Utilisation des congruences et des anneaux $\mathbb{Z}/n\mathbb{Z}$

26.1 Équations diophantiennes $ax \equiv b$ (n)

Soient n un entier supérieur ou égal à 2, a un entier supérieur ou égal à 1 et b un entier relatif. On veut résoudre dans \mathbb{Z} l'équation diophantienne :

$$ax \equiv b \ (n) \tag{26.1}$$

Dans le cas où b=1, cette équation a des solutions si, et seulement si \overline{a} est inversible dans \mathbb{Z}_n , ce qui équivaut à dire que a est premier avec n. Dans ce cas l'algorithme d'Euclide nous permet de trouver une solution $x_0 \in \mathbb{Z}$ de (26.1). Si $x \in \mathbb{Z}$ est une autre solution, alors $a(x-x_0)$ est divisible par n qui est premier avec a et le théorème de Gauss nous dit que n doit diviser $x-x_0$. Réciproquement on vérifie facilement que pour tout $k \in \mathbb{Z}$, $x_0 + kn$ est solution de (26.1). En définitive, dans le cas où a et n sont premiers entre eux, l'ensemble des solutions de $ax \equiv 1$ (n) est :

$$S = \{x_0 + kn \mid k \in \mathbb{Z}\}\$$

où x_0 est une solution particulière de cette équation.

Dans le cas où les entiers a et n sont premiers entre eux et b est un entier relatif quelconque, pour toute solution particulière u_0 de l'équation $ax \equiv 1$ (n) l'entier $x_0 = bu_0$ est solution de (26.1). Comme précédemment, on en déduit que l'ensemble des solutions de (26.1) est :

$$S = \{bx_0 + kn \mid k \in \mathbb{Z}\}\$$

où x_0 est une solution particulière de cette équation.

Considérons maintenant le cas général.

On note δ le pgcd de a et n et on a $a = \delta a'$, $n = \delta n'$ avec a' et n' premiers entre eux.

Théorème 26.1 L'équation diophantienne (26.1) a des solutions entières si, et seulement si, δ divise b. Dans ce cas, l'ensemble des solutions de cette équation est :

$$S = \{b'x_0' + kn' \mid k \in \mathbb{Z}\}\$$

où x'_0 est une solution particulière de $a'x \equiv 1$ modulo n'

Démonstration. Si l'équation (26.1) admet une solution $x \in \mathbb{Z}$ alors $\delta n'$ divise $\delta a' - b$ et δ divise b.

Si b est un multiple de δ , il s'écrit $b = \delta b'$ et toute solution de $a'x \equiv b'$ (n') est aussi solution de (26.1).

On a vu que les solutions de $a'x \equiv b'$ (n') sont de la forme $x = b'x'_0 + kn'$ où x'_0 est une solution de $a'x \equiv 1$ (n') et k est un entier relatif. Réciproquement on vérifie facilement que pour tout entier $k \in \mathbb{Z}$, $x = b'x'_0 + kn'$ est solution de (26.1).

26.2 Équations diophantiennes $x \equiv a \ (n), \ x \equiv b \ (m)$

On s'intéresse ici aux système d'équations diophantiennes :

$$\begin{cases} x \equiv a \ (n) \\ x \equiv b \ (m) \end{cases} \tag{26.2}$$

où n, m sont deux entiers naturels supérieur ou égal à 2.

Théorème 26.2 (chinois) Soient n, m deux entier supérieur ou égal à 2 premiers entre eux. Quels que soient les entiers relatifs a et b le système (26.2) a une infinité de solutions dans \mathbb{Z} .

Démonstration. Comme n et m sont premiers entre eux on peut trouver une infinité de couples d'entiers relatifs (u, v) tels que :

$$nu + mv = 1$$
.

En posant x = bnu + amv on obtient une infinité de solutions de (26.2).

Ce théorème peut aussi s'exprimer en disant que le morphisme d'anneaux introduit dans la démonstration du théorème 25.11, $\varphi: k \mapsto \begin{pmatrix} i & i \\ k & k \end{pmatrix}$, est surjectif de \mathbb{Z} dans $\mathbb{Z}_n \times \mathbb{Z}_m$. Son noyau étant $nm\mathbb{Z}$, on retrouve l'isomorphisme de \mathbb{Z}_{nm} sur $\mathbb{Z}_n \times \mathbb{Z}_m$.

Dans le cas où n et m sont premiers entre eux on vient de voir que si (u_0, v_0) est solution de nu+mv=1 (un tel couple peut être obtenu par l'algorithme d'Euclide) alors $x_0=bnu_0+amv_0$ est une solution particulière de (26.2). À partir d'une telle solution on déduit toutes les autres. En effet, si $x \in \mathbb{Z}$ est solution de (26.2) alors x est congru à x_0 modulo n et modulo m, soit :

$$x - x_0 = pn = qm$$
.

Mais m est premier avec n, le théorème de Gauss nous dit alors que m divise p. On a donc $x = x_0 + knm$ avec $k \in \mathbb{Z}$. Et réciproquement on vérifie que pour tout entier relatif k, $x_0 + knm$ est solution de (26.2). En définitive, si n et m sont premiers entre eux, alors l'ensemble des solutions de (26.2) est :

$$S = \{x_0 + knm \mid k \in \mathbb{Z}\}\$$

où x_0 est une solution particulière de (26.2).

Dans le cas général où m et n ne sont pas nécessairement premiers entre eux on note δ le pgcd de n et m, $n = \delta n'$, $m = \delta m'$ avec n', m' premiers entre eux et on note μ le ppcm de n et m.

Théorème 26.3 L'équation diophantienne (26.2) a des solutions entières si, et seulement si, a-b est multiple de δ . Dans ce cas, l'ensemble des solutions de (26.2) est :

$$S = \{x_0 + k\mu \mid k \in \mathbb{Z}\}\$$

où x_0 est une solution particulière de cette équation.

Critères de divisibilité 457

Démonstration. Si $x \in \mathbb{Z}$ est une solution de (26.2) alors δ qui divise n et m va diviser x - a et x - b, il divise donc a - b.

Réciproquement, supposons que a-b est multiple de δ , c'est à dire que $b-a=\delta c'$. Les entiers n' et m' étant premiers entre eux, le théorème de Bézout nous dit qu'il existe des entiers u_0 et v_0 tels que $n'u_0 + m'v_0 = 1$. En posant :

$$x_0 = bn'u_0 + am'v_0,$$

on a:

$$x_0 = b (1 - m'v_0) + am'v_0 = b - m'v_0 (b - a)$$

= $b - m'v_0 \delta c' = b - mv_0 c' \equiv b (m)$.

De manière analogue on voit que x_0 est congru à a modulo n. L'entier x_0 est donc une solution de (26.2).

Si $x \in \mathbb{Z}$ est solution de (26.2) alors x est congru à x_0 modulo n et modulo m, soit :

$$x - x_0 = pn = qm = p\delta n' = q\delta m'.$$

Il en résulte que $\frac{x-x_0}{\delta}$ est un entier et :

$$\frac{x - x_0}{\delta} = pn' = qm'.$$

Comme m' est premier avec n', le théorème de Gauss nous dit que m' doit diviser p. On a donc :

$$\frac{x - x_0}{\delta} = kn'm'$$

avec $k \in \mathbb{Z}$. Ce qui peut aussi s'écrire :

$$x - x_0 = knm' = k\frac{nm}{\delta} = k\mu$$

avec $k \in \mathbb{Z}$.

Réciproquement on vérifie facilement que pour tout entier relatif k, $x_0 + k\mu$ est solution de (26.2). En définitive, l'ensemble des solutions de (26.2) est :

$$S = \{x_0 + k\mu \mid k \in \mathbb{Z}\}\$$

où x_0 est une solution particulière de cette équation.

26.3 Critères de divisibilité

Les anneaux $\mathbb{Z}/n\mathbb{Z}$ peuvent être utilisés pour obtenir des critères de divisibilité des entiers par 2, 3, 5, 9 et 11.

Soit a un entier naturel non nul d'écriture décimale $a = \overline{a_p \cdots a_1 a_0}^{10}$, où les a_k sont des entiers compris entre 0 et 9, le coefficient a_p étant non nul.

– Comme 10 est congru à 0 modulo 2 (resp. modulo 5) on déduit que a est congru à a_0 modulo 2 (resp. modulo 5) et donc a est divisible par 2 (resp. par 5) si et seulement si son chiffre des unités a_0 est pair, c'est-à-dire égal à 0, 2, 4, 6 ou 8 (resp. multiple de 5, c'est-à-dire égal à 0 où 5).

- Du fait que 10 est congru à 1 modulo 3 (resp. modulo 9) on déduit que 10^k est congru à 1 modulo 3 (resp. modulo 9) pour tout entier k et a est congru à $\sum_{k=0}^{p} a_k$ modulo 3 (resp. modulo 9). Donc a est divisible par 3 (resp. par 9) si et seulement si la somme de ses chiffres est divisible par 3 (resp. par 9).
- Enfin du fait que 10 est congru à -1 modulo 11 on déduit que 10^k est congru à $(-1)^k$ modulo 11 pour tout entier k et a est congru à $\sum_{k=0}^{p} (-1)^k a_k$ modulo 11. Donc a est divisible par 11 si et seulement si la somme alternée de ses chiffres est divisible par 11.

En remplaçant 10 par une base $b \ge 2$, on a de manière plus générale les résultats suivants, où on a noté $a = \overline{a_p \cdots a_1 a_0}^b$ l'écriture en base b d'un entier a (les a_k sont compris entre 0 et b-1 et a_p est non nul) :

- si d est un diviseur de b alors a est divisible par d si, et seulement si a_0 est divisible par d:
- si d est un diviseur de b-1 alors a est divisible par d si, et seulement si $\sum_{k=0}^{p} a_k$ est divisible par d;
- a est divisible par b+1 si, et seulement si $\sum_{k=0}^{p} (-1)^k a_k$ est divisible par b+1.