1a. Problem:

$$\begin{array}{ll} \text{maximize} & z = 3x_1 + 13x_2 + 13x_3 \\ \text{subject to} & x_1 + x_2 \leq 7 \\ & x_1 + 3x_2 + 2x_3 \leq 15 \\ & 2x_2 + 3x_3 \leq 9 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

with optimal basis $\{x_1, x_2, x_3\}$ and

$$B^{-1} = \begin{pmatrix} 5/2 & -3/2 & 1\\ -3/2 & 3/2 & -1\\ 1 & -1 & 1 \end{pmatrix}$$

First convert to standard form:

$$\begin{array}{ll} \text{minimize} & \hat{z} = -3x_1 - 13x_2 - 13x_3 \\ \text{subject to} & x_1 + x_2 + x_4 = 7 \\ & x_1 + 3x_2 + 2x_3 + x_5 = 15 \\ & 2x_2 + 3x_3 + x_6 = 9 \\ & x_1, x_2, x_3, x_4, x_5, x_6 \geq 0 \end{array}$$

Calculate solution from given optimal basis:

$$\mathbf{B}^{-1}\mathbf{b} = \begin{pmatrix} 5/2 & -3/2 & 1 \\ -3/2 & 3/2 & -1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 7 \\ 15 \\ 9 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix} = \mathbf{x}_B$$

$$\hat{z} = -3(4) - 13(3) - 13(1) = -64$$

Calculate optimum dual variables:

$$\mathbf{c}_B^T \mathbf{B}^{-1} = \begin{pmatrix} -3 & -13 & -13 \end{pmatrix} \begin{pmatrix} 5/2 & -3/2 & 1 \\ -3/2 & 3/2 & -1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix} = \mathbf{y}^T$$

1b. Tableau, calculated with new constraint, and row 2 multiplied by -1:

\mathbf{basic}	x_1	x_2	x_3	x_4	x_5	x_6	b
-z	0	0	0	-40	37	-29	0
x_1	1	0	0	5/2	-3/2	1	23/2
x_2	0	-1	0	3/2	-3/2	1	9/2
x_3	0	0	1	1	-1	1	6

Pivot x_4 in, x_2 out:

\mathbf{basic}	$ x_1 $	x_2	x_3	x_4	x_5	x_6	b
-z	0	80/3	0	0	3	7/3	-120
$\overline{x_1}$	1	5/3	0	0	1	-2/3	4
x_4	0	-2/3	0	1	-1	2/3	3
x_3	0	2/3	1	0	0	1/3	3

1c. Calculate range:

$$\mathbf{B}^{-1}\{\mathbf{b}+\delta\} = \begin{pmatrix} 5/2 & -3/2 & 1 \\ -3/2 & 3/2 & -1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 7+x \\ 15 \\ 9 \end{pmatrix} = \begin{pmatrix} 4+2.5\delta \\ 3-1.5\delta \\ 1+\delta \end{pmatrix} \Rightarrow \begin{array}{l} \delta \ge -1.6 \\ \delta \le 2 \\ \delta \ge -1 \end{array}$$

1d. Tableau:

\mathbf{basic}	x_1	x_2	x_3	x_4	x_5	x_6	b
-z	0	0	0	-43/2	49/2	-12	0
$\overline{x_1}$	1	0	0	5/2	-3/2	1	4
x_2	0	1	0	-3/2	3/2	-1	3
x_3	0	0	1	1	-1	1	1

 x_4 enters, x_3 leaves:

\mathbf{basic}	x_1	x_2	x_3	x_4	x_5	x_6	b
-z	0	0	43/2	0	3	9.5	43/2
x_1	1	0	-5/2	0	1	-3/2	3/2
x_2	0	1	3/2	0	0	1/2	9/2
x_{4}	0	0	1	1	-1	1	1

1e. Calculate range:

$$\left(\begin{array}{cccc} 4 & 3 & 1 \end{array} \right) \geq \left(\begin{array}{cccc} \delta & 0 & 0 \end{array} \right) \left(\begin{array}{cccc} 5/2 & -3/2 & 1 \\ -3/2 & 3/2 & -1 \\ 1 & -1 & 1 \end{array} \right) \Rightarrow \left(\begin{array}{cccc} 4 & 3 & 1 \end{array} \right) \geq \left(\begin{array}{cccc} 2.5\delta & -1.5\delta & \delta \end{array} \right) \Rightarrow$$

$$1.6 \ge \delta, -2 \ge \delta, 1 \ge \delta \Rightarrow \delta < -2$$

1f. Calculate new reduced costs:

$$\mathbf{B}^{-1}\mathbf{c}_{B} = \begin{pmatrix} 5/2 & -3/2 & 1 & 2 \\ -3/2 & 3/2 & -1 & -1 \\ 1 & -1 & 1 & 5 \end{pmatrix} \begin{pmatrix} -3 \\ -13 \\ -13 \\ -5 \end{pmatrix} = \begin{pmatrix} -11 \\ 3 \\ -28 \end{pmatrix}$$

Since the second cost is positive, the basis is not optimal.

1g. $4-3+2(1)=3\leq 10$, hence constraint is inactive. Solution remains the same, with slack variable $x_7=7$.