ESPACIOS DE ORLICZ ANISOTRÓPICOS VECTORIALES 2016

FERNANDO Y SONIA

1. Funciones convexas

Definición 1.1. Sea φ una función de \mathbb{R}^n en \mathbb{R} . Se dice que φ es convexa si para cualquier $x, y \in \mathbb{R}^n$ y $0 < \lambda < 1$ se verifica la siguiente designaldad:

$$\varphi[\lambda x + (1 - \lambda)y] \le \lambda \varphi(x) + (1 - \lambda)\varphi(y).$$

 $Si \ \varphi(0) = 0$, entonces $\varphi(\lambda x) \le \lambda \varphi(x)$ si $0 \le \lambda \le 1$ y $\varphi(\lambda x) \ge \lambda \varphi(x)$ si $\lambda \ge 1$.

Definición 1.2. Sea φ una función no trivial de \mathbb{R}^n en $[0,\infty]$. Se dice que φ es coercitiva si y sólo si $\lim_{|x|\to\infty} \frac{\varphi(x)}{|x|} = \infty$.

Definición 1.3. Sea φ una función convexa de \mathbb{R}^n en $[0,\infty]$. La conjugada (de Fenchel??? se llamará así???) φ^* de φ está dada por

$$\varphi^*: \mathbb{R}^n \to [0, \infty]$$

$$\varphi^*(x) = \sup_{x \in \mathbb{R}^n} \{ \langle x^*, x \rangle - \varphi(x) \}$$

La desigualdad de Fenchel/Young??? se satisface para todo $x, x^* \in \mathbb{R}^n$ y dice

$$\langle x, x^* \rangle \le \varphi(x) + \varphi^*(x^*)$$

Por Aubin, Thm. 4.3, p. 63 (chequear), para una función φ y $x \in \mathbb{R}^n$ tal que $\varphi(x) < \infty$ es posible encontrar $x^* \in \mathbb{R}^n$ tal que

$$\langle x, x^* \rangle = \varphi(x) + \varphi^*(x^*)$$

Definición 1.4. Una función no trivial φ de \mathbb{R}^n en \mathbb{R} se dice semicontinua inferior débil en x_0 si

$$\varphi(x_0) \le \liminf_{x \to x_0} \varphi(x)$$

La función φ se dice semicontinua inferior, si φ es semicontinua inferior en cada punto de $x \in \mathbb{R}^n$.

Teorema 1.5. Sea φ no trivial, convexa de \mathbb{R}^n en $[0,\infty]$. Entonces son equivalentes:

- 1. φ es acotada sobre un subconjunto abierto de \mathbb{R}^n ,
- 2. φ es localmente Lipschitz en el interior del dominio efectivo de φ , o sea, sobre el interior de $Dom(\varphi) = \{x \in \mathbb{R}^n : \varphi(x) < \infty\}.$

Demostración. Chequear prueba en Aubin, Thm 2.1, p. 25.

Notemos que si φ es acotada sobre subconjuntos acotados de \mathbb{R}^n , entonces $Dom(\varphi) = \mathbb{R}^n$ y φ es continua en \mathbb{R}^n .

Teorema 1.6. Sea φ una función no trivial, convexa y semicontinua inferior de \mathbb{R}^n en $[0,\infty]$ y φ^* la conjugada de Fenchel de φ . Son equivalentes:

- 1. φ es acotada sobre subconjuntos acotados de \mathbb{R}^n ,
- 2. φ^* es coercitiva.

Demostración. Gudrun p.360 para espacios de Banach gral.

Las propiedades de crecimiento de funciones convexas φ son importantes en la dualidad, reflexividad o separabilidad de espacios de Orlicz a valores vectoriales. Las condiciones de crecimiento más importantes que son las condiciones Δ_2 y ∇_2 aseguran que la función convexa φ puede ser comparada con las funciones φ_p donde $\varphi_p(x) = |x|^p$ para p > 1. En la teoría clásica de espacios de Orlicz, este resultado se encuentra en la Prop. 12 de Rao. En el caso de \mathbb{R}^n , prueba se encuentra en Desch. CHEQUEAR!!!!

Definición 1.7. Sea φ una función de \mathbb{R}^n a $[0,\infty]$.

La función φ se dice que satisface la condición Δ_2 si existen L>1 y $M\geq 0$ tal que $\varphi(2x)\leq L\varphi(x)$ para todo $x\in\mathbb{R}^n$ con $|x|\geq M$.

La función φ se dice que satisface la condición ∇_2 si existen l>1 y $M\geq 0$ tal que $\varphi(x)\leq \frac{1}{2l}\varphi(\frac{x}{l})$ para todo $x\in\mathbb{R}^n$ con $|x|\geq M$.

Hay una relación muy importante entre las condiciones de crecimiento de φ y su conjungada de Fenchel φ^* . Para funciones convexas $\varphi: \mathbb{R} \to [0, \infty)$ las relaciones están bien estudiadas en RAO. En DESCH (buscarlo!!!), se prueba el siguiente resultado.

Observación 1. Sea $\varphi: \mathbb{R}^n \to [0,\infty]$ y sea φ^* su conjugada de Fenchel. Sean φ y φ^* coercitivas. Entonces, $\varphi \in \Delta_2$ si y sólo si $\varphi^* \in \nabla_2$.

2. Espacios de Orlicz

Notamos con $\mathcal{M} := \mathcal{M}([0,T],\mathbb{R}^n)$ el conjunto de todas las funciones medibles definidas sobre [0,T] con valores en \mathbb{R}^n y escribimos $u=(u_1,\ldots,u_n)$ for $u\in\mathcal{M}$.

Definimos el espacio de Orlicz

$$L^{\Phi}(\mathbb{R}^n) = \{ u \in \mathcal{M} : \exists \lambda > 0, \int_0^T \Phi(\lambda^{-1}u) \, dx < \infty \}$$

A continuación definimos la clase de Orlicz $C^{\Phi} = C^{\Phi}([0,T],\mathbb{R}^n)$ del siguiente modo

$$C^{\Phi} := \{ u \in L^{\Phi}(\mathbb{R}^n) : \int_0^T \Phi(u) < \infty \}$$

OAV-2106 3

Para $u \in L^{\Phi}(\mathbb{R}^n)$ definimos

$$||u||_{L^{\Phi}} = \inf\{\lambda > 0 : \int_{0}^{T} \Phi(\lambda^{-1}u) \, dx \le 1\}$$

En la teoría clásica $\|\cdot\|_{L^\Phi}$ es llamada norma de Luxemburgo de u.

Teorema 2.1. $\|\cdot\|_{L^{\Phi}}$ es semicontinua inferior, o sea, para cada sucesión $\{u_n\}_{n\in\mathbb{N}}\subseteq L^{\Phi}(\mathbb{R}^n)$ que converge en c.t.p.a alguna función $u\in L^{\Phi}(\mathbb{R}^n)$ se tiene que

$$||u||_{L^{\Phi}} \leq \liminf_{n \to \infty} ||u_n||_{L^{\Phi}}$$

Demostración. La prueba para el caso clásico está en [RR91, Prop. 4, pp. 56-57]. Se supone que sale con modificaciones menores CHEQUEAR!!!!!! \Box

Teorema 2.2. $L^{\Phi}(\mathbb{R}^n)$ es un espacio lineal si y sólo si $\Phi \in \Delta_2$.

 $Demostraci\'on. \Rightarrow$) Sigue de [RR91, Thm. 2, pp. 46-47]. Y, la otra parte sale como en el Gudrum sin necesidad de aclarar que la medida es difusa ni que [0,T] tiene medida finita. \Box

Los siguientes resultados siguen las consideraciones de [Ska69, Sub-cap 4].

Teorema 2.3. Si $E \in \mathcal{A}$, |E| > 0 y $\Phi \in \Delta_2$. Entonces existe $u \in C^{\Phi}$ tal que $\beta u \notin L^{\Phi}(\mathbb{R}^n)$ para todo $\beta > 1$.

Corolario 2.4. Suspongamos que $\Phi \notin \Delta_2$, $E \in \mathcal{A}$, |E| > 0. Entonces existe $u \in L^{\Phi}(\mathbb{R}^n)$ tal que $\beta u \in C^{\Phi}$ para todo $0 \le \beta < 1$ y $\beta u \notin C^{\Phi}$ para todo $\beta \ge 1$.

3. Normas absolutamente continuas

Definición 3.1. Sea $\{u_n\} \subseteq L^{\Phi}(\mathbb{R}^n)$, $u \in L^{\Phi}(\mathbb{R}^n)$. Decimos que u_n converge monótonamente a u si existe una sucesión $\{\alpha_n\}_{n\in\mathbb{N}} \in L^1([0,T],\mathbb{R})$ con $0 \leq \alpha_n(t) \leq \alpha_{n+1}(t) \leq 1$, $\alpha_n \to 1$ en c.t.p y $u_n(t) = \alpha_n(t)u(t)$.

Lema 3.2. Sea $\Phi \in \Delta_2$ y $u_n \to u$ monótonamente. Entonces $\lim_{n \to \infty} \|u - u_n\|_{L^{\Phi}} = 0$.

Demostración. Ver [DG01] para demostraciión en detalle.

Proposición 3.3. Si $\Phi \notin \Delta_2$, entonces existe $u \in L^{\Phi}(\mathbb{R}^n)$ y una sucesión $\{u_n\} \subseteq L^{\Phi}(\mathbb{R}^n)$ tal que $u_n \to u$ monótonamente, pero $||u - u_n||_{L^{\Phi}}$ no converge a θ .

Demostraci'on. [Sch05]

Lema 3.4. Sea $\{u_n\}_{n\in\mathbb{N}}\subseteq L^\infty([0,T],\mathbb{R}^n)$. Si $\{u_n\}_{n\in\mathbb{N}}$ es uniformemente acotada y u_n converge a 0 en c.t.p. Entonces $||u_n||_{L^\Phi}\to 0$ para $n\to\infty$.

Demostración. Ver [DG01]. \Box

Definición 3.5. Sea $(\Omega, \mathcal{A}, \mu)$ un espacio de medida $y(B, \|\cdot\|)$ un espacio vectorial normado de funciones medibles de Ω en X. Sea $u \in B$

- 1. Decimos que u tiene norma absolutamente continua en el sentido fuerte si y sólo si $\|\chi E_n u\| \to 0$ para cada sucesión $E_n \in \mathcal{A}$ con $\chi E_n(w) \to 0$ para casi todo $w \in \Omega$.
- 2. Decimos que u tiene norma absolutamente continua en el sentido débil si y sólo si $\|\chi E_n u\| \to 0$ para cada sucesión $E_n \in \mathcal{A}$ con $\mu(E_n) \to 0$.

A continuación presentamos un ejemplo de que la absoluta continuidad de la norma en el sentido débil no implica la absoluta continuidad de la norma en el sentido fuerte.

Lema 3.6. Sea $\varphi:[0,\infty)\to[0,\infty)$ continua, monótona creciente con $\varphi(0)=0$ y tal que

$$\lim_{x \to 0^+} \frac{\varphi(2x)}{\varphi(x)} = \infty.$$

Entonces existe una función medible $u:[0,\infty)\to [0,1]$ tal que

$$\int_0^\infty \varphi(u(t)) dt \le 1, \quad y \quad \int_0^\infty \varphi(2u(t)) dt = \infty.$$

Ejemplo 1. Sea $\varphi(x) = \int_0^{|x|} (|x| - y) e^{\frac{-1}{y}} dy$, entonces φ es convexa, par, creciente en $[0, \infty)$, $\varphi(0) = \varphi'(0) = 0$ y $\lim_{x \to 0^+} \frac{\varphi(2x)}{\varphi(x)} = \infty$.

Sea $\|\cdot\|$ la norma de Luxemburgo con respecto a φ . Sea u construída de acuerdo al Lema anterior, entonces u tiene norma absolutamente continua en el sentido débil pero no en el sentido fuerte.

Demostración. Ver [Sch05, p.366].

Sea $D^{\Phi}(\mathbb{R}^n)$ el espacio lineal de todas las funciones de $L^{\Phi}(\mathbb{R}^n)$ que tienen norma absolutamente continua en el sentido débil.

Teorema 3.7. Sea $u \in L^{\Phi}(\mathbb{R}^n)$. Entonces, son equivalentes:

- 1. $u \in D^{\Phi}(\mathbb{R}^n)$
- 2. toda sucesión $\{u_n\}$ que converge monótonamente a u también converge en norma, o sea, $\|u u_n\|_{\Phi} \to 0$.

Demostración. Ver [Sch05, pp. 366-367].

Teorema 3.8. Sea $u \in L^{\Phi}(\mathbb{R}^n)$. Entonces son equivalentes:

- 1. u tiene norma absolutamente continua en el sentido fuerte;
- 2. u tiene norma absolutamente continua en el sentido débil y existe una sucesión $\Omega_1 \subset \Omega_2 \subset \cdots \subset [0,T]$ tal que $\|(1-\chi\Omega_k)u\|_{\Phi} \to 0$.
- 3. Si $u_n \to u$ monótonamente, entonces $||u u_n||_{\Phi} \to 0$

OAV-2106 5

Demostración. Ver [Sch05, p. 368]

4. La clausura de L^{Φ}

Definición 4.1. Con $E^{\Phi}(\mathbb{R}^n)$ notamos el conjunto de todas las funciones $u \in \mathcal{M}$ tal que existe una sucesión de funciones acotadas $\{u_n\}_{n\in\mathbb{N}}\subseteq L^{\Phi}(\mathbb{R}^n)$ con $\|u-u_n\|_{\Phi}\to 0$ para $n\to\infty$.

Observación 2. $E^{\Phi}(\mathbb{R}^n)$ es un subespacio lineal de $L^{\Phi}(\mathbb{R}^n)$.

Demostración. [Sch05, p. 369].

Teorema 4.2. $E^{\Phi}(\mathbb{R}^n) \subset C^{\Phi}(\mathbb{R}^n)$.

Demostración. [Sch05, pp. 369-370].

Teorema 4.3. $\varphi \in \Delta_2 \ sii \ E^{\Phi}(\mathbb{R}^n) = L^{\Phi}(\mathbb{R}^n).$

Demostración. Corolario 5.1 en [Sch05, pp. 371].

Teorema 4.4. Si u tiene norma absolutamente continua en el sentido fuerte, entonces $u \in E^{\Phi}(\mathbb{R}^n)$. Y como [0,T] tiene medida finita, lo mismo es cierto para cualquier u con norma absolutamente continua en el sentido débil, o sea $D^{\Phi}(\mathbb{R}^n) \subseteq E^{\Phi}(\mathbb{R}^n)$.

Demostración. [Sch05, p. 372].

De acuerdo a lo que sigue, lo anterior no tiene importancia!!!!!

Más aún,

Teorema 4.5. Como Φ está acotada sobre conjuntos acotados y [0,T] tiene medida finita, entonces $D^{\Phi}(\mathbb{R}^n) = E^{\Phi}(\mathbb{R}^n)$.

Demostración. [Sch05, p.373]

Corolario 4.6. Toda $u \in L^{\Phi}(\mathbb{R}^n)$ tiene norma absolutamente continua en el sentido débil sii $\Phi \in \Delta_2$.

Demostración. Cor. 5.2 en [Sch05, p. 373] \square

Corolario 4.7. Sea $\{u_n\}_{n\in\mathbb{N}}\subseteq E^{\Phi}(\mathbb{R}^n)$ una sucesión que converge monótonamente a alguna $u\in E^{\Phi}(\mathbb{R}^n)$, entonces $||u-u_n||_{\Phi}\to 0$.

Demostración. Cor. 5.3 en [Sch05, p.373] \Box

Definición 4.8. Para cualquier $u \in L^{\Phi}(\mathbb{R}^n)$ definimos

$$d_{E^{\Phi}(\mathbb{R}^n)}(u) := \inf\{\|u - v\|_{\Phi}, v \in E^{\Phi}(\mathbb{R}^n)\}.$$

Valen las siguientes propiedades:

- 1. $d_{E^{\Phi}(\mathbb{R}^n)}(u+v) \leq d_{E^{\Phi}(\mathbb{R}^n)}(u) + d_{E^{\Phi}(\mathbb{R}^n)}(v)$, para todos $u, v \in L^{\Phi}(\mathbb{R}^n)$,
- 2. $d_{E^{\Phi}(\mathbb{R}^n)}(\beta u) = |\beta| d_{E^{\Phi}(\mathbb{R}^n)}(u)$, para todo $u \in L^{\Phi}(\mathbb{R}^n)$ y para todo $\beta \in \mathbb{R}$.

Teorema 4.9. $Si \ u \in L^{\Phi}(\mathbb{R}^n) \ y$

$$u_n(w) = \begin{cases} u(w) & ||u(u)||_{\Phi} \le n \\ 0 & enotrocaso \end{cases}$$

entonces $d_{E^{\Phi}(\mathbb{R}^n)}(u) = \liminf_{n \to \infty} ||u - u_n||_{\Phi}$.

Demostración. La prueba sigue la demostración de [RR91, Prop. 3, pp. 92-92]. \Box

Definición 4.10. Definimos los subconjuntos de $L^{\Phi}(\mathbb{R}^n)$:

$$S^{\Phi} := \{ u \in L^{\Phi}(\mathbb{R}^n) : d_{E^{\Phi}(\mathbb{R}^n)}(u) < 1 \}$$

$$\overline{S}^{\Phi} := \{ u \in L^{\Phi}(\mathbb{R}^n) : d_{E^{\Phi}(\mathbb{R}^n)}(u) \le 1 \}$$

Teorema 4.11.

$$S^\Phi\subseteq C^\Phi\subseteq \overline{S}^\Phi$$

 $Si \Phi \notin \Delta_2$,

$$S^{\Phi} \subset C^{\Phi} \subset \overline{S}^{\Phi}$$

Demostración. [Sch05, pp. 374-375]

5. Completitud y separabilidad de $L^{\Phi}(\mathbb{R}^n)$

Teorema 5.1. Sea $\{u_n\}_{n\in\mathbb{N}}\subseteq L^{\Phi}(\mathbb{R}^n)$ una sucesión de Cauchy, i.e. para cada $\epsilon>0$ existe $n_0\in\mathbb{N}$ tal que $\|u_{n+m}-u_n\|_{\Phi}<\epsilon$ para todo $n\geq n_0$ y $m\geq 1$. Entonces existe $u\in L^{\Phi}(\mathbb{R}^n)$ tal que $\|u-u_n\|_{\Phi}\to 0$ para $n\to\infty$.

Demostración. [Sch05, pp. 375-376]

Teorema 5.2. Si $\Phi \notin \Delta_2$, entonces $L^{\Phi}(\mathbb{R}^n)$ NO es separable.

Demostración. [Sch05, p. 376]

Teorema 5.3. $E^{\Phi}(\mathbb{R}^n)$ es separable.

Demostración. [Sch05, p. 376]

Corolario 5.4. $L^{\Phi}(\mathbb{R}^n)$ es separable sii $\Phi \in \Delta_2$.

OAV-2106 7

6. Propiedades de dualidad de $L^{\Phi}(\mathbb{R}^n)$

Definición 6.1. Por $(L^{\Phi}(\mathbb{R}^n))^*$ notamos el conjunto de todas las funciones $F:L^{\Phi}(\mathbb{R}^n)\to\mathbb{R}$ con las siguientes propiedades:

- 1. F es lineal
- 2. existe M > 0 tal que $|F(u)| \le M||u||_{\Phi}$ para toda $u \in L^{\Phi}(\mathbb{R}^n)$ y $O_{\Phi}(F) := \inf\{M > 0 : \forall u \in L^{\Phi}(\mathbb{R}^n), |F(u)| \le M||u||_{\Phi}\}$

Definición 6.2. $F \in (L^{\Phi}(\mathbb{R}^n))^*$ se dice que tiene la propiedad de la convergencia monótona sii para cada $u \in L^{\Phi}(\mathbb{R}^n)$ y para cada sucesión $\{u_n\}_{n\in\mathbb{N}} \subseteq L^{\Phi}(\mathbb{R}^n)$ que converge monótonamente a u se tiene que $F(u_n) \to F(u)$.

Sea $P^{\Phi^*}(\mathbb{R}^n)$ el conjunto de todas las funciones con la propiedad de la convergencia monótona y $P^{\Phi^*}(\mathbb{R}^n) \subseteq (L^{\Phi}(\mathbb{R}^n))^*$.

Teorema 6.3.
$$(L^{\Phi}(\mathbb{R}^n))^* = P^{\Phi^*}(\mathbb{R}^n)$$

FALTA EL RESTO DEL TRABAJO DE [Sch05]

7. Operadores de Nemitsky

Sean $f: \Omega \times \mathbb{R}^{d_2} \to \mathbb{R}^{d_3}$, $u: \Omega \to \mathbb{R}^{d_2}$ y $\mathbf{f}u(x) = f(x, u(x)) \in \mathbb{R}^{d_3}$ con $x \in \mathbb{R}^{d_1}$.

Definición 7.1. Sea $u: \Omega \to \mathbb{R}^{d_2}$. Diremos que u es medible sii $u^{-1}(B) \in \mathcal{B}_{d_1}(\Omega) \ \forall B \in \mathcal{B}(\mathbb{R}^{d_2})$ donde $\mathcal{B}(E) = \sigma$ -álgebra de Borel.

Definición 7.2. f satisface la condición de Caratheodory si f(x, u) es medible en $x \forall u \ y$ es continua en u para $c.t.p \ x \in \Omega$.

Notamos con $\mathcal{M}(\Omega, \mathbb{R}^d)$ al conjunto de las funciones medibles Borel de Ω en \mathbb{R}^d .

Teorema 7.3. Sea $u: \Omega \to \mathbb{R}^{d_1}$. Si u es medible, entonces $f(u) \in \mathcal{M}(\Omega, \mathbb{R}^{d_3})$.

Demostración. Veamos que si $u \in \mathcal{M}(\Omega, \mathbb{R}^{d_1})$, entonces $u_i \in \mathcal{M}(\Omega, \mathbb{R})$ para $i = 1, \dots, d_1$ y donde $u_i = p_i \circ u$ siendo p_i la proyección.

Si
$$B \in \mathcal{B}(\mathbb{R})$$
, $u_i^{-1}(B) = u^{-1}(p_i^{-1}(B)) \in \mathcal{B}(\Omega)$ con $p_i^{-1}(B) \in \mathcal{B}(\mathbb{R}^{d_1})$.

Si u es simple, $u(s) = \sum_{i=1}^{n} \alpha_i \chi_{A_i}$ para $\alpha_i \in \mathbb{R}^{d_1}$.

Luego $f(u)(x) = f(x, u(x)) = \sum_{i=1}^{n} f(x, \alpha_i \chi_{A_i}) - (n-1)f(x, 0)$ resulta medible porque, debido a la condición de Caratheodory tanto f(x, 0) como cada $f(x, \alpha_i \chi_{A_i})$ son medibles. Observemos que

$$f(x, \alpha \chi_A) = \begin{cases} f(x, 0) & en \quad A^C \\ f(x, \alpha) & en \quad A \end{cases}$$

siendo f(x,0) y $f(x,\alpha)$ medibles en Ω .

Si u es medible de $\Omega \to \mathbb{R}^{d_1}$, existen funciones simples u_n tales que $u_n \to u$ "puntualmente". Ahora,

$$f(x, u(x)) = \lim_{n \to \infty} f(x, u_n(x))$$

en c.t.p $x \in \Omega$ siendo u_n medibles (por el paso anterior) porque f es continua en u para c.t.p de Ω . Además $f(x, u_n(x))$ es medible en x para todo u_n , luego f(x, u(x)) es medible en Ω (en c.t.p $x \in \Omega$, f(x, u(x)) es medible por ser el límite de medibles y en el conjunto de medida nula porque la pre-imagen es medible).

Lema 7.4. Supongamos que f(x, u) satisface la condición de Caratheodory, entonces $\forall \delta > 0$ $\exists \Omega_{\delta} \subset \Omega$ tal que $m(\Omega - \Omega_{\delta}) < \delta$, entonces $f : \Omega_{\delta} \times \mathbb{R}^{d_2} \to \mathbb{R}^{d_3}$ continua (con respecto a la variable combinada (x, u)).

Demostración. Siguiendo las mismas líneas que la demostración de [KZPS11, Lemma 17.1] obtenemos que para todo $n_0 \in \mathbb{N}$ y $\delta > 0$, obtenemos un $G = G(n_0, \delta)$ y un $\eta = \eta(\delta, n_0)$ tal que

$$|\Omega - G| < 2^{-n_0 - 1} \delta$$

У

$$|u_1 - u_2| < \eta$$
, $u_1, u_2 \in [-n_0, n_0]^{d_2}$ y $x \in G \Rightarrow |f(x, u_1) - f(x, u_2)| \le \frac{1}{n_0}$

Ahora consideramos una "partición/descomposición" $[-n_0, n_0]^{d_2} = \bigcup_{k=1}^N Q_k$, donde diam $(Q_j) < \overline{B(0, n_0)} = \bigcup_{i=1}^q B(u_i, \frac{1}{2k_0})$ Por el Teorema de Luisin, existe para cada función $f(s, u_i)$ un conjunto cerrado $G_{n_0}^{(i)}$ tal que

$$|G_{k_0} - G_{n_0}^{(i)}| < \frac{\delta}{2^{n_0 + 1} q} \ i = 1, \dots, q$$

y donde $f(s, u_i)$ es continua.

Ponemos $\Omega_{n_0} = \bigcap_{i=1}^q G_{n_0}^{(i)}$, entonces

$$|G_{k_0} - \Omega_{n_0}| = |G_{k_0} - \bigcap_{i=1}^q G_{n_0}^{(i)}| \le \sum_{i=1}^q |G_{k_0} - G_{n_0}^{(i)}| \le 2^{-n_0 - 1} \delta$$

y como $|\Omega - \Omega_{n_0}| < 2^{-n_0 - 1}\delta$, entonces $|\Omega - G_{k_0}| < 2^{-n_0}\delta$.

Consideramos la función $f_{n_0}(s, u)$, $s \in \Omega_{n_0}$, $u \in \overline{B(0, n_0)}$ definida por su valor en u = ???? combinación convexa o algo así!!!! BUSCAR PROGRAMACIÓN LINEAL SIMPLEX!!!!

REFERENCIAS

- [DG01] W. Desch and R. Grimmer. On the well-posedness of constitutive laws involving dissipation potentials. Trans. Amer. Math. Soc, (353):5095-5120, 2001.
- [KZPS11] M.A. Krasnosel'skii, P.P. Zabreyko, E.I. Pustylnik, and P.E. Sobolevski. Integral operators in spaces of summable functions. Mechanics: Analysis. Springer Netherlands, 2011.
- [RR91] M.M. Rao and Z.D. Ren. Theory of Orlicz spaces. M. Dekker, 1991.
- [Sch05] Gudrun Schappacher. A notion of orlicz spaces for vector valued functions. Applications of Mathematics, 50(4):355–386, 2005.
- [Ska69] Michael Skaff. Vector valued orlicz spaces generalized n-functions. i. Pacific Journal of Mathematics, 28(1):193–206, 1969.