# AN ASSISTIVE WHEELCHAIR-MOUNTED



# FRISBEE LAUNCHER





David Barsoum, Alexander Kaneko, Alex Chen, Nathan Lam

### Problem

Due to mobility issues in the shoulder and elbow, those who use wheelchairs cannot throw a frisbee autonomously to play with their dog, friends, or family.

**Launch System** 

Springs, clips,

bearings, etc.

Launch System HAS-A

# Objective

Design a wheelchair-mounted projectilelaunching device to assist clients with throwing frisbees.

## Systems Diagram

#### **Wheelchair Mounting**

#### **Electronic Control** System

- Launch button
- Arduino
- Relay
- Battery

Initial cardboard launcher



Figure 2: Top view of proofof-concept.

Manually-operated spring-powered launcher

Designs



Figure 3: Manual launcher being used to launch a frisbee.

#### Motorized launcher with plastic gears



Figure 4: Motorized launcher integrated with electronics.

### Figure 1: Systems diagram of proposed design.

Motor

# Requirements

#### Subsystem #1: Launcher

- The device must have a range of 20 feet.
- The device must not present hazardous parts towards the client.
- The device must be able to launch frisbees.

#### Subsystem #2: Mounting

- The client must be able to mount the device to the wheelchair independently.
- The device must stay mounted to the wheelchair during any movements.
- The device must maintain the balance of the wheelchair during any movements.

#### Subsystem #3: Electronics

- The switch must be operable with minimal hand movement only.
- The device must be powered with at most 1 primary battery.

### Features

- Launches frisbees up to 55 feet
- Supports a large range of frisbee sizes
- Switch adapted and accessible
- Tested with precision machining
- Made with **easily obtainable materials** (wood, cardboard, acrylic, metal)

Motorized launcher with aluminum gears



Figure 5: CAD assembly of motorized launcher.

# Design Studies

#### Clip Testing

Measured launching distances of prototype with and without clip to improve stability without sacrificing power.

#### **Spring Testing**

Observed the impact of spring constant on launch distance by testing the launcher with springs of varying levels of strength.

#### **Mount Stability Study**

Tested the stability of two mounting systems by considering how well they supported weight.

### Conclusions

- Device should ideally be manufactured with high-strength materials
- More measures required to ensure client safety

### Future Extensions

- Adapt arm to other projectiles
- More robust and versatile mounting
- Casings/barriers to protect the user





