БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Кафедра компьютерных технологий и систем

В. В. Дайняк, Е. С. Чеб

БАНАХОВЫ ПРОСТРАНСТВА

Методические указания и задания к практическим занятиям по курсу "Функциональный анализ и интегральные уравнения" для студентов факультета прикладной математики и информатики

В трех частях

Часть 2

МИНСК 2020 УДК 517.(075.8) ББК Д

Рекомендовано советом факультета прикладной математики и информатики 2020 г., протокол №

 $\label{eq: 2.1} \mbox{Рецензент} \\ \mbox{доктор физико-математических наук } \mbox{\it H. H. } \mbox{\it Гринчик}$

Дайняк, В.В.

Д Банаховы пространства: метод. указания и задания. В 3 ч. Ч. 2 / В. В. Дайняк, Е. С. Чеб. – Минск: БГУ, 2020. – 56 с.

Часть 2 методических указаний содержит задания для лабораторных, практических и самостоятельных работ по теме "Банаховы пространства" для курса "Функциональный анализ и интегральные уравнения". В первой части рассматриваются основные нормированные и банаховы пространства, открытые, замкнутые, ограниченные, выпуклые и компактные множества в них. В каждой теме приводится необходимый теоретический материал, примеры решения задач и набор задач для практических и лабораторных работ.

Рекомендовано студентам математических специальностей.

УДК 517.(075.8) ББК

© Дайняк В. В., Чеб Е. С., 2020

© БГУ, 2019

ПРЕДИСЛОВИЕ

В учебных материалах изложен раздел "Банаховы пространства" для дисциплины "Функциональный анализ и интегральные уравнения".

Цель учебной дисциплины "Функциональный анализ и интегральные уравнения": создание базы для освоения основных понятий и методов современной математики, используемых при анализе математических моделей основных физических процессов.

Образовательная цель: формирование составной части банка знаний, получаемых будущими специалистами в процессе учебы и необходимых им в дальнейшем для успешной работы.

Развивающая цель: формирование у студентов основ математического мышления, необходимого для исследования разрешимости прикладных задач.

Основными задачами дисциплины являются:

- сформировать у студентов понятия метрического, нормированного, банахова, гильбертова пространств и линейных отображений в этих пространствах;
- показать, как используются основные положения функционального анализа при решении прикладных задач, возникающих в различных областях естествознания, в частности, описываемыми интегральными уравнениями.

В результате изучения дисциплины студенты должны знать:

- основные понятия и методы теории банаховых и гильбертовых пространств;
- основные понятия теории линейных ограниченных операторов;
- теорию разрешимости операторных уравнений 1-го и 2-го рода; уметь:
- использовать основные результаты функционального анализа в практической деятельности;
- использовать теоретические и практические навыки для исследования на разрешимость операторных уравнений, в частности, интегральных уравнений Фредгольма и Вольтерра;

владеть:

• основными методами исследования множеств в банаховых и гильбертовых пространствах;

- методами доказательств и аналитического исследования операторных уравнений первого и второго рода;
- навыками самообразования и способами использования аппарата функционального анализа для проведения математических и междисциплинарных исследований.

Учебные материалы к каждой теме включают теоретический материал, необходимый для выполнения работ. Рассмотрены конкретные задачи с подробными решениями. К каждой теме предлагается список контрольных вопросов, позволяющий знания по рассматриваемым темам.

В пособии приведен список литературы, которую рекомендуется использовать при выполнении работ.

Учебные материалы рекомендуются использовать для самостоятельного изучения соответствующих разделов курса "Функциональный анализ и интегральные уравнения" и организации лабораторного практикума.

ТЕМА 1. МЕТРИЧЕСКИЕ ПРОСТРАНСТВА

Непустое множество X называется метрическим пространством, если любым двум элементам $x, y \in X$ поставлено в соответствии неотрицательное число $\rho(x,y) \in \mathbb{R}$, называемое расстоянием или метрикой, которое удовлетворяет следующим аксиомам:

- 1) $\rho(x,y) \geqslant 0$; $\rho(x,y) = 0$ в том и только том случае, когда x = y;
- $2) \quad \rho(x,y) = \rho(y,x);$
- 3) $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$.

Примеры метрических пространств

1. Пусть на не пустом множестве X определена метрика так

$$\rho(x,y) = \begin{cases} 1, & x \neq y; \\ 0, & x = y. \end{cases}$$

Такое метрическое пространство называется *пространством изолиро-ванных точек*.

2. Множество X всевозможных упорядоченных наборов из m вещественных чисел. Тогда для любых двух элементов $x=(x_1,x_2,\ldots,x_m)$ и $y=(y_1,y_2,\ldots,y_m)$ определим расстояние как

$$\rho_c(x,y) = \left(\sum_{i=1}^m |x_i|^2\right)^{1/2}.$$

Множество X с такой метрикой порождает евклидово пространство \mathbb{R}^m с евклидовой геометрией.

На этом же множестве определим метрику по-другому:

$$\rho_k(x,y) = \max_{1 \le i \le m} |x_i - y_i|.$$

Эта метрика называется veбышевской или paвномерной метрикой. Если в качестве множества X выбрать множество целых чисел \mathbb{Z} , то полученная метрика называется mempukoй pememku или mempukoй mara kopons.

Пусть на множестве X

$$\rho_0(x,y) = \sum_{i=1}^m |x_i - y_i|.$$

Такая метрика называется манхэттенской или метрикой городских кварталов. С этой метрикой связана манхэттеновская геометрия. Манхэттенская метрика не зависит от отражения относительно осей координат, но зависит от вращения.

На множестве X можно расстояние определить и так

$$\rho_p(x,y) = \left(\sum_{i=1}^m |x_i - y_i|^p\right)^{1/p}, p \geqslant 1.$$

3. Множество ℓ_2 , элементами которого являются бесконечные последовательности чисел (действительных или комплексных) $x=(x_1,x_2,\ldots,x_i,\ldots)$, удовлетворяющие условию $\sum\limits_{i=1}^{\infty}|x_i|^2<\infty$. Определим на этом множестве метрику

$$\rho(x,y) = \left(\sum_{i=1}^{\infty} |x_i - y_i|^2\right)^{1/2}.$$

Полученное метрическое пространство называется координатным пространством Гильберта.

4. Непрерывные (действительные или комплексные) функции, заданные на некотором отрезке [a,b], образуют метрическое пространство относительно расстояний

$$\rho(x,y) = \max_{a \le t \le b} |x(t) - y(t)|, \ \rho(x,y) = \left(\int_a^b |x(t) - y(t)|^2 dt\right)^{1/2}.$$

Полученные метрические пространства обозначаются соответственно $C[a,b],\ CL_2[a,b].$ Аналогично, можно рассматривать пространство k раз непрерывно дифференцируемых на отрезке [a,b] функций с метрикой

$$\rho(x,y) = \sum_{i=0}^{k} \max_{a \le t \le b} |x^{(i)}(t) - y^{(i)}(t)|.$$

Полученное пространство обозначается $C^{(k)}[a,b]$.

Метрика, как математическая модель сходства объектов, и ее выбор во многих случаях неоднозначен. Она применяется в задачах кластерного анализа (метрика Маханалобиса), в теории информации и

компьютерной лингвистики ($метрика \ Левенштейна$), в теории кодирования изображений ($метрика \ Хеминга$), в теории распознавания образов ($метрика \ Хаусдорфа$).

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. Задают ли в пространстве \mathbb{R} следующие функции расстояние:

$$\varphi_1(x,y) = |x^2 - y^2|, \quad \varphi_2(x,y) = |e^x - e^y|.$$

Решение. Функция $\varphi_1(x,y)$ не определяет метрику на числовой прямой, так как для несовпадающих точек $x=1,\,y=-1,\,\varphi_1(x,y)=0,$ т. е. не выполняется первая аксиома метрики. Функция $\varphi_2(x,y)$ определяет метрику на числовой прямой. Для нее выполняются все три аксиомы метрики. Выполнение первой аксиомы следует из монотонности функции e^x , а вторая и третья аксиомы выполняются исходя из свойств модуля.

Задача 2. Задает ли в пространстве \mathbb{R}^2 функция расстояние между точками $A=(x_1,y_1)$ и $B=(x_2,y_2)$:

$$\varphi(A, B) = (|x_1 - x_2| + |y_1 - y_2|)^2.$$

Решение. Функция $\varphi(A,B)$ не определяет расстояние на плоскости, поскольку для нее не выполняется неравенство треугольника. Действительно, рассмотрим точки A=(1,0), B=(0,1), C=(1,1). Тогда $\varphi_1(A,B)=4, \ \varphi_1(A,C)=1, \ \varphi_1(C,B)=1.$ Это означает, что $\varphi_1(A,B)>\varphi_1(A,C)+\varphi_1(C,B).$

Задача 3. Пусть (X, ρ) – метрическое пространство. Доказать, что функция $\rho_1(x, y)$ также является метрикой на X.

Решение. Проверим выполнение аксиом метрики для $\rho_1(x,y)$. Очевидно, что $\rho_1(x,y) \geqslant 0$. Пусть $\rho_1(x,y) = 0$, тогда $\rho(x,y) = 0$, следовательно, x = y. Обратно, если x = y, то $\rho(x,y) = 0$, и $\rho_1(x,y) = 0$. Нетрудно заметить, что $\rho_1(x,y) = \rho_1(y,x)$. Покажем, что справедливо неравенство треугольника для ρ_1 , если оно выполнено для ρ , т. е.

$$\frac{\rho(x,y)}{1+\rho(x,y)} \leqslant \frac{\rho(x,z)}{1+\rho(x,z)} + \frac{\rho(z,y)}{1+\rho(z,y)}.$$

Данное неравенство равносильно верному неравенству вида

$$(\rho(x,z) + \rho(z,y) - \rho(x,y) + \rho(x,z)\rho(z,y) + \rho(z,y)\rho(x,z) + \rho(x,y)\rho(y,z)\rho(z,x) \ge 0.$$

ЗАДАНИЯ

Задание 1. Задает ли данная функция расстояние в пространстве \mathbb{R}^n при заданном n.

1.1.
$$\rho(x,y) = ||x| - |y||, \quad n = 1;$$

1.2.
$$\rho(x,y) = (x^2 + 2y^2)|x - y|, \quad n = 1;$$

1.3.
$$\rho(x,y) = \sqrt{|x-y|}, \quad n=1;$$

1.4.
$$\rho(x,y) = \sin|x-y|, \quad n=1;$$

1.5.
$$\rho(x,y) = (|x_1 - x_2|^2 + |y_1 - y_2|^4)^{1/4}, \quad n = 2;$$

1.6.
$$\rho(x,y) = (|x_1 - x_2|^2 + |y_1^3 - y_2^3|^2)^{1/2}, \quad n = 2;$$

1.7.
$$\rho(x,y) = |x_1 - x_2| + \operatorname{tg}|y_1 - y_2|, \quad n = 2;$$

1.8.
$$\rho(x,y) = |x_1^3 - x_2^3|^2 + |\operatorname{arctg} y_1 - \operatorname{arctg} y_2|, \quad n = 2;$$

1.9.
$$\rho(x,y) = \max |x_1 - x_2|, |y_1^5 - y_2^5|, \quad n = 2;$$

1.10.
$$\rho(x,y) = \max |x_1^2 - x_2^2|, |y_1^2 - y_2^2|, \quad n = 2;$$

1.11.
$$\rho(x,y) = (x_1^2 + x_2^2)|x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|, \quad n = 3;$$

1.12.
$$\rho(x,y) = \max |x_1 - x_2|, |y_1 - y_2|, |z_1 - z_2|, n = 3;$$

1.13.
$$\rho(x,y) = (|x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|)^{1/2}, \quad n = 3;$$

1.14.
$$\rho(x,y) = (|x_1 - x_2|^2 + |y_1 - y_2| + |z_1 - z_2|^2)^{1/2}, \quad n = 3.$$

Задание 2. Вычислить расстояние между функциями x(t) и y(t)в пространствах а) $C[a,b], C^{(1)}[a,b], 6) CL_1[a,b], CL_2[a,b].$

2.1. a)
$$x(t) = 5$$
, $y(t) = \sqrt{3(t+1)(2-t)}$, $t \in [-3, 1]$,

6)
$$x(t) = t$$
, $y(t) = (t+1)^{-1/3}$, $t \in [0,1]$;

2.2. a)
$$x(t) = t + 1$$
, $y(t) = 2\sqrt{t+1}$, $t \in [-2, 4]$, 6) $x(t) = t$, $y(t) = \sqrt{2 - t^2}$, $t \in [-1, 1]$;

6)
$$x(t) = t$$
, $y(t) = \sqrt{2 - t^2}$, $t \in [-1, 1]$

2.3. a)
$$x(t) = (t^2 - t)\sin t$$
, $y(t) = 2t^2 - 1$, $t \in [-\pi/2, \pi]$,

6)
$$x(t) = \cos t$$
, $y(t) = \cos t^2$, $t \in [0, \pi/2]$;

2.4. a)
$$x(t) = \frac{4}{t+1}$$
, $y(t) = t^2 + t - 2$, $t \in [2, 4]$,

6)
$$x(t) = \frac{1}{1-t}, \quad y(t) = \frac{1}{1+t}, \quad t \in [0, 1/2];$$

2.5. a)
$$x(t) = t$$
, $y(t) = \sin 2t$, $t \in [-\pi/2, \pi/2]$,

6)
$$x(t) = t$$
, $y(t) = \cos^2 t$, $t \in [0, \pi]$;

2.6. a)
$$x(t) = \frac{4}{t} + 1$$
, $y(t) = t^2 + t - 1$, $t \in [-7, 4]$,

6)
$$x(t) = \sin^2 t$$
, $y(t) = \cos^2 t$, $t \in [0, \pi/2]$;

2.7. a)
$$x(t) = (t^2 - t)\sin 2t$$
, $y(t) = t$, $t \in [-\pi/2, \pi, 1]$,

6)
$$x(t) = \frac{1}{\sqrt{t}}, \quad y(t) = \sqrt{t}, \quad t \in [1, 2];$$

2.8. a)
$$x(t) = e^t$$
, $y(t) = t$, $t \in [-1, 4]$,

6)
$$x(t) = \sin t$$
, $y(t) = \sin 2t$, $t \in [0, \pi]$;

2.9. a)
$$x(t) = 2t^2 + 1$$
, $y(t) = t^4$, $t \in [0, 4]$,

6)
$$x(t) = e^t$$
, $y(t) = te^t$, $t \in [0, 1]$;

2.10. a)
$$x(t) = \frac{1}{t^2 + 1}$$
, $y(t) = \frac{2t}{t^2 + 1}$, $t \in [-5, 5]$,

6)
$$x(t) = t$$
, $y(t) = \frac{1}{\sqrt[3]{t}}$, $t \in [1, 2]$;

2.11. a)
$$x(t) = t^5 + 5t^3$$
, $y(t) = 5t^4 - 1$, $t \in [-1, 2]$,

6)
$$x(t) = e^t$$
, $y(t) = e^{-t}$, $t \in [0, 1]$;

2.12. a)
$$x(t) = 2t^2 + 5$$
, $y(t) = 3t^4 + t^2 - 2$, $t \in [-1, 7]$,

6)
$$x(t) = t$$
, $y(t) = \sin 2t$, $t \in [0, \pi/2]$;

2.13. a)
$$x(t) = 3 - t$$
, $y(t) = \frac{2}{t+2}$, $t \in [-1, 4]$,

6)
$$x(t) = \sqrt{\frac{t+2}{t-2}}, \quad y(t) = \sqrt{\frac{t-2}{t+2}}, \quad t \in [4, 6];$$

2.14. a)
$$x(t) = 2\sin t$$
, $y(t) = \cos 2t$, $t \in [0, \pi]$,

6)
$$x(t) = 2 \ln t$$
, $y(t) = 1$, $t \in [2, 4]$;

2.15. a)
$$x(t) = 2t^3 + 7$$
, $y(t) = 6t^2 + 18t$, $t \in [-2, 4]$,

6)
$$x(t) = e^{2t}, \quad y(t) = 2e^{1-t}, \quad t \in [0, 1];$$

2.16. a)
$$x(t) = 2\sin t$$
, $y(t) = \cos 2t$, $t \in [0, 3\pi/2]$,

6)
$$x(t) = t$$
, $y(t) = \frac{1}{\sqrt{1+t^2}}$, $t \in [0,1]$;

2.17. a)
$$x(t) = \frac{16}{t-1}$$
, $y(t) = -t^2 + 2t + 15$, $t \in [2,4]$,

6)
$$x(t) = \frac{1}{\sqrt{4-t^2}}, \quad y(t) = t, \quad t \in [-1,1].$$

ТЕМА 2. НОРМИРОВАННЫЕ ПРОСТРАНСТВА. ЭКВИВАЛЕНТНЫЕ НОРМЫ

Векторные пространства. Пусть P – поле действительных или комплексных чисел (поле скаляров).

Непустое множество E называется векторным (линейным) пространством над полем P, если для любых двух его элементов x и y определена их сумма x+y – элемент того же множества и для любого $x \in E$ и любого $\alpha \in P$ определено произведение αx , являющееся элементом множества E, причем эти операции удовлетворяют следующим аксиомам:

- $1) \quad x + y = y + x;$
- 2) (x+y)+z=x+(y+z);
- 3) в E существует элемент θ такой, что для любого $x \in E$ справедливо равенство $x + \theta = x$;
- 4) для каждого $x \in E$ существует элемент $-x \in E$, что выполняется равенство $x + (-x) = \theta$;
- 5) $\alpha \cdot (\beta x) = (\alpha \beta) \cdot x;$
- 6) $1 \cdot x = x, 0 \cdot x = \theta;$
- 7) $(\alpha + \beta)x = \alpha x + \beta x;$
- 8) $\alpha(x+y) = \alpha x + \alpha y$.

Если на множестве E введены операции сложения и умножения на число так, что E превращено в векторное пространство, то говорят, что E наделено структурой векторного пространства. Векторное пространство над полем $\mathbb R$ называется вещественным векторным пространством, а векторное пространство над $\mathbb C$ – комплексным векторным пространством. Элементы векторного пространства будем называть векторами либо точками.

Элементы $x_1, x_2, \ldots, x_n \in E$ называются линейно зависимыми, если существуют такие числа $\alpha_1, \ldots, \alpha_n$, не все равные нулю, что их линейная комбинация

$$\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n = 0.$$

Если равенство нулю линейной комбинации возможно лишь при условии $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$, то элементы x_1, \ldots, x_n называют линейно независимыми.

Бесконечная система элементов x_1, x_2, \ldots пространства E называется линейно независимой, если любая ее конечная подсистема линейно независима.

Векторное пространство называют m-мерным, если в нем существует m линейно независимых векторов, а всякие m+1 векторов линейно зависимы. Набор этих линейно независимых векторов называется базисом векторного пространства E, а m – его размерностью. Размерность пространства обозначается символом dim E.

Векторное пространство E называется $\mathit{бесконечномерным}$, если для каждого натурального m в E существует m линейно независимых векторов.

Примеры векторных пространств

1. Множество \mathbb{R}^m всевозможных упорядоченных наборов из m вещественных чисел $x=(x_1,x_2,\ldots,x_m)$, где сложение и умножение на число определяются формулами

$$(x_1, \dots, x_m) + (y_1, \dots, y_m) = (x_1 + y_1, \dots, x_m + y_m),$$

 $\alpha(x_1, \dots, x_m) = (\alpha x_1, \dots, \alpha x_m).$

Базис образован векторами

$$e_1 = (1, 0, \dots, 0), \dots, e_i = (0, 0, \dots, 1, 0, \dots, 0), e_m = (0, 0, \dots, 1).$$

Размерность пространства $\dim \mathbb{R}^m = m$. Аналогично определяется комплексное пространство \mathbb{C}^m .

- **2.** Непрерывные (действительные или комплексные) функции, заданные на некотором отрезке [a,b], с обычными операциями сложения функций и умножения их на число образуют бесконечномерное векторное пространство C[a,b].
- **3.** Множество ℓ_2 , элементами которого являются бесконечные последовательности чисел (действительных или комплексных) $x = (x_1, x_2, \ldots, x_n, \ldots)$, удовлетворяющие условию $\sum_{i=1}^{\infty} |x_i|^2 < \infty$, относительно покоординатных операций сложения и умножения на скаляр.

Пространства ℓ_2 являются бесконечномерным, линейно независимую систему в нем образуют векторы

$$e_1 = (1, 0, 0, 0, \ldots), e_2 = (0, 1, 0, 0, \ldots), e_3 = (0, 0, 1, 0, \ldots), \ldots$$

4. Функция x(t), заданная на отрезке [a, b], называется абсолютно непрерывной, если для любого $\varepsilon > 0$ найдется такое $\delta > 0$, что какова бы ни была конечная система попарно непересекающихся интервалов $[a_i, b_i](i = 1, \ldots, n)$ с суммой длин, меньшей δ , выполняется неравенство

$$\sum_{i=1}^{n} |x(b_i) - x(a_i)| \leqslant \varepsilon.$$

Множество абсолютно непрерывных функций образует векторное пространство.

Векторные пространства E и E^* называются u зоморфными, если между их элементами можно установить взаимно однозначное соответствие, которое согласовано с операциями в E и E^* .

Пусть E – векторное пространство. Множество $M \subset E$ называется линейным многообразием в E, если для любых векторов $x,y \in E$ и любых скаляров $\alpha,\beta \in P$ выполнено $\alpha x + \beta y \in M$.

Множество $x_0 + M$, где $x_0 \in E$, а M – линейное многообразие, называется $a \phi \phi$ инным многообразием.

Векторное пространство E называется алгебраической прямой суммой векторных подпространств E_1 и E_2 , если E_1 , E_2 – векторные подпространства в E и любой элемент $x \in E$ однозначно представим в виде $x = x_1 + x_2$, где $x_1 \in E_1$, $x_2 \in E_2$.

Лемма 1. Векторное пространство E представляет собой прямую сумму подпространств E_1 и E_2 тогда и только тогда, когда $E_1 \cap E_2 = 0$.

Пусть E_1 , E_2 — векторные пространства над полем P, npямое npо-изведение $E=E_1\times E_2$, $E=\{(x_1,x_2):x_1\in E_1,x_2\in E_2\}$, становится векторным пространством, если операции над элементами в нем определить равенствами

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \quad \alpha(x_1, x_2) = (\alpha x_1, \alpha x_2).$$

Пусть E – векторное пространство, $L \subset E$ – его подпространство. Объединим элементы из E в классы, относя два элемента x', x'' в один класс, если $x' - x'' \in L$. При этом, очевидно, различные классы не содержат общих элементов, и каждый элемент $x \in E$ входит только в один класс. Во множестве $E|_{L}$ всех классов можно ввести алгебранческие операции, полагая $\hat{x} + \hat{y} = \widehat{x+y}$, где \hat{x} – класс, содержащий

 $x, \alpha \hat{x} = \widehat{\alpha x}$. Эти определения операций не зависят от выбора представителей класса. В силу данных определений $E\big|_L$ становится векторным пространством и называется $\phi a \kappa mop-npocmpancmeo M$ пространства E по подпространству L. Роль нулевого элемента в нем играет класс, содержащий нулевой элемент пространства E, т. е. подпространство L. Если $\dim E = m$, $\dim L = k$, то $\dim E\big|_L = m - k$. Размерность фактор-пространства называется $\kappa opas Mephocmeo$ подпространства L в пространстве E.

Нормированные пространства. Векторное пространство E называется нормированным векторным пространством, если каждому элементу $x \in E$ поставлено в соответствии неотрицательное число $||x|| \in \mathbb{R}$ (норма x) так, что выполнены следующие аксиомы:

- 1) $||x|| \ge 0$; ||x|| = 0 в том и только том случае, когда $x = \theta$;
- 2) $\|\alpha x\| = |\alpha| \cdot \|x\|, \quad \alpha \in P;$
- 3) $||x + y|| \le ||x|| + ||y||$.

Примеры нормированных пространств

1. Пространство \mathbb{R}^m . Пусть $x = (x_1, x_2, \dots, x_m)$, тогда

$$||x||_c = \left(\sum_{i=1}^m |x_i|^2\right)^{1/2}; \quad ||x||_k = \max_{1 \le i \le m} |x_i|; \quad ||x||_0 = \sum_{i=1}^m |x_i|;$$
$$||x||_p = \left(\sum_{i=1}^m |x_i|^p\right)^{1/p}, p \ge 1.$$

2. Векторное пространство $P_n[a,b]$ многочленов $x(t) = \sum_{k=0}^n a_k t^k$, $t \in [a,b]$, степени не выше n будет нормированным, если норму ввести по формулам

$$||x||_1 = \sum_{k=0}^n |a_k|, \quad ||x||_2 = \max_{a \leqslant t \leqslant b} |x(t)|.$$

3. Векторное пространство P[a,b] всех многочленов, заданных на отрезке [a,b], будет нормированным, если норму ввести по формулt

$$||x|| = \max_{a \leqslant t \leqslant b} |x(t)|.$$

4. Векторное пространство C[a,b] непрерывных на отрезке [a,b] функций относительно нормы

$$||x|| = \max_{a \leqslant t \leqslant b} |x(t)|.$$

5. Векторное пространство $C^{(k)}[a,b]\ k$ раз непрерывно дифференцируемых на отрезке [a,b] функций становится нормированным, если мы введем норму по формулам

$$||x||_1 = \sum_{i=0}^k \max_{a \le t \le b} |x^{(i)}(t)| = \sum_{i=0}^k ||x^{(i)}||_{C[a,b]}.$$

6. Векторное пространство $CL_p[a,b], \, p \geqslant 1,$ непрерывных на [a,b] функций относительно нормы

$$||x|| = \left(\int_a^b |x(t)|^p dt\right)^{1/p}.$$

7. Векторное пространство $CL_p^{(k)}[a,b], p\geqslant 1,\; k\;$ раз непрерывно дифференцируемых на [a,b] функций относительно нормы

$$||x|| = \sum_{i=0}^{k} ||x^{(i)}||_{CL_p[a,b]}.$$

8. Векторное пространство $C_0(\mathbb{R})$ непрерывных на \mathbb{R} функций, для которых $\lim_{|t| \to \infty} x(t) = 0$, является нормированным пространством относительно нормы

$$||x|| = \max_{t \in \mathbb{R}} |x(t)|.$$

9. Векторное пространство BC[a,b] непрерывных и ограниченных на $\mathbb R$ функций является нормированным пространством относительно нормы

$$||x|| = \sup_{t \in \mathbb{R}} |x(t)|.$$

10. Векторное пространство m ограниченных числовых последовательностей $x=(x_1,\ldots,x_i,\ldots)$ является нормированным пространством относительно нормы

$$||x|| = \sup_{i} |x_i|.$$

11. Векторное пространство $l_p, p \geqslant 1$, бесконечных числовых последовательностей $x = (x_1, \ldots, x_i, \ldots)$, для которых $\sum_{i=1}^{\infty} |x_i|^p < \infty$, является нормированным пространством относительно нормы

$$||x|| = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p}.$$

12. Функция x(t) называется функцией c ограниченным изменением, если существует такая постоянная C, что, каково бы ни было разбиение отрезка [a,b] точками $a=x_0 < x_1 < \ldots < x_n = b$, выполняется неравенство

$$\sum_{i=1}^{n} |x(t_i) - x(t_{i-1})| \leqslant C.$$

Полным изменением (или полной вариацией) функции x(t) называется величина

$$\bigvee_{a}^{b} [x] = \sup \sum_{i=1}^{n} |x(t_i) - x(t_{i-1})|.$$

Множество функций с ограниченным изменением, удовлетворяющих условию x(a)=0, образует нормированное векторное пространство V[a,b] относительно нормы

$$||x|| = \bigvee_{a}^{b} [x].$$

Свойства нормы

Лемма 2. Пусть E – нормированное векторное пространство. Тогда для любых элементов $x_1, x_2, \ldots, x_n \in E$ выполняется обобщенное неравенство треугольника

$$||x_1 + x_2 + \ldots + x_n|| \le ||x_1|| + ||x_2|| + \ldots + ||x_n||.$$

Лемма 3. Пусть E – нормированное векторное пространство. Тогда для любых элементов $x, y \in E$ справедливо обратное неравенство треугольника

$$||x - y|| \ge ||x|| - ||y|||.$$

Два вещественных числа p и q, такие что $1\leqslant p < q\leqslant \infty$ называются conpяженными, если

$$\frac{1}{p} + \frac{1}{q} = 1;$$

если p=1, то $q=+\infty$.

Лемма 4 (неравенство Юнга). Пусть $p\ u\ q$ – произвольные сопряженные вещественные числа большие 1. Тогда для любых u,v>0справедливо неравенство Юнга

$$uv \leqslant \frac{u^p}{p} + \frac{v^q}{q}.$$

Теорема 1 (неравенство Гельдера). Пусть 1 и <math>q - число, сопряженное к нему. Тогда для любых функций x(t) и y(t), заданных на [a,b], для которых существуют интегралы

$$\int_a^b |x(t)|^p dt \ u \int_a^b |y(t)|^q dt,$$

имеет место неравенство Гельдера

$$\int_{a}^{b} |x(t)y(t)| \, \mathrm{d}t \leqslant \left(\int_{a}^{b} |x(t)|^{p} \, \mathrm{d}t \right)^{1/p} \cdot \left(\int_{a}^{b} |y(t)|^{q} \, \mathrm{d}t \right)^{1/q}.$$

Следствие 1. Пусть p>1 и p и q таковы, что $\frac{1}{p}+\frac{1}{q}=1$. Пусть последовательности $(x_k)_{k=1}^\infty, (y_k)_{k=1}^\infty$ таковы, что ряды $\sum\limits_{k=1}^\infty |x_k|^p$ и $\sum\limits_{k=1}^\infty |y_k|^q$ сходятся, тогда имеет место неравенство Гельдера

$$\sum_{k=1}^{\infty} |x_k y_k| \le \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p} \cdot \left(\sum_{k=1}^{\infty} |y_k|^q\right)^{1/q}.$$

Теорема 2 (неравенство Минковского). Пусть $p \geqslant 1$ и пусть функции x(t), y(t) таковы, что существуют и конечны интегралы $\int\limits_a^b |x(t)|^p \, \mathrm{d}t$ и $\int\limits_a^b |y(t)|^p \, \mathrm{d}t$, тогда справедливо неравенство Минковского

$$\left(\int_{a}^{b} |x(t) + y(t)|^{p} dt\right)^{1/p} \leq \left(\int_{a}^{b} |x(t)|^{p} dt\right)^{1/p} + \left(\int_{a}^{b} |y(t)|^{p} dt\right)^{1/p}.$$

Следствие 2. Пусть последовательности $(x_k)_{k=1}^{\infty}$, $(y_k)_{k=1}^{\infty}$ таковы, что ряды $\sum_{k=1}^{\infty}|x_k|^p$, $\sum_{k=1}^{\infty}|y_k|^p$, $p\geqslant 1$, сходятся, тогда справедливо неравенство Минковского

$$\left(\sum_{k=1}^{\infty} |x_k + y_k|^p\right)^{1/p} \leqslant \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p} + \left(\sum_{k=1}^{\infty} |y_k|^p\right)^{1/p}.$$

В нормированном пространстве E можно ввести paccmosnue между любыми двумя его элементами по формуле

$$\rho(x,y) = ||x - y||,$$

и, тем самым, превратить E в метрическое пространство.

Метрика ρ называется *инвариантной относительно сдвига*, если выполняется равенство

$$\rho(x+z, y+z) = \rho(x, y);$$

положительно однородной, если

$$\rho(\lambda x, \lambda y) = |\lambda| \rho(x, y).$$

Метрика, порождаемая нормой, является положительно однородной и инвариантной относительно сдвига.

Эквивалентные нормы. Пусть E – нормированное векторное пространство и в E двумя способами введены нормы: $\|\cdot\|_1$, $\|\cdot\|_2$.

Говорят, что *норма* $\|\cdot\|_1$ *подчинена* $\|\cdot\|_2$, если существует $\alpha > 0$ такое, что для любого $x \in E$ $\|x\|_1 \leqslant \alpha \|x\|_2$.

Две нормы $\|\cdot\|_1, \|\cdot\|_2$ эквивалентны, если существуют $\alpha, \beta > 0$ такие, что для всех $x \in E$ выполняется $\alpha \|x\|_1 \leqslant \|x\|_2 \leqslant \beta \|x\|_1$.

Теорема 3 (об эквивалентных нормах). Во всяком конечно-мерном нормированном векторном пространстве все нормы эквива-лентны.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. Задают ли норму в пространстве \mathbb{R} следующие функции:

$$\varphi_1(x) = |e^x|, \quad \varphi_2(x) = |\arcsin x|.$$

Решение. Функция $\varphi_1(x)$ норму не задает, поскольку не выполняется первая аксиома нормы, $\varphi_1(0) \neq 0$. Функция $\varphi_2(x)$ также не определяет норму, поскольку не выполняется вторая аксиома нормы. Действительно, если взять $x=1, \ \lambda=1/2, \ \text{то} \ \|\lambda x\|=|\arcsin{(1/2)}|=\pi/6,$ но $|\lambda|\cdot\|x\|=1/2\cdot\pi/2=\pi/4$. Поэтому $\|\lambda x\|\neq |\lambda|\|x\|$.

Задача 2. Задает ли норму в пространстве ℓ_2 функция

$$\varphi(x) = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p}, \quad p = \frac{1}{2}.$$

Решение. Функция $\varphi(x)$ не является нормой, так как не выполняется третья аксиома нормы. Действительно, возьмем два вектора $x=(1,0,0,\ldots)\in\ell_2$ и $y=(0,1,0,\ldots)\in\ell_2$, тогда $\|x\|=\|y\|=1$, а $\|x+y\|=4$. Поэтому $\|x+y\|>\|x\|+\|y\|$.

Задача 3. Показать, что в пространстве $C^{(1)}[a,b]$ норму можно определить по формуле

$$||x|| = |x(a)| + \max_{a \le t \le b} |x'(t)|.$$

Решение. Проверим выполнение аксиом нормы. Пусть ||x|| = 0. Тогда $|x(a)| + \max_{a \leqslant t \leqslant b} |x'(t)| = 0$. Следовательно, x(t) является решением задачи Коши: x'(t) = 0, x(a) = 0, которая имеет решение x(t) = 0. Остальные аксиомы вытекают из свойств максимума.

Задача 4. Пусть $\alpha = (\alpha_1, \dots, \alpha_m)$, $\alpha_i > 0$ $(i = 1, \dots, m)$ – некоторая фиксированная последовательность. Доказать по определению, что в пространстве \mathbb{R}^m нормы

$$||x||_1 = \left(\sum_{i=1}^m \alpha_i |x_i|^2\right)^{1/2}, \quad ||x||_2 = \max_{1 \le i \le m} (\alpha_i |x_i|)$$

эквивалентны.

Решение. Покажем, что эти нормы подчинены друг другу. Для каждого i

$$|x_i| \le \sum_{i=1}^m |x_i| \le \left(\sum_{i=1}^m |x_i|^2\right)^{1/2} \left(\sum_{i=1}^m 1\right)^{1/2} = \sqrt{m} \left(\sum_{i=1}^m |x_i|^2\right)^{1/2}.$$

Тогда

$$|\alpha_i|x_i| \leqslant \sqrt{m} \left(\sum_{i=1}^m \alpha_i |x_i|^2\right)^{1/2}$$

и, следовательно,

$$||x||_2 \le \sqrt{m} \left(\sum_{i=1}^m \alpha_i |x_i|^2 \right)^{1/2} = \sqrt{m} ||x||_1.$$

С другой стороны

$$||x||_1 = \left(\sum_{i=1}^m \alpha_i |x_i|^2\right)^{1/2} \leqslant \max_{1 \leqslant i \leqslant m} \left(\alpha_i |x_i|\right) \left(\sum_{i=1}^m 1\right)^{1/2} = \sqrt{m} ||x||_2.$$

Задача 5. Доказать, что в пространстве $C^{(1)}[a,b]$ нормы

$$||x||_1 = \int_a^b |x(t)| dt + \max_{t \in [a,b]} |x'(t)|, \quad ||x||_2 = |\max_{t \in [a,b]} |x(t)| + \max_{t \in [a,b]} |x'(t)|$$

эквивалентны.

Решение. Две нормы эквивалентны, если они подчинены друг другу. Норма $\|\cdot\|_1$ подчинена $\|\cdot\|_2$, если существует положительная постоянная α такая, что $\|x\|_1 \leqslant \alpha \|x\|_2$ для всех $x(t) \in C^{(1)}[a,b]$. Оценим $\|x\|_1$:

$$||x||_1 = \int_a^b |x(t)| dt + \max_{t \in [a,b]} |x'(t)| \le \max_{t \in [a,b]} |x(t)|(b-a) + \max_{t \in [a,b]} |x'(t)| \le$$

$$\le \max\{b-a,1\} \cdot \left(\max_{t \in [a,b]} |x(t)| + \max_{t \in [a,b]} |x'(t)|\right) = \alpha ||x||_2.$$

С другой стороны, используя формулу Ньютона – Лейбница для непрерывно дифференцируемых функций, имеем

$$x(t) = x(a) + \int\limits_a^t x'(s) \, \mathrm{d}s$$
 или $|x(a)| \leqslant |x(t)| + \int\limits_a^b |x'(s)| \, \mathrm{d}s.$

Проинтегрировав обе части неравенства по t, получим

$$|(b-a)|x(a)| \le \int_a^b |x(t)| dt + (b-a) \int_a^b |x'(t)| dt.$$

Тогда

$$|x(a)| \le 1/(b-a) \int_a^b |x(t)| dt + \int_a^b |x'(t)| dt.$$

Следовательно, для нормы $\|\cdot\|_2$ получим оценку

$$||x||_{2} = \max_{t \in [a,b]} |x(t)| + \max_{t \in [a,b]} |x'(t)| \leqslant |x(a)| + \int_{a}^{b} |x'(t)| \, dt + \max_{t \in [a,b]} |x'(t)| \leqslant$$

$$\leqslant \frac{1}{b-a} \int_{a}^{b} |x(t)| \, dt + 2 \int_{a}^{b} |x'(t)| \, dt + \max_{t \in [a,b]} |x'(t)| \leqslant$$

$$\leqslant \frac{1}{b-a} \int_{a}^{b} |x(t)| \, dt + 2(b-a+1) \max_{t \in [a,b]} |x'(t)| \leqslant$$

$$\leqslant \max \left\{ \frac{1}{b-a}, 2(b-a+1) \right\} \left(\int_{a}^{b} |x(t)| \, dt + \max_{t \in [a,b]} |x'(t)| \right) = \beta ||x||_{1}.$$

Задача 6. Показать, что в пространстве непрерывных функций нормы

$$||x||_1 = \int_a^b |x(t)| dt$$
, $||x||_2 = |\max_{t \in [a,b]} |x(t)|$

не эквивалентны.

Решение. Заметим, что для любой непрерывной функции справедливо неравенство

$$||x||_1 = \int_a^b |x(t)| dt \le \max_{t \in [a,b]} |x(t)|(b-a) = (b-a)||x||_2,$$

т. е. норма первая подчинена второй. Однако вторая норма первой не подчинена. Действительно, рассмотрим последовательность из непрерывных функций

$$x^{(n)}(t) = \begin{cases} n - n^2 t, & t \in \left[0, \frac{1}{n}\right]; \\ 0, & t \in \left(\frac{1}{n}, 1\right]. \end{cases}$$

Очевидно, что $||x^{(n)}||_2 = n$, в то время как $||x^{(n)}||_1 = 0.5$, т. е. при любом $\beta > 0$ можно выбрать n таким образом, что справедливо

$$||x^{(n)}||_2 = n > \beta \cdot 0.5 = \beta ||x^{(n)}||_1.$$

Задача 7. Показать, что в пространстве бесконечных числовых последовательностей ℓ_1 нормы

$$||x||_1 = \sum_{i=1}^{\infty} |x_i|, \quad ||x||_2 = \sup_i |x_i|$$

не эквивалентны.

 $\mathrm{P}\,\mathrm{e}\,\mathrm{m}\,\mathrm{e}\,\mathrm{h}\,\mathrm{u}\,\mathrm{e}.$ Для любого элемента $x\in\ell_2$ справедливо неравенство

$$||x||_2 = \sup_i |x_i| \leqslant \sum_{i=1}^{\infty} |x_i| = ||x||_1,$$

т. е. $\|\cdot\|_2$ подчинена $\|\cdot\|_1$. Но при этом для любого $\beta>0$ существует последовательности $x^{(n)}\in\ell_2,\ x^{(n)}=\underbrace{(1,\ldots,1}_n,0,\ldots),$ где $n=[\beta]+1,$ что справедливо неравенство

$$||x^{(n)}||_1 = n > \beta = \beta ||x^{(n)}||_2.$$

Задача 8. Указать наименьшее целое $p\geqslant 1$, при котором $x\in\ell_p$

$$x = \left(\frac{\sin i}{\sqrt[7]{i^3 + 1}}\right)_{i=1}^{\infty}.$$

Решение. По определению $x \in \ell_p$, если сходится ряд, составленный из модулей координат последовательности x, в степени p, т. е.

$$\sum_{i=1}^{\infty} \left| \frac{\sin i}{\sqrt[7]{i^3 + 1}} \right|^p.$$

Оценим

$$|x_i|^p = \left| \frac{\sin i}{\sqrt[7]{i^3 + 1}} \right|^p \leqslant \frac{1}{(\sqrt[7]{i^3})^p} \quad \text{при} \quad i \to \infty.$$

Приходим к исследованию на сходимость обобщенного гармонического ряда

$$\sum_{i=1}^{\infty} \frac{1}{i^{3p/7}}.$$

Откуда 3p/7 > 1 или p > 7/3, т. е. p = 3 – это наименьшее целое число p, при котором $x \in \ell_p$.

ЗАДАНИЯ

Задание 1. Задает ли в пространстве $C^{(2)}[a,b]$ дважды непрерывно дифференцируемых на отрезке [a,b] функций норму следующая функция:

1.1.
$$\varphi(x) = \left(\int_a^b |x(t)|^2 dt\right)^{1/2} + \max_{t \in [a,b]} |x''(t)|;$$

1.2.
$$\varphi(x) = |x(a)| + |x(b)| + \max_{t \in [a,b]} |x''(t)|;$$

1.3.
$$\varphi(x) = |x(a) - x(b)| + |x'(a)| + \max_{t \in [a,b]} |x''(t)|$$
;

1.4.
$$\varphi(x) = |x(a)| + |x'(a)| + \max_{t \in [a,b]} |x''(t)|;$$

1.5.
$$\varphi(x) = |x(a)| + \max_{t \in [a, \frac{a+b}{2}]} |x'(t)| + \max_{t \in [a, b]} |x''(t)|;$$

1.6.
$$\varphi(x) = |x(a)| + |x'(a)| + \max_{t \in [a, \frac{a+b}{2}]} |x''(t)|;$$

1.7.
$$\varphi(x) = |x(a)| + \max_{t \in [a, \frac{a+b}{2}]} |x'(t)| + \int_{(a+b)/2}^{b} |x''(t)| dt$$
.

Задает ли в пространстве $C^{(1)}[a,b]$ непрерывно дифференцируемых на отрезке [a,b] функций норму следующая функция:

1.8.
$$\varphi(x) = \left(\int_{a}^{b} |x(t)|^{2} dt\right)^{1/2} + \max_{t \in [a,b]} |x'(t)|;$$

1.9.
$$\varphi(x) = |x(a)| + |x(b)| + \max_{t \in [a,b]} |x'(t)|;$$

1.10.
$$\varphi(x) = |x(a) - x(b)| + \max_{t \in [a,b]} |x'(t)|;$$

1.11.
$$\varphi(x) = \max_{t \in [a,b]} (|x(t)| + |x'(t)|).$$

1.12.
$$\varphi(x) = \max \left(\max_{t \in [a,b]} |x(t)|, \max_{t \in [a,b]} |x'(t)| \right).$$

Задает ли в пространстве \mathbb{R}^m норму следующая функция:

1.13.
$$\varphi(x) = \left(\sum_{k=1}^{m} \sum_{i=1}^{k} |x_i|^2\right)^{1/2};$$
 1.14. $\varphi(x) = \max_{1 \le k \le m} \left|\sum_{i=1}^{k} x_i\right|;$

Задание 2. Определите, являются ли две нормы $||x||_1$ и $||x||_2$ эквивалентными в нормированном пространстве $C^{(2)}[a,b]$ дважды непрерывно дифференцируемых на отрезке [a,b] функций.

2.1.
$$||x||_{C^{(2)}[a,b]}$$
 и $||x||_1 = |x(a)| + |x'(a)| + \max_{t \in [a,b]} |x''(t)|$;

2.2.
$$||x||_{C^{(2)}[a,b]}$$
 и $||x||_1 = |x(a)| + \max_{t \in [a,b]} |x'(t)| + \max_{t \in [a,b]} |x''(t)|$;

2.3.
$$||x||_{C^{(2)}[a,b]}$$
 и $||x||_1 = \left(\int\limits_a^b |x(t)|^2 dt\right)^{1/2} + \max_{t \in [a,b]} |x''(t)|;$

2.4.
$$||x||_{C^{(2)}[a,b]}$$
 и $||x||_1 = \max_{0 \le l \le 2} \left(\sum_{i=0}^{l} \max_{t \in [a,b]} |x^{(i)}(t)| \right);$

2.5.
$$||x||_1 = |x(a)| + |x'(a)| + \max_{t \in [a,b]} |x''(t)|$$
 и

$$||x||_2 = \left(\int_a^b |x(t)|^2 dt\right)^{1/2} + |x'(a)| + \max_{t \in [a,b]} |x''(t)|;$$

2.6.
$$||x||_1 = |x(a)| + |x'(a)| + \max_{t \in [a,b]} |x''(t)|$$
 и

$$||x||_2 = \int_a^b |x(t)| dt + \max_{t \in [a,b]} |x''(t)|;$$

2.7.
$$||x||_1 = |x(a)| + \max_{t \in [a, \frac{a+b}{2}]} |x'(t)| + \max_{t \in [a,b]} |x''(t)|$$
 и

$$||x||_2 = \left(\int_a^b |x(t)|^2 dt\right)^{1/2} + \max_{t \in [a,b]} |x''(t)|.$$

Определите, являются ли две нормы $||x||_1$ и $||x||_2$ эквивалентными в нормированном пространстве $C^{(1)}[a,b]$ непрерывно дифференцируемых на отрезке [a,b] функций.

2.8.
$$||x||_{C^{(1)}[a,b]}$$
 и $||x||_2 = |x(a)| + \max_{t \in [a,b]} |x'(t)|$;

2.9.
$$||x||_{C^{(1)}[a,b]}$$
 и $||x||_2 = \int_a^b |x(t)| dt + \max_{t \in [a,b]} |x'(t)|$;

2.10.
$$||x||_1 = |x(a)| + \max_{t \in [a,b]} |x'(t)|$$
 и

$$||x||_2 = \left(\int_a^b |x(t)|^2 dt\right)^{1/2} + \max_{t \in [a,b]} |x'(t)|;$$

2.11.
$$||x||_{C^{(1)}[a,b]}$$
 и $||x||_2 = \max_{t \in [a,b]} (|x(t)| + |x'(t)|)$;

2.12.
$$||x||_{C^{(1)}[a,b]}$$
 и $||x||_2 = \max_{t \in [a,b]} |x(t)| + \int_a^b |x'(t)| \, \mathrm{d}t.$

Определите, являются ли две нормы $||x||_1$ и $||x||_2$ эквивалентными в нормированном пространстве C[a,b] непрерывных на отрезке [a,b] функций.

2.13.
$$||x||_1 = \int_a^b |x(t)| dt$$
 и $||x||_2 = \left(\int_a^b |x(t)|^2 dt\right)^{1/2}$;
2.14. $||x||_1 = \left(\int_a^b |x(t)|^2 dt\right)^{1/2}$ и $||x||_2 = \left(\int_a^b e^{-t}|x(t)|^2 dt\right)^{1/2}$;
2.15. $||x||_1 = \left(\int_a^b |x(t)|^2 dt\right)^{1/2}$ и $||x||_2 = \left(\int_a^b e^{-t^2}|x(t)|^2 dt\right)^{1/2}$;
2.16. $||x||_1 = \int_a^b |x(t)| dt$ и $||x||_2 = \left(\int_a^b e^{-t^2}|x(t)|^2 dt\right)^{1/2}$.

Задание 3. Указать наименьшее целое $p \geqslant 1$, при котором $x \in \ell_p$.

$$3.1. \ x = \left(\ln\frac{i+\sqrt{i}}{i}\right)_{i=1}^{\infty}; \qquad 3.2. \ x = \left(1-\cos\frac{1}{\sqrt[8]{i}}\right)_{i=1}^{\infty}; \\ 3.3. \ x = \left(\sqrt[3]{\frac{1}{1+2\sqrt{i}}}\right)_{i=1}^{\infty}; \qquad 3.4. \ x = \left(\frac{\ln i}{\sqrt{i}}\right)_{i=1}^{\infty}; \\ 3.5. \ x = \left(\frac{1}{\sqrt[6]{i}} - \frac{1}{\sqrt[6]{i}+1}\right)_{i=1}^{\infty}; \qquad 3.6. \ x = \left(\frac{\sqrt[3]{i}-1}{\sqrt{i}+1}\right)_{i=1}^{\infty}; \\ 3.7. \ x = \left(\frac{1}{\sqrt[4]{i^2+\sin^2 i}}\right)_{i=1}^{\infty}; \qquad 3.8. \ x = \left(\frac{\sqrt[3]{i+1}-\sqrt[3]{i-1}}{\sqrt[4]{i^2+1}}\right)_{i=1}^{\infty}; \\ 3.9. \ x = \left(\sqrt[3]{i}\sin\frac{1}{i^2+3}\right)_{i=1}^{\infty}; \qquad 3.10. \ x = \left(\frac{\arctan tg\ i}{\sqrt[4]{i^2-1}}\right)_{i=1}^{\infty}; \\ 3.12. \ x = \left(\sqrt[4]{i+1}+\sqrt[6]{i-1}\right)_{i=1}^{\infty}; \qquad 3.13. \ x = \left(\sqrt[7]{\frac{1}{i^2}-\frac{1}{i^2-1}}\right)_{i=1}^{\infty};$$

$$3.14. \ x = \left(\frac{\sin i + \sqrt{i}}{i}\right)_{i=1}^{\infty}; \qquad 3.15. \ x = \left(\frac{(i+1)\sqrt[3]{i}}{i(i^2+1)}\right)_{i=1}^{\infty};$$

$$3.16. \ x = \left(\frac{2^i + \sin i}{3^i}\right)_{i=1}^{\infty}; \qquad 3.17. \ x = \left(\frac{i+1}{i(i+4)}\right)_{i=1}^{\infty};$$

$$3.18. \ x = \left(\frac{i-1}{\sqrt[4]{i^5+i}}\right)_{i=1}^{\infty}; \qquad 3.19. \ x = \left(\frac{\sqrt[3]{i}(i+5)}{\sqrt[6]{i^4+i^2+i}}\right)_{i=1}^{\infty}.$$

Задание 4.

4.1. Проверить, имеют ли следующие функции ограниченное изменение на отрезке [0,1]:

$$x(t) = \begin{cases} t^2 \sin(1/t), & 0 < t \le 1, \\ 0, & t = 0, \end{cases} \quad x(t) = \begin{cases} t \sin(1/t), & 0 < t \le 1, \\ 0, & t = 0. \end{cases}$$

- 4.2. Доказать, что множество точек разрыва функции ограниченной вариации на отрезке не более чем счетно.
- 4.3. Доказать, что множество точек разрыва функции ограниченной вариации на отрезке состоит из точек первого рода.
- 4.4. Доказать, функция на отрезке, обладающая ограниченной производной, является функцией ограниченной вариации.
- 4.5. Доказать, что произведение двух функций ограниченной вариации есть функция ограниченной вариации.
- 4.6. Пусть $x(t) \geqslant \alpha > 0$ и x(t) функция ограниченной вариации. Доказать, что 1/x(t) есть функция ограниченной вариации.
- 4.7. Пусть x(t) монотонная функция ограниченной вариации. Доказать,

$$\bigvee_{a}^{b} [x] = |x(b) - x(a)|.$$

4.8. Пусть x(t) и y(t) – функции ограниченной вариации. Доказать, что справедливо неравенство

$$\bigvee_{a}^{b} [x+y] \leqslant \bigvee_{a}^{b} [x] + \bigvee_{a}^{b} [y].$$

4.9. Найти следующие вариации:

$$\bigvee_{0}^{50} [e^t], \bigvee_{1}^{2} [\ln t], \bigvee_{-1}^{1} [t - t^3].$$

ТЕМА 3. СХОДИМОСТЬ И АППРОКСИМАЦИЯ В НОРМИРОВАННОМ ПРОСТРАНСТВЕ

Сходимость в нормированном пространстве. Рассмотрим в нормированном пространстве E последовательность элементов $(x^{(n)})_{n=1}^{\infty}$. Последовательность $(x^{(n)}) \subset E$, называется cxodsumeŭcs, если существует такой элемент $a \in E$, что $||x^{(n)} - a|| \to 0$ при $n \to \infty$, т. е. для любого $\varepsilon > 0$ существует такое $n(\varepsilon)$, что для $n \geqslant n(\varepsilon)$

$$||x^{(n)} - a||_E < \varepsilon.$$

Если a есть предел последовательности $(x^{(n)})$, то будем писать $a=\lim_{n\to\infty}x^{(n)}$ или $x^{(n)}\to a$ при $n\to\infty$.

Назовем *окрестностью* $O_{\varepsilon}(a)$ точки $a \in E$ любой открытый шар с центром в этой точке радиуса ε . Тогда можно по-другому сформулировать определение сходящейся последовательности: последовательность $(x^{(n)})_{n=1}^{\infty}$ сходится к a, если каждая окрестность $O_{\varepsilon}(a)$ точки a содержит все элементы $x^{(n)}$ последовательности $(x^{(n)})_{n=1}^{\infty}$, начиная с некоторого номера $n(\varepsilon)$.

Свойства сходящихся последовательностей

- 1. В нормированном пространстве сходящаяся последовательность имеет только один предел.
- 2. Если последовательность $x^{(n)}$ сходится к a в E, то любая ее подпоследовательность сходится также к a.
- 3. Сходящаяся в нормированном пространстве последовательность ограничена.
- 4. Если $x^{(n)} \to a, \lambda_n \to \lambda$ при $n \to \infty$, где (λ_n) числовая последовательность, то $\lambda^{(n)}x^{(n)} \to \lambda x$ при $n \to \infty$.
- 5. Пусть $x^{(n)} \to a, y^{(n)} \to b$ при $n \to \infty$ в пространстве E, тогда $x^{(n)} + y^{(n)} \to a + b.$
- 6. Если последовательность $(x^{(n)})$ сходится в E к элементу a, то числовая последовательность $(\|x^{(n)}\|)$ сходится в \mathbb{R} к $\|a\|$.

Аппроксимация в нормированном пространстве. Рассмотрим подпространство L пространства E и определим для $x \in E$ расстояние до L по формуле

$$\rho(x,L) = \inf_{\ell \in L} ||x - \ell||.$$

Число $\rho(x,L)$ характеризует наилучшее приближение (наилучшую аппроксимацию) элемента x элементами подпространства L.

Если существует элемент $y \in L$ такой, что $\rho(x,L) = \|x - y\|$, то y называется наилучшим элементом приближения x элементами подпространства L или элементом наилучшей аппроксимации.

Теорема 1 (о существовании аппроксимации). Пусть L – конечномерное подпространство нормированного пространства E. Для любого элемента $x \in E$ существует (возможно, не единственный) элемент $y \in L$, что

$$\rho(x, L) = ||x - y||.$$

Нормированное векторное пространство E будем называть cmporo нормированным, если в нем равенство ||x+y|| = ||x|| + ||y|| возможно только при $y = \lambda x$, где $\lambda > 0$.

Теорема 2 (о единственности аппроксимации). B строго нормированном пространстве E для каждого $x \in E$ и каждого подпространства $L \subset E$ может существовать не более одного элемента наилучшей аппроксимации x элементами L.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. Найти предел последовательности

$$x^{(n)}(t) = \frac{nt^2}{n+t^2}$$

в пространстве C[0,1], если он существует.

Решение. Необходимым условием сходимости последовательности в пространстве C[0,1] является наличие покоординатного предела $x^{(n)}(t)$ при каждом фиксированном $t \in [0,1]$. Данная последовательность при фиксированном t сходится к непрерывной функции $x(t) = t^2$.

Проверим, сходится ли последовательность $x^{(n)}(t)$ к x(t) по норме пространства C[0,1], т. е. равномерно. Вычислим $\|x^{(n)}-x\|_{C[0,1]}$. По определению нормы

$$||x^{(n)} - x||_{C[0,1]} = \max_{t \in [0,1]} \left| \frac{nt^2}{n+t^2} - t^2 \right| = \max_{t \in [0,1]} \left| \frac{t^4}{n+t^2} \right|.$$

Вычислим максимум функции $\frac{t^4}{n+t^2}$ на отрезке [0,1]. Для этого определим точки, подозрительные на экстремум с помощью производной

$$\left(\frac{t^4}{n+t^2}\right)' = \frac{2t^5 + 4nt^3}{n+t^2}; \quad 2t^3(t^2 + 2n) = 0, \quad t_1 = 0.$$

Таким образом, точками, подозрительными на экстремум, являются концы отрезка

$$\left| \frac{nt^2}{n+t^2} - t^2 \right|_{t=0} = 0, \quad \left| \frac{nt^2}{n+t^2} - t^2 \right|_{t=1} = \frac{1}{n+1},$$

Значит,

$$\max_{t \in [0,1]} \left| \frac{t^4}{n+t^2} \right| = \frac{1}{n+1} \xrightarrow[n \to \infty]{} 0.$$

Это означает, что последовательность $x^{(n)}(t)$ в пространстве C[0,1] сходится к функции $x(t)=t^2.$

Задача 2. Найти предел последовательности

$$x^{(n)}(t) = t^n - t^{2n}$$

в пространстве C[0,1], если он существует.

Решение. Последовательность $x^{(n)}(t)$ для каждого фиксированного t при $n \to \infty$ стремится к функции x(t) = 0. Покажем, что последовательность $x^{(n)}(t)$ равномерно к нулю не сходится. Вычислим $\|x^{(n)} - x\|_{C[0,1]} = \max_{t \in [0,1]} |t^n - t^{2n}|$. Так как

$$(t^{n} - t^{2n})' = nt^{n-1} - 2nt^{2n-1} = nt^{n-1}(1 - 2t^{n}),$$

ТО

$$nt^{n-1}(1-2t^n)=0$$
, если $t_1=0,t_2=\left(\frac{1}{2}\right)^{1/n}$.

Точкой, подозрительной на экстремум, является также и точка $t_3=1$. Непосредственной проверкой убеждаемся, что максимум достигается в

точке
$$t_2=\left(\frac{1}{2}\right)^{1/n}$$
. Поэтому $\max_{t\in[0,1]}\left|t^n-t^{2n}\right|=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$ и к нулю не стремится. Значит, последовательность $x^{(n)}(t)=t^n-t^{2n}$ в пространстве $C[0,1]$ не сходится.

Задача 3. Выяснить, сходится ли последовательность

$$x^{(n)}(t) = \left(\frac{1}{5}, \frac{1}{5^2}, \dots, \frac{1}{5^n}, 0, \dots\right)$$

в пространстве ℓ_3 .

Решение. Необходимым условием сходимости последовательности в пространстве $\ell_p, p \geqslant 1$, является наличие покоординатного предела. Заметим, что $x_i^{(n)} = \frac{1}{5^i}$ для $i \leqslant n$ и $x_i^{(n)} = 0$ для i > n. Поэтому $x_i^{(n)} \xrightarrow[n \to \infty]{} \frac{1}{5^i}$. Таким образом, последовательность $x^{(n)}$ покоординатно сходится к $x = \left(\frac{1}{5}, \frac{1}{5^2}, \dots, \frac{1}{5^n}, \frac{1}{5^{n+1}}, \dots\right)$. Заметим, что $x \in \ell_3$, так как $\sum_{i=1}^{\infty} \left|\frac{1}{5^i}\right|^3 < \infty$. Покажем, что последовательность $x^{(n)}$ сходится к x по норме пространства ℓ_3

$$||x^{(n)} - x||_{\ell_3}^3 = \sum_{i=n+1}^{\infty} \left| \frac{1}{5^i} \right|^3 = \frac{5^{-3(n+1)}}{1 - (1/5)^3} = \frac{1}{124} \frac{1}{5^{3n}} \xrightarrow[n \to \infty]{} 0.$$

Следовательно, $\lim_{n \to \infty} x^{(n)} = x$.

Задача 4. Выяснить, сходится ли последовательность

$$x^{(n)} = \left(\underbrace{1, 1, \dots, 1}_{n}, 0, \dots\right)$$

в пространстве ℓ_1 .

Решение. Очевидно, что x = (1, ..., 1, ...) является покоординатным пределом последовательности, но $x \notin \ell_1$, так как ряд, составленный из единиц расходится. Следовательно, последовательность $x^{(n)}$ не имеет предела в пространстве ℓ_1 .

Задача 5. Доказать, что последовательность

$$x^{(n)}(t) = n^2 t e^{-nt} (n \in \mathbb{N})$$

сходится поточечно к функции x(t) = 0 для любого $t \in [0,1]$, но не сходится в пространстве $CL_1[0,1]$.

Решение. Последовательность $x^{(n)}(t)$ при каждом фиксированном $t\in[0,1]$ стремится к нулю, так как $\lim_{n\to\infty}\frac{n^\alpha}{a^n}=0,\,|a|>1.$ Вычислим

$$||x^{(n)} - x|| = \int_{0}^{1} |x^{(n)}(t) - x(t)| dt = \int_{0}^{1} n^{2} t e^{-nt} dt = [nt = z] =$$
$$= \int_{0}^{n} z e^{-z} dz = 1 - ne^{-n} - e^{-n} \xrightarrow[n \to \infty]{} 1.$$

Это означает, что последовательность $x^{(n)}(t)$ не сходится в пространстве $CL_1[0,1]$.

Задача 6. В пространстве \mathbb{R}^2 с нормой $\|x\| = |x_1| + |x_2|$ выберем точку $x_0(1,-1)$ и одномерное подпространство L, порожденное элементом e(1,1), т. е. $L = \{l = \alpha e : \alpha \in \mathbb{R}, e(1,1)\}$. Вычислить расстояние от точки x_0 до подпространства L.

Решение. Очевидно, что точная нижняя грань достигается при любых $\alpha \in [-1,1]$. Следовательно, имеется бесконечное множество элементов наилучшей аппроксимации вида $y=\alpha e, \, \alpha \in [-1,1]$, приближающих $x_0(1,-1)$ с помощью элементов подпространства $L \subset \mathbb{R}^2$.

$$\rho(x_0, L) = \inf_{l \in L} ||x_0 - l|| = \inf_{\alpha \in R} (|1 - \alpha| + |1 + \alpha|) = 2.$$

ЗАДАНИЯ

Задание 1. Найти предел последовательности $x^{(n)}$ в нормированном пространстве C[a,b], $C^{(1)}[a,b]$, $CL_1[a,b]$, если он существует.

1.1.
$$x^{(n)}(t) = t \arctan(nt), t \in [0, 3];$$

1.2.
$$x^{(n)}(t) = \frac{t^{n+1}}{n+1} - \frac{t^{n+2}}{n+2}, \quad t \in [0,1];$$

1.3.
$$x^{(n)}(t) = \sqrt{t^2 + \frac{1}{n^2}}, \quad t \in [-2, 2];$$

1.4.
$$x^{(n)}(t) = \left(1 + \frac{t}{n}\right)^n, \ t \in [-1, 1];$$

1.5.
$$x^{(n)}(t) = n\left(\sqrt{t + \frac{1}{n}} - \sqrt{t}\right), \ t \in [1, 3];$$

1.6.
$$x^{(n)}(t) = t(1 + e^{-nt}), t \in [0, 1];$$

1.7.
$$x^{(n)}(t) = \frac{2nt}{1 + n^2t^2}, \quad t \in [0, 1];$$

1.8.
$$x^{(n)}(t) = n^2 (1-t) t^{n-1}, t \in [0,1];$$

1.9.
$$x^{(n)}(t) = \frac{n^2t+1}{n^2+t^2}, t \in [0,2];$$

1.10.
$$x^{(n)}(t) = n(1-t)t^{n-1}, t \in [0,1];$$

1.11.
$$x^{(n)}(t) = \frac{t(2+n^2t^2)}{1+n^2t^2}, t \in [0,1];$$

1.12.
$$x^{(n)}(t) = nt^2 e^{-nt}, t \in [0, 2];$$

1.13.
$$x^{(n)}(t) = \frac{nt}{\sqrt{n^2 + 1}}, t \in [0, 1];$$

1.14.
$$x^{(n)}(t) = n^2 (1-t) t^n, t \in [0, 1/2];$$

1.15.
$$x^{(n)}(t) = \sqrt{n}e^{-nt}, t \in [0, 1];$$

1.16.
$$x^{(n)}(t) = nt\sqrt{t}e^{-2nt^2}, t \in [0, 2];$$

1.17.
$$x^{(n)}(t) = \frac{1}{2 - (t^2 - 1)^n}, \quad t \in [0, 4];$$

1.18.
$$x^{(n)}(t) = \frac{n^2 t^2}{n^2 t + t^2}, \quad t \in [0, 1];$$

1.19.
$$x^{(n)}(t) = t + \arctan n(t - 1/2), \quad t \in [0, 1];$$

1.20.
$$x^{(n)}(t) = t^n - 3t^{n+2} + 2t^{n+3}, t \in [0, 1];$$

1.21.
$$x^{(n)}(t) = t(1 - e^{-nt^2}), t \in [0, 1].$$

Задание 2. Найти наименьшее целое значение $p \geqslant 1$, при котором $x^{(n)} \in \ell_p$ и вычислить предел последовательности $x^{(n)}$ в этом пространств ℓ_p . Если последовательность $x^{(n)} \in m$, то найти также предел в m, если он существует.

2.1.
$$x^{(n)} = \left(\left(\frac{5n+1}{5n+2} \right)^n, \dots, \left(\frac{5n+1}{5n+2} \right)^n, 0, \dots \right);$$

2.2.
$$x^{(n)} = \left(\frac{1}{\sqrt{n}}, \frac{1}{2\sqrt{2n}}, \dots, \frac{1}{i\sqrt{in}}, \dots\right);$$

2.3.
$$x^{(n)} = \left(\frac{\ln(2^n+1)}{n}, \frac{\ln(3^n+1)}{n}, \dots, \frac{\ln((i+1)^n+1)}{n}, 0, \dots\right);$$

$$\begin{aligned} &2.4.\ x^{(n)} = \left(\frac{1}{2^{n-2}}, \frac{1}{2^{n}}, \frac{1}{2^{n+2}}, \frac{1}{2^{n+4}}, \cdots\right);\\ &2.5.\ x^{(n)} = \left(\left(1 + \frac{1}{n}\right)^{n}, \dots, \left(1 + \frac{i}{n}\right)^{in}, \dots\right);\\ &2.6.\ x^{(n)} = \left(\frac{e + e^{-1}}{2}, \frac{e^{2} + e^{-2}}{2^{2}}, \dots, \frac{e^{i} + e^{-i}}{2^{i}}, \dots\right);\\ &2.7.\ x^{(n)} = \left(\frac{1}{3}, \frac{2^{2} - 1}{3^{2}}, \dots, \frac{2^{i} - 1}{3^{i}}, \dots\right);\\ &2.8.\ x^{(n)} = \left(\frac{(1 + 1)\sqrt[3]}{\sqrt{1 \cdot 2}}, \frac{(2 + 1)\sqrt[3]}{\sqrt{2 \cdot 3}}, \dots, \frac{(i + 1)\sqrt[3]}{\sqrt{i(i + 1)}}, \dots\right);\\ &2.9.\ x^{(n)} = \left(\frac{1^{3} + 1}{1!}, \frac{2^{3} + 1}{2!}, \dots, \frac{i^{3} + 1}{i!}, \dots\right);\\ &2.10.\ x^{(n)} = \left(\frac{1}{2^{n} + 1}, \dots, \frac{1}{2^{n} + n}, 0, \dots\right);\\ &2.11.\ x^{(n)} = \left(\frac{\ln 1}{n}, \frac{\ln 2}{\sqrt{2}}, \dots, \frac{\ln i}{\sqrt{i}}, \dots\right);\\ &2.12.\ x^{(n)} = \left(\frac{\sin 1 + \sqrt{1}}{1}, \frac{\sin 2 + \sqrt{2}}{2}, \dots, \frac{\sin i + \sqrt{i}}{i}, \dots\right);\\ &2.13.\ x^{(n)} = \left(\frac{n^{3}}{1 + n^{3}}, \frac{n^{3}}{1 + 4n^{3}}, \dots, \frac{n^{3}}{1 + i^{2}n^{3}}, \dots\right);\\ &2.14.\ x^{(n)} = \left(\left(1 + \frac{1}{n}\right)^{n}, \left(1 + \frac{1}{2n}\right)^{n+2}, \dots, \left(1 + \frac{1}{in}\right)^{n+i}, \dots\right);\\ &2.15.\ x^{(n)} = \left(1, \frac{1}{\ln 2}, \frac{1}{\ln 3}, \dots, \frac{1}{\ln n}, 0, \dots\right);\\ &2.16.\ x^{(n)} = \left(1, \frac{1}{2^{\alpha}}, \frac{1}{n^{\alpha}}, 0, \dots\right), \alpha \in (0, \infty);\\ &2.17.\ x^{(n)} = \left(\frac{n^{2}}{1 + n^{3}}, \frac{2n^{2}}{1 + 4n^{3}}, \dots, \frac{in^{2}}{1 + i^{2}n^{3}}, \dots\right);\\ &2.18.\ x^{(n)} = \left(\frac{1}{2}, \frac{2}{3}, \dots, \frac{n}{n+1}, 0, \dots\right); \end{aligned}$$

2.19.
$$x^{(n)} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{4}}, \dots, \frac{1}{\sqrt{n+2}}, 0, \dots\right);$$

2.20. $x^{(n)} = \left(\underbrace{0, \dots, 0}_{n-1}, \frac{1}{n^{\alpha}}, \frac{1}{(n+1)^{\alpha}}, \dots, \right), \ \alpha > 1;$
2.21. $x^{(n)} = \left(\frac{\arctan 1}{\sqrt[3]{1}}, \frac{\arctan 2}{\sqrt[3]{2}}, \dots, \frac{\arctan i}{\sqrt[3]{i}}, \dots\right).$

Задание 3.

- 3.1. В пространстве непрерывных функций C[0,1] рассмотрим подпространство $L = \{x(t) \in C[0,1] : x(0) = 0\}$. Описать множество элементов наилучшей аппроксимации элементами подпространства функции $x_0(t) = 1$.
- 3.2. В пространстве непрерывных функций $CL_2[0,1]$ рассмотрим множество $M=\{x(t)\in CL_2[0,1]:x(0)=0\}$. Описать множество элементов наилучшей аппроксимации элементами подпространства функции $x_0(t)=e^t$.
- 3.3. В пространстве C[0,1] рассмотрим подпространство многочленов степени не выше n. Описать множество элементов наилучшей аппроксимации элементами подпространства функции $x_0(t) = \sin t$.
- 3.4. В пространстве \mathbb{R}^2 с нормой $\|x\| = \max\{|x_1|, |x_2|\}$ выберем точку $x_0(1,-1)$ и одномерное подпространство L, порожденное элементом e(1,1). Описать множество элементов наилучшей аппроксимации x_0 элементами подпространства L.
- 3.5. В пространстве \mathbb{R}^2 с нормой $\|x\| = |x_1| + |x_2|$ выберем точку $x_0(-1,1)$ и одномерное подпространство L, порожденное элементом e(1,1). Описать множество элементов наилучшей аппроксимации x_0 элементами подпространства L.
- 3.6. В пространстве \mathbb{R}^2 с нормой $\|x\| = |x_1| + |x_2|$ выберем точку $x_0(1,0)$ и одномерное подпространство $L = \{x \in \mathbb{R} : x_1 = x_2\}$, Описать множество элементов наилучшей аппроксимации x_0 элементами подпространства L.
- 3.7. В пространстве \mathbb{R}^2 с нормой $||x|| = \max\{|x_1|, |x_2|\}$ выберем точку $x_0(1,0)$ и одномерное подпространство $L = \{x \in \mathbb{R} : x_1 = 0\}$, Описать множество элементов наилучшей аппроксимации x_0 элементами подпространства L.

ТЕМА 4. МНОЖЕСТВА В НОРМИРОВАННОМ ПРОСТРАНСТВЕ

Пусть E – нормированное пространство, $x_0 \in E, r > 0$.

Множество $B(x_0,r) = \{x \in E : ||x - x_0|| < r\}$, называется откры $mым \ mapom \ c$ центром в точке x_0 радиуса r. Аналогично, множество $B[x_0,r] = \{x \in E \colon ||x-x_0|| \leqslant r\}, \ r > 0,$ называется замкнутым шаром в пространстве E. Множество $S[x_0, r] = \{x \in E : ||x - x_0|| = r\}$ называется *сферой*. Очевидно, $B[x_0,r] = B(x_0,r) \bigcup S(x_0,r)$.

Множество $A \subset E$ называется *открытым* в нормированном пространстве $(E, \|\cdot\|)$, если вместе с каждой своей точкой оно содержит и некоторый открытый шар $B(x_0,r)$ с центром в этой точке, т. е. для $\forall x_0 \in E, \exists r > 0, \text{ что } B(x_0, r) \subset A.$

Лемма 1. Открытый шар в нормированном пространстве Е является открытым множеством.

Множество $A \subset E$ называется замкнутым в E, если его дополнение $E \setminus A$ открыто в E.

Свойства открытых множеств

- 1. Пусть $\{A_i\}_{i=1}^{\infty}, A_i \subset E,$ система открытых множеств, тогда множество $A = \bigcup_{i=1}^{\infty} A_i$ также открыто в E.
- 2. Пусть задана конечная система $\{A_i\}_{i=1}^n$ открытых множеств $A_i\subset E$, тогда множество $A=\bigcap_{i=1}^n A_i$ так же открыто в E.

Множество X называется mononoruческим npocmpancmвом, если в нем выделена система au подмножеств, называемых открытыми, которая удовлетворяет следующим аксиомам:

- $\varnothing \in \tau, X \in \tau$;
- если $A_{\alpha} \in \tau$, то $\bigcup_{\alpha} A_{\alpha} \in \tau$; если $A_1, A_2 \in \tau$, то $A_1 \bigcap A_2 \in \tau$.

Семейство открытых множеств в нормированном пространстве порождает топологию, которая называется естественной топологией.

Теорема 1. Всякое открытое множество на числовой прямой представляет собой сумму конечного или счетного числа попарно непересекающихся интервалов.

Так как замкнутые множества – это дополнения открытых, то отсюда следует, что всякое замкнутое множество на прямой получается выбрасыванием из прямой конечного или счетного числа интервалов.

Множества $A \subset E$ называется *связным*, если его нельзя представить как объединение двух непересекающихся непустых открытых множеств.

Множества $A \subset E$ называется *ограниченным*, если в пространстве E существует шар B сколь угодно большого, но конечного радиуса r > 0, что множество A содержится в этом шаре.

 \mathcal{A} иаметром множества $A \subset E$ называется число

$$d = \sup_{x, y \in A} ||x - y||.$$

Лемма 2. Множество A ограничено в E тогда и только тогда, когда его диаметр конечен.

Множества $A \subset E$ называется выпуклым, если любые две точки x,y множества A содержатся в нем вместе с отрезком $[x,y] = \{\alpha x + (1-\alpha)y : \alpha \in [0,1]\}$, соединяющим эти точки.

Лемма 3. Пересечение любого числа выпуклых множеств есть выпуклое множество.

Пусть E – нормированное пространство, $A \subset E, x_0 \in E$. Выясним расположение точки x_0 относительно множества A.

Точка $x_0 \in E$ называется *внутренней точкой* множества A, если существует шар $B(x_0,r) \subset E$ радиуса r>0 с центром в точке x_0 такой, что $B(x_0,r) \subset A$.

Точка $x_0 \in E$ называется внешней точкой множества A, если существует шар $B(x_0,r) \subset E$ радиуса r > 0 с центром в точке x_0 такой, что $B(x_0,r) \cap A = \emptyset$, т. е. шар $B(x_0,r) \subset (E \setminus A)$.

Точка $x_0 \in E$ называется граничной точкой множества A, если в любом шаре $B(x_0,r)$ есть точки, принадлежащие A, и точки, не принадлежащие A. Границей множества A называется множество ∂A его граничных точек.

Точка $x_0 \in E$ называется точкой прикосновения множества A, если в любом шаре $B(x_0, r)$ радиуса r > 0 содержится хотя бы одна точка множества A.

Точка $x_0 \in A$ называется изолированной точкой множества A, если в достаточно малом шаре $B(x_0, r)$ с центром в точке x_0 нет точек из A, отличных от x_0 .

Точка $x_0 \in E$ называется npedenthoй точкой множества <math>A, если в любом шаре $B(x_0, r)$ содержится бесконечно много точек из A.

Совокупность всех точек прикосновения множества A называется замыканием этого множества и обозначается символом \overline{A} .

Теорема 2. Пусть A – множество в нормированном векторном пространстве E. Тогда следующие свойства эквивалентны:

- 1) A замкнутое множество;
- 2) $\overline{A} \subset A$, т. е. A содержит все свои точки прикосновения;
- 3) $\overline{A} = A$, m. e. A cosnadaem со своим замыканием.

Теорема 3. Точка $x_0 \in E$ является точкой прикосновения множества для $A \subset E$ тогда и только тогда, когда $\rho(x_0, A) = 0$.

Пусть A и B – два множества в нормированном пространстве E. Множество A называется nлотным в B, если $\overline{A} \supset B$. В частности, множество A называется a совпадает со всем пространством E.

Нормированное векторное пространство E называется cenapa benberbenben, если в нем имеется счетное всюду плотное множество.

Π римеры сепарабельных пространств

1. Пространство C[0,1] всех непрерывных функций, заданных на отрезке [0,1] сепарабельно, так как совокупность всех многочленов с рациональными коэффициентами образует в нем счетное всюду плотное множество. Действительно, по теореме Вейерштрасса для любой функции $x(t) \in C[0,1]$ найдется многочлен $p(t) \in P[0,1]$ с рациональными коэффициентами, что $||x(t)-p(t)|| < \varepsilon$ для любого $\varepsilon > 0$. Значит, $p(t) \in B(x,\varepsilon)$, т. е. x(t) является точкой прикосновения множества многочленов.

В пространстве C[0,1] в качестве счетного всюду плотного множества можно взять также совокупность всех кусочно-линейных функ-

ций, графики которых представляют собой ломанные с вершинами в рациональных точках.

- **2.** Пространство ℓ_1 бесконечных числовых последовательностей (x_1, x_2, \ldots) , для которой ряд $\sum_{i=1}^{\infty} |x_i| < \infty$, сепарабельно. Счетным всюду плотным множеством в ℓ_1 является, например, множество s_0 , элементами которого являются последовательности рациональных чисел с конечным числом членов, отличных от нуля. Действительно, из сходимости ряда вытекает, что $\lim_{n\to\infty} x_n = 0$. Поэтому заменим в последовательности (x_1, x_2, \ldots) , определяющей элемент x, все члены, начиная с (n+1)-го, нулями, а каждое вещественное число x_i соответствующим рациональным числом q_i . Получим последовательность (q_1, q_2, \ldots) . Совокупность таких последовательностей и образуют счетное всюду плотное множество в ℓ_1 . Построенные последовательности, у которых конечное число членов отличных от нуля, принято называть ϕ инитными последовательностьмими.
- 3. Пример несепарабельного пространства. Рассмотрим пространство m ограниченных числовых последовательностей с $\|x\|_m = \sup_i |x_i|$ и в нем всевозможные последовательности, состоящие из нулей и единиц. Они образуют множество мощности континуума. Расстояние между двумя такими последовательностями как элементами пространства m равно 1. Окружим каждый такой элемент открытым шаром радиуса 1/2. Эти шары не пересекаются. Если в m существует всюду плотное множество, то каждый из построенных шаров должен содержать хотя бы по одной точке из этого множества, и, следовательно, оно не может быть счетным.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. Является ли множество

$$A = \{x(t) \in C[0,1] : x(0) = 0\}$$

открытым, замкнутым в пространствах $C[0,1], CL_1[0,1]$?

Решение. Докажем, что множество A не является открытым в пространстве C[0,1]. Рассмотрим точку $x_0 \in A$, т. е. $x_0(t) \in C[0,1]$ и $x_0(0)=0$. Для каждого r>0 существует функция $y(t)=x_0(t)+r/2$, которая принадлежит шару $B(x_0,r)$, но не принадлежит множеству A, так как $y(0)=r/2\neq 0$.

Таким образом, у множества A нет внутренних точек. Следовательно, каждая точка множества A является для него граничной. Поэтому покажем, что A — замкнуто. Напомним, что множество замкнуто, если $A = \overline{A}$, т. е. оно содержит все свои предельные точки. Для этого рассмотрим любую сходящуюся последовательность точек множества A. Поскольку сходимость в пространстве C[0,1] равномерная, то из того, что $x_n(t) \Rightarrow x(t)$, следует, что x(t) — непрерывна и $x(0) = \lim_{n \to \infty} x_n(0) = 0$.

Итак, в пространстве C[0,1] множество A – замкнуто.

Множество A – не является открытым в пространстве $CL_1[0,1]$. Это следует из того, что каждый открытый шар радиуса r > 0 пространства $CL_1[a,b]$ содержит открытый шар радиуса r/(b-a) с центром в той же точке. Поскольку множество A не является открытым в пространстве C[0,1], то оно не будет открытым в $CL_1[a,b]$.

Однако множество A — не будет замкнутым в пространстве $CL_1[0,1]$, так как существуют предельные точки множества A, которые ему не принадлежат. Действительно, рассмотрим функцию $x_0(t)=1$, которая не принадлежит множеству, однако во множестве A существует последовательность $x^{(n)}(t)$, которая сходится к ней:

$$x^{(n)}(t) = \begin{cases} nt, & \text{если } t \in [0, 1/n]; \\ 1, & \text{если } t \in [1/n, 1]. \end{cases}$$

Действительно,

$$||x^{(n)} - x||_{CL_1[0,1]} = \int_0^1 |x^{(n)}(t) - x(t)| dt = \int_0^{1/n} |1 - nt| dt = \frac{1}{2n} \xrightarrow[n \to \infty]{} 0.$$

Замыкание множества A совпадает со всем пространством непрерывных функций, потому что для любой непрерывной функции можно построить последовательность непрерывных функций, исходящих из нуля, которые в среднем будут сходиться к заданной функции.

Задача 2. Доказать, что множество

$$A = \left\{ x(t) \in C^{(1)}[0,1] : x'\left(\frac{1}{2}\right) = 0 \right\}$$

замкнуто в пространстве $C^{(1)}[0,1]$, но не замкнуто в C[0,1]

Решение. Для доказательства замкнутости множества покажем, что оно содержит все свои предельные точки. Пусть $(x^{(n)}(t)) \subset A$ –

сходящаяся в $C^{(1)}[0,1]$ последовательность. Покажем, что ее предел принадлежит множеству A. Действительно,

$$||x^{(n)} - x|| = \max_{t \in [0,1]} |x^{(n)}(t) - x(t)| + \max_{t \in [0,1]} |(x^{(n)})'(t) - x'(t)| \xrightarrow[n \to \infty]{} 0.$$

Тогда для каждого $t \in [0,1]$ справедливо $x'\left(\frac{1}{2}\right) = \lim_{t \to \infty} (x^{(n)})'\left(\frac{1}{2}\right) = 0$. Таким образом, функция $x(t) \in C^{(1)}[0,1]$ и удовлетворяет условию $x'\left(\frac{1}{2}\right) = 0$, т. е. принадлежит множеству A.

Заметим, что по норме пространства C[0,1] множество A не замкнуто, поскольку из равномерной сходимости последовательности непрерывно дифференцируемых функций не следует дифференцируемость предельной функции.

Задача 3. Выяснить, является ли множество

$$A = \{x \in \ell_2 : x = (x_1, \dots, x_i, \dots), x_i > 0, i = 1, 2, \dots\}$$

открытым в пространстве ℓ_2 ?

Решение. Покажем, что множество $A \subset \ell_2$ не открыто. Это означает, что во множестве A существует не внутренняя точка. Действительно, рассмотрим точку $x_0 = \left(1,\frac{1}{2},\dots,\frac{1}{i},\dots\right) \in \ell_2$. Какой бы открытый шар радиуса r>0 мы не взяли, найдется номер i такой, что $1/i^2 < r^2$. А это означает, что точка $y = \left(1,\frac{1}{2},\dots,\frac{1}{i-1},0,\frac{1}{i+1},\dots\right)$ принадлежит шару $B(x_0,r)$, потому что $\|y-x_0\| = 1/i < r$, но не принадлежит A.

Задача 4. Показать, что множество

$$A = \{x \in \ell_1 : x = (x_1, \dots, x_i, \dots), x_i > -1, i = 1, 2, \dots\}$$

открыто в пространстве ℓ_1 .

Решение. Пусть $x \in A$. Покажем, что существует шар $B(x,r_x)$, который целиком лежит во множестве A. Действительно, если $x \in A$, $A \subset \ell_1$, то $\sum_{i=1}^{\infty} |x_i| < \infty$. Из сходимости ряда вытекает, что $x_i \to 0$ при $i \to \infty$. Поскольку $x_i > -1$, то $\exists n_0 \in \mathbb{N}$, что для всех $i > n_0$ $x_i > \frac{1}{2}$. Обозначим через $\alpha = \inf_i x_i > -1$ и зададим радиус шара соотношением $r = \alpha + 1$. Тогда для $y \in B(x, r_x)$, т. е. $||y - x|| < r_x$, имеем

$$|y_i - x_1 \le |y_i - x_i| \le \sum_{i=1}^{\infty} = ||y - x|| < r_x.$$

Откуда

$$y_i = y_i - x_i + x_i > r_x + x_i = -1 + (x_i - \alpha) > -1.$$

Это означает, что $y \in A$, т. е. множество A открыто.

Задача 5. Выяснить, является ли множество

$$A = \left\{ x \in \ell_1 : x = (x_1, \dots, x_i, \dots), \sum_{i=1}^{\infty} i |x_i| \le 1 \right\}$$

выпуклым в пространстве ℓ_1 ?

Решение. Множество выпукло, если вместе с каждыми точками $x=(x_1,\ldots,x_i,\ldots),\ y=(y_1,\ldots,y_i,\ldots)\in A$ множеству A принадлежит и отрезок $[x,y]=\alpha x+(1-\alpha)y,$ соединяющий эти точки, $\alpha\in[0,1].$ Обозначим через z точку отрезка $[x,y],\ z=\alpha x+(1-\alpha)y.$ Покажем, что $z\in A.$

Итак,

$$\sum_{i=1}^{\infty} i|z_i| = \sum_{i=1}^{\infty} i|\alpha x_i + (1-\alpha)y_i| \leqslant$$

$$\leq \alpha \sum_{i=1}^{\infty} i|x_i| + (1-\alpha) \sum_{i=1}^{\infty} i|y_i| \leq \alpha + (1-\alpha) = 1.$$

Это означает, что множество A выпукло в пространстве ℓ_1 .

Задача 6. Показать, что множество

$$A = \left\{ x \in \mathbb{R}^n : x = (x_1, x_2, \dots, x_n), \sum_{i=1}^{\infty} \sqrt{|x_i|} \le 1 \right\}$$

не выпукло в пространстве \mathbb{R}^n .

Решение. Множество не выпукло, если существуют две точки в этом множестве, что отрезок их соединяющий не принадлежит множеству. Рассмотрим точки $\widetilde{x}=(1,0,\ldots,0)$ и $\widetilde{y}=(0,0,\ldots,0,1)$ из множества A, пусть $\alpha=1/2$, тогда

$$z = \alpha \widetilde{x} + (1 - \alpha)\widetilde{y} = (\frac{1}{2}, 0, \dots, 0, \frac{1}{2}),$$

$$\sum_{i=1}^{\infty} \sqrt{|z_i|} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} > 1.$$

Задача 7. Доказать, что множество

$$L = \left\{ x(t) \in C[0, 1] : \int_{0}^{1} x(t) dt = 0 \right\}$$

является подпространством в пространстве $CL_1[0,1]$?

Решение. Пусть $x(t), y(t) \in L$ и $\alpha, \beta \in \mathbb{R}$, тогда легко проверить, что $\alpha x + \beta y \in L$. Покажем, что множество замкнуто. Пусть $(x^{(n)}) \subset L$ и $\|x_n - x\| \xrightarrow[n \to \infty]{CL_1[0,1]} 0$, тогда $x \in L$.

Действительно,

$$\left| \int_{0}^{1} x(t) dt \right| \leq \left| \int_{0}^{1} (x(t) - x^{(n)}(t) dt \right| + \left| \int_{0}^{1} x^{(n)}(t) dt \right| \leq$$

$$\leq \int_{0}^{1} |x(t) - x^{(n)}(t)| dt \xrightarrow[n \to \infty]{} 0.$$

Задача 8. Показать, что множество

$$A = \left\{ x \in \ell_2 : x = (x_1, x_2, \dots, x_i, \dots), \sum_{i=1}^{\infty} x_i = 0 \right\}$$

не является подпространством в пространстве ℓ_2 .

Решение. Заметим, что A в ℓ_2 является линейным многообразием в силу того, что сложение последовательностей и умножение последовательности на скаляр в ℓ_2 осуществляется покоординатно. Однако множества A в ℓ_2 не замкнуто, потому что существует последовательность $\begin{pmatrix} -1 & -1 & -1 \end{pmatrix}$

$$x_n = \left(1, \underbrace{\frac{-1}{n}, \dots, \frac{-1}{n}}, 0, \dots\right) \in A$$
, которая в ℓ_2 сходится к элементу

 $x = (1, 0, 0, ...)^n$, но он множеству A не принадлежит.

Задача 9. Показать, что множество

$$L_{n_0} = \left\{ x \in \ell_2 : x = (x_1, x_2, \dots, x_i, \dots), \ x_i = 0, \forall i > n_0 \right\},$$

где n_0 – фиксировано, нигде не плотно в пространстве ℓ_2 .

Решение. По определению, множество нигде не плотно в нормированном пространстве, если оно не плотно ни в одном шаре пространства, т. е. если в каждом шаре $B \subset \ell_2$ содержится другой шар B_1 , не имеющий с множеством ни одной общей точки.

Пусть B – произвольный шар в ℓ_2 . Возможны два варианта:

- 1) $B \cap L_{n_0} = \emptyset$;
- 2) $z = (z_1, z_2, \dots, z_i, \dots) \in B \cap L_{n_0}$.

Первый случай тривиален.Рассмотрим второй случай. и построим шар $B_1(z,\varepsilon)\subset B$ и точку $y=(z_1,z_2,\ldots,z_{n_0},\varepsilon/2,\ldots)$. Тогда для всех $x\in L_{n_0}$ имеем $\|x-y\|\geqslant \varepsilon/2$, т. е. $B_2(y,\varepsilon/2)\subset B_1z,\varepsilon\subset B$. Таким образом, в шаре B найдется шар B_2 , не содержащий точек множества L_{n_0} , т. е. L_{n_0} нигде не плотно в ℓ_2 .

Задача 10. Показать, что множество A последовательностей из ℓ_2 , содержащих лишь конечное число членов, отличных от нуля, плотно в пространстве ℓ_2 .

Решение. Пусть $x\in \ell_2$. Это означает, что $\sum\limits_{i=1}^{\infty}|x_i|^2<\infty$. Из сходимости ряда вытекает, что для любого $\varepsilon>0$ существует номер $N(\varepsilon)$ такой, что $\sum\limits_{i=N(\varepsilon)+1}^{\infty}|x_i|^2<\varepsilon^2$. Обозначим через $z=(x_1,x_2,\ldots,x_{N(\varepsilon)},0,\ldots)$. Очевидно, что $z\in A$ и $\|z-x\|_{\ell_2}<\varepsilon$. Значит, x является предельной точкой для множества A, следовательно, A всюду плотно в ℓ_2 .

ЗАДАНИЯ

Задание 1. Определить, является ли множество открытым, замкнутым в пространстве C[0,1].

- 1.1. $A = \{x(t) \in C[0,1] : x(0) x(1) = 0\};$
- 1.2. $A = \{x(t) \in C[0,1] : x(0) = x(1)\};$
- 1.3. $A = \{x(t) \in C[0,1] : 4 < x(t) < 10, \forall t \in [0,1]\};$
- 1.4. $A = \{x(t) \in C[0,1] : x(0) > 0\};$
- 1.5. $A = \{x(t) \in C^{(1)}[0,1] : x'(0) = 0\};$
- 1.6. $A = \{x(t) \in C[0,1] : e^t \le x(t) < 12\};$

1.7.
$$A = \{x(t) \in C[0,1] : |x(t_1) - x(t_2)| \le |t_1 - t_2|, \forall t_1, t_2 \in [0,1]\}.$$

Определить, является ли множество открытым, замкнутым в пространстве $CL_2[0,1]$.

1.8.
$$A = \{x(t) \in C[0,1] : x(0) x(1) = 0\};$$

1.9.
$$A = \{x(t) \in C[0,1] : x(0) = x(1)\};$$

1.10.
$$A = \left\{ x(t) \in C[0,1] : \int_{-1}^{1} x(t) dt = 0 \right\};$$

1.12.
$$A = \left\{ x(t) \in C[0,1] : \int_{-1}^{1} |x(t)| \, \mathrm{d}t < 1 \right\}.$$

Определить, является ли множество открытым, замкнутым в пространстве $\ell_p, p \geqslant 1$.

1.13.
$$A = \{x \in \ell_1 : x = (x_1, x_2, \dots, x_i, \dots), x_i \ge 0, i = 1, 2, \dots\};$$

1.14.
$$A = \left\{ x \in \ell_2 : x = (x_1, x_2, \dots, x_i, \dots), |x_i| \leqslant \frac{1}{2^{i-1}}, i = 1, 2, \dots \right\};$$

1.15.
$$A = \left\{ x \in \ell_1 : x = (x_1, x_2, \dots, x_i, \dots), |x_i| \leqslant \frac{1}{i}, i = 1, 2, \dots \right\};$$

1.16.
$$A = \left\{ x \in \ell_3 : x = (x_1, x_2, \dots, x_i, \dots), \sum_{i=1}^{\infty} x_i = 0 \right\};$$

1.17.
$$A = \{x \in \ell_1 : x = (x_1, x_2, \dots, x_i, \dots), |x_i| \leq 1, i = 1, 2, \dots\};$$

1.18.
$$A = \left\{ x \in \ell_2 : x = (x_1, x_2, \dots, x_i, \dots), \sum_{i=1}^{\infty} |x_i| < 1 \right\};$$

1.19.
$$A = \left\{ x \in \ell_2 : x = (x_1, x_2, \dots, x_i, \dots), \sum_{i=1}^m x_i = 0 \right\}.$$

Задание 2. Определить, является ли множество выпуклым в пространстве $\ell_p, \, p \geqslant 1.$

2.1.
$$A = \left\{ x \in \ell_1 : x = (x_1, x_2, \dots, x_i, \dots), |x_i| \leqslant \frac{1}{2^{i-1}}, i = 1, 2, \dots \right\};$$

2.2.
$$A = \left\{ x \in \ell_2 : x = (x_1, x_2, \dots, x_i, \dots), \sum_{i=1}^{\infty} i^2 |x_i|^2, i = 1, 2, \dots \right\};$$

2.3.
$$A = \left\{ x \in m : x = (x_1, x_2, \dots, x_i, \dots), \sup_{i} |x_i| \leq 1 \right\};$$

2.4. $A = \left\{ x \in \ell_3 : x = (x_1, x_2, \dots, x_i, \dots), \sum_{i=1}^{\infty} x_i = 0 \right\};$
2.5. $A = \left\{ x \in \ell_1 : x = (x_1, x_2, \dots, x_i, \dots), |x_i| \leq \frac{1}{4^i}, i = 1, 2, \dots \right\};$
2.6. $A = \left\{ x \in \ell_2 : x = (x_1, x_2, \dots, x_i, \dots), \sum_{i=1}^{\infty} |x_i| < 1 \right\};$
2.7. $A = \left\{ x \in \ell_2 : x = (x_1, x_2, \dots, x_i, \dots), \sum_{i=1}^{\infty} |x_i|^2 \leq 1 \right\};$

Определить, является ли множество выпуклым в пространстве C[0,1] непрерывных на отрезке [0,1] функций.

- 1.8. Множество многочленов степени n;
- 1.9. Множество многочленов степени не выше, чем n;

$$\begin{aligned} &1.10.\ A = \left\{ x(t) \in C[0,1] : \int\limits_0^1 |x(t)| \leqslant 1 \right\}; \\ &1.11.\ A = \left\{ x(t) \in C[0,1] : \int\limits_0^1 t^2 |x(t)|^2 \leqslant 1 \right\}; \\ &1.12.\ A = \left\{ x(t) \in C[0,1] : \max_i |x(t)| \leqslant 1 \right\}; \\ &1.13.\ A = \left\{ x(t) \in C^{(1)}[0,1] : \max_i |x'(t)| \leqslant 1 \right\}; \\ &1.14.\ A = \left\{ x(t) \in C[0,1] : \int\limits_0^1 e^{-t} |x(t)|^2 \leqslant 1 \right\}. \end{aligned}$$

Задание 3. Образуют ли в пространстве C[-1,1] подпространство следующие множества функций:

- 3.1. Монотонные функции;
- 3.2. Четные функции;
- 3.3. Непрерывно дифференцируемые функции, удовлетворяющие условию x'(0) = 0;
 - 3.4. Непрерывные кусочно-линейные функции;
 - 3.5. Непрерывно дифференцируемые функции;

- 3.6. Функции с ограниченным изменением;
- 3.7. Абсолютно непрерывные функции;
- 3.8. Периодические функции;
- 3.9. Функции, удовлетворяющие условию Липшица, с константой Липшица, зависящей от функции;
 - 3.10. Функции, удовлетворяющие условию $\int_{-1}^{1} x(t) dt = 0$;
 - 3.11. Функции, удовлетворяющие условию x(-1) = x(1) = 0;
 - 3.12. Функции, удовлетворяющие условию x(-1) = x(1);
 - 3.13. Функции, удовлетворяющие условию x(0) = 0;
 - 3.14. Нечетные функции;
 - 3.15. Многочлены степени не выше четвертой;
 - 3.16. Многочлены произвольной степени.

Образуют ли в пространстве $C^{(1)}[-1,1]$ подпространство следующие множества функций:

- 3.17. Непрерывно дифференцируемые функции;
- 3.18. Непрерывно дифференцируемые функции, удовлетворяющие условию x'(0) = 0;
- 3.19. Непрерывно дифференцируемые функции, удовлетворяющие условию x'(-1) = x'(1);
 - 3.20. Функции, удовлетворяющие условию $\int_{-1}^{1} x'(t) dt = 0$;
 - 3.21. Функции с ограниченным изменением;
 - 3.22. Абсолютно непрерывные функции;

ТЕМА 5. БАНАХОВЫ ПРОСТРАНСТВА. РЯДЫ В БАНАХОВЫХ ПРОСТРАНСТВАХ

Свойства фундаментальных последовательностей

- 1. Всякая фундаментальная последовательность ограничена.
- 2. Пусть последовательность $(x^{(n)}) \subset E$ фундаментальна и $\lambda \in P$, тогда $(\lambda x^{(n)}) \subset E$ также фундаментальна.
- 3 Пусть $(x^{(n)}), (y^{(n)}) \subset E$ фундаментальные последовательности, тогда последовательность $(x^{(n)} \pm y^{(n)})$ также фундаментальна.
- 4. Если подпоследовательность фундаментальной последовательности сходится к x, то сама последовательность сходится к x.
- 5. Если последовательность $(x^{(n)}) \subset E$ фундаментальна, тогда числовая последовательность $(\|x^{(n)}\|)$ также фундаментальна.

Лемма 1. Всякая сходящаяся в E последовательность является фундаментальной.

Метрическое пространство называется *полным*, если в нем всякая фундаментальная последовательность сходится. Полное нормированное пространство называется *банаховым пространством*.

Примеры банаховых пространств

1. Пространство C[a,b]. Пусть $(x^{(n)}(t))$ — фундаментальная последовательность непрерывных на отрезке [a,b] функций. По определению, для любого $\varepsilon > 0$ существует число $N(\varepsilon)$ такое, что для $n,m \geqslant N(\varepsilon)$ выполняется неравенство $\max_{a\leqslant t\leqslant b}|x^{(n)}(t)-x^{(m)}(t)|<\varepsilon$. Зафиксируем t, тогда для $n,m\geqslant N(\varepsilon)$ $|x^{(n)}(t)-x^{(m)}(t)|<\varepsilon$. Это означает, что числовая последовательность $(x^{(n)}(t))$ является последовательностью Коши и в силу полноты $\mathbb R$ будет сходится к некоторому пределу. Обозначим через $x_0(t)=\lim_{n\to\infty}x^{(n)}(t)$. Таким образом, функция $x_0(t)$ — это та функция, к которой последовательность $x^{(n)}(t)$ сходится поточечно. Докажем, что $x_0(t)$ непрерывна и что $x^{(n)}\to x_0$ равномерно (т. е. по норме пространства C[a,b]). В неравенстве, записанном вы-

ше, перейдем к пределу при $m \to \infty$. Получаем, что для $n \ge N(\varepsilon)$ $\max_{a \le t \le b} |x^{(n)}(t) - x_0(t)| \le \varepsilon$, т. е. $x^{(n)}(t)$ сходится к $x_0(t)$ равномерно.

Пусть $t_0 \in [a,b]$. По $\varepsilon > 0$ выберем n_1 так, чтобы было выполнено неравенство $\max_{a\leqslant t\leqslant b}|x^{(n_1)}(t)-x_0(t)|\leqslant \varepsilon/3$ и выберем $\delta > 0$ то, для которого из $|t-t_0|\leqslant \delta$ следует $|x^{(n_1)}(t)-x^{(n_1)}(t_0)|\leqslant \varepsilon/3$. Тогда для t таких, что $|t-t_0|<\delta$ справедливо неравенство

$$|x_0(t) - x_0(t_0)| \le |x_0(t) - x^{(n_1)}(t)| +$$

$$+|x^{(n_1)}(t) - x^{(n_1)}(t_0)| + |x^{(n_1)}(t_0) - x_0(t_0)| \le \varepsilon,$$

что и означает непрерывность функции x_0 в точке t_0 .

2. Пространство ℓ_1 . Покажем, что пространство ℓ_1 – банахово. Пусть $(x^{(n)}) \subset \ell_1$ – фундаментальная последовательность в ℓ_1 . Это означает, что для любого $\varepsilon > 0$ существует такое $N(\varepsilon)$, что

$$||x^{(n)} - x^{(m)}|| = \sum_{i=1}^{\infty} |x_i^{(n)} - x_i^{(m)}| < \varepsilon, \quad n, m \geqslant N(\varepsilon).$$
 (1)

Из этого неравенства следует, что при любом $i |x_i^{(n)} - x_i^{(m)}| < \varepsilon$, т. е. при каждом i последовательность действительных чисел $(x_i^{(n)})$ фундаментальна и поэтому сходится. Положим $x_i = \lim_{n \to \infty} x_i^{(n)}$. Обозначим через x последовательность $(x_1, x_2, \ldots, x_i, \ldots)$. Нужно показать, что:

1)
$$\sum_{i=1}^{\infty} |x_i| < \infty$$
, T. e. $x \in \ell_1$;

2)
$$||x^{(n)} - x|| = \sum_{i=1}^{\infty} |x_i^{(n)} - x_i| \to 0$$
 при $n \to \infty$.

Из неравенства (1) следует, что для любого фиксированного M

$$\sum_{i=1}^{M} |x_i^{(n)} - x_i^{(m)}| < \varepsilon.$$

В этой сумме теперь только конечное число слагаемых, и мы можем, зафиксировав n, перейти к пределу при $m \to \infty$. Получим неравенство $\sum_{i=1}^{M} |x_i^{(n)} - x_i| < \varepsilon$, которое верно при любом M. Перейдем к пределу при

 $M \to \infty$, получим $\sum_{i=1}^{\infty} |x_i^{(n)} - x_i| \leqslant \varepsilon$. Из сходимости рядов $\sum_{i=1}^{\infty} |x_i^{(n)}|$ и $\sum_{i=1}^{\infty} |x_i^{(n)} - x_i|$ следует сходимость ряда $\sum_{i=1}^{\infty} |x_i|$.

3. Неполное нормированное пространство. Пространство $CL_2[-1,1]$ непрерывных на отрезке [-1,1] функций не является полным относительно нормы $\|x\| = \left(\int_{-1}^{1} |x(t)|^2 \, \mathrm{d}t\right)^{1/2}$.

Рассмотрим последовательность непрерывных на отрезке [-1,1] функций $(x^{(n)}(t))_{n=1}^{\infty}$, которая задается следующим образом:

$$x^{(n)}(t) = \begin{cases} -1, & t \in [-1, -1/n), \\ nt, & t \in [-1/n, 1/n], \\ 1, & t \in (1/n, 1]. \end{cases}$$

Видно, что $|x^{(n)}(t)| \leqslant 1$ для любых n, но тогда $|x^{(n)}(t)-x^{(m)}(t)| \leqslant 2$ и, следовательно,

$$||x^{(n)} - x^{(m)}||^2 = \int_{-1}^{1} |x^{(n)}(t) - x^{(m)}(t)|^2 dt \le 4 \int_{-1/n}^{1/n} dt = \frac{8}{n} \to 0$$

при $n \to \infty \ (m < n)$.

Заметим, что в каждой точке $t \in [-1,1]$ при $n \to \infty$ последовательность $x^{(n)}(t)$ имеет предел

$$x_0(t) = \begin{cases} -1, & t \in [-1, 0), \\ 0, & t = 0, \\ 1, & t \in (0, 1], \end{cases}$$

при этом $|x_0(t)| < 1$ и $|x^{(n)}(t) - x_0(t)| \leqslant 2$. Но тогда $||x^{(n)} - x_0||^2 \leqslant \frac{8}{n} \to 0$ при $n \to \infty$. Таким образом, при $n \to \infty$ $x^{(n)}(t) \to x_0(t)$ в среднем, причем $x_0(t)$ разрывная функция, т. е. $x_0(t) \not\in CL_2[-1,1]$.

Предположим, что существует непрерывная функция $y_0(t)$, к которой сходится $x^{(n)}(t)$. Запишем неравенство для интегралов

$$\int_{-1}^{1} |x_0(t) - y_0(t)|^2 dt \leqslant \int_{-1}^{1} |x^{(n)} - x_0|^2 dt + \int_{-1}^{1} |x^{(n)} - y_0|^2 dt.$$

Переходя к пределу при $n \to \infty$, получаем $\int_{-1}^{1} |x_0(t) - y_0(t)|^2 dt = 0$, а это значит, что $y_0(t)$ почти всюду совпадает с $x_0(t)$.

Теорема 1 (принцип вложенных шаров). Для того, что бы нормированное пространство Е было банаховым необходимо и достаточно, чтобы любая последовательность замкнутых вложенных шаров, радиусы которых стремятся к нулю, имела единственную общую точку.

Множество M в нормированном пространстве E называется *мно- жеством I категории*, если оно является объединением счетного числа
нигде не плотных множеств.

Если M нельзя представить в виде объединения счетного числа нигде не плотных множеств, то M называется множеством II категории. Например, множество рациональных чисел является на числовой прямой множеством первой категории.

Теорема 2 (Бэра о категориях). Всякое банахово пространство является множеством II категории.

Ряды в банаховых пространствах. Пусть E — нормированное пространство. Рассмотрим в E ряд, составленный из элементов нормированного векторного пространства E.

$$\sum_{k=1}^{\infty} x_k, \quad x_k \in E \ (k = 1, 2, \ldots). \tag{2}$$

Ряд (2) называется $cxo\partial$ ящимся, если последовательность его частных сумм $S_n = \sum_{k=1}^n x_k$ в пространстве E имеет предел.

Элемент
$$S=\lim_{n\to\infty}S_n$$
 называется *суммой ряда*, тогда $S=\sum_{k=1}^\infty x_k$.

Теорема 3. Если ряд сходится, то его общий член x_k стремится κ нулю при $k \to \infty$.

Теорема 4. Пусть E – нормированное пространство. Для того, чтобы ряд (2) сходился, необходимо, а если E банахово, то и достаточно, чтобы для любого $\varepsilon > 0$ существовал такой номер $N(\varepsilon)$, что для всех $n > N(\varepsilon)$ и для всех $p \in \mathbb{N}$ выполнялось неравенство

$$\left\| \sum_{k=n+1}^{n+p} x_k \right\| \leqslant \varepsilon.$$

Если сходится числовой ряд $\sum_{k=1}^{\infty} ||x_k||$, то говорят, что ряд $\sum_{k=1}^{\infty} x_k$ сходится абсолютно.

Теорема 5. Нормированное векторное пространство является банаховым тогда и только тогда, когда в нем каждый абсолютно сходящийся ряд сходится.

Пополнение нормированных пространств. Рассмотрим, как из неполного сделать полное нормированное пространство.

Определение 1. Банахово (полное) пространство \hat{E} называется пополнением нормированного пространства E, если в \hat{E} существует подпространство E', которое изоморфно пространству E, и плотно в пространстве \hat{E} .

Плотность E' в \hat{E} означает, что для $\forall \hat{x} \in \hat{E}$ выполняется условие

$$\forall \hat{x} \in \hat{E} \ \exists x' \in E' \ \|\hat{x} - x'\| < \varepsilon.$$

Теорема 6 (о пополнении). Для нормированного векторного пространства E существует пополнение.

Определение 2. Пространством $L_p[a,b], p \geqslant 1$, называется банахово пространство, элементами которого являются классы эквивалентных в среднем и фундаментальных в среднем со степенью p непрерывных функций с нормой

$$||x||_p = \left(\int_a^b |x(t)|^p dt\right)^{1/p}.$$

Пространством $L_p[a,b], p \geqslant 1$, является пополнением пространства $CL_p[a,b]$ по интегральной норме.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. Является ли пространство $C^{(1)}[0,1]$ банаховым по норме

$$||x||_1 = |x(0)| + \max_{0 \le t \le 1} |x'(t)|$$
?

Решение. Нормированное пространство банахово, если любая последовательность Коши в нем сходится. Пусть $(x^{(n)}(t)) \subset C^{(1)}[0,1]$ – последовательность Коши, т. е.

$$||x^{(n)} - x^{(m)}|| = |x^{(n)}(0) - x^{(m)}(0)| + \max_{0 \le t \le 1} |x'^{(n)}(t) - x'^{(m)}(t)| \xrightarrow[n,m \to \infty]{} 0.$$

Тогда

$$|x^{(n)}(0) - x^{(m)}(0)| \xrightarrow[n,m \to \infty]{} 0, \quad \max_{0 \leqslant t \leqslant 1} |x'^{(n)}(t) - x'^{(m)}(t)| \xrightarrow[n,m \to \infty]{} 0.$$

Поскольку $(x'^{(n)}(t)) \subset C[0,1]$ и является последовательностью Коши, то в силу полноты C[0,1] по равномерной норме, последовательность $(x'^{(n)}(t))$ равномерно сходится к непрерывной функции. Далее, числовая последовательность $(x^{(n)}(0))$ также является последовательность Коши, поэтому сходится. Таким образом, последовательность непрерывно дифференцируемых функций такова, что последовательность производных сходится равномерно, а исходная последовательность сходится в одной точке. Следовательно, последовательность $(x^{(n)}(t)) \subset C^{(1)}[0,1]$ сходится равномерно к непрерывно дифференцируемой функции x(t). Переходя к пределу при $m \to \infty$ в определении последовательности Коши, получим

$$||x^{(n)} - x|| = |x^{(n)}(0) - x(0)| + \max_{0 \le t \le 1} |x'^{(n)}(t) - x'(t)| \xrightarrow[n \to \infty]{} 0.$$

Это означает, что $C^{(1)}[0,1]$ банахово по указанной норме.

Данная задача может быть решена по-другому. Можно показать, что норма $\|x\|_1$ эквивалентна норме $\max_{0\leqslant t\leqslant 1}|x(t)|+\max_{0\leqslant t\leqslant 1}|x'(t)|$, по которой $C^{(1)}[0,1]$ банахово.

Задача 2. Доказать, что пространство CB[a,b] ограниченных на отрезке [a,b] функций с нормой

$$||x|| = \sup_{a \leqslant t \leqslant b} |x(t)|.$$

является банаховым.

Решение. Рассмотрим в пространстве CB[a,b] последовательность Коши $(x^{(n)})_{n=1}^{\infty}$. Из определения вытекает, что для любого $\varepsilon>0$ существует номер $n(\varepsilon)$ такой, что для всех номеров $n,m>n(\varepsilon)$ выполняется неравенство

$$||x^{(n)} - x^{(m)}|| = \sup_{a \le t \le b} |x^{(n)}(t) - x^{(m)}(t)| < \varepsilon.$$

Тогда $|x^{(n)}(t)-x^{(m)}(t)|<\varepsilon$ для любого $t\in[a,b]$. Это в свою очередь означает, что при фиксированном $t\in[a,b]$ числовая последовательность $(x^{(n)}(t))$ является последовательностью Коши и, следовательно, имеет предел x(t), поскольку $\mathbb R$ банахово. Теперь нужно показать, что функция x(t) ограничена, т. е. $x(t)\in CB[a,b]$. В неравенстве $|x^{(n)}(t)-x^{(m)}(t)|<\varepsilon$ перейдем к пределу при $m\to\infty$, получим $|x^{(n)}(t)-x(t)|<\varepsilon$ для всех $n>n(\varepsilon)$, тогда $\sup_{a\leqslant t\leqslant b}|x^{(n)}(t)-x(t)|\leqslant\varepsilon$ для всех $n>n(\varepsilon)$. Это означает, что $||x^{(n)}-x||\xrightarrow[n\to\infty]{}0$. Учитывая неравенство $|x(t)|\leqslant|x(t)-x^{(n)}(t)|+|x^{(n)}(t)|$, имеем $\sup_{a\leqslant t\leqslant b}|x(t)-x^{(n)}(t)|+\sup_{a\leqslant t\leqslant b}|x^{(n)}(t)|$, что влечет за собой ограниченность функции x(t). Таким образом, пространство CB[a,b] банахово.

ЗАДАНИЯ

Задание 1. Проверить, является ли пространство банаховым по указанной норме. Если пространство не полно, то указать его пополнение.

1.1. Пространство непрерывно дифференцируемых на отрезке [0,1] функций с нормой

$$||x|| = \max_{0 \le t \le 1} |x(t)| + \int_{0}^{1} |x'(t)| dt.$$

1.2. Пространство непрерывно дифференцируемых на отрезке [0,1] функций с нормой

$$||x|| = \max_{0 \le t \le 1} |x(t)| + \max_{0 \le t \le 1/2} |x'(t)|.$$

1.3. Пространство непрерывно дифференцируемых на отрезке [0, 1] функций с нормой

$$||x|| = |x(0)| + \int_{0}^{1} |x'(t)| dt.$$

1.4. Пространство непрерывно дифференцируемых на отрезке [0,1] функций с нормой

$$||x|| = |x(1)| + \max_{0 \le t \le 1} |x'(t)|.$$

1.5. Пространство непрерывно дифференцируемых на отрезке [0,1] функций с нормой

$$||x|| = \max_{0 \le t \le 1} |x(t)| + |x'(0)|.$$

1.6. Пространство дважды непрерывно дифференцируемых на отрезке [0, 1] функций с нормой

$$||x|| = \int_{0}^{1} |x(t)| dt + \max_{0 \le t \le 1} |x''(t)|.$$

1.7. Пространство K[0,1] финитных на отрезке [0,1] функций с нормой

$$||x|| = \max_{0 \le t \le 1} |x(t)|.$$

1.8. Пространство бесконечных числовых последовательностей $x(x_1,x_2,\ldots,x_i,\ldots), \sum_{i=1}^\infty |x_i|^2 < \infty,$ с нормой

$$||x|| = \sum_{i=1}^{\infty} |x_i|.$$

1.9. Пространство бесконечных числовых последовательностей $x(x_1, x_2, \ldots, x_i, \ldots)$, где $(\alpha_i)_{i=1}^{\infty}$ – фиксированная последовательность, у которой $\alpha_i > 0, i = 1, 2, \ldots$, относительно нормы

$$||x|| = \left(\sum_{i=1}^{\infty} \alpha_i |x_i|^2\right)^{1/2}.$$

1.10. Пространство бесконечных числовых последовательностей $x(x_1,x_2,\ldots,x_i,\ldots), \sum_{i=1}^{\infty}|x_i|<\infty,$ относительно нормы

$$||x|| = \left(\sum_{i=1}^{\infty} \alpha_i |x_i|^2\right)^{1/2},$$

где $(\alpha_i)_{i=1}^{\infty}$ – фиксированная последовательность, удовлетворяющая условиям $\sum\limits_{i=1}^{\infty}|\alpha_i|^2<\infty,\ 0<\alpha_i<1,\ i=1,2,\ldots$

1.11. Пространство бесконечных числовых последовательностей $x(x_1,x_2,\ldots,x_i,\ldots), \sum_{i=1}^{\infty}|x_i|<\infty,$ относительно нормы

$$||x|| = \sup_{i} |x_i|.$$

1.12. Пространство бесконечных числовых последовательностей $x(x_1,x_2,\ldots,x_i,\ldots), \sup_i \alpha_i |x_i| < \infty$, где $(\alpha_i)_{i=1}^\infty$ – фиксированная последовательность, удовлетворяющая условиям $\alpha_i > 0, \ i=1,2,\ldots$, относительно нормы

$$||x|| = \sup_{i} \alpha_i |x_i|.$$

1.13. Пространство бесконечных числовых последовательностей $x(x_1,x_2,\ldots,x_i,\ldots), \sup_n \left|\sum_{i=1}^n x_i\right| < \infty,$ относительно нормы

$$||x|| = \sup_{n} \left| \sum_{i=1}^{n} x_i \right|.$$

1.14. Пространство бесконечных числовых последовательностей $x(x_1, x_2, \ldots, x_i, \ldots)$, для которой существует $\lim_{i \to \infty} \alpha_i x_i$, где $(\alpha_i)_{i=1}^{\infty}$ – фиксированная последовательность, удовлетворяющая условиям $\alpha_i > 0$, $i = 1, 2, \ldots$, относительно нормы

$$||x|| = \sup_{i} \alpha_i |x_i|.$$

Задание 2. Проверить, сходится ли абсолютно ряд $\sum_{i=1}^{\infty} x_i$ в банаховом пространстве E.

2.1.
$$x^{(n)} = \left(\underbrace{\frac{(-1)^n}{n^2}, \dots, \frac{(-1)^n}{n^2}}_{n}, 0, \dots\right), E = \ell_2;$$

2.2.
$$x^{(n)} = \left(\underbrace{\frac{n}{5^n}, \dots, \frac{n}{5^n}}_{n}, 0, \dots\right), E = \ell_2;$$

2.3.
$$x^{(n)} = \left(\underbrace{\frac{n^2}{4^n}, \dots, \frac{n^2}{4^n}}, 0, \dots\right), \quad E = \ell_1;$$

2.4.
$$x^{(n)} = \left(\underbrace{\frac{\cos n}{n}, \dots, \frac{\cos n}{n}}_{n}, 0, \dots\right), E = \ell_1;$$

2.5.
$$x^{(n)} = \left(\frac{1}{5}, \dots, \frac{1}{5^n}, 0, \dots\right), \quad E = \ell_2;$$

2.6. $x^{(n)}(t) = \frac{3^n t^n - t^{2n}}{3^{2n}}, \quad E = C[0, 1];$
2.7. $x^{(n)}(t) = \frac{t^{n+1}}{n+1} - \frac{t^{n+2}}{n+2}, \quad E = C[0, 1];$
2.8. $x^{(n)}(t) = \frac{1}{t^2 + n^2}, \quad E = C[0, 1];$
2.9. $x^{(n)}(t) = \frac{t^{2n} - 3t^n}{n!}, \quad E = C[0, 1];$
2.11. $x^{(n)}(t) = \frac{\cos nt}{n^3}, \quad E = L_2[-5\pi, 2\pi];$
2.12. $x^{(n)}(t) = \frac{\sin nt}{n^2}, \quad E = L_2[-5\pi, 2\pi];$
2.13. $x^{(n)}(t) = te^{-nt}, \quad E = L_1[0, 1];$
2.14. $x^{(n)}(t) = \frac{1}{n+t+1}, \quad E = L_2[0, 1].$

Задание 3. Доказать следующие утверждения.

3.1. Пусть E_1, E_2 – банаховы пространства. Доказать, что прямая сумма $E_1 \oplus E_2$ будет банаховым пространством относительно нормы

$$||x_1 \oplus x_2||_{E_1 \oplus E_2} = ||x_1||_{E_1} + ||x_2||_{E_2}.$$

3.2. Пусть L_0 – подпространство банахова пространства E. Доказать, что формула

$$||x||_{E_1} = \inf_{y-x \in L_0} ||y||.$$

задает норму на фактор-пространстве $E_1 = E/L_0$. Доказать, что E_1 – банахово пространство, относительно введенной нормы.

- 3.3. Показать, что всякое сепарабельное банахово пространство над полем \mathbb{R} является фактор-пространством ℓ_1 .
- 3.4. Показать, что всякое банахово пространство несепарабельно тогда и только тогда, когда в нем есть несчетное множество попарно непересекающихся шаров радиуса 1.
- 3.5. Показать, что всякое подпространство банахова пространства банахово.

ТЕМА 6. ОТОБРАЖЕНИЯ В БАНАХОВЫХ ПРОСТРАНСТВАХ

Пусть E и F – два нормированных пространства и f – отображение пространства E в F. Таким образом, каждому $x \in E$ ставится в соответствие некоторый элемент y = f(x) из F.

Определение 3. Отображение $f: E \to F$ называется непрерывным в точке $x_0 \in E$, если для каждого $\varepsilon > 0$ существует такое $\delta > 0$, что для всех $x \in E$ таких, что $\|x - x_0\|_E < \delta$ выполнено неравенство $\|f(x) - f(x_0)\|_F < \varepsilon$. Если отображение f непрерывно во всех точках пространства E, то говорят, что f непрерывно на E.

Определение непрерывного отображения можно сформулировать и в терминах окрестностей. Отображение f называется непрерывным в точке $x_0 \in E$, если для любой окрестности W_{y_0} точки $y_0 = f(x_0)$ найдется такая окрестность V_{x_0} точки x_0 , что $f(V_{x_0}) \subset W_{y_0}$.

Теорема 7 (о непрерывном отображении). Пусть $E\ u\ F$ - нормированные векторные пространства $u\ f: E \to F$. Тогда следующие утверждения эквивалентны:

- 1) f непрерывно в каждой точке $x \in E$;
- 2) прообраз открытого множества в F открыт в E;
- 3) прообраз замкнутого множества в F замкнут в E;
- 4) для любого множества $M \subset E$ справедливо $f(\overline{M}) \subset \overline{f(M)}$.

Отображение называется *открытым*, если оно переводит каждое открытое множество снова в открытое. Отображение, переводящее каждое замкнутое множество в замкнутое, называется *замкнутым*.

Для непрерывных отображений справедлива следующая теорема, аналогичная хорошо известной из анализа теореме о непрерывности сложной функции.

Теорема 8. Пусть E, F, W – нормированные пространства и пусть f и g непрерывные отображения E в F и F в W соответственно. Тогда отображение $x \to g(f(x))$ пространства E в W непрерывно.

Определение 4. Отображение $f: E \to F$ называется равномерно-непрерывным, если для любого $\varepsilon > 0$ существует $\delta(\varepsilon)$ такое, что для всех $x,y \in E$ таких, что $\|x-y\| < \delta$ выполняется $\|f(x)-f(y)\| < \varepsilon$.

Очевидно, что всякое равномерно непрерывное отображение является непрерывным.

Если отображение f удовлетворяет условию: существует постоянная L>0, что $||f(x)-f(y)||_F\leqslant L||x-y||_E$ для всех $x,y\in E$, то говорят, что отображение f удовлетворяет условию Липшица.

Отображение, удовлетворяющее условию Липшица, непрерывно и равномерно непрерывно.

Пусть $f: E \to F$ взаимно однозначно, тогда существует обратное отображение $f^{-1}: F \to E$. Если $x = f^{-1}(y)$ взаимно однозначно и взаимно непрерывно (т. е. f, f^{-1} – непрерывные отображения), то оно называется гомеоморфизмом, а сами пространства E и F, между которыми можно установить гомеоморфизм, гомеоморфными между собой.

Гомеоморфные пространства имеют одинаковый запас открытых и замкнутых множеств, так как гомеоморфизм осуществляет взаимно однозначное соответствие между открытыми и замкнутыми множествами. Из определения гомеоморфизма вытекает, что для того, чтобы непрерывное отображение было гомеоморфизмом, необходимо и достаточно, чтобы образом открытого (замкнутого) множества являлось открытое (замкнутое) множество. Метрические свойства гомеоморфных пространств при этом могут быть различны.

Важным случаем гомеоморфизма является изоморфизм.

Определение 5. Отображение $f: E \to F$ называется изоморфизмом, если оно взаимно однозначно и взаимно непрерывно и при этом существуют постоянные $\alpha, \beta > 0$, для которых справедливо неравенство $\alpha \|x\|_E \leqslant \|f(x)\|_F \leqslant \beta \|x\|_E$.

Наиболее интересен тот случай, когда изоморфизм является еще и линейным, т. е. $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$ для всех $x,y \in E$ и всех $\alpha,\beta \in P$.

Два нормированных пространства называются $usomop\phi humu$, если между ними существует по крайней мере один иsоморфизм. Изоморфизм, сохраняющий расстояние между точками пространства, называется usomempueй.

Если пространство E изометрично некоторому подпространству $E'\subset F$, то говорят, что E изометрично вкладывается в \mathbb{R}^n при m< n. Изомет-

рией при этом является следующее отображение $f: \mathbb{R}^m \to \mathbb{R}^n$, $f(x)=(x_1,x_2,\ldots,x_m,0,\ldots,0)$, если $x=(x_1,\ldots,x_m)$.

Рассмотрим отображение вложения в общем случае.

Определение 6. Нормированное пространство E вложено в нормированное пространство F, если всюду на E задана линейная функция f такая, что существует $\beta > 0$ и при этом $||f(x)||_F \leqslant \beta ||x||_E$ для всех $x \in E$.

Возможен случай, когда пространства E и F получены введением в одном и том же нормированном пространстве E различных норм, тогда в качестве отображения f выступает тождественное отображение. В этом случае говорят о естественном вложении пространств.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. Выяснить, является ли отображение

$$f: L_2[0,1] \to C[0,1], \quad f(x) = \int_0^1 \frac{t^2}{\sqrt[3]{s}} x(s) \, ds$$

непрерывным в точке $x_0(t) = 0$.

Решение. По определению, отображение $f: E \to F$ непрерывно в точке x_0 , если для любого $\varepsilon > 0$ существует $\delta(\varepsilon)$ такое, что для всех $x \in E$, удовлетворяющих условию $||x - x_0||_E < \delta$, выполнено $||f(x) - f(x_0)||_F < \varepsilon$. Оценим норму, учитывая, что $f(x_0) = 0$.

$$||f(x)||_{C[0,1]} = \max_{t \in [0,1]} \left| \int_{0}^{1} \frac{t^2}{\sqrt[3]{s}} x(s) \, \mathrm{d}s \right| \le \max_{t \in [0,1]} |t^2| \left| \int_{0}^{1} \frac{1}{\sqrt[3]{s}} x(s) \, \mathrm{d}s \right| =$$

$$= \int_{0}^{1} |s^{-1/3}| |x(s)| ds \leqslant \left(\int_{0}^{1} |x(s)|^{2} ds \right)^{1/2} \left(\int_{0}^{1} |s^{-1/3}|^{2} \right)^{1/2} = \sqrt{3} ||x||_{L_{2}[0,1]}.$$

Поэтому для любого $\varepsilon > 0$ существует $\delta(\varepsilon) < \varepsilon/\sqrt{3}$ такое, что для всех $x \in E$, удовлетворяющих условию $||x - x_0||_E < \delta$, выполнено $||f(x) - f(x_0)||_F < \varepsilon$. Это означает, что отображение непрерывно в точке $x_0(t)$.

Задача 2. Выяснить, является ли непрерывным отображение

$$f: L_1[0,1] \to L_1[0,1], f(x) = x^2(t).$$

Решение. По критерию Гейне отображение непрерывно в точке x_0 , если для любой последовательности $(x^{(n)}) \subset L_1[0,1]$, которая сходится к x_0 в $L_1[0,1]$, соответствующая последовательность $f(x^{(n)})$ сходится к $f(x_0)$ в $L_1[0,1]$. Покажем, что отображение f не является непрерывным в нуле, т. е. существует последовательность $(x^{(n)}) \subset L_1[0,1]$, которая сходится к нулю, а последовательность $f(x^{(n)}) \not\to f(0) = 0$.

Пусть $\varepsilon_0 = 1/3$. Рассмотрим последовательность

$$x^{(n)}(t) = \begin{cases} (1-nt)\sqrt{n}, & \text{если } t \in [0,1/n), \\ 0, & \text{если } t \in [1/n,1], \end{cases}$$

которая сходится к нулю. Действительно,

$$||x^{(n)}||_{L_1[0,1]} = \int_0^1 |x_n(t)| dt = \sqrt{n} \int_0^{1/n} |1 - nt| dt =$$

$$[1 - nt = z] = \sqrt{n} \int_{0}^{1} z \frac{\mathrm{d}z}{n} = \frac{1}{2\sqrt{n}} \xrightarrow[]{\to \infty} 0.$$

Покажем, что $f(x^{(n)})$ к нулю не стремится:

$$||f(x^{(n)})||_{L_1[0,1]} = \int_0^1 |x_n(t)|^2 dt = \int_0^1 n|1 - nt|^2 dt = \frac{1}{3}.$$

Таким образом, отображение f не является непрерывным.

Задача 3. Показать, что отображение

$$f: C[0,1] \to C[0,1], \quad f(x) = \frac{|x(t)|}{1+|x(t)|}.$$

равномерно непрерывно.

Решение. Действительно, пусть задано произвольное $\varepsilon > 0$. По-кажем, что существует $\delta(\varepsilon)$ такое, что для всех $x(t),y(t)\in C[0,1]$, удовлетворяющих условию $\|x-y\|=\max_{0\leqslant t\leqslant 1}|x(t)-y(t)|<\delta$ выполняется следующее неравенство:

$$||f(x) - f(y)|| = \max_{0 \le t \le 1} \left| \frac{|x(t)|}{1 + |x(t)|} - \frac{|y(t)|}{1 + |y(t)|} \right| < \varepsilon.$$

Оценим предварительно |f(x) - f(y)|:

$$|f(x) - f(y)| = \left| \frac{|x(t)|}{1 + |x(t)|} - \frac{|y(t)|}{1 + |y(t)|} \right| =$$

$$= \left| \frac{1}{(1+|x(t)|)(1+|y(t)|)} \right| |x(t)-y(t)| \le |x(t)-y(t)|.$$

Переходя к максимуму по t в левой и правой частях, получаем требуемое неравенство при $\delta \leqslant \varepsilon$.

Задача 4. Показать, что отображение

$$f: C[0,1] \to C[0,1], \quad f(x) = \frac{\sqrt{|x(t)|}}{1+|x(t)|}.$$

не удовлетворяет условию Липшица.

Решение. Отображение f не удовлетворяет условию Липшица, если для любой постоянной L>0 найдутся последовательности функций $x_n(t),y_n(t)\in C[0,1]$ такие, что $\|f(x^{(n)})-f(y^{(n)})\|>\|x_n-y_n\|$. Выберем стационарные последовательности $x^{(n)}(t)=\frac{2}{n},\ y^{(n)}(t)=\frac{1}{n},$ тогда

$$||f(x^{(n)}) - f(y^{(n)})|| = \left| \frac{\sqrt{2/n}}{1 + 2/n} - \frac{\sqrt{1/n}}{1 + 1/n} \right| =$$

$$= \frac{1}{n} \sqrt{n} \frac{(\sqrt{2} - 1)n^2 + (\sqrt{2} - 2)n}{(n+2)(n+1)} > (\sqrt{2} - 1)\sqrt{n} ||x_n - y_n||.$$

Задача 5. Показать, что отображение

$$f: \ell_2 \to \ell_2, \quad f(x) = \left(\frac{1}{5}x_1 + \frac{1}{2}, \dots, \frac{1}{5^i}x_i + \frac{1}{i+1}, \dots\right)$$

удовлетворяет условию Липшица.

Решение. Отображение $f:\ell_2\to\ell_2$ удовлетворяет условию Липшица, если существует постоянная L>0 такая, что для всех $x,y\in\ell_2$ справедливо неравенство $\|f(x)-f(y)\|\leqslant \|x-y\|$. Оценим норму

$$||f(x) - f(y)|| = \left(\sum_{i=1}^{\infty} \left| \frac{1}{5^i} x_i + \frac{1}{i+1} - \frac{1}{5^i} y_i - \frac{1}{i+1} \right|^2 \right)^{1/2} =$$

$$= \left(\sum_{i=1}^{\infty} \left| \frac{1}{5^i} \right|^2 |x_i - y_i|^2 \right)^{1/2} = \frac{1}{5} ||x - y||.$$

Таким образом, отображение удовлетворяет условию Липшица с константой L=1/5.

ЗАДАНИЯ

Задание 1. Выяснить, является ли отображение $f: E \to F$ непрерывным в точке $x_0 = (1, 1, 1, 0, 0, \ldots)$.

1.1.
$$E = \ell_1, F = m, f(x) = \left(x_1^2, \frac{x_1 + x_2}{2}, \dots, \frac{x_i + x_{i+1}}{2^i}, \dots\right);$$

1.2.
$$E = \ell_3, F = \ell_1, f(x) = \left(x_1, \sqrt{x_2}, \frac{x_3}{3}, \dots, \frac{x_i}{3^i}, \dots\right);$$

1.3.
$$E = \ell_2, F = \ell_1, f(x) = (0, 1, \sqrt[3]{x_1^2}, 0, \dots,);$$

1.4.
$$E = m$$
, $F = \ell_2$, $f(x) = \left(0, \frac{\sqrt[3]{x_1}}{3}, 2x_2, x_3, 0, \dots, \right)$;

1.5.
$$E = \ell_4$$
, $F = m$, $f(x) = (0, 0, 1 + \sqrt[3]{x_1^2}, 0, \dots,)$;

1.6.
$$E = \ell_1, F = m, f(x) = (x_1^2 + x_2^2, x_2, 3 + x_3, 1 + \sqrt{x_4}, 0, \dots,);$$

1.7.
$$E = \ell_1, F = \ell_2, f(x) = (x_1, x_2^2, x_3, 0, 0, \dots,).$$

Выяснить, является ли отображение $f: E \to F$ непрерывным в точке $x_0(t) = 0$.

1.8.
$$E = L_1[0,1], F = L_2[0,1], f(x) = \int_0^1 t^2 s x^2(s) ds;$$

1.9.
$$E = L_2[0,1], F = L_1[0,1], f(x) = \int_0^1 tx^2(s) ds;$$

1.10.
$$E = L_2[0,1], F = L_1[0,1], f(x) = t^2x(t^3);$$

1.11.
$$E = L_4[0,1], F = L_2[0,1], f(x) = x(\sqrt{t});$$

1.12.
$$E = L_1[0,1], F = L_2[0,1], f(x) = x(t);$$

1.13.
$$E = C[0,1], F = L_2[0,1], f(x) = t^2x(0);$$

1.14.
$$E = C[0,1], F = L_1[0,1], f(x) = x(0) + \int_0^1 x^2(t) dt.$$

Задание 2. Выяснить, является ли отображение $f: E \to F$ непрерывным, равномерно непрерывным, удовлетворяющим условию Липшица.

2.1.
$$E = L_1[0,1], F = L_1[0,1], f(x) = x^3(t);$$

2.2.
$$E = L_2[0,1], F = L_2[0,1], f(x) = \int_0^t e^t x(s) ds;$$

2.3.
$$E = L_1[0,1], F = L_1[0,1], f(x) = tx(t^2);$$

2.4.
$$E = C[0,1], F = C[0,1], f(x) = x^3(t);$$

2.5.
$$E = C[0,1], F = C[0,1], f(x) = \sqrt[3]{|x(t)|};$$

2.6.
$$E = C[0, 1], F = C[0, 1], f(x) = \frac{x(t)}{1 + x^2(t)};$$

2.7.
$$E = C[-2, 4], F = C[-2, 4], f(x) = x(t) + \sin x(t);$$

2.8.
$$E = C[0,1], F = C[0,1], f(x) = \sqrt[3]{|x(t)|} + x(t);$$

2.9.
$$E = C[0,1], F = C[0,1], f(x) = \frac{x(t)}{1+t^2};$$

2.10.
$$E = \ell_2$$
, $F = \mathbb{C}$, $f(x) = x_1 + \sin^2 x_2 + \sum_{i=1}^{\infty} \frac{x_i}{2^i}$;

2.11.
$$E = \ell_2$$
, $F = \mathbb{C}$, $f(x) = \sin^2 x_1 + x_2 + 1$;

2.12.
$$E = \ell_2$$
, $F = \mathbb{C}$, $f(x) = x_1^2 + x_2^2$;

2.13.
$$E = \ell_2$$
, $F = \mathbb{C}$, $f(x) = x_1^2 + x_2 + x_3$;

2.14.
$$E = L_2[0,1], F = L_1[0,1], f(x) = \frac{x(t)}{1+t^2}.$$

Задание 3. Доказать следующие утверждения.

- 3.1. Пусть $f,g:X\to Y$ непрерывные отображения. Доказать, что множество $M=\{x\in X:\, f(x)=g(x)\}$ замкнуто в X.
- 3.2. Пусть $f: X \to Y$ непрерывное отображение пространства X на все пространство Y, M всюду плотное множество в X. Доказать, что множество f(M) всюду плотно в Y.
- 3.3. Доказать, что непрерывное отображение $f: \mathbb{R} \to \mathbb{R}$, обладающее тем свойством, что образ каждого открытого в \mathbb{R} множества открыт, монотонная функция.
- 3.4. Пусть $A \subset E$ фиксированное множество в банаховом пространстве $E, x \in A$. Доказать, что $f(y) = \rho(x,A), y \in A$ непрерывное отображение из E в \mathbb{R} .
- 3.5. Доказать, что линейное отображение $f:E\to E$ в банаховом пространстве E непрерывно тогда и только тогда, когда оно непрерывно в нуле.

Литература

- 1. Антоневич, А.Б. Функциональный анализ и интегральные уравнения: учеб. пособие / А.Б. Антоневич, М.Х. Мазель, Я.В. Радыно. Минск: БГУ, 2011. 319 с.
- 2. Антоневич, А.Б. Сборник задач по функциональному анализу. 2-изд./ А.Б. Антоневич, П.Н. Князев, Я.В. Радыно. М.: Либроком, 2010. 208 с.
- 3. Арсеньев, А.А. Лекции по функциональному анализу для начинающих специлистов по математической физике/ А.А. Арсеньев. Москва Ижевск: РХД, 2009. 500 с.
- 4. Ахиезер, Н.И. *Теория линейных операторов в гильбертовом пространстве: В 2-х т./* Н.И. Ахиезер, И.М. Глазман. Х.: Выща. шкл. Изд-во Харьк. ун-та, 1977-1978. Т.1. 316 с.; Т.2. 1978. 288 с.
- 5. Березанский, Ю.М. *Функциональный анализ. Курс лекций* / Ю.М. Березанский, Г.Ф. Ус, З.Г. Шефтель. К.: Высш.шк., 1990. 600 с.
- 6. Варга, Р. Функциональный анализ и теория аппроксимации в численном анализе / Р. Варга. – М.: Мир, 1974. –
- 7. Городецкий, В.В. *Методы решения задач по функциональному анализу* / В.В. Городецкий, Н.И. Нагнибида, П.Л. Настасиев. Киев: Высш. шк., 1990. 479 с.
- 8. Гелбаум, Б. *Контпримеры в анализе* / Б.Гелбаум, Дж.Олтстед. М.: Мир, 1967. 251 с.
- 9. Глазман, И.М. Конечномерный линейный анализ в задачах / И.М. Глазман, Ю.И. Любич. М.: Наука, 1969. 475 с.
- 10. Дерр, В.Я. Функциональный анализ: лекции и упражнения: учебное пособие/ В.Я. Дерр. М.: КНОРУС, 2013. 464 с.
- 11. Канторович, Л.В. Φ ункциональный анализ. 4-е из θ ., ucnp/ Л.В. Канторович, Г.П. Акилов. СПб.:ВНМ, 2017. 816 с.
- 12. Кириллов, А.А. *Теоремы и задачи функционального анализа* / А.А. Кириллов, А.Д. Гвишиани. М.: Наука, 1988. 400 с.
- 13. Колмогоров, А.Н. Элементы теории функций и функционального анализа / А.Н. Колмогоров, С.В. Фомин. М.: ФИЗМАТЛИТ, 2016.-286 с.
- 14. Коллатц, Л. Φ ункциональный анализ и вычислительная математика / Л. Коллатц. М.: Мир, 1969.

- 15. Краснов, М.Л. Интегральные уравнения / М.Л. Краснов. М.: Наука, 1975. 304 с.
- 16. Кутателадзе, С.С. *Основы функционального анализа*/ С.С. Кутателадзе. Новосибирск : Наука, 1983. 222 с.
- 17. Кудрявцев, Л.Д. *Математический анализ. Т.3* / Л.Д. Кудрявцев. М.: Дрофа, 2006. 351 с.
- 18. Лебедев, В.И. Функциональный анализ и вычислительная математика. 4-е изд., испр / В.И. Лебедев. М.: ФИЗМАТЛИТ, 2017. 296 с.
- 19. Леонтьева, Т.В. *Задачи по теории функций действительных переменных* / Т.А. Леонтьева, В.С. Панферов, В.С. Серов. М: Изд.-во. Моск. ун-та, 1997. 207 с.
- 20. Очан, Ю.С. Сборник задач по математическому анализу: Общая теория множеств и функций/ Ю.С. Очан. М.: Просвещение, 1981. 271 с.
- 21. Петровский, И.Г. Лекции по теории интегральных уравнений / И.Г. Петровский. М.: Изд-во Моск. ун-та, 1984. 136 с.
- 22. Рисс, Ф. *Лекции по функциональному анализу* / Ф. Рисс, Б. Секефальви-Надь Б. – М.: Мир, 1979. – 592 с.
- 23. Рудин, У. Функциональный анализ/ У. Рудин. М. : Мир, 1975. 448 с.
- 24. Соболев С.Л. Некоторые применения функционального анализа в математической физике/ С.Л. Соболев. М.: Наука, 1988. 336 с.
- 25. Треногин, В.А. Φ ункциональный анализ. 4-е изд., исп./ В.А. Треногин. М.: Φ ИЗМАТЛИТ, 2007. 488 с.
- 26. Треногин, С.А. Сборник задач по теории функций действительного переменного/ В.А. Треногин, Б.М. Писаревский, Т.С. Соболева. М.: Наука, 1980. 112 с.
- 27. Федоров, В.М. *Теория функций и функциональный анализ. Ч.1.*/ В.М. Федоров. М.: Изд-во Моск. ун-та, 2001. 184 с.
- 28. Федоров, В.М. *Теория функций и функциональный анализ. Ч.2.*/ В.М. Федоров. М.: Изд-во Моск. ун-та, 2001. 191 с.
- 29. Федоров, В.М. *Курс функционального анализа* / В.М. Федоров. СПб.: Изд-во Лань, 2001. 352 с.

Учебное издание

Дайняк Виктор Владимирович **Чеб** Елена Сергеевна

БАНАХОВЫ ПРОСТРАНСТВА

Методические указания и задания к практическим занятиям по курсу "Функциональный анализ и интегральные уравнения" для студентов факультета прикладной математики и информатики

В трех частях

Часть 2

В авторской редакции

Ответственный за выпуск Е.С. Чеб

Подписано в печать 15.05.2017. Формат $60\times84/16$. Бумага офсетная. Усл. печ. л. 3,01. Уч.-изд. л. 2,02. Тираж 50 экз. Заказ

Белорусский государственный университет. ЛИ $\mbox{$\mathbb{N}$}$ 02330/0494425 от 08.04.2009. Пр. Независимости, 4, 220030, Минск.

Отпечатано с оригинала-макета заказчика на копировально-множительной технике факультета прикладной математики и информатики Белорусского государственного университета.

Пр. Независимости, 4, 220030, г. Минск.