Find the period, show the asymptotes, and sketch the graph of $y = \tan\left(x - \frac{\pi}{4}\right)$

Solution

Exercise

Find the period, show the asymptotes, and sketch the graph of $y = 2\tan\left(2x + \frac{\pi}{2}\right)$

Find the period, show the asymptotes, and sketch the graph of $y = -\frac{1}{4} \tan \left(\frac{1}{2} x + \frac{\pi}{3} \right)$

Solution

Amplitude: n/a		x	у) V
Period: $P = 2\pi$	$0-\frac{2\pi}{3}$	$-\frac{2\pi}{3}$	0	5.0+
Phase Shift: $\varphi = -\frac{2\pi}{3}$ VT: $y = 0$	$\frac{\pi}{2} - \frac{2\pi}{3}$	$-\frac{\pi}{6}$	$-\frac{1}{4}$	
Asymptotes:	$\pi - \frac{2\pi}{3}$	$\frac{\pi}{3}$	∞	$-2\pi \left \frac{-4\pi}{3} - \frac{-2\pi}{3} \right \left \frac{2\pi}{3} - \frac{4\pi}{3} - 2\pi \right \left \frac{8\pi}{3} \right $
$x = -\frac{5\pi}{3} + 2n\pi$	$\frac{3\pi}{2} - \frac{2\pi}{3}$	$\frac{5\pi}{6}$	$\frac{1}{4}$	
$x = \dots, -\frac{5\pi}{3}, \frac{\pi}{3}, \frac{7\pi}{3}, \dots$	$2\pi - \frac{2\pi}{3}$	$\frac{4\pi}{3}$	0	-5.0+

Exercise

Find the period, show the asymptotes, and sketch the graph of $y = \cot\left(x + \frac{\pi}{4}\right)$

Find the period, show the asymptotes, and sketch the graph of $y = 2\cot\left(2x + \frac{\pi}{2}\right)$

Solution

Amplitude: n/a \boldsymbol{x} y **Period**: $P = \frac{\pi}{2}$ *Phase Shift*: $\varphi = -\frac{\pi}{4}$ 2 y = 0VT: 0 $\frac{3\pi}{4}$ Asymptotes: $2x + \frac{\pi}{2} = (2n+1)\pi$ -2 $2x = 2n\pi + \frac{\pi}{2}$ ∞ $x = \dots, -\frac{\pi}{4}, \ \frac{3\pi}{4}, \ \frac{7\pi}{4}, \dots$

Exercise

Find the period, show the asymptotes, and sketch the graph of $y = -\frac{1}{2}\cot\left(\frac{1}{2}x + \frac{\pi}{4}\right)$

Graph over a 1-period interval $y = 1 - 2 \cot 2\left(x + \frac{\pi}{2}\right)$

Solution

Amplitude: n / aPeriod: $P = \frac{\pi}{2}$ Phase Shift: $\varphi = -\frac{\pi}{2}$ VT: y = 1Asymptotes: $-\frac{\pi}{2} + n\pi$ $\frac{\pi}{2} - \frac{\pi}{2} = 0$ $\frac{x}{8} - \frac{y}{2} = 0$ $\frac{x}{8} - \frac{y}{8} = 0$ $\frac{x}{8} - \frac{y}{8} = 0$ $\frac{x}{8} - \frac{x}{8} = 0$ $\frac{x}{$

Exercise

Graph over a 1-period interval $y = \frac{2}{3} \tan \left(\frac{3}{4} x - \pi \right) - 2$

Graph one complete cycle $y = 3 + 2 \tan \left(\frac{x}{2} + \frac{\pi}{8} \right)$

Solution

Amplitude: n/aPeriod: $P = 2\pi$

Phase Shift: $\varphi = -\frac{\pi}{4}$

VT: y = 3

	x	у
$0-\frac{\pi}{4}$	$-\frac{\pi}{4}$	3
$\frac{\pi}{2} - \frac{\pi}{4}$	$\frac{\pi}{4}$	5
$\pi - \frac{\pi}{4}$	$\frac{3\pi}{4}$	8
$\frac{3\pi}{2} - \frac{\pi}{4}$	$\frac{5\pi}{4}$	1
$2\pi - \frac{\pi}{4}$	$\frac{7\pi}{4}$	3

10.0	y	
5.0-		
$\frac{-3\pi}{4} \frac{-\pi}{2} \frac{-\pi}{4}$	$\frac{\pi}{4} \frac{\pi}{2} \frac{3\pi}{4} \pi \frac{5\pi}{4} \frac{3\pi}{2} \frac{7\pi}{4}$	
-5.0-		

Exercise

Graph one complete cycles $y = -2 - \cot\left(x - \frac{\pi}{4}\right)$

Solution

Amplitude: n/a

Period: $P = \pi$

Phase Shift: $\varphi = \frac{\pi}{4}$

VT: y = -2

	x	у
$0+\frac{\pi}{4}$	$\frac{\pi}{4}$	8
$\frac{\pi}{4} + \frac{\pi}{4}$	$\frac{\pi}{2}$	-3
$\frac{\pi}{2} + \frac{\pi}{4}$	$\frac{3\pi}{4}$	-2
$\frac{3\pi}{4} + \frac{\pi}{4}$	π	-1
$\pi + \frac{\pi}{4}$	$\frac{5\pi}{4}$	8

A fire truck parked on the shoulder of a freeway next to a long block wall. The red light on the top is 10 *feet* from the wall and rotates through one complete revolution every 2 *seconds*. Graph the function that gives the length d in terms of time t from t = 0 to t = 2.

Solution

$$\omega = \frac{\theta}{t} = \frac{2\pi}{2} = \pi \ rad \ / \ sec$$

$$\tan \theta = \frac{d}{10} \quad \to \ d = 10 \tan \theta$$

$$d(t) = 10 \tan \pi t$$

One cycle: $0 \le \pi t \le \pi$ $0 \le t \le 1$

t	$d = 10 \tan \pi t$		$20^{\uparrow}d$	1			
0	0		15-				
$\frac{1}{4}$	10		10-				
$\frac{1}{2}$	8	-	5-			+	<i>t</i> →
3 4	-10		-5+	0.	5 1.0 1.5	2.0 2.5	
1	0		-10+				
			-15		I = I		
			-20-				

A rotating beacon is located 3 m south of point R on an east-west wall. d, the length of the light display along the wall from R, is given by $d = 3 \tan 2\pi t$, where t is time measured in seconds since the beacon started rotating. (When t = 0, the beacon is aimed at point R. When the beacon is aimed to the right of R, the value of d is positive; d is negative if the beacon is aimed to the left of R.) Find a for t = 0.8

Solution

$$d = 3\tan(2\pi(0.8))$$

$$\approx -9.23 \ m$$

Exercise

Let a person whose eyes are h_1 feet from the ground stand d feet from an object h_1 feet tall, where $h_2 > h_1$ feet. Let θ be the angle of elevation to the top of the object.

- a) Show that $d = (h_2 h_1)\cot\theta$
- b) Let $h_2 = 55$ and $h_1 = 5$. Graph **d** for the interval $0 < \theta \le \frac{\pi}{2}$

a)
$$h = h_2 - h_1$$

 $\cot \theta = \frac{d}{h}$
 $d = (h_2 - h_1)\cot \theta$

b)
$$d = (55-5)\cot\theta$$

 $d = 50\cot\theta \quad 0 < \theta \le \frac{\pi}{2}$

