Compressed Sparse Column (CSC) Storage

Kalyani Gadgil

December 7, 2017

Need for Efficient Sparse Matrix Storage

Sparse matrices contain a lot of zeros and not all of them are useful information. The most common way is to use the CSR/CSC format.

Storage Complexity of Sparse Matrices for SUMMA

- Blocks of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ where n matrix dim and p number of processors
- ② Storing each of these submatrices in CSC format $O(n\sqrt{p} + + nnz)$
- **Storing whole matrix** O(n + nnz) on single processor
- **Storing matrix in DCSC format requires** O(nnz)

CSC example - Column Major

Matrix A							
	0	1	2	3	4	5	
0	/0	1	0	0	0	0\	
1	0	0	0	0	0	0	
2	0	0	3	0	0	0	
3	0	2	0	0	0	0	
4	0	0	0	0	0	0	
5	/0	0	0	0	0	4 <i>/</i>	

```
Column-major

nnz = 4

NUM = [1, 2, 3, 4]

row idx (IR) = [0, 3, 2, 5]

col idx = [1, 1, 2, 5]
```

CSC - Walkthrough

Matrix A							
	(0)	1	2	3	4	5	
0	/0	1	0	0	0	0\	
1	0	0	0	0	0	0	
2	0	0	3	0	0	0	
3	0	2	0	0	0	0	
4	0	0	0	0	0	0	
5	/0	0	0	0	0	4/	

JC stores indices of NUM where column changes idx of NUM = [0]

$$\mathsf{NUM} = [\quad \boxed{-} \quad]$$

Column changed, so idx stored $JC = \begin{bmatrix} 0 \end{bmatrix}$

		Ма	trix	Α		
	0	(1)	2	3	4	5
0	/0	$\overline{1}$	0	0	0	0\
1	0	0	0	0	0	0
2	0	0	3	0	0	0
3	0	2	0	0	0	0
4	0	0	0	0	0	0
5	/0	0	0	0	0	4/

JC stores indices of NUM where column changes idx of val = [0]

$$\mathsf{NUM} = [\qquad \boxed{1} \qquad]$$

$$IR = [0]$$

Column changed, so idx stored JC = [0, 0]

JC stores indices of NUM where column changes idx of val = [0, 1]

$$\mathsf{NUM} = [1, \qquad \boxed{2}]$$

$$IR = [0, \quad \boxed{3} \quad]$$

Column not changed, so idx not stored

$$\mathsf{JC} = [\mathsf{0},\,\mathsf{0},\qquad \bigcirc\qquad]$$

JC stores indices of NUM where column changes idx of val = [0, 1, 2]

$$NUM = [1, 2, 3]$$

$$IR = [0, 3, 2]$$

Column changed, so idx stored JC = [0, 0, 2]

JC stores indices of NUM where column changes idx of val = [0, 1, 2, 3]

$$\mathsf{NUM} = [1, 2, 3, \qquad \boxed{-} \qquad]$$

$$IR = [0, 3, 2,$$

Column changed, so idx stored JC = [0, 0, 2, 3]

JC stores indices of NUM where column changes idx of val = [0, 1, 2, 3]

$$NUM = [1, 2, 3, -]$$

$$IR = [0, 3, 2,$$

Column changed, so idx stored JC = [0, 0, 2, 3, 3]

JC stores indices of NUM where column changes idx of val = [0, 1, 2, 3]

$$NUM = [1, 2, 3, 4]$$

$$IR = [0, 3, 2, (5)]$$

Column changed, so idx stored JC = [0, 0, 2, 3, 3,

JC stores indices of NUM where column changes idx of val = [0, 1, 2, 3]

$$NUM = [1, 2, 3, 4]$$

$$IR = [0, 3, 2, 5]$$

NNZ stored as the n+1 element

$$\mathsf{JC} = [0, 0, 2, 3, 3, 3, 4]$$

CSC example - Column Major

1 O(n + nnz) comes from JC array of size n + 1

 $^{^0[1]}$ Buluc, A., & Gilbert, J. R. (2008). On the Representation and Multiplication of Hypersparse Matrices. https://doi.org/10.1109/IPDPS.2008.4536313

References

[1] Buluc, A., & Gilbert, J. R. (2008). On the Representation and Multiplication of Hypersparse Matrices.

https://doi.org/10.1109/IPDPS 2008.4536313