Computer Networks

Fall 2018

Jiaqi Zheng (郑嘉琦)

Material with thanks to Mosharaf Chowdhury, Chen Tian and other colleagues.

Welcome Back!

Instructor: Jiaqi Zheng(郑嘉琦)

- Information
 - http://cs.nju.edu.cn/jzheng
 - jzheng@nju.edu.cn

Research focus on using mathematical modeling as well as building systems to explore and understand the design of large-scale computer systems.

Textbook

• Kurose and Ross, Computer Networking: A Top-Down Approach, 7th Edition, Pearson, 2017. ISBN 978-0133594140.

Prof. Jim Kurose

Prof. Keith W. Ross

陈鸣 教授

Schedule

日期/周	周二	周四	阅读材料
9.3-9.9 (—)	0-introduction	Exp1	
9.10-9.16 (二)	01-overview	02-protocol layer	1.1, 1.3, 1.4, 1.5
9.17-9.23 (三)	21-link layer	Exp2	6.1, 6.3, 6.4.2
9.24-9.30 (四)	22-switched LAN	23-wireless	6.4, 7.1, 7.2, 7.3
10.1-10.7 (五)	国庆放假	Exp3	
10.8-10.14 (六)	31-network layer	32-ip routers	4.1, 4.2, 4.3.1, 4.3.2, 4.3.5
10.15-10.21 (七)	33-routing basics	Exp4	5.1
10.22-10.28 (八)	34-routing algorithm	35-inter as routing	5.2, 5.3, 4.3.3
10.29-11.4 (九)	36-bgp	Exp4	5.4
11.5-11.11 (+)	41-transport layer	42- tcp basics	3.1, 3.2, 3.3, 3.4, 3.5
11.12-11.18 (十一)	43-flow & congestion control	Exp5	3.6, 3.7
11.19-11.25 (十二)	44-congestion control	51-http and web	2.2
11.26-12.2 (十三)	52-dns and cdn	Exp6	2.4
12.3-12.9 (十四)	53-video stream and cloud	61-security	2.6, 8.1, 8.6, 8.7
12.10-12.16 (十五)	62-Datacenter Networks	Exp6	6.6
12.17-12.23 (十六)	63-Network in datacenters	64-sdn	4.4, 5.5
12.24-12.30 (十七)	Review	Review	

Class workload

- Classroom
- Six experiments
 - **25%**
- Home work
 - **15%**
- Final exam
 - **60%**
- Seminar (optional)

Communication protocol

- QQ group: 869992936
- TA:博士研究生 何昕、高翼枭
- TA hours:
 - Every Monday
 - **20:00-22:00**
- Experiments
 - ■基础实验楼乙124机房
 - ■単周
 - njunet18fall@163.com 交报告

Question

• What do you expect to learn from this course?

Agenda

- Introductions
- What is (this course on) networking about?
- Why it is useful?
- How to proceed?
- Where are the resources?

What is missing?

- How do we access most services?
 - Examples include search engines, social networks, video streaming, etc.
- How do two machines communicate?
 - When they are directly connected
 - When they are not directly connected
- Using a network

What is a network?

 A system of "links" that interconnect "nodes" in order to move "information" between nodes

Yes, this is very vague

There are many different types of networks

- Internet
- Telephone network
- Transportation networks
- Wireless networks
- Optical networks
- Datacenter networks

We will focus primarily on the Internet

The Internet is transforming everything

- The way we do business
 - E-commerce, advertising, cloud-computing
- The way we have relationships
 - Facebook friends, E-mail, IM, virtual worlds
- The way we learn
 - Wikipedia, MOOCs, search engines
- The way we govern and view law
 - E-voting, censorship, copyright, cyber-attacks

The Internet consists of many end-systems

- car navigator
- heart pacemaker

smartphone •

end-system

Linux server

Windows PC

iPad

MAC laptop

Connected by switches

And links

Managed by many parties

Transfers data

Shared among many services

A federated system

- The Internet ties together different networks by the IP protocol
 - One interface to bind them all together

Why a common interface?

- The Internet ties together different networks
 - >18,000 ISP networks

 Interoperability between users and networks as well as between different networks

MASSIVE Scale

- 3.5 Billion users (34% of world population)
- 1 Trillion websites
- 200 Billion emails sent per day
- 2 Billion smartphones
- 1.8 Billion Facebook users
- 4 Billion YouTube videos watched per day
- Routers that switch 10 Terabits/second
- Links that carry 100 Gigabits/second

Diversity in all dimensions

Technology

Optical, wireless, satellite, copper

Endpoint devices

 From wearable devices and cell phones to datacenters and supercomputers

Applications

Video streaming, social networking, file transfer,
Skype, live TV, gaming, remote medicine, IM

Users

Malicious, naïve, savvy, embarrassed, paranoid

The Internet is also

- Constantly evolving
- Decentralized
 - Many parties with (often conflicting) interests
- Failure-prone
 - Physical errors, logic errors, human errors, etc.
- Constrained by technology
 - Speed of the light is the limit (so far!)

Have we found the right solution?

- We don't really know
- What we do know
 - The early Internet pioneers came up with a solution that was successful beyond all imagining
 - Several enduring architectural principles and practices emerged from their work
- Still, it is just one design with many questions

The Internet is a lesson

- In how to reason through the design of a <u>very</u> complex system
 - What are our goals and constraints?
 - What's the right prioritization of goals?
 - How do we decompose a problem?
 - Who does what? How?
 - What are the interfaces between components?
 - What are the tradeoffs between design options?

Case study

What is this course about?

- To learn about (at a high level)
 - How the Internet works
 - Why it works the way it does
 - How to reason about complicated design problems

- What it's not about
 - How to write web services
 - How to design web pages
 - ...

Topics we will cover

- Basics
 - Packets, circuits, multiplexing, delay, loss, protocols
- Lower-level technologies
 - Ethernet, wireless
- What make networks tick
 - IP, routing protocols, BGP
- How do endpoints/applications use the network
 - DNS, CDN, HTTP, TCP
- Emerging/hot topics
 - Datacenters, management, security, SDN

Participation

- Ask and answer questions!!
 - It helps you understand and others too
 - It helps you stay awake
 - It helps me stay awake
- Sit toward the front

Summary

- Learning about the Internet and networking in general is
 - important and relevant
 - lots of fun challenging real-world problems

