DynTxRegime

"An R Package for Dynamic Treatment Regimes"
Part 2
Multiple Decision Points

Shannon Holloway

DPHS, Duke University

March 20, 2025

Toy Dataset

Toy Dataset

https://github.com/sth1402/ST790/

Download st790Data.MD.csv

Load Data

NA's :623

```
df <- read.csv(file = "path/st790Data.MD.csv", header = TRUE)</pre>
```

Summary Statistics summary(object = df)

```
x01
                   x02
                                  A1
Min. : 6.604 Min. :40.00 Length:1000
1st Qu.: 9.327 1st Qu.:50.75
                            Class : character
Median: 9.960 Median: 61.00
                             Mode :character
Mean : 9.973 Mean :60.47
3rd Qu.: 10.616 3rd Qu.: 70.00
Max. :13.196 Max. :80.00
     r1
                  x11
                                  x12
Min. :0.000 Min. :-3.9880 Min. :-14.0136
1st Qu.: 0.000 1st Qu.: 0.9574 1st Qu.: -3.9415
Median:0.000
             Median: 2.9217 Median: -0.5643
Mean :0.212
            Mean : 2.9964 Mean : -0.7864
                              3rd Qu.: 2.4046
3rd Qu.:0.000
             3rd Qu.: 5.0652
Max. :1.000
             Max. :10.1618
                              Max. : 10.9525
              NA's :212
                                   :212
    x13
                  A2
Min.
    :2.879 Length:1000
                         Min. :-64.0147
1st Qu.:4.417 Class:character 1st Qu.:-13.1031
Median :5.027
              Mode :character Median : 0.8212
                               Mean : 0.8835
Mean
    :5.053
                               3rd Qu.: 14.6074
3rd Qu.:5.678
Max.
      :8.041
                               Max.: 72.3621
```

Our data were generated under the following design:

We must incorporate the subset structure:

• Participants have different feasible treatment sets.

We can (and will) incorporate

• additional covariates available for a subset of the data.

We will work under "Scenario 1"

• the feasible treatment set and the data "match"

Feasible Treatment Sets

Feasible treatments are communicated through input fSet

A bit of a misnomer – input can define any subset structure of the analysis

- limit available treatments,
- use different models for regressions, and/or
- use different decision function models

There are two options for defining the input: simple vs. efficient

We'll focus only on the efficient version.

fSet is a user-defined function with formal argument

- o data function(data) { ... } or
- individual covariate names function(x11, x12) { ... }

The function must return a list containing two elements:

```
subsets - specification of all subsets;
txOpts - subset to which each participant belongs
```

Each function specifies the subset structure for one decision point.

ullet Multiple decision points o multiple functions

Subsets

How many subsets?

Subsets

51 in decision point 14 in decision point 2

The first stage is straightforward. All participant have the same

- feasible treatment options
- measured covariates

All we need to do is

- pick a name for the subset, say "fs";
- specify the available treatment options {"A", "B"}
- assign all participants to "fs"

For example,

subset is a list of subsets

• "a subset" is a list containing a name and treatment options

txOpts is a character vector

Step 1: Name each subset.

The nickname can be anything you want – just be consistent throughout the analysis.

Step 2: Specify available treatment options.

For each subset, define a list containing the name and treatments

txOpts assign participants to a subset


```
It's always a good idea to test them first!
result <- fSet1(data = df)
print(result$subsets)

[[1]]
[[1]][[1]]
[1] "fs"

[[1]][[2]]
[1] "A" "B"
print(table(result$txOpts))</pre>
```

It's always a good idea to test them first!

```
result \leftarrow fSet2(A1 = df$A1, r1 = df$r1)
print(result$subsets)
[[1]]
[[1]][[1]]
[1] "A_1"
[[1]][[2]]
Γ17 "A"
[[2]]
[[2]][[1]]
[1] "A_O"
[[2]][[2]]
[1] "B" "C"
[[3]]
[[3]][[1]]
[1] "B_1"
[[3]][[2]]
[1] "B"
[[4]]
[[4]][[1]]
[1] "B_0"
[[4]][[2]]
[1] "A" "C"
```

```
It's always a good idea to test them first!
result <- fSet2(A1 = df$A1, r1 = df$r1)
print(table(result$txOpts))

A_0 A_1 B_0 B_1
411 108 377 104
compared with
table(df$A1, df$r1)</pre>
```

A 411 108 B 377 104

Q-Learning

Q-Learning

An optimal Ψ -specific regime d^{opt} can be represented in terms of Q-functions

$$Q_K(h_K,a_K)=Q_K(\overline{x}_K,\overline{a}_K)=E(Y|\overline{X}=\overline{x},\overline{A}=\overline{a})$$

and for $k = K - 1, \ldots, 1$

$$Q_k(h_k,a_k) = Q_k(\overline{x}_k,\overline{a}_k) = E\{V_{k+1}(\overline{x}_k,X_{k+1},\overline{a}_k)|\overline{X}_k = \overline{x}_k,\overline{A}_k = \overline{a}_k\},\$$

where for $k = 1, \ldots, K$,

$$V_k(h_k) = V_k(\overline{x}_k, \overline{a}_{k-1}) = \max_{a_k \in \Psi_k(h_k)} Q_k(h_k, a_k).$$

Estimation of d^{opt} via Q-learning is accomplished by positing models for the Q-functions $Q_k(h_k, a_k)$,

$$Q_k(h_k, a_k; \beta_k) = Q_k(\overline{x}_k, \overline{a}_k; \beta_k), \quad k = K, K - 1, \dots, 1.$$

Estimators $\widehat{\beta}_k$ for β_k are obtained in a backward iterative fashion for k = K, K - 1, ..., 1 by solving suitable M-estimating equations.

The estimated rules for k = 1, ..., K are

$$\widehat{d}_{Q,k}^{opt}(h_k) = d_k^{opt}(h_k; \widehat{\beta}_k) = \underset{a_k \in \Psi_k(h_k)}{\operatorname{argmax}} Q_k(h_k, a_k; \widehat{\beta}_k),$$

and the pseudo outcomes are

$$\widetilde{V}_{ki} = \max_{a_k \in \Psi_k(h_k)} Q_k(h_k, a_k; \widehat{\beta}_k).$$

An estimated optimal Ψ -specific regime is then given by

$$\widehat{d}_{Q}^{opt} = \{\widehat{d}_{Q,1}^{opt}(h_1), \dots, \widehat{d}_{Q,K}^{opt}(h_K)\}$$

and an estimator for the value $\mathcal{V}(d^{opt})$ is given by

$$\widehat{\mathcal{V}}_{\mathcal{Q}}(d^{opt}) = n^{-1} \sum_{i=1}^{n} \widetilde{V}_{1i} = n^{-1} \sum_{i=1}^{n} \max_{a_{1} \in \Psi_{1}(H_{1i})} Q_{1}(H_{1i}, a_{1}; \widehat{\beta}_{1}).$$

```
str(object = qLearn)
```

```
function (..., moMain, moCont, data, response, txName,
fSet = NULL, iter = OL, verbose = TRUE)
```

Argument	Class	Description
		Ignored. Included to require named input.
moMain	modelObj	for main effects terms (mu)
moCont	modelObj	for terms interacting with treatment (C)
data	data.frame	covariates and treatment history
response	vector	outcome of interest or value object from previous step
txName	character	treatment variable name
fSet	function	feasible set definition
iter	integer	if $>$ 0, iterative methods used
verbose	logical	if FALSE, screen prints suppressed

```
str(object = qLearn)
```

```
function (..., moMain, moCont, data, response, txName,
fSet = NULL, iter = OL, verbose = TRUE)
```

Argument	Class	Description
		Ignored. Included to require named input.
moMain	modelObj	for main effects terms (mu)
moCont	modelObj	for terms interacting with treatment (C)
data	data.frame	covariates and treatment history
response	vector	outcome of interest or value object from previous step
txName	character	treatment variable name
fSet	function	feasible set definition
iter	integer	if $>$ 0, iterative methods used
verbose	logical	if FALSE, screen prints suppressed

```
str(object = qLearn)
```

```
function (..., moMain, moCont, data, response, txName,
fSet = NULL, iter = OL, verbose = TRUE)
```

The first STEP of the Q-learning algorithm is the analysis of STAGE 2

- Postulate a model for $Q_2({\rm H_2,a_2})$. (Recall, $\sim \mu + {\rm A_2C}$)
- Last time, we used buildModelObj().
- But, under Scenario 1, we have to provide models for two subsets, each with different covariates.

A1	r1	\$\psi_2\$	data
Α	1	A_1	у
Α	0	A_0	×11, ×12, y
В	1	B _ 1	У
В	0	B_0	x11, x12, x13, y

```
str(object = buildModelObjSubset)
function (..., model, solver.method, solver.args = NULL,
    predict.method = NULL, predict.args = NULL, dp = 1L,
    subset = NA)
```

Recall from the modelObj package

```
str(object = buildModelObj)
```

```
function (model, solver.method = NULL, solver.args = NULL,
    predict.method = NULL, predict.args = NULL)
```

- ... require named inputs
- dp decision point to which the model pertains
- subset the nickname of the subset to which the model pertains (must match fSet)

Assume for subset 'A_0'

$$Q_2(H_2, A_2, \beta_2) = \beta_{20} + \beta_{21} \times 01 + \beta_{22} \times 02 + \beta_{23} \times 11 + \beta_{24} \times 12 + A2(\beta_{25} + \beta_{26} \times 11 + \beta_{27} \times 12)$$

Use least squares with a single model

Note that all individuals in subset 'A_0' have A1 = A and r1 = 0

• these cannot be included in the model.

And for subset 'B_0'

$$Q_2(H_2, A_2, \beta_2) = \beta_{20} + \beta_{21}x01 + \beta_{22}x11 + \beta_{23}x13 + A2(\beta_{24} + \beta_{25}x11 + \beta_{26}x13)$$

Use least squares with a single model

Again – all individuals in subset 'B_0' have A1 = B and r1 = 0

these cannot be included in the model.

Subsets 'A_1' and 'B_1' are not modeled - "Scenario 1".

```
Accomplished through repeated calls to qLearn()
```

```
str(object = qLearn)
```

```
function (..., moMain, moCont, data, response, txName,
   fSet = NULL, iter = OL, verbose = TRUE)
```

The first STEP of the Q-learning algorithm is the analysis of STAGE 2

Postulate a model for $Q_2(H_2, a_2)$. (Recall, $\sim \mu + A_2C$)

```
moMain_ss <- list(moMain_A_0, moMain_B_0)</pre>
```

```
moCont_ss <- list(moCont_A_0, moCont_B_0)</pre>
```

```
str(object = qLearn)
```

```
function (..., moMain, moCont, data, response, txName,
fSet = NULL, iter = OL, verbose = TRUE)
```

- data is a complete dataset, (df)
- response is the "vector" outcome of interest (df\$y)
- txName is the treatment variable name, ("A2")

Our data is not complete!

```
summary(df$x13)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 2.879 4.417 5.027 5.053 5.678 8.041 623
```

Can set NA values to 0.

```
str(object = qLearn)
function (..., moMain, moCont, data, response, txName,
    fSet = NULL, iter = OL, verbose = TRUE)
```

fSet is the previously defined function

```
moMain_A_0 <- buildModelObjSubset(model = ~ x01 + x02 + x11 + x12,
                                    solver.method = 'lm'.
                                    subset = 'A 0', dp = 2L)
moCont A 0 <- buildModelObiSubset(model = ~ x11 + x12.
                                    solver.method = 'lm'.
                                   subset = 'A_0', dp = 2L)
moMain_B_0 <- buildModelObjSubset(model = ~ x01 + x11 + x13,
                                   solver.method = 'lm',
                                   subset = ^{\prime}B_{0}^{\prime}, dp = 2L)
moCont_B_0 <- buildModelObjSubset(model = ~ x11 + x13,
                                   solver.method = 'lm',
                                   subset = ^{\prime}B_{0}^{\prime}, dp = 2L)
moMain_ss <- list(moMain_A_0, moMain_B_0)
moCont_ss <- list(moCont_A_0, moCont_B_0)
fSet2 <- function(A1, r1) {
  list("subsets" = list(list("A_1", c("A")),
                         list("A_0", c("B", "C")),
                         list("B_1", c("B")),
                         list("B_0", c("A", "C"))),
       "txOpts" = paste(A1, r1, sep = " "))
qObj_ss <- qLearn(moMain = moMain_ss, moCont = moCont_ss, iter = OL,
                   data = df, response = df$y, txName = 'A2',
                   fSet = fSet2, verbose = TRUE)
```

```
qObi ss <- gLearn(moMain = moMain ss, moCont = moCont ss, iter = OL,
                  data = df, response = df$y, txName = 'A2',
                  fSet = fSet2, verbose = TRUE)
First step of the Q-Learning Algorithm.
Subsets of treatment identified as:
$A 0
[1] "B" "C"
$A 1
Γ17 "A"
$B 0
[1] "A" "C"
$B 1
Γ1] "B"
Number of patients in data for each subset:
A 0 A 1 B 0 B 1
411 108 377 104
Outcome regression.
subset(s) A_1, B_1 excluded from outcome regression
Fitting models for A_O using 411 patient records.
Regression analysis for Combined:
Call:
lm(formula = YinternalY ~ x01 + x02 + x11 + x12 + A2 + x11:A2 +
    x12:A2, data = data)
Coefficients:
(Intercept)
                     x01
                                  x02
                                               x11
 -13.820922
                1.709259
                            -0.008765
                                         -0.187254
        x12
                     A2C
                            x11:A2C
                                           x12:A2C
   0.260286
               -2.483716
                             0.736931
                                          0.039200
```

Fitting models for B_0 using 377 patient records. Regression analysis for Combined:

function (..., moMain, moCont, data, response, txName, fSet = NULL, iter = OL, verbose = TRUE)

The second STEP of the Q-learning algorithm is the analysis of STAGE 1

Postulate a model for $Q_1(H_1,a_1)$. Recall, $\sim \mu + A_1C$

$$Q_1(H_1, a_1) = \beta_{10} + \beta_{11} \times 01 + \beta_{12} \times 02 + A1(\beta_{13} + \beta_{14} \times 02)$$

We do not need subset modeling

```
str(object = qLearn)
```

```
function (..., moMain, moCont, data, response, txName,
    fSet = NULL, iter = OL, verbose = TRUE)
```

- data is a complete dataset, (df)
- response is the value object returned by the second stage analysis (q0bj_ss)
- txName is the treatment variable name, ("A1")
- fSet is not required

Step 2 of the Q-Learning Algorithm.

```
Outcome regression.
Combined outcome regression model: ~ x01+x02 + A1 + A1:(x02) .
Regression analysis for Combined:
Call:
lm(formula = YinternalY ~ x01 + x02 + A1 + x02:A1, data = data)
Coefficients:
(Intercept)
                    x01
                                 x02
                                              A1B
   -2.43410
                0.65179
                          -0.01837
                                          3.86749
   x02:A1B
   -0.09121
```

Recommended Treatments:

A B 931 69

Estimated value: 2.964196

Methods available:

Method	Description
Call(name)	retrieve the unevaluated call
coef(object)	retrieve parameter estimates
DTRstep(object)	print description of method
estimator(x)	retrieve estimated value
fitObject(object)	retrieve value object returned for regression steps
optTx(object)	retrieve recommended optimal treatments for training data
<pre>optTx(object, newdata)</pre>	estimate optimal treatments based on a prior analysis
outcome(object)	retrieve value object returned for outcome regression
<pre>plot(x, suppress)</pre>	plot regression results
summary(object)	retrieve regression summaries

Methods available: Model Diagnostics

Method	Description
Call(name)	retrieve the unevaluated call
coef(object)	retrieve parameter estimates
DTRstep(object)	print description of method
estimator(x)	retrieve estimated value
fitObject(object)	retrieve value object returned for regression steps
optTx(object)	retrieve recommended optimal treatments for training data
<pre>optTx(object, newdata)</pre>	estimate optimal treatments based on a prior analysis
outcome(object)	retrieve value object returned for outcome regression
<pre>plot(x, suppress)</pre>	plot regression results
summary(object)	retrieve regression summaries

```
coef(object = q0bj_ss)
$outcome
$outcome$`Subset=A 0`
$outcome$`Subset=A 0`$Combined
 (Intercept)
                      x01
                                   x02
                                                x11
-13.820921663 1.709259320 -0.008764618 -0.187254365
                      A2C
                               x11:A2C
                                            x12:A2C
         x12
 0.260286153 -2.483716256
                           0.736930523
                                         0.039199961
$outcome$`Subset=B 0`
```

```
coef(object = q0bj_fs)
```

```
$outcome
```

\$out.come\$Combined

(Intercept) x01 x02 A1B x02:A1B -2.43410280 0.65178872 -0.01837287 3.86748929 -0.09121476

```
fit0bi <- fit0biect(object = g0bi ss)
fit0bj
$outcome
$outcome$`Subset=A_0`
$outcome$`Subset=A_0`$Combined
Call:
lm(formula = YinternalY ~ x01 + x02 + x11 + x12 + A2 + x11:A2 +
   x12:A2, data = data)
Coefficients:
(Intercept)
                    x01
                                x02
                                             x11
 -13.820922
            1.709259 -0.008765
                                       -0.187254
       x12
                    A2C
                          x11:A2C
                                       x12:A2C
  0.260286 -2.483716 0.736931
                                       0.039200
$outcome$`Subset=B_0`
$outcome$`Subset=B_0`$Combined
Call:
lm(formula = YinternalY ~ x01 + x11 + x13 + A2 + x11:A2 + x13:A2.
   data = data)
Coefficients:
(Intercept)
                    x01
                                x11
                                             x13
  -17.18637
              1.37322
                            1.29860
                                        -0.01386
              x11:A2C
       A2C
                            x13:A2C
   0.78391
               -1.97408
                            0.69373
```

is(object = fitObj\$outcome\$'Subset=A_0'\$Combined)

[1] "lm" "oldClass" Methods available: Training Diagnostics Methods available: Training Diagnostics

Method	Description
Call(name)	retrieve the unevaluated call
coef(object)	retrieve parameter estimates
DTRstep(object)	print description of method
estimator(x)	retrieve estimated value
fitObject(object)	retrieve value object returned for regression steps
optTx(object)	retrieve recommended optimal treatments for training data
<pre>optTx(object, newdata)</pre>	estimate optimal treatments based on a prior analysis
outcome(object)	retrieve value object returned for outcome regression
<pre>plot(x, suppress)</pre>	plot regression results
<pre>summary(object)</pre>	retrieve regression summaries

```
ot \leftarrow optTx(x = q0bj_ss)
names(ot)
[1] "optimalTx"
                    "decisionFunc"
table(ot$optimalTx)
  Α
      В
          C
337 340 323
head(cbind(ot$decisionFunc,ot$optimalTx))
                      В
[1,] 2.67502
                     NA -5.56995495 1
[2,]
          NA 0.5879284 2.17568821 3
[3,]
         NA 4.2127188 1.36644014 2
[4,]
         NA -0.9162128 -0.07949545 3
```

1.1769982 1.43376155 3

NA 1

NA

What do the NA values mean?

NA

NA

[5,]

[6,]

```
Α
     В
         C
337 340 323
head(cbind(ot$decisionFunc.ot$optimalTx))
           Α
                     В
[1,] 2.67502
                    NA -5.56995495 1
[2,]
            0.5879284 2.17568821 3
[3,]
         NA
            4.2127188 1.36644014 2
[4,]
         NA -0.9162128 -0.07949545 3
Γ5.1
         NA
             1.1769982
                       1.43376155 3
[6,]
         NA
                    NΑ
                                 NA 1
What do the NA values mean?
df[1:6,]
        x01 x02 A1 r1
                            x11
                                      x12
                                               x13 A2
   8.792934
            44 B
                   0 6.0408282 -5.307951 4.174856
 10.277429 47
                   0 5.8617800 -6.332879 0.000000
 11.084441 65 A
                   0 -0.4063732 -1.609532 0.000000
  7.654302 64
                   0 4.2644090 4.537260 0.000000
                Α
5 10.429125
            42
                Α
                   0 4.0659284 -6.526209 0.000000
6 10.506056
            68
                      0.0000000 0.000000 0.000000
```

"decisionFunc"

ot \leftarrow optTx(x = q0bj_ss)

names(ot)

[1] "optimalTx"

table(ot\$optimalTx)

[1] 2.17416

This is **NOT** the estimator for the value $V(d^{opt})$.

Recall:

$$\widehat{\mathcal{V}}_{\mathcal{Q}}(d^{opt}) = n^{-1} \sum_{i=1}^{n} \widetilde{V}_{1i} = n^{-1} \sum_{i=1}^{n} \max_{a_{1} \in \Psi_{1}(H_{1i})} Q_{1}(H_{1i}, a_{1}; \widehat{\beta}_{1}).$$

```
estimator(x = q0bj_ss)
```

[1] 2.17416

This is **NOT** the estimator for the value $V(d^{opt})$.

Recall:

$$\widehat{\mathcal{V}}_{Q}(d^{opt}) = n^{-1} \sum_{i=1}^{n} \widetilde{V}_{1i} = n^{-1} \sum_{i=1}^{n} \max_{a_{1} \in \Psi_{1}(H_{1i})} Q_{1}(H_{1i}, a_{1}; \widehat{\beta}_{1}).$$

estimator(x = q0bj_fs)

ot
$$\leftarrow$$
 optTx(x = q0bj_fs)

names(ot)

table(ot\$optimalTx)

head(cbind(ot\$decisionFunc, "optTX" = ot\$optimalTx))

```
A B optTX
[1,] 2.488626 2.3426660 1
[2,] 3.401085 2.9814802 1
[3,] 3.596374 1.5349041 1
[4,] 1.379021 -0.5912341 1
```

Shannon Holloway (DPHS, Duke University)

Methods available: Predictions

Method	Description
Call(name)	retrieve the unevaluated call
coef(object)	retrieve parameter estimates
DTRstep(object)	print description of method
estimator(x)	retrieve estimated value
fitObject(object)	retrieve value object returned for regression steps
optTx(object)	retrieve recommended optimal treatments for training data
<pre>optTx(object, newdata)</pre>	estimate optimal treatments based on a prior analysis
outcome(object)	retrieve value object returned for outcome regression
<pre>plot(x, suppress)</pre>	plot regression results
summary(object)	retrieve regression summaries

```
newPatient \leftarrow data.frame(x01 = c(9.3, 10.6), x02 = c(51.8, 70))
optTx(x = qObj_fs, newdata = newPatient)
$optimalTx
Γ1 ] A A
Levels: A B
$decisionFunc
[1.] 2.675818 1.8183822
[2,] 3.188757 0.6712126
newPatient <- cbind(newPatient,
                    "A1" = optTx(x = q0bj_fs, newdata = newPatient) $ optimalTx,
                    r1" = c(1.0).
                    x11 = c(NA, 2.9),
                    x12 = c(NA, -.6)
optTx(x = q0bj ss, newdata = newPatient)
$optimalTx
[1] A B
Levels: A B C
```

\$decisionFunc

```
A B C
[1,] NA NA NA
[2.] NA 2.984495 2.614357
```

Value Search

Value Search

The augmented inverse probability weighted estimator for $\mathcal{V}(d_{\eta})$ for fixed η is

$$\begin{split} \widehat{\mathcal{V}}_{AIPW}(d_{\eta}) &= n^{-1} \sum_{i=1}^{n} \left[\frac{c_{d_{\eta},i}Y_{i}}{\left\{ \prod_{k=2}^{K} \pi_{d_{\eta},k}(\overline{X}_{ki}; \overline{\eta}_{k}, \widehat{Y}_{k}) \right\} \pi_{d_{\eta},1}(X_{1i}; \eta_{1}, \widehat{Y}_{1})} \right. \\ &+ \sum_{k=1}^{K} \left\{ \frac{c_{\overline{d}_{\eta},k-1,i}}{\overline{\pi}_{d_{\eta},k-1}(\overline{X}_{k-1,i}; \widehat{\overline{Y}}_{k-1})} - \frac{c_{\overline{d}_{\eta},k,i}}{\overline{\pi}_{d_{\eta},k}(\overline{X}_{ki}; \widehat{\overline{Y}}_{k})} \right\} \mathcal{Q}_{d_{\eta},k}(\overline{X}_{ki}; \widehat{\beta}_{k}) \right], \end{split}$$

where $C_{d_{\eta}} = I\{\overline{A} = \overline{d}_{\eta}(\overline{X})\};$

$$\pi_{d_{\eta,1}}(X_1;\gamma_1) = \omega_1(X_1,1;\gamma_1) \mathsf{I}\{d_{\eta,1}(X_1) = 1\} + \omega_1(X_1,0;\gamma_1) \mathsf{I}\{d_{\eta,1}(X_1) = 0\},$$

$$\begin{split} \pi_{d_{\eta,k}}(\overline{X}_k;\gamma_k) &= & \quad \omega_k\{\overline{X}_k,\overline{d}_{\eta,k-1}(\overline{X}_{k-1}),1;\gamma_k\} \quad \mathsf{I}[d_{\eta,k}\{\overline{X}_k,\overline{d}_{\eta,k-1}(\overline{X}_{k-1})\} = 1] \\ & \quad + \omega_k\{\overline{X}_k,\overline{d}_{\eta,k-1}(\overline{X}_{k-1}),0;\gamma_k\} \quad \mathsf{I}[d_{\eta,k}\{\overline{X}_k,\overline{d}_{\eta,k-1}(\overline{X}_{k-1})\} = 0]. \end{split}$$

Further $\omega_k(h_k,a_k;\gamma_k)$, $k=1,\ldots,K$ are models for the propensity scores $P(A_k=a_k|H_k=h_k)$, and $\widehat{\gamma}_k$ is a suitable estimator for γ_k , $k=1,\ldots,K$.

Finally, $Q_{d_{\eta},k}(\overline{X}_{ki}; \widehat{\beta}_k)$ are models for the conditional expectations $E\{Y^*(d_{\eta})|\overline{X}_k^*(\overline{d}_{\eta,k-1})=\overline{x}_k\}, k=1,\ldots,K$. The IPW estimator is the special case of setting these to zero.

```
str(object = optimalSeq)
```

Argument	Class	Description
		Additional inputs for rgenoud()
moPropen	modelObj	for propensity regression
moMain	model0bj	for main effects terms (mu)
moCont	model0bj	for terms interacting with treatment (C)
data	data.frame	covariates and treatment history
response	vector	outcome of interest
txName	character	treatment variable name
regimes	function	definition of restricted class of regimes
fSet	function	feasible set definition
refit		deprecated
iter	integer	if >0 , iterative methods used
verbose	logical	if FALSE, screen prints suppressed

```
function (..., moPropen, moMain, moCont, data, response,
    txName, regimes, fSet = NULL, refit = FALSE, iter = OL,
    verbose = TRUE)
```

Postulate a model for $\pi_1(h_1, a_1)$ and use maximum likelihood.

$$logit(A1) \sim \gamma_1$$

Postulate a model for $\pi_2(h_2, a_2)$ for each subset and use maximum likelihood.

$$logit(A2) \sim \gamma_2$$

Need to use buildModelObjSubset() for all decision points

```
function (..., moPropen, moMain, moCont, data, response,
    txName, regimes, fSet = NULL, refit = FALSE, iter = OL,
    verbose = TRUE)
moPropen_fs <- buildModelObjSubset(model = ~ 1,
                                   solver.method = 'glm',
                                   solver.args = list("family" = "binomial"),
                                   predict.args = list("type" = "response"),
                                   subset = 'fs', dp = 1L)
moPropen A 0 <- buildModelObjSubset(model = ~ 1,
                                    solver.method = 'glm',
                                    solver.args = list("family" = "binomial"),
                                    predict.args = list("type" = "response"),
                                    subset = 'A O'. dp = 2L)
moPropen B 0 <- buildModelObjSubset(model = ~ 1,
                                    solver.method = 'glm',
                                    solver.args = list("family" = "binomial"),
                                    predict.args = list("type" = "response"),
                                    subset = 'B O'. dp = 2L)
```

str(object = optimalSeq)

```
str(object = optimalSeq)
```

```
function (..., moPropen, moMain, moCont, data, response,
    txName, regimes, fSet = NULL, refit = FALSE, iter = OL,
    verbose = TRUE)
```

Previously postulate models for $Q_2(h_2, a_2)$ for subset A_0 and for subset B_0 can be reused.

But the model for $Q_1(h_1, a_1)$ must be redefined using buildModelObjSubset().

$$Q_1(H_1, a_1) = \beta_{10} + \beta_{11} \times 01 + \beta_{12} \times 02 + A1(\beta_{13} + \beta_{14} \times 02)$$

```
moMain_fs <- buildModelObjSubset(model = -x01 + x02, solver.method = 'lm', subset = 'fs', dp = 1L)

moCont_fs <- buildModelObjSubset(model = -x02, solver.method = 'lm', subset = 'fs', dp = 1L)
```

```
function (..., moPropen, moMain, moCont, data, response,
    txName, regimes, fSet = NULL, refit = FALSE, iter = OL,
    verbose = TRUE)
```

data is a complete dataset, (df)

str(object = optimalSeq)

- response is the "vector" outcome of interest (df\$y)
- txName is a vector of the treatment variable names, ("A1", "A2")
- fSet is a list of the fSet functions (fSet1, fSet2)

```
str(object = optimalSeq)
function (..., moPropen, moMain, moCont, data, response,
    txName, regimes, fSet = NULL, refit = FALSE, iter = OL,
    verbose = TRUE)
```

Define the elements of the first stage restricted class of regimes as

$$d_1(h_1,\eta) = \begin{cases} A & I(x_{01} < \eta_1 & \& x_{02} < \eta_2) \\ B & I(x_{01} \ge \eta_1 & || x_{02} \ge \eta_2) \end{cases}$$

```
regimes1 <- function(eta1, eta2, data) {
  tst <- {data$x01 < eta1} & {data$x02 < eta2}
  d1 <- c("B", "A")[tst + 1L]
  d1
```



```
str(object = optimalSeq)
```

```
function (..., moPropen, moMain, moCont, data, response,
    txName, regimes, fSet = NULL, refit = FALSE, iter = OL,
    verbose = TRUE)
```

Define the elements of the second stage restricted class of regimes as

$$d_1(h_1, \eta) = \left\{ \begin{array}{ll} A & \mathrm{I}(\mathrm{r1} = 1 \& \mathrm{A1} = A) \\ B & \mathrm{I}(\mathrm{r1} = 0 \& \mathrm{A1} = A) \ \mathrm{I}(\mathrm{x}11 < \eta_1 \ | \ \mathrm{x}12 < \eta_2) \\ C & \mathrm{I}(\mathrm{r1} = 0 \& \mathrm{A1} = A) \ \mathrm{I}(\mathrm{x}11 \ge \eta_1 \ | \ \mathrm{x}12 \ge \eta_2) \\ B & \mathrm{I}(\mathrm{r1} = 1 \& \mathrm{A1} = B) \\ A & \mathrm{I}(\mathrm{r1} = 0 \& \mathrm{A1} = B) \ \mathrm{I}(\mathrm{x}11 < \eta_3 \ | \ \mathrm{x}13 < \eta_4) \\ C & \mathrm{I}(\mathrm{r1} = 0 \& \mathrm{A1} = B) \ \mathrm{I}(\mathrm{x}11 \ge \eta_3 \ | \ \mathrm{x}13 \ge \eta_4) \end{array} \right.$$

```
regimes2 <- function(eta1, eta2, eta3, eta4, data) {
d2 <- levels(data$A1)[data$A1]

A_0 <- {data$r1 == 0L} & {data$A1 == "A"}
B_0 <- {data$r1 == 0L} & {data$A1 == "B"}

tstA <- {data$r1 <= ta1} & {data$A1 <= ta2}

tstB <- {data$x11 <= ta1} & {data$x12 <= ta2}

tstB <- {data$x11 <= ta3} & {data$x13 <= ta4}

d2[A_0] <- c("C", "B")[tstA[A_0] + iL]

d2[B_0] <- c("C", "A")[tstB[B_0] + iL]
```

```
str(object = optimalSeq)
function (..., moPropen, moMain, moCont, data, response,
    txName, regimes, fSet = NULL, refit = FALSE, iter = OL,
    verbose = TRUE)
```

Uses genetic algorithm implemented by genoud()

Additional inputs for genoud() passed through ellipsis. Must include

- starting.values initial estimates for regime parameters
- Domains matrix defining search space
- pop.size population size

Remember to consider your covariates

```
summary(object = dfHold$x12)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-14.0136 -3.9415 -0.5643 -0.7864 2.4046 10.9525
NA's
    212
summary(object = dfHold$x02)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
```

```
str(object = optimalSeq)
function (..., moPropen, moMain, moCont, data, response,
    txName, regimes, fSet = NULL, refit = FALSE, iter = OL,
    verbose = TRUE)
```

Uses genetic algorithm implemented by genoud()

Additional inputs forgenoud() passed through ellipsis. Must include

- starting.values initial estimates for regime parameters
- Domains matrix defining search space
- pop.size population size

Value Search - Coarsened Data Perspective 2 Decision Points Decision point 1 Subsets of treatment identified as: \$fs [1] "A" "B" Number of patients in data for each subset: fs 1000 Decision point 2 Subsets of treatment identified as: \$A_0 [1] "B" "C" \$A 1 Γ1] "A" \$B 0 [1] "A" "C" \$B 1 Γ1] "B"

A_0 A_1 B_0 B_1 411 108 377 104

Number of patients in data for each subset:

Methods available:

method	description
Call(name)	retrieve the unevaluated call
coef(object)	retrieve parameter estimates
DTRstep(object)	print description of method
estimator(x)	retrieve estimated value
fitObject(object)	retrieve value returned by 'modelObj's
<pre>genetic(object) optTx(object) optTx(object, newdata) outcome(object) plot(x, suppress)</pre>	retrieve value returned by genoud() retrieve recommended optimal treatments estimate optimal treatments based on a prior analysis retrieve value returned by outcome regression analysis plot fit results
<pre>propen(object) regimeCoef(object) summary(object)</pre>	retrieve value returned by propensity regression analysis retrieve estimated regime parameters retrieve summary information

Methods available: Model Diagnostics

method	description
Call(name)	retrieve the unevaluated call
coef(object)	retrieve parameter estimates
DTRstep(object)	print description of method
estimator(x)	retrieve estimated value
fitObject(object)	retrieve value returned by 'modelObj's
genetic(object)	retrieve value returned by genoud()
optTx(object)	retrieve recommended optimal treatments
optTx(object, newdata)	estimate optimal treatments based on a prior analysis
outcome(object) plot(x, suppress)	retrieve value returned by outcome regression analysis plot fit results
propen(object) regimeCoef(object)	retrieve value returned by propensity regression analysis retrieve estimated regime parameters
summary(object)	retrieve summary information

```
$propensity
$propensity$`dp=1`
$propensity$`dp=1`$`Subset=fs`
(Intercept)
-0.07603661
$propensity$`dp=2`
$propensity$`dp=2`$`Subset=A_0`
(Intercept)
-0.08277229
$propensity$`dp=2`$`Subset=B_0`
(Intercept)
0.03713955
```

coef(object = vsObj)

```
$outcome$`dp=1`
$outcome$`dp=1`$`Subset=fs`
$outcome$`dp=1`$`Subset=fs`$Combined
(Intercept)
                    x01
                               x02
-2.43410280 0.65178872 -0.01837287
                                    3.86748929 -0.09121476
```

\$out.come

A1B

x02:A1B

```
fit0bj <- fit0bject(object = vs0bj)
print(x = fit0bj)
$propensity
$propensity$'dp=1'
$propensity$`dp=1`$`Subset=fs`
Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)
Coefficients:
(Intercept)
  -0.07604
Degrees of Freedom: 999 Total (i.e. Null); 999 Residual
Null Deviance:
                    1385
Residual Deviance: 1385
                           ATC: 1387
$propensity$'dp=2'
$propensity$`dp=2`$`Subset=A_0`
Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)
Coefficients:
(Intercept)
  -0.08277
Degrees of Freedom: 410 Total (i.e. Null); 410 Residual
Null Deviance:
Residual Deviance: 569.1
                           AIC: 571.1
$propensity$`dp=2`$`Subset=B_0`
Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)
Coefficients:
(Intercept)
   0.03714
Degrees of Freedom: 376 Total (i.e. Null); 376 Residual
Null Deviance:
                    522.5
```

```
genetic(object = vsObj)
```

\$value

[1] 5.322525

\$par

[1] 12.227718 78.383856 3.379561 2.720807 -2.543702

[6] 5.861444

\$gradients

[1] NA NA NA NA NA NA

\$generations

[1] 20

\$peakgeneration

[1] 9

\$popsize [1] 500

.

\$operators [1] 65 62 62 62 62 62 62 62 0

Methods available: Training Diagnostics

method	description
Call(name)	retrieve the unevaluated call
coef(object)	retrieve parameter estimates
DTRstep(object)	print description of method
estimator(x)	retrieve estimated value
fitObject(object)	retrieve value returned by 'modelObj's
genetic(object)	retrieve value returned by genoud()
optTx(object)	retrieve recommended optimal treatments
optTx(object, newdata)	estimate optimal treatments based on a prior analysis
outcome(object)	retrieve value returned by outcome regression analysis
plot(x, suppress)	plot fit results
propen(object)	retrieve value returned by propensity regression analysis
regimeCoef(object)	retrieve estimated regime parameters
summary(object)	retrieve summary information

```
ot \leftarrow optTx(x = vs0bj)
names(ot)
[1] "dp=1" "dp=2"
table(ot$"dp=1"$optimalTx)
      В
940 60
table(ot$"dp=2"$optimalTx)
  A B C
203 294 503
ot$"dp=1"$decisionFunc
[1] NA
regimeCoef(object = vsObj)
$ dp=1
    eta1
          eta2
12,22772 78,38386
$`dp=2`
     eta1
               eta2
                          eta3
                                    eta4
```

DvnTxRegime

Shannon Holloway (DPHS, Duke University)

Methods available: Predictions

method	description
Call(name)	retrieve the unevaluated call
coef(object)	retrieve parameter estimates
DTRstep(object)	print description of method
estimator(x)	retrieve estimated value
fitObject(object)	retrieve value returned by 'modelObj's
genetic(object)	retrieve value returned by genoud()
optTx(object)	retrieve recommended optimal treatments
optTx(object, newdata)	estimate optimal treatments based on a prior analysis
outcome(object)	retrieve value returned by outcome regression analysis
plot(x, suppress)	plot fit results
<pre>propen(object) regimeCoef(object)</pre>	retrieve value returned by propensity regression analysis retrieve estimated regime parameters
summary(object)	retrieve summary information

```
newPatient \leftarrow data.frame(x01 = c(9.3, 10.6), x02 = c(51.8, 70))
optTx(x = vsObj, newdata = newPatient, dp = 1L)
$optimalTx
[1] A A
Levels: A B
$decisionFunc
[1] NA
newPatient <- cbind(newPatient,</pre>
                     "A1" = optTx(x = vsObj, newdata = newPatient, dp = 1L) $ optimalTx
                     "r1" = c(1,0).
                     x11 = c(NA.2.9).
                     x12 = c(NA, -.6),
                     x13 = c(NA, NA)
optTx(x = vsObj, newdata = newPatient, dp = 2L)
```

\$optimalTx

[1] A Β

Levels: A B C

\$decisionFunc

[1] NA

Backward Outcome Weighted Learning

Backward outcome weighted learning (BOWL) can be viewed as the application of the OWL method within the framework of the backward iterative algorithm.

Let

$$\widehat{\mathcal{V}}_{IPW}^{(K)}(d_{\eta,K}) = n^{-1} \sum_{i=1}^{n} \frac{I\left\{A_{Ki} = d_{\eta,K}(H_{Ki})\right\} Y_{i}}{\omega_{K}(H_{Ki}, A_{Ki}; \widehat{\gamma}_{K})},$$

where $\omega_k(h_k, a_k; \gamma_k)$ is a model for $\omega_k(h_k, a_k) = P(A_k = a_k | H_k = h_k)$ and $\widehat{\gamma}_k$ is a suitable estimator of γ_k .

```
str(object = bowl)
```

```
function (..., moPropen, data, reward, txName, regime,
   response, BOWLObj = NULL, lambdas = 2, cvFolds = OL,
   kernel = "linear", kparam = NULL, fSet = NULL,
   surrogate = "hinge", verbose = 2L)
```

argument	class	description
		Ignored. Included to require named input.
moPropen	"modelObj"	propensity regression
data	"data.frame"	covariates and treatment histories
reward	"vector"	outcome of interest
t×Name	"character"	treatment variable name
regime	"formula"	covariates of the decision function
response	"numeric"	outcome of interest
BOWLObj	"BOWL" or NULL	NULL or the value object of the prior call to bowl()
lambdas	"numeric"	one or more tuning parameters
cvFolds	"integer"	number of cross-validation steps
kernel	"character"	one of {linear, poly, radial}
kparam	"numeric" or NULL	kernel parameter
fSet	"function" or NULL	feasible treatment set definition
surrogate	"character"	one of {'logit', 'exp', 'hinge', 'sqhinge', 'huber'}
verbose	"logical" or "numeric"	level of screen printing.

Accomplished through repeated call to bowl()

```
str(object = bowl)
```

```
function (..., moPropen, data, reward, txName, regime,
   response, BOWLObj = NULL, lambdas = 2, cvFolds = OL,
   kernel = "linear", kparam = NULL, fSet = NULL,
   surrogate = "hinge", verbose = 2L)
```

The first STEP of the BOWL algorithm is the analysis of STAGE 2

Postulate a model for $\pi_2(h_2, a_2)$ for each subset and use maximum likelihood.

$$logit(A2) \sim \gamma_2$$

Use a list of the subset modeling objects.

```
str(object = bowl)
```

```
function (..., moPropen, data, reward, txName, regime,
   response, BOWLObj = NULL, lambdas = 2, cvFolds = OL,
   kernel = "linear", kparam = NULL, fSet = NULL,
   surrogate = "hinge", verbose = 2L)
```

- data is a complete dataset, (df)
- response/reward is the "vector" outcome of interest (df\$y)
- txName is the treatment variable name, ("A2")
- BOWLObj is NULL or the value object returned by a previous call to bowl() (NULL)
- surrogate is the surrogate function to be used for the 0-1 loss function ("logit", "exp", "hinge", "sqhinge", "huber")

```
str(object = bowl)
```

```
function (..., moPropen, data, reward, txName, regime,
   response, BOWLObj = NULL, lambdas = 2, cvFolds = OL,
   kernel = "linear", kparam = NULL, fSet = NULL,
   surrogate = "hinge", verbose = 2L)
```

• regime is a formula (or list of formula) specifying the form of the decision function

$$f_{rdp'}(X; \eta_{rdp'}) = \sum_{i=1}^{n} \eta_{rdp'i} k(X, X_i) + \eta_{rdp'0}$$

We will use linear kernels and thus

$$f_{rdp'}(X;\eta_{rdp'}) = \sum_{i=1}^{n} \eta_{rdp'i} X_i + \eta_{rdp'0}$$

with $X_i = \{x11, x12\}$ for subset A_0 and $X_i = \{x11, x12, x13\}$ for subset B_0 regime <- list("A_0" = ~x11+x12, "B_0" = ~x11+x12+x13)

```
str(object = bowl)
function (..., moPropen, data, reward, txName, regime,
    response, BOWLObj = NULL, lambdas = 2, cvFolds = 0L,
    kernel = "linear", kparam = NULL, fSet = NULL,
    surrogate = "hinge", verbose = 2L)
```

fSet is the previously defined function

```
moPropen A 0 <- buildModelObiSubset(model = ~ 1.
                                    solver.method = 'glm',
                                    solver.args = list("family" = "binomial").
                                    predict.args = list("type" = "response"),
                                    subset = 'A_0', dp = 2L)
moPropen_B_0 <- buildModelObjSubset(model = ~ 1,
                                    solver.method = 'glm',
                                    solver.args = list("family" = "binomial"),
                                    predict.args = list("type" = "response").
                                    subset = 'B_0', dp = 2L)
moPropen_ss <- list(moPropen_A_0, moPropen_B_0)
regime <- list("A 0" = ~ x11 + x12, "B 0" = ~x11 + x12 + x13)
fSet2 <- function(A1, r1) {
  list("subsets" = list(list("A 1", c("A")),
                        list("A 0", c("B", "C")),
                        list("B_1", c("B")),
                        list("B_0", c("A", "C"))),
       "txOpts" = paste(A1, r1, sep = "_"))
}
bObj_ss <- bowl(moPropen = moPropen_ss,
                data = df, response = df$y, txName = 'A2',
                regime = regime, BOWLObj = NULL,
                kernel = list("A_0"='linear', "B_0"='linear'), kparam = NULL,
                fSet = fSet2, surrogate = 'sqhinge', verbose = TRUE)
```

```
bObi ss <- bowl(moPropen = moPropen ss.
                data = df, response = df$v, txName = 'A2',
                regime = regime, BOWLObj = NULL,
                kernel = list("A 0"='linear', "B 0"='linear'), kparam = NULL,
                fSet = fSet2, surrogate = 'sqhinge', verbose = TRUE)
BOWL optimization step 1
Subsets of treatment identified as:
$A_0
[1] "B" "C"
$A_1
Γ17 "A"
$B_0
[1] "A" "C"
$B_1
[1] "B"
Number of patients in data for each subset:
A_0 A_1 B_0 B_1
411 108 377 104
Propensity for treatment regression.
subset(s) A_1, B_1 excluded from propensity regression
Fitting models for A_O using 411 patient records.
Regression analysis for moPropen:
Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)
Coefficients:
(Intercept)
   -0.08277
Degrees of Freedom: 410 Total (i.e. Null); 410 Residual
Null Deviance:
                    569.1
Residual Deviance: 569.1
                            ATC: 571.1
```

Shannon Holloway (DPHS, Duke University)

Fitting models for B_O using 377 patient records.

Accomplished through repeated calls to bowl()

```
str(object = bowl)
function (..., moPropen, data, reward, txName, regime,
    response, BOWLObj = NULL, lambdas = 2, cvFolds = OL,
    kernel = "linear", kparam = NULL, fSet = NULL,
    surrogate = "hinge", verbose = 2L)
```

The second STEP of the BOWL algorithm is the analysis of STAGE 1

Postulate a model for $\pi_1(h_1, a_1)$ and use maximum likelihood.

```
logit(A1) \sim \gamma_1
```

```
function (..., moPropen, data, reward, txName, regime,
   response, BOWLObj = NULL, lambdas = 2, cvFolds = 0L,
   kernel = "linear", kparam = NULL, fSet = NULL,
   surrogate = "hinge", verbose = 2L)
```

- data is a complete dataset, (df)
- response/reward is the stage reward (0)
- BOWLObj is NULL or the value object returned by the second stage analysis (b0bj_ss)
- txName is the treatment variable name, ("A1")
- fSet is not required
- surrogate is the surrogate function to be used for the 0-1 loss function ('logit', 'exp', 'hinge', 'sqhinge', 'huber')

```
str(object = bowl)
```

```
function (..., moPropen, data, reward, txName, regime,
   response, BOWLObj = NULL, lambdas = 2, cvFolds = OL,
   kernel = "linear", kparam = NULL, fSet = NULL,
   surrogate = "hinge", verbose = 2L)
```

• regime is a formula (or list of formulas) defining the decision function

We will again use a linear kernel and thus

$$f_{rdp'}(X;\eta_{rdp'}) = \sum_{i=1}^{n} \eta_{rdp'i} X_i + \eta_{rdp'0}$$

with $X_i = \{x01, x02\}.$

regime <- ~x01+x02

```
bObj_fs <- bowl(moPropen = moPropen_fs,
                data = df, response = rep(0, nrow(df)), txName = 'A1',
                regime = regime, BOWLObj = bObj_ss,
                kernel = 'linear', kparam = NULL,
                fSet = NULL, surrogate = 'sqhinge', verbose = TRUE)
BOWL optimization step 2
Propensity for treatment regression.
Regression analysis for moPropen:
Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)
Coefficients:
(Intercept)
   -0.07604
Degrees of Freedom: 999 Total (i.e. Null); 999 Residual
Null Deviance:
Residual Deviance: 1385
                            AIC: 1387
Outcome regression.
No outcome regression performed.
Final optimization step.
Optimization Results
Kernel
kernel = linear
kernel model = ~x01 + x02 - 1
lambda= 2
Surrogate: SqHingeSurrogate
$par
[1] 0.16414926 -0.01779646 -0.00105415
$value
[1] 54.10977
$counts
function gradient
      29
```

Methods available:

method	description
Call(name)	retrieve the unevaluated call
coef(object)	retrieve parameter estimates
DTRstep(object)	print description of method
estimator(x)	retrieve estimated value
fitObject(object)	retrieve value returned by 'modelObj's
optTx(object)	retrieve recommended optimal treatments
optTx(object, newdata)	estimate optimal treatments based on a prior analysis
outcome(object)	retrieve value returned by regression analysis
plot(x, suppress)	plot fit results
summary(object)	retrieve summary information

Methods available: Model Diagnostics

method	description
Call(name)	retrieve the unevaluated call
coef(object)	retrieve parameter estimates
DTRstep(object)	print description of method
estimator(x)	retrieve estimated value
fitObject(object)	retrieve value returned by 'modelObj's
optTx(object)	retrieve recommended optimal treatments
optTx(object, newdata)	estimate optimal treatments based on a prior analysis
outcome(object)	retrieve value returned by regression analysis
plot(x, suppress)	plot fit results
summary(object)	retrieve summary information

```
coef(object = b0bj_ss)
$propensity
$propensity$`Subset=A_0`
(Intercept)
-0.08277229
$propensity$`Subset=B_0`
(Intercept)
0.03713955
coef(object = b0bj_fs)
$propensity
(Intercept)
-0.07603661
```

```
fit0bj <- fit0bject(object = b0bj_ss)
fit0bj
$propensity
$propensity$`Subset=A_0`
Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)
Coefficients:
(Intercept)
   -0.08277
Degrees of Freedom: 410 Total (i.e. Null); 410 Residual
Null Deviance:
                    569.1
Residual Deviance: 569.1
                          ATC: 571.1
$propensity$`Subset=B_0`
Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)
Coefficients:
(Intercept)
   0.03714
Degrees of Freedom: 376 Total (i.e. Null); 376 Residual
Null Deviance:
                    522.5
Residual Deviance: 522 5
                          ATC: 524 5
```

#is(object = fitObj\$outcome\$'Subset=A O'\$Combined)

Methods available: Training Diagnostics

method	description
Call(name)	retrieve the unevaluated call
coef(object)	retrieve parameter estimates
DTRstep(object)	print description of method
estimator(x)	retrieve estimated value
fitObject(object)	retrieve value returned by 'modelObj's
optTx(object)	retrieve recommended optimal treatments
optTx(object, newdata)	estimate optimal treatments based on a prior analysis
outcome(object)	retrieve value returned by regression analysis
plot(x, suppress)	plot fit results
summary(object)	retrieve summary information

```
ot \leftarrow optTx(x = b0bj_ss)
names(ot)
[1] "optimalTx" "decisionFunc"
table(ot$optimalTx)
     B C
326 334 340
head(cbind(ot$decisionFunc, "optTx" = ot$optimalTx))
                 optTx
[1.] -0.18465414
[2,] 0.05500416
[3,] -0.08997375
[4.] 0.03377397
[5,] 0.01095293
[6,]
              NA
estimator(x = b0bj_ss)
[1] 2.660591
ot \leftarrow optTx(x = b0bj_fs)
table(ot$optimalTx)
```

Methods available: Predictions

method	description
Call(name)	retrieve the unevaluated call
coef(object)	retrieve parameter estimates
DTRstep(object)	print description of method
estimator(x)	retrieve estimated value
fitObject(object)	retrieve value returned by 'modelObj's
optTx(object)	retrieve recommended optimal treatments
optTx(object, newdata)	estimate optimal treatments based on a prior analysis
outcome(object)	retrieve value returned by regression analysis
plot(x, suppress)	plot fit results
summary(object)	retrieve summary information

```
newPatient \leftarrow data.frame(x01 = c(9.3, 10.6), x02 = c(51.8, 70))
optTx(x = b0bj_fs, newdata = newPatient)
$optimalTx
[1] A A
Levels: A B
$decisionFunc
[1] -0.05596278 -0.09828371
newPatient <- cbind(newPatient,</pre>
                     "A1" = optTx(x = b0bj_fs, newdata = newPatient) $ optimalTx,
                     "r1" = c(1.0).
                     "x11" = c(NA.2.9).
                     "x12" = c(NA, -.6).
                     "x13" = c(NA.8)
optTx(x = b0bj_ss, newdata = newPatient)
$optimalTx
[1] A Β
Levels: A B C
$decisionFunc
[1]
              NA -0.007807652
```

Conclusion

Conclusion

There are more multiple decision point methods available.

- optimalClass() can be used iteratively like qLearn() and bowl() (Value Search Classification)
- iqLearn() is a two-decision point method (IQ-Learning)
- earl() is a two-decision point method (Efficient Augmentation and Relaxation Learning)
- rwl() is a two-decision point method (Residual Weighted Learning)

If you have **ANY** questions or encounter any problems, please do not hesitate to contact me Shannon Holloway sthollow@ncsu.edu

Happy Coding!