Trigonometrical Function

Flydexo

January 31, 2023

1 Tracking on the Trigonometrical circle

<u>Definition</u>: Trigonometrical circle Trigonometrical circle, noted C of center and origin O. With a radius r = OI = 1

<u>Property:</u> Tracking We choose an orientation, circle trigo C - direct orientation, reverse watch direction - indirect orientation, watch direction

<u>Property:</u> Radian Point M on the Trigonometrical circle, associated with a real \mathbb{R} . Where x is the abscisse of a point on the axe which superposes M. This point \to image point of x on the Trigonometrical circle.

Radian C =circle, M =point on C

Measure in radian of $\angle OIM$ and the length of the arc IM. Associated symbol rad or rd.

2 Coordinates of a point in the Trigonometrical circle

2.1 Sinus and Consinus

<u>Definition:</u> Sinus and cosinus For a real $x \in \mathbb{R} \cos x$ and $\sin x$ are the coordinates of $M_x = (\cos x; \sin x)$.

Properties: Sinus and Consinus For $x \in \mathbb{R}$:

$$(\cos x)^2 + (\sin x)^2 = 1$$

- \bullet $-1 \le \cos x \le 1$
- \bullet $-1 \le \sin x \le 1$

2.2 Remarkable values

Property: Remarkable values M_x point of C, image of a real x, So:

∠OIM	O^o	30^o	45^{o}	60°	90°
Real x (rad)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos x$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

2.3 Associated angles

Property: Associated angles

$$\cos -a = \cos a$$

$$\sin -a = -\sin a$$

$$-\cos a = \cos \pi - a$$

$$\sin a = \sin \pi - a$$

$$-\cos a = \cos a + \pi$$

$$-\sin a = \sin a + \pi$$

$$\cos\frac{\pi}{2} - a = \sin a$$

$$\sin\frac{\pi}{2} - a = \cos a$$

$$\cos\frac{\pi}{2} + a = -\sin a$$

$$\sin\frac{\pi}{2} + a = \cos a$$

3 Cosinus and Sinus functions

<u>Definition</u>: Cosinus function Cosinus noted cos defined on $\mathbb R$

<u>Definition</u>: Sinus function Sinus noted sin defined on \mathbb{R}

Property: Superposition of images-points let x a real and $M_x(\cos x; \sin x)$. $\overline{M_x}$ and $\overline{M_{x+2\pi}}(\cos x + 2\pi; \sin x + 2\pi)$ are confused.

Property: Periodicity sin and cos are periodic of period 2π

$$\cos x = \cos 2\pi + x$$

$$\sin x = \sin 2\pi + x$$

Property: Parity of sin and \cos Let x a Real:

- $\bullet\,$ sinus is unpair because central symetric with origin
- cosinus is pair because axial symetric with ordinate axis