CLAIMS

What is claimed is:

1	1. (cu	urently	amended) An apparatus for use in a borehole in an earth formation
2		comp	rising:
3		(a)	a conducting tubular, said conducting tubular having a damping portion
4			for interrupting reducing a flow of eddy currents;
5		(b)	a transmitter at least one transmitter positioned on a first side of said
6			damping portion on said conducting tubular for propagating which
7			propagates an electromagnetic field in the earth formation;
8		(c)	a receiver at least one receiver positioned on a second side opposite said
9			first side of said damping portion axially separated from said transmitter
10			for receiving on said conducting tubular which receives a temporal signal
11			resulting from interaction of said electromagnetic field with said earth
12			formation; and
13		(d)	a processor for determining from said temporal signal a resistivity
14			of said earth formation.
15			
1	2.	(curre	ently amended) The apparatus of claim 1, wherein said damping portion
2		furthe	a comprises at least one cut in said damping portion of said conducting
3		tubula	<u>ar</u> .
4			
1	3.	(origi	nal) The apparatus of claim 2, wherein a non-conductive material is
2		dispo	sed within said cut.

3

Fax:7132668510

		•
1	4.	(original) The apparatus of claim 1, wherein said damping portion further
2		comprises
3		(i) a first segment having a cut, and
4		(ii) a second segment with non-conductive material positioned on an outer
5		face of said segment.
6		
1	5.	(original) The apparatus of claim 1, wherein said damping portion further
2		comprises a segment of pipe with a non-conductive material positioned on an
3		outer face of said segment.
4		
1	6.	(currently amended) The apparatus of claim 1 wherein said non-conductive
2		material damping portion comprises a ferrite.
3		
1	7.	(currently amended) The apparatus of claim 1 wherein said non conductive
2		material damping portion comprises a material with low magnetostriction.
3		
1	8.	(currently amended) The apparatus of claim 1, wherein said at least one
2		transmitter further comprises at least one coil oriented so as to induce a magnetic
3		moment in one of (i) a longitudinal parallel to an axis of said tubular, and, (ii) a
4		direction inclined to said longitudinal axis.
4		

1	9.	(current	ly amended) The apparatus of claim 1, wherem said at least one received
2		further (comprises at least one coil having an orientation selected from (i) parallel
3		to an ax	is of said tubular, and, (ii) inclined to an axis of said tubular.
4			
1	10.	(current	tly amended) The apparatus of claim 2 wherein said cut is comprises a
2		longitud	dinal cut.
3			
1	11.	(curren	tly amended) The apparatus of claim 2 wherein said cut is comprises a
2		transve	rse cut.
3			
1	12.	(origina	al) The apparatus of claim 1 further comprising a device for extending said
2		boreho	le.
3			
1	13.	(origin	al) The apparatus of claim 1 wherein said processor further determines a
2		distanc	e to a bed boundary in said earth formation.
3			
1	14.	(curren	atly amended) A method of drilling an earth formation:
2		(a)	conveying a bottom hole assembly (BHA) into said earth formation, said
3			BHA including a tubular having a damping portion for interrupting
4			reducing a flow of eddy currents;
5		(b)	using a transmitter-positioned on a first side of said damping portion at
6			least one transmitter on said tubular for producing an electromagnetic field
7			in the earth formation;

0		(c) using at least one receiver on said thousar a receiver positioned on a
9		second-side opposite said-first side of said-damping portion axially
10		separated from said transmitter for receiving a temporal signal resulting
11		from interaction of said first signal with said earth formation; and
12		(d) determining from said temporal signal said resistivity of said earth
13		formation.
14		
1	15.	(original) The method of claim 14, wherein said damping portion further
2		comprises at least one cut.
3		
1	16.	(original) The method of claim 15, wherein a non-conductive material is disposed
2		within said cut.
3		
1	17.	(original) The method of claim 14, wherein said damping portion further
2		comprises
3		(i) a first segment having a cut, and
4		(ii) a second segment with non-conductive material positioned on an outer
5		face of said segment.
6		·
1	18.	(original) The method of claim 14, wherein said damping portion further
2		comprises a segment of pipe with a non-conductive material positioned on an
3		outer face of said segment.
4		

1	19.	(original) The method of claim 18 further comprising using a ferrite for said non-
2		conductive material.
3		
1	20.	(original) The method of claim 18 further comprising using a material with low
2		magnetostriction for said non-conductive material.
3		
1	21.	(currently amended) The method of claim 14, wherein said at least one transmitte
2		further comprises at least one coil oriented so as to induce a magnetic moment in
3		one of (i) a longitudinal parallel to an axis of said tubular, and, (ii) a direction
4		inclined to said longitudinal axis.
5		
1	22.	(currently amended) The method of claim 14, wherein said at least one receiver
2		further comprises at least one coil having an orientation selected from (i) parallel
3		to an axis of said tubular, and, (ii) inclined to an axis of said tubular.
4		
1	23.	(currently amended) The method of claim 15 wherein said cut is comprises a
2		longitudinal cut.
3		
1	24.	(currently amended) The method of claim 15 wherein said cut is comprises a
2		transverse cut.
3		
1	25.	(original) The method of claim 14 further comprising using a device on said BHA
2		for extending said borehole.

3		
1	26.	(original) The method of claim 14 further comprising determining a distance to an
2		interface in said earth formation.
3		
1	27.	(original) The method of claim 25 wherein (a) - (d) are carried out during
2		continuing rotation of said BHA.
3		
1	28.	(original) The method of claim 26 further comprising using said determined
2		distance for controlling a drilling depth of said BHA.
3		
1	29.	(original) The method of claim 26 wherein said interface comprises a bed
2		boundary.
3		
1	30.	(original) The method of claim 26 wherein said interface comprises a fluid
2		interface.
3		
1	31.	(new) The apparatus of claim 1 wherein said at least one transmitter and said at
2		least one receiver are positioned on said conducting tubular on opposite sides of
3		said damping portion.
4		
1	32.	(new) The method of claim 14 further comprising positioning said at least one
2		transmitter and said at least one receiver on opposite sides of said damping
3		portion.

4

414-34864