Online Learning

- Online (Sub-)Gradient Descent with Strong Convexity

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Spring 2023

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan: https://lucatrevisan.github.io/40391/index.html

the lectures of Prof. Shipra Agrawal: https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona: https://parameterfree.com/lecture-notes-on-online-learning/the monograph: https://arxiv.org/abs/1912.13213

and also Elad Hazan's textbook: Introduction to Online Convex Optimization, 2nd Edition.

Outline

Strong Convexity

Online (Sub-)Gradient Descent for Strongly Convex Losses

Strongly Convex Function

Let $\mu \geq 0$. A function $f : \mathbb{R}^d \mapsto (-\infty, +\infty]$ is μ -strongly convex over a convex set $V \subseteq \text{dom}(\partial f)$ w.r.t. $\|\cdot\|$ if

$$\forall \mathbf{x}, \mathbf{y} \in V, \mathbf{g} \in \partial f(\mathbf{x}), \ f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle + \frac{u}{2} \|\mathbf{x} - \mathbf{y}\|^2.$$

Strongly Convex Function

Let $\mu \geq 0$. A function $f : \mathbb{R}^d \mapsto (-\infty, +\infty]$ is μ -strongly convex over a convex set $V \subseteq \text{dom}(\partial f)$ w.r.t. $\|\cdot\|$ if

$$\forall \mathbf{x}, \mathbf{y} \in V, \mathbf{g} \in \partial f(\mathbf{x}), \ f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle + \frac{u}{2} \|\mathbf{x} - \mathbf{y}\|^2.$$

• Taylor series up to the quadratic term.

Strongly Convex Function

Let $\mu \geq 0$. A function $f : \mathbb{R}^d \mapsto (-\infty, +\infty]$ is μ -strongly convex over a convex set $V \subseteq \text{dom}(\partial f)$ w.r.t. $\|\cdot\|$ if

$$\forall \mathbf{x}, \mathbf{y} \in V, \mathbf{g} \in \partial f(\mathbf{x}), \ f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle + \frac{u}{2} \|\mathbf{x} - \mathbf{y}\|^2.$$

- Taylor series up to the quadratic term.
- For twice differentiable functions, we have the following theorem, which is useful.

Theorem [Shalev-Shwartz, 2007]

Let $V \subseteq \mathbb{R}^d$ be a convex set and $f: V \mapsto \mathbb{R}$ be a twice differentiable function. Then f is μ -strongly convex in V w.r.t. $\|\|$ if for all $\mathbf{x}, \mathbf{y} \in V$, we have

$$\langle \nabla^2 f(\mathbf{x}) \mathbf{y}, \mathbf{y} \rangle \ge \mu \|\mathbf{y}\|^2$$

where $\nabla^2 f(\mathbf{x})$ is the Hessian matrix of f at \mathbf{x} .

- That is, $\nabla^2 f(\mathbf{x}) \succeq \mu I$.
- Further readings: [link].

Strong Convexity is Additive

Theorem

Given two functions f,g which are strongly convex in a non-empty convex set $V\subseteq \operatorname{int} \operatorname{dom}(f)\cap \operatorname{int} \operatorname{dom}(g)$ w.r.t. $\|\cdot\|$, and

- ullet $f:\mathbb{R}^d\mapsto\mathbb{R}$ is μ_1 -strongly convex
- ullet $g:\mathbb{R}^d\mapsto\mathbb{R}$ is μ_2 -strongly convex

Then, f + g is $(\mu_1 + \mu_2)$ -strongly convex in V w.r.t. $\|\cdot\|$.

An Exericse

Exercise

Show that $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$ is 1-strongly convex w.r.t. $\|\cdot\|_2$ in \mathbf{R}^d .

An Exericse

Exercise

Show that $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$ is 1-strongly convex w.r.t. $\|\cdot\|_2$ in \mathbf{R}^d .

• Hint: Apply the theorem by Shalev & Shwartz.

Outline

Strong Convexity

Online (Sub-)Gradient Descent for Strongly Convex Losses

Recall: Online (Sub-)Gradient Descent (GD)

- **1 Input:** convex set V, T, $\mathbf{x}_1 \in V$, step size $\{\eta_t\}$.
- **2** for $t \leftarrow 1$ to T do:
 - 1 Play \mathbf{x}_t and observe cost $f_t(\mathbf{x}_t)$.
 - Opposite and Project:

$$\mathbf{y}_{t+1} = \mathbf{x}_t - \eta_t \mathbf{g}_t$$
, for $\mathbf{g}_t \in \partial f_t(\mathbf{x}_t)$
 $\mathbf{x}_{t+1} = \Pi_{\mathcal{K}}(\mathbf{y}_{t+1})$

end for

- Consider $\|\cdot\| = \|\cdot\|_2$.
- For a fixed $\mathbf{u} \in V$, we have

$$\begin{aligned} \|\mathbf{x}_{t+1} - \mathbf{u}\|^2 - \|\mathbf{x}_t - \mathbf{u}\|^2 & \leq & \|\mathbf{x}_t - \eta_t \mathbf{g}_t - \mathbf{u}\|^2 - \|\mathbf{x}_t - \mathbf{u}\|^2 \\ & = & -2\eta_t \langle \mathbf{g}_t, \mathbf{x}_t - \mathbf{u} \rangle + \eta_t^2 \|\mathbf{g}_t\|^2 \\ & \leq & -2\eta_t (f_t(\mathbf{x}_t) - f_t(\mathbf{u})) + \eta_t^2 \|\mathbf{g}_t\|^2. \end{aligned}$$

- Consider $\|\cdot\| = \|\cdot\|_2$.
- For a fixed $\mathbf{u} \in V$, we have

$$\begin{aligned} \|\mathbf{x}_{t+1} - \mathbf{u}\|^2 - \|\mathbf{x}_t - \mathbf{u}\|^2 & \leq & \|\mathbf{x}_t - \eta_t \mathbf{g}_t - \mathbf{u}\|^2 - \|\mathbf{x}_t - \mathbf{u}\|^2 \\ & = & -2\eta_t \langle \mathbf{g}_t, \mathbf{x}_t - \mathbf{u} \rangle + \eta_t^2 \|\mathbf{g}_t\|^2 \\ & \leq & -2\eta_t (f_t(\mathbf{x}_t) - f_t(\mathbf{u})) + \eta_t^2 \|\mathbf{g}_t\|^2. \end{aligned}$$

Hence we derive that

$$f_t(\mathbf{x}_t) - f_t(\mathbf{u}) \leq \langle \mathbf{g}_t, \mathbf{x}_t - \mathbf{u} \rangle$$

- Consider $\|\cdot\| = \|\cdot\|_2$.
- For a fixed $\mathbf{u} \in V$, we have

$$\begin{aligned} \|\mathbf{x}_{t+1} - \mathbf{u}\|^2 - \|\mathbf{x}_t - \mathbf{u}\|^2 & \leq & \|\mathbf{x}_t - \eta_t \mathbf{g}_t - \mathbf{u}\|^2 - \|\mathbf{x}_t - \mathbf{u}\|^2 \\ & = & -2\eta_t \langle \mathbf{g}_t, \mathbf{x}_t - \mathbf{u} \rangle + \eta_t^2 \|\mathbf{g}_t\|^2 \\ & \leq & -2\eta_t (f_t(\mathbf{x}_t) - f_t(\mathbf{u})) + \eta_t^2 \|\mathbf{g}_t\|^2. \end{aligned}$$

Hence we derive that

$$f_t(\mathbf{x}_t) - f_t(\mathbf{u}) \leq \langle \mathbf{g}_t, \mathbf{x}_t - \mathbf{u} \rangle$$

$$\leq \frac{1}{2n_t} \|\mathbf{x}_t - \mathbf{u}\|^2 - \frac{1}{2n_t} \|\mathbf{x}_{t+1} - \mathbf{u}\|^2 + \frac{\eta_t}{2} \|\mathbf{g}_t\|^2.$$

- Consider $\|\cdot\| = \|\cdot\|_2$.
- For a fixed $\mathbf{u} \in V$, we have

$$\begin{aligned} \|\mathbf{x}_{t+1} - \mathbf{u}\|^2 - \|\mathbf{x}_t - \mathbf{u}\|^2 &\leq \|\mathbf{x}_t - \eta_t \mathbf{g}_t - \mathbf{u}\|^2 - \|\mathbf{x}_t - \mathbf{u}\|^2 \\ &= -2\eta_t \langle \mathbf{g}_t, \mathbf{x}_t - \mathbf{u} \rangle + \eta_t^2 \|\mathbf{g}_t\|^2 \\ &\leq -2\eta_t (f_t(\mathbf{x}_t) - f_t(\mathbf{u})) + \eta_t^2 \|\mathbf{g}_t\|^2. \end{aligned}$$

Hence we derive that

$$f_t(\mathbf{x}_t) - f_t(\mathbf{u}) \leq \langle \mathbf{g}_t, \mathbf{x}_t - \mathbf{u} \rangle$$

$$\leq \frac{1}{2\eta_t} \|\mathbf{x}_t - \mathbf{u}\|^2 - \frac{1}{2\eta_t} \|\mathbf{x}_{t+1} - \mathbf{u}\|^2 + \frac{\eta_t}{2} \|\mathbf{g}_t\|^2.$$

- Suppose $f_t : \mathbb{R}^d \mapsto \mathbb{R}$ is μ_t -strongly convex w.r.t. $\|\cdot\|_2$ over $V \subseteq \operatorname{int} \operatorname{dom}(f_t)$ for $\mu_t > 0$, $\forall t$.
- The strong convexity leads to

$$f_t(\mathbf{x}_t) - f_t(\mathbf{u}) \le \langle \mathbf{g}_t, \mathbf{x}_t - \mathbf{u} \rangle - \frac{\mu_t}{2} \|\mathbf{x}_t - \mathbf{u}\|^2.$$

- We can set the learning rate adaptively by $\eta_t = 1/(\sum_{i=1}^t \mu_i)$.
- So we have

$$\begin{array}{lcl} \frac{1}{2\eta_1} - \frac{\mu_1}{2} & = & 0 \\ \\ \frac{1}{2\eta_t} - \frac{\mu_t}{2} & = & \frac{1}{2\eta_{t-1}}, \ \text{for} \ t \geq 2. \end{array}$$

- We can set the learning rate adaptively by $\eta_t = 1/(\sum_{i=1}^t \mu_i)$.
- So we have

$$\begin{array}{lcl} \frac{1}{2\eta_1} - \frac{\mu_1}{2} & = & 0 \\ \\ \frac{1}{2\eta_t} - \frac{\mu_t}{2} & = & \frac{1}{2\eta_{t-1}}, \ \text{for} \ t \geq 2. \end{array}$$

* The learning rate is getting smaller with time.

$$\sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{u})) \leq \sum_{t=1}^{T} \left(\langle \mathbf{g}_t, \mathbf{x}_t - \mathbf{u} \rangle - \frac{\mu_t}{2} \|\mathbf{x}_t - \mathbf{u}\|^2 \right)$$

$$\begin{split} & \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{u})) \leq \sum_{t=1}^{T} \left(\langle \mathbf{g}_t, \mathbf{x}_t - \mathbf{u} \rangle - \frac{\mu_t}{2} \|\mathbf{x}_t - \mathbf{u}\|^2 \right) \\ \leq & \sum_{t=1}^{T} \left(\frac{1}{2\eta_t} \|\mathbf{x}_t - \mathbf{u}\|^2 - \frac{1}{2\eta_t} \|\mathbf{x}_{t+1} - \mathbf{u}\|^2 + \frac{\eta_t}{2} \|\mathbf{g}_t\|^2 - \frac{\mu_t}{2} \|\mathbf{x}_t - \mathbf{u}\|^2 \right) \end{split}$$

$$\begin{split} & \sum_{t=1}^{T} (f_{t}(\mathbf{x}_{t}) - f_{t}(\mathbf{u})) \leq \sum_{t=1}^{T} \left(\langle \mathbf{g}_{t}, \mathbf{x}_{t} - \mathbf{u} \rangle - \frac{\mu_{t}}{2} \|\mathbf{x}_{t} - \mathbf{u}\|^{2} \right) \\ \leq & \sum_{t=1}^{T} \left(\frac{1}{2\eta_{t}} \|\mathbf{x}_{t} - \mathbf{u}\|^{2} - \frac{1}{2\eta_{t}} \|\mathbf{x}_{t+1} - \mathbf{u}\|^{2} + \frac{\eta_{t}}{2} \|\mathbf{g}_{t}\|^{2} - \frac{\mu_{t}}{2} \|\mathbf{x}_{t} - \mathbf{u}\|^{2} \right) \\ = & -\frac{1}{2\eta_{1}} \|\mathbf{x}_{2} - \mathbf{u}\|^{2} + \sum_{t=2}^{T} \left(\frac{1}{2\eta_{t-1}} \|\mathbf{x}_{t} - \mathbf{u}\|^{2} - \frac{1}{2\eta_{t}} \|\mathbf{x}_{t+1} - \mathbf{u}\|^{2} \right) \\ & + \sum_{t=1}^{T} \frac{\eta_{t}}{2} \|\mathbf{g}_{t}\|^{2} \end{split}$$

$$\begin{split} & \sum_{t=1}^{T} (f_{t}(\mathbf{x}_{t}) - f_{t}(\mathbf{u})) \leq \sum_{t=1}^{T} \left(\langle \mathbf{g}_{t}, \mathbf{x}_{t} - \mathbf{u} \rangle - \frac{\mu_{t}}{2} \|\mathbf{x}_{t} - \mathbf{u}\|^{2} \right) \\ & \leq & \sum_{t=1}^{T} \left(\frac{1}{2\eta_{t}} \|\mathbf{x}_{t} - \mathbf{u}\|^{2} - \frac{1}{2\eta_{t}} \|\mathbf{x}_{t+1} - \mathbf{u}\|^{2} + \frac{\eta_{t}}{2} \|\mathbf{g}_{t}\|^{2} - \frac{\mu_{t}}{2} \|\mathbf{x}_{t} - \mathbf{u}\|^{2} \right) \\ & = & -\frac{1}{2\eta_{1}} \|\mathbf{x}_{2} - \mathbf{u}\|^{2} + \sum_{t=2}^{T} \left(\frac{1}{2\eta_{t-1}} \|\mathbf{x}_{t} - \mathbf{u}\|^{2} - \frac{1}{2\eta_{t}} \|\mathbf{x}_{t+1} - \mathbf{u}\|^{2} \right) \\ & + \sum_{t=1}^{T} \frac{\eta_{t}}{2} \|\mathbf{g}_{t}\|^{2} \\ & \leq & \sum_{t=1}^{T} \frac{\eta_{t}}{2} \|\mathbf{g}_{t}\|^{2}. \end{split}$$

- Further assumptions:
 - $\mu_t = \mu > 0$ for all t.
 - f_t is L-Lipschitz w.r.t. $\|\cdot\| = \|\cdot\|_2$ for all t.
 - Set the learning rate adaptively by $\eta_t = 1/(\sum_{i=1}^t \mu_i)$.

- Further assumptions:
 - $\mu_t = \mu > 0$ for all t.
 - f_t is L-Lipschitz w.r.t. $\|\cdot\| = \|\cdot\|_2$ for all t.
 - Set the learning rate adaptively by $\eta_t = 1/(\sum_{i=1}^t \mu_i)$.
- Then we have

$$\sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{u})) \leq \sum_{t=1}^{T} \frac{\eta_t}{2} \|\mathbf{g}_t\|^2
= \sum_{t=1}^{T} \frac{1}{2 \sum_{i=1}^{t} \mu_i} \|\mathbf{g}_t\|^2
\leq \frac{L^2}{2\mu} (1 + \ln T).$$

Discussions