Chapter 1.6 Practice Problems

EXPECTED SKILLS:

• Know where the trigonometric and inverse trigonometric functions are continuous.

• Be able to use $\lim_{x\to 0} \frac{\sin x}{x} = 1$ or $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$ to help find the limits of functions involving trigonometric expressions, when appropriate.

• Understand the squeeze theorem and be able to use it to compute certain limits.

PRACTICE PROBLEMS:

Evaluate the following limits. If a limit does not exist, write DNE, $+\infty$, or $-\infty$ (whichever is most appropriate).

- $1. \lim_{x \to \frac{\pi}{4}} \sin(2x)$
 - 1
- $2. \lim_{\theta \to \pi} (\theta \cos \theta)$
 - $-\pi$
- $3. \lim_{x \to 0^+} \csc x$
 - $+\infty$
- $4. \lim_{x \to \frac{\pi}{2}^+} \tan x$
 - $-\infty$
- $5. \lim_{x \to \frac{\pi}{2}^{-}} \tan x$
 - $+\infty$
- 6. $\lim_{x \to \frac{\pi}{4}} \sec x$
 - $\sqrt{2}$
- $7. \lim_{x \to 0} \left(\frac{\sin x}{3x} \right)$
 - $\frac{1}{3}$

- $8. \lim_{x \to 0} \left(\frac{\sin 3x}{3x} \right)$
- 9. $\lim_{x \to 0} \left(\frac{\sin x}{|x|} \right)$
 - DNE
- 10. $\lim_{x \to 0} \left(\frac{1 \cos x}{4x} \right)$
 - 0
- 11. $\lim_{x \to 0^-} \left(\frac{\cos x}{x} \right)$
- 12. $\lim_{x \to 0} \left(\frac{\sin 2x}{x} \right)$
- 13. $\lim_{x \to 0} \left(\frac{\tan 2x}{x} \right)$
 - 2
- 14. $\lim_{x \to 0} \left(\frac{1 3\cos x}{3x} \right)$
 - DNE
- 15. $\lim_{x \to \infty} \arccos\left(\frac{-x^2}{x^2 + 3x}\right)$
 - π
- 16. $\lim_{x \to 0} \left(\frac{3x^2}{1 \cos^2 x} \right)$
 - 3
- 17. $\lim_{x \to 0} \left(\frac{\tan 5x}{\sin 9x} \right)$

 - $\frac{5}{9}$

18. Multiple Choice: Evaluate $\lim_{x\to 0} \frac{\tan^2 x}{x^2}$

- (a) -1
- (b) 0
- (c) 1
- (d) $-\infty$
- (e) $+\infty$

 \mathbf{c}

For problems 19-23, evaluate the following limits by first making an appropriate substition. If the limit does not exist, write DNE, $+\infty$, or $-\infty$ (whichever is most appropriate).

- $19. \lim_{x \to \infty} \left(e^x \sin\left(e^{-x}\right) \right)$
 - 1
- $20. \lim_{x \to 1} \left(\frac{\sin(\ln x^5)}{\ln x} \right)$
 - 5
- $21. \lim_{x \to \frac{\pi}{2}^+} e^{\sec x}$
 - 0
- $22. \lim_{x \to 0} \sin\left(\frac{1}{x^2}\right)$
 - DNE
- 23. $\lim_{x \to 0^+} \tan^{-1} (\ln x)$
 - $-\frac{\pi}{2}$

For problem 24-28, determine the value(s) of x where the given function is continuous.

 $24. \ f(x) = \csc x$

f(x) is continuous for all $x \neq \pi k$, where k is any integer.

25. $f(x) = e^{\sin x}$

f(x) is always continuous.

26.
$$f(x) = \frac{1}{1 - 2\cos x}$$
 on $[0, 2\pi]$

$$f(x)$$
 is continuous for all x in $[0,2\pi]$ except for $x=\frac{\pi}{3}$ and $x=\frac{5\pi}{3}$

27. $f(x) = \sin^{-1} x$

f(x) is continuous on its domain of [-1,1]

28.
$$f(x) = \begin{cases} \cos x & \text{if } x < \frac{\pi}{4} \\ \sin x & \text{if } x \ge \frac{\pi}{4} \end{cases}$$

f(x) is always continuous.

29. Find all non-zero value(s) of
$$k$$
 so that $f(x) = \begin{cases} \frac{3\sin(kx)}{x} & \text{if } x > 0 \\ 6k^2 + 5x & \text{if } x \leq 0 \end{cases}$ is continuous

at x = 0.

$$k = \frac{1}{2}$$

30. Use the Intermediate Value Theorem to prove that there is at least one solution to $\cos x = x^2$ in (0,1).

Let $f(x) = \cos(x) - x^2$. Since f(x) is continuous on $(-\infty, \infty)$, it is also continuous on [0, 1]. Notice that f(0) = 1 > 0 and $f(1) = \cos(1) - 1 < 0$. Thus, the Intermediate Value Theorem states that there must be some c in (0, 1) such that f(c) = 0. i.e., there must be at least one c in (0, 1) such that $\cos(c) - c^2 = 0 \implies \cos(c) = c^2$, as desired.

31. Let f(x) be a function which satisfies $5x - 6 \le f(x) \le x^2 + 3x - 5$ for all $x \ge 0$. Compute $\lim_{x \to 1} f(x)$.

4

-1

32. The graph of $f(x) = x^2 e^{\cos(1/x)}$ is shown below on [-0.1, 0.1]:

Make a conjecture about $\lim_{x\to 0} f(x)$ and then use the Squeeze Theorem to show this is true.

Claim: $\lim_{x\to 0} f(x) = 0$

Proof: We can bound $f(x) = x^2 e^{\cos(1/x)}$ above by ex^2 and below by $e^{-1}x^2$, both of which approach 0 as x approaches 0. Thus, by the squeeze theorem, $f(x) \to 0$ as well when $x \to 0$.

33. Let x be a fixed real number. Compute $\lim_{h\to 0} \frac{\sin{(x+h)} - \sin{x}}{h}$. (Hint: The identity $\sin{(A+B)} = \sin{A}\cos{B} + \cos{A}\sin{B}$ will be useful.)