

FIG. 1

SCHEMATIC OF A GENE

FIG. 2

-4242 GCATGCACTG CCACAAAGTAG TGAACTCATG GTTTTACCTC CTCAGTAGA
-4192 AAACCTTTG AGTGAATTG AAGATTATT CTCCCAAGAA GGACCCATTG
-4142 GGCTCCTCC TCTTAGGGGG ATAGAACATC AAATTGACTT TATACCGGGG
-4092 GCAAGCCTAC CAAATAGGCC TCCTTATAGA ACCAACCCCG AGGAAACAAA
-4042 GGAGATAGAA TCACAAGTTC AAGACTGTGTT GGAGAAGGGT TGGGTTCAAA
-3992 AGAGCCTAAG CCCTTGTGCT GTACCTGTCT TGTTGGTGCC AAAAAAAAGAT
-3942 GGAAAATGGC GTATGTGTTG TGATTGTAGA GCAATCAACA ACATCACCAT
-3892 CAAGTATAGG CATCCAATCC CAAGGCTTGA CGATATGCTT GATGAATTGC
-3842 ATGGGTCAAC TCTATTCTCC AAAATTGACC TTAAAAGTGG ATATCACCAA
-3792 ATTCAATCA AGGAGGGTGA TGAGTGGAAA ACCGCTTTA AGACCAAATT
-3742 TGGATTATAT GAGTGGTTGG TGATGCCCTT TGGTCTTACT AACGCTCCAA
-3692 GTACATTCACT GAGGCTTATG AATCACACCT TGAGGGATTG TATAGGTAAA
-3642 TATGTAGTAG TTTATTGTGA TGATATCTTA GTATATAGTA AAACCCTAGA
-3592 AGACCATCTA AGTCACCTTA GGGAAAGTTCT TCTAGTTCTT AGGAAAAATA
-3542 GTCTTTTGC CAATAGGGAT AAGTGTACCT TTTGTGTAGA TAGCGTAGTC
-3492 TTTTAGGCT TTATAGTAAA CCAAAAGGGG GTGCATGTAG ATCCCGAGAA
-3442 AATCAAAGCC ATCCGCGAGT GGCCAACCTC ACAAAATGTA AGTGATGTGA
-3392 GAAGTTTCA TGGGTTAGCT AGCTTCTATA GAAGGTTGT TCCCAATT
-3342 TCTAGCCTAG CTTCTCCCTT GAATGAACCT GTAAAAAAAG ATGTTGCATT
-3292 TTGTTGGAAT GAAAAGCATG AGCAAGCCTT TCAAAGGCTA AAAGCTCACT
-3242 CACCAATGCA CCCATCCTAT CTCTTCCAAA TTTTCCAAA CTTTGGAGA
-3192 TAGAGTGTGA TGCATCGGGA GTAGGCATAG TGCGGTTTG TTGCAAGGTG
-3142 GACACCCCTT GCTTATTCTT GTGAAAAACT CCATGGTGCC ACCCTCACTA
-3092 CCCCACCTAT GACAAAGACT CTATGCTCTT GTGCGACCCT AAAGACTTGG
-3042 GGAACACTAC CTTGnGTCCC AAAGAATTG GnTATCCATA GTGATCACGA
-2992 GTCTTAAAAA TATTTAAAGG GCCAACACAA GCTCAATAAG AGACATGCTA
-2942 AATGGATGGA ATTTCTTGAA CAATTCCTT ATGTCATCAA ATACAAGAAA
-2892 GGGAGCACCA ATATAGTGGC CGATGCTCTT TCTAGACGGC ACACTCTCTT
-2842 TTCAAAACTA GGTGCCAAA TTCTTGATT TGACCACATA AGAGAGCTTT
-2792 ATCAAGAAGA TCAAGAACTC TCATCCATCT ATGCCCAATG TCTACATAGA
-2742 GCACAAGGAG GTTACTATGT GTCCGAGGGA TATCTTTA AAGAAGGAAA
-2692 ACTTGCATT CCCCAAGGAA CACATAGAAA ACTCCTGTGTC AAAGAATCAC
-2642 ATGAAGGGGG ACTCATGGC CATTTGGAG TTGATAAAAC TCTAGACTTT
-2592 TAAAAGCAAAT ATTTGTTGG CCACACATGA GGAAAGATGT CCACGACATT
-2542 GTCTAGAGTA TCTCATGTTT AAAAGCAAAG TCTAGAACAA TGCCGCTGG
-2492 CTCTACACCC CTTGCCGAT TGCAAAGCTC CTTGTGAAGA CATTAGCATG
-2442 GATTCATT TAGGACTTCC TAGGACTGCA AGAGGCCATG ACTCTATCTT
-2392 TGTGGTAGTG GACCGTTTA GCAAAATGTC TCACTTTATT CCATGCCACA
-2342 AAGTAGATGA TGCTAAAAT ATTTCTAAAC TCTTCTTTAG AGAAGTGGTG
-2292 AGACTCCATG GTCTCCCTAG AAGTATAGTG TCCGATAGAG ATCACCTTAA
-2242 ATATATAATT ATACACTTGT TTTTTTCTC TTTTTTATT TATCAAGTAA
-2192 AAAGTATTTG TTCTAGATTA TTATGAGTAT ATACTTACTT TCTGTATTT
-2142 ATTTCTTCT ATTTTTATG ACGATGAAAT TTCTTATTAT ATCCAGACTT
-2092 TTCATATATA TTTTATTTC TTTTCCATCT AGATGCTCTG TACTTTCTT
-2042 CAGTTGAAAT TTCCACTCTC CAACAAAACA TCATTCAAGT TTTGTATAAC
-1992 ACTGTGACGT TAACCAGTTA AAATAAGAAA ATCATGTAAT ATAAATTATT
-1942 TCAGTAGATA TTTAGAATT ACAAAATACGA TAAATAATT AATTAAAAAA
-1892 ATTATAAAC AATGAATT TTTGGAAATT AATATAAAC TTGACTTGT

FIG. 2 (Continued)

-1792 ACATCGAATT TGGGTGCTTT ATGCCGCTT ATCTTCATCT GCACCTTCAA
 -1742 ATTAATAATT TAATTCCGGA AAATAATAAA CCCACACACT GTTTTATGCA
 -1692 TATATTAAGA TAAATAAAAAG AGAACTATTT TAAAGAATAT AAAATAATAA
 -1642 ATGTAACAAA TGATGTCACT AAAGAAGAAA AAAATTAACA AGAATTGTAA
 -1592 TATATTCTT TATGAAATGT TTTGTGCATT ACCGAGAGAG GTCGAACATG
 -1542 ATACACGCAA GCATCTAACT AGTTTGGTAA TTCCTTTCA ACATCGnTAA
 -1492 GCACATCACA CTAAAATTAC TTTAAATAGA TAAATTAGAT TCAATTGGAT
 -1442 GACATTAATT TATAATACTC TATCCAAAAT TATAACTATA AATAAAAAGT
 -1392 TATTTTAGA AAATAAGTAA TGAAAATTAA ATTCTAAAAT TTATAACACT
 -1342 TTTATGCTGT GTTGTGTTCG AAGCATAGAA AAATAAAAAG TTATTGTTGG
 -1292 GAATGAAAAG TGAAGAAAAT CATGTAATAA AAACAAAATG ACACGACAAT
 -1242 CAAAAAAAAG GTTTCATGC AAAACTTTT TCAAAATTAA CACTTTATG
 -1192 ATGTGTTGTG TTCGAAGTGT AGAAAAACGA AAAGTTATTAA TTGGTAATGAA
 -1142 AAAGCGAAGA AAATCACGTA ATAAAAACAA AGCAAGATGG CACGACAATC
 -1092 AAAAAAAAGT TTCTACACAA AACTTTATTC AAAATTACAA ACACTTTAT
 -1042 GTTGTGTTT GTTCCGAGG TATAGAAAAA CAAAGAATTAA GTGTTGGTAA
 -992 TGAAAAGTGA AGAAAACCATT GTAATGAAAAA CAAAATGGCA CGACAATCAA
 -942 AAAAAAGTTT CACGAAAAT TTTCTTCAAA ATTATATAACA TTTTCATGTT
 -892 GTGTTGTTT CAAAGCCTAG AAAAACGAAG AGTTACTATT GGTAATGAAA
 -842 AGCGAAGAAA ACCACATAAT AAAAACAAAAA TGGCACGACA ATCAAGAAAA
 -792 AGTTTCACA CAAAACTTT TTCAAAATTAA ACTATGTTA TTTCGAAATT
 -742 TAGAAAAACG AAGAGTTATT ATTAGTAATG AAAAGCGAAG AAAACTACGT
 -692 AATAAAAAC AAAATGGCAC GACAATAAAA AAAGTTTCA CGCAAAATT
 -642 TCTTGGTGCAG CAGAAAGTTA TATATATTAA TTAATTAAATT TTCATTTACT
 -592 TTTTCCCTT TTTATTAAAGTTAAATTAA TTATTATTAAATT CATTAAAAT
 -542 ATAAATATTAA TTTAAATATA AAAATATAAA CCTTAATCAA AACAAAGCCT
 -492 TAATCTAAAA TTTACAACAC TTTAACCTT AAAATTAACCT TTAAAAGGAA
 -442 AATGATAGTG TGACAACAA AAAAGTTGTA TACAACCCCTG TCATAGGTT
 -392 AGAAATAAAAT ATATATAATA AAGAGTAAAT TTGTAATTAA ATGATATAAA
 -342 AAAGTATTAA AATAATAATA TTTAGAGTAG TAATATGGTT GTATAAAAAA
 -292 ATGTGGTTGT CCATATATCA TTATTCACTT TAAAATATCA TGACAAATAT
 -242 TTTCACCGAA AGATGGAAAG AACGAAAAGA GCGTTGGATA ATGGAAAAAT
 -192 ACAAGCAATC TCCCTCCAGT ACTTTGCATA ACATTTGTA TTAGTGATGAA
 -142 GTTTTTATC ATATATATTAA AGAATATAGG AAAATTAGG AATCACGTGG
 -92 ATAGCTATAT AATAGTAATA TTTAATTAA TAATGTAGTT GATTTTATTT
 -42 GTCAACTGGT ATACATAAAAT ATGTGTTGAT AGTGGGTGAC TTGTGGCTTA
 9 AAGAAATGTC CAGAGGCTGA CAACAACCTCT GCACAGACTA GCGTAAAC
 57 **ATG** AAG TCC AAT TTT GCT ATT TTC GTA GTC TTT TCT CTT CTT CTT
 1 M K S N F A I F V V F S L L L
 102 CTG GTACCTCTTCAATCTTCTACAAAAACTCTGTTGCTCTTCAACCTCTGTTGTA
 16 L
 160 ATTTTGTACACTTTGGAAAATTGAAGCTGATATATATGTAACAAACCTTCAGTTT
 219 GTCTGCACTGAAACTGATAGAAAAATACGTTGTGGATATATAG GTT GGC
 17 V G
 274 AGT TGC AGC TGC GCA AGA AAA GAC ATG AGA GGG TAT TGG AAG GAT
 19 S C S C A R K D M R G Y W K D
 319 ATG ATG AAG GAG CAA CCT ATG CCA GAA GCA ATC AAA GAC CTT ATT
 34 M M K E Q P M P E A I K D L I

FIG. 2 (Continued)

GAG GAT TCA GAA GAA GTG TCA GAA GCA GGG AAG GGT CGT TTT GTT
49 E D S E E V S E A G K G R F V
AGG GAC TTC GAT GTA AAG CCT AAT GTC ATA TTA TAT CAC ACA CAT
64 R D F D V K P N V I L Y H T H
GTT GTG CCC ATG AAG CAG AGG CAG AAG AAT AAA GAT TGA
79 V V P M K Q R Q K N K D •

493 AGACTATGTGATTGGCAGTTCACTTATTTGGCACCAAATTATGATGCTCTGTTGC
553 TGTTCAAAATTGTACTCAAACCTTGACCCCTTGCAGCATCTGCTTCTTTGGTCT
613 TGCTGAATTTGTCACAGTTATACTGTCACGAATAGTTCTCTTCATAATAAGCAACTT
673 TCCTCTC

FIG. 3

101001 CAAAACAAAGCAAATGCCGGTTTCTTATTATTATTCGAACTTAGAC
100151 CTTTTGTAACGTTCTTAATTTTCCCTGATAAAGAACCTATTAT
100201 ATCTTAGCTAAATATTACCTCATTGTTATGAGCTAAACCACCCAA
100251 AAATATTGTAGTTGCTTCGGATTAACTGCCAAGCAAGTGATTAGAT
100301 ATATTAAAGGAAAATGAATGAAAGGACAAAAAAATATAACGACAATATT
100351 TGAATACTGATATTATCTCCATTCTCAAATATTTGATTATTGTGAC
100401 AATATTGGTTGTTCCATTGCTACATCTTGAGGACATGAAATGATA
100451 ACATATATATGAACGAGTATAATACATTCTCGTTCATTTACAAATAAT
100501 GTCAATTATGCTAACATTTTATTAAAAATTATCCTTATAAGATTTC
100551 AGTGTATTATTTACCATGGTACTGTAAAGTCGGATGCTATATATATA
100601 TATATATATATATCAAAATGACACTGAAGAATTATTGAACAAAAA
100651 CTAAAAACGTAAAATAAAAAGAATTTCAAAAATCAAAATTTATATA
100701 AAAATATAGATAAAATGTTAATATAGTACAACCTCTATTCAAACAGAGAG
100751 AATAAATCTCTATAGACAGTGAATATCCATTATAATAACGAGCAATAGT
100801 TGTAATGTTGCAGTACAAAAGAGAATTGTAATATTGTGCATGATTGAG
100851 AAATCTAAGTTGACTTGAATTAAAAGGCTAATTCCAACAAGTACATGTA
100901 GAAGTTGACTATAGCTATATATTACTACAAATTGATCATTCAGAAAG
100951 ACATTTAAATTAAGATATGCATGCATGACTTGATTGAACCCCCACTCGCTT
101001 GCTCGTGCCATTGACAAGATGTTACTTTAAATGCAAGGTAATTATG
101051 GATATACTCTCTGTATTTTAGTGTAGATATTTCAGAAAATTGTTT
101101 TTTTCCAAAATCAAATGATATTATTAATTTCATATAGAATTAAATTA
101151 AATTTAATTAAATTGAGATTATGCTGCAGATTAGATTACCATG
101201 GTGAAATCATGTTAGGTAAATAATAATGATGTTGTTAGGAAAAA
101251 AAAAATTCTTAATCTTATGTAAGAATGTTAAACTTCATTATAAAAAA
101301 TATGAAGCAGTATTATATAAGATGTTAACTAATCGAATAATATTTTG
101351 GGATGAAATTTCATGTTCTGCATATGTTCTAAAAAATAATATGTAAAAATT
101401 AACATTTCATTGTATGTTATAAGAAATATATGTGAGTTTTGTTAGATAA
101451 ATAATACCTAAATTAAGAATTGTAAGTTACTGCACCTCAAATATG
101501 TTATTTTCTTTATTAATAATCAGCAACATTCTAAATGATTTAT
101551 TTTCTTAAAAATTGAAAAAATGAAATTAGCAAATATGTTAAATTAAA
101601 ACGAATTAAAGAAAAACTTGAAAGATATGATATGCTTATAAAAAAA
101651 ACTTGGTGGCGTACCTACTAAATATGATCACATTAGAGATTGATCCTT
101701 TAGCATATAGTATGTTAGTATGATATCTATATTATTTATTAAAGAGC
101751 ATATTCATAATATAGTATTATGTTAATTACAATAACGTTCAATTG
101801 TTATGTTAGTTTAGAAAACCTATTGCGTGTGCATATCAATGTGAGAAA
101851 GCGACTCCACATGTGAGATGTTGGTCTGAGAAAGCTTCTGCACTTGGTC
101901 GGAACACTTCATGGACTAGAATGCAATCCATCTATTCAAAGAAAAGCAG
101951 TTGTCCATGCATGCCTCGGTTTTCACATTGGAAGCAGCGCAACAATGT
102001 CTTACATAATATGCGATCGATCACTCTGCAACCAATATTCAAGTACATAG
102051 ACCATGACATCAAAACATTATCACACCGAGAAGAAAGAACGTCAATT
102101 GGTAACCTTAATGGCGTTATGCCTGCGGTGAATTCTCTAAAGAGTTCTCCC
102151 AAATTTATTGATTCTGTTTAACTTTCGCCAAGAACATCATA
102201 ATAGATTGACACCATTCAACTTACAAATACAAGTGAATAATAATT
102251 CAAGCTGAAAGGAATTAAATCATGATCTAAACCTAAACGACAAATTCTT
102301 CACAAGTGAGAATCACTAATTGACTACCCCTGGTCGCATATACATCATT
102351 GTTGTAAATCTGAAAATTGGTTGGATTGATCTGATATGTCATTGAT
102401 AAAACTTGTATTATTAGAATTGCGCAACAGATAAATCATC
102451 ATCTATTAGAAAATTTCATTGCAACCACAATTACAGGGAAAAGGT

FIG. 3 (Continued)

102551 ACAAATTTCAAATACCACTTATGAGAAGCACTAACGACTAACATCACCTTTCTT
102601 TATGACTTTCTTCTAAAGCTAACGACTGGTAGTCATGACTCATGATTATCC
102651 TTTCTTAATGGGAATTGTGGAAGCGGTTCAAATCTTAGACAAAAT
102701 TCCATGGCCACTAAAAGTTAGCAAAGTTAAAGTTAAAAAAATATG
102751 AGTGTACTTGGCCATATGCCATTGTTGAGATCATAACAAGAGAAATAA
102801 TAGTTATTGAAGTTAGATCATAATCACAATACATCATTGCCTTCATCA
102851 ACATTTCCATGGATTGAGAGGATCAACTCAATACTAATGGTGGGGTC
102901 TTATTCCATTGCTCTAGCCAATTAAGCAGTTAGGTTATTGTGTA
102951 CTCTAGTAGTTGCCAAATCAATCTTAATATTACAATGTTGTAATTCTA
103001 ATTACGTATAGATAAATGACTAGATAACACGTGGCTTGGTTTATCAGG
103051 AAAGTTTCCAATCATATATATGAATGTAGAATAGTGTCTTCATTAAT
103101 TATTAATTAGCATCTCACCATCTGAGACTGGGAGCATGTGACAAGTTGAC
103151 ATGTGTATTAAGAGAACTTGAGAAAACCACTTTATGATACTCCCACATCT
103201 GAGACTGGGATGAGTACCAATTATAAAAATATGAGTAGTGAAAAAAATAT
103251 TCAAAAAAAATTCTAACATGTCCTTAAACATTAAACCTTATAATT
103301 AACAAACATCTCCAATATGCCTTATGAAAACCTTATAAAACTTTTAT
103351 AACATGCTTGAAAATTATAAAATCTGTATTAGAAACAAAGTGAT
103401 ACTTTGAAAATAGACAAATGAAGTGCTATTAGGATATCATA
103451 AGTCTTAACTGTGGTTGTTGAATTTATTTATACCTGTCAAAATAA
103501 AACTAAATAAAATTAAATTATTTATAATCATGAAGATAATTATTC
103551 ATAAAAGATAAAATATAAAATCAACAAATTATTTGTTAATAAAAATAC
103601 TTTGAGCTCTTCTTCATAAGACTTTCCAGCTTCATCTAGAAAATCACA
103651 TAAATTAAAAGATAAAATAACCGAATAAACATAGTCACATTCAACTCTT
103701 AGTCTTAGATTGTTAATTTCAAAGGTTAGGTATTGTATATGTTT
103751 TTTATTGGGTTGCTAGATTGATCCAAGAAGAAATGACGGGTTGTTAGT
103801 ATAGATGGTTGTTGAGTTTTCCCCTGGTTACTCGTTGGTTT
103851 TGTCCCCAGAATTGTCCTGTACTCGCTGGTTATGTCCTACAAAGTCC
103901 ACGACCATTGCCGGCTTTGTATTCAACTTGAATTCTAAATTGATTG
103951 ATGAAAAAAATGTATCTCTAAAGTCCATTAGTACCAAAATAACTAT
104001 ATCATTACTACATAAAATAGTCTGGGTTTCCAAAGTATTGTTGATA
104051 TATGTTAAGAGTCGAAATAGACACATAGATATAATGTTGAAATG
104101 TCTCACATAATTATCCTTTCTCTCATTCTACCTCTCAAGTTTC
104151 CAATCCCACCTAAGGTATTACGTTAAAGTAACTTCAAGTAAATTGTTAAC
104201 AAATCTTAACTAGCTACAAATGTGTATTACAAGTCTAAATAAAACCTA
104251 CTTAATTCAAAGGTATTAAACCTCTAAATTGATACTTACTTAGTATC
104301 GATCGGTCTAGTTAGGGTTGGACAAACACCATCATGGGACGAAATT
104351 AGTCATTCTACGGTGTCCAAGACACAAATCTGGACTCGATGTGGATATG
104401 ACACCTTACATTAACTTTAACCTACAAAAACTAACTATTAGGAGGAAG
104451 AATCGGAATCTGCATATCAATCACAATAGACTATAGTATAGTTAGATT
104501 GATCTAACATGGCTCTTCAACTAATAAGTAGCCCACCAATAAT
104551 GAAATCATAAGACATTAAATTAAATCAATGTTCTAAATAACTTGGGT
104601 TATGTGCCCCTAGAGCTAATGTGCACACACAATGAAAGTTGACCCGTT
104651 CACTGTCCCACTTTATGATCTTCTTTAGGTTAAATCCAACCTTAA
104701 TAATCTCATCTTGTATCAAACAAAACCTTGGCCTGTCTTTCTAAT
104751 TAAAGTAACTCTCACGGAGAAAAGCCAACATTCTCTGTTTATT
104801 TTTTAAGAAAATGAATTCAAGGGACCCCAAATTAAAAGGAAACCA
104851 AAACTCCTTCTATGTTACTTGAAGTTCTATGTAATCAACAA
104901 TCCTAACAGTAGAGAATAAAAACATCGTTGGAGGTTTATATTAGC

FIG. 3 (Continued)

105001 CCTCTGTCAATGGAGCTATATCACTTGTCAATTGCTTAACCCTTGCGG
105051 GAAGATTGTTATGAAACAGTTAATGGAATTCTAGTGCCAATGTCACG
105101 TTTAATATGTTGTCCTATACTTATTGAATCTTATAATCTTGTAT
105151 AGAATTATCTACTTTAGTATTTACATTAACATAATCTATAGAATTCTT
105201 CTTGTTCTATACAATTAAACAAGTAATATATTCTTAATACATATTA
105251 ATGGTGGTGTGCTATCTGAGCTGTAATAGTTGATTGCTCCAGAGAAGAA
105301 TAGACAAAAATCCTTACTTAAGAGGCCACCCTGAAAATTAGACAA
105351 GAAAAATTAAACAAAATTAGGTTACACATATTATCATTATATATGCA
105401 CAACACAAAGTTGACCTTGCAATGTACTATTGAATAAAATAATGC
105451 AAGAAGAGAGGAAATTATCACTGTTACCAAGAAAACAACCTCCTCTAAAC
105501 AGGTCTCTATATATATAACTTAACACCTAAAGAATTAACACAGATCAA
105551 GAAAAAAATCCTCAAAACAAAAGTTAAAGCAGAC **ATG** AAG CAA CAG CAA
1 M K Q Q Q
105599 CGT TAC TTG GTC GTC TTC ATC GTC CTT TTA AGC TTT CTT
6 R Y L V V F I V L L S F L
105638 CTG GTAAAGCTTCTCCTTAATTATTAAAAACCCTAATTAAAGATCTCATATA
19 L
105691 TCTGAATGTTGTATATATTGTTGGTATAG TTT GTG AAT CTG AGT
20 F V N L S
105736 GAA GGA AGA ACA GGA GGA GTT GCA GAA GAA TAT TGG AAG
25 E G R T G G V A E E Y W K
105775 AAG ATG ATG AAG AAT GAA CCG TTG CCT GAA CCA ATC AAA
38 K M M K N E P L P E P I K
105814 GAG CTT CTC AAC AAT CCT TTT AGG ACC GCA CAA GAG AGA
51 E L L N N P F R T A Q E R
105853 TTC ATC CAG AAT TTC GAC ACC AAA TCT GTT GTC ATC ATC
64 F I Q N F D T K S V V I I
105892 TAC CAC AAT CCT AAT GAA TAA TCAATGAAGTCTCTCATATAG
77 Y H N P N E •
105934 ATATCTATGACTTTAATTGTTATGTATGGATCGACTTACGTGCA
105984 CGTATATGTTATTAATTAAAGAAAAGCTGCTTGAGTTGTGTGTT
106034 ATACACGTATACTAAATATGTTCTGTTAGTGCAGAAATGTTAACCCTAG
106094 CTATAAGGGATTTGTTCTTTTTGTTACCATTAATGTGAGTGA
106144 GTGAGTTTGTGATGAAAATTAGATTGCTCACATTGTTGATA
106194 TATATAAAATCAATATACTGTGCCCTTCGTCAGTTCTTATATTATT
106244 TGTGACATTAATTATCTTATCAAAAATTATTTATTAAACTGTGTC
106294 CTATGGAAAAGATGAACAATATGAGTTAACCTCATCTCAAGGAGATTCT
106344 TTTTGTGTTGTTTTC

FIG. 4

1 AAGCTTACAAATGTCCCCAAAGATGAAACCACGTTATTATTAGTAAATCCTGAAAAGG
61 TTAACGCTTCTGTCCTCGAATTCTAAACCATCTGAAATATCTAGTGGTTAAAATGGAG
121 ACTTGAGGATATAGTCTCTGAACCAGCTGTCACGGCTGAGTTAGATAACATTACTGAAT
181 TTCTACGGGAGCGGTTGAAATCACTTCGCCCTTAAGAAGAACGCTACACCGGGCACC
241 TTCTTACGCAATTGAAATTAGTCTGCCAGGCAGTCGTGGATCGAAGGTCTTTC
301 GATACCGAGGAATCTGACTTGCAAGGAATAATTCCAATCACACCACCCAAACCCCTGA
361 ATACACTTCAGGACCCTCTGAAACCAACTCGTTGGCTAAATCACAAGAACATCTCCCAC
421 TCATTCCGATTTAGCCAATTAAATATGATATCGGTCTGGGAAGCCGATAAGGAAATTCT
481 ACAAAAAGAGTTATGAATGAGGAAAATAAGGAAAAGAGAGAACTATTTTAGGTACCC
541 TGAAAGAGAACGAGAAAATTAGAAAAAAACTACTCTCATCTGTACACTGTTCAAAA
601 GAATATCCnnnnnAATGGTTAGATAATATAAGAAAAGGATAAGTATGATTAACGTGAAAC
661 CACGTCGGCAGAAACAAAGTGAATTCCCCCTTAGAGGAAGTCGTTCTTAAATATAAG
721 AAAACAAAGAAGTAGTCGCCTCCCTTTAAAATGATCTCAGAAAACGAGAACAGTAAGTA
781 TAAAAGATATTCAAATCTACACAGTCAACTAAATTTACTAATCAAATGCTTTCAAT
841 TAGCAAATAAAAACAAAAGAAAAAGmGAAAATTGAAGAAAATCGTTAATAAAACCAT
901 TTAAATTCTCAGAAGAACAGATAAAACAGTAAAAATTGGTCAAACCTTGGATTCTTAT
961 ACGATGAAGTAAAACAAAAGTTATCTATCTCGTAATAAAAGAAAACCGAAATCTAATA
1021 ATGATATGCCAAAAGGACAAATCAAATCAAGAAGTTTAGACGAAATCGAAAAGAGAT
1081 TAAAACAAACTCTGAACGACACAATAATGTGATAGAAGAAACTAAAACCTCAGACTCAT
1141 GTTCAGAGTCTCCGATCGTATTGAAAAAATAAAACGTAATAAAATCAGAGATTCCAGTA
1201 AGCCGAAATTTCACACTCGCCCCACCTCGATATCATCGAGATGGCGATGGACACCTCA
1261 GCATTGATGGAATGGATACTGAGTGTATGATGGATGACAGATGATGAATATAGAAAAAC
1321 TCACGAAATAACAATGGCGCTACAGCATATAGAGTAAAACATACCGAGGAACAAACAAT
1381 AAAATTAAATTATCTGGATTACGGGAGTATTAAAAGGCTGGTGGGATAATTACCTCAT
1441 GCCAGAACAAAAGAATTATGTTCTAAGCTGTGTAAAAATAGAAAACGAAGAACAGGAATACC
1501 ACTAATGGTGGAAACATTGGTAGCAATAATTCTATAACTTTATAGGAGATCCAAAGAT
1561 TTTGAAGAAAGAACATCTTATTACTTCATAATCTAAGATGTCCAACCTTAGGTGACTT
1621 TAGATGGTATTCTCAGAAAATTCTTAGCTATGGTTAACAGGGAAGATTGTAGAGAAC
1681 TTTCTGGAAAGAACGGTTATAGCTGGATTACGGATATCTTGCTGAAAAGTAAAAGA
1741 AAATTACAAAAGGAATGCCAACACCCAATTAAAAGATGTACCATACGGGAAATAAG
1801 TTCAGTTGTAAAAAATACAGGTCTCAGTTATGCAATAATATGAAAATAGAAAATAAGAT
1861 AAAAAGAGTGAGAGTCAGGGCATCAAGGAATTAGGGAAATTGTACTCAATACGGTA
1921 TGAACGAAATACCCCTCCATCAAAAAATAAAAGAAAATAGCAAAAGAACAGGGAG
1981 AAACAAGCGCTAAACAAGCGCTAACCCAGCAGCTAAAATTTAGAAAACGGTTAATT
2041 TTAGAAAACCATGAAAGTCTAATGATAAGCCCCTATAGTCTGTATAATGTGGACGCA
2101 TAGGACACATGAAGCGAGACTGTAGACTAAAAGAAAAATTAGTAATTGACCATAGTG
2161 ATGAATTAAAAGAACAAATGGAAAACCTCTGATAAAATTCCCTCAGAAGAGGAAGAAC
2221 GAAGAATCAATAGGAGATTCTGATTACGAAGTATTGGACATGAGGATAACAATTGTAATT
2281 GTGTCTATAAAATAACGATAAGTAGTGAATTAAAATTGCGTTAGATTGCATTGATA
2341 AAATTAATAATCCGGAGGAAAAGACCAAGCCTTAATAGACATGAAAAGGCTACTCGTG
2401 AAAAAGATGAACCCAGTTCTCATCTTACAAAAACCTGAATTATAGGATATGTTAAAG
2461 AAATATTGAGAAAAGCGAAAACATCACATAAGAAATAACCATTAGCGATCTTAATAGTG
2521 AAATAAATAATTAAAAGCCGAAATCGATCTATAAAAGTCGAGCTACAAGAATTAAAG
2581 ATAAAATTATACATGAGGAATCCATCTCCTCTGCCGACGAAAATTACAAGAACAGGAAG
2641 CTAGTAGACCTTCCATCAAAGAAATAACATACAAAAGACAAAAGTGGCATGTTAAAG
2701 CCCTAGAATTGTTGTGACCGTTCATGTGGTCAAAGATGAGTCCTTACCTAA
2761 CACAATAAAAACGTTACTCTTAAATATCAAAGGAGAGCTACAAATATCAATGAATGAAT
2821 GACATTAATATTTCTTAAACTTGAATGAGTTGTTCTAAATATCTGAC

FIG. 4 (Continued)

FIG. 5

142000 TTATCTTATTCCATATAATTGTTGTTACTTCAAAATTTTAATT
 141950 TTATATTATCTTTACAGTTAAAATTAATAAAATGAAACTTTTTC
 141900 TTAAATGTGTTAAAATATAAAATCAAAAAAGTGTATATGGTACATGGC
 141850 ACAATCTTATAAATTATTAATTGAAAACGATACTTATATAATAAAAATT
 141800 ATCTTAGTTGACATTTTATTAGTGTTCATCATATTGTTGCTT
 141750 GATAAGCGTAAAACAAATCAAACCTAACGATACTTATATAATAAAAATT
 141700 TCTTAGTTGACATTTTATTAGTGTTCATCATATCTTGTTGCTTG
 141650 ATAAGCGTAAAACAAATCAAGTAAAGTTGGGCACCTCAATTGTTTAAAA
 141600 AAGTTGGGTACCTCAAAAATTAATAGGTCTTGTCAAGATTCTTACAAAAA
 141550 AAATCTGGAAGAATTATGAAAGAAGGGGGGGGAGGGGGGGAGGGGGGGG
 141500 AAGTGAAGATGAATATTCAACAAAAGAGGGTAGGCATGATGTTAAGTGAG
 141450 TTAAAAAACTATGTTAATGGAGACAATTCTGTTAACAAACCGTTAAT
 141400 TGAAAACGATAGCATCTTCTAACAAATGTAACAGATATTGTTTATC
 141350 ATAACACTCATTAAATTCTGAGTTCAAATCATATAAAGATTAGGGG
 141300 GGTGTATTCAATTAAAGGATTGAAATGATTGATTAAAATGACAAATCC
 141250 CATGTTATTCAAACATGAATTGTAACAAACTTTTAAAATCAAGTGT
 141200 TTAGATTAGTGATTTAAAATGTACAACCAAACCCACTGTTATTGAAAC
 141150 ATTGTTAAGTAGTGGATTAAAATGACTTGAGTGATTGGGTGGGATTGC
 141100 AGAAAATTCTTAGTTAAGAATTCAAACATCCAAATCTCATGGTTCAAG
 141050 TAGAATTGGGAGAATTAAATAACAAATCTCTAACATTACCAAAAGTCA
 141000 CCAAAATCATTAAAACCTATTAAATGATTCAAATCTCCAG
 140950 TTGAATACATCCCCTGGAATTAGAGATTGCTCGATTGGGACCTAAG
 140900 ATTGAATTGGGAGTTAGTTAACCGTTAACACAAAATGACATCGTAT
 140850 TATTGTTATAGGAAACAATGTCGTTTCAGTTGACATGTATGTTAATAGA
 140800 AAATTAACCTATTAAACGGGATTGCTAACCCATTAAACATCGTAACAA
 140750 ATGGTCAAGTCATAAAAGTTGGTATTATTGAAAAGTCAACGTAAAGT
 140700 TTGATATTGAAAGTCACATAAATTGATATCTTATTGTTTC
 140650 GACAGACATAAGGATTACATCAATGTTTAATAAAATTAAAGATTATTA
 140600 TGACATTGCCCCATTAAATTGCCAATGTTGCAACCAAGATACTC
 140550 AAAATTGACATACCTAATTCAATCTACATTGTTGACAGCAATTACGT
 140500 GCCTGACCACATGGCACATACTGGCAATACATCAATTAAAGGAAAAGG
 140450 TAGATTGGATAACAATATAATGGAAATAAGTGGAAAGGATCATTGACTAC
 140400 TTGACTTGTAACAAACACACAGTATATAACTCATTGACATTACAA
 140350 ACAACATTGTGCTAGCTTAAACTCCCTCTCCTATTCAAAAAA **ATG**
 1 M
 140305 GAT ATT CCA AAG CAA TAT CTA TCA CTA TTC ATA TTG
 2 D I P K Q Y L S L F I L
 140269 ATT ATC TTC ATA ACT ACA AAA TTA TCA CAA GCC GAC
 14 I I F I T T K L S Q A D
 140233 CAT AAA AAC GAC ATT CCA GTT CCC AAC GAT CCA TCA
 26 H K N D I P V P N D P S
 140197 TCA ACA AAT TCT GTG TTT CCT ACC TCG AAA AGA ACC
 38 S T N S V F P T S K R T
 140161 GTG GAA ATC AAT AAT GAT CTC GGT AAT CAG CTA ACG
 50 V E I N N D L G N Q L T
 140125 TTA CTG TAT CAT TGT AAA TCA AAA GAC GAT GAT TTA
 62 L L Y H C K S K D D D L
 140089 GGT AAC CGG ACT CTG CAA CCA GGT GAG TCG TGG TCT

FIG. 5 (Continued)

140053	TTT	AGT	TTC	GGG	CGT	CAA	TTC	TTT	GGA	AGG	ACG	TTG
86	F	S	F	G	R	Q	F	F	G	R	T	L
140017	TAT	TTT	TGT	AGT	TTT	AGT	TGG	CCA	AAT	GAA	TCG	CAT
98	Y	F	C	S	F	S	W	P	N	E	S	H
139981	TCG	TTC	GAT	ATA	TAT	AAA	GAC	CAT	CGA	GAT	AGC	GGC
110	S	F	D	I	Y	K	D	H	R	D	S	G
139945	GGT	GAT	AAC	AAG	TGC	GAG	AGC	GAC	AGG	TGT	GTG	TGG
122	G	D	N	K	C	E	S	D	R	C	V	W
139909	AAG	ATA	AGA	AGA	AAC	GGA	CCT	TGT	AGG	TTT	AAC	GAT
134	K	I	R	R	N	G	P	C	R	F	N	D
139873	GAA	ACG	AAG	CAG	TTT	GAT	CTT	TGT	TAT	CCT	TGG	AAT
146	E	T	K	Q	F	D	L	C	Y	P	W	N
139837	AAA	TCT	TTG	TAT	TGA	CAACAATATGCTGATGTTCTGTCTTTAC						
158	K	S	L	Y	•							
139793	GACTCATGGAGTTTCATTGTTGAAACAATAATATAAAACATATAAAATT											
139743	TCTATTATTCCAAGTCCAACCTATAATAATTGATAATCATATCATATT											
139693	ATCATCTTAAGCATTCAATGCTACAAAGATAATACCCCCAAGCTATTTA											
139643	CATTAAAAGCTGAAACAGAGACACAATACTAACGATAAAAGTTCGT											
139593	TCTTATGCAACCATAACATACATACACAAAGATAGACAGGTAGTGTCC											
139543	TAATAATTCTACTTGGGTGAGGTATGAACAGCAGCAACAGTAGATACCA ^{AGTA}											
139493	TGTATCCATACCACACATATTATGAGGCCCTCTGCAGATTTGTAGTAAC											
139443	CATGCTCTCCCCACATCGCTCCCCACGAGTTCTGATAATCCAA											

FIG. 6

FIG. 7
G564 promoter:
Gain of function constructs

(+) = Gus Activity in Suspensor

(-) = No Gus Activity in suspensor

[Hatched Box] = Region Required for Bus Activity in the Suspensor

Web Signal Scan Program

Database searched: PLACE

URL: <http://www.dna.affrc.go.jp/btdocs/PLACE/>

This is the sequence you submitted

>G564 promoter (-921 to -662), 450 bases, 3D1AOBF4 checksum.
TGAAAAGTGAAGAAAACCATGTAATGAAAACAAAATGGCACGACAATCAA
AAAAAGTTTCACGCAAATTTCTCAAAATTATAACATTTCATGTT
GTGTTTGTTCAAAGCCTAGAAAAACGAAGAGTTACTATTGGTAATGAAA
AGCGAAGAAAACCACATAATAAAAACAAAATGGCACGACAATCAAGAAA
AGTTTACACAAAACTTTTCAAAATTACTATGTTATTGAAATT
TAGAAAAACGAAGAGTTATTAGTAATGAAAAGCGAAGAAAACACGT
AATAAAAACAAAATGGCACGACAATAAAAAAGTTTCACGCAGAAATT
TCTTGGTGCGCAGAAAGTTATATATATTAATTAAATTATTTCAATTAA
TTTTCCCTTTTATTTAAAGTTAAATTATTATTATTTCAATTAA

Notation: H = A, C, or T

R=A or G

K = G or T

W=A or T

RESULTS OF YOUR SIGNAL SCAN SEARCH REQUEST

/tmp/signalseqdone.9437: 450 base pairs
Signal Database File:

Factor or Site Name	Loc. (Str.)	Signal Sequence	SITE #
-300ELEMENT	site 1	(+) TGHAAARK	S000122
2SSEEDPROTBANAP	site 101	(-) CAAACAC	S000143
ACGTABOX	site 296	(+) TACGTA	5000130
ACGTABOX	site 296	(-) TACGTA	S000130
AP3SV40	site 159	(-) TGTGGWWW	S000169
CAATBOXI	site 44	(+) CART	S000028
CAATBOXI	site 189	(+) CHAT	S000028
CAATBOXI	site 323	(+) CAAT	S000028
CAATBOXI	site 138	(-) CHAT	S000028
CANBNNAPA	site 101	(-) CNAACAC	S000148
CCAATBOXI	site 138	(-) CCAAT	S000030
CEREGLUBOX2PSLE	site 55	(-) TGAAAAC	S000033
CEREGLUBOX2PSLE	site 201	(-) TGAAAAC	S000033
CEREGLUBOX2PSLE	site 333	(-) TGAAAAC	S000033
DOFCOREZM	site 4	(+) AAAG	S000265
DOFCOREZM	site 53	(+) AAAG	S000265
DOFCOREZM	site 112	(+) AAAG	S000265
DOFCOREZM	site 149	(+) AAAG	S000265
DOFCOREZM	site 199	(+) AAAG	S000265
DOFCOREZM	site 282	(+) AAAG	S000265
DOFCOREZM	site 331	(+) AAAG	S000265
DOFCOREZM	site 364	(+) AAAG	S000265
DOFCOREZM	site 419	(+) AAAG	S000265
DOFCOREZM	site 216	(-) AAAG	S000265
DOFCOREZM	site 399	(-) AAAG	S000265
DOFCOREZM	site 408	(-) AAAG	S000265
GT1CONSENSUS	site 120	(+) GRWAAW	S000198
GT1CONSENSUS	site 141	(+) GRWAAW	S000198
GT1CONSENSUS	site 196	(+) GRWAAW	S000198
GT1CONSENSUS	site 253	(+) GRWAAW	S000198

Figure 8

GT1CONSENSUS	site	69	(-)	GRWAAW	S000198
GT1CONSENSUS	site	90	(-)	GRWAAW	S000198
GT1CONSENSUS	site	347	(-)	GRWAAW	S000198
GT1CONSENSUS	site	388	(-)	GRWAAW	S000198
GT1CONSENSUS	site	436	(-)	GRWAAW	5000198
GT1CONSENSUS	site	218	(-)	GRWAAW	S000198
GT1CONSENSUS	site	401	(-)	GRWAAW	S000198
GT1CONSENSUS	site	402	(-)	GRWAAW	S000198
MAMMALENHAN	site	158	(-)	GTGGTTTK	S000121
MARTBOX	site	324	(-)	TTWTWTTWTT	S000067
MRE1	site	356	(-)	TGCRCNC	S000068
NTBBF1ARROLB	site	418	(-)	ACTTTA	S000273
POLASIG1	site	168	(+)	AATAAA	S000080
POLASIG1	site	301	(+)	AATAAA	S000080
POLASIG1	site	324	(+)	AATAAA	S000080
POLASIG1	site	237	(-)	AATAAA	S000080
POLASIG1	site	411	(-)	AATAAA	S000080
POLASIG3	site	268	(-)	AATAAT	S000088
POLASIG3	site	427	(-)	AATAAT	S000088
POLASIG3	site	430	(-)	AATAAT	S000088
POLASIG3	site	433	(-)	AATAAT	S000088
POLLEN1LELAT52	site	11	(+)	AGAAA	S000245
POLLEN1LELAT52	site	119	(+)	AGAAA	S000245
POLLEN1LELAT52	site	156	(+)	AGAAA	S000245
POLLEN1LELAT52	site	195	(+)	AGAAA	S000245
POLLEN1LELAT52	site	252	(+)	AGAAA	S000245
POLLEN1LELAT52	site	289	(+)	AGAAA	S000245
POLLEN1LELAT52	site	362	(+)	AGAAA	S000245
POLLEN1LELAT52	site	71	(-)	AGAAA	S000245
POLLEN1LELAT52	site	349	(-)	AGAAA	S000245
PYRIMIDINEBOXHV	site	400	(+)	TTTTTTCC	S000298
RAV1AAT	site	97	(-)	CAACA	S000314
ROOTMOTIFTAPOX1	site	374	(+)	ATATT	S000098
SEF4MOTIFGM7S	site	170	(-)	RTTTTTR	S000103
SP8BFIBSP8BIB	site	134	(+)	TACTATT	S000184
TATABOX2	site	81	(-)	TATAAAT	S000109
TATABOX3	site	375	(+)	TATTAAT	S000110
TATABOX4	site	368	(-)	TATATAA	S000111
TATABOX5	site	238	(+)	TTATTT	S000203
TATABOX5	site	412	(+)	TTATTT	S000203
TATABOX5	site	434	(+)	TTATTT	S000203

For more information about the SignalScan Program, please contact Dr Dan S. Prestridge Tele: (612) 625-3744 Advanced Biosciences Computing Center. E-mail: damp@biosci.umn.edu 1479 Gortner Ave. University of Minnesota St. Paul, MN 55108 The TFD data is at the gopher site, gopher://genome-gopher.stanford.edu. For more information about the WebSignalScan service, please contact Meena Sakharkar, meena@biomed.nus.sg, BioInformatics centre, NUS .

Database Searched: PlantCARE
URL : <http://sphinx.rug.ac.be:8080/PlantCARE/>

Sequence submitted:

>G564 promoter (-921 to -662) 11/21/00

```
+ GAAAAGTGAA GAAAACCATG TAATGAAAAC AAAATGGCAC GACAATCAA AAAAGTTTC ACGCAAAATT
+ TTCTTCAAAA TTTATAACAT TTTCATGTTG TGTTGTTTC AAAGCCTAGA AAAACGAAGA GTTACTATTG
+ GTAATGAAAA GCGAAGAAAA CCACATAATA AAAACAAAAT GGCACGACAA TCAAGAAAAA GTTTTCACAC
+ AAAACTTTT TCAAAATTAA CTATGTTAT TTCGAAATT AGAAAAACGA AGAGTTATTAA TTAGTAATGA
+ AAAGCGAAGA AAACGTACGTA ATAAAAAACAA AAATGGCACG ACAATAAAA AAGTTTCAC GCAGAAATT
+ CTTGGTGCAG AGAAAGTTAT ATATATTAAT TAATTAATT TCATTTACTT TTTCCCTTT TTATTTAAA
+ GTTAAATTAT TATTATTTTC ATTTAAAAA

- CTTTCACTT CTTTGGTAC ATTACTTTG TTTTACCGTG CTGTTAGTTT TTTGAAAAG TGCCTTTAA
- AAGAAGTTT AAATATTGTA AAAGTACAAC ACAACAAAG TTTCGGATCT TTTGCTTCT CAATGATAAC
- CATTACTTT CGCTTCTTT GGTGTATTAT TTTGTTTA CCGTGCTGTT AGTTCTTTT CAAAAGTGTG
- TTTGAAAAA AGTTTAAAT GATACAAATA AAGCTTAAA TCTTTTGCT TCTCAATAAT AATCATTACT
- TTTCGCTTCT TTTGATGCAT TATTTTTGT TTTACCGTGC TGTTATTTT TTCAGAAAGTG CGTTTAAAG
- GAACCACGCG TCTTCATAATA TATATAATTAA ATTAATTAAA AGTAAATGAA AAAAGGGAAA ATAAGAAATT
- CAATTAAATA ATAATAAAAG TAAATT
```

3-AF1_binding_sit

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
3-AF1_binding_sit	ST	260	+	1.000	0.860	AAGAGttatt

Function:

AAGAA-motif

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
AAGAA-motif	Avena sativa	6	+	1.000	0.903	gtgAAGAa
AAGAA-motif	Avena sativa	151	+	1.000	0.870	gcgAAGAa
AAGAA-motif	Avena sativa	284	+	1.000	0.870	gcgAAGAa

Function:

ABRE

Figure 8 (cont'd)

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
ABRE	Hordeum vulgare	293	+	1.000	0.854	actACGTaat
				Function: cis-acting element involved in the abscisic acid responsiveness		

ACE

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
ACE	Petroselinum crispum	293	+	1.000	0.908	actACGTaat
				Function: cis-acting element involved in light responsiveness		

AE-box

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
AE-box	Arabidopsis thaliana	67	-	1.000	0.852	AGAAaatt
AE-box	Arabidopsis thaliana	345	-	1.000	0.852	AGAAaatt
AE-box	Arabidopsis thaliana	361	+	1.000	0.852	AGAAagtt

Function: part of a module for light response

AT1-motif

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
AT1-motif	Solanum tuberosum	409	+	1.000	0.859	ttttATTaa

Function: part of a light responsive module

Box_4

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
Box_4	PC	375	+	1.000	1.000	ATTAat
Box_4	PC	379	+	1.000	1.000	ATTAat
Box_4	PC	383	-	1.000	1.000	ATTAat

Function:

Box_I

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
Box_I	PS	107	+	1.000	1.000	TTTCaaa
Box_I	PS	203	+	1.000	0.857	TTTCaca
Box_I	PS	219	+	1.000	1.000	TTTCaaa
Box_I	PS	240	+	1.000	0.857	TTTCgaa
Box_I	PS	241	-	1.000	0.857	TTTCgaa
Box_I	PS	249	-	1.000	0.857	TTTCtaa

Function:

Box_II

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
Box_II	ST	139	+	1.000	0.889	TGGTaatga
Box_II	AT	161	+	1.000	0.954	CCACat_aat

Function:

CAAT-box

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
CAAT-box	Hordeum vulgare	43	+	1.000	1.000	CAAT
CAAT-box	Arabidopsis thaliana	137	-	1.000	1.000	aCCAAat
CAAT-box	Hordeum vulgare	188	+	1.000	1.000	CAAT
CAAT-box	Hordeum vulgare	322	+	1.000	1.000	CAAT
CAAT-box	Arabidopsis thaliana	351	-	1.000	0.857	aCCAAg

Function: common cis-acting element in promoter and enhancer regions

ERE

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
ERE	Dianthus caryophyllus	239	+	1.000	0.875	ATTTcgaa
ERE	Dianthus caryophyllus	241	-	1.000	0.875	ATTTcgaa
ERE	Dianthus caryophyllus	413	+	1.000	0.875	ATTTtaaa
ERE	Dianthus caryophyllus	441	+	1.000	0.875	ATTtaaaa
ERE	Dianthus caryophyllus	442	-	1.000	0.875	ATTTtaaa

Function: ethylene-responsive element

G-box

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
G-box	Zea mays	17	+	0.842	0.870	CATGta
G-box	Zea mays	38	+	1.000	0.903	CACGac
G-box	Zea mays	94	+	0.842	0.886	CATGtt
G-box	Zea mays	183	+	1.000	0.903	CACGac
G-box	Zea mays	317	+	1.000	0.903	CACGac

Function: cis-acting regulatory element involved in light responsiveness

GC-repeat

Figure 8 (cont'd)

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
GC-repeat	Oryza sativa	351	-	1.000	1.000	gCACCAag
Function: ?						

HSE

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
HSE	Brassica oleracea	49	+	0.944	0.878	aAAAAagtt
HSE	Brassica oleracea	50	+	0.944	0.912	aAAAAGttt
HSE	Brassica oleracea	52	-	0.944	0.874	gAAAActtt
HSE	Brassica oleracea	66	-	1.000	0.978	aGAAAattt
HSE	Brassica oleracea	77	-	0.833	0.868	aTAAAtttt
HSE	Brassica oleracea	87	-	1.000	0.853	tGAAAatgt
HSE	Brassica oleracea	196	+	0.944	0.912	aAAAAGttt
HSE	Brassica oleracea	198	-	0.944	0.874	gAAAActtt
HSE	Brassica oleracea	210	+	0.944	0.874	cAAAActtt
HSE	Brassica oleracea	212	-	0.944	0.912	aAAAAGttt
HSE	Brassica oleracea	213	-	0.944	0.878	aAAAagtt
HSE	Brassica oleracea	327	+	0.944	0.878	aAAAAagtt
HSE	Brassica oleracea	328	+	0.944	0.912	aAAAAGttt
HSE	Brassica oleracea	330	-	0.944	0.874	gAAAActtt
HSE	Brassica oleracea	344	-	1.000	0.978	aGAAAattt
HSE	Brassica oleracea	361	+	1.000	0.888	aGAAAgtta

Figure 8 (cont'd)

HSE *Brassica oleracea* 385 - 1.000 0.853 tGAAAatta

Function: cis-acting element involved in heat stress responsiveness

I-box

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
I-box	<i>Pisum sativum</i>	93	-	0.857	0.883	aACATga
I-box	<i>Pisum sativum</i>	162	+	0.857	0.883	CACATAaa
I-box	<i>Solanum tuberosum</i>	163	-	1.000	1.000	tATTAtgt
I-box	<i>Pisum sativum</i>	237	-	0.857	0.941	gAAATAaa
I-box	<i>Pisum sativum</i>	367	-	1.000	1.000	tATATAaa
I-box	<i>Pisum sativum</i>	372	+	1.000	0.941	tATATAtt
I-box	<i>Pisum sativum</i>	391	-	0.857	0.941	tAAATga
I-box	<i>Pisum sativum</i>	411	-	0.857	0.883	aAAATAaa
I-box	<i>Pisum sativum</i>	423	+	0.857	0.883	tAAATta
I-box	<i>Solanum tuberosum</i>	424	-	1.000	0.903	aATAAAtt
I-box	<i>Arabidopsis thaliana</i>	426	-	1.000	0.863	aATAAAtaat
I-box	<i>Arabidopsis thaliana</i>	429	-	1.000	0.863	aATAAAtaat
I-box	<i>Solanum tuberosum</i>	431	+	1.000	0.951	tATTAttt
I-box	<i>Pisum sativum</i>	433	-	0.857	0.883	aAAATAaa
I-box	<i>Pisum sativum</i>	439	-	0.857	0.941	tAAATga

Function: part of a light responsive element

P-box

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
P-box	<i>Oryza sativa</i>	406	+	1.000	0.857	CCTTttt

Function: gibberellin-responsive element

Prolamin_box

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
Prolamin-box <i>Oryza sativa</i>	<i>Oryza sativa</i>	145	+	1.000	0.913	tgaAAAGC
Prolamin-box <i>Oryza sativa</i>	<i>Oryza sativa</i>	278	+	1.000	0.913	tgaAAAGC

Function: cis-acting regulatory element associated with GCN4

TATA-box

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
TATA-box	<i>Daucus carota</i>	79	-	1.000	1.000	TATAaatt
TATA-box	<i>Brassica juncea</i>	80	-	1.000	1.000	TATAaat
TATA-box	<i>Helianthus annuus</i>	81	-	1.000	1.000	TATAaaa
TATA-box	<i>Brassica oleracea</i>	82	+	1.000	0.908	tTATAaac
TATA-box	<i>Brassica napus</i>	83	-	1.000	0.892	gtTATA
TATA-box	<i>Oryza sativa</i>	117	+	0.818	0.912	TAGaaaa
TATA-box	<i>Oryza sativa</i>	169	+	0.818	0.872	TAaaaac
TATA-box	<i>Zea mays</i>	248	+	0.909	0.879	TTTAgaaa

Figure 8 (cont'd)

TATA-box	Oryza sativa	250	+	0.818	0.912	TAGAaaa
TATA-box	Oryza sativa	302	+	0.818	0.912	TAAAaaa
TATA-box	Oryza sativa	325	+	0.818	0.912	TAAAaaa
TATA-box	Daucus carota	364	-	1.000	0.863	TATAactt
TATA-box	Brassica juncea	365	-	1.000	0.857	TATAact
TATA-box	Zea mays	366	-	1.000	0.879	TATAtaac
TATA-box	Oryza sativa	367	-	1.000	0.956	TATAtaa
TATA-box	Oryza sativa	368	+	1.000	0.929	TATAtat
TATA-box	Oryza sativa	369	-	1.000	0.929	TATAtat
TATA-box	Solanum tuberosum	370	-	1.000	1.000	TATAta
TATA-box	Glycine max	372	+	1.000	0.891	TATAtt
TATA-box	Oryza sativa	407	-	0.818	0.872	TAAAag
TATA-box	Zea mays	413	-	0.909	0.879	TTTAAaat
TATA-box	Zea mays	442	+	0.909	0.879	TTTAAaat

Function: core promoter element around -30 of transcription start

TC-rich_repeats

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
TC-rich_repeats	NT	7	-	1.000	0.952	gTTTTcttca
TC-rich_repeats	NT	68	+	1.000	1.000	aTTTTcttca
TC-rich_repeats	NT	152	-	1.000	0.909	gTTTTcttcg
TC-rich_repeats	NT	191	-	1.000	0.885	tTTTTcttga
TC-rich_repeats	NT	248	-	1.000	0.914	tTTTTcttaaa
TC-rich_repeats	NT	285	-	1.000	0.909	gTTTTcttcg
TC-rich_repeats	NT	346	+	1.00D	0.915	aTTTTcttg

Function:

WUN-motif

Site Name	Organism	Position	Strand	Core simil.	Matrix simil	sequence
WUN-motif oleracea	Brassica	18	-	1.000	0.948	tCATTacat
WUN-motif oleracea	Brassica	139	-	1:000	1.000	tCATTacca
WUN-motif oleracea	Brassica	237	+	0.857	0.948	tTATTtcga
WUN-motif oleracea	Brassica	242	-	1.000	1.000	aAATTtcga
WUN-motif oleracea	Brassica	272	-	1.000	0.948	tCATTacta
WUN-motif oleracea	Brassica	296	-	0.857	0.948	tTATTacgt

Function: wound-responsive element

Figure 8 (cont'd)