|                   |                   | Dunama              | alala mala Alium |                  |                     |  |
|-------------------|-------------------|---------------------|------------------|------------------|---------------------|--|
|                   |                   | Preend              | chido pelo Alur  | 10               |                     |  |
| Nome              |                   |                     |                  |                  | Matrícula           |  |
| Assinatura        |                   |                     |                  |                  | Data                |  |
| 7 1001110101      |                   |                     |                  |                  | 2 4 14              |  |
| Disciplina (Códig | go: Nome)         |                     | Curso            |                  | Campus              |  |
| Cálculo           |                   |                     |                  |                  |                     |  |
| Professor (a)     |                   |                     | Período          |                  | Turma / Turno       |  |
|                   | Wagner da Silva 2 |                     |                  |                  |                     |  |
|                   |                   | Preench             | ido pelo Profes  | ssor             |                     |  |
| Nota              | Nota por extenso  | Visto Professor (a) | Nota revista     | Nota por extenso | Visto Professor (a) |  |
|                   |                   |                     |                  |                  |                     |  |
|                   |                   |                     |                  |                  |                     |  |
|                   |                   |                     |                  |                  |                     |  |
|                   |                   |                     | simulado         |                  |                     |  |
|                   |                   |                     |                  |                  |                     |  |
|                   |                   |                     |                  |                  |                     |  |

1) Dada a função y = f(x), cujo gráfico é mostrado abaixo. Determine f(3) e  $\lim_{x \to 1} f(x)$ .



a) 
$$\lim_{x \to 4} \frac{x^2 - x - 12}{x - 4}$$

b) 
$$\lim_{x \to 0} \frac{\sqrt{x+3} - \sqrt{3}}{x}$$

2) Calcule os limites, se existirem. a)  $\lim_{x \to 4} \frac{x^2 - x - 12}{x - 4}$ b)  $\lim_{x \to 0} \frac{\sqrt{x + 3} - \sqrt{3}}{x}$ 3) Calcule  $\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$ a)  $f(x) = 4x^2 - x$ b)  $f(x) = x^3$ 

$$a) \quad f(x) = 4x^2 - x$$

$$f(x) = x^3$$

4) Seja a função, f(x) determine o limite:

a) 
$$\lim_{x \to -\infty} \left( \frac{3x^2 - 5}{4x^2 - 5} \right)$$

a) 
$$\lim_{x \to -\infty} \frac{3x^2 - 5}{4x^2 - 5}$$
  
b)  $\lim_{x \to -\infty} (-4x^7 + 23x^3 + 5x^2 + 1)$ 

- 5) Encontre os pontos do gráfico  $y = x^2$ , no qual a reta tangente é paralela a reta y = 6x 1.
- 6) Calcule  $\lim_{x \to 3} \frac{x-3}{x^3-27}$ .

I. 
$$\lim x = a$$

II. 
$$\lim_{n \to \infty} c = c$$

III. 
$$\lim_{x \to a} c. f(x) = c. \lim_{x \to a} f(x)$$

 $\lim_{\substack{x \to a \\ \lim x \to a}} x = a$   $\lim_{\substack{x \to a \\ \lim x \to a}} c \cdot f(x) = c \cdot \lim_{\substack{x \to a \\ \text{olimite de um produto \'e o produto dos limites.}}} f(x)$ IV.

$$\lim_{x \to a} f(x). g(x) = \lim_{x \to a} f(x). \lim_{x \to a} g(x)$$

V. O limite de uma soma/diferença é a soma/diferença dos limites.

$$\lim_{x \to a} f(x) \pm g(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

VI. O limite de uma razão é a razão dos limites.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

VII. O limite de uma raiz quadrada é a raiz quadrada do limite.

$$\lim_{x \to a} \sqrt{f(x)} = \sqrt{\lim_{x \to a} f(x)}$$

**Regra Geral** - Para calcular  $\lim_{x \to +\infty} \frac{f(x)}{g(x)} e \lim_{x \to -\infty} \frac{g(x)}{f(x)}$ , divida no numerador e o denominador pela mais alta potência de x no denominador e então use o fato de que

$$\lim_{x \to +\infty} \frac{c}{x^R} = 0 \text{ e } \lim_{x \to -\infty} \frac{c}{x^R} = 0$$

em que R é um número real e C é uma constante.

**Regra geral A** – Se f(x) e g(x) são polinômios e o grau de g é maior que o grau de f, então

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 0 \text{ e } \lim_{x \to -\infty} \frac{f(x)}{g(x)} = 0$$

**Regra Geral B** - Se f(x) e g(x) são polinômios e g é do mesmo grau de f, então

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} e \lim_{x \to -\infty} \frac{f(x)}{g(x)}$$

são iguais à razão entre os coeficientes dos monômios de maior grau de f e g.

**Regra Geral C** - Se f(x) e g(x) são polinômios e o grau de g é menor que o grau de f, então

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \pm \infty$$

O resultado é  $+\infty$  quando o coeficiente dos monômios de maior grau de  $f \in g$  tem o mesmo sinal.

O resultado é −∞ quando o coeficiente dos monômios de maior grau

**Regra Geral D** - Se f(x) e g(x) são polinômios e o grau de g é menor que o grau de f, então

$$\lim_{x \to -\infty} \frac{f(x)}{g(x)} = \pm \infty$$

A regra geral para determinar se o resultado é  $+\infty$  ou  $-\infty$  é complexa. Se  $a_n$  e  $b_k$  são os coeficientes de maior grau de f e g, respectivamente, então o limite é igual a  $\lim_{x\to -\infty} \frac{a_n}{b_k} x^{n-k}$  e o sinal correto é o sinal de  $a_n b_k (-1)^{n-k}$ .