Ausgangslage

- es gab den Bedarf mehrere Projektoren synchron zu schuttern
- es sollte in allen Räumen gleich funktionieren
- der Einrichtungsaufwand bei Produktionen soll gering sein
- Ansteuerung über DMX mit dem grandMA3 Stellwerk

Suche nach Lösungen

- Nutzung der RS232 Schnittstelle der Projektoren
 Die Kosten für Hardware die DMX512 zu frei programmierbaren
 RS232 Befehlen wandelt liegt bei knapp über 1000,– € pro Projektor
- Bei der Internetrecherche stießen wir auf den Artikel von Johannes Felber

Johannes benutzt einen Raspberry Pi in Kombination mit einem RS-232-TTL-Adapter Und der Software des Open Lighting Architecture Projektes

Unsere Lösungen

- Wir entschieden uns für die Lösung von Johannes in abgewandelter Form
- Nutzung der in den Projektoren integrieten Webservern um den hohen Aufwand der RS232 Verkabelung bei Produktionen zu umgehen

Hardware

- Raspberry Pi 4 Model B
- Verkabelung über das vorhandene Lichtnetzwerk

Software

- Raspberry Pi Imager zur installation des Betriebssystems
- Open Lighting Architecture (OLA) aus den Paketquellen des Betriebssystems
- ssh für den Remotelogin
- Texteditor zum erstellen der Skripte und Config-Dateien
- shell zum Ausführen der Skripte
- curl (is a tool for transferring data from or to a server) Webserver des Projektors ansprechen
- netcat (arbitrary TCP and UDP connections and listens) Serial over Lan
- cron (Daemon zur geplanten Ausführung von Befehlen) starten von olad

Open Lighting Architecture

- erster Commit auf Github 2005
- läuft auf Linux, macOS und FreeBSD
- Konfiguration über Weboberfläche
- unterstützt viele Protokolle: ArtNet 1, 2 & 3, E1.31 (sACN), ESP Net, KiNET, Open Pixel Control, Open Sound Control, Pathport, SandNet, Strand Shownet
- Unterstützung für diverse USB-DMX512 Interfaces
- diverse Command-Line Tools wie z.B. ola_dmxconsole und ola_dmxmonitor nützlich bei der Entwicklung des eigenen Setups
- OLA DMX Trigger sehr nützlich zum Starten und Steuern anderer Programme
- API für C++ und Python

Weboberfläche ola

Renard SPI SandNet Serial USB ShowNet StageProfi UART native DMX USB

New Univ	New Universe Settings				
Universe Id					
Universe Name					
Available Ports					
	Device	Direction	Description		
	Dummy Device	Output	Dummy Port		
	ArtNet [192.168.50.112]	Input			
	ArtNet [192.168.50.112]	Output			
	ShowNet [192.168.50.112]	Input	ShowNet 1-512		
	ShowNet [192.168.50.112]	Input	ShowNet 513-1024		
	ShowNet [192.168.50.112]	Input	ShowNet 1025-1536		
	ShowNet [192.168.50.112]	Input	ShowNet 1537-2048		
	ShowNet [192.168.50.112]	Input	ShowNet 2049-2560		
	ShowNet [192.168.50.112]	Input	ShowNet 2561-3072		
	ShowNet [192.168.50.112]	Input	ShowNet 3073-3584		
	ShowNet [192.168.50.112]	Input	ShowNet 3585-4096		
	ShowNet [192.168.50.112]	Output	ShowNet 1-512		
	ShowNet [192.168.50.112]	Output	ShowNet 513-1024		
	ShowNet [192.168.50.112]	Output	ShowNet 1025-1536		
	ShowNet [192.168.50.112]	Output	ShowNet 1537-2048		
	ShowNet [192.168.50.112]	Output	ShowNet 2049-2560		
	ShowNet [192.168.50.112]	Output	ShowNet 2561-3072		
	ShowNet [192.168.50.112]	Output	ShowNet 3073-3584		
	ShowNet [192.168.50.112]	Output	ShowNet 3585-4096		
	ESP Net [192.168.50.112]	Input			
	ESP Net [192.168.50.112]	Output			
	SandNet [192.168.50.112]	Input			
	SandNet [192.168.50.112]	Output			
	Pathport [192.168.50.112]	Input			
	Pathport [192.168.50.112]	Output			
	E1.31 (DMX over ACN) [192.168.50.112]	Input			
	E1.31 (DMX over ACN) [192.168.50.112]	Output			
	OSC Device	Input	/dmx/universe/%d		
	OSC Device	Input	/dmx/universe/%d		
	OSC Device	Input	/dmx/universe/%d		
	OSC Device	Input	/dmx/universe/%d		
	OSC Device	Input	/dmx/universe/%d		
Cancel Add Universe					

View Log

Probleme

- bei gleichzeitigem shuttern von 4 Projektoren macht einer nicht mit (willkürlich)
 Lösung: für jeden Projektor eine eigene Instanz von ola_trigger
- Latenz bei den Christie Projektoren (Webserver hat eine zu lange Reaktionszeit) Lösung: Nutzen von Serial over Lan welches die Christie Projektoren implementiert haben

Auszug Christie Bedienungsanleitung

Serial API commands

SHU-Shutter

Opens and closes the shutter.

Commands

Command	Description	Values
SHU?	Gets the state of the shutter. (Read-only)	_
SHU <0 1>	Opens or closes the shutter.	0 = Opens the shutter 1 = Closes the shutter (Default)

Die Struktur der Lösung im FFT

Starten des ola Dämon mit cron bei Systemstart

```
# Edit this file to introduce tasks to be run by cron.
#
# For more information see the manual
#pages of crontab(5) and cron(8)
#
# m h dom mon dow command
@reboot /home/fft/start-ola_trigger-201.sh
@reboot /home/fft/start-ola_trigger-202.sh
@reboot /home/fft/start-ola_trigger-203.sh
@reboot /home/fft/start-ola_trigger-204.sh
@reboot /home/fft/start-ola_trigger-204.sh
@reboot /home/fft/start-ola_trigger-208.sh
@reboot /home/fft/start-ola_trigger-209.sh
@reboot /home/fft/start-ola_trigger-209.sh
@reboot /home/fft/start-ola_trigger-210.sh
```

Die benötigten Dateien zum Betrieb unserer sieben Projektoren

```
start-ola.sh
ola-201.conf
ola-202.conf
ola-203.conf
ola-204.conf
ola-208.conf
ola-209.conf
ola-210.conf
SHU-0-201.sh
SHU-0-202.sh
SHU-1-201.sh
SHU-1-202.sh
start-ola_trigger-201.sh
start-ola trigger-202.sh
start-ola trigger-203.sh
start-ola trigger-204.sh
start-ola trigger-208.sh
start-ola trigger-209.sh
start-ola trigger-210.sh
```


start-ola.sh

#!/bin/bash sleep 40s && sudo killall olad && sleep 2s && olad

start-ola_trigger-201.sh

#!/bin/bash sleep 80s && ola trigger -u 50 ola-201.conf &

ola-201.conf

```
`curl 'http://10.100.101.201/cgi-bin/webctrl.cgi.elf?&t:26,c:5,p:0,v:3'`
11
              5-12
11
              13-25
                             `curl 'http://10.100.101.201/cgi-bin/webctrl.cgi.elf?&t:26,c:5,p:0,v:4'`
11
              26-38
                             `curl 'http://10.100.101.201/cgi-bin/webctrl.cgi.elf?&t:26,c:5,p:0,v:7'`
              39-51
                            `curl 'http://10.100.101.201/cgi-bin/webctrl.cgi.elf?&t:26,c:5,p:6,v:1'`
11
                             `curl 'http://10.100.101.201/cgi-bin/webctrl.cgi.elf?&t:26.c:5,p:6,v:5'`
11
              52-64
                             `curl 'http://10.100.101.201/cgi-bin/webctrl.cgi.elf?&t:26,c:5,p:6,v:0'`
11
              65-76
              77-89
                             `curl 'http://10.100.101.201/cgi-bin/webctrl.cgi.elf?&t:26,c:5,p:327715,v:1'`
11
11
              90-102
                            `curl 'http://10.100.101.201/cgi-bin/webctrl.cgi.elf?&t:26,c:5,p:458759,v:1'`
                            `curl 'http://10.100.101.201/cgi-bin/webctrl.cgi.elf?&t:26,c:5,p:7,v:1'`
11
              154-166
11
              167-179
                            `curl 'http://10.100.101.201/cgi-bin/webctrl.cgi.elf?&t:26,c:5,p:7,v:0'`
             128-255
                            `sh SHU-1-201.sh`
              0-127
                            `sh SHU-0-201.sh`
```

SHU-1-201.sh

#!/bin/bash echo '(SHU 1)' | nc 10.100.101.201 3002 -N

SHU-0-201.sh

#!/bin/bash echo '(SHU 0)' | nc 10.100.101.201 3002 -N

Auslesen der Webserver Befehle mit den Web-Entwickler Tools in Firefox

Abhängigkeiten der Prozesse (Ausgabe pstree)

```
systemd-+-ModemManager---2*[{ModemManager}]
|-applet.py
|-avahi-daemon---avahi-daemon
|-bluetoothd
|-cron---cron---sh---start-ola.sh---olad---7*[{olad}]
|-hciattach
|-lightdm-+-Xorg---{Xorg}
| |-lightdm-+-lxsession-+-lxpanel---4*[{lxpanel}]
| | |-lxpolkit---2*[{lxpolkit}]
| |-openbox
```

Auflistung der Prozesse (Ausgabe top)

```
PID USER PR NI
                        RFS
                               SHR S %CPU %MEM
                                                       ZEIT+ BEFEHL
5460 fft
                         3128
                               2552 R 22.2 0.2
                                                 0:00.07 top
                 11464
1129 fft
                 10484
                         7732
                               7236 S 5.6 0.4
                                                 144:20.70 ola trigger
                                                 0:00.00 start-ola trigg
463 fft
                  7768
                        1664
                              1544 S
                                       0.0 \quad 0.1
471
                  7768
                        1600
                              1480 S
                                       0.0 0.1
                                                 0:00.00 start-ola trigg
474
                  7768
                        1724
                               1604 S
                                       0.0
                                            0.1
                                                 0:00.00 start-ola trigg
                                                 0:00.01 sh
476
                  1976
                         392
                               336
                                    S
                                       0.0
                                            0.0
                                       0.0
483
                  7768
                        1664
                               1544 S
                                            0.1
                                                 0:00.00 start-ola trigg
484
                  7768
                        1600
                               1480 S
                                                 0:00.00 start-ola trigg
                                       0.0
                                            0.1
491
                  7768
                        2780
                               2628 S
                                       0,0
                                            0.1
                                                 0:00.01 start-ola.sh
494
                  7768
                        1664
                               1544 S
                                       0,0
                                            0.1
                                                 0:00.00 start-ola trigg
523
                        1640
                               1520 S
                                                 0:00.00 start-ola trigg
                  7768
                                       0.0
                                            0.1
651
                         7568
                               6568 S
                                       0.0
                                            0.4
                                                 0:00.28 systemd
652
                               1496 S
                                                 0:00.00 (sd-pam)
                         2556
                                       0.0
```


Weiter Einsatzmöglichkeiten

- Alle Geräte mit integrierter Webschnittstelle lassen sich ansteuern
- mit Hilfe von liblo lassen sich OSC Befehle versenden
- schalten der GPIO Pins des RasPi (z.B. Relais)
- steuern von Mediaplayern
- ...der Phatasie sind da keine Grenzen gesetzt

Noch offen

_

Stresstest

Alternativen

- Node-RED, von der IBM entwickelt für IOT Geräte, grafische Entwicklungsoberfläche

Stabilität

Ausgabe von uptime:

12:35:27 up 342 days, 18:03, 3 users, load average: 0,00, 0,00, 0,00

Fazit

- kostengünstige Lösung mit hoher Flexibilität und Stabilität
- Simple Einrichtung bei Produktionen (Ethernet)
- die verwendete Software ist gut dokumentiert und "abgehangen"
- ohne Vorkenntnisse ist eine Einarbeitung nötig
- Zeitaufwand für Implememtierung und Test

Weblinks

https://www.johannes-felber.at/post/2019/05/beamer_control

https://www.openlighting.org/ola/

https://www.raspberrypi.com/

https://github.com/frank-fft/Projektor-Shutter

