Introduction to Logic (CS)

Answers Exam of 8 November 2019

1. (a) $D \wedge (\neg R \rightarrow \neg I)$

D: It is dark outside.

I: I will remain inside.

R: It is raining.

(b) $S \to (G \land \neg N)$

S: We call it a success.

G: There are many guests.

N: The neighbours complain.

2. (a)
$$(a = b(c) \lor d = b(c)) \land c = b(a) \land c = b(d)$$

(b)
$$\forall x (b(x) = a \rightarrow (x = b(a) \lor x = b(d) \lor x = b(c)))$$

(c)
$$\exists x \forall y (x = y \leftrightarrow b(y) = c)$$

or $\exists x (b(x) = c \land \forall y (b(y) = c \rightarrow x = y))$
or $\exists x \ b(x) = c \land \forall x \forall y ((b(x) = c \land b(y) = c) \rightarrow x = y)$

3. (a)

P	Q	(<i>P</i>	\wedge	\neg	Q)	\leftrightarrow	(P	\rightarrow	Q)
Т	Т	Т	F	F	Т	F	Т	Т	Т
Т	F	T	Τ	Τ	F	F	Τ	F	F
F	Т	F	F	F	Т	F	F	Т	Т
F	F	F	F	Т	F	F	F	T	F
1	2	3	8	7	4	10	5	9	6

The numbers in the last row indicate the order in which the columns are computed. The final column (numbered 10) contains only the value F, so the sentence is a *contradiction*.

(b)

P	Q	R	(P	\vee	Q)	\leftrightarrow	\neg	R)	\Leftrightarrow	\neg	(R	\wedge	(P	\rightarrow	Q))
Т	Т	Т	T	Т	Т	F	F	Т	Т	F	Т	Т	Т	Т	Т
Τ	Т	F	Т	Т	Τ	Т	Т	F	Т	Т	F	F	Τ	Т	Τ
Т	F	T	T	Т	F	F	F	Τ	F	Т	Τ	F	Т	F	F
Т	F	F	T	Т	F	Т	Т	F	Т	Т	F	F	Т	F	F
F	Т	T	F	Т	Т	F	F	Т	Т	F	Т	Т	F	Т	Т
F	Т	F	F	Т	Т	Т	Т	F	Т	Т	F	F	F	Т	Т
F	F	Т	F	F	F	Т	F	Т	F	F	Т	Т	F	Т	F
F	F	F	F	F	F	F	Τ	F	F	Т	F	F	F	Т	F
1	2	3	4	10	5	12	11	6	16	15	7	14	8	13	9

The numbers in the last row indicate the order in which the columns are computed. The final column (numbered 16) contains the value F in the 3rd, 7th and 8th row, so the sentences are not tautologically equivalent.

(c)
$$\begin{bmatrix} 1. \ \forall x \exists y (\neg P(x) \leftrightarrow P(y)) \\ 2. \ \exists y (\neg P(a) \leftrightarrow P(y)) \\ 3. \ \boxed{b} \ \neg P(a) \leftrightarrow P(b) \\ 4. \ a = b \\ 5. \ \neg P(b) \leftrightarrow P(b) \\ \hline \begin{bmatrix} 6. \ P(b) \\ 7. \ \neg P(b) \\ 8. \ \bot \\ \end{bmatrix}$$
 \Rightarrow Elim: 3, 4
$$\Rightarrow$$
 Elim: 5, 6
$$\Rightarrow$$
 Lantro: 6, 7
$$\Rightarrow$$
 9.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b) \Rightarrow$$
 12.
$$\Rightarrow P(b) \Rightarrow$$
 12.
$$\Rightarrow P(b) \Rightarrow$$
 13.
$$\Rightarrow P(b) \Rightarrow$$
 14.
$$\Rightarrow P(b) \Rightarrow$$
 15.
$$\Rightarrow P(b) \Rightarrow$$
 16.
$$\Rightarrow P(b) \Rightarrow$$
 17.
$$\Rightarrow P(b) \Rightarrow$$
 18.
$$\Rightarrow P(b) \Rightarrow$$
 19.
$$\Rightarrow P(b) \Rightarrow$$
 19.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b) \Rightarrow$$
 12.
$$\Rightarrow P(b) \Rightarrow$$
 13.
$$\Rightarrow P(b) \Rightarrow$$
 14.
$$\Rightarrow P(b) \Rightarrow$$
 15.
$$\Rightarrow P(b) \Rightarrow$$
 16.
$$\Rightarrow P(b) \Rightarrow$$
 17.
$$\Rightarrow P(b) \Rightarrow$$
 18.
$$\Rightarrow P(b) \Rightarrow$$
 18.
$$\Rightarrow P(b) \Rightarrow$$
 19.
$$\Rightarrow P(b) \Rightarrow$$
 19.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b) \Rightarrow$$
 12.
$$\Rightarrow P(b) \Rightarrow$$
 13.
$$\Rightarrow P(b) \Rightarrow$$
 14.
$$\Rightarrow P(b) \Rightarrow$$
 15.
$$\Rightarrow P(b) \Rightarrow$$
 16.
$$\Rightarrow P(b) \Rightarrow$$
 17.
$$\Rightarrow P(b) \Rightarrow$$
 18.
$$\Rightarrow P(b) \Rightarrow$$
 18.
$$\Rightarrow P(b) \Rightarrow$$
 19.
$$\Rightarrow P(b) \Rightarrow$$
 19.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b) \Rightarrow$$
 12.
$$\Rightarrow P(b) \Rightarrow$$
 13.
$$\Rightarrow P(b) \Rightarrow$$
 14.
$$\Rightarrow P(b) \Rightarrow$$
 15.
$$\Rightarrow P(b) \Rightarrow$$
 16.
$$\Rightarrow P(b) \Rightarrow$$
 17.
$$\Rightarrow P(b) \Rightarrow$$
 18.
$$\Rightarrow P(b) \Rightarrow$$
 19.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b) \Rightarrow$$
 12.
$$\Rightarrow P(b) \Rightarrow$$
 13.
$$\Rightarrow P(b) \Rightarrow$$
 14.
$$\Rightarrow P(b) \Rightarrow$$
 15.
$$\Rightarrow P(b) \Rightarrow$$
 16.
$$\Rightarrow P(b) \Rightarrow$$
 17.
$$\Rightarrow P(b) \Rightarrow$$
 18.
$$\Rightarrow P(b) \Rightarrow$$
 19.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b) \Rightarrow$$
 12.
$$\Rightarrow P(b) \Rightarrow$$
 13.
$$\Rightarrow P(b) \Rightarrow$$
 14.
$$\Rightarrow P(b) \Rightarrow$$
 15.
$$\Rightarrow P(b) \Rightarrow$$
 16.
$$\Rightarrow P(b) \Rightarrow$$
 17.
$$\Rightarrow P(b) \Rightarrow$$
 18.
$$\Rightarrow P(b) \Rightarrow$$
 19.
$$\Rightarrow P(b) \Rightarrow$$
 19.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b) \Rightarrow$$
 12.
$$\Rightarrow P(b) \Rightarrow$$
 13.
$$\Rightarrow P(b) \Rightarrow$$
 14.
$$\Rightarrow P(b) \Rightarrow$$
 15.
$$\Rightarrow P(b) \Rightarrow$$
 17.
$$\Rightarrow P(b) \Rightarrow$$
 18.
$$\Rightarrow P(b) \Rightarrow$$
 19.
$$\Rightarrow P(b) \Rightarrow$$
 19.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b) \Rightarrow$$
 12.
$$\Rightarrow P(b) \Rightarrow$$
 13.
$$\Rightarrow P(b) \Rightarrow$$
 13.
$$\Rightarrow P(b) \Rightarrow$$
 14.
$$\Rightarrow P(b) \Rightarrow$$
 15.
$$\Rightarrow P(b) \Rightarrow$$
 16.
$$\Rightarrow P(b) \Rightarrow$$
 17.
$$\Rightarrow P(b) \Rightarrow$$
 18.
$$\Rightarrow P(b) \Rightarrow$$
 19.
$$\Rightarrow P(b) \Rightarrow$$
 19.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 10.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b) \Rightarrow$$
 11.
$$\Rightarrow P(b$$

5. (a)
$$\mathfrak{M} \models (Q(a) \to \forall x R(b,x))[h]$$

$$\Leftrightarrow \qquad \{ \text{ definition of satisfaction for implication } \}$$

$$\mathfrak{M} \not\models Q(a)[h] \text{ or } \mathfrak{M} \models \forall x R(b,x)[h]$$

$$\Leftrightarrow \qquad \{ \text{ definition of satisfaction for universal quantification } \}$$

$$\mathfrak{M} \not\models Q(a)[h] \text{ or for all } d \in \mathfrak{M}(\forall) \ \mathfrak{M} \models R(b,x)[h[x/d]]$$

$$\Leftrightarrow \qquad \{ \text{ definition of satisfaction for atomic formulae } \}$$

$$\llbracket a \rrbracket_h^{\mathfrak{M}} \not\in \mathfrak{M}(Q) \text{ or for all } d \in \mathfrak{M}(\forall) \ \langle \llbracket b \rrbracket_{h[x/d]}^{\mathfrak{M}}, \llbracket x \rrbracket_{h[x/d]}^{\mathfrak{M}} \rangle \in \mathfrak{M}(R)$$

$$\Leftrightarrow \qquad \{ \llbracket a \rrbracket_h^{\mathfrak{M}} = \mathfrak{M}(a) = 3, \llbracket b \rrbracket_{h[x/d]}^{\mathfrak{M}} = \mathfrak{M}(b) = 1, \llbracket x \rrbracket_{h[x/d]}^{\mathfrak{M}} = d,$$

$$\text{ definition of } \mathfrak{M}(Q), \mathfrak{M}(R) \text{ and } \mathfrak{M}(\forall) \}$$

$$3 \not\in \{1,3\} \text{ or for all } d \in \{1,2,3\} \ \langle 1,d \rangle \in \{\langle 1,1 \rangle, \langle 1,2 \rangle, \langle 2,3 \rangle, \langle 3,1 \rangle\}$$

$$\Leftrightarrow \qquad \{ \text{ elementary set theory } \}$$

$$\text{ false or } \{\langle 1,1 \rangle, \langle 1,2 \rangle, \langle 1,3 \rangle\} \subseteq \{\langle 1,1 \rangle, \langle 1,2 \rangle, \langle 2,3 \rangle, \langle 3,1 \rangle\}$$

$$\Leftrightarrow \qquad \{ \text{ elementary set theory } \}$$

$$\text{ false or false } \Leftrightarrow \text{ false}$$

```
(b)
             \mathfrak{M} \models (R(b,a) \vee \exists x (P(x) \wedge Q(x)))[h]
                     { definition of satisfaction for disjunction }
             \mathfrak{M} \models R(b,a)[h] \text{ or } \mathfrak{M} \models \exists x (P(x) \land Q(x))[h]
                     { definition of satisfaction for existential quantification }
             \mathfrak{M} \models R(b,a)[h] \text{ or for some } d \in \mathfrak{M}(\forall) \ \mathfrak{M} \models (P(x) \land Q(x))[h[x/d]]
                     { definition of satisfaction for conjunction }
             \mathfrak{M} \models R(b,a)[h] or for some d \in \mathfrak{M}(\forall) (\mathfrak{M} \models P(x)[h[x/d]] and \mathfrak{M} \models Q(x)[h[x/d]])
                     { definition of satisfaction for atomic formulae }
             \langle \llbracket b \rrbracket_h^{\mathfrak{M}}, \llbracket a \rrbracket_h^{\mathfrak{M}} \rangle \in \mathfrak{M}(R) \text{ or for some } d \in \mathfrak{M}(\forall) \ (\llbracket x \rrbracket_{h[x/d]}^{\mathfrak{M}} \in \mathfrak{M}(P) \text{ and } \llbracket x \rrbracket_{h[x/d]}^{\mathfrak{M}} \in \mathfrak{M}(Q) \ )
                     \{\ [\![b]\!]_h^{\mathfrak{M}} = \mathfrak{M}(b) = 1,\ [\![a]\!]_h^{\mathfrak{M}} = \mathfrak{M}(a) = 3,\ [\![x]\!]_{h[x/d]}^{\mathfrak{M}} = d,
                             definition of \mathfrak{M}(P), \mathfrak{M}(Q) and \mathfrak{M}(R)
             \langle 1,3\rangle \in \{\langle 1,1\rangle,\langle 1,2\rangle,\langle 2,3\rangle,\langle 3,1\rangle\} \text{ or for some } d \in \mathfrak{M}(\forall) \ (d \in \{2\} \text{ and } d \in \{1,3\})
                     { elementary set theory, \{2\} \cap \{1,3\} = \emptyset }
             false or for some d \in \mathfrak{M}(\forall) d \in \emptyset
                     { elementary set theory}
             false or false \Leftrightarrow false
             \mathfrak{M} \models \forall x \exists y (R(x,y) \land \neg (x=y))[h]
(c)
                     { definition of satisfaction for universal quantification }
             for all d \in \mathfrak{M}(\forall): \mathfrak{M} \models \exists y (R(x,y) \land \neg (x=y))[h[x/d]]
                     { definition of satisfaction for existential quantification }
       \Leftrightarrow
             for all d \in \mathfrak{M}(\forall) there is an e \in \mathfrak{M}(\forall) with \mathfrak{M} \models (R(x,y) \land \neg(x=y))[h[x/d,y/e]]
                     { definition of satisfaction for conjunction and for negation }
             for all d \in \mathfrak{M}(\forall) there is an e \in \mathfrak{M}(\forall) with
                             (\mathfrak{M} \models R(x,y)[h[x/d,y/e]] \text{ and } \mathfrak{M} \not\models x = y[h[x/d,y/e]])
       \Leftrightarrow
                     { definition of satisfaction for atomic formulae }
             for all d \in \mathfrak{M}(\forall) there is an e \in \mathfrak{M}(\forall) with
                             (\langle [x]]_{h[x/d,y/e]}^{\mathfrak{M}}, [y]_{h[x/d,y/e]}^{\mathfrak{M}} \rangle \in \mathfrak{M}(R) \text{ and } [x]_{h[x/d,y/e]}^{\mathfrak{M}} \neq [y]_{h[x/d,y/e]}^{\mathfrak{M}}
                     \{\ [\![x]\!]_{h[x/d,y/e]}^{\mathfrak{M}} = h[x/d,y/e](x) = d,\ [\![y]\!]_{h[x/d,y/e]}^{\mathfrak{M}} = h[x/d,y/e](y) = e,
       \Leftrightarrow
                             definition of \mathfrak{M}(R) and \mathfrak{M}(\forall)
             for all d \in \{1, 2, 3\} there is an e \in \{1, 2, 3\} with
                             (\langle d, e \rangle \in \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 1 \rangle\} \text{ and } d \neq e
                     \{ \text{ for } d=1 \text{ take } e=2; \text{ for } d=2, \text{ take } e=3; \text{ for } d=3, \text{ take } e=1 \} 
             true
```

6. (a)
$$\neg((P \land \neg Q) \to (R \land S))$$

 \Leftrightarrow { eliminate \to }
 $\neg(\neg(P \land \neg Q) \lor (R \land S))$
 \Leftrightarrow { apply De Morgan }
 $\neg\neg(P \land \neg Q) \land \neg(R \land S)$
 \Leftrightarrow { eliminate $\neg\neg$, apply De Morgan }
 $P \land \neg Q \land (\neg R \lor \neg S)$
 \Leftrightarrow { apply distribution }
 $(P \land \neg Q \land \neg R) \lor (P \land \neg Q \land \neg S)$

(b)
$$\forall x \exists y R(x,y) \rightarrow \forall z \neg \forall x Q(x,z)$$

 \Leftrightarrow { rename x in the right hand part }
 $\forall x \exists y R(x,y) \rightarrow \forall z \neg \forall w Q(w,z)$
 \Leftrightarrow { eliminate \rightarrow }
 $\neg \forall x \exists y R(x,y) \lor \forall z \neg \forall w Q(w,z)$
 \Leftrightarrow { move \neg inside, using De Morgan }
 $\exists x \forall y \neg R(x,y) \lor \forall z \exists w \neg Q(w,z)$
 \Leftrightarrow { move $\exists x \forall y$ outside }
 $\exists x \forall y (\neg R(x,y) \lor \forall z \exists w \neg Q(w,z))$
 \Leftrightarrow { move $\forall z \exists w$ outside }
 $\exists x \forall y \forall z \exists w (\neg R(x,y) \lor \neg Q(w,z))$

The Skolem normal form for this prenex formula is

$$\forall y \forall z (\neg R(c, y) \lor \neg Q(f(y, z), z))$$

(c) Horn algorithm for the Horn sentence

$$((A \land D) \to H) \land (G \to A) \land (C \to D) \land ((A \land B \land H) \to \bot) \land C \land ((C \land D) \to G) \land ((A \land G) \to B)$$

In step 1, we assign T to C, because C is a conjunct of the Horn sentence.

In step 2, we observe that the premiss of conjunct $C \to D$ is true, so we assign T to D.

In step 3, we observe that the premiss of conjunct $(C \wedge D) \to G$ is true, so we assign T to G.

In step 4, we observe that the premiss of conjunct $G \to A$ is true, so we assign T to A. In step 5, we observe that the premiss of conjunct $(A \land G) \to B$ is true, so we assign T to B

In step 6, we observe that the premiss of conjunct $(A \wedge D) \to H$ is true, so we assign T to H.

In step 7, we observe that the premiss of conjunct $(A \wedge B \wedge H) \to \bot$ is true, so we must assign T to \bot . We conclude that the Horn formula is *not satisfiable*.