BLM6112 Advanced Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

Information Systems:

Fundamentals

Informatics

- The term informatics broadly describes the study and practice of
 - creating,
 - storing,
 - finding,
 - manipulating
 - sharing
 - information.

Informatics - Etymology

- In 1956 the German computer scientist Karl Steinbuch coined the word Informatik
 - [Informatik: Automatische Informationsverarbeitung ("Informatics: Automatic Information Processing")]
- The French term informatique was coined in 1962 by Philippe Dreyfus
 - [Dreyfus, Phillipe. L'informatique. Gestion, Paris, June 1962, pp. 240–41]
- The term was coined as a combination of information and automatic to describe the science of automating information interactions

Informatics - Etymology

- The morphology—informat-ion + -ics—uses
- the accepted form for names of sciences,
 - as conics, linguistics, optics,
- or matters of practice,
 - as economics, politics, tactics
- linguistically, the meaning extends easily
 - to encompass both
 - the science of information
 - the practice of information processing.

Data - Information - Knowledge

Data

- unprocessed facts and figures without any added interpretation or analysis.
 - {The price of crude oil is \$80 per barrel.}

Information

- data that has been interpreted so that it has meaning for the user.
 - {The price of crude oil has risen from \$70 to \$80 per barrel}
 - [gives meaning to the data and so is said to be information to someone who tracks oil prices.]

Data - Information - Knowledge

Knowledge

- a combination of information, experience and insight that may benefit the individual or the organisation.
 - {When crude oil prices go up by \$10 per barrel, it's likely that petrol prices will rise by 2p per litre.}
 - [This is knowledge]
 - [insight: the capacity to gain an accurate and deep understanding of someone or something; an accurate and deep understanding]

- Data becomes information when it is applied to some purpose and adds value for the recipient.
 - For example a set of raw sales figures is data.
 - For the Sales Manager tasked with solving a problem of poor sales in one region, or deciding the future focus of a sales drive, the raw data needs to be processed into a sales report.
 - It is the sales report that provides information.

- Collecting data is expensive
 - you need to be very clear about why you need it and how you plan to use it.
 - One of the main reasons that organisations collect data is to monitor and improve performance.
 - if you are to have the information you need for control and performance improvement, you need to:
 - collect data on the indicators that really do affect performance
 - collect data reliably and regularly
 - be able to convert data into the information you need.

- To be useful, data must satisfy a number of conditions. It must be:
 - relevant to the specific purpose
 - complete
 - accurate
 - timely
 - data that arrives after you have made your decision is of no value

- in the right format
 - information can only be analysed using a spreadsheet if all the data can be entered into the computer system
- available at a suitable price
 - the benefits of the data must merit the cost of collecting or buying it.
- The same criteria apply to information.
 - It is important
 - to get the right information
 - to get the information right

Converting information to knowledge

- Ultimately the tremendous amount of information that is generated is only useful if it can be applied to create knowledge within the organisation.
- There is considerable blurring and confusion between the terms information and knowledge.

Converting information to knowledge

- think of knowledge as being of two types:
 - Formal, explicit or generally available knowledge.
 - This is knowledge that has been captured and used to develop policies and operating procedures for example.
 - Instinctive, subconscious, tacit or hidden knowledge.
 - Within the organisation there are certain people who hold specific knowledge or have the 'know how'
 - {"I did something very similar to that last year and this happened....."}

Converting information to knowledge

- Clearly, both types of knowledge are essential for the organisation.
- Information on its own will not create a knowledge-based organisation
 - but it is a key building block.
- The right information fuels the development of intellectual capital
 - which in turns drives innovation and performance improvement.

- A system can be broadly defined as an integrated set of elements that accomplish a defined objective.
- People from different engineering disciplines have different perspectives of what a "system" is.
- For example,
 - software engineers often refer to an integrated set of computer programs as a "system"
 - electrical engineers might refer to complex integrated circuits or an integrated set of electrical units as a "system"
- As can be seen, "system" depends on one's perspective, and the "integrated set of elements that accomplish a defined objective" is an appropriate definition.

- A system is an assembly of parts where:
 - The parts or components are connected together in an organized way.
 - The parts or components are affected by being in the system (and are changed by leaving it).
 - The assembly does something.
 - The assembly has been identified by a person as being of special interest.
- Any arrangement which involves the handling, processing or manipulation of resources of whatever type can be represented as a system.
- Some definitions on online dictionaries
 - http://en.wikipedia.org/wiki/System
 - http://dictionary.reference.com/browse/systems
 - http://www.businessdictionary.com/definition/system.html

- A system is defined as multiple parts working together for a common purpose or goal.
- Systems can be large and complex
 - such as the air traffic control system or our global telecommunication network.
- Small devices can also be considered as systems
 - such as a pocket calculator, alarm clock, or 10-speed bicycle.

- Systems have inputs, processes, and outputs.
- When feedback (direct or indirect) is involved, that component is also important to the operation of the system.
- To explain all this, systems are usually explained using a model.
- A model helps to illustrate the major elements and their relationship, as illustrated in the next slide

A systems model

Information Systems

- The ways that organizations
 - Store
 - Move
 - Organize
 - Process

their information

Information Technology

- Components that implement information systems,
 - Hardware
 - physical tools: computer and network hardware, but also low-tech things like pens and paper
 - Software
 - (changeable) instructions for the hardware
 - People
 - Procedures
 - instructions for the people
 - Data/databases

Digital System

• Takes a set of discrete information (<u>inputs</u>) and discrete internal information (<u>system state</u>) and generates a set of discrete information (<u>outputs</u>).

A Digital Computer Example

Signal

- An information variable represented by physical quantity.
- For digital systems, the variable takes on discrete values.
- Two level, or binary values are the most prevalent values in digital systems.
- Binary values are represented abstractly by:
 - digits 0 and 1
 - words (symbols) False (F) and True (T)
 - words (symbols) Low (L) and High (H)
 - and words On and Off.
- Binary values are represented by values or ranges of values of physical quantities

A typical measurement system

Transducers

- A "transducer" is a device that converts energy from one form to another.
- In signal processing applications, the purpose of energy conversion is to transfer information, not to transform energy.
- In physiological measurement systems, transducers may be
 - input transducers (or sensors)
 - they convert a non-electrical energy into an electrical signal.
 - for example, a microphone.
 - output transducers (or actuators)
 - they convert an electrical signal into a non-electrical energy.
 - For example, a speaker.

Analogue signal

- The analogue signal
 - a continuous variable defined with infinite precision
 - is converted to a discrete sequence of measured values which are represented digitally
- Information is lost in converting from analogue to digital, due to:
 - inaccuracies in the measurement
 - uncertainty in timing
 - limits on the duration of the measurement
- These effects are called quantisation errors

Digital signal

• The continuous analogue signal has to be held before it can be sampled

- Otherwise, the signal would be changing during the measurement
- Only after it has been held can the signal be measured, and the measurement converted to a digital value

Signal Encoding: Analog-to Digital Conversion

Continuous (analog) signal ←→ Discrete signal

 $x(t) = f(t) \leftrightarrow$ Analog to digital conversion $\leftrightarrow x[n] = x[1], x[2], x[3], ... x[n]$

Analog-to Digital Conversion

- ADC consists of four steps to digitize an analog signal:
 - 1. Filtering
 - 2. Sampling
 - 3. Quantization
 - 4. Binary encoding
- Before we sample, we have to filter the signal to limit the maximum frequency of the signal as it affects the sampling rate.
- Filtering should ensure that we do not distort the signal, ie remove high frequency components that affect the signal shape.

Sampling

- The sampling results in a discrete set of digital numbers that represent measurements of the signal
 - usually taken at equal intervals of time
- Sampling takes place after the hold
 - The hold circuit must be fast enough that the signal is not changing during the time the circuit is acquiring the signal value
- We don't know what we don't measure
- In the process of measuring the signal, some information is lost

Sampling

- Analog signal is sampled every T_S secs.
- T_s is referred to as the sampling interval.
- $f_s = 1/T_s$ is called the sampling rate or sampling frequency.
- There are 3 sampling methods:
 - Ideal an impulse at each sampling instant
 - Natural a pulse of short width with varying amplitude
 - Flattop sample and hold, like natural but with single amplitude value
- The process is referred to as pulse amplitude modulation PAM and the outcome is a signal with analog (non integer) values

a. Ideal sampling

b. Natural sampling

c. Flat-top sampling

Recovery of a sampled sine wave for different sampling rates

a. Nyquist rate sampling: $f_s = 2 f$

b. Oversampling: $f_s = 4 f$

c. Undersampling: $f_s = f$

We only measure for a certain length of time

• so we miss slow changes

We only measure to a certain accuracy

• so we miss small changes

There may be slight errors in the dock

· so we have some timing uncertainty

We only measure the signal at intervals

• so we miss fast changes

Sampling Theorem

$$F_s \geq 2f_m$$

According to the Nyquist theorem, the sampling rate must be at least 2 times the highest frequency contained in the signal.

Quantization

- Sampling results in a series of pulses of varying amplitude values ranging between two limits: a min and a max.
- The amplitude values are infinite between the two limits.
- We need to map the *infinite* amplitude values onto a finite set of known values.
- This is achieved by dividing the distance between min and max into L zones, each of height Δ .

$$\Delta = (\max - \min)/L$$

Quantization Levels

- The midpoint of each zone is assigned a value from 0 to L-1 (resulting in L values)
- Each sample falling in a zone is then approximated to the value of the midpoint.

Quantization Zones

- Assume we have a voltage signal with amplitutes V_{min} =-20V and V_{max} =+20V.
- We want to use L=8 quantization levels.
- Zone width $\Delta = (20 20)/8 = 5$
- The 8 zones are: -20 to -15, -15 to -10, -10 to -5, -5 to 0, 0 to +5, +5 to +10, +10 to +15, +15 to +20
- The midpoints are: -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5

Assigning Codes to Zones

- Each zone is then assigned a binary code.
- The number of bits required to encode the zones, or the number of bits per sample as it is commonly referred to, is obtained as follows:

$$n_b = \log_2 L$$

- Given our example, $n_b = 3$
- The 8 zone (or level) codes are therefore: 000, 001, 010, 011, 100, 101, 110, and 111
- Assigning codes to zones:
 - 000 will refer to zone -20 to -15
 - 001 to zone -15 to -10, etc.

Quantization and encoding of a sampled signal

Quantization Error

- When a signal is quantized, we introduce an error
 - the coded signal is an approximation of the actual amplitude value.
- The difference between actual and coded value (midpoint) is referred to as the quantization error.
- The more zones, the smaller Δ
 - which results in smaller errors.
- BUT, the more zones the more bits required to encode the samples
 - higher bit rate

Analog-to-digital Conversion

Example An 12-bit analog-to-digital converter (ADC) advertises an accuracy of \pm the least significant bit (LSB). If the input range of the ADC is 0 to 10 volts, what is the accuracy of the ADC in analog volts?

Solution:

If the input range is 10 volts then the analog voltage represented by the LSB would be:

$$V_{LSB} = \frac{V_{\text{max}}}{2^{\text{Nu bits}}} = \frac{10}{2^{12}} = \frac{10}{4096} = .0024 \text{ volts}$$

Hence the accuracy would be ± 0.0024 volts.

Sampling related concepts

- Over/exact/under sampling
- Regular/irregular sampling
- Linear/Logarithmic sampling
- Aliasing
- Anti-aliasing filter
- Image
- Anti-image filter

Steps for digitization/reconstruction of a signal

- Band limiting (LPF)
- Sampling / Holding
- Quantization
- Coding

These are basic steps for A/D conversion

- D/A converter
- Sampling / Holding
- Image rejection

These are basic steps for reconstructing a sampled digital signal

Digital data: end product of A/D conversion and related concepts

- Bit: least digital information, binary 1 or 0
- Nibble: 4 bits
- Byte: 8 bits, 2 nibbles
- Word: 16 bits, 2 bytes, 4 nibbles
- Some jargon:
 - integer, signed integer, long integer, 2s
 complement, hexadecimal, octal, floating point, etc.

Data types

- Our first requirement is to find a way to represent information (data) in a form that is mutually comprehensible by human and machine.
 - Ultimately, we need to develop schemes for representing all conceivable types of information - language, images, actions, etc.
 - Specifically, the devices that make up a computer are switches that can be on or off, i.e. at high or low voltage.
 - Thus they naturally provide us with two symbols to work with:
 - we can call them on and off, or 0 and 1.

What kinds of data do we need to represent?

Numbers

signed, unsigned, integers, floating point, complex, rational, irrational, ...

Text

characters, strings, ...

Images

pixels, colors, shapes, ...

Sound

Logical

true, false

Instructions

• • •

Data type:

representation and operations within the computer

Number Systems – Representation

- Positive radix, positional number systems
- A number with *radix r* is represented by a string of digits:

$$A_{n-1}A_{n-2} \dots A_1A_0 \cdot A_{-1}A_{-2} \dots A_{-m+1}A_{-m}$$

in which $0 \le A_1 < r$ and \cdot is the *radix point*.

• The string of digits represents the power series:

$$(Number)_{r} = \left(\sum_{i=1}^{i=n-1} A_{i} \cdot r^{i}\right) + \left(\sum_{j=-m}^{j=-1} A_{j} \cdot r^{j}\right)$$

$$(Integer Portion) + (Fraction Portion)$$

Decimal Numbers

- "decimal" means that we have ten digits to use in our representation
 - the symbols 0 through 9
- What is 3546?
 - it is three thousands plus five hundreds plus four tens plus six ones.
 - i.e. $3546 = 3 \times 10^3 + 5 \times 10^2 + 4 \times 10^1 + 6 \times 10^0$
- How about negative numbers?
 - we use two more <u>symbols</u> to distinguish positive and negative:
 - + and -

Decimal Numbers

- "decimal" means that we have <u>ten</u> digits to use in our representation (the <u>symbols</u> 0 through 9)
- What is 3546?
 - it is three thousands plus five hundreds plus four tens plus six ones.
 - i.e. $3546 = 3.10^3 + 5.10^2 + 4.10^1 + 6.10^0$
- How about negative numbers?
 - we use two more <u>symbols</u> to distinguish positive and negative:
 - + and -

Unsigned Binary Integers

$$Y = \text{``abc''} = a.2^2 + b.2^1 + c.2^0$$

(where the digits a, b, c can each take on the values of 0 or 1 only)

	N = number of bits		3-bits	5-bits	8-bits
	Range is:	0	000	00000	00000000
	$0 \le i \le 2^N - 1$	1	001	00001	0000001
		2	010	00010	00000010
• Hov	lem: v do we represent	3	011	00011	00000011
negative numbers?		4	100	00100	00000100

Signed Binary Integers -2s Complement representation-

- Transformation
 - To transform a into -a, invert all bits in a and add 1 to the result

Advantages:

- Operations need not check the sign
- Only one representation for zero
- Efficient use of all the bits

-16	10000
• • •	•••
-3	11101
-2	11110
-1	11111
0	00000
+1	00001
+2	00010
+3	00011
•••	•••
+15	01111

Limitations of integer representations

- Most numbers are not integer!
 - Even with integers, there are two other considerations:

• Range:

- The magnitude of the numbers we can represent is determined by how many bits we use:
 - e.g. with 32 bits the largest number we can represent is about +/- 2 billion, far too small for many purposes.

• Precision:

- The exactness with which we can specify a number:
 - e.g. a 32 bit number gives us 31 bits of precision, or roughly 9 figure precision in decimal repesentation.
- We need another data type!

Real numbers

• Our decimal system handles non-integer *real* numbers by adding yet another symbol - the decimal point (.) to make a *fixed point* notation:

```
- e.g. 3456.78 = 3.10^3 + 4.10^2 + 5.10^1 + 6.10^0 + 7.10^{-1} + 8.10^{-2}
```

- The *floating point*, or scientific, notation allows us to represent very large and very small numbers (integer or real), with as much or as little precision as needed:
 - Unit of electric charge $e = 1.602 176 462 \times 10^{-19}$ Coulomb
 - Volume of universe = $1 \times 10^{85} \text{ cm}^3$
 - the two components of these numbers are called the mantissa and the exponent

Real numbers in binary

- We mimic the decimal floating point notation to create a "hybrid" binary floating point number:
 - We first use a "binary point" to separate whole numbers from fractional numbers to make a fixed point notation:
 - e.g. $00011001.110 = 1.2^4 + 1.10^3 + 1.10^1 + 1.2^{-1} + 1.2^{-2} => 25.75$ (2⁻¹ = 0.5 and 2⁻² = 0.25, etc.)
 - We then "float" the binary point:
 - $00011001.110 \Rightarrow 1.1001110 \times 2^4$ mantissa = 1.1001110, exponent = 4
 - Now we have to express this without the extra symbols (x, 2, .)
 - by convention, we divide the available bits into three fields:

sign, mantissa, exponent

IEEE-754 fp numbers - 1

s biased exp. fraction
1 8 bits 23 bits

32 bits: 1 8 bits 23 bits

 $N = (-1)^s \times 1.$ fraction $\times 2^{(biased exp. -}$

- Signa? bit
- Mantissa: 23 bits
 - We "normalize" the mantissa by dropping the leading 1 and recording only its fractional part (why?)
- Exponent: 8 bits
 - In order to handle both +ve and -ve exponents, we add 127
 to the actual exponent to create a "biased exponent":
 - $2^{-127} => biased exponent = 0000 0000 (= 0)$
 - $2^0 => biased exponent = 0111 11111 (= 127)$
 - $2^{+127} => biased exponent = 1111 1110 (= 254)$

IEEE-754 fp numbers - 2

- Example: Find the corresponding fp representation of 25.75
 - $25.75 \Rightarrow 00011001.110 \Rightarrow 1.1001110 \times 2^4$
 - sign bit = 0 (+ve)
 - normalized mantissa (fraction) = 100 1110 0000 0000 0000 0000
 - biased exponent = $4 + 127 = 131 \Rightarrow 1000\ 0011$
 - so $25.75 \Rightarrow 0.1000\ 0011\ 100\ 1110\ 0000\ 0000\ 0000\ 0000 \Rightarrow x41CE0000$
- Values represented by convention:
 - Infinity (+ and -): exponent = 255 (1111 1111) and fraction = 0
 - NaN (not a number): exponent = 255 and fraction $\neq 0$
 - Zero (0): exponent = 0 and fraction = 0
 - note: exponent = 0 => fraction is *de-normalized*, i.e no hidden 1

IEEE-754 fp numbers - 3

• Double precision (64 bit) floating point

	S	biased exp.	fraction
64 bits:	1	11 bits	52 bits

$$N = (-1)^s \times 1.$$
 fraction $\times 2^{(biased exp. -1023)}$

- Range & Precision:
 - ◆ 32 bit:
 - mantissa of 23 bits + 1 => approx. 7 digits decimal
 - $-2^{+/-127} =$ approx. $10^{+/-38}$
 - 64 bit:
 - mantissa of 52 bits + 1 => approx. 15 digits decimal

Binary Numbers and Binary Coding

• Flexibility of representation

 Within constraints below, can assign any binary combination (called a code word) to any data as long as data is uniquely encoded.

Information Types

- Numeric
 - Must represent range of data needed
 - Very desirable to represent data such that simple, straightforward computation for common arithmetic operations permitted
 - Tight relation to binary numbers

- Non-numeric

- Greater flexibility since arithmetic operations not applied.
- Not tied to binary numbers

Non-numeric Binary Codes

- Given n binary digits (called <u>bits</u>), a <u>binary code</u> is a mapping from a set of <u>represented elements</u> to a subset of the 2^n binary numbers.
- Example: A binary code for the seven colors of the rainbow
- Code 100 is not used

Colo	Binary Number
rRe	000
O range	001
Yellow	010
Green	011
Blu	101
E ndig	110
∛iolet	111

Number of Bits Required

• Given M elements to be represented by a binary code, the minimum number of bits, *n*, needed, satisfies the following relationships:

```
2^n > M > 2^{(n-1)}

n = \lceil \log_2 M \rceil where \lceil x \rceil, called the ceiling

function, is the integer greater than or equal to x.
```

- Example: How many bits are required to represent <u>decimal digits</u> with a binary code?
 - -4 bits are required $(n = \lceil \log_2 9 \rceil = 4)$

Number of Elements Represented

- Given n digits in radix r, there are r^n distinct elements that can be represented.
- But, you can represent *m* elements, $m < r^n$
- Examples:
 - You can represent 4 elements in radix r = 2 with n = 2 digits: (00, 01, 10, 11).
 - You can represent 4 elements in radix r = 2 with n = 4 digits: (0001, 0010, 0100, 1000).

Binary Coded Decimal (BCD)

- In the 8421 Binary Coded Decimal (BCD) representation each decimal digit is converted to its 4-bit pure binary equivalent
- This code is the simplest, most intuitive binary code for decimal digits and uses the same powers of 2 as a binary number,
 - but only encodes the first ten values from 0 to 9.
 - For example: $(57)_{\text{dec}} \square (?)_{\text{bcd}}$

Error-Detection Codes

- Redundancy (e.g. extra information), in the form of extra bits, can be incorporated into binary code words to detect and correct errors.
- A simple form of redundancy is <u>parity</u>, an extra bit appended onto the code word to make the number of 1's odd or even.
 - Parity can detect all single-bit errors and some multiple-bit errors.
- A code word has even parity if the number of 1's in the code word is even.
- A code word has odd parity if the number of 1's in the code word is odd.

4-Bit Parity Code Example

• Fill in the even and odd parity bits:

Even Mpssage - Parity	Odd Parity Message_Parity
00°0 _	000 _
001 _	001 _
010 _	010 _
011 _	011 _
100 _	100 _
101 _	101 _
110 _	110 _
111_	111

• The codeword "1111" has even parity and the codeword "1110" has odd parity. Both can be used to represent 3-bit data.

ASCII Character Codes

- American Standard Code for Information Interchange
- This code is a popular code used to represent information sent as character-based data.
- It uses 7- bits to represent
 - 94 Graphic printing characters
 - 34 Non-printing characters
- Some non-printing characters are used for text format
 - e.g. BS = Backspace, CR = carriage return
- Other non-printing characters are used for record marking and flow control
 - e.g. STX = start text areas, <math>ETX = end text areas.

ASCII Properties

- ASCII has some interesting properties:
- Digits 0 to 9 span Hexadecimal values 30₁₆ to 39₁₆
- Upper case A-Z span 41₁₆ to 5A₁₆
- Lower case a-z span 61_{16} to $7A_{16}$
 - Lower to upper case translation (and vice versa) occurs by flipping bit 6
- Delete (DEL) is all bits set,
 - a carryover from when punched paper tape was used to store messages

UNICODE

- UNICODE extends ASCII to 65,536 universal characters codes
 - For encoding characters in world languages
 - Available in many modern applications
 - 2 byte (16-bit) code words

Warning: Conversion or Coding?

• Do NOT mix up "conversion of a decimal number to a binary number" with "coding a decimal number with a binary code".

•
$$13_{10} = 1101_2$$

This is conversion

- 13 \Leftrightarrow 0001 0011_{BCD}
 - -This is coding

Another use for bits: Logic

Beyond numbers

- logical variables can be true or false, on or off, etc., and so are readily represented by the binary system.
- A logical variable A can take the values false = 0 or true = 1 only.
- The manipulation of logical variables is known as Boolean Algebra, and has its own set of operations
 - which are not to be confused with the arithmetical operations.
- Some basic operations: NOT, AND, OR, XOR

Binary Logic and Gates

- Binary variables take on one of two values.
- Logical operators operate on binary values and binary variables.
- Basic logical operators are the <u>logic functions</u> AND, OR and NOT.
- Logic gates implement logic functions.
- Boolean Algebra: a useful mathematical system for specifying and transforming logic functions.
- We study Boolean algebra as foundation for designing and analyzing digital systems!

Binary Variables

- Recall that the two binary values have different names:
 - True/False
 - On/Off
 - Yes/No
 - -1/0
- We use 1 and 0 to denote the two values.
- Variable identifier examples:
 - -A, B, y, z, or X_1 for now
 - RESET, START_IT, or ADD1 later

Logical Operations

- The three basic logical operations are:
 - AND
 - OR
 - NOT
- AND is denoted by a dot (·)
- OR is denoted by a plus (+)
- NOT is denoted by an overbar (), a single quote mark (') after, or (~) before the variable

Notation Examples

• Examples:

- Y=A.B is read "Y is equal to A AND B."
- z=x+y is read "z is equal to x OR y."
- X=Ā is read "X is equal to NOT A."
- Note: The statement:

```
1 + 1 = 2 (read "one <u>plus</u> one equals two")
```

is not the same as

1 + 1 = 1 (read "1 or 1 equals 1").

Operator Definitions

Operations are defined on the values "0" and "1" for each operator:

AND

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

OR

$$0 + 0 = 0$$

$$0+1=1$$
 $\bar{1}=0$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

NOT

$$\overline{0} = 1$$

$$\overline{1} = 0$$

Truth Tables

- Truth table a tabular listing of the values of a function for all possible combinations of values on its arguments
- Example: Truth tables for the basic logic operations:

AND						
$ \mathbf{X} \mathbf{Y} \mathbf{Z} = \mathbf{X} \cdot \mathbf{Y}$						
0	0	0				
0	1	0				
1	0	0				
1	1	1				

	OR						
X	$\mathbf{X} \mid \mathbf{Y} \mid \mathbf{Z} = \mathbf{X} + \mathbf{Y}$						
0	0	0					
0	0 1 1						
1	0	1					
1	1	1					

NOT					
$\mathbf{X} \mathbf{Z} = \overline{\mathbf{X}}$					
0	1				
1 0					

Transistor: Building Block of Computers

- •Microprocessors contain millions of transistors
 - **Intel Pentium 4 (2000):** 48 million
 - IBM PowerPC 750FX (2002): 38 million
 - IBM/Apple PowerPC G5 (2003): 58 million
- •Logically, each transistor acts as a switch
- Combined to implement logic functions
 - AND, OR, NOT
- •Combined to build higher-level structures
 - Adder, multiplexer, decoder, register, ...
- Combined to build processor

Building Functions from Logic Gates

•Combinational Logic Circuit

- -output depends only on the current inputs
- -stateless

•Sequential Logic Circuit

- output depends on the sequence of inputs (past and present)
- stores information (state) from past inputs

Basic Logic Gates

Waveform behavior in time

Logic Diagrams and Expressions

	. 7	п 1	
Trut	n 1	\mathbf{a}	ble

XYZ	$ \mathbf{F} = \mathbf{X} + \overline{\mathbf{Y}} \cdot \mathbf{Z} $					
000	0					
001	1					
010	0					
011	0					
100	1					
101	1					
110	1					
111	1					

Equation

$$\mathbf{F} = \mathbf{X} + \overline{\mathbf{Y}} \mathbf{Z}$$

Logic Diagram

- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique; expressions and logic diagrams are not. This gives flexibility in implementing functions.

Boolean Algebra

■ An algebraic structure defined on a set of at least two elements, B, together with three binary operators (denoted +, · and) that satisfies the following basic identities:

1.	X + 0 = X	2.	$X \cdot = X$	Existence of 0 and1
3.	X+1=1	4.	$X^{1}0=0$	Existence of 0 and i
5.	X + = X	6.	$X^{\cdot} = X$	Idempotence
7.	X + - = 1	8.	X . = 0	Existence of complement
9.	$\overline{X} = X$		X	Involution
10.	X + Y = Y + X	11.	XY = YX	Commutative
12.	(X+Y)+Z=X+(Y+Z)	13.	(XY)Z = X((YZ) Associative
14.	X(Y+Z)=XY+XZ	15.	X + YZ = ((X + Y)(X + Z) Distributive
16.	$\overline{X+Y}=\overline{X}$	17.	\overline{X} = \overline{X} +	Y DeMorgan's
	$oldsymbol{Y}$		$oldsymbol{Y}$	

Boolean Operator Precedence

- The order of evaluation in a Boolean expression is:
 - Parentheses

 - 2 NOT3 AND4 O
- Consequence: Parentheses appear around OR expressions
- Example: F = A(B + C)(C + D)

Example 1: Boolean Algebraic Proof

$$A + A \cdot B = A$$
 (Absorption Theorem)

Proof Steps Justification (identity or theorem)

 $A + A \cdot B$
 $= A \cdot 1 + A \cdot B$ $X = X \cdot 1$
 $= A \cdot (1 + B)$ $X \cdot Y + X \cdot Z = X \cdot (Y + Z)$ (Distributive Law)

 $= A \cdot 1$ $1 + X = 1$
 $= A$ $X \cdot 1 = X$

- Our primary reason for doing proofs is to learn:
 - Careful and efficient use of the identities and theorems of Boolean algebra, and
 - How to choose the appropriate identity or theorem to apply to make forward progress, irrespective of the application.

Example 2: Boolean Algebraic Proofs

AB +
$$\overline{A}$$
C + BC = AB + \overline{A} C (Consensus Theorem)
Proof Steps: Justification (identity or theorem)
AB + \overline{A} C + BC
= AB + \overline{A} C + 1 · BC
= AB + \overline{A} C + (A + \overline{A}) · BC
= AB + \overline{A} C + ABC + \overline{A} BC
= AB (1+C) + \overline{A} C (1+B)
= AB · 1 + \overline{A} C · 1
= AB + \overline{A} C

Example 3: Boolean Algebraic Proofs

Useful Theorems

$$x \cdot y + \overline{x} \cdot y = y$$
 $(x + y)(\overline{x} + y) = y$ Minimization
 $x + x \cdot y = x$ $x \cdot (x + y) = x$ Absorption
 $x + \overline{x} \cdot y = x + y$ $x \cdot (\overline{x} + y) = x \cdot y$ Simplification
 $x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z$ Consensus
 $(x + y) \cdot (\overline{x} + z) \cdot (y + z) = (x + y) \cdot (\overline{x} + z)$
 $\overline{x + y} = \overline{x} \cdot \overline{y}$ $\overline{x \cdot y} = \overline{x} + \overline{y}$ DeMorgan s Laws

Proof of Simplification

$$\mathbf{x} \cdot \mathbf{y} + \overline{\mathbf{x}} \cdot \mathbf{y} = \mathbf{y}$$

$$(x+y)(\overline{x}+y)=y$$

Proof of DeMorgan's Laws

$$\overline{\mathbf{x} + \mathbf{y}} = \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$$

$$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$

Boolean Function Evaluation

$$F = xy\overline{z}$$

$$F = x + \overline{y}z$$

$$F = \overline{x}\overline{y}\overline{z} + \overline{x}yz + x\overline{y}$$

$$F = x\overline{y}z + \overline{x}z$$

$$F = x\overline{y}z + \overline{x}z$$

X	y	Z	F 1	F2	F3	F4
0	0	0	0	0	1	0
0	0	1	0	1	0	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

More than 2 Inputs?

•AND/OR can take any number of inputs.

AND = 1 if all inputs are 1.

OR = 0 if any input is 0.

Similar for NAND/NOR.

•Can implement with multiple two-input gates, or with single CMOS circuit.

Functions and Functional Blocks

- The functions considered are those found to be very useful in design
- Corresponding to each of the functions is a combinational circuit implementation called a *functional block*.
- In the past, many functional blocks were implemented as SSI, MSI, and LSI circuits.
- Today, they are often simply parts within a VLSI circuit.

Rudimentary Logic Functions

- Functions of a single variable X
- Can be used on the inputs to functional blocks to implement other than the block's intended function

Functions of One Vari bl

X	F =	F =	F >	.a e (F=
0	0	0	1	1
1	0	1	0	1

Multiple-bit Rudimentary Functions

• Multi-bit Examples:

- In (b) of the example, $F = (F_3, F_2, F_1, F_0)$ is a bus.
- The bus can be split into <u>individual bits</u> as shown in (b)
- Sets of bits can be split from the bus as shown in (c) for bits 2 and 1 of F.
- The sets of bits need not be continuous as shown in (d) for bits 3, 1, and 0 of F.

Enabling Function

- *Enabling* permits an input signal to pass through to an output
- *Disabling* blocks an input signal from passing through to an output, replacing it with a fixed value
- The value on the output when it is disable can be Hi-Z (as for three-state buffers and transmission gates), 0, or 1
- When disabled, 1 output ____ (a)
- Enabling applications?

(b)

Decoding

- Decoding the conversion of an n-bit input code to an m-bit output code with $n \le m \le 2^n$ such that each valid code word produces a unique output code
- Circuits that perform decoding are called decoders
- Here, functional blocks for decoding are
 - called *n*-to-*m* line decoders, where $m \le 2^n$, and
 - -generate 2^n (or fewer) minterms for the n input variables

Decoder Examples

• 1-to-2-Line Decoder

• 2-to-4-Line Decoder

\mathbf{A}_1	\mathbf{A}_0	\mathbf{D}_0	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	
0	0	1	0	0	0	
0	1	0	1	0	0	
1	0	0	0	1	0	
1	1	0	0	0	1	
(a)						

 Note that the 2-4-line made up of 2 1-to-2line decoders and 4 AND gates.

Decoder Expansion - Example

• Result

Decoder with Enable

- In general, attach *m*-enabling circuits to the outputs
- Truth table for the function
 - Note use of X's to denote both 0 and 1
 - Combination containing two X's represent four binary combinations

• Alternatively, can be viewed as distributing value of signal EN to

1 of 4 outputs

• In this case, called a demultiplexer

E	$\mathbf{A_1}$	$\mathbf{A_0}$	$\mathbf{D_0}$	\mathbf{D}_1	$\mathbf{D_2}$	$\mathbf{D_3}$	
0	X	X	0	0	0	0	
1	0	0	1	0	0	0	
1	0	1	0	1	0	0	
1	1	0	0	0	1	0	
1	1	1	0	0	0	1	
(a)							

Encoding

- Encoding the opposite of decoding the conversion of an m-bit input code to a n-bit output code with $n \le m \le 2^n$ such that each valid code word produces a unique output code
- Circuits that perform encoding are called *encoders*
- An encoder has 2^n (or fewer) input lines and n output lines which generate the binary code corresponding to the input values
- Typically, an encoder converts a code containing exactly one bit that is 1 to a binary code corresponding to the position in which the 1 appears.

Selecting

- Selecting of data or information is a critical function in digital systems and computers
- Circuits that perform selecting have:
 - A set of information inputs from which the selection is made
 - -A single output
 - -A set of control lines for making the selection
- Logic circuits that perform selecting are called *multiplexers*
- Selecting can also be done by three-state logic or transmission gates

Multiplexers

- A multiplexer selects information from an input line and directs the information to an output line
- A typical multiplexer has n control inputs $(S_{n-1}, \dots S_0)$ called *selection inputs*, 2^n information inputs $(I_{2^{n-1}}, \dots I_0)$, and one output Y
- A multiplexer can be designed to have m information inputs with $m < 2^n$ as well as n selection inputs

2-to-1-Line Multiplexer

- Since $2 = 2^1$, n = 1
- The single selection variable S has two values:
 - -S = 0 selects input I_0
 - -S = 1 selects input I_1
- The equation:

$$Y = \overline{S}I_0 + SI_1$$

• The circuit:

Example: 4-to-1-line Multiplexer

- 2-to-2²-line decoder
- $2^2 \times 2$ AND-OR

Multiplexer Width Expansion

- Select "vectors of bits" instead of "bits"
- Use multiple copies of $2^n \times 2$ AND-OR in parallel
- Example: 4-to-1-line quad multiplexer

Functional Blocks: Addition

- Binary addition used frequently
- Addition Development:
 - Half-Adder (HA), a 2-input bit-wise addition functional block,
 - Full-Adder (FA), a 3-input bit-wise addition functional block,
 - Ripple Carry Adder, an iterative array to perform binary addition, and
 - Carry-Look-Ahead Adder (CLA), a hierarchical structure to improve performance.

Functional Block: Half-Adder

• A 2-input, 1-bit width binary adder that performs the following computations:

- A half adder adds tws bits to produce a two-bit sum
- The sum is expressed as a sum bit, S and a carry bit, C
- The half adder can be specified table for S and C \Rightarrow

X	Y	C	S
0	0	as a t	
0	1	0	1
1	0	0	1
1	1	1	0

Implementations: Half-Adder

• The most common half adder implementation is (e)

$$\mathbf{S} = \mathbf{X} \oplus \mathbf{Y}$$
$$\mathbf{C} = \mathbf{X} \cdot \mathbf{Y}$$

• A NAND only implementation is:

$$\mathbf{C} = \overline{(\underline{X \cdot Y})}$$

$$\mathbf{C} = \overline{(\underline{X \cdot Y})}$$

Functional Block: Full-Adder

- A full adder is similar to a half adder, but includes a carry-in bit from lower stages. Like the half-adder, it computes a sum bit, S and a carry bit, C.
 - For a carry-in (Z) of0, it is the same asthe half-adder:
 - For a carry- in(Z) of 1:

Z	U	U	U	U
X	0	0	1	1
	<u>+</u> _	_+	<u>+</u>	+
Es	0 0	b 1	8 1	10
Z	1	1	1	1
X	0	0	1	1
+	+		+	+
Es	0 1	10	90	11

Logic Optimization: Full-Adder

• Full-Adder Truth Table:

X	Y	Z	C	<u>S</u>
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

• Full-Adder K-Map:

Equations: Full-Adder

• From the K-Map, we get:

$$S = X\overline{Y}\overline{Z} + \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z + XYZ$$

$$C = XY + XZ + YZ$$

• The S function is the three-bit XOR function (Odd Function):

$$S = X \oplus Y \oplus Z$$

• The Carry bit C is 1 if both X and Y are 1 (the sum is 2), or if the sum is 1 and a carry-in (Z) occurs. Thus C can be re-written as:

$$C = XY + (X \oplus Y)Z$$

- The term $X \cdot Y$ is *carry generate*.
- The term $X \oplus Y$ is *carry propagate*.

Implementation: Full Adder

- Full Adder Schematic
- Here X, Y, and Z, and C
 (from the previous pages)
 are A, B, C_i and C_o,
 respectively. Also,

G = generate and P = propagate.

• Note: This is really a combination of a 3-bit odd function (for S)) and Carry logic (for C₀):

(G = Generate) OR (P = Propagate AND
$$C_i$$
 = Carry In)
Co = G + P · Ci

4-bit Ripple-Carry Binary Adder

• A four-bit Ripple Carry Adder made from four 1-bit Full Adders:

2's Complement Adder/Subtractor

- Subtraction can be done by addition of the 2's Complement.
 - 1. Complement each bit (1's Complement.)
 - 2. Add 1 to the result.
- The circuit shown computes A + B and A B:
- For S = 1, subtract, the 2's complement of B is formed by using XORs to form the 1's comp and adding the 1 applied to C_0 .
- For S = 0, add, B is passed through unchanged

Combinational vs. Sequential

Combinational Circuit

- -always gives the same output for a given set of inputs
 - ex: adder always generates sum and carry, regardless of previous inputs

Sequential Circuit

- stores information
- output depends on stored information (state) plus input
 - so a given input might produce different outputs, depending on the stored information

Introduction to Sequential Circuits

 Output function type depends on specification and affects the design significantly

R-S Latch: Simple Storage Element

- •R is used to "reset" or "clear" the element set it to zero.
- •S is used to "set" the element set it to one.

- •If both R and S are one, out could be either zero or one.
 - "quiescent" state -- holds its previous value
 - note: if a is 1, b is 0, and vice versa

R-S Latch Summary

$$\bullet \mathbf{R} = \mathbf{S} = \mathbf{1}$$

-hold current value in latch

•
$$R=1, S=0$$

- set value to 1

•
$$R = 0, S = 1$$

- set value to 0

$$\bullet \mathbf{R} = \mathbf{S} = \mathbf{0}$$

- -both outputs equal one
- final state determined by electrical properties of gates
- -Don't do it!

D Latch

- Adding an inverter to the S-R Latch, gives the D Latch:
- Note that there are no "indeterminate" states!

Q	D	Q(t+1)	Comment
0	0	0	No change
0	1	1	Set Q
1	0	0	Clear Q
1	1	1	No Change

The graphic symbol for a

D Latch is:

Register

- •A register stores a multi-bit value.
 - We use a collection of D-latches, all controlled by a common WE.
 - When WE=1, n-bit value D is written to register.

Representing Multi-bit Values

- •Number bits from right (0) to left (n-1)
 - just a convention -- could be left to right, but must be *consistent*
- •Use brackets to denote range:

D[l:r] denotes bit **l** to bit **r**, from *left* to *right*

Memory

•Now that we know how to store bits, we can build a memory – a logical $k \times m$ array of stored bits.

2² x 3 Memory

More Memory Details

- •This is a not the way actual memory is implemented.
 - fewer transistors, much more dense,
 relies on electrical properties
- •But the logical structure is very similar.
 - address decoder
 - word select line
 - word write enable
- •Two basic kinds of RAM (Random Access Memory)
- Static RAM (SRAM)
 - fast, maintains data as long as power applied
- Dynamic RAM (DRAM)
 - slower but denser, bit storage decays must be periodically refreshed

Also, non-volatile memories: ROM, PROM, flash, ...

State Machine

- •Another type of sequential circuit
 - -Combines combinational logic with storage
 - "Remembers" state, and changes output (and state)
 based on inputs and current state

Combinational vs. Sequential

•Two types of "combination" locks

Combinational

Success depends only on the values, not the order in which they are set.

Sequential

Success depends on the sequence of values (e.g, R-13, L-22, R-3).

The Clock

•Frequently, a clock circuit triggers transition from one state to the next.

•At the beginning of each clock cycle, state machine makes a transition, based on the current state and the external inputs.

Implementing a Finite State Machine

- Combinational logic
 - Determine outputs and next state.
- Storage elements
 - Maintain state representation.

Storage: Master-Slave Flipflop

•A pair of gated D-latches, to isolate *next* state from *current* state.

During 1st phase (clock=1), previously-computed state becomes *current* state and is sent to the logic circuit.

During 2nd phase (clock=0), *next* state, computed by logic circuit, is stored in Latch A.

Storage

- •Each master-slave flipflop stores one state bit.
- •The number of storage elements (flipflops) needed is determined by the number of states (and the representation of each state).
- •Examples:
 - Sequential lock
 - Four states two bits

Finite State Machine

- A description of a system with the following components:
- 1. A finite number of states
- 2. A finite number of external inputs
- 3. A finite number of external outputs
- 4. An explicit specification of all state transitions
- 5. An explicit specification of what determines each external output value
 - Often described by a state diagram.
 - Inputs trigger state transitions.
 - Outputs are associated with each state (or with each transition).

State of Sequential Lock

Our lock example has four different states, labelled A-D:

- A: The lock is not open, and no relevant operations have been performed.
- B: The lock is not open, and the user has completed the R-13 operation.
- C: The lock is not open, and the user has completed R-13, followed by L-22.
- D: The lock is open.

State Diagram

•Shows states and actions that cause a transition between states.

Sequential Circuit Design Procedure

- Specification
- Formulation
 - Obtain a state diagram or state table
- State Assignment
 - Assign binary codes to the states
- Flip-Flop Input Equation Determination
 - Select flip-flop types and derive flip-flop equations from next state entries in the table
- Output Equation Determination
 - Derive output equations from output entries in the table
- Optimization
 - Optimize the equations
- Technology Mapping
 - Find circuit from equations and map to flip-flops and gate technology
- Verification
 - Verify correctness of final design

Example: Sequence Recognizer Procedure

- To develop a sequence recognizer state diagram:
 - Begin in an initial state in which NONE of the initial portion of the sequence has occurred (typically "reset" state).
 - Add a state that recognizes that the first symbol has occurred.
 - Add states that recognize each successive symbol occurring.
 - The final state represents the input sequence (possibly less the final input value) occurence.
 - Add state transition arcs which specify what happens when a symbol *not* in the proper sequence has occurred.
 - Add other arcs on non-sequence inputs which transition to states that represent the input subsequence that has occurred.
- The last step is required because the circuit must recognize the input sequence regardless of where it occurs within the overall sequence applied since "reset.".

State Assignment

- Each of the *m* states must be assigned a unique code
- Minimum number of bits required is *n* such that

$$n \ge \log_2 m$$
 where $\lceil x \rceil$ is the smallest integer $\ge x$

- There are useful state assignments that use more than the minimum number of bits
- There are 2^n m unused states

Sequence Recognizer Example

- Example: Recognize the sequence 1101
 - Note that the sequence 1111101 contains 1101 and "11" is a proper sub-sequence of the sequence.
- Thus, the sequential machine must remember that the first two one's have occurred as it receives another symbol.
- Also, the sequence 1101101 contains 1101 as both an initial subsequence and a final subsequence with some overlap, i. e., 1101101 or 1101101.
- And, the 1 in the middle, 110<u>1</u>101, is in both subsequences.
- The sequence 1101 must be recognized each time it occurs in the input sequence.

Example: Recognize 1101

- Define states for the sequence to be recognized:
 - assuming it starts with first symbol,
 - continues through each symbol in the sequence to be recognized, and
 - uses output 1 to mean the full sequence has occurred,
 - with output 0 otherwise.
- Starting in the initial state (Arbitrarily named "A"):
 - Add a state that the first "1."

- State "A" is the initial state, and state "B" is the state which represents the fact that the "first" one in the input subsequence has occurred.
- The output symbol "0" means that the full recognized sequence has not yet occurred.

- After one more 1, we have:
 - C is the state obtained when the input sequence has two "1"s.

• Finally, after 110 and a 1, we have:

- Transition arcs are used to denote the output function (Mealy Model)
- Output 1 on the arc from D means the sequence has been recognized
- To what state should the arc from state D go? Remember: 1101101?
- Note that D is the last state but the output 1 occurs for the input applied in D. This is the case when a *Mealy model* is assumed.

23Ekim2k8

• Clearly the final 1 in the recognized sequence 1101 is a sub-sequence of 1101. It follows a 0 which is not a sub-sequence of 1101. Thus it should represent *the same state reached from the initial state after a first 1 is observed*. We obtain:

- The state have the following abstract meanings:
 - A: No proper sub-sequence of the sequence has occurred.
 - − B: The sub-sequence 1 has occurred.
 - C: The sub-sequence 11 has occurred.
 - − D: The sub-sequence 110 has occurred.
 - The 1/1 on the arc from D to B means that the last 1 has occurred and thus, the sequence is recognized.

- The other arcs are added to each state for inputs not yet listed. Which arcs are missing?
 - "0" arc from A
 - "0" arc from B
 - "1" arc from C
 - "0" arc from D.

• State transition arcs must represent the fact that an input subsequence has occurred. Thus we get:

• Note that the 1 arc from state C to state C implies that State C means two or more 1's have occurred.

Formulation: Find State Table

- From the <u>State Diagram</u>, we can fill in the <u>State Table</u>.
- There are 4 states, one input, and one output.
 We will choose the form with four rows, one for each current state.
- From State A, the 0 and input transitions have been filled in along with the outputs.

Present State	Next State x=0 x=1	Output x=0 x=1
A	A B	0 0
В		
C		
D		

Formulation: Find State Table

• From the state diagram, we complete the state table.

Present	Next	Outpu	
Stat	Sŧate x=1	x = 0 $x = 1$	
e A	A B	0 0	
В	A C	0 0	
C	D C	0 0	
D	A B	0 1	

• What would the state diagram and state table look like for the Moore model?

Example: Moore Model for Sequence 1101

- For the Moore Model, outputs are associated with states.
- We need to add a state "E" with output value 1 for the final 1 in the recognized input sequence.
 - This new state E, though similar to B, would generate an output of 1 and thus be different from B.
- The Moore model for a sequence recognizer usually has *more states* than the Mealy model.

Example: Moore Model ...

A/0

- We mark outputs on for Moore model
- Arcs now show only state transitions
- Add a new state E to produce the output 1
- Note that the new state,

 E produces the same behavior
 in the future as state B. But it gives a different output at the present time. Thus these states do represent a *different*abstraction of the input history.

states

Example: Moore Model ...

• The state table is shown below

4	1 B/	1 C/ 0 D/
•	0 0	
u	0	

Present	Next	Outpu
Stat	State x=1	t y
e A	A B	0
В	A C	0
C	D C	0
D	A E	0
E	A C	1

State Assignment – Example 1

Present	Next State	Output	
State	x=0	x=0	
A	x≠1	x⊕ 1	
В	A B	0 0	

• How may assignments of codes with a minimum number of bits?

-Two

$$A = 0, B = 1$$
 or $A = 1, B = 0$

- Does it make a difference?
 - −Only in variable inversion, so small, if any.

State Assignment – Example 2

Present	Next	Outpu	
Stat	State x=1	xt=0 x=1	
e A	A B	0 0	
В	A C	0 0	
C	D C	0 0	
D	A B	0 1	

• How may assignments of codes with a minimum number of bits?

$$4 \times 3 \times 2 \times 1 = 24$$

 Does code assignment make a difference in cost?

State Assignment – Example 2 ...

- Assignment 1: A = 0 0, B = 0 1, C = 1 0, D = 1 1
- The resulting coded state table:

Present	Next State		Output	
State	$x = 0 \ x = 1$		$\mathbf{x} = 0$	x = 1
0 0	0 0	0 1	0	0
0 1	00	10	0	0
10	11	10	0	0
11	0 0	0 1	0	1

State Assignment – Example 2 ...

- Assignment 2: A = 0 0, B = 0 1, C = 1 1, D = 1 0
- The resulting coded state table:

Present	Next State $x = 0$ $x = 1$		Output	
State			x = 0 x = 1	
0 0	0 0	0 1	0	0
0 1	0 0	11	0	0
1 1	10	11	0	0
10	0 0	01	0	1

Find Flip-Flop Input and Output Equations: Example 2 - Assignment 1

- Assume D flip-flops
- Interchange the bottom two rows of the state table, to obtain K-maps for D_1 , D_2 , and Z:

Optimization: Example 2: Assignment 1

• Performing two-level optimization:

Find Flip-Flop Input and Output Equations: Example 2 - Assignment 2

- Assume D flip-flops
- Obtain K-maps for D₁, D₂, and Z:

Optimization: Example 2: Assignment 2

• Performing two-level optimization:

$$D_1 = Y_1Y_2 + XY_2$$
 Gate Input Cost = 9
 $D_2 = X$ Select this state assignment for
 $Z = XY_1Y_2$ completion of the design

Map Technology

Mapped Circuit - Final Result

Typical mixed signal design flow

The chip manufacturing process

A 12-inch (300 mm) wafer of Intel Core i7 (Courtesy Intel)

Typical post synthesis layout

Picture of the fabricated chip

Testing board for the chip

Top side

Bottom side