

2

Algorithm x^{0} $\downarrow k = 0$ $\downarrow k =$

ASHINGTON STA WUNIVERSITY Generator Bus (PV Bus) Speed Rotating Electro-Electro-EMF Governor mechanical magnetics E_{fd} Steam **Exciter** Boiler Field Control V_{refi}

5

1

Washington Sta University Example $P_{G2} = 0.8,$ $V_2 = 1.06 \text{ if } Q_{G2} < 0.4$ $Q_2 < 0.4 - 0.05$ $Q_2 < 0.4 - 0.05$ $V_1 = 1$ $\delta_1 = 0$ y = -j3.333 $\overrightarrow{Y_{Bus}} = \begin{bmatrix} -j7.5 & j2.5 & j5 \\ j2.5 & -j5.833 & j3.333 \end{bmatrix}$ j3.333 - j8.333

10

Newton-Raphson: Calculate $q_2(x^0) = 2.5V_2V_1\sin(\delta_2 - \delta_1 - 90^o) +5.8333V_2^2\sin(\delta_2 - \delta_2 + 90^o)$ $+3.3333V_2V_3\sin(\delta_2-\delta_3-90^o)$ $= 2.5(1.06)(1)\sin(0.0933 - 0 - 1.57)$ $+5.8333(1.06)^2\sin(1.57)$ $+3.3333(1.06)(1)\sin(0.0933+0.0467-1.57)$ $= 0.4171 > 0.35 \Longrightarrow Set~Q_2 = 0.35$ © Washington State University

11 12

2

ASHINGTON STA **Iteration 1** $h(x^{0}) = \begin{bmatrix} 0.74 \\ -0.7263 \\ 0.4171 \\ -0.16 \end{bmatrix}$ $b - h(x^{0}) = \begin{bmatrix} -0.04 \\ 0.0263 \\ -0.0671 \\ -0.06 \end{bmatrix}$

14

16

ASHINGTON STA WUNIVERSITY NR with Q limits $J^0 = J(x^0)$ 6.137 0.698 0.493

 -3.499
 8.493
 -0.465
 -0.726

 0.740
 -0.493
 6.577
 -3.499

 $-0.726 \quad -3.499 \quad 8.173$ $\Rightarrow \Delta x^0 = (J^0)^{-1} (b - h(x^0)) = \begin{bmatrix} -0.004 \\ -0.0004 \\ -0.0156 \end{bmatrix}$ -0.0110

ASHINGTON STA WUNIVERSITY End of Iteration 1 $\Rightarrow x^1 = x^0 + \Delta x^0 = \begin{bmatrix} 0.033 \\ -0.047 \\ 1.0444 \\ 0.9890 \end{bmatrix}$ Check $q_2(x^1)$ now $q_2(x^1) = 0.3510 > 0.35$ keep as PQ bus

15

ASHINGTON ST WUNIVERSIT Start of Iteration 2 $b - h(x^1) = \begin{bmatrix} -0.0006\\0.0004\\-0.00096\\-0.00051 \end{bmatrix}$ $|b - h(x^1)| = 0.00096 < 0.001 \implies \text{Stop}$ NR Converged in one iteration!

NR Algorithm with Q Limits f(x) = h(x) - b = 0 $h(x) = \begin{bmatrix} p(x) \\ q(x) \end{bmatrix}$ $x = \begin{bmatrix} \delta \\ V \end{bmatrix}$ Check if any Qi outside its Q limits and convert those buses to PQ buses. Adjust x, h(x) and b. Evaluate $f(x^k) = h(x^k) - b$

17 18

3