RLE Thermal-Optimization Coupling Analysis

Scientific Instrument for AI Training Thermal Monitoring

Overview

This repository contains a scientific instrument for measuring thermal-optimization coupling in Al training workloads. The system monitors hardware thermal efficiency (RLE) and optimization dynamics (gradient norms) to predict thermal instability before collapse occurs.

Key Features

- **Real-time thermal monitoring** with 1Hz sampling
- **Synchronized optimization logging** with gradient norm tracking
- **Causal analysis** with lag timing validation
- **Reproducible experiments** with atomic session management
- **Scientific validation** with reproducibility analysis

System Requirements

Hardware

- **GPU**: NVIDIA GPU with NVML support
- **CPU**: Multi-core processor with WMI support
- **RAM**: 8GB minimum, 16GB recommended
- **Storage**: 1GB free space for session data

Software

- **OS**: Windows 10/11 (tested on Windows 10 build 22000)
- **Python**: 3.10+ (tested on Python 3.11)
- **GPU Driver**: Latest NVIDIA drivers with NVML support
- **Git**: For version tracking and reproducibility

Installation

1. **Clone repository**:

```bash

git clone https://github.com/Nemeca99/RLE.git

```
cd RLE/lab
2. **Create virtual environment**:
```bash
python -m venv venv
venv\Scripts\activate
3. **Install dependencies**:
pip install -r requirements.txt
4. **Verify installation**:
```bash
python -c "import nvidia_ml_py3; print('NVML available')"
python -c "import psutil; print('psutil available')"
Quick Start
Single Session Analysis
```bash
python run_joint_session.py --model distilgpt2 --duration 120 --output results/
#### Reproducibility Analysis
python analysis/reproducibility_analysis.py
#### Custom Monitoring
```bash
python monitoring/hardware_monitor_v2.py --mode both --duration 300 --realtime
```

# **Usage Examples**

```
Basic Thermal-Optimization Coupling
```bash
```

Run 2-minute synchronized session

Analyze results

python analysis/simplified_timestamp_fix.py
...
Extended Validation
...
bash

Run multiple sessions for reproducibility

for i in {1..3}; do
python run_joint_session.py --model distilgpt2 --duration 90 --output validation_\$i/
done

Analyze reproducibility

python analysis/reproducibility_analysis.py
...
Custom Model Analysis
...bash

Analyze Luna model training

python run_joint_session.py --model luna --duration 300 --output luna_analysis/

Output Files

Each session generates:

- `rle_data_[session_id].csv` Thermal monitoring data
- `training_log_[session_id].json` Optimization dynamics
- `analysis_[session_id].json` Correlation analysis
- report_[session_id].txt` Session summary

Scientific Validation

The instrument has been validated with:

- **3 independent sessions** showing 66.7% causal consistency
- **Lag timing**: -0.7 ± 0.5 seconds (grad_norm leads RLE)
- **Correlation strength**: Variable (-0.655 to 0.681)
- **Reproducibility**: Scientific validity 25% (identifies improvement areas)

Troubleshooting

```
#### Common Issues
```

- 1. **NVML not found**: Update NVIDIA drivers
- 2. **WMI errors**: Run as administrator
- 3. **Permission denied**: Check file write permissions
- 4. **Import errors**: Verify virtual environment activation

Debug Mode

```bash

python run\_joint\_session.py --model distilgpt2 --duration 60 --output debug/ --ambient-temp 21.0

### Citation

If you use this instrument in research, please cite:

...

**RLE Thermal-Optimization Coupling Analysis** 

Scientific Instrument for AI Training Thermal Monitoring

https://github.com/Nemeca99/RLE

...

#### License

MIT License - see LICENSE file for details.

## **Contributing**

This is a scientific instrument. Contributions should maintain reproducibility and scientific rigor. Please:

- 1. Test changes with multiple sessions
- 2. Update documentation
- 3. Maintain backward compatibility
- 4. Follow scientific validation protocols

### Contact

For scientific collaboration or technical questions:

- Repository: https://github.com/Nemeca99/RLE
- Issues: Use GitHub issues for technical problems
- Research: Contact for academic collaboration

# Portable Run (Windows)

Use `portable/` for a self-contained run on any machine:

- `portable/RUN\_PORTABLE.bat` → creates local venv, installs deps, starts monitor + dashboard
- ullet `portable/QUICK\_TEST.bat` o hardware scan o 60s idle baseline o 120s test
- Hardware snapshot saved to `portable/hardware\_snapshot.json`
- All CSVs/reports remain under `sessions/recent/`