

4222-SURYA GROUP OF INSTITUTIONS VIKRAVANDI.

PREPARED BY,

S.MASILAMANI,

422221106304,

ECE- DEPT,

3RD YEAR.

AI PHASE 3

PREPROCESSING

import nltk from nltk.corpus import twitter_samples import matplotlib.pyplot as plt import random

NLTK Twitter Dataset

nltk.download('twitter_samples')
[nltk_data] Downloading package twitter_samples to
[nltk_data] /usr/share/nltk_data...
[nltk_data] Package twitter samples is already up-to-date!

```
all_positive_tweets = twitter_samples.strings('positive_tweets.json')
all_negative_tweets = twitter_samples.strings('negative_tweets.json')

print('Number of positive tweets: ', len(all_positive_tweets))

print('Number of negative tweets: ', len(all_negative_tweets))

print('\nThe type of all_positive_tweets is: ', type(all_positive_tweets))

print('The type of a tweet entry is: ', type(all_negative_tweets[0]))
```


TWEETS OF DATA

train = pd.read_csv('../input/twitter-tweets-data/train_tweet.csv')
test = pd.read_csv('../input/twitter-tweets-data/test_tweets.csv')

print(train.shape)
print(test.shape)

COUNT THE TWEETS

train['label'].value_counts().plot.bar(color = 'pink', figsize = (6, 4))

DISTRIBUTION OF TWEETS

checking the distribution of tweets in the data

```
length_train = train['tweet'].str.len().plot.hist(color = 'pink', figsize = (6, 4)) length_test = test['tweet'].str.len().plot.hist(color = 'orange', figsize = (6, 4))
```


COUNTS OF TWEETS

from sklearn.feature_extraction.text **import** CountVectorizer

plt.title("Most Frequently Occuring Words - Top 30")

```
cv = CountVectorizer(stop_words = 'english')
words = cv.fit_transform(train.tweet)

sum_words = words.sum(axis=0)

words_freq = [(word, sum_words[0, i]) for word, i in cv.vocabulary_.items()]
words_freq = sorted(words_freq, key = lambda x: x[1], reverse = True)

frequency = pd.DataFrame(words_freq, columns=['word', 'freq'])

frequency.head(30).plot(x='word', y='freq', kind='bar', figsize=(15, 7), color = 'blue')
```

NEGATIVE TWEETS

```
negative\_words = '.join([text \ \textbf{for} \ text \ \textbf{in} \ train['tweet'][train['label'] == 1]])
```

```
wordcloud = WordCloud(background_color = 'red', width=800, height=500, random_state = 0,
max_font_size = 110).generate(negative_words)
plt.figure(figsize=(10, 7))
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis('off')
plt.title('The Negative Words')
plt.show()
```



```
# collecting the hashtags

def hashtag_extract(x):
    hashtags = []

for i in x:
    ht = re.findall(r"#(\w+)", i)
    hashtags.append(ht)

return hashtags
```


model_w2v.wv.most_similar(positive = "dinner")

CONCLUSION

It is a Natural Language Processing Problem where Sentiment Analysis is done by Classifying the Positive tweets from negative tweets by machine learning models for classification, text mining, text analysis, data analysis and data visualizatio