## 7. EJERCICIO EXPERIMENTAL.

## 7.1. Material.

- 1 transistor BD137 o BC107 (npn)
- 1 transistor BD138 (pnp)
- 1 resistencia de  $10K\Omega$ , 1/4W.
- 1 resistencia de 1K $\Omega$ , 1/4W.

## 7.2. Proceso.

1.- Con los transistores que se proporcionan averiguar cuáles son sus terminales, indicar si son *pnp* o *npn* y dibujarlos de modo que se pueda apreciar la forma de su encapsulado y la situación de sus terminales.

2.- Si se dispone de polímetro con medidor del parámetro β, medirlo e indicarlo:

3.- Introducir una tensión  $V_{BB}$  senoidal de  $5V_{pp}$  y 100Hz,  $V_{CC}=5V$ ,  $R_B=10K\Omega$  y  $R_L=1K\Omega$ . Representar dos periodos de la tensión  $V_{CE}$  e  $I_C$ . (no se realizan de manera simultánea)







4.- Señalar en la representación anterior las distintas zonas de trabajo en las que se encuentra el transistor, señalando también los puntos de disipación máxima.

5.- Ajustar la fuente de alimentación de modo que la tensión  $V_{BB}$ =0.3V,  $V_{cc}$ =5 V medir  $V_{CE}$  e  $I_C$ . Comparar con los valores teóricos. Calcular la potencia disipada en el transistor y la potencia transferida a la carga. Indicar el estado de conducción en que se encuentra.  $R_L$ =1 $K\Omega$  y  $R_B$ =10 $K\Omega$ .

6.- Ajustar la alimentación de modo que la tensión  $V_{BB}=IV$ , repetir apartado 5.

7.- Ajustar la fuente de modo que la tensión  $V_{BB}=3V$ , repetir apartado 5.

8.- ¿En que zonas de trabajo del transistor se obtiene un mayor rendimiento?