TUD Neo — Modern White Theme

Clean footline, geometric accent

Sihao Wei Faculty of Transportation and Traffic Sciences

October 30, 2025

- 1 Bullets & Math
 - Inline and Display
 - Blocks
- 2 Algorithms
 - Pseudocode
- 3 Tables & Figures
 - Table
 - Figure
- 4 Code
- 5 References

- 1 Bullets & Math
- 2 Algorithms
- 3 Tables & Figures
- 4 Code
- 5 Reference

- 1 Bullets & Math
 - Inline and Display
 - Blocks
- 2 Algorithms
 - Pseudocode
- 3 Tables & Figures
 - Table Table
 - Figure
- 4 Code
- 5 References

Bullets & Math

Item: Clean white background with TU blue accents inspired by TU Dresden's visual identity [1].

Note: Readable footline; total pages + pages left in the header [2].

Inline math: $f(x) = x^2$, bold vector $\mathbf{v} \in \mathbb{R}^3$.

Displayed integral:

$$\int_0^1 x^m \, dx = \frac{1}{m+1}, \quad m > -1.$$

- 1 Bullets & Math
 - Inline and Display
 - Blocks
- 2 Algorithms
 - Pseudocode
- 3 Tables & Figures
 - Table
 - Figure
- 4 Code
- 5 References

Blocks

Strong statement

Clean block environments: titles use TU blue with white text.

Example

Use white titles with blue text for helpful tips.

- 1 Bullets & Math
- 2 Algorithms
- 3 Tables & Figures
- 4 Code
- 5 Reference

8/19

- 1 Bullets & Math
 - Inline and Display
 - Blocks
- 2 Algorithms
 - Pseudocode
- 3 Tables & Figures
 - Table Table
 - Figure
- 4 Code
- 5 References

Pseudocode

Algorithm 1 Greedy Selection (toy)

Require: set S, score $w(\cdot)$, budget k

Ensure: subset A

1:
$$A \leftarrow \emptyset$$

2: **while** |A| < k **do**

3: $x \leftarrow \arg \max_{y \in S \setminus A} w(y)$

4:
$$A \leftarrow A \cup \{x\}$$

5: end while

6: **return** *A*

- 1 Bullets & Math
- 2 Algorithms
- 3 Tables & Figures
- 4 Code
- 5 References

- 1 Bullets & Math
 - Inline and Display
 - Blocks
- 2 Algorithms
 - Pseudocode
- 3 Tables & Figures
 - Table
 - Figure
- 4 Code
- 5 References

Table

Table 1: Tiny example with booktabs.

Method	Accuracy	Time (s)
A	0.92	12.3
В	0.89	9.8

- 1 Bullets & Math
 - Inline and Display
 - Blocks
- 2 Algorithms
 - Pseudocode
- 3 Tables & Figures
 - Table
 - Figure
- 4 Code
- ____
- 5 References

Figure Frame 15/19 (4 left)

Figure

Figure 1: Example figure (use example-graph) [3].

15/19

- 1 Bullets & Math
- 2 Algorithms
- 3 Tables & Figures
- 4 Code
- 5 Reference

Code Frame 17/19 (2 left)

Listings

Listing 1: Simple Python snippet

```
def f(x: float) -> float:
    return x*x + 1.0
print(f(2.0))
```

- 1 Bullets & Matl
- 2 Algorithms
- 3 Tables & Figures
- 4 Code
- 5 References

References Frame $19/19 \quad (0 \text{ left})$

Bibliography I

- 1 George B. Dantzig. "Linear Programming and Extensions". In: The RAND Corporation (1951)
- 2 Claude Berge. Graphs and Hypergraphs. North-Holland, 1963
- 3 Edsger W. Dijkstra. "A Note on Two Problems in Connexion with Graphs". In: *Numerische Mathematik*. 1959, pp. 269–271