

"Let's find that shiny place..."

Prof. Erich Styger erich.styger@hslu.ch +41 41 349 33 01

Line Following

- Line Sensor: «what is my position on the line»
 - IR Reflectance Sensor
- Motors: «Move the robot»
 - Motor signals, H-Bridge
- Follow the Line: «stay on the line»
 - Closed Loop Control, PID
- Driving and Turning: «Turn left 90°»
 - Quadrature Sensor
 - Speed/Position estimation
- Wireless Control: «Move forward»
 - Radio Transceiver
 - Network stack

Learning Goals

- Goal:
 - Differentiate between 'black' and 'white'
 - Line Position for PID
 - 'Goal' area detection
- Reflectance Sensor
- Capacitive Discharge
- Calibration/Normalization
- Black Line Detection

Sensing the Border (Line)

- Need to sense black lines
- Difference between 'black' and 'white'
- Really: low/high IR Reflectance!
- Idea
 - Measure reflectance of floor
 - IR LED with Phototransistor

QTR Reflectance Sensor

- Analog or digital?
- Phototransistor with capacitor discharge circuit
- Shorter discharge → more light (greater reflection)
- Measure discharge time with digital I/O pin

Source: Pololu.com

Source: Pololu.com

Zumo Reflectance Array

- -5V → 3.3V!
- 2 Red LED's
- 2x3 Series IR LED's
- MOSFET
 - IR_LED_ON
 - ~40 mA

HOCHSCHULE LUZERN

Reflectance Sensor Connector

- IR_LED_ON to turn on FET/Transistor

Reflectance Sensor Array

Problems

- Reflections to other sensors/crosstalk
- 'External' Ambient Light
- Distance to ground
- 'Shielding'

Reflectance Control and Data Flow

- External calibration start/stop (e.g. push button)
- Calibration: raw min/max values scaled to 0-1000
- Reference Task processes state machine
- But: do not create too many tasks!

Technik & Architektur

Raw Sensor Value Acquisition

- Turn IR LED on with the FET
- $Wait~~200~\mu s~$ needs some time until they're on
- For all sensors
 - I/O pin as output
 - Set it to HIGH
- ~20-50 µs charge time
- Start/Reset time counter
- Set all pins as I/O change the pins as input pins
- Measure time pin gets LOW
- Turn IR LED off

we can't allow context switch! because the measurement can't be interrupted

Min/Max and Value Scaling

- Values scaled to 0-1000
- Offset compensation
- Normalized Sensor values
- Overflow prevention (16bit)
- Interested in 'dark/white', not in the exact gray value


```
0 \times 085 A
                                   0 \times 0092 \ 0 \times 02FD
                                                                         0 \times 0.0 B6
raw val
                                                                                      0 \times 000 A3
min val
                       0 \times 0.0 \text{A4}
                                   0 \times 007 A 0 \times 007 E
                                                            (0 \times 0.09 B)
                                                                         0 \times 0087
                                                                                      0 \times 0089
                                    0x08B6 \ 0x081B \ 0x0A9F
                                                                         0 \times 0.8 D0
                       0xD22B
                                                                                      0 \times 0 AFB
max val
calib val
                                    0x000B 0x014C 0x0314
                       0x0000
```

Technik & Architektur

Line Position Algorithm

- White line: inverted 'black'
- Weighted value to represent 'line' position
- $VaI = SUM(S_i * i*1000) / SUM(S_i))$

Sensor Patterns

Technik & Architektur

- Black 'Line' Detection

Implementation Consideration

- RTOS Task or Process() function for Sensor?
 - Task overhead (stack), but can be blocking
 - Function: non-blocking, frequently called
 - Periodic sampling vs. 'on demand'
- Events
 - Event to start/stop calibration
 - Event(s) for end of line?
- Application and Data?
 - Interruption (task?) during measurement?
 - Timeout during measurement? context switch during measurement? probably no!
 - What kind of data is needed for the Robot application?
 - State machine in main application loop
 - Drive forward and do not fall from the table ©

Summary

- Line detection
- Capacitive Discharge
 - IR LED
 - Photo Transistor
- Timing
- Raw values
- Scaled/normalized values
- Line position calculation

Technik & Architektur

- Integrate
 - Reflectance.c
 - Reflectance.h
- Reentrancy
- Timeout
- RTOS task or Process() function
- Extend
 - Ability to calibrate
 - Button?
 - Shell?

