PARTIEL ANALYSE DES SIGNAUX ET DES IMAGES

Les questions seront traitées dans l'ordre et correctement numérotées. Les réponses seront rédigées, justifiées et les résultats encadrés.

Exercice 1

Un ingénieur spécialisé en traitement du signal souhaite stocker sur un disque dur un enregistrement de 2 secondes d'un signal électromagnétique x(t) qui peut être constitué :

- Soit d'un signal de type porte d'amplitude maximale 6 V. Une analyse permet de considérer que son spectre, bien que n'étant jamais nul, devient négligeable à partir de 520 Hz.
- Soit d'une sinusoïde de fréquence 1400Hz et d'amplitude comprise entre -2V et 2V

Pour réaliser cette opération de stockage, une numérisation s'impose et pour cela il utilise un convertisseur analogique-numérique dont il doit régler la fréquence d'échantillonnage et le type de quantification.

Aidez-le à réaliser ce paramétrage correctement sachant qu'on lui a imposé quelques contraintes :

- une erreur sur l'amplitude des échantillons numérisés de 0,1V en valeur absolue est autorisée.
- le convertisseur analogique numérique fonctionne sur 8 bits.
- Il y a très peu de place sur le disque dur pour stocker cet enregistrement.
- 1. Sans calcul, lister les étapes nécessaires ici pour numériser x(t)
- 2. Afin de préciser ces étapes, donner les paramétrages nécessaires pour réaliser correctement cette numérisation en **justifiant** tous vos calculs et résultats.
- 3. Le signal stocké est confié à un autre ingénieur qui souhaite faire une analyse spectrale grâce à une transformée de Fourier discrète. Quelle sera la résolution fréquentielle qu'il obtiendra ?

Exercice 2:

Lors de l'analyse d'un signal, on observe le résultat du calcul du module de la TFD suivant (l'axe des abscisses est en Hertz):

- 1. Sur combien de points la TFD a-t-elle été calculée ? Comment faire pour représenter la TFD sur toutes les fréquences ?
- 2. Quelle est la fréquence d'échantillonnage utilisée ?
- 3. En analysant ce résultat, donner en justifiant une expression la plus précise possible du signal analogique analysé. Quelle marge d'erreur avez-vous et pourquoi ?
- 4. Expliquer les différences pouvant exister entre le résultat de cette figure et la transformée de Fourier continue de votre signal proposé en réponse à la question 3. Que peut-on ajouter comme traitement pour les atténuer ?
- 5. En gardant les mêmes paramètres de calcul, donner l'allure de ce que serait la TFD pour le signal suivant : $y(t) = sin(4\pi t)$

Exercice 3:

Un phénomène électromagnétique génère un signal s(t) correspondant à une impulsion de type porte et donc d'amplitude constante valant 3 mV.

Ce signal est perturbé lors de sa propagation par un bruit additif blanc gaussien b(t) de moyenne 5 mV et de variance 2.

- 1. Représenter graphiquement précisément les caractéristiques spectrales du bruit b(t)
- 2. Un capteur électromagnétique enregistre ce phénomène et le numérise. Donner les caractéristiques probabilistes précises d'un échantillon en sortie du capteur

INFORMATIONS ET FORMULAIRE

AIRE SOUTENDUE PAR LA COURBE NORMALE CANONIQUE DE -- à x

$$\operatorname{erf}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

2	0	1	2	3	4	. 5	6	7	8	9
0.0	.5000	.5040	.5080	.5120	.51€0	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5754
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.5879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.722
0.6	.7258	.7291	:7324	.7357	.7389	.7422	.7454	.7486	.7518	.7549
0.7	.7580	7612	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
8.0	.7881	.7910	.7939	.7967	.7996	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.3186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.3485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	,8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9163	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	,9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.944
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	,954
.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.976
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	,9909	.9911	.9913	.9916
.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	,9949	.9951	.9952
.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.3962	.9963	.9964
.7	.9965	.9966	.9967	.9968	.9969	.0370	.9971	.9972	.9973	.9974
.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
.9	.9981	,9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	,9989	.9990	,9990
.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9991
.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
.5	,9998	.9998	.9998	.9998	.9998	,9998	.9998	.9998	.9998	.9998
.6	.9998	.9998	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
.7	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
.8	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000 -	1,0000	1.0000

Décomposition en série de Fourier réelle et complexe + Relations entre an, bn et cn :

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(2\pi n \frac{t}{T}\right) + b_n \sin\left(2\pi n \frac{t}{T}\right)$$

avec

$$a_0 = \frac{2}{T} \int_T x(t) dt$$

$$a_n = \frac{2}{T} \int_T x(t) \cos\left(2\pi n \frac{t}{T}\right) dt$$

$$bn = \frac{2}{T} \int_{T} x(t) \sin\left(2\pi n \frac{t}{T}\right) dt$$

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n e^{+2\pi j \frac{n}{T}t}$$

avec

$$c_n = \frac{1}{T} \int_T x(t) e^{-2\pi i \frac{n}{T} t} dt$$

$$c_0 = \frac{a_0}{2}$$

$$c_n = \frac{1}{2} (a_n - jb_n)$$

$$c_{-n} = \frac{1}{2} (a_n + jb_n) = c_n^*$$

Définition de la Transformée de Fourier

$$X(t) \xrightarrow{TF} X(v) = \int_{-\infty}^{+\infty} x(t)e^{-2i\pi vt} dt$$

Quelques propriétés liées aux séries de Fourier

<u>Dérivation</u>:

Soit x(t) un signal périodique de période T et Xk ses coefficients de décomposition en série de Fourier complexe alors les coefficients de décomposition en série de Fourier complexe de la fonction :

4

$$\frac{d^n x(t)}{dt^n}$$
 sont: $\left(2\pi j k \frac{1}{T}\right)^n X_k$

Quelques propriétés de la Transformée de Fourier :

- Changement d'échelle : $x(t) \xrightarrow{TF} X(\upsilon)$ $x(kt) \xrightarrow{TF} \frac{1}{|k|} X\left(\frac{\upsilon}{k}\right)$
- Dualité: $x(t) \leftrightarrow X(v)$ alors $X(t) \leftrightarrow x(-v)$

■ Dérivation :

$$\frac{ || x(t) \xrightarrow{TF} X(\upsilon) }{ || d^n x(t) \xrightarrow{TF} (2\pi j \upsilon)^n X(\upsilon) }$$

$$\begin{vmatrix} x(t) & \xrightarrow{TF} X(\upsilon) \\ t^{n}x(t) & \xrightarrow{TF} \frac{d^{n}X(\upsilon)}{d\upsilon^{n}} \frac{1}{(-2\pi j)^{n}} \end{vmatrix}$$

Définition de la Transformée de Fourier Discrète (TFD) :

$$X(\nu = \frac{k}{NT_e}) = \sum_{n=0}^{N-1} x(n)e^{-\frac{2j\pi nk}{N}} \equiv X(k) \qquad k \in \{0,1,...,N-1\}$$

Périodique de période N en k donc de période v_e en v

Expression matricielle de la TFD:

Colonne numéro n

Formules Trigo:

$$\cos(a+b) = \cos(a).\cos(b) - \sin(a).\sin(b)$$

 $\cos(a-b) = \cos(a).\cos(b) + \sin(a).\sin(b)$
 $\sin(a+b) = \sin(a).\cos(b) + \sin(b).\cos(a)$
 $\sin(a-b) = \sin(a).\cos(b) - \sin(b).\cos(a)$
 $\cos(a).\cos(b) = \frac{1}{2} (\cos(a+b) + \cos(a-b))$
 $\sin(a).\sin(b) = \frac{1}{2} (\cos(a-b) - \cos(a+b))$
 $\cos(a).\sin(b) = \frac{1}{2} (\sin(a+b) - \sin(a-b))$
 $\sin(a).\cos(b) = \frac{1}{2} (\sin(a+b) + \sin(a-b))$

Expression de la fenêtre de Hanning calculée sur N points :

$$h(n) = 0.5 \left(1 - \cos\left(\frac{2\pi n}{N}\right)\right)$$
 avec n=0,1,...,N-1

Expression de la fenêtre de Hamming calculée sur N points :

$$h(n) = 0.54 - 0.46.\cos\left(\frac{2\pi n}{N}\right)$$
 avec n=0,1,...,N-1

Table 3 Différents types de fenêtres et leurs caractéristiques