Cours de bases de données

L'algèbre relationnelle

Par: Kamal BAL

Université AMOB de Bouira
Faculté des sciences et des sciences appliquées
Département d'informatique

L'Algèbre Relationnelle

 L'algèbre relationnelle est un ensemble d'opérateurs qui agissent sur des relations pour créer d'autres relations.

La maîtrise de l'algèbre relationnel est essentiel pour la compréhension du SQL et SGBDR.

L'Algèbre Relationnelle

Le résultat de toute opération de toute opération d'algèbre relationnelle est une relation.

Même si la relation résultante d'une opération n'a qu'une colonne/ligne, c'est encore un relation.

L'Algèbre relationnelle

Opérations de bases

- Jélection (σ)
 - Sélectionne un sous-ensemble des lignes d'une relation.
- Projection (π)
 - Efface des colonnes d'une relation [et élimine les doubles].
- Produit Cartésien (X)
 - Permet de combiner deux relations.
- Différence (-)
 - Elimine les tuples de R1 contenus dans R2
- Union (∪)
 - Constitue une relation R avec les tuples de R1 et ceux de R2
- Intersection (∩)
 - Constitue une relation R avec les n-uplets communs à R1 et R2

Algèbre relationnelle

Opérations additionnelles:

- \blacksquare Jointure ($|\times|$)
 - Combinaison de produit cartésien et sélection sur colonnes comparables (=, <, >, ...)
 - Chaque opération retournant une relation
 - Les opérations peuvent être composées!
 - L'algèbre est fermée.

L'Algèbre relationnelle

Trois opérations directement adaptées de la théorie des ensembles

Trois opérations spécifiques

L'Algèbre relationnelle

Trois opérations directement adaptées de la théorie des ensembles

L'union

- L'union des relations R1 et R2 de mêmes schémas, est la relation R3, toujours de même schéma, telle que :
- l'ensemble des tuples de R3 est l'union (sans doublons) de l'ensemble des tuples de R1 et de l'ensemble des tuples de R2.
- L'union est une opération commutative.
- Notations : R1 U R2, UNION(R1, R2)

L'union - Exemple

Acteur1	nom	prénom	datenaissance
	Braschi	Nicoletta	10/08/1960
	Depardieu	Gérard	27/12/1948
	Benigni	Roberto	27/10/1952
	Casta	Laetitia	11/05/1978
Acteur2	nom	prénom	datenaissance
	Blanc	Michel	16/04/1952
	Waits	Tom	NULL
	Clavier	Roberto	06/05/1952
	Casta	Laetitia	11/05/1978
	Depardieu	Gérard	27/12/1948
Acteur1	nom	prénom	datenaissance
0	Braschi	Nicoletta	10/08/1960
Acteur2	Depardieu	Gérard	27/12/1948
	Benigni	Roberto	27/10/1952
	Casta	Laetitia	11/05/1978
	Blanc	Michel	16/04/1952
	Waits	Tom	NULL
	Clavier	Roberto	06/05/1952

L'union – exemple

■ Union : Les relations doivent avoir le même schéma

PROFESSEUR

N°Ens	Nom	Prénom	Matière
12	CHARPIN	Françoise	Economie
15	THERY	Philippe	Droit
16	VOGEL	Louis	Droit
17	BALLE	Francis	Politique

MAITRE DE CONFERENCE

N°Ens	Nom	Prénom	Matière
5	BEL	Liliane	Mathématiques
8	TOPOR	Lucienne	Droit
58	SKALLI	Ali	Economie
67	BERGER	Maria	Informatique

Professeur ∪ **Maître de conférence**

N°Ens	Nom	Prénom	Matière
12	CHARPIN	Françoise	Economie
15	THERY	Philippe	Droit
16	VOGEL	Louis	Droit
17	BALLE	Francis	Politique
5	BEL	Liliane	Mathématiques
8	TOPOR	Lucienne	Droit
58	SKALLI	Ali	Economie
67	BERGER	Maria	Informatique

La différence

- La différence entre les relations R1 et R2 de mêmes schémas, est la relation R3, toujours de même schéma, telle que l'ensemble des tuples de R3 est l'ensemble des tuples de R1 auquel on a enlevé l'ensemble des tuples de R2.
- La différence n'est pas commutative.
- Notations: R1 R2 ou MINU\$ (R1, R2)

La différence -Exemple

Acteur1	nom	prénom	datenaissance
	Braschi	Nicoletta	10/08/1960
	Depardieu	Gérard	27/12/1948
	Benigni	Roberto	27/10/1952
	Casta	Laetitia	11/05/1978
Acteur2	nom	prénom	datenaissance
	Blanc	Michel	16/04/1952
	Waits	Tom	NULL
	Clavier	Roberto	06/05/1952
	Casta	Laetitia	11/05/1978
	Depardieu	Gérard	27/12/1948
Acteur1	nom	prénom	datenaissance
_	Braschi	Nicoletta	10/08/1960
Acteur2	Benigni	Roberto	27/10/1952

Le Produit cartésien de relations

- Le produit cartésien entre les relations R1 et R2 de schémas quelconques, consiste à construire une relation R3 qui a pour schéma la concaténation de ceux de R1 et R2, et donc par extension l'ensemble de toutes les combinaisons possibles entre les tuples de R1 et ceux de R2.
- Le produit cartésien de deux relations est une opération commutative
- Notations: R1 X R2, TIME\$(R1, R2), PRODUCT(R1, R2)

Exemple de produit cartésien

Pays	nom	capitale	monnaie
	Italie	Roma	3
	France	Paris	3
	Gabon	Libreville	6
	Bénin	Porto-Novo	6

Monnaie	num	nom
	1	Dollar US
	3	Euro
	6	Franc CFA

. ayo	
X	
Monnaie	M

Dave D

P.nom	capitale	monnaie	num	M.nom
Italie	Roma	3	1	Dollar US
France	Paris	3	1	Dollar US
Gabon	Libreville	6	1	Dollar US
Bénin	Porto-Novo	6	1	Dollar US
Italie	Roma	3	3	Euro
France	Paris	3	3	Euro
Gabon	Libreville	6	3	Euro
Bénin	Porto-Novo	6	3	Euro
Italie	Roma	3	6	Franc CFA
France	Paris	3	6	Franc CFA
Gabon	Libreville	6	6	Franc CFA
Bénin	Porto-Novo	6	6	Franc CFA

Exemple de produit cartésien

Coureur

Numéro coureur	Nom Coureur	Code équipe	Code pays
8	ULLRICH Jan	TEL	ALL
31	JALABERT Laurent	ONC	FRA
61	ROMINGER Tony	COF	SUI
91	BOARDMAN Chris	GAN	G-B

Pays

Code pays	Nom Pays
ALL	Allemagne
FRA	France

Coureur X Pays

Numéro coureur	Nom Coureur	Code équipe	Code Pays	Code pays	Nom Pays
8	ULLRICH Jan	TEL	ALL	ALL	Allemagne
8	ULLRICH Jan	TEL	ALL	FRA	France
31	JALABERT Laurent	ONC	FRA	ALL	Allemangne
31	JALABERT Laurent	ONC	FRA	FRA	France
61	ROMINGER Tony	COF	SUI	ALL	Allemagne
61	ROMINGER Tony	COF	SUI	FRA	France
91	BOARDMAN Chris	GAN	G-B	ALL	Allemagne
91	BOARDMAN Chris	GAN	G-B	FRA	France

Kamal BAL - Cours SGBD - Université Akli Mohand Oulhadj de Bouira - Février 2015

Opérations propre à l'algèbre relationnel

 Trois opérations spécifiques, essentielles à la mise en œuvre du modèle dans le cadre opératoire: Projection, Restriction (Sélection), Jointure

La projection

- Permet de ne retenir que quelques attributs d'une relation.
- Soit la relation **R1(a1, ..., an).**
- La projection de la relation R1 sur les attributs (a1, .., am), m<n, consiste à élaborer une relation R2, qui aura pour schéma le même que celui de R1 sauf les attributs (am+1, ..., an).
- Ainsi, la relation R2 en résultat aura la même extension que celle de R1, mais ses tuples auront des attributs en moins.
- La projection élimine les doubles.
- Notations : π(a1, ..., am)(R1),
 (R1)[a1, ..., am],
 PROJECT(R1, a1, ..., am)

Exemple de projection

Acteur	nom	prénom	datenaissance
	Braschi	Nicoletta	10/08/1960
	Depardieu	Gérard	27/12/1948
	Benigni Casta Blanc	Roberto Laetitia Michel	27/10/1952 11/05/1978 16/04/1952
	Waits Clavier	Tom Roberto	NULL 06/05/1952

 π (nom, prénom) Auteur

nom	prénom
Braschi	Nicoletta
Depardieu	Gérard
Benigni	Roberto
Casta	Laetitia
Blanc	Michel
Waits	Tom
Clavier	Roberto

La projection (exemple 2)

R	A	В	C
	a	d	1
	b	e	2
	c	f	3
	a	e	2

π(A,B) R	A	В
	a b c a	d e f e

π (A) R	A
	a b c

La projection (exemple 3)	Numéro coureur	Nom Coureur	Code équipe	Code pays
	8	ULLRICH Jan	TEL	ALL
	31	JALABERT Laurent	ONC	FRA
	61	ROMINGER Tony	COF	SUI
	91	BOARDMAN Chris	GAN	G-B
	114	CIPOLLINI Mario	SAE	ITA

Exemple : Noms et nationalités des coureurs ?

 $R = \pi$ (NomCoureur, Nationalité)COUREUR

= PROJECT(COUREURS, NomCoureur, Nationalité)

	Nom Coureur	Code pays
Deletion	ULLRICH Jan	ALL
Relation	JALABERT Laurent	FRA
résultat	ROMINGER Tony	SUI
	BOARDMAN Chris	G-B
	CIPOLLINI Mario	ITA

La restriction (sélection)

- Soit P un critère logique portant sur les attributs des tuples d'une relation R1.
- La restriction de la relation R1 à P consiste à élaborer une relation R2 qui ne gardera de R1 que les tuples satisfaisant le prédicat P.
- Critère de restriction : <attribut> <comparaison> <valeur>
- <comparaison> dans {=, <, >, ≤, ≥, ≠} + combinaison , Dialecte SQL : (LIKE, IN, NOT NULL, etc.) et application de fonctions sur opérandes
- Notations : O critère(R1)
 - ou RESTRICT(R1, critère)

La sélection (restriction)

Selection (restriction) : relation composée de n-uplets vérifiant

une condition

Quills sont les coureurs suisses?

Relation résultat

Numéro coureur	Nom Coureur	Code équipe	Code pays
8	ULLRICH Jan	TEL	ALL
31	JALABERT Laurent	ONC	FRA
61	ROMINGER Tony	COF	SUI
91	BOARDMAN Chris	GAN	G-B
114	CIPOLLINI Mario	SAE	ITA

$$R = \mathbf{O}_{\text{CodePays} = \text{"SUI"}}(\text{COUREUR})$$

Exemple de restriction

Acteur	nom	prénom	datenaissance
	Braschi	Nicoletta	10/08/1960
	Depardieu	Gérard	27/12/1948
	Benigni Casta Blanc	Roberto Laetitia Michel	27/10/1952 11/05/1978 16/04/1952
	Waits Clavier	Tom Roberto	NULL 06/05/1952

Acteurs nés avant 1978

R=
$$\sigma_{\text{datenaissance} < 1978}$$
(ACTEUR)

nom	prénom	datenaissance
Braschi	Nicoletta	10/08/1960
Depardieu	Gérard	27/12/1948
Benigni	Roberto	27/10/1952
Blanc	Michel	16/04/1952
Clavier	Roberto	06/05/1952

La jointure

- Opération majeure: Théoriquement, la jointure de deux relations est un produit cartésien entre ces deux relations, suivi de l'élimination de certains tuples ne satisfaisant pas un critère de comparaison entre deux colonnes du résultat du produit cartésien.
- C'est le seul opérateur exploitant les attributs référentiels interrelations (clé primaire, clé étrangère).
- Pas vraiment une opération de base : peut être définie à partir du produit cartésien et d'une restriction.

La jointure (suite)

- La jointure est une opération binaire entre deux relations R1 et R2 de schémas quelconques, qui permet d'associer, selon un critère donné portant sur au moins un attribut de chaque relation, les tuples de R1 et ceux de R2, afin de former une troisième relation R3 contenant l'ensemble de tous les tuples obtenus en concaténant chaque tuple de R1 et chaque tuple de R2 si ces deux tuples vérifient, ensemble, la condition d'association.
- a1 et a2 des attributs respectivement de R1 et R2 : critère de jointure de la forme : a1 θ a2.
- L'opérateur θ est un opérateur de comparaison

Jointure (suite)

- R a n attributs et t tuples, R' a n' attributs et t' tuples :
- JOIN(R, R', θ) à n+n' attributs et au max t * t' tuples.
- JOIN(R, R', θ) = RESTRICT((R X R'), θ)
- Trois types de jointures:
 - \blacksquare θ -jointure (θ critère de comparaison autre que '=')
 - equi-jointure : jointure entre 2 relations avec critère d'égalité
 (=) .
 - Jointure naturelle : jointure entre 2 relations avec critère d'égalité (equi-jointure) entre 2 attributs de même noms et fusion des colonnes de même nom(s).

Jointure - Exemple

Pays	nom	capitale	monnaie
	Italie	Roma	3
	France	Paris	3
	Gabon	Libreville	6
	Bénin	Porto-Novo	6

Monnaie	num	nom
	1	Dollar US
	3	Euro
	6	Franc CFA

(a) Pays P Monnaie M
P.monnaie = M.num

P.nom	capitale	monnaie	num	M.nom
Italie	Roma	3	3	Euro
France	Paris	3	3	Euro
Gabon	Libreville	6	6	Franc CFA
Bénin	Porto-Novo	6	6	Franc CFA

JOIN (PAYS, MONNAIE, pays.monnaie = monnaie.num)

La jointure

■ Jointure :

JOIN (COUREURS, PAYS, COUREURS.codePays = Pays.CodePays))

Numéro coureur	Nom Coureur	Code équipe	Code pays
8	ULLRICH Jan	TEL	ALL
31	JALABERT Laurent	ONC	FRA
61	ROMINGER Tony	COF	SUI
91	BOARDMAN Chris	GAN	G-B

Payx	
Code	Nom Pays
pays	
ALL	Allemagne
FRA	France
SUI	Suisse
G-B	Grande - Bretagne

Coureur

Numéro coureur	Nom Coureur	Code équipe	Code pays	Nom Pays
8	ULLRICH Jan	TEL	ALL	Allemagne
31	JALABERT Laurent	ONC	FRA	France
61	ROMINGER Tony	COF	SUI	Suisse
91	BOARDMAN Chris	GAN	G-B	Grande - Bretagne

L'algèbre relationnelle La θ jointure (1) (téta jointure)

La θ jointure de deux relations R et 5 selon une qualification (condition) θ est l'ensemble des Tuples du produit cartésien R qui satisfont à la qualification θ .

Il s'agit donc de la Restriction selon θ de R x S, c'est à dire σ θ (R X S)

Notation: $JOIN(R, S, \theta)$

Ou

Représentation graphique :

L'algèbre relationnelle La θ jointure (2)

R	A	В	С
	a	d	b
	b	e	g
	c	f	c

S	D	E
	f b	d e

JOIN (R,S, B<d !="C</b" a="" et=""></d>	A	В	C	D	E
	a	d	b	f	d
	b	e	g	f	d

L'algèbre relationnelle L'équi-jointure

L'équi-jointure de deux relations R et S est une q jointure avec pour qualification

Q l'égalité entre deux colonnes, c'est-à-dire :

avec Ai et Bj, deux attributs de R et de S respectivement

R	A	В	C
	a	d	d
	b	e	g
	c	f	c

S	D	E
	d b	f e

JOIN (R, S, B=D)	A	В	C	D	E
	a	d	d	d	f

L'algèbre relationnelle La jointure naturelle (1)

La jointure naturelle de deux relations R et S est une équi-jointure sur tous les attributs de même nom dans R et dans S, suivie de la projection qui permet de ne conserver qu'un seul des ces attributs égaux de même nom.

Notation: R ou joint (R,S)

Représentation graphique :

L'algèbre relationnelle La jointure naturelle (2)

R	A	В	С
	a	d	s
	b	e	g
	c	f	c

S	A	В	D
	a a c	d d f	d g c

$R \bowtie S$	A	В	С	D
	a	d	S	d
	a	d	S	g
	c	f	C	c

L'opération de jointure est très coûteuse :

- Proportionnelle au nombre de n-uplets (m*n pour deux relations jointes)
- il est toujours préférable de faire les restrictions le plus tôt possible afin de manipuler des tables les plus réduites possibles.

