İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü

LOJİK DEVRE TASARIMI

1) Aşağıdaki G fonksiyonunu sadece (doğruluk tablosu verilen) F lojik kapıları kullanarak gerçekleyiniz?

$$G(X,Y,Z) = X'.Y + Y'.Z + X.Y.Z'$$

Α	В	F (A,B)
0	0	0
0	1	0
1	0	1
1	1	0

- 2) a) AB flip-flop'un karakteristik denklemini bulunuz?
 - b) AB flip-flop'un aşağıdaki karakteristik tablosunu doldurunuz?

Δ.	В	0	0/+ . 1\
Α	В	Q	Q(t+1)
L			

3) Üç adet 1 bitlik P, Q ve R boolean değişkenleri tasarlanacak KLD nin girişleri olsunlar. Devrenin çıkışında PQR nin mümkün 6 kombinezonu elde edilmek isteniliyor. Devrenin çıkışlarını ABC ile gösterilmiş olsun..

Devreyi sadece 2x1 Multiplexer elemanları kullanarak tasarlayınız..

	XYZ Kontrol İşare	etleri	ABC çıkışları		
	000		PQR		
	001		PRQ		
	010		QPR		
	011		QRP		
	100		RPQ		
	101		RQP		
P		Α			
Q	KLD	В -	\longrightarrow		
R		C -	\longrightarrow		
	X Y Z				
	\uparrow \uparrow \uparrow				

4) 101 ve 010 heriki diziyi de tanıyan bir dizi dedektörü tasarlanacaktır.

Lojik devresini JK flipfloplar kullanarak tasarlayınız?

Not: X =01101101010101 giriş dizisi için Z= 0000100111100001 çıkış dizisi üretilecektir...

5) 2-bitlik ikili yukarı/aşağı sayıcı tasarlanacaktır. Sayıcının davranışı aşağıdaki gibi tanımlanmıştır. (M kontrol işareti sayıcının aşağı veya yukarı sayma yönünü kontrol etmektedir: Z ise sayıcının çıkışıdır.)

M=0 Yukarı Sayma M=1 Aşağı Sayma

Z=1 çıkış Sayıcı yukarı saymada 01 den 10 a geçtiğinde veya

Sayıcı aşağı saymada 10 dan 01 e düştüğünde

Z=0 çıkış Aksi halde

En anlamlı bit için SR ff. Düşük anlamlı bit için T ff kullanarak devreyi tasarlayınız?

- 6- Aşağıdaki Ardışıl Lojik Devrenin (A,B dış girişler, Z çıkış)
- a- Durum diyagramı çiziniz?.
- b- Durum denklemlerini yazınız?.

- 7- $F_1 = A$ B + A'B'C ve $F_2 = (B'+C)(C'+A)(A'+B+C)$ fonksiyonlarını düşünün.
 - a. 2:1 multiplexers kullanarak F1 fonksiyonunu gerçekleyiniz [10pts]
 - b. F1 ve F2 fonksiyonlarını 1 decoder ve 2 OR kapısı ile gerçekleyiniz [10pts]
 - c. PLA kullanarak F1 ve F2 fonksiyonlarını gerçekleyiniz? [10pts] PLA program tablosunu oluşturun ve aşağıdaki PLA üzerinde bağlantıları gösteriniz.

LUSIK DEURE TASARIMI FINAL UNCESI

1)
$$G(X,Y,2) = x'y + y'2 + xY2'$$
 $F(A,B) = AB'$
 $X'y \Rightarrow \frac{y}{y} = \frac{x'y}{8} = \frac{AB'}{8}$
 $X'y \Rightarrow \frac{y}{y} = \frac{AB'}{8} = \frac{AB'}{8}$
 $X'y \Rightarrow \frac{y}{y} = \frac{AB'}{8} = \frac{AB'}{8}$
 $X'y \Rightarrow \frac{y}{y} = \frac{AB'}{8$

2)
$$\Theta(1+1) = JS' + KB$$

$$= (AB)' \cdot S' + (AS')'' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)' \cdot S' + (AS')' \cdot S$$

$$= (A'B)'$$

Sh

9 0 - Reset

$$B = S(x'y'z') + B(xy'z) + P(x'yz') + P(xy'z') + R(x'y'z) + R(x'y'z)$$

$$= x'(\underline{0}y'z' + \underline{P}yz' + Ry'z + Ryz) + x(\underline{0}y'z + \underline{P}y'z')$$

$$+ x'' + y'(\underline{0}z' + \underline{P}z') + y(\underline{P}z' + \underline{P}z') *$$

$$+ x'' + y''(\underline{0}z' + \underline{P}z') + y(\underline{P}z' + \underline{P}z') *$$

$$+ x'' + y''(\underline{0}z' + \underline{P}z') + y(\underline{0}z' + \underline{P}z') + y(\underline{0}z' + \underline{P}z') *$$

1)	010	10-1	1		a durum =	3 bit
(A)	E) 1	O.,	1 (6/1	C	E=100 = 010 = 010 3= 001 7 = 000	1 + 0 0 6 × × × + 0 6 × × × + 0 6 × × × × × × × × × × × × × × × × × ×
K 1 m x 0 0 0 1 0	South	0000-1/-000 ×	0 ×	Ju Ka	G = 41 0	
0 1 0 0	100	1 × 0 × 1 × 0 ×	x 0 x 0 x 1	× 1 7 × 7 × 0 ×	1 2	
1 0 0 0 1	100	× 4 × 0 × 0 × 0	0 × 0 × 1 × 0 ×	x t x t x t	0 0 1 0	
1 1 0 0	0 1 1	× × ×	× 1 × 0 × ×	7 × 7 × 7 × 0 × 7	0 1 ×	

Du, Ku, Ju, Ku, Jan, Km, Z jain Karnagh ve Deurel

7)
$$F_1 = AB + A'BC$$
, $F_2 = (B'+C)(C'+A)(A'+B+C)$

a) $F_1 = AB + A'BC$
 $\Rightarrow A(B) + A'(BC)$
 $\Rightarrow B(C) + B' = C$
 $\Rightarrow A(B) + A'(BC)$
 $\Rightarrow B(C) + B' = C$
 $\Rightarrow A(B) + A'(B) + A'(B)$
 $\Rightarrow A(B) + A'(B)$
 \Rightarrow

FI= AB+A'B'C => ABC+ABC+ABC Fz= A'B'C+AB'C+ABC

()