FE-Operator Implementation in C++ using tensor structure

IWR

by

Enes Witwit and Marcel Duerr

Contents

1	Introduction	
2	Tensor product structure	
	2.1 2D	
	2.2 3D	
3	Implementation	
	3.1 2D	
	3.2 3D	

1 Introduction

This is the introduction.

2 Tensor product structure

$2.1 \quad 2D$

Assume we have a solution $u \in V$ in the following form:

$$u(x,y) = \sum_{h=1}^{n^2} \psi_h(x,y) u_h, \ u_h \in \mathbb{R} \ \forall h = 1, \dots, n^2 =: N$$
 (2.1)

where each ψ_h is a shape function. These shape functions are given by a tensor product of one dimensional polynomials. The transformation given by

$$h = j(n-1) + i, \ i < n \leftrightarrow (i,j) \tag{2.2}$$

gives us an alternative representation of u:

$$u(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{n} \varphi_i(x)\varphi_j(y)u_{ij}, \ i,j = 1, \dots n$$
 (2.3)

Let $q = (q_1, ..., q_n)^T$ be quadrature points of a quadrature rule in 1-D with corresponding weights $w = (w_1, ..., w_n)^T$. We can get a two-dimensional rule by using the tensor product and obtain points $(\boldsymbol{q}_1, ..., \boldsymbol{q}_N)$ and weights $(\boldsymbol{w}_1, ..., \boldsymbol{w}_N)$ with $\boldsymbol{q}_h = (q_i, q_j)$ and $\boldsymbol{w}_h = w_i w_j$.

First, we want to evaluate u at every quadrature point. This can be done by a matrix vector multiplication:

$$\begin{pmatrix} \psi_1(\boldsymbol{q}_1) & \dots & \psi_N(\boldsymbol{q}_1) \\ \vdots & \ddots & \vdots \\ \psi_1(\boldsymbol{q}_N) & \dots & \psi_N(\boldsymbol{q}_N) \end{pmatrix} \begin{pmatrix} u_1 \\ \vdots \\ u_N \end{pmatrix} = \begin{pmatrix} u(\boldsymbol{q}_1) \\ \vdots \\ u(\boldsymbol{q}_N) \end{pmatrix}$$
(2.4)

The matrix can be written as a tensor product of two (in this case even identical) matrices:

$$\mathcal{N}^T \otimes \mathcal{N}^T = \begin{pmatrix} \varphi_1(q_1) & \dots & \varphi_n(q_1) \\ \vdots & \ddots & \vdots \\ \varphi_1(q_n) & \dots & \varphi_n(q_n) \end{pmatrix} \otimes \begin{pmatrix} \varphi_1(q_1) & \dots & \varphi_n(q_1) \\ \vdots & \ddots & \vdots \\ \varphi_1(q_n) & \dots & \varphi_n(q_n) \end{pmatrix}$$
(2.5)

Let $(\mathcal{U}_{ij}) \in \mathbb{R}^{n \times n}$ be the matrix filled with the coefficients u_{ij} . Using sum factorization we can multiply these matrices instead of using the formula in (4) which gives us

$$\mathcal{N}^T \mathcal{U} \mathcal{N} = \bar{\mathcal{U}}, \quad \bar{\mathcal{U}}_{ij} = u(q_i, q_j)$$
 (2.6)

The quadrature weights and the summation of the entries can also be done in a efficient way when the tensor product is exploited. Multiplying $\bar{\mathcal{U}}$ with quadrature weights w from the right will sum each weighted column, multyplying w^T from the left will do the rest. The full operation therefore reads

$$\int \int u(x,y)dx \ dy \approx w^T \mathcal{N}^T \mathcal{U} \mathcal{N} w \tag{2.7}$$

So far, we have only integrated u, but we can also test it with an ansatz function without having to change much. Consider some function f(x,y) = g(x)h(y). Since f is seperable, we only have to change the last step. Instead of only multiplying weights, we will also multiply with the ansatz function evaluated at the respective quadrature point:

$$\bar{w}^x = (w_1 g(q_1), \dots, w_n g(q_n))^T \qquad \bar{w}^y = (w_1 h(q_1), \dots, w_n h(q_n))^T$$

$$\int \int u(x, y) f(x, y) dx \ dy \approx (\bar{w}^x)^T \mathcal{N}^T \mathcal{U} \mathcal{N} \bar{w}^y \qquad (2.8)$$

If we have a whole set of ansatz-functions, which are derived from a tensor product of identical one-dimensional ansatz-functions, we can multiply matrices instead of vectors in the last step. This will complete our vmult-operation. We define

$$W = \begin{pmatrix} w1\varphi_1(q_1) & \dots & w_n\varphi_1(q_n) \\ \vdots & \ddots & \vdots \\ w1\varphi_n(q_1) & \dots & w_n\varphi_n(q_n) \end{pmatrix}$$

Since the same WN^T is used on both sides, this operation can be done by only three matrix multiplications. We will use a multiplication function,

which is also able to multiply by the transposed. This will save us the cost of actually transposing a matrix and has no drawbacks. Final formula:

$$\mathcal{V} = \mathcal{W} \mathcal{N}^T \mathcal{U} (\mathcal{W} \mathcal{N}^T)^T \tag{2.9}$$

This formula, when slightly modified, can be used for other bilinear forms as well. Consider $(\nabla u, \nabla v)$.

$$(\nabla u, \nabla v) = (\partial_x u, \partial_x v) + (\partial_y u, \partial_y v) \tag{2.10}$$

$$= \sum_{i,j} u_{ij}(\varphi_i'(x)\varphi_j(y), \phi'(x)\phi(y))$$
 (2.11)

$$+\sum_{i,j} u_{ij}(\varphi_i(x)\varphi'_j(y),\phi(x)\phi'(y))$$
 (2.12)

We will introduce the two matrices W' and N'. These matrices are similar to the matrices above, but instead of evaluating the ansatz-functions they will evaluate their derivative. The resulting formula is given by

$$\mathcal{V} = \mathcal{W}' \mathcal{N}'^T \mathcal{U} (\mathcal{W} \mathcal{N}^T)^T + \mathcal{W} \mathcal{N}^T \mathcal{U} (\mathcal{W}' \mathcal{N}'^T)^T$$

Consider $(-\Delta u, v) = -(\partial_{xx}u, v) + -(\partial_{yy}u, v).$

We introduce \mathcal{N}'' , which evaluates the second derivatives of the ansatz-functions at the quadrature points. Note that the matrix \mathcal{W} is not modified here. As a result we get

$$\mathcal{V} = -\mathcal{W}\mathcal{N}''^T \mathcal{U}(\mathcal{W}\mathcal{N}^T)^T - \mathcal{W}\mathcal{N}^T \mathcal{U}(\mathcal{W}\mathcal{N}''^T)^T$$

$2.2 \quad 3D$

3 Implementation

- 3.1 2D
- 3.2 3D