

Computer Vision Systems Programming VO Deep Learning

Christopher Pramerdorfer
Computer Vision Lab, Vienna University of Technology

Topics

Deep learning motivation

Multilayer perceptrons

Pylearn2 library

Convolutional neural networks

Deep learning applications

mages from LeCun et al. 1989, Taigman et al. 2013, image-net.or

Object Recognition Traditional Approach

Object Recognition Traditional Approach

Problem: how to choose the representation/features?

"General" features not optimal

▶ Not tuned to task at hand, low-level

Designing task-specific features is complex

Virtually impossible to do optimally

Object Recognition Deep Learning

Solution: learn representation as well

Learning high-level representations directly is difficult

Deep Learning (DL) solves this

- By learning a hierarchy of representations
- Layers in hierarchy build upon each other

Object Recognition

Deep Learning

Image from Bengio, Goodfellow, and Courville 2014

Object Recognition Deep Learning

 $n \ \ {\sf levels} \ \ {\sf of} \ \ {\sf features/representations}$

Learned jointly with the output mapping

DL is usually realized using MultiLayer Perceptrons (MLPs)

Binary linear classifier

Feature vectors \mathbf{x} classified as $f(\mathbf{w}^{\top}\mathbf{x} + b) \in \{-1, +1\}$

f is a discontinuous step function

$$f(v) = \begin{cases} +1 & \text{if } v > 0\\ -1 & \text{otherwise} \end{cases}$$

 \mathbf{w}, b learned from training data

The Perceptron

The Perceptron – Limitations

Only two classes

Linear decision boundaries

Learning never converges for non-separable data

Two-Layer Architecture

Replace f with continuous nonlinearity (e.g. $\tanh(\cdot)$)
Introduce layer of M such "Perceptrons" (hidden units)
Hidden units connected to layer of K output units

Two-Layer Architecture

Output of mth hidden unit is $z_m(\mathbf{x}) = f(\mathbf{w}_m^{\top} \mathbf{x})$

Bias b included in \mathbf{w} and \mathbf{x} , $w_0 = b$, $x_0 = 1$

Two-Layer Architecture

Output of kth output unit is $y_k(\mathbf{z}) = g(\mathbf{w}_k^{\top} \mathbf{z})$

Choice of g depends on problem (regression, classification)

Two-Layer Architecture

Both f and g are differentiable

- Learn w using gradient descent
- Gradients evaluated via error backpropagation

The Pylearn2 Library

Machine learning library with focus on DL

Written in Python, but interaction mostly in YAML

Open-source: https://github.com/lisa-lab/pylearn2

The Pylearn2 Library MLP Regression Example

We will use pylearn2 to train a MLP for regression

The Pylearn2 Library MLP Regression Example

```
model: !obj:pylearn2.models.mlp.MLP {
    nvis: 1, # one input unit x
    layers: [ # two layers
        !obj:pylearn2.models.mlp.Tanh { # tanh activations for hidden units
            dim: 3, # use M=3 hidden units
            layer name: 'hidden',
            irange: 1
        },
        !obj:pylearn2.models.mlp.Linear { # linear output layer for regression
            dim: 1, # one output unit, K=1
            layer_name: 'out',
            irange: 1
```

The Pylearn2 Library MLP Regression Example

```
# dataset contains the (x,y) pairs from the previous figure
dataset: &train !pkl: 'mlp_data_regression.pkl',
# train using batch gradient descent
algorithm: !obj:pylearn2.training_algorithms.bgd.BGD {
   conjugate: 1,
   batch_size: 50,
   line_search_mode: 'exhaustive',
   termination_criterion: !obj:pylearn2.termination_criteria.EpochCounter {
      max_epochs: 100 # train for 100 epochs
   }
}
```

The Pylearn2 Library MLP Regression Example

Full example: https://github.com/cpra/cvsp-vo-slides

Bibliography I

- Bengio, Yoshua, Ian Goodfellow, and Aaron Courville (2014). **Deep Learning (draft)**. MIT Press.
- Bishop, Christopher (2006). **Pattern recognition and machine learning**. Springer.
- LeCun, Yann et al. (1989). **Backpropagation applied to** handwritten zip code recognition. Neural computation.
- Taigman, Yaniv et al. (2013). **Deepface: Closing the gap to human-level performance in face verification**. CVPR.

