

Metody Obliczeniowe w Nauce i Technice

Sprawozdanie | Interpolacja Lagrange'a i Newtona

Paweł Fornagiel | Informatyka rok II | Grupa 5

Data Wykonania: 23.03.2025 | Data Oddania: 28.06.2025

1. Analiza przypadku

Dla funkcji

$$x^2 - m\cos\left(\frac{\pi x}{k}\right)$$

gdzie
$$m = 5$$
 oraz $k = 0.5$

wyznaczyć dla zagadnienia Lagrange'a wielomian interpolujący w postaci Lagrange'a i Newtona. Interpolację przeprowadzić dla różnej liczby węzłów. Dla każdego przypadku interpolacji porównać wyniki otrzymane dla różnego rozmieszczenia węzłów: równoodległego oraz względem pierwiastków wielomianu Czebyszewa.

2. Dane techniczne

Zadanie zostało przeprowadzone z użyciem narzędzi o następujących parametrach:

- Komputer HP EliteBook 840 G6:
 - ► System operacyjny: Windows 11 x64
 - ► Procesor Intel(R) Core(TM) i5-8365U CPU 1.60GHz 1.90 GHz
 - ► Pamięć RAM: 8GB
- Środowisko: Jupyter Notebook
- Jezyk: Python 3.9.20
- Biblioteki języka: Numpy, Pandas, Matplotlib

Rysunek 1: Wykres funkcji $x^2 - m \cos(\frac{\pi x}{k})$

3. Przykładowe wykresy interpolacji - Węzły równoodległe

Rysunek 2: Interpolacja metodą Lagrange'a | Węzły Równoodległe | Liczba węzłów = 10

Rysunek 3: Interpolacja metodą Lagrange'a | Węzły Równoodległe | Liczba węzłów = 20

Rysunek 4: Interpolacja metodą Lagrange'a | Węzły Równoodległe | Liczba węzłów = 30

Rysunek 5: Interpolacja metodą Lagrange'a | Węzły Równoodległe | Liczba węzłów = 50

Rysunek 6: Interpolacja metodą Lagrange'a | Węzły Równoodległe | Liczba węzłów = 100

Rysunek 7: Interpolacja metodą Newtona | Węzły Równoodległe | Liczba węzłów = 10

Rysunek 8: Interpolacja metodą Newtona | Węzły Równoodległe | Liczba węzłów = 20

Rysunek 9: Interpolacja metodą Newtona | Węzły Równoodległe | Liczba węzłów = 30

Rysunek 10: Interpolacja metodą Newtona | Węzły Równoodległe | Liczba węzłów = 50

Rysunek 11: Interpolacja metodą Newtona | Węzły Równoodległe | Liczba węzłów = 100

4. Przykładowe wykresy interpolacji - Węzły Czebyszewa

Rysunek 12: Interpolacja metodą Lagrange'a | Węzły Czebyszewa | Liczba węzłów = 10

Rysunek 13: Interpolacja metodą Lagrange'a | Węzły Czebyszewa | Liczba węzłów = 20

Rysunek 14: Interpolacja metodą Lagrange'a | Węzły Czebyszewa | Liczba węzłów = 30

Rysunek 15: Interpolacja metodą Lagrange'a | Węzły Czebyszewa | Liczba węzłów = 50

Rysunek 16: Interpolacja metodą Lagrange'a | Węzły Czebyszewa | Liczba węzłów = 100

Rysunek 17: Interpolacja metodą Newtona | Węzły Czebyszewa | Liczba węzłów = 10

Rysunek 18: Interpolacja metodą Newtona | Węzły Czebyszewa | Liczba węzłów = 20

Rysunek 19: Interpolacja metodą Newtona | Węzły Czebyszewa | Liczba węzłów = 30

Rysunek 20: Interpolacja metodą Newtona | Węzły Czebyszewa | Liczba węzłów = 50

Rysunek 21: Interpolacja metodą Newtona | Węzły Czebyszewa | Liczba węzłów = 100

5. Wykresy błędów średniokwadratowych

Błąd średniokwadratowy wyrażony jest wzorem

$$E_k = \frac{\sqrt{\sum_{i=0}^{n} \left(x_i - x\right)^2}}{n}$$

dla ilości punktów n oraz kolejnych wartości rzeczywistej funkcji \boldsymbol{x}_i

Rysunek 22: Wykres błędów średniokwadratowych stosując interpolację metodą Newtona n=100

Rysunek 23: Wykres błędów średniokwadratowych stosując interpolację metodą Lagrange'a n=100

Rysunek 24: Wykres błędów średniokwadratowych stosując interpolację metodą Newtona, n=80

Rysunek 25: Wykres błędów średniokwadratowych stosując interpolację metodą Lagrange'a n=80

6. Wykresy błędów maksymalnych

Błąd maksymalnych wyrażony jest wzorem

$$E_m = \max_{i \in \{1,2,\ldots,n\}} (|x_i-x|)$$

dla ilości punktów n oraz kolejnych wartości rzeczywistej funkcji x_i .

Rysunek 26: Wykres błędów maksymalnych stosując interpolacje metodą Newtona n=100

_{1e12} Maksymalny błąd interpolacji metodą Lagrange

Węzły Równoodległe

interpolacje metodą Lagrange'a n=100

Rysunek 28: Wykres błędów maksymalnych stosując interpolacje metodą Newtona n=80

Rysunek 29: Wykres błędów maksymalnych stosując interpolacje metoda Lagrange'a n=80

7. Analiza Wyników

7.1. Interpolacja Metodą Lagrange'a

	Interpolacja metodą I	agrange'a
	Węzły Równood	ległe
Liczba Węzłów	Błąd Maksymalny	Średni błąd kwadratowy
1	24.74780482857821	1.4199405344996174
2	24.74780482857821	1.4199405344996174
3	9.99748271191592	0.6093028803476971
4	8.379025411640445	0.4342485016584389
5	12.325585980652722	0.6097926268265624
6	9.997482711915923	0.6093028803476972
7	12.996175370548958	0.5833139046985424
8	12.697949950317518	0.5033410157584912
9	9.00822096452739	0.4843297574164688
10	9.74896302888196	0.4975112903791879
11	9.997482711915934	0.6093028803476972
12	9.74783801273751	0.4974931941756586
13	9.078466580714585	0.4973162951297206
14	9.723548704184868	0.5140773065780997
15	25.363355197854155	0.8351751079190399
16	133.50285479921075	3.1444718885251977
17	1008.879033243139	23.28216499701825
18	1300.496393321917	29.83916005897248
19	10827.878766574722	241.40600147744175
20	2549.218130132861	55.26643578047168
21	53571.48496937437	1079.9916605138424
22	8206.230391027706	161.17824459320573
23	149413.6328263826	2772.246684999598
24	49980.87012725161	906.490647189548
25	274472.0854003978	4766.958622037764
26	119428.97480664524	2035.5178838745403
27	363884.51002189046	6000.270292968998
28	181058.646546835	2940.444472755794
29	369168.5893931395	5846.44938091358
30	199130.20639078517	3115.580328141693
31	298383.0534725538	4580.497598972593
32	169773.7241394321	2581.5170297179134
33	197840.44653290103	2965.723444955018
34	116873.11442311526	1739.1332746279409
35	110019.95636417824	1620.004502890096
36	66809.87268200397	978.2619933775018
37	52213.32597710258	758.7093480893221
38	32375.820379912635	468.4967976754796
39	21444.14229345522	308.630323106994
40	13514.083656462506	193.91311145049943
41	7709.717932434203	110.21411502818157
42	4921.275238466464	70.20405897902758
43	2449.868384437637	34.86226608749382
44	1579.9228854397352	22.451376237044688
45	693.6896016459323	9.84247823498877
46	451.0873567482342	6.394849959775127
47	176.25988313984283	2.4965714834998995
48	115.39339795954665	1.6337240807627824
49	40.43521425352422	0.5722380373791618
50	26.618646340063798	0.3766471169094025

Tabela 1: Błędy interpolacji metodą Lagrange'a dla węzłów równoodległych, liczba węzłów [1:50]

Interpolacja metodą Lagrange'a			
Węzły Czebyszewa			
Liczba Węzłów	Błąd Maksymalny	Średni błąd kwadratowy	
1	30.241227514842265	1.5786300619070992	
2	22.123702239646647	1.216145929182335	
3	9.8830192429414	0.5003878743221339	
4	10.626486862438416	0.5428577981912768	
5	9.95791161460356	0.5601294186763313	
6	9.862368763042811	0.4633445396701078	
7	9.722951948144589	0.5160690212405982	
8	10.66024095807011	0.4979074524511506	
9	9.03723981661092	0.3947613782390431	
10	11.173807875507723	0.4496472293300765	
11	10.67973588929524	0.4694065260301927	
12	10.913606035806794	0.5116441512435768	
13	9.154453177481788	0.4257233159206168	
14	9.426995267433904	0.4826484517962023	
15	10.244028869034516	0.5302163410290938	
16	9.928213502362125	0.4963041045529294	
17	10.426235954229334	0.4591585993657416	
18	11.416713866606752	0.4501424060803214	
19	10.57557950332774	0.4385771938911544	
20	10.312425927781424	0.4340622556953055	
21	9.690972747550331	0.4271023774062862	
22	10.39569004721764	0.4225973575801943	
23	10.188447248292125	0.3989378490571431	
24	10.870164603631292	0.3932047653021442	
25	9.36329904015394	0.3800041056135669	
26	11.87053650209703	0.3773207720777528	
27	7.497689125799796	0.3572667698030575	
28	9.425544060687958	0.3398131254147866	
29	4.657969567118373	0.2524948265105803	
30	5.568897023278262	0.2315286955699374	
31	2.237211184893132	0.1333651630656377	
	+		
32	2.565404626108564	0.1189405852156413	
33	0.909891065037721	0.0548441426624002	
34	0.9862274312713312	0.0479565942279085	
35	0.2932205805573336	0.0180623346520787	
36	0.3031373015872232	0.0156866151714885	
37	0.0850416539434828	0.0048803667736674	
38	0.0761129401981266	0.0042728633556465	
39	0.020236691365179	0.0011196220732365	
40	0.0173928953306091	0.0009931221191206	
41	0.0042271054396145	0.0002277294547163	
42	0.0034985026141471	0.0002012873511587	
43	0.0007745350811987	4.189935689981662e-05	
44	0.0006129671861434	3.598556210920523e-05	
45	0.0001249323765328	6.807486049599558e-06	
46	9.36166618190626e-05	5.669095141117962e-06	
47	1.7922559791827553e-05	9.461985556712868e-07	
48	1.2870128585973362e-05	7.868737673565278e-07	
49	2.30618764263113e-06	1.1366552705023101e-07	
50	1.5429976500946907e-06	1.270080813122098e-08	

Tabela 2: Błędy interpolacji metodą Lagrange'a dla węzłów Czebyszewa, liczba węzłów [1:50]

Interpolacja metodą Lagrange'a		
Węzły Równoodległe		
Liczba Węzłów	Błąd Maksymalny	Średni błąd kwadratowy
51	8.421395386312724	0.1191383452444112
52	5.569193904006776	0.0787818215013006
53	1.5973543643242394	0.0225862212672901
54	1.0599338397832303	0.0149750523152871
55	0.2612812303365288	0.0036863700489421
56	0.1768757427497718	0.0024768478269139
57	0.1097565885681355	0.0015160494917977
58	0.0285455180402216	0.0002973509549825
59	0.2357659668216634	0.0031855690734892
60	0.5272210463328229	0.0073993533149858
61	0.4922053734795426	0.0059015025172578
62	1.7439137144456538	0.0191267835440746
63	1.1555780749297	0.0117392406282259
64	4.473750742749761	0.0541951105198715
65	13.435139015569725	0.1433735313448972
66	2.6863190997579025	0.0297198283705715
67	15.363299379993954	0.1946682760110966
68	17.982519769368018	0.2196877294585467
69	96.26465759688256	1.362768736012034
70	175.7942452816409	2.0359917434161305
71	374.9029698850488	5.132328230664965
72	812.0262492572502	11.335416692977072
73	1516.295503927172	16.461199876890237
74	1823.5291278951463	19.9254223964601
75	484.9263610648302	5.596985884688678
76	5828.6482376411	65.14276638123638
77	14346.498962812066	171.19173837647585
78	8446.519234843623	96.8993228763337
79	28182.48341441972	291.60573076611365
80	32787.97375074275	463.994493087904
81	98284.02501701687	1036.3412105617692
82	180204.0788770904	2053.597767347087
83	131048.3557533484	1381.7851270255287
84	622472.4190823385	6638.085983607544
85	570903.9509484025	5867.372935491634
86	755275.2771251455	8112.684943682247
87	1042415.0544582052	12981.405562716887
88	4194284.0262492574	46930.671094539255
89	13631468.070080148	150295.1126305476
90	6291476.007999891	89303.70306461904
91	16777237.405347206	209869.31471952613
92	37750372.991122425	506414.275315989
93	67131046.97748333	678999.847162741
94	134206080.57800746	1683139.0398663322
95	134090172.83215208	1377864.2847704398
96	201326611.97375077	2251401.2397520547
97	570425363.9663798	6991353.328573007
98	939524115.9783232	12160885.615485275
99	167772139.91240016	1717746.3111233336
100	4.973799150320701e-14	1.316385490403998e-15

Tabela 3: Błędy interpolacji metodą Lagrange'a dla węzłów równoodległych, liczba węzłów [51 : 100]

Interpolacja metodą Lagrange'a		
Węzły Czebyszewa		
Liczba Węzłów	Błąd Maksymalny	Średni błąd kwadratowy
51	2.68077574361314e-07	1.2700808131220982e-08
52	1.7139501773399957e-07	1.1230660918365224e-08
53	2.8324151912784146e-08 1.8440344362602445e-08	1.386063191996302e-09
		1.1898740893397123e-09
55	2.734623194555752e-09	1.3701697252603659e-10
56	1.7627490578320246e-09	1.133584518915816e-10
57	2.424087597319158e-10	1.1470641567534376e-11
58	1.5108359008308978e-10	9.707313420268566e-12
59	1.9806378759312796e-11	8.792103806673243e-13
60	1.2290779505264028e-11	7.855768222565457e-13
61	1.5063505998114124e-12	7.093735565920707e-14
62	9.23428000731974e-13	6.083002762925033e-14
63	1.2079226507921706e-13	5.279752726672723e-15
64	7.815970093361102e-14	4.257909896900456e-15
65	2.8421709430404014e-14	8.865826560329788e-16
66	4.973799150320701e-14	1.2038816788323958e-15
67	4.263256414560601e-14	1.3082228932217165e-15
68	3.5527136788005016e-14	9.812073054286803e-16
69	4.973799150320701e-14	1.2519078769402052e-15
70	3.907985046680551e-14	9.97128817648241e-16
71	7.105427357601003e-14	1.5879634609271337e-15
72	3.5527136788005016e-14	9.069200482600114e-16
73	3.5527136788005016e-14	1.0134234948597602e-15
74	4.263256414560601e-14	1.0514934607645956e-15
75	3.907985046680551e-14	9.782114780713401e-16
76	4.973799150320701e-14	1.1465469242566773e-15
77	5.329070518200752e-14	1.478773387505892e-15
78	3.5527136788005016e-14	1.0722354717967109e-15
79	4.973799150320701e-14	1.0920580513897552e-15
80	3.5527136788005016e-14	1.0538885261682089e-15
81	6.039613253960853e-14	1.4613579153002181e-15
82	5.506706202140776e-14	1.1272701261570927e-15
83	4.263256414560601e-14	1.1872211520515182e-15
84	2.8421709430404014e-14	1.0179810574491213e-15
85	5.684341886080803e-14	1.4425532938633218e-15
86	3.1974423109204515e-14	9.690440578173348e-16
87	6.750155989720953e-14	1.4885842306022892e-15
88	7.105427357601003e-14	1.4914057145650956e-15
89	4.973799150320701e-14	1.2250204089222806e-15
90	4.973799150320701e-14	1.2222787298572533e-15
91	5.329070518200752e-14	1.3907083981836702e-15
92	4.263256414560601e-14	
		1.2017156216783861e-15
93	3.907985046680551e-14	1.0768320444873333e-15
	3.907985046680551e-14	1.1555426248809952e-15
95	4.618527782440651e-14	1.225162736297159e-15
96	4.618527782440651e-14	1.3772628741307357e-15
97	6.394884621840903e-14	1.3863392684210268e-15
98	4.263256414560601e-14	1.2314869746586502e-15
99	4.263256414560601e-14	1.1280348176424026e-15
100	5.329070518200752e-14	1.2211166432515165e-15

Tabela 4: Błędy interpolacji metodą Lagrange'a dla węzłów Czebyszewa, liczba węzłów [51 : 100]

7.2. Interpolacja Metodą Newton'a

	7. 1		
	Interpolacja metodą Newtona		
** * */	Węzły Równoodległe		
Liczba węzłów	Błąd Maksymalny	Średni Błąd Kwadratowy	
1	24.74780482857821	1.4199405344996174	
2	24.74780482857821		
3	9.997482711915923	0.6093028803476972	
5	8.379025411640448	0.4342485016584389	
6	12.325585980652717 9.997482711915923	0.6093028803476972	
7	12.996175370548976	0.5833139046985429	
8	12.697949950317522	0.5033410157584899	
9	9.00822096452739	0.4843297574164688	
10	9.748963028881956	0.4975112903791879	
11	9.997482711915923	0.6093028803476972	
12	9.74783801273751	0.4974931941756585	
13	9.078466580714649		
		0.4973162951297193	
14	9.72354870418494	0.5140773065781221	
15	25.363355197858315	0.8351751079190628	
16	133.5028547995677	3.1444718885279794	
17	1008.8790332444964	23.28216499703524	
18	1300.4963933219133	29.83916005890937	
19	10827.87876657472	241.40600147736876	
20	2549.2181301332607	55.266435780500125	
21	53571.48496937436	1079.9916605130584	
22	8206.23039102737	161.17824458936218	
23	149413.632826382	2772.2466849849543	
24	49980.87012949178	906.4906472005237	
25	274472.0854003978	4766.958621965269	
26	119428.9748066452	2035.5178838297184	
27	363884.5100218903 181058.64656315267	6000.270292692642 2940.444472419504	
29	369168.5893931365	5846.449378861126	
30	199130.2070917577	3115.580333557131	
31			
32	298383.0538666345	4580.497601083862 2581.5170310833573	
33	169773.72427359488 197840.44653288813	2965.723433935502	
34	116873.1144231207	1739.1332654583523	
35	110019.96042242124	1620.0045293695605	
36	66809.87268190658	978.2619762274968	
37	52213.32597711367	758.709228453627	
38	32375.82945941756	468.4968490985043	
39	21444.14252173544	308.6303329976031	
40	13514.083656813506	193.91287622256948	
41	7709.717933240781	110.21317295768382	
42	4921.275235607031	70.20307596430548	
43	2450.1659691864743	34.864459640609965	
44	1579.9228904530803	22.44958415297281	
45	693.7002234431825	9.842544218945	
46	451.08728660502976	6.39434965460081	
47	177.1631628708408	2.503163069666233	
48	116.59402568818646	1.6421931196908752	
49	40.434908252106894	0.5726085919262868	
50	27.534669506831005	0.3853321032217227	
	500051005		

Tabela 5: Błędy interpolacji metodą Newtona dla węzłów równoodległych, liczba węzłów [1 : 50]

Interpolacja metodą Newtona			
	Węzły Czebysz		
Liczba węzłów Błąd Maksymalny Średni Błąd Kwadratowy			
1	30.241227514842265	1.5786300619070992	
2	22.123702239646647	1.216145929182335	
3	9.883019242941408	0.5003878743221339	
4	10.626486862438412	0.5428577981912767	
5	9.95791161460356	0.5601294186763315	
6	9.862368763042818	0.4633445396701077	
7	9.722951948144592	0.5160690212405983	
8	10.660240958070116	0.4979074524511507	
9	9.037239816610928	0.3947613782390438	
10	11.173807875508023	0.4496472293300787	
11	10.679735889295976	0.4694065260301902	
12	10.913606035810798	0.5116441512436084	
13	9.154453177481834	0.425723315920594	
14	9.42699526743386	0.4826484517963152	
15	10.2440288690404	0.5302163410291617	
16	9.928213502361723	0.4963041045531534	
17	10.426235954370483	0.4591585993661548	
18	11.416713866970248	0.4501424060659287	
19	10.575579503328386	0.4385771939101529	
20	10.312425927781018	0.4340622557064509	
21	9.69097274754976	0.4271023773912292	
22	10.395690047217418	0.4225973576173565	
23	10.188447248975644	0.3989378514838101	
24	10.870164604285542	0.3932047656062611	
25	9.363299044021655	0.3800041051362033	
26	11.870536501929926	0.3773207642737345	
27	7.497689125762086	0.3572667660543254	
28	9.425544061538032	0.3398131115758839	
29	4.657969588075055	0.2524948703801976	
30	5.568897023202778	0.2315288185603151	
31	2.237211184893031	0.1333642607587872	
32	2.565404630132254	0.118940410162895	
33	0.90996940269987	0.0548414167772091	
34	0.9862274299794702	0.0479487584080945	
35	0.2953152186983168	0.0180842421995028	
36	0.3031373033173805	0.0156813356565859	
37	0.0850416539434455	0.0048750270289555	
38	0.076112947698629	0.0042897587325737	
39	0.0896676398327613	0.0016954876992019	
40	0.1433714393896856	0.002028981642311	
41	0.4400694953247281	0.0063120646062243	
42	0.1873983235206324	0.0027840053984308	
43	0.7088072482055239	0.0127397372707396	
44	1.233826176189197	0.0132093248079721	
45	1.0391651473156998	0.0144409255775369	
46	5.15349324486581	0.0613903145340721	
47	3.761833478518728	0.0520153452468353	
48	5.329032822587138	0.0849885918904098	
49	4.765227081815233	0.0588823983213751	
50	10.217000477821	0.1294007901006776	

Tabela 6: Błędy interpolacji metodą Newtona dla węzłów Czebyszewa, liczba węzłów [1:50]

Interpolacja metodą Newtona		
Węzły Równoodległe		
Liczba węzłów	Błąd Maksymalny	Średni Błąd Kwadratowy
51	8.420124802555836	0.1082693213475898
52	5.56827722240666	0.0719142667435607
53	8.052546784052133	0.1183755694180403
54	2.5381878363925985	0.0420878707163838
55	10.145507583446552	0.1144209571366381
56	8.569165100310183	0.1347111274255954
57	24.96125906662381	0.262477560850497
58	21.778432545762072	0.2942887517688315
59	31.070111113260108	0.3305912977677561
60	48.013078916095154	0.6202926780559268
61	49.66768997055473	0.5699588296913745
62	47.93235228380325	0.74334562020122
63	91.13974811258596	1.0647144285895365
64	55.56985024056202	0.8469440969781854
65	206.2329159899943	2.1493590950366968
66	112.49410585834008	1.4732392150979647
67	485.5423671294203	5.688554996540096
68	295.5746172253249	3.968249805738787
69	507.87568547118815	6.026044358934183
70	283.7536463453183	3.463206918473535
71	171.88777877899454	2.503629978054041
72	253.492719595772	3.203829060045735
73	944.4561898378796	12.584408044515651
74	783.1798036747155	11.789823770244942
75	1583.694901815569	22.834588079184737
76	829.8970916236658	14.151699547452504
77	7978.263119218741	94.45295521122485
78	7786.825870813103	94.48073496935947
79	83085.38844733704	877.4685679389627
80	138817.34936814554	1406.0537305972002
81	416995.3640745848	5092.418570968192
82	10007252.682985162	106154.31813671257
83	12924889.681192908	140789.08244211783
84	7590737.101343088	97128.91222233472
85	32860926.324282087	458285.4776025284
86	73488574.83882159	1016687.6788298492
87	51234373.18699709	591931.9009354694
88	276499741.7322693	2797745.173733148
89	2382836246.7470565	24735108.74382511
90	25303586638.84098	261518140.1403597
91	23214943784.200077	264796142.7641377
92	92811595543.65634	971241648.2115778
93	159205200688.23584	1653389200.3071723
94	1308250608746.1436	16510474978.69961
95	6470164633066.72	67722974028.86721
96	3423194129854.796	39940010759.76098
97	66992847521822.7	800148694556.0167
98	81178688652733.84	840052904628.3298
99	81943963250637.12	897605082219.2571
100	1376831480643903.0	14323847180144.748

Tabela 7: Błędy interpolacji metodą Newtona dla węzłów równoodległych, liczba węzłów [51 : 100]

Interpolacja metodą Newtona			
	Węzły Czebyszewa		
Liczba węzłów Błąd Maksymalny Średni Błąd Kwadratov			
51	14.538005612862236	0.1650988934963833	
52	20.89490320370353	0.2928100020239505	
53	12.688898034990473	0.2016359995482562	
54	28.784578532830317	0.4543947432225127	
55	87.1670489910077	1.1537087890652815	
56	154.11999357433368	1.7856913826607963	
57	84.03349037501471	1.0763412584610117	
58	374.6304783461107	4.432446144415635	
59	503.4687610197272	5.414986475929523	
60	180.22263224255076	2.541758237707361	
61	782.9105236476813	8.30665550785094	
62	1671.965298749292	19.142752935014904	
63	1069.0542998546368	15.85041873426731	
64	1001.4277038728748	14.71171192064347	
65	1644.2767280606877	23.02891917315713	
66	3889.702636149955	46.52649997420378	
67	3352.7051755757125	49.293303587811785	
68	1168.4220124156225	12.872018289379096	
69	3727.271828494383	50.18150020080605	
70	6559.165970988126	85.57618029892237	
71	2516.5452750268764	37.23023109632205	
72	14660.51722526836	183.7300114013849	
73	13920.768181406578	151.69170258741832	
74	25270.857873894543	351.4818547351541	
75	98701.63839242766	1262.4008206094854	
76	30976.405674935613		
		366.8607685659848	
77	330477.21282153897	3762.952360179109	
78	166150.91712669109	1784.0860985632653	
79	530368.2998846468	7897.726435775514	
80	3175872.4821943203	36241.64393049764	
81	9689575.83736984	109897.85899827065	
82	101577311.8005628	1064327.4420089358	
83	574668528.204816	9378250.006111449	
84	1237947167.509065	13862950.179959638	
85	4507379238.358829	58918967.29743822	
86	10273553477.305088	104845727.8428676	
87	37536461081.86411	449422518.792905	
88	242272527258.03995	3026573873.024896	
89	1039436280513.8616	11231489125.716658	
90	2302320754150.526	25714121130.92765	
91	340091606242.1443	3593071881.513127	
92	34903451132560.24	449951920633.2549	
93	5069798051913.192	65306766005.271805	
94	11961373090862.002	162141443253.14627	
95	392225730542916.5	4514120451245.816	
96	626636632758061.5	6483525436486.863	
97	2914539313735777.0	32590747736821.555	
98			
	1.5675831439662934e+16	159173617037783.38	
99	1.0813394318656808e+17	1146787743404525.0	
100	2.3438146269813766e+17	2530429088345023.5	

Tabela 8: Błędy interpolacji metodą Newtona dla węzłów Czebyszewa, liczba węzłów [51 : 100]

8. Analiza przypadków szczególnych

Podobieństwo wykresów interpolacji

Bazując na wizualizacji można stwierdzić, że dla ilości węzłów < 40 obydwie metody interpolacji, w analizie węzłów tego samego rodzaju, dają wyniki bardzo zbliżone. Podobnie, w obu metodach interpolacji węzły Czebyszewa pozwalają na częściową lub całkowitą eliminację efektu Rungego.

Różnice pomiędzy wykresami funkcji interpolacji dla większej ilości węzłów wynikają z problemów arytmetyki komputerowej w przypadku węzłów Newtona oraz coraz gorszego uwarunkowania zadania wraz ze wzrastającą liczbą węzłów.

Błędy arytmetyczne

W metodzie Newtona dla liczby węzłów > 40 zaczynają być widoczne artefakty prawdopodobnie związane z błędami arytmetyki komputerowej. Ilorazy różnicowe, używane w metodzie, są obliczane rekurencyjnie, a każdy kolejny rząd bazuje na wynikach poprzednich. Jeśli wcześniejsze kroki zawierają błędy (np. zaokrąglenia), to błędy propagują się i akumulują.

Dodatkowo, warto uwzględnić fakt, że interpolacja wielomianowa dla dużej liczby węzłów zaczyna być źle uwarunkowana, co oznacza, że niewielkie zmiany w danych wejściowych mogą prowadzić do dużych błędów w wynikach, co widoczne jest także w interpolacji metodą Lagrange'a dla liczby węzłów przewyższającej 70.

Rysunek 30: Interpolacja metodą Lagrange'a | Węzły Równoodległe | Liczba węzłów = 51 - Efekty błędów arytmetycznych

Nagły spadek wartości błędu dla liczby węzłów i=100

Dla liczby węzłów i = 100 wartość błędów, zgodnie z Tabela 3 drastycznie spada względem poprzednich wartości, mimo, że wykres sugeruje inne zachowanie funkcji interpolacji.

Spowodowane jest to domyślnym wybieraniem punktów pomiaru błędu równoodlegle w liczbie 100, co powoduje, że sam pomiar odbywa się w bardzo bliskiej odległości od węzła interpolacji, gdzie wartość jest niemal równa funkcji interpolacji.

Dla innej liczności próbkowania równej 101 błąd maksymalny wynosi już 536870727.32, co znacznie bardziej odpowiada temu, co sugerowałby wykres.

Rysunek 31: Interpolacja metodą Newtona | Węzły Równoodległe | Liczba węzłów = 100

Występowanie Efektu Rungego

Dla interpolacji Lagrange'a przy zastosowaniu węzłów rówoodległych, efekt Runego występuje już dla liczby węzłów = 15, podobnie w przypadku interpolacji metodą Newtona. Efekt zaczyna zanikać dla liczby węzłów $i \in \{56, 57, 58, 59\}$, lecz dla większej liczebności ponownie staje się niedokładna.

Zjawisko Rungego nie występuje przy wykorzystaniu węzłów Czebyszewa w sposób tak drastyczny, jak w przypadku węzłów równoodległych nawet dla dużej liczby węzłów.

Rysunek 32: Interpolacja metodą Newtona | Węzły Równoodległe | Liczba węzłów = 15 - Rozpoczęcie występowania efektu

Rysunek 33: Interpolacja metodą Lagrange'a | Węzły Równoodległe | Liczba węzłów = 57 - Zaniknięcie efektu Rungego w metodzie Lagrange'a

Rysunek 34: Interpolacja metodą Lagrange'a | Węzły Równoodległe | Liczba węzłów = 150 - Brak efektu Rungego mimo dużej liczebności węzłów

Węzły występujące na ekstremach lokalnych funkcji

W przypadku węzłów o rozłożeniu równoodległym można zaobserwować przypadki rozmieszczenia węzłów na lokalnych ekstremach interpolowanej funkcji.

W przypadku węzłów rozmieszczonych na lokalnych minimach, funkcja interpolacji przypomina gładką funkcję kwadratową.

W przypadku węzłów rozmieszczonych zarówno na lokalnych minimach jak i maksimach, silnie widoczny jest efekt Rungego przez charakterystke rozmieszczenia węzłów.

Rysunek 35: Interpolacja metodą Lagrange'a | Węzły Równoodległe | Liczba węzłów = 11 - Rozmieszczenie węzłów na minimach lokalnych funkcji

Rysunek 36: Interpolacja metodą Lagrange'a | Węzły Równoodległe | Liczba węzłów = 21 - rozmieszczenie węzłów na minimach i maksimach lokalnych funckji