

Datasheet - Programming & Sensors

Multi-sensor environmental data collection

The programming interfaces for the NUCLEO-L476RG, micro:bit, and Arduino boards are very similar. Here we present a program designed for micro:bit. It displays the measured elements on the LCD screen.

Editor used: vittascience.com/l476; vittascience.com/arduino or vittascience.com/microbit

```
Forever

on button A v is v pressed then

[LCD] show text (4 VOC measured: 2) on line 0 v position 0 v

[LCD] show text (Multichannel Gas Sensor v2] gas volatile organic compounds (VOC) v (V) on line 1 v position 0 v

on button B v is v pressed then

[LCD] show text (4 concentration of PM 18: 3) on line 0 v position 0 v

[LCD] show text (1 [HM330X Sensor] concentration of particle matter PM10.0 v (µg/m3) on line 1 v position 0 v

on button A+B v is v pressed then

[LCD] show text (4 Measured temperature: 3) on line 0 v position 0 v

[LCD] show text (6 Measured temperature: 3) on line 0 v position 0 v
```


Assembly connection with an Arduino

The HM3301 sensor is connected to an I2C port. The MICS6814 multi-channel sensor is connected to an I2C port on the shield.

The DHT11 humidity sensor is connected to a digital port (D2 to D8).

The display is connected to an I2C port.

The Openlog module for logging data to an SD card is connected to a digital port (D2 to D8).

Assembly connection with a micro:bit

The HM3301 sensor and the MICS6814 multi-channel sensor are connected to an I2C port on the shield.

The DHT11 humidity sensor is connected to a digital port (P1 or P2 as required).

The display is connected to an I2C port.

The Openlog module for logging data to an SD card is connected to a digital port P0.

Automated data recording to SD card

```
Forever

[Openlog] write in the SD card

board 4860 v on pins RXI P0 v TXO P14 v

Datas create text with ① [HM336X Sensor] concentration of particle matter PM1.0 v (µg/m3) ("; ") [Multichannel Gas Sensor v2] gas nitrogen dioxide (NO2) v (V)
```

</>=

Code

```
from microbit import *
from lcd_i2c import LCD1602
from gas_gmxxx import GAS_GMXXX
from hm330x import HM330X
from dht11 import DHT11
lcd = LCD1602()
multichannel_v2 = GAS_GMXXX(0x08)
hm3301 = HM330X()
# DHT11 Sensor on pin0
dht11_0 = DHT11(pin0)
while True:
if button_a.is_pressed():
lcd.setCursor(0, 0)
lcd.writeTxt('Mesure VOC:')
lcd.setCursor(0, 0)
lcd.writeTxt(str(multichannel_v2.calcVol(multichannel_v2.measure_VOC())))
if button_b.is_pressed():
lcd.setCursor(0, 0)
lcd.writeTxt('Concentration PM 10:')
```

```
lcd.setCursor(0, 0)
lcd.writeTxt(str(hm3301.getData(5)))
if button_a.is_pressed() and button_b.is_pressed():
lcd.setCursor(0, 0)
lcd.writeTxt('Mesure temperature:')
lcd.setCursor(0, 0)
lcd.writeTxt(str(dht11_0.getData(d=1)*9/5 + 32))
uart.init(baudrate=4800, bits=8, parity=None, tx=pin0, rx=pin14)
uart.write(('{}' * * 3) format(hm3301_getData(3), '...'
multichanne1_v2.calcVol(multichanne1_v2.measure_N02())) + '\n')
```


Documentation: Glossary of pollutants

Pollutants	Effects on the environment (climatic and local)	Health effects	Maximum values recommended by WHO
Fine particles PM10 / PM2.5	Diffusing or absorbing effect, increasing the greenhouse effect Damage to buildings and monuments: formation of a black layer, dirt	The finer the particle, the more harmful it is to the body: PM10: retained in the nose and deep respiratory tract PM2.5: penetrates deeply, crosses the lung barrier and enters the bloodstream	For PM2.5: 10 μg/m3 annual average 25 μg/m3 average over 24 hours For PM10: 20 μg/m3 annual average 50 μg/m3 average over 24 hours
Nitrogen dioxide (NO2)	Contributes to acid rain, affecting plants and soils Responsible for the formation of nitrate aerosols and their accumulation in the soil	High concentrations can be toxic and cause severe inflammation of the respiratory tract.	40 μg/m3 annual average 200 μg/m3 hourly average
Carbon monoxide (CO)	Participates in the mechanism of ozone formation Transformation into CO2, contributing to the greenhouse effect	High-level poisoning: if indoor pollution, risk of poisoning Affects the central nervous system and sensory organs by binding to blood hemoglobin instead of oxygen	10 mg.m-3 on average over 8 hours 30 mg.m-3 on average over 1 hour
Volatile organic compounds (VOCs)	Precursor to ozone formation	Different health effects depending on the specific compound	Varies depending on the compound
Ozone (O3)	Contributes to the greenhouse effect Disrupts photosynthesis, leading to lower crop yields Oxidation of materials	Gas that irritates the respiratory tract. At excessively high concentrations, it can cause breathing problems, asthma, decreased lung function, and the onset of respiratory diseases.	100 μg/m3 average over 8 hours