TD8-Couples de variables aléatoires

Exercice 5.

1. Remarquons que pour tout $(i, j) \in \mathbb{N}^* \times \mathbb{N}^*$, on a :

$$[G_1 + G_2 = i, G_1 - G_2 = j] = \left[G_1 = \frac{i+j}{2}, G_1 - G_2 = j\right].$$

En effet, pour tout $\omega \in \Omega$, on a

$$\omega \in [G_1 + G_2 = i, G_1 - G_2 = j] \Leftrightarrow \begin{cases} G_1(\omega) + G_2(\omega) = i \\ G_1(\omega) - G_2(\omega) = j \end{cases}$$
$$\Leftrightarrow \begin{cases} 2G_1(\omega) = i + j \\ G_1(\omega) - G_2(\omega) = j \end{cases} (L_1 \leftarrow L_1 + L_2)$$
$$\Leftrightarrow \omega \in \left[G_1 = \frac{i+j}{2}, G_1 - G_2 = j\right].$$

Par conséquent :

$$P([G_1 + G_2 = i, G_1 - G_2 = j]) = P\left(\left[G_1 = \frac{i+j}{2}, G_1 - G_2 = j\right]\right).$$

Or, comme G_1 suit une loi géométrique de paramètre p, $G_1(\Omega) = \mathbb{N}^*$ donc, pour les entiers i et j tels que $\frac{i+j}{2} \notin \mathbb{N}^*$, on a forcément :

$$P([G_1 + G_2 = i, G_1 - G_2 = j]) = P\left(\left[G_1 = \frac{i+j}{2}, G_1 - G_2 = j\right]\right) = 0.$$

Par exemple,

$$P([G_1 + G_2 = 2, G_1 - G_2 = 1]) = P([G_1 = \frac{3}{2}, G_1 - G_2 = 1]) = 0$$

 $car \frac{3}{2} \notin \mathbb{N}^*$.

D'autre part, montrons que

- (a) $P([G_1 + G_2 = 2]) \neq 0$;
- (b) $P([G_1 G_2 = 1]) \neq 0$.

(a) Montrons que $P([G_1+G_2=2]) \neq 0$. Comme $G_1(\Omega)=G_2(\Omega)=\mathbb{N}^*$, on voit que

$$[G_1 + G_2 = 2] = [G_1 = 1, G_2 = 1]$$

donc

$$P([G_1 + G_2 = 2]) = P([G_1 = 1, G_2 = 1]).$$

Les variables aléatoires G_1 et G_2 étant indépendantes de loi $\mathcal{G}(p)$ on a

$$P([G_1 + G_2 = 2]) = P([G_1 = 1, G_2 = 1])$$

= $P([G_1 = 1]) + P([G_2 = 1])$
= p^2
> 0 car $p > 0$.

(b) Montrons que $P([G_1 - G_2 = 1]) \neq 0$. On voit que

$$[G_1 - G_2 = 1] \supset [G_1 = 2, G_2 = 1]$$

donc

$$P([G_1 + G_2 = 2]) \ge P([G_1 = 2, G_2 = 1]).$$

Les variables aléatoires G_1 et G_2 étant indépendantes de loi $\mathcal{G}(p)$ on a donc

$$P([G_1 + G_2 = 2]) \ge P([G_1 = 2, G_2 = 1])$$

$$\ge P([G_1 = 2]) + P([G_2 = 1])$$

$$= p^2(1 - p)$$

$$> 0 \quad \text{car } 0$$

Conclusion:

$$P([G_1 + G_2 = 2]) P([G_1 - G_2 = 1]) \neq 0 = P([G_1 + G_2 = 2, G_1 - G_2 = 1]).$$

Les variables aléatoires $G_1 - G_2$ et $G_1 + G_2$ ne sont pas indépendantes.

Remarque 1 (Loi de $G_1 - G_2$). On a $(G_1 - G_2)(\Omega) = \mathbb{Z}$. En effet, soit $j \in \mathbb{Z}$. D'après la formule des probabilités totales appliquées avec le système complet d'événements

$$([X=k])_{k\in\mathbb{N}^*}$$
, on a

$$P([G_1 - G_2 = j]) = \sum_{k=1}^{+\infty} P([G_1 - G_2 = j, G_1 = k])$$

$$= \sum_{k=1}^{+\infty} P([k - G_2 = j, G_1 = k])$$

$$= \sum_{k=1}^{+\infty} P([G_2 = k - j, G_1 = k])$$

$$= \sum_{k=1}^{+\infty} P([G_2 = k - j]) P([G_1 = k]) \quad \text{car } G_1 \text{ et } G_2 \text{ sont indépendantes}$$

Or, $G_2(\Omega) = \mathbb{N}^*$ donc $P([G_2 = k - j]) = 0$ pour tous les $k \in \mathbb{N}^*$ tels que $k - j \le 0$ c'est-à-dire pour tous les $k \in \mathbb{N}^*$ tels que $k \le j$. Ainsi :

$$P([G_1 - G_2 = j]) = \sum_{\substack{k=1 \ k \ge j+1}}^{+\infty} P([G_2 = k - j]) P([G_1 = k])$$
$$= \sum_{\substack{k \in \mathbb{N}^* \cap [j+1, +\infty[}} P([G_2 = k - j]) P([G_1 = k])$$

(a) Si $j \ge 0$, alors $\mathbb{N}^* \cap [j+1, +\infty[$ est l'ensemble des nombres entiers supérieurs ou égaux à j+1 donc

$$P([G_1 - G_2 = j]) = \sum_{k \in \mathbb{N}^* \cap [j+1, +\infty[} P([G_2 = k-j]) P([G_1 = k])$$

$$= \sum_{k=j+1}^{+\infty} P([G_2 = k-j]) P([G_1 = k])$$

$$= \sum_{k=j+1}^{+\infty} p(1-p)^{k-j-1} p(1-p)^{k-1}$$

$$= p^2 \sum_{k=j+1}^{+\infty} (1-p)^{2k-j-2}$$

$$= p^2 \sum_{\ell=1}^{+\infty} (1-p)^{2\ell+j-2}$$

en faisant le changement de variable $\ell = k - j$. Donc

$$P([G_1 - G_2 = j]) = p^2 \sum_{\ell=1}^{+\infty} (1 - p)^{2\ell + j - 2}$$

$$= p^2 (1 - p)^{j - 2} \sum_{\ell=1}^{+\infty} (1 - p)^{2\ell}$$

$$= p^2 (1 - p)^{j - 2} \left(\frac{1}{1 - (1 - p)^2} - 1\right)$$

car on reconnaît la somme d'une série géométrique de raison $(1-p)^2$ moins son premier terme. En simplifiant un peu l'expression, on trouve :

$$P([G_1 - G_2 = j]) = \frac{p(1-p)^j}{2-p}$$

(b) Si j < 0, alors $j + 1 \le 0$ donc $\mathbb{N}^* \cap [j + 1, +\infty] = \mathbb{N}^*$. Par conséquent,

$$P([G_1 - G_2 = j]) = \sum_{k \in \mathbb{N}^* \cap [j+1, +\infty[} P([G_2 = k-j]) P([G_1 = k])$$

$$= \sum_{k=1}^{+\infty} P([G_2 = k-j]) P([G_1 = k])$$

$$= \sum_{k=1}^{+\infty} p(1-p)^{k-j-1} p(1-p)^{k-1}$$

$$= p^2 \sum_{k=1}^{+\infty} (1-p)^{2k-j-2}$$

$$= \frac{p^2}{(1-p)^{j+2}} \sum_{k=1}^{+\infty} (1-p)^{2k}$$

$$= \frac{p^2}{(1-p)^{j+2}} \left(\frac{1}{1-(1-p)^2} - 1\right)$$

car on reconnaît la somme d'une série géométrique de raison $(1-p)^2$ moins son premier terme. En simplifiant un peu l'expression, on trouve :

$$P([G_1 - G_2 = j]) = \frac{p}{(2-p)(1-p)^j}$$

2. On va commencer par étudier la loi de A. On considère l'épreuve de Bernoulli dont le succès est l'événement $S=\ll$ le tireur touche deux fois la cible \gg . Comme les deux tirs d'un tireur sont supposés indépendants, on a

$$P(S) = P([atteindre la cible au 1^{er} tir] \cap [atteindre la cible au 2^{er} tir])$$

= $P([atteindre la cible au 1^{er} tir]) P([atteindre la cible au 2^{er} tir])$
= p^2

Maintenant, si on répète cette épreuve de Bernoulli avec n tireurs indépendants, la variable A compte le nombre de tireurs ayant eu un succès. Ainsi A suit une loi $\mathcal{B}(n, p^2)$.

Étudions maintenant la loi de B. On considère l'épreuve de Bernoulli dont le succès est l'événement $S = \ll$ le tireur touche exactement une fois la cible \gg . Comme les deux tirs d'un tireur sont supposés indépendants, on a

$$P(S) = P$$
 ([atteindre la cible au 1^{er} tir] \cap [rater la cible au 2^{er} tir])
+ P ([rater la cible au 1^{er} tir]) P ([atteindre la cible au 2^{er} tir])
= $p(1-p) + (1-p)p$
= $2p(1-p)$

Maintenant, si on répète cette épreuve de Bernoulli avec n tireurs indépendants, la variable B compte le nombre de tireurs ayant eu un succès. Ainsi B suit une loi $\mathcal{B}(n,2p(1-p))$.

Or, les événements [A = n] et [B = 1] sont incompatibles car il n'y a que n tireurs. Donc

$$P([A = n, B = 1]) = 0.$$

D'autre part,

$$P([A = n]) = p^{2n}$$
 et $P([B = 1]) = n2p(1-p)(1-2p(1-p))^{n-1}$.

Comme $p \in]0,1[$, on obtient donc

$$P([A = n]) \neq 0$$
 et $P([B = 1]) \neq 0$

et par conséquent,

$$P([A = n]) P([B = 1]) \neq P([A = n, B = 1]).$$

Ainsi *A* et *B* ne sont pas indépendantes.

Exercice 6. On a $X(\Omega) = [1, n]$ et $Y(\Omega) = \mathbb{N}^*$. Soit $(i, j) \in X(\Omega) \times Y(\Omega)$. Par indépendance, on a

$$P([X = i, Y = j]) = P([X = i]) P([Y = j]) = \frac{1}{n} \times \frac{1}{n} \left(1 - \frac{1}{n}\right)^{j-1}.$$

Exercice 8. Soient X_1, \ldots, X_n des variables aléatoires mutuellement indépendantes.

- 1. On procède par récurrence. Soit \mathcal{P}_n :
 - « pour toutes X_1,\ldots,X_n des variables aléatoires mutuellement indépendantes telles pour tout $i\in [\![1,n]\!]$, $X_i\hookrightarrow \mathcal{B}(k_i,p)$ on a $X_1+\cdots+X_n\hookrightarrow \mathcal{B}(k_1+\cdots+k_n,p)$ ». Montrons par récurrence que pour tout $n\geq 2$, \mathcal{P}_n est vraie.

- Initialisation : le cas n = 2 est un résultat de cours.
- Hérédité : supposons \mathcal{P}_n vraie pour un certain $n \geq 2$ et montrons que \mathcal{P}_{n+1} est vraie. Soient X_1, \ldots, X_{n+1} des variables aléatoires mutuellement indépendantes telles pour tout $i \in [1, n+1]$, $X_i \hookrightarrow \mathcal{B}(k_i, p)$. On pose $Y = X_1 + \cdots + X_n$.
 - (a) Montrons que X_1, \ldots, X_n sont mutuellement indépendantes. On sait que X_1, \ldots, X_{n+1} sont mutuellement indépendantes donc

$$\forall (x_1,...,x_{n+1}) \in X_1(\Omega) \times \cdots \times X_{n+1}(\Omega), P\left(\bigcap_{k=1}^{n+1} [X_k = x_k]\right) = \prod_{k=1}^{n+1} P\left([X_k = x_k]\right).$$

Soit $(x_1,...,x_n) \in X_1(\Omega) \times \cdots \times X_n(\Omega)$. D'après la formule des probabilités totales appliquées avec le système complet d'événement $([X_{n+1} = x_{n+1}])_{x_{n+1} \in X_{n+1}(\Omega)}$ on trouve donc :

$$P\left(\bigcap_{k=1}^{n} [X_{k} = x_{k}]\right) = \sum_{x_{n+1} \in X_{n+1}(\Omega)} P\left(\left(\bigcap_{k=1}^{n} [X_{k} = x_{k}]\right) \cap [X_{n+1} = x_{n+1}]\right)$$

$$= \sum_{x \in X_{n+1}(\Omega)} \prod_{k=1}^{n+1} P\left([X_{k} = x_{k}]\right)$$

$$= \prod_{k=1}^{n} P\left([X_{k} = x_{k}]\right) \sum_{x \in X_{n+1}(\Omega)} P\left([X_{n+1} = x_{n+1}]\right)$$

$$= \prod_{k=1}^{n} P\left([X_{k} = x_{k}]\right).$$

Cela montre que

$$\forall (x_1,\ldots,x_n) \in X_1(\Omega) \times \cdots \times X_n(\Omega), \ P\left(\bigcap_{k=1}^n \left[X_k = x_k\right]\right) = \prod_{k=1}^n P\left(\left[X_k = x_k\right]\right).$$

Ainsi X_1, \ldots, X_n sont mutuellement indépendantes.

- (b) D'après l'hypothèse de récurrence, Y suit donc une loi $\mathcal{B}(k_1 + \cdots + k_n, p)$.
- (c) D'après le lemme des coalitions, Y et X_{n+1} sont indépendantes.
- (d) D'après \mathcal{P}_2 , on a donc

$$X_1+\cdots+X_{n+1}=Y+X_{n+1}\hookrightarrow \mathcal{B}(k_1+\cdots+k_n+k_{n+1},p).$$

Ainsi, \mathcal{P}_{n+1} est vraie.

- Conclusion : d'après le principe de récurrence, pour tout entier $n \geq 2$, \mathcal{P}_n est vraie.
- 2. Même preuve que pour la question précédente.

Exercice 9. 1. On a $(X + Y)(\Omega) = \mathbb{N}^* \setminus \{1\}$. Soit $n \geq 2$. D'après la formule des probabilités totales appliquée avec le système complet d'événements $([X = i])_{i \in \mathbb{N}^*}$ on a

$$P([X + Y = n]) = \sum_{i=1}^{+\infty} P([X = i, X + Y = n])$$

$$= \sum_{i=1}^{+\infty} P([X = i, Y = n - i])$$

$$= \sum_{i=1}^{n-1} P([X = i, Y = n - i]) \quad \text{car } P([X = i, Y = n - i]) = 0 \text{ si } n \le i$$

$$= \sum_{i=1}^{n-1} P([X = i]) P[[Y = n - i]) \quad \text{par indépendance de } X \text{ et } Y$$

$$= \sum_{i=1}^{n-1} p(1 - p)^{i-1} p(1 - p)^{n-i-1} \quad \text{car } X \text{ et } Y \text{ suivent une loi } \mathcal{G}(p)$$

$$= p^2 \sum_{i=1}^{n-1} (1 - p)^{i-1+n-i-1}$$

$$= (n-1)p^2 (1-p)^{n-2}.$$

- 2. (a) Posons $V = \min(X, Y)$. Alors $V(\Omega) = \mathbb{N}^*$.
 - Soit $k \in \mathbb{N}^*$. Pour tout $\omega \in \Omega$, on a

$$V(\omega) > k \iff \min(X(\omega), Y(\omega)) > k \iff X(\omega) > k \text{ et } Y(\omega) > k.$$

Donc

$$[V > k] = [X > k] \cap [Y > k].$$

Ainsi,

$$P\left(\left[\min(X,Y) > k\right]\right) = P\left(\left[X > k\right] \cap \left[Y > k\right]\right)$$

$$= P\left(\left[X > k\right]\right) P\left(\left[Y > k\right]\right) \quad \text{car } X \text{ et } Y \text{ sont indépendantes}$$

$$= \left(\sum_{i=k+1}^{+\infty} p(1-p)^{i-1}\right) \left(\sum_{j=k+1}^{+\infty} p(1-p)^{j-1}\right)$$

$$= p^2 \left(\sum_{\ell=k}^{+\infty} (1-p)^{\ell}\right)^2$$

$$= (1-p)^{2k}$$

• On a donc:

$$P([\min(X,Y) = 1]) = 1 - P([\min(X,Y) > 1]) = 1 - (1 - p)^2$$

et, pour tout k > 2, on a

$$P([\min(X,Y) = k]) = P([\min(X,Y) > k-1]) - P([\min(X,Y) > k])$$

$$= (1-p)^{2(k-1)} - (1-p)^{2k}$$

$$= (1-p)^{2(k-1)} (1-(1-p)^2).$$

Ainsi, min(X, Y) suit une loi géométrique de paramètre $1 - (1 - p)^2$.

- (b) Posons $U = \max(X, Y)$. Alors $U(\Omega) = \mathbb{N}^*$.
 - Soit $k \in \mathbb{N}^*$. Pour tout $\omega \in \Omega$, on a

$$U(\omega) \le k \iff \max(X(\omega), Y(\omega)) \le k \iff X(\omega) \le k \text{ et } Y(\omega) \le k.$$

Donc

$$[U \le k] = [X \le k] \cap [Y \le k].$$

• Ainsi,

$$\begin{split} P\left([\max(X,Y) \leq k]\right) &= P\left([X \leq k] \cap [Y \leq k]\right) \\ &= P\left([X \leq k]\right) P\left([Y \leq k]\right) \quad \text{par indépendance} \\ &= \left(\sum_{i=1}^k p(1-p)^{i-1}\right) \left(\sum_{j=1}^k p(1-p)^{j-1}\right) \\ &= p^2 \left(\sum_{\ell=0}^{k-1} (1-p)^\ell\right)^2 \\ &= (1-(1-p)^k)^2 \end{split}$$

• On a donc:

$$P([\max(X,Y) = 1]) = p^2$$

et, pour tout $k \ge 2$, on a

$$\begin{split} P\left([\max(X,Y)=k]\right) &= P\left([\max(X,Y) \leq k]\right) - P\left([\max(X,Y) \leq k-1]\right) \\ &= (1-(1-p)^k)^2 - (1-(1-p)^{k-1})^2 \\ &= p(1-p)^{k-1}(2-(2-p)(1-p)^{k-1}). \end{split}$$

3. Comme X et Y possède une espérance, X+Y aussi et par linéarité on a

$$E(X + Y) = E(X) + E(Y) = \frac{2}{p}.$$

De plus, $\min(X,Y)$ suit une loi géométrique de paramètre $1-(1-p)^2$ donc possède une espérance et

$$E(\min(X,Y)) = \frac{1}{1 - (1-p)^2}.$$

Pour justifier l'existence et calculer l'espérance de max(X,Y) on peut procéder de plusieurs façons.

• Méthode 1 : on remarque que $\max(X,Y) + \min(X,Y) = X + Y$ donc $\max(X,Y) = X + Y - \min(X,Y)$. Ainsi, comme on vient de voir que que X + Y et $\min(X,Y)$ possèdent une espérance, $\max(X,Y)$ aussi et par linéarité on a

$$E(\max(X,Y)) = E(X+Y) - E(\min(X,Y)) = \frac{2}{p} - \frac{1}{1 - (1-p)^2} = \frac{1-p}{p(2-p)}$$

• Méthode 2 : on connaît la loi de $U = \max(X,Y)$. Par définition, U possède une espérance si la série $\sum_{k\geq 1} kP\left([U=k]\right)$ est absolument convergente. Comme cette série est à termes positifs, elle est absolument convergente si et seulement si elle est convergente. Or, pour tout $k\in\mathbb{N}^*$ on a

$$kP([U=k]) = k \left((1 - (1-p)^k)^2 - (1 - (1-p)^{k-1})^2 \right)$$

$$= k \left((1-p)^{2k} - (1-p)^{2(k-1)} + 2(1-p)^{k-1} - 2(1-p)^k \right)$$

$$= k(1-p)^{2(k-1)} \left((1-p)^2 - 1 \right) + 2pk(1-p)^{k-1}.$$

Ainsi, $\sum_{k\geq 1} kP\left([U=k]\right)$ est combinaison linéaire des séries géométriques dérivées premières $\sum_{k\geq 1} k(1-p)^{2(k-1)}$ et $\sum_{k\geq 1} k(1-p)^{(k-1)}$ de raison respective $(1-p)^2$ et (1-p). Comme |1-p|<1 et $|(1-p)^2|<1$, ces séries convergent et par conséquent, $\sum_{k\geq 1} kP\left([U=k]\right)$ converge aussi. Ainsi, U possède une espérance et

$$E(U) = \sum_{k=1}^{+\infty} kP([U=k])$$

$$= \left((1-p)^2 - 1 \right) \sum_{k=1}^{+\infty} k(1-p)^{2(k-1)} + 2p \sum_{k=1}^{+\infty} k(1-p)^{k-1}$$

$$= \left((1-p)^2 - 1 \right) \times \frac{1}{1 - (1-p)^2} + 2p \times \frac{1}{1 - (1-p)}$$

$$= -\frac{1}{1 - (1-p)^2} + \frac{2}{p}$$

Exercice 11. 1. (a) Soit $n \in \mathbb{N}$.

$$P([X > n]) = 1 - P([X \le n]) = 1 - P\left(\bigcup_{i=1}^{n} [X = i]\right)$$

$$= 1 - \sum_{i=1}^{n} P([X = i])$$

$$= 1 - \sum_{i=1}^{n} p_1 (1 - p_1)^{k-1}$$

$$= 1 - p_1 \frac{1 - (1 - p_1)^n}{p_1}$$

$$= (1 - p_1)^n.$$

(b) Soit $n \in \mathbb{N}$. On remarque que, $P([Y > n]) = (1 - p_2)^n$ par un calcul similaire à celui de la question précédente. Or, $[U > n] = [X > n] \cap [Y > n]$ donc

$$P([U > n]) = P([X > n] \cap [Y > n])$$

$$= P([X > n]) P([Y > n]) \quad \text{par indépendance}$$

$$= (1 - p_1)^n (1 - p_2)^n.$$

(c) On voit facilement que $U(\Omega) = \mathbb{N}^*$. Soit $n \in \mathbb{N}^*$. On a

$$P([U = n]) = F_{U}(n) - F_{U}(n - 1) = (1 - P([U > n]) - (1 - P([U > n - 1]))$$

$$= P([U > n - 1]) - P([U > n])$$

$$= (1 - p_{1})^{n-1}(1 - p_{2})^{n-1} - (1 - p_{1})^{n}(1 - p_{2})^{n}$$

$$= ((1 - p_{1})(1 - p_{2}))^{n-1}(1 - (1 - p_{1})(1 - p_{2})).$$

Ainsi, U suit une loi géométrique de paramètre $1 - (1 - p_1)(1 - p_2)$.

2. (a) Soit $n \in \mathbb{N}$.

$$P([V \le n]) = P([X \le n] \cap [Y \le n])$$
= $P([X \le n]) P([Y \le n])$ par indépendance
= $(1 - P([X > n]))(1 - P([Y > n]))$
= $(1 - (1 - p_1)^n)(1 - (1 - p_2)^n)$

Puis

$$P([V > n]) = 1 - P([V \le n]) = 1 - (1 - (1 - p_1)^n)(1 - (1 - p_2)^n).$$

En posant $q_1 = 1 - p_1$ et $q_2 = 1 - p_2$ on trouve

$$P([V > n]) = 1 - P([V \le n]) = q_1^n + q_2^n - q_1^n q_2^n.$$

(b) Soit $m \in \mathbb{N}^*$. Alors

$$\sum_{n=1}^{m} nP(V = n) = \sum_{n=1}^{m} n(F_V(n) - F_V(n-1))$$

$$= \sum_{n=1}^{m} n(P(V \le n) - P(V \le n-1))$$

$$= \sum_{n=1}^{m} n(P(V > n-1) - P(V > n))$$

$$= \sum_{n=1}^{m} nP(V > n-1) - \sum_{n=1}^{m} nP(V > n)$$

$$= \sum_{n=1}^{m} nP(V > n) - \sum_{n=1}^{m} nP(V > n)$$

en effectuant le changement de variable k = n - 1 dans la première somme. Ainsi

$$\sum_{n=1}^{m} nP(V=n) = \sum_{k=0}^{m-1} (k+1)P(V > k) - \sum_{n=1}^{m} nP(V > n)$$

$$= \sum_{k=0}^{m-1} kP(V > k) + \sum_{k=0}^{m-1} P(V > k) - \sum_{n=1}^{m} nP(V > n)$$

$$= \sum_{k=0}^{m-1} kP(V > k) + \sum_{k=0}^{m-1} P(V > k) - \left(\sum_{n=1}^{m-1} nP(V > n) + mP(V > m)\right)$$

$$= \sum_{k=0}^{m-1} P(V > k) - mP(V > m).$$

(c) L'existence de l'espérance de V est équivalente à la convergence absolue de la série $\sum_{n\geq 1} nP(V=n)$. Comme cette série est à termes positifs, V possède une espérance si et seulement si $\sum_{n\geq 1} nP(V=n)$ converge.

Or, d'après les questions précédentes, pour tout $m \in \mathbb{N}^*$ on a

$$\sum_{n=1}^{m} nP(V=n) = \sum_{k=0}^{m-1} P(V>k) - mP(V>m)$$

$$= \sum_{k=0}^{m-1} (q_1^k + q_2^k - q_1^k q_2^k) - mP(V>m)$$

$$= \sum_{k=0}^{m-1} q_1^k + \sum_{k=0}^{m-1} q_2^k - \sum_{k=0}^{m-1} (q_1 q_2)^k) - m(q_1^m + q_2^m + (q_1 q_2)^m).$$

Comme $|q_1| < 1$, $|q_2| < 1$ et $|q_1q_2| < 1$, les séries $\sum_{k \ge 0} q_1^k$, $\sum_{k \ge 0} q_2^k$ et $\sum_{k \ge 0} (q_1q_2)^k$ convergent et ont pour somme $\frac{1}{p_1}$, $\frac{1}{p_2}$ et $\frac{1}{p_1 + p_2 - p_1p_2}$. De plus

$$\lim_{m \to +\infty} m(q_1^m + q_2^m + (q_1q_2)^m) = 0$$

donc finalement, la série $\sum_{n\geq 1} nP(V=n)$ converge. Ainsi, V possède une espérance et

$$E(V) = \sum_{n=1}^{+\infty} nP(V=n) = \frac{1}{p_1} + \frac{1}{p_2} - \frac{1}{p_1 + p_2 - p_1 p_2}.$$

Exercice 12. Soit Y une variable aléatoire dont la loi est donnée par $Y(\Omega) = \mathbb{N}$ et

$$\forall n \in \mathbb{N}, \ P(Y=n) = \left(1 - \frac{1}{e}\right)e^{-n}.$$

1. Comme $Y(\Omega) = \mathbb{N}$, $(Y+1)(\Omega) = \mathbb{N}^*$. Soit $n \in \mathbb{N}^*$.

$$P([Y+1=n]) = P([Y=n-1]) = \left(1 - \frac{1}{e}\right)e^{-(n-1)}.$$

Ainsi $Y + 1 \hookrightarrow \mathcal{G}(1 - e^{-1})$. Du coup,

$$E(Y) = E(Y+1-1) = E(Y+1) - 1 = \frac{1}{1-e^{-1}} - 1 = \frac{1}{e-1}$$

et

$$V(Y) = V(Y+1) = \frac{e}{(e-1)^2}.$$

- 2. Soit *U* une variable de Bernoulli telle que $P(U=1) = P(U=0) = \frac{1}{2}$. On suppose que les variables aléatoires *U* et *Y* sont indépendantes et on note T = (2U-1)Y.
 - (a) T est un produit de variable aléatoire discrète donc c'est une variable aléatoire discrète. Comme $(2U-1)(\Omega)=\{-1,1\}$ et $Y(\Omega)=\mathbb{N}$ alors $T(\Omega)=\mathbb{Z}$. Soit $n\in\mathbb{Z}$.
 - $\sin n > 0$ on a, par la formule des probabilités totales :

$$\begin{split} P(T=n) &= P(T=n, U=1) + P(T=n, U=0) \\ &= P(Y=n, U=1) + P(-Y=n, U=0) \\ &= P(Y=n)P(U=1) + P(Y=-n)P(U=0) \quad \text{(indépendance)} \\ &= \frac{1}{2} \left(1 - \frac{1}{e}\right) e^{-n} + 0 \end{split}$$

 $\operatorname{car} -n < 0 \text{ et } Y(\Omega) = \mathbb{N}.$

• Si n = 0 on a de même

$$\begin{split} P(T=0) &= P(T=0, U=1) + P(T=0, U=0) \\ &= P(Y=0, U=1) + P(Y=0, U=0) \\ &= P(Y=0)P(U=1) + P(Y=0)P(U=0) \quad \text{(indépendance)} \\ &= \frac{1}{2} \left(1 - \frac{1}{e} \right) e^{-0} + \frac{1}{2} \left(1 - \frac{1}{e} \right) e^{-0} \\ &= 1 - \frac{1}{e}. \end{split}$$

• Si n < 0 on a de même

$$\begin{split} P(T=n) &= P(T=n, U=1) + P(T=n, U=0) \\ &= P(Y=n, U=1) + P(-Y=n, U=0) \\ &= P(Y=n)P(U=1) + P(Y=-n)P(U=0) \quad \text{(indépendance)} \\ &= 0 + \frac{1}{2} \left(1 - \frac{1}{e}\right) e^n \end{split}$$

 $\operatorname{car} n < 0 \operatorname{et} Y(\Omega) = \mathbb{N}.$

(b) Comme U et Y sont indépendantes d'après le lemme des coalitions, 2U-1 et Y sont indépendantes. De plus, 2U-1 et Y possèdent une espérance. Donc T possède une espérance et

$$E(T) = E(2U - 1)E(Y) = 0.$$

(c) Comme $(2U-1)(\Omega)=\{-1,1\}$ alors $((2U-1)^2)(\Omega)=\{1\}$ donc $T^2=(2U-1)^2T^2=T^2.$

Comme Y possède un moment d'ordre 2 et que $T^2 = Y^2$, T possède un moment d'ordre 2 aussi, donc une variance. Par la formule de Koenig-Huygens on a

$$V(T) = E(T^2) - E(T)^2 = E(Y^2) = V(Y) + E(Y)^2 = \frac{e+1}{(e-1)^2}$$

Exercice 14. 1. Soit $i \in [[1; n]]$. X_i suit une loi $\mathcal{B}(k, \frac{1}{n})$.

2. Soit $i \neq j$. On a $P(X_i = k, X_j = k) = 0$ car en k tirages on ne peut pas tirer k fois la boule i et k fois la boule j. Or, d'après la question précédente, $P(X_i = k)$ et $P(X_j = k)$ sont non nulles donc

$$P(X_i = k, X_i = k) \neq P(X_i = k)P(X_i = k).$$

Ainsi, les variables X_i et X_j ne sont pas indépendantes. Donc les variables X_1, \ldots, X_n ne le sont pas.

- 3. Soit $(i, j) \in [[1; n]]^2$ tel que $i \neq j$.
 - (a) La variable $X_i + X_j$ compte le nombre de succès lorsqu'on répète k fois indépendantes l'expérience de Bernoulli de succès « avoir la boule i ou la boule j ». La probabilité de succès est $\frac{2}{n}$ donc $X_i + X_j$ suit une loi $\mathcal{B}(k, \frac{2}{n})$
 - (b) On sait que $V(X_i + X_j) = \frac{2k}{n} \left(1 \frac{2}{n}\right)$. D'autre part, on a

$$V(X_i + X_j) = V(X_i) + V(X_j) + 2Cov(X_i, X_j) = 2 \times \frac{k}{n} \left(1 - \frac{1}{n}\right) + 2Cov(X_i, X_j).$$

Ainsi.

$$Cov(X_i, X_j) = \frac{k}{n} \left(1 - \frac{2}{n} \right) - \frac{k}{n} \left(1 - \frac{1}{n} \right) = -\frac{k}{n^2}.$$