Chapter 0: Some brief recalls ("Sandbox") Refresher Courses in Analysis

Guendalina PALMIROTTA

University of Luxembourg, Department of Mathematics

September 2, 2023

UNIVERSITY OF LUXEMBOURG
Department of Mathematics

1 0.1. Some recall on metric spaces

2 0.2. Some recall on normed vector spaces and operators

Definitions and properties of metric spaces

Definition 1

- (distance) Let X be a non-empty space. A **distance** $d: X \times X \to [0, \infty)$ verifies the 3 properties: $\forall x, y, z \in X$:
 - (i) symmetry: d(x, y) = d(x, y).
 - (ii) pos. definiteness: $d(x,y) = 0 \iff x = y$.
 - (iii) Δ -inequality: $d(x,y) \leq d(x,z) + d(z,y)$.
- (metric space) If d is a distance on X, then (X, d) is a **metric space**.
- (Cauchy seq.) $(x_n)_{n\in\mathbb{N}}$ is a **Cauchy seq.** : $\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \text{s.t.} \; \forall n, m \in \mathbb{N}$

$$d(x_n, x_m) < \epsilon$$
.

(completeness) A metric space (X, d) is complete if every Cauchy seq. in X converges in X.

Proposition 1

Let (X, d) be a complete metric space.

If Y is a closed subset of X then (Y, d) is a complete metric space.

Continuity and Lipschitz continuity

Definition 2

Let (X, d_x) and (Y, d_y) be 2 metric spaces.

• (continuity) A function $f: X \to Y$ is **continuous** in $x_0 \in X$ if $\forall \epsilon > 0 \ \exists \delta > 0$ s.t. $d_x(x_0, x) < \delta$ then

$$d_y(f(y_0), f(x)) < \epsilon.$$

If f is continuous in x_0 , $\forall x_0 \in X$, we say that f is continuous on X.

• (Lipschitz cont.) A function $f: X \to Y$ is **Lipschitz continuous** $\iff \exists$ a constant $L \in [0, \infty)$ s.t. $\forall x_1, x_2 \in X$, we have

$$d_y(f(x_1), f(x_2)) \leq Ld_x(x_1, x_2).$$

L is called the **Lipschitz constant**.

1 0.1. Some recall on metric spaces

2 0.2. Some recall on normed vector spaces and operators

Definitions and properties of normed vector spaces

Definition 3

Let V be a non-empty vector space (v.s.).

- (norm) A **norm** on V is a function $||\cdot||:V\to [0,\infty)$ satisfying the 3 axioms: $\forall x,y\in V$ and $\lambda\in\mathbb{R}$
 - (i) pos. definiteness: $||x|| = 0 \Rightarrow x = 0$.
 - (ii) absolute homogeneity: $||\lambda x|| = |\lambda|||x||$.
 - (iii) Δ -ineq. : $||x + y|| \le ||x|| + ||y||$.
- (normed v.s.) If $||\cdot||$ is a norm on V, then $(V, ||\cdot||)$ is a **normed v.s.**.
- (Banach space) A Banach space is complete normed v.s.
- (linear maps and operators) Let $(V, ||\cdot||_V), (W, ||\cdot||_W)$ be 2 finite-dimensional normed v.s. over $\mathbb R$ or $\mathbb C$. Denote by $\mathcal L(V,W)$ be the **v.s.** of linear map $A:V\to W$. We define the operator of A by

$$||A||_{\mathsf{op}} = ||A|| := \sup\{||Av||_W | v \in V, ||v|| = 1\}.$$

Examples

(1) Typical distances:

$$d_2:(x,y) \mapsto \sqrt{\sum_{i=1}^n |x_i-y_i|^2}, \ n\in\mathbb{N} \ ext{(Euclidean distance on } \mathbb{R}^n ext{)}$$
 $d_p:(x,y) \mapsto \left(\sum_{i=1}^n |x_i-y_i|^p
ight)^{1/p}, \ p\in[1,\infty) \ ext{(generalization)}$ $d_\infty:(x,y) \mapsto \max_{i\in\{1,\dots,n\}} |x_i-y_i|, \ n\in\mathbb{N}.$

(2) The corresponding normed distances:

$$||\cdot||_2=d_2:x \mapsto \sqrt{\sum_{i=1}^n|x_i|^2}, \ n\in\mathbb{N} \ ext{(Euclidean norm on }\mathbb{R}^n ext{)}$$
 $||\cdot||_p=d_p:x \mapsto \left(\sum_{i=1}^n|x_i|^p
ight)^{1/p}, \ p\in[1,\infty)$ $||\cdot||_\infty=d_\infty:x \mapsto \max_{i\in\{1,\dots,n\}}|x_i|, \ n\in\mathbb{N}.$

Some important properties

Property of normed operators

Proposition 2

Let $(V, ||\cdot||_V)$, $(W, ||\cdot||_W)$ 2 f.-d. normed v.s. over $\mathbb R$ or $\mathbb C$ and $||A||_{\mathcal L(V,W)} < \infty \ \forall A \in \mathcal L(V,W)$. **Then**, for every $v \in V$, we have

$$||Av||_{W} \leq ||A||_{\mathcal{L}(V,W)} ||v||_{W}.$$

Connection between diff. and Lipschitz continuity

Lemma 1

Let $U \subset \mathbb{R}^n$ be open, $f: U \to \mathbb{R}^k$ diff. fct. and $A \subset U$ convex s.t. $df|_A: A \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^k)$ is bounded, i.e. $\exists C \ ||df(x)||_{\mathcal{L}(\mathbb{R}^n, \mathbb{R}^k)} \leq C \ \forall x \in A$. **Then**, f is Lipschitz cont. on A with Lipschitz constant

$$L = \sup_{x \in A} ||df(x)||_{\mathcal{L}(\mathbb{R}^n, \mathbb{R}^k)}.$$

In particular, if f is cont. diff., then f is Lipschitz cont on each **compact** subset $\overline{A \subset U}$, e.g. on closed balls.