Optimization Protocol for Seshat's Bones: A High-Performance Hemp-Based Epoxy Composite

Marie Seshat Landry Landry Industries, Global Organic Solutions

June 2025

Abstract

This document outlines a technical protocol to enhance the mechanical, thermal, and dielectric performance of *Seshat's Bones*, a novel fully hemp-based epoxy composite. The goal is to approach or surpass the mechanical efficiency of graphene-epoxy composites while preserving biodegradability, cost-effectiveness, and ecological safety. It includes material preparation, nanosheet exfoliation, dispersion strategies, interfacial bonding chemistry, and a complete test matrix.

1. Objective

To maximize the composite performance of Seshat's Bones by:

- Optimizing the exfoliation and dispersion of hemp-derived nanosheets
- Improving matrix-filler interface bonding
- Balancing reinforcement loading (biochar + nanosheets)
- Establishing a systematic experimental test matrix

2. Nanosheet Exfoliation Optimization

Parameters to Optimize

• Precursor biomass: Raw hemp bast vs. pyrolyzed hemp biochar

• Sonication power: 100W-750W

• Sonication time: 15–120 minutes

- Solvent medium: Water, ethanol, DMF, acetone
- Centrifugation speed: 5000–10,000 rpm

Characterization Methods

- Transmission Electron Microscopy (TEM)
- Dynamic Light Scattering (DLS)
- X-ray Diffraction (XRD)
- BET Surface Area Analysis

3. Dispersion Optimization into Epoxy-Lignin Matrix

Processing Variables

- Nanosheet loading: 0.5–5.0 wt%
- Biochar loading: 5–20 wt%
- Mixing method: Magnetic stirring vs. probe ultrasonication
- Mix temperature: Room temp 60°C
- Curing protocol: Thermal step-cure (80°C to 150°C), vacuum-assisted

4. Interfacial Chemistry Enhancement

Strategies

- Functionalize nanosheets: Acid oxidation (e.g., HNO₃/H₂SO₄) to introduce carboxylic groups
- Coupling agents: Use silanes or maleic anhydride for improved matrix compatibility
- Lignin modification: Increase hydroxyl content via maleic anhydride esterification

Characterization Tools

- Fourier Transform Infrared Spectroscopy (FTIR)
- X-ray Photoelectron Spectroscopy (XPS)
- Scanning Electron Microscopy (SEM)

Sample ID	Nanosheet (wt%)	Biochar (wt%)	Tensile	Flexural	Tg (°C)	Dielectric
S-1	0.5	10				
S-2	1.0	10				
S-3	2.5	10				
S-4	2.5	15				
S-5	5.0	10				

Table 1: Composite test matrix for optimization of filler loading and performance

5. Experimental Test Matrix

6. Performance Goals

Target Property	Minimum Target	Ideal Benchmark
Tensile Strength	>100 MPa	200–300 MPa
Elastic Modulus	>10 GPa	30-50 GPa
Glass Transition Temperature (Tg)	$> 100 {\rm ^{\circ}C}$	$150^{\circ}\mathrm{C}$
Dielectric Constant (1 MHz)	2 – 4	Tunable via nanosheet loading

Table 2: Performance goals for competitive hemp-based nanocomposite

7. Recommended Add-Ons

- Hybrid Reinforcement: Add hemp microfibers or bacterial cellulose
- Co-curing Chemistry: Bio-based amines, lignin-derived polyols
- Precision Molding: Use 3D-printed molds for ASTM-standard testing shapes

8. Conclusion

With the protocol outlined herein, Seshat's Bones can be systematically optimized to approach the performance levels of graphene-enhanced composites. Through controlled exfoliation, advanced dispersion, and strong interfacial engineering, this fully hemp-based material can serve as a breakthrough in sustainable, high-performance composites for aerospace, defense, electronics, and civil infrastructure.