1. Funciones pares

Al estudiar el espacio de funciones aritméticas se puede hacer una analogía con la teoría de Fourier del análisis para funciones definidas en todo el plano real o complejo, para la cuál se necesitará la noción de periodicidad. En este capítulo se considerarán dos clases de funciones aritméticas que capturan esta noción y se probará que son equivalentes. También se expondran resultados análogos a los de análisis respecto a funciones periódicas. Estos resultados se puede encontrar en [5].

Observación 1.1. Durante todo el capítulo se supondrá que r es un entero positivo arbitrario pero fijo.

Definición 1.1. (Función par). Una función aritmética se dice **par** mód r si f(n) = f((n, r)), donde (m, r) es el máximo común divisor de n y r, para cada $n \in \mathbb{N}$.

Definición 1.2. (Función periódica). Una función aritmética se dice **periódica** con periodo r (o periódica mód r) si m, $n \in \mathbb{N}$ y $m \equiv n \pmod{r}$ implica que f(m) = f(n).

La siguiente proposición es una consecuencia inmediata de las definiciones anteriores.

Proposición 1.1. *Toda función par* mód *r es periódica con periodo r.*

Demostración. Si $m \equiv n \pmod{r}$ entonces $r \mid m - n$, por tanto existe $q \in \mathbb{Z}$ tal que m - n = qr. Por demostrar que (n, r) = (m, r). En efecto, como $(n, r) \mid n$ y $(n, r) \mid r$, entonces $(n, r) \mid n + qr = m$, luego $(n, r) \mid (m, r)$. Análogamente, se tiene que $(m, r) \mid m$ y $(m, r) \mid r$, por lo que $(m, r) \mid m - qr = n$, luego $(m, r) \mid (n, r)$. Se sigue que (n, r) = (m, r) y por tanto f(n) = f((n, r)) = f(m). ■

1.1. Sumas de Ramanujan

Definición 1.3. (Sumas de Ramanujan). Se define la función aritmética c_r como

$$c_r(n) = \sum_{d|(n,r)} \mu\left(\frac{r}{d}\right) d.$$

Esta función será referida como la suma de Ramanujan módulo r o simplemente suma de Ramanujan cuando no haya riesgo de confusión.

Proposición 1.2. Algunas propiedades de la sumas de Ramanujan son las siguientes:

(1)
$$c_1 = 1$$

- (2) $c_r(1) = \mu(r)$
- (3) $c_r(n) \le \max\{\sigma(r), \sigma(n)\}$
- (4) $c_r(n)$ es una función multiplicativa de r
- (5) Si p es primo y m es un entero positivo, entonces

$$c_{p^m}(n) = \begin{cases} p^m - p^{m-1} & \text{si } p^m \mid n \\ -p^{m-1} & \text{si } p^{m-1} \text{ pero } p^m \not\mid n \\ 0 & \text{si } p^{m-1} \not\mid n. \end{cases}$$

Demostración. (1) Para cada $n \in \mathbb{N}$ se tiene que (n, 1) = 1 y por tanto

$$c_1(n) = \sum_{d|(n,1)} \mu\left(\frac{1}{d}\right) d = \mu(1)1 = 1.$$

(2) De manera similar,

$$c_r(1) = \sum_{d|(1,r)} \mu\left(\frac{r}{d}\right) d = \mu(r)1 = \mu(r).$$

(3) Por definición se tiene que $\sigma(k) = \sum_{d|k} d$. Además $\mu(k) \leq 1$ para todo $k \in \mathbb{N}$, luego

$$c_r(n) = \sum_{d|(n,r)} \mu\left(\frac{r}{d}\right) d \le \sum_{d|(n,r)} d = \sum_{\substack{d|n\\d|r}} d \le \sum_{d|n} d, \sum_{\substack{d|r}} d \le \max\{\sigma(n), \sigma(r)\}.$$

(4) Definase

$$\eta_r(n) = \begin{cases} r & \text{si } r \mid n \\ 0 & \text{en otro caso.} \end{cases}$$

Se tiene que la función $\eta_{\square}(n)$ es multiplicativa para n fijo. En efecto, si $r, s \in \mathbb{N}$ son tales que (r, s) = 1, entonces

$$\eta_{rs}(n) = \begin{cases} rs & \text{si } rs \mid n \\ 0 & \text{en otro caso,} \end{cases}$$

pero $rs \mid n$ si y sólo si $r \mid n$ y $s \mid n$. En efecto, si $rs \mid n$ es claro que $r \mid n$ y $s \mid n$. Supóngase que $r \mid n$ y $s \mid n$, de tal manera que existen $q_1, q_2 \in \mathbb{Z}$ tales que

 $n=rq_1=sq_2$. Como (r,s)=1, también existen $x,y\in\mathbb{Z}$ tales que 1=rx+sy, luego n=nrx+nsy, por lo que $n=rs(q_2x+q_1y)$, es decir, $rs\mid n$. Luego, si $rs\mid n$, entonces

$$\eta_{rs}(n) = rs = \eta_r(n)\eta_s(n),$$

y si $rs \nmid entonces r \nmid n$ y $s \nmid n$, por lo que

$$\eta_{rs}(0) = 0 = \eta_r(n)\eta_s(n).$$

Por otro lado, se tiene que

$$\sum_{d|r} \mu\left(\frac{r}{d}\right) \eta_d(n) = \sum_{\substack{d|r\\d|n}} \mu\left(\frac{r}{d}\right) d = \sum_{\substack{d|(n,r)}} \mu\left(\frac{r}{d}\right) d = c_r(n),$$

es decir, $c_{\square}(n) = \mu * \eta_{\square}(n)$. Luego $c_{\square}(n)$ debe ser multiplicativa para n fijo, por ser producto de funciones multiplicativas.

- (5) Tenemos los siguientes casos:
 - Si $p^m \mid n$, entonces $(n, p^m) = p^m$, luego

$$c_{p^m}(n) = \sum_{d|p^m} \mu\left(\frac{p^m}{d}\right) d = \mu(1)p^m + \mu(p)p^{m-1} = p^m - p^{m-1},$$

pues $\mu(p^i) = 0$ para toda i > 1.

■ Si $p^{m-1} \mid n$ pero $p^m \nmid n$, entonces $(n, p^m) = p^{m-1}$. En efecto, se tiene que $p^{m-1} \mid p^m$ y además $p^{m-1} \mid n$ por hipótesis. Si $e \in \mathbb{Z}$ es tal que $e \mid p^m$ y $e \mid n$, entonces $e = p^i$, para algún $0 \le i \le m-1$, pues $p^m \nmid n$, por tanto $e \mid p^{m-1}$. Esto prueba que $(p^m, n) = p^{m-1}$, así

$$c_{p^m}(n) = \sum_{d \mid p^{m-1}} \mu\left(\frac{p^m}{d}\right) d = \mu(p)p^{m-1} = -p^{m-1}$$

■ Finalmente, si $p^{m-1} \not\mid n$, entonces $p^m \not\mid n$. Además, $(n, p^m) \mid p^m$, por tanto $(n, p^m) = p^i$ para algún $0 \le i \le m$. Más aún, por la hipótesis se debe tener que $0 \le i \le m - 2$. Luego

$$c_{p^m}(n) = \sum_{d|p^i} \mu\left(\frac{p^m}{d}\right) d = \mu(p^m) 1 + \mu(p^{m-1}) p + \dots + \mu(p^{m-i}) p^i = 0,$$

pues $i \le m-2$ implica que $2 \le m-i$ y por tanto $\mu(p^m) = \ldots = \mu(p^{m-i}) = 0$.

Del la demostración del punto 4 se puede rescatar el siguiente corolario, usando la inversión de Möbius (??).

Corolario 1.1. *Para cada* $n \in \mathbb{N}$ *fijo se tiene*

$$\sum_{d|r} c_d(n) = \eta_r(n) = \begin{cases} r & \text{si } r \mid n \\ 0 & \text{en otro caso.} \end{cases}$$

Las sumas de Ramanujan gozan de la siguiente propiedad de "ortogonalidad".

Lema 1.1. Si r y s dividen a k, entonces

$$\sum_{d|k} c_r(k/d)c_d(k/s) = \begin{cases} k & \text{si } r = s \\ 0 & \text{en otro caso.} \end{cases}$$

Demostración. Si r y s dividen a k, entonces

$$\sum_{d|k} c_{r}(k/d)c_{d}(k/s) = \sum_{d|k} c_{d}(k/s) \sum_{d'|(k/d,r)} \mu(r/d')d'$$

$$= \sum_{d|k} c_{d}(k/s) \sum_{d'|r} \mu(r/d')d'$$

$$= \sum_{d|k} c_{d}(k/s)\mu(r/d')d'$$

$$= \sum_{d'|r} c_{d}(k/s)\mu(r/d')d'$$

$$= \sum_{d'|k/d} c_{d}(k/s)\mu(r/d')d'$$

$$= \sum_{d'|r} \mu(r/d')d' \sum_{d|k/d'} c_{d}(k/s)$$

$$= \sum_{d'|k} \mu(r/d)d' \eta_{k/d'}(k/s), \text{ por el corolario anterior}$$

$$= \sum_{d'|k} \mu(r/d)d' \eta_{k/d'}(k/s), \tag{1.1}$$

dado que (k,r)=r por ser r divisor de k y dado que los conjuntos $\{d,d'\in\mathbb{N}:d\mid k,d'\mid r,d'\mid k/d\}$ y $\{d,d'\in\mathbb{N}:d\mid k/d',d'\mid r,d'\mid k\}$ son iguales. En efecto, si $d\mid k$

entonces k/d es un entero, lueg $d' \mid k/d$ implica que k/d = d'q', luego k = d'q'd, por tanto $d \mid k/d' \vee d' \mid k$.

Recíprocamente, si $d' \mid k$ entonces k/d' es un entero, luego $d \mid k/d'$ implica que k/d' = dq, por tanto k = dqd', por tanto $d \mid k \ y \ d' \mid k/d$.

Si $s \not\mid r$ entonces $s \not\mid d'$ y por tanto $k/d' \not\mid k/s$. En efecto, pues si $s \mid d'$, como $d' \mid r$ entonces se tendría que $s \mid r$ por transitividad. Además, si $k/d' \mid k/s$ se tendría que $s \mid d'k$. Luego la suma (1.1) se anula si $s \not\mid r$ y en particular si $r \neq s$, pues en este caso se tiene que $\eta_{k/d'}(k/s) = 0$ para cada $d' \mid r$.

Si $s \mid r$ entonces la suma (1.1) es igual a

$$\begin{split} \sum_{\substack{d' \mid r \\ k/d' \mid k/s}} \mu(r/d')d'\frac{k}{d'} &= \sum_{\substack{d' \mid r \\ k/d' \mid k/s}} \mu(r/d')k \\ &= \sum_{\substack{d' \mid r \\ s \mid d'}} \mu(r/d')k \\ &= k \sum_{\substack{d' \mid r \\ d' = se}} \mu(r/se) \\ &= k \sum_{e \mid r/s} \mu(r/se) \\ &= k \sum_{se \mid r} \mu(r/se) = \begin{cases} k & \text{si } r = s \\ 0 & \text{en otro caso,} \end{cases} \end{split}$$

pues $k/d' \mid k/s$ si y sólo si $s \mid d'$.

Lema 1.2. Si $d \mid r$ entonces $c_d(n) = c_d((n, r))$.

Demostración. Si $d \mid r$ entonces (n,d) = ((n,r),d). En efecto, dado que $(n,d) \mid n$ y $(n,d) \mid d$, entonces $(n,d) \mid n$, $(n,d) \mid d$ y $(n,d) \mid r$, por lo que $(n,d) \mid (n,r)$ y $(n,d) \mid d$, es decir, $(n,d) \mid ((n,r),d)$. Recíprocamente se tiene que $((n,r),d) \mid n$ y $((n,r),d) \mid d$, así que $((n,r),d) \mid (n,d)$. Se sigue que (n,d) = ((n,r),d). Luego

$$c_d(n) = \sum_{e|(n,d)} \mu(d/e)e = \sum_{e|((n,r),d)} \mu(d/e)e = c_d((n,r)).$$

Corolario 1.2. La suma de Ramanujan módulo r es par mód r.

El lema anterior permite probar uno de los resultados importantes de este capítulo, el cuál establece la existencia de una expansión finita de cualquier función par mód r, con sumas de Ramanujan como coeficientes. Para probarlo serán necesarios algunos resultados preliminares.

Definición 1.4. (Radical). Sea $n \in \mathbb{N}$. Se define el *radical* de n, denotado por n_* como

$$n_* = \begin{cases} 1 & \text{si } n = 1 \\ p_1 \cdots p_r & \text{si } n = p_1^{\alpha_1} \cdots p_r^{\alpha_r} \end{cases}$$

donde $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ es la factorización de n > 1 en primos.

Definición 1.5. Una función aritmética f se dirá separable si $f(n) = f(n_*)$, para cada $n \in \mathbb{N}$.

Lema 1.3. Una función multiplicativa es separable si y sólo si $(\mu * f)(n) = 0$ para todo n no libre de cuadrado.

Demostración. Sea $F = \mu * f$. Entonces F * 1 = f, es decir,

$$\sum_{d|n} F(d) = f(n), \forall n \in \mathbb{N}.$$

Si F(n) = 0 para cada n no libre de cuadrado, entonces

$$f(n) = \sum_{d|n} F(d) = \sum_{d|n} F(d) = f(n_*),$$

es decir, f es separable.

Supóngase ahora que f es separable. Se tiene que para cada primo p y para cada m>1,

$$F(p^{m}) = \sum_{d|p^{m}} \mu(d) f\left(\frac{p^{m}}{d}\right) = \mu(1) f(p^{m}) + \mu(p) f(p^{m-1})$$
$$= f(p^{m}) - f(p^{m-1}) = f(p) - f(p) = 0.$$

Además como f es multiplicativa, entonces F también lo es. Si n es un entero positivo no libre de cuadrado, entonces existen un primo p y enteros positivos q y m > 1 tales que $n = p^m q$ y $(p^m, q) = 1$. Luego $F(n) = F(p^m)F(q) = 0 \cdot F(q) = 0$.

Lema 1.4. Si f es multiplicativa y separable, entonces para cualesquiera $a, b \in \mathbb{N}$ se tiene:

(I)
$$f(a)f(b) = f(ab)f((a,b))$$
.

(II)
$$f(a) = f((a,b)) \sum_{\substack{d|a \ (d,b)=1}} (\mu * f)(d)$$

Demostración. (I). Nótese que si p es un primo y m, n > 1 entonces

$$f(p^m)f(p^n) = f(p)f(p) = f(p^{m+n})f((p^m, p^n)),$$

pues $(p^m, p^n) = p^i$, con $i = \min\{m, n\}$. Sean $a, b \in \mathbb{N}$ y escríbase sin pérdida de generalidad $a = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ y $b = p_1^{\beta_1} \cdots p_r^{\beta_r}$, $0 \le \alpha_i$, β_i . Entonces, como f es multiplicativa,

$$\begin{split} f(ab)f((a,b)) &= f(p_1^{\alpha_1+\beta_1}\cdots p_r^{\alpha_r+\beta_r})f(p_1^{\min\{\alpha_1,\beta_1\}}\cdots p_r^{\min\{\alpha_r,\beta_r\}}) \\ &= f(p_1^{\alpha_1+\beta_1})\cdots f(p_r^{\alpha_r+\beta_r})f(p_1^{\min\{\alpha_1,\beta_1\}})\cdots f(p_r^{\min\{\alpha_r,\beta_r\}}) \\ &= f(p_1^{\alpha_1+\beta_1})\cdots f(p_r^{\alpha_r+\beta_r})f((p_1^{\alpha_1},p_1^{\beta_1}))\cdots f((p_r^{\alpha_r},p_r^{\beta_r})) \\ &= f(p_1^{\alpha_1})f(p_1^{\beta_1})\cdots f(p_r^{\alpha_r})f(p_r^{\beta_r}) \\ &= f(p_1^{\alpha_1}\cdots p_r^{\alpha_r})f(p_1^{\beta_1}\cdots p_r^{\beta_r}) \\ &= f(a)f(b) \end{split}$$

(II). Al igual que en la demostración anterior, si $F = \mu * f$, entonces

$$\sum_{d|n} F(d) = f(n), \forall n \in \mathbb{N}.$$

Se verá primero que los conjuntos $\{d \in \mathbb{N}: d \mid a_* \ y \ (d,b) = 1\} \ y \ \{d \in \mathbb{N}: d \mid a_*/(a,b)_*\}$ son iguales.

Para empezar, se tiene que $a_*/(a,b)_*$ es un entero. Si $(a,b)_*=1$ esto es claro. Si $(a,b)_*>1$ se puede escribir $(a,b)_*=q_1\cdots q_s$, donde todos los primos son distintos. Luego $q_i\mid (a,b)_*$, pero $(a,b)_*\mid (a,b)$ y $(a,b)\mid a$, por tanto $q_i\mid a$ y por tanto $q_i\mid a_*$. Como $i\in\{1,\ldots,s\}$ fue arbitrario y todos los primos q_i son distintos, entonces $q_1\cdots q_s=(a,b)_*\mid a_*$, que es lo que se quería probar.

Procedamos a probar la igualdad de los conjuntos. Supóngase primero que $d \mid a_*$ y (d,b)=1. Entonces existe $c \in \mathbb{N}$ tal que $a_*=dc$. Por otro lado, se tiene que $(a,b)\mid b$ y por tanto ((a,b),d)=1, más aún, como $(a,b)_*\mid (a,b)$ entonces también $((a,b)_*,d)=1$ y como $(a,b)_*\mid a_*=dc$, por el lema de Euclides se debe tener que $(a,b)_*\mid c$ es decir, $a_*=(a,b)_*dq$, para algún $q\in \mathbb{N}$, luego $d\mid a_*/(a,b)_*$.

Recíprocamente, supóngase que $d \mid a_*/(a,b)_*$. Se debe tener que

$$\left(\frac{a_*}{(a,b)_*},b\right) = 1. \tag{1.2}$$

Pues en caso contrario, es decir, si este máximo común divisor fuera mayor que uno, existiría un primo p tal que $p \mid b$ y $p \mid a_*/(a,b)_*$, pero $a_*/(a,b)_* \mid a_*$, luego $p \mid a_*$ y por tanto $p \mid a$. En consecuencia, $p \mid (a,b)$ y por tanto $p \mid (a,b)_*$. Se puede escribir entonces $a_* = pp_1 \cdots p_r$, $(a,b)_* = pq_1 \cdots q_s$, donde todos los primos son distintos. Además, como $a_* = (a,b)_*n$ para algún $n \in \mathbb{N}$, se tiene que $pp_1 \cdots p_r = pq_1 \cdots q_s r_1 \cdots r_t$, con $n = r_1 \cdots r_t$, y r_i números primos, no necesariamente distintos. Luego $p_1 \cdots p_r = q_1 \cdots q_s r_1 \cdots r_t$ y dado que ningúno de los primos p_i son iguales a p, entonces ninguno de los primos r_j puede ser igual a p, es decir p no divide a $n = a_*/(a,b)_*$, lo cual es absurdo.

Esto prueba la igualdad de dichos conjuntos. Ahora es fácil calcular la siguiente suma,

$$\sum_{\substack{d|a\\(d,b)=1}} F(d) = \sum_{\substack{d|a_*\\(d,b)=1}} F(d) = \sum_{\substack{d|a_*/(a,b)_*}} F(d) = \sum_{\substack{d|(a_*/(a,b)_*)}} (\mu * f)(d) = f(a_*/(a,b)_*).$$

Además, por una demostración similar a la de la ecuación (1.2), se tiene que

$$\left((a,b)_*, \frac{a_*}{(a,b)_*}\right) = 1.$$

Finalmente,

$$f(a) = f(a_*) = f((a,b)_*)f(a_*/(a,b)_*) = f((a,b)) = \sum_{\substack{d \mid a \\ (d,b)=1}} (\mu * f)(d).$$

Ejemplo 1.1. La función $\overline{\varphi}=\varphi(n)/n$ es separable. Nótese que para cualquier primo p y m>0 se tiene $\varphi(p^m)=p^m-p^{m-1}$, luego $\varphi(p^m)/p^m=1-p^{-1}$ y también $\varphi(p)/p=1-p^{-1}$. Ahora, si p=10 es multiplicativa,

$$\frac{\varphi(n)}{n} = \frac{\varphi(p_1^{\alpha_1})}{p_1^{\alpha_1}} \cdots \frac{\varphi(p_r^{\alpha_r})}{p_r^{\alpha^r}} = \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right) = \frac{\varphi(p_1)}{p_1} \cdots \frac{\varphi(p_r)}{p_r} = \frac{\varphi(n_*)}{n_*}$$

Lema 1.5 (Fórmula de Hölder). Para cada $n \in \mathbb{N}$ se tiene

$$c_r(n) = \frac{\varphi(r)\mu\left(\frac{r}{(n,r)}\right)}{\varphi\left(\frac{r}{(n,r)}\right)}$$

Demostración. Se tiene

$$c_r(n) = \sum_{d|(n,r)} \mu\left(\frac{r}{d}\right) d = \sum_{\substack{d|(n,r)\\ \left(\frac{r}{(n,r)}, \frac{(n,r)}{d}\right) > 1}} \mu\left(\frac{r}{d}\right) d + \sum_{\substack{d|(n,r)\\ \left(\frac{r}{(n,r)}, \frac{(n,r)}{d}\right) = 1}} \mu\left(\frac{r}{d}\right) d, \tag{1.3}$$

pero si (r/(n,r),(n,r)/d) > 1 entonces r/d debe tener un factor cuadrado, pues en este caso existe un primo p tal que $p \mid r/(n,r)$ y $p \mid (n,r)/d$, luego $r = p(n,r)q_1$ y $(n,r) = pdq_2$ para algunos enteros q_1 y q_2 , luego $r = p^2dq_1q_2$ y por tanto $p^2 \mid r/d$, así que $\mu(r/d) = 0$. Luego la ecuación (1.3) es igual a

$$\sum_{\substack{d \mid (n,r) \\ \left(\frac{r}{(n,r)}, \frac{(n,r)}{d}\right) = 1}} \mu\left(\frac{r}{d}\right) d = \sum_{\substack{d \mid (n,r) \\ \left(\frac{r}{(n,r)}, \frac{(n,r)}{d}\right) = 1}} \mu\left(\frac{r}{(n,r)}\right) \mu\left(\frac{(n,r)}{d}\right) d$$

$$= \mu\left(\frac{r}{(n,r)}\right) \sum_{\substack{d \mid (n,r) \\ \left(\frac{r}{(n,r)}, \frac{(n,r)}{d}\right) = 1}} \mu\left(\frac{(n,r)}{d}\right) d$$

$$= \mu\left(\frac{r}{(n,r)}\right) \sum_{\substack{d \mid (n,r) \\ \left(\frac{r}{(n,r)}, d\right) = 1}} \mu(d) \frac{(n,r)}{d}$$

$$= (n,r)\mu\left(\frac{r}{(n,r)}\right) \sum_{\substack{d \mid (n,r) \\ \left(\frac{r}{(n,r),d} = 1\right)}} \frac{\mu(d)}{d}$$

$$(1.4)$$

pues μ es multiplicativa. Sea ahora $\Phi = \mu * \overline{\varphi}$, donde $\overline{\varphi}(s) = \varphi(s)/s$ para cada $s \in \mathbb{N}$. Se tiene entonces que

$$\Phi(s) = \sum_{d|s} \mu(d)\overline{\varphi}\left(\frac{s}{d}\right) = \sum_{d|s} \mu(d)\varphi\left(\frac{s}{d}\right)\frac{1}{s/d} = \sum_{d|s} \mu(d)\sum_{e|s/d} \mu(e)\frac{s/d}{e}\frac{1}{s/d}$$

$$= \sum_{d|s} \mu(d)\sum_{e|s/d} \frac{\mu(e)}{e} = \sum_{e|s} \frac{\mu(e)}{e}\sum_{d|s/e} \mu(d) = \frac{\mu(s)}{s}$$

$$(1.5)$$

pues si $d \mid s$ y $c \mid s/d$, entonces d/s es un entero y s/d = eq para algún entero q, luego s = deq y por tanto $e \mid s$ y $d \mid s/e$. El recíproco es similar. Además, todos los términos en la penúltima suma son cero excepto aquel para el cual s/e = 1, es decir,

s = e. Luego la suma (1.4) es igual a

$$(n,r)\mu\left(\frac{r}{(n,r)}\right) \sum_{\substack{d \mid (n,r) \\ \left(\frac{r}{(n,r)},d\right) = 1}} \Phi(d) = (n,r)\mu\left(\frac{r}{(n,r)}\right) \sum_{\substack{d \mid (n,r) \\ \left(\frac{r}{(n,r)},d\right) = 1}} (\mu * \overline{\varphi}(d))$$

$$= (n,r)\mu\left(\frac{r}{(n,r)}\right) \frac{\overline{\varphi}((n,r))}{\overline{\varphi}\left((n,r),\frac{r}{(n,r)}\right)}$$

$$= (n,r)\mu\left(\frac{r}{(n,r)}\right) \frac{\overline{\varphi}(r)\overline{\varphi}((n,r))}{\overline{\varphi}((n,r))\overline{\varphi}\left(\frac{r}{(n,r)}\right)}$$

$$= (n,r)\mu\left(\frac{r}{(n,r)}\right) \frac{\overline{\varphi}(r)}{\overline{\varphi}\left(\frac{r}{(n,r)}\right)}$$

$$= (n,r)\mu\left(\frac{r}{(n,r)}\right) \frac{r\varphi(r)}{\overline{\varphi}(n,r)}$$

$$= \frac{\mu\left(\frac{r}{(n,r)}\right)\varphi(r)}{\varphi\left(\frac{r}{(n,r)}\right)}$$

donde la primera igualdad se cumple por definición de Φ y la ecuación (1.5), la segunda por ser $\overline{\phi}$ multiplicativa, separable y por el Lema 1.4 (II), la tercera por el Lema 1.4 (II) y la quinta por definición de $\overline{\phi}$.

Teorema 1.1. Toda función f par mód r tiene una expansión de la forma

$$f(n) = \sum_{d|r} \alpha(d)c_n(n), \tag{1.6}$$

y recíprocamente, toda función aritmética de esta forma es par mód r. Los coeficientes $\alpha(d)$ están dados por

$$\alpha(d) = \frac{1}{r} \sum_{e|r} f\left(\frac{r}{e}\right) c_e\left(\frac{r}{d}\right),\,$$

o por la fórmula equivalente,

$$\alpha(d) = \frac{1}{r\phi(d)} \sum_{m=1}^{r} f(m)c_d(m),$$

donde ϕ es la función phi de Euler.

Demostración. Es claro que toda función de la forma (1.6) es par mód r, pues por el lema anterior si $d \mid r$ entonces $c_d(n) = c_d((n,r))$. Nótese que

$$\sum_{d|r} \alpha(d)c_d(n) = \sum_{d|r} \left(\frac{1}{r} \sum_{e|r} f\left(\frac{r}{e}\right) c_e\left(\frac{r}{d}\right)\right) c_d(n)$$

$$= \frac{1}{r} \sum_{e|r} f\left(\frac{r}{e}\right) \sum_{d|r} c_e\left(\frac{r}{d}\right) c_d(n)$$

$$= \frac{1}{r} \sum_{e|r} f\left(\frac{r}{e}\right) \sum_{d|r} c_e\left(\frac{r}{d}\right) c_d((n,r))$$

$$= \frac{1}{r} f\left(\frac{r}{q}\right) r = f((n,r)) = f(n),$$

por el Lema 1.1, donde r=(n,r)q, para algún $q\in\mathbb{N}$ y donde la última igualdad se cumple por ser f par mód r.

Por otro lado, de la demostración de la ?? se puede rescatar el hecho de que el conjunto $\{1, 2, ..., r\}$ es igual a $\bigcup_{e|r} \{rx/e : (x, e) = 1, 1 \le x \le e\}$ y todos los conjuntos son disjuntos a pares, por tanto

$$\frac{1}{r\phi(d)} \sum_{m=1}^{r} f(m)c_d(m) = \frac{1}{r\phi(d)} \sum_{e|r} \sum_{\substack{(x,e)=1\\1 \le x \le e}} f\left(\frac{rx}{e}\right) c_d\left(\frac{rx}{e}\right)$$

$$= \frac{1}{r\phi(d)} \sum_{e|r} \sum_{\substack{(x,e)=1\\1 \le x \le e}} f\left(\left(\frac{rx}{e},r\right)\right) c_d\left(\left(\frac{rx}{e},r\right)\right)$$

$$= \frac{1}{r\phi(d)} \sum_{e|r} \sum_{\substack{(x,e)=1\\1 \le x \le e}} f\left(\frac{r}{e}\right) c_d\left(\frac{r}{e}\right)$$

$$= \frac{1}{r\phi(d)} \sum_{e|r} f\left(\frac{r}{e}\right) c_d\left(\frac{r}{e}\right) \phi(e)$$

$$= \frac{1}{r\phi(d)} \sum_{e|r} f\left(\frac{r}{e}\right) c_e\left(\frac{r}{d}\right) \phi(d)$$

$$= \frac{1}{r} \sum_{e|r} \left(\frac{r}{e}\right) c_e\left(\frac{r}{d}\right)$$

por ser f par mód r. Además (rx/e, r) = r/e, pues (x, e) = 1 implica que (r/e)(x, e) = r/e, y como r/e es un entero positivo, entonces (rx/e, r) = r/e. Y la penúltima igualdad se cumple por el $\ref{eq:position}$? Y la fórmula de Hölder (Lema 1.5).

Bibliografía

- [1] APOSTOL, T. M. Introduction to Analytic Number Theory. Springer, 1976.
- [2] Bell, E. T. Outline of a theory of arithmetical functions in their algebraic aspects. *The Journal of the Indian Mathematical Society 17* (1928), 249–260.
- [3] Brualdi, R. A. Introductory Combinatorics, 3 ed. Prentice-Hall, 1999.
- [4] Cashwell, E. D., and Everett, C. J. The ring of number-theoretic functions. *Pacific Journal of Mathematics 9*, 4 (1959).
- [5] COHEN, E. A class of arithmetical functions. *Proceedings of the National Academy of Sciences of the United States of America 41*, 11 (1955).
- [6] DICKSON, L. E. History of the Theory of Numbers, vol. I. Chelsea Publishing Company, 1952.
- [7] GAUSS, C. F. Disquisitiones Arithmeticae, english ed. Springer-Verlag, 1966.
- [8] HARDY, G. H., AND WRIGHT, E. M. An Introduction to the Theory of Numbers, 5 ed. Oxford University Press, 1979.
- [9] HUNGERFORD, T. W. Algebra. Springer, 1974.
- [10] NISHIMURA, H. On the unique factorization theorem for formal power series. *Journal of Mathematical Sciences, Kyoto Univ.* (1967).
- [11] ZALDÍVAR, F. *Introducción a la teoría de números*, 1 ed. Fondo de Cultura Económica, 2014.