1.) ρ that for the needed $\beta i = k + e_i$ the error ore independent where 0 . Also, express that the measurements and then a more precise dence was used for the next n_2 necessary. Thus $var(e_i) = \sigma^2$ $i = 1,, n_1$ (nor $(e_i) = \frac{\sigma^2}{2}$ $i = n_1 + 1,, n_n$)
(a) ignore the fact that the enors have different variables, denne the LEE of $\hat{\alpha}$ vong number which is $\hat{\alpha} = (x'x)'x'y$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(b) Derve the washled LSE for a, 2 was let w = { 215 c= 1,+1,
· We know from H.O. 4, slide 8: Brows = (X'WX) X'W y where W 15: W= [0. 0] was case Kn:
$w = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $w = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $w = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $w = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $w = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $w = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $w = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $w = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$x'w = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 \\ 0 & 2 \end{bmatrix}$
$x_1 m x = [1155]$ = $u'_{+5}(u-u') = x_1 (x_1 m x_2) = u'_{+5}(u-u') = u'_{+5}u^5$
$(x, mx), x, mh = \begin{bmatrix} y_1 & y_2 & y_3 \\ y_4 & y_4 \\ y_5 & y_5 \\ y_6 & y_6 \\ y_6$

```
1.) (conta)
      (C) & n,= NZ. Compute the expected values on venances of the two estimaters above.
         Which is a better colonator ; why? (Use MSE (a) = Bias (a) 2 + var(a) as your
           f n=n2 => xwis= n, +2n2 = 211+1N12 = 171+ 352
   ans 1
        [x/x] = [[x/x] x [x/x] = [x/x]
                   = X x x x x x x = [X X X ] = X
             · B· as ( a) = E[ 2] - x = 0
       · var(2) = var ( + 242) - 12 var(240) = 12 [var(4,) + ... + var(4,)]
                = \frac{1}{12} \left[ N_1 \sigma^2 + N_2 \sigma^2 / 2 \right] = \frac{1}{12} \left[ \frac{2N\sigma^2}{2N\sigma^2} + \frac{N\sigma^2}{2\sigma^2} \right] = \frac{4N}{3\sigma^2} \left( N = N_1 + N_2 \right)
        IMSE[2]: 302
  Rws.
      [wx/x] = [w,x/xwx] = [wx/xwx]] = [w,x/x]3.
                    = (x'wxj'x'w E[xx|x,w] = (x'wxj' x'wx = x
          · Bias (2ms) = E[2ms] - x = 0.
     · var(2mcs) = var(3m 2gi + 3m 2gi) = que var(2gi) + que var (2gi)
                = the [var(y,)+ ... +var(y,)] + and [var(y,m) + -+ var(y,)]
                = 11 02 + 412 02 = 03 + 252 (n,=12= 2N =) 9n,=912 = 22)
               = 202 + 402 = 652 = 202
        MSE[Rus] = 3
To a use is a better estimated bill it is unfracted (as is a one) and him a smelly verance.
```


	()
3) (and)	
(b) Explain why the model is not valid. Deckny at the plot of old resources as filled values we see that the resolucies do	
not randonly fluctuate orand o which implies the model is tredict.	
10 looking at a plat of Most residuals I vs filted relies we can see we do not have	
Constant crear vannue	
1) The stop predictor variables X, 1, X2 secon to be highly correlated which went we	
might have 5000s w/ nulticollinearly in the model.	
(C) Describe what steps you would take to obtain availed regression model.	
· I would try power transfer motions on y, y and for the.	
U) Ohne be sould like the state of cause leave	
4.) letern to gowhn 4 from however 62. Now, p the revenue in y is proper tend to the # of cours long	
get on the scale: I recommend double-checking using with hour-algebra and (if your working	
In 2) The men model function I an (y ~ x, weight = w) where w is a vector of weight	
and you went your our y.	
(a) Deorga as appropriate news of wey libs.	
yi = B, com, + B2 com 2 + Ei where can 2 'come and wednester vendos	
udscobing if it own ? com ? were a	-
" We can spirit up Ei into 21i + 225 whom the scale respectively.	
2, x the souden error due to cour 1 ; eq 15 th order error due to com E.	
· var (4:) = var (exiteri) = var(exi) + var(exi)	
ascening the renounce are engod: Nor (gi) = 20.	
=> wi = no where no is the the of cano as the scale.	- Agy

4) (and) (b) (alcohole the new least-squeres colincles of the worlds of the come using weighted least squeres.

B = (X'WX) X'Wy; X: [0]

y . [31]

w . [0]

0 0 0 12 = 7 (x 1 x x 5" = 3 2 -1 2 ~ (x'wx)= 101/21/2 01 41 + 1/2 (4st gu) · Bus (x'wx)'x'wy = = = [2:1] ASE-15 (20 62) - 162 - 153 - 152 - 152 - 152 - 152 - 152 A 27, - 92+ 1/2 (45+44) 2y2.y, + 1/2(ys+y4)

70

13

in the first programme of the

W Long Labor

2003

.

```
3,) For the model yi= Bo + BIXi+ ei the errors are i'd w| new O. Re Pour observed rebes
                   of x; are X' = [1 2 34]. The estreler of B, 18 B, = [ 14 + 245 - 242 - 4, ] [5.
                     For Mrs needed, do the Ellany;
                      (a) Is & unbrased? why or why not?
                                       E[8] = E[ 34+233-232-31] = & E[44+233-242-31]
                                                        = $ (E[y_] + 2E[y_5] - 2 E[y_2] - E[y,])
                                                      = = = (E[B+B,(4)]+2 E[A+D+ 0:13)]-SE[B+B(15)]- E[B+B(1)])
                                                     = 115 (36+286+280-36+48,+2(3)p,-2/2/3,-B)
                                       E[8]= 15(5B1) = B1 => 1 is unbiased
                 (b) What is to sarphy various of $,?
                              Nor (B, ) = Nor (44+543-545-71) =)
                                                     = 1/25 var ( Bot B, (4) + e, + 2 (Bot B, 12) + e3) - 2 (Bot B, (2) + e2 - (Bot B, (1) + e, ))
                                                    = 15 var(e,+ 2es - 2c2 - e,)
                                                   = 15 (var(e) + 4 var(es) + 4 var(es) + var(e)) (+ coverance tems =0 b/c ico.)
                                                  = 25 ( of + 40 + 40 + 40 + 10 = 100 = [2 5 02 = var (8)]
           7 Ext = 14213+4 = 10
                                                                                                                                                 Exi2 = 1+419+16 = 30
                                                 = 4 10 => (1x) = 1 30 -10
10 30 = 20 -10 4
                                = (x'x)'x' = 1 [30-10] {$\frac{2}{3}} = \frac{1}{20} \frac{2}{30\frac{2}{3}} = \frac{1}{30} \frac{2}{30} = \frac{2}{30} \frac{2}{30} = \frac{2}{30} \frac{2}{30} = \frac{2}{30} = \frac{2}{30} \frac{2}{30} = \frac{2}{3
                 · Var ($) = 52 (x1x) => "var ($) = 20 = 5. ( see chp2 roles slick 48)
 (d) compare to sampling rename of B, w/ B,
```

· B, is a better colomber of B, as ty ar both whosed, but var (B,) 4 VW (B)

ť

- 6.) A God nowfactury company is interested in modely whiter people prefer

 X. = Type A or Type B not day lows well their hot days. They also wit to control

 for X2 = different anends of societies in the hit days Konselvers and are toshy but day lows

 at a venely of societies carbon's gury each toster both a but day 's can but we no conducts.

 The response variable is y = perceived task of but an a scale of 1:10.
 - (6) In order to find out whater Type A or Type B is preferred, is it necessary to have an unberachen term?
 - · No. If we wanted to End out if the felletruship between the perceived laste of the lan and the law type was different across sooken lands in the last days
 - (b) yi = Po + B, I(A) + Bz Sodium, where I(A) = { 0. F xi= B } ook about the part bible

 Po: Re mean perceived table of bun Type B when sodium like are of
 - 3, : The difference between the view perceived take of win Type A and mean perceived take of but type B, willy codern content cardent?
 - B2: The men change in pricered faste of the son fit a limit change in sodium intent, had by bour type custants
 - Ho: 30=B1=B0=0 Ha: At lust are Bi \$0. (Ftox).

 (From reject NN alexe:) Ho: 8=0, Ha: 30 #0; Ho: B1=0, H1: B2 #0
 - (C) whether or not you added an interorder term above, assure now that it was added and it is statistically symptems. How should we interpt this whereally in context?

 Ye = Bo + B, I(A) + Bz sodium: + Bz (I(A); * Sodium)
 - Bs: The difference between the men change in percent tode of tantype A for a funt movemen in sodium content and the men change in percent today at some for as soon for the for a fund movemen, a worken content.

7.) In a one-way ADOVA model w/ K= 3 groups ", 4 desper group. (a) Ore the F. stetrishe in Model Reduction Method 2 to derive a delistic for lealing whether the arrange of the means of the first two gaps is the source as the mean of the third goop. Int is, crake to F-shelishe Fr toling to: 2 (11, +12) = 113 (Hint: Dut fit a needed w/ a y intercept) ·Ho: \$2(4,+42) = 24 = 0 # = : \(\frac{1}{2}(4,+42) - 42 \div 0 ê' = [ê, êz - - ê 24] A= [0.50,5 -1] , N= 0 x'= 11110000000 000011110000 _000000001111 F= (AB-N) (A(x'x) A') (AB-N)/ SSE/(n-p-1) (X,X) = (00520) (V(X,X), V,) = 0.000 · (AB-h) = û, tûz - 2ûs F= 3 (2(\wallet, +\wallet_2) - \wallet_3)2/1 24(2(\wallet, +\wallet_2) - \wallet_3)2 SSE/9 (5) M; = 5,6, Q; = 7,9, Q; = 6,1 , SSE = 12.5. Fort Hype at 0 =0.05. F= 0.792 < Fig = 5.12. Fail to reject the , we don't have symbount

endence at the 01-0.05 level to conclude that \$ (4, +42) + 43 =0