Release dual de Until

N. Sznajder

Théorème 1 Pour toutes formules LTL φ_1 et φ_2 , $\neg(\varphi_1 \cup \varphi_2) \equiv \neg\varphi_1 \, \mathsf{R} \, \neg\varphi_2$.

Il faut montrer que pour tout $t \in (2^{AP})^{\omega}$, pour tout $i \in \mathbb{N}$, $t, i \models \neg(\varphi_1 \cup \varphi_2)$ si et seulement si $t, i \models \neg\varphi_1 \setminus \mathbb{R} \neg\varphi_2$.

 \Rightarrow Soit $t \in (2^{AP})^{\omega}$, soit $i \in \mathbb{N}$, et supposons que $t, i \models \neg(\varphi_1 \cup \varphi_2)$.

Alors, par définition de \neg , $t, i \not\models (\varphi_1 \cup \varphi_2)$.

Alors, par définition de U, il n'existe pas de $j \ge i$ tel que $t, j \models \varphi_2$ et pour tout $i \le k < j$, $t, k \models \varphi_1$.

Alors, pour tout $j \geq i$, $(t, j \not\models \varphi_2)$ ou il existe $i \leq k < j$ tel que $t, k \not\models \varphi_1$).

Alors, pour tout $j \geq i$, si $t, j \models \varphi_2$ alors il existe $i \leq k < j$ tel que $t, k \not\models \varphi_1$. (*)

Alors, (pour tout $j \ge i$, $t, j \not\models \varphi_2$) ou (il existe $j \ge i$, tel que $t, j \models \varphi_2$ et il existe $i \le k < j$ tel que $t, k \not\models \varphi_1$).

Supposons qu'il existe $j \geq i$ tel que $t, j \models \varphi_2$ et il existe $i \leq k < j$ tel que $t, k \not\models \varphi_1$ (on suppose vrai le deuxième terme de la disjonction) et soit j_0 le plus petit indice tel que $j_0 \geq i$ et $t, j_0 \models \varphi_2$. Alors il existe $i \leq k < j_0$ tel que $t, k \not\models \varphi_1$ (par (*)). Alors il existe $j_0 \geq i$ tel que $t, j_0 \models \varphi_2$ et, pour tout $i \leq \ell < j_0, t, \ell \not\models \varphi_2$ (sinon j_0 ne serait pas le plus petit indice), et il existe $i \leq k < j_0, t, k \not\models \varphi_1$. Alors, il existe $k \geq i$ tel que $t, k \not\models \varphi_1$ et pour tout $i \leq \ell < k, t, \ell \not\models \varphi_2$. Alors, il existe $k \geq i$ tel que $t, k \not\models \varphi_1$ et pour tout $t \leq \ell < k, t, \ell \not\models \varphi_2$. Alors, par définition de U, $t, t \not\models \varphi_2$ U $\neg \varphi_1 \land \neg \varphi_2$.

Alors, (pour tout $j \ge i$, $t, j \not\models \varphi_2$) ou $t, i \models \neg \varphi_2 \cup \neg \varphi_1 \wedge \neg \varphi_2$.

Alors, $t, i \models \mathsf{G} \neg \varphi_2 \text{ ou } t, i \models \neg \varphi_2 \mathsf{U} \neg \varphi_1 \wedge \neg \varphi_2$.

Alors, $t, i \models \mathsf{G} \neg \varphi_2 \lor (\neg \varphi_2 \mathsf{U} \neg \varphi_1 \land \neg \varphi_2)$.

Alors $t, i \models \neg \varphi_1 \mathsf{R} \neg \varphi_2$.

 \Leftarrow Soit $t \in (2^{AP})^{\omega}$, soit $i \in \mathbb{N}$, et supposons que $t, i \models \neg \varphi_1 \mathsf{R} \neg \varphi_2$.

Alors, $t, i \models \mathsf{G} \neg \varphi_2 \lor (\neg \varphi_2 \mathsf{U} \neg \varphi_1 \land \varphi_2)$

Alors $t, i \models \mathsf{G} \neg \varphi_2 \text{ ou } t, i \models (\neg \varphi_2 \mathsf{U} \neg \varphi_1 \land \varphi_2)$

Alors (pour tout $j \geq i$, $t, j \models \neg \varphi_2$) ou (il existe $j \geq i$ tel que $t, j \models \neg \varphi_1 \wedge \neg \varphi_2$ et, pour tout $i \leq k < j$, $t, k \models \neg \varphi_2$)

Soit $j \geq i$ tel que $t, j \models \varphi_2$. Alors il existe $k \geq i$ tel que $t, k \models \neg \varphi_1 \wedge \neg \varphi_2$ et, pour tout $i \leq \ell < k, t, \ell \models \neg \varphi_2$. Supposons k = j, alors on aurait $t, j \models \varphi_2$ et $t, j \models \neg \varphi_1 \wedge \neg \varphi_2$, ce qui est impossible. Supposons alors j < k. Alors, comme $t, j \models \varphi_2$, mais comme pour tout $i \leq \ell < k, \ell \models \neg \varphi_2$ c'est impossible aussi. Donc k < j, et il existe $i \leq k < j$ tel que $t, k \models \neg \varphi_1 \wedge \neg \varphi_2$. Ainsi, si $t, j \models \varphi_2$, il existe $i \leq k < j$ tel que $t, k \models \neg \varphi_1$.

Donc, pour tout $j \ge i$, $(t, j \models \neg \varphi_2)$ ou (il existe $i \le k < j$ tel que $t, k \models \neg \varphi_1$).

Donc, pour tout $j \geq i$, $(t, j \not\models \varphi_2)$ ou (il existe $i \leq k < j$ tel que $t, k \not\models \varphi_1$).

Donc, il n'existe pas de $j \ge i$ tel que $t, j \models \varphi_2$ et pour tout $i \le k < j$, $t, k \models \varphi_1$.

Donc, $t, i \not\models \varphi_1 \cup \varphi_2$ et $t, i \models \neg(\varphi_1 \cup \varphi_2)$.