IoTeam

Joseph Liba, Jamal Davis, Sai Vineeth

- Jamal suggested we wait for a repeat reading for robustness.
- Rule out frequencies
 that drastically change
 in magnitude

- Jamal suggested we wait for a repeat reading for robustness.
- Rule out frequencies
 that drastically change
 in magnitude

- Worst Case: ~4 FFTs
- Average Case: ~2 FFTs
- Best Case: ~2 FFTs

Worst Case: ~9 FFTs

Average Case: ~4 FFTs

Best Case: ~2 FFTs

Noise Level and iterations

Worst Case: ~9 FFTs

Average Case: ~4 FFTs

Best Case: ~2 FFTs

Number of Iterations vs Noise Level

- Worst Case: 50% decoded
- Average Case: 80-100% decoded
- Best Case: 100% decoded

Percent Decoded vs Noise Level

- Data-Driven Approach:
 - KISS
 - Don't build antennas needlessly!
 - Quantify Theoretical Improvement first!

Mimicking Antenna Effect

k		100% - \$	% .0 .00 1	23 - Arial	- 10	B I S	<u>A</u> ♦. ⊞
fx	-122.059381						
	A	В	С	D	E	F	G
1				LOCATION FRO	M CMIL LAB	CMIL	LAB
2	Distance (m)	FSPL (db)	Antenna Eq(db)	Lat1	Long1	Lat2	Long2
3	240	73.272	3+0	37.412129	-122.05886	37.410056	-122.05952
4	190	71.243	3+2	37.411824	-122.05896	37.410056	-122.05952
5	150	69.475	3+4	37.411453	-122.059042	37.410056	-122.05952
6	120	67.2520468	3+6	37.411234	-122.0592	37.410056	-122.05952
7	95	65.22222	3+8	37.410832	-122.059327	37.410056	-122.05952
8	75	63.16964715	3+10	37.410662	-122.059381	37,410056	-122.05952

- Base Case: 98% success at TX
 Power 6
- Squares are the physical locations tested to simulate an antenna of certain gain.

- Base Case: 98% success at TX
 Power 6
- Theoretical Worst Case:
 Interferer right next to receiver and transmitter .2635 km away (-74 dB disadvantage)
- Success Rate: ~75%!

- Real Scenario: Both Interferer and Receiver .2635 km away (0 dB advantage)
- Success Rate: ~88%!

Assuming a 10 dB advantage:

Interferer - 0.24 km away and
transmitter - 0.8km away (10 dB):

advantage)

Distance:

Frequency:

Receiver Gain (dB):

Success Rate: ~87%!

- Adding an antenna provides no measurable improvement!
- Slope is effectively 0!
- Effectiveness of LoRa protocol allows packet to squeeze through
- Interferer always succeeds in interfering.

Percent Decoding vs Gain over Interference

- Even when transmitter is next to receiver and interference is .26 km away, same error rate.
- Only outlier is if interference is next to receiver, with 75% error rate.

Percent Decoding vs Gain over Interference

RSSI Advantage has little effect for LoRa

- Antenna => Marginal Improvements
- One extra packet is negligible (<1% increase in energy)
- Extra time is within socket timing error
- Timing plays a large role

Timing the Packets

- Must send packets at a faster rate than interferer
- If interferer sends at 10 Hz, then sending at 20 Hz will guarantee one slips between within two sends.

Guard Interval To "Remove" ISI

LTE/MIMO 표준기술

Timing the Packets

- Small packet => all or nothing corruption
- No need for bit error detection and correction

Say NO to Encryption Libraries

- RSA requires MINIMUM 1024 bits
- Large Headers in encrypted blocks
- Unnecessary complexity
- Unnecessary to maintain secrecy, only authentication

Packet Validation

- Frequencies in packet are delimited using '~' character.
 - o Ex: 5800~400
- Encryption: XOR with 5 byte password
- Any packets that aren't in the correct form after decryption are discarded by receiver
- One time pad is valid since data is sent faster than interferer has time to learn XOR value.

Challenges

- If XORing a byte results in 0, then LoRa.print terminates at the null character (1.5% chance)
- 1/256 chance attacker can impersonate '~' identifier

Frequency Hopping

- Jump between 915 and 920 MHz using LoRa.setfrequency()
- No extra power consumption
- Receiver jumps at 5 Hz speed
- Transmitter jumps at 10 Hz speed
- When frequencies align, transmission is successful
- No need for synchronization

Minimizing Packet Size

- Frequency range for competition went from 200 Hz to 19 KHz
 - Use **2 byte shorts**, not 4 byte floats
- Explored possibility of creating a custom
 12 bit floating point representation
 - Would have reduced payload to 3 bytes
 - Could not maintain +/- 10 Hz error at high frequencies

Key Decisions

- 5 byte XOR encryption. Accept 1.5% risk of bad XOR.
- Get 2 FFT matches. In practice, high probability.
- Send 8 LoRa packets. Radio Power is cheap relative to Processor Power.
- Chose not to make an antenna.

Future Experiments

- Guarantee that no XOR results in 0.
- Reduce payload to 4 bytes.
- Use custom 4 byte RSA.
- Understand the outlier: Interferer distance has effect when right next to receiver, otherwise no effect.