КРАТКИЙ КОНСПЕКТ ЛЕКЦИЙ ПО КУРСУ «ГРУБЫЕ ТРАЕКТОРИИ И РЕГУЛЯРНАЯ СТРУКТУРА»

ЛЕКЦИЯ 8

Теорема А.Н.Колмогорова

Пусть (Ω, \mathcal{F}, P) — вероятностное пространство. Предположим, что для всех $\omega \in \Omega$ и $s,t \in [0,T], s \leq t$, определены $X_t^i(\omega)$ и $\mathbb{X}_{st}^{ij}(\omega)$ и выполнены соотношения Чена. Предположим также, что отображение $(\omega,t) \to (X_t^i(\omega),\mathbb{X}_{0t}^{ml}(\omega))$ является случайным процессом.

Теорема 1. Если для некоторых чисел $q \ge 2$ и $\beta > \frac{1}{q}$ справедливы оценки

$$(\mathbb{E}|X_{st}^i|^q)^{1/q} \le C|t-s|^{\beta}, \quad (\mathbb{E}|X_{st}^i|^{q/2})^{2/q} \le C|t-s|^{2\beta},$$

то для всякого $\alpha \in (0, \beta - \frac{1}{q})$ найдутся такие модификации \widetilde{X}_t и $\widetilde{\mathbb{X}}_{st}$ процессов X_t и \mathbb{X}_{st} , что почти наверное

$$|X_{st}| \le K_{\alpha}|t-s|^{\alpha}, \quad |\mathbb{X}_{st}| \le \mathbb{K}_{\alpha}|t-s|^{2\alpha}$$

 $u \mathbb{E}|K_{\alpha}|^{q} < \infty, \mathbb{E}|\mathbb{K}_{\alpha}|^{q/2} < \infty.$

Доказательство. Пусть T=1, то есть рассматриваем отрезок [0,1]. Через \mathbb{T}_n обозначим разбиение отрезка [0,1] точками $t_k=k/2^n$.

Положим $K_n = \max_k |X_{t_k t_{k+1}}|$. Заметим, что

$$\mathbb{E} K_n^q \le \sum_{k} \mathbb{E} |X_{t_k t_{k+1}}|^q \le C^q 2^{-n(\beta q - 1)}.$$

Пусть s < t — двоично рациональные точки, причем $2^{-m-1} < t - s \le 2^{-m}$. Существует такое разбиение $s = u_0 < u_1 < \ldots < u_N = t$, что всякий отрезок $[u_k, u_{k+1}]$ принадлежит какому-то разбиению \mathbb{T}_n с $n \ge m+1$ и для каждого такого n в разбиении не более двух отрезков из \mathbb{T}_n . Найдем такие точки $a_1 \le s \le a_2$ и $b_1 \le t \le b_2$, что a_1, a_2 и b_1, b_2 — последовательные или совпадающие точки разбиения \mathbb{T}_{m+1} . Между a_2 и b_1 не более двух отрезков из \mathbb{T}_{m+1} . Теперь делим отрезки $[a_1, a_2]$ и $[b_1, b_2]$ пополам. Получившиеся после деления половины, которые лежат между s и t добавляем к уже имеющимся отрезкам из \mathbb{T}_{m+1} . Эта процедура добавляет не более двух отрезков из \mathbb{T}_{m+2} . Продолжая построение, получаем искомое разбиение.

Справедлива оценка

$$|X_{st}| \le \sum_{k} |X_{u_k u_{k+1}}| \le 2 \sum_{n=m+1} K_n.$$

Поскольку $2^{-m-1} < t - s \le 2^{-m}$, то

$$\frac{|X_{st}|}{|t-s|^{\alpha}} \le 2\sum_{n=m+1} K_n 2^{\alpha(m+1)} \le 2\sum_{n=m+1} K_n 2^{\alpha n} \le 2\sum_{n=0} 2^{\alpha n} K_n =: K_{\alpha}.$$

По неравенству Минковского

$$\left(\mathbb{E} K_{\alpha}^{q}\right)^{1/q} \leq 2 \sum_{n=0}^{\infty} 2^{\alpha n} \left(\mathbb{E} K_{n}^{q}\right)^{1/q} = 2 \sum_{n=0}^{\infty} 2^{-(\beta - q^{-1} - \alpha)n} < \infty.$$

Итак, для всех двоично рациональных s,t и всех ω с справедливо неравенство

$$|X_{st}(\omega)| \le K_{\alpha}(\omega)|t - s|^{\alpha},$$

причем $\mathbb{E} K_{\alpha}^q < \infty$. Пусть Ω' — множество таких ω , что $K_{\alpha}(\omega) < \infty$. На Ω' отображение $t \to X_t(\omega)$ непрерывно по Гёльдеру на двоично-рациональных t для всех ω .

Пусть $t_k \to t$ и t_k — последовательность двоично рациональных чисел. Тогда последовательность $X_{t_k}(\omega)$ фундаментальная и имеет предел, который обозначим через $\widetilde{X}_t(\omega)$. Вне Ω' полагаем $\widetilde{X}_t(\omega) = 0$. Для каждого ω отображение $t \to \widetilde{X}_t(\omega)$ непрерывно по Гёльдеру на [0,T] и выполнена оценка $|\widetilde{X}_{st}(\omega)| \leq K_{\alpha}(\omega)|t-s|^{\alpha}$. Покажем, что \widetilde{X}_t является модификацией X_t . Поскольку

$$\mathbb{E}|X_t - X_{t_k}|^q \le C^q |t - t_k|^{\beta q},$$

то $\mathbb{E}|X_t-\widetilde{X}_t|^q=0$ и $\widetilde{X}_t=X_t$ почти наверное.

Рассмотрим теперь \mathbb{X} . Положим $\mathbb{K}_n = \max_k |\mathbb{X}_{t_k t_{k+1}}|$. Имеем

$$\mathbb{E}\mathbb{K}_n^{q/2} \le \sum_{k} \mathbb{E}|\mathbb{X}_{t_k t_{k+1}}|^{q/2} \le C^{q/2} 2^{-n(\beta q - 1)}.$$

Пусть s < t — двоично рациональные точки, причем $2^{-m-1} < t - s \le 2^{-m}$. Возьмем такое разбиение $s = u_0 < u_1 < \ldots < u_N = t$, что всякий отрезок $[u_k, u_{k+1}]$ принадлежит какому-то разбиению \mathbb{T}_n с $n \ge m+1$ и для каждого такого n в разбиении не более двух отрезков из \mathbb{T}_n . Тогда

$$|\mathbb{X}_{st}| = |\sum_{k} \mathbb{X}_{u_k u_{k+1}} + X_{su_k} \otimes X_{u_k u_{k+1}}| \le \sum_{k} |\mathbb{X}_{u_k u_{k+1}}| + (\sum_{k} |X_{u_k u_{k+1}}|)^2.$$

В силу выбора разбиения точками u_k верна оценка

$$|\mathbb{X}_{st}| \le 2\sum_{n=m+1}^{\infty} \mathbb{K}_n + \left(2\sum_{n=m+1}^{\infty} |X_{u_k u_{k+1}}|\right)^2.$$

Разделим правую и левую части на $|t-s|^{2\alpha}$. Получаем

$$\frac{|\mathbb{X}_{st}|}{|t-s|^{2\alpha}} \le 2\sum_{n=0}^{\infty} \mathbb{K}_n 2^{2\alpha n} + K_{\alpha}^2 = \mathbb{K}_{\alpha}.$$

Применяя неравенство Минковского, выводим оценку

$$\left(\mathbb{E}|\mathbb{K}_{\alpha}|^{q/2}\right)^{2/q} \le 2\sum_{n} \left(\mathbb{E}\mathbb{K}_{n}^{q/2}\right)^{2/q} + \left(\mathbb{E}\mathbb{K}_{\alpha}^{q}\right)^{2/q}.$$

Поскольку

$$\sum_{n} \left(\mathbb{E} \mathbb{K}_n^{q/2} \right)^{2/q} \le C \sum_{n} 2^{-2n(\beta - q^{-1} - \alpha)} < \infty,$$

To $\left(\mathbb{E}|\mathbb{K}_{\alpha}|^{q/2}\right)^{2/q}<\infty$.

Пусть Ω' состоит из таких ω , что $\mathbb{K}_{\alpha}(\omega) < \infty$, $K_{\alpha}(\omega) < \infty$ и для всех двоично рациональных s < u < t выполняются соотношения Чена. Для $\omega \in \Omega'$ и всех двоично рациональных s,t справедливы неравенства

$$|\mathbb{X}_{st}| \le \mathbb{K}_{\alpha} |t - s|^{2\alpha}$$

И

$$|\mathbb{X}_{0t} - \mathbb{X}_{0s}| \le \mathbb{K}_{\alpha} |t - s|^{2\alpha} + K_{\alpha}^2 |t - s|^{\alpha}.$$

Полагаем $\widetilde{\mathbb{X}}_{0t} = \lim_{k \to \infty} \mathbb{X}_{0t_k}$, где t_k — последовательность двоично рациональных чисел, сходящаяся к t. Вне Ω' полагаем $\widetilde{\mathbb{X}}_{0t} = 0$. Как и выше проверяется, что процесс $\widetilde{\mathbb{X}}_{0t}$ является модификацией \mathbb{X}_{0t} . Положим

$$\widetilde{\mathbb{X}}_{st} = \widetilde{\mathbb{X}}_{0t} - \widetilde{\mathbb{X}}_{0s} - \widetilde{X}_{0s} \otimes \widetilde{X}_{st}.$$

Заметим, что отображение $(s,t) \to \widetilde{\mathbb{X}}_{st}$ непрерывно и на двоично рациональных s,t совпадает с \mathbb{X}_{st} . Следовательно, верна оценка $|\widetilde{\mathbb{X}}_{st}| \leq \mathbb{K}_{\alpha} |t-s|^{2\alpha}$. Остается заметить, что для $\widetilde{\mathbb{X}}_{st}$ выполнены соотношения Чена.

Пространство Гёльдера

Пусть $\alpha \in (0,1)$. Через $C^{\alpha}[0,T]$ обозначаем пространство таких непрерывных отображений $x \colon [0,T] \to \mathbb{R}^d$, что

$$||x||_{\alpha} = \sup_{s \neq t} \frac{|x_{st}|}{|t - s|^{\alpha}} < \infty.$$

Предложение 1. Пространство $C^{\alpha}[0,T]$ с нормой $|x_0| + ||x||_{\alpha}$ является банаховым пространством.

Отметим, что пространство $C^{\alpha}[0,T]$ не является сепарабельным. Действительно, для всяких 0 < a < b < T

$$\|(\max\{0, t - a\})^{\alpha} - (\max\{0, t - b\})^{\alpha}\|_{\alpha} \ge 1.$$

Через $C^{0,\alpha}[0,T]$ обозначим замыкание в $C^{\alpha}[0,T]$ множества непрерывно дифференцируемых отображений.

Предложение 2. Отображение x_t принадлежит пространству $C^{0,\alpha}[0,T]$ тогда и только тогда, когда

$$\lim_{\delta \to 0+} \sup_{|s-t| < \delta} \frac{|x_{st}|}{|t-s|^{\alpha}} = 0.$$

Доказательство. Обоснуем только необходимость данного условия. Пусть y_t — непрерывно дифференцируемое отображение и $|y_t'| \leq C$. Имеем

$$\sup_{|s-t|<\delta} \frac{|x_{st}|}{|t-s|^{\alpha}} \le ||x-y||_{\alpha} + C\delta^{1-\alpha}.$$

Для всякого $\varepsilon > 0$ находим такое отображение y_t , что $||x-y||_{\alpha} < \varepsilon$, а затем выбираем δ столь малым, что $C\delta^{1-\alpha} < \varepsilon$. Получаем для таких δ оценку

$$\sup_{|s-t|<\delta} \frac{|x_{st}|}{|t-s|^{\alpha}} \le 2\varepsilon.$$

В качестве следствия получаем для $0 < \beta < \alpha < 1$ строгие включения:

$$C^{\beta}[0,T] \subset C^{0,\alpha}[0,T] \subset C^{\alpha}[0,T].$$

Напомним, что $\Delta_T = \{(s,t)\colon 0 \le s \le t \le T\}$. Пусть $0 < \alpha < 1$. Через $C^{\alpha}_{\Delta_T}$ обозначим пространство непрерывных отображений $x\colon \Delta_T \to \mathbb{R}^{d^2}$, для которых

$$||x||_{\alpha} = \sup_{s \neq t} \frac{|x_{st}|}{|t - s|^{\alpha}} < \infty.$$

Предложение 3. Пространство $C^{\alpha}_{\Delta_T}$ с нормой $\|x\|_{\alpha}$ является банаховым пространством.

Пространство грубых траекторий

Пусть $\frac{1}{3} < \alpha < \frac{1}{2}$. Пространством грубых траекторий $\mathfrak{C}^{\alpha}[0,T]$ называем подмножество пространства $C^{\alpha}[0,T] \times C^{2\alpha}_{\Delta T}$, состоящее из пар (X,\mathbb{X}) , для которых выполнены соотношения Чена.

Предложение 4. Пространство грубых траекторий $\mathfrak{C}^{\alpha}[0,T]$ с метрикой

$$d((X, \mathbb{X}), (Y, \mathbb{Y})) = |X_0 - Y_0| + ||X - Y||_{\alpha} + ||\mathbb{X} - \mathbb{Y}||_{2\alpha}$$

является полным метрическим пространством.

Доказательство. Поскольку соотношения Чена — поточечные равенства, то $\mathfrak{C}^{\alpha}[0,T]$ является замкнутым подмножеством полного пространства $C^{\alpha}[0,T]\times C^{2\alpha}_{\Delta_T}$.