CS 161 Homework 5

NAME: Joseph Picchi UID: 605-124-511

Question 1

Part (A);

NOTE: I've shortened the propositional symbols from "Smoke" to S and from "Fire" to F

S	F	$\neg S$	$\neg F$	$S \Rightarrow F$	$\neg S \Rightarrow \neg F$	$(S \Rightarrow F) \Rightarrow (\neg S \Rightarrow \neg F)$
F	F	Т	Т	Т	Т	Т
F	Т	Т	F	Т	F	F
Т	F	F	Т	F	Т	Т
Т	Т	F	F	Т	Т	Т

The sentence is NEITHER valid nor unsatisfiable because it is neither true for all models nor false for all models (as seen by the presence of both T and F in the rightmost column).

Part (B):

NOTE: proposition symbol abbreviation is the same as Part (A), with the addition of shortening "Heat" to H.

S	F	Н	$S \Rightarrow F$	$S \vee H$	$(S \vee H) \Rightarrow F$	$(S \Rightarrow F) \Rightarrow ((S \lor H) \Rightarrow F)$
F	F	F	Т	F	Т	Т
F	F	Т	Т	Т	F	F
F	Т	F	Т	F	Т	Т
F	Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	F	Т
Т	F	Т	F	Т	F	Т
Т	Т	F	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т

The sentence is NEITHER valid nor unsatisfiable because it is neither true for all models nor false for all models (as seen by the presence of both T and F in the rightmost column).

Part (C):

NOTE: The symbol abbreviations are the same as those from Part (B).

S	F	Н	$S \wedge H$	$(S \wedge H) \Rightarrow F$	$S \Rightarrow F$	$H \Rightarrow F$	$(S \wedge H) \Rightarrow F$	V	$((S \land H) \Rightarrow F))$ \Leftrightarrow $((S \Rightarrow F) \lor (H \Rightarrow F))$
F	F	F	F	Т	Т	Т	Т	T	Т
F	F	Т	F	Т	Т	F	Т	Т	Т
F	Т	F	F	Т	Т	Т	Т	Т	Т
F	Т	Т	F	Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	F	Т	Т	Т	Т
Т	F	Т	Т	F	F	F	F	F	Т
Т	Т	F	F	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т

The sentence is VALID because it is true for all models (as seen by the presence of strictly T in the rightmost column).

Question 2

Part (A):

Propositional symbols:

- P = the unicorn is mythical
- Q = the unicorn is mortal
- R = the unicorn is a mammal
- S = the unicorn is horned
- T = the unicorn is magical

Propositional logic knowledge base:

- $P \Rightarrow \neg Q$
- $\neg P \Rightarrow (Q \land R)$
- $(\neg Q \lor R) \Rightarrow S$
- $S \Rightarrow T$

Part (B):

$$\begin{split} \left[P \Rightarrow \neg Q \right] \wedge \left[\neg P \Rightarrow (Q \wedge R) \right] \wedge \left[(\neg Q \vee R) \Rightarrow S \right] \wedge \left[S \Rightarrow T \right] \\ \Leftrightarrow \left[\neg P \vee \neg Q \right] \wedge \left[P \vee (Q \wedge R) \right] \wedge \left[\neg (\neg Q \vee R) \vee S \right] \wedge \left[\neg S \vee T \right] \\ \Leftrightarrow \left[\neg P \vee \neg Q \right] \wedge \left[P \vee Q \right] \wedge \left[P \vee R \right] \wedge \left[(Q \wedge \neg R) \vee S \right] \wedge \left[\neg S \vee T \right] \\ \Leftrightarrow \left[\neg P \vee \neg Q \right] \wedge \left[P \vee Q \right] \wedge \left[P \vee R \right] \wedge \left[Q \vee S \right] \wedge \left[\neg R \vee S \right] \wedge \left[\neg S \vee T \right] \end{split}$$

Part (C):

Part (*i*):

By contradiction, we assume that the knowledge base does not entail that the unicorn is mythical. i.e. We assume that $KB \land \neg P$.

Making this assumption, we generate the following clauses using resolution:

1.	$\neg P$	Premise
2.	$\neg P \lor \neg Q$	Premise
3.	$P \lor Q$	Premise
4.	$P \vee R$	premise
5.	$Q \vee S$	Premise
6.	$\neg R \lor S$	Premise
7.	$\neg S \lor T$	Premise
8.	Q	Resolution on 1, 3
9.	R	Resolution on 1, 4
10.	$\neg Q \lor Q$	Resolution on 2, 3
11.	$\neg P \lor P$	Resolution on 2, 3
12.	$\neg Q \lor R$	Resolution on 2, 4
13.	$\neg P \lor S$	Resolution on 2, 5
14.	$P \vee S$	Resolution on 4, 6
15.	$Q \vee T$	Resolution on 5, 7
16.	$\neg R \lor T$	Resolution on 6, 7
18.	$\neg Q \lor S$	Resolution on 2, 14

19.	$\neg P \lor T$	Resolution on 2, 15
20.	$R \vee S$	Resolution on 4, 13
21.	$P \vee T$	Resolution on 4, 16
22.	S	Resolution on 5, 17
23.	$\neg Q \lor T$	Resolution on 7, 17
24.	$R \vee T$	Resolution on 7, 19
25.	T	Resolution on 7, 21
26.	$S \vee T$	Resolution on 13, 20

We cannot generate any more unique clauses using resolution, and we did not generate the empty set.

 \therefore it is not possible to derive from the knowledge base that the unicorn is mythical.

Part (ii):

By contradiction, we assume that the knowledge base does not entail that the unicorn is magical. i.e. We assume that $KB \land \neg T$.

Making this assumption, we generate the following clauses using resolution:

1.	$\neg T$	Premise
	.1	
2.	$\neg P \lor \neg Q$	Premise
3.	$P \vee Q$	Premise
4.	$P \vee R$	premise
5.	$Q \vee S$	Premise
6.	$\neg R \lor S$	Premise
7.	$\neg S \lor T$	Premise
8.	$P \vee S$	Resolution on 4, 6
9.	$\neg Q \lor S$	Resolution on 2, 8
10.	S	Resolution on 5, 9
11.	T	Resolution on 7, 10
12.	Empty set	resolution on 1, 11

We generated the empty set, so $KB \land \neg T$ is unsatisfiable.

∴ It is possible to derive from the knowledge base that the unicorn is magical.

Part (iii):

By contradiction, we assume that the knowledge base does not entail that the unicorn is horned. i.e. We assume that $KB \land \neg S$.

Making this assumption, we generate the following clauses using resolution:

1.	$\neg S$	Premise
2.	$\neg P \vee \neg Q$	Premise
3.	$P \lor Q$	Premise
4.	$P \vee R$	premise
5.	$Q \vee S$	Premise
6.	$\neg R \lor S$	Premise
7.	$\neg S \lor T$	Premise
8.	$P \vee S$	Resolution on 4, 6
9.	$\neg Q \lor S$	Resolution on 2, 8
10.	S	Resolution on 5, 9
11.	Empty set	resolution on 1, 10

We generated the empty set, so $KB \land \neg S$ is unsatisfiable.

∴ It is possible to derive from the knowledge base that the unicorn is horned.

Question 3

Propositional Symbols:

- O = oil is present
- G = natural gas is present
- T = result of geological test (True for positive, False for negative)

Given Information:

- $P(O \land \neg G) = 0.5$
- $P(\neg O \land G) = 0.2$
- $P(\neg O \land \neg G) = 0.3$
- $P(O \wedge G) = 0$

•
$$P(T | O) = 0.9$$

•
$$P(T | G) = 0.3$$

•
$$P(T | (\neg O \land \neg G)) = 0.1$$

"Suppose the test comes back positive. What's the probability that oil is present?"

$$P(O) = P(O \land \neg G) + P(O \land G) = 0.5 + 0 = 0.5$$

 $P(G) = P(\neg O \land G) + P(O \land G) = 0.2 + 0 = 0.2$

$$\begin{split} P(O \mid T) &= \frac{P(O \land T)}{P(T)} \\ &= \frac{P(T \mid O)P(O)}{P(O \land G \land T) + P(O \land T) + P(G \land T) + P(\neg O \land \neg G \land T)} \\ &= \frac{P(T \mid O)P(O)}{0 + P(T \mid O)P(O) + P(T \mid G)P(G) + P(T \mid (\neg O \land \neg G))P(\neg O \land \neg G)} \\ &= \frac{(0.9)(0.5)}{(0.9)(0.5) + (0.3)(0.2) + (0.1)(0.3)} \\ &= 0.8\bar{3} \end{split}$$

Given that the test comes back positive, the probability that oil is present is $0.8\overline{3}$.