

# Spark. RDD

SELEZNEV ARTEM
HEAD OF DATA SCIENCE @ SBER

# FUNCTIONAL PROGRAMMING

# APACHE SPARK





#### Быстрее Hadoop (?)

#### DAG

Использование In-Memory (ОЗУ)

Ленивые вычисления

# 3000 Spark 2000 1000

10

Number of Iterations

20

30

Logistic Regression Performance

#### Быстрее Hadoop (?)

#### DAG

Использование In-Memory (ОЗУ)

Ленивые вычисления



#### Быстрее Hadoop

#### DAG

Использование In-Memory (ОЗУ)

Ленивые вычисления

Простое АРІ

Модульность (библиотеки)

## ФУНКЦИОНАЛЬНАЯ РАЗНИЦА



```
map()
reduce()
```

## ФУНКЦИОНАЛЬНАЯ РАЗНИЦА





```
map() reduce()
filter() sortBy()
join() groupByKey()
first() count()
```

```
map()
reduce()
```

#### APACHE SPARK

Spark SQL

Spark Streaming PySpark SparkR MLlib spark.ml

GraphX

Spark Core

Standalone Scheduler

YARN

Mesos

#### APACHE SPARK - RDD

Spark SQL Spark Sp

## APACHE SPARK - SQL

Spark SQL Spark Sp

#### APACHE SPARK - ML

Spark SQL Spark Streaming PySpark MLlib Spark.ml GraphX

Spark Core

Standalone Scheduler YARN Mesos

#### APACHE SPARK - STREAMING

Spark SQL Spark Streaming PySpark Spark.ml GraphX

Spark Core

Standalone Scheduler YARN Mesos

#### APACHE SPARK – DEPLOY/CLUSTER

Spark SQL Spark Streaming PySpark Spark MLlib spark.ml GraphX

Spark Core

Standalone Scheduler YARN Mesos

#### APACHE SPARK – ТЕРМИНЫ

**DRIVER** 

**WORKER** 

#### APACHE SPARK – ТЕРМИНЫ

**DRIVER** 

Процесс содержащий Spark Context

**WORKER** 

Приложение (node) выполняющее код/команды

#### APACHE SPARK – ТЕРМИНЫ

**DRIVER** 

Процесс содержащий Spark Context

**WORKER** 

Приложение (node) выполняющее код/команды

# APACHE SPARK – ТЕРМИНЫ (КЛАСТЕР)

**DRIVER** 

**MASTER** 

**EXECUTOR** 

**WORKER** 

Процесс содержащий Spark Context

Процесс управляющий приложением на всем кластере

Процесс который выполняет Spark задачи

Процесс управляющий Executor'ами на конкретной ноде кластера

## РАБОТА КОНТЕКСТА



# PAБOTA KOHTEKCTA (?)



(НЕ БОЛЬШАЯ)





# ЗАВИСИМОСТЬ ОТ ПАРТИЦИЙ (БОЛЬШАЯ)





# ЗАВИСИМОСТЬ ОТ ПАРТИЦИЙ (БОЛЬШАЯ)

















# ФУНКЦИИ УПРАВЛЕНИЯ ПАРТИЦИЯМИ

| .partitions()         | Список объектов партиций                     |
|-----------------------|----------------------------------------------|
| .dependencies()       | Список объектов зависимостей                 |
| .compute(p, parent)   | Кол-во элементов в партиции Р в родительском |
|                       | объекте                                      |
| .practitioner()       | Метадата по партиции                         |
| preferredLocations(p) | Список нод, где партиция Р расположена       |

#### SPARK RDD



#### RDD- ТЕРМИНЫ

**RESILIENT** 

DISTRIBUTED

DATASET

#### RDD- ТЕРМИНЫ

**RESILIENT** 

Если данные будут потеряны из процесса, они будут (могут быть) восстановлены из памяти

DISTRIBUTED

Данные разделены на партиции по нодам кластера

**DATASET** 

Это данные – они изначально должны быть в файле или созданы

#### RDD- ТЕРМИНЫ

IMMUTABLE, READ-ONLY

RESILIENT

Если данные будут потеряны из процесса, они будут (могут быть) восстановлены из памяти

DISTRIBUTED

Данные разделены на партиции по нодам кластера

**DATASET** 

Это данные – они изначально должны быть в файле или созданы

# ОБЛАСТЬ СУЩЕСТВОВАНИЯ RDD



# ОБЛАСТЬ СУЩЕСТВОВАНИЯ RDD



## RDD (KEY – VALUE)

```
pets = sc.parallelize([("cat", 1), ("dog", 1), ("cat", 2)])

pets.reduceByKey(lambda x, y: x + y) # => {(cat, 3), (dog, 1)}

pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}

pets.sortByKey() # => {(cat, 1), (cat, 2), (dog, 1)}
```

# RDD (KEY – VALUE) | MAP – REDUCE

```
pets = sc.parallelize([("cat", 1), ("dog", 1), ("cat", 2)])

pets.reduceByKey(lambda x, y: x + y) # => {(cat, 3), (dog, 1)}

pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}

pets.sortByKey() # => {(cat, 1), (cat, 2), (dog, 1)}
```

#### MAPPER

- str(обычный файл\tc вашими\tданными)
- list(list(str(обычный файл), str(с вашими), str(данными)
- function(object) <- list(str)</li>
- return: key value

# RDD (KEY – VALUE) | MAP – REDUCE

```
pets = sc.parallelize([("cat", 1), ("dog", 1), ("cat", 2)])

pets.reduceByKey(lambda x, y: x + y) # => {(cat, 3), (dog, 1)}

pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}

pets.sortByKey() # => {(cat, 1), (cat, 2), (dog, 1)}
```

#### **MAPPER**

- str(обычный файл\tc вашими\tданными)
- list(list(str(обычный файл), str(с вашими), str(данными)
- function(object) <- list(str)</li>
- return: key value

# RDD НА ПРИМЕРЕ



## RDD | WORDCOUNT

```
file_rdd.map(line => line.split(""))
    .map(split => (split(0), split(1).toInt))
    .groupByKey()
    .mapValues(iter => iter.reduce(_ + _)).collect()
```

#### dummy.txt

```
jon 2
mary 3
anna 1
jon 1
jesse 3
mary 5
```

# RDD | PLAN

```
sc.textFile('file:///dummy.txt')
     map(line => line.split(" "))
map(split => (split(0), split(1).toInt))
            groupByKey()
 mapValues(iter => iter.reduce(_ + _))
              collect()
```

# RDD | PLAN RDD



# RDD | BAPbEP



# RDD | БAPbEP



# RDD | BAPbEP



# RDD | BAPLEP



Shuffle барьер

### RDD | ВЫПОЛНЕНИЕ



• Разбиение уровней на задачи для Executor's

### RDD | ВЫПОЛНЕНИЕ



- Разбиение уровней на задачи для Executor's
- Задача это процесс партиционирования данных и вычисления

### RDD | ВЫПОЛНЕНИЕ



- Разбиение уровней на задачи для Executor's
- Задача это процесс партиционирования данных и вычисления
- Выполнение каждой задачи

### RDD | ПАРТИЦИОНИРОВАНИЕ ЗАДАЧ





# RDD | SHUFFLE

jon 2 mary 3 anna 1 jon 1

jesse 1 mary 5

```
groupByKey()

t

mapValues(iter => iter.reduce(_ + _))
```

# RDD | SHUFFLE

```
groupByKey()

wt

mapValues(iter => iter.reduce(_ + _))
```

- Перераспределение данных по партициям
- Hash key для создания бакетов
- Выполнение процесса
   с записью на диск temp файлов
   (как Hadoop)



#### RDD?

- Список партиций из данных в виде картежей
- Список зависимостей для выполнения задачи
- Функция для вычисления
   (для каждой партиции, в парадигме функционального программирования)
- Партиционирование для оптимизации вычислений
- Список «лучших» расположений на кластере для каждой партиции (расположение путь на ноде / диске)

#### RDD?

- Список партиций из данных в виде картежей
- Список зависимостей для выполнения задачи
- Функция для вычисления
   (для каждой партиции, в парадигме функционального программирования)

Не обязательные объекты:

- Партиционирование для оптимизации вычислений
- Список «лучших» расположений на кластере для каждой партиции (расположение путь на ноде / диске)



### RDD ТЕРМИНЫ

**TRANSFORMATION** 

«Ленивое» вычисление. Return – новый RDD

**ACTION** 

Запускает выполнение вычислений над данными. Return – финальное значение (на драйвер)

#### RDD TRANSFORMATION

```
1
nums = sc.parallelize([1,2,3])
2
squared = nums.map(lambda x: x*x) # => {1, 4, 9}
3
even = squared.filter(lambda x: x % 2 == 0) # => [4]
4
nums.flatMap(lambda x: range(x)) # => {0, 0, 1, 0, 1, 2}
```

#### RDD TRANSFORMATION

```
1
nums = sc.parallelize([1,2,3])
2
squared = nums.map(lambda x: x*x) # => {1, 4, 9}
3
even = squared.filter(lambda x: x % 2 == 0) # => [4]
4
nums.flatMap(lambda x: range(x)) # => {0, 0, 1, 0, 1, 2}
```

Количество вычислений = 1!

#### **RDD ACTION**

```
nums = sc.parallelize([1, 2, 3])
2
nums.collect() # => [1, 2, 3]
nums.take(2) # => [1, 2]
nums.count() # => 3
nums.reduce(lambda: x, y: x + y) # => 6
6
nums.saveAsTextFile("hdfs://file.txt")
```

#### RDD ACTION

```
nums = sc.parallelize([1, 2, 3])
nums.collect() \# \Rightarrow [1, 2, 3]
nums.take(2) \# => [1, 2]
nums.count() # => 3
nums.reduce(lambda: x, y: x + y) # => 6
6
nums.saveAsTextFile("hdfs://file.txt")
```

Количество вычислений = 6

```
B [1]: import random
      flips = 100000
      heads = (
           sc.parallelize(coins) - Создаем RDD
Transformations ...map(lambda i: random.random())
            .filter(lambda r: r < 0.51)</pre>
            .count() - Action
```

```
B [1]: import random
       flips = 100000
       coins = range(1, flips + 1)
       heads = (
               sc.parallelize(coins)
                  .map(lambda i: random.random())
                  .filter(lambda r: r < 0.51)
                  .count()
```

- Создаем функцию
- Применяем её к объекту

```
B [1]: import random
      flips = 100000
      coins = range(1, flips + 1)
      heads = (
              sc.parallelize(coins)
                .map(lambda i: random.random())
               .filter(lambda r: r < 0.51)
                .count()
```

```
import random
import random
                                                     flips = 100000
flips = 100000
                                                     coins = range(1, flips + 1)
coins = range(1, flips + 1)
                                                     rdd = sc.parallelize(coins)
heads = (
        sc.parallelize(coins)
                                                     flips_rdd = rdd.map(lambda i: random.random())
          .map(lambda i: random.random())
                                                     heads_rdd = flips_rdd.filter(lambda r: r < 0.51)
           .filter(lambda r: r < 0.51)
                                                     heads = heads rdd.count(
          .count(
```

#### RDD ПРИЧИНЫ ИСПОЛЬЗОВАНИЯ

НУЖНЫ НЕ ИЗМЕНЯЕМЫЕ ОБЪЕКТЫ

НУЖНА ТИПИЗАЦИЯ RDD[int], RDD[string]

**FAULT TOLERANCE** 

ПРОВЕСТИ КРУПНЫЕ (ГРУБЫЕ) ИЗМЕНЕНИЯ ПО ВСЕМУ НАБОРУ ДАННЫХ

ВАЖНО ПАРТИЦИОНИРОВАНИЕ, РАСПРЕДЕЛЕНИЕ ПО НОДАМ (ОПРЕДЕЛЕННОЕ)

РЕСУРСАМ

КОГДА НУЖНО ИСПОЛЬЗОВАТЬ ДРУГИЕ ОПТИМИЗАТОРЫ (HE CATALYST)

#### RDD НЕ ИЗБАВЛЯЕТ ОТ ПРОБЛЕМ

HET ОПТИМИЗАТОРА (В DATAFRAME / DATASET ИСПОЛЬЗУЕТСЯ CATALYST)

НУЖНО СЛЕДИТЬ ЗА ТИПАМИ ДАННЫХ

ДЕГРАДАЦИЯ ДАННЫХ ПРИ МАЛОМ КОЛ-ВЕ ОЗУ (КОГДА IN-MEMORY)

НУЖНО ИСПОЛЬЗОВАТЬ GARBAGE COLLECTION

# ПОПРОБУЕМ САМОСТОЯТЕЛЬНО

#### ты не делаешь это неправильно



ЕСЛИ НИКТО НЕ ЗНАЕТ, ЧТО КОНКРЕТНО ТЫ ДЕЛАЕШЬ

### SPARK ПРОЕКТ



#### SPARK **ПРОЕКТ**

• Цель: Разработать Data Quality «платформу» на Apache Spark