

CA3080, CA3080A

2MHz, Operational Transconductance Amplifier (OTA)

November 1996

Features

Slew Rate (Unity Gain, Compens	ated)50V/μs
Adjustable Power Consumption	10μW to 30μW
Flexible Supply Voltage Range	±2V to ±15V
Fully Adjustable Gain	0 to g _M R _L Limit
Tight g _M Spread:	
- CA3080	2:1
- CA3080A	1.6:1
Evtended a Linearity	3 Decades

Applications

Sample and Hold

Multiplier

Multiplexer

Comparator

Voltage Follower

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE (°C)	PACKAGE	PKG. NO.	
CA3080	0 to 70	8 Pin Metal Can	T8.C	
CA3080A	-55 to 125	8 Pin Metal Can	T8.C	
CA3080AE	-55 to 125	8 Ld PDIP	E8.3	
CA3080AM (3080A)	-55 to 125	8 Ld SOIC	M8.15	
CA3080AM96 (3080A)	-55 to 125	8 Ld SOIC Tape and Reel	M8.15	
CA3080E	0 to 70	8 Ld PDIP	E8.3	
CA3080M (3080)	0 to 70	8 Ld SOIC	M8.15	
CA3080M96 (3080)	0 to 70	8 Ld SOIC Tape and Reel	M8.15	

Description

The CA3080 and CA3080A types are Gatable-Gain Blocks which utilize the unique operational-transconductance-amplifier (OTA) concept described in Application Note AN6668, "Applications of the CA3080 and CA3080A High-Performance Operational Transconductance Amplifiers".

The CA3080 and CA3080A types have differential input and a single-ended, push-pull, class A output. In addition, these types have an amplifier bias input which may be used either for gating or for linear gain control. These types also have a high output impedance and their transconductance (g_M) is directly proportional to the amplifier bias current (I_{ABC}) .

The CA3080 and CA3080A types are notable for their excellent slew rate ($50V/\mu s$), which makes them especially useful for multiplexer and fast unity-gain voltage followers. These types are especially applicable for multiplexer applications because power is consumed only when the devices are in the "ON" channel state.

The CA3080A's characteristics are specifically controlled for applications such as sample-hold, gain-control, multiplexing, etc.

Pinouts

NOTE: Pin 4 is connected to case.

CA3080, CA3080A

Absolute Maximum Ratings

Supply Voltage (Between V+ and V- Terminal) 36	٧
Differential Input Voltage 5	٧
Input VoltageV+ to V	V-
Input Signal Current	Α
Amplifier Bias Current (I _{ABC}) 2m	Α
Output Short Circuit Duration (Note 1) No Limitation	n

Thermal Information

Thermal Resistance (Typical, Note 2)	θ _{JA} (°C/W)	θ _{JC} (°C/W)
PDIP Package	130	N/A
SOIC Package	170	N/A
Metal Can Package	200	120
Maximum Junction Temperature (Metal Car	n)	175 ^o C
Maximum Junction Temperature (Plastic F	Package)	150°C
Maximum Storage Temperature Range	65	⁵ °C to 150°C
Maximum Lead Temperature (Soldering 1	0s)	300°C
(SOIC - Lead Tips Only)		

Operating Conditions

Temperature Range	
CA3080	0°C to 70°C
CA3080A	-55°C to 125°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES

- 1. Short circuit may be applied to ground or to either supply.
- 2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications For Equipment Design, $V_{SUPPLY} = \pm 15V$, Unless Otherwise Specified

				CA3080						
PARAMETER		TEST CONDITIONS	TEMP	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage		$I_{ABC} = 5\mu A$	25	-	0.3	-	-	0.3	2	mV
		I _{ABC} = 500μA	25	-	0.4	5	-	0.4	2	mV
			Full	-	-	6	-	-	5	mV
Input Offset Voltage Cha	ınge	I _{ABC} = 500μA to 5μA	25	-	0.2	-	-	0.1	3	mV
Input Offset Voltage Ten	np. Drift	I _{ABC} = 100μA	Full	-	-	-	-	3.0	-	μV/ ^o C
Input Offset Voltage	Positive	I _{ABC} = 500μA	25	-	-	150	-	-	150	μV/V
Sensitivity	Negative		25	-	-	150	-	-	150	μV/V
Input Offset Current		I _{ABC} = 500μA	25	-	0.12	0.6	-	0.12	0.6	μΑ
Input Bias Current		I _{ABC} = 500μA	25	-	2	5	-	2	5	μΑ
			Full	-	-	7	-	-	15	μΑ
Differential Input Current	i	I _{ABC} = 0, V _{DIFF} = 4V	25	-	0.008	-	-	0.008	5	nA
Amplifier Bias Voltage		I _{ABC} = 500μA	25	-	0.71	-	-	0.71	-	V
Input Resistance		I _{ABC} = 500μA	25	10	26	-	10	26	-	kΩ
Input Capacitance		$I_{ABC} = 500\mu A$, $f = 1MHz$	25	-	3.6	-	-	3.6	-	pF
Input-to-Output Capacita	ince	$I_{ABC} = 500\mu A$, $f = 1MHz$	25	-	0.024	-	-	0.024	-	pF
Common-Mode Input-Voltage Range		I _{ABC} = 500μA	25	12 to -12	13.6 to -14.6	-	12 to -12	13.6 to -14.6	-	V
Forward Transconductance		I _{ABC} = 500μA	25	6700	9600	13000	7700	9600	12000	μS
(Large Signal)			Full	5400	-	-	4000	-	-	μS
Output Capacitance		$I_{ABC} = 500\mu A, f = 1MHz$	25	-	5.6	-	-	5.6	-	pF
Output Resistance I _{ABC} = 500μA		25	-	15	-	-	15	-	МΩ	
Peak Output Current		$I_{ABC} = 5\mu A, R_L = 0\Omega$	25	-	5	-	3	5	7	μΑ
I _{AB}		$I_{ABC} = 500\mu A, R_L = 0\Omega$	25	350	500	650	350	500	650	μΑ
			Full	300	-	-	300	-	-	μΑ

Electrical Specifications For Equipment Design, $V_{SUPPLY} = \pm 15V$, Unless Otherwise Specified (Continued)

				CA3080		CA3080A				
PARAMETER		TEST CONDITIONS	TEMP	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Peak Output	Positive	$I_{ABC} = 5\mu A, R_L = \infty$	25	-	13.8	-	12	13.8	-	V
Voltage	Negative		25	-	-14.5	-	-12	-14.5	-	V
	Positive	$I_{ABC} = 500\mu A, R_L = \infty$	25	12	13.5	-	12	13.5	-	V
	Negative		25	-12	-14.4	-	-12	-14.4	-	V
Amplifier Supply Currer	nt	I _{ABC} = 500μA	25	0.8	1	1.2	0.8	1	1.2	mA
Device Dissipation		I _{ABC} = 500μA	25	24	30	36	24	30	36	mW
Magnitude of Leakage Current		$I_{ABC} = 0$, $V_{TP} = 0$	25	-	0.08	-	-	0.08	5	nA
Magnitude of Leakage	Current	I _{ABC} = 0, V _{TP} = 36V	25	-	0.3	-	-	0.3	5	nA
Propagation Delay		I _{ABC} = 500μA	25	-	45	-	-	45	-	ns
Common-Mode Rejecti	on Ratio	I _{ABC} = 500μA	25	80	110	-	80	110	-	dB
Open-Loop Bandwidth		I _{ABC} = 500μA	25	-	2	-	-	2	-	MHz
Slew Rate		Uncompensated	25	-	75	-	-	75	-	V/μs
		Compensated	25	-	50	-	-	50	-	V/μs

Schematic Diagram

Typical Applications

FIGURE 1. SCHEMATIC DIAGRAM OF THE CA3080 AND CA3080A IN A UNITY-GAIN VOLTAGE FOLLOWER CONFIGURATION AND ASSOCIATED WAVEFORM

FIGURE 2. 1,000,000/1 SINGLE-CONTROL FUNCTION GENERATOR - 1MHz TO 1Hz

NOTE: A Square-Wave Signal Modulates The External Sweeping Input to Produce 1Hz and 1MHz, showing the 1,000,000/1 frequency range of the function generator.

FIGURE 3A. TWO-TONE OUTPUT SIGNAL FROM THE FUNCTION GENERATOR

NOTE: The bottom trace is the sweeping signal and the top trace is the actual generator output. The center trace displays the 1MHz signal via delayed oscilloscope triggering of the upper swept output signal.

FIGURE 3B. TRIPLE-TRACE OF THE FUNCTION GENERATOR SWEEPING TO 1MHz

FIGURE 3. FUNCTION GENERATOR DYNAMIC CHARACTERISTICS WAVEFORMS

NOTE: Time required for output to settle within $\pm 3 \text{mV}$ of a 4V step.

FIGURE 4. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CONFIGURATION

FIGURE 5. SAMPLE AND HOLD CIRCUIT

Top Trace: Output Signal 5V/Div., 2µs/Div.
Bottom Trace: Input Signal

5V/Div., 2μs/Div.

Center Trace: Difference of Input and Output Signals Through

Tektronix Amplifier 7A13

5mV/Div., 2µs/Div.

FIGURE 6. LARGE SIGNAL RESPONSE AND SETTLING TIME FOR CIRCUIT SHOWN IN FIGURE 23

Top Trace: System Output; 100mV/Div., 500ns/Div. Bottom Trace: Sampling Signal; 20V/Div., 500ns/Div.

FIGURE 7. SAMPLING RESPONSE FOR CIRCUIT SHOWN IN FIGURE 23

Top Trace: Output; 50mV/Div., 200ns/Div. Bottom Trace: Input; 50mV/Div., 200ns/Div.

FIGURE 8. INPUT AND OUTPUT RESPONSE FOR CIRCUIT SHOWN IN FIGURE 23

FIGURE 9. THERMOCOUPLE TEMPERATURE CONTROL WITH CA3079 ZERO VOLTAGE SWITCH AS THE OUTPUT AMPLIFIER

FIGURE 10. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CIRCUIT WITH BIMOS OUTPUT AMPLIFIER

Top Trace: Output; 5V/Div., 2μs/Div.

Center Trace: Differential Comparison of Input and Output

2mV/Div., 2μs/Div.

Bottom Trace: Input; 5V/Div., 2µs/Div.

FIGURE 11. LARGE-SIGNAL RESPONSE FOR CIRCUIT SHOWN IN FIGURE 28

Top Trace: Output

20mV/Div., 100ns/Div.

Bottom Trace: Input

200mV/Div., 100ns/Div.

FIGURE 12. SMALL-SIGNAL RESPONSE FOR CIRCUIT SHOWN IN FIGURE 28

FIGURE 13. PROPAGATION DELAY TEST CIRCUIT AND ASSOCIATED WAVEFORMS

Typical Performance Curves

FIGURE 14. INPUT OFFSET VOLTAGE VS AMPLIFIER BIAS CURRENT

FIGURE 15. INPUT OFFSET CURRENT vs AMPLIFIER BIAS CURRENT

FIGURE 16. INPUT BIAS CURRENT vs AMPLIFIER BIAS CURRENT

FIGURE 17. PEAK OUTPUT CURRENT VS AMPLIFIER BIAS CURRENT

10⁴

Typical Performance Curves (Continued)

10³ 10³ 125°C 125°C 125°C 100 1000 1000 AMPLIFIER BIAS CURRENT (μA)

SUPPLY VOLTS: $V_S = \pm 15V$

FIGURE 18. PEAK OUTPUT VOLTAGE VS AMPLIFIER BIAS CURRENT

FIGURE 19. AMPLIFIER SUPPLY CURRENT VS AMPLIFIER BIAS CURRENT

FIGURE 20. TOTAL POWER DISSIPATION VS AMPLIFIER BIAS CURRENT

FIGURE 21. TRANSCONDUCTANCE vs AMPLIFIER BIAS CURRENT

FIGURE 22. LEAKAGE CURRENT TEST CIRCUIT

FIGURE 23. LEAKAGE CURRENT vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 24. DIFFERENTIAL INPUT CURRENT TEST CIRCUIT

FIGURE 25. INPUT CURRENT vs INPUT DIFFERENTIAL VOLTAGE

FIGURE 26. INPUT RESISTANCE vs AMPLIFIER BIAS CURRENT

FIGURE 27. AMPLIFIER BIAS VOLTAGE VS AMPLIFIER BIAS CURRENT

FIGURE 28. INPUT AND OUTPUT CAPACITANCE VS AMPLIFIER BIAS CURRENT

FIGURE 29. OUTPUT RESISTANCE vs AMPLIFIER BIAS CURRENT

Typical Performance Curves (Continued)

FIGURE 30. INPUT-TO-OUTPUT CAPACITANCE TEST CIRCUIT

FIGURE 31. INPUT-TO-OUTPUT CAPACITANCE vs SUPPLY VOLTAGE

All Harris Semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries.

Sales Office Headquarters

For general information regarding Harris Semiconductor and its products, call 1-800-4-HARRIS

NORTH AMERICA

Harris Semiconductor P. O. Box 883, Mail Stop 53-210 Melbourne, FL 32902 TEL: 1-800-442-7747

(407) 729-4984 FAX: (407) 729-5321

EUROPE

Harris Semiconductor Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Harris Semiconductor PTE Ltd. No. 1 Tannery Road Cencon 1, #09-01 Singapore 1334 TEL: (65) 748-4200

FAX: (65) 748-0400

