Deflatability in Permutation Classes

Cheyne Homberger University of Maryland, Baltimore County

> AMS Eastern Sectional Meeting Georgetown University March 8, 2015

(Joint work with Michael Albert, Mike Atkinson, and Jay Pantone)

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Example

~

•

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

$$\pi = 35142$$

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Permutation Patterns

Definition

Let $\pi=\pi(1)\pi(2)\cdots\pi(n)$ and $\sigma=\sigma(1)\sigma(2)\cdots\sigma(k)$ be two permutations. π contains σ as a pattern (written $\sigma\prec\pi$) if there is some subsequence $\pi(i_1)\pi(i_2)\dots\pi(i_k)$ which is order isomorphic to the entries of σ (i.e., $\pi(i_j)<\pi(i_k)$ if and only if $\sigma(j)<\sigma(k)$).

Permutation Patterns

Definition

Let $\pi = \pi(1)\pi(2)\cdots\pi(n)$ and $\sigma = \sigma(1)\sigma(2)\cdots\sigma(k)$ be two permutations. π contains σ as a pattern (written $\sigma \prec \pi$) if there is some subsequence $\pi(i_1)\pi(i_2)\dots\pi(i_k)$ which is order isomorphic to the entries of σ (i.e., $\pi(i_j) < \pi(i_k)$ if and only if $\sigma(j) < \sigma(k)$).

Permutation Patterns

Definition

Let $\pi = \pi(1)\pi(2)\cdots\pi(n)$ and $\sigma = \sigma(1)\sigma(2)\cdots\sigma(k)$ be two permutations. π contains σ as a pattern (written $\sigma \prec \pi$) if there is some subsequence $\pi(i_1)\pi(i_2)\dots\pi(i_k)$ which is order isomorphic to the entries of σ (i.e., $\pi(i_j) < \pi(i_k)$ if and only if $\sigma(j) < \sigma(k)$).

Definition

Definition

Definition

Definition

Definition

$$\pi = 9\ 2\ 4\ 6\ 5\ 10\ 3\ 7\ 1\ 8$$

Definition

A permutation is said to be *simple* if it has no non-trivial intervals.

Definition

A permutation is said to be *simple* if it has no non-trivial intervals.

$$\pi = 92 \boxed{465} 103718$$

Definition

A permutation is said to be *simple* if it has no non-trivial intervals.

$$\pi = 9\ 2\ 5\ 10\ 3\ 7\ 1\ 8$$

Definition

A permutation is said to be *simple* if it has no non-trivial intervals.

 $\pi = 72483516$

Definition

For a permutation π of length n, and permutations $\alpha_1, \alpha_2, \ldots \alpha_n$, the *inflation* of π by $(\alpha_1, \alpha_2, \ldots \alpha_n)$ (denoted $\pi[\alpha_1, \alpha_2, \ldots \alpha_n]$) is the permutation obtained by inflating the ith entry of π by an interval isomorphic to α_i .

Definition

For a permutation π of length n, and permutations $\alpha_1, \alpha_2, \ldots \alpha_n$, the *inflation* of π by $(\alpha_1, \alpha_2, \ldots \alpha_n)$ (denoted $\pi[\alpha_1, \alpha_2, \ldots \alpha_n]$) is the permutation obtained by inflating the ith entry of π by an interval isomorphic to α_i .

Definition

For a permutation π of length n, and permutations $\alpha_1, \alpha_2, \ldots \alpha_n$, the *inflation* of π by $(\alpha_1, \alpha_2, \ldots \alpha_n)$ (denoted $\pi[\alpha_1, \alpha_2, \ldots \alpha_n]$) is the permutation obtained by inflating the ith entry of π by an interval isomorphic to α_i .

2413[213, 21, 132, 1] = 5 4 6 9 8 1 3 2 7

Definition

For a permutation π of length n, and permutations $\alpha_1, \alpha_2, \ldots \alpha_n$, the *inflation* of π by $(\alpha_1, \alpha_2, \ldots \alpha_n)$ (denoted $\pi[\alpha_1, \alpha_2, \ldots \alpha_n]$) is the permutation obtained by inflating the ith entry of π by an interval isomorphic to α_i .

2413[213, 21, 132, 1] = 5 4 6 9 8 1 3 2 7

Definition

For a permutation π of length n, and permutations $\alpha_1, \alpha_2, \ldots \alpha_n$, the *inflation* of π by $(\alpha_1, \alpha_2, \ldots \alpha_n)$ (denoted $\pi[\alpha_1, \alpha_2, \ldots \alpha_n]$) is the permutation obtained by inflating the ith entry of π by an interval isomorphic to α_i .

2413[213, 21, 132, 1] = 5 4 6 9 8 1 3 2 7

Substitution Decomposition

Theorem (Albert and Atkinson)

Every permutation π can be written as the inflation of a unique simple permutation σ . Further, if σ has length at least four, then the inflating permutations are uniquely determined.

Class Enumeration

Idea

If we understand the simples within a permutation class, we can use them to understand the class as a whole.

Class Enumeration

Idea

If we understand the simples within a permutation class, we can use them to understand the class as a whole.

Example

The only simple permutations in the class Av(132) are $\{1,12,21\}$. Analyzing the ways in which these permutations can be inflated while avoiding 132 leads to a functional equation for the generating function enumerating the class:

$$f = z + fz + z(f+1)f.$$

Class Enumeration

Idea

If we understand the simples within a permutation class, we can use them to understand the class as a whole.

Example

The only simple permutations in the class Av(132) are $\{1,12,21\}$. Analyzing the ways in which these permutations can be inflated while avoiding 132 leads to a functional equation for the generating function enumerating the class:

$$f = z + fz + z(f+1)f.$$

Example

The class Av(123) has infinitely many simple permutations, and cannot be enumerated in this way.

Permutation Classes - Growth Rates

Permutation Classes - Growth Rates

Permutation Classes - Growth Rates

How Rare are Simples?

How Rare are Simples?

Theorem (Albert, Atkinson, Klazar)

A randomly chosen permutation is simple with probability $1/e^2$.

How Rare are Simples?

Theorem (Albert, Atkinson, Klazar)

A randomly chosen permutation is simple with probability $1/e^2$.

However...

There is no known instance of a permutation class' simples having positive density.

The Simple Subclass

Within a class of permutations, define the *simple subclass* to be the smallest subclass which contains all the simple permutations of the class.

The Simple Subclass

Within a class of permutations, define the *simple subclass* to be the smallest subclass which contains all the simple permutations of the class.

Deflatable Classes

A class is *deflatable* if its simple subclass is strictly smaller than the class itself.

Alternate Definition

A permutation class is deflatable if the downward closure of its simples is strictly smaller than the class itself.

Alternate Definition

A permutation class is deflatable if the downward closure of its simples is strictly smaller than the class itself.

A permutation class C is *not* deflatable if every permutation in the class is contained within a simple permutation in the class.

Idea

Let $\mathcal C$ be a class. Given an arbitrary permutation ω in $\mathcal C$, we need to show that ω can be *extended* to a simple permutation within the class.

Idea

Let $\mathcal C$ be a class. Given an arbitrary permutation ω in $\mathcal C$, we need to show that ω can be *extended* to a simple permutation within the class.

Lemma

Every permutation in $\operatorname{Av}(\pi)$ can be extended to an indecomposable permutation (within the class), except when $\pi \in \{1,12,21,132,213,231,312\}.$

Idea

Let $\mathcal C$ be a class. Given an arbitrary permutation ω in $\mathcal C$, we need to show that ω can be *extended* to a simple permutation within the class.

Lemma

Every permutation in $Av(\pi)$ can be extended to an indecomposable permutation (within the class), except when $\pi \in \{1, 12, 21, 132, 213, 231, 312\}$.

Lemma

A permutation class $\operatorname{Av}(\pi)$ is deflatable if, for every $\omega \in \operatorname{Av}(\pi)$, we can extend ω by a single point which cuts a maximal interval of ω .

γ		δ
	α	
β		ϵ

Theorem

The class Av(2413) is non-deflatable

Theorem

The class Av(2413) is non-deflatable

Proof

Let $\omega \in \text{Av}(2413)$ be indecomposable and non-simple, and let α be a maximal interval. We need to add a point to ω which cuts α without creating an occurrence of 2413.

γ		δ
	α	
β		ϵ

Now claim that this new permutatation avoids 2413

Non-Deflatable Classes

Theorem

The class $Av(\pi)$ is not deflatable whenever . . .

Non-Deflatable Classes

Theorem

The class $Av(\pi)$ is not deflatable whenever . . .

• $\pi = \lambda \oplus \mu \oplus \rho$, all three summands non-empty

Non-Deflatable Classes

Theorem

The class $Av(\pi)$ is not deflatable whenever . . .

- $\pi = \lambda \oplus \mu \oplus \rho$, all three summands non-empty
- $\mathbf{r} = \lambda \oplus \rho, \ |\lambda|, |\rho| \ge 2$

Theorem

- $\pi = \lambda \oplus \mu \oplus \rho$, all three summands non-empty
- $\pi = \lambda \oplus \rho$, $|\lambda|$, $|\rho| \ge 2$
- $\pi = 1 \oplus \rho$, and ρ begins with ascent and lacks either an increasing or a decreasing bond.

Theorem

- $\pi = \lambda \oplus \mu \oplus \rho$, all three summands non-empty
- $\pi = \lambda \oplus \rho$, $|\lambda|$, $|\rho| \ge 2$
- $\pi = 1 \oplus \rho$, and ρ begins with ascent and lacks either an increasing or a decreasing bond.
- $\pi = 1 \oplus \rho$, and ρ ends with its smallest element and does not start with its biggest or second smallest

Theorem

- $\pi = \lambda \oplus \mu \oplus \rho$, all three summands non-empty
- \blacksquare $\pi = \lambda \oplus \rho$, $|\lambda|$, $|\rho| \ge 2$
- $\pi = 1 \oplus \rho$, and ρ begins with ascent and lacks either an increasing or a decreasing bond.
- $\pi=1\oplus\rho$, and ρ ends with its smallest element and does not start with its biggest or second smallest
- $\pi=1\oplus \rho$, and ρ begins with its largest entry and ends with its smallest, and lacks either an increasing or a decreasing bond

Theorem

- $\pi = \lambda \oplus \mu \oplus \rho$, all three summands non-empty
- $\mathbf{r} = \lambda \oplus \rho, |\lambda|, |\rho| \geq 2$
- $\pi = 1 \oplus \rho$, and ρ begins with ascent and lacks either an increasing or a decreasing bond.
- $ightharpoonup \pi=1\oplus
 ho$, and ho ends with its smallest element and does not start with its biggest or second smallest
- $\pi=1\oplus \rho$, and ρ begins with its largest entry and ends with its smallest, and lacks either an increasing or a decreasing bond
- $ightharpoonup \pi=1\oplus
 ho$, and ho starts with a descent, has at least one entry to the right of its smallest which is less than its leftmost, and lacks either an increasing or a decreasing bond

What we've shown

For most decomposable patterns π , the class $\operatorname{Av}(\pi)$ is not deflatable.

The only (possible) exceptions all have the form $1 \oplus \rho$, with strict restrictions on ρ .

What we've shown

For most decomposable patterns π , the class $\mathrm{Av}(\pi)$ is not deflatable.

The only (possible) exceptions all have the form $1 \oplus \rho$, with strict restrictions on ρ .

Av(132)

Recall that Av(132) is (very) deflatable.

What we've shown

For most decomposable patterns π , the class $\mathrm{Av}(\pi)$ is not deflatable.

The only (possible) exceptions all have the form $1 \oplus \rho$, with strict restrictions on ρ .

Av(132)

Recall that Av(132) is (very) deflatable.

The class Av(134652) is as well.

What we've shown

For most decomposable patterns π , the class $\operatorname{Av}(\pi)$ is not deflatable.

The only (possible) exceptions all have the form $1 \oplus \rho$, with strict restrictions on ρ .

Av(132)

Recall that Av(132) is (very) deflatable.

The class Av(134652) is as well.

Unknown

- ► Av(146523)
- ► Av(154623)
- ► Av(164532)

Deflatable Classes

Deflatable Classes

Idea

To prove that a class is deflatable, we need only provide a single *witness*, a permutation in the class which cannot be extended to a simple permutation.

Witnessing Deflation

Let $\omega \in Av(\pi)$, and consider the permutation diagram of ω .

Denote by gray the *forbidden areas* (those for which inserting an entry creates an occurrence of π).

While adding points to ω , if you ever find yourself in this situation:

Then ω can never be extended to a simple permutation.

Example

Example

Example

$$\pi = 251364$$

$$\omega = 25173486$$

Example

$$\pi = 251364$$

$$\omega = 25173486$$

Theorem

Theorem

Theorem

$$\pi = 251364$$

$$\omega = 25173486$$

Theorem

$$\pi = 251364$$

$$\omega = 25173486$$

More Deflatable Classes

More Deflatable Classes

Class	Witness
Av(134652)	6 8 9 3 4 1 10 14 7 13 5 12 11 2
Av(246135)	4729115611038
Av(246513)	5 9 3 11 8 2 10 6 7 1 4
Av(251364)	25173486
Av(251463)	261843795
Av(254613)	5 9 3 11 2 8 10 6 7 1 4
Av(256413)	47921085613
Av(1523764)	11 18 14 16 8 19 6 7 22 13 1 10 5 24 2 3 9 17 23 4 21 20 15 12
Av(2613475)	26139457108
Av(2631574)	2 6 3 1 9 5 4 8 10 7

Open Questions

Are the following classes deflatable?

Open Questions

Are the following classes deflatable?

Decomposable Bases

- ► Av(146523)
- ► Av(154623)
- ► Av(164532)

Open Questions

Are the following classes deflatable?

Decomposable Bases

- ► Av(146523)
- Av(154623)
- ► Av(164532)

Indecomposable Bases

- ► Av(25314)
- ► Av(24153)
- ► Av(23514)
- ► Av(24513)

Open Questions

Are the following classes deflatable?

Decomposable Bases

- ► Av(146523)
- ► Av(154623)
- ► Av(164532)

Indecomposable Bases

- ► Av(25314)
- ► Av(24153)
- ► Av(23514)
- ► Av(24513)

Conjecture

If π is a parallel alternation of length \geq 6 (i.e., $\pi=246\dots(2n)135\dots(2n-1)$), then the class $\mathrm{Av}(\pi)$ is deflatable.