Correlations Refresher and Kendall Correlation

Statistics and data analysis

Zohar Yakhini

IDC, Herzeliya

Pearson correlation

Population:

$$\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{V(X)V(Y)}}$$

Sample, for a particular realization (x, y) of n repeated sampling from (X, Y)

$$\rho(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{n} (x_i - \mu(\mathbf{x}))(y_i - \mu(\mathbf{y}))}{\sqrt{(\sum_{i=1}^{n} (x_i - \mu(\mathbf{x}))^2)(\sum_{i=1}^{n} (y_i - \mu(\mathbf{y}))^2)}}$$

The Fisher Transform

$$F(r) = 0.5 \ln \frac{1+r}{1-r}$$

Ronald Fisher 1890-1962

Thm (Fisher 1921):

If we start with (X,Y) that are close to bivariate normal then $F(\widehat{\rho_n})$, for i.i.d sampling, is normally distributed with mean

$$F\left(\rho = \frac{Cov(X,Y)}{\sqrt{V(X)V(Y)}}\right)$$
 and a standard deviation of $\frac{1}{\sqrt{n-3}}$.

Spearman's Rank Correlation Coefficient

Pearson:

$$\rho(x,y) = \frac{\sum_{i=1}^{n} (x_i - \mu(x))(y_i - \mu(y))}{\sqrt{(\sum_{i=1}^{n} (x_i - \mu(x))^2)(\sum_{i=1}^{n} (y_i - \mu(y))^2)}}$$

Spearman:

$$SP(x,y) = \frac{\sum_{i=1}^{n} (u_i - \frac{n+1}{2})(v_i - \frac{n+1}{2})}{\sum_{i=1}^{n} \left(u_i - \frac{n+1}{2}\right)^2}$$

$$u_i = rank(x_i)$$
$$v_i = rank(y_i)$$

Spearman rank correlation

- Perform Pearson correlation on the rank values.
- Ties can be handled by fractional ranks.
- -1 ≤ SRC ≤ 1, always ...
- When is it -1? 1?

Spearman p-values

Let σ , π be uniformly drawn permutations in S_n .

Let $\rho = \rho(\sigma, \pi)$ be their Spearman correlation.

If σ , π are independently drawn then

$$Z = F(\rho) \sqrt{\frac{n-3}{1.06}} \sim N(0,1)$$

where F is the Fisher Transform: $F(r) = \frac{1}{2} \ln \frac{1+r}{1-r}$

Kendall correlation coefficient

Let (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) be the observed data. Assume that all values of (x_i) and (y_i) are unique. A pair of observations (x_i, y_i) and (x_j, y_j) is said to be **concordant** if the rank orders for both coordinates agree.

 $x_i > x_j$ and $y_i > y_j$ OR $x_i < x_j$ and $y_i < y_j$. It is said to be **discordant** if

$$x_i > x_j$$
 and $y_i < y_j$ OR $x_i < x_j$ and $y_i > y_j$.

If xi = xj or yi = yj, the pair is neither concordant nor discordant. (and we assumed, for now and for simplicity, that this doesn't happen)

Let C and D be the number of concordant and discordant pairs, respectively. The Kendall τ coefficient is defined as:

$$\tau = \frac{C - D}{\binom{n}{2}}$$

Kendall correlation coefficient

Let *C* and *D* be the number of concordant and discordant pairs, respectively.

The Kendall τ coefficient is defined as:

$$\tau = \frac{C - D}{\binom{n}{2}}$$

How to deal with ties?

$$\tau = \frac{C - D}{\sqrt{\left(\binom{n}{2} - t_x\right)\left(\binom{n}{2} - t_y\right)}}$$

Where t_x and t_y are the number of tied pairs in each of the dimensions, respectively.

Kendall's au - example

Grades of 11 students in 2 exams:

Exam 1	Exam 2	
85	85	
98	95	
90	80	
83	75	
57	70	
63	65	
77	73	
99	93	
80	79	
96	88	
69	74	

Ranks of exam results and calculating C and D

Examı (x)	Exam ₂ (y)	С	d
1	2	9	1
2	1	9	0
3	3	8	0
4	5	6	1
5	4	6	0
6	7	4	1
7	6	4	0
8	9	2	1
9	8	2	0
10	11	0	1
11	10	C =50	D =5

 $\tau = 0.818$

Statistical assessment (Kendall 1938)

Maurice G Kendall British statistician 1907-1983

If two permutations are uniformly and independently drawn in \mathcal{S}_n then

The Random Variable $\tau = \frac{C-D}{\binom{n}{2}}$ has a standard deviation of $S_{\tau} = \frac{1}{3} \sqrt{\frac{2n+5}{\binom{n}{2}}}$

and, moreover,

$$Z = \frac{\tau}{S_{\tau}} = \frac{3(C - D)}{\sqrt{0.5 \cdot n(n - 1) \cdot (2n + 5)}}$$

has an approximately N(0,1) distribution, for sufficiently large n.

Kendall for the exams data

Exam1 (x)	Exam 2 (y)	С	D
1	2	9	1
2	1	9	0
3	3	8	0
4	5	6	1
5	4	6	0
6	7	4	1
7	6	4	0
8	9	2	1
9	8	2	0
10	11	0	1
11	10		
		C=50	D=5

$$\tau = \frac{50 - 5}{55} = 0.818$$

$$Z(\tau) = \frac{\tau}{S_{\tau}},$$

$$S_{\tau} = \frac{1}{3} \sqrt{\frac{2n+5}{\binom{n}{2}}} = \frac{1}{3} \sqrt{\frac{27}{55}} = 0.23$$

$$Z(\tau) = \frac{0.818}{0.23} \approx 3.5$$

$$p - value = P(Z \ge 3.5)$$

= 1 - $\Phi(3.5)$
= 1 - 0.0002

Grades in the two exams are positively correlated w confidence 1 - 0.0002

Merge Sort

Merge Sort

```
Merge_Sort(A)
Cut A into L and R
SL = Merge_Sort(L)
SR = Merge_Sort(R)
SA = Merge(SL,SR)
\Linearly scan both and insert smaller first
Return SA
```

Merge Sort

```
def merge sort(values):
  if len(values) <= 1:</pre>
      return values
  m = len(values) // 2
  1, r = values[m:], values[:m]
  1, r = merge sort(1), merge sort(r)
  sorted array = merge(1, r)
  return sorted array
```

Merge Sort: the Kendall-Knight Algorithm

Kendall-Knight

```
D Cnt Merge( L[1..n], R[1..m])
 D=0
 i=0, j=0
 While i \le n and j \le m Do
    If R[j] < L[i] Then
        D = D+n-i //Add the number of elements still left in L
       // append R[j] to the sorted array
       j++
    Else
       // append L[i] to the sorted array
        j++
 Return D
```

Complexity analysis

$$T(n) = 2T(n/2) + cn$$

$$T(n) \in O(n \log n)$$

Summary

- Kendall au is a rank correlation approach for testing against the uniform permutation rank null model
- Distribution under the null is well characterized
- Kendall-Knight algorithm
- HW:
 - + How do Spearman ho and Kendall au compare to each other?
 - + How do they both compare to Pearson?