IA PARA LA TRANSICIÓN ENERGÉTICA JUSTA

ANÁLISIS PREDICTIVO DEL CONSUMO EN HOGARES VULNERABLES

Proyecto de Machine Learning aplicado a políticas públicas energéticas

Juan David Murillo Mejia - TalentoTech

Estudiante de Tecnología en Análisis y Desarrollo de Software e Ingeniería de Telecomunicaciones

Junio 2025

EL DESAFÍO DE LA TRANSICIÓN ENERGÉTICA EN COLOMBIA

35°

Puesto en Índice de Transición Energética Mundial (2024)

- **4 millones** de personas sin servicio eléctrico
- 18.5% de la población (9.6 millones) en pobreza energética

BRECHAS CRÍTICAS

- Brecha rural-urbana crítica:
 47.9% rural vs 4.3% urbano
- Solo 5.77% de electricidad proviene de energía solar y eólica

OBJETIVOS Y METODOLOGÍA DEL ANÁLISIS PREDICTIVO

OBJETIVO PRINCIPAL

Desarrollar modelos de IA para predecir patrones de consumo energético en hogares vulnerables

OBJETIVOS ESPECÍFICOS

- Q Identificar factores determinantes del consumo energético
- Dptimizar programas de subsidios energéticos
- Apoyar políticas de eficiencia energética

Análisis exploratorio de datos

Machine Learning supervisado

ANÁLISIS EXPLORATORIO: CARACTERÍSTICAS DEL DATASET

13,108

Registros de facturas de consumo energético

- # 10 Variables numéricas
 (volumen_consumo, tarifa, valor_total_factura)
- S Variables categóricas (sector_consumo, ubicación, tipo_gas)

DESAFÍOS DE CALIDAD

- 75.5% valores nulos en volumen_consumo
- 79.3% valores nulos en precio_por_unidad

Período: Enero-Junio 2023

COMPARACIÓN DE MODELOS PREDICTIVOS

0.719

R² (71.9% varianza explicada)

- Modelo interpretable
- Procesamiento rápido

0.921

R² (92.1% varianza explicada)

- Mejor capacidad predictiva
- Manejo robusto de valores faltantes

Random Forest por su rendimiento superior

Mejor capacidad predictiva para políticas públicas

RENDIMIENTO DEL MODELO RANDOM FOREST

0.9215

R² - Excelente capacidad predictiva

VENTAJAS DEL MODELO

- Captura relaciones no lineales complejas
- Resistente a outliers
- Proporciona importancia de variables

APLICACIÓN PRÁCTICA

Predicción precisa de consumo para optimización de subsidios

VALIDACIÓN

Modelo robusto para implementación en políticas públicas

Listo para despliegue operacional

INSIGHTS CLAVE SOBRE PATRONES DE CONSUMO

FACTORES TEMPORALES

- Variabilidad temporal: Diferencias significativas entre meses (enero-junio 2023)
- Factores geográficos: Ubicación como predictor importante

SECTORES

• GNCV (Gas Natural Comprimido Vehicular) predominante

CORRELACIONES

- Relación entre tarifa, volumen y valor total
- Usuarios no regulados: Patrón de consumo diferenciado

Patrones identificados permiten segmentación precisa

APLICACIONES EN TRANSICIÓN ENERGÉTICA JUSTA

FOCALIZACIÓN DE SUBSIDIOS

Identificación precisa de hogares vulnerables

EFICIENCIA ENERGÉTICA

- Colombia solo utiliza 31% de energía de manera eficiente
- \$ Potencial de ahorro: USD \$1,500
 millones anuales

ALINEACIÓN ESTRATÉGICA

- Estrategia Nacional de Comunidades Energéticas con datos predictivos
- PND 2022-2026: "Colombia, Potencia Mundial de la Vida"

Herramienta clave para políticas públicas

DESAFÍOS Y OPORTUNIDADES DE MEJORA

LIMITACIONES ACTUALES

- Alto porcentaje de datos faltantes
 (75.5%)
- Período de análisis limitado (6 meses)
- Falta de variables socioeconómicas detalladas

TRABAJO FUTURO

- O Integración con datos de pobreza multidimensional
- Análisis de series temporales más extensas
- Incorporación de variables climáticas
- Modelos específicos por región

CONCLUSIONES Y IMPACTO DEL PROYECTO

TÉCNICAS

Random Forest demostró ser superior (R² = 0.92) para predicción de consumo energético

SOCIALES

El modelo puede apoyar la reducción de la pobreza energética que afecta a **9.6**

millones de colombianos

POLÍTICAS

Herramienta valiosa para optimizar la asignación de recursos en programas de subsidios

ESCALABILIDAD

Potencial para replicar en otras regiones de América Latina

Innovación: IA aplicada exitosamente a transición energética justa

HACIA UNA SOCIEDAD MOVIDA POR EL SOL Y EL VIENTO

"La IA puede ser un aliado fundamental para lograr una transición energética justa e inclusiva"

PRÓXIMOS PASOS

Implementación piloto con entidades gubernamentales

A TalentoTech por el apoyo en este proyecto de formación

Juan David Murillo Mejia