LÓGICA EI Mestrado Integrado em Engenharia Informática Universidade do Minho

Departamento de Matemática

Definição 45: Os *valores lógicos* do CP são 1 e 0. Estes valores são habitualmente chamados *verdadeiro* e *falso*, respetivamente, sendo também notados por **V** e **F**, respetivamente.

Definição 46: Uma função $v: \mathcal{F}^{CP} \longrightarrow \{0,1\}$ é uma *valoração* quando satisfaz as seguintes condições:

- **a)** $v(\bot) = 0;$
- **b)** $v(\neg \varphi) = 1 v(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$;
- **c)** $v(\varphi \wedge \psi) = minimo(v(\varphi), v(\psi))$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$;
- **d)** $v(\varphi \lor \psi) = m\acute{a}ximo(v(\varphi), v(\psi))$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$;
- e) $v(\varphi \to \psi) = 0$ sse $v(\varphi) = 1$ e $v(\psi) = 0$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$;
- **f)** $v(\varphi \leftrightarrow \psi) = 1$ sse $v(\varphi) = v(\psi)$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$.

Proposição 47: Sejam v uma valoração e φ, ψ fórmulas do CP. Então,

- 1 se $v(\varphi) = 1$, então $v(\neg \varphi) = 0$ e se $v(\varphi) = 0$, então $v(\neg \varphi) = 1$;
- 2 se $v(\varphi) = 1$ e $v(\psi) = 1$, então $v(\varphi \wedge \psi) = 1$, $v(\varphi \vee \psi) = 1$, $v(\varphi \to \psi) = 1$ e $v(\varphi \leftrightarrow \psi) = 1$;
- se $v(\varphi) = 1$ e $v(\psi) = 0$, então $v(\varphi \wedge \psi) = 0$, $v(\varphi \vee \psi) = 1$, $v(\varphi \rightarrow \psi) = 0$ e $v(\varphi \leftrightarrow \psi) = 0$;
- 4 se $v(\varphi) = 0$ e $v(\psi) = 1$, então $v(\varphi \wedge \psi) = 0$, $v(\varphi \vee \psi) = 1$, $v(\varphi \rightarrow \psi) = 1$ e $v(\varphi \leftrightarrow \psi) = 0$;
- se $v(\varphi) = 0$ e $v(\psi) = 0$, então $v(\varphi \wedge \psi) = 0$, $v(\varphi \vee \psi) = 0$, $v(\varphi \rightarrow \psi) = 1$ e $v(\varphi \leftrightarrow \psi) = 1$.

Dem.: Imediata, a partir da definição de valoração.

Semântica

Proposição 48: Seja $f: \mathcal{V}^{CP} \longrightarrow \{0, 1\}$ uma função. Então, existe uma e uma só valoração v t.q. v(p) = f(p), para todo $p \in \mathcal{V}^{CP}$.

Dem.: Consequência imediata do Princípio de recursão estrutural para fórmulas do CP.

Definição 49: O valor lógico de uma fórmula φ para uma valoração v é $v(\varphi)$.

Exemplo 50: Sejam v_1 a única valoração t.q. $v_1(p) = 0$, para todo $p \in \mathcal{V}^{CP}$, e v_2 a única valoração t.q.

$$v_2(p) = \left\{ egin{array}{ll} 1 & \mbox{se } p \in \{p_0, p_2\} \ 0 & \mbox{se } p \in \mathcal{V}^{CP} - \{p_0, p_2\} \end{array}
ight. .$$

Sejam ainda $\varphi = (p_1 \lor p_2) \to (p_1 \land p_2)$ e $\psi = \neg p_1 \leftrightarrow (p_1 \to \bot)$. Então: **a)** por definição de valoração,

$$v_1(\varphi) = \left\{ \begin{array}{l} 0 \text{ se } v_1(p_1 \vee p_2) = 1 \text{ e } v_1(p_1 \wedge p_2) = 0 \\ 1 \text{ se } v_1(p_1 \vee p_2) = 0 \text{ ou } v_1(p_1 \wedge p_2) = 1 \end{array} \right..$$

Assim, como

 $v_1(p_1 \lor p_2) = m\acute{a}ximo(v_1(p_1), v_1(p_2)) = m\acute{a}ximo(0, 0) = 0$, segue que $v_1(\varphi) = 1$.

(Exercício: verifique que $v_2(\varphi) = 0$.)

b) por definição de valoração,

$$v_1(\psi) = \left\{ egin{array}{ll} 1 & \mbox{se } v_1(\lnot p_1) = v_1(p_1 o ot) \ 0 & \mbox{se } v_1(\lnot p_1)
eq v_1(p_1 o ot) \end{array}
ight. .$$

Assim, como $v_1(\neg p_1) = 1 - v_1(p_1) = 1$ e $v_1(p_1 \to \bot) = 1$, segue que $v_1(\psi) = 1$.

(Exercício: verifique que $v_2(\psi) = 1$; em particular, observe que v_2 e v_1 atribuem o mesmo valor lógico à única variável proposicional que ocorre em ψ .)

Proposição 51: Sejam v_1 e v_2 valorações e seja φ uma fórmula do CP. Se, para todo $p \in var(\varphi)$, $v_1(p) = v_2(p)$, então $v_1(\varphi) = v_2(\varphi)$.

CP. Se, para todo $p \in var(\varphi)$, $v_1(p) = v_2(p)$, entao $v_1(\varphi) = v_2(\varphi)$.

Dem.: Por indução estrutural em fórmulas do CP.

Seja $P(\varphi)$ a propriedade:

para todo $p \in var(\varphi), v_1(p) = v_2(p) \Rightarrow v_1(\varphi) = v_2(\varphi).$

- a) $P(\perp)$ é verdadeira, pois $v_1(\perp) = 0 = v_2(\perp)$, por definição de valoração.
- **b)** Suponhamos que p' é uma variável proposicional e que, para todo $p \in var(p')$, $v_1(p) = v_2(p)$. Assim, como $p' \in var(p')$, temos $v_1(p') = v_2(p')$. Deste modo, para qualquer $p' \in \mathcal{V}^{CP}$, P(p') é verdadeira.

c) Mostremos que $P(\varphi_1)$ e $P(\varphi_2)$ implicam $P(\varphi_1 \land \varphi_2)$, para todo $\varphi_1, \varphi_2 \in \mathcal{F}^{CP}$.

Suponhamos que, para todo $p \in var(\varphi_1 \land \varphi_2)$, $v_1(p) = v_2(p)$. Então, como $var(\varphi_i) \subseteq var(\varphi_1 \land \varphi_2)$, $v_1(p) = v_2(p)$, para todo $p \in var(\varphi_i)$ $(i \in \{1,2\})$ e, aplicando as hipóteses de indução $P(\varphi_1)$ e $P(\varphi_2)$, segue que

 $v_1(\varphi_i) = v_2(\varphi_i) \ (i \in \{1,2\}).$

Assim, $v_1(\varphi_1 \wedge \varphi_2) = m\text{inimo}(v_1(\varphi_1), v_1(\varphi_2)) = m\text{inimo}(v_2(\varphi_1), v_2(\varphi_2)) = v_2(\varphi_1 \wedge \varphi_2)$, e, portanto, $P(\varphi_1 \wedge \varphi_2)$ é verdadeira.

 d) Exercício: demonstrar as restantes condições necessárias à aplicação do Princípio de indução estrutural para fórmulas do CP. □

Definição 52:

- 1 Uma fórmula φ é uma *tautologia* quando, para qualquer valoração $v, v(\varphi) = 1.$
- 2 Uma fórmula φ é uma *contradição* quando, para qualquer valoração v, $v(\varphi) = 0$.

Notação 53: A notação $\models \varphi$ significará que φ é uma tautologia e a notação $\not\models \varphi$ significará que φ não é uma tautologia.

Exemplo 54:

- **1** A fórmula $\psi = \neg p_1 \leftrightarrow (p_1 \rightarrow \bot)$ do exemplo anterior é uma tautologia. De facto, dada uma valoração v arbitrária, sabemos que $v(p_1) = 0$ ou $v(p_1) = 1$, e:
 - (a) caso $v(p_1)=0$, então $v(\neg p_1)=1$ e $v(p_1\to \bot)=1$, donde $v(\psi)=1$.
 - (b) caso $v(p_1)=1$, então $v(\neg p_1)=0$ e $v(p_1\to \perp)=0$, donde $v(\psi)=1$.
- 2 Para todo $\varphi \in \mathcal{F}^{CP}$, $\varphi \land \neg \varphi$ é uma contradição. De facto, dada uma valoração v arbitrária, sabemos que $v(\varphi) = 0$ ou $v(\varphi) = 1$, e:
 - (a) caso $v(\varphi) = 0$, então $v(\varphi \land \neg \varphi) = m$ ínimo $(0, v(\neg \varphi)) = 0$.
 - (b) caso $v(\varphi) = 1$, então $v(\neg \varphi) = 0$ e $v(\varphi \land \neg \varphi) = m\text{inimo}(v(\varphi), 0) = 0$.
- 3 As fórmulas p_0 , $\neg p_0$, $p_0 \lor p_1$, $p_0 \land p_1$, $p_0 \to p_1$, $p_0 \leftrightarrow p_1$ não são tautologias nem são contradições. (Porquê?)

Proposição 55: Para todo $\varphi \in \mathcal{F}^{CP}$,

- **1** φ é tautologia se e só se $\neg \varphi$ é contradição;
- 2 φ é contradição se e só se $\neg \varphi$ é tautologia.

Dem.: Exercício.

Observação 56: Sabendo que φ não é uma tautologia, não podemos concluir que φ é uma contradição e, analogamente, sabendo que φ não é uma contradição, não podemos concluir que φ é uma tautologia. Tenha-se em atenção que existem fórmulas que não são tautologias, nem são contradições (como vimos no exemplo anterior).

Semântica

Observação 57: Pela Proposição 51, para decidir se uma fórmula φ é uma tautologia, basta calcular o valor lógico de φ para $2^{\#var(\varphi)}$ valorações (o número de atribuições, possíveis, às variáveis proposicionais de φ), o que pode ser descrito através de uma *tabela* de verdade, como se segue. Introduzimos: uma coluna para cada variável proposicional de φ ; uma coluna para φ ; e colunas (auxiliares) para cada uma das restantes subfórmulas de φ . Introduzimos linhas para cada uma das atribuições, possíveis, de valores de verdade às variáveis proposicionais de φ (*i.e.*, sequências de 0's e 1's de comprimento igual ao número de variáveis proposicionais em φ). Preenchemos as colunas respeitantes às variáveis proposicionais com essas atribuições. Nas restantes posições posii da tabela, escrevemos o valor lógico da fórmula respeitante à coluna j, para uma valoração que satisfaz as atribuições às variáveis proposicionais na linha i.

Exemplo 58: Seja φ a fórmula $(\neg p_1 \rightarrow \neg p_2) \leftrightarrow (p_2 \rightarrow p_1)$. Da tabela de verdade para φ , apresentada de seguida, podemos concluir que φ é uma tautologia, uma vez que φ assume o valor lógico 1, para todas as possíveis atribuições de valores de verdade às variáveis proposicionais de φ .

p_1	p_2	$\neg p_1$	$\neg p_2$	$\mid \neg p_1 ightarrow \neg p_2$	$p_2 \rightarrow p_1$	$\mid (\neg p_1 \rightarrow \neg p_2) \leftrightarrow (p_2 \rightarrow p_1) \mid$
1	1	0	0	1	1	1
1	0	0	1	1	1	1
0	1	1	0	0	0	1
0	0	1	1	1	1	1

Tabela de verdade de $(\neg p_1 \rightarrow \neg p_2) \leftrightarrow (p_2 \rightarrow p_1)$.

Teorema 59 (Generalização): Sejam p uma variável proposicional e sejam φ e ψ fórmulas do CP. Se φ é uma tautologia, então $\varphi[\psi/p]$ é também uma tautologia.

Dem.: Qualquer que seja a valoração v, demonstra-se, por indução estrutural na fórmula φ , que a valoração v' definida, a partir de v e de ψ , do seguinte modo

$$v'(p') = \left\{egin{array}{ll} v(\psi) & ext{se } p' = p \ \\ v(p') & ext{se } p' \in \mathcal{V}^{CP} - \{p\} \end{array}
ight.$$

é tal que $v'(\varphi) = v(\varphi[\psi/p])$. Portanto, se φ é uma tautologia, $v'(\varphi) = 1$ e, pela igualdade anterior, $v(\varphi[\psi/p]) = 1$. Assim, qualquer que seja a valoração v, $v(\varphi[\psi/p]) = 1$, *i.e.*, $\varphi[\psi/p]$ é uma tautologia.

Exemplo 60: A fórmula $p_0 \lor \neg p_0$ é uma tautologia. Logo, para qualquer fórmula ψ , a fórmula $(p_0 \lor \neg p_0)[\psi/p_0] = \psi \lor \neg \psi$ é ainda uma tautologia.

Definição 61: Uma fórmula φ diz-se *logicamente equivalente* a uma fórmula ψ (notação: $\varphi \Leftrightarrow \psi$) quando a fórmula $\varphi \leftrightarrow \psi$ é uma tautologia.

Exemplo 62: Para toda a fórmula $\varphi, \neg \varphi \Leftrightarrow (\varphi \to \bot)$. A demonstração deste resultado pode ser sintetizada numa *tabela de verdade*, como se segue:

φ	$\neg \varphi$	$\varphi \to \perp$	$\neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$
1	0	0	1
0	1	1	1

Tabela de verdade de $\neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$.

Na primeira linha da tabela, é demonstrado que o valor lógico de $\neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$ é 1 para qualquer valoração para a qual φ assuma o valor lógico 1. Na segunda linha da tabela, é demonstrado que o valor lógico de $\neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$ é 1 para qualquer valoração para a qual φ assuma o valor lógico 0.

Proposição 63: A relação de equivalência lógica satisfaz as seguintes propriedades:

- **1** para todo $\varphi \in \mathcal{F}^{CP}$, $\varphi \Leftrightarrow \varphi$ (*reflexividade*);
- **2** para todo $\varphi, \psi \in \mathcal{F}^{CP}$, se $\varphi \Leftrightarrow \psi$, então $\psi \Leftrightarrow \varphi$ (*simetria*);
- 3 para todo $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$, se $\varphi \Leftrightarrow \psi$ e $\psi \Leftrightarrow \sigma$, então $\varphi \Leftrightarrow \sigma$ (*transitividade*).

Dem.: Para mostrar 1, temos que mostar que, para todo $\varphi \in \mathcal{F}^{CP}$, a fórmula $\varphi \leftrightarrow \varphi$ é uma tautologia. De facto, dado $\varphi \in \mathcal{F}^{CP}$, para qualquer valoração v, $v(\varphi) = v(\varphi)$, donde, pela definição de valoração, $v(\varphi \leftrightarrow \varphi) = 1$, e, consequentemente, $\varphi \leftrightarrow \varphi$ é uma tautologia. (Exercício: mostrar 2 e 3.)

Corolário 64: A relação de equivalência lógica é uma relação de equivalência em \mathcal{F}^{CP} .

Dem.: Imediata, a partir da proposição anterior.

Semântica

Proposição 65: As seguintes equivalências lógicas são válidas.

$$(\varphi \lor \psi) \lor \sigma \Leftrightarrow \varphi \lor (\psi \lor \sigma) \qquad (\varphi \land \psi) \land \sigma \Leftrightarrow \varphi \land (\psi \land \sigma)$$
(associatividade)

$$\varphi \lor \psi \Leftrightarrow \psi \lor \varphi \qquad \qquad \varphi \land \psi \Leftrightarrow \psi \land \varphi$$
 (comutatitvidade)

$$\varphi \lor \varphi \Leftrightarrow \varphi \qquad \qquad \varphi \land \varphi \Leftrightarrow \varphi$$
 (idempotência)

$$\varphi \lor \bot \Leftrightarrow \varphi \qquad \qquad \varphi \land \neg \bot \Leftrightarrow \varphi$$
 (elemento neutro)

$$\varphi \lor \neg \bot \Leftrightarrow \neg \bot$$
 $\varphi \land \bot \Leftrightarrow \bot$ (elemento absorvente)

$$\varphi \lor (\psi \land \sigma) \Leftrightarrow (\varphi \lor \psi) \land (\varphi \lor \sigma) \qquad \varphi \land (\psi \lor \sigma) \Leftrightarrow (\varphi \land \psi) \lor (\varphi \land \sigma)$$
(distributividade)

$$\neg(\varphi \lor \psi) \Leftrightarrow \neg\varphi \land \neg\psi \qquad \neg(\varphi \land \psi) \Leftrightarrow \neg\varphi \lor \neg\psi$$
 (leis de De Morgan)

$$\neg\neg\varphi \Leftrightarrow \varphi$$

(lei da dupla negação)

$$\varphi \leftrightarrow \psi \Leftrightarrow (\varphi \to \psi) \land (\psi \to \varphi) \qquad \qquad \varphi \to \psi \Leftrightarrow \neg \varphi \lor \psi$$
$$\varphi \lor \psi \Leftrightarrow \neg \varphi \to \psi \qquad \qquad \varphi \land \psi \Leftrightarrow \neg (\neg \varphi \lor \neg \psi)$$

 $\neg \varphi \Leftrightarrow \varphi \to \perp$

(expressão de um conetivo em termos de outros conetivos)

 $\bot \Leftrightarrow \varphi \land \neg \varphi$

Dem.: Exercício.

Notação 66: Uma vez que a conjunção é uma operação associativa, utilizaremos a notação $\varphi_1 \wedge ... \wedge \varphi_n$ (com $n \in \mathbb{N}$) para representar qualquer associação, através da conjunção, das fórmulas $\varphi_1, ..., \varphi_n$ duas a duas. Analogamente, e uma vez que a disjunção é tambem uma operação associativa, utilizaremos a notação $\varphi_1 \vee ... \vee \varphi_n$ para representar qualquer associação, através da disjunção, das fórmulas $\varphi_1, ..., \varphi_n$ duas a duas. Em ambos os casos, quando n = 1, as notações anteriores representam simplesmente a fórmula φ_1 .

Teorema 67 (Substituição): Sejam $p \in \mathcal{V}^{CP}$ e $\varphi_1, \varphi_2 \in \mathcal{F}^{CP}$. Então, $\varphi_1 \Leftrightarrow \varphi_2$ se e só se para todo $\psi \in \mathcal{F}^{CP}$, $\psi[\varphi_1/p] \Leftrightarrow \psi[\varphi_2/p]$.

Dem.:

i) Suponhamos que para todo $\psi \in \mathcal{F}^{CP}$, $\psi[\varphi_1/p] \Leftrightarrow \psi[\varphi_2/p]$. Então, em particular, teremos que $p[\varphi_1/p] \Leftrightarrow p[\varphi_2/p]$, *i.e.*, por definição de substituição, $\varphi_1 \Leftrightarrow \varphi_2$.

- ii) Suponhamos agora que $\varphi_1 \Leftrightarrow \varphi_2$. Vamos demonstrar, por indução estrutural em fórmulas do CP, que para todo $\psi \in \mathcal{F}^{CP}$, $P(\psi)$, onde $P(\psi)$ é a propriedade: $\psi[\varphi_1/p] \Leftrightarrow \psi[\varphi_2/p]$.
 - a) Por definição de substituição, $\bot [\varphi_1/p] = \bot = \bot [\varphi_2/p]$. Assim, como a relação \Leftrightarrow é reflexiva, $\bot \Leftrightarrow \bot$, ou equivalentemente $\bot [\varphi_1/p] \Leftrightarrow \bot [\varphi_2/p]$, e, portanto, $P(\bot)$ é verdadeira.
 - **b)** Seja $p' \in \mathcal{V}^{CP}$. Consideremos dois casos.
 - **b.1)** Caso p'=p. Então, por definição de substituição, $p'[\varphi_1/p]=\varphi_1$ e $p'[\varphi_2/p]=\varphi_2$. Assim, como por hipótese $\varphi_1 \Leftrightarrow \varphi_2$, segue que $p'[\varphi_1/p] \Leftrightarrow p'[\varphi_2/p]$,
 - **b.2)** Caso $p' \neq p$. Então, por definição de substituição, $p'[\varphi_1/p] = p'$ e $p'[\varphi_2/p] = p'$. Assim, tal como em a), por \Leftrightarrow ser reflexiva, $p'[\varphi_1/p] \Leftrightarrow p'[\varphi_2/p]$.

Assim, para qualquer $p' \in \mathcal{V}^{CP}$, P(p') é verdadeira.

c) Seja ψ_1 uma fórmula e suponhamos $P(\psi_1)$ (H.I.), tendo em vista mostrar que $P(\neg \psi_1)$ é verdadeira, ou, dito por outras palavras, pretende-se mostar que $(\neg \psi_1)[\varphi_1/p] \leftrightarrow (\neg \psi_1)[\varphi_2/p]$ é uma tautologia.

Seja v uma valoração. Então:

$$V((\neg \psi_1)[\varphi_1/p])$$
= $V(\neg \psi_1[\varphi_1/p])$ (definição de substituição)
= $1 - V(\psi_1[\varphi_1/p])$ (definição de valoração)
= $1 - V(\psi_1[\varphi_2/p])$ (*)
= $V(\neg \psi_1[\varphi_2/p])$ (definição de valoração)
= $V((\neg \psi_1)[\varphi_2/p])$ (definição de substituição).

onde a igualdade assinalada com (*) é consequência da HI, pois da HI, por definição de \Leftrightarrow , segue que $\psi_1[\varphi_1/p] \leftrightarrow \psi_1[\varphi_2/p]$ é uma tautologia, donde, para toda a valoração v,

$$v(\psi_1[\varphi_1/p])=v(\psi_1[\varphi_2/p]).$$

Assim sendo, $v((\neg \psi_1)[\varphi_1/p] \leftrightarrow (\neg \psi_2)[\varphi_2/p]) = 1$ e, portanto, a fórmula $(\neg \psi_1)[\varphi_1/p] \leftrightarrow (\neg \psi_2)[\varphi_2/p]$ é uma tautologia.

d) Para completar a prova, falta mostar que, para $\Box \in \{\land, \lor, \to, \leftrightarrow\}$ e para todo $\psi_1, \psi_2 \in \mathcal{F}^{CP}$, se $P(\psi_1)$ e $P(\psi_2)$, então $P(\psi_1 \Box \psi_2)$. (Exercício.)

Exemplo 68: Sejam φ e ψ fórmulas. Então,

$$\neg (\neg \varphi \wedge \psi) \iff \neg \neg \varphi \vee \neg \psi \iff \varphi \vee \neg \psi.$$

Justificações

- (1) Lei de De Morgan.
- (2) Dada uma variável proposicional $p \not\in var(\psi)$ (que existe sempre, pois o número de variáveis proposicionais que ocorrem em φ é finito), pelo Teorema da Substituição, como $\neg\neg\varphi \Leftrightarrow \varphi$, $(p \lor \psi)[\neg\neg\varphi/p] \Leftrightarrow (p \lor \psi)[\varphi/p]$ e assim, uma vez que $(p \lor \psi)[\neg\neg\varphi/p] = \neg\neg\varphi \lor \psi$ e $(p \lor \psi)[\varphi/p] = \varphi \lor \psi$, segue-se que $\neg\neg\varphi \lor \psi \Leftrightarrow \varphi \lor \psi$.

Donde, como \Leftrightarrow é transitiva, podemos concluir a equivalência lógica entre a primeira fórmula e a última fórmula.

Definição 69: Seja $X \subseteq \{\bot, \neg, \land, \lor, \rightarrow, \leftrightarrow\}$ um conjunto de conetivos. X diz-se *completo* quando, para todo $\varphi \in \mathcal{F}^{CP}$, existe $\psi \in \mathcal{F}^{CP}$ tal que $\varphi \Leftrightarrow \psi$ e todos os conetivos de ψ estão em X.

Proposição 70: Os conjuntos de conetivos $\{\rightarrow, \neg\}$, $\{\rightarrow, \bot\}$, $\{\land, \neg\}$ e $\{\lor, \neg\}$ são completos.

Dem.: Vamos demonstrar que $\{\rightarrow, \neg\}$ é um conjunto completo de conetivos. (A demonstração de que os outros conjuntos de conetivos mencionados são completos é deixada como exercício.) Para tal, comecemos por definir, por recursão estrutural em fórmulas, a função $f: \mathcal{F}^{CP} \longrightarrow \mathcal{F}^{CP}$ como a única função t.q.:

- **a)** $f(\bot) = \neg(p_0 \to p_0);$
- **b)** f(p) = p, para todo $p \in \mathcal{V}^{CP}$;
- c) $f(\neg \varphi) = \neg f(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$;
- **d)** $f(\varphi \to \psi) = f(\varphi) \to f(\psi)$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$;
- **e)** $f(\varphi \lor \psi) = \neg f(\varphi) \to f(\psi)$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$;
- **f)** $f(\varphi \wedge \psi) = \neg (f(\varphi) \rightarrow \neg f(\psi))$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$;
- **g)** $f(\varphi \leftrightarrow \psi) = \neg((f(\varphi) \to f(\psi)) \to \neg(f(\psi) \to f(\varphi)))$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$.

Lema: Para todo $\varphi \in \mathcal{F}^{CP}$, $\varphi \Leftrightarrow f(\varphi)$ e os conetivos de $f(\varphi)$ estão no conjunto $\{\rightarrow, \neg\}$.

Dem.: Por indução estrutural em φ . Exercício.

Do lema anterior concluimos de imediato que $\{\to,\neg\}$ é um conjunto completo de conetivos, pois, para toda a fórmula φ , existe uma fórmula ψ —a fórmula $f(\varphi)$ — tal que $\varphi \Leftrightarrow \psi$ e os conetivos de ψ estão no conjunto $\{\to,\neg\}$.

Exemplo 71: Da demonstração da proposição anterior, podemos concluir que a fórmula

 $f((\neg p_1 \land p_2) \to \bot) = \neg(\neg p_1 \to \neg p_2) \to \neg(p_0 \to p_0)$ é logicamente equivalente a $(\neg p_1 \land p_2) \to \bot$ e os seus conetivos estão no conjunto $\{\to, \neg\}$.

Definição 72: As variáveis proposicionais e as negações de variáveis proposicionais são chamadas *literais*.

Definição 73: Fórmulas do CP das formas

i)
$$(I_{11} \vee ... \vee I_{1m_1}) \wedge ... \wedge (I_{n1} \vee ... \vee I_{nm_n})$$

ii)
$$(I_{11} \wedge ... \wedge I_{1m_1}) \vee ... \vee (I_{n1} \wedge ... \wedge I_{nm_n})$$

em que os l_{ij} são literais e n, bem como os m_i , pertencem a \mathbb{N} , serão designadas por formas normais conjuntivas (FNC) e formas normais disjuntivas (FND), respetivamente.

Exemplo 74:

- a) Todo o literal l é simultaneamente uma forma normal conjuntiva e disjuntiva (na definição de formas normais, basta tomar n = 1, $m_1 = 1$ e $l_{11} = l$).
- **b)** A fórmula $p_1 \wedge \neg p_2 \wedge \neg p_0$ é uma FNC (faça-se $n=3, m_1=1, m_2=1, m_3=1, l_{11}=p_1, l_{21}=\neg p_2$ e $l_{31}=\neg p_0$) e é também uma FND (faça-se $n=1, m_1=3, l_{11}=p_1, l_{12}=\neg p_2$ e $l_{13}=\neg p_0$). Também a fórmula $p_1 \vee p_2$ é, em simultâneo, uma FND e uma FNC. Mais geralmente, conjunções de literais e disjunções de literais são, em simultâneo, formas normais conjuntivas e disjuntivas.
- **c)** A fórmula $(p_1 \lor p_0) \land (p_0 \lor \neg p_1)$ é uma FNC, mas não é uma FND.
- **d)** A fórmula $\neg(p_1 \lor p_0)$ não é nem uma FNC nem uma FND.

Proposição 75: Para todo $\varphi \in \mathcal{F}^{CP}$, existe uma forma normal conjuntiva φ^c tal que $\varphi \Leftrightarrow \varphi^c$ e existe uma formal normal disjuntiva φ^d tal que $\varphi \Leftrightarrow \varphi^d$.

Dem.: Dada uma fórmula φ , uma forma normal conjuntiva e uma formal normal disjuntiva logicamente equivalentes a φ podem ser obtidas através das seguintes transformações:

 Eliminar equivalências, implicações e ocorrências do absurdo, utilizando as equivalências lógicas

$$\varphi_1 \leftrightarrow \varphi_2 \Leftrightarrow (\varphi_1 \to \varphi_2) \land (\varphi_2 \to \varphi_1), \varphi_1 \to \varphi_2 \Leftrightarrow \neg \varphi_1 \lor \varphi_2 \in \bot \Leftrightarrow \varphi_1 \land \neg \varphi_1.$$

- **2.** Mover negações que se encontrem fora de conjunções ou disjunções para dentro delas, utilizando as leis de De Morgan.
- 3. Eliminar duplas negações.
- **4.** Aplicar a distributividade entre a conjunção e a disjunção.

Exemplo 76: Seja
$$\varphi = ((\neg p_1 \lor p_2) \to p_3) \land p_0$$
. Então:

i)
$$\varphi \\ \Leftrightarrow ((\neg p_1 \lor p_2) \to p_3) \land p_0 \\ \Leftrightarrow (\neg (\neg p_1 \lor p_2) \lor p_3) \land p_0 \\ \Leftrightarrow ((\neg \neg p_1 \land \neg p_2) \lor p_3) \land p_0 \\ \Leftrightarrow ((p_1 \land \neg p_2) \lor p_3) \land p_0 \\ \Leftrightarrow (p_1 \lor p_3) \land (\neg p_2 \lor p_3) \land p_0$$

e a última fórmula é uma FNC;

ii)
$$\varphi \\ \Leftrightarrow ((p_1 \land \neg p_2) \lor p_3) \land p_0 \quad \text{por i}) \\ \Leftrightarrow (p_1 \land \neg p_2 \land p_0) \lor (p_3 \land p_0),$$

sendo a última fórmula uma FND.

Observação 77: Consideremos de novo a Proposição 75 e a sua demonstração. Uma demonstração alternativa, que permite obter uma FND e uma FNC logicamente equivalentes a uma dada fórmula φ , pode ser feita com recurso à tabela de verdade de φ . Em particular, vejamos como obter uma FND φ^d , logicamente equivalente a φ , a partir da tabela de verdade de φ .

- Se φ é uma contradição ou uma tautologia, basta tomar, respetivamente, uma FND que seja uma contradição e uma FND que seja uma taotologia; por exemplo, tome-se, respetivamente, φ^d = p₀ ∧ ¬p₀ e φ^d = p₀ ∨ ¬p₀.
- Doutro modo, sem perda de generalidade, suponhamos, que p₁, p₂,..., p_n são as variáveis proposicionais que ocorrem em φ¹. A tabela de verdade de φ terá 2ⁿ linhas e pode ser representada da seguinte forma:

p_1	p_2		p_{n-1}	pn	φ
1	1	• • •	1	1	<i>b</i> ₁
:	:		:	:	
<i>a</i> _{i,1}	<i>a</i> _{i,2}		$a_{i,n-1}$	a _{i,n}	bi
1	:		:	:	:
Ō	0	•••	Ö	0	b_{2^n}

onde, para cada $i \in \{1, ..., 2^n\}$, $b_i = v_i(\varphi)$ para toda a valoração v_i tal que $v_i(p_j) = a_{i,j}$ para todo $j \in \{1, ..., n\}$.

Para cada $i \in \{1, \dots, 2^n\}$ tal que $b_i = 1$ seja

$$\alpha_{i,j} = \begin{cases}
p_j & \text{se } a_{i,j} = 1 \\
\neg p_j & \text{se } a_{i,j} = 0
\end{cases}$$
 (para todo $j \in \{1, \dots, n\}$)

e seja $\beta_i = \alpha_{i,1} \wedge \alpha_{i,2} \wedge \cdots \wedge \alpha_{i,n}$.

Finalmente, suponhamos que i_1, i_2, \ldots, i_k são as linhas para as quais $b_{i_r} = 1$, e tome-se $\varphi^d = \beta_{i_1} \vee \beta_{i_2} \vee \cdots \vee \beta_{i_k}$.

Prova-se que φ^d assim definida, de facto, é uma FND e é logicamente equivalente a φ . (Exercício.)

Exemplo 78: Consideremos a fórmula

 $\varphi = ((p_3 \to p_1) \lor (\neg p_1 \leftrightarrow \bot)) \land p_2$. Denotemos por ψ a subfórmula $(p_3 \to p_1) \lor (\neg p_1 \leftrightarrow \bot)$ de φ . A tabela de verdade de φ é:

p_1	<i>p</i> ₂	<i>p</i> ₃	上	$\neg p_1$	$p_3 \rightarrow p_1$	$\neg p_1 \leftrightarrow \bot$	ψ	φ
1	1	1	0	0	1	1	1	1
1	1	0	0	0	1	1	1	1
1	0	1	0	0	1	1	1	0
1	0	0	0	0	1	1	1	0
0	1	1	0	1	0	0	0	0
0	1	0	0	1	1	0	1	1
0	0	1	0	1	0	0	0	0
0	0	0	0	1	1	0	1	0

As linhas para as quais φ tem valor lógico 1 são a 1ª, a 2ª e a 6ª. Portanto, uma FND logicamente equivalente a φ é:

 $(p_1 \wedge p_2 \wedge p_3) \vee (p_1 \wedge p_2 \wedge \neg p_3) \vee (\neg p_1 \wedge p_2 \wedge \neg p_3). \quad \text{(a)} \quad \text{(b)} \quad \text{(b)} \quad \text{(c)} \quad \text{(c)}$

Definição 79: Seja *v* uma valoração.

- 1 Dizemos que v satisfaz uma fórmula do $CP \varphi$, e escrevemos $v \models \varphi$, quando $v(\varphi) = 1$. Quando v não satisfaz φ (i.e., quando $v(\varphi) = 0$, escrevemos $v \not\models \varphi$).
- 2 Dizemos que v satisfaz um conjunto de fórmulas do CP Γ , e escrevemos $v \models \Gamma$, quando v satisfaz todas as fórmulas de Γ . Quando v não satisfaz Γ (i.e., quando existe $\varphi \in \Gamma$ t.q. $v \not\models \varphi$ ou, equivalentemente, quando existe $\varphi \in \Gamma$ t.q. $v(\varphi) = 0$) escrevemos $v \not\models \Gamma$.

Exemplo 80: Seja v_0 a valoração que atribui o valor lógico 0 a todas as variáveis proposicionais.

- 1 $v_0 \models p_1 \leftrightarrow p_2 \text{ e } v_0 \models \neg p_1 \land \neg p_2;$
- 2 $v_0 \not\models p_1 \lor p_2 e v_0 \not\models p_1 \leftrightarrow \neg p_2$;
- $v_0 \models \{p_1 \leftrightarrow p_2, \neg p_1 \land \neg p_2\} \text{ (por 1)};$
- 4 $v_0 \not\models \{p_1 \leftrightarrow p_2, p_1 \lor p_2\}$ (v_0 não satisfaz a 2ª fórmula);
- 5 $v_0 \not\models \{\neg p_1 \land \neg p_2, p_1 \leftrightarrow \neg p_2\}$ (v_0 não satisfaz a 2ª fórmula).

Observação 81: Dado que no conjunto vazio não há qualquer fórmula, tem-se, trivialmente, que, para toda a valoração v, $v \models \emptyset$.

Definição 82: Seja Γ um conjunto de fórmulas do CP.

- 1 Γ diz-se um conjunto (semanticamente) consistente ou satisfazível quando existe alguma valoração que satisfaz Γ.
- Σ Γ diz-se um conjunto (semanticamente) inconsistente ou insatisfazível quando não há valorações que satisfaçam Γ.

2019/2020

Exemplo 83:

- a) Como vimos no exemplo anterior, o conjunto de fórmulas $\Delta_1 = \{p_1 \leftrightarrow p_2, \neg p_1 \land \neg p_2\}$ é satisfeito pela valoração v_0 desse exemplo e, portanto, Δ_1 é consistente.
- **b)** O conjunto $\Delta_2 = \{p_1 \leftrightarrow p_2, p_1 \lor p_2\}$, considerado no exemplo anterior, não é satisfeito pela valoração v_0 , mas é satisfeito, por exemplo, pela valoração que atribui valor lógico 1 a qualquer variável proposicional. Logo, Δ_2 é também consistente.
- **c)** O conjunto $\Delta_3 = \{ \neg p_1 \land \neg p_2, p_1 \leftrightarrow \neg p_2 \}$, considerado no exemplo anterior, é inconsistente.

Dem.: Suponhamos que existe uma valoração v que satisfaz Δ_3 . Então, $v(\neg p_1 \land \neg p_2) = 1$, e portanto $v(p_1) = 0$ e $v(p_2) = 0$, e $v(p_1 \leftrightarrow \neg p_2) = 1$. Ora, de $v(p_2) = 0$, segue $v(\neg p_2) = 1$ e daqui e de $v(p_1) = 0$, segue $v(p_1 \leftrightarrow \neg p_2) = 0$, o que contradiz $v(p_1 \leftrightarrow \neg p_2) = 1$. Logo, não podem existir valorações que satisfaçam Δ_3 e, assim, Δ_3 é inconsistente.

Proposição 84: Sejam Γ e Δ conjuntos de fórmulas do CP tais que $\Gamma \subseteq \Delta$. Então:

- i) se Δ é consistente, então Γ é consistente;
- ii) se Γ é inconsistente, então Δ é inconsistente.

Dem.: Exercício.

Definição 85: Seja φ uma fórmula do CP e seja Γ um conjnunto de fórmulas do CP.

- 1 Dizemos que φ é uma consequência semântica de Γ, e escrevemos Γ $\models \varphi$, quando, para toda a valoração v, se $v \models \Gamma$, então $v \models \varphi$.
- Escrevemos Γ ⊭ φ quando φ não é consequência semântica de Γ, i.e., quando existe alguma valoração v t.q. v ⊨ Γ e v ⊭ φ.

Observação 86: Da definição anterior, aplicando as definições de satisfação de uma fórmula e satisfação de um conjunto de fórmulas, segue de imediato que:

- 1 Γ $\models \varphi$ se e só se para toda a valoração v, se para todo $\psi \in \Gamma$, $v(\psi) = 1$, então $v(\varphi) = 1$.
- 2 $\Gamma \not\models \varphi$ se e só se existe alguma valoração ν tal que, para todo $\psi \in \Gamma$, $\nu(\psi) = 1$ e $\nu(\varphi) = 0$.

Exemplo 87:

- 1 Seja $\Gamma = \{p_1, \neg p_1 \lor p_2\}$. Então:
 - (a) $\Gamma \models p_1$. (Se tomarmos uma valoração ν tal que $\nu \models \Gamma$, *i.e.*, uma valoração tal que $\nu(p_1) = 1$ e $\nu(\neg p_1 \lor p_2) = 1$, em particular, temos $\nu(p_1) = 1$.)
 - (b) $\Gamma \models p_2$. (Tomando uma valoração v tal que $v(p_1) = 1$ e $v(\neg p_1 \lor p_2) = 1$, temos $v(\neg p_1) = 0$ e daqui e de $v(\neg p_1 \lor p_2) = 1$, segue $v(p_2) = 1$.)
 - (c) $\Gamma \models p_1 \land p_2$. (Tomando uma valoração ν tal que $\nu(p_1) = 1$ e $\nu(\neg p_1 \lor p_2) = 1$, temos necessariamente $\nu(p_1) = 1$ e $\nu(p_2) = 1$ (tal como vimos nos exemplos anteriores) e, por isso, temos $\nu(p_1 \land p_2) = 1$.)
 - (d) $\Gamma \not\models p_3$. (Existem valorações v tais que $v \models \Gamma$ e $v(p_3) = 0$. Por exemplo, a valoração que atribui valor lógico 1 a p_1 e p_2 e valor lógico 0 às restantes variáveis proposicionais é uma tal valoração.)
 - (e) $\Gamma \not\models \neg p_1 \lor \neg p_2$. (Por exemplo, para a valoração v_1 tal que $v_1(p_i) = 1$, para todo $i \in \mathbb{N}_0$, temos $v_1 \models \Gamma$ e, no entanto, $v_1(\neg p_1 \lor \neg p_2) = 0$.)

1/1

Cálculo Proposicional da Lógica Clássica

Semântica

- (f) $\Gamma \models p_3 \lor \neg p_3$. (Se tomarmos uma valoração ν tal que $\nu \models \Gamma$, temos $\nu(p_3 \lor \neg p_3)$. De facto, $p_3 \lor \neg p_3$ é uma tautologia e, como tal, o seu valor lógico é 1 para qualquer valoração (em particular, para aquelas valorações que satisfazem Γ).)
- Para todo $\varphi, \psi \in \mathcal{F}^{CP}$, $\{\varphi, \varphi \to \psi\} \models \psi$. De facto, para qualquer valoração v, se $v(\varphi) = 1$ e $v(\varphi \to \psi) = 1$, então $v(\psi) = 1$.
- 3 Já a afirmação "para todo $\varphi, \psi \in \mathcal{F}^{CP}, \{\varphi \to \psi\} \models \psi$ " é falsa. Por exemplo, $\{p_1 \to p_2\} \not\models p_2$ (uma valoração v tal que $v(p_1) = v(p_2) = 0$ satisfaz $\{p_1 \to p_2\}$ e não satisfaz p_2 .

Proposição 88: Para todo $\varphi \in \mathcal{F}^{CP}$, $\models \varphi$ se e só se $\emptyset \models \varphi$.

Dem.: Suponhamos que φ é uma tautologia. Então, para toda a valoração v, $v \models \varphi$ e, assim, de imediato, a implicação " $v \models \emptyset \Rightarrow v \models \varphi$ " é verdadeira, pelo que, $\emptyset \models \varphi$.

Reciprocamente, suponhamos agora que $\emptyset \models \varphi$, *i.e.*, suponhamos que para toda a valoração v,

$$\mathbf{v} \models \emptyset \Rightarrow \mathbf{v} \models \varphi$$
.

Seja v uma valoração arbitrária. Pretendemos mostrar que $v(\varphi)=1$. Ora, trivialmente, $v\models\emptyset$ (Observação 81). Assim, da suposição, segue $v\models\varphi$, ou seja, $v(\varphi)=1$.

Observação 89: Se Γ é um conjunto de fórmulas inconsistente, então $\Gamma \models \varphi$, para todo $\varphi \in \mathcal{F}^{CP}$. (Porquê?) Como tal, é possível ter-se $\Gamma \models \varphi$ sem que existam valorações que satisfaçam Γ.

2019/2020

Notação 90: Muitas vezes, no contexto da relação de consequência semântica, usaremos a vírgula para denotar a união de conjuntos e escrevemos uma fórmula para denotar o conjunto singular composto por essa fórmula. Assim, por exemplo, dadas fórmulas $\varphi, \psi, \varphi_1, ..., \varphi_n$ e conjuntos de fórmulas Γ, Δ , escrevemos:

- a) $\Gamma, \Delta \models \varphi$ como abreviatura para $\Gamma \cup \Delta \models \varphi$;
- **b)** $\Gamma, \varphi \models \psi$ como abreviatura para $\Gamma \cup \{\varphi\} \models \psi$;
- **c)** $\varphi_1,...,\varphi_n \models \varphi$ como abreviatura para $\{\varphi_1,...,\varphi_n\} \models \varphi$.

Proposição 91: Sejam φ e ψ fórmulas e sejam Γ e Δ conjuntos de fórmulas.

- a) Se $\varphi \in \Gamma$, então $\Gamma \models \varphi$.
- **b)** Se $\Gamma \models \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \models \varphi$.
- c) Se $\Gamma \models \varphi$ e $\Delta, \varphi \models \psi$, então $\Delta, \Gamma \models \psi$.
- d) $\Gamma \models \varphi \rightarrow \psi$ se e só se $\Gamma, \varphi \models \psi$.
- e) Se $\Gamma \models \varphi \rightarrow \psi$ e $\Gamma \models \varphi$, então $\Gamma \models \psi$.

Dem.:

a) Suponhamos que φ ∈ Γ. Seja v uma valoração e suponhamos que v satisfaz Γ. Então, da definição de satisfação de conjuntos, sabemos que v atribui valor lógico 1 a todas as fórmulas de Γ. Assim, dado que por hipótese φ ∈ Γ, temos v(φ) = 1.

- b) Seja v uma valoração. Suponhamos que v satisfaz Δ . Assim, em particular, v satisfaz Γ , pois (por hipótese) $\Gamma \subseteq \Delta$. Donde, pela hipótese de que φ é uma consequência semântica de Γ , segue que $v(\varphi)=1$.
- c) Exercício.
- **d)** \Rightarrow **)** Seja v uma valoração. Suponhamos que v satisfaz $\Gamma \cup \{\varphi\}$. Então, por definição de satisfação de conjuntos, v satisfaz Γ e $v(\varphi) = 1$ (*). Assim, como v satisfaz Γ , da hipótese $\Gamma \models \varphi \rightarrow \psi$ segue que $v(\varphi \rightarrow \psi) = 1$ (**). Logo, de (*) e (**), por definição de valoração, $v(\psi) = 1$.
 - ←) Exercício.
- e) Seja v uma valoração. Suponhamos que v satisfaz Γ . Então, da hipótese $\Gamma \models \varphi \rightarrow \psi$, podemos concluir que $v(\varphi \rightarrow \psi) = 1$ (*) e, da hipótese $\Gamma \models \varphi$, podemos concluir que $v(\varphi) = 1$ (**). Logo, de (*) e (**), por definição de valoração, $v(\psi) = 1$.

Proposição 92: Sejam $\varphi, \varphi_1, ..., \varphi_n$ fórmulas, onde $n \in \mathbb{N}$. As seguintes proposições são equivalentes:

- i) $\varphi_1,...,\varphi_n \models \varphi$;
- ii) $\varphi_1 \wedge ... \wedge \varphi_n \models \varphi$;
- iii) $\models (\varphi_1 \wedge ... \wedge \varphi_n) \rightarrow \varphi$.

Dem.: A equivalência entre ii) e iii) é um caso particular de d) da proposição anterior. A equivalência entre i) e ii) pode ser demonstrada a partir da equivalência mais geral: para todo o conjunto Γ de fórmulas,

$$\Gamma, \varphi_1, ..., \varphi_n \models \varphi$$
 se e só se $\Gamma, \varphi_1 \wedge ... \wedge \varphi_n \models \varphi$,

a qual pode ser demonstrada por indução em *n* (exercício). A equivalência entre i) e iii) segue, então, por transitividade.

Proposição 93 (Redução ao absurdo): Seja φ uma fórmula do CP e seja Γ um conjunto de fórmulas do CP. Então: $\Gamma \models \varphi$ se e só se $\Gamma \cup \{\neg \varphi\}$ é semanticamente inconsistente.

Dem.:

- \Rightarrow) Tendo em vista uma contradição, suponhamos que $\Gamma \cup \{\neg \varphi\}$ é semanticamente consistente, *i.e.*, suponhamos que existe uma valoração v que satisfaz $\Gamma \cup \{\neg \varphi\}$. Então, v satisfaz Γ e $v(\neg \varphi) = 1$, *i.e.*, $v(\varphi) = 0$ (*). Contudo, da hipótese, uma vez que v satisfaz Γ , podemos concluir que $v(\varphi) = 1$, o que é contraditório com (*). Logo, por redução ao absurdo, $\Gamma \cup \{\neg \varphi\}$ é semanticamente inconsistente.
- \Leftarrow) Suponhamos que v satisfaz Γ. Então, $v(\neg \varphi) = 0$, de outra forma teríamos $v(\neg \varphi) = 1$, donde, como v satisfaz Γ, seguiria que $\Gamma \cup \{\neg \varphi\}$ seria semanticamente consistente, contrariando a hipótese. Logo, $v(\varphi) = 1$. Mostrámos, assim, que toda a valoração que satisfaz Γ também satisfaz φ e, portanto, $\Gamma \models \varphi$.