of every S_n , and $x_n \in \cap_n S_n^c$. This shows that $(\cup_n S_n)^c \subset \cap_n S_n^c$. The converse inclusion is established by reversing the above argument, and the first law follows. The argument for the second law is similar.

1.2 PROBABILISTIC MODELS

A probabilistic model is a mathematical description of an uncertain situation. It must be in accordance with a fundamental framework that we discuss in this section. Its two main ingredients are listed below and are visualized in Fig. 1.2.

Elements of a Probabilistic Model

- The sample space Ω , which is the set of all possible outcomes of an experiment.
- The **probability law**, which assigns to a set A of possible outcomes (also called an **event**) a nonnegative number P(A) (called the **probability** of A) that encodes our knowledge or belief about the collective "likelihood" of the elements of A. The probability law must satisfy certain properties to be introduced shortly.

Figure 1.2: The main ingredients of a probabilistic model.

Sample Spaces and Events

Every probabilistic model involves an underlying process, called the experiment, that will produce exactly one out of several possible outcomes. The set of all possible outcomes is called the **sample space** of the experiment, and is denoted by Ω . A subset of the sample space, that is, a collection of possible outcomes, is called an **event**. There is no restriction on what constitutes an experiment. For example, it could be a single toss of a coin, or three tosses, or an infinite sequence of tosses. However, it is important to note that in our formulation of a probabilistic model, there is only one experiment. So, three tosses of a coin constitute a single experiment, rather than three experiments.

The sample space of an experiment may consist of a finite or an infinite number of possible outcomes. Finite sample spaces are conceptually and mathematically simpler. Still, sample spaces with an infinite number of elements are quite common. For an example, consider throwing a dart on a square target and viewing the point of impact as the outcome.

Choosing an Appropriate Sample Space

Regardless of their number, different elements of the sample space should be distinct and **mutually exclusive** so that when the experiment is carried out, there is a unique outcome. For example, the sample space associated with the roll of a die cannot contain "1 or 3" as a possible outcome and also "1 or 4" as another possible outcome. When the roll is a 1, the outcome of the experiment would not be unique.

A given physical situation may be modeled in several different ways, depending on the kind of questions that we are interested in. Generally, the sample space chosen for a probabilistic model must be **collectively exhaustive**, in the sense that no matter what happens in the experiment, we always obtain an outcome that has been included in the sample space. In addition, the sample space should have enough detail to distinguish between all outcomes of interest to the modeler, while avoiding irrelevant details.

Example 1.1. Consider two alternative games, both involving ten successive coin tosses:

Game 1: We receive \$1 each time a head comes up.

Game 2: We receive \$1 for every coin toss, up to and including the first time a head comes up. Then, we receive \$2 for every coin toss, up to the second time a head comes up. More generally, the dollar amount per toss is doubled each time a head comes up.

[†] Any collection of possible outcomes, including the entire sample space Ω and its complement, the empty set \emptyset , may qualify as an event. Strictly speaking, however, some sets have to be excluded. In particular, when dealing with probabilistic models involving an uncountably infinite sample space, there are certain unusual subsets for which one cannot associate meaningful probabilities. This is an intricate technical issue, involving the mathematics of measure theory. Fortunately, such pathological subsets do not arise in the problems considered in this text or in practice, and the issue can be safely ignored.

In game 1, it is only the total number of heads in the ten-toss sequence that matters, while in game 2, the order of heads and tails is also important. Thus, in a probabilistic model for game 1, we can work with a sample space consisting of eleven possible outcomes, namely, $0, 1, \ldots, 10$. In game 2, a finer grain description of the experiment is called for, and it is more appropriate to let the sample space consist of every possible ten-long sequence of heads and tails.

Sequential Models

Many experiments have an inherently sequential character, such as for example tossing a coin three times, or observing the value of a stock on five successive days, or receiving eight successive digits at a communication receiver. It is then often useful to describe the experiment and the associated sample space by means of a **tree-based sequential description**, as in Fig. 1.3.

Figure 1.3: Two equivalent descriptions of the sample space of an experiment involving two rolls of a 4-sided die. The possible outcomes are all the ordered pairs of the form (i,j), where i is the result of the first roll, and j is the result of the second. These outcomes can be arranged in a 2-dimensional grid as in the figure on the left, or they can be described by the tree on the right, which reflects the sequential character of the experiment. Here, each possible outcome corresponds to a leaf of the tree and is associated with the unique path from the root to that leaf. The shaded area on the left is the event $\{(1,4), (2,4), (3,4), (4,4)\}$ that the result of the second roll is 4. That same event can be described as a set of leaves, as shown on the right. Note also that every node of the tree can be identified with an event, namely, the set of all leaves downstream from that node. For example, the node labeled by a 1 can be identified with the event $\{(1,1), (1,2), (1,3), (1,4)\}$ that the result of the first roll is 1.

Probability Laws

Suppose we have settled on the sample space Ω associated with an experiment.

Then, to complete the probabilistic model, we must introduce a **probability** law. Intuitively, this specifies the "likelihood" of any outcome, or of any set of possible outcomes (an event, as we have called it earlier). More precisely, the probability law assigns to every event A, a number P(A), called the **probability** of A, satisfying the following axioms.

Probability Axioms

- 1. (Nonnegativity) $P(A) \ge 0$, for every event A.
- 2. (Additivity) If A and B are two disjoint events, then the probability of their union satisfies

$$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B).$$

Furthermore, if the sample space has an infinite number of elements and A_1, A_2, \ldots is a sequence of disjoint events, then the probability of their union satisfies

$$\mathbf{P}(A_1 \cup A_2 \cup \cdots) = \mathbf{P}(A_1) + \mathbf{P}(A_2) + \cdots$$

3. (Normalization) The probability of the entire sample space Ω is equal to 1, that is, $\mathbf{P}(\Omega) = 1$.

In order to visualize a probability law, consider a unit of mass which is to be "spread" over the sample space. Then, $\mathbf{P}(A)$ is simply the total mass that was assigned collectively to the elements of A. In terms of this analogy, the additivity axiom becomes quite intuitive: the total mass in a sequence of disjoint events is the sum of their individual masses.

A more concrete interpretation of probabilities is in terms of relative frequencies: a statement such as $\mathbf{P}(A)=2/3$ often represents a belief that event A will materialize in about two thirds out of a large number of repetitions of the experiment. Such an interpretation, though not always appropriate, can sometimes facilitate our intuitive understanding. It will be revisited in Chapter 7, in our study of limit theorems.

There are many natural properties of a probability law which have not been included in the above axioms for the simple reason that they can be **derived** from them. For example, note that the normalization and additivity axioms imply that

$$1 = \mathbf{P}(\Omega) = \mathbf{P}(\Omega \cup \emptyset) = \mathbf{P}(\Omega) + \mathbf{P}(\emptyset) = 1 + \mathbf{P}(\emptyset),$$

and this shows that the probability of the empty event is 0:

$$\mathbf{P}(\emptyset) = 0.$$

As another example, consider three disjoint events A_1 , A_2 , and A_3 . We can use the additivity axiom for two disjoint events repeatedly, to obtain

$$\mathbf{P}(A_1 \cup A_2 \cup A_3) = \mathbf{P}(A_1 \cup (A_2 \cup A_2))$$
$$= \mathbf{P}(A_1) + \mathbf{P}(A_2 \cup A_3)$$
$$= \mathbf{P}(A_1) + \mathbf{P}(A_2) + \mathbf{P}(A_3).$$

Proceeding similarly, we obtain that the probability of the union of finitely many disjoint events is always equal to the sum of the probabilities of these events. More such properties will be considered shortly.

Discrete Models

Here is an illustration of how to construct a probability law starting from some common sense assumptions about a model.

Example 1.2. Coin tosses. Consider an experiment involving a single coin toss. There are two possible outcomes, heads (H) and tails (T). The sample space is $\Omega = \{H, T\}$, and the events are

$$\{H,T\}, \{H\}, \{T\}, \emptyset.$$

If the coin is fair, i.e., if we believe that heads and tails are "equally likely," we should assign equal probabilities to the two possible outcomes and specify that $\mathbf{P}(\{H\}) = \mathbf{P}(\{T\}) = 0.5$. The additivity axiom implies that

$$\mathbf{P}(\lbrace H, T \rbrace) = \mathbf{P}(\lbrace H \rbrace) + \mathbf{P}(\lbrace T \rbrace) = 1,$$

which is consistent with the normalization axiom. Thus, the probability law is given by

$$P(H,T) = 1,$$
 $P(H) = 0.5,$ $P(T) = 0.5,$ $P(\emptyset) = 0,$

and satisfies all three axioms.

Consider another experiment involving three coin tosses. The outcome will now be a 3-long string of heads or tails. The sample space is

$$\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.$$

We assume that each possible outcome has the same probability of 1/8. Let us construct a probability law that satisfies the three axioms. Consider, as an example, the event

$$A = \{ \text{exactly 2 heads occur} \} = \{ HHT, HTH, THH \}.$$

Using additivity, the probability of A is the sum of the probabilities of its elements:

$$\mathbf{P}(\{HHT, HTH, THH\}) = \mathbf{P}(\{HHT\}) + \mathbf{P}(\{HTH\}) + \mathbf{P}(\{THH\})$$
$$= \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$$
$$= \frac{3}{8}.$$

Similarly, the probability of any event is equal to 1/8 times the number of possible outcomes contained in the event. This defines a probability law that satisfies the three axioms.

By using the additivity axiom and by generalizing the reasoning in the preceding example, we reach the following conclusion.

Discrete Probability Law

If the sample space consists of a finite number of possible outcomes, then the probability law is specified by the probabilities of the events that consist of a single element. In particular, the probability of any event $\{s_1, s_2, \ldots, s_n\}$ is the sum of the probabilities of its elements:

$$\mathbf{P}(\lbrace s_1, s_2, \dots, s_n \rbrace) = \mathbf{P}(\lbrace s_1 \rbrace) + \mathbf{P}(\lbrace s_2 \rbrace) + \dots + \mathbf{P}(\lbrace s_n \rbrace).$$

In the special case where the probabilities $\mathbf{P}(\{s_1\}), \ldots, \mathbf{P}(\{s_n\})$ are all the same (by necessity equal to 1/n, in view of the normalization axiom), we obtain the following.

Discrete Uniform Probability Law

If the sample space consists of n possible outcomes which are equally likely (i.e., all single-element events have the same probability), then the probability of any event A is given by

$$\mathbf{P}(A) = \frac{\text{Number of elements of } A}{n}.$$

Let us provide a few more examples of sample spaces and probability laws.

Example 1.3. Dice. Consider the experiment of rolling a pair of 4-sided dice (cf. Fig. 1.4). We assume the dice are fair, and we interpret this assumption to mean

that each of the sixteen possible outcomes [ordered pairs (i, j), with i, j = 1, 2, 3, 4], has the same probability of 1/16. To calculate the probability of an event, we must count the number of elements of event and divide by 16 (the total number of possible outcomes). Here are some event probabilities calculated in this way:

```
\mathbf{P}\big(\{\text{the sum of the rolls is even}\}\big) = 8/16 = 1/2,
\mathbf{P}\big(\{\text{the sum of the rolls is odd}\}\big) = 8/16 = 1/2,
\mathbf{P}\big(\{\text{the first roll is equal to the second}\}\big) = 4/16 = 1/4,
\mathbf{P}\big(\{\text{the first roll is larger than the second}\}\big) = 6/16 = 3/8,
\mathbf{P}\big(\{\text{at least one roll is equal to 4}\}\big) = 7/16.
```


Figure 1.4: Various events in the experiment of rolling a pair of 4-sided dice, and their probabilities, calculated according to the discrete uniform law.

Continuous Models

Probabilistic models with continuous sample spaces differ from their discrete counterparts in that the probabilities of the single-element events may not be sufficient to characterize the probability law. This is illustrated in the following examples, which also illustrate how to generalize the uniform probability law to the case of a continuous sample space.