Table 8. Annual Specific Suspended Sediment Yield (sSSY) from steep, volcanic islands in the tropical Pacific.

Location	Watershed drainage area (km2)	Mean annual precipitation (mm)		sSSY range tons/km2/yr	Reference
Faga'alu UPPER	0.88	proofpieuron (mm)		45-143	This study
Faga'alu TOTAL	1.78	2.380-6.350	(varies with	241-368	This study
8	1.7 0		ation)	2 11 555	1 ms staay
Kawela, Molokai	13.5	500-3,000 (varies with		394	(Stock and Tribble, 2010)
			ation)		(00000000000, 00000,
Hanalei, Kauai	60.04	500 – 9,500 (varies with		545 ± 128	(Ferrier et al., 2013)
		elevation)			(
Hanalei, Kauai	48.4	2,000-11,000 (varies with		525	(Stock and Tribble, 2010)
,			ation)		, ,
Hanalei, Kauai	54.4	2,000-11,000 (varies with elevation)		140±55	(Calhoun and Fletcher, 1999)
					, ,
St. John, USVI ^a	3.5	1,300-1,400		18	(Ramos-Scharrón and
					Macdonald, 2007)
St. John, USVI	2.3	1,300-1,400		24	(Nemeth and Nowlis, 2001)
St. John, USVI	6	1,300-1,400		36	(Nemeth and Nowlis, 2001)
Oahu	10.4	1,000-3,800 (varies with elevation)		330±130; 200±100	(Hill et al., 1997)
				(varies with method)	
Barro Colorado, Panama	0.033	2,623±458		100-200	(Zimmermann et al., 2012)
Fly River, PNG ^b	76,000	up to 10,000		1,000-1,500	(Milliman, 1995)
Purari River, PNG	35,000			3,000	а
Milliman and Syvitski (19	92) Model:				
$sSSY = cA^f$					(Milliman and Syvitski, 1992)
c,f = regression coeff. for	region/max elevation	С	f	sSSY tons/km2/yr	
Max elev >3,000m	Faga'alu	280	-0.54	UPPER = 296	-
	UPPER = 0.88			TOTAL = 205	
	TOTAL = 1.78				
Max elev 1000-3000m		65	-0.46	UPPER = 68	-
(Oceania)				TOTAL = 50	
Max elev 500-1,000m		12	-0.59	UPPER = 13	-
				TOTAL = 9	