1 Zentrale Begriffe und Definitionen

- 1. (Zur Grenzwertdefinition.) Welche Aussagen sind korrekt? Für eine reelle Folge (a_n) und $a \in \mathbb{R}$ gilt: Der Punkt a ist Grenzwert von (a_n) , falls
 - (a) [false] $\forall \varepsilon > 0 \quad \forall N \in \mathbb{N} \quad \exists n \geq N : \quad |a_n a| < \varepsilon$.
 - (b) [true] $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geq N : \quad |a_n a| < \varepsilon$.
 - (c) [true] $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N : \quad |a_n a| < \varepsilon$.
 - (d) [false] in jeder ε -Umgebung von a unendlich viele Folgenglieder a_n liegen.
- 2. (Zum Begriff der Reihe.) Welche Aussagen sind korrekt? Sei $(a_n)_n$ eine reelle Folge. Der Audruck $\sum_{n=0}^{\infty} a_n$ bezeichnet
 - (a) [false] die Folge der Partialsummen, also $\left(\sum_{l=0}^k a_l\right)_l$
 - (b) [true] den Grenzwert $\lim_{m \to \infty} s_m = \lim_{m \to \infty} \sum_{n=0}^m a_n$, falls er existiert.
 - (c) [false] die n-te Partialsumme $\sum_{m=0}^{n} a_m$.
 - (d) [true] den Reihenwert im Fall der Konvergenz.
- 3. (Konvergenz von Funktionen.) Welche Aussagen sind korrekt? Sei $f:D\supseteq\mathbb{R}\to\mathbb{R}$ eine Funktion, a ein Berührpunkt von D und $c\in\mathbb{R}$ oder $c=\pm\infty$. Es gilt $\lim_{x\to a}f(x)=c$, falls
 - (a) [false] $f(a + \frac{1}{n}) \to c$ für $n \to \infty$.
 - (b) [true] $\forall (x_n) \in D \text{ mit } x_n \to a \text{ gilt } f(x_n) \to c.$
 - (c) [false] gilt: Ist (x_n) Folge in D, dann gilt $x_n \to a$ und $f(x_n) \to c$.
 - (d) [true] für jede Folge (x_n) in $\mathbb R$ mit $x_n \to a$ gilt, dass $f(x_n) \to c$.
- 4. (Potenzen.) Sei $x \in \mathbb{R}$, x > 0. Welche Aussagen sind korrekt?
 - (a) [false] $x^q = \sqrt[n]{x^m}$ für $q = \frac{n}{m} \in \mathbb{Q}$.
 - (b) [true] $x^{\alpha} = \underbrace{x \cdot x \cdot \cdots \cdot x}_{\alpha \text{ mal}}$ für $\alpha \in \mathbb{N}$.

- (c) [false] $x^{\alpha} = e^{\alpha} \cdot \log(x)$ für $\alpha \in \mathbb{R}$.
- (d) [true] $x^{\alpha} = e^{\log(x)\alpha}$ für $\alpha \in \mathbb{R}$.
- 5. (Lokale Maxima.) Welche Aussagen sind korrekt? Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar, dann ist $\xi \in \mathbb{R}$ ein lokales Maximum von f, falls
 - (a) [true] ξ ein globales Maximum ist.
 - (b) [true] ξ ein globales Maximum ist und f'(x)0 = gilt.
 - (c) [true] $\exists \varepsilon > 0 \quad \forall x \in U_{\varepsilon}(\xi) : f(\xi) \geq f(x)$.
 - (d) [false] $\forall \varepsilon > 0 \quad \exists x \in U_{\varepsilon}(\xi) : f(\xi) \ge f(x)$.
- 6. (Integrierbarkeit.) Welche Aussagen sind korrekt? Eine beschränkte Funktion $f:[a,b]\to\mathbb{R}$ ist Riemann-integrierbar, falls $(\mathfrak{T}[a,b]$ bezeichnet den Raum der Treppenfunktionen auf [a,b])
 - (a) [false] Ober- und Unterintegral existieren.
 - (b) [true] f stetig und monoton ist.
 - (c) [false] $\inf \left\{ \int_a^b \varphi(t) dt \, \middle| \, \varphi \in \mathfrak{T}[a,b], \, f \leq \varphi \right\}$ und $\sup \left\{ \int_a^b \psi(t) dt \, \middle| \, \psi \in \mathfrak{T}[a,b], \, \psi \geq f \right\} \text{ existieren und gleich sind.}$

2 Sätze & Resultate

- 1. (Folgen & Konvergenz, 1.) Welche Aussagen über reelle Folgen sind korrekt?
 - (a) [true] Eine Folge mit zwei verschiedenen Häufungswerten kann nicht konvergent sein.
 - (b) [false] Gilt für zwei konvergente Folgen (a_n) und (b_n) , dass $a_n < b$, für alle n, dann auch $\lim a_n < \lim b_n$.
 - (c) [true] Bestimmt divergente Folgen sind unbeschränkt.
 - (d) [true] Kehrwerte von Nullfolgen mit positiven Gliedern konvergieren uneigentlich gegen ∞ .

- 2. (Intervallschachtelung.) Wir betrachten die Intervalle $I_n = (\frac{-1}{n}, \frac{1}{n})$ für $n \in \mathbb{N}$. Welche der folgenden Aussagen sind korrekt?
 - (a) [false] Es gilt $\cap_{n\in\mathbb{N}}I_n=\emptyset$.
 - (b) [false] Wegen des Intervallschachtelungsprinzips gilt $\cap_{n\in\mathbb{N}}I_n=\{0\}$.
 - (c) [true] Es gilt $\cap_{n\in\mathbb{N}}I_n=\{0\}$.
 - (d) [false] Keine der anderen Aussagen ist korrekt.
- 3. $(b\text{-}adische\ Entwicklungen.})$ Wir betrachten eine Dezimalentwicklung der Form

$$\sum_{n=-2}^{\infty} a_n \, 10^{-n}$$

mit Ziffern $a_n \in \{0, 1, 2, \dots, 9\} \ (-2 \le n \in \mathbb{Z})$. Welche der folgenden Aussagen sind korrekt?

- (a) [true] Die Reihe konvergiert, weil das für jede b-adische Entwicklung so ist.
- (b) [false] Die Reihe konvergiert nur dann, falls alle späten Zifferen verschwinden, d.h. falls $\exists K \geq -2$ sodass $a_k = 0$ für alle $k \geq K$.
- (c) [true] Die Reihe konvergiert und für ihren Grenzwert a gilt $a \le 1000$.
- (d) [false] Im allgemeinen divergiert so eine Reihe.
- 4. (Extremstellen.) Wir betrachten eine beliebig oft differenzierbare Funktion

$$f:(a,b)\to\mathbb{R}.$$

Welche der Aussagen sind korrekt?

- (a) [false] f besitzt in jedem Fall ein globales Maximum.
- (b) [true] Hat f ein Maximum in $x_0 \in (a,b)$, dann gilt $f'(x_0) = 0$.
- (c) [true] Falls in einem Punkt x_0 gilt, $f'(x_0) = 0$ und $f''(x_0) > 0$, dann hat f in x_0 ein lokales Minimum.
- (d) [false] Hat f ein Maximum in $x_0 \in (a,b)$, dann gilt $f'(x_0)=0$ und $f''(x_0)<0$.
- 5. (Stetige Inverse.) Sei $f: I \to \mathbb{R}$ eine stetige & injektive Funktion auf dem Intervall I. Welche der Aussagen sind korrekt?
 - (a) [true] f(I) ist ein Intervall.

- (b) [true] f ist bijektiv als Funktion $f:I\to f(I)$ und daher existiert die Umkehrfunktion $f^{-1}:f(I)\to I$.
- (c) [true] f ist bijektiv als Funktion $f:I\to f(I)$ und daher existiert die Umkehrfunktion $f^{-1}:f(I)\to I$ und f^{-1} ist stetig.
- (d) [false] Keine der anderen Aussagen ist korrekt.
- 6. Hauptsatz der Differential- und Integralrechnung. Welche Aussagen sind korrekt? Die erste Aussage des HsDI kann geschrieben werden als

(a) [false]
$$\left(\int_a^b f(t)dt\right)' = f(x)$$
.

(b) [true]
$$\left(\int_a^x f(t)dt\right)' = f(x)$$
.

(c) [true]
$$\frac{d}{dy} \int_a^y f(s) ds = f(y)$$
.

(d) [false]
$$\frac{d}{dt} \int_a^t f(x)dt = f(x)$$
.

3 Beispiele & Gegenbeispiele

1. (Grenzwerte.) Gegeben ist eine reelle Folge (x_n) mit

$$\lim_{n\to\infty} x_n = 17.$$

Welche der folgenden Aussagen sind korrekt?

- (a) [true] $\lim_{n\to\infty} (x_n + \frac{1}{n}) = 17$.
- (b) [false] $\lim_{n\to\infty} (x_{n+1}) = 18$.
- (c) [true] $\lim_{n\to\infty}(x_n-n)=-\infty$.
- (d) [true] $\lim_{n\to\infty} (x_n 3x_n) = -34$.
- 2. (Reihengrenzwerte.) Sei $q \in \mathbb{R}$ mit |q| < 1. Welche der folgenden Rechnungen sind korrekt?

(a) [true]
$$\sum_{k=0}^{\infty} q^k \cdot \sum_{k=0}^{\infty} q^k = \sum_{k=0}^{\infty} \sum_{m=0}^k q^m q^{k-m} = \sum_{k=0}^{\infty} \sum_{m=0}^k q^k = \sum_{k=0}^{\infty} (k+1) q^k.$$

(b) [false]
$$\sum_{k=0}^{\infty} q^k \cdot \sum_{k=0}^{\infty} q^k = \sum_{k=0}^{\infty} (q^k \cdot q^k) = \sum_{k=0}^{\infty} q^{2k} = \frac{1}{1-q^2}$$
.

- (c) [false] Beide Rechnungen sind korrekt.
- (d) [false] Keine der beiden Rechnungen ist korrekt.
- 3. (Funktionsgrenzwerte.) Gegeben sind die beiden reellen Funktionen f und g und es gelte

$$\lim_{x \to \infty} f(x) = 0.$$

Welche der folgenden Aussagen sind korrekt?

- (a) [false] Es gilt $\lim_{x\to\infty} \left(f(x)g(x) \right) = \lim_{x\to\infty} f(x) \lim_{x\to\infty} g(x) = 0.$
- (b) [true] Falls zusätzlich g beschränkt ist (d.h. $|g(x)| \leq C$ für alle x), gilt $\lim_{x \to \infty} \Big(f(x)g(x) \Big) = 0$, denn $|f(x)g(x)| \leq C|f(x)| \to 0$.
- (c) [false] Es gilt sicher $\lim_{x\to 0} (f(x)g(x)) \neq 0$.
- (d) [false] Man kann keine der anderen Aussagen folgern.
- 4. (Funktionsgrenzwerte.) Sei $f: \mathbb{R} \to \mathbb{R}$ eine stetige Funktion und es gelte

$$\lim_{n \to \infty} f\left(\frac{1}{n}\right) = 0.$$

Welche der folgenden Aussagen sind korrekt?

- (a) [true] $\lim_{x\to 0} f(x) = 0$.
- (b) [true] $\lim_{x\to 0} f(x) = f(0)$.
- (c) [false] $\lim_{x\to 0} f(x)$ existiert nicht.
- (d) [false] $\lim_{x\to 0} f(x)$ existiert, muss aber nicht 0 sein.
- 5. (Funktionseigenschaften.) Welche der folgenden Implikationen gelten für eine Funktion

$$f: \mathbb{R} \to \mathbb{R}$$
 ?

- (a) [false] f stetig differenzierbar $\Longrightarrow f$ stetig $\Longrightarrow f$ beschränkt
- (b) [true] f 2-mal differenzierbar $\Longrightarrow f$ stetig differenzierbar $\Longrightarrow f$ stetig
- (c) [false] f stetig differenzierbar $\Longrightarrow f$ stetig $\Longrightarrow f$ differenzierbar
- (d) [false] f differenzierbar $\Longrightarrow f$ stetig $\Longrightarrow f$ stetig differenzierbar
- 6. (Verschwindendes Integral) Sei $f:[a,b]\to\mathbb{R}$ eine integrierbare Funktion. Welche der folgenden Aussagen sind dann korrekt?
 - (a) [false] Falls f zusätzlich stetig ist, folgt aus $\int_a^b f = 0$, dass f = 0.

- (b) [false] Aus $\int_a^b f = 0$ folgt f = 0.
- (c) [true] Falls f zusätzlich stetig ist, folgt aus $\int_a^b |f| = 0$, dass f = 0.
- (d) [false] Aus $\int_a^b |f| = 0$ folgt f = 0.

4 Konkrete Beispiele

1. (Nullfolge.) Die Folge

$$\left(\frac{1}{n^2}\right)_{n>1}$$

ist eine Nullfolge. Aber welcher der folgenden Argumente sind korrekt?

- (a) [true] $\frac{1}{n^2} = \frac{1}{n} \frac{1}{n} \to 0 \cdot 0 = 0.$
- (b) [true] $\frac{1}{n^2} \leq \frac{1}{n} \rightarrow 0$
- (c) [false] Für jedes $\varepsilon > 0$ kann in der Definition des Grenzwerts $N = \varepsilon^2$ gesetzt werden um zu erreichen, dass für alle $n \geq N$ gilt: $\frac{1}{n^2} \leq \varepsilon$.
- (d) [true] $\left(\frac{1}{n^2}\right)$ ist eine Teilfolge von $\left(\frac{1}{n}\right)$ und daher ebenfalls eine Nullfolge.
- 2. (Reihenkonvergenz.) Welche der folgenden Aussagen zur Reihe

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

sind korrekt?

- (a) [true] Sie divergiert, weil $\sum \frac{1}{n}$ eine divergente Minorante ist.
- (b) [false] Sie konvergiert, weil $\frac{1}{\sqrt{n}} \to 0$.
- (c) [false] Sie konvergiert nach Quotiententest, denn $\frac{1}{\sqrt{n+1}} / \frac{1}{\sqrt{n}} \to 1$.
- (d) [false] Sie divergiert weil $\sum \frac{1}{n}$ divergiert und $\sum \frac{1}{\sqrt{n}} = \sqrt{\sum \frac{1}{n}}$.
- 3. (Stetigkeit aus der Definition.) Welche der folgenden Aussagen sind korrekt? Die Stetigkeit der Funktion

$$f(x) = x^2$$

im Punkt $x_0=0$ folgt aus dem $\varepsilon\text{-}\delta\text{-Kriterium}$ da wir

- (a) [false] zu $\delta > 0$ beliebig gegeben, $\varepsilon = \delta^2$ wählen können.
- (b) [false] zu $\delta > 0$ beliebig gegeben, $\varepsilon = \sqrt{\delta}$ wählen können.
- (c) [false] zu $\varepsilon > 0$ beliebig gegeben, $\delta = \varepsilon^2$ wählen können.
- (d) [true] zu $\varepsilon > 0$ beliebig gegeben, $\delta = \sqrt{\varepsilon}$ wählen können.
- 4. (Differenzierbarkeit.) Wir betrachten die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = (|x| - 1)^2.$$

Welche der folgenden Aussagen sind korrekt?

- (a) [false] f ist auf ganz $\mathbb R$ differenzierbar, weil das Quadrat des Betrags $|x|^2=x^2$ differenzierbar ist.
- (b) [true] f ist in $\xi=0$ nicht differenzierbar weil |x| dort nicht differenzierbar ist.
- (c) [false] f ist in $\xi_{\pm}=\pm 1$ nicht differenzierbar.
- (d) [false] f ist überall differenzierbar, aber f' ist in $\xi = 0$ nicht stetig.
- 5. (Maxima.) Welche der Aussagen sind korrekt? Die Funktion

$$f: [-2,2] \to \mathbb{R}, \quad f(x) = x^3 - 3x$$

hat

- (a) [true] zwei lokale Maxima.
- (b) [true] zwei globale Maxima.
- (c) [false] ein lokales Maximum in $x_0=-1$ und ein globales Maximum in $x_1=2$, das aber kein lokales Minimum ist.
- (d) [false] kein globales Minimum.
- 6. (Uneigentliche Integrale.) Welche der folgenden Aussagen über uneigentliche Integrale sind korrekt?

(a) [true]
$$\int_{1}^{\infty} \frac{1}{x^2} dx = 1.$$

(b) [false] $\int_{0}^{1} \frac{1}{x^2} dx$ konvergiert.

- (c) [true] $\int\limits_0^1 \frac{1}{x} dx$ divergiert. (d) [false] $\int\limits_1^\infty \frac{1}{x} dx$ konvergiert.

AUSARBORTONG 4. TORMIN

- $(0)(1) b_n \leq o_n = 0 \quad \text{lim } b_n \leq \lim_{n \to \infty} o_n$
 - (1) Vir Sehe Ca = On-by; clomitit a nicht nepotit cend vegen de Count wet sohe oud konoupet mit

lim G= limon-libby; es bleibt ++ doss lim G=0.

(2) Soi inder on celle a co Wir vousender einer Trick und clie Def des areusuets: Su E=-00=) FN(E) + 12 N(E):

|Cn-c| (ε =) |Cn+ε| (ε =) Cn+ε(ε =) Cn <0 ξ

Eine entsprechende Ausoge for a winde locken:

bucon far fortalle a => linby 2 linon.

Diene Aconoge ist lobel, deun si ba= In, on=0, clour pilt ba don to ober limba=0 = limon

(b) (i) Nein; ein Gepenhap ist In = (-1,0) denn hier at A In = \$\int \left[kein 0>0 lown it OIn nextors sun denn 1/n >0 => 1/n <0 lin spote in]

