WO 2005/085354 PCT/JP2005/004404

CLAIMS

1. A polyether composition, which comprises polyether having a glass transition temperature of -50°C or lower and a melting point of 55°C or lower, and at least one kind selected from the group consisting of a compound represented by the following general formula (1), a compound represented by the following general formula (2) and a compound represented by the following general formula (3).

$$R^1 \longrightarrow N \longrightarrow R^2$$
 (1)

(in the formula (1), R^1 and R^2 are each independently an alkyl group of a carbon number of 1 to 8, an alkenyl group, an aryl group, an alkoxyl group or a substituted aryl group, and R^1 and R^2 may be bound to each other directly or via at least one kind element selected from C, O, S, P and N)

$$\begin{array}{c}
R^{3} \\
\downarrow \\
P = (0)_{n}
\end{array}$$
(2)

(in the formula (2), R³, R⁴ and R⁵ are each independently an alkyl group of a carbon number of 1 to 8, an alkenyl group, an aryl group, an alkoxyl group, a substituted aryl group, or an amino group, R³ and R⁴ may be bound to each other directly or via at least one kind element selected from C, O, S, P and N, and n is 0 or 1)

$$R^6$$
 (3) $CH_2CH_2COOR^7$

WO 2005/085354 PCT/JP2005/004404

(In the formula (3), R^6 is an organic residue, and R^7 is an alkyl group of a carbon number of 1 to 30)

2. The polyether composition according to claim 1, wherein the polyether has an elongation viscosity under a shear rate of 100 to 500 (1/sec) of 100 to 1,000,000Pa·s.