Moduł jest odpowiedzialny za sterowanie wyświetlaniem cyfr na lampach Nixie oraz załączanie lamp neonowych. Sterowanie lampami i neonówkami odbywa się za pomocą rejestrów przesuwnych, które są sterowane przez mikrokontroler. Natomiast kropki na lampach Nixie są sterowane za pośrednictwem tranzystorów.

0.0.1 Dobór rejestrów

Wybrano rejestry przesuwne HV firmy microchip o numerze HV5530, o nastepujacych parametrach[1]:

- Rejestr 32 bitowy
- Maksymalne napięcie na wyjściu 315V
- Maksymalna częstotliwość pracy 8MHz
- napięcie zasilania od 10.8V do 13.6V
- stan wysoki Napięcie zasilania 2V

0.0.2 Sterowanie rejestrów

Sterowanie rejestrem realizowane jest za pomocą nastepujacych pinów:

- CLK sterowanie zegarem rejestru
- LE załadowanie danych do rejestru(Latch Enable)
- POL ustawienie polaryzacji wyjścia
- DATA IN wejście danych
- BL wyjście blanking(ustawianie wszystkich wyjść na zadany stan logiczny)
- DATA OUT wyjście danych dla następnego rejestru

Do sterowania wystarczą jedynie 3 linie CLK, LE, DATA_IN, ponieważ BL i POL można ustawić na stałe. Rejestry można połączyć ze sobą dzięki czemu wymagana jest tylko jedna linia danych. Sterowanie wymaga użycia konwertera poziomów logicznych, ponieważ mikrokontroler pracuje na napieciu 3.3V, a rejestr operuje na napieciu około 12V.

Zastosowano konwerter poziomów logicznych CD40109B-Q1 firmy Texas Instruments[2]. Konwerter jest 4 kanałowy, co pozwala na podłączenie 4 sygnałów, więc wybrano połaczenia CLK, LE, DATA IN, BL. Konwerter pracuje w zakresie napięć od 3V do 20V, więc spełnia wymagania.

0.0.3 Sterowanie kropkami dziesiętnymi

Sterowanie kropkami dziesiętnymi odbywa się za pomocą tranzystorów HV firmy Diodes Industries o numerze DMN60H080DS, o następujących parametrach [1]:

- maksymalne napięcie dren-źródło 600V
- maksymalny prad drenu 80mA
- napięcie progowe ok. 2V

0.0.4 Dobór rezystorów

Wartość rezystorów anodowych dla zastosowanych lamp zostały obliczone w rozdziale ??. Kropki wymagają mniejszego prądu, producent jednak nie podaje dokładnej wartości, więc przyjęto wartość $51k\Omega$. Dobór rezystora zostanie oceniony empirycznie, podczas testowania gotowego układu.

Lampy neonowe mają zdecydowanie mniejszy prąd pracy oraz mniejsze napięcie pracy. W sklepie internetowym sprzedający deklarował nastepujace parametry:

- wymagane napięcie 90V
- prąd pracy 0.3mA

Rezystor potrzebny do zabezpieczenia lampy neonowej przy napięciu zasilania 220V powinien mieć wartość około $433 \mathrm{k}\Omega$.:

$$R = \frac{U}{I} = \frac{220V - 90V}{0.3mA} \approx 433k\Omega \tag{1}$$

Zdecydowano się na użycie rezystora o wartości 390k Ω , ze względu na dostępność w sklepie internetowym.

Figure 0.1: Schemat układu sterowania lampami