4주차 ML/DL 스터디 발표

GDSC Hanyang

ML/DL core 김남호

CNN

Convolutional Neural Network

• 이미지 분류, 객체 감지 및 이미지 처리 작업에 사용되는 딥 러닝 아키텍처

CNN

• 합성곱 연산

Wx+b (3차원 filter)

param 개수: filter당(5x5x3) -CNN모델마다 다름

Linear regression => 하나의 값으로

32x32x3 image

5x5x3 filter

• Stride : 필터의 위치를 바꾸는 이동 거리

Output size : (N-F)/Stride +1

Padding

• Input : 7x7

• Filter : 3x3

Pad with 1 pixel

=> 7x7 output

데이터 손실x

	0	0	0	0	0		
0							
0							
0							
0							

6개 filter(5x5x3) -> conv layer적용

32x32x3 image

32x32x3 image

6개 filter(5x5x3) -> conv layer적용

Pooling layer

• CNN의 conv layer 증가 -> 고차원, 多 param

=> overfitting 등의 문제 발생

차원 감소 필요 -> 풀링의 역할

Pooling layer

• 공간 차원 축소

• 노이즈 감소

• Ex) 맥스 풀링 : 영역내 최댓값을 대푯값으로

Pooling layer

• Like 샘플링

Fully connected layer

• DNN과 동일

• 특징을 추출, 분류 수행

CNN 모델의 역사

• Lenet-5

Alexnet

Googlenet

Resnet

각 모델의 특징, 키워드 위주로

Lenet-5

• CNN의 조상님

• 지금까지 배운 기본적 내용

Alexnet

- 2012년 ImageNet 대회에서 우승
- 5개 Conv, 3개 Pool
- 3개 FC layer

• Sigmoid가 아닌 Relu를 activation으로 사용

Alexnet

• 대규모 딥러닝 모델(param多)

• GPU가속화

GPGPU

• CPU의 연산을 GPU가 같이 함

• 여러 개 Thread -> 병렬 처리 -> 연산 속도

• 대규모 데이터 처리

Googlenet

- Inception model
- 다중 크기 Conv filter
- 1x1 filter
- Batch normalization

• 2014년 ILSVRC 우승

Inception block

1x1, 3x3 과 같은 다중 크기 conv filter 적용

Inception block

3x3필터로 한번

이 때 사용하게 될 파라미터의 수는 다음과 같다.

$$3 \times 3 \times 128 \times 128 = 147,456$$

1x1 한번, 3x3 한번

이 때 사용하게 될 파라미터의 수는 다음과 같다.

$$1 \times 1 \times 128 \times 32 + 3 \times 32 \times 128 = 40,960$$

Inception block

3x3필터로 한번

이 때 사용하게 될 파라미터의 수는 다음과 같다.

 $3 \times 3 \times 128 \times 128 = 147,456$

1x1 한번, 3x3 한번

이 때 사용하게 될 파라미터의 수는 다음과 같다.

$$1 \times 1 \times 128 \times 32 + 3 \times 32 \times 128 = 40,960$$

Param 감소!

Googlenet

- AlexNet (2012, 8 Layers) / 60M size of parameters
- VGGNet (2014, 19 Layers) / 110M size of parameters
- GoogLeNet (2014, 22 Layers) / 4M size of parameters

Resnet

Residual Block

• 매우 깊은 layer 구조

• 전역 평균 풀링

ILSVRC 2015 winner (3.6% top 5 error)

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015)

Resnet

깊은 layer를 만들자

모델 training 성능 1

gradient vanishing 문제 => layer 사이 shortcut

Residual Block

• 입력 데이터를 건너뛰는 (skip) 연결

Grad 소실 문제 완화

Googlenet

병렬 필터

Resnet

스킵(잔차) 연결

Residual Block

34-layer residual

Residual Block

Plaint net

Residual net

전역 평균 풀링

• Global Average Pooling(GAP)

• FC layer를 없애기 위함(깊이 감소)

GAP VS MP

GAP VS MP

- 급격히 feature를 줄임 (전역의 평균)
- 1차원 벡터로

ユ 外 CNN

• CNN for sentence classification

ALphaGO

발표를 들어주셔서 감사합니다 ②

프로젝트 제출하기

프로젝트 등록 제출 완료 Zip STEP 1 제출하고자 하는 프로젝트를 하나의 압축파일로 만들어서 등록하세요. 파일등록 STEP 2 리뷰어에게 강조하거나 전할 내용이 있으면 작성하세요. (선택) 내용을 입력하세요. STEP 3 약속합니다! 1. 나는 다른 학습자의 제출내용을 표절하지 않았음을 약속합니다. 2. 나는 활용한 내용의 출처를 표시하였습니다. (웹사이트, 책, 포럼, 블로그, Github 등) 3. 나는 표절 검사를 하는 것에 동의하고, 위 사항을 위반 시 수강 취소될 수 있음을 숙지하였습니다. □ 동의합니다.