Types of problems

(1) Determine a given subset of a group is a subgroup.

Example. Is $\{0,1,-1\}$ is a subgroup in \mathbb{R} .

Answer 1. No, as $1 + 1 = 2 \notin \{0, 1, -1\}$

- (2) Computer the order of a given elements in a group, which include $\mathbb{C}^*, \mathbb{Z}_n, \mathrm{GL}(3, \mathbb{R})$
- (3) Computation of S_n
 - Decompose σ into a product of disjoint cycle
 - Determine if σ is even or odd
 - Compute the order of σ and σ^{2023}
- (4) Determine if a map $\phi: G \to G'$ is a homomorphism (HW # 4)

Include True or false

Proof questions exists. Probably 2.

Symbols used in exams

Additive group: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$

Multiplicative group: \mathbb{Q}^* , \mathbb{R}^* , \mathbb{C}^*

Finite group: \mathbb{Z}_n , U_n , S_n , A_n . Note that S_n , A_n are not Abelian.

Commonly used group: $GL(n, \mathbb{R}), n \in \mathbb{Z}_{>0}$

Sample T/F question

- 1. If G is a finite group, $H \subset G$ is a subgroup, then |H| is a divisor |G|. (T)
- 2. If G is a finite group, if n is a divisor of |G|, then there is a subgroup H such that |H| = n. (F)

(Converse of Lagrange theorem might not be true)

- 3. If G is a group, $a^{10} = e$, then order of A = 10 (F)
- 4. If $a^{10} = e$, then the order of a is in $\{1, 2, 5, 10\}$ (T)
- 5. If *G* is Abelian, then $\phi: G \to G$ given by $\phi(a) = a^2$ is a homomorphism.

Definition. A map $\phi: G \to G'$ is homomorphism (of groups) if $\phi(a * b) = \phi(a) * \phi(b)$

Where * is the operation on G, while * is the operation on G'.

Note that:

$$\phi(ab) = (ab)^2 = (a)^2(b)^2 = \phi(a)\phi(b)$$

By the definition of Abelian group, as a result the answer is T.

(6) If G is a group, H is a nonempty subset, if H is closed, then H is a subgroup. (F)
Let $\{2,4,\ldots,\}\in\mathbb{R}$. The identity element doesn't even exist. So must be false.
(6) If G is a group, H is a FINITE nonempty subset, if H is closed, then H is a subgroup. (T)
[END OF MATH3121 REVIEW]