Algebra a diskrétna matematika

Úlohy na precvičenie

8. týždeň

Úloha 1. Určte koeficienty pri

- a) x^2yz^3 vo výraze $(3x y + 2z)^6$,
- b) $a^2b^2c^2d$ vo výraze $(a 2b + 4c + d)^7$.

Úloha 2. Nájdite počet nezáporných celočíselných riešení danej rovnice a nerovnice.

- a) $x_1 + x_2 + x_3 + x_4 = 13$
- b) $x_1 + x_2 + x_3 + x_4 < 13$

Úloha 3. Nájdite počet nezáporných celočíselných riešení rovnice $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 19$, pričom $x_1 \ge 1, x_3 \ge 3, x_5 \ge 5$.

Úloha 4. Na oslave je k dispozícii 9 rôznych druhov nápojov. Koľkými rôznymi spôsobmi ich môžeme vybrať pre 21 ľudí za predpokladu, že každý z nich bude piť iba jeden druh?

Úloha 5. V škole pri slávnosti je k učiteľov a n detí. Každé dieťa má v rukách jeden vlastnoručne vyrobený darček, ktorý dá náhodne zvolenému učiteľovi. S akou pravdepodobnosťou dostane každý učiteľ aspoň jeden darček?

Úloha 6. Koľko rôznych slov dĺžky 11 môžeme vytvoriť zo slova POLOOBLAČNO? Ako by sa počítala pravdepodobnosť, že z tohto slova vytvoríme náhodne 6 písmenové slovo so všetkými rôznymi písmenami?

Úloha 7. 31 študentov riešilo 3 príklady z matematiky. Každý študent vyriešil aspoň jeden príklad správne, pritom prvý príklad malo správne 20 študentov, druhý príklad 16 a tretí príklad 15 študentov. Prvé dva príklady vyriešilo správne 10 študentov, prvý a tretí 8 študentov a druhý a tretí 9 študentov.

- a) Koľko študentov malo správne vyriešené všetky tri príklady?
- b) Koľko študentov malo správne vyriešené práve dva príklady?
- c) Koľko študentov malo správne vyriešený len jeden príklad?

Úloha 8. Na plese je n manželských párov. Koľkými spôsobmi môžeme vytvoriť n tanečných párov, ak žiadna manželská dvojica netancuje spolu?

Úloha 9. Koľko je kladných celých čísel menších alebo rovných 350, ktoré sú súdeliteľné s číslom 350?

Úloha 10. Koľko kladných celých čísel menších ako 5000 nie je deliteľných žiadnym z čísel 4, 5, 6?

Úloha 11. Nájdite systém rôznych reprezentantov pre

a)
$$A_1 = \{1, 7\}, A_2 = \{3, 6, 8\}, A_3 = \{3, 7, 8\}, A_4 = \{1, 2, 3, 4, 6\}, A_5 = \{2, 5\}, A_6 = \{2, 4, 6, 7, 8\},$$

b)
$$B_1 = \{2, 4, 5, 9\}, B_2 = \{2, 5, 9\}, B_3 = \{1, 9\}, B_4 = \{1, 5, 9\}, B_5 = \{2, 9\}, B_6 = \{5, 6, 7, 8, 9\}, B_7 = \{1, 2, 9\}.$$

Úloha 12. Koľko rôznych 10 miestnych kódov je možné utvoriť z núl a jednotiek, ak

- sú v kóde práve 3 nuly;
- sú v kóde práve 3 nuly a tie sú vedľa seba;
- v kóde nie sú žiadne dve nuly vedľa seba?

 $\acute{\mathbf{U}}\mathbf{loha}$ 13. Nájdite explicitné riešenie rekurentných rovníc s danými podmienkami

- a) $a_n = 7a_{n-1} 12a_{n-2}$; $a_1 = -3, a_2 = 3$
- b) $a_n = -4a_{n-1} + 5a_{n-2}$; $a_1 = 0, a_2 = 30$
- c) $a_n = 6a_{n-1} 9a_{n-2}$; $a_1 = 6, a_2 = -27$
- d) $a_n = 5a_{n-1} + 14a_{n-2}$; $a_1 = 22, a_2 = 82$
- e) $a_n = -2a_{n-1} + a_{n-2} + 2a_{n-3}$; $a_1 = 1, a_2 = 0, a_3 = 4$