Productivity versus Participation: Divergent Growth Paths in North America and East Asia

Kei Nie, Felix Huang, Yunqing Chen, Jackson Fang

```
import sys, os
print("sys.executable:", sys.executable)
print("CONDA_DEFAULT_ENV:", os.environ.get("CONDA_DEFAULT_ENV"))
```

sys.executable: /Users/jackson/anaconda3/bin/python

→ Loading raw table: gdp_raw from '../data/gdp.csv'

CONDA_DEFAULT_ENV: base

Introduction

Our study examines how labour-force utilization, income levels and short-run growth interact in two North-American economies—the United States and Canada—and two large East-Asian economies—China and Japan—during the period 1990 to 2023.

Data

```
→ Loading raw table: emp_raw from '../data/emp.csv'

→ Loading raw table: gdp_growth_raw from '../data/gdp_growth.csv'

All raw tables loaded into SQLite.

--- gdp_raw ---

['Country Name', 'Indicator Name', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '
('Canada', 'GDP per capita (constant 2015 US$)', 31700.54627, 30654.33314, 30563.37882, 3103:
('China', 'GDP per capita (constant 2015 US$)', 905.0324572, 975.4629156, 1100.646116, 1239.
('United Kingdom', 'GDP per capita (constant 2015 US$)', 30876.37063, 30441.48135, 30481.034:
('Japan', 'GDP per capita (constant 2015 US$)', 28422.21312, 29308.27409, 29462.65397, 29232
('United States', 'GDP per capita (constant 2015 US$)', 39200.06581, 38637.83981, 39447.9472
```

--- emp_raw ---

['Country Name', 'Indicator Name', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '('Canada', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 59 ('China', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 76.3 ('United Kingdom', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to population ratio, 15+, total (%) (modeled ILO estimate)', None, 62.4 ('United States', 'Employment to

--- gdp_growth_raw ---

['Country Name', 'Indicator Name', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '
('Canada', 'GDP growth (annual %)', 0.202947863, -2.091055179, 0.890466255, 2.657706883, 4.4
('China', 'GDP growth (annual %)', 3.920251368, 9.262786085, 14.22452959, 13.8837293, 13.036
('United Kingdom', 'GDP growth (annual %)', 0.733755484, -1.103121612, 0.401082056, 2.489830
('Japan', 'GDP growth (annual %)', 4.840929057, 3.523357235, 0.900586066, -0.459219716, 1.08
('United States', 'GDP growth (annual %)', 1.885965585, -0.108312889, 3.522497184, 2.7517958
Reading tables into pandas DataFrames...

Cleaning data...

Merging datasets...

Saving merged cleaned data into database as 'econ_cleaned'...

Generating summary statistics...

O	J							
	GDP_count		GDP_mean	GD	P_std	GDP_	min	\
Country Name								
Canada	34	3935	7.078405	4856.8	36357	30563.378	820	
China	34	507	3.229508	3583.6	30683	905.032	457	
Japan	34	3277	0.738504	2371.8	21778	28422.213	120	
United Kingdom	34	4058	3.327987	5456.6	17589	30441.481	350	
United States	34	5152	1.551093	7640.3	64126	38637.839	810	
	GDP_ma	x Em	ployment_	count	Employ	ment_mean	\	
Country Name								
Canada	45227.1447	4		33		60.712303		
China	12175.1961	1		33		69.123242		
Japan	36990.3301	1		33		59.238939		
United Kingdom	47551.2296	6		33		57.831939		
United States	65875.1778	8		33		60.468424		
	Employment	_std	Employme	nt_min	Emplo	${\tt yment_max}$	\	
Country Name								
Canada	1.62	9455		57.548		63.041		

China	4.132756	62.523	76.840	
Japan	1.957756	56.440	62.608	
United Kingdom	1.511241	54.713	60.335	
United States	1.872493	56.598	63.506	
	GDP_Growth_count	GDP_Growth_mean	GDP_Growth_std	\
Country Name				
Canada	34	2.135410	2.185206	
China	34	8.797740	2.924949	
Japan	34	0.963596	2.050458	
United Kingdom	34	1.859416	2.990588	
United States	34	2.491121	1.757601	
	GDP_Growth_min	GDP_Growth_max		
Country Name				
Canada	-5.038233	5.286957		
China	2.238638	14.230861		
Japan	-5.693236	4.840929		
United Kingdom	-10.296919	8.575951		
United States	-2.576500	6.055053		

All tasks completed!

Income levels and their growth paths Income levels and their growth paths

```
import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path
import pycountry
                                    # pip install pycountry
# ---- output folders -----
OUT_FIG = Path("figures")
OUT_DAT = Path("processed")
OUT_FIG.mkdir(exist_ok=True, parents=True)
OUT_DAT.mkdir(exist_ok=True, parents=True)
INDICATORS = ["GDP", "Employment", "GDP_Growth"]
# ======== 1. LOAD CLEAN PANEL ==============================
DB_PATH = "economic_data.db"
with sqlite3.connect(DB_PATH) as con:
    df = pd.read_sql_query("SELECT * FROM econ_cleaned", con)
if df.empty:
    raise RuntimeError ("econ_cleaned table is empty - check SQL pipeline.")
# ======== 2. ENRICH - add ISO-3 codes =================
def name_to_iso3(name):
   try:
       return pycountry.countries.lookup(name).alpha_3
    except LookupError:
       # handle special cases
       mapping = {
            "South Korea": "KOR",
           "United States": "USA",
            "United Kingdom": "GBR"
       return mapping.get(name, None)
df["iso3"] = df["Country Name"].apply(name_to_iso3)
if df["iso3"].isna().any():
    missing = df[df["iso3"].isna()]["Country Name"].unique()
    raise ValueError(f"ISO-3 lookup failed for: {missing}")
# ======= 3. BASIC CLEANING =================================
df[INDICATORS] = df[INDICATORS].apply(pd.to_numeric, errors="coerce")
```

```
# forward-fill within each country to patch occasional NaNs
df = (df.sort_values(["iso3", "Year"])
        .groupby("iso3")
        .apply(lambda g: g.ffill())
        .reset_index(drop=True))
#| echo: true
def lineplot(ind_col, ylab):
    plt.figure()
    for iso, g in df.groupby("iso3"):
        plt.plot(g["Year"], g[ind_col], label=iso)
    plt.title(ylab)
    plt.xlabel("Year")
    plt.ylabel(ylab)
    plt.legend()
    plt.tight_layout()
    plt.savefig(OUT_FIG / f"{ind_col}_trend.png", dpi=300)
    plt.plot()
lineplot("GDP",
                        "GDP per capita (constant 2015 US$)")
lineplot("GDP_Growth", "GDP growth rate (%)")
lineplot("Employment", "Employment-to-population 15+ (%)")
```

CWD: /Users/jackson/Documents/emory/emory2025Spring/QTM350/finalnew/350FinalQuarto Contents: ['350FinalQuarto.quarto_ipynb', '_quarto.yml', '350FinalQuarto.qmd', '.DS_Store', /Users/jackson/Documents/emory/emory2025Spring/QTM350/finalnew/350FinalQuarto

/var/folders/6m/wlb3j20s32q0624t09s3bf7w0000gn/T/ipykernel_40436/1336997099.py:62: Deprecation

DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in

The GDP-per-capita plot underscores the prosperity gap that separates North America from East Asia. Real income in the United States rises from roughly thirty-nine thousand dollars in 1990 to about sixty-six thousand in 2023, widening its lead over all other cases. Canada mirrors the American path but remains seven to ten thousand dollars lower throughout. China, starting from a base of just over one thousand dollars, multiplies its income almost ten-fold, yet still reaches only about twelve thousand dollars by the end of the sample. Japan's income climbs during the 1990s but plateaus at approximately thirty-six thousand dollars after 2010. The corresponding growth-rate figures reveal that China's rapid expansion, once firmly in double digits, decelerates to mid-single-digit territory in the 2010s. Japan's growth oscillates around zero, reflecting its long struggle with deflation and demographic ageing. The United States and Canada exhibit more moderate booms and busts, rarely exceeding four percent on the upside or falling much below minus two percent except in the global crises of 2009 and 2020, which strike all four economies simultaneously.

Quarto

Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see https://quarto.org.