Leceure #6 Date flow.

- · C(x, s, in) = value of x before s
- · ((x, s, out) = value of x offer s

Rule 1: if
$$C(x, Pi, out) = x$$
 for any i
then $C(x, s, in) = x$

Rule 2:
$$C(X, P_i, out) = C R$$

 $C(X, P_i, out) = A R$
 $c(X, P_i, out) = A R$
 $c(X, S, in) = X$

Rule 3: if
$$\forall i, C(x, Pi, out) = C$$
 or \dagger
then $C(x, s, in) = C$

Rule 4: if
$$\forall i$$
, $C(X, P_{i,out}) = \#$
then $C(X, S, in) = \#$

$$\uparrow$$
 $C(x, P_i, out) \longrightarrow C(x, s, in)$

$$\frac{1}{X=C} \times = C$$

$$\frac{1}{X} \times = C$$

Rule 7.

Rule 8.

$$\frac{\int X=\alpha}{\int X=\alpha}$$

$$\frac{1}{\sqrt{X}=\alpha}$$

$$\frac{1}{\sqrt{X}=\alpha}$$

An Algerichm:

1. for every entry S to the program Set
$$C(5, X, in) = X$$

2. Set
$$C(S, X, in)$$

= $C(S, X, out)$
= $\#$
everywhere else

3. Repeat until all points sottesfy 1-8.

The Value

• To understand why we need #, look at a loop

Dynamic dispettch: Jet type

—> get method/ property.

Ordering

 \times is the greatest, # is the least.

the lub be the least-upper-bound.

About 1 - 4 -> C(x,s,in)

= lub { C(p, x, DUH) | p is a prodecessor of S}

Liveness Analysis. X := 3

Arabet X := 4

Not

Used Y := x X := 4 X :

