Data Centers Power Reduction: A Two Time Scale Approach for Delay Tolerant Workloads

Yuan Yao, Longbo Huang, Abhihshek Sharma, Leana Golubchik and Michael Neely

University of Southern California

May 3, 2012

Recall Last Talk

Recall last talk

Figure: Data center

Expenses on electricity bill:

- One 15MW data center \rightarrow \$1M per month;
- 30 50% of all operational expenses.

Recall Last Talk

Electricity supplier: power grid

Figure: Power grid

Figure: Avg. hourly spot market price during the week of 01/01/2005-01/07/2005 for LA1 Zone

Recall Last Talk

Figure: Uninterrupted Power Supply (UPS), e.g., Battery

Motivation: store energy within the UPS when prices are low and discharge it when prices are high.

Recall Last Talk

 Contribution of that paper: online control algorithm to optimally exploit these UPS devices to minimize the time average cost.

- Contribution of that paper: online control algorithm to optimally exploit these UPS devices to minimize the time average cost.
- Merit: without any knowledge of the statistics of the workload or electricity cost processes.

- Contribution of that paper: online control algorithm to optimally exploit these UPS devices to minimize the time average cost.
- Merit: without any knowledge of the statistics of the workload or electricity cost processes.
- Tradeoff: optimality gap reduces as the storage capacity is increased.

- Contribution of that paper: online control algorithm to optimally exploit these UPS devices to minimize the time average cost.
- Merit: without any knowledge of the statistics of the workload or electricity cost processes.
- Tradeoff: optimality gap reduces as the storage capacity is increased.

Only exploit the temporal diversity of power price at single data center.

└─This Talk

What's new in this talk

Exploit both spatial and temporal variations in the workload arrival process and the power prices;

└─ This Talk

What's new in this talk

- Exploit both spatial and temporal variations in the workload arrival process and the power prices;
- Cost vs. delay tradeoff: reduce power cost at the expense of increase service delay;

What's new in this talk

- Exploit both spatial and temporal variations in the workload arrival process and the power prices;
- Cost vs. delay tradeoff: reduce power cost at the expense of increase service delay;
- Two time scale control algorithm;

What's new in this talk

- Exploit both spatial and temporal variations in the workload arrival process and the power prices;
- Cost vs. delay tradeoff: reduce power cost at the expense of increase service delay;
- Two time scale control algorithm;
- Environmentally friendly: reduction in both power cost and power usage.

└─ This Talk

Multiple geographically distributed data centers, each with multiple servers.

Three levels of power reduction:

└─ This Talk

Multiple geographically distributed data centers, each with multiple servers.

Three levels of power reduction:

Server level: save power usage by adjusting the CPU speed of a single server; └ Introduction └ This Talk

Multiple geographically distributed data centers, each with multiple servers.

Three levels of power reduction:

- Server level: save power usage by adjusting the CPU speed of a single server;
- Data center level: dynamically control the *number of* activated servers in a data center;

Multiple geographically distributed data centers, each with multiple servers.

Three levels of power reduction:

- Server level: save power usage by adjusting the CPU speed of a single server;
- Data center level: dynamically control the *number of* activated servers in a data center;
- Inter-data center level: exploit the price diversity of geographically distributed data centers and route more workload to places with lower power prices.

Figure: A model of M geographically distributed data centers.

Workload model

Workload arrival rate at D_i in slot t: $A_i(t)$,

- $0 \le A_i(t) \le A_{max};$
- i.i.d. every time slot.

Two time scale control:

■ Every T time slots, *i.e.*, t = kT, with k = 1, 2, ...:

- Every T time slots, *i.e.*, t = kT, with k = 1, 2, ...:
 - $N_i(t)$: number of active serves on data center D_i ; $N_{min}^i \leq N_i(t) \leq N_i$;
 - Activating servers ⇒ non-negligible time and power;
 - Frequently switching between active and sleep ⇒ reliability problems.

- Every T time slots, i.e., t = kT, with k = 1, 2, ...:
 - $N_i(t)$: number of active serves on data center D_i ; $N_{min}^i \leq N_i(t) \leq N_i$;
 - Activating servers ⇒ non-negligible time and power;
 - Frequently switching between active and sleep ⇒ reliability problems.
- Every time slot t = 1, 2, ...:

- Every T time slots, *i.e.*, t = kT, with k = 1, 2, ...:
 - $N_i(t)$: number of active serves on data center D_i ; $N_{min}^i \leq N_i(t) \leq N_i$;
 - Activating servers ⇒ non-negligible time and power;
 - Frequently switching between active and sleep ⇒ reliability problems.
- Every time slot t = 1, 2, ...:
 - $\mu_{ij}(t)$: number of jobs routed from Q_i^F to Q_j^B ; $\mu_i(t) = (\mu_{i1}(t), \dots, \mu_{iM}(t)) \in \mathcal{R}_i$.

- Every T time slots, *i.e.*, t = kT, with k = 1, 2, ...:
 - $N_i(t)$: number of active serves on data center D_i ; $N_{min}^i \leq N_i(t) \leq N_i$;
 - Activating servers ⇒ non-negligible time and power;
 - Frequently switching between active and sleep ⇒ reliability problems.
- Every time slot $t = 1, 2, \ldots$
 - $\mu_{ij}(t)$: number of jobs routed from Q_i^F to Q_j^B ; $\mu_i(t) = (\mu_{i1}(t), \dots, \mu_{iM}(t)) \in \mathcal{R}_i$.
 - $b_i(t)$: CPU rate on each serve at D_i ; $0 \le b_i(t) \le b_{max}$;
 - All servers in data center i operate at same rate;
 - Provable optimal choice with convex power consumption function.

Cost model

- Power usage function: $P_i(N_i(\lfloor \frac{t}{T} \rfloor T), b_i(t)) \leq P_{max}$;
- Power price: $p_i(t) \le p_{max}$; changes every T_1 slots; $T = cT_1$;
- Power cost function: $f_i(t) = P_i(N_i(\lfloor \frac{t}{T} \rfloor T), b_i(t))p_i(t);$

Figure: An example of different time scales T and T_1 . In this example, $T=8,\ T_1=4,\ {\rm and}\ T=2T_1.$

Queues

■ Front end servers:

$$Q_i^F(t+1) = \max\{Q_i^F(t) - \sum_j \mu_{ij}(t), 0\} + A_i(t); \quad (1)$$

Back end clusters:

$$Q_i^B(t+1) \le \max\{Q_i^B(t) - N_i(t)b_i(t), 0\} + \sum_i \mu_{ji}(t).$$
 (2)

Feasible policy \prod

- Every T slots: $N_{min}^i \leq N_i(t) \leq N_i$;
- Every time slot: $\mu_i(t) \in \mathcal{R}_i$ and $0 \le b_i(t) \le b_{max}$;

such that

$$\bar{Q} \triangleq \lim_{t \to \infty} \sup \frac{1}{t} \sum_{\tau=0}^{t-1} \sum_{i=1}^{M} \mathbb{E}\{Q_i^F(\tau) + Q_i^B(\tau)\} \leq \infty.$$

Power cost minimization problem

$$\min_{\Pi} \quad f_{av}^{\Pi} \triangleq \lim_{t \to \infty} \sup \frac{1}{t} \sum_{\tau=0}^{t-1} \sum_{i=1}^{M} \mathbb{E}\{f_i^{\Pi}(\tau)\}$$
 (3)

Front end routing

In every time t=kT, $k=0,1,\ldots$, each D_i solves $\mu_{ij}(t)$ to maximize:

$$\sum_{i=1}^{M} \mu_{ij}(t) [Q_i^F(t) - Q_j^F(t)]. \tag{4}$$

In every time slot $\tau \in [t, t+T-1]$, $\mu_{ij}(\tau) \leq \mu_{ij}(t)$.

Back end server management

In every time t = kT, k = 0, 1, ..., each D_i solves $N_i(t)$ to minimize:

$$\mathbb{E}\left\{\sum_{\tau=t}^{t+T-1} \sum_{j} [Vf_j(\tau) - Q_j^B(t)N_j(t)b_j(\tau)] | \mathbf{Q}(t)\right\}.$$
 (5)

Need statistical information on workload arrival rates $A_i(t)$ and power prices $p_i(t)$.

Back end server management (Cont.)

In every time $\tau = 1, 2, ...$, with solved $N_i(t)$, each D_i solves $b_i(\tau)$ to minimize:

$$Vf_j(\tau) - Q_j^B(t)N_j(t)b_j(\tau).$$
(6)

Performance of SAVE

Suppose there exists an $\epsilon>0$ such that $\lambda+2\epsilon\mathbf{1}\in\mathbf{\Lambda}$, then under the SAVE algorithm, we have:

$$\bar{Q} \triangleq \lim_{K \to \infty} \sup \frac{1}{K} \sum_{k=0}^{K-1} \sum_{i=1}^{M} \mathbb{E} \{ Q_i^F(kT) + Q_i^B(kT) \} \leq \frac{B_2 + V f_{max}}{\epsilon},$$

$$f_{av}^{SAVE} \triangleq \lim_{t \to \infty} \sup \frac{1}{t} \sum_{\tau=0}^{t-1} \sum_{i=1}^{M} \mathbb{E}\{f(\tau)\} \leq f_{av}^* + \frac{B_2}{V}.$$

Here,
$$B_2 \triangleq B_1 + (T-1) \sum_j [N_j^2 b_{max}^2 + (M^2+1) \mu_{max}^2]/2$$
 with $B_1 \triangleq M A_{max}^2 + \sum_i N_i^2 b_{max}^2 + (M^2+M) \mu_{max}^2$.

Robustness of SAVE

Suppose there exists an $\epsilon>0$ such that $\lambda+2\epsilon\mathbf{1}\in\mathbf{\Lambda}$. Also suppose there exists a constant c_e such that at all time t, the estimated backlog sizes $\hat{Q}_i^F(t)$, $\hat{Q}_i^B(t)$ and the actual backlog sizes $Q_i^F(t)$, $Q_i^B(t)$ satisfy $|\hat{Q}_i^F(t)-\hat{Q}_i^F(t)|\leq c_e$ and $|\hat{Q}_i^B(t)-\hat{Q}_i^B(t)|\leq c_e$ then under the SAVE algorithm, we have:

$$\bar{Q} \triangleq \lim_{K \to \infty} \sup \frac{1}{K} \sum_{k=0}^{K-1} \sum_{i=1}^{M} \mathbb{E} \{ Q_i^F(kT) + Q_i^B(kT) \} \leq \frac{B_3 + V f_{max}}{\epsilon},$$
$$f_{av}^{SAVE} \triangleq \lim_{t \to \infty} \sup \frac{1}{t} \sum_{\tau=0}^{K-1} \sum_{i=1}^{M} \mathbb{E} \{ f(\tau) \} \leq f_{av}^* + \frac{B_3}{V}.$$

Here, $B_3 \triangleq B_2 + 2Tc_e(\mu_{max} + A_{max} + N_{max}b_{max} + M\mu_{max}).$

Schemes for comparison

- Local computation: No routing, *i.e.*, $\mu_{ii} = A_i$ and $\mu_{ij} = 0$ if $j \neq i$;
- Load balancing: $\mu_{ij}(t)$ proportional to service capacity of D_j ;
- Low price: Heuristic protocol routing more jobs to data centers with lower power prices;
- Instant on/off: Idealized protocol, assuming no delay/cost to activate/put to sleep any server; the same routing scheme with Load balancing scheme.

lueEmpirical Study

Figure: Average power cost and delay of all schemes under different ${\cal V}$ and ${\cal T}$ values.

- Impact of *V*: adjust the tradeoff between power cost reduction and service delay;
- Impact of *T*: little influence on power cost while proportional to service delay.

Figure: Average power cost and delay of all schemes under different N_{min} values and robustness test results.

- Impact of N_{min} : little influence on power cost while inverse proportional to service delay;
- Impact of estimation error on workloads: robust performance to errors.

Figure: Differences in average power usage reduction for different ${\cal V}$ values.

Environmentally friendly: reduction in actual power usage.

Contributions

- Technical contribution:
 - Traditional single time-scale Lyapunov optimization ⇒ two time-scale;
 - Traditional Lyapunov optimization based on accurate information ⇒ Expectation-based & error-tolerant;

Contributions

- Technical contribution:
 - Traditional single time-scale Lyapunov optimization ⇒ two time-scale;
 - Traditional Lyapunov optimization based on accurate information ⇒ Expectation-based & error-tolerant;

Neither novel nor solid; but, good illustration with fine story.

Contributions

- Technical contribution:
 - Traditional single time-scale Lyapunov optimization ⇒ two time-scale;
 - Traditional Lyapunov optimization based on accurate information ⇒ Expectation-based & error-tolerant;

Neither novel nor solid; but, good illustration with fine story.

Utilize both spatial and temporal diversities in both workload arrival processes and power prices. Summary and Remarks

Remarks

 Lyapunov optimization has met its bottleneck on technical improvement;

Remarks

- Lyapunov optimization has met its bottleneck on technical improvement;
- Simple application of Lyapunov is not enough for good publication;

Remarks

- Lyapunov optimization has met its bottleneck on technical improvement;
- Simple application of Lyapunov is not enough for good publication;
- Good story, neat application, and practical insights are necessary;

Remarks

- Lyapunov optimization has met its bottleneck on technical improvement;
- Simple application of Lyapunov is not enough for good publication;
- Good story, neat application, and practical insights are necessary;
- New trend: trace-based empirical study.
 - Seems practical and applicable;
 - In fact, trace data has patterns!

Summary and Remarks

Thank You!

Q&A