

Computer Programming Module-1 (Lecture-2)

Virendra Singh Shekhawat Department of Computer Science & Information Systems

Topics to be Covered:

Numbers & Representations, Number Representation in Computers, Unsigned Binary Representation and Arithmetic Operations

Roman numerals

- Total seven symbols are used (i.e. I, V, X, L, C, D, M)
- Numbers are formed by combining symbols
- Symbols are placed in order of value
- e.g. MMXII (equals to 2012)

Arabic numerals

- Total 0 to 9, ten symbols (digits) are used
- Numbers are represented in a sequence of digits
- e.g. 578, "read as a Five Hundred and Seventy Eight"

- How to perform the arithmetic operations?
 - -V*V=XXV
 - -VI*VIII = XXXXVIII
 - -5*5 = 25
 - -6*8 = 48
- Can we define the steps of multiplication?

- Looking for a representation that allows operations in efficient manner
- Natural numbers are represented in base 10
- What is good for computers?
 - Answer: Base 2 (Binary). Why?

Binary Numbers

- Two symbols (digits) are used (i.e. 0 and 1)
- Examples: 1001, 0110, 1111, 1010
- The decimal equivalent of a Binary number $d_{n-1} d_{n-2} \dots d_0$ is given as:

$$d_{n-1} * 2^{n-1} + d_{n-2} * 2^{n-2} + \dots d_0 * 2^0$$

Decimal equivalent of 10101?

Decimal to Binary Conversion

- How to convert a decimal number N to its equivalent Binary number?
 - 1. Divide the number N by 2
 - the remainder becomes the Least Significant Bit (LSB)
 - 2. Divide the quotient by 2 (if it is not 0)
 - the remainder becomes the next bit to the left
 - Repeat the step 2 until the quotient is 0

Decimal to Binary Conversion

• Exercise:

Find the binary equivalent of the decimal number 25

Questions

 Using K bits, what is the range of decimal numbers one can represent?

 Given a decimal number N, how many bits are required to represent it in binary?

Binary Addition Table

C _{in}	Α	В	S	C _{out}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Arithmetic Operations

- How to add two unsigned binary numbers?
- Procedure
 - Right align the numbers
 - Add the two corresponding bit and a carry-in bit (if any)
 to get a single sum bit and a carry-out bit
- Example:

```
110011
+10011100
```

12

Overflow

- There are finite number of bits available in computers to represent the numbers
 - For a 8 bit computer, the maximum number (*unsigned binary*) which can be represented is $(2^8 1)$ or 255
- Let's add the two 8 bit binary numbers:

11110000

+ 00010001

14

Thank You!