Analyse fonctionnelle et distributions

Michel Rouleux

2023-2024

_____TABLE DES MATIÈRES

1	$\mathbf{E}\mathbf{sp}$	paces localement convexes	5
	1.1	Rappels de topologie	5
		1.1.1 Axiomes	5
		1.1.2 Cas particulier d'espaces topologiques : espaces métriques	5
		1.1.3 Comparaison des topologies	6
		1.1.4 Espaces vectoriels topologiques	8
	1.2	Semi-normes et espaces localement convexes	9
		1.2.1 Semi-normes sur X espace vectoriel	9
	1.3	Pourquoi "localement convexe"?	1
		1.3.1 Théorème de Hahn-Banach	3
	1.4	Espaces de Fréchet, topologies faible et faible *	5
		1.4.1 Topologies définies par une distance	5
		1.4.2 Espace de Schwarz $\mathscr{S}(\mathbb{R}^d) \subset \mathcal{C}^{\infty}(\mathbb{R}^d)$	8
		1.4.3 Topologie forte et topologie faible sur les espaces de Banach	8
		1.4.4 Comparaison des topologies $(E, \ \cdot\)$ et $\sigma(E, E')$	9
		1.4.5 Théorème de Banach-Steinhaus, suites faiblement et fortement convergentes 2	0
		1.4.6 Suites faiblement et fortement convergentes	1
		1.4.7 Topologie faible *	2
2	Thé	éorie de distributions 2	5
	2.1	Espaces de Lebesgue	5
		2.1.1 Mesure de Lebesgue	5
		2.1.2 Intégrale des fonctions positives	6
	2.2	Espaces L^p $(1 \le p \le +\infty)$ comme espaces de Banach	8
		2.2.1 Les espaces $L^p, 1 \leq p < \infty$	9
		2.2.2 Espace L^{∞}	0
		2.2.2 Espace L^{∞}	1
	2.3	Espaces L^p comme ELC	
		2.3.1 $L^1(\Omega)$, avec Ω ouvert de \mathbb{R}^d	1
		$2.3.2 E = L^{\infty} \dots \dots \dots 3$	2
		2.3.3 Espaces duaux de L^p	2
	2.4	Exemple fondamental : convergence d'une suite de L^1 vers la mesure de Dirac	4
3	Fon	actions troncature et partition de l'unité : cas continu	5
	3.1	Les fonctions troncature	5
4	Fon	actions différentiables 3	7
	4.1	Rappels de calcul différentiel	7
	4.2	Classification des $\mathcal{C}^m(\Omega)$, régularité, support	
	4.3	Partitions de l'unité différentiables	

5	Con	avolution des fonctions et de mesures	43
	5.1	Convolution des mesures discrètes	43
	5.2	Convolution des mesures de Radon	44
	5.3	Propriétés géométriques sur les supports	45
	5.4	Exemples de mesures convolables	46
	5.5	Convolution des fonctions	46
	5.6	Algèbres de convolution	46
	5.7	Convolution de mesures et de fonctions	47
6	Dist	tributions	49
	6.1	Définition, convergence dans $\mathscr{D}, \mathscr{D}'$	49
	6.2	Convergence d'une suite de distributions dans $\mathscr{D}'(\Omega)$	50
	6.3	Multiplication (au sens des distributions) et dérivation	51
		6.3.1 Produit d'une distribution par $f \in \mathcal{C}^{\infty}$	51
		6.3.2 Dérivée d'une distribution	51

1.1 Rappels de topologie

J. Dieudonné 1 et 2.

Reed-Simon 1, 2 et 4.

Brézis, "Analyse fonctionnelle"

Soit X ensemble. Soit (X, \mathcal{T}) espace topologique où $\mathcal{T} \subset \mathcal{P}(X)$. \mathcal{T} parcourt l'ensemble des voisinages de x où x est un point quelconque de X.

1.1.1 Axiomes

- 1. Soient $x \in X$ et V' voisinage de x. Si $V \supset V'$ alors V est un voisinage de X.
- 2. $\bigcap_{\text{finie}} V_i$ est un voisinage de $x, \bigcap_{\text{finie}} V_i \in \mathcal{T}$, mais $\bigcap_{\varepsilon > 0} V_{\varepsilon} \neq \emptyset$ n'est pas un voisinage de 0.
- 3. $\bigcap_{i \in I} V_i$ est un voisinage de x.

Définition 1.1.1 (Ouvert). Ω ouvert si et seulement si Ω est voisinage de chacun de ses points.

Exemple. (-1,1) ouvert tandis que [-1,1) non ouvert car -1 n'a pas de voisinage.

 $V(x)=(x-\varepsilon,x+\varepsilon)$ est une base de voisinage pour la topologie usuelle de \mathbb{R} .

Exercice 1. On peut définir axiomatiquement $\mathcal T$ à partir de ses ouverts.

Définition 1.1.2 (Fermé). On dit que F est un fermé si et seulement si F^C est un ouvert.

1.1.2 Cas particulier d'espaces topologiques : espaces métriques

Définition 1.1.3 (Espace métrique, distance).

X est un ensemble, $d: X \times X \to \mathbb{R}^+$ distance sur X si et seulement si :

1. d(x,y) = 0 si et seulement si x = y;

Remarque. Si on a seulement $x = y \implies d(x, y) = 0$, alors d est un écart.

- 2. d(x,y) = d(y,x) (symétrie);
- 3. $d(x,y) \le d(x,z) + d(z,y)$ (inégalité triangulaire). De ce fait, $|d(x,z) d(y,z)| \le d(x,y)$.

Exemple. 1. Dans \mathbb{R}^n , d(x,y) = ||x-y||.

2. X ensemble. On définit d de la façon suivante :

$$\forall x, y \in X, d(x, y) = \begin{cases} d(x, y) = 0 \text{ si } x = y\\ d(x, y) = 1 \text{ si } x \neq y. \end{cases}$$

Il s'agit de la distance triviale.

Si x, y, z distincts alors $d(x, y) \le d(x, z) + d(z, y)$.

1.1.3 Comparaison des topologies

Soient X un ensemble et $\mathcal{T}, \mathcal{T}'$ des topologies sur X.

Définition 1.1.4 (Plus fine). On dit que \mathscr{T}' est plus fine que \mathscr{T} et on note $\mathscr{T}' \prec \mathscr{T}$ si et seulement si $\mathscr{T} \subset \mathscr{T}'$.

On dit aussi que \mathcal{T}' est plus forte que \mathcal{T} .

Remarque. Si $\mathcal{T}' \prec \mathcal{T}$, il y a plus d'ouverts dans \mathcal{T}' que dans \mathcal{T} (idem pour les fermés).

Démonstration. Soit Ω ouvert dans X. On a $\Omega \in \mathcal{T} \Longrightarrow \Omega \in \mathcal{T}'$. Soit F un fermé dans X. On a $F \in \mathcal{T}$, mais $\Omega = F^C \in \mathcal{T} \Longrightarrow F^C \in \mathcal{T}'$, donc $F \in \mathcal{T}'$.

Formulations équivalentes

- 1. On suppose que $\mathscr{T}' \prec \mathscr{T}$. Si $\forall x \in X$, U est un voisinage de x pour \mathscr{T} , alors U voisinage de x pour \mathscr{T}' , car si U est un ouvert de \mathscr{T} , alors U est un ouvert de \mathscr{T}' .
- 2. Pour l'application identité définie comme suit

$$id: (X, \mathscr{T}') \longrightarrow (X, \mathscr{T}),$$

on a $\mathcal{T}' \prec \mathcal{T}$ si et seulement si id est continue.

Par exemple, prenons $X = \{f : [0,1] \to \mathbb{R}\}$. On prend \mathscr{T} topologie de la convergence simple, i. e. f_n converge vers f simplement si $\forall x \in [0,1], f_n(x) \to f(x)$.

7

Ouverts de Ω

$$\Omega_{a,\varepsilon} = \{ f \in X \mid \sup_{i=1,\dots,k} |f(a_i)| < \varepsilon \},$$

avec $a = a_0, \ldots, a_k \in [0, 1]$ et $\varepsilon > 0$.

 $\Omega_{a,\varepsilon}$ est un voisinage de 0 (la fonction nulle) dans X.

Pour $f_0 \in X$, $\Omega_{a,\varepsilon} + f_0$ est une base de voisinage de f_0 , car X est un espace vectoriel (on agit par translation).

On considère maintenant la topologie de la convergence uniforme \mathcal{T}' .

 $\Omega_{\varepsilon} = \{ f \in X, \sup_{x \in [0,1]} |f(x)| < \varepsilon \}$ est un voisinage de 0 (la fonction nulle).

Proposition 1.1.1. \mathscr{T}' est plus fine que \mathscr{T} , ie $\mathscr{T} \subset \mathscr{T}'$.

Démonstration. Soit $\Omega_{a,\varepsilon} \in \mathscr{T}$.

Si
$$f \in \Omega_{\varepsilon}$$
, alors

$$\forall x \in [0, 1], |f(x)| < \varepsilon,$$

ce qui implique que

$$\forall i \in \{1, \ldots, k\}, |f(a_i)| < \varepsilon \text{ (car c'est vrai pour tout } x\text{)}.$$

Donc Ω_{ε} est un voisinage de 0 dans \mathscr{T} . On a ainsi démontré que \mathscr{T}' est plus fine que \mathscr{T} .

On considère l'espace des fonctions continues \mathcal{C}^0 avec la norme

$$||f||_0 = \sup |f(x)|$$

et l'espace des fonctions de classe \mathcal{C}^1 \mathcal{C}^1 avec la norme

$$||f||_1 = \sup |f(x)| + \sup |f'(x)|.$$

La topologie sur \mathcal{C}^1 est plus fine que celle sur \mathcal{C}^0 .

Démonstration. On a pour tout f,

$$||f||_0 \leq ||f||_1$$
.

Ainsi si

$$||f||_1 < \varepsilon,$$

alors

$$||f||_0 < \varepsilon$$
.

Par conséquent, $\{f, ||f||_1 < \varepsilon\} \subset \{f, ||f||_0 < \varepsilon\}$.

Donc $\mathscr{T}' \prec \mathscr{T}$.

On sait également que si U est un voisinage de 0 pour \mathscr{T} , alors U est un voisinage de 0 pour \mathscr{T}' .

Topologie métrisable (exemples)

1. Topologie grossière $\mathcal{T} = \{\emptyset, X\}$. C'est la topologie la moins fine.

Remarque. $\mathcal{T}' = \mathcal{P}(X)$ est la topologie la plus fine.

Vérifions si la topologie grossière est métrisable dans différents cas.

— Si $X = \{a\}$, on a d(a, a) = 0. Le seul voisinage de a est $X = \{a\}$. Donc \mathscr{T} est métrisable.

— Supposons que $X = \{a, b\}$. Mais \mathscr{T} n'est plus métrisable, avec d(a, b) = 1 (distance triviale). Raisonnons par l'absurde. Si \mathscr{T} était métrisable, \mathscr{T} devrait contenir un ouvert Ω tel que $a \in \Omega$ et $b \notin \Omega$. Or $\mathscr{T} = \{\emptyset, X\}$, donc c'est impossible.

Pour \mathcal{T}' , on choisit la distance d telle que d(x,y)=0 ou 1. Est-ce que \mathcal{T}' est métrisable?

2. Prenons \mathcal{T} telle que $\mathcal{T} = \{\emptyset, \{a\}, X\}$.

On suppose que X contient au moins deux éléments. Dans ce cas, \mathscr{T} est une topologie sur X non métrisable, car si d(a,b)=1, avec $b\neq a$, alors dans \mathscr{T} il n'existe pas de boule ouverte qui contient $\{b\}$ sans contenir $\{a\}$.

3. Considérons $X = \{a, b\}$ muni de la topologie $\mathscr{T} = \{\emptyset, \{a\}, \{b\}, X\} = \mathscr{P}(X)$.

On a d(a,b) = 1, car $a \neq b$.

De ce fait :

- $\{a\}$ voisinage de a qui ne contient pas b ($\{a\} = \{x \text{ tel que } d(x, a) < 1\}$);
- $\{b\}$ voisinage de b qui ne contient pas a.

1.1.4 Espaces vectoriels topologiques

Dans le cas où (X, \mathcal{T}) est un espace vectoriel topologique, il suffit de connaître les voisinages de 0 et on agit par translation pour déterminer les voisinages de n'importe quel $x \in X$.

Définition 1.1.5 (Continuité). Soient X,Y deux espaces vectoriels topologiques et $f:X\to Y$ une application. On considère :

$$(U_a)_{a \in A}$$
 voisinage de 0 dans X
 $(V_b)_{b \in B}$ voisinage de 0 dans Y

f est continue si pour tout $V = V_b + f(x_0)$ dans Y, il existe $U = \bigcap_{\text{finie}} (U_a + x_0)$ voisinage de x dans X tel que $x \in U \implies f(x) \in V$.

Définition 1.1.6 (Norme). $\|\cdot\|$ est une norme sur X si

- 1. $||x|| = 0 \iff x = 0$ (séparation);
- 2. $\|\lambda x\| = |l| \|x\|$ (absolue homogénéité);
- 3. $||x+y|| \le ||x|| + ||y||$ (inégalité triangulaire).

Cas particulier : X normé De cette norme, on construit la distance d telle que

$$\forall x, y \in X, d(x, y) = ||x - y||.$$

Voisinages de 0.

$$(U_a) = B(0, a)$$

$$A = \mathbb{R}^+$$
.

— $f: X \to Y$ continue en $x_0, \forall V = V_b + f(x_0), \exists U = B(0, \delta) + x_0, f(U) \subset V.$

$$--X,Y$$
 EVN.

$$\forall \varepsilon > 0, \exists \delta > 0, f(B(0, \delta) + x_0) \subset B(f(x_0), \varepsilon).$$

1.2 Semi-normes et espaces localement convexes

1.2.1 Semi-normes sur X espace vectoriel

Définition 1.2.1 (Semi-norme). L'application $\rho: X \to \mathbb{R}^+$ est une semi-norme si :

- 1. $\rho(0) = 0$;
- 2. $\rho(\lambda x) = |\lambda| \rho(x)$;
- 3. $\rho(x+y) \le \rho(x) + \rho(y)$.

X est un espace vectoriel $\mathbb R$ ou $\mathbb C.$

Remarque. \wedge On n'a pas forcément $\rho(x) = 0 \implies x = 0$.

Exemple. 1. Si ρ est une norme, c'est aussi une semi-norme.

2. $X = \mathcal{C}^0([0,1], \mathbb{R} \text{ (ou } \mathbb{C}))$. On prend $a = (a_0, \ldots, a_k) \subset [0,1]$. On définit

$$\rho_a(f) = \sup_{0 \le i \le k} |f(a_i)|.$$

3. Topologie faible. X est un espace vectoriel et X' est son dual (espace contenant les formes linéaires sur X).

Soit l une forme linéaire dans X'. Alors

$$p(x) = |\langle l, x \rangle|.$$

Définition 1.2.2 (Famille de semi-normes séparée). Soit $(\rho_a)_{a\in A}$ une famille de semi-normes. On dit que $(\rho_a)_{a\in A}$ sépare les points (ou est séparée) si et seulement si

$$\forall a \in A, \rho_a(x) = 0 \implies x = 0.$$

Définition 1.2.3 (Espace localement convexe (ELC)). L'espace vectoriel topologique X est un espace localement convexe si et seulement si X est muni d'une famille de semi-normes qui séparent les points.

Proposition 1.2.1. Si X est un espace localement convexe, alors X est un espace vectoriel topologique pour la topologie définie par ρ_a .

Démonstration. On note \mathscr{T} la topologie définie par la famille de semi-normes $(\rho_a)_{a\in A}$.

Remarque (Personnelle). On cherche à montrer que les $\mathcal{O}_{a,\varepsilon}$ forment une topologie. On va vérifier les axiomes de topologie.

Dans ce cas, les ouverts $\mathcal{O} \in \mathcal{T}$ sont $\mathcal{O} = \mathcal{O}_{a,\varepsilon}, a \in A, \varepsilon > 0$ définis ci-dessous :

$$\mathcal{O}_{a,\varepsilon} = \{ x \mid \rho_a(x) < \varepsilon \}$$

 $\mathcal{O}_{a,\varepsilon}$ une base de voisinages de 0.

Les voisinages de x sont donnés par translation :

$$x + \mathcal{O}_{a,\varepsilon} = \{x + y, y \in \mathcal{O}_{a,\varepsilon}\}.$$

On montre facilement que $\bigcap_{\text{finie}} \mathcal{O}_{a,\varepsilon} \in \mathscr{T}$ et $\bigcup_{\text{quelconque}} \mathcal{O}_{a,\varepsilon} \in \mathscr{T}$.

Proposition 1.2.2. \mathcal{T} est la topologie la moins fine sur X qui rend continues

$$(x,y) \mapsto x + y \text{ et } (\lambda,x) \to \lambda x.$$

Il y a donc une compatibilité avec la structure des espaces vectoriels.

Démonstration. 1. \mathcal{T} rend continues les deux opérations de X. On a en effet

$$\rho_a(x+y) \le \rho_a(x) + \rho_a(y).$$

Il suffit de prendre $\rho_a(x) < \frac{\varepsilon}{2}$ et $\rho_a(x) < \frac{\varepsilon}{2}$, on obtient $\rho_a(x+y) < \varepsilon$.

On a $\rho(\lambda x) = |\lambda|\rho(x)$ et on démontre ce résultat par analogie.

2. La moins fine (en exercice).

Théorème 1.2.1. La topologie de X espace localement convexe est Hausdorff, i. e. elle sépare les points.

Définition 1.2.4 (Hausdorff). (X, \mathcal{T}) est de Hausdorff si et seulement si pour tout $x, y \in X$ tel que $x \neq y$, il existe \mathcal{O}_x et \mathcal{O}_y voisinages de x et de y tels que

$$\mathcal{O}_x \cap \mathcal{O}_y = \emptyset.$$

Exemple. On prend $X = \{a, b\}, \mathcal{T} = \{\emptyset, \{a\}, \{b\}, X\}$. On a $\{a\} \cap \{b\} = \emptyset$. Donc (X, \mathcal{T}) est séparée.

Démonstration du théorème 1.2.1. Par contraposée, on prend $y \neq 0$ et x = 0.

Si X est un espace localement convexe, alors il existe $a \in A$ tel que $\rho_a(y) = \varepsilon > 0$.

On pose

$$V_x = \left\{ z, \rho_a(z) < \frac{\varepsilon}{2} \right\} \text{ et } V_y = \left\{ z, \rho(z - y) < \frac{\varepsilon}{2} \right\}.$$
 (1.1)

Par l'inégalité triangulaire, on obtient $V_x \cap V_y = \emptyset$, car

$$\rho_a(x-y) > |\rho_a(x) - \rho_a(y)| > \left|\frac{\varepsilon}{2} - \varepsilon\right| = \frac{\varepsilon}{2} > 0.$$

*

1.3 Pourquoi "localement convexe"?

Définition 1.3.1. Soit X un \mathbb{R} ou \mathbb{C} espace vectoriel.

1. On dit que $C\subset X$ est convexe si

$$\forall x, y \in C, \forall t \in [0, 1], z = tx + (1 - t)y \in C.$$

2. On dit que $B \subset X$ est balancé (sur \mathbb{R}) ou cerclé (sur \mathbb{C}) si

$$\forall \lambda \in \mathbb{R}, |\lambda| = 1 \implies \forall x \in B, \lambda x \in B.$$

3. On dit que $E \subset X$ est équilibré si

$$\forall \lambda \in \mathbb{R} \text{ ou } \mathbb{C}, |\lambda| \leq 1 \implies \forall x \in E, \lambda x \in E.$$

4. On dit que A est absorbant si

$$\bigcup_{t>0} tA = X.$$

n ensemble convexe Un ensemble non convexe

Figure 1.1 – Ensemble convexe

Exemple. 1. Si X est un espace vectoriel normé, A = B(0,1) et $x \in X$, on a $\frac{x}{\|x\|} \in B(0,1)$. Alors $x \in \|x\|B(0,1)$.

2. Si $0 \in C$ convexe, alors C est équilibré si et seulement si C est balancé.

Démonstration. On suppose que C est balancé. Pour $x \in C \implies -x \in C$, donc $[-x,x] \in C$ par convexité.

Théorème 1.3.1. Soit X un espace vectoriel topologique. Les assertions suivantes sont équivalentes :

- 1. X est un espace localement convexe (réel ou complexe);
- 2. Il existe une base de voisinages de $0 \in X$ qui sont convexes, balancés (cerclés), absorbants.

19-09-2023

Démonstration. 1. Si X est un espace localement convexe, alors une base de voisinages de 0 est donnée par

$$\mathcal{O}_{a,\varepsilon} = \{ x \in X \mid \rho_a(x) < \varepsilon \}$$

Les $\mathcal{O}_{a,\varepsilon}$ sont convexes, balancés et absorbants (TD).

2. On utilise la jauge de Minkowski 1.3.2.

On pose

$$\rho_C(x) = \mu_C(x).$$

et on vérifie que ρ_C est une semi-norme. Grâce au lemme 1.3, on obtient les résultats suivants :

- (a) $\rho_C(x+y) \leq \rho_C(x) + \rho_C(y)$, car C est convexe;
- (b) $\rho_C(\lambda x) = \lambda \rho_C(x)$ si $\lambda > 0$ et $\rho_C(\lambda x) = |\lambda| \rho_C(x)$, car C est cerclé.

X muni de ρ_C est un espace localement convexe.

Définition 1.3.2 (Jauge de Minkowski). Soit X espace vectoriel réel ou complexe. On suppose que C tel que $0 \in C$ est absorbant. Alors la jauge de Minkowski est définie comme suit :

$$\mu_C(x) = \inf\{\alpha > 0, x \in \alpha C\}.$$

FIGURE 1.2 – La jauge de Minkowski

Remarque. Si C est absorbant, alors $\forall x \in X, \mu_C(x) < \infty$.

Lemme. Soit $C \subset X$ absorbant tel que $0 \in C$.

- 1. Si $\lambda \geq 0$, $\mu_C(\lambda x) = \lambda \mu_C(x)$;
- 2. Si C est convexe, alors $\mu_C(x+y) \leq \mu_C(x) + \mu_C(y)$;
- 3. Si C est cerclé, alors $\mu_C(\lambda x) = |\lambda| \mu_C(x)$;
- 4. $\{x \in X, \mu_C(x) < 1\} \subset C \subset \{x \in X, \mu_C(x) \le 1\}.$

13

1.3.1 Théorème de Hahn-Banach

Il y a la forme analytique et la forme géométrique de ce théorème.

Théorème 1.3.2 (De Hahn-Banach, forme analytique). Pour simplifier, on prend X espace vectoriel sur \mathbb{R} . Soit $p: X \longrightarrow \mathbb{R}$ qui vérifie :

- $\star \ \forall x \in X, \forall \lambda > 0, p(\lambda x) = \lambda p(x);$
- $\star \ \forall x, y \in X, \ p(x+y) \le p(x) + p(y).$

Soient Y un sous espace vectoriel de X et l une forme linéaire sur Y qui vérifie

$$\forall x \in Y, l(x) \le p(x), \forall x \in Y.$$

Alors (prolongement) il existe L forme linéaire sur X telle que $L_{|Y}=l$ et

$$\forall x \in X, L(x) \le p(x).$$

On l'applique aux espaces vectoriels normés, espaces localement convexes,...

Théorème 1.3.3 (Norme sur un espace dual). Soit X espace vectoriel normé, X' formes linéaires continues sur X, X' est un espace vectoriel normé. La norme sur X' est définie de la façon suivante :

$$\|L\|_{X'} \stackrel{\text{déf}}{=} \sup_{\substack{x \in X \\ \|x\| = 1}} |\langle L, x \rangle| = \sup_{x \in X \backslash \{0\}} \left| \left\langle L, \frac{x}{\|x\|} \right\rangle \right| = \sup_{x \in X \backslash \{0\}} \frac{|\langle L, x \rangle|}{\|x\|}.$$

Exercice 2. Montrer que $\|\cdot\|_{X'}$ est une norme.

Si X est un espace vectoriel normé complet (de Banach), alors X' l'est aussi.

Corollaire (Prolongement isométrique de l sur Y). Soit X espace vectoriel normé, $Y \subset X$ sous espace vectoriel de X et $l \in Y'$ avec

$$||l|| = \sup_{\substack{||y|| \le 1 \\ y \in V}} |\langle l, y \rangle|.$$

Alors il existe un prolongement L de l de même norme

$$\sup_{\substack{x \in X \\ \|x\| \le 1}} |\langle l, x \rangle| = \sup_{\substack{y \in Y \\ \|y\| \le 1}} |\langle l, y \rangle|.$$

Démonstration. Par le théorème de Hahn-Banach, on pose p telle que $p(x) = ||l||_{Y'}||x||$ (l'application définie ainsi vérifie les propriétés de p nécessaires à l'application du théorème).

Par Hahn-Banach, il existe L une forme linéaire sur X telle que

$$L(x) = \langle L, x \rangle \le p(x) = ||l||_{Y'} ||x||.$$

Mais

$$\langle L, -x \rangle \le ||l||_{Y'}|| - x||,$$

donc

$$|\langle L, x \rangle| \le ||l||_{Y'} ||x||.$$

Ainsi, en divisant par ||x||, on obtient le résultat suivant :

$$\forall x \in X, \left| \left\langle L, \frac{x}{\|x\|} \right\rangle \right| \le \|l\|_{Y'}.$$

Or si on prend $x \in Y$,

$$\left| \left\langle L, \frac{x}{\|x\|} \right\rangle \right| \le \|l\|_{Y'} = \sup_{y \in Y \setminus \{0\}} \left| \left\langle L, \frac{y}{\|y\|} \right\rangle \right|.$$

Comme $Y \subset X$ (ce qui entraı̂ne que $\sup_{y \in Y \setminus \{0\}} \left| \left\langle L, \frac{y}{\|y\|} \right\rangle \right| \leq \sup_{x \in X \setminus \{0\}} \left| \left\langle L, \frac{x}{\|x\|} \right\rangle \right|$), on a donc égalité, d'où l'isométrie.

Corollaire. $\forall x_0 \in X$ espace vectoriel réel, il existe $L_0 \in X'$, $||L_0||_{X'} = ||x_0||_X$.

Démonstration. $Y = \mathbb{R}x_0$. Soit $l(tx_0) \stackrel{\text{def}}{=} t ||x_0||^2$ forme linéaire continue sur Y. Alors, en posant t = 1, on obtient

$$||l||_{Y'} = ||x_0||$$

et, par le théorème de Hahn-Banach,

$$||L_0||_{X'} = ||x_0||_X.$$

Exercice 3. Traduire Hahn-Banach dans le cas où X est un espace localement convexe.

Théorème 1.3.4 (De Hahn-Banach, forme géométrique). Soit X espace vectoriel normé (ou espace localement convexe). Soient $A, B \subset X$ convexes et disjoints.

- 1. On suppose que A est ouvert. Alors il existe un hyperplan affine (d'équation $\langle L, x \rangle = \text{constante}$) \mathscr{H} qui sépare au sens large A et B.
- 2. Si A est fermé, B est compact, alors il existe \mathcal{H} hyperplan qui sépare A et B au sens strict.

FIGURE 1.3 – $A = \{x_1 < 0\}, B = \{x_2 \ge 0\}, \mathcal{H} = \{x_1 = 0\}.$

1.4 Espaces de Fréchet, topologies faible et faible *

1.4.1 Topologies définies par une distance

26-09-2023

On rappelle la définition 1.1.3.

Définition 1.4.1 (Distances équivalentes). On dit que d_1 est équivalente à d_2 si et seulement si il existe C > 0 tel que

$$\frac{1}{C}d_1(x,y) \le d_2(x,y) \le Cd_1(x,y).$$

 $d_1 \sim d_2 \implies (X, d_1) \simeq (X, d_2)$, mais la réciproque est fausse.

Exemple. On prend un espace métrique (X, d) avec les distances

$$\delta(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$
 et $\delta'(x,y) = \inf(1, d(x,y))$.

Ces distances sont équivalentes entre elles.

Démonstration.

1. Montrons que $(X, d) \sim (X, \delta')$. On remarque d'abord que

$$\delta(x,y) = \frac{d(x,y)}{1 + d(x,y)} \le d(x,y),$$

ce qui veut dire que $(X,d) \prec (X,\delta)$ (car si \mathcal{O} est un ouvert pour δ , alors il le sera forcément pour d).

Prenons

$$f(t) = \frac{t}{1+t}. ag{1.2}$$

La fonction f est une bijection de \mathbb{R}^+ dans [0,1]. En effet, montrons qu'il existe $g:[0,1]\to\mathbb{R}^+$ telle que $g\circ f=f\circ g=\mathrm{id}$.

On a

$$\frac{t}{1+t} = s \implies t = ts + s \implies t = \frac{s}{1-s}.$$

Donc $d(x,y) = \frac{\delta(x,y)}{1-\delta(x,y)}$. Donc si $d(x,y) < \varepsilon$, alors $d(x,y) < \frac{\varepsilon}{1-\varepsilon}$. Donc $(X,\delta) \prec (X,d)$.

2. Montrons que $\delta \sim \delta'$.

On a

$$\delta = \frac{d}{1+d} \le \begin{cases} 1\\ \delta. \end{cases}$$

En effet, cela vient du fait que $\frac{d(x,y)}{1+d(x,y)} \xrightarrow[d(x,y)\to\infty]{} 1$. Donc

$$\delta(x, y) \le \delta'(x, y).$$

Mais $\delta' \leq 2\delta$. En effet, on distingue deux cas :

(a) Si
$$\delta \leq 1$$
 et $\delta' = d$, alors $d \leq 2d$,

- (b) Si $\delta \geq 1$ et $\delta' = 1$, alors $1 \leq 2d$.
- 3. Montrons que δ est une distance.
 - (a) Montrons l'inégalité triangulaire. Si $d(x,y) \leq d(x,z) + d(z,y)$, montrons que $\delta(x,y) \leq \delta(x,z) + \delta(z,y)$.

Est-ce que $f(d(x,y)) \le f(d(x,z)) + f(d(z,y))$, avec f définie dans 1.2?

- i. f est croissante, donc $f(d(x,y)) \leq f[d(x,z)+d(z,y)]$. Il suffit de voir que $f(t) \leq f(u)+f(v)$.
- ii. Montrons la sous-additivité de f. Posons

$$v \mapsto \varphi(v) = f(u+v) - f(u) - f(v).$$

On a $\varphi(0) = 0$, car f(0) = 0 et $\varphi(v) = f'(u+v) - f'(v) < 0$, car f est une fonction croissante.

Sous quelles conditions un espace localement convexe est métrisable?

On remarque par exemple que $\mathscr{F}([0,1],\mathbb{R})$ muni de la topologie de la convergence simple n'est pas métrisable. Plus généralement, les topologies faibles ne sont pas métrisables, sauf si on travaille en dimension finie. Par ailleurs, X muni de la topologie grossière n'est pas métrisable (non séparée).

Proposition 1.4.1. Soit X un espace localement convexe (donc séparé). Alors les assertions suivantes sont équivalentes.

- 1. X est métrisable.
- 2. Il existe une base dénombrable de voisinages de 0 dans X, et ce pour tout $x \in X$.
- 3. La topologie de X est engendrée par une famille dénombrable de semi-normes.

Démonstration. 1. (1) \Longrightarrow (2). La topologie sur X est équivalente à (X,d). Soit (X,d) un espace métrique. Il suffit de poser

$$\mathcal{O}_{\frac{1}{n}} = \left\{ x \mid d(x,0) < \frac{1}{n} \right\} \ (\mathbb{R} \text{ est archimédien}).$$

Alors $\forall \varepsilon > 0, \exists n$ tel que $\mathcal{O}_{\frac{1}{n}} \subset \mathcal{O}_{\varepsilon}$. Donc $x + \mathcal{O}_{\frac{1}{n}}$ est une base dénombrable de voisinages de x.

2. (2) \Longrightarrow (3). On sait que $\mathcal T$ topologie de X est donnée par une famille de semi-normes. Les voisinages de 0 dans X sont donnés par

$$\mathcal{O}_{a,\varepsilon} = \bigcap_{i=1}^{n} \mathcal{O}_{\varepsilon,a_i}, \text{ avec } i \in \{1,\dots,n\}.$$

On rappelle que $\mathcal{O}_{\varepsilon,a_i} = \{x \mid \rho_{a_i} < \varepsilon\}.$

On peut choisir $\varepsilon = \frac{1}{n}$. On sait qu'il existe une base dénombrable de voisinages de 0 dans X. Soit U_n une base de voisinages dénombrable de 0. On pose

$$\rho_n(x) = \mu_{U_n}(x).$$

On prend les U_n convexes, balancés, absorbants comme dans le théorème 1.3.1 (c'est possible, car X est un espace localement convexe).

 $3. (3) \Longrightarrow (1).$

(a) Soit (ρ_n) une famille dénombrable de semi-normes sur X. On pose

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{\rho_n(x-y)}{1 + \rho_n(x-y)}.$$

Montrons que $(X, \text{ELC}) \prec (X, d)$. Soit $U \in \mathcal{T}$ (la topologie ELC). On se ramène aux voisinages de 0. On a

$$U = \bigcap_{\text{finie}} \mathcal{O}_{\varepsilon,a}, a \in A.$$

Comme il existe une base dénombrable de voisinages, on peut choisir

$$U_{\varepsilon} = \bigcap_{j=1}^{N} = \{x \mid \rho_j(x-0) < \varepsilon\}, \text{ avec } A = \mathbb{N}.$$

Ce voisinage est inclus dans $\{x \mid \sum \rho_j(x-0) \leq N\varepsilon\}.$

Montrons que U est un voisinage de x pour la topologie métrique (X, d).

Soit $\varepsilon > 0$. On pose $d(x,0) = \left(\sum_{1}^{N} + \sum_{N+1}^{\infty}\right) \frac{\rho_n}{1+\rho_n}$. Or N est tel que

$$\sum_{N+1}^{\infty} 2^{-n} < \varepsilon \implies \sum_{N+1}^{\infty} 2^{-n} \frac{\rho_n}{1 + \rho_n} < \varepsilon.$$

De plus,

$$d(x,y) \le \varepsilon + \sum_{n=1}^{N} \frac{d_n}{1+d_n} < \varepsilon + \sum_{n=1}^{N} d_n(x,y). \tag{1.3}$$

Or $\rho_n(x-y) < \varepsilon$, car $x \in y + U_{\varepsilon}$.

Donc 1.3 devient

$$d(x,y) \le \varepsilon + N\varepsilon$$
 avec N fixé.

Donc $\mathcal{T} \prec (X, d)$.

(b) Montrons que $(X,d) \prec \mathcal{T}$. On doit majorer $\rho_m(x-y)$. Or

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{\rho_n(x-y)}{1 + \rho_n(x-y)} \ge 2^{-m} \frac{\rho_m(x-y)}{1 + \rho_m(x-y)}.$$

 Et

$$2^m d(x,y) \ge \frac{\rho_m(x-y)}{1+\rho_m(x-y)} \ge f(t).$$

Donc on a $\rho_m(x,y) \leq g(2^m d(x,y))$, où g est la réciproque de $t \mapsto \frac{1}{1+t}$.

Proposition 1.4.2. Soit X un espace localement convexe qui vérifie l'une des propriétés énoncées dans la proposition 1.4.1 (i. e. métrisable). On note la topologie de X ELC par \mathscr{T} . Alors X est complet pour \mathscr{T} si et seulement si (X,d) est complet.

Démonstration. Cette proposition se démontre exactement comme 1.4.1.

Définition 1.4.2. Soit X un espace localement convexe. On dit que X est un espace de Fréchet si X est métrisable et complet.

Exemple.

- 1. Les espaces localement convexes qui ne sont pas des Fréchet.
 - (a) Non métrisables. $\mathcal{F}([0,1],\mathbb{R})$ muni de la topologie de la convergence simple, les topologies faibles, ...
- 2. Les espaces localement convexes qui sont des Fréchet. Les espaces de Banach, par exemple $\mathscr{F}([0,1],\mathbb{R})$ muni de la topologie de la convergence uniforme, $\mathcal{C}_0^{\infty}(K),\ldots$

Espace de Schwarz $\mathscr{S}(\mathbb{R}^d) \subset \mathcal{C}^{\infty}(\mathbb{R}^d)$

$$\varphi \in \mathscr{S}(\mathbb{R}^d) \iff \rho_{\alpha,\beta}(\varphi) = \sup_{\mathbb{R}} |x^{\alpha} D_{\varphi}^{\beta}| < \infty.$$

 $\varphi \in \mathscr{S}(\mathbb{R}^d) \iff \rho_{\alpha,\beta}(\varphi) = \sup_{\mathbb{R}} \left| x^{\alpha} D_{\varphi}^{\beta} \right| < \infty.$ Montrons que $\mathscr{S}(\mathbb{R})$ est complet. On va regarder $\rho_{0,0}, \rho_{0,1}, \rho_{1,0}, \rho_{1,1}, \dots$

1. $\rho_{0,0}(\varphi_{p+q}-\varphi_p)<\varepsilon$, donc $\varphi_p\longrightarrow\varphi$, donc

$$\sup_{\mathbb{R}} |\varphi_{p+q}(x) - \varphi_p(x)| < \varepsilon.$$

En particulier pour tout $K \subset \mathbb{R}$, φ_n est de Cauchy dans $\mathcal{C}^0(K)$. Or $\mathcal{C}^0(K)$ est complet, donc $\varphi_n \xrightarrow[\text{uniformément}]{} \varphi$. Comme K est arbitraire, elle converge localement sur tout \mathbb{R} . On a

$$\rho_{0,0}(\varphi_{p+q}-\varphi_p)<\varepsilon,$$

donc

$$\rho_{0,0}(\varphi - \varphi_p) < \varepsilon.$$

Donc φ_p converge pour $\rho_{0,0}$.

2. On a besoin de rappeler le lemme suivant :

Lemme. Si $\varphi' \longrightarrow \psi$ uniformément et $\varphi_n \longrightarrow \varphi$ simplement, alors $\psi = \varphi'$.

Topologie forte et topologie faible sur les espaces de Banach

Soient $(E, \|\cdot\|)$ un espace de Banach (réel ou complexe) et $(E', \|\cdot\|')$ son dual topologique. On 10-10-2023 rappelle que

$$E' = \{l \in \mathcal{L}(E, \mathbb{R}), \exists C > 0, \forall x \in E, |\langle l, x \rangle| \le C \|x\|^2\},\$$

avec la norme sur le dual définie dans 1.3.3.

 $(E',\|\cdot\|')$ est un espace de Banach, un cas particulier de $\mathscr{L}(E,F)$, avec pour $u\in\mathscr{L}(E,F)$,

$$||u||_{\mathscr{L}(E,F)} = \sup_{\substack{x \in E \\ ||x||_E \le 1}} ||u(x)||_F.$$

On affaiblit $(E, \|\cdot\|)$. Alors $\sigma(E, E')$ est la topologie la moins fine qui rend continue toutes les formes linéaires sur E. $X \sim \sigma(E, E')$ est muni des semi-normes $|\langle l, x \rangle| = \rho_l(x)$. Un voisinage de 0 est défini de la manière suivante :

$$\mathcal{O}_{\underline{l},\varepsilon} = \{x \in E : \sup_{1 \le i \le n} \langle l_i, x \rangle < \varepsilon \}, \underline{l} = (l_1, \dots, l_n).$$

1.4.4 Comparaison des topologies $(E, \|\cdot\|)$ et $\sigma(E, E')$

Lemme. Soit E un espace de Banach. Alors la norme définie

$$x = \sup_{\substack{l \in E' \\ ||l||' \le 1}} |\langle l, x \rangle| = \langle l_0, x \rangle.$$

est telle que le sup est atteint. On a sup = max.

Démonstration. On a $x \neq 0$ par la définition de $\|\cdot\|'$. Alors

$$\left| \left\langle l, \frac{x}{\|x\|} \right\rangle \right| \le \|l\|' \le 1.$$

Alors

$$|\langle l, x \rangle| \le ||x||$$
 pour tout $l \in E'$ tel que $||l||' \le 1$.

Soit x_0 et F tel que $F = \mathbb{R}x_0$. Alors $\forall \lambda \in \mathbb{R}, l_0(\lambda x_0) = \lambda$ et $||l_0|| = ||x_0||$. Par Hahn-Banach, on peut prolonger l_0 en L_0 sur tout l'espace de Banach.

Proposition 1.4.3.

$$(E, \|\cdot\|) \prec \sigma(E, E').$$

Donc $X \sim \sigma(E, E')$ est un espace localement convexe.

 $D\acute{e}monstration$. On a

$$\rho_l(x) = |\langle l, x \rangle| \le ||l||' ||x||.$$

Autre démonstration. Montrons que $\mathcal{O}_{\underline{l},\varepsilon}$ est un ouvert de $(E,\|\cdot\|)$, i. e. $\|x\| < \delta$. On prend n formes linéaires $l_i, i \in \{1, \ldots, n\}$ et on considère

$$||x|| = \sup_{||l||' \le 1} |\langle l, x \rangle|.$$

Or
$$|\langle l_i, x \rangle| < \varepsilon$$
 ... (à suivre).

Démonstration. Montrons que $\sigma(E, E')$ est séparé. Soient x_1, x_2 distincts. Montrons qu'il existe \mathcal{O}_1 et \mathcal{O}_2 de $\sigma(E, E')$ tels que $\mathcal{O}_1 \cap \mathcal{O}_2 = \emptyset$.

Par le théorème de Hahn-Banach 1.3.4, pour $A = \{x_1\}, B = \{x_2\}$ compacts et convexes, pour tout $(x, y) \in A \times B$, on a

$$\langle l, x \rangle < \alpha < \langle l, y \rangle.$$

Donc

$$\langle l, x_1 \rangle < \alpha < \langle l, x_2 \rangle.$$

On a $x_1 \in \mathcal{O}^1_{\alpha,l} = \{x: \langle l,x \rangle < \alpha\}$ et $\mathcal{O}^2_{\alpha,l} = \{y: \langle l,y \rangle > \alpha\}$, ces ouverts séparent x_1 et x_2 .

Théorème 1.4.1. $(E, \|\cdot\|)$ est strictement plus fine que $\sigma(E, E')$ sauf en dimension finie.

Démonstration. On considère $S = \{||x|| = 1\}$. Alors $S = \overline{S}$, son adhérence.

Soit x_0 de norme plus petite que 1. Montrons que pour tout V voisinage de 0 dans $\mathscr{T}, V \cap S \neq \emptyset$. On a

$$V = \{x : |\langle l_i, x - x_0 \rangle| < \varepsilon, 1 \le i \le n\}.$$

Comme dim $(E) = \infty$, il existe $y_0 \neq 0$ tel que $\langle l_i, y_0 \rangle = 0, \forall i$. On a

$$g(t) = ||x_0 + ty_0||$$
.

On a $g(0) = ||x_0|| < 1$ et $g(\infty) = +\infty$. La fonction g est continue, donc il existe $t_0 \in (0, \infty)$ tel que $||x_0 + t_0 y_0|| = 1$. Donc $x_0 + t_0 y_0 \in S$ et $x_0 + t_0 y_0 \in V$, car

$$|\langle l_i, (x_0 + t_0 y_0) - x_0 \rangle| = |\langle l_i, t_0 y_0 \rangle| = |t_0 \langle l_i, y_0 \rangle| = 0 < \varepsilon.$$

Remarque. $\forall t \in \mathbb{R}, \langle l_i, x_0 + ty_0 \rangle = 0$. Alors V contient toute une droite.

Remarque. Pour E Banach séparable, B_E boule unité fermée de $(E, \|\cdot\|)$ est métrisable pour $\sigma(E, E')$. Si E est réfléxif (c'est-à-dire que l'injection naturelle dans son bidual est surjective), alors $B_E = \{\|x\| \le 1\}$ est un espace métrique compact pour $\mathcal{O}(E, E')$.

Exemple (Wikipédia). On considère la convergence forte et la convergence faible dans l'espace L^2 (qui est un espace de Hilbert d'après 2.2.5). La convergence forte de ψ_n vers un élément $\psi \in L^2(\mathbb{R}^n)$ signifie :

$$\int_{\mathbb{R}^n} |\psi_n - \psi|^2 \, d\mu \underset{n \to \infty}{\longrightarrow} 0.$$

La notion de convergence forte dans L^2 correspond à celle de la norme dans L^2 . En revanche, pour que la suite ψ_n converge faiblement, il suffit que

$$\int_{\mathbb{R}^n} \overline{\psi_n} f d\mu \longrightarrow \int_{\mathbb{R}^n} \overline{\psi} f d\mu$$

pour toute fonction $f \in L^2$. Par exemple, dans $L^2((0,2\pi))$, la suite de fonctions

$$\psi_n(x) = \sqrt{\frac{2}{\pi}}\sin(nx)$$

forme une base orthonormée. La limite forte de ψ_n n'existe pas. Mais par le lemme de Riemann-Lebesgue, la limite faible existe et vaut 0.

1.4.5 Théorème de Banach-Steinhaus, suites faiblement et fortement convergentes

Théorème 1.4.2. Soient E, F espaces de Banach et $(T_a)_{a \in A} \in \mathcal{L}(E, F)$ telle que

$$\forall x \in E, \sup_{a \in A} \|T_a x\|_F < +\infty.$$

Alors

$$\sup_{a \in A} ||T_a|| < +\infty \text{ (bornée en norme)},$$

i. e. $\exists C > 0, \forall x \in E, \forall \alpha \in A, ||T_{\alpha}(x)|| \leq C ||x||$.

Corollaire. Soit $T_n \in \mathcal{L}(E, F)$ avec $||T_n|| < +\infty$ avec $\forall x \in E, T_n x \xrightarrow[n \to \infty]{} y \in F$. On note y = Tx. Alors $T \in \mathcal{L}(E, F)$ et $T = \liminf T_n$.

 $D\acute{e}monstration$. Montrons que T_n est linéaire. En effet,

$$T_n(\lambda x + \lambda' x') = \lambda T_n(x) + \lambda' T_n(x').$$

Par passage à la limite, on obtient $T(\lambda x + \lambda' x') = \lambda T(x) + \lambda' T(x')$.

Montrons l'autre partie du corollaire. Par Banach-Steinhaus, si on considère $A = \mathbb{N}$, pour tout $x \in E$, $T_n x$ est convergente, donc bornée, i. e. $||T_n x|| < \infty$, donc sup $T_n < C$ comme $||T_n x|| \le ||T_n|| ||x||$.

Par passage à la limite, on obtient $||Tx|| \le C ||x||$, avec $C = \liminf_{n \to \infty} ||T_n||$.

Définition 1.4.3. Soit E espace de Banach. $B \subset E$ est bornée si et seulement si

$$\exists C \ge 0, \forall x \in B, ||x|| \le C.$$

Corollaire. $B \subset E$ est bornée si et seulement si $\forall l \in E', l(B) \subset \mathbb{R}$ est borné.

1.4.6 Suites faiblement et fortement convergentes

Définition 1.4.4 (Suite fortement convergente). Soit x_n une suite de E. On dit que x_n est fortement convergente lorsque $x_n \longrightarrow x \iff ||x_n - x|| \longrightarrow 0$.

Définition 1.4.5 (Suite faiblement convergente). Soit x_n une suite de E. On dit que x_n est faiblement convergente lorsque $x_n \longrightarrow x \iff \forall l \in E', \langle l, x_n \rangle \longrightarrow \langle l, x \rangle$.

On note alors $x_n \stackrel{\text{w}}{\longrightarrow} x$ (avec weak qui signifie faible en anglais) ou $x_n \rightharpoonup x$.

Corollaire.

- 1. Si $x_n \longrightarrow x$ dans $(E, \|\cdot\|)$, alors $x_n \longrightarrow x$ dans $\sigma(E, E')$.
- 2. Si $x_n \longrightarrow x$, alors x_n est bornée dans E et $||x||_E \le \liminf ||x_n||$.
- 3. Si $x_n \longrightarrow x$ et $l_n \longrightarrow l$, alors $\langle l_n, x_n \rangle \longrightarrow \langle l, x \rangle$.

Démonstration.

1. Soit $l \in E'$. Alors

$$|\langle l, x_n - x \rangle| \le ||l||' ||x_n - x|| \underset{n \to \infty}{\longrightarrow} 0.$$

2. $T_n: E \longrightarrow \mathbb{R}$. Alors on définit

$$T_n l = \langle l, x_n \rangle \longrightarrow \langle l, x \rangle = T l,$$

car x_n tend faiblement vers x. Alors d'après le corollaire, sup $||T_n|| < \infty$, avec $T \in (E')' = E''$ et $||T||'' \le \liminf ||x_n||$, donc $|Tl| = |\langle l, x \rangle|$ par passage à la limite.

3.

$$\langle l_n, x_n \rangle - \langle l, x \rangle = \langle l, x_n - x \rangle + \langle l, x_n - x \rangle.$$
 Or $\langle l, x_n - x \rangle \longrightarrow 0$, car $x_n \longrightarrow x$ et $\langle l, x_n - x \rangle \longrightarrow 0$, car $|\langle l_n - l, x_n \rangle| \le ||l_n - l|| \, ||x_n|| \longrightarrow 0$.

1.4.7 Topologie faible *

13-10-2023 On considère E espace de Banach avec $(E, \|\cdot\|) \prec \sigma(E, E')$. On construit la topologie $*\sigma(E', E)$ une topologie sur E'.

La topologie forte sur E'=F est donnée par la norme

$$||l||' = \sup_{||x|| \le 1} |\langle l, x \rangle|.$$

Sur E, on a aussi $\sigma(F, F') = \sigma(E', E'')$. Si E = E'' (i. e. E est réfléxif), alors la topologie $\sigma(E', E'')$ se confond avec la topologie faible $\sigma(E, E')$. Par contre, si E s'injecte dans E'', on a besoin de définir une autre topologie $*\sigma(E', E)$ moins fine que $\sigma(E', E'')$.

Proposition 1.4.4. Il existe une isométrie $J: E \hookrightarrow E''$.

Démonstration. On définit une application $J: E \longrightarrow E''$ telle que

$$\langle Jx, x' \rangle \stackrel{\text{déf}}{=} \langle x', x \rangle.$$

Montrons que ||Jx||' = ||x||.

On a besoin d'introduire le résultat suivant :

Lemme.

$$\|x\|=\sup_{\|l\|'\leq 1}|\langle l,x\rangle|=\max_{\|l\|'\leq 1}|\langle l,x\rangle|\,.$$

Donc ||Jx|| = ||x|| en prenant

$$\sup_{\substack{x' \in E' \\ \|x'\| < 1}} |\langle x', x \rangle| = \|x\|.$$

Remarque. J n'est pas unitaire (non surjectif si E n'est pas réfléxif).

Exemple. On considère $E=L^1$. Soit $f\in L^1$, alors $Jf\in L^\infty$ et on a :

$$\langle Jf, g \rangle = \langle g, f \rangle = \int g(x)f(x)dx \ (f : \mathbb{R}^d \longrightarrow \mathbb{R}).$$

Mais g(0) ne peut pas s'écrire comme une intégrale $\int g(x)f(x)dx, \forall f \in L^1 \text{ si } g \in C_0^0(\mathbb{R}^d) \subset L^\infty$.

Proposition 1.4.5. $*\sigma(E', E)$ est séparée.

Démonstration. Soient $l_1, l_2 \in E'$ tels que $l_1 \neq l_2$, alors il existe $x \in E$ tel que $l_1(x) \neq l_2(x)$, donc

$$\langle l_1, x \rangle \neq \langle l_2, x \rangle$$
,

ce qui implique que $\langle l_1, x \rangle < \alpha < \langle l_2, x \rangle$. On a $\mathcal{O}_1 = \{l \in E' : \langle l, x \rangle < \alpha\}$ ouvert de E' et $\mathcal{O}_2 = \{l \in E', \langle l, x \rangle > \alpha\}$.

Remarque. Pour x fixé, l'application $l \mapsto |\langle l, x \rangle|$ semi-norme de E'.

Proposition 1.4.6 (Autres propriétés). $*\sigma(E', E)$ n'est pas métrisable.

Remarque. E est séparable et réfléxif si et seulement si E' est séparable et réfléxif.

Théorème 1.4.3. Si E est un Banach séparable, alors la boule unité fermée

$$B_E = \{ ||l|| \le 1 \}$$

est métrisable pour $*\sigma$.

Proposition 1.4.7. Soit $\xi: E' \longrightarrow \mathbb{R}$ avec $(\xi \in E'')$. Si ξ est continue pour $*\sigma(E, E')$, il existe $x \in E, \xi = Jx$ et

$$\langle \xi, l \rangle = \langle l, x \rangle.$$

Théorème 1.4.4 (De représentation de Riecz). Si $\xi \in \mathcal{H}' = \mathcal{H}$, alors

$$\forall l \in \mathcal{H}, \langle \xi, l \rangle = \langle l, x \rangle.$$

La théorie de distributions utilise une grande variété des fonctions test.

17-10-2023

Ainsi une mesure de Radon μ sur un espace localement compact Ω (par exemple un ouvert de \mathbb{R}^d) est une distribution d'ordre 0 agissant \mathcal{C}_0^0 (noté encore $\mathcal{K}(\Omega)$) notamment par

$$\langle \mu, f \rangle = \int_{\Omega} f(x) d\mu(x).$$

L'exemple le plus couramment utilisé d'une distribution d'ordre 0 est la mesure de Dirac δ_{x_0} .

Sur $\Omega = \mathbb{R}^d$, il suffit de prendre l'espace de Schwarz $\mathcal{S}(\mathbb{R}^d)$ qui est un espace de Fréchet. Par contre si Ω est un ouvert borné, il y a des problèmes sur les bords de Ω .

Les distributions d'ordre 1 agissent quant à elles par $\langle \delta'_{x_0}, f \rangle = -f'(x_0)$ dans \mathcal{C}^1_0 qui ne sont ni des espaces de Banach, ni des espaces de Fréchet. On choisit généralement $\mathcal{C}^0_0(\Omega)$.

Les espaces fonctionnels sont rangés en deux catégories :

- Les espaces de Lebesgue;
- Les espaces de fonctions différentiables.

Æ

2.1 Espaces de Lebesgue

2.1.1 Mesure de Lebesgue

Il est important de rappeler la notion d'espace mesuré.

Définition 2.1.1 (Rappel : tribu). Soit X un ensemble. On dit qu'une collection d'ensembles \mathcal{T} est une tribu si

- 1. $X \in \mathcal{T}$ et $\emptyset \in \mathcal{T}$;
- 2. Si $A \in \mathcal{T}$, alors $A^C \in \mathcal{T}$;
- 3. Si $(A_n)_{n\in\mathbb{N}}$ est une suite de \mathcal{T} , alors

$$\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{T}.$$

On dit que (X, \mathcal{T}) est un espace mesurable.

Remarque. \mathcal{T} est aussi stable par intersection dénombrable, l'intersection étant complémentaire à la réunion...

Définition 2.1.2 (Mesure). Soit (X, \mathcal{T}) un espace mesurable. On dit qu'une application $\mu : X \longrightarrow [0, \infty)$ est une mesure si :

- 1. $\mu(\emptyset) = 0$;
- 2. Pour toute suite (A_n) de \mathcal{T} disjointe, on a

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu(A_n).$$

On dit alors que (X, \mathcal{T}, μ) est un espace mesuré.

Exemple. Pour \mathbb{R}^d , \mathcal{T} est la tribu borélienne engendrée par les pavés $\prod_{i=1}^d [a_i,b_i)$, avec $a_i,b_i\in\mathbb{R}$. On

peut aussi l'engendrer par les "quadrants" $\prod_{i=1}^{d} [a_i, \infty)$.

La mesure de Lebesgue se calcule comme suit. Si d=1, alors $\mu([a,b))=b-a$. Pour les pavés, on aura :

$$\mu\left(\prod_{i=1}^{d} [a_i, b_i)\right) = \prod_{i=1}^{d} (b_i - a_i).$$

Elle se caractérise par le fait d'être stable par translation.

Pour avoir une théorie cohérente, il faut compléter $B(R^d) \longrightarrow \overline{\mathcal{T}}$ (la tribu borélienne) en ajoutant des ensembles négligeables. Ainsi $\overline{\mathcal{T}}$ est la plus petite tribu contenant \mathcal{T} et les ensembles négligeables.

Définition 2.1.3. $A \in \mathbb{R}^d$, i. e. A est mesurable si et seulement si $A \in \overline{\mathcal{T}}$.

Remarque. A toute fin utile, on considérera que tous les ensemble sont mesurables.

Comment mesurer les fonctions $\mu(F)$?

On peut utiliser:

- L'intégrale de Riemann;
- L'intégrale de Lebesgue.

2.1.2 Intégrale des fonctions positives

Soit (X, \mathcal{T}, μ) un espace normé mesuré.

27

Définition 2.1.4 (Fonction mesurable). On dit que $f: X \longrightarrow \mathbb{R}$ est mesurable si pour tout borélien B de \mathbb{R} , on a $f^{-1}(B) \in \mathcal{T}$.

Proposition 2.1.1 (Axiomes). Il existe une application définie sur l'ensemble mesurable des fonctions mesurables positives de \mathbb{R}^d , à valeurs dans \mathbb{R} , notée $f \longmapsto \int f(x)dx$ qui réalise les propriétés suivantes :

1. Linéarité : pour tous $\alpha, \beta \geq 0$, on a

$$\int (\alpha f(x) + \beta g(x))dx = \alpha \int f(x)dx + \beta \int g(x)dx.$$

2. Croissance : si $\forall x, f(x) \leq g(x)$, alors

$$\int f(x)dx \le \int g(x)dx.$$

3. Normalisation : pour tout pavé $A = \prod_{i=1}^{d} [a_i, b_i)$, on a

$$\int \mathbb{1}_A(x)dx = \mu(A).$$

4. Théorème de Beppo-Levi (ou de convergence monotone) : si (f_n) est une suite croissante de fonctions mesurables, alors

$$\underbrace{\int \lim_{n \to \infty} f_n(x) dx}_{\int f(x) dx} = \lim_{n \to \infty} \int f_n(x) dx \le +\infty.$$
(2.1)

Au lieu d'intégrer f sur tout \mathbb{R} , on peut l'intégrer seulement sur la partie où elle est mesurable en posant :

$$\int_{A} f(x)dx = \int f(x) \mathbb{1}_{A}(x) dx.$$

Théorème 2.1.1. On peut calculer l'intégrale $\int_A f(x)dx$ de toute fonction mesurable positive par :

$$\int_{A} f(x)dx = \sup \sum_{i=0}^{n-1} (t_{i+1} - t_i)\mu(A \cap \{f_i \ge t_i\})$$

où le sup est pris sur toutes les subdivisions finies sur l'axe des $y, t_0 < t_1 < \ldots < t_n, n \in \mathbb{N}$ et dont le pas tend vers 0.

Proposition 2.1.2. Si f est à valeurs positives, alors

$$\int f(x)dx = 0 \text{ si et seulement si } f = 0 \text{ p.p.}$$

Figure 2.1 – Subdivisions et sommes de Riemann

Démonstration. Posons $A = \{x \in X, f(x) \neq 0\}$. Alors $f(x) \leq \lim_{n \to \infty} n \mathbb{1}_A(x)$ si $\mu(A) = 0$. On obtient par 2.1:

$$\int f(x)dx \lim_{n \to \infty} \int_A dx = 0.$$

Réciproquement, si $\int f(x)dx = 0$, alors on remarque que $\mathbb{1}_A(x) \leq \lim_{n \to \infty} nf_n(x)$ et on a encore par 2.1 :

$$\mu(A) = \int_A \mathbb{1}_A(x) dx \le \lim_{n \to \infty} n \int f(x) dx = 0.$$

25-10-2023

Théorème 2.1.2 (\triangle De convergence dominée ou de Lebesgue). Soit $(f_n) \in \mathcal{L}^1(\Omega)$ une suite de fonctions (avec $\Omega \subset \mathbb{R}^d$ un ouvert). Pour tout $n \in \mathbb{N}$, f_n est définie presque partout sauf sur $E = (\bigcup_{n \in \mathbb{N}} E_n)$ de mesure nulle. S'il existe $h \in \mathcal{L}^1(\Omega)$ telle que $|f_n| \leq h$ et si $f_n \longrightarrow f$ presque partout sur Ω , alors

$$\lim_{n \to \infty} \int f_n(x) dx = \int f(x) dx,$$

ce qui équivaut à dire que $||f_n - f||_{\mathcal{L}^1} \longrightarrow 0$.

Remarque. Si f_n est continue sur $K \subset \Omega$ et $f_n \longrightarrow f$ quand $n \longrightarrow \infty$, alors

$$\lim_{n \to \infty} \int f_n = \int \lim_{n \to \infty} f_n.$$

2.2 Espaces L^p $(1 \le p \le +\infty)$ comme espaces de Banach

On définit l'espace $\mathscr{L}^1 \longrightarrow L^1$. On dit que $f \sim g$ si et seulement si f = g presque partout (i. e. $\mu(\{x: f(x) \neq g(x)\}) = 0$). C'est une relation d'équivalence. On définit l'espace quotient $L^1 = \mathscr{L}^1/\sim$. On montre que L^1 est complet.

On note $\dot{f} \in L^1$, \dot{f} est un représentant de la classe de f. Ainsi on peut définir la transformée de Fourier d'une fonction de L^1 par :

$$\widehat{f}(\xi) = \int e^{-ix\xi} f(x) dx,$$

mais la même écriture n'a pas de sens dans L^2 .

29

2.2.1 Les espaces L^p , $1 \le p < \infty$

Théorème 2.2.1. L'espace L^1 est complet, muni de la norme

$$||f||_1 = \int |f(x)| dx.$$

Cela veut dire que c'est un espace de Banach.

Démonstration. Soit f_n une suite de Cauchy dans L^1 . On peut lui associer une série

$$f_n = \sum_{i=0}^{n-1} f_i (f_{i+1} - f_i).$$

Montrons que f_n converge. Il suffit de montrer qu'il existe une sous-suite f_{n_k} qui converge. On peut toujours écrire :

$$f_n - f = \underbrace{f_n - f_{n_k}}_{<\varepsilon} + \underbrace{f_n - f_{n_k}}_{<\varepsilon}.$$

Donc

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, p \ge N, q \ge 0, \|f_{p+q} - f_p\|_{L^1} < \varepsilon.$$

A extraction près d'une sous-suite, on peut supposer que

$$||f_{n+1} - f_n||_{L^1} < \varepsilon.$$

On pose $g_m(x) = \sum_{n=1}^{m-1} |f_{n+1}(x) - f_n(x)|$. Pour tout x, la suite $(g_m(x))_m$ est croissante (car on rajoute un terme positif) et elle est définie presque partout. Par Beppo-Levi, on a

$$\int g(x)dx = \int \lim_{m \to \infty} g_m = \lim_{m \to \infty} \int g_m(x)dx.$$

Or on a

$$\int g_m(x)dx = \sum_{n=1}^{m-1} \int |f_{n+1}(x) - f_n(x)| dx.$$

C'est une série absolument convergente, car $||f_{n+1} - f_n|| < 2^{-n}$. On a alors

$$\int g(x)dx < +\infty$$

et en particulier $g(x) < +\infty$ presque partout.

Donc $f_m(x) = f_1(x) + \sum_{n=1}^{m-1} f_{n+1}(x) - f_n(x)$ définit une série numérique absolument convergente, donc $f_m(x) \xrightarrow{p.p.} f(x)$. Il reste à montrer que $f \in L^1$. On a :

$$|f_m(x)| \le |f_1(x)| + g_m(x) \le |f_1(x)| + g(x) = h(x) \in L^1.$$

Par Lebesgue, on a $\lim \int f_m = \int f$, avec $f \in L^1$. On a donc $||f_m - f||_{L^1} \longrightarrow 0$.

Théorème 2.2.2. L^p est aussi un Banach et ce pour tout $p \in [1, \infty)$.

Démonstration. On utilise l'inégalité de Minkowski :

$$||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}.$$
 (2.2)

La démonstration est la même que pour L^1 .

Corollaire. Si $f_n \longrightarrow f$ dans L^p , alors il existe une sous-suite f_{n_k} qui converge presque partout vers f.

Démonstration. Comme avant, on peut supposer que $||f_{n+1} - f_n|| < 2^{-n}$. On pose

$$f_m(x) = f_1(x) + \sum_{n=1}^{m-1} f_{n+1}(x) - f_n(x).$$

C'est une série normalement convergente dans L^p . Par le raisonnement précédent, on détermine que $f_m(x) \xrightarrow{\text{D.D.}} f$.

Théorème 2.2.3. Soit $\mathcal{K}(\Omega)$, l'espace de fonctions continues à support compact dans Ω . Alors $\mathcal{K}(\Omega)$ est dense dans $L^p(\Omega)$ pour tout $p \in [1, \infty)$.

Démonstration. Brézis, théorème 4.12.

2.2.2 Espace L^{∞}

Théorème 2.2.4. $L^{\infty}(\Omega)$ est un espace de Banach.

Définition 2.2.1. On définit la norme dans l'espace L^{∞} de la façon suivante :

$$||f||_{\infty} = \operatorname{supess} |f|$$
.

Pour tout C > supess(f), on a $\mu(\{x : f(x) > C\}) = 0$. Si f est continue, on a supess $f = \sup f$.

Démonstration. Soit f_n une suite de Cauchy dans $L^{\infty}(\Omega)$. On prend $\varepsilon = \frac{1}{k}$. Pour tout k, il existe N(k) tel que $\forall n, m \geq N(k)$, on a $||f_n - f_m||_{\infty} < \frac{1}{k}$.

Montrons que f_n converge vers $f \in L^{\infty}$. Donc il existe E_k négligeable tel que $|f_n(x) - f_m(x)| < \frac{1}{k}$ pour tout $x \notin E_k$. On a que $E = \bigcup_{k \in \mathbb{N}} E_k$ est de mesure nulle. Pour tout $x \in E$, la suite numérique $f_n(x)$ est de Cauchy, donc elle converge vers f(x) (partout). On a donc

$$|f_n(x) - f_m(x)| < \frac{1}{k},$$

donc

$$|f_n(x) - f(x)| < \frac{1}{k},$$

donc $||f_n - f||_{\infty} < \frac{1}{k}$ avec $f \in L^{\infty}$.

2.2.3 Espace L^2

Théorème 2.2.5. $\mathcal{H} = L^2$ est un espace de Hilbert muni du produit scalaire suivant :

$$(u \mid v) = \int_{\Omega} f(x) \overline{g(x)} dx.$$

L'espace L^2 est engendré par une base orthonormée (base hilbertienne), i.e. il existe une suite $(e_j)_j$ telle que, pour tout $f \in L^2$, on a

$$f = \sum_{j} f_{j} e_{j}, f_{j} \in \mathbb{C}.$$

Proposition 2.2.1 (Egalité de Parseval). On a pour tout $f \in L^2$:

$$||f||_2^2 = \sum_j |f_j|^2$$
.

2.3 Espaces L^p comme ELC

2.3.1 $L^1(\Omega)$, avec Ω ouvert de \mathbb{R}^d

C'est un espace de Banach muni de la norme $||f||_{L^1}$. C'est aussi un espace localement convexe muni de la famille de semi-normes $(\rho_{a,r})_{a\in\Omega,r>0}$ définies par

$$\rho_{a,r}(f) = \int_{B(a,r)} |f(x)| \, dx.$$

Proposition 2.3.1. $(E,(\rho_{a,r}))$ est séparé.

 $D\acute{e}monstration$. Si $f \neq g$ presque partout, alors

$$\rho_{a,r}(f-g) = \int_{B(a,r)} |f(x) - g(x)| \, dx \neq 0.$$

Donc il existe E de mesure strictement positive tel que $\forall x \in E, g(x) \neq f(x)$. Or E est partout dense dans Ω pour la mesure de Lebesgue. On a alors

$$\int_{B(a,r)} |f - g| = \int_{E \cap B(a,r)} |f - g| > 0.$$

2.3.2 $E = L^{\infty}$

On le munit de la famille de semi-normes

$$\rho_{a,r}(f) = \operatorname{supess}_{B(a,r)}(|f|).$$

Proposition 2.3.2. $E = L^{\infty}(\Omega)$ est séparé, mais non séparable.

2.3.3 Espaces duaux de L^p

Théorème 2.3.1 (De Riesz). On a $(L^2)' = L^2$ (l'espace dual de L^2 est lui-même), i. e. toute forme linéaire $l \in (L^2)'$ s'écrit comme $\langle l, u \rangle = (v \mid u)$ où $v \in L^2$.

Théorème 2.3.2 (Riesz-Fischer). Le dual de L^1 est L^{∞} .

Démonstration. Brézis, p. 63.

Remarque. Par contre on n'a pas $(L^{\infty})' \neq L^1$.

27-10-2023

Corollaire. Soit $f \in L^p$. Si pout tout $\varphi \in K(\Omega)$, $\int f(x)\varphi(x)dx = 0$, alors f = 0 presque partout.

Théorème 2.3.3. L'espace L^1 est séparable. Plus généralement, L^p est séparable pour tout $1 \le p < +\infty$.

Démonstration. On prend un représentant \dot{f} de $f \in L^1$. Si f est positive, on a

$$\int_{A} f(x)dx = \sup_{t_0 \le t_1 \le \dots \le t_n} (t_{i+1} - t_i)\mu(A \cap \{x : f(x) \le t_i\}),$$

où μ est la mesure de Lebesgue. On a alors

$$f = \lim \sum_{i} c_{i} \mathbb{1}_{\{f \le t_{i}\}} = \lim \sum_{t} (t_{i+1} - t_{i}) \mathbb{1}_{B_{i}}(t).$$

On peut prendre $t_i \in \mathbb{Q}$. Alors la famille

$$\sum_{i} (t_{i+1} - t_i) \mathbb{1}_{B_i}(t)$$

est partout dense dans L^1 , avec B_i des boréliens de Ω . Ceci achève la démonstration.

Théorème 2.3.4. L'espace $L^1(\Omega)$ n'est pas réfléxif.

Démonstration. On raisonne par l'absurde. On pose $E=L^1$ et on suppose qu'il est réfléxif. On a alors, par le théorème 2.3.2, $E'=L^{\infty}$.

Soit B_E la boule unité de E (pour la topologie de Banach, mais aussi valable pour $\sigma(E, E')$). Comme L^1 est séparable, la boule unité B_E pour la topologie faible est compacte. Donc de toute suite de B_e on peut extraire une suite convergente (pour la topologie faible). On prend

$$f_n(x) = \frac{1}{|B(a, \frac{1}{n})|} \mathbb{1}_{B(a, \frac{1}{n})}.$$

On a $\int f_n = 1$ pour $f_n \in B_E$. On entrait f_{n_k} convergeant vers $f \in B_E$. Alors pour tout $\phi \in L^{\infty} = E'$, on a $\int f_{n_k} \phi \longrightarrow \int f \phi$. On choisit $\phi \in K(\Omega \setminus \{a\})$. Donc

$$\int f_{n_k}(x)\phi(x)dx = 0.$$

Par le corollaire 2.3.3, f=0 p. p. dans $\Omega \setminus \{a\}$. Donc f=0 p. p. dans Ω , car $\mu(\{a\})=0$. Cela aboutit a une contradiction, car pour $\phi=\mathbb{1}_{\Omega}\in L^{\infty}$, on a

$$0 = \int f\phi = \int \frac{1}{|B(a, \frac{1}{n})|} \mathbb{1}_{B(a, \frac{1}{n})} = 1.$$

Remarque. E est réfléxif et séparable si et seulement si E' est réfléxif et séparable. Comme $E = L^1$ n'est pas réfléxif, $E' = L^{\infty}$ n'est pas réfléxif. En fait il n'est ni réfléxif ni séparable.

Proposition 2.3.3. L^{∞} n'est pas séparable.

Lemme. Soit E un espace de Banach. S'il existe $(\mathcal{O}_i)_{i\in I}$, I non dénombrable, \mathcal{O}_i ouverts deux-à-deux disjoints, alors E n'est pas séparable.

Démonstration. Une fois de plus on raisonne par l'absurde. Soit (u_n) une suite partout dense dans E telle que $\forall i \in I, (u_n)_{n \in \mathbb{N}} \cap \mathcal{O}_i \neq \emptyset$ (on utilise l'axiome du choix $u_n \in \mathcal{O}_i$). Comme les \mathcal{O}_i sont disjoints, $i \longmapsto n(i)$ est injective, donc I est dénombrable, ce qui aboutit à une contradiction.

Théorème 2.3.5. Soit Ω un ouvert de \mathbb{R}^d . Alors

- 1. $L^{\infty}(\Omega)$ n'est pas séparable;
- 2. $L^{\infty}(\Omega)$ n'est pas réfléxif;
- 3. La boule unité de $L^{\infty}(\Omega)$ est métrisable est compacte pour $*(L^{\infty}, L^1)$.

2.4 Exemple fondamental : convergence d'une suite de L^1 vers la mesure de Dirac

Théorème 2.4.1. Il existe $f_n \in L^1$ telle que $\forall \phi \in K(\Omega)$,

$$\int f_n(x)\phi(x)dx \longrightarrow \phi(x_0).$$

CHAPITRE 3_

FONCTIONS TRONCATURE ET PARTITION DE L'UNITÉ : CAS CONTINU

En théorie de distributions, on déduit souvent une "propriété globale" à partir d'une "propriété 07-11-2023 locale". Ceci se fait par une sorte de "copié-collé" par des partitions de l'unité.

3.1 Les fonctions troncature

Proposition 3.1.1. Soit (X, d) un espace métrique. Soient F et G deux fermés disjoints de X. Alors il existe une fonction continue $\chi \in \mathcal{C}^0(X), 0 \le \chi \le 1$ et $\chi \equiv 0$ près de F et $\chi \equiv 1$ près de G.

Démonstration. En deux étapes.

1. On construit $\chi_1 \equiv 0$ sur F et $\chi_1 \equiv 1$ sur G. On définit $\chi: X \longrightarrow [0,1]$, avec $\chi_1(x) = \frac{d(x,F)}{d(x,F)+d(x,G)}$. La continuité de χ résulte du fait que $x \longmapsto d(x,F)$ est continue. On a de plus $\chi_1 \mid_F = 0$ et $\chi_1 \mid_G = 1$.

Considérons $F_1 = \chi^{-1}\left(\left[0, \frac{1}{3}\right]\right) \supset F$ et $G_1 = \chi_1^{-1}\left(\left[\frac{2}{3}, 1\right]\right) \supset G$. On a $F_1 \cap G_1 = \emptyset$. On applique la construction précédente à F_1 et G_1 qui sont des voisinages **fermés** de F et de G.

2

Lemme. Soit (X,d) un espace métrique et $K \subset X$ un compact. Soit $(U_j)_{\substack{1 \le j \le N \\ N}}$ un recouvrement ouvert de K. Alors il existe $K_j \subset U_j \subset X$ compact, $1 \le j \le N$ tel que $K \subset \bigcup_{j=1}^N K_j$.

 $D\acute{e}monstration$. On remarque que $K\subset\bigcup_{x\in K}B_x$ où B_x est une boule ouverte de centre x. Cela entraı̂ne

que
$$K \subset \bigcup_{k=1}^p B_{x_k}$$
.

On considère $A_j=\{l\in\{1,\ldots,p\},\widetilde{B_{x_l}}\subset U_j\}$ où $\widetilde{B_{x_l}}$ est une boule fermée de même centre et de même rayon que B_{x_l} .

Remarque. $\overline{B_{x_l}} \subset \widetilde{B_{x_l}}$, mais l'inclusion est stricte en général.

Si $(X,d) = (\mathbb{R}^n, \|\cdot\|)$, on a $\overline{B_{x_l}} = \widetilde{B_{x_l}}$. On pose $K_j = K \cap \left(\bigcup_{l \in A_j} \widetilde{B_{x_l}}\right)$, alors K_j est compact (tout fermé dans un espace séparé est compact).

Théorème 3.1.1. Soit $K \subset \bigcup U_j$ compact. Alors il existe $\varphi_j \in \mathcal{K}(X)$ tels que $\sup \varphi_j \subset U_j$ et $\sum_{j=1}^n \varphi_j = 1$ **près** de K, avec $0 \le \varphi_j \le 1$. On dit que les φ_j forment une partition de l'unité subordonnée au recouvrement de K par un nombre fini d'ouverts U_j .

Démonstration. Soient K_j des compacts comme dans le lemme 3.1. Pour chaque $j \in \{1, ..., N\}$, on peut trouver une fonction continue $\psi_j : X \longrightarrow [0, 1]$ égale à 1 près de K_j et égale à 0 sur U_j^C . On pose

$$V = \left\{ x \in X, \sum_{j=1}^{N} \psi_j(x) > 0 \right\}$$

ouvert de X, donc V^C est fermé. On applique la proposition 3.1.1 à K et V^C . Il existe donc ψ_0 continue avec $\psi_0 \equiv 0$ près de K et $\psi_0 \equiv 1$ près de U^C , car $K \subset U$. On pose

$$\varphi_j(x) = \frac{\psi_j(x)}{\sum_{k=0}^N \psi_k(x)}.$$

La fonction ψ_j est dans $\mathcal{K}(X)$ et $\sum_{j=1}^N \varphi_j = \frac{\sum_{j=1}^N \psi_j}{\psi_0 + \sum_{j=1}^N \psi_j} \equiv 1$ près de K, car $\psi_0 \equiv 0$ près de K.

Application : recollement d'une famille de $L^1_{loc}(\mathbb{R}^d)$ Ce sont l'ensemble de fonctions intégrables seulement sur un compact. On a $L^p(X) \subset L^1_{loc}(X)$. On a

$$\int_K \left|f\right| = \int \mathbb{1}_K(x) \left|f(x)\right| dx = \left\|\mathbb{1}_K\right\|_q \left\|f\right\|_p = \left|K\right|^{\frac{1}{q}} \left\|f\right\|_p.$$

Proposition 3.1.2. Soient $U_j \subset \mathbb{R}^d$ des ouverts, $\Omega_{j \in I} U_j, f_j \in L^1_{loc}(U_j)$ avec $f_i = f_j$ sur $U_i = U_j$. Alors il existe $f \in L^1_{loc}(\Omega)$ telle que $f = f_j$ sur U_j .

Démonstration. On va montrer qu'il existe $f \in L^1_{loc}(\Omega)$ telle que $\forall g \in L^{\infty}_{comp}(\Omega)$,

$$\langle f, g \rangle = \int f(x)g(x)dx.$$

CHAPITRE 4

FONCTIONS DIFFÉRENTIABLES

4.1 Rappels de calcul différentiel

10 - 11 - 2023

Définition 4.1.1. Soit $\Omega \in \mathbb{R}$ ouvert. On dit que $f : \Omega \longrightarrow \mathbb{R}/\mathbb{C}$ est de classe \mathcal{C}^1 si et seulement si f admet des dérivées partielles continues.

Si $x_0 \in \Omega$, $f'(x_0)$ est la différentielle de f en x_0 telle que

$$\langle f'(x_0), y \rangle = \sum_{i=1}^d \frac{\partial f}{\partial x_i}(x_0) y_j.$$

f est de classe \mathcal{C}^2 si et seulement si $x \longmapsto \frac{\partial f}{\partial x_j}(x)$ est de classe \mathcal{C}^1 pour tout j. La matrice hessienne de f en x_0 est

$$\operatorname{Hess}(f) = \left(\frac{\partial^2 f(x_0)}{\partial x_i \partial x_j}\right)_{1 \le i, j \le d}.$$

Par le théorème de Schwarz, elle est symétrique.

Par récurrence, on définit les fontions $\mathcal{C}^{\infty}(\Omega)$ et

$$\mathcal{C}^{\infty}(\Omega) = \bigcap_{n \in \mathbb{N}} \mathcal{C}^{\infty}(\Omega).$$

 $\forall n \in \mathbb{N}, \, \mathcal{C}^{\infty}(\Omega) \text{ est une algèbre.}$

Proposition 4.1.1 (Composition). Soient $\Omega_1 \in \mathbb{R}^{d_1}$, $\Omega_2 \in \mathbb{R}^{d_2}$ des ouverts de \mathbb{R}^d et soit $\Phi : \Omega_1 \longrightarrow \Omega_2$ de classe \mathcal{C}^{∞} . Alors $\forall f \in \mathcal{C}^{\infty}(\Omega_2)$, $f \circ \Phi \in \mathcal{C}^{\infty}(\Omega_1)$ et on a

$$(f \circ \Phi)'(x_0) = \underbrace{f'(\Phi(x_0))}_{\in \mathcal{M}_{1 \times d_2}} \cdot \underbrace{\Phi'(x_0)}_{\in \mathcal{M}_{d_2 \times d_1}}.$$

Exercice 4. Calculer $((f \circ \Phi)')'(x)$.

Formule de Taylor avec reste intégral Pour d = 1, on a

$$f(x) = f(0) + \int_0^x f'(y)dy = f(0) + \left(\int_0^1 f'(tx)dt\right)x.$$

Remarque. Si $f \in C_0^1(\mathbb{R})$, la fonction $g = \int_0^1 f'(tx)dx$ n'est plus dans $C_0^1(\mathbb{R})$.

Proposition 4.1.2. Soit $\Omega \subset \mathbb{R}^d$, $a \in \Omega$ et $f \in \mathcal{C}^{\infty}(\Omega)$. Alors on peut écrire :

$$f(x) = \sum_{|\alpha| < m} \frac{1}{\alpha!} \partial^{\alpha} f(a)(x-a)^{\alpha} + m \sum_{|\alpha| = m} \frac{(x-\alpha)^2}{\alpha!} \int_0^1 (1-t)^{m-1} \partial^{\alpha} f(a+t(x-a)) dt.$$

On a
$$\alpha \in \mathbb{N}^d$$
, $|\alpha| = \alpha_1 + \dots + \alpha_d$ et $\alpha! = \alpha_1! \dots \alpha_d!$ et $\partial^{\alpha} = \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \dots \frac{\partial^{\alpha_d}}{\partial x_d^{\alpha_d}}$.

Remarque (Formule d'Hadamard). Pour m=1 et $\alpha=(0,\ldots,0,\underbrace{1}_i,0,\ldots,0)$, on a

$$f(x) = \sum_{j=0}^{d} (x_j - a_j) \int_0^1 \frac{\partial f}{\partial x_j} (a + t(x - a)) dt.$$

4.2 Classification des $C^m(\Omega)$, régularité, support

Soit $K \subset \Omega \subset \mathbb{R}^d$ compact. On définit

$$C_K^m(\Omega) = \{ f \in \mathcal{C}^m(\Omega), \text{ supp}(f) \subset K \}.$$

On rappelle que $supp(f) = adh\{x \mid f(x) = 0\}$ (l'ensemble des valeurs où la fonction ne s'annulle pas).

Les espaces localement convexes sont munis d'une famille de semi-normes qui leur confère une structure des espaces de Fréchet.

Exemple.

* Pour $\mathcal{C}^m(\Omega)$, on a

$$\rho_{n,\alpha:|\alpha| \le m} = \sup_{K_n} |\partial^{\alpha} f(x)|$$

où K_n est une suite exhaustive de compacts avec $K_n \subset K_{n+1}, \bigcup_{n \in \mathbb{N}} K_n = \Omega$.

 \star Pour $C_h^m(\Omega), f^{(1)}, \dots, f^{(m)}$ bornées, on a

$$||f|| = \sum_{|\alpha| < m} \sup_{\Omega} |\partial^{\alpha} f(x)|.$$

C'est une norme sur un espace de Banach.

 \star On considère $C_0^\infty(\Omega)=\bigcup_K C_K^\infty(\Omega)$ espace localement convexe.

Remarque.

$$\sup_{\nu \in \mathbb{N}} \left(\sup_{|x| > \nu, |\alpha| \le m_{\nu}} \frac{|\partial^{\alpha} \varphi(x)|}{\varepsilon_{\nu}} \right).$$

 ε_{ν} est une suite de réels et elle tend vers 0.

...

On prend $\mathcal{D}(\Omega) \neq \{0\}.$

Lemme. Soit $B(a,r) \subset \Omega, a \in \Omega, r > 0$. Soit $\Phi_a : \mathbb{R}^d \longrightarrow \mathbb{R}_+$ telle que

$$\Phi_a(x) = \begin{cases} 0 \text{ si } x \notin B(a, r) \\ \exp\left(-\frac{1}{r^2 - |x - a|^2}\right) \text{ si } x \in B(a, r). \end{cases}$$

Alors $\Phi_a \in C^{\infty}_{\overline{B(a,r)}}(\Omega)$. Elle est dans $\mathscr{D}(\mathbb{R}^d)$.

Démonstration. Soit $\psi: \mathbb{R} \longrightarrow [0, \infty)$ telle que

$$\psi(t) = \begin{cases} 0 \text{ si } t \le 0\\ e^{-\frac{1}{t}} \text{ sinon.} \end{cases}$$

Il est connu que $\psi \in \mathcal{C}^{\infty}(\mathbb{R})$.

On construit

$$\Phi(x) = \psi(r^2 - |x - a|^2).$$

Alors $\Phi_a \in \mathcal{C}^{\infty}(\Omega)$ et supp $\Phi_a \subset B(a,r)$ par construction.

Lemme. Il existe une fonction $\Psi \in \mathcal{C}^{\infty}(\mathbb{R})$ croissante telle que

$$\Psi(t) = \begin{cases} 0 \text{ si } t \le 0\\ 1 \text{ si } t \ge 1. \end{cases}$$

Démonstration. On pose $g(t)=\psi(t)\psi(1-t)\in C^{\infty}_{[0,1]}(\mathbb{R})$ et on pose

$$\Psi(t) = \frac{\int_{-\infty}^{t} g(t)dt}{\int_{0}^{1} g(s)ds}.$$

4.3 Partitions de l'unité différentiables

Lemme. Soit $\Omega \subset \mathbb{R}^d$ ouvert et $K \subset \Omega$ compact. Alors il existe une fonction $f : \Omega \longrightarrow [0,1], f \in \mathcal{D}(\mathbb{R})$ telle que $f \equiv 1$ au voisinage de K.

FIGURE 4.1 – Recouvrement de K

Démonstration. On applique le lemme 4.2. On pose

$$\Phi_x(y) = \exp\left(\frac{1}{r^2 - \left|y - x\right|^2}\right) \times 2\exp\left(\frac{1}{r^2}\right).$$

On a $\Phi_x(x) = 2$.

 $x \in V_x = \{y : \Phi_x(y) > 1\}$ un ouvert. Les V_x recouvrent K. On peut extraire un sous-recouvrement fini V_{x_1}, \dots, V_{x_N} . On pose

$$h = \sum_{j=1}^N \Phi_{x_j}, h \in C_0^\infty(\Omega), h \ge 1$$
 près de K .

Alors $f = \psi \circ h$ répond à la question.

FIGURE 4.2 – On prend K et U définis ainsi.

Démonstration par régularisation des convolutions. Soit $g = \mathbbm{1}_U$ et $\varepsilon < \frac{\delta}{2}$. Posons $\Phi_1 \in C_0^{\infty}(\mathbb{R}^d)$. Alors supp $\Phi_1 \subset B(0,1)$.

Posons $\Phi_{\varepsilon}(x) = \frac{1}{\varepsilon^d} \Phi_1\left(\frac{x}{\varepsilon}\right)$. On a supp $(\Phi_{\varepsilon}) \subset B(0, \varepsilon)$.

On a

$$f(x) = f_{\varepsilon}(x) = \int \mathbb{1}_{U}(y) \Phi_{\varepsilon}(x - y) dy = \mathbb{1}_{U} \star \Phi_{\varepsilon}.$$

On remarque que $f_{\varepsilon} \in \mathcal{C}^{\infty}(\mathbb{R}^d)$. La convolution $f \star g$ hérite de la meilleure régularité. On a $\operatorname{supp}(f \star g) \subset \operatorname{supp}(f) + \operatorname{supp}(g)$.

Donc supp $(f_{\varepsilon}) \subset U + B(0, \varepsilon) \subset K + B(0, \delta) + B(0, \varepsilon) \subset K + B\left(0, \frac{3d}{2}\right)$.

Montrons que supp $f_{\varepsilon} \subset K + B\left(0, \frac{\delta}{2}\right)$. Alors

$$f_{\varepsilon}(x) = \int \mathbb{1}_{U}(y)\Phi_{\varepsilon}(x-y)dy = 0 \text{ pour } d(x,U) > \varepsilon.$$

Montrons que $f_{\varepsilon}(x)=1$ pour $d(x,U)<\frac{\varepsilon}{2}.$ Cela implique que

$$\int \mathbb{1}_{U}(y)\Phi_{\varepsilon}(x,y)dy = \int \Phi_{\varepsilon}(x-y)dy = \int \Phi_{\varepsilon}(z)dz = 1.$$

Montrons que $f_\varepsilon(x) \leq 1.$ C'est vrai car $\mathbbm{1}_U(y) \in [0,1]$ et on a

$$\int \mathbb{1}_{U}(y)\Phi_{\varepsilon}(x-y)dy \leq \int \Phi_{\varepsilon}(x-y)dy = 1.$$

Ce lemme aboutit au théorème suivant.

Théorème 4.3.1. Soit $K \in \mathbb{R}^d$ un compact recouvert par une union fini d'ouverts $(U_j)_{1 \leq j \leq n}$. Alors il existe $\varphi_j \in \mathcal{D}(\mathbb{R}^d), j = 1, \ldots, n$, supp $\varphi_j \subset U_j$ et $\sum_{j=1}^n \varphi_j = 1$ près de K.

CHAPITRE 5

CONVOLUTION DES FONCTIONS ET DE MESURES

24-11-2023

5.1 Convolution des mesures discrètes

Comment définir une convolution?

Définition 5.1.1 (Mesure discrète). On appelle mesure discrète une mesure qui s'écrit

$$\mu = \sum_{i \in \mathbb{N}} \lambda_j \delta_{x_j}, \lambda_j \in \mathbb{R}.$$

Définition 5.1.2 (Convolution des mesures discrètes). Si $\nu = \sum \mu_k \delta_{y_k}$ est une autre mesure discrète, on écrit

$$\mu * \nu = \sum_{j,k} \lambda_j \mu_j \delta_{x_j + y_k}.$$

En fait $\delta_{x_j} * \delta_{y_k} = \delta_{x_j + y_k}$ (la loi interne est vérifiée).

On peut aussi poser $x_j + y_k = z_i$ et on a (produit de Cauchy)

$$\mu * \nu = \sum_{i} \left(\sum_{x_j + y_k = z_i} \lambda_j \mu_k \right) \delta_{z_i}.$$

Il se peut que cette quantité ne soit pas définie. Si $\lambda_i \in \mathbb{R}$ pour tout i, on dit que μ et ν sont convolables.

Exemple (Loi de Poisson $\mathcal{P}(\lambda)$ (distribution de probabilité)). Elle se définit comme suit :

$$\mu = \sum_{k>0} e^{-\lambda} \frac{\kappa^k}{k!} \delta_k.$$

On a $\operatorname{supp}(\mu) \subset \mathbb{N}$. Si ν est une autre mesure de Poisson, on aura $\operatorname{supp}(\mu + \nu) \subset \mathbb{N}$.

Exemple (Mesures non convolables).

1. On pose

$$\mu = \sum_{j \in \mathbb{N}} \delta_j, \nu = \sum_{k \in \mathbb{N}} \delta_{-k}.$$

Dans ce cas, on a $\operatorname{supp}(\mu) = \mathbb{Z}_+$ et $\operatorname{supp}(\nu) = \mathbb{Z}_-$. On a $\alpha_i = \sum_{j-k=i} 1 = +\infty$. Donc μ et ν ne sont pas convolables.

2. Si on prend $\mu = \sum_{j \geq 0} 2^{-j} \delta_j$ (bornée) et $\nu = \sum_{j \geq 0} 2^j d_{-j}$ (non bornée), le produit de Cauchy diverge.

5.2 Convolution des mesures de Radon

Définition 5.2.1. On rappelle que la mesure de Radon est un élément du dual de l'espace localement convexe $\mathcal{K}(X)$, donc appartenant à $\mathcal{M}(X)$. On peut poser $X = \mathbb{R}^d$ par exemple.

On cherche un espace plus petit. On prend $\mathcal{M}_b(\mathbb{R}^d)$ l'espace des mesures de Radon bornées sur \mathbb{R}^d .

Définition 5.2.2. On dit que $\mu, \nu \in \mathcal{M}(\mathbb{R}^d)$ sont convolables si

$$\varphi \in \mathcal{K}(\mathbb{R}^d) \longrightarrow \varphi(x+y)d\mu(x) \otimes d\nu(y)$$

est continue sur $\mathcal{K}(\mathbb{R}^d)$, i. e. pour tout $K \subset \mathbb{R}^d$, il existe C_k tel que pour tout $\varphi \in \mathcal{K}_K(\mathbb{R}^d)$,

$$\left| \int \varphi(x+y) d\mu(x) \otimes d\nu(y) \right| \leq C_k \sup_K |\varphi(x)|.$$

Définition 5.2.3. On définit le produit de convolution de μ et ν par

$$\mu * \nu = \langle \mu * \nu, \varphi \rangle = \int \varphi(x+y) d\mu(x) \otimes d\nu(y) = \langle \mu \otimes \nu, s^* \varphi \rangle,$$

avec $s^*\varphi(x,y) = \varphi(x+y)$.

Remarque. $\mu \otimes \nu$ est la mesure produit.

Exemple. On veut calculer $\langle \delta_{x_0} \otimes \delta_{x_1}, f \rangle$, avec $f : \mathbb{R}^d \times \mathbb{R}^d \longrightarrow \mathbb{R}$. Soit $\varphi \in \mathcal{K}(\mathbb{R}^d)$, on pose $f(x,y) = \varphi(x+y)$.

45

5.3 Propriétés géométriques sur les supports

On a le problème suivant : étant donnés $\mu, \nu \in \mathcal{M}(\mathbb{R}^d)$, quelle est la condition suivante sur les supports pour que $\mu * \nu$ existe?

Proposition 5.3.1. Supposons que $\forall K \in \mathbb{R}^d$,

$$\{(x,y), x \in \text{supp } \mu \text{ et } y \in \text{supp } \nu, x+y \in K\} \text{ est compact.}$$
 (5.1)

Alors $\mu * \nu$ existe.

FIGURE 5.1 – Propriétés sur le supports

Définition 5.3.1. Les supports de μ et ν sont convolutifs si et seulement si ils vérifient la propriété 5.1.

Proposition 5.3.2. On a supp $(\mu * \nu) \subset \text{supp } \mu + \text{supp } \nu$.

Exemple (Contre-exemples).

* On pose

$$\mu = \sum_{n \in \mathbb{Z}_+} \delta_n, \nu = \sum_{n \in \mathbb{Z}_-}.$$

Le produit de Cauchy diverge.

* Si $d\mu(x) = \mathbb{1}_{\{x>0\}} dx, d\nu(x) = \mathbb{1}_{\{y<0\}} dy$, alors

$$\int_0^\infty dx \int_{-\infty}^0 \varphi(x+y) dy = +\infty.$$

 \star On prend un cône C et une surface de Cauchy.

$$\exists p(R) \text{ tel que } (x,y) \in \underbrace{\sup_{E} \mu} \times \underbrace{\sup_{C} \nu} \text{ et } x + y \in K \implies |x| \le p(R) \text{ et } |y| \le p(R). \tag{5.2}$$

Proposition 5.3.3. On a 5.2 implique 5.1. Les deux propriétés impliquent que μ et ν sont convolables. De plus, si F et G sont fermés, alors F + G est aussi fermé.

5.4 Exemples de mesures convolables

Proposition 5.4.1.

- 1. Si μ ou ν est à support compact, alors μ et ν sont convolables.
- 2. Si μ, ν sont des mesures de Radon sur \mathbb{R}^2 tels que supp $\mu = F$ et supp $\nu = G$ vérifient 5.2, alors $\mu * \nu$ existe. En particulier si F = G = C cône convexe de sommet 0.
- 3. Si μ et ν sont des mesures de Radon bornées, alors $\mu \otimes \nu \in \mathcal{M}_b(\mathbb{R}^d)$ et $\mu * \nu$ existe.
- 4. Une mesure μ bornée est en général convolable avec ν quelconque.

5.5 Convolution des fonctions

28-11-2023 On a

$$\langle \mu * \nu, \varphi \rangle = \iint \varphi(x+y) d\mu(x) \otimes d\nu(y).$$

Si μ est de densité $f \in L^1$, ν est aussi de densité L^1 . On a alors

$$f * g(x) = \int f(x - y)g(y)dy,$$

avec $d\mu(x) = f(x)dx$, $d\nu(y) = g(y)dy$. On a alors

$$\langle \mu * \varphi \rangle = \int \varphi(x+y) f(x) g(y) dx dy.$$

On pose z = x + y, x = x, alors

$$\operatorname{Jac} = \frac{\partial(z, x)}{\partial(x, y)} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = -1.$$

On réécrit l'expression de la manière suivante et on obtient :

$$\iint \varphi(z)f(x)g(z-x)dxdz = \int \varphi(z)f * g(z)dz.$$

Alors $\mu * \nu = (f * g)(z)$ est de densité L^1 .

5.6 Algèbres de convolution

Définition 5.6.1. $X = \mathbb{R}^d$, $\mathcal{M}(X) = (\mathcal{K}(X))'$ espace de mesures de Radon.

On appelle $V \subset \mathcal{M}(X)$ algèbre de convolution si V est un sous-espace vectoriel stable par convolution * et pour lequel (V, +, *) est une algèbre.

Exemple. $\mu = H(x)f(x), f \in L^1_{loc}(\mathbb{R})$. On a alors

$$\mu * \nu(x) = H(x) \int_0^x f(x - y)g(y)dy.$$

Remarque. V est unitaire si et seulement si $\delta_0 \in V$. L^1 n'est pas unitaire parce que δ_0 n'est pas dans L^1 , mais c'est toujours une algèbre.

Proposition 5.6.1. $\mathcal{M}_b(X)$ muni de + et * est une algèbre unitaire d'élément unité δ_0 .

Démonstration. Comme $\mathcal{M}_b(X)$ est un espace de Banach et que $\mu * \delta_0 = \mu$, il suffit de montrer que $\|\mu * \nu\| \le \|\mu\| \|\nu\|$. Or pour tout φ tel que $\|\varphi\|_{\infty} \le 1$,

$$\langle \mu * \nu, \varphi \rangle = \left| \iint \varphi(x+y) d\mu(x) \otimes d\nu(y) \right| = \iint |d\mu(x) \otimes d\nu(y)| = \|\mu\| \|\nu\|.$$

5.7 Convolution de mesures et de fonctions

On prend $f \in L^1_{loc}$.

Remarque. $L^p(X) \subset L^p_{loc}(X) \subset L^1_{loc}(X)$ pour tout $p \ge 1$.

Proposition 5.7.1. Si $f, g \in L^1$, les mesures de densité f et g $d\mu(x) = f(x)dx$ et $d\nu(x) = g(x)dx$ sont convolables et $\mu * \nu$ admet pour densité

$$h(x) = \int f(x - y)g(y)dy \in \mathcal{L}^1$$

définie presque partout et $h \in L^1(X)$. De plus,

$$||h||_{L^1} \le ||f||_{L^1} ||g||_{L^1}$$
.

Proposition 5.7.2. Soient $f \in L^1_{loc}$ et $g \in L^1_{loc}$. Alors

$$h(x) = \int f(x - y)g(y)dy$$

est définie x presque partout et $h \in L^1_{loc}$.

Démonstration. Soit $|x| \leq R$ et $\operatorname{supp}(g) \subset B(0, \rho)$. On a

$$\int g(x-y)f(y)dy = \int (\mathbb{1}_{B(0,\rho+R)}f)(y)g(x-y)dy.$$

Proposition 5.7.3. On pose $h(x) = \int f(x-y)g(y)dy$.

- 1. Si $f \in L^1, g \in L^{\infty}$, alors h est unirformément continue et bornée $(h \in C_b(\mathbb{R}^d))$.
- 2. Si $f \in L^p, g \in L^q, \frac{1}{p} + \frac{1}{q} = 1$ alors $h \in C_0(\mathbb{R}^d), \|h\|_{\infty} \le \|f\|_p \|g\|_q$.

 $D\'{e}monstration.$

1. Posons $h(x) = \int f(x-y)g(y)dy = \int f(y)g(x-y)dy$. On a

$$|h(x)| \le \int |f| \|g\|_{\infty} = \|g\|_{\infty} \|f\|_{L^{1}},$$

alors $h \in L^{\infty}$.

Exemple (Equation de Lotka-Volterra). Soit $h \in \mathcal{K}(\mathbb{R})$. On a une équation intégrale

$$f(x) + \int_0^x K(x - y)f(y)dy = h(x).$$
 (5.3)

On peut résoudre cette équation dans $\overline{\mathbb{R}^+}$.

Définition 6.0.1 (Distribution). C'est le dual de l'espace $\mathcal{D}'(\Omega)$, avec $u_j \longrightarrow u \in \mathcal{D}'$.

08-12-2023

On peut multiplier $f \in \mathcal{C}^{\infty}$ et $u \in \mathcal{D}'$, mais par contre si $u, v \in \mathcal{D}'$, cela n'a pas de sens. On va également s'intéresser aux dérivations des distributions et aux solutions faibles.

6.1 Définition, convergence dans $\mathcal{D}, \mathcal{D}'$

Définition 6.1.1. Soit u une forme linéaire sur \mathscr{D} (pas forcément continue). L'application $\varphi \longmapsto \langle \varphi, u \rangle$ est linéaire. On dit que u est une distribution d'ordre $p \in \mathbb{N}$ si et seulement si pour tout compact $K \subset \Omega$, il existe $p \in \mathbb{N}$ (l'ordre de la distribution), il existe C > 0, pour tout $\varphi \in \mathscr{D}_K(\Omega)$,

$$|\langle u, \varphi \rangle| \le C \sup_{|\alpha| \le p} |\partial^{\alpha} \varphi|.$$

L'ordre p est le plus petit entier p qui satisfait la définition. On note $\mathscr{D}(\Omega)$ l'ensemble de ses formes linéaires continues.

Remarque. C'est compatible avec le fait que $\mathscr{D}'(\Omega)$ est le dual topologique de $\mathscr{D}(\Omega)$.

Remarque. Soit u une forme linéaire sur $\mathcal{D}(\Omega)$. Alors $u \in \mathcal{D}'(\Omega)$ si et seulement si :

$$\forall \varphi_j \in \mathscr{D}(\Omega), \varphi_j \longrightarrow 0$$
 pour la topologie de $\mathscr{D}(\Omega)$, alors $\langle u, \varphi_j \rangle \longrightarrow 0$.

Exemple (De distributions).

1. Les mesures de Radon sur Ω sont des distributions avec p=0.

- 2. Les fonctions $L^1_{loc}(\Omega)$ sont des distributions. Conséquence : Tous les espaces $L^p_{loc}(\Omega)$ sont inclus dans $\mathscr{D}'(\Omega)$.
- 3. Les solutions faibles des équations à dérivées partielles (EDP) :

$$\frac{\partial^2 u}{c^2 \partial t^2} - \frac{\partial^2 u}{\partial x^2} = f(x, t), (x, t) \in \mathbb{R}^2.$$

Or $u(x,t) = \frac{1}{2} \mathbb{1}_{\{|x| < ct\}} \notin \mathcal{C}^R(\Omega)$. On dit que u est une solution faible avec $u \in L^1_{loc}(r^2), \forall \varphi \in \mathscr{D}(\Omega)$ et on a

$$\iint \left(\frac{\partial^2 u}{c^2 \partial t^2} - \frac{\partial^2 u}{\partial x^2}\right) u(x,t) dx dt = \iint f(x,t) dt dx.$$

4. Problème aux limites : On prend Ω un ouvert à bord ouvert régulier. On introduit l'équation de Poisson (au sens fort) :

$$-\Delta u = f \in L^2$$

et au sens faible:

$$-\int \Delta \varphi \cdot u = \int f\varphi,$$

avec $u \in L^1_{loc}$ solution faible.

6.2 Convergence d'une suite de distributions dans $\mathcal{D}'(\Omega)$

Il s'agit de la convergence faible (on dit encore "convergence au sens des distributions").

Définition 6.2.1. On dit que $u_j \in \mathcal{D}'(\Omega)$ converge vers $u \in \mathcal{D}'(\Omega)$ si

$$\forall \varphi \in \mathcal{D}(\Omega), \langle u_i, \varphi \rangle \longrightarrow \langle u, \varphi \rangle.$$

Le support de u, supp $u=\mathcal{O}^C$ où \mathcal{O} est le plus grand ouvert où u=0. Alors pour tout $\varphi\in \mathscr{D}(\mathcal{O}), \langle u,\varphi\rangle=0$.

Exemple.

- 1. supp $\delta = \{0\}$;
- 2. supp $dx = \mathbb{R}^d$.

La différence avec les mesures est la suivante :

- Pour $\varphi \in \mathcal{K}(\mathbb{R}^d)$, si $\varphi(0) = 0$, alors $\langle \delta, \varphi \rangle = \varphi(0) = 0$.
- Si $\varphi \in \mathscr{D}(\mathbb{R}^d), \varphi \mid_{\text{supp } u} = 0$ n'entraine pas que $\langle u, \varphi \rangle = 0$.

6.3 Multiplication (au sens des distributions) et dérivation

6.3.1 Produit d'une distribution par $f \in \mathcal{C}^{\infty}$

Définition 6.3.1 (Définition et proposition). Soit $f \in \mathcal{C}^{\infty}(\Omega)$, $u \in \mathcal{D}'(\Omega)$, alors $fu \in \mathcal{D}'(\Omega)$ d'ordre inférieur à celui de u, à savoir p. On définit $fu \in \mathcal{D}'(\Omega)$ par

$$\langle fu,\varphi\rangle=\langle u,f\varphi\rangle.$$

Démonstration. Soit $K \subset \Omega$ compact, soit $\varphi \in \mathscr{D}_K(\Omega)$. On a

$$|\langle fu, \varphi \rangle| = |\langle u, f\varphi \rangle| \le C \sup_{|\alpha| \le p} |\partial \alpha(f\varphi)(x)|.$$

On voudrait plutôt $\widetilde{C}\sup_{|\alpha|< p} |\partial^{\alpha}\varphi|$. Par la formule du produit de Leibniz, on a

$$\partial^{\alpha}(f\varphi) = \sum_{\gamma \leq \alpha} {\alpha \choose \gamma} \partial^{\alpha-\gamma} f(x) \partial^{\gamma} \varphi(x).$$

 $\gamma \leq \alpha, \, \gamma_j \leq \alpha_j, \forall j. \text{ On a } \partial^{\gamma} = \partial^{\gamma_1} \dots \partial^{\gamma_d}. \text{ On \'ecrit}$

$$\begin{pmatrix} \alpha \\ \gamma \end{pmatrix} = \frac{\alpha!}{\gamma!(\alpha - \gamma)!} = \begin{pmatrix} \alpha_1 \\ \gamma_1 \end{pmatrix} \dots \begin{pmatrix} \alpha_d \\ \gamma_d \end{pmatrix}.$$

Proposition 6.3.1. On suppose d=1. Soit $u\in \mathscr{D}'(\mathbb{R})$. Alors $xu=0\iff u=C\delta$ avec $C\in\mathbb{C}$.

Est-ce que l'on a $x^2u = 0 \implies u = \delta$? Si $u = \delta$, $\langle x^2u, \varphi \rangle \langle u, x^2\varphi \rangle = 0$.

6.3.2 Dérivée d'une distribution

Définition 6.3.2. Soit $u \in \mathcal{D}'(\Omega)$, avec $\Omega \subset \mathbb{R}^d$. Alors

$$\left\langle \frac{\partial u}{\partial x_j}, \varphi \right\rangle = -\left\langle u, \frac{\partial \varphi}{\partial x_j} \right\rangle.$$

Proposition 6.3.2. On a $\frac{\partial u}{\partial x_j} \in \mathscr{D}'(\Omega)$ d'ordre inférieur à p+1.

Plus généralement, $\langle \partial^{\alpha} u, \varphi \rangle = (-1)^{|\alpha|} \langle u, \partial^{\alpha} \varphi \rangle$.

Proposition 6.3.3. Si $u_j \longrightarrow u$ dans \mathscr{D}' , alors $\partial^{\alpha} u_j \longrightarrow \partial^{\alpha} u$ dans \mathscr{D}' . En particulier, si $\sum v_j \longrightarrow u$, alors $\sum \partial^{\alpha} v_j \longrightarrow \partial^{\alpha} u$.

Théorème 6.3.1 (Formule des sauts). On pose par exemple u = H(x) fonction de Heavyside. Elle est dans L^1_{loc} . On a

$$\langle u', \varphi \rangle = -\langle u, \varphi' \rangle = -\int_0^\infty \varphi'(x) dx = \varphi(0).$$

Proposition 6.3.4. Soit $f: I \subset \mathbb{R} \longrightarrow \mathbb{R}$, C^1 par morceaux discontinue aux points $a_1, \ldots, a_N \in I$, avec $\langle Tf, \varphi \rangle = \langle f, \varphi \rangle$ et

$$f' = Tf' \sum_{i=1}^{N} \sigma_i \delta_{a_i}.$$

Proposition 6.3.5. Soit $u \in \mathcal{D}'(\mathbb{R})$. Alors u' = 0 si et seulement si u = C.

 $D\'{e}monstration.$

- 1. Sens direct : Si u = C, alors u' = 0.
- 2. Sens réciproque : On pose $\varphi = \psi'$ où $\psi(x) = \int_{-\infty}^{x} \varphi(t)dt$. On a $\psi \in \mathcal{C}^{\infty}$, mais $\psi \notin \mathscr{D}(\mathbb{R})$ sauf si $\int \varphi dx = 0$. On a

$$\langle u, \varphi \rangle = \langle u, h \rangle + \left(\int \varphi \right) \langle u, \theta \rangle = \langle u, \psi' \rangle = 0, \text{ car } u' = 0.$$

Cela implique que $\langle u, h \rangle = 0$.