

Summary

- 1. Introduction
- 2. Peer-to-peer style
 - 1. Application context
 - 2. Faced problem
 - 3. Adopted solution
 - 4. Advantages
 - 5. Weakness
- 3. Real world P2P architectures: BitTorrent
 - 1. Advantages and uses
 - 2. Disadvantages and Security issues
- 4. Bibliography

Introduction

- In the **peer-to-peer** architectural style, **components** directly interact as peers by exchanging services.
- Peer-to-peer communication as **request/reply interaction** without the asymmetry of client-server style.
- Connectors involve complex bidirectional protocols of interaction, reflecting the twoway communication between peer-to-peer components.

Peer-to-peer style Application Context

- Distributed computational entities need to cooperate and collaborate:
 - provide a service to a distributed community of users
- Considered equally important in terms of:
 - initiating an interaction
 - provides own resources
- Large systems which requires Scalability, so without loss in:
 - Performance
 - Availability

Peer-to-peer style Faced Problem

• How can a set of "equal" distributed computational entities be connected to each other via a common protocol?

• How can they organize and share their services with high availability and scalability?

Peer-to-peer style Adopted Solution

Components

- Peer: indipendent component runnining on a node of the network
- **Super Peer**: special peer components can provide routing, indexing, and peer search capability.

Connectors

• Reply/Request connectors: connect to the peer network, search for other peers, and invoke services from other peers

Peer-to-peer style Adopted Solution

All peer components are equals

Connectors in peer-to-peer systems involve **bidirectional interactions**

Peers first connect to the peer-to-peer network on which they discover other **neighbors peers**

Any peer component can interact with any other by requesting or offering his services, so each is both a client and a server.

Peer-to-peer style Advantages

Scalability

- Peers can be added and removed from the network with no significant impact.
- Fexibility for deploying the system across a highly distributed platform.

Availability

- No peer can be critical for the health of the system.
- Multiple peers can offer the same services.
- If one of these peers becomes unavailable, the others can still provide the services to complete the task.

Peer-to-peer style Weakness

Managing of services

• Managing security, data consistency, data/service availability, backup, and recovery are all more complex.

System's size

• Small peer-to-peer systems may not be able to consistently achieve quality goals such as performance and availability.

Real world P2P architectures BitTorrent

• Rather than downloading a file from a single source server, the BitTorrent protocol allows users to join a **swarm** of hosts to **upload to/download** from each other **simultaneously**.

• This lower bandwidth usage also helps prevent large spikes in internet traffic in a given area, keeping internet speeds higher for all users in general, regardless of whether or not they use the BitTorrent protocol.

Real world P2P architectures BitTorrent

The first uploader acted as a **Seed**, and downloaders would initially connect as Peers

Those who wish to download the file connect to **Tracker** which had a list of the IP addresses of other seeds and peers in the swarm.

Once a peer completed a download of the complete file, it could in turn function as a seed.

Real world P2P architectures BitTorrent

- The file is divided into segments of equal size called **pieces**.
- Peer which receives a new piece of the file becomes a **seeds**
- The torrent descriptor (.torrent) is a file which contains the description of every piece of the file and the associated hash.
- Hybrid architecture: Descriptors also contains the Traker's URL wich is a server in which are located all locations of pieces.

BitTorrent

Advantages and uses

Sharing:

- Distributing large files like Linux iso images.
- Distributing Software patches and updates.
- As being done by Blizzard Entertainment Inc, to distribute updates for the world of Warcraft
- Distributing popular files which have high traffic for relatively short periods

Performance

• Unlike traditional server/client downloads, high traffic leads to more efficient file sharing via BitTorrent.

BitTorrent

Disadvantages and Security issues

Security issues:

- The IP of all peers and info of files they are downloading are publicly available on trackers
- The tracker is a critical component and if it fails it can disrupt the distribution of all the files it has tracking.

Disadvantages:

- An easy distribution method for pirated/illegal content
- Cannot modify/update the file to newer versions once the torrent has been distributed
- Leeches who download more than they share. As BitTorrent is a collaborative distributed platform, there is a section of the community that wants solutions to punish and discourage such behaviour.

Bibliography

- [1] Len Bass, Paul Clements, Rick kazman. Software Architecture in Practice.
- [2] Amrit Tiwana. Platform Ecosystem.
- [3] Tarun Vellishetty. Understanding bit Torrent Protocol, https://www.beautifulcode.co/blog/58-understanding-bittorrent-protocol
- [4]Peter Backx, Tim Wauter, Bart DHoedt, Piet Deemester. A comparison of peer-to-peer architectures.