4. Übungsblatt zu "Analysis I" Wintersemester 2022/23

Abgabetermin: Sonntag, 13.11.2022, 24.00 Uhr

Aufgabe 1: (3+3=6 Punkte)

a) Es seien $(a_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$ konvergente Folgen mit $\lim_{n\to\infty} a_n = a = \lim_{n\to\infty} c_n$ und $(b_n)_{n\in\mathbb{N}}$ eine weitere Folge mit

$$a_n \leq b_n \leq c_n$$
 für alle $n \geq N$

und gegebenem $N \in \mathbb{N}$. Zeigen Sie, dass dann auch $(b_n)_{n \in \mathbb{N}}$ gegen a konvergiert.

b) Es seien $(a_n)_{n\in\mathbb{N}}$ eine beschränkte Folge und $(b_n)_{n\in\mathbb{N}}$ eine Nullfolge. Zeigen Sie, dass $(a_n \cdot b_n)_{n\in\mathbb{N}}$ eine Nullfolge ist.

Aufgabe 2: (2+2=4 Punkte)

Die Folge $(a_n)_{n\in\mathbb{N}}$ werde rekursiv definiert durch $a_0:=\frac{3}{4}$ und

$$a_{n+1} := \sqrt{a_n + \frac{3}{4}}$$
 für $n \in \mathbb{N}$.

- a) Zeigen Sie, dass (a_n) monoton wachsend und nach oben durch K=2 beschränkt ist.
- b) Zeigen Sie, dass (a_n) konvergiert, und berechnen Sie $a:=\lim_{n\to\infty}a_n$. Hinweis: Es gilt $\lim_{n\to\infty}a_n=\lim_{n\to\infty}a_{n+1}$.

Aufgabe 3: (6 Punkte)

Betrachten Sie die Zahlenfolgen $(a_n)_n$ und $(b_n)_n$ mit $a_n = (1 + \frac{1}{n})^n$ und $b_n = (1 + \frac{1}{n})^{n+1}$. Zeigen Sie, dass $(a_n)_n$ monoton wachsend und $(b_n)_n$ monoton fallend sind, und

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n \in \mathbb{R}.$$

Aufgabe 4: (4 Punkte)

Es seien C > 0, $q \in \mathbb{R}$ mit 0 < q < 1 und $(a_n)_{n \in \mathbb{N}}$ eine Folge, so dass

$$|a_{n+1} - a_n| \le Cq^n$$

für alle $n \in \mathbb{N}$ gilt. Zeigen Sie, dass $(a_n)_{n \in \mathbb{N}}$ konvergiert.

Hinweis: Dreiecksungleichung und geometrische Summenformel