Algebra

Jaroslav Langer *

Říjen 2020

Contents

1	Pře	dnáška 1.	
	1.1	Úvod	
	1.2	Hierarchie	
	1.3	Neutrální a inverzní prvky	
	1.4	Znázornění grup	
2	Pře	dnáška 2. 4	
	2.1	Podgrupy	
	2.2	Lagrangeova věta	
	2.3	Generující množiny a generátor grup 6	
	2.4	Cyklické grupy	
	2.5	(Malá) Fermatova věta	
3	Přednáška 3.		
	3.1	Homomorfismy a izomorfismy	
	3.2	Aplikace teorie grup v kryptografii	
4	Přednáška 4.		
	4.1	Množiny se dvěma binárními operacemi	
	4.2	Okruhy polynomů	
	4.3	Konečná tělesa	
	4.4	Aplikace konečných těles v kryptografii	

^{*}z přednášek NI-MPI/FIT/ČVUT

5 Přednáška 5.

Abstract

Definice, věty a poznámky z předmětu NI-MPI.

1 Přednáška 1.

1.1 Úvod

Věta 1.1

Pro všechna $b,c\in R\setminus\emptyset$ pro rovnici $b\cdot x=c$ existuje právě jedno řešení $x=\frac{c}{b}$

Poznámka

Dvojici (M, \circ) , kde $\circ: M \times M \to M$, \circ je asociativní na M, neutrální prvek náleží M a pro každý prvek M inverzní prvek náleží M, říkáme grupa.

1.2 Hierarchie

Definice 2.1

Grupoid (magma) je uspořádaná dvojice (M, \circ) , kde M je neprázdná množina a \circ je binární operace na M.

- Pologrupa (semigrupa) je grupoid (M, \circ) , kde operace \circ je asociativní pro všechny prvky M.
- Monoid je pologrupa (M, \circ) , kde $\exists e, \forall a, e, a \in M$,

$$a \circ e = e \circ a = a$$
.

- Grupa je monoid (M,\circ) a $e\in M$ je neutrální prvek, kde $\forall a\exists a^{-1},\quad e,a\in M,$

$$a \circ a^{-1} = a^{-1} \circ a = e$$
.

• Komutativní (abelovská) grupa je grupa (M, \circ) , kde operace \circ je komutativní na M.

Poznámka

O množině M mluvíme také jako o nosiči grupy (M, \circ)

Poznámka

Binární operace je $na\ M$ což znamená, že $\circ: M \times M \to M$, také můžeme říci, že množina M ja uzavřená vůči operaci \circ .

1.3 Neutrální a inverzní prvky

Věta 4.1

V monoidu existuje právě jeden neutrální prvek.

Věta 4.2

V grupě má každý prvek právě jeden inverzní prvek.

1.4 Znázornění grup

Poznámka

Pokud má množina M konečný počet prvků, pak strukturu dvojic (M, \circ) , lze kompletně zachytit Cayleyho tabulkou. Cayleyho tabulka pro (M, \circ) , |M| = n je tabulka $n \times n$, kde záhlaví sloupců i řádků jsou stejně seřazené prvky M, políčko $p_{a,b}$ pro a-tý řádek a b-tý sloupec má hodnotu $a \circ b$.

Poznámka

Latinský čtverec pro n prvkovou množinu M je tabulka $n \times n$, kde v každém řádku a sloupci, je každý prvek M právě jednou.

Věta 5.2

Cayleyho tabulka každé grupy tvoří latinský čtverec.

Věta 5.3

V každé grupě (M, \circ) jde jednoznačně dělit. Tzn. $\forall a, b \in M$ mají rovnice

$$a \circ x = b$$
, $y \circ a = b$

jediné řešení.

Poznámka

Grupu (M, \circ) s konečným počtem prvků M lze vizualizovat pomocí Cayleyho orientovaného grafu. Cayleyho orientovaný graf

$$(V, E), V = M, E = \{(a, b) : b = a \circ c, \forall a \in M, \forall c \in N \subset V\}$$

2 Přednáška 2.

2.1 Podgrupy

Poznámka

Hledáme-li podgrupu (N, \circ) grupy (M, \circ) tak aby obsahovala prvek m, těleso musí zůstat grupou, proto musí také obsahovat všechny prvky tak, aby množina N byla uzavřená na operaci \circ , dále musí obsahovat neutrální prvek e, a inverzní prvek pro všechny prvky N. Takovou podgrupu nazýváme **podgrupa generovaná množinou** $\{m\}$.

Definice 6.2 Podgrupa (subgroup) (N, \circ)

Buď grupa $G = (M, \circ)$, podgrupa $H = (N, \circ)$ je libovolná dvojice, kde

- $N \subset M$
- (N, \circ) je grupa.

Poznámka

Každá grupa (M, \circ) , kde $|M| \ge 2$ má vždy podrgrupy

•
$$(\{e\}, \circ), e \in M$$

•
$$(N, \circ), N = M$$

těmto dvěma podgrupám říkáme **triviální podgrupy**. Ostatní podgrupy nazýváme **valstní (proper)**.

Věta 6.3

Buď grupa $G = (M, \circ)$, pro každé i z indexové množiny I buď H_i podgrupa G, pak

$$H' = \bigcap_{i \in I} H_i$$

je také podgrupa G.

Věta 6.4

Buď grupa $G=(M,\circ), N\subset M\wedge N\neq\emptyset$, pak libovolná dvojice (N,\circ) je podgrupa právě tehdy když

$$\forall a, b \in N, a \circ b^{-1} \in N$$

2.2 Lagrangeova věta

Definice 7.1 Řád (order)

Řádem grupy $G = (M, \circ)$ nazýváme počet prvků M, jeli počet prvků nekonečný, i řád je nekonečný, podle řádů rozdělujeme grupy na **konečné** a **nekonečné**. Řád grupy G značíme #G (nebo také |G| = ord(G)).

Věta 7.3 Lagrangeova

Buď $H=(N,\circ)$ podgrupa konečné grupy $G=(M,\circ)$, potom řád H dělí řád G.

Věta 7.4 Sylowova

Buď grupa konečná G řádu n a p prvočíselný dělitel n. Pokud p^k dělí n (pro k přírozená), potom existuje podgrupa G řádu p^k . (Pro k=1 též Cauchyho věta).

2.3 Generující množiny a generátor grup

Věta 8.1

Buď grupa $G = (M, \circ)$ a $N \subset M \land N \neq \emptyset$, pak množina

$$\langle N \rangle = \bigcap \{ H : H \text{ je podgrupa grupy } G \text{ obsahující } N \}$$

spolu s operací o tvoří podgrupu grupy G obsahující prvek N.

Věta 8.2

Podgrupu $\langle N \rangle$ grupy $G = (M, \circ), N \subset M \land N \neq \emptyset$ nazýváme **podgrupou generovanou množinou** N. O množinu N pak nazýváme jako **generující množinu** grupy $\langle N \rangle$. V případě jednoprvkové generující množiny zavádíme značení $\langle a \rangle = \langle \{a\} \rangle$ nazýváme jednoprvkovou množinu **generátor** grupy $\langle a \rangle$.

Poznámka

Pro grupu $G=(M,\circ)$ s neutrálním prvkem $e\in M$ pro každý prvek $g\in M$ a $n\in\mathbb{N}$ zavádíme n-tou a -n-tou mocninu takto.

$$g^{0} = e$$

$$g^{1} = g$$

$$g^{2} = g \circ g$$

$$g^{n} = g \circ g \circ g \dots \circ g \quad (n\text{-krát})$$

$$g^{-2} = g^{-1} \circ g^{-1}$$

$$g^{-n} = (g^{-1})^{n}$$

Věta 8.5

Buď grupa $G=(M,\circ)$ a podmnožina $N\subset M\wedge N\neq\emptyset$, potom všechny prvky grupy $\langle N\rangle$ lze získat pomocí grupového obalu

$$\langle N \rangle = \{ a_1^{k_1} \circ a_2^{k_2} \circ \dots a_n^{k_n} \circ : n \in \mathbb{N}, k_i \in \mathbb{Z}, a_i \in N \}$$

Důsledek

$$\langle N \rangle = \{ a^k : k \in \mathbb{Z} \}$$

2.4 Cyklické grupy

Věta 9.1

Grupa \mathbb{Z}_n^+ je rovna $\langle k \rangle, k \in \mathbb{Z}_n^+$ tehdy a jen tehdy, když k a n jsou nesoudělná čísla

Definice 9.4 Cyklická grupa (cyclic group)

Grupa $G = (M, \circ)$ se nazývá **cyklická**, pokud existuje $a \in M, \langle a \rangle = G$. Prvek a se nazývá **generátor** cyklické grupy G.

Definice 9.5

Buď g prvek grupy $G=(M,\circ)$, existuje-li $m\in\mathbb{N}$ takové, že $g^m=e$, pak nejmenší takové m nazýváme **řádem prvku g**. Neexistuje-li takové m, pak prvek g má řád nekonečno. Řád prvku g značíme ord(g).

Poznámka

Řád prvku g se rovná řádu množiny generované g, platí tedy rovnost

$$ord(q) = \#\langle q \rangle$$

Dále platí, že $g^k = e \Leftrightarrow k = l \cdot ord(g), l \in \mathbb{Z}$

Věta 9.6

Grupa \mathbb{Z}_n^{\times} je cyklická právě tehdy když $n \in \{2,4,p^k,2p^k\}, k \in \mathbb{N}$ a p je liché prvočíslo.

Poznámka

Obecně najít generátor grupy není jednoduché, (třeba pro grupy \mathbb{Z}_n^{\times}). Pokud však jeden známe, je jednoduché najít všechny ostatní.

Věta 9.7

Je-li $G = (M, \circ)$ cyklická grupa řádu n a a nějaký její generátor. Potom a^k je také její tehdy a jen tehdy, když n a k jsou nesoudělné, tedy gcd(n, k) = 1

Důkaz

!!! brutus !!!

Poznámka

 $\varphi(n)$ je **Eulerova funkce**, každému $n \in \mathbb{N}$ přiřazuje počet přirozených čísel z rozmezí (1; n), která jsou s ním nesoudělná.

Věta 9.8

V cyklické grupě řádu n je počet generátorů roven $\varphi(n)$.

Věta 9.9

Libovolná podgrupa cyklické grupy je opět cyklická grupa.

2.5 (Malá) Fermatova věta

Věta 10.1

V grupě $G=(M,\circ)$ řádu n pro libovolný prvek $a\in M$ platí $a^n=e,$ kde e je neutrální prvek.

Poznámka

Grupa \mathbb{Z}_p^\times je cyklická a řádu p-1.

Věta 10.2

Pro libovolné p a libovolné 1 < a < p

$$a^{p-1} \equiv 1 \pmod{p}$$
. $(a^n \equiv a \pmod{p})$

3 Přednáška 3.

3.1 Homomorfismy a izomorfismy

Definice 11.1

Buď $G = (M, \circ_G), H = (N, \circ_H)$ dva grupoidy, zobrazení $h : M \to N$, nazveme **homomorfismem G do H**, jestliže

$$\forall a, b \in M, h(a \circ_G b) = h(a) \circ_H h(b)$$

Je-li navíc h injektivní, resp. surjektivní, resp. bijektivní, říkáme, že jde o **monomorfismus**, resp. **epimorfismus**, resp. **izomorfismus**.

Definice 11.2

Grupy $G = (M, \circ_G), H = (N, \circ_H)$ nazýváme **izomorfní**, právě tehdy když existuje izomorfismus $h: M \to N$, také říkáme, že G je izomorfní s H.

Poznámka

Vlastnost dvou grup být izomorfní je relace ekvivalence na množině všech grup.

Věta 11.3

Buď homomorfismus grupy $G = (M, \circ_G)$ do grupoidu $H = (N, \circ_H)$ $h : M \to N$, potom $h(G) = (h(M), \circ_H)$ je grupa.

 \mathbf{D} ůsledky: Je-li H grupa, potom

- neutrální prvek G se zobrazí na neutrální prvek H
- inverzní prvek se zobrazí na inverzní prvek H $h(x^{-1}) = h(x)^{-1}$
- je-li h homomorfismus z $G \to H$, h(G) je podgrupa H

Věta 11.4

Libovolné dvě nekonečné cyklické grupy jsou izomorfní. Pro každé $n \in \mathbb{N}$ jsou libovolné dvě cyklické grupy řádu n izomorfní.

Poznámka

 $(\mathbb{Z},+),(\mathbb{Z},+_n)$ jsou jediné cyklické grupy až na izomorfismus.

Poznámka Kleinova grupa

 $(\mathbb{Z}_2 \times \mathbb{Z}_2, \circ)$, kde

$$\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (0,1), (1,0), (1,1)\}$$

 \circ je modulo 2 po složkách $(1,0)\circ(1,1)=(0,1)$ Kleinova grupa není cyklická, nemůže být tedy izomorfní s \mathbb{Z}_4^+

Věta 11.6

Existují pouze dvě neizomorfní grupy řádu 4.

Poznámka (Symetrická grupa)

Symetrickou grupou množiny $\{1, 2, ..., n\}$ nazveme množinu všech permutací s operací skládání zobrazení a značíme ji S_n .

Poznámka

Permutace můžeme zadat výčtem hodnot

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix}$$

první řádek můžeme navíc vynechat. Skládání permutací

$$(1 \ 2 \ 4 \ 3 \ 5) \circ (2 \ 1 \ 3 \ 5 \ 4) = (2 \ 1 \ 4 \ 5 \ 3)$$

Skládání zobrazení je asociativní, matice

$$\begin{pmatrix} 1 & 2 & \dots & n \end{pmatrix}$$

je neutrální prvek a inverzní prvek je inverzní zobrazení, S_n je tedy opravdu grupa a má řád n!

Poznámka

Podgrupy symetrické grupy S_n nazýváme **grupami permutací**.

Věta 11.8 (Cayleyova)

Každá konečná grupa G je izomorfní s nějakou grupou permutací.

3.2 Aplikace teorie grup v kryptografii

Definice 12.1 (Problém diskrétního logaritmu na grupě $G = (M, \cdot)$)

Buď $G=(M,\cdot)$ cyklická grupa řádu $n,\,\alpha$ její generátor a β její prvek. Řešit problém diskrétního logaritmu znamená najít číslo $1\leq k\leq n,$ takové, že

$$\alpha^k = \beta$$

.

Definice 12.2 (Problém diskrétního logaritmu na grupě G = (M, +))

Buď G=(M,+) cyklická grupa řádu $n,~\alpha$ nějaký její generátor a β její prvek. Řešit problém diskrétního logaritmu znamená najít číslo $1\leq k\leq n,$ takové, že

$$k \times \alpha = \beta$$

.

Poznámka

Zahodíme li požadavek na cykličnost grupy G, problém má řešení pouze pokud, prvek β patří do cyklické podgrupy $\langle \alpha \rangle$ generované α .

Příklad, kde to lze snadno

Mějme grupu \mathbb{Z}_p^+ , generátor α , prvek β , řešíme

$$k \times \alpha = \beta \mod p$$

Pomůžeme si grupou $\mathbb{Z}_p^\times,$ kde řešením bude,

$$k = \beta \cdot \alpha^{-1} \mod p$$

Obecně

Není znám rozumně rychlý algoritmus řešící problém diskrétního logaritmu.

V případě grupy \mathbb{Z}_p^{\times} znám algoritmus úměrný \sqrt{p} . Inverzní operaci, tedy mocnění umíme naopak velmi rychle (metoda opakovaných čtverců).

Dostáváme tedy **jednosměrnou (one-way) funkci**, kterou lze použít pro kryptografii. Spočítat $\beta = \alpha^x \mod p$ je snadné, známe-li x, α, p , naopak spočítat x známe-li α, β, p je velmi obtížné.

Poznámka: Pro konstrukci RSA šifry bylo použita jednosměrná funkce násobení prvočísel. Vynásobit dvě velká prvočísla je snadný úkol. Rozložit velké číslo na dvě prvočísla je velmi obtížné.

Diffie-Hellman Key Exchange

1. Inicializace:

Alice zveřejní generátor α a prvočíslo p.

Alice si zvolí x a spočítá svůj veřejný klíč $A = \alpha^x \mod p$.

Bob si zvolí tajný klíč y a spočítá svůj veřejný klíč $B = \alpha^y \mod p$. Výměna klíčů.

2. Komunikace:

Alice počítá zprávu jako $k_{AB} = B^x \mod p$.

Bob počítá zprávu jako $k_{AB} = A^y \mod p$.

Fakta

- Operace mocnění je v \mathbb{Z}_p^{\times} komutativní a tedy vypočtené k_{AB} je pro oba stejné, protože $k_{AB} \equiv (\alpha^y)^x \equiv (\alpha^x)^y \mod p$
- Mocnění není výpočetně náročné (square nad multiply).
- Řešení diskrétního logaritmu je velmi náročné.

- 4 Přednáška 4.
- 4.1 Množiny se dvěma binárními operacemi
- 4.2 Okruhy polynomů
- 4.3 Konečná tělesa
- 4.4 Aplikace konečných těles v kryptografii
- 5 Přednáška 5.