Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

(Currently Amended) A benzoyl-substituted phenylalanineamide of the formula I

$$R^{12}$$
 R^{13}
 R^{14}
 R^{15}
 R^{7}
 R^{8}
 R^{15}
 R^{16}
 R^{15}
 R^{16}
 R^{16}
 R^{15}
 R^{15}

in which the variables are as defined below:

- R^2 , [[R^3 ,]] R^4 , R^5 are hydrogen, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, nitro, amino, C_1 - C_6 -alkylamino, di(C_1 - C_6 -alkyl)amino, C_1 - C_6 -alkylthio or C_1 - C_6 -alkoxycarbonyl;
- R^3 is hydrogen, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, nitro, amino, C_1 - C_6 -alkylamino, di(C_1 - C_6 -alkyl)amino, C_1 - C_6 -alkylthio or

C₁-C₆-alkoxycarbonyl;

R⁶, R⁷ are hydrogen, or hydroxyl or C₁-C₆-alkoxy;

- R^8 is C_1 - C_6 -alkyl, C_1 - C_4 -cyanoalkyl or C_1 - C_6 -haloalkyl;
- R⁹ is OR¹⁶, SR¹⁷ or NR¹⁸R¹⁹;
- R¹⁰ is hydrogen or C₁-C₆-alkyl;
- $R^{11},\ R^{12}\ are\ hydrogen,\ halogen,\ cyano,\ C_1-C_6-alkyl,\ C_1-C_6-haloalkyl,\ hydroxyl,\ C_1-C_6-alkoxy,\ C_1-C_6-haloalkoxy,\ hydroxyl,\ nitro,\ hydroxy-C_1-C_4-alkyl,\ C_1-C_6-alkoxy-C_1-C_4-alkyl,\ tri(C_1-C_6-alkyl)silyloxy-C_1-C_4-alkyl,\ C_1-C_4-alkyl,\ C_1-C_6-alkyl)thio,\ (hydroxycarbonyl)-C_1-C_6-alkyl,\ (C_1-C_6-alkoxycarbonyl)-C_1-C_6-alkyl,\ (hydroxycarbonyl)-C_2-C_6-alkenyl,\ (C_1-C_6-alkoxycarbonyl)-C_2-C_6-alkenyl,\ (hydroxycarbonyl)-C_1-C_4-alkoxy,\ (C_1-C_4-alkoxycarbonyl)-C_1-C_4-alkoxy,\ (C_1-C_4-alkylcarbonyl)oxy-C_1-C_4-alkyl,\ hydroxycarbonyl-C_1-C_4-alkoxy-C_1-C_4-alkyl,\ (C_1-C_4-alkylsulfonyl)oxy-C_1-C_4-alkyl,\ C_1-C_4-alkyl-O-C(O)-[C_1-C_4-alkyl-O]_3-C_1-C_4-alkyl,\ carbamoyloxy-C_1-C_4-alkyl,\ (C_1-C_4-alkyl-O]_3-C_1-C_4-alkyl,\ [di(C_1-C_4-alkyl)aminocarbonyl]oxy-C_1-C_4-alkyl,\ benzyloxy,\ where the phenyl ring may be substituted by 1 to 3 radicals from the group consisting of halogen and C_1-C_4-alkyl,\ amino,\ C_1-C_4-alkylamino,\ di(C_1-C_4-alkyl)amino,\ (C_1-C_4-alkylsulfonyl)-amino,\ C_1-C_4-alkylsulfonyl)amino,\ (C_1-C_4-alkylsulfonyl)amino,\ (C_1-C_4-alkylcarbonyl)amino,\ (C_1-C_4-a$

carbamoylamino, (C_1 - C_4 -alkylamino)carbonylamino, [di(C_1 - C_4 -alkyl)amino]carbonylamino, [(C_1 - C_4 -haloalkylsulfonyl)aminocarbonyl]-amino, phenyl or heterocyclyl, where the phenyl and the heterocyclyl radical of the two last-mentioned substituents may carry one to three radicals from the following group: halogen, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, hydroxycarbonyl and C_1 - C_6 -alkoxycarbonyl;

- R^{13} , R^{14} , R^{15} are hydrogen, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, nitro, hydroxyl, C_1 - C_4 -alkylthio or benzyloxy;
- R¹⁶, R¹⁷, R¹⁸ are hydrogen, C₁-C₆-alkyl, tri(C₁-C₆-alkyl)silyl, C₃-C₆-cycloalkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkenyl, C₃-C₆-haloalkynyl, formyl, C₁-C₆-alkylcarbonyl, C₃-C₆-cycloalkylcarbonyl, C₂-C₆-alkenylcarbonyl, C₂-C₆-alkynylcarbonyl, C₁-C₆-alkoxycarbonyl, C₃-C₆-alkenyloxycarbonyl, C₃-C₆-alkynyloxycarbonyl, C₁-C₆-alkylaminocarbonyl, C₃-C₆-alkynylaminocarbonyl, C₁-C₆-alkynylaminocarbonyl, C₁-C₆-alkylsulfonylaminocarbonyl, C₁-C₆-alkylsulfonylaminocarbonyl, N-(C₃-C₆-alkyl)-N-(C₁-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-alkyl)-N-(C₁-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-alkyl)-N-(C₁-C₆-alkoxy)-N-(C₁-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-alkynyl)-N-(C₁-C₆-alkoxy)aminocarbonyl, N-(C₃-C₆-alkynyl)-N-(C₁-C₆-alkoxy)aminocarbonyl, N-(C₃-C₆-alkyl), N-(C₁-C₆-alkyl)aminocarbonyl, C₁-C₆-alkylaminoolimino-C₁-C₆-alkyl or N-(di-C₁-C₆-alkylamino)imino-C₁-C₆-alkylaminoolimino-C₁-C₆

alkyl,

where the alkyl, cycloalkyl and alkoxy radicals mentioned may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, hydroxyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, di(C₁-C₄-alkyl)amino, C₁-C₄-alkylcarbonyl, hydroxycarbonyl, C₁-C₄-alkoxycarbonyl, aminocarbonyl, C₁-C₄-alkylaminocarbonyl, di(C₁-C₄-alkyl)-aminocarbonyl or C₁-C₄-alkylcarbonyloxy;

phenyl, phenyl- C_1 - C_6 -alkyl, phenylcarbonyl, phenylcarbonyl- C_1 - C_6 -alkyl, phenoxycarbonyl, phenylaminocarbonyl, phenylsulfonylaminocarbonyl, N-(C_1 - C_6 -alkyl)-N-(phenyl)aminocarbonyl, phenyl- C_1 - C_6 -alkylcarbonyl, heterocyclyl, heterocyclyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl, heterocyclyloxycarbonyl, heterocyclylaminocarbonyl, heterocyclylsulfonylaminocarbonyl, N-(C_1 - C_6 -alkyl)-N-(heterocyclyl)aminocarbonyl or heterocyclyl- C_1 - C_6 -alkylcarbonyl, where the phenyl and the heterocyclyl radicals may be partially or fully halogenated and/or may carry one to three of the following groups: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy

 SO_2R^{20} ; $-C(O)-[C_1-C_4-alkyl-O]_3-C_1-C_4-alkyl$; or $-C(O)-O-C_1-C_4-alkyl-O-phenyl$, where the phenyl radical may optionally be substituted by one to three radicals from the group consisting of halogen and C_1-C_4 -alkyl;

R¹⁹ is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -haloalkynyl,

where the alkyl and cycloalkyl radicals mentioned may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, hydroxyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di(C_1 - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl, hydroxycarbonyl, C_1 - C_4 -alkoxycarbonyl, aminocarbonyl, C_1 - C_4 -alkylaminocarbonyl, di(C_1 - C_4 -alkyl)aminocarbonyl or C_1 - C_4 -alkylcarbonyloxy; or

phenyl, phenyl-C₁-C₆-alkyl, heterocyclyl or heterocyclyl-C₁-C₆-alkyl, where the phenyl and the heterocyclyl radicals of the 4 last-mentioned substituents may be partially or fully halogenated, and/or may carry one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

 R^{20} is C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl or phenyl, where the phenyl radical may be partially or fully halogenated and/or may carry one to three of the following groups: C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl or C_1 - C_6 -alkoxy;

or an agriculturally useful salt thereof.

2. (Orginal) The benzoyl-substituted phenylalanineamide of the formula I

according to claim 1, where R^1 is halogen or C_1 - C_6 -haloalkyl.

- 3. (Previously Presented) The benzoyl-substituted phenylalanineamide of the formula according to claim 1, where R² and R³ independently of one another are hydrogen, halogen or C₁-C₆-haloalkyl.
- 4. (Previously Presented) The benzoyl-substituted phenylalanineamide of the formula I according to claim 1, where R⁴, R⁵, R⁶, R⁷, R¹⁰, R¹³, R¹⁴ and R¹⁵ are hydrogen.
- 5. (Previously Presented) The benzoyl-substituted phenylalanineamide of the formula I according to claim 1, where R⁹ is OR¹⁶.
- (Withdrawn) A process for preparing benzoyl-substituted
 phenylalanineamides of the formula I according to claim 1, which comprises

reacting phenylalanines of the formula V

$$R^{10}$$
 R^{10}
 R^{10}
 R^{14}
 R^{15}
 R^{14}
 R^{16}
 R^{15}
 R^{15}
 R^{14}

where R^6 and R^9 to \bar{R}^{15} are as defined in claim 1 and L^1 is a nucleophilically

displaceable leaving group,

with benzoic acids or benzoic acid derivatives of the formula IV

where R^1 to R^5 are as defined in claim 1 and L^2 is a nucleophilically displaceable leaving group

to give the corresponding benzoyl derivatives of the formula III

$$R^{11}$$
 R^{12}
 R^{13}
 R^{14}
 R^{10}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R

where R^1 to R^6 and R^9 to R^{15} are as defined in claim 1 and L^1 is a nucleophilically displaceable leaving group

and then reacting the resulting benzoyl derivatives of the formula III with an

amine of the formula II

HNR⁷R⁸ II,

where R⁷ and R⁸ are as defined in claim 1.

7. (Withdrawn) The process of claim 6 for preparing benzoyl-substituted phenylalanineamides of the formula I, where R⁹ is hydroxyl and R¹⁰ is hydrogen, which comprises preparing benzoyl derivatives of the formula III where R⁹ is hydroxyl and R¹⁰ is hydrogen by acylating keto compounds of the formula XIII

$$\begin{array}{c|c}
R^{11} & R^{12} \\
R^{13} & R^{14} \\
R^{15} & R^{14}
\end{array}$$

$$\begin{array}{c|c}
R^{14} & XIII, \\
R^{6} & O
\end{array}$$

where R^6 and R^{11} to R^{15} are as defined in claim 6 and L^1 is a nucleophilically displaceable leaving group

with benzoic acids/benzoic acid derivatives of the formula IV to produce N-acyl keto compounds of the formula XII

where R^1 to R^6 and R^{11} to R^{15} are as defined in claim 6 and L^1 is a nucleophilically displaceable leaving group, and thereafter reducing the keto group.

8. (Withdrawn) A benzoyl derivative of the formula III

where R^1 to R^6 and R^9 to R^{15} are as defined in claim 1 and L^1 is a nucleophilically displaceable leaving group.

9. (Currently Amended) A herbicidal composition comprising a herbicidally

effective amount of at least one benzoyl-substituted phenylalanineamide of the formula I

$$R^{12}$$
 R^{13}
 R^{14}
 R^{14}
 R^{15}
 R^{7}
 R^{8}
 R^{1}
 R^{14}
 R^{15}
 R^{1

in which the variables are as defined below:

is halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, nitro, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl, C₁-C₆-haloalkylthio, or phenyl;

 R^2 , R^3 , R^4 , R^5 are hydrogen, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, nitro, amino, C_1 - C_6 -alkylamino, di(C_1 - C_6 -alkyl)amino, C_1 - C_6 -alkylthio or C_1 - C_6 -alkoxycarbonyl;

R⁶, R⁷ are hydrogen, hydroxyl or C₁-C₆-alkoxy;

R⁸ is C₁-C₆-alkyl, C₁-C₄-cyanoalkyl or C₁-C₆-haloalkyl;

R⁹ is OR¹⁶, SR¹⁷ or NR¹⁸R¹⁹;

R¹⁰ is hydrogen or C₁-C₆-alkyl;

R¹¹, R¹² are hydrogen, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, hydroxyl, nitro, hydroxy- C_1 - C_4 -alkyl, C_1 - C_6 -alkyl, tri(C_1 - C_6 -alkyl)silyloxy- C_1 - C_4 -alkyl, C_1 - C_4 alkylthio, (hydroxycarbonyl)-C1-C6-alkyl, (C1-C6-alkoxycarbonyl)-C1-C6alkyl, (hydroxycarbonyl)-C₂-C₆-alkenyl, (C₁-C₆-alkoxycarbonyl)-C₂-C₆alkenyl, (hydroxycarbonyl)-C₁-C₄-alkoxy, (C₁-C₄-alkoxycarbonyl)-C₁-C₄alkoxy, (C₁-C₄-alkylcarbonyl)oxy-C₁-C₄-alkyl, hydroxycarbonyl-C₁-C₄- $\underline{alkoxy-C_1-C_4-alkyl}$, (C₁-C₄-alkylsulfonyl)oxy-C₁-C₄-alkyl, C₁-C₄-alkyl-O- $C(O)-[C_1-C_4-alkyl-O]_3-C_1-C_4-alkyl, carbamoyloxy-C_1-C_4-alkyl, (C_1-C_4-alkyl-O)_3-C_1-C_4-alkyl, (C_1-C_4-alkyl-O)_3-C_1-C_4-alkyl, (C_1-C_4-alkyl-O)_3-C_1-C_4-alkyl, (C_1-C_4-alkyl-O)_3-C_1-C_4-alkyl, (C_1-C_4-alkyl-O)_3-C_1-C_4-alkyl, (C_1-C_4-alkyl-O)_3-C_1-C_4-alkyl, (C_1-C_4-alkyl-O)_3-C_1-C_4-alkyl, (C_1-C_4-alkyl-O)_3-C_1-C_4-alkyl-O)_3-C_1-C_4-alkyl-O_1-C_4-alky$ alkylaminocarbonyl)oxy-C₁-C₄-alkyl, [di(C₁-C₄-alkyl)aminocarbonyl]oxy- C_1 - C_4 -alkyl, [(C_1 - C_4 -haloalkylsulfonyl)aminocarbonyl]oxy- C_1 - C_4 -alkyl, benzyloxy, where the phenyl ring may be substituted by 1 to 3 radicals from the group consisting of halogen and C₁-C₄-alkyl, amino, C₁-C₄alkylamino, di(C₁-C₄-alkyl)amino, (C₁-C₄-alkylsulfonyl)amino, C₁-C₄-(haloalkylsulfonyl)amino, (C_1 - C_4 -alkylcarbonyl)amino, carbamoylamino, $(C_1-C_4-alkylamino)$ carbonylamino, [di $(C_1-C_4-alkylamino)$ alkyl)amino]carbonylamino, [(C₁-C₄-haloalkylsulfonyl)aminocarbonyl]amino, phenyl or heterocyclyl, where the phenyl and the heterocyclyl radical of the two last-mentioned substituents may carry one to three radicals from the following group: halogen, nitro, C₁-C₄-alkyl, C₁-C₄haloalkyl, hydroxycarbonyl and C₁-C₆-alkoxycarbonyl;

 R^{13} , R^{14} , R^{15} are hydrogen, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, nitro, hydroxyl, C_1 - C_4 -alkylthio or benzyloxy;

 R^{16} , R^{17} , R^{18} are hydrogen, C_1 - C_6 -alkyl, $tri(C_1$ - C_6 -alkyl)silyl, C_3 - C_6 -cycloalkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkenyl, C₃-C₆-haloalkynyl, formyl, C₁-C₆-alkylcarbonyl, C₃-C₆-cycloalkylcarbonyl, C₂-C₆alkenylcarbonyl, C₂-C₆-alkynylcarbonyl, C₁-C₆-alkoxycarbonyl, C₃-C₆alkenyloxycarbonyl, C₃-C₆-alkynyloxycarbonyl, C₁-C₆alkylaminocarbonyl, C₃-C₆-alkenylaminocarbonyl, C₃-C₆alkynylaminocarbonyl, C₁-C₆-alkylsulfonylaminocarbonyl, C₁-C₆haloalkylsulfonylaminocarbonyl, di(C₁-C₆-alkyl)aminocarbonyl, N-(C₃- C_6 -alkenyl)-N-(C_1 - C_6 -alkyl)aminocarbonyl, N-(C_3 - C_6 -alkynyl)-N-(C_1 - C_6 alkyl)aminocarbonyl, N-(C₁-C₆-alkoxy)-N-(C₁-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-alkenyl)-N-(C₁-C₆-alkoxy)aminocarbonyl, N-(C₃-C₆-alkynyl)-N-(C₁-C₆-alkoxy)aminocarbonyl, di(C₁-C₆-alkyl)aminothiocarbonyl, C₁-C₆alkylcarbonyl-C₁-C₆-alkyl, C₁-C₆-alkoxyimino-C₁-C₆-alkyl, N-(C₁-C₆alkylamino)imino-C₁-C₆-alkyl or N-(di-C₁-C₆-alkylamino)imino-C₁-C₆alkyl, where the alkyl, cycloalkyl and alkoxy radicals mentioned may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, hydroxyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₁- C_4 -alkylthio, di(C_1 - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl, hydroxycarbonyl, C₁-C₄-alkoxycarbonyl, aminocarbonyl, C₁-C₄alkylaminocarbonyl, di(C₁-C₄-alkyl)-aminocarbonyl or C₁-C₄alkylcarbonyloxy;

phenyl, phenyl-C₁-C₆-alkyl, phenylcarbonyl, phenylcarbonyl, phenylaminocarbonyl, phenylaminocarbonyl,

 $\begin{array}{c} phenylsulfonylaminocarbonyl, \ N-(C_1-C_6-alkyl)-N-\\ (phenyl)aminocarbonyl, \ phenyl-C_1-C_6-alkylcarbonyl, \ heterocyclyl.\\ heterocyclyl-C_1-C_6-alkyl, \ heterocyclylcarbonyl, \ heterocyclylcarbonyl-C_1-\\ \underline{C_6-alkyl}, \ heterocyclyloxycarbonyl, \ heterocyclylaminocarbonyl,\\ heterocyclylsulfonylaminocarbonyl, \ N-(C_1-C_6-alkyl)-N-\\ (heterocyclyl)aminocarbonyl \ or \ heterocyclyl-C_1-C_6-alkylcarbonyl,\\ \hline where \ the \ phenyl \ and \ the \ heterocyclyl \ radicals \ may \ be \ partially\\ \hline or \ fully \ halogenated \ and/or \ may \ carry \ one \ to \ three \ of \ the\\ \hline following \ groups: \ nitro, \ cyano, \ C_1-C_4-alkyl, \ C_1-C_4-haloalkyl,\\ \hline \underline{C_1-C_4-alkoxy} \ or \ C_1-C_4-haloalkoxy} \end{array}$

 $\frac{SO_2R^{20}; -C(O)-[C_1-C_4-alkyl-O]_3-C_1-C_4-alkyl; or}{-C(O)-O-C_1-C_4-alkyl-O-phenyl, where the phenyl radical may optionally} \\ \frac{D}{D} = \frac{1}{2} \frac{1}$

is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, $\underline{C_3}$ - $\underline{C_6}$ -haloalkenyl, $\underline{C_3}$ - $\underline{C_6}$ -haloalkynyl, $\underline{C_3}$

where the alkyl and cycloalkyl radicals mentioned may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, hydroxyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di(C_1 - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl, hydroxycarbonyl, C_1 - C_4 -alkoxycarbonyl, aminocarbonyl, C_1 - C_4 -alkylaminocarbonyl, di(C_1 - C_4 -alkyl)aminocarbonyl or C_1 - C_4 -alkylcarbonyloxy; or

phenyl, phenyl-C₁-C₆-alkyl, heterocyclyl or heterocyclyl-C₁-C₆-alkyl,

where the phenyl and the heterocyclyl radicals of the 4 last-mentioned substituents may be partially or fully halogenated, and/or may carry one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R²⁰ is C₁-C₆-alkyl, C₁-C₆-haloalkyl or phenyl,

where the phenyl radical may be partially or fully halogenated and/or may carry one to three of the following groups: C₁-C₆-alkoxy;

or an agriculturally useful salt thereof of claim 1 and auxiliaries customary for formulating crop protection agents.

10. (Currently Amended) A process for preparing <u>herbicidal</u> compositions according to claim 9, which comprises <u>comprising</u> mixing a herbicidally effective amount of at least one benzoyl-substituted phenylalanineamide <u>of the formula I</u>

$$R^{12}$$
 R^{13}
 R^{14}
 R^{14}
 R^{15}
 R^{7}
 R^{8}
 R^{15}
 R^{16}
 R^{15}
 $R^{$

in which the variables are as defined below:

R¹ is halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, nitro, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl, C₁-C₆-haloalkylthio, or phenyl;

R², R³, R⁴, R⁵ are hydrogen, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl,

C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, nitro, amino, C₁-C₆-alkylamino, di(C₁-C₆-alkyl)amino, C₁-C₆-alkylthio or C₁-C₆-alkoxycarbonyl;

R⁶, R⁷ are hydrogen, hydroxyl or C₁-C₆-alkoxy;

R⁸ is C₁-C₆-alkyl, C₁-C₄-cyanoalkyl or C₁-C₆-haloalkyl;

R⁹ is OR¹⁶, SR¹⁷ or NR¹⁸R¹⁹;

R¹⁰ is hydrogen or C₁-C₆-alkyl;

 $\frac{R^{11},\,R^{12}\,\text{are hydrogen, halogen, cyano, }C_{1}\text{--}C_{6}\text{--alkyl, }C_{1}\text{--}C_{6}\text{--haloalkyl, hydroxyl, }}{C_{1}\text{--}C_{6}\text{--alkoxy, }C_{1}\text{--}C_{6}\text{--haloalkoxy, hydroxyl, nitro, hydroxy-}C_{1}\text{--}C_{4}\text{--alkyl, }}{C_{1}\text{--}C_{6}\text{--alkoxy-}C_{1}\text{--}C_{4}\text{--alkyl, tri}(C_{1}\text{--}C_{6}\text{--alkyl})\text{silyloxy-}C_{1}\text{--}C_{4}\text{--alkyl, }}{C_{1}\text{--}C_{6}\text{--alkoxy-}C_{1}\text{--}C_{4}\text{--alkyl, }}{C_{1}\text{--}C_{6}\text{--alkoxy-}C_{1}\text{--}C_{4}\text{--alkoxy-}}{C_{1}\text{--}C_{4}\text{--alkoxy-}}{C_{1}\text{--}C_{4}\text{--alkoxy-}}{C_{1}\text{--}C_{4}\text{--alkoxy-}}{C_{1}\text{--}C_{4}\text{--alkoxy-}}{C_{1}\text{--}C_{4}\text{--alkyl, }}{C_{1}\text{--}C_{4}\text{--alkyl, }}{C_{1}\text{$

from the group consisting of halogen and C_1 – C_4 -alkyl, amino, C_1 – C_4 -alkylamino, di(C_1 – C_4 -alkyl)amino, (C_1 – C_4 -alkylsulfonyl)amino, C_1 – C_4 -(haloalkylsulfonyl)amino, (C_1 – C_4 -alkylcarbonyl)amino, carbamoylamino, (C_1 – C_4 -alkylamino)carbonylamino, [di(C_1 – C_4 -alkylsulfonyl)aminocarbonyl]-amino, phenyl or heterocyclyl, where the phenyl and the heterocyclyl radical of the two last-mentioned substituents may carry one to three radicals from the following group: halogen, nitro, C_1 – C_4 -alkyl, C_1 – C_4 -haloalkyl, hydroxycarbonyl and C_1 – C_6 -alkoxycarbonyl;

- R¹³, R¹⁴, R¹⁵ are hydrogen, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, nitro, hydroxyl, C₁-C₄-alkylthio or benzyloxy;
- R¹⁶, R¹⁷, R¹⁸ are hydrogen, C₁-C₆-alkyl, tri(C₁-C₆-alkyl)silyl, C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkenyl, C₃-C₆-haloalkynyl, formyl, C₁-C₆-alkylcarbonyl, C₃-C₆-cycloalkylcarbonyl, C₂-C₆-alkenylcarbonyl, C₂-C₆-alkynylcarbonyl, C₁-C₆-alkoxycarbonyl, C₃-C₆-alkenyloxycarbonyl, C₃-C₆-alkynyloxycarbonyl, C₁-C₆-alkylaminocarbonyl, C₃-C₆-alkynylaminocarbonyl, C₁-C₆-alkylsulfonylaminocarbonyl, C₁-C₆-alkylsulfonylaminocarbonyl, N-(C₃-C₆-alkylsulfonylaminocarbonyl, N-(C₃-C₆-alkylsulfonylaminocarbonyl, N-(C₁-C₆-alkylsulfonylaminocarbonyl, N-(C₁-C₆-alkylsulfonylaminocarbonylaminocarbonylaminocarbonylaminocarbonylaminocarbonylaminocarbonylaminocarbonylaminocarbonylaminocarbonylaminocarbonylaminocarbonylaminocarbonylaminocarbonylaminocarbonylaminocarbonylaminocarbonylaminocarbonylaminocarbonylaminocarb

 $\begin{array}{l} (C_1-C_6\text{-alkoxy}) \text{aminocarbonyl, } \text{di}(C_1-C_6\text{-alkyl}) \text{aminothiocarbonyl, } C_1-C_6\text{-}\\ \text{alkylcarbonyl-} C_1-C_6\text{-alkyl, } C_1-C_6\text{-alkoxyimino-} C_1-C_6\text{-alkyl, } \text{N-}(C_1-C_6\text{-}\\ \text{alkylamino}) \text{imino-} C_1-C_6\text{-alkyl or } \text{N-}(\text{di-}C_1-C_6\text{-alkylamino}) \text{imino-} C_1-C_6\text{-}\\ \text{alkyl, where the alkyl, cycloalkyl and alkoxy radicals mentioned may be}\\ \text{partially or fully halogenated and/or may carry one to three of the}\\ \text{following groups: cyano, hydroxyl, } C_3-C_6\text{-cycloalkyl, } C_1-C_4\text{-alkoxy, } C_1-\\ \text{C}_4\text{-alkylthio, } \text{di}(C_1-C_4\text{-alkyl}) \text{amino, } C_1-C_4\text{-alkylcarbonyl, }\\ \text{hydroxycarbonyl, } C_1-C_4\text{-alkoxycarbonyl, aminocarbonyl, } C_1-C_4-\\ \text{alkylaminocarbonyl, } \text{di}(C_1-C_4\text{-alkyl})\text{-aminocarbonyl or } C_1-C_4-\\ \text{alkylcarbonyloxy;} \end{array}$

phenyl, phenyl- C_1 - C_6 -alkyl, phenylcarbonyl, phenylcarbonyl- C_1 - C_6 -alkyl, phenoxycarbonyl, phenylaminocarbonyl, phenylsulfonylaminocarbonyl, N-(C_1 - C_6 -alkyl)-N-(phenyl)aminocarbonyl, phenyl- C_1 - C_6 -alkylcarbonyl, heterocyclyl, heterocyclyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl, heterocyclylcarbonyl, heterocyclylcarbonyl, heterocyclylcarbonyl, heterocyclylsulfonylaminocarbonyl, N-(C_1 - C_6 -alkyl)-N-(heterocyclyl)aminocarbonyl or heterocyclyl- C_1 - C_6 -alkylcarbonyl, where the phenyl and the heterocyclyl radicals may be partially or fully halogenated and/or may carry one to three of the following groups: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy

 $\frac{SO_2R^{20}; -C(O)-[C_1-C_4-alkyl-O]_3-C_1-C_4-alkyl; or}{-C(O)-O-C_1-C_4-alkyl-O-phenyl, where the phenyl radical may optionally}$

be substituted by one to three radicals from the group consisting of halogen and C₁-C₄-alkyl;

is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, $\underline{C_3}-\underline{C_6}-\text{haloalkenyl}, \ \underline{C_3}-\underline{C_6}-\text{haloalkynyl},$

where the alkyl and cycloalkyl radicals mentioned may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, hydroxyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, di(C₁-C₄-alkyl)amino, C₁-C₄-alkylcarbonyl, hydroxycarbonyl, C₁-C₄-alkoxycarbonyl, aminocarbonyl, C₁-C₄-alkylaminocarbonyl, di(C₁-C₄-alkyl)aminocarbonyl or C₁-C₄-alkylcarbonyloxy; or

phenyl, phenyl-C₁-C₆-alkyl, heterocyclyl or heterocyclyl-C₁-C₆-alkyl,
where the phenyl and the heterocyclyl radicals of the 4 lastmentioned substituents may be partially or fully halogenated,
and/or may carry one to three of the following groups: nitro,
cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄haloalkoxy;

R²⁰ is C₁-C₆-alkyl, C₁-C₆-haloalkyl or phenyl,

where the phenyl radical may be partially or fully halogenated and/or may carry one to three of the following groups: C₁-C₆-alkyl, C₁-C₆-haloalkyl or C₁-C₆-alkoxy;

or an agriculturally useful salt- thereof of claim 1 with auxiliaries customary for formulating crop protection agents.

- 11. (Withdrawn) A method for controlling unwanted vegetation, which comprises allowing a herbicidally effective amount of at least one benzoyl-substituted phenylalanineamide or an agriculturally useful salt thereof of claim 1 to act on plants, their habitat and/or on seed.
- 12. (Cancelled)
- 13. (Withdrawn) The method of claim 11, wherein the application rate of the compound of formula I or salt thereof is from 0.001 to 3.0 kg/ha.
- 14. (Withdrawn) The method of claim 13, wherein the application rate is 0.01 to 1.0 kg/ha.
- 15. (Previously Presented) The phenylalanineamide or salt thereof of claim 1, wherien R¹ is F; R², R³, R⁴, R⁵, R⁶, R⁷, R¹⁰, R¹⁴ and R¹⁵ are all H; and R⁸ is CH₃.