

O Sistema de Cabeamento Estruturado

• Finalidade:

- Disponibilizar um sistema padronizado de projeto para a disposição de cabos, onde o meio de transmissão, as distâncias, as interfaces de conexão e os parâmetros de performance possam ser devidamente especificados.
- O Sistema de Cabeamento Estruturado utiliza o conector RJ45 e o cabo UTP (par trançado sem blindagem) como elementos-padrão para a transmissão de dados

Motivos da Padronização:

- Forma de atender aos diversos padrões de:
 - · Redes locais.
 - Telefonia.
 - Outras aplicações (canais de vídeo, som, etc.).
 - Independência de fabricante ou tipo de equipamento.

Vantagens do Cabeamento Estruturado:

- Pronto atendimento às demandas de comunicação dos usuários.
- Diminuição nos custos de mão de obra e montagem de infra-estrutura.
- Maior confiabilidade no sistema de cabeamento.
- Na instalação do Cabeamento Estruturado existirão tomadas dos diversos sistemas disponíveis (redes, voz, dados, etc.), mesmo que não sejam utilizadas de imediato.
- Quando for necessário utilizar uma nova tomada, estas serão ativadas através de interligações nos painéis de distribuição (chamados Patch Panels).

1. Cabeamento Estruturado

Cabeamento Estruturado (Normas):

- Padronizadas por duas associações:
 - -EIA (Electronic Industries Association).
 - -TIA (Telecommunications Industry Association).
- EIA-568-A/B → Norma de padronização de fios e cabos para telecomunicações em prédios comerciais.
- Norma oficial no Brasil:
 - -Norma NBR 14565 da ABNT.
 - -NBR 14565 é baseada na EIA/TIA 568-A.
- Observação → O Sistema de Cabeamento Estruturado consiste apenas de 2 a 5% do investimento na rede.

Sistema Baseado na Norma EIA/TIA 568:

- Considera 9 aspectos de projeto:
 - 1. Cabeamento Secundário (Horizontal Cabling).
 - 2. Cabeamento Principal (Backbone Cabling).
 - 3. Área de Trabalho (Work Area).
 - 4. Armários de Telecomunicações (*Telecommunications Closets* AT).
 - 5. Salas de Equipamentos (Equipment Room SEQ).
 - 6. Facilidades de Entrada (Entrance Facilities).
 - 7. Certificação.
 - 8. Infra-estrutura (Encaminhamento dos Cabos).
 - 9. Documentação da Instalação.

1

Illustração de Sistema de Cabeamento Estruturado (I): Ponto de Consolicação de Cabeamento Estruturado (I): Ponto de Consolicação de Cabeamento Estruturado (I): Ponto de Telecomunicações Rede Secundária Area de Trabalho Rede Primária Armario de Telecomunicações Sala de Equipamentos Térreo Cabo de Interigiação Sala de Equipamentos Telecomunicações Sala de Equipamentos Telecomunicações

1.2 Cabeamento Primário (Vertical):

- Função básica do cabeamento principal é interligar:
 - Todos os armários de telecomunicação do edifício.
 - Edifícios do campus (campus backbone).
 - As facilidades de entrada (entrance facilities).

13

1. Cabeamento Estruturado

- 1.2 Cabeamento Primário (Vertical):
- Fatores considerados quanto à escolha de tipo e número de cabos são:
 - Quantidade de áreas de trabalho;
 - Quantidade de armários de telecomunicações instalados (AT), 1 para cada 1500 m²;
 - Tipos de serviços disponíveis;
 - Nível de desempenho desejado.
- Distância máxima do cabeamento principal é dependente do meio de transmissão:
 - Cabo UTP → distância máxima de 90 metros;
 - Fibra óptica multimodo 62,5/125 micrômetros → distância máxima de 220 metros;
 - Fibra óptica monomodo 9/125 micrômetros → distância máxima de 3.000 metros.

1.3 Área de Trabalho (Work Area):

- Local onde o usuário interage com o sistema.
- Onde se localizam as estações de trabalho, os aparelhos telefônicos, etc.
- Para efeito de dimensionamento, são instalados no mínimo dois pontos de telecomunicações em uma área de 10 m².
- Dependendo da aplicação, adaptações podem ser necessárias. Deverão ser efetuadas através de dispositivos externos, como por exemplo:

Cabo Coaxial / Par trançado

1. Cabeamento Estruturado

1.4 Armários de Telecomunicações (Telecommunications Closets)

- Funções dos Armários de Telecomunicações:
 - Local que abriga a *Terminação* dos cabos do sistema de distribuição secundário.
 - Ponto de *Transição* do cabeamento principal e o secundário.

Características Técnicas:

- São geralmente áreas (salas ou estruturas de armários) que servem a um pavimento ou a regiões (1500 m²) de um andar em uma edificação.
- Restrições na distância máxima dos cabos secundários podem levar a existência de um ou mais Armários de Telecomunicações em um mesmo andar.
- Diferem das Salas de Equipamentos pela quantidade e localização.

15

- 1.4 Armários de Telecomunicações (Telecommunications Closets)
- Áreas Servidas Pelos Armários de Telecomunicações (Racks Abertos):
 - Menor que 100 m² → Quadro Externo (Sub-rack ou Bracket com no mínimo 4 Unidades de Altura (UA)).
 - 1 UA= 43,7 mm
 - Entre 100 e 500 m² → Sala 3,00 x 2,20 (Rack aberto de mínimo 12 UA, com prof. útil 470 mm).
 - Entre 500 e 800 m² → Sala 3,00 x 2,80 m (Rack aberto de mínimo 24 UA, com prof. útil 470 mm).
 - Maior que 800 m² → Sala 3,00 x 3,40 m (Rack aberto de mínimo 40 UA, com prof. útil 470 mm).

17

1. Cabeamento Estruturado

- 1.4 Armários de Telecomunicações (Telecommunications Closets)
- Áreas Servidas Pelos Armários de Telecomunicações (Racks Fechados):
 - Entre 100 e 500 m² → Rack fechado de min. 12 UA, com prof. útil 470 mm);
 - Entre 500 e 800 m² → Rack fechado de min. 24 UA, com prof. útil 470 mm);
 - Maior que 800 m² → Rack fechado de min. 40 UA, com prof. útil 470 mm).
 - Observação → Racks fechados são normalmente utilizados quando há indisponibilização de salas exclusivas para os armários de telecomunicações.

1.5 Sala de Equipamentos

Funções da Sala de Equipamentos:

- Receber a fibra óptica do backbone do campus.
- Acomodar equipamentos de comunicação das operadoras de telecomunicações.
- Acomodar equipamentos e componentes do backbone (opcional).
- Acomodar os equipamentos principais e outros componentes da rede local.
- Permitir acomodação e livre circulação do pessoal de manutenção.
- Restringir o acesso a pessoas autorizadas.

1.5 Sala de Equipamentos

Características Técnicas:

- Localização próxima ao centro geográfico do prédio e de utilização exclusiva.
- Dimensões mínimas: 3,00 m x 4,00 m ou 12 m².
- Livre de infiltração de água.
- Ambiente com porta e com acesso restrito.
- Temperatura de 18 a 24°C com umidade relativa de 30% a 55%.
- Iluminação mínima de 540 lux c/ circuito elétrico independente.
- Piso composto de material antiestático.
- Alimentação elétrica com circuitos dedicados direto do distribuidor principal e instalação de quadro de proteção no local.
- Mínimo de 3 tomadas elétricas tripolares (2P+T):
 - Tensão 127V, com aterramento.
- Proteção da rede elétrica por disjuntor:
 - Proteção mínima de 20A.
- Dissipação mínima de 7.000 BTU/h.

21

1. Cabeamento Estruturado

1.6 Entrada de Facilidades (Entrance Facilities)

- Funções da Entrada de Facilidades (Recursos):
 - Fornecem o ponto no qual é feita a interface entre o cabeamento externo e o cabeamento intra-edifício.
 - Consistem de cabos, dispositivos de proteção, equipamentos de conexão, transição e outros.
 - O aterramento deve estar conforme ANSI/TIA/EIA-607.

1.7 Certificação

- Funções do Procedimento de Certificação:
 - Testes com equipamentos, que avaliam a performance do cabeamento após a sua instalação.
 - Procedimento previsto pela norma EIA/TIA T568 B.
 - Fornecimento de relatórios escritos do desempenho de cada ponto lógico.
 - A Certificação é uma necessidade e uma obrigação do engenheiro responsável.

22

1. Cabeamento Estruturado

1.8 Infra-estrutura

- Encaminhamento dos cabos e montagem (conectorização).
 - O raio de curvatura de um cabo UTP categoria 5e deverá ser de, no mínimo, quatro vezes o seu diâmetro externo ou 30 mm.
 - Para cabos ópticos, é de 10 vezes o diâmetro do cabo ou não inferior a 30 mm.

Incorreto

Incorreto

Correto

1.8 Infra-estrutura

- União de cabos e montagem.
 - Cabos não devem ser apertados. Não deve haver compressão excessiva que deforme a capa externa ou tranças internas.
 - Pregos ou grampos não devem ser utilizados para fixação.

Cabo estrangulado (incorreto)

Cabo amassado (incorreto)

Cabos unidos com velcro (correto)

Cabos em Calhas Áere<mark>as e Leito</mark>s (correto)

1. Cabeamento Estruturado

1.8 Infra-estrutura

- Aspectos de Conexão do RJ 45.
 - Manter o cabo com os pares trançados.
 - Não mais de 13 mm dos pares sejam destrançados nos pontos de terminação (painel de conexão e tomada de
 - Deve-se preservar o passo da trança idêntico ao do fabricante para manter as características originais.

Sequência de instalação de cabos UTP. Observar o comprimento de pares destrançados limitado ao máximo de 13 mm.

1.9 Documentação

Documentação da Instalação

- É obrigatório documentar todos pontos de rede.
- Uso para a manutenção, expansões ou reformas.
- O documento deve conter:
 - Descrição funcional da rede lógica.
 - Documentação da instalação física da rede (as-Built).
 - · Termo de garantia.

Descrição Funcional da Rede Lógica

- Deverá ser fornecido pelo executor da rede um documento contendo:
 - · Padrões técnicos adotados.
 - Número total de pontos de telecomunicações instalados.
 - Número de pontos ativos.
 - Diagrama esquemático da rede com símbolos gráficos dos componentes ativos, sua interligação e interoperabilidade.

1. Cabeamento Estruturado

1.10 Exemplos de Cabeamento Não-Estruturado

1.10 Exemplos de Cabeamento Não-Estruturado

1.10 Exemplos de Cabeamento Não-Estruturado

