GRAPH CONVOLUTIONAL NETWORKS

CMU 11441/11741: MACHINE LEARNING WITH GRAPHS

Due date: 11/07/2024, 11:59 PM EST GitHub repository for the assignment

Instructions

- Allowed libraries: This assignment involves implementing graph convolutional networks. You are **not** allowed to use any libraries that implement GCNs out of the box (like Pytorch-geometric). It is allowed to use autodiff libraries like Pytorch/Tensorflow. We highly recommend using Python + Pytorch for this assignment.
- Getting feedback: You can create a private fork of the repository on GitHub and add the TAs as collaborators (usernames: Shengyu-Feng, RifleZhang). This might help you in asking questions without having to copy-paste your code on piazza (you can just reference Github code/copy permalink). You can use these instructions or just copy-paste the code into a new repository.
- Posting your solutions online: As with all the other assignments, please do not share
 your solutions publicly.
- Statement of Assurance
 - 1. Did you receive any help whatsoever from anyone in solving this assignment?
 - 2. Did you give any help whatsoever to anyone in solving this assignment?
 - 3. Did you find or come across code that implements any part of this assignment?

1 GCN Review (30 points)

Q1. What is the big-O time complexity of the computation expressed in Equarion 1 in terms of |V|, |E|, d, k, and L? Your expression should not contain any other term. Assume d < k.

Solution

Q2. What is the space complexity of the computation expressed in Equation 1 in terms of |V|, |E|, d, k, and L (assume intermediate terms are saved)? Your expression should not contain any other term.

Solution

2 Graph Exploration (20 points)

Solution

Graph	Karate	Cora	Citeseer
Max in-degree	18	X	X
Min in-degree	2	X	X
Average in-degree	5.58	X	X
# nodes	34	X	X
# edges	190	X	X
Node feature dim	34	X	X

Table 1: Graph statistics

3 Node classification

3.1 Implementation (60 points)

Solution

Graph	Accuracy %	Loss	
KARATE	100	0	
CORA	X	X	
CITESEER	X	X	

Table 2: Node classification results

3.2 Varying L (20 points)

For both CORA and CITESEER, modify the **GNN** to include L = 3, 4, 5, 6 layers and plot the loss and accuracy vs. L. Summarize your observations in 2-3 lines.

Solution

3.3 Topological features vs. inbuilt features (20 points)

Solution

4 Link prediction

4.1 Training data for link prediction (20 points)

A. Solution

Graph # Positive edges		# Negative edges			
KARATE	190	190			
CORA	X	X			
CITESEER	X	x			

Table 3: Training data statistic for link prediction

B. How is the training data for link prediction created? Please explain in 2-3 lines.Solution

4.2 Implementation (80 points)

Solution

Graph	Accuracy %	Loss	
KARATE	51.34	1.008	
CORA	X	X	
CITESEER	X	X	

Table 4: Link Prediction Results

5 Graph classification

5.1 Graph Statistics (10 points)

Solution

Graph	MUTAG	ENZYMES
Num graphs	141	X
Avg. num nodes	18.85	X
Avg. num edges	94.04	X
Node feature dim	8	X

Table 5: Graph statistics for the graph classification datasets

5.2 Implementation (90 points)

Solution

Graph	MUTAG		ENZYMES			
Mean-pooling Max-pooling Last-node pooling	P	R	F1	P	R	F1
Mean-pooling	X	X		X	X	X
Max-pooling	84	83	83	X	X	X
Last-node pooling	X	X	X	X	X	X

Table 6: Graph classification results. Please use macro-averages to report the precision, recall, and F1 score for ENZYMES.

References