

SEQUENCE LISTING

<110> Genentech, Inc.

<120> COMPOSITIONS WITH HEMATOPOIETIC AND IMMUNE ACTIVITY

<130> 11669.162WOU1

<140> New Filing
<141> 2004-03-12

<150> US 60/454,462
<151> 2003-03-12

<150> US 60/511,390
<151> 2003-10-14

<160> 40

<170> PatentIn version 3.1

<210> 1
<211> 427
<212> DNA
<213> Artificial Sequence

<220>

<223> cDNA encoding a human Bv8 homologue

<400> 1

tgagggcgcc atgaggagcc tggctgcgc cccactcctg ctccctttgc tgctgccgcc	60
gctgctgctc acgcccccg cgctgggacgc cggcgatc accggggctt gtgacaagga	120
ctcccaatgt ggtggaggca tggctgtgc tgtcagtatc tgggtcaaga gcataaggat	180
ttgcacacct atgggcaaac tgggagacag ctgccatcca ctgactcgta aaaacaattt	240
tggaaatgga aggcaggaaa gaagaaaagag gaagagaagc aaaaggaaaa aggaggttcc	300
attttttggg cggaggatgc atcacacttg cccatgtctg ccaggcttgg cctgtttacg	360
gacttcattt aaccgattta ttgttagc ccaaaagtaa tcgctctgga gtagaaacca	420
aatgtga	427

<210> 2

<211> 129

<212> PRT

<213> Homo sapiens

<400> 2

Met Arg Ser Leu Cys Cys Ala Pro Leu Leu Leu Leu Leu Leu Pro	
1	5
	10
	15

Pro Leu Leu Leu Thr Pro Arg Ala Gly Asp Ala Ala Val Ile Thr Gly	
20	25
	30

Ala Cys Asp Lys Asp Ser Gln Cys Gly Gly Gly Met Cys Cys Ala Val
 35 40 45

Ser Ile Trp Val Lys Ser Ile Arg Ile Cys Thr Pro Met Gly Lys Leu
 50 55 60

Gly Asp Ser Cys His Pro Leu Thr Arg Lys Asn Asn Phe Gly Asn Gly
 65 70 75 80

Arg Gln Glu Arg Arg Lys Arg Lys Arg Ser Lys Arg Lys Lys Glu Val
 85 90 95

Pro Phe Phe Gly Arg Arg Met His His Thr Cys Pro Cys Leu Pro Gly
 100 105 110

Leu Ala Cys Leu Arg Thr Ser Phe Asn Arg Phe Ile Cys Leu Ala Gln
 115 120 125

Lys

<210> 3
<211> 423
<212> DNA
<213> Artificial Sequence

<220>
<223> cDNA encoding human Bv8 homologue

<400> 3
tgaggcgccc atgaggagcc tgtgtctgcgc cccactcctg ctctctttgc tgctgccgccc
gagggcgcca tgaggagcct gtgtgtcgcc ccactcctgc tcctcttgc gctgccccgg
ctgtgtctca cgccccggcgc tggggacgccc gccgtgatca cccggggcttg tgacaaggac
tcccaatgtg gtggaggcat gtgtgtgtgc gtcagtatct gggtaagag cataaggatt
tgcacaccta tgggcaaact gggagacagc tgccatccac tgactcgtaa agttccattt
tttggcgga ggatgcata cacttgccca tgtctgcccag gcttggcctg tttacggact
tcatttaacc gatttatatttgc tttagccaa aagtaatcgcc tctggagtag aaacccaaatg
tga
423

<210> 4
<211> 108
<212> PRT
<213> Homo sapiens

<400> 4

Pro Leu Leu Leu Thr Pro Arg Ala Gly Asp Ala Ala Val Ile Thr Gly
 20 25 30

Ala Cys Asp Lys Asp Ser Gln Cys Gly Gly Gly Met Cys Cys Ala Val
35 40 45

Ser Ile Trp Val Lys Ser Ile Arg Ile Cys Thr Pro Met Gly Lys Leu
 50 55 60

Gly Asp Ser Cys His Pro Leu Thr Arg Lys Val Pro Phe Phe Gly Arg
65 70 75 80

Arg Met His His Thr Cys Pro Cys Leu Pro Gly Leu Ala Cys Leu Arg
85 90 95

Thr Ser Phe Asn Arg Phe Ile Cys Leu Ala Gln Lys
100 105

<210> 5
<211> 1338
<212> DNA
<213> *Mus musculus*

<400>	5	
cggacgcgtg	ggcgtccccct aaccgccacc gcgtccccgg gacgccatgg gggaccccg	60
cttgtccccg	ctactgctac ttctgctgct accgctgctg ttcacaccgc ccggccgggga	120
tgcccgcggtc	atcacccgggg cttgcgacaa ggactctcag tgccggaggag gcatgtgctg	180
tgcgtgtcagt	atctgggtta agagcataag gatctgcaca cctatgggcc aagtggcga	240
cagctgccac	cccctgactc ggaaagttcc attttggggg cgaggatgc accacacctg	300
cccctgcctg	ccaggcttgg cgtgttaag gacttcttc aaccggttta tttgcttggc	360
ccggaaatga	tcactctgaa gtaggaactt gaaatgcgac cctccgctgc acaatgtccg	420
tcgagtcctca	cttgcatttgc tggcaaacaa agaatactcc agaaaagaaat gttctcccc	480
ttcccttgcact	ttccaagtaa cgtttctatc tttgattttt gaagtggctt ttttttttt	540
tttttttcc	tttccttgaa ggaaagttt gatTTTgga gagattata gaggactttc	600
gacatggct	tctcatttcc ctgttatgt tttgccttga cattttgaa tgccaataac	660
actgttttc	acaaatagga gaataagagg gaacaatctg ttgcagaaac ttccctttgc	720

cctttgcccc actcgccccc	ccccgccccg ccccgccctg	cccatgcgca gacagacaca	780
cccttactct tcaaagactc	tgatgatcct caccttactg	tagcattgtg ggtttctaca	840
cttccccgcc ttgctggtgg	accactgag gaggctcaga	gagctagcac tgtacaggtt	900
tgaaccagat ccccaagca	gctcatttgg ggcagacgtt	gggagcgctc caggaacttt	960
cctgcaccca tctggcccac	tggcttcag ttctgctgtt	taactggtgg gaggacaaaa	1020
ttaacgggac cctgaaggaa	cctggccagt ttatctagat	ttgtttaagt aaaagacatt	1080
ttctcccttgt tgtggaatat	tacatgtctt tttctttttt	atctgaagct tttttttttt	1140
ttctttaagt ctctttgttg	gagacatttt aaagaacgcc	actcgaggaa gcattgattt	1200
tcatytggca tgacaggagt	catcatttta aaaaatcggt	gttaagttat aatttaaact	1260
ttatttgtaa cccaaaggty	taatgtaaat ggatttcctg	atatcctgcc atttgtactg	1320
gtatcaatat ttytatgt			1338

<210> 6
<211> 107
<212> PRT
<213> *Mus musculus*

<400> 6

Met Gly Asp Pro Arg Cys Ala Pro Leu Leu Leu Leu Leu Leu Leu Pro
1 5 10 15

Leu Leu Phe Thr Pro Pro Ala Gly Asp Ala Ala Val Ile Thr Gly Ala
20 25 30

Cys Asp Lys Asp Ser Gln Cys Gly Gly Gly Met Cys Cys Ala Val Ser
 35 40 45

Ile Trp Val Lys Ser Ile Arg Ile Cys Thr Pro Met Gly Gln Val Gly
 50 55 60

Asp Ser Cys His Pro Leu Thr Arg Lys Val Pro Phe Trp Gly Arg Arg
65 70 75 80

Met His His Thr Cys Pro Cys Leu Pro Gly Leu Ala Cys Leu Arg Thr
85 90 95

Ser Phe Asn Arg Phe Ile Cys Leu Ala Arg Lys
100 105

<210> 7

<211> 1415
<212> DNA
<213> Artificial Sequence

<220>
<223> cDNA encoding human native EG-VEGF

<400> 7	
tggcctcccc agcttgccag gcacaaggct gagcgggagg aagcgagagg catctaagca	60
ggcagtgttt tgcottcacc ccaagtgacc atgagaggtg ccacgcgagt ctcaatcatg	120
ctcctcctag taactgtgtc tgactgtgtc gtgatcacag gggcctgtga gcgggatgtc	180
cagtgtgggg caggcacctg ctgtgccatc agcctgtggc ttcgagggtc gcggatgtgc	240
accccgctgg ggcgggaagg cgaggagtgc caccggca gccacaaggc ccccttcttc	300
aggaaaacgca agcaccacac ctgtccttgc ttgcccacc tgctgtgtc caggttcccc	360
gacggcaggt accgctgctc catggacttg aagaacatca attttttaggc gcttcctgg	420
tctcaggata cccaccatcc ttttcctgag cacagcctgg atttttatatt ctgccatgaa	480
acccagctcc catgactctc ccagtcccta cactgactac cctgatctt cttgtctagt	540
acgcacatat gcacacaggc agacataacct cccatcatga catggcccc aggctggcct	600
gaggatgtca cagcttgagg ctgtgggtgtc aaagggtggcc agcctgggtc ttttcctgc	660
tcaggctgcc agagaggtgg taaatggcag aaaggacatt cccctcccc tccccaggtg	720
acctgctctc tttcctgggc cctgcccctc tccccacatg tatccctcgg tctgaattag	780
acattcctgg gcacaggctc ttgggtgcat tgctcagagt cccaggtcct ggccctgaccc	840
tcaggccctt cacgtgaggt ctgtgaggac caatttgtgg gtatccatc ttccctcgat	900
tggtaactc cttagttca gaccacagac tcaagattgg ctcttccccag agggcagcag	960
acagtccaccc caaggcaggt gtagggagcc cagggaggcc aatcagcccc ctgaagactc	1020
tggtccccagt cagcctgtgg cttgtggcct gtgacctgtg accttctgcc agaattgtca	1080
tgcctctgag gccccctctt accacacttt accagttaac cactgaagcc cccaattccc	1140
acagcttttc cattaaaatg caaatggtgg tggttcaatc taatctgata ttgacatatt	1200
agaaggcaat taggggtgtt cttaaaacaa ctcccttcca aggatcagcc ctgagagcag	1260
gttgggtact ttgaggaggc cagtcctctg tccagattgg ggtgggagca agggacaggg	1320
agcagggcag gggctgaaag gggcactgtat tcagaccagg gaggcaacta cacaccaaca	1380
tgctggcttt agaataaaag caccaactga aaaaaa	1415

<210> 8
<211> 105
<212> PRT

<213> Homo sapiens

<400> 8

Met Arg Gly Ala Thr Arg Val Ser Ile Met Leu Leu Leu Val Thr Val
 1 5 10 15

Ser Asp Cys Ala Val Ile Thr Gly Ala Cys Glu Arg Asp Val Gln Cys
 20 25 30

Gly Ala Gly Thr Cys Cys Ala Ile Ser Leu Trp Leu Arg Gly Leu Arg
 35 40 45

Met Cys Thr Pro Leu Gly Arg Glu Gly Glu Glu Cys His Pro Gly Ser
 50 55 60

His Lys Val Pro Phe Phe Arg Lys Arg Lys His His Thr Cys Pro Cys
 65 70 75 80

Leu Pro Asn Leu Leu Cys Ser Arg Phe Pro Asp Gly Arg Tyr Arg Cys
 85 90 95

Ser Met Asp Leu Lys Asn Ile Asn Phe
 100 105

<210> 9

<211> 757

<212> DNA

<213> Artificial Sequence

<220>

<223> cDNA encoding native mouse EG-VEGF

<400> 9

gaagtggaggg	gtaccaaagt	agactgtgtt	tgtcgtaacc	tcaagtgate	atgagaggcg	60
ctgtgcata	tttcatcatg	ctccttctag	caacggagtc	cgactgtgcg	gtcatcacag	120
gggcctgtga	acgagatatac	cagtgtgggg	ccggcacctg	ctgcgcatac	agtctgtggc	180
tgccccccct	ggggttgtgt	accccactgg	ggcgtgaagg	agaggagtgc	cacccaggaa	240
gccacaagat	ccccttcttg	aggaaacgcc	aacaccatac	ctgtccctgc	tcacccagcc	300
tgctgtgctc	caggttcccg	gacggcaggt	accgctgctt	ccgggacttg	aagaataact	360
tttagtttgt	ctggactctg	tctggagcct	gactgggtga	cctcttgctt	tacacctgtg	420
tgatttagct	ccctgcaact	tcgcattcc	ccatcttgc	cgttatgtg	cagacaggca	480
gaccttccgc	tatggaatag	ttcaccaggg	tgcagagagg	agttcgtggc	cttgagaagt	540
tggccagccc	gaccttcctg	gctcagactg	cctgaagttg	tgacagtgtg	ggccttctca	600

gttgcctgcc ctttcctgca tgtgcgccttc ttccctaaacc acacctttct gggcactggc 660
 ccatggatgc accactaaat caacaggctt gtggggtgga tgatcaactt tctctccatt 720
 tttcttttat tgactggctt cctaatttaa ggactgt 757

<210> 10
 <211> 105
 <212> PRT
 <213> Mus musculus
 <400> 10

Met Arg Gly Ala Val His Ile Phe Ile Met Leu Leu Leu Ala Thr Ala
 1 5 10 15

Ser Asp Cys Ala Val Ile Thr Gly Ala Cys Glu Arg Asp Ile Gln Cys
 20 25 30

Gly Ala Gly Thr Cys Cys Ala Ile Ser Leu Trp Leu Arg Gly Leu Arg
 35 40 45

Leu Cys Thr Pro Leu Gly Arg Glu Gly Glu Cys His Pro Gly Ser
 50 55 60

His Lys Ile Pro Phe Leu Arg Lys Arg Gln His His Thr Cys Pro Cys
 65 70 75 80

Ser Pro Ser Leu Leu Cys Ser Arg Phe Pro Asp Gly Arg Tyr Arg Cys
 85 90 95

Phe Arg Asp Leu Lys Asn Ala Asn Phe
 100 105

<210> 11
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR primer

<400> 11
 tgggctacac tgagcaccag

20

<210> 12
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
<223> PCR primer

<400> 12
cagcgtcaaa ggtggaggag

20

<210> 13
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe

<400> 13
tggtcttcctc tgacttcaac agcgacac

28

<210> 14
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 14
ccattttttg ggcggagg

18

<210> 15
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 15
ccgtaaacag gccaaagcct

19

<210> 16
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe

<400> 16
tgcatcacac ttgccccatgt ctgc

24

<210> 17
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 17
ccggcagcca caaggtc 17

<210> 18
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 18
tgggcaagca aggacagg 18

<210> 19
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe

<400> 19
ccttcttcag gaaacgcaag caccac 26

<210> 20
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 20
ggcgcccttc tacggct 17

<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 21
tctccttcac gaacacggtg 20

<210> 22
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe

<400> 22
caccatcg~~t~~g cg~~c~~gacttct tcc 23

<210> 23
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 23
ggaaatgaca tctgtgttca tgc 23

<210> 24
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 24
tcattgtatg ttacgacttt gcagc 25

<210> 25
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe

<400> 25
cccgtgccc~~t~~ caagaagccg a 21

<210> 26
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 26
atgttcc~~a~~gt atgactccac tcacg 25

<210> 27
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 27
gaagacacca gtagactcca cgaca 25

<210> 28
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe

<400> 28
aagcccatca ccatcttcca ggagcgaga 29

<210> 29
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 29
cggaggatgc accacacc 18

<210> 30
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 30
ccggttggaaa gaagtccctta aaca 24

<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe

<400> 31
cccctgcctg ccaggcttgg 20

<210> 32
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 32
tgaggaaacg ccaacaccat 20

<210> 33
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 33
ccgggaacct ggagcac 17

<210> 34
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe

<400> 34
cctgtccctg ctcacccagc ctg 23

<210> 35
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 35
cagcgacat gaagacttg 19

<210> 36
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 36
gtcatcttcg gtttcctgag t 21

<210> 37
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe

<400> 37
tccaggcagc acccctgatg 20

<210> 38
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 38
gaactccacg tgagcgca 18

<210> 39
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 39
gggtccccatg ttgatgatgc t 21

<210> 40
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe

<400> 40
ctccctgata cacaccagcc cacctg 26