Department of Electrical & Computer Engineering ECED – 3901 Design Methods II Assignment #1

Due: May 21, 2015 @ 12:30 PM - Submitted via BBLearn Website (PDF files only), OR printed files in 3901 Mail-Slot at ECED Office

- 1. Identify at least five attributes or functions you think the robot should have. For each one list:
 - a. Detailed description
 - b. Pros/Advantages of selecting that function/attribute (i.e.: allows detection of item X, easy to implement, something you are already familiar with)
 - c. Con/Disadvantages of selecting that functions/attributes (i.e.: complex, difficult to implement, have no idea how to use it (so will require lots of research))
- 2. Think about different sensors you might be using (light sensor, metal sensor, etc.) to detect obstacles and objectives on the playing surface. Generate a table with the following headings, list at least three sensor types. I've given you an example row with a sound sensor (which IS NOT part of your kit) as an example:

Sensor	What you know	Where to find additional	Strengths	Weakness
Type	about it	information		
Sound	Detects sound in	-Device datasheet (on	-High	-Requires
sensor	range 20Hz-	BBLearn)	sensitivity	complex
	10kHz	-Appnote AN9292 from vendor	-Example	drive circuit
		-Blog post at	designs	-Narrow field
		http://www.???.com/stuff	available	of view

- 3. Based on one of those sensors from **Q2** OR one of the features from **Q1**, describe a basic proof-of-concept test you could do to give you more information or help answer some questions/unknowns. This should be a simple test which you could accomplish in a few hours or less even 15-min experiments are OK, provided they give you a useful piece of data!
- 4. On BBLearn there is a list of parts in the design kit (see "Content→Technical Details and Downloads"). Select ten parts (that ARE NOT resistors, capacitors, or LEDs) and generate a table with the following headings; I've given you an example for one of the gates.

Part #	Function	Features	Important	Schematic	Notes
			Parameters		
74LS00	NAND Gate	-4 gates in	-Vcc =5V	VCC 14 13 12 11 10 9 8	-5V logic
		package	-Low-level		-Useful for
		-High drive	Output = 10mA		interfacing
		strength	-High-level	GND	things
			output = -1mA		