

DSM-51 REV.3

DYDAKTYCZNY SYSTEM MIKROPROCESOROWY

Copyright © 2005 by MicroMade

All rights reserved Wszelkie prawa zastrzeżone

MicroMade

Gałka i Dro d sp. j.

64-920 PIŁA, ul. Wieniawskiego 16

Tel./fax: (67) 213.24.14

E-mail: mm@micromade.pl Internet: www.micromade.pl

Wszystkie nazwy i znaki towarowe użyte w niniejszej publikacji są własnością odpowiednich firm.

Budowa systemu

Dydaktyczny System Mikroprocesorowy DSM-51 jest uniwersalnym sterownikiem zbudowanym w oparciu o mikrokontroler 80C51.

Zastosowane w systemie dwa programowalne układy logiczne typu GAL (Generic Array Logic - Uniwersalna Matryca Logiczna) pozwalają na różnorodne konfigurowanie otoczenia mikrokontrolera, a w szczególności na zmianę konfiguracji w trakcie pracy programu. Zostało to wykorzystane w standardowej konfiguracji dekodera adresów do uruchamiania programu załadowanego do pamięci RAM.

Dydaktyczny System Mikroprocesorowy DSM-51 jest wykonany w postaci jednej płytki drukowanej o wymiarach 16,5 x 21,5 cm, umieszczonej na metalowej podstawie. Z góry system jest przykryty przezroczystą płytką wykonaną z pleksi, na której umieszczono opisy złącz i klawiatur.

Dydaktyczny System Mikroprocesorowy DSM-51 można podzielić na trzy zespoły:

- system mikroprocesorowy,
- układy komunikacji z użytkownikiem,
- porty urządzeń zewnętrznych.

Zgodnie z tym podziałem narysowane są schematy blokowe i ideowe, zamieszczone w dalszej części dokumentacji.

Zmiany wprowadzone w wersji 3 systemu

1. Usunięcie złącza szyny systemowej.

Obecnie szyna systemowa mikrokontrolera 8051 nie jest wyprowadzona poza DSM-51.

2. Zmiana sterownika przerwań.

Do sterownika przerwań był doprowadzony sygnał przerwania IX ze złącza szyny systemowej. Obecnie sygnał ten nie istnieje. Należało go również usunąć z równań opisujących sterownik przerwań. Zostało to zrobione w taki sposób, aby w niczym nie zmienić działania sterownika przerwań dla pozostałych sygnałów.

3. Zmiana dekodera adresów.

Poprzednio, do elementów systemu, były rozprowadzone sygnały wyboru (CS..) oraz sygnały zapisu i odczytu (WR i RD). Obecnie, sygnały te zostały zmieszane już w dekoderze adresów, tworząc odpowiednio sygnały wyboru i zapisu (CW..) oraz sygnały wyboru i odczytu (CR..), rozprowadzane do poszczególnych elementów systemu. Nie zmienia to w jakikolwiek sposób działania systemu DSM-51.

Dane techniczne

Parametry ogólne:

• wymiary: 170 x 220 x 25 mm

• zasilanie: 9V / 500 mA.

System mikroprocesorowy:

• mikrokontroler: 80C52

• zegar: 11.0592 MHz

pamięć EPROM: 32kBpamięć RAM: 32kB

• stała czasowa watchdoga: min 250 ms.

<u>Układy komunikacji z użytkownikiem:</u>

• sygnalizatory:

optyczny: dioda LED

akustyczny: brzęczyk

zespół wyświetlacza 7-segmentowego:

wyświetlacz: 6 cyfr

diody świecące: 6 diod

klawiatura sekwencyjna: 6 klawiszy

zespół wyświetlacza LCD:

wyświetlacz: 2 linie po 16 znaków

sterownik wyświetlacza: HITACHI - HD44780

klawiatura matrycowa: 16 klawiszy.

Porty urządzeń zewnętrznych:

Prąd pobierany z VCC łącznie przez urządzenia zewnętrzne: max 150 mA.

• RS232: 2 kanały

• dwukierunkowe wejścia/wyjścia cyfrowe: 24 linie

układ wejść/wyjść równoległych: 8255

• izolowane wejścia cyfrowe: 2 linie

napięcie sterujące: 5...9V

• izolowane wyjścia cyfrowe: 2 linie

napięcie wyjściowe: max 9V

prąd wyjściowy: max 3mA

wejścia analogowe:

liczba wejść: 8

zakres przetwarzanego napięcia: 0...5V

przetwornik A/C: ADC0804

rozdzielczość: 8 bitów

czas przetwarzania: ok. 150 µs

• wyjścia analogowe:

liczba wyjść: 1

zakres napięć wyjściowych: 0...5V

przetwornik C/A: DAC08

rozdzielczość: 8 bitów

czas ustalania przetwornika: 85 ns

szybkość narastania napięcia: 3V/μs

Dekoder adresów

Równania opisujące dekoder adresów v3.0:

Sygnał wyboru pamięci EPROM:

$$CSE = PSEN + TRYB * \overline{A_{15}}$$

Sygnał wyboru pamięci RAM:

$$CSR = A_{15}$$

Sygnał odczytu pamięci RAM:

$$RDR = (PSEN + \overline{TRYB} + A_{15}) * RD$$

Sygnał wyboru pozostałych urządzeń wejść/wyjść:

$$CSIO = \overline{A_{15} * A_{14} * A_{13} * A_{12} * \overline{A_7} * \overline{A_6}}$$

Sygnał wyboru wyświetlacza LCD:

$$LCD = A_{15} * A_{14} * A_{13} * A_{12} * A_{7} * \overline{A_{6}} * (\overline{RD} + \overline{WR})$$

Tryb podziału przestrzeni adresowej:

$$TRYB = \overline{RST2} * \overline{(A_{15} * A_{14} * A_{13} * A_{12} * \overline{A_7} * A_6)} * TRYB +$$

$$+ \overline{RST2} * (A_{15} * A_{14} * A_{13} * A_{12} * \overline{A_7} * A_6) * RD * \overline{WR} +$$

$$+ \overline{RST2} * TRYB * RD$$

UWAGA:

Sygnał TRYB nie jest podłączony do żadnych zewnętrznych układów. Jest on jedynie wykorzystywany wewnątrz dekodera adresów.

Sterownik przerwań

Równania opisujące sterownik przerwań v3.0:

Pamięć przerwania IAD:

$$O_0 = (\overline{D_0} * \overline{D_1} * \overline{CWIC} * IAD) + (O_0 * IAD)$$

Pamięć przerwania IOI:

$$O_1 = (D_0 * \overline{D}_1 * \overline{CWIC} *IOI) + (O_1 * IOI)$$

Pamięć przerwania IPA:

$$O_2 = (\overline{D_0} * D_1 * \overline{CWIC} * \overline{IPA}) + (O_2 * \overline{IPA}) + PPI$$

Pamięć przerwania IPB:

$$O_{3} = (D_{0} * D_{1} * \overline{CWIC} * PP1) + (O_{3} * PP1) +$$

$$+ (D_{0} * D_{1} * \overline{CWIC} * \overline{IPB} * \overline{PP1}) + (O_{3} * \overline{IPB} * \overline{PP1})$$

Sygnał przerwania INT0 procesora:

$$INT0 = 0$$

$$INT0.TRST = \overline{IRS}$$

Sygnał przerwania INT1 procesora:

$$INT1 = O_0 * O_1 * O_2 * O_3$$

Sygnały wyjściowe (te równania decydują o priorytecie przerwań):

$$D_0 = O_0 * \overline{O_1} + O_0 * O_2$$

$$D_I = O_0 * O_I$$

Sygnały sterujące trójstanowymi buforami wyjściowymi:

$$D_0.TRST = \overline{CRIC}$$

$$D_1.TRST = \overline{CRIC}$$

Złącza systemu

Złącze zasilania

Złącze kanału szeregowego COM1

Pin	Sygnał	Opis
1		NC
2	RxD (P3.0)	Wejście
3	TxD (P3.1)	Wyjście
4		NC
5		Masa - GND
6		NC
7		NC
8		NC
9		NC

Złącze kanału szeregowego COM2

Pin	Sygnał	Opis
1		NC
2	IRS	Wejście
3	P1.0	Wyjście
4		NC
5		Masa - GND
6		NC
7		NC
8		NC
9		NC

Złącze wejść/wyjść izolowanych galwanicznie

Pin	Symbol	Sygnał	Opis
1	O1e	P1.2	Wyjście 1 - emiter
2	O1k	P1.2	Wyjście 1 - kolektor
3	O2e	P1.3	Wyjście 2 - emiter
4	O2k	P1.3	Wyjście 2 - kolektor
5	GND		Masa
6	VCC		Napięcie
7	I1k	P3.4	Wejście 1 - katoda
8	Ila	P3.4	Wejście 1 - anoda
9	I2k	IOI	Wejście 2 - katoda
10	I2a	IOI	Wejście 2 - anoda

Złącze wejść/wyjść analogowych

	S5		
1 3 5 7 9 11 13	000000000000000000000000000000000000000	2 4 6 8 10 12 14	
		1	

Pin	Symbol	Opis
1	AGND	Masa
2	VCC	Napięcie
3	AGND	Masa
4	OUT	Wyjście analogowe
5	AGND	Masa
6	VOUT	Napięcie (ok. 8V / 30 mA)
7	IN0	Wejście analogowe 0
8	IN1	Wejście analogowe 1
9	IN2	Wejście analogowe 2
10	IN3	Wejście analogowe 3
11	IN4	Wejście analogowe 4
12	IN5	Wejście analogowe 5
13	IN6	Wejście analogowe 6
14	IN7	Wejście analogowe 7

Złącze wejść/wyjść cyfrowych

Pin	Symbol	Opis
1	PA7	8255 port A
2	PA6	
3	PA5	
4	PA4	
5	PA3	
6	PA2	
7	PA1	
8	PA0	
9	PC7	8255 port C
10	PC6	
11	PC5	
12	PC4	
13	PC3	
14	PC2	
15	PC1	
16	PC0	
17	PB7	8255 port B
18	PB6	
19	PB5	
20	PB4	
21	PB3	
22	PB2	
23	PB1	
24	PB0	
25	GDN	Masa
26	VCC	Napięcie +5V

Schematy blokowe

System mikroprocesorowy

Komunikacja z uż ytkownikiem

Porty urządzeń zewnętrznych

Schematy ideowe

Na następnych stronach umieszczono schematy ideowe Dydaktycznego Systemu Mikroprocesorowego DSM-51:

- 1/4 Schemat systemu DSM-51 v3
- 2/4 System mikroprocesorowy
- 3/4 Komunikacja z użytkownikiem
- 4/4 Porty urządzeń zewnętrznych

oraz schematy następujących kabli połączeniowych:

- RS232 kabel połączeniowy kanałów szeregowych RS232,
- DIGITAL kabel połączeniowy wejść/wyjść cyfrowych,
- ANALOG kabel połączeniowy we/wy analogowych.,
 - **OPTO** kabel połączeniowy wejść/wyjść izolowanych galwanicznie.

