

2º Grado Informática Estructura de Computadores 3 Septiembre 2014

Examen Test de Teoría (3.0p)

Todas las preguntas son de elección simple sobre 4 alternativas. Cada respuesta vale 3/30 si es correcta, 0 si está en blanco o claramente tachada, -1/30 si es errónea. Anotar las respuestas (a, b, c o d) en la siguiente tabla.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
С	b	С	b	d	С	a	d	d	b	b	С	b	С	d	С	b	С	С	d	a	a	d	a	С	b	b	b	a	d

Examen Test de Prácticas (4.0p)

Todas las preguntas son de elección simple sobre 4 alternativas. Cada respuesta vale 4/20 si es correcta, 0 si está en blanco o claramente tachada, -1.33.../20 si es errónea. Anotar las respuestas (a, b, c o d) en la siguiente tabla.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
(C	С	С	b	a	d	С	b	d	a	b	b	b	d	b	a	С	b	b	d

Examen de Problemas (3.0p)

2. Ensamblador IA32 (0.5 puntos).

Otras soluciones son posibles, siempre que produzcan el resultado correcto y no añadan complejidad innecesaria. Se muestra una solución sin optimizar (a la izquierda) y otra optimizada (a la derecha)

hex2bin: pushl movl	%ebp %esp, %ebp	hex2bin:	
jl cmpl jg movl	\$57, 8(%ebp) .L2 8(%ebp), %eax \$48, %eax	leal cmpl ja	4(%esp), %eax -48(%eax), %edx \$9, %edx .L2 %edx, %eax
.L2: cmpl jl cmpl jg movl	\$65, 8(%ebp) .L4 \$70, 8(%ebp) .L4 8(%ebp), %eax \$55, %eax	cmpl ja	-65(%eax), %edx \$5, %edx .L4 \$55, %eax
.L4: cmpl jl cmpl jg movl subl jmp .L5:	<pre>\$97, 8(%ebp) .L5 \$102, 8(%ebp) .L5 8(%ebp), %eax \$87, %eax .L3 \$-1, %eax</pre>	subl cmpl movl	-97(%eax), %edx \$87, %eax \$5, %edx \$-1, %edx %edx, %eax

1. Disposición de estructuras en memoria (0.5 puntos)

A. 28 bytes

0	4 5	8 12	16	24	2627
	-+-++	•	•	•	
f	c XXX	i z	0-3 d	s	XX
+	-+-++	+-	+	+	-++

B. 40 bytes

0	8 9	12	16	20	24	32	34	36	39
+ f				+ -3 XXX		-			+ XX
+	-+-+	-+	+	+	+	+	- +	- +	+

- C. 60 bytes
- D. 88 bytes

3. Código Ensamblador x86-64. (0.5 puntos).

función C	ASM
func1	С
func2	В
func3	D

4. Unidad de Control (0.5 puntos).

Solución: transparencia 50 del Tema 3: Unidad de control: 19440 bits ahorro

sin nanoprogramación: microprograma: 640 microinstr * 70 bit = 44800 bits con nanoprogramación: nano-programa: 280 nano-instr * 70 bit = 19600

microprograma: 640 microinstr * 9 bit = 5760 total: = 25360 b

se necesitan 9bits por microinstrucción porque 8<log₂(280)<9 (2⁸=256, 2⁹=512)

ahorro: 44800 bits micro

<u>-25360</u> bits nano

19440 bits ahorro (en porcentaje: 19440/44800=0.4339= 43.4%)

5. Configuración de memoria (0.5 puntos).

- A. Palabras del chip: $32K = 2^{15}$
- B. Bits por palabra-chip: $8 = 2^3$
- C. 15
- D. 18
- E. 8
- F. 32
- **G.** $2^{20} / 2^{15} = 2^5 = 32$
- H. 2^{18} pal. $/ 2^{15}$ pal./fila = 2^{3} filas

3 bits de entrada (bits de dirección)

 $2^3 = 8$ bits de salida (CS para los chips de memoria)

6. Jerarquía de memoria (0.5 puntos).

El diseño B

```
A.
     T = (tL1) + (fL1)*(tMP)
     T = (4 \text{ ns}) + (0.08)*(100 \text{ ns}) = 12 \text{ ns}
          o bien
     T = (aL1)*(tL1) + (fL1)*(tL1 + tMP)
     T = (0.92)*(4 \text{ ns}) + (0.08)*(104 \text{ ns}) = 12 \text{ ns}
B.
     T = (tL1) + (fallosL1)*[(tL2) + (fallosL2)*(tMP)]
     T = (2 \text{ ns}) + (0.30)*[(8 \text{ ns}) + (0.15)*(100 \text{ ns})] = 8.9 \text{ ns}
     T = (aL1)*(tL1) + (fallosL1)*[(aciertosL2)*(tL1 + tL2) + (fallosL2)*(tL1 + tL2 + tMP)]
     T = (0,70)*(2 \text{ ns}) + (0,30)*[(0,85)*(10 \text{ ns}) + (0,15)*(110 \text{ ns})] = 8,9 \text{ ns}
          o bien
     AL1 = aL1 = 0.70
     AL2 = 0.70 + 0.85*0.30 = 0.955
     aL2 = AL2-AL1 = 0.955-0.70 = 0.255
     aMP = 1-AL2 = 1-0.955 = 0.045
     T = (aL1)*(tL1) + (aL2)*(tL1 + tL2) + (aMP)*(tL1 + tL2 + tMP)
     T = (0,70)*(2 \text{ ns}) + (0,255)*(2 \text{ ns} + 8 \text{ ns}) + (0,045)*(2 \text{ ns} + 8 \text{ ns} + 100 \text{ns}) = 1,4 \text{ ns} + 2,55 \text{ ns} + 4,95 \text{ ns} = 8,9 \text{ ns}
          o bien
     Fproc = 1
     FL1 = 1 - AL1 = 0.30
     FL2 = 1 - AL2 = 0.045
     T = (Fproc)*(tL1) + (FL1)*(tL2) + (FL2)*(tMP)
     T = (1)*(2 \text{ ns}) + (0,30)*(8 \text{ ns}) + (0,045)*(100 \text{ ns}) = 2 \text{ ns} + 2,4 \text{ ns} + 4,5 \text{ ns} = 8,9 \text{ ns}
C.
```