Математический анализ Лекция 2

Емельянов Д.П., Никитин А.А.

МГУ им. М.В. Ломоносова, факультет ВМК Кафедра общей математики

Онлайн-курс «Математике в Data Science» *9 марта, 2021г.*

Определение

Отображение $x:\mathbb{N}\longrightarrow\mathbb{R}$ называется *числовой последовательностью*.

Числа $x(n) \equiv x_n$ называются элементами последовательности. Обозначение последовательности в целом: $\{x_n\}$, элемента последовательности: x_n .

ПРИМЕРЫ

- 1. $x_n = n$ последовательность натуральных чисел.
- 2. $x_n = \frac{1}{n}$.
- 3. $x_1 = 0, x_2 = 1, x_n = x_{n-2} + x_{n-1}$ при n > 2 последовательность чисел Фибоначчи.
- 4. $x_1 = a, x_n = x_{n-1} + b$ при n > 1 арифметическая прогрессия.
- 5. $x_1 = a, x_n = x_{n-1} \cdot b$ при n > 1 геометрическая прогрессия.
- 6. $x_n = 0$ тождественный нуль.

Определение

Последовательность $\{x_n\}$ называется бесконечно малой (б.м.), если

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} \ : \ \forall n \geqslant N(\varepsilon) \Rightarrow |x_n| < \varepsilon.$$

Обозначение: $x_n \xrightarrow[n \to +\infty]{} 0$.

Определение

Последовательность $\{x_n\}$ называется бесконечно большой, если

$$\forall M > 0 \ \exists N(M) \in \mathbb{N} \ : \ \forall n \geqslant N(M) \Rightarrow |x_n| > M.$$

Обозначение: $x_n \xrightarrow[n \to +\infty]{} \infty$.

Утверждение

$$x_n \to \infty \Longleftrightarrow \frac{1}{x_n} \to 0, \quad n \to +\infty.$$

Доказательство.

$$\forall M > 0 \; \exists N(M) \in \mathbb{N} \; : \; \forall n \geqslant N(M) \Rightarrow |x_n| > M \Longleftrightarrow$$

$$\Longleftrightarrow \forall \varepsilon = \frac{1}{M} > 0 \; \exists N_1(\varepsilon) = N(M) \in \mathbb{N} \; : \; \forall n \geqslant N_1(\varepsilon) \Rightarrow \left| \frac{1}{x_n} \right| < \varepsilon.$$

ПРИМЕР

$$x_n = \frac{1}{n}$$
.

Решаем уравнение $|x_n| < \varepsilon$.

$$\frac{1}{n} < \varepsilon, \quad n > \frac{1}{\varepsilon}, \quad N(\varepsilon) = \left\lceil \frac{1}{\varepsilon} \right\rceil.$$

$$\forall \varepsilon > 0 \; \exists N(\varepsilon) = \left\lceil \frac{1}{\varepsilon} \right\rceil \; : \; \forall n \geqslant N(\varepsilon) \Rightarrow \left| \frac{1}{n} \right| < \varepsilon.$$

Итог: $\frac{1}{n} \to 0$ при $n \to +\infty$.

Пример

 $x_n = n$.

Последовательность $\frac{1}{n}$ является б. м. $\implies n \to \infty$ при $n \to +\infty$.

Свойства в.м. последовательностей

<u>ТЕОРЕМА 1</u>: 1. Если $\{x_n\}$ – б.м., то $\{x_n\}$ – ограничена $(\exists M > 0 : \forall n \in \mathbb{N} \implies |x_n| < M)$.

- 2. Если $\{x_n\}$ б.м., $\{y_n\}$ ограничена, то $\{x_n\cdot y_n\}$ б.м.
- 3. Если последовательности $\{x_n\}$ и $\{y_n\}$ б.м., то и $\{x_n\pm y_n\}$, $\{x_n\cdot y_n\}$ б.м.

является б.м. Теорема доказана.

```
Доказательство. 1. Пусть \{x_n\} – бесконечно малая.
Фиксируем \varepsilon = 1, и номер N_0(\varepsilon) такой, что \forall n \geqslant N_0
выполнено: |x_n| < \varepsilon. Пусть M = \max\{1, |x_1|, |x_2|, \dots, |x_{n_0-1}|\}, то
\forall n \in \mathbb{N} \Rightarrow |x_n| \leqslant M.
2. Пусть \exists A \in \mathbb{R} : \forall n \in \mathbb{N} \Rightarrow |y_n| \leqslant A.
и \forall \varepsilon > 0 \; \exists N_0(\varepsilon) \in \mathbb{N} \; : \; \forall n \geqslant N_0(\varepsilon) \Rightarrow |x_n| < \frac{\varepsilon}{\Lambda}.
Тогда:
\forall \varepsilon > 0 \ \exists N_0(\varepsilon) : \forall n \geqslant N_0(\varepsilon) \Rightarrow |x_n \cdot y_n| = |x_n| \cdot |y_n| < \frac{\varepsilon}{\Lambda} \cdot A = \varepsilon.
3.1. Пусть:
\forall \varepsilon > 0 \; \exists N_1(\varepsilon) : \forall n \geqslant N_1 \Rightarrow |x_n| < \varepsilon/2; \; \forall \varepsilon > 0,
\exists N_2(\varepsilon) : \forall n \geqslant N_2 \Rightarrow |y_n| < \varepsilon/2;
Тогда
\forall \varepsilon > 0 \ \exists N_0 = \max\{N_1, N_2\} : \forall n \geqslant N_0 \Rightarrow |x_n \pm y_n| \leqslant |x_n| + |y_n| < \varepsilon.
3.II. \{x_n \cdot y_n\} — произведение б.м. на ограниченную \implies
```

ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ

<u>ОПРЕДЕЛЕНИЕ</u>: Число $a \in \mathbb{R}$ называется пределом числовой последовательности $\{x_n\}$, если последовательность $\{x_n - a\}$ является бесконечно малой, т.е.

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) : \forall n \geqslant N(\varepsilon) \Rightarrow |x_n - a| < \varepsilon \iff a - \varepsilon < x_n < a + \varepsilon.$$

Обозначение:
$$a=\lim_{n\to +\infty} x_n$$
 или $x_n\xrightarrow[n\to +\infty]{}a.$

Сходящаяся последовательность

<u>ОПРЕДЕЛЕНИЕ</u>: Если $\lim_{n\to\infty} x_n = a$, то говорят, что последовательность $\{x_n\}$ сходится к числу a. Последовательность, имеющая конечный предел, называется сходящейся. Последовательность, не имеющая предела называется расходящейся. Обозначение: $x_n \rightarrow \infty$.

$$x_n
ightharpoonup,$$
 если $\forall a \in \mathbb{R} \ \exists \varepsilon_0(a) > 0 : \forall n \in \mathbb{N} \ \exists N \geqslant n, \ |x_N - a| \geqslant \varepsilon_0.$

Примеры

$$1. x_n = \frac{\sin n}{n} \to 0$$

2.
$$x_n = \frac{n}{n+1} \to 1;$$

3. $x_n = (-1)^n \neq 0;$

3.
$$x_n = (-1)^n / 2$$

Свойства сходящихся последовательностей

Teopema 2:

- 1. Предел сходящейся последовательности если существует, то единственнен;
- 2. Всякая сходящаяся последовательность является ограниченной;
- 3. Пусть $\lim_{n \to \infty} x_n = a$, $\lim_{n \to \infty} y_n = b$, тогда:

$$\lim_{n\to\infty} (x_n \pm y_n) = a \pm b; \quad \lim_{n\to\infty} (x_n \cdot y_n) = a \cdot b;$$

$$\lim_{n\to\infty} \frac{x_n}{y_n} = \frac{a}{b}, \quad y_n \neq 0, \ b \neq 0;$$

Доказательство.

- 1. От противного. Пусть у последовательности x_n существуют два различных предела a и b. Тогда $x_n = a + \alpha_n = b + \beta_n$, где α_n и $\beta_n 6$.м. последовательности. Откуда, $b a = \alpha_n \beta_n \to 0 \implies a = b$ противоречие.
- 2. Аналогично доказательству пункта 2 из теоремы 1.
- 3. Пусть $x_n = a + \alpha_n$, $y_n = b + \beta_n$, где α_n и β_n б.м. последовательности.

Тогда
$$x_n \pm y_n = (a \pm b) + (\alpha_n \pm \beta_n),$$

 $x_n \cdot y_n = (a + \alpha_n) \cdot (b + \beta_n) = ab + (a\beta_n + b\alpha_n + \alpha_n\beta_n).$

Для частного двух последовательностей получаем:

$$\left|\frac{x_n}{y_n} - \frac{a}{b}\right| = \left|\frac{a + \alpha_n}{b + \beta_n} - \frac{a}{b}\right| = \left|\frac{ab + \alpha_n b - ab - a\beta_n}{y_n b}\right| = \left|\frac{\alpha_n b - \beta_n a}{y_n b}\right|$$

Не ограничивая общности считаем, что b>0. Тогда

$$orall arepsilon > 0 \ \exists N(arepsilon) : orall n \geqslant N \ \Rightarrow \ b - arepsilon < y_n < b + arepsilon \Leftrightarrow \{arepsilon = b/2 > 0\} \Leftrightarrow \Leftrightarrow 0 < rac{b}{2} < y_n < rac{3b}{2} \Rightarrow rac{1}{y_n} < rac{2}{b} \Rightarrow rac{1}{y_n b} < rac{2}{b^2} \Rightarrow rac{1}{y_n b} \cdot |lpha_n b - eta_n a| = \ = (\text{б.м.}) \cdot (\text{orp.}) = \text{б.м.} \ \text{Откуда} \ \lim_{n \to \infty} rac{x_n}{y_n} = rac{a}{b}.$$

Теорема доказана.

Предельный переход и неравенства

 $\underline{\text{ТЕОРЕМА 3}}$: Пусть существуют пределы: $\lim_{n \to \infty} x_n = a$,

 $\lim_{\substack{n \to \infty \\ \text{выполнено: } x_n < y_n}} y_n = b$. Причём a < b. Тогда, начиная некоторого номера

Следствие

Пусть существуют пределы: $\lim_{n \to \infty} x_n = a$, $\lim_{n \to \infty} y_n = b$. Если

∃*N* : ∀*n* \geqslant *N* выполнено

- 1. $x_n > y_n$, to $a \ge b$;
- 2. $x_n \geqslant y_n$, to $a \geqslant b$;
- 3. $x_n > b$, to $a \ge b$;
- 4. $x_n \geqslant b$, to $a \geqslant b$.

ТЕОРЕМА О ДВУХ МИЛИЦИОНЕРАХ

ТЕОРЕМА 4: Пусть последовательности $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ таковы, что $\forall n \geqslant N \in \mathbb{N}$ имеет место неравенство $x_n \leqslant y_n \leqslant z_n$. Тогда, если при этом последовательности $\{x_n\}$ и $\{z_n\}$ сходятся к одному и тому же пределу, то и последовательность $\{y_n\}$ также сходится к тому же пределу.

Доказательство.

Пусть $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = a$. Для произвольного $\varepsilon>0$ выберем N_1 и N_2 так, чтобы при $\forall n\geqslant N_1$ выполнялось $a-\varepsilon\leqslant x_n$, а при $n\geqslant N_2$ выполнялось $z_n< a+\varepsilon$.

Тогда при $\forall n\geqslant N=\max\{N_1,N_2\}$ получаем:

$$a - \varepsilon < x_n \leqslant y_n \leqslant z_n < a + \varepsilon$$
,

или $|y_n-a|<arepsilon$, т.е. $\lim_{n o\infty}y_n=a$. Теорема доказана.

Монотонные последовательности

ОПРЕДЕЛЕНИЕ: Последовательность $\{x_n\}$ называется неубывающей (невозрастающей), если для $\forall n \in \mathbb{N}$ справедливо неравенство: $x_n \leqslant x_{n+1}$ ($x_n \geqslant x_{n+1}$).

Обозначение: $x_n \nearrow (x_n \searrow)$.

<u>ОПРЕДЕЛЕНИЕ</u>: Последовательность $\{x_n\}$ называется монотонной, если она является либо неубывающей, либо невозрастающей.

ЗАМЕЧАНИЕ: Если элементы неубывающей (невозрастающей) последовательности для всех номеров удовлетворяют строгому неравенству $x_n < x_{n+1}$ ($x_n > x_{n+1}$), то эту последовательность называют *строго* возрастающей (убывающей).

Теорема Вейерштрасса (Критерий сходимости монотонной последовательности):

Для того, чтобы монотонная последовательность имела предел, необходимо и достаточно, чтобы она была ограниченной. **Доказательство**. *Необходимость*. Пусть x_n сходится. Тогда она ограничена в силу свойств сходящихся последовательностей. *Достаточность*. Пусть $x_n \nearrow$ и ограничена. Тогда у неё существует точная верхняя грань M такая, что $\forall n \in \mathbb{N} \implies x_n \leqslant M$, и $\forall \varepsilon > 0 \; \exists N = N(\varepsilon) \in \mathbb{N} : x_N > M - \varepsilon$. Тогда для любого $n \geqslant N$ справедливо $M - \varepsilon < x_N \leqslant x_n \leqslant M$, то есть $|x_n - M| < \varepsilon$, то есть M – предел. Теорема доказана.

Предельная точка множества

Определение: Точка $p \in \mathbb{R}$ называется предельной точкой множества $\mathbf{X} \subset \mathbb{R}$, если любая окрестность этой точки содержит бесконечное подмножество множества Х: $\forall \delta > 0$ множество $(p - \delta, p + \delta) \cap X$ бесконечно. **Обозначение**: X^* (множество предельных точек), $p \in X^*$.

Определение: Множество $\overline{X} = X \cup X^*$ называется замыканием множества X.

Примеры

1.
$$\mathbf{X} = (0,1) \cup \{2\}, \quad \mathbf{X}^* = [0,1];$$

2. $\mathbf{X} = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}, \quad \mathbf{X}^* = \{0\};$
3. $\mathbf{X} = \mathbb{Q}, \quad \mathbf{X}^* = \overline{\mathbf{X}} = \mathbb{R}.$

3.
$$\mathbf{X} = \mathbb{O}$$
. $\mathbf{X}^* = \overline{\mathbf{X}} = \mathbb{R}$.

Определение

 $\overline{\Omega}_1 < n_2 < \ldots < n_k < \ldots$ – некоторая последовательность, а $n_1 < n_2 < \ldots < n_k < \ldots$ – строго возрастающая последовательность натуральных чисел, то последовательность x_{n_1}, x_{n_2}, \ldots называется подпоследовательностью (п./п.) последовательности $\{x_n\}$.

Обозначение: $\{x_{n_k}\}$.

Примеры

- 1. Подпоследовательность $1,3,5,\ldots$ нечётных чисел, взятых в их естественном порядке, является п./п. последовательности натуральных чисел.
- 2. Последовательность $3,1,5,\ldots$ такой не является нарушен порядок.

Утверждение

Пусть последовательность $\{x_n\}$ сходится к пределу a. Тогда любая её п./п. сходится к тому же пределу a.

Доказательство.

Фиксируем $\forall \varepsilon > 0$. Т.к. $x_n \to a$, то

$$\exists N(\varepsilon) : \forall n \geqslant N(\varepsilon) \Rightarrow |x_n - a| < \varepsilon.$$

Далее, т.к. $n_k\geqslant n$, то $\forall n_k\geqslant n\geqslant N(\varepsilon)$ элементы последовательности $\{x_{n_k}\}$ удовлетворяют неравенству $|x_{n_k}-a|<\varepsilon$, а это и означает, что п./п. $x_{n_k}\xrightarrow[k\to\infty]{}a$. Теорема доказана.

Определение

ОПРЕДЕЛЕНИЕ: Точка $x \in \mathbb{R}$ называется частичным пределом последовательности $\{x_n\}$, если из этой последовательности можно выделить п./п., сходящуюся к пределу x.

Теорема Больцано-Вейерштрасса

Каждая ограниченная числовая последовательность содержит сходящуюся подпоследовательность.

Доказательство. Рассмотрим множество $X = \operatorname{im} x_n$ – множество всех значений последовательности. По условию X – ограниченное. Если X – конечное, то утверждение теоремы очевидно (так как при больших номерах n элементы последовательности будут вынуждены начать повторяться). Иначе рассмотрим также множество

$$Y = \{x \in \mathbb{R} : |X \cap (x, +\infty)| = +\infty\},\$$

где $|X\cap (x,+\infty)|$ – количество элементов (мощность) множества. Y не пусто, так как X ограничено и бесконечно, Y ограничено сверху, так как X ограничено, следовательно существует $L=\sup Y$. Покажем, что L является предельной точкой. Действительно, из определения ТВГ, $\forall \varepsilon=1/n\;\exists k=k(n): L-\varepsilon< x_k\leqslant L$. Последнее утверждение совпадает с утверждением, что $x_{k_n}\to L$. Теорема доказана.

Обозначим через \mathbf{X}^* – множество предельных точек последовательности $\{x_n\}$, и рассмотрим следующие примеры:

Примеры

1.
$$x_n = (-1)^n$$
, $\mathbf{X}^* = \{-1, 1\}$.
2. $x_n = \left\{1, 1, \frac{1}{2}, 1, \frac{1}{2}, \frac{1}{3}, \dots, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots\right\}$, $X^* = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \cup \{0\}$.
3. $x_n = \left\{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \dots\right\}$, $\mathbf{X}^* = [0, 1]$.

Критерий Коши

Фундаментальная последовательность

$$\forall \varepsilon > 0 \; \exists N(\varepsilon) \; : \; \forall n \geqslant N(\varepsilon), p \in \mathbb{N} \; \Rightarrow \; |x_{n+p} - x_n| < \varepsilon.$$

Эквивалентное определение

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) : \forall n, m \geqslant N(\varepsilon) \Rightarrow |x_n - x_m| < \varepsilon.$$

Критерий Коши

Критерий Коши сходимости ЧП

Пусть $\{x_n\}$ – числовая последовательность. Тогда $\{x_n\}$ сходится $\iff \{x_n\}$ фундаментальна.

ЛЕММА

Любая фундаментальная последовательность ограничена. **Доказательство.**

Зафиксируем $\varepsilon=1>0$. Для этого ε найдём номер N такой, что $\forall n,m\geqslant N$ выполнено: $|x_n-x_m|<1$. В частности, тогда $|x_n-x_N|<1$ для $\forall n\geqslant N$. Следовательно для таких n:

$$|x_n| = |x_n - x_N + x_N| \le |x_n - x_N| + |x_N| < 1 + |x_N|.$$

Положим $M=\max |x_1|,\dots,|x_{N-1}|,1+|x_N|.$ Тогда неравенство $|x_n|\leqslant M$ выполняется для $\forall n\in\mathbb{N}.$ Лемма доказана.

Критерий Коши

Доказательство критерия Коши

<u>Необходимость.</u> Пусть $x_n \xrightarrow[n \to \infty]{} x$. Тогда

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) : \forall n \geqslant N(\varepsilon) \Rightarrow |x_n - x| < \varepsilon/2.$$

Поэтому, $\forall n,m\geqslant N(\varepsilon)\Rightarrow |x_n-x_m|\leqslant |x_n-x|+|x-x_m|<\varepsilon/2+\varepsilon/2=\varepsilon.$

<u>Достаточность.</u> По предыдущей лемме, фундаментальная последовательность ограничена. По теореме Больцано-Вейерштрасса у неё найдётся сходящаяся п./п. Пусть $x_{n_k} \xrightarrow[k \to \infty]{} x$. Докажем, что и вся последовательность $x_n \xrightarrow[n \to \infty]{} x$. Выберем произвольное $\varepsilon > 0$.

$$\exists \lim_{k \to \infty} x_{n_k} = x \ \Rightarrow \ \exists K(\varepsilon) : \forall k \geqslant K(\varepsilon) \Rightarrow |x_{n_k} - x| < \varepsilon/2;$$

$$\{x_n\}$$
 — фундаментальна $\Rightarrow \exists N(arepsilon): orall n, m \geqslant N(arepsilon) \Rightarrow |x_n-x_m| < arepsilon/2$

Положим $M=\max\{K(\varepsilon),N(\varepsilon)\}$. Тогда $n_M\geqslant n_{N(\varepsilon)}\geqslant N,\ n_M\geqslant n_{K(\varepsilon)}\geqslant K$. Следовательно, $\forall n\geqslant N(\varepsilon)\ |x_n-x|\leqslant |x_n-x_{n_M}|+|x_{n_M}-x|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$. Теорема полностью доказана.

Десятичное разложение

$$r_n=arepsilon_0+arepsilon_1\cdot rac{1}{10}+arepsilon_2\cdot rac{1}{10^2}+\ldots+arepsilon_n\cdot rac{1}{10^n}$$
, где $arepsilon_0\in\mathbb{Z}$, $arepsilon_n=\{0,1,\ldots,9\}$; $orall arepsilon>0$ и $orall arphi\in\mathbb{N}$ получим:

$$|r_n - r_{n+p}| = \sum_{k=n+1}^{n+p} \varepsilon_k \cdot \left(\frac{1}{10}\right)^k < 9 \cdot \sum_{k=n+1}^{n+p} \left(\frac{1}{10}\right)^k = 9 \cdot \frac{1}{9 \cdot 10^n} = \frac{1}{10^n} < \varepsilon,$$

при
$$n \geqslant N(\varepsilon) = \left\lfloor \frac{\ln \varepsilon}{\ln (1/10)} \right\rfloor + 1.$$

Гармонический ряд

$$H_{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n};$$

$$\exists \varepsilon_{0} > 0 : \forall n \in \mathbb{N}, \ \exists p \in \mathbb{N} \ \Rightarrow \ |x_{n} - x_{n+p}| \geqslant \varepsilon_{0}?$$

$$|H_{n} - H_{n+p}| = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+p} = \ \{p = n\} =$$

$$= \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{n}{2n} = \frac{1}{2} = \varepsilon_{0} \ \Rightarrow \ \nexists \lim_{n \to \infty} H_{n}.$$

Исследовать предел
$$x_n = \left(1 + \frac{1}{n}\right)^n$$
. Применим формулу бинома Ньютона:

$$(a+b)^{n} = C_{n}^{0}a^{n}b^{0} + C_{n}^{1}a^{n-1}b^{1} + C_{n}^{2}a^{n-2}b^{2} + \dots + C_{n}^{n}a^{0}b^{n},$$

$$C_{n}^{k} = \frac{n!}{k!(n-k)!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1)}{k!}.$$

Тогда:

$$x_n = 1 + \frac{C_n^1}{n} + \frac{C_n^2}{n^2} + ... + \frac{C_n^n}{n^n}.$$

При росте n: растёт число слагаемых, каждое слагаемое не убывает (так как C_n^k при фиксированном $k \nearrow$ по n). Следовательно, $x_n \nearrow$.

$$x_{n} = 1 + \frac{C_{n}^{1}}{n} + \frac{C_{n}^{2}}{n^{2}} + \dots + \frac{C_{n}^{n}}{n^{n}}.$$

$$\frac{C_{n}^{k}}{n^{k}} = \frac{1}{k!} \cdot \frac{n}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdot \dots \cdot \frac{n-k+1}{n} \leqslant \frac{1}{k!}.$$

Оценим x_n .

$$x_n \leq 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \leq 1 + 1 + \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}} \leq 3.$$

Итого, $x_n \nearrow u$ ограничена, по теореме Вейерштрасса она имеет предел.

Обозначение:
$$e = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$$
 — число Эйлера. $e \approx 2,7182818285$.

<u>Рекомендуемые задачи для решения</u>

«Листочки» — 3.1, 3.2, 3.6, 3.7, 3.8, 3.9, 3.10(абв), 4.4, 4.5(а), 6.1(абг).