Against Hierarchical Distance in Subject-Verb Agreement Production

Maureen Gillespie & Neal J. Pearlmutter Northeastern University

INTRODUCTION

How are number agreement features tracked during language production?

Mismatch Effect: More subject-verb agreement errors occur when the head noun of the subject NP is singular, and local nouns in PP modifiers are plural, than when local nouns are singular (Bock & Miller, 1991).

Hierarchical Distance: Number features of the head noun of the subject NP are passed to the verb; plural features of local nouns occasionally pass incorrectly to the verb, causing agreement errors.

Franck, Vigliocco, & Nicol (2002):

The helicopter for the flight(s) over the canyon(s)

- N2 mismatch effect was larger than N3 mismatch effect.
- Suggests plural local nouns situated hierarchically closer to the verb have a greater chance of interfering with agreement computation than plural local nouns situated deeper in the syntactic tree.

Semantic Integration: Elements within a phrase that are conceptually linked are planned with more overlap, which allows their features to interfere with each other.

Solomon & Pearlmutter (2004):

- Integrated mismatch effect was larger than Unintegrated mismatch effect.
- Suggests plural local nouns planned closer in time to the head noun have a greater chance of interfering with agreement computation than nouns planned later.
- Confound: In Franck et al. (2002), N1 and N2 were more integrated than N1 and N3; thus, semantic integration is an alternative explanation for Franck et al.'s (2002) results.

Linear Distance to Head: Local nouns appearing closer to the head noun may interfere with agreement computation more than local nouns appearing farther from the head noun.

- Not previously tested, but could be an alternative explanation for Franck et al. (2002)'s results.

GILLESPIE & PEARLMUTTER (2008)

Are there effects of semantic integration or linear distance to the head (controlling hierarchical distance)?

Early-Integrated

Figure 1. Descending structure

The book with the torn page(s) by the red pen(s) ate-Integrated

The book by the red pen(s) with the torn page(s)

Figure 2. Flat structure

- Early-Integrated: N2 > N3; cannot be Hierarchical Distance alone.
- Late-Integrated: N2 = N3; cannot be Linear Distance to Head alone.
- Early-Integrated N2 > Late-Integrated
 N3; cannot be Semantic Integration alone.

Proposed alternative

Scope of Planning: Local nouns planned closer in time to the head noun are more likely to interfere with agreement computation.

- More semantically integrated local nouns are planned closer to the head noun.
- Order of production determines order of planning.

Implications for hierarchical distance

- Hierarchical distance is not sufficient to explain mismatch effects.
- Hierarchy still may be involved in agreement computation, because preambles have flat structure.

CURRENT EXPERIMENT

Is there any effect of hierarchical distance (controlling semantic integration)?

Method

Flat Structure (Figure 2)

The highway to the western suburb(s) with the steel guardrail(s)

Descending Structure (Figure 1)

The backpack with the plastic buckle(s) on the leather strap(s)

- Preambles equated semantic integration of N1-N2 and N1-N3 across structure (see Norming)
- Singular vs. plural local nouns; head noun always singular
- No preambles where N2 and N3 were both plural
- 53 participants
- 24 critical items (half Flat, half Descending)
- 88 fillers (8 singular head with N2 and N3 plural, 32 NP PP PP plural head)
- Preambles presented visually; participants read aloud and complete as full sentences.
- If Hierarchical Distance has an effect, difference between N2 and N3 mismatch effects should be smaller for Flat than Descending structures.

Results

Summary

- Controlling semantic integration, only linear distance to the head affected mismatch effects.
- Hierarchical distance does not affect agreement computation.

DISCUSSION

Models of agreement computation may not require a hierarchical component.

Combination of linear distance to the head and semantic integration can explain results of Franck et al. (2002), Gillespie & Pearlmutter (2008), and the current experiment.

Marking & Morphing (Eberhard et al., 2005)

- Measure of a local noun's planning overlap with the head could be used to predict a local noun's influence on agreement computation.
- Makes use of temporal, sequential nature of language production.
- Does not require entire structure of subject NP to be in place to compute agreement.

NORMING

	Semantic Integration Rating			%N1
	N1-N2	N1-N3	N2-N3	Attachment
Flat	4.10	5.11	2.68	93.3
Descending	4.15	5.16	4.30	4.8
Mean	4.12	5.14	3.50	49.0
CITY STUNKE STOLEN	ALL BELLINE - FLET ISSUE	THE BELLINE WILLIAMS	MAIN STREET, STREET, ST.	THE RELIEF WAS THE TOTAL

Note. Semantic integration scale was 1-7, with 7 = highly integrated. %N1 attachment is the % attachment of the second PP to N1 (vs. N2).

REFERENCES & ACKNOWLEDGMENTS

Bock, K. & Miller, C.A. (1991). Broken agreement. *Cognitive Psychology*, 23, 45-93. Eberhard, K.M., Cutting, J.C., & Bock, K. (2005). Making syntax of sense: Number agreement in sentence production. *Psychological Review*, 112, 532-559.

Franck, J., Vigliocco, G., & Nicol, J. (2002). Subject-verb agreement errors in French and English: The role of syntactic hierarchy. *Language and Cognitive Processes*, 17, 371-404. Gillespie, M. & Pearlmutter, N. J. (2008). Alternatives to hierarchical feature passing in

production: Timing of planning and semantic integration in subject-verb agreement. Paper presented at the Twenty-first Annual CUNY Conference on Human Sentence Processing, Chapel Hill, NC.

Solomon, E. S. & Pearlmutter, N. J. (2004). Semantic integration and syntactic planning in language production. *Cognitive Psychology*, 49, 1-46.

This research was supported by NIDCD (NIH Grant R01 DC05237).