TECHNIQUES & MÉTHODES S02

NB: cette fiche reprend les techniques nécessaires minimales; elle ne constitue donc pas un objectif, mais un prérequis!

NOMBRES COMPLEXES

■■■ Notations algébriques & exponentielles

Un nombre complexe peut être présenté sous forme algébrique ou exponentielle. Je passe sans problème d'une écriture à l'autre :

Comment passer d'une notation algébrique en notation exponentielle

- $\boxed{1}$ je détermine le module $\rho = |z|$ de z.
- 2 le nombre complexe z/ρ est un nombre complexe de module 1. Il s'écrit donc $\frac{z}{\rho} = \cos \theta + i \sin \theta$. Je reconnais θ .

Comment passer d'une notation exponentielle à une notation algébrique

J'utilise la formule $e^{i\theta} = \cos\theta + i\sin\theta$, de sorte que $\rho e^{i\theta} = \rho\cos(\theta) + i\rho\sin(\theta)$

Exercice 4: mettre sous forme exponentielle $z=\frac{(1-i\sqrt{3})^5}{(1-i)^3}$ $r^{\epsilon ponse:}$ $z=8\sqrt{2}e^{-11i\pi/12}$

■■■ Application des nombres complexes à la trigonométrie

Il y a deux points de vue, vous pouvez au choix, effectuer vos calculs dans **C** en utilisant **les formules d' Euler, Moivre et de Newton**, ou bien rester dans **R** et utiliser les formules de trigonométrie. Plus précisément

Linéarisation

Pour transformer un polynôme en cos et sin, vous pouvez utiliser les formules de linéarisation, ou bien

- exprimer $\sin \theta$ ou $\cos \theta$ avec les formules d'Euler.
- appliquer la formule du binôme de Newton pour obtenir l'expression de $\cos^n \theta$ ou de $\sin^n \theta$ comme une somme de puissances de $e^{i\theta}$.
- regrouper ces puissances deux à deux pour en faire des sin ou des cos.

Opération inverse de la linéarisation

Pour exprimer $\cos(p\theta)$ ou $\sin(p\theta)$ comme un poynôme en $\cos\theta$ et $\sin\theta$, vous pouvez utiliser les **formules d'addition** et de duplication, ou bien

- écrire $\cos n\theta = \Re e \, e^{in\theta} = \Re e \, \left(\cos \theta + i \sin \theta\right)^n$ ou que $\sin n\theta = \Im m \, \left(\cos \theta + i \sin \theta\right)^n$
- appliquer la formule du binôme de Newton pour obtenir l'expression de $\cos n\theta$ ou de $\sin n\theta$ en fonction des puissances de $\cos \theta$ et de $\sin \theta$.

Exercice 5 : Exprimer $\sin(3x)$ sous la forme $\sin(x) P(\cos x)$, où P est un polynôme de degré 2.

Exercice 6 : Soit $x \in \mathbb{R}$, $x \neq 0$ [2 π]. Montre que $\sum_{k=0}^{n} \sin(kx) = \frac{\sin((n+1)x/2) \sin(nx/2)}{\sin(x/2)}$.

■ ■ Racines $n^{\text{ièmes}}$

Comment déterminer les racines $n^{i\text{èmes}}$ de 1

 \bullet je connais parfaitement les racines carrées, cubiques et quatrièmes de 1.

$$\mathbf{U}_2 = \{1, -1\} \quad \mathbf{U}_3 = \{1, j, j^2\} \quad \mathbf{U}_4 = \{1, i, -1, -i\}$$

• pour $n \ge 5$ j'explicite $\omega_n = e^{i2\pi/n}$. Les n racines $n^{\text{ièmes}}$ distinctes de 1 sont $1, \omega_n, \omega_n^2, \omega_n^3, \omega_n^4, \dots \omega_n^{n-1}$. Avec les notations du cours :

$$\mathbf{U}_n = \{1, \omega_n, \omega_n^2, \dots, \omega_n^{n-1}\}.$$

Comment déterminer les racines $n^{i \text{èmes}}$ d'un nombre complexe non nul a

- $\boxed{1}\,$ je détermine l'expression exponentielle de a : $a=|a|e^{i\mathsf{arg}\,a}$
- $\boxed{2}$ je détermine les racines $n^{\text{ièmes}}$ de 1, c'est-à-dire $\omega_n = e^{i2\pi/n}$ et les puissances de ω_n .
- 3 je détermine une racine $n^{\text{ième}}$ ζ_0 particulière de a. Le plus simple $\zeta_0 = \sqrt[n]{|a|} e^{i\frac{\text{arg }a}{n}}$
- $\boxed{4}$ je multiplie ζ_0 par les racines $n^{\text{ièmes}}$ de 1. Les racines $n^{\text{ièmes}}$ de a sont : $\mathbf{U}_n = \{\zeta_0, \zeta_0 \omega_n, \zeta_0 \omega_n^2, \ldots, \zeta_0 \omega_n^{n-1}\}$.

Comment calculer les racines carrées en notation algébrique

Soit $a = \alpha + i\beta$ un nombre complexe non nul présenté sous forme algébrique. Je cherche les 2 racines carrées **opposées** de a sous forme algébrique : z = x + iy. (x, y) sont les solutions du système :

$$\begin{cases} x^2 - y^2 &= \alpha \\ x^2 + y^2 &= \sqrt{\alpha^2 + \beta^2} \\ 2xy &= \beta \end{cases}.$$

Exercice 7: Quelles sont les racines carrées de 5 + 12i? $réponse: \S = \{3 + 2i, -3 - 2i\}$

■■■ Résolution d'équations polynomiales

D'après le **Théorème fondamental de l'algèbre**, toute équation polynomiale de degré $n \in \mathbb{N}^*$ à coefficients complexes possède des solutions dans \mathbb{C} .

Equations polynomiales de degré 2

▶ je vérifie s'il n'y a pas de racine évidente : je teste quelques valeurs simples, et je me rappelle que les solutions z_1 et z_2 de l'équation $az^2 + bz + c = 0$ sont les solutions du système :

$$\begin{cases} z_1 + z_2 = -b/a \\ z_1 \times z_2 = c/a \end{cases}$$

▶ sinon, j'utilise le discriminant. Je calcule une racine carrée δ de Δ , en notation algébrique le plus souvent. Les solutions de l'équation $az^2 + bz + c = 0$ sont alors données par :

$$z_1 = \frac{-b - \delta}{2a} \quad z_2 = \frac{-b + \delta}{2a}$$

Exercice 8: résoudre $z^2 + (1+4i)z - 5 - i = 0$ réponse : § = {1 - i, -2 - 3i}

Equations polynomiales de degré supérieur à 3

Aucune méthode nouvelle ne doit être connue. Le principe général est de se ramener à une équation de degré inférieur. Pour cela :

- ▶ je cherche une solution évidente,
- ▶ je chercheune solution particulière en suivant les indications de l'énoncé,
- ▶ j'effectue un changement d'inconnue.

Equations polynomiales de degré quelconque n

Lorsque le degré de l'équation n'est pas explicite, il y a fort à parier que celle-ci se ramène après changement de variable à une équation liée aux racines $n^{\text{ièmes}}$, par exemple

$$w^n = 1$$
 ou $1 + w + w^2 + \dots + w^{n-1} = 0$.