(11) LB

REPORT NO. U-75-27

STEADY-STATE COMBUSTION OF NONMETALLIZED COMPOSITE SOLID PROPELLANT

DR. R. L. GLICK

THIOKOL CORPORATION
HUNTSVILLE DIVISION
HUNTSVILLE, ALABAMA 35807

JULY 1975

INTERIM REPORT FOR PERIOD 1 MAY 1974 - 30 JUNE 1975

Approved for public release; distribution unlimited.

PREPARED FOR

DEPARTMENT OF THE AIR FORCE AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC) 1400 WILSON BOULEVARD ARLINGTON, VA 22209

NOTICE

Research sponsored by the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F44620-74-C-0080. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

FOREWORD

This is an interim report covering the work completed under Contract F44620-74-C-0080 for the period 1 May 1974 through 30 June 1975. Publication of this report does not constitute Air Force approval of the findings or conclusions contained herein. It is published only for the exchange of data and stimulation of ideas.

The program is monitored by Capt. L. R. Lawrence, Jr., of the Air Force. Mr. G. F. Mangum is the Project Director and Dr. M. Miller is the Program Manager.

G. F. Mangum

Project Director

MECETOES STIFFORT AND	ris	Bolls to 1	A
STIFTON LC	CC	12.	4.0
C	ESPERSONAL		
ONTRA	STIFFF FILE		
ONTRA			
NTRA	Y		
Dist.	DIFTER		
Λ	bist.		
111	Λ :		
			,

CONTENTS

	Page
ABSTRACT	·iv
INTRODUCTION	1
STEADY-STATE COMBUSTION OF NONMETALLIZED COMPOSITE SOLID PROPELLANT	2
Development of Theory Modifications to BDP Model Implementation of Polydisperse BDP Model	2 13 14
T-BURNER VENT FLOW STUDY	22
ON REDUCTION OF SOLID ROCKET DATA WHEN THE PRESSURE-TIME IS NON-NEUTRAL	25
PUBLICATIONS DERIVED FROM PROGRAM	30
NOMENCLATURE	31
REFERENCES	34
APPENDIX A - COMPUTER PROGRAM	
APPENDIX B - HYDRAULIC ANALOGY	

FIGURES

No.	Title	Page
1	Schematic of Propellant Surface	4
2	Schematic of Particle Packing	7
3	δ/D versus ζο	15
4	Burning Rate as a Function of Oxidizer Mass Fraction	16
5	Burning Rate as a Function of Oxidizer Mass Fraction	17
6	Oxidizer Size Distribution Function	19
7	Burning Rate as a Function of Oxidizer Size	20
8	Monodisperse Pseudo-Propellant Mass Fraction as a Function of Oxidizer Particle Size	21
9	Burning Rate as a Function of Pressure for the Polydisperse Propellant	23

ABSTRACT

Monodisperse BDP combustion model was extended to nonmetallized propellants with mixed, polydisperse oxidizers by embedding monodisperse model in statistical framework including mixture ratio effects. Basically, polydisperse propellant is "disassembled and rearranged" to form sequence of monodisperse pseudo-propellants whose rates are computed via monodisperse model. Reassembly provides real propellant's burning rate. Approach provides information pertaining to distribution of regression rates and surface structure among different size ox. particles. Preliminary results suggest that significant factor in rate increases wrought by introduction of small oxidizer modes is mixture ratio alterations in larger modes.

Hydraulic T-burner analog was constructed and employed to visualize vent flow phenomena. Studies showed that flow enters vent with axial momentum and that that momentum is partially transformed to vent into Karman vortex sheet. Fact that flow enters vent with axial momentum invalidates boundary condition of Culick analysis for flow turning gain; "correct" boundary condition leads to null vent gain. Experimental facts consistent with proof that in formal one-dimensional flow vent gain violates second law of thermodynamics.

Logical and consistent way to reduce solid rocket data when pressuretime history is not neutral was derived. Since current techniques are not selfconsistent in this situation, these results open door to reclamation of performance data heretofore rejected.

INTRODUCTION

Since 1972 when Culick⁽¹⁾ first found that formal analysis of the linearized, one-dimensional equations of change led to acoustic/mean flow interactions (A/MFI), the rather surprising flow turning gain associated with a T-burner's vent has been regarded skeptically. The situation was not improved by the appearance of another "theory" predicting different A/MFI⁽²⁾ and indecisive results obtained from T-burner tests aimed at evaluating A/MFI. The situation in 1973* is described in some detail by Shoner⁽³⁾.

It is not surprising that Culick's one-dimensional results conflict with results stemming from the theory developed by McClure, Hart, and Cantrell⁽⁵⁾ in an area where mixing and viscous effects are important. Culick's theory implicitly includes mixing while MHC's theory explicitly (through the inviscid media assumption) disallows mixing. Clearly, what is required is qualitative knowledge of the flow phenomena so that "intelligent" modeling of A/MFI can be accomplished. A cost effective approach to obtaining qualitative information about multi-dimensional nonsteady flows is to employ the hydraulic analogy. Accordingly, a proposal was prepared and submitted to AFOSR with the expressed purpose of examining the vent region flow in a T-burner with the hydraulic analogy.

Since 1970 steady-state composite propellant combustion modeling has been dominated by the Beckstead, Derr, Price (BDP) model⁽⁶⁾. Although the basic model applied solely to additive-free propellant with spherical, monodisperse oxidizer, Cohen, Derr, and Price⁽⁷⁾ extended the model to propellants with aluminum and bimodal oxidizer. Sammons⁽⁸⁾ subsequently extended the model to propellants with polydisperse oxidizer.

Since composite solid propellant is a random packing of solid particles filled with binder and the deflagration wave traverses the solid, the burning surface must also possess random structure. Because of the discrete particulate nature and random structure of the burning surface, a classical steady state where state variables are invariant in time cannot exist; at any fixed time spatial variations of state variables are random to some length scale; at any fixed position relative to the burning surface the state variables are random in time to some time scale. Consequently, steady-state combustion can only mean that statictical means are stationary in time.

In the monodisperse BDP model the random, nonsteady phenomena at the burning surface is "averaged" into a mean state in a particle's life. Treating this state as quasi-steady and applying mass and energy conservation, kinetics principles, etc., an implicit "relation" for burning rate is obtained. No derivation has been given for the averaging procedure. Cohen, Derr, and Price(7) extended the model to bi-modal distributions by assuming all particle sizes burn at the

^{*}The situation in 1974 was not greatly changed; see discussion in Reference 4.

same rate. This seems highly improbable. On the other hand, Sammons⁽⁸⁾ extended the model to polydispersions by apparently assuming that the polydispersion could be averaged into a single particle. No derivation was given for this averaging procedure.

In 1973 Glick⁽⁹⁾⁽¹⁰⁾ advanced a statistical combustion modeling formalism that applied to polydisperse situations and eliminated the aforementioned approximations. Consequently, a proposal was prepared and submitted to AFOSR with the expressed purpose of embedding the basic BDP combustion model in this statistical formalism.

These separate proposals were ultimately combined into a single program with the following objectives:

- Construct a hydraulic analogue of a T-burner utilizing a water table.
- Investigate the flow pattern in the vent region of the T-burner analogue to determine whether or not acoustic energy is convected out the vent.
- Compare the experimental results in qualitative fashion with the predictions of present T-burner theories.
- Adapt the Beckstead, Derr, Price combustion model as modified by Sammons to the contractor's statistical combustion model. Investigate the properties of the resulting model as it pertains to propellants with polydispersions of spherical, mixed oxidizers.

This program was monitored, in the best sense of the word, by Capt. L. R. Lawrence, Jr. This report describes in detail the work that was accomplished under this program.

STEADY-STATE COMBUSTION OF NONMETALLIZED COMPOSITE SOLID PROPELLANT

Development of Theory

The most obvious feature of composite solid propellants is their heterogeneous structure. Since high specific impulse is desirable for propulsion systems, total solids content is generally as large as possible. Since composite propellant is essentially a packing of solid particles filled with binder, high total solids content demands a dense packing. To achieve a dense packing, the particles must be polydisperse with a broad range of particle sizes so that the smaller particles can fill the voids in the packing of the larger particles. Therefore, virtually all practical propellants are polydisperse. In the past ammonium perchlorate (AP) was the preferred oxidizer specie. Consequently, propellants with mixed oxidizers were rare. However, recent emphasis on reduced visual

signature has aroused interest in oxidizers other than AP and propellants with non-AP oxidizer, mixtures of non-AP oxidizers, and AP and non-AP mixtures are being explored. Therefore, realistic combustion modeling must consider, in the least, propellants with mixed, polydisperse oxidizers.

Composite propellants are created by mixing their several ingredients together. Therefore, a randomly packed, particulate structure is expected above some length scale. Since the deflagrating surface transverses the solid, the arrangement/structure of oxidizer particles on the burning surface must also be random above some length scale. Because of this randomness and the discontinuous chemistry wrought by heterogeneity, composite propellant combustion is never steady-state in the sense that state variables are invariant in time; at any time state variables are spatially random above some length scale; at any fixed position relative to the mean burning surface state variables vary randomly in time above some time scale. Consequently, analysis of "steady-state" combustion must be directed toward the determination of state variable means and distributions.

Consider now a large, quasi-planar deflagrating surface of composite solid propellant (see Figure 1). Application of mass conservation to the control surface yields

$$\frac{dm_{cv}}{dt} = \oint m''dS - \oint m''dS$$

$$S_{b} S_{p}$$
(1)

Experience shows that when dp = dT = 0 $\lim_{t \to \infty} dm / dt = 0$. Consequently, for steady-state combustion $\int_{0}^{\infty} dt = 0$.

$$\oint_{S} m^{1}dS = \oint_{S} m^{1}dS$$
(2)

Applying the mean value theorem for integrals to the LHS of Eq. (1) yields

$$\overline{m}_{t} = \oint m^{11} dS/S_{p} = \overline{r} \rho_{t}$$

$$S_{b}$$
(3)

The surface S_b may be visualized as a jigsaw puzzle-like arrangement of oxidizer particle/fuel surface pairs. For composite propellant with polydisperse, mixed oxidizers, some of these oxidizer particle/fuel surface pairs will have the same particle diameter and specie. Therefore, rearrange the oxidizer particle/fuel surface pairs so that those with common particle diameters and species are neighbors. This rearrangement creates a sequence of monodisperse propellant subsurfaces. If it is assumed that combustion of all oxidizer particle/fuel surface pairs are independent, the deflagration rate of any monodisperse subsurface can be computed by application of any monodisperse combustion (BDP for example) model. Consequently, proper summation of these subsurface rates should yield the burning rate of composite propellant with mixed, polydisperse oxidizer.

ELEVATION

PLAN

Figure 1. Schematic of Propellant Surface

To accomplish this approach rearrange the burning surface's oxidizer particle/fuel surface pairs into Q monodisperse subsurfaces. Then Eq. (3) becomes

$$\frac{1}{m} = \sum_{i=1}^{Q} \sum_{k=1}^{s} \frac{\int_{d,k}^{m''} ds}{\int_{b,d,k}^{m''} ds} \frac{ds}{s}$$
(4)

where $\Delta S_{b,d,k}$ is the portion of S_b occupied by and $m_{d,k}^{11}$ is the mass flux from oxidizer particle/fuel surface pairs possessing oxidizer particles with $D \leq D \leq D + \Delta D$ and specie k. Application of the mean value theorem for integrals to the RHS of Eq. (4) yields

$$\overline{m}_{t}^{"} = \sum_{i=1}^{Q} (\sum_{k=1}^{s} \overline{m}_{d,k}^{"} \Delta S_{b,d,k}^{"})/S_{p}$$
(5)

The term $\overline{m}_{d,k}^{"}\Delta S_{b,d,k}^{"}$ is the mass flow of products from the monodisperse subsurface $\Delta S_{b,d,k}^{"}$. Therefore,

$$\overline{m}_{d,k}^{"} \Delta S_{b,d,k} = \overline{m}_{p,d,k}^{"} \Delta S_{p,d,k}$$
(6)

where $\overline{m}_{p,d,k}$ is the mean mass flux (based on planar area) from the monodisperse subsurface $\Delta S_{b,d,k}$ and $\Delta S_{p,d,k}$ is the projection of $\Delta S_{b,d,k}$ on $S_{p,d,k}$.

If $\Delta N_{p,d,k}$ is the number of oxidizer particles on S_p with $D \le D \le \Delta D$ and specie k per unit area of S_p ,

$$\Delta S_{p,d,k} / S_{p,d,k} \Delta N_{p,d,k}$$
(7)

where $\Delta S_{p,d,k}$ is the average planar surface for an oxidizer particle/fuel surface pair possessing oxidizer particles with $D_i \leq D_i \leq D_i + \Delta D$ and specie k.

Define a distribution function Fp,d,k such that

$$\Delta N_{p,d,k} = NF_{p,d,k} \Delta D$$
 (8)

Then combining Eqs. (5) - (8) yields

$$\overline{m}_{t} = N \sum_{k=1}^{s} (\sum_{i=1}^{Q} \overline{m}_{p,d,k}^{"} \Delta \overline{S}_{p,d,k} F_{p,d,k} \Delta D)$$
(9)

Passing to the limit of the sum on i as Q → ∞ yields

$$\frac{-1}{m_t} = N \sum_{k=1}^{S} \oint m_{p,d,k} \Delta \overline{S}_{p,d,k} F_{p,d,k} dD = \overline{F} o_t$$
(10)

Equation (10) is a statistical formalism that enables the mean burning rate of propellant with mixed, polydisperse oxidizers to be computed from the mean burning rates ($\overline{m}_{p,d,k} = \overline{f}_{d,k} \rho_{t,d,k}$) of the sequence of monodisperse psuedo-propellants that "compose" it IF THE COMBUSTION OF EACH OXIDIZER PARTICLE/FUEL SURFACE PAIR IS INDEPENDENT. This approach permits consideration of mixed oxidizers and avoids the requirement that a single particle be selected to represent a polydispersion. Since a polydispersion is represented as a polydispersion, information concerning the variation of surface geometry, temperature, regression rate, etc. can also be computed.

The next step is to investigate the statistical characteristics of the burning surface and thereby relate $\Delta \overline{S}_{p,d,k}$, $F_{p,d,k}$, and the properties of the monodisperse psuedo-propellants to propellant formulation variables. Assuming that the statistical characteristics of the random packing are homogeneous and isotropic, the statistical characteristics of surface S_p can be explored within the propellant. Figure 2 illustrates a random polydisperse packing schematically. Clearly, particles with $D \le D \le D + dD$ must lie within $z = \pm D/2$ to intersect plane S. Therefore, if $dN_{v,d}$ is the number of particles per unit volume with $D \le D \le D + dD$, the number of these particles that intersect S per unit area of S is

$$dN_{p,d} = dN_{v,d} D$$
 (11)

The volume fraction of spherical particles with diameter D is

$$d \zeta_{d} = (\pi D^{3}/6) dN_{v,d}$$
 (12)

Figure 2 Schematic of Particle Packing

Therefore,

$$dN_{p,d} = (6/\pi D^2) d\zeta_d$$
 (13)

If the number fraction of particles with $D \le D \le D + dD$ and species k in the propellant is $\eta_{d,k}$ the number of these particles per unit area of S is

$$dN_{p,d,k} = (6/\pi D^2) \eta_{d,k} d\zeta_d = (6/\pi D^2) d\zeta_{d,k}$$
(14)

Now move the plane a distance \triangle z. The volume of oxidizer particles with $D \le D \le D + dD$ in the swept volume is

$$dV_{d} = d\zeta_{d} S \Delta z \tag{15}$$

Hencever, the statistical characteristics are homogeneous and isotropic. Therefore, this volume is also swept out by intersections of S with oxidizer particles having $D \le D \le D + dD$. Since $dS_{p,d} = (\pi D_d/4) dN_{p,d}$

$$d V_{d} = (\pi \overline{D}_{d}^{2}/4) dN_{p,d} \Delta z$$
 (16)

Combining Eqs. (13), (15), and (16) yields the mean particle intersection diameter

$$\overline{D}_{d} = \sqrt{2/3} D \tag{17}$$

Therefore, the average oxidizer particle intersection area is

$$\Delta \overline{S}_{o,d,k} = \pi D_{d,k}^{2/6}$$
 (18)

^{*}Note that $\sum_{d,k}^{s} \eta_{d,k} = 1$. Since all these particles have same diameter, $\eta_{d,k}$ is k = 1 also a volume fraction.

It is important to note that \overline{D}_d , $dN_{v,\,d}$ and $dN_{p,\,d}$ are functions of D alone. This means that statistical characteristics of the monodisperse cuts in a polydisperse propellant are the same as those in a monodisperse propellant. In short, each monodisperse cut behaves as if it alone occupied the propellant. Notice the similarity to mixtures of perfect gases.

The mean statistical characteristics of the fuel surface in each monodisperse cut of oxidizer fuel surface pairs cannot be determined exactly because it requires a statistical determination of how the smaller particles pack inside the packing of larger particles. This information is unavailable. Therefore, approximations must be introduced. Examination of the characteristics of regular geometric packings (11) suggests that the mean volume of fuel associated with a particle should be roughly proportional to its surface or $\Delta V_{\rm f}$, $\Delta V_{\rm f}$. However, to allow for some variation assume

$$\overline{\Delta V}_{f,d} = C D^{n}$$
 (19)

where n is a parameter to be determined experimentally. Since oxidizer volume is proportional to D^3 , $d(0/F)/dD \ge 0$ when $n \ge 3$. Particle diameter alone is important in a packing. Therefore, $\Delta V_{f,d,k} = \Delta V_{f,d}$.

The volume fraction of fuel associated with particles having $D \le D \le D + dD$ and species k is

$$dV_{f,d} = \overline{\Delta V}_{f,d} dN_{v,d}$$
 (20)

The volume fraction of fuel in the real propellant is $1 - \zeta$; it is also the integral of Eq. (20) over all particle diameters. Employing this fact and Eqs. (12) and (20) yields after integrating over all diameters

$$C = [\pi (1 - \zeta_0)/6]/\int_{D}^{6} D^{n-3} d\zeta_d$$
 (21)

With both particle diameter and mean volume of fuel associated with that particle diameter "known" the volume and mass fractions and the density of a psuedo-propellant formed from mono-diameter and specie oxidizer particle/fuel surface pairs can be computed. The volume fraction is ΔV o.d.k ΔV o.d.k ΔV o.d.k ΔV o.d.k ΔV o.d.k

$$\zeta_{d,k}^* = (1 + 6CD^{n-3}/\pi)^{-1}$$
 (22)

The mass fraction is $\overline{\Delta m}_{o,d,k}/(\overline{\Delta m}_{o,d,k}+\overline{\Delta m}_{f,d,k})$ so

$$\alpha_{d,k}^{*} = \left[1 + 6C\rho_f D^{n-3} / (\pi \rho_{o,k})\right]$$
 (23)

The pseudo-propellant's density is

$$\rho_{d,k}^* = \rho_{o,k} \zeta_{d,k} / \alpha_{d,k}^*$$
(24)

Since $\zeta_{d,k}^* = S_{o,d,k}^* / S_{p,d,k}^* = \Delta \overline{S}_{o,d,k} / \Delta \overline{S}_{d,k}$, Eq. (18) becomes

$$\Delta \overline{S}_{d,k} = \pi D^2/(6 \zeta^*_{d,k})$$
 (25)

The mass flux in Eq. (10) corresponds to the mean mass flux stemming from combustion of psuedo-propellant. Therefore,

$$\frac{-1}{m} = \frac{-1}{m} = \frac{-1}{m}$$

The only tasks remaining are to relate $F_{p,d,k}$ and $d \zeta_{d,k}$ to the independent propellant formulation variables $\alpha_{k,j}$, $F_{k,j}$, M_k , and s. The volume fraction of oxidizer specie k with diameter D is defined as

$$d\zeta_{d,k} = dV_{o,d,k}/V_{t}$$
(27)

Since dV = dm o, d, k o, k and V = m_T/μ_t

$$d\zeta_{d,k} = (dm_{o,d,k}/m_t)(\rho/\rho_{o,k})$$
(28)

However, $F_{k,j} = dm_{o,d,k,j}/(m_{o,k,j}dD)$ and $dm_{o,d,k} = \sum_{j=1}^{M_k} dm_{o,d,k,j}$ Therefore,

$$d\zeta_{d,k} = (\mu/\rho_{0,k}) \sum_{j=1}^{M_k} \alpha_{k,j} F_{k,j} dD$$
 (29)

Since $dV_{o,d} = \sum_{k=1}^{s} dV_{o,d,k}$

$$d\zeta_{d} = \sum_{k=1}^{s} (\rho_{t}/\rho_{o,k}) F_{k} dD$$
(30)

where

$$F_{k} = \sum_{j=1}^{M} {k \choose k, j} \qquad \alpha_{k, j}$$
(31)

Since
$$\zeta_0 = V_0/V_t$$
, $V_0 = \sum_{k=1}^{8} \sum_{j=1}^{M_k} V_{0,k,j}$, and $V = m/\rho$,

$$\zeta_{0} = \rho_{t} \sum_{k=1}^{s} \sum_{j=1}^{M_{k}} (\alpha_{k,j}/\rho_{0,k})$$
 (32)

Since
$$\rho_t = (V_t/m_t)^{-1}$$
, $V_t = \sum_{k=1}^{5} \sum_{j=1}^{M_k} V_{o,k,j} + V_f$, and $V = m/\rho$,

$$\rho_{t} = \left[\rho_{f}^{-1} + \frac{1}{2} \right] \qquad \left[\rho_{o,k}^{-1} - \rho_{f}^{-1} \right] \alpha_{k,j}^{-1}$$
(33)

By definition NF_{p,k,d} $dD = dN_{p,d,k}$. Employing Eq. (14) it is seen that

$$NF_{p,k,d} dD = 6 d \zeta_{d,k} / (\pi D^2)$$
 (34)

Employing this result and Eqs. (25) and (30), Eq. (10) can be rewritten as

$$\overline{r} \rho_{t} = \frac{1}{m_{t}} = \rho_{t} \sum_{k=1}^{s} \rho_{0,k}^{-1} \oint_{D} (\overline{m_{d,k}^{"}} / \zeta_{d,k}^{"}) F_{k} dD$$
 (35)

Therefore

$$\overline{r} = \sum_{k=1}^{s} \rho_{0,k} \oint_{D} (m_{d,k}^{-1} / \zeta_{d,k}^{*}) F_{k} dD$$
(36)

Eqs. (21 - 24), (31 - 33), and (36) put \overline{r} in terms of real propellant data. Since interest is focused on the BDP model herein,

$$\overline{m}_{d,k}^{"*} = \overline{m}_{BDP}^{"} (D, \alpha_{d,k}^{*}, \rho_{d,k}^{*}, \zeta_{d,k}^{*}, \text{ etc.})$$
 (37)

Modifications to BDP Model

The reason for polydisperse propellants is high total solids. Consequently, with "real" propellants the BDP model must operate in the $\zeta_0 \approx 1$ regime. Unfortunately, examination of the model⁽⁶⁾ shows that the b parameter (mean distance from center of oxidizer particle to center of binder separating particles) is given by

$$b = D \left[1 + \sqrt{3/2} \left(\delta / D \right) \right] / \sqrt{6}$$
 (38)

where

$$\delta/D = [\pi/(6\zeta_0)]^{1/3} - (2/3)^{1/3}$$
 (39)

Clearly, as ζ_0 approaches unity, both δ/D and b must approach zero with the provisio that $\delta/D > 0$ and b > 0. Examination of Eq. (39) shows that δ/D changes sign at $\zeta_0 \approx 0.785$. Consequently, Eqs. (38) and (39) and hence the BDP model cannot be employed for propellants with $\zeta_0 \ge 0.785$. This represents no difficulty for monodisperse propellants because packing considerations limit ζ_0 to values below this limit. (11) However, this is a very real difficulty with monodisperse psuedo-propellants.

The aforementioned difficulty occurs because the fuel surface of an oxidizer particle/fuel surface pair is assumed to be annular with $D_i = \overline{D}$ and $D_o = 2b$. However, in reality the binder surface is not an annulus but an irregular quadrilateral. Consequently, this assumption "loses" the fuel in the corners between the quadrilateral and the "inscribed" annulus. The simplest way to overcome this difficulty is to assume that b is the dimension of an annulus possessing the fuel surface associated with the mean oxidizer ps rticle/fuel surface pair. In other words, b is defined by

$$\pi b^2 - \pi \overline{D}^2 / 4 = \Delta \overline{S}_f \tag{40}$$

The fraction of planar surface occupied by fuel is $1-\zeta_0$. The number of particles/unit planar surface is given by Eq. (13). Therefore,

$$\Delta \overline{S}_{f} = (1 - \zeta_{o}) \pi D^{2} / (6\zeta_{o})$$
(41)

$$b = D/\sqrt{6\zeta_0}$$
 (42)

and

$$\delta/D = (\zeta_0^{-1/2} - 1) / \sqrt{6}$$
(43)

Examination of the BDP computer program shows that the FORTRAN expression employed for 5/D is not equivalent to Eq. (39) but represents

$$5/D = [\pi/(6\zeta_0)]^{1/3} - (2/3)^{1/2}$$
 (44)

This expression is positive for $\zeta_0 < 0.961$.

Figure 3 compares Eqs. (39), (43), and (44). It is seen that Eq. (43) has correct behavior for $\zeta_0 \approx 1$ and agrees well with Eq. (39) for $\zeta_0 \approx 0$.

Numerical tests were made to determine the effect of oxidizer mass fraction on burning rate. Tests were made with both Eqs. (38) (44) (denoted as BDP) and (42) (43) (denoted as Mod. BDP). Figure 4 presents results when D = 1μ and p = 932 psi. It is clear that the solutions are discontinuous at both high and low mass fractions for both normal and modified BDP models. For oxidizer mass fractions greater than the upper discontinuity point and less than the lower discontinuity point, the models gave negative values for the diffusion flame standoff distances in both cases. Consequently, the difficulty appears to stem from the Burke-Schumann solution. Since the BDP model with the single term approximation to the Burke-Schumann solution was employed herein and Sammons multiple term version showed no evidence of discontinuities at a mass fraction of 0.86, (13) this defect can probably be remedied by employing the Sammons version of the BDP model. However, we did not have this version. Consequently, another remedy was sought. Because the diffusion flame standoff distances increased rapidly to very large values when the discontinuities were approached from the other direction, a negative diffusion flame standoff distance was replaced by a very large value whenever it occurred. This gives continuity with intermediate mass fraction results. Figure 5 illustrates rate versus mass fraction results with this modification.

Calculations at $D = 100 \,\mu$ and p = 932 psi exhibited behavior similar to the aforementioned. However, as will be observed below, the aforementioned results did not completely eliminate "discontinuous" behavior.

Implementation of Polydisperse BDP Model

The modified monodisperse BDP combustion model was extended to non-metallized propellants with a polydisperse oxidizer by embedding the model in the previously described statistical framework. A complete listing of the computer program and a description of its use with a sample problem is provided in Appendix A.

Since parametric studies were anticipated, a log normal distribution of oxidizer particle size was assumed for each mode.

Burning Rate as a Function of Oxidizer Mass Fraction Figure 4.

Figure 5. Burning Rate as a Function of Oxidizer Mass Fraction

$$y = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x-m}{\sigma}\right)^2\right]$$
 (45)

where

$$x = \ln D$$

$$m = \lim_{m \to \infty} \overline{D}_{m}$$

$$\sigma = \lim_{m \to \infty} \pi$$

This assumption is reasonably realistic and permits each mode to be characterized with minimum input information, thereby assisting parametric studies of particle size effects. Thus, in addition to the standard BDP input parameters, the number of modes, the weight mean diameter and standard deviation of diameter for each mode and the mass fraction of each mode relative to the total mass of oxidizer are needed to characterize the polydisperse oxidizer size distributions in the computer program.

The initial test of the computer program was made with a polydisperse bimodal AP propellant. Oxidizer size distribution data are shown in Table 1. The distributions are depicted in Fig. 6.

TABLE 1

Mode	Mass Fraction of Total Propellant	<u>D</u> [μ]	σ*[μ]
1	0.45	16	2.0
2	0.45	200	1.4

The computer program solves for the mass flux associated with each monodisperse psuedo-propellant in the propellant and sums these fluxes in accordance with Eq. (36) to determine mean propellant burning rate. Figure 7 presents the monodisperse psuedo-propellant burning rates as a function of particle size for several values of n.* Figure 8 illustrates how oxidizer mass fraction varies in the psuedo-propellant family. Viewing Figures 7 and 8 together shows the following:

^{*}Recall that n is an empirical parameter controlling how oxidizer mass fraction varies in the psuedo-propellant family.

Figure 6. Oxidizer Size Distribution Function

Figure 8. Monodisperse Psuedo-Propellant Mass Fraction as a Function of Oxidizer Particle Size

- Rate does not vary with particle size by any simple expression reminiscent of the GDF relationship. (14)
- o The way fuel is apportioned among the psuedo-propellants (n) has an enormous effect on the burning rates of the smaller particle sizes.
- o The way fuel is apportioned among the psuedo-propellants (n) has little effect on the burning rates of the larger particle sizes.

The fact that a simple $r \propto D^{-1}$ relationship is not evident suggests that smaller particles do not necessarily augment burning rate by any intrinsically higher rate mechanism. Rather, they appear to partially augment rate by leaning the mixture ratio of the larger particles.

Figure 9 presents the burning rate of the initial case propellant versus pressure. A reasonable exponent is predicted and, somewhat surprisingly, the results are not strongly dependent upon the value of n.

T-BURNER VENT FLOW STUDY

Culick (1)(15) has shown, through analysis of the one-dimensional equations of change that a mean flow/acoustics surface interactions term arises naturally in stability analyses. For regions where $d\hat{p}/dz \neq 0$ this term represents a loss of acoustic energy when there is mass addition and a gain of acoustic energy when there is mass subtraction. The latter has led to speculation that the vent of a T-burner yields a gain of acoustic energy for waves in the burner.

However, Culick⁽¹⁵⁾ demonstrates that the adiabatic process leading to a mean flow/acoustic surface interaction <u>loss</u> dissipates acoustic energy into heat. Since acoustic energy is completely available energy, available energy is degraded into heat by this process. Therefore, this process is <u>thermodynamically irreversible</u>. Consequently, the reverse process - the mean flow/acoustics surface interaction gain - is thermodynamically impossible.

This result is almost as surprising as the original mean flow/acoustics surface interaction gain because it contradicts results that arise solely from the equations of change. However, the equations of change do not suffice to define reality because a second law of thermodynamics exists. Therefore, a mean flow/acoustics surface interaction gain process must be a second law violator. Reflection shows that this is the situation because formal reversal of the mean flow/acoustics surface interaction loss implies complete conversion of heat into available energy in an adiabatic process - a phenomena that is disallowed by the second law of thermodynamics.

Burning Rate as a Function of Pressure for the Polydisperse Propellant Figure 9.

Why does this result occur and what is the correct result for a mean flow/ acoustic surface interaction when there is mass subtraction? The only "arbitrary" assumption in Culick's analysis is that mass enters and leaves with zero velocity. Is this assumption "legitimate"? Since the one-dimensional equations of change must be valid in the quasi-steady limit, is this assumption "legitimate" in steadyflow. Shapiro (16) shows that it is legitimate for mass addition but violates the second law of thermodynamics for mass subtraction. Moreover, Shapiro shows that the second law requires that mass be rejected with free stream conditions in a steady, one-dimensional flow. Clearly, the mean flow/acoustic surface interactions gain arises from this improper boundary condition. For a proper onedimensional analysis. Culick's equations must be formulated so they are in harmony with these quasi-steady flow constraints because this is the limit as frequency goes to zero. Culick has also solved this problem (15) and finds in this case that the mean flow/acoustic surface interactions term is zero when there is mass subtraction. Therefore, a properly formulated one-dimensional analysis shows that the vent is neither gain nor loss.

It is important to note that this "new" result is in harmony with physical results. First, atmospheric T-burner test results reported by Horton and Coates⁽²⁾ demonstrate conclusively that gases at the vent of a T-burner possess axial velocity. Second, hydraulic analogy tests reported by Glick⁽¹⁷⁾ show that in a T-burner with a vent pipe the gases enter the vent with axial momentum and that that axial momentum is transformed in the vent into a Karman vortex sheet. Third, Culick⁽¹⁸⁾ has shown that a flow field like that revealed by the hydraulic analogy studies leads to a vent condition that is neither gain nor loss.

In summary, theoretical and experimental evidence seems to be converging on a null vent condition.

ON REDUCTION OF SOLID ROCKET DATA WHEN THE PRESSURE-TIME HISTORY IS NON-NEUTRAL

Reducing pressure- and thrust-time, propellant mass and web, and nozzle geometry data to determine mean burning rate, mean characteristic velocity, delivered (mean) specific impulse, mean pressure, and mean nozzle geometry is reasonably straightforward with neutral pressure-time histories and minimal nozzle erosion because pressure and nozzle geometry are unique in this situation. However, when the pressure-time history is non-neutral, pressure (and usually nozzle geometry) is no longer unique and choosing the correct mean pressure becomes a problem. It is important to note that functional relationships exist between dependent (r, C*, I_{sp}) and independent (p, ϵ , etc.) variables. Indeed, one purpose of performance testing is to determine these relationships experimentally. Consequently, when means of dependent variables are defined, means of the independent variables must be derived from these definitions. In other words, when the independent variables (pressure, etc.) vary during a test firing, their means cannot be arbitrarily defined. In Ref. 19 constraints are placed upon independent variable variations during a test. If variations exceed constraints, that data is unacceptable. Although this approach eliminates non-neutral independent variable problems and yields quality performance data, it is not cost effective.

The objectives of this work are twofold. First, to derive general equations defining consistent independent variable means when motor operation is in the quasi-steady regime and pressure and throat area are the independent variables. Second, to obtain first approximation "solutions" to these equations.

Reference 19 defines mean burning rate, mean characteristic velocity, * and delivered specific impulse as

$$\overline{r} = w/t_b$$
 (46)

$$\overline{C}* = g \int_{t_{I}}^{t_{I}} A_{t}^{+t_{a}} A_{t}^{-p} dt/m_{p}$$
(47)

$$I_{sp, d} = \int_{t_{I}}^{t_{I} + t_{a}} F dt/m_{p}$$
(48)

^{*}Eq. (47) is a generalization of the more commonly employed $C^* = g A_t$ $\int_{t_1}^{t_1 + t_2} dt dt dt$ p dt/m.

The mean independent variables are defined as*

$$\frac{-}{p_t} = \int_{t_I}^{t_I + t_a} p \, dt/t_a$$
 (49)

$$\overline{A}_{t} = \left[A_{t} (t_{I} + t_{a}) + A_{t} (0)\right] / 2$$
(50)

$$\overline{\epsilon} = A_e (t_1 + t_a) / \overline{A}_t$$
 (51)

Since functionals r (p), C^* (p), and I_{sp} (p, ϵ) are presumed to exist, consistent means for p and ϵ require that

$$\frac{-}{r} = r \left(\frac{-}{p_r} \right) \tag{52a}$$

$$\overline{C}^* = C^* (\overline{p}_C)$$
 (52b)

$$I_{sp, d} = I_{sp} (\overline{p}_{I}, \overline{\epsilon}_{I})$$
 (52c)

where p_r , p_C , and p_I are mean pressures for burning rate, characteristic velocity, and specific impulse, respectively and $\overline{\epsilon}_I$ is the mean expansion ratio for specific impulses. Since $w = \int_0^t \mathbf{r}_{(p)} dt$, Eq. (46) can be written as

^{*}For non-neutral pressure-time histories, Reference 19 suggests that the mass averaged pressure pressure \overline{p}_t . $\overline{p}_m \simeq \int_{p}^{t_1 + t} a / \int_{p}^{t_1 + t} dt$ replace the time averaged p dt

$$r(\overline{p}_r) = \int_{t_I}^{t_I + t_b} r(p) dt / t_b$$
(53)

For quasi-steady conditions
$$I = \int_{t_I}^{t_I + t_a} I_{sp} dm^*$$
, $m = \int_{t_I}^{t_I + t_a} m dt$, and $m = A_t p g/C^*$.

Therefore, Eqs. (47) and (48) can be rewritten as

$$\mathbf{C}^{*}(\overline{\mathbf{p}}_{C}) = \int_{\mathbf{t}_{I}}^{\mathbf{t}_{I}} \mathbf{A}_{t} \, \mathbf{p} \, dt / \int_{\mathbf{t}_{I}}^{\mathbf{t}_{I}} \left[\mathbf{A}_{t} \, \mathbf{p} / \mathbf{C}^{*} \, (\mathbf{p}) \right] \, dt$$
(54)

$$I_{sp}(\overline{p}_{I}, \overline{\epsilon}_{I}) = g \int_{t_{I}}^{t_{I} + t_{a}} [I_{sp}(p, \epsilon) A_{t} p/C^{*}(p)] dt$$
(55)

Equation (55) does not specify p_I and ϵ_I uniquely. Therefore, it is necessary to introduce an arbitrary definition. Since specific impulse and characteristic velocity are both thermodynamic parameters, it is logical that both should possess the same mean pressure. Consequently, assume

$$\overline{p} = \overline{p}_{I} = \overline{p}_{C} \tag{56}$$

^{*}This shows that specific impulse is a mass averaged quantity. Consequently, it has been argued that \overline{p}_m should be employed with $I_{sp,d}$ (21), e.g., $\overline{p}_I = \overline{p}_m$. Following this same argument, $\overline{p}_r = \overline{p}_t$.

parameter function of the independent variables, at least M tests are required and data for the M firings must be reduced simultaneously. Items (c) and (d) show that although the CPIA recommendations are exact for neutral pressure-time histories, they are not precisely valid for non-neutral pressure-time histories.

First approximation "solutions" to Eqs. (53 - 56) are obtained by assuming $r = ap^n$, $C^*/C^* = 1 + \alpha (p - p)$, $I_{sp}/I_{sp,d} = 1 + \beta(p - p) + \delta(\epsilon - \epsilon)$.

Then, Eqs. (53 - 56) become*

$$\overline{p}_{r} = \left(\int_{t_{I}}^{t_{I}+t_{b}} p^{n} dt / t_{b}\right)^{1/n}$$
(57)

$$= \int_{t_{I}}^{t_{I}+t_{a}} A_{t}^{t_{I}+t_{a}} A_{t}^{t_{I}+t_{a}}$$

$$= \int_{t_{I}}^{t_{I}+t_{a}} A_{t}^{t_{I}+t_{a}} A_{t}^{t_{I}+t_{a}}$$
(58)

$$= \beta (\overline{p}_{m} - \overline{p})/\delta + A_{e} \left[\overline{p}_{t} (1 + \alpha \overline{p}) + \alpha \int_{T}^{t_{I} + t_{a}} A_{t} p dt \right] A_{t} \beta dt$$
 (59)

If A_t is constant, $p = p_m$ and $\epsilon = A_e/A_t$. Therefore, the CPIA recommendations for non-neutral pressure-time histories are valid as first approximations.

The magnitude of the errors involved with employing p_t for p_r [Eq. (57)] and p [Eq. (58)] can be readily estimated. Expanding the integrands of Eqs. (57) and (58) in a Taylor's series about $p = \overline{p_t}$ gives

$$p^{n} = \lceil 1 + n \left(\Delta p / \overline{p}_{t} \right) + n \left(n - 1 \right) \left(\Delta p / \overline{p}_{t} \right)^{2} / 2! + n \left(n - 1 \right) \left(n - 2 \right) \left(\Delta p / \overline{p}_{t}^{-3} \right) /$$

$$3! + \dots + \overline{p}_{t}^{n}$$
(60)

^{*}Equation (57) has been obtained previously by Brock. (20)

When n < 1, this series has alternating sign. Consequently, when convergent,

$$p^{n} \sim [1 + n (\Delta p/\bar{p}_{t}) + n (n-1) (\Delta p/\bar{p}_{t})^{2} / 2!] \bar{p}_{t}^{n}$$
 (61)

with error less than $[n (n-1) (n-2) (\Delta p/p_t)^3/3!7.(21)$ Substitution of Eq. (61) into Eq. (57), integrating, and applying the mean value theorem for integrals gives

 $\bar{p}_{r} \approx \bar{p}_{t} \left[1 + n (n-1) \left[(\Delta p/\bar{p}_{t})^{2} \right] / 2 \right]^{1/n}$ (62)

Substitution of Eq. (61) with n = 2 into Eq. (58), assuming A_t is constant, integrating, and applying the mean value theorem for integrals gives

$$\overline{p} = \overline{p}_{t} \left\{ 1 + \left[(\Delta p/\overline{p}_{t})^{2} \right] \right\}$$
(63)

Examination of Eqs. (62) and (63) shows that when $\Delta p/\overline{p}_t$ is small, \overline{p}_r and \overline{p}_t agree with \overline{p}_t to first order accuracy. However, when $\Delta p/\overline{p}_t$ is large, significant deviations can occur. Calculations presented by Brock⁽²⁰⁾ support this.

In summary, this work has shown that consistent reduction of motor test data when the pressure-time history is non-neutral falls outside conventional procedure. As long as deviations from neutrality are small, errors relative to established procedure are small. However, when deviations become large, significant errors can result. This work has assumed that motor operations falls in the quasi-steady regime and that pressure and throat area are the only independent variables. However, burning rate depends on flow over the burning surface and the thermodynamic parameters depend at least upon stay time and nozzle geometry. Therefore, what has been presented here is just a ripple on the surface of the basic problem of extracting all possible truth from available data.

FUTURE PLANS

Future efforts will be expended in four directions:

- modification of the BDP combustion model
- generation and implementation of propellant burning rate computer codes
- consideration of transient burning phases within the steady-state statistical framework
- application of the hydraulic analogy to determine mean flow effects on mode shape.

In the first, extension of the model to include spheriodal particles and surface tension effects will be explored. In the second, computer codes for predicting burning rates in additive free propellants will be developed. In the third, basic problems in statistical combustion modeling will be explored. Specifically, transient effects and statistical formulations with nonplanar burning surfaces will be pursued. In the latter, hydraulic analogy test sequences with real motor geometry and distributed mass addition will be employed to assess mode shape deviations wrought by mean flow effects. This will be accomplished by determining the resonant frequency and then measuring amplitude and phase along the motor length (light absorption technique). Comparison of results at no flow with acoustic approximation results "defines" analogy errors; comparison of analogy results at various port Mach numbers "indicates" mean flow errors.

PUBLICATIONS DERIVED FROM PROGRAM

- 1. On Reduction of Solid Rocket Data When the Pressure-Time History is Non-Neutral, accepted for publication, Journal Spacecraft and Rockets, 1975.
- 2. Hydraulic Analogy Study: T-Burner Vent Gain/Loss, CPIA Publication No. 261, Vol. 1, 1974, pp. 491-498.
- Comment on "The Stability of One-Dimensional Motions in a Rocket Motor", accepted for publication, Combustion Science and Technology, 1975.

NOMENCLATURE

Latin Symbols

A _e	nozzle exit area
$\mathbf{A}_{\mathbf{t}}$	nozzle throat area
ь	D + *
С	constant defined by Eq. (19)
C*	characteristic velocity
D	diameter
F'	distribution function
g	gravitational acceleration
h	water depth
I	delivered impulse
I sp	specific impulse
I sp, d	delivered specific impulse
m	mass
m	mass flow rate
m	mass flux
M k	number of modes associated with kth oxidizer species
n	exponent defined by Eq. (19)
p	pressure
Q	number of subdivisions
r	burning rate
s	number of oxidizer species
S	surface area

t	time
t a	action time
t _b	burn time
^t I	time when p first becomes 0.05 p _t
u	velocity component in x direction
v	velocity component in y direction
V	volume
w	propellant web or velocity component in z direction
x, y, z	coordinates in inertial reference frame
у	dm _{o,j,k} /(m _{o,j,k} dD)
z	distance normal to S
	Greek Symbols
α	mass oxidizer/mass propellant
ζ	volume oxidizer/volume propellant
δ	width of fuel annulus surrounding mean oxidizer particle
Δ	denotes a small quantity
ηd, k	fraction of oxidizer particles on burning surface with $D \leq D \leq D + dD$ and species k
€	nozzle expansion ratio
σ*	standard deviation of oxidizer particle size distribution
۵	density
	Special Symbols
(-)	denotes a mean
()*	pertains to a monodisperse, psuedo-propellant
(^)	denotes a fluctuating term such that $(^{\wedge}) = 0$
()+	denotes a non-dimensional quantity

Subscripts

Ъ	denotes burning surface
d	denotes oxidizer particles with $D \le D \le D + dD$
f	denotes fuel
g	denotes gas
j	denotes oxidizer mode j
k	denotes oxidizer species k
m	denotes weight mean in oxidizer particle size distribution
0	denotes oxidizer or stagnation condition
t	denotes time mean or propellant
p	denotes planar surface
v	denotes per unit volume
w	denotes water

REFERENCES

- 1. Culick, F. E. C., Derr, R. L., and Price, C. F., "Linear Analysis of One-Dimensional Oscillations in a Variable Area T-Burner", CPIA Pub. 231. Vol. I, pp. 165-196, Dec. 1972.
- 2. Horton, M. D. and Coates, R. L., "Some Developments in T-Burner Analysis", CPIA Pub. 243, Vol. II, pp. 83-98, Dec. 1973.
- 3. Schoner, R. J., Review of the Workshop on Combustion/Flow Interaction, CPIA Pub. 243, Vol. II, pp. 107-114, Dec. 1973.
- 4. Culick, F. E. C., Editor, T-Burner Testing of Metallized Solid Propellants, AFRPL-TR-74-28, pp. 240-258, Oct. 1974.
- 5. McClure, F. T., Hart, R. W., and Cantrell, R. H., "Interaction between Sound and Flow: Stability of T-Burners", AIAA Journal, 1, 3, pp. 586-590, March 1963.
- 6. Beckstead, M. W., Derr, R. L., and Price, C. F., "A Model of Solid Propellant Combustion Based on Multiple Flames", AIAA Journal, Vol. 8, No. 12, pp. 2200-2207, Dec. 1970.
- 7. Cohen, N. S., Derr, R. L., and Price, C. F., "Extended Model of Solid Propellant Combustion Based on Multiple Flames", CPIA Publication 231, Vol. II, pp. 25-42, 1972.
- 8. Sammons, G. D., "Solid Propellant Combustion Modeling", CPIA Pub. 243, Vol. I, pp. 149-156, Dec. 1973.
- 9. Glick, R. L., "Statistical Analysis of Non-Metallized Composite Solid Propellant Combustion", CPAI Pub. 243, Vol. I, pp. 157-184, Dec. 1973.
- 10. Glick, R. L., "On Statistical Analysis of Composite Solid Propellant Combustion", AIAA Journal, 12, 3, pp. 384-385, March 1974.
- 11. Dallavalle, J. M., Micromeritics, (Pitman Publishing Co., New York, 1948), pp. 123-143.
- 12. Beckstead, M. W., Derr, R. L., and Price, C. F., "Combustion Tailoring Criteria for Solid Propellants", AFRPL-TR-69-190, Lockheed Propulsion Co., 1969 (Confidential).
- 13. Sammons, G. D., "Scientific Report: Multiple Flame Combustion Model Fortran IV Computer Program", Rocketdyne Division, Rockwell International, Report R-4827, March 1974.

- 14. Summerfield, M., et al, "Burning Mechanism of Ammonium Perchlorate Propellants", Solid Propellant Rocket Research, Progress in Astronautics and Rocketry, Vol. I, (Academic Press, New York) pp. 141-182, 1960.
- 15. Culick, F. E. C., "The Stability of One Dimensional Motions in a Rocket Motor", Combustion Science and Technology, Vol. 7, No. 4, p. 165, 1973.
- 16. Shapiro, A. H., The Dynamics and Thermodynamics of Compressible Fluid Flow, (Ronald Press Co., New York) Vol. I, p. 234.
- 17. Glick, R. L., Hydraulic Analogy Study T-Burner Vent Gain/Loss, CPIA Publication No. 261. Vol. I, pp. 491-498, 1974.
- 18. Levine, J. N. and Culick, F. E. C., "Nonlinear Analysis of Solid Rocket Combustion Instability", AFRPL-TR-74-45, Vol. I, pp. A3-A9, Oct. 1974.
- 19. Recommended Procedure for the Measurement of Specific Impulse of Solid Propellants, CPAI Publication No. 174, Aug. 1968.
- 20. Brock, F. H., "Average Burn Rate, Average Pressure Relationships in Solid Rockets", Journal Spacecraft and Rockets, Vol. 3, No. 2, pp. 1802-1803, Dec. 1966.
- 21. Taylor, A. E., Advanced Calculus, (Ginn and Company, Boston, 1955), p. 563.
- 22. Hoyt, J. W., "The Hydraulic Analogy for Compressible Gas Flow", Applied Mechanics Reviews, Vol. 15, No. 6, pp. 419-425 (1962).
- 23. Loh, W. H. T., "Hydraulic Analogy for Two-Dimensional and One-Dimensional Flows", Journal of the Aero/Space Sciences, Vol. 26, No. 6, pp. 389-391 (1959).
- 24. Liepmann, H. W. and Roshko, A., Elements of Gas Dynamics, (John Wiley, 1957).

APPENDIX A

COMPUTER PROGRAM

COMPUTER PROGRAM DATA INPUT FORMAT

CARD 1: Control Card

NUMBER REQUIRED: One card per run

YUNCTION: Specify run options

FORMAT: (216)

Columns 1-6: NJOB, if NJOB = 1 read

propellant parameters, if NOB = 2 read namelist data

Columns 7-12: IPLOT, IPLOT = 2, (Plotting routine

presently deleted)

CARD 2: Title Card

NUMBER REQUIRED: One card per run

FUNCTION: Identify run out at

FORMAT: (20A4)

Columns 2-80: May be used to identify run

CARD 3: Data Card

NUMBER REQUIRED: One card per run

FUNCTION: Specify propellant parameters

FORMAT: (6E12.6)

Columns 1-12: TZERO, initial propellant temperature, deg K

Columns 13-24: ALFA, Oxidizer mass fraction

Columns 25-36: TF, adiabatic flame temperature, deg K

Columns 37-48: GMW, molecular weight of final flame

Columns 49-60: XNUI, stoichiometric ratio of the final flame

Columns 61-80: not used

CARD 4: Data Card

NUMBER REQUIRED: One card per run

FUNCTION: Specify propellant parameters

FORMAT: (6E12.6)

Columns 1-12: QFUEL, heat of pyrolysis of the fuel binder, cal/g

Columns 13-24: RHOF, density of fuel binder, g/cm³

Columns 25-36: AF, arrhenius frequency factor of fuel binder,

g/cm²-sec

Columns 37-48: EF, activation energy of the fuel binder, cal/mole

Columns 49-60: XNUP, primary flame stoichiometric ratio

Columns 61-72: PMW, primary flame molecular weight

Columns 73-80: not used

CARD 5: Data Card

NUMBER REQUIRED: One card per run

FUNCTION: Specify propellant parameters

FORMAT: (6E12.6)

Columns 1-12: QL, latent heat of vaporization of the oxidizer, cal/g

Columns 13-24: RHOX, density of the oxidizer, g/cm³

Columns 25-36: AOX, arrhenius frequency factor of the oxidizer

g/cm²-sec

Columns 37-48: EOX, activation energy of the oxidizer cal/mole

Columns 49-60: TAP, temperature of the AP flame, deg K

Columns 61-72: AP, AP=1 if oxidizer rate constants specified,

AP = -1 or 0 if oxidizer rate constant to be calculated by program. If -1, mass flux of oxidizer taken as 1.9 g/cm²-sec in rate constant calculation. If 0, mass flux of oxidizer taken as 1.66 g/cm^2 -sec in rate constant calculation.

Columns 73-80: not used

CARD 6: Data Card

NUMBER REQUIRED: One card per run

FUNCTION: Specify propellant parameters

FORMAT: (6E12.6)

Columns 1-12: CIGN, oxidizer ignition delay parameter, sec(atm) cm⁻ⁿ⁺¹ where m=POWIGN and n=POWD

Columns 13-24: POWIGN, pressure exponent in oxidizer particle ignition particle ignition delay term

Columns 25-36: POWD, diameter exponent in oxidizer particle ignition delay term

Columns 37-48: PSTART, pressure to start incremental calculations, atm

Columns 49-60: PSTOP, pressure to stop incremental calculations, atm

Columns 60-72: CONF, CONF=0 if parabolic flame assumed, CONF=1 if conical flame assumed

Columns 73-80: not used

CARD 7: Data Card

NUMBER REQUIRED: One card per run

FUNCTION: Specify propellant parameters

FORMAT: (6E12.6)

Columns 1-12: KPF, rate constant of primary flame, g/cm³-sec-atm)

Columns 13-24: KAP1, rate constant of AP flame at low pressure,

g/(cm³-sec-atm)

Columns 25-36: KAP2, rate constant of AP flame at high pressure, g/cm³-sec-atm)

Columns 37-48: XN1, reaction order of primary flame

Columns 49-60: XN2, reaction order of AP flame at low pressure

Columns 61-72: XN3, reaction order of AP flame at high pressure

Columns 72-80: not used

CARD 8: Data Card

NUMBER REQUIRED: One card per run

FUNCTION: Specify propellant parameters

FORMAT: (6E12.6)

Columns 1-12: CSUBP, average heat capacity of solids and gases, ${\rm cal/g-}^{\rm O}{\rm K}$

Columns 13-24: XLAMB, average thermal conductivity of the combustion gases, cal/cm-sec-OK

Columns 25-36: GAMMA, diffusion parameter, cm²/sec

Columns 37-48: AFH, flame height factor

Columns 49-60: EPS, exponent for diffusion pressure dependence

Columns 61-72: Y, proportionality constant for short diffusion flame

Columns 72-80: not used

CARD 9: Data Card

NUMBER REQUIRED: One per run

FUNCTION: Specify propellant parameters

FCRMAT: (6E12.6)

Columns 1-12: BETA, mass fraction of metal

Columns 13-24: RHOM, density of metal, g/cm³

Columns 25-36: QM, heat release of metal combustion, cal/g

Columns 37-80: not used

CARD 10: Data Card

NUMBER REQUIRED: One per case

FUNCTION: Specify integration parameters

perse packing

FORMAT: (315, 3F10.5)

Columns 1-5: NMODES, number of oxidizer size distribution modes

Columns 6-10: NCOUNT, number of intervals in the numerical inte-

gration of total propellant mass flux

Columns 10-15: NXCOUN, number of intervals in the numerical integration for the proportionality constant C in the equation for the volume of fuel associated with a particle in a polydis-

Columns 16-25: XN, diameter exponent in the equation for the volume of fuel associated with a particle in a polydisperse packing.

Columns 26-35: DDO, oxidizer particle size increment in the numerical integration of total propellant mass flux.

Columns 36-45: XDDO, oxidizer particle size increment in the numerical integration for the proportionality constant C

CARDS 10 to 11 + NMODES: Data Card

NUMBER REQUIRED: One per oxidizer mode size, per case

FUNCTION: Specify oxidizer size distribution parameters

FORMAT: (3F10.5)

Columns 1-10: SIGMA, standard deviation of oxidizer size distribution for a particular mode

Columns 11-20: DBAR, mean oxidizer crystal size for a particular mode, microns

Columns 21-30: YI, mass fraction of oxidizer in a particular mode relative to the total mass of oxidizer.

Columns 31-80: not used

CARD 11 + NMODES: Control Card

NUMBER REQUIRED: One card per case

FUNCTION: Start next case or terminate run

FORMAT: (I4)

CARD 12 + NMODES: Data Card

NUMBER REQUIRED: One card per additional case

FUNCTION: Specify propellant parameters

FORMAT: NAMELIST/NAM1/

REMARKS: Used only when more than one case is run.

CARD 13 + NMODES: Data Card

NUMBER REQUIRED: One card per additional case

FUNCTION: See Card 10

FORMAT: See Card 10

CARD 13 + NMODES case one to (12 + NMODES case one + NMODES case two):

Data Card

NUMBER REQUIRED: One per mode in case two

FUNCTION: See Cards 11 to 10+NMODES case one

FORMAT: See Cards 11 to 10+NMODES case one

CARD 13 + NMODES case one + NMODES case two: Control Card

NUMBER REQUIRED: One per additional case

FUNCTION: See Card 11 + NMODES case one

FORMAT: See Card 11 + NMODES case one

COMPUTER PROGRAM LISTING

AND

SAMPLE CALCULATION

FORTE AN IV	IV G LEVEL	21		MAIN		DATE +	15197	09/58/38	38		PAGE 000
1000	U	IMPLICIT	T REAL®	IMPLICIT REAL®B (A-H,O-Z)	<u>.</u>						
0003		COMMON	Ale	A2.	AF,	AFH,	ALFAST.	ANSI (50) , 469	694.	*000	
		7	AOX.	BESS.	BESSI (50) , BETAF,	. BETAF.	BS 0R,		694	0005	
		2 1		· NO LU	CONI.	CSUBP.	DELDI.	DZERO,	694	9000	
			HDP.				KAP1	KAP2.			
		× ×	(PF.		MDX.	MT.					
			POND.	PONIGN.	PST ART,	PSTOP.	QAP.	OFF	469	0100	
2004		COMMON	OF UEL.	91,	OPF.	•	RAP.	RF.	469	1100	
			RHOF.	RHOSP.	RHOX	RON	SOX.	TAP.	469	0012	
		· ·	XI AMB.	XMI	111(20)•				694	5100	
5000		COMMON	KNUP, XAL	FA, PHW, E	TAP, EPS	•	-	TORK	10	13	
9000		COMMON	DOUBLE/TS	.C3P.C4P.X	(STPF, XSTPD	*XSTARD.X	STAP				
0001		COMMON	ICI /THIX	M, IPLOT.	K. MENI. N	ī					
8000		COMMON	CRAI/ RHO	P. BR	COMMON/XRAI/ RHOP, BR		1001				
0100		CALL ZER	ROSCIAL E	150	TOTAL VALUE	170011					
1100		A1 = 0.5	500+(1.00	0 + 1.000/	DSQRT (3.0D	((0					
2100		A2 = 0.	500+(1.00	0 - 1.000/	D SQRT (3.00	110					
6100		מארר זאי	PUT (0)		CALL INPUT(0)				694	£69 0022	
100	•	CALL 18		D. D. FZEKU,	X NU . NCCONT	(000					
0010	•	TS = 750.000	ACAL TO						469	0023	
2100		× × ×	200						440	40.00	
9100		J90" = a	. 060 000 SOR TEP	2					101	***	
6100		×		•					944	9000	
0050		MITE 16.	.5001							2700	
0021		60 TO 9									
0022	25	WRITE(6,	.5001)								
0023	22	CALL IN	PUTI (JJ.	2.0.FZERO	CALL INPUT! (JJ.2.D.FZERD,XMU, NCOUNT.DDD)	.000					
0024	6	CALL STE	STEMP						694	469 0027	
0025		XSPF = 1	- XSTPF*10000,0D0	000.00							
9200		MSPO =	XSTPO+100	000-000							
0028		XSD = X	ASD = ASTARD#10000.000	00.00							
0029		ME TECS.	2000	S SFZFROF	LID OFFRON	SPEAKSAP	XS POLY SOLA	FACTAMINE	Ε.		
0000	2000		6X . 16 . 4X .	2F12-4,F12	2.1.4F12.2.	2F12.4)					
1600			TOR (JJ.X	HT . XMUST .X	CALL XSTOR (JJ,XHT,XMUST,XMU,MT,XXMU)						
0032		IF (MC)	UNT - 135	23, 22, 2	12						
0033	23	17	WRAT (XMT	OFFZERO,	NOO XXNO MC	DUNT					
200		3									
200		100	TPUT LIS						440		
600		16 (9	PSTOP1 3	1. 32. 32					199	9000	
0038	31	CALL CO	WCAL (11)	CALL CONCAL (1)					69	80	
003		60 TO 25	•								
	U	THIS PR	THIS PRINTS THE	HEADER INF	HEADER INFORMATION AFTER THE CALCULATIONS	FTER THE	CALCULATIO	SX	\$	0032	
		HAVE BEEN MADE	EN MADE						469	0033	
0000	32	CALL DUTPUT (2)	TPUT (2.)						469	0034	
1400		READI 9.	READI STATE OF THE PERSON	:							
2500		0.5		06 01 05					•		
5400		CALL IMPORTED							69	0035	
									50	9036	
900	30	TAME	FORMAT (2512.6)						100	200	
0041			151							,	
9400	1005		1H1,9X,2H	13,11X,1H	PORMATEINI,9X,2HJJ,11X,1HR,8X,6HF2EROF,4X,5MDZERO-12X,5MESTPF,7X,5	D#6-X4-90	ZERO-12X.5	MESTPF. 7X.	Ņ		
0400	•	STOP	SX. SHKSTP	D, 7X, 6HXS1	ARD, 7X, 644	LFAST, 6X,	SHXMUST//)				
0020		D.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O							094	PE 00 94	
									•		

ORTRAN IV G LEVEL	G LEVE	L 21		MA'IN		DATE = 75197	197	09/58/38			PAGE 0001	1000
	U	*****			CONCAL			*****				
1000		SUBROUT	SUBROUTINE CONCAL	(2)					594	0040		
0002		IMPLICIT	IMPLICIT REAL+8	(A-H,0-Z)								
	U	THIS SU	BROUTINE	MIS SUBROUTINE INCREMENTS THE PRESSURE	THE PRESSU	RE			694	1900		
0003	•	DIMENSIC	DIMENSION FAC(10)						\$	0042		
0000		REAL *8	KAP1. KAP	REAL ** KAP1, KAP2, KPF, MOX, MT	C, MT							
9000		COMMON A1,	A1,	A2.	AF.	AFH.	AL FAST.	ANST(50). 469		4000		
		1	ADX.	BE 55.	BESSI(50), BETAF,	BETAF.	BSOR.		39.	0045		
		2		CIGN.	CON1,	CSUBP,	DELDI.	DZERO.		9000		
		3	EF.	EOX,	ET A,	GAMMA,	GM.	HOM.	694	0047		
		-	HDP.				KAPI.	APZ.				
		5	KPF,		MOX.	M,		, d				
		9	POWO.	POWIGN.	PSTART,	PSTOP.	QAP,	OFF	469	0020		
9000		COMMON	gFUEL.	٩٢.	OPF.	R.	RAP.	RF.		0051		
		1	RHOF.	RHCSP.	RHOX.	PON.	SOX.	TAP.		0012		
		2	TAV.	TF,	TIT(20),	1111 (20),			469	0053		
			XLAMB,	XN1.	XN2.	XN3.	XNUST.	KNCI		0014		
7000		COMMON	XNUP. XALFA, PMM,		ETAP, EPS					1		
8000		COMMON	DOUBLE/TS	COMMON/DOUBLE/TS,C3P,C4P,XS1PF,XSTPD,XSTARD,XSTAP	STPF . XSTPD.	XSTARD, XST	AP					
6000		COMMON	ILI /THIX	COMMON/XINT/ IJIM, IPLOT, K. MEM1, NP.1	(. MEM1. NP	-						
0100	,000	_	2, 2, 15						694	1500		
1100	2	_	1.0									
0012		FAC(2)=1.77	1.11									
6100		FAC (3) = 3.17	3,17									
\$100		FAC (4)= 5.62	5.62									
0015		FAC(5)=10.0	10.0									
9100		0 = 77							469	8900		
0017		~								6900		
8100	15	_	F (JJ - 1) 16, 20, 20	20, 20					694	0000		
6100	16	F TO F	= PSTART						469	1100		
0000		- - - -								0072		
1200		-							469	6100		
0022	20	_	F (1-6) 50,21,2	_								
0023	21	^	CMULT = XMULT*10.						694	0075		
0024		-							469	0076		
0025	20	•	= XMULT*FAC(1)							7100		
9200		1 + 1 = 1	-							0078		
7200		RETURN							469	0079		
0028		ENO							694	0000		

DATE = 75157 0° INPUT AF, AF, AF, GESSI(50), RETA, GESSI(50), RETA, GENA, CONI, GAWMA, GAW, MT, GAW, MT, GAW, GAW, MT, GAW, MT, GAW, MT, GAW, TITI(20), TAP, ETAP, TAP, AND, TAP, TAP, AND, TAP, AND, TAP, TAP, AND, TAP, AND, TAP, T	INPUT (HI)	21 ***********************************	FÜR FRAN IV G LEVEL 21 C
INPUT JX, MT BESSIGSOD, RET GETA, GAM PSTART, PST GON1, PSTART, PST GON2, MT, PSTART, PST RHCX, MY, RCN TITICOD,	INPUT (#1) AL*A (A-H*0-2) AL*A (A-H*0-2) AL*A (A-H*0-2) BESS. BESS!(50)*RF CIGN* ETA* AF* POUIGN* ETA* GAP CIGN* ETA* FRN RHCSP* RHCS* RN XN1, XN2, XN3 XN1, XN2, XN3 XN1, XN2, XN3 CINF, RHCF, RF, EF, XNUP, PMN Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		11 6 LEVEL C C C C C C C C C C C C C C C C C C C
	INPUT (#1) AL*A (A-H*Q-Z) A 2. C GGN* E C C C C C C C C C C C C C C C C C C		11 6 LEVEL C C C C C C C C C C C C C C C C C C C

FORTRAN	FORTRAN IV G LEVEL	21 STEMP DATE = 15197	09/58/38	PAGE 00
	U	REGINATED OF COMPETING BLANK CASCILLATION		
0045	51			
9900	•			
0047		-	1010 694	
000		MACE (3) = C3		
6400		JR61 51 (4) = C4	0110 694	
0020		ARGLST(5) = RATC		
1500		ARGLST(6) = XNC	469 0112	
	ن	CONVERGENCE CALCIN ATTON ON TO BOLL DAG		
0052	•	MACHEN TO PRESENT ABOUT TO COLUMN	5110 604	
2000	3	•		
6000		IF (DASS (1.000- XIS/IS)001D0) 60. 60. 61		
0054	19	I IF (TS - XTS) 86, 85, 85		
0055	9	17 = 1	469 0117	
0056		IF (xTS.LT.500.000) xTS = 500.000		
0.087				
		7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -		
8600	51	20 01 05	6110 694	
000	98			
0900				
1900		KUP		
0000	7.0		140 0133	
2000	5	•	7710 494	
2000	99	AFCLSICIO E XIS		
4900		GO TO 80	469 0124	
0065	89	ANS = 0.000		
	u	TS MAS BOUNGED GO TO BRUTE FORCE		
9900				
7 900		XTS = " : 2 (DON - ARGI ST - XUP - XI OH - ANS - N)	1210 CV4	
0700	4	free free free free free free free free		
000	2 .	CONTINUE		
6900	29	R = M1/RHDP	469 0130	
0000		RETURN		
1200		C 3 U		
:			7610 604	
	Ų		*****	
1000		SUBROUTING FIRRAT (XMT.D.F7FRD.DDD.XXML.MCDUNT)		
0000		INDICATE OF A TANA TANA TANA TANA TANA TANA TANA T		
1000				
5000		CURRON/AKA! KHUP-BR		
4000		[IMENSION XMT(100), FZFR(100), XXNU(100), D(100)		
0002		A = 0.000		
4000				
0 0	•			
200	7	XLI = XMITTLY XXNUTLY *FZEROTLL) /DILL)		
0000		XL2 = XMT(LL+1)*XXMU(LL+1)*FZERC(LL+1)/D(LL+1)		
6000		JF(D(L(+1),11,5,000) GC TO 10		
0100				
200		Trucket services of the Li		
1100		1F(D(LL+1)L1.60.0D0) 60 TO 12		
2012		IF(D(LL+1), 11, 120, 000) G0 T0 13		
0013		1F(B(i)+1).11.240.000) on 10 14		
0014		GO TO 15		
0015	2	000		
4100	2	20 10 4		
100	:			
100	1			
8100				
6100	12	CDO * 5.000		
0050		GO TO 3		
1200	-			
1 600				
7700				
0023	*			
0024		GC TO 3		
0025	15	CDG * 40,000		
0026	•			
2000	•			
200		٠,		
0000				
6200		IF (LL - NCOUNT) 2, 4, 4		
0030	*	PR * A/RHOP		
0031		RETURN		
0032				
; ;				

FORTRAN IV	G LEVEL	12	٠	MAIM		DATE = 7	16751 #	09/58/38			PAGE 000	8
1000	u	DOUBLE	MOUBLE PRECISION FUNCTION		DON (ARGLST)	2		*****				
7000	v	CALCULA	IMPLICIT REALTS (A-H,U-Z) CALCULATE TS FOR COMPETING FLAMES DFALES KADI, KADI, KDE, MOY, MT	COMPETING	FLAMES				694	0224		
4000		COMMON	A1.	A2.	AF	AFH.	ALFAST.	ANST (50) . 469		*000		
				BESS.	BESSI(50), BETAF,	BETAF.	BSOR.			0227		
		.		FOX	ETA:	CSUSP.	DEL DI	DZERO.	694	0228		
		. •	HDP.			i Lucio	KAPI	KAP2.		6770		
			KPF		MOX.	MT,		b				
				PCHIGN	PSTART,	PSTOP.	OAP.	OFF	694	0232		
0005		COMMON		91,		*				0233		
			KHOF.	RHOSP,		RON		TAP,		0012		
		y 15	M AMA	KW1.	111(20).	TITI(20),	TZERO.		694	0235		
9000			XNUP. XALF		ETAP, EPS		1.50			.		
1000			/PBC/ CONF		•				694	0239		
8000		COMMON	/RWN/ BETA, RHOM, OH	I, RHOM, O						0240		
0000		COMMON	DOUBLE/TS.	C3P, C4P, X	COMMON/DOUBLE/TS,C3P,C4P,XSTPF,XSTPD,XSTARD,XSTAP COMMON/XIMI/ 1 11M, TB:01, X, MEM, MA,	XSTARD, XS	TAP					
1100		CIMENSI	CIMENSION ARGESTIZO	20)	A 1671 4 M	-				.36.		
2100		IF (ARG	IF (ARGLST(1), GT.0.230040) GO TO	0.230040)	GO TO 99				Ĉ	1470		
0013		TS = AR	TS = ARGL ST(1)						694	0242		
\$100		C) = AR	ARGL ST(3)							0243		
5100			ARGL ST (4)							0244		
9100			- ARGLST(5)							0245		
100		MAC	ARGLST(6)						469	9970		
9100		ALEA + ALEAS	# ALEAST									
0000			= XMUST									
1200	8		GAMMA+TS++0. 7500/82.0600+PMW	1.7500/82.	WM4+0090							
0022			2.000sC 2P SETAP *AFH	TAP*AFH								
0023			= (7.66 DO+C2P)++2/#50R	1**2/ESOR								
0024		MOX = A	- ACX*DEXP(-ECX/(1.98700*TS)	10X/(1.987	DO#TS11							
9200		CALL SO	CALL SOXCAL (TS, SOX)	SOXI					694	1251		
0026		PT = MO	PT = MOX + SOX / ALFA							02 52		
0027		XSTPF	XXTPF = M1/(KPF#P##XNI)	****					469	0253		
9700		-1=ZHM	DMZ=1.000 + C4P/(MOX**Z)	(MOX**2)								
6700		11 (004	IF (UURZ = 1.01b0) (ZI+ 1ZI+ 1ZZ	21 121 11	721 1							
0031	171	60 TO 124	COM 3 = 0.50 CTC 4F / CTC AT 6 2 1	(Zeevou)						,,,,,		
0032	122		DUM3 = DSQRT (DUM2) - 1.000	12) - 1.00	0				6	1630		
0033	124	XSTPO =	KSTPD = C3P/(MOX*DUM3)	10UM3)					469	0259		
9600		IF (XSTP	IF (XSTPO.LT.O.ODO) XSTPD =) XSTPD =	1.000							
4500		107	MUAVIKA 1	1 NY state						0920		
0037	2	BETAE - 1 300	ACTAC - 1 300	VOAISX		26 . 16				0261		
0038	7	60 10 55								26.20		
9600	51	PETAF =	BETAF = AFH*(XSTAP	A XSIPELIXSTED	1/XSTPD				704	5070		
0000		IF (CON	IF) 54, 54,	53						0265		
1400	53	BETAF =	BETAF = 2.000#BETAF	TAF - BETAF ##2	F##2							
	ပ	CONICAL	CONICAL (COMICAL) FLAME	FLAME					694	0267		
2042	*	IJIM = 2	2							0268		
0043	7	IF (BET	IF (BETAF) 56, 55,	5, 55						0269		
**00	2 5	COULTENIE 0.000	0.000							0270		
0045	Ç	CONTINUE	JE • m^ • c						694	0271		
2		1	17.4.V.H.(.Y	17444.141/								

ORTRAN IV G LEVEL	9 >	LEVEL	21	NOO	DATE =	DATE = 75197	86/85/60		PAG	PAGE 0002
0047			IF (DUM2 - 1	IF (DUM2 - 1.0100) 10, 10, 11						
8400		=	_	DUM3 = 059RT (DUM2) - 1.000						
640			16 01 09				*	469 0275	īv	
0500		20	DUM3 = 0.50C	DUM3 = 0.50C+C4/(MOX++2)						
0051		16	XSTARD = C3/(MOX *DUM3)	(MOX *DUM3)			Ŧ	469 0277	,	
0052			TF (XSTARD. LT	IFIXSTARD.LT.0.0001 XSTARD = 1.000			•			
500			DUME = 1.000	JUNE = 1.000 + C4P/(MCX**2)						
0054				IF (DUM2 - 1.0100) 12, 12, 13						
2022		13	_	DUM3 = DSGRT(DUM2) - 1.000						
0026			56 01 09				•	469 0281	=	
0357		12	CUM3 = 0.500	DUM3 = 0.500*C4P/(MOX++2)						
0058		95	XSTPD = C3P/(MOX+DUM3)	(MOX+DOM3)			4	469 0283	E.	
0020			IF (XSTPD-LT.	IF(XSTPD-LT.0.000) XSTPD = 1.000						
0900		93	XSTAP # MOX/	KSTAP # MOX/(RATC#P##XNC)			*	469 0284	•	
1900		*	XSTPF = MT/(KPF+P++XN1)	KPF*P**XN1)			4			
0062		95	ZAP = CSUBP#	ZAP = CSUBP +MOX +XSTAP/XLANB			•		• •	
6900		96	ZAT = ZAP +	ZAT = ZAP + CSUBP+MCX+XSTARD/XLAMB			•			
9900			IF (BETAF -	IF (BETAF - 1.000) 57. 90. 90			•			
5900		90	ZPF * CSUBP*	2PF = CSU8P#MI/XLAMB#(XSTPF + XSTPD)			4	649 0289	9	
9900			GO TO 98						. 5	
1900		40	TOF = CSIIRP	7DF = CCHROSHT/YIAMBSCXCTADASEL + VCTDE	TOE				-	
0008		8	IF LYDE IT.	TABLET - 164 ONG TABLE - 164 ONG			•		•	
6906		?		(7AP-11-164-000) 7AP = -164-0F0						
0700			•	ZATelle-164-000) ZAT = -164-000						
0071			1F (ZPF.5T.1	IF (ZPF.GT.164.000) ZPF = 164.000						
0072			IF (ZAP.GT.)	IF (ZAP.GT.164.000) ZAP = 164.000						
0073			IF (ZAT_GT_1	IF (ZAT_GT_164_000) 7AT = 164_000						
0074			XTS = TZEPO	TYPE TEEPLE ALFACIACIONE ALFA - RETALGO ACIONE	- AIFA	- RETA COLIS	21 /5 6180			
			1 - RFTA*OM/C	TOTAL SET TAKON (CIND + 12 - 000 + 12 - 000 CIND SET TAKON (CIND SET TAKON)	ALEAROAD	/ CCHADADEYD	1 1 2 2 0 0 T			
			2 OFF/CSU8P#0	OFF/CSUBD+DEXP(-7AT)+ALFA)+ AFTAF+DPF/FSUBD+DFXD-70F1	PE/F SLIAD	# DE YD! - 79F1				
		Ü	XTS = AMAX1 (XTS, 500.1	(XTS, 500.)				440 0206	¥	
5700			IF (XTS.LF.	IF (XTS.1F.500.000) XTS = 500.000			•		•	
0076			DON = ARCISTO1 - XTS	(1) - xTc			1	7000 077	4	
7200			GO TO 100				•	70 60	₽	
8760		66	CYN = APGLST(1)	11						
0679		100	PETURN				•	469 0297	4.	
0830			END				•	469 0298	. 80	

FURTHAN IV	G LEVEL	21	MAIN		DATE = 7	= 75197	86/86/60		PAGE 000
	U	*****		THEFT			4444		
1000		SUBROUTINE	STATE TO THE					, , ,	
2000		IMPLICIT RE	IMPLICIT REAL *8 (A-H,C-Z)				70	9 0527	
0004		REALTH MOXI	FEBLER KAPI, KAPZ, KPF, AGK, MT KFALER MOXI	GX, MT					
2000				AF.	AFH	AI EAST.	AMCTISON A 60	7000	
		I AOX.		BESSIGSOL-RETAE	- RF TAF		10+410C)15mm		
		2		CCNI,	CSURP.	CELOI.	DZERC. 469		
		3 5.5		ETA,	GAMMA,	C.M.	Ī	9 0332	
		+ HOP				KAP 1.	•		
		KPF		HOX.			P		
				PSTART.	FSTOP,	OAP.	•		
9000		CCMMON GFUEL,		CPF.	æ,	RAP.		9 0336	
		T RHUL *		RHOX .	PUN.	SOX.			
		7 TAV.		DPH(20),	TIT1(20),		469	9 0336	
		3 XLAMB,	9. XN1,	XNZ.	XN3,	XNUST.	469 TOWX	9 001¢	
1000		CCAMUN XNID	CCAMON XNUP, XALFA, PHE, FT	ETAP, EPS					
2000		COPPICA / PBC,	CONF	į			694	9 0342	
5000		COMMON / KWN	BETA, KHCP.	1			694		
		COLLEGE COLLEGE	CONTROL OF CAPACAPAXIDE AXIDO XXIAND XXIAD	XSTPF • XSTPU	* XSTARD XS	TAP			
100		The state of the s	CONTRACTOR TOTAL IPCOIS AS REMIS NET	A PREMIS N					
2100		COZILL MULSTER	11(20)				469	9 0344	
5100		CINENSICH ST	4(30), p1(30),	8PA(3C), P	TA(30)				
*100	-	101 22 29	IM * (07 * 01)				694	9 0352	
2000	2	CALLA					694		
170		LINI					694		
1100		н	(K)*14.700						
81.00			BR(K) /2. 5400						
6100		FMAX = K					694		
0200							694	9 0368	
1700	ç	KET CH					694		
2000	02	TOWN TOWN							
0003		MCI = XALF	MALE ANTEANTOGOOC						
1000		H271 = 4171	7 - 273.000				694		
200	:	- LONG	151 1501 151				694		
9700	161						694		
200	061						694		
200	153	WITE (6,106)					694	9 0381	
6263		MITT (6,10							
0030			51 RHOP, RHOF, RHOX	RHOX			694	9 0383	
1600		_		GHY, PIE			694		
2600		MRITE (6, 110)	O) SAMMA, XNCI,XNUP	*XNUP					
0033		•					694	9 0386	
1000		•	ZI CIGN. PUMIGN. PUND.	IN. POND. OF			694		
6000		MITE (6, 113)					694		
0000		Trag alle		AUX.			694		
2000		MRITE (6,115)		XNI. KPF. XNZ. KAPI. XN3.	N3. KAP2		469		
0000		TI 60 III		á			694	1660 6	
6000				CSURP			694		
0+00		MITE (6,118)							
1400			diZI (6				694	9 0394	
1400		WITE (6,121)	_				694		
5400		MI TE (6, 102)	-						
****		NEILE 1041							
0045		E 69 X							
9400		WITE (6, 103)	PICKI, PTACKI, RRCKI, BRACKI	PRCK) BRA	2				
0047	69	CCNTINUE							
0048		RETURN							

ORTRAN	2	G LEVEL	21	DUTPUT	-	DATE = 75	75197	09/58/38			PAGE
0400		101	CODMAT	17.13							
0000		107	FORMAT	FORMATION STATISTICS	SAHC-YP-BARC-XT->	CHROL			404	0440	
0051		103	FORMAT	15x . F7 . 2 . 2x . F7 - 1 . 2	(2x.F9.4))						
0052		5	FORMAT	(BX, 4HATMS, 5X, 4HPS I	A, 5X, 6HCM/SE	C. 5X.6HIN/	SEC/1				
0053		106	FORMAT	(19H PROPELLANT DA	TA 15)				694	0448	
0054		101	FORMAT	(6X, 20HWT, PERCENT	0X10. = ,F6.	11)					
			1 9x, 16	HOXID. DENSITY = "F	5-2)	an with an inter	A DENS III	4	600	0453	
9500		109	FORMAT	FORMAT (6X,8HQFUEL = ,F6.1,5X,12HTF(DEG K) = ,F6.0,5X,9MOL MT	1.5X.12HTF(DE	EG K1 = .F	6-0, 5X, 94M	H		0455	
		:	1 F6.2,	5X, 13HPRI MOL MT =	,F6.2)				69	0456	
/ 500		011	PORMAI	(6X, 13HUIFF PARAM	= ,F11.4.3X,	SHST RAT =	# ,F6.2,3X,13HPRI	13HPRI ST			
0058		111	FORMAT	(36H) OXIOIZER IGNI	TION AND BUILD	A TAC DATA	191			0.000	
6500			FORMAT	(6X, 7HC GN = , F6.1	.6X. 9HPDNIGN	- F6-3-6	X. THPOWD =	FALL	209	0440	
			1 6X. 1	4HLATENT HEAT = ,FT	.1/)					0461	
1060			FORMAT	(41H ACTIVATION EN	ERGIES AND RA	ATE FACTOR	S ARE)			0462	
1500		114	FORMAT	FORMAT (6X,5HEF = ,F8.0,6X,7HE 0X = ,F8.0,6X,5HAF = ,E10	X, THE 0X = , F	-8.0.6X.5H	AF = ,E10.3,6X	3.6X.		0463	
0.04.0			D AMA I	X = , E10.3}			•			9464	
7000		117	1 1 HOP	TURNAL LOADINGROUPE APPOSABLEMNE LUNG PERGELOADSK.	PLOT COM. ID	1 CON . P	**E10.5,3			2465	
			2 6X-11	HORDER HD = FK 2.3	X-12HOT COM.	10.01	37.1			9440	
0063			FORMAT	(21H FLAME PROPERT	IFS ARF)	• • • • • • • • • • • • • • • • • • • •			440	1040	
4900		117	FORMAT	(6X,17H0XID, FLM T	EMP = , F7.1.	9X . 14HGA S	CONDUCT =	. B. S.		0460	
			1 9X, 10	1 9X,10HCP(AVE) = ,F7.4)					-	0410	
900			FOPMAT	(6X, 17HAV FLM MT FA	CT = 1F7.4/1						
9900		611	FORMAT	(27H PROPELLANT IN	ITIAL TEMP IS	S, F6.1, 15H	DEG CENTI			0473	
1900		120	FURMAT	(//5X,12HCASE NUMBE	R .F3.0)					0474	
0068		121	FORMAT	(47H EXPONENT FOR DIFFUSION PRESSURE DEPENDENCE	DIFFUSION PRE	ESSURE DEP	ENDENCE 15		694	0475	
6900		152	FORMAT	(30H	CONICAL FLAME ASSUMED				694	0476	
0000		154	HOR WA	(IHI . 30H	OLIC FLAME AS	ASSUMED		7			
			2						694	87.40	
		U	*****		SOXCAL			*****			
1000			SUBROU	ITINE SOXCAL (TSI, S	0X1)				469	0299	
2000			IMPLIC	IT REAL *8 (A-H,0-Z)							
0003			PEAL #9	KAPI, KAP2							
9000			COMMON	A1. A2.			ALFAST,	ANSI(50), 469		\$000	
			7	AOX, BESS,	\$1(50)	Ŧ.	BSOR,			0302	
			2		_	_	DELO I.	OZERO.		0303	
			3	EF. EOX.	_					0304	
			4	HDP.				KAP2,			
			5	KPF.		MT.		b .			
			•		PSTART,	PSTOP,		OFF	694	0307	
5000			COMMON			R.				0308	
			1			RON.				2100	
			2		.00	(50)	TZERO,			0310	
			9	XLAMB, XNI,	XN2.		XNUST,	XNUI	694	4100	
9000			NOMMOD	COMMON XNUP, XALFA, PMM, ETAP, EPS	ETAP, EPS						
1600			NOTAL	/DOUBLE/15,C3P,C4P,	XSTPF, XSTPD, X	(STARD, XSTAP	d.				
8600			NOMEDO	COMMON/XINT/ ISIN, IPLOT, K, MEMI, NP.	K, MEMI, NP						
6000			RHOP	RHOP = RHOSP							
0100			ALFA *	ALFA = ALFAST							
1100			H DE LO	- ACADEMON TO AN DARBOLTON OF TOTAL							
2100			DAD	DAD + MOY/PHOX	TOWN / I TO I A						
4100			1 200	CARACTERS CONTROL COOLON LABOUR AND LABOUR AND LABOUR CONTROL	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	10000000			101	0315	
5100				A1#(1.000 - BAB/06)	4 post	DI MOLLE	•				
9100			NO.	= 47#11.000 - 8AP/PE) + 90N	200						
0017			IF (HD	P_GE_0_7885001 HCP	= 0.788500						
0018			IF CHD	P-1F0-2115001 HDP	= -0.211500						
6100			IF (HD	N. GF. 0.2115001 MDN	* 0.211500						
0050			IF (HD	No.LE 0.7885001 HDN	= 0.788500						
0021			* IxS	SOX1 = 3.000*XNU*(HDP**2 + HDN**2 + 1	+ HDN**2 + 1	+ 1.000/3.6501/(1.000	. 000° C)/(+ 3.000¢			
			1 XMU*(XNU*(HDP##2 + HDN##2))							
0022			RE TURN						694	0325	
0023			END							0326	

PAGE																																	
		0480				0490	0491				0499	0200	0501	0503	0504	0505					0507	0508	9050				0514						0519 0520 0521
38		469	2 2 3	694	694	469	459	469	\$ 69	469	469	469	469	469	469	469					469	694	469	469	469	469	4 6 9	469	469				469 469
21 MAIN DATE = 75197 09/58/38	CONVRZ DOUBLE PRECISION FUNCTION CONVRZ (XNAME, ARGLST, XUP, XLOM, ANS, N) IMPLICIT REAL+8 (A-H, O-Z)	THIS CONVERGENCE ROUTINE IS FOR USE WHEN UPPER AND LOWER EXTREMES ARE KNOWN	ARGUMENTS ARE XAME OF USER FUNCTION TO EVALUATE CONVERGENCE)	ARGEST() ARRAY CONTAING THE ARGUMENTS REQUIRED BY XNAME.	XUP, XLOM UPPER AND LOWER INDEPENDENT VARIABLE VALUES	ANSNUMBER OF INTERVAL HALVING STEPS DESIRED	CIMENSION ARGLST(2)	SET INITIAL GUESS AT BOTTOM HALF AND EVALUATE		## ## ## ## ## ## ## ## ## ## ## ## ##	TOP=XLOW+XINC	1VAL*N ABC: CTC1 1 = BCT	ABOT=XNAME(ARGLST)	ARGLST(1)=XUP	ABIOP = DABS(ATOP)	ABBOT = DABS(ABOT)	BBOT = ABOT/ABSCT	ETANS # ANS/ABBOT	IF ((BTOP - BTANS)*(BBCT - BBANS)) 30, 30, 31	IF (46S(ATOP-ANS)-ABS(ABOT-ANS)) 32,32,33 IF (DAES(ATOP-ANS)-DAES(ABOT-ANS)) 32,32,33	CONVR.2=XUP	CO TO 99	GO TO 99	#FGLST(1)=TnP	DTCP=XNDME(ARGLST)	CHECK IF SOLUTION IS IN THE INTERVAL		COMTINUE ABTOP = DABS[ATOP]	_" #	PEDT = ABUT/ABBOT PTANS = ANS/ABICP		bithin This interval , halve it
G LEVEL	J	000	ں ں ں	ں ں	ن ن	ى د	، ن د	، د	<u>ں</u> ں	U											ر 16 18	32	£	3	30	,	ں ں	U	20			,	υυ
FORTRAN IV	0001							6000		1000	0000	9000	2000	6000	0100	0012	6100	9100	0016	9100	6100	0000	0021	0023	7200	0025			0026	002R 0029	0030	0033	

0013 0014 0015

0012

0005 0005 0007 0009 0009 0010

0001 0002 0003

9100

7100

9018 9019 9020 9021 9023 9024 9026

0032 0033 0034 0035

0028 0029 0030

0027

0031

00001 00003 00004 00005

GO TO 22 . DI = DI + 1.000 EO TO 22 = DI + 5.000

> 32 33

CI = DI + .500

TO 22 = 01 + 10.000

10 22

35 4

EI = DI + 20.000 GO TO 22 DI = DI + 40.000 CONTINUE

CONTINUE

RHOSP = RHOX*XNUST/ALFAST

1 *RHOX))

FORMAT(315,3F10.5) FORMAT(3F10.5)

85

0001

CCAL SUBPOUTINE CCAL (XFZERO, XD, XN, XNU, C, XDDO) IMPLICIT REAL*8 (A-H, D-Z) COMMON/XPUT/NXCCUN [IMFNSION XFZERO(1000), XD(1000) A = 0,000

0005 0006 0007

0000

A-23

XL1 = XFZERO(JZ)*XD(JZ)**(XN-4.0D0) XL2 = XFZERO(JZ+1)*XD(JZ+1)**(XN-4.0D0) APART = (XL1 + XL2)*XDD0/2.0D0

B1 = 3.141592004(1.000-XNU)/(6.000+XNU)

0011

IF (JZ - NXCOUN) 2. 4.

0013

4

RETURN

00002 00003 00004 00006 00006 00007 00008

X = DLCG(DI) Y = DLCG(DBARI(JJJ)) SIG = DLCG(SIGMAI(JJJ)) YVECR = SIG42.506628275000+DEXP(.500+(IX-XM)/SIG)++2) RETURN

DISTE SURROUTINE DISTE(DI,JJJ,111,7VECR,DBARI,SIGMAI) IMPLICIT REAL® (A-H,C-Z) DIMENSION DARI(10), SIGMAI(10) X = DLCG(DI)

XSTOR SUBROUTINE XSTOR (JJ,XPI,XNUST,XNU,MT,XXNU)
IMPLICIT REAL*8 (A-H,O-2)
REAL*8 HT
DIMENSION XMT(10C), XXNU(100)
XMT(JJ) * MT

				p = 2	etm				
7	R, Caller	FZEROP	DZERO, #	XSTPF, K	XSTAP	XSTPOAK	XST AR G A	ALFAST,K*	XMUST, Y
	C.0022	0000	0.5	0.33	2.14	10000-00	0000	0-1600	0.0870
2	0.0025	100000	1.0	0.41	2.76	10000.00	10000	0.2759	1091-0
9	C. 2187	0.000	1.5	36.86	280.44	2.04	6.31	0.3637	0.2223
•	0-2180	0.0032	2.0	38.37	296.27	3.05	3.57	0.4325	0.2759
n 4	0.210	0.0080	5.5	39.11	305.36	2.57	2.99	0.4878	0.3227
•	0.2076	0.0260		40.03	218.06	2.37	2.40	0.5334	0.3637
	0-2048	0.0389	0.4	40-46	322.98	2.21	2.66	0.4038	1004-0
•	0.2023	0.0539	4.5	40.78	327.25	2-16	2,65	9169.0	0-4616
10	0.2001	0.0704	5.0	41.06	331-18	2.12	2.66	0.6558	0.4879
11	C. 1965	0.1057	0.9	41.56	337.86	2.05	2.68	0.6957	0.5334
12	0.1937	0-1413	7.0	41.98	343.44	1.94	2.70	0.7273	0.5715
13	5161-0	0.1745	0.0	42.35	348.31	1.80	5.69	0.7530	0.6039
15	0.1887	0.2287	0.01	43-10	352.18	1.60	2.65	0.7742	0.6317
16	6981.0	0.2487	11.0	43.22	359.35	1.42	2.47	0-8074	0.6770
11	C. 1829	0.2640	12.0	42.76	356.47	2.81	2.31	0.8205	0.6957
e :	0-1785	0.2751	13.0	42.15	352.25	* 51	5.09	0.8320	0.7124
61	67170	0.2825	14.0	41.17	344.87	1.01	1.77	0.8421	0.7274
	640100	0.2865	15.0	39.45	331-10	11.50	1.02	0.6511	0.7438
	C- 1006	0.2847	0-21	24.48	204 41	70.17	5.65	1658-0	0.7530
23	0.0679	0. 2837		14-41	140.52	10000		0.6663	11641
54	0.0673	0.2791	19.0	16.55	3	10000	2000	7820	7636
25	0.0666	0.2732	20.0	16.46	139-67	10000-00	12.06	0.00	0. 79.20
92	0.0657	0.2665	21.0	16.31	138.55	10000	18.29	0.8889	0-8001
27	0.0642	0.2590	22.0	10.91	136.18	10000.00	30,98	0.6934	0-8074
82	C- 0608	0.2509	23.0	15.22	129.60	10000*00	70.68	0.6976	0.8142
62	0.0512	0.2425	24.0	12.86	109.65	10000*00	10000.00	4106.0	0.8206
30	0.0513	0.2339	25.0	12.91	110-18	10000,00	10000-00	0-9050	0.8265
32	0.0513	0. 2252	7.00	12.96	110.67	100001	10000.00	0.9083	0.8321
33	0.0513	0.2077	28.0	13.04	111.54	000001	10000-00	0.9114	0.6373
34	0.0514	0.1992	29.0	13.08	111.93	10000-00	10000-00	0.4170	0.8468
35	0.0514	0.1907	30.0	13.11	112.30	10000.00	10000-00	0.9195	0.8511
36	C. 0514	0.1521	35.0	13.25	113.65	10000*00	10000-00	0.9302	0.8696
- en	0.0514	0.0946	0.04	13,36	115.02	10000-00	10000.00	0.9384	0.8840
39	C. 0514	0-0746	20.0	13.51	116.69	10000	10000	0.044	0.8956
40	0.0514	0.0593	55.0	13.56	117.31	10000-00	10000-00	0.9545	0.4120
19	C. 0514	0.0477	60.0	13.61	117.83	10000,00	10000-00	0.9581	0.9196
74	C. C514	0.0344	70.0	13.67	118.64	100001	10000-00	0.9639	0.9303
. 4	C.0514	0.00	200	13.73	119.26	100001		0.9682	0.9384
45	0.0513	0.0798	100,0	13.80	120-14	10000	10000-00	11/6-0	50.0
94	0.0513	0.1283	110.0	13.82	120.46	10000-00	10000-00	79767	0.9565
41	0.0513	0.1915	120.0	13.85	120.72	10000*00	10000.00	0.9786	0.9581
84	0.0513	0. 3402	140.0	13.88	121-15	10000*00	10000.00	9186.0	0.9639
, c	2150-0	0.4770	160.0	13.91	121.46	10000.00		96	0.9682
200	2150.0	100000	0.081	13.93	171.11	100001	0	985	0.9717
52	21000	26497	230.0	13.94	15.121	10000-00	00.00001	8	0.9744
53	0.0512	0.5120	240-0	. 0	122.21	000001	00.0001	0 0	10.50
54	0.0512	0.3596	280.0	13.98	122.43	1 3000-00	• e	000	00.4100
55	C. 0511	0.2235	320.0	13.93	122.43	10000.00	6	66	0-9839
26	0.0512	0. 1289	360.0	0	122.71	10000,00	10000.00		0.9856
~ «	0.0511	0.0710	0.004	14.00	122.71	10000-00		.993	0.9871
59	0-0511	0-0201	0.084	ءِ ہ	17.221	100001	Ō d	994	•
09	0.0511	0.0105	520.0	14.03	122.97	10000-00	10000-00	0.9946	0.9892
									•

				d	.54 atm				
7	8, Ca./sac	FZEROP	DZERC, AL	XSTPF, A	XSTAP, K	XSTPD, K	XST ARD, M.	ALFAST, OC	XNUST, J*
-	C- 0022	0.000	0.5	0.14	11.0	10000-00	10000,00	0-1600	0-0870
2 1	0.0025	0.0001	1.0	0.17	0.99	10000-00	10000-00	0.2759	0-1601
m 4	0.3166	0.0008	1.5	27.66	148.37	5.04	6.31	0.3637	0.2223
·	0.3155	0.0080	2.5	24.44	163.63	5.63	3.37	0.4323	0.2759
. 40	C.3136	0.0156	3.0	24.80	167,27	2.37	2, 77	0.5334	0.3637
7	C.3060	0.3260	3.5	55.09	170.22	2-27	2.69	0.5714	
6 0	0.3019	0.0389	0.4	25.33	172.67	2.21	2.66	503	•
•	C. 2983	0.0539	4.5	25.53	174.79	2.16	2.65	0.6316	0.4616
٥.	0.2951	0.0704	0.5	25.71	176.67	2.12	2.66	0.6558	4
• 0	C. 2858	0.1057	0.0	26.03	179.57	2.05	2.68	0.6957	
i w	0.2828	0.1745	- 4	06.02	CO-701	P 0	2.5	0.1273	6175-0
*	0.2806	0.2039	0.6	26.81	187.86	09-1	2.65	0-7742	0.6917
6	C-2795	0.2287	ċ	27.10	190.45	1.27	2.58	0.7921	0.6558
• 1	0.2765	0.2487	11.0	27.15	161.31	1.42	2.47	0.8074	0.6770
- 0	C.2682	0.2640	2	26.63	188.07	2.81	2.31	0.8205	0.6957
.	1,62,5	1612.0	13.0	25.98	183.88	15.4	5.09	0.8320	0.7124
	27475	0.2825	•	25.00	177-78	7.07	1.77	0.8421	0.7274
-	7677	0.2863	0.61	20.30	165.94	11.50	1.02	0.8511	0-7408
	0.1324	0.2867	0.01	13 68	143.41	21.07	2.65	1668-0	0.7530
	C- 1087	0.2837		11 30	71.30	5	000	0.8663	1497-0
	0-1075	0-2791	0.0	11.23	80.00	00.0001	20.0	2000	0.7743
ı,	0.1060	0.2732	20.0	11.12	79.67		96	0.00	0.7636
9	C. 1039	0.2665	21.0	10.95	78.53	10000	18.20	0	1761-0
-	0.1004	0.2590	22.0	10.63	76-33	1000000) C	0.8934	0.8074
•0	0.0930	0.2509	23.0	9.88	71.02	10000-00	70.68	0.8976	0.8142
6	C-0807	0.2425	24.0	8.60	61.91	10000-00	10000-00	0.9014	0.8206
0	0.0808	0.2339	25.0	8.64	62.22	10000.00	10000	0.9050	0.8265
=	C-0808	0.2252	26.0	8.67	62.50	10000.00		0.9083	0.8321
2	C.0809	0.2164	27.0	8.70	62.17	10000 •00	10000.00	0.9114	0.8373
9	6080-0	0.2077	28.0	8.73	63.01	10000.00	10000.00	0.9143	0.8422
t u	C. 00.0	2661 0	29.0	8-76	63.25	10000-00		0.9170	0.8468
2 4	0180-0	0.1907	2000	2 6	03.46	10000-00	10000-00	5616.0	0-8511
	C. 0812	0-1201	0.04	90.8	65.06	00.0001	10000	0.4302	0.8696
82	0.0813	0.3946	45.0	0.02	65.60	000001	000001	0.0440	0.00
61	C.0913	0.0746	20.0	4.07	66.04	10000.00	10000.00	0.9501	0.9050
0	C. 6813	0.0593	55.0	9.11	04.99	0000001	10000.00	0.9545	0-9129
	0.0813	1140-0	0.09	٦,	66.70	10000-00	10000000	0.9581	0.9196
7.5	5190-5	0.0344	0.00	٦,	67.17	10000-00		0.9639	0.9303
1 4	0.0812	0.0340	0.00	77.6	67.03	00.00001	10000	2896-0	0.9384
10	C. 0812	0.0798	0-001	0.21	A 0 4 4	000001	00.000	1140	****
9	0.0812	0,1283	110.0	9.29	68.23	10000-00	10000	0.9767	1066.0
1	0.0812	0.1915	120.0		68.38	10000.00	10000.00	0.9786	0.9581
60	C. 0912	0.3402	140.0	9.33	68.63	10000.00	10000,00	0.9816	0.9639
6	0.0811	0.4170	160.0	9,35	68.81	10000-00	10000-00	0.9839	0.9682
0	0.0811	0.5651	180.0	•	96.89	10000.00	10000,00	0.9856	0.9717
-	C. 0811	0.5932	200.0	9.38	20.69	10000-00	10000.00	0.9870	0.9744
2.	0.0810	0.5697	220.0	6	69.07	10000-00	10000.00	0.9882	1916.0
E :	C. 0811	0.5120	240.0		69.25	10000.00		0.9892	4
* "	0.0910	0.3596	280.0	4	69.37	10000-000	10000-00	1066-0	0.9816
	0.000	0 1 2 8 8	350.0		69.37	10000-00	10000.00	0166.0	80
	0.0809	0-0710	400-0	•	40.00	10000	10000		0.9856
· ec	0.0810	0.0381	440,0		69.64	10000-00	9	0.9941	0.9882
6.9	C. C910	0.0201	4.80.0	*	0	10000.00			0.9892
0	0.0809	0.0105	520.0	*	6	10000.00	10000.00	0.9950	0.9900

10000_00 100000_00 10000_00 10000_00 10000_00 10000_00 10000_00 10000_00 10000_00 10000_00 100000_00 100000_00 100000_00 10000_00 10000_00 10000_00 10000_00 10000_00 10000	R, Cr./	2	DZERO, pc.	XSTPF, A	# 511.5X	XSTPD, A	XSTARD, A	ALFAST, K.	XMUST, J
Colored Colo			n 0	0.0	0.27	10000-00	10000.00	0.1600	0.0870
Course C			1.5	13.50	76.09	\$.04 \$0.04	6.31	0.3637	0.2223
0.0256			2.5	14.95	65.87	2.57	2.99	0.4878	0-3227
0.0250 4.5 15.59 90.47 2.27 2.65 0.5314 0.000 0.000 0.0000 4.5 15.59 90.47 2.21 2.65 0.5314 0.0000 0.0000 4.5 15.68 92.44 2.15 2.65 0.5314 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.000000			3.0	15.20	87.79	2.37	2.17	0.5334	0.3637
0.0754			S.6	15.39	89.27	2.27	5.69	0.5714	0.4001
0.10774) AC	15.55	40.00	1207	2.00	95090	
0.1413			2.0	15.80	92.44	2-12	2.66	0.6558	
0.1443 7.0 16.18 95.61 1.94 2.47 0.7772 0.2039 9.0 16.25 96.20 1.40 2.47 0.7772 0.2037 11.0 16.75 96.27 1.42 2.54 0.7772 0.2040 11.0 16.77 10.00 2.43 1.77 2.43 0.7742 0.2040 11.0 16.57 16.57 16.57 2.43 0.7742 0.7742 0.2040 11.0 16.57 16.57 16.57 16.57 0.7742 0.7744 0.0000.00 0.7744 0.7744 0.0000.00 0.7744 0.7744 0.0000.00 0.7744 0.7744 0.7744 0.7744 0.7744 0.7744 0.7744 0.7744 0.7744 0.7744 0.7744			9	16.00	94.03	2.05	2.68	0.6957	
0.2757 16.36 94.81 1.80 2.65 0.7751 0.2757 11.00 16.75 96.21 1.27 0.7751 0.2757 11.00 16.25 96.21 1.27 0.7751 0.2757 11.00 16.25 96.21 4.31 0.7751 0.2757 11.00 16.25 96.21 4.31 0.7751 0.2757 11.00 16.25 96.21 4.31 0.7751 0.2867 11.00 16.00 16.00 2.65 0.7751 0.2867 11.00 16.00 16.00 2.65 0.7751 0.2867 11.00 16.00 16.00 2.60 2.60 2.60 0.2867 11.00 16.00 16.00 16.00 0.7751 0.7751 0.2867 2.20 11.00 16.20 2.60 2.60 0.7751 0.2867 2.20 11.00 10.00 0.00 0.00 0.00 0.2867 2.20 <	.		7.0	16.18	95.43	1.94	2.70	0.7273	0.5715
0.2287 10.0 16.55 98.20 1.660 2.547 0.7742 2.55 0.7742 2.528 0.7742 11.0 16.79 100.02 1.42 2.51 0.742 2.51 0.752 11.0 0.2287 11.0 16.79 100.02 1.42 2.51 0.752 11.0 0.2287 11.0 16.79 10.02 1.42 2.51 0.752 11.0 0.2287 11.0 1.2 0.2287 11.0 1.2 0.2287 11.0 1.2 0.2287 11.0 0	•		0.0	16.36	96.81	1.80	2.69	0.7530	0.6039
0.2547 11.0 15.7 2.5 0.7921 0.2547 11.0 15.7 0.24 2.5 0.7921 0.2547 11.0 15.2 0.24 2.5 0.7921 0.2547 15.0 15.0 15.0 15.0 15.0 0.254 0.2567 15.0 15.0 15.7 2.5 0.255 0.255 0.2567 15.0 15.7 4.4 10000.00 8.35 0.8727 0.2569 2.2 10.00 2.2 0.8727 0.8727 0.8727 0.2569 2.2 10.00 10.00 1.2 0.8727 0.8727 0.2569 2.2 10.00 10.00 10.00 0.8727 0.8727 0.2579 2.2 10.00 10.00 1.2 0.8727 0.8727 0.2579 2.2 10.00 0.00 10.00 0.8727 0.8727 0.2570 2.2 10.00 0.00 10.00 0.8727 0.8727	N 4		0.6	16.55	98.20	1-60	59.2	0.7742	C-6317
0.2574 12.0 12.7 90.00 2.81 2.31 0.000 0.2574 12.0 12.0 12.0 12.0 12.0 0.000 0.2573 14.0 12.0 12.0 12.0 0.000 0.000 0.2573 15.0 10.0 6.3 12.0 2.6 0.000 0.2587 15.0 10.0 6.3 10.0 2.6 0.000 0.2731 18.0 7.5 45.2 10000.00 12.0 0.000 0.2732 20.0 7.5 45.2 10000.00 12.0 0.000 0.2590 22.0 7.3 45.4 10000.00 10000.00 0.000 0.2590 22.0 6.2 37.7 34.4 10000.00 10000.00 0.0000 0.2590 23.0 5.7 34.4 10000.00 10000.00 0.0000 0.2590 23.0 5.7 34.4 10000.00 10.0000 0.0000 0.2591 25.0 <td>•</td> <td></td> <td>0.01</td> <td>16.78</td> <td>99.79</td> <td>1.27</td> <td>2.58</td> <td>0.7921</td> <td>0.6558</td>	•		0.01	16.78	99.79	1.27	2.58	0.7921	0.6558
0.23751 11.0 15.5 93.21 7.5 <th< td=""><td>. 0</td><td></td><td>12.0</td><td>14.24</td><td>70.001</td><td>74-1</td><td>7.4.7</td><td>0.0074</td><td>0.01</td></th<>	. 0		12.0	14.24	70.001	74-1	7.4.7	0.0074	0.01
0.2825 13.0 13.45 17.75 1.0 <th< td=""><td>-</td><td></td><td>13.0</td><td>15.59</td><td></td><td>19-7</td><td>7.51</td><td>0.820</td><td>2000</td></th<>	-		13.0	15.59		19-7	7.51	0.820	2000
0.2865 15.0 13.17 76.9 11.50 10.0 0.881 0.2867 11.0 10.04 60.30 5.95 6.95 6.95 0.2867 11.0 10.04 60.30 5.96 4.09 6.87 0.2867 11.0 10.00 10.00 10.25 6.87 6.87 0.2867 22.0 7.19 44.41 10000.00 18.35 0.875 0.2869 22.0 6.87 41.54 10000.00 18.35 0.887 0.2869 22.0 5.71 10000.00 10.894 0.894 0.2879 22.0 5.71 10000.00 10.894 0.894 0.2879 22.0 5.71 10000.00 10.894 0.894 0.2879 22.0 5.71 10.000.00 10.894 0.894 0.2874 22.0 5.71 10.000.00 10.894 0.894 0.2874 22.0 5.71 10.000.00 10.894 0.894 <tr< td=""><td>~</td><td></td><td>14.0</td><td>14.65</td><td></td><td>7.07</td><td>77.7</td><td>0.8421</td><td>•</td></tr<>	~		14.0	14.65		7.07	77.7	0.8421	•
0.28678 16.0 10.06 60.30 21.07 2.65 0.8563 0.2867 11.0 65.36 55.44 100000.00 5.85 0.8766 0.2867 21.0 7.57 45.44 100000.00 12.05 0.8766 0.2867 21.0 7.57 41.54 10000.00 18.25 0.8876 0.2590 22.0 6.87 41.54 10000.00 18.25 0.8876 0.2590 22.0 6.87 41.54 10000.00 10000.00 0.8974 0.2590 22.0 5.71 34.42 10000.00 10000.00 0.8974 0.236 26.0 5.71 34.42 10000.00 10000.00 0.8974 0.236 26.0 5.71 34.42 10000.00 0.8974 0.8974 0.237 26.0 5.71 34.42 10000.00 10.9974 0.8974 0.237 27.0 27.0 34.42 100000.00 10.9974 0.8974 <td< td=""><td>60</td><td></td><td>15.0</td><td>13.17</td><td>78.99</td><td>11.50</td><td>1.02</td><td>0.8511</td><td>•</td></td<>	6 0		15.0	13.17	78.99	11.50	1.02	0.8511	•
0.2847 11.0 8.3.2 5.0.0 5.0.0 6.0.0 <th< td=""><td>S</td><td></td><td>16.0</td><td>10-04</td><td>60-30</td><td>21.07</td><td>2.65</td><td>0.8501</td><td>7530</td></th<>	S		16.0	10-04	60-30	21.07	2.65	0.8501	7530
0.2731 18.0 7.57 45.58 10000.00 5.88 0.8727 0.2731 18.0 7.57 45.58 10000.00 12.06 0.874 0.2732 21.0 7.37 41.54 10000.00 12.06 0.874 0.2546 21.0 6.27 13.77 10000.00 10000.00 0.894 0.2359 25.0 5.71 34.42 10000.00 10000.00 0.894 0.2359 25.0 5.71 34.42 10000.00 10000.00 0.994 0.2352 26.0 5.71 34.42 10000.00 10000.00 0.994 0.2352 26.0 5.71 34.42 10000.00 10000.00 0.994 0.2352 26.0 5.71 34.92 10000.00 10000.00 0.914 0.2377 28.0 5.71 34.92 10000.00 10000.00 0.914 0.1937 30.0 5.81 35.31 10000.00 10000.00 0.914 <	_		17.0	8.32	50-04	26.90	60-4	0.8663	0.7641
0.2731 19.0 7.49 45.14 10000.00 8.35 0.2870 0.2645 21.0 7.13 45.41 10000.00 18.26 0.8874 0.2645 22.0 6.87 41.54 10000.00 18.26 0.8874 0.2559 22.0 6.26 34.42 10000.00 10000.00 0.8914 0.2559 25.0 5.69 34.42 10000.00 10000.00 0.9914 0.2252 26.0 5.71 34.77 10000.00 10000.00 0.9914 0.2274 27.0 5.78 34.77 10000.00 10000.00 0.9914 0.2274 27.0 5.81 35.21 10000.00 10000.00 0.9914 0.1907 35.0 5.81 35.21 10000.00 10000.00 0.9914 0.1907 35.0 5.81 35.21 10000.00 10000.00 0.9914 0.1907 45.0 5.81 35.21 100000.00 10000.00 0.9914 <tr< td=""><td>_</td><td></td><td>18.0</td><td>7.57</td><td>45.58</td><td>10000.00</td><td>5.88</td><td>0.8727</td><td>0.7743</td></tr<>	_		18.0	7.57	45.58	10000.00	5.88	0.8727	0.7743
0.2565 20.0 7.37 44.47 10000.00 18.26 0.8874 0.2565 21.0 6.87 41.54 10000.00 70.88 0.8874 0.2569 22.0 6.87 41.54 10000.00 70.88 0.8874 0.2579 22.0 6.87 34.45 10000.00 10000.00 0.9014 0.2587 25.0 5.71 34.40 10000.00 10000.00 0.9014 0.2587 26.0 5.71 34.40 10000.00 10000.00 0.9014 0.2587 27.0 5.71 34.40 10000.00 10000.00 0.9014 0.2587 27.0 10000.00 10000.00 10000.00 0.9144 0.1937 27.0 10000.00 10000.00 0.9144 0.914 0.1947 40.0 5.81 35.3 10000.00 10000.00 0.9144 0.1944 40.0 5.81 35.3 10000.00 10000.00 0.9144 0.0474 60.0<	•		19.0	7.49	45-14	10000.00	8.35	0.8786	0.7836
0.2590 22.0 6.25 37.79 43.41 10000.00 18.29 0.8889 0.2590 22.0 6.25 37.79 10000.00 10000.00 0.0991 0.2599 22.0 6.25 37.79 10000.00 10000.00 0.9991 0.2599 22.0 6.25 37.79 10000.00 10000.00 0.9991 0.2522 22.0 5.71 34.60 10000.00 10000.00 0.9991 0.2522 22.0 5.71 34.60 10000.00 10000.00 0.9991 0.2522 22.0 5.73 34.77 10000.00 10000.00 0.9991 0.2522 22.0 5.73 34.77 10000.00 10000.00 0.9991 0.2522 22.0 5.73 34.77 10000.00 10000.00 0.9991 0.2522 22.0 5.89 35.21 10000.00 10000.00 0.9910 0.2911 0.2521 22.0 5.80 35.21 10000.00 10000.00 0.9910 0.2911 0.2521 22.0 5.80 35.22 10000.00 10000.00 0.9910 0.2911 0.2521 22.0 5.80 35.22 10000.00 10000.00 0.9910 0.2911 0.202	4 (20.0	7.37	44.47	1000000	12.06	0.8840	
0.2425 0.2426 0.2425 0.2425 0.2426 0.	n r		21.0	7.19	43.41	10000-00	18.29	0.8889	
0.2425 24.0 5.71 34.60 10000.00 10000.00 0.9083 0.2252 25.0 5.71 34.60 10000.00 10000.00 0.9083 0.2252 25.0 5.71 34.60 10000.00 10000.00 0.9083 0.2252 25.0 5.71 34.60 10000.00 10000.00 0.9083 0.2267 27.0 5.71 34.60 10000.00 10000.00 0.9083 0.2267 27.0 5.78 35.21 10000.00 10000.00 0.9113 0.1921 35.0 5.81 35.0 5.81 10000.00 10000.00 0.9113 0.1521 35.0 5.89 35.21 10000.00 10000.00 0.9113 0.1521 35.0 5.99 35.22 10000.00 10000.00 0.9113 0.0544 45.0 6.05 37.62 10000.00 10000.00 0.9113 0.0544 45.0 6.05 37.62 10000.00 10000.00 0.9113 0.0544 45.0 6.05 37.62 10000.00 10000.00 0.9113 0.0544 45.0 6.05 37.62 10000.00 10000.00 0.9113 0.0544 45.0 6.05 37.62 10000.00 10000.00 0.9113 0.0544 45.0 6.15 37.52 10000.00 10000.00 0.9113 0.0544 45.0 6.15 37.52 10000.00 10000.00 0.9113 0.0544 45.0 6.15 37.71 10000.00 10000.00 0.9113 0.0544 45.0 6.15 37.71 10000.00 10000.00 0.9113 0.0544 45.0 6.15 37.71 10000.00 10000.00 0.9113 0.0544 45.0 6.15 38.53 10000.00 10000.00 0.9114 0.0541 0.05	. 0		23.0	90.0	******	00-0001	30.98	0.034	2000
0.2339 25.0 5.71 34.60 10000.00 0.9063 0.2352 25.0 5.73 34.77 10000.00 10000.00 0.9063 0.2077 22.0 5.73 34.77 10000.00 10000.00 0.9114 0.2077 22.0 5.73 34.77 10000.00 10000.00 0.9114 0.1992 23.0 5.80 35.21 10000.00 10000.00 0.9117 0.1972 35.0 5.81 35.21 10000.00 10900.00 0.9117 0.1972 35.0 5.81 35.21 10000.00 10900.00 0.9117 0.1974 45.0 5.94 35.27 10000.00 10900.00 0.9117 0.034 45.0 5.94 35.27 10000.00 10900.00 0.9117 0.034 45.0 6.05 37.27 10000.00 10000.00 0.9117 0.034 45.0 6.01 37.27 10000.00 10000.00 0.9414 0.034<			24.0	2.60	34.42	000001	000001	4100	200
0.2252 26.0 2.76 2.76 2.76 2.76 2.76 2.77 2.80 0.1992 2.90 0.1992 2.90 0.1992 2.90 0.1992 2.90 0.1992 2.90 0.1992 2.90 0.1992 2.90 0.1992 2.90 0.1992 2.90 0.1992 2.90 0.1992 2.90 0.1992 2.90 0.1992 2.90 0.1992 2.90 0.1992 2.90 0.1992 0.1992 0.1992 0.1992 0.1992 0.1992 0.1992 0.1992 0.1992 0.1993	9		25.0	5.71	34.60	10000	1000-00	0.000	0.8268
0.2164 27.0 5.76 34.92 10000.00 10000.00 0.9114 0.202164 27.0 5.80 35.27 10000.00 10000.00 0.9114 0.1997 29.0 5.80 35.27 10000.00 10000.00 0.9114 0.1997 29.0 5.81 35.27 10000.00 10000.00 0.9114 0.1997 29.0 5.81 35.27 10000.00 10000.00 0.9114 0.1521 35.0 5.94 36.28 10000.00 10000.00 0.9114 0.0114	=		26.0	5.73	34.77	1 0000-00	10000-00	0.9083	0.8321
0.2077 28.0 5.78 35.07 10000.00 10000.00 0.9443 0.1992 36.0 5.80 35.21 10000.00 10000.00 0.9443 0.1972 36.0 5.89 35.24 10000.00 10000.00 0.9417 0.1521 45.0 5.89 35.86 10000.00 10000.00 0.9417 0.0746 45.0 5.94 36.84 10000.00 10000.00 0.9384 0.0746 45.0 6.02 36.84 10000.00 10000.00 0.944 0.0746 45.0 6.02 36.84 10000.00 10000.00 0.944 0.0747 60.0 6.11 37.22 10000.00 10000.00 0.944 0.0340 80.0 6.11 37.57 10000.00 10000.00 0.948 0.0340 90.0 6.13 37.71 10000.00 10000.00 0.948 0.0340 100.0 6.18 38.11 10000.00 10000.00 0.9417	2		27.0	5.76	34.92	10000.00	10000-00	0.9114	0.8373
0.1992 29.0 5.80 35.21 10000.00 10000.00 0.9170 0.1992 0.1521 30.0 5.81 35.81 10000.00 10000.00 0.9170 0.1521 40.0 5.81 35.82 10000.00 10000.00 0.9195 0.1521 40.0 5.94 35.86 10000.00 10000.00 0.9384 0.00046 45.0 5.94 36.56 10000.00 10000.00 0.9384 0.00046 45.0 6.02 36.84 10000.00 10000.00 0.9384 0.000477 60.0 6.01 37.22 10000.00 10000.00 0.9541 0.00046 90.0 6.11 37.22 10000.00 10000.00 0.9541 0.00046 90.0 6.11 37.22 10000.00 10000.00 0.9541 0.00046 90.0 6.11 37.22 10000.00 10000.00 0.9541 0.00046 90.0 6.11 37.87 10000.00 10000.00 0.9541 0.00046 90.0 6.11 37.87 10000.00 10000.00 0.9541 0.00046 90.0 6.11 38.11 10000.00 10000.00 0.9941 0.1283 1100.0 6.128 38.11 10000.00 10000.00 0.9816 0.9816 0.9551 10000.00 10000.00 0.9816 0.9816 0.9551 10000.00 10000.00 0.9816 0.9816 0.9551 10000.00 10000.00 0.9816 0.9816 0.9551 10000.00 10000.00 0.9816 0	1		28.0	5.78	35.07	10000.00	10000.00	0.9143	0.8422
0.1521 35.0 5.81 35.33 10000.00 10000.00 0.9392 0.1221 40.0 5.99 35.86 10000.00 10000.00 0.9382 0.1221 40.0 5.99 35.86 10000.00 10000.00 0.9382 0.0346 55.0 6.02 35.84 10000.00 10000.00 0.9382 0.0344 70.0 6.01 37.22 10000.00 10000.00 0.9381 0.0344 70.0 6.01 37.22 10000.00 10000.00 0.9381 0.0344 70.0 6.11 37.51 10000.00 10000.00 0.9382 0.0344 70.0 6.15 37.87 10000.00 10000.00 0.9382 0.0344 70.0 6.15 37.87 10000.00 10000.00 0.9382 0.0344 70.0 6.15 37.87 10000.00 10000.00 0.9382 0.0345 100.0 6.15 37.87 10000.00 0.9382 0.0346 90.0 6.15 38.20 10000.00 10000.00 0.9787 0.1912 120.0 6.19 38.20 10000.00 10000.00 0.9882 0.5631 180.0 6.24 38.60 10000.00 10000.00 0.9882 0.5637 220.0 6.24 38.60 10000.00 10000.00 0.9982 0.2235 220.0 6.26 38.77 10000.00 10000.00 0.9982 0.2236 280.0 6.26 38.77 10000.00 10000.00 0.9982 0.2237 38.93 10000.00 10000.00 0.9993 0.00381 440.0 6.28 38.93 10000.00 10000.00 0.9948	<u>د</u> ت		29.0	5.80	35.21	10000.00	10000.00	0.9170	0.8468
0.1201 40.0 5.89 35.86 10000.00 10000.00 0.9384 0.00346 45.0 5.99 36.84 10000.00 10000.00 0.9449 0.0346 45.0 5.99 36.84 10000.00 10000.00 0.9449 0.0346 50.0 6.05 37.22 10000.00 10000.00 0.9949 0.0344 10.0 6.0 10000.00 10000.00 0.9949 0.0344 10.0 6.1 37.22 10000.00 10000.00 0.9949 0.0346 80.0 6.1 37.22 10000.00 10000.00 0.9949 0.0344 10.0 6.1 37.22 10000.00 10000.00 0.9949 0.0344 10.0 6.1 37.2 10000.00 10000.00 0.9949 0.0344 10.0 6.1 37.2 10000.00 10000.00 0.9949 0.0346 10.0 6.1 37.2 10.0 6.1 10.0 0.0 0.9949 0.04 6.1 10.0 6.1 10.0 6.1 10.0 0.0 0.9949 0.0 6.1 10.0 6	•		30.0	2.81	35.33	10000.00		0.9195	0.8511
0.0946 45.0 5.99 36.57 10000.00 10000.00 0.9984 0.00746 55.0 6.02 36.84 10000.00 10000.00 0.9984 0.00746 55.0 6.02 36.84 10000.00 10000.00 0.9949 0.00777 6.00 6.07 37.22 10000.00 10000.00 0.9949 0.00340 0.0			35.0	5.89	35.86	10000.00	10000-00	0.9302	9698-0
0.0746 50.0 6.05 35.84 10000.00 100000.00 0.9991 0.00534 50.0 6.05 37.05 10000.00 10000.00 0.9991 0.00547 60.0 6.05 37.05 10000.00 10000.00 0.9991 0.00547 60.0 6.13 37.50 10000.00 10000.00 0.9991 0.00344 70.0 6.13 37.50 10000.00 10000.00 0.9991 0.00344 70.0 6.13 37.51 10000.00 10000.00 0.9991 0.00344 70.0 6.13 37.51 10000.00 10000.00 0.9991 0.00344 70.0 6.13 38.11 10000.00 10000.00 0.9991 0.00347 70 10000.00 10000.00 0.9991 0.00352 10000.00 10000.00 0.9991 0.00352 10000.00 10000.00 0.9991 0.00352 10000.00 10000.00 0.9991 0.00359 10000.00 10000.00 0.9991 0.00381 0.00381 0.0000.00 10000.00 0.9991 0.00381 0.00381 0.0000.00 10000.00 0.9991 0.00381 0.	٠, ١		0.04	\$6.5 6	36.27	10000-00	10000.00	0.9384	0.8840
0.0593 55.0 6.05 37.05 10000.00 10000.00 0.9545 0.0547 66.0 6.11 37.22 10000.00 10000.00 0.9545 0.0544 70.0 6.15 37.22 10000.00 10000.00 0.9545 0.0544 70.0 6.15 37.71 10000.00 10000.00 0.9745 0.05786 100.0 6.15 37.71 10000.00 10000.00 0.9744 0.1283 110.0 6.18 38.11 10000.00 10000.00 0.9744 0.1283 110.0 6.18 38.11 10000.00 10000.00 0.9744 0.1283 110.0 6.18 38.51 10000.00 10000.00 0.9745 0.1915 120.0 6.18 38.51 10000.00 10000.00 0.9785 0.1915 120.0 6.22 38.51 10000.00 10000.00 0.9785 0.5651 180.0 6.24 38.50 10000.00 10000.00 0.9885 0.5651 180.0 6.24 38.50 10000.00 10000.00 0.9885 0.5657 220.0 6.24 38.50 10000.00 10000.00 0.9885 0.5657 220.0 6.26 38.77 10000.00 10000.00 0.9987 0.2235 350.0 6.26 38.77 10000.00 10000.00 0.9987 0.2235 350.0 6.26 38.77 10000.00 10000.00 0.9987 0.000.00 0.9988 0.000.00 0.9988 0.000.00 0.9988 0.000.00 0.9988 0.000.00 0.9988 0.000.00 0.9988 0.000.00 0.9988 0.000.00 0.9988 0.000.00 0.9988 0.000.00 0.9988 0.000.00 0.9988 0.000.00 0.9988 0.000.00 0.9988 0.000.00 0.000.00 0.9988 0.000.00 0.9988 0.000.00 0.000.00 0.9988 0.000.00 0.9988 0.000.00 0.000.00 0.9988 0.000.00 0.000.00 0.000.00 0.9988 0.000.00 0.000.00 0.000.00 0.9988 0.000.00 0.000.00 0.000.00 0.9988 0.000.00 0.	٠.		20.0	A-03	36.36	10000	00.0001	0.0440	0.8956
0.0477 60.0 6.07 37.22 10000.00 10000.00 0.9981 0.0344 70.0 6.13 37.50 10000.00 10000.00 0.9981 0.0340 80.0 6.13 37.51 10000.00 10000.00 0.9981 0.0340 80.0 6.13 37.87 10000.00 10000.00 0.9981 0.00788 1100.0 6.18 38.01 10000.00 10000.00 0.9971 0.1915 120.0 6.18 38.01 10000.00 10000.00 0.9971 0.1915 120.0 6.18 38.34 10000.00 10000.00 0.9981 0.4970 160.0 6.22 38.34 10000.00 10000.00 0.9981 0.5932 200.0 6.24 38.53 10000.00 10000.00 0.9981 0.5932 200.0 6.24 38.60 10000.00 10000.00 0.9982 0.2235 200.0 6.26 38.77 10000.00 10000.00 0.9982 0.2235 200.0 6.26 38.77 10000.00 10000.00 0.9982 0.0381 40.0 6.27 38.87 10000.00 10000.00 0.9992 0.0381 0.0381 0.0381 0.0000.00 10000.00 0.9993 0.0381 0.0381 0.0381 0.0000.00 10000.00 0.9993 0.0381 0.0381 0.0381 0.0000.00 0.09941	*		55.0	6.05	37.05	10000-00	10000-00	0.0545	0.9120
0.0344 70.0 6.11 37.50 10000.00 10000.00 0.9639 0.0346 80.0 6.15 37.71 10000.00 10000.00 0.9717 0.0794 100.0 6.15 38.71 10000.00 10000.00 0.9717 0.1263 110.0 6.18 38.11 10000.00 10000.00 0.9717 0.1263 140.0 6.19 38.34 10000.00 10000.00 0.9716 0.4770 160.0 6.23 38.34 10000.00 10000.00 0.9816 0.5551 180.0 6.23 38.53 10000.00 10000.00 0.9816 0.5532 220.0 6.24 38.60 10000.00 10000.00 0.9816 0.5535 220.0 6.25 38.77 10000.00 10000.00 0.9917 0.5235 320.0 6.26 38.77 10000.00 10000.00 0.9917 0.0235 360.0 6.26 38.77 10000.00 10000.00 0.9917 0.00381 440.0 6.27 38.87 10000.00 10000.00 0.9918 0.00381 440.0 6.28 38.93 10000.00 10000.00 0.9918	2		60.0	6.07	37.22	10000	10000-00	0.9581	0-9196
0.0340 80.0 6.13 37.71 10000.00 10000.00 0.9682 0.00464 90.0 6.15 37.87 10000.00 10000.00 0.9717 0.00789 100.0 6.15 37.87 10000.00 10000.00 0.9717 0.1283 110.0 6.18 38.10 10000.00 10000.00 0.9786 0.1915 120.0 6.18 38.34 10000.00 10000.00 0.9786 0.4770 160.0 6.23 38.45 10000.00 10000.00 0.9814 0.5551 180.0 6.23 38.45 10000.00 10000.00 0.9814 0.5551 180.0 6.24 38.60 10000.00 10000.00 0.9882 0.5120 2.20.0 6.24 38.60 10000.00 10000.00 0.9882 0.5120 2.20.0 6.26 38.77 10000.00 10000.00 0.9982 0.2235 320.0 6.26 38.77 10000.00 10000.00 0.9918 0.00718 36.0 6.27 38.87 10000.00 10000.00 0.9918 0.00718 0.00718 36.0 6.27 38.87 10000.00 10000.00 0.9918 0.00718	Š.		70.0	6.11	37.50	10000.00	10000.00	0.9639	0.9303
0.0784 90.0 6.15 37.87 10000.00 10000.00 0.9717 0.00784 110.0 6.18 38.00 10000.00 10000.00 0.9774 0.1283 110.0 6.18 38.10 10000.00 10000.00 0.9774 0.1283 110.0 6.19 38.20 10000.00 10000.00 0.9786 0.3402 140.0 6.22 38.34 10000.00 10000.00 0.9786 0.5551 180.0 6.22 38.55 10000.00 10000.00 0.9819 0.5551 180.0 6.24 38.60 10000.00 10000.00 0.9819 0.5597 2.20.0 6.24 38.60 10000.00 10000.00 0.9819 0.5597 2.20.0 6.24 38.60 10000.00 10000.00 0.9819 0.5597 2.20.0 6.26 38.70 10000.00 10000.00 0.9919 0.235 38.00 0.5235 38.77 10000.00 10000.00 0.9919 0.235 38.00 0.5235 38.87 10000.00 10000.00 0.9918 0.00710 4.00.0 6.28 38.93 10000.00 10000.00 0.9918 0.00710 0.	٥,		80.0	7	37.71	10000-00	10000.00	0.9682	0.9384
0.1263 1100.0 6.19 38.11 10000.00 10000.00 0.9777 0.1915 1120.0 6.19 38.11 10000.00 10000.00 0.9777 0.1915 120.0 6.19 38.34 10000.00 10000.00 0.9777 0.5551 180.0 6.22 38.54 10000.00 10000.00 0.9819 0.5551 180.0 6.24 38.55 10000.00 10000.00 0.9819 0.5551 20.0 6.24 38.50 10000.00 10000.00 0.9819 0.5557 220.0 6.24 38.60 10000.00 10000.00 0.9819 0.5557 220.0 6.26 38.77 10000.00 10000.00 0.9919 0.2235 350.0 6.26 38.77 10000.00 10000.00 0.9919 0.0018 40.0 6.27 38.87 10000.00 10000.00 0.9918 0.0018 40.0 6.27 38.87 10000.00 10000.00 0.9918 0.00201 400.0 6.28 38.93 10000.00 10000.00 0.9918 0.00201 400.0 6.28 38.93 10000.00 10000.00 0.9918 0.00201 400.0 6.28 38.93 10000.00 10000.00 0.9918 0.00201 400.0 6.28 38.93 10000.00 10000.00 0.9918 0.00201 400.0 6.28 38.93 10000.00 10000.00 0.9918 0.00201 400.0 6.28 38.93 10000.00 10000.00 0.9918 0.00201 400.0 6.28 38.93 10000.00 0.9918 0.00201 4000.00 6.28 38.93 10000.00 0.9918 0.00201 4000.00 6.28 38.93 10000.00 0.9918 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9918 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 4000.00 6.28 38.93 10000.00 0.9018 0.00201 40000.00 6.28 38.93 100000.00 0.9018 0.00201 40000.00 6.28 38.93 100000.00 0.9018 0.	<u>.</u>		000	₹,	37.87	10000	10000	0.9717	0.9449
0.1915 120.0 6.19 38.21 10000.00 10000.00 0.9786 0.3402 140.0 6.22 38.24 10000.00 10000.00 0.9786 0.3402 140.0 6.22 38.34 10000.00 10000.00 0.9814 0.5512 180.0 6.23 38.45 10000.00 10000.00 0.9814 0.5512 180.0 6.24 38.45 10000.00 10000.00 0.9814 0.5512 200.0 6.24 38.46 10000.00 10000.00 0.9815 0.5512 200.0 6.24 38.40 10000.00 10000.00 0.9914 0.5120 240.0 6.26 38.77 10000.00 10000.00 0.9914 0.0235 320.0 6.26 38.77 10000.00 10000.00 0.9914 0.0381 440.0 6.27 38.87 10000.00 10000.00 0.9915 0.0381 440.0 6.28 38.93 10000.00 10000.00 0.9946 0.0020 0.	י ע		0.001	٦,	38.00	10000	10000-00	0.9744	0.9501
0.3402 140.0 6.22 38.34 10000.00 10000.00 0.9816 0.5551 180.0 6.22 38.35 10000.00 10000.00 0.9816 0.5551 180.0 6.22 38.45 10000.00 10000.00 0.9816 0.5551 180.0 6.24 38.45 10000.00 10000.00 0.9816 0.5551 200.0 6.24 38.46 10000.00 10000.00 0.9870 0.55120 240.0 6.24 38.46 10000.00 10000.00 0.9982 0.5120 240.0 6.26 38.77 10000.00 10000.00 0.9916 0.5235 320.0 6.26 38.77 10000.00 10000.00 0.9916 0.01289 340.0 6.27 38.87 10000.00 10000.00 0.9916 0.9935 0.0120 0.0201 440.0 6.28 38.93 10000.00 10000.00 0.9946	1 10		120.0	: -	38.11	00000	10000-00	0.9767	0.9545
0.4770 160.0 6.22 38.45 10000.00 10000.00 0.9839 0.5651 180.0 6.23 38.53 10000.00 10000.00 0.9859 0.5637 220.0 6.24 38.60 10000.00 10000.00 0.9882 0.5120 3.40.0 6.25 38.70 10000.00 10000.00 0.9982 0.2235 320.0 6.26 38.77 10000.00 10000.00 0.9919 0.01289 360.0 6.26 38.77 10000.00 10000.00 0.9919 0.0381 440.0 6.27 38.87 10000.00 10000.00 0.9928 0.0201 450.0 6.28 38.93 10000.00 10000.00 0.9946			140.0	. `	38.34	10000-00	1000	0000	10000
0.5651 180.0 6.23 38.53 10000.00 10000.00 0.9856 0.5932 220.0 6.24 38.60 10000.00 10000.00 0.9870 0.5932 220.0 6.24 38.60 10000.00 10000.00 0.9870 0.5120 240.0 6.25 38.77 10000.00 10000.00 0.9967 0.2356 280.0 6.26 38.77 10000.00 10000.00 0.9919 0.1289 360.0 6.26 38.87 10000.00 10000.00 0.9918 0.0120 460.0 6.27 38.87 10000.00 10000.00 0.9918 0.020 460.0 6.28 38.93 10000.00 10000.00 0.9945			160.0	2	38.45	10000-00	10000.00	0.9839	0.9682
0.5932 200.0 6.24 38.60 10000.00 10000.00 0.9870 0.5697 220.0 6.24 38.60 10000.00 10000.00 0.9882 0.5120 2.40.0 6.25 38.70 10000.00 10000.00 0.9882 0.5120 2.40.0 6.26 38.77 10000.00 10000.00 0.99892 0.5129 350.0 6.26 38.77 10000.00 10000.00 0.99997 0.51289 36.0 6.27 38.87 10000.00 10000.00 0.99997 0.00381 440.0 6.28 38.93 10000.00 10000.00 0.9948	*		180.0	2	38.53	10000-00	1000000	0.9856	0.9717
0.5697 220.0 6.24 38.60 10000.00 10000.00 0.9882 0.5120 240.0 6.25 38.70 10000.00 10000.00 0.9892 0.2235 280.0 6.26 38.77 10000.00 10000.00 0.9914 0.2235 320.0 6.26 38.77 10000.00 10000.00 0.9914 0.1289 360.0 6.27 38.87 10000.00 10000.00 0.9935 0.0381 440.0 6.28 38.93 10000.00 10000.00 0.9946 0.0201 480.0 6.28 38.93 10000.00 10000.00 0.9946	*		200.0	2	38.60	10000-00	10000,00	0.9870	0.9744
0.5120 240.0 6.25 38.70 10000.00 0.9892 0.5235 320.0 6.26 38.77 10000.00 10000.00 0.9907 0.1289 360.0 6.27 38.87 10000.00 10000.00 0.9918 0.0710 400.0 6.27 38.87 10000.00 10000.00 0.9935 0.0201 480.0 6.28 38.93 10000.00 10000.00 0.9946	2		220.0	6.24	38.60	10000-00	1000-00	0.9882	0.9767
0.3596 280.0 6.26 38.77 10000.00 10000.00 0.9907 0.2235 320.0 6.26 38.77 10000.00 10000.00 0.9919 0.01289 360.0 6.27 38.87 10000.00 10000.00 0.9928 0.0381 440.0 6.28 38.93 10000.00 10000.00 0.9941	-		240-0	ñ	38.70	1,000	2	0.9892	0 0786
0.2235 320.0 6.26 38.77 10000.00 10000.00 0.9914 0.1289 366.0 6.27 38.87 10000.00 10000.00 0.9928 0.0710 400.0 6.27 38.87 10000.00 0.9935 0.0201 480.0 6.28 38.93 10000.00 10000.00 0.9941			280.0	Ñ		10000-00		0.9907	0.9816
0.1289 360.0 6.27 38.87 10000.00 10000.00 0.9928 0.0710 400.0 6.27 38.87 10000.00 10000.00 0.9935 0.0381 440.0 6.28 38.93 10000.00 10000.00 0.9941 0.0201 480.0 6.28 38.93 10000.00 10000.00 0.9946	_		320.0	2	•	10000	10000-00	0.9919	0.9839
0.0201 400.0 6.27 38.87 10000.00 10000.00 0.9935 0.0201 440.0 6.28 38.93 10000.00 10000.00 0.9941 0.0201 480.0 6.28 38.93 10000.00 10000.00 0.9946	m		360.0	~	•	10000.00	10000	0.9928	0.9856
0.0201 440.0 6.28 38.93 10000.00 10000.00 0.9941	~		4000	6.27	38.87	10000.00	10000	0.9935	0.9871
0.0201 480.0 6.28 38.93 10000.00 10000.00 0.9946 0.989	۳.		440.0	7	38.93	10000.00	10000.00	0.9941	0.9882
	~		480.0	6.28	38.93	10000.00	10000.00	•	989

				p=11.24	the state of the s				
3	R, Cape	FZEROP	DZERO, AL	XSTPF, A	XSTAP	4 STPD, A	XST ARD, AL	ALFAST, &	XNUST, \$
(0.0022	0-0000	8 0	0.02	0.10	10000.00	10000-00	0.1600	0.0870
y (*	0.0025	10000	0.1	0.03	0.12	10000-00	10000-00	0.2759	0.1601
٠.	0.6625	0-0032	2-0	57.48	43.19	40.6	16.91	0.3637	0.2223
•	0.6621	•	2.5	90.6	44.97	2.57	2.99	0.4878	0.3227
•	0-6554	•	3.0	9.25	40.04	2.37	2.17	0.5334	0.3637
	0.6474	•	5° 6°	9.38	46.81	2.27	5,69	0.5714	0.4001
10 g	0.6398	0.0389	0.4	4	47.42	2.21	2.66	0.6038	0-4325
•	0.4369	•	n c	4.0	64.93	2-16	2.65	0.6316	0.4616
11	0,6167	0.1057	9	9-10	40.17	2.05	2.56	0.6555	0.5334
12	9609-0	•	7.0	9.92	49.90	1.94	2.70	0-7273	0.5715
13	0.6052	•	0.0	10.05	50.63	1.80	2.69	0.7530	0.6039
**	0.6037	•	0.6	10.19	51.45	1.60	2.65	0.7742	0.6317
91	0.5978	•	0.5	10.39	52.51	1.27	2.58	0.7921	0.6558
11	0.5597		12.0	9.82	49.76	2.81	2.31	0-607	0.69.70
81	0.5192	•	13.0	9.20	46.65	4.51	2.09	0.8320	0.7124
19	0.4672		0.41	8.35	42.38	7.07	1.77	0.8421	0.7274
2.0	0.264		0 % 1	•	33.81	11.50	1.02	0.8511	0-7408
22	C. 2932	•	17.0	20.00	27.22	20-17	7.05 4.00	1659-0	0.7530
23	0.2756		18.0	2.06	25.75	10000-00	5.88	0.8727	0.7743
24	0.2692	•	19.0	4.97	25,31	10000-00	8.35	0.8786	0.7836
25	C- 2612		20.0	4.84	24-70	10000-00	12.06	0.8840	0. 7921
27	0-2363		22.0	4.66	23.79	10000-00	18.29	68880	0-8001
28	0.2101		23.0	3.95	20.15	10000-00	70.58	0.8934	41000
53	0.1998	0.2425	24.0	3,76	19.24	10000-00	10000-00		0.8206
30	C. 2001	0.2339	25.0	3.78	19.35	10000	10000,00	908	0.8265
18	C. 2004	0.2252	26.0	3.80	19.45	10000.00	10000	0.9083	0.8321
32	0-2007	0.2164	27.0	3.82	19.54	10000.00	10000.00	\$116.0	0.8373
3.6	2003	0.2077	20.02	3.63	19.63	10000.00	10000	0.9143	0-8422
35	0.2013	0-1907	30.05	3.86	11-61	10000	00.0001	0.9170	0.8466
36	0.2021	0.1521	35.0	3.91	20.10	10000-00	10000-00	0-9302	0.8696
37	0.2027	0-1201	40.0	3.95	20.34	10000-00		0.9384	0.8840
33	0.2030	0.0946	45.0	3.98	20.53	10000.00		0.9449	0.8956
40	0.2035	0.0793	30.00	4.01	20.68	100001	•	0.9501	0.9050
7	0.2037	0.0477	0.09	4.05	20-91	10000-00	10000-00	0.0583	0.9129
45	0-2039	0.0344	10.0	4.07	21.07	10000-00	10000.00	0.9639	0. 9303
6 4	0.2040	0.0340	80.0	60.	21-19	10000.00	10000-00	0.9682	0.9384
45	C.2041	0.0798	100.0	4.12	21.37	10000-00	10000-00	0.9717	0.9449
946	0-2041	0.1283	110.0	4.13	21.43	10000.00	10000	0.9767	0.9545
24	0.2041	0.1915	120.0	4-14	21.48	10000-00	10000-00	978	0,9581
0 0	0-2041	0.3402	0.041	4.15	21.57	10000	10000-00	0.9816	0.9639
50	C- 2040	0.5651	180.0	4-10	21.63	10000	00000		0.9682
51	0.2040	0.5932	2002	: 7	21.72	1000-00	10000.00		7746
52	0.2037	0.5697	20.	4.17	21.72	10000-00			0.9767
53	C- 2040	0.5120	240.0	4.18	21.78	10000-00	10000-00		0, 9785
54	0.2040	0.3596	280.0	4.18	21.82	10000-00	10000.00	Ġ.	0.9816
25	2000	0.2233	350.0	91.	21.82	10000	10000	5	0.9839
57	0-2038	0-0710	300.0	61.4	•	10000	10000-00	~ 0	0.9856
28	C. 2039	0.0381	440.0	4-20	21.91	10000-00	10000,00	0.9941	0.9887
59	0.2038			. 4		10000-00	10000.00	. 0	0.9892
60	0.2037	0.0105	520.0	4.20		10000.00	10000.00	5	0066-0

				p = 20 etw					
77	R, Carlone	FZEROP	DZERO, A	XSTPF, H	XSTAP	XSTPD, H	XSTARD, AL	ALFAST, of	XNUST, 5*
	C. 0022	0.0000	0.5	0.01	0-03	10000-00	10000-00	0-1600	0,0870
2	0.0025		1.0	0.01	0.0	10000	10000	0.2759	0-1601
m ·	0.7242	0.0008	1.5	3.86	16.13	5.04	6.31	0.3637	0.2223
* 4	6,9148	0.0032	2.0	5.09	21.81	3.05	3.57	0.4325	0.2759
n 40	0.5211	0.0080	6.5	7.34	22.95	2.57	2.99	0.4878	0.3227
	C. 9176		3.5	5.57	23.98	2.27	2.69	0.5714	0.4001
•	\$1.05°0	0	••	5.64	24.29	2.21	2.66	0.6038	0.4325
٠,	6.8946	0.0539	4.5	5.70	24.54	2.16	2. 65	0.6316	0.4616
01	C. 8868	0.070	5.0	5.15	24.76	2.12	2.66	0.6558	0.4879
11	0.8745		0 0	5.85	25.17	2.05	2.68	0.6957	0.5334
11	0 8 4 8 C	0.1745		36.6	25.56	1.94	2.70	0.7273	0.5715
1 2	0.8657			41.4	26.50	09-1	69.7	0.7330	0.6039
15	C. 8762		10.0	66.33	27.22	1.27	2.58	0.7921	0.455
91	90-8604	0-2487	11.0	6-29	27.07	1.42	2.47	0.8074	0.6770
11	0.7807		12.0	5.77	24.83	2.81	2,31	0.8205	0.6957
13	0.6980	0.2751	13.0	5.21	22.41	4.51	2.09	0.8320	0.7124
20	0.500	0.2825	0.41	4.22	18-14	7-07	1.17	0.8421	0.7274
21	0.4796	0.2878	16.0	3.67	16.74	11.50	1.02	0.8511	0.7408
22	0.4509	0.2867	17.0	3.47	14.92	26.90	60-4	0.8663	0.7441
23	0.4289	0.2837	18.0	3.32	14.28	10000-00	5.88	0.8727	0.7743
24	0.4147	0.2791	19.0	3.23	13.89	10000-00	8.35	0.8786	0.7836
25	0.3973	0.2732	20.0	3.10	13,37	10000.00	12.06	0.8840	0.7921
27	0.3462	0.2665	23.0	2.94	12.69	10000-00	18.29	0.8889	0.8001
28	0.3154	0.2509	23-0	2-50	10.76	10000-00	30.98	46680	0.8074
29	C. 3108	0.2425	24.0	2.47	10-64	10000-00	10000.00	4100.0	0.8204
30	0.3115	0.2339	25.0	2.48	10.71	1000000	10000.00	0.9050	0.8265
31	0,3121	0.2252	26.0	5.49	10.17	10000.00	10000,00	0.9083	0.8321
32	0.3127	0-2164	27.0	2,51	10.83		10000-00	0.9114	0.8373
3.5	0.3132	0.2077	28.0	25.25	10.88	10000-00	10000	0.9143	0.8422
35	0.3142	0-1907	30.0	2.54	10.93	000000	10000		0.8468
36	0.3159	0-1521	35.0	2.58	11.16	10000-00	10000-00	0.9102	0.8311
37	0,3171	0.1201	40.0	2.61	11.30	10000.00	10000		0.8840
38	0.3180		45.0	2.63	11.41	10000-00	10000.00	0.9449	0.8956
39	0.3186	0-0746	50.0	2.65	11.50	10000-00	10000.00	0.9501	0.9050
-	0.3195	0.0593	0.00	2.66	11.58	10000-00	10000	0.9545	0.9129
4.5	0.3201	0.0344	10.0	2.69	11.74	10000-00	10000-00	0.9581	0.9196
43	C- 3205	0.0340	80.0	2.71	18-11	10000-00	10000	0.9682	0.9384
	0.3208	0.0464	0.00	2.72	11.67	10000-00	10000.00	0.9717	0.9449
9	0.3211	0-1283	110-0	2.74	16-11	10000.00	10000	0.9744	0.9501
1.4	0.3212	0.1915	120.0	2.74	-	10000-00	10000		0.9581
84	C- 3212		140.0	2.75	12.03	10000.00	10000		0.9639
	0.3213	0.4770	0.091	2.76	12.07	10000-00	10000*00	0.9839	0.9682
51	0.3213	0. 5932	200-0	2.77	12.12	10000-00	10000	0.9856	0.9717
52	0.3208	0.5697	220.0	2.77	12.12	10000	00.0001	0.9870	0.0747
53	0.3213	0.5120	240.0	2.17	12.16	10000-00	10000,00	0.9892	0.9786
54	0, 3213	0.3596	280-0	2.78	12.18	1000000	10000.00	0.9907	0.9816
55	0.3208	0.2235	320.0	2.78	~	10000-00	10000-00	0.9919	0.9839
5.0	0.3213	0.1289	360.0	2.78	? .	10000.00	10000.00	0.9928	0.9856
28	0.3213	0.0381	440-0	2.79	12.22	10000-000	10000-00	0.9935	0.9871
26	6.3211	0.0201	480.0	2.79	, ~	10000	10000-00		0.9882
09	0.3209	2,0105	520,0	~	12.24	10000-00	10000-00	0.9950	0066-0
				1				•	

				p = 35.40 alm	E.				
7	n's color	FZEROP	DZERO, M	XSTPF, A	XSTAP, A	1,STPO, A	XSTARD, M	ALFAST, K	XMUST, J*
, , (0-0022	000000	9.0	00-0	0.01	10000,00	10000,00	0.1600	0.0870
7 (C.0025	10000	0.1	10.0	0.02	100001	10000-00	0-2759	0.1601
n,	C-8763	0.0008	1.5	1.98	7.14	2.04	6.31	0.3637	0.2223
t ru	1-0-16	2600-0	2.0	2.49	9.14	9.05	3.57	0.4325	0.2759
٠.٠٥	1-2464	0.0156	7°0	2.15	11.01	76.57	%.7 		0.3227
~	1.2400	0.0260	. E	3.22	11.00	7.27	2.69	6.5714	7.003.0
•	1.2307	0.0389	•	3.26	12.16	2.21	2.66	0.6038	0.4375
6	1.2212	0.0539	4.5	3,31	12.29	2.16	2.65	0.6316	0.4616
01	1.2126	0.0704	2.0	3,34	12.40	21.2	5.66	0.6558	0.4879
11.	1.1998	0.1057	9	3.41	12.61	2.05	2.68	0.6957	0.5334
71 71	0461-1	0-1413	2.	3.47	12.84	1.94	2.70	0.7273	0.5715
1	1.2081	0.2039		3.55	13.10	1.50	2.69	0-7530	0.6039
15	1.2377	0.2287	10.0	3.60	13.97	1.27	7.50	0.7921	0.6317
91	1.2089	0.2487	11.0	3.75	13.80	1.42	2.47	0.8074	0.6770
11	0.9459	0.2640	12.0	2.97	10.87	2.81	2.31	0.8205	0.6957
e :	0.8392	0.2751	13.0	2.66	9.73	4.51	5.09	•	0.7124
20	0-7721	0.7825	9.4.0	2.53	9-24	7.07	1.17		0.7274
21	0.7233	0.2878	16.0	2.35	A . C.	21.50	1.02	0.8511	0.7408
22	0.6846	0.2867	17.0	2.24	8-16	26.90	60°7	0.8663	0.7550
23	66490	0.2837	18.0	2.14	7.79	10000-00	5.88	0.8727	0.7743
24	0-6200	0.2791	19.0	2.05	7.47	10000-00	8-35	0.8786	0.7836
57	C.5856	0.2732	20.0	1.94	1.09	10000	12.06		0.7921
27	0.5458	0-2665	21.0	1.82	49-9	10000-00	18.29	0.8889	0.001
28	0.4766	0-2500	23.0	90.1	61.0	00000	30.98	0.8934	0.8074
53	0.4770	0.2425	24.0	19-1	5.87	10000-00	10000.00	0.00.0	0.0142
30	0.4785	0.2339	25.0	1.62	5.91	10000-00	8	0.9050	0.8265
31	8624.0	0.2252	26.0	1.63	5.95	10000-00	10000-00	0.9083	0.8321
35	0.4810	0.2164	27.0	1.64	5.98	10000.00	10000.00	0.9114	0.8373
33	1784-0	0.2077	28.0	1.64	6.01	10000	10000-00		0-8422
100	0.4841	1907	0.00	69.1	5 2	000001	10000-00	0.14.0	0.8468
36	0.4878	0.1521	35.0	09-1	80.4	000001	10000	0.0143	1168-0
37	0.4904	0-1201	0.04	7.7	6.27	10000-00	10000	0.0184	9499
38	6.4923	0.0946	45.0	1.73	6.34	10000-00	10000-00		0.8956
39	0.4938	0.0746	50.0	1.74	6.39	10000-00	10000.00	0.9501	0.9050
0,	0.4949	0.0593	55.0	1.75	6.44	10000.00	10000-00		0.9129
42	0-4972	746000	0.00	1.76	74.9	10000	10000-00	0.9581	0.9196
43	0.4982	0.0340	80.0	1.79	6.58	10000-0001	10000-00	0.9682	0.9303
**	C-4989	0.0484	0.06	1.80	19.9	10000	10000.00	0.9717	0.9449
42	6664.0	0.0798	100.0	. 80	9.9	10000-00	1,000.00	0.9744	0.9501
47	0.5003	0.1915	120.0	10.1	9 4	10000-00	10000.00		0.9545
6.8	0.5005	0.3402	140.0	1.82	6.71	10000	10000.00	0.9816	0.9639
46	C. 5007	0.4770	60.	1.82	6.13	10000.00	10000.00	0.9839	0.9682
0.1	0.5008	1595	180.0	1.63	6.75	10000-00	10000 000	9586*0	0.9717
52	2000	n w	230.0	1.83	6.76	100001	10000-00	0.9870	0.9744
53	0.5010	7 6	240.0	1.84	0 2 2	10000	10000	2000	0.9767
24	0.5011	חוי	280.0	1.84	6.80	10000-00	10000	1060	0.9814
55	C. 5004	·N	320.0	1.84	6-80	10000-00	10000-000	0.9919	0.9639
56	0.5013	_	360.0	1.84	6.82	10000-00	10000	0.9928	0.9856
57	C. 5008	9	400.0	1.84	6.82	10000000	10000 00	0.9935	
5.3	C. 5013	٠,	440.0	1.85	6.83	10000-00	10000-00	1466.0	0.9882
500	0.04.0	0.0201	480.0	1.85	6.83	10000.00	10000.00	99660	0.9892
2		•	0.026	1.65	60.0	10000-00	00 •06001	0.44.0	

					p= 63.40 x	. 			
7	R, Calen	FZEROP	DZERO, M	XSTPF, H	XSTAP, A	XSTPO, A	XSTARD, A	ALFAST, 04	XNUST, Y
-	C.0022	0.0000		00-0	0-0	9	00 00001	1400	0.00
~	0.0025	0.0001		00.00	0.01	10000	00001	0.1600	0.00.0
m	1.0707	0.0008		10.1	3.13		6-31	0.3637	0.2223
•	1.3090	0.0032		1.29	4.10	3.05	3.57	0.4325	0.2759
ν.	1.3722	0.0080		1.40	4.48	2.57	2.99	0-4878	0.3227
۰ ۵	1. 3923	0.0156		1-47	4.68	2.37	2.17	0.5334	0,3637
· ec	1-3946	0.0389		1.51	18.4	2.27	2-69	0.5714	0-4001
•	1-3903	0.0539		1.57	40.4	2.14	2.45	0.0036	6264-0
01	1.3859	0.0704			5.05	2.12	2-66	0.6558	0.4870
11	1.3804	-		·	5.16	2.05	2,68	0.6957	0.5334
12	1,3835	0.1413	7.0	1.68	5.29	1.94	2.70	0.7273	0.5715
13	1-4002	0.1745		1.74	5.45	1.60	5.69	0.7530	0.6039
*	1.4422	٦,	•	1.82	5.71	1.60	59.2	0.7742	
16	1.4827	0.2287	00.	2.19	6.68	1.27	2.58	0.7921	0.6558
1	1-2550	•	12.0	1.44	10.0 10.0	7 01	14.2	0.8074	0.6770
18	1-1944	,	13.0		200	14.7	16.5	0.6205	0.6957
19	1-1709	, ,	•	1.56	76.4	1002	60.7	0.6320	0. F124
20	1.1819		15.0	1.59	4.93	11.50	1-02	174000	477.0
21	1.0916	•	16.	1.48	4.58	21.07	2.65	0.8591	0.7530
25	1.0248	•		1.40	4.32	26.90	4.09	0.8663	0.7641
57	4796.0			1.32	4.08	10000	5.88	0.8727	0.7743
22	0.848			52-1	3.35	10000.00	8.35	0.8786	0.7836
26	0.7841			00-1	10.0	10000-00	12.06	0.8840	0.7921
27	0.7374	0.2590		1.03	2 - 2	10000.00	67.01	0.0000	0.5001
28	0, 7258	0.2509		1.02	7	10000-00	70.68	0.8976	0.8142
56	0.7291	0.2425		1.03	3.16	10000.00	10000-00	0.9014	0-8206
30	0.7322	0.2339		1.03	3.19	10000.00	10000.00	0.9050	0-8265
16	7375	0.2252		1.04	3.21	10000-00	10000.00	0.9083	0.8321
33	0.7398	• (1.05	3.25	000001	10000-00	0.9114	0.8373
34	0.7419	0.1992	29.0	100	3.27	10000	10000	0.9143	0.8422
35	0.7439			1.06	3.28	10000-00		0.0105	0.0400
36	C. 7517			1.0	3.35	10000-00	10000 00	0.9302	0.8696
37	0.7572	0.1201		1.10	3.40	10000-00	10000	0.9384	0.8840
38	0.7614	0.0946		11.1	3.44	100001	10000.00	0.9449	0.8956
, c	0, 1045	0.0746	50.0	1.13	3.48	10000-00	10000.00	0.9501	0- 90 50
7	1,97.0	0-0593	0.44	1.13	3.50	00.00001	000001	0.9545	0.9129
45	C-1723	0-0344	20.00	1 · I ·	30°56	00000	10000-00	1866-0	96160
43	0.7745	0.0340	80.0	1.16	3.59	10000-000		0.9682	0.9303
4	0.7762	0.0484	0.06	1.17	3.61	10000.00		0.9717	0.9449
64	0.7785	0.079		1.17	3.62	10000-00	10000-00	0.9744	0.9501
14	C- 7794	0.1915	120.0	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	3.04	1 0000 000	10000.00	0.9767	0.9545
48	0.7806	0.3402	_	-	3.67	10000-00	10000-00	0.9816	0.9639
0.0	0.7813	0-4170	160.	1.19	3.68	10000-00	10000.00	0.9839	0.9682
2 5	7870		180.	٠,	3.69	10000		0.9856	0.9717
52	0-7808	2665-0		67.1	3.70	10000-00	10000-00	0.9870	0.9744
53	C. 7824	, 67	240.0	1.20	3.73	10000	10000	0.9882	19160
54	0.7827			1.20	3.72	10000-00		0.9907	
55	C. 7815	0.2235		1.20	3.72	10000.00	0	0.9919	0.9839
26	C. 7831	7	360.	1.20	3.73	10000.00	10000-00	0.9928	0.9856
7	0.7824	0,0	400.0	1.20	3, 73	1 2000 00	0	0.9935	0.9871
200	7,035	9	0,0	1.20	~ 1	10000-00	0	0.9941	0.9882
63	0.7874	0.0201	520.0	1.20	3.74	10000-000		8 8	0.9892
3	,	?	•			10000	1 0000 00	0.9950	0066*0

					p = 112,40	alm.			
7	R, Comfare	FZEROP	DZERU, JL	XSTPF, A	XSTAP, H	3 COALS:	XSTARD, K	ALFAST, &	XNUST, Y
	C-0022	0.000	0.5	00.0	00.0	10000.00	10000.00	0.1600	0.0870
7 (5200-2	0.0001	0.1	0.00	00.0	10000.00	10000.00	0.2759	0.1601
n •	1 4207	0.000	1.0	٠	1.32	\$	6.3.	0.3637	0.2223
. 10	1.7298	0-0080	2.5		100.2	3.03	3.57	0.4325	0.2759
9	1.7707	0.0156	3.0		2, 19	2.37	2.17	45550	1775-0
٠,	1-7864	0-0260	3.5	0.82	2.26	2.27	2.69	0.5714	0.4001
20 C	1.7914	0.0389	•		2.31	7.21	2.66	0.6038	0-4325
	1.7907	0.0339		•	2.35	2.16	2.65	0.6316	0.4616
	1.7881	0.1057	0.0	•	66.2	2.12	2.66	0.6558	0.4879
12	1.7911	0-1413	2.0	0.92	2.50	1.94	2.70	0.6937	0.5534
13	1.8036	0.1745	0.0			1.80	2.69	0.7530	0-6039
14	1.8331	0.2039	0.6	0.98	2.64	1.60	2,65	0.7742	0-6317
	1.9104	0.2287	10.0	1-04	2.78	1.27	2.58	0.7921	0.6558
9 :	1.8713	0-2487	11.0	1.03	2.75	1.42	2.47		0.6770
- 60	1.7000	0.2751	12.0	95.0	2.57	2.61	2.31		0.6957
19	1-7154	0.2825	14.0	0.07	7 57	10.4	5.		0.7124
20	1.7840	0-2865	15.0	1-02	2.70		1.1		0-1214
21	1.5957	0.2878	16.0	0.92	2.42	21.07	20.65		0.7530
22	1.4728	0.2867	17.0	0.85	2.24	56.90	60.4		0.7641
23	1,3637	0.2837	16.0	0.79	2.08	10000	5, 88	0.8727	0.7743
54	1.2664	0.2791	19.0	0.74	1.94	10000.00	8.35	0.8786	0.7836
25	1-1776	0.2732	20.0	69.0	1.81	10000.00	12.06	0.8840	0.7921
27	1-0782	0.2590	22.0	69.0	1.71	10000-00	18, 29	0.8889	0.8001
28	1.0814	0.2509	23.0	99.0	200	10000	30.98	0.8934	0.8074
59	1.0880	0.2425	24.0	0.65	1.70	10000-00	10000-00	0.9014	0-8142
30	1.0940	0.2339	25.0	0.65	1.71	10000.00	10000.00	0.9050	0.8265
31	1.0995	0.2252	26.0	99.0	1.72	10000.00	100001	0.9083	0.8321
33	1-1092	0.2077	0.12	0.00	1.74	10000-00		0.9114	0.8373
34	1-1135	0-1992	20.02	29.0	1.74	000001	10000	0.9143	0.8422
35	1-1174	0.1907	30.0	0.68	1.77	10000-00	1000-00	2010	0.8408
36	1.1335	0.1521	35.0	0.69	1.81	10000.00		0.9302	0.8696
37	1.1450	0.1201	40.0	0.71	1.84	10000.00		0.9384	0.8840
200	1.1535	0.0946	45.0	0.72	1.87	10000-00	10000.00	0.9449	0.8956
40	1.1655	0.00	0.00	0.72	1.89	10000.00	10000-00	0.9501	0.9050
1+	1-1698	0.0477	0.04	73	1.90	10000-00	10000-00	6.65	0.9129
42	1.1765	0.0344	10.0	42.0	1.94	10000-00	10000-00	18640	0.9196
4 3	1, 1813	0.0340	80.0	0.75	1.96	10000.00	10000.00	0.9682	938
* *	1.1850	0.0484	0.06	0.75	1.97	10000-00	10000 -00	0.9717	0-9449
*	1 1000	0.0798	100.0	0.10	1.98	10000 00	10000 00	0.9744	950
7	1,1920	0.1915	120.0	2.0	66.1	00-00001	_	0.9767	5
4.8	1-1948	0.3402	140.0	0.77	2-00	10000-00	10000-00	0.00	1866.0
64	1.1969	0.4770	160.0	0.77	2-01	10000-00	10000-00	0.9839	0.9682
50	1-1984	0.5651	180.0	0.77	20 02	1000000	10000.00	0.9856	0.9717
52	1-1973	0-5697	220-0	0.77	2-05	10000-00		0.9870	0.9744
53	1.2003	0.5120	240-0	0.78	2.03	000001	10000	0.9882	0.9767
54	L 2010	0.3596	280.0	0.78	2.04	10000-00	10000-00	0.9907	41 40 0
5.5	1-1992	0.2235	320.0	0.78	2.04	10000-00	10000-00	0.9919	0.9839
26	1.2020	0.1289	360.0	0.78	5.04	10000.00		0.9928	0.9856
5 P	1.2027	0.0710	0.004	0.78	2-04	100001	9	0.9935	0.9871
20	•	0.0201	0.044	0.10	50.5	~ "	10000.00	1966.0	
90	1.2012	0.0105	520.0	0.78	2.05	10000-00	10000.00	9946	0.9892
		: : :	* * * * * * * * * * * * * * * * * * * *		``	•		00000	

	ALFAST, OL XMUST, 5"					0.5334 0.3637						o	0.6			0.8320			°						0.9014 0.8204								0-0403		.9581				0.9767 0.9545		o c	9826	76.7	9882	۸.	186.0 1066	6166	0.94.0	1466	
	XSTARD, K	10000-00	10000	3.57	5- 99	2.77	2.69	7.66	2-66	2.68	2.70	2.69	2.65	2.58	2.21	2,00	1.77	1.02	2.65	4.09	5.88	12,06	16.29	30.98	10000-00	10000-00	10000-00	10000	10000-000	10000.00	10000-00	10000-00	10000-00	10000	10000-00	10000	10000	10000-000	10000.00	10000.00	10000-00	10000.00	10000.00	10000.00	10000-00	10000 00	10000	10000	10000-00	000000
	XSTPD, A	10000.00	10000-00	3.05	2.57	2.37	72.27	7.7	2-12	2.05	1.94	1.60	1.60	1.27	7-17	19.7	7.07	11.50	21.07	26.90	10000-00	10000-000	10000-00	10000-00	10000-00	10000-00	10000-00	10000-00	10000-00	10000.00	10000	100001	10000-000	1000001	10000-00	10000	000001	10000	10000.00	10000-00	10000-00	10000	10000-00	10000	10000-00	10000-00	10000-00	000001	10000	-
= 200 atm).	XSTAP	0.00	0.00	0.80	0.92	0.99	1.03		1-11	1-14	1.17	1.20	1.24	1.29	1.27	1.29	1.33	1.44	1.23	1.11	1.02	0.89	0.86	98.0	0.0	0.00	0.90	0.0	0.93	0.93	96.0	0.00	10-1	1.02	1.02	1.04	1.05	1.06	1.07	1.07	1.00	1.08	1.09	1.09	8:	2:.	21.	1.10	1.10	
p = 30	XSTPF, H	00-0	00.0	0.34	0.38	0.41	6.43	4	74.0	0.49	0.50	0.52	0.54	9.00		0.57	0.58	0.63	0.54	0.49	9.46	04.0	0.39	0.39	0,40	0.40	0.41		0.42	0.45	0.43	444	0.46	0.46	0.46	0.47		0.48	0.48	0.49	64-0	0.49	0.50	0.50	0.50			0.50	0.50	•
	02ERO, A	5.0	0.1	2.0	2.5	e, u	000		2.0	6.0	7.0	0.0	0.6	0.0	12.0	13.0	14.0	15.0	16.0	17.0	0.00	20.0	21.0	22.0	24.0	25.0	26.0	28.0	29.0	30.0	35.0	0.04	20.05	55.0	0.09	0 0	0.00	100.0	110.0	120.0	160.0	180.0	200.0	220.0	240.0	2007	340.0	0.004	440.0	
	FZEROP	00000	1000-0	0.0032	0.0080	0.0156	0.0200	0-0539	0.0704	0.1057	0.1413	0.1745	0.2039	0.2487	0-2640	0.2751	0.2825	0-2865	0.2678	0.2867	0.2791	0.2732	0.2665	0.2590	0.2425	0.2339	0.2252	0-2077	0.1992	0.1907	0.1521	1021-0	0.0746	0.0593	0.0477	о с	0-0340	0.0798	0.1283	0.1915	0.4770	0.5651	0.5932	0.5697	0.5120	0.2236	0-1289	0.0710	0,0361	
	R, one, lane	0.0022	1.3464	1.9047	2.0972	2.1844	2.2653	2.2711	7.2821	2.2989	2,3168	2.3413	2.3787	2.4.478	2-3815	2-3955	2,4508	2-6385	2.2505	2.0339	1.7207	1-6172	1.5658	1.5007	1.5915	1.6032	1.6139	1.6328	1.6412	1.6490	1.6809	1.7220	1.7356	1.7464	1.7554	1.707	1-7869	1.7930	1.7979	6108-1	1.8125	1.8159	1.0185	1.8164	1.8219	1.8210	1-8261	1-8244	1.8276	
	77	1 6	4 M	4	.	40	- o	•	10	11	12	13	*	15	17	18	19	20	21	77	24	25	26	28	53	30	31	34	34	35	36	-	39	04	41	74	1	45	46		64	20	25	25	10		26	57	58	

PARABOLIC FLAME ASSUMED

0XID. DENSITY # 1.95 PRI MOL WT = 28.00 8.30	
PROPELLANT DATA IS WT. PERCENT OXID. = 90.0 PPGP. DENSITY = 0.0 QFUEL = 25.0 TF(DEG K) = 202R. MOL WI = 20.87 DIFF PARAM = 1000.0000 ST PAI = 16.50 FPI ST PAI =	CALDIZER IGNITION AND BURRING DATA IS

CIGN = 190.0 POWIGN = 0.721 POWD = 0.8 LATENT HEAT = -110.0 ACTIVATION ENERGIES AND RATE FACTORS ARE FF = 15000.		
POWD F = AF = 250C C2 -231C 01	LATENT HEAT = -110.0	A OX = 0.3000 C6 1.800 RT CON, LP = 0.2310 01
POWD F = AF = 250C C2 -231C 01		0.2700 04 GRDER, LP =
CIGN = 190.0 POWIGN = 0.721 ACTIVATION ENERGIES AND RATE FACTORS ARE FF = 15000. E CX = 26000. OFOER, PF = 1.500 RT CON, PF = 0.250C OPOER, HP = 1.800 RT CON, HP = 0.231C	PUMD	11
	CIGN = 190.0 PJWIGN = 0.721	ACTIVATION ENERGIES AND RATE FACTORS ARE EF = 15000. E CX = 26000. OFDER, PF = 1.500 RT CON, PF = 0.250C OPDER, HP = 1.8CO RT CON, HP = 0.231C

p = 0.23	0.3000
RT CON. LI	CP(AVE) = 0.3000
NDER, LP = 1.800	0200000
RT CON, PF = 0.250C C2 ORDER, LP = 1.800 RT CON, LP = 0.23 RT CON, LP = 0.23	GAS CCAGUCT = 0.00030
OPDER, PF = 1.500 RT CON, OPDER, HP = 1.8C0 RT CON,	F PREPERTIES ARE OXID. FLM TEMP = 1400.0
	FLAME

EXPONENT FOR DIFFUSION PRESSURE DEPENDENCE IS 1.000

PROPELLANT INITIAL TEMP IS 21.1 DEG CENTIGRACE

m (exponent in Eq. 19) = 2

98	IN/SEC	9550-0	1650.0	000000	.0.1341	0.1987	0.2896	0.4095	0.5860	0.8384
38	CM/SEC	0.1006	0.1515	0.2287	0.3405	0.5047	0.7357	1.0400	1.4836	2.1296
PPES	PSIA	29.4	52.0	53.2	165.2	294.0	520.4	2.	2	0
PPFS	SHIV	2.00	3.54	6.34	11.24	20.00	35.40	63.40	112.40	200.002
	PP.ES 3R	PPES 3R BR ATMS PSIA CM/SEC IN/SEC	PRES 3R PSIA CM/SEC 29.4 0.1006	PRES 3R PSIA CM/SEC 29.4 0.1006 52.0 0.1515	PRES 3R PSIA CM/SEC 29.4 0.1006 52.0 0.1515 53.2 0.2287	PRES 3R PSIA CM/SEC 29.4 0.1006 52.0 0.1515 93.2 0.2287 165.2 0.3405	PRES 3R PSIA CM/SEC 29.4 0.1006 52.0 0.1515 53.2 0.2287 165.2 0.3405 294.0 0.5047	PRES 3R PSIA CM/SEC 29.4 0.1006 52.0 0.1515 93.2 0.2287 165.2 0.3287 294.0 0.5047 520.4 0.7357	PRES 3R PSIA CM/SEC 29.4 0.1006 52.0 0.1515 93.2 0.2287 165.2 0.3287 294.0 0.5047 520.4 0.7357 932.0 1.0400	PRES 3R PSIA CM/SEC 29.4 0.1006 52.0 0.1515 93.2 0.2287 165.2 0.3405 294.0 0.5047 520.4 0.7357 932.0 1.0400 1652.3 1.4836

Appendix B

HYDRAULIC ANALOGY

The analogy between one-dimensional, nonsteady flows of inviscid gases and inviscid liquids with free surfaces and between two-dimensional, steady flows of inviscid gases and inviscid liquids with free surfaces is well documented in the literature⁽²²⁾. As one might expect in this situation, the analogy also extends to two-dimensional, nonsteady flows. However, although this analogy has been exploited in several studies, ⁽²²⁾ no explicit derivation of the analogy for the nonsteady, two-dimensional situation has apparently been presented. The object of this appendix is to present a derivation for this situation.

For nonsteady, two-dimensional, irrotational flow of a perfect gas the governing equations are (24)

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho_{u}}{\partial x} + \frac{\partial \rho_{v}}{\partial y} = 0 \tag{B-1}$$

$$\partial_{\mathbf{u}}/\partial_{t} + \mathbf{u} \, \partial_{\mathbf{u}}/\partial_{\mathbf{x}} + \mathbf{v} \, \partial_{\mathbf{u}}/\partial_{\mathbf{y}} + \rho^{-1} \, \partial_{\mathbf{p}}/\partial_{\mathbf{x}} = 0 \tag{B-2}$$

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{u} \frac{\partial \mathbf{v}}{\partial x} + \mathbf{v} \frac{\partial \mathbf{v}}{\partial y} + \rho^{-1} \frac{\partial \mathbf{p}}{\partial y} = 0$$
 (B-3)

$$p/p_{o} = (\rho/\rho_{o})^{\Psi}$$
 (B-4)

Employing a_0 , o_0 , p_0 , l_g , t_g as reference dimensions and Eq. B-4 to eliminate of from Eqs. B-2 and B-3 yields the non-dimensional equations

$$\begin{split} \partial \rho^{+} \ u^{+} \ / \partial_{x}^{+} + \partial \rho^{+} \ v^{+} / \partial_{y}^{+} \ + \ (l_{g} / (a_{o} t_{g})) \ \partial \rho^{+} / \partial_{t}^{+} & (B-5) \\ [l_{g} / (a_{o} t_{g})] \partial u^{+} / \partial_{t} + u^{+} \ \partial_{u}^{+} / \partial_{x}^{+} + v^{+} \partial_{u}^{+} / \partial_{y}^{+} \\ & + [\partial (\rho^{+}) \frac{\gamma - 1}{\gamma} / \partial_{x}^{+}] / (\gamma - 1) = 0 \quad (B-6) \end{split}$$

$$[l_{g}/(a_{o}t_{g})] \partial_{v}^{+}/\partial_{t}^{+} + u^{+} \partial_{v}^{+}/\partial_{x}^{+} + v^{+} \partial_{v}^{+}/\partial_{y}^{+}$$

$$+ [\partial_{(p}^{+}) \frac{y-1}{\gamma}/\partial_{y}^{+}]/(y-1)=0$$
(B-7)

A three dimensional, nonsteady flow of inviscid liquid over a planar surface perpendicular to the gravity vector g is governed by the equations (24)

^{*}Loh⁽²³⁾ indicates in a footnote that the analogy extends to this case.

$$\partial_{\mathbf{u}}/\partial_{\mathbf{x}} + \partial_{\mathbf{v}}/\partial_{\mathbf{y}} + \partial_{\mathbf{w}}/\partial_{\mathbf{z}} = 0 \tag{B-8}$$

$$D_{\mathbf{u}}/D_{t} + \rho^{-1} \partial_{\mathbf{p}}/\partial_{\mathbf{x}} = 0 \tag{B-9}$$

$$D_{y}/D_{t} + \rho^{-1} \partial_{p}/\partial_{y} = 0$$
 (B-10)

$$D_{\mathbf{W}}/D_{t} + \rho^{-1} \, \delta_{p}/\delta_{z} + g = 0 \tag{B-11}$$

Assuming that vertical water accelerations are small compared to g Eq. B-11 becomes

$$\partial_{\mathbf{p}}/\partial_{\mathbf{z}} = -\rho_{\mathbf{g}} \tag{B-12}$$

Integration yields

$$p(\mathbf{x}, \mathbf{y}, \mathbf{z}, t) = \rho_g \int_{\mathbf{h}}^{\mathbf{z}} d\mathbf{z} + p(\mathbf{x}, \mathbf{y}, \mathbf{h}, t)$$
 (B-13)

where h(x, y, t) is the depth of the water. However, since only pressure differences are encountered in Eq. (B-9) to (B-11) and since p(x, y, h, t) = constant, that constant can be set to zero without loss of generality. Consequently,

$$p(x, y, z, t) = \rho g(h-z)$$
 (B-14)

and

$$\rho^{-1} \, \mathfrak{d}_{p}/\mathfrak{d}_{x} = g \, \mathfrak{d}_{h}/\mathfrak{d}_{x} \tag{B-15}$$

$$\rho^{-1} \partial_p / \partial_y = g \partial_h / \partial_y \tag{B-16}$$

Analysis is directed at inviscid motion. Assume u = u(x, y, t) and v = v(x, y, t). Therefore, terms containing we are eliminated from Eqs. (B-9) and (B-10). However, since w = w(z), $\frac{\partial w}{\partial z} \neq 0$. Formally integrating Eq. (B-8) from z=0 to z=h yields (after application of Liebnitz's rule (21)) and the above assumption

$$\partial_{hu}/\partial_{x} + \partial_{hv}/\partial_{y} + w(x, y, h, t) = u(x, y, h, t) \partial_{h}/\partial_{x} + v(x, y, h, t) \partial_{h}/\partial_{y}$$
 (B-17)

Since
$$w(x, y, h, t) = \frac{\partial h}{\partial t} + u(x, y, h, t) \frac{\partial h}{\partial x} + v(x, y, h, t) \frac{\partial h}{\partial y}$$
, Eq. (B-17)

becomes

$$\partial h/\partial t + \partial h u/\partial x + \partial h v/\partial y = 0$$
 (B-18)

Nondimensionalizing Eqs. B-9, B-10, and B-18 with reference dimensions h_0 , gh_0 , l_w , and t_w yields the non-dimensional hydraulic equations

$$\partial_h^+ u^+ / \partial_x^+ + \partial_h^+ v^+ / \partial_y^+ + [1_w / (\sqrt{gh_0} t_w)] \partial_h^+ / \partial_t^+ = 0$$
 (B-19)

$$[l_{w}/(\sqrt{gh_{0}}l_{w})] \partial u^{+}/\partial t^{+} + u^{+} \partial u^{+}/\partial x^{+} + v^{+} \partial u^{+}/\partial y^{+} \partial h^{+}/\partial x^{+} = 0$$
 (B-20)

$$[l_{w}/(\sqrt{gh_{0}}l_{w})] \partial_{v}^{+}/\partial_{t}^{+} + u^{+} \partial_{v}^{+}/\partial_{x}^{+} + v^{+} \partial_{v}^{+}/\partial_{y}^{+} + \partial_{h}^{+}/\partial_{y}^{+} = 0$$
 (B-21)

Comparison of Eqs. (B-5) to (B-7) with Eqs. (B-19) to (B-21) shows that when $\gamma=2$ and $l_w/(\sqrt{gh_0} t_w) = l_g/(a_0 t_g)$ the non-dimensional equations are equivalent if $h^+ = \rho^+$. Consequently, under these conditions an analogy exists between the gas and free surface liquid flows. In this analogy

 $h^+ = \sqrt{p^+} [\text{or } p^+ = (h^+)^2]$, $a = \sqrt{gh}$, $h^+ = \rho^+, u_W^+ = u_g^+$, and $v_y^+ = v_g^+$. For conditions where $0(l_W) \sim 0(l_g), 0(t_W) \leq 0(t_g)$. In other words, time is effectively slowed in the analogy. This means that transient phenomena can often be studied visually in the hydraulic analogy. It is this fact that makes the analogy valuable for nonsteady situations.

It has been shown that an analogy exists between irrotational flow of gas with 7=2 and irrotational flow of liquid over a horizontal surface. Flows in nature are not irrotational. Therefore, of what practical value is this analogy? First, numerous experiments (22) have demonstrated excellent agreement with theory for simple flows. Second, there seems to be no question that the analogy provides a relatively simple way to obtain information on complex flow situations. (22)

• UNCLASSIFIED							
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)							
(19) REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM						
A FOSR TR - 75 - 1553 GOVT ACCESSION NO	0. 3. RECIPIENT'S CATALOG NUMBER						
4. TITLE (and Subtitle)	5. TYPE OF BEPORT A PERIOD COVERED						
SIEADY-STATE COMBUSTION OF NONMETALLIZED COMPOSITI	INTERIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
SOLID PROPELLANT.	6. PERFORMING ORG. REPORT NUMBER						
<u> </u>	u-75-27						
7. AUTHOR(a)	CONTRACT OR GRANT NUMBER(*)						
O R. L. GLICK	F44620-74-6-0080 Lw						
L'T' PETCY	144029-14-0-9000						
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS						
THIOKOL CORPORATION	681308						
HUNTSVILLE DIVI SION (16) AF	1-9711-01 (17) 971101						
HUNTSVILLE, ALABANA	61102F						
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE 379D.						
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA 1400 WILSON BOULEVARD	Julian 75						
ARLINGTON, VIRGINIA 22209	76						
14. MONITORING . GENCY NAME & ADDRESS(II different from Controlling Office)							
	UNCLASSIFIED						
	15a, DECL ASSIFICATION DOWNGRADING SCHEDULE						
16. DISTRIBUTION STATEMENT (of this Report)							
for autilia release distribution unlimited							
Approved for public release; distribution unlimited.							
'7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	Panert)						
". DISTRIBUTION STATEMENT (of the spatial entered in District, in district.	om Keporij						
1							
18. SUPPLEMENTARY NOTES							
19. KEY WORDS (Continue on reverse side if necessary and identify by block number,)						
MONODISPERSE BDP COMBUSTI ON MODEL							
NONMETALLIZED PROPELLANTS							
HYDRAULIC T-BURNER ANALOG VENT FLOW PHENOMENA							
NON-NEUTRAL PRESSURE-TIME HISTORY							
NON-NEUTRAL TRESCORE-TITE HID TORY							

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Monodisperse BDP combustion model was extended to nonmetallized propellants with mixed, polydisperse oxidizers by embedding monodisperse model in statistical framework including mixture ratio effects. Basically, polydisperse propellant is "disassembled and rearranged" to form sequence of monodisperse pseudo-propellants whose rates are computed via monodisperse model. Reassembly provides real propellant's burning rate. Approach provides information pertaining to distribution of regression rates and surface structure among different size oxidizer particles Preliminary results suggest that significant factor in rate increases wrought by

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Brief Data Entered

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

introduction of small oxidizer modes is mixture ratio alterations in larger modes. Hydraulic T-burner analog was constructed and employed to visualize vent flow phenomena. Studies showed that flow enters vent with axial momentum and that momentum is partially transformed to vent into Karman vortex sheet. Fact that flow enters vent with axial momentum invalidates boundary condition of Culick analysis for flow turning gain; "correct" boundary condition leads to null vent gain. Experimental facts consistent with proof that in formal one-dimensional flow vent gain violates second law of thermodynamics. Logical and consistent way to reduce solid rocket data when pressure-time history is not neutral was derived. Since current techniques are not self-consistent in this situation, these results open door to reclamation of performance data heretofore rejected.