

F I G. 1

F I G. 2

F I G. 3

210

F I G. 4

FIG. 5

F I G . 6

Material	E : Young's modules (N/m ²)	ρ : Density (kg/m ³)	σ : Poisson's ratio
Oscillation Plate (Nickel Steel)	2×10^{11}	7.8×10^3	0.28
Piezoelectric Element(PZT)	6.3×10^{10}	7.65×10^3	0.34

F I G. 7

F I G. 8 A

Relationship between Thickness t_1 and
Sensitivity V_0 /Resonance Frequency f_0

F I G. 8 B

Relationship between Thickness t_1 and
Sensitivity V_0 /Resonance Frequency f_0

FIG. 9

F I G. 10 A

Relationship between Proportion of R_2/R_1
and Resonance Frequency f_0

F I G. 10 B

Relationship between Proportion of R_2/R_1
and Resonance Frequency f_0

F I G. 11

F I G. 1 2

Relationship between Proportion of R_2/R_1
and Sensitivity V_0 (mV)/
Resonance Frequency f_0 (kHz)

F I G. 1 3

F I G. 1 4

Relationship between Sensitivity V_o /Resonance Frequency f_o ,
 Inner Diameter of Piezoelectric Element, i.e., B_2 (mm)
 with respect to Diameter of Supporting Portion, i.e., C_1 (mm)

$\phi A_2 / \phi B_2$		$\phi 13 / \phi 4.9 t_2=2$		$\phi 13 / \phi 3.1 t_2=2$	
		2	3	2	3
ϕC_1	V_o	26.1	23.7	22.8	22.4
	f_o	21.0	23.5	21.5	23.8
$\phi 4.3$	V_o	22.1	18.0	19.9	18.2
	f_o	23.0	25.3	23.3	23.3
$\phi 5.7$	V_o				
	f_o				

Outer Diameter of Oscillation Body $\phi A_1=22$ (mm) V_o :(mV) f_o :(kHz)

FIG. 15

Relationship between Sensitivity V_o /Resonance Frequency f_o ,
and Proportion of Thickness of Oscillation Plate t_1
with respect to Thickness of Piezoelectric Element t_2

ϕC_1		t_1/t_2	0.67	1	1.25	1.5	2	3
$\phi 4.3$	$t_1=2$	V_o	20.7	22.8	22.5		22.7	
		f_o	21.8	21.5	21.0		19.0	
	$t_1=3$	V_o		21.9		22.4		19.8
		f_o		24.3		23.8		22.5

Outer Diameter of Piezoelectric Element $\phi A_2=13$ (mm) V_o :(mV) f_o :(kHz)

FIG. 16

F I G. 1 7
Result of Experiments

$\phi A1$	$\phi C1$	$\phi A2$	$\phi C1/R1$	$\phi 12$	$\phi 13$	$\phi 14$	$\phi 15$	$\phi 16$
$\phi 2.0$	$\phi 4.2$			\times	0.39			
	$\phi 5.7$			\times	0.47	\times	0.37	
	$\phi 6.3$			\bigcirc	≥ 0.57	\bigcirc	0.46	
	$\phi 7.3$					\bigcirc	≥ 0.53	\bigcirc
$\phi 2.2$	$\phi 7.3$			1.15			\times	
	$\phi 8.7$			0.99		\times	0.51	0.49
						\bigcirc	≥ 0.53	\bigcirc
							≥ 0.52	\bigcirc
								≥ 0.52

- $t1=t2=2(\text{mm})$
- $\bigcirc(\text{Pass})$: Spurious was not recognized
- $\times(\text{Fail})$: Spurious was recognized
- $\bigcirc/\times(\text{Pass/Fail})$ was judged at an upper limit frequency of the range of effective frequencies, i.e., 15(KHz).
- Values stated below \bigcirc or \times : $f_0/1/f_0$

FIG. 18
Result of Experiments

$\phi C_1 = 4.2$
 $\phi C_1/R_1 = 0.55$
 $f_0 = 23 \text{ (kHz)}$

FIG. 19
Result of Experiments

$$\phi C_1 = 5.7$$

$$\phi C_1/R_1 = 0.80$$

$$f_0 = 26.3 \text{ (kHz)}$$

FIG. 20
Result of Experiments

$$\phi C_1 = 6.3$$

$$\phi C_1 / R_1 = 0.92$$

$$f_0 = 27.3 \text{ (kHz)}$$

F I G. 21
Result of Experiments

$$\phi C_1 = 7.3$$

$$\phi C_1 / R_1 = 1.15$$

$$f_0 = 30.3 \text{ (kHz)}$$

F I G. 22

F I G. 2 3

F I G. 2 4

F I G. 25

PRIOR ART

F I G. 2 6

PRIOR ART

F I G. 27

PRIOR ART

110

F I G. 28

Relationship between frequency f and output voltage V

F I G. 2 9

PRIOR ART

FIG. 30

PRIOR ART

FIG. 31A

1/1 Oscillation Mode

FIG. 31B

1/2 Oscillation Mode

FIG. 31C

1/4 Oscillation Mode

