Identifying Extreme Weather Events

Step 1: Load and Inspect the Dataset

Step 2: Define Extreme Weather Events Using the 1% Threshold

According to the **Outcomes document**, extreme weather events are identified based on **percentile thresholds (e.g., top 0.5%)**. We will define:

- **Heatwaves**: Days where temperature is in the top 1% of the dataset.
- **Heavy Precipitation**: Days where precipitation is in the top 1%.
- **Strong Winds**: Days where wind speed is in the top 1%.

Heatwave → "TREFMXAV_U" (Maximum Reference Temperature)
Heavy Precipitation → "PRECT" (Total Precipitation)
Strong Winds → "UBOT" or "VBOT" (Near-Surface Zonal and Meridional Wind Components)

To define extreme wind events, we need to compute the **wind speed magnitude** from UBOT (zonal wind) and VBOT (meridional wind) using the formula:

Wind Speed =
$$\sqrt{UBOT^2 + VBOT^2}$$

Extreme Weather Event Counts:

	Extreme	Event	Counts
heatwave			137
heavy_precipitation			137
strong_winds			137

Step 3: Summarize Frequency, Duration, and Seasonal Trends

To better understand these extreme events, we will:为了更好地了解这些极端事件,我们将:

• **Compute summary statistics** (mean, min, max, standard deviation)

Summary Statistics of Extreme Weather Events:				
	heatwave	heavy_precipitation	strong_winds	
count	27374	27374	27374	
unique	2	2	2	
top	False	False	False	
freq	27237	27237	27237	

Visualize event distributions using histograms and boxplots

The table presents a breakdown of three extreme weather event types (heatwave, heavy precipitation, and strong winds) across 27,374 observations.

- The **frequency** (**freq**) **of False values is 27,237**, indicating that only **137 days** (out of 27,374) experienced extreme weather (0.05% of total data).
- Since we defined extreme events using the **99.5th percentile**, this aligns with expectations.

Boxplot Analysis: Distribution of Extreme Weather Variables

- TREFMXAV_U (Temperature) Shows Outliers at High Values:
 - Most temperature values fall within a compact range.
 - However, a few extreme values (outliers) are **significantly higher**.
 - his confirms that heatwaves are caused by rare temperature spikes, not gradual increases.
- Precipitation (PRECT) Has a Right-Skewed Distribution
 - Most precipitation values are low, but extreme values exist at the upper range.
 - This suggests that **heavy precipitation days** are driven by intense but rare storms.
- Wind Speed Shows Moderate Variability
 - Wind speed values do not exhibit as many extreme outliers as precipitation or temperature.
 - This suggests that strong winds are somewhat more uniformly distributed compared to heatwaves and heavy rainfall.

- Outliers in temperature and precipitation suggest that extreme events are driven by sudden, high-impact spikes rather than gradual trends.
- Wind speeds are relatively more stable, with fewer extreme outliers.

Step 4: Analyze Seasonal Trends

To investigate whether extreme weather events occur more frequently in specific seasons, we can:

- Extract the month from the dataset (assuming there's a date column).
- Group extreme weather events by month.
- Plot time-series graphs to see seasonal variations.

Seasonal Trends of Extreme Weather Events:				
	heatwave	heavy_precipitation	strong_winds	
month				
1	0	7	49	
2	0	6	28	
3	0	2	12	
4	0	1	1	
5	6	5	0	
6	55	13	1	
7	47	14	0	
8	28	11	0	
9	1	23	0	
10	0	17	2	
11	0	24	14	
12	0	14	30	

Key Observations from the Seasonal Trends

A. Heatwaves

Peak Season: June to August

- Heatwaves increase sharply in June (55 occurrences), peak in July (46 occurrences), and then decline in August (28 occurrences).
- The sudden rise suggests that **summer months experience extreme temperature spikes**, which aligns with expected seasonal climate changes.

No Heatwaves in Winter (January-March, October-December)

• This indicates that extreme temperatures do not occur in the colder months.

B. Heavy Precipitation

Higher Frequency in Late Autumn and Early Winter

Heavy precipitation events increase in November (24 occurrences) and September(23 occurrences).

Lowest Precipitation Events in March-April (2\1 occurrences)

• This suggests that early spring experiences the least amount of extreme rainfall.

C. Strong Winds

Peak in Winter Months: January (49), February (28), November (14), and December (30)

- Extreme wind events are highly concentrated in winter, particularly in January and December.
- This suggests that strong winds are driven by winter storm systems or pressure gradients.

Very Few Strong Wind Events in Summer (May-August)

 This confirms that summer months experience calmer atmospheric conditions with fewer strong wind occurrences.

D. Seasonal Interpretation

- Winter (December February):
 - High Frequency of Strong Winds and Heavy Precipitation; No Heatwaves
 - This suggests that winter storms drive high wind speeds and increased precipitation.
 - The presence of **cyclonic activity and strong pressure systems** likely contributes to these conditions.

- Spring (March May):
 - Gradual Increase in Heatwaves; Low Precipitation and Wind Speeds
 - Heatwaves start appearing in April and May, signaling the transition to warmer temperatures.
 - Rainfall is at its **lowest in March**, indicating **dry spring conditions**.
- Summer (June August):
 - Peak Heatwave Season; Almost No Strong Winds
 - The highest number of heatwaves occurs in June, July, and August, confirming that extreme temperature spikes are most frequent in summer.
 - Strong winds disappear, suggesting calmer atmospheric conditions

- Autumn (September November)
 - Heavy Precipitation Returns; Strong Winds Increase; Heatwaves Drop to Zero
 - September to November shows a rise in rainfall and wind events, indicating the onset of winter storms.
 - Heatwaves completely disappear, confirming that extreme temperatures are mostly a summer-only phenomenon.

E. Key Takeaways

- 1. Heatwaves are exclusive to summer, peaking in July and August.
- 2. Heavy precipitation occurs most frequently in autumn and winter, particularly in November and December.
- 3. Strong winds dominate the winter months, peaking in January and December.
- 4. **Spring serves as a transition period**, with a gradual increase in heatwaves but still low precipitation and wind events.