ISEP June 2023

Signal Acquisition and Processing IG 2407

Final Exam

Lecture notes allowed

Duration: 2h00

Exercise n°1:

An audio signal whose spectrum is limited to 20kHz was digitized at a sampling frequency $F_e = 96$ kHz.. The ADC used has a resolution of 20 bits and operates over an amplitude range [-2V, 2V].

- 1. Compute the memory space required to store 1 second of audio signal.
- 2. Does the choice of the sampling frequency conform to Shannon's theorem? Justify your answer.
- 3. Compute the quantization step.
- 4. Compute the quantization noise power.
- 5. We assume that the crest factor, F_c , of the audio signal is equal to 3dB. Compute the signal to noise ratio at the ADC output.

A digital signal processor (DSP) is used to calculate the Discrete Fourier Transform (DFT) of this signal over 1024 points.

- 6. What minimum computational load (in terms of number of multiplications and additions per second) must this DSP have to be able to achieve this DFT?
- 7. What happens to this calculation load if we use a fast calculation algorithm (FFT)?
- 8. What is the cutoff frequency of the reconstruction filter applied at the output of the DAC?

Exercise n°2:

We consider a digital filter with two poles $P_0 = \frac{\sqrt{2}}{2}e^{j\pi/4}$ et $P_0^* = \frac{\sqrt{2}}{2}e^{-j\pi/4}$.

- 1. Compute the transfer function of this filter.
- 2. Does this filter have a FIR or an IIR structure? Justify your answer.
- 3. Write the difference equation corresponding to this filter.
- 4. Is this filter causal? Justify your answer.
- 5. Compute the frequency response of this filter.
- 6. Compute the modulus of the frequency response of this filter.
- 7. What's the type of this filter (band-pass, low-pass, high-pass, other)?
- 8. Plot the implementation scheme corresponding to this filter.

ISEP June 2023

Exercise n°3:

We consider a real white noise b(n) with variance σ^2 . This noise passes through a digital filter defined by its transfer function $A(z)=1-\sqrt{2}z^{-1}+z^{-2}$. We note y(n) the signal at the output of the filter.

- 1. Does this filter have a FIR or an IIR structure? Justify your answer.
- 2. Compute the modulus of the frequency response of this filter.
- 3. What's the type of this filter (band-pass, low-pass, high-pass, other)?
- 4. Compute the autocorrelation function $r_{yy}(p)$ of the signal y(n) at p=0, p=1, p=2.
- 5. Give the general form of $r_{yy}(p)$.
- 6. Is the signal y(n) white? justify your answer.
- 7. Give the expression for the power spectral density $P_y(f)$ of the signal y(n). (We will give the most factorized expression).
- 8. Compute the power spectral density value for frequencies 0 and $3\frac{F_e}{8}$.

Good luck...