

ME 5374-ST

Machine Learning for Materials Science and Discovery

Fall 2025

Asst. Prof. Peter Schindler

Lecture 10 – Featurization of Materials

- Requirements for an Ideal Descriptor
- Hierarchy of Descriptors
- Compositional Descriptors
- Local and Global Atomistic Descriptors
- Global Atomistic Descriptors
- Coarse-Grained Descriptors

Overview and Terminology: Features / Descriptors / Fingerprints

Goal: Describe a material with a numeric representation

- This numeric representation has to be rich in information for the ML algorithm to learn from the input data
- Features should be correlated with the target label

Featurization:

Transforming data input (material, text, image, etc.) into numerical "feature vector"

Feature Engineering:

Take feature vectors (already numeric) and improve them

Not all descriptors are equally useful...

Requirements for an Ideal Descriptor

- i. Meaningful (and compact)
 Relationship between descriptor and response not overly complex
- ii. Universal

Can be applied to any existing and hypothetical material ii.a Fixed in number

Same number of descriptors regardless of input material

- iii. Invariant under crystal symmetries (and permutations)
- iv. Reversible (i.e. be a unique description)
 List of descriptors can (in principal) be reversed back into a
 description of a material (enables inverse design!)
- v. Continuous
 Small change in atomic structure = small change in descriptor
- vi. Computationally cheap(er)
 Should be easier to obtain than target property itself
- vii. Uncorrelated (ideally)

 Can be fixed with feature selection/regularization

Compositional Descriptors

Based on chemical formula of structure:

 $A_aB_bC_c...$

- 1. One-Hot Encoding Vectors
- 2. Stoichiometric attributes Number of elements, p-norm of fraction vector $\left\| \left[\frac{N}{a}, \frac{N}{b}, \frac{N}{c}, \dots \right] \right\|_{2}$ (N=a+b+c+...)

$$\left\| \left[\frac{N}{a}, \frac{N}{b}, \frac{N}{c}, \dots \right] \right\|_{p} \quad (N = a + b + c + \dots)$$

3. Elemental property (P) statistics

$$g[a \cdot [P(A)], b \cdot [P(B)], c \cdot [P(C)], ...]$$

Position periodic table, Mendeleev number, $N_{\text{valence electrons}}$

- Electronic structure Fraction of filled/unfilled electrons in s, p, d, and f shells
- Measured properties (molecular) Atomic mass, electron affinity, atomic radius
- 4. Ionic compound properties
- Derived Properties (molecular) Covalent radius, electronegativity, polarizability
- Elemental crystal properties (measured/calculated) BCC bandgap, lattice constant, DFT volume/atom, E_{cohesive}

Compositional Descriptors

These descriptors are unique for any given chemical formula

However, different phases with same chemical formula are described by the same set of descriptors

- Add information about spacegroup/crystal system or structure prototypes
- Packing fraction
- Meso-scale descriptors
- Add experimental/processing conditions

Atomistic Descriptors

Local

Global

$$E_{\text{total}} = E_1(\boldsymbol{G}[A_1]) + \underline{E_2}(\boldsymbol{G}[A_2])$$

+
$$E_3(G[A_3]) + E_4(G[A_4]) + ...$$

$$E_{\text{total}} = E_{\text{total}} (G[A_1, A_2, A_3, A_4,...])$$

Symmetry functions (Behler and Parinello)

Coulomb matrix

$$M_{ij}^{\text{Coulomb}} = egin{cases} 0.5Z_i^{2.4} & orall & i = j \ rac{Z_iZ_j}{|oldsymbol{R}_i - oldsymbol{R}_j|} & orall & i
eq j \end{cases}$$

Issues 1: Number of atoms changes size of matrix

Issues 2: Order of indexing atoms (N! permutations)

Ewald sum matrix
$$\phi_{ij} = \sum_{\mathbf{n}} \frac{Z_i Z_j}{|\mathbf{R}_i - \mathbf{R}_j| + \mathbf{n}}$$
 $\mathbf{n} = h\mathbf{a} + k\mathbf{b} + l\mathbf{c}$.

$$M_{ij}^{\text{Ewald}} = \begin{cases} \phi_{ij}^{\text{real}} + \phi_{ij}^{\text{recip}} + \phi_{ij}^{\text{self}} + \phi_{ij}^{\text{bg}} & \forall i = j \\ 2\left(\phi_{ij}^{\text{real}} + \phi_{ij}^{\text{recip}} + \phi_{ij}^{\text{bg}}\right) & \forall i \neq j \end{cases}$$

Sine matrix

$$\phi_{ij} = Z_i Z_j |\mathbf{B} \cdot \sum_{k=\{x,y,z\}} \hat{\mathbf{e}}_k \sin^2 \left(\pi \mathbf{B}^{-1} \cdot \left(\mathbf{R}_i - \mathbf{R}_j \right) \right)|^{-1}$$

Coulomb matrix											
36.9	23.3	14.3	9.3	14.3	9.3	14.3	9.3				
23.3	36.9	23.3	14.3	23.3	14.3	23.3	14.3				
14.3	23.3	36.9	23.3	14.3	12.2	14.3	12.2				
9.3	14.3	23.3	36.9	12.2	14.3	12.2	14.3				
14.3	23.3	14.3	12.2	36.9	23.3	14.3	12.2				
9.3	14.3	12.2	14.3	23.3	36.9	12.2	14.3				
14.3	23.3	14.3	12.2	14.3	12.2	36.9	23.3				
9.3	14.3	12.2	14.3	12.2	14.3	23.3	36.9				

Ewald sum matrix										
-14.3	-2.0	-5.9	-2.0	-5.9	-2.0	-5.9	-2.0			
-2.0	-14.3	-2.0	-5.9	-2.0	-5.9	-2.0	-5.9			
-5.9	-2.0	-14.3	-2.0	-5.9	-2.0	-5.9	-2.0			
-2.0	-5.9	-2.0	-14.3	-2.0	-5.9	-2.0	-5.9			
-5.9	-2.0	-5.9	-2.0	-14.3	-2.0	-5.9	-2.0			
-2.0	-5.9	-2.0	-5.9	-2.0	-14.3	-2.0	-5.9			
-5.9	-2.0	-5.9	-2.0	-5.9	-2.0	-14.3	-2.0			
-2.0	-5.9	-2.0	-5.9	-2.0	-5.9	-2.0	-14.3			

Smooth Overlap of Atomic Positions (SOAP) Kernel

$$\rho(\mathbf{r}) = \sum_{i} e^{-\alpha |\mathbf{r} - \mathbf{r}_{i}|^{2}}. \qquad k(\rho, \rho \prime) = \int d\hat{R} \int d\mathbf{r} \; \rho(\mathbf{r}) \rho \prime (\hat{R}\mathbf{r}).$$

Generalization of symmetry functions: Capable of characterizing entire atomic environment at once

Graph representations

CGCNN, MEGNet, SchNet, PointNet, ...

Others global descriptors

Many-Body Tensor Representation (MBTR), Voronoi Tesselation

Overview: Atomistic Descriptors

Asst. Prof. Peter Schindler [15]

Text-Based Global Descriptors

Simplified Molecular-Input Line-Entry System (SMILES)

Simplified Line-Input Crystal-Encoding System (SLICES)

Coarse-Grained Descriptors

Fragment/Simplex/Motif fingerprints

For polymers, basic 7 units: CH₂, CO, CS, O, NH, C₆H₄, C₄H₂S

Pairs: 7x7

Triplets: 7x7x7

Also used for crystals:

- Binning compositions by crystal structure prototypes
- Bounded/Unbounded simplexes

Coarse-Grained Descriptors

Property-labeled materials fragments

Resolution, Accuracy, Computational Cost, Abstraction

DScribe

ElementEmbeddings

Lecture Feedback

Please, scan the QR code and take a minute to let me know how the lecture was and mention any **feedback/questions**

This form is anonymous!