

Inteligencia **Artificial**

Ing. Juancarlos Santana Huamán jsantana@ucss.edu.pe

 Los filtros son operaciones que modifican los píxeles de una imagen basándose en los valores de sus vecinos. Se utilizan para realzar características, reducir ruido o extraer información.

Tipos principales:

- Filtros de suavizado: Reducen ruido y detalles finos
 - Media: Promedia los valores de píxeles vecinos
 - Gaussiano: Da más peso a los píxeles centrales (distribución normal)
- Filtros de realce: Resaltan características específicas
 - Laplaciano: Detecta áreas de cambio rápido (bordes)
 - Prewitt/Sobel: Detectan bordes en direcciones específicas

Kernel/Matriz de convolución: Pequeña matriz que define cómo se combinan los píxeles vecinos.

Filtros de Suavizado (Paso Bajo)

• Filtro de Media:

- Kernel: $K = 1/(m \times n) \times [matriz de unos]$
- Efecto: Promedia los valores de los píxeles vecinos
- Reduce ruido, pero causa desenfoque

• Filtro Gaussiano:

- Kernel basado en distribución normal 2D: $G(x,y) = (1/(2\pi\sigma^2)) \times \exp(-(x^2+y^2)/(2\sigma^2))$
- Parámetro σ controla el grado de suavizado
- Preserva mejor los bordes que el filtro de media

- Filtro Laplaciano:
 - Aproxima la segunda derivada: $\nabla^2 I = \partial^2 I/\partial x^2 + \partial^2 I/\partial y^2$
 - Kernel típico:

```
[0-1 0]
[-1 4-1]
[0-1 0]
```

- Resalta regiones de cambio rápido de intensidad
- Filtros de Gradiente (Sobel, Prewitt):
 - Aproximan las primeras derivadas en direcciones x e y
 - Sobel:

```
Gx = [-1 0 1; -2 0 2; -1 0 1]
Gy = [-1 -2 -1; 0 0 0; 1 2 1]
```

- Magnitud del gradiente: $|\nabla I| = \sqrt{(Gx^2 + Gy^2)}$
- Dirección del gradiente: θ = atan2(Gy, Gx)

Detección de Bordes

- Identificar puntos donde la intensidad de la imagen cambia abruptamente, indicando transiciones entre objetos o regiones.
- Métodos principales:
 - Operadores de gradiente: Calculan la derivada de la imagen
 - Sobel: Aproximación discreta de la derivada en direcciones x e y
 - Prewitt: Similar a Sobel pero con diferentes pesos
 - Canny Edge Detector: Algoritmo de múltiples etapas:
 - Reducción de ruido con filtro Gaussiano
 - Cálculo del gradiente de intensidad
 - Supresión de no-máximos (afinar bordes)
 - Umbralización con histéresis (bordes fuertes y débiles)

Operadores de Gradiente

- Fundamento Matemático
 - Los operadores de gradiente calculan la derivada direccional de la función de intensidad de la imagen I(x,y). El gradiente vectorial se define como:

$$\nabla I = [\partial I/\partial x, \partial I/\partial y]^T$$

- La magnitud del gradiente indica la tasa de cambio de intensidad: $|\nabla I| = \sqrt{(\partial I/\partial x)^2 + (\partial I/\partial y)^2}$
- La dirección del gradiente indica la orientación del cambio máximo:

$$\theta = atan2(\partial I/\partial y, \partial I/\partial x)$$

Operador de Sobel

- El operador de Sobel utiliza dos kernels ortogonales 3×3:
- Dirección x (vertical edges):

• Dirección y (horizontal edges):

Implementación Matemática

$$Gx = I * Sx = \sum I(x+i, y+j) \times Sx(i,j)$$

$$Gy = I * Sy = \sum I(x+i, y+j) \times Sy(i,j)$$

Magnitud:

$$M(x,y) = V(Gx^2 + Gy^2)$$

• Dirección:

$$\theta(x,y) = atan2(Gy, Gx)$$

- Propiedades de Sobel
 - Los pesos [1, 2, 1] suavizan en la dirección perpendicular a la derivada
 - Mayor sensibilidad a bordes diagonales que operadores simples
 - Implementación computacionalmente eficiente

Operador de Prewitt

- Kernels de Prewitt
 - Dirección x:

```
Px = [-1 \ 0 \ 1]
[-1 \ 0 \ 1]
[-1 \ 0 \ 1]
```

• Dirección y:

- Comparación Sobel vs Prewitt
 - Sobel: Da más peso a los píxeles centrales (menos sensible al ruido)
 - Prewitt: Todos los píxeles tienen igual peso (más sensible al ruido)
 - Sobel generalmente produce bordes más suaves
 - Prewitt es más rápido computacionalmente

- John Canny (1986) definió tres criterios para un detector de bordes óptimo:
 - Buena detección: Mínima probabilidad de falsos positivos y falsos negativos
 - Buena localización: Los bordes detectados deben estar lo más cerca posible de los bordes reales
 - Respuesta única: Solo una respuesta por borde real
- Etapa 1: Reducción de Ruido con Filtro Gaussiano
 - Filtro Gaussiano 2D:

$$G(x,y) = (1/(2\pi\sigma^2)) \times \exp(-(x^2 + y^2)/(2\sigma^2))$$

Aplicación:

$$I_suavizada(x,y) = \sum I(u,v) \times G(x-u, y-v)$$

- Propiedades:
 - σ controla el grado de suavizado (compromiso entre supresión de ruido y preservación de bordes)
 - Mayor $\sigma \rightarrow$ mayor suavizado pero bordes más difusos

- Etapa 2: Cálculo del Gradiente de Intensidad
 - Se aplican operadores de gradiente optimizados:

```
Gx = I_suavizada * Dx
Gy = I_suavizada * Dy
```

Donde Dx y Dy son derivadas del Gaussiano:

$$Dx = \partial G/\partial x$$
, $Dy = \partial G/\partial y$

Magnitud y dirección:

$$M(x,y) = V(Gx^2 + Gy^2)$$

 $\theta(x,y) = atan2(Gy, Gx)$ (cuantizada a 0°, 45°, 90°, 135°)

- Etapa 3: Supresión de No-Máximos
 - Afinar los bordes eliminando píxeles que no son máximos locales en la dirección del gradiente.
 - Algoritmo
 - Para cada píxel (x,y):
 - Redondear θ(x,y) a la dirección más cercana (0°, 45°, 90°, 135°)
 - Comparar M(x,y) con sus dos vecinos en la dirección de θ
 - Si M(x,y) no es el máximo entre sus vecinos, suprimirlo (M(x,y) = 0)
 - Ejemplo para $\theta = 0^\circ$:

Comparar con (x,y-1) y (x,y+1)

• Ejemplo para $\theta = 45^{\circ}$:

Comparar con (x-1,y+1) y (x+1,y-1)

- Etapa 4: Umbralización con Histéresis
 - Problema de Umbral Simple
 - Un único umbral produce:
 - Umbral alto: bordes fragmentados
 - Umbral bajo: bordes falsos por ruido
 - Solución: Doble Umbral
 - Umbral alto (T_high): Solo bordes fuertes
 - Umbral bajo (T_low): Bordes débiles potenciales

- Algoritmo de Histéresis
 - Clasificación inicial:

```
M(x,y) \ge T_high \rightarrow Borde fuerte (siempre se conserva)

T_low \le M(x,y) < T_high \rightarrow Borde débil (se evalúa)

M(x,y) < T_low \rightarrow Se descarta
```

- Conectividad:
 - Para cada borde débil, verificar si está conectado a algún borde fuerte
 - Si está conectado → Conservar como borde
 - Si no está conectado → Descartar
- Implementación Práctica
 - Usualmente: T_high = 2 × T_low
 - Valores típicos: T_low = 0.05×max(M), T_high = 0.15×max(M)
 - La conectividad se verifica mediante vecindarios 8-conectados

- Ventajas del Detector de Canny
 - Baja tasa de error: Minimiza falsos positivos y negativos
 - Buena localización: Los bordes están bien posicionados
 - Respuesta única: Un solo píxel de ancho por borde
 - Robustez al ruido: Gracias al suavizado Gaussianoy la histéresis
- Consideraciones de Implementación
 - Elección de parámetros:
 - σ: Controla el suavizado (típico: 1.0-2.0)
 - T_low, T_high: Ajustan la sensibilidad
 - Tamaño del kernel Gaussian: Generalmente 3×3 o 5×5
 - Complejidad computacional:
 - O(n) para convolución Gaussian
 - O(n) para cálculo de gradiente
 - O(n) para supresión de no-máximos
 - O(n) para umbralización con histéresis
- Este enfoque de múltiples etapas hace del detector de Canny uno de los métodos más efectivos y ampliamente utilizados en la detección de bordes en visión por computadora.

Detección de Esquinas

- Identificar puntos donde la intensidad cambia significativamente en múltiples direcciones.
- Algoritmos principales:
 - Harris Corner Detection:
 - Calcula la matriz de autocorrelación
 - Mide el cambio en todas las direcciones
 - Usa función de respuesta para identificar esquinas
 - Shi-Tomasi Corner Detection: Variante de Harris que usa el mínimo valor propio

Detección de Esquinas

- Punto donde la intensidad cambia significativamente en múltiples direcciones. A diferencia de los bordes (cambios predominantemente unidireccionales), las esquinas tienen variaciones bidireccionales.
- Algoritmo de Harris Corner Detection
 - Matriz de Autocorrelación
 - Para una ventana W y un desplazamiento (u,v):

 $E(u,v) = \sum \sum [I(x+u,y+v) - I(x,y)]^2 \approx \sum \sum [u \ v] \ M \ [u; \ v]$

• Donde M es la matriz de segundo momento:

 $M = \sum [Ix^2 |x|y; |x|y| |y^2]$

Función de Respuesta de Esquina

 $R = det(M) - k \times trace(M)^2$

- · Donde:
 - $det(M) = \lambda_1 \lambda_2$ (producto de valores propios)
 - trace(M) = $\lambda_1 + \lambda_2$ (suma de valores propios)
 - k: constante empírica (~0.04-0.06)
- Interpretación de R:
 - R > 0: Esquina (ambos λ grandes y similares)
 - R ≈ 0: Región plana (ambos λ pequeños)
 - R < 0: Borde (un λ grande, otro pequeño)

Detección de Esquinas

- Algoritmo de Shi-Tomasi
 - Variante que usa:

```
R = \min(\lambda_1, \lambda_2)
```

• Esquina cuando min (λ_1, λ_2) > umbral. Generalmente más robusto que Harris.

Detección de Líneas y Curvas

- Identificar formas geométricas específicas en imágenes.
- Métodos principales:
 - Transformada de Hough:
 - Para líneas: Representa líneas en espacio de parámetros (ρ, θ)
 - Para círculos: Representa círculos en espacio (x, y, radio)
 - Generalizada: Para otras formas geométricas
 - Detección basada en contornos: Usa información de bordes para encontrar formas

Detección de Líneas y Curvas

Transformada de Hough. Transforma puntos del espacio de la imagen al espacio de parámetros de la forma geométrica buscada.

- Para Líneas Rectas
 - Representación normal: $\rho = x \cdot \cos\theta + y \cdot \sin\theta$
 - Donde:
 - ρ: distancia desde el origen a la línea
 - θ: ángulo del vector normal
 - Algoritmo:
 - Discretizar el espacio (ρ, θ) en celdas (acumulador)
 - Para cada punto de borde (x,y) y cada θ , calcular ρ
 - Incrementar el acumulador en (ρ, θ)
 - Buscar máximos en el acumulador

Detección de Líneas y Curvas

- Para Círculos
 - Ecuación: $(x-a)^2 + (y-b)^2 = r^2$
 - Espacio de parámetros tridimensional: (a, b, r)
 - Computacionalmente costoso para múltiples radios
- Transformada de Hough Generalizada
 - Para formas arbitrarias descritas por:
 - $F(x, y, p_1, p_2, ..., p_n) = 0$
 - Donde p₁...p_n son los parámetros de la forma.

Detección Basada en Contornos

- Algoritmo de Marching Squares
 - Versión 2D de Marching Cubes
 - Divide la imagen en cuadrados 2×2
 - · Para cada cuadrado, determina la configuración de píxeles sobre/bajo umbral
 - Conecta puntos para formar contornos
- Aproximación de Polígonos
 - Algoritmo de Ramer-Douglas-Peucker
 - Simplifica curvas complejas mediante aproximación poligonal
 - Parámetro ε controla la precisión de la aproximación

Aplicación con Python

import cv2
import numpy as np
import matplotlib.pyplot as plt
from skimage import feature, transform
from scipy import ndimage

Configurar matplotlib

plt.rcParams['figure.figsize'] = [12, 8]

plt.rcParams['image.cmap'] = 'gray'

```
def ejercicio_filtros():
   # Crear imagen de ejemplo con ruido
   imagen = np.zeros((100, 100))
   imagen[20:80, 20:80] = 1 # Cuadrado blanco
   # Añadir ruido
    ruido = np.random.normal(0, 0.1, imagen.shape)
   imagen_ruidosa = np.clip(imagen + ruido, 0, 1)
   # Aplicar diferentes filtros
    filtro_media = cv2.blur(imagen_ruidosa, (5, 5))
    filtro_gaussiano = cv2.GaussianBlur(imagen_ruidosa, (5, 5), 0)
    filtro_mediana = cv2.medianBlur((imagen_ruidosa * 255).astype(np.uint8), 5)
   # Mostrar resultados
    fig, axes = plt.subplots(2, 2)
    axes[0,0].imshow(imagen_ruidosa)
    axes[0,0].set_title('Imagen con ruido')
    axes[0,1].imshow(filtro_media)
    axes[0,1].set_title('Filtro de Media')
    axes[1,0].imshow(filtro_gaussiano)
    axes[1,0].set_title('Filtro Gaussiano')
   axes[1,1].imshow(filtro_mediana)
    axes[1,1].set_title('Filtro de Mediana')
    plt.tight_layout()
    plt.show()
ejercicio_filtros()
```



```
def ejercicio_deteccion_bordes():
                                                                      # Mostrar resultados
    # Crear imagen con diferentes formas
                                                                         fig, axes = plt.subplots(2, 3)
    imagen = np.zeros((200, 200))
                                                                         axes[0,0].imshow(imagen)
    cv2.rectangle(imagen, (30, 30), (80, 80), 1, -1)
                                                                         axes[0,0].set_title('Imagen Original')
    cv2.circle(imagen, (150, 150), 30, 1, -1)
                                                                         axes[0,1].imshow(bordes_sobelx)
    cv2.line(imagen, (100, 30), (180, 180), 1, 3)
                                                                         axes[0,1].set_title('Sobel X')
    # Añadir ruido para hacerlo más realista
                                                                         axes[0,2].imshow(bordes_sobely)
    ruido = np.random.normal(0, 0.05, imagen.shape)
                                                                         axes[0,2].set_title('Sobel Y')
    imagen = np.clip(imagen + ruido, 0, 1)
                                                                         axes[1,0].imshow(bordes_sobel)
    # Detectar bordes con diferentes métodos
                                                                         axes[1,0].set_title('Sobel Combinado')
    bordes_sobelx = cv2.Sobel(imagen, cv2.CV_64F, 1, 0, ksize=3)
                                                                         axes[1,1].imshow(bordes_laplace)
    bordes_sobely = cv2.Sobel(imagen, cv2.CV_64F, 0, 1, ksize=3)
                                                                         axes[1,1].set_title('Laplaciano')
    bordes_sobel = np.sqrt(bordes_sobelx**2 + bordes_sobely**2)
                                                                         axes[1,2].imshow(bordes_canny)
    bordes_laplace = cv2.Laplacian(imagen, cv2.CV_64F)
                                                                         axes[1,2].set_title('Canny')
    bordes_canny = feature.canny(imagen, sigma=1.0)
                                                                         plt.tight_layout()
                                                                         plt.show()
                                                                     ejercicio_deteccion_bordes()
```



```
def ejercicio_deteccion_esquinas():
   # Crear imagen con esquinas
   imagen = np.zeros((100, 100))
   # Crear patrones que generen esquinas
   imagen[20:40, 20:80] = 1 # Rectángulo horizontal
   imagen[40:80, 60:80] = 1  # Rectángulo vertical
   # Detectar esquinas con Harris
   imagen_float = np.float32(imagen)
   esquinas_harris = cv2.cornerHarris(imagen_float, 2, 3, 0.04)
   # Umbralizar para obtener puntos de esquina
   esquinas_harris = cv2.dilate(esquinas_harris, None)
   umbral = 0.01 * esquinas_harris.max()
   imagen_esquinas = imagen.copy()
   imagen_esquinas[esquinas_harris > umbral] = 0.5 # Marcar esquinas
   # Detectar esquinas con Shi-Tomasi
   esquinas = cv2.goodFeaturesToTrack(imagen_float, 25, 0.01, 10)
   esquinas = np.int0(esquinas)
```



```
imagen_shi_tomasi = imagen.copy()
    for i in esquinas:
       x, y = i.ravel()
        cv2.circle(imagen_shi_tomasi, (x, y), 3, 0.5, -1)
   # Mostrar resultados
   fig, axes = plt.subplots(1, 3)
    axes[0].imshow(imagen)
    axes[0].set_title('Imagen Original')
    axes[1].imshow(imagen_esquinas)
    axes[1].set_title('Harris Corner Detection')
    axes[2].imshow(imagen_shi_tomasi)
    axes[2].set_title('Shi-Tomasi Corner Detection')
    plt.tight_layout()
    plt.show()
ejercicio_deteccion_esquinas()
```



```
def ejercicio_deteccion_lineas():
   # Crear imagen con líneas
   imagen = np.zeros((200, 200))
   # Dibujar líneas en diferentes ángulos
   cv2.line(imagen, (20, 20), (180, 20), 1, 2) # Horizontal
    cv2.line(imagen, (20, 50), (180, 100), 1, 2) # Diagonal
    cv2.line(imagen, (20, 150), (20, 50), 1, 2) # Vertical
    # Añadir ruido
    ruido = np.random.normal(0, 0.03, imagen.shape)
    imagen = np.clip(imagen + ruido, 0, 1)
    # Detectar bordes con Canny
    bordes = feature.canny(imagen, sigma=1.0)
    # Aplicar Transformada de Hough para líneas
    h, theta, d = transform.hough_line(bordes)
   lineas = transform.hough_line_peaks(h, theta, d, threshold=0.7 * np.max(h))
```



```
# Dibujar líneas detectadas
   imagen_resultado = np.copy(imagen)
   for _, angulo, dist in zip(*lineas):
       y0 = (dist - 0 * np.cos(angulo)) / np.sin(angulo)
       y1 = (dist - imagen.shape[1] * np.cos(angulo)) / np.sin(angulo)
       cv2.line(imagen_resultado, (0, int(y0)), (imagen.shape[1], int(y1)), (0.7, 2)
   # Mostrar resultados
   fig, axes = plt.subplots(1, 3)
   axes[0].imshow(imagen)
   axes[0].set_title('Imagen Original')
   axes[1].imshow(bordes)
   axes[1].set_title('Bordes Detectados')
   axes[2].imshow(imagen_resultado)
   axes[2].set_title('Lineas Detectadas')
   plt.tight_layout()
   plt.show()
ejercicio_deteccion_lineas()
```


Ejercicio Completo

```
def ejercicio_completo():
   # Cargar imagen real o crear una más compleja
    imagen = np.zeros((300, 300))
    # Crear múltiples formas
    cv2.rectangle(imagen, (50, 50), (100, 100), 1, -1) # Cuadrado
    cv2.circle(imagen, (200, 100), 40, 1, -1)
                                                       # Circulo
    cv2.line(imagen, (150, 200), (250, 250), 1, 3)
                                                     # Línea
    # Añadir ruido
    ruido = np.random.normal(0, 0.05, imagen.shape)
    imagen = np.clip(imagen + ruido, 0, 1)
    # Pipeline completo de procesamiento
    # 1. Filtrado para reducir ruido
    imagen_filtrada = cv2.GaussianBlur(imagen, (5, 5), 0)
```

```
# 2. Detección de bordes
bordes = feature.canny(imagen_filtrada, sigma=1.5)
# 3. Detección de esquinas
imagen_float = np.float32(imagen_filtrada)
esquinas_harris = cv2.cornerHarris(imagen_float, 2, 3, 0.04)
esquinas_harris = cv2.dilate(esquinas_harris, None)
umbral = 0.01 * esquinas_harris.max()
# 4. Detección de líneas
h, theta, d = transform.hough_line(bordes)
lineas = transform.hough_line_peaks(h, theta, d, threshold=0.6 * np.max(h))
# Crear imagen de resultados
resultado = np.zeros_like(imagen)
resultado[bordes] = 0.3 # Bordes en gris claro
# Marcar esquinas
resultado[esquinas_harris > umbral] = 0.6 # Esquinas en gris medio
```



```
# Dibujar líneas detectadas
for _, angulo, dist in zip(*lineas):
   y0 = (dist - 0 * np.cos(angulo)) / np.sin(angulo)
   y1 = (dist - imagen.shape[1] * np.cos(angulo)) / np.sin(angulo)
   # Convertir a coordenadas enteras para dibujar
   x0, y0 = 0, int(y0)
   x1, y1 = imagen.shape[1], int(y1)
    cv2.line(resultado, (x0, y0), (x1, y1), 0.9, 2) # Líneas en blanco
# Mostrar pipeline completo
fig, axes = plt.subplots(2, 3)
axes[0,0].imshow(imagen)
axes[0,0].set_title('Imagen Original')
axes[0,1].imshow(imagen_filtrada)
axes[0,1].set_title('Imagen Filtrada')
axes[0,2].imshow(bordes)
axes[0,2].set_title('Bordes Detectados')
axes[1,0].imshow(esquinas_harris > umbral)
axes[1,0].set_title('Esquinas Detectadas')
```



```
axes[1,1].imshow(h, extent=[np.rad2deg(theta[-1]), np.rad2deg(theta[\theta]),
                             d[-1], d[0]], aspect=1/1.5
    axes[1,1].set_title('Transformada de Hough')
    axes[1,1].set_xlabel('Angulo (grados)')
    axes[1,1].set_ylabel('Distancia (pixeles)')
    axes[1,2].imshow(resultado)
    axes[1,2].set_title('Resultado Final')
    plt.tight_layout()
    plt.show()
ejercicio_completo()
```


Dibujar una línea:

Para dibujar una línea, debe pasar las coordenadas iniciales y finales de la línea. Crearemos una imagen en negro y dibujaremos una línea azul en ella desde las esquinas superior izquierda a inferior derecha.

```
import numpy as np
import cv2
img = np.zeros((512,512,3), np.uint8)
img = cv2.line(img,(0,0),(511,511),(0,255,255),5)
cv2.imshow('pantalla',img)
```


Dibujar una línea en una imagen:

```
import numpy as np
import cv2

img = cv2.imread('pelota.jpg')
img = cv2.line(img,(300,50),(300,300),(0,0,255),5)
cv2.imshow('pantalla',img)
```


Para dibujar un rectángulo, necesita la esquina superior izquierda y la esquina inferior derecha del rectángulo. Esta vez dibujaremos un rectángulo verde en la esquina superior derecha de la imagen.

```
import numpy as np
import cv2

img = np.zeros((512,512,3), np.uint8)
img = cv2.rectangle(img,(200,0),(400,200),(0,255,0),3)
cv2.imshow('rectangulo',img)
```


Dibujar un Rectángulo:

```
import numpy as np
import cv2

img = np.zeros((512,512,3), np.uint8)
img = cv2.rectangle(img,(200,200),(400,400),(0,255,0),3)
cv2.imshow('rectangulo',img)
```


Dibujar un Rectángulo en una Figura:

```
import numpy as np
import cv2
img = cv2.imread('pelota.jpg')
img = cv2.rectangle(img,(100,20),(450,380),(0,255,255),3)
cv2.imshow('rectangulo',img)
```


Para dibujar un círculo, necesita sus coordenadas centrales y su radio. Dibujaremos un círculo dentro del rectángulo dibujado arriba.

```
import numpy as np
import cv2
img = np.zeros((512,512,3), np.uint8)
img = cv2.circle(img,(256,256), 200, (0,0,255), 5)
cv2.imshow('imagen',img)
```


Dibujar un Circulo:


```
import numpy as np
import cv2
img = np.zeros((512,512,3), np.uint8)
img = cv2.circle(img,(256,256), 200, (0,0,255), -1)
cv2.imshow('imagen',img)
```


UNIVERSIDAD CATÓLICA SEDES SAPIENTIAE

Dibujar un Circulo en una Imagen:

```
import numpy as np
import cv2
img = cv2.imread('pelota.jpg')
img = cv2.circle(img,(233,195), 170, (0,0,255), 5)
cv2.imshow('imagen',img)
```



```
import numpy as np
import cv2

cap = cv2.VideoCapture(0)

while(True):
    ret, frame = cap.read()
    frame = cv2.circle(frame, (233,195), 170, (0,0,255), 5)
    cv2.imshow('frame',frame)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()
```


