Optimisation Différentiable Théorie et Algorithmes Partie II

Exemple de résumé du cours

J. Ch. GILBERT

5 janvier 2021

Informations pratiques

- Objectif du cours : l'optimisation
 - aspects théoriques : pénalisation, sous-différentiel...
 - aspects pratiques: pénalisation, SQP, OL...
- Organisation:
 - Partie II: 7 séances, dont 1 pour l'examen.
 - CM: 5 séances d'1h15++,
 - TD + TP: 5+2 séances d'2h00--,
 - TP: suite projet d'optimisation (Matlab/Scilab),
 - travail personnel.
- Supports de cours
 - syllabus [pdf]: ne pas voir les sections avec ⊙,
 - planches [pdf]: points importants du cours [§],
 - notes manuscrites [SP]: 1 document par séance,
 - exercices : en TD, dans le syllabus.
- Contrôle des connaissances
 - TP: rapport et code incrémental à remettre,
 - Séance 7 : résolution de problèmes (3h00).

Plan du cours II

```
    8. Conjugaison
        TP4
    9. Sous-différentiabilité
        TD5 (sous-différentiabilité)
    10. Pénalisation
        TD6 (pénalisation)
    11. Optimisation quadratique successive (OQS/SQP)
        TP5
    12. Optimisation linéaire: simplexe et PI
        TD7 (consolidation)
    13. TD8 (consolidation)
        TD9 (consolidation)
    14. Contrôle des connaissances
```

VIII $(\S 3.5)$ Conjugaison

Enveloppe convexe fermée d'un ensemble (§ 2.5.5)

Soient \mathbb{E} un e.v. avec $\langle \cdot, \cdot \rangle$ et $P \subset \mathbb{E}$.

• **Dfn**. L'enveloppe convexe de P, co P, est le plus petit convexe contenant P.

$$P$$
 fermé \implies co P fermé.

- **Dfn**. L'enveloppe convexe fermée de P, $\overline{co}P$, est le plus petit convexe fermé contenant P.
- **Dfn**. Un demi-espace fermé de \mathbb{E} :

$$H^{-}(\xi,\alpha) := \{x \in \mathbb{E} : \langle \xi, x \rangle \leqslant \alpha\},\$$

où $\xi \in \mathbb{E}$ est non nul et $\alpha \in \mathbb{R}$.

• Prop.

 $\overline{\text{co}}P$ est l'intersection de tous les demi-espaces fermés contenant P.

Enveloppe supérieure de fonctions réelles (§ 3.4.2)

• Enveloppe supérieure d'une famille de $f_i : \mathbb{E} \to \overline{\mathbb{R}}$, $i \in I$ (quelconque):

$$\left(\sup_{i\in I} f_i\right)(x) := \sup_{i\in I} \left(f_i(x)\right).$$

- epi $(\sup_{i \in I} f_i) = \bigcap_{i \in I} (\operatorname{epi} f_i)$. f_i convexes $\implies \sup_{i \in I} f_i$ convexe. f_i fermées $\implies \sup_{i \in I} f_i$ fermée.

Fonction conjuguée (§ 3.5)

Soient \mathbb{E} un espace euclidien (prod. scal. $\langle \cdot, \cdot \rangle$) et $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$.

• Dfn. Conjuguée $f^*: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ de f:

$$f^*(x^*) := \sup_{x \in \mathbb{E}} (\langle x^*, x \rangle - f(x)).$$

Biconjuguée $f^{**}: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ de f:

$$f^{**}(x) := \sup_{x^* \in \mathbb{E}} \left(\langle x^*, x \rangle - f^*(x^*) \right).$$

- **Prop**. Quelle que soit $f: \mathbb{E} \to \overline{\mathbb{R}}$, on a
 - 1) $f^{**} \leq f$.

Si f est propre et a une minorante affine, on a

- 2) $f^* \in \overline{Conv}(\mathbb{E})$ et $f^{**} \in \overline{Conv}(\mathbb{E})$.
- 3) f^{**} = enveloppe sup. minorantes affines de f.
- 4) $f^{**} = f \iff f \in \overline{\text{Conv}}(\mathbb{E}).$

Interprétation de $f^*(x^*)$ et f^{**}

IX Sous-différentiabilité

Sous-différentiel (§ 3.6)

- **Dfn** Le sous-différentiel $\partial f(x)$ de $f \in \text{Conv}(\mathbb{E})$ en $x \in \text{dom } f$ est l'ensemble des $x^* \in \mathbb{E}$ vérifiant les propriétés équivalentes suivantes :
 - $(S_1) \ \forall d \in \mathbb{E} : f'(x;d) \geqslant \langle x^*, d \rangle,$
 - $(S_2) \ \forall y \in \mathbb{E} : f(y) \geqslant f(x) + \langle x^*, y x \rangle,$
 - (S_3) $x \in \arg\max_{y \in \mathbb{E}} (\langle x^*, y \rangle f(y)),$
 - (S_4) $f(x) + f^*(x^*) \leqslant \langle x^*, x \rangle$,
 - $(S_5) \ f(x) + f^*(x^*) = \langle x^*, x \rangle.$

Si $x \notin \text{dom } f$, alors $\partial f(x) = \emptyset$ (par définition).

• Dfn et Prop

```
f \text{ est sous-différentiable en } x \\ \iff \partial f(x) \neq \varnothing \quad \text{(définition)}, \\ \iff \exists \, y \in (\text{dom } f)^{\circ}: \, f'(x;y-x) > -\infty, \\ \iff f'(x;\cdot) \text{ ne prend pas la valeur } -\infty, \\ \iff \exists \, L > 0, \forall \, y \in \mathbb{E}: f(y) \geqslant f(x) - L\|y-x\|.
```

En particulier, f est sous-différentibale en $x \in (\text{dom } f)^{\circ}$.

Propriétés

On suppose que $f \in \text{Conv}(\mathbb{E})$, $x \in \text{dom } f$ et $x^* \in \mathbb{E}$.

- 1) Convexité : $\partial f(x)$ est un convexe fermé.
- 2) Règle de bascule : si $f \in \overline{\text{Conv}}(\mathbb{E})$,

$$x^* \in \partial f(x) \iff x \in \partial f^*(x^*).$$

3) Sous-différentiel et f^* : si $f \in \overline{\text{Conv}}(\mathbb{E})$,

$$\partial f(x) = \underset{x^* \in \mathbb{E}}{\operatorname{arg\,max}} \left(\langle x^*, x \rangle - f^*(x^*) \right).$$

- 4) Optimalité: $\bar{x} \in \arg \min f \iff 0 \in \partial f(\bar{x}),$ et si $f \in \overline{\operatorname{Conv}}(\mathbb{E})$: $\arg \min f = \partial f^*(0).$
- 4) Formule du max : $\operatorname{si} x \in (\operatorname{dom} f)^{\circ}$,
 - $\partial f(x)$ compact non vide,
 - $f'(x;d) = \max_{x^* \in \partial f(x)} \langle x^*, d \rangle$ (formule du max).
- 5) Différentiabilité:

f différentiable en $x\iff \partial f(x)$ est un singleton et dans ce cas $\partial f(x)=\{\nabla f(x)\}.$

Calcul

1) Somme

Si •
$$f_1, \ldots, f_m \in \text{Conv}(\mathbb{E})$$

•
$$\bigcap_{i \in [1:p]} (\operatorname{dom} f_i)^{\circ} \neq \emptyset$$
,
• $\alpha_1, \dots, \alpha_p \in \mathbb{R}_+$,

$$\alpha_1,\ldots,\alpha_p\in\mathbb{R}_+,$$

alors

$$\partial \left(\sum_{i=1}^{m} \alpha_i f_i\right)(x) = \sum_{i=1}^{m} \alpha_i \partial f_i(x).$$

2) Pré-composition par une application affine

$$\underline{\mathrm{Si}} \bullet a : \mathbb{E} \to \mathbb{F}$$
 affine (i.e., $a(x) = Ax + b, \forall x \in \mathbb{E}$),

• $g \in \text{Conv}(\mathbb{F})$ telle que $(\text{dom } g)^{\circ} \cap \mathcal{R}(A) \neq \emptyset$,

alors

$$\partial(g \circ a)(x) = A^* \left[\partial g(a(x)) \right].$$

3) Enveloppe supérieure $f := \sup_{i \in I} f_i$ de $f_i \in \text{Conv}(\mathbb{E})$.

$$\underline{Si} \cdot x \in (\text{dom } f)^{\circ},$$

- $\forall x \in \text{dom } f, i \mapsto f_i(x) \text{ est s.c.s.},$
- $I^0(x) := \{i \in I : f(x) = f_i(x)\},\$

alors

$$\partial f(x) = \overline{\operatorname{co}}\left(\bigcup_{i \in I^{0}(x)} \partial f_{i}(x)\right).$$

4) Fonction marginale de $\varphi:(x,y)\in\mathbb{E}\times\mathbb{F}\mapsto\varphi(x,y)$:

$$f: \mathbb{E} \to \overline{\mathbb{R}}: x \mapsto f(x) := \inf_{y \in \mathbb{F}} \varphi(x, y).$$

Si • $\varphi \in \text{Conv}(\mathbb{E} \times \mathbb{F})$,

- $f \in \operatorname{Conv}(\mathbb{E})$,
- $x \in \text{dom } f$,
- $f(x) = \varphi(x, y_x)$, pour un $y_x \in \mathbb{F}$,

alors

$$\partial f(x) = \{x^* \in \mathbb{E} : (x^*, 0) \in \partial \varphi(x, y_x)\}.$$

Exemple 1D

Figure 1: $f(x) = \max(x, x^2)$ et $\partial f(x)$ (en bas)

2

0

Exemple 2D

Figure 2: $f = \sup(q_1, q_2, q_3)$ et ∂f

Sous-différentiel de la fonction duale (§ 13.6.1)

Pour le problème (non néc. convexe)

$$\begin{cases} \inf f(x) \\ c(x) \le 0 \\ x \in X \end{cases}$$

et une fonction duale

$$\delta(\lambda) = -\inf_{x \in X} \left(\ell(x, \lambda) := f(x) + \lambda^{\top} c(x) \right)$$

propre, on a $\delta \in \overline{\operatorname{Conv}}(\mathbb{R}^m)$ et

$$-c\left(\operatorname*{arg\,min}_{x\in X}\ell(x,\lambda)\right)\subset\partial\delta(\lambda).$$

Signification des multiplicateurs optimaux (§ 4.6.1)

• Problème perturbé : pour $p \in \mathbb{R}^m$, on définit

$$(P_{EI}^p) \begin{cases} \min f(x) \\ c_E(x) + p_E = 0 \\ c_I(x) + p_I \leqslant 0. \end{cases}$$

• **Dfn**. La fonction valeur associée à (P_{EI}^p) est $v:p\in\mathbb{R}^m\to\overline{\mathbb{R}}$ définie par

$$v(p) = \inf_{x \in X^p} f(x),$$

où X^p est l'ensemble admissible de (P_{EI}^p) .

$$(P_{EI})$$
 convexe $\implies v$ convexe.

• Cas différentiable régulier (rappel).

 $\underline{Si} \cdot (x_*, \lambda_*) \text{ solution PD de } (P_{EI}),$ $\cdot (\bar{x}(p), \bar{\lambda}(p)) \text{ solution PD de } (P_{EI}^p),$ $\cdot p \mapsto \bar{x}(p) \text{ différentiable en } 0, \bar{x}(0) = x_*,$ $\cdot p \mapsto \bar{\lambda}(p) \text{ continue en } 0, \bar{\lambda}(0) = \lambda_*,$ $\underline{alors} \ \lambda_* = \nabla v(0) = \nabla (f \circ \bar{x})(0).$

• On note

$$\Lambda := \{ \lambda \in \mathbb{R}^m : \lambda_I \geqslant 0 \}.$$

• **Dfn**. On dit que $(x_*, \lambda_*) \in \mathbb{R}^n \times \Lambda$ est un point-selle de ℓ sur $\mathbb{R}^n \times \Lambda$, si $\forall (x, \lambda) \in \mathbb{R}^n \times \Lambda$:

$$\ell(x_*, \lambda) \leqslant \ell(x_*, \lambda_*) \leqslant \ell(x, \lambda_*).$$

On note

$$\Lambda(x_*) := \{\lambda_* : (x_*, \lambda_*) \text{ est point-selle de } \ell \text{ sur } \mathbb{R}^m \times \Lambda\}.$$

• Cas convexe non différentiable.

```
Si • x_* est solution de (P_{EI}),

• v \in \operatorname{Conv}(\mathbb{R}^m),

alors \partial v(0) = \Lambda(x_*).
```

Remarque: Ci-dessus, $\partial v(0)$ peut être vide! Avec qualification de Slater: $\partial v(0) \neq \emptyset$.

• CN et CS d'existence de solution PD globale.

CN d'optimalité (cas convexe non diff.).

```
\underline{\text{Si}} \cdot (P_{EI}) \text{ convexe (avec } f \text{ et } c \text{ finies)},
\cdot (\text{Slater}) : c_E' \text{ surjective, } \exists \hat{x} \in X \text{ t.q. } c_I(\hat{x}) < 0,
\cdot x_* \text{ solution de } (P_{EI}),
\underline{\text{alors }} 1) v \text{ est loc. lipschitzienne dans un vois. de } 0,
2) \ \partial v(0) \neq \varnothing.
```

CS d'optimalité globale.

Peu de chance d'être applicable si (P_{EI}) non convexe.

 $\underline{\mathrm{Si}} \bullet (x_*, \lambda_*) \in \mathbb{R}^n \times \Lambda$ est un point-selle de ℓ sur $\mathbb{R}^n \times \Lambda$, alors x_* solution (globale) de (P_{EI}) .

X Pénalisation (§ 12)

• À quoi ça sert ?

En optimisation avec contraintes:

- pour la théorie: obtenir des propriétés à partir de problèmes approchés sans contrainte,
- pour l'algorithmique: résoudre un problème avec contraintes « sans trop en faire ».
- Transformation typique. Soit $X \subset \mathbb{E}$ (un espace vectoriel). On passe du problème avec contrainte

$$(P_X) \quad \inf_{x \in X} f(x)$$

au problème pénalisé sans contrainte

$$(P_r) \quad \inf_{x \in \mathbb{E}} \Big(\Theta_r(x) := f(x) + rp(x)\Big),$$

où $r \in \mathbb{R}$ est un paramètre de pénalisation et $p: \mathbb{E} \to \overline{\mathbb{R}}$ est une fonction de pénalisation (on va voir ce que c'est).

• **Pénalisation exacte** (notion vague) lorsque x_* est « solution » de (P) « ssi » x_* est « solution » de (P_r) .

Deux résultats généraux (§ 12.1)

• Monotonie en pénalisation

Si $\forall r$ considéré, (P_r) a une solution, notée \bar{x}_r .

Alors lorsque r croît:

- 2) $f(\bar{x}_r)$ croît, si $r \geqslant 0$,
- 3) $\Theta_r(\bar{x}_r)$ croît, si $p(\cdot) \ge 0$.
- Point d'adhérence lorsque $r \downarrow 0$
 - Si E est un espace topologique,
 - $f: \mathbb{E} \to \overline{\mathbb{R}}$ est propre et s.c.i. (implicitement $X:=\mathrm{dom}\, f$),

 - $S:=\arg\min\left\{f(x):x\in\mathbb{E}\right\}\neq\varnothing,$ $\forall\,r>0$ petit, (P_r) a une solution, notée $\bar{x}_r.$

Alors tout point d'adhérence de $\{\bar{x}_r\}_{r\downarrow 0}$ est solution de

$$\inf_{x \in S} p(x).$$

Pénalisation extérieure (§ 12.2)

• Exemple. On veut résoudre

$$(P) \quad \begin{cases} \min f(x) \\ c(x) \leqslant 0. \end{cases}$$

On approche ce problème par (r > 0)

$$(P_r) \quad \min f(x) + \frac{r}{2} ||c(x)^+||_2^2,$$

que l'on résout par un algorithme de descente, pour une suite de $r \to \infty$.

• Pénalisation quadratique en 1D

Figure 3: Pénalisation quadratique

• Plus généralement, on suppose que $r \geqslant 0$ et que la fonction de pénalisation vérifie

$$(H_p) \quad \begin{cases} p \text{ est continue sur } \mathbb{E} \\ p(x) \geqslant 0, \ \forall x \in \mathbb{E} \\ p(x) = 0 \Longleftrightarrow x \in X. \end{cases}$$

Résultat d'approximation

Si • X est fermé et non vide,

- $p: \mathbb{E} \to \mathbb{R}$ vérifie (H_p) ,
- f est s.c.i., $\exists r_0 \geqslant 0$ tel que $\Theta_{r_0}(x) \to +\infty$ quand $||x|| \to \infty$,

alors 1) $\forall r \geqslant r_0$, (P_r) a au moins 1 solution \bar{x}_r ,

- 2) $\{\bar{x}_r\}_{r\uparrow\infty}$ est bornée,
- 3) tout point d'adhérence de la suite $\{\bar{x}_r\}_{r\uparrow\infty}$ est solution de (P_X) .
- Estimation d'une solution duale.

 $\underline{\text{Si}}$ • problème (P_{EI}) avec f et c différentiables,

- $\Theta_r(x) = f(x) + \frac{r}{2} ||c(x)^{\#}||_2^2$,

- $\bar{x}_r \to \bar{x}$, pour $K:=E \cup \{i \in I: c_i(\bar{x}) \geqslant 0\}, c_K'(\bar{x})$ est surjective,

alors 1) $\exists \bar{\lambda}$ tel que $(\bar{x}, \bar{\lambda})$ vérifie (KKT),

2) $r c(\bar{x}_r)^\# \to \bar{\lambda}$.

• \oplus et \ominus de la pénalisation extérieure

- ⊕ Facile à mettre en œuvre (avec algo. sans contrainte).
- \ominus Suite de problèmes non linéaires (bon r inconnu, premier rtrès grand ne convient pas).
- \ominus Le mauvais conditionnement augmente avec r (i.e., les courbes de niveau s'allongent).

Figure 4: Chemin des minimiseurs

Pénalisation lagrangienne augmentée (§ 12.4)

Pénalisation lagrangienne (§ 12.4.1)

On considère le problème (P_{EI}) .

 $\underline{Si} \cdot (P_{EI})$ est convexe,

- \$\bar{x}\$ est solution de (\$P_{EI}\$),
 f et c sont différentiables en \$\bar{x}\$,
 ∃\$\bar{\lambda}\$ tel que (\$\bar{x}\$, \$\bar{\lambda}\$) vérifie (KKT),

 $\underline{\text{alors}}\;\ell(\cdot,\bar{\lambda})\;\text{a un minimum }\textit{global}\;\text{en }\bar{x}.$

Exemple en 1D

Figure 5: Pénalisation lagrangienne augmentée

• Le lagrangien augmenté de (P_E)

$$\ell_r(x,\lambda) = f(x) + \lambda^{\top} c(x) + \frac{r}{2} \|c(x)\|_2^2.$$

• Lemme de Finsler

Si • A et M symétriques de même ordre,

- $A \succcurlyeq 0$, $v^{\top} M v > 0$ pour tout $v \in \mathcal{N}(A) \setminus \{0\}$,

alors $\exists \bar{r} \in \mathbb{R}$ tel que $\forall r \geqslant \bar{r}$, on a $M + rA \succ 0$.

• Exactitude du lagrangien augmenté.

 $\underline{Si} \cdot f$ et c sont deux fois différentiables en \bar{x} ,

• $(\bar{x}, \bar{\lambda})$ vérifie KKT et CS2,

alors $\exists \, \bar{r} \in \mathbb{R}, \, \forall \, r \geqslant \bar{r}, \, \bar{x} \text{ est un minimum } local \, strict \, de \, \ell_r(\cdot, \bar{\lambda}).$

L'algorithme des multiplicateurs (ou du LA)

C'est une méthode de dualité qui cherche à déterminer un multiplicateur optimal $\bar{\lambda}$, un facteur de pénalisation r et à minimiser $\ell_r(\cdot, \bar{\lambda})$.

De
$$(\lambda_k, r_k) \in \mathbb{E} \times \mathbb{R}$$
 à $(\lambda_{k+1}, r_{k+1}) \in \mathbb{E} \times \mathbb{R}$:

1. Nouvel itéré primal:

$$x_k \in \operatorname*{arg\,min}_{x \in \mathbb{E}} \, \ell_{r_k}(x, \lambda_k).$$

- 2. Test d'arrêt: si (x_k, λ_k) est satisfaisant (vérifie approximativement des conditions d'optimalité), arrêt.
- 3. Nouvel itéré dual:

$$\lambda_{k+1} := \lambda_k + r_k \, c(x_k). \tag{1}$$

4. Mise à jour de $r_{k+1} > r_k$ si nécessaire (heuristique).

La formule (1) est justifiable par

- $\nabla_x \ell(x_k, \lambda_{k+1}) = 0$ (on a bien envie d'annuler $\nabla_x \ell$).
- $-c(x_k) \in \partial \delta(\lambda_{k+1})$, où δ est la fonction duale, si bien que l'algorithme est une méthode proximale (i.e., de gradient *implicite* puisque $\partial \delta$ est évalué en λ_{k+1} et pas en λ_k) sur δ .

Pénalisation non différentiable (§ 12.5)

Exemple en 1D

Figure 6: Pénalisation non différentiable

Le problème à résoudre en $x \in \mathbb{E}$:

$$(P_{EI}) \begin{cases} \min f(x) \\ c_E(x) = 0 \in \mathbb{R}^{m_E} \\ c_I(x) \leq 0 \in \mathbb{R}^{m_I}. \end{cases}$$

Le lagrangien du problème ($c := (c_E, c_I)$):

$$\ell(x,\lambda) = f(x) + \lambda^{\top} c(x).$$

Newton pour résoudre F(x) = 0 (rappel)

- $\underline{Si} \cdot x_*$ vérifie $F(x_*) = 0$,
 - F est $C^{1,1}$ dans un voisinage de x_* ,
 - $F'(x_*)$ est inversible,

alors il existe un voisinage V de x_* tel que si $x_1 \in V$, l'algorithme de Newton est bien défini et génère une suite $\{x_k\} \subset V$ qui converge quadratiquement vers x_* .

Résultat de convergence locale de OQS

- $\underline{\text{Si}} \cdot f \text{ et } c \text{ sont } C^{2,1} \text{ près de } x_* \in \text{Sol}(\overline{P_{EI}}),$
 - $\exists \lambda_*$, unique multiplicateur associé à x_* ,
 - les CS2 sont vérifiées en (x_*, λ_*) ,

alors il existe un voisinage V de (x_*, λ_*) tel que, si $(x_1, \lambda_1) \in V$, l'algorithme OQS démarrant en (x_1, λ_1)

- 1) peut générer une suite $\{(x_k, \lambda_k)\}\subset V$ en calculant à chaque itération des points stationnaires du PQO,
- 2) cette suite $\{(x_k, \lambda_k)\}$ converge quadratiquement vers (x_*, λ_*) .

XII Optimisation linéaire : simplexe (§ 15)

• On considère le problème d'optimisation linéaire sur \mathbb{R}^n (forme standard)

$$(P_L) \begin{cases} \min c^{\top} x \\ Ax = b \\ x \geqslant 0, \end{cases}$$

où

- $-c \in \mathbb{R}^n$,
- $A \operatorname{est} m \times n \operatorname{\underline{surjective}} (m \leq n),$
- $-b \in \mathbb{R}^m$.
- On note

$$X := \{ x \in \mathbb{R}^n : Ax = b, \ x \geqslant 0 \}$$

l'ensemble admissible.

• Pour $x \in X$, on note

$$I^+(x) := \{i : x_i > 0\}$$

$$I^0(x) := \{i : x_i = 0\}.$$

Existence de solution (§ 15.2.2)

• **Théor** (existence de solution):

 (P_L) a une solution

 \iff (P_L) est réalisable et borné.

Conditions d'optimalité (§ 15.2.2)

• Théor:

 (P_L) a une solution

$$\iff \exists y \in \mathbb{R}^m, \ \exists s \in \mathbb{R}^n :$$

$$\begin{cases} A^\top y + s = c, \quad s \geqslant 0, \\ Ax = b, \quad x \geqslant 0, \\ x^\top s = 0. \end{cases}$$

Algorithme du simplexe (§ 15.4)

(description géométrique)

- **Hypothèse**: A est $m \times n$ surjective.
- Phase I : trouver $\hat{x} \in X$, un sommet de X.

On prend $B\supset I^+(\hat{x})$ avec |B|=m et $N=B^c\subset I^0(\hat{x})$.

- **Phase II** : on itère de sommet en sommet. Voici une itération.
 - Coût réduit : $r := c_N A_{\bullet N}^{\top} A_{\bullet B}^{-\top} c_B$.
 - Optimalité: si $r \ge 0$, \hat{x} est solution (arrêt); sinon $\exists j$ t.q. $r_j < 0$.
 - Direction de déplacement d: $d_N = e_N^j \text{ et } d_B = -A_{\bullet B}^{-1} A_{\bullet N} e_N^j.$
 - Si $d_B \geqslant 0$, (P_L) est non borné (arrêt).
 - Nouveau sommet \hat{x}^+ : prendre le plus grand $\alpha \geqslant 0$ tel que

$$\hat{x}^+ := \hat{x} + \alpha d \in X$$

 $(\alpha > 0 \text{ si } \hat{x} \text{ est non dégénéré}).$

XII' Optimisation linéaire : points intérieurs (§ 16)

La une du New York Times

(19 novembre 1984)

Voici comment l'algorithme de Karmarkar (le premier algorithme de points intérieurs efficace) était « révélé » au grand public :

« The discovery, which is to be formally published next month, is already circulating rapidly through the mathematics world. It has also set off a deluge of inquiries from brokerage houses, oil companies and airlines, industries with millions of dollars at stake in problems known as linear programming. »

Notations

Le problème et son dual

(P)
$$\begin{cases} \inf c^{\top} x \\ Ax = b \\ x \ge 0, \end{cases}$$
 (D)
$$\begin{cases} \sup b^{\top} y \\ A^{\top} y + s = c \\ s \ge 0. \end{cases}$$

Ensembles admissibles

$$\mathcal{F}_{P} := \{ x \in \mathbb{R}^{n} : Ax = b, \ x \geqslant 0 \}$$

$$\mathcal{F}_{D} := \{ (y, s) \in \mathbb{R}^{m+n} : A^{\top}y + s = c, \ s \geqslant 0 \}.$$

Intérieurs relatifs

$$\mathcal{F}_{P}^{o} := \{ x \in \mathbb{R}^{n} : Ax = b, \ x > 0 \}$$
$$\mathcal{F}_{D}^{o} := \{ (y, s) \in \mathbb{R}^{m+n} : A^{\top}y + s = c, \ s > 0 \}.$$

Conditions d'optimalité

$$\begin{cases} Ax = b, & x \geqslant 0 \\ A^{\top}y + s = c, & s \geqslant 0 \\ x^{\top}s = 0. \end{cases}$$

Le chemin central primal-dual (§ 16.1)

• Conditions d'optimalité perturbées par $\mu > 0$:

$$(KKT_{\mu}) \begin{cases} Ax = b & (x > 0) \\ A^{\top}y + s = c & (s > 0) \\ Xs = \mu e. \end{cases}$$

• Existence et unicité :

Si $\mu = 0$, il y a existence mais pas néc. unicité!

 Dfn: le chemin central est l'ensemble des solutions de (KKT_μ):

$$\{(x_{\mu}, y_{\mu}, s_{\mu}) : \mu > 0\}.$$

Algorithme PD de suivi de chemin

(éléments constitutifs, § 16.2)

- On suppose A surjective.
- Soit z = (x, y, s) l'itéré courant admissible.
- Choix de

$$\mu := \frac{x^{\top}s}{n}.$$

- Facteur de réduction $\sigma \in]0,1[$ de μ .
- Direction de Newton $d_z = (d_x, d_y, d_s)$

$$\begin{pmatrix} 0 & A^{\top} & I \\ A & 0 & 0 \\ S & 0 & X \end{pmatrix} \begin{pmatrix} \mathbf{d}_{x} \\ \mathbf{d}_{y} \\ \mathbf{d}_{z} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \sigma \mu e - X s \end{pmatrix},$$

où $X = \operatorname{diag}(x_i), S = \operatorname{diag}(s_i), e = (1 \cdots 1)^{\top}.$

$$(x,s) > 0 \implies SL$$
 inversible.

- Nouvel itéré $z^+ = z + \alpha d_z$.
- Contrôle du pas α pour que ($\gamma \simeq 10^{-3}$)

$$z^+ \in V_{-\infty}(\gamma) := \{ z \in \mathcal{F}^o : Xs \geqslant \gamma \mu e \}.$$

Algorithme PD de suivi de chemin

(algorithme des grands déplacements, § 16.3.3)

• Paramètres :

$$0 < \sigma_{\min} < \sigma_{\max} < 1$$
 et $\gamma \in]0,1[$.

• Donnée :

$$z=(x,y,s)\in V_{-\infty}(\gamma)$$
 primal-dual admissible (i.e., $Ax=b$ et $A^{\top}y+s=c$).

• Une itération :

- Choix de $\sigma \in]0,1[$.
- Calcul de la direction de Newton d_z .
- Choisir $\alpha \in [0, 1]$ le plus grand possible pour que $z + \alpha d_z \in V_{-\infty}(\gamma)$.
- Nouvel itéré $z^+ := z + \alpha d_z$.