Vimos dos algoritmos de ordenación, ambos in place y $O(n^2)$ en el peor caso

Selection sort:

no tiene un mejor caso claramente mejor que el peor caso

Insertion sort:

- es O(n) en el mejor caso cuando los datos ya vienen ordenados
- sigue siendo $O(n^2)$ en el caso promedio —promedio sobre todas las permutaciones posibles igualmente probables

Vimos que el número promedio de inversiones en un arreglo de n elementos es n(n-1)/4

... por lo que un algoritmo que ordena intercambiando elementos (después de compararlos)

... y sólo corrige una inversión por intercambio (es decir, compara e intercambia sólo elementos adyacentes),

... no puede ordenar más rápidamente que $O(n^2)$ en promedio (y en el peor caso)

Pero, ¿qué pasa si un intercambio corrige más de una inversión?

P.ej., $A = [34 \ 8 \ 64 \ 51 \ 32 \ 21]$ tiene 9 inversiones:

• (34, 8), (34, 32), (34, 21), (64, 51), (64, 32), (64, 21), (51, 32), (51, 21), (32, 21)

Si intercambiamos 34 y 8, corregimos sólo una inversión:

• (34, 8)

... pero si intercambiamos 34 y 21, corregimos seis:

• (34, 8), (34, 32), (34, 21), (64, 21), (51, 21), (32, 21)

Otra instancia del problema de ordenación

¿Qué tan rápido podemos ordenar un arreglo si

... los datos están separados en dos secuencias ordenadas?

Mezcla (o *merge*) de dos secuencias ordenadas, en otra secuencia ordenada

Para dos secuencias ordenadas, A y B:

- 1. Sea C una secuencia ordenada, inicialmente vacía
- 2. Sean a y b el primer elemento de A y B, respectivamente
- 3. Extraer de su respectiva secuencia el menor entre a y b
- 4. Insertar ese elemento extraído al final de C
- 5. Si quedan elementos en ambos A y B, volver a 2.
- 6. Concatenar C con la secuencia que aún tenga elementos

Propiedades de merge

¿Como demostramos que merge es correcto?

¿Cuál es su complejidad?

Finitud

En cada paso el algoritmo extrae un elemento de A o B y lo pone en $\mathcal C$

Cuando una de las secuencias queda vacía, se toma todo lo de la otra secuencia y se pone en ${\cal C}$

En total se hacen |A| + |B| pasos, y como tanto A como B son finitos, el algoritmo es finito

Corrección (por inducción sobre las inserciones en *C*)

PD: Luego de insertar el último elemento en C, ésta está ordenada

Caso Base: Luego de la primera inserción, \mathcal{C} tiene un solo elemento x_1 , por lo que está ordenada.

Hipótesis Inductiva: Luego de la i-ésima, i.e., inserción del elemento x_i , C está ordenada. Ahora toca la siguiente inserción.

- Si quedan elementos en A y en B, sea x_{i+1} el menor entre las cabezas de A y de B.
- Si sólo quedan elementos en una de las dos secuencias, sea x_{i+1} la cabeza de ésta.

Se elimina x_{i+1} de su respectiva secuencia y se inserta al final de C.

 $x_i \le x_{i+1}$. De no ser así x_{i+1} habría salido antes, ó A y B no habrían estado ordenadas.

Como C estaba ordenada, $x_1 \le x_2 \le \cdots \le x_i$, y como $x_i \le x_{i+1}$, entonces C está ordenada.

Por lo tanto, luego de insertar el último elemento x_n , C está ordenada.

Complejidad de *merge*

Para dos secuencias ordenadas, A y B:

- 1. Sea *C* una secuencia ordenada, inicialmente vacía
- 2. Sean a y b el primer elemento de A y B, respectivamente
- 3. Extraer de su respectiva secuencia el menor entre a y b
- 4. Insertar ese elemento extraído al final de *C*
- 5. Si quedan elementos en ambos A y B, volver a 2.
- 6. Concatenar *C* con la secuencia que aún tenga elementos

Definiciones → no influyen

 $O(1) c/u \rightarrow O(1)$ en total

Sumar el O(1) anterior tantas veces como la cantidad de elementos que hay en A y B combinados \rightarrow O(n)

Ordenación basada en *merge*

¿Podemos usar merge para ordenar una secuencia arbitraria?

Si de algún modo primero podemos crear dos secuencias ordenadas

... entonces luego podemos combinarlas, ordenando así la secuencia completa

El algoritmo *mergeSort*

Para una secuencia A:

- 1. Si A tiene un solo elemento, terminar en este paso
- 2. Dividir la secuencia en mitades
- 3. Ordenar cada mitad recursivamente usando mergeSort
- 4. Combinar las mitades (ordenadas) usando merge

		29	5	3	59	19	43	17	13	47	53	31	2	11	37	23	7
dividir >		29	5	3	59	19	43	17	13	47	53	31	2	11	37	23	7
) }	29	5	3	59	19	43	17	13	47	53	31	2	11	37	23	7
		29	5	3	59	19	43	17	13	47	53	31	2	11	37	23	7
		29	5	3	59	19	43	17	13	47	53	31	2	11	37	23	7
J.		5	29	3	59	19	43	13	17	47	53	2	31	11	37	7	23
mezclar		3	5	29	59	13	17	19	43	2	31	47	53	7	11	23	37
`		3	5	13	17	19	29	43	59	2	7	11	23	31	37	47	53
		2	3	5	7	11	13	17	19	23	29	31	37	43	47	53	59

... y sus propiedades

Demuestra que mergeSort es correcto

Calcula y justifica su complejidad

mergeSort es un algoritmo recursivo

Todo algoritmo recursivo debe chequear en primer lugar el *caso base*:

 el caso cuya solución se calcula sin hacer recursión

Las llamadas recursivas deben ser para casos distintos al caso original y que se acercan un poco más al caso base

mergeSort(secuencia *A*):

- 1. Si *A* tiene un solo elemento, terminar en este paso
 - 2. Dividir la secuencia en mitades
 - 3. Ordenar cada mitad recursivamente usando *mergeSort*
 - 4. Combinar las mitades (ya ordenadas) usando *merge*

Sea *T*(*n*) el número de pasos que *mergeSort* toma para ordenar *n* elementos

El caso base se calcula aparte:

$$T(1) = 1$$

El caso general se calcula a partir de una ecuación de recurrencia:

$$T(n) = 2T(n/2) + n$$

mergeSort(secuencia *A*):

- 1. Si A tiene un solo elemento, terminar en este paso
 - 2. Dividir la secuencia en mitades
 - 3. Ordenar cada mitad recursivamente usando *mergeSort*
- 4. Combinar las mitades (ya ordenadas) usando merge

Resolvamos la recurrencia
$$T(n) = 2T(n/2) + n$$

 $T(n)/n = T(n/2)/(n/2) + 1$
 $T(n/2)/(n/2) = T(n/4)/(n/4) + 1$
 $T(n/4)/(n/4) = T(n/8)/(n/8) + 1$
:

$$T(2)/2 = T(1)/1 + 1$$

Si sumamos ambos lados del signo = y cancelamos los términos que aparecen a ambos lados, obtenemos

$$T(n)/n = T(1)/1 + \log n$$

$$\Rightarrow T(n) = n \log n + n$$

La estrategia algorítmica dividir para reinar

- 1. Dividir el problema original es dos (o más) subproblemas del mismo tipo
- 2. Resolver (recursivamente) cada subproblema
- 3. Encontrar la solución al problema original a partir de las soluciones a cada subproblema

mergesort es un algoritmo basado en la estrategia **dividir para reinar**

- A. Dividir el problema original es dos subproblemas del mismo tipo
- B. Resolver (recursivamente) cada subproblema
- C. Encontrar la solución al problema original a partir de las soluciones a cada subproblema

mergeSort(secuencia *A*):

- 1. Si *A* tiene un solo elemento, terminar en este paso
- 2. Dividir la secuencia en mitades
- 3. Ordenar cada mitad recursivamente usando *mergeSort*
- 4. Combinar las mitades (ya ordenadas) usando *merge*