Constants/Basic

$-b \pm \sqrt{b^2 - 4ac}$
$x = {2a}$
$\sin(\theta) = \frac{opposite}{1}$
hypotenuse
$cos(\theta) = \frac{adjacent}{}$
hypotenuse
$tan(\theta) = \frac{opposite}{d\theta}$
$\frac{\tan(0)}{adjacent}$

Radius of Earth = $6.38 \times 10^6 m$ Mass of Earth = $5.98 \times 10^{24} kg$ $g = 9.80 \frac{m}{c^2}$ $G = 6.673 \times 10^{-11} \frac{Nm^2}{kg^2}$ $N_A = 6.02 \times 10^{23}$ $q_e = -1.60 \times 10^{-19} C$ $\epsilon_0 = 8.85 \times 10^{-12} C^2 / (N \cdot m^2)$ $\mu_0 = 4\pi \times 10^{-7} \frac{Tm}{s}$ $h = 6.63 \times 10^{-34} I \cdot s$ $1 u = 931.5 \frac{MeV}{c^2}$ $m_e = 9.11 \times 10^{-31} \, kg$ $m_v = 1.6726 \times 10^{-27} \ kg$ $m_n = 1.6749 \times 10^{-27} \; kg$ Speed of sound in air at 20°C $= 343 \, m/s$ Density of water = $1000 \frac{kg}{m^3}$

01 Motion

$$\begin{split} \Delta d &= d_f - d_0 \\ v_{ave} &= \frac{dist}{\Delta t} \\ v_{ave} &= \frac{\Delta d}{\Delta t} = \frac{d_f - d_0}{t_f - t_0} \\ \overline{a} &= \frac{v_f - v_0}{t_f - t_0} \\ d &= \overline{v}t + d_0 \\ \overline{v} &= \frac{v_0 + v}{2} \\ v &= at + v_0 \\ d &= \frac{1}{2}at^2 + v_0t + d_0 \\ v^2 &= v_0^2 + 2a(d - d_0) \\ r &= \frac{v_0^2 si \, n \, 2\theta}{a} \end{split}$$

02 Forces

$$F_{net} = ma$$

$$W = mg$$

$$f_s \le \mu_s F_N$$

$$f_k = \mu_k F_N$$

$$F_S = k\Delta x$$

03 Uniform Circular Motion and Torque

$$\Delta\theta = \frac{\Delta s}{r}$$

$$a_c = \frac{v^2}{r} = r\omega^2$$

$$F_c = \frac{mv^2}{r} = mr\omega^2$$

$$\tau = rF \sin \theta$$

$$\alpha = \frac{\Delta\theta}{\Delta t}$$

$$v = r\omega$$

$$\alpha = \frac{\Delta\omega}{\Delta t}$$

$$a_t = r\alpha$$

$$\theta = \overline{\omega}t$$

$$\omega = \omega_0 + \alpha t$$

$$\theta = \omega_0 t + \frac{1}{2}\alpha t^2$$

$$\omega^2 = \omega_0^2 + 2\alpha\theta$$

$$\tau = I\alpha$$

Hoop about cylinder axis: $I = MR^2$ Hoop about any diameter: $I = \frac{MR^2}{2}$

Ring: $I = \frac{M}{2}(R_1^2 + R_2^2)$

Solid cylinder (or disk) about

cylinder axis: $I = \frac{MR^2}{2}$

Solid cylinder (or disk) about

central diameter: $I = \frac{MR^2}{4} + \frac{M\ell^2}{12}$

Thin rod about axis through center

 \perp to length: $I = \frac{M\ell^2}{12}$

Thin rod about axis through one end

 \perp to length: $I = \frac{M\ell^2}{3}$

Solid sphere: $I = \frac{2MR^2}{5}$

Thin spherical shell: $I = \frac{2MR^2}{3}$

Slab about ⊥ axis through center:

$$I = \frac{M(a^2 + b^2)}{12}$$

04 Momentum

$$J = F\Delta t$$

$$p = mv$$

$$F\Delta t = mv_f - mv_0$$

$$p_0 = p_f$$

$$KE = \frac{1}{2}mv^2$$

$$L = I\omega$$

$$\tau_{net} = \frac{\Delta L}{\Delta t}$$

$$L_0 = L_f$$

05 Kepler's Laws and Gravity

$$\frac{T_1^2}{T_2^2} = \frac{r_1^3}{r_2^3}$$

$$a = \frac{r_a + r_p}{2}$$

$$b = \sqrt{r_a r_b}$$

$$c = r_a - a$$

$$e = \frac{c}{a}$$

$$F_G = \frac{GmM}{r^2}$$

$$g = \frac{GM}{r^2}$$

$$v = \frac{2\pi r}{T}$$

$$v = \sqrt{\frac{GM}{r}}$$

$$T^2 = \frac{4\pi^2}{GM}$$

$$T^2 = \frac{4\pi^2}{GM}$$

06 Energy

$$W = Fd \cos \theta$$

$$P = \frac{W}{t}$$

$$KE = \frac{1}{2}mv^{2}$$

$$KE = \frac{1}{2}I\omega^{2}$$

$$PE_{g} = mgh$$

$$PE_{s} = \frac{1}{2}kx^{2}$$

$$PE_{f} + KE_{f} = PE_{0} + KE_{0}$$

$$E_{0} + W_{net} = E_{f}$$

$$IMA = \frac{F_{r}}{F_{e}} = \frac{d_{e}}{d_{r}}$$

Physics Formula Sheet

Lever: $IMA = \frac{L_e}{L_r}$

Wheel and Axle: $IMA = \frac{R}{r}$

Inclined Plane: $IMA = \frac{L}{h}$

Wedge: $IMA = \frac{L}{t}$ Screw: $IMA = \frac{2\pi L}{P}$

Pulley: IMA = N

Efficiency (Eff) = $\frac{W_{out}}{W_{in}} \times 100\%$

07 Static Electricity

$$F = k \frac{|q_1 q_2|}{r^2}$$

$$E = \frac{F}{q_0} = \frac{kq}{r^2}$$

$$V = \frac{\Delta PE}{q_0} = \frac{kq}{r}$$

$$E = \frac{\Delta V}{x_f - x_0}$$

08 Circuits

$$I = \frac{\Delta Q}{\Delta t}$$

$$I = qnAv_a$$

$$V = IR$$

$$R_S = R_1 + R_2 + R_3 + \cdots$$

$$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$

$$P = IV$$

$$P = I^2R$$

$$P = \frac{V^2}{R}$$

$$P_{ave} = \frac{1}{2}I_0V_0$$

$$I_{rms} = \frac{I_0}{\sqrt{2}}$$

$$V_{rms} = \frac{V_0}{\sqrt{2}}$$

09 Magnetism

$$\vec{F} = qvB \sin \theta$$

$$r = \frac{mv}{qB}$$

$$F = ILB \sin \theta$$

$$\tau = NIAB \sin \phi$$

$$\Sigma \vec{B} \cdot \Delta \vec{\ell} = \mu_0 I$$

$$B = \frac{\mu_0 I}{2\pi r}$$

12 Dual Nature of Light

$$\sin \theta = m \frac{\lambda}{d}$$

$$\sin \theta = \left(m + \frac{1}{2}\right) \frac{\lambda}{d}$$

$$\sin \theta = m \frac{\lambda}{W}$$

$$\theta = 1.22 \frac{\lambda}{D}$$

$$E = nhf = n \frac{hc}{\lambda}$$

$$KE_e = hf - BE$$

$$p = \frac{h}{\lambda} = \frac{hf}{c}$$

10 Waves and Sound

 $B = N \frac{\mu_0 I}{2R}$

 $B = \mu_0 n I$ $\frac{F}{l} = \frac{\mu_0 I_1 I_2}{2\pi r}$

 $emf = -N\left(\frac{\Phi - \Phi_0}{t - t_0}\right) = -N\frac{\Delta\Phi}{\Delta t}$

 $F = qvB \sin \theta$

emf = vBL

 $emf = NBA\omega \sin \omega t$ $\omega = 2\pi f$

 $\frac{I_P}{I_S} = \frac{V_S}{V_P} = \frac{N_S}{N_P}$

$$f = \frac{1}{T}$$

$$v = \frac{\lambda}{T} = f \cdot \lambda$$

$$Beats = |f_1 - f_2|$$

$$I = \frac{P}{A}$$

$$A_{sphere} = 4\pi r^2$$

$$I = \frac{(\Delta p)^2}{2\rho v_w}$$

$$\beta = (10 dB) \log\left(\frac{I}{I_0}\right)$$

$$f_o = f_s\left(\frac{v_w \pm v_o}{v_w \mp v_s}\right)$$

$$f_n = n\left(\frac{v_w}{2L}\right)$$

$$f_n = n\left(\frac{v_w}{4L}\right)$$

11 Electromagnetic Rays

$$c = f\lambda$$

$$\theta_r = \theta_i$$

$$f = \frac{1}{2}R$$

$$f = -\frac{1}{2}R$$

$$\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$$

$$m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$$

$$n = \frac{c}{v}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$\theta_c = \sin^{-1} \frac{n_2}{n_1}$$

$$P = \frac{1}{f}$$

13 Radioactivity, Fission, and Fusion

$${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}Y + {}_{2}^{4}\text{He}$$

$${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}Y + e^{-} + \nu$$

$${}_{Z}^{A}X \rightarrow {}_{Z}^{A}X + \gamma$$

$$N = N_{0}e^{-\lambda t}$$

$$\lambda = \frac{\ln(2)}{t_{1/2}}$$

$$E = mc^{2}$$

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanide Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Series	Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
	138.905	140.116	140.908	144.243	144.913	150.36	151.964	157.25	158.925	162.500	164.930	167.259	168.934	173.055	174.967
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinide	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Sarias															
Series	Actinium 227.028	Thorium 232.038	Protactinium 231.036	Uranium 238.029	Neptunium 237.048	Plutonium 244.064	Americium 243.061	Curium 247.070	Berkelium 247.070	Californium 251.080	Einsteinium [254]	Fermium 257.095	Mendelevium 258.1	Nobelium 259.101	Lawrencium [262]