Tutorial – 4

- Q1. Determine the dual of the following expressions:
 - (a) $A.B + \overline{A.C} + A.\overline{B}.C$
 - (b) \overline{X} . $Z + \overline{X}$. Y + X. \overline{Y} . Z + Y. Z
 - (c) $(A + B + E + F) \cdot (A + B + \overline{E} + \overline{F}) \cdot (\overline{A} + \overline{B} + E + F)$
 - (d) $(\bar{X} + Y + Z) \cdot (X + \bar{Y} + \bar{Z}) \cdot (X + Y + Z) \cdot (X + Y + \bar{Z})$
- Q2. Reduce the following expressions using the Laws of Boolean Algebra:
 - (a) $f_1 = A[B + \overline{C} \cdot (\overline{A \cdot B + A \cdot \overline{C}})]$
 - (b) $f_2 = (\overline{A + \overline{B.C}}) \cdot (A.\overline{B} + A.B.C)$
- Q3. Prove the following:
 - (a) $A\overline{B}C + B + B\overline{D} + AB\overline{D} + \overline{A}C = B + C$
 - (b) $AB + A\bar{B}C + B\bar{C} = AC + B\bar{C}$
- Q4. Prove the following using truth table:
 - (a) A + BC = (A + B)(A + C)
 - (b) $(A + B) \cdot \overline{AB} = A \oplus B$
- Q5. Design the logic circuit for the following Boolean expression (use only basic gates AOI logic):

$$\overline{AB} + A + \overline{B+C}$$

Q6. Covert the following logic diagram (Fig. 1) to its equivalent Boolean expression (X):

Fig. 1: Logic Diagram with output X

- Q7. Reconstruct the following logic diagram (Fig. 2) using universal gates:
 - (a) Only NAND Gates.
 - (b) Only NOR Gates.

Fig. 2: Logic Diagram with output Y

- Q8. Realize the X-OR function for the following scenarios:
 - (a) Only NAND logic.
 - (b) Only NOR logic.
- Q9. Calculate the number of gate inputs required to realize the following expressions:

(a)
$$f_1 = ABC + A\overline{B}CD + E\overline{F} + AD$$

(b)
$$f_2 = A(B+C+\overline{D})$$
. $(\overline{B}+C+\overline{E})$. $(A+\overline{B}+C+E)$

Also, compute the number of two-input AND and OR gates required to implement the same.