

Historia del programa

Lugar y fecha de elaboración Participantes Observaciones (Cambios y justificaciones)

No aplica No aplica No aplica

Relación con otras asignaturas

Anteriores Posteriores

No aplica No aplica

Nombre de la asignatura Departamento o Licenciatura

Paradigmas de programación paralela Ingeniería en Telemática

Ciclo Clave Créditos Área de formación curricular

3 - 4 IT3471 6 Licenciatura Elección Libre

Tipo de asignatura Horas de estudio

HT HP TH HI
Seminario 32 16 48 48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Al término del curso, el estudiante será capaz de: Programar algoritmos que empleen las principales bibliotecas de funciones de programación paralela que existen, tales como PVM y MPI. Enumerar aquellos problemas que pueden resolverse utilizando programación paralela. Reproducir los principales algoritmos de programación paralela, utilizando para ello PVM. Reproducir los principales algoritmos de programación paralela, utilizando para ello MPI. Re-enunciar problemas de cómputo conocidos, para que empleen bibliotecas de paso de mensajes en su solución.

Objetivo procedimental
No aplica
Objetivo actitudinal
No aplica
Unidades y temas
Unidad I. INTRODUCCIÓN
No aplica
1) Introducción
Unidad II. PVM
No aplia
1) Manejo de la consola PVM
a) Configuración del archivo en cada anfitrión
b) Corrección de errores de arranque
c) Compilación de aplicaciones PVM
d) Ejecución de aplicaciones PVM
2) Interfaz de usuario
a) Control de procesos
b) Información
c) Configuración dinámica
d) Señalización

e) Ob	etención y cambio de opciones
f) Pas	so de mensajes
	f.1) Buffers de mensajes
	f.2) Empaquetamiento de datos
	f.3) Envío y recepción de datos
	f.4) Desempaquetamiento de datos
3) Agrupamien	to dinámico de procesos
4) Escritura de	aplicaciones
a) con	nsideraciones generales
b) col	nsideraciones particulares
c) bal	anceo de carga
5) Consideraci	ones generales de rendimiento
a) Co	nsideraciones particulares de red
b) Ba	lanceo de cargas
6) Métodos de	depuración
7) Detalles de	implementación
a) Ide	entificadores de tareas (TID)
8) El demonio	PVM
a) Arı	ranque de pvmd
b) Ta	bla de anfitriones
c) Tal	bla de tareas

d) Contextos de esepera
e) Detección y recuperación de fallas
9) La biblioteca de programación
10) Comunicación
a) Comunicación pvmd-pvmd
b) Comunicación pvmd-tarea
c) Protocolo pvmd-tarea
d) Buffers de datos
e) Descriptores de framentos de mensaje
f) Buffers de paquetes
g) Buffers de mensajes
h) Mensajes de pvmd
i) Codificadores de mensajes
j) Funciones de manejo de paquetes
k) Mensajes de control
I) Enrutamiento directo de mensajes
m) Multicasting
11) Variables de ambiente
12) Entrada y salida estándar

13) Trazado de programas
14) Detalles internos de la consola
Unidad III. MPI
No aplica
1) Comunicaciones colectivas
a) Comunicaciones estructuradas en forma de árbol
b) Comunicaciones en broadcast
c) Reducción
d) Otras funciones de comunicación colectiva
2) Agrupamiento de datos para comunicación
a) El parámetro ¿count¿
b) Tipos derivados y la estructura MPI_Type_struct
c) Otros constructores de tipos de datos derivados
d) Empaquetamiento/desempaquetamiento
e) Decisión del método a utilizar
3) Comunicaciones y topologías
a) Algoritmo de Fox
b) Comunicaciones
c) Trabajo con grupos, contextos y comunicaciones
d) MPI_Comm_split

e) Topologías	
f) MPI_Cart_sub	
g) Implementación del algoritmo de Fox	
4) Compilación y ejecución de programas MPI	
a) Conceptos básicos	
b) Archivos de cabecera	
c) Inicialización y terminación de la biblioteca	
d) Configuración de grupos	
e) Reconfiguración dinámica	
f) Comunicaciones básicas	
g) Selección de mensajes	
h) Multicast	
i) Comunicaciones sin bloqueo	
5) Bibliotecas MPI	
a) Biblioteca MPICH	
b) Biblioteca CHIMP	
c) Biblioteca LAM	
6) Tópicos avanzados de bibliotecas de paso de mensajes	

Actividades que promueven el aprendizaje

Docente	Estudiante		
Trabajo en equipo			
Ideas previas	Desarrollo investigaciones		
Exposición	Prácticas		
Prácticas			
Elaboración de prototipos	Desarrollo de proyectos individuales		

Actividades de aprendizaje en Internet

No aplica

Desarrollo de proyectos

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Exámenes	30
Desarrollo del Proyecto	25
Participación	10
Prácticas	25
Trabajos e Investigación	10
Total	100

Fuentes de referencia básica

Bibliográficas

Akl, Selim G. Parallel Computation, Models and Methods. Prentice-Hall. ISBN 0-13-147034-5.

Geist, Al et Al. PVM: Parallel Virtual Machine, A User¿s Guide and Tutorial for Networked Parallel Computing. The MIT Press. Documento electrónico.

Pacheco, Peter S. A User¿s Guide to MPI. Documento electrónico.

Web gráficas

No aplica

Fuentes de referencia complementaria

Bibliográficas

Alasdair, R. Et Al. CHIMP/MPI User Guide. The University of Edinburg. Documento electrónico.

Geist, Al et Al. PVM 3 User¿s Guide and Reference Manual. Oak Ridge National Laboratory. Documento electrónico.

Kohl, James Arthur y G. A. Geist. XPVM 1.0 User¿s Guide. Oak Ridge National Laboratory. Documento electrónico.

Gropp, William y Ewing Lusk. Installation Guide to mpich, a Portable Implementation of MPI. University of Chicago, Argonne National Laboratory. Documento electrónico.

Thakur, Rujeev, Ewing Lusk y William Gropp. User¿s Guide for ROMIO: A High-Performance Portable MPI-IO Implementation. Documento electrónico.

Gropp, William y Ewing Lusk. User¿s Guide for mpich, a Portable Implementation of MPI. Argonne National Laboratory, University of Chicago. Documento electrónico.

Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface. University of Tennessee. Documento electrónico.

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Contar con licenciatura o ingeniería en computación o carreras afines, preferentemente maestría en ciencias de la computación.

Docentes

Tener experiencia docente a nivel superior en asignaturas de programación paralela o materias afines.

Profesionales

Tener experiencia mínima de 3 como administrador de clusters en planta en el sector industrial o gerencia en sistemas.