Entrega 1: Modelo de detección de tumores cerebrales

Profesores:

Julian David Arias Londoño Raúl Ramos Pollán

Integrantes:

Kadyha Paz Gutierrez Sebastián Londoño Tobón

Contactos:

<u>kadyha.paz@udea.edu.co</u> <u>sebastian.londono9@udea.edu.co</u>

Universidad de Antioquia
Facultad de ingeniería
2021

Contexto de aplicación

Los tumores cerebrales malignos son una de las formas de cáncer más letales y causan más de 14.000 muertes cada año. A pesar de las investigaciones que se han llevado a cabo durante varias décadas, la mediana de supervivencia general aún se mantiene en solo 15 meses para el glioma maligno común, glioblastoma. [1] Los gliomas y tumores cerebrales metastásicos representan aproximadamente un 30% del total de los tumores cerebrales que se diagnostican en seres humanos. [2]

Con un número tan grande, es muy importante que se emplee un sistema de apoyo para diagnosticar los casos de tumores cerebrales de manera precisa y eficiente. Además, las imágenes de resonancia magnética (MRI) se han establecido como una de las herramientas más efectivas para el diagnóstico clínico. [2] Por lo que este trabajo aprovecha imágenes de resonancia magnética (cortes axiales) para crear un modelo capaz de detectar tumores cerebrales.

Objetivo de machine learning

Crear un modelo de detección de tumores cerebrales, es decir, un modelo de clasificación entre imágenes de tumores cerebrales e imágenes de cerebros sin tumores. Para esto se usará un conjunto de MRI del cerebro.

Dataset

El dataset que se va a utilizar fue extraído de kaggle, se llama Brain_Tumor_Detection_MRI y se trata de un conjunto de MRI con un total de 3060 imágenes, las cuales tienen un tamaño en disco de 69.87MB y se dividen en 3 grupos, los cuales son llamados, *yes*, *no* y *pred*. El conjunto *yes* contiene 1500 MRI con tumores cerebrales, el conjunto *no* contiene 1500 MRI sin tumores cerebrales y el conjunto *pred* contiene 60 imágenes de resonancia magnética sin clasificar. [3]

Métricas de desempeño

Cabe resaltar que en este caso se evalúa un problema médico y se trata de un tema delicado, además el modelo no tendrá una precisión del 100%, por lo tanto, no debería confiarse plenamente en la predicción de este modelo, en consecuencia, en caso de usarse en producción, podría ser usado como apoyo o guía, pero no como un diagnóstico.

Para este proyecto se espera alcanzar un precisión de por lo menos, un 80%, además para visualizar los resultados se usará el accuracy y la matriz de confusión.

Referencias y resultados previos

- [1] Y. Liu, A. Carpenter, H. Yuan, Z. Zhou, M. Zalutsky, G. Vaidyanathan, H. Yan, T Vo-Dinh, Goldnanostar as theranostic probe for brain tumor sensitive PET-optical imaging and image-guided specific photothermal therapy, Cancer Res. 76 (14) (2016) 4213.
- [2] Sarkar, Sobhangi & Kumar, Avinash & Chakraborty, Sabyasachi & Aich, Satyabrata & Sim, Jong-Seong & Kim, Hee-Cheol. (2020). A CNN based Approach for the Detection of Brain Tumor Using MRI Scans. Test Engineering and Management. 83. 16580 16586. Disponible en:
 https://www.researchgate.net/publication/342048436_A_CNN_based_Approach_for_the_Detection_of_Brain_Tumor_Using_MRI_Scans
- [3] Brain_Tumor_Detection_MRI. (2021). Disponible en: https://www.kaggle.com/abhranta/brain-tumor-detection-mri
- [4] Özyurt, F., Sert, E., Avci, E., & Dogantekin, E. (2019). Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy. Measurement, 147, 106830. doi: 10.1016/j.measurement.2019.07.058
- [5] Bhattacharyya, D., & Kim, T. (2011). Brain Tumor Detection Using MRI Image Analysis. Communications In Computer And Information Science, 307-314. doi: 10.1007/978-3-642-20998-7_38
- [6] Bhattacharyya, D., & Kim, T. (2011). Brain Tumor Detection Using MRI Image Analysis. Communications In Computer And Information Science, 307-314. doi: 10.1007/978-3-642-20998-7_38
- [7] Gokila Brindha, P., Kavinraj, M., Manivasakam, P., & Prasanth, P. (2021). Brain tumor detection from MRI images using deep learning techniques. IOP Conference Series: Materials Science And Engineering, 1055(1), 012115. doi: 10.1088/1757-899x/1055/1/012115