

Linear Regression Model

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_n X_{ni} + \varepsilon_i$$

- Y is the outcome variable
- X are the predictor variables
- β are the coefficients
- β_0 is the intercept
- ϵ_i is the difference between the predicted and the observed value of Y for the ith observation

Linear Model Assumptions

- 1. **Linearity**: The mean values of the outcome variable for each increment of the predictor(s) lie along a straight line. There is a linear relationship between predictors and target.
- 2. Normally distributed errors: the residuals (ϵ_i) are random, normally distributed with a mean of 0.
- **3. Homoscedasticity**: At each level of the predictor variable(s), the variance of the residual terms should be constant.
- **4. No perfect multicollinearity**: There should be no perfect linear relationship between two or more of the predictors.

When the assumptions are met

 The coefficients and parameters of the regression equation are said to be unbiased.

• The model is a good fit for the data.

When the assumptions are not met

We can't fully trust the predictions of the model.

Some issues could be:

- Outliers
- Lack of homoscedasticity
- The variables are too skewed

What can we do?

Transforming the data is useful to correct the problems with outliers and homoscedasticity.

- Mathematical transformations
- Discretisation
- Remove or censor outliers

Evaluate model performance

Errors $\sim N(0,\sigma)$

- Normality can be assessed with histograms and Q-Q plots
- Normality can be statistically tested, for example with the Kolmogorov-Smirnov test.

Errors $\sim N(0,\sigma)$

With Yellobrick, we can plot the histogram of the error term and its variance across the predicted values, to test for normality and homocedasticity at the same time.

Homoscedasticity

- There are tests and plots to determine homoscedasticity.
 - Residuals plot
 - Levene's test
 - Barlett's test
 - Goldfeld-Quandt Test
- Visual inspection

Homoscedasticity

Homoscedasticity: the error term (that is, the "noise" in the relationship between the independent variables X and the dependent variable Y) is the same across all the independent variables.

To identify homoscedasticity we need to plot the residuals vs each of the independent variables.

Linear Relationship – Scatter plots

Somewhat linear relationship

Non-linear relationship

Linear Relationship – Residual plots

Expected – Simulated data

Somewhat linear relationship

- If relationship between X and y is linear, residuals should be normally distributed and centred around 0
- Residuals are the difference between the predictions and the real value y.

0.25

0.20

0.15

0.10

0.05

Multicolinearity

- Multicollinearity occurs when the independent variables are correlated with each other
- Multicollinearity can be assessed with a correlation matrix or the variance inflation factor (VIF)

Multi Co-linearity

Accompanying Jupyter Notebook

- Read the accompanying
 Jupyter Notebook
- Demonstration of linear model assumptions and the effect of non-linear transformations

More Linear Model assumptions

Linear Model Assumptions

- Variable types: All predictor variables must be quantitative or categorical (with two categories), and the outcome variable must be quantitative, continuous and unbounded.
- 2. Non-zero variance: The predictors should have some variation in value (i.e., they do not have variances of 0).
- 3. No perfect multicollinearity: There should be no perfect linear relationship between two or more of the predictors. So, the predictor variables should not correlate too highly.
- 4. Linearity: The mean values of the outcome variable for each increment of the predictor(s) lie along a straight line. In plain English this means that it is assumed that the relationship we are modelling is a linear one.

Linear Model Assumptions

- **5. Normally distributed errors**: It is assumed that the residuals in the model are random, normally distributed variables with a mean of 0.
- 6. Homoscedasticity: At each level of the predictor variable(s), the variance of the residual terms should be constant. Independent errors: For any two observations the residual terms should be uncorrelated (or independent)
- 7. Independence: all of the values of the outcome variable are independent
- **8. Independent errors**: For any two observations the residual terms should be uncorrelated (or independent). This is sometimes described as a lack of autocorrelation.

THANK YOU

www.trainindata.com