Análise Matemática I

Feliz Minhós

Conteúdo

Objectivos Gerais 1								
P	rogra	ma	3					
1	Sucessões							
	1.1	Definição	5					
	1.2	Subsucessão	6					
	1.3	Sucessões monótonas	6					
	1.4	Sucessões limitadas	7					
	1.5	Indução Matemática	8					
	1.6	Noção de vizinhança	9					
	1.7	Sucessões convergentes. Propriedades	10					
	1.8	Operações algébricas com sucessões	13					
	1.9	Propriedades algébricas dos limites	15					
	1.10	Sucessão de Cauchy	19					
	1.11	A recta acabada. Infinitamente grandes	21					
	1.12	Operações com limites em $\overline{\mathbb{R}}$. Indeterminações	22					
	1.13	Sucessão exponencial	25					
	1.14	Sucessão do tipo potência-exponencial	25					
2	Séries de Números Reais 2							
	2.1	Definição e generalidades	30					
	2.2		31					
	2.3	Série de Mengoli	31					
	2.4		34					
	2.5		35					
	2.6	Séries alternadas	40					
	2.7	Critérios de convergência para séries de termos não negativos	42					
	2.8		49					

iv CONTEÚDO

3	Fun	ções reais de variável real	53				
	3.1	Limite de uma função	53				
	3.2	Limites em $\overline{\mathbb{R}}$	5'				
	3.3	Limites laterais	58				
	3.4	Funções contínuas	59				
	3.5	Continuidade lateral	59				
	3.6	Continuidade num intervalo	6				
	3.7	Descontinuidades	6				
	3.8						
	3.9	Assímptotas	65				
	3.10	Função inversa	6				
	3.11	Função exponencial	69				
	3.12	Função logarítmica	72				
	3.13	Funções trigonométricas inversas	7				
		3.13.1 Arco-seno	7				
		3.13.2 Arco-cosseno	78				
		3.13.3 Arco-tangente	79				
		3.13.4 Arco co-tangente	80				
4	Cálculo Diferencial em $\mathbb R$ 8						
	4.1	Derivada de uma função num ponto	83				
	4.2	Interpretação geométrica da derivada	83				
	4.3	Derivadas laterais	84				
	4.4	Derivadas infinitas	85				
	4.5	Derivabilidade e continuidade	86				
	4.6	Função derivada	86				
	4.7	Regras de derivação	8				
	4.8	Derivada da função composta	88				
	4.9	Derivada da função inversa					
	4.10	Derivadas de funções trigonométricas	89				
		4.10.1 Derivada da função $f(x) = sen \ x \dots \dots \dots$	89				
		$4.10.2$ Derivada da função $\cos x$	89				
		4.10.3 Derivada das funções $tg \ x \in \cot g \ x \dots \dots$	89				
		4.10.4 Derivada das funções trigonométricas inversas	90				
	4.11	Derivadas das funções exponencial e logarítmica	91				
		Teoremas fundamentais do cálculo diferencial	92				
		Derivadas de ordem superior	98				
		Aplicações da fórmula de Taylor à determinação de extremos,					
		convexidade e inflexões	100				
	4 15	Séries de funções	109				

CONTEÚDO v

	4.16	Séries	de potências							
			le Taylor para funções reais de variável real 104							
5	Cálo	Cálculo Integral em $\mathbb R$ 107								
	5.1	Primit	ivas							
	5.2	Primit	ivas imediatas e quase imediatas							
		5.2.1	Primitiva de uma constante							
		5.2.2	Primitiva de uma potência de expoente real 108							
		5.2.3	Primitiva de funções exponenciais 109							
		5.2.4	Primitiva de funções trigonométricas 110							
	5.3	Métod	os de primitivação							
		5.3.1	Primitivação por decomposição							
		5.3.2	Primitivação por partes							
		5.3.3	Primitivação por substituição							
		5.3.4	Primitivação de funções racionais							
	5.4	Integra	al de Riemann							
		5.4.1	Somas integrais de uma função							
		5.4.2	Definição de integral de Riemann							
		5.4.3	Interpretação geométrica do conceito de integral 121							
	5.5	Propri	edades dos integrais							
	5.6	Integra	al indefinido							
	5.7	Métod	os de integração							
		5.7.1	Integração por decomposição							
		5.7.2	Integração por partes							
		5.7.3	Integração por substituição							
	5.8	Extens	são da noção de integral							
		5.8.1	Integral impróprio de 1^a espécie							
		5.8.2	Integral impróprio de 2^a espécie							
		5.8.3	Integral impróprio de 3^a espécie ou mistos 133							
	5.9	Critéri	los de convergência para integrais impróprios 133							
	5.10	Aplica	ções dos integrais							
		5.10.1	Áreas planas							
			Comprimento de curvas planas							
		5.10.3	Volumes de sólidos de revolução							
		5.10.4	Áreas laterais de sólidos de revolução							

vi *CONTEÚDO*

Objectivos Gerais

Considerando esta unidade curricular no âmbito da formação pessoal e científica, em geral, e da formação matemática em particular, o aluno deverá:

- Desenvolver capacidades de abstracção, dedução lógica e análise.
- Adquirir métodos e técnicas estruturantes do raciocínio científico e matemático que proporcione um espírito crítico.
- Dominar conteúdos matemáticos associados à Análise Real, nomeadamente sucessões, funções, séries, Cálculo Diferencial e Integral em R, ao nível de conceitos e aplicações.
- Utilizar conhecimentos matemáticos na resolução de problemas e interpretação da realidade.
- Adquirir competências matemáticas que possam vir a ser desenvolvidas e aplicadas em contexto profissional empresarial, de investigação ou de ensino.

Introdução

O que é a Análise Matemática ou simplesmente Análise?

É o ramo da Matemática que se ocupa dos números e das relações entre eles, expressos por meio de igualdades, desigualdades e operações.

As operações fundamentais da Análise são: adição, subtracção, multiplicação, divisão, radiciação e passagem ao limite.

A Análise diz-se Análise Algébrica ou Álgebra quando não emprega a passagem ao limite.

Diz-se Análise Infinitesimal se usar a noção de limite, e portanto de infinito, quer directa quer indirectamente (séries, derivadas, integrais,...)

4 CONTEÚDO

Capítulo 1

Sucessões

1.1 Definição

As sucessões são funções reais de variável natural.

Definição 1.1.1 Dado um conjunto $A \neq \emptyset$, chama-se <u>sucessão</u> de termos em A a qualquer aplicação de \mathbb{N} em A.

Exemplo 1.1.2 As aplicações

são exemplos de sucessões.

Se o conjunto de chegada for \mathbb{R} então diz-se uma sucessão de números reais.

Designa-se por u_n .

Aos valores imagens da sucessão chamam-se termos da sucessão e designamse por $u_1, u_2, ..., u_n, ...$, isto é, 1^o termo, 2^o termo,...,enésimo-termo ou termo de ordem n.

À expressão u_n chama-se termo geral da sucessão.

Ao contradomínio da aplicação chama-se $\underline{\text{conjunto de todos os termos}}$ da sucessão.

Modos de definir uma sucessão:

1. Dado o termo geral

Dada a "lei" que permite obter as imagens a aplicação fica definida, já que o seu domínio é sempre \mathbb{N} .

Exercício 1.1.3 Considere a sucessão $u_n = \frac{2n-5}{n+3}$.

- a) Calcule o 2º e o 10º termos.
- b) Determine u_{p+2} .

6

2. Por recorrência

Os termos da sucessão são calculados a partir dos termos anteriores.

Exemplo 1.1.4
$$a)$$
 $\begin{cases} u_1 = 3 \\ u_{n+1} = 2u_n + 4, \ \forall n \in \mathbb{N}. \end{cases}$ $b)$ $\begin{cases} v_1 = 1 \\ v_2 = 3 \\ v_{n+2} = v_n + v_{n+1}, \ \forall n \in \mathbb{N}. \end{cases}$

Exercício 1.1.5 Calcule os quatro primeiros termos de cada uma das sucessões anteriores e represente-os graficamente.

Exercício 1.1.6 Considere a sucessão

$$w_n = \frac{3n+4}{5n+2}.$$

Verifique se $\frac{7}{11}$ e $\frac{5}{7}$ são termos da sucessão e, em caso afirmativo, indique a sua ordem.

1.2 Subsucessão

Definição 1.2.1 Designa-se por subsucessão de u_n qualquer sucessão que resulte da supressão de alguns termos de u_n .

Exercício 1.2.2 (i) Dada a sucessão $u_n = (-1)^n (n+3)$, calcule:

- a) A subsucessão de u_n dos termos de ordem par.
- b) A subsucessão de u_n dos termos de ordem ímpar.
- c) A subsucessão de u_n dos termos cuja ordem é multipla de 5.
- (ii) Represente gráficamente os três primeiros termos de cada subsucessão.

1.3 Sucessões monótonas

Definição 1.3.1 Seja u_n uma sucessão.

- (i) u_n diz-se crescente se $u_{n+1} \geq u_n$, $\forall n \in \mathbb{N}$, isto é, se $u_{n+1} u_n \geq 0$, $\forall n \in \mathbb{N}$
- (ii) u_n é estritamente crescente se $u_{n+1} > u_n$, $\forall n \in \mathbb{N}$, isto é, se $u_{n+1} u_n > 0$, $\forall n \in \mathbb{N}$.
- (iii) u_n diz-se decrescente se $u_{n+1} \leq u_n$, $\forall n \in \mathbb{N}$, isto é, se $u_{n+1} u_n \leq 0$, $\forall n \in \mathbb{N}$.

7

(iv) u_n é estritamente decrescente se $u_{n+1} < u_n$, $\forall n \in \mathbb{N}$, isto é, se $u_{n+1} - u_n < 0$, $\forall n \in \mathbb{N}$.

Definição 1.3.2 Uma sucessão crescente ou decrescente, em sentido lato ou estrito, é uma <u>sucessão monótona</u>.

Exercício 1.3.3 Estude e classifique quanto à monotonia as sucessões:

a)
$$a_n = \frac{3n}{n+2}$$

b)
$$b_n = \frac{1-4n}{n+1}$$

$$c) c_n = \cos(n\pi)$$

$$d) d_n = -3n$$

Observação 1.3.4 Uma sucessão crescente é limitada inferiormente, isto é, minorada. Pode ser, ou não, limitada superiormente (majorada). Analogamente, qualquer sucessão decrescente é majorada, podendo ser, ou não, minorada.

1.4 Sucessões limitadas

Definição 1.4.1 Uma sucessão u_n diz-se <u>limitada</u> se o conjunto dos seus termos for um conjunto limitado. Isto \acute{e} , se existirem números reais A e B tais que

$$A < u_n < B, \ \forall n \in \mathbb{N}.$$

De modo análogo pode definir-se sucessão <u>limitada</u> se

$$\exists L > 0 : |u_n| \le L, \forall n \in \mathbb{N}.$$

Exercício 1.4.2 Das sucessões seguintes indique as que são limitadas, referindo neste caso um majorante e um minorante para o conjunto dos seus termos:

$$a) a_n = \frac{3n}{n+2}$$

b)
$$d_n = -3n$$

c)
$$c_n = \cos(n\pi)$$

Exercício 1.4.3 Prove que a sucessão $d_n = -3n$ não é limitada.

1.5 Indução Matemática

O método de Indução Matemática permite provar propriedades no conjunto dos números naturais.

Baseia-se no Princípio de Indução Matemática:

Suponhamos que se pretende provar que uma condição C(n) se transforma numa proposição verdadeira sempre que se substitua n por um número natural.

Basta assegurar que se verificam as duas condições seguintes:

- 1. C(1) é verdadeira
- 2. C(n) é uma condição hereditária, isto é, se C(p) é verdadeira então C(p+1) yambém é verdadeira

Algumas propriedades importantes provam-se com recurso a este método:

Proposição 1.5.1 (Designaldade de Bernoulli) Se $x \in \mathbb{R}$ verifica $1+x \geq 0$ então

$$(1+x)^n \ge 1 + nx, \, \forall n \in \mathbb{N}.$$

Dem. Para n=1, tem-se uma igualdade trivial : 1+x=1+x.

Por hipótese, admitinda-se que a proposição é verdadeira para n=p,isto é,

$$(1+x)^p > 1 + px$$
.

Verifica-se então se a tese é verdadeira, ou seja, se a proposição é verdadeira para n=p+1:

$$(1+x)^{p+1} \ge 1 + (p+1)x.$$

Ora

$$(1+x)^{p+1} = (1+x)^p (1+x) \ge (1+px) (1+x)$$
$$= 1+x+px+px^2 = 1+(p+1)x+px^2$$
$$\ge 1+(p+1)x.$$

Então, pelo método de indução matemática

$$(1+x)^n \ge 1 + nx, \, \forall n \in \mathbb{N}.$$

9

Exercício 1.5.2 Utilizando o método de indução matemática prove que:

a) $8^n : 2^n = 4^n, \forall n \in \mathbb{N}.$

b)
$$\sum_{k=1}^{n} (2k) = n(n+1), \forall n \in \mathbb{N}.$$

1.6 Noção de vizinhança

Quando se toma um valor aproximado de um número real a, considerando um valor aproximado de a comete-se um certo erro $\delta > 0$.

Isto é, considera-se um valor na vizinhança de a, ou seja em $]a - \delta, a + \delta[$.

Definição 1.6.1 Seja $a \in \mathbb{R}$. Chama-se vizinhança de a de raio $\delta > 0$, e nota-se por $V_{\delta}(a)$ ao conjunto

$$V_{\delta}(a) = \{x \in \mathbb{R} : |x - a| < \delta\}$$
$$= |a - \delta, a + \delta|.$$

Ou seja, é o conjunto de todos os valores aproximados de a com erro inferior a δ .

Exercício 1.6.2 Represente na forma de intervalo de números reais:

- a) $V_{0.2}(4)$
- b) $V_{0.02}(-2,3)$

Exercício 1.6.3 Defina como uma vizinhança os conjuntos:

- a)]2, 32; 2, 48[
- b) $\{x \in \mathbb{R} : |x+3| < 0,001\}$

Exercício 1.6.4 Considere a sucessão $u_n = \frac{2+3n}{2n+3}$. Prove que a partir de u_{11} (exclusive) todos os termos verificam

$$u_n \in V_{0,1}\left(\frac{3}{2}\right)$$
.

Interprete graficamente.

1.7 Sucessões convergentes. Propriedades

Definição 1.7.1 A sucessão u_n converge para um valor $a \in \mathbb{R}$ se, para qualquer valor positivo δ , existe uma ordem a partir da qual todos os termos da sucessão pertencem a $V_{\delta}(a)$.

Simbolicamente

$$\lim u_n = a \Leftrightarrow \forall \delta > 0 \ \exists p \in \mathbb{N}: \ n > p \Longrightarrow |u_n - a| < \delta.$$

Exercício 1.7.2 Provar por definição que

$$\lim \frac{2+3n}{2n+3} = \frac{3}{2}.$$

Definição 1.7.3 (i) As sucessões que têm por limite um número finito dizem-se convergentes.

- (ii) As sucessões que não são convergentes dizem-se divergentes.
- (iii) Uma sucessão convergente para 0 diz-se um infinitésimo.

Definição 1.7.4 (i) Um elemento $a \in \mathbb{R}$ diz-se um ponto de acumulação do conjunto $A \subset \mathbb{R}$, não vazio, se em qualquer vizinhança de a existe pelo menos um elemento de A diferente de a.

Simbolicamente

a é um ponto de acumulação do conjunto A se $\forall \delta > 0$, $(V_{\delta}(a) \setminus \{a\}) \cap A \neq \emptyset$. (ii) Um ponto $a \in A$ que não seja ponto de acumulação chama-se um ponto isolado.

Isto é, a é um ponto isolado se $\exists \delta > 0 : V_{\delta}(a) \cap A = \{a\}.$

Exercício 1.7.5 Indique o conjunto de todos os pontos de acumulação dos conjuntos:

a)
$$M = \{-1, 5\} \cup [0, 2]$$

b)
$$N = \left\{ x \in \mathbb{R} : x = \frac{1}{n}, \ n \in \mathbb{N} \right\}.$$

Exercício 1.7.6 Prove que um conjunto finito não tem pontos de acumulação.

Proposição 1.7.7 O elemento $a \in \mathbb{R}$ é ponto de acumulação de $A \subset \mathbb{R}$ se, e só se, é limite de uma sucessão de pontos de A distintos de a.

Dem. (\Longrightarrow) Suponhamos que $a \in \mathbb{R}$ é ponto de acumulação de $A \subset \mathbb{R}$. Então, para cada $n \in \mathbb{N}$ existem pontos $u_n \in V_{\frac{1}{n}}(a) \cap (A \setminus \{a\})$, ou seja, $|u_n - a| < \frac{1}{n}$ e $u_n \to a$. (\Leftarrow) Seja $u_n \in A$, para cada $n \in \mathbb{N}$, com $u_n \neq a$, $\forall n \in \mathbb{N}$, tal que $u_n \to a$.

Então $|u_n - a| < \delta$, $\forall \delta > 0$. Assim $u_n \in V_{\delta}(a)$, $\forall \delta > 0$, pelo que $a \in \mathbb{R}$ é ponto de acumulação de A.

Teorema 1.7.8 (Teorema de <u>Bolzano-Weierstrass</u>) Todo o conjunto $A \subset \mathbb{R}$ infinito e limitado admite, pelo menos, um ponto de acumulação.

Corolário 1.7.9 Toda a sucessão limitada em \mathbb{R} admite, pelo menos, uma subsucessão convergente.

Dem. Seja U o conjunto de termos da sucessão limitada u_n .

Se U é finito então existe $a \in U$ que se repete infinitas vezes e, por consequência, é limite de uma subsucessão constante igual a a, pelo que é convergente para a.

Se U é um conjunto infinito, como é limitado, pelo Teorema 1.7.8, tem pelo menos um ponto de acumulação.

Então, pela Proposição 1.7.7, a é limite de uma sucessão de pontos de U. \blacksquare

Vejamos algumas propriedades das sucessões convergentes e as suas relações com as sucessões limitadas.

Teorema 1.7.10 (<u>Unicidade do limite</u>) O limite de uma sucessão convergente, quando existe, é único.

Dem. Suponha-se, com vista a um absurdo, que existe uma sucessão u_n tal que $u_n \to a$ e $u_n \to b$ com $a \neq b$.

Dado $\delta > 0$ arbitrário,

$$\exists n_0 \in \mathbb{N} : n > n_0 \Longrightarrow |u_n - a| < \frac{\delta}{2},$$

 $\exists n_1 \in \mathbb{N} : n > n_1 \Longrightarrow |u_n - b| < \frac{\delta}{2}.$

Tomando $p := \max\{n_0, n_1\}$ tem-se que para n > p são válidas as duas desigualdades anteriores e

$$|a-b| = |a-u_n + u_n - b| \le |a-u_n| + |u_n - b| < \frac{\delta}{2} + \frac{\delta}{2} = \delta.$$

O que está em contradição com a hipótese de $a \neq b$.

Logo a = b.

Teorema 1.7.11 Se u_n é uma sucessão convergente então qualquer das suas subsucessões é convergente para o mesmo limite.

 $\mathbf{Dem.}$ Seja u_n uma sucessão tal que $u_n \to a$ e v_n uma subsucessão de $u_n.$

Assim os termos de v_n também são termos de u_n , pelo que também verificam a proposição

$$\forall \delta > 0 \; \exists p \in \mathbb{N}: \; n > p \Longrightarrow |v_n - a| < \delta,$$

ou seja $v_n \to a$.

Teorema 1.7.12 Toda a sucessão convergente é limitada.

Dem. Suponhamos $u_n \to a$ e fixe-se um valor real $\delta > 0$. Então para n > p tem-se que $u_n \in]a - \delta, a + \delta[$, isto é, $a - \delta < u_n < a + \delta.$

Então fora deste intervalo estão um número finito de termos. Concretamente $u_1, ..., u_p$

Considere-se

$$M := \max\{|u_1|, ..., |u_p|, |a - \delta|, |a + \delta|\}.$$

Então

$$-M \le u_n \le M, \forall n \in \mathbb{N},$$

pelo que u_n é limitada.

Teorema 1.7.13 Toda a sucessão monótona e limitada é convergente.

Dem. Seja u_n uma sucessão monótona e limitada. Como o conjunto dos termos da sucessão é majorado (e minorado) então existe supremo desse conjunto. Designe-se $c := \sup \{u_n : n \in \mathbb{N}\}$.

Pela definição de supremo, c é o menor dos majorantes, pelo que, para cada $\delta > 0$, $c - \delta$ não é majorante. logo existe pelo menos uma ordem $p \in \mathbb{N}$ tal que $c - \delta < u_p$.

Sendo u_n uma sucessão monótona ela poderá ser crescente ou decrescente.

Suponhamos que u_n é crescente.

Assim teremos

$$c - \delta < u_p \le u_n \text{ para } n \ge p.$$

Como c é supremo, é maior que todos os termos de u_n e então

$$c - \delta < u_n < c < c + \delta$$
.

Ou seja

$$\forall \delta > 0 \ \exists p \in \mathbb{N}: \ n > p \Longrightarrow c - \delta < u_n < c + \delta,$$

isto é, $u_n \to c$. Então u_n é uma sucessão convergente (para o supremo do conjunto dos termos da sucessão).

Se u_n f
 uma sucessão decrescente.
a demonstração é semelhante mas utilizando

$$d := \inf \{ u_n : n \in \mathbb{N} \}.$$

1.8 Operações algébricas com sucessões

As operações consideradas em $\mathbb R$ estendem-se naturalmente às sucessões reais.

Considerem-se duas sucessões u_n e v_n .

Define-se soma de u_n e v_n à sucessão que se obtem adicionando os termos da mesma ordem das duas sucessões e cujo termo geral se obtem como $(u+v)_n$.

Isto é,
$$(u+v)_n = u_n + v_n$$

De modo análogo se define a diferença, o produto e o cociente de u_n e v_n , admitindo-se este último apenas na condição de $v_n \neq 0, \forall n \in \mathbb{N}$.

Em resumo,

$$(u-v)_n = u_n - v_n$$

$$(u \times v)_n = u_n \times v_n$$

$$\left(\frac{u}{v}\right)_n = \frac{u_n}{v_n}, \ v_n \neq 0, \forall n \in \mathbb{N}.$$

As definições de soma e produto estendem-se de forma óbvia a casos em que se adicione ou multiplique um número finito de sucessões.

Os próximos teoremas jogam com a noção de limite e a relação de ordem no conjunto dos reais.

Teorema 1.8.1 (Passagem ao limite numa desigualdade) Sejam u_n e v_n duas sucessões convergentes.

Se a partir de certa ordem se verifica $u_n \leq v_n$ então

$$\lim u_n < \lim v_n$$
.

Dem. Considerem-se duas sucessões convergentes u_n e v_n tais que $u_n \to a$ e $v_n \to b$. Assim

$$\forall \delta > 0 \exists n_0 \in \mathbb{N}: n > n_0 \Longrightarrow |u_n - a| < \delta,$$

 $\forall \delta > 0 \exists n_1 \in \mathbb{N}: n > n_1 \Longrightarrow |v_n - b| < \delta$

e seja n_1 a ordem a partir da qual se verifica $u_n \leq v_n$.

Suponha-se, com vista a uma contradição, que a>b e considere-se $\delta:=\frac{a-b}{2}$ (> 0 porque a>b).

Seja $p := \max\{n_0, n_1, n_2\}$. Então para $n \ge p$ tem-se

$$v_n - b < \delta = \frac{a - b}{2}, -\delta < u_n - a$$

 \mathbf{e}

$$v_n < b + \frac{a-b}{2} = a - \frac{a-b}{2} < u_n.$$

Ora esta desigualdade contradizo facto de a partir da ordem p se tem $u_n \leq v_n$.

Logo $a \leq b$, isto é, $\lim u_n \leq \lim v_n$.

Corolário 1.8.2 Se a partir de certa ordem a sucessão convergente v_n verifica $v_n \geq 0$, então

$$\lim v_n \geq 0.$$

Dem. Basta fazer na demonstração anterior $u_n \equiv 0$.

Teorema 1.8.3 O produto de um infinitésimo por uma sucessão limitada é um infinitésimo.

Isto é, se u_n é uma sucessão limitada e v_n um infinitésimo, então

$$\lim \left(u_n \times v_n\right) = 0.$$

Dem. Seja u_n uma sucessão limitada e v_n um infinitésimo. Então

$$\exists L > 0 : |u_n| < L, \ \forall n \in \mathbb{N}$$

e como $v_n \to 0$ então

$$\forall \delta > 0 \ \exists p \in \mathbb{N}: \ n > p \Longrightarrow |v_n| < \frac{\delta}{L}.$$

Assim, para n > p,

$$|v_n \times u_n - 0| = |v_n| \times |u_n| \le |v_n| \times L \le \frac{\delta}{L} \times L = \delta.$$

Então $(v_n \times u_n) \to 0$, isto é, $(v_n \times u_n)$ é um infinitésimo.

15

1.9 Propriedades algébricas dos limites

Os teoremas que se seguem relacionam as propriedades algébricas fundamentais com as noções de convergência e limite.

Teorema 1.9.1 Sejam u_n e v_n duas sucessões convergentes.

- 1. $(u+v)_n$ é uma sucessão convergente e $\lim (u+v)_n = \lim u_n + \lim v_n$.
- 2. $(u \times v)_n$ é uma sucessão convergente e $\lim (u \times v)_n = \lim u_n \times \lim v_n$.
- 3. $(k \times u)_n$ é uma sucessão convergente e $\lim (k \times u)_n = k \times \lim u_n$.
- **4.** $\left(\frac{u}{v}\right)_n$ é uma sucessão convergente desde que $v_n \neq 0, \forall n \in \mathbb{N}, e \lim \left(\frac{u}{v}\right)_n = \frac{\lim u_n}{\lim v_n}$, se $\lim v_n \neq 0$.
- **5.** $(u_n)^p$, $p \in \mathbb{Z}$, é uma sucessão convergente (com $u_n \neq 0, \forall n \in \mathbb{N}$, se p < 0) $e \lim_{n \to \infty} (u_n)^p = (\lim_{n \to \infty} u_n)^p$.
- **6**. $\sqrt[p]{u_n}$ é uma sucessão convergente, se $u_n \geq 0, \forall n \in \mathbb{N}$, e $\lim \sqrt[p]{u_n} = \sqrt[p]{\lim u_n}$.

Se p for ímpar e $u_n < 0$ a propriedade permanece válida.

Dem. Sejam u_n e v_n duas sucessões convergentes tais que $u_n \to a$ e $v_n \to b$. Ou seja

$$\forall \delta > 0 \exists n_0 \in \mathbb{N}: n > n_0 \Longrightarrow |u_n - a| < \frac{\delta}{2},$$

$$\forall \delta > 0 \exists n_1 \in \mathbb{N}: n > n_1 \Longrightarrow |v_n - b| < \frac{\delta}{2}.$$

1. Considerando $p := \max\{n_0, n_1\}$, tem-se que para $n \ge p$ são válidas as duas proposições e

$$|(u_n + v_n) - (a + b)| = |(u_n - a) + (v_n - b)|$$

 $\leq |u_n - a| + |v_n - b| < \frac{\delta}{2} + \frac{\delta}{2} = \delta.$

Então $\lim (u_n + v_n) = a + b = \lim u_n + \lim v_n$.

2. Note-se que

$$(u_n \times v_n) - (a \times b) = u_n v_n - u_n b + u_n b - ab$$

= $u_n (v_n - b) + (u_n - a) b$,

 u_n é uma sucessão limitada (pois é convergente), $v_n - b$ e $u_n - a$ são infinitésimos.

Então

$$\lim (u_n v_n - ab) = \lim [u_n (v_n - b)] + \lim [(u_n - a) b] = 0.$$

- **3**. É um caso particular de 2. com $v_n \equiv k \ (k \in \mathbb{R})$.
- **4.** Como $v_n \to b \neq 0$, por 2., tem-se que $v_n b \to b^2 > 0$, ou seja $-\delta <$ $v_n b - b^2 < \delta$.

Escolha-se $\delta > 0$ suficientemente pequeno tal que existe $p \in \mathbb{N}$ em que para $n \ge p$ se tem $v_n b > b^2 - \delta > 0$.

Assim, considerando apenas os termos cuja ordem é maior que p (os que não forem são em número finito), obtem-se

$$0 < \frac{1}{v_n b} < \frac{1}{b^2 - \delta},$$

pelo que a sucessão (ou subsucessão se for necessário) $\frac{1}{v_n b}$ 'e limitada.

Note-se que se tem:

$$\frac{u_n}{v_n} - \frac{a}{b} = \frac{u_n b - a \ v_n}{v_n b} = (u_n b - a \ v_n) \frac{1}{v_n b}.$$

$$\cdot \lim (u_n b - a \ v_n) = \lim (u_n b) + \lim (-a \ v_n) = ab - ab = 0.$$

$$\lim (u_n b - a \ v_n) = \lim (u_n b) + \lim (-a \ v_n) = ab - ab = 0.$$

Então

$$\lim \left(\frac{u_n}{v_n} - \frac{a}{b}\right) = \lim \left(u_n b - a \ v_n\right) \frac{1}{v_n b} = 0,$$

pelo que $\lim \frac{u_n}{v_n} = \frac{\lim u_n}{\lim v_n}$.

5. Se p = 0, $(u_n)^p \equiv 1$ e $\lim (u_n)^p = \lim 1 = 1 = (\lim u_n)^p$.

Se $p \in \mathbb{N}$, demonstra-se por indução.

Para p=1 a proposição é verdade.

Para provar a tese,

$$\lim (u_n)^{k+1} = \lim \left[(u_n)^k u_n \right] = \lim \left[(u_n)^k \right] \lim u_n$$
$$= (\lim u_n)^k \lim u_n = (\lim u_n)^{k+1}.$$

Se $p \in \mathbb{Z}^-$ coloca-se p = -k, com $k \in \mathbb{N}$ e para $u_n \neq 0$, $\forall n \in \mathbb{N}$, tem-se

$$\lim (u_n)^{-k} = \lim \left(\frac{1}{(u_n)^k}\right) = \frac{1}{\lim (u_n)^k} = \frac{1}{(\lim u_n)^k} = (\lim u_n)^{-k}.$$

6. Provar primeiro por indução em p, que a relação

$$u^{p} - v^{p} = (u - v) (u^{p-1} + u^{p-2}v + u^{p-3}v^{2} + \dots + uv^{p-2} + v^{p-1})$$

é válida para quaisquer $u, v \in \mathbb{R}$.

Para n = 1, u - v = u - v, verdade. Para p = k + 1,

$$u^{k+1} - v^{k+1} = \left(u^{k+1} - uv^k\right) + \left(uv^k - v^{k+1}\right) = u\left(u^k - v^k\right) + v^k\left(u - v\right)$$

$$= u\left(u - v\right)\left(u^{k-1} + u^{k-2}v + u^{k-3}v^2 + \dots + uv^{p-2} + v^{p-1}\right) + v^k\left(u - v\right)$$

$$= \left(u - v\right)\left(u^k + u^{k-1}v + u^{k-2}v^2 + \dots + u^2v^{p-2} + uv^{p-1} + v^k\right).$$

Considere-se a > 0. Substituindo na igualdade anterior $u = \sqrt[p]{u_n}$ e $v = \sqrt[p]{a}$, obtem-se

$$\left(\sqrt[p]{u_n}\right)^p - \left(\sqrt[p]{a}\right)^p = \left(\sqrt[p]{u_n} - \sqrt[p]{a}\right) \left[\left(\sqrt[p]{u_n}\right)^{p-1} + \dots + \left(\sqrt[p]{u_n}\right) \left(\sqrt[p]{a}\right)^{p-2} + \left(\sqrt[p]{a}\right)^{p-1} \right]$$

е

$$\sqrt[p]{u_n} - \sqrt[p]{a} = \frac{u_n - a}{\left(\sqrt[p]{u_n}\right)^{p-1} + \dots + \left(\sqrt[p]{u_n}\right) \left(\sqrt[p]{a}\right)^{p-2} + \left(\sqrt[p]{a}\right)^{p-1}}.$$

Assim

$$\left| \sqrt[p]{u_n} - \sqrt[p]{a} \right| = \frac{|u_n - a|}{\left| \left(\sqrt[p]{u_n} \right)^{p-1} + \dots + \left(\sqrt[p]{a} \right)^{p-1} \right|} \le \frac{|u_n - a|}{\left(\sqrt[p]{a} \right)^{p-1}},$$

pois as parcelas do denominador da fracção do 2^o membro são todas positivas e então

$$\left(\sqrt[p]{u_n}\right)^{p-1} + \dots + \left(\sqrt[p]{a}\right)^{p-1} \ge \left(\sqrt[p]{a}\right)^{p-1}.$$

Como $u_n \to a$, tem-se

$$\forall \delta > 0 \ \exists n_0 \in \mathbb{N}: \ n > n_0 \Longrightarrow |u_n - a| < \delta \left(\sqrt[p]{a} \right)^{p-1}$$

e obtem-se

$$\left|\sqrt[p]{u_n} - \sqrt[p]{a}\right| \le \frac{|u_n - a|}{\left(\sqrt[p]{a}\right)^{p-1}} < \frac{\delta\left(\sqrt[p]{a}\right)^{p-1}}{\left(\sqrt[p]{a}\right)^{p-1}} = \delta.$$

Se a=0 então $\lim u_n=0$ e neste caso considera-se, na definição de limite $|u_n|<\delta^p$ e $u_n<\delta^p$, pois $u_n\geq 0$.

Então obtem-se

$$\left|\sqrt[p]{u_n} - \sqrt[p]{a}\right| = \left|\sqrt[p]{u_n}\right| = \sqrt[p]{u_n} \le \sqrt[p]{\delta^p} = \delta.$$

Teorema 1.9.2 Se u_n é uma sucessão convergente então

$$\lim |u_n| = |\lim u_n|$$
.

Dem. Seja $u_n \to a$, isto é,

$$\forall \delta > 0 \ \exists p \in \mathbb{N}: \ n > p \Longrightarrow |u_n - a| < \delta.$$

Como $||u_n| - |a|| \le |u_n - a| < \delta$ o que é equivalente a $|u_n| \to |a|$, isto é, $\lim |u_n| = |\lim u_n|$.

O próximo teorema é útil para o cálculo de limites de sucessões cujos termos gerais incluam somatórios ou fracções com razões trigonométricas, entre outras situações.

Teorema 1.9.3 (Teorema das sucessões enquadradas) Sejam u_n , v_n e w_n sucessões convergentes tais que:

- $a) \lim u_n = \lim v_n = a \ (a \in \mathbb{R})$
- b) a partir de uma certa ordem se tem $u_n \leq w_n \leq v_n$. Então $\lim w_n = a$.

Dem. Considerem-se duas sucessões u_n e v_n convergentes para $a \in \mathbb{R}$. Então

$$\forall \delta > 0 \ \exists n_0 \in \mathbb{N}: \ n > n_0 \Longrightarrow a - \delta < u_n < \delta + a$$

e

$$\forall \delta > 0 \ \exists n_1 \in \mathbb{N}: \ n > n_1 \Longrightarrow a - \delta < v_n < \delta + a.$$

Seja n_2 a ordem a partir da qual se tem $u_n \leq w_n \leq v_n$ e defina-se $p := \max\{n_0, n_1, n_2\}$. Então para n > p obtem-se

$$a - \delta < u_n \le w_n \le v_n < \delta + a,$$

ou seja $a - \delta < w_n < \delta + a$, pelo que $\lim w_n = a$.

Exercício 1.9.4 Calcule o limite de cada uma das sucessões:

a)
$$w_n = \sum_{k=1}^n \frac{2n + sen(\frac{k\pi}{4})}{1 + 3n^2}$$

$$b) w_n = \sum_{k=0}^n \frac{n}{2k+n^2}$$

19

1.10 Sucessão de Cauchy

Com o objectivo de obter um critério de convergência, introduz-se a noção de sucessão de Cauchy.

Intuitivamente, se $u_n \to a$, desde que n seja suficientemente grande, todos os termos de u_n estarão arbitrariamente próximos de a e, portanto próximos uns dos outros.

Definição 1.10.1 Uma sucessão u_n em \mathbb{R} diz-se uma sucessão de Cauchy se para cada $\delta > 0$ existe uma prdem $p \in \mathbb{N}$ tal que $|u_m - u_n| < \delta$, para quaisquer $m, n \geq p$.

Observação 1.10.2 Considerando em particular $m=n+k,\ k\in\mathbb{N}$, pode obter-se uma definição equivalente: u_n é uma sucessão de Cauchy se

$$\forall \delta > 0 \ \exists p \in \mathbb{N}: \ n \geq p \Longrightarrow |u_{n+k} - u_n| < \delta, \ \forall k \in \mathbb{N}.$$

Desta última definição resulta:

Proposição 1.10.3 Se u_n é uma sucessão de Cauchy em \mathbb{R} , então para qualquer $k \in \mathbb{N}$ tem-se

$$u_{n+k} - u_n \to 0$$
, quando $n \to +\infty$.

A condição recíproca não é válida, como se pode ver no exercício seguinte:

Exercício 1.10.4 (Contra-exemplo) Prove que para cada $k \in \mathbb{N}$ a sucessão

$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

verifica

$$S_{n+k} - S_n \rightarrow 0$$

e no entanto S_n não é uma sucessão de Cauchy.

O próximo resultado fornece um critério de convergência para sucessões de que não se conhece o limite:

Teorema 1.10.5 (Princípio de Cauchy-Bolzano) A condição necessária e suficiente para que uma sucessão u_n em \mathbb{R} seja convergente é que u_n seja uma sucessão de Cauchy.

Simbolicamente, em \mathbb{R} , u_n é convergente se e só se

$$\forall \delta > 0 \ \exists p \in \mathbb{N}: \ \forall k \in \mathbb{N}, \ \forall n > p \Longrightarrow |u_{n+k} - u_n| < \delta.$$

Dem. (\Longrightarrow) Suponhamos que a sucessão u_n é convergente para $a \in \mathbb{R}$. Então

$$\forall \delta > 0 \ \exists p \in \mathbb{N}: \ n > p \Longrightarrow |u_n - a| < \frac{\delta}{2}.$$

Assim, para $\forall m \geq p, \forall n \geq p,$

$$|u_m - u_n| = |u_m - a + a - u_n| \le |u_m - a| + |a - u_n| < \frac{\delta}{2} + \frac{\delta}{2} = \delta.$$

Logo u_n é uma sucessão de Cauchy.

 (\Leftarrow) Seja u_n uma sucessão de Cauchy.

Passo1: Provar que toda a sucessão de Cauchy em \mathbb{R} é limitada.

Considere-se na definição $\delta = 1$. Assim, em particular, existe $p \in \mathbb{N}$, tal que $|u_m - u_n| < 1$, para quaisquer $m, n \geq p$

Então , em particular, a desigualdade é válida para m=p, isto é,

$$|u_n - u_p| < 1 \iff u_n \in [u_p - 1, u_p + 1], \text{ para } n \ge p$$

Portanto, fora deste intervalo, estão um número finito de termos da sucessão e o conjunto desses termos é limitado.

Logo a sucessão de Cauchy u_n é limitada.

Passo2: Provar que se u_n é uma sucessão de Cauchy e u_n tem uma subsucessão convergente, então u_n é convergente em \mathbb{R} .

Seja u_k uma subsucessão de u_n convergente para $a \in \mathbb{R}$.

Fixando $\delta > 0$, $\exists q \in \mathbb{N}$: $|u_k - a| < \frac{\delta}{2}$ para $k \ge q$.

Como u_n é uma sucessão de Cauchy,

$$\exists p \in \mathbb{N}: \ |u_m - u_k| < \frac{\delta}{2}, \ \forall m, k \ge p.$$

Defina-se $r:=\max\left\{q,p\right\}$. Então para $k\geq r$ verificam-se simultaneamente as desigualdades

$$|u_k - a| < \frac{\delta}{2}$$
 e $|u_m - u_k| < \frac{\delta}{2}$, para $m \ge r$.

Assim, para $m \geq r$,

$$|u_m - a| = |u_m - u_k + u_k - a| \le |u_m - u_k| + |u_k - a| < \frac{\delta}{2} + \frac{\delta}{2} = \delta.$$

Ou seja, $u_m \to a$, quando $m \to +\infty$.

Então, pelo Passo1, u_n é uma sucessão limitada e pelo Corolário 1.7.9, u_n possui uma subsucessão convergente. Logo, pelo Passo 2, u_n é convergente.

1.11 A recta acabada. Infinitamente grandes

Se à recta real juntarmos "dois novos elementos", $+\infty$ e $-\infty$, obtem-se a recta acabada, que se representa por $\overline{\mathbb{R}}$ ou $[-\infty, +\infty]$.

 $\overline{\mathbb{R}}$ pode considerar-se como um conjunto limitado superiormente por $+\infty$ e inferiormente por $-\infty$. Assim qualquer subconjunto de $\overline{\mathbb{R}}$ é limitado.

Como estender a noção de limite a $\overline{\mathbb{R}}$?

Definição 1.11.1 Uma sucessão u_n diz-se um <u>infinitamente grande positivo</u> e escreve-se

$$u_n \to +\infty$$
 ou $\lim u_n = +\infty$,

se, a partir de uma certa ordem, u_n for superior a qualquer número positivo previamente fixo.

Simbolicamente

$$u_n \to +\infty \iff \forall L > 0 \; \exists p \in \mathbb{N} : n > p \Longrightarrow u_n > L.$$

Exercício 1.11.2 Prove que a sucessão $u_n = 5n + 1$ é um infinitamente grande positivo.

Definição 1.11.3 a) A sucessão u_n é um <u>infinitamente grande negativo</u>, isto é,

$$u_n \to -\infty$$
 ou $\lim u_n = -\infty$,

se, a partir de uma certa ordem, u_n for inferior a qualquer número negativo fixado.

Simbolicamente

$$u_n \to -\infty \iff \forall L > 0 \; \exists p \in \mathbb{N} : n > p \Longrightarrow u_n < -L.$$

b) u_n é um infinitamente grande em módulo quando

$$|u_n| \to +\infty$$
.

A unicidade do limite permanece válida para sucessões na recta acabada. Contudo uma sucessão u_n pode não ter limite em $\overline{\mathbb{R}}$.

Exercício 1.11.4 Mostre que $u_n = (-1)^n (n+2)$ não tem limite em $\overline{\mathbb{R}}$ mas é um infinitamente grande em módulo.

Classificação das sucessões quanto à existência e natureza do limite:

convergentes (têm limite em \mathbb{R})

divergentes (não convergentes)
$$\begin{cases} \text{ propriamente divergentes} \\ (\text{limite } \pm \infty) \end{cases}$$
 oscilantes (não têm limite em $\overline{\mathbb{R}}$)

1.12 Operações com limites em $\overline{\mathbb{R}}$. Indeterminações

Algumas operações algébricas com limites permanecem válidas em $\overline{\mathbb{R}}$. Outras há que levantam dificuldades.

O próximo teorema reúne as principais propriedades utilizadas com limites infinitos.

Teorema 1.12.1 Sejam u_n e v_n duas sucessões reais.

1) Se u_n é um infinitamente grande positivo ou negativo então é um infinitamente grande em módulo. Isto é,

se
$$u_n \to \pm \infty$$
 então $|u_n| \to +\infty$.

2) O inverso de um infinitésimo é um infinitamente grande, i.e.,

se
$$u_n \to 0$$
 então $\frac{1}{u_n} \to \infty$.

3) O inverso de um infinitamente grande é um infinitésimo, i.e.,

$$se \ u_n \to \infty \ ent \tilde{a}o \ \frac{1}{u_n} \to 0.$$

4) Se u_n é um infinitamente grande positivo e, a partir de uma certa ordem, $u_n \leq v_n$ então v_n também é um infinitamente grande positivo, i.e.,

se
$$u_n \to +\infty$$
 e $u_n \le v_n$ para $n \ge p$, então $v_n \to +\infty$.

- 5) Se $u_n \to +\infty$ e v_n é limitada inferiormente então $u_n + v_n \to +\infty$.
- 6) Se $u_n \to -\infty$ e v_n é limitada superiormente então $u_n + v_n \to -\infty$.
- 7) Se $u_n \to \pm \infty$ e v_n é limitada então $u_n + v_n \to \pm \infty$..
- 8) Se $u_n \to \infty$ e existe $p \in \mathbb{N}$ tal que o conjunto $\{v_n \in \mathbb{R} : n \geq p\}$ tem um minorante positivo ou um majorante negativo então $u_n \times v_n \to \infty$.

Dem. 1) Se $u_n \to +\infty$ então $u_n > L$, $n \ge p, \forall L > 0$ e $|u_n| \ge u_n > L$, isto é, $|u_n| \to +\infty$.

Se $u_n \to -\infty$ então $-u_n \to +\infty$ e, pelo passo anterior, $|-u_n| = |u_n| \to +\infty$.

2) Se $u_n \to 0$ então

$$\forall L > 0 \ \exists p \in \mathbb{N}: \ n > p \Longrightarrow |u_n| < \frac{1}{L}.$$

Assim $\frac{1}{|u_n|} > L$, para n > p, pelo que, por definição, $\frac{1}{|u_n|} \to +\infty$ e $\frac{1}{u_n} \to \infty$.

3) Se $u_n \to \infty$, $|u_n| \to +\infty$ e

$$\forall \delta > 0 \ \exists p \in \mathbb{N}: \ n > p \Longrightarrow |u_n| > \frac{1}{\delta}.$$

Então $\frac{1}{|u_n|} = \left|\frac{1}{u_n}\right| < \delta$, para n > p, pelo que, por definição, $\frac{1}{u_n} \to 0$.

4) Se $u_n \to +\infty$ então

$$u_n > L$$
, para $L > 0$ e $n > p$.

Se para $n \ge p$ se tem $v_n \ge u_n$ então

$$v_n \ge u_n > L$$
.

Por definição, $v_n \to +\infty$.

5) Como v_n é limitada inferiormente, para qualquer L>0 existe k tal que $k\leq v_n$, $\forall n\in\mathbb{N},$ e k< L.

De $u_n \to +\infty$ tem-se que $u_n > L, \, \forall L > 0$, pelo que $u_n > L - k$, para $n \geq p$. Então

$$u_n + v_n > L - k + k = L$$

e, por definição, $u_n + v_n \to +\infty$.

6) Análogo à alínea anterior.

7) Se v_n é limitada então existe K > 0 tal que $|v_n| \le K$, $\forall n \in \mathbb{N}$. Como $u_n \to \infty$ então $|u_n| \to +\infty$ e, por definição,

$$\forall L > 0 \ \exists n_0 \in \mathbb{N}: \ n > n_0 \Longrightarrow |u_n| > L - K.$$

Assim, a partir de uma certa ordem n_1 ,

$$|u_n + v_n| = |u_n - (-v_n)| \ge ||u_n| - |v_n|| = |u_n| - |v_n|.$$

Definindo $p := \max\{n_0, n_1\}$ tem-se que

$$|u_n + v_n| \ge |u_n| - |v_n| \ge L - K + K = L$$

é válido para $n \geq p, \forall L > 0$.

Isto significa que $|u_n + v_n| \to +\infty$, ou seja, $u_n + v_n \to \infty$.

8) Suponhamos que v_n tem um minorante positivo a partir de uma certa ordem n_0 . Ou seja,

$$\exists k > 0 : v_n \ge k$$
, para $n \ge n_0$.

Como $u_n \to \infty$, isto é, $|u_n| \to +\infty$, então $|u_n| > \frac{L}{k}$, para $n \ge n_1$. Assim

$$|u_n \times v_n| = |u_n| \times |v_n| > \frac{L}{k} \cdot k = L, \text{ para } n \ge p :== \max\{n_0, n_1\}.$$

Se supusermos que v_n tem um majorante negativo, então

$$\exists k > 0 : v_n \leq -k < 0$$
, a partir de uma certa ordem,

ou seja, $|v_n| \ge k > 0$ e o processo segue de modo análogo.

O teorema anterior contorna algumas dificuldades que surgem nas operações algébricas dos limites em $\overline{\mathbb{R}}$.

Por exemplo:

- 2) não dá informação sobre o valor de $\frac{0}{0}$.
- 3) não dá informação sobre o valor de $\frac{\infty}{\infty}.$
- 5),6) e 7) não dão informação sobre o valor de $+\infty \infty$.
- 8) não dá informação sobre o valor de $\infty \times 0$.

Nas sucessões em cujas operações surjam estes casos de <u>indeterminação</u>, para os quais não há teoremas gerais que garantam à partida o seu resultado, é necessário fazer um estudo caso a caso, de modo a conseguir levantar a indeterminação.

25

Exercício 1.12.2 Calcule, caso existam:

a)
$$\lim \frac{3n^2+1-2n}{1-n^3}$$

b)
$$\lim \left(\sqrt{n+1} - \sqrt{n}\right)$$

c)
$$\lim (3 + 2n^2 + 5n^4)$$

1.13 Sucessão exponencial

O comportamento, a existência e a natureza do limite da sucessão exponencial a^n ($a \in \mathbb{R}$) depende do valor da base.

Casos possíveis:

- Se a = 0 ou a = 1 a sucessão é constante. Logo é convergente para 0 ou para1, respectivamente.
- Se a > 1 a sucessão é monótona crescente. Escrevendo a = 1 + h, h > 0, resulta pela Prop. 1.5.1 que

$$a^n = (1+h)^n \ge 1 + nh, \ \forall n \in \mathbb{N}.$$

Como a sucessão $1+nh\to +\infty$, então, pelo Teorema 1.12.1, $a^n\to +\infty$.

- Se 0 < a < 1 a sucessão é monótona decrescente e $a^n \to 0$. (Provar)
- Se -1 < a < 0 a sucessão não é monótona e $a^n \to 0$. (Provar)
- Se $a \le -1$ a sucessão toma alternadamente termos positivos e negativos pelo que não é monótona e a^n não tem limite

Exercício 1.13.1 Calcular:

a)
$$\lim \frac{2^{n+1} + 3^n}{2^n + 3^{n+1}};$$
 b) $\lim \frac{2^{n+1} + 3^n}{2^n + 5^{n+1}}.$

1.14 Sucessão do tipo potência-exponencial

O limite da sucessão de termo geral $\left(1+\frac{1}{n}\right)^n$ tem um papel importante na Análise Matemática.

Exercício 1.14.1 Prove que a sucessão

$$u_n = \left(1 + \frac{1}{n}\right)^n$$

- a) É monótona crescente
- $b) \not E \ limitada$
- c) É convergente.

Pelo exercício anterior prova-se que o seu limite será um número entre 2 e 3.

Convencionou-se que

$$\lim \left(1 + \frac{1}{n}\right)^n = e \simeq 2,71828....$$

Teorema 1.14.2 Se a sucessão $u_n \to \infty$ então

$$\left(1 + \frac{1}{u_n}\right)^{u_n} \to e.$$

Dem. Suponhamos que $u_n \to +\infty$. Então existe uma ordem p tal que $u_n > L, \forall L > 0$.

Represente-se por k_n o menor número inteiro que verifique

$$k_n \le u_n < k_n + 1$$
, para $n > p$. (1.14.1)

Então

$$\frac{1}{k_n+1}<\frac{1}{u_n}\leq \frac{1}{k_n}$$

e

$$1 + \frac{1}{k_n + 1} < 1 + \frac{1}{u_n} \le 1 + \frac{1}{k_n}.$$

Por (1.14.1) e como as bases são maiores que 1, a sucessão fica crescente, e

$$\left(1 + \frac{1}{k_n + 1}\right)^{k_n} < \left(1 + \frac{1}{u_n}\right)^{u_n} \le \left(1 + \frac{1}{k_n}\right)^{k_n + 1}.$$

Como

$$\lim \left(1 + \frac{1}{k_n + 1}\right)^{k_n} = \lim \left(1 + \frac{1}{k_n}\right)^{k_n + 1} \left(1 + \frac{1}{k_n}\right)^{-1} = e.1 = e$$

 \mathbf{e}

$$\lim \left(1 + \frac{1}{k_n}\right)^{k_n + 1} = \lim \left(1 + \frac{1}{k_n}\right)^{k_n} \left(1 + \frac{1}{k_n}\right) = e$$

então pelo Teorema 1.9.3, quando $u_n \to +\infty$,

$$\lim \left(1 + \frac{1}{u_n}\right)^{u_n} = e.$$

Suponha-se agora que $u_n \to -\infty$. Então, definindo $v_n = -u_n$, tem-se $v_n \to +\infty$ e

$$\lim \left(1 + \frac{1}{u_n}\right)^{u_n} = \lim \left(1 - \frac{1}{v_n}\right)^{-v_n} = \lim \left(\frac{v_n - 1}{v_n}\right)^{-v_n}$$

$$= \lim \left(\frac{v_n}{v_n - 1}\right)^{v_n} = \lim \left(1 + \frac{1}{v_n - 1}\right)^{v_n}$$

$$= \lim \left(1 + \frac{1}{v_n - 1}\right)^{v_n - 1} \left(1 + \frac{1}{v_n - 1}\right) = e.1 = e,$$

porque $v_n - 1 \to +\infty$.

Teorema 1.14.3 Para $x \in \mathbb{R}$ $e u_n \to +\infty$ tem-se que

$$\lim \left(1 + \frac{x}{u_n}\right)^{u_n} \to e^x.$$

Dem. Se x = 0, $\lim_{n \to \infty} \left(1 + \frac{0}{u_n}\right)^{u_n} = \lim_{n \to \infty} 1^{u_n} = \lim_{n \to \infty} 1 = 1 = e^0$. Se $x \neq 0$, tem-se

$$\lim \left(1 + \frac{x}{u_n}\right)^{u_n} = \lim \left(1 + \frac{1}{\frac{u_n}{x}}\right)^{u_n} = \lim \left[\left(1 + \frac{1}{\frac{u_n}{x}}\right)^{\frac{u_n}{x}}\right]^x$$
$$= \left[\lim \left(1 + \frac{1}{\frac{u_n}{x}}\right)^{\frac{u_n}{x}}\right]^x = (e^1)^x = e^x,$$

quer se tenha $\frac{u_n}{x} \to +\infty$ ou $\frac{u_n}{x} \to -\infty$, pelo Teorema 1.14.2. \blacksquare

Os principais resultados para sucessões do tipo potência-exponencial (isto é da forma $u_n^{v_n}$) nos casos em que quer a base quer o expoente sejam sucessões com limite em $\overline{\mathbb{R}}$, podem ser resumidos no seguinte teorema:

Teorema 1.14.4 Sejam $u_n > 0$ e v_n duas sucessões com limite em $\overline{\mathbb{R}}$. Supondo que não se verificam as hipóteses:

- (i) $\lim u_n = \lim v_n = 0$;
- (ii) $\lim u_n = +\infty \ e \lim v_n = 0$;
- (iii) $\lim u_n = 1 \ e \lim v_n = +\infty;$

(iv)
$$\lim u_n = 1$$
 $e \lim v_n = -\infty$;
então

$$\lim (u_n)^{v_n} = (\lim u_n)^{v_n}.$$

Exercício 1.14.5 Calcular:

a)
$$\lim \sqrt[n]{\frac{n^2+n-1}{n^2+3}};$$
 b) $\lim \left(\frac{n^2+3n-1}{n^2+3}\right)^{n-1}.$

Capítulo 2

Séries de Números Reais

No Capítulo anterior a adição ficou perfeitamente definida para um número finito de parcelas.

Pretende-se generalizar o conceito de adição por forma a dar significado à adição de infinitas parcelas e de modo a conservar tanto quanto possível as principais propriedadesda adição.

Seria lógico esperar que a soma de infinitas parcelas positivas não desse um número finito. Mas tal facto contradiz alguns fenómenos observáveis no quotidiano. Exemplo:

<u>Paradoxo de Zeñão</u>: Um corredor desloca-se do ponto A para a meta B a uma velocidade constante.

Seja A_1 o ponto médio de [AB], A_2 o ponto médio de $[A_1B]$, e assim sucesivamente, designado por A_{n+1} o ponto médio de $[A_nB]$.

Se o tempo gasto para percorrer $\overline{AA_1}$ for designado por t, será $\frac{t}{2}$ o tempo gasto de A_1 a A_2 , $\frac{t}{2^2}$ de A_2 a A_3 , ...

O tempo total T, necessário para completar a corrida será a "soma" de uma infinidade de tempos parciais todos positivos:

$$T=t+\frac{t}{2}+\frac{t}{2^2}+\ldots+\frac{t}{2^n}+\ldots$$

Se pela "lógica" o tempo total fosse infinito o corredor nunca chegaria à meta. Tal estava em contradição com o "observável" e com a "dedução" de otempo total T ser o dobro do que o corredor gastava na primeira metade.

Só passado cerca de 2000 anos este facto foi explicado com recurso à teoria das séries.

2.1 Definição e generalidades

Seja a_n uma sucessão de números reais.

A esta sucessão pode associar-se uma outra sucessão

$$S_n = a_1 + a_2 + \dots + a_n$$

a que chamamos sucessão das somas parciais de a_n .

Definição 2.1.1 (i) Chama-se <u>série</u> ao par ordenado (a_n, S_n) e representase por

$$\sum_{n=1}^{+\infty} a_n.$$

Aos números $a_1, a_2, ..., a_n, ...$ chamam-se <u>termos da série</u> e à expressão a_n o termo geral da série.

(ii) A série $\sum_{n=1}^{+\infty} a_n$ diz-se convergente se existir em \mathbb{R} (for finito) $\lim S_n = S$

$$\sum_{n=1}^{+\infty} a_n = S.$$

Ao número real S chama-se soma da série.

(iii) Se não existir em \mathbb{R} $\lim S_n$, série diz-se divergente

Observação 2.1.2 Por vezes é conveniente utilizar séries do tipo

$$\sum_{n=p}^{+\infty} a_n \ com \ p \in \mathbb{Z},$$

mantendo-se o mesmo tipo de definição.

Exercício 2.1.3 Estude a natureza das séries:

a)
$$\sum_{n=1}^{+\infty} n$$
 ; b) $\sum_{n=1}^{+\infty} (-1)^n$; c) $\sum_{n=0}^{+\infty} \frac{t}{2^n}$, com $t \in \mathbb{R}^+$.

- O estudo das séries é composto por duas vertentes:
- a) determinar a natureza da série (convergente ou divergente);
- b) no caso de convergência, calcular a soma da série.

Esta última questão apresenta bastantes dificuldades, podendo mesmo ser impossível o cálculo exacto da soma das séries (recorrendo à aproximação numérica).

Vejam-se dois exemplos de séries para as quais se torna possível calcular o valor da sua soma, caso sejam convergentes.

2.2 Série geométrica

Definição 2.2.1 Chama-se <u>série geométrica</u> à série $\sum_{n=0}^{+\infty} a_n$ em que a_n é uma progressão geométrica.

Como é conhecido a sucessão das somas parciais correspondente é

$$S_n = a_0 \frac{1 - r^n}{1 - r}, \text{ com } r \neq 1.$$

Como

$$\lim S_n = \frac{a_0}{1-r} \lim (1-r^n) = \frac{a_0}{1-r}$$
, se $|r| < 1$,

tem-se que:

Proposição 2.2.2 A série geométrica converge se e só se |r| < 1. Neste caso

$$S = \frac{a_0}{1 - r}.$$

2.3 Série de Mengoli

Definição 2.3.1 Um série é de <u>Mengoli</u> (também designada por decomponível ou telescópica) se o termo $\overline{\text{geral } a_n}$ for decomponível numa diferença do tipo

$$a_n = u_n - u_{n+k}.$$

Veja-se a natureza destas séries:

1. Caso de
$$k = 1$$
: $a_n = u_n - u_{n+1}$

$$S_1 = a_1 = u_1 - u_2$$

$$S_2 = a_1 + a_2 = u_1 - u_3$$

$$S_3 = a_1 + a_2 + a_3 = u_1 - u_3$$

$$\vdots$$

$$S_n = u_1 - u_{n+1}.$$

Assim

$$\lim S_n = \lim (u_1 - u_{n+1}) = u_1 - \lim u_n.$$

Proposição 2.3.2 A série de Mengoli é convergente se e só seu_n é convergente. Em caso afirmativo

$$S = u_1 - \lim u_n$$
.

2. Caso de
$$k = 2$$
: $a_n = u_n - u_{n+2}$

$$S_1 = a_1 = u_1 - u_3$$

$$S_2 = a_1 + a_2 = u_1 - u_3 + u_2 - u_4$$

$$S_3 = a_1 + a_2 + a_3 = u_1 + u_2 - u_4 - u_5$$

$$\vdots$$

$$S_n = u_1 + u_2 - u_{n+1} - u_{n+2}.$$

Logo

$$\lim S_n = \lim (u_1 + u_2 - u_{n+1} - u_{n+2}) = u_1 + u_2 - 2\lim u_n.$$

Proposição 2.3.3 A série de Mengoli é convergente se e só se u_n é convergente. Em caso afirmativo

$$S = u_1 + u_2 - 2 \lim u_n$$
.

3. Caso geral: $a_n = u_n - u_{n+k}$

Proposição 2.3.4 A série de Mengoli é convergente se e só se u_n é convergente. Neste caso

$$S = u_1 + \dots + u_k - k \lim u_n.$$

Exercício 2.3.5 Estude a natureza da série

$$\sum_{n=0}^{+\infty} \frac{3}{n^2 + 5n + 4}$$

e calcule a sua soma, se possível.

O estudo da natureza da série pode ser feito sem recurso à construção explícita da sucessão das somas parciais, recorrendo a testes ou critérios de convergência.

Teorema 2.3.6 (Condição de convergência de Anastácio da Cunha) A série $\sum_{n=1}^{+\infty} a_n$ é convergente se e só se a sucessão das somas parciais é uma sucessão de Cauchy, isto é, simbolicamente,

$$\forall \delta > 0 \ \exists p \in \mathbb{N} : \forall k \in \mathbb{N}, \ \forall n \ge p \Longrightarrow |S_{n+k} - S_n| < \delta.$$

Dem. A demonstração é uma consequência imediata do Teorema 1.10.5.

Observação 2.3.7 Depreende-se deste teorema que:

- 1. A natureza de uma série não se altera se lhe suprimirmos um número finito de termos.
- 2. A natureza da série não depende do valor dos seus n primeiros termos.

Corolário 2.3.8 (<u>Condição necessária de convergência</u>) Se $\sum_{n=1}^{+\infty} a_n$ é uma série convergente então $\lim a_n = 0$.

Dem. Seja $\sum_{n=1}^{+\infty} a_n$ uma série convergente com $\lim S_n = l$.

A sucessão das somas parciais é dada por $S_n=a_1+a_2+\ldots+a_n$ e $S_{n-1}=a_1+a_2+\ldots+a_{n-1}$, para n>1.

Então $S_n - S_{n-1} = a_n$ e como $\lim S_n = \lim S_{n-1}$ obtem-se

$$0 = \lim \left(S_n - S_{n-1} \right) = \lim a_n.$$

Observação 2.3.9 A condição $\lim a_n = 0$ é necessária mas não é suficiente.

Um exemplo clássico para este facto é a série harmónica

$$\sum_{n=1}^{+\infty} \frac{1}{n}.$$

Apesar de $\frac{1}{n} \to 0$ a série harmónica é divergente, pois a sucessão das somas parciais $S_n = 1 + \frac{1}{2} + ... + \frac{1}{n}$ não é uma sucessão de Cauchy (logo não é uma sucessão convergente) uma vez que

$$|S_{2n} - S_n| = \left| \left(1 + \dots + \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} \right) - \left(1 + \dots + \frac{1}{n} \right) \right|$$

$$= \left| \frac{1}{n+1} + \dots + \frac{1}{2n} \right| = \frac{1}{n+1} + \dots + \frac{1}{2n}$$

$$> \frac{1}{n+n} + \dots + \frac{1}{2n} = \frac{n}{2n} = \frac{1}{2}, \quad \forall n \in \mathbb{N}.$$

Exercício 2.3.10 Prove que a série

$$\sum_{n=1}^{+\infty} \left(1 + \frac{1}{n}\right)^n$$

é divergente.

2.4 Propriedades algébricas das séries

Alguns resultados que permitem avaliar a natureza das séries resultam das suas operações algébricas.

Proposição 2.4.1 (i) Sejam $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ duas séries convergentes de

somas A e B, respectivamente. Então a série $\sum_{n=1}^{+\infty} (a_n + b_n)$ é convergente e a soma é A + B.

(ii) Se $\sum_{n=1}^{+\infty} a_n$ é uma série convergente de soma A, para cada $\lambda \in \mathbb{R}$, a série

$$\sum_{n=1}^{+\infty} (\lambda a_n) \text{ \'e convergente para } \lambda A.$$

Dem. (i) Represente-se por S_n' e S_n'' as sucessões das somas parciais das séries $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$, respectivamente. Então

$$S_n = (a_1 + b_1) + (a_2 + b_2) + \dots + (a_n + b_n)$$

= $(a_1 + \dots + a_n) + (b_1 + \dots + b_n) = S'_n + S''_n \to A + B.$

Pelo que S_n é convergente para A+B e, portanto, $\sum_{n=1}^{+\infty} (a_n+b_n)$ é convergente e tem por soma A+B.

(ii) Seja S_n^* a sucessão das somas parciais da série $\sum_{n=1}^{+\infty} \lambda a_n$ e S_n a de

$$\sum_{n=1}^{+\infty} a_n.$$

Então

$$S_n^* = \lambda a_1 + \dots + \lambda a_n = \lambda (a_1 + \dots + a_n) = \lambda S_n \to \lambda A.$$

Observação 2.4.2 Caso ambas as séries $\sum_{n=1}^{+\infty} a_n e \sum_{n=1}^{+\infty} b_n$ sejam divergentes, a série $\sum_{n=1}^{+\infty} (a_n + b_n)$ pode ser convergente ou divergente.

- 1. As séries $\sum_{n=1}^{+\infty} (-1)^n e^{-n} \sum_{n=1}^{+\infty} (-1)^{n+1} são$ ambas divergentes e contudo $\sum_{n=1}^{+\infty} \left[(-1)^n + (-1)^{n+1} \right] \equiv 0 \text{ \'e convergente.}$
- 2. As séries $\sum_{n=1}^{+\infty} n$ e $\sum_{n=1}^{+\infty} 2n$ são ambas divergentes e $\sum_{n=1}^{+\infty} [n+2n] = \sum_{n=1}^{+\infty} 3n$ é divergente.

Observação 2.4.3 Poder-se-ia esperar que sendo $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ convergentes, a série "produto" $\sum_{n=1}^{+\infty} (a_n \times b_n)$ também fosse convergente. Contudo tal não se verifica.

Os próximos results dos darão alguma informação sobre os casos em que é possível $a\ priori$ estabelecer a natureza da série "produto".

2.5 Séries de termos não negativos

Uma série $\sum_{n=1}^{+\infty} a_n$ diz-se de termos não negativos se $a_n \geq 0, \forall n \in \mathbb{N}$.

Tendo-se apenas $a_n \geq 0$, para $n \geq p$, esta série é da mesma natureza que uma série de termos não negativos, pois a natureza da série não depende pos primeiros p termos.

Neste tipo de séries o estuda da convergência ou divergência torna-se mais simples, uma vez que permite estabelecer vários critérios de convergência.

Proposição 2.5.1 Uma série de termos positivos $\sum_{n=1}^{+\infty} a_n$ é convergente se e só se a sucessão das somas parciais é majorada.

Dem. Observe-se que sendo $a_n \ge 0$, $\forall n \in \mathbb{N}$, então a sucessão das somas parciais $S_n = a_1 + \cdots + a_n$ é crescente.

Portanto S_n será convergente se e só se for majorada. \blacksquare

Teorema 2.5.2 (Critério de comparação) Sejam $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ séries de termos não negativos e tais que $a_n \leq b_n$ para $n \geq p$. Então:

- a) Se $\sum_{n=1}^{+\infty} b_n$ é convergente então $\sum_{n=1}^{+\infty} a_n$ é convergente.
- **b)** Se $\sum_{n=1}^{+\infty} a_n$ é divergente então $\sum_{n=1}^{+\infty} b_n$ é divergente.

Dem. Podemos supor $a_n \leq b_n$, $\forall n \in \mathbb{N}$, que não há perda de generalidade (pois a natureza da série não depende dos primeiros p termos).

Considere-se

$$A_n = a_1 + \dots + a_n$$
 e $B_n = b_1 + \dots + b_n$

as respectivas sucessões das somas parciais. Então $A_n \leq B_n, \forall n \in \mathbb{N}$.

a) Pela Proposição 2.5.1,

$$\sum_{n=1}^{+\infty} b_n \text{ \'e convergente} \Leftrightarrow B_n \text{ \'e majorada} \Leftrightarrow B_n \leq B \ \left(B \in \mathbb{R}^+\right).$$

Assim, como $a_n \leq b_n$, $\forall n \in \mathbb{N}$, então $A_n \leq B_n \leq B$ e A_n é majorada $\Leftrightarrow \sum_{n=1}^{+\infty} a_n$ é convergente.

b) Se
$$\sum_{n=1}^{+\infty} a_n$$
 é divergente então $A_n \to +\infty \iff A_n \ge A \ (\forall A \in \mathbb{R})$.
Então $A \le A_n \le B_n$ e $B_n \to +\infty$ porque $B_n \ge A \ (\forall A \in \mathbb{R})$, pelo que

Então $A \leq A_n \leq B_n$ e $B_n \to +\infty$ porque $B_n \geq A \ (\forall A \in \mathbb{R})$, pelo que $\sum_{n=1}^{+\infty} b_n \text{ \'e divergente.} \quad \blacksquare$

Exemplo 2.5.3 1. (Séries de Dirichlet) Se $\alpha \in \mathbb{R}$ e $\alpha \leq 1$ então a série

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} \quad \acute{e} \ divergente.$$

Como a série $\sum_{n=1}^{+\infty} \frac{1}{n}$ é divergente, pelo critério de comparação (b), $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ é divergente para $\alpha \leq 1$.

2. A série $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ é convergente, porque $n^2 \ge n^2 - 1$, $\frac{1}{n^2} \le \frac{1}{n^2 - 1}$ (n > 1).

Como a série $\sum_{n=1}^{+\infty} \frac{1}{n^2-1}$ é uma série de Mengoli convergente, então pelo

critério de comparação (a), $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ é convergente.

3. Para $\alpha \geq 2$ a série $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ é convergente, pois $n^{\alpha} \geq n^2$, $\frac{1}{n^{\alpha}} \leq \frac{1}{n^2}$.

Como $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ é convergente, então pelo critério de comparação (a), $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ é convergente para $\alpha \geq 2$.

Considere-se a série $\sum_{n=0}^{+\infty} \frac{sen \ n}{2^n}$.

Aqui não é possível aplicar o critério de comparação pois os termos da série não são não negativos..

É necessário o conceito de convergência absoluta.

Definição 2.5.4 Uma série $\sum_{n=1}^{+\infty} a_n$ diz-se <u>absolutamente convergente</u> se

$$\sum_{n=1}^{+\infty} |a_n| \text{ \'e convergente.}$$

A relação entre estes dois tipo de convergência pode ser expressa no seguinte resultado:

Teorema 2.5.5 Toda a série absolutamente convergente é convergente.

Dem. Seja $\sum_{n=1}^{+\infty} a_n$ uma série absolutamente convergente, isto é, $\sum_{n=1}^{+\infty} |a_n|$ è convergente.

Além disso $\left|\sum_{n=1}^{+\infty} a_n\right| \leq \sum_{n=1}^{+\infty} |a_n|$, porque $|a_1+\cdots+a_n| \leq |a_1|+\cdots+|a_n|$ e passando ao limite em ambos os membros da desigualdade.

Como
$$0 \le a_n + |a_n| \le 2|a_n|$$
 e a série $\sum_{n=1}^{+\infty} 2|a_n|$ é convergente, pela

Proposição 2.4.1,.então pelo Teorema 2.5.2, a), a série $\sum_{n=1}^{+\infty} (a_n + |a_n|)$ é convergente.

Assim
$$\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} (a_n + |a_n|) - \sum_{n=1}^{+\infty} |a_n|$$
 é convergente.

Observação 2.5.6 Uma série $\sum_{n=1}^{+\infty} a_n$ pode ser convergente sem contudo ser absolutamente convergente. Nestes casos a série diz-se simplesmente convergente.

Exemplo 2.5.7 Na série $\sum_{n=1}^{+\infty} \frac{sen\ n}{2^n}$ tem-se que

$$\left| \frac{sen \ n}{2^n} \right| \le \frac{1}{2^n}, \ \forall n \in \mathbb{N}.$$

 $Como \sum_{n=1}^{+\infty} \frac{1}{2^n} \text{ \'e uma s\'erie geom\'etrica convergente (raz\~ao } \frac{1}{2}) \text{ , ent\~ao pelo }$ $crit\'erio \text{ de compara}\~a\~o \text{ (a) a s\'erie } \sum_{n=1}^{+\infty} \left| \frac{sen \text{ } n}{2^n} \right| \text{ \'e convergente e } \sum_{n=1}^{+\infty} \frac{sen \text{ } n}{2^n} \text{ \'e }$ $absolutamente \text{ convergente. Finalmente pelo Teorema 2.5.5, } \sum_{n=1}^{+\infty} \frac{sen \text{ } n}{2^n} \text{ \'e convergente.}$

Os dois resultados seguintes referem-se à natureza de séries cujo termo geral é o produto de duas sucessões:

Teorema 2.5.8 (Teorema de Dirichlet) Se $\sum_{n=1}^{+\infty} a_n$ é uma série (não necessariamente convergente) com a successão das somas parciais limitada e h. é

sariamente convergente) com a sucessão das somas parciais limitada e b_n é uma sucessão decrescente que tende para zero então

$$\sum_{n=1}^{+\infty} (a_n \times b_n) \text{ \'e convergente.}$$

Dem. 1º Passo: Provar por indução que, para $S_n = a_1 + \cdots + a_n$ se tem

$$a_1b_1 + \dots + a_nb_n = S_1(b_1 - b_2) + S_2(b_2 - b_3) + \dots + S_{n-1}(b_{n-1} - b_n) + S_nb_n, \ \forall n \in \mathbb{N}.$$

Para n = 1, $a_1b_1 = S_1b_1$ é verdade.

Admitindo a igualdade verdadeira para n = p verificar para n = p + 1:

$$a_1b_1 + \dots + a_pb_p + a_{p+1}b_{p+1} =$$

$$[S_1(b_1 - b_2) + \dots + S_{p-1}(b_{p-1} - b_p) + S_pb_p] +$$

$$a_{p+1}b_{p+1} + (S_pb_{p+1} - S_pb_{p+1})$$

$$= S_1(b_1 - b_2) + \dots + S_{p-1}(b_{p-1} - b_p) + S_p(b_p - b_{p+1}) + (a_{p+1} + S_p)b_{p+1}$$

$$= S_1(b_1 - b_2) + \dots + S_p(b_p - b_{p+1}) + S_{p+1}b_{p+1}.$$

2º Passo: Passando ao limite

$$\lim (a_1b_1 + \dots + a_nb_n) = \lim \sum_{i=2}^n S_{i-1} (b_{i-1} - b_i) + \lim S_nb_n.$$

Os dois limites do segundo membro existem porque:

- $S_n b_n \to 0$, pelo Teorema 1.8.3;
- a série $\sum_{i=2}^{+\infty} S_{i-1} (b_{i-1} b_i)$ é convergente.pois

$$|S_{i-1}(b_{i-1} - b_i)| = |S_{i-1}|(b_{i-1} - b_i) \le M(b_{i-1} - b_i)$$

e $\sum_{i=2}^{+\infty} (b_{i-1} - b_i)$ é convergente. pois é uma série de Mengoli com b_n convergente. Então a série $\sum_{i=2}^{+\infty} S_{i-1} (b_{i-1} - b_i)$ é absolutamente convergente. Logo

 $\lim (a_1b_1 + \cdots + a_nb_n)$ é finito pelo que a série $\sum_{n=1}^{+\infty} (a_nb_n)$ é convergente.

Fortalecendo a hipótese sobre $\sum_{n=1}^{+\infty} a_n$ e enfraquecendo a condição sobre b_n , obtem-se:

Teorema 2.5.9 (Teorema de Abel) Se $\sum_{n=1}^{+\infty} a_n$ é uma série convergente e $b_n \geq 0$ é uma sucessão decrescente (não necessariamente com limite zero) então

$$\sum_{n=1}^{+\infty} (a_n \times b_n) \text{ \'e convergente.}$$

Dem. Como b_n é monótona e limitada $(0 \le b_n \le b_1, \forall n \in \mathbb{N})$ entáo é convergente, isto é, tem limite. Seja b esse limite.

A sucessão $(b_n - b)$ é decrescente e $(b_n - b) \rightarrow 0$.

Como a série $\sum_{n=1}^{+\infty} a_n$ é convergente, a respectiva sucessão das somas parciais élimitada, pelo que se pode aplicar o Teorema 2.5.8 e garantir que $\sum_{n=1}^{+\infty} [a_n (b_n - b)]$ é convergente.

Como $a_n b_n = a_n (b_n - b) + b a_n$ então

$$\sum_{n=1}^{+\infty} (a_n b_n) = \sum_{n=1}^{+\infty} [a_n (b_n - b) + b a_n] \text{ \'e convergente.}$$

2.6 Séries alternadas

Se os termos da série não têm sinal fixo, isto é, vão alternando o sinal, a série será do tipo

$$\sum_{n=1}^{+\infty} (-1)^n b_n, \quad (b_n \ge 0),$$

a série diz-se <u>alternada</u>.

O estudo da natureza deste tipo de séries faz˜se com recurso à convergência absoluta ou se se pretender apenas a convergência simples ao critério de Leibniz:

Teorema 2.6.1 (Critério de Leibniz) Se $b_n \ge 0$ é uma sucessão decrescente com limite zero então

$$\sum_{n=1}^{+\infty} (-1)^n b_n \text{ \'e convergente.}$$

Dem. A a sucessão das somas parciais da série $\sum_{n=1}^{+\infty} (-1)^n$ é limitada (embora não convergente). Como b_n é uma sucessão decrescente com lim $b_n = 0$, então fazendo no Teorema 2.5.8 $a_n = (-1)^n$ obtem-se o resultado pretendido.

Observação 2.6.2 A condição de b_n ser decrescente para zero não pode ser retirada.

Sem a monotonia de b_n a série pode divergir.

Exercício 2.6.3 Prove que a sucessão $b_n = \frac{1}{n} [2 + (-1)^n]$ tende para 0 mas não é monótona e a série

$$\sum_{n=1}^{+\infty} (-1)^n \frac{1}{n} \left[2 + (-1)^n \right]$$

é divergente.

Resolução: Suponha-se, com vista um absurdo, que a a série $\sum_{n=1}^{+\infty} (-1)^n \frac{1}{n} [2 + (-1)^n]$ é convergente.

Então a série

$$\sum_{n=1}^{+\infty} \frac{1}{n} = -\sum_{n=1}^{+\infty} (-1)^n \frac{2}{n} + \sum_{n=1}^{+\infty} \left[\frac{2}{n} (-1)^n + \frac{1}{n} \right]$$

seria convergente pela Proposição 2.4.1. Ora isto é absurdo porque a série harmónica é divergente.

Exercício 2.6.4 Estude a natureza da série

$$\sum_{n=1}^{+\infty} (-1)^n \frac{1}{n}.$$

Resolução: A série $\sum_{n=1}^{+\infty} (-1)^n \frac{1}{n}$ não é absolutamente convergente pois

$$\sum_{n=1}^{+\infty} \left| (-1)^n \frac{1}{n} \right| = \sum_{n=1}^{+\infty} {n \over n}$$

Pelo Critério de Leibniz a série é convergente.

Logo a série é simplesmente convergente.

Observação 2.6.5 Este exercício prova que a recíproca do Teorema 2.5.5 não é verdadeira, isto é, existem séries convergentes que não são absolutamente convergentes.

2.7 Critérios de convergência para séries de termos não negativos

Além dos critérios já apresentados, indicam-se de seguida uma colecção de critérios para séries de termos não negativos.

Teorema 2.7.1 (Corolário do critério de comparação) Se $a_n \geq 0$, $b_n \geq 0$, $\forall n \in \mathbb{N}$ e

$$\lim \frac{a_n}{b_n} = l, \quad (0 < l < +\infty)$$

então as séries $\sum_{n=1}^{+\infty} a_n \ e \sum_{n=1}^{+\infty} b_n$ são da mesma natureza.

Dem. Aplicando a definição de limite à sucessão $\frac{a_n}{b_n}$, obtem-se

$$\forall \delta > 0 \ \exists p \in \mathbb{N}: \ n > p \Longrightarrow l - \delta < \frac{a_n}{b_n} < l + \delta.$$

Fixando δ tal que $0 < \delta < l$ tem-se, para n > p,

$$b_n (l - \delta) < a_n < b_n (l + \delta).$$

2.7. CRITÉRIOS DE CONVERGÊNCIA PARA SÉRIES DE TERMOS NÃO NEGATIVOS43

Pelo Teorema 2.5.2, se $\sum_{n=1}^{+\infty} b_n$ é divergente então $\sum_{n=1}^{+\infty} a_n$ é divergente, e se $\sum_{n=1}^{+\infty} b_n$ é convergente então $\sum_{n=1}^{+\infty} a_n$ é convergente.

Exemplo 2.7.2 A série

$$\sum_{n=1}^{+\infty} sen\left(\frac{1}{n}\right)$$

é divergente porque

$$\lim \frac{sen\left(\frac{1}{n}\right)}{\frac{1}{n}} = 1$$

$$e \sum_{n=1}^{+\infty} \frac{1}{n}$$
 é divergente.

Observação 2.7.3 A aplicação do teorema anterior exige que a natureza de uma das séries seja previamente conhecida. Para tal vejam-se os dois resultados seguintes:

Teorema 2.7.4 (Critério da condensação de Cauchy) Sejam $a_1 \ge a_2 \ge a_3 \ge ... \ge 0$. Então $\sum_{n=1}^{+\infty} a_n$ converge se e só se

$$\sum_{k=0}^{+\infty} 2^k a_{2^k} = a_1 + 2a_2 + 4a_4 + 8a_8 + \dots \text{ for convergente.}$$

Dem. Sejam S_n e T_k as somas parciais das duas séries, isto é,

$$S_n = a_1 + \dots + a_n$$

 $T_k = a_1 + 2a_2 + 4a_4 + \dots + 2^k a_{2^k}.$

Para $n \leq 2^{k+1} - 1$, tem-se

$$S_n = a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + \cdots + (a_{2^k} + \cdots + a_{2^{k+1}-1})$$

$$\leq a_1 + 2a_2 + 4a_4 + \cdots + 2^k a_{2^k} = T_k.$$

(\iff) Assim se $\sum_{k=0}^{+\infty} 2^k a_{2^k}$ é convergente então, pela Proposição 2.5.1 T_k é majorada.

Como para qualquer n existe $k \in \mathbb{N}_0$ tal que $n \leq 2^{k+1} - 1$, tem-se que $S_n \leq T_k$, pelo que S_n é majorada e, pela Proposição 2.5.1, a série $\sum_{n=1}^{+\infty} a_n$ é convergente.

 (\Longrightarrow) Suponha-se que $\sum_{n=1}^{+\infty} a_n$ é convergente. Para $n \geq 2^k$, tem-se

$$S_n = a_1 + \dots + a_n$$

$$\geq a_1 + a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + \dots + (a_{2^{k+1}+1} + \dots + a_{2^k})$$

$$\geq \frac{1}{2}a_1 + a_2 + 2a_4 + 4a_8 + \dots + 2^{k-1}a_{2^k} = \frac{1}{2}T_k$$

pelo que $T_k \leq 2S_n$. Como $\sum_{n=1}^{+\infty} a_n$ é convergente então S_n é majorada pelo que T_k também é majorada. Pela Proposição 2.5.1, a série $\sum_{k=0}^{+\infty} 2^k a_{2^k}$ é convergente.

Corolário 2.7.5 A série de Dirichlet $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ é convergente se e só se $\alpha > 1$ $(\alpha \in \mathbb{R}).$

Dem. Para $\alpha \leq 0$, $\frac{1}{n^{\alpha}}$ não é um infinitésimo, logo pelo Corolário 2.3.8, a série é divergente.

Para $\alpha > 0$ a sucessão $\frac{1}{n^{\alpha}}$ está nas condições do teorema anterior. Assim para $b_n = 2^n a_{2^n} = 2^n \frac{1}{(2^n)^{\alpha}} = 2^{(1-\alpha)n}$ a série $\sum_{n=1}^{+\infty} b_n = \sum_{n=1}^{+\infty} 2^{(1-\alpha)n}$ é uma série geométrica de razão $2^{1-\alpha}$, que converge se, e só se, $1-\alpha < 0$, isto é, $\alpha > 1$.

Em situações em que o limite apresente algumas dificuldades ou não exista, pode optar-se pela comparação das razões entre dois termos consecutivos.

2.7. CRITÉRIOS DE CONVERGÊNCIA PARA SÉRIES DE TERMOS NÃO NEGATIVOS45

Teorema 2.7.6 (Critério da comparação das razões) Sejam a_n , $b_n > 0$ e, a partir de uma certa ordem p,

$$\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}.$$

Então:

- a) Se $\sum_{n=1}^{+\infty} b_n$ é convergente então $\sum_{n=1}^{+\infty} a_n$ é convergente.
- b) Se $\sum_{n=1}^{+\infty} a_n$ é divergente então $\sum_{n=1}^{+\infty} b_n$ é divergente.

Dem. A desigualdade da hipótese é equivalente a

$$\frac{a_{n+1}}{b_{n+1}} \le \frac{a_n}{b_n}.$$

o que prova que a sucessão $\frac{a_n}{b_n}$ é decrescente, a partir de uma certa ordem p, pelo que é majorada por $\frac{a_p}{b_p}$, para $n \geq p$. Ou seja, $\frac{a_n}{b_n} \leq \frac{a_p}{b_p}$ e $a_n \leq b_n \frac{a_p}{b_p}$, para $n \geq p$.

Aplicando o Teorema 2.5.2 obtem-se a conclusão pretendida.

Exercício 2.7.7 Estudar a natureza das séries

a).
$$\frac{1}{2} + \frac{1 \times 3}{2 \times 4} + \frac{1 \times 3 \times 5}{2 \times 4 \times 6} + \dots = \sum_{n=1}^{+\infty} \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times (2n)}$$

b).
$$\sum_{n=1}^{+\infty} \frac{1 + (-1)^n}{n^2}.$$

Teorema 2.7.8 (Critério da razão) Seja $a_n > 0$.

- a) Se existe um número r tal que 0 < r < 1 e $\frac{a_{n+1}}{a_n} \le r$, a partir de uma certa ordem, então $\sum_{n=1}^{+\infty} a_n$ é convergente.
- **b)** Se a partir de uma certa ordem, $\frac{a_{n+1}}{a_n} \ge 1$ então $\sum_{n=1}^{+\infty} a_n$ é divergente.

Dem. a) Aplicando a alínea a) do teorema anterior às séries $\sum_{n=1}^{+\infty} a_n$ e

 $\sum_{n=1}^{+\infty} r^n,$ em que a segunda é convergente porque é uma série geométrica com |r|<1, pois

$$\frac{a_{n+1}}{a_n} \le \frac{r^{n+1}}{r^n} = r.$$

b) Aplicando a alínea b) do Teorema 2.7.6 às séries $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} 1$, sendo esta divergente. Como $\frac{a_{n+1}}{a_n} \geq 1$ então $\sum_{n=1}^{+\infty} a_n$ é divergente.

Teorema 2.7.9 (Critério de D'Alembert) Se $a_n > 0$ e $\lim \frac{a_{n+1}}{a_n} = l$, finito $ou + \infty$, então

- a) Se l < 1, então $\sum_{n=1}^{+\infty} a_n$ é convergente.
- **b)** Se l > 1 então $\sum_{n=1}^{+\infty} a_n$ é divergente.

Dem. a) Pela definição de limite,

$$\forall \delta > 0, \exists p \in \mathbb{N} : \frac{a_{n+1}}{a_n} < l + \delta, \text{ para } n \geq p.$$

Como l<1, escolha-se δ suficientemente pequeno de modo que $l+\delta<1$. Aplicando o Teorema 2.7.8 com $r=l+\delta<1$ conclui-se que $\sum_{n=1}^{+\infty}a_n$ é convergente.

b) Pela definição de limite,

$$\forall \delta>0, \exists p\in\mathbb{N}: l-\delta<\frac{a_{n+1}}{a_n}, \text{ para } n\geq p.$$

Como l>1, escolha-se $\delta>0$ de modo que $l-\delta>1$. Assim $\frac{a_{n+1}}{a_n}>l-\delta>1$ e pelo Teorema 2.7.8 a série $\sum_{n=1}^{+\infty}a_n$ é divergente. \blacksquare

2.7. CRITÉRIOS DE CONVERGÊNCIA PARA SÉRIES DE TERMOS NÃO NEGATIVOS47

Observação 2.7.10 Se l = 1 este critério não é conclusivo, contudo se

$$\lim \frac{a_{n+1}}{a_n} = 1^+$$

decorre do teorema anterior que a série é divergente.

Exercício 2.7.11 (i) Prove que a série $\sum_{n=1}^{+\infty} \frac{1}{n!}$ é convergente.

(ii). Discuta a natureza da série

$$\sum_{n=1}^{+\infty} \frac{\lambda^n n!}{n^n}$$

em função do parâmetro λ .

Teorema 2.7.12 (Critério da raiz) Seja $a_n \ge 0 \ \forall n \in \mathbb{N}$. Então

- a) Se $\sqrt[n]{a_n} \le r$, com r < 1, a partir de uma certa ordem, então $\sum_{n=1}^{+\infty} a_n$ é convergente.
- **b)** Se $\sqrt[n]{a_n} \ge 1$, para uma infinidade de valores de n,. então $\sum_{n=1}^{+\infty} a_n$ é divergente.

Dem. a) Como $\sqrt[n]{a_n} \le r$ então $a_n \le r^n$, para $n \ge p$ e $\sum_{n=1}^{+\infty} r^n$ é conver-

gente, porque r < 1, então, pelo Teorema 2.5.2, $\sum_{n=1}^{+\infty} a_n$ é convergente.

b) Se $\sqrt[n]{a_n} \ge 1$ para uma infinidade de valores de n então $\lim a_n \ne 0$. Logo $\sum_{n=1}^{+\infty} a_n$ é divergente. \blacksquare

Teorema 2.7.13 (Critério da raiz de Cauchy) Seja $a_n \geq 0 \quad \forall n \in \mathbb{N}$ e suponhamos que lim $\sqrt[n]{a_n} = l$, finito ou $+\infty$. Então

a) Se l < 1, $\sum_{n=1}^{+\infty} a_n$ é convergente.

b) Se
$$l > 1$$
, $\sum_{n=1}^{+\infty} a_n$ é divergente.

Observação 2.7.14 Se l = 1 este critério não é conclusivo.

Dem. a) Pela definição de limite.

$$\forall \delta > 0, \exists p \in \mathbb{N} : \sqrt[n]{a_n} < l + \delta, \text{ para } n \geq p.$$

Como l<1, escolhe-se $\delta>0$ suficientemente pequeno tal que $l+\delta<1$ e em seguida escolhe-se tal que $r=l+\delta<1$.

Assim $\sqrt[n]{a_n} < r$ e, pelo Teorema 2.7.12, a série é convergente.

b) Pela definição de limite,

$$\forall \delta > 0, \exists p \in \mathbb{N} : l - \delta < \sqrt[n]{a_n}, \text{ para } n \geq p.$$

Como l > 1, escolhe-se $\delta > 0$ tal que $l - \delta > 1$ e, assim $\sqrt[n]{a_n} > 1$. Pelo Teorema 2.7.12, a série é divergente.

Se $l = +\infty$, pela definição de limite,

$$\forall \delta > 0, \exists p \in \mathbb{N} : n \ge p \Longrightarrow \sqrt[n]{a_n} > l.$$

Em particular para $\delta = 1, \sqrt[n]{a_n} > 1.$

Exemplo 2.7.15 (i) A série $\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n^n}}$ é convergente porque, pelo critério da raiz de Cauchy

$$\lim \sqrt[n]{\frac{1}{\sqrt{n^n}}} = \lim \frac{1}{\sqrt{n}} = 0.$$

(ii). Para a série

$$\sum_{n=1}^{+\infty} \frac{1}{[3 + (-1)^n]^{2n}}$$

não é possível calcular

$$\lim \sqrt[n]{\frac{1}{[3+(-1)^n]^{2n}}} = \lim \frac{1}{[3+(-1)^n]^2}$$

porque o limite não existe. Contudo decompondo a série e pode calcular-se os dois sub-limites:

n par,
$$\lim \frac{1}{[3+(-1)^n]^2} = \frac{1}{16}$$
,
n impar, $\lim \frac{1}{[3+(-1)^n]^2} = \frac{1}{4}$.

Como ambos são menores que 1, então a série convergente.

2.8 Resto de uma série

Ao aproximarmos a soma de uma série pela soma se alguns termos, cometese um erro.

Definição 2.8.1 Dada uma série $\sum_{n=1}^{+\infty} a_n$, chama-se resto de ordem p à série

$$\sum_{n=p+1}^{+\infty} a_n = a_{p+1} + a_{p+2} + \dots = R_p.$$

Como

$$\sum_{n=p+1}^{+\infty} a_n = (a_1 + a_2 + \dots + a_p) + R_p$$

observa-se que o erro cometido ao tomar para valor da soma da série, a soma dos primeiros p termos é R_p .

No cálculo aproximado interessa conhecer majorantes dos erros cometidos nas aproximações feitas.

Nas séries de termos positivos existem alguns resultados que majoram o resto:

Teorema 2.8.2 Se $p \in \mathbb{N}$, $a_n > 0 \quad \forall n \in \mathbb{N}$, e existir um número k_p tal que

$$\frac{a_{n+1}}{a_n} \le k_p < 1, \ para \ n \ge p+1,$$

 $ent \tilde{a}o$

$$R_p \le \frac{a_{p+1}}{1 - k_p}.$$

Dem. Pelo Teorema 2.7.8, a série $\sum_{n=1}^{+\infty} a_n$ é convergente. Por outro lado

$$R_p = a_{p+1} + a_{p+2} + a_{p+3} + \cdots$$
$$= a_{p+1} \left(1 + \frac{a_{p+2}}{a_{p+1}} + \frac{a_{p+3}}{a_{p+1}} + \cdots \right).$$

Por hipótese

$$\frac{a_{p+2}}{a_{p+1}} \le k_p \in \frac{a_{p+3}}{a_{p+1}} = \frac{a_{p+3}}{a_{p+2}} \cdot \frac{a_{p+2}}{a_{p+1}} \le (k_p)^2.$$

Análogamente $\frac{a_{p+4}}{a_{p+1}} \le (k_p)^3$ e assim sucessivamente.

Então

$$R_p \le a_{p+1} \left(1 + k_p + (k_p)^2 + (k_p)^3 + \dots \right) = a_{p+1} \frac{1}{1 - k_p}.$$

Outro resultado para séries de termos não negativos:

Teorema 2.8.3 Se $a_n \ge 0 \ \forall n \in \mathbb{N}$, e existir um número k_p tal que $\sqrt[n]{a_n} \le k_p < 1$, para $n \ge p + 1$, então

$$R_p \le \frac{k_p^{p+1}}{1 - k_p}.$$

Dem. A série $\sum_{n=1}^{+\infty} a_n$ é convergente pelo Teorema 2.7.12. O erro

$$R_p = a_{p+1} + a_{p+2} + a_{p+3} + \cdots$$

$$\leq (k_p)^{p+1} \left(1 + k_p + (k_p)^2 + (k_p)^3 + \cdots \right) = \frac{k_p^{p+1}}{1 - k_p}.$$

Para séries alternadas, tem-se o seguinte resultado:

Teorema 2.8.4 Seja $a_n \ge 0$ uma sucessão decrescente com limite zero e R_p o resto de ordem p da série $\sum_{n=1}^{+\infty} (-1)^n a_n$. Então

$$R_p \le a_{p+1}$$
.

Dem. Pelo Teorema 2.6.1, a série é convergente e

$$R_p = (-1)^{p+1} a_{p+1} + (-1)^{p+2} a_{p+2} + \cdots$$

Multiplicando por $(-1)^{p+1}$ tem-se

$$(-1)^{p+1} R_p = (a_{p+1} - a_{p+2}) + (a_{p+3} - a_{p+4}) + \cdots$$

e como a_n é uma sucessão decrescente então cada diferença é não negativa e

$$(-1)^{p+1} R_p \ge 0. (2.8.1)$$

Por outro lado

$$-\left[(-1)^{p+1} R_p - a_{p+1} \right] = (a_{p+2} - a_{p+3}) + (a_{p+4} - a_{p+5}) + \dots \ge 0.$$

Ou seja,

$$(-1)^{p+1} R_p \le a_{p+1},$$

e, por (2.8.1),

$$0 \le (-1)^{p+1} R_p \le a_{p+1},$$

pelo que $|R_p| \le a_{p+1}$.

Exemplo 2.8.5 Se para soma da série $\sum_{n=1}^{+\infty} (-1)^n \frac{1}{n}$ tomarmos o número

$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4},$$

comete-se um erro R_n tal que $|R_n| \leq \frac{1}{5}$.

Capítulo 3

Funções reais de variável real

3.1 Limite de uma função

Recordando a definição de limite de uma função num ponto:

Definição 3.1.1 Sejam $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$ uma função real definida em X e a um ponto de acumulação de X. Diz-se que $b \in \mathbb{R}$ é o limite de f(x) no ponto a e escreve-se $f(x) \to b$ quando $x \to a$ ou

$$\lim_{x \to a} f(x) = b,$$

quando

$$\forall \delta > 0 \ \exists \varepsilon > 0 \colon \forall x \in X, \ |x - a| < \varepsilon \Longrightarrow |f(x) - b| < \delta.$$

Intuitivamente $\lim_{x\to a} f(x) = b$:

- significa que f(x) está arbitrariamente próximo de b quando x está suficientemente perto de a.
- não dá informação sobre o valor de f(x) no ponto a, isto é, sobre f(a).

Exercício 3.1.2 Prove por definição que

$$\lim_{x \to a} (x^2 + 4) = a^2 + 4.$$

Também é possível formular a noção de limite de uma função recorrendo a sucessões:

Teorema 3.1.3 (Heine) Sejam $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$, a um ponto de acumulação de X e $b \in \mathbb{R}$ $Então \lim_{x \to a} f(x) = b$ é equivalente a dizer que $\lim f(x_n) = b \text{ para todas as success\~oes } x_n \in X \setminus \{a\} \text{ tais que } x_n \to a \text{ .}$

Dem. (\Longrightarrow) Suponhamos que $\lim_{x\to a}f(x)=b$. Seja x_n uma sucessão tal que $x_n\to a$. Então, a partir de uma certa ordem $n \geq p$, $|x_n - a| < \varepsilon$. Pela Definição 3.1.1.

$$|f(x_n) - b| < \delta$$
, para $n \ge p \in \delta > 0$ fixo,

o que prova que $\lim f(x_n) = b$.

 (\Leftarrow) Considere-se que $\lim f(x_n) = b$ para todas as sucessões sucessões $x_n \in X \setminus \{a\} \text{ tais que } x_n \to a.$

Suponhamos, por contradição, que $\lim_{x\to a} f(x) \neq b$. Então

$$\exists \delta > 0 : \forall \varepsilon > 0, \ |x - a| < \varepsilon \ e \ |f(x) - b| \ge \delta,$$

para um certo $x \in X$ que depende de ε .

Então se para cada $n \in \mathbb{N}$ fizermos $\varepsilon = \frac{1}{n}$ e designarmos o correspondente x por x_n , obtem-se uma sucessão x_n tal que

$$0 < |x_n - a| < \frac{1}{n} e |f(x_n) - b| \ge \delta,$$

isto é,

$$x_n \to a, x_n \neq a$$
 e $\lim f(x_n) \neq b$,

o que contradiz a hipótese.

Exercício 3.1.4 Verifique se existe

$$\lim_{x \to 0} \left(2 + sen \frac{1}{x} \right).$$

Resolução: Para todos os pontos da forma $x = \frac{\pi}{2} + 2n\pi, n \in \mathbb{N}$, tem-se sen(x) = 1.

Considerando a sucessão

$$\frac{1}{x_n} = \frac{\pi}{2} + 2n\pi$$

tem-se

$$x_n = \frac{1}{\frac{\pi}{2} + 2n\pi} \quad \text{e} \quad x_n \to 0.$$

Para $f(x) = 2 + sen \frac{1}{x}$ obtem-se

$$f(x_n) = 2 + sen\left(\frac{\pi}{2} + 2n\pi\right) = 3.$$

Analogamente, definindo $\frac{1}{y_n} = \frac{3\pi}{2} + 2n\pi$ temos

$$y_n = \frac{1}{\frac{3\pi}{2} + 2n\pi} \to 0 \text{ e } f(y_n) = 2 + sen\left(\frac{3\pi}{2} + 2n\pi\right) = 1.$$

Assim pelo teorema anterior há uma contradição, pois $x_n \to 0$ e $y_n \to 0$ e contudo as suas imagens tendem para valores distintos.

Algumas propriedades dos limites das funções reais de variável real estão resumidas na próxima proposição:

Proposição 3.1.5 Sejam $f, g, h: X \subset \mathbb{R} \to \mathbb{R}$ e a um ponto de acumulação de X.

- 1. $(\underline{Unicidade\ do\ limite})\ Se\ existir\ \lim_{x\to a} f(x)\ então\ \'e\ \'unico.$
- 2. Se $f(x) = g(x), \forall x \in V_{\varepsilon}(a) \cap X$ e existem $\lim_{x \to a} f(x)$ e $\lim_{x \to a} g(x)$ então

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x).$$

3. Se $\lim_{x \to a} f(x) < \lim_{x \to a} g(x)$ então existe $\varepsilon > 0$ tal que

$$f(x) < g(x), \forall x \in V_{\varepsilon}(a).$$

4. Se $f(x) \leq g(x), \forall x \in V_{\varepsilon}(a) \cap X$ então

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x),$$

caso existam os respectivos limites.

5. $Se h(x) \le f(x) \le g(x), \forall x \in V_{\varepsilon}(a) \cap X \ e \ se \lim_{x \to a} h(x) = \lim_{x \to a} g(x) \ ent \tilde{a}o \lim_{x \to a} f(x) \ existe \ e$

$$\lim_{x \to a} h(x) = \lim_{x \to a} f(x) = \lim_{x \to a} g(x).$$

Dem. 1. Suponhamos que existem dois valores para $\lim_{x\to a} f(x)$. Isto é,

$$\lim_{x \to a} f(x) = b \text{ e } \lim_{x \to a} f(x) = b'.$$

Então para cada cada $\delta > 0$ existe $\varepsilon > 0$ tal que

$$|f(x) - b| < \frac{\delta}{2} \text{ e } |f(x) - b'| < \frac{\delta}{2},$$

desde que $x \in X$ e $|x - a| < \varepsilon$.

Escolhendo um valor de x nestas condições tem-se

$$\begin{aligned} \left| b - b' \right| &= \left| b - f(x) + f(x) - b' \right| \le \left| b - f(x) \right| + \left| f(x) - b' \right| \\ &< \frac{\delta}{2} + \frac{\delta}{2} = \delta, \end{aligned}$$

para $\forall \delta > 0$, o que implica b = b'.

2. Tomando xtal que $|x-a|<\varepsilon,$ tem-se

$$|f(x) - b| = |g(x) - b| < \delta,$$

para qualquer $\delta > 0$. Logo

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x).$$

3. Seja $\lim_{x \to a} f(x) = b < \lim_{x \to a} g(x) = c$ e escolha-se $\delta > 0$ tal que $0 < \delta < \frac{c-b}{2}$, ou seja tal que $b+\delta < c-\delta$.

Então, existe $\varepsilon > 0$ tal que $x \in V_{\varepsilon}(a) \cap X$ e

$$b - \delta < f(x) < b + \delta$$
 e $c - \delta < g(x) < c + \delta$.

Em particular

$$f(x) < b + \delta < c - \delta < q(x), \ \forall x \in V_{\varepsilon}(a) \cap X.$$

- 4. Resulta directamente das alíneas 2. e 3.
- 5. Aplicar argumentos semelhantes à demonstração do Teorema 1.9.3.

3.2 Limites em $\overline{\mathbb{R}}$

A noção de limite pode estender-se ao caso em que $a=\pm\infty$ e a situações em que o valor do limite é $\pm\infty$.

Definição 3.2.1 Sejam $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$ e a um ponto de acumulação de X.

(i) Diz-se que $\lim_{x\to a} f(x) = +\infty$ quando para qualquer L>0 existe $\varepsilon>0$ tal que para $x\in]a-\varepsilon, a+\varepsilon[\cap (X\setminus \{a\}) \text{ se tem } f(x)>L.$ Simbolicamente quando

$$\forall L > 0 \ \exists \varepsilon > 0 \colon \forall x \in X, \ 0 < |x - a| < \varepsilon \Longrightarrow f(x) > L.$$

(ii) Analogamente

$$\lim_{x \to a} f(x) = -\infty \Leftrightarrow \forall L > 0 \ \exists \varepsilon > 0 : \forall x \in X, 0 < |x - a| < \varepsilon \Longrightarrow f(x) < -L.$$

Exercício 3.2.2 Prove por definição que

$$\lim_{x \to 0} \left| \frac{2}{x^2 - x} \right| = +\infty.$$

Definição 3.2.3 $Seja X \subset \mathbb{R}$.

(i) Se X é uma parte não majorada de \mathbb{R} , $f: X \to \mathbb{R}$ e $b \in \mathbb{R}$, diz-se que $\lim_{x \to +\infty} f(x) = b \text{ se}$

$$\forall \delta > 0 \ \exists x_0 \in \mathbb{R} \colon \forall x \in X, \ x > x_0 \Longrightarrow |f(x) - b| < \delta.$$

(ii) Se $b = +\infty$ então $\lim_{x \to +\infty} f(x) = +\infty$ se

$$\forall L > 0 \ \exists x_0 \in \mathbb{R} : \ \forall x \in X, \ x > x_0 \Longrightarrow f(x) > L.$$

(iii) Se X é uma parte não minorada de \mathbb{R} , define-se de modo análogo $\lim_{x \to -\infty} f(x) = b, \lim_{x \to -\infty} f(x) = +\infty \ e \lim_{x \to -\infty} f(x) = -\infty.$

Exercício 3.2.4 Mostre, por definição, que

$$\lim_{x \to +\infty} \frac{x^2 - 8x + 3}{x^2 - 4} = 1.$$

Note-se que quando $X=\mathbb{N}$ a função f é uma sucessão real e esta definição é equivalente à definição de limite de uma sucessão.

Assim as propriedade algébricas enunciadas para os limites de sucessões permanecem válidas para funções.

Proposição 3.2.5 (Propriedade algébricas dos limites) Admitindo que $\lim_{x\to a} f(x) = b$ e $\lim_{x\to a} g(x) = c$, tem-se que:

1.
$$\lim_{x \to a} (f+g)(x) = b+c;$$

2.
$$\lim_{x \to a} (f \times g)(x) = b \times c;$$

3.
$$\lim_{x \to a} |f(x)| = |b|$$

4.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{b}{c}$$
, se $c \neq 0$.

5.
$$\lim_{x \to a} |h(x)| = 0 \iff \lim_{x \to a} h(x) = 0$$

Dem. As demonstrações são análogas às utilizadas no Teorema 1.9.1.

Exercício 3.2.6 Considere a função $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ dada por

$$f(x) = x \operatorname{sen}\left(\frac{1}{x}\right).$$

 $Calcular \lim_{x \to 0} f(x).$

3.3 Limites laterais

Os limites laterais reforçam a informação sobre o comportamento da função quando os objectos se aproximam de um certo ponto.

Definição 3.3.1 (i) Seja a um ponto de acumulação de X para valores maiores que a. Chama-se limite lateral de f à direita de a, notando-se $f(a^+)$ ou $\lim_{x\to a^+} f(x) = b$, se

$$\forall \delta > 0 \ \exists \varepsilon > 0 : x \in X, \ a < x < a + \varepsilon \Longrightarrow |f(x) - b| < \delta.$$

(ii) Analogamente, chama-se limite lateral de f à esquerda de a , notando-se $f(a^-)$ ou $\lim_{x\to a^-}f(x)=b,$ se

$$\forall \delta > 0 \ \exists \varepsilon > 0 : x \in X, \ a - \varepsilon < x < a \Longrightarrow |f(x) - b| < \delta.$$

Observação 3.3.2 Se a um ponto de acumulação de X então

$$\lim_{x \to a} f(x) = b \iff \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = b.$$

Exercício 3.3.3 Calcule, se existir, $\lim_{x\to 1} f(x)$ sendo

$$f(x) = \begin{cases} \frac{x}{2} + \frac{3}{2} & se \quad x \ge 1\\ 1 - x^2 & se \quad x < 1. \end{cases}$$

3.4 Funções contínuas

Geometricamente, uma função é contínua num ponto se, nesse ponto, não houver saltos.

Definição 3.4.1 Considere-se $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$ $e \ a \in X$. A função f é contínua em a quando $\lim_{x\to a} f(x) = f(a)$, isto é,

$$\forall \delta > 0 \ \exists \varepsilon > 0 : \ \forall x \in X, \ |x - a| < \varepsilon \Longrightarrow |f(x) - f(a)| < \delta.$$

Observação 3.4.2 Se a é um ponto isolado, a função f é necessariamente contínua em a, uma vez que, tomando $\varepsilon > 0$ tal que $V_{\varepsilon}(a) \cap X = \{a\}$ a condição $|x - a| < \varepsilon \Longrightarrow x = a$ e obviamente se verifica

$$|f(x) - f(a)| = 0 < \delta, \ \forall \delta > 0.$$

Exercício 3.4.3 Considere a função real de variável real definida por

$$m(x) = \begin{cases} \frac{x^2 - 3x + 2}{x^2 - 4} & se \quad x \neq 2\\ 3k + 2 & se \quad x = 2. \end{cases}$$

Determine o valor do parâmetro k de modo a que a função seja contínua em \mathbb{R} .

3.5 Continuidade lateral

Definição 3.5.1 Seja a um ponto de acumulação de X e $f: X \to \mathbb{R}$.

(i) f(x) diz-se contínua à direita de a se

$$\lim_{x \to a^+} f(x) = f(a).$$

(ii) f(x) é contínua à esquerda de a se

$$\lim_{x \to a^{-}} f(x) = f(a).$$

Observação 3.5.2 Se f(x) é contínua em a então f(x) é contínua à esquerda e à direita de a.

As propriedades algébricas das funções contínuas num ponto podem sintetizar no próximo resultado:

Proposição 3.5.3 Sejam $f, g: X \to \mathbb{R}$ duas funções contínuas num ponto de acumulação a de X. Então:

- (i) $(f+g), (f \times g), |f| e(-f)$ são funções contínuas em a;
- (ii) $\frac{f}{g}$ é contínua em a se $g(a) \neq 0$.

Dem. Resulta directamente das propriedades algébricas dos limites.

Proposição 3.5.4 (Continuidade da função composta) Considere-se φ : $D \subset \mathbb{R} \to \mathbb{R}$ e $f: E \subset \mathbb{R} \to \mathbb{R}$ duas funções tais que $\varphi(D) \subset E$. Se φ é contínua em $a \in D$ e f é contínua em $\varphi(a) \in E$ então $(f \circ \varphi)$ é contínua em a.

Dem. Pretende-se provar que $\lim_{x\to a} (f \circ \varphi)(x) = (f \circ \varphi)(a)$.

Seja $x_n \in D$ uma sucessão tal que $x_n \to a$, por valores diferentes de a.

A sucessão correspondente $\varphi(x_n) \to \varphi(a)$ porque φ é contínua em a. Por sua vez a função f transforma a sucessão $\varphi(x_n)$ na sucessão $f[\varphi(x_n)]$ que converge para $f[\varphi(a)]$ visto que f é contínua em $f[\varphi(a)]$.

Então qualquer que seja a sucessão $x_n \to a$, temos que

$$(f \circ \varphi)(x_n) = f[\varphi(x_n)] \to f[\varphi(a)],$$

isto é, $\lim_{x \to a} (f \circ \varphi)(x) = (f \circ \varphi)(a)$.

Observação 3.5.5 Da proposição anterior resulta a possibilidade de permutar a passagem ao limite com a função, isto é,

$$\lim_{x \to a} f[\varphi(x)] = f\left[\lim_{x \to a} \varphi(x)\right].$$

É esta propriedade que permite o cálculo

$$\lim_{x \to \frac{\pi}{3}} sen\left(2x + \frac{\pi}{6}\right) = sen\left[\lim_{x \to \frac{\pi}{3}} \left(2x + \frac{\pi}{6}\right)\right] = sen\left(\frac{5\pi}{6}\right) = \frac{1}{2}.$$

3.6 Continuidade num intervalo

Definição 3.6.1 (a) A função $f: D \subset \mathbb{R} \to \mathbb{R}$ diz-se contínua no intervalo $]a,b[\subset D \text{ se e só se for contínua em todos os pontos desse intervalo.} (b) A função <math>f \in \text{contínua no intervalo } [a,b] \subset D \text{ se:}$

- f é contínua à direita de a;
- f é contínua em]a,b[;
- f é contínua à esquerda de b.

Exercício 3.6.2 Determine λ e μ de modo a que a função

$$f(x) = \begin{cases} 2 + \lambda & se & x \le 0\\ \frac{x^2 - x}{x^2 - 4x + 3} & se & 0 < x < 1\\ 1 - 3\mu & se & x \ge 1 \end{cases}$$

seja contínua no intervalo [0, 1].

3.7 Descontinuidades

Definição 3.7.1 Seja $f: D \subset \mathbb{R} \to \mathbb{R}$.

- (i) O ponto $a \in D$ é um ponto de descontinuidade se f(x) não é contínua em a
- (ii) A função f tem uma descontinuidade de 1^a espécie em a se f(x) não é contínua em a e admite limites laterais finitos.
- (iii) Um ponto de descontinuidade diz-se de 2ª espécie se pelo menos um dos limites laterais em a é infinito.

Por vezes é conveniente definir o salto de f:

Definição 3.7.2 Chama-se <u>salto</u> de $f: D \subset \mathbb{R} \to \mathbb{R}$ num ponto $a \in D$, que admite limites laterais $f(a^+)$ e $f(a^-)$ a:

- $\sigma(a) = \max\{|f(a^+) f(a)|, |f(a^-) f(a)|\}, caso \ existam \ ambos \ os \ limites \ laterais;$
- $\sigma(a) = |f(a^+) f(a)|$ ou $\sigma(a) = |f(a^-) f(a)|$ se existirem apenas $f(a^+)$ ou $f(a^-)$, respectivamente;

• $\sigma(a) = 0$, se a é um ponto isolado.

Exercício 3.7.3 Determine e classifique os pontos de descontinuidade de

$$f(x) = \begin{cases} x & , & x > 2 \\ -x^2 + 2x & , & 0 \le x \le 2 \\ \frac{1}{x} & , & x < 0. \end{cases}$$

Em cada ponto de descontinuidade calcule o salto de f.

3.8 Teoremas fundamentais sobre continuidade

Teorema 3.8.1 (de Bolzano ou do valor intermédio) Se $f:[a,b] \to \mathbb{R}$ é uma função contínua em [a,b] e k é um valor compreendido entre f(a) e f(b) então existe pelo menos um valor $c \in]a,b[$ tal que f(c)=k.

Dem. Suponhamos que $f(a) \le f(b)$ e $f(a) \le k \le f(b)$.

Divida-se o intervalo [a, b] ao meio. Dos dois intervalos obtidos seja $[a_1, b_1]$ o que verifica $f(a_1) \le k \le f(b_1)$.

Se verificarem os dois subintervalos escolhe-se arbitrariamente um deles para $[a_1, b_1]$.

Por nova divisão ao meio do intervalo $[a_1, b_1]$ obtêm-se dois intervalos. Seja $[a_2, b_2]$ o intervalo que verifica $f(a_2) \leq k \leq f(b_2)$. Prosseguindo indefinidamente desta forma obtem-se uma sucessão de intervalos

$$[a_1, b_1] \supset [a_2, b_2] \supset \cdots \supset [a_n, b_n] \supset \cdots$$

que verifica $f(a_n) \leq k \leq f(b_n)$. Seja c o número real comum a todos estes intervalos $\left(c \in \bigcap_{n \in \mathbb{N}} [a_n, b_n]\right)$. Assim, $a_n \to c$ e $b_n \to c$ e, passando ao limite nas últimas desigualdades, tem-se, pela continuidade de f, $f(c) \leq k \leq f(c)$, pelo que f(c) = k.

Se se supuser $f(b) \leq f(a)$ e $f(b) \leq k \leq f(a)$ a demonstração é análoga.

Numa versão mais simplificada pode enunciar-se assim:

"Se f é uma função contínua então não passa de um valor a outro sem passar por todos os valores intermédios."

Um importante corolário deste teorema para k=0 diz o seguinte:

Corolário 3.8.2 Se $f:[a,b] \to \mathbb{R}$ é uma função contínua em [a,b] com $f(a) \times f(b) < 0$ então f tem pelo menos um zero em [a,b], isto é,

$$\exists c \in]a, b[: f(c) = 0.$$

Exercício 3.8.3 Provar que a equação

$$x^3 = 3x^2 - 1$$

tem pelo menos uma raiz real.

Teorema 3.8.4 Se f é uma função contínua num conjunto $D \subset \mathbb{R}$ limitado e fechado, então f(D) é limitado e fechado.

Dem. a) Provar que f(D) é limitado.

Suponhamos, por contradição, que f(D) não é limitado. Então existe uma sucessão $y_n \in f(D)$ tal que $y_n \to \infty$.

Pelo Teorema 3.8.1, para cada $n \in \mathbb{N}$ existe $x_n \in D$ tal que $f(x_n) = y_n$ e como D é um conjunto limitado então x_n é uma sucessão limitada, logo admite uma subsucessão convergente (pelo Corolário 1.7.9) que se designa por $x_{\alpha_n} \to c$.

Como D é um conjunto limitado, $c \in D$. assim $f(x_{\alpha_n}) = y_{\alpha_n} \to f(c)$, porque f é contínua, o que contradiz o facto de $y_n \to \infty$.

b) Provar que f(D) é fechado, ou seja as sucessões convergentes em f(D) têm limites em f(D).

Seja $y_n \in f(D)$ tal que $y_n \to c$.

Como para cada $n \in \mathbb{N}$ existe $x_n \in D$ tal que $f(x_n) = y_n$ e D é um conjunto limitado, pode extrair-se uma subsucessão $x_{\alpha_n} \to x$.

Como D é fechado então $x \in D$. Assim $f(x_{\alpha_n}) = y_{\alpha_n}$ e passando ao limite quando $n \to +\infty$, tem-se

$$f(x) = \lim f(x_{\alpha_n}) = \lim y_{\alpha_n} = c.$$

Como $x \in D$ logo $c = f(x) \in f(D)$.

Teorema 3.8.5 (Teorema de Weierstrass) Toda a função contínua num conjunto não vazio, limitado e fechado tem máximo e mínimo nesse conjunto.

Dem. Seja f uma função contínua em $D \neq \emptyset$, limitado e fechado. Pelo Teorema 3.8.4, f(D) é limitado. Como $f(D) \neq \emptyset$ então existe $s = \sup f(D)$.

Pela definição de supremo (o menor dos majorantes), para qualquer $\delta > 0$ existem pontos de f(D) que pertencem ao intervalo $]s - \delta, s[$. Então

$$s \in \overline{f(D)} = f(D)$$
, porque $f(D)$ é fechado.

Como $s \in f(D)$ e $s = \sup f(D)$ então s é o máximo de f(D).

A demonstração é análoga para a existência de mínimo de f(D).

Proposição 3.8.6 Seja $f: I \subset \mathbb{R} \to \mathbb{R}$ uma função contínua num intervalo I. Então f(I) é um intervalo.

Dem. Considere-se $y_1, y_2 \in f(I)$ tais que $y_1 < y_2$ e $y_1 = f(x_1)$ e $y_2 = f(x_2)$.

Como f é uma função contínua no intervalo $[x_1, x_2]$ (ou $[x_2, x_1]$ se for $x_2 < x_1$) resulta pelo Teorema 3.8.1 que $[y_1, y_2] \subset f(I)$, pelo que f(I) é um intervalo.

Observação 3.8.7 Este teorema não refere a natureza do intervalo f(I), o qual terá necessariamente como extremos $\inf_{x\in I} f(x)$ e $\sup_{x\in I} f(x)$, que poderão, ou não, pertencer a f(I). Isto é, o intervalo pode ser aberto, fechado ou semi-aberto.

Proposição 3.8.8 Seja I um intervalo e f : $I \subset \mathbb{R} \to \mathbb{R}$ uma função contínua e injectiva. Então f \acute{e} estritamente monótona.

Dem. Se $I = \{x_0\}$ o resultado é trivial ($f(x_0)$ é um único ponto).

Considerem-se então $x_0, y_0 \in I$ dois elementos quaisquer tais que $x_0 < y_0$. Como, pela injectividade $f(x_0) \neq f(y_0)$ ter-se-á

$$f(x_0) < f(y_0)$$
 ou $f(y_0) < f(x_0)$.

No primeiro caso prova-se que f é estritamente crescente e no segundo caso estritamente decrescente.

Suponha-se que $f(x_0) < f(y_0)$ (no 2º caso a demonstração é análoga) e prove-se que para $x_0 < x < y_0$ se tem $f(x_0) < f(x) < f(y_0)$.

Com efeito, se assim não fosse, tinha-se: (i) $f(x) < f(x_0) < f(y_0)$ ou (ii) $f(x_0) < f(y_0) < f(x)$.

No caso (i), o Teorema 3.8.1 garante que existe $\xi \in]x, y_0[$ tal que $f(\xi) = f(x_0)$ o que contraria a injectividade de f.

Finalmente, para provar a monotonia, se $x_0 < x < y < y_0$, pela 1^a parte da demonstração, tem-se que

$$f(x_0) < f(y) < f(y_0)$$
.

Como $x_0 < x < y$ e $f(x_0) < f(y)$, tem-se pela parte anterior que

$$f\left(x_{0}\right) < f\left(x\right) < f\left(y\right) .$$

Assim provou-se que no intervalo $[x_0, y_0]$ a função f é estritamente crescente. Como x_0 e y_0 são pontos arbitrários em I então f é estritamente crescente em I.

Proposição 3.8.9 Seja $f: I \subset \mathbb{R} \to \mathbb{R}$ uma função monótona num intervalo I. Se f(I) é um intervalo então f é contínua.

Dem. Suponhamos que f é crescente e seja $x_0 \in I$ (no caso de f ser decrescente o raciocínio é semelhante).

Designe-se por

$$f(x_0^-) := \lim_{x \to x_0^-} f(x) e f(x_0^+) := \lim_{x \to x_0^+} f(x).$$

Como f é monótona então os limites anteriores são finitos e

$$f(x_0^-) \le f(x_0) \le f(x_0^+).$$

Se fosse $f(x_0^-) < f(x_0^+)$ então f(I) não podia ser um intervalo, mas sim uma reunião de intervalos, pois qualquer elemento $y \in]f(x_0^-), f(x_0^+)[$ com $y \neq f(x_0)$ não pertence a f(I).

Logo os limites laterais têm de ser iguais, isto é, f tem de ser contínua.

3.9 Assímptotas

Definição 3.9.1 (i) Sejam f e h duas funções reais definidas para $x > x_0$. Diz-se que a linha de equação y = h(x) é assímptota ao gráfico de f(x) para a direita (ou quando $x \to +\infty$) se e só se

$$\lim_{x \to +\infty} [f(x) - h(x)] = 0.$$

Geometricamente, significa que o gráfico de f(x) não difere muito do gráfico de h(x) quando x é grande e positivo.

(ii) Analogamente, se f e h duas funções reais definidas para $x < x_0$, a linha de equação y = h(x) é assímptota ao gráfico de f(x) para a esquerda (ou quando $x \to -\infty$) se e só se

$$\lim_{x \to -\infty} [f(x) - h(x)] = 0.$$

Exemplo 3.9.2 A função $h(x)=x^2$ é uma é assímptota ao gráfico de $f(x)=\frac{x^5-1}{x^3}$ para a direita, porque

$$\lim_{x \to +\infty} \left[\frac{x^5 - 1}{x^3} - x^2 \right] = \lim_{x \to +\infty} \left(-\frac{1}{x^2} \right) = 0.$$

Se em particular as assímptotas h(x) são rectas então pode considerar-se dois casos: rectas verticais e não verticais.

Definição 3.9.3 Seja $f: D \subset \mathbb{R} \to \mathbb{R}$ e a um ponto de acumulação de D. A recta x = a é uma assímptota vertical ao gráfico de f(x) se se verificar pelo menos uma das quatro igualdades

$$\lim_{x \to a^+} f(x) = \pm \infty \quad , \quad \lim_{x \to a^-} f(x) = \pm \infty.$$

Proposição 3.9.4 A recta y = mx + b é uma assímptota não vertical ao gráfico de f(x), definida para $x > x_0$, se e só se

$$m = \lim_{x \to +\infty} \frac{f(x)}{x}$$
 e $b = \lim_{x \to +\infty} [f(x) - mx]$

existirem e forem finitos.

De modo análogo se define a assímptota para a esquerda.

Dem. (\Longrightarrow) Suponha-se que a recta y = mx + b é uma assímptota ao gráfico de f(x).

Considere-se a definição de assímptota com $h(x) = mx + b \ (m, b \in \mathbb{R})$. Então, para o caso de assímptota para a direita de f, tem-se

$$\lim_{x \to +\infty} \left[f(x) - mx - b \right] = 0$$

donde

$$b = \lim_{x \to +\infty} \left[f(x) - mx \right]$$

e

$$0 = \lim_{x \to +\infty} \frac{1}{x} [f(x) - mx - b] = \lim_{x \to +\infty} \left[\frac{f(x)}{x} - m - \frac{b}{x} \right]$$
$$= \lim_{x \to +\infty} \left[\frac{f(x)}{x} - m \right],$$

pelo que

$$m = \lim_{x \to +\infty} \frac{f(x)}{x}.$$

Então m e b têm os respectivos limites finitos.

A demonstração para o caso da assímptota para a esquerda é análogo.

(⇐=) Se existirem e forem finitos os dois limites então

$$b = \lim_{x \to +\infty} [f(x) - mx] \iff \lim_{x \to +\infty} [f(x) - mx - b] = 0,$$

pelo que y = mx + b é uma assímptota ao gráfico de f(x) para a direita.

Exercício 3.9.5 Determine a equação de todas as rectas que são assímptotas ao gráfico de

$$f(x) = \frac{x^3}{x^2 - 4}.$$

3.10 Função inversa

Definição 3.10.1 Seja $f: D \subset \mathbb{R} \to \mathbb{R}$ uma função injectiva. Diz-se que a função $g: f(D) \to \mathbb{R}$ é a função inversa de f se g[f(x)] = x, $\forall x \in D$.

Observação 3.10.2 (i) Só as funções injectivas admitem função inversa e neste caso as equações

$$y = f(x)$$
 e $x = g(y)$

são equivalentes.

(ii) Sendo g a função inversa de f, para obter o gráfico da equação y = g(x) basta efectuar sobre o o gráfico de y = f(x) uma simetria em relação à bissectriz dos quadrantes ímpares.

Os gráficos são simétricos relativamente a y=x

(iii) Se f é monótona (sendo injectiva é estritamente monótona) e crescente (decrescente) então a sua inversa é também estritamente monótona crescente (decrescente).

Com efeito, para $x_1, x_2 \in Df$ com $x_1 < x_2$ então $f(x_1) < f(x_2)$, se f for crescente. Notando por g a função inversa de f, tem-se

$$g[f(x_1)] = x_1 < x_2 = g[f(x_2)],$$

pelo que g é crescente.

(iv) Não confundir $f^{-1}(x)$ com $\frac{1}{f(x)}$. Repare-se que para $f(x) = x^3$ se tem $f^{-1}(x) = \sqrt[3]{x}$ mas $\frac{1}{f(x)} = \frac{1}{x^3}$.

Para uma função contínua e injectiva, a função inversa ainda é contínua?

Teorema 3.10.3 (Continuidade da função inversa) Seja f uma função contínua e injectiva, definida num intervalo $I \subset \mathbb{R}$. Então f^{-1} é contínua.

Dem. Pela Proposição 3.8.8, f é estritamente monótona e, portanto, f^{-1} também é estritamente monótona.

Mas f^{-1} está definida no intervalo f(I), sendo o seu contradomínio I um intervalo. Então, pela Proposição 3.8.9, f^{-1} é contínua.

69

3.11 Função exponencial

À aplicação $x\mapsto a^x$ dá-se o nome de função exponencial de base a.

As principais propriedades resumem-se no seguinte resultado:

Teorema 3.11.1 A função exponencial a^x (a > 0) é contínua e satisfaz as propriedades:

- 1. $a^x > 0$, $\forall x \in \mathbb{R}$
- 2. $a^{x+y} = a^x \times a^y$; $(a^x)^y = a^{xy}, \forall x, y \in \mathbb{R}$
- 3. Se a > 1, a^x é estritamente crescente, $\lim_{x \to +\infty} a^x = +\infty$, $\lim_{x \to -\infty} a^x = 0$.
- 4. Se a < 1, a^x é estritamente decrescente, $\lim_{x \to +\infty} a^x = 0$, $\lim_{x \to -\infty} a^x = +\infty$.
- 5. Se a = 1, $a^x \equiv 1$, $\forall x \in \mathbb{R}$.

Dem. A demonstração do teorema é consequência das propriedades algébricas dos limites e da sucessão exponencial.

A título de exemplo prove-se a alínea 3.

Sejam $x_1, x_2 \in \mathbb{R}$ tais que $x_1 < x_2$ e fixem-se racionais r_1 e r_2 tais que $x_1 < r_1 < r_2 < x_2$.

Tomando as sucessões $r_n, s_n \in \mathbb{Q}$ com $r_n \to x_1$ e $s_n \to x_2$ tem-se, a partir de uma certa ordem n_0 .

$$r_n < r_1 < r_2 < s_n$$

e, por consequência,

$$a^{x_1} = \lim a^{r_n} < a^{r_1} < a^{r_2} < \lim a^{s_n} = a^{x_2}$$
.

No estudo que se segue fixa-se uma determinada base : e (número de Neper)

Proposição 3.11.2 Tem-se

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = \lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = e.$$

Dem. Calculando o limite para $x \to +\infty$:

Seja x>1 e designe-se por I(x) o maior inteiro menor ou igual a x. Assim tem-se $I(x) \leq x < I(x) + 1$ e

$$1 + \frac{1}{I(x)} \ge 1 + \frac{1}{x} > 1 + \frac{1}{I(x) + 1}$$

e, pelo Teorema 3.11.1 (3),

$$\left(1 + \frac{1}{I(x)}\right)^{I(x)+1} \ge \left(1 + \frac{1}{x}\right)^x > \left(1 + \frac{1}{I(x)+1}\right)^{I(x)}.$$

Passando ao limite e fazendo no primeiro membro n = I(x) tem-se

$$\lim_{x \to +\infty} \left(1 + \frac{1}{I(x)} \right)^{I(x)+1} = \lim_{x \to +\infty} \left(1 + \frac{1}{n} \right)^{n+1}$$
$$= \lim_{x \to +\infty} \left(1 + \frac{1}{I(x)} \right)^{n} \left(1 + \frac{1}{n} \right) = e.$$

Para o último membro procede-se de modo análogo com n = I(x) + 1,

$$\lim_{x \to +\infty} \left(1 + \frac{1}{I(x) + 1} \right)^{I(x)} = \lim_{x \to +\infty} \left(1 + \frac{1}{n} \right)^{n-1}$$
$$= \lim_{x \to +\infty} \left(1 + \frac{1}{n} \right)^n \left(1 + \frac{1}{n} \right)^{-1} = e.$$

Pela Proposição 3.1.5 (5), obtem-se

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e.$$

Para o limite quando $x \to -\infty$ faz-se a mudança de variável x = -(1+y):

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = \lim_{y \to +\infty} \left(1 + \frac{1}{-(1+y)} \right)^{-(1+y)} = \lim_{y \to +\infty} \left(\frac{-y - 1 + 1}{-1 - y} \right)^{-(1+y)}$$

$$= \lim_{y \to +\infty} \left(\frac{y}{1+y} \right)^{-(1+y)} = \lim_{y \to +\infty} \left(1 + \frac{1}{y} \right)^{1+y}$$

$$= \lim_{y \to +\infty} \left(1 + \frac{1}{y} \right)^y \left(1 + \frac{1}{y} \right) = e.$$

ı

71

Proposição 3.11.3 Tem-se

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \quad e \quad \lim_{x \to -\infty} x \ e^x = 0.$$

 ${\bf Dem.}$ Fazendo e=1+h~(h>0) tem-se pelo binómio de Newton

$$\frac{e^n}{n} = \frac{(1+h)^n}{n} = \frac{1+nh+^n C_2 h^2 + \dots + h^n}{n}$$

$$> \frac{1+nh+\frac{n(n-1)}{2}h^2}{n} = \frac{1}{n} + h + \frac{n-1}{2}h^2.$$

Então

$$\lim \frac{e^n}{n} > \lim \left(\frac{1}{n} + h + \frac{n-1}{2}h^2\right) = +\infty,$$

pelo que $\lim \frac{e^n}{n} = +\infty$. Fazendo n = I(x) tem-se $n \le x < n+1$ e portanto

$$\frac{e^x}{x} > \frac{e^x}{n+1} \ge \frac{e^n}{n+1} = \frac{1}{e} \frac{e^{n+1}}{n+1} \xrightarrow[n \to -\infty]{} +\infty.$$

Então

$$\lim_{x \to +\infty} \frac{e^x}{x} \ge +\infty \Longrightarrow \lim_{x \to +\infty} \frac{e^x}{x} = +\infty.$$

No outro caso,

$$\lim_{x \to -\infty} x \ e^x = \lim_{y \to +\infty} -y \ e^{-y} = -\lim_{y \to +\infty} \frac{y}{e^y} = -\lim_{y \to +\infty} \frac{1}{\frac{e^y}{y}} = -\frac{1}{\infty} = 0.$$

Corolário 3.11.4 $Para \ k \in \mathbb{R} \ tem\text{-}se$

$$\lim_{x \to +\infty} \frac{e^x}{x^k} = +\infty \quad e \quad \lim_{x \to -\infty} |x| \ e^x = 0.$$

Isto é, « e^x é um infinito superior a todas as potências de x».

Dem. No caso do limite para $+\infty$:

Se $k \leq 0$,

$$\lim_{x \to +\infty} \frac{e^x}{x^k} = \lim_{x \to +\infty} x^{-k} e^x = +\infty.$$

Para k > 0, observando que

$$\frac{e^x}{x^k} = \left(\frac{e^{\frac{x}{k}}}{x}\right)^k$$

72

tem-se

$$\lim_{x\to +\infty}\frac{e^{\frac{x}{k}}}{x}=\lim_{u\to +\infty}\frac{e^u}{ku}=\frac{1}{k}\lim_{u\to +\infty}\frac{e^u}{u}=+\infty.$$

Para $x \to -\infty$ aplica-se o resultado anterior com a mudança de variável x = -y. \blacksquare

Exercício 3.11.5 1. Indique o domínio e o contradomínio de cada um das expressões:

a)
$$f(x) = 2 - 5^{1-3x}$$

b)
$$g(x) = \frac{8}{3^{1-3x}+7}$$

2. Resolva em \mathbb{R} cada uma das condições:

a)
$$2^{x^2-5x} = \frac{1}{16}$$

b)
$$0,25^{x^2} \ge \left(\frac{1}{16}\right)^{2x}$$

3. Calcular:

a)
$$\lim_{x\to+\infty}\frac{e^{3x}}{x^4}$$

$$\mathbf{b)} \lim_{x \to -\infty} x \ e^{\frac{x^3}{2}}$$

3.12 Função logarítmica

Como a aplicação $f: x \mapsto a^x$ para $a \in \mathbb{R}^+ \setminus \{1\}$ é uma bijecção de \mathbb{R} sobre \mathbb{R}^+ , então admite uma aplicação inversa $f^{-1}: \mathbb{R}^+ \to \mathbb{R}$, que se designa por função logaritmo de base a e se representa por

$$\begin{array}{cccc} \log_a & : &]0, +\infty[\to & \mathbb{R} \\ & x \to & \log_a x \end{array}, \ \ \mathrm{com} \ a \in \mathbb{R}^+ \backslash \{1\}.$$

Como a^x é estritamente monótona e contínua, a sua inversa, $log_a x$ também o será. Além disso o seu gráfico será simétrico ao da exponencial, em relação à bissectriz dos quadrantes ímpares.

Recorde-se as propriedades mais comuns em função da base do logaritmo. Se a>1 tem-se que:

• $log_a x$ é estritamente crescente;

3.12. FUNÇÃO LOGARÍTMICA

73

•
$$log_a x > 0 \iff x > 1$$
;

•
$$\lim_{x \to +\infty} log_a x = +\infty$$
 ; $\lim_{x \to 0^+} log_a x = -\infty$.

Se 0 < a < 1 obtem-se que:

• $log_a x$ é estritamente decrescente;

•
$$log_a x > 0 \iff 0 < x < 1$$
;

•
$$\lim_{x \to +\infty} log_a x = -\infty$$
 ; $\lim_{x \to 0^+} log_a x = +\infty$.

Do conceito de função inversa resultam directamente várias consequências:

•
$$a^{log_a x} = x$$

•
$$log_a(a^x) = x$$

•
$$log_a x = y \iff x = a^y$$
.

Exercício 3.12.1 1. Calcular:

a)
$$\log_{\sqrt{2}} 64$$

b)
$$\log_{0,1} 1000$$

2. Determinar o domínio das funções:

a)
$$f(x) = \log_2(4-3x)$$

b)
$$g(x) = 3 + \log_{\frac{1}{3}} (9 - x^2)$$

3. Resolva em \mathbb{R} as condições:

a)
$$\log_{\frac{1}{2}} (2x^2 - x) \ge \log_{\frac{1}{2}} x$$

b)
$$\log_3(x^2 - 7) < 2$$

4. Caracterize a função inversa de:

a)
$$f(x) = -1 + 2\ln(1 - 5x)$$

b)
$$g(x) = 4 + 3^{2x-1}$$

5. Determine em \mathbb{R} o conjunto solução das condições::

a)
$$4 \ln^2(x) - 7 - 3 \ln x \ge 0$$

b)
$$e^x + 6e^{-x} = 7$$

Teorema 3.12.2 (Propriedades operatórias dos logaritmos) Sejam x e y números positivos e $a,b \in \mathbb{R}^+ \setminus \{1\}$. Então são válidas as seguintes propriedades:

1.
$$\log_a(x \times y) = \log_a(x) + \log_a(y)$$

2.
$$\log_a\left(\frac{x}{y}\right) = \log_a\left(x\right) - \log_a\left(y\right)$$

3.
$$\log_a(x^p) = p \times \log_a(x), \ \forall p \in \mathbb{R}$$

4.
$$\log_b(x) = \log_a(x) \times \log_b(a)$$
 (mudança de base do logaritmo)

Dem. 1. Note-se que

$$x = a^{\log_a(x)}, y = a^{\log_a(y)} \in xy = a^{\log_a(x) + \log_a(y)}.$$

Então

$$\log_a\left(x\times y\right) = \log_a\left(a^{\log_a\left(x\right) + \log_a\left(y\right)}\right) = \log_a\left(x\right) + \log_a\left(y\right).$$

2. Como $\frac{x}{y} = a^{\log_a(x) - \log_a(y)}$ então

$$\log_a\left(\frac{x}{y}\right) = \log_a\left(a^{\log_a(x) - \log_a(y)}\right) = \log_a\left(x\right) - \log_a\left(y\right).$$

3. Como $x^p = \left(a^{\log_a(x)}\right)^p = a^{p\log_a(x)}$, então

$$\log_a(x^p) = \log_a\left(a^{p\log_a(x)}\right) = p \times \log_a(x).$$

4. Escrevendo $x = a^{\log_a(x)}$ então

$$\log_b(x) = \log_b\left(a^{\log_a(x)}\right) = \log_a(x) \times \log_b(a)$$
.

Proposição 3.12.3 Para todo o k > 0, tem-se

$$\lim_{x \to +\infty} \frac{\log(x)}{x^k} = 0 \quad e \quad \lim_{x \to 0^+} x^k \log(x) = 0.$$

Intuitivamente a proposição significa que: $\log(x) \underset{x \to +\infty}{\longrightarrow} +\infty$ mais lentamente que qualquer potência arbitrariamente pequena de x.

Dem. Fazendo a mudança de variável $y = k \log x$ tem-se

$$\lim_{x \to +\infty} \frac{\log(x)}{x^k} = \lim_{y \to +\infty} \frac{\frac{y}{k}}{e^y} = \frac{1}{k} \lim_{y \to +\infty} \frac{y}{e^y} = 0.$$

Com a mudança de variável $x = \frac{1}{y}$ obtem-se

$$\lim_{x \to 0^{+}} x^{k} \log (x) = \lim_{y \to +\infty} \left(\frac{1}{y}\right)^{k} \log \left(\frac{1}{y}\right) = -\lim_{y \to +\infty} \left(\frac{1}{y}\right)^{k} \log (y)$$
$$= -\lim_{y \to +\infty} \left(\frac{1}{y}\right)^{k} \frac{\log (y)}{y^{k}} = 0.$$

Proposição 3.12.4 Tem-se

$$\lim_{x \to 0} \frac{\log(1+x)}{x} = 1 \quad e \quad \lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

Dem. Pela Proposição 3.11.2 tem-se $\lim_{x\to +\infty}\left(1+\frac{1}{x}\right)^x=e$ e, pela mudança de variável $y=\frac{1}{x}, \lim_{y\to 0}\left(1+y\right)^{\frac{1}{y}}=e$.

Pela continuidade da função logaritmo, tem-se

$$\log \left[\lim_{y \to 0} (1+y)^{\frac{1}{y}} \right] = \log e \iff \lim_{y \to 0} \left[\log (1+y)^{\frac{1}{y}} \right] = 1$$
$$\iff \lim_{y \to 0} \frac{\log (1+y)}{y} = 1.$$

No segundo limite faz-se a mudança de variável $y = e^x - 1$ e

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{y \to 0} \frac{y}{\log(1 + y)} = 1.$$

Corolário 3.12.5 (Aplicação do Teorema 1.14.4) Para todo o $x_n \in \mathbb{R}$, se $x_n \to a \ e \ u_n \to +\infty$ então

$$\lim_{n \to +\infty} \left(1 + \frac{x_n}{u_n} \right)^{u_n} = e^a.$$

Dem. Observe-se que

$$\log\left(1 + \frac{x_n}{u_n}\right)^{u_n} = u_n \log\left(1 + \frac{x_n}{u_n}\right) = \frac{\log\left(1 + \frac{x_n}{u_n}\right)}{\frac{1}{u_n}}$$
$$= x_n \frac{\log\left(1 + \frac{x_n}{u_n}\right)}{\frac{x_n}{u_n}}.$$

Passando ao limite

$$\lim_{n \to +\infty} \left(\log \left(1 + \frac{x_n}{u_n} \right)^{u_n} \right) = \lim_{n \to +\infty} \left[x_n \frac{\log \left(1 + \frac{x_n}{u_n} \right)}{\frac{x_n}{u_n}} \right] = a,$$

uma vez que $\frac{x_n}{u_n} \to \frac{a}{+\infty} = 0$, pelo que se pode aplicar a Proposição 3.12.4. Pela continuidade da função exponencial, tem-se

$$e^{\lim_{n \to +\infty} \left(\log \left(1 + \frac{x_n}{u_n} \right)^{u_n} \right)} = e^a \iff \lim_{n \to +\infty} e^{\left(\log \left(1 + \frac{x_n}{u_n} \right)^{u_n} \right)} = e^a$$

$$\iff \lim_{n \to +\infty} \left(1 + \frac{x_n}{u_n} \right)^{u_n} = e^a.$$

Exercício 3.12.6 1. Calcular o valor dos limites::

- a) $\lim_{x \to 1} \frac{1-x}{3 \log(2-x)}$
- $\mathbf{b)} \ \lim_{x \to 0^+} x^x$
- $\mathbf{c)} \lim_{x \to +\infty} (2x)^{\frac{x+1}{x^2}}$
- **d)** $\lim_{x\to 0} \left(\frac{3}{4}x+1\right)^{\frac{1}{3x}}$
- e) $\lim_{x\to 0} \frac{\ln(5+x^4)-\ln 5}{x^4}$
- 2. Determine os valores reais que verificam as condições:
 - a) $\log_{\frac{1}{2}}(2x) < 2 \log_{\frac{1}{2}}(\frac{2-x}{x})$
 - **b)** $\log(x+3) > \log(x-1) \log(2+x)$

77

3.13 Funções trigonométricas inversas

As funções trigonométricas $sen\ x, \cos x, tg\ x$ e $\cot g\ x$ não são injectivas nos respectivos domínios. Assim essas funções não seriam invertíveis.

Para garantir a invertibilidade consideram-se restrições dessas funções a intervalos contidos no seu domínio.

Das infinitas restrições considerar-se-á uma restrição principal de modo a que o contradomínio seja igual ao da função inicial.

3.13.1 Arco-seno

Para a função f(x) = sen x, qualquer restrição de f a intervalos do tipo $\left[k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2}\right]$, $k \in \mathbb{Z}$, é invertível.

Considera-se a restrição principal para $k=0, \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Isto é

$$\begin{array}{ccc} f & : & \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \rightarrow & [-1,1] \\ & x \mapsto & sen \ x \end{array}$$

admita a função inversa

$$\begin{array}{ccc} f^{-1} & : & [-1,1] \rightarrow & \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \\ & x \mapsto & arcsen \ x \end{array}$$

 $\arcsin x$

3.13.2 Arco-cosseno

Dada a função $g(x)=\cos x$, qualquer restrição de g a um dos intervalos $[k\pi,\pi+k\pi]$, $k\in\mathbb{Z}$, é invertível.

A restrição principal para $k=0,\,[0,\pi]\,.$ Assim

$$g: [0,\pi] \to [-1,1]$$
$$x \mapsto \cos x$$

admita a função inversa

$$\begin{array}{cccc} f^{-1} & : & [-1,1] \rightarrow & [0,\pi] \\ & x \longmapsto & arc\cos x \end{array}$$

3.13.3 Arco-tangente

A função $h(x)=tg\ x$ de domínio

$$D_h = \left\{ x \in \mathbb{R} : x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}$$

e contradomínio $\mathbb R$ tem como restrições invertíveis as que tenham por domínios intervalos do tipo

$$\left]k\pi-\frac{\pi}{2},k\pi+\frac{\pi}{2}\right[,\ k\in\mathbb{Z}.$$

Para k=0, obtem-se a restrição principal. Isto é,

Graficamente

3.13.4 Arco co-tangente

Para a função $j(x) = \cot g \ x$ de domínio

$$D_j = \{ x \in \mathbb{R} : x \neq k\pi, \ k \in \mathbb{Z} \}$$

e contradomínio \mathbb{R} a sua restrição a intervalos do tipo $]k\pi, k\pi + \pi[$, $k \in \mathbb{Z}$, definem funções invertíveis. A restrição principal obtem-se para k=0. Então,

$$j:]0, \pi[\rightarrow \mathbb{R} \quad \text{e} \quad j^{-1} : \mathbb{R} \rightarrow]0, \pi[\quad x \mapsto arc \cot q x$$

Graficamente

3.13. FUNÇÕES TRIGONOMÉTRICAS INVERSAS

81

Exercício 3.13.1 1. Dada a função h(x) = 2 + arcsen(2x+1) determine:

- a) Domínio de h
- **b)** $h(0) e h(-\frac{1}{6})$
- c) Contradomínio de h
- d) As soluções da equação $h(x)=2+\frac{\pi}{3}$
- e) h^{-1} e caracterize-a.
- 2. Calcular:
 - a) $\cos\left(arcsen\left(\frac{4}{5}\right)\right)$
 - **b)** $tg\left(\operatorname{arccot}\left(\frac{3}{4}\right)\right)$

Capítulo 4

Cálculo Diferencial em $\mathbb R$

4.1 Derivada de uma função num ponto

Fermat foi um dos primeiros matemáticos a definir o conceito de derivada ao interessar-se em determinar o máximo e o mínimo de uma função.

Deve-se a Cauchy a formulação clássica da noção de derivada por volta de 1823:

Definição 4.1.1 Seja $f: D \subset \mathbb{R} \to \mathbb{R}$ uma função real de variável real e $a \in D$ um ponto de acumulação de D.

Chama-se derivada de f no ponto a, e presenta-se f'(a), a

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 ou $f'(a) = \lim_{h \to 0} \lim \frac{f(x+h) - f(x)}{h}$.

Se o limite existir e for finito então a função f diz-se <u>derivável</u> ou diferenciável no ponto a.

Exercício 4.1.2 Utilizando a definição calcular a derivada de $g(x) = \frac{x-2}{x+2}$ em $x_0 = 1$.

4.2 Interpretação geométrica da derivada

A interpretação geométrica do conceito de derivada permite, em particular, definir rigorosamente tangente a uma curva cujo gráfico é definido por y = f(x).

Não é possível definir a recta tangente a uma curva como sendo a recta que tem apenas um ponto comum com a curva. É preciso um conceito mais forte.

Considere-se uma recta secante ao gráfico de f(x), intersectando-a nos pontos P_1 e P_2 .

O declive da recta t tangente a f(x) no ponto P_1 vai ser o limite dos declives das rectas secantes quando P_2 se aproxima de P_1 , ou seja, quando $x \to x_1$.

Então

$$m = \lim_{x \to x_1} \frac{f(x) - f(x_1)}{x - x_1} = f'(x_1).$$

Assim, de um ponto de vista geométrico, a derivada de uma função f(x) em x = a é o declive da recta tangente ao gráfico de f(x) no ponto de abcissa x = a.

A sua equação é então dada por

$$y - f(x_0) = m\left(x - x_0\right)$$

ou

$$y - f(x_0) = f'(x_0)(x - x_0).$$

Exercício 4.2.1 1. Escreva uma equação da recta tangente à curva $y = \frac{2}{x-4}$ no ponto de abcissa 2.

2. Determine as coordenadas dos pontos da curva $y = x^3 - 4x$ em que a tangente nesses pontos é uma recta horizontal.

4.3 Derivadas laterais

Uma função f(x) pode não ter derivada num ponto a (não existir recta tangente ao gráfico de f(x)), mas existirem semi-tangentes nesses pontos, isto é, tangente à esquerda e/ou à direita de a.

Considere-se a função

$$f(x) = \begin{cases} -x^2 + 7 & \text{se} \quad x < 2\\ x + 1 & \text{se} \quad x \ge 2. \end{cases}$$

Para estudar a existência de f'(2) é necessário recorrer ao conceito de derivadas laterais.

Definição 4.3.1 Seja $f: D \subset \mathbb{R} \to \mathbb{R}$ e $a \in D$ um ponto de acumulação de D.

(i) f é derivável à esquerda de a se existe e é finito.

$$\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} \quad ou \quad \lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h},$$

que se representa por $f'(a^-)$.

(ii) f é derivável à direita de a se existe e é finito.

$$\lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} \quad ou \quad \lim_{h \to 0^{+}} \frac{f(a+h) - f(a)}{h},$$

que se nota por $f'(a^+)$.

- **Observação 4.3.2** 1. Da definição anterior resulta que f é derivável em a se e só se f é derivável à esquerda e à direita de a. Neste caso $f'(a) = f'(a^-) = f'(a^+)$.
 - 2. Geometricamente $f'(a^-)$ representa o declive da semi-recta tangente à esquerda de a, enquanto $f'(a^+)$ será o declive da semi-recta tangente à direita de a.
 - 3. A existência de derivada de uma função num ponto pode depender apenas da existência de uma derivada lateral. Por exemplo, para $f(x) = \sqrt{x-3}$, $D_f = [3, +\infty[$ e

$$f'(3) = f'(3^+) = \lim_{x \to 3^+} \frac{\sqrt{x-3}}{x-3} = +\infty.$$

4. As funções não têm derivada nos pontos angulosos dos seus gráficos, já que as semi-tangentes nesse ponto não estão no prolongamento uma da outra.

4.4 Derivadas infinitas

Diz-se que a derivada de f em $a \in +\infty$ (respectivamente $-\infty$) se

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = +\infty \ (-\infty).$$

As derivadas infinitas à esquerda e à direita de a definem-se de modo análogo.

Geometricamente, se f derivada infinita em a, o gráfico de f(x) admite tangente em (a, f(a)), paralela ao eixo das ordenadas.

4.5 Derivabilidade e continuidade

Proposição 4.5.1 Se $f: D \subset \mathbb{R} \to \mathbb{R}$ é uma função derivável em $a \in D$, então f é contínua nesse ponto.

Dem. Se f é uma função derivável em $a \in D$, então admite derivada finita nesse ponto, isto é,

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 é finito.

Escrevendo

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a} (x - a)$$

e passando ao limite em ambos os membros, tem-se

$$\lim_{x \to a} [f(x) - f(a)] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \lim_{x \to a} (x - a) = 0.$$

Então $\lim_{x\to a} f(x) = f(a)$, ou seja f(x) é contínua em x=a.

Observação 4.5.2 1. A existência de derivada infinita, $f'(a) = \pm \infty$, não garante a continuidade de f em a. Por exemplo, a função sinal

$$sgn(x) = \begin{cases} 1 & , & x > 0 \\ 0 & , & x = 0 \\ -1 & , & x < 0 \end{cases}$$

 $tem f'(0) = +\infty e \'e descontínua no ponto 0.$

2. A recíproca da Proposição 4.5.1 não é verdadeira. Por exemplo, a função f(x) = |x| é contínua em x = 0 e não tem f'(0).

4.6 Função derivada

Seja $f:D\subset\mathbb{R}\to\mathbb{R}$. A função derivada ou simplesmente derivada de uma função $f,\,x\longmapsto f'(x)$, é uma nova função:

ullet cujo domínio é o conjunto de todos os pontos em que f tem derivada finita;

87

 a cada ponto do seu domínio faz corresponder a derivada da função nesse ponto.

Se f derivável em todos os pontos de D, diz-se que f é derivável (diferenciável) em D ou apenas que f é derivável (diferenciável)

Exercício 4.6.1 Caracterize a função derivada de cada uma das funções seguintes:

a)
$$f(x) = \sqrt[3]{x}$$

b)
$$g(x) = |x - x^2|$$

4.7 Regras de derivação

Para evitar o recurso constante à definição de derivada, utilizam-se as regras de derivação:

Proposição 4.7.1 Sejam $f, g: D \subset \mathbb{R} \to \mathbb{R}$ funções deriváveis em $a \in D$ e $k \in \mathbb{R}$. Então:

- 1. (kf)(x) é derivável em a e(kf)'(a) = kf'(a)
- 2. (f+g)(x) é derivável em a e (f+g)'(a) = f'(a) + g'(a)
- 3. $(f \times g)(x)$ é derivável em a e $(f \times g)'(a) = f'(a) \times g(a) + f(a) \times g'(a)$ Em particular, $f^n(x)$ é derivável em a e $(f^n)'(a) = n$ $f^{n-1}(a)$ f'(a), para $n \in \mathbb{N}$.
- 4. Se $g(a) \neq 0$ então $\left(\frac{f}{g}\right)(x)$ é derivável em a e

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \ g(a) - f(a) \ g'(a)}{(g(a))^2}.$$

Dem. 1.
$$(kf)'(a) = \lim_{x \to a} \frac{(kf)(x) - (kf)(a)}{x - a} = k \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = kf'(a)$$
.

2.
$$(f+g)'(a) = \lim_{x \to a} \frac{(f+g)(x) - (f+g)(a)}{x-a} = \lim_{x \to a} \left(\frac{f(x) - f(a)}{x-a} + \frac{g(x) - g(a)}{x-a} \right) = f'(a) + g'(a)$$
.

3.
$$(f \times g)'(a) = \lim_{x \to a} \frac{(f \times g)(x) - (f \times g)(a)}{x - a} = \lim_{x \to a} \frac{f(x)g(x) - f(a)g(x) + f(a)g(x) + f(a)g(a)}{x - a}$$

= $\lim_{x \to a} \left(g(x) \frac{f(x) - f(a)}{x - a} + f(a) \frac{g(x) - g(a)}{x - a} \right) = f'(a) \times g(a) + f(a) \times g'(a).$

$$4. \left(\frac{f}{g}\right)'(a) = \lim_{x \to a} \frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(a)}{x - a} = \lim_{x \to a} \frac{\frac{f(x)}{g(x)} - \frac{f(a)}{g(a)}}{x - a}$$

$$= \lim_{x \to a} \frac{f(x)g(a) - g(x)f(a) - f(a)g(a) + f(a)g(a)}{(x - a)g(x)g(a)}$$

$$= \lim_{x \to a} \frac{1}{g(x)g(a)} \frac{g(a)[f(x) - f(a)] - f(a)[g(x) - g(a)]}{(x - a)}$$

$$= \lim_{x \to a} \frac{1}{g(x)g(a)} \left[g(a)\frac{f(x) - f(a)}{x - a} - f(a)\frac{g(x) - g(a)}{x - a}\right]$$

$$= \frac{f'(a)}{(g(a))^2}. \blacksquare$$

4.8 Derivada da função composta

Teorema 4.8.1 Consideremos as funções $f: D \subset \mathbb{R} \to \mathbb{R}$ e $\varphi: E \subset \mathbb{R} \to \mathbb{R}$ tais que $\varphi(E) \subset D$. Se φ é derivável em $a \in E$ e f é derivável em $b = \varphi(a) \in D$, então $(f \circ \varphi): E \subset \mathbb{R} \to \mathbb{R}$ é diferenciável em a e tem-se

$$(f \circ \varphi)'(a) = f(b) \ \varphi'(a) = f'(\varphi(a)) \ \varphi'(a).$$

$$\mathbf{Dem.} \ (f \circ \varphi)'(a) = \lim_{x \to a} \frac{(f \circ \varphi)(x) - (f \circ \varphi)(a)}{x - a} = \lim_{x \to a} \frac{f[\varphi(x)] - f[\varphi)(a)]}{x - a}$$

$$= \lim_{x \to a} \left(\frac{f[\varphi(x)] - f[\varphi)(a)]}{\varphi(x) - \varphi(a)} \frac{\varphi(x) - \varphi(a)}{x - a} \right)$$

$$= \lim_{\varphi(x) \to \varphi(a)} \frac{f[\varphi(x)] - f[\varphi)(a)]}{\varphi(x) - \varphi(a)} \lim_{x \to a} \frac{\varphi(x) - \varphi(a)}{x - a} = f'(\varphi(a)) \ \varphi'(a). \quad \blacksquare$$

4.9 Derivada da função inversa

Teorema 4.9.1 Seja f uma função diferenciável e injectiva num intervalo $D \subset \mathbb{R}$ e $a \in D$ tal que $f'(a) \neq 0$. Então f^{-1} \acute{e} diferenciável em b = f(a) e

$$(f^{-1})'(b) = \frac{1}{f'(a)}.$$

Dem. Represente-se y = f(x) e observe-se que se $y \neq b$ então $f^{-1}(y) \neq f^{-1}(b) = a$.

Então pode escrever-se

$$(f^{-1})'(b) = \lim_{y \to b} \frac{(f^{-1})(y) - (f^{-1})(b)}{y - b} = \lim_{y \to b} \frac{1}{\frac{y - b}{(f^{-1})(y) - (f^{-1})(b)}}$$
$$= \frac{1}{\lim_{y \to b} \frac{f[f^{-1}(y)] - f(a)}{(f^{-1})(y) - a}} = \frac{1}{\lim_{f^{-1}(y) \to a} \frac{f[f^{-1}(y)] - f(a)}{(f^{-1})(y) - a}} = \frac{1}{f'(a)}.$$

Observação 4.9.2 A hipótese $f'(a) \neq 0$ é fundamental pois, caso contrário, o resultado não é necessariamente verdadeiro. Tome-se como exemplo a função bijectiva $f(x) = x^3$. A sua inversa, $\sqrt[3]{x}$, não é derivável na origem.

4.10 Derivadas de funções trigonométricas

4.10.1 Derivada da função f(x) = sen x

Provemos que a função f(x) = sen x é derivável em \mathbb{R} e determinemos a sua expressão:

$$f'(a) = \lim_{x \to a} \frac{\operatorname{sen} x - \operatorname{sen} a}{x - a} = \lim_{x \to a} \frac{2 \operatorname{sen} \left(\frac{x - a}{2}\right) \cos\left(\frac{x + a}{2}\right)}{x - a}$$
$$= \lim_{x \to a} \frac{\operatorname{sen} \left(\frac{x - a}{2}\right)}{\frac{x - a}{2}} \cos\left(\frac{x + a}{2}\right) = \cos a.$$

Então $(sen x)' = \cos x$.

4.10.2 Derivada da função $\cos x$

A função $\cos x = sen\left(x+\frac{\pi}{2}\right)$ pode ser considerada como a composição da função sen~x com a função $x+\frac{\pi}{2}$.

Então, pelo Teorema 4.8.1,é diferenciável em todos os pontos, sendo a sua derivada

$$(\cos x)' = \left[sen\left(x + \frac{\pi}{2}\right) \right]' = \cos\left(x + \frac{\pi}{2}\right) \left(x + \frac{\pi}{2}\right)'$$
$$= -sen x.$$

4.10.3 Derivada das funções $tg \ x \ e \cot g \ x$

A derivabilidade da função $tg: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{R}$ resulta directamente das regras de derivação

$$(tg x)' = \left(\frac{\operatorname{sen} x}{\cos x}\right)'$$
$$= \frac{1}{\cos^2 x} = \sec^2 x = 1 + tg^2 x.$$

Para a função $\cot g: [0, \pi[\to \mathbb{R} \text{ tem-se}]$

$$(\cot g \ x)' = \left(\frac{\cos x}{sen \ x}\right)'$$
$$= -\frac{1}{sen^2 x} = co \sec^2 x = -\left(1 + \cot g^2 x\right).$$

Exercício 4.10.1 Calcular a derivada das funções

a)
$$f(x) = tg\left(\frac{1}{x+3}\right)$$

b)
$$g(x) = \cot g^2(x^2)$$

4.10.4 Derivada das funções trigonométricas inversas

A função $x\longmapsto arcsen\ x$ é a função inversa de $y\longmapsto sen\ y$, isto é, designando por $x=f(y)=sen\ y$ então $y=f^{-1}(x)=arcsen\ x$.

Pelo Teorema 4.9.1, obtem-se

$$(arcsen \ x)' = (f^{-1}(x))' = \frac{1}{f'(y)} = \frac{1}{(sen \ y)'}$$
$$= \frac{1}{\cos y} = \frac{1}{\sqrt{1 - sen^2 y}} = \frac{1}{\sqrt{1 - x^2}}.$$

Então a função y = arcsen x é diferenciável em todo o seu domínio e

$$(arcsen x)' = \frac{1}{\sqrt{1-x^2}}.$$

Da relação $y = \arccos x \Leftrightarrow x = \cos y$ tem-se

$$(\arccos x)' = (f^{-1}(x))' = \frac{1}{f'(y)} = \frac{1}{(\cos y)'}$$

= $-\frac{1}{\sec y} = -\frac{1}{\sqrt{1-\cos^2 y}} = -\frac{1}{\sqrt{1-x^2}}$,

pelo que

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}.$$

A partir da relação $y = arctg \ x \Leftrightarrow x = tg \ y$ obem-se

$$(arctg\ x)' = \frac{1}{(tg\ y)'} = \frac{1}{1 + tg^2y} = \frac{1}{1 + x^2}.$$

As fórmulas anteriores permanecem válidas se se substituir x por uma função u(x), diferenciável nos respectivos domínios e se aplicar o teorema da derivada da função composta. Assim

$$(arcsen \ u)' = \frac{u'}{\sqrt{1-u^2}},$$

 $(arctg \ u)' = \frac{u'}{1+u^2}.$

4.11. DERIVADAS DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA91

4.11 Derivadas das funções exponencial e logarítmica

A função exponencial é derivável em \mathbb{R} e

$$(e^x)' = e^x$$

pois, considerando $f(x) = e^x$ tem-se

$$f'(a) = \lim_{h \to o} \frac{e^{a+h} - e^a}{h} = e^a \lim_{h \to o} \frac{(e^h - 1)}{h} = e^a.$$

Sendo $u:D\subset\mathbb{R}\to\mathbb{R}$ uma função diferenciável, a função composta $e^{u(x)}$ é ainda diferenciável em \mathbb{R} e

$$\left(e^{u(x)}\right)' = u'(x) \ e^{u(x)}, \forall x \in D.$$

A função $x \longmapsto a^x,$ com a>0, é diferenciável em $\mathbb R$ e

$$(a^x)' = a^x \log a,$$

pois $a^x = e^{\log a^x} = e^{x \log a}$ e aplicando a regra anterior obtem-se

$$(a^x)' = (e^{x \log a})' = e^{x \log a} (x \log a)'$$

= $a^x \log a$.

Analogamente para u(x) uma função diferenciável,

$$\left(a^{u(x)}\right)' = a^{u(x)} \log a \ u'(x).$$

A função $f(x) = \log x$ é diferenciável em \mathbb{R}^+ e, para a > 0, tem-se

$$f'(a) = \lim_{h \to o} \frac{\log(a+h) - \log a}{h} = \lim_{h \to o} \frac{\log\left(\frac{a+h}{a}\right)}{h}$$
$$= \lim_{h \to o} \frac{\log\left(1 + \frac{h}{a}\right)}{h} = \frac{1}{a} \lim_{h \to o} \frac{\log\left(1 + \frac{h}{a}\right)}{\frac{h}{a}} = \frac{1}{a}.$$

Então

$$(\log x)' = \frac{1}{x}$$

e, para $u: D \subset \mathbb{R} \to \mathbb{R}$ uma função diferenciável tal que u(x) > 0, $\forall x \in D$, a função composta $\log (u(x))$ é diferenciável e

$$(\log(u(x)))' = \frac{u'(x)}{u(x)}, \ \forall x \in D.$$

A função $f(x)=\log_a x$, com $a\in\mathbb{R}^+\backslash\{1\},$ é diferenciável em \mathbb{R}^+ e notando que

$$\log_a x = \log x \, \log_a e$$

obtem-se

$$(\log_a x)' = \frac{1}{x} \log_a e = \frac{1}{x \log_a},$$

pois

$$1 = \log_e e = \log_a e \ \log_e a = \log_a e \ \log_a a,$$

pelo que

$$\log_a e = \frac{1}{\log a}.$$

Sendo u(x) uma função diferenciável com $u(x)>0, \forall x\in D,$ então a derivada de $y=\log_a\left(u(x)\right)$ é

$$(\log_a (u(x)))' = \frac{u'(x)}{u(x) \log_a}.$$

Exercício 4.11.1 Calcular as derivadas de

- a) $y = \log_5(arctg \ x)$
- **b)** $y = e^{\sqrt{3x}} + 5^{\cos x}$.

4.12 Teoremas fundamentais do cálculo diferencial

A possibilidade de aproximar localmente as funções diferenciáveis por funções "muito simples" (geometricamente corresponde a aproximar curvas por rectas tangentes no ponto de contacto), permite simplificar o estudo de funções reais de variável real e constitui o interesse fundamental do conceito de derivada.

Outra utilidade baseia-se na busca de máximos e mínimos de funções diferenciáveis.

Definição 4.12.1 Seja $f: D \subset \mathbb{R} \to \mathbb{R}$ $e \ a \in D$.

4.12. TEOREMAS FUNDAMENTAIS DO CÁLCULO DIFERENCIAL93

- (i) Diz-se que f tem um máximo local (ou relativo) em a (ou que f(a) é um um máximo local ou relativo de f) se e só se existir $\varepsilon > 0$ tal que $f(x) \leq f(a), \forall x \in V_{\varepsilon}(a) \cap D$.
- (ii) Analogamente, f tem um mínimo local (ou relativo) em a (ou que f(a) é um um mínimo local ou relativo de f) se e só se existir $\varepsilon > 0$ tal que $f(a) \leq f(x), \ \forall x \in V_{\varepsilon}(a) \cap D$.
- (iii) Se as designaldades anteriores forem estritas, isto é, f(x) < f(a) (ou f(a) < f(x)), $\forall x \in V_{\varepsilon}(a) \cap (D \setminus \{a\})$ então diz-se que f(a) é um um máximo local (mínimo local) estrito.
- (iv) Se se falar, indistintamente, de máximos ou mínimos diz-se extremo local (ou relativo).
- (v) Se se verificar $f(x) \leq f(a)$, $\forall x \in D$, então diz-se que f(a) é um máximo absoluto de f em D.

 Analogamente, se $f(a) \leq f(x)$, $\forall x \in D$, f(a) é um mínimo absoluto de f em D.

Um resultado importante para a pesquisa de extremos locais de uma função é o seguinte:

Proposição 4.12.2 Seja D um intervalo de \mathbb{R} com mais do que um ponto $e \ f : D \subset \mathbb{R} \to \mathbb{R}$ diferenciável no ponto interior $a \in D$. Se f tem um extremo local em a então f'(a) = 0, isto \acute{e} , a \acute{e} um ponto crítico de f.

Dem. Suponhamos que f tem um máximo local em a. Então

$$\exists \varepsilon > 0 : f(x) \le f(a) \text{ em }]a - \varepsilon, a + \varepsilon[,$$

pelo facto de a ser um ponto interior a D.

Para $x \in]a - \varepsilon, a[, f(x) \le f(a)$ e x < a. Como f é diferenciável em a então existe e é finito

$$f'(a^-) = \lim_{x \to a^-} \frac{f(x) - f(a)}{x - a} \ge 0.$$

Analogamente para $x \in (a, a + \varepsilon)$, $f(x) \leq f(a)$, x > a e

$$f'(a^+) = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} \le 0.$$

Como f é diferenciável em x = a então

$$0 \le f'(a^-) = f'(a) = f'(a^+) \le 0,$$

pelo que f'(a) = 0.

Se supusermos que f(a) é um mínimo local, a demonstração é semelhante. \blacksquare

Observação 4.12.3 O recíproco desta proposição não é verdadeira, isto é, existem funções com derivada nula num ponto que, contudo, não é extremo local.

A função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^3$ é estritamente crescente não tendo portanto nenhum extremo local. Todavia f'(0) = 0.

Teorema 4.12.4 (Teorema de Rolle) Seja $f : [a,b] \to \mathbb{R}$ uma função contínua no intervalo [a,b] e com derivada (finita ou infinita) em todos os pontos de [a,b].

Se f(a) = f(b) então existe $c \in]a,b[$ tal que f'(c) = 0.

Dem. Como f é contínua no conjunto limitado e fechado [a, b], pelo Teorema 3.8.5 f tem máximo e mínimo (absolutos) relativos em [a, b].

Se o máximo e o mínimo são atingidos nas extremidades, como f(a) = f(b) então $f(x) \equiv k$ e, portanto, f'(c) = 0, $\forall c \in [a, b[$.

Caso contrário o máximo é atingido num ponto interior $c \in]a,b[$ e, pela Proposição 4.12.2, f'(c)=0.

Corolário 4.12.5 Se $f:[a,b] \to \mathbb{R}$ é uma função contínua em [a,b] e tem derivada (finita ou infinita) em todos os pontos de]a,b[então entre dois zeros consecutivos de f' não pode haver mais que um zero de f.

Dem. Sejam x_1 e x_2 dois zeros consecutivos de f'.

Suponha-se, com visto à obtenção de um absurdo, que existem α e β tais que $x_1 < \alpha < \beta < x_2$ e $f(\alpha) = f(\beta) = 0$. Então, pelo Teorema 4.12.4, existe $d \in]\alpha, \beta[$ tal que f'(d) = 0. Isto é absurdo porque assim x_1 e x_2 não podem ser dois zeros consecutivos de f'(x).

Portanto entre dois zeros consecutivos de f' não pode haver mais que um zero de f(x) (note-se que pode até não haver nenhum).

Corolário 4.12.6 Seja f uma função que satisfaz as condições do Teorema de Rolle.

Então entre dois zeros de f há pelo menos um zero de f'.

4.12. TEOREMAS FUNDAMENTAIS DO CÁLCULO DIFERENCIAL95

Dem. Sejam x_1 e x_2 dois zeros consecutivos de f, isto é, $f(x_1) = f(x_2) = 0$. Então pelo Teorema 4.12.4, existe $c \in]x_1, x_2[$ tal que f'(c) = 0.

Exercício 4.12.7 Considere a função $f:[-2\pi,2\pi] \to \mathbb{R}$ dada por $f(x)=sen^2\left(x-\frac{\pi}{3}\right)-x$. Prove que f(x) admite um único zero no intervalo $\left]-\frac{5\pi}{12},\frac{7\pi}{12}\right[$.

Teorema 4.12.8 (Teorema do valor médio de Lagrange ou Teorema dos acréscimos finitos) Seja $f:[a,b] \to \mathbb{R}$ é uma função contínua em [a,b] e com derivada (finita ou infinita) em]a,b[. Então existe pelo menos um ponto $c \in]a,b[$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Dem. Considere-se uma função auxiliar

$$h(x) = f(x) - \frac{f(b) - f(a)}{b - a}x.$$

Esta nova função verifica as hipóteses do Teorema 4.12.4 em [a, b], pois:

- h(x) é contínua em [a,b]
- $h'(x) = f'(x) \frac{f(b) f(a)}{b a}$ tem derivada em]a, b[, pois f também tem.
- $h(a) = f(a) \frac{f(b) f(a)}{b a} a = \frac{(b a)f(a) [f(b) f(a)]a}{b a} = \frac{bf(a) af(b)}{b a} = h(b).$ Então

$$\exists c \in]a, b[: h'(c) = 0.$$

Isto é,

$$h'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0 \iff f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Interpretação geométrica:

A existência de $c \in]a, b[$ tal que $f'(c) = \frac{f(b) - f(a)}{b - a}$ significa que existe um ponto $c \in]a, b[$ no qual a tangente ao gráfico de f(x) tem um declive igual ao declive da recta secante definida pelos pontos (a, f(a)) e (b, f(b)).

Interpretação física:

Se f verificar as condições do Teorema de Lagrange, se a e b forem instantes distintos no tempo e f(t) for a posição em cada instante t de

um ponto que se move no eixo real, então existe um instante c onde a velocidade instantânea f'(c) é igual à velocidade média $\frac{f(b)-f(a)}{b-a}$ entre os referidos instantes. (Daí o nome de teorema do valor médio aplicado ao Teorema de Lagrange)

Uma importante extensão do Teorema de Lagrange constitui o resultado seguinte:

Teorema 4.12.9 (Teorema de Cauchy). Se f e g são duas funções contínuas em [a,b], diferenciáveis em [a,b[e se para $x \in]a,b[$, $g'(x) \neq 0$ então existe um ponto $c \in]a,b[$ tal que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Dem. Considere-se a função

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot (g(x) - g(a)).$$

A função F(x) é contínua em [a,b], porque f e g também o são, e diferenciável em]a,b[,

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(x).$$

Por outro lado, como

$$F(a) = 0 \text{ e } F(b) = 0,$$

o Teorema de Rolle garante a existência de $c \in]a,b[$ tal que F'(c)=0, ou seja

$$f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(c) = 0.$$

Como $g'(c) \neq 0$ tem-se

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Uma das aplicações mais importantes deste teorema é a utilização de uma regra para levantar indeterminações.

Teorema 4.12.10 (Regra de Cauchy) Sejam f e g duas funções diferenciáveis em [a, b[tais que:

a) $g'(x) \neq 0$ para cada $x \in]a, b[$;

4.12. TEOREMAS FUNDAMENTAIS DO CÁLCULO DIFERENCIAL97

- **b)** $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ ou então $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \pm \infty$;
- c) existe $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ em $\overline{\mathbb{R}}$;

 $Ent\~ao$

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}.$$

Dem. Se

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = l \text{ (finito)}$$

então existe $\beta \in]a, b[$ tal que para $x \in]a, \beta[$ e para $\delta > 0$ arbitrário se tem

$$l - \delta < \frac{f'(x)}{g'(x)} < l + \delta.$$

Sejam x e y dois pontos distintos de $]a, \beta[$. Então pelo Teorema de Cauchy existe ξ situado entre eles tal que

$$\frac{f(x) - f(y)}{g(x) - g(y)} = \frac{f'(\xi)}{g'(\xi)}.$$

Portanto para quaisquer pontos nestas condições obtem-se

$$l - \delta < \frac{f(x) - f(y)}{g(x) - g(y)} < l + \delta.$$
 (4.12.1)

No caso de $\lim_{x\to a} f(x)=\lim_{x\to a} g(x)=0$, fixemos arbitrariamente $x\in]a,\beta[$ e fazendo $y\to a$ conclui-se que as desigualdades

$$l - \delta < \frac{f(x)}{g(x)} < l + \delta$$

têm que ser verificadas para $\forall x \in]a, \beta[$, o que prova que

$$\lim_{x \to a} \frac{f(x)}{g(x)} = l.$$

No caso em que $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=+\infty$, fixa-se $y\in]a,\beta[$ e determina-se γ tal que, para $x\in]a,\gamma[$ se tenha

$$g(x) > 0 \text{ e } g(x) > g(\gamma).$$

Das desigualdades (4.12.1) resulta que, para $x \in]a, \gamma[$, se tem

$$\frac{f(y)}{g(x)} + \left(1 - \frac{g(y)}{g(x)}\right)(l - \delta) < \frac{f(x)}{g(x)} < \frac{f(y)}{g(x)} + \left(1 - \frac{g(y)}{g(x)}\right)(l + \delta).$$

Quando $x \to a$ o primeiro membro tende para $l - \delta$ e o segundo membro para $l + \delta$, pelo que

$$\lim_{x \to a} \frac{f(x)}{g(x)} = l.$$

Se $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = -\infty$ o processo é análogo. Se $l=\pm\infty$ então obrigatoriamente existe um intervalo]a,d[(d>a)onde $f'(x) \neq 0$, pois caso contrário, como $g'(x) \neq 0$ em [a, b], isso seria incompatível com o facto de

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = \pm \infty.$$

Assim trocando no enunciado do Teorema f por g e g por f fica-se com o caso de l=0, que já foi considerado na primeira parte da demonstração.

4.13 Derivadas de ordem superior

Seja $f:D\subset\mathbb{R}\to\mathbb{R}$ uma função diferenciável em $a\in D$. No caso de f'ser por sua vez também diferenciável num ponto a interior do seu domínio D', então diz-se que f é duas vezes diferenciável em a, e representa-se por f''(a).

Em geral, a derivada de ordem n da função f, representa-se por $f^{(n)}$ ou

A função f diz-se n vezes diferenciável no ponto a do respectivo domínio $D^{(n)}$ se existir e for finita a derivada $f^{(n)}(a)$.

A função f é indefinidamente diferenciável no ponto a se for n vezes diferenciável em a para qualquer $n \in \mathbb{N}$.

Exemplo: A função $f(x) = e^x$ é indefinidamente diferenciável em \mathbb{R} , tendo-se para cada $n \in \mathbb{N}$,

$$\frac{d^n}{dx^n}\left(e^x\right) = e^x.$$

A derivada de 1^a ordem, como já foi referido anteriormente, pode ser entendida como o "contacto" da função com a recta tangente ao gráfico nesse ponto.

Para as derivadas de ordem n de f podem-se admitir "contactos" de ordem n, o que permite aproximar uma função diferenciável qualquer por um polinómio cujos termos serão constituidos pelos vários "contactos".

Definição 4.13.1 Seja $f: D \subset \mathbb{R} \to \mathbb{R}$ uma função n vezes diferenciável em $a \in D$. Chama-se polinómio de Taylor de ordem n de f no ponto , a

$$p_n(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n = \sum_{k=1}^n \frac{f^{(k)}(a)}{k!}(x - a)^k.$$

Se a=0 o polinómio de Taylor é designado por <u>polinómio de MacLaurin</u> e assume uma forma mais simplificada

$$p_n(x) = f(0) + f'(0)x + \dots + \frac{f^{(n)}(0)}{n!}x^n = \sum_{k=1}^n \frac{f^{(k)}(0)}{k!}x^k.$$

Teorema 4.13.2 Se $f: D \subset \mathbb{R} \to \mathbb{R}$ é uma função n vezes diferenciável em $a \in D$ então para qualquer $x \in D$ é válida a fórmula de Taylor

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x)$$

verificando o resto $R_n(x)$ a condição

$$\lim_{x \to a} R_n(x) = 0.$$

No caso particular de a=0, a fórmula de Taylor é também chamada fórmula de Mac-Laurin:

$$f(x) = f(0) + f'(0) x + \dots + \frac{f^{(n)}(0)}{n!} x^n + R_n(x).$$

O interesse da fórmula de Taylor será acrescido se for possível explicitar o termo complementar $R_n(x)$ possibilitando uma estimação do seu valor, isto é, uma aproximação do erro cometido quando se substitui a função pelo correspondente polinómio de Taylor.

Teorema 4.13.3 (Fórmula do resto de Lagrange) Seja f uma função (n+1) vezes diferenciável num intervalo aberto I e $a \in I$. Então para cada $x \in I \setminus \{a\}$ existe ξ tal que $a < \xi < x$, tem que o termo complementar (resto) da sua fórmula de Taylor de ordem n no mesmo ponto, $R_n(x)$, \acute{e} dado por

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.$$

Exercício 4.13.4 Para a função f(x) = sen x determine o polinómio de Mac-Laurin de ordem 6 associado e indique uma majoração para o erro cometido.

4.14 Aplicações da fórmula de Taylor à determinação de extremos, convexidade e inflexões

Anteriormente viu-se que, para uma função f, diferenciável num ponto a, tenha um extremo local neste ponto, é necessário, embora não suficiente, que f'(a) = 0.

Chamam-se pontos críticos ou estacionários de uma função f aos zeros da sua função derivada. Para decidir se um ponto crítico é ou não um ponto de máximo ou de mínimo, pode recorrer-se ao sinal da 1^a derivada.

Nos casos em que não seja possível estudar o sinal de f'(x)em pontos próximos de a o recurso à fórmula de Taylor dá um método alternativo, que pode serútil se forem conhecidos os valores assumidos no ponto a por algumas das derivadas de ordem superior à primeira.

Exemplo: Se f é duas vezes diferenciável em a, f'(a) = 0 e $f''(a) \neq 0$ então a fórmula de Taylor com resto de Lagrange será

$$f(x) = f(a) + f''(a) \frac{(x-a)^2}{2} + R_2(x)$$

com $\lim_{x\to a} R_2(x) = 0$. Então existe $\epsilon > 0$ tal que para $x \in V_{\epsilon}(a)$ se tem que $|R_2(x)| < |f''(a)|$. Assim o sinal da soma $f''(a) \frac{(x-a)^2}{2} + R_2(x)$, em $V_{\epsilon}(a)$, será o sinal do primeiro termo.

Se f''(a) > 0 tem-se

$$f(x) - f(a) = f''(a) \frac{(x-a)^2}{2} + R_2(x) \ge 0,$$

isto é, f(x) > f(a) para $x \in V_{\epsilon}(a)$. Se for f''(a) < 0 tem-se f(x) < f(a) para $x \in V_{\epsilon}(a)$ No primeiro caso tem-se um mínimo local estrito e no segundo caso um máximo local também estrito.

Se f''(a) = 0 o processo não era aplicável e ter-se-ia que realizar o mesmo processo para a primeira ordem da derivada que não se anulasse em a. Assim:

Teorema 4.14.1 Seja f uma função n vezes diferenciável em a, com $n \ge 2$, e suponha-se $f^{(n)}(x)$ \acute{e} a primeira derivada que não se anula em a Então:

1. se n é ímpar, f não tem qualquer extremo no ponto a;

4.14. APLICAÇÕES DA FÓRMULA DE TAYLOR À DETERMINAÇÃO DE EXTREMOS, CONVEXIDA

2. se n é par, f(a) é um máximo ou um mínimo local (estrito) de f, conforme $f^{(n)}(a) < 0$ ou $f^{(n)}(a) > 0$.

Dem. Como f é uma função n vezes diferenciável em a então, numa vizinhança de $a, V_{\epsilon}(a)$, pode ser representada pela fórmula de Taylor com resto de Lagrange

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - a)^{n+1},$$

para $x \in V_{\epsilon}(a)$.

Como $f^{(n)}(x)$ é a primeira derivada que não se anula em a então

$$f(x) - f(a) = \frac{f^{(n)}(a)}{n!} (x - a)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - a)^{n+1}$$
$$= \frac{(x - a)^n}{n!} \left[f^{(n)}(a) + \frac{f^{(n+1)}(\xi)}{n+1} (x - a) \right].$$

Como (x-a) pode ser arbitrariamente pequeno então o sinal dominante do último factor será o sinal de $f^{(n)}(a)$.

Se n é impar, o primeiro membro f(x) - f(a) toma sinais contrários quando x toma valores à esquerrda ou à direita de a, mas suficientemente próximos. Logo f(a) não é um extremo.

Se n é par, o sinal de f(x) - f(a) é o mesmo que o sinal de $f^{(n)}(a)$.

Assim se $f^{(n)}(a) < 0$ então f(x) < f(a) para $x \in V_{\epsilon}(a)$, pelo que f(a) é um máximo. Se $f^{(n)}(a) < 0$ então f(a) é um mínimo local

Exemplo 4.14.2 A função $f(x) = 3x^4 - 4x^3 + 2$ tem unicamente dois pontos estacionários: 0 e 1 Como f''(1) = 12 > 0 então f(1) = 1 é um mínimo de f. No ponto 0, f''(0) = 0, f'''(0) = -24 pelo que f(0) não é um ponto de extremo.

Outra aplicação da fórmula de Taylor está relacionada com a noção de convexidade, isto é, com a posição do gráfico da função f, diferenciável em a,:em relação à respectiva tangente no ponto (a, f(a)):

Se existe $\epsilon > 0$ tal que em $V_{\epsilon}(a)$ o gráfico de f está acima do da função g(x) = f(a) + f'(a) (x - a) diz-se que a função f é convexa em a ou que tem a concavidade voltada para cima nesse ponto.

Se o gráfico de g está acima do de f diz-se que a função f é côncava em a ou que tem a concavidade voltada para baixo nesse ponto.

Pode acontecer que exista um intervalo à esquerda de a e outro à direita de a em que o gráfico de f esteja acima do de g num deles e abaixo noutro. Neste caso diz-se que a é um ponto de inflexão de f.

Teorema 4.14.3 Seja f uma função n vezes diferenciável em a, $(n \ge 2)$, e suponha-se que são nulas em a todas as derivadas de f de ordem superior à primeira e inferior a n, isto \acute{e} ,

$$f''(a) = \dots = f^{(n-1)}(a) = 0, \ f^{(n)}(a) \neq 0.$$

Então:

- 1. se n é impar, a é um ponto de inflexão de f;
- 2. se n é par, f é convexa ou côncava no ponto a conforme $f^{(n)}(a) > 0$ ou $f^{(n)}(a) < 0$, respectivamente.

Dem. A demostração é semelhante à do Teorema 4.14.1, considerando a gora a Fórmula de Taylor de ordem n com resto de Lagrange na forma

$$f(x) = f(a) + f'(a)(x - a) + \frac{f^{(n)}(a)}{n!}(x - a)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - a)^{n+1},$$

e então

$$f(x) - f(a) - f'(a)(x - a) = \frac{(x - a)^n}{n!} \left[f^{(n)}(a) + \frac{f^{(n+1)}(\xi)}{n+1}(x - a) \right].$$

Exemplo 4.14.4 Para $f(x) = \sqrt[3]{x}$ tem-se para $x \neq 0$, $f''(x) = -\frac{2}{9\sqrt[3]{x^5}}$. O gráfico tem a concavidade voltada para baixo se x > 0 e para cima se x < 0. O ponto 0 é um ponto de continuidade de f e $f'(0) = +\infty$, pelo que se trata de um ponto de inflexão.

4.15 Séries de funções

O conceito de soma infinita de números reais, que se estudou no caítulo das séries numéricas, pode agora ser generalizado à soma infinita de funções. Este aspecto coloca novos desafios, por exemplo permite que a "mesma série função" possa ser simultaneamente convergente ou divergente, dependendo da concretização da variável.

Comecemos por definir o que se considera por série de funções:

Definição 4.15.1 Chama-se série de funções a uma expresão do tipo

$$\sum_{n=1}^{+\infty} f_n(x)$$

isto é, $f_1(x)+f_2(x)+...+f_n(x)+...$, em que $f_1, f_2, ..., f_n, ...$ funções definidas num certo domínio $D \subset \mathbb{R}$.

A série é convergente nim ponto $x_0 \in D$ se for convergente a série numérica

$$f_1(x_0) + f_2(x_0) + \dots + f_n(x_0) + \dots$$

Neste caso

$$\sum_{n=1}^{+\infty} f_n(x) = f(x),$$

designando-se f(x) por função soma.

O domínio da função soma é o conjunto onde a série converge.

Definição 4.15.2 O conjunto de valores de x para os quais a série de funções é convergente chama-se intervalo de convergência.

Exercício 4.15.3 Estudar a convergência das séries:

Exemplo 4.15.4 a)
$$\sum_{n=0}^{+\infty} x^n$$

$$\mathbf{b)} \sum_{n=1}^{+\infty} \frac{sen(nx)}{n^2}$$

4.16 Séries de potências

Um caso particular de séries de funções são as séries de potências de x,

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots = \sum_{n=0}^{+\infty} a_n x^n.$$

Para determinar os pontos onde esta série é convergente pode começar-se por determinar o raio r de convergência (absoluta)

$$r = \lim \left| \frac{a_n}{a_{n+1}} \right|$$

e depois determinar o intervalo de convergência, isto é o conjunto $x \in]-r, r[$. Em alternativa, pode aplicar-se directamente o critério de D' Alembert

$$\lim \frac{|a_{n+1}| |x^{n+1}|}{|a_n| |x^n|} = |x| \lim \left| \frac{a_{n+1}}{a_n} \right|.$$

por este processo a série é convergente para os vlores que verifiquem a inequação

$$|x|\lim \left|\frac{a_{n+1}}{a_n}\right| < 1.$$

Nos pontos x=-r ou x=r, substitui-se x por r e estuda-se a série directamente utilizando os critérios das séries numéricas.

No intervalo de convergência uma série de potências de x define uma função contínua.

Exercício 4.16.1 Estudar quanto à convergência a série

$$\sum_{n=1}^{+\infty} (-1)^n \frac{x^n}{n(n+1)}.$$

Séries de potências de (x-a) são séries do tipo

$$a_0 + a_1 (x - a) + a_2 (x - a)^2 + \dots + a_n (x - a)^n + \dots = \sum_{n=0}^{+\infty} a_n (x - a)^n.$$

Sendo r o raio de convergência da série, nestes casos o intervalo de convergência será]a-r,a+r[.

4.17 Série de Taylor para funções reais de variável real

Definição 4.17.1 Se a função real de variável real f for indefinidamente diferenciável no ponto a obtem-se a fórmula

$$f(x) = f(a) + f'(a)(x - a) + f''(a)\frac{(x - a)^2}{2} + \dots + f^{(n)}(a)\frac{(x - a)^n}{n!} + \dots$$
$$= \sum_{n=0}^{+\infty} \frac{(x - a)^n}{n!} f^{(n)}(a)$$

que se designa por série de Taylor.

4.17. SÉRIE DE TAYLOR PARA FUNÇÕES REAIS DE VARIÁVEL REAL105

Se a série de Taylor representar f(x) numa vizinhança de a diz-se que f(x) é analítica em a.

No caso de a=0, a série de Taylor designa-se por série de Mac-Laurin:

$$f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!} f^{(n)}(0).$$

Exercício 4.17.2 Determine a série de Mac-Laurin das funções:

- a) $f(x) = e^x$
- **b)** g(x) = sen x

Exercício 4.17.3 Desenvolva em série de potências de x a função

$$f(x) = \frac{3}{(1-x)(1+2x)}.$$

Capítulo 5

Cálculo Integral em $\mathbb R$

5.1 Primitivas

Definição 5.1.1 F(x) é uma primitiva de f(x), num certo intervalo I, se

$$F'(x) = f(x), \ \forall x \in I.$$

Isto é
$$Pf(x) = F(x) \Longrightarrow F'(x) = f(x), \forall x \in I.$$

Resulta imediatamente desta definição que a operação de primitivação é a operação inversa da derivação.

Como [F(x) + c]' = F'(x) para qualquer valor de $c \in \mathbb{R}$, então existe uma infinidade de primitivas de uma certa função.

Assim designa-se por expressão geral das primitivas de f(x) a

$$Pf(x) = F(x) + c, \quad c \in \mathbb{R}.$$

Proposição 5.1.2 Duas primitivas de uma mesma função, num certo intervalo I, diferem sempre de uma constante.

Dem. Sejam F(x) e G(x) duas primitivas de uma mesma função f(x). Então F'(x) = f(x), G'(x) = f(x) e

$$[F(x) - G(x)]' = F'(x) - G'(x) = f(x) - f(x) = 0.$$

A hipótese de se considerar um intervalo I é fundamental, porque a função pode não ser primitivável para todo o conjunto \mathbb{R} .

Veja-se, por exemplo, a função definida em \mathbb{R} ,

$$f(x) = \begin{cases} 1 & \text{se } x \ge 0 \\ -1 & \text{se } x < 0 \end{cases}.$$

Suponhamos que existe uma primitiva def(x), F(x), em \mathbb{R} . Então, pelo Teorema de Lagrange, existe $c \in]x, 0[$ tal que

$$\frac{F(x) - F(0)}{x} = F'(c) = f(c) = -1$$
, porque $c < 0$.

Pela definição de derivada lateral

$$F'(0^{-}) = \lim_{x \to 0^{-}} \frac{F(x) - F(0)}{x} = \lim_{x \to 0^{-}} F'(c) = -1.$$

Contudo não é possível ter uma situação de

$$F'(0) = F'(0^{-}) = F'(0^{+}) = -1 = f(0)$$

porque f(0) = 1.

Então f(x) não é primitivável em \mathbb{R} , embora o seja em $]0,+\infty[$ ou $]-\infty,0[$.

5.2 Primitivas imediatas e quase imediatas

Estas primitivas obtêm-se utilizando apenas as regras de derivação, eventualmente com operações preliminares.

Seja f(x) uma função primitável num certo intervalo $I \subseteq \mathbb{R}$.

5.2.1 Primitiva de uma constante

Como $(kx)' = k, k \in \mathbb{R}$, então

$$Pk = kx + c, \quad k, c \in \mathbb{R}.$$

Generalizando, como $(kPf(x))' = k (Pf(x))' = kf(x), k \in \mathbb{R}$, então

$$P(k f(x)) = k(Pf(x)).$$

5.2.2 Primitiva de uma potência de expoente real

Para
$$m \in \mathbb{R} \backslash \{-1\}$$
, tem-se $\left(\frac{f^{m+1}}{m+1}\right)' = f^m f'$, pelo que

$$Pf^{m}(x) \ f'(x) = \frac{f^{m+1}(x)}{m+1} + c, \ c \in \mathbb{R}, \ m \neq -1.$$

Exercício 5.2.1 Calcular:

1.
$$P\sqrt{2x+1}$$

2.
$$P \frac{\log x}{x}$$

3.
$$P\frac{4}{(1+5x)^3}$$

No caso de m = -1 tem-se que $\frac{f'}{f} = (\log f)'$, e assim

$$P\frac{f'(x)}{f(x)} = (\log f(x)) + c, \quad c \in \mathbb{R}.$$

Exercício 5.2.2 Calcular:

1.
$$P\frac{x^3}{x^4+a^2}$$
, $a \in \mathbb{R}$.

Se se substituir x por uma função f(x) diferenciável, tem-se

$$Ptg(f(x)) \ f'(x) = -\log|\cos(f(x))| + c, \ c \in \mathbb{R}.$$

5.2.3 Primitiva de funções exponenciais

Como $(e^f)' = e^f f'$ então

$$P\left(e^{f(x)} f'(x)\right) = e^{f(x)} + c, \quad c \in \mathbb{R}.$$

Por outro lado,

$$P\left(a^{f(x)} \ f'(x)\right) = P\left(e^{f(x) \log a} \ f'(x)\right) = \frac{e^{f(x) \log a}}{\log a}$$
$$= \frac{a^{f(x)}}{\log a} + c, \quad c \in \mathbb{R}.$$

Exercício 5.2.3 Calcular:

1.
$$P\left(xe^{-x^2}\right)$$
.

2.
$$P^{\frac{3^{arcsen x}}{\sqrt{1-x^2}}}$$
.

5.2.4 Primitiva de funções trigonométricas

Como
$$(-\cos(f))' = f' \operatorname{sen}(f) \operatorname{tem-se}$$

$$P\left[f'(x) \operatorname{sen}(f(x))\right] = -\cos(f(x)) + c, \ c \in \mathbb{R},$$

e, analogamente,

$$P[f'(x) \cos(f(x))] = sen(f(x)) + c, c \in \mathbb{R}.$$

Pelo mesmo processo $(tg(f))' = f' \sec^2(f)$ e

$$P\left[f'(x)\sec^2\left(f(x)\right)\right] = tg\left(f(x)\right) + c, \quad c \in \mathbb{R}.$$

Partindo novamente das derivadas $(arcsen(f))' = \frac{f'}{\sqrt{1-f^2}}$, pelo que

$$P\frac{f'(x)}{\sqrt{1-f^2(x)}} = arcsen(f(x)) + c, \quad c \in \mathbb{R},$$

 \mathbf{e}

$$P\frac{f'(x)}{1+f^2(x)} = arctg(f(x)) + c, \quad c \in \mathbb{R},$$

Exercício 5.2.4 Calcular:

- 1. P(sen(2x)).
- 2. $P \sec^2(3x)$.
- 3. $P \frac{x^2}{\sqrt{1-x^6}}$.
- 4. $P\frac{1}{\sqrt{4-x^2}}$.
- 5. $P \frac{x}{1+x^6}$

5.3 Métodos de primitivação

Se uma função não pode ser primitivada só por aplicação das regras de derivação (primitivas imediatas) ou após alguns artifícios (primitivas quase imediatas) recorre-se a um ou mais métodos de primitivação.

5.3.1 Primitivação por decomposição

Baseia-se na linearidade da primitiva:

Teorema 5.3.1 Sejam f_i funções primitiváveis num domínio $I \subseteq \mathbb{R}$, i = 1, ..., n, $e \alpha_i \in \mathbb{R}$. Então

$$P(\alpha_1 f_1 + \alpha_2 f_2 + \dots + \alpha_n f_n) = \alpha_1 Pf_1 + \alpha_2 Pf_2 + \dots + \alpha_n Pf_n.$$

Alguns casos particulares merecem atenção:

• Para $n \in \mathbb{N}$, $P(\operatorname{sen} x)^{2n+1} = P(\operatorname{sen}^2 x)^n \operatorname{sen} x = P(1 - \cos^2 x)^n \operatorname{sen} x$.

Desenvolvendo $(1 - \cos^2 x)^n$ obtêm-se potências de $\cos x$ multiplicadas por $\sin x$ e a cada uma delas pode aplicar-se a relação

$$P\left(\cos^k x \ sen \ x\right) = -\frac{\cos^{k+1} x}{k+1}, \ k = 0, 2, ..., 2n.$$

• Para $n \in \mathbb{N}$, $n \geq 2$, $Ptg^{n}(x) = Ptg^{n-2}(x)$ $tg^{2}(x) = Ptg^{n-2}(x)$ $\left(\sec^{2} x - 1\right) = Ptg^{n-2}(x)\left(\sec^{2} x - 1\right) = Ptg^{n-2}(x)\sec^{2} x - Ptg^{n-2}(x)$. Desta forma obtem-se a fórmula por recorrência

$$Ptg^{n}\left(x\right) = \frac{tg^{n-1}\left(x\right)}{n-1} - Ptg^{n-2}\left(x\right).$$

 Para fracções racionais com aplicação do método dos coeficientes indeterminados pode decompor-se a fracção inicial em fracções "mais simples":

Exemplo:

$$P\frac{2x^5}{x^2+1} = 2P\left(x^3 - x + \frac{x}{x^2+1}\right).$$

5.3.2 Primitivação por partes

Este método baseia-se na fórmula para a derivada do produto de funções

$$(uv)' = u'v + uv' \Leftrightarrow u'v = (uv)' - uv'$$

pelo que:

Teorema 5.3.2 Sejam u e v duas funções reais definidas e diferenciáveis num intervalo $I \subseteq \mathbb{R}$. Se o produto u'v for primitivável então

$$P\left[u'(x)v(x)\right] = u(x)v(x) - P\left[u(x)v'(x)\right].$$

Como indicação geral, será conveniente escolher o factor correspondente à função v aquele que se simplificar mais por derivação. Contudo há algumas excepções, como se verifica no próximo exercício:

Exercício 5.3.3 Calcular:

- 1. $P\left(x^2sen\left(x\right)\right)$.
- 2. $Px \ arctg(x)$.
- 3. $Px^3 \log x$.
- 4. $P \log x$.
- 5. $P\cos x e^x$

5.3.3 Primitivação por substituição

O método de substituição baseia-se na regra de derivação das funções compostas.

Teorema 5.3.4 Sejam $f: I \to \mathbb{R}$ uma função primitivável, $J \subseteq Df$ e $\varphi: I \to J$ uma aplicação bijectiva e diferenciável em I. Então $(f \circ \varphi)(t)\varphi'(t)$ é primitivável e, designando por $\Phi(t)$ uma sua primitiva , isto é, $\Phi(t) = P[(f \circ \varphi)(t)\varphi'(t)]$, obtem-se que $\Phi(\varphi^{-1}(x))$ é uma primitiva de f(x). Em resumo

$$Pf(x) = P[(f \circ \varphi)(t) \ \varphi'(t)], \text{ sendo } t = \varphi^{-1}(x).$$

Dem. Aplicando a derivada da função composta e a derivada da função inversa tem-se

$$(\Phi(\varphi^{-1}(x)))' = \Phi'(\varphi^{-1}(x)) (\varphi^{-1}(x))' =$$

$$= f(\varphi(t)) \varphi'(t) \frac{1}{\varphi'(t)} = f(x)$$

Exercício 5.3.5 Calcule em $I =]0, +\infty[$,

$$P\left(\frac{1}{e^x - 1}\right),\,$$

utilizando a substituição $x = \varphi(t) = \log t$.

5.3.4 Primitivação de funções racionais

Definição 5.3.6 i) Função racional é uma função do tipo $\frac{p(x)}{q(x)}$, onde p(x) e q(x) são polinómios em x, não sendo q(x) identicamente nulo.

ii) Uma fracção racional diz-se própria se o grau de p(x) é menor que o grau de q(x)

Para efeitos de primitivação basta considerar fracções próprias, pois caso a fracção seja imprópria, por uma divisão inteira é sempre possível decompôla na soma de uma parte inteira com uma fracção própria. Isto é, se gr $p(x) \geq gr$ q(x) então existem polinómios a(x) e r(x) tais que

$$\frac{p(x)}{q(x)} = a(x) + \frac{r(x)}{q(x)}.$$

Condideremos então vários casos na primitivação de fracções racionais que estão directamente relacionados com o número de zeros do denominador e com a sua natureza, ilustrados com exemplos:

 1° caso: As raízes de q(x) são reais de multiplicidade 1:

A fracção racional decompõe-se em "fracções mais simples"e calcula-se a sua primitiva por decomposição.

Exemplo 5.3.7
$$P\frac{4x^2+x+1}{x^3-x} = P\frac{4x^2+x+1}{x(x-1)(x+1)} = P\frac{-1}{x} + P\frac{3}{x-1} + P\frac{2}{x+1} = \log\left|\frac{1}{x}\right| + \log\left|x-1\right|^3 + \log\left(x+1\right)^2 + c = \log\left|\frac{(x-1)^3(x+1)^2}{x}\right| + c, \quad c \in \mathbb{R}.$$

 2^o caso: As raízes de q(x)são reais e algumas com multiplicidade superior a 1:

O processo é análogo ao anterior.

Exemplo 5.3.8
$$P \frac{2x^3+1}{x^2(x+1)^3} = P \frac{-3}{x} + P \frac{1}{x^2} + P \frac{3}{x+1} + P \frac{4}{(x+1)^2} - P \frac{1}{(x+1)^3} = -3 \log|x| - \frac{1}{x} + 3 \log|x+1| - \frac{4}{x+1} + \frac{1}{2} \frac{1}{(x+1)^2} + c, \quad c \in \mathbb{R}.$$

 3^{o} caso: Algumas raízes de q(x) são complexas de multiplicidade 1:

Na decomposição as fracções cujo denominador têm raízes complexas possuem uma função afim como numerador.

Exemplo 5.3.9
$$P\frac{x+2}{x^3-1} = P\frac{x+2}{(x-1)(x^2+x+1)} = P\frac{1}{x-1} - P\frac{x+1}{x^2+x+1} = \log|x-1| - \frac{1}{2}\log(x^2+x+1) - \frac{4\sqrt{3}}{3}arctg\left(\frac{2x+1}{\sqrt{3}}\right) + c, \quad c \in \mathbb{R}.$$

 4^o caso: Algumas raízes de q(x) são complexas com multiplicidade superior a 1:

Exemplo 5.3.10
$$P \frac{x^2 + 2x + 6}{(x - 1)(x^2 + 2)^2} = P \frac{1}{x - 1} - P \frac{x + 1}{x^2 + 2} - P \frac{2x}{(x^2 + 2)^2} = \log|x - 1| - \frac{1}{2} \log(x^2 + 2) - \frac{\sqrt{2}}{2} \operatorname{arctg}\left(\frac{x}{\sqrt{2}}\right) + \frac{1}{x^2 + 2} + c, \quad c \in \mathbb{R}.$$

Nalguns casos é possível e recomendável combinar os métodos de substituição com o das fracções racionais. Vejam-se alguns exemplos:

Exemplo 5.3.11 Numa função racional com argumentos do tipo e^x , simbolicamente,

$$FR(e^x),$$

deve tentar-se a substituição

$$x = \log t$$
 ou $e^x = t$.

Assim

$$P\left(\frac{1-e^{3x}}{e^{2x}-4}\right) = P\left(\frac{1-t^3}{t^2-4} \times \frac{1}{t}\right) = P\left(-1 + \frac{1-4t}{t^3-4t}\right)$$
$$= -e^x - \frac{x}{4} - \frac{7}{8}\log|e^x - 2| + \frac{9}{8}\log|e^x + 2| + c, \quad c \in \mathbb{R}.$$

Exemplo 5.3.12 Numa função racional do tipo

$$FR(\log x) \times \frac{1}{x}$$

deve tentar-se a substituição

$$\log x = t$$
 ou $x = e^t$.

Por exemplo:

$$\begin{split} P\left(\frac{\log{(2x)}}{x\log^3{x}}\right) &= P\left(\frac{\log{2} + \log{x}}{\log^3{x}} \times \frac{1}{x}\right) = P\left(\frac{\log{2} + t}{t^3}\right) \\ &= \frac{\log{2}}{2} \frac{1}{\log^2{x}} - \frac{1}{\log{x}} + c, \quad c \in \mathbb{R}. \end{split}$$

Exemplo 5.3.13 Para uma função do tipo

$$FR(sen \ x) \times \cos x$$

recomenda-se a substituição

$$sen x = t ou x = arcsen t.$$

Analogamente para

$$FR(\cos x) \times sen x$$

aplica-se

$$\cos x = t$$
 ou $x = \arccos t$.

Assim

$$P\frac{\cos^3 x - \sin x}{\cos^2 x + 2\cos x + 1} = P\frac{t^3 \sqrt{1 - t^2}}{t^2 + 2t + 1} \times \frac{-1}{\sqrt{1 - t^2}}$$
$$= P\left(-t + 2 - \frac{8}{(t+1)^2}\right)$$
$$= -\frac{\cos^2 x}{2} + 2\cos x + \frac{8}{\cos x + 1} + c, \quad c \in \mathbb{R}.$$

Exemplo 5.3.14 Para

aplica-se a substituição

$$tg\left(\frac{x}{2}\right) = t$$
 ou $x = 2$ arctg t ,

e, pelas fórmulas trigonométricas dos ângulos duplos,

$$sen \ x = 2 \frac{tg\left(\frac{x}{2}\right)}{1 + tg^2\left(\frac{x}{2}\right)} \quad e \quad \cos x = \frac{1 - tg^2\left(\frac{x}{2}\right)}{1 + tg^2\left(\frac{x}{2}\right)}.$$

Como exemplo:

$$\begin{split} P\frac{\cos x}{\sin x - \cos x} &= P\left(\frac{1 - t^2}{t^2 + 2t - 1} \times \frac{2}{1 + t^2}\right) \\ &= 2P\left[\frac{1 - t^2}{\left(t + 1 - \sqrt{2}\right)\left(t + 1 + \sqrt{2}\right)\left(1 + t^2\right)}\right] \\ &= \frac{1}{2}\log\left|tg^2\left(\frac{x}{2}\right) + 2tg\left(\frac{x}{2}\right) - 1\right| - \frac{1}{2}\log\left(\sec^2 x\right) - \frac{x}{2} + c, \ c \in \mathbb{R}. \end{split}$$

Exemplo 5.3.15 No caso de

$$FR\left[x, \left(\frac{ax+b}{cx+d}\right)^{\frac{p_1}{q_1}}, ..., \left(\frac{ax+b}{cx+d}\right)^{\frac{p_n}{q_n}}\right]$$

a substituição indicada será

$$\frac{ax+b}{cx+d} = t^q, \quad sendo \ q = m.m.c. (q_1, ..., q_n).$$

Ilustre-se com o exemplo:

$$P\frac{\sqrt[3]{x-1}}{\sqrt{x-1}-1} = P\left(\frac{t^2}{t^3-1} \times 6t^5\right) = 6P\left(t^4+t+\frac{t}{t^3-1}\right).$$

5.4 Integral de Riemann

O conceito base no cálculo diferencial é a noção de derivada. No cálculo integral esse papel é desempenhado pela noção de integral.

O método mais intuitivo para abordar este conceito é considerá-lo como uma área.

5.4.1 Somas integrais de uma função

Seja f uma função real de variável real definida em [a, b].

Considere-se este intervalo decomposto em n intervalos pelos pontos $x_0, x_1, x_2, ..., x_{n-1}, x_n$, tais que

$$x_0 = a < x_1 < x_2 < \dots < x_{n-1} < x_n = b.$$

Ao conjunto $P = \{x_0, x_1, x_2, ..., x_{n-1}, x_n\}$ chama-se uma decomposição ou partição de [a, b].

Desta forma [a,b] fica decomposto em subintervalos $I_1=[x_0,x_1]$, $I_2=[x_1,x_2]$, ..., $I_n=[x_{n-1},x_n]$, de diâmetros

$$diam I_1 = x_1 - x_0$$
, $diam I_2 = x_2 - x_1$, $diam I_n = x_n - x_{n-1}$.

Ao maior destes diâmetros chama-se diâmetro da decomposição e nota-se por |P|.

Definição 5.4.1 Chama-se soma integral ou soma de Riemann de uma função f relativamente à decomposição P de [a, b] e ao conjunto

$$U = \{u_i : u_i \in [x_i, x_{i+1}], i = 1, ..., n-1\},\$$

designando-se por S(f, P, U) ou abreviadamente por S_P , a

$$S(f, P, U) = \sum_{i=1}^{n} f(u_i) (x_i - x_{i-1})$$

= $f(u_1)(x_1 - x_0) + f(u_2)(x_2 - x_1) + \dots + f(u_n)(x_n - x_{n-1}).$

Definição 5.4.2 Se substituirmos na soma anterior a imagem de um ponto intermédio pelo supremo (ínfimo) da função f(x) em cada um dos subintervalos obtem-se a soma superior de Darboux, \overline{S} , ou a soma inferior de Darboux, \underline{S} .

Exercício 5.4.3 Para $f(x) = x^2$ definida em [0,1] decomposto por $P = \{0, 0.4, 0.5, 0.7, 1\}$, calcular:

- 1. A soma de Riemann S_P relativamente a $U = \{0.1, 0.45, 0.6, 0.8\}$.
- 2. As somas superior e inferior de Darboux.

Proposição 5.4.4 Seja f uma função limitada em [a,b]. As somas superior e inferior de Darboux, \overline{S} . e \underline{S} , são, respectivamente, o supremo e o ínfimo das somas de Riemann, no conjunto de todas as partições possíveis de [a,b].

Dem. Para uma mesma partição P de [a,b] tem-se

$$\underline{S} < S_P < \overline{S}. \tag{5.4.1}$$

Defina-se

$$M_i := \sup_{x \in [x_{i-1}, x_i]} f(x), \quad i = 1, ..., n,$$

e escolha-se $\alpha > 0$ de modo a que para os pontos intermédios u_i em cada um dos subintervalos se tenha

$$f(u_i) > M_i - \alpha, \quad i = 1, ..., n.$$

A soma de Riemann será

$$S_{P} = \sum_{i=1}^{n} f(u_{i}) (x_{i} - x_{i-1}) > \sum_{i=1}^{n} (M_{i} - \alpha) (x_{i} - x_{i-1})$$

$$= \sum_{i=1}^{n} M_{i} (x_{i} - x_{i-1}) - \sum_{i=1}^{n} \alpha (x_{i} - x_{i-1}) = \overline{S} - \alpha (b - a).$$

Pelo mesmo processo, definindo

$$m_i := \inf_{x \in [x_{i-1}, x_i]} f(x), \quad i = 1, ..., n,$$

se pode provar que

$$S_P < S + \alpha (b-a)$$
.

pelo que \overline{S} .e \underline{S} , são, respectivamente, o supremo e o ínfimo das somas de Riemann. \blacksquare

Note-se que as somas anteriores, de um ponto de vista geométrico, corresponde a vários modos de obter a soma da área de vários rectângulos com alturas diferentes mas bases iguais em cada um dos casos.

5.4.2 Definição de integral de Riemann

Definição 5.4.5 Uma função f(x) diz-se integrável à Riemann em [a,b] se for finito

$$\lim_{|P|\to 0} S_P(x) = S = \int_a^b f(x)dx,$$

em que $S_P(x)$ designa a soma de Riemann de f relativamente à decomposição P, |P| o diâmetro da decomposição, f(x) a função integranda, x a variável de integração e [a,b] o intervalo de integração

Observação 5.4.6 O valor do integral depende da função f e do intervalo [a, b], mas é independente da variável de integração. Isto é,

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(u)du = \int_{a}^{b} f(t)dt.$$

Proposição 5.4.7 (Condição necessária de integrabilidade) Se f(x) é integrável em [a,b] então f(x) é limitada em [a,b]

Dem. Pela definição de limite tem-se

$$\lim_{|P|\to 0} S_P(x) = S \iff \forall \delta > 0 \ \exists \varepsilon > 0 \colon \forall P, \ |P| < \varepsilon \Longrightarrow |S_P(x) - S| < \delta.$$

Assim quando o diâmetro da partição for suficientemente pequeno tem-se, para $\delta>0$,

$$S - \delta < S_P < \delta + S$$
.

Como $S_P = \sum_{i=1}^n f(u_i) |x_i - x_{i-1}|$ com u_i pontos arbitrários em cada um dos subintervalos. Separamndo a primeira parcela,

$$S_P = f(u_1)|x_1 - a| + \sum_{i=2}^n f(u_i)(x_i - x_{i-1}).$$

Considerando fixos os pontos u_i , i=2,...,n, o somatório terá uma certa soma k. Assim

$$S_P = f(u_1)|x_1 - a| + k$$

 \mathbf{e}

$$S - \delta < f(u_1)|x_1 - a| + k < \delta + S$$

ou seja

$$\frac{S-\delta-k}{|x_1-a|} < f(u_1) < \frac{\delta+S-k}{|x_1-a|}.$$

Como u_1 é um ponto arbitrário em $[a, x_1]$ a função f(x) é limitada em $[a, x_1]$.

Pelo mesmo processo é possível provar que f(x) é limitada em qualquer dos subintervalos $[x_i, x_{i+1}]$. Logo f(x) é limitada em [a, b].

Igualmente útil é a sua recíproca.

Se f(x) não é limitada em [a,b] então f(x) não é integrável em [a,b].

Proposição 5.4.8 (Condição necessária e suficiente de integrabilidade) A função f(x) é integrável em [a,b] se e só se as somas de Darboux têm o mesmo limite finito.

Dem. (\Longrightarrow) Se f(x) é integrável no sentido de Riemann em [a,b] então $\lim_{|P|\to 0} S_P(x) = S$, ou seja para um certo $\varepsilon > 0$ tal que $|P| < \varepsilon$ se tem $|S_P(x) - S| < \frac{\delta}{2}$, ou seja,

$$S - \frac{\delta}{2} < S_P < S + \frac{\delta}{2}.$$

Como

$$S - \overline{S} \le 0 < \delta$$
,

então, para $|P|<\varepsilon,\,\left|\overline{S}-\underline{S}\right|\leq\delta,$ pelo que

$$\lim_{|P| \to 0} \left(\overline{S} - \underline{S} \right) = 0,$$

isto é,

$$\lim_{|P| \to 0} \overline{S} = \lim_{|P| \to 0} \underline{S}.$$

Além disso, pelo enquadramento (5.4.1), tem-se

$$\lim_{|P|\to 0} \overline{S} = \lim_{|P|\to 0} \underline{S} = \lim_{|P|\to 0} S_P = S = \int_a^b f(x) dx.$$

(\iff) Se as somas de Darboux \overline{S} e \underline{S} têm o mesmo limite finito, pelo enquadramento (5.4.1), tem-se

$$\lim_{|P|\to 0} \overline{S} = \lim_{|P|\to 0} \underline{S} = \lim_{|P|\to 0} S_P = S = \int_a^b f(x) dx,$$

pelo que f(x) é integrável em [a,b]..

Alguns resultados ajudam a formar ideias sobre classes de funções integráveis:

Proposição 5.4.9 Toda a função contínua em [a,b] é integrável à Riemann nesse intervalo.

Dem. Pelo Teorema de Heine-Cantor , toda a função contínua num intervalo limitado e fechado [a,b] é uniformemente contínua, isto é,

$$\forall \delta > 0 \ \exists \varepsilon > 0 \colon \forall v, w \in [a, b], \ |v - w| < \varepsilon \Longrightarrow |f(v) - f(w)| < \delta.$$

Para $\varepsilon > 0$ seja P uma partição de [a, b] tal que $|P| < \varepsilon$.

Se f(x) é contínua em [a,b] então f(x) é contínua em dada um dos subintervalos $[x_i,x_{i+1}]$.

Pelo Teorema de Weierstrass existem os números M_i e m_i , respectivamente, máximos e mínimos de f(x) em $[x_i, x_{i+1}]$. Designe-se $M_i := f(u_i)$ e $m_i := f(v_i)$ com $u_i, v_i \in [x_i, x_{i+1}]$.

Considere-se $\delta > 0$ tal que

$$M_i - m_i = f(u_i) - f(v_i) < \frac{\delta}{b - a}.$$

Então, recorrendo às somas de Darboux

$$\overline{S} - \underline{S} = \sum_{i=1}^{n} M_i (x_i - x_{i-1}) - \sum_{i=1}^{n} m_i (x_i - x_{i-1})$$

$$= \sum_{i=1}^{n} (M_i - m_i) (x_i - x_{i-1}) < \frac{\delta}{b - a} \sum_{i=1}^{n} (x_i - x_{i-1}) = \frac{\delta}{b - a} (b - a) = \delta.$$

Portanto $\overline{S} - \underline{S} < \delta$, com $|P| < \varepsilon$, pelo que

$$\lim_{|P| \to 0} \left(\overline{S} - \underline{S} \right) = 0.$$

Proposição 5.4.10 Toda a função monótona e limitada é integrável à Riemann.

Dem. Para $\varepsilon > 0$ seja P uma partição de [a, b] tal que $|P| < \varepsilon$, isto é,

$$|x_i - x_{i-1}| < \varepsilon, \ i = 1, ..., n.$$

Suponhamos que f(x) é crescente. Assim, para cada $[x_{i-1}, x_i]$ defina-se

$$M_i := \sup_{x \in [x_{i-1}, x_i]} f(x)$$
 e $m_i := \inf_{x \in [x_{i-1}, x_i]} f(x)$.

Então

$$\overline{S} - \underline{S} = \sum_{i=1}^{n} (M_i - m_i) (x_i - x_{i-1}) = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) (x_i - x_{i-1})$$

$$< \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \varepsilon$$

$$= \varepsilon [f(x_1) - f(x_0) + f(x_2) - f(x_1) + \dots + f(x_n) - f(x_{n-1})]$$

$$= \varepsilon [f(x_n) - f(x_0)] = \varepsilon [f(b) - f(a)].$$

Considerando $\delta = \varepsilon \left[f\left(b \right) - f\left(a \right) \right]$ obtem-se que $\overline{S} - \underline{S} < \delta$ desde que $|P| < \varepsilon = \frac{\delta}{f(b) - f(a)}$. Então, pela condição necessária e suficiente de integrabilidade, f(x) é integrável em [a,b].

Se f(x) é decrescente.o processo é semelhante.

5.4.3 Interpretação geométrica do conceito de integral

Vimos anteriormente que as somas superior e inferior de Darboux, \overline{S} e \underline{S} , são aproximações por excesso e por defeito, respectivamente, da área do trapezóide limitado pelo gráfico de f(x) e pelas rectas verticais x=a e x=b.

Se se diminuir o diâmetro da partição obtêm-se aproximações com um erro menor, da área do trapezóide referido.

Ao considerar partições mais finas, \overline{S} e \underline{S} serão valores tão próximos quanto de queira, por excesso e por defeito, do valor dessa área.

Assim se f(x) é contínua em [a, b] e f(x) > 0, $\forall x \in [a, b]$, então $\int_a^b f(x) dx$ representa a área da região limitada pelo gráfico de f(x) e pelas rectas verticais x = a e x = b.

5.5 Propriedades dos integrais

A maior parte das propriedades que se seguem podem ser demonstradas por aplicação directa da definição de integral.

Proposição 5.5.1 Sejam f(x) e g(x) funções integráveis em [a,b].

1.
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

2. Se f(x) é uma função par então

$$\int_{-a}^{-b} f(x)dx = -\int_{a}^{b} f(x)dx.$$

3. Se f(x) é uma função impar então

$$\int_{-a}^{-b} f(x)dx = \int_{a}^{b} f(x)dx.$$

4. Para $k \in \mathbb{R}$,

$$\int_{a}^{b} k \ dx = k \left(b - a \right).$$

5. Para $k \in \mathbb{R}$,

$$\int_{a}^{b} k f(x)dx = k \int_{a}^{b} f(x)dx.$$

6. Se $f(x) \ge 0$ então

$$\int_{a}^{b} f(x)dx \ge 0.$$

7. Se $f(x) \leq g(x), \forall x \in [a, b], ent\tilde{a}o$

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$$

8.

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

9. Se f(x) é uma função limitada em [a,b] tal que $|f(x)| \leq M$, com M>0, então

$$\left| \int_{a}^{b} f(x) dx \right| \le M \left(b - a \right).$$

10. (Aditividade do integral relativamente ao intervalo de integração)

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

11. (Aditividade do integral relativamente à função integranda)

$$\int_a^b \left[f(x) + g(x) \right] dx = \int_a^b f(x) dx + \int_a^b g(x) dx.$$

Dem. Seja $P = \{x_0, x_1, x_2, ..., x_{n-1}, x_n\}$ uma decomposição de [a, b] e $U = \{u_i : u_i \in]x_i, x_{i+1}[, i = 1, ..., n-1]$ um conjunto de pontos arbitrários em cada um dos subintervalos.

1.

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} f(u_{i}) (x_{i} - x_{i-1})$$
$$= -\sum_{i=1}^{n} f(u_{i}) (x_{i-1} - x_{i}) = -\int_{b}^{a} f(x)dx.$$

2. Uma decomposição de [-a,-b] será $P^*=\{-x_0,-x_1,-x_2,...,-x_{n-1},-x_n\}$ e um conjunto de pontos respectivos pode ser $U^*=\{-u_i\}$. Então

$$\int_{-a}^{-b} f(x)dx = \sum_{i=1}^{n} f(-u_i)(-x_i + x_{i-1})$$
$$= -\sum_{i=1}^{n} f(u_i)(x_i - x_{i-1}) = -\int_{a}^{b} f(x)dx.$$

3.

$$\int_{-a}^{-b} f(x)dx = \sum_{i=1}^{n} f(-u_i)(-x_i + x_{i-1})$$
$$= \sum_{i=1}^{n} f(u_i)(x_i - x_{i-1}) = \int_{a}^{b} f(x)dx.$$

4.

$$\int_{a}^{b} k \ dx = \sum_{i=1}^{n} k (x_{i} - x_{i-1}) = k (b - a).$$

5.

$$\int_{a}^{b} k f(x)dx = \sum_{i=1}^{n} k f(u_{i}) (x_{i} - x_{i-1})$$
$$= k \sum_{i=1}^{n} f(u_{i}) (x_{i} - x_{i-1}) = k \int_{a}^{b} f(x)dx.$$

6.
$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} f(u_i) (x_i - x_{i-1}) \ge 0.$$

7.

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} f(u_{i}) (x_{i} - x_{i-1})$$

$$\leq \sum_{i=1}^{n} g(u_{i}) (x_{i} - x_{i-1}) \leq \int_{a}^{b} g(x)dx.$$

8.

$$\left| \int_{a}^{b} f(x)dx \right| = \left| \sum_{i=1}^{n} f(u_{i})(x_{i} - x_{i-1}) \right|$$

$$\leq \sum_{i=1}^{n} |f(u_{i})(x_{i} - x_{i-1})| = \sum_{i=1}^{n} |f(u_{i})|(x_{i} - x_{i-1}) = \int_{a}^{b} |f(x)| dx$$

9. $\left| \int_a^b f(x) \ dx \right| \le \int_a^b |f(x)| \ dx \le \int_a^b M \ dx = M \left(b - a \right).$

10. (Interpretar geometricamente como adição de áreas)

11.

$$\int_{a}^{b} [f(x) + g(x)] dx = \sum_{i=1}^{n} [f(u_{i}) + g(u_{i})] (x_{i} - x_{i-1})$$

$$= \sum_{i=1}^{n} f(u_{i}) (x_{i} - x_{i-1}) + \sum_{i=1}^{n} g(u_{i}) (x_{i} - x_{i-1})$$

$$= \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$$

Teorema 5.5.2 (Teorema da média do cálculo integral) Se f(x) é integrável num intervalo I := [a,b] então existe $\lambda \in [m,M]$, com $m := \inf_{x \in I} f(x)$ e $M := \sup_{x \in I} f(x)$, tal que

$$\int_{a}^{b} f(x)dx = \lambda (b - a).$$

Dem. Suponhamos que b > a. Como $m \le f(x) \le M, \forall x \in I$, então

$$\int_{a}^{b} m dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} M dx,$$

pela Proposição anterior (7),

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a)$$

e, como b - a > 0,

$$m \le \frac{\int_a^b f(x)dx}{b-a} \le M.$$

Definindo

$$\lambda := \frac{\int_a^b f(x)dx}{b-a}$$

obtem-se o resultado pretendido.

Se b < a tem-se

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

e aplica-se a primeira parte da demonstração.

Observação 5.5.3 i) Se f(x) é uma função contínua em I então existe $c \in I$ tal que $f(c) = \lambda$, pelo que se obtem

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

ii) Se $f(x) \ge 0$, $\forall x \in I$ então $\int_a^b f(x) dx$ dá o valor da área de um trapezóide, pelo que f(c) é a altura de um rectângulode comprimento b-a, com áea igual à do trapezóide.

Proposição 5.5.4 (Designaldade de Schwarz) Se f(x) e g(x) são funções integráveis em [a,b] então

$$\left(\int_a^b f(x) \times g(x) dx\right)^2 \le \int_a^b f^2(x) dx \times \int_a^b g^2(x) dx.$$

Dem. Comece-se por calcular

$$\int_a^b \left[\alpha f(x) + g(x)\right]^2 dx = \alpha^2 \underbrace{\int_a^b f^2(x) dx}_A + 2\alpha \underbrace{\int_a^b f(x) \times g(x) dx}_B + \underbrace{\int_a^b g^2(x) dx}_C.$$

Como $[\alpha f(x) + g(x)]^2 \ge 0$ então

$$\int_{a}^{b} \left[\alpha f(x) + g(x)\right]^{2} dx \ge 0$$

e, simplificando a notação,

$$\alpha^2 A + 2\alpha B + C \ge 0$$

apenas acontece para qualquer $\alpha \in \mathbb{R}$ não nulo se A>0 e $(2B)^2-4AC\leq 0$, isto é,

$$B^2 \le AC$$
.

Voltando à notação inicial

$$\left(\int_a^b f(x) \times g(x) dx\right)^2 \le \int_a^b f^2(x) dx \times \int_a^b g^2(x) dx.$$

Exercício 5.5.5 Determine o sinal dos integrais, sem os calcular:

- a) $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{sen \ x}{x} dx$
- **b)** $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \ sen(x) dx$

Exercício 5.5.6 Obtenha um majorante e um minorante para os integrais, sem os calcular:

- a) $\int_{-\frac{1}{2}}^{1} \frac{x}{1+x^2} dx$
- **b)** $\int_0^{\frac{\pi}{4}} x \ tg(x) dx$

5.6 Integral indefinido

Definição 5.6.1 Seja f(x) uma função integrável em I e $\alpha \in I$. Chama-se integral indefinido com origem em α à função

$$\Phi(x) = \int_{\alpha}^{x} f(t)dt, \ \forall x \in I.$$

Proposição 5.6.2 1. Integrais indefinidos de origens diferentes diferem de uma constante.

2. O integral indefinido é uma função contínua.

Dem. Considerem-se

$$\Phi(x) = \int_{\alpha}^{x} f(t)dt$$
 e $\Psi(x) = \int_{b}^{x} f(t)dt$.

1. Então

$$\Phi(x) - \Psi(x) = \int_{\alpha}^{x} f(t)dt + \int_{x}^{b} f(t)dt = \int_{\alpha}^{b} f(t)dt \in \mathbb{R}.$$

2. Comecemos por provar que $\Phi(x)$ é uma função contínua.em $x=\alpha$, isto é que

$$\lim_{x \to \alpha} \Phi(x) = \Phi(\alpha).$$

Note-se que o limite, a existir, terá que ser 0 e que, pela condição necessária de integrabilidade, (Proposição 5.4.7) f(x) é limitada em [a,b], digamos por uma constante M > 0. Assim

$$|\Phi(x) - 0| \le \int_{\alpha}^{x} |f(t)| dt \le \int_{\alpha}^{x} M dt = M(x - \alpha)$$

e como $\lim_{x\to\alpha} M(x-\alpha)=0$, então $\lim_{x\to\alpha} \Phi(x)=\Phi(\alpha)=0$. Prove-se agora que $\Phi(x)$ é contínua.em $x=c\neq\alpha$.

Então

$$|\Phi(x) - \Phi(c)| = \left| \int_{\alpha}^{x} f(t)dt - \int_{\alpha}^{c} f(t)dt \right|$$

$$= \left| \int_{\alpha}^{x} f(t)dt + \int_{c}^{\alpha} f(t)dt \right| = \left| \int_{c}^{x} f(t)dt \right|$$

$$\leq \int_{c}^{x} |f(t)| dt \leq \int_{c}^{x} M dt = M(x - c) \leq M |x - c|$$

e conclui-se como na primeira parte da prova.

Teorema 5.6.3 (Teorema fundamental do Cálculo Integral) O integral indefinido tem por derivada a função integranda nos pontos em que esta seja contínua, isto é,

$$\Phi'(c) = f(c)$$
, se f for contínua em c.

Dem. Viu-se anteriormente que

$$\Phi(x) - \Phi(c) = \int_{c}^{x} f(t)dt = \lambda (x - c),$$

com λ compreendido entre f(x) e f(c).

Por definição de derivada

$$\Phi'(c) = \lim_{x \to c} \frac{\Phi(x) - \Phi(c)}{x - c} = \lim_{x \to c} \frac{\lambda(x - c)}{x - c} = \lambda = f(c).$$

Corolário 5.6.4 Sejam $\alpha, x \in I$ e f uma função contínua em I. Então

$$\Phi'(x) = f(x), \ \forall x \in I.$$

Observação 5.6.5 i) Sendo $\Phi[u(x)] = \int_{\alpha}^{u(x)} f(t)dt$, pela derivada da função composta obtem-se

$$\Phi'[u(x)] = f[u(x)] \times u'(x), \ \forall x \in I.$$

ii) Se $\Phi(x) = \int_{v(x)}^{u(x)} f(t)dt$ então

$$\Phi'(x) = f[u(x)] \times u'(x) - f[v(x)] \times v'(x).$$

Exercício 5.6.6 Estude quanto aos extremos e intervalos de monotonia a função

$$\Phi(x) = \int_2^x (t^2 - 6t + 8)dt.$$

Exercício 5.6.7 Sendo $f(x) = \int_0^{\log x} (x e^{t^2}) dt$ prove que f''(1) = 1.

Exercício 5.6.8 Para $f(x) = \int_{x^2}^{k \log x} (e^{-t^2}) dt$, calcule k tal que f'(1) = 0.

Exercício 5.6.9 Recorrendo à desigualdade de Schwarz encontre um majorante para

$$\int_0^1 e^{5x} \sqrt{arctg(x)} dx.$$

Teorema 5.6.10 (Fórmula de Barrow) Seja f uma função contínua em [a,b] e F uma primitiva qualquer de f em [a,b]. Então

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Dem. A fórmula geral das primitivas de f(x) é dada por

$$F(x) = \int_{\alpha}^{x} f(t)dt + k, \ k \in \mathbb{R}.$$

Assim

$$F(b) = \int_{\alpha}^{b} f(t)dt + k \text{ e } F(a) = k.$$

Então

$$F(b) - F(a) = \int_{\alpha}^{b} f(t)dt.$$

Exercício 5.6.11 Calcule o valor dos integrais:

- 1. $\int_{-1}^{3} \frac{dx}{\sqrt{7+3x}}$
- 2. $\int_{2}^{3} \frac{x}{x^2-25} dx$

5.7 Métodos de integração

Os métodos de integração são análogos aos métodos de primitivação.

5.7.1 Integração por decomposição

Sejam f_i funções integráveis em [a,b]. Então

$$\int_{a}^{b} (f_1(x) + f_2(x) + \dots + f_n(x)) dx = \int_{a}^{b} f_1(x) dx + \int_{a}^{b} f_2(x) dx + \dots + \int_{a}^{b} f_n(x) dx.$$

5.7.2 Integração por partes

Sejam u e v duas funções integráveis num intervalo [a,b]. Se o produto u'v for integrável então

$$\int_{a}^{b} [u'(x)v(x)] dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} [u(x)v'(x)] dx.$$

5.7.3 Integração por substituição

Considere-se: f uma função contínua em [a,b] e φ : $[\alpha,\beta] \to [a,b]$ uma função bijectiva e diferenciável com $\varphi(\alpha) = a$ e $\varphi(\beta) = b$. Então é válida a igualdade

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f\left[\varphi\left(t\right)\right] \times \varphi'\left(t\right)dt.$$

Exercício 5.7.1 Calcular o valor dos integrais:

1.
$$\int_{2}^{4} \frac{x^3}{x-1} dx$$

2.
$$\int_1^2 x^{-3} \log x \ dx$$

3.
$$\int_0^1 x \ arctg(x) \ dx$$

4.
$$\int_{1}^{4} \frac{dx}{1+\sqrt{x}}$$

5.
$$\int_0^{\log 5} \sqrt{e^x - 1} \ dx$$

6.
$$\int_0^{63} \frac{\sqrt[6]{x+1}}{\sqrt[3]{x+1} + \sqrt{x+1}} dx$$

5.8 Extensão da noção de integral

Nos casos em que o intervalo de integração não é limitado ou a função integranda não é limitada no intervalo de integração, a teoria naterior não se aplica e é necessário um novo conceito de integral: o integral impróprio.

5.8.1 Integral impróprio de 1^a espécie

Definição 5.8.1 Seja um intervalo $I \subseteq \mathbb{R}$. Designa-se por integral impróprio de 1^a espécie de f em I a qualquer das seguintes situações:

a) Se
$$I = [a, +\infty[, \int_a^{+\infty} f(x) dx]$$

b) Se
$$I =]-\infty, b[, \int_{-\infty}^{b} f(x)dx$$

c) Se
$$I =]-\infty, +\infty[, \int_{-\infty}^{+\infty} f(x)dx.$$

Pode perguntar-se se neste caso, em que a região não está completamente limitada, o integral ainda representa o valor da área dessa região ilimitada.

A resposta é afirmativa caso o integral impróprio de 1^a espécie tenha um valor finito.

Assim é necessário estudar a natureza do integral.

Definição 5.8.2 i) O integral $\int_a^{+\infty} f(x)dx$ é convergente se existir e for finito

$$\lim_{x \to +\infty} \int_{a}^{x} f(t) dt.$$

Nesse caso

$$\int_{a}^{+\infty} f(x)dx = \lim_{x \to +\infty} \int_{a}^{x} f(t) dt$$

representa o valor da área pretendida.

ii) Análogamente, $\int_{-\infty}^{b} f(x)dx$ é convergente se

$$\int_{a}^{+\infty} f(x)dx = \lim_{x \to +\infty} \int_{a}^{x} f(t)dt$$

existir e for finito.

iii) Do mesmo modo $\int_{-\infty}^{+\infty} f(x)dx$ é convergente se

$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{x \to +\infty} \int_{-x}^{x} f(t)dt$$

existir e for finito.

iv) Se algum dos limites anteriores não existir ou for infinito, então o respectivo integral diz-se divergente.

Exercício 5.8.3 Estude a natureza dos integrais e calcule o seu valor, se possível:

1.
$$\int_0^{+\infty} \frac{1}{x^2+1} dx$$

2.
$$\int_{-\infty}^{-1} \frac{1}{x^2} dx$$

3.
$$\int_1^{+\infty} \frac{1}{x} dx$$

Exercício 5.8.4 Estude a natureza do integral

$$\int_{a}^{+\infty} \frac{1}{x^{\alpha}} dx, \quad (a > 0)$$

discutindo-a em função de α .

5.8.2 Integral impróprio de 2^a espécie

Nestes casos consideram-se as situações em que a função integranda não é limitada em pelo menos um ponto do intervalo de integração.

Definição 5.8.5 Seja $[a,b] \subset \mathbb{R}$ um intervalo e f uma função integrável em subintervalos de $[a,c[\cup]c,b]$, sendo c um ponto em que f não é limitada Designa-se por integral impróprio de 2^a espécie o integral

$$\int_{a}^{b} f(x)dx$$

em que existe pelo menos um $c \in [a, b]$ em que f(c) não é limitada

Definição 5.8.6 O integral integral impróprio de 2^a espécie diz-se convergente se existirem e forem finitos

$$\lim_{x \to c^{-}} \int_{a}^{x} f(t) dt e \lim_{x \to c^{+}} \int_{x}^{b} f(t) dt$$

Nesse caso

$$\int_{a}^{b} f(x)dx = \lim_{x \to c^{-}} \int_{a}^{x} f(t) dt + \lim_{x \to c^{+}} \int_{x}^{b} f(t) dt.$$

Se pelo menos um dos limites anteriores não existir ou for infinito, então o integral diz-se divergente.

Observação 5.8.7 Se em [a,b] existirem n pontos $c_1,...,c_n$ onde a função não é limitada então deve decompor-se o integral de forma a isolar esses pontos apenas num dos extremos de integração.

Exercício 5.8.8 Estudar a natureza dos integrais:

- **a)** $\int_0^1 \frac{1}{\sqrt{x}} dx$
- **b)** $\int_0^1 \frac{1}{x^{\alpha}} dx$, discutindo-a em função de $\alpha \in \mathbb{R}$.
- **c)** $\int_{-10}^{10} \frac{x}{x^2-1} dx$

5.8.3 Integral impróprio de 3^a espécie ou mistos

Neste caso estão os integrais que são simultaneamente de 1^a e 2^a espécie, isto é, integrais em que pelo menos um dos extremos de integração é infinito e existe pelo menos um ponto onde a função não é limitada.

Tal como na secção anterior deve decompor-se o integral misto na soma de integrais que sejam apenas de 1^a ou 2^a espécie.

O integral é convergente se forem convergentes todos os integrais em que se decomponha. Caso contrário o integral diz-se divergente.

Exercício 5.8.9 Estude a natureza dos integrais:

a)
$$\int_0^{+\infty} \frac{1}{x-1} dx$$

b)
$$\int_{-\infty}^{+\infty} \frac{1}{x^3} dx$$

5.9 Critérios de convergência para integrais impróprios

Na prática torna-se útil analisar a natureza dos integrais impróprios sem ter de os calcular.

Sejam f(x) e g(x) funções localmente integráveis.

Proposição 5.9.1 Se

$$\lim_{x \to \pm \infty} x^{\alpha} f(x)$$
 é finito e não nulo

então:

- $\int_a^{+\infty} f(x)dx$ é convergente se $\alpha > 1$;
- $\int_a^{+\infty} f(x)dx$ é divergente se $\alpha \leq 1$.

Exemplo 5.9.2 O integral $\int_0^{+\infty} \frac{x}{x^2+1} dx$ é divergente pois

$$\lim_{x\to +\infty} x^\alpha \frac{x}{x^2+1} = 1 \ para \ \alpha = 1.$$

Proposição 5.9.3 (Critério de comparação) Se f(x) e g(x) são duas funções tais que existe $k \in \mathbb{R}$ de modo que $f(x) \leq g(x)$, para $x \geq k$, então:

a) Se
$$\int_a^{+\infty} f(x)dx$$
 é divergente então $\int_a^{+\infty} g(x)dx$ é divergente;

b) Se $\int_a^{+\infty} g(x)dx$ é convergente então $\int_a^{+\infty} f(x)dx$ é convergente.

Exemplo 5.9.4 Para analisar a natureza do integral $\int_1^{+\infty} \frac{1+sen^2x}{\sqrt{x}} dx$ pode começar-se por estabelecer as relações

Como $\int_1^{+\infty} \frac{1}{\sqrt{x}} dx$ é divergente então $\int_1^{+\infty} \frac{1+\sin^2 x}{\sqrt{x}} dx$ é também divergente.

Proposição 5.9.5 (Critério da existência do limite) Se f(x) e g(x) são duas funções tais que

$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} \text{ \'e finito e n\~ao nulo}$$

então os integrais $\int_a^{+\infty} f(x)dx$ e $\int_c^{+\infty} g(x)dx$ têm a mesma natureza.

Exemplo 5.9.6 Para estudar a natureza do integral $\int_0^{+\infty} \frac{1}{\sqrt{1+x^3}} dx$ pode ver-se que

$$\lim_{x \to +\infty} \frac{\frac{1}{x^{\alpha}}}{\frac{1}{\sqrt{1+x^{3}}}} = \lim_{x \to +\infty} \frac{\sqrt{1+x^{3}}}{x^{\alpha}} = 1 \text{ se } \alpha = \frac{3}{2}.$$

Como $\int_1^{+\infty} \frac{1}{\sqrt{x^3}} dx$ é convergente então $\int_0^{+\infty} \frac{1}{\sqrt{1+x^3}} dx$ é da mesma natureza, isto é, é convergente.

Proposição 5.9.7 (Critério do integral) Seja $f: [1, +\infty[\to \mathbb{R} \ uma \ função \ decrescente e, para cada <math>n \in \mathbb{N}$, seja $a_n = f(n)$. Então a série $\sum_{n=1}^{\infty} a_n$ e o integral $\int_{1}^{+\infty} f(x) dx$ são da mesma natureza (ambos convergentes ou ambos divergentes).

Proposição 5.9.8 Seja $\int_a^b f(x)dx$ um integral impróprio de 2^a espécie em que f(c) não é limitada. Se

$$\lim_{x\to c}\left(x-c\right)^{\alpha}f\left(x\right) \ \acute{e} \ finito \ e \ n\~{a}o \ nulo$$

então:

a) $\int_a^b f(x)dx$ é convergente se $\alpha < 1$;

b) $\int_a^b f(x)dx$ é divergente se $\alpha \geq 1$.

Exemplo 5.9.9 O integral $\int_3^4 \frac{2}{(x-3)^2} dx$ é divergente pois

$$\lim_{x \to 3} (x - 3)^{\alpha} \frac{2}{(x - 3)^2} = 2 \ para \ \alpha = 2.$$

5.10 Aplicações dos integrais

5.10.1 Áreas planas

Se f(x) é uma função contínua não negativa, a área da região limitada pelo seu gráfico, pelo eixo das abcissas e pelas rectas verticais x=a e x=b é dada por

$$A = \int_{a}^{b} f(x)dx.$$

Exercício 5.10.1 Calcular a área:

- 1. De um círculo de centro na origem e raio r;
- 2. Da região definida pelo conjunto

$$D = \{(x, y) \in \mathbb{R}^2 : -3 \le x \le 3, 0 \le y \le (x+1) e^{x+1} \};$$

- 3. Da região limitada pela parábola $y = x^2$ e a recta y = 3 2x.
- 4. Da região definida por

$$D = \left\{ (x, y) \in \mathbb{R}^2 : -2 \le x \le 5, 0 < y \le \frac{1}{\sqrt{|x|}} \right\}.$$

5.10.2 Comprimento de curvas planas

O comprimento de um arco P_0P_1 duma curva representada pela aplicação y=f(x), tendo por coordenadas cartesianas $P_0=(x_0,f(x_0))$ e $P_1=(x_1,f(x_1))$ é dado por

$$C = \int_{x_0}^{x_1} \sqrt{1 + [f'(x)]^2} dx.$$

Exercício 5.10.2 Determine os comprimentos dos arcos das curvas definidas por:

1.
$$y = \cosh(x)$$
 entre $A = (0,1)$ e $B = \left(1, \frac{e^2 + 1}{e}\right)$

2.
$$y = 2 \log x$$
 entre $A = (1,0)$ e $B = (\sqrt{3}, 2 \log \sqrt{3})$

5.10.3 Volumes de sólidos de revolução

O volume do sólido que se obtem pela rotação da região limitada pelo gráfico de y = f(x) e pelas rectas verticais x = a e x = b, em torno do:

a) eixo das abcissas é dado por

$$V = \pi \int_{a}^{b} \left[f(x) \right]^{2} dx.$$

b) eixo horizontal y = k é dado por

$$V = \pi \int_a^b [f(x) - k]^2 dx.$$

Exercício 5.10.3 Calcular o volume de um cone de revolução de altura h e raio da base r.

5.10.4 Áreas laterais de sólidos de revolução

A área lateral de um sólido gerado pela rotação da região limitada pelo eixo das abcissas, pelo gráfico de f(x) e pelas rectas verticais x=a e x=b, é dada por

$$A_L = 2\pi \int_a^b f(x) \sqrt{1 + [f'(x)]^2} dx.$$

Exercício 5.10.4 Calcular a área lateral de um cone de revolução de altura h e raio da base r.ntegral de Riemann

O conceito base no cálculo diferencial é a noção de derivada. No cálculo integral esse papel é desempenhado pela noção de integral.

O método mais intuitivo para abordar este conceito é considerá-lo como uma área.