SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

S.R.M. Nagar, Kattankulathur - 603203

DEPARTMENT OF MATHEMATICS

QUESTION BANK

B.E - COMPUTER SCIENCE ENGINEERING

B.E – CYBER SECURITY

1918402 -PROBABILITY AND QUEUEING THEORY

Regulation - 2019

Academic Year - 2023 - 24

Prepared by

Dr.G.Sasikala , Assistant Professor / Mathematics
Mr.D.Captain Prabakaran , Assistant Professor / Mathematics

SRM VALLIAMMAI ENGNIEERING COLLEGE

(An Autonomous Institution)

$SRM\ Nagar,\ Kattankulathur-603203.$

DEPARTMENT OF MATHEMATICS

S.No	QUESTIONS	BT Level	Competence	COs				
UNIT I	RANDOM VARIABLES		9	L+3T				
	e and continuous random variables - Moments - Moment generating	functions	s - Binomial, Po	oisson,				
Geometric, Uniform, Exponential and Normal distributions.								
4	Part - A (2 MARK QUESTIONS)	DEL 2	YY 1	G0.1				
1.	The number of hardware failures of a computer system in a week of operations has the following p.d.f, Find the mean of the number of failures	BTL-2	Understanding	CO1				
	in a week.							
	No.of failures 0 1 2 3 4 5 6							
	Probability .18 .28 .25 .18 .06 .04 .01							
2.	The number of hardware failures of a computer system in a week of	BTL-2	Understanding	CO1				
	operations has the following p.d.f, Calculate the value of K.							
	No. of failures 0 1 2 3 4 5 6							
	Probability K 2 K 2 K K 3 K K 4 K							
3.	Check whether the function given by $f(x) = \frac{x+2}{25}$ for x=1,2,3,4,5 can	BTL-2	Understanding	CO1				
	serve as the probability distribution of a discrete random variable.							
	If the random variable X takes the values 1,2,3 and 4 such that	BTL-1	Remembering	CO1				
4.	2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4), find the							
	probability distribution of X							
	The RV X has the following probability distribution:	BTL-2	Understanding	CO1				
5.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
	Find k and the mean value of X							
	If $f(x) = K(x + x^2)$ in $1 < x < 5$ is a pdf of a continuous random	BTL-1	Remembering	CO1				
6.	variables. Find the value of K.		C					
7.	The p.d.f of a continuous random variable X is $f(x) = k(1+x)$,	BTL-1	Remembering	CO1				
7.	2 < x < 5 Find k .							
8.	For a continuous distribution $f(x) = k(x - x^2)$, $0 \le x \le 1$, where k is	BTL-2	Understanding	CO1				
	a constant. Find k .	BTL-2	Understanding	CO1				
9.	If $f(x) = kx^2$, $0 < x < 3$, is to be a density function, find the value of k .	DIL-2	Understanding	CO1				
	If the probability that a target is destroyed on any one shot is 0.5, Find the	BTL-2	Understanding	CO1				
10.	probability that it would be destroyed an 6 th attempt.		8					
	The mean of Binomial distribution is 20 and standard deviation is 4.	BTL-1	Remembering	CO1				
11.	Find the parameters of the distribution.		8	001				
10	The mean and variance of binomial distribution are 5 and 4. Determine	BTL-2	Understanding	CO1				
12.	the distribution.							
	If 3% of the electric bulbs manufactured by a company are defective,	BTL-1	Remembering	CO1				
13.	Find the probability that in a sample of 100 bulbs exactly 5 bulbs are							
	defective.							

	Messages arrive at a switchboard in a poisson manner at an average rate	BTL-2	Understanding	CO1
14.	of six per hour. Find the probability for exactly two messages arrive			
	within one hour.			
1.5	The number of monthly breakdowns of a computer is a random variable	BTL-1	Remembering	CO1
15.	having Poisson distribution with mean 1.8. Find the probability that this			
	computer will function for a month with only one breakdown.	BTL-2	I In danatan din a	CO1
16.	If X is a Poisson variate such that $2P(X = 0) + P(X = 2) = 2P(X = 1)$, find E(X)	DIL-2	Understanding	CO1
17.	The probability that a candidate can pass in an examination is 0.6. What	BTL-1	Remembering	CO1
17.	is the probability that he will pass in third trial?	DIL-1	Kemembering	COI
18.		BTL-2	Understanding	CO1
10.	If $f(x) = \frac{x^2}{3}$, $-1 < x < 2$ is the pdf of the random variable X, then find			
10	p(0 < x < 1) If the probability that an applicant for a driver's license will pass the	BTL-1	Damamharina	CO1
19.	road test on any given trial is 0.8, what is the probability that he will	DIL-1	Remembering	CO1
	finally pass the test on the fourth trial			
20.	If X has uniform distribution in (-3,3), find $P(x-2 < 2)$	BTL-2	Understanding	CO1
21.	Let X be a random variable with moment generating function	BTL-1	Remembering	CO1
21.			Trememe ering	
	$M_X(t) = \frac{(2e^t + 1)^4}{81}$. Find its mean and variance.			
22.	A Random variable X is uniformly distributed between 3 and 15. Find the	BTL-2	Understanding	CO1
22.	variance of X.	DIL-2	Officerstanding	COI
23.	x	BTL-1	Remembering	CO1
23.	A continuous RV X has the density function $ce^{-\frac{\pi}{5}}$, $x > 0$. Find c. Create		Trememe ering	
24	E(x) and Var(X) If X is a normal random variable with mean 3 and variance 9, find the	BTL-2	Understanding	CO1
24.	probability that X lies between 2 and 5.	DIL-2	Officerstanding	COI
25.	A normal distribution has mean $\mu = 20$ and standard deviation $\sigma = 10$.	BTL-2	Understanding	CO1
23.	Evaluate $(15 \le X \le 40)$.		Charlemanng	
	PART – B (13 MARK QUESTIONS)			
1.(a)	A random variable X has the following probability distribution:	BTL-2	Understanding	CO1
, ,	X 0 1 2 3 4 5 6 7			
	$P(X) = 0$ $k = 2 k = 2 k = 3 k = k^2 = 2k^2 = 7k^2 + k$			
	Find (i) the value of k			
	(ii) $P(1.5 < X < 4.5 / X > 2)$			
1.(b)	Find the MGF of Binomial distribution and hence find its mean and	BTL-1	Remembering	CO1
	variance			
2.(a)	The probability mass function of a discrete R. V X is given in the	BTL-2	Understanding	CO1
	following table:			
	X -2 -1 0 1 2 3			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
2 (1)	Find (1) Find the value of k , (2) $P(X<1)$, (3) $P(-1< X \le 2)$	DTI 1	D 1 :	GO 1
2.(b)	Obtain the MGF of Poisson distribution and hence find its mean and	BTL-1	Remembering	CO1
	variance The probability mass function of a discrete random variable Y is given in	BTL-2	Understanding	CO1
3.(a)	The probability mass function of a discrete random variable X is given in the following table	DIL-2	Understallding	COI
3.(a)		-		
	X 0 1 2 3 4 5 6 7 8	-		
	P(X) a 3a 5a 7a 9a 11a 13a 15a 17a	_		
	Find (i) the value of a, (ii) $P(X < 3)$, (iii) Mean of X, (iv) Variance			
	of X.			1

3.(b)	Deduce the MGF of a geometric distribution and hence find the mean and variance	BTL-1	Remembering	CO1
4.(a)	If the discrete random variable X has the probability function given by	BTL-2	Understanding	CO1
()	the table.		C	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	$P(x) = \frac{x}{k/3} + \frac{1}{k/6} = \frac{2}{k/3} + \frac{3}{k/6}$			
	Find the value of k and Cumulative distribution of X.			
4 (1-)		BTL-1	Damanhanina	CO1
4.(b)	Derive the MGF of Uniform distribution and hence deduce the mean and	DIL-I	Remembering	CO1
5 ()	variance	DEL 2	A 1 '	GO1
5.(a)	If the probability mass function of a random variable X is given by $P(X=x)$	BTL-3	Applying	CO1
	$= kx^3$, $x=1,2,3,4$. Find the value of k, mean and variance of X.	DITT. 4		001
5.(b)	Deduce the MGF of Exponential distribution and hence find its mean	BTL-1	Remembering	CO1
	and variance			
6.(a)	Find the MGF, mean and variance of the random variable X has the pdf	BTL-2	Understanding	CO1
	(x,0 < x < 1)			
	$f(x) = \begin{cases} 2 - x, 1 < x < 2 \end{cases}$			
	0, otherwise			
6.(b)	State and prove the memory less property of exponential distribution	BTL-3	Applying	CO1
7.(a)	In a large consignment of electric bulbs, 10 percent are defective. A	BTL-2	Understanding	CO1
7.(a)	C 19 50 10 10 10 1		Onderstanding	COI
	random sample of 20 is taken for inspection. Find the probability that i)			
	all are good bulbs ii) atmost there are 3 defective bulbs iii) exactly there			
	are 3 defective bulbs.			
7.(b)	A manufacturer of pins knows that 2% of his products are defective. If	BTL3	Applying	CO1
. ,	he sells pins in boxes of 100 and guarantees that not more than 4 pins			
	are defective, what is the probability that a box fail to meet the			
	guaranteed quality.			
8.	Obtain the MGF of a normal distribution and hence find its mean and	BTL-1	Remembering	CO1
	variance			
9.(a)	If a random variable X has p.d.f $f(x) = \begin{cases} \frac{1}{4}, & X < 2\\ 0, & \text{Otherwise} \end{cases}$	BTL-2	Understanding	CO1
. ,	If a random variable X has p.d.f $f(x) = \begin{cases} 4^{-1} & 1 \\ 4 & 1 \end{cases}$			
	(0, Otherwise			
0.41	Find (a) $P(X < 1)$ (b) $P(X > 1)$ (c) $P(2X + 3 > 5)$.			001
9.(b)	Out of 2000 families with 4 children each, Find how many family would	BTL-3	Applying	CO1
	you expect to have i) at least 1 boy ii) 2 boys.			
10.(a)	Find the MGF of the random variable X having the probability density	BTL-2	Understanding	CO1
	$\left(\frac{x}{e}e^{-\frac{x}{2}}, x > 0\right)$			
	function $f(x) = \begin{cases} 4 & \text{.} \\ 0 & \text{.} \end{cases}$ Also find the mean and variance			
10 (b)	function $f(x) = \begin{cases} \frac{x}{4}e^{-\frac{x}{2}}, & x > 0 \\ 0, & \text{otherwise} \end{cases}$. Also find the mean and variance	BTL-4	Analyzing	CO1
10.(b)	4 coms were tossed simultaneously. What is the probability of getting	DIL-4	Anaryzing	CO1
11 ()	(i) 2 heads, (ii) at least 2 heads, (iii) at most 2 heads.	DTI 2	I In denote a din c	CO1
11.(a)	0, if x < -1	BTL-2	Understanding	CO1
	A random variable X has c.d.f $F(x) = \{a(1+x), if -1 < x < 1 .$			
	A random variable X has c.d.f $F(x) = \begin{cases} 0, if x < -1 \\ a(1+x), if -1 < x < 1 \\ 1, if x \ge 1 \end{cases}$			
	Find the value of a. Also $P(X>1/4)$ and $P(-0.5 \le X \le 0)$.			
11.(b)	The atoms of a radioactive element are randomly disintegrating. If every	BTL-4	Analyzing	CO1
	gram of this element, on average, emits 3.9 alpha particles per second,		, ,	
	then what is the probability that during the next second the number of			
	alpha particles emitted from 1 gram is (1) at most 6 (2) at least 2 and (3)			
	at least and at most5			
	at reast and at mosts	<u> </u>		<u> </u>

12.	(0 < < 1	BTL-2	Understanding	CO1
12.	$\begin{cases} ax, \ 0 \le x \le 1 \end{cases}$	DIL-2	Officerstanding	COI
	If $f(x) = \begin{cases} a, & 1 \le x \le 2 \\ 3a - ax, & 2 \le x \le 3 \end{cases}$ is the p.d.f of X. Calculate			
	$3a-ax, 2 \le x \le 3$			
	0, elsewhere			
	(i) The value of a,			
	(ii) The cumulative distribution function of X			
	(iii) If X_1, X_2 and X_3 are 3 independent observations of X.			
	Find the probability that exactly one of these 3 is greater			
	than 1.5?			
13.(a)	The Probability distribution function of a R.V. X is given by	BTL-2	Understanding	CO1
	$f(x) = \frac{4x(9-x^2)}{81}$, $0 \le x \le 3$. Find the mean, variance.			
	$f(x) = \frac{1}{81}$, $0 \le x \le 3$. Find the mean, variance.			
13.(b)	The number of monthly breakdowns of a computer is a random variable	BTL-3	Applying	CO1
, ,	having a Poisson distribution with mean equal to 1.8. Find the probability			
	that this computer will function for a month (1) without breakdown (2)			
	with only one breakdown and (3) with at least one breakdown.			
14.(a)	Messages arrive at a switch board in a Poisson manner at an average rate	BTL-3	Applying	CO1
	of 6 per hour. Find the probability that exactly 2 messages arrive within			
	one hour, no messages arrives within one hour and at least 3 messages			
14 (1)	arrive within one hour	DEL 2	A 1 :	GO1
14.(b)	An electrical firm manufactures light bulbs that have a life, before burn	BTL-3	Applying	CO1
	out, that is normally distributed with mean equal to 800 hours and a			
	standard deviation of 40 hours. Find the probability that a bulb burns between 778 and 834 hours.			
15.(a)	The time (in hours) required to repair a machine is exponentially	BTL-4	Analyzing	CO1
13.(u)	distributed with parameter $\lambda = 1/2$.	D12 .	111111721115	
	(a) What is the probability that the repair time exceeds 2 hours?			
	(b) What is the conditional probability that a repair time exceeds at			
	least 10 hours that its distribution exceeds 9 hours?			
15.(b)	Let X be a Uniformly distributed R. V. over [-5, 5]. Evaluate (i) $P(X \le 2)$	BTL-4	Analyzing	CO1
	(ii) $P(X >2)$ (iii) Cumulative distribution function of X (iv) $Var(X)$			
16.(a)	Buses arrive at a specified stop at 15 minutes interval starting at 7am that	BTL-4	Analyzing	CO1
	is, 7,7:15,7:30,7:45, and so on, If a passenger arrives at the stop at a			
	random time that is uniformly distributed between 7 and 7:30 am, evaluate			
	the probability that he waits			
	(a) Less than 5 minutes for a bus and (b) At least 12 minutes for a bus			
16.(b)	The marks obtained by a number of students for a certain subject is	BTL-4	Analyzing	CO1
10.(0)	assumed to be normally distributed with mean 65 and standard deviation		1 1111111111111111111111111111111111111	
	5. If 3 students are taken at random from this set Find the probability that			
	exactly 2 of them will have marks over 70?			
17.	In a test on 2000 electric bulbs, it was found that the life of a particular	BTL-3	Applying	CO1
	make, was normally distributed with an average life of 2040 hours and		-	
	Standard Deviation of 60 hours. Find the number of bulbs likely to burn			
	for (i) more than 2150 hours (ii) less than 1950 hours and (iii) more than			
10.00	1920 hours burs less than 2160 hours.			
18.(a)	The length of time a person speaks over phone follows exponential	BTL-2	Understanding	CO1
	distribution with mean 6 mins. What is the probability that the person will			
	talk for (1) more than 8 mins (2) between 4 and 8 mins.	<u> </u>		
18.(b)	A car hire firm has 2 cars. The number of demands for a car on each day	BTL-3	Applying	CO1

	is distributed as poisson variate with mean 0.5. Calculate the portion of			
	days on which (1) Neither car is used (2) Some demand is refused.			
	DADE GALLA LO AL			
1	PART C(15 Mark Questions)	DTI 2	A	CO1
1.	Out of 2000 families with 4 children each, Create how many family would	BTL-3	Applying	CO1
	you expect to have i) at least 1 boy ii) 2 boys and 2 girls iii) at most 2 girls iv) children of both genders.			
2.	In a certain factory manufacturing razor blades, there is a small chance of	BTL-4	Analyzing	CO1
۷.	1/500 for any blade to be defective. The blades are supplied in packets of	DIL-4	Anaryzing	COI
	10. Use Poisson distribution to calculate the approximate number of			
	packets containing (i) No defective (ii) One defective (iii) Two defective			
	blades Respectively in a consignment of 10,000 packet.			
3.	Buses arrive at a specified stop at 15 minutes interval starting at 6 AM ie	BTL-3	Applying	CO1
	they arrive at 6 AM, 6.15AM, 6.30 AM and so on. If a passenger arrives		11 7 6	
	at the stop at a time that is uniformly distributed between 6 and 6.30 AM.			
	Evaluate the probability that he waits (i) Less than 5 minutes for a bus.			
	(ii) More than 10 minutes for a bus.			
4.	The daily consumption of milk in excess of 20,000 liters in a town is	BTL-4	Analyzing	CO1
	approximately exponentially distributed with parameter 1/3000. The town			
	has a daily stock of 35,000L. What is the probability that of 2 days			
	selected at random, the stock is insufficient for both days?			
5.	In an Engineering examination, a student is considered to have failed,	BTL-4	Analyzing	CO1
	secured second class, first class and distinction, according as he scores			
	less than 45%, between 45% and 60% between 60% and 75% and above			
	75% respectively. In a particular year 10% of the students failed in the			
	examination and 5% of the students get distinction. Find the percentage			
	of students who have got first class and second class. Assume normal distribution of marks.			
IINIT	II TWO – DIMENSIONAL RANDOM VARIABLES		0.	
				L+3T
	istributions – iviarginai and conditional distributions – Covariance – Col	rrelation		L+3T ssion –
	istributions – Marginal and conditional distributions – Covariance – Coromation of random variables – Central limit theorem	rrelation		
	ormation of random variables – Central limit theorem	rrelation		
1.	prmation of random variables – Central limit theorem PART-A(2 MARK QUESTIONS)	BTL-2		
1.	prmation of random variables – Central limit theorem PART-A(2 MARK QUESTIONS)		and linear regres	ssion –
1.	ormation of random variables – Central limit theorem		and linear regres	ssion –
1.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x + y}{21}$,		and linear regres	ssion –
1.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x + y}{21}$, $x = 1,2,3; y = 1, 2$. Find the marginal probability distributions of X		and linear regres	ssion –
	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x + y}{21}$, $x = 1,2,3; y = 1, 2$. Find the marginal probability distributions of X. The joint probability function (X,Y) is given by $P(x, y) = k(2x + 3y)$,	BTL-2	and linear regres Understanding	cO2
	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x + y}{21}$, $x = 1,2,3; y = 1, 2$. Find the marginal probability distributions of X	BTL-2	and linear regres Understanding	cO2
2.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x + y}{21}$, $x = 1,2,3; y = 1, 2$. Find the marginal probability distributions of X. The joint probability function (X,Y) is given by $P(x, y) = k(2x + 3y)$, $x = 0,1,2, y = 1,2,3$, Find the value of K.	BTL-2	Understanding Understanding	CO2
2.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x + y}{21}$, $x = 1,2,3; y = 1, 2$. Find the marginal probability distributions of X. The joint probability function (X,Y) is given by $P(x, y) = k(2x + 3y)$, $x = 0,1,2, y = 1,2,3$, Find the value of K. Find the probability distribution of X + Y from the bivariate distribution of (X,Y) given below:	BTL-2	Understanding Understanding	CO2
2.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x + y}{21}$, $x = 1,2,3; y = 1,2$. Find the marginal probability distributions of X. The joint probability function (X,Y) is given by $P(x,y) = k(2x + 3y)$, $x = 0,1,2, y = 1,2,3$, Find the value of K. Find the probability distribution of $X = 0,1,2,3$, Find the value of $X = 0,1,3,3$, Fi	BTL-2	Understanding Understanding	CO2
2.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x + y}{21}$, $x = 1,2,3; y = 1,2$. Find the marginal probability distributions of X. The joint probability function (X,Y) is given by $P(x,y) = k(2x + 3y)$, $x = 0,1,2$ $y = 1,2,3$, Find the value of K. Find the probability distribution of X + Y from the bivariate distribution of (X,Y) given below: X	BTL-2 BTL-2	Understanding Understanding Understanding	CO2 CO2
2. 3. 4.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x + y}{21}$, $x = 1,2,3; y = 1, 2$. Find the marginal probability distributions of X. The joint probability function (X,Y) is given by $P(x,y) = k(2x + 3y)$, $x = 0,1,2, y = 1,2,3$, Find the value of K. Find the probability distribution of X + Y from the bivariate distribution of (X,Y) given below: X	BTL-2 BTL-2 BTL-1	Understanding Understanding Understanding Remembering	CO2 CO2 CO2
2.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x+y}{21}$, $x = 1,2,3; y = 1, 2$. Find the marginal probability distributions of X. The joint probability function (X,Y) is given by $P(x,y) = k(2x+3y)$, $x = 0,1,2, y = 1,2,3$, Find the value of K. Find the probability distribution of X + Y from the bivariate distribution of (X,Y) given below: X	BTL-2 BTL-2	Understanding Understanding Understanding	CO2 CO2
2. 3. 4.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x + y}{21}$, $x = 1,2,3; y = 1, 2$. Find the marginal probability distributions of X. The joint probability function (X,Y) is given by $P(x,y) = k(2x + 3y)$, $x = 0,1,2, y = 1,2,3$, Find the value of K. Find the probability distribution of X + Y from the bivariate distribution of (X,Y) given below: X	BTL-2 BTL-2 BTL-1	Understanding Understanding Understanding Remembering	CO2 CO2 CO2
2. 3. 4.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x+y}{21}$, $x = 1,2,3; y = 1, 2$. Find the marginal probability distributions of X. The joint probability function (X,Y) is given by $P(x,y) = k(2x+3y)$, $x = 0,1,2, y = 1,2,3$, Find the value of K. Find the probability distribution of $X = 0,1,2,3$, Find the value of $X = 0,1,2,3$, Find the value of $X = 0,1,2,3$, Find the value of $X = 0,1,2,3$, Find the joint probability distribution of $X = 0,1,2,3$, Find the joint possible distribution of $X = 0,1,2,3$, Find the joint possible distribution of $X = 0,1,2,3$, Find the joint possible distributions of $X = 0,1,2,3$, Find the joint possible distributions of $X = 0,1,2,3$, Find E(X). Find the marginal distributions of $X = 0,1,2,3$, Find E(X). Find the marginal distributions of $X = 0,1,2,3$, Find E(X). Find the marginal distributions of $X = 0,1,2,3$, Find E(X). Find the marginal distributions of $X = 0,1,2,3$, Find E(X).	BTL-2 BTL-2 BTL-1	Understanding Understanding Understanding Remembering	CO2 CO2 CO2
2. 3. 4.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x + y}{21}$, $x = 1,2,3; y = 1, 2$. Find the marginal probability distributions of X. The joint probability function (X,Y) is given by $P(x,y) = k(2x + 3y)$, $x = 0,1,2 \ y = 1,2,3$, Find the value of K. Find the probability distribution of X + Y from the bivariate distribution of (X,Y) given below: X	BTL-2 BTL-2 BTL-1	Understanding Understanding Understanding Remembering	CO2 CO2 CO2
2. 3. 4.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x+y}{21}$, $x = 1,2,3; y = 1,2$. Find the marginal probability distributions of X. The joint probability function (X,Y) is given by $P(x,y) = k(2x+3y)$, $x = 0,1,2$ $y = 1,2,3$, Find the value of K. Find the probability distribution of X + Y from the bivariate distribution of (X,Y) given below: X	BTL-2 BTL-2 BTL-1	Understanding Understanding Understanding Remembering	CO2 CO2 CO2
2. 3. 4.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x + y}{21}$, $x = 1,2,3; y = 1, 2$. Find the marginal probability distributions of X. The joint probability function (X,Y) is given by $P(x,y) = k(2x + 3y)$, $x = 0,1,2 \ y = 1,2,3$, Find the value of K. Find the probability distribution of X + Y from the bivariate distribution of (X,Y) given below: X	BTL-2 BTL-2 BTL-1	Understanding Understanding Understanding Remembering	CO2 CO2 CO2

(1/4)/4) 0 44	. 5	1		
$f(x, y) = \begin{cases} k(1-x)(1-y), 0 < x < 4, 1 < y < 0, otherwise \end{cases}$	< 5			
7. If the joint probability density function of a rando		BTL-1	Remembering	CO2
given by $f(x,y) = \begin{cases} \frac{x^3y^3}{16}, & 0 < x < 2, & 0 < y < 2 \\ 0, & otherwise \end{cases}$.				
given by $f(x, y) = \begin{cases} 16 \\ 0. \end{cases}$ otherwise				
Obtain the marginal density function of X.				
8. The joint pdf of the random variable ((X,Y) is given by	BTL-1	Remembering	CO2
$f(x, y) = Kxye^{-(x^2+y^2)}, x > 0, y > 0$ Find the value	of K.			
9. The joint probability density function of a rand		BTL-2	Understanding	CO2
$f(x, y) = k e^{-(2x+3y)}, x \ge 0, y \ge 0$. Point out the va	lue of <i>k</i> .			
10. $\left(\frac{1}{2}, 0 < x, y\right)$	< 2	BTL-1	Remembering	CO2
10. If the joint pdf of (X, Y) is $f(x,y) = \begin{cases} \frac{1}{4}, & 0 < x, y \\ 0, & otherw$	vise			
Find $P(X + Y \le 1)$				
11. Let X and Y be random variables with joint densit	y function	BTL-2	Understanding	CO2
$\int 4xy , 0 < x < 1, 0 < y < 1$	live of E/XXX			
$f(x,y) = \begin{cases} 4xy, & 0 < x < 1, & 0 < y < 1 \\ & 0, & otherwise \end{cases}$ formulate the	value of E(XY)			
12. Let the joint density function of a random variable	X and Y be given by	BTL-1	Remembering	CO2
$f(x,y) = 8xy$, $0 < y \le x \le 1$.Calculate the	marginal probability			
function of X				
13. What is the condition for two random variables are		BTL-2	Understanding	CO2
14. If the joint probability density function of X and Y $f(x,y) = e^{-(x+y)} x$ $y > 0$ Are Y and Y independent		BTL-1	Remembering	CO2
$f(x,y) = e^{-(x+y)}, x, y \ge 0$. Are X and Y independent 15. State any tow properties of correlation coefficient	IL IN	BTL-2	Understanding	CO2
16. Write the angle between the regression lines		BTL-1	Remembering	CO2
17. The regression equations are $x + 6y = 14$ and $2x$	+3v = 1. Evaluate the	BTL-1	Remembering	CO2
correlation coefficient between X & Y.				
18. If $\bar{X} = 970$, $\bar{Y} = 18$, $\sigma_x = 38$, $\sigma_y = 2$ and $r = 0$	0.6, Find the line of	BTL-2	Understanding	CO2
regression of X on Y.			_	
19. In a partially destroyed laboratory, record of an	•	BTL-1	Remembering	CO2
data, the following results only are legible; Variance	_			
equations are $8X - 10Y + 66 = 0$ and $40X-18Y = 0$ values of X and Y?	– ∠14. ring the mean			
20. The regression equations are $3x + 2y = 26$ and	6x + y = 31 Find the	BTL-2	Understanding	CO2
correlation coefficient.	0X + y = 31.1 mg mc		Shaorstanding	
21. State central limit theorem		BTL-1	Remembering	CO2
22. Prove that $-1 \le r_{xy} \le 1$		BTL-2	Understanding	CO2
23. The equations of two regression lines are $3x+2$	2y=19 and 3y+9x=46.	BTL-1	Remembering	CO2
Obtain the mean of X and Y.				
24. The equations of two regression lines are $3x+2$	= = = = = = = = = = = = = = = = = = = =	BTL-1	Remembering	CO2
Derive the correlation coefficient between X and	Y.	DET :	** 1	602
25. State the equations of two regression lines.	.	BTL-2	Understanding	CO2
PART B (13 Mark (Juestions)			

1.	From the f	_						BTL-2	Understanding	CO2
	(i) $P(X \le 3)$ (iv) $P(X \le 3)$	-			3/X < 1					
	4)	_ , _	/ (_			
	Y	1	2	3	4	5	6			
	X									
	0	0	0	$\frac{1}{2}$	2	2	$\frac{3}{3}$			
		1	1	32	32	32	32			
	1	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$			
		10	1	1	1		2			
	2	32	$\frac{1}{32}$	$\frac{1}{64}$	64	0	64			
2.(a)	The two d	limensiona	ıl random	variable ((X, Y) has	the joint	probability	BTL-3	Applying	CO2
	mass func	tion $f(x, y)$	$y) = \frac{x + 2y}{27}$, x = 0,1,2	2; y = 0,1,	,2. Find th	ne marginal			
							of Y given			
2.(b)	X = 1 also The joint p					$\frac{\sqrt{\text{en } Y} = 1.}{1}$		BTL-3	Applying	CO2
	3 1	f(x)	$(v) = \begin{cases} K \hat{x} \hat{y} \end{cases}$	y', $0 < x$: < 1,0 < other	y < 1			11 7 0	
	(1) Fin				other 3) <mark>Are X</mark> a		endent			
	R.V	V's.	3				}			
3.(a)	If the joint $y = 1, 2, 3$						1, 2, 3, lso find the	BTL-3	Applying	CO2
	probability				onity distri	ioution. A	iso inia the			
3.(b)	The joint p							BTL-4	Analyzing	CO2
	x > 0, y > independen		the value	of k. A	dso prove	that X	and Y are			
4.			represent	s the joint	t probabili	ty distribu	tion of the	BTL-2	Understanding	CO2
	discrete R		ind all the	marginal	and condi	tional distr	ributions.			
	Y 1	$\begin{array}{c c} X \\ \hline 2 \end{array}$	3							
	1 1/2	1/6	0							
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1/9	1/5							
	3 1/18		2/15	CX7 :-	, , ,	D/D/W	4 17 - 4	DEL 2	TT 1 . "	002
5.	Find the m $P(X < 1)$	_				, ,	$1, Y \leq 1$), at. The joint	BTL-2	Understanding	CO2
	probability				ina i uio i	nacpenaer	iii The John			
	X	7 0		2						
	0	0.10	0.04	0.02						
	1	0.08	+	0.06						
6.	The joint p	0.06		030 al random	variables	(X.Y) is o	iven by	BTL-4	Analyzing	CO2
	_					_	-		1	
	$f(x, y) = \begin{cases} 2\\ 0 \end{cases}$	se ,0 < x , otherwise	$\langle 0.2, y > 0$	Find the co	ovariance o	of x and y.				

7.	If the joint pdf of a two-dimensional RV(X,Y) is give n by	BTL-3	Applying	CO2
	$f(x,y) = \begin{cases} x^2 + \frac{xy}{3}; & 0 < x < 1, 0 < y < 2 \\ 0, & elsewhere \end{cases}$. Find (i) $P\left(X > \frac{1}{2}\right)$			
	0, elsewhere 2)			
0	(ii) $P(Y < \frac{1}{2}, X < \frac{1}{2})$ (iii) $P(Y < \frac{1}{2} / X < \frac{1}{2})$	DTI 2	A	G02
8.	The joint pdf of a two dimensional random variable (X, Y) is given by	BTL-3	Applying	CO2
	$f(x,y) = xy^2 + \frac{x^2}{8}, 0 \le x \le 2, 0 \le y \le 1$. Compute			
	(i) $P(X > 1 / Y < \frac{1}{2})$ (ii) $P(Y < \frac{1}{2} / X > 1)$ (iii) $P(X + Y) \le 1$.			
9.	(b) The joint pdf of X and Y is given by	BTL-3	Applying	CO2
	$f(x,y) = \begin{cases} kx(x-y), & 0 < x < 2, -x < y < x \\ 0, & otherwise \end{cases}$			
	(i) Find K (ii) Find $f_x(x)$ and $f_y(y)$			
10.	Find the Coefficient of Correlation between industrial production and	BTL-2	Understanding	CO2
	export using the following table			
	Production (X) 14 17 23 21 25 Export (Y) 10 12 15 20 23			
11.	Find the correlation coefficient for the following heights of fathers X, their	BTL-2	Understanding	CO2
	sons Y and also find the equations of regression lines. Hence find the			
	height of son when the height of father is 71 X 65 66 67 68 69 70 72			
	X 65 66 67 67 68 69 70 72 Y 67 68 65 68 72 72 69 71			
12.	Obtain the lines of regression	BTL-2	Understanding	CO2
	X 50 55 50 60 65 65 65 60 60 Y 11 14 13 16 16 15 15 14 13			
13.		BTL-3	Applying	CO2
13.	If $f(x,y) = \frac{6-x-y}{8}$, $0 \le x \le 2$, $2 \le y \le 4$ for a bivariate random	BIL-3	Applying	CO2
1.4	variable (X,Y), Evaluate the correlation coefficient ρ .	DEL 4	A 1 .	000
14.	Two random variables X and Y have the joint density function $f(x,y) = x + y, 0 \le x \le 1, 0 \le y \le 1.$	BTL-4	Analyzing	CO2
	Evaluate the Correlation coefficient between X and Y.			
15.(a)	20 dice are thrown. Find the approximate probability that the sum	BTL-3	Applying	CO2
15 (1)	obtained is between 65 and 75 using central limit theorem	DTI 2	A 1:	CO2
15.(b)	The two regression lines are $4x-5y+33=0$ and $20x-9y=107$. Find the mean of X and Y. Also find the correlation coefficient between them	BTL-3	Applying	CO2
16.(a)	If $X_1, X_2, X_3, \dots X_n$ are Poisson variates with mean 2, use central limit	BTL-4	Analyzing	CO2
	theorem to estimate $P(120 < S_n < 160)$ where $S_n = X_1 + X_2 + X_3 + X_3 + X_4 + X_5 +$			
16 (4)	$\cdots + X_n$ and n=75.	BTL-4	Anolyzina	CO2
16.(b)	If X and Y each follow an exponential distribution with parameter 1 and are independent, find the pdf of $U = X-Y$.	D1L-4	Analyzing	CO2
17.(a)	If X and Y independent Random Variables with pdf e^{-x} , $x \ge 0$ and	BTL-4	Analyzing	CO2
	e^{-y} , $y \ge 0$. Devise the density function of $U = \frac{X}{X + Y}$ and $V = X + Y$.			
	Are they independent?			
17.(b)	Two random variables X and Y have the following joint probability	BTL-3	Applying	CO2
	density function $f(x,y) = \begin{cases} x+y; 0 \le x \le 1, 0 \le y \le 1 \\ 0, otherwise \end{cases}$. Find the			
	probability density function of the random variable $U = XY$.			

18.(a)	A random sample of size 100 is taken from a population whose mean is	BTL-4	Analyzing	CO2
, ,	60 and variance is 400. Using central limit theorem find what probability			
	that we can assert that the mean of the sample will not differ from μ more			
	than 4?			
18.(b)	If X and Y follows an exponential distribution with parameters 2 and 3	BTL-3	Applying	CO2
	respectively and are independent, Create the probability density function			
	of $U = X + Y$			
	PART-C(15 Mark Questions)			
1.	Three balls are drawn at random without replacement from a box	BTL-3	Applying	CO2
	containing 2 white, 3 red and 4 blue balls. If X denotes the number of			
	white balls drawn and Y denotes the number of red balls drawn, Find the			
	probability distribution of X and Y.			
2.	Out of the two lines of regression given by $x + 2y - 5 = 0$ and	BTL-4	Analyzing	CO2
	2x + 3y - 8 = 0, which one is the regression line of X on Y? Analyze			
	the equations to find the means of X and Y. If the variance of X is 12,			
	find the variance of Y.			
3.	From the following data, Find (i)The two regression equations (ii) The	BTL-2	Understanding	CO2
	coefficient of correlation between the marks in Mathematics and			
	Statistics (iii) The most likely marks in Statistics when marks in			
	Mathematics are 30			
	Marks in Maths: 25 28 35 32 31 36 29 38 34 32			
	Marks in Statistics: 43 46 49 41 36 32 31 30 33 39			
4.	For a particular brand of TV picture tube, it is known that the mean	BTL-4	Analyzing	CO2
	operating life of the tubes is 1000 hours with a standard deviation of 250			
	hours, Devise the probability that the mean for a random sample of size			
	25 will be between 950 and 1050 hours?			
5.	The lifetime of a certain brand of an electric bulb may be considered a RV	BTL-3	Applying	CO2
	with mean 1200h and standard deviation 250h. Find the probability, using			
	central limit theorem, that the average life time of 60 bulbs exceeds 1250			
	h.			
	III: RANDOM PROCESSES	_	9L+.	
	cation – Stationary process – Markov process – Markov chain – Chapman F	Kolmogor	ov equations – Li	imiting
distribu	tions—Poisson process-Gaussian process.			1
	PART-A(2 Mark Questions)			
1.	What are the four types of a stochastic process?	BTL-1	Remembering	CO3
2.	Define Discrete Random sequence with example.	BTL-1	Remembering	CO3
3.	Define Discrete Random Process with example.	BTL-1	Remembering	CO3
4.	Define Continuous Random sequence with example.	BTL-1	Remembering	CO3
5.	Define Continuous Random Process with example.	BTL-1	Remembering	
				CO3
6.	Define wide sense stationary process.	BTL-1	Remembering	CO3
7.	Define Strict Sense Stationary Process.	BTL-1	Remembering	CO3
8.	Show that the random process $X(t) = A\cos(\omega_c t + \theta)$ is not stationary if it	BTL-2	Understanding	CO3
	is assumed that A and ω_c are constants and θ is a uniformly distributed			
	variable on the interval $(0,\pi)$.			
9.	A random process X (t) = A sin t + B cos t where A and B are	BTL-1	Remembering	CO3
-•	independent random variables with zero means and equal standard			
	deviations. Find the mean of the process.			
	at lations. I ma me mean of the process.	İ		i

10	$\mathbf{C}_{\mathbf{v}}$: $\mathbf{I}_{\mathbf{v}}$: $\mathbf{I}_{\mathbf{v}}$: $\mathbf{V}_{\mathbf{v}}$: \mathbf{V}	BTL-2	Undonstanding				
10.	Consider the random process $X(t) = cos(t + \phi)$, where ϕ is uniform	DIL-2	Understanding	CO2			
	random variable in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Check whether the process is stationary.			CO3			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
11.	Consider the random process $X(t) = cos(\omega_0 t + \theta)$, where θ is uniform	BTL-1	Remembering	CO3			
11.	random variable in $(-\pi,\pi)$. Check whether the process is stationary or	DIE I	rememeering	003			
	not						
12.	Find the mean of a stationary random process whose auto correlation	BTL-2	Understanding	CO3			
12.		D12 2	Chacistanang	003			
	function is given by $R_{(Z)} = \frac{25Z^2 + 36}{6.25Z^2 + 4}$.						
	$6.25Z^2 + 4$						
13.	Find the mean of a stationary random process whose auto correlation	BTL-2	Understanding	CO3			
	function is given by $R_{XX}(\tau) = 18 + \frac{2}{6+\tau^2}$.						
14.		BTL-2	Understanding	CO3			
14.	A random process has the autocorrelation function $R_{xx}(\tau) = \frac{4\tau^2 + 6}{\tau^2 + 1}$, find	DIL-2	Onderstanding	CO3			
	the mean square value of the problem.						
15.	Compute the mean value of the random process whose auto correlation	BTL-2	Understanding				
	function is given by $R_{XX}(\tau) = 25 + \frac{4}{1+6\tau^2}$.			CO3			
16.	Define Poisson process.	BTL-1	Remembering	CO3			
17.	State and two properties of Poisson process.	BTL-1	Remembering	CO3			
18.	Check whether the Poisson process $X(t)$ given by the probability law	BTL-1	Remembering	CO3			
10.		DIL-1	Remembering	CO3			
	$P\{X(t)=n\}=\frac{e^{-\lambda t}(\lambda t)^n}{n!}$, $n=0,1,2,\cdots$ is stationary or not.						
19.	A hospital receives on an average of 3 emergency calls in 10 minutes	BTL-2	Understanding	CO3			
	interval. What is the probability that there are 3 emergency calls in a 10						
	minute interval						
20.	Define Markov chain	BTL-1	Remembering				
	AO			CO3			
21.	State Chapman- Kolmogorov theorem	BTL-1	Remembering	CO3			
22.	Consider the Markov chain with 2 states and transition probability matrix	BTL-1	Remembering	CO3			
	$\begin{bmatrix} \underline{3} & \underline{1} \end{bmatrix}$						
	$P = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$. Find the stationary probabilities of the chain.						
	$\left[\frac{1}{2}, \frac{1}{2}\right]$. That the stationary probabilities of the chain.						
23.	The one-step transition probability matrix of a Markov chain with states	BTL-2	Understanding	CO3			
	(0,1) is given by $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Evaluate whether it is irreducible Markov						
	$\begin{pmatrix} 1 & 0 \end{pmatrix}$.						
	chain?						
24.	Obtain the transition matrix of the following transition diagram.	BTL-1	Remembering	CO3			
	0.5						
	0.4 (1) (2) 0.3						
	03						
	0.1 0.2						
	3						
	0.5						
	0.5						
25.	Check whether the Markov chain with transition probability matrix	BTL-2	Understanding	CO3			
	$P = \begin{bmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix}$ is irreducible or not?						
	$P = \begin{bmatrix} 1/2 & 0 & 1/2 \end{bmatrix}$ is irreducible or not?						
-	PART-B (13 Marks Questions)						
PART-B (13 Marks Questions)							

1.	The process {X(t)} whose probability distribution under certain	BTL-2	Understanding	CO3
	conditions is given by $P\{X(t) = n\} = \begin{cases} \frac{(at)^{n-1}}{(1+at)^{n+1}}, & n = 1, 2\\ \frac{at}{(1+at)}, & n = 0 \end{cases}$ Show that it			
2 (a)	is not stationary.	BTL-2	Understanding	CO2
2.(a)	A radioactive source emits particles at a rate of 5 per minute in accordance with poisson process. Each particle emitted has a probability 0.6 of being recorded. Find the probability that 10 partcles are recorded in 4 minute period	BIL-2	Onderstanding	CO3
2.(b)	Find the mean and autocorrelation of the Poisson processes	BTL-1	Remembering	CO3
3.(a)	If the random process $\{X(t)\}$ takes the value -1 with probability 1/3 and takes the value +1 with probability 2/3, find whether $\{X(t)\}$ is a stationary process or not.	BTL-3	Applying	CO3
3.(b)	Prove that the sum of two independent Poisson process is a Poisson	BTL-1	Remembering	
	process.			CO3
4.(a)	Consider a random process $X(t) = B \cos(50 t + \Phi)$ where B and Φ are independent random variables. B is a random variable with mean 0 and variance 1. Φ is uniformly distributed in the interval $[-\pi,\pi]$. Determine the mean and auto correlation of the process.	BTL-3	Applying	CO3
4.(b)	Prove that the difference of two independent Poisson process is not a Poisson process.	BTL-1	Remembering	CO3
5.(a)	Show that the random process $X(t) = A\cos(\omega t + \theta)$ is wide sense stationary, if A and ω are constant and θ is a uniformly distributed random variable in $(0, 2\pi)$.	BTL-3	Applying	CO3
5.(b)	A fisherman catches a fish at a poisson rate of 2 per hour from a large lake with lots of fish. If he starts fishing at 10 am. What is the probability that he catches one fish by 10.30 am and three fishes by noon.	BTL-4	Analyzing	CO3
6.(a)	Suppose that customers arrive at a bank according to poisson process with mean rate of 3 per minute. Find the probability that during a time of two minutes(1)Exactly 4 customers arrive (2) Greater than 4 customers arrive (3)Fewer than 4 customers arrive	BTL-3	Applying	CO3
6.(b)	Prove that the inter arrival time of the Poisson process follows exponential distribution	BTL-1	Remembering	CO3
7.	Show that the random process $X(t) = Acos\omega t + Bsin\omega t$ is wide sense stationary process if A and B are random variables such that $E(A) = E(B) = 0, E(A^2) = E(B^2)$ and $E(AB) = 0$	BTL-2	Understanding	CO3
8.	A salesman's territory consists of three regions A, B, C. He never sells in the same region on successive days. If he sells in region A, then the next day he sells in B. However, if he sells either B or C, then the next day he is twice as likely to sell in A as in the other region. Explain How often does he sell in each of the regions in the steady state?	BTL-3	Applying	CO3
9.	There are 2 white marbles in urn A and 3 red marbles in urn B. At each step of the process, a marble is selected from each urn and the 2 marbles selected are interchanged. The state of the related markov chain is the number of red marbles in urn A after the interchange. What is the probability that there are 2 red marbles in urn A after the interchange? What is the probability that there are 2 red marbles in urn A after 3 steps?	BTL-3	Applying	CO3

	In the long run, What is the probability that there are 2 red marbles in urn			
10.(a)	A hard disk fails in a computer system and it follows a poisson distribution	BTL-4	Analyzing	
10.(4)	with mean rate of 1 per week. Find the probability that 2 weeks have		,g	CO3
	elapsed since last failure. If we have extra hard disks and the next supply			
	is not due in 10 weeks, Find the probability that the machine will not be			
	out of order in next 10 weeks.			
10.(b)	The probability of a dry day following a rainy day is 1/3 and that the	BTL-3	Applying	CO3
	probability of a rainy day following a dry day is ½. Given that May 1 st is			
	a dry day. Obtain the probability that May 3 rd is a dry day also May 5 th is a dry day			
11.	Find the limiting state probabilities associated with the following	BTL-4	Analyzing	CO3
	$\begin{bmatrix} 0.4 & 0.5 & 0.1 \end{bmatrix}$, 8	
	transition probability matrix 0.3 0.3 0.4			
	transition probability matrix 0.3 0.3 0.4			
	[0.3 0.2 0.5]			
12.	The transition probability matrix of a Markov chain $\{X_n\}$, $n = 1,2,3,$	BTL-2	Understanding	CO3
	$\begin{bmatrix} 0.1 & 0.5 & 0.4 \end{bmatrix}$			
	having 3 states 1,2 and 3 is $P = \begin{bmatrix} 0.6 & 0.2 & 0.2 \end{bmatrix}$ and the initial			
	0.3 0.4 0.3			
	distribution is			
	$P(0) = (0.7, 0.2, 0.1)$. Evaluate i) $P(X_2 = 3)$			
	ii) $P(X_3 = 2, X_2 = 3, X_1 = 3, X_0 = 2)$			
13.	Consider the Markov chain $\{X_n, n=0, 1, 2,3, \dots\}$ having 3 states space	BTL-2	Understanding	CO3
	S={1,2,3} and one step TPM $P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$ and initial probability			
	$S=\{1,2,3\}$ and one step TPM $P=\begin{vmatrix} 1/2 & 0 & 1/2 \end{vmatrix}$ and initial probability			
	distribution $P(X_0=i)=1/3$, $i=1,2,3$. Compute			
	(1) $P(X_3=2. X_2=1, X_1=2/X_0=1)$			
	(2) $P(X_3=2, X_2=1/X_1=2, X_0=1)$			
	(3) P(X₂=2/X₀=2)(4) Invariant Probabilities of the Markov Chain.			
14.(a)	Let $\{X_n : n = 1,2,3 \dots \}$ be a Markov chain on the space $S = \{1,2,3\}$	BTL-2	Understanding	CO3
	with one step t.p.m $P = \begin{bmatrix} 1/2 & 0 & 1/2 \end{bmatrix}$			
	with one step t.p.m $P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \end{bmatrix}$			
	1. Sketch the transition diagram, 2. Is the chain irreducible? Explain.			
	3. Is the chain ergodic? Explain.			
14.(b)	If customers arrive at a counter in accordance with a Poisson process with	BTL-4	Analyzing	CO3
	a mean rate of 2 per minute, Evaluate the probability that the interval			
	between 2 consecutive arrivals is (a) more than 1 minute, (b) between 1 minute and 2 minutes and (c) 4 minutes or less			
15.	Three boys A, B and C are throwing a ball to each other. A always throws	BTL-4	Analyzing	CO3
	the ball to B and B always throws the ball to C but C is just as likely to			
	throw the ball to B as to A . Show that the process is Markovian. Find the			
	transition probability matrix and classify the states			

16.	Consider a Markov chain chain $\{X_n, n=0, 1, 2,\}$ having states space $\left[\begin{array}{cc} \underline{4} & \underline{6} \end{array}\right]$	BTL-4	Analyzing	CO3				
	S={ 1,2} and one step TPM $P = \begin{bmatrix} \frac{4}{10} & \frac{6}{10} \\ \frac{8}{10} & \frac{2}{10} \end{bmatrix}$.							
	$\begin{bmatrix} \overline{10} & \overline{10} \end{bmatrix}$							
	(1) Draw a transition diagram, (2) Is the chain irreducible?							
	(3) Is the state -1 ergodic? Explain. (4) Is the chain ergodic? Explain							
17.	Classify the states of the Markov chain for the one-step transition $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$	BTL-4	Analyzing	CO3				
	Classify the states of the Markov chain for the one-step transition probability matrix $P = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix}$ with state space $S = \{1,2,3\}$							
18.	Using limiting behavior of homogeneous markov chain, Find the steady	BTL-3	Applying	CO3				
	state probability of the chain given by the transaction probability matrix							
	$(0.1 \ 0.6 \ 0.3)$							
	$ \mathbf{p} 0.5 0.1 0.4$							
	$P = \begin{pmatrix} 0.1 & 0.6 & 0.3 \\ 0.5 & 0.1 & 0.4 \\ 0.1 & 0.2 & 0.7 \end{pmatrix}$							
1	Part C: 15 - MARK QUESTIONS	DTI 2	TT. 44 4	GO2				
1.	On a given day, a retired English professor, Dr. Charles Fish amuses	BTL-2	Understanding	CO3				
	himself with only one of the following activities reading (i), gardening (ii) or working on his book about a river valley (iii) for $1 \le i \le 3$, let							
	$X_n = i$, if Dr. Fish devotes day n to activity i . Suppose that $\{X_n : n=1,2\}$							
	} is a Markov chain, and depending on which of these activities on the							
	0.30 0.25 0.45							
	next day is given by the t. p. m $P = \begin{bmatrix} 0.40 & 0.10 \\ 0.50 \end{bmatrix}$ Find the							
	next day is given by the t. p. m $P = \begin{bmatrix} 0.30 & 0.25 \\ 0.40 & 0.10 \\ 0.25 & 0.40 \end{bmatrix} 0.45$ Find the							
	proportion of days Dr. Fish devotes to each activity.							
2.	A man either drives a car or catches a train to go to office each day. He	BTL-3	Applying	CO3				
	never goes 2 days in a row by train but if he drives one day, then the next							
	day he is just as likely to drive again as he is to travel by train. Now							
	suppose that on the first day of the week, the man tossed a fair die and							
	drove to work if and only if 6 appeared.							
	Find (i) the probability that he takes a train on the third day							
3.	(ii) the probability that he drives to work in the long run.A machine goes out of order whenever a component fails. The failure of	BTL-4	Analyzing	CO3				
3.	this part follows a Poisson process with mean rate of 1 per week. Find the	DIL-4	Anaryzing	COS				
	probability that 2 weeks have a elapsed since last failure. If there are 5							
	spare parts of this component in an inventory and that the next supply is							
	not due in 10 weeks, find the probability that the machine will not be out							
	of order in the next 10 weeks							
4.	A fair die is tossed repeatedly. If X_n denotes the maximum of the numbers	BTL-3	Applying	CO3				
	occurring in the first n tosses, Evaluate the transition probability matrix P							
	of the Markov chain $\{X_n\}$. Find also $P\{X_2=6\}$ and P^2 .	7						
5.	A student's study habits are as follows: If he studies one night, he is 70%	BTL-4	Analyzing	000				
	sure not to study next night. On the other hand, if he does not study one			CO3				
	night, he is 60% sure not to study the next nights as well. In the long run							
***	how often does he study?	<u> </u>						

UNIT IV : QUEUEING MODELS

Markovian queues - Birth and death processes - Single and multiple server queueing models - Little's formula -

Queue	s with finite waiting rooms – Queues with impatient customers: Balking and	reneging.		
	PART-A(2 Mark Questions)			
1.	For (M/M/1): (∞/FIFO) model, Write the Little's formula.	BTL2	Understanding	CO4
2.	Find the probability of at least 10 customers in the system (M/M/1): (∞ /FIFO) queue system, if λ =6 <i>per hour</i> and μ = 8 <i>per hour</i> ?			CO4
3.	Find the probability that a customer has to wait more than 15 <i>min</i> to get his service completed in a (M/M/1): (∞ /FIFO) queue system, if λ =6 <i>per hour</i> and μ = 10 per hour?	BTL2	Understanding	CO4
4.	For a (M/M/1): (∞ /FIFO) queue system, if λ =4 per hour and μ =6 per hour, find the average queue length.	BTL4	Analyzing	CO4
5.	If people arrive to purchase cinema tickets at the average rate of 6 per minute, it takes an average of 7.5 seconds to purchase a ticket. If a person arrives 2 minutes before the picture starts and it takes exactly 1.5 minutes to reach the correct seat after purchasing the ticket. What he expect to be seated for the start of the picture?	BTL3	Applying	CO4
6.	Write the effective arrival rate for M/M/1: K/FIFO queueing model	BTL1	Remembering	CO4
7.	Give the formula for average waiting time of a customer in the queue for (M/M/1): (K/FIFO).	BTL1	Remembering	CO4
8.	If λ = 3 per hour, μ = 4 per hour and maximum capacity K = 7 in a (M/M/1) (K/FIFO) system, Find the average number of customers in the system.	BTL4	Analyzing	CO4
9.	A drive in banking service is modeled as an M/M/1 queueing system with customer arrival rate of 2 per minute. It is desired to have fewer than 5 customers line up 99 percent of the time. How fast should the service rate be?	BTL4	Analyzing	CO4
10.	Describe the formula for W_s and W_q for the M/M/1/N queueing system.	BTL1	Remembering	CO4
11.	For (M/M/C): (N/FIFO) model, Write the formula for (a) average number of customers in the queue. (b) Average waiting time in the system.	BTL4	Analyzing	CO4
12.	State the characteristics of a Queueing model.	BTL1	Remembering	CO4
13.	Write Kendall's notation for Queueing Model.	BTL2	Understanding	CO4
14.	What are the service disciplines available in the queueing model?	BTL1	Remembering	CO4
15.	Write the formulae for P ₀ and P _n in a Poisson queue system in the steady – state	BTL3	Applying	CO4
16.	Define steady state and transient state queueing systems			CO4
17.	Consider an M/M/C queueing system. Find the probability that an arriving customer is forced to join the queue.	BTL4	Analyzing	CO4
18.	Draw the transition diagram for M/M/1 queueing model.	BTL1	Remembering	CO4
19.	A self-service store employs one cashier at its counter. Nine customers arrive on an average every 5 <i>minutes</i> while the cashier can serve 10 customers in 5 <i>minutes</i> . Assuming Poisson distribution for arrival rate and exponential distribution for service rate, Find the average time a customer spends in the system.	BTL1	Remembering	CO4
20.	In a 3 server infinite capacity Poisson queue model if $\frac{\lambda}{\mu C} = \frac{2}{3}$, Calculate	BTL1	Remembering	CO4
21.	P_0 . State the characteristics of a Queueing model.	BTL1	Remembering	CO4
<i>L</i> 1.	State the characteristics of a Queucing model.	וחות	Kemembering	CO4

22.	If the inter arrival time and service time in a public telephone booth with a single phone follow exponential distribution with means of 10 and 8 minutes respectively. Find the average number of callers in the booth at any time.	BTL2	Understanding	CO4
23.	If the arrival and departure rates in a M/M/1 queue are ½ per minute and 2/3 per minute respectively, find the average waiting time of a customer in the queue.	BTL2	Understanding	CO4
24.	If there are 2 servers in an infinite capacity Poisson queue system with λ = 10 per hour and μ = 15 per hour, Examine the percentage of idle time for each server?	BTL4	Analyzing	CO4
25.	Find the traffic intensity for an (M/M/C): (∞ /FIFO) queue with λ = 10 per hour and μ = 15 per hour and 2 servers. PART-B (13 Mark Questions)	BTL2	Understanding	CO4
1.	Customers arrive at a watch repair shop according to a Poisson process at a rate of one per every10 minutes, and the service time is exponential random variable with 8 minutes. Apply M/M/1 queueing model a) Find the average number of customers L _s in the shop. b) Find the average number of customers L _q in the queue. c) Find the average time a customer spends in the system in the shop W _s d) What is the probability that the server is idle?	BTL3	Applying	CO4
2.	A TV repairman finds that the time spend on his jobs has an exponential distribution with mean 30 minutes. If he repairs sets in the order in which they came in, and if the arrival of sets is approximately Poisson with an average rate of 10 per8 – hour day. Point out the repairman's expected idle time in each day? How many jobs are ahead of the average set just brought in?	BTL3	Applying	CO4
3.	On average 96 patients per (24 hour) day require the service of an emergency clinic. Also an average a patient requires 10 minutes of active attention. Assume that the facility can handle only one emergency at a time. Suppose that it costs the clinic Rs.100 per patient treated to obtain an average service time of 10 minutes, and that each minute of decrease in this average time would cost Rs.10 per patient treated. Analyze how much would have to be budgeted by the clinic to decrease the average size of the queue from 1 1/3 patients to ½ patient?	BTL4	Analyzing	CO4
4.	A bank has two tellers working on savings accounts. The first teller handles withdrawals only. The second teller handles deposits only .It has been found that the service time distributions for both deposits and withdrawals are exponential with mean time of 3 min per customer. Depositors are found to arrive in Poisson fashion throughout the day with mean arrival rate of 16 per hour Withdrawers also arrive in a Poisson fashion with mean arrival rate 14 per hour. What would be the effect on the average waiting time for the customers if each teller handles both withdrawals and deposits? What would be the effect, if this could only be accomplished by increasing the service time to 3.5 min?	BTL4	Analyzing	CO4
5.	There are three typists in an office. Each typist can type an average of 6 Letters per hour .If letters arrive for being typed at the rate of 15 letters per hour, Analyze the following a) What fraction of the time all the typists will be busy? b) What is the average number of letters waiting to be typed? c) What is the average time a letter has to spend for waiting and for being typed? d) What is the probability that a letter will take longer than 20 min waiting	BTL4	Analyzing	CO4

	to be typed?			
6.	A 2 – person barber shop has 5 chair to accommodate waiting customers. Potential customers, who arrive when all 5 chairs are full, leave without entering barber shop. Customers arrive at the average rate of 4 per hour and spend an average of 12 min in the barber's chair . Compute P_0 , P_1, P_7 , $E(N_q)$ and $E(W)$	BTL4	Analyzing	CO4
7.	A car servicing station has 2 bays where service can be offered simultaneously. Because of space limitation, only 4 cars are accepted for servicing . The arrival pattern is Poisson with 12 cars per day. The service time in both bays is exponentially distributed with $\mu=8$ cars per day per bay. Write the average number of cars in the service station , the average number of cars waiting for service time a car spends in the system	BTL4	Creating	CO4
8.	The railway marshalling yard is sufficient only for trains (there being 11 lines, one of which is earmarked for the shunting engine to reverse itself from the crest of the hump to the rear of the train). Trains arrive at the rate of 25 trains per day, inter – arrival time and service time follow exponential with an average of 30 minutes. Estimate the probability that the yard is empty and average queue length.	BTL4	Analyzing	CO4
9.	Derive the average number of customers in the system, in queue and average waiting time of a customer in the system and in queue for an $M/M/1$: $\infty/FIFO$ queueing system	BTL1	Remembering	CO4
10.	Arrivals at a telephone booth are considered to be Poisson with an average time of 12 min. between one arrival and the next. The length of a phone call is assumed to be distributed exponentially with mean 4 min. a) Find the average number of persons waiting in the system b) What is the probability that a person arriving at the booth will have to wait in the queue? c) What is the probability that it will take him more than 10 min altogether to wait for the phone and complete his call? d) Estimate the fraction of the day when the phone will be in use e) The telephone department will install a second booth, when convinced that an arrival has to wait on the average for atleast 3 min. for phone .By how much the flow of arrivals should increase in order to justify a second booth?	BTL2	Understanding	CO4
11.	Customers arrive at a one-man barber shop according to a Poisson with a mean inter arrival time of 20 min Customers spend an average of 15 min in the barber's chair 1) What is the expected number of customers in the barber shop ?In the Queue? 2) What is the probability that a customer will not have to wait for a hair cut? 3) How much can a customer expect to spend in the barbershop? 4) What are the average time customers spend in the queue? 5) What is the probability that the waiting time in the system is greater than 30 min? 6) What is the probability that there are more than 3 customers in the system?	BTL2	Understanding	CO4
12.	Customers arrive at a one-man barber shop according to a Poisson with a mean inter arrival time of 12 min Customers spend an average of 10min in the barber's chair 1) What is the expected number of customers in the barber shop?	BTL2	Understanding	CO4

	 2) What is the expected number of customers In the Queue? 3) What is the probability that a customer will not have to wait for a hair cut? 4) How much can a customer expect to spend in the barbershop? 5) What are the average time customers spend in the queue? 6) What is the probability that the waiting time in the system is greater than 30 min? 			
13.	In a given M / M / 1 queueing system, the average arrivals is 4 customers per minute, $\rho=0.7$. Find the 1) mean number of customers L $_{s}$ in the system 2) mean number of customers L $_{q}$ in the queue 3) probability that the server is idle 4) mean waiting time W $_{s}$ in the system 5) mean waiting time W $_{q}$ in the queue	BTL2	Understanding	CO4
14.	A petrol pump station has 4 pumps. The service times follow the exponential distribution with a mean of 6 min and cars arrive for service in a Poisson process at the rate of 30 cars per hour. Evaluate the following (a)What is the probability that an arrival would have to wait in line? (b)Find the average waiting time, average time spent in the system and the average number of cars in the system (c) For what percentage of time would a pump be idle on an average?	BTL4	Analyzing	CO4
15.	A supermarket has two girls attending to sales at the counters. If the service time for each customer is exponential with mean 4 min and if people arrive in Poisson fashion at the rate of 10 per hour a) What is the probability that a customer has to wait for service? b) What is the expected percentage of idle time for each girl? c) If the customer has to wait in the queue, what is the expected length of the waiting time?	BTL4	Analyzing	CO4
16.	the waiting time? A tele phone exchange has two long distance operators. The telephone company finds that during peak load, long distance calls arrive in a Poisson fashion at an average rate of 15 per hour. The length of service of these calls approximately exponentially distributed with mean length of 5 minutes. (1) What is the probability that a subscriber will have to wait for his long distance calls during the peack hours of the day? If the subcribers will wait and are serviced in turn, what is the expected waiting time?	BTL4	Analyzing	CO4
17.	Trains arrive at the yard every 15 minutes and the service time is 33 minutes. If the line capacity of the yard is limited to 5 trains. 1. Find the probability that the yard is empty 2. Find the average number of trains in the system	BTL4	Analyzing	CO4
18.	Consider a single server queueing system with Poisson input exponential service times. Suppose the mean arrival rate is 3 calling units per hour, the expected service time is 0.25 hours and the maximum permissible number calling units in the system is 2. Apply single server finite capacity to 1. Find the steady state probability distribution of the number of calling units in the system. 2. Find the expected number of calling units in the system and in queue.	BTL3	Applying	CO4

	3. Find the average waiting time in the system and in the queue.			
	Part C (15 Mark Questions)			
1.	A repairman is to be hired to repair machines which breakdown at the average rate of 3 per hour the breakdown follow Poisson distribution. Non —productive time of machine is considered to cost Rs 16/hour. Two repair men have been interviewed. One is slow but cheap while the other is fast and expensive. The slow repairman charges Rs.8 per hour and he services at the rate of 4 per hour The fast repairman demands Rs .10 per hour and services at the average rate 6 per hour. Which repairman should be hired?	BTL3	Applying	CO ²
2.	A departmental store has single cashier. During the rush hours customers arrive at the rate of 20 customers per hour. The average number of customers that can be processed by the cashier is 24 per hour. Point out the following 1. What is the probability that the cashier is idle? 2. What is the average number of customers in the queueing system? 3. What is the average time a customer spends in the system? 4. What is the average number of customers in the queue? 5. What is the average time a customer spends in the queue?	BTL2	Understanding	CO4
3.	A petrol pump station has 2 pumps. The service times follow the exponential distribution with a mean of 4minutes and cars arrive for service in a Poisson process at the rate of 10 cars per hour. Find the probability that a customer has to wait for service. What proportion of time the pumps remain idle?	BTL4	Analyzing	CO4
4.	At a port there are 6 unloading berths and 4 unloading crews. When all the berths are full, arriving ships are diverted to an overflow facility 20 kms. down the river. Tankers arrive according to a Poisson process with a mean of 1 for every 2 hours. It takes for an unloading crew, on the average, 10 hours to unload a tanker, the unloading time follows an exponential distribution Develop and Determine (i) How many tankers are at the port on the average? (ii) How long does a tanker spend at the port on the average? (iii) What is the average arrival rate at the overflow facility?	BTL4	Analyzing	CO4
5.	Patients arrive at a clinic according to a Poisson distribution at a rate of 30 patients per hour. The waiting room does not accommodate more than 14 patients. Examination time per patient is exponential with a mean rate of 20 per hour. 1. Derive the effective arrival rate at the clinic 2. What is the probability that an arriving patient does not have to wait? 3. What is the expected waiting time until a patient is discharged from the clinic? V: ADVANCED QUEUEING MODELS	BTL4	Analyzing	CO4

Finite source models - M/G/1 queue - Pollaczek Khinchine formula - M/D/1 and M/E_K/1 as special cases - Series queues - Open Jackson networks.

PART-A (2 Mark Questions)					
1.	Express Pollaczek- Khintchine formula.	BTL1	Remembering	CO5	
2.	Write P-K formula for the case when the service time is constant.	BTL1	Remembering	CO5	
3.	Write down the formula for $(M/D/1)$: (∞/GD) model			CO5	
4.	Define effective arrival rate with respect to an (M \mid M \mid 1): (GD \mid N \mid \mid 0)	BTL1	Remembering	CO5	
	queuing model.				
5.	What do you mean by E_k in the $M/E_k/1$ queueing model?	BTL2	Understanding	CO5	

6.				
	For an M/G/1 model if λ =5 and μ =6 min and σ =1/20, find the length of the queue.	BTL1	Remembering	CO5
7.	A one man barber shop taken 25 minutes to complete a haircut. If customers arrive in a Poisson fashion at an average rate of 1 per 40 minutes find the average length of the queue.	BTL1	Remembering	CO5
8.	In an M/D/1 queueing system, an arrival rate of customer is 1/6 per minute	BTL2	Understanding	CO5
0.	and the server takes exactly 4 minutes to serve a customer. Calculate the	DILL	Onderstanding	003
	mean number of customers in the system.			
9.	The arrival of trucks to a factory for unloading is Poisson with arrival rate	BTL2	Understanding	CO5
7.	of 3 trucks per hour. The unloading time is constant with exactly 4			
	customers per hour. What is the expected number of trucks in queue?			
10.	Describe series queue.	BTL1	Remembering	CO5
11.	Define a two-stage series queue.	BTL3	Applying	CO5
12.	Define Series Queue with blocking.	BTL1	Remembering	CO5
13.	Define a tandem queue.	BTL3	Applying	CO5
14.	Draw the state transition diagram of a two stage sequential queue model	BTL4	Analyzing	CO5
	with blocking for the stage2			
15.	State any two examples for series queues.	BTL4	Analyzing	CO5
16.	A transfer line has two machines M1 and M2 with unlimited buffer	BTL1	Remembering	CO5
	space in between. Parts arrives the transfer line at the rate of 1 part			
	every 2 minutes. The processing rates of M1 and M2 are 1 per minutes			
	and 2 per minutes respectively. Find the average number of parts in M1.			
17.	Consider a series facility with two sequential stations with respective	BTL1	Remembering	CO5
	service rates 3/min and 4/min. The arrival rate is 2/min. What is the			
	average service time of the system, if the system could be approximated			
	by a two stage tandem queue?			
18.	Define an open Jackson network	BTL4	Analyzing	CO5
19.	State Jackson's theorem for an open network.	BTL3	Applying	CO5
	Compage elegation of queuing potycopic			~~=
20.	Compose classification of queuing networks.	BTL4	Analyzing	CO5
21.	Distinguish between open and closed networks.	BTL1	Remembering	CO5
21. 22.	Distinguish between open and closed networks. What do you mean by bottleneck of a network?	BTL1 BTL2	Remembering Understanding	CO5
21. 22. 23.	Distinguish between open and closed networks. What do you mean by bottleneck of a network? Write down the characteristics of an open Jackson network.	BTL1 BTL2 BTL1	Remembering Understanding Remembering	CO5 CO5
21. 22.	Distinguish between open and closed networks. What do you mean by bottleneck of a network?	BTL1 BTL2	Remembering Understanding	CO5
21. 22. 23.	Distinguish between open and closed networks. What do you mean by bottleneck of a network? Write down the characteristics of an open Jackson network.	BTL1 BTL2 BTL1	Remembering Understanding Remembering	CO5 CO5
21. 22. 23. 24.	Distinguish between open and closed networks. What do you mean by bottleneck of a network? Write down the characteristics of an open Jackson network. Define a closed Jackson network.	BTL1 BTL2 BTL1 BTL1	Remembering Understanding Remembering Remembering	CO5 CO5 CO5
21. 22. 23. 24.	Distinguish between open and closed networks. What do you mean by bottleneck of a network? Write down the characteristics of an open Jackson network. Define a closed Jackson network. State Burke's theorem used in queueing theory.	BTL1 BTL2 BTL1 BTL1	Remembering Understanding Remembering Remembering	CO5 CO5 CO5
21. 22. 23. 24. 25.	Distinguish between open and closed networks. What do you mean by bottleneck of a network? Write down the characteristics of an open Jackson network. Define a closed Jackson network. State Burke's theorem used in queueing theory. PART-B (13 Mark Questions)	BTL1 BTL2 BTL1 BTL1 BTL1	Remembering Understanding Remembering Remembering Remembering	CO5 CO5 CO5 CO5 CO5
21. 22. 23. 24. 25.	Distinguish between open and closed networks. What do you mean by bottleneck of a network? Write down the characteristics of an open Jackson network. Define a closed Jackson network. State Burke's theorem used in queueing theory. PART-B (13 Mark Questions) State and Derive Pollaczek - Khinchine formula.	BTL1 BTL2 BTL1 BTL1 BTL1 BTL1	Remembering Understanding Remembering Remembering Remembering Analyzing	CO5 CO5 CO5 CO5 CO5
21. 22. 23. 24. 25.	Distinguish between open and closed networks. What do you mean by bottleneck of a network? Write down the characteristics of an open Jackson network. Define a closed Jackson network. State Burke's theorem used in queueing theory. PART-B (13 Mark Questions) State and Derive Pollaczek - Khinchine formula. In a college canteen, it was observed that there is only one waiter who	BTL1 BTL2 BTL1 BTL1 BTL1 BTL1	Remembering Understanding Remembering Remembering Remembering Analyzing	CO5 CO5 CO5 CO5 CO5
21. 22. 23. 24. 25.	Distinguish between open and closed networks. What do you mean by bottleneck of a network? Write down the characteristics of an open Jackson network. Define a closed Jackson network. State Burke's theorem used in queueing theory. PART-B (13 Mark Questions) State and Derive Pollaczek - Khinchine formula. In a college canteen, it was observed that there is only one waiter who takes exactly 4 minutes to serve a cup of coffee once the order has been	BTL1 BTL2 BTL1 BTL1 BTL1 BTL1	Remembering Understanding Remembering Remembering Remembering Analyzing	CO5 CO5 CO5 CO5 CO5
21. 22. 23. 24. 25.	Distinguish between open and closed networks. What do you mean by bottleneck of a network? Write down the characteristics of an open Jackson network. Define a closed Jackson network. State Burke's theorem used in queueing theory. PART-B (13 Mark Questions) State and Derive Pollaczek - Khinchine formula. In a college canteen, it was observed that there is only one waiter who takes exactly 4 minutes to serve a cup of coffee once the order has been placed with him. If students arrive in the canteen at an average rate of 10 per hour, how much time one is expected to spend waiting for his turn to place the order.	BTL1 BTL2 BTL1 BTL1 BTL1 BTL1 BTL1	Remembering Understanding Remembering Remembering Remembering Remembering Remembering	CO5 CO5 CO5 CO5 CO5
21. 22. 23. 24. 25.	Distinguish between open and closed networks. What do you mean by bottleneck of a network? Write down the characteristics of an open Jackson network. Define a closed Jackson network. State Burke's theorem used in queueing theory. PART-B (13 Mark Questions) State and Derive Pollaczek - Khinchine formula. In a college canteen, it was observed that there is only one waiter who takes exactly 4 minutes to serve a cup of coffee once the order has been placed with him. If students arrive in the canteen at an average rate of 10 per hour, how much time one is expected to spend waiting for his turn to place the order. A one-man barber shop takes exactly 25 minutes to complete one hair-	BTL1 BTL2 BTL1 BTL1 BTL1 BTL1	Remembering Understanding Remembering Remembering Remembering Analyzing	CO5 CO5 CO5 CO5 CO5
21. 22. 23. 24. 25.	Distinguish between open and closed networks. What do you mean by bottleneck of a network? Write down the characteristics of an open Jackson network. Define a closed Jackson network. State Burke's theorem used in queueing theory. PART-B (13 Mark Questions) State and Derive Pollaczek - Khinchine formula. In a college canteen, it was observed that there is only one waiter who takes exactly 4 minutes to serve a cup of coffee once the order has been placed with him. If students arrive in the canteen at an average rate of 10 per hour, how much time one is expected to spend waiting for his turn to place the order. A one-man barber shop takes exactly 25 minutes to complete one haircut. If customers arrive at the barber shop in a Poisson fashion at an	BTL1 BTL2 BTL1 BTL1 BTL1 BTL1 BTL1	Remembering Understanding Remembering Remembering Remembering Remembering Remembering	CO5 CO5 CO5 CO5 CO5
21. 22. 23. 24. 25.	Distinguish between open and closed networks. What do you mean by bottleneck of a network? Write down the characteristics of an open Jackson network. Define a closed Jackson network. State Burke's theorem used in queueing theory. PART-B (13 Mark Questions) State and Derive Pollaczek - Khinchine formula. In a college canteen, it was observed that there is only one waiter who takes exactly 4 minutes to serve a cup of coffee once the order has been placed with him. If students arrive in the canteen at an average rate of 10 per hour, how much time one is expected to spend waiting for his turn to place the order. A one-man barber shop takes exactly 25 minutes to complete one haircut. If customers arrive at the barber shop in a Poisson fashion at an average rate of one every 40 minutes, Find the average time a customer	BTL1 BTL2 BTL1 BTL1 BTL1 BTL1 BTL1	Remembering Understanding Remembering Remembering Remembering Remembering Remembering	CO5 CO5 CO5 CO5 CO5
21. 22. 23. 24. 25.	Distinguish between open and closed networks. What do you mean by bottleneck of a network? Write down the characteristics of an open Jackson network. Define a closed Jackson network. State Burke's theorem used in queueing theory. PART-B (13 Mark Questions) State and Derive Pollaczek - Khinchine formula. In a college canteen, it was observed that there is only one waiter who takes exactly 4 minutes to serve a cup of coffee once the order has been placed with him. If students arrive in the canteen at an average rate of 10 per hour, how much time one is expected to spend waiting for his turn to place the order. A one-man barber shop takes exactly 25 minutes to complete one haircut. If customers arrive at the barber shop in a Poisson fashion at an average rate of one every 40 minutes, Find the average time a customer spends in the shop. Also, Find the average time a customer must wait	BTL1 BTL2 BTL1 BTL1 BTL1 BTL1 BTL1	Remembering Understanding Remembering Remembering Remembering Remembering Remembering	CO5 CO5 CO5 CO5 CO5
21. 22. 23. 24. 25. 1. 2.	Distinguish between open and closed networks. What do you mean by bottleneck of a network? Write down the characteristics of an open Jackson network. Define a closed Jackson network. State Burke's theorem used in queueing theory. PART-B (13 Mark Questions) State and Derive Pollaczek - Khinchine formula. In a college canteen, it was observed that there is only one waiter who takes exactly 4 minutes to serve a cup of coffee once the order has been placed with him. If students arrive in the canteen at an average rate of 10 per hour, how much time one is expected to spend waiting for his turn to place the order. A one-man barber shop takes exactly 25 minutes to complete one haircut. If customers arrive at the barber shop in a Poisson fashion at an average rate of one every 40 minutes, Find the average time a customer spends in the shop. Also, Find the average time a customer must wait for service?	BTL1 BTL2 BTL1 BTL1 BTL1 BTL1 BTL1 BTL2	Remembering Understanding Remembering Remembering Remembering Remembering Analyzing Remembering Understanding	CO5 CO5 CO5 CO5 CO5 CO5
21. 22. 23. 24. 25.	Distinguish between open and closed networks. What do you mean by bottleneck of a network? Write down the characteristics of an open Jackson network. Define a closed Jackson network. State Burke's theorem used in queueing theory. PART-B (13 Mark Questions) State and Derive Pollaczek - Khinchine formula. In a college canteen, it was observed that there is only one waiter who takes exactly 4 minutes to serve a cup of coffee once the order has been placed with him. If students arrive in the canteen at an average rate of 10 per hour, how much time one is expected to spend waiting for his turn to place the order. A one-man barber shop takes exactly 25 minutes to complete one haircut. If customers arrive at the barber shop in a Poisson fashion at an average rate of one every 40 minutes, Find the average time a customer spends in the shop. Also, Find the average time a customer must wait for service? For($M/E_2/1$): (FIFO/ ∞/∞) queueing model with $\lambda = \frac{6}{5}$ per hour and	BTL1 BTL2 BTL1 BTL1 BTL1 BTL1 BTL1	Remembering Understanding Remembering Remembering Remembering Remembering Remembering	CO5 CO5 CO5 CO5 CO5
21. 22. 23. 24. 25. 1. 2.	Distinguish between open and closed networks. What do you mean by bottleneck of a network? Write down the characteristics of an open Jackson network. Define a closed Jackson network. State Burke's theorem used in queueing theory. PART-B (13 Mark Questions) State and Derive Pollaczek - Khinchine formula. In a college canteen, it was observed that there is only one waiter who takes exactly 4 minutes to serve a cup of coffee once the order has been placed with him. If students arrive in the canteen at an average rate of 10 per hour, how much time one is expected to spend waiting for his turn to place the order. A one-man barber shop takes exactly 25 minutes to complete one haircut. If customers arrive at the barber shop in a Poisson fashion at an average rate of one every 40 minutes, Find the average time a customer spends in the shop. Also, Find the average time a customer must wait for service?	BTL1 BTL2 BTL1 BTL1 BTL1 BTL1 BTL1 BTL2	Remembering Understanding Remembering Remembering Remembering Remembering Analyzing Remembering Understanding	CO5 CO5 CO5 CO5 CO5 CO5

5.	Consider a queuing system where arrivals according to a Poisson distribution with mean $5/hr$. Find expected waiting time in the system if the service time distribution is Uniform from $t = 5$ min to $t = 15$ minutes	BTL4	Analyzing	CO5
6.	Find Ls, Lq, Ws and Wq. Automatic car wash facility operates with only one Bay. Cars arrive according to a Poisson process, with mean of 4 cars per hour and may wait in the facility's parking lot if the bay is busy. (i) If the service time for all cars is constant and equal to 10 min (ii) Uniform distribution between 8 and 12 minutes (iii) Normal distribution with mean 12 minutes and SD 3minutes (iv) Follows discrete distribution 4,8 & 15 minutes with corresponding probability 0.2,0.6&0.2	BTL4	Analyzing	CO5
7.	If a patient who goes to a single doctor clinic for a general check up has to go through 4 phases. The doctor takes on the average 4 minutes for each phase of the check up and the time taken for each phase is exponentially distributed. If the arrivals of the patients at the clinic are approximately Poisson at the average rate of 3 per hour, what is the average time spent by a patient (i) in the examination (ii) waiting in the clinic?	BTL4	Analyzing	CO5
8.	In a computer programs for execution arrive according to Poisson law with a mean of 5 per minute. Assuming the system is busy, Find L_q , L_s , W_q , W_s if the service time is uniform between 8 and 12 sec.	BTL1	Remembering	CO5
9.	Find the average calling rate for the services of the crane and what is the average delay in getting service? In a heavy machine shop, the overhead crane is 75% utilized. Time study observations gave the average slinging time as 10.5 minutes with a standard deviation of 8.8 minutes. If the average service time is cut to 8.0 minutes with a standard deviation of 6.0 minutes, how much reduction will occur on average in the delay of getting served?	BTL3	Applying	CO5
10.	In a two-station service facility, queues are not allowed. Customers arrive at the facility at an average rate of 4 per hour; the server at each station serves at the rate of 5 customers per hour. If arrivals are Poisson and service times are exponential, find the probability that an arriving customer enter the system (a) The probability that an arriving customer enters the system. (b) effective arrival rate. (c) Average (expected) number of customers in the system. Expected time of a customer spends in the system.	BTL2	Understanding	CO5
11.	In a charity clinic there are two doctors, one assistant doctor D1 and his senior doctor D2. The Junior doctor tests and writes the case sheet and then sends to the senior for diagnosis and Prescription of medicine. Only one patient is allowed to enter the clinic at a time due to capacity of space. A patient who has finished with D1 has to wait till the patient with D2 has finished. If Patients arrive according to Poisson with rate 1 per hour and service times are independent and Follow exponential with parameters 3 and 2, Find (i) the probability of a customer entering the Clinic, (ii) the average number of customers in the clinic, (iii) the average time spent by a patient Who entered the clinic.	BTL2	Understanding	CO5
12.	A repair facility is shared by a large number of machines for repair. The facility has two sequential stations with respective rates of service 2 per hour and 3 per hour. The cumulative failure rate of all the machines is 1	BTL3	Applying	CO5

	per hour. Assuming that the system behavior may be approximated by a two-station tandem queue			
	Find (i) the average number of customers in both stations,			
	(ii) The average repair time.			
	(iii) The probability that both service stations are idle.			
13.	There are two service stations S1 and S2 in a line with unlimited buffer	BTL2	Understanding	CO5
	space in between. Customers arrives S1 at a rate of 1 per every 2 min.			
	The service time rates of S1 and S2 are 1 and 2 per min. respectively.			
	Find (i) the average number of customers at S1 and S2 (ii) The average			
1.4	waiting times at S1 and S2 (iii) the total waiting time in the system.	D.T.I. O	XX 1 . 1	005
14.	In a book shop there are two sections, one for text books and the other	BTL2	Understanding	CO5
	for note books Customers from side arrived at the text book section at a			
	Poisson rate of 4 per hour and at the notebook section at a Poison rate of			
	3per hour. The service rates of T.B and N.B sections respectively 8 and 10 per hour. customer upon completion of service at T.B section is			
	equally likely to go to the N.B section or to leave the book shop, where			
	as a customer upon completion of service at N.B section will go to the			
	T.B section with probability 1/3 and will leave the book shop otherwise.			
	Find the joint steady state probability that there are 4 customers in the			
	T.B section and 2 customers In the N.B section. Find also the average			
	number of customers in the book shop and the average waiting time of			
	the customers in the shop. Assume that there is only one sales man in			
	each section.			
15.	In a departmental store, there are two sections namely grocery section	BTL4	Analyzing	CO5
	and perishable section. Customers from outside arrive the G-section			
	according to a Poisson process at a mean rate of 10 per hour and they			
	reach the p-section at a mean rate of 2 per hour. The service times at			
	both the sections are exponentially distributed with parameters 15 and 12			
	respectively. On finishing the job in G-section, a customer is equally			
	likely to go to the P-section or leave the store, where as a customer on			
	finishing his job in the P-section will go to the G-section with probability 0.25 and leave the store otherwise. Assuming that there is			
	only one salesman in each section, find (i) the probability that there are 3			
	customers in the G-section and 2 customers in the P-section, (ii) the			
	average waiting time of a customer in the store.			
16.	Consider a system with two servers where customers arrive from outside	BTL2	Understanding	CO5
	the system in a Poisson fashion at server 1 at the rate of 4 per hour and at			
	server 2 at a rate of 5 per hour. The customers are served at station 1 and			
	station2 at the rate of 8 hour and 10 hour respectively. A customer after			
	completion of service at server 1 is equally likely will go to server 2 or to			
	leave the system. A departing customer from server 2 will go to server 1,			
	25% of the time and will depart from the system otherwise. Find the			
	(i) The total arrival rates at server1 and server 2.			
	(ii) The limiting probability of n customers at server 1 and m			
	customers at server2			
	(iii) Expected number of customers in the system			
	Expected time a customer spends in the system			

17.	In a netv	work of	3 service	estation	1,2, 3 c	ustomer	arrive at	t 1,2,3 from	BTL4	Analyzing	CO5
	outside i	outside in accordance with Poisson process having rate 5, 10, 15									
	respectively. The service time at the stations are exponential with respect										
	rate 10, 50, 100, A customer completing service at station -1 is equally										
				ne system. Å							
	_	_		_				station 3. A			
		-	_			•	_	on 2 or leave			
	_					_	_	m consisting			
	•			_			•	tomer spend			
	in the sys		ations: (t	o) Exam	ine the a	verage ti	inc a cus	tomer spend			
18.			n notavor	lz tha fall	lovvina in	formatic	n oro giv	van.	BTL2	Understanding	CO5
16.	The open	II Jackso	II Hetwor	k the lon		HOI matic	on are giv	7 T	DILZ	Understanding	COS
	G:			1	r _{ij}	1	1 . 2	=			
	Station	C _j	$\mu_{\rm j}$	rj	i = 1	i =2	i =3	_			
	1	1	10	1	0	0.1	0.4				
	2	2	10	4	0.6	0	0.4				
	3	1	10	3	0.3	0.3	0				
	Find	(i) the	joint prol	bability f	or the nu	mber of	customer	rs in 1 st , 2 nd			
			d 3 rd stati					,			
							each statio	on.			
		` '					ers in the				
		` /	-				e system.	System			
	1	(17) th	с схреси		rt C (15)						
1	Consider	a single	server I					rival rate of	BTL2	Understanding	CO5
1								distribution	DILL	Onderstanding	CO3
								ining course			
								tion and the			
								rd deviation			
				•	exponenti	ai case)	to 4 mini	utes. Should			
	the serve				11			0	DET 4	A 1 '	005
2								0 minutes to	BTL-4	Analyzing	CO5
			•	•		-		nother car.If			
					stream a	ıt an ave	erage of o	one every 20			
	minutes.			_							
	(1) Avera	_			•						
	(2) Avera	-			-						
	(3) The A	_	_			•					
	(4) The <i>A</i>										
3	An avera	_				`			BTL-4	Analyzing	CO5
	exponent				_						
	complete	the prod	cess a car	ndidate n	nust pass	through	counters.	. Each			
	counter c	onsists o	of a single	e server,	service t	imes at e	each coun	ter are			
	exponent	ial with	the follov	wing mea	an times:	counter	1, 20 seco	onds;			
	_			_				ge evaluate			
	how man							_			
4		•						om outside	BTL-4	Analyzing	CO5
								nter arrival			
	times are		_								
	customer	-				-					
	customer	-				-					
	customer	-		-	_						
			•		_						
	service at station 2 ³ / ₄ of the customers complete the server and ¹ / ₄ return							10 /7 TOTULLI	l	1	1

	to server1.Find the expected number of customers at each server. Find			
	the average time a customer spends in the system.			
5.	There are two salesman in a ration shop one in charge of billing and	BTL-3	Applying	CO5
	receiving payment and the other in charge of weighing and delivering			
	the items. Due to limited availability of space, only one customer is			
	allowed to enter the shop that too when the billing clerk is free. The			
	customer who has finished his billing job has to wait until the delivery			
	section becomes free. If customers arrive in accordance with a Poisson			
	process at rate 1 and the service times of two clerks are independent and			
	have exponential rates of 3 and 2. Find			
	(a) The proportion of customers who enter the ration shop			
	(b) The average number of customers in the shop			
	The average amount of time that an entering customer spends in the			
	shop.			
