The evolution of badges of status with learners

Andrés Quiñones

The Hawk-Dove game

Individuals have one of two genetically determined phenotypic strategies. *Hawks* are willing to start a conflict over resources, while *doves* prefer to stand down in the hope to share the resource without an aggressive contest.

The hawk-dove game

$$w_H = p_H \frac{V - C}{2} + (1 - p_h)V$$

 $w_D = p_H 0 + (1 - p_H) \frac{V}{2}$

The hawk-dove game

What about signals?

What about signals?

When are signals honest?

- Impossible to fake
- Individuals have common interests
- Handicap principle (signal's cost is proportional to quality)
- Social costs?

Social costs are an underappreciated force for honest signalling in animal aggregations

Michael S. Webster a, b, *, Russell A. Ligon a, b, Gavin M. Leighton a, b

^a Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA

^b Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA

What about signals?

What about learning?

$$\Delta V_{t(s)} = \alpha \underbrace{(R_t - V_t)}_{\text{prediction error}}$$

$$\Delta V_{t(s)} = \alpha \underbrace{(R_t - V_t)}_{\text{prediction error}}$$

$$\Delta V_{t(s)} = \alpha \underbrace{(R_t - V_t)}_{\text{prediction error}}$$

Figure 1. Scheme of learning by prediction error. Red: a prediction error exists when the reward differs from its prediction. Blue: no error exists when the outcome matches the prediction, and the behavior remains unchanged.

Environmental states

Discrete states

Environmental states

Discrete states

Continuos states

Continuos environmental states

$$\Delta V_{t(s)} = \alpha \underbrace{(R_t - V_t)}_{\text{prediction error}}$$

The hawk-dove game 2.0

	Н	D
Н	$p_w V \frac{-C}{2} + (1 - p_w) \frac{-C}{2}$	V
V	0	$\frac{V}{2}$

$$p_w = \frac{1}{1 + e^{-\beta(Q_i - Q_j)}}$$

Sender Code

$$s_i = \frac{1}{1 + e^{-(\epsilon_i + \gamma_i Q_i)}}$$

Receiver code

$$\Delta V_{t(s)} = \alpha (R_t - V_t)$$

Results

When individuals do NOT vary in quality

When individuals DO vary in quality

Overal effect of quality variation

How does variation among learners look like?

How do the learning dynamics look like?

How do learners behave when signals are honest?

How do learners fare against pure strategies?

What's next?

- ▶ Let reaction norm evolve, under different initial conditions.
- ▶ Let learning parmeters evolve
- Let the communication system co-evolve