PHDE 030221 EP-P

IB 12004 105-1043

Europäisches **Patentamt**

European **Patent Office** Office européen des brevets

REC'D 0'2 JUL 2004 WIPO PCT Certificate Bescheinigung

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

03102049.8

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

DEN HAAG, DEN THE HAGUE, LA HAYE, LE

08/04/04

EDA/EDO/OED Form 1014 _ 02 04

Europäisches **Patentamt**

European **Patent Office**

Office européen des brevets

Blatt 2 der Bescheinigung Sheet 2 of the certificate Page 2 de l'attestation

Anmeldung Nr.: Application no.: Demande n°:

03102049.8 🗸

Anmeldetag: Date of filing: Date de dépôt:

08/07/03

Anmelder:

Applicant(s): Demandeur(s):

Philips Intellectual Property & Standards GmbH

20099 Hamburg

GERMANY

Koninklijke Philips Electronics N.V.

5621 BA Eindhoven

NETHERLANDS Bezeichnung der Erfindung: Title of the invention: Titre de l'invention:

Rekonstruktion des Strömungsflusses in einem Gefässsystem

In Anspruch genommene Prioriät(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat:

State: Pays:

Tag: Date: Date:

Aktenzeichen:

File no. Numéro de dépôt:

Internationale Patentklassifikation: International Patent classification: Classification internationale des brevets:

Am Anmeldetag benannte Vertragstaaten: Contracting states designated at date of filing: Etats contractants désignés lors du depôt:

AT/BG/BE/CH/CY/CZ/DE/DK/EE/ES/FI/FR/GB/GR/HU/IE/IT/LI/LU/MC/

Bemerkungen: Remarks: Remarques:

EPA/EPO/OEB Form

1012

- 11.00

Europäisches **Patentamt**

European **Patent Office**

Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

03102049.8

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets

R C van Dijk

European Patent Office Office européen des brevets

Anmeldung Nr:

Application no.: 031

Demande no:

03102049.8

Anmeldetag:

Date of filing: 08.07.03

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Philips Intellectual Property & Standards GmbH

20099 Hamburg
ALLEMAGNE
Koninklijke Philips Electronics N.V.
Groenewoudseweg 1
5621 BA Eindhoven
PAYS-BAS

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer à la description.)

Rekonstruktion des Strömungsflusses in einem Gefässsystem

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

G06F19/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR LI

BESCHREIBUNG

5

Rekonstruktion des Strömungsflusses in einem Gefäßsystem

Die Erfindung betrifft eine Datenverarbeitungseinrichtung und ein Verfahren zur Rekonstruktion des Strömungsflusses in einem Gefäßsystem sowie eine Anordnung, die eine derartige Datenverarbeitungseinrichtung enthält.

Aus der US 2002/0041654 A1 ist eine Röntgeneinrichtung bekannt, mit welcher die Ausbreitung einer Kontrastmittelinjektion im Gefäßsystem eines Patienten beobachtet werden kann. Der Anwender muss dabei die Röntgenapparatur während der Kontrastmittelausbreitung bewegen, um die Ausbreitungsfront im Bild zu behalten. Um diesen Bewegungsvorgang ohne Strahlenbelastung für den Patienten üben zu können, wird mit Hilfe gespeicherter Aufnahmen eine simulierte Kontrastmittelausbreitung auf einem Monitor dargestellt. Eine Modellierung des realen Strömungsflusses ist bei dem System nicht vorgesehen.

- Vor diesem Hintergrund war es eine Aufgabe der vorliegenden Erfindung, Mittel zur Rekonstruktion des Strömungsflusses in einem Gefäßsystem bereitzustellen, welche eine möglichst präzise Modellierung der realen Verhältnisse ermöglichen.
- Diese Aufgabe wird durch eine Datenverarbeitungseinrichtung mit den Merkmalen des Anspruchs 1, durch eine Anordnung mit den Merkmalen des Anspruchs 8 sowie durch ein Verfahren mit den Merkmalen des Anspruchs 10 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen enthalten.
- Die erfindungsgemäße Datenverarbeitungseinrichtung dient der Rekonstruktion des Strö25 mungsflusses in einem Gefäßsystem. Das Gefäßsystem kann insbesondere ein interessierender
 Teil der Blutgefäße sein, z.B. das System der Herzkranzgefäße, ohne dass die Erfindung jedoch auf diesen Anwendungsfall beschränkt wäre. Die Datenverarbeitungseinrichtung umfasst

einen Speicher, welcher Messdaten enthält, die eine beobachtete fortschreitende Ausbreitung eines (ersten) Mediums im genannten Gefäßsystem beschreiben. Bei dem Medium kann es sich prinzipiell um jedes Objekt handeln, das eine fortschreitende Bewegung durch das Gefäßsystem ausführt. Insbesondere kann das Medium ein im Gefäßsystem strömendes Fluid wie zum Beispiel eine Kontrastmittelinjektion sein. Die Beschreibung der Ausbreitung des Mediums kann durch den gemessenen zeitlichen Verlauf der Position des Mediums, zum Beispiel der Position einer Kontrastmittelfront oder eines Kontrastmittel-Konzentrationsmaximums, erfolgen. Die Datenverarbeitungseinrichtung ist dazu eingerichtet, aus den genannten Messdaten eine modellierte Ausbreitung beziehungsweise "Modell-Ausbreitung" eines zweiten Mediums im Gefäßsystem zu rekonstruieren. Das zweite Medium kann mit dem ersten identisch oder hiervon verschieden (z.B. Kontrastmittel vs. Blut) sein. Bei der Rekonstruktion der "Modell-Ausbreitung" sollen für das betrachtete Gefäßsystem die folgenden zwei Bedingungen erfüllt werden:

- Erstens soll die Differenz zwischen der beobachteten Ausbreitung und der ModellAusbreitung minimal sein. Mit anderen Worten soll sich die gesuchte ModellAusbreitung möglichst eng an die Messdaten anlehnen.
- Zweitens soll die Modell-Ausbreitung in Bezug auf das Gefäßsystem monoton
 fortschreitend sein. Das bedeutet, dass sich ein Medium entsprechend der Modell-Ausbreitung nur "vorwärts" in eine Richtung durch das Gefäßsystem bewegen kann.

Mit der beschriebenen Datenverarbeitungseinrichtung ist es möglich, aus Messdaten über die Ausbreitung eines (ersten) Mediums in einem Gefäßsystem konsistent und in stabiler Weise ein Modell zu rekonstruieren. Dies gelingt dadurch, dass eine Modellfunktion global, das heißt das gesamte betrachtete Gefäßsystem berücksichtigend an die Messdaten angepasst wird, wobei gleichzeitig die notwendige Randbedingung der monotonen Ausbreitung beachtet wird. Wenn beispielsweise die Ausbreitung einer Kontrastmittelinjektion im Gefäßsystem eines Patienten mit Röntgenaufnahmen gemessen wird, ergeben sich in der Praxis aufgrund von zahlreichen

Störeinflüssen stark streuende Daten. Dabei kann es insbesondere sein, dass keine monotone, das heißt stetig fortschreitende Ausbreitung der Injektion durch die Daten beschrieben wird, sondern scheinbar Sprünge und/oder Rückflüsse auftreten. Im Gegensatz hierzu wird bei der Berechnung der Modell-Ausbreitung für das gesamte Gefäßsystem die Monotonie streng beachtet, wodurch einerseits eine zwingende Randbedingung erfüllt und andererseits eine signifikante Stabilisierung der Strömungsrekonstruktion erreicht wird.

Gemäß einer ersten Weiterbildung der Datenverarbeitungseinrichtung führt diese die Rekonstruktion derart aus, dass die Modell-Ausbreitung zusätzlich einen möglichst glatten Verlauf hat. Wird die Modell-Ausbreitung allgemein als eine Funktion $f(\tau)$ einer Variablen τ beschrieben, so kann der "glatte Verlauf" insbesondere dadurch definiert werden, dass der Betrag der zweiten Ableitung, |f'|, im Mittel minimal sein soll. Wenn $f(\tau)$ beispielsweise die Position einer Ausbreitungsfront zur Zeit τ ist, dann entspricht die Glattheit anschaulich einer möglichst beschleunigungsarmen Ausbreitung.

15

20

25

10

Gemäß einer weiteren bevorzugten Ausführungsform der Datenverarbeitungseinrichtung enthält der Speicher als Messdaten sogenannte Bolusankunftszeiten m_i . Dabei ist das Gefäßsystem logisch in einzelne Abschnitte unterteilt, die durch die Indices i=1,...N gekennzeichnet sind, und die Bolusankunftszeit m_i ist definiert als die in einer Messung ermittelte Zeit, welche ein (erstes) Medium ausgehend von einem vorgegebenen Startpunkt für das Erreichen des Gefäßabschnittes mit dem Index i benötigt. Die dieser Ausgestaltungsform zugrunde liegende Diskretisierung des Problems ist einerseits für die Behandlung in einer digitalen Datenverarbeitungseinrichtung gut geeignet, andererseits entspricht sie auch der Tatsache, dass die beobachtete Ausbreitung eines Mediums in der Regel durch Messungen zu diskreten Zeitpunkten abgetastet wird.

In Weiterbildung der vorstehend beschriebenen Ausführungsform ist die Datenverarbeitungseinrichtung ferner dazu eingerichtet, Modell-Bolusankunftszeiten t_i für die Gefäßabschnitte i so zu berechnen, dass die folgenden beiden Bedingungen erfüllt sind:

$$\Delta_i = t_i - t_{\nu(i)} \ge 0 \quad \forall i = 1, \dots N - 1 \tag{1}$$

und

$$E = \sum_{i=1}^{N} |m_i - t_i| \text{ ist minimal.}$$
 (2a)

Gleichung (1) bringt die Forderung nach einer monoton fortschreitenden Ausbreitung zum Ausdruck, während (2a) global für das Gefäßsystem eine möglichst enge Anlehnung der Modell-Bolusankunftszeiten t_i an die beobachteten Bolusankunftszeiten m_i fordert. Dabei geben die Werte p(i) jeweils den Index des Gefäßabschnittes wieder, welcher in Strömungsrichtung gesehen vor dem Gefäßabschnitt mit dem Index i liegt.

10

25

Weiterhin kann die vorstehend beschriebene Datenverarbeitungseinrichtung derart ergänzt werden, dass zusätzlich die Forderung

$$E_m = \sum_{i \in I} \left| t_i'' \right| \quad ist \ minimal \tag{2b}$$

berücksichtigt wird, wobei die Menge I die Indices aller "inneren" Gefäßabschnitte mit einem

Vorgänger und einem Nachfolger enthält und t

die diskrete Approximation der zweiten

Ableitung im Gefäßabschnitt i ist. Durch Bedingung (2b) wird die Forderung nach einem möglichst glatten Verlauf der Modell-Bolusankunftszeiten t

ausgedrückt. Bei der Kombination der Forderungen (2a) und (2b) wird in der Regel ein Gewichtungsfaktor anzusetzen sein, durch dessen Festlegung die relative Bedeutung der beiden Kriterien nach Wahl gewichtet

werden kann.

Bei einer Weiterbildung der vorstehend definierten Ausführungsform ist die Datenverarbeitungseinrichtung dazu eingerichtet, die Modell-Bolusankunftszeiten ti mit Hilfe des Algorithmus der linearen Programmierung zu berechnen. In der Formulierung gemäß den Gleichungen (1), (2a) und gegebenenfalls (2b) lässt sich die gesuchte Modell-Bolusankunftszeit nämlich als Lösung eines linearen Optimierungsproblems darstellen,

so dass auf hierfür entwickelte Algorithmen der linearen Programmierung wie z.B. das Simplexverfahren zurückgegriffen werden kann.

- Vom Gefäßsystem, in welchem der Strömungsfluss rekonstruiert werden soll, kann im Speicher insbesondere ein dreidimensionales Modell abgelegt sein. Dreidimensionale Gefäßmodelle sind im Rahmen medizinischer Anwendungen zunehmend anzutreffen und von großem Nutzen bei der Dateninterpretation durch den behandelnden Arzt.
- Gemäß einer anderen Weiterbildung der Datenverarbeitungseinrichtung kann diese dazu eingerichtet sein, bei der Rekonstruktion der Modell-Ausbreitung physiologische Randbedingungen zu berücksichtigen. Beispielsweise kann bei einer Kontrastmittelinjektion die Erhaltung der injizierten Kontrastmittelmasse bei deren Ausbreitung im Gefäßsystem berücksichtigt werden, wenn die zur Beschreibung der Ausbreitung verwendeten Messdaten beziehungsweise die gesuchte Modell-Ausbreitung eine Berücksichtigung des Massenwertes vorsehen. Durch die Berücksichtigung physiologischer Randbedingungen, die zwangsläufig erfüllt sein müssen, kann die berechnete Modell-Ausbreitung gegenüber Störeinflüssen weiter stabilisiert werden.
- Die Datenverarbeitungseinrichtung ist ferner vorzugsweise mit einer Anzeigeeinrichtung wie etwa einem Monitor gekoppelt, um dort die berechnete Modell-Ausbreitung graphisch darstellen zu können. Auf diese Weise können die Ergebnisse der Berechnung zum Beispiel einem behandelnden Arzt bei einer Katheteruntersuchung visuell zur Verfügung werden.
- Die Erfindung betrifft ferner eine Anordnung zur Beobachtung des Strömungsflusses in einem Gefäßsystem, wobei die Anordnung eine bildgebende Einrichtung zur Erzeugung von Abbildungen des Gefäßsystems enthält, und wobei aus den genannten Abbildungen Messdaten gewonnen werden können, die die fortschreitende Ausbreitung eines Mediums im Gefäßsystem beschreiben. Ferner enthält die Anordnung eine Datenverarbeitungseinrichtung der

oben erläuterten Art zur Rekonstruktion des Strömungsflusses in dem Gefäßsystem. Das heißt, dass die Datenverarbeitungseinrichtung einen Speicher mit Messdaten umfasst, die die beobachtete fortschreitende Ausbreitung eines (ersten) Mediums beschreiben und die durch die bildgebende Einrichtung gewonnen wurden. Weiterhin ist die Datenverarbeitungseinrichtung dazu eingerichtet, global für das betrachtete Gefäßsystem eine Modell-Ausbreitung des (zweiten) Mediums zu berechnen, die die Differenz zwischen der beobachteten und der modellierten Ausbreitung minimiert und gleichzeitig eine monotone Ausbreitung beschreibt.

Bei der bildgebenden Einrichtung kann es sich insbesondere um einen Röntgenapparat han10 deln, vorzugsweise um eine rotierende Röntgeneinrichtung zur Erzeugung dreidimensionaler
Röntgenaufnahmen eines Körpers. In der Regel stehen derartige Geräte in Katheterlabors
ohnehin bereit und können daher problemlos für die Ermittlung der Ausbreitung einer Kontrastmittelinjektion und damit der Strömungsverhältnisse im Gefäßsystem eines Patienten
eingesetzt werden.

15

Die Erfindung betrifft femer ein Verfahren zur Rekonstruktion des Strömungsflusses in einem Gefäßsystem, welches die folgenden Schritte umfasst:

- a) Die Gewinnung von Messdaten, die eine beobachtete fortschreitende Ausbreitung eines Mediums im Gefäßsystem beschreiben.
- 20 b) Die Rekonstruktion einer Modell-Ausbreitung eines Mediums in dem Gefäßsystem derart, dass
 - die Differenz zwischen der beobachteten Ausbreitung und der Modell-Ausbreitung minimal ist, und
 - die Modell-Ausbreitung monoton fortschreitend ist.

25

Das Verfahren implementiert in allgemeiner Form die mit der oben beschriebenen Datenverarbeitungseinrichtung beziehungsweise Anordnung ausführbaren Schritte. Zur Erläuterung des Verfahrens und der hierzu möglichen Varianten sei daher auf die obige Beschreibung verwiesen. Im Folgenden wird die Erfindung mit Hilfe der beigefügten Figuren beispielhaft erläutert. Es zeigt:

- Fig. 1 schematisch die Komponenten einer erfindungsgemäßen Röntgenanordnung zur Rekonstruktion des Strömungsflusses in einem Gefäßsystem;
- Fig. 2 die Definition von Variablen und Indices in Bezug auf das dreidimensionale Modell eines Gefäßbaumes;
- Fig. 3 einige der für die lineare Programmierung benötigten Gleichungen.
- In Figur 1 ist als stellvertretendes Beispiel für den Einsatz der vorliegenden Erfindung eine medizinische Röntgeneinrichtung dargestellt. Diese enthält einen Röntgenapparat 1, welcher an einem C-Arm angebracht ist und zur Erzeugung von Röntgenaufnahmen um einen Patienten 2 rotieren kann. Die aufgenommenen Daten werden zur Weiterverarbeitung an eine Datenverarbeitungseinrichtung 3 weitergeleitet.

15

5

Die Röntgenapparatur 1 kann insbesondere dazu eingerichtet sein, dreidimensionale Rekonstruktionen eines Körpervolumens zu erzeugen, um z.B. die räumliche Struktur eines Gefäßsystems zu untersuchen. Ferner ist versucht worden, zeitliche Abläufe wie insbesondere die Strömung beziehungsweise die Ausbreitung eines Fluids im Gefäßsystem zu rekonstruieren 20 (vgl. H. Schmitt, M. Grass, V. Rasche, O. Schramm, S. Haehnel, K. Sator: "An x-ray-based method for the determination of the contrast agent propagation in 3-D vessel structures", IEEE Trans. Med. Imag., 21(3):251-262, 2002). Derartige "4D-Abbildungen" begegnen erheblichen technischen Problemen, beispielsweise der Notwendigkeit hoher Bildraten zur Erfassung des Strömungsflusses, der Stabilität der Volumensegmentierung (das heißt Zuordnung von Voxeln zu Objekten) und der Bewegungskorrektur. Darüber hinaus stellt sich das grund-25 sätzliche Problem einer guten Strömungsrekonstruktion für ein gesamtes Gefäßsystem. Beim Stand der Technik werden diesbezüglich aus den Röntgenaufnahmen für den Gefäßbaum sogenannte Bolusankunftszeiten (BAT: bolus arrival times) bestimmt und dem Gefäßbaum zugeordnet. Die dabei erhaltenen Daten zeigen jedoch eine starke Streuung, welche unter

anderem auf Rauschen in den verwendeten Röntgenaufnahmen, auf Ungenauigkeiten bei der Segmentierung, auf einer unvollständige Bewegungskorrektur und auf einer nicht exakten Bestimmung der Bolusankunftszeiten beruhen.

- Vor diesem Hintergrund soll nachfolgend unter Bezugnahme auf die Figuren 1 bis 3 ein Verfahren für eine stabile und zuverlässige Rekonstruktion der Strömungsverhältnisse in einem Gefäßsystem erläutert werden. Das Verfahren beginnt mit einer dreidimensionalen Rekonstruktion des Gefäßbaumes 6 basierend auf rotatorischen 3D-Röntgenaufnahmen. Einzelheiten dieser Rekonstruktion können der einschlägigen Literatur entnommen werden (beispielsweise M. Grass, R. Koppe, E. Klotz, R. Proksa, M. H. Kuhn, H. Aerts, J. Op de Beek, R. Kemkers: "3D reconstruction of high contrast objects using C-arm image intensifier projection data", Comput. Med. Imaging Graph., 23:311-321, 1999; M. Grass, R. Koppe, E. Klotz, J. op de Beek, R. Kemkers: "3D reconstruction and imaging based on C-arm systems", Med. Biol. Eng. Comp., 37(2):1520-1521, 1999). Nach der Segmentierung der Gefäße ist die
- Der Gefäßbaum 6 kann gemäß Figur 2 in einzelne Abschnitte oder Cluster aus Volumenelementen (Voxeln) unterteilt werden, welche durch einen Index i=1,...N bezeichnet werden.
 Per definitionem sei dabei der größte Index N dem Startpunkt des Gefäßbaumes zugeordnet.

 Des Weiteren gebe die Funktion p(i) jeweils den Index des Gefäßabschnittes wieder, welcher in Strömungsrichtung gesehen unmittelbar vor dem Gefäßabschnitt mit dem Index i liegt. Diese Funktion wird insbesondere bei Verzweigungspunkten des Gefäßbaumes benötigt, da dort keine in Einerschritten fortlaufende Nummerierung beider Gefäßzweige möglich ist.
- Nachdem der Gefäßbaum mit Hilfe einer ersten Serie von angiografischen Röntgenaufnahmen ermittelt worden ist, erfolgt eine zweite Aufnahmeserie, bei welcher die Röntgenapparatur 1 vorzugsweise feststeht, das heißt nicht um den Patienten 2 rotiert. Während der zweiten Aufnahmeserie wird beispielsweise über einen Katheter ein Kontrastmittel in das Gefäßsystem des Patienten 2 injiziert, und die resultierende Ausbreitung des Kontrastmittels im

Gefäßsystem wird auf den erzeugten Röntgenprojektionen verfolgt. Mit Hilfe von Methoden der Bildverarbeitung kann dabei aus den Projektionsaufnahmen für jeden Abschnitt i des Gefäßbaumes die zugehörige Bolusankunftszeit m ermittelt werden. Hierbei handelt es sich um die Zeit, die das Kontrastmittel vom Zeitpunkt der Injektion bis zum Erreichen des Gefäßabschnittes i benötigt. Die Bolusankunftszeiten können der Beschreibung der Strömungsverhältnisse in den Gefäßen dienen, und aus ihnen können zum Beispiel die lokalen Strömungsgeschwindigkeiten berechnet werden. Wie bereits erwähnt wurde, sind die gemessenen Bolusankunftszeiten m jedoch aufgrund zahlreicher Störeinflüsse einem hohen Rauschen unterworfen. Häufig verletzen sie daher grundlegende physiologische Randbedingungen wie beispielsweise die Monotonie der fortschreitenden Strömungsausbreitung. Das heißt, dass ein in Strömungsrichtung weiter hinten gelegener Gefäßabschnitt eine kürzere gemessene Bolusankunftszeit m haben kann als ein vor ihm gelegener Abschnitt.

Zur Behebung dieser Problematik und zur Erzeugung einer stabilen Rekonstruktion der Strömungsverhältnisse im Gefäßsystem wird die Berechnung einer Modell-Ausbreitung in Form von Modell-Bolusankunftszeiten t_i vorgeschlagen, die im Rahmen einer globalen Optimierung die Monotoniebedingung erfüllen und gleichzeitig möglichst dicht bei den Messdaten liegen. Mit der oben eingeführten Nomenklatur kann die Monotoniebedingung für die gesuchten Modell-Bolusankunftszeiten t_i durch die folgende Gleichung ausgedrückt werden:

20

5

10

15

$$\Delta_i = t_i - t_{p(i)} \ge 0 \quad \forall i = 1,...N - 1$$
 (1)

Unter Beachtung dieser Randbedingung soll nun die Kostenfunktion

$$E = \sum_{i=1}^{N} \left| m_i - t_i \right| \tag{2a}$$

minimiert werden, welche die über den gesamten Gefäßverlauf berechnete Abweichung zwischen den gemessenen und den modellierten Bolusankunftszeiten quantifiziert. Die Berechnung der gesuchten Größen t_i kann dabei mit Hilfe der linearen Programmierung erfolgen (vgl. D. G. Lünenberger: "Linear and Nonlinear Programming", Addison-Wesley, Reading, 2. Auflage, 1984; W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery: "Numerical Recipes in C", Kapitel 10.8, University Press, Cambridge, 2. Aufl., 1992). Bei der sogenannten Normalform dieser Technik geht es darum, die Funktion

$$F = \vec{c} \cdot \vec{a} \tag{3}$$

unter Beachtung der Randbedingungen

$$S \vec{a} = \vec{b} \tag{4}$$

$$a_i \ge 0 \tag{5}$$

zu minimieren, wobei \vec{b} , \vec{c} und S gegebene Vektoren beziehungsweise eine gegebene Matrix sind und der Vektor \vec{a} die gesuchte Lösung darstellt.

Um die Technik der linearen Programmierung für die vorliegende Problemstellung einsetzen zu können, sollen zwei N-dimensionale Hilfsvektoren $\vec{\epsilon}^+$ und $\vec{\epsilon}^-$ sowie ein N-dimensionaler

15 Hilfsvektor $\vec{\Delta}$ eingeführt und die folgenden Vektoren \vec{a} , \vec{b} , \vec{c} sowie die Matrix S definiert werden:

$$\vec{a} = \begin{pmatrix} \vec{t} \\ \vec{\varepsilon}^+ \\ \vec{\varepsilon}^- \\ \vec{\Delta} \end{pmatrix} \tag{6}$$

$$\vec{b} = \begin{pmatrix} \vec{m} \\ \vec{0}_{N-1} \end{pmatrix} \tag{7}$$

20

5

$$\vec{c} = \begin{pmatrix} \vec{0}_{N} \\ \vec{1}_{N} \\ \vec{0}_{N-1} \end{pmatrix} \tag{8}$$

$$S = \begin{pmatrix} 1_{N \times N} & 1_{N \times N} & -1_{N \times N} & 0_{N \times (N-1)} \\ P & 0_{(N-1) \times N} & 0_{(N-1) \times N} & -1_{(N-1) \times (N-1)} \end{pmatrix}$$
(9)

Dabei bezeichnen \vec{l}_M und \vec{O}_M M-dimensionale Vektoren, die eine Eins beziehungsweise eine Null in jeder Komponente enthalten; $1_{M\times M}$ ist eine Einheitsmatrix der Größe $M\times M$; $0_{M\times L}$ ist eine Matrix mit M Zeilen und L Spalten, deren Komponenten alle Null sind; und P ist die (N-1)×N Kopplungsmatrix, die definiert wird durch

$$P_{ij} = \begin{cases} 1 & \text{falls } i = j \\ -1 & \text{falls } p(i) = j \\ 0 & \text{sonst} \end{cases}$$
 (10)

10 Da $p(i) \neq i$, ist die Definition von P widerspruchsfrei.

Unter Verwendung der vorstehend definierten Größen soll durch lineare Programmierung die Funktion

$$F = \vec{c} \cdot \vec{a} = \sum_{i=1}^{N} \left(\varepsilon_i^+ + \varepsilon_i^- \right) \tag{11}$$

unter Beachtung der Randbedingungen

$$t_i + \varepsilon_i^+ - \varepsilon_i^- = m_i \quad \text{für } i = 1,...N$$
 (12)

20
$$t_i - t_{p(i)} - \Delta_i = 0$$
 für $i = 1,...N-1$ (13)

$$t_i \ge 0 \tag{14}$$

$$\varepsilon_i^+ \ge 0 \tag{15}$$

$$\varepsilon_i^- \ge 0$$
 (16)

$$\Delta_i \ge 0 \tag{17}$$

minimiert werden. Gleichung (11) impliziert zusammen mit den Gleichungen (12), (14)-(17), dass für jeden Index i=1,...N entweder ε_i^+ oder ε_i^- Null sein muss. Wäre nämlich zum Beispiel $\varepsilon_i^- \ge \varepsilon_i^+ > 0$, so würde mit dem Ansatz $\widetilde{\varepsilon}_i^- := \varepsilon_i^- - \varepsilon_i^+$, $\widetilde{\varepsilon}_i^+ = 0$ ein kleinerer Wert in Gleichung (11) erhalten. Da weiterhin

5

20

$$\varepsilon_i = \varepsilon_i^+ - \varepsilon_i^- = m_i - t_i \tag{18}$$

gilt, ist die Minimierung der Größe F in Gleichung (11) äquivalent zur Minimierung von E in Gleichung (2a). In ähnlicher Weise ist die in Gleichung (1) definierte Nebenbedingung äquivalent zu den Gleichungen (13) und (17). Die mit Standardmethoden der numerischen Mathematik ermittelbare Lösung für die Gleichungen (11)-(17) liefert somit zugleich die Lösung des Minimierungsproblems von Gleichung (1) und (2a), falls die Messdaten hinreichend groß sind, um die Nebenbedingung t_i ≥ 0 sicher zu stellen. Letzteres lässt sich jedoch in einfacher Weise durch Addition einer Konstanten zu allen Messdaten erreichen.

15 Es sei darauf hingewiesen, dass es einen sogenannten zulässigen Basisvektor gibt, das heißt einen Vektor \vec{a} , der alle Randbedingungen erfüllt. Mit der Definition

$$\tau = \max\{m_i \mid i = 1,...N\}$$
 (19)

kann der Vektor \vec{a} nämlich aus den folgenden Komponenten zusammengesetzt werden

$$\vec{t} = (\tau, \dots \tau)^T \tag{20}$$

 $\vec{\varepsilon}^+ = (0, \dots 0)^T \tag{21}$

$$\vec{\varepsilon}^- = (\tau - m_1, \dots \tau - m_N)^T \tag{22}$$

$$\vec{\Delta} = (0, \dots 0)^T. \tag{23}$$

Das oben erläuterte Verfahren kann zusätzlich im Rahmen einer sogenannten Regularisierung
um eine Kriterium ergänzt werden, das einen glatten Verlauf der Lösung fordert. Nachfolgend
soll diesbezüglich zusätzlich zu Gleichung (2a) die Summe der Absolutwerte der zweiten
Ableitungen der Bolusankunftszeiten ti minimiert werden.

Zu diesem Zweck wird ein weiterer Satz von Variablen $\delta_1^+,...\delta_{N-M-1}^+$ und $\delta_1^-,...\delta_{N-M-1}^-$ definiert. Dabei steht M für die Anzahl an Gefäßabschnitten ohne Nachfolger, d.h. der stromabwärtigen Enden des betrachteten Gefäßbaumes. Ohne Beschränkung der Allgemeinheit kann dabei eine Indizierung vorausgesetzt werden, bei der diese M Gefäßabschnitte gerade die Indices N-M, ... N-1 haben. Für jeden Index i=1,... (N-M-1) soll $\delta_i^+ - \delta_i^-$ die zweite Ableitung der Bolusankunftszeiten beim Gefäßabschnitt i repräsentieren. Daher müssen diese Variablen mit dem Vektor der Bolusankunftszeiten \vec{t} durch die folgende Randbedingung verknüpft sein:

10
$$\delta_i^+ - \delta_i^- = t_{p(i)} - 2t_i + \frac{1}{|J|} \sum_{j \in J} t_j \quad mit \quad J = \{j \mid p(j) = i\}$$
 (24)

5

15

Dabei entspricht IJI der Anzahl an Gefäßabschnitten, die den Gefäßabschnitt i als Vorgänger haben. Abgesehen von Verzweigungspunkten des Gefäßbaumes hat der Gefäßabschnitt i nur einen Nachfolger j, so dass IJI = 1 ist und die rechte Seite von Gleichung (24) zur üblichen diskreten Approximation der zweiten Ableitung kollabiert. Falls die Länge der einzelnen Gefäßabschnitte innerhalb des Gefäßbaumes erheblich variiert, kann die Einführung von geometrischen Gewichtungen empfehlenswert sein.

Nunmehr kann die lineare Programmierung dazu verwendet werden, die folgende Größe zu minimieren:

20
$$E_{m} = \sum_{i=1}^{N-M-1} (\delta_{i}^{+} + \delta_{i}^{-}) = \sum_{i=1}^{N-M-1} |t_{i}^{"}|$$
 (2b)

Ein kleiner Wert von E_m bedeutet dabei, dass die Absolutwerte der zweiten Ableitungen der Bolusankunftszeiten klein sind. Daher werden "glatte" Lösungen \vec{t} bevorzugt.

Die Regularisierung erfordert weiterhin die Einführung eines Regularisierungsparameters λ,
welcher die beiden zu minimierenden Zielfunktionen, d.h. den "Datenterm" E gemäß Gleichung (2a) und den "Modellterm" E_m gemäß Gleichung (2b), gewichtet.

Die für die lineare Programmierung verwendeten Größen können dann gemäß den Gleichungen (26) bis (29) von Figur 3 angesetzt werden, wobei zur Vereinfachung I=N-M-1 geschrieben wird. Die zusätzliche I×N Kopplungsmatrix C implementiert die rechte Seite der Bedingung von Gleichung (24) und wird gemäß Gleichung (30) von Figur 3 definiert.

5

10

Bei der Regularisierung ist es in der Regel schwer, vorab einen "guten" Wert für den Regularisierungsparameter λ zu wählen. Zur Überwindung dieses Problems wird vorliegend ein zweistufiges Verfahren vorgeschlagen. Dabei wird in der ersten Stufe die Optimierung ohne Regularisierung ausgeführt. Dies liefert eine erste Schätzung $\vec{t}^{(0)}$ für die Bolusankunftszeiten, mit denen sodann der "bestmögliche" Datenterm $\vec{E}^{(0)}$ berechnet wird, d.h.

$$E^{(0)} = \sum_{i=1}^{N} \left| m_i - t_i^{(0)} \right| \quad . \tag{31}$$

Nunmehr kann ein sinnvoller zu erreichender Wert für E angesetzt werden, z.B. E= sE⁽⁰⁾ mit s > 1. Da alles linear ist, kann die ursprüngliche Minimierung von E durch die Bedingung

E = sE⁽⁰⁾ ersetzt werden, was für die lineare Programmierung zu den Gleichungen (32) bis (35) von Figur 3 führt.

Gemäß Gleichung (36) ist es dabei weiterhin möglich, einen zulässigen Basisvektor zu finden. Gegebenenfalls ist es wiederum erforderlich, alle Werte $t_i^{(1)}$ zu verschieben, falls das erhaltene $t_N^{(1)}$ negativ ist.

Alternativ kann im Übrigen auch der "worst case" Modellterm $E_m^{(0)}$ basierend auf dem ersten Vektor $\vec{t}^{(0)}$ berechnet werden und die Bedingung $E_m = sE_m^{(0)}$ mit s < 1 zum Minimierungsproblem des Datenterms E addiert werden.

25

20

Schließlich sei darauf hingewiesen, dass das vorgestellte Verfahren auch die Integration anderer physiologischer Informationen erlaubt, welche in Form von linearen Randbedingungen beschrieben werden können. Zum Beispiel könnte die Massenerhaltung auf diese Weise formuliert werden.

PATENTANSPRÜCHE

- 1. Datenverarbeitungseinrichtung (3) zur Rekonstruktion des Strömungsflusses in einem Gefäßsystem (6), enthaltend einen Speicher (4) mit Messdaten (m_i), die eine beobachtete fortschreitende Ausbreitung eines Mediums im Gefäßsystem (6) beschreiben, wobei die Datenverarbeitungseinrichtung (3) dazu eingerichtet ist, aus den Messdaten eine Modell-Ausbreitung (4) eines Mediums im Gefäßsystem dereit zu mkonstruieren, dess für des
- 5 Ausbreitung (t_i) eines Mediums im Gefäßsystem derart zu rekonstruieren, dass für das Gefäßsystem
 - die Differenz zwischen der beobachteten Ausbreitung und der Modell-Ausbreitung minimal ist, und
 - die Modell-Ausbreitung monoton fortschreitend ist.

10

- 2. Datenverarbeitungseinrichtung nach Anspruch 1, welche dazu eingerichtet ist, die Modell-Ausbreitung (t_i) derart zu rekonstruieren, dass diese zusätzlich einen möglichst glatten Verlauf hat.
- 15 3. Datenverarbeitungseinrichtung nach Anspruch 1,

dadurch gekennzeichnet,

dass der Speicher (4) als Messdaten Bolusankunftszeiten m_i enthält, wobei die i=1,...NIndizes für verschiedene Abschnitte des Gefäßsystems (6) sind und eine Bolusankunftszeit m_i die in einer Messung ermittelte Zeit ist, die ein Medium ausgehend von einem vorgegebenen

20 Startpunkt für das Erreichen des Gefäßabschnittes i benötigt.

4. Datenverarbeitungseinrichtung nach Anspruch 3,

dadurch gekennzeichnet,

dass sie dazu eingerichtet ist, Modell-Bolusankunftszeiten (t_i) für die Gefäßabschnitte i derart

5 zu berechnen, dass

$$\Delta_i = t_i - t_{n(i)} \ge 0 \quad \forall i = 1, \dots N - 1 \tag{1}$$

und die Kostenfunktion

$$E = \sum_{i=1}^{N} \left| m_i - t_i \right| \tag{2a}$$

minimal ist, wobei jeweils p(i) der Index des in Strömungsrichtung vor dem Gefäßabschnitt i 10 liegenden Gefäßabschnittes ist.

5. Datenverarbeitungseinrichtung nach Anspruch 4,

dadurch gekennzeichnet,

dass sie dazu eingerichtet ist, zusätzlich in der Kostenfunktion die Größe

15

$$E_m = \sum_{i \in I} \left| t_i''' \right| \tag{2b}$$

zu berücksichtigen, wobei I die Indices aller Gefäßabschnitte mit einem Vorgänger und einem Nachfolger enthält und $t_i^{''}$ die diskrete Approximation der zweiten Ableitung im Gefäßabschnitt i ist.

20

6. Datenverarbeitungseinrichtung nach Anspruch 4,

dadurch gekennzeichnet,

dass sie dazu eingerichtet ist, die Modell-Bolusankunftszeit (t_i) mit Hilfe der linearen Programmierung zu berechnen.

7. Datenverarbeitungseinrichtung nach Anspruch 1,

dadurch gekennzeichnet,

5

dass sie mit einer Anzeigeeinrichtung (7) zur graphischen Darstellung der Modell-Ausbreitung gekoppelt ist.

- 8. Anordnung zur Beobachtung des Strömungsflusses in einem Gefäßsystem (6), enthaltend eine bildgebende Einrichtung (1) zur Erzeugung von Abbildungen des Gefäßsystems (6), aus welchen die fortschreitende Ausbreitung eines Mediums beschreibende Messdaten (m_i)
- gewonnen werden können, sowie eine Datenverarbeitungseinrichtung (3) nach mindestens einem der Ansprüche 1 bis 7 zur Rekonstruktion des Strömungsflusses in dem Gefäßsystem.
 - 9. Anordnung nach Anspruch 8,

dadurch gekennzeichnet,

- 15 dass die bildgebende Einrichtung eine Röntgenapparatur (1) ist.
 - 10. Verfahren zur Rekonstruktion des Strömungsflusses in einem Gefäßsystem (6), umfassend die Schritte
- a) Gewinnung von Messdaten (m_i), die eine beobachtete fortschreitende Ausbreitung
 20 eines Mediums im Gefäßsystem (6) beschreiben,
 - b) Rekonstruktion einer Modell-Ausbreitung (t_i) eines Mediums in dem Gefäßsystem derart, dass
 - die Differenz zwischen der beobachteten Ausbreitung und der Modell-Ausbreitung minimal ist, und
- 25 die Modell-Ausbreitung monoton fortschreitend ist.

ZUSAMMENFASSUNG

Rekonstruktion des Strömungsflusses in einem Gefäßsystem

Die Erfindung betrifft ein Verfahren zur Rekonstruktion des Strömungsflusses beziehungsweise der Bolusankunftszeiten in einem Gefäßsystem (6). Für die Abschnitte (i) des

- Gefäßbaumes (6) werden zum Beispiel im Rahmen einer Kontrastmittelinjektion Bolusankunftszeiten (m_i) gemessen. Basierend auf diesen Messdaten werden dann mit Hilfe der
 linearen Programmierung Modell-Bolusankunftszeiten (t_i) berechnet, welche einerseits durch
 Minimierung der Funktion $E = \sum |m_i t_i|$ möglichst dicht an den Messdaten liegen und
 andererseits durch Einhaltung der Randbedingung $\Delta_i = t_i t_{p(i)} \ge 0$ die Monotonie der
- Ausbreitung gewährleisten, wobei p(i) der Index des Gefäßabschnittes vor dem Gefäßabschnitt i ist. Vorzugsweise wird durch eine zusätzliche Minimierung von $E_m = \sum_i \left| t_i'' \right|$ ein möglichst glatter Verlauf der Ausbreitung erzwungen.

(Figur 2)

Fig. 1

Fig. 2

$$\vec{a} = \begin{pmatrix} \vec{t} \\ \vec{\varepsilon}^{+} \\ \vec{\varepsilon}^{-} \\ \vec{\Delta} \\ \vec{\delta}^{+} \\ \vec{\delta}^{-} \end{pmatrix}$$
 (26)
$$\vec{c} = \begin{pmatrix} \vec{0}_{N} \\ \vec{1}_{N} \\ \vec{0}_{N-1} \\ \lambda \vec{1}_{I} \\ \lambda \vec{1}_{I} \end{pmatrix}$$
 (28)
$$\vec{b} = \begin{pmatrix} \vec{m} \\ \vec{0}_{N-1} \\ \vec{0}_{I} \end{pmatrix}$$
 (27)
$$\begin{pmatrix} 1_{N \times N} & 1_{N \times N} & -1_{N \times N} & 0_{N \times N-1} & 0_{N \times I} & 0_{N \times I} \\ \end{pmatrix}$$

$$S = \begin{pmatrix} 1_{N \times N} & 1_{N \times N} & -1_{N \times N} & 0_{N \times N-1} & 0_{N \times I} & 0_{N \times I} \\ P & 0_{N-1 \times N} & 0_{N-1 \times N} & -1_{N-1 \times N-1} & 0_{N \times I} & 0_{N \times I} \\ C & 0_{I \times N} & 0_{I \times N} & 0_{I \times N-1} & 1_{I \times I} & -1_{I \times I} \end{pmatrix}$$

$$C_{ij} = \begin{cases} 2 & \text{if } i = j \\ -1 & \text{if } p(i) = j \\ -1/|\{k|p(k) = i\}| & \text{if } p(j) = i \\ 0 & \text{else} \end{cases}$$

$$(29)$$

$$\vec{a} = \begin{pmatrix} \vec{t} \\ \vec{c}^{+} \\ \vec{c}^{-} \\ \vec{\Delta} \\ \vec{\delta}^{+} \\ \vec{\delta}^{-} \end{pmatrix}$$

$$\vec{b} = \begin{pmatrix} \vec{m} \\ \vec{0}_{N-1} \\ \vec{0}_{I} \\ gE^{(0)} \end{pmatrix}$$

$$(32)$$

$$\vec{c} = \begin{pmatrix} \vec{0}_{N} \\ \vec{0}_{N} \\ \vec{0}_{N} \\ \vec{0}_{N-1} \\ \vec{1}_{I} \\ \vec{1}_{I} \end{pmatrix}$$

$$(34)$$

$$S = \begin{pmatrix} 1_{N \times N} & 1_{N \times N} & -1_{N \times N} & 0_{N \times N-1} & 0_{N \times I} & 0_{N \times I} \\ P & 0_{N-1 \times N} & 0_{N-1 \times N} & -1_{N-1 \times N-1} & 0_{N \times I} & 0_{N \times I} \\ C & 0_{I \times N} & 0_{I \times N} & 0_{I \times N-1} & 1_{I \times I} & -1_{N-M \times I} \\ 0_{1 \times N} & 1_{1 \times N} & -1_{1 \times N} & 0_{1 \times N-1} & 0_{1 \times I} & 0_{1 \times I} \end{pmatrix}$$
(35)

$$t_{i}^{(1)} = \begin{cases} t_{i}^{(0)} & \text{if } i < N \\ t_{N}^{(0)} - (s - 1)E^{(0)} & \text{if } i = N \text{ and } t_{N} \le m_{N} \\ t_{N}^{(0)} - 2(t_{N}^{(0)} - m_{N}) - (s - 1)E^{(0)} & \text{if } i = N \text{ and } t_{N} > m_{N} \end{cases}$$
(36)

Fig. 3