

Lecture 6

Electrical Design

Capacitance & Intro to ANSYS Q3D

Reminders and Announcements

- Office hours: Monday, 3:30pm-4:30pm
- Homework #1 due Monday, Feb. 10th, by 11:59pm (midnight)
 - Reminder: No late assignments will be accepted unless they are approved by the instructor prior to the deadline
- On Tuesday, we will continue the in-class ANSYS Q3D tutorial
 - Bring your laptops with the software installed to class

Capacitance (Overlapping Conductors)

- Q = CV
- Taking derivative:

$$\circ I = dQ/dt$$

$$\circ I = C dV/dt$$

- $C = \varepsilon A/d$
 - ε = permittivity
 - $\varepsilon = \varepsilon_r \varepsilon_0$
 - $\varepsilon_0 = 8.86 \times 10^{-12} \text{ F/m}$, permittivity of free space
 - \circ A = overlapping area
 - \circ d = distance

Example: Capacitance (Overlapping Conductors)

- Al₂O₃ substrate (e.g., DBC): $\varepsilon_r = 9.4$
- FR4 substrate (e.g., PCB): $\varepsilon_r = 4.4$
- $C = \varepsilon A/d = \varepsilon_0 \varepsilon_r A/d$
 - $\varepsilon_0 = 8.86 \times 10^{-12} \, \text{F/m}$
 - $\circ A = 10 \text{ mm x 4 mm} = 40 \text{ mm}^2$
 - \circ C = (8.86 x 10⁻¹² F/m)(ε_r)(4 x 10⁻⁵ m²) / (0.0005 m)
 - $C_{Al2O3} = 6.7 \text{ pF}$ (Q3D: 7.7 pF)
 - $\circ C_{FR4} = 3.12 \text{ pF}$ (Q3D: 3.7 pF)
- Substrate materials with higher relative permittivity (dielectric constant) have higher parasitic capacitance

Example: Capacitance (Adjacent Conductors)

- Formula for adjacent conductors with equal widths:
- $C' = 0.122 \ t/s + 0.0905 \ (1 + \varepsilon_r)a \ [pF/cm]$
- $a = \log (1 + 2 w/s + 2 \sqrt{w/s} + w^2/200)$
- *s* = distance between two adjacent conductors, mm
- *t* = thickness, mm
- w = conductor width, mm
- $\varepsilon = \text{permittivity}$
- C = C'l
- l = parallel running length, cm

Example: Capacitance (Adjacent Conductors)

- $C' = 0.122 \ t/s + 0.0905 \ (1 + \varepsilon_r)a \ [pF/cm]$
- $a = \log (1 + 2 w/s + 2 \sqrt{w/s} + w^2/200)$
- C = C'l

Find the capacitance between the adjacent traces.

 Al_2O_3 substrate (e.g., DBC): $\varepsilon_r = 9.4$

$$C' = 1.1 \text{ pF/cm}$$

$$C = 2.2 pF$$

(Q3D: 1.3 pF for $t_{Al2O3} = 1 \text{ mm}$)

(Q3D: 2.1 pF for $t_{Al2O3} = 5 \text{ mm}$)

Coupling Capacity vs Spacing

To decrease *C*:

- Increase spacing between conductors
- Decrease conductor width
- Choose materials with low dielectric constant
- > These will also impact the L, R, and thermal conductivity

High-Capacitance vs Low-Capacitance Layouts

- High parasitic capacitance
 - Wide traces
 - Large overlap area
 - Close adjacent traces

- Low parasitic capacitance
 - Reduced width
 - Eliminate overlap
 - Increase spacing between adjacent traces

Summary: Capacitance

- Capacitive delay: $\tau = RC$
- Overlapping conductors:
 - \circ $C = \varepsilon A/d$, where A = overlapping area

- \circ Decrease by decreasing overlapping area, increasing distance d, or using a material with lower dielectric constant ε_r
- Adjacent conductors:

•
$$C' = 0.122 \ t/s + 0.0905 \ (1 + \varepsilon_r)a \ [pF/cm]$$

•
$$a = \log (1 + 2 w/s + 2 \sqrt{w/s} + w^2/200)$$

•
$$C = C'l$$

 \circ Decrease by increasing spacing s between conductors, reducing t, w, and l of conductors, or using material with lower ε_r

Summary: Types

- Resistance
 - DC (temperature dependent)
 - AC (skin and proximity effects)
- Capacitance
 - Between overlapping conductors
 - Between adjacent conductors

- Inductance
 - Self/partial inductance
 - Mutual inductance
 - Total/loop/effective inductance

Summary: Consequences

- Resistance
 - Power loss
 - Heating
 - Ground bounce

- Capacitance
 - Delay
 - Noise
 - Oscillation

- Inductance
 - Delay
 - Noise
 - Oscillation
 - Voltage overshoot

Summary: Mitigation Approaches

Resistance

- DC increase conductivity, decrease length, increase area
- AC increase circumference/ perimeter, multiple smaller conductors in parallel

Capacitance

- Minimize overlapping areas
- Increase spacing between traces/interconnects
- Low dielectric constant

Inductance

- Reduce loop area
- Decrease conductor length
- Decrease spacing between the source and return paths
- Increase spacing between conductors with same current direction
- Use decoupling capacitors
- Arrange conductors perpendicular to minimize unwanted coupling

Finite Element Analysis (FEA)

- Take a complex problem
- Break it into small pieces (a <u>finite</u> number of <u>elements</u>)
- Simplify each piece (simple relationships)
- Re-assemble the pieces (matrix equations)
- Solve the problem (matrix manipulation)

Parasitic Extraction

- The calculation of the parasitic effects: parasitic capacitances, parasitic resistance, and parasitic inductances
- The purpose is to create an accurate analog model of the circuit, so that the simulations better-emulate the circuit behavior
- Behaviors of interest include delay and rise times, oscillations, overshoots, crosstalk, and EMI
- Tools:
 - ANSYS Q3D Extractor (used in this course)
 - FastCap and FastHenry (<u>free tool</u> from MIT)

Package Equivalent Circuit

Physical Package Structure

Molding Compound Gold Wirebond Epoxy Die Attach IC Die Gold-plated Die Attach **BT Resin Glass Epoxy** Solder Ball Plated-Through Hole Solder Copper Foil Pads Mask & Interconnect Substrate: BT resin glass epoxy Die Attach: Silver-filled epoxy Wire: Gold

Figure 7-3. OMPAC Ball Grid Array From Motorola

Equivalent Electrical Circuit

Figure 7-4. The Equivalent Schematic for a BGA Package for Adjacent Signal to Signal Lines and for Ground Lines

Source: Mitsubishi Electronic Device Group/ICE, "Roadmaps of Packaging Technology"

Cover: Custom molding compound

Source: Motorola/ICE, "Roadmaps of Packaging Technology"

22403

ANSYS Electronics Desktop Overview

ANSYS Q3D Extractor

- Quasi-static 3D electromagnetic field analysis
- Uses method of moments (MoM)
 - MoM: solves integral form of Maxwell's equations
- Uses fast multipole method (FMM) to accelerate the solution of the integral equation

- Results include:
 - Proximity effect
 - Skin effect
 - Dielectric and ohmic loss
 - Frequency dependencies
- Extracts lumped RLGC parameters and spice models
 - R = resistance (DC and AC)
 - L = inductance (DC and AC)
 - \circ G = conductance
 - C = capacitance

ANSYS Q3D Extractor: Resistance

- DC resistance
 - Resistance under DC
 - Independent of frequency
- AC resistance
 - Assumes skin effect is well developed
 - Depends on frequency
- Q3D can add the two when exporting the equivalent circuit
 - "Add DC and AC Resistance"

ANSYS Q3D Extractor: Inductance

- DC inductance
 - No skin effect considered
 - Independent of frequency
- AC inductance
 - Assumes skin effect is well developed
 - Depends on frequency
 - Self-inductance of the conductor decreases as skin depth decreases (as frequency increases)

19

ANSYS 2D Extractor

Q3D

- Quasi-static 2D electromagnetic field analysis
- Used for cables and transmission lines
- Uses finite element method (FEM)
 - Finite element method: divides the system into smaller, simpler parts (finite elements, mesh)
- Results include:
 - Per-unit-length R, L, C, G parameters of transmission lines
 - Characteristic impedance Z₀ matrices
 - Propagation delay
 - Crosstalk

ECE 4254/5224: Electronics Packaging 20 February 6, 2025

ANSYS Q3D Process Flow

21

1. Create 3D Structure

- After you insert a design into the project, you can draw/import a model of the structure to be analyzed
- You can draw the 3D object using the modeler's Draw commands

- You can import 3D models
 - Modeler → Import
 - step file is recommended

2. Add Excitations

- Assign excitations
 - Select object face (press 'F' key) → Right-click → Assign Excitation
 - Types of excitations: source, and sink
 - The sink collects the current injected at the source
 - Required for L and R simulations (not needed for C)
- Boundaries
 - Do not need to be assigned
 - Types of boundaries: infinite ground plane, and thin conductor

3. Assign Nets

- A net is a collection of touching conductors
- Nets can only be assigned to conductive materials
- Nets can be automatically identified
 - Right-click on Nets → Auto Identify Nets
- Nets can be assigned
 - Right-click on Nets → Assign Net
 - Types of nets: signal, floating, ground

4. Set Up Solution

- Solution setup includes:
 - General data about the solution's generation
 - Solution frequency
 - Solution selection (CG, DC RL, AC RL)
 - Adaptative mesh refinement parameters
- Solution setup must be added to run the analysis
 - Right-click Analysis → Add Solution Setup

5. Solve

- Validate setup
 - Simulation tab → Validate
- Solve
 - Simulation tab → Analyze All

6. Post Process

- View solution data
 - Convergence information, computing resources used, matrices during each adaptive
- View analysis results
 - Results tab → Solution Data
- Plot field overlays
- Create 2D or 3D reports
- Plot the finite element mesh

ANSYS Help

Q3D Extractor Help

