Predicting Salary from Experience

This project predicts salary based on years of experience. We use machine learning to make accurate predictions. It demonstrates a complete machine learning workflow.

	Name	Name	Date	Natue	Date	Date	Value	Nane	Palue	Colte	Nalue
				-							
						i e					
15,0	0	8,30		14,20	744		17,00		19,30		14.0

Dataset Overview

Dataset Name	Salary_dataset.csv
Rows	30
Columns	3 (YearsExperience, Salary, Unnamed: 0)
Characteristics	Small, clean, no missing values

Our dataset is small and clean. It focuses on two key features for prediction.

Preprocessing Steps

Missing Values Check

Confirmed no missing values were present.

Duplicate Removal

No duplicate rows were found in the dataset.

Outlier Handling

Used the IQR method to remove extreme values.

Feature Scaling

Applied Min-Max and Standard Scaling techniques.

Data preprocessing ensures our model performs optimally. We focused on cleaning and normalizing the data.

Machine Learning Modeling

Data Preparation

Cleaned and scaled data is essential.

Model Selection

Linear Regression is chosen for simplicity.

Training & Testing

The model learns from prepared data.

Linear Regression establishes the relationship between experience and salary. It uses our preprocessed data for accurate insights.

Model Evaluation

Mean Squared Error (MSE)

Quantifies prediction accuracy and error.

R² Score (R-Squared)

Indicates explained variance in salary.

Evaluation metrics are crucial for understanding model performance. MSE and R² help assess prediction quality.

Key Findings

Experience-Salary Link	Outlier Impact	Scaling Benefits
Strong positive relationship observed.	Outliers can reduce model accuracy.	Scaling improves overall performance.

Our analysis reveals a clear link: more experience leads to higher salaries. Proper data handling significantly boosts model accuracy.

Conclusion and Future Steps

This project showcased a complete ML pipeline. It confirms that experience is a primary salary determinant. Effective preprocessing ensures model accuracy.