PHŲ LŲC

Bảng 1 : GIÁ TRỊ HÀM GAUSS $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$

х	0	1	2	3	4	5	6	7	8	9
			2000	2006	2004	2004	2002	2000	2077	2072
0,0	0,3989	3989	3989	3986	3986	3984	3982	3980	3977	3973
0,1	3970	3965	3961	3956	3951	3945	3939	3932	3925	3918
0,2	3910	3902	3894	3885	3876	3867	3857	3847	3836	3825
0,3	3814	3802	- 3790	3778	3765	3752	3739	3726	3712	3697
0,4	3683	3668	9653	3637	3621	3605	3589	3572	3555	3538
0,5	3521	3503	3485	3467	3448	3429	3410	3391	3372	3352
0,6	3332	3312	3292	3271	3251	3230	3209	.3187	3166	3144
0,7	3123	3101	3079	3056	3034	3011	2989	2966	2943	2920
0,8	2897	2874	2850	2827	2803	2780	2756	2732	2709	2685
0,9	2661	2637	2613	2589	2565	2541	2516	2492	2468	2444
		-								
1,0	0,2420	2396	2371	2347	2323	2299	2275	2251	2227	2203
1,1	2179	2155	2131	2107	2083	2059	2036	2012	1989	1965
1,2	1942	1919	1895	1872	1849	1826	1804	1781	1758	1736
1,3	1714	1691	1669	1647	1626	1604	1582	1561	1539	1518
1,4	1497	1476	1456	1435	1415	1394	1374	1354	1334	1315
1,5	1295	1276	1257	1238	1219	1200	1182	1163	1145	1127
1,6	1109	1092	1074	1057	1040	1023	1006	0989	0973	0957
1,7	0940	0925	0909	0893	0878	0863	0848	0833	0818	0804
1,8	0790	0775	0761	0748	0734	0721	0707	0694	0681	0669
1,9	0656	0644	0632	0620	0608	0596	0584	0573	0562	0551

х	0	1	2	3	4	,5	6 .	7	. 8	9
2,0	0,0540	0529	0519	- 0508	0498	0488	0478	0468	0459	. 0449
2,1	0440	0431	0422	0413	0404	0396	0388	0379	0371	0363

2,2	0355	0347	0339	0332	0325	0317	0310	0303	0297	0290
2,3	0283	0277	0270	0264	0258	0252	0246	0241	0235	0229
2,4	0224	0219	0213	0208	0203	0198	0194	0189	0184	0180
								;	İ	
2,5	0175	0171	0167	0163	0158	0154	0151	0147	0143	0139
2,6	0136	0132	0129	0126	0122	0119	0116	0113	0110	0107
2,7	0104	0101	0099	0096	0093	0091	0088	0086	0084	0081
2,8	0079	0077	0075	0073	0071	0069	0067	0065	0063	0061
2,9	0060	0058	0056	0055	0053	0051	0050	0048	0047	0046
3,0	0,0044	0043	0042	0040	0039	0038	0037	0036	0035	0034
3,1	0033	0031	0031	0030	0029	0028	0027	0026	0025	0025
3,2	0024	0023	0022	0022	0021	0020	0020	0019	0018	0018
3,3	0017	0017	0016	0016	0015	0015	0014	0014	0013	0013
3,4	0012	0012	0012	0011	0011	0010	0010	0010	0009	0009
3,5	0009	0008	0008	0008	0008	0007	0007	0007	0007	0006
3,6	0006	0006	0006	0006	0006	0005	0005	0005	0005	0004
3,7	0004	0004	0004	0004	0004	0004	0003	0003	0003	0003
3,8	0003	0003	0003	0003	0003	0002	0002	0002	0002	0002
3,9	0002	0002	0002	0002	0002	0002	0002	0002	0001	0001
х	0	1	2	3	4	5	6	7	8	9

Bång 2 : HÀM LAPLACE $\varphi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^{2}}{2}} dt$

х	0	1	2	3	4	5	6	7	8	9
0,0	0,00000	00399	00798	01197	01595	01994	02392	02790	03188	03586
0,1	03983	04380	04776	05172	05567	05962	06356	06749	07142	07535
0,2	07926	08317	08706	09095	09483	09871	10257	10642	11026	11409
0,3	11791	12172	12552	12930	13307	13683	14058	14431	14803	15173
0,4	15542	15910	16276	16640	17003	17364	17724	18082	18439	18793
0,5	19146	19497	19847	20194	20540	20884	21226	21566	21904	22240
0,6	22575	22907	23237	23565	23891	24215	24537	24857	25175	25490
0,7	25804	26115	26424	26730	27035	27337	27637	27935	28230	28524
0,8	28814	29103	29389	29673	29955	30234	30511	30785	31057	31327
0,9	31594	31859	32121	32381	32639	32894	33147	33398	33646	33891

0	34134	34375	34614	34849	35083	35314	35543	35769	35993	36214	
1	36433	36650	36864	37076	37286	37493	37698	37900	38100	38298	
2	38493	38686	38877	39065	39251	39435	39617	39796	39973	40147	
3	40320	40490	40658	40824	40988	41149	41309	41466	41621	41774	l
4	41924	42073	42220	42364	42507	42647	42785	42922	43056	43189	ł
5	43319	43448	43574	43699	43822	43943	44062	44179	44295	44408	
6	44520	44630	44738	44845	44950	45053	45154	45254	45352	45449	
7	45543	45637	45728	45818	45907	45994	46080	46164	46246	46327	
8	46407	46485	46562	46638	46712	46784	46856	46926	46995	47062	
,9	47128	47193	47257	47320	47381	47441	47500	47558	47615	47670	
			45001	47000	47022	47982	48030	48077	48124	48169	
,0	47725	47778	47831	47882 48341	47932 48382	48422	48461	48500	48537	48574	
,1	48214	48257	48300	48713	48745	48778	48809	48840	48870	48899	
,2	48610	48645	1	49010	49036	49061	49086	49111	49134	49158	
,3	48928	48956	48983	49010	49266	49286	49305	49324	49343	49361	
,4	49180	49202	49224	49430	49446	49461	49477	49492	49506	49520	
,5	49379	49396	49413	49430	49585	49598	49609	49621	49632	49643	
.,6	49534	49547	1	49683	49693	49702	49711	49720	49728	49736	
.,7	49653	49664	49674	49063	49093	49781	49788	49795	49801	49807	
1,8	49744	49752	49760	49/6/	49836	49841	49846	49851	49856	49861	١
!,9	49813	49819	49825	49878	49882	49886		49893	49896	49900	
3,0	49865	49869	49874	49878	49002	49000	49009	47093	17070	1,5500	
3,1	49903	49906	49910	49913	49916	49918	49921	49924	49926	49929	
3,2	49931	49934	49936	49938	49940	49942	49944	49946	49948	49950	•
3,3	49952	49953	49955	49957	49958	49960	49961	49962	49964	49965	
3,4	49966	49968	49969	49970	49971	49972	49973	49974	49975	49976	
3,5	49977	49978	49978	49979	49980	49981	1 49981	49982	49983	49983	
3,6	49984	3,7	49989	3,8	49993	3,9	49995	4,0	49997		
4,1	49998	4,2	49999	4,3	49999	4,4	49999	4,5	499997	<u> </u>	
		<u> </u>									

Cách tra: $1-\alpha = 0.97 \rightarrow (1-\alpha)/2 = 0.485 = \varphi(2.17)$. $\alpha = 0.02 \rightarrow 0.5 - \alpha/2 = 0.49 = \phi(2.33).$

Bảng 3 : GIÁ TRỊ TỚI HẠN $P\{X > t_{(n,\alpha)}\} = \alpha \text{ với } X \sim t(n)$

	T	T	(11, 0	7-	-()	
n α	0,005	0,01	0,02	0,025	0,05	0,1
1	63,657	31,821	15,895	12,706	6,314	3,078
2	9,925	6,965	4,849	4,303	2,920	1,886
3	5,841	4,541	3,482	3,182	2,353	1,638
4	4,604	3,747	2,999	2,776	2,132	1,533
5	4,032	3,365	2,757	2,571	2,015	1,476
6	3,707	3,143	2,612	2,447	1,943	1,440
7	3,499	2,998	2,517	2,365	1,895	1,415
8	3,355	2,896	2,449	2,306	1,860	1,397
9	3,250	2,821	2,398	2,262	1,833	1,383
10	3,169	2,764	2,359	2,228	1,812	1,372
11	3,106	2,718	2,328	2,201	1,796	1,363
12	3,055	2,681	2,303	2,179	1,782	1,356
13	3,012	2,650	2,282	2,160	1,771	1,350
14	2,977	2,624	2,264	2,145	1,761	1,345
15	2,947	2,602	2,249	2,131	1,753	1,341
16	2,921	2,583	2,235	2,120	1,746	1,337
17	2,898	2,567	2,224	2,110	1,740	1,333
18	2,878	2,552	2,214	2,101	1,734	1,330
19	2,861	2,539	2,205	2,093	1,729	1,328
20	2,845	2,528	2,197	2,086	1,725	1,325
21	2,831	2,518	2,189	2,080	1,721	1,323
22	2,819	2,508	2,183	2,074	1,717	1,321
23	2,807	2,500	2,177	2,069	1,714	1,319
24	2,797	2,492	2,172	2,064	1,711	1,318
25	2,787	2,485	2,167	2,060	1,708	1,316
26	2,779	2,479	2,162	2,056	1,706	1,315
27	2,771	2,473	2,158	2,052	1,703	
28	2,763	2,467	2,154	2,032		1,314
29	2,756	2,462	2,150		1,701	1,313
30	2,750		ľ	2,045	1,699	1,311
50	2,730	2,457	2,147	2,042	1,697	1,310
œ	2,576	2,326	2,054	1,960	1,645	1,282

Cách tra : t(20; 0,025) = 2,086.

Bảng 4 : GIÁ TRỊ TỚI HẠN KHI BÌNH PHƯƠNG χ^2

 $P\{X > \chi^2(n, \alpha)\} = \alpha \text{ v\'oi } X \sim \chi^2(n).$

				α				
	0,995	0,99	0,975	0,95	0,05	0,025	0,01	0,005
	0,000	0,000	0,001	0,004	3,841	5,024	6,635	7,879
;	0,010	0,020	0,051	0,103	5,991	7,378	9,210	10,597
i	0,072	0,115	0,216	0,352	7,815	9,348	11,345	12,838
	0,207	0,297	0,484	0,711	9,488	11,143	13,277	14,860
;	0,412	0,554	0,831	1,145	11,070	12,833	15,086	16,750
j	0,676	0,872	1,237	1,635	12,592	14,449	16,812	18,548
7	0,989	1,239	1,690	2,167	14,067	16,013	18,475	20,278
}	1,344	1,646	2,180	2,733	15,507	17,535	20,090	21,955
)	1,735	2,088	2,700	3,325	16,919	19,023	21,666	23,589
0	2,156	2,558	3',247	3,940	18,307	20,483	23,209	25,188
			į E					
1	2,603	3,053	3,816	4,575	19,675	21,920	24,725	26,757
2	3,074	3,571	4,404	5,226	21,026	23,337	26,217	28,300
3	3,565	4,107	5,009	5,892	22,362	24,736	27,688	29,819
4	4,075	4,660	5,629	6,571	23,685	26,119	29,141	31,319
5	4,601	5,229	6,262	7,261	24,996	27,488	30,578	32,801
6	5,142	5,812	6,908	7,962	26,296	28,845	32,000	34,267
7	5,697	6,408	7,564	8,672	27,587	30,191	33,409	35,718
8	6,265	7,015	8,231	9,390	28,869	31,526	34,805	37,156
		· · · · · · · · · · · · · · · · · · ·	<u>.,, ., </u>					

19	6,844	7,633	8,907	10,117	30,144	32,852	36,191	38,582
20	7,434	8,260	9,591	10,851	31,410	34,170	37,566	39,997
					·			
21	8,034	8,897	10,283	11,591	32,671	35,479	38,932	41,401
22	8,643	9,542	10,982	12,338	33,924	36,781	40,289	42,796
23	9,260	10,196	11,689	13,091	35,172	38,076	41,638	44,181
24	9,886	10,856	12,401	13,848	36,415	39,364	42,980	45,559
25	10,520	11,524	13,120	14,611	37,652	40,646	44,314	46,928
26	11,160	12,198	13,844	15,379	38,885	41,923	45,642	48,290
27	11,808	12,879	14,573	16,151	40,113	43,195	46,963	49,645
28	12,461	13,565	15,308	16,928	41,337	44,461	48,278	50,993
29	13,121	14,256	16,047	17,708	42,557	45,722	49,588	52,336
30	13,787	14,953	16,791	18,493	43,773 -	46,979	50,892	53,672
31	14,458	15,655	17,539	19,281	44,985	48,232	52,191	55,003
32	15,134	16,362	18,291	20,072	46,194	49,480	53,486	56,328
33	15,815	17,074	19,047	20,867	47,400	50,725	54,776	57,648

Cách tra : $\chi^2(20, 0.025) = 34,170$.

Bảng : GIÁ TRỊ TỚI HẠN KHI BÌNH PHƯƠNG χ^2 (tiếp theo)

				α				
n	0,995	0,99	0,975	0,95	0,05	0,025	0,01	0,005
34	16,501	17,789	19,806	21,664	48,602	51,966	56,061	58,964
35	17,192	18,509	20,569	22,465	49,802	53,203	57,342	60,275
36	17,887	19,233	21,336	23,269	50,998	54,437	58,619	61,581
37	18,586	19,960	22,106	24,075	52,192	55,668	59,893	62,883
38	19,289	20,691	22,878	24,884	53,384	56,896	61,162	64,181
39	19,996	21,426	23,654	25,695	54,572	58,120	62,428	65,476
40	20,707	22,164	24,433	26,509	55,758	59,342	63,691	66,766
		,						
41	21,421	22,906	25,215	27,326	56,942	60,561	64,950	68,053
42	22,138	23,650	25,999	28,144	58,124	61,777	66,206	69,336

3	22,859	24,398	26,785	28,965	59,304	62,990	67,459	70,616
4	23,584	25,148	27,575	29,787	60,481	64,201	68,710	71,893
5	24,311	25,901	28,366	30,612	61,656	65,410	69,957	73,166
6	25,041	26,657	29,160	31,439	62,830	66,617	71,201	74,437
7	25,775	27,416	29,956	32,268	64,001	67,821	72,443	75,704
8	26,511	28,177	30,755	33,098	65,171	69,023	73,683	76,969
9	27,249	28,941	31,555	33,930	66,339	70,222	74,919	78,231
0	27,991	29,707	32,357	34,764	67,505	71,420	76,154	79,490
5	31,735	33,570	36,398	38,958	73,311	77,380	82,292	85,749
0	35,534	37,485	40,482	43,188	79,082	83,298	88,379	91,952
i5	39,383	41,444	44,603	47,450	84,821	89,177	94,422	98,105
0'	43,275	45,442	48,758	51,739	90,531	95,023	100,425	104,215
						`. 		
15	47,206	49,475	52,942	56,054	96,217	100,839	106,393	110,286
30	51,172	53,540	57,153	60,391	101,879	106,629	112,329	116,321
35	55,170	57,634	61,389	64,749	107,522	112,393	118,236	122,325
90	59,196	61,754	65,647	69,126	113,145	118,136	124,116	128,299
)5	63,250	65,898	69,925	73,520	118,752	123,858	129,973	134,247
00	67,328	70,065	74,222	77,929	124,342	129,561	135,807	140,169
	•	2						•

Cách tra : $\chi^2(40, 0.975) = 24,433$

Bảng 5 : GIÁ TRỊ TỚI HẠN PHÂN PHỐI F

 $P(X > F(n_1, n_2; \alpha)) = \alpha = 0.05 \text{ v\'oi } X \sim F(n_1, n_2)$

					n ₁				
n ₂	1	2	3	4	5	6	7	8	9 .
.1	161,45	199,50	215,71	224,58	230,16	233,99	236,77	238,88	240,54
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39
21	4,32	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37
22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,34
23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,37	2,32
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,30

5	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28
0	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21
0	4,08	3,23	2,84	2,61	2,45	2,34	2,25	2,18	2,12
0	4,00	3,15	2,76	2,53	2,37	2,25	2,17	2,10	2,04
20	3,92	3,07	2,68	2,45	2,29	2,18	2,09	2,02	1,96
0	3,84	3,00	2,60	2,37	2,21	2,10	2,01	1,94	1,88

Cách tra : F(5, 10; 0,05) = 3,33

Bảng 5 (tiếp theo)

					n_1					
12	10	12	15	20	24	30	40	60	120	∞
1	241,88	243,91	245,95	248,01	249,05	250,10	251,14	252,20	253,25	254,31
2	19,40	19,41	19,43	19,45	19,45	19,46	19,47	19,48	19,49	19,50
3	8,79	8,74	8,70	8,66	8,64	8,62	8,59	8,57	8,55	8,53
4	5,96	5,91	5,86	5,80	5,77	5,75	5,72	5,69	5,66	5,63
5	4,74	4,68	4,62	4,56	4,53	4,50	4,46	4,43	4,40	4,37
6	4,06	4,00	3,94	3,87	3,84	3,81	3,77	3,74	3,70	3,67
7	3,64	3,57	3,51	3,44	3,41	3,38	3,34	3,30	3,27	3,23
8 .	3,35	3,28	3,22	3,15	3,12	3,08	3,04	3,01	2,97	2,93
9	3,14	3,07	3,01	2,94	2,90	2,86	2,83	2,79	2,75	2,71
10	2,98	2,91	2,85	2,77	2,74	2,70	2,66	2,62	2,58	2,54
11	2,85	2,79	2,72	2,65	2,61	2,57	2,53	2,49	2,45	2,40
12	2,75	2,69	2,62	2,54	2,51	2,47	2,43	2,38	2,34	2,30
13	2,67	2,60	2,53	2,46	2,42	2,38	2,34	2,30	2,25	2,21
14	2,60	2,53	2,46	2,39	2,35	2,31	2,27	2,22	2,18	2,13
15	2,54	2,48	2,40	2,33	2,29	2,25	2,20	2,16	2,11	2,07
16	2,49	2,42	2,35	2,28	2,24	2,19	2,15	2,11	2,06	2,01
17	2,45	2,38	2,31	2,23	2,19	2,15	2,10	2,06	2,01	1,96
18	2,41	2,34	2,27	2,19	2,15	2,11	2,06	2,02	1,97	1,92
19	2,38	2,31	2,23	2,16	2,11	2,07	2,03	1,98	1,93	1,88

20	2,35	2,28	2,20	2,12	2,08	2,04	1,99	1,95	1,90	1,84
21	2,32	2,25	2,18	2,10	2,05	2,01	1,96	1,92	1,87	1,81
22	2,30	2,23	2,15	2,07	2,03	1,98	1,94	1,89	1,84	1,78
23	2,27	2,20	2,13	2,05	2,01	1,96	1,91	1,86	1,81	1,76
24	2,25	2,18	2,11	2,03	1,98	1,94	1,89	1,84	1,79	1,73
25	2,24	2,16	2,09	2,01	1,96	1,92	1,87	1,82	1,77	1,71
30	2,16	2,09	2,01	1,93	1,89	1,84	1,79	1,74	1,68	1,62
40	2,08	2,00	1,92	1,84	1,79	1,74	1,69	1,64	1,58	1,51
60	1,99	1,92	1,84	1,75	1,70	1,65	1,59	1,53	1,47	1,39
120	1,91	1,83	1,75	1,66	1,61	1,55	1,50	1,43	1,35	1,25
∞	1,83	1,75	1,67	1,57	1,52	1,46	1,39	1,32	1,22	1,00
									· · · · · · · · · · · · · · · · · · ·	

Cách tra : F(30, 20; 0.05) = 2.04.

TÀI LIỆU THAM KHẢO

- 1. Đặng Hấn Xác suất thống kê NXB Thống kê, 1996.
- 2. Đặng Hùng Thắng Mở đầu li thuyết xác suất và các ứng dụng NXB Giáo dục, 1997 Thống kê và ứng dụng NXB Giáo dục 1999.
 - 3. Lê Sĩ Đồng Xác suất Thống kê và ứng dụng NXB Giáo dục 2004.
- 4. Lê Sĩ Đồng Bài tập Xác suất Thống kê và ứng dụng NXB Giáo dục 2009.
- 5. Nguyễn Cao Văn Trần Thái Ninh Giáo trình Lí thuyết xác suất và thống kê toán NXB Thống kê Hà Nội, Trường đại học Kinh tế Quốc dân, 2005,
- 6. Nguyễn Cao Văn (chủ biên) Bài tập xác suất và thống kê toán NXB Giáo dục, 2002.
 - 7. Phạm Xuân Kiều Giáo trình xác suất và Thống kê NXB Giáo dục, 2005.
- 8. Bruce Bowerman, Richard T.O'Connell Applied statistics improving business processes Richard D, Irwin, a times mirror higher education group, Inc, company, 1997.

- 4. Cho $\xi_1, \xi_2, ... \xi_n$ là các đại lượng ngẫu nhiên độc lập và có cùng phân phối chuẩn N(0,1), khi đó $\xi = \sqrt{\sum_{i=1}^{u} \xi_i^2}$ sẽ có phân phối "chi với n bậc tự do $\chi(n)$
 - Khi n = 2 ta có χ(2)≡ phân phối Rayleigh Paashe
 - Khi n = 3 ta có χ(3)≡phân phối Maxwell

2.18. PHÂN PHỐI "CHI" BÌNH PHƯƠNG $\chi^2(n)$ (Chi-Square Distribution)

1. Đại lượng ngẫu nhiên ξ được gọi là có phân phối χ^2 "chi" với n bậc tự do nếu nó có hàm mật độ:

$$f(x) = \begin{cases} 0 & \text{khi } x \le 0 \\ \frac{1}{2^{n/2} \Gamma(\frac{n}{2})} \cdot x^{n/2-1} e^{-x/2} & \text{khi } x > 0 \end{cases}$$
 (2.18)

Hàm mật độ của phân phối $\chi^2(n)$

- **2.** Hàm đặc trưng: $\varphi(t) = (1 2it)^{-n/2}$
- 3. Các momen
- $E\xi^k = n(n+2)...[n+2(k-1)]$
- $D\xi = 2n$
- $\mu_3 = 8n$
- $\mu_4 = 48n + 12n^2$
- Hệ số bất đối xứng: $\gamma_1 = \sqrt{\frac{8}{n}}$
- Hệ số nhọn : $\gamma_2 = \frac{12}{n}$
- **4.** Cho $\xi_1, \xi_2, ... \xi_n$ là các đại lượng ngẫu nhiên độc lập và có cùng phân phối chuẩn N(0,1), khi đó $\xi = \sum_{i=1}^{n} \xi_i^2$ sẽ có phân phối "chi bình phương " với n bậc tự do $\chi^2(n)$.
- 5. Cho $\xi = (\xi_1, \xi_2, ..., \xi_n)$ là vectơ ngẫu nhiên chuẩn n chiều với kỳ vọng $a = (a_1, a_2, ..., a_n)$ và ma trận tương quan không suy biến $K = (k_{ij}); j, i = 1, 2, ..., n$ khi đó đại lượng ngẫu nhiên:

$$\eta = (\xi - a)^T K^{-1}(\xi - a) = \sum_{i,j=1}^n k_{ij}^{-1} (\xi_i - a_i)(\xi_j - a_j)$$

(trong đó T là toán tử chuyển vị của ma trận; k_{ij}^{-1} là các phần tử của ma trận K^{-1}) sẽ có phân phối "chi bình phương " với n bậc tự do.

6. Cho ξ là đại lượng ngẫu nhiên có phân phối "chi bình phương" với n bậc tự do $\chi^2(n)$ khi đó đại lượng ngẫu nhiên:

$$\eta = \sqrt{2\xi} - \sqrt{2n-1}$$

có thể xấp xỉ bằng phân phối chuẩn N(0,1).

7. Cho $\xi_1, \xi_2, ... \xi_n$ là các đại lượng ngẫu nhiên độc lập và có cùng phân phối chuẩn tương ứng $\{N(a_k, \sigma^2)\}$; k = 1, 2, ... n. Khi đó đại lượng ngẫu nhiên:

$$\eta = \frac{1}{\sigma^2} \sum_{i=1}^n \xi_i^2$$

sẽ có phân phối "chi bình phương lệch" với n bậc tự do và tham số lệch là

$$m = \frac{1}{\sigma^2} \sum_{i=1}^n a_i$$

Hàm mật độ của phân phối "chi bình phương lệch" là:

$$f(x) = \begin{cases} 0 & khi \ x < 0 \\ \frac{1}{2^{n/2}} \cdot \exp\left[\frac{(x+m)}{2}\right] \cdot x^{n/2 - 1} \sum_{j=0}^{\infty} \frac{(mx/4)^j}{j! \Gamma\left(j + \frac{n}{2}\right)} \cdot khi \ x \ge 0 \end{cases}$$

Hàm đặc trưng tương ứng với nó là:

$$\varphi(t) = \exp\left\{\frac{i\,m\,t}{1-2\,i\,t}\right\} \cdot (1-2\,i\,t)^{-n/2}$$

Các số đặc trưng của phân phối "chi bình phương lệch" là:

$$E\xi = m + n$$
$$D\xi = 4m + 2n$$

2.19. PHÂN PHỐI STUDENT (T- PHÂN PHỐI) (Student Distribution)

1. Đại lượng ngẫu nhiên ξ được gọi là có phân phối student với n bậc tự do -T(n) nếu nó có hàm mật độ

$$f(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{\frac{(n+1)}{2}} - \infty < x < \infty$$
 (2.19)

2. Hàm đặc trưng:

$$\varphi(t) = \frac{\sqrt{\pi} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \cdot \frac{\exp\left\{-\sqrt{n} |t|\right\}}{(n-1)! 2^{2(n-1)}} \cdot \sum_{k=0}^{n-1} (2k)! C_{n-1+k}^{2k} \left(\sqrt{n} \cdot 2|t|\right)^{n-1-k}$$

nếu $\frac{n+1}{2}$ là số nguyên

3. Các momen

$$E\xi^{2k-1} = 0$$

$$E\xi^{2k} = \frac{1}{\sqrt{n}\Gamma\left(\frac{n}{2}\right)} \cdot n^k \Gamma\left(\frac{n}{2} - k\right) \Gamma\left(k + \frac{1}{2}\right); \quad 2k < n$$

$$D\xi = \begin{cases} \frac{n}{n-2} & khi \ n > 2\\ \infty & khi \ n \le 2 \end{cases}$$

4. Nếu ξ_1 và ξ_2 là các đại lượng ngẫu nhiên độc lập với nhau; ξ_1 có phân phối chuẩn N(0,1), còn ξ_2 có phân phối $\chi^2(n)$, khi đó:

$$\xi = \xi_1 \sqrt{\frac{n}{\xi_2}}$$
 sẽ có phân phối student với n bậc tự do

Hàm mật độ phân phối student

2.20. PHÂN PHỐI FISHER – SNEDECOR (F – PHÂN PHỐI)

(Fisher – Snedecor Distribution)

1. Đại lượng ngẫu nhiên ξ được gọi là có phân phối Fisher – Snedecor với các bậc tự do (n_1, n_2) nếu nó có hàm mật độ:

$$f(x) = \begin{cases} 0 & \text{khi } x \le 0 \\ \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} n_1^{\frac{n_1}{2}} \cdot n_2^{\frac{n_2}{2}} \cdot x^{\binom{n_1}{2}-1} \left(n_2 + n_1 x\right)^{\frac{(n_1 + n_2)}{2}} & \text{khi } x > 0 \end{cases}$$
 (2.20)

Hàm mật độ của phân phối Fisher - Snedecor

2. Các momen:

• Nếu
$$n_2 > 2k$$
: $E\xi^k = \frac{\Gamma\left(\frac{n_1}{2} + k\right)\Gamma\left(\frac{n_2}{2} - k\right)n_2^k}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)n_1^k}$

• Nếu
$$n_2 > 2$$
 : $E\xi = \frac{n_2}{n_2 - 2}$

• Nếu
$$n_2 > 4$$
 : $D\xi = \frac{2n_2^2(n_1 + n_2 - 2)}{n_1(n_2 - 2)^2(n_2 - 4)}$

• Nếu
$$n_1 > 2$$
 trung vị sẽ bằng $\frac{n_2(n_1-2)}{n_1(n_2+2)}$

• Hệ số bất đối xứng: (khi $n_2 > 6$):

$$\gamma_1 = \frac{(2n_1 + n_2 - 2)\sqrt{8(n_2 - 4)}}{(n_2 - 6)\sqrt{n_1 + n_2 - 2}}$$

3. Nếu η_1 và η_2 là các đại lượng ngẫu nhiên độc lập có phân phối χ^2 với các bậc tự do tương ứng là n_1 và n_2 , khi đó đại lượng:

$$\xi = \frac{\eta_1 \cdot n_2}{\eta_2 \cdot n_1}$$

sẽ có phân phối Fisher – Snedecor $F(n_1, n_2)$ với các bậc tự do là (n_1, n_2) .