Aula 22: Árvores chanfradas Splay trees

David Déharbe
Programa de Pós-graduação em Sistemas e Computação
Universidade Federal do Rio Grande do Norte
Centro de Ciências Exatas e da Terra
Departamento de Informática e Matemáica Aplicada

Download me from http://DavidDeharbe.github.io.

Introdução

Análise amortizada Método agregado Método do contador Método do potencial

Arranjos dinâmicos

Árvores chanfradas

- 1. Avaliação de estruturas de dados: análise amortizada
 - Contador binário
 - Arranjos dinâmicos

Análise amortizada

- ► Medição da complexidade ao longo de *n* operações
- ▶ Custo de execução, no pior caso: T(n)
- ▶ Custo amortizado: T(n)/n
- Exemplos
 - 1. contador binário
 - 2. arranjo dinâmico

Método agregado

- Considere uma série de n operações em alguma estrutura de dados, n qualquer.
- ▶ Determina o custo T(n) desta série de operações.
- ▶ O custo médio de cada operação é T(n)/n.
- Exemplo: contador binário

Método agregado: um exemplo

```
INCREMENT(A)

# A é um arranjo de k bits

1 i = 0

2 while i < length[A] and A[i] = 1

3 A[i] = 0

4 i = i + 1

5 if i < length[A]

6 A[i] = 1
```

- O tamanho da entrada é k;
- ➤ O custo da execução da INCREMENT é proporcional ao número de bits invertidos.
- ▶ No pior caso, a complexidade é proporcional a k;
- ▶ Logo, o custo de uma sequência de n operações é $O(n \times k)$.
- Podemos prover uma análise mais precisa?

Método agregado: um exemplo

Em uma série de n execuções de Increment:

- ▶ A[0] é invertido n vezes;
- ▶ A[1] é invertido n/2 vezes;
- ▶ A[2] é invertido n/4 vezes;
- ▶ A[k-1] é invertido $n/2^{k-1}$ vezes;

O custo total para n operações é

$$T(n) = \sum_{i=1}^{\lfloor \lg n \rfloor} n/2^{i-1}$$

$$T(n) < \sum_{i=1}^{\infty} n/2^{i-1}$$

$$T(n) < n \times \sum_{i=1}^{\infty} 1/2^{i-1} = 2n$$

Logo o custo amortizado de Increment é $T(n)/n=2\in\Theta(1)$: é constante.

Método do contador

Quanto pagar para executar n operações?

- cada operação tem um custo real
- ightharpoonup a cada operação é atribuído um preço (pprox custo amortizado individual)
- os preços cobrados devem cobrir os custos reais
- se o preço é maior que o custo:
 - crédito é associado a elementos da estrutura de dados
- se o custo é maior que o preço
 - a diferença deve poder ser paga com os créditos disponíveis
- custo amortizado total: soma dos preços cobrados

Critérios de definição do custo

- o custo amortizado total deve ser uma cota superior do custo real
 - a estrutura de dados não "empresta"
- o crédito total associado aos elementos nunca pode ser negativo

Método do contador: o contador binário

- a unidade de custo é inverter um bit
- ▶ preço para $0 \rightarrow 1$: 2
 - ▶ 1 é o custo
 - ightharpoonup sobra 2-1=1 de crédito, associado ao bit setado a 1
- **•** preço para $1 \rightarrow 0$: 0
 - pago com o crédito

Método do contador: o contador binário

```
INCREMENT(A)

// A é um arranjo de k bits

1 i = 0

2 while i < length[A] and A[i] = 1

3 A[i] = 0

4 i = i + 1

5 if i < length[A]

6 A[i] = 1
```

- O custo do laço é pago usando os créditos dos bits setados a
 1.
- no máximo um único bit é setado a 1: custo 1, mais 1 que fica como crédito
- ▶ logo, o custo de uma execução da operação Increment é 2
- ightharpoonup o custo de n execuções da operação INCREMENT é O(n).

- ▶ crédito ⇒ potencial para executar futuras operações
- estrutura de dados inicia em um estado D₀
- n operações são executadas,
 - ightharpoonup custo real $c_1, \ldots c_i, \ldots c_n$
 - ▶ levando aos estados $D_1, \dots D_i, \dots D_n$
- A função Φ associa um número real Φ_i (potencial) ao estado
 D_i
- ► Custo amortizado $a_i = c_i + \Phi_i \Phi_{i-1}$
- Custo amortizado total

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} c_i + \Phi_i - \Phi_{i-1} = \sum_{i=1}^{n} c_i + \Phi_n - \Phi_0$$

▶ se $\forall i \cdot \Phi_i \geq \Phi_0$, então $\sum_{i=1}^n a_i$ é uma cota superior do custo total real.

Relação com o método do contador

- ▶ $\Phi_0 = 0$
- ▶ mostrar que $\Phi_i \geq 0$, $\forall i$.
- $\Phi_i > \Phi_{i-1} \approx \text{cr\'edito (potencial aumenta)}$
- $\Phi_i < \Phi_{i-1} \approx \mathsf{d\'ebito}$ (potencial diminui)

Método do potencial: o contador binário

- ightharpoonup a *i*-ésima chamada de INCREMENT zera t_i bits
- custo real $c_i = t_i + 1$ (zera i, seta 1)
- potencial: Φ_i = quantidade de bits setados a 1
- ▶ naturalmente, $\forall i \cdot \Phi_i \geq 0$
- ▶ logo $\Phi_i \leq \Phi_{i-1} t_i + 1$
- custo amortizado de uma operação

$$a_i = c_i + \Phi_i - \Phi_{i-1} \le (t_i + 1) - (1 - t_i) = 2$$

ightharpoonup custo amortizado de n operações O(n)

Arranjos dinâmicos

- contêiner tabela, cuja capacidade adapta-se ao tamanho da coleção
 - ▶ inserção e remoção: modelo pilha
- inserção em uma tabela está cheia
 - aloca uma nova tabela de capacidade maior
 - copia o conteúdo da tabela original para a nova tabela
 - libera o espaço ocupado pela tabela original
 - insere o novo elemento
- política de expansão: dobra o tamanho
- remoção, quando o fator de carga fica baixo
 - aloca uma nova tabela de capacidade menor
 - copia o conteúdo da tabela original para a nova tabela
 - libera o espaço ocupado pela tabela original
 - remove o elemento
- política de contração: divide a capacidade por dois quando fator de carga chega a 1/4.

Implementação: dados

- ▶ *T. table* tabela com os elementos
- T. num quantidade de elementos armazenados na tabela
- T. size capacidade máxima

Inserção

```
Insert(T, k)
    if T. size == 0 // alocação inicial
         T. table = Alloc-Table(1)
 3
         T.size = 1
    elseif T. num == T. size // expansão
 5
         tab = T.table
 6
         T.table = Alloc-Table(T.size \times 2)
         for i = 1 to T. size
 8
              T.table[i] = tab[i]
         T.size = T.size \times 2
10
         Free-Table(tab)
    T.num = T.num + 1 // inserção
11
    T.table[T.num] = k
12
```


Análise

Cenário: n inserções em uma tabela inicialmente vazia

- custo da operação i
 - ▶ sem expansão: 1
 - ▶ com expansão: i
- ▶ Pior caso $O(n^2)$
- Melhoria desta análise com análise amortizada

Método agregado

- ► Há expansão quando *i* é uma potência de 2.
- Custo total:

$$\sum_{i=1}^{n} c_{i} \leq n + \sum_{j=0}^{\lfloor \log_{2} n \rfloor} 2^{j}$$

$$< n + 2n$$

$$= 3n$$

Método do contador

- ► Custo 1 para atribuir uma posição de *T. table*
- ▶ Preço de uma operação de inserção: 3
- ▶ Pagamento de uma operação de inserção, sem expansão:
 - ▶ 1 vai para a inserção (custo real) i = T.size/2 + j
 - sobra 2 de crédito
 - 1 crédito na posição de inserção i
 - ▶ 1 crédito para um outro elemento da tabela j
- Pagamento da expansão:
 - todos os itens tem um crédito
 - o crédito paga a expansão

- Após cada expansão: Φ = 0
- ▶ Φ ↑ quando a tabela é preenchida
- até a tabela ser preenchida, e Φ é gasto na expansão
- $\Phi(T) = 2 \times T. num T. size$
 - ▶ Inicialmente, e após cada expansão $\Phi(T) = 0$
 - ▶ Antes de uma expansão $\Phi(T) = 2 \times T$. num T. size = T. size
 - ▶ A cada momento $\Phi(T) \ge 0$
 - Logo, a soma dos custos amortizados é uma cota superior dos custos reais.

- ▶ n_i: número de elementos após operação i
- s_i: capacidade após a operação i
- inicialmente $n_0 = s_0 = 0$, $\Phi_0 = 0$
- $n_i = n_{i-1} + 1$

se a operação i não tem expansão:

$$ightharpoonup s_i = s_{i-1}$$
 e

$$a_{i} = c_{i} + \Phi_{i} - \Phi_{i-1}$$

$$= 1 + (2 \cdot n_{i} - s_{i}) + (2 \cdot n_{i-1} - s_{i-1})$$

$$= 1 + (2 \cdot n_{i} - s_{i}) + (2 \cdot (n_{i} - 1) - s_{i})$$

$$= 3$$

se a operação i tem expansão:

$$ightharpoonup s_i = 2 \times s_{i-1}, \ s_{i-1} = n_{i-1} = n_i - 1 \ e$$

$$a_{i} = c_{i} + \Phi_{i} - \Phi_{i-1}$$

$$= n_{i} + (2 \cdot n_{i} - s_{i}) - (2 \cdot n_{i-1} - s_{i-1})$$

$$= n_{i} + (2 \cdot n_{i} - 2 \cdot (n_{i} - 1)) - (2 \cdot (n_{i} - 1) - (n_{i} - 1))$$

$$= 3$$

Remoção com contração de capacidade

- expansão dobra capacidade
- contração ocorre quando capacidade chega a 1/4
- ▶ por quê não escolher 1/2?

```
Remove(T)
   if T.num == 0
        T.size = 0
        Free-Table (T. table)
    elseif T.num \neq 0 and T.num * 4 < T.size // contração
 5
        tab = T.table
        T. table = Alloc-Table(T. size/2)
 6
        for i = 1 to T num
 8
             T.table[i] = tab[i]
 9
        T.size = T.size/2
        Free-Table(tab)
10
    T.num = T.num - 1 // remoção
11
```


- $\Phi = 0$ logo após contração ou expansão
- ▶ Fator de carga $\alpha(T) = T.num/T.size$, se T não for vazia, 1 se for.
- $ightharpoonup T.num = \alpha(T) \cdot T.size$
- Função potencial

$$\Phi(T) = \begin{cases} 2 \cdot T. num - T. size & \text{se } \alpha T \ge 1/2 \\ T. size/2 - T. num & \text{se } 1/4 \le \alpha T < 1/2 \end{cases}$$

A função potencial nunca é negativa: obteremos uma cota superior do custo real

Justificativa intuitiva

- antes de uma expansão:
 - $ightharpoonup \alpha(T) = 1$
 - ightharpoonup T. num = T. size,
 - $\Phi(T) = T.$ num
 - permite cópia de T. num elementos.
- antes de uma contração:
 - $\alpha(T) = 1/4$
 - $ightharpoonup T.num \cdot 4 = T.size$
 - $\Phi(T) = T. size/2 T. num = T. num$
 - permite cópia de T. num elementos.

Notações

 s_i : capacidade após operação i

 n_i : número de elementos após operação i

 Φ_i : potencial após operação i

 α_i : fator de carga após operação i

Inicialmente: $s_0 = n_0 = \Phi_0 = 0, \alpha_0 = 1$

Inserção

A operação *i* é uma inserção:

- ▶ já fizemos a análise no caso $\alpha_{i-1} \ge 1/2$: $a_i = 3$
- se $\alpha_{i-1} < 1/2$, não há expansão
- ightharpoonup se $\alpha_i \geq 1/2$:

$$a_{i} = c_{i} + \Phi_{i} - \Phi_{i-1}$$

$$= 1 + (2 \cdot n_{i} - s_{i}) - (s_{i-1}/2 - n_{i-1})$$

$$= 1 + (2 \cdot (n_{i-1} + 1) - s_{i-1}) - (s_{i-1}/2 - n_{i-1})$$

$$= 3 \cdot n_{i-1} - \frac{3}{2} \cdot s_{i-1} + 3$$

$$= 3 \cdot \alpha_{i-1} \cdot s_{i-1} - \frac{3}{2} \cdot s_{i-1} + 3$$

$$< \frac{3}{2} \cdot s_{i-1} - \frac{3}{2} \cdot s_{i-1} + 3$$

$$= 3$$

Inserção

A operação *i* é uma inserção:

- ▶ já fizemos a análise no caso $\alpha_{i-1} \ge 1/2$: $a_i = 3$
- se $\alpha_{i-1} < 1/2$, não há expansão
- ▶ se $\alpha_i < 1/2$:

$$a_{i} = c_{i} + \Phi_{i} - \Phi_{i-1}$$

$$= 1 + (s_{i}/2 - n_{i}) - (s_{i-1}/2 - n_{i-1})$$

$$= 1 + (s_{i}/2 - n_{i}) - (s_{i}/2 - (n_{i} - 1))$$

$$= 0$$

O custo amortizado de uma inserção é 3 no máximo.

Remoção

$$n_i = n_{i-1} - 1$$

• se
$$\alpha_{i-1} < 1/2$$
,

▶ sem contração: $s_i = s_{i-1}$

$$a_{i} = c_{i} + \Phi_{i} - \Phi_{i-1}$$

$$= 1 + (s_{i}/2 - n_{i}) - (s_{i-1}/2 - n_{i-1})$$

$$= 1 + (s_{i}/2 - (n_{i-1} - 1)) - (s_{i}/2 - n_{i-1})$$

$$= 2$$

ightharpoonup com contração: $n_{i-1} = n_i + 1 = s_i/2 = s_{i-1}/4$ e $c_i = n_i + 1$

$$a_{i} = c_{i} + \Phi_{i} - \Phi_{i-1}$$

$$= n_{i} + 1 + (s_{i}/2 - n_{i}) - (s_{i-1}/2 - n_{i-1})$$

$$= n_{i-1} + (n_{i-1} - (n_{i-1} - 1)) - (2 \cdot n_{i-1} - n_{i-1})$$

$$= 1$$

$$n_i = n_{i-1} - 1$$

- ▶ se $\alpha_{i-1} \ge 1/2$,
- ▶ não há contração: $s_i = s_{i-1}$, $n_i = n_{i-1} 1$
- ▶ se $\alpha_i \ge 1/2$

$$a_{i} = c_{i} + \Phi_{i} - \Phi_{i-1}$$

$$= 1 + (2 \cdot n_{i} - s_{i}) - (2 \cdot n_{i-1} - s_{i-1})$$

$$= 1 + (2 \cdot (n_{i-1} - 1) - s_{i-1}) - (2 \cdot n_{i-1} - s_{i-1})$$

$$= -1$$

Remoção

$$n_i = n_{i-1} - 1$$

- se $\alpha_{i-1} > 1/2$,
- ▶ não há contração: $s_i = s_{i-1}$, $n_i = n_{i-1} 1$
- ▶ se $\alpha_i < 1/2$

$$a_{i} = c_{i} + \Phi_{i} - \Phi_{i-1}$$

$$= 1 + (s_{i}/2 - n_{i}) - (2 \cdot n_{i-1} - s_{i-1})$$

$$= 1 + (s_{i-1}/2 - (n_{i-1} - 1)) - (2 \cdot n_{i-1} - s_{i-1})$$

$$= 2 + \frac{3}{2} \cdot s_{i-1} - 3 \cdot n_{i-1}$$

$$= 2 + \frac{3}{2} \cdot s_{i-1} - 3 \cdot \alpha_{i-1} \cdot s_{i-1}$$

O custo amortizado de uma remoção é 2 no máximo.

Arranjos dinâmicos

Síntese da análise de complexidade amortizada

- ▶ inserção tem custo amortizado O(1)
- ightharpoonup remoção tem custo amortizado O(1)

Arranjos dinâmicos

Exercício

- 1. Projetar uma estrutura de dados para arranjos dinâmicos, que tem apenas operação de inserção, tal que esta tenha complexidade constante, *no pior caso*.
 - ▶ hipótese: supõe-se que o custo de uma alocação dinâmica é $\Theta(1)$.
 - dica: pode inspirar-se na aplicação do método do contado desta aula.
- Estender a estrutura projetada com uma operação de remoção do último elemento (POP-BACK), tal que tanto a inserção quanto a remoção tenham complexidade constante, no pior caso.

Árvores chanfradas

splay trees

- árvores binárias de busca
- auto-ajustáveis
- não necessitam de atributos adicionais
- ightharpoonup complexidade amortizada $O(\log n)$

Árvores chanfradas

- uma única operação básica: chanfrar
 - ▶ SPLAY(T, k): chanfra a árvore T com relação ao valor k
 - no término da operação k está na raiz (ou o maior valor < k, ou o menor valor > k
- busca, inserção e remoção são todas realizadas após chanfrar a árvore

Realização das operações e o chanframento

- uma única operação básica: chanfrar
 - ightharpoonup SPLAY(T, k): chanfra a árvore T com relação ao valor k
 - busca a chave k
 - remaneja T tal que k fica na raiz (ou o maior valor < k, ou o menor valor > k
- busca, inserção e remoção são todas realizadas após chanfrar a árvore
 - ▶ SEARCH(T, k): SPLAY(T, k) e consulta a raiz
 - ▶ INSERT(T, k): SPLAY(T, k) e insere k na raiz
 - ▶ REMOVE(T, k): SPLAY(T, k), remove a raiz, T_L e T_R árvores resultantes, SPLAY(T_L, k), e torne T_R a sub-árvore da nova raiz de T_L .
 - ightharpoonup O(1) aplicações de $\mathrm{SPLAY} + O(1)$ operações.

Busca

▶ SEARCH(T,x): SPLAY(T,x) e consulta a raiz

T

Busca

▶ SEARCH(T,x): SPLAY(T,x) e consulta a raiz

Splay(T, x)

Busca

▶ SEARCH(T,x): SPLAY(T,x) e consulta a raiz

Splay(T, x)

▶ INSERT(T, k): Splay(T, k) e insere k na raiz

T

▶ INSERT(T, k): Splay(T, k) e insere k na raiz

T

Splay(T, x)

▶ INSERT(T, k): Splay(T, k) e insere k na raiz

▶ INSERT(T, k): SPLAY(T, k) e insere k na raiz


```
n. val = x;
n. left = T. root. left;
T. root. left = NIL;
n. right = T. root;
T. root = n
```


▶ INSERT(T, k): SPLAY(T, k) e insere k na raiz

▶ Remove(T, k): Splay(T, k), remove a raiz, T_L e T_R árvores resultantes, Splay(T_L, k), e torne T_R a sub-árvore da nova raiz de T_L .

T

▶ Remove(T, k): Splay(T, k), remove a raiz, T_L e T_R árvores resultantes, Splay(T_L, k), e torne T_R a sub-árvore da nova raiz de T_L .

Splay(T, k)

▶ Remove(T, k): Splay(T, k), remove a raiz, T_L e T_R árvores resultantes, Splay(T_L, k), e torne T_R a sub-árvore da nova raiz de T_L .

remove root: n = T.root; $T_L = n.left$; $T_R = n.right$; FREE(n)

▶ Remove(T, k): Splay(T, k), remove a raiz, T_L e T_R árvores resultantes, Splay(T_L, k), e torne T_R a sub-árvore da nova raiz de T_L .

remove root: n = T.root; $T_L = n.left$; $T_R = n.right$; FREE(n)

 T_L . right = T_R

Chanfrar um valor

- aplicar rotações até chegar à raiz
- ▶ se x for um filho da raiz: rotação simples (caso 1)
- \triangleright x.up = y e y.up = z
 - ▶ se x = y. left e y = z. left: rotação simples de y, rotação simples de x (caso 2)
 - se x = y.right e y = z.right: rotação simples de y, rotação simples de x (caso 2)
 - ▶ se x = y. right e y = z. left: rotação dupla de x (caso 3)
 - ▶ se x = y. left e y = z. right: rotação dupla de x (caso 3)
- ightharpoonup complexidade no pior caso O(n)
- ► análise amortizada mostra que todas as operações de chanframento tem custo amortizado $O(\log n)$

Chanfrar um valor — caso 1

se x for um filho da raiz: rotação simples

ROTATE-SIMPLE-RIGHT(x, y)

Chanfrar um valor — caso 2

x = y. left e y = z. left (e simétrico)

ROTATE-SIMPLE-RIGHT(y, z)ROTATE-SIMPLE-RIGHT(x, y)

Chanfrar um valor — caso 3

x = y. right e y = z. left

ROTATE-DOUBLE-RIGHT(x, y, z)

Chanfrar um valor: exemplo

Chanfrar um valor: exemplo

Caso 2

Chanfrar um valor: exemplo

7 11

Caso 1

Análise amortizada: método do contador

- os nós guardam créditos $(\gamma(x))$
- créditos pagam para efetuar rotações
- ▶ o preço de Splay é $O(\log n)$
- ▶ invariante: $\gamma(x) = \lfloor \log |T(x)| \rfloor$ T(x): sub-árvore enraizada em x
- ▶ propriedade: $3 \times (\gamma(T) \gamma(x) + O(1))$ créditos paga SPLAY(T,x) e mantem o invariante. (vamos mostrar isto depois)
- ▶ logo SPLAY custa no máximo $3\lfloor \log n \rfloor + O(1) \in |\Theta(\log n)$.
- ▶ para pagar inserção, busca ou remoção, basta pagar $O(\log n)$.

Análise amortizada: método do contador

- $ightharpoonup \gamma(x)$ e $\gamma'(x)$: quantidade de créditos em x antes e depois das rotações nos casos 1, 2 e 3
- ▶ SPLAY cai $k \ge 0$ vezes nos casos 2 e 3 e possivelmente uma vez no caso 1.
- vamos mostrar que o custo em cada caso é
 - caso 1: $3 \times (\gamma'(x) \gamma(x)) + O(1)$
 - ightharpoonup caso 2: $3 \times (\gamma'(x) \gamma(x))$
 - caso 3: $3 \times (\gamma'(x) \gamma(x))$
- ▶ somando, obtemos $3(\gamma(T) \gamma(x)) + O(1)$ $\gamma(x)$: número de créditos em γ antes do SPLAY

Caso 1

$$y = x. up, y. up = NIL$$

- ► logo

$$\gamma'(x) + \gamma'(y) - \gamma(x) - \gamma(y) = \gamma'(y) - \gamma(x)$$

$$\leq \gamma'(x) - \gamma(x)$$

$$\leq 3 \times (\gamma'(x) - \gamma(x))$$

Caso 2

y = x. up, x = x. left, z = y. up, y = z. left

- ▶ temos: $\gamma'(x) = \gamma(z)$, $\gamma'(y) \le \gamma'(x)$, $\gamma'(z) \le \gamma'(x)$, $\gamma(y) \ge \gamma(x)$
- logo

$$\gamma'(x) + \gamma'(y) + \gamma'(z) - \gamma(x) - \gamma(y) - \gamma(z)$$

$$= \gamma'(y) + \gamma'(z) - \gamma(x) - \gamma(y)$$

$$= (\gamma'(y) - \gamma(x)) + (\gamma'(z) - \gamma(y))$$

$$\leq (\gamma'(x) - \gamma(x)) + (\gamma'(x) - \gamma(x))$$

$$\leq 2 \times (\gamma'(x) - \gamma(x))$$

resta $\gamma'(x) - \gamma(x)$ créditos para efetuar a rotação.

Caso 2 (continuação)

Mostramos que há créditos para a rotação

Resta
$$\gamma'(x) - \gamma(x)$$
:

• se $\gamma(x) \neq \gamma'(x)$, então resta $\gamma'(x) - \gamma(x) > 0$ créditos para efetuar a rotação

Caso 2 (continuação)

Mostramos que há créditos para a rotação

Resta $\gamma'(x) - \gamma(x)$:

- ▶ se $\gamma(x) \neq \gamma'(x)$, então resta $\gamma'(x) \gamma(x) > 0$ créditos para efetuar a rotação
- ▶ se $\gamma(x) = \gamma'(x)$, mostramos que $\gamma'(x) + \gamma'(y) + \gamma'(z) < \gamma(x) + \gamma(y) + \gamma(z)$.
- neste caso, é preciso menos créditos na árvore para manter o invariante
- este crédito é usado para efetuar a rotação
- roteiro da prova:
 - ▶ supor que $\gamma'(x) + \gamma'(y) + \gamma'(z) \ge \gamma(x) + \gamma(y) + \gamma(z)$.
 - chegar a uma contradição

Caso 2 (continuação)

o caso 2 pode liberar créditos para a rotação

Supondo
$$\gamma'(x) + \gamma'(y) + \gamma'(z) \ge \gamma(x) + \gamma(y) + \gamma(z)$$
, temos

- $\gamma(x) \le \gamma(y) \le \gamma(z)$
- $\gamma'(z) \le \gamma'(y) \le \gamma'(x)$
- $\gamma'(x) = \gamma(z)$
- ▶ logo temos que $\gamma(x) = \gamma(z) = \gamma(y)$
- e $\gamma'(x) = \gamma'(y) = \gamma'(z)$
- ▶ pela definição de γ , temos $\lfloor \log_2(a+b+1) \rfloor = \lfloor \log_2 a \rfloor = \lfloor \log_2 b \rfloor$
 - se $a \le b$ então $\lfloor \log_2(a+b+1) \rfloor \ge \lfloor \log_2 2a \rfloor = 1 + \lfloor \log_2 a \rfloor > \lfloor \log_2 a \rfloor$
 - se a > b então $\lfloor \log_2(a+b+1) \rfloor \geq \lfloor \log_2 2b \rfloor = 1 + \lfloor \log_2 b \rfloor > \lfloor \log_2 b \rfloor$
- em ambos casos chegamos a uma contradição.

Caso 3

- Análogo ao caso 2
- deixado como exercício

Conclusões

- ► Análise amortizada pode fornecer resultados mais apurados
- outro exemplo: árvores rubro-negras
 - ▶ inserção: $O(\log n)$
 - ▶ mas o custo amortizado de m inserções em uma árvore de n nós é O(n+m)