

# MIPT Speech Technology 2022

# Lecture #5 STFT & Keyword Spotting



#### Plan

- From Fourier Transform to Short Time Fourier Transform
  - empirical examples
  - windowing
  - scaling
- Keyword Spotting
  - problem formulation
  - challenges
  - metrics
  - architectures
  - benchmarks
- Homework

## Why do we need spectrograms? $e^{-rac{(t-T/2)^2}{eta}}\sin(2\pi u t + lpha t^2)$

## Why do we need spectrograms? $e^{-\frac{(t-T/2)^2}{\beta}}\sin(2\pi\nu t + \alpha t^2)$

$$e^{-rac{(t-T/2)^2}{eta}}\sin(2\pi
u t+lpha t^2)$$



## Why do we need spectrograms? $e^{-\frac{(t-T/2)^2}{\beta}}\sin(2\pi\nu t + \alpha t^2)$

$$e^{-rac{(t-T/2)^2}{eta}}\sin(2\pi
u t+lpha t^2)$$





## Why do we need spectrograms? $e^{-rac{(t-T/2)^2}{eta}}\sin(2\pi u t + lpha t^2)$

$$e^{-rac{(t-T/2)^2}{eta}}\sin(2\pi
u t+lpha t^2)$$



## Why do we need spectrograms? $e^{-rac{(t-T/2)^2}{eta}}\sin(2\pi u t + lpha t^2)$

$$e^{-rac{(t-T/2)^2}{eta}}\sin(2\pi
u t+lpha t^2)$$



#### Spectrogram: Short Time Fourier Transform



#### Why do we need spectrograms?

#### Time Domain





#### Why do we need spectrograms?



Time Domain



10000 15000 20000 25000 30000 35000

#### **FFT**



#### Why do we need spectrograms?













## Spectrogram: window length?



## Spectrogram: window length?



#### Spectrogram: window length?



- tradeoff between time-domain and frequency-domain resolution
- typical values:
  - window\_length = 25ms
  - o hop\_length = 10ms

#### Spectrogram: Logarithmic Scale



#### Spectrogram: Logarithmic Scale



 inspired by human ear sensitivity: we don't perceive loudness on a linear scale but rather on a logarithmic scale

#### Spectrogram: Mel Scale

$$m[mel] = 1127 \ln(1 + rac{f[Hz]}{700})$$

inspired by human ear sensitivity

```
mel_scaler = torchaudio.transforms.MelScale(
    n_mels=n_mels,
    sample_rate=sr,
    n_stft=n_fft // 2 + 1
)

plt.figure(figsize=(20, 5))
plt.imshow(mel_scaler.fb.T)
plt.xlabel('Hertz Scale')
plt.ylabel('Mels Scale')
plt.grid()
plt.gca().invert_yaxis()
plt.show()
```



#### Spectrogram: Logarithmic Scale



#### Spectrogram: summary

- STFT + Mel Scaling + Log Scaling
- Parameters:
  - window\_length
  - hop size
  - window\_function
  - o n\_mels
- Example
  - 1 second wav, sr=16kHz
  - window\_length=400, hop\_size=160, n\_mels=64
  - mel-spectrogram 64x101
- Applications:
  - KWS
  - ASR
  - o TTS
  - 0 ...

- When user is initiating interaction with device?
- Searching through audio stream by keyword

- When user is initiating interaction with device?
- Searching through audio stream by keyword

- Phrase Spotting
- Wake Word Detection
- Wake-Up Word Detection
- Hotword Detection
- Trigger Word Detection

















**ASR Server** 

NLU







# Why on-device?

Privacy

# Why on-device?

- Privacy
- Computational Costs



# Why on-device?

- Privacy
- Computational Costs



# Keyword Spotting: Better, Faster, Smaller



### **Metrics**

- FAR:
  - False (Accepts / Alarm / Activations) Rate
  - $\circ$  FAR = FP / (FP + TN)
- FRR
  - False Rejects Rate
  - FN / (FN + TP)
- FAh:
  - False Accepts per hour
- lower AUC is better
- model threshold => operation point



## Challenges

- Accuracy: listen continuously, but only trigger at the right moment
  - False Rejects => User Unsatisfaction
  - False Accepts => Privacy
- Latency: Light up immediately
- Robust: low SNR, TV background, music playback, ...
- Memory footprint, computational constraints, battery power

• Google (2014). Cited by 532



#### **Posterior Handling**

$$p'_{ij} = \frac{1}{j - h_{smooth} + 1} \sum_{k=h_{smooth}}^{j} p_{ik}$$

#### **Posterior Handling**

$$p'_{ij} = \frac{1}{j - h_{smooth} + 1} \sum_{k=h_{smooth}}^{j} p_{ik}$$



- Google (2014)
- Problems?



(ii) Deep Neural Network





```
>>> import torch
>>> sum(p.numel() for p in torch.nn.Linear(6464, 100).parameters())
646500
```





Test





## DNN Problems: no translational equivariance



#### Convolutional Neural Networks for Small-footprint Keyword Spotting

• Google (2015), cited by 522

| type    | m  | r | n   | p | q | Params | Mult   |
|---------|----|---|-----|---|---|--------|--------|
| conv    | 32 | 8 | 54  | 1 | 3 | 13.8K  | 456.2K |
| linear  | -  | - | 32  | - | - | 19.8K  | 19.8K  |
| dnn     | -  | - | 128 | - | - | 4.1K   | 4.1K   |
| dnn     | -  | - | 128 | - | - | 16.4K  | 16.4K  |
| softmax | -  | - | 4   | - | - | 0.5K   | 0.5K   |
| Total   | -  | - | 4   | - | - | 53.8K  | 495.6K |



(a) Results on Clean

(b) Results on Noisy



$$(A*w)_{ij} = \sum_{i'=0}^{K-1} \sum_{j'=0}^{K-1} A(i+i',j+j') w(i',j') \, .$$

$$A = egin{bmatrix} 3 & 1 & 4 \ 1 & 5 & 9 \ 2 & 6 & 5 \ \end{bmatrix} \quad w = egin{bmatrix} 1 & 0 \ 0 & ext{-1} \ \end{bmatrix} \quad (A*w) =$$

$$(A*w) = oxed{}$$

$$(A*w)_{ij} = \sum_{i'=0}^{K-1} \sum_{j'=0}^{K-1} A(i+i',j+j') w(i',j') \, .$$

$$A=egin{bmatrix} 3&1&4\ 1&5&9\ 2&6&5 \end{bmatrix}$$
  $w=$ 

$$(A*w) = egin{bmatrix} -2 \ \hline 0 \ -1 \ \hline \end{pmatrix}$$

$$(A*w)_{ij} = \sum_{i'=0}^{K-1} \sum_{i'=0}^{K-1} A(i+i',j+j') w(i',j') \, .$$

$$v = \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$$

$$(A*w) = \begin{vmatrix} -2 & -8 \\ & & \end{vmatrix}$$

$$(A*w)_{ij} = \sum_{i'=0}^{K-1} \sum_{j'=0}^{K-1} A(i+i',j+j') w(i',j').$$

$$A = egin{bmatrix} 3 & 1 & 4 \ 1 & 5 & 9 \ 2 & 6 & 5 \end{bmatrix} \quad w = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} \qquad (A*w) = egin{bmatrix} -2 & -8 \ \hline -1 \end{bmatrix}$$

$$= \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$$

$$(A*w) = egin{array}{c|c} -2 & -8 \ \hline -1 & \end{array}$$

$$(A*w)_{ij} = \sum_{i'=0}^{K-1} \sum_{i'=0}^{K-1} A(i+i',j+j') w(i',j').$$

$$A = egin{bmatrix} 3 & 1 & 4 \ 1 & 5 & 9 \ 2 & 6 & 5 \end{bmatrix} \quad w = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} \qquad (A*w) = egin{bmatrix} -2 & -8 \ -1 & 0 \ \end{bmatrix}$$













## Convolution: Pattern Finding

$$(A*w)_{ij} = \sum_{i'=0}^{K-1} \sum_{j'=0}^{K-1} A(i+i',j+j') w(i',j')$$

|     | •  | _  | •  |    | •  |
|-----|----|----|----|----|----|
|     |    | 1  |    |    |    |
| A = | 2  | -3 | 4  | 3  | -4 |
|     | -3 | 2  | 0  | -1 | 0  |
|     | 5  | 2  | -4 | 0  | 1  |
|     |    |    |    |    |    |

$$(A*w) = egin{array}{c|ccccc} 0 & -1 & -5 & -4 \ \hline 2 & -3 & 0 & 8 \ \hline 0 & -3 & 5 & 3 \ \hline -5 & 6 & 0 & -1 \ \hline \end{array}$$

## Convolution: Pattern Finding

$$(A*w)_{ij} = \sum_{i'=0}^{K-1} \sum_{j'=0}^{K-1} A(i+i',j+j') w(i',j')$$

|     | Į. |    | - 1 | U  | I  |
|-----|----|----|-----|----|----|
|     | -1 |    |     | 4  |    |
| A = | 2  | -3 | 4   | 3  | -4 |
|     | -3 | 2  | 0   | -1 | 0  |
|     | 5  | 2  | -4  | 0  | 1  |

# Convolution: Pattern Finding





## Convolution: summary

- weights sharing
- pattern finder
- feature transformation
- translational equivariance

## Convolution: images vs log mel-spectrograms



## Convolution: images vs log mel-spectrograms



## Convolution: images vs log mel-spectrograms



## Convolution: images vs log mel-spectrograms



## Convolution: images vs log mel-spectrograms



## conv2d vs conv1d



## Depthwise Separable Convolutions



- (a) Standard 1-D Convolution
- (b) Depth wise separable 1-D Convolution

## Depthwise Separable Convolutions



- (a) Standard 1-D Convolution
- (b) Depth wise separable 1-D Convolution
- Standard Convolution:
  - o ch\_in x kernel\_size x ch\_out
- Depthwise Separable Convolution
  - ch\_in x kernel\_size + ch\_in x ch\_out

## Depthwise Separable Convolutions

```
>>> import torch
>>> import thop
>>> conv1d = torch.nn.Sequential(
        torch.nn.Conv1d(in_channels=64, out_channels=32, kernel_size=3)
>>> depth_wise_conv1d = torch.nn.Sequential(
       torch.nn.Conv1d(in_channels=64, out_channels=64, kernel_size=3, groups=64).
       torch.nn.ReLU(),
       torch.nn.Conv1d(in_channels=64, out_channels=32, kernel_size=1)
>>> inputs = (torch.randn((1, 64, 101)),)
>>> thop.profile(conv1d, inputs=inputs)
[INFO] Register count_convNd() for <class 'torch.nn.modules.conv.Conv1d'>.
[INFO] Register zero_ops() for <class 'torch.nn.modules.container.Sequential'>.
(608256.0, 6176.0)
>>> thop.profile(depth_wise_conv1d, inputs=inputs)
[INFO] Register count_convNd() for <class 'torch.nn.modules.conv.Conv1d'>.
[INFO] Register zero_ops() for <class 'torch.nn.modules.activation.ReLU'>.
[INFO] Register zero_ops() for <class 'torch.nn.modules.container.Sequential'>.
(221760.0, 2336.0)
>>>
```

## Residual Block (Skip Connections)



<u>Deep Residual Learning for Image</u> <u>Recognition</u> (2015)

DEEP RESIDUAL LEARNING FOR SMALL-FOOTPRINT KEYWORD SPOTTING (2018)

## <u>MatchboxNet: 1D Time-Channel Separable Convolutional Neural Network</u> <u>Architecture for Speech Commands Recognition</u>

NVIDIA, 2020



Figure 1:  $MatchboxNet\ BxRxC\ model:\ B$  -  $number\ of\ blocks,\ R$  -  $number\ of\ sub-blocks,\ C$  -  $the\ number\ of\ channels.$ 

## Broadcasted Residual Learning for Efficient Keyword Spotting

Qualcomm Al Research, 2021

#### **Broadcasted Residual Learning**



Normal block Transition block 1x1 Conv Freq DWConv BN, ReLU Freq DWConv Freq Avg.pool Freq Avg.pool Temporal DWConv BN, Swish Temporal DWConv 1x1 Conv BN, Swish Dropout 1x1 Conv Dropout Auxiliary 2D ReLU residual connection ReLU

| Input                   | Operator    | n | c  | S     | d     |
|-------------------------|-------------|---|----|-------|-------|
| $1\times 40\times W$    | conv2d 5x5  | - | 16 | (2,1) | 1     |
| $16 \times 20 \times W$ | BC-ResBlock | 2 | 8  | 1     | 1     |
| $8 \times 20 \times W$  | BC-ResBlock | 2 | 12 | (2,1) | (1,2) |
| $12\times 10\times W$   | BC-ResBlock | 4 | 16 | (2,1) | (1,4) |
| $16 \times 5 \times W$  | BC-ResBlock | 4 | 20 | 1     | (1,8) |
| $20 \times 5 \times W$  | DWconv 5x5  | - | 20 | 1     | 1     |
| $20 \times 1 \times W$  | conv2d 1x1  | - | 32 | 1     | 1     |
| $32 \times 1 \times W$  | avgpool     | - | -  | -     | -     |
| $32\times1\times1$      | conv2d 1x1  | - | 12 | -     |       |

# Broadcasted Residual Learning for Efficient Keyword Spotting SubSpectral Normalization

Qualcomm Al Research, 2021

# Batch Normalization Instance Normalization Group Normalization SubSpectral Normalization

## Broadcasted Residual Learning for Efficient Keyword Spotting



Figure 3: MACs vs. Google speech command dataset v2 Accuracy. Details are in Table 3.



Figure 1: Model Size vs. Google speech command dataset v1 Test Accuracy. The proposed BC-ResNets significantly outperform other KWS approaches. The smallest BC-ResNet-1 achieves 96.6% accruacy with less than 10k parameters. We scale the BC-ResNet-1 by channel width with a factor of 8, and BC-ResNet-8 achieves the state-of-the-art 98.0%. The details are in Table 3.

## **KWS Benchmark**

### Google Speech Commands

- v1: 65,000 one-second long utterances of 30 short words, by thousands of different people
- o v2: 105,829 utterances of 35 words



## Homework

## **Keyword Spotting**

- Kaggle In-Class Competition
- 100k train, 2k test
- model: <= 1e4 params, <= 1e6 MACs</li>
- report + model-checkpoint + leaderboard submits
- deadline: 2022-10-11 17:59



# Thank you for your attention!

