Theorie des Algorithmischen Lernens Sommersemester 2006

Teil 2.2: Lernen formaler Sprachen: Hypothesenräume

Version 1.1

Gliederung der LV

Teil 1: Motivation

- 1. Was ist Lernen
- 2. Das Szenario der Induktiven Inf erenz
- 3. Natürlichkeitsanforderungen

Teil 2: Lernen formaler Sprachen

- 1. Grundlegende Begriffe und Erkennungstypen
- 2. Die Rolle des Hypothesenraums
- 3. Lernen von Patternsprachen
- 4. Inkrementelles Lernen

Teil 3: Lernen endlicher Automaten

Teil 4: Lernen berechenbarer Funktionen

- 1. Grundlegende Begriffe und Erkennungstypen
- 2. Reflexion

Teil 5: Informationsextraktion

- 1. Island Wrappers
- 2. Query Scenarios

Different Approaches

When we have to learn an indexable class $\mathcal{L} = (L_j)_{j \in \mathbb{N}}$, we can choose the hypothesis space as follows:

- 1. use $\mathcal{L} = (L_j)_{j \in \mathbb{N}}$ as hypothesis space: **exact** identification
- 2. use another enumeration of $\mathcal{L} = (L_j)_{j \in \mathbb{N}}$ as hypothesis space: *class preserving* identification
- 3. use another indexable class $\mathcal{L}' = (L'_j)_{j \in \mathbb{N}}$ as hypothesis space that contains each L_j : *class comprising* identification

One could also ask for learnability w.r.t. all hypothesis spaces (absolute learning)

- → until now, we considered class-comprising learning
 - does it make a difference?

Learning in the Limit

Theorem 2.2.1:

Let $\mathcal{L} \in \mathit{LimTxt}$ and let \mathcal{H} be any class comprising hypothesis space for \mathcal{L} . Then, there is an IIM M $\mathit{LimTxt}_{\mathcal{H}}$ -identifying \mathcal{L} .

Proof.

Let M' be an IIM $LimTxt_{\mathcal{H}'}$ -identifying \mathcal{L} .

$M(t_x)$:

If $M'(t_x) = ?$ then output "?".

Otherwise, set $j = M'(t_x)$ and test for k = 0, ... x whether or not

• $h_j(w) = h_k'(w)$ for all $w \in \Sigma^*$ with $|w| \le x$.

If such a k has been found, output the least one, otherwise output "?".

Verification → Exercise

Finite Learning

Theorem 2.2.2:

Let $\mathcal{L} \in \mathit{FinTxt}$ and let \mathcal{H} be any class preserving hypothesis space for \mathcal{L} . Then, there is an IIM M $\mathit{LimTxt}_{\mathcal{H}}$ -identifying \mathcal{L} .

Proof.

Let $\mathcal{L} \in \mathit{FinTxt}$. By theorem 2.1.9 there are an indexing $\mathcal{L} = (L_j)_{j \in \mathbb{N}}$ and a recursively generable family $(T_i)_{i \in \mathbb{N}}$ of finite sets such that

- for all $j \in \mathbb{N}$, $T_j \subseteq L_j$
- ullet for all $j,z\in \mathbb{N}$, if $T_j\subseteq L_z$ then $L_j=L_z$

$M(t_x)$:

If x=0 or $M(t_{x-1})=$ "?", goto (*). Otherwise output $M(t_{x-1})$.

(*) For $j=0,1,\ldots,x$, generate T_j and test whether $T_j\subseteq t_x^+$.

If no such j has been found, output "?". Otherwise, let $\hat{\jmath}$ be the minimal j and search for a j' such that $T_{\hat{\jmath}} \subseteq h_{j'}$. Output j'.

Verification → Exercise

Finite Learning

Theorem 2.2.3:

There is an $\mathcal{L} \in \mathit{FinTxt}$ and a class comprising hypothesis space \mathcal{H} for \mathcal{L} such that no IIM M $\mathit{FinTxt}_{\mathcal{H}}$ -identifies \mathcal{L} .

Proof.

$$\mathcal{L}=(L_j)_{j\in\mathbb{N}}$$
 with $L_j=\{a^j\}$. Clearly, $\mathcal{L}\in \mathit{FinTxt}$.

Define \mathcal{H} as follows:

$$h_{\langle k,x\rangle} = \begin{cases} \{a^k\} &: \phi_k(k) = x \\ \{a^k,b^{\phi_k(k)}\} &: \varphi_k(k) \downarrow \text{ and } \phi_k(k) \neq x \\ \{a^k\} &: \text{ otherwise} \end{cases}$$

An IIM M FinTxt $_{\mathcal{H}}$ -identifying \mathcal{L} could be used to solve the halting problem:

On input k do:

Feed the text a^k, a^k, a^k, \ldots to M until it outputs a hypothesis of form $\langle k, x \rangle$. If $\phi_k(k) = x$, then output 1, otherwise output 0.

Verification → Exercise

Conservative Learning

Theorem 2.2.4:

There is an \mathcal{L} which can be conservatively learned, but only if the hypothesis space used is *class comprising*.

Theorem 2.2.5:

There is an \mathcal{L} for wich

- there exists a class preserving hypothesis space $\mathcal H$ and an IIM M, such that M ConsvTxt $_{\mathcal H}$ -identifies $\mathcal L$
- ullet there exists a class preserving hypothesis space \mathcal{H}' such that no IIM M ConsvTxt $_{\mathcal{H}'}$ -identifies \mathcal{L}

proofs: see [2]

Summary

For learning in the limit:

 exact, class preserving, class comprising, absolute class preserving, and absolute class comprising learning are of the same power

For conservative learning:

absolute class preserving learning "
" class preserving learning "
comprising learning

For finite learning:

- absolute class preserving, class preserving, and class comprising learning are of the same power
- absolute class comprising learning "⊂" class comprising learning

Changelog

- V1.1:
 - − Folie 5: $\mathcal{L} \in LimTxt \rightarrow \mathcal{L} \in FinTxt$