Лингвистика и формальные языки

Марина Ермолаева

Математические методы в лингвистических исследованиях

8 февраля 2022

• Математические методы в лингвистических исследованиях	

• Математические методы в лингвистических исследованиях (Maybe Remote But Hopefully In-Person Edition)

• Математические методы в лингвистических исследованиях (Maybe Remote But Hopefully In-Person Edition)

• Марина Борисовна Ермолаева

Каналы связи

- Электронная почта
 - mail@mermolaeva.com
 - Объявления, домашние задания, etc.
 - Отвечаю на письма в течение 24 часов
- Dropbox
 - Общая папка: ссылка
 - Здесь будут материалы к курсу
- Анонимные вопросы и комментарии
 - Google Forms: ссылка

Общение в Zoom

- Чат
 - для коротких комментариев

- Аудио + видео
 - для вопросов и комментариев; сначала поднимите руку

О домашних заданиях

- Каждые ≈2 недели
- Присылать на электронную почту в формате PDF (использование РТЕХ поощряется)
- Если не указано иное, задания можно обсуждать друг с другом! При этом необходимо:
 - Указать, с кем обсуждали
 - Описать ход решения лично своими словами

Об оценках

• В этом семестре зачет, в следующем экзамен

- Компоненты зачета:
 - Домашние задания
 - Активность в классе

- Вычислительная лингвистика (computational linguistics)
 - гипероним: всё и сразу

- Вычислительная лингвистика (computational linguistics)
 - гипероним: всё и сразу
- Автоматическая обработка естественного языка (natural language processing)
 - решение практических задач, связанных с естественным языком

- Вычислительная лингвистика (computational linguistics) - гипероним: всё и сразу
- Автоматическая обработка естественного языка (natural language processing)
 - решение практических задач, связанных с естественным языком
- Математическая лингвистика (mathematical linguistics)
 - описание естественного языка математическими методами
 - теория формальных языков: языки как математические объекты, порождаемые системами правил

- Вычислительная лингвистика (computational linguistics)
 - гипероним: всё и сразу
- Автоматическая обработка естественного языка (natural language processing)
 - решение практических задач, связанных с естественным языком
- Математическая лингвистика THE (mathematical linguistics)
 - описание естественного языка математическими методами
 - теория формальных языков: языки как математические объекты, порождаемые системами правил

Формализация в лингвистике

"Поиски строгих формулировок лингвистике вызываются гораздо более мотивами, чем серьезными просто желанием соблюсти логические тонкости или упорядочить традиционные методы лингвистического анализа. [...] Выводя неприемлемые следствия из точных, неадекватных формулировок, HO можем с большой точностью часто установить причину этой неадекватности и, таким образом, получить более глубокое представление о лингвистических данных."

Ноам Хомский, *Синтаксические структуры* (1957)

• Алфавит: конечное множество символов; обычно обозначается Σ

- Алфавит: конечное множество символов; обычно обозначается Σ
- Примеры:

- Алфавит: конечное множество символов; обычно обозначается Σ
- Примеры:
 - {а, б, в, ..., я} алфавит

- Алфавит: конечное множество символов; обычно обозначается Σ
- Примеры:
 - {а, б, в, ..., я} алфавит
 - $\{0, 1, +, -, =\}$ алфавит

- Алфавит: конечное множество символов; обычно обозначается Σ
- Примеры:
 - {а, б, в, ..., я} алфавит
 - $\{0, 1, +, -, =\}$ алфавит
 - {*b*}

- Алфавит: конечное множество символов; обычно обозначается Σ
- Примеры:
 - {а, б, в, ..., я} алфавит
 - $\{0, 1, +, -, =\}$ алфавит
 - {t} алфавит

- Алфавит: конечное множество символов; обычно обозначается Σ
- Примеры:
 - {*a*, *б*, *в*, ..., *я*} алфавит
 - $\{0, 1, +, -, =\}$ алфавит
 - {b} алфавит
 - $\{u, B, He, Ha, g\}$, пять самых частотных слов русского языка по версии Викисловаря

- Алфавит: конечное множество символов; обычно обозначается Σ
- Примеры:
 - {*a*, *б*, *в*, ..., *я*} алфавит
 - $\{0, 1, +, -, =\}$ алфавит
 - {b} алфавит
 - $\{u, B, He, Ha, g\}$, пять самых частотных слов русского языка по версии Викисловаря – алфавит

- Алфавит: конечное множество символов; обычно обозначается Σ
- Примеры:
 - {a, б, в, ..., я} алфавит
 - $\{0, 1, +, -, =\}$ алфавит
 - {t} алфавит
 - $\{u, B, He, Ha, g\}$, пять самых частотных слов русского языка по версии Викисловаря – алфавит
 - $\mathbb{N} = \{0, 1, 2, 3, ...\}$, множество натуральных чисел

- Алфавит: конечное множество символов; обычно обозначается Σ
- Примеры:
 - {a, б, в, ..., я} алфавит
 - $\{0, 1, +, -, =\}$ алфавит
 - {t} алфавит
 - $\{u, B, He, Ha, S\}$, пять самых частотных слов русского языка по версии Викисловаря – алфавит
 - $\mathbb{N} = \{0, 1, 2, 3, ...\}$, множество натуральных чисел **не** алфавит

- Алфавит: конечное множество символов; обычно обозначается Σ
- Примеры:
 - {a, б, в, ..., я} алфавит
 - $\{0, 1, +, -, =\}$ алфавит
 - {t} алфавит
 - $\{u, B, He, Ha, g\}$, пять самых частотных слов русского языка по версии Викисловаря – алфавит
 - $\mathbb{N} = \{0, 1, 2, 3, ...\}$, множество натуральных чисел **не** алфавит
 - Множество всех грамматичных предложений русского языка

- Алфавит: конечное множество символов; обычно обозначается Σ
- Примеры:
 - {a, б, в, ..., я} алфавит
 - $\{0, 1, +, -, =\}$ алфавит
 - {t} алфавит
 - $\{u, B, He, Ha, g\}$, пять самых частотных слов русского языка по версии Викисловаря – алфавит
 - $\mathbb{N} = \{0, 1, 2, 3, ...\}$, множество натуральных чисел **не** алфавит
 - Множество всех грамматичных предложений русского языка - не алфавит

• Строка (или слово) в алфавите Σ : конечная последовательность символов из Σ

- Строка (или слово) в алфавите Σ : конечная последовательность символов из Σ
- ullet Пустая строка обозначается ϵ

- Строка (или слово) в алфавите Σ : конечная последовательность символов из Σ
- ullet Пустая строка обозначается ϵ
- Σ^* : множество всех строк в алфавите Σ Если $\Sigma = \{a, b\}$, то $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$

- Строка (или слово) в алфавите Σ : конечная последовательность символов из Σ
- ullet Пустая строка обозначается ϵ
- Σ^* : множество всех строк в алфавите Σ Если $\Sigma = \{a, b\}$, то $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$
- Σ^+ : множество всех непустых строк в алфавите Σ

- Строка (или слово) в алфавите Σ:
 конечная последовательность символов из Σ
- ullet Пустая строка обозначается ϵ
- Σ^* : множество всех строк в алфавите Σ Если $\Sigma = \{a, b\}$, то $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$
- Σ^+ : множество всех непустых строк в алфавите Σ
- ullet Если x строка и $n\in\mathbb{N}$, то x^n слово x, повторенное n раз

- Строка (или слово) в алфавите Σ:
 конечная последовательность символов из Σ
- ullet Пустая строка обозначается ϵ
- Σ^* : множество всех строк в алфавите Σ Если $\Sigma = \{a, b\}$, то $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$
- Σ^+ : множество всех непустых строк в алфавите Σ
- ullet Если x строка и $n\in\mathbb{N}$, то x^n слово x, повторенное n раз Примеры:

- Строка (или слово) в алфавите Σ : конечная последовательность символов из Σ
- ullet Пустая строка обозначается ϵ
- Σ^* : множество всех строк в алфавите Σ Если $\Sigma = \{a, b\}$, то $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$
- Σ^+ : множество всех непустых строк в алфавите Σ
- ullet Если x строка и $n\in\mathbb{N}$, то x^n слово x, повторенное n раз Примеры:
 - $a^3 = aaa$

- Строка (или слово) в алфавите Σ:
 конечная последовательность символов из Σ
- ullet Пустая строка обозначается ϵ
- Σ^* : множество всех строк в алфавите Σ Если $\Sigma = \{a, b\}$, то $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$
- Σ^+ : множество всех непустых строк в алфавите Σ
- ullet Если x строка и $n\in\mathbb{N}$, то x^n слово x, повторенное n раз Примеры:
 - $a^3 = aaa$
 - $ab^2 = abb$

- Строка (или слово) в алфавите Σ:
 конечная последовательность символов из Σ
- ullet Пустая строка обозначается ϵ
- Σ^* : множество всех строк в алфавите Σ Если $\Sigma = \{a, b\}$, то $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$
- Σ^+ : множество всех непустых строк в алфавите Σ
- ullet Если x строка и $n\in\mathbb{N}$, то x^n слово x, повторенное n раз Примеры:
 - $a^3 = aaa$
 - $ab^2 = abb$
 - $(ab)^2 =$

Строки

- Строка (или слово) в алфавите Σ : конечная последовательность символов из Σ
- ullet Пустая строка обозначается ϵ
- Σ^* : множество всех строк в алфавите Σ Если $\Sigma = \{a, b\}$, то $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$
- Σ^+ : множество всех непустых строк в алфавите Σ
- ullet Если x строка и $n\in\mathbb{N}$, то x^n слово x, повторенное n раз Примеры:
 - $a^3 = aaa$
 - $ab^2 = abb$
 - $(ab)^2 = abab$

Строки

- Строка (или слово) в алфавите Σ:
 конечная последовательность символов из Σ
- ullet Пустая строка обозначается ϵ
- Σ^* : множество всех строк в алфавите Σ Если $\Sigma = \{a, b\}$, то $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$
- Σ^+ : множество всех непустых строк в алфавите Σ
- ullet Если x строка и $n\in\mathbb{N}$, то x^n слово x, повторенное n раз Примеры:
 - $a^3 = aaa$
 - $ab^2 = abb$
 - $(ab)^2 = abab$
 - $b^0 =$

Строки

- Строка (или слово) в алфавите Σ : конечная последовательность символов из Σ
- ullet Пустая строка обозначается ϵ
- Σ^* : множество всех строк в алфавите Σ Если $\Sigma = \{a, b\}$, то $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$
- Σ^+ : множество всех непустых строк в алфавите Σ
- ullet Если x строка и $n\in\mathbb{N}$, то x^n слово x, повторенное n раз Примеры:
 - $a^3 = aaa$
 - $ab^2 = abb$
 - $(ab)^2 = abab$
 - $b^0 = \epsilon$

(Формальные) языки

• Язык над алфавитом Σ : (конечное или бесконечное) подмножество Σ^*

(Формальные) языки

- Язык над алфавитом Σ : (конечное или бесконечное) подмножество Σ^*
- Примеры языков над алфавитом $\Sigma = \{a, b\}$:

(Формальные) языки

- Язык над алфавитом Σ : (конечное или бесконечное) подмножество Σ^*
- Примеры языков над алфавитом $\Sigma = \{a, b\}$:
 - (
 - $\{\epsilon\}$
 - \sum_
 - ∑*
 - все последовательности из а и b короче 10 символов
 - все последовательности из а четной длины
 - ...

- Алфавит $\Sigma = \{ [,] \}$
- L язык над Σ , для которого верно следующее:
 - (1) $[] \in L$;
 - (2) Для любой строки s: если $s \in L$, то $[s] \in L$;
 - (3) Для любых строк s и t: если $s \in L$ и $t \in L$, то $st \in L$

- Алфавит $\Sigma = \{ [,] \}$
- L язык над Σ , для которого верно следующее:
 - (1) $[] \in L$;
 - (2) Для любой строки s: если $s \in L$, то $[s] \in L$;
 - (3) Для любых строк s и t: если $s \in L$ и $t \in L$, то $st \in L$
- Входят ли эти строки в L?

- Алфавит $\Sigma = \{ [,] \}$
- L язык над Σ , для которого верно следующее:
 - (1) $[] \in L$;
 - (2) Для любой строки s: если $s \in L$, то $[s] \in L$;
 - (3) Для любых строк s и t: если $s \in L$ и $t \in L$, то $st \in L$
- Входят ли эти строки в L?

[][]

- Алфавит $\Sigma = \{ [,] \}$
- L язык над ∑, для которого верно следующее:
 - (1) $[] \in L$;
 - (2) Для любой строки s: если $s \in L$, то $[s] \in L$;
 - (3) Для любых строк s и t: если $s \in L$ и $t \in L$, то $st \in L$
- Входят ли эти строки в *L*?

```
[][] (да)
```

- Алфавит $\Sigma = \{ [,] \}$
- L язык над Σ , для которого верно следующее:
 - (1) $[] \in L$;
 - (2) Для любой строки s: если $s \in L$, то $[s] \in L$;
 - (3) Для любых строк s и t: если $s \in L$ и $t \in L$, то $st \in L$
- Входят ли эти строки в L?

```
[][] (да)
[[]]
```

- Алфавит $\Sigma = \{ [,] \}$
- L язык над ∑, для которого верно следующее:
 - (1) $[] \in L$;
 - (2) Для любой строки s: если $s \in L$, то $[s] \in L$;
 - (3) Для любых строк s и t: если $s \in L$ и $t \in L$, то $st \in L$
- Входят ли эти строки в L?

```
[][] (да)
```

[[]] (да)

- Алфавит $\Sigma = \{ [,] \}$
- L язык над Σ , для которого верно следующее:
 - (1) $[] \in L$;
 - (2) Для любой строки s: если $s \in L$, то $[s] \in L$;
 - (3) Для любых строк s и t: если $s \in L$ и $t \in L$, то $st \in L$
- Входят ли эти строки в L?

```
[][] (да)
[[]] (да)
][][
```

- Алфавит $\Sigma = \{ [,] \}$
- L язык над Σ , для которого верно следующее:
 - (1) $[] \in L$;
 - (2) Для любой строки s: если $s \in L$, то $[s] \in L$;
 - (3) Для любых строк s и t: если $s \in L$ и $t \in L$, то $st \in L$
- Входят ли эти строки в L?

```
[][] (да)
```

- Алфавит $\Sigma = \{ [,] \}$
- L язык над Σ , для которого верно следующее:
 - (1) $[] \in L$;
 - (2) Для любой строки s: если $s \in L$, то $[s] \in L$;
 - (3) Для любых строк s и t: если $s \in L$ и $t \in L$, то $st \in L$
- Входят ли эти строки в L?

```
[][] (да)
[[]] (да)
][][ (нет)
[[[]]]
```

- Алфавит $\Sigma = \{ [,] \}$
- L язык над Σ , для которого верно следующее:
 - (1) $[] \in L$;
 - (2) Для любой строки s: если $s \in L$, то $[s] \in L$;
 - (3) Для любых строк s и t: если $s \in L$ и $t \in L$, то $st \in L$
- Входят ли эти строки в L?

```
[][] (да)
[[]] (да)
][][ (нет)
[[[]]] (да)
```

- Алфавит $\Sigma = \{ [,] \}$
- L язык над Σ , для которого верно следующее:
 - (1) $[] \in L$;
 - (2) Для любой строки s: если $s \in L$, то $[s] \in L$;
 - (3) Для любых строк s и t: если $s \in L$ и $t \in L$, то $st \in L$
- Входят ли эти строки в L?

```
[][] (да)
[[]] (да)
][][ (нет)
[[[]]] (да)
[[]]][]]]
```

- Алфавит $\Sigma = \{ [,] \}$
- L язык над Σ , для которого верно следующее:
 - (1) $[] \in L$;
 - (2) Для любой строки s: если $s \in L$, то $[s] \in L$;
 - (3) Для любых строк s и t: если $s \in L$ и $t \in L$, то $st \in L$
- Входят ли эти строки в L?

```
[][] (да)
[[]] (да)
][][ (нет)
[[[]]] (да)
[[]][[]]] (нет)
```

- Алфавит $\Sigma = \{ [,] \}$
- L язык над Σ , для которого верно следующее:
 - (1) $[] \in L$;
 - (2) Для любой строки s: если $s \in L$, то $[s] \in L$;
 - (3) Для любых строк s и t: если $s \in L$ и $t \in L$, то $st \in L$
- Входят ли эти строки в L?

```
[][] (да)
[[]] (да)
][][ (нет)
[[[]]] (да)
[[]][[]]] (нет)
```

- Алфавит $\Sigma = \{ [,] \}$
- L язык над Σ , для которого верно следующее:
 - (1) $[] \in L$;
 - (2) Для любой строки s: если $s \in L$, то $[s] \in L$;
 - (3) Для любых строк s и t: если $s \in L$ и $t \in L$, то $st \in L$
- Входят ли эти строки в L?

```
[] [] (да)
[[]] (да)
][][ (нет)
[[[]]] (да)
[[]][[]]] (нет)
[[]][]]]] (да)
```

- Алфавит $\Sigma = \{ [,] \}$
- L язык над Σ , для которого верно следующее:
 - (1) $[] \in L$;
 - (2) Для любой строки s: если $s \in L$, то $[s] \in L$;
 - (3) Для любых строк s и t: если $s \in L$ и $t \in L$, то $st \in L$
- Входят ли эти строки в L?

```
[] [] (да)
[[]] (да)
][][ (нет)
[[[]]] (да)
[[]][[]]] (нет)
[[]][]]]] (да)
```

 ϵ

- Алфавит $\Sigma = \{ [,] \}$
- L язык над Σ , для которого верно следующее:
 - (1) $[] \in L$;
 - (2) Для любой строки s: если $s \in L$, то $[s] \in L$;
 - (3) Для любых строк s и t: если $s \in L$ и $t \in L$, то $st \in L$
- Входят ли эти строки в L?

```
[\ ]\ [\ ]\ (да)
[\ [\ ]\ ]\ (да)
[\ [\ ]\ ]\ (да)
[\ [\ ]\ ]\ [\ ]\ (нет)
[\ [\ ]\ [\ ]\ ]\ (да)
\epsilon (нет)
```

Важные вопросы

• Какие бывают формальные языки?

• Какие закономерности можно описать с их помощью?

Важные вопросы

• Какие бывают формальные языки?

• Какие закономерности можно описать с их помощью?

...как лингвистов, нас интересует следующее:

Важные вопросы

_	17	_	1	_
•	Какие	бывают	формальные	языки !

• Какие закономерности можно описать с их помощью?

...как лингвистов, нас интересует следующее:

• Какие формальные языки подходят для описания естественного языка?

Иерархия формальных языков Хомского

(также известна как иерархия Хомского-Шютценберже)

Иерархия формальных языков Хомского

(также известна как иерархия Хомского-Шютценберже)

• Введением в лингвистику

Введением в лингвистику
 (но мы посмотрим, как можно формализовать некоторые базовые понятия лингвистики)

- Введением в лингвистику
 (но мы посмотрим, как можно формализовать некоторые базовые понятия лингвистики)
- Введением в теорию формальных языков

- Введением в лингвистику
 (но мы посмотрим, как можно формализовать некоторые базовые понятия лингвистики)
- Введением в теорию формальных языков (но мы будем использовать формальные грамматики для описания закономерностей в естественном языке)

- Введением в лингвистику
 (но мы посмотрим, как можно формализовать некоторые базовые понятия лингвистики)
- Введением в теорию формальных языков
 (но мы будем использовать формальные грамматики для описания закономерностей в естественном языке)
- Введением в автоматическую обработку естественного языка

- Введением в лингвистику
 (но мы посмотрим, как можно формализовать некоторые базовые понятия лингвистики)
- Введением в теорию формальных языков
 (но мы будем использовать формальные грамматики для описания закономерностей в естественном языке)
- Введением в автоматическую обработку естественного языка (но мы будем пользоваться программными инструментами для работы с этими грамматиками)

- Регулярные выражения
- Конечные автоматы
- Контекстно-свободные языки
- Субрегулярные языки
- Мягко контекстно-зависимые языки
- Международный фонетический алфавит
- Фонемы и аллофоны
- Фонологические правила
- Теория оптимальности
- Автосегментная фонология
- Синтаксические составляющие
- Минималистский синтаксис

- Регулярные выражения
- Конечные автоматы
- Контекстно-свободные языки
- Субрегулярные языки
- Мягко контекстно-зависимые языки
- Международный фонетический алфавит
- Фонемы и аллофоны
- Фонологические правила
- Теория оптимальности
- Автосегментная фонология
- Синтаксические составляющие
- Минималистский синтаксис

(формальные языки)

(лингвистика)

Как связаны эти две группы терминов:

Как связаны эти две группы терминов:

- Регулярные выражения
- Конечные автоматы
- Контекстно-свободные языки
- Субрегулярные языки
- Мягко контекстно-зависимые языки
- ...

Как связаны эти две группы терминов:

- Регулярные выражения
- Конечные автоматы
- Контекстно-свободные языки
- Субрегулярные языки
- Мягко контекстно-зависимые языки
- ...

- Международный фонетический алфавит
- Фонемы и аллофоны
- Фонологические правила
- Теория оптимальности
- Автосегментная фонология
- Синтаксические составляющие
- Минималистский синтаксис
- ...

Как связаны эти две группы терминов:

- Регулярные выражения
- Конечные автоматы
- Контекстно-свободные языки
- Субрегулярные языки
- Мягко контекстно-зависимые языки
- ...

- Международный фонетический алфавит
- Фонемы и аллофоны
- Фонологические правила
- Теория оптимальности
- Автосегментная фонология
- Синтаксические составляющие
- Минималистский синтаксис
- ...

...и как использовать эту связь для описания явлений фонологии, морфологии и синтаксиса естественного языка

В следующий раз...

• Формальные грамматики

• Регулярные языки (и для чего они лингвистам)