$Alg\`ebre$

$Polyn\^omes$

Denis Vekemans *

Solution 14 Le système n'est pas linéaire mais est symétrique en x, y, z (ce qui signifie que : [(x, y, z) est solution] si et seulement si [(x, z, y)] est solution] si et seulement si [(y, z, x)] est solution] si et seulement si [(y, z, x)] est solution] si et seulement si [(z, y, x)] est solution].

Pour résoudre ce type de système, il est souvent intéressant de considérer x, y et z comme étant les trois racines d'un polynôme P. Ainsi, $P = (X - x)(X - y)(X - z) = X^3 - (x + y + z)X^2 + (xy + yz + zx)X - xyz$.

D'après les données du système, on connaît x+y+z=2 et $xyz=-\frac{1}{2}$ mais pas xy+yz+zx. On cherche donc à calculer xy+yz+zx. Si on utilise $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2}$, on obtient après mise au dénominateur commun $\frac{yz+zx+xy}{xyz}=\frac{1}{2}$, puis, comme $xyz=-\frac{1}{2}$, $xy+yz+zx=-\frac{1}{4}$.

Ainsi, x, y et z, solutions du système, sont aussi solutions du polynôme $P = X^3 - 2X^2 - \frac{1}{4}X + \frac{1}{2}$.

En représentant graphiquement la fonction polynomiale P de \mathbb{R} dans \mathbb{R} , on peut se conjecturer que les racines de ce polynôme sont $-\frac{1}{2}$, $\frac{1}{2}$ et 2 (on peut aussi bien faire quelques essais pour observer que 2 est racine puis compléter par le calcul). On vérifie alors $P = (X + \frac{1}{2})(X - \frac{1}{2})(X - 2)$.

Ainsi, les solutions du système d'origine sont toutes les permutations possibles du triplet $(-\frac{1}{2}, \frac{1}{2}, 2)$.

Solution 15 On peut montrer par récurrence que

$$P_n = (-1)^n \frac{(X-1)(X-2)\dots(X-n)}{n!}.$$

Solution 16 Soit P_n un polynôme de degré n vérifiant la condition P'_n divise P_n ($P_n = \sum_{i=0}^n a_i x^i$ et $a_n \neq 0$).

Comme P'_n divise P_n , il existe un polynôme Q tel que $P_n = QP'_n$.

Au regard du degré n de P_n et du degré n-1 de P'_n , on déduit que le polynôme Q est de degré 1 et on pose $Q=\alpha(X-\beta)$.

Au regard du terme en X^n de P_n et de QP'_n , on obtient que $a_n = \alpha n a_n$, puis comme $a_n \neq 0$, $\alpha = \frac{1}{n}$.

En résumé, on a obtenu :

$$P_n = \frac{1}{n}(X - \beta)P_n' \tag{1}$$

^{*}Laboratoire de mathématiques pures et appliquées Joseph Liouville ; 50, rue Ferdinand Buisson BP 699 ; 62 228 Calais cedex ; France

On obtient donc que β est racine de P_n .

En dérivant une fois l'équation (1), on obtient :

$$P'_{n} = \frac{1}{n}(X - \beta)P''_{n} + \frac{1}{n}P'_{n}$$
 (2)

Et, on obtient $\underbrace{(1-\frac{1}{n})}_{0}P'_{n}=\frac{1}{n}(X-\beta)P''_{n}$, donc que β est racine de P'_{n} .

En dérivant k fois l'équation (1), on obtient (d'après la formule de Leibniz, à savoir pour la dérivée kième du produit de fonctions fg, $(fg)^{(k)} = \sum_{i=0}^k \frac{k!}{i!(k-i)!} f^{(i)} g^{(k-i)}$:

$$P_n^{(k)} = \frac{1}{n}(X - \beta)P_n^{(k+1)} + \frac{1}{n}kP_n^{(k)}$$
(3)

Et, on obtient $\underbrace{(1-\frac{k}{n})}_{\neq 0 \text{ tant que } k < n} P_n^{(k)} = \frac{1}{n}(X-\beta)P_n^{(k+1)}$, donc que β est racine de $P_n^{(k)}$.

D'où, si $0 \le k \le n-1$, on a $P_n^{(k)}(\beta) = 0$ et par conséquent, $P_n = a_n(X - \beta)^n$ (car β est racine de P_n d'ordre n).