LES VARIATIONS E02

EXERCICE N°1 Déterminer la fonction dérivée d'une fonction

Les fonctions suivantes sont définies et dérivables sur R . Déterminer leur fonction dérivée.

1)
$$f_1: x \mapsto 5$$
 ; $f_2: x \mapsto \frac{15}{7}$; $f_3: x \mapsto \sqrt{3}$; $f_4: x \mapsto 2\pi$; $f_5: x \mapsto -3\pi + 5\sqrt{3}$

2)
$$g_1: x \mapsto x+2$$
 ; $g_2: x \mapsto x+3\pi\sqrt{7}$

3)
$$g_3: x \mapsto 4x + 5$$
; $g_4: x \mapsto \sqrt{7}x + 8,5$; $g_5: x \mapsto \frac{4}{3}x - 8\sqrt{3}$; $g_6: x \mapsto \frac{8}{7} - 4x$

4)
$$h_1: x \mapsto 3x^2 - 4$$
; $h_2: x \mapsto 4x^2 + 5x - 1$; $h_3: x \mapsto -2.5x^2 + 6x + \sqrt{3}$

5)
$$h_4: x \mapsto \frac{5}{2}x^3 - 4x^2 + 3x - 7\sqrt{11}$$
; $h_5: x \mapsto -\pi x^3 + \sqrt{5}x^2 - \frac{14}{3}x + 33$

6)
$$h_6: x \mapsto (3x+4)(2x-7)$$
; $h_7: x \mapsto (7-2x)^2$

EXERCICE N°2 Maîtriser le vocabulaire

Soit f la fonction définie pour tout $x \in \mathbb{R}$ par $f(x) = -6x^2 + 4x + 1$. On note C_f sa courbe représentative.

- 1) Calculer f'(2).
- 2) Déterminer le nombre dérivé de f en a=3.
- 3) Déterminer le coefficient directeur de la tangente à la courbe C_f au point d'abscisse 1.

EXERCICE N°3 Quelques tracés de tangente à une courbe

Le plan est muni du repère orthonormal $(O; \vec{i}, \vec{j})$ (unité: 1 cm).

Soit f la fonction définie sur l'intervalle [-1;3] dont on donne la courbe représentative C_f ci-contre.

Construire la tangente T_1 .

Construire la tangente T_2 .

Construire la tangente T_3 .

LES VARIATIONS E02

EXERCICE N°1 Déterminer la fonction dérivée d'une fonction

Les fonctions suivantes sont définies et dérivables sur R . Déterminer leur fonction dérivée.

1)
$$f_1: x \mapsto 5$$
 ; $f_2: x \mapsto \frac{15}{7}$; $f_3: x \mapsto \sqrt{3}$; $f_4: x \mapsto 2\pi$; $f_5: x \mapsto -3\pi + 5\sqrt{3}$

2)
$$g_1: x \mapsto x+2$$
 ; $g_2: x \mapsto x+3\pi\sqrt{7}$

3)
$$g_3: x \mapsto 4x + 5$$
; $g_4: x \mapsto \sqrt{7}x + 8,5$; $g_5: x \mapsto \frac{4}{3}x - 8\sqrt{3}$; $g_6: x \mapsto \frac{8}{7} - 4x$

4)
$$h_1: x \mapsto 3x^2 - 4$$
; $h_2: x \mapsto 4x^2 + 5x - 1$; $h_3: x \mapsto -2.5x^2 + 6x + \sqrt{3}$

5)
$$h_4: x \mapsto \frac{5}{2}x^3 - 4x^2 + 3x - 7\sqrt{11}$$
; $h_5: x \mapsto -\pi x^3 + \sqrt{5}x^2 - \frac{14}{3}x + 33$

6)
$$h_6: x \mapsto (3x+4)(2x-7)$$
; $h_7: x \mapsto (7-2x)^2$

EXERCICE N°2 Maîtriser le vocabulaire

Soit f la fonction définie pour tout $x \in \mathbb{R}$ par $f(x) = -6x^2 + 4x + 1$. On note C_f sa courbe représentative.

- 1) Calculer f'(2).
- 2) Déterminer le nombre dérivé de f en a=3.
- 3) Déterminer le coefficient directeur de la tangente à la courbe C_f au point d'abscisse 1.

EXERCICE N°3 Quelques tracés de tangente à une courbe

Le plan est muni du repère orthonormal $(O; \vec{i}, \vec{j})$ (unité: 1 cm).

Soit f la fonction définie sur l'intervalle [-1;3] dont on donne la courbe représentative C_f ci-contre.

Construire la tangente T_1 .

Construire la tangente T_2 .

Construire la tangente T_3 .

