Teoria Sygnałów w zadaniach

$$f(t) = A \cdot \Pi\left(\frac{t}{2 \cdot t_0}\right) \cdot \cos\left(\frac{2\pi}{t_0} \cdot t\right) \qquad F(\jmath \omega) = A \cdot t_0 \cdot [Sa\left(\omega \cdot t_0 + 2\pi\right) - Sa\left(\omega \cdot t_0 - 2\pi\right)]$$

Tomasz Grajek, Krzysztof Wegner

POLITECHNIKA POZNAŃSKA Wydział Informatyki i Telekomunikacji Instytut Telekomunikacji Multimedialnej

pl. M. Skłodowskiej-Curie 5 60-965 Poznań

www.et.put.poznan.pl www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone ISBN 978-83-939620-1-3 Wydrukowano w Polsce

Podstawowe własności sygnałów

1.1 Podstawowe parametry i miary sygnałów ciągłych

[debug]

1.1.1 Wartość średnia

Zadanie 1.

Oblicz wartość średnią sygnału $f(t)=\mathbf{1}(t)\cdot e^{-a\cdot t}\cdot \sin\left(\frac{2\pi}{T}\cdot t\right)$ przedstawionego na rysunku :

Wartość średnią sygnału wyznaczamy ze wzoru:

$$\bar{f} = \lim_{\tau \to \infty} \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} f(t) \cdot dt \tag{1.1}$$

Podstawiamy do wzoru na wartość średnią wzór naszej funkcji:

$$\begin{split} \bar{f} &= \lim_{\tau \to \infty} \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} f(t) \cdot dt = \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \mathbf{1}(t) \cdot e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt = \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\int_{-\frac{\tau}{2}}^{0} 0 \cdot e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \int_{0}^{\frac{\tau}{2}} 1 \cdot e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) = \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\int_{-\frac{\tau}{2}}^{0} 0 \cdot dt + \int_{0}^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) = \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(0 + \int_{0}^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \right) = \end{split}$$

$$\begin{split} &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\int_{0}^{\frac{\tau}{2}} e^{-at} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \right) = \\ &= \left\{ lu = \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \quad v = -\frac{1}{a} \cdot e^{-at} \cdot dt \right\} \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(-\frac{1}{a} \cdot e^{-at} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \right) \Big|_{2}^{\frac{\tau}{2}} - \int_{0}^{\frac{\tau}{2}} -\frac{1}{a} \cdot e^{-at} \cdot \frac{2\pi}{T} \cdot \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \right) = \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a\cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot \frac{\tau}{2} \right) + \frac{1}{a} \cdot e^{-a\cdot 0} \cdot \sin \left(\frac{2\pi}{T} \cdot 0 \right) \right) + \\ &+ \frac{1}{a} \cdot \frac{2\pi}{\tau} \cdot \int_{0}^{\frac{\tau}{2}} e^{-at} \cdot \cos \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \right) = \\ &= \left\{ lu = \cos \left(\frac{2\pi}{\tau} \cdot t \right) \right\} \quad dv = e^{-at} \cdot dt \\ du = -\frac{2\pi}{\tau} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \quad v = -\frac{1}{a} \cdot e^{-at} \right\} = \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a\cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \right) + \\ &+ \frac{1}{a} \cdot \frac{2\pi}{\tau} \cdot \left(-\frac{1}{a} \cdot e^{-a\cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \right) + \\ &+ \frac{1}{a} \cdot \frac{2\pi}{\tau} \cdot \left(\left(-\frac{1}{a} \cdot e^{-a\cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \right) \right) + \\ &+ \frac{1}{a} \cdot \frac{2\pi}{\tau} \cdot \left(\left(-\frac{1}{a} \cdot e^{-a\cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \right) \right) + \\ &+ \frac{1}{a} \cdot \frac{2\pi}{\tau} \cdot \left(\left(-\frac{1}{a} \cdot e^{-a\cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \right) \right) + \\ &+ \frac{1}{a} \cdot \frac{2\pi}{\tau} \cdot \left(\left(-\frac{1}{a} \cdot e^{-a\cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \right) \right) + \\ &- \frac{1}{a} \cdot \frac{2\pi}{\tau} \cdot \left(\left(-\frac{1}{a} \cdot e^{-a\cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \right) \right) - \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a\cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \right) - \\ &- \frac{1}{a} \cdot \frac{2\pi}{\tau} \cdot \left(\left(-\frac{1}{a} \cdot e^{-a\cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{\tau} \cdot t \right) \cdot dt \right) \right) - \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \left(\left(-\frac{1}{a} \cdot e^{-a\cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot dt \right) - \\ &- \frac{1}{a} \cdot \frac{2\pi}{\tau} \cdot \left(\left(-\frac{1}{a} \cdot e^{-a\cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{\tau} \cdot t \right) \cdot dt \right) \right) - \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \cdot \left(\left(-\frac{1}{a} \cdot e^{-a\cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{\tau} \cdot t \right) \cdot dt \right) - \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \cdot \left(\left(-\frac{1}{a} \cdot e^{-a\cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{\tau} \cdot t \right) \cdot dt \right) - \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \cdot \left(\left(-\frac{1}{a} \cdot e^{-a\cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{\tau} \cdot t \right) \cdot dt \right) - \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \cdot \left(\left(-\frac{1}{a} \cdot e^{-a\cdot \frac{\tau}{2}} \cdot \sin \left(\frac{2\pi}{\tau} \cdot t \right) \cdot dt \right) - \\ &=$$

$$= \begin{cases} \frac{-\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin\left(\frac{2\pi}{T} \cdot \frac{\tau}{2}\right) - \frac{1}{a^2} \cdot \frac{T}{2\pi} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos\left(\frac{2\pi}{T} \cdot \frac{\tau}{2}\right) + \frac{1}{a^2} \cdot \frac{T}{2\pi}}{\left(1 + \frac{1}{a^2} \cdot \frac{T^2}{4\pi^2}\right)} = \\ = \int_0^{\frac{\tau}{2}} e^{-a \cdot t} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt \end{cases} = \lim_{\tau \to \infty} \frac{1}{\tau} \left(\frac{-\frac{1}{a} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \sin\left(\frac{2\pi}{T} \cdot \frac{\tau}{2}\right) - \frac{1}{a^2} \cdot \frac{T}{2\pi} \cdot e^{-a \cdot \frac{\tau}{2}} \cdot \cos\left(\frac{2\pi}{T} \cdot \frac{\tau}{2}\right) + \frac{1}{a^2} \cdot \frac{T}{2\pi}}{\left(1 + \frac{1}{a^2} \cdot \frac{T^2}{4\pi^2}\right)} \right) = 0$$

Średnia wartość sygnału wynosi 0.

- 1.1.2 Energia sygnału
- 1.1.3 Moc i wartość skuteczna sygnału

Analiza sygnałów okresowych za pomocą szeregów ortogonalnych

- 2.1 Trygonometryczny szereg Fouriera
- 2.2 Zespolony szerego Fouriera
- 2.3 Obliczenia mocy sygnałów twierdzenie Parsevala

Analiza sygnałów nieokresowych. Przekształcenie całkowe Fouriera

- 3.1 Wyznaczanie transformaty Fouriera z definicji
- 3.2 Wykorzystanie twierdzeń do obliczeń transformaty Fouriera
- 3.3 Obliczenia energii sygnału za pomocą transformaty Fouriera. Twierdzenie Parsevala

Transmisja sygnałów przez układy liniowe o stałych parametrach (LTI)

4.1 Obliczanie splotu ze wzoru

4.2 Filtry

Zadanie 1.

Wyznacz odpowiedź implusową h(t) układu LTI, wiedząc, że sygnały u(t) oraz y(t) wygladają jak na poniższych wykresach. Wykorzystaj informacje o transformatach sygnałów: $\Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right)$ oraz $\Lambda(t) \xrightarrow{\mathcal{F}} Sa^2\left(\frac{\omega}{2}\right)$.

Wiemy, że transformatę odpowiedzi układu można wyznaczyć ze wzoru $Y(\jmath\omega) = U(\jmath\omega) \cdot H(\jmath\omega)$ oraz że $h(t) \xrightarrow{\mathcal{F}} H(\jmath\omega)$. W związku z tym $H(\jmath\omega) = \frac{Y(\jmath\omega)}{U(\jmath\omega)}$ oraz $h(t) \xrightarrow{\mathcal{F}^{-1}} H(\jmath\omega)$.

Aby wyznaczyć transmitancję $H(j\omega)$ trzeba obliczyć sygnałów u(t) oraz y(t):

$$u(t) = A \cdot \Pi\left(\frac{t + \frac{t_0}{2}}{t_0}\right) \qquad \qquad y(t) = A \cdot t_0 \cdot \Lambda\left(\frac{t}{t_0}\right)$$

$$u(t) \xrightarrow{\mathcal{F}} U(\jmath\omega) \qquad \qquad y(t) \xrightarrow{\mathcal{F}} Y(\jmath\omega)$$

$$\Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right) \qquad \qquad \Lambda(t) \xrightarrow{\mathcal{F}} Sa^2\left(\frac{\omega}{2}\right)$$

$$\Pi\left(\frac{1}{t_0} \cdot t\right) \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \qquad \qquad \Lambda\left(\frac{1}{t_0} \cdot t\right) \xrightarrow{\mathcal{F}} t_0 \cdot Sa^2\left(\frac{\omega \cdot t_0}{2}\right)$$

$$\begin{split} &\Pi\left(\frac{t+\frac{t_0}{2}}{t_0}\right) \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot e^{\jmath \cdot \omega \cdot \frac{t_0}{2}} & A \cdot t_0 \cdot \Lambda\left(\frac{t}{t_0}\right) \xrightarrow{\mathcal{F}} A \cdot t_0^2 \cdot Sa^2\left(\frac{\omega \cdot t_0}{2}\right) \\ & A \cdot \Pi\left(\frac{t+\frac{t_0}{2}}{t_0}\right) \xrightarrow{\mathcal{F}} A \cdot t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot e^{\jmath \cdot \omega \cdot \frac{t_0}{2}} \end{split}$$

Skoro zanmy transformaty sygnałów wejściowego i wyjściowego, to możemy wyznaczyc transmitancję układu, czyli $H(\jmath\omega)$.

$$\begin{split} H(\jmath\omega) &= \frac{Y(\jmath\omega)}{U(\jmath\omega)} = \\ &= \frac{A \cdot t_0^2 \cdot Sa^2 \left(\frac{\omega \cdot t_0}{2}\right)}{A \cdot t_0 \cdot Sa \left(\frac{\omega \cdot t_0}{2}\right) \cdot e^{\jmath \cdot \omega \cdot \frac{t_0}{2}}} = \\ &= t_0 \cdot Sa \left(\frac{\omega \cdot t_0}{2}\right) \cdot e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}} \end{split}$$

Teraz możemy wyznaczć odpowiedź implusową układu h(t):

$$h(t) \xrightarrow{\mathcal{F}} H(\jmath\omega)$$

$$? \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}}$$

$$\Pi(t) \xrightarrow{\mathcal{F}} Sa\left(\frac{\omega}{2}\right)$$

$$\Pi\left(\frac{1}{t_0} \cdot t\right) \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right)$$

$$\Pi\left(\frac{t - \frac{t_0}{2}}{t_0}\right) \xrightarrow{\mathcal{F}} t_0 \cdot Sa\left(\frac{\omega \cdot t_0}{2}\right) \cdot e^{-\jmath \cdot \omega \cdot \frac{t_0}{2}}$$

Odpowiedź implusowa układu to $h(t) = \Pi\left(\frac{t - \frac{t_0}{2}}{t_0}\right)$.

 $@\ 2020$ Wszelkie prawa zastrzeżone.

