Rank-65570 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_2^3 + X_3^3 + X_0^2 X_1 + X_0 X_1 X_2 = 0$$

(1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over GF(4) is 1431656110

General information

Number of lines	3
Number of points	29
Number of singular points	0
Number of Eckardt points	1
Number of double points	0
Number of single points	12
Number of points off lines	16
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{3}
Type of lines on points	$3, 1^{12}, 0^{16}$

Singular Points

The surface has 0 singular points:

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{25} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{25} = \mathbf{Pl}(1, 1, 0, 0, 1, 1)_{177}$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & \omega^2 \end{bmatrix}_{33} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 3 \end{bmatrix}_{33} = \mathbf{Pl}(2, 3, 0, 0, 3, 1)_{298}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & \omega \end{bmatrix}_{29} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}_{29} = \mathbf{Pl}(3, 2, 0, 0, 2, 1)_{239}$$

Rank of lines: (25, 33, 29)

Rank of points on Klein quadric: (177, 298, 239)

Eckardt Points

The surface has 1 Eckardt points: $0: P_8 = \mathbf{P}(1, 0, 1, 0) = \mathbf{P}(1, 0, 1, 0).$

Double Points

The surface has 0 Double points: The double points on the surface are:

Single Points

The surface has 12 single points: The single points on the surface are:

0:	$P_4 = (1, 1, 1, 1)$ lies on line ℓ_0
1:	$P_{26} = (0, 1, 0, 1)$ lies on line ℓ_0
2:	$P_{30} = (0, 2, 0, 1)$ lies on line ℓ_1
3:	$P_{34} = (0, 3, 0, 1)$ lies on line ℓ_2
4:	$P_{46} = (1, 2, 1, 1)$ lies on line ℓ_1
5:	$P_{50} = (1, 3, 1, 1)$ lies on line ℓ_2
6:	$P_{59} = (2, 1, 2, 1)$ lies on line ℓ_0

The single points on the surface are:

Points on surface but on no line

The surface has 16 points not on any line: The points on the surface but not on lines are:

$0: P_9 = (2,0,1,0)$
$1: P_{10} = (3, 0, 1, 0)$
$2: P_{11} = (0, 1, 1, 0)$
$3: P_{13} = (2, 1, 1, 0)$
$4: P_{14} = (3, 1, 1, 0)$
$5: P_{15} = (0, 2, 1, 0)$
$6: P_{19} = (0, 3, 1, 0)$
$7: P_{23} = (1,0,0,1)$
$8: P_{24} = (2,0,0,1)$

$$9: P_{25} = (3, 0, 0, 1)$$

$$10: P_{27} = (1, 1, 0, 1)$$

$$11: P_{32} = (2, 2, 0, 1)$$

$$12: P_{37} = (3, 3, 0, 1)$$

$$13: P_{38} = (0, 0, 1, 1)$$

$$14: P_{53} = (0, 0, 2, 1)$$

$$15: P_{69} = (0, 0, 3, 1)$$

7: $P_{63} = (2, 2, 2, 1)$ lies on line ℓ_1 8: $P_{67} = (2, 3, 2, 1)$ lies on line ℓ_2 9: $P_{76} = (3, 1, 3, 1)$ lies on line ℓ_0 10: $P_{80} = (3, 2, 3, 1)$ lies on line ℓ_1 11: $P_{84} = (3, 3, 3, 1)$ lies on line ℓ_2

Line Intersection Graph

$$\begin{array}{c|c} & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_8	P_8

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_8	P_8

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_8	P_8

The surface has 29 points:

The points on the surface are:

$0: P_4 = (1, 1, 1, 1)$	$10: P_{24} = (2,0,0,1)$	$20: P_{50} = (1, 3, 1, 1)$
$1: P_8 = (1,0,1,0)$	11: $P_{25} = (3,0,0,1)$	$21: P_{53} = (0,0,2,1)$
$2: P_9 = (2,0,1,0)$	$12: P_{26} = (0, 1, 0, 1)$	$22: P_{59} = (2, 1, 2, 1)$
$3: P_{10} = (3,0,1,0)$	13: $P_{27} = (1, 1, 0, 1)$	23: $P_{63} = (2, 2, 2, 1)$
$4: P_{11} = (0, 1, 1, 0)$	14: $P_{30} = (0, 2, 0, 1)$	$24: P_{67} = (2, 3, 2, 1)$
$5: P_{13} = (2, 1, 1, 0)$	15: $P_{32} = (2, 2, 0, 1)$	$25: P_{69} = (0, 0, 3, 1)$
$6: P_{14} = (3, 1, 1, 0)$	16: $P_{34} = (0, 3, 0, 1)$	$26: P_{76} = (3, 1, 3, 1)$
$7: P_{15} = (0, 2, 1, 0)$	17: $P_{37} = (3, 3, 0, 1)$	$27: P_{80} = (3, 2, 3, 1)$
$8: P_{19} = (0, 3, 1, 0)$	18: $P_{38} = (0, 0, 1, 1)$	$28: P_{84} = (3, 3, 3, 1)$
9: $P_{23} = (1,0,0,1)$	19: $P_{46} = (1, 2, 1, 1)$	