1.Problem Statement:

The client wants to predict insurance charges based on several parameters such as age, gender, BMI, number of children, smoking habits. I have a dataset containing these variables, along with the corresponding insurance charges. As a data scientist, my task is to develop a machine learning model that accurately predicts the insurance charges for new data inputs based on these parameters.

2.Basic info of dataset:

Here there are 6 columns like age, gender, bmi, children, smoker, charges.

Here there are 1338 rows.

Here we give input as independent=dataset[['age','bmi', 'children','sex_male', 'smoker_yes']]

Here we give output as dependent=dataset[["charges"]]

4.According to my work done on various algorithm, I got best performance on random forest with 0.8710 r_score.

Based on the performance scores , the **best model** for this dataset is:

Random Forest

• **Criterion**: squared_error

Max features: 'sqrt'

• n estimators: 100

• Performance Score: 0.8710

This configuration gives the highest score and the best model compared with other algorithm.

5.To find machine learning regression method using in r2 value.

1. MULTIPLE LINEAR REGRESSION: r_score: 0.7894790349867009

2. SUPPORT VECTOR MACHINE:

S.NO	HYPER	LINEAR	RBF	POLY	SIGMOID
	PARAMETER	(r_score)	(r_score)	(r_score)	(r_score)
1.	C10	-0.0403	-0.09506	-0.1202	-0.0992
2.	C100	0.5218	-0.09506	-0.1319	-0.1241
3.	C500	0.6133	-0.15659	-0.1166	-0.4197
4.	C1000	0.6188	-0.14956	-0.0923	-1.5217
5.	C2000	0.6253	-0.14219	-0.0423	-5.0920
6.	C3000	<mark>0.6662</mark>	-0.13060	0.0062	-10.947

3. DECISION TREE:

S.NO	CRITERION	MAX FEATURES	SPLITTER	R_VALUE
1	squared_error	Sqrt	Random	0.7313
2	squared_error	sqrt	Best	0.6384
3	squared_error	log2	Best	0.5672
4	squared_error	log2	Random	0.6583
5	friedman_mse	log2	Random	0.6913
6	friedman_mse	log2	Best	0.7112
7	friedman_mse	Sqrt	Best	0.7152
8	friedman_mse	Sqrt	Random	0.6126
9	absolute_error	Sqrt	Random	0.7426
10	absolute_error	Sqrt	Best	0.7384
11	absolute_error	log2	<mark>Best</mark>	<mark>0.7609</mark>
12	absolute_error	log2	Random	0.7389
13	Poisson	log2	Random	0.6561
14	Poisson	log2	Best	0.7337
15	Poisson	Sqrt	Best	0.7337
16	Poisson	sqrt	Random	0.6697

4. RANDOM FOREST:

S.NO	CRITERION	MAX FEATURES	N_ESTIMATORS	R_VALUE
1	absolute_error	sqrt	10	0.8574
2	absolute_error	Log2	10	0.8574
3	absolute_error	<mark>Sqrt</mark>	<mark>100</mark>	<mark>0.8710</mark>
4	absolute_error	Log2	<mark>100</mark>	<mark>0.8710</mark>
5	friedman_mse	Sqrt	10	0.8502
6	friedman_mse	<mark>Sqrt</mark>	<mark>100</mark>	<mark>0.8710</mark>
7	friedman_mse	Log2	10	0.8502
8	friedman_mse	Log2	<mark>100</mark>	<mark>0.8710</mark>
9	Poisson	Sqrt	10	0.8544
10	Poisson	Sqrt	100	0.8680
11	Poisson	Log2	10	0.8544
12	Poisson	Log2	100	0.8680
13	squared_error	Sqrt	10	0.8520
14	squared_error	<mark>Sqrt</mark>	<mark>100</mark>	<mark>0.8710</mark>
15	squared_error	Log2	10	0.8520
<mark>16</mark>	squared_error	Log2	<mark>100</mark>	<mark>0.8710</mark>

The configurations with the highest performance (score: 0.8710) are:

- 1. absolute_error with sqrt, 100 estimators
- 2. absolute_error with log2, 100 estimators
- 3. friedman_mse with sqrt, 100 estimators
- 4. friedman_mse with log2, 100 estimators
- 5. squared_error with sqrt, 100 estimators
- 6. squared_error with log2, 100 estimators

All these configurations give the same highest performance of 0.8710.

6. FROM THE FOUR MODEL RANDOM FOREST GIVES US THE BEST R_SCORE COMPARED TO OTHERS.

Random Forest is the best model because:

- 1. It has the highest score (0.8710).
- 2. It prevents overfitting by averaging many decision trees.
- 3. It works well with both simple and complex data.

In short, it's accurate, reliable, and works for many situations.

