Proof by contradiction

Proposition: My dog is not an elephant.

Proof: Suppose my dog is an elephant.

Elephants have trunks, so my dog

has a trunk

My dog does not

My dog does not have a trunk.

This is a contradichu. So my dog is NOT an elephant.

Proposition: The square root of 2 is not a rational number.

$$\left(\sqrt{2}\right)^2 = 2.$$

1/2 a rational number means

$$\sqrt{2} = \frac{a}{b}$$
 where $a_3 b$ are integers and $b \neq 0$.

$$2 = \frac{a^2}{b^2}$$

Therefore $a^2 - 2b^2 = 0$.

If The is rahmal then at-26°=0 has a soluha where a, be T and b to,

Lemma: If a^2 is even, then a is even. $(a \in \mathbb{Z})$ $(\neg Q \Rightarrow \neg P)$

Proof: We will prove the contrapositive, which says that if a is odd, then a^2 is odd. Suppose a is odd. Then a = 2k + 1 for some k. Ke \mathbb{Z} .

Therefore $a^2 = (2k + 1)^2 = 4k^2 + 4k + 1$ is odd.

Suppose a is odd = 0.000 a odd = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000

Proof of Proposition: Suppose that $\sqrt{2}$ is a rational number. Then we can find positive integers a and b with $b \neq 0$ so that

$$2 = (\frac{a}{b})^2$$
. = $\frac{a^2}{b^2}$

We can choose a, b NoT BOTH Even. We can pet 9/b in lowest terms. Either a or b is odd.

so a2 is even

Lema: fellors a is even.

so b is 080.

On the other hand,

$$(2m)^2 = 2b^2$$

 $4m^2 = 2b^2$

the other hand,
$$\alpha = 2m$$
 for some $m \in \mathbb{Z}$.

The other hand, $\alpha = 2m$ for some $m \in \mathbb{Z}$.

 $(2m)^2 = 2b^2$
 $(3m)^2 = 2b^2$

Proof of Proposition: Suppose that $\sqrt{2}$ is a rational number.

Then we can find positive integers
$$a$$
 and b with $b \neq 0$ so that $a^2 - 2b^2 = 0$.

as bou both positive (not zero).

Among all solutions, cloose (ao, bo) where ao is as small as possible.

as small so
$$p^2$$
 so a_0^2 is even.
Lema: a_0 is even

as = 2m fu some m & Z.

 $4 m^2 = 2 b_0^2$ $m < a_n$ po is even, so pois $2m^2 = b_0$ even, b= 2N 2 m² = 4n² m, n solves a=2b²

Thelae we have a contradiction so to is not lateral

Logical Structure of proof by contradiction

- ▶ A contradiction is a statement of the form (C and $\sim C$) which is always false.
- ▶ The strategy of proof by contradiction is that if $A \implies B$ is true, and B is false, then A is false.

Proposition: $P \implies Q$.

- ► Assume *P* is true.
- ightharpoonup Assume (P and $\sim Q$) is true and

$$P \text{ and } \sim Q \implies C \text{ and } \sim C$$

for some statement C.

- ▶ If $(P \text{ and } \sim Q)$ implies $(C \text{ and } \sim C)$ is a true implication yielding a false conclusion, then the hypothesis must be false.
- ▶ Therefore (P and $\sim Q$) is false.
- ▶ If $(P \text{ and } \sim Q)$ is false, and P is true then $\sim Q$ is false
- Q is true.