

Kurs:Mathematik für Anwender/Teil I/34/Klausur mit Lösungen

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \sum

Punkte 3302332434 4 3 2 0 3 3 5 3 3 53

Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

1. Der Durchschnitt von Mengen $m{L}$ und $m{M}$.

- 2. Der Real- und der Imaginärteil einer komplexen Zahl z.
- 3. Die Zahl π (gefragt ist nach der analytischen Definition).
- 4. Das *obere Treppenintegral* zu einer oberen Treppenfunktion $m{t}$ zu einer Funktion

$$f:I\longrightarrow \mathbb{R}$$

auf einem beschränkten Intervall $I\subseteq\mathbb{R}$.

- 5. Der i-te Standardvektor im K^n .
- 6. Ein Eigenvektor zu einer linearen Abbildung

$$arphi \colon V \longrightarrow V$$

auf einem K-Vektorraum V.

Lösung

1. Die Menge

$$L\cap M=\{x\mid x\in L \text{ und } x\in M\}$$

heißt der Durchschnitt der beiden Mengen.

- 2. Zu einer komplexen Zahl $z=a+b\mathbf{i}$ nennt man a den Realteil und b den Imaginärteil von z.
- 3. Es sei s die eindeutig bestimmte reelle Nullstelle der Kosinusfunktion auf dem Intervall [0,2]. Die Kreiszahl π ist definiert durch $\pi:=2s$.
- 4. Zur oberen Treppenfunktion

$$t{:}I \longrightarrow \mathbb{R}$$

von f zur Unterteilung a_i , $i=0,\ldots,n$, und den Werten t_i , $i=1,\ldots,n$, heißt das Treppenintegral

$$T=\sum_{i=1}^n t_i(a_i-a_{i-1})$$

eine oberes Treppenintegral von $m{f}$ auf $m{I}$.

5. Der Vektor

$$e_i := egin{pmatrix} 0 \ dots \ 0 \ 1 \ 0 \ dots \ 0 \end{pmatrix}$$

wobei die ${f 1}$ an der ${m i}$ -ten Stelle steht, heißt ${m i}$ -ter ${m Standardvektor}$.

6. Ein Element $v \in V$, v
eq 0 , heißt ein *Eigenvektor* von arphi , wenn $arphi(v) = \lambda v$

mit einem gewissen $\lambda \in K$ gilt.

Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

1. Der Satz von Euklid über Primzahlen.

- 2. Der Satz über Ableitung und Wachstumsverhalten einer Funktion $f: \mathbb{R} \to \mathbb{R}$.
- 3. Der Satz über die Charakterisierung von invertierbaren Matrizen.

Lösung

- 1. Es gibt unendlich viele Primzahlen.
- 2. Es sei $f: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion. Dann gelten folgende Aussagen.
 - 1. Die Funktion f ist genau dann wachsend (bzw. fallend), wenn $f'(x) \geq 0$ (bzw. $f'(x) \leq 0$) für alle $x \in I$ ist.
 - 2. Wenn $f'(x) \geq 0$ für alle $x \in I$ ist und f' nur endlich viele Nullstellen besitzt, so ist f streng wachsend.
 - 3. Wenn $f'(x) \leq 0$ für alle $x \in I$ ist und f' nur endlich viele Nullstellen besitzt, so ist f streng fallend.
- 3. Es sei K ein Körper und sei M eine n imes n-Matrix über K. Dann sind die folgenden Aussagen äquivalent.
 - 1. $\det M \neq 0$.
 - 2. Die Zeilen von ${m M}$ sind linear unabhängig.
 - 3. M ist invertierbar.
 - 4. rang M = n.

Aufgabe (0 Punkte)

Lösung / Aufgabe / Lösung

Aufgabe (2 Punkte)

Ersetze im Term $4x^2+3x+7$ die Variable x durch den Term y^3+5 und vereinfache den entstehenden Ausdruck.

Lösung Term/Einsetzen/2/Aufgabe/Lösung

Aufgabe (3 (1+2) Punkte)

Lucy Sonnenschein unternimmt eine Zeitreise. Sie reist zuerst 16 Stunden nach vorne, dann (immer vom jeweiligen erreichten Zeitpunkt aus) 5 Stunden nach vorne, dann 26 Stunden zurück, dann 4 Stunden zurück, dann 8 Stunden nach vorne und dann 12 Stunden zurück.

- 1. Wo befindet sie sich am Ende dieser Zeitreise, wenn die Reise selbst keine Zeit verbraucht?
- 2. Wo befindet sie sich am Ende dieser Zeitreise, wenn eine Zeitreise um eine Stunde, egal ob in die Zukunft oder in die Vergangenheit, immer eine Minute verbraucht?

Lösung

1. Wir rechnen

$$16 + 5 + (-26) + (-4) + 8 - 12 = -13$$
,

also 13 Stunden zurück.

2. Insgesamt reist sie

$$16 + 5 + 26 + 4 + 8 + 12 = 71$$

Stunden, das verbraucht also 71 Minuten, also eine Stunde und elf Minuten. Daher befindet sie sich am Ende der Zeitreise im Zeitpunkt vor 11 Stunden und 49 Minuten.

Aufgabe (3 Punkte)

Man gebe ein Polynom $P \in \mathbb{Q}[X]$ an, das nicht zu $\mathbb{Z}[X]$ gehört, aber die Eigenschaft besitzt, dass für jede ganze Zahl n gilt: $P(n) \in \mathbb{Z}$.

Lösung

Betrachte das Polynom

$$P = rac{X(X-1)}{2} = rac{X^2}{2} - rac{X}{2}$$
 .

Die Koeffizienten liegen in $\mathbb Q$, aber nicht in $\mathbb Z$. Wenn man in dieses Polynom eine ganze Zahl n einsetzt, so ist genau eine der Zahlen n und n-1 gerade. Also ist $P(n)=\frac{n(n-1)}{2}$ ganzzahlig.

Aufgabe (2 Punkte)

Begründe geometrisch, dass die Wurzeln \sqrt{n} , $n \in \mathbb{N}$, als Länge von "natürlichen" Strecken vorkommen.

Lösung

Dies geht mit der Spirale des Theodorus. Wenn man die (bereits konstruierte) Quadratwurzel \sqrt{n} als eine Kathete eines rechtwinkligen Dreiecks nimmt mit einer zweiten Kathete der Länge 1, so erhält man eine Hypotenuse der Länge $\sqrt{n+1}$.

Aufgabe (4 Punkte)

Zeige, dass die Reihe

$$\sum_{n=1}^{\infty} \frac{z^n}{n^n}$$

für jedes $z \in \mathbb{R}$ absolut konvergiert.

Lösung

Wir wenden das Quotientenkriterium an, woraus dann die absolute Konvergenz folgt. Dazu betrachten wir den Quotienten aus zwei aufeinander folgenden Gliedern $a_n=\frac{z^n}{n^n}$ der Reihe (bei z=0 ist die Aussage klar, sei also $z\neq 0$), also

$$egin{aligned} |rac{a_{n+1}}{a_n}| &= |rac{rac{z^{n+1}}{(n+1)^{n+1}}}{rac{z^n}{n^n}}| \ &= |z|rac{n^n}{(n+1)^{n+1}} \ &= |z|(rac{n}{n+1})^nrac{1}{n+1} \ &\leq |z|rac{1}{n+1}. \end{aligned}$$

Zu einem gegebene $z \in \mathbb{R}$ gibt es ein $n_0 \in \mathbb{N}$ mit

$$q:=rac{|z|}{n_0+1}<1$$
 .

Dies gilt dann auch für alle $n \geq n_0$, so dass man ab n_0 das Quotientenkriterium anwenden kann.

Aufgabe (3 Punkte)

Es seien

$$f,g:\mathbb{R}\longrightarrow\mathbb{R}$$

streng wachsende Funktionen, die auf $\mathbb Q$ übereinstimmen. Folgt daraus f=g?

Lösung

Wir betrachten die beiden Funktionen

$$f(x) = \left\{ egin{aligned} x, ext{ falls } x < \sqrt{2} \,, \ x+1, ext{ falls } x \geq \sqrt{2} \,, \end{aligned}
ight.$$

und

$$g(x) = \left\{ egin{aligned} x, ext{ falls } x \leq \sqrt{2} \,, \ x+1, ext{ falls } x > \sqrt{2} \,. \end{aligned}
ight.$$

Beide Funktionen sind streng wachsend und stimmen auf $\mathbb{R}\setminus\{\sqrt{2}\}$ und insbesondere auf \mathbb{Q} überein. Es ist aber $f(\sqrt{2})\neq g(\sqrt{2})$, so dass die beiden Funktionen verschieden sind.

Aufgabe (4 Punkte)

Wir betrachten Rechtecke mit dem konstanten Flächeninhalt c. Zeige, dass unter diesen Rechtecken das Quadrat den minimalen Umfang besitzt.

Lösung

Bei konstantem Flächeninhalt c ist das Rechteck durch die eine Seitenlänge $s \neq 0$ bestimmt, die andere Seitenlänge ist $\frac{c}{s}$ und der

Umfang ist $2\left(s+rac{c}{s}
ight)$. Für das Quadrat ist

$$s=rac{c}{s}=\sqrt{c}$$

mit Umfang $4\sqrt{c}$. Es ist also

$$2\sqrt{c} \le s + rac{c}{s}$$

zu zeigen. Dies ist äquivalent zu

$$4c \leq s^2 + \left(rac{c}{s}
ight)^2 + 2c$$

und zu

$$0 \le s^2 + \left(\frac{c}{s}\right)^2 - 2c$$

bzw. zu

$$s^4 + c^2 - 2cs^2 \geq 0$$
,

was wegen

$$s^4+c^2-2cs^2=(s^2-c)^2\geq 0$$

erfüllt ist.

Aufgabe (4 Punkte)

Wir betrachten die positiven reellen Zahlen \mathbb{R}_+ mit den Verknüpfungen

$$x \oplus y := x \cdot y$$

als neuer Addition und

$$x\otimes y:=e^{(\ln x)(\ln y)}$$

als neuer Multiplikation. Ist \mathbb{R}_+ mit diesen Verknüpfungen (und mit welchen neutralen Elementen) ein Körper?

Lösung

Wir betrachten die reelle Exponentialfunktion zur Basis $m{e}$, also die Abbildung

$$\varphi \colon \mathbb{R} \longrightarrow \mathbb{R}_+, z \longmapsto z^e.$$

Diese Abbildung ist bijektiv, da wir den Bildbereich entsprechend eingeschränkt haben, mit dem natürlichen Logarithmus als Umkehrabbildung. Unter dieser Abbildung gilt

$$egin{aligned} arphi(z+w) &= e^{w+z} \ &= e^w \cdot e^w \ &= arphi(w) \oplus arphi(z), \end{aligned}$$

d.h. die Addition + wird auf die neue Addition ⊕ abgebildet, und

$$egin{aligned} arphi(z\cdot w) &= e^{z\cdot w} \ &= e^{(\ln e^z)(\ln e^w)} \ &= e^z \otimes e^w \ &= arphi(z) \otimes arphi(w), \end{aligned}$$

d.h. die Multiplikation \cdot wird auf die neue Addition \otimes abgebildet. Unter dieser Abbildung bleiben alle Gesetzmäßigkeiten erhalten, deshalb ist \mathbb{R}_+ mit den neuen Verknüpfungen ebenfalls ein Körper. Die neutralen Elemente sind die Bilder der neutralen Elemente, d.h. die $\mathbf{1}$ ist neutrales Element der neuen Addition und \mathbf{e} ist neutrales Element der neuen Multiplikation.

Aufgabe (3 Punkte)

Es sei

$$f:\mathbb{R}\longrightarrow\mathbb{R}$$

eine differenzierbare Funktion. Zeige durch Induktion, dass für die n-fache Hintereinanderschaltung ($n \geq 1$)

$$f^{\circ n} = f \circ f \circ \cdots \circ f \ (n \text{ mal})$$

die Beziehung

$$(f^{\circ n})' = f' \cdot \prod_{i=1}^{n-1} \left(f' \circ f^{\circ i}
ight)$$

gilt.

Lösung

Der Induktionsanfang für n=1 ist gesichert wegen

$$f'=f'\cdot 1=f'\cdot \prod_{i=1}^0 \left(f'\circ f^{\circ i}
ight).$$

Sei die Aussage für die n-te Hintereinanderschaltung schon bewiesen. Dann gilt unter Verwendung der Kettenregel (mit f als äußerer und $f^{\circ n}$ als innerer Funktion) und der Induktionsvoraussetzung die Beziehung

$$egin{align} \left(f^{\circ n+1}
ight)' &= \left(f\circ f^{\circ n}
ight)' \ &= \left(f'\circ f^{\circ n}
ight)\cdot \left(f^{\circ n}
ight)' \ &= \left(f'\circ f^{\circ n}
ight)\cdot \left(f'\cdot \prod_{i=1}^{n-1}\left(f'\circ f^{\circ i}
ight)
ight) \ &= f'\cdot \prod_{i=1}^{n}\left(f'\circ f^{\circ i}
ight), \end{split}$$

was die Aussage beweist.

Aufgabe (2 Punkte)

Bestimme die Ableitung der Funktion

$$\ln: \mathbb{R}_+ \longrightarrow \mathbb{R}.$$

Lösung

Da der Logarithmus die Umkehrfunktion der Exponentialfunktion ist, können wir Satz 14.9 (Mathematik für Anwender (Osnabrück 2019-2020)) anwenden und erhalten mit Satz 16.3 (Mathematik für Anwender (Osnabrück 2019-2020))

$$\ln'(x)=rac{1}{\exp'(\ln x)}=rac{1}{\exp(\ln x)}=rac{1}{x}\,.$$

Aufgabe (0 Punkte)

Lösung / Aufgabe / Lösung

Aufgabe (3 Punkte)

Zeige, dass das lineare Gleichungssystem

$$5x - 7y - 4z = 0$$

$$2x + y - 3z = 0$$

$$7x + 6y - 2z = 0$$

nur die triviale Lösung (0,0,0) besitzt.

Lösung

Wir rechnen

$$II' = II - \frac{2}{5}I = \frac{19}{5}y - \frac{7}{5}z = 0$$

und

$$III' = III - \frac{7}{5}I = \frac{79}{5}y + \frac{18}{5}z = 0.$$

Somit ist

$$5 \cdot 79 \cdot II' - 5 \cdot 19 \cdot III' = (-7 \cdot 79 - 18 \cdot 19)z = -895z = 0$$
.

Daraus ergibt sich z=0, aus II' ergibt sich y=0 und aus I ergibt sich x=0.

Aufgabe (3 Punkte)

Es seien $A=(a_{ij})$ und $B=(b_{ij})$ quadratische Matrizen der Länge n. Es gelte $a_{ij}=0$ für $j\leq i+d$ und $b_{ij}=0$ für $j\leq i+e$ für gewisse $d,e\in\mathbb{Z}$. Zeige, dass die Einträge c_{ij} des Produktes AB die Bedingung $c_{ij}=0$ für $j\leq i+d+e+1$ erfüllen.

Lösung

Es ist

$$c_{ij} = \sum_{k=1}^n a_{ik} b_{kj} = \sum_{k=1}^{i+d} a_{ik} b_{kj} + \sum_{k=i+d+1}^n a_{ik} b_{kj} \,.$$

Die Summanden links sind gleich 0, da $a_{ik}=0$ für $k\leq i+d$ ist. Es sei nun $j\leq i+d+e+1$ vorausgesetzt. Dann gilt für die Indizes im rechten Summanden

$$i+d+1 \leq k$$

und

$$j \leq i + d + 1 + e \leq k + e,$$

also ist $b_{kj}=0$ und auch die rechten Summanden sind 0.

Aufgabe (5 Punkte)

Bestimme die Übergangsmatrizen $M^{\mathfrak{u}}_{\mathfrak{v}}$ und $M^{\mathfrak{v}}_{\mathfrak{u}}$ für die Standardbasis \mathfrak{u} und die durch die Vektoren

$$v_1=egin{pmatrix}1\4\5\end{pmatrix},\;v_2=egin{pmatrix}0\1\2\end{pmatrix}\;\mathrm{und}\;v_3=egin{pmatrix}-1\1\0\end{pmatrix}$$

gegebene Basis \mathfrak{v} im \mathbb{R}^3 .

Lösung

Es ist

$$M_{\mathfrak{u}}^{\mathfrak{v}} = egin{pmatrix} 1 & 0 & -1 \ 4 & 1 & 1 \ 5 & 2 & 0 \end{pmatrix}.$$

Für die umgekehrte Übergangsmatrix müssen wir diese Matrix invertieren. Es ist

$$egin{pmatrix} 1 & 0 & -1 \ 4 & 1 & 1 \ 5 & 2 & 0 \end{pmatrix} egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 5 \\ 0 & 2 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -5 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 5 \\ 0 & 0 & -5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 3 & -2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -4 & 1 & 0 \\ -\frac{3}{5} & \frac{2}{5} & -\frac{1}{5} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{2}{5} & \frac{2}{5} & -\frac{1}{5} \\ -1 & -1 & 1 \\ -\frac{3}{5} & \frac{2}{5} & -\frac{1}{5} \end{pmatrix}$$

Es ist also

$$M_{\mathfrak{v}}^{\mathfrak{u}} = \left(egin{array}{ccc} rac{2}{5} & rac{2}{5} & -rac{1}{5} \ -1 & -1 & 1 \ -rac{3}{5} & rac{2}{5} & -rac{1}{5} \end{array}
ight).$$

Aufgabe (3 Punkte)

Man gebe ein Beispiel für einen K-Vektorraum V und eine lineare Abbildung $\varphi:V\to V$, die injektiv, aber nicht surjektiv ist.

Lösung

Wir betrachten den Vektorraum $K^{(\mathbb{N})}$ mit der Basis e_n , $n \in \mathbb{N}$. Wir betrachten die durch den Festlegungssatz gegebene lineare Abbildung, die das Basiselement e_n auf e_{n+1} schickt. Dann wird e_0 nicht getroffen und die Abbildung ist daher nicht surjektiv. Eine Linearkombination $\sum a_n e_n$ wird dabei auf $\sum a_n e_{n+1}$ abgebildet, und dies ist nur dann 0, wenn alle Koeffizienten 0 sind. Somit ist nach dem Kernkriterium diese lineare Abbildung injektiv.

Aufgabe (3 Punkte)

Bestimme die Eigenwerte, Eigenvektoren und Eigenräume zu einer ebenen Drehung $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ zu einem Drehwinkel α , $0 < \alpha < 2\pi$, über \mathbb{C} .

Lösung

Das charakteristische Polynom ist

$$\det\left(X \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix}\right) = \det\begin{pmatrix} X - \cos\alpha & \sin\alpha \\ -\sin\alpha & X - \cos\alpha \end{pmatrix} = (X - \cos\alpha)^2 + \sin^2\alpha.$$

Die Nullstellen davon sind

$$x_1 = \cos \alpha + i \sin \alpha$$

und

 $x_2 = \cos \alpha - \mathrm{i} \sin \alpha$.

Zuletzt bearbeitet vor 2 Monaten von Marymay0609

>

Wikiversity

Der Inhalt ist verfügbar unter CC BY-SA 3.0 ℃, sofern nicht anders angegeben.

Datenschutz • Klassische Ansicht