

Feeding Many Values to Light-weight Description Logics

Rafael Peñaloza

Les Diablerets, December 11, 2015

Logic-based Knowledge Representation

Description Logics

relevant names from the domain:

- concepts (sets) Hippo, Female, Jedi
- roles (binary relations) carries, hasFather

constraints on these names

- Jedis carry lightsabers
- Lightsabers are weapons

deduce consequences

• Jedis carry weapons

The Description Logic \mathcal{EL}

Basic Terminology

 N_C , N_R disjoint sets: concept names and role names $(\mathcal{EL}\text{-})\mathrm{Concepts}$

Built by induction

- every $A \in N_C$ is a concept
- if C, D are concepts and $r \in N_R$ then

Examples

Hippo \sqcap Female

∃carries.⊤

Imprecision

How to handle imprecise concepts?

Strong

 ${\bf Graceful}$

Rich

Degrees of Membership

Chain
$$\mathcal{C} \subseteq [0,1]$$

- "infinite" [0,1]
- "finite;" "n-valued" $0, \frac{1}{n-1}, \dots, \frac{n-2}{n-1}, 1$

t-norm ⊗

 $residuum \Rightarrow$

binary operator over \mathcal{C}

- associative
- commutative
- monotonic
- unit 1

$$z \otimes x \le y$$
 iff $z \le x \Rightarrow y$

Triangular Norms

	$x \otimes y$	$x \Rightarrow y$	
Gödel	$\min\{x,y\}$	$\begin{cases} 1 & x \le y \\ y & \text{otherwise} \end{cases}$	
Łukasiewicz	$\max\{x+y-1,0\}$	$\min\{1-x+y,1\}$	
Product	$x \cdot y$	$\begin{cases} 1 & x \le y \\ y/x & \text{otherwise} \end{cases}$	

Imprecise Concepts

Concepts, roles interpreted as fuzzy sets, binary relations

$$C^{\mathcal{I}}(x) \in \mathcal{C}$$

 $r^{\mathcal{I}}(x,y) \in \mathcal{C}$

$$\begin{array}{lll} \mathrm{Strong}^{\mathcal{I}}(x) = 0.8 & \longrightarrow & x \mathrm{\ is\ strong\ with\ degree\ 0.8} \\ \mathrm{hasFriend}^{\mathcal{I}}(x,y) = 0.9 & \longrightarrow & x \mathrm{\ and\ } y \mathrm{\ are\ friends\ with\ degree\ 0.9} \end{array}$$

Intuition: degree of "C-ness" of the individual

Degree 0: not at all 1: totally

all kinds of shades of gray in between

Semantics

Interpretations
$$\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$$

non-empty domain $\Delta^{\mathcal{I}}$
interpretation function $\cdot^{\mathcal{I}}$

- $A^{\mathcal{I}}: \Delta^{\mathcal{I}} \to \mathcal{C}$ for all $A \in N_C$ (sets)
- $r^{\mathcal{I}} : \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \to \mathcal{C}$ for all $r \in N_R$ (binary relations)

 $\cdot^{\mathcal{I}}$ is extended to concepts as follows:

$$(\top)^{\mathcal{I}}(x) := 1$$

$$(C \sqcap D)^{\mathcal{I}}(x) := C^{\mathcal{I}}(x) \otimes D^{\mathcal{I}}(x)$$

$$(\exists r.C)^{\mathcal{I}}(x) := \max_{y \in \Delta^{\mathcal{I}}} r^{\mathcal{I}}(x, y) \otimes C^{\mathcal{I}}(y)$$

The Power of Witnesses

 $(\exists r. \top)^{\mathcal{I}}(x) = 1$ with witnessed interpretations means x has an r successor with degree 1

(not true in general interpretations)

Representing Knowledge

$$\langle C \sqsubseteq D : c \rangle$$
 C, D concepts, $c \in C$

$$\langle \text{Tourist} \sqsubseteq \exists \text{carries.Camera} : 1 \rangle$$

$$\langle \text{Man} \sqcap \exists \text{hasSon.Handsome} \sqsubseteq \text{Handsome} : 0.8 \rangle$$

A general TBox is a finite set of GCIs

 \mathcal{I} is a model of \mathcal{T} if it satisfies all GCIs in \mathcal{T}

Subsumption

Given a TBox \mathcal{T}

 $(A \sqsubseteq_{\mathcal{T}}^{p} B)$

iff

$$A^{\mathcal{I}}(x) \Rightarrow B^{\mathcal{I}}(x) \ge p$$

- for all $x \in \Delta^{\mathcal{I}}$
- in all models of \mathcal{T}

The easy case

The simple Gödel semantics

Normalization in Gödel

TBoxes can be normalized

$$\langle A \sqsubseteq B : c \rangle \qquad \qquad \langle A_1 \sqcap A_2 \sqsubseteq B : c \rangle$$

$$\langle \exists r.A \sqsubseteq B : c \rangle$$
 $\langle A \sqsubseteq \exists r.B : c \rangle$

(at most one constructor per axiom)

$$\langle A \sqsubseteq B \sqcap C : 0.8 \rangle \leadsto \begin{cases} \langle A \sqsubseteq B : 0.8 \rangle \\ \langle A \sqsubseteq C : 0.8 \rangle \end{cases}$$

Completion in Gödel

Make the logical closure of the normalized TBox (w.r.t. concept names)

Premise	Axiom		Consequence	
$\langle A \sqsubseteq B : c \rangle$	$\langle B \sqsubseteq C : d \rangle$	~ →	$\langle A \sqsubseteq C : \min\{c,d\} \rangle$	
	$\langle B_1 \sqcap B_2 \sqsubseteq C : d \rangle$	~ →	$\langle A \sqsubseteq C : \min\{c_1, c_2, d\} \rangle$	
$\langle A \sqsubseteq A_1 : c \rangle$	$\langle A_1 \sqsubseteq \exists r.B : d \rangle$	~ →	$\langle A \sqsubseteq \exists r.B : \min\{c,d\} \rangle$	
	$\langle \exists r.B_1 \sqsubseteq C : e \rangle$	~ →	$\langle A \sqsubseteq C : \min\{c,d,e\} \rangle$	

Deciding subsumption

A is p-subsumed by B iff we can deduce

$$\langle A \sqsubseteq B : q \rangle$$

for some $q \ge p$

decides all atomic subsumptions in quadratic time

Harder Cases

Beyond Idempotency . . .

Problems

No normalization

$$\langle A \sqsubseteq B \sqcap C : 0.8 \rangle \leadsto \begin{cases} \langle A \sqsubseteq B : 0.8 \rangle \\ \langle A \sqsubseteq C : 0.8 \rangle \end{cases}$$

Logical deduction

$$\begin{array}{c} \langle A \sqsubseteq B : 1 \rangle \\ \langle A \sqsubseteq C : 1 \rangle \end{array} \right\} \leadsto \langle A \sqsubseteq B \sqcap C : ???? \rangle$$

Lukasiewicz

A look to Łukasiewicz

A Detour to \mathcal{ALC}

 $\ensuremath{\mathcal{ALC}}$ is $\ensuremath{\mathcal{EL}}$ extended with negation constructor \neg (multimodal K with universal modality)

Reasoning in \mathcal{ALC}

• finitely valued: ExpTime-complete

• infinitely valued: undecidable

(* if negation is involutive)

Disjunction in \mathcal{EL}

Observation

any extension of \mathcal{EL} that simulates (classical) disjuction is at least as expressive as (classical) \mathcal{ALC}

Disjunction in 3-valued L

 L_3 :

$$x \otimes y \ge 1/2$$
 iff $x = 1$ or $y = 1$

From \mathcal{ELU} to L_3 - \mathcal{EL}

$$A_{1} \sqcap A_{2} \sqsubseteq B \quad \rightsquigarrow \quad \langle A_{1} \sqcap A_{2} \sqsubseteq B : 1 \rangle$$

$$\exists r. A \sqsubseteq B \quad \rightsquigarrow \quad \langle \exists r. A \sqsubseteq B : 1 \rangle$$

$$A \sqsubseteq \exists r. B \quad \rightsquigarrow \quad \langle A \sqsubseteq \exists r. B \sqcap \exists r. B : \frac{1}{2} \rangle$$

$$A \sqsubseteq B_{1} \sqcup B_{2} \quad \rightsquigarrow \quad \langle A \sqsubseteq B_{1} \sqcap B_{2} : \frac{1}{2} \rangle$$

 A_0 is subsumed by B_0 in classical \mathcal{ELU} iff $A_0 \sqcap A_0 \text{ is 1-subsumed by } B_0 \sqcap B_0 \text{ in } L_3\text{-}\mathcal{EL}$

Complexity of Subsumption

Subsumption in
$$L_n$$
- \mathcal{EL} is ExpTime-complete (for arbitrary non-idempotent finite chains)

reduction is not in normal form

$$\langle A \sqsubseteq \exists r.B \sqcap \exists r.B : \tfrac{1}{2} \rangle \qquad \qquad \langle A \sqsubseteq B_1 \sqcap B_2 : \tfrac{1}{2} \rangle$$

complexity for normalized TBoxes unknown

The infinite case

Any model of the axiom

$$\langle C \sqcap C \sqsubseteq C \sqcap C \sqcap C : 1 \rangle$$

satisfies

$$C^{\mathcal{I}}(x) \in [0,\tfrac{1}{2}] \cup \{1\}$$

if we add

$$\langle \top \sqsubseteq C : \frac{1}{2} \rangle$$

then

$$C^{\mathcal{I}}(x) \in \{\frac{1}{2}, 1\}$$

(same trick)

Complexity of Subsumption

Subsumption in L- \mathcal{EL} is ExpTime-hard

(for any t-norm "containing" Ł)

but no upper bound known

reduction is **not** in normal form

 $\langle C \sqcap C \sqsubseteq C \sqcap C \sqcap C : 1 \rangle$

dirty theoretical (and modeling) tricks

Is it decidable?

adding a bit of expressivity, possible to simulate involutive negation over $\left[\frac{1}{2},1\right]$

Intuition:

 $\text{L-}\mathcal{ALC}$ compressed to the second half of interval

Undecidability would be very surprising

The remaining case

non-idempotent t-norm without nilpotent elements

product

Subsumption

December 11, 2015

Feeding Many Values to Light-weight DLs

Positive Subsumption

Given a TBox \mathcal{T}

A is positively-subsumed by B

 $(A \sqsubseteq_{\mathcal{T}}^{>0} B)$

iff

$$A^{\mathcal{I}}(x) \Rightarrow B^{\mathcal{I}}(x) > 0$$

- for all $x \in \Delta^{\mathcal{I}}$
- in all models of \mathcal{T}

Interest

Recall for product

$$x \Rightarrow y = 0$$
 iff $x > 0$ and $y = 0$

$$A \sqsubseteq_{\mathcal{T}}^{>0} B$$
 means

an element that belongs (partially) to A belongs (partially) to B

Just Forget

December 11, 2015

Feeding Many Values to Light-weight DLs

Just Forget

For positive subsumption, axiom degrees are irrelevant

$$\mathcal{T} = \begin{array}{cccc} \left\langle & \mathbf{A} & \sqsubseteq & \mathbf{B} & : 0.9 \right\rangle \\ \left\langle & \exists \mathbf{r}. (\mathbf{A} \sqcap \mathbf{C}) & \sqsubseteq & \mathbf{D} \sqcap \exists \mathbf{s}. \mathbf{C} : 0.4 \right\rangle \\ \left\langle & \exists \mathbf{r}. \exists \mathbf{s}. \mathbf{B} & \sqsubseteq & \exists \mathbf{s}. \exists \mathbf{r}. \mathbf{A} : 0.5 \right\rangle \\ \left\langle & \mathbf{B} & \sqsubseteq & \mathbf{C} : 0 \right\rangle \end{array}$$

$$A \sqsubseteq_{\mathcal{T}}^{>0} B$$
 iff $A \sqsubseteq_{\mathcal{T}_G}^1 B$ (in 2-valued semantics)

Summary

	G	finitely-valued	including Ł	strict	other
$\sqsubseteq^{\mathrm{p}}_{\mathcal{T}}$	Р	ExpTime-c	ExpTime-h	??	??
$\sqsubseteq_{\mathcal{T}}^{>0}$	Р	ExpTime-c	??	Р	coNP-h