Parallel Algorithm - Solve system of linear equations with Jacobi method with MPI

D'Souza, Ajay ajaydsouza@gatech.edu

May 23, 2017

Abstract

Implement Parallel Algorithm to solve a system of linear equations us the Jacobi method $\,$

Contents

1	Alg	orithm	Description	4	
2	Performance Plots				
	2.1	Runtime Performance Plots			
		2.1.1	Runtime Performance for Serial Algorithm P=1	7	
		2.1.2	Runtime Performance - Plot of Run Time Vs N for different levels of difficulty for fixed No of Processors P	8	
		2.1.3	Runtime Performance - Plot of Run Time Vs Number of Processors P for different levels of difficulty for fixed size N	10	
		2.1.4	Runtime Performance - Plot of Run Time Vs Number of Processors P for different N for fixed Difficulty d	13	
	2.2	Speed	Up Plots	13	
		2.2.1	SpeedUp - Plot of SpeedUp Vs N for different levels of difficulty for fixed No of Processors P	16	
		2.2.2	Runtime Performance - Plot of SpeedUp Vs Number of Processors P for different levels of difficulty for fixed size N	18	
		2.2.3	Runtime Performance - Plot of SpeedUp Vs Number of Processors P for different N for fixed Difficulty d	21	
3	Cor	nclusio	ns	2 4	

List of Figures

1	Serial Runtime Vs N	7
2	Run Time Vs N for $P=4$	8
3	Run Time Vs N for P=9	9
4	Run Time Vs N for P=16	9
5	Run Time Vs N for $P==25$	10
6	Run Time Vs P for N=1000	11
7	Run Time Vs P for N=8000	11
8	Run Time Vs P for N=16000	12
9	Run Time Vs P for N=20000	12
10	Run Time Vs P for N=25000	13
11	Run Time Vs P for d=0.50	14
12	Run Time Vs P for d=0.75	14
13	Run Time Vs P for d=0.90	15
14	Run Time Vs P for d=0.95	15
15	SpeedUp Vs N for P=4	16
16	SpeedUp Vs N for P=9	17
17	SpeedUp Vs N for P=16	17
18	SpeedUp Vs N for $P==25$	18
19	SpeedUp Vs P for N=1000	19
20	SpeedUp Vs P for N=8000	19
21	SpeedUp Vs P for N=16000	20
22	SpeedUp Vs P for N=20000	20
23	SpeedUp Vs P for N=25000	21
24	SpeedUp Vs P for d=0.50	22
25	SpeedUp Vs P for d=0.75	22
26	SpeedUp Vs P for d=0.90	23
27	SpeedUp Vs P for d=0.95	23

1 Algorithm Description

- 1. We are given a square matrix of size n and p the available processors where p is a perfect square. We will embed a logical square matrix of size $\sqrt{p} \times \sqrt{p}$ on to the hypercubic processors p using MPI_Cart_Create.
- 2. A property of this embedding is that the processors in a row or a column of the logical $\sqrt{p} \times \sqrt{p}$ matrix are hypercubic connected processors
- 3. The (0,0) processor or the rank 0 processors reads the input matrix A,b and has to block distribute it to the other relevant processors
- 4. The processors in the first column of the matrix have to get the vector b block distributed to them from the rank 0 processor in that column. This can be done by a MPI_Scatterv along the first column with the count and displacement arrays set to the appropriate $\lceil \frac{n}{\sqrt{p}} \rceil$ or $\lfloor \frac{n}{\sqrt{p}} \rfloor$ offset and count depending on if the rank of the processor is $<(n \mod \sqrt{p})$ or not. The complexity of this operation is $\mathcal{O}(\tau \log \sqrt{p} + \mu n)$
- 5. Next we have to distribute the $n \times n$ matrix A from processor of rank 0 to every processor in the matrix so each processor has a local A block matrix of size $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$.
- 6. This is implemented using MPI_Scatterv. The count and displacement arrays let us provide varying size of rows and columns that need to be block distributed to a processor based on its rank and of n not being a multiple of \sqrt{p} . Matrix A is stored as an one dimensional array and non contiguous elements from the array would need to be scattered. This can be accomplished with creating a MPI_Type_vector which takes as input a count, block length and stride
- 7. Since this involved scattering the elements along column and then along rows of processors which are hypercubic the run time complexity is

$$= \mathcal{O}(\tau \log \sqrt{p} + \mu n^2) + \mathcal{O}(\tau \log \sqrt{p} + \mu \frac{n^2}{\sqrt{p}})$$
$$= \mathcal{O}(\tau \log \sqrt{p} + \mu n^2) \tag{1}$$

- 8. Once the processors in the first column receive the block distributed rows of matrix A, those processors can keep an array local $local_D$ of $\frac{n}{\sqrt{p}}$ elements from the block distributed $local_A$, which correspond to the diagonal elements of the $n \times n$ matrix A.
- 9. Or these diagonal elements of the $n \times n$ matrix A, could also be got by the processors in the first column, from the local block matrix A $local_A$ in the diagonal processors in the row of each column (i,i). The sending and receiving can be performed by MPI_Send and MPI_Recv for a complexity of $\mathcal{O}(1)$

- 10. Finally to perform the matrix multiplication Ax, each processor in column i would need to have the bock distributed $local_x$ vector of size $\frac{n}{\sqrt{p}}$ from the i^{th} processor in the first column
- 11. This transpose broadcast of local x can be performed using the following steps
 - (a) Each *ith* processor in the left column will send its local $local_x$ array of size $\frac{n}{\sqrt{p}}$ to the diagonal processor (i,i) in that row using MPI_Send and MPI_Recv, this is of complexity $\mathcal{O}(1)$
 - (b) The diagonal processor (i,i) in every row will then broadcast these $\frac{n}{\sqrt{p}}$ local $local_x$ elements to each processor in its column using MPI_Bcast, this is of complexity $\mathcal{O}(\tau + \mu \frac{n}{\sqrt{p}}) \log \sqrt{p}$
- 12. Now each processor in the processor matrix of size $\sqrt{p} \times \sqrt{p}$ has a block allocated local A matrix $local_A$ and a local x vector $local_x$ and can perform a matrix vector multiplication
- 13. Matrix multiplication is performed in each processor with a complexity of $\mathcal{O}((\frac{n}{\sqrt{p}})^2)$
- 14. The multiplication results in a local y $local_y$ vector of size $\frac{n}{\sqrt{p}}$ on each processor.
- 15. Now the corresponding elements of local y, in every processor in a row are added and stored in the local y vector of size $\frac{n}{\sqrt{p}}$ of the processor in the first column in each row using. This operation can be performed with MPI_Reduce with a complexity of $\mathcal{O}(\tau + \mu \frac{n}{\sqrt{p}}) \log \sqrt{p}$
- 16. The processors in the first column now have the local $local_y, local_D$ and $local_b$ arrays of size $\frac{n}{\sqrt{p}}$. Then can now compute the the new x as $x_i = \frac{(local_{b_i} (local_{b_i} (local_{D_i} * local_{D_i}))}{local_{D_i}}$
- 17. The new x computed in the processors in the first column in each row is stored in the $local_x$ vector on that processor
- 18. Now this new $local_x$ is transpose distributed back from the i^{th} processor in the first row to the processors in the i^{th} column using transpose broadcast as described earlier
- 19. With the new $\frac{n}{\sqrt{p}}$ local $local_x$ values at each processor will perform another matrix multiplication $local_y = local_A local_x$ as described above.
- 20. The results from local y from the processors in a row are summed up back to the first processors in that row as described earlier
- 21. Each processor in the first column can then compute the 2 norm of $|local_b local_y|$

- 22. We can then do a MPI_AllReduce to sum the local 2 norm of all processors in the grid to get the 2 norm of $|b AX_{new}|$. The value of the 2 norm for the whole matrix will now be available on each processor in the matrix.
- 23. This way every processor can check if the 2 norm is within the tolerance specified and exit the loop in the same way as other processors. This step of computing the norm using MPI_AllReduce should be of complexity

$$= \mathcal{O}(\tau + \mu) \log \sqrt{p} + \mathcal{O}(\tau + \mu) \log \sqrt{p}$$

= $\mathcal{O}(\tau + \mu) \log \sqrt{p}$ (2)

- 24. If the 2 norm of $b AX_{new}$ is beyond the tolerance specified and if we have still not reached the cut off iteration then each processor will continue the iteration
- 25. On continuing the iteration the first column processors already have the value of the new $local_y$ from the last AX_{new} . So the first column processors can compute the new $local_{x_{new}}$ and then transpose broadcast it as described earlier and continue till convergence
- 26. On termination of the iteration, only the processors in the first column need to send their $local_x$ values to the rank 0 processor. This can be done using MPI_Gather. This takes $\log \sqrt{p}$ steps and since we start by sending message of size $\frac{n}{\sqrt{p}}$ till we reach $\frac{n}{2}$. So the complexity of this operation will be $\mathcal{O}(\tau \log \sqrt{p} + \mu n)$

2 Performance Plots

The algorithm was executed for the following parameters

- size n = 500,1000,2000,4000,8000,10000,12000,14000,16000,16000,20000,25000
- Difficulty d = 0.5, 0.75, 0.9, 0.95
- Number of parallel processors p=4,9,16,25

2.1 Runtime Performance Plots

The following are the Run Time plots

2.1.1 Runtime Performance for Serial Algorithm P=1

Figure 1: Serial Runtime Vs N

2.1.2 Runtime Performance - Plot of Run Time Vs N for different levels of difficulty for fixed No of Processors P

The following is the performance plot of Runtime Vs N the matrix dimension for different levels of difficulty for a fixed number of processors.

- 1. P=4(2)
- 2. P=9(3)
- 3. P=16 (4)
- 4. P=25(5)

Figure 2: Run Time Vs N for P=4

Figure 3: Run Time Vs N for P=9

Figure 4: Run Time Vs N for P=16

Figure 5: Run Time Vs N for P==25

2.1.3 Runtime Performance - Plot of Run Time Vs Number of Processors P for different levels of difficulty for fixed size N

The following is the performance plot of Run Time Vs Number of Processors P for different levels of difficulty for fixed matrix size N

- 1. N=1000 (6)
- 2. N=8000 (7)
- 3. N=16000 (8)
- 4. N=20000 (9)
- 5. N=25000 (10)

Figure 6: Run Time Vs P for N=1000

Figure 7: Run Time Vs P for N=8000

Figure 8: Run Time Vs P for N=16000

Figure 9: Run Time Vs P for N=20000

Figure 10: Run Time Vs P for N=25000

2.1.4 Runtime Performance - Plot of Run Time Vs Number of Processors P for different N for fixed Difficulty d

The following is the performance plot of Run Time Vs Number of Processors P for different N for fixed Difficulty d

- 1. d=0.5 (11)
- 2. d=0.75 (12)
- 3. d=0.9(13)
- 4. d=0.95 (14)

2.2 SpeedUp Plots

The following are the SpeedUp Ratio plots

Figure 11: Run Time Vs P for d=0.50

Figure 12: Run Time Vs P for d=0.75

Figure 13: Run Time Vs P for d=0.90

Figure 14: Run Time Vs P for d=0.95

2.2.1 SpeedUp - Plot of SpeedUp Vs N for different levels of difficulty for fixed No of Processors P

The following is the performance plot of SpeedUp Vs N the matrix dimension for different levels of difficulty for a fixed number of processors.

- 1. P=4 (15)
- 2. P=9(16)
- 3. P=16 (17)
- 4. P=25 (18)

Figure 15: SpeedUp Vs N for P=4

Figure 16: SpeedUp Vs N for P=9

Figure 17: SpeedUp Vs N for P=16

Figure 18: SpeedUp Vs N for P==25

2.2.2 Runtime Performance - Plot of SpeedUp Vs Number of Processors P for different levels of difficulty for fixed size N

The following is the performance plot of SpeedUp Vs Number of Processors P for different levels of difficulty for fixed matrix size N

- 1. N=1000 (19)
- 2. N=8000 (20)
- 3. N=16000 (21)
- 4. N=20000 (22)
- 5. N=25000 (23)

Figure 19: SpeedUp Vs P for N=1000

Figure 20: SpeedUp Vs P for N=8000

Figure 21: SpeedUp Vs P for N=16000

Figure 22: SpeedUp Vs P for N=20000

Figure 23: SpeedUp Vs P for N=25000

2.2.3 Runtime Performance - Plot of SpeedUp Vs Number of Processors P for different N for fixed Difficulty d

The following is the performance plot of SpeedUp Vs Number of Processors P for different N for fixed Difficulty d

- 1. d=0.5 (24)
- 2. d=0.75 (25)
- 3. d=0.9(26)
- 4. d=0.95 (27)

Figure 24: SpeedUp Vs P for d=0.50

Figure 25: SpeedUp Vs P for d=0.75

Figure 26: SpeedUp Vs P for d=0.90

Figure 27: SpeedUp Vs P for d=0.95

3 Conclusions

• The serial runtime of the algorithm is of the order of

$$T(n,1) = iterations * \mathcal{O}(n^2)$$
 (3)

• The parallel algorithm has a complexity of

$$T(n,p) = iterations * [\mathcal{O}(\frac{n^2}{p})] + iterations * [\mathcal{O}(\tau \log \sqrt{p} + \mu \frac{n}{\sqrt{p}})] + \mathcal{O}(\tau \log \sqrt{p} + \mu n^2)$$

$$(4)$$

- At very small values of n, the communication overhead given by $iterations * [\mathcal{O}(\tau \log \sqrt{p} + \mu \frac{n}{\sqrt{p}})] + \mathcal{O}(\tau \log \sqrt{p} + \mu n^2)$, especially $\tau \log \sqrt{p}$ would dominate over computation costs. So at very low values of n it might make no sense to try to parallel algorithm as it has no speed up over the serial algorithm. This is borne out by the graphs at values of n < 1000
- \bullet For the Serial algorithm the run time increases with N and is higher for higher difficulty levels
- For the Parallel algorithm for a given number of fixed processors, the run time
 - 1. Increases as N is increased
 - 2. Is higher with increased difficulty
 - 3. Increases at a higher rate at higher values on N
- \bullet For the Parallel algorithm if N is fixed then
 - 1. Initially for low values of p, the SpeedUp increases as we increase the number of processors p
 - 2. We have a point of inflexion in the curve where run time is lowest at a certain value of P and then increases again as P is increased. This indicates that for a given problem size of N there is a optimum number of processors P which give the best run time. The optimum value of P for a fixed problem size of N is the value at which the computation cost of the parallel algorithm $iterations*[\mathcal{O}(\frac{n^2}{p})]$ still dominates over the communication cost $iterations*[\mathcal{O}(\tau \log \sqrt{p} + \mu \frac{n}{\sqrt{p}})] + \mathcal{O}(\tau \log \sqrt{p} + \mu n^2)$
 - 3. It can also seen that the value of the point of inflexion, ie P the number of processors at which runtime is the least, gets higher as the fixed value of N is increased. This indicates that as N is increased the computation cost of the parallel algorithm $iterations * [\mathcal{O}(\frac{n^2}{p})]$ is higher and thus can absorb the larger

communication cost $iterations * [\mathcal{O}(\tau \log \sqrt{p} + \mu \frac{n}{\sqrt{p}})] + \mathcal{O}(\tau \log \sqrt{p} + \mu n^2)$ of a larger N

- ullet Higher the difficulty level higher is the run time. The spread of the run time is higher at higher values of N
- As seen with Run Time, SpeedUp is also fairly stable in a small range but falls off gradually as either N decreases below a threshold or is increased beyond a threshold for a fixed number of processors
 - 1. SpeedUp decreases as N is increased beyond a certain threshold for a given fixed number of processors, showing that for a given fixed number of processors as N is increased communication (specifically the brandwidth overhead in $iterations * [\mathcal{O}(\tau \log \sqrt{p} + \mu \frac{n}{\sqrt{p}})] + \mathcal{O}(\tau \log \sqrt{p} + \mu n^2)$) begins to dominate over computation cost for the Parallel Algorithm.
- It can be seen from the graph that SpeedUp < 1 for values of N < 1000. This is again as expected as communication costs of the parallel algorithm will dominate over computation costs at low values of N
- Thus we can conclude that
 - 1. At low values of N, parallel algorithm does not have a utility because of communication overheads
 - 2. For a given fixed value of N, SpeedUp of the parallel algorithm increases initially as P is increased from a low value of P. However on reaching a optimum value of SpeedUp for a certain value of P, the SpeedUp then begins to fall gradually as P is increased further
 - 3. So for a given problem size of N there is a optimum value of P to get the best SpeedUp