Multi Channel FM Transponder (MCFMT)

Andrew Robinson

Joseph DiVerdi

High Level Needs (from Jonathan's email)

- Start with:
 - Single signal path
 - VHF voice signal transponded as a UHF voice signal
- Could be a SDR w/digital radio chip
- Could be analog
- Fit onto a CubeSat board
 - Ideally 2" x 2" area
- Radiation tolerant
 - Avoid CMOS

Goals

- Multiple transponders on a single satellite
- I.e., multiple up frequencies with multiple down frequencies
- Mix of U/V and V/U (?)

Are there other goals? Added capabilities? Lower SWaP-C?

OV-1

 Multiple (how many?) transponders on a single satellite

K-THE,

- Up in VHF
- Down in UHF

Tasks

• Survey of open-source designs

High-Level Questions

#	Question	Response
1	Are there any desired additional capabilities that we can enhance with a digital design or a SDR design?	
2		
3		
4		
5		
6		
7		
8		

Assumptions

Requirements(-ish)

Architecture

Will the Bus have a comm system for TLM D/L or will the MCFMT be used?

Reference signal: needed? (probably) → internal or external?

Receive Front End

<u>Functions</u> → Form:

- Amplify incoming RF signals → LNA
- Convert to an IF signal → Mixer and a LO
- Filter IF signal (i.e., image filtering if needed?) → Filter

- Need a Front End for each signal?
- Can this be "tuneable?" How do COTS SDRs cover such a wide range (e.g., 50 MHz to 3 GHz)?

Analog-to-Digital Converter (ADC) Functions → Form:

• Convert the IF signal input to a digital output → ADC (?)

Notes/Questions/Observations:

• Need to figure out the drivers for this, e.g., resolution needed, etc.

Digital Downconverter

<u>Functions</u> → Form:

Take the digital IF signal and convert it to a digital baseband signal

Processor

<u>Functions</u> → Form:

- Demodulate and modulate the signal? Or is this just a bent pipe function?
- Collect TLM, status, TBD from the pieces of the MCFMT
- Process incoming commands from the Bus

Digital Upconverter <u>Functions</u> → Form:

Digital-to-Analog Converter (DAC) Functions → Form:

Convert the digital IF signal to an analog IF signal

Transmit Front End

<u>Functions</u> → Form:

Convert the analog IF signal to the RF signal

Solid State Power Amplifier (SSPA) <u>Functions</u> → <u>Form</u>:

Amplify the RF signal

- What power is required to close the link?
 - Frequency, aperture, altitude dependent?

Design-y Questions

#	Question	Response
1	What TLM is typically collected?	
2	How many signals?	
3	What is a good power draw to shoot for?	
4	Are reference signals (e.g., PPS, 50 MHz) available from the bus or should they be accounted for on the MCFMT?	
5		
6		
7		
8		

Assumptions

#	Title	Assumption
1	Input Power	A single source of power will be received from the bus Conversion and distribution of power is a function of the MCFMT
2		
3		
4		
5		
6		
7		
8		

Acronyms

Acronym	Definition
ADC	Analog to Digital Conversion
COTS	Commercial Off The Shelf
D/L	Downlink
DAC	Digital to Analog Conversion
DC	Direct Current
FM	Frequency Modulation
IF	Intermediate Frequency
LNA	Low Noise Amplifier
LO	Local Oscillator
MCFMT	Multi-Channel FM Transponder
RF	Radio Frequency
Rx	Receive
SDR	Software Defined Radio
SSPA	Solid State Power Amplifier
TLM	Telemetry
Tx	Transmit
U/L	Uplink

Backup

SDR

Fairwaves

• XTRX

Features & Specifications

- RF Chipset: Lime Microsystems LMS7002M FPRF
- FPGA Chipset: Xilinx Artix 7 35T
- Channels: 2 × 2 MIMO
- Sample Rate: ~0.2 MSPS to 120 MSPS SISO / 90 MSPS MIMO
- Tuning Range: 30 MHz 3.8 GHz
- Rx/Tx Range:
 - ∘ 10 MHz 3.7 GHz
 - 100 kHz 3.8 GHz with signal level degradation
- PCIe Bandwidth:
 - o PCle x2 Gen 2.0: 8 Gbit/s
 - PCle x1 Gen 2.0: 4 Gbit/s
 - o PCle x1 Gen 1.0: 2 Gbit/s
- Reference Clock:
 - Frequency: 26 MHz
 - Stability: <10 ppb stability after GPS/GNSS lock, 500 ppb at start up
- Form Factor: full-size Mini PCle (30 × 51 mm)
- Bus Latency: <10 μs, stable over time
- Synchronization: synchronize multiple XTRX boards for massive MIMO
- GPIO:
 - FPC Edge Connector: four lines (usable as two diff-pairs)
 - Mini PCle Reserved Pins: eight lines (including two diff-pairs, 1pps input, 1pps output, TDD switch control, and three LEDs)
- Accessories:
 - Antennas + Cables
 - USB 3 Adapter with Aluminium Enclosure
 - PCle x2 + Front End Adapter
 - PCle Octopack

Source: https://www.crowdsupply.com/fairwaves/xtrx

SDR

- <u>Lime Microsystems</u> took over the XTRX (?)
- Additional Options:

communication standard.

Source: https://limemicro.com/products/boards/

Repeater Basics