Devoir sur table nº 3

Correction

Durée : 4h. Calculatrice interdite.

- Mettre le numéro des questions.
- Justifiez vos réponses.

• ENCADREZ vos résultats.

• Utilisez des mots en français entre les assertions mathématiques.

• Numérotez les copies doubles.

• Bon courage!

Questions de cours

- 1) Résoudre l'équation $z^2 (2+i)z 3 + 3i = 0$ dans \mathbb{C} .
- 2) Déterminer une primitive pour chacune des fonctions suivantes en précisant le domaine de validité:

a)
$$f(x) = \frac{1}{x^2 + 3x - 10}$$
, b) $g(x) = \frac{1}{x^2 - 4x + 10}$, c) $h(x) = \arcsin x$.

b)
$$g(x) = \frac{1}{x^2 - 4x + 10}$$
,

c)
$$h(x) = \arcsin x$$

3) Soient E, F deux ensembles et f une application de E dans F. Rappeler les définitions de finjective, f surjective et f bijective.

Solution.

1) On pose $\Delta = (2+i)^2 - 4(-3+3i) = 15-8i$. On cherche une racine carrée de Δ sous forme algébrique : $\delta = x + iy$. Ainsi,

$$\delta^{2} = \Delta \iff \begin{cases} x^{2} + y^{2} &= |15 - 8i| = \sqrt{289} = 17 \\ x^{2} - y^{2} &= 15 \\ 2xy &= -8 \end{cases} \iff \begin{cases} x^{2} &= 16 \\ y^{2} &= 1 \\ xy &= -4 \end{cases}$$

On peut donc prendre x=4 et y=-1 i.e. $\delta=4-i$. Les solutions de l'équation sont donc :

$$z_1 = \frac{2+i+4-i}{2} = 3$$
 et $z_1 = \frac{2+i-(4-i)}{2} = -1+i$.

2) a) On cherche si le polynôme au dénominateur a des racines réelles. On trouve $x^2 + 3x - 10 = (x - 2)(x + 5)$. On décompose alors en éléments simples :

$$f(x) = \frac{1/7}{x-2} - \frac{1/7}{x+5}.$$

Une primitive de f sur $\mathbb{R} \setminus \{-5, 2\}$ est donc

$$F(x) = \frac{1}{7} \ln|x - 2| - \frac{1}{7} \ln|x + 5|.$$

b) Même chose mais cette fois $\Delta < 0$ *i.e.* le polynôme n'a pas de racine réelle. On utilise alors la forme canonique $x^2 - 4x + 10 = (x - 2)^2 + 6$ et on obtient :

$$g(x) = \frac{1}{(x-2)^2 + \sqrt{6}^2}.$$

Une primitive de g sur \mathbb{R} est donc

$$G(x) = \frac{1}{\sqrt{6}} \arctan\left(\frac{x-2}{\sqrt{6}}\right).$$

c) D'après le cours, une primitive de arcsin sur [-1,1] est la fonction $x \mapsto \int_0^x \arcsin t \ dt$. On va calculer cette intégrale en utilisant une intégration par parties avec u(t) = t et $v(t) = \arcsin t$. Puisqu'on a besoin d'avoir u et v de classe C^1 pour appliquer la formule, on suppose que $x \in]-1,1[$. Ainsi,

$$\int_0^x \arcsin t \ dt = \int_0^x u'v = \left[uv\right]_0^x - \int_0^x uv'$$

$$= \left[t \arcsin t\right]_0^x - \int_0^x \frac{t}{\sqrt{1 - t^2}} dt$$

$$= x \arcsin x + \left[\sqrt{1 - t^2}\right]_0^x$$

$$= x \arcsin x + \sqrt{1 - x^2} - 1.$$

Une primitive de arcsin sur]-1,1[est donc

$$H(x) = x \arcsin x + \sqrt{1 - x^2}.$$

Exercice 1.

- 1) Montrer que : $\forall x \in]0, +\infty[$, $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$.
- 2) On considère l'intégrale suivante : $I = \int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{x^2}\right) \arctan x \ dx$.
 - a) Justifier que I existe.
 - b) Calculer I en effectuant le changement de variable : $t = \frac{1}{x}$.

1) On pose $f(x) = \arctan x + \arctan \frac{1}{x}$. Cette fonction est définie et dérivable sur $]0, +\infty[$ comme somme de fonctions dérivables. Pour x > 0,

$$f'(x) = \frac{1}{1+x^2} - \frac{1}{x^2} \frac{1}{1+\frac{1}{x^2}} = 0.$$

Donc f est constante sur $]0, +\infty[$. Ainsi,

$$\forall x > 0, \quad f(x) = f(1) = 2\arctan(1) = \frac{\pi}{2}.$$

2) Sur $\left[\frac{1}{2},2\right]$, $t\mapsto \left(1+\frac{1}{x^2}\right)$ arctan x existe (car $x\neq 0$) et est continue. Donc I existe. On effectue le changement de variable : $t=\frac{1}{x}$. Si $x=\frac{1}{2}$ alors t=2 et si x=2 alors $t=\frac{1}{2}$. De plus, $dx=-\frac{1}{t^2}dt$. On obtient alors :

$$\begin{split} I &= \int_2^{\frac{1}{2}} \left(1+t^2\right) \arctan\left(\frac{1}{t}\right) \times (-\frac{1}{t^2}) dt \\ &= \int_{\frac{1}{2}}^2 \left(1+\frac{1}{t^2}\right) \left(\frac{\pi}{2} - \arctan t\right) dt \\ &= \frac{\pi}{2} \int_{\frac{1}{2}}^2 \left(1+\frac{1}{t^2}\right) dt - \int_{\frac{1}{2}}^2 \left(1+\frac{1}{t^2}\right) \arctan(t) dt \end{split}$$

On reconnaît I ce qui permet d'écrire

$$I = \frac{\pi}{2} \int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{t^{2}} \right) dt - I \iff I = \frac{\pi}{4} \int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{t^{2}} \right) dt = \frac{\pi}{4} \left[t - \frac{1}{t} \right]_{\frac{1}{2}}^{2}.$$

Finalement, $I = \frac{3\pi}{4}$.

Exercice 2. Soit $z \in \mathbb{C} \setminus \mathbb{R}_-$ qu'on écrit sous forme polaire : $z = \rho e^{i\theta}$ avec $\rho > 0$ et $\theta \in \mathbb{R}$.

- 1) Montrer que $z + |z| = 2\rho \cos\left(\frac{\theta}{2}\right) e^{i\frac{\theta}{2}}$ puis que $(z + |z|)^2 = 2\rho(1 + \cos\theta)z$.
- 2) En déduire l'expression d'une racine carrée de z en fonction de z, |z| et $\mathrm{Re}(z)$.

Solution.

1) On utilise la factorisation par l'arc moitié :

$$|z + |z| = \rho(1 + e^{i\theta}) = \rho(e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}})e^{i\frac{\theta}{2}} = 2\rho\cos\left(\frac{\theta}{2}\right)e^{i\frac{\theta}{2}}.$$

Ensuite, on utilise la formule de duplication pour linéariser cos², ce qui donne :

$$(z+|z|)^2 = 4\rho^2 \cos^2\left(\frac{\theta}{2}\right) e^{i\theta} = 4\rho \frac{1+\cos\theta}{2} z = 2\rho(1+\cos\theta)z.$$

2) Puisque z n'est pas un réel négatif, on a $\theta \not\equiv \pi \ [2\pi] \ i.e. \ 1 + \cos \theta \not\equiv 0$. Ainsi, $2\rho(1 + \cos \theta) > 0$ et on peut alors écrire que

$$z = \left(\frac{z + |z|}{\sqrt{2\rho(1 + \cos\theta)}}\right)^2.$$

Une racine carrée de z est donc

$$\boxed{\frac{z+|z|}{\sqrt{2\rho(1+\cos\theta)}} = \frac{z+|z|}{\sqrt{2|z|+2\operatorname{Re}(z)}}}$$

(l'autre étant son opposée).

Exercice 3. Le but de cet exercice est de résoudre l'équation différentielle suivante, de fonction inconnue y de la variable réelle x.

(E):
$$(1+x^2)y'' + xy' - y = x\sqrt{1+x^2}$$
.

On considère aussi l'équation différentielle suivante, de fonction inconnue z de la variable réelle t.

$$(F)$$
: $z'' - z = \frac{1}{4} \left(e^{2t} - e^{-2t} \right)$.

- 1) Résoudre l'équation homogène associée à (F).
- 2) En déduire l'ensemble des solutions de (F).
- 3) Justifier que la fonction sh réalise une bijection de \mathbb{R} sur \mathbb{R} . On note argsh sa bijection réciproque.
- 4) Montrer que : $\forall x \in \mathbb{R}$, $\operatorname{ch}(\operatorname{argsh}(x)) = \sqrt{1 + x^2}$. Simplifier également $\operatorname{sh}(\operatorname{argsh}(x))$, $e^{\operatorname{argsh}(x)}$ et $e^{-\operatorname{argsh}(x)}$.
- 5) Justifier que argsh est dérivable sur \mathbb{R} et que argsh' $(x) = \frac{1}{\sqrt{1+x^2}}$.

Soit $y: \mathbb{R} \to \mathbb{R}$ une fonction deux fois dérivable. On pose $z: t \mapsto y(\operatorname{sh}(t))$.

- 6) Calculer z'(t) et z''(t). En déduire que y est solution de (E) si et seulement si z est solution de (F).
- 7) Exprimer les solutions de (E) à l'aide de argsh.
- 8) Déterminer finalement l'ensemble des solutions de (E) (on simplifiera au maximum l'expression précédente).

1) L'équation caractéristique associée à l'équation différentielle homogène d'ordre 2 à coefficients constants est $r^2 - 1 = 0$ et a pour racines 1 et -1 donc les solutions de l'équation homogène associée à (F) sont toutes les fonctions de la forme

$$z_H(t) = \lambda e^t + \mu e^{-t}$$
 où $\lambda, \mu \in \mathbb{R}$.

2) On détermine d'abord une solution particulière de l'équation $z'' - z = \frac{1}{4}e^{2t}$ en cherchant celle-ci sous la forme $z_1(t) = Ce^{2t}$ avec $C \in \mathbb{R}$ car 2 n'est pas racine de l'équation caractéristique. En injectant dans l'équation, on a, pour tout $t \in \mathbb{R}$,

$$4Ce^{2t} - Ce^{2t} = \frac{1}{4}e^{2t} \iff 3C = \frac{1}{4} \iff C = \frac{1}{12}$$

donc $z_1(t) = \frac{1}{12}e^{2t}$ est une solution particulière de l'équation : $z'' - z = \frac{1}{4}e^{2t}$. De façon analogue, $z_2(t) = -\frac{1}{12}e^{-2t}$ est une solution particulière de l'équation : $z'' - z = -\frac{1}{4}e^{-2t}$ donc, par superposition, la fonction

$$z_0(t) = z_1(t) + z_2(t) = \frac{e^{2t} - e^{-2t}}{12} = \frac{\operatorname{sh}(2t)}{6}$$

est une solution particulière de (F). Finalement, l'ensemble des solutions de (F) s'écrit :

$$\left\{ z \colon t \mapsto \lambda e^t + \mu e^{-t} + \frac{\operatorname{sh}(2t)}{6} \mid \lambda, \mu \in \mathbb{R} \right\}.$$

- 3) La fonction sh est strictement croissante et continue sur \mathbb{R} et $\lim_{x \to +\infty} \operatorname{sh}(x) = +\infty$ et $\lim_{x \to -\infty} \operatorname{sh}(x) = -\infty$ donc, d'après le théorème de la bijection, elle réalise une bijection de \mathbb{R} sur $\operatorname{sh}(\mathbb{R}) = \mathbb{R}$.
- 4) On a, pour tout $y \in \mathbb{R}$, $\text{ch}^2 y \text{sh}^2 y = 1$ donc, pour tout $x \in \mathbb{R}$, par positivité de ch sur \mathbb{R} :

$$ch(\operatorname{argsh}(x)) = \sqrt{1 + \operatorname{sh}^{2}(\operatorname{argsh}(x))} = \sqrt{1 + x^{2}}.$$

car bien sûr, pour tout $x \in \mathbb{R}$, sh(argsh(x)) = x. On obtient alors

$$e^{\operatorname{argsh}(x)} = \operatorname{ch}(\operatorname{argsh}(x)) + \operatorname{sh}(\operatorname{argsh}(x)) = \sqrt{1+x^2} + x$$

$$et e^{-\operatorname{argsh}(x)} = \sqrt{1 + x^2} - x.$$

5) Comme sh' = ch ne s'annule pas sur \mathbb{R} , argsh est dérivable sur sh(\mathbb{R}) = \mathbb{R} et, pour tout $x \in \mathbb{R}$:

$$\operatorname{argsh}'(x) = \frac{1}{\operatorname{sh}'(\operatorname{argsh}(x))} = \frac{1}{\operatorname{ch}(\operatorname{argsh}(x))} = \frac{1}{\sqrt{x^2 + 1}}.$$

6) Par composition, comme y est deux fois dérivable sur \mathbb{R} , z également et, pour tout $t \in \mathbb{R}$,

$$z'(t) = \operatorname{sh}'(t)y'(\operatorname{sh}t) = \operatorname{ch}(t)y'(\operatorname{sh}t)$$

puis, par produit,

$$z''(t) = ch'(t)y'(sht) + ch(t)sh'(t)y''(sht) = sh(t)y'(sht) + ch^{2}(t)y''(sht).$$

Par bijectivité de sh, on a donc les équivalences, pour $t \in \mathbb{R}$, en posant $x = \operatorname{sh} t$,

$$(1+x^2)y''(x) + xy'(x) - y(x) = x\sqrt{1+x^2} \iff (1+\operatorname{sh}^2 t)y''(\operatorname{sh} t) + \operatorname{sh}(t)y'(\operatorname{sh} t) - y(\operatorname{sh} t) = \operatorname{sh}(t)\sqrt{1+\operatorname{sh}^2 t}$$

$$\iff \operatorname{ch}^2(t)y'' + \operatorname{sh}(t)y'(\operatorname{sh} t) - y(\operatorname{sh} t) = \operatorname{sh}(t)\operatorname{ch}(t)$$

$$\iff z''(t) - z(t) = \frac{1}{4}(e^{2t} - e^{-2t}).$$

En conclusion, y est solution de (E) si et seulement si z est solution de (F).

7) Avec les équivalences précédentes, l'ensemble des solutions de (E) sont les fonctions de la forme

$$y(x) = \lambda e^{\operatorname{argsh}(x)} + \mu e^{-\operatorname{argsh}(x)} + \frac{1}{6}\operatorname{sh}\left(2\operatorname{argsh}(x)\right)$$

où $\lambda, \mu \in \mathbb{R}$.

8) On a, pour tout $x \in \mathbb{R}$,

$$\mathrm{sh}\left(\mathrm{2argsh}(x)\right) = 2\mathrm{sh}\left(\mathrm{argsh}(x)\right) \times \mathrm{ch}\left(\mathrm{argsh}(x)\right) = x\sqrt{x^2+1}$$

donc l'ensemble des solutions de (E) sont les fonctions de la forme :

$$y(x) = A\sqrt{x^2 + 1} + Bx + \frac{1}{3}x\sqrt{x^2 + 1}.$$

où $A, B \in \mathbb{R}$ (on a posé $A = \lambda + \mu$ et $B = \lambda - \mu$).

Exercice 4. Soit l'équation (E): $x^3 - 2x - 1 = 0$.

- 1) Résoudre (E) et en déduire le tableau de signe de $x^3 2x 1$.
- 2) On introduit la fonction q définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \quad g(x) = \frac{x^3 - 1}{2}.$$

Montrer que l'intervalle [-1, 1] est stable par g.

3) On considère alors la suite u définie par $u_0 = 0$ et $u_{n+1} = g(u_n)$. Montrer que : $\forall n \in \mathbb{N}, \ u_n \in [-1, 1]$.

- 4) Étudier la monotonie de u.
- 5) En déduire que la suite u converge et déterminer sa limite.

1) On remarque que -1 est une solution évidente. On factorise alors le polynôme par x+1. On trouve :

$$x^3 - 2x - 1 = (x+1)(x^2 - x - 1).$$

On cherche alors les racines du polynôme de degré deux et finalement les solutions de (E) sont

$$S = \left\{-1, \frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right\}.$$

Chaque racine induit un changement de signe du polynôme (puisqu'on a $x^3 - 2x - 1 = (x+1)(x-\psi)(x-\varphi)$ où les facteurs sont distincts), on a donc le tableau de signe suivant.

x		-1		$\frac{1-\sqrt{5}}{2}$		$\frac{1+\sqrt{5}}{2}$	
$x^3 - 2x - 1$	_	0	+	0	_	0	+

2) g est croissante sur \mathbb{R} car $x\mapsto x^3$ est croissante, ainsi

$$-1 \leqslant x \leqslant 1 \implies g(-1) \leqslant g(x) \leqslant g(1) \implies -1 \leqslant g(x) \leqslant 0$$

ce qui prouve bien que $g(x) \in [-1,1]$ pour $x \in [-1,1]$ i.e. [-1,1] est stable par g.

3) Montrons par récurrence sur $n \in \mathbb{N}$, la propriété \mathcal{P}_n : $u_n \in [-1, 1]$.

Initialisation: pour n = 0, on a bien $u_0 = 0 \in [-1, 1]$.

<u>Hérédité</u> : supposons \mathcal{P}_n pour un certain $n \in \mathbb{N}$. Alors, $u_n \in [-1, 1]$ ce qui implique que $u_{n+1} = g(u_n) \in [-1, 1]$ par stabilité de [-1, 1] par g. D'où \mathcal{P}_{n+1} .

<u>Conclusion</u>: par principe de récurrence, \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$.

4) On présente deux méthodes mais seule la première permet d'aboutir directement au résultat.

<u>Méthode 1</u>: puisque g est strictement croissante et que $u_1 = -\frac{1}{2} < u_0$, on montre par récurrence que u est strictement décroissante.

<u>Méthode 2</u>: On calcule : $u_{n+1} - u_n = \frac{1}{2}(u_n^2 - 2u_n - 1)$. La monotonie de u se déduit donc du tableau de signe précédent. En particulier, sur [-1,1] on ne peut pas conclure a priori. Il aurait en fait fallu montrer que $u_n \in [\frac{1-\sqrt{5}}{2},1]$ pour tout $n \in \mathbb{N}$.

5) La suite u est décroissante et minorée par -1 donc elle converge d'après le théorème de la convergence monotone.

On note $\ell = \lim_{n \to +\infty} u_n$. En passant à la limite dans la relation de récurrence, on obtient

$$\ell = g(\ell) \iff \ell^3 - 2\ell - 1 = 0.$$

On sait aussi, d'après la question 3, que $\ell \in [-1,1]$. Puisque $\frac{1+\sqrt{5}}{2} > \frac{1+\sqrt{4}}{2} = \frac{3}{2} > 1$, on obtient que $\ell = -1$ ou $\ell = \frac{1-\sqrt{5}}{2}$ d'après la question 1. On va exclure le premier cas en remarquant que si $u_n \in [-1, \frac{1-\sqrt{5}}{2}[$ pour un certain n, alors $u_{n+1} - u_n = \frac{1}{2}(u_n^2 - 2u_n - 1) \geqslant 0$ d'après le tableau de signe précédent. Cela contredit le fait que u est strictement décroissante. Ainsi, $u_n \geqslant \frac{1-\sqrt{5}}{2}$ pour tout $n \in \mathbb{N}$ et finalement $\ell = \frac{1-\sqrt{5}}{2}$.

Exercice 5. Soit $\omega = e^{i\frac{2\pi}{5}}$. On pose $\alpha = \omega + \omega^4$ et $\beta = \omega^2 + \omega^3$.

- 1) Calculer $\alpha + \beta$ et $\alpha\beta$. On précise que le résultat est très simple...
- 2) En déduire une équation polynomiale dont α et β sont solutions. Résoudre cette équation.
- 3) Déterminer plus directement une autre expression de α et β et en déduire les valeurs exactes de $\cos\left(\frac{2\pi}{5}\right)$ et $\sin\left(\frac{2\pi}{5}\right)$.
- 4) Montrer que $\cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{4}$.
- 5) Soient A le point d'affixe $-\frac{1}{2}$, B le point d'affixe i et C le cercle de centre A passant par B. Déterminer une équation cartésienne de C.
- 6) Montrer que α et β correspondent aux points d'intersection de \mathcal{C} avec l'axe des abscisses. En déduire une construction à la règle et au compas d'un pentagone régulier dans le cercle unité.

Solution. Rappelons qu'ici ω est une racine cinquième de l'unité et que les autres racines cinquièmes de l'unité sont $1, \omega^2, \omega^3$ et ω^4 .

1) On rappelle que la somme des racines n-ième de l'unité vaut 0 (mais on peut le remontrer ici). On obtient donc

$$1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$$

ce qui donne $\alpha + \beta = -1$.

Pour le produit, on a

$$\alpha\beta = \omega(1+\omega^3)\omega^2(1+\omega) = \omega^3(1+\omega+\omega^3+\omega^4).$$

Avec le même argument que précédemment, on a $1+\omega+\omega^3+\omega^4=-\omega^2$ d'où $\alpha\beta=-\omega^5=-1$.

2) α et β sont racines du polynôme $(x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta = x^2 + x - 1$. On résout donc

$$x^2 + x - 1 = 0.$$

On trouve alors deux racines réelles $x_1 = \frac{\sqrt{5}-1}{2}$ et $x_2 = -\frac{\sqrt{5}+1}{2}$.

3) Remarquons que $\omega^4 = \omega^{-1} = \overline{\omega}$ (c'est clair si on fait un dessin). Ainsi,

$$\alpha = \omega + \overline{\omega} = 2\cos\left(\frac{2\pi}{5}\right) \quad \text{et} \quad \beta = \omega^2 + \overline{\omega}^2 = 2\cos\left(\frac{4\pi}{5}\right).$$

Puisque $\frac{2\pi}{5} \in]0, \frac{\pi}{2}[$ et $\frac{4\pi}{5} \in]\frac{\pi}{2}, \pi[$, on a $\alpha > 0$ et $\beta < 0$. On peut donc déterminer qui de x_1, x_2 vaut α ou β . On obtient ainsi

$$\alpha = \frac{\sqrt{5} - 1}{2}$$
 et $\beta = -\frac{\sqrt{5} + 1}{2}$.

En particulier, $\cos\left(\frac{2\pi}{5}\right) = \frac{\alpha}{2} = \frac{\sqrt{5}-1}{4}$. Le sinus de cet angle étant lui aussi positif, on a

$$\sin\left(\frac{2\pi}{5}\right) = \sqrt{1 - \cos^2\left(\frac{2\pi}{5}\right)} = \frac{\sqrt{10 + 2\sqrt{5}}}{4}.$$

4) D'après ce qui précède,

$$\cos\left(\frac{\pi}{5}\right) = \cos\left(\pi - \frac{4\pi}{5}\right) = -\frac{\beta}{2} = \frac{1+\sqrt{5}}{4}.$$

5) $M(x,y) \in \mathcal{C} \iff AM^2 = AB^2 \iff (x+\frac{1}{2})^2 + y^2 = 1 + \frac{1}{4} = \frac{5}{4}$. Ainsi, en développant,

$$C: x^2 + x + y^2 - 1 = 0.$$

6) Les abscisses des points d'intersection de C avec l'axe des abscisses (y = 0) sont donc les solutions de

$$x^2 + x - 1 = 0$$

c'est-à-dire α et β . On peut donc construire α et β en traçant au compas le cercle \mathcal{C} : le point B(0,1) étant de base sur le repère et le point $A(-\frac{1}{2},0)$ s'obtenant en construisant la médiatrice entre l'origine et le point de coordonnées (-1,0). On construit ensuite la médiatrice entre α et 0 (sur l'axe des abscisses). Ses points d'intersection avec le cercle unité sont ceux d'affixes ω et ω^4 . En particulier, en réglant le compas entre les points d'affixes 1 et ω , on peut construire de proche en proche les différents points du pentagone régulier formé par les racines cinquièmes de l'unité.

Pour la culture : dans cet exercice on s'intéresse à la construction à la règle et au compas d'un polygône régulier à n côtés. Cela revient à construire à la règle et au compas les points dont les affixes sont les racines n-ièmes de l'unité. On vient de prouver que pour n=5, cela est possible. Il n'est pas trop dur de voir que c'est aussi possible pour n=3,4,6 et 8. En revanche, on peut montrer (mais ça dépasse largement le programme) que pour n=7 et 9 cela n'est pas possible. On dit par exemple que le complexe $e^{i\frac{2\pi}{7}}$ n'est pas constructible.

En 1801, Gauss démontre une condition suffisante sur n pour qu'un polygône régulier à n côtés soit constructible. Il obtient notamment que l'heptadécagone (17 côtés) est constructible. 36 ans plus tard, Pierre-Laurent Wantzel démontre que cette condition suffisante est en fait nécessaire, ce qui caractérise totalement quels polygônes réguliers sont constructibles et lesquels ne le sont pas.

Exercice 6. Le but de l'exercice est d'étudier les intégrales de Wallis définies pour $n \in \mathbb{N}$ par :

$$W_n = \int_0^{\frac{\pi}{2}} \cos^n t \ dt.$$

- 1) Calculer W_0 , W_1 et W_2 .
- 2) Justifier que pour tout $n \in \mathbb{N}$, $W_n \ge 0$ et que pour $t \in [0, \frac{\pi}{2}]$: $\cos(t)^{n+1} \le \cos(t)^n$. On admet dans la suite que $W_n > 0$ pour tout $n \in \mathbb{N}$.
- 3) En déduire que la suite $(W_n)_{n\in\mathbb{N}}$ est décroissante et que $\frac{W_{n+2}}{W_n} \leqslant \frac{W_{n+1}}{W_n} \leqslant 1$.
- 4) Justifier que $(W_n)_{n\in\mathbb{N}}$ est convergente.
- 5) Soit $n \in \mathbb{N}$. En effectuant une intégration par parties, montrer que

$$W_{n+2} = \frac{n+1}{n+2} W_n.$$

- 6) En déduire que la suite $((n+1)W_{n+1}W_n)_{n\in\mathbb{N}}$ est constante (on précisera la valeur).
- 7) Conclure que, pour tout $p \in \mathbb{N}$,

$$W_{2p} = \frac{\pi}{2} \frac{(2p)!}{2^{2p} (p!)^2}.$$

Déterminer une expression analogue pour W_{2p+1} .

8) On pose, pour tout $n \in \mathbb{N}$,

$$u_n = \sqrt{\frac{2n}{\pi}} \ W_n.$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ converge vers 1.

1) On a:

$$W_0 = \int_0^{\frac{\pi}{2}} \cos^0 t \ dt = \int_0^{\frac{\pi}{2}} 1 \ dt = \frac{\pi}{2};$$

$$W_1 = \int_0^{\frac{\pi}{2}} \cos^1 t \ dt = \left[\sin t\right]_0^{\frac{\pi}{2}} = \sin\left(\frac{\pi}{2}\right) - \sin 0 = 1;$$

$$W_2 = \int_0^{\frac{\pi}{2}} \cos^2 t \ dt = \int_0^{\frac{\pi}{2}} \frac{1 + \cos(2t)}{2} \ dt = \frac{1}{2} \left[t + \frac{\sin(2t)}{2}\right]_0^{\frac{\pi}{2}} = \frac{\pi}{4}.$$

2) Pour tout $t \in [0,1]$ et pour tout $n \in \mathbb{N}$, comme $0 \le \cos t \le 1$, on a

$$0 \leqslant \cos^{n+1} t \leqslant \cos^n t$$

donc, par positivité de l'intégrale,

$$W_n = \int_0^{\frac{\pi}{2}} \cos^n t \ dt \geqslant 0.$$

3) Par croissance de l'intégrale, avec l'inégalité précédente, on a :

$$\int_0^{\frac{\pi}{2}} \cos^{n+1} t \ dt \leqslant \int_0^{\frac{\pi}{2}} \cos^n t \ dt$$

ce qui s'écrit $W_{n+1} \leq W_n$. En conclusion, la suite $(W_n)_{n \in \mathbb{N}}$ est décroissante. Ainsi, pour tout $n \in \mathbb{N}$,

$$W_{n+2} \leqslant W_{n+1} \leqslant W_n$$

ce qui donne, en divisant par $W_n > 0$, pour tout $n \in \mathbb{N}$,

$$\frac{W_{n+2}}{W_n} \leqslant \frac{W_{n+1}}{W_n} \leqslant 1.$$

- 4) La suite $(W_n)_{n\in\mathbb{N}}$ est décroissante et minorée par 0 donc, par le théorème de convergence monotone, la suite $(W_n)_{n\in\mathbb{N}}$ est convergente.
- 5) Soit $n \in \mathbb{N}$. On pose, pour $t \in \left[0, \frac{\pi}{2}\right]$,

$$\begin{cases} f'(t) = \cos t \\ g(t) = \cos^{n+1} t \end{cases} \text{ qui donne } \begin{cases} f(t) = \sin t \\ g'(t) = -(n+1)\sin t \cos^n t \end{cases}.$$

Les fonctions f et g sont de classe \mathscr{C}^1 sur $\left[0,\frac{\pi}{2}\right]$ donc, par la formule d'intégration par parties

$$W_{n+2} = \int_0^{\frac{\pi}{2}} \cos t \cos^{n+1} t \, dt$$

$$= \underbrace{\left[\sin t \cos^{n+1} t\right]_0^{\frac{\pi}{2}}}_{=0} - \int_0^{\frac{\pi}{2}} -(n+1)\sin t \cos^n t \sin t \, dt$$

$$= (n+1) \int_0^{\frac{\pi}{2}} \sin^2 t \cos^n t \, dt$$

ce qui donne, compte tenu du fait que $\sin^2 = 1 - \cos^2$ sur \mathbb{R} ,

$$W_{n+2} = (n+1) \int_0^{\frac{\pi}{2}} (1 - \cos^2 t) \cos^n t \, dt$$
$$= (n+1) \int_0^{\frac{\pi}{2}} \cos^n t \, dt - (n+1) \int_0^{\frac{\pi}{2}} \cos^{n+2} t \, dt$$
$$= (n+1)W_n - (n+1)W_{n+2}.$$

En conclusion, pour tout $n \in \mathbb{N}$, $W_{n+2} = \frac{n+1}{n+2}W_n$.

6) On pose, pour tout $n \in \mathbb{N}$, $u_n = (n+1)W_{n+1}W_n$. On a, pour tout $n \in \mathbb{N}$, en réécrivant la relation de la question précédente, $(n+2)W_{n+2} = (n+1)W_n$ donc

$$u_{n+1} = (n+2)W_{n+2}W_{n+1} = (n+1)W_nW_{n+1} = u_n$$

donc la suite $((n+1)W_{n+1}W_n)_{n\in\mathbb{N}}$ est constante. En conclusion, pour tout $n\in\mathbb{N}$,

$$(n+1)W_{n+1}W_n = u_0 = 1 \times W_1W_0 = \frac{\pi}{2}.$$

7) Montrons par récurrence sur $p \in \mathbb{N}$ que pour tout $p \in \mathbb{N}$,

$$W_{2p} = \frac{\pi}{2} \frac{(2p)!}{2^{2p} (p!)^2}.$$

<u>Initialisation</u>: pour p=0, on a bien $W_{2\times 0}=W_0=\frac{\pi}{2}$ (on rappelle que 0!=1).

<u>Hérédité</u> : soit $p \in \mathbb{N}$. On suppose que

$$W_{2p} = \frac{\pi}{2} \frac{(2p)!}{2^{2p} (p!)^2}.$$

En utilisant la relation $W_{n+2} = \frac{n+1}{n+2}W_n$ avec n=2p, on obtient

$$W_{2p+2} = \frac{2p+1}{2p+2} W_{2p}$$

$$= \frac{\pi}{2} \frac{(2p+2)(2p+1)}{(2p+2)^2} \frac{(2p)!}{2^{2p} (p!)^2}$$

$$= \frac{\pi}{2} \frac{(2p+2)!}{2^2 (p+1)^2 2^{2p} (p!)^2}$$

$$= \frac{\pi}{2} \frac{(2p+2)!}{2^{2(p+1)} (p+1)!^2}.$$

D'où le résultat. En procédant de façon analogue, pour tout $p \in \mathbb{N}$, on obtient

$$W_{2p+1} = \frac{2^{2p}(p!)^2}{(2p+1)!}.$$

8) On a, pour tout $n \in \mathbb{N}$, $(n+1)W_{n+1}W_n = \frac{\pi}{2}$ d'après la question 6. Ainsi,

$$\frac{2n}{\pi}W_n^2 = \frac{n}{n+1} \, \frac{W_n}{W_{n+1}}$$

donc $u_n = \sqrt{\frac{n}{n+1}} \frac{W_n}{W_{n+1}}$. Or, $\frac{n}{n+1} \to 1$ et il en est de même pour $\frac{W_n}{W_{n+1}}$. En effet, l'inégalité de la question 3 et le résultat de la question 5 montrent que

$$\frac{n+1}{n+2} = \frac{W_{n+2}}{W_n} \leqslant \frac{W_{n+1}}{W_n} \leqslant 1.$$

En passant à la limite et en utilisant le théorème des gendarmes on trouve que $\lim_{n\to+\infty} \frac{W_{n+1}}{W_n} = 1$.

Finalement,
$$\lim_{n \to +\infty} u_n = \sqrt{1 \times 1} = 1.$$