

Prova escrita especialmente adequada destinada a avaliar a capacidade para a frequência do ensino superior dos maiores de 23 anos, Decreto-Lei n.º 64/2006, de 21 de março

Prova de ingresso escrita específica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de especialização tecnológica,

Decreto-Lei n.º 113/2014, de 16 de julho

Prova de ingresso escrita específica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de técnico superior profissional,

Decreto-Lei n.º 113/2014, de 16 de julho

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM

ENGENHARIA INFORMÁTICA E DE COMPUTADORES

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

PROVA 2019

Duração da prova: 120 minutos

Candidatura n.º			
Nome:			
C.C. / B.I. / Passaporte N.º	Emitido por:	Validade:	

INSTRUÇÕES (leia com atenção, por favor)

- Os candidatos que tenham obtido aprovação em cursos preparatórios para o ingresso no ensino superior, organizados no âmbito de uma área departamental, poderão optar pela creditação das classificações aí obtidas como sendo a classificação do conjunto das perguntas da prova relativas às matérias já avaliadas nesses cursos. Só se consideram os cursos que previamente tenham sido objeto de homologação pelo conselho técnicocientífico.
- Indique em todas as folhas o número de candidatura e o número do seu CC, BI ou Passaporte. Coloque esse documento de identificação sobre a mesa para validação de identidade.
- As respostas devem ser efetuadas nos locais apropriados de resposta, nesta mesma prova, utilizando caneta preta ou azul.
- As questões de desenvolvimento devem ser também respondidas nas folhas de prova. Se necessitar de mais folhas de resposta solicite-as aos professores vigilantes. Numere todas as folhas suplementares que utilizar.
- Não utilize corretor ou borracha para eliminar respostas erradas. Caso se engane, risque a resposta errada e volte a responder.
- Se responder a alguma questão fora do local apropriado de resposta, indique no local da resposta que esta foi efetuada em folha anexa.
- Para a realização desta prova será permitido o seguinte material de apoio: canetas, lápis e máquina de calcular.
- Durante a realização da prova os telemóveis e outros meios de comunicação <u>deverão estar desligados</u>. A utilização deste equipamento implica a anulação da prova.

ESTRUTURA DA PROVA

- **Grupo 1 -** Três questões de resposta múltipla de matemática.
- Grupo 2 Um problema de matemática.
- **Grupo 3 -** Cinco questões de resposta múltipla abordando conhecimentos relevantes para a frequência do curso.
- **Grupo 4 -** Um problema enquadrado nos conteúdos do curso.
- **Grupo 5 -** Um problema enquadrado nos conteúdos do curso.
- **Grupo 6 -** Questão para desenvolvimento de assunto de cultura científica na área do curso.

Grupo 1

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -0,2 valores)

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo X.

. Considere as funções $f(x) = e^x$, $g(x) = x $ e $h(x) = \sqrt[3]{x}$. Quais destas funções são contínua em \mathbb{R} ?	ıs
\square (A) f	
\square (B) $f \in g$	
\square (C) $f \in h$	
\square (D) $g \in h$	
☐ (E) todas	

- **2.** Uma capicua é um número que se lê da mesma forma da direita para a esquerda e da esquerda para a direita, por exemplo 12321. Quantos números com 5 algarismos são capicuas?
 - ☐ (A) 1000
 - □ (B) 900
 - □ (C) 9000
 - □ (D) 10000
 - □ (E) 5000
- 3. Em \mathbb{R}^3 , considere o plano π , de equação 2x+y-z=-3. Uma equação da reta r, que passa no ponto A(1,2,3) e é perpendicular a π é:

 - \square (B) $x + 1 = \frac{y+2}{2} = \frac{z+3}{3}$
 - \square (C) $(x, y, z) = (2,1,-1) + k(1,2,3), k \in \mathbb{R}$
 - \square (D) $\frac{x-1}{2} = y 2 = 3 z$
 - \square (E) $(x, y, z) = (1,2,3) + k(1,0,2), k \in \mathbb{R}$

C.C. / B.I. / Passaporte N.º

Grupo 2

(Cotação total: 2,0 valores; cotação parcial: 1,0 valor por alínea.)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo.

Recorra somente a métodos analíticos e não utilize a calculadora.

Considere a função definida por $f(x) = \frac{\ln(1-2x)}{x+1}$ (**In** designa o logaritmo natural, de base *e*).

Usando métodos exclusivamente analíticos, sem recorrer à calculadora, responda às questões que se seguem:

- a) Determine o domínio de f.
- **b**) Determine a equação reduzida da reta tangente ao gráfico de f, no ponto de abcissa 0.

Candidatura n.º

C.C./B.I./Passaporte N.º

Tel. (+351) 21 831 70 00 Fax. (+351) 21 831 70 01

			-	
•	-1-		n ⁰	
	таті	шы	nv	

C.C. / B.I. / Passaporte N.º .

Grupo 3

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo ⊠. (Cotação total: 5,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -0,2 valores)

1.			,	números inteiros : t. Qual é o valor d	ŕ	C	binário (em base 2) 01?
	□ (A) 64	2 E	☐ (B) 517	□ (C) 641	□ (D) 1024	□ (E) 516	5
2.	associada	a uma		mazenamento. Qu			Cada extensão está orresponde sempre a
	□ (A) M	P3 🗆	l (B) MP4	☐ (C) JPEG	\square (D) ZIP	☐ (E) Nenh	uma das anteriores
3.	avaliação de aluno, caracteres ser armaz máxima de	de uma consido ; e a cla enada o fichei	unidade cur ere um máxin assificação fin por linha do aro?	ricular até 100 alumo de 5 dígitos; canal, considere uma ficheiro e os ca	unos, contendo o nome do alun a escala de 0 a 2 mpos separado	a seguinte inf to, considere 20 valores. Ca s por ';'. Qu	o ASCII, a pauta de formação: o número um máximo de 100 da informação deve al será a dimensão
			•			aam aanaaida	de de 2 TiDose
4.	disco rígio bits de con	do, com r. Qual	uma resoluç será o númer	o máximo de <i>fran</i>	nsidere: resoluçã nes per second p	io de 1920x10	de de 2 11Byte em 180 pixels; e com 12 ídeo pretendendo-se
4.	disco rígio bits de con	do, com r. Qual a sema	uma resoluç será o númer	ão FULL-HD, con o máximo de <i>fram</i> /7) de imagens nes	nsidere: resoluçã nes per second poste sistema?	io de 1920x10 possíveis do v	080 pixels; e com 12
	disco rígio bits de con gravar um (A) 1 f Pretende-s A e B atra que 5% de	do, com r. Qual a sema îps se realiz avés de o ritmo	uma resoluç será o númer na inteira (24 (B) 2 fps zar a transmis uma ligação binário é ut	ão FULL-HD, con co máximo de <i>fram</i> (7) de imagens nes (C) 5 fassão de um conteúd digital com capado	sidere: resolução des per second poste sistema? Sps	io de 1920x10 possíveis do v 25 fps FiByte de dim rerência de 25	980 pixels; e com 12 ídeo pretendendo-se
	disco rígio bits de con gravar um (A) 1 f Pretende-s A e B atra que 5% de	do, com r. Qual a sema îps se realiz avés de o ritmo nsmissã	uma resoluç será o númer na inteira (24 (B) 2 fps zar a transmis uma ligação binário é uto da totalidad	ão FULL-HD, con co máximo de <i>fram</i> /7) de imagens nes s \text{(C) 5 f} \text{s\text{s\text{\text{6}}}} \text{(C) 5 f} \text{s\text{\text{cap}}} digital com capacilizado para contro	sidere: resolução des per second poste sistema? Sps	io de 1920x10 possíveis do v 25 fps FiByte de dim rerência de 25	080 pixels; e com 12 ídeo pretendendo-se □ (E) 30 fps ensão, entre o ponto 0 Mbit/s. Considere
	disco rígido bits de cor gravar um (A) 1 f Pretende-s A e B atra que 5% de para a trans	do, com r. Qual a sema îps se realiz avés de o ritmo nsmissã	uma resoluç será o númer na inteira (24 (B) 2 fps zar a transmis uma ligação binário é uto da totalidad	ão FULL-HD, con co máximo de <i>fram</i> /7) de imagens nes s \text{(C) 5 f} \text{s\text{s\text{\text{6}}}} \text{(C) 5 f} \text{s\text{\text{cap}}} digital com capacilizado para contro	sidere: resolução des per second poste sistema? Sps	io de 1920x10 possíveis do v 25 fps FiByte de dim rerência de 25	080 pixels; e com 12 ídeo pretendendo-se □ (E) 30 fps ensão, entre o ponto 0 Mbit/s. Considere
	disco rígio bits de cor gravar um (A) 1 f Pretende-s A e B atra que 5% de para a tran	do, com r. Qual a sema îps se realiz avés de o ritmo nsmissã 74072	uma resoluç será o númer na inteira (24 (B) 2 fps zar a transmis uma ligação binário é uto da totalidad	ão FULL-HD, con co máximo de <i>fram</i> /7) de imagens nes s \text{(C) 5 f} \text{s\text{s\text{\text{6}}}} \text{(C) 5 f} \text{s\text{\text{cap}}} digital com capacilizado para contro	sidere: resolução des per second poste sistema? Sps	io de 1920x10 possíveis do v 25 fps FiByte de dim rerência de 25	080 pixels; e com 12 ídeo pretendendo-se □ (E) 30 fps ensão, entre o ponto 0 Mbit/s. Considere
	disco rígio bits de cor gravar um (A) 1 f Pretende-s A e B atra que 5% de para a tran	do, com r. Qual a sema îps se realiz avés de o ritmo nsmissã 74072 70369	uma resoluç será o númer na inteira (24 (B) 2 fps zar a transmis uma ligação binário é uto da totalidad	ão FULL-HD, con co máximo de <i>fram</i> /7) de imagens nes s \text{(C) 5 f} \text{s\text{s\text{\text{6}}}} \text{(C) 5 f} \text{s\text{\text{cap}}} digital com capacilizado para contro	sidere: resolução des per second poste sistema? Sps	io de 1920x10 possíveis do v 25 fps FiByte de dim rerência de 25	080 pixels; e com 12 ídeo pretendendo-se □ (E) 30 fps ensão, entre o ponto 0 Mbit/s. Considere

Candidatura n.º

C.C. / B.I. / Passaporte N.º

Grupo 4

(Cotação: 3,0 valores; cotação parcial: 1,0 valores por alínea)

Resolva o problema proposto na folha de prova e indique claramente a resposta.

O triângulo de Pascal é uma construção aritmética, a duas dimensões, com diversas propriedades interessantes, de que se destaca o cálculo das combinações de n, k a k, representado por C(n, k). C(n, k) existe para k >= 0 e n >= k, com as regras seguintes:

$$C(n, 0) = 1;$$

$$C(n, k) = 1$$
, se $n = k$;

$$C(n, k) = C(n-1, k-1) + C(n-1, k)$$
, nos restantes casos.

A figura seguinte apresenta os valores do triângulo de Pascal para *n* e *k* no intervalo de 0 a 4.

	0	1	2	3	4	5	6	7	8	k
0	1									
1	1	1								
2	1	2	1							
3	1	3	3	1						
4	1	4	6	4	1					
5										
6										
7										
8										
n										

- a) Complemente o triangulo de Pascal apresentado na figura, escrevendo os valores de C(n, k) para valores de $n \in k$ até 8.
- **b**) Admitindo que pretende calcular valores de combinações usando o triângulo de Pascal e que o constrói a partir de uma folha em branco para cada valor de C(n, k) pretendido, considere os seguintes casos:
 - 1. C(7, 2);
 - 2. C(6, 4).

Assinale no triângulo anterior, contornando com uma linha fechada, cada um dos subconjuntos de valores que é estritamente necessário determinar para obter os valores de C(n, k) referidos, incluindo o próprio. Indique os valores de C(n, k) e a quantidade de elementos (Q) dos respetivos subconjuntos.

C.C. / B.I. / Passaporte N.º

c) Generalizando as condições da alínea anterior para o caso de uma combinação arbitrária C(n, k), elabore uma expressão aritmética que exprima, em função de n e k, a quantidade de elementos (Q) do subconjunto de valores que é necessário determinar para calcular o valor de combinações pretendido, incluindo o próprio.

C.C. / B.I. / Passaporte N.º

Grupo 5

(Cotação: 3,0 valores; cotação parcial: 1,0 valores por alínea)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo.

Considere a função func descrita em pseudo - código:

```
func(inteiro n)
{
    d ← 0
    v ← 0
    b ← 1
    a ← n
    enquanto( a > 0 )
    {
        d ← a % 10
        se( par(d) == verdadeiro )
        {
            v ← v + d * b
            b ← b * 10
        }
        a ← a / 10
    }
    devolver v
}
```

Note que:

- 1. n,d,v,b,a são números inteiros, em que n é maior ou igual a 1(um).
- 2. A operação / realiza a divisão inteira sendo obtido apenas o quociente.
- 3. A operação % realiza a divisão inteira sendo obtido apenas o resto.
- 4. A função par (d) verifica se o argumento d é par e devolve verdadeiro se for par, senão falso.
- a) As tabelas seguintes, A, B e C apresentam os valores das variáveis durante a execução da chamada func (5216). Indique qual das tabelas têm os valores corretos, a A ou B ou C.

A	В	C	(marque com X a resposta certa

	Т	abela .	A
d	V	b	a
0	0	1	5216
6	6	10	512
2	26	100	51
1	26	100	5
5	26	100	0

	Ta	ıbela I	3
d	v	b	a
0	0	1	5216
6	6	10	521
1	6	10	52
2	26	100	5
5	26	100	0

	Ta	bela C	-
d	v	b	a
0	0	1	5216
6	6	10	523
1	6	10	54
2	26	100	5
5	26	100	0

C.C. / B.I. / Passaporte N.º

b) Apresente o resultado, **k**, retornado para cada uma das seguintes chamadas à função func, justificando a sua resposta:

1.
$$k \leftarrow func(11)$$

2.
$$k \leftarrow func(2019)$$

c) Indique o objetivo da função func.

C.C. / B.I. / Passaporte N.º

Grupo 6

(Cotação: 4,0 valores) Comente e desenvolva o tema proposto. Escreva entre 10 e 15 linhas.

Os recentes incidentes com aeronaves comerciais colocaram na discussão pública a complexidad dos sistemas informáticos, o seu ciclo de desenvolvimento e teste. Os sistemas informáticos desenvolvidos hoje em dia são na sua maior parte compostos por vários componentes ou bibliotecas cuja interdependência torna difícil assegurar a correção ou segurança da aplicação no seu conjunto Acresce a este aspeto que estes componentes e bibliotecas são em grande parte desenvolvidos disponibilizados por terceiros, em alguns casos no âmbito de projetos de código aberto. É por iss essencial não só estabelecer contratos entre quem produz e quem consume os serviços dos diverso componentes, como ter em conta a sua correção funcional.