

WG7833-B0 WLAN/BT Module TI WiLink8 IEEE 802.11a/b/g/n BT/BLE Solution

Datasheet Revision 0.3

<u>Index</u>

1.	OVER	VIEW	4
	1.1. N	Nodels Functional Blocks	4
		Seneral Features	
2.		TIONAL FEATURES	
		10dule Block Diagram	
		LOCK FUNCTIONAL FEATURE	
	2.2.1.	WLAN Features	
	2.2.2.	Bluetooth Features	
	2.2.3.		
	2.2.4.		
3.	MOD	JLE OUTLINE	8
	3.1. SI	GNAL LAYOUT (TOP VIEW)	8
		IN DESCRIPTION	
4.	MOD	JLE SPECIFICATION	13
	4.1. G	General Module Requirements and Operation	13
	4.1.1.	Absolute Maximum Ratings (1)	13
	4.1.2.	Recommended Operating Conditions	14
	4.1.3.	External Slow Clock Input (SLOW_CLK)	15
	4.1.4.	External Fast Clock Requirements (-40 to +85°C)	15
	4.2. V	/LAN RF Performance	17
	4.2.1.	WLAN 2.4-GHz Receiver Characteristics	17
	4.2.2.	WLAN 2.4-GHz Transmitter Power	18
	4.2.4.	WLAN 5-GHz Transmitter Power (For WG7833/03 Only)	20
	4.3. B	luetooth RF Performance (For WG7833/31 Only)	21
	4.3.1.	BT Receiver Characteristics, In-Band Signals	21
	4.3.2.	BT Receiver Characteristics – General Blocking	22
	4.3.3.	BT Receiver Characteristics –BR, EDR Blocking Per Band	22
	4.3.5.	BT Transmitter, EDR	23
	4.3.6.	BT Modulation, BR	23
	4.3.7.	BT Modulation, EDR	24
	4.3.8.	BT BR, EDR Transceiver - Emissions	24
	4.3.9.	BT BR Transceiver - Spurs	25

4.3	3.10. BT EDR Transceiver - Spurs	25
4.4.	BT LE RF Performance	26
4.4	4.1. BT LE Receiver Characteristics, In-Band Signals	2 <i>e</i>
4.4	4.3. BT LE Transmitter Characteristics	27
4.4	4.4. BT LE Modulation Characteristics	27
4.4	4.6. BT LE Transceiver - Spurs	28
4.5.	ANT Performance	28
4.5	5.1. ANT Receiver Characteristics, In-Band Signals	28
4.5	5.2. ANT Transmitter Characteristics	28
4.6.	POWER CONSUMPTION	29
5. H	OST INTERFACE TIMING CHARACTERISTICS	32
5.1.	WLAN SDIO Transport Layer	32
5.2.	SDIO TIMING SPECIFICATIONS	33
5.3.	HCI UART SHARED TRANSPORT LAYERS FOR ALL FUNCTIONAL BLOCKS (EXCEPT WLAN)	
5.4.	UART TIMING SPECIFICATIONS	36
5.5.	BLUETOOTH CODEC-PCM(AUDIO) TIMING SPECIFICATIONS	37
6. CI	LOCK AND POWER MANAGEMENT	39
6.1.	RESET-POWER-UP SYSTEM	39
6.2.	WLAN Power-Up Sequence	
6.3.	BLUETOOTH/BLE/ANT POWER-UP SEQUENCE	40
7. RE	FERENCE SCHEMATIC	41
7.1.	Module Reference Design	41
8. DI	ESIGN RECOMMENDATIONS	42
8.1.	Design Note on Debug Port	42
8.2.	Module Layout Recommendations	42
9. P <i>A</i>	ACKAGE INFORMATION	4 4
9.1.	MODULE MECHANICAL OUTLINE	44
9.2.	Ordering Information	45
9.3.	Package Marking	
9.4.	Packaging	47
10.	SMT AND BAKING RECOMMENDATION	49
10.1	. Baking Recommendation	49
10.2	. SMT RECOMMENDATION	49

11. HISTORY CHANGE50

1. OVERVIEW

WG7833/31/03/01-B0, a WiFi, BT, BLE SiP (system in package) module, is the most demanded design for mobile devices, Audio, Computer, PDA and embedded system applications with Wilink8 solution from TI.

1.1. Models Functional Blocks

Model	WLAN 2.4GHz	WLAN 5GHz	BT/BLE/ANT
WG7833-B0	V	V	V

1.2.General Features

- WLAN, Bluetooth, BLE, ANT with Integrated RF Front-End Module (FEM), Power Amplifier (PA), and Power Management on a Single Module
- LGA106 pin package
- Dimension 12.8mm(L) x 12.0mm(W) x 1.63mm(H)
- Provides efficient direct connection to battery by employing several integrated switched mode power supplies (DC2DC).
- Seamless Integration with TI Sitara™ and Other Application Processors
- WLAN and BT/BLE/ANT cores are software and hardware compatible with prior WL127x and WL128x offerings, for smooth migration to device.
- Shared HCI transport for BT/BLE/ANT over UART and SDIO for WLAN.
- Temperature detection and compensation mechanism ensures minimal variation in RF performance over the entire temperature range.
- BT 4.0, BLE, ANT and all audio processing features work in parallel and include full coexistence with WLAN
- Operating temperature: –40°C to 85°C

2. FUNCTIONAL FEATURES

2.1. Module Block Diagram

Figure 2-1. WG7833-B0 Block Diagram

2.2. Block Functional Feature

2.2.1. WLAN Features

- Integrated 2.4 & 5G GHz Power Amplifier (PA) for WLAN solution
- WLAN Baseband Processor and RF transceiver Supporting IEEE Std 802.11a/b/g/n
- WLAN 2.4/5 GHz SISO (20/40 MHz channels)

- Baseband Processor
 - ➤ IEEE Std 802.11a/b/g/n data rates and IEEE Std 802.11n data rates with 20 or 40 MHz SISO.
- Fully calibrated system. Production calibration not required.
- Medium Access Controller (MAC)
 - Embedded ARM™ Central Processing Unit (CPU)
 - Hardware-Based Encryption/Decryption using 64-, 128-, and 256-Bit WEP, TKIP or AES Keys,
 - Supports requirements for Wi-Fi Protected Access (WPA and WPA2.0) and IEEE Std 802.11i [includes hardware-accelerated Advanced Encryption Standard (AES)]
 - Designed to work with IEEE Std 802.1x
- IEEE Std 802.11d,e,h,i,k,r PICS compliant.
- New advanced co-existence scheme with BT/BLE/ANT.
- 2.4/5 GHz Radio
 - Internal LNA and PA
 - Supports: IEEE Std 802.11a, 802.11b, 802.11g and 802.11n
- Supports 4 bit SDIO host interface, including high speed (HS) and V3 modes.

2.2.2. Bluetooth Features

- Supports Bluetooth 4.0 as well as CSA2
- Includes concurrent operation and built -in coexisting and prioritization handling of Bluetooth, BLE, ANT, audio processing and WLAN
- Dedicated Audio processor supporting on chip SBC encoding + A2DP:
 - Assisted A2DP (A3DP) support SBC encoding implemented internally
 - Assisted WB-Speech (AWBS) support modified SBC codec implemented internally

2.2.3. BLE Features

- Fully compliant with BT4.0 BLE dual mode standard
- Support for all roles and role-combinations, mandatory as well as optional
- Supports up to 10 BLE connections
- Independent buffering for LE allows having large number of multiple connections without

affecting BR/EDR performance

2.2.4. ANT Features

Fully compliant with all ANT Protocols:

- ANT solution optimized for the fitness and health use-cases
- Simple to complex network topologies
- Supports high-resolution proximity pairing

The ANT protocol has been designed to very power-efficient, yet is flexible enough to support various network topologies (point-to-point, star, 1-to-N, N-to-1) and data transfer modes (broadcast, broadcast with acknowledge, mass data transfer). Each logical ANT channel can be independently configured for 1-way or 2-way operation

3. MODULE OUTLINE

3.1. Signal Layout (Top View)

Figure 3-1 Device pins

3.2. Pin Description

Table 3-1. Pin Description

Pin	Signal Name	Туре	Shut Down	After Power	Voltage Level	Description
No.		,	state	Up ⁽¹⁾		·
A1	GND	GND				Ground
						WLAN SDIO Data bit 3. Changes state to
A2	WLAN SDIO D3	10	HiZ	PU	1.8V	PU at WL_EN or BT_EN assertion for
\ \A2	WLAN_3DIO_D3	10	1112	10	1.60	card detects. Later disabled by software
						during initialization. ⁽²⁾
А3	WLAN_SDIO_CMD	1/0	HiZ	HiZ	1.8V	WLAN SDIO Command ⁽²⁾
A4	WLAN_SDIO_D2	10	HiZ	HiZ	1.8V	WLAN SDIO Data bit 2 (2)
A5	WLAN_SDIO_D0	10	HiZ	HiZ	1.8V	WLAN SDIO Data bit 0 ²⁾
A6	WLAN_SDIO_D1	10	HiZ	HiZ	1.8V	WLAN SDIO Data bit 1 (2)
4.7	WILAN CDIO CIK	18.1	11:7		4.007	WLAN SDIO Clock. Must be driven by
A7	WLAN_SDIO_CLK	IN	HiZ	HiZ	1.8V	the host.
A8	GND	GND				Ground
40	DT LICE CTC	INI	DII	DII	1.0)/	UART CTS from host.
A9	BT_HCI_CTS	IN	PU	PU	1.8V	NC if not used.
A10	BT_HCI_RTS	OUT	PU	PU	1.8V	UART RTS to host.
AIU	BI_HCI_KI3	001	PO	PU	1.60	NC if not used.
A11	BT_HCI_TX	OUT	PU	PU	1.8V	UART TX to host.
AII	BI_HCI_IX	001	PU	PU	1.00	NC if not used.
A12	DT LICE DV	IN	PU	PU	1.8V	UART RX from host.
A1Z	BT_HCI_RX	IIN	PU	PU	1.00	NC if not used.
A13	NC					NC
A14	NC					NC
A15	NC					NC
A16	GND	GND				Ground
A17	NC					NC
A18	GND	GND				Ground

A19	VIO_IN	POW	PD	PD	1.8V	Connect to 1.8V external VIO
A20	GND	GND				Ground
B1	NC					NC
B2	NC					NC
В3	GPIO11	I/O	PU	PU	1.8V	Reserved for future use. NC if not used.
B4	GPIO9	I/O	PU	PU	1.8V	Reserved for future use. NC if not used.
B5	GPIO10	I/O	PU	PU	1.8V	Reserved for future use. NC if not used.
В6	GPIO12	I/O	PU	PU	1.8V	Reserved for future use. NC if not used.
В7	NC					NC
В8	NC					NC
В9	NC					NC
B10	NC					NC
B11	NC					NC
B12	NC					NC
B13	NC					NC
B14	NC					NC
B15	NC					NC
B16	NC					NC
C1	GND	GND				Ground
C2	NC					NC
C3	NC					NC
C4	BT_UART_DEBUG	OUT	PU	PU	1.8V	Option: Bluetooth logger
C 5	NC					NC
C 6	WLAN_UART_DBG	OUT	PU	PU	1.8V	Option: WLAN logger
C 7	GPIO1	I/O	PD	PD	1.8V	WL_RS232_TX (when IRQ_WL = 1 at
	G1101	1,0		10	1.0 V	power up)
C8	NC					NC
C9	TCXO_CLK_IN	ANA				TCXO clock input
C10	WLAN_EN	IN	PD	PD	1.8V	Mode setting: High = enable
						SDIO available, interrupt out. Active
C11	WLAN_IRQ	OUT	PD	0	1.8V	high. To use WL_RS232_TX and RX
						lines, need to pull up with 10K
						resistor.
C12	GND	GND				Ground

C13	GND	GND				Ground
		1				
C14	GND	GND				Ground
C15	GND	GND				Ground
C16	GND	GND				Ground
D1	GND	GND) (DAT	Ground
D2	VBAT	POW			VBAT	Power supply input, 2.9 to 4.8 V
D3	NC					NC
D4	NC					NC
D5	NC					NC
D6	GND	GND				Ground
D7	NC					NC
D8	GND	GND				Ground
D9	PA_DC2DC_OUT	POW				Internal DC2DC output
D10	GPIO4	I/O	PD	PD	1.8V	Reserved for future use. NC if not used.
D11	CDIO3	1/0	DD	DD	1.0\/	WL_RS232_RX (when IRQ_WL = 1 at
D11	GPIO2	1/0	PD	PD	1.8V	power up)
D12	BT_EN	In	PD	PD	1.8V	Mode setting: High = enable
D13	NC					NC
D14	NC					NC
D15	GND	GND				Ground
D16	GND	GND				Ground
D17	GND	GND				Ground
D18	GND	GND				Ground
D19	RF_ANT_WA	RF				WLAN 5G RF Port
D20	GND	GND				Ground
E1	GND	GND				Ground
E2	GND	GND				Ground
E3	GND	GND				Ground
E4	GND	GND				Ground
F1	GND	GND				Ground
F2	GND	GND				Ground
F3	GND	GND				Ground
F4	GND	GND				Ground
J1	GND	GND				Ground
J2	GND	GND				Ground

J3	GND	GND				Ground
J4	NC					NC
J5	NC					NC
J6	NC					NC
J7	NC					NC
J8	NC					NC
J9	NC					NC
J10	CLK_REQ_OUT	OUT	PD	PD	1.8V	TCXO clock request out
J11	GND	GND				Ground
J12	GND	GND				Ground
J13	NC					NC
K1	GND	GND				Ground
K2	RF_ANT_BG	RF				WLAN/BT 2.4G RF Port
К3	GND	GND				Ground
K4	GND	GND				Ground
K5	GND	GND				Ground
К6	GND	GND				Ground
K7	BT_AUD_OUT	OUT	PD	PD	1.8V	Bluetooth PCM/I2S Bus. Data out.
K7	BI_AOD_OOT	001	r D	FD	1.0 V	NC if not used.
К8	GND	GND				Ground
К9	EXT_32K	ANA				Input Sleep clock: 32.768 KHz
K10	GND	GND				Ground
K11	BT_AUD_IN	IN	PD	PD	1.8V	Bluetooth PCM/I2S Bus. Data in.
KII	BI_AOD_IN	111	F D	FD	1.0 V	NC if not used.
K12	BT_AUD_CLK	OUT	PD	PD	1.8V	Bluetooth PCM/I2S Bus. Clock.
NIZ	51_1(0)_CER	001	, D	'	1.0 v	NC if not used.
K13	BT AUD FSYNC	OUT	PD	PD	1.8V	Bluetooth PCM/I2S Bus. Frame sync.
5	27_7.02_101110			. 5	1.01	NC if not used.

⁽¹⁾ PU=pull up; PD=pull down.

⁽²⁾ Host must provide PU for all non-CLK SDIO signals

4. MODULE SPECIFICATION

4.1. General Module Requirements and Operation

4.1.1. Absolute Maximum Ratings (1)

	Parameter	Value	Units	
VBAT		-0.5 to 5.5 ⁽²⁾	V	
VIO		-0.5 to 2.1	V	
Input voltage to Analog	voltage to Analog pins -0.5 to 2.1 V			
Input voltage limits (CL	<_IN)	-0.5 to VDD_IO	V	
Input voltage to all other	er pins	-0.5 to (VDD_IO + 0.5V)	V	
Operating ambient tem	perature range	-40 to +85 ⁽³⁾	°C	
Storage temperature ra	nge	-55 to +125	°C	
ESD Stress Voltage (4)	Human Body Model ⁽⁵⁾	>1000	V	
	Charged Device Model ⁽⁶⁾	>250	V	

- 1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 2) 5.5V up to 10s cumulative in 7 years, 5V cumulative to 250s, 4.8V cumulative to 2.33 years all includes charging dips and peaks.
- 3) Operating free-air temperature range. The device can be reliably operated for 7 years at ambient of 85°C, assuming 25% active mode and 75% sleep mode (15,400 cumulative active power-on hours).
- 4) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into device.
- 5) Level listed is the passing level per ANSI/ESDA/JEDEC JS-001. JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary precautions are taken. Pins listed as 1000V may actually have higher performance.
- 6) Level listed is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process, and manufacturing with less than 250V CDM is possible if necessary precautions are taken. Pins listed as 250 V may actually have higher performance

4.1.2. Recommended Operating Conditions

Parameter	Condition	Sym	Min	Max	Units
VBAT (1)	DC supply range		2.9	4.8	٧
	for all modes				
1.8 V IO ring power supply voltage			1.62	1.95	
IO high-level input voltage		VIH	0.65 x VDD_IO	VDD_IO	
IO low-level input voltage		VIL	0	0.35 x VDD_IO	
Enable inputs high-level input voltage		VIH_EN	1.365	VDD_IO	
Enable inputs low-level input voltage		VIL_EN	0	0.4	
High-level output voltage	@ 4 mA	VOH	VDD_IO -0.45	VDD_IO	
	@ 1 mA		VDD_IO -0.112	VDD_IO	
	@ 0.3 mA		VDD_IO -0.033	VDD_IO	
Low-level output voltage	@ 4 mA	VOL	0	0.45	
	@ 1 mA		0	0.112	
	@ 0.09 mA		0	0.01	
Input transitions time Tr/Tf from 10% to 90% (Digital IO) (2)		Tr/Tf	1	10	ns
Output rise time from 10% to 90% (Digital pins) (2)	CL < 25 pF	Tr		5.3	ns
Output fall time from 10% to 90% (Digital pins)	CL < 25 pF	Tf		4.9	
Ambient operating temperature			-40	85	ōС
Maximum power dissipation	WLAN operation			2.8	W
	BT operation			0.2	

^{(1) 4.8}V is applicable only for 2.3 years (30% of the time). Otherwise, the maximum VBAT should not exceed 4.3V.

⁽²⁾ Applies to all Digital lines except SDIO, UART, I2C, PCM and slow clock lines

4.1.3. External Slow Clock Input (SLOW_CLK)

The supported digital slow clock is 32.768 kHz digital (square wave).

Parameter	Condition	Sym	Min.	Тур.	Max.	Units	
Input slow clock Frequency				32.768		KHz	
Input slow clock accuracy	WLAN, BT				+/-250	222	
(Initial + temp + aging)	ANT				+/- 50	ppm	
Input Transition time Tr/Tf		Tr/Tf			100	nc	
- 10% to 90%		11/11			100	ns	
Frequency input duty Cycle			15	50	85	%	
Input Voltage Limits		Vih	0.65x		VDD_IO	Vasali	
	Square Wave,	VIII	VDD_IO		VDD_IO		
	DC-coupled	Vil	0		0.35x	Vpeak	
		VII	U		VDD_IO		
Input Impedance			1			ΜΩ	
Input Capacitance					5	pF	

4.1.4. External Fast Clock Requirements (-40 to +85°C)

Parameter	Condition		Min.	Тур.	Max.	Unit
Frequency				26		MHz
Frequency Accuracy	Short term (voltage and temp. effect)				± 20	
	Long term (including aging)				± 20	ppm
Input voltage limits	Sine wave/ clipped sine wave,	2.4GHz WLAN	0.2		1.4	Vn n
(TCXO_CLK_IN)	ac-coupled	5GHz WLAN	0.8		1.4	Vp-p
Input impedance	Input resistance					ΚΩ
	Input capacitance		2.5			pF
Power-up time ⁽¹⁾					5	ms
Phase noise 2.4GHz	Measured at 1 KHz offset				-123.4	dBc/Hz
for 26MHz, 20MHz	Measured at 10 KHz offset				-133.4	dBc/Hz
SISO	Measured at 100 KHz offset				-138.4	dBc/Hz
Phase noise 2.4GHz	Measured at 1 KHz offset				-128.4	dBc/Hz
for 26MHz, 40MHz	Measured at 10 KHz offset				-135.4	dBc/Hz
SISO	Measured at 100 KHz offset				-139.9	dBc/Hz

Phase noise 5GHz for	Measured at 1 KHz offset		-128.4	dBc/Hz
26MHz, 20/40 MHz	Measured at 10 KHz offset		-145.4	dBc/Hz
SISO	Measured at 100 KHz offset		-148.4	dBc/Hz

⁽¹⁾ Power-up time is calculated from the time CLK_REQ_OUT asserted till the time the TCXO_CLK amplitude is within voltage limit specified above and TCXO_CLK frequency is within 0.1 ppm of final steady state frequency.

4.2. WLAN RF Performance

4.2.1. WLAN 2.4-GHz Receiver Characteristics

Parameter	Condition	Min	Тур	Max	Units
Operation frequency range		2412		2484	MHz
Sensitivity	1 Mbps DSSS		-96.3	-93.4	dBm
	2 Mbps DSSS		-93.2	-90.5	
20MHz Bandwidth	5.5 Mbps CCK		-90.6	-87.9	
At < 10% PER limit	11 Mbps CCK		-87.9	-85.7	
	6 Mbps OFDM		-92	-89.2	
	9 Mbps OFDM		-90.4	-87.7	
	12 Mbps OFDM		-89.5	-86.8	
	18 Mbps OFDM		-87.2	-84.5	
	24 Mbps OFDM		-84.1	-81.4	
	36 Mbps OFDM		-80.7	-78	
	48 Mbps OFDM		-76.5	-73.8	
	54 Mbps OFDM		-74.9	-72.4	_
	MCS0 MM 4K		-90.4	-87.4	
	MCS1 MM 4K		-87.6	-84.9	
	MCS2 MM 4K		-85.9	-83.2	
	MCS3 MM 4K		-82.8	-80.1	
	MCS4 MM 4K		-79.4	-76.7	
	MCS5 MM 4K		-75.2	-72.5	
	MCS6 MM 4K		-73.5	-70.8	
	MCS7 MM 4K		-72.4	-69.7	_
	MCS0 MM 4K 40MHz		-87.4	-82.7	
	MCS7 MM 4K 40MHz		-69	-65.5	
Max Input Level	OFDM(11g/n)	-19	-9		dBm
At < 10% PER limit	ССК	-4	0		
Adjacent channel rejection	2Mbps DSSS	42.7			
Sensitivity level +3dB for OFDM, Sensitivity	11Mbps CCK	37.9			dBm
level +6dB for 11b	54Mbps OFDM	2.0			
LO Leakage			-80		dBm
PER Floor			1.0	2.0	%

4.2.2. WLAN 2.4-GHz Transmitter Power

Parameter	Condition	Min	Тур	Max	
Output Power	1 Mbps DSSS	15	17	_	dBm
- Maximum RMS output power	2 Mbps DSSS	15	17	_	
measured at 1dB from IEEE	5.5 Mbps CCK	15	17	_	
spectral mask or EVM	11 Mbps CCK	15	17	_	
	6 Mbps OFDM	15	17	_	
	9 Mbps OFDM	15	17	_	
	12 Mbps OFDM	15	17	_	
	18 Mbps OFDM	15	17	_	
	24 Mbps OFDM	14	16.2	_	
	36 Mbps OFDM	13.1	15.3	_	
	48 Mbps OFDM	12.4	14.6	_	
	54 Mbps OFDM	11.8	13.8	_	
	MCS0 MM	13.9	16.1		
	MCS1 MM	13.9	16.1		
	MCS2 MM	13.9	16.1		
	MCS3 MM	13.9	16.1		
	MCS4 MM	13.3	15.3		
	MCS5 MM	12.4	14.6		
	MCS6 MM	11.8	13.8		
	MCS7 MM	10.6	12.6		
	MCS0 MM 40MHz	12.3	14.8		
	MCS7 MM 40MHz	10.2	12.2		
Output power accuracy		-1.5		+1.5	dB
Output power resolution			0.125		dB
Operation frequency range		2412		2484	MHz
Return loss			-10		dB
Reference input impedance			50		Ω

4.2.3. WLAN 5-GHz Receiver Characteristics (For WG7833/03 Only)

Parameter	Condition	Min	Тур	Max	Units
Operation frequency range		4910		5825	MHz
Sensitivity	6 Mbps OFDM	_	-91.5	-87.6	
- 20MHz bandwidth.	9 Mbps OFDM	_	-89.7	-85.7	
- At < 10% PER limit	12 Mbps OFDM	_	-88.9	-84.9	
	18 Mbps OFDM	-	-86.4	-82.4	
	24 Mbps OFDM	_	-83.3	-79.3	dBm
	36 Mbps OFDM	1	-79.9	-75.9	
	48 Mbps OFDM	_	-75.6	-71.6	
	54 Mbps OFDM	1	-74.0	-70.5	
	MCS0 MM 4K	_	-89.8	-85.4	
	MCS1 MM 4K	_	-87.0	-83.0	_
	MCS2 MM 4K	_	-85.2	-81.2	
	MCS3 MM 4K	_	-82.1	-78.1	
	MCS4 MM 4K	_	-78.7	-74.7	
	MCS5 MM 4K	_	-74.4	-70.4	
	MCS6 MM 4K	_	-72.8	-68.8	
	MCS7 MM 4K	_	-71.5	-67.9	
	MCS0 MM 4K 40MHz	_	-87.0	-81.8	
	MCS7 MM 4K 40MHz	_	-68.3	-64.4	
Max Input Level, At < 10% PER limit	OFDM(11a/n)	-27	-9		dBm
Adjacent channel rejection	54Mbps OFDM	2			
Sensitivity level +3dB for OFDM					dBm
LO Leakage			-53		dBm
PER Floor			1.0	2.0	%

4.2.4. WLAN 5-GHz Transmitter Power (For WG7833/03 Only)

Parameter	Condition	Min	Тур	Max	
Output Power	6 Mbps OFDM	14.7	16.8	-	dBm
- Maximum RMS output power	9 Mbps OFDM	14.7	16.8	-	
measured at 1dB from IEEE	12 Mbps OFDM	14.7	16.8	-	
spectral mask or EVM	18 Mbps OFDM	14.7	16.8	-	
	24 Mbps OFDM	14.1	15.7	-	
	36 Mbps OFDM	13.4	15.0	-	
	48 Mbps OFDM	12.6	14.2	-	
	54 Mbps OFDM	11.6	13.4	-	
	MCS0 MM	14.4	16.4		
	MCS1 MM	14.4	16.4		
	MCS2 MM	14.4	16.4		
	MCS3 MM	14.4	16.4		
	MCS4 MM	13.2	15.0		
	MCS5 MM	12.6	14.2		
	MCS6 MM	11.6	13.4		
	MCS7 MM	10.7	12.4		
	MCS0 MM 40MHz	13.0	15.9		
	MCS7 MM 40MHz	9.7	11.6		-
Output power accuracy		-1.5		+1.5	dB
Output power resolution			0.125		dB
Operation frequency range		4910		5825	MHz
Return loss			-10		dB
Reference input impedance			50		Ω

4.3. Bluetooth RF Performance (For WG7833/31 Only)

4.3.1. BT Receiver Characteristics, In-Band Signals

Parameter	Condition	n	Min	Тур	Max	ВТ	Units
						Spec	
BT BR, EDR operation			2402		2480		MHz
frequency range							
BT BR, EDR channel spacing				1			MHz
BT BR, EDR input				50			Ω
impedance							
BT BR, EDR sensitivity (1)	BR, BER = 0.1%			-92.0		-70	dBm
Dirty TX on	EDR2, BER = 0.01% EDR3, BER = 0.01%			-91.5		-70	
				-84.5		-70	
BT EDR BER floor at	EDR2		1e-6			1e-5	
sensitivity + 10 dB, dirty TX	EDR3	EDR3				1e-5	
off (for 1,600,000 bits)							
BR, BER = 0.1%			-5.0			-20	dBm
BT BR, EDR maximum useable input power	EDR2, BER = 0.1%		-10.0			-20	
useable iliput powei	EDR3, BER = 0.1%		-10.0			-20	
BT BR intermodulation	Level of interferers For r	n = 3, 4, and 5	-36.0	-30.0		-39	dBm
BT BR, EDR C/I performance	BR, Co-channel			8.0		11	dB
	EDR, Co-channel	EDR2		9.5		13	
Numbers show		EDR3		16.5		21	
wanted-signal to	BR, adjacent ±1 MHz	l		-10.0		0	•
interfering-signal ratio.	EDR, adjacent ±1 MHz,	EDR2		-10.0		0	
Smaller numbers indicate	(image)	EDR3		-5.0		5	
better C/I performances	BR, adjacent +2 MHz			-38.0		-30	
(Image frequency = -1MHz)	EDR, adjacent +2 MHz,	EDR2		-38.0		-30	\dashv
	, ,	EDR3		-38.0		-25	-
	BR, adjacent -2 MHz	12.10		-28.0		-20	-
	EDR, adjacent	EDR2		-28.0		-20	
	-2 MHz			-22.0			
	-Z IVIПZ	EDR3		-22.0		-13	

	BR, adjacent ≥l±3I MH	-45.0	-40		
	EDR, adjacent ≥I±3I	EDR2	-45.0	-40	
	MHz	EDR3	-44.0	-33	
BT BR, EDR RF return loss			-10.0		dB

⁽¹⁾ Sensitivity degradation up to -3dB may occur due to fast clock harmonics with dirty TX on.

4.3.2. BT Receiver Characteristics – General Blocking

Parameter	Condition	Min	Тур	BT spec	Units
Blocking performance over full range,	30-2000 MHz	-6		-10	dBm
according to BT specification (1)	2000-2399 MHz	-6		-27	
	2484-3000 MHz	-6		-27	
	3-12.75 GHz	-6		-10	

¹⁾ Exceptions taken out of the total 24 allowed in the BT spec.

4.3.3. BT Receiver Characteristics –BR, EDR Blocking Per Band

Parameter	Band	Min	Тур	Units
Blocking performance for various cellular	776-794 MHz (CDMA)		-12	
bands	824-849 MHz (GMSK) ⁽¹⁾		-3	
	824-849 MHz (EDGE) (1)		-11	
Hopping on.	824-849 MHz (CDMA, QPSK) (1)		-12	
Wanted signal: -3dB from sensitivity, with	880-915 MHz (GMSK)		-14	
modulated continuous blocking signal.	880-915 MHz (EDGE)		-15	
BER = 0.1% for BT BR, 0.01% for BT EDR. PER = 1%	1710-1785 MHz (GMSK)		-4	dBm
PER - 1/0	1710-1785 MHz (EDGE)		-18	
	1850-1910 MHz (GMSK)		-18	
	1850-1910 MHz (EDGE)		-20	
	1850-1910 MHz (CDMA, QPSK)		-20	
	1850-1910 MHz (WCDMA, QPSK)		-16	
	1920-1980 MHz (WCDMA, QPSK)		-17	

¹⁾ Except for frequencies where [3 * F_BLOCKER] falls within the BT band (2400-2483.5 MHz)

4.3.4. BT Transmitter, BR

Parameter		Min	Тур	Max	BT Spec	Units
BR RF output power (1)	VBAT >= 3V		12.5			dBm
	VBAT < 3V		7.0			
BR Gain Control Range			30			dB
BR Power Control Step		2	5	8	2 to 8	
BR Adjacent Channel Power M-N = 2 (2)			-43.0		≤ -20	dBm
BR Adjacent Channel Power M-N > 2 (2)			-48.0		≤ -40	

¹⁾ Values reflect maximum power. Reduced power is available using a vendor-specific (VS) command.

4.3.5. BT Transmitter, EDR

Parameter		Min	Тур	Max	BT Spec	Units
EDR output power (1)	VBAT >= 3V		7			dBm
	VBAT < 3V		5			
EDR relative power		-2		1	-4 to +1	dB
EDR Gain Control Range			30			dB
EDR Power Control Step		2	5	8	2 to 8	dB
EDR Adjacent Channel Power M-N = 1 (2)			-36		≤-26	dBc
EDR Adjacent Channel Power M-N =	2 (2)		-30		≤ -20	dBm
EDR Adjacent Channel Power M-N >	2 (2)		-42		≤ -40	

¹⁾ Values reflect maximum power. Reduced power is available using a vendor-specific (VS) command.

4.3.6. BT Modulation, BR

Parameter	Co	Condition ⁽¹⁾		Condition ⁽¹⁾ Performances			Performances		Units
Parameter	Co	nation	Min	Тур	Max	spec	Units		
BR -20dB Bandwidth				925	995	≤1000	kHz		
	Af1 oug	Mod data = 4-ones,		160		140 to	kHz		
	Δf1avg	4-zeros: 111100001111				175	KHZ		
BR modulation	Δf2max ≥ limit for					> 115			
characteristics	at least 99.9% of all	Mod data = 1010101		130			kHz		
	Δf2max								
	Δf2avg / Δf1avg			88		> 80	%		

²⁾ Assumes 3dB insertion loss on external filter and traces

²⁾ Assumes 3dB insertion loss on external filter and traces.

BR carrier frequency	One slot packet	-25	+25	< ±25	kHz
drift	Three and five slot packet	-35	35	< ±40	kHz
BR drift rate	Ifk E fkl k = 0 may		15	< 20	kHz/
BR drift rate	Ifk+5 – fkl , k = 0 max				50μs
BR initial carrier	f0 – fTX	-25	25	< ±75	kHz
frequency tolerance (2)	10-117	-25	25	\ <u>1</u> 75	K/1Z

- 1) Performance figures at maximum power
- 2) This number is added on top of the reference clock frequency accuracy

4.3.7. BT Modulation, EDR

Parameter ⁽¹⁾	Condition	Min	Тур.	Max	BT spec	Units
EDR Carrier frequency stability		-5		5	≤10	kHz
EDR Initial Carrier Frequency Tolerance (2)		-25		25	±75	kHz
EDR RMS DEVM	EDR2		4		20	%
	EDR3		4		13	%
EDR 99% DEVM	EDR2			30	30	%
	EDR3			20	20	%
EDR Peak DEVM	EDR2		9		35	%
	EDR3		9		25	%

¹⁾ Performance figures at maximum power

4.3.8. BT BR, EDR Transceiver - Emissions

Parameter (1)	Condition (2)		Pe	rformand	Units	
			Min	Тур	Max	
BT out-of-band	746-768 MHz (CDMA)	BR, EDR		-151		dBm/Hz
emission	869-894 MHz (WCDMA, GSM)			-149		dBm/Hz
	925-960 MHz (E-GSM)			-148		dBm/Hz
	1570-1580 MHz (GPS)			-145		dBm/Hz
	1598-1607 MHz (GLONASS) (3)			-145		dBm/Hz
	1805-1880 MHz (DCS, WCDMA)			-141		dBm/Hz
	1930-1990 MHz (PCS)			-139		dBm/Hz

²⁾ This number is added on top of the reference clock frequency accuracy

	2110-2170 MHz (WCDMA)	BR	-134	dBm/Hz
		EDR	-129	dBm/Hz
BT harmonics	2nd harmonic		1.5	dBm
	3rd harmonic		-4	dBm
	4th harmonic		-10	dBm

- 1) Meets FCC and ETSI requirements with suitable external filter
- 2) Performance figures at maximum power
- 3) Except for frequencies that corresponds to 2*RF_FREQ/3

4.3.9. BT BR Transceiver - Spurs

Parameter ⁽¹⁾	Condition ⁽²⁾		Pe	rformand	ces	Units
			Min	Тур	Max	
BT out-of-band spurs	76-108 MHz (FM)	BR		-77		dBm
	746-768 MHz (WCDMA)			-79		dBm
	869-894 MHz (WCDMA, GSM)			-77		dBm
	925-960 MHz (E-GSM)			-77		dBm
	1570-1580 MHz (GPS)			-72		dBm
	1598-1607 MHz (GLONASS) (3)			-74		dBm
	1805-1880 MHz (DCS, WCDMA)			-72		dBm
	1930-1990 MHz (PCS)			-70		dBm
	2110-2170 MHz (WCDMA)			-59		dBm

- 1) Meets FCC and ETSI requirements with suitable external filter
- 2) Performance figures at maximum power
- 3) Except for frequencies that corresponds to 2*RF_FREQ/3

4.3.10. BT EDR Transceiver - Spurs

Parameter ⁽¹⁾	Condition (2)		Pe	rforman	Units	
			Min	Тур	Max	
BT out-of-band spurs	76-108 MHz (FM)	EDR		-82		dBm
	746-768 MHz (WCDMA)			-87		dBm
	869-894 MHz (WCDMA, GSM)			-85		dBm
	925-960 MHz (E-GSM)			-84		dBm
	1570-1580 MHz (GPS)			-79		dBm

1598-1607 MHz (GLONASS) (3)		-78	dBm
1805-1880 MHz (DCS, WCDMA)		-76	dBm
1930-1990 MHz (PCS)		-74	dBm
2110-2170 MHz (WCDMA)		-63	dBm

- 1) Meets FCC and ETSI requirements with suitable external filter
- 2) Performance figures at maximum power
- 3) Except for frequencies that corresponds to 2*RF_FREQ/3

4.4. BT LE RF Performance

4.4.1. BT LE Receiver Characteristics, In-Band Signals

Parameter	Condition (2)	Min	Тур	Max	BLE spec	Units
BT LE Operation frequency range		2402		2480		MHz
BT LE Channel spacing			2			MHz
BT LE Input impedance			50			Ω
BT LE Sensitivity ⁽¹⁾ , Dirty Tx on			-93		≤ -70	dBm
BT LE Maximum useable input power		-5			≥ -10	dBm
BT LE Intermodulation characteristics	Level of interferers. For	-36	-30		≥ -50	dBm
	n = 3, 4, 5					
BT LE C/I performance Note:	LE, co-channel		8	12	≤ 21	dB
Numbers show wanted	LE, adjacent ±1MHz		-5	0	≤ 15	
signal-to-interfering signal ratio.	LE, adjacent +2MHz		-45	-38	≤ -17	
Smaller numbers indicate better C/I	LE, adjacent –2MHz		-22	-15	≤ -15	
performance. Image = -1MHz	LE, adjacent ≥ ±3 MHz		-47	-40	≤ -27	

¹⁾ Sensitivity degradation up to -3dB may occur due to fast clock harmonics.

4.4.2. BT LE Receiver Characteristics – General Blocking

Parameter	Condition	Min	Тур	Max	BLE	Unit
					spec	
BT LE Blocking performance over	30–2000MHz	-15			≥-30	dBm
full range, according to LE	2000–2399MHz	-15			≥-35	
specification ⁽¹⁾	2484–3000MHz	-15			≥-35	

²⁾ BER of 0.1% corresponds to PER of 30.8% for a minimum of 1500 transmitted packets, according to BT LE test spec

3–12.75GHz	-15	≥-30	
------------	-----	------	--

¹⁾ Exceptions taken out of the total 10 allowed for fbf_1, according to the BT LE Spec

4.4.3. BT LE Transmitter Characteristics

Parameter		Min	Тур	Max	BT LE	Unit
					Spec	
DT 15 D5	Vbat >= 3V		12.5		≤10	dBm
BT LE RF output power (1)	Vbat < 3V		870		≤10	dBm
BT LE Adjacent Channel Power M-N = 2 (2)			-51.0		≤ −20	dBm
BT LE Adjacent Channel Power M-N > 2 (2)			-54.0		≤-30	

¹⁾ To reduce the maximum BLE power, use a VS command. The optional extra margin is offered to compensate for design losses, such as trace and filter losses, and to achieve the maximum allowed output power at system level.

4.4.4. BT LE Modulation Characteristics

Darameter	Condition	(1)	Per	forman	ces	ВТ	Units
Parameter	Condition	Condition		Тур	Max	Spec	Units
BT LE modulation	Δf1avg	Mod data = 4-ones, 4-zeros: 111100001111		250		225 to 275	kHz
characteristics	Δf2max ≥ limit for at least 99.9% of all Δf2max	Mod data = 1010101		215		≥185	kHz
	Δf2avg / Δf1avg			90		≥80	%
BT LE carrier frequency drift	lf0 – fnl , n = 2,3 K		-25		25	≤±50	kHz
BT LE drift rate	lf1 – f0l and lfn – fn-5l ,n = 6,7 K				15	≤20	kHz/ 50μs
LE initial carrier frequency tolerance (2)	fn – fTX		-25		25	≤±100	kHz

¹⁾ Performance figures at maximum power

²⁾ Assumes 3dB insertion loss on external filter and traces

²⁾ This number is added on top of the reference clock frequency accuracy

4.4.5. BT LE Transceiver - Emissions

See Section 4.3.8, BT BR, EDR Transceiver – Emissions.

4.4.6. BT LE Transceiver - Spurs

See Section 4.3.9, BT BR Transceiver – Spurs.

4.5. ANT Performance

4.5.1. ANT Receiver Characteristics, In-Band Signals

Parameter	Condition	Min	Тур	Max	Units
ANT Operation frequency range		2402		2480	MHz
ANT Channel spacing			1		MHz
ANT Sensitivity	12.72% PER ⁽¹⁾		-85		dBm

¹⁾ Translation from BER=0.1%, assuming packet is 136 bits (not including preamble)

4.5.2. ANT Transmitter Characteristics

Same as Bluetooth BR Transmitter Characteristics

4.6. POWER CONSUMPTION

4.6.1. Shutdown and Sleep Currents

Parameter	Power Supply Current	Тур	Unit
Shutdown mode	VBAT	10	uA
All functions shut down.	VIO	2	
WLAN sleep mode	VBAT	154	
BT sleep mode	VBAT	110	

4.6.2. WLAN Power Currents

Parameter	Conditions	Typ (avg) - 25C	Units
LPM	2.4GHz RX LPM	43	mA
	2.4GHz RX search SISO20	48	mA
	2.4GHz RX search SISO40	53	mA
	5GHz RX search SISO20	54	mA
	5GHz RX search SISO40	58	mA
	2.4GHz RX 20M SISO 11CCK	50	mA
Receiver	2.4GHz RX 20M SISO 6OFDM	55	mA
	2.4GHz RX 20M SISO MCS7	59	mA
	2.4GHz RX 40MHz MCS7	71	mA
	5GHz RX 20MHz 6OFDM	62	mA
	5GHz RX 20MHz MCS7	67	mA
	5GHz RX 40MHz MCS7	79	mA
	2.4GHz TX 20M SISO 6OFDM 16.4dBm	285	mA
	2.4GHz TX 20M SISO 11CCK 16.5dBm	273	mA
	2.4GHz TX 20M SISO 540FDM 13.1dBm	247	mA
	2.4GHz TX 20M SISO MCS7 12.2dBm	238	mA
Transmitter	2.4GHz TX 40M SISO MCS7 11.8dBm	243	mA
	5GHz TX 20M SISO 6OFDM 16.8dBm	366	mA
	5GHz TX 20M SISO 540FDM 13.4dBm	329	mA
	5GHz TX 20M SISO MCS7 12.7dBm	324	mA
	5GHz TX 40M SISO MCS7 11.9dBm	332	mA

4.6.3. Bluetooth Currents

Current measurements are done at the following output power: BR at 12.5dBm, EDR at 7dBm.

Use Case (1)	Тур	Units
BR Voice HV3 + sniff	11.6	mA
EDR Voice 2-EV3 no retrans. + sniff	5.9	mA
Sniff 1 attempt 1.28s	178	uA
EDR A2DP EDR2 (master). SBC high quality – 345Kbs	10.4	mA
EDR A2DP EDR2 (master). MP3 high quality – 192Kbs	7.5	mA
Full throughput ACL RX: RX-2DH5 (2) (3)	18	mA
Full throughput BR ACL TX: TX-DH5 (3)	50	mA
Full throughput EDR ACL TX: TX-2DH5 (3)	33	mA
Page or inquiry 1.28s/11.25ms	253	uA
P&I Scan (P=1.28/I=2.56)	332	uA

¹⁾ BT role in all scenarios is Slave, except for A2DP

4.6.4. Bluetooth LE Currents

All current measurements are done at output power of 8dBm

Use Case	Тур	Units
Advertising, non-connectable (1)	131	uA
Advertising, discoverable (1)	143	uA
Scanning (2)	266	uA
Connected, master role, 1.28sec conn. Interval (3)	124	uA
Connected, slave role, 1.28sec conn. Interval (3)	132	uA

¹⁾ Advertising in all 3 channels, 1.28sec advertising interval, 15 Bytes advertise data.

²⁾ ACL RX has same current in all modulations

³⁾ Full throughput assumed data transfer in one direction

²⁾ Listening to a single frequency per window, 1.28sec scan interval, 11.25msec scan window.

³⁾ Zero Slave connection latency Empty Tx/Rx LL packets.

4.6.5. ANT Currents

Use Case	Conditions	Тур	Units
ANT Rx message mode	250ms interval	360	uA
ANT Rx message mode	500ms interval	220	uA
ANT Rx message mode	1000ms interval	150	uA

5. HOST INTERFACE TIMING CHARACTERISTICS

The following table summarizes the Host Controller interface options. All interfaces operate independently.

WLAN	Shared HCI for all functional blocks except WLAN	BT Voice/Audio
WLAN HS SDIO	Over UART	BT PCM

The device incorporates UART module dedicated to the BT shared-transport Host Controller Interface (HCI) transport layer. The HCI interface is used to transport commands, events and ACL between the Bluetooth device and its host using HCI data packets. This acts as a shared transport for all functional blocks except WLAN.

5.1. WLAN SDIO Transport Layer

The SDIO is the host interface for WLAN. The interface between the host and the WG7835-T0 uses an SDIO interface and supports a maximum clock rate of 50MHz.

The Device SDIO also supports the following features of the SDIO V3 specification:

- 4 bit data bus
- Synchronous and Asynchronous In-Band-Interrupt
- Default and High-Speed (50MHz) timing
- Sleep/wake commands

5.2. SDIO Timing Specifications

5.2.1. SDIO Switching Characteristics - Default Rate

Figure 5-1. SDIO default input timing

Figure 5-2. SDIO default output timing

Table 5-1. SDIO Default Timing Characteristics⁽¹⁾

PARAMETE	$R^{(2)}$	MIN	MAX	UNIT
Fclock	Clock frequency, CLK	0	26	MHz
DC	Low/high duty cycle	40	60	%
tTLH	Rise time, CLK		10	ns
tTHL	Fall time, CLK		10	ns
tISU	Setup time, input valid before CLK个	3		ns

tIH	Hold time, input valid after CLK个	2		ns
tODLY	Delay time, CLK↓ to output valid	2.5	14.8	ns
CI	Capacitive load on outputs		15	pF

- (1) To change the data out clock edge from the falling edge (default) to the rising edge, set the configuration bit.
- (2) Parameter values reflect maximum clock frequency.

5.2.2. SDIO Switching Characteristics - High Rate

Figure 5-3. SDIO HS input timing

Figure 5-4. SDIO HS output timing

Table 5-2. SDIO HS Timing Characteristics

PARAMETE	R	MIN	MAX	UNIT
Fclock	Clock frequency, CLK	0	50	MHz
DC	Low/high duty cycle	40	60	%
tTLH	Rise time, CLK		3	ns
tTHL	Fall time, CLK		3	ns
tISU	Setup time, input valid before CLK个	3		ns
tIH	Hold time, input valid after CLK个	2		ns
tODLY	Delay time, CLK↓ to output valid	2.5	14	ns
CI	Capacitive load on outputs		10	pF

5.3. HCI UART Shared Transport Layers for All Functional Blocks (Except WLAN)

The HCI UART supports most baud rates (including all PC rates) for all fast clock frequencies - up to a maximum of 4 Mbps. After power up the baud rate is set for 115.2 kbps, regardless of fast clock frequency. The baud rate can then be changed by using a VS command. The Device responds with a Command Complete Event (still at 115.2 kbps), after which the baud rate change occurs.

HCI hardware includes the following features:

- Receiver detection of break, idle, framing, FIFO overflow and parity error conditions.
- Receiver Transmitter underflow detection.
- CTS/RTS hardware flow control.
- 4 wires (H4)

The below table lists the UART default settings

Table 5-3. UART Default Setting

Parameter	Value
Bit Rate	115.2 kbps
Data Length	8 bits
Stop Bit	1
Parity	None

5.3.1. UART 4-Wires Interface - H4

The interface includes four signals: TXD, RXD, CTS and RTS. Flow control between the host and the Device is byte-wise by hardware. (See Figure 5-5)

Figure 5-5. HCI UART Connection

When the UART RX buffer of the device passes the flow-control threshold, the buffer sets the UART_RTS signal high to stop transmission from the host. When the UART_CTS signal is set high, the device stops transmitting on the interface. If HCI_CTS is set high in the middle of transmitting a byte, the device finishes transmitting the byte and stops the transmission.

5.4. UART Timing Specifications

Figure 5-6. UART Timing Diagram

Table 5-4. UART Timing Characteristics

Characteristic	Condition	Symbol	Min	Тур	Max	Unit
Baud rate			37.5		4364	Kbps
Baud rate accuracy per byte	RX/TX		-2.5		+1.5	%
Baud rate accuracy per bit	RX/TX		-12.5		+12.5	%
CTS low to TX_DATA on		t3	0	2		us

CTS low to TX_DATA off	Hardware flow control	t4			1	Byte
CTS High Pulse Width		t6	1			bit
RTS low to RX_DATA on		t1	0	2		us
RTS high to RX_DATA off	Interrupt set to 1/4 FIFO	t2			16	Bytes

STR-Start bit; D0..Dn - Data bits (LSB first); PAR - Parity bit (if used); STP - Stop bit

Figure 5-7. UART Data Frame

5.5. Bluetooth Codec-PCM(Audio) Timing Specifications

Figure 5-8 shows the Bluetooth codec-PCM (audio) timing diagram.

Table 5-5 lists the Bluetooth codec-PCM master timing characteristics.

Table 5-6 lists the Bluetooth codec-PCM slave timing characteristics.

Figure 5-8. PCM Interface Timing

Table 5-5. Bluetooth Codec-PCM Master Timing Characteristics

Parameter	Symbol	Min	Max	Unit
Cycle time	Tclk	166.67 (6.144MHz)	15625 (64 kHz)	ns
High or low pulse width	Tw	35% of Tclk min		
AUD_IN setup time	tis	10.6		
AUD_IN hold time	tih	0		
AUD_OUT propagation time	top	0	15	
AUD_FSYNC_OUT propagation time	top	0	15	
Capacitive loading on outputs	CI		40	pF

Table 5-6. Bluetooth Codec-PCM Slave Timing Characteristics

Parameter	Symbol	Min	Max	Unit
Cycle time	Tclk	81 (12.288MHz)		ns
High or low pulse width	Tw	35% of Tclk min		
AUD_IN setup time	tis	5		
AUD_IN hold time	tih	0		
AUD_OUT propagation time	top	5		
AUD_FSYNC_OUT propagation time	top	0	19	
Capacitive loading on outputs	CI		40	pF

6. CLOCK AND POWER MANAGEMENT

The slow clock is a free-running, 32.768 kHz clock supplied from an external clock source. The clock is connected to the RTC_CLK pin and is a digital square-wave signal in the range of 0 to 1.8V nominal

6.1. Reset-Power-Up System

After VBAT and VIO are fed to the device and while BT_EN and WL_EN are deasserted (low), the device is in SHUTDOWN state, during which functional blocks, internal DC-DCs, and LDOs are disabled. The power supplied to the functional blocks is cut off. When one of the signals (BT_EN or WL_EN) are asserted (high), a power-on reset (POR) is performed. Stable slow clock, VIO, and VBAT are prerequisites for a successful POR.

6.2. WLAN Power-Up Sequence

Figure 6-1 shows the WLAN power-up sequence.

Figure 6-1. WLAN Power-Up Sequence

6.3. Bluetooth/BLE/ANT Power-Up Sequence

Figure 6-2 shows the Bluetooth/BLE/ANT power-up sequence.

Figure 6-2 Bluetooth/BLE/ANT power-up sequence

7. REFERENCE SCHEMATIC

7.1. Module Reference Design

Figure 7-1 Module Reference Schematic

Fast Clock:

WiFi Interface: SDIO

External TCXO 26MHz Slow Clock: 32.768KHz

8. DESIGN RECOMMENDATIONS

8.1. Design Note on Debug Port

- Pin# C6, C4 serve as WLAN and BT debug port, respectively. So test points for these two signals should be reserved for debugging purpose.
- Pin# C11 (WLAN_IRQ) needs to be pulled high via 10Kohm and use Pin# D11, C7
 (WL_RS232_RX, WL_RS232_TX) as hardware interface to communicate with system platform and TI RTTT test utility for WLAN RF performance test, debug and manufacturing application.

8.2. Module Layout Recommendations

Follow these module layout recommendations:

- Digital Signals Layout
 - ➤ SDIO signals traces (CMD, D0, D1, D2 and D3) should be routed in parallel to each other and as short as possible. (Less than 12cm) Besides, every trace length must be the same as the others.
 - ➤ Enough space above 1.5 time trace width or ground shielding between trace and trace will be benefit to make sure signal quality, especially for SDIO_CLK trace. Remember to keep them away from the other digital or analog signal traces. Adding ground shielding around these bus is recommended.
 - > Route trace of SDIO CLK at Top layer without vias.
 - SDIO Clock, Audio Clock (PCM_AUD_CLK), these digital clock signals are a source of noise. Keep the traces of these signals as short as possible. Whenever possible, maintain a clearance around them.
 - > BT_AUD signals should be rounted in the same group and it's better to rout them at the same layer or confirm them referring to the same reference plane.

RF Trace & Antenna

- Keep 50ohm trace impedance.
- Move all the high-speed traces and components far away from the antenna.
- > Check antenna vendor for the layout guideline and clearance.

Power Trace

Power trace for VBAT should be 20mil wide. 1.8V trace should be 15mil wide, at least.

> Isolate different power traces with Ground plane

Ground

- ➤ Having a complete Ground and more GND vias under module in layer1 for system stable and thermal dissipation.
- ➤ Have a complete Ground pour in layer 2 for thermal dissipation.
- Increase the GND pour in the 1st layer, move all the traces from the 1st layer to the inner layers if possible.
- Move GND vias close to the pad.

Clocks

- ➤ To avoid adding noise to the clock signal, keep the primary clock away from fast digital switching lines and power traces.
- It is preferable to keep all clocks between the ground/power layers.
- > Primary TCXO placement
 - To reduce clock drift, place the TCXO far from a heat source on the board.
 - For better thermal mass, ensure good grounding for the TCXO.
 - If the TCXO cannot be placed far from a heat source, add a scratch in the ground layers to isolate the heat spreading toward the TCXO

Primary TCXO placement:

- > To reduce clock drift, place the TCXO far from a heat source on the board.
- For better thermal mass, ensure good grounding for the TCXO.
- ➤ If the TCXO cannot be placed far from a heat source, add a scratch in the ground layers to isolate the heat spreading toward the TCXO

9. PACKAGE INFORMATION

9.1. Module Mechanical Outline

Figure 9-1. Module mechanical outline

Figure 9-2. Module pad dimensions

9.2. Ordering Information

Part number:	WG7833-B0

^{*}We recommend adopting the same dimensions listed above for building PCB footprint.

^{**} Pad tolerance as +/- 30um

9.3. Package Marking

Figure 9-3. Package Marking

Date Code: YYWWSSFAX

YY = Digit of the year, ex: 2011=11

WW = Week (01~52)

SS = Serial number from 01 ~99 match to manufacture's lot number

F = Reserve for internal use

A = Module version from A to Z

X = Chip version

9.4. Packaging

9.4.1. Tape Specification

ITEM	DIM	ALTERNATE
W	24.00 +0.30	
E	1.75 ^{+0.10} -0.10	
F	11.50 ^{+0.10}	
P	16.00 ^{+0.10}	
Po	4.00 ^{+0.10} -0.10	
P2	2.00 ^{+0.10} -0.10	
	\bigvee	
Do	ø1.50 ^{+0.10}	
Т	0.35 +0.05	
Ao	12.5Q _{0.10}	
Во	13.3Q _{0.10}	
Ko	2.10 +0.10	

<Reel: 1.8K pcs per reel>

<Pizza box : 1 reel per pizza box>

<Carton: 5 pizza boxes per carton>

Product label

10. SMT AND BAKING RECOMMENDATION

10.1. Baking Recommendation

- Baking condition :
 - Follow MSL Level 4 to do baking process.
 - After bag is opened, devices that will be subjected to reflow solder or other high temperature process must be
 - a) Mounted within 72 hours of factory conditions <30°C/60% RH, or
 - b) Stored at <10% RH.
- Devices require bake, before mounting, if Humidity Indicator Card reads >10% If baking is required, Devices may be baked for 8 hrs. at 125 °C.

10.2. SMT Recommendation

• Recommended Reflow profile:

No.	Item	Temperature (°C)	Time (sec)
1	Pre-heat	D1: 140 ~ D2: 200	T1: 80 ~ 120
2	Soldering	D2: = 220	T2: 60 +/- 10
3	Peak-Temp.	D3: 250 °C max	

Note: (1) Reflow soldering is recommended two times maximum.

(2) Add Nitrogen while Reflow process: SMT solder ability will be better.

> Stencil thickness: 0.1~ 0.13 mm (Recommended)

➤ **Soldering paste (without Pb):** Recommended SENJU N705-GRN3360-K2-V can get better soldering effects.

11. HISTORY CHANGE

Revision	Date	Description
R 0.1	2014/08/28	New Released
R 0.2	2014/09/29	Modify the module thickness from 1.7±0.05 mm to 1.63±0.1 mm
		Modify the package marking.
R 0.3	2015/07/30	Add FCC/NCC WARING STATEMENT

FCC WARING STATEMENT

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -Reorient or relocate the receiving antenna.
- -Increase the separation between the equipment and receiver.
- -Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -Consult the dealer or an experienced radio/TV technician for help.

You are cautioned that changes or modifications not expressly approved by the party responsible for compliance could void your authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation.

FCC RF Radiation Exposure Statement:

- 1. This Transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- 2. This equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20 centimeters between the radiator and your body.

According to FCC 15.407(e), the device is intended to operate in the frequency band of 5.15GHz to 5.25GHz under all conditions of normal operation. Normal operation of this device is restricted to indoor used only to reduce any potential for harmful interference to co-channel MSS operations.

Information to OEM integrator

The OEM integrator has to be aware not to provide information to the end user regarding how to

install or remove this RF module in the user manual of the end product. The user manual which is provided by OEM integrators for end users must include the following information in a prominent location.

- 1. To comply with FCC RF exposure compliance requirements, the antenna used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter, except in accordance with FCC multi-transmitter product transmitter product procedures.
- 2. Only those antennas with same type and lesser gain filed under this FCC ID number can be used with this device.
- 3. The regulatory label on the final system must include the statement: "Contains FCC ID: WS2-WG7833B0".
- 4. The final system integrator must ensure there is no instruction provided in the user manual or customer documentation indicating how to install or remove the transmitter module except such device has implemented two-ways authentication between module and the host system.
- 5. If the end product integrating this module is going to be operated in $5.15 \sim 5.25$ GHz frequency range, the warning statement in the user manual of the end product should include the restriction of operating this device in indoor could void the user's authority to operate the equipment.

NCC WARING STATEMENT

Article 12

Without permission, any company, firm or user shall not alter the frequency, increase the power, or change the characteristics and functions of the original design of the certified lower power frequency electric machinery.

Article 14

The application of low power frequency electric machineries shall not affect the navigation safety nor interfere a legal communication, if an interference is found, the service will be suspended until improvement is made and the interference no longer exists.