SDE and Score-based Diffusion

Weiyao Huang

Last Update: 2023.12.26

Sampling from a distribution

Many of the tasks in the field of generative AI can be formalized as sampling specific distribution.

Sampling from a distribution

Many of the tasks in the field of generative AI can be formalized as sampling specific distribution.

- Image generation: $P_D(X \mid c)$.
- Text generation: $P_D(X_i \mid X_1, X_2, ..., X_{i-1})$

Inversion Method: 1-Dimensional Case

To sample from P(X):

- 1. Cumulative distribution func. $\Phi(x) = P(X \le x) \in [0, 1]$;
- 2. Sample $Y \sim \text{Uniform}([0, 1]);$
- 3. Let $X = \Phi^{-1}(Y)$.

Metropolis-Hastings algorithm (MCMC) [1]

(Review of DMS lecture)

To sample $x \sim \pi$, we find a P s.t. $\pi P = \pi$, and sample from νP^n .

Theorem of detailed balance: If $\pi(x)P(y|x) = \pi(y)P(x|y)$, then $\pi P = \pi$.

To construct P, let Q be a markov chain:

$$Q(x|y) > 0 \Leftrightarrow Q(y|x) > 0.$$

Metropolis-Hastings algorithm (MCMC) [1]

We sample $y \sim Q(\cdot | x)$, and

- output y w.p. $a_{x,y}$ (accept);
- or output x w.p. $1 a_{x,y}$ (reject).

where
$$P(y|x) = a_{x,y}Q(y|x)$$
 if $x \neq y$.

For detailed balance,

$$\pi(x)a_{x,y}Q(y|x) = \pi(y)a_{y,x}Q(x|y).$$

Let
$$a_{x,y} = \min\Bigl(\frac{\pi(y)Q(x|y)}{\pi(x)Q(y|x)},1\Bigr)$$
, then P is constructed.

Challenges

- 1. Precise mass func. is often difficult to give. Most of the time only samples are given.
- 2. Hypothesis space is very high dimensional (10^6 for image of resolution 1024×1024), which leads to very complex distribution.
- 3. Given samples are often too sparse to "recover" the distribution.

Power of Differential Methods

Calculate maximal point of $f: \mathbb{R}^s \to \mathbb{R}$?

There are a family of methods called gradient descenting algorithms.

Power of Differential Methods

Calculate maximal point of $f: \mathbb{R}^s \to \mathbb{R}$?

There are a family of methods called gradient descenting algorithms.

Sampling by mass func. looks like a randomized version of maximal point problem.

To achieve that, let's introduce some stochastic differential gadgets.

Stochastic Differential Equation

A general SDE is presented [2]

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \boldsymbol{f}(\boldsymbol{x}, t) + \boldsymbol{g}(\boldsymbol{x}, t)\boldsymbol{w}(t).$$

 $x(t) \in \mathbb{R}^s$, $g(x,t) \in \mathbb{R}^{s \times s}$, $w(t) \in \mathbb{R}^s$ is a white noise process.

White Noise Process

A white noise process w(t) is a random func. satisfying

1. w(t) and w(t') are independent if $t \neq t'$

$$\mathbb{E}[\boldsymbol{w}(t)] = \mathbf{0}.$$

White Noise Process

A white noise process w(t) is a random func. satisfying

1. w(t) and w(t') are independent if $t \neq t'$

$$\mathbb{E}[\boldsymbol{w}(t)] = \mathbf{0}.$$

2. the mapping $t \mapsto w(t)$ is a **Guassian process** with zero mean Dirac delta correlation [3]

$$E[\boldsymbol{w}(t)\boldsymbol{w}^T(s)] = \delta(t-s)\boldsymbol{Q}.$$

where
$$\delta(x) \simeq \begin{cases} +\infty & x=0 \\ 0 & x\neq 0 \end{cases}$$
, $\int_{\mathbb{R}} \delta(x) \, \mathrm{d}x = 1$; Q is the spectral density.

Figure 2: A possible trajectory of white noise

Itô Calculus [2]

$$\int_{t_0}^t \boldsymbol{g}(\boldsymbol{x}(t),t) \, \mathrm{d}\boldsymbol{\beta}(t) \stackrel{\text{\tiny def}}{=} \lim_{n \to \infty} \sum_{k=1}^n \boldsymbol{g}(\boldsymbol{x}(t_k),t_k) [\boldsymbol{\beta}(t_k) - \boldsymbol{\beta}(t_{k-1})].$$

where $t_0 < t_1 < \dots < t_n = t, \beta : \mathbb{R} \to \mathbb{R}^s$ denotes Brownian motion, a continuous stochastic process:

Itô Calculus [2]

$$\int_{t_0}^t \boldsymbol{g}(\boldsymbol{x}(t),t) \, \mathrm{d}\boldsymbol{\beta}(t) \stackrel{\text{\tiny def}}{=} \lim_{n \to \infty} \sum_{k=1}^n \boldsymbol{g}(\boldsymbol{x}(t_k),t_k) [\boldsymbol{\beta}(t_k) - \boldsymbol{\beta}(t_{k-1})].$$

where $t_0 < t_1 < \dots < t_n = t, \beta : \mathbb{R} \to \mathbb{R}^s$ denotes Brownian motion, a continuous stochastic process:

- 1. Brownian motion is nowhere differentiable.
- 2. White noise can be considered as the formal (or weak) derivative of Brownian motion, $w(t) = \frac{d\beta(t)}{dt}$.

Figure 3: A possible trajectory of Brownian motion

Itô Diffusion

$$dx = f(x, t) dt + g(x, t) d\beta.$$

$$\boldsymbol{x}(t) - \boldsymbol{x}(t_0) = \int_{t_0}^{t} \boldsymbol{f}(\boldsymbol{x}(t), t) dt + \int_{t_0}^{t} \boldsymbol{g}(\boldsymbol{x}(t), t) \boldsymbol{w}(t) dt.$$

- 1. f(x,t) is called the *drift function*, which determines the nominal dynamics of the system;
- 2. g(x, t) is the *dispersion matrix*, which determines how the noise enters the system.

Sampling through Stochastic Process

Consider r.v. $x_{\rm prior}$ drawn from a prior distribution $p_{\rm prior}$, typically a Guassian. Then we construct a stochastic process for x so that $x_{\rm target} \sim p_{\rm target}$.

Sampling through Stochastic Process

Consider r.v. $m{x}_{
m prior}$ drawn from a prior distribution $p_{
m prior}$, typically a Guassian. Then we construct a stochastic process for $m{x}$ so that $m{x}_{
m target} \sim p_{
m target}$.

But this kind of process is difficult to construct or learn, since we know nothing about $p_{\rm target}$.

Sampling through Stochastic Process

Consider r.v. $m{x}_{
m prior}$ drawn from a prior distribution $p_{
m prior}$, typically a Guassian. Then we construct a stochastic process for $m{x}$ so that $m{x}_{
m target} \sim p_{
m target}$.

But this kind of process is difficult to construct or learn, since we know nothing about $p_{\rm target}$.

Consider another approach: Given $x_0 \sim p_0 = p_{\rm target}$, construct a process for x so that $x_T \sim p_T = p_{\rm prior}$, then we do the reverse process to draw samples.

Reversed SDE [4]

Let's say $\mathbf{x} \sim p(\mathbf{x}, t)$. Define $\mathbf{G} = \mathbf{g}(\mathbf{x}, t)\mathbf{g}(\mathbf{x}, t)^T$. then the reversed process is given by

$$\begin{split} \mathrm{d} \boldsymbol{x} &= \overline{\boldsymbol{f}}(\boldsymbol{x},t)\,\mathrm{d} t + \boldsymbol{g}(\boldsymbol{x},t)\,\mathrm{d} \overline{\boldsymbol{\beta}} \\ \overline{\boldsymbol{f}}^i(\boldsymbol{x},t) &= f^i(\boldsymbol{x},t) - \left[\sum_j \nabla_{x_j} \ln p(\boldsymbol{x},t) \boldsymbol{G}_{ij} + \frac{\partial \boldsymbol{G}_{ij}}{\partial x_j} \right] \\ \mathrm{d} \overline{\boldsymbol{\beta}} &= \mathrm{d} \boldsymbol{\beta} + \frac{1}{p(\boldsymbol{x},t)} \sum_{j,k} \nabla_{x_j} \big[p(\boldsymbol{x},t) g^{jk}(\boldsymbol{x},t) \big] \,\mathrm{d} t. \end{split}$$

Reversed SDE: Simplified Version

When g only depends on t and g(t) = g(t)I, the reversed process is simplified as

$$\begin{split} \mathrm{d}\boldsymbol{x} &= \left[\boldsymbol{f}(\boldsymbol{x},t) - g^2(t)\nabla \ln p(\boldsymbol{x},t)\right] \mathrm{d}t + g(t)\,\mathrm{d}\overline{\boldsymbol{\beta}} \\ \mathrm{d}\overline{\boldsymbol{\beta}} &= \mathrm{d}\boldsymbol{\beta} + g(t)\|\nabla \ln p(\boldsymbol{x},t)\|_1\,\mathrm{d}t. \end{split}$$

By simulating this process, we can draw samples $\sim p(x,0)$.

Figure 4: Score-based generative modeling through SDEs [5]

Example I: SMLD [5]

Consider the following Markov Chain $(1 \le i \le N)$:

$$m{x}_i = m{x}_{i-1} + \sqrt{\sigma_i^2 - \sigma_{i-1}^2} m{z}_{i-1}.$$

where $\boldsymbol{z}_{i-1} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$.

Example I: SMLD [5]

Consider the following Markov Chain $(1 \le i \le N)$:

$$m{x}_i = m{x}_{i-1} + \sqrt{\sigma_i^2 - \sigma_{i-1}^2} m{z}_{i-1}.$$

where $\boldsymbol{z}_{i-1} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$.

Let $N \to +\infty$ to make it continuous, the process is given by

$$\mathrm{d}x = \sqrt{\frac{\mathrm{d}\sigma^2(t)}{\mathrm{d}t}}\,\mathrm{d}\beta.$$

Example II: DDPM [5]

Consider the following Markov Chain $(1 \le i \le N)$:

$$\boldsymbol{x}_i = \sqrt{1 - c_i} \boldsymbol{x}_{i-1} + \sqrt{c_i} \boldsymbol{z}_{i-1}.$$

where $\boldsymbol{z}_{i-1} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$.

Example II: DDPM [5]

Consider the following Markov Chain $(1 \le i \le N)$:

$$\boldsymbol{x}_i = \sqrt{1 - c_i} \boldsymbol{x}_{i-1} + \sqrt{c_i} \boldsymbol{z}_{i-1}.$$

where $\boldsymbol{z}_{i-1} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$.

Let $N \to +\infty$ to make it continuous, the process is given by

$$d\mathbf{x} = -\frac{1}{2}c(t)\mathbf{x} dt + \sqrt{c(t)} d\beta.$$

SDE Simulation

$$d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - g^2(t)\nabla \ln p(\mathbf{x}, t)] dt + g(t) d\overline{\beta}.$$

The remaining problem is:

1. How to simulate a stochastic process (SDE)?

SDE Simulation

$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - g^2(t) \nabla \ln p(\mathbf{x}, t) \right] dt + g(t) d\overline{\beta}.$$

The remaining problem is:

- 1. How to simulate a stochastic process (SDE)?
 - Brownion motion can be approximated by Guassian kernel.
- 2. How to calculate $\nabla \ln p(x,t)$?

SDE Simulation

$$\mathrm{d}\boldsymbol{x} = \left[\boldsymbol{f}(\boldsymbol{x},t) - g^2(t)\nabla \ln p(\boldsymbol{x},t)\right]\mathrm{d}t + g(t)\,\mathrm{d}\overline{\boldsymbol{\beta}}.$$

The remaining problem is:

- How to simulate a stochastic process (SDE)?
 Brownion motion can be approximated by Guassian kernel.
- 2. How to calculate $\nabla \ln p(x, t)$?

 Model it using deep neural network.

References

- [1] Wikipedia contributors, "Metropolis–Hastings algorithm --- Wikipedia, The Free Encyclopedia". [Online]. Available: https://en.wikipedia.org/w/index.php?title=Metropolis%E2%80%93 <a href="https://en.wikipedia.org/w/index.php?title=Metropolis%E2%80%93 <a href="https://en.wikipedia.org/w/index.php?title=Metropolis%E2%80%93 <a href="https://en.wikipedia.org/w/index.php?title=Metropolis%E2%80%93 <a href="https://en
- [2] S. Särkkä and A. Solin, *Applied Stochastic Differential Equations*. 2019. [Online]. Available: https://users.aalto.fi/~ssarkka/pub/sde_book.pdf
- [3] Wikipedia contributors, "Dirac delta function --- Wikipedia, The Free Encyclopedia". [Online]. Available: https://en.wikipedia.org/w/index.php?title=Dirac_delta_function&oldid=1191296053
- [4] B. D. Anderson, "Reverse-time diffusion equation models", *Stochastic Processes and their Applications*, vol. 12, no. 3, pp. 313–326, 1982, doi: https://doi.org/10.1016/0304-4149(82)90051-5.
- [5] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, "Score-Based Generative Modeling through Stochastic Differential Equations". 2021.