

(Hidden) assumptions of simple compartmental ODE models

Rebecca Borchering, PhD

U.S. Centers for Disease Control and Prevention (CDC)

University of Florida and MMED Alumnus

ICI3D Faculty

MMED 2023

Goals

- Review the main uses of applied epidemiological modelling
- Introduce our conceptual framework for applied modelling
- Review commonly overlooked assumptions that are inherent in the structure of simple compartmental ODE models
- Discuss when these assumptions might be problematic, and when they may be desirable
- Begin to explore some alternative model structures that relax the assumptions

Related to the distribution and determinants of healthrelated states and events

Insight

- Improving understanding of the dynamics of health and disease
- Translation of results into decision-making and communication tools

Insight

Estimation

• Improving measurement and interpretation of key health indicators at the population and individual levels

Insight

Estimation

Prediction

• Projection and forecasting of expected future trends

Insight

Estimation

Prediction

Planning

- Guiding study design and intervention roll-out
- Informing decisions through analysis and comparison of policy scenarios

Insight

Estimation

Prediction

Planning

Assessment

- Evaluating the impact of public health interventions
 - Assessing risk of future public health events

Insight

- Improving understanding of the dynamics of health and disease
- Translation of results into decision-making and communication tools

Estimation

• Improving measurement and interpretation of key health indicators at the population and individual levels

Prediction

Projection and forecasting of expected future trends

Planning

- Guiding study design and intervention roll-out
- Informing decisions through analysis and comparison of policy scenarios

Assessment

- Evaluating the impact of public health interventions
 - Assessing risk of future public health events

Goals

- Review the main uses of applied epidemiological modelling
- Introduce our conceptual framework for applied modelling
- Review commonly overlooked assumptions that are inherent in the structure of simple compartmental ODE models
- Discuss when these assumptions might be problematic, and when they may be desirable
- Begin to explore some alternative model structures that relax the assumptions

Model Worlds

- A model world is an abstraction of the world that is simple and fully specified, which we construct to help us understand particular aspects of the real world
- A mathematical model is a formal description of the assumptions that define a model world
 - We know exactly what assumptions we've made, and we can follow those assumptions to their logical conclusions to address research questions

The SIR Model World

SIR: ODE Model

$$I = \frac{bI}{N}$$

$$\frac{dS}{dt} = -\frac{bSI}{N}$$

$$N=S+I+R$$

$$\frac{dI}{dt} = \frac{bSI}{N} - gI$$

$$\frac{dR}{dt} = gI$$

SIR: Reed-Frost Model

SIR: Stochastic Reed-Frost

SIR: Chain Binomial Model

$$S_{t+\Delta t} = S_t - X$$

$$I_{t+\Delta t} = I_t + X - Y$$

$$R_{t+\Delta t} = R_t + Y$$

$$\mathbb{P}(X = x) = \binom{S_t}{x} p^x (1-p)^{S_t - x}$$

$$\mathbb{P}(Y = y) = \binom{I_t}{y} r^y (1-r)^{I_t - y}$$

$$\mathbb{P}(X=x) = \binom{S_t}{x} p^x (1-p)^{S_t - x}$$

$$\mathbb{P}(Y=y) = \binom{I_t}{y} r^y (1-r)^{I_t-y}$$

The SIR Model Family

A mathematical model is formal description of the assumptions that define a model world

CONTINUOUS TREATMENT OF INDIVIDUALS

(averages, proportions, or population densities)

DISCRETE TREATMENT OF INDIVIDUALS

CONTINUOUS TIME

- Ordinary differential equations
- Partial differential equations

DISCRETE TIME

Difference equations
 (eg, Reed-Frost type models)

CONTINUOUS TIME

Stochastic differential equations

DISCRETE TIME

• Stochastic difference equations

CONTINUOUS TIME

• Gillespie algorithm

DISCRETE TIME

CONTINUOUS TREATMENT OF INDIVIDUALS

DISCRETE TREATMENT OF INDIVIDUALS

(averages, proportions, or population densities)

CONTINUOUS TIME

- Ordinary differential equations
- Partial differential equations

DISCRETE TIME

Difference equations
 (eg, Reed-Frost type models)

CONTINUOUS TIME

Stochastic differential equations

DISCRETE TIME

• Stochastic difference equations

CONTINUOUS TIME

Gillespie algorithm

DISCRETE TIME

CONTINUOUS TREATMENT OF INDIVIDUALS

(averages, proportions, or population densities)

DISCRETE TREATMENT OF INDIVIDUALS

CONTINUOUS TIME

- Ordinary differential equations
- Partial differential equations

DISCRETE TIME

 Difference equations (eg, Reed-Frost type models)

CONTINUOUS TIME

Stochastic differential equations

DISCRETE TIME

Stochastic difference equations

CONTINUOUS TIME

Gillespie algorithm

DISCRETE TIME

CONTINUOUS TREATMENT OF INDIVIDUALS

.

DISCRETE TREATMENT OF INDIVIDUALS

(averages, proportions, or population densities)

CONTINUOUS TIME

- Ordinary differential equations
- Partial differential equations

DISCRETE TIME

Difference equations
 (eg, Reed-Frost type models)

CONTINUOUS TIME

Stochastic differential equations

DISCRETE TIME

Stochastic difference equations

CONTINUOUS TIME

Gillespie algorithm

DISCRETE TIME

What is a **compartmental** model?

Goals

- Review the main uses of applied epidemiological modelling
- Introduce our conceptual framework for applied modelling
- Review commonly overlooked assumptions that are inherent in the structure of simple compartmental ODE models
- Discuss when these assumptions might be problematic, and when they may be desirable
- Begin to explore some alternative model structures that relax the assumptions

CONTINUOUS TREATMENT OF INDIVIDUALS

DISCRETE TREATMENT OF INDIVIDUALS

(averages, proportions, or population densities)

CONTINUOUS TIME

large population size

CONTINUOUS TIME

Demographic stochasticity

CONTINUOUS TREATMENT OF INDIVIDUALS

DISCRETE TREATMENT OF INDIVIDUALS

(averages, proportions, or population densities)

large population size

CONTINUOUS TIME

Environmental stochasticity

Compartmental ODE models assume

- Large population size
- Deterministic progression
 - for a given set of initial conditions and parameter values,
 a deterministic model always gives the same outcome

Benefit: Simplicity and consequences of assumptions facilitate quick assessments of what model outcomes are possible, and when

Compartmental ODE models assume

- Large population size
- Deterministic progression
 - for a given set of initial conditions and parameter values,
 a deterministic model always gives the same outcome

CONTINUOUS TREATMENT OF INDIVIDUALS

DISCRETE TREATMENT OF INDIVIDUALS

(averages, proportions, or population densities)

CONTINUOUS TIME

Ordinary differential equations

Simple ODE models assume

- Time proceeds in a continuous manner
- Parameter values remain constant

CONTINUOUS TIME

Ordinary differential equations

$$\frac{dN_t}{dt} = bN_t - dN_t$$

Simple ODE models assume

- Time proceeds in a continuous manner
- Parameter values remain constant

CONTINUOUS TIME

Ordinary differential equations

$$r = b - d$$

$$\frac{dN_t}{dt} = rN_t$$

$$N_{t+Dt} = N_t e^{rDt}$$

CONTINUOUS TIME

Ordinary differential equations

$$r = b - d$$

$$\frac{dN}{dt} = rN$$

DISCRETE TIME

Difference equations

$$I_{\mathrm{D}t} = e^{r\mathrm{D}t}$$

$$N_{t+Dt} = I_{Dt}N_t$$

 $N_{t+\mathrm{D}t} = N_t e^{r\mathrm{D}t}$

Simple compartmental ODE models assume

- Homogeneity within compartments
- Large population size
- Deterministic progression
- Time proceeds in a continuous manner
- Parameter values remain constant
- Memory-less processes

Simple ODE models assume

Memory-less processes

$$\frac{N_t}{N_0} = e^{-mt}$$

$$\frac{dN_t}{dt} = -mN_t$$

$$N_t = N_0 e^{-mt}$$
 least τ least τ of τ of τ of τ least τ least τ of τ of

Realistic waiting times

Time since infection

Simple compartmental ODE models assume

- Homogeneity within compartments
- Large population size
- Deterministic progression
- Time proceeds in a continuous manner
- Parameter values remain constant

Simple ODE models are important tools for building understanding

- Simple ODE models are important tools for building understanding
- It's important to recognize the assumptions built into these models
 - When populations are small, average behaviors can be misleading

- Simple ODE models are important tools for building understanding
- It's important to recognize the assumptions built into these models
 - When populations are small, average behaviors can be misleading
 - When rates vary, simple ODEs can fail to reproduce important (observed) dynamics

- Simple ODE models are important tools for building understanding
- It's important to recognize the assumptions built into these models
 - When populations are small, average behaviors can be misleading
 - When rates vary, simple ODEs can fail to reproduce important (observed) dynamics

Dushoff lecture on heterogeneity (Wed)

- Simple ODE models are important tools for building understanding
- It's important to recognize the assumptions built into these models
 - When populations are small, average behaviors can be misleading
 - When rates vary, simple ODEs can fail to reproduce important (observed) dynamics

- The applied epidemiological modelling process requires
 - abstraction
 - specification and implementation
 - gaining an understanding of the dynamics
 - interpretation

This presentation is made available through a Creative Commons Attribution-Noncommercial license. Details of the license and permitted uses are available at

http://creativecommons.org/licenses/by/3.0/

© 2014-2023 International Clinics on Infectious Disease Dynamics and Data

(Hidden) assumptions of simple compartmental ODE models. DOI: 10.6084/m9.figshare.5044606

Attribution:

Juliet Pulliam & Rebecca Borchering

Clinic on the Meaningful Modeling of Epidemiological Data

Source URL:

https://figshare.com/articles/Mathematical Assumptions of Simple ODE models/5044606

For further information please contact admin@ici3d.org.

