MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #12

Limit (Part 2)

Recurrence Relation:

Type 1: Monotone Sequence (Increasing/ Decreasing sequence)

Theorem 1: Monotone Sequence Theorem

 $f\{x_n\}$ is increasing and bounded from above, then $\{x_n\}$ converges. Similarly, if $\{x_n\}$ is decreasing and bounded from below, then $\{x_n\}$ converges.

Example 1

Given a sequence y_n such that

$$y_1 = \frac{1}{2+1}$$
 and $y_{n+1} = y_n + \frac{1}{2^{n+1}+1}$

Show $\{y_n\}$ is convergent.

By computing first 3-4 terms, we see that

 $y_2=\frac{1}{3}+\frac{1}{5}$, $y_3=\frac{1}{3}+\frac{1}{5}+\frac{1}{9}$, $y_4=\frac{1}{3}+\frac{1}{5}+\frac{1}{9}+\frac{1}{17}$, we suspect y_n is increasing. And we also see y_n is bounded from by 1 (or any number greater than 1)

(Step 1: Show y_n is increasing, i.e. $y_{n+1} \ge y_n$)

By induction, for n = 1, $y_2 = \frac{1}{3} + \frac{1}{5} > \frac{1}{3} = y_1$. Assume $y_{k+1} > y_k$, for n = k + 1,

 $y_{k+2} = y_{k+1} + \frac{1}{2^{n+1}+1} > y_{k+1}$ which completes the proof.

(Step 2: Show y_n is bounded from above by 1)

Note that
$$y_n = \frac{1}{2^n+1} + y_{n-1} = \frac{1}{2^n+1} + \frac{1}{2^{n-1}+1} + y_{n-2} = \frac{1}{2^n+1} + \frac{1}{2^{n-1}+1} + \frac{1}{2^{n-2}+1} + y_{n-3}$$

$$= \dots = \frac{1}{2^{n}+1} + \frac{1}{2^{n-1}+1} + \frac{1}{2^{n-2}+1} + \dots + \frac{1}{2+1}$$

Note that
$$y_n = \frac{1}{2+1} + \frac{1}{2^2+1} \dots + \frac{1}{2^{n-1}+1} + \frac{1}{2^n+1} < \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} < \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots \dots$$

$$= \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1.$$
 So y_n is bounded from above by 1.

(Step 3)

Applying Monotone Sequence Theorem, we see $\,y_n\,$ converges.

©Exercise 1:

Let a sequence $\{x_n\}$ which $x_1=0$ and $x_{n+1}=\sin\left(\frac{2+x_n}{2}\right)$ for n=1,2,3,...

Show $\{x_n\}$ converges. (One can use Newton's Method to approximate the limit)

Type 2: Intertwining Sequence

Theorem 2: (Nested Interval Theorem)

If $I_n = [a_n, b_n]$ such that $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$, then $\bigcap_{n=1}^{\infty} I_n = [a, b]$ where $a = \lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n = b$,

Furthermore, if $\lim_{n\to\infty}(b_n-a_n)=0$ (i.e. a=b), then $\bigcap_{n=1}^\infty I_n$ contains exactly one number

Theorem 3: (Intertwining Sequence Theorem)

If $\{x_{2m}\}$ and $\{x_{2m-1}\}$ converge to x, then $\{x_n\}$ converges to x.

Remark: In normal situation, we use first theorem to show $\lim_{n\to\infty} x_{2n-1}$ and $\lim_{n\to\infty} x_{2n}$ exists. Then we show $\lim_{n\to\infty} x_{2n-1} = \lim_{n\to\infty} x_{2n}$. Finally, use the second theorem to conclude the sequence converges.

Example 2

A sequence $\{x_n\}$ is defined as follows:

$$x_1 = 1, x_{n+1} = \frac{2}{x_n} + 1$$

Show x_n converges and compute the limit.

Solution:

By computing 7 more terms, we get $x_2 = 3$, $x_3 = \frac{5}{3}$, $x_4 = 2.2$, $x_5 = 1.909$, $x_6 = 2.048$,

 $x_7=1.977,\ x_8=2.012$, we see the sequence is intertwining type. By plotting the points on the real line,

$$oxed{\mathsf{X}}_1 \qquad oxed{\mathsf{X}}_3 \qquad oxed{\mathsf{X}}_5 \qquad oxed{\mathsf{X}}_7 \qquad oxed{\mathsf{X}}_8 \qquad oxed{\mathsf{X}}_6 \qquad oxed{\mathsf{X}}_4 \qquad oxed{\mathsf{X}}_2$$

Let
$$I_1 = [x_1, x_2], I_2 = [x_3, x_4], I_3 = [x_5, x_6], \dots, I_k = [x_{2k-1}, x_{2k}]$$

We need to show $I_k\supseteq I_{k+1}$, i.e. $x_{2k-1}\le x_{2k+1}\le x_{2k+2}\le x_{2k}$ (We can try to prove by induction)

For
$$n=1$$
, it is true that $x_1 \le x_3 \le x_4 \le x_2$
Assume $x_{2k-1} \le x_{2k+1} \le x_{2k+2} \le x_{2k}$

$$x_{2k-1} \le x_{2k+1} \le x_{2k+2} \le x_{2k} \to \frac{1}{x_{2k-1}} \ge \frac{1}{x_{2k+1}} \ge \frac{1}{x_{2k+2}} \ge \frac{1}{x_{2k}}$$

$$\rightarrow 1 + \frac{2}{x_{2k-1}} \ge 1 + \frac{2}{x_{2k+1}} \ge 1 + \frac{2}{x_{2k+2}} \ge 1 + \frac{2}{x_{2k}}$$
 (Multiply both side by 2 and then add 1)

$$\rightarrow x_{2k} \ge x_{2k+2} \ge x_{2k+3} \ge x_{2k+1}$$

$$\rightarrow \frac{1}{x_{2k+1}} \ge \frac{1}{x_{2k+3}} \ge \frac{1}{x_{2k+2}} \ge \frac{1}{x_{2k}} \rightarrow 1 + \frac{2}{x_{2k+1}} \ge 1 + \frac{2}{x_{2k+3}} \ge 1 + \frac{2}{x_{2k+2}} \ge 1 + \frac{2}{x_{2k}}$$

$$\rightarrow x_{2k+2} \ge x_{2k+4} \ge x_{2k+3} \ge x_{2k+1}$$

which completes our induction.

Therefore by nested interval theorem, we see $\lim_{k\to\infty}x_{2k}$ and $\lim_{k\to\infty}x_{2k-1}$ exists, let $\lim_{k\to\infty}x_{2k}=a$ and $\lim_{k\to\infty}x_{2k-1}=b$, from the recurrence relation $x_{2k+1}=\frac{2}{x_{2k}}+1$ (By putting n=2k), take $k\to\infty$, we get $a=\frac{2}{b}+1$, also $x_{2k+2}=\frac{2}{x_{2k+1}}+1$ (By putting n=2k+1). Take $k\to\infty$, we get $b=\frac{2}{a}+1$. Solving 2 equations, we get a=b=2

Hence by intertwining Sequence Theorem, $\{x_n\}$ converges and $\lim_{n\to\infty}x_n=2$.

(One more example is given in Example 7 of Tutorial Note #11)

©Exercise 2

In Example 2, solve $a = \frac{2}{b} + 1$ and $b = \frac{2}{a} + 1$ to get a = b = 2

©Exercise 3

Given a sequence which defined as

$$x_1 = 2$$
 and $x_{n+1} = \frac{1}{4} \left(3 + \frac{1}{x_n^2} \right)$

Show $\{x_n\}$ converges and find $\lim_{n\to\infty} x_n$

More difficult sequence

Example 3

Given a sequence defined by

$$x_1 = 1.5, x_2 = 2, x_{n+2} = \sqrt[3]{4x_n - 3}$$

Determine whether $x_1, x_2, x_3, ...$ converges or not. In case the sequence converges, find the limit also.

By testing a few terms, we see $x_3=1.442,\ x_4=1.710,\ x_5=1.404,\ x_6=1.566,\ x_7=1.378,\ x_8=1.483,\ x_9=1.359....$ We see the sequence does not belong one of the above types.

However when we look at the sequence "separately", we look at the sequence $\{x_1, x_3, x_5, ...\}$ and $\{x_2, x_4, x_6, ...\}$. We see each of them is decreasing sequence (monotone sequence).

$$x_9$$
 x_7 x_5 x_3 x_8 x_1 x_6 x_4 x_2

So our proof is as follows:

Step 1: Show $\{x_1, x_3, x_5, ...\}$ converges and find the limit

--Show the sequence is decreasing and bounded from below by ??

Step 2: Show $\{x_2, x_4, x_6,\}$ converges and find the limit

--Show the sequence is decreasing and bounded from below by ??

Step 3: If both limit (in step 1 and step 2) are the same, we can conclude the sequence converges by intertwining sequence theorem.

Solution:

(Step 1)

First, we show x_{2n-1} is bounded from below by 1

For n = 1, $x_1 = 1.5 > 1$

Assume
$$x_{2k-1} > 1$$
, then $x_{2k+1} = \sqrt[3]{4x_{2k-1} + 3} > \sqrt[3]{4(1) + 3} = \sqrt[3]{7} > 1$

By induction, $x_{2n-1} > 3$ (bounded from below)

Second, we show x_{2n-1} is decreasing (i.e. $x_{2n+1} < x_{2n-1}$). We use induction to show this.

For n=1, $x_3=1.442 < 1.5=x_1$, assume $x_{2k+1} < x_{2k-1}$,

Consider
$$x_{2k+3} - x_{2k+1} = \sqrt[3]{4x_{2k+1} - 3} - \sqrt[3]{4x_{2k-1} - 3}$$

$$=\frac{\left(\left(\sqrt[3]{4x_{2k+1}-3}\right)^3-\left(\sqrt[3]{4x_{2k-1}-3}\right)^3\right)}{\left(\sqrt[3]{4x_{2k+1}-3}\right)^2+\left(\sqrt[3]{4x_{2k+1}-3}\right)\left(\sqrt[3]{4x_{2k-1}-3}\right)+\left(\sqrt[3]{4x_{2k-1}-3}\right)^2\dots\dots(*)}$$

$$= \frac{(4x_{2k+1}-3)-(4x_{2k-1}-3)}{\Delta} = \frac{4(x_{2k+1}-x_{2k-1})}{\Delta} < 0 \text{ (Note } \Delta > 0)$$

(*Note: We have used the formula: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$)

Therefore, x_{2n-1} is decreasing sequence.

So by monotone theorem, $\{x_{2n-1}\}$ converges, similar argument also shows $\{x_{2n}\}$ Converges (left as exercise).

Now we write $\lim_{n\to\infty} x_{2n-1} = a$ and $\lim_{n\to\infty} x_{2n} = b$.

From
$$x_{2k+1} = \sqrt[3]{4x_{2k-1} - 3}$$
, let $k \to \infty$, we get $a^3 - 4a + 3 = 0 \to (a-1)(a^2 + a - 1)$

3) = 0
$$\rightarrow$$
 a = 1 and $a^2 - a - 3 = 0 \rightarrow a = \frac{-1 \pm \sqrt{13}}{2}$. So we get $a = \frac{-1 + \sqrt{13}}{2}$, similarly

We get
$$b = \frac{-1 + \sqrt{13}}{2}$$
.

Therefore, since a = b, so by intertwining sequence theorem, the sequence $\{x_n\}$

converges and $\lim_{n\to\infty} x_n = \frac{1+\sqrt{13}}{2}$.

©Exercise 4

In Example 3, show the sequence $\{x_{2n}\}$ converges.

©Exercise 5 (2006 Fall Final)

Given a sequence $\{x_n\}$ defined as

$$x_1 = 2, x_2 = 4, x_{n+2} = \sqrt{10x_n - 9}$$

Show $\{x_n\}$ converges and compute the limit

Appendix:

In fact, the intertwining sequence theorem can be extended to three or more subsequences.

Theorem 4: (Extension of Intertwining sequence theorem, 3 subsequences)

Suppose $\{x_{3n}\}$, $\{x_{3n+1}\}$, $\{x_{3n+2}\}$ converges to x, then $\{x_n\}$ converges to x

Proof:

for any $\varepsilon > 0$,

We would like to show there exists N such that n>N, $|\mathbf{x_n}-\mathbf{x}|<\varepsilon$

Since $\lim_{n\to\infty} x_{3n} = x$, there exist M_1 , such that $n > M_1$, $|x_{3n} - x| < \varepsilon$

Similarly there exists M_2 , such that $n > M_2$, $|x_{3n+1} - x| < \varepsilon$

There exists M_3 , such that $n > M_3$, $|x_{3n+2} - x| < \varepsilon$

Pick $N = \max\{M_1, M_2, M_3\}$, then for any n > N,

 $|x_n-x|=|x_{3n}-x|$ or $|x_{3n+1}-x|$ or $|x_{3n+2}-x|$, in any case, we must have $|x_n-x|<\varepsilon.$

Therefore by definition of limit, $\{x_n\}$ converges to x

So one can make use the theorem and use the similar method as in Example 3 to do the following:

Try to do it if you have time

©Exercise 6a

Given a sequence, defined as

$$x_1 = 1, x_2 = 2, x_3 = 3$$
 and $x_{n+3}^2 = 7x_n - 3$

Show x_n converges and compute the limit.

Of course, you may try to extend the theorem further to k subsequences. k = 4,5,6,...

©Exercise 6b (Try to write the proof by yourselves)

Suppose $\{x_{kn}\}$, $\{x_{kn+1}\}$,..... $\{x_{kn+(k-1)}\}$ converges to x, then $\{x_n\}$ converges to x.