Métricas de Similitud/Distancia	Fórmula
Manhattan	$d = \sum_{i=1}^{n} \vec{X}_i - \vec{Y}_i $
Euclidiana	$d = \left(\sum_{i=1}^{n} (\vec{X}_i - \vec{Y}_i)^2\right)^{\frac{1}{2}}$
Euclidiana Promedio	$d = \left(\frac{1}{n} \sum_{i=1}^{n} (\vec{X}_i - \vec{Y}_i)^2\right)^{\frac{1}{2}}$
Diferencia de Carácter Promedio	$d = \frac{1}{n} \sum_{i=1}^{n} \vec{X}_i - \vec{Y}_i $
Canberra	$d = \sum_{i=1}^{n} \frac{ \vec{X}_i - \vec{Y}_i }{ \vec{X}_i + \vec{Y}_i }$
Bray-Curtis	$d = \frac{\sum_{i=1}^{n} \vec{X}_i - \vec{Y}_i }{2 + \sum_{i=1}^{n} (\vec{X}_i + \vec{Y}_i)}$
Coseno	$d = \frac{\sum_{i=1}^{n} \vec{X}_{i} \vec{Y}_{i}}{\ \vec{X}\ _{2} \ \vec{Y}\ _{2}}$
Orloci	$d = \left(2 - 2\frac{\sum_{i=1}^{n} \vec{X}_{i} \vec{Y}_{i}}{\ \vec{X}\ _{2} \ \vec{Y}\ _{2}}\right)^{1/2}$

$$\|\vec{X}\|_2 = \left(\sum_{i=1}^n \vec{X}_i^2\right)^{\frac{1}{2}}$$