Also greent: Was hat man unter $\int_{a}^{b} f(x) dx$ gu weretehen?

Um dieses festgusetzen, nehmen wir zwischen a und b der Frösse nach auf einander folgend, eine Reihe non Werthen x_1,x_2,\ldots,x_{n-1} an und bezeichnen der Kürze wegen x_1 – a durch $\delta_1,\ x_2-x_1$ durch $\delta_2,\ldots,\ b-x_{n-1}$ durch δ_n und durch ε einen positinen ächten Bruch. Es wird abdann der Werth der Summe

$$5 = \delta_{1} k(\alpha + \varepsilon_{1}\delta_{1}) + \delta_{2} k(\alpha_{1} + \varepsilon_{2}\delta_{2}) + \delta_{3} k(\alpha_{2} + \varepsilon_{3}\delta_{3}) + \cdots + \delta_{n} k(\alpha_{n-1} + \varepsilon_{n}\delta_{n})$$

non der Wahl der Internalle δ und der Frössen ε abhängen. Hat sie nun die Eigenschaft, wie auch δ und ε gewählt werden mögen, sich einer festen Frenge (I unendlich zu nähern, sobald sämmtliche δ unendlich blein werden, so heisst dieser Werth $\int_a^b f(x) dx$.

achβ γ d δ e ϵ ef ζ ξghtiij<math>sklikl λ $\mu\nu$ mn η eo π ω $p<math>\rho$ ρ ϕ ϕ ψ qreσst θ ϑ τeν νιών e χ y<math>g ∂ g ℓ

O123456789 $Q\Lambda\Delta\nabla 3CD\Sigma EGF JAYKIMNOO <math>\Omega /\Phi\Pi \equiv QRS JUWMY \Psi 2$

!?*,..;+-=()[]/<>\${3\

abidefghijklinnopgnetunuryz ABCIE ABHAJKINNOPORSTUWAY

This example requires the emerald parkage. It uses:

\usepackage[T1]{fontenc}

\DeclareFontFamily{T1}{fsk}{}

\renewcommand\rmdefault{fsk}

\usepackage[noendash,defaultmathsizes,nohbar,defaultimath]{mathastext}

Typeset with mathastext 1.12b (2011/02/09).