Układy elektroniczne i technika pomiarowa

Zadanie zaliczeniowe 2023L

Zadanie 2 Stabilizatory napięcia stałego o działaniu ciągłym

Mateusz Puławski Nr albumu:226735

1. Treść zadania

Dla zadanych wartości napięcia stabilizowanego U_{WY0} i prądu wyjściowego I_{WYMAX} dobrać parametry elementów kompensacyjnego szeregowego stabilizatora napięcia stałego. W pętli sprzężenia zwrotnego zastosować wzmacniacz operacyjny $\mu A741$. Obliczyć maksymalną moc strat tranzystora regulacyjnego i dobrać odpowiedni typ tranzystora.

Na drodze symulacji wyznaczyć charakterystyki $U_{WY}=f(U_{WE})$ przy $R_0=const$ oraz $U_{WY}=f(I_{WY})$ przy $U_{WE}=const$.

W raporcie umieścić obliczenia projektowe elementów stabilizatora i tranzystora regulacyjnego oraz charakterystyki $U_{WY}=f(U_{WE})$ przy $R_0=const$ oraz $U_{WY}=f(I_{WY})$ przy $U_{WE}=const$

2. Dane do zadania

$$I_{wymax} = 1[A]$$
$$U_{wv0} = 5[V]$$

3. Dobranie elementów

a. Źródło zasilania

Źródło zasilania o wartości maksymalnej $U_{wy_z} = 2 * U_{wy} = 2 * 5 = 10[V]$

b. Dioda zenera

Do realizacji zadania wybrano diodę Zenera 1N4732A

Database name: Master Database Family Group: Diodes ZENER Family: 1N4732A Name: Author: Date: June 16, 1998 Function: 4.70 ۷z: 8.00@53.00 Zz@Iz: Pd: 1.00 DO-41 Package: Thermal resistance junction: 0.00 0.00

Thermal resistance case: 0.00
Power dissipation: 0.00
Derating Knee Point: 50.00
Min Operating Temp: -65.00
Max Operating Temp: 200.00
ESD: 0.00
Obsoleted by: Motorola

Dla wybranej diody mamy: $P_d = 1 [W]; U_{z0} = 4.7 [V]$. Na podstaie tych wartości możliwe jest oszacowanie wartości rezystancji R_3 .

Maksymalny prąd diody ze wzoru:

$$I_{dmax} = \frac{P_d}{U_{z0}} = \frac{1}{4.7} = 0.212766[A]$$

Wartość prądu, która ma popłynąć przez diodę dobrano tak, aby osiągnęła wartość połowy wartości I_{dmax} : $I_d=0.5\ x\ 0.212766=0.106383[A]$

c. Rezystancje oporników R_0 , R_1 , R_2 , R_3

Na podstawie wartości I_d oszacować można wartość R_3 :

$$I_d = \frac{U_{wy} - U_{z0}}{R3} = R_3 = \frac{U_{wy} - U_{z0}}{I_d} = \frac{5 - 4.7}{0.106383} \approx 2.82[\Omega]$$

Wyznaczanie rezystancji R₀:

$$R_0 = \frac{U_{wy}}{I_{wy}} = \frac{5}{1} = 5[\Omega]$$

Wyznaczanie rezystancji R_1 i R_2 :

$$U_{wy} = U_{z0} \left(\frac{R_1}{R_2} + 1 \right) = > \frac{R_1}{R_2} + 1 = \frac{U_{wy}}{U_{z0}} = > \frac{R_1}{R_2} = \frac{U_{wy} - U_{z0}}{U_{z0}}$$

$$\frac{R_1}{R_2} = \frac{5 - 4.7}{4.7} = 0.06383 = > R_1 = 0.06383 R_2$$

Założono

$$R_1 = 333[\Omega]; R_2 = \frac{R_1}{0.06383} = \frac{333}{0.06383} = 5217[\Omega]$$

d. Tranzystor

Szacowanie mocy strat tranzystora:

$$P_c = (U_{wyz} - U_{wy})x I_{wy} = (10 - 5)x 1 = 5[W]$$

Wybrano tranzystor **BD329** ($P_d = 15[W]; I_c(max) = 3[A]$

Database name: Master Database
Family Group: Transistors
Family: BJT_NPN
Name: BD329
Author: JG

Date: November 25, 1998 Function: NPN power transistor Vceo: 20 Vcbo: 32 Ic(max): hFE(min): hFE(max): 375 130 Ft: Pd: TO-126 Thermal resistance junction: 100.00 Thermal resistance case: Power dissipation: 15.00

4. Zaprojektowany schemat

5. Rezultaty symulacji

Charakterystykę $U_{WY} = f(U_{WE})$ przy $R_0 = const.$ wyznaczono próbkując przy napięciu wejściowym w zakresie od 0 do 10 V z krokiem 0,2 V. Otrzymano następujący rezultat:

Uwe[V]	Uwy[V]	Uwe[V]	Uwy[V]
0	3.07E-05	5.2	5.026219
0.2	0.192732	5.4	5.041446
0.4	0.385025	5.6	5.048577
0.6	0.577517	5.8	5.054298
0.8	0.770177	6	5.05909
1	0.962977	6.2	5.063184
1.2	1.155899	6.4	5.066775
1.4	1.348926	6.6	5.069973
1.6	1.542045	6.8	5.072858
1.8	1.735245	7	5.075485
2	1.928516	7.2	5.077898
2.2	2.121851	7.4	5.080129
2.4	2.315242	7.6	5.082205
2.6	2.508684	7.8	5.084147
2.8	2.702171	8	5.085971
3	2.895699	8.2	5.087691
3.2	3.089264	8.4	5.089319
3.4	3.282862	8.6	5.090865
3.6	3.47649	8.8	5.092336
3.8	3.670145	9	5.093741
4	3.863824	9.2	5.095084
4.2	4.057524	9.4	5.096372
4.4	4.251244	9.6	5.09761
4.6	4.444982	9.8	5.0988
4.8	4.638735	10	5.099947
5	4.832502		

Stabilizator rozpoczyna "wywłaszczanie" napięcia po przekroczeniu wartości 5V (stabilizacja napięcia następuje w granicach wartości 5.2 V), zgodnie z oczekiwanym rezultatem.

Charakterystykę $U_{WY}=f(I_{WY})$ przy $U_{WE}=const$ wyznaczono ustawiając napięcie wejściowe na 5.5 V (powyżej 5 V aby układ był w napięciu stabilizacji) i zwiększano wartość R_0 dziesięciokrotnie. Doświadczenie wykonano dla 5 wartości R_0 .

Wyniki prezentują się następująco:

Uwe[V]	$R_0[\Omega]$	lwy[V]
5.5	5	1.009
5.5	50	0.1009
5.5	500	0.01009
5.5	5000	0.001009
5.5	50000	0.0001009

