE & SCHWARZ	ESH3-Z5	863906/018	UH05	
RECEIVER	ROHDE & SCHWARZ	ESHS 10	841429/012	UH187	х
LISN/AMN	ROHDE & SCHWARZ	ESH3-Z5	8407 31/015	UH195	х

RU1538/8939 Page 12 of 48

POWER LINE CONDUCTION EMISSIONS

RU1538/8939 Page 13 of 48

RECEIVER TESTS

RECEIVER SPURIOUS EMISSIONS - RADIATED - PART 15.109

Ambient temperature Relative humidity [X] [X] $= 9^{\circ}C$ 10m measurements <1GHz = 620% 3m measurements >1GHz

= Open Area Test Site (OATS) = +110Vdc Conditions

Supply voltage

Antenna

	FREQ. (MHz)	MEAS. Rx. (dBµV)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	FIELD ST'GH (dBµV/m)	FIELD ST'GH (μV/m)	LIMIT (μV/m)
	66.75	26.62	1.19	4.99	-	32.80	43.65	90
30MHz – 88MHz	67.90	13.78	1.19	5.03	-	20.00	10.00	90
SUIVINZ — OOIVINZ	73.75	28.70	1.25	5.55	-	35.50	59.56	90
	86.00	17.60	1.50	7.90	-	27.00	22.38	90
	122.90	20.93	1.75	11.52	-	34.20	51.28	150
	133.55	23.84	1.86	11.30	-	37.00	70.79	150
	147.45	21.18	2.05	10.17	-	33.40	46.77	150
88MHz – 216MHz	157.50	21.08	2.08	9.34	-	32.50	42.17	150
001VITZ - 2101VITZ	159.75	22.00	2.10	9.50	-	33.60	47.86	150
	167.00	21.70	2.15	9.15	-	33.00	44.66	150
	172.05	26.17	2.20	8.83	-	37.20	72.44	150
	184.35	22.77	2.30	8.33	-	33.40	46.77	150
	233.50	23.03	2.69	9.98	-	35.70	60.95	210
	240.05	19.36	2.70	10.84	-	32.90	44.15	210
	243.45	12.64	3.80	11.16	-	27.60	23.98	210
	258.05	12.30	2.90	12.90	-	28.10	25.41	210
	266.90	17.76	2.99	12.95	-	33.70	48.41	210
	282.60	12.86	3.08	12.56	-	28.50	26.60	210
	336.10	21.94	5.00	13.96	-	40.90	110.91	210
216MHz – 960MHz	384.10	14.71	3.79	15.30	-	33.80	48.97	210
210MHZ - 900MHZ	400.15	10.59	3.97	15.94	-	30.50	33.49	210
	432.10	14.02	4.18	16.40	-	34.60	53.70	210
	576.15	10.77	5.25	18.98	-	35.00	56.23	210
	672.10	8.81	5.89	19.10	-	33.80	48.97	210
	720.15	17.73	6.16	19.31	-	43.20	144.54	210
	768.15	9.78	6.35	20.07	-	36.20	64.56	210
	875.00	11.03	6.96	20.51	-	38.50	84.14	210
	912.20	8.21	7.15	20.84	-	36.20	64.56	210
960MHz – 1.0GHz								

RU1538/8939 Page 14 of 48

	1.05608	56.46	0.62	24.30	36.91	44.47	167.30	300	
	1.06691	54.66	0.62	24.30	36.91	42.67	135.98	300	
	1.10416	52.79	0.64	24.50	36.50	41.43	117.89	300	
	1.12500	54.27	0.64	24.60	36.50	43.01	141.41	300	
	1.15224	51.67	0.64	24.65	36.40	40.56	106.66	300	
	1.15860	48.03	0.64	24.65	36.40	36.92	70.14	300	
	1.16565	51.06	0.68	24.70	36.30	40.14	101.62	300	
	1.25000	58.68	0.74	24.85	36.23	48.04	252.34	300	
	1.29647	53.47	0.83	24.95	36.23	43.02	141.57	300	
	1.33333	56.54	0.85	24.96	36.15	46.20	204.17	300	
	1.37500	48.01	0.86	24.98	36.10	37.75	77.17	300	
4011 05 0011	1.39260	54.03	0.87	25.00	36.05	43.85	155.77	300	
1GHz – 25.0GHz	1.48828	53.20	0.88	25.20	36.05	43.23	145.04	300	
	1.58445	49.79	0.92	25.75	36.05	40.41	104.83	300	
	1.60096	56.99	0.92	25.75	35.45	48.21	257.33	300	
	1.62500	51.03	0.92	25.80	35.45	42.30	130.31	300	
	1.63301	45.71	0.92	25.85	35.45	37.03	71.04	300	
	1.75000	53.25	0.93	26.16	35.70	44.64	170.60	300	
	1.77788	45.66	0.97	26.70	35.65	37.68	76.56	300	
	1.82596	46.09	0.98	26.80	35.60	38.27	81.94	300	
	1.87564	49.59	0.98	26.90	35.55	41.92	124.73	300	
	2.00000	51.62	1.01	27.80	35.57	44.86	174.98	300	
	2.62500	42.42	1.21	28.90	35.00	37.53	75.24	300	
	3.09935	41.89	1.31	30.50	35.36	38.34	82.60	300	
	30MI	Hz to 88MHz			90µV	/m @ 10	m		
	88MF	lz to 216MHz	<u>.</u>	150μV/m @ 10m					
Limits	216MI	Hz to 960MH	z	210µV/m @ 10m					
	9601	//Hz to 1GHz		300μV/m @ 10m					
	1GI	Hz to 5GHz			300µV	/m @ 3n	n		

Notes:

- 1 Initial pre scans were performed see Annex E for plots <1GHz.
- 2 Emissions above 1GHz were measured with both a peak and average detectors.
- 3 Measurements <1GHz were performed at 10 meters.
- 4 Measurements >1GHz were performed at 3 meters
- 5 Only emissions with in 20dB of limit are recorded.

Test Method:

- 1 As per Radio Noise Emissions, ANSI C63.4: 2003.
- 2 Measuring distances as Notes 1 to 4 above.
- 3 EUT 0.8 metre above ground plane.
- 4 Emissions maximised by rotation of EUT, on an automatic turntable. Raising and lowering the receiver antenna between 1m & 4m. Horizontal and vertical polarisations, of the receive antenna. EUT orientation in three orthagonal planes. Maximum results recorded.

RU1538/8939 Page 15 of 48

The test equipment used for the Transmitter Spurious Emissions – Radiated – Part 15.209 tests is shown below:

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
AE, LOOP, Z2, 9kHz - 30MHz	ROHDE & SCHWARZ	HFH2	881058 - 53	07	
HORN ANTENNA	EMCO	3115	9010-3580	138	х
HORN ANTENNA	EMCO	3115	9010-3581	139	
RECEIVER	ROHDE & SCHWARZ	ESHS 10	830051/001	UH03	
RECEIVER	ROHDE & SCHWARZ	ESVS 10	844594/003	352	х
RANGE 1	TRL	3 METRE	N/A	UH06	х
AE, LOOP, Z2, 9kHz - 30MHz	ROHDE & SCHWARZ	HFH2	881058 - 53	07	
BILOG ANTENNA	CHASE	CBL6112	2129	UH93	x
SPECTRUM ANALYSER	ROHDE & SCHWARZ	FSU	200034	UH281	х
PRE AMPLIFIER	AGILENT	8449B	3008A01610	572	х

RU1538/8939 Page 16 of 48

ANNEX A PHOTOGRAPHS

RU1538/8939 Page 17 of 48

TEST SETUP

RU1538/8939 Page 18 of 48

POWERLINE TEST SETUP

RU1538/8939 Page 19 of 48

OVERVIEW

RU1538/8939 Page 20 of 48

CONNECTOR OVERVIEW

RU1538/8939 Page 21 of 48

PHOTOGRAPH No. 5 CONTROL PCB RF MODULE MOUNTED

RU1538/8939 Page 22 of 48

RF PCB TOP

RU1538/8939 Page 23 of 48

RF PCB BOTTOM

RU1538/8939 Page 24 of 48

NEW POWER SUPPLY PCB MOUNTED TO CHASSIS

NEW POWER SUPPLY PCB MOUNTED CABLES REMOVED

RU1538/8939 Page 25 of 48

TOP VIEW PCB REMOVED

UNDERSIDE VIEW PCB REMOVED

RU1538/8939 Page 26 of 48

ANNEX B APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

RU1538/8939 Page 27 of 48

APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

a.	TCB	-	APPLICATION FEE	[X] [X]
b.	AGENT'S LETTER OF AUTHORISATION	-		[X]
C.	MODEL(s) vs IDENTITY	-		[]
d.	ALTERNATIVE TRADE NAME DECLARATION(s)	-		[X]
e.	LABELLING	- - -	PHOTOGRAPHS DECLARATION DRAWINGS	[X] [] [X]
f.	TECHNICAL DESCRIPTION	-		[X]
g.	BLOCK DIAGRAMS	- - -	Tx Rx PSU AUX	[X] [] []
h.	CIRCUIT DIAGRAMS	- - -	Tx Rx PSU AUX	[X] [] []
i.	COMPONENT LOCATION	- - -	Tx Rx PSU AUX	[X] [] []
j.	PCB TRACK LAYOUT	- - -	Tx Rx PSU AUX	[X] [] []
k.	BILL OF MATERIALS	- - -	Tx Rx PSU AUX	[X] [] []
l.	USER INSTALLATION / OPERATING INSTRUCTIONS	-		[X]

RU1538/8939 Page 28 of 48

ANNEX C EQUIPMENT CALIBRATION DETAILS

RU1538/8939 Page 29 of 48

EQUIPMENT CALIBRATION

TRL	Equipment	Man fast see	Last Cal	Calibration	Due For
Number	Туре	Manufacturer	Calibration	Period	Calibration
UH06/07	IC OATS Submission	TRL	01/06/2007	24	01/06/2009
UH06/07	NSA Calibration	TRL	17/12/2007	12	17/12/2008
UH006	3m Range ERP CAL	TRL	08/12/2006	12	08/12/2007
UH028	Log Periodic Ant	Schwarbeck	30/05/2007	24	30/05/2009
UH029	Bicone Antenna	Schwarbeck	06/05/2007	24	06/05/2009
UH041	Multimeter	AVOmeter	15/01/2008	12	15/01/2009
UH093	Bilog Antenna	Chase	21/05/2007	24	21/05/2009
UH122	Oscilloscope	Tektronix	10/12/2007	24	10/12/2009
UH132	Power meter	Marconi	15/01/2008	12	15/01/2009
UH162	ERP Cable Cal	TRL	21/12/2007	12	21/12/2008
UH187	Receiver	R&S	12/12/2007	12	12/12/2008
UH195	LISN	R&S	04/01/2008	12	04/01/2009
UH228	Power Sensor	Marconi	16/01/2008	12	16/01/2009
UH253	1m Cable N type	TRL	30/01/2008	12	30/01/2009
UH254	1m Cable N type	TRL	30/01/2008	12	30/01/2009
UH269	1m Cable N type	TRL	30/01/2008	12	30/01/2009
UH270	1m Cable N type	TRL	30/01/2008	12	30/01/2009
UH271	1.5m Cable N type	TRL	30/01/2008	12	30/01/2009
UH272	1.5m Cable N type	TRL	30/01/2008	12	30/01/2009
UH273	2m Cable N type	TRL	30/01/2008	12	30/01/2009
UH274	2m Cable N type	TRL	30/01/2008	12	30/01/2009
UH281	Spectrum Analyser	R&S	24/10/2007	12	24/10/2008
UH330	K type transition	Maury M'wave	13/06/2008	24	13/06/2010
UH340	Signal Generator	HP	06/05/2008	12	06/05/2009
UH365	Harmonic Mixer	Agilent	16/07/2008	24	16/07/2010
UH366	Harmonic Mixer	Agilent	21/07/2008	24	21/07/2010
UH367	Harmonic Mixer	Agilent	02/07/2008	24	02/07/2010
L005	CMTA	R&S	30/10/2007	12	30/10/2008
L007	Loop Antenna	R&S	22/05/2007	24	22/05/2009
L138	1-18GHz Horn	EMCO	23/05/2007	24	23/05/2009
L139	1-18GHz Horn	EMCO	23/05/2007	24	23/05/2009
L176	Signal Generator	Marconi	06/05/2008	12	06/05/2009
L193	Bicone Antenna	Chase	06/05/2008	24	06/05/2010
L203	Log Periodic Ant	Chase	06/05/2008	24	06/05/2010
L263/A	Horn 18-26GHz	Flann	13/06/2008	24	13/06/2010
L300	Horn 18-26GHz	Flann	12/06/2008	24	12/06/2010
L309	SMA Transition		13/06/2008	24	13/06/2010
L352	Receiver	R&S	05/12/2007	12	05/12/2008
L426	Temperature Indicator	Fluke	22/01/2008	12	22/01/2009
L479	Analyser	Anritsu	22/09/2008	12	22/09/2009
L572	Pre Amp	Agilent	04/07/2008	12	04/07/2009

RU1538/8939 Page 30 of 48

ANNEX D MEASUREMENT UNCERTAINTY

RU1538/8939 Page 31 of 48

Radio Testing - General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95% confidence where no required test level exists.

[1] Adjacent Channel Power

Uncertainty in test result = 1.86dB

[2] Carrier Power

```
Uncertainty in test result (Equipment - TRLUH120) = 2.18dB
Uncertainty in test result (Equipment – TRL05) = 1.08dB
Uncertainty in test result (Equipment – TRL479) = 2.48dB
```

[3] Effective Radiated Power

Uncertainty in test result = 4.71dB

[4] Spurious Emissions

Uncertainty in test result = 4.75dB

[5] Maximum frequency error

```
Uncertainty in test result (Equipment - TRLUH120) = 119ppm Uncertainty in test result (Equipment – TRL05) = 0.113ppm Uncertainty in test result (Equipment – TRL479) = 0.265ppm
```

[6] Radiated Emissions, field strength OATS 14kHz-18GHz Electric Field

Uncertainty in test result (14kHz - 30MHz) = 4.8dB, Uncertainty in test result (30MHz - 1GHz) = 4.6dB, Uncertainty in test result (1GHz-18GHz) = 4.7dB

[7] Frequency deviation

Uncertainty in test result = 3.2%

[8] Magnetic Field Emissions

Uncertainty in test result = 2.3dB

[9] Conducted Spurious

```
Uncertainty in test result (Equipment TRL479) Up to 8.1GHz = 3.31dB
Uncertainty in test result (Equipment TRL479) 8.1GHz – 15.3GHz = 4.43dB
Uncertainty in test result (Equipment TRL479) 15.3GHz – 21GHz = 5.34dB
Uncertainty in test result (Equipment TRLUH120) Up to 26GHz = 3.14dB
```

[10] Channel Bandwidth

Uncertainty in test result = 15.5%

[11] Amplitude and Time Measurement - Oscilloscope

Uncertainty in overall test level = 2.1dB, Uncertainty in time measurement = 0.59%, Uncertainty in Amplitude measurement = 0.82%

[11] Power Line Conduction

Uncertainty in test result = 3.4dB

RU1538/8939 Page 32 of 48

[12] Spectrum Mask Measurements

Uncertainty in test result = 2.59% (frequency)
Uncertainty in test result = 1.32dB (amplitude)

[13] Adjacent Sub Band Selectivity

Uncertainty in test result = 1.24dB

[14] Receiver Blocking – Listen Mode, Radiated

Uncertainty in test result = 3.42dB

[15] Receiver Blocking - Talk Mode, Radiated

Uncertainty in test result = 3.36dB

[16] Receiver Blocking - Talk Mode, Conducted

Uncertainty in test result = 1.24dB

[17] Receiver Threshold

Uncertainty in test result = 3.23dB

[18] Transmission Time Measurement

Uncertainty in test result = 7.98%

RU1538/8939 Page 33 of 48

ANNEX E POWER LINE CONDUCTION

RU1538/8939 Page 34 of 48

Powerline Conduction

150kHz - 30MHz

EUT:

RF500Lite

Manuf:

Comark Ltd

Op Cond:

LISN UH195, cable UH21 & Receiver UH187

Operator:

S Hodkinson

Test Spec:

EN55022 Class B (or Variant)

Comment:

Neutral Line, 110V, 60Hz

EUT in Rx mode, connected to network via network cable powered via switch mode pwr supply.

20 Nov 2008 12:12

Scan Settings (1 Range) Frequencies Receiver Settings IF BW Start M-Time Preamp OpRge Stop Step Detector Atten 30MHz 5kHz 10kHz 50msec OFF 60dB 150kHz PK+AV Auto Transducer No. Start Stop Name 30MHz UH21 9kHz 1 2 150kHz 30MHz UH195

Final Measurement:

Detectors: Meas Time: X QP / + AV 2sec

Subranges: Acc Margin: 25 20 dB

PAGE 1

ANNEX F RADIATED EMISSIONS

RU1538/8939 Page 36 of 48

RADIATED EMISSIONS 30MHz -1GHz

19 Nov 2008 09:01

OpRge

60dB

TRL Compliance Ltd

E-Field Radiation (30MHz-1GHz)

EUT:

RF500 Lite

Manuf:

Comark Ltd

Op Cond:

Prescan 30MHz - 1000MHz

Operator:

S Hodgkinson

Test Spec:

Part15

Comment:

(1 Range)

Scan Settings

Transducer

EUT in Rx mode, connected to network via network cable, and powered via switch mode power supply.

Rx antenna Vertical.

Start 30MHz Frequencies Stop 1000MHz

No.

21

22

Start 30MHz

30MHz

Stop 1000MHz 1000MHz

IF BW

120kHz

Name **UH72 UH93**

PK

Detector

Receiver Settings

Atten

Auto

Preamp

ON

M-Time

1msec

Final Measurement:

Detector: Meas Time:

XQP 2sec 50 10 dB

Step

50kHz

Subranges: Acc Margin:

RU1538/8939 Page 37 of 48

RADIATED EMISSIONS 1GHz -2GHz

Date: 19.NOV.2008 13:12:31

RADIATED EMISSIONS 2GHz -5GHz

Date: 19.NOV.2008 13:25:10

RU1538/8939 Page 38 of 48

RADIATED EMISSIONS 5GHz - 10GHz

Date: 19.NOV.2008 13:26:02

RADIATED EMISSIONS 10GHz - 15GHz

Date: 19.NOV.2008 13:26:40

RU1538/8939 Page 39 of 48

RADIATED EMISSIONS 15GHz - 18GHz

Date: 19.NOV.2008 13:27:11

RADIATED EMISSIONS 18GHz - 25GHz

Date: 21.NOV.2008 14:21:06

RU1538/8939 Page 40 of 48

ANNEX G RADIATED BANDEDGE COMPLIANCE

RU1538/8939 Page 41 of 48

RADIATED LOWER BAND EDGE

Date: 19.NOV.2008 12:07:43

RADIATED UPPER BAND EDGE

Date: 19.NOV.2008 12:15:45

RU1538/8939 Page 42 of 48

ANNEX H 6dB BANDWIDTH

RU1538/8939 Page 43 of 48

6dB BANDWIDTH

Date: 17.NOV.2008 16:25:23

 $\begin{array}{ll} f_{lower} & = 2.404182 GHz \\ f_{higher} & = 2.405769 GHz \\ 6dB \ Bandwidth & = 1.5865 \ MHz \end{array}$

RU1538/8939 Page 44 of 48

ANNEX I PEAK OUTPUT POWER

RU1538/8939 Page 45 of 48

OUTPUT POWER

Date: 26.NOV.2008 15:50:48

RU1538/8939

Page 46 of 48

ANNEX J POWER SPECTRAL DENSITY

RU1538/8939 Page 47 of 48

POWER SPECTRAL DENSITY

Date: 18.NOV.2008 09:40:09

RU1538/8939 Page 48 of 48