SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: NATSUKA, SHUNJI GERSTEN, KEVIN M. LOWE, JOHN B.
 - (ii) TITLE OF INVENTION: MURINE ALPHA (1,3) FUCOSYLTRANSFERASE FUC-TVII, DNA ENCODING THE SAME, METHOD FOR PREPARING THE SAME, ANTIBODIES RECOGNIZING THE SAME, IMMUNOASSAYS FOR DETECTING THE SAME, PLASMIDS CONTAINING SUCH DNA
 - (iii) NUMBER OF SEQUENCES: 4
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: OBLON, SPIVAK, MCCLELLAND, MAIER & NEUSTADT,
 - (B) STREET: 1755 S. JEFFERSON DAVIS HIGHWAY, SUITE 400
 - (C) CITY: ARLINGTON
 - (D) STATE: VA
 - (E) COUNTRY: USA
 - (F) ZIP: 22202
 - (V) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/613,098
 - (B) FILING DATE: 08-MAR-1996
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: LAVALLEYE, JEAN-PAUL
 - (B) REGISTRATION NUMBER: 31,451
 - (C) REFERENCE/DOCKET NUMBER: 2363-114-55
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 703-413-3000
 - (B) TELEFAX: 703-413-2220
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3594 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ACAAACAGGA	AGGACAGCAG	GCTCTGGCAG	CCAGAAGCCT	GTGGCCCCAA	GCTGGCAGGA	60
TGGCCCCCTT	CCTGCAGGTC	CCCCACAGCC	TTCTGGGTTC	CTGACACGAG	AGAAGAGGTG	120
GGGCGGGGTG	AAGTGAACTC	TGAAGCCAAA	ATGTGACTCT	CCTGGGGTCA	CCAGCTTGGG	180
GAGAGGTGAA	GAAAGATGCC	GGGGCGAAA	CAAAGGGGCA	GATATCACTA	TGGTTATCTT	240
ACTAAGCACA	GAGTAACTGA	AAAAGCAAGG	GTACCGCTGC	CCACCTCGTG	CCCACCTTAC	300
GTTATACCTC	AAACCAGCTA	GATAGTTTCT	GATGGCACCC	ATACCCTCCC	TTCCCCTTTA	360
GGCATTGCGC	AAGCTCTCCA	CCACAATCTG	GAAGTTATAC	CCTGCGAGGG	GATGGGCAGG	420
GCACTTCTGA	GGTGCCAATC	AGCCTGCACT	CGCCTCTGCC	CTGGCCATGG	CACTGCTGTC	480
AGTTTCTTGG	TACCTGTCTC	AACAGCAGCC	TTGTCACGTG	AGACTATGGC	TGGCGGTGGG	540
GGTGGGGCA	GGAATCCTAG	AAGCACAGGA	GTGACATAGG	GTCGGGTCGG	GCAGAGCGAA	600
GTGTAGGAGG	TGATCCCCAA	AGGGATGCTG	GGGACGATCT	GGCCAACACT	GTCCTCCCAT	660
TCAAAACTCC	CAGTCTGGAG	CTCTGGGACA	TGGACAAGCC	AGGCCTGCTA	TTCTCCATAC	720
AGGGCTCCAT	AGTGTCTGGC	TCAGCAGAGT	GGGGGATCTG	GTGGGGATGG	AGGAAGCTTA	780
GCTAAAAGCT	TTGTATAGGC	TGAAGCTCTG	AGTGACCCTG	CTGGGCCACC	CTACCCTGGT	840
CTGGGCTGGG	TCATTGCATC	CCCAGATTGG	AAGGCTTGGT	GAGATGGAGA	GGAACCTTGG	900
CTACAAGCTA	TAGCTTTGCC	CACCAGAGCC	TGCTGGAGGG	GAATCAAACA	AGCCTGGACC	960
TGAGGCTGGG	ACTAGCTTTC	CTGTTTCTGG	AGTGGATGCC	AACCCCCTGC	CCACCAGCCT	1020
GCCTGTCCAC	GCCAGGGACA	CACAGACTCC	TTCCCTTTCC	AGACTGGAAA	GCCCCTCCT	1080
GGGAGAGCAG	GAAGGAAGCA	ACCTGCAACT	CTTCCAGCCC	TGGACCTTGG	GCTGAACCTA	1140
CAGTTCAAGG	TTTGTATGCT	CACAGGTCTT	GGCAGGGAAA	GATAAGAATO	CCCAGGGCAC	1200
CCTCCCCCC	GCCCCCAGT	CCACTGCAGG	TAGCTCCTGG	GTCTGCCCT	CAGGGCAAGT	1260
GCTGACGCTC	CATCAGACTG	TGATGGGGCC	CTTTTCTGAG	GATGACAAT	r ctgagaacaa	1320
GGCATTTTTC	TAGAGGTGGC	AGAACAGCAT	TTTGTGATG	CCGAGGATC	r gggagcacag	1380
GTCCAGCTTA	ATGAGGGATT	GGAGGAAGTG	GGTATCATC	A TTACAGGGA	G GGGCCTCTGT	1440
GGCCTCCTGG	GAAAATGCAG	TTGCTCTCTT	TGGGTGGCC	r ggggttgtg	T GGTGGGCAGA	1500
GGACGGAGGT	GCTCATTGGG	GGAAGGGATC	ACTTCTGCT	C AGAGTGCTC	G CAAGGGCCTT	1560
TCCTTTTCCT	GAAGGCAAGC	AGGCCTCCTC	CTCCTCCTC	r TCCTCCTTC	T CCTCTTCCTC	1620
CTCTTTCTCC	ATATGCCTAG	CTGGTCATTI	CTAGGGACC	A GCATGGTTG	G GAAGGGGCC	1680

TTGTCTTGGC	CTTCCTCTTG	TCTCAATTCC	CTCTTTGAGC	AGAAGACGGG	GTGGGTGGGG	1740
TAGGATTGGA	TAGTGGTTGA	TGCCAAAGAT	TGAAGGGGTA	GGGCGGGCA	GAAGTGGGAA	1800
GGTCCCTGGC	TTCCTCACCT	TGGTAGATGG	TGAGGAGCCC	CAGAGGTTGA	GCTGAGCAGC	1860
AGCTGTGATT	TCAGGGTGCC	TCTGTTGGAG	AGGCTGCTGT	GATTTGAAAA	TCTTCTTTCC	1920
TTGGTGACAA	TTCCAGAAGG	CTCCAGATGA	ATTGTATTGG	TGAGTGCCTG	GCCCTTAAGC	1980
AGTCCCAGCT	GGGGATGATG	GGGATTTATG	GGTGTCCCTG	AGCCTAGGGT	GACAGGGCCT	2040
CTCCTTTTTT	TTTTATTCTG	CTTCAGGGTA	CCACCCCACC	AGGAGGCTGC	GGGCCTGGGG	2100
CGGCCTAGCT	GGAGGAGCAA	CATTCATGGT	AATTTGGTTT	TTCTGGCTGT	GGGGATCAGC	2160
TCCTGGAAGT	GCCCTGTGC	CTCAGTCCAC	ACTCACCATC	CTTATCTGGC	ACTGGCCTTT	2220
CACCAACCGG	CCGCCAGAGC	TACCTGGTGA	CACCTGCACT	CGCTATGGCA	TGGCCAGCTG	2280
CCGTCTGAGT	GCTAACCGGA	GCCTGCTAGC	CAGTGCTGAT	GCTGTGGTCT	TCCACCACCG	2340
TGAGCTGCAA	ACCCGGCAAT	CTCTCCTACC	CCTGGACCAG	AGGCCACACG	GACAGCCTTG	2400
GGTCTGGGCC	TCCATGGAAT	CGCCCAGTAA	TACCCATGGT	CTCCATCGCT	TCCGGGGCAT	2460
CTTCAACTGG	GTGCTGAGCT	ATCGGCGTGA	TTCAGATATC	TTTGTACCCT	ACGGTCGCTT	2520
GGAGCCTCTC	TCTGGGCCCA	CATCCCCACT	ACCGGCCAAA	AGCAGGATGG	CTGCCTGGGT	2580
GATCAGCAAT	TTCCAGGAGC	GGCAGCAGCG	TGCAAAGCTG	TACCGGCAGC	TGGCCCTCA	2640
TCTGCAGGTG	GATGTGTTCG	GTCGCGCCAG	CGGACGGCCC	CTATGCGCTA	ATTGTCTGCT	2700
GCCCACTTTG	GCCCGGTACC	GCTTCTACCT	GGCCTTTGAG	AACTCACAGC	ATCGGGACTA	2760
CATCACTGAG	AAGTTCTGGC	GCAATGCCCT	GGCGGCTGGT	GCTGTACCCG	TGGCGCTGGG	2820
ACCTCCTCGG	GCCACCTACG	AGGCTTTTGT	GCCACCAGAT	GCCTTTGTAC	ACGTGGACGA	2880
CTTCAGCTCT	GCCCGTGAAC	TGGCTGTCTT	CCTCGTCAGC	ATGAATGAGA	GTCGTTATCG	2940
TGGCTTCTTT	GCTTGGCGAG	ACCGGCTCCG	TGTGCGGCTC	CTGGGTGACT	GGAGGGAGCG	3000
CTTCTGCACC	ATCTGTGCCC	GCTACCCTTA	CTTGCCCCGC	AGCCAGGTCT	ATGAAGACCT	3060
TGAAAGCTGG	TTCCAGGCTT	GAACTCCTGC	TGCTGGGAGA	GGCTGGATGG	GTGGGAGACT	3120
GATGTTGAAA	CCAAAGAGCT	GGGCATCCAG	GCTTTTGGTC	ACCATGGCAC	TACCCCAAGG	3180
CTTTTCCTGT	TCAGTGAGCA	GGAATTCAGG	ATATAAGGAG	AAGACTGGGC	TGAGATACCC	3240
TGGTGGGCTT	TAGAGTAGGG	GCCCAGGATA	AGAGACAATG	AATTAATGAG	GAGCATATGG	3300
GGAAGGTGGC	TGAGGGTCCC	TGACTTACCT	TGACCCATGG	CTGAAGGCTC	CATGCCCATG	3360
GCTGGAGCTG	GGACCCTACA	CTTCTATAGT	CAAGGTGCTT	AGCCTCAAGG	TTGCAGATGC	3420

ACCCTCTAGT	ACTCTGGGTG	CAGACTGTAC	ACTGGGCGCA	GGGGGTTGTG	GAAGGACAGT	3480
GCAGATGATT	CTGGGCTTTT	GACACCACAG	TTCCCCCAGG	GAAAGAGGCA	CTACTAATAA	3540
AAACACTGAC	AGAAATCTCC	TGGTCAAGTC	TGTTAGGCAG	CAGAGCTCGA	ATTC	3594

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 393 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Pro Thr Pro Cys Pro Pro Ala Cys Leu Ser Thr Pro Gly Thr His Arg Leu Leu Pro Phe Pro Asp Trp Lys Ala Pro Ser Trp Glu Ser Arg Lys Glu Ala Thr Cys Asn Ser Ser Pro Gly Pro Trp Ala Glu Pro Thr Val Gln Met Asn Cys Ile Gly Tyr His Pro Thr Arg Arg Leu Arg Ala Trp Gly Gly Leu Ala Gly Gly Ala Thr Phe Met Val Ile Trp Phe Phe Trp Leu Trp Gly Ser Ala Pro Gly Ser Ala Pro Val Pro Gln Ser 90 Thr Leu Thr Ile Leu Ile Trp His Trp Pro Phe Thr Asn Arg Pro Pro 105 110 Glu Leu Pro Gly Asp Thr Cys Thr Arg Tyr Gly Met Ala Ser Cys Arg 120 Leu Ser Ala Asn Arg Ser Leu Leu Ala Ser Ala Asp Ala Val Val Phe 130 135 His His Arg Glu Leu Gln Thr Arg Gln Ser Leu Leu Pro Leu Asp Gln 150 155 160 Arg Pro His Gly Gln Pro Trp Val Trp Ala Ser Met Glu Ser Pro Ser 165 170 Asn Thr His Gly Leu His Arg Phe Arg Gly Ile Phe Asn Trp Val Leu 180 185

Ser Tyr Arg Arg Asp Ser Asp Ile Phe Val Pro Tyr Gly Arg Leu Glu 205 Pro Leu Ser Gly Pro Thr Ser Pro Leu Pro Ala Lys Ser Arg Met Ala 215 Ala Trp Val Ile Ser Asn Phe Gln Glu Arg Gln Gln Arg Ala Lys Leu 225 230 Tyr Arg Gln Leu Ala Pro His Leu Gln Val Asp Val Phe Gly Arg Ala 250 Ser Gly Arg Pro Leu Cys Ala Asn Cys Leu Leu Pro Thr Leu Ala Arg 265 Tyr Arg Phe Tyr Leu Ala Phe Glu Asn Ser Gln His Arg Asp Tyr Ile 275 285 Thr Glu Lys Phe Trp Arg Asn Ala Leu Ala Ala Gly Ala Val Pro Val Ala Leu Gly Pro Pro Arg Ala Thr Tyr Glu Ala Phe Val Pro Pro Asp 305 310 315 Ala Phe Val His Val Asp Asp Phe Ser Ser Ala Arg Glu Leu Ala Val 330 Phe Leu Val Ser Met Asn Glu Ser Arg Tyr Arg Gly Phe Phe Ala Trp 345 Arg Asp Arg Leu Arg Val Arg Leu Leu Gly Asp Trp Arg Glu Arg Phe 355 Cys Thr Ile Cys Ala Arg Tyr Pro Tyr Leu Pro Arg Ser Gln Val Tyr Glu Asp Leu Glu Ser Trp Phe Gln Ala

(2) INFORMATION FOR SEQ ID NO:3:

385

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 base pairs

390

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "SYNTHETIC PRIMER"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
 GCGCGGATCC CACCATCCTT ATCTGGCACT GGCCTTTCAC C

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 44 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "SYNTHETIC PRIMER"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: GCGCGGATCC AGTTCAAGCC TGGAACCAGC TTTCAAGGTC CTTC

44