# VECTOR CALCULUS NOTES NICHOLAS HAYEK

Lectures by Prof. Jean Pierre Mutanguha

# CONTENTS

| I Curves and Surfaces                 | 1 |
|---------------------------------------|---|
| Products on Vector Spaces             | 1 |
| Lines                                 | 1 |
| Planes                                | 2 |
| Transformations and Parameterizations | 2 |
| Surfaces                              | 5 |

# I Curves and Surfaces

# PRODUCTS ON VECTOR SPACES

Recall the definition of the *inner product* over a vector space *V*:

**DEF 1.1** 

- 1.  $\langle u, v \rangle = \overline{\langle v, u \rangle} = \langle v, u \rangle$  in  $\mathbb{R}$  (where we'll be in this class)
- 2.  $\langle au + bw, v \rangle = a \langle u, v \rangle + v \langle w, v \rangle$
- 3.  $\langle u, u \rangle \ge 0$ , and  $= 0 \iff u = 0$

From this, we define the *norm* of  $u \in V$  to be  $||u|| := \sqrt{\langle u, u \rangle}$ . This is well-defined, since  $\langle u, u \rangle \ge 0$ .

**DEF 1.2** 

$$\forall u,v \in V, |\langle u,v \rangle| \leq ||u|| ||v||$$

PROP 1.1

Cauchy-Schwartz Inequality PROP 1.2

$$\forall u, v \in V, ||u + v|| \le ||u|| + ||v||$$

Triangle Inequality

The *cross product* of  $u, v \in \mathbb{R}$ , with respect to  $\mathbb{R}^3$ , is the determinate of the following DEF 1.3 "matrix":

$$u \times v := \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$$

where  $u = \langle u_1, u_2, u_3 \rangle$  and  $v = \langle v_1, v_2, v_3 \rangle$ . We observe the following two properties of the cross product in  $\mathbb{R}^3$ :

PROP 1.3

- 1.  $(u \times v) \cdot u = 0$
- 2.  $||u \times v|| = ||u|| ||v|| \sin(\theta)$ , where  $\theta$  is the angle found between u and v. A conceptualization of this property is that "u-cross-v is equal to the area created by the parallelogram bounded by u and v."

#### LINES

Define a *line*  $l(t) \in \mathbb{R}^n$  to be a function from  $\mathbb{R} \to \mathbb{R}^n$ , with the primary form l(t) = P + td, with  $P, d \in \mathbb{R}^n$ ,  $t \in \mathbb{R}$ . We call P the "point vector" and d the "direction vector" An alternate form, with two points  $P, Q \in \mathbb{R}^n$ , would be l(t) = (1-t)P + tQ, where l(t) lies along the path between P and Q for  $t \in [0,1]$ .

DEF 1.4

**Distance between a point and line** Using this definition, how an we find the shortest path between a point R and a line l(t), which lies between P and Q?

- *Idea 1* We know the desired vector  $w = PR\sin(\theta)$ , the angle between PR and PQ. To find this value, note that  $||PR \times PQ|| = ||PR||||PQ||\sin(\theta)$ .
- *Idea 2* We can project R onto PQ, and then subtract this projection from PR.

*Idea* 3 We can minimize a distance function between R and a point on l, i.e. l(t). Thus, we take  $\min_{t \in \mathbb{R}} \|R - l(t)\| = \alpha$ , and then take  $Rl(\alpha)$  to be the shortest path.

*Idea* 4 We can find when  $(R - l(t)) \cdot d = 0$ .

Sometimes called "skew lines"

**Distance between 2 lines** Consider two lines,  $l_1$  and  $l_2$ , which do not intersect but are not necessarily parallel. What is the minimal distance between  $l_1$  and  $l_2$ ?

- *Idea 0* Conceptualize this problem as finding the distance between the parallel planes defined by  $\{l_1, l_2\}$ .
- *Idea 1* We can minimize  $||l_1(t) l_2(s)||$  (really, one should minimize the square to make one's life easier).
- *Idea* 2 Pick any two points, say  $l_1(T)$  and  $l_2(S)$ , and project  $l_1(T)l_2(S)$  onto  $l_1 \times l_2$ .
- *Idea* 3 Minimize dist $(l_1(t), l_2)$  for fixed t.

Idea 4 Find t and s such that  $[l_1(t) - l_2(s)] \cdot \overrightarrow{d_1} = 0$  and  $[l_1(t) - l_2(s)] \cdot \overrightarrow{d_2} = 0$ 

 $||u \times v|| = ||u|| ||v|| \sin(\theta) = \text{Area of parallelogram defined by } u \text{ and } v.$ 

# PROP 1.4

**DEF 1.5** 

DEF 1.6

# PLANES

A plane r(s,t) is a function  $[0,1]^2 \to \mathbb{R}^3$  defined by  $d_1, d_2 \in \mathbb{R}^3$ , two vectors, and  $P \in \mathbb{R}^3$ , a point. In particular,  $r(s,t) = P + s\vec{d_1} + t\vec{d_2}$ . This is called the *parametric form*.

The *point-normal* form is a function  $\mathbb{R}^2 \to \mathbb{R}^3$  is given by  $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$ , where  $\vec{n}=\langle a,b,c\rangle$  is a vector normal to the plane, and  $P=\langle x_0,y_0,z_0\rangle$  is a point lying on the plane.

# Distance between a point R and a plane r

*Idea 1* Minimize ||R - r(s, t)|| (or the square)

*Idea* 2  $\|\text{proj}_{\vec{n}}(P-R)\|$ , where  $\vec{n}$  and P are as given in the point-normal form.

# TRANSFORMATIONS AND PARAMETERIZATIONS

The following table give general examples of linear transformations  $\lambda : \mathbb{R}^n \to \mathbb{R}^m$ .

| Dimension | Linear                                                    | Affine                                                        |
|-----------|-----------------------------------------------------------|---------------------------------------------------------------|
|           | $\lambda(0) = 0$                                          | $\lambda(0) = P$                                              |
| n = 1     |                                                           | $\lambda(t) = P + t\vec{d}$                                   |
| n = 2     | $\lambda(t,s) = t\vec{d_1} + s\vec{d_2}$                  | $\lambda(t,s) = P + t\vec{d_1} + s\vec{d_2}$                  |
| n = 3     | $\lambda(t, s, r) = t\vec{d_1} + s\vec{d_2} + r\vec{d_3}$ | $\lambda(t, s, r) = P + t\vec{d}_1 + s\vec{d}_2 + r\vec{d}_3$ |

| Type         | Explicit Form   | Parametric Form                                                                                                                             |
|--------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Ellipse      | $x^2 + y^2 = 1$ | $r(t) = \left\langle t, \sqrt{1 - t^2} \right\rangle_{t \in [-1, 1]} = \left\langle \cos(t), \sin(t) \right\rangle_{t \in [-\pi, \pi]}$     |
| Hyperbola    | $x^2 - y^2 = 1$ | $r(t) = \left\langle \sqrt{1 + t^2}, t \right\rangle_{t \in \mathbb{R}} = \left\langle \cosh(t), \sinh(t) \right\rangle_{t \in \mathbb{R}}$ |
| Parabola     | $x = y^2$       |                                                                                                                                             |
| Double Cone  | $x^2 = y^2$     |                                                                                                                                             |
| Any Function | y = F(x)        | $r(t) = \langle t, F(t) \rangle$                                                                                                            |

Define a *path* in  $\mathbb{R}^m$  to be a continuous function  $r : \mathbb{R} \to \mathbb{R}^m$ , e.g.  $[a, b] \to \mathbb{R}^m$ .

Define a *curve* in  $\mathbb{R}^m$  to be the image of a path (i.e. a set of points in  $\mathbb{R}^m$ ). Recall DEF 1.8 the statement "paths parameterize curves."

For example, the unit circle  $x^2 + y^2 = 1$  is parameterized by the path  $r : \mathbb{R} \to \mathbb{R}^2$  given by  $r(t) = \langle \cos(t), \sin(t) \rangle$ .

Define the *tangent* line of  $\vec{r}$  at  $a \in \mathbb{R}$  to be an affine transformation  $l : \mathbb{R} \to \mathbb{R}^m$  satisfying the following:

1. 
$$l(t) = r(a) + (t - a)\vec{d} : \vec{d} \neq 0$$

2. 
$$\lim_{t\to a} \frac{\|r(t)-l(t)\|}{|t-a|} = 0$$

- 🛊 Examples 🛊 ------

We'll now find the derivative of the unit circle at a point  $a \in \mathbb{R}$ : we have  $r(a) = \langle \cos(a), \sin(a) \rangle$ . Thus:

$$l(t) = \langle \cos(t), \sin(t) \rangle + (t - a) \langle d_1, d_2 \rangle$$

Where  $\langle d_1, d_2 \rangle \neq 0$ . Consider now the limit in question 2:

$$\lim_{t \to a} \frac{\|r(t) - l(t)\|}{|t - a|} = \lim_{t \to a} \frac{1}{|t - a|} \sqrt{(\cos(t) - \cos(a) - (t - a)d_1)^2 + (\sin(t) - \sin(a) - (t - a)d_2)^2}$$

$$= \lim_{t \to a} \sqrt{\left(\frac{\cos(t) - \cos(a)}{t - a} - d_1\right)^2 + \left(\frac{\sin(t) - \sin(a)}{t - a} - d_2\right)^2}$$

$$= \int_{t \to a} \sqrt{(-\sin(a) - d_1)^2 + (\cos(a) - d_2)^2} = 0$$

$$\iff d_1 = -\sin(a) \land d_2 = \cos(a)$$

$$\implies l(t) = \langle -\sin(a), \cos(a) \rangle \quad \Box$$

Frequently, l(t) is referred to as the "velocity vector" of r(t), and is notated as r'(t). Notice that r'(t) is equivalent to the component-wise derivative of the coordinates of r(t) w.r.t. t. Formally:

Given  $\vec{r}: \mathbb{R} \to \mathbb{R}^n$ , the *derivative* of  $\vec{r}$  at  $a \in \mathbb{R}$  is a linear transformation  $\vec{\lambda}: \mathbb{R} \to \mathbb{R}^n$  satisfying

$$\lim_{t\to a} \frac{\|r(t)-r(a)-\lambda(t-a)\|}{|t-a|} = 0 \quad \text{or equivalently} \quad \lim_{h\to 0} \frac{\|r(a+h)-r(a)-\lambda(a)\|}{|h|} = 0$$

It is denoted  $D\vec{r}_a$ , and represented by the  $n \times 1$  matrix r'(a). One may now rewrite the tangent line in the form  $l(t) = r(a) + \lambda(t - a)$ .

The arc length of a curve r(t) is given by

$$s = \int_{a}^{b} ||r'(t)|| dt$$

An arc length parameterization of r(t) is some  $t = \alpha(s)$  such that  $r(\alpha(s))$  has a unit velocity vector, i.e.  $||r'(\alpha(s))|| = 1$ . Alternatively, one could find an expression for arc length, and then parameterize r(t) in terms of its arc length. The resultant will be equivalent.

# - 🌢 Examples 🕭 ------

We'll do an arc length parameterization of a semicircle of radius 1 with its center at the origin, i.e.  $y = \sqrt{1 - x^2}$ . We get the natural parameterization  $r(t) = \langle t, \sqrt{1 - t^2} \rangle$ , where  $t \in [-1, 1]$ . We'd like to find a change of parameters  $t = \alpha(s)$  such that  $||r(\alpha(s))|| = 1$  and  $\alpha' \ge 0$ .

$$r(\alpha(s)) = \left\langle \alpha(s), \sqrt{1 - \alpha(s)^2} \right\rangle$$

$$r'(\alpha(s)) = \left\langle \alpha'(s), \frac{1}{2} (1 - \alpha(s)^2)^{-\frac{1}{2}} \cdot (-2\alpha(s)\alpha'(s)) \right\rangle$$

$$= \alpha'(s) \left\langle 1, \frac{-\alpha(s)}{\sqrt{1 - \alpha(s)^2}} \right\rangle$$
Then  $1 = ||r'(\alpha(s))|| = \alpha'(s) \sqrt{1 + \frac{\alpha(s)^2}{1 - \alpha(s)^2}}$ 

$$= \frac{\alpha'(s)}{\sqrt{1 - \alpha(s)^2}}$$

Integrating with respect to s, we get  $s = \arcsin(\alpha(s)) = \arcsin(t)$ . Thus,  $t = \sin(s)$ , and  $s \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ , and we yield the parameterization  $\langle \sin(s), \cos(s) \rangle : s \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ .

**DEF 1.9** 

DEF 1.10

**DEF 1.11** 

# SURFACES

We note the following quadric surfaces:

| Туре                   | Explicit Form          |
|------------------------|------------------------|
| Ellipsoid              | $x^2 + y^2 + z^2 = 1$  |
| Elliptic Hyperboloid   | $x^2 + y^2 - z^2 = 1$  |
| Elliptic Paraboloids   | $x^2 + y^2 - z^2 = -1$ |
| Hyperbolic Paraboloids | $x = y^2 - z^2$        |
| Double Cones           | $x^2 = y^2 + z^2$      |

A surface F(x, y) is called *differentiable* at (a, b) if there exists some linear transformation  $\lambda : \mathbb{R}^2 \to \mathbb{R}$  such that

$$\lim_{(h,k)\to(0,0)} \frac{|F(a+h,b+k)-F(a,b)-\lambda(h,k)|}{\|\langle h,k\rangle\|}$$

One may represent  $\lambda(h, k) = \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix} = uh + vk$ 

Let F(x, y) = xy. We consider F at (a, b). Then

$$0 \leq \frac{|F(a+h,b+k) - F(a,b) - \lambda(h,k)|}{\|\langle h,k \rangle\|} = \frac{|(a+h)(b+k) - ab - (uk+vk)|}{\|\langle h,k \rangle\|}$$

$$= \frac{|bh + ak + hk - uh - vk|}{\|\langle h,k \rangle\|} = \frac{|(b-u)h + (a-v)k + hk|}{\|\langle h,k \rangle\|}$$

$$\leq \frac{|b-u||h|}{|h|} + \frac{|a-v||k|}{|k|} + \frac{|h||k|}{|h|} \quad \text{since } |h|, |k| \leq \|\langle h,k \rangle\|$$

$$= |b-u| + |a-v| + |k| \to |b-u| + |a-v|$$

$$= 0 \quad \text{when } b = u, a = v$$

Thus, the desired limit is always  $\geq$  and  $\leq$  0, so especially it is 0. Our derivative at (a, b) is then  $\lambda(x, y) = bx + ay$ .

One may also find these coefficients as the partial derivative of F, i.e.

$$\nabla F(a,b) = \left\langle \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle \Big|_{(a,b)}$$

This is called the *gradient*. Similarly,  $\alpha(x, y) = F(a, b) + \lambda(x - a, y - b)$  is called the DEF 1.13 *affine approximation* at (a, b).

If  $F: \mathbb{R}^n \to \mathbb{R}$  is differentiable at  $\vec{a}$ , then all partial derivatives of F at  $\vec{a}$  exist. Furthermore,  $\lambda(\vec{a}) = F'(\vec{a}) = \left[\partial_1 F \cdots \partial_n F\right]_{\vec{a}}$ .

Note that the converse is *false* (as a counterexample, see  $F = \sqrt{|xy|}$ )

**PROP 1.5** 

# 1.1 Partial Converse

If all partial derivatives of  $F : \mathbb{R}^n \to \mathbb{R}$  exist near  $\vec{a}$  and are continuous at  $\vec{a}$ , then F is differentiable at  $\vec{a}$ .

PROOF FOR n = 2.

Let  $\lambda: \mathbb{R}^n \to \mathbb{R}$  be a linear transformation defined by  $\left[\partial_1 F \cdots \partial_n F\right]_{\vec{d}}$ . Then

$$\lambda(\vec{h}) = \sum_{i=1}^{n} \partial_i F(\vec{a}) h_i$$

Let n = 2. Then

$$|F(\vec{a} + \vec{h}) - F(\vec{a}) - \lambda(\vec{h})| = |F(a_1 + h_1, a_2 + h_2) - F(a_1 + h_1, a_2) + F(a_1 + h_1, a_2) - F(a_1, a_2) - \partial_1 F(\vec{a}) h_1 - \partial_2 F(\vec{a}) h_2|$$

$$\leq |F(a_1 + h_1, a_2 + h_2) - F(a_1 + h_1, a_2) - \partial_2 F(\vec{a}) h_2|$$

$$+ |F(a_1 + h_1, a_2) - F(a_1, a_2) - \partial_1 F(\vec{a}) h_1|$$

$$= |\partial_2 F(\vec{c}) h_2 - \partial_2 F(\vec{a}) h_2| + |\partial_1 F(\vec{d}) h_1 - \partial_1 F(\vec{a}) h_1|$$
by mean value thm.
$$= |\partial_2 F(\vec{c}) - \partial_2 F(\vec{a})| |h_2| + |\partial_1 F(\vec{d}) - \partial_1 F(\vec{a})| |h_1|$$

$$\frac{|F(\vec{a} + \vec{h}) - F(\vec{a}) - \lambda(\vec{h})|}{||\vec{h}||} = |\partial_2 F(\vec{c}) - \partial_2 F(\vec{a})| \frac{|h_2|}{||\vec{h}||} + |\partial_1 F(\vec{d}) - \partial_1 F(\vec{a})| \frac{|h_1|}{||\vec{h}||}$$

$$\leq |\partial_2 F(\vec{c}) - \partial_2 F(\vec{a})| \frac{|h_2|}{|h_2|} + |\partial_1 F(\vec{d}) - \partial_1 F(\vec{a})| \frac{|h_1|}{|h_1|}$$
since  $|h_i| < ||\vec{h}||$ 

Then, as  $\vec{h} \to 0$ ,  $\vec{c}$ ,  $\vec{d} \to \vec{a}$ . Since F, is continuous, we know  $F(\vec{c}) \to F(\vec{a})$  and similarly for  $F(\vec{d})$ . Thus,

 $= |\partial_2 F(\vec{c}) - \partial_2 F(\vec{a})| + |\partial_1 F(\vec{d}) - \partial_1 F(\vec{a})|$ 

$$|\partial_2 F(\vec{c}) - \partial_2 F(\vec{a})| + |\partial_1 F(\vec{d}) - \partial_1 F(\vec{a})| \rightarrow |\partial_2 F(\vec{a}) - \partial_2 F(\vec{a})| + |\partial_1 F(\vec{a}) - \partial_1 F(\vec{a})| = 0$$

And we conclude that the limit, as  $\leq$  and  $\geq$  0, is 0.

 $F: \mathbb{R}^n \to \mathbb{R}$  is called  $C^1$  continuous (or *continuously differentiable*) at  $\vec{a}$  if all partial exists near  $\vec{a}$  and are continuous at  $\vec{a}$ .

Note that the converse to our partial converse is *not* true: i.e. if F is differentiable at  $\vec{a}$ , it is not necessarily continuously differentiable at  $\vec{a}$ . Some counter examples include F(x, y) = |y| and  $F(x) = x^2 \sin(\frac{1}{x})$  s.t.  $x \ne 0$  and 0 otherwise.

DEF 1.14

We have an alternative and equivalent definition of differentiability. Let E be PROP 1.6 continuous and = 0 at 0. Let  $\lambda : \mathbb{R}^n \to \mathbb{R}$  be a linear transformation. Then

$$F(\vec{a} + \vec{h}) - F(\vec{a}) = \lambda(\vec{h}) + ||\vec{h}|| E(\vec{h})$$
  $\vec{h} \rightarrow \vec{0}$ (???  $\forall h$ )

implies differentiability.

# - 📤 Examples 📤 –

In our previous example, we prove (laboriously) that F(x, y) = xy is differentiable for all (a, b). We can now use Thm 1.1 to show this result: the partial derivatives  $F_x = y$  and  $F_y = x$  exist and are continuous  $\forall x, y \in \mathbb{R}$ , so F is differentiable  $\forall x, y \in \mathbb{R}$ .

# 1.2 Characterization of the Derivative

Let  $\vec{F} : \mathbb{R}^n \to \mathbb{R}^m$ . The derivative at  $\vec{a}$  exists if:

1.  $\exists$  a linear transformation  $\vec{\lambda} : \mathbb{R}^n \to \mathbb{R}^m$  satisfying

$$\lim_{\vec{h} \to \vec{0}} \frac{\|F(\vec{a} + \vec{h}) - F(\vec{a}) - \lambda(\vec{h})\|}{\|\vec{h}\|} = 0$$

2.  $\exists$  a linear transformation  $\vec{\lambda}: \mathbb{R}^n \to \mathbb{R}^m$  and a function E such that

$$F(\vec{a} + \vec{h}) - F(\vec{a}) = \lambda(\vec{h}) + ||\vec{h}||E(\vec{h})$$

and E(0) = 0 is continuous at 0.

Such a  $\lambda$  is unique when found, and is called the derivative. We denote it by  $D\vec{F}_{\vec{a}}$ .

# This follows from Def 1.12 and Thm 1.1.

PROOF.

We may represent the partial derivatives of  $\vec{F}: \mathbb{R}^n \to \mathbb{R}^m = \langle F_1, ..., F_m \rangle$  using a DEF 1.15 *Jacobian* matrix, denoted  $F'(\vec{a})$ , and defined as follows:

Let  $f: \mathbb{R}^n \to \mathbb{R}^m$  be differentiable at  $\vec{a} \in \mathbb{R}^n$ . Let  $g: \mathbb{R}^m \to \mathbb{R}^l$  be differentiable at PROP 1.7 Chain Rule

$$h = g \circ f : \mathbb{R}^n \to \mathbb{R}^l$$
 is differentiable at  $\vec{a}$ 

and  $D\vec{h}_{\vec{a}} = D\vec{g}_{\vec{b}} \circ D\vec{f}_{\vec{a}}$ . Furthermore, their Jacobians obey

$$h'(a) = g'(b)f'(a)$$

(matrix multiplication)

– 📤 Examples 📤 –

1. Consider  $f(x, y) = \langle x + y, x - y \rangle$  and  $g(x, y) = \frac{1}{4}x^2 - \frac{1}{4}y^2$ . Then  $h = g \circ f$ :  $\mathbb{R}^2 \to \mathbb{R}$  is given by

$$\frac{1}{4}(x+y)^2 - \frac{1}{4}(x-y)^2$$

Let  $\vec{a} = \langle a_1, a_2 \rangle$ . Then  $f(a) = b = \langle a_1 + a_2, a_1 - a_2 \rangle$ . What about the Jacobian of f?

$$f'(a) = \begin{bmatrix} \partial_1 f_1 & \partial_2 f_1 \\ \partial_1 f_2 & \partial_2 f_2 \end{bmatrix} \Big|_{(a_1, a_2)} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Similarly, for *g* we have

$$g'(b) = \begin{bmatrix} \partial_1 g & \partial_2 g \end{bmatrix} \Big|_{(a_1 + a_2, a_1 - a_2)} = \begin{bmatrix} \frac{1}{2}(a_1 + a_2) - \frac{1}{2}(a_1 - a_2) \end{bmatrix}$$

Then, by the chain rule, we multiple these two matrices to yield

$$\left[\frac{1}{2}(a_1 + a_2) - \frac{1}{2}(a_1 - a_2)\right] \cdot \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} a_2 & a_1 \end{bmatrix}$$

One can (less) manually find that  $h = g \circ f$  is xy, and conclude the same.

2. Let *S* be a surface in  $R^3$  given by F(x, y, z) = 0 (this is called a "level surface," e.g. xy - z = 0). Let P = (a, b, c) be a point on *F*, and let *C* be a curve in *S* containing *P*, parameterized by r(t).

Denote  $r(t) = \langle x(t), y(t), z(t) \rangle$ . Then  $g = F \circ r = F(x(t), y(t), z(t)) = 0$ . By chain rule, we have  $0 = g'(t_0) = F'(P) \cdot r'(t_0)$ , where we choose  $t_0$  such that  $r(t_0) = \langle a, b, c \rangle$ . Then, we observe that

$$0 = \nabla F(P) \cdot \vec{v}(t_0) \implies \nabla F(P) \perp \vec{v}(t_0)$$

Where  $\vec{v} = r'$  is the velocity vector of r. By considering all curves that satisfy our construction  $C \subset S$ , we yield the tangent plane of S at P with normal vector  $\vec{n} = \nabla F(P)$ . In particular, the point-normal form of the tangent plane of a surface F at P = (a, b, c) is given by

$$\partial_x F(P)(x-a) + \partial_y F(P)(y-b) + \partial_z F(P)(z-c) = 0$$

Let  $\mathbb{R}^n \to \mathbb{R}$ ,  $\vec{a}$ ,  $\vec{h} \in \mathbb{R}^n$ . Let l(t) = a + th. Then the *directional derivative* of F along h at a is given by  $(F \circ l)'(0)$ . The chain rule dictates that

$$(F \circ l)'(0) = F'(a)l'(0)$$
$$= \nabla F(a) \cdot h$$

which is a more useful form.