oussama-camil-baptiste-time-series

April 5, 2023

```
[104]: import pandas as pd
      from scipy.optimize import minimize
      from statsmodels.tsa.ar_model import AutoReg
      from sklearn.metrics import r2_score
      from scipy.stats import norm
      import numpy as np
      import statsmodels.api as sm
      import matplotlib.pyplot as plt
      from scipy.stats import t
      import plotly.subplots as sp
      import plotly.graph_objects as go
      from statsmodels.tsa.seasonal import seasonal_decompose
 [2]: df = pd.read_excel('data_exam.xlsx', index_col='Unnamed: 0')
 [2]:
                     VIX Parkinson Squared returns
      2000-01-04 27.01
                          0.001406
                                            0.000612
                           0.000002
      2000-01-05 26.41
                                            0.000326
      2000-01-06 25.73
                          0.000045
                                            0.000169
      2000-01-07 21.72
                           0.001577
                                            0.000723
                                            0.000111
      2000-01-10 21.71
                           0.000109
      2023-02-08 19.63
                           0.000117
                                            0.000070
      2023-02-09 20.71
                           0.000088
                                            0.000179
      2023-02-10 20.53
                           0.000004
                                            0.000041
      2023-02-13 20.34
                           0.000134
                                            0.000110
      2023-02-14 18.94
                           0.000019
                                            0.000110
      [5822 rows x 3 columns]
```

- 0.0.1 1. Explain the concept behind each column. What are these time series meant to represent? Transform these time series so that they are comparable in scale and order
 - Le VIX est une mesure de la volatilité attendue des prix des actions du S&P 500. Elle est calculée en fonction des prix des options d'achat et de vente sur cet indice. Le VIX est souvent utilisé comme indicateur de l'état d'anxiété du marché et de la perception des investisseurs quant aux risques à venir.
 - Le Parkinson est une mesure de la volatilité réalisée des prix des actions. Elle est calculée en fonction des écarts entre les prix les plus élevés et les plus bas sur une période donnée. Cette mesure est plus sensible aux mouvements soudains des prix.
 - Les rendements au carré, quant à eux, sont une mesure de la volatilité réalisée des prix des actions qui est calculée en prenant les carrés des rendements quotidiens des prix des actions. Cette mesure est souvent utilisée pour évaluer la volatilité des prix des actions sur des périodes plus longues que le Parkinson. Elle est moins sensible aux mouvements brusques des prix et peut être utilisée pour évaluer le risque d'un portefeuille d'investissement.
- 0.0.2 Les trois séries ne sont pas comparable, il faut donc les mettre à la même échelle

```
[3]: # On fait 3 graphiques pour se rendre compte de la différence d'échelle et de_
      ⇔l'allure des courbes
     fig = sp.make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.05)
     fig.add_trace(go.Scatter(x=df.index, y=df['VIX'], name='VIX'), row=1, col=1)
     fig.add_trace(go.Scatter(x=df.index, y=df['Parkinson'], name='Parkinson'), u
      \rightarrowrow=2, col=1)
     fig.add_trace(go.Scatter(x=df.index, y=df['Squared returns'], name='Rendements_
      →au carré'), row=3, col=1)
     fig.update_yaxes(title_text='VIX', row=1, col=1)
     fig.update_yaxes(title_text='Parkinson', row=2, col=1)
     fig.update_yaxes(title_text='Rendements au carré', row=3, col=1)
     fig.update_xaxes(title_text='Temps', row=3, col=1)
     fig.update layout(height=800, width=800, title={
         'text': "Graphiques financiers",
         'y':0.95,
         'x':0.5,
         'xanchor': 'center',
         'yanchor': 'top'})
     # Afficher la figure
     fig.show()
```

0.0.3 les séries Squared returns et Parkinson sont des mesures intra day, ce qui explique leur différente echelle et faibles valeurs. On transforme donc ces séries en serie de volatilité annuelle comparable en échelle et en ordre.

0.0.4 2. Estimate and AR model on each of these time series. Determine the order of the AR process and show the estimates. What can you conclude from these estimations

Avant d'estimer un AR(p) il faut faire un test de stationnarité pour savoir s'il y a des transformations à faire

1 Test de stationnarité

```
[44]: from statsmodels.tsa.stattools import adfuller
import pandas as pd

# Fonction du test augmented dickey fuller
def dickey(series, nom_de_la_serie:str):
    result = adfuller(series)

    print('ADF Statistic: %f' % result[0])
    print('p-value: %f' % result[1])

# HO : la série n'est pas stationnaire donc si p < 0.05 on rejette HO
    if result[1] > 0.05:
        print(f'La série {nom_de_la_serie} n\'est pas stationnaire.')
    else:
        print(f'La série {nom_de_la_serie} est stationnaire.')
```

1.1 Les 3 séries sont stationnaires il faut donc se référer au PACF

```
[45]: dickey(df['VIX'], 'VIX')
     print('#'*30)
     dickey(Parkinson_ann, 'Parkinson')
     print('#'*30)
     dickey(ann_vol, 'returns')
     ADF Statistic: -5.742412
     p-value: 0.000001
     La série VIX est stationnaire.
     ##################################
     ADF Statistic: -7.314537
     p-value: 0.000000
     La série Parkinson est stationnaire.
     ADF Statistic: -6.800695
     p-value: 0.000000
     La série returns est stationnaire.
```

On regarde ensuite si ce sont des séries additives ou multiplicatives pour plusieurs raisons :

- **Prévision**: Si la série est additive, les prévisions sont souvent plus simples, car on peut simplement extrapoler les tendances précédentes en utilisant des méthodes de régression linéaire. Si la série est multiplicative, il faut tenir compte de la croissance exponentielle, ce qui peut rendre les prévisions plus complexes.
- Modélisation: Comprendre si une série est additive ou multiplicative est important pour choisir le bon modèle. Par exemple, si la série est additive, on peut utiliser un modèle de régression linéaire, tandis que si la série est multiplicative, un modèle de régression non linéaire peut être plus approprié.
- Interprétation des résultats: La signification des résultats peut être différente selon que la série est additive ou multiplicative. Par exemple, dans le cas d'une augmentation de pourcentage dans une série multiplicative, une augmentation de 10 % peut être significativement différente d'une augmentation de 20 %, tandis que dans une série additive, une augmentation de 10 unités est toujours une augmentation de 10 unités.

1.1.1 Les trois séries sont additive car la saisonalité garde la même magnitude à travers le temps

```
[46]: for series in [df['VIX'], Parkinson_ann, ann_vol]: seasonal_decompose(series, model="additive", period=252).plot()
```


- 1.1.2 Les 3 séries sont additives donc pas besoin de faire transformation particulières
- 2 Determine the order of the AR process and show the estimates.

Pour determiner l'ordre de l'AR on utilise le PACF

3 PACF

```
[47]: series1 = df['VIX']
    series2 = Parkinson_ann
    series3 = ann_vol

# Fonction pour déterminer le bon Lag d'une série
    def find_best_lag(series):
        # On calcule le PACF de la série et on affiche 20 lags
        pacf = sm.tsa.stattools.pacf(series, nlags=20, method='ols')

# On trace le PACF
    plt.figure(figsize=(10, 5))
```

```
plt.stem(pacf)
    plt.xlabel('Lags')
    plt.ylabel('Autocorrélation partielle')
    plt.show()
    # On retient le premier lag où l'autocorrélation partielle est inférieure \hat{a}_{\sqcup}
 ⇔la limite de confiance
    # (définie ici comme 2/sqrt(n), où n est la longueur de la série)
    n = len(series)
    conf_limit = 2 / np.sqrt(n)
    for i in range(len(pacf)):
        if pacf[i] < conf_limit:</pre>
            return i
    # Si aucun lag ne convient, retourner le nombre de lags maximum
    return 20
# Trouver le bon Lag pour chaque série
lag1 = find_best_lag(series1)
lag2 = find_best_lag(series2)
lag3 = find_best_lag(series3)
# Afficher les résultats
print('Lag optimal pour la série VIX: {}'.format(lag1))
print('Lag optimal pour la série Parkinson: {}'.format(lag2))
print('Lag optimal pour la série Squared returns: {}'.format(lag3))
```


Lag optimal pour la série VIX: 4 Lag optimal pour la série Parkinson: 12 Lag optimal pour la série Squared returns: 11

3.1 Estimate and AR model on each of these time series.

```
[122]: import numpy as np
       from scipy.optimize import minimize
       from scipy.stats import norm
       # On définit une fonction qui prend en entrée des paramètres initiaux, une_
        série, un nombre de lags chosis auparavant
       # à l'ai du PACF
       def ML_criterion_arp(para, x, lags, plot=False):
           Fonction qui calcule la log-vraisemblance négative pour un modèle_{\sqcup}
        \rightarrow autorégressif d'ordre p (AR(p)).
           Parameters
           _____
           para : numpy.ndarray
               Un vecteur de taille p+1 contenant les paramètres du modèle, où p est_{\sqcup}
        \hookrightarrow le nombre de lags.
               Le premier élément correspond à la constante, les autres aux_{\sqcup}
        ⇔coefficients associés aux lags.
           x : pandas.Series
               Une série temporelle de taille n, où n est le nombre d'observations.
           lags : list
               Une liste des lags à inclure dans le modèle.
           plot : bool, optional
               Si True, la fonction affichera un graphique de la série initiale et de\sqcup
        ⇔la série ajustée.
           Returns
           _____
           float
               La log-vraisemblance négative du modèle AR(p) ajusté aux données x.
           11 11 11
           expected = para[0] # Correspond au paramètre x0
           for i, lag in enumerate(lags):
               expected += para[i+1]*x.shift(lag) # On ajoute autant de paramètres etu

ightharpoonup de lags que spécifier en entrée ce qui rend l'écriture moins fastidieuse
           expected = expected.dropna()
           difference = x.iloc[lags[-1]:] - expected
           volatility = np.nanstd(difference)
           loglik = norm.pdf(x.iloc[lags[-1]:], expected, volatility)
           criterion = np.nansum(np.log(loglik))
           if plot:
               temp = pd.concat([x, expected], axis=1)
               temp.columns = ['initial', 'fit']
```

```
temp = temp.dropna()
        temp.plot()
   return -criterion # On retourne la log vraisemblance négativement pour la_L
 ⇔minimiser ce qui revient à maximiser son inverse
def get_lags(signif_lags, p):
   return [i for i in range(1, p+1) if i not in signif_lags]
def backward(x, p, alpha=0.05):
   Effectue une sélection de modèle en utilisant une méthode backward
   x : une série temporelle
   p : ordre maximal de l'AR à tester
    alpha : seuil de significativité du test de Student (par défaut 0.05)
   # liste des lags significatifs
   # A chaque itération si une paramètre n'est pas significatif il est retiré
   signif_lags = list(range(1, p+1))
   while True:
        # On ajuste le modèle avec les lags actuels
       para0 = np.random.uniform(low=-10, high=10, size=len(signif_lags)+1)
        res_AR = minimize(ML_criterion_arp, para0, method='BFGS', args=(x,__

¬signif_lags), options={'disp': False})
        # test de Student pour sélectionner les lags significatifs
       std_para = np.diag(res_AR.hess_inv)**.5
       tstats = res_AR.x/std_para
       max_tstat = np.abs(tstats[1:]).min()
       if max_tstat < norm.ppf(1-alpha/2):</pre>
            # si le lag le moins significatif n'est pas significatif
            # retirer le lag correspondant
            lag_to_remove = signif_lags[np.abs(tstats[1:]).argmin()]
            signif_lags.remove(lag_to_remove)
        else:
            # tous les lags restants sont significatifs
            break
    # ajuster le modèle avec les lags sélectionnés
   para0 = np.random.uniform(low=-10, high=10, size=len(signif_lags)+1)
   res_AR = minimize(ML_criterion_arp, para0, method='BFGS', args=(x,_
 ⇔signif_lags), options={'disp': False})
    std_param =np.diag(res_AR.hess_inv)**.5
    student_test = res_AR.x/std_para
   return res_AR.x, signif_lags, res_AR.fun, std_param, student_test
```

```
# Exemple des sorties de la fonction que nous allons mettre en forme
       p = 12
       res_AR_x, signif_lags, res_AR_fun, std_param, student_test =_
        ⇒backward(Parkinson_ann, p=p)
       print("Lags significatifs :", signif lags)
       print("MLE :", res_AR_fun)
       print("Paramètres optimaux : ",res_AR_x)
       print('Std param : ', std_param)
       print("Student test : ", student_test)
      Lags significatifs: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
      MLE: 22974.15882509276
      Paramètres optimaux : [2.23291038 0.04877961 0.18517283 0.0697123 0.05904327
      0.09900285
       0.09994008 0.0749163 0.03645396 0.04239841 0.05507098 0.05834115]
      Std param: [0.28291852 0.01337626 0.01336163 0.0143969 0.01382834 0.01414704
       0.01367834 0.01350851 0.01364007 0.01264835 0.01326417 0.01320267]
      Student test: [ 8.88921302 3.73261917 15.93849189 5.76260935 4.95994488
      8.04484949
        7.92924498 5.5043494
                                 3.21210411 3.43632484 4.0261235
                                                                      4.616005197
[123]: def get_residual_variance(para_opt, x, lags):
           Calcule la variance résiduelle à partir des paramètres optimaux d'un modèle_{\sqcup}
        \hookrightarrow AR(p)
           Parameters
           _____
           para_opt : numpy.ndarray
               Un vecteur de taille p+1 contenant les paramètres optimaux du modèle_{\sqcup}
        \rightarrow AR(p), où p est le nombre de lags.
               Le premier élément correspond à la constante, les autres aux_
        ⇔coefficients associés aux lags.
           x : pandas.Series
               Une série temporelle de taille n, où n est le nombre d'observations.
           lags : list
               Une liste des lags à inclure dans le modèle.
           Returns
           float
               La variance résiduelle du modèle AR(p) ajusté aux données x.
           11 11 11
           # Prédiction des valeurs ajustées de la série temporelle
```

expected = para_opt[0]

```
for i, lag in enumerate(lags):
    expected += para_opt[i+1]*x.shift(lag)
expected = expected.dropna()

# Calcul des résidus
residuals = x.iloc[lags[-1]:] - expected

# Calcul de la variance résiduelle
residual_variance = np.var(residuals)
return residual_variance, expected
```

4 Série Parkinson

4.0.1 On peut s'assurer que l'AR(11) est le plus adapté car sa variance résiduelle est la moins élevé

```
Lags compris dans le modèle : [1]
Variance résiduel : 215.92089956218277
Lags compris dans le modèle : [1, 2]
Variance résiduel : 192.2193719748052
Lags compris dans le modèle : [1, 2, 3]
Variance résiduel : 185.61712081730343
Lags compris dans le modèle : [1, 2, 3, 4]
Variance résiduel : 180.30311321752913
Lags compris dans le modèle : [1, 2, 3, 4, 5]
Variance résiduel : 172.6766837319362
Lags compris dans le modèle : [1, 2, 3, 4, 5, 6]
Variance résiduel : 166.55840596625788
Lags compris dans le modèle : [1, 2, 3, 4, 5, 6, 7]
Variance résiduel : 163.1936925373538
Lags compris dans le modèle : [1, 2, 3, 4, 5, 6, 7, 8]
Variance résiduel : 162.05434331467296
Lags compris dans le modèle : [1, 2, 3, 4, 5, 6, 7, 8, 9]
```

```
Variance résiduel : 160.93684756585105

Lags compris dans le modèle : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Variance résiduel : 159.84401677718265

Lags compris dans le modèle : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

Variance résiduel : 159.05505341295364
```

4.0.2 On créer des tables pour résumer les résultats comme statsmodels

Tout les coefficients sont significatifs

```
[93]: from scipy.stats import t
      results_summary = pd.DataFrame({
          'Lags': signif_lags,
          'Coefficient': res_AR_x[1:],
          'Std. Error': std param[1:],
          't': student_test[1:],
          'P>|t|': 2 * (1 - t.cdf(np.abs(student test[1:]), len(Parkinson ann) -
       ⇒len(res AR x)))
      })
      # Ajouter la ligne pour la constante
      results_summary.loc[len(results_summary)] = ['const', res_AR_x[0], std_param[:
       41][0],student_test[:1][0], 2 * (1 - t.cdf(np.abs(student_test[:1]),
       →len(Parkinson_ann) - len(res_AR_x)))[0]]
      print(" Log Likelihood :", res AR fun)
      r2 = r2_score(Parkinson_ann[11:], expected)
      print("Coefficient de détermination R2 : ", r2)
      print(results_summary.to_string(index=False))
```

```
Log Likelihood: 22974.15882509273
Coefficient de détermination R^2: 0.28305328300341914
 Lags Coefficient Std. Error
                                               P>|t|
                                          t
    1
         0.048780
                     0.019955
                                   3.736047 0.000189
   2
         0.185173
                     0.012250 642063.279767 0.000000
    3
         0.069712
                     0.008739
                                   2.928873 0.003415
    4
         0.059043
                     0.016490
                                   4.301193 0.000017
   5
                     0.020890
                                   3.434654 0.000597
         0.099003
   6
         0.099940
                     0.017670
                                   4.393402 0.000011
   7
         0.074916
                     0.017547
                                   4.874205 0.000001
   8
         0.036454
                     0.015326
                                   2.577520 0.009976
   9
                                   2.220789 0.026404
         0.042398
                     0.013476
   10
         0.055071
                     0.025722
                                   3.290463 0.001006
                                   4.403768 0.000011
   11
         0.058341
                     0.017222
const
         2.232920
                     0.607071
                                  13.841628 0.000000
```

Interprétation Nous avons un AR avec 11 paramètres significatifs + 1 constante et une variance expliqué d'environ 28% par l'AR ce qui est relativement élevé

5 Série VIX

```
[127]: p = 4
       res_AR_x, signif_lags, res_AR_fun, std_param, student_test =__
        ⇔backward(df['VIX'], p=p)
       my_list = []
       for i in range(1, 4):
           # votre code ici
           my_list.append(i)
           residual_variance, expected = get_residual_variance(res_AR_x, df['VIX'],_u
        →my_list)
           # mettre à jour la première valeur de la liste avec la valeur de la
        ⇔dernière itération
           print("Lags compris dans le modèle :", my_list)
           print("Variance résiduel : ", residual_variance)
      Lags compris dans le modèle : [1]
      Variance résiduel : 4.775929561943273
      Lags compris dans le modèle : [1, 2]
      Variance résiduel : 3.3089230548893185
      Lags compris dans le modèle : [1, 2, 3]
      Variance résiduel : 3.187346232984241
[113]: results_summary = pd.DataFrame({
           'Lags': signif lags,
           'Coefficient': res_AR_x[1:],
           'Std. Error': std param[1:],
           't': student_test[1:],
           'P>|t|': 2 * (1 - t.cdf(np.abs(student_test[1:]), len(df['VIX']) -__
        →len(res_AR_x)))
       })
       # Ajouter la ligne pour la constante
       results_summary.loc[len(results_summary)] = ['const', res_AR_x[0], std_param[:
        \hookrightarrow1][0],student_test[:1][0], 2 * (1 - t.cdf(np.abs(student_test[:1]),
        →len(Parkinson_ann) - len(res_AR_x)))[0]]
       print(" Log Likelihood :", res_AR_fun)
       r2 = r2_score(df['VIX'][3:], expected)
```

print("Coefficient de détermination R2 : ", r2)

```
print(results_summary.to_string(index=False))
```

Interprétation Nous avons un AR avec 3 paramètres significatifs + 1 constante dont le premier qui a une grande importance et une variance expliqué d'environ 95% par l'AR ce qui est relativement élevé

6 Série Squared returns

```
Lags compris dans le modèle : [1]
Variance résiduel : 89.40295630404849
Lags compris dans le modèle : [1, 2]
Variance résiduel : 64.66583134424663
Lags compris dans le modèle : [1, 2, 3]
Variance résiduel : 58.562312680489015
Lags compris dans le modèle : [1, 2, 3, 4]
Variance résiduel : 55.95752920396364
Lags compris dans le modèle : [1, 2, 3, 4, 6]
Variance résiduel : 53.73982084282242
Lags compris dans le modèle : [1, 2, 3, 4, 6, 7]
Variance résiduel : 52.897190951618
Lags compris dans le modèle : [1, 2, 3, 4, 6, 7, 9]
Variance résiduel : 52.37395858041633
```

```
[119]: results_summary = pd.DataFrame({
           'Lags': signif_lags,
           'Coefficient': res_AR_x[1:],
           'Std. Error': std_param[1:],
           't': student_test[1:],
           'P>|t|': 2 * (1 - t.cdf(np.abs(student_test[1:]), len(ann_vol) -
        →len(res AR x)))
       })
       # Ajouter la ligne pour la constante
       results_summary.loc[len(results_summary)] = ['const', res_AR_x[0], std_param[:
        41][0],student_test[:1][0], 2 * (1 - t.cdf(np.abs(student_test[:1]),
        →len(Parkinson_ann) - len(res_AR_x)))[0]]
       print(" Log Likelihood :", res_AR_fun)
       r2 = r2_score(ann_vol[9:], expected)
       print("Coefficient de détermination R2 : ", r2)
       print(results_summary.to_string(index=False))
```

```
Log Likelihood: 19735.377272076796
Coefficient de détermination R<sup>2</sup> : 0.6018875738263005
Lags Coefficient Std. Error
          0.292376
                      0.013290 22.616902 0.000000e+00
   1
    2
          0.255396
                      0.012390 19.058776 0.000000e+00
    3
          0.106914
                      0.013161 8.113660 6.661338e-16
    4
          0.059714
                      0.014170 4.389205 1.157803e-05
   6
          0.065093
                      0.014125 7.260413 4.365397e-13
                      0.012987 3.285287 1.024820e-03
    7
          0.040454
                      0.014512 5.509700 3.748890e-08
   8
          0.051666
                      0.012655 2.895282 3.802295e-03
   10
          0.039408
const
          1.359750
                      0.218780 13.138352 0.000000e+00
```

Interprétation Nous avons un AR avec 10 paramètres + 1 constante significatifs dont le premier qui a une grande importance et une variance expliqué d'environ 60% par l'AR ce qui est relativement élevé

7 Question 3: Plot the fitted values for each model vs. the original time series. Why are these fitted values appealing for volatility measuring purposes?

Les valeurs ajustées sont intéressantes pour mesurer la volatilité, car elles représentent la moyenne ou la tendance estimée de la série temporelle. En soustrayant les valeurs ajustées de la série temporelle originale, vous pouvez obtenir les résidus, qui représentent la partie non expliquée ou imprévisible de la série temporelle. Les résidus peuvent

être utilisés pour estimer la volatilité de la série temporelle, qui est une mesure de la quantité de fluctuation ou de variation des données. Le modèle AR peut être utilisé pour estimer la volatilité de la série temporelle en modélisant la variance conditionnelle des résidus, qui est une fonction des valeurs retardées des résidus. En utilisant les valeurs ajustées et les résidus ensemble, vous pouvez estimer la volatilité de la série temporelle et faire des prévisions sur la volatilité future.

8 Parkinson

```
[126]: Parkinson_ann.plot()
    expected.plot()
```

[126]: <Axes: >

9 VIX

```
[128]: df['VIX'].plot()
expected.plot()
```

[128]: <Axes: >

10 Squared returns

```
[131]: ann_vol.plot() expected.plot()
```

[131]: <Axes: >

- 11 Question 4: Estimate an HAR model on each time series. Present the estimated coefficients of the model and compare the loglikelihood of each model to the one obtained from the AR estimations. Which model do you prefer? (4 points). Retain the fitted values of the model you have selected for each of the three time series.
- 11.0.1 Il faut choisir le modèle en se basant sur le maximum de vraisemblance et des critères d'information

12 HAR modèle

```
[132]: # Optimization
from scipy.stats import norm

def ML_HAR(para,x,plot=False):
    phi0=para[0]
    phi1=para[1]
    phi2=para[2]
    phi3=para[3]
```

```
# computing moving averages
  ma5=x.rolling(5).mean().shift(1)
  ma22=x.rolling(22).mean().shift(1)
  ma1=x.shift(1)
  combination=pd.concat([x, ma1, ma5, ma22],axis=1)
  combination=np.log(combination+ 1) # On travail avec le log de la variance
⇒ journalière
  # On ajoute 1 à la formule pour eviter log(0)
  combination=combination.dropna()
  combination.columns=['ini', 'ma1', 'ma5', 'ma22']
→expected=phi0+phi1*combination['ma1']+phi2*combination['ma5']+phi3*combination['ma22']
  temp=pd.concat([combination['ini'],expected],axis=1)
  error=combination['ini']-expected
  sigma=np.nanstd(error)
  #print(para)
  density=norm.pdf(combination['ini'],expected,sigma)
  criterion=np.nansum(np.log(density))
  if plot==True:
       \#temp.exp(x**2)(data**.5)*(250**.5)*100
      #Parkinson_ann=(df['Parkinson']**.5)*(252**.5)*100
      #temp = np.log(temp)
      temp.plot()
  return -criterion
```

13 VIX Series

```
[138]: res_EV_VIX_HAR = minimize(ML_HAR, np.random.uniform(low=-10, high=10, size=4),__
method='BFGS', args=(df['VIX']),options={'disp': False})

HAR_param_vix = res_EV_VIX_HAR.x

std_param =np.diag(res_EV_VIX_HAR.hess_inv)**.5

student_test = HAR_param_vix/std_param

print("coefficient estimé du modèle:", HAR_param_vix)

print("test de student :",student_test)
```

coefficient estimé du modèle: [0.03820209 0.89003269 0.06168079 0.03538413] test de student : [4.82924475 66.72581127 3.61519275 3.88336358]

13.0.1 Tous les coefficients sont significatifs et la première moyenne mobile a un grand impact sur l'estimation du fait de la valeur de son coefficient

```
[134]: ML_HAR(HAR_param_vix, df['VIX'], plot=True)
```

[134]: -7472.97411505163

14 Serie Squared returns

coefficient estimé du modèle: [0.16721601 0.14299342 0.54123921 0.23692909] test de student : [10.68406792 12.08712451 53.03009999 18.61270697]

14.0.1 Tous les coefficients sont significatifs et le coefficient de la deuxième moyenne mobile correspondant à 5 jours à un impact relativement élevé

```
[43]: ML_HAR(res_EV.x, ann_vol, plot=True)
```

[43]: 2437.8906003381744

15 Serie parkinson

coefficient estimé du modèle: [0.21910789 -0.03945597 0.37904195 0.45367025] test de student : [3.59689678 -2.61481196 10.19315691 11.30300115]

15.0.1 Tous les coefficients sont significatifs et le coefficient de la troisième moyenne mobile correspondant à 22 jours à un impact relativement élevé

15.0.2 Conclusion final pour le modèle HAR

Le modèle HAR semble traduire les stratégies/caractère court, moyen et long terme que représente l'étude de ces trois series

```
[45]: ML_HAR(res_EV.x, Parkinson_ann, plot=True)
```

[45]: 7518.204480780162


```
[147]: import numpy as np

def compute_aic_bic(ll, n_params, n_obs):
    """
    Compute AIC and BIC criteria for model selection.
    ll: maximum likelihood value
    n_params: number of estimated parameters
    n_obs: number of observations
    """
    aic = -2 * ll + 2 * n_params
    bic = -2 * ll + n_params * np.log(n_obs)
    return aic, bic
```

16 Pour Parkinson HAR est meilleur que l'AR

15044.408961560363 15071.086558057585

45970.31765018615 46043.681040553514

17 Pour Squared returns HAR est meilleur que l'AR

4883.781200676354 4910.458797173576

```
[149]: p = 11
res_AR_x, signif_lags, res_AR_fun, std_param, student_test = backward(ann_vol, p=p)
aic, bic = compute_aic_bic(-res_AR_fun, 8, len(ann_vol))
print(aic, bic)
```

39481.00609940145 39534.36129239589

18 Pour VIX HAR est meilleur que l'AR

```
[]: aic, bic = compute_aic_bic(ML_HAR(res_EV.x, df['VIX'], plot=False), 4, using order of the compute of the c
```

8294.16567563922 8320.843272136442

19 Question 5

```
[153]: import numpy as np
       from scipy.optimize import minimize
       def optimize_ML_HAR(x, plot=False):
           def ML_HAR(para,x):
               phi0=para[0]
               phi1=para[1]
               phi2=para[2]
               phi3=para[3]
               # computing moving averages
               ma5=x.rolling(5).mean().shift(1)
               ma22=x.rolling(22).mean().shift(1)
               ma1=x.shift(1)
               combination=pd.concat([x, ma1, ma5, ma22],axis=1)
               combination=np.log(combination+ 1) # On travail avec le log de la_
        ⇔variance journalière
               combination=combination.dropna()
               combination.columns=['ini', 'ma1', 'ma5', 'ma22']
        expected=phi0+phi1*combination['ma1']+phi2*combination['ma5']+phi3*combination['ma22']
               temp=pd.concat([combination['ini'],expected],axis=1)
               error=combination['ini']-expected
               sigma=np.nanstd(error)
               density=norm.pdf(combination['ini'],expected,sigma)
               criterion=np.nansum(np.log(density))
               return -criterion
           # initial guess for parameters
           para0 = np.array([0, 0, 0, 0])
           # minimize negative log-likelihood using Nelder-Mead algorithm
           result = minimize(ML_HAR, para0, args=(x,), method='Nelder-Mead')
           # extract optimized parameter values
           para_opt = result.x
           # compute temp using optimized parameters
```

```
expected_opt = para_opt[0] + para_opt[1]*x.shift(1).rolling(5).mean().
shift(1) + para_opt[2]*x.shift(1).rolling(22).mean().shift(1) +
para_opt[3]*x.rolling(22).mean().shift(1)
temp_opt = pd.concat([x, expected_opt], axis=1)

if plot:
    temp_opt.plot()

# compute criterion using optimized parameters
criterion_opt = -ML_HAR(para_opt, x)

# return optimized parameter values, criterion, and temp
return para_opt, criterion_opt, temp_opt
```

```
[154]: import pandas as pd
       import numpy as np
       from scipy.optimize import minimize
       from scipy.stats import norm
       def compute_fitted_values(x):
           Computes the fitted values for the HAR model using maximum likelihood \sqcup
        \ominus estimation
           Parameters:
           - x : pandas Series
               Daily log-returns of an asset
           Returns:
           - pandas DataFrame
               Dataframe containing the original log-returns and the fitted values
           def ML_HAR(para,x):
               phi0=para[0]
               phi1=para[1]
               phi2=para[2]
               phi3=para[3]
               # computing moving averages
               ma5=x.rolling(5).mean().shift(1)
               ma22=x.rolling(22).mean().shift(1)
               ma1=x.shift(1)
               combination=pd.concat([x, ma1, ma5, ma22],axis=1)
               combination=np.log(combination+ 1) # On travail avec le log de la_L
        ⇔variance journalière
```

```
combination=combination.dropna()
               combination.columns=['ini', 'ma1', 'ma5', 'ma22']
        expected=phi0+phi1*combination['ma1']+phi2*combination['ma5']+phi3*combination['ma22']
               temp=pd.concat([combination['ini'],expected],axis=1)
               error=combination['ini']-expected
               sigma=np.nanstd(error)
               density=norm.pdf(combination['ini'],expected,sigma)
               criterion=np.nansum(np.log(density))
               return -criterion
           # initial quess for parameters
           para0 = np.array([0, 0, 0, 0])
           # minimize negative log-likelihood using Nelder-Mead algorithm
           result = minimize(ML_HAR, para0, args=(x,), method='Nelder-Mead')
           # extract optimized parameter values
           para_opt = result.x
           # compute temp using optimized parameters
           expected_opt = para_opt[0] + para_opt[1]*x.shift(1).rolling(5).mean().
        -shift(1) + para_opt[2]*x.shift(1).rolling(22).mean().shift(1) +
        →para_opt[3]*x.rolling(22).mean().shift(1)
           fitted_values = pd.concat([x, expected_opt], axis=1)
           return fitted values
[155]: | fited_values_vix = compute_fitted_values(df['VIX']).iloc[:,1:].dropna().copy()
       fited_values_Parkinson = compute_fitted_values(Parkinson_ann).iloc[:,1:].

¬dropna().copy()
       fited values squared returns = compute fitted values(ann vol).iloc[:,1:].

¬dropna().copy()
```

20 Les 3 séries sont stationnaires

```
[144]: dickey(fited_values_vix , 'VIX')
    dickey(fited_values_Parkinson , 'sq')
    dickey(fited_values_squared_returns , 'park')

ADF Statistic: -4.832686
    p-value: 0.000047
    La série VIX est stationnaire.
    ADF Statistic: -6.599891
    p-value: 0.000000
```

```
La série sq est stationnaire.
ADF Statistic: -6.128445
p-value: 0.000000
La série park est stationnaire.
```

Parameters:

Returns:

6. Estimate a VAR(p) model on your three stationnary fitted 21values. Comment your results. (4 points)

```
[156]: df = pd.concat([fited_values_vix, fited_values_squared_returns,_
        →fited_values_Parkinson], axis=1)
      df
                        VIX Squared returns Parkinson
[156]:
                                   21.087282 15.263072
      2000-02-07 23.574509
      2000-02-08 22.734518
                                   19.669970 14.729918
      2000-02-09 22.332668
                                   18.585620 15.272047
      2000-02-10 21.930390
                                   18.179676 14.760379
                                   17.953817 13.653463
      2000-02-11 21.896724
      2023-02-08 18.623623
                                   14.594401 10.711680
      2023-02-09 18.481210
                                   14.433074 10.800317
      2023-02-10 18.788152
                                   14.139797 11.159421
      2023-02-13 19.140071
                                   14.446230 10.944343
      2023-02-14 19.532546
                                   14.256988 11.030729
      [5799 rows x 3 columns]
[157]: import statsmodels.api as sm
      import pandas as pd
      import numpy as np
      from statsmodels.tsa.vector_ar.var_model import VAR
      from statsmodels.tsa.stattools import adfuller
      from statsmodels.graphics.tsaplots import plot_acf
      def var_model(df, maxlags):
           Estimate a VAR model on a stationary fitted values DataFrame and select the \Box
        ⇒optimal number of lags using the AIC.
```

df (pandas.DataFrame): DataFrame of stationary fitted values for each \sqcup

maxlags (int): Maximum number of lags to consider in the VAR model.

```
results (statsmodels.tsa.vector\_ar.var\_model.VARResultsWrapper): Results of \Box
\hookrightarrow the fitted VAR model.
  11 11 11
  # Select the optimal number of lags using the AIC
  aic values = []
  for lag in range(1, maxlags+1):
      model = VAR(df)
      results = model.fit(lag)
       aic_values.append(results.aic)
  best_lag = np.argmin(aic_values) + 1
  # Fit the VAR model with the optimal number of lags
  model = VAR(df)
  results = model.fit(best_lag)
  # Print the summary of the fitted model
  print(results.summary())
  # Return the results of the fitted model
  return results
```

22 On choisit 67 lags selon les critères d'information mais on aurait pu choisir moins pour avoir un modèle plus parcimonieux

```
[159]: from statsmodels.tsa.api import VAR

model = VAR(df)

# Choix automatique
x = model.select_order(68)
x.summary()
```

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

```
[159]: <class 'statsmodels.iolib.table.SimpleTable'>
[158]: results = var_model(df, maxlags=67)
```

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\sitepackages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

Summary of Regression Results

Model: VAR

Method: OLS

Date: Wed, 05, Apr, 2023

Time: 23:35:08

 No. of Equations:
 3.00000
 BIC:
 -6.93809

 Nobs:
 5732.00
 HQIC:
 -7.39669

 Log likelihood:
 -1893.39
 FPE:
 0.000480127

 AIC:
 -7.64155
 Det(Omega_mle):
 0.000432745

Results for equation VIX

=====

	coefficient	std. error	t-stat	
prob				
const	0.061473	0.015465	3.975	
0.000				
L1.VIX	1.762710	0.014397	122.434	
0.000				

L1.Squared returns	0.118457	0.017331	6.835
L1.Parkinson	0.235215	0.015567	15.109
0.000 L2.VIX	-0.689570	0.028129	-24.514
0.000	0.000010	0.020120	21.011
L2.Squared returns	-0.160097	0.028355	-5.646
0.000			
L2.Parkinson	-0.358426	0.028001	-12.800
0.000			
L3.VIX	-0.035259	0.029599	-1.191
0.234 L3.Squared returns	0.038912	0.028848	1.349
0.177	0.030912	0.020040	1.549
L3.Parkinson	0.254990	0.035295	7.225
0.000			
L4.VIX	-0.097564	0.029579	-3.298
0.001			
L4.Squared returns	0.000081	0.028771	0.003
0.998			
L4.Parkinson	-0.187782	0.038023	-4.939
0.000	0.000050	0.000500	07.044
L5.VIX	-0.806052	0.029589	-27.241
0.000 L5.Squared returns	-0.006555	0.028668	-0.229
0.819	0.00000	0.020000	0.225
L5.Parkinson	0.098408	0.038629	2.548
0.011			
L6.VIX	1.536591	0.031825	48.282
0.000			
L6.Squared returns	0.072855	0.030395	2.397
0.017			
L6.Parkinson	-0.084245	0.038462	-2.190
0.028 L7.VIX	-0.571632	0 020151	14 002
0.000	-0.571632	0.038151	-14.983
L7.Squared returns	-0.117171	0.031940	-3.668
0.000	0.11,111	0.001010	3.333
L7.Parkinson	0.005441	0.038477	0.141
0.888			
L8.VIX	-0.097714	0.038865	-2.514
0.012			
L8.Squared returns	0.074113	0.031927	2.321
0.020			
L8.Parkinson	0.145037	0.038908	3.728
0.000 L9.VIX	0.016357	0.038850	0.421
0.674	0.010357	0.030050	0.421
0.011			

L9.Squared returns	-0.028235	0.031907	-0.885
L9.Parkinson	-0.187835	0.039695	-4.732
0.000 L10.VIX	-0.820208	0.038754	-21.165
0.000			
L10.Squared returns	-0.014797	0.031975	-0.463
0.644 L10.Parkinson	0.129107	0.040368	3.198
0.001	0.129101	0.040300	5.190
L11.VIX	1.396625	0.040508	34.478
0.000			
L11.Squared returns	0.085864	0.032386	2.651
0.008			
L11.Parkinson	-0.088093	0.040749	-2.162
0.031 L12.VIX	-0.492027	0.044850	-10.970
0.000	0.432021	0.044000	10.910
L12.Squared returns	-0.097022	0.032751	-2.962
0.003			
L12.Parkinson	0.035850	0.041008	0.874
0.382			
L13.VIX	-0.114013	0.045219	-2.521
0.012 L13.Squared returns	0.010251	0.032768	0.313
0.754	0.010251	0.032708	0.313
L13.Parkinson	0.043684	0.041142	1.062
0.288			
L14.VIX	0.043531	0.045194	0.963
0.335			
L14.Squared returns	0.046604	0.032715	1.425
0.154 L14.Parkinson	-0.077499	0.041234	-1.880
0.060	-0.077499	0.041234	-1.000
L15.VIX	-0.777540	0.045116	-17.234
0.000			
L15.Squared returns	-0.084087	0.032799	-2.564
0.010			
L15.Parkinson	0.072906	0.041445	1.759
0.079	4 224050	0.046400	00.754
L16.VIX 0.000	1.334258	0.046403	28.754
L16.Squared returns	0.063570	0.032997	1.927
0.054	0.000010	0.002001	1.021
L16.Parkinson	-0.087269	0.041805	-2.088
0.037			
L17.VIX	-0.504051	0.049575	-10.167
0.000			

L17.Squared returns	0.018531	0.032978	0.562
L17.Parkinson	0.143117	0.042305	3.383
0.001 L18.VIX	-0.124602	0.049732	-2.505
0.012 L18.Squared returns	-0.076299	0.032824	-2.324
0.020 L18.Parkinson	-0.099677	0.042644	-2.337
0.019 L19.VIX	0.088224	0.049640	1.777
0.076 L19.Squared returns	0.079036	0.032754	2.413
0.016 L19.Parkinson	0.017347	0.042780	0.405
0.685 L20.VIX	-0.744805	0.049537	-15.035
0.000 L20.Squared returns	-0.060375	0.032793	-1.841
0.066 L20.Parkinson	-0.003724	0.042853	-0.087
0.931 L21.VIX	1.201324	0.050604	23.740
0.000 L21.Squared returns	0.052647	0.032810	1.605
0.109 L21.Parkinson	-0.030446	0.042926	-0.709
0.478 L22.VIX	-0.427948	0.052806	-8.104
0.000 L22.Squared returns	0.035503	0.032932	1.078
0.281 L22.Parkinson	0.035058	0.042947	0.816
0.414 L23.VIX	-0.109918	0.052795	-2.082
0.037 L23.Squared returns	0.006086	0.033046	0.184
0.854 L23.Parkinson	0.134995	0.043032	3.137
0.002 L24.VIX	0.128525	0.052769	2.436
0.015			
L24. Squared returns 0.001	-0.111738	0.034079	-3.279
L24.Parkinson	-0.170525	0.043611	-3.910
L25.VIX 0.000	-0.763177	0.052741	-14.470

L25.Squared returns 0.070	0.061670	0.034061	1.811
L25.Parkinson	0.081669	0.044120	1.851
0.064 L26.VIX	1.071400	0.053725	19.942
0.000			
L26.Squared returns 0.158	0.047654	0.033783	1.411
L26.Parkinson	-0.050243	0.044049	-1.141
0.254			
L27.VIX 0.000	-0.291041	0.055001	-5.292
L27.Squared returns 0.187	-0.044138	0.033461	-1.319
L27.Parkinson	-0.030064	0.043597	-0.690
0.490			
L28.VIX 0.001	-0.183318	0.054779	-3.346
L28.Squared returns	0.019570	0.033781	0.579
0.562			
L28.Parkinson 0.293	0.044600	0.042418	1.051
L29.VIX	0.165258	0.054794	3.016
0.003			
L29.Squared returns 0.078	-0.060656	0.034390	-1.764
L29.Parkinson	-0.045930	0.042263	-1.087
0.277			
L30.VIX 0.000	-0.661808	0.054773	-12.083
L30.Squared returns	0.006302	0.033978	0.185
0.853	0.066208	0.042459	1.559
L30.Parkinson 0.119	0.000200	0.042439	1.559
L31.VIX	0.913977	0.055465	16.478
0.000			
L31.Squared returns 0.401	0.028092	0.033431	0.840
L31.Parkinson	-0.062016	0.042655	-1.454
0.146			
L32.VIX	-0.226564	0.055983	-4.047
0.000	0.005853	0.033271	0.176
L32.Squared returns 0.860	0.005655	0.0332/1	0.176
L32.Parkinson	0.022386	0.042520	0.526
0.599	0.000	0 0=====	
L33.VIX	-0.223440	0.055605	-4.018
0.000			

L33.Squared returns 0.306	0.034392	0.033603	1.023
L33.Parkinson 0.956	0.002350	0.042336	0.056
L34.VIX	0.179415	0.055633	3.225
0.001 L34.Squared returns 0.002	-0.105876	0.033881	-3.125
U.002 L34.Parkinson 0.760	-0.012854	0.042149	-0.305
L35.VIX 0.000	-0.536982	0.055576	-9.662
L35.Squared returns 0.241	0.039356	0.033584	1.172
L35.Parkinson 0.014	0.102814	0.041959	2.450
L36.VIX 0.000	0.777295	0.055970	13.888
L36.Squared returns	-0.007389	0.033319	-0.222
L36.Parkinson 0.003	-0.124874	0.042045	-2.970
L37.VIX 0.000	-0.219467	0.055548	-3.951
L37.Squared returns	0.023985	0.033293	0.720
L37.Parkinson 0.017	0.101207	0.042380	2.388
L38.VIX 0.002	-0.172213	0.054869	-3.139
L38.Squared returns	0.034212	0.033538	1.020
L38.Parkinson 0.002	-0.134660	0.042597	-3.161
L39.VIX 0.007	0.148850	0.054872	2.713
L39.Squared returns	-0.049878	0.033735	-1.479
L39.Parkinson 0.000	0.154494	0.042523	3.633
L40.VIX 0.000	-0.489742	0.054853	-8.928
L40.Squared returns	-0.044362	0.033217	-1.335
L40.Parkinson 0.034	-0.089778	0.042439	-2.115
L41.VIX 0.000	0.657141	0.055122	11.922

L41.Squared returns 0.155	0.046767	0.032872	1.423
L41.Parkinson	0.003151	0.042605	0.074
0.941 L42.VIX	-0.138920	0.053922	-2.576
0.010 L42.Squared returns	0.001487	0.032949	0.045
0.964	0.001101	0.002010	0.010
L42.Parkinson	0.070146	0.042798	1.639
0.101 L43.VIX	-0.188297	0.052863	-3.562
0.000	0.100201	0.002000	0.002
L43.Squared returns	0.029849	0.033084	0.902
0.367 L43.Parkinson	-0.118559	0.042875	-2.765
0.006	-0.110339	0.042075	-2.705
L44.VIX	0.158367	0.052886	2.994
0.003	0.000564	0.00000	4 474
L44.Squared returns 0.241	0.038564	0.032923	1.171
L44.Parkinson	0.058565	0.042613	1.374
0.169	0.200524	0.050003	7 525
L45.VIX 0.000	-0.398531	0.052893	-7.535
L45.Squared returns	-0.072656	0.032113	-2.263
0.024			
L45.Parkinson 0.111	0.065468	0.041128	1.592
L46.VIX	0.496798	0.052906	9.390
0.000			
L46.Squared returns	-0.023796	0.032051	-0.742
0.458 L46.Parkinson	-0.047234	0.040635	-1.162
0.245	0.047254	0.040033	1.102
L47.VIX	-0.058727	0.050749	-1.157
0.247			
L47.Squared returns	0.091500	0.032043	2.856
0.004 L47.Parkinson	-0.017970	0.040631	-0.442
0.658	0.011910	0.040001	0.442
L48.VIX	-0.257931	0.049546	-5.206
0.000			
L48.Squared returns	-0.056632	0.032041	-1.767
0.077			
L48.Parkinson	-0.029397	0.040524	-0.725
0.468 L49.VIX	0.254848	0.049649	5.133
0.000	0.204040	0.043049	0.100

L49.Squared returns 0.095	0.053445	0.031988	1.671
L49.Parkinson	0.059115	0.040255	1.468
0.142 L50.VIX	-0.396930	0.049760	-7.977
0.000 L50.Squared returns 0.002	-0.098439	0.031939	-3.082
L50.Parkinson 0.036	-0.083439	0.039867	-2.093
L51.VIX 0.000	0.434357	0.049621	8.754
L51.Squared returns 0.153	0.045700	0.031990	1.429
L51.Parkinson 0.013	0.098447	0.039708	2.479
L52.VIX 0.435	-0.036312	0.046488	-0.781
L52.Squared returns	0.007743	0.031851	0.243
L52.Parkinson 0.050	-0.076125	0.038814	-1.961
L53.VIX 0.000	-0.224716	0.044894	-5.005
L53.Squared returns 0.565	0.018189	0.031610	0.575
L53.Parkinson 0.200	0.048966	0.038250	1.280
L54.VIX 0.000	0.174081	0.044980	3.870
L54.Squared returns	0.027779	0.031565	0.880
L54.Parkinson 0.042	-0.076759	0.037731	-2.034
L55.VIX 0.000	-0.257373	0.044997	-5.720
L55.Squared returns	-0.090386	0.031626	-2.858
L55.Parkinson 0.204	0.047462	0.037387	1.269
L56.VIX 0.000	0.265108	0.044661	5.936
L56.Squared returns	0.025953	0.031625	0.821
L56.Parkinson 0.233	0.044323	0.037178	1.192
0.233 L57.VIX 0.177	0.054788	0.040579	1.350

L57.Squared returns 0.602	0.016212	0.031090	0.521
L57.Parkinson 0.229	-0.044608	0.037119	-1.202
L58.VIX	-0.208814	0.038742	-5.390
0.000 L58.Squared returns 0.493	-0.020853	0.030422	-0.685
L58.Parkinson 0.421	0.029761	0.037020	0.804
L59.VIX 0.004	0.110880	0.038864	2.853
L59.Squared returns 0.059	0.057211	0.030244	1.892
L59.Parkinson 0.531	-0.022830	0.036459	-0.626
L60.VIX 0.001	-0.132503	0.038874	-3.409
L60.Squared returns 0.195	-0.039131	0.030215	-1.295
L60.Parkinson 0.901	0.004449	0.035602	0.125
L61.VIX 0.000	0.161311	0.038316	4.210
L61.Squared returns 0.096	-0.050238	0.030186	-1.664
L61.Parkinson 0.314	0.034883	0.034650	1.007
L62.VIX 0.567	-0.018419	0.032159	-0.573
L62.Squared returns 0.165	0.039768	0.028645	1.388
L62.Parkinson 0.963	0.001561	0.033729	0.046
L63.VIX 0.002	-0.090433	0.029729	-3.042
L63.Squared returns 0.140	0.039684	0.026902	1.475
L63.Parkinson 0.003	-0.099442	0.033547	-2.964
L64.VIX 0.004	0.084917	0.029737	2.856
L64.Squared returns 0.071	-0.047964	0.026530	-1.808
L64.Parkinson	0.104306	0.033482	3.115
L65.VIX 0.001	-0.100061	0.029753	-3.363

L65.Squared returns 0.734	0.008801	0.025866	0.340	
L65.Parkinson	-0.047436	0.032895	-1.442	
L66.VIX	0.120048	0.028548	4.205	
0.000 L66.Squared returns	0.038612	0.024747	1.560	
0.119 L66.Parkinson	-0.003780	0.030244	-0.125	
0.901 L67.VIX	-0.055142	0.014821	-3.720	
0.000				
L67.Squared returns 0.075	-0.027542	0.015495	-1.777	
L67.Parkinson 0.542	0.010252	0.016803	0.610	

=====

Results for equation Squared returns

=====	coefficient	std. error	t-stat
prob			
const	0.007188	0.012956	0.555
0.579			
L1.VIX	0.233361	0.012061	19.348
0.000			
L1.Squared returns	1.334269	0.014519	91.896
0.000 L1.Parkinson	0.740252	0.013042	56.761
0.000	0.740252	0.013042	30.701
L2.VIX	-0.264170	0.023565	-11.210
0.000	0.201170	0.02000	11.210
L2.Squared returns	-0.328590	0.023755	-13.833
0.000			
L2.Parkinson	-1.291031	0.023458	-55.036
0.000			
L3.VIX	0.037785	0.024796	1.524
0.128			
L3.Squared returns	-0.035853	0.024167	-1.484
0.138			
L3.Parkinson	0.889368	0.029568	30.078
0.000	0.005606	0.004700	1 007
L4.VIX 0.300	-0.025686	0.024780	-1.037
0.300			

L4.Squared returns	0.149147	0.024103	6.188
L4.Parkinson	-0.444332	0.031854	-13.949
0.000	0.000503	0.004700	0.004
L5.VIX 0.981	-0.000593	0.024789	-0.024
L5.Squared returns	-0.595179	0.024017	-24.782
0.000			
L5.Parkinson 0.000	0.200977	0.032362	6.210
L6.VIX	0.189330	0.026662	7.101
0.000	0.120000	3132332	
L6.Squared returns	0.594734	0.025464	23.356
0.000	0.00004		0.474
L6.Parkinson 0.013	-0.079731	0.032221	-2.474
L7.VIX	-0.167907	0.031961	-5.253
0.000			
L7.Squared returns	-0.097552	0.026758	-3.646
0.000			
L7.Parkinson	-0.165881	0.032234	-5.146
0.000 L8.VIX	-0.006733	0.032559	-0.207
0.836	0.000700	0.002000	0.201
L8.Squared returns	-0.068716	0.026747	-2.569
0.010			
L8.Parkinson	0.390814	0.032596	11.990
0.000 L9.VIX	0.002386	0.032547	0.073
0.942	0.002500	0.002041	0.075
L9.Squared returns	0.139878	0.026730	5.233
0.000			
L9.Parkinson	-0.418610	0.033254	-12.588
0.000 L10.VIX	0.000400	0.032466	0.012
0.990	0.000400	0.032400	0.012
L10.Squared returns	-0.315494	0.026787	-11.778
0.000			
L10.Parkinson	0.375649	0.033819	11.108
0.000	0 077056	0 022025	0.071
L11.VIX 0.023	0.077056	0.033935	2.271
L11.Squared returns	0.310703	0.027131	11.452
0.000			
L11.Parkinson	-0.306799	0.034138	-8.987
0.000	0.044000	0 007574	4 400
L12.VIX	-0.044826	0.037574	-1.193
0.233			

L12.Squared returns	-0.116852	0.027438	-4.259
0.000 L12.Parkinson	0.163512	0.034354	4.760
0.000			
L13.VIX	-0.022092	0.037882	-0.583
0.560	0 000575	0.007450	4 444
L13.Squared returns 0.265	-0.030575	0.027452	-1.114
L13.Parkinson	-0.000727	0.034467	-0.021
0.983	0.000121	0.034407	0.021
L14.VIX	-0.002474	0.037861	-0.065
0.948	0.000	0.00.002	0.000
L14.Squared returns	0.128313	0.027407	4.682
0.000			
L14.Parkinson	-0.150355	0.034544	-4.353
0.000			
L15.VIX	-0.036733	0.037796	-0.972
0.331			
L15.Squared returns	-0.170717	0.027477	-6.213
0.000	0.040044	0.004700	5 404
L15.Parkinson	0.248641	0.034720	7.161
0.000	0 110022	0 020074	0.051
L16.VIX 0.004	0.110833	0.038874	2.851
L16.Squared returns	0.104050	0.027643	3.764
0.000	0.101000	0.027010	0.701
L16.Parkinson	-0.272565	0.035022	-7.783
0.000			
L17.VIX	-0.074426	0.041532	-1.792
0.073			
L17.Squared returns	0.008144	0.027627	0.295
0.768			
L17.Parkinson	0.308887	0.035441	8.716
0.000			
L18.VIX	0.004325	0.041663	0.104
0.917	0.0001.05	0.007400	0.400
L18.Squared returns	-0.086165	0.027499	-3.133
0.002 L18.Parkinson	-0.227277	0.035725	-6.362
0.000	-0.221211	0.033723	-0.302
L19.VIX	0.020524	0.041586	0.494
0.622	0.020021	0.011000	0.101
L19.Squared returns	0.095210	0.027440	3.470
0.001			
L19.Parkinson	0.049175	0.035839	1.372
0.170			
L20.VIX	-0.046019	0.041499	-1.109
0.267			

L20.Squared returns 0.157	-0.038915	0.027472	-1.416
L20.Parkinson	0.058282	0.035900	1.623
0.104 L21.VIX	0.095726	0.042394	2.258
0.024	0.093720	0.042394	2.236
L21.Squared returns	-0.113961	0.027487	-4.146
0.000			
L21.Parkinson	-0.116651	0.035962	-3.244
0.001	0.00000	0.044000	0.004
L22.VIX 0.036	-0.092626	0.044239	-2.094
L22.Squared returns	-0.170142	0.027589	-6.167
0.000	0.1.011	0.02,000	0.120.
L22.Parkinson	0.101888	0.035979	2.832
0.005			
L23.VIX	-0.034342	0.044229	-0.776
0.437	0 455004	0.007404	47.000
L23.Squared returns 0.000	0.477234	0.027684	17.238
L23.Parkinson	0.286006	0.036050	7.934
0.000	0.20000	0.00000	7.001
L24.VIX	0.112358	0.044208	2.542
0.011			
L24.Squared returns	-0.245399	0.028550	-8.595
0.000			
L24.Parkinson	-0.442922	0.036535	-12.123
0.000 L25.VIX	-0.080118	0.044184	-1.813
0.070	-0.000110	0.044104	-1.015
L25.Squared returns	0.082416	0.028534	2.888
0.004			
L25.Parkinson	0.097198	0.036961	2.630
0.009			
L26.VIX	0.033488	0.045008	0.744
0.457	0.010004	0.000000	0.450
L26.Squared returns 0.648	0.012904	0.028302	0.456
L26.Parkinson	0.156109	0.036902	4.230
0.000	0.100100	0.00000	1.200
L27.VIX	0.003716	0.046077	0.081
0.936			
L27.Squared returns	-0.351249	0.028032	-12.530
0.000			
L27.Parkinson	-0.218663	0.036524	-5.987
0.000	_0 066000	0 045000	_ 1 ///
L28.VIX 0.150	-0.066089	0.045892	-1.440
0.100			

L28.Squared returns	0.393013	0.028300	13.887
0.000 L28.Parkinson	0.167466	0.035536	4.713
0.000 L29.VIX	0.084371	0.045904	1.838
0.066 L29.Squared returns	-0.067720	0.028810	-2.351
0.019			
L29.Parkinson 0.000	-0.266954	0.035406	-7.540
L30.VIX	-0.015038	0.045886	-0.328
0.743	0.040000	0.000465	4 440
L30.Squared returns 0.158	-0.040209	0.028465	-1.413
L30.Parkinson	0.338594	0.035570	9.519
0.000			
L31.VIX 0.504	-0.031057	0.046466	-0.668
L31.Squared returns 0.023	0.063883	0.028007	2.281
L31.Parkinson	-0.187420	0.035734	-5.245
0.000			
L32.VIX 0.691	0.018663	0.046900	0.398
L32.Squared returns 0.000	-0.233540	0.027873	-8.379
L32.Parkinson	0.077520	0.035621	2.176
0.030 L33.VIX	-0.041842	0.046583	-0.898
0.369	0.011012	0.010000	0.000
L33.Squared returns 0.000	0.290023	0.028151	10.302
L33.Parkinson	0.003598	0.035467	0.101
0.919			
L34.VIX 0.119	0.072588	0.046606	1.557
L34.Squared returns	-0.101963	0.028384	-3.592
0.000			
L34.Parkinson	-0.149259	0.035310	-4.227
0.000			
L35.VIX 0.360	-0.042631	0.046559	-0.916
L35.Squared returns	-0.058122	0.028135	-2.066
0.039	0.000122	0.020133	2.000
L35.Parkinson	0.275982	0.035151	7.851
0.000			
L36.VIX	0.006920	0.046889	0.148
0.883			

L36.Squared returns 0.000	0.128026	0.027913	4.587
L36.Parkinson	-0.327089	0.035224	-9.286
0.000 L37.VIX	0.026536	0.046536	0.570
0.569 L37.Squared returns	-0.236425	0.027891	-8.477
0.000 L37.Parkinson	0.310316	0.035504	8.740
0.000 L38.VIX	-0.082755	0.045967	-1.800
0.072 L38.Squared returns	0.243170	0.028096	8.655
0.000 L38.Parkinson	-0.234482	0.035686	-6.571
0.000 L39.VIX 0.003	0.135927	0.045970	2.957
L39.Squared returns	-0.055682	0.028262	-1.970
0.049 L39.Parkinson	0.159665	0.035624	4.482
0.000 L40.VIX	-0.082849	0.045953	-1.803
0.071 L40.Squared returns	-0.131353	0.027828	-4.720
0.000 L40.Parkinson	0.006085	0.035553	0.171
0.864 L41.VIX	-0.008466	0.046179	-0.183
0.855 L41.Squared returns	0.181242	0.027539	6.581
0.000 L41.Parkinson	-0.194121	0.035693	-5.439
0.000 L42.VIX	0.032979	0.045173	0.730
0.465 L42.Squared returns	-0.171182	0.027603	-6.201
0.000 L42.Parkinson	0.244851	0.035854	6.829
0.000 L43.VIX	-0.081967	0.044286	-1.851
0.064 L43.Squared returns	0.029153	0.027716	1.052
0.293 L43.Parkinson	-0.222889	0.035918	-6.205
0.000 L44.VIX 0.008	0.118216	0.044305	2.668

L44.Squared returns 0.020	0.064057	0.027581	2.322
L44.Parkinson	0.124816	0.035699	3.496
0.000 L45.VIX	-0.043277	0.044311	-0.977
0.329 L45.Squared returns	0.057425	0.026903	2.135
0.033 L45.Parkinson	0.089774	0.034455	2.606
0.009 L46.VIX	-0.036285	0.044323	-0.819
0.413 L46.Squared returns	-0.079800	0.026851	-2.972
0.003 L46.Parkinson	-0.116710	0.034042	-3.428
0.001 L47.VIX	0.051805	0.042515	1.219
0.223 L47.Squared returns	0.039712	0.026844	1.479
0.139 L47.Parkinson	-0.026426	0.034038	-0.776
0.438 L48.VIX	-0.101722	0.041507	-2.451
0.014 L48.Squared returns	-0.034923	0.026842	-1.301
0.193 L48.Parkinson	0.071985	0.033949	2.120
0.034 L49.VIX	0.136714	0.041593	3.287
0.001 L49.Squared returns	-0.093976	0.026798	-3.507
0.000 L49.Parkinson	-0.039914	0.033724	-1.184
0.237 L50.VIX	-0.052189	0.041686	-1.252
0.211 L50.Squared returns	0.100167	0.026757	3.744
0.000 L50.Parkinson	-0.054312	0.033399	-1.626
0.104 L51.VIX	-0.055545	0.041570	-1.336
0.181 L51.Squared returns	0.026594	0.026800	0.992
0.321 L51.Parkinson	0.040875	0.033265	1.229
0.219 L52.VIX 0.105	0.063224	0.038946	1.623

L52.Squared returns	0.007089	0.026683	0.266
L52.Parkinson	-0.012147	0.032517	-0.374
0.709	0.050640	0.027610	1 550
L53.VIX 0.119	-0.058648	0.037610	-1.559
L53.Squared returns	-0.027864	0.026481	-1.052
0.293			
L53.Parkinson	0.058097	0.032044	1.813
0.070			
L54.VIX	0.088868	0.037682	2.358
0.018	0.004000	0.000444	0.100
L54.Squared returns 0.002	-0.081966	0.026444	-3.100
L54.Parkinson	-0.052640	0.031609	-1.665
0.096	0.002040	0.001003	1.000
L55.VIX	-0.042334	0.037696	-1.123
0.261			
L55.Squared returns	0.102752	0.026495	3.878
0.000			
L55.Parkinson	0.052871	0.031321	1.688
0.091			
L56.VIX	-0.028791	0.037415	-0.770
0.442	0.046970	0.000404	0.610
L56.Squared returns 0.536	-0.016378	0.026494	-0.618
L56.Parkinson	-0.080767	0.031146	-2.593
0.010	0.000101	0.001140	2.000
L57.VIX	0.049022	0.033995	1.442
0.149			
L57.Squared returns	-0.033300	0.026046	-1.279
0.201			
L57.Parkinson	0.118679	0.031097	3.816
0.000			
L58.VIX	-0.065865	0.032456	-2.029
0.042	0 004003	0 005406	0.053
L58.Squared returns 0.341	0.024283	0.025486	0.953
L58.Parkinson	-0.108750	0.031014	-3.506
0.000	0.100700	0.001011	0.000
L59.VIX	0.070287	0.032558	2.159
0.031			
L59.Squared returns	-0.042842	0.025337	-1.691
0.091			
L59.Parkinson	0.068255	0.030543	2.235
0.025			
L60.VIX	0.007746	0.032566	0.238
0.812			

L60.Squared returns	0.083005	0.025312	3.279
0.001	0.050040		
L60.Parkinson	-0.058040	0.029826	-1.946
0.052	0.070000	0.000000	0.046
L61.VIX	-0.072089	0.032099	-2.246
0.025	0.040004	0.005000	0.544
L61.Squared returns	-0.012994	0.025289	-0.514
0.607	0.004547	0.000000	1 100
L61.Parkinson 0.234	0.034547	0.029028	1.190
	0 050706	0.000010	1 005
L62.VIX	0.053736	0.026942	1.995
0.046	0 444705	0.000000	4 704
L62.Squared returns	-0.114725	0.023998	-4.781
0.000	0.070445	0 000057	0.550
L62.Parkinson	0.072115	0.028257	2.552
0.011	0.045404	0.004005	4 004
L63.VIX	-0.047431	0.024905	-1.904
0.057			
L63.Squared returns	0.161124	0.022537	7.149
0.000			
L63.Parkinson	-0.148629	0.028104	-5.289
0.000			
L64.VIX	0.033663	0.024913	1.351
0.177			
L64.Squared returns	-0.142666	0.022226	-6.419
0.000			
L64.Parkinson	0.112239	0.028049	4.001
0.000			
L65.VIX	0.004353	0.024926	0.175
0.861			
L65.Squared returns	0.039778	0.021670	1.836
0.066			
L65.Parkinson	-0.045817	0.027558	-1.663
0.096			
L66.VIX	-0.015765	0.023917	-0.659
0.510			
L66.Squared returns	0.124450	0.020732	6.003
0.000			
L66.Parkinson	-0.037142	0.025337	-1.466
0.143			
L67.VIX	0.007574	0.012417	0.610
0.542			
L67.Squared returns	-0.101460	0.012981	-7.816
0.000			
L67.Parkinson	0.043114	0.014077	3.063
0.002			

=====

Results for equation Parkinson

		.==========
coefficient	std. error	t-stat
-0.010069	0.013620	-0.739
0 125570	0.010690	10 600
0.135579	0.012680	10.692
0.068206	0.015264	4.468
1.439208	0.013710	104.971
-0.136584	0.024774	-5.513
0 02000	0 004072	1 201
-0.032220	0.024973	-1.291
-0.680274	0.024661	-27.585
0.008355	0.026068	0.321
-0.052570	0.025407	-2.069
0 200276	0 021005	9.306
0.209210	0.031005	9.500
-0.054406	0.026051	-2.088
0.026488	0.025339	1.045
-0.086427	0.033488	-2.581
0 065644	0 026060	2.519
0.003044	0.020000	2.519
0.100215	0.025249	3.969
0.013301	0.034021	0.391
0.049844	0.028029	1.778
_0 012527	0 026770	-0.506
-0.013537	0.020110	-0.500
0.191261	0.033874	5.646
-0.036910	0.033600	-1.098
	-0.010069 -0.010069 0.135579 0.068206 1.439208 -0.136584 -0.032228 -0.680274 0.008355 -0.052570 0.289276 -0.054406 0.026488 -0.086427 0.065644 0.100215 0.013301 0.049844 -0.013537 0.191261	-0.010069 0.013620 0.135579 0.012680 0.068206 0.015264 1.439208 0.013710 -0.136584 0.024774 -0.032228 0.024973 -0.680274 0.024661 0.008355 0.026068 -0.052570 0.025407 0.289276 0.031085 -0.054406 0.026051 0.026488 0.025339 -0.086427 0.033488 0.065644 0.026060 0.100215 0.025249 0.013301 0.034021 0.049844 0.028029 -0.013537 0.026770 0.191261 0.033874

L7.Squared returns 0.040	-0.057803	0.028130	-2.055
L7.Parkinson	-0.422755	0.033888	-12.475
L8.VIX 0.652	-0.015421	0.034229	-0.451
L8.Squared returns 0.249	-0.032388	0.028119	-1.152
L8.Parkinson	0.439011	0.034267	12.811
L9.VIX 0.038	-0.071035	0.034216	-2.076
L9.Squared returns	0.056572	0.028101	2.013
L9.Parkinson 0.000	-0.350534	0.034960	-10.027
L10.VIX 0.146	0.049630	0.034131	1.454
L10.Squared returns 0.067	-0.051555	0.028161	-1.831
L10.Parkinson 0.000	0.219837	0.035553	6.183
L11.VIX 0.019	0.083946	0.035676	2.353
L11.Squared returns 0.009	0.074080	0.028523	2.597
L11.Parkinson 0.164	-0.050001	0.035889	-1.393
L12.VIX 0.021	-0.091450	0.039501	-2.315
L12. Squared returns 0.006	-0.079458 -0.090444	0.028845	-2.755
L12.Parkinson 0.012 L13.VIX	0.080360	0.036116 0.039825	-2.504 2.018
0.044 L13.Squared returns	-0.014343	0.039823	-0.497
0.619 L13.Parkinson	0.188938	0.036235	5.214
0.000 L14.VIX	-0.096451	0.039803	-2.423
0.015 L14.Squared returns	-0.039664	0.028812	-1.377
0.169 L14.Parkinson	-0.259227	0.036315	-7.138
0.000 L15.VIX	-0.017682	0.039734	-0.445
0.656			

L15.Squared returns	0.128806	0.028887	4.459
L15.Parkinson	0.336573	0.036501	9.221
L16.VIX 0.001	0.138961	0.040868	3.400
L16.Squared returns	0.036659	0.029061	1.261
L16.Parkinson	-0.445615	0.036818	-12.103
L17.VIX 0.002	-0.133923	0.043662	-3.067
L17.Squared returns 0.000	-0.117763	0.029044	-4.055
L17.Parkinson 0.000	0.283202	0.037258	7.601
L18.VIX 0.085	0.075427	0.043800	1.722
L18.Squared returns 0.293	0.030414	0.028909	1.052
L18.Parkinson 0.639	0.017627	0.037557	0.469
L19.VIX 0.517	-0.028349	0.043719	-0.648
L19.Squared returns 0.201	-0.036869	0.028847	-1.278
L19.Parkinson 0.000	-0.142125	0.037678	-3.772
L20.VIX 0.864	-0.007467	0.043628	-0.171
L20.Squared returns 0.094	0.048343	0.028881	1.674
L20.Parkinson 0.000	0.168050	0.037742	4.453
L21.VIX 0.891	0.006123	0.044568	0.137
L21.Squared returns 0.000	-0.149267	0.028896	-5.166
L21.Parkinson 0.001	-0.120756	0.037806	-3.194
L22.VIX 0.903	-0.005673	0.046508	-0.122
L22.Squared returns 0.604	-0.015048	0.029004	-0.519
L22.Parkinson 0.000	-0.380156	0.037824	-10.051
L23.VIX 0.341	0.044305	0.046497	0.953

L23.Squared returns	0.246170	0.029104	8.458
L23.Parkinson	0.457916	0.037899	12.083
L24.VIX	-0.027580	0.046475	-0.593
0.553 L24.Squared returns 0.000	-0.107945	0.030014	-3.596
L24.Parkinson	-0.007304	0.038409	-0.190
0.849 L25.VIX 0.527	-0.029357	0.046450	-0.632
L25.Squared returns	-0.011409	0.029998	-0.380
L25.Parkinson	-0.122707	0.038857	-3.158
L26.VIX 0.607	0.024352	0.047316	0.515
L26.Squared returns	-0.021225	0.029754	-0.713
L26.Parkinson	0.160808	0.038794	4.145
L27.VIX 0.530	-0.030450	0.048441	-0.629
L27.Squared returns	0.130631	0.029469	4.433
L27.Parkinson 0.006	-0.105766	0.038397	-2.755
L28.VIX 0.192	0.062904	0.048245	1.304
L28.Squared returns	-0.023552	0.029751	-0.792
L28.Parkinson	0.178973	0.037358	4.791
L29.VIX 0.376	-0.042696	0.048258	-0.885
L29.Squared returns	-0.083505	0.030288	-2.757
L29.Parkinson 0.000	-0.272933	0.037222	-7.333
L30.VIX 0.468	0.035010	0.048240	0.726
L30.Squared returns 0.456	0.022289	0.029925	0.745
L30.Parkinson	0.193805	0.037395	5.183
L31.VIX 0.349	-0.045739	0.048849	-0.936

L31.Squared returns 0.038	-0.061248	0.029443	-2.080
L31.Parkinson 0.025	-0.084281	0.037567	-2.243
L32.VIX 0.977	0.001429	0.049306	0.029
L32.Squared returns	0.153143	0.029302	5.226
L32.Parkinson 0.785	-0.010230	0.037448	-0.273
L33.VIX 0.631	0.023521	0.048972	0.480
L33.Squared returns 0.689	-0.011844	0.029595	-0.400
L33.Parkinson 0.118	0.058256	0.037286	1.562
L34.VIX 0.537	-0.030255	0.048997	-0.617
L34.Squared returns 0.002	-0.092063	0.029839	-3.085
L34.Parkinson	-0.140864	0.037121	-3.795
L35.VIX 0.045	0.098274	0.048947	2.008
L35.Squared returns 0.969	0.001160	0.029578	0.039
L35.Parkinson 0.000	0.230210	0.036954	6.230
L36.VIX 0.012	-0.123149	0.049293	-2.498
L36.Squared returns 0.356	-0.027104	0.029345	-0.924
L36.Parkinson	-0.241548	0.037030	-6.523
L37.VIX 0.584	0.026780	0.048922	0.547
L37.Squared returns 0.007 L37.Parkinson	0.079173	0.029322	2.700
0.000	0.238215	0.037325	6.382
L38.VIX 0.580	0.026749	0.048324	0.554
L38.Squared returns 0.008	0.078472	0.029537	2.657
L38.Parkinson 0.000	-0.237207	0.037516	-6.323
L39.VIX 0.748	-0.015523	0.048327	-0.321

L39.Squared returns 0.003	-0.087372	0.029711	-2.941
L39.Parkinson 0.758	-0.011551	0.037451	-0.308
L40.VIX 0.141	0.071111	0.048310	1.472
L40.Squared returns 0.014	-0.072176	0.029255	-2.467
L40.Parkinson	0.260663	0.037377	6.974
L41.VIX 0.008	-0.127759	0.048547	-2.632
L41.Squared returns 0.475	0.020668	0.028951	0.714
L41.Parkinson	-0.246929	0.037523	-6.581
L42.VIX 0.408	0.039317	0.047490	0.828
L42.Squared returns 0.351	0.027063	0.029019	0.933
L42.Parkinson 0.000	0.187019	0.037693	4.962
L43.VIX 0.345	0.043981	0.046558	0.945
L43.Squared returns 0.002	-0.092134	0.029138	-3.162
L43.Parkinson 0.007	-0.101034	0.037761	-2.676
L44.VIX 0.234	-0.055466	0.046578	-1.191
L44.Squared returns 0.148	-0.041912	0.028996	-1.445
L44.Parkinson 0.002	-0.118314	0.037530	-3.153
L45.VIX 0.004	0.133758	0.046584	2.871
L45.Squared returns 0.000	0.187032	0.028282	6.613
L45.Parkinson 0.000	0.134878	0.036222	3.724
L46.VIX 0.000	-0.183776	0.046596	-3.944
L46.Squared returns 0.016 L46.Parkinson	-0.068012	0.028228	-2.409
0.659 L47.VIX	0.015770	0.035788 0.044695	0.441
0.199	0.007393	0.044095	1.204

L47.Squared returns 0.616	0.014171	0.028221	0.502
L47.Parkinson	-0.013697	0.035784	-0.383
L48.VIX 0.156	0.061885	0.043636	1.418
L48.Squared returns	-0.081287	0.028219	-2.881
L48.Parkinson 0.459	0.026421	0.035690	0.740
L49.VIX 0.112	-0.069550	0.043726	-1.591
L49.Squared returns	0.116049	0.028172	4.119
L49.Parkinson 0.961	0.001737	0.035454	0.049
L50.VIX 0.002	0.136827	0.043824	3.122
L50.Squared returns	0.009474	0.028129	0.337
L50.Parkinson 0.964	-0.001592	0.035112	-0.045
L51.VIX 0.000	-0.179210	0.043702	-4.101
L51.Squared returns	-0.062122	0.028174	-2.205
L51.Parkinson 0.448	-0.026525	0.034971	-0.758
L52.VIX 0.390	0.035197	0.040943	0.860
L52.Squared returns 0.132	0.042204	0.028051	1.505
L52.Parkinson 0.693	-0.013482	0.034184	-0.394
L53.VIX 0.055	0.075878	0.039539	1.919
L53.Squared returns 0.000	-0.100222	0.027839	-3.600
L53.Parkinson 0.672	0.014271	0.033687	0.424
L54.VIX 0.270	-0.043695	0.039615	-1.103
L54.Squared returns 0.000	0.124020	0.027800	4.461
L54.Parkinson 0.930	-0.002907	0.033231	-0.087
L55.VIX 0.132	0.059636	0.039630	1.505

L55.Squared returns 0.917	-0.002916	0.027853	-0.105
L55.Parkinson 0.584	-0.018018	0.032927	-0.547
L56.VIX 0.096	-0.065448	0.039333	-1.664
L56.Squared returns	-0.048750	0.027853	-1.750
L56.Parkinson 0.743	-0.010754	0.032743	-0.328
L57.VIX 0.425	-0.028510	0.035739	-0.798
L57.Squared returns 0.443	0.021004	0.027382	0.767
L57.Parkinson 0.127	0.049830	0.032691	1.524
L58.VIX 0.014	0.083786	0.034121	2.456
L58.Squared returns 0.027	-0.059438	0.026793	-2.218
L58.Parkinson 0.229 L59.VIX	-0.039254 -0.053770	0.032605	-1.204 -1.571
0.116 L59.Squared returns	0.079088	0.026637	2.969
0.003 L59.Parkinson	0.056390	0.032110	1.756
0.079 L60.VIX	0.064147	0.034237	1.874
0.061 L60.Squared returns	0.017725	0.026611	0.666
0.505 L60.Parkinson	-0.104102	0.031356	-3.320
0.001 L61.VIX 0.020	-0.078278	0.033745	-2.320
L61.Squared returns 0.814	-0.006244	0.026585	-0.235
L61.Parkinson 0.484	-0.021334	0.030517	-0.699
L62.VIX 0.674	0.011922	0.028323	0.421
L62.Squared returns 0.005	-0.071620	0.025228	-2.839
L62.Parkinson 0.000	0.157125	0.029706	5.289
L63.VIX 0.352	0.024379	0.026183	0.931

L63.Squared returns	-0.006128	0.023693	-0.259
L63.Parkinson	-0.091015	0.029545	-3.081
0.002 L64.VIX	-0.037213	0.026190	-1.421
0.155 L64.Squared returns	0.070683	0.023365	3.025
0.002 L64.Parkinson	0.018855	0.029488	0.639
0.523 L65.VIX	0.068728	0.026204	2.623
0.009 L65.Squared returns	-0.096570	0.022781	-4.239
0.000			
L65.Parkinson 0.459	0.021463	0.028971	0.741
L66.VIX 0.000	-0.097031	0.025143	-3.859
L66.Squared returns 0.677	0.009087	0.021795	0.417
L66.Parkinson 0.374	-0.023683	0.026636	-0.889
L67.VIX	0.055476	0.013053	4.250
0.000 L67.Squared returns	0.042075	0.013647	3.083
0.002 L67.Parkinson	0.003378	0.014799	0.228
0.819			

=====

Correlation matrix of residuals

	VIX	Squared returns	Parkinson
VIX	1.000000	0.356134	0.134965
Squared returns	0.356134	1.000000	0.208449
Parkinson	0.134965	0.208449	1.000000

7. Plot an impulse response function obtained from your VAR model and comment the results (4 points)

```
[148]: lag_order = results.k_ar
print(lag_order)
```

24 Il n y a pas d'autocorrélation dans les résidus pour les 3 séries

```
[149]: from statsmodels.stats.stattools import durbin_watson
       out = durbin_watson(results.resid)
       for col, val in zip(df.columns, out):
           print((col), ':', round(val, 2))
      VIX: 2.0
      Squared returns : 2.0
      Parkinson: 2.0
[160]: lag_order = 67
       model_fitted = model.fit(67)
       forecast_horiz = 22
       model_fitted.forecast(df.values[-lag_order:], forecast_horiz)
       model_fitted.plot_forecast(forecast_horiz)
[160]:
```



```
[161]: from statsmodels.tsa.stattools import grangercausalitytests import pandas as pd import numpy as np

def grangers_test(data, maxlag, variables, test='ssr_chi2test',verbose=False):
    """Les valeurs dans le df sont les p-valeurs
    L'hypothèse HO de notre test est la suivant :
        "Les prédictions de la série X n'influence pas les prédictions de la_\cup \( \sigma \) série Y"

    Ce qui signifie qu'une p-valeur inférieure à 0.05 rejette l'hypothèse HO et_\cup \( \sigma \) incite à garder ce couple de valeurs
```

```
Comme on s'intéresse à la prédiciton de la variable 1, on ne va jamais
 \hookrightarrow l 'abandonner
Les arguments sont :
    Data, le DF de nos valeurs
    maxlag, le fameux maxlag pour le nombre de paramètres dans l'équation'
    variables: une list qui contient le nom des variables c'est à dire le nom l
 ⇔de nos colonnes'
    11 11 11
    df = pd.DataFrame(np.zeros((len(variables), len(variables))),__
 ⇔columns=variables, index=variables)
    for col in df.columns:
        for row in df.index:
            test_result = grangercausalitytests(data[[row, col]],__
 →maxlag=maxlag, verbose=False)
            p_values = [round(test_result[i+1][0][test][1],4) for i in_
 →range(maxlag)] #on va avoir toutes les p-valeurs une part lag
            min_p_value = np.min(p_values) #On s'intéresse à la valeur minimale_
 →des p-valeur
            df.loc[row, col] = min_p_value
    df.columns = [var + '_X' for var in variables]
    df.index = [var + '_Y' for var in variables]
    return df
```

```
[162]: grangers_test(df, 67, variables = df.columns)
```

```
[162]: VIX_X Squared returns_X Parkinson_X VIX_Y 1.0 0.0 0.0 Squared returns_Y 0.0 1.0 0.0 Parkinson_Y 0.0 0.0 1.0
```

24.0.1 Interprétation de la fonction de réponse impulsionnelle

- Premièrement on remarque que les chocs se resorbent et tendent à revenir à 0, ce qui montre que les séries sont bien stationnaires
- On remarque qu'un choque sur la variable Squared returns à un impact positif sur les deux autres séries et ces chocs se resorbent environ après 30 jours

```
[176]: results.irf(252).plot(impulse=1)

[176]:
```


24.0.2 On peut regarder la qualité de prédiction du modèle à 1, 5 et 22 jours et on obtient de plutôt bons voir très bon résultats

```
[165]: import plotly.graph_objs as go
    from sklearn.metrics import mean_absolute_percentage_error
# Calcul de la moyenne absolue de pourcentage d'erreur

def forcast_n_days(days:int):
        train = df.iloc[:-days,:]
        test = df.iloc[-days:,:]

    model = VAR(train)
    results = model.fit(maxlags=67)
    lag_order = results.k_ar
```

```
fcst = results.forecast(train.values[-lag_order:], days)
  model_accuracy = 1 - mean_absolute_percentage_error(test, fcst)
  mape = mean_absolute_percentage_error(test, fcst)
  model_accuracy = 1 - mape
  print(model_accuracy)
  # Création des traces de données pour les prévisions et les vraies valeurs
  true_values_trace = go.Scatter(x=test.index, y=test.values[:, 0],__
predictions_trace = go.Scatter(x=test.index, y=fcst[:, 0], name='Pred VIX')
  true_values_trace2 = go.Scatter(x=test.index, y=test.values[:, 1],_
→name='True SQ')
  predictions_trace2 = go.Scatter(x=test.index, y=fcst[:, 1], name='Pred SQ')
  true_values_trace3 = go.Scatter(x=test.index, y=test.values[:, 2],_
→name='True Parkinson')
  predictions_trace3 = go.Scatter(x=test.index, y=fcst[:, 2], name='Predu
⇔Parkinson')
  fig = go.Figure(data=[true_values_trace, predictions_trace,
                      true_values_trace2, predictions_trace2,
                      true_values_trace3, predictions_trace3])
  fig.update_layout(
      xaxis_title='Time',
      yaxis_title='Values',
      title=f'MAPE: {np.round(mape*100, 2)}% - Model Accuracy: {np.
→round(model_accuracy*100, 2)}%',
      legend=dict(
          yanchor="top",
          y=0.99,
          xanchor="left",
          x = 0.01
      )
  )
  # Affichage de la figure
  fig.show()
```

```
[167]: forcast_n_days(1)
```

A date index has been provided, but it has no associated frequency information

and so will be ignored when e.g. forecasting.

0.991224283001845

[168]: forcast_n_days(5)

0.9831683078914287

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

[166]: forcast_n_days(22)

c:\Users\Zbook Create G7\AppData\Local\Programs\Python\Python310\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

0.9624599858016719