Метод распознавания автомобилей с аэрофотоснимков в инфракрасном диапазоне с использованием нейронных сетей

Студент: Андрей Германович Алахов Группа: ИУ7-82Б

Руководитель: Кирилл Леонидович Тассов

Актуальность

Применимость:

• Интеллектуальное видеонаблюдение

• Анализ автомобильных аварий

• Автономное вождение

Показатели:

 Умных камер видеонаблюдения в мире на 2020 год – 42,5 млн

 Число ДТП в России на участках с камерами на 2022 год – 2834

 В 2021 году на развитие беспилотного транспорта в России выделяется более
800 млрд рублей **Цель:** разработка метода распознавания и автомобилей с аэрофотоснимков в инфракрасном диапазоне.

Задачи:

- Проанализировать существующие методы сегментации изображений
- Разработать метод распознавания автомобилей с аэрофотоснимков в инфракрасном диапазоне
- Разработать программное обеспечение, реализующее метод распознавания автомобилей
- Исследовать характеристики разработанного метода при обучении с использованием кросс-валидации и без нее

Постановка задачи

Ограничения:

- Изображение в градации серого
- Изображение в тепловом инфракрасном диапазоне
- Изображение в формате PNG или JPG
- Разрешение входного изображения не менее 416 × 416 пикселей
- Минимальный размер объекта 25 × 25 пикселей
- Угол съемки 30-90 градусов
- Высота съемки 60-130 метров

Существующие решения

	Требования к вычислительным ресурсам	Настройка и обучение	Требования к входным данным	
Neurala	Высокие	Требуется	Низкие	
Pix4D	Низкие	Не требуется	Высокие	
ENVI	Средние	Требуется	Высокие	

Метод распознавания автомобилей

Нейронные сети по характеру связей

	Обработка единичных изображений Сохранение информации		Устойчивость к шумам	
Полносвязные	+	_	+	
Рекуррентные	-	+	+	
Сверточные	+	+	+	
Капсульные	+	+	_	

Методы распознавания объектов в инфракрасном диапазоне

	Входное изображение	Число параметров, млн	Требуемый размер выборки	Длительность обучения
MMFCNN	75 × 75	1	Низкий	Низкая
YOLOv3	416 × 416	20	Средний	Средняя
MNET	640 × 512	60	Высокий	Высокая
CompNet	224 × 224	30	Средний	Средняя
YOLOv8	640 × 640	70	Крайне высокий	Крайне высокая

Улучшенная сеть YOLOv3

 $13 \times 13 \times 256$

Функция активации:
$$LeakyRELU(x) = \begin{cases} x & \text{если } x>0, \\ a\cdot x & \text{иначе.} \end{cases}$$

х – выходное значение нейрона

а – гиперпараметр, определяющий наклон

Определение класса:
$$Softmax(z_i) = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

z – вектор выходных значений нейронов

К – количество классов

Отсеивание ограничивающих рамок: $IoU = \frac{S(A \cap B)}{S(A \cup B)}$

S(X) – вычисление площади фигуры X

А, В – ограничивающие рамки

Модификация сети

Было:

Входное изображение

$$416\times416\times3$$

Сверт. слой: $3 \times 3 \times 16$ Слой подвыборки: 2×2 Сдвиг: 2

 $208 \times 208 \times 16$

Стало:

Входное изображение

 $416\times416\times1$

Сверт. слой: $3 \times 3 \times 8$ Слой подвыборки: 2×2

Сдвиг: 1

416 imes 416 imes 8

Сверт. слой: $3 \times 3 \times 16$ Слой подвыборки: 2×2

Сдвиг: 2

 $208 \times 208 \times 16$

Метод кросс-валидации

Метод кросс-валидации

Структура программного комплекса

Описание выборки

Примеры изображений:

Характеристики:

- 2898 изображений
- Окружение: школы, парковки, дороги и т.д.
- Объекты: люди, велосипеды, авто, и т.д.
- Среднее число объектов на снимке: 8.59
- Высота полета: 60 130 метров
- Угол камеры: 30 90 градусов
- Дневное и ночное время суток

Полученные результаты

Точность: процент объектов, для которых IoU предсказанной ограничивающей рамки и истинной больше 0.5

Потери: среднеквадратическая ошибка координат ограничивающих рамок

	Точность на тренировочной выборке	Точность на тестовой выборке	Потери на тренировочной выборке	Потери на тестовой выборке
До модификации	95.6%	87.7%	0.0061	0.0185
После модификации	98.5%	92.1%	0.0049	0.0143

Исследование

	Точность на тренировочной выборке	Точность на тестовой выборке	Потери на тренировочной выборке	Потери на тестовой выборке	Время на обучение, ч
Без использования кросс-валидации	89.7%	80.4%	0.0178	0.0284	6
С использованием кросс-валидации	98.5%	92.1%	0.0049	0.0143	30

Заключение

Был разработан метод распознавания и автомобилей с аэрофотоснимков в инфракрасном диапазоне.

Были решены задачи:

- Проанализированы существующие методы сегментации изображений
- Разработан метод распознавания автомобилей с аэрофотоснимков в инфракрасном диапазоне
- Разработано программное обеспечение, реализующее метод распознавания автомобилей
- Исследованы характеристики разработанного метода при обучении с использованием кросс-валидации и без нее

Дальнейшее развитие

• Классификация по категориям транспортных средств

• Определение, находится ли автомобиль в движении