NUCLEAR WALLET CARDS

October 2011

Jagdish K. Tuli

National Nuclear Data Center www.nndc.bnl.gov

Brookhaven National Laboratory P.O. Box 5000 Upton, New York 11973-5000 U.S.A.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor, or subcontractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency, contractor, or subcontractor

NUCLEAR WALLET CARDS

(Eighth edition)

October 2011

JAGDISH K. TULI

NATIONAL NUCLEAR DATA CENTER

(www.nndc.bnl.gov)

for

The U.S. Nuclear Data Program

Supported by Office of Nuclear Physics, Office of Science, US Department of Energy

Brookhaven National Laboratory*
Upton, New York 11973-5000, USA
* Operated by Brookhaven Science Associates
under contract No. DE-AC02-98CH10886 with
US Department of Energy

NUCLEAR WALLET CARDS

October 2011

CONTENTS

U. S. Nuclear Data Program

Introduction iii						
Explanation of Table	iv					
2000 Edition as T _½ Standard	2000 Edition as T _½ Standard vii					
Acknowledgements	vii					
References	viii					
Nuclear Wallet Cards	1-84					
Appendices:						
I Table of Elemental Prope II Frequently-Used Constant IIa Fundamental Constants III Energy-Equivalent Facto IV Observed A Hypernuclide IVa Half-lives of Ionized Ator Va Decay Chains in Nature Vb Radioactive Nuclides in N VIa Periodic Table of Element VIb List of Elements-Alphabe VIc List of Elements-by Z	nts rs s ms Vature					

Centerfold: NNDC Web Services

U.S. Nuclear Data Program

(www.nndc.bnl.gov/usndp/)

Argonne National Laboratory Nuclear Data Program Nuclear Engineering Division 9700 South Cass Avenue Argonne, IL 60439

Brookhaven National
Laboratory
National Nuclear Data Center
Building 197D,
P.O. Box 5000,
Upton, NY 11973-5000

Lawrence Berkeley National Laboratory Isotopes Project One Cyclotron Road Berkeley, CA 94720-8101

Lawrence Livermore National Laboratory Computational Nuclear Physics Group P.O. Box 808, MS L-059 Livermore, CA 94551-0808

Los Alamos National Laboratory Group T-2, Nuclear Physics MS B283 Los Alamos, NM 87545

Los Alamos National Laboratory Group LANSCE-NS, Neutron and Nuclear Science, MS H-855 Los Alamos, NM 87545

McMaster University
Dept. of Physics and Astronomy
Hamilton, Ontario L8S 4M1
Canada

National Institute of Standards and Technology Nuclear Data Verification & Standardization Project 100 Bureau Dr Stop 8463 Gaithersburg, MD 20899-8463

Oak Ridge National Laboratory Nuclear Data Project Physics Division MS 6354 P.O. Box 2008 Oak Ridge, TN 37831-6354

Triangle Universities
Nuclear Laboratory
Nuclear Data Evaluation Project
P.O. Box 90308,
Durham, NC 27708-0308

INTRODUCTION

This is an updated edition of the 2005 booklet of the same name $\Bar{\ }^{\dagger}.$

This booklet presents selected properties of all known nuclides and some of their isomeric states. Properties of ionized atoms are presented as an appendix.

The data given here are taken mostly from the adopted properties of the various nuclides as given in the $Evaluated\ Nuclear\ Structure\ Data\ File\ (ENSDF)[1].$ The data in ENSDF are based on experimental results and are published in $Nuclear\ Data\ Sheets[2]$ for $A{>}20$ and in $Nuclear\ Physics[3]$ for $A{\leq}20$. For nuclides for which either there are no data in ENSDF or those data that have since been superseded, the half-life and the decay modes are taken from Experimental Unevaluated Nuclear Data List (XUNDL)[4] covering recent literature[5].

For other references, experimental data, and information on the data measurements, please refer to the original evaluations [1-4]. The data were updated to **September 1, 2011**.

aimed at Homeland Security personnel was also produced by Jagdish K. Tuli.

[†]The first Nuclear Wallet Cards was produced by F. Ajzenberg-Selove and C. L. Busch in 1971. The Isotopes Project, Lawrence Berkeley National Laboratory, produced the next edition in 1979 based upon the Table of Isotopes, 7th edition (1978)[9]. The subsequent editions: in years 1985, 1990, 1995, 2000, and the last in 2005, were produced by Jagdish K. Tuli, NNDC. In 2004, Nuclear Wallet Cards for Radioactive Nuclides simed at Homeland Security personnel was also produced

Explanation of Table

Column 1, Nuclide (Z, El, A):

Nuclides are listed in the order of increasing atomic number (Z), and are subordered by increasing mass number (A). All isotopic species, as well as all isomers with half-life ≥ 0.1 s, and some with half-life ≥ 1 ms which decay by SF, α or p emissions, are included. A nuclide is given even if only its mass estimate [6] is known.

Isomeric states are denoted by the symbol "m" after the mass number and are given in the order of increasing excitation energy. Where the ground state is not well established all given states carry symbol "m".

The 235 U thermal fission products, with fractional cumulative yields $\geq 10^{-6}$, are *italicized* in the table. The information on fission products is taken from the ENDF/B-VI fission products file [8].

The names and symbols for elements are those adopted by the International Union of Pure and Applied Chemistry (2010). No names and symbols have as yet been adopted for Z>112.

Column 2, Jπ:

Spin and parity assignments, without and with parentheses, are based upon strong and weak arguments, respectively. See the introductory pages of the January issue of $Nuclear\ Data\ Sheets[2]$ for description of strong and weak arguments for $J\pi$ assignments.

Explanation of Table (cont.)

Column 3, Mass Excess, A:

Mass excesses, M-A, are given in MeV (from [6]) with Δ ($^{1\,2}$ C) = 0 , by definition. For isomers the values are obtained by adding the excitation energy to the Δ (g.s.) values. Wherever the excitation energy is not known, the mass excess for the next lower isomer (or the g.s.) is given. The values are given to the accuracy determined by the uncertainty in Δ (g.s.) (maximum of three figures after the decimal). The uncertainty is \leq 9 in the last significant figure. An appended "s" denotes that the value is obtained from systematics [6].

Column 4, T_½,Γ or Abundance:

The half-life and the abundance (in **bold face** from [7]) are shown followed by their units ("%" symbol in the case of abundance) which are followed by the uncertainty, in *italics*, in the last significant figures. For example, 8.1 s 10 means 8.1±1.0 s. For some very short-lived nuclei, level widths rather than half-lives are given. There also, the width is followed by units (e.g., eV, keV, or MeV) which are followed by the uncertainty in *italics*, if known. This field is left blank when the half-life is not known.

For $2\beta^-$ and 2ϵ decay only the lowest value of their several limits (e.g., for 0v or 2v, etc.) is given.

If a new measurement of half-life or decay mode has since become available [4] then its value is presented in place of the evaluated value in ENSDF.

Explanation of Table (cont.)

Column 5, Decay Mode:

Decay modes are given in decreasing strength from left to right, followed by the percentage branching, if known ("w" indicates a weak branch). The percentage branching is omitted where there is no competing mode of decay or no other mode has been observed. A "?" indicates an expected but not observed mode of decay. The various modes of decay are given below:

β-	β^-decay
ε	ϵ (electron capture), or $\epsilon + \beta^+,$ or β^+ decay
IT	isomeric transition (through γ or conver- sion-electron decay)
n,p,α,\dots	neutron, proton, alpha, decay
SF	spontaneous fission
2β-, 3α,	double β^- decay $(\beta^-\beta^-)$, decay through emission of 3 α 's,
$_{\beta-\alpha,\ \ldots}^{\beta-n,\ \beta-p,}$	delayed n, p, α , (emission following β^- decay)
$\begin{array}{l} \epsilon p, \epsilon \alpha, \\ \epsilon S F, \end{array}$	delayed p, α , SF, (emission following ϵ or β^+ decay)

NNDC Web Services

The centerfold presents the NNDC home page on the web (www.nndc.bnl.gov) and was prepared by Boris Pritychenko. The greatly expanded NNDC web services offer a wealth of Nuclear Physics information which includes analysis programs, reference data, and custom—tailored retrievals from its many databases. The ND2013 info is provided by Alejandro Sonzogni.

DOE Standard for Nuclear Material Inventory

The sixth edition (2000) of Nuclear Wallet Cards was adopted as the standard by the the US Department of Energy for the purposes of their nuclear material inventory. The sixth edition, as well as, the current edition are available through the NNDC web site.

Homeland Security

Nuclear Wallet Cards for Radioactive Nuclides, a reference for homeland security personnel based on this booklet was published in March 2004. The booklet, although limited to radioactive nuclides, contains additional radiation information. It is available only on the web and its printed form is no longer available.

Acknowledgements

The author is grateful for help from Eddie Browne, Tim Johnson, John Kelley, Filip Kondev, Elizabeth McCutchan, and Balraj Singh in checking parts of the table. Thanks to NNDC colleagues, especially, Michael Herman, Head, NNDC, for their support.

This research was supported by the Office of Nuclear Physics, Office of Science, US Department of Energy.

References

- 1. Evaluated Nuclear Structure Data Filea computer file of evaluated experimental nuclear structure data maintained by the National Nuclear Data Center, Brookhaven National Laboratory (file as of August 15, 2011).
- 2. Nuclear Data Sheets Elsevier, Amsterdam. Evaluations published by mass number for A = 21 to 294. See page ii of any issue for the index to A-chains.
- 3. Nuclear Physics Elsevier, Amsterdam Evaluations for A = 3 to 20.
- 4. XUNDL, An Experimental Unevaluated Nuclear Data List, mostly prepared under supervision of Dr. Balraj Singh, McMaster U., Canada, and maintained by the National Nuclear Data Center, Brookhaven National Laboratory.
- 5. Nuclear Science Reference Filea bibliographic computer file of nuclear science references continually updated and maintained by the National Nuclear Data Center, Brookhaven National Laboratory.
- 6. Mid-term Atomic Mass Evaluation, private communication from G. Audi, W. Meng (2011).
- 7. Isotopic composition of the elements 2009, Michael Berglund, Michael E. Wieser, *Pure Appl. Chem.* 83, 397 (2011).
- 8. Evaluation and Compilation of Fission Product Yields 1993, T.R. England and B.F. Rider; Rept. LA-UR-94-3106 (1994). ENDF/B-VI evaluation; MAT #9228, Revision 1.

References (cont.)
9. Table of Isotopes (1978), 7th edition,
Editors: C.M. Lederer, V.S. Shirley, Authors:
E. Browne, J.M. Dairiki, R.E. Doebler, A.A.
Shihab-Eldin, J. Jardine, J.K. Tuli, and A.B.
Buyrn, John Wiley, New York.

Nu Z	ıcli El		Jπ	(MeV)	T½, Γ, or Abundance	Decay Mode
0	n	1	1/2+	8.071	10.183 m 17	β-
1	н	1	1/2+	7.289	99.9885% 70	
		2	1+	13.136	0.0115% 70	
		3	1/2+	14.950	12.32 y 2	β-
		4	2-	24.6		n
		5	(1/2+)	32.89	5.7 MeV 21	2n
		6	(2-)	41.9	1.6 MeV 4	n
		7	(1/2+)	47.9	$29 \times 10^{-23} \text{ y } 7$	
2	Не	3	1/2+	14.931	0.000134% 3	
		4	0+	2.425	99.999866% 3	
		5	3/2-	11.23	0.60 MeV 2	α, n
		6	0+	17.592	801 ms 10	β-
		7	(3/2)-	26.067	150 keV 20	n
		8	0+ 1/2+	31.609 39.78	119.1 ms 12	β-, β-n 16% n
		10	0+	48.81	300 keV 200	n n
	٠.		0+			
3	Li	3		29s	unbound	p?
		4	2-	25.3	6.03 MeV	p
		5 6	3/2- 1+	11.68	=1.5 MeV 7.59% 4	p, α
		7	3/2-	14.087 14.907	92.41% 4	
		8	2+	20.945	839.9 ms 9	β-, β-α
		9	3/2-	24.954	178.3 ms 4	β-, β-α 50.8%
		10	(1-,2-)	33.05	110.0 110 1	n
		11	3/2-	40.728	8.75 ms 14	β- , β-n 83%,
						β-2n 4.1%, β-nα 0.027%
		12		48.92	<10 ns	n?
		13		58.3		
4	Ве	5	(1/2+)	37s		р
_		6	0+	18.375	92 keV 6	ρ, α
		7	3/2-	15.768	53.24 d 4	ε
		8	0+	4.941	5.57 eV 25	α
		9	3/2-	11.348	100.%	
		10	0+	12.607	1.387×10 ⁶ y 12	β-
		11	1/2+	20.177	13.81 s 8	β -, β - α 3.1%
		12	0+	25.076	21.49 ms 3	β−, β−n≤1%
		13	(1/2-)	33.21	$2.7 \times 10^{-21} \text{ s } 18$	n
		14	0+	40.0	4.35 ms 17	β– , β–n 81%, β–2n 5%
		15		49.8s	<200 ns	n?
		16	0+	57.7s	<200 ns	2n?
5	В	6		47s	unbound	2p?
		7	(3/2-)	27.87	1.4 MeV 2	α , p
		8	2+	22.921	770 ms 3	ε, εα
		9	3/2-	12.416	0.54 keV 21	p, 2α
		10	3+	12.050	19.9% 7	
		$\frac{11}{12}$	3/2-	8.667	80.1% 7 20.20 ms 2	β-, β-3α 1.58%
		13	1+ 3/2-	13.368 16.562	20.20 ms 2 17.33 ms 17	p-, p-3α1.38% β-
		14	3/2- 2-	23.66	12.5 ms 5	p- β-
		14	2-	20.00	12.5 ms 5	μ-
					1	

N Z	ucli El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
5		15		28.96	9.93 ms 7	β-, β-n 93.6%,
						β–2n 0 . 4%
		16	0-	37.12	<190 ps	n
		17	(3/2-)	43.8	5.08 ms 5	β-, β-n 63%, β-2n 11%, β-3n 3.5%, β-4n 0.4%
		18	(4-)	51.9s	<26 ns	n?
		19	(3/2-)	58.8s	2.92 ms 13	β-, β-n 72%, β-2n 16%
		20		67.1s		
		21		75.7s		
6	C	8	0+	35.08	230 keV 50	p, α
		9	(3/2-)	28.909	126.5 ms 9	ε, εp 61.6%, εα 38.4%
		10	0+	15.698	19.308 s 4	ε
		11	3/2-	10.650	20.334 m 24	ε
		12	0+	0.000	98.93% 8	
		13	1/2-	3.125	1.07% 8	
		14	0+	3.020	5700 y 30	β-
		15	1/2+	9.873	2.449 s 5	β-
		16 17	0+ 3/2+	13.694	0.747 s 8	β-, β-n 99%
		18	3/2+ 0+	21.03 24.92	193 ms 13 92 ms 2	β-, β-n 32% β-, β-n 31.5%
		19	1/2+	32.41	49 ms 4	β-, β-n 61%
		20	0+	37.6	14 ms +6-5	β- , β-n 72%
		21	(1/2+)	45.6s	<30 ns	n?
		22	0+	52.1s	6.1 ms +14-12	β-, β-n 61%, β-2n < 37%
		23		62.7s		p=211<01%
_	N	10		38.8		
•	14	11	1/2+	24.30	0.83 MeV 3	p
		12	1+	17.338	11.000 ms 16	p ε
		13	1/2-	5.345	9.965 m 4	ε
		14	1+	2.863	99.636% 20	
		15	1/2-	0.101	0.364% 20	
		16	2-	5.683	7.13 s 2	β -, β - α 1.2×10 ⁻³ %
		17	1/2-	7.87	4.173 s 4	β-, β-n 95.1%
		18	1-	13.11	620 ms 8	β-, β-α 12.2%, β-n 7%
		19		15.86	336 ms 3	β-, β-n 41.8%
		20	2-	21.76	136 ms 3	β-, β-n 42.9%
		21	(1/2-)	25.25	83 ms 8	β-, β-n 90.5%
		22	(0-,1-)	32.0	20 ms 2	β-, β-n 33%, β-2n 12%
		23		38.4s	14.5 ms 14	β-, β-n, β-2n
		24		47.5s	<52 ns	n?
		25		56.5s		
8	o	12	0+	32.05	$0.40~\mathrm{MeV}~25$	p
		13	(3/2-)	23.114	8.58 ms 5	ϵ , ϵp
		14	0+	8.007	70.620 s 15	ε
		15	1/2-	2.855	122.24 s 16	ε
					2	

Nucli Z El	de A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
8 O	16	0+	-4.737	99.757% 16	
	17	5/2+	-0.809	0.038% 1	
	18	0+	-0.783	0.205%~14	
	19	5/2+	3.333	26.88 s 5	β–
	20	0+	3.796	13.51 s 5	β-
	21	(5/2+)	8.06	3.42 s 10	β-
	22	0+ 1/2+	9.28	2.25 s 9	β-, β-n<22%
	23 24	0+	14.62 18.5	97 ms 8 65 ms 5	β– , β–n 7% β– , β–n 58%
	25	0+	27.3	oo ms o	р-, р-п эөм
	26	0+	35.1s	<40 ns	n?
	27	0.	44.1s	<260 ns	n?
	28	0+	52.9s	<100 ns	n?
9 F	14	(2-)	31.96		р
	15	(1/2+)	16.81	1.0 MeV 2	p
	16	0-	10.680	40 keV 20	p
	17	5/2+	1.951	64.49 s 16	ε
	18	1+	0.873	109.77 m 5	ε
	19	1/2+	-1.487	100%	
	20	2+	-0.017	11.07 s 6	β–
	21	5/2+	-0.047	4.158 s 20	β–
	22	(4+)	2.79	4.23 s 4	β-, β-n<11%
	23	5/2+	3.3	2.23 s 14	β-
	24	(1,2,3)+	7.56	390 ms 70	β-, β-n<5.9%
	25 26	5/2+ (1+)	11.36 18.67	80 ms 9 9.7 ms 7	β-, β-n 23.1% β-, β-n 11%
	27	(5/2+)	24.6	5.0 ms 2	β-, β-n 77%
	28	(3/2+)	33.1s	<40 ns	р-, р-п 1170
	29	(5/2+)	40.0s	2.5 ms 3	β-, β-n
	30	(-, ,	48.4s		n n
	31		55.9s	>250 ns	β-n, β-
10 Ne	16	0+	24.00	$9 \times 10^{-21} \text{ s}$	2p
	17	1/2-	16.500	109.2 ms 6	ε, ερ, εα
	18	0+	5.317	1.6670 s 17	ε
	19	1/2+	1.752	17.22 s 2	ε
	20	0+	-7.042	90.48% 3	
	21	3/2+	-5.731	0.27% 1	
	22	0+	-8.024	$9.25\% \ 3$	
	23	5/2+	-5.154	37.24 s 12	β-
	24	0+	-5.951	3.38 m 2	β-
	25 26	1/2+ 0+	-2.06 0.48	602 ms 8 197 ms 1	β– β– , β–n 0 . 13%
	27	(3/2+)	7.03	31.5 ms 13	β-, β-n 2%
	28	0+	11.29	18.9 ms 4	β- , β-n 12%,
		0.	11.20	10.0 110 1	β-3.6%
	29	(3/2+)	18.40	14.8 ms 3	β- , β-n 28%, β-2n 4%
	30	0+	23.0	7.3 ms 3	β-, β-n 13%, β- 8.9%
	31		31	3.4 ms 8	β-, β-n
	32	0+	37.0s	3.5 ms 9	β-, β-n
	33		46.0s	<180 ns	n
				3	

Nuclide		Δ	T½, Γ, or	
Z El A	Jπ	(MeV)	Abundance	Decay Mode
10 Ne 34	0+	52.8s	>60 ns	β-n, β-
11 Na 18	1-	25.0	$1.3 \times 10^{-21} \text{ s } 4$	p
19	(5/2+)	12.93	<40 ns	p
20	2+	6.850	447.9 ms 23	ε, εα 20.05%
21	3/2+	-2.184	22.49 s 4	ε
22	3+	-5.181	2.6027 y 10	ε
23	3/2+	-9.530	100%	
24	4+	-8.417	14.997 h 12	β–
24 r	n 1+	-7.945	20.18 ms 10	IT 99.95%, β==0.05%
25	5/2+	-9.357	59.1 s 6	β==0.03/ε
26	3+	-6.860	1.07128 s 25	β- β-
27	5/2+	-5.517	301 ms 6	β-, β-n 0.13%
28	1+	-0.99	30.5 ms 4	β-, β-n 0.58%
29	3/2+	2.67	44.9 ms 12	β-, β-n 21.5%
30	2+	8.37	48 ms 2	β-, β-n 30%,
				β-2n 1.15%,
				β - α 5 . 5×10 ⁻⁵ %
31	3/2(+)	12.5	17.0 ms 4	β-, β-n 37%,
				β-2n 0.87%,
				β-3n<0.05%
32	(3-,4-)	18.8	13.2 ms 4	β-, β-n 24%,
				β–2n 8%
33	(3/2+)	24.0s	8.0 ms 4	β- , β-n 47%, β-2n 13%
34		31.3s	5.5 ms 10	$\beta = 11.13\%$ $\beta = 1.13\%$ $\beta = 1.13\%$
94		31.38	3.3 ms 10	β=n=15%
35		37.8s	1.5 ms 5	β-, β-n
36		45.9s	<180 ns	n , p
37		53.1s	>60 ns	β-n , β-
12 Mg 19		31.83	4.0 ps 15	2p
20	0+	17.56	90.8 ms 24	ε, εp=27%
21	5/2+	10.91	122 ms 3	ε, ερ 32.6%,
				εα<0.5%
22	0+	-0.399	3.8755 s 12	ε
23	3/2+	-5.473	11.317 s 11	ε
24	0+	-13.933	78.99% 4	
25	5/2+	-13.192	10.00% 1	
26	0+	-16.214	11.01% 3	
27	1/2+	-14.586	9.458 m 12	β–
28	0+	-15.018	20.915 h 9	β–
29	3/2+	-10.60	1.30 s 12	β-
30	0+	-8.89	335 ms 17	β-
31	1/2(+)	-3.19	232 ms 15	β-, β-n 1.7%
32	0+	-0.91	86 ms 5	β-, β-n 5.5%
33	3/2-	4.95	90.5 ms 16	β-, β-n 14%
34 35	0+ (7/2-)	8.56 15.6	20 ms 10 70 ms 40	β- , β-n β- , β-n 52%
36	0+	20.4	3.9 ms 13	
36	(7/2-)	20.4 28.3s	3.9 ms 13 >260 ns	β-, β-n β-, β-n
38	0+	26.38 34.1s	>260 ns	β- , β-n
39	UT	42.3s	<180 ns	р– , р–п n
00		12.00	4	

Nucli Z El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
12 Mg	40	0+	48.6s	>170 ns	β-, β-n
13 Al	21	(5/2+)	27.1s	<35 ns	р
	22	4+	18.2s	91.1 ms 5	ε, ερ 54.5%,
					ε2p 1.1%, εα 0.04%
	23	5/2+	6.748	446 ms 6	ε, ερ 1.22%
	24	4+	-0.048	2.053 s 4	ε, ερ 1.6×10 ⁻³ %,
	24 n	n 1+	0.378	130 ms 3	εα 0.04% IT 82.5%, ε 17.5%, εα 0.03%
	25	5/2+	-8.916	7.183 s 12	ε
	26	5+	-12.210	7.17×10^5 y 24	ε
	26n	n 0+	-11.982	6.3464 s 7	ε
	27	5/2+	-17.196	100%	
	28	3+	-16.850	2.2414 m 12	β-
	29	5/2+	-18.215	6.56 m 6	β-
	30	3+	-15.87	3.62 s 6	β-
		(3/2,5/2)+	-14.95	644 ms 25	β-
	32	1+	-11.06	33.0 ms 2	β-, β-n 0.7%
	33 34	(5/2)+	-8.44 -3.05	41.7 ms 2 42 ms 6	β-, β-n 8.5% β-, β-n 27%
	35		-0.22	37.2 ms 8	β-, β-n 38%
	36		5.95	90 ms 40	β-, β-n<31%
	37		9.8	10.7 ms 13	β-
	38		16.2	7.6 ms 6	β-, β-n
	39		21.0s	7.6 ms 16	β-, β-n
	40		28.0s	>260 ns	β-, β-n
	41		33.9s	>260 ns	β-
	42		41.5s	>170 ns	β-, β-n
	43		48.4s	>170 ns	β- , β-n
14 Si	22	0+	33.0s	29 ms 2	ε, εр 32%
	23	(5/2)+	23.1s	42.3 ms 4	ε, ερ 71%, ε2ρ 3.6%
	24	0+	10.75	140.5 ms 15	ε, ερ 45%
	25 26	5/2+ 0+	3.83 -7.140	220 ms 3 2.229 s 3	ε, ερ 35%
	27	5/2+	-12.384	4.15 s 4	ε
	28	0+	-21.493	92.223% 19	C
	29	1/2+	-21.895	4.685% 8	
	30	0+	-24.432	3.092% 11	
	31	3/2+	-22.949	157.3 m 3	β-
	32	0+	-24.077	153 y 19	β-
	33	3/2+	-20.514	6.11 s 21	β-
	34	0+	-19.96	2.77 s 20	β-
	35	_	-14.36	0.78 s 12	β-, β-n<5%
	36	0+	-12.42	0.45 s 6	β-, β-n<10%
	37 38	(7/2-) 0+	-6.59 -4.17	90 ms 60 >1 μs	β-, β-n 17%
	39	0+	2.32	>1 μs 47.5 ms 20	β-, β-n β-, β-n
	40	0+	5.4	33.0 ms 10	β-, β-n β-, β-n
	41	0.1	12.1	20.0 ms 25	β-, β-n?
	42	0+	16.6s	12.5 ms 35	β-, β-n
	43		23.1s	>60 ns	β-, β-n
	44	0+	28.5s	>360 ns	β-, β-n
				5	

Nucli			Δ	Τ½, Γ, ог	
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
14 Si	45		37.2s		
15 P	24	(1+)	32.8s		ε?, p?
	25	(1/2+)	19.7s	<30 ns	p
	26	(3+)	11.0s	43.7 ms 6	ε, ερ
	27	1/2+	-0.71	260 ms 80	ε, ερ 0.07%
	28	3+	-7.149	270.3 ms 5	ε, εp 1.3×10 ⁻³ %,
					εα 8 . 6×10 ⁻⁴ %
	29	1/2+	-16.952	4.142 s 15	ε
	30	1+	-20.200	2.498 m 4	ε
	31	1/2+	-24.441	100%	
	32	1+	-24.304	14.262 d <i>14</i>	β-
	33	1/2+	-26.337	25.35 d 11	β-
	34	1+	-24.548	12.43 s 8	β-
	35	1/2+	-24.857	47.3 s 7	β-
	36	4-	-20.25	5.6 s 3	β-
	37	(0 ()	-19.00	2.31 s 13	β-
	38	(0-:4-)	-14.64	0.64 s 14	β-, β-n 12%
	39	(1/2+)	-12.80	0.28 s 4	β-, β-n 26%
	40	(2-,3-)	-8.1 -4.98	125 ms 25	β-, β-n 15.8%
	41 42	(1/2+)		100 ms 5 48.5 ms 15	β-, β-n 30%
	42	(1/2+)	1.0 4.7	48.5 ms 15 36.5 ms 15	β-, β-n 50%
	44	(1/2+)	10.4s	18.5 ms 25	β- , β-n β- , β-n
	45		15.3s	>200 ns	β-, ρ-11
	46		22.8s	>200 ns	β- β-
	47		29.2s	2200 Hs	p-
10.0		0.		.50	0.0
16 S	26 27	0+ (5/2+)	27.1s 17.0s	<79 ns 15.5 ms <i>15</i>	2p? ε, εp 2.3%,
	21	(3/2+)	17.08	10.0 ms 10	ε, ερ 2.3%, ε2p 1.1%
	28	0+	4.1	125 ms 10	ε , εp 20.7%
	29	5/2+	-3.16	187 ms 4	ε, εp 47%
	30	0+	-14.062	1.178 s 5	ε, ερ 41%
	31	1/2+	-19.043	2.572 s 13	ε
	32	0+	-26.015	94.99% 26	C
	33	3/2+	-26.586	0.75% 2	
	34	0+	-29.931	4.25% 24	
	35	3/2+	-28.846	87.37 d 4	β-
	36	0+	-30.664	0.01% 1	
	37	7/2-	-26.896	5.05 m 2	β-
	38	0+	-26.861	170.3 m 7	β–
	39	(7/2)-	-23.16	11.5 s 5	β-
	40	0+	-22.9	8.8 s 22	β–
	41	(7/2-)	-19.09	1.99 s 5	β-, β-n
	42	0+	-17.7	1.03 s 3	β–
	43		-12.07	0.28 s 3	β-, β-n 40%
	44	0+	-9.1	100 ms 1	β-, β-n 18%
	45		-4.0	68 ms 2	β-, β-n 54%
	46	0+	0.0s	50 ms 8	β–
	47	_	7.4s		
	48	0+	12.8s	≥200 ns	β–
	49		21.2s	<200 ns	n
17 Cl	28	(1+)	27.5s	_	p?
				6	

Nucli Z El		Jπ	A (MeV)	T½, Γ, or Abundance	Decay Mode
17 Cl	29	(3/2+)	13.8s	<20 ns	p
	30	(3+)	4.4s	<30 ns	p
	31		-7.07	150 ms 25	ε, ερ 0.7%
	32	1+	-13.335	298 ms 1	ε, εα 0.05%,
		0.40	04 000	0.544	εр 0.03%
	33	3/2+	-21.003	2.511 s 4	8
	34	0+	-24.440	1.5264 s 14	E . 7.7 401 T/D 44 001
	34 n	n 3+ 3/2+	-24.294	32.00 m 4	ε 55.4%, IT 44.6%
	36	2+	-29.013 -29.521	75.76% 10 3.01×10 ⁵ y 2	β-98.1%, ε1.9%
	37	3/2+	-31.761	24.24% 10	р= 30.1%, с 1.3%
	38	2-	-29.798	37.24 m 5	β-
	38 n		-29.127	715 ms 3	IT
	39	3/2+	-29.800	56.2 m 6	β-
	40	2-	-27.56	1.35 m 2	β_
	41	(1/2+)	-27.31	38.4 s 8	β_
	42		-24.9	6.8 s 3	β–
	43	(1/2+)	-24.4	3.13 s 9	β_
	44	(2-)	-20.6	0.56 s 11	β-, β-n<8%
	45	(1/2+)	-18.36	413 ms 25	β-, β-n 24%
	46		-13.8	232 ms 2	β-, β-n 60%
	47		-10.1s	101 ms 6	β-, β-n>0%
	48		-4.1s	≥200 ns	β–
	49		1.1s	≥170 ns	β–
	50		8.4s	>620 ns	β-, β-n
	51	(3/2+)	14.5s	>200 ns	β–
18 Ar	30	0+	21.5s	<20 ns	p?
	31	5/2(+)	11.3s	14.4 ms 6	ϵ , ϵp 62%, $\epsilon 2p$ 8.5%
	32	0+	-2.200	100.5 ms 3	ε, ερ 35.6%
	33	1/2+	-9.384	173.0 ms 20	ε, εр 38.7%
	34	0+	-18.377	844.5 ms 34	ε
	35	3/2+	-23.047	1.7756 s 10	ε
	36	0+ 3/2+	-30.231	0.3336% 21	
	37 38	3/2+ 0+	-30.947 -34.714	35.04 d 4 0.0629% 7	ε
	39	7/2-	-34.714	269 y 3	β-
	40	0+	-35.040	99.6035% 25	p-
	41	7/2-	-33.067	109.61 m 4	β-
	42	0+	-34.422	32.9 y 11	β-
	43	(5/2-)	-32.009	5.37 m 6	β_
	44	0+	-32.673	11.87 m 5	β
	45	5/2 - ,7/2 -	-29.770	21.48 s 15	β_
	46	0+	-29.73	8.4 s 6	β_
	47	(3/2)-	-25.21	1.23 s 3	β-, β-n<0.2%
	48	0+	-22.6s	475 ms 40	β-
	49		-16.8s	170 ms 50	β-, β-n 65%
	50	0+	-12.8s	85 ms 30	β-, β-n 35%
	51		-5.9s	>200 ns	β-
	52	0+	-1.0s	>620 ns	β-?
	53		7.1s	>620 ns	β -?, β -n?, β -2n?
19 K	32		21.1s		p?
	33		7.0s	<25 ns	p

Nucli Z El		Jπ	(MeV)	Τ½, Γ, or Abundance	Decay Mode
19 K	34	(1+)	-1.2s	<25 ns	p
	35	3/2+	-11.172	178 ms 8	ε, ερ 0.37%
	36	2+	-17.417	342 ms 2	ε, ερ 0.05%,
					εα 3 . 4×10 ⁻³ %
	37	3/2+	-24.800	1.226 s 7	ε
	38	3+	-28.800	7.636 m 18	ε - 00 0πε/ 1π.0 0πε/
	38r 39	n 0+ 3/2+	-28.670 -33.807	924.3 ms 3 93.2581% 44	ε 99.97%, IT 0.03%
	40	4-	-33.535	1.248×10 ⁹ y 3	В- 89.28%.
	40	4-	-33.333	0.0117% 1	ε 10.72%
	41	3/2+	-35.560	6.7302% 44	0.10.12%
	42	2-	-35.022	12.321 h 25	β-
	43	3/2+	-36.575	22.3 h 1	β_
	44	2-	-35.781	22.13 m 19	β_
	45	3/2+	-36.615	17.81 m 61	β_
	46	(2-)	-35.413	105 s 10	β–
	47	1/2+	-35.708	17.50 s 24	β-
	48	(2-)	-32.285	6.8 s 2	β-, β-n 1.14%
			-29.611	1.26 s 5	β-, β-n 86%
			-25.74	472 ms 4	β– , β–n 29%
		(1/2+,3/2+)	-21.6s	365 ms 5	β-, β-n 47%
	52	(2-)	-16.0s	118 ms 6	β-, β-n=73%
	53	(3/2+)	-11.1s	30 ms 5	β-, β-n=75%,
	- 1		4.0-	10 5	β-2n < 1%
	54 55		-4.3s 2s	10 ms 5 >360 ns	β-, β-n>0%
	56		8.7s	>620 ns	β-, β-n β-, β-n?, β-2n?
		_			
20 Ca		0+	13.9s	<35 ns	p
	35		4.8s	25.7 ms 2	ε, εp 95.9%,
	36	0+	-6.45	102 ms 2	ε2p 4.1% ε, εp 54.3%
	37	3/2+	-0.45 -13.135	102 ms 2 181.1 ms 10	ε, εp 34.3% ε, εp 82.1%
	38	0+	-22.058	440 ms 12	ε, ερ 62.1%
	39	3/2+	-27.282	859.6 ms 14	ε
	40	0+	-34.846	>3.0×10 ²¹ y	2ε
				96.94% 16	
	41	7/2-	-35.137	1.02×10 ⁵ y 7	ε
	42	0+	-38.547	0.647% 23	
	43	7/2-	-38.408	0.135% 10	
	44	0+	-41.468	2.09% 11	
	45	7/2-	-40.812	162.61 d 9	β-
	46	0+	-43.139	$>0.28\times10^{16} \text{ y}$	2β-
				0.004% 3	
	47	7/2-	-42.345	4.536 d 3	β-
	48	0+	-44.223	>5.8×10 ²² y 0.187% 21	2β- 75%
	49	3/2-	-41.298	8.718 m 6	β–
	50	0+	-39.588	13.9 s 6	β_
	51	(3/2-)	-35.87	10.0 s 8	β-, β-n
	52	0+	-32.5	4.6 s 3	β−, β−n≤2%
	53	(3/2-,5/2-)	-27.5s	90 ms 15	β-, β-n>30%
	54	0+	-23.0s	86 ms 7	β-

8

Nucli Z El	de A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
					-
20 Ca	55 56	(5/2-) 0+	-17.0s -12.4s	22 ms 2 11 ms 2	β-, β-n
	57	0+	-12.4s -5s	>620 ns	β-, β-n?
		0.			β-, β-n, β-2n
	58	0+	-0.3s	>620 ns	β– , β–n
21 Sc	36		15.5s		p?
	37		3.6s		p?
	38		-4.4s		p
	39	(7/2-)	-14.17	<300 ns	p
	40	4-	-20.523	182.3 ms 7	ε, ερ 0.44%,
					εα 0.02%
	41	7/2-	-28.642	596.3 ms 17	ε
	42	0+	-32.121	681.3 ms 7	ε
	42 m	(7)+	-31.505	61.7 s 4	ε
	43	7/2-	-36.188	3.891 h 12	ε
	44 44m	2+ 6+	-37.816	3.97 h 4	E
	44 m 45	7/2-	-37.545 -41.070	58.61 h 10 100%	IT 98.8%, ε 1.2%
	45 45 m	3/2+	-41.070 -41.058	318 ms 7	IT
	45m 46	3/2+ 4+	-41.058 -41.759	83.79 d 4	β_
	46m	1-	-41.617	18.75 s 4	IT
	47	7/2-	-44.336	3.3492 d 6	β_
	48	6+	-44.502	43.67 h 9	β- β-
	49	7/2-	-46.560	57.18 m 13	β_
	50	5+	-44.55	102.5 s 5	β_
	50m	2+.3+	-44.29	0.35 s 4	IT>97.5%, β-<2.5%
	51	(7/2)-	-43.23	12.4 s 1	β-
	52	3(+)	-40.4	8.2 s 2	B-
	53	(7/2-)	-37.5s	2.4 s 6	β-, β-n?
	54	(3)+	-33.7s	526 ms 15	β-
	55	(7/2)-	-29.6	96 ms 2	β-, β-n 17%
	56	(1+)	-24.5s	26 ms 6	β-, β-n?
	56 m	(5,6)+	-24.5s	75 ms 6	β-, β-n>14%
	57	(7/2-)	-20.1s	22 ms 2	β-, β-n
	58		-14.4s	12 ms 5	β-, β-n
	59		-9.6s	>360 ns	β-, β-n
	60		-3.4s	>360 ns	β-, β-n
	61		1.6s	>360 ns	β-, β-n
22 Ti	38	0+	10.6s		
	39	(3/2+)	2.2s	31 ms + 6-4	ε, ερ
	40	0+	-8.9	52.4 ms 3	ε, ερ 97.5%
	41	3/2 +	-15.1	80.4 ms 9	ε, ερ
	42	0+	-25.104	199 ms 6	ε
	43	7/2-	-29.321	509 ms 5	ε
	44	0+	-37.548	60.0 y 11	ε
	45	7/2-	-39.008	184.8 m 5	ε
	46	0+	-44.127	8.25% 3	
	47	5/2-	-44.936	7.44% 2	
	48	0+	-48.491	73.72% 3	
	49	7/2-	-48.562	5.41% 2	
	50	0+	-51.430	5.18% 2	
	51	3/2-	-49.731	5.76 m 1	β-
	52	0+	-49.468	1.7 m 1	β–
				9	

Nucli Z El	de A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
					-
22 Ti	53	(3/2)-	-46.8	32.7 s 9	β-
	54	0+	-45.6	1.5 s 4	β-
	55	(1/2)-	-41.7	1.3 s 1	β-
	56	0+	-38.9	0.200 s 5	β-, β-n
	57	(5/2-)	-33.5	98 ms 5	β-, β-n
	58	0+	-30.7s	57 ms 10	β-, β-n
	59	(5/2-)	-25.0s	27.5 ms 25	β-
	60	0+	-21.5s	22.4 ms 25	β-
	61	(1/2-)	-15.5s	15 ms 4	β-, β-n
	62	0+	-11.8s	>620 ns	β-, β-n
	63		-5.2s	>360 ns	β-, β-n
23 V	40		11.6s		p?
	41		0.0s		p?
	42		-7.6s	<55 ns	p
	43		-18.0s	79.3 ms 24	ε
	44	(2+)	-24.1	111 ms 7	ε, εα
	44 m	(6+)	-24.1	150 ms 3	ε
	45	7/2-	-31.88	547 ms 6	ε
	46	0+	-37.074	422.50 ms 11	ε
	46 m	3+	-36.272	1.02 ms 7	IT
	47	3/2-	-42.005	32.6 m 3	ε
	48	4+	-44.476	15.9735 d <i>25</i>	ε
	49	7/2-	-47.960	330 d 15	ε
	50	6+	-49.224	$>2.1\times10^{17} \text{ y}$	$\varepsilon > 92.9\%$
				0.250% 2	β-<7.1%
	51	7/2-	-52.203	99.750% 2	
	52	3+	-51.443	3.743 m 5	β-
	53	7/2-	-51.849	1.543 m 14	β-
	54	3+	-49.89	49.8 s 5	β-
	55	(7/2-)	-49.2	6.54 s 15	β-
	56	1+	-46.1	0.216 s 4	β-, β-n
	57	(7/2-)	-44.2	0.32 s 3	β-, β-n
	58	(1+)	-40.2	191 ms 10	β-, β-n
	59	(5/2-)	-37.1	97 ms 2	β-, β-n<3%
	60		-32.6	68 ms 5	β
	60 m		-32.6	40 ms 15	β-, β-n
	60 m		-32.6	122 ms 18	β-, β-n
	61	(3/2-)	-29.5s	52.6 ms 42	β−, β−n≥6%
	62		-24.6s	33.5 ms 20	β-, β-n
	63	7/2-	-21.1s	19.2 ms 24	β -, β -n = 35%
	64		-15.6s	19 ms 8	β-
	65		-11.3s	>360 ns	β-, β-n
	66		-5.3s	>360 ns	β-, β-n
24 Cr	42	0+	6.5s	13.3 ms 10	ε, ερ 94.4%
	43	(3/2+)	-1.9s	20.6 ms 9	ε, ερ 81%, ε2ρ 7.1%,
					ε3p 0.08%
	44	0+	-13.1s	42.8 ms 6	ε, ερ 14%
	45	(7/2-)	-19.4s	60.9 ms 4	ε, εр 34.4%
	46	0+	-29.47	0.26 s 6	ε
	47	3/2-	-34.56	500 ms 15	ε
	48	0+	-42.821	21.56 h 3	ε
	49	5/2-	-45.332	42.3 m 1	ε
				10	

Nucli Z El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
24 Cr	50	0+	-50.261	$>1.3\times10^{18} \text{ y}$	2ε
				4.345% 13	
	51	7/2-	-51.451	27.7025 d 24	ε
	52	0+	-55.418	83.789% 18	
	53	3/2-	-55.285	9.501% 17	
	54	0+	-56.933	2.365% 7	
	55	3/2-	-55.108	3.497 m 3	β-
	56	0+	-55.281	5.94 m 10	β-
	57	(3/2)-	-52.524	21.1 s 10	β-
	58	0+	-51.8	7.0 s 3	β
	59	(1/2-)	-47.9	1.05 s 9	β
	60	0+	-46.5	0.49 s 1	β
	61	(5/2-)	-42.2	243 ms 11	β-, β-n
	62	0+	-40.4	206 ms 12	β-, β-n
	63	1/2-	-35.6s	129 ms 2	β-, β-n
	64	0+	-33.3s	42 ms 2	β-
	65	(1/2-)	-27.8s	28 ms 3	β–
	66	0+	-24.3s	23 ms 4	β–
	67		-18.5s		β-?
	68	0+	-14.9s	>360 ns	β-, β-n
25 Mn	44 45	(2-)	6.7s -5.1s	<105 ns	ϵ , p
	46	(4+)	-12.0s	36.2 ms 4	ε, ερ 57%
	47	(5/2-)	-22.3s	88.0 ms 13	ε, εροιπ ε, ερ<1.7%
	48	4+	-29.3	158.1 ms 22	ε, ερ 0.28%,
	40	**	-25.6	100.1 1113 22	εα<6.0×10 ⁻⁴ %
	49	5/2-	-37.61	382 ms 7	ε
	50	0+	-42.627	283.19 ms 10	ε
	50 m	5+	-42.402	1.75 m 3	ε
	51	5/2-	-48.243	46.2 m 1	ε
	52	6+	-50.706	5.591 d 3	ε
	52 m	2+	-50.328	21.1 m 2	ε 98.25%, IT 1.75%
	53	7/2-	-54.689	$3.74 \times 10^{6} \text{ y } 4$	ε
	54	3+	-55.556	312.12 d 6	ε, β -<2.9×10 ⁻⁴ %
	55	5/2-	-57.711	100%	
	56	3+	-56.910	2.5789 h 1	β-
	57	5/2-	-57.486	85.4 s 18	β-
	58	1+	-55.827	3.0 s 1	β-
	58m	4+	-55.755	65.4 s 5	β-=90%, IT=10%
	59	(5/2)-	-55.525	4.59 s 5	β-
	60	1+	-52.967	0.28 s 2	β-
	60 m	4+ (5/2)-	-52.695	1.77 s 2	β– 88.5%, IT 11.5%
	61 62m	(3+)	-51.742 -48.180	0.67 s 4 671 ms 5	β– β– , β–n
	62m	(1+)	-48.180 -48.180	92 ms 13	p-, p-n β-, β-n
	62m	5/2-	-48.180 -46.886	92 ms 13 0.275 s 4	p-, p-n β-, β-n
	64	(1+)	-40.889	90 ms 4	β- , β-n 33%
	64 m	(4+)	-42.814	0.50 ms 5	р-, р-п 33 <i>л</i> е IT
	65	(5/2-)	-40.967	84 ms 8	β_
	66	(3/2-)	-36.75	65 ms 2	β- β-
	67	(5/2+)	-32.8s	51 ms 4	β-, β-n>10%
	68	(>3)	-28.0s	28 ms 3	β-, β-n

Nucli Z El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
25 Mn		5/2-	-24.4s	18 ms 4	β-
	70		-19.2s	>360 ns	β-, β-n
	71			>637 ns	$\beta - ,\beta - n,\beta - 2n$
26 Fe	45	(3/2+)	13.8s	1.89 ms +49-21	$\begin{array}{l} 2p \ 70\%, \ \epsilon \leq 30\%, \\ \epsilon p \ 19\%, \ \epsilon 2p \ 7 . 8\%, \\ \epsilon 3p \ 3 . 3\% \end{array}$
	46	0+	0.8s	13.0 ms 20	ε, ερ 78.7%
	47	(7/2-)	-6.6s	21.9 ms 2	ε, ερ 88.4%, ε2p
	48	0+	-18.16s	45.3 ms 6	ε, ερ 15.9%
	49	(7/2-)	-24.8s	64.7 ms 3	ε, ερ 56.7%
	50	0+	-34.49	155 ms <i>11</i>	ε, ερ?
	51	5/2-	-40.22	305 ms 5	ε
	52	0+	-48.332	8.275 h 8	ε 3
	52 m	12+	-41.374	45.9 s 6	ϵ , IT<4.0×10 ⁻³ %
	53	7/2-	-50.946	8.51 m 2	ε
	53 m	19/2-	-47.906	2.54 m 2	IT
	54	0+	-56.253	5.845% 35	
	55 56	3/2-	-57.480	2.744 y 9	ε
	57	0+ 1/2-	-60.606	91.754% 36	
			-60.181	2.119% 10	
	58 59	0+ 3/2-	-62.154 -60.664	0.282% 4 44.495 d 9	β-
	60	0+	-61.412	2.62×10 ⁶ y 4	р– В–
		3/2-,5/2-	-58.920	5.98 m 6	β-
	62	0+	-58.877	68 s 2	β-
	63	(5/2-)	-55.635	6.1 s 6	β-
	64	0+	-54.969	2.0 s 2	β-
	65	(1/2-)	-51.221	0.81 s 5	B-
	65 m	(9/2+)	-50.819	1.12 s 15	B-
	66	0+	-50.067	440 ms 60	β_
	67	(1/2-)	-45.7	0.40 s 4	β-
	68	0+	-43.1	180 ms 19	β-
	69	1/2-	-38.4s	110 ms 6	β-
	70	0+	-36.3s	71 ms 10	β-
	71		-31.0s	28 ms 5	β-, β-n
	72	0+	-28.3s	≥150 ns	β-, β-n 27.6%
	73			>633 ns	β-, β-n, β-2n
	74	0+		>638 ns	β-, β-n, β-2n
27 Co	47		10.3s		
	48		1.9s		
	49		-9.6s		
	50	(6+)	-17.2s	38.8 ms 2	ε, ερ 70.5%, ε2ρ
	51	(7/2-)	-27.3s	>200 ns	ε
	52	(6+)	-33.92s	115 ms 23	ε
	53	(7/2-)	-42.658	240 ms 9	ε
		(19/2-)	-39.461	247 ms 12	$\epsilon = 98.5\%, p = 1.5\%$
	54	0+	-48.009	193.28 ms 7	ε
	54 m	7+	-47.812	1.48 m 2	ε
	55	7/2-	-54.029	17.53 h 3	ε
	56	4+	-56.039	77.236 d 26	ε
	57	7/2-	-59.344	271.74 d 6	ε
	58	2+	-59.846	70.86 d 6	ε
				12	

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
27 Co 58m	5+	-59.821	9.10 h 9	IT
59	7/2-	-62.229	100%	
60	5+	-61.649	1925.28 d 14	β-
60 m	2+	-61.590	10.467 m 6	IT 99.76%, β-0.24%
61	7/2-	-62.897	1.650 h 5	β-
62	2+	-61.43	1.50 m 4	β-
62m	5+	-61.41	13.91 m 5	β->99%, IT<1%
63	7/2-	-61.84	27.4 s 5	β-
64	1+	-59.79	0.30 s 3	β–
65	(7/2)-	-59.185	1.16 s 3	β–
66	(3+)	-56.41	0.20 s 2	β-
67	(7/2-)	-55.321	0.425 s 20	β-
68	(7-)	-51.9	0.199 s 21	β-
68m		-51.9	1.6 s 3	β-
69	7/2-	-50.0	229 ms 24	β-
70 70m	(6-)	-45.6 -45.6	108 ms 7 0.50 s 18	β– β–
70m 71	(3+) (7/2-)	-45.6 -43.9	0.50 s 18 80 ms 3	p− β− , β−n≤6%
72	(6-,7-)	-45.9 -39.7s	59.9 ms 17	
73	(6-,7-)	-39.7s -37.2s	41 ms 4	β−, β−n≥6% β−
74	0+	-31.2s	25 ms 5	β− , β−n ≈ 18%
75	(7/2-)	-29.4s	>150 ns	р-, р-н-10 <i>ж</i> В-
76	(1/2-)	-20.45	>634 ns	β-, β-2n, β-n
28 Ni 48	0+	18.0s	2.1 ms +14-6	$2p = 70\%$, ϵ
49		8.7s	7.5 ms 10	ε, ερ 83%
50	0+	-3.6s	18.5 ms 12	ε, ερ 86.7%, ε2ρ
51	(7/2-)	-11.5s	23.8 ms 2	ε, ερ 87.2%
52	0+	-22.9s	40.8 ms 2	ε, ερ 31.4%
53	(7/2-)	-29.7s	55.2 ms 7	ε, ερ 23.4%
54	0+	-39.22	104 ms 7	ε
55	7/2-	-45.335	204.7 ms 37	ε
56	0+	-53.906	6.075 d 10	ε
57	3/2-	-56.083	35.60 h 6	ε
58	0+	-60.228	68.077% 9	
59	3/2-	-61.156	7.6×10 ⁴ y 5	ε
60	0+	-64.472	26.223% 8	
61	3/2-	-64.221	1.1399% 13	
62	0+	-66.745	3.6346% 40	0
63 64	1/2- 0+	-65.512 -67.098	101.2 y 15 0.9255% 19	β–
65	5/2-	-65.125	2.5175 h 5	β–
66	0+	-66.006	54.6 h 3	β_
67	(1/2)-	-63.742	21 s 1	β-
68	0+	-63.463	29 s 2	β_
68m		-60.614	0.86 ms 5	IT
69	9/2+	-59.978	11.2 s 9	β-
69 m		-59.657	3.5 s 9	β_
70	0+	-59.213	6.0 s 3	β-
71	(9/2+)	-55.405	2.56 s 3	β-
71m	(1/2-)	-54.906	2.3 s 3	β_
72	0+	-54.225	1.57 s 5	β-
73	(9/2+)	-50.107	0.84 s 3	β-
			13	

Nucli	de		Δ	Т%, Г, ог	
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
28 Ni	74	0+	-48.7s	0.68 s 18	β-, β-n
	75	(7/2+)	-44.1s	344 ms 25	β-, β-n 10%
	76	0+	-41.6s	0.238 s +15-18	β-, β-n
	77	_	-36.7s	128 ms +36-32	β-, β-n 30%
	78	0+	-34.1s	0.11 s +10-6	β-, β-n
	79			>635 ns	β-, β-n, β-2n
29 Cu		(3+)	-1.9s	200	p
	53	(3/2-)	-13.5s	<300 ns	ϵ , p
	54 55	(3+) (3/2-)	-21.4s -31.6s	<75 ns 27 ms 8	p ε, εp 15%
	56	(4+)	-31.6s -38.2s	93 ms 3	ε, ερ 15%
	57	3/2-	-36.2s -47.308	196.3 ms 7	ε, ερυ. 470
	58	1+	-51.667	3.204 s 7	ε
	59	3/2-	-56.357	81.5 s 5	ε
	60	2+	-58.344	23.7 m 4	ε
	61	3/2-	-61.983	3.333 h 5	ε
	62	1+	-62.786	9.673 m 8	ε
	63	3/2-	-65.579	69.15% 15	
	64	1+	-65.424	12.701 h 2	ε 61.5%, β-38.5%
	65	3/2-	-67.263	30.85% 15	
	66	1+	-66.257	5.120 m 14	β-
	67	3/2-	-67.318	61.83 h 12	β-
	68	1+	-65.567	30.9 s 6	β-
	68 m	(6-)	-64.845	3.75 m 5	IT 84%, β– 16%
	69	3/2-	-65.736	2.85 m 15	β-
	70	(6-)	-62.976	44.5 s 2	β-
	70 m	(3-)	-62.875	33 s 2	β– 52%, IT 48%
	70 m	1+	-62.733	6.6 s 2	β-93.2%, IT 6.8%
	71 72	3/2(-)	-62.711	19.4 s 16	β-
	73	(2) (3/2-)	-59.782 -58.987	6.63 s 3 4.2 s 3	β– β–
	74	(3/2-) (1+,3+)	-56.006	1.594 s 10	β- β-
	75	(5/2-)	-54.471	1.222 s 8	β-, β-n 3.5%
	76	(3,4)	-50.975	637 ms 7	β-, β-n 7.2%
	76m	(0,1)	-50.975	1.27 s 30	В-
	77	(5/2-)	-48.3	468.1 ms 20	β-, β-n 30.3%
	78 (4-,5-,6-)	-44.5	335 ms 11	β-, β-n>65%
	79		-41.9s	188 ms 25	β-, β-n 55%
				0 45 44 5	
	80		-36.4s	0.17 s + 11 - 5	β-
	81		-36.4s	>632 ns	β-, β-2n, β-n
			-36.4s		
30 Zn	81 82	0+	-36.4s	>632 ns	β -, β -2n, β -n β -, β -n, β -2n
30 Zn	81 82	0+ (5/2-)		>632 ns >636 ns	β -, β -2n, β -n β -, β -n, β -2n
30 Zn	81 82 54 55 56	(5/2-) 0+	-6.0s -14.4s -25.2s	>632 ns >636 ns 1.59 ms +60-35 19.8 ms 13 30.0 ms 17	β -, β -2n, β -n β -, β -n, β -2n 2p 92%
30 Zn	81 82 54 55 56 57	(5/2-) 0+ (7/2-)	-6.0s $-14.4s$ $-25.2s$ $-32.5s$	>632 ns >636 ns 1.59 ms +60-35 19.8 ms 13 30.0 ms 17 38 ms 4	$\begin{array}{l} \beta-,\ \beta-2n,\ \beta-n\\ \beta-,\ \beta-n,\ \beta-2n\\ 2p\ 92\%\\ \epsilon,\ \epsilon p\ 91\%\\ \epsilon,\ \epsilon p\ 86\%\\ \epsilon,\ \epsilon p\ 265\% \end{array}$
30 Zn	81 82 54 55 56 57 58	(5/2-) 0+ (7/2-) 0+	-6.0s $-14.4s$ $-25.2s$ $-32.5s$ -42.30	>632 ns >636 ns 1.59 ms +60-35 19.8 ms 13 30.0 ms 17 38 ms 4 86 ms 8	$\begin{array}{lll} \beta, \ \beta 2n, \ \beta n \\ \beta, \ \beta n, \ \beta 2n \\ 2p \ 92\% \\ \epsilon, \ \epsilon p \ 91\% \\ \epsilon, \ \epsilon p \ 86\% \\ \epsilon, \ \epsilon p \ge 65\% \\ \epsilon, \ \epsilon p < 3\% \end{array}$
30 Zn	81 82 54 55 56 57 58 59	(5/2-) 0+ (7/2-) 0+ 3/2-	-6.0s $-14.4s$ $-25.2s$ $-32.5s$ -42.30 -47.214	>632 ns >636 ns 1.59 ms +60-35 19.8 ms 13 30.0 ms 17 38 ms 4 86 ms 8 182.0 ms 18	$\begin{array}{lll} \beta, \ \beta2n, \ \betan \\ \beta, \ \betan, \ \beta2n \\ \end{array}$ $\begin{array}{lll} 2p \ 92\% \\ \epsilon, \ \epsilon p \ 91\% \\ \epsilon, \ \epsilon p \ 86\% \\ \epsilon, \ \epsilon p \ 265\% \\ \epsilon, \ \epsilon p \ 3\% \\ \epsilon, \ \epsilon p \ 0.1\% \end{array}$
30 Zn	81 82 54 55 56 57 58 59 60	(5/2-) 0+ (7/2-) 0+ 3/2- 0+	-6.0s -14.4s -25.2s -32.5s -42.30 -47.214 -54.173	>632 ns >636 ns 1.59 ms +60-35 19.8 ms 13 30.0 ms 17 38 ms 4 86 ms 8 182.0 ms 18 2.38 m 5	$\begin{array}{lll} \beta-, \ \beta-2n, \ \beta-n \\ \beta-, \ \beta-n, \ \beta-2n \\ 2p \ 92\% \\ \epsilon, \ \epsilon p \ 91\% \\ \epsilon, \ \epsilon p \ 86\% \\ \epsilon, \ \epsilon p \ < 5\% \\ \epsilon, \ \epsilon p \ < 3\% \\ \epsilon, \ \epsilon p \ 0.1\% \\ \epsilon \end{array}$
30 Zn	81 82 54 55 56 57 58 59 60 61	(5/2-) $0+$ $(7/2-)$ $0+$ $3/2 0+$ $3/2-$	-6.0s -14.4s -25.2s -32.5s -42.30 -47.214 -54.173 -56.34	>632 ns >636 ns 1.59 ms +60-35 19.8 ms 13 30.0 ms 17 38 ms 4 86 ms 8 182.0 ms 18 2.38 m 5 89.1 s 2	$\begin{array}{lll} \beta, \beta 2n, \betan \\ \beta, \beta n, \beta 2n \\ 2p \ 92\% \\ \epsilon, \epsilon p \ 91\% \\ \epsilon, \epsilon p \ 86\% \\ \epsilon, \epsilon p \ 65\% \\ \epsilon, $
30 Zn	81 82 54 55 56 57 58 59 60 61 61m	(5/2-) $0+$ $(7/2-)$ $0+$ $3/2 0+$ $3/2 1/2-$	-6.0s -14.4s -25.2s -32.5s -42.30 -47.214 -54.173 -56.34 -56.25	>632 ns >636 ns 1.59 ms $+60-35$ 19.8 ms 13 30.0 ms 17 38 ms 4 86 ms 8 182.0 ms 18 2.38 m 5 89.1 s 2 <430 ms	$\begin{array}{lll} \beta, \beta 2n, \beta n \\ \beta, \beta 2n, \beta 2n \\ 2p 92\% \\ \epsilon, \epsilon p 91\% \\ \epsilon, \epsilon p 86\% \\ \epsilon, \epsilon p 65\% \\ \epsilon, \epsilon p 65\% \\ \epsilon, \epsilon p 63\% \\ \epsilon, \epsilon p 0 .1\% \\ \epsilon \\ \epsilon \\ IT \end{array}$
30 Zn	81 82 54 55 56 57 58 59 60 61 61m 61m	$\begin{array}{c} (5/2-) \\ 0+ \\ (7/2-) \\ 0+ \\ 3/2- \\ 0+ \\ 3/2- \\ 1/2- \\ 3/2- \end{array}$	-6.0s -14.4s -25.2s -32.5s -42.30 -47.214 -54.173 -56.34 -56.25 -55.92	$\begin{array}{c} > 632 \text{ ns} \\ > 636 \text{ ns} \\ 1.59 \text{ ms} + 60 - 35 \\ 19.8 \text{ ms} 13 \\ 30.0 \text{ ms} 17 \\ 38 \text{ ms} 4 \\ 86 \text{ ms} 8 \\ 182.0 \text{ ms} 18 \\ 2.38 \text{ m} 5 \\ 89.1 \text{ s} 2 \\ < 430 \text{ ms} \\ 0.14 \text{ s} 7 \end{array}$	$\begin{array}{lll} \beta_{-}, \beta_{-} 2n, \beta_{-} n \\ \beta_{-}, \beta_{-} 2n, \beta_{-} 2n \\ 2p, 92\% \\ \epsilon, \epsilon p, 91\% \\ \epsilon, \epsilon p, 86\% \\ \epsilon, \epsilon p < 3\% \\ \epsilon, \epsilon p < 3\% \\ \epsilon, \epsilon p < 0.1\% \\ \epsilon \\ \epsilon \\ IT \\ IT \end{array}$
30 Zn	81 82 54 55 56 57 58 59 60 61 61m	(5/2-) $0+$ $(7/2-)$ $0+$ $3/2 0+$ $3/2 1/2-$	-6.0s -14.4s -25.2s -32.5s -42.30 -47.214 -54.173 -56.34 -56.25	>632 ns >636 ns 1.59 ms $+60-35$ 19.8 ms 13 30.0 ms 17 38 ms 4 86 ms 8 182.0 ms 18 2.38 m 5 89.1 s 2 <430 ms	$\begin{array}{lll} \beta-, \beta-2n, \beta-n \\ \beta-, \beta-2n, \beta-n \\ \beta-, \beta-n, \beta-2n \\ \end{array}$ $\begin{array}{lll} 2p \ 92\% \\ \epsilon, \ \epsilon p \ 91\% \\ \epsilon, \ \epsilon p \ 86\% \\ \epsilon, \ \epsilon p \ 86\% \\ \epsilon, \ \epsilon p \ 65\% \\ \epsilon, \ \epsilon p \ 3\% \\ \epsilon, \ \epsilon p \ 0.1\% \\ \epsilon \\ \epsilon \\ IT \end{array}$

Nucli	de		Δ	T½, Γ, or	
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
30 Zn	62	0+	-61.167	9.186 h 13	ε
	63	3/2-	-62.213	38.47 m 5	ε
	64	0+	-66.003	≥7.0×10 ²⁰ y	2ε
				49.17% 75	
	65	5/2-	-65.911	243.93 d 9	ε
	66	0+	-68.899	27.73% 98	
	67 68	5/2- 0+	-67.880 -70.006	$4.04\% \ 16$ $18.45\% \ 63$	
	69	1/2-	-68.417	56.4 m 9	β-
	69m	9/2+	-67.978	13.76 h 2	IT 99.97%, β- 0.03%
	70	0+	-69.564	≥2.3×10 ¹⁷ y	2β-
	. 0	0.1	-05.004	0.61% 10	2р-
	71	1/2-	-67.328	2.45 m 10	β-
	71m	9/2+	-67.170	3.96 h 5	β−, IT≤0.05%
	72	0+	-68.145	46.5 h 1	β_
	73	(1/2)-	-65.593	23.5 s 10	β_
	73 m		-65.593	5.8 s 8	β-, IT
	73 m	(5/2+)	-65.397	13.0 ms 2	IT
	74	0+	-65.756	95.6 s 12	β–
	75	(7/2+)	-62.558	10.2 s 2	β–
	76	0+	-62.303	5.7 s 3	β–
	77	(7/2+)	-58.789	2.08 s 5	β-
	77m	(1/2-)	-58.017	1.05 s 10	IT>50%, β-<50%
	78	0+	-57.483	1.47 s 15	β-
	79	(9/2+)	-53.432	0.995 s 19	β-, β-n 1.3%
	80 81	0+ (5/2+)	-51.648 -46.199	0.54 s 2 304 ms 13	β-, β-n 1% β-, β-n 7.5%
	82	0+	-40.133	>150 ns	β-, β-117.3%
	83	0.1	-36.7s	>300 ns	β-, β-n
	84	0+	00.15	>633 ns	β-, β-2n, β-n
	85			>637 ns	β-?, β-n?, β-2n?
31 Ga	56		-4.2s		p?
	57		-15.6s		p?
	58		-23.8s		p?
	59		-34.0s		p?
	60	(2+)	-39.8s	70 ms 13	ε 98.4%, ερ 1.6%,
					εα<0.02%
	61	3/2-	-47.09	167 ms 3	ε, εp<0.25%
	62	0+	-51.986	116.121 ms 21	ϵ , ϵp
	63	3/2-	-56.547	32.4 s 5	ε
	64	0+ 3/2-	-58.833 -62.657	2.627 m 12 15.2 m 2	ε
	65 66	3/2- 0+	-62.657 -63.724	9.49 h 3	ε
	67	3/2-	-66.878	3.2617 d 5	ε
	68	1+	-67.085	67.71 m 9	ε
	69	3/2-	-69.327	60.108% 9	
	70	1+	-68.910	21.14 m 3	β-99.59%, ε 0.41%
	71	3/2-	-70.139	39.892% 9	. ,
	72	3-	-68.588	14.10 h 2	β-
	73	3/2-	-69.699	4.86 h 3	β–
	74	(3-)	-68.049	8.12 m 12	β-
	74 m	(0)	-67.989	9.5 s 10	IT 75%, β-<50%
				15	

Nucli Z El	de A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
31 Ga	75	3/2-	-68.464	126 s 2	β-
01 04	76	2+	-66.296	32.6 s 6	β_
	77	3/2-	-65.992	13.2 s 2	β-
	78	2+	-63.705	5.09 s 5	β–
	79	3/2-	-62.547	2.847 s 3	β-, β-n 0.09%
	80	3	-59.223	1.676 s 14	β-, β-n 0.86%
	81	5/2-	-57.627	1.217 s 5	β-, β-n 11.9%
	82	(1,2,3)	-52.930	0.599 s 2	β– , β–n 19 .8%
	83		-49.257	308.1 ms 10	β-, β-n 62.8%
	84	(0-)	-44.3s	0.085 s 10	β-, β-n 74%
		(3-,4-) 1/2-,3/2-)	-44.3s -40.2s	<0.085 s	β-, β-n?
	85 (86	1/2-,3/2-)	-40.2s -34.5s	<100 ms >150 ns	β-, β-n>35% β-, β-n
	87		-04.08	>634 ns	β-, β-n, β-2n
00.0				2004 H3	
32 Ge	58 59	0+	-7.7s		2p? 2p?
	60	0+	-16.5s -27.6s	>110 ns	2p: εp, ε
	61	(3/2-)	-33.7s	44 ms 6	ερ, ε ε, εp>58%
	62	0+	-42.2s	129 ms 35	ε, ερ>36%
	63	3/2-	-46.92	150 ms 9	ε
	64	0+	-54.315	63.7 s 25	ε
	65	3/2-	-56.480	30.9 s 5	ε, ερ 0.01%
	66	0+	-61.606	2.26 h 5	ε
	67	1/2-	-62.657	18.9 m 3	ε
	68	0+	-66.978	270.95 d 16	ε
	69	5/2-	-67.100	39.05 h <i>10</i>	ε
	70	0+	-70.561	20.57% 27	
	71	1/2-	-69.906	11.43 d 3	ε
	71m	9/2+	-69.708	20.41 ms 18	IT
	72 73	0+	-72.585	27.45% 32	
	73 73 m	9/2+ 1/2-	-71.297 -71.230	7.75% 12 0.499 s 11	IT
	74	0+	-73.422	36.50% 20	11
	75	1/2-	-71.856	82.78 m 4	β-
	75 m	7/2+	-71.716	47.7 s 5	IT 99.97%, β- 0.03%
	76	0+	-73.212	7.73% 12	· · · · · · · · · · · · · · · · ·
	77	7/2+	-71.213	11.30 h 1	β-
	77 m	1/2-	-71.053	52.9 s 6	β– 81%, IT 19%
	78	0+	-71.862	88.0 m 10	β-
	79	(1/2)-	-69.53	18.98 s 3	β–
	79 m	(7/2+)	-69.34	39.0 s 10	β– 96%, IT 4%
	80	0+	-69.535	29.5 s 4	β-
	81	(9/2+)	-66.291	7.6 s 6	β-
	81m 82		-65.612	7.6 s 6	β– β–
	83	0+ (5/2)+	-65.415 -60.976	4.56 s 26 1.85 s 6	β– β–
	84	0+	-58.148	0.954 s 14	β-, β-n 10.2%
		1/2+,5/2+)	-53.123	0.56 s 5	β-, β-n 14%
	86	0+	-49.8s	>150 ns	β-, β-n
	87	(5/2+)	-44.2s	=0.14 s	β-, β-n
	88	0+	-40.2s	≥300 ns	β-
	89		-33.8s	≥300 ns	β-?
				16	

Nucli Z El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
32 Ge		0+	(Mev)		-
		0+		>635 ns	β-, β-n, β-2n
33 As	60		-6.1s		p?
	61		-17.8s		p?
	62 63	3/2-	-24.8s -33.5s	<43 ns	p?
	64	3/2-	-39.4s	18 ms +43-7	p ε
	65		-46.94	128 ms 16	ε
	66	(0+)	-52.03	95.77 ms 23	ε
	67	(5/2-)	-56.585	42.5 s 12	ε
	68	3+	-58.894	151.6 s 8	ε
	69	5/2-	-63.09	15.2 m 2	8
	70	4+	-64.34	52.6 m 3	ε
	71	5/2-	-67.893	65.30 h 7	ε
	72	2-	-68.229	26.0 h 1	ε
	73	3/2-	-70.952	80.30 d 6	ε
	74	2-	-70.859	17.77 d 2	ε 66%, β– 34%
	75	3/2-	-73.033	100%	
	75 m	9/2+	-72.729	17.62 ms 23	IT
	76	2-	-72.290	1.0942 d 7	β-
	77	3/2-	-73.916	38.83 h 5	β-
	78 79	2- 3/2-	-72.817 -73.636	90.7 m 2 9.01 m 15	β– β–
	80	1+	-73.636 -72.17	15.2 s 2	β- β-
	81	3/2-	-72.533	33.3 s 8	β_
	82	(2-)	-70.103	19.1 s 5	β_
	82 m	(5-)	-69.956	13.6 s 4	β_
		5/2-,3/2-)	-69.669	13.4 s 3	β_
	84	(3-)	-65.853	4.2 s 5	β-, β-n 0.18%
	85	(3/2-)	-63.189	2.021 s 10	β-, β-n 59.4%
	86		-58.962	0.945 s 8	β-, β-n 26%
	87	(3/2-)	-55.617	0.56 s 8	β-, β-n 15.4%
	88		-50.9s	>300 ns	β-
	89		-46.9s	>300 ns	β-?, β-n?
	90		-41.3s	>300 ns	β-, β-n
	91 92		-36.9s -31.0s	>150 ns	β– β–
~		_			•
34 Se		0+	-26.9s	>180 ns	ε
	65 66	(3/2-) 0+	-32.9s -41.7s	33 ms 4	ϵ , ϵp
	67	0+	-41.78 -46.58	136 ms 12	ε, ερ 0.5%
	68	0+	-54.189	35.5 s 7	ε, ερ σ. σ.ν
		1/2-,3/2-)	-56.30	27.4 s 2	ε, ερ 0.05%
	70	0+	-61.929	41.1 m 3	ε, ερ σ.σσπ
	71	(5/2-)	-63.146	4.74 m 5	8
	72	0+	-67.868	8.40 d 8	ε
	73	9/2+	-68.227	7.15 h 8	ε
	73m	3/2-	-68.201	39.8 m 13	IT 72.6%, ε 27.4%
	74	0+	-72.212	0.89% 4	
	75	5/2+	-72.169	119.79 d 4	ε
	76	0+	-75.251	9.37% 29	
	77	1/2-	-74.599	7.63% 16	T.M.
	77m	7/2+	-74.437	17.4 s 8	IT
				17	

Nucli Z El	de A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
					Decay Mode
34 Se	78	0+	-77.025	23.77% 28	0
	79	7/2+	-75.917	2.95×10 ⁵ y 38	β-
	79m 80	1/2- 0+	-75.821 -77.759	3.92 m 1 49.61% 41	IT 99.94%, β– 0.06%
	81	1/2-	-76.389	18.45 m 12	β-
	81m	7/2+	-76.389	57.28 m 2	P- IT 99.95%, β- 0.05%
	82	0+	-77.594	8.73% 22	11 99.93%, р= 0.03%
	83	9/2+	-75.340	22.3 m 3	β-
	83 m	1/2-	-75.112	70.1 s 4	β_
	84	0+	-75.947	3.26 m 10	β_
	85	(5/2+)	-72.413	32.9 s 3	B-
	86	0+	-70.503	14.3 s 3	B-
	87	(5/2+)	-66.426	5.50 s 12	β-, β-n 0.2%
	88	0+	-63.884	1.53 s 6	β-, β-n 0.67%
	89	(5/2+)	-58.992	0.41 s 4	β-, β-n 7.8%
	90	0+	-55.9s	>300 ns	β-, β-n
	91		-50.3s	0.27 ± 5	β-, β-n 21%
	92	0+	-46.7s		β_
	93	(1/2+)	-40.7s		β_
	94	0+	-36.8s	>150 ns	β_
	95			>300 ns	β -?, β -n?, β -2n?
35 Br	67		-32.8s		p?
	68		-38.7s	<1.2 µs	p?
	69		-46.5s	<24 ns	p?
	70	0+	-51.42	79.1 ms 8	ε
	70 m	9+	-49.13	2.2 s 2	ε
	71	(5/2)-	-56.502	21.4 s 6	ε
	72	1+	-59.067	78.6 s 24	ε
	$72\mathrm{m}$	(3-)	-58.966	10.6 s 3	IΤ, ε
	73	1/2-	-63.647	3.4 m 2	ε
	74	(0-)	-65.285	25.4 m 3	ε
	74 m	4(+)	-65.271	46 m 2	ε
	75	3/2-	-69.107	96.7 m 13	ε
	76	1-	-70.288	16.2 h 2	E
	76m 77	(4)+ 3/2-	-70.185	1.31 s 2	IT>99.4%, ε<0.6%
	77 m	9/2+	-73.234 -73.128	57.036 h 6 4.28 m 10	ε IT
	78	1+	-73.128	6.45 m 4	ε≥99.99%,
	10	17	-13.432	0.45 m 4	β-≤0.01%
	79	3/2-	-76.068	50.69% 7	p=30.01%
	79 m	9/2+	-75.860	5.1 s 4	IT
	80	1+	-75.889	17.68 m 2	β-91.7%, ε8.3%
	80 m	5-	-75.803	4.4205 h 8	IT
	81	3/2-	-77.975	49.31% 7	
	82	5-	-77.497	35.282 h 7	β-
	82m	2-	-77.451	6.13 m 5	IT 97.6%, β– 2.4%
	83	3/2-	-79.006	2.40 h 2	β-
	84	2-	-77.79	31.76 m 8	β-
	84 m	(6)-	-77.47	6.0 m 2	β-
	85	3/2-	-78.575	2.90 m 6	β–
	86	(1-)	-75.632	55.1 s 4	β–
	87	3/2-	-73.891	55.65 s 13	β-, β-n 2.6%
				18	

Nucli Z El	de A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
35 Br	88	(2-)	-70.715	16.29 s 6	β-, β-n 6.58%
33 BI		(3/2-,5/2-)	-68.274	4.40 s 3	β-, β-n 13.8%
	90	(0/2-,0/2-)	-64.000	1.91 s 1	β-, β-n 25.2%
	91		-61.107	0.541 s 5	β-, β-n 20%
	92	(2-)	-56.232	0.343 s 15	β-, β-n 33.1%
	93	(5/2-)	-52.9s	102 ms 10	β-, β-n 68%
	94	(0,2)	-47.6s	70 ms 20	β-, β-n 68%
	95		-43.9s	≥150 ns	β-, β-n 34%
	96		-38.3s	≥150 ns	β-, β-n 27.6%
	97		-34.5s	>300 ns	β-
	98			>634 ns	β-, β-n, β-2n
36 Kr	69		-32.4s	32 ms 10	ε
30 KI	70	0+	-32.4s -41.6s	52 ms 17	ε, εp≤1.3%
	71	(5/2-)	-41.0s -46.3	100 ms 3	ε, ερ 2.1%
	72	0+	-53.940	17.1 s 2	ε , $\varepsilon p \le 1.1\%$ ε , $\varepsilon p < 1.0 \times 10^{-6}\%$
	73	3/2-	-56.551	27.3 s 10	ε, εp 0.25%
	74	0+	-62.331	11.50 m 11	ε, ερ 0.23%
	75	5/2+	-64.323	4.29 m 17	ε
	76	0+	-69.014	14.8 h 1	ε
	77	5/2+	-70.169	74.4 m 6	ε
	78	0+	-74.179	≥1.5×10 ²¹ v	2ε
	10	0.1	-14.113	0.355% 3	20
	79	1/2-	-74.442	35.04 h 10	ε
	79 m		-74.312	50 s 3	IT
	80	0+	-77.892	2.286% 10	
	81	7/2+	-77.694	2.29×10 ⁵ y 11	ε
	81m		-77.503	13.10 s 3	IT, ε 2.5×10 ⁻³ %
	82	0+	-80.590	11.593% 31	,
	83	9/2+	-79.990	11.500% 19	
	83 m		-79.948	1.85 h 3	IT
	84	0+	-82.439	56.987% 15	
	85	9/2+	-81.480	10.752 y 25	β-
	85 m	1/2-	-81.175	4.480 h 8	β-78.6%, IT 21.4%
	86	0+	-83.266	17.279% 41	
	87	5/2+	-80.709	76.3 m 5	β-
	88	0+	-79.691	2.84 h 3	β_
	89	3/2(+)	-76.535	3.15 m 4	β-
	90	0+	-74.959	32.32 s 9	β-
	91	5/2(+)	-70.973	8.57 s 4	β-
	92	0+	-68.769	1.840 s 8	β-, β-n 0.03%
	93	1/2+	-64.135	1.286 s 10	β-, β-n 1.95%
	94	0+	-61.35	212 ms 5	β-, β-n 1.11%
	95	1/2(+)	-56.16	0.114 s 3	β-, β-n 2.87%
	96	0+	-53.08	80 ms 6	β-, β-n 3.7%
	97	(3/2+)	-47.4	63 ms 4	β-, β-n 6.7%
	98	0+	-44.5s	46 ms 8	β-, β-n 7%
	99	_	-38.8s	13 ms +34-6	β-, β-n 11%
	100	0+	-35.2s	7 ms +11-3	β-, β-n
	101			>635 ns	β -, β -n, β -2n
37 Rb	71		-32.3s		p?
	72	(3+)	-38.1s	<1.2 µs	p?
	73		-46.1s	<30 ns	ε?, p>0%
				19	

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
				-
37 Rb 74 75	(0+)	-51.916	64.9 ms 5	ε
76	(3/2-) 1(-)	-57.218 -60.478	19.0 s 12 36.5 s 6	ε, εα 3.8×10 ⁻⁷ %
77	3/2-	-64.830	3.77 m 4	ε, εα 3.6×10 %
78	0(+)	-64.830 -66.936	17.66 m 3	ε
78m	4(-)	-66.825	5.74 m 3	ε 91%, IT 9%
79	5/2+	-70.802	22.9 m 5	ε 51%, 11 5%
80	1+	-72.175	33.4 s 7	ε
81	3/2-	-75.456	4.572 h 4	ε
81m	9/2+	-75.370	30.5 m 3	IT 97.6%, ε 2.4%
82	1+	-76.187	1.2575 m 2	ε
82m	5-	-76.118	6.472 h 6	ε, IT<0.33%
83	5/2-	-79.070	86.2 d 1	ε
84	2-	-79.756	32.82 d 7	ε 96.1%, β-3.9%
84m	6-	-79.292	20.26 m 4	IT
85	5/2-	-82.167	72.17% 2	
86	2-	-82.747	18.642 d 18	β-99.99%,
				ε 5.2×10 ⁻³ %
86m	6-	-82.191	1.017 m 3	IT, β-<0.3%
87	3/2-	-84.597	4.81×10 ¹⁰ y 9	β–
			27.83% 2	
88	2-	-82.608	17.773 m 11	β-
89	3/2-	-81.712	15.15 m 12	β-
90	0-	-79.364	158 s 5	β-
90m	3-	-79.257	258 s 4	β- 97.4%, IT 2.6%
91 92	3/2(-) 0-	-77.746 -74.772	58.4 s 4 4.492 s 20	β– β– , β–n 0.01%
93	5/2-	-72.620	5.84 s 2	β-, β-n 1.39%
94	3(-)	-68.561	2.702 s 5	β-, β-n 10.5%
95	5/2-	-65.89	377.7 ms 8	β-, β-n 8.7%
96	2(-)	-61.354	203 ms 3	β-, β-n 13.3%
97	3/2+	-58.518	169.1 ms 6	β-, β-n 25.5%
98	(0,1)	-54.03	102 ms 4	β-, β-n 13.8%,
				β-2n 0.05%
98m	(3,4)	-53.76	96 ms 3	β-
99	(5/2+)	-51.2	54 ms 4	β-, β-n 15.8%
100	(3+,4-)	-46.5s	51 ms 8	β-, β-n 6%,
				β–2n 0.16%
101	(3/2+)	-43.0s	32 ms 5	β-, β-n 28%
102		-37.9s	37 ms 3	β-, β-n 18%
103			>633 ns	β-, β-n
38 Sr 73		-32.0s	>25 ms	ε, εp>0%
74	0+	-40.8s	>1.2 µs	ε
75	(3/2-)	-46.6	88 ms 3	ε, ερ 5.2%
76	0+	-54.25	7.89 s 7	ε, εp 3.4×10 ⁻⁵ %
77	5/2+	-57.803	9.0 s 2	ε, εp<0.25%
78	0+	-63.173	160 s 8	ε
79	3/2(-)	-65.476	2.25 m 10	ε
80	0+ 1/2-	-70.311 -71.528	106.3 m 15 22.3 m 4	ε
81 82	0+	-71.528 -76.009	25.34 d 2	
83	7/2+	-76.009 -76.797	32.41 h 3	ε
00	1724	-10.191		c
			20	

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
38 Sr 83n		-76.538	4.95 s 12	IT
36 SF 65H	0+	-80.649	0.56% 1	11
85	9/2+	-81.103	64.850 d 7	ε
85n		-80.864	67.63 m 4	IT 86.6%, ε 13.4%
86	0+	-84.523	9.86% 1	11 00.0%, € 10.4%
87	9/2+	-84.880	7.00% 1	
87n		-84.492	2.815 h 12	IT 99.7%, ε 0.3%
88	0+	-87.921	82.58% 1	
89	5/2+	-86.208	50.53 d 7	β-
90	0+	-85.949	28.90 y 3	β_
91	5/2+	-83.652	9.63 h 5	β_
92	0+	-82.867	2.66 h 4	β_
93	5/2+	-80.086	7.43 m 3	β_
94	0+	-78.843	75.3 s 2	β-
95	1/2+	-75.123	23.90 s 14	β-
96	0+	-72.932	1.07 s 1	β–
97	1/2+	-68.591	429 ms 5	β -, β -n \leq 0.05%
98	0+	-66.436	0.653 s 2	β-, β-n 0.25%
99	3/2+	-62.529	0.269 s 1	β-, β-n 0.1%
100	0+	-59.833	202 ms 3	β-, β-n 0.78%
101	(5/2-)	-55.56	118 ms 3	β-, β-n 2.37%
102	0+	-52.4s	69 ms 6	β-, β-n 5.5%
103	_	-47.5s	68 ms +48-20	β-
104	0+	-43.9s	43 ms +9-7	β-
105		-38.6s	40 ms +36-13	β-
106 107	0+		>392 ns >395 ns	β -, β -n, β -2n β -, β -n, β -2n
39 Y 76		-38.6s	>200 ns	ε, p
77	(5/2+)	-46.78s	57 ms +22-12	ε, ερ, ρ
78	(0+)	-52.5s	53 ms 8	ε, ερ
78n		-52.5s	5.8 s 6	ε, ερ
79	(5/2+)	-58.4	14.8 s 6	ε, ερ
80	(4-)	-61.148	30.1 s 5	ε, ερ
80n	n (1-)	-60.919	4.8 s 3	IT 81%, ε 19%
81	(5/2+)	-65.713	70.4 s 10	ε
82	1+	-68.064	8.30 s 20	ε
83	9/2+	-72.21	7.08 m 6	ε
83n		-72.14	2.85 m 2	ε 60%, IT 40%
84	(6+)	-73.894	39.5 m 8	ε
84n		-73.827	4.6 s 2	ε
85	(1/2)-	-77.84	2.68 h 5	ε
85n		-77.82	4.86 h 20	ϵ , IT<2.0×10 ⁻³ %
86	4-	-79.28	14.74 h 2	E
86n		-79.06	48 m 1	IT 99.31%, ε 0.69%
87 87n	1/2- n 9/2+	-83.018	79.8 h 3	ε IT 98.43%, ε 1.57%
87n 88	4-	-82.637 -84.298	13.37 h <i>3</i> 106.626 d <i>21</i>	
89	1/2-	-87.709	100.026 d 21	ε
89 89n		-81.709 -86.800	15.663 s 5	IT
90	2-	-86.495	64.053 h 20	β_
90n		-85.813	3.19 h 6	IT , β– 1.8×10 ⁻³ %
91	1/2-	-86.352	58.51 d 6	β-
51		00.002		г
			21	

Nucli Z El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
39 Y					-
39 1	91 m 92	9/2+ 2-	-85.796 -84.817	49.71 m 4 3.54 h 1	IT , β-<1.5% β-
	93	1/2-	-84.23	10.18 h 8	β–
	93 m	(9/2)+	-83.47	0.82 s 4	IT
	94	2-	-82.352	18.7 m 1	β_
	95	1/2-	-81.213	10.3 m 1	β-
	96	0-	-78.344	5.34 s 5	β-
	96m	8+	-77.204	9.6 s 2	β_
	97	(1/2-)	-76.130	3.75 s 3	β-, β-n 0.06%
	97m	(9/2)+	-75.463	1.17 s 3	β->99.3%, IT<0.7%,
					β-n<0.08%
	97 m	(27/2-)	-72.607	142 ms 8	IT 98.4%, β-1.6%
	98	(0)-	-72.303	0.548 s 2	β-, β-n 0.33%
	98m	(4,5)	-71.893	2.0 s 2	β->80%, IT<20%,
					β-n 3.4%
	99	(5/2+)	-70.658	1.484 s 7	β-, β-n 1.7%
	100	1-,2-	-67.34	735 ms 7	β-, β-n 0.92%
	100m	(3,4,5)	-67.19	0.94 s 3	β–
	101	(5/2+)	-65.070	0.45 s 2	β-, β-n 1.94%
		HighJ	-61.2s	0.36 s 4	β-, β-n 4.9%
		LowJ	-61.2s	0.298 s 9	β-, β-n 4.9%
	103	(5/2+)	-58.50	0.23 s 2	β-, β-n 8%
	104		-54.1s	197 ms 4	β-, β-n
	105		-50.8s	85 ms +5-4	β-, β-n<82%
	106	(= (0)	-46.1s	62 ms +25-14	β-
	107	(5/2+)	-42.4s	41 ms +15-9	β-
	108 109		-37.3s	25 ms +66-10 >393 ns	β- , β-n β- , β-n , β-2n
40 Zr		0+	-41.3s	>170 ns	ε
	79		-47.1s	56 ms 30	ε, ερ
	80	(2/9.)	-56 -58.4	4.6 s 6	ε, ερ
	81 82	(3/2-) 0+	-63.9s	5.5 s 4 32 s 5	ε, εp 0.12% ε
	83	(1/2-)	-65.911	41.6 s 24	ε, ερ
	84	0+	-71.421	25.8 m 5	ε, ερ
	85	(7/2+)	-73.175	7.86 m 4	ε
	85m	(1/2-)	-72.883	10.9 s 3	IT≤92%, ε>8%
	86	0+	-77.969	16.5 h 1	ε
	87	(9/2)+	-79.347	1.68 h 1	ε
	87 m	(1/2)-	-79.011	14.0 s 2	IT
	88	0+	-83.629	83.4 d 3	ε
	89	9/2+	-84.876	78.41 h 12	ε
	89m	1/2-	-84.288	4.161 m 17	IT 93.77%, ε 6.23%
	90	0+	-88.774	$51.45\% \ 40$	
	90 m	5-	-86.455	809.2 ms 20	IT
	91	5/2+	-87.897	11.22% 5	
	92	0+	-88.460	17.15% 8	0
	93	5/2+	-87.123	1.61×10 ⁶ y 5	β-
	94	0+	-87.272	17.38% 28	0
	95	5/2+	-85.663	64.032 d 6 2.35×10 ¹⁹ y 21	β- 2β-
	96	0+	-85.447	2.35×10 ¹⁵ y 21 2.80% 9	2p-
				22	

Nucli Z El	de A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
40 Zr	97	1/2+	-82.951	16.749 h 8	β-
	98	0+	-81.295	30.7 s 4	β-
	99	(1/2+)	-77.63	2.1 s 1	β-
	100	0+	-76.384	7.1 s 4	β-
	101	(3/2+)	-73.173	2.3 s 1	β-
	102	0+	-71.595	2.9 s 2	β-
	103	(5/2-)	-67.824	1.32 s 11	β−, β−n≤1%
	104	0+	-65.733	0.87 s 6	β−, β−n≤1%
	105		-61.47	0.66 s 7	β−, β−n≤2%
	106	0+	-59.0s	191 ms 19	β−, β−n≤7%
	107	_	-54.3s	138 ms 4	β-, β-n≤23%
	108	0+	-51.4s	73 ms 4	β-, β-n
	109		-46.2s	63 ms +38-17	β-, β-n
	110	0+	-42.9s	37 ms +17-9	β-
	$\frac{111}{112}$	0+		>392 ns >394 ns	β-, β-n, β-2n
		0+			β-, β-n, β-2n
41 Nb			-47.2s	<200 ns	ε
	82	(0+)	-52.2s	50 ms 5	ϵ , ϵp
	83	(5/2+)	-58.4	3.8 s 2	ε
		1+,2+,3+)	-61.0s	9.8 s 9	ϵ , ϵp
	85	(9/2+)	-66.279	20.5 s 12	ε
	85m		-66.279	12 s 5	ε, ΙΤ
		1/2-,3/2-)	-66.279	3.3 s 9	ε, ΙΤ
	86 87	(6+) (1/2-)	-69.134 -73.874	88 s 1 3.75 m 9	ε
	87m	(1/2-) (9/2+)	-73.874 -73.870	2.6 m 1	ε
	88	(8+)	-76.18	14.55 m 6	ε
	88m	(4-)	-76.18	7.78 m 5	ε
	89	(9/2+)	-80.65	2.03 h 7	ε
	89m	(1/2)-	-80.61	66 m 2	ε
	90	8+	-82.663	14.60 h 5	ε
	90 m	4-	-82.538	18.81 s 6	ĬT
	91	9/2+	-86.639	6.8×10 ² y 13	ε
	91m	1/2-	-86.534	60.86 d 22	IT 96.6%, ε 3.4%
	92	(7)+	-86.454	3.47×10^7 y 24	ε, β-<0.05%
	92 m	(2)+	-86.318	10.15 d 2	ε
	93	9/2+	-87.214	100%	
	93 m	1/2-	-87.183	16.12 y 12	IT
	94	6+	-86.370	2.03×10 ⁴ y 16	β-
	94 m	3+	-86.329	6.263 m 4	IT 99.5%, β- 0.5%
	95	9/2+	-86.786	34.991 d 6	β-
	95m	1/2-	-86.550	3.61 d 3	IT 94.4%, β-5.6%
	96	6+	-85.608	23.35 h 5	β-
	97	9/2+	-85.610	72.1 m 7	β-
	97m	1/2-	-84.867	58.7 s 18 2.86 s 6	IT
	98 98m	1+ (5+)	-83.533	51.3 m 4	β- β-99.9%, IT<0.2%
	98m 99	9/2+	-83.449 -82.33	51.3 m 4 15.0 s 2	β- 99.9%, 11<0.2%
	99 99m	1/2-	-81.96	2.5 m 2	β->96.2%, IT<3.8%
	100	1/2-	-79.806	1.5 s 2	β->96.2%, 11<3.8%
	100m		-79.492	2.99 s 11	β_
	101	(5/2+)	-78.886	7.1 s 3	β_
		(3/2.)	.0.000		r
				23	

Nuclide Z El A	Јπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
41 Nb 102	(4+)	-76.313	4.3 s 4	β-
102m		-76.313	1.3 s 2	β
103	(5/2+)	-75.023	1.5 s 2	β-
104	(1+)	-71.828	4.9 s 3	β-, β-n 0.06%
104m		-71.613	0.94 s 4	β-, β-n 0.05%
105	(5/2+)	-69.910	2.95 s 6	β-, β-n 1.7%
106	(0,2.)	-66.197	0.93 s 4	β-, β-n 4.5%
107		-63.718	300 ms 9	β-, β-n 8%
108	(2+)	-59.6	220 ms 18	β-, β-n 8%
109	(5/2)	-56.8s	106 ms 9	β-, β-n<15%
110	(0,2)	-52.3s	86 ms 6	β-, β-n 40%
111	(5/2+)	-49.0s	51 ms +6-5	β-
112	(2+)	-44.4s	33 ms +9-6	β
113	(2.)	-40.6s	>300 ns	β_
114		10.00	>392 ns	β-, β-n, β-2n
115			>394 ns	β-, β-n, β-2n
42 Mo 83		-46.7s	6 ms +30-3	ε
42 MO 83	0+	-46.78 -54.5s	2.3 s 3	ε, ερ
85	(1/2-)	-54.5s -57.51	3.2 s 2	ε, εp ε, εp=0.14%
86	0+	-64.110	19.1 s 3	ε, εp=0.14/0 ε
87	7/2+	-66.882	14.02 s 26	ε, ερ 15%
88	0+	-72.686	8.0 m 2	ε, ερ 13%
89	(9/2+)	-75.014	2.11 m 10	ε
89m	(1/2-)	-74.627	190 ms 15	IT
90	0+	-80.174	5.56 h 9	
91	9/2+	-82.21	15.49 m 1	ε
91 91m	1/2-	-81.56	64.6 s 6	ε 50%, IT 50%
91 m 92	0+	-86.809	14.53% 30	£ 30%, 11 30%
	5/2+		4.0×10 ³ v 8	
93 93 m	21/2+	-86.807 -84.382	6.85 h 7	ε IT 99.88%, ε 0.12%
94	0+	-88.414	9.15% 9	11 99.00%, 8 0.12%
95	5/2+	-87.711	15.84% 11	
96	0+	-88.794	16.67% 15	
97	5/2+	-87.544	9.60% 14	
98	0+	-88.116	24.39% 37	
99	1/2+	-85.970	65.976 h 24	β-
100	0+	-86.187	7.3×10 ¹⁸ y 4	2β-
100	0+	-00.107	9.82% 31	2p-
101	1/2+	-83.514	14.61 m 3	β-
102	0+	-83.572	11.3 m 2	β-
103	(3/2+)	-80.970	67.5 s 15	β_
104	0+	-80.359	60 s 2	β ₋
105	(5/2-)	-77.346	35.6 s 16	β
106	0+	-76.144	8.73 s 12	β ₋
107	(5/2+)	-72.561	3.5 s 5	β ₋
108	0+	-70.765	1.09 s 2	β-, β-n<0.5%
109	(7/2-)	-66.68	660 ms 45	β-, β-n 1.3%
110	0+	-64.55	0.27 s 1	β-, β-n 2%
111	٠.	-60.1s	220 ms +41-36	β−, β−n ≤ 12%
112	0+	-57.6s	120 ms +13-11	β-, p-11≤12/e β-
113	٠.	-52.9s	78 ms +6-5	β-
114	0+	-50.0s	60 ms +13-9	β-
114	0.1	00.08	55 ms +10=3	۲

Nuclide Z El A	Јπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
42 Mo 115		-44.7s	51 ms +79-19	β-, β-n
116	0+	-44.78	>391 ns	β-, β-n
117	٠.		>393 ns	β -?, β -n?, β -2n?
		40.0		
43 Tc 85 86	(0.)	-46.0s	=0.5 s	p?
87	(0+) (9/2+)	-51.3s -57.690	54 ms 7 2.2 s 2	ε, ερ
88m	(3+)	-61.679	5.8 s 2	ε
88m	(6+)	-61.679	6.4 s 8	ε
89	(9/2+)	-67.394	12.8 s 9	ε
89m	(1/2-)	-67.331	12.9 s 8	ε, IT<0.01%
90m	1+	-70.723	8.7 s 2	ε, 11<0.01π
90m	(6+)	-70.223	49.2 s 4	ε
91	(9/2)+	-75.987	3.14 m 2	ε
91m	(1/2)-	-75.848	3.3 m 1	ε, IT<1%
92	(8)+	-78.924	4.25 m 15	ε, 11 (1)
93	9/2+	-83.606	2.75 h 5	ε
93 m	1/2-	-83.214	43.5 m 10	ΙΤ 77.4%, ε 22.6%
94	7+	-84.158	293 m 1	ε
94m	(2)+	-84.082	52.0 m 10	ε, IT<0.1%
95	9/2+	-86.021	20.0 h 1	ε
95 m	1/2-	-85.982	61 d 2	ε 96.12%, IT 3.88%
96	7+	-85.821	4.28 d 7	ε
96m	4+	-85.787	51.5 m 10	IT 98%, ε 2%
97	9/2+	-87.224	4.21×10 ⁶ y 16	ε
97 m	1/2-	-87.127	91.0 d 6	IT 96.06%, ε 3.94%
98	(6)+	-86.431	4.2×10 ⁶ y 3	β-
99	9/2+	-87.327	2.111×10 ⁵ y 12	β-
99 m	1/2-	-87.184	6.0067 h 5	IT, β-3.7×10 ⁻³ %
100	1+	-86.020	15.46 s 19	β-, ε 2.6×10 ⁻³ %
101	9/2+	-86.34	14.02 m 1	β-
102	1+	-84.569	5.28 s 15	β-
102m		-84.569	4.35 m 7	β– 98%, IT 2%
103	5/2+	-84.600	54.2 s 8	β-
104	(3+)	-82.51	18.3 m 3	β-
105	(3/2-)	-82.29	7.6 m 1	β-
106 107	(2+) (3/2-)	-79.77 -78.746	35.6 s 6 21.2 s 2	β– β–
107	(2)+	-75.919	5.17 s 7	р– В–
108	(5/2+)	-74.279	0.86 s 4	β-, β-n 0.08%
110	(2+)	-71.030	0.92 s 3	β-, β-n 0.04%
111	(5/2+)	-69.02	350 ms 21	β-, β-n 0.85%
112	(0/2+)	-65.253	0.29 s 2	β-, β-n 4%
113	>5/2	-62.88	160 ms +50-40	β-, β-n 2.1%
114m		-58.9s	100 ms 20	β-, β-n?
114m		-58.9s	90 ms 20	β-, β-n?
115	. /	-56.1s	83 ms +20-13	β-, β-n
116		-51.5s	56 ms +15-10	β-
117	(5/2+)	-48.4s	85 ms +95-30	β-
118		-43.8s		β-
119			>392 ns	β-, β-n?, β-2n?
120			>394 ns	β -, β -n?, β -2n?
44 Ru 87		-45.9s	>1.5 µs	ε?
			25	

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
44 Ru 88	0+	-54.4s	1.2 s +3-2	ε
89	(9/2+)	-58.1s	1.5 s 2	ε, εp<0.15%
90	0+	-64.883	11.7 s 9	ε
91	(9/2+)	-68.238	7.9 s 4	ε
91m	(1/2-)	-68.238	7.6 s 8	IT, $\varepsilon > 0\%$, $\varepsilon p > 0\%$
92	0+	-74.301	3.65 m 5	ε
93	(9/2)+	-77.213	59.7 s 6	ε
93 m	(1/2)-	-76.479	10.8 s 3	ε 78%, IT 22%,
0.4	٥.	00 570	E1 0 C	εр 0.03%
94	0+ 5/2+	-82.579 -83.457	51.8 m 6	3
95			1.643 h 13	ε
96 97	0+ 5/2+	-86.080	5.54% 14 2.83 d 23	ε
98	0+	-86.120 -88.224	1.87% 3	ε
99	5/2+	-87.620	12.76% 14	
100	0+	-89.222	12.60% 7	
101	5/2+	-87.952	17.06% 2	
101	0+	-89.101	31.55% 14	
102	3/2+	-87.262	39.247 d 13	β-
103	0+	-88.092	18.62% 27	p-
105	3/2+	-85.931	4.44 h 2	В-
106	0+	-86.320	371.8 d 18	β-
107	(5/2)+	-83.859	3.75 m 5	β-
108	0+	-83.657	4.55 m 5	β-
109	(5/2+)	-80.734	34.5 s 10	β-
110	0+	-80.069	11.6 s 6	β-
111	5/2+	-76.781	2.12 s 7	β-
112	0+	-75.627	1.75 s 7	B-
113	(1/2+)	-71.87	0.80 s 5	B-
	(7/2-)	-71.87	510 ms 30	β_
114	0+	-70.21	0.52 s 5	β-
115	(3/2+)	-66.19	318 ms 19	β-
115m	(/	-66.19	740 ms 80	β-, β-n
115m		-66.19	270 ms 38	β-, β-n
115m		-66.19	76 ms 6	β-, β-n
116	0+	-64.2s	204 ms +32-29	β-
117		-59.6s	142 ms + 18 - 17	β–
118	0+	-57.3s	123 ms +48-35	β-, β-n
119		-52.6s	>300 ns	β-
120	0+	-50.0s	>150 ns	β-
121			>390 ns	β-, β-n
122	0+		>392 ns	β-, β-n
123	_		>394 ns	β-, β-n, β-2n
124	0+		>396 ns	β-, β-n
45 Rh 89		-46.0s	>1.5 µs	ε?, p?
90		-52.0s	12 ms +9-4	ε?
90 m		-52.0s	1.0 s +3-2	ε?
91	(9/2+)	-58.8s	1.47 s 22	ε
91m	(1/2-)	-58.8s	1.46 s 11	ε
92?	(6+)	-62.999	4.66 s 25	ε
92m	(2+)	-62.999	0.53 s 37	ε
93	(9/2+)	-69.017	12.2 s 7	ε

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
				•
45 Rh 94 94 m	(4+) (8+)	-72.907 -72.607	66 s 6 25.8 s 2	ε, εp 1.8% ε
95	9/2+	-78.342	5.02 m 10	ε
95m	(1/2)-	-77.799	1.96 m 4	IT 88%, ε 12%
96	≥ 6+	-79.69	9.90 m 10	ε
96m	3+	-79.64	1.51 m 2	ΙΤ 60%, ε 40%
97	9/2+	-82.60	30.7 m 6	ε
97m	1/2-	-82.34	46.2 m 16	ε 94.4%, IT 5.6%
98	(2)+	-83.18	8.72 m 12	ε
98m	(5+)	-83.18	3.6 m 2	ΙΤ 89%, ε 11%
99	1/2-	-85.576	16.1 d 2	ε
99 m	9/2+	-85.511	4.7 h 1	ε>99.84%, IT<0.16%
100	1-	-85.59	20.8 h 1	ε
100m	(5+)	-85.48	4.6 m 2	$IT = 98.3\%$, $\epsilon = 1.7\%$
101	1/2-	-87.411	3.3 y 3	ε
101m	9/2+	-87.254	4.34 d 1	ε 92.8%, IT 7.2%
102	(1-,2-)	-86.778	207.3 d 17	ε 78%, β– 22%
102m		-86.637	3.742 y 10	ε 99.77%, IT 0.23%
103	1/2-	-88.025	100%	
103m		-87.985	56.114 m 9	IT
104	1+	-86.953	42.3 s 4	β-99.55%, ε 0.45%
104m		-86.824	4.34 m 3	IT 99.87%, β-0.13%
105	7/2+	-87.848	35.36 h 6	β-
105m		-87.718	42.9 s 3 30.07 s 35	IT
106 106m	1+ (6)+	-86.360 -86.223	30.07 s 35 131 m 2	β– β–
106 m 107	7/2+	-86.86	21.7 m 4	β– β–
107	1+	-85.03	16.8 s 5	β-
108 m		-85.03	6.0 m 3	β-, IT
109	7/2+	-85.010	80 s 2	β-
110m		-82.84	28.5 s 15	β_
110m		-82.84	3.2 s 2	β_
111	(7/2+)	-82.304	11 s 1	β-
112m	1+	-79.73	3.45 s 37	β-
112m	(4,5,6)	-79.73	6.73 s 15	β-
113	(7/2+)	-78.767	2.80 s 12	β-
114	1+	-75.71	1.85 s 5	β-
114m		-75.51	1.86 s 6	β–
115	(7/2+)	-74.229	0.99 s 5	β-
116	1+	-70.74	0.68 s 6	β-
116m		-70.59	0.57 s 5	β-
117	(7/2+)	-68.897	0.44 s 4	β-
118 119	(5/0)	-64.89	266 ms +22-21	β-, β-n 3.1%
120	(7/2+)	-62.8s -58.8s	171 ms 18 136 ms +14-13	β-, β-n 6.4% β-, β-n < 5.4%
121		-56.4s	151 ms +67-58	β-, β-n
122		-52.4s	>300 ns	β-, β-n
123		02.40	>403 ns	β-, β-n
124			>391 ns	β-, β-n, β-2n
125			>393 ns	β-, β-n
126			>395 ns	β-, β-2n, β-n
			27	
			41	

Nucli Z El	de A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
46 Pd	91		-46.3s	>1 µs	ε?
10 I u	92	0+	-55.1s	0.7 s +4-2	ε.
	93	(9/2+)	-59.1s	1.00 s 9	ε, ερ
	94	0+	-66.102	9.6 s 2	ε
	95	(9/2+)	-69.966	5 s 3	ε
		(21/2+)	-68.091	13.3 s 3	ε 89%, IT 11%,
					ερ 0.93%
	96	0+	-76.183	122 s 2	ε
	97	(5/2+)	-77.805	3.10 m 9	ε
	98	0+	-81.320	17.7 m 3	ε
	99	(5/2)+	-82.184	21.4 m 2	ε
	100	0+	-85.23	3.63 d 9	ε
	101	5/2+	-85.431	8.47 h 6	ε
	102	0+	-87.928	1.02% 1	
	103	5/2+	-87.482	16.991 d 19	ε
	104	0+	-89.393	11.14% 8	
	105	5/2+	-88.416	22.33% 8	
	106	0+	-89.905	27.33% 3	
	107	5/2+	-88.370	$6.5 \times 10^{6} \text{ y } 3$	β–
		11/2-	-88.155	21.3 s 5	IT
	108	0+	-89.521	26.46% 9	
	109	5/2+	-87.603	13.7012 h 24	β-
		11/2-	-87.414	4.696 m 3	IT
	110	0+	-88.348	11.72% 9	
	111	5/2+	-86.003	23.4 m 2	β-
		11/2-	-85.831	5.5 h 1	IT 73%, β– 27%
	112	0+	-86.323	21.03 h 5	β-
	113	(5/2+)	-83.590	93 s 5	β-
	113m 114	(9/2-) 0+	-83.509 -83.490	0.3 s 1 2.42 m 6	IT β_
	115	(5/2+)	-80.43	25 s 2	β-
		(3/2+) (11/2-)	-80.43	50 s 3	β– 92%, IT 8%
	116 116	0+	-79.831	11.8 s 4	β- 92%, 11 8%
	117	(5/2+)	-76.424	4.3 s 3	β-
	118	0+	-75.391	1.9 s 1	β-
	119	0.1	-71.407	0.92 s 1	β-
	120	0+	-70.309	0.5 s 1	β-
	121	(3/2+)	-66.3s	285 ms 24	β-, β-n≤0.8%
	122	0+	-64.7s	175 ms 16	β−≥97.5%,
					β-n≤2.5%
	123		-60.6s	174 ms +38-34	β-
	124	0+	-58.8s	38 ms +38-19	β_
	125			>230 ns	β-, β-n
	126	0+		>230 ns	β-, β-n
	128	0+		>394 ns	β-, β-n
47 Ag	93		-46.3s		p, ε, εp
	94	(0+)	-52.4s	26 ms +26-9	ε, ερ
	94m	(7+)	-52.4s	0.60 s 2	ε, ερ 20%
	94m	(21+)	-45.7s	0.40 s 4	ε 95.4%, εp 27%,
		/			p 4.1%, 2p 0.5%
	95	(9/2+)	-59.6s	1.75 s 12	ε, ερ
	95 m	(1/2-)	-59.3s	<500 ms	IT

Nuclide Z El A Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
			-
47 Ag 96m (8)+	-64.62	4.40 s 6	ε, ερ 8.5%
96m (2+)	-64.62	6.9 s 6	ε, ερ 18%
97 (9/2+)	-70.8	25.5 s 3	ε
98 (6+)	-73.05	47.5 s 3	ϵ , $\epsilon p ~1.1\!\!\times\!\!10^{-3}\!\%$
99 (9/2)+	-76.712	124 s 3	ε
99m (1/2-)	-76.206	10.5 s 5	IT
100 (5)+	-78.137	2.01 m 9	ε - τm
100m (2)+	-78.121	2.24 m 13	ε, ΙΤ
101 9/2+	-81.334	11.1 m 3	ε IT
101m (1/2)- 102 5(+)	-81.060	3.10 s 10 12.9 m 3	ε
102 5(+) 102m 2+	-82.246 -82.237	7.7 m 5	ε 51%, IT 49%
102m 2+ 103 7/2+	-82.237 -84.800	65.7 m 7	ε 51%, 11 49%
103 1/2+ 103m 1/2-	-84.665	5.7 s 3	IT
103m 1/2- 104 5+	-85.114	69.2 m 10	ε
104 5+ 104m 2+	-85.114 -85.107	33.5 m 20	ε 99.93%, IT<0.07%
105 1/2-	-87.070	41.29 d 7	ε 55.55%, 11<0.01%
105 1/2- 105m 7/2+	-87.045	7.23 m 16	IT 99.66%, ε 0.34%
106 1+	-86.940	23.96 m 4	ε 99.5%, β-<1%
106 n +	-86.850	8.28 d 2	ε 33.3%, ρ=<1%
107 1/2-	-88.405	51.839% 8	c
107 1/2- 107m 7/2+	-88.312	44.3 s 2	IT
107 11 1/24	-87.605	2.382 m 11	β- 97.15%, ε 2.85%
108m 6+	-87.495	438 y 9	ε 91.3%, IT 8.7%
109 1/2-	-88.719	48.161% 8	e 51.6%, 11 6.1%
109 m 7/2+	-88.631	39.6 s 2	IT
110 1+	-87.457	24.6 s 2	β-99.7%, ε 0.3%
110m 6+	-87.339	249.76 d 4	β- 98.64%, IT 1.36%
111 1/2-	-88.217	7.45 d 1	β-
111m 7/2+	-88.157	64.8 s 8	IT 99.3%, β- 0.7%
112 2(-)	-86.583	3.130 h 9	β-
113 1/2-	-87.03	5.37 h 5	β_
113m 7/2+	-86.99	68.7 s 16	IT 64%, β- 36%
114 1+	-84.930	4.6 s 1	β-
115 1/2-	-84.98	20.0 m 5	β_
115m 7/2+	-84.94	18.0 s 7	β- 79%, IT 21%
116 (0-)	-82.542	237 s 5	β-
116m (3+)	-82.494	20 s 1	β– 93%, IT 7%
116m (6-)	-82.412	9.3 s 3	β-92%, IT 8%
117 (1/2-)	-82.18	72.8 s + 20 - 7	β-
117m (7/2+)	-82.15	5.34 s 5	β– 94%, IT 6%
118 1(-)	-79.553	3.76 s 15	β-
118m 4(+)	-79.425	2.0 s 2	β- 59%, IT 41%
119m (1/2-)	-78.64	6.0 s 5	β-
119m (7/2+)	-78.64	2.1 s 1	β-
120 3(+)	-75.651	1.23 s 4	β -, β -n < 3.0×10 ⁻³ %
120m 6(-)	-75.448	0.40 s 3	$\beta = 63\%$, IT = 37%
121 (7/2+)	-74.40	0.78 s 2	β-, β-n 0.08%
122 (3+)	-71.11	0.529 s 13	β – 99.8%, β –n 0.2%
122m (1-)	-71.11	0.55 s 5	β- , IT, β-n
122m (9-)	-71.03	0.20 s 5	β-, β-n
123 (7/2+)	-69.55	0.300 s 5	β-, β-n 0.55%
		29	
		40	

Nuclide Z El A	Јπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
47 Ag 124	≥2	-66.2	0.172 s 5	β-, β-n 1.3%
125	(9/2+)	-64.4s	166 ms 7	β-, β-n
126		-60.9s	107 ms 12	β-, β-n
127		-58.8s	109 ms 25	β_
128		-54.9s	58 ms 5	β-, β-n
129	(9/2+)	-52.6s	46 ms + 5-9	β-, β-n
129m	(1/2-)	-52.6s	=160 ms	β-, β-n
130		-46.3s	≈50 ms	β-, β-n
48 Cd 95		-46.6s		εp?, ε?
96	0+	-55.6s	1.03 s + 24 - 21	ε
97	(9/2+)	-60.5s	1.10 s 7	ε, ερ 12%
	(25/2+)	-60.5s	3.70 s 8	ε, ερ 25%
98	0+	-67.62	9.2 s 3	ε, εp<0.03%
99	(5/2+)	-69.931	16 s 3	ε , $\varepsilon\alpha < 1.0 \times 10^{-4}\%$,
100	0+	-74.194	49.1 s 5	εp 0.17% ε
101	(5/2+)	-75.836	1.36 m 5	ε
101	0+	-79.659	5.5 m 5	ε
102	(5/2)+	-80.652	7.3 m 1	ε
104	0+	-83.968	57.7 m 10	ε
105	5/2+	-84.333	55.5 m 4	ε
106	0+	-87.130	>3.6×10 ²⁰ y	2ε
			1.25% 6	
107	5/2+	-86.990	6.50 h 2	ε
108	0+	-89.252	$>1.9\times10^{18} \text{ y}$	2ε
			0.89% 3	
109	5/2+	-88.504	461.4 d 12	ε
110	0+	-90.350	12.49% 18	
111	1/2+	-89.254	12.80% 12	
	11/2-	-88.858	48.50 m 9	IT
112	0+	-90.577	24.13% 21	
113	1/2+	-89.046	8.00×10 ¹⁵ y 26	β-
110	11/0	00 500	12.22% 12	0 00 000 TD 0 140
	11/2-	-88.783	14.1 y 5 >2.1×10 ¹⁸ y	β- 99.86%, IT 0.14%
114	0+	-90.018	28.73% 42	2β-
115	1/2+	-88.087	53.46 h 5	β-
115m	(11/2)-	-87.906	44.56 d 24	β_
116	0+	-88.716	3.3×10 ¹⁹ y 4	2β-
			7.49% 18	
117	1/2+	-86.422	2.49 h 4	β–
	(11/2)-	-86.286	3.36 h 5	β-
118	0+	-86.71	50.3 m 2	β-
119	3/2+	-83.98	2.69 m 2	β-
	(11/2-)	-83.83	2.20 m 2	β-
120 121	0+	-83.957	50.80 s 21 13.5 s 3	β– β–
	(3/2+) (11/2-)	-81.06 -80.84	13.5 S 3 8.3 S 8	p- β-
121m 122	0+	-80.84 -80.616	5.24 s 3	p– β–
123	(3/2+)	-77.32	2.10 s 2	β-
	(3/2+) (11/2-)	-77.00	1.82 s 3	β-≤100%, IT
124	0+	-76.697	1.25 s 2	β-3100π, 11
			30	r

Nuclide Z El A Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
			-
48 Cd 125 (3/2+) 125 m (11/2-)	-73.35 -73.35	0.68 s 4 0.48 s 3	β– β–
126 0+	-72.256	0.48 s 3	β_
127 (3/2+)	-68.43	0.313 s 17 0.37 s 7	β_
128 0+	-67.25	0.28 s 4	β_
129 (3/2+)	-63.3s	0.27 s 4	P-
130 0+	-61.5	162 ms 7	β-, β-n 3.5%
131 (7/2-)	-55.4s	68 ms 3	β-, β-n 3.5%
132 0+	-50.9s	97 ms 10	β-, β-n 60%
133 (7/2-)		57 ms 10	β-, β-n, β-2n
49 In 97	-47.2s		ε?, p?
98	-53.9s	32 ms +32-11	ε
98m	-53.9s	1.2 s + 12 - 4	ε
99	-61.4s	3.0 s 8	ε
100 (6+,7+)	-64.3	5.9 s 2	ε, ερ 1.6%
101 (9/2+)	-68.6s	15.1 s 3	ε, ερ
102 (6+)	-70.694	23.3 s 1	ε, εp 9.3×10 ⁻³ %
103 (9/2)+	-74.629	65 s 7	ε
103m (1/2-)	-73.997	34 s 2	ε 67%, IT 33%
104 (6+)	-76.182	1.80 m 3	ε
104m (3+)	-76.089	15.7 s 5	IT 80%, ε 20%
105 9/2+	-79.64	5.07 m 7	ε
105m (1/2-)	-78.97	48 s 6	IT
106 7+	-80.60	6.2 m 1	ε
106m (2)+	-80.57	5.2 m 1	ε
107 9/2+ 107m 1/2-	-83.56 -82.89	32.4 m 3 50.4 s 6	ε IT
107m 1/2- 108 7+	-84.116	58.0 m 12	ε
108 n +	-84.116	39.6 m 7	ε
109 9/2+	-86.488	4.167 h 18	ε
109 m 1/2-	-85.838	1.34 m 7	IT
109m (19/2+)	-84.386	0.209 s 6	IT
110 7+	-86.47	4.9 h 1	ε
110m 2+	-86.41	69.1 m 5	ε
111 9/2+	-88.393	2.8047 d 4	ε
111m 1/2-	-87.856	7.7 m 2	IT
112 1+	-87.992	14.97 m 10	ε 56%, β- 44%
112m 4+	-87.835	20.56 m 6	IT
113 9/2+	-89.368	4.29% 5	
113m 1/2-	-88.976	99.476 m 23	IT
114 1+	-88.570	71.9 s 1	β-99.5%, ε 0.5%
114m 5+	-88.380	49.51 d 1	IT 96.75%, ε 3.25%
115 9/2+	-89.536	4.41×10 ¹⁴ y 25	β–
115m 1/2-	00.000	95.71% 5	TITLOTES O TOS
115m 1/2- 116 1+	-89.200 -88.249	4.486 h 4 14.10 s 3	IT 95%, β– 5% β– 99.98%, ε 0.02%
116 1+ 116m 5+	-88.122	54.29 m 17	β- 99.96%, ε 0.02%
116m 5+ 116m 8-	-87.959	2.18 s 4	IT
117 9/2+	-88.943	43.2 m 3	β_
117m 1/2-	-88.628	116.2 m 3	β- 52.9%, IT 47.1%
118 1+	-87.228	5.0 s 5	β-
118m 5+	-87.168	4.45 m 5	β_
		31	•
		01	

Nucli Z El		T-	Δ (MeV)	T½, Γ, or Abundance	Danes Mada
		Jπ			Decay Mode
49 In		8-	-87.028	8.5 s 3	IT 98.6%, β-1.4%
	119	9/2+	-87.699	2.4 m 1	β-
	119m	1/2-	-87.388	18.0 m 3	β- 95.6%, IT 4.4%
	120	1+	-85.73	3.08 s 8	β-
	120m	(8-)	-85.73	47.3 s 5	β-
	120m	(5)+	-85.66	46.2 s 8	β-
	121	9/2+	-85.84	23.1 s 6	β-
	121m 122	1/2- 1+	-85.52	3.88 m 10	β- 98.8%, IT 1.2%
	122 122m	1+ 5+	-83.57 -83.53	1.5 s 3 10.3 s 6	β– β–
	122m		-83.28	10.8 s 4	β-
	123	(9/2)+	-83.43	6.17 s 5	β-
		(3/2)+ $(1/2)$ -	-83.43	47.4 s 4	β-
	124	(1)+	-80.87	3.12 s 9	β-
	124m		-80.82	3.7 s 2	β-
	125	9/2+	-80.48	2.36 s 4	β-
		1/2(-)	-80.12	12.2 s 2	β_
	126	3(+)	-77.81	1.53 s 1	β ₋
	126m		-77.71	1.64 s 5	β_
	127	(9/2+)	-76.89	1.09 s 1	β-, β-n≤0.03%
	127m	(1/2-)	-76.43	3.67 s 4	β-, β-n 0.69%
		(21/2-)	-75.03	1.04 s 10	β-
	128	(3)+	-74.36	0.84 s 6	β-, β-n<0.05%
	128m	(8-)	-74.02	0.72 s 10	β-, β-n<0.05%
	129	(9/2+)	-72.81	0.61 s 1	β-, β-n 0.25%
	129 m	(1/2-)	-72.44	$1.23 \ s \ 3$	β->99.7%, β-n 2.5%,
					IT<0.3%
		(23/2-)	-71.18	0.67 s 10	β-
	130	1(-)	-69.89	0.29 s 2	β-, β-n 0.93%
		(10-)	-69.84	0.54 s 1	β-, β-n 1.65%
	130m		-69.49	0.54 s 1	β-, β-n 1.65%
	131	(9/2+) (1/2-)	-68.05 -67.75	0.28 s 3 0.35 s 5	β-, β-n≤2%
	191111	(1/2-)	-67.75	0.55 8 5	$\beta - \ge 99.98\%$, $\beta - n \le 2\%$, $IT \le 0.02\%$
	131m	(21/2+)	-64.29	0.32 s 6	$\beta -> 99\%$, IT < 1%,
					$\beta - n = 0.03\%$
	132	(7-)	-62.41	0.207 s 6	β-, β-n 6.3%
	133	(9/2+)	-57.8s	165 ms 3	β-, β-n 85%
		(1/2-)	-57.4s	180 ms 15	β-, IT, β-n
		4- to 7-)	-52.0s	140 ms 4	β-, β-n 65%
	135		-47.2s	92 ms 10	β– , β–n
50 Sn	99		-47.7s		ε?, ερ?
	100	0+	-56.9	0.86 s + 37 - 20	ε, εp<17%
	101	(5/2+)	-59.9s	1.7 s 3	ε, ερ 26%
	102	0+	-64.9	3.8 s 2	ε
	103	(5/2+)	-66.97	7.0 s 2	ε, ερ 1.2%
	104	0+	-71.624	20.8 s 5	ε
	105	(5/2+)	-73.337	32.7 s 5	ϵ , $\epsilon p~0.01\%$
	106	0+	-77.353	115 s 5	ε
	107	(5/2+)	-78.512	2.90 m 5	ε
	108	0+	-82.071	10.30 m 8	ε
	109	5/2+	-82.632	18.0 m 2	ε

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
50 Sn 110	0+	-85.84	4.11 h 10	ε
111	7/2+	-85.941	35.3 m 6	ε
112	0+	-88.657	$<1.3\times10^{21} \text{ y}$	2ε
			0.97% 1	
113	1/2+	-88.330	115.09 d 3	ε
113m	7/2+	-88.253	21.4 m 4	IT 91.1%, ε 8.9%
114	0+	-90.559	0.66% 1	
115	1/2+	-90.033	0.34% 1	
116	0+	-91.525	14.54% 9	
117	1/2+	-90.397	7.68% 7	
	11/2-	-90.082	13.76 d 4	IT
118	0+	-91.652	24.22% 9	
119	1/2+	-90.065	8.59% 4	
	11/2-	-89.976	293.1 d 7	IT
120	0+	-91.098	32.58% 9	
121	3/2+	-89.197	27.03 h 4	β-
	11/2-	-89.191	43.9 y 5	IT 77.6%, β– 22.4%
122	0+	-89.942	4.63% 3	0
123 123 m	11/2- 3/2+	-87.817	129.2 d 4	β– β–
123m 124		-87.792 -88.237	40.06 m 1 >1.2×10 ²¹ y	p- 2β-
124	0+	-00.201	5.79% 5	2p-
125	11/2-	-85.898	9.64 d 3	β-
125m		-85.870	9.52 m 5	β_
126	0+	-86.02	2.30×10 ⁵ y 14	β_
	(11/2-)	-83.47	2.10 h 4	β_
	(3/2+)	-83.46	4.13 m 3	β_
128	0+	-83.34	59.07 m 14	β_
128m		-81.24	6.5 s 5	IT
129	(3/2+)	-80.59	2.23 m 4	β_
129m	(11/2-)	-80.56	6.9 m 1	β-, IT<2.0×10 ⁻³ %
130	0+	-80.137	3.72 m 7	β_
130m	(7-)	-78.190	1.7 m 1	β_
131	(3/2+)	-77.271	56.0 s 5	β_
131m	(11/2-)	-77.271	58.4 s 5	β-, IT
132	0+	-76.548	39.7 s 8	β-
133	7/2-	-70.85	1.46 s 3	β-, β-n 0.03%
134	0+	-66.3	1.050 s 11	β-, β-n 17%
135	(7/2-)	-60.6s	530 ms 20	β-, β-n 21%
136	0+	-56.3s	0.25 s 3	β-, β-n 30%
137		-50.3s	190 ms 60	β-, β-n 58%
138	0+		>408 ns	β– , β–n
51 Sb 103		-56.2s	>1.5 µs	ε?
104		-59.2s	0.44 s + 15 - 11	ε, εp<7%, p<1%
105	(5/2+)	-63.85	1.22 s 11	ε 99%, p 1%
106	(2+)	-66.473	0.6 s 2	ε
107	(5/2+)	-70.653	4.0 s 2	ε
108	(4+)	-72.445	7.4 s 3	ε
109	(5/2+)	-76.251	17.0 s 7	ε
	(3+,4+)	-77.449	23.0 s 4	ε
111	(5/2+)	-80.836	75 s 1	ε
112	3+	-81.60	51.4 s 10	ε

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
51 Sb 113	5/2+	-84.42	6.67 m 7	ε
114	3+	-84.50	3.49 m 3	ε
115	5/2+	-87.00	32.1 m 3	ε
116	3+	-86.822	15.8 m 8	ε
116m	8-	-86.439	60.3 m 6	ε
117	5/2+	-88.642	2.80 h 1	ε
118	1+	-87.996	3.6 m 1	ε
118m	8-	-87.746	5.00 h 2	ε
119	5/2+	-89.474	38.19 h 22	ε
119m	(27/2+)	-86.632	0.85 ± 9	IT
120	1+	-88.417	15.89 m 4	ε
120m	8-	-88.417	5.76 d 2	ε
121	5/2+	-89.599	57.21% 5	
122	2-	-88.334	2.7238 d 2	β– 97.59%, ε 2.41%
122m	(8)-	-88.170	4.191 m 3	IT
123	7/2+	-89.226	42.79% 5	
124	3-	-87.622	60.20 d 3	β-
124m	5+	-87.611	93 s 5	IT 75%, β– 25%
124m		-87.585	20.2 m 2	IT
125	7/2+	-88.257	2.75856 y 25	β-
126	(8-)	-86.40	12.35 d 6	β-
126m		-86.38	19.15 m 8	β– 86%, IT 14%
126m		-86.36	=11 s	IT
127	7/2+	-86.700	3.85 d 5	β-
128	8-	-84.61	9.01 h 4	β-
128m		-84.61	10.4 m 2	β- 96.4%, IT 3.6%
129	7/2+	-84.63	4.40 h 1	β-
	(19/2-)	-82.78	17.7 m 1	β– 85%, IT 15%
130	(8-)	-82.29	39.5 m 8	β-
	(4,5)+	-82.29	6.3 m 2	β-
131 132	(7/2+)	-81.98	23.03 m 4 2.79 m 7	β-
132 132m	(4)+ (8-)	-79.67 -79.67	2.79 m 7 4.10 m 5	β– β–
133	(7/2+)	-78.94	2.34 m 5	β-
134	(0-)	-74.17	0.78 s 6	β-
134m		-73.89	10.07 s 5	β-, β-n 0.09%
135	(7/2+)	-69.79	1.679 s 15	β-, β-n 22%
136	1-	-64.5s	0.923 s 14	β-, β-n 16.3%
137	(7/2+)	-60.4s	492 ms 25	β-, β-n 49%
138	(1/2+)	-54.8s	350 ms 15	β-, β-n 72%
139		-50.3s	93 ms +14-3	β-, β-n 90%
140			>407 ns	β-, β-n, β-2n
52 Te 105	(5/2+)	-52.6s	0.62 µs 7	α
106	0+	-58.2	70 μs <i>17</i>	α
107		-60.54	3.1 ms 1	α 70%, ϵ 30%
108	0+	-65.783	2.1 s 1	ε 51%, α 49%,
				εp 2.4%
109	(5/2+)	-67.715	4.6 s 3	ε 96.1%, ερ 9.4%,
				α3.9%,
	_			$\epsilon \alpha < 5.0 \times 10^{-3}\%$
110	0+	-72.229	18.6 s 8	ε , $\alpha = 3.0 \times 10^{-3}\%$
111	(5/2)+	-73.587	19.3 s 4	ϵ , ϵp

Nucli Z El	ide A	Jπ	A (MeV)	T½, Γ, or Abundance	Decay Mode
52 Te		0+	-77.567	2.0 m 2	ε
32 16	113	(7/2+)	-78.35	1.7 m 2	ε
	114	0+	-81.89	15.2 m 7	ε
	115	7/2+	-82.06	5.8 m 2	ε
		(1/2)+	-82.04	6.7 m 4	ε≤100%, IT
	116	0+	-85.27	2.49 h 4	ε 3100π, 11
	117	1/2+	-85.10	62 m 2	ε
		(11/2-)	-84.80	103 ms 3	IT
	118	0+	-87.68	6.00 d 2	ε
	119	1/2+	-87.181	16.05 h 5	ε
		11/2-	-86.920	4.70 d 4	ε, IT<8.0×10 ⁻³ %
	120	0+	-89.369	0.09% 1	C, 11 (0.0x10 %
	121	1/2+	-88.54	19.17 d 4	ε
		11/2-	-88.25	164.2 d 8	IT 88.6%, ε 11.4%
	122	0+	-90.315	2.55% 12	
	123	1/2+	-89.173	>9.2×10 ¹⁶ y	ε
				0.89% 3	
	123m	11/2-	-88.925	119.2 d 1	IT
	124	0+	-90.526	4.74% 14	
	125	1/2+	-89.024	7.07% 15	
	125m	11/2-	-88.879	57.40 d 15	IT
	126	0+	-90.066	18.84% 25	
	127	3/2+	-88.283	9.35 h 7	β-
		11/2-	-88.195	106.1 d 7	IT 97.6%, β-2.4%
	128	0+	-88.993	2.41×10 ²⁴ y 39	2β-
				31.74% 8	-r
	129	3/2+	-87.004	69.6 m 3	β-
		11/2-	-86.898	33.6 d 1	IT 63%, β- 37%
	130	0+	-87.352	$\geq 3.0 \times 10^{24} \text{ y}$	2β-
				34.08% 62	
	131	3/2+	-85.211	25.0 m 1	β-
	131m	11/2-	-85.029	33.25 h 25	β-74.1%, IT 25.9%
		(23/2+)	-83.271	93 ms 12	IT
	132	0+	-85.180	3.204 d 13	β-
	133	(3/2+)	-82.94	12.5 m 3	β–
	133m	(11/2-)	-82.61	55.4 m 4	β-83.5%, IT 16.5%
	134	0+	-82.56	41.8 m 8	β-
	135	(7/2-)	-77.90	19.0 s 2	β-
	136	0+	-74.48	17.63 s 8	β-, β-n 1.31%
	137	(7/2-)	-69.3	2.49 s 5	β-, β-n 2.99%
	138	0+	-65.8	1.4 s 4	β-, β-n 6.3%
	139	(7/2-)	-60.4s	>150 ns	β-, β-n
	140	0+	-56.6s	>300 ns	β-, β-n
	141		-51.0s	>150 ns	β-?, β-n?
	142	0+	-46.9s		
	143			>408 ns	β-, β-n, β-2n
53 I	107		-49.6s		
	108	(1)	-52.6s	36 ms 6	α91%, ε9%, p<1%
	109	1/2+	-57.675	93.5 μs 3	p 99.99%, α 0.01%
	110	= .	-60.46	0.65 s 2	ε 83%, α 17%, ερ 11%,
	-				εα 1.1%
	111	(5/2+)	-64.953	2.5 s 2	ε 99.9%, α=0.1%
		= . ,			
				35	

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
	o n			
53 I 112	F (0	-67.06	3.42 s 11	ϵ , $\alpha = 1.2 \times 10^{-3}\%$
113	5/2+	-71.119	6.6 s 2	ε, α3.3×10 ⁻⁷ %
114	1+	-72.8s	2.1 s 2	ε, ερ
114m		-72.5s	6.2 s 5	ε 91%, IT 9%
115	(5/2+)	-76.34	1.3 m 2	ε
116	1+	-77.49	2.91 s 15	ε
117	(5/2)+	-80.43	2.22 m 4	ε
118	2-	-80.97	13.7 m 5	E . 10007 TM
118m 119	(7-) 5/2+	-80.87 -83.76	8.5 m 5 19.1 m 4	ε<100%, IT
120	2-	-83.75	81.6 m 2	ε
120 120m		-83.43	53 m 4	ε
120 m 121	5/2+	-86.253	2.12 h 1	ε
122	1+	-86.081	3.63 m 6	ε
123	5/2+	-87.945	13.2235 h 19	ε
124	2-	-87.367	4.1760 d 3	ε
125	5/2+	-88.838	59.407 d 10	ε
126	2-	-87.912	12.93 d 5	ε 52.7%, β– 47.3%
127	5/2+	-88.984	100%	C 02.170, p 11.070
128	1+	-87.739	24.99 m 2	β-93.1%, ε6.9%
129	7/2+	-88.507	1.57×10 ⁷ y 4	β-
130	5+	-86.936	12.36 h 1	β_
130m	2+	-86.896	8.84 m 6	IT 84%, β- 16%
131	7/2+	-87.442	8.0252 d 6	β-
132	4+	-85.698	2.295 h 13	β_
132m	(8-)	-85.578	1.387 h 15	IT 86%, β- 14%
133	7/2+	-85.886	20.83 h 8	β-
133m	(19/2-)	-84.252	9 s 2	IT
134	(4)+	-84.072	52.5 m 2	β–
134 m		-83.756	3.52 m 4	IT 97.7%, β– 2.3%
135	7/2+	-83.791	6.58 h 3	β–
136	(1-)	-79.57	83.4 s 10	β-
136m		-78.93	46.9 s 10	β-
137	(7/2+)	-76.51	24.5 s 2	β-, β-n 7.14%
138	(2-)	-71.9s	6.23 s 3	β-, β-n 5.56%
139	(7/2+)	-68.5	2.280 s 11	β-, β-n 10%
140 141	(4-)	-63.6	0.86 s 4 0.43 s 2	β-, β-n 9.3%
141		-60.3 -55.0s	222 ms 12	β-, β-n 21.2%
143		-51.1s	130 ms 45	β-, β-n? β-?
144		-31.1s -45.8s	>300 ms 45	β-?
145		-40.08	>407 ns	β- , β-n
54 Xe 108	0.	-42.7s	7 10 1 115	Р, Р.
109	0+ (7/2+)	-42.7s -45.9s	13 ms 2	α
110	0+	-45.9s -51.9	93 ms 3	α 64%, ε, ερ
111	(7/2+)	-51.9 -54.39	0.81 s 20	ε 90%, α 10%
112	0+	-60.028	2.7 s 8	ε 99.16%, α 0.84%
113	(5/2+)	-62.203	2.74 s 8	ε , ε p 7%, α =0.01%,
110	(3/2.)	02.200	2	$\varepsilon \alpha = 7.0 \times 10^{-3}\%$
114	0+	-67.08	10.0 s 4	ε
115	(5/2+)	-68.66	18 s 4	ε, ερ 0.34%,
				α 3 . 0×10 ⁻⁴ %

Nuclide	<u> </u>	Τ½, Γ, or	D W . J .
Z El A Jπ	(MeV)	Abundance	Decay Mode
54 Xe 116 0+	-73.05	59 s 2	3
117 5/2(+)	-74.18	61 s 2	ε, εp 2.9×10 ⁻³ %
118 0+	-78.08	3.8 m 9	ε
119 (5/2+)	-78.79	5.8 m 3	ε
120 0+	-82.17	40 m 1	ε
121 5/2(+)	-82.47	40.1 m 20	ε
122 0+	-85.35	20.1 h 1	ε
123 (1/2)+	-85.249	2.08 h 2	ε
124 0+	-87.661	≥1.6×10 ¹⁴ y	2ε
405 4/0/)	05 400	0.0952% 3	
125 1/2(+)	-87.193	16.9 h 2	ε
125m 9/2(-)	-86.940	57 s 1	IT
126 0+	-89.146	0.0890% 2	
127 1/2+	-88.322	36.346 d 3	ε
127m 9/2-	-88.025	69.2 s 9	IT
128 0+	-89.860	1.9102% 8	
129 1/2+	-88.696	26.4006% 82	***
129m 11/2-	-88.460	8.88 d 2	IT
130 0+	-89.880	4.0710% 13	
131 3/2+	-88.413	21.232% 30	***
131m 11/2-	-88.249	11.84 d 4	IT
132 0+	-89.279	26.9086% 33	IT
132m (10+)	-86.527	8.39 ms 11	
133 3/2+	-87.643	5.2475 d 5	β–
133m 11/2-	-87.410	2.198 d 13	IT
134 0+	-88.124	>5.8×10 ²² y	2β-
404 5	00 450	10.4357% 21	***
134m 7-	-86.159	290 ms 17	IT
135 3/2+	-86.417	9.14 h 2	β-
135m 11/2-	-85.890	15.29 m 5 >2.4×10 ²¹ y	IT>99.4%, β-<0.6%
136 0+	-86.429	52.4×10 ⁻¹ y 8.8573% 44	2β-
137 7/2-	00 202	3.818 m 13	0
137 1/2-	-82.383 -79.975	14.08 m 8	β– β–
139 3/2-	-75.644	39.68 s 14	β-
140 0+ 141 5/2(-)	-72.986	13.60 s 10	β-
	-68.197	1.73 s 1	β-, β-n 0.04%
142 0+ 143 5/2-	-65.229	1.23 s 2 0.511 s 6	β-, β-n 0.21% β-, β-n 1%
143 5/2- 144 0+	-60.202 -56.872	0.311 s 6	
144 0+	-56.872 -51.49	0.388 s 7 188 ms 4	β- , β-n 3% β- , β-n 5%
146 0+	-31.49 -47.95	146 ms 6	β-, β-n 6.9%
147 (3/2-)	-47.95 -42.5s	0.10 s +10-5	β-, β-n < 8%
148 0+	-42.08	>408 ns	β-, β-n
	40.00		
55 Cs 112 (0+,3+)	-46.29	0.5 ms 1	p
113 (3/2+)	-51.765	16.7 μs 7	ρ, α
114 (1+)	-54.68	0.57 s 2	ε 99.98%, ερ 8.7%,
115	50.5	1.4 . 0	εα 0.19%, α 0.02%
115	-59.7s	1.4 s 8	ε , $\varepsilon p = 0.07\%$
116 (1+)	-62.1s	0.70 s 4	ε, ερ 2.8%,
116 4 - 7 - 2	60.0	9 05 - 19	εα 0 . 05%
116m 4+,5,6	-62.0s	3.85 s 13	ε, εp 0.51%, εα 8.0×10 ⁻³ %
		37	εu σ. υ×1υ/σ

Nuclide Z El A Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
55 Cs 117m (9/2+)	-66.49	8.4 s 6	ε
117m (3/2+)	-66.49	6.5 s 4	ε
118 2	-68.41	14 s 2	ϵ , $\epsilon p < 0.04\%$, $\epsilon \alpha < 2.4 \times 10^{-3}\%$
118m 6,7,8	-68.41	17 s 3	ϵ , $\epsilon p < 0.04\%$, $\epsilon \alpha < 2.4 \times 10^{-3}\%$
119 9/2+	-72.31	43.0 s 2	ε
119m 3/2(+)	-72.31	30.4 s 1	ε
120 2(+)	-73.888	61.3 s <i>11</i>	ε, εα 2.0×10 ⁻⁵ %, εp 7.0×10 ⁻⁶ %
120m (7-)	-73.888	57 s 6	ε
121 3/2(+)	-77.10	155 s 4	ε
121m 9/2(+)	-77.03	122 s 3	ε 83%, IT 17%
122 1+	-78.14	21.18 s 19	ε
122m (5)-	-78.01	0.36 s 2	IT
122m 8(-)	-78.00	3.70 m 11	ε
123 1/2+	-81.04	5.88 m 3	ε
123m (11/2)-	-80.89	1.64 s 12	IT
124 1+	-81.731	30.9 s 4	ε
124m (7)+	-81.268	6.3 s 2	IT
125 1/2(+)	-84.087	46.7 m 1	ε
125m (11/2-)	-83.821	$0.90 \; \mathrm{ms} \; 3$	IT
126 1+	-84.34	1.64 m 2	ε
127 1/2+	-86.240	6.25 h 10	ε
128 1+	-85.931	3.66 m 2	ε
129 1/2+	-87.499	32.06 h 6	ε
130 1+	-86.899	29.21 m 4	ε 98.4%, β-1.6%
130m 5-	-86.736	3.46 m 6	IT 99.84%, ε 0.16%
131 5/2+	-88.058	9.689 d 16	ε
132 2+	-87.155	6.480 d 6	ε 98.13%, β– 1.87%
133 7/2+	-88.070	100%	0 0 0 10-40
134 4+	-86.891	2.0652 y 4	β-, ε 3.0×10 ⁻⁴ %
134m 8- 135 7/2+	-86.752 -87.581	2.912 h 2 2.3×10 ⁶ y 3	IT
135 1/2+ 135m 19/2-		53 m 2	β– IT
136 5+	-85.948 -86.339	13.04 d 3	β_
136 s+ 136m 8-	-85.821	17.5 s 2	β-, IT>0%
137 7/2+	-86.545	30.08 y 9	β-, 11>0%
138 3-	-82.887	33.41 m 18	β-
138m 6-	-82.807	2.91 m 8	IT 81%, β= 19%
139 7/2+	-80.701	9.27 m 5	β-
140 1-	-77.050	63.7 s 3	β-
141 7/2+	-74.48	24.84 s 16	β-, β-n 0.04%
142 0-	-70.53	1.684 s 14	β-, β-n 0.09%
143 3/2+	-67.67	1.791 s 7	β-, β-n 1.64%
144 1(-)	-63.27	0.994 s 6	β-, β-n 3.03%
144m (≥4)	-63.27	<1 s	β-, β-11 0.00%
145 3/2+	-60.06	0.587 s 5	β-, β-n 14.7%
146 1-	-55.57	0.321 s 2	β-, β-n 14.2%
147 (3/2+)	-52.02	0.230 s 1	β-, β-n 28.5%
148	-47.3	146 ms 6	β-, β-n 25.1%
149	-43.8s	>50 ms	β-, β-n
		38	

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
55 Cs 150	•			-
151		-39.0s -35.1s	>50 ms >50 ms	β-, β-n β-, β-n
56 Ba 112	0+	-36.1s		
113		-39.8s		
114	0+	-46.0	0.43 s +30-15	ε 99.1%, εp 20%, α 0.9%, ¹² C<0.0034%
115	(5/2+)	-49.0s	0.45 s 5	ε, εp>15%
116	0+	-54.6s	1.3 s 2	ε, ερ 3%
117	(3/2)	-57.5	1.75 s 7	ϵ , $\epsilon\alpha > 0\%$, $\epsilon p > 0\%$
118	0+	-62.4s	5.5 s 2	ε, ερ
119	(5/2+)	-64.6	5.4 s 3	ε, εp<25%
120	0+	-68.9	24 s 2	ε
121	5/2(+)	-70.7	29.7 s 15	ε
122	0+	-74.61	1.95 m 15	ε
123	5/2(+)	-75.65	2.7 m 4	ε
124	0+	-79.09	11.0 m 5	ε
125 126	1/2(+) 0+	-79.67 -82.67	3.3 m 3 100 m 2	ε
127	1/2+	-82.82	12.7 m 4	ε
127m	7/2-	-82.73	1.9 s 2	IT
128	0+	-85.379	2.43 d 5	ε
129	1/2+	-85.06	2.23 h 11	ε
129m	7/2+	-85.06	2.16 h 2	ε≤100%, IT
130	0+	-87.261	0.106% 1	
130m	8-	-84.786	9.4 ms 4	IT
131	1/2+	-86.684	11.50 d 6	ε
131m	9/2-	-86.496	14.6 m 2	IT
132	0+	-88.434	$>3.0\times10^{21} \text{ y}$	2ε
			0.101% 1	
133	1/2+	-87.553	10.551 y 11	ε
133m	11/2-	-87.265	38.93 h 10	IT 99.99%, ε 0.01%
134	0+	-88.950	2.417% 18	
135	3/2+	-87.850	6.592% 12	
135m		-87.582	28.7 h 2	IT
136	0+	-88.887	7.854% 24	
136m	7-	-86.856	0.3084 s 19	IT
137	3/2+	-87.721	11.232% 24	TIT
137 m 138	11/2- 0+	-87.059 -88.261	2.552 m 1 71.698% 42	IT
139	7/2-	-84.914	83.06 m 28	β-
140	0+	-83.270	12.7527 d 23	β-
141	3/2-	-79.733	18.27 m 7	β-
142	0+	-77.845	10.6 m 2	β_
143	5/2-	-73.937	14.5 s 3	Б—
144	0+	-71.767	11.5 s 2	β-, β-n 3.6%
145	5/2-	-67.516	4.31 s 16	β-
146	0+	-64.94	2.22 s 7	β-
147	(3/2-)	-60.26	0.894 s 10	β-, β-n 0.06%
148	0+	-57.59	0.612 s 17	β-, β-n 0.4%
149		-53.2s	0.344 s 7	β-, β-n 0.43%
150	0+	-50.3s	0.3 s	β-, β-n
			39	

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
56 Ba 151		-45.6s	>300 ns	β-, β-n
152	0+	-42.4s	>406 ns	β-, β-n
153		-37.2s		β-?
57 La 117 (3	3/2+.3/2-)	-46.5s	23.5 ms 26	p 93.9%, ε 6.1%
	(9/2+)	-46.3s	10 ms 5	p 97.4%, ε 2.6%
118		-49.6s		ε?
119		-55.0s		ε?
120m		–57.7s	2.8 s 2	ε, εp>0%
121		-62.4s	5.3 s 2	ε
122		-64.5s	8.6 s 5	ε, ερ
123 124 m	(8-)	-68.7s -70.26	17 s 3 29.21 s 17	ε
124m 124m	(8-)	-70.26	29.21 s 17 21 s 4	ε
125	(3/2+)	-73.76	64.8 s 12	ε
125m		-73.65	0.39 s 4	C
126m		-74.97	54 s 2	ε > 0%
126m(0-,1,2-)	-74.97	<50 s	ε, ΙΤ
127	(11/2-)	-77.89	5.1 m 1	ε
	(3/2+)	-77.88	3.7 m 4	ε, ΙΤ
128	(5+)	-78.63	5.18 m 14	ε
	(1+,2-)	-78.63	<1.4 m	ε
129	3/2+	-81.33	11.6 m 2	ε
129m 130	11/2-	-81.15	0.56 s 5 8.7 m 1	IT
130	3(+) 3/2+	-81.63 -83.77	8.7 m 1 59 m 2	ε
132	2-	-83.72	4.8 h 2	ε
132m		-83.53	24.3 m 5	IT 76%, ε 24%
133	5/2+	-85.49	3.912 h 8	ε
134	1+	-85.22	6.45 m 16	ε
135	5/2+	-86.65	19.5 h 2	ε
136	1+	-86.04	9.87 m 3	ε
136m	,	-85.81	114 ms 3	IT
137	7/2+	-87.11	6×10 ⁴ y 2 1.02×10 ¹¹ y 1	ε
138	5+	-86.521	0.08881% 71	ε 65.6%, β–34.4%
139	7/2+	-87.228	99.9119% 71	p= 54.4%
140	3-	-84.317	1.67855 d 12	β-
141	(7/2+)	-82.934	3.92 h 3	β_
142	2-	-80.022	91.1 m 5	β_
143	(7/2)+	-78.171	14.2 m 1	β–
144	(3-)	-74.83	40.8 s 4	β-
145	(5/2+)	-72.83	24.8 s 20	β-
146	2-	-69.05	6.27 s 10	β-
146m		-69.05	10.0 s 1	β-
147 148	(3/2+) (2-)	-66.68 -62.71	4.06 s 4 1.26 s 8	β-, β-n 0.04% β-, β-n 0.15%
149	(3/2-)	-60.2	1.05 s 3	β-, β-n 1.43%
150	(3+)	-56.6s	0.86 s 5	β-, β-n 2.7%
151	/	-53.9s	>300 ns	β-, β-n
152		-49.7s	>150 ns	β_
153		-46.6s	>100 ns	β-?
154		-42.0s		β-?
			40	

Nuclide	_	Δ	T½, Γ, or	
Z El A	Jπ	(MeV)	Abundance	Decay Mode
57 La 155		-38.5s		β-?
58 Ce 119		-43.9s		ε?
120	0+	-49.5s		ε?
121	(5/2)	-52.5s	1.1 s 1	ε , $\varepsilon p = 1\%$
122	0+	-57.7s		ε, ερ
123	(5/2)	-60.1s	3.8 s 2	ε, εp>0%
124	0+	-64.6s	6 s 2	ε
125	(7/2-)	-66.7s	9.7 s 3	ϵ , ϵp
126	0+	-70.82	51.0 s 3	ε
127	(1/2+)	-71.97	34 s 2	ε
	(5/2+)	-71.97	28.6 s 7	ε
128	0+	-75.53	3.93 m 2	3
129	5/2+	-76.29	3.5 m 5	ε>0%
130	0+	-79.42	22.9 m 5	ε
131	7/2+	-79.71	10.3 m 3	ε
	(1/2+)	-79.64	5.4 m 4	ε, ΙΤ
132	0+	-82.47	3.51 h <i>11</i>	ε
132m	(8-)	-80.13	9.4 ms 3	IT
133	1/2+	-82.42	97 m 4	ε
133m	9/2-	-82.39	5.1 h 3	ε, ΙΤ
134 135	0+	-84.83	3.16 d 4	ε
	1/2(+)	-84.62	17.7 h 3	ε IT
136	(11/2-) 0+	-84.18 -86.47	20 s 1 >0.7×10 ¹⁴ y	2ε
136	0+	-00.47	0.185% 2	48
137	3/2+	-85.88	9.0 h 3	ε
	11/2-	-85.63	34.4 h 3	IT 99.21%, ε 0.79%
138	0+	-87.56	≥0.9×10 ¹⁴ y	2ε
100	0.1	-01.00	0.251% 2	20
138m	7-	-85.43	8.65 ms 20	IT
139	3/2+	-86.949	137.641 d 20	ε
	11/2-	-86.195	54.8 s 10	IT
140	0+	-88.078	88.450% 51	
141	7/2-	-85.435	32.508 d 13	β-
142	0+	-84.532	$>5 \times 10^{16} \text{ y}$	2β-
			11.114% 51	•
143	3/2-	-81.605	33.039 h 6	β-
144	0+	-80.431	284.91 d 5	β-
145	(5/2-)	-77.09	3.01 m 6	β-
146	0+	-75.64	13.52 m 13	β–
147	(5/2-)	-72.013	56.4 s 10	β–
148	0+	-70.40	56 s 1	β–
149	(3/2-)	-66.67	5.3 s 2	β–
150	0+	-64.85	4.0 s 6	β-
151	(5/2+)	-61.22	1.76 s 6	β-
151m		-61.22	1.02 s 6	β-
152	0+	-59.3s	1.4 s 2	β-
153		-55.2s	>100 ns	β-?
154	0+	-52.7s	>100 ns	β-
155	0+	-48.3s	>300 ns	β-?
156 157	0+	-45.3s -40.4s		β-? β-?
197		-40.48		p-:
			41	

Nuclide		Δ	T½, Γ, or	
Z El A	Jπ	(MeV)	Abundance	Decay Mode
59 Pr 121	(3/2)	-41.4s	10 ms + 6-3	p
122		-44.7s	≈0.5 s	ε?
123		-50.1s	=0.8 s	ε?
124		-53.0s	1.2 s 2	ε, εp>0%
125	_	-57.7s	3.3 s 7	ε, ερ
126	>3	-60.1s	3.14 s 22	ϵ , ϵp
127	4.5.0	-64.3s	4.2 s 3	ε
128	4,5,6	-66.33	2.84 s 9	3
129 (130?	(11/2-)	-69.77 -71.18	30 s 4 40 s 4	ε > 0% ε
	(7,8) 4+,5+)	-71.18 -71.18	40 s 4	ε
130?	(2+)	-71.18 -71.18	40 s 4	ε
	(3/2+)	-71.18 -74.30	1.51 m 2	ε
	(3/2+) (11/2-)	-74.30	5.73 s 20	IT 96.4%, ε 3.6%
132	(2)+	-75.21	1.6 m 3	ε
	(3/2+)	-77.94	6.5 m 3	ε
	11/2-)	-77.74	1.1 s 2	IT
134m	(6-)	-78.51	≈11 m	ε
134m	2-	-78.51	17 m 2	ε
	3/2(+)	-80.93	24 m 1	ε
136	2+	-81.33	13.1 m 1	ε
137	5/2+	-83.18	1.28 h 3	ε
138	1+	-83.13	1.45 m 5	ε
138m	7-	-82.76	2.12 h 4	ε
139	5/2+	-84.820	4.41 h 4	ε
140	1+	-84.690	3.39 m 1	ε
141	5/2+	-86.015	100%	
142	2-	-83.787	19.12 h 4	β-99.98%, ε 0.02
142m	5-	-83.783	14.6 m 5	IT
143	7/2+	-83.067	13.57 d 2	β-
144	0-	-80.749	17.28 m 5	β–
144m	3-	-80.690	7.2 m 3	IT 99.93%, β-0.0
145	7/2+	-79.626	5.984 h 10	β-
146	(2)-	-76.68	24.15 m 18	β-
	(5/2+)	-75.44	13.4 m 3	β-
148	1-	-72.54	2.29 m 2	β-
148m 149	(4)	-72.44 -71.039	2.01 m 7 2.26 m 7	β-
149 150	(5/2+)		6.19 s 16	β-
	(1)-	-68.299 -66.78	18.90 s 7	β-
151 152	(3/2-) (4+)	-66.78 -63.76	3.57 s 18	β- β-
153	(4+)	-61.58	4.28 s 11	β_
154	(3+)	-58.2	2.3 s 1	β_
155	(OT)	-55.8s	>300 ns	β-?
156		-51.9s	>300 ns	β-?
157		-49.0s	2000 Hs	β-?
158		-44.7s		β-?
159		-41.1s		β-?
60 Nd 124	0+	-44.3s		ε?
125	(5/2)	-47.4s	0.65 s 15	ε, ερ>0%
126	0+	-52.6s	>200 ns	ε, ερ
127		-55.3s	1.8 s 4	ε, ερ

Nuclide Z El A		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
60 Nd 12		0+	-60.1s	5 s	ε, ερ
		(5/2+)	-62.2s	4.9 s 2	$\varepsilon > 0\%$, $\varepsilon p > 0\%$
	30	0+	-66.60	21 s 3	3
		(5/2+)	-67.77	25.4 s 9	ε, εp>0%
	32	0+	-71.43	94 s 8	ε
		(7/2+)	-72.33	70 s 10	ε
		(1/2+)	-72.20	=70 s	ε, ΙΤ
	34	0+	-75.65	8.5 m 15	ε
		9/2(-)	-76.21	12.4 m 6	3 0 0 0 0
14	30 m	(1/2+)	-76.15	5.5 m 5	ε>99.97%, IT<0.03%
1.5	36	0+	-79.20	50.65 m 33	ε
	37	1/2+	-79.58	38.5 m 15	ε
		11/2-	-79.06	1.60 s 15	IT
	38	0+	-82.02	5.04 h 9	ε
	39	3/2+	-82.01	29.7 m 5	ε
		11/2-	-81.78	5.50 h 20	ε 88.2%, IT 11.8%
	40	0+	-84.25	3.37 d 2	ε
	10m	7-	-82.03	0.60 ms 5	IT
	41	3/2+	-84.192	2.49 h 3	ε
		11/2-	-83.436	62.0 s 8	IT, ε<0.05%
	42	0+	-85.949	27.152% 40	11, 0 10.00%
	43	7/2-	-84.001	12.174% 26	
	14	0+	-83.747	2.29×10 ¹⁵ y 16	α
-	• •	٠.	00.11.	23.798% 19	~
14	45	7/2-	-81.431	8.293% 12	
	16	0+	-80.925	17.189% 32	
	17	5/2-	-78.146	10.98 d 1	β-
	18	0+	-77.406	5.756% 21	r
	19	5/2-	-74.374	1.728 h 1	β-
	50	0+	-73.683	0.79×10 ¹⁹ v 7	r
				5.638% 28	
18	51	3/2+	-70.946	12.44 m 7	β-
18	52	0+	-70.15	11.4 m 2	В-
		(3/2)-	-67.34	31.6 s 10	β_
	54	0+	-65.7	25.9 s 2	β_
	55		-62.5s	8.9 s 2	β_
18	56	0+	-60.5	5.06 s 13	β_
18	57		-56.8s	>100 ns	β-?
18	58	0+	-54.4s	>50 ns	β_
18	59		-50.2s		β-?
16	60	0+	-47.4s		β-?
16	61		-43.0s		β-?
61 Pm 12	26		-38.8s		ε?
15	27		-44.4s		p?, ε?
15	28		-47.6s	1.0 s 3	ε, α, ερ
15	29	(5/2-)	-52.5s	2.4 s 9	ε
13	30	(4,5,6)	-55.2s	2.6 s 2	ε, ερ
13	31 (11/2-)	-59.6s	6.3 s 8	ε
13	32	(3+)	-61.6s	6.2 s 6	ε , $\varepsilon p = 5.0 \times 10^{-5}\%$
13	33	(3/2+)	-65.41	13.5 s 21	ε
13	33m ((11/2-)	-65.28	<8.8 s	ΙΤ, ε
				43	

Nuclide Z El A	Δ Jπ (MeV)	T½, Γ, or Abundance	Decay Mode
			-
	2+) -66.74	≈5 s	ε
	5+) -66.74	22 s 1 49 s 3	ε
135m(3/2		49 s 3 45 s 4	ε
135m(11			ε
	5-) -71.20 2+) -71.20	107 s 6	3
	2+) -71.20 1/274.07	47 s 2 2.4 m 1	ε
138	-74.94	2.4 m 1 10 s 2	ε
138m	-74.94 -74.92	3.24 m 5	ε
	/2)+ -77.50	4.15 m 5	ε
139 m (11		180 ms 20	IT 99.94%, ε 0.06%
	1+ -78.21	9.2 s 2	ε
	878.21	5.95 m 5	ε
	/2+ -80.52	20.90 m 5	ε
	1+ -81.16	40.5 s 5	ε
	8)80.27	2.0 ms 2	IT
	/2+ -82.960	265 d 7	ε
	581.415	363 d 14	ε
	/2+ -81.267	17.7 y 4	ε, α2.8×10 ⁻⁷ %
	379.453	5.53 y 5	ε 66%, β-34%
	/2+ -79.041	2.6234 y 2	β-
	176.865	5.368 d 2	β_
148m 5-		41.29 d 11	β- 95.8%, IT 4.2%
	/2+ -76.063	53.08 h 5	β-
	1-) -73.60	2.68 h 2	В—
	/2+ -73.388	28.40 h 4	β_
	1+ -71.25	4.12 m 8	Б ₋
152m (8) -71.11	13.8 m 2	β-, IT≥0%
	471.11	7.52 m 8	β_
153 5	/270.68	5.25 m 2	β-
154 (3	3,4) -68.49	2.68 m 7	β-
154m (0-	-,1-) -68.49	1.73 m 10	β-
155 5	/266.97	41.5 s 2	β-
156m	464.21	26.70 s 10	β-
157 (5	/2-) -62.4	10.56 s 10	β-
158	-59.1	4.8 s 5	β-
159	-56.8	1.5 s 2	β-
160	-53.1s		β-?
161	-50.4s		β-?
162	-46.3s		β-?
163	-43.1s		β-?
62 Sm 128	0+ -38.0s		ε?, p?
129 (1/24	+,3/2+) -41.3s	0.55 s 10	ε, εp>0%
130	0+ -46.9s		ε
131	-49.6s	1.2 s 2	ε, εp>0%
132	0+ -54.7s	4.0 s 3	ε, ερ
133 (5	/2+) -56.8s	2.89 s 16	ε, εp>0%
133m (1	/2-) -56.8s	3.5 s 4	ε, ΙΤ, ερ
	0+ -61.2s	9.5 s 8	ε
135 (3/24		10.3 s 5	ϵ , $\epsilon p 0 . 02\%$
	0+ -66.81	47 s 2	ε
137 (9	/2-) -68.03	45 s 1	ε
		44	

Nucli Z El		Δ (MeV)	T½, Γ, or Abundance	Decay Mode
62 Sm		-71.50	3.1 m 2	-
02 SIII	138 0+ 139 1/2+	-71.30	2.57 m 10	ε ε
	139 1/2+ 139m 11/2-	-71.92	10.7 s 6	IT 93.7%, ε 6.3%
	140 0+	-71.92 -75.46	10.7 s 6 14.82 m 12	ε
	140 0+	-75.46 -75.934	14.82 m 12 10.2 m 2	
	141 1/2+ 141m 11/2-	-75.758	22.6 m 2	ε ε 99.69%, IT 0.31%
	141m 11/2- 142 0+	-78.987	72.49 m 5	ε 99.69%, 11 0.51%
	143 3/2+	-79.516	8.75 m 6	ε
	143 3/2+ 143m 11/2-	-78.762	66 s 2	
	143m 11/2- 143m 23/2(-)	-76.722	30 ms 3	IT 99.76%, ε 0.24% IT
	144 0+	-81.965	3.07% 7	11
	145 7/2-	-80.651	340 d 3	ε
	146 0+	-80.995	10.3×10 ⁷ y 5	α
	147 7/2-	-79.265	1.060×10 ¹¹ y 11	
	141 1/2-	-13.200	14.99% 18	u .
	148 0+	-79.335	7×10 ¹⁵ y 3	α
	140 01	-15.000	11.24% 10	u.
	149 7/2-	-77.135	13.82% 7	
	150 0+	-77.050	7.38% 1	
	151 5/2-	-74.575	90 y 8	β-
	152 0+	-74.762	26.75% 16	P-
	153 3/2+	-72.559	46.284 h 4	β-
	153m 11/2-	-72.461	10.6 ms 3	IT
	154 0+	-72.454	22.75% 29	
	155 3/2-	-70.190	22.3 m 2	β-
	156 0+	-69.362	9.4 h 2	β_
	157 (3/2-)	-66.72	8.03 m 7	β_
	158 0+	-65.21	5.30 m 3	β_
	159 5/2-	-62.24	11.37 s 15	β_
	160 0+	-60.4s	9.6 s 3	β_
	161	-56.8	4.8 s 4	β_
	162 0+	-54.8s	2.4 s 5	β_
	163	-50.9s		β-?
	164 0+	-48.2s		β-?
	165	-43.8s		β-?
63 Eu		-33.0s	0.90 ms +49-29	p
03 Eu	131 3/2+	-38.7s	17.8 ms 19	p 89%, ε 11%
	132	-41.9s	17.0 ms 13	p 05π, ε 11π p, ε
	133	-41.3s		ε?
	134	-49.7s	0.5 s 2	ε, εp>0%
	135	-54.1s	1.5 s 2	ε, ερνοπ
	136m (7+)	-56.1s	3.3 s 3	ε, ερ 0.09%
	136m (3+)	-56.1s	3.8 s 3	ε, ερ 0.09%
	137 (11/2-)	-60.0s	11 s 2	ε, ερ σ.σσπ
	138 (6-)	-61.75	12.1 s 6	ε
	139 (11/2)-	-65.40	17.9 s 6	ε
	140 1+	-66.99	1.51 s 2	ε
	140m (5-)	-66.99	125 ms 2	IT, ε<1%
	141 5/2+	-69.93	40.7 s 7	ε
	141m 11/2-	-69.83	2.7 s 3	ΙΤ 87%, ε 13%
	142 1+	-71.31	2.34 s 12	ε
	142m 8-	-71.31	1.223 m 8	ε

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
63 Eu 143	5/2+	-74.24	2.59 m 2	ε
144	1+	-75.62	10.2 s 1	ε
145	5/2+	-77.991	5.93 d 4	ε
146	4-	-77.117	4.61 d 3	ε
147	5/2+	-77.544	24.1 d 6	ε, α2.2×10 ⁻³ %
148	5-	-76.30	54.5 d 5	ϵ , α 9.4×10 ⁻⁷ %
149	5/2+	-76.440	93.1 d 4	ε
150	5-	-74.791	36.9 y 9	ε
150m	0-	-74.749	12.8 h 1	β - 89%, ϵ 11%, IT \leq 5.0×10 ⁻⁸ %
151	5/2+	-74.651	≥1.7×10 ¹⁸ y 47.81% 3	α
152	3-	-72.887	13.528 y 14	ε 72.1%, β-27.9%
152m	0-	-72.841	9.3116 h 13	β-72%, ε 28%
152m	8-	-72.739	96 m 1	IT
153	5/2+	-73.366	52.19% 6	
154	3-	-71.736	8.601 y 10	$\beta 99.98\%, \epsilon 0.02\%$
154m	8-	-71.591	46.3 m 4	IT
155	5/2+	-71.816	4.753 y 14	β-
156	0+	-70.085	15.19 d 8	β–
157	5/2+	-69.459	15.18 h 3	β–
158	(1-)	-67.20	45.9 m 2	β–
159	5/2+	-66.045	18.1 m 1	β–
160	1	-63.24	38 s 4	β–
161		-61.80	26 s 3	β–
162		-58.69	10.6 s 10	β–
163		-56.80	7.7 s 4	β–
164		-53.4s	4.2 s 2	β–
165		-50.8s	2.3 s 2	β-
166		-46.8s		β-?
167		-43.8s		β-?
64 Gd 133		-35.6s		
134	0+	-41.1s		ε?
135	(5/2+)	-44.0s	1.1 s 2	ε, ερ 18%
136	0+	-48.9s	≥200 ns	
137	(7/2)	-51.2s	2.2 s 2	ε, ερ
138	0+	-55.7s	4.7 s 9	ε
139	(9/2-)	-57.6s	5.8 s 9	$\epsilon p > 0\%$, $\epsilon > 0\%$
139m		-57.6s	4.8 s 9	$\epsilon p > 0\%$, $\epsilon > 0\%$
140	0+	-61.78	15.8 s 4	ε
141	1/2 +	-63.22	14 s 4	ε, ερ 0.03%
	11/2-	-62.85	24.5 s 5	ε 89%, IT 11%
142	0+	-66.96	70.2 s 6	ε
143	(1/2)+	-68.2	39 s 2	ε
	(11/2-)	-68.1	110.0 s 14	ε
144	0+	-71.76	4.47 m 6	ε
145	1/2+	-72.93	23.0 m 4	E
	11/2-	-72.18	85 s 3	IT 94.3%, ε 5.7%
146	0+	-76.087	48.27 d 10	ε
147	7/2-	-75.356	38.06 h 12	ε
148	0+	-76.269	70.9 y 10	α
149	7/2-	-75.126	9.28 d 10	ε, α4.3×10 ⁻⁴ %
			46	

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
64 Gd 150	0+	-75.763	1.79×10 ⁶ y 8	α
151	7/2-	-74.187	123.9 d 10	ε , $\alpha = 8.0 \times 10^{-7}\%$
152	0+	-74.706	1.08×10 ¹⁴ y 8	α
			0.20% 1	
153	3/2-	-72.882	240.4 d 10	ε
154	0+	-73.705	2.18% 3	
155	3/2-	-72.069	14.80% 12	· m
155r 156	n 11/2- 0+	-71.948 -72.534	31.97 ms 27 20.47% 9	IT
157	3/2-	-70.823	15.65% 2	
158	0+	-70.689	24.84% 7	
159	3/2-	-68.560	18.479 h 4	β-
160	0+	-67.940	>3.1×10 ¹⁹ y	2β-
			21.86% 19	•
161	5/2-	-65.505	3.66 m 5	β-
162	0+	-64.279	8.4 m 2	β–
	(5/2-,7/2+)	-61.47	68 s 3	β–
164	0+	-59.9s	45 s 3	β-
165	0.	-56.6s	10.3 s 16	β-
166 167	0+	-54.5s -50.8s	4.8 s 10	β- β-?
168	0+	-30.8s -48.3s		β-?
169	0+	-44.2s		β-?
65 Tb 135	(7/2-)	-32.6s	0.94 ms +33-22	р.
136	(7/2-)	-32.6s -35.9s	0.94 ms +33-22	p ε?
137		-40.7s		p?, ε?
1381	n	-43.5s	≥200 ns	ε, p
139		-48.0s	1.6 s 2	ε, ερ?
140	(7+)	-50.5	2.0 s 5	ε, ερ 0.26%
141	(5/2-)	-54.5	3.5 s 2	ε
141r		-54.5	7.9 s 6	3
142	1+	-56.6	597 ms 17	ε, εp 2.2×10 ⁻³ %
142r		-56.3	303 ms 17	IT
143 1431	(11/2-)	-60.42 -60.42	12 s <i>1</i> <21 s	ε
1431	1+	-60.42	<21 s ≈1 s	ε
1441		-61.97	4.25 s 15	IT 66%, ε 34%
145	. (0)	-65.88	1.20 5 10	ε?
	n (11/2-)	-65.88	30.9 s 6	ε
146	1+	-67.76	8 s 4	ε
146r		-67.76	23 s 2	ε
	n (10+)	-66.98	1.18 ms 2	IT
147	(1/2+)	-70.742	1.64 h 3	ε
	n (11/2-)	-70.691	1.83 m 6	ε
148 1481	2- n (9)+	-70.54 -70.45	60 m 1 2.20 m 5	ε
149	1/2+	-71.489	4.118 h 25	ε 83.3%, α 16.7%
	n 11/2-	-71.453	4.116 m 4	ε 99.98%, α 0.02%
150	(2-)	-71.105	3.48 h 16	ε, α<0.05%
150r		-70.631	5.8 m 2	ε
151	1/2(+)	-71.622	17.609 h 14	ε 99.99%,
				$\alpha 9.5 \times 10^{-3}\%$
			47	

Nuclide	Δ	Т%, Г, ог	
Z El A Jπ	(MeV)	Abundance	Decay Mode
65 Tb 151m(11/2-)	-71.522	25 s 3	IT 93.4%, ε 6.6%
152 2-	-70.72	17.5 h <i>1</i>	ϵ , α <7.0×10 ⁻⁷ %
152m 8+	-70.21	4.2 m 1	IT 78.8%, ε 21.2%
153 5/2+	-71.313	2.34 d 1	ε
154 0	-70.15	21.5 h 4	ε, β-<0.1%
154m 7-	-70.15	22.7 h 5	ε 98.2%, IT 1.8%
154m 3-	-70.15	9.4 h 4	ε 78.2%, IT 21.8%,
155 3/2+	-71.25	5.32 d 6	β-<0.1% ε
156 3-	-70.090	5.35 d 10	ε
156m (7-)	-70.040	24.4 h 10	IT
156m (1-)	-70.002	5.3 h 2	IT<100%, ε>0%
157 3/2+	-70.762	71 y 7	ε
158 3-	-69.469	180 y 11	ε 83.4%, β- 16.6%
158m 0-	-69.359	10.70 s 17	IT, β-<0.6%,
100m 0	00.000	10.10 5 11	ε<0.01%
158m 7-	-69.081	0.40 ms 4	IT
159 3/2+	-69.531	100%	
160 3-	-67.835	72.3 d 2	β-
161 3/2+	-67.460	6.89 d 2	β–
162 1-	-65.67	7.60 m 15	β-
163 3/2+	-64.594	19.5 m 3	β–
164 (5+)	-62.1	3.0 m 1	β–
165 (3/2+)	-60.7s	2.11 m 10	β–
166 (2-)	-57.88	25.1 s 21	β–
167 (3/2+)	-55.9s	19.4 s 27	β–
168 (4-)	-52.6s	8.2 s 13	β–
169	-50.2s		β-?
170	-46.5s		β-?
171	-43.8s		β-?
66 Dy 138 0+	-34.8s		ε?
139 (7/2+)	-37.6s	0.6 s 2	ε, ερ
140 0+	-42.7s		ε
141 (9/2-)	-45.2s	0.9 s 2	ε, ερ
142 0+	-49.9s	2.3 s 3	ε, ερ 0.06%
143 (1/2+)	-52.17	5.6 s 10	ε, ερ
143m(11/2-)	-51.86	3.0 s 3	ε, ερ
144 0+	-56.570	9.1 s 4	ε, ερ
145 (1/2+)	-58.242	6 s 2	ε, εp=50%
145 m (11/2-) 146 0+	-58.124	14.1 s 7	ε , $\varepsilon p = 50\%$
146 0+ 146m (10+)	-62.554 -59.618	29 s 3 150 ms 20	ε IT
147 (1/2+) 147 m (11/2-)	-64 . 194 -63 . 444	67 s 7 55.2 s 5	ε, εp 0.05% ε 68.9%, IT 31.1%
147111(11/2-)	-67.859	3.3 m 2	ε 66.5%, 11 51.1%
149 (7/2-)	-67.702	4.20 m 14	ε
149m (27/2-)	-65.041	0.490 s 15	IT 99.3%, ε 0.7%
150 0+	-69.310	7.17 m 5	ε 64%, α 36%
151 7/2(-)	-68.752	17.9 m 3	ε 94.4%, α 5.6%
152 0+	-70.118	2.38 h 2	ε 99.9%, α 0.1%
153 7/2(-)	-69.142	6.4 h 1	ε 99.99%,
			$\alpha 9.4 \times 10^{-3}\%$

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
66 Dy 154	0+	-70.392	3.0×10 ⁶ y 15	α
155	3/2-	-69.15	9.9 h 2	ε
156	0+	-70.522	0.056% 3	c
157	3/2-	-69.420	8.14 h 4	ε
157m		-69.221	21.6 ms 16	IT
158	0+	-70.404	0.095% 3	
159	3/2-	-69.166	144.4 d 2	ε
160	0+	-69.671	2.329% 18	
161	5/2+	-68.054	18.889% 42	
162	0+	-68.179	25.475% 36	
163	5/2-	-66.379	24.896% 42	
164	0+	-65.966	28.260% 54	
165	7/2+	-63.610	2.334 h 1	β-
165m	1/2-	-63.502	1.257 m 6	IT 97.76%, β-2.24%
166	0+	-62.583	81.6 h 1	β-
167	(1/2-)	-59.93	6.20 m 8	β-
168	0+	-58.6	8.7 m 3	β-
169	(5/2)-	-55.6	39 s 8	β-
170	0+	-53.7s		β-
171		-50.1s		β-?
172	0+	-47.8s		β-?
173		-43.7s		β-?
67 Ho 140 (6	-,0-,8+)	-29.2s	6 ms 3	p
141	7/2-	-34.3s	4.1 ms 3	p
142	(7-,8+)	-37.2s	0.4 s 1	ε, εp>0%
143	(11/2-)	-42.0s		ε?, ερ?
144	(5-)	-44.609	0.7 s 1	ϵ , ϵp
	(11/2-)	-49.120	2.4 s 1	ε
146	(10+)	-51.238	3.6 s 3	ε
	(11/2-)	-55.757	5.8 s 4	ε
148	(1+)	-57.99	2.2 s 11	ε
148m	(6)-	-57.99	9.59 s 15	ε, ερ 0.08%
	(10+)	-57.30	2.35 ms 4	IT
	(11/2-)	-61.66	21.1 s 2	ε
	(1/2+)	-61.62	56 s 3	ε
150 150m	2-	-61.95	72 s 4	ε
	(9)+ (11/2–)	-61.45 -63.622	24.1 s 5 35.2 s 1	ε, ε78%, α22%
	(1/2+)	-63.581	47.2 s 13	α 80%, ε 20%
151m 152	2-	-63.61	161.8 s 3	ε 88%, α 12%
152m	9+	-63.45	50.0 s 4	ε 89.2%, α 10.8%
153	11/2-	-65.012	2.01 m 3	ε 99.95%, α0.05%
153m	1/2+	-64.943	9.3 m 5	ε 99.82%, α 0.18%
154	2-	-64.639	11.76 m 19	ε 99.98%, α 0.02%
154m	8+	-64.639	3.10 m 14	$\epsilon \cdot \alpha < 1.0 \times 10^{-3}\%$
155	5/2+	-66.04	48 m 1	ε
	11/2-	-65.90	0.88 ms 8	IT
156	4-	-65.47	56 m 1	ε
156m	1-	-65.42	9.5 s 15	IT
156m	9+	-65.42	7.8 m 3	ε 75%, IT 25%
157	7/2-	-66.83	12.6 m 2	ε
158	5+	-66.18	11.3 m 4	ε
			49	
			-	

Nuclide Z El A Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
67 Ho 158m 2-	-66.12	28 m 2	IT>81%, ε<19%
158m (9+)	-66.00	21.3 m 23	ε≥93%, IT≤7%
159 7/2-	-67.328	33.05 m 11	ε
159m 1/2+	-67.122	8.30 s 8	IT
160 5+	-66.38	25.6 m 3	ε
160m 2-	-66.32	5.02 h 5	IT 73%, ε 27%
160m (9+)	-66.21	3 s	IT
161 7/2-	-67.195	2.48 h 5	ε
161m 1/2+	-66.984	6.76 s 7	IT
162 1+ 162m 6-	-66.040 -65.934	15.0 m 10 67.0 m 7	E
163 7/2-	-66.376	4570 y 25	IT 62%, ε 38% ε
163 1/2- 163m 1/2+	-66.078	1.09 s 3	IT
164 1+	-64.980	29 m 1	ε 60%, β– 40%
164m 6-	-64.840	37.5 m +15-5	IT
165 7/2-	-64.897	100%	
166 0-	-63.070	26.824 h 12	β-
166m 7-	-63.064	1.20×10 ³ y 18	β_
167 7/2-	-62.279	3.003 h 18	β_
168 3+	-60.06	2.99 m 7	β_
168m (6+)	-60.00	132 s 4	IT≥99.5%, β-≤0.5%
169 7/2-	-58.80	4.72 m 10	β-
170 (6+)	-56.24	2.76 m 5	β–
170m (1+)	-56.12	43 s 2	β–
171 (7/2-)	-54.5	53 s 2	β–
172	-51.5s	25 s 3	β-
173	-49.2s		β-?
174	-45.7s		β-?
175	-43.1s		β-?
68 Er 142 0+	-28.1s		
143	-31.2s	> 0.00	ε?
144 0+ 145 (1/2+)	-36.7s -39.4s	≥200 ns	ε ε?
145 (1/2+) 145m(11/2-)	-39.4s -39.2s	1.0 s 3	
146 0+	-39.2s -44.322	1.0 s 3 1.7 s 6	ε, εp ε, εp
147 (1/2+)	-46.61	2.5 s 2	ε, εp>0%
147 m (11/2-)	-46.61	1.6 s 2	ε, εp>0%
148 0+	-51.48	4.6 s 2	ε,
149 (1/2+)	-53.74	4 s 2	ε, ερ 7%
149m (11/2-)	-53.00	8.9 s 2	ε 96.5%, IT 3.5%,
			εp 0.18%
150 0+	-57.83	18.5 s 7	ε
151 (7/2-)	-58.26	23.5 s 20	ε
151 m (27/2-)	-55.68	0.58 s 2	IT 95.3%, ε 4.7%
152 0+	-60.500	10.3 s 1	α 90%, ε 10%
153 (7/2-)	-60.475	37.1 s 2	α 53%, ε 47%
154 0+	-62.606	3.73 m 9	ε 99.53%, α 0.47%
155 7/2-	-62.209	5.3 m 3	ε 99.98%, α 0.02%
156 0+	-64.21	19.5 m 10	ε, α 1.7×10 ⁻⁵ %
157 3/2-	-63.41 -63.26	18.65 m 10 76 ms 6	ε IT
157m (9/2+) 158 0+	-65.26 -65.30	2.29 h 6	ε
100 0+	-00.00		c
		50	

Nuclide Z El A Ja	Δ t (MeV)	T½, Γ, or Abundance	Decay Mode
68 Er 159 3/2		36 m 1	ε
160 0+		28.58 h 9	ε
161 3/2 162 0+		3.21 h 3	ε
162 0+ 163 5/2		0.139% 5	
		75.0 m 4 1.601% 3	ε
164 0+ 165 5/2			
		10.36 h 4	ε
166 0+ 167 7/2		33.503% 36 22.869% 9	
167 1/2 167m 1/2		22.869% 9 2.269 s 6	IT
167 m 1/2		26.978% 18	11
169 1/2		9.392 d 18	β-
170 0+		14.910% 36	p-
171 5/2		7.516 h 2	β-
172 0+		49.3 h 3	β-
173 (7/2		1.4 m 1	β-
174 0+		3.2 m 2	β-
175 (9/2		1.2 m 3	β-
176 04		1.2 111 3	β-?
177	-42.9s		β-?
			•
69 Tm 144 (10		1.9 µs +12-5	p > 0%
145 (11/		3.17 µs 20	p
146 (5-		80 ms 10	p , ε
146m (8+		200 ms 10	ρ, ε
147 11/3 147m 3/2		0.58 s 3 0.36 ms 4	ε 85%, p 15%
147m 3/2 148m (10		0.36 ms 4 0.7 s 2	p
			3 0-0 90/
149 (11/: 150 (6-		0.9 s 2 2.20 s 6	ε, ερ 0.2%
150 (6- 150m (10		5.2 ms 3	ε IT
151 (11/		4.17 s 11	ε
151 (11/2 151m (1/2		6.6 s 20	ε
152 (2)		8.0 s 10	ε
152m (9)		5.2 s 6	ε
153 (11/		1.48 s 1	α 91%, ε 9%
153m (1/2		2.5 s 2	α 92%, ε 8%
154 (2-		8.1 s 3	α 54%, ε 46%
154m 9+		3.30 s 7	α 58%, ε 42%, ΙΤ
155 11/		21.6 s 2	ε 99.11%, α0.89%
155m 1/2		45 s 3	$\varepsilon > 98\%$, $\alpha < 2\%$
156 2-		83.8 s 18	ε 99.94%, α 0.06%
157 1/2		3.63 m 9	ε
158 2-		3.98 m 6	ε
158m (5+	-58.70	=20 s	ε?
159 5/2	+ -60.57	9.13 m 16	ε
160 1-	-60.30	9.4 m 3	ε
160m 5	-60.23	74.5 s 15	IT 85%, ε 15%
161 7/2	+ -61.90	30.2 m 8	ε
162 1-		21.70 m 19	ε
162m 5-		24.3 s 17	IT 81%, ε 19%
163 1/2		1.810 h 5	ε
164 1-	-61.90	2.0 m 1	ε

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
69 Tm 164m	6-	-61.90	5.1 m 1	$IT = 80\%$, $\epsilon = 20\%$
165	1/2+	-62.928	30.06 h 3	ε
166	2+	-61.89	7.70 h 3	ε
166m	(6-)	-61.78	340 ms 25	IT
167	1/2+	-62.542	9.25 d 2	ε
168	3+	-61.312	93.1 d 2	ε 99.99%, β-0.01%
169	1/2+	-61.274	100%	
170	1-	-59.795	128.6 d 3	β-99.87%, ε 0.13%
171	1/2+	-59.210	1.92 y 1	β–
172	2-	-57.373	63.6 h 2	β–
173	(1/2+)	-56.253	8.24 h 8	β–
174	(4)-	-53.86	5.4 m 1	β–
174m		-53.61	2.29 s 1	IT 99%, β-<1%
175	(1/2+)	-52.31	15.2 m 5	β–
176	(4+)	-49.4	1.9 m 1	β–
	(7/2-)	-47.5s	90 s 6	β–
178		-44.1s	>300 ns	β–
179		-41.6s		β-?
70 Yb 148	0+	-30.2s		ε?
149 (1	1/2+,3/2+)	-33.2s	0.7 s 2	ε, ερ
150	0+	-38.6s	≥200 ns	ε?
151	(1/2+)	-41.5	1.6 s 1	ε, εp>0%
151m	(11/2-)	-41.5	1.6 s 1	ε, IT=0.4%, εp
152	0+	-46.3	3.03 s 6	ε, ερ
153	7/2-	-47.1s	4.2 s 2	α 60%, ε 40%
154	0+	-49.93	0.409 s 2	α 92.6%, ε 7.4%
155	(7/2-)	-50.50	1.793 s 19	α 89%, ε 11%
156	0+	-53.265	26.1 s 7	ε 90%, α 10%
157	7/2-	-53.43	38.6 s 10	ε 99.5%, α 0.5%
158	0+	-56.008	1.49 m 13	$\alpha = 2.1 \times 10^{-3}\%$, ϵ
159	5/2(-)	-55.84	1.67 m 9	ε
160	0+	-58.16	4.8 m 2	ε
161	3/2-	-57.84	4.2 m 2	ε
162	0+	-59.83	18.87 m 19	ε
163	3/2-	-59.30	11.05 m 35	ε
164	0+	-61.02	75.8 m 17	ε
165	5/2-	-60.29	9.9 m 3	ε
166	0+	-61.594	56.7 h 1	ε
167	5/2-	-60.588	17.5 m 2	ε
168	0+	-61.580	0.123% 3	
169	7/2+	-60.376	32.018 d 5	ε
169m		-60.352	46 s 2	IT
170	0+	-60.763	2.982% 39	
171	1/2-	-59.306	14.09% 14	
171m		-59.211	5.25 ms 24	IT
172	0+	-59.255	21.68% 13	
173	5/2-	-57.551	16.103% 63	
174	0+	-56.944	32.026% 80	
175	(7/2-)	-54.695	4.185 d 1	β-
175m		-54.180	68.2 ms 3	IT
176	0+	-53.488	12.996% 83	T/m
176m	8-	-52.438	11.4 s 3	IT

	mucicui wanee caras						
Nuclid Z El		Jπ	(MeV)	T½, Γ, or Abundance	Decay Mode		
70 Yb 1	77	(9/2+)	-50.983	1.911 h 3	β-		
		(1/2-)	-50.652	6.41 s 2	IT		
	178	0+	-49.69	74 m 3	β-		
		(1/2-)	-46.4s	8.0 m 4	β-		
	80	0+	-44.4s	2.4 m 5	β-		
1	81		-40.8s		β-?		
71 Lu 1		(2+)	-24.6s	45 ms 3	p 70.9%, ε 29.1%		
	51	11/2-	-30.1s	80.6 ms 20	p 63.4%, ε 36.6%		
		-,5-,6-)	-33.4s	0.7 s 1	ε, ερ 15%		
	53	11/2-	-38.4	$0.9 \ s \ 2$	$\alpha = 70\%$, $\epsilon = 30\%$		
	54	(2-)	-39.6s				
	54m	(9+)	-39.6s	1.12 s 8	3 2007		
	55 55m	11/2- 1/2+	-42.55	68 ms 1	α 90%, ε 10%		
		25/2-)	-42.53 -40.77	138 ms 8 2.69 ms 3	α 76%, ε 24% α		
	156	(2)-	-43.75	494 ms 12	$\alpha = 95\%$, $\epsilon = 5\%$		
	56m	9+	-43.75	198 ms 2	α = 33π, ε = 3π		
		(2+,3/2+)	-46.46	6.8 s 18	α > 0%		
		11/2-)	-46.43	4.79 s 12	ε 94%, α 6%		
	58	11/2 /	-47.21	10.6 s 3	ε 99.09%, α 0.91%		
	59		-49.71	12.1 s 10	ε, α0.1%		
	60		-50.27	36.1 s 3	ε, α≤1.0×10 ⁻⁴ %		
	60m		-50.27	40 s 1	ε≤100%, α		
1	61	1/2+	-52.56	77 s 2	ε		
1	61m	(9/2-)	-52.40	7.3 ms 4	IT		
1	62	1-	-52.84	1.37 m 2	ε≤100%		
1	62m		-52.84	1.9 m	$\epsilon \leq 100\%$		
1	62m	(4-)	-52.84	1.5 m	ε≤100%		
		1/2(+)	-54.79	3.97 m 13	ε		
	64	1(-)	-54.64	3.14 m 3	ε		
	65	1/2+	-56.44	10.74 m 10	ε		
	66	6-	-56.02	2.65 m 10	E		
	66m	3(-)	-55.99	1.41 m 10	ε 58%, IT 42%		
	66m	0- 7/2+	-55.98	2.12 m 10	ε>80%, IT<20%		
	67 67m	1/2+	-57.50 -57.50	51.5 m 10 ≥1 m	ε 		
	168	6(-)	-57.07	≥1 m 5.5 m 1	ε , IT ε		
	168m	3+	-56.87	6.7 m 4	ε>99.6%, IT<0.8%		
	69	7/2+	-58.083	34.06 h 5	ε 255.0%, 11<0.5%		
	69m	1/2-	-58.054	160 s 10	IT		
	70	0+	-57.30	2.012 d 20	ε		
	70m	(4)-	-57.21	0.67 s 10	IT		
	71	7/2+	-57.828	8.24 d 3	ε		
1	71m	1/2-	-57.757	79 s 2	IT		
1	72	4-	-56.736	6.70 d 3	ε		
1	72m	1-	-56.694	3.7 m 5	IT		
	73	7/2+	-56.881	1.37 y 1	ε		
	74	(1)-	-55.570	3.31 y 5	ε		
	74 m	(6)-	-55.399	142 d 2	IT 99.38%, $\epsilon~0.62\%$		
	75	7/2+	-55.166	97.401% 13			
1	76	7-	-53.382	$3.76 \times 10^{10} \text{ y } 7$	β-		
				2.599% 13			
				53			

71 Lu 176 m 1−	Nuclide Z El A Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-
177 m 23/2 - 51.414 160.44 d 6				
177 m (39/2—) -49,644 6 m +3-2 β -, TT? 178 m (+) -50,338 28.4 m 2 β - 178 m (9-) -50,214 23.1 m 3 β - 179 m 7/2+ -49,059 4.59 h 6 179 m 1/2+ -48,467 3.1 m 8 9 IT 180 5+ -46,68 5.7 m 1 β - 181 (7/2+) -44,78 3.5 m 3 β - 182 -41,98 2.0 m 2 β - 183 (7/2+) -39,58 58 8 4 β - 184 (3+) -36,48 19 s 2 β - 72 Hf 153 -27,38 >60 ns ε? 154 0+ -32,78 23 ms 1 α α α α α α α α α α α α α α α α α α				
178 1(+) −50.338 28.4 m 2 β- 178m (9−) −50.214 23.1 m 3 β- 179 7/2+ −49.059 4.59 h 6 β- 179m 1/2+ −48.467 3.1 ms 9 IT 180 5+ −46.68 5.7 m I β- 181 (7/2+) −44.7s 3.5 m 3 β- 182 −41.9s 2.0 m 2 β- 183 (7/2+) −39.5s 58 s 4 β- 184 (3+) −36.4s 19 s 2 β- 184 (3+) −36.4s 19 s 2 β- 185 −4 −42.10 2.85 s 7 ε55.7%, α 44.3% ε156 8 + −35.9 s 110 ms 6 α 86%, ε14% 156 8 + −42.10 2.85 s 7 ε55.7%, α 44.3% ε660 α −46.83 110 ms 6 α 86%, ε14% 157 7/2− −38.8s 110 ms 6 α 86%, ε14% 158 0+ −42.10 2.85 s 7 ε55.7%, α 44.3% ε660 α −46.32 18.2 s 5 ε65% α 35% α 68.00 α 8.00 α				
178 m (9−) −50.214 23.1 m 3 β- 179 π 7/2+ −49.059 45.9 h 6 β- 179 m 1/2+ −48.467 3.1 m 8 9 IT 180 5+ −46.68 5.7 m 1 β- 181 (7/2+) −44.78 2.0 m 2 β- 182 −41.98 2.0 m 2 β- 183 (7/2+) −39.58 58 s 4 β- 184 (3+) −36.48 19 s 2 β- 72 Hf 153 −27.38 >60 ns ε? 154 0+ −32.78 2 s 1 ε, α? 155 −34.1s 0.84 s 3 ε 156 0+ −37.9 23 ms 1 α 156m 8+ −35.9 0.52 ms 1 α 156m 8+ −35.9 0.52 ms 1 α 157 7/2− −38.8s 110 ms 6 α 86%, ε 14% 158 0+ −42.10 2.85 5 6 s 4 ε 65%, α 35% ε 160 0+ −49.166 39.4 s 9 ε 99.9%, α 0.7% 161 −46.32 18.2 s 5 ε 99.9%, α 0.7% ε 99.9%π, α 0.13% ε 165 (5/2−) −51.63 76 s 4 ε 166 0+ −53.86 6.77 m 30 ε 166 0+ −53.86 6.77 m 30 ε 166 0+ −53.86 6.77 m 30 ε 167 (5/2−) −54.72 1.70 −55.41 1.71 π 1/2− −55.41 1.71 π 1/2− −55.41 1.71 π 1/2− −55.41 1.87 3 π 1 ε 177 π 7/2− −52.885 1.77 3 π 1 ε 177 π 37/2− −52.885 1.77 3 π 1 ε 177 π 37/2− −52.885 1.77 3 π 1 ε 177 π 37/2− −52.885 1.77 3 π 1 π 1 π 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 1 π 1 π 1 1 π				
179 7/2+ -49.059 4.59 h 6 β- 179 m 1/2+ -48.467 3.1 ms 9 IT 180 5+ -46.68 5.7 m 1 β- 181 (7/2+) -44.7s 3.5 m 3 β- 182 -41.9s 5.8 s 4 β- 183 (7/2+) -39.5s 58 s 4 β- 184 (3+) -36.4s 19 s 2 β- 72 Hf 153 -27.3s >60 ns ε? 154 0+ -32.7s 2 s 1 ε, α? 155 -34.1s 0.84 s 3 ε 156 0+ -37.9 23 ms 1 α 156m 8+ -35.9 0.52 ms 1 α 156m 8+ -35.9 0.52 ms 1 α 157 7/238.8s 110 ms 6 α 86%, ε 14% 158 0+ -42.10 2.85 s 7 ε 55.7%, α 44.3% 159 7/242.85 5.6 s 4 ε 66%, α 35% 160 0+ -45.938 13.6 s 2 ε 99.3%, α 0.13% 161 -46.32 18.2 s 5 ε 29.9 3%, α 0.13% 162 0+ -49.166 39.4 s 9 ε 29.9 9%, α 8.0 \(\frac{1}{2}\) α 8 118 8 ε 165 (5/2-) -51.63 76 s 4 ε 166 0+ -53.86 6.77 m 30 ε 167 (5/2)54.72 3.24 m 4 ε 171 m 1/255.41 23.6 h 1 ε 171 m 1/255.41 13.6 c 171 m 1/2- 172 h 25.4 s 1 18.6 m 9 1.7 m 3/250.145 15.1 m 5 1 T 171 m 3/250.0 1 1.86 9 1.0 9 s 1 T 171 m 3/250.0 1 1.86 9 1.0 9 s 1 T 171 m 3/250.0 1 1.86 9 1.0 9 s 1 T 171 m 3/250.0 1 1.86 9 1.0 9 s 1 T 171 m 3/250.0 1 1.86 9 1.0 9 s 1 T 171 m 3/250.0 1 1.86 9 1.0 9 s 1 T 171 m 3/250.0 1 1.86 9 1.0 9 s 1 T 171 m 3/250.0 1 1.86 9 1.0 9 s 1 T 171 m 3/250.0 1 1.86 9 1.0 9 s 1 T 171 m 3/250.0 1 1.86 9 1.0 9 s 1 T 171 m 3/250.0 1 1.86 9 1.0 9 s 1 T 171 m 3/250.0 1 1.86 9 1.0 9 s 1 T 171 m 3/250.0 1 1.86 9 1.0 9 s 1 T 171 m 3/240.0 3 1 1.86 8 1 1.86 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	179 7/2+			β–
181 (7/2+) -44.7s 3.5 m 3 β- 182 -41.9s 2.0 m 2 β- 183 (7/2+) -39.5s 58 s 4 β- 184 (3+) -36.4s 19 s 2 β- 72 Hf 153 -27.3s >60 n s ε? 155 -34.1s 0.84 s 3 ε 156 0+ 32.7s 2.8 m 1 α α 156 m 8+ 35.9 0.52 m 1 α 157 7/2- 38.8s 110 m s 6 α 86%, ε 14% 158 0+ -42.10 2.85 s 7 ε 55.7%, α 44.3% ε 63%, α 0 1 α α 156 0+ -45.938 13.6 s 2 ε 99.3%, α 0.7% ε 65%, α 0.5 α α 160 0+ -45.938 13.6 s 2 ε 99.3%, α 0.7% ε 65%, α α 1 α α 161 -46.32 18.2 s 5 ε ε 55.7%, α 44.3% ε ε 65%, α α 1 α α 162 0+ -49.166 39.4 s 9 ε 99.9%, α 0.13% ε α α α α α α α α α α α α α α α α α α	179m 1/2+	-48.467	3.1 ms 9	IT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	180 5+	-46.68	5.7 m 1	β-
183 (7/2+) -39.5s 58 s 4 β-184 (3+) -36.4s 19 s 2 β-184 (3+) -36.4s	181 (7/2+)	-44.7s	3.5 m 3	β_
184 (3+) -36.4s 19 s 2 β- 72 Hf 153 -27.3s >60 ns ε? 154 0+ -32.7s 2 s I ε, α? 155 -34.1s 0.84 s 3 ε 156 0+ -37.9 2.3 ms I α 156m 8+ -35.9 0.52 ms I α 157 7/238.8s 110 ms 6 α 86%, ε 14% 158 0+ -42.10 2.85 s 7 ε 55.7%, α 44.3% 160 0+ -45.938 13.6 s 2 ε 99.3%, α 0.7% 161 -46.32 18.2 s 5 ε 99.9%, α 0.7% 161 -46.32 18.2 s 5 ε 99.9%, α 0.7% 162 0+ -49.166 39.4 s 9 ε 99.9%, α 0.7% 163 -49.29 40.0 s 6 ε , α<1.0×10 ⁻⁴ % 166 0 + -51.83 111 s 8 ε ε 99.3% α 0.7% 166 0 + -51.83 111 s 8 ε ε 99.3% α 0.7% 167 (5/2) - 51.63 76 s 4 ε 6.77 m 30 ε ε 16.5 (5/2-) -51.63 76 s 4 ε 6.77 m 30 ε ε 16.7 m 30 ε ε 17.7 m 37/255.41 29.5 s 9 IT≤100%, ε 17.7 m 37/255.41 29.5 s 9 IT≤100%, ε 17.7 m 37/255.41 23.6 h I ε 17.7 m 37/252.885 17.7 m 37/250.145 51.4 m 5 IT 17.7 m 37/250.145 13.68% 2 1.78 m 16+ -49.993 31 y I IT 17.7 m 37/250.092 18.67 s 4 IT 17.7 m 17.250.092 18.67 s 4 IT 17.7 m 37/249.361 35.68% 16	182	-41.9s	2.0 m 2	β–
72 Hf 153				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	184 (3+)	-36.4s	19 s 2	β–
155	72 Hf 153	-27.3s	>60 ns	ε?
156 0 + −37.9 23 ms I α 156 m 8+ −35.9 0.52 ms I α 157 7/2− −38.8s 110 ms 6 α 86%, ε 14% 158 0+ −42.10 2.85 s 7 ε 55.7%, α 44.3% 159 7/2− −42.85 5.6 s 4 ε 55.7% α 44.3% 160 0+ −45.938 13.6 s 2 ε 99.3%, α 0.7% 161 −46.32 18.2 s 5 ε 299.3%, α 0.7% 162 0+ −49.166 39.4 s 9 ε 99.9%, α 0.1% 163 −49.29 40.0 s 6 ε, α<1.0×10−4% 164 0+ −51.83 111 s 8 ε (3.0×10^{-3}) $(3.0 $	154 0+	-32.7s	2 s 1	ε, α?
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	155	-34.1s	0.84 s 3	ε
157 7/2− -38.8s 110 ms 6 α 86%, ε 14% 158 0+ -42.10 2.85 s 7 ε 55.7%, α 44.3% 159 7/2− -42.85 5.6 s 4 ε 65%, α 35% 160 0+ -45.938 13.6 s 2 ε 99.3%, α 0.7% ε 79.3% α 0.1% ε 79.9% α 0.1% α 8.0×10 ⁻³ % α 111 s 8 ε ε α α α α α α α α α α α α α α α α α	156 0+	-37.9	23 ms 1	α
158 0+ −42.10 2.85 s 7 ε5.7%, α 44.3% ε 65%, α 35% γ −42.85 5.6 s 4 ε65%, α 35% α 60.7% ε160 0+ −45.938 13.6 s 2 ε99.3%, α 0.7% ε161 −46.32 18.2 s 5 ε99.3%, α 0.7% α 8.0 \times 162 0+ −49.166 39.4 s 9 9.8%, α 0.13% ε 80. \times 163 −49.29 40.0 s 6 ε, α 4.0 \times 166 0+ −51.83 111 s 8 ε ε α 61.65 (5/2−) −51.63 76 s 4 ε ε 61.67 m 30 ε ε 61.67 (5/2) −53.47 2.05 m 5 ε ε 61.67 (5/2) −53.47 2.05 m 5 ε ε 61.67 (5/2) −55.34 2.05 m 5 ε ε 61.67 m 30 ε ε ε 61.67 (5/2) −55.47 2.05 m 5 ε ε 61.67 m 30 ε ε ε ε 61.67 m 30 ε ε ε ε 61.67 m 30 ε ε ε ε ε 61.67 m 30 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε		-35.9		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	157 7/2-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
162 0+ −49.166 39.4 s 9 ε99.99%, α8.0×10 ⁻³ % ε8.0×10				
$α8.0 \times 10^{-3}\%$ 163				
163	162 0+	-49.166	39.4 s 9	ε 99.99%,
164 0+ −51.83 111 s 8 ε 165 (5/2−) −51.63 76 s 4 ε 166 0+ −53.86 6.77 m 30 ε ε 167 (5/2)− −53.47 2.05 m 5 ε ε 168 0+ −55.36 25.95 m 20 ε ε 169 5/2− −54.72 3.24 m 4 ε 1710 0+ −56.25 16.01 h 13 ε 171 7/2+ −55.43 12.1 h 4 ε 1711 m 1/2− −55.41 29.5 s 9 IT≤100%, ε 173 1/2− −55.41 23.6 h I ε 174 0+ −55.845 2.0×10 ¹⁵ y 4 α 0.16% I 174 0+ −55.845 2.0×10 ¹⁵ y 4 α 0.16% I 175 5/2(−) −54.482 70 d 2 ε 176 0+ −54.576 1.60% 9 177 π/2− −55.43 18.60% 9 177 m 23/2+ −51.569 1.09 s 5 IT 178 0+ −54.376 1.09 s 5 IT 178 0+ −51.295 1.09 s 5 IT 178 0+ −51.295 4.0 s 2 IT 178 0+ −51.295 4.0 s 2 IT 178 m 16+ −49.993 31 y I IT 179 m 1/2− −50.092 18.67 s 4 IT 179 m 25/2− −49.361 25.06 s 25 IT 180 0 + −49.783 35.08% I6	100	40.00	40.0 - 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
166 0+ −53.86 6.77 m 30 ε 167 (5/2) − −53.47 2.05 m 5 ε 168 0+ −55.36 25.95 m 20 ε 169 5/2− −54.72 3.24 m 4 ε 170 0+ −56.25 16.01 h 13 ε 171 $T/2+$ −55.43 12.1 h 4 ε 171 m 1/2− −55.43 12.1 h 4 ε 172 0+ −56.40 1.87 y 3 ε 173 1/2− −55.44 23.6 h 1 ε 174 0+ −55.845 2.0×10 ¹⁵ y 4 α 175 5/2(−) −54.482 70 d 2 ε 176 0+ −54.576 5.28% 7 177 $T/2-$ −52.885 18.60% 9 177m 23/2+ −51.569 1.09 s 5 177m 37/2− −50.145 51.4 m 5 IT 178 0+ −52.49 27.28% 7 178m 8− −51.292 4.0 s 2 IT 178m 16+ −49.993 31 y I 179 9/2+ −50.092 18.67 s 4 IT 179 m 1/2− −50.092 18.67 s 4 IT 179 m 1/2− −50.093 18.67 s 4 IT 179 m 1/2− −50.093 18.67 s 4 IT 179 m 1/2− −50.095 18.67 s 4 IT 179 m 1/2− −49.936 1 35.68% 16				
167 (5/2) − −53.47 2.05 m 5 ε 168 0+ −55.36 25.95 m 20 ε 169 5/2− −54.72 3.24 m 4 ε 170 0+ −56.25 16.01 h $I3$ ε 171 $I7/2+$ −55.43 12.1 h 4 ε 171m $I/2−$ −56.40 2.95 s 9 $IT≤100\%$, ε 172 0+ −56.40 1.87 y 3 ε 173 $I/2−$ −55.41 2.9.5 s 9 $IT≤100\%$, ε 173 $I/2−$ −55.41 2.9.6 h I ε 174 0+ −55.845 2.0×10 ¹⁵ y 4 α 175 $I/2−$ −54.482 70 d 2 ε 176 0+ −54.576 5.26% 7 177 $I/2−$ −52.885 18.60% 9 177m $I/2−$ −50.145 51.4 m 5 IT 178 0+ −51.296 27.28% 7 178m 8− −51.292 4.0 s 2 IT 178m 16+ −49.993 31 y IT 179 $I/2−$ −50.092 18.67 s 4 IT 179 m $I/2−$ −50.092 18.67 s 4 IT 180 0+ −49.783 35.68% IT				
168 0+ −55.36 25.95 m 20 ε 169 5/2− −54.72 3.24 m 4 ε 170 0+ −56.25 16.01 h 13 ε 171 7/2+ −55.43 12.1 h 4 ε 171m 1/2− −55.43 12.1 h 4 ε 172 0+ −56.40 1.87 y 3 ε 173 1/2− −55.41 23.6 h 1 ε 174 0+ −55.845 2.0 x 10 15 y 4 α 175 5/2(−) −54.482 7.06 2 ε 176 0+ −54.576 5.26% 7 177 7/2− −52.885 18.60% 9 177m 23/2+ −51.569 1.09 s 5 177m 37/2− −50.145 51.4 m 5 IT 178 0+ −52.493 27.28% 7 178m 8− −51.292 4.0 s 2 IT 178m 16+ −49.993 31 y I 179 9/2+ −50.045 13.62% 2 179m 1/2− −50.045 13.62% 2 179m 1/2− −50.095 18.67 s 4 IT 179m 25/2− −49.361 25.06 25 IT				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	171m 1/2-			IT≤100%, ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	172 0+	-56.40	1.87 y 3	ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	173 1/2-	-55.41	23.6 h 1	ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	174 0+	-55.845		α
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				ε
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				IT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				TIT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
179m 1/250.092 18.67 s 4 IT 179m 25/249.361 25.05 d 25 IT 180 0+ -49.783 35.08% 16				11
179m 25/249.361 25.05 d 25 IT 180 0+ -49.783 35.08% 16				TT
180 0+ -49.783 35.08% 16				
				**
	180m 8-	-48.641	5.47 h 4	IT 99.7%, β-0.3%

Nuclide	Δ	T½, Γ, or	
Z El A Jπ	(MeV)	Abundance	Decay Mode
72 Hf 181 1/2-	-47.407	42.39 d 6	β-
181m (25/2-)	-45.665	1.5 ms 5	IT
182 0+	-46.053	8.90×10 ⁶ y 9	β-
182m (8-)	-44.880	61.5 m 15	β– 54%, IT 46%
183 (3/2-) 184 0+	-43.29 -41.50	1.018 h 2 4.12 h 5	β– β–
184m (8-)	-41.30	4.12 H 3 48 s 10	р– IT
185	-38.4s	3.5 m 6	β_
186 0+	-36.4s	2.6 m 12	β-
187m	-32.8s	0.27 μs 8	β_
188 0+	-30.9s	0.21 μυ υ	β_
189			r
73 Ta 155m 11/2-	-24.0s	2.9 ms +15-11	p
156 (2-)	-25.8s	144 ms 24	p, ε
156m 9+	-25.7s	0.36 s 4	ε 95.8%, p 4.2%
157 1/2+	-29.6	10.1 ms 4	α 96.6%, p 3.4%
157m 11/2-	-29.6	4.3 ms 1	α
157m (25/2-)	-28.0	1.7 ms 1	α
158 (2-)	-31.0s	55 ms 15	$\alpha = 91\%$, $\epsilon = 9\%$
158m (9+)	-30.9s	36.7 ms 15	α 95%, ε 5%
159 1/2+	-34.44	0.83 s 18	ε 66%, α 34%
159m 11/2-	-34.38	0.56 s 6	α 55%, ε 45%
160	-35.87	1.55 s 4	ε 66%, α 34%
160m 161 (1/2+)	-35.87	1.7 s 2	
161 (1/2+) 161m(11/2-)	-38.71 -38.71	3.08 s 11	ε, α ε, α
162	-39.78	3.57 s 12	ε 99.93%, α 0.07%
163	-42.54	10.6 s 18	$\varepsilon = 99.8\%, \alpha = 0.2\%$
164 (3+)	-43.28	14.2 s 3	ε-55.5π, α-6.2π
165	-45.85	31.0 s 15	ε
166 (2)+	-46.10	34.4 s 5	ε
167 (3/2+)	-48.35	80 s 4	ε
168 (2-,3+)	-48.39	2.0 m 1	ε
169 (5/2+)	-50.29	4.9 m 4	ε
170 (3+)	-50.14	6.76 m 6	ε
171 (5/2-)	-51.72	23.3 m 3	ε
172 (3+)	-51.33	36.8 m 3	ε
173 5/2-	-52.40	3.14 h 13	ε
174 3+	-51.74	1.14 h 8	ε
175 7/2+	-52.41	10.5 h 2	ε
176 (1)-	-51.37	8.09 h 5	ε
177 7/2+ 178m (1+)	-51.719 -50.50	56.56 h 6 9.31 m 3	ε
178m (1+)	-50.50	2.36 h 8	ε
178m 15-	-49.03	58 ms 4	IT
178m (21-)	-49.03 -47.60	290 ms 12	IT
179 7/2+	-50.361	1.82 y 3	ε
179 m (25/2+)	-49.044	9.0 ms 2	IT
179m(37/2+)	-47.722	54.1 ms 17	IT
180 1+	-48.936	8.154 h 6	ε 86%, β- 14%
180m 9-	-48.859	>1.2×10 ¹⁵ y	ε?
		0.01201% 32	

Nucli Z El	ide A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
					-
73 Ta	180m	9–	-48.859	>1.2×10 ¹⁵ y 0.01201% 32	β-?
	181	7/2+	-48.441	99.98799% 32	
	182	3-	-46.433	114.74 d 12	β-
	182m	5+	-46.417	283 ms 3	IT
	182m	10-	-45.913	15.84 m 10	IT
	183	7/2+	-45.296	5.1 d 1	β-
	184	(5-)	-42.84	8.7 h 1	β-
	185	(7/2+)	-41.40	49.4 m 15	β-
	185 m	(21/2)	-40.14	>1 ms	
	186	(2-,3-)	-38.61	10.5 m 3	β-
	186m		-38.61	1.54 m 5	β-
	187	(7/2+)	-36.8s	2.3 m 6	β-
	187m	(27/2-)	-35.0s	22 s 9	β-?, IT?
		(41/2+)	-33.8s	>5 m	β-?, IT?
	188		-33.7s	19.6 s 20	β-
	189?		-31.8s	1.6 µs 2	β?
	190		-28.7s	5.3 s 7	β-
	191		-26.5s	>300 ns	β-?
	192	(1,2)	-23.1s	2.2 s 7	β-
74 W	157	(7/2-)	-19.3s	275 ms 40	ε
	158	0+	-23.7s	1.25 ms 21	α
	158m	(8+)	-21.8s	0.143 ms 19	IT, α
	159		-25.2s	7.3 ms 27	$\alpha = 99.9\%$, $\epsilon = 0.1\%$
	160	0+	-29.4	91 ms 5	α 87%
	161		-30.4s	409 ms 18	α 73%, ε 27%
	162	0+	-34.00	1.36 s 7	$\epsilon~54.8\%,~\alpha~45.2\%$
	163	7/2-	-34.91	2.67 s 10	ε 86%, α 14%
	164	0+	-38.235	6.3 s 2	ε 96.2%, α3.8%
	165	(5/2-)	-38.86	5.1 s 5	ϵ , $\alpha < 0.2\%$
	166	0+	-41.88	19.2 s 6	ε 99.96%, α 0.04%
	167	(+)	-42.09	19.9 s 5	ε 99.96%, α 0.04%
	168	0+	-44.90	50.9 s 19	ε, α3.2×10 ⁻³ %
	169	(5/2-)	-44.92	74 s 6	ε
	$\frac{170}{171}$	0+ (5/2-)	-47.29 -47.09	2.42 m 4 2.38 m 4	ε
	172	0+	-47.09	6.6 m 9	ε
	173	5/2-	-48.73	7.6 m 2	ε
	174	0+	-50.23	33.2 m 21	ε
	175	(1/2-)	-30.23 -49.63	35.2 m 6	ε
	176	0+	-50.64	2.5 h 1	ε
	177	1/2-	-49.70	132 m 2	ε
	178	0+	-50.41	21.6 d 3	ε
	179	7/2-	-49.29	37.05 m 16	ε
	179m	1/2-	-49.07	6.40 m 7	IT 99.71%, ε 0.29%
	180	0+	-49.636	≥6.6×10 ¹⁷ y	2ε
				0.12% 1	
	181	9/2+	-48.253	121.2 d 2	ε
	182	0+	-48.247	26.50% 16	
	183	1/2-	-46.367	>1.3×10 ¹⁹ y	α
				14.31% 4	
	183 m	11/2 +	-46.057	5.2 s 3	IT

56

Nuclio Z El	de A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
	184	0+	-45.707	30.64% 2	Decay Mode
	185	3/2-	-43.389	75.1 d 3	β-
		11/2+	-43.192	1.67 m 3	IT
	186	0+	-42.510	>2.3×10 ¹⁹ y	2β-
	100	٠.	12.010	28.43% 19	-P
	186m	(16+)	-38.967	>3 ms	IT
	187	3/2-	-39.906	24.000 h 4	β-
	188	0+	-38.669	69.78 d 5	β-
	189	(3/2-)	-35.5	10.7 m 5	β-
	190	0+	-34.3	30.0 m 15	β_
	190m	(10-)	-31.9	≤3.1 ms	IT
	191		-31.1s	>300 ns	β-?
	192	0+	-29.6s		β-?
	193		-26.2s	>300 ns	β-?
	194	0+	-24.4s	>300 ns	β-?
75 Re	159	(1/2+)	-14.8s		
	160	(2-)	-16.7s	0.82 ms +15-9	p 91%, α 9%
	161	1/2+	-20.9	0.44 ms 1	p, α≤1.4%
		11/2-	-20.8	14.7 ms 3	α93%, p7%
	162	(2-)	-22.4s	107 ms 13	α 94%, ε 6%
	162m	(9+)	-22.2s	77 ms 9	α 91%, ε 9%
	163	1/2+	-26.01	390 ms 72	ε 68%, α 32%
	163 m	11/2-	-25.89	214 ms 5	α 66%, ε 34%
	164		-27.52	0.85 s + 14 - 11	$\alpha = 58\%$, $\epsilon = 42\%$
	164 m		-27.45	0.86 s + 15 - 11	IT, $\alpha = 3\%$
	165	(1/2+)	-30.65	≈1 s	α, ε
		(11/2-)	-30.60	2.1 s 3	ϵ 87%, α 13%
	166		-31.89	2.25 s 21	$\epsilon > 76\%$, $\alpha < 24\%$
	167	(9/2-)	-34.84s	5.9 s 3	$\varepsilon = 99\%$, $\alpha = 1\%$
	167m		-34.84s	3.4 s 4	α
	168	(7+)	-35.79	4.4 s 1	ε , $\alpha = 5.0 \times 10^{-3}\%$
	169	(9/2-)	-38.41	8.1 s 5 15.1 s 15	ε, α<0.01%
	169III:	5/2+,3/2+) (5+)	-38.41 -38.92	9.2 s 2	ε, IT, α=0.2% ε
	171	(9/2-)	-36.92	9.2 s 2 15.2 s 4	ε
	172m	(2)	-41.25 -41.52	55 s 5	ε
	172m	(5)	-41.52	15 s 3	ε
	173	(5/2-)	-43.55	1.98 m 26	ε
	174	(≤ 4)	-43.67	2.40 m 4	ε
	175	(5/2-)	-45.29	5.89 m 5	ε
	176	(3+)	-45.06	5.3 m 3	ε
	177	5/2-	-46.27	14 m 1	ε
	178	(3+)	-45.65	13.2 m 2	ε
	179	5/2+	-46.58	19.5 m 1	ε
		7/2,49/2+	-41.18	0.466 ms 15	IT
	180	(1)-	-45.84	2.44 m 6	ε
	181	5/2+	-46.52	19.9 h 7	ε
	182	7+	-45.4	64.0 h 5	ε
	182m	2+	-45.4	12.7 h 2	ε
	183	5/2+	-45.811	70.0 d 14	ε
		(25/2)+	-43.903	1.04 ms 4	IT
	184	3(-)	-44.224	35.4 d 7	ε

Nucli Z El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
75 Re	184m	8(+)	-44.036	169 d 8	IT 74.5%, ε 25.5%
	185	5/2+	-43.822	37.40% 2	,
	186	1-	-41.930	3.7186 d 5	β-92.53%, ε7.47%
	186m	(8+)	-41.781	$2.0 \times 10^{5} \text{ y}$	IT
	187	5/2+	-41.218	4.33×10 ¹⁰ y 7	β-,
				62.60% 2	α < 1 . 0×10 ⁻⁴ %
	188	1-	-39.018	17.003 h 3	β–
	188m	(6)-	-38.846	18.59 m 4	IT
	189	5/2+	-37.980	24.3 h 4	β–
	190	(2)-	-35.6	3.1 m 3	β–
	190m	(6-)	-35.4	3.2 h 2	β– 54.4%, IT 45.6%
		3/2+,1/2+)	-34.35	9.8 m 5	β–
	192		-31.8s	16 s 1	β–
	193?		-30.2s		
	194 m		-27.4s	5 s 1	β-
	194m		-27.4s	25 s 8	β-
	194 m		-27.4s	100 s 10	β–
	195		-25.6s	6 s 1	β–
	196		-22.5s	3 s + 1 - 2	β–
	198				
76 Os	161	(7/2-)	-9.9s	0.64 ms 6	α
	162	0+	-14.5s	2.1 ms 1	$\alpha = 99\%$
	163	(7/2-)	-16.1s	5.5 ms 6	α, ε
	164	0+	-20.5	21 ms 1	α 98%, ε 2%
	165	(7/2-)	-21.6s	71 ms 3	$\alpha > 60\%$, $\epsilon < 40\%$
	166	0+	-25.44	199 ms 3	α 72%, ε 18%
	167	(7/2-)	-26.50	0.81 s 6	α 57%, ϵ 43%
	168	0+	-29.992	2.1 s 1	ϵ 57%, α 43%
	169	(5/2-)	-30.72	3.43 s 14	ε 86.3%, α 13.7%
	170	0+	-33.92	7.37 s 18	ε 90.5%, α9.5%
	171	(5/2-)	-34.29	8.3 s 2	ϵ 98.2%, α 1.8%
	172	0+	-37.24	19.2 s 9	ε 99.8%, α0.2%
	173	(5/2-)	-37.44	22.4 s 9	ε, α0.4%
	174	0+	-40.00	44 s 4	ϵ 99.98%, α 0.02%
	175	(5/2-)	-40.11	1.4 m 1	ε
	176	0+	-42.10	3.6 m 5	ε
	177	1/2-	-41.95	3.0 m 2	ε
	178	0+	-43.55	5.0 m 4	ε, α
	179	1/2-	-43.02	6.5 m 3	ε
	180	0+	-44.35	21.5 m 4	ε
	181	1/2-	-43.55	105 m 3	ε
	181m	7/2-	-43.50	2.7 m 1	ε, IT≤3%
	182	0+	-44.61	21.84 h 20	ε IT
	182m	(8)-	-42.78	0.78 ms 7	
	183	9/2+	-43.66	13.0 h 5	ε . ο σστ . TTD 1 σστ
	183m 184	1/2- 0+	-43.49	9.9 h 3 >5.6×10 ¹³ y	ε 85%, IT 15% α
	184	0+	-44.256	0.02% 1	α
	185	1/2-	-42.809	93.6 d 5	ε
	186	0+	-43.002	$2.0 \times 10^{15} \text{ y } 11$	α
				1.59% 3	
	187	1/2-	-41.220	1.96% 2	
				58	

Nucli Z El		Jπ	(MeV)	T½, Γ, or Abundance	Decay Mode
76 Os	188	0+	-41.139	13.24% 8	
	189	3/2-	-38.988	16.15% 5	
	189m	9/2-	-38.957	5.81 h 6	IT
	190	0+	-38.709	26.26% 2	
	190 m	(10)-	-37.004	9.9 m 1	IT
	191	9/2-	-36.396	15.4 d 1	β-
	191m	3/2-	-36.322	13.10 h 5	IT
	192	0+	-35.883	40.78% 19	
	192m	(10-)	-33.868	5.9 s 1	IT>87%, β-<13%
	193	3/2-	-33.395	30.11 h 1	β
	194	0+	-32.437	6.0 y 2	β
	195		-29.7	=9 m	β-
	196	0+	-28.28	34.9 m 2	β
	197		-25.3s	2.8 m 6	β
	198	0+	-23.8s		β
	199		-20.5s	5 s +4-2	β–
	200	0+	-18.9s	6 s +4-3	β-
	201			>300 ns	β-?
	202	0+		>300 ns	β-?
77 Ir	164 m	(9+)	-7.3s	94 μs 27	$p > 0\%$, α , ϵ
	165	(1/2+)	-11.6s	<1 µs	p?, α?
		11/2-	-11.4s	0.30 ms 6	p 87%, α 13%
	166	(2-)	-13.2s	10.5 ms 22	α93%, p7%
	166m	(9+)	-13.0s	15.1 ms 9	α98.2%, p1.8%
	167	1/2+	-17.08	35.2 ms 20	α 48%, p 32%, ε 20%
		11/2-	-16.90	25.7 ms 8	α 80%, ϵ 20%, p 0.4%
	168		-18.72	222 ms +60-40	α≤100%, ε, p
	168m		-18.72	159 ms +16-13	α77%, ε≤23%, p
	169	(1/2+)	-22.08	0.353 s 4	α45%, ε, p
		(11/2-)	-21.93	0.281 s 4	α72%, ε, p
	170	(3-)	-23.36s	0.87 s +18-12	ε 94.8%, α 5.2%
	170 m	(8+)	-23.36s	811 ms 18	IT≤62%, ε≤62%,
					α 38%
	171	(1/2+)	-26.43	3.2 s +13-7	α>0%, p, ε
	171m	(11/2-)	-26.43	1.40 s 10	$\begin{array}{l} \alpha \ 58\% , \ p \leq 42\%, \\ \epsilon \leq 42\% \end{array}$
	172	(3+)	-27.38	4.4 s 3	$\epsilon 98\%$, $\alpha = 2\%$
	172 m	(7+)	-27.24	2.0 s 1	ε 77%, α 23%
		3/2+,5/2+)	-30.27	9.0 s 8	$\varepsilon > 93\%$, $\alpha < 7\%$
	173 m	(11/2-)	-30.04	2.4 s 9	ε, α 7%
	174	(3+)	-30.87	7.9 s 6	ε 99.5%, α0.5%
	174 m	(7+)	-30.67	4.9 s 3	ε 97.5%, α2.5%
	175	(5/2-)	-33.39	9 s 2	ε 99.15%, α 0.85%
	176		-33.86	8.7 s 5	ε 96.9%, α 3.1%
	177	5/2-	-36.05	30 s 2	ε 99.94%, α 0.06%
	178	(5/0)	-36.25	12 s 2	ε
	179	(5/2)-	-38.08	79 s 1	ε
	180	(4,5)	-37.98	1.5 m 1	ε
	181	5/2-	-39.47	4.90 m 15	ε
	182	3+	-39.05	15 m 1	ε
	183	5/2-	-40.20	57 m 4	ε
	184	5-	-39.61	3.09 h 3	ε

Nuclide Z El A Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
77 Ir 185 5/2-	-40.33	14.4 h 1	ε
186 5+	-39.17	16.64 h 3	ε
186m 2-	-39.17	1.90 h 5	$\varepsilon = 75\%$, IT = 25%
187 3/2-		10.5 h 3	ε
187m 9/2-		30.3 ms 6	IT
188 1-	-38.351	41.5 h 5	ε
188m	-37.428	4.2 ms 2	ε?, IT
189 3/2-		13.2 d 1	ε
189m 11/2		13.3 ms 3	IT
189m(25/2)+ -36.12	3.7 ms 2	IT
190 4-	-36.755	11.78 d 10	ε
190m (1-	-36.729	1.120 h 3	IT
190m (11)	36.379	3.087 h 12	ε 91.4%, IT 8.6%
191 3/2-	-36.710	37.3% 2	
191m 11/2	36.539	4.899 s 23	IT
191m	-34.663	5.5 s 7	IT
192 4+	-34.837	73.829 d 11	β-95.24%, ε 4.76%
192m 1-	-34.780	1.45 m 5	IT 99.98%, β– 0.02%
192m (11-		241 y 9	IT
193 3/2-		62.7% 2	
193m 11/2		10.53 d 4	IT
194 1-	-32.533	19.28 h 13	β-
194m 4+	-32.386	31.85 ms 24	IT
194m(10,1		171 d <i>11</i>	β-
195 3/2-		2.5 h 2	β-
195m 11/2		3.8 h 2	β– 95%, IT 5%
196 (0-)		52 s 1	β-
196m(10,11 197 3/2		1.40 h 2	β-, IT<0.3%
197 3/2+ 197m 11/2		5.8 m 5 8.9 m 3	β- β- 99.75%, IT 0.25%
198	25.15 -25.8s	8 s 1	β-
199	-24.40	6 s +5-4	β-
200	-21.6s	>300 ns	β-
201	-19.9s	>300 ns	β_
202 (1-,2		11 s 3	β_
203	, 11.00	>300 ns	β-?
204		7000 115	Р.
78 Pt 166 0+	-4.8s	300 μs <i>100</i>	α
167	-6.5s	0.9 ms 3	α
168 0+	-11.0	2.02 ms 10	α
169 (7/2-	-) -12.4s	7.0 ms 2	α
170 0+	-16.30	13.8 ms 5	α98%, ε
171 (7/2-		45.5 ms 25	α 90%, ε 10%
172 0+	-21.10	97.6 ms 13	α94%, ε6%
173 (5/2-		382 ms 2	α, ε?
174 0+	-25.31	0.889 s 17	α 76%, ε 24%
175 7/2-		2.53 s 6	α 64%, ε 36%
176 0+	-28.93	6.33 s 15	ε 60%, α 40%
177 5/2-		10.6 s 4	ε 94.3%, α 5.7%
178 0+	-32.00	20.7 s 7	ε 92.3%, α7.7%
179 1/2-		21.2 s 4	ε 99.76%, α 0.24%
180 0+	-34.44	56 s 2	ε , $\alpha = 0.3\%$

Nucli Z El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
78 Pt	181	1/2-	-34.37	52.0 s 22	ϵ , $\alpha = 0.08\%$
	182	0+	-36.17	2.67 m 12	ε 99.96%, α 0.04%
	183	1/2-	-35.77	6.5 m 10	ε , $\alpha = 1.3 \times 10^{-3}\%$
	183m	(7/2)-	-35.74	43 s 5	ϵ , $\alpha < 4.0 \times 10^{-4}\%$, IT
	184	0+	-37.33	17.3 m 2	ε , $\alpha = 1.0 \times 10^{-3}\%$
	184m	8-	-35.49	1.01 ms 5	IT
	185	9/2+	-36.68	70.9 m 24	ε < 100%
	$185 \mathrm{m}$	1/2-	-36.58	33.0 m 8	ε 99%, IT<2%
	186	0+	-37.86	2.08 h 5	ϵ , $\alpha = 1.4 \times 10^{-4}\%$
	187	3/2-	-36.71	2.35 h 3	ε
	188	0+	-37.828	10.2 d 3	ε, α2.6×10 ⁻⁵ %
	189	3/2-	-36.49	10.87 h 12	ε
	190	0+	-37.325	$6.5 \times 10^{11} \text{ y } 3$	α
				0.012% 2	
	191	3/2-	-35.701	2.83 d 2	ε
	192	0+	-36.292	0.782% 24	
	193	1/2-	-34.481	50 y 6	ε
		13/2 +	-34.331	4.33 d 3	IT
	194	0+	-34.762	32.86% 40	
	195	1/2-	-32.796	$33.78\% \ 24$	
		13/2+	-32.537	4.010 d 5	IT
	196	0+	-32.646	25.21% 34	
	197	1/2-	-30.421	19.8915 h <i>19</i>	β-
		13/2+	-30.021	95.41 m 18	IT 96.7%, β-3.3%
	198	0+	-29.905	7.36% 13	
	199	5/2-	-27.390	30.80 m 21	β-
		(13/2)+	-26.966	13.6 s 4	IT
	200	0+	-26.60	12.6 h 3	β-
	201	(5/2-)	-23.74	2.5 m 1	β-
	202	0+	-22.6s	44 h 15	β-
	202m	(7-)	-20.8s	0.28 ms +42-19	IT
	203	(1/2-)	-19.7s	10 s 3	β-
	204 205	0+	-18.1s	10.3 s 14 >300 ns	β-
			-12.8s	>300 ns	β–
79 Au			-1.8s		p?, α?
	170	(2-)	-3.6s	286 μs +50-40	p 89%, α 11%
	170m	,	-3.6s	617 μs +50-40	p 58%, α 42%
	171	(1/2+)	-7.57	17 μs +9-5	p , α
		(11/2-)	-7.32	1.02 ms 10	α 54%, p 46%
	172		-9.37	22 ms + 6-4	α, ε, p
	172m		-9.37	7.7 ms 14	α, p<0.02%, ε
	173	(1/2+)	-12.82	25 ms 1	α94%, ε, p
		(11/2-)	-12.61	14.0 ms 9	α 92%, p, ε
	174		-14.24s	139 ms 3	α>0%
	175	(1/2+)	-17.44		ε?, α?
		(11/2-)	-17.44	156 ms 5	α94%, ε6%
	176	(0.)	-18.40		
	176m		-18.40	1.05 s 1	ϵ , α
	176m		-18.40	1.36 s 2	4001
		/2+,3/2+)	-21.55	1.53 s 7	α 40%, ε
		11/2-	-21.39	1.00 s 20	α 66%, ε
	178		-22.33	2.6 s 5	ε≤60%, α≥40%
				61	

Nuclide	Δ	T½, Γ, or	
Z El A Jπ	(MeV)	Abundance	Decay Mode
79 Au 179 (1/2+,3/2-		7.1 s 3	ϵ 78%, α 22%
180	-25.60	8.1 s 3	$\epsilon \leq 98.2\%$, $\alpha \geq 1.8\%$
181 (3/2-)	-27.87	13.7 s 14	ε 97.3%, α2.7%
182 (2+)	-28.30	15.5 s 4	ε 99.87%, α 0.13%
183 (5/2)-	-30.19	42.8 s 10	ε 99.45%, α 0.55%
184 5+	-30.32	20.6 s 9	ε, α≤0.02%
184m 2+	-30.25	47.6 s 14	ε 70%, IT 30%,
			α≤0.02%
185 5/2-	-31.87	4.25 m 6	ε 99.74%, α0.26%
185m	-31.87	6.8 m 3	ε<100%, IT
186 3-	-31.71	10.7 m 5	ε, α8.0×10 ⁻⁴ %
187 1/2(+)	-33.01	8.3 m 2	ε , $\alpha 3.0 \times 10^{-3}\%$
187m 9/2(-)	-32.88	2.3 s 1	IT
188 1(-)	-32.30	8.84 m 6	ε
189 1/2+	-33.58	28.7 m 3	ϵ , α <3.0×10 ⁻⁵ %
189m 11/2-	-33.33	4.59 m 11	ε
190 1-	-32.88	42.8 m 10	ϵ , α <1.0×10 ⁻⁶ %
190m (11-)	-32.88	125 ms 20	IT
191 3/2+	-33.81	3.18 h 8	ε
191m (11/2-)		0.92 s 11	IT
192 1-	-32.78	4.94 h 9	ε
192m (5)+	-32.64	29 ms	IT
192m (11-)	-32.34	160 ms 20	IT
193 3/2+	-33.405	17.65 h <i>15</i>	ε
193m 11/2-	-33.115	$3.9 \ s \ 3$	IT 99.97%, $\varepsilon = 0.03\%$
194 1-	-32.26	38.02 h 10	ε
194m (5+)	-32.15	600 ms 8	IT
194m (11-)	-31.79	420 ms 10	IT
195 3/2+	-32.569	186.098 d 47	ε
195m 11/2-	-32.250	30.5 s 2	IT
196 2-	-31.139	6.1669 d 6	ε 93%, β– 7%
196m 5+	-31.054	8.1 s 2	IT
196m 12-	-30.543	9.6 h 1	IT
197 3/2+	-31.140	100%	
197m 11/2-	-30.731	7.73 s 6	IT
198 2-	-29.581	2.6948 d 12	β–
198m (12-)	-28.769	2.272 d 16	IT
199 3/2+	-29.094	3.139 d 7	β–
199m (11/2)-		0.44 ms 3	IT
200 (1-)	-27.27	48.4 m 3	β–
200m 12-	-26.31	18.7 h 5	β– 84%, IT 16%
201 3/2+	-26.401	26.0 m 8	β–
202 (1-)	-24.4	28.4 s 12	β–
203 3/2+	-23.143	60 s 6	β–
204 (2-)	-20.8s	39.8 s 9	β
205 (3/2+)	-18.9s	32.5 s 14	β
205 m (11/2-)		6 s 2	β-, IT
206	-14.3s	>300 ns	β
207	-10.8s	>300 ns	β-, β-n
208	-6.1s	>300 ns	β-, β-n
209	-2.5s	>300 ns	β-, β-n
210	2.3s	>300 ns	β-, β-n

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
80 Hg 171		3.5s	59 μs +36-16	α
172	0+	-1.1	231 μs 9	α
173	0.7	-2.6s	0.6 ms +5-2	α
174	0+	-6.65	2.1 ms +18-7	α 99 . 6%
175	(7/2-)	-7.97	10.6 ms 4	α
176	0+	-11.78	20.3 ms 14	α 94%
177	(7/2-)	-12.78	118 ms 8	α
178	0+	-16.31	266.5 ms 24	$\alpha = 70\%$, $\epsilon = 30\%$
179	(7/2-)	-16.92	1.05 s 3	α 55%, ε 45%,
1.0	(1,2)	10.02	1.00 0 0	$\varepsilon p = 0.15\%$
180	0+	-20.25	2.58 s 1	ε 52%, α 48%
181	1/2-	-20.66	3.6 s 1	ε 73%, α 27%,
				εp 0.01%,
				εα 9 . 0×10 ⁻⁶ %
182	0+	-23.576	10.83 s 6	ε 84.8%, α 15.2%
183	1/2-	-23.806	9.4 s 7	ε 88.3%, α 11.7%,
				εp 2.6×10 ⁻⁴ %
184	0+	-26.35	30.87 s 26	ε 98.89%, α 1.11%
185	1/2-	-26.17	49.1 s 10	ε 94%, α 6%
185 m	13/2+	-26.08	21.6 s 15	IT 54%, ε 46%,
				$\alpha = 0.03\%$
186	0+	-28.54	1.38 m 6	ε 99.98%, α 0.02%
187	3/2(-)	-28.12	2.4 m 3	ϵ , α <3.7×10 ⁻⁴ %
187 m	13/2(+)	-28.12	1.9 m 3	ϵ , α <3.7×10 ⁻⁴ %
188	0+	-30.20	3.25 m 15	ϵ , α 3.7×10 ⁻⁵ %
189	3/2-	-29.63	7.6 m 1	$\epsilon, \alpha < 3.0 \times 10^{-5}\%$
	13/2+	-29.63	8.6 m 1	ϵ , $\alpha < 3.0 \times 10^{-5}\%$
190	0+	-31.37	20.0 m 5	ε , α <3.4×10 ⁻⁷ %
191	3/2(-)	-30.59	49 m 10	ε , $\alpha 5.0 \times 10^{-6}\%$
	13/2(+)	-30.59	50.8 m 15	ε
192	0+	-32.01	4.85 h 20	ε
193	3/2(-)	-31.06	3.80 h 15	ε
	13/2(+)	-30.92	11.8 h 2	ε 92.8%, IT 7.2%
194	0+	-32.19	444 y 77	ε
195	1/2-	-31.00	10.53 h 3	ε
	13/2+	-30.82	41.6 h 8	IT 54.2%, ε 45.8%
196	0+	-31.826	0.15% 1	
197	1/2-	-30.540	64.14 h 5	E
	13/2+	-30.241	23.8 h 1	IT 91.4%, ε 8.6%
198 199	0+ 1/2-	-30.954 -29.546	9.97% 20	
199 199n		-29.014	16.87% 22 42.67 m 9	IT
200	0+	-29.014	23.10% 19	11
201	3/2-	-29.503 -27.662	13.18% 9	
202	0+	-27.345	29.86% 26	
203	5/2-	-25.269	46.594 d 12	β-
204	0+	-24.690	6.87% 15	۲
205	1/2-	-22.287	5.14 m 9	β-
205 m		-20.731	1.09 ms 4	IT
2061	0+	-20.751	8.32 m 7	β_
207	(9/2+)	-16.2	2.9 m 2	β_
208	0+	-13.27	41 m +5-4	β_
			63	

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode				
80 Hg 209		-8.5s	35 s +9-6	β-				
210	0+	-5.4s	>300 ns	B-?				
211		-0.5s	>300 ns	β-, β-n				
212	0+	2.8s	>300 ns	β-, β-n				
213		7.8s	>300 ns	β-, β-n				
214	0+	11.2s	>300 ns	β- , β-n				
215		16.3s	>300 ns	β-, β-n				
216	0+	19.9s	>300 ns	β-, β-n				
81 Tl 176 (3		0.58	5.2 ms +30-14	р				
177	(1/2+)	-3.33	18 ms 5	α 73%, p 27%				
178	(1/2+)	-4.8s	254 ms +11-9	$\alpha = 53\%$, $\epsilon = 47\%$				
179	(1/2+)	-8.30	0.23 s 4	α<100%, ε, p				
	(11/2-)	-8.30	1.5 ms 3	α≤100%, p, ε, IT				
	(4-,5-)	-9.26	1.09 s 1	ε 94%, α 6%,				
100	(1,0)	0.20	1.00 0 1	$\varepsilon SF = 1.0 \times 10^{-4}\%$				
181	(1/2+)	-12.799	3.2 s 3	ε, α≤10%				
181m	(9/2-)	-11.963	1.40 ms 3	IT 99.6%, α0.4%				
182	(7+)	-13.35	3.1 s 10	ε 97.5%, α<5%				
183	(1/2+)	-16.589	6.9 s 7	$\alpha, \epsilon > 0\%$				
183m	(9/2-)	-15.959	53.3 ms 3	ΙΤ, ε, α 2%				
184		-16.89	10.1 s 5	ε 97.9%, α 2.1%				
185	(1/2+)	-19.75	19.5 s 5	ε				
185m	(9/2-)	-19.30	1.93 s 8	α, IT				
186m	(7+)	-19.87	27.5 s 10	ε , $\alpha = 6.0 \times 10^{-3}\%$				
186m	(10-)	-19.50	2.9 s 2	IT				
187	(1/2+)	-22.443	=51 s	ϵ , $\alpha = 0.03\%$				
187m	(9/2-)	-22.109	15.60 s 12	ε<99.9%, IT<99.9 α0.15%				
188m	(2-)	-22.35	71 s 2	ε				
188m	(7+)	-22.35	71 s 1	ε				
188m	(9-)	-22.08	41 ms 4	IT, ε				
189	(1/2+)	-24.60	2.3 m 2	ε				
	(9/2-)	-24.34	1.4 m 1	ε<100%, IT<4%				
190m	2(-)	-24.31	2.6 m 3	ε				
190m	7(+)	-24.31	3.7 m 3	ε				
190m	(8-)	-24.15	0.75 ms 4	IT				
191	(1/2+)	-26.282						
191m	9/2(-)	-26.282	5.22 m 16					
192	(2-)	-25.87	9.6 m 4	ε				
192m	(7+)	-25.72	10.8 m 2	ε				
193	1/2(+)	-27.30	21.6 m 8	ε				
	(9/2-)	-26.93	2.11 m 15	IT≤75%, ε≥2 <u>5</u> %				
194	2-	-26.8	33.0 m 5	ϵ , α <1.0×10 ⁻¹ %				
194m	(7+)	-26.8	32.8 m 2	ε				
195	1/2+	-28.16	1.16 h 5	ε				
195 m	9/2-	-27.67	3.6 s 4	IT				
196	2-	-27.50	1.84 h 3	ε				
196m	(7+)	-27.10	1.41 h 2	ε 96.2%, IT 3.8%				
197	1/2+	-28.34	2.84 h 4	ε				
197m	9/2-	-27.73	0.54 s 1	IT				
198	2-	-27.49	5.3 h 5	E				
198m	7+	-26.95	1.87 h 3	ε 55.9%, IT 44.1%				

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
81 Tl 198m		-26.75	32.1 ms 10	IT
199	1/2+	-28.75	7.42 h 8	ε
199m		-27.31	28.4 ms 2	IT
200	2-	-27.017	26.1 h 1	ε
200m		-26.293	34.0 ms 9	IT
201	1/2+	-27.18	3.0421 d 17	ε
	(9/2-)	-26.26	2.01 ms 7	IT
202	2-	-25.99	12.31 d 8	ε
203	1/2+	-25.762	29.524% 1	
204	2-	-24.346	3.783 y 12	β-97.08%, ε 2.92%
205	1/2+	-23.821	70.48% 1	, , , , , , , , , , , , , , , , , , , ,
206	0-	-22.254	4.202 m 11	β-
206m	(12-)	-19.611	3.74 m 3	İT
207	1/2+	-21.034	4.77 m 3	β-
207m	11/2-	-19.686	1.33 s 11	IT
208	5+	-16.752	3.053 m 4	β-
209	(1/2+)	-13.637	2.161 m 7	β-
210	(5+)	-9.25	1.30 m 3	β-, β-n 7.0×10 ⁻³ %
211		-5.9s	>300 ns	β-?
212		-1.5s	>300 ns	β-?
213		1.76	101 s +486-46	β-
214		6.5s	>300 ns	β-, β-n
215		10.1s	>300 ns	β-, β-n
216		14.7s	>300 ns	β-, β-n
217		18.4s	>300 ns	β-, β-n
82 Pb 178	0+	3.57	0.12 ms +22-5	α
179	(9/2-)	2.05	3.5 ms +14-8	α
180	0+	-1.93	4.2 ms 5	α
181	(9/2-)	-3.10	36 ms 2	α
	(13/2+)	-3.10	45 ms 20	α<100%
182	0+	-6.82	55 ms 5	$\alpha = 98\%$, $\epsilon = 2\%$ $\alpha = 90\%$
183	(3/2-)	-7.57 -7.47	535 ms 30 415 ms 20	α= 90% α
184	(13/2+) 0+	-11.05	415 ms 20 490 ms 25	α 80%, ε 20%
185	3/2-	-11.03	6.3 s 4	ε, α 34%
	13/2+	-11.54	4.3 s 2	α 50%, ε
186	0+	-14.68	4.82 s 3	ε 60%, α 40%
187	(13/2+)	-14.990	18.3 s 3	ε 88%, α 12%
	(3/2-)	-14.957	15.2 s 3	ε 90.5%, α 9.5%
188	0+	-17.82	25.1 s 1	ε 90.7%, α 9.3%
189	(3/2-)	-17.88	39 s 8	ε, α<1%
	(13/2+)	-17.84	50 s 3	ε, α<1%
190	0+	-20.42	71 s 1	ε 99.6%, α 0.4%
191	(3/2-)	-20.25	1.33 m 8	ε 99.99%, α 0.01%
191m	(13/2+)	-20.25	2.18 m 8	ϵ , $\alpha = 0.02\%$
192	0+	-22.56	3.5 m 1	ε 99.99%,
				$\alpha \ 5.9 \times 10^{-3}\%$
193	(3/2-)	-22.19		ε
	(13/2+)	-22.19	5.8 m 2	εε
194	0+	-24.21	10.7 m 6	ϵ , α 7.3×10 ⁻⁶ %
195	3/2-	-23.71	≈15 m	ε
195 m	13/2+	-23.51	15.0 m 12	ε

Nucli Z El		Jπ	A (MeV)	T½, Γ, or Abundance	Decay Mode
					-
82 Pb	196	0+	-25.36	37 m 3	ε , $\alpha \leq 3.0 \times 10^{-5}\%$
		3/2-	-24.748	8.1 m 17	E . 0.107 TTT 1.007
		13/2+	-24.429	42.9 m 9	ε 81%, IT 19%
	198 199	0+ 3/2-	-26.05 -25.231	2.4 h 1 90 m 10	ε
		(13/2+)	-24.806	12.2 m 3	IT=93%, ε=7%
	200	0+	-26.25	21.5 h 4	ε
	201	5/2-	-25.26	9.33 h 3	ε
		13/2+	-24.63	60.8 s 18	IT
	202	0+	-25.937	52.5×10 ³ y 28	ε
	202m	9-	-23.767	3.54 h 2	IT 90.5%, ε 9.5%
	203	5/2-	-24.787	51.92 h 3	ε
		13/2+	-23.962	6.21 s 11	IT
		29/2-	-21.838	480 ms 7	IT
	204	0+	-25.110	≥1.4×10 ¹⁷ y	α
				1.4% 1	
	204 m	9-	-22.924	66.93 m 10	IT
	205	5/2-	-23.770	1.73×10 ⁷ y 7	ε
	205m	13/2 +	-22.756	5.55 ms 2	IT
	206	0+	-23.786	24.1% 1	
	207	1/2-	-22.452	22.1% 1	
	207 m	13/2 +	-20.819	0.806 s 5	IT
	208	0+	-21.749	52.4% 1	
	209	9/2+	-17.615	3.253 h 14	β-
	210	0+	-14.729	22.20 y 22	β -, $\alpha 1.9 \times 10^{-6}\%$
	211	9/2+	-10.491	36.1 m 2	β-
	212	0+	-7.553	10.64 h 1	β-
	213	(9/2+)	-3.200	10.2 m 3	β-
	214	0+	-0.181	26.8 m 9	β-
	215		4.5s	147 s 12	β-
	216	0+	7.7s	>300 ns	β-
	217	0.	12.4s	>300 ns	β-
	218 219	0+	15.6s 20.5s	>300 ns	β– β–
	220	0+	20.3s 23.9s	>300 ns >300 ns	β-
		0+			
83 Bi			1.19	13 ms 2	α
	184m		1.19	6.6 ms 15	α
	185	1/2+	-2.3s	58 μs 4	p 90%, α 10%
	186	(3+)	-3.17	15.0 ms 17	α
		(10-) (9/2-)	-3.17	9.8 ms 13 37 ms 2	α
	187	(1/2+)	-6.39 -6.27	0.370 ms 20	α
		(1/2+)	-0.27 -7.20	265 ms 15	α, ε?
	188m	(3+)	-7.20	60 ms 3	α, ε?
	189	(9/2-)	-10.06	674 ms 11	α>50%, ε<50%
		(1/2+)	-9.88	5.0 ms 1	α>50%, ε<50%
	190m	(3+)	-10.59	6.3 s 1	α 90%, ε 10%
		(10-)	-10.59	6.2 s 1	α 70%, ε 30%
	191	(9/2-)	-13.240	12.4 s 3	α 51%, ε 49%
		(1/2+)	-12.999	125 ms 13	α 68%, ΙΤ 32%, ε
	192	(3+)	-13.55	34.6 s 9	ε 88%, α 12%
	192m	(10-)	-13.40	39.6 s 4	ε 90%, α 10%
				66	
				-	

Nuclide		Δ	T½, Γ, or	
Z El A	Jπ	(MeV)	Abundance	Decay Mode
83 Bi 193	(9/2-)	-15.872	63.6 s 30	ε 96.5%, α3.5%
	(1/2+)	-15.564	3.2 s 5	α 84%, ε 16%
194	(3+)	-15.97	95 s 3	ϵ 99.54%, α 0.46%
	(6+,7+)	-15.97	125 s 2	ε
	(10-)	-15.97	115 s 4	ε 99.8%, α0.2%
195	(9/2-)	-18.025	183 s 4	ε 99.97%, α 0.03%
	(1/2+)	-17.624	87 s 1	ε 67%, α 33%
196	(3+)	-18.01	308 s 12	ε, α1.2×10 ⁻³ %
196m	(7+) (10-)	-17.84 -17.74	0.6 s 5 240 s 3	ε, IT ε 74.2%, IT 25.8%,
				α 3 . 8×10 ⁻⁴ %
197	(9/2-)	-19.686	9.33 m 50	ϵ , α 1.0×10 ⁻⁴ %
197 m	(1/2+)	-19.186	5.04 m 16	α 55%, ε 45%, IT<0.3%
198	(2+,3+)	-19.37	10.3 m 3	ε
198m	(7+)	-19.37	11.6 m 3	ε
198m		-19.12	7.7 s 5	IT
199	9/2-	-20.80	27 m 1	ε
199m	(1/2+)	-20.13	24.70 m 15	ε 99%, IT≤2%, α=0.01%
200	7+	-20.37	36.4 m 5	ε
200m	(2+)	-20.37	31 m 2	ε ≤ 100%
200m	(10-)	-19.94	0.40 s 5	IT
201	9/2-	-21.42	103 m 3	ε
201m	1/2+	-20.57	57.5 m 21	ε>91.1%, IT≤8.6%,
				$\alpha = 0.3\%$
202	5+	-20.74	1.71 h 4	ε
203	9/2-	-21.52	11.76 h 5	ε
203m		-20.43	305 ms 5	IT
204	6+	-20.645	11.22 h 10	8
204m		-19.840	13.0 ms 1	IT
204m	17+ 9/2-	-17.812	1.07 ms 3	IT
205		-21.064	15.31 d 4	ε
206 206m	6+ 10-	-20.028 -18.983	6.243 d 3 0.89 ms 1	ε IT
206m 207	9/2-	-20.055	31.55 y 4	
208	5+	-18.870	$3.68 \times 10^5 \text{ y } 4$	ε
208m		-17.299	2.58 ms 4	IT
209	9/2-	-18.259	100%	11
210	1-	-14.792	5.012 d 5	β-, α 1.3×10 ⁻⁴ %
210m		-14.732	3.04×10 ⁶ y 6	α α 1.6×10 π
211	9/2-	-11.858	2.14 m 2	α 99.72%, β-0.28%
212	1(-)	-8.120	60.55 m 6	β- 64.06%, α 35.94%
	(8-,9-)	-7.870	25.0 m 2	α 67%, β- 33%,
010	> 1.0	0.010	T 0 0	β–α 30%
212m		-6.210 5.220	7.0 m 3	β– β– 97.8%, α2.2%
213	9/2-	-5.230	45.59 m 6	
214 215	1- (9/2-)	-1.20 1.65	19.9 m 4 7.6 m 2	β– 99.98%, α 0.02% β–
	>23/2-	3.00	7.6 m 2 36.9 s 6	
215m 216	(6-,7-)	5.87	2.25 m 5	IT 76.2%, β− 23.8% β−≤100%
216m		5.87	6.6 m 21	β-≤100% β-≤100%
210111	(0)	0.01	5.0 m 21	P =100%

Nucli Z El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
83 Bi		(9/2-)	8.9s	98.5 s 8	В-
69 DI	217	(9/2-)	13.2s	33 s 1	β– β–
	219		16.3s	>300 ns	β ₋
	220		20.7s	>300 ns	β-
	221		24.0s	>300 ns	β-, β-n
	222		28.4s	>300 ns	β-
	223		31.9s	>300 ns	β-, β-n
	224		36.4s	>300 ns	β-, β-n
84 Po	186	0+	4.10		
	187 (1	/2-,5/2-)	2.83	1.40 ms 25	α
	188	0+	-0.54	0.275 ms 30	ε, α
	189	(7/2-)	-1.42	3.5 ms 5	α
	190	0+	-4.56	2.46 ms 5	α
	191	(3/2-)	-5.05	22 ms 1	α 99%
		(13/2+)	-5.01	93 ms 3	α 96%
	192	0+	-8.07	32.2 ms 3	$\alpha = 99.5\%$, $\epsilon = 0.5\%$
		(13/2+) (3/2-)	-8.36 -8.36	245 ms 22 370 ms +46-40	α≤100% α≤100%
	193m	0+	-0.30	0.392 s 4	α≤100% α, ε
	195	(3/2-)	-11.01	4.64 s 9	α 75%, ε 25%
		(13/2+)	-10.84	1.92 s 2	$\alpha = 90\%$, $\epsilon = 10\%$,
	100111	(10/21)	10.01	1.02 0 2	IT<0.01%
	196	0+	-13.47	5.8 s 2	$\alpha = 98\%$, $\epsilon = 2\%$
	197	(3/2-)	-13.36	84 s 16	ε 56%, α 44%
	197 m	(13/2+)	-13.15	32 s 2	α 84%, ε 16%,
					IT 0.01%
	198	0+	-15.47	1.77 m 3	α 57%, ϵ 43%
	199	(3/2-)	-15.21	5.47 m 15	ε 92.5%, α7.5%
	199m	(13/2+)	-14.90	4.17 m 5	ε 73.5%, α 24%, IT 2.5%
	200	0+	-16.95	11.51 m 8	ε 88.9%, α 11.1%
	201	3/2-	-16.524	15.6 m 1	ε 98.87%, α 1.13%
	201m	13/2 +	-16.100	8.96 m 12	IT 56.2%, ε 41.4%,
					α2.4%
	202	0+	-17.92	44.6 m 4	ε 98.08%, α 1.92%
	203	5/2-	-17.310	36.7 m 5	ε 99.89%, α 0.11%
	203m		-16.668	45 s 2	ΙΤ, ε
	204 205	0+ 5/2-	-18.34 -17.51	3.519 h 12 1.74 h 8	ε 99.33%, α 0.67%
		5/2- 13/2+	-17.51	0.645 ms 20	ε 99.96%, α 0.04% IT
		19/2-	-16.05	57.4 ms 9	IT
	206	0+	-18.185	8.8 d 1	ε 94.55%, α.5.45%
	207	5/2-	-17.146	5.80 h 2	ε 99.98%, α 0.02%
	207m	19/2-	-15.763	2.79 s 8	IT
	208	0+	-17.470	2.898 y 2	α , ϵ 4.0×10 ⁻³ %
	209	1/2-	-16.366	102 y 5	α 99.52%, ϵ 0.48%
	210	0+	-15.953	138.376 d 2	α
	211	9/2+	-12.433	0.516 s 3	α
		(25/2+)	-10.971	25.2 s 6	α 99.98%, IT 0.02%
	212	0+	-10.370	0.299 μs 2	α
		(18+)	-7.448	45.1 s 6	α 99.93%, IT 0.07%
	213	9/2+	-6.654	3.72 μs 2	α
				68	

Nucl Z El	ide A	Јπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
84 Pc	214	0+	-4.470	164.3 us 20	α
	215	9/2+	-0.540	1.781 ms 4	α, β-2.3×10 ⁻⁴ %
	216	0+	1.778	0.145 s 2	α
	217	(9/2+)	5.886	1.53 s 5	α
	218	0+	8.357	3.098 m 12	α 99.98%, β-0.02%
	219		12.6s	>300 ns	β-
	220	0+	15.3s	>300 ns	β-
	221		19.78	112 s + 58 - 28	β-?
	222	0+	22.48	550 s 430	β-?
	223		26.8s	>300 ns	β-
	224	0+	29.7s	>300 ns	β-
	225		34.3s	>300 ns	β-
	226	0+	37.3s	>300 ns	β-
	227		42.0s	>300 ns	β–
85 At	191	(1/2+)	3.86	1.7 ms + 11-5	α
	191m	(7/2-)	3.92	2.1 ms + 4-3	α
	192m		2.92	11.5 ms 6	α
		(9-,10-)	2.92	88 ms 6	α
	193	(1/2+)	-0.06	28 ms + 5-4	α
		(7/2-)	-0.06	21 ms 5	α
		(13/2+)	-0.03	27 ms +4-3	IT 76%, α 24%
		(9-10-)	-0.70	310 ms 8	α
	194m		-0.70	253 ms 10	α
	195	1/2+	-3.476	328 ms 20	α
	195m		-3.476	147 ms 5	α
	196	(3+)	-3.92	0.388 s 7	$\alpha = 95.1\%, \ \epsilon = 4.9\%$
	197	(9/2-)	-6.34	0.388 s 6	α 96.1%, ε 3.9%
	197m	(1/2+)	-6.29	2.0 s 2	α≤100%, ε, IT≤4.0×10 ⁻³ %
	198	(3+)	-6.65	3.8 s 4	α 90%, ε 10%
		(10-)	-6.55	1.04 s 15	α 84%, ε 16%
	199	(9/2-)	-8.822	7.03 s 15	α 90%, ε 10%
	200	(3+)	-8.99	43 s 1	α 52%, ε 48%
	200m		-8.88	47 s 1	ε≤57%, α.43%
		(10-)	-8.64	7.3 s +26-15	ε<89.5%, IT<89.5%,
	20011	(10)	0.01	1.0 0 120 10	α=10.5%
	201	(9/2-)	-10.789	85.2 s 16	α 71%, ϵ 29%
	202	(2+,3+)	-10.59	184 s 1	ε 63%, α 37%
	202m		-10.59	182 s 2	ε 91.3%, α 8.7%
		(10-)	-10.20	0.46 s 5	IT 99.9%, α0.1%
	203	9/2-	-12.16	7.4 m 2	ε 69%, α 31%
	204	7+	-11.88	9.12 m 11	ε 96.09%, α 3.91%
	204m		-11.29	108 ms 10	IT
	205	9/2-	-12.97	26.9 m 8	ε 90%, α 10%
	206	(5)+	-12.43	30.6 m 8	ε 99.1%, α0.9%
	207	9/2-	-13.23	1.81 h 3	ε 91.4%, α 8.6%
	208	6+	-12.469	1.63 h 3	ε 99.45%, α 0.55%
	209	9/2-	-12.882	5.41 h 5	ε 95.9%, α 4.1%
	210	(5)+	-11.972	8.1 h 4	ε 99.82%, α 0.18%
	211	9/2-	-11.648	7.214 h 7	ε 58.2%, α 41.8%
	212	(1-)	-8.628	0.314 s 2	α , $\epsilon < 0.03\%$, $\beta = < 2.0 \times 10^{-6}\%$
					p=<2.0×10 76

Nuclide Z El A	Jπ (Δ MeV)	T½, Γ, or Abundance	Decay Mode
				•
		-8.405 -6.580	0.119 s 3 125 ns 6	α>99%, IT<1%
213		-0.380 -3.380	558 ns 10	α
		-1.255	0.10 ms 2	α
216	1-	2.254	0.30 ms 3	α , $\beta - < 6.0 \times 10^{-3}\%$,
210	1-	2.204	0.00 ms o	$\varepsilon < 3.0 \times 10^{-7}\%$
217	9/2-	4.395	32.3 ms 4	α 99.99%, β-7.0×10 ⁻³ %
218		8.10	1.5 s 3	α 99.9%, β-0.1%
219		10.397	56 s 3	$\alpha = 97\%$, $\beta = 3\%$
220		14.35	3.71 m 4	β– 92%, α 8%
221		16.8s	2.3 m 2	β-
222		20.6s	54 s 10	β-
223		23.4s	50 s 7	β-
224 225		27.71 ' 30.2s	76 s +138-23 >300 ns	β-? β-
226		34.2s	>300 ns	β_
227		37.2s	>300 ns	β_
228		41.4s	>300 ns	β ₋
229		44.6s	>300 ns	β-, β-n
86 Rn 193 (3/2-)	9.05	1.15 ms 27	α
194	0+	5.72	0.78 ms 16	α
	3/2-	5.06	6 ms +3-2	α
195m 1	13/2+	5.12	5 ms +3-2	α
196	0+	1.97	4.4 ms +13-9	$\alpha 99.9\%, \ \epsilon = 0.1\%$
197 (3/2-)	1.48	53 ms + 7 - 5	α
197m(1		1.48	25 ms +3-2	α
198		-1.23	65 ms 3	α, ε
		-1.51	0.59 s 3	α 94%, ε 6%
199m(1		-1.33	0.31 s 2	α 97%, ε 3%
200 201 (-4.01 1 -4.07	1.03 s +20-11 7.0 s 4	α 86%, ε 14%
201 (201m(-4.07 -4.07	3.8 s 1	α, ε ε, α
202		-6.28	9.7 s 1	α78%, ε22%
		-6.16	44 s 2	α 66%, ε 34%
203m(-5.80	26.9 s 5	α 75%, ε 25%
204		-7.98	74.5 s 14	α 72.4%, ε 27.6%
205	5/2-	-7.71	170 s 4	ε 75.4%, α 24.6%
206	0+	-9.12	5.67 m 17	α 62%, ε 38%
		-8.634	9.25 m 17	ε 79%, α 21%
208		-9.66	24.35 m 14	α 62%, ε 38%
		-8.93	28.5 m 10	ε 83%, α 17%
210 211		-9.601 -8.756	2.4 h <i>1</i> 14.6 h <i>2</i>	α 96%, ε 4% ε 72.6%, α 27.4%
212		-8.756 -8.660	23.9 m 12	α 12.6%, α 21.4%
		-5.699	19.5 ms 1	α
214		-4.320	0.27 μs 2	α
		-1.169	2.30 µs 10	α
216	0+	0.254	45 μs 5	α
217	9/2+	3.657	0.54 ms 5	α
218	0+	5.216	35 ms 5	α
219	5/2+	8.831	3.96 s 1	α
			70	

Nuclide		Δ	Т%, Г, ог	
Z El A	Jπ	(MeV)	Abundance	Decay Mode
86 Rn 220	0+	10.607	55.6 s 1	α
221	7/2+	14.473	25 m 2	β – 78%, α 22%
222	0+	16.373	3.8235 d 3	α
223	7/2	20.40	24.3 m 4	β-
224	0+	22.43	107 m 3	β-
225	7/2-	26.56	4.66 m 4	β-
226	0+	28.74	7.4 m 1	β-
227		32.87	20.8 s 7	β-
228 229	0+	35.25	65 s 2	β– β–
230	0+	39.36 42.1s	12.0 s +12-13 >300 ns	β_
231	0+	42.1s 46.5s	>300 ns	β_
				•
87 Fr 199 200	(2.)	6.76 6.12	12 ms +10-4 49 ms 4	α>0%, ε
201	(3+) (9/2-)	3.60	62 ms 5	α
	(9/2-) (1/2+)	3.60	19 ms +19-6	α
202	(3+)	3.16	0.30 s 5	α
	(10-)	3.16	0.29 s 5	α
202111	(9/2-)	0.877	0.25 s 3 0.55 s 1	α≤100%
204	(3+)	0.61	1.8 s 3	α 92%, ε 8%
204m	(7+)	0.65	1.6 s +5-3	α 90%, ε 10%
	(10-)	0.92	0.8 s 2	α 74%, ε 26%
205	(9/2-)	-1.309	3.97 s 4	α 98.5%, ε 1.5%
206	(2+,3+)	-1.24	=16 s	$\alpha = 84\%$, $\epsilon = 16\%$
206m	(7+)	-1.24	=16 s	$\alpha = 84\%$, $\epsilon = 16\%$
	(10-)	-0.71	0.7 s 1	IT 95%, α 5%
207	9/2-	-2.84	14.8 s 1	α 95%, ε 5%
208	7+	-2.67	59.1 s 3	α 89%, ε 11%
209	9/2-	-3.77	50.5 s 7	α 89%, ε 11%
210	6+	-3.33	3.18 m 6	α 71%, ε 29%
211	9/2-	-4.14	3.10 m 2	α 87%, ε 13%
212	5+	-3.515	20.0 m 6	ε 57%, α 43%
213	9/2-	-3.553	34.82 s 14	$\alpha 99.44\%, \epsilon 0.56\%$
214	(1-)	-0.959	5.0 ms 2	α
214m	(8-)	-0.837	3.35 ms 5	α
215	9/2-	0.317	86 ns 5	α
216	(1-)	2.970	700 ns 20	α
217	9/2-	4.313	19 μs 3	α
218	1-	7.058	1.0 ms 6	α ~<100% IT
218m 219	9/2-	7.144 8.617	22.0 ms 5 20 ms 2	α≤100%, IT
219	1+	11.480		α 00 650 0 0 350
221	5/2-	13.278	27.4 s 3 286.1 s 10	α 99.65%, β -0.35% α , β -<0.1%
222	2-	16.35	14.2 m 3	β-
223	3/2(-)	18.384	22.00 m 7	β- 99.99%,
220	()	10.001	_2.00 m /	α 6.0×10 ⁻³ %
224	1-	21.65	3.33 m 10	β-
225	3/2-	23.82	3.95 m 14	β_
226	1-	27.4	49 s 1	β_
227	1/2+	29.7	2.47 m 3	β_
228	2-	33.3s	38 s 1	β−≤100%
229	(1/2+)	35.82	50.2 s 20	β–
			71	

Nuclide	Δ	Т%, Γ, ог	
Z El A Jπ	(MeV)	Abundance	Decay Mode
87 Fr 230	39.50	19.1 s 5	β-
231 (1/2+)	42.3s	17.6 s 6	β-
232 (5)	46.1s	5.5 s 6	β-
233	49.2s	>300 ns	β–
88 Ra 201m(13/2+)	11.8s	1.6 ms +77-7	α, ε
202 0+	9.09	16 ms +30-7	α
203 (3/2-)	8.66	31 ms +17-9	α
203 m (13/2+) 204 0+	8.66 6.06	24 ms +6-4	α
205 (3/2-)	5.84	57 ms +11-5 210 ms +60-40	α α≤100%, ε
205 m (13/2+)	5.84	170 ms +60-40	a≤100%, ε a≤100%, ε
206 0+	3.56	0.24 s 2	α = 100π, ε
207 (3/2-,5/2-)	3.54	1.35 s -13+22	$\alpha = 86\%$, $\epsilon = 14\%$
207m(13/2+)	4.09	59 ms 4	IT≥85%, α≤15%
208 0+	1.71	1.3 s 2	α 95%, ε 5%
209 5/2-	1.85	4.6 s 2	$\alpha = 90\%$, $\epsilon = 10\%$
210 0+	0.46	3.7 s 2	$\alpha = 96\%$, $\epsilon = 4\%$
211 5/2(-)	0.832	13 s 2	$\alpha > 93\%$, $\epsilon < 7\%$
212 0+	-0.20	13.0 s 2	$\alpha = 85\%$, $\epsilon = 15\%$
213 1/2-	0.36	2.73 m 5	α 80%, ε 20%
213m(17/2-)	2.13	2.20 ms 5	IT=99.4%, α=0.6%
214 0+	0.095	2.46 s 3	α 99.94%, ε 0.06%
215 (9/2+)	2.532	1.55 ms 7	α α τ1 0 ν 10 – 8α/
216 0+ 217 (9/2+)	3.290 5.886	182 ns 10 1.6 μs 2	α, ε<1.0×10 ⁻⁸ % α
218 0+	6.65	25.2 μs 3	α
219 (7/2)+	9.393	10 ms 3	α
220 0+	10.272	18 ms 2	α
221 5/2+	12.963	28 s 2	α , ¹⁴ C 1×10 ⁻¹² %
222 0+	14.320	38.0 s 5	α , $^{14}C3.0\times10^{-8}\%$
223 3/2+	17.234	11.43 d 5	$\alpha,\ ^{14}C8.9{\times}10^{-8}\%$
224 0+	18.821	3.6319 d <i>23</i>	α , $^{14}\mathrm{C}$ 4.0×10 ⁻⁹ %
225 1/2+	21.995	14.9 d 2	β-
226 0+	23.668	1600 y 7	α, ¹⁴ C 3.2×10 ⁻⁹ %
227 3/2+	27.178	42.2 m 5	β-
228 0+ 229 5/2+	28.946	5.75 y 3	β-
230 0+	32.56 34.52	4.0 m 2 93 m 2	β– β–
231 (5/2+)	38.22	104.1 s 8	β-
232 0+	40.50	4.2 m 8	β-
233	44.6s	30 s 5	β-
234 0+	47.2s	30 s 10	β-
235	51.4s		•
89 Ac 206 (3+)	13.53	22 ms +9-5	α
206m (10-)	13.53	33 ms +22-9	α
207 (9/2-)	11.15	27 ms +11-6	α
208 (3+)	10.76	95 ms +24-16	$\alpha = 99\%$, $\epsilon = 1\%$
208m (10-)	11.27	25 ms + 9-5	$\alpha = 90\%$, $\epsilon = 10\%$
209 (9/2-)	8.84	0.10 s 5	$\alpha = 99\%$, $\epsilon = 1\%$
210	8.79	0.35 s 5	$\alpha 91\%$, $\epsilon = 9\%$
211	7.20	0.21 s 3	α
212	7.27	0.93 s 5	$\alpha = 57\%$, $\epsilon = 43\%$
		72	

Nuclide Z El A	Јπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
89 Ac 213		6.16	738 ms 16	a≤100%
214		6.44	8.2 s 2	α≥100% α≥89%, ε≤11%
215		6.03	0.17 s 1	α 99 . 91%, ε 0 . 09%
216		8.14	440 μs 16	α
216		8.19	441 µs 7	α
217		8.70	69 ns 4	α, ε≤2%
218		10.84	1.08 µs 9	α
219		11.57	11.8 µs 15	α
220	(3-)	13.742	26.4 ms 2	α , ϵ 5.0×10 ⁻⁴ %
221	(3/2-)	14.52	52 ms 2	α
222	1-	16.620	5.0 s 5	α 99%, ε 1%
222	m	16.620	63 s 3	α≥88%, IT≤10%, ε≥0.7%
223		17.826	2.10 m 5	α 99%, ε 1%
224	0-	20.231	2.78 h 17	ε 90.9%, α9.1%, β-<1.6%
225	(3/2-)	21.638	10.0 d 1	α , ^{14}C $4 \times 10^{-12}\%$
226	(1)	24.309	29.37 h 12	β– 83%, ε 17%, α 6 . 0×10 ⁻³ %
227	3/2-	25.851	21.772 y 3	β-98.62%, α1.38%
228	3+	28.900	6.15 h 2	β-
229	(3/2+)	30.75	62.7 m 5	β-
230	(1+)	33.8	122 s 3	β-, β-F 1.2×10 ⁻⁶ %
231	(1/2+)	35.9	7.5 m 1	β–
232		39.2	119 s 5	β–
233		41.5s	145 s 10	β-
234		45.0s	44 s 7	β–
235		47.6s	60 s 4	β-
236 237		51.27 $54.3s$		β-?
90 Th 208	0+	16.68	1.7 ms + 17 - 6	α
209		16.54	2.5 ms + 17 - 7	α
210		14.06	16 ms 4	$\alpha 99\%$, $\epsilon = 1\%$
211		13.90	0.04 s + 3 - 1	α
212		12.10	31.7 ms 13	α , $\epsilon = 0.3\%$
213		12.12	144 ms 21	α≤100%
214		10.71	87 ms 10	α
215		10.921	1.2 s 2	α
216 216		10.29	26.0 ms 2	α , $\epsilon = 0.01\%$
216		12.33	134 μs 4 0.241 ms 5	α2.8%, IT
217		12.22 12.37	117 ns 9	α
219		14.47	1.05 µs 3	α
220		14.67	9.7 µs 6	α, ε 2.0×10 ⁻⁷ %
221		16.937	1.68 ms 6	α, ε 2.0×10 π
222		17.20	2.8 ms 3	α
223		19.384	0.60 s 2	α
224		20.00	0.81 s 10	α
225		22.309	8.75 m 4	$\alpha = 90\%$, $\epsilon = 10\%$
226	0+	23.196	30.57 m 10	α
227		25.806	18.68 d 9	α
228	0+	26.766	1.9116 y <i>16</i>	α , $^{20}\!\mathrm{O}1\!\!\times\!\!10^{-11}\!\%$
			73	

Nucli Z El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
90 Th		5/2+	29.587	7932 y 28	α
		(3/2+)	29.587	2 m 1	IT?
	230	0+	30.863	7.54×10 ⁴ y 3	α , ²⁴ Ne 6×10 ⁻¹¹ % , SF \leq 4×10 ⁻¹² %
	231	5/2+	33.816	25.52 h 1	β -, α = 4×10 ⁻¹¹ %
	232	0+	35.452	1.40×10 ¹⁰ y <i>1</i> 100 %	α, SF 1.1×10 ⁻⁹ %
	233	1/2+	38.737	21.83 m 4	β-
	234	0+	40.615	24.10 d 3	β-
	235	(1/2+)	44.26	7.2 m 1	β-
	236	0+	46.5s	37.3 m 15	β-
	237	(5/2+)	50.2s	4.7 m 6	β-
	238	0+	52.6s	9.4 m 20	β-
	239		56.6s		
91 Pa	212		21.61	5.1 ms + 61 - 19	α
	213		19.66	5.3 ms +40-16	α
	214		19.49	17 ms 3	α≤100%
	215		17.87	14 ms 2	α
	216		17.80	0.15 s + 6-4	$\alpha = 98\%$, $\epsilon = 2\%$
	217		17.07	3.6 ms 8	α
	217m		18.92	1.2 ms 2	α 73%, IT 27%
	218	0.10	18.68	113 μs 10	α
	219m	9/2-	18.54	53 ns 10	α ο ο το-7σ
	220m	0.10	20.40	0.78 μs <i>16</i>	α , ϵ 3.0×10 ⁻⁷ %
	221	9/2-	20.38	5.9 μs 17 2.9 ms +6-4	α
	222 223		22.11s 22.32	5.1 ms 6	α
	224		23.861	0.85 s 2	α
	225		24.34	1.7 s 2	α
	226		26.03	1.7 s 2 1.8 m 2	α74%, ε26%
	227	(5/2-)	26.831	38.3 m 3	α 85%, ε 15%
	228	3+	28.921	22.4 h 10	ε 98.15%, α 1.85%
	229	(5/2+)	29.898	1.50 d 5	ε 99.52%, α0.48%
	230	(2-)	32.173	17.4 d 5	$\epsilon 92.2\%, \beta - 7.8\%, \alpha 3.2 \times 10^{-3}\%$
	231	3/2-	33.425	3.276×10 ⁴ y 11	α, SF≤2×10 ⁻¹¹ %
	232	(2-)	35.941	1.32 d 2	β-, ε
	233	3/2-	37.491	26.975 d 13	β-
	234	4+	40.342	6.70 h 5	β-
	234m	(0-)	40.416	1.159 m 11	β- 99.84%, IT 0.16%
	235	(3/2-)	42.33	24.44 m 11	β-
	236	1(-)	45.3	9.1 m 1	β-
	237	(1/2+)	47.6	8.7 m 2	β–
	238	(3-)	50.77	2.27 m 9	β–
	239	(3/2)	53.3s	1.8 h 5	β-
	240		56.8s		β-?
	241		59.7s		
92 U			22.71	16 ms +21-6	α≤100%
	218	0+	21.91	0.51 ms + 17 - 10	
	218m	(8+)	24.02	$0.56~{\rm ms}~{+}26{-}14$	
	219		23.30	$42 \ \mu s + 34 - 13$	α
	220	0+	23.0s		α?, ε?
				74	

Nuclide Z El A		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
					Decay Mode
	$\frac{21}{22}$	(9/2+) 0+	24.6s 24.3s	700 ns 1.0 μs +12-4	
	23	0+	25.84	1.0 μs +12-4 18 μs +10-5	α α, ε 0.2%
	23 24	0.	25.71	0.9 ms 3	α, ε υ. 2%
	24 25	0+	27.38	95 ms 15	α
	26	0+	27.33	0.35 s 15	α
		(3/2+)	29.02	1.1 m 1	α
	28	0+	29.22	9.1 m 2	α>95%, ε<5%
		(3/2+)	31.209	58 m 3	$\varepsilon = 80\%$, $\alpha = 20\%$
	30	0+	31.613	20.8 d	α, SF<1×10 ⁻¹⁰ %, ²² Ne 5×10 ⁻¹² %
2	31	(5/2-)	33.807	4.2 d 1	ϵ , $\alpha = 4.0 \times 10^{-3}\%$
2	32	0+	34.604	68.9 y 4	α, SF 3×10 ⁻¹² %
2	33	5/2+	36.921	1.592×10 ⁵ y 2	$\begin{array}{l} \alpha,\ ^{24}\text{Ne}\ 9{\times}10^{-10}\!\%\ , \\ \text{SF}{<}6{\times}10^{-11}\!\%\ , \\ ^{28}\text{Mg}{<}1.{\times}10^{-13}\!\% \end{array}$
2	34	0+	38.148	2.455×10 ⁵ y 6	α,
				0.0054% 5	SF $1.6 \times 10^{-9}\%$, Mg $1 \times 10^{-11}\%$, Ne $9 \times 10^{-12}\%$
2	35	7/2-	40.921	7.04×10 ⁸ y 1	α,
				0.7204% 6	SF 7.0×10 ⁻⁹ %, ²⁸ Mg 8.×10 ⁻¹⁰ %,
	0.5	1/0:	40.001	0.0	$Ne = 8. \times 10^{-10}\%$
	35m	1/2+ 0+	40.921	=26 m 2.342×10 ⁷ y 4	IT
	36 37	0+ 1/2+	42.447 45.393	6.75 d 1	α, SF 9.4×10 ⁻⁸ % β-
	38	0+	47.310	4.468×10 ⁹ y 3	p- α,
2	30	0+		99.2742% 10	SF 5 . 5×10 ⁻⁵ %
2	39	5/2+	50.575	23.45 m 2	β-
	40	0+	52.716	14.1 h 1	β_
	41	0.	56.2s		B-?
	42	0+	58.6s	16.8 m 5	β_
2	43		62.4s		r
93 Np 2	25	(9/2-)	31.59		α
2	26		32.74s	35 ms 10	α
	27		32.56	0.51 s 6	α
	28		33.59	61.4 s 14	ϵ 60%, α 40%
	29		33.78	4.0 m 2	α 68%, ε 32%
	30		35.24	4.6 m 3	ε≤97%, α≥3%
	31	(5/2)	35.62	48.8 m 2	ε 98%, α 2%
	32	(4+)	37.4s	14.7 m 3	ε, α 2.0×10 ⁻⁴ %
	33 34	(5/2+) (0+)	37.95 39.957	36.2 m 1 4.4 d 1	ε, α≤1.0×10 ⁻³ % ε
	35	5/2+	41.045	396.1 d 12	ε, α2.6×10 ⁻³ %
	36	(6-)	43.37	153×10 ³ y 5	ε 86.3%, β-13.5%,
					α 0.16%
	36 m	1	43.37	22.5 h 4	β- 50%, ε 50%
	37	5/2+	44.874	2.144×10 ⁶ y 7	α, SF≤2×10 ⁻¹⁰ %
	38	2+	47.457	2.117 d 2	β-
	39	5/2+	49.313	2.356 d 3	β-
2.	40	(5+)	52.32	61.9 m 2	β–
				75	

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
93 Np 240m	(1+)	52.32	7.22 m 2	β-99.88%, IT 0.12%
241	5/2+	54.26	13.9 m 2	β-
242	(1+)	57.4	2.2 m 2	β-
242m	(6+)	57.4	5.5 m 1	β-
243	(5/2-)	59.88s	1.85 m 15	β-
244	(7-)	63.2s	2.29 m 16	β–
245		65.9s		
94 Pu 228	0+	36.08	1.1 s + 20 - 5	α
229	(3/2+)	37.39	67 s + 41 - 19	ε 50%, α 50%, SF<7%
230	0+	36.93	102 s 10	α≤100%
231	(3/2+)	38.28	8.6 m 5	$\epsilon \leq 99.8\%, \alpha > 0.2\%$
232	0+	38.36	33.8 m 7	ε 90%, α 10%
233		40.05	20.9 m 4	ϵ 99.88%, α 0.12%
234	0+	40.348	8.8 h 1	$\varepsilon = 94\%$, $\alpha = 6\%$
235	(5/2+)	42.18	25.3 m 5	ε, α2.8×10 ⁻³ %
236	0+	42.896	2.858 y 8	α, SF 1.9×10 ⁻⁷ %
237	7/2-	45.094	45.64 d 4	ϵ , α 4.2×10 ⁻³ %
237 m		45.240	0.18 s 2	IT
238	0+	46.166	87.7 y 1	α, SF 1.9×10 ⁻⁷ %
239	1/2+	48.591	24110 y 30	α, SF 3.×10 ⁻¹⁰ %
240	0+	50.128	6561 y 7	α, SF 5.7×10 ⁻⁶ %
241	5/2+	52.958	14.325 y 6	β-, α 2.5×10 ⁻³ %, SF<2×10 ⁻¹⁴ %
242	0+	54.719	$3.75 \times 10^{5} \text{ y } 2$	α, SF 5.5×10 ⁻⁴ %
243	7/2+	57.756	4.956 h 3	β-
244	0+	59.806	$8.00 \times 10^{7} \text{ y } 9$	α 99.88%, SF 0.12%
245	(9/2-)	63.18	10.5 h 1	β-
246	0+	65.40	10.84 d 2	β-
247		69.1s	2.27 d 23	β–
95 Am 230			=17 s	ε
231		42.4s		α?, ε?
232		43.4s	79 s 2	$\varepsilon = 97\%$, $\alpha = 3\%$
233		43.2s	3.2 m 8	α>3%, ε
234	F (0	44.5s	2.32 m 8	ε, α
235	5/2-	44.62	10.3 m 6	ϵ 99.6%, α 0.4%
236	5-	46.0s	3.6 m 2	α, ε
236m 237	(1-) 5/2(-)	46.0s 46.57s	2.9 m 2 73.6 m 8	α, ε ε 99.97%, α 0.03%
238	1+	48.42	98 m 2	ε, α1.0×10 ⁻⁴ %
239	(5/2)-		11.9 h 1	ε 99.99%, α 0.01%
240	(3-)	49.393 51.51	50.8 h 3	ε, α 1.9×10 ⁻⁴ %
240 240m	(3-)	54.51	0.94 ms 4	ε, α1.9×10 % SF≤100%
240m 241	5/2-	52.937	432.6 y 6	α, SF 4×10 ⁻¹⁰ %
242	1-	55.471	16.02 h 2	β-82.7%, ε 17.3%
242m	5-	55.520	141 y 2	IT 99.55%, α 0.45%,
242111	J-	33.320	141 y 2	SF<4.7×10 ⁻⁹ %
242m	(2+,3-)	57.671	14.0 ms 10	SF, IT,
0.40	E /O	57 177	7270 40	α<5.0×10 ⁻³ %
243 244	5/2-	57.177	7370 y 40	α, SF 3.7×10 ⁻⁹ %
	(6-)	59.882	10.1 h 1	β-
244m 244m	1+	59.882 59.968	0.90 ms 15 26 m 1	SF≤100%
244 m	1+	59.968		β-99.96%, ε 0.04%
			76	

Nucli Z El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
95 Am	245	(5/2)+	61.901	2.05 h 1	β-
	246	(7-)	65.00	39 m 3	β-
	$246\mathrm{m}$	2(-)	65.00	25.0 m 2	β-, IT<0.02%
	247	(5/2)	67.2s	23.0 m 13	β-
	248		70.6s	=10 m	β-
	249		73.1s		β-?
96 C m		(3/2+)	47.29	23 s + 13 - 6	ε 80%, α 20%
	234	0+	46.72	51 s 12	$\alpha = 40\%$, SF = 40%,
					$\varepsilon = 20\%$
	235		47.9s		α?, ε?
	236	0+	47.86		ε, α
	237	0.	49.25	0.41.1	ε, α<1%
	238 239	0+ (7/2-)	49.44 51.15	2.4 h 1 ≈2.9 h	ε≥90%, α≤10% ε, α<0.1%
	240	0+	51.719	=2.9 fi 27 d 1	SF 3.9×10 ⁻⁶ %.
	240	0+	01.719	21 4 1	$\alpha > 99.5\%$, $\epsilon < 0.5\%$
	241	1/2+	53.704	32.8 d 2	ε 99%, α 1%
	242	0+	54.806	162.8 d 2	α, SF 6.2×10 ⁻⁶ %,
					³⁴ Si 1.×10 ⁻¹⁴ %
	243	5/2+	57.184	29.1 y 1	α 99.71%, ϵ 0.29%,
					SF 5.3×10 ⁻⁹ %
	244	0+	58.455	18.1 y 1	α, SF 1.4×10 ⁻⁴ %
	244m	6+	59.495	34 ms 2	IT
	245	7/2+	61.006	8423 y 74	α, SF 6.1×10 ⁻⁷ %
	$\frac{246}{247}$	0+ 9/2-	62.619 65.535	4706 y 40 1.56×10 ⁷ y 5	α 99.97%, SF 0.03%
	248	0+	67.393	3.48×10 ⁵ y 6	α α 91 . 61%, SF 8 . 39%
	249	1/2+	70.751	64.15 m 3	β-
	250	0+	72.99	≈8.3×10 ³ v	SF = 74%, α = 18%,
				•	$\beta - \approx 8\%$
	251	(1/2+)	76.65	16.8 m 2	β-
	252	0+	79.1s	<2 d	
97 Bk	234		1	$.4 \times 10^{2} \text{ s} + 14 - 5$	$\alpha \ge 80\%$, $\epsilon \le 20\%$
	235		52.7s		ε?, α?
	236		53.4s		
	237		53.1s	≈1 m	ε?, α?
	238		54.3s	144 s 5	ε, εSF 0.048%
	239m	7/2+,3/2-)	54.3s		ε>99%, α<1%, SF<1%
	240		55.7s	4.8 m 8	ε, εSF 2.0×10 ⁻³ %
	241	(7/2+)	56.1s	4.6 m 4	α, ε
	242	(,	57.7s	7.0 m 13	ε≤100%
	243	(3/2-)	58.692	4.5 h 2	$\epsilon = 99.85\%, \alpha = 0.15\%$
	244	(4-)	60.72	4.35 h 15	ε 99.99%,
					$\alpha 6.0 \times 10^{-3}\%$
	245	3/2-	61.816	4.95 d 3	ϵ 99.88%, α 0.12%
	246m		63.97	1.80 d 2	ε
	247	(3/2-)	65.491	1380 y 250	α≤100%
	248	1()	68.08s	>9 y 23.7 h 2	α 70% ο 20%
	248m 249	1(-) 7/2+	68.08s 69.850	23.7 h 2 330 d 4	β – 70%, ϵ 30% β –, α 1.4×10 ⁻³ %,
	449	1/4+	00.000	330 u 4	p-, α 1.4×10 %, SF 4.7×10 ⁻⁸ %
					DI 1.1.1.10 N

Nuclide Z El A	Јπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
97 Bk 250	2-	72.952	3.212 h 5	β-
251	(3/2-)	75.23	55.6 m 11	β-
252	(0/2-)	78.5s	00.0 m 11	P=
253		80.9s		β-?
254		84.4s		Р.
98 Cf 237	(3/2+)	57.94	0.8 s 2	SE 700/ ~ 200/
238	0+	57.2s	21 ms 2	SF 70%, α 30% SF
239	0+	58.1s	39 s +37-12	ε, α
240	0+	58.01	64 s 9	α 98.5%, SF 1.5%
241	(7/2-)	59.3s	3.78 m 70	$\varepsilon = 75\%$, $\alpha = 25\%$
242	0+	59.38	3.7 m 5	α 80%, ε 20%,
	0.	00.00	0.1 III 0	SF≤0.01%
243	(1/2+)	60.9s	10.7 m 5	$\varepsilon = 86\%$, $\alpha = 14\%$
244	0+	61.473	19.4 m 6	α≤100%
245	1/2+	63.388	45.0 m 15	ε 64.7%, α 35.3%
246	0+	64.093	35.7 h 5	$\alpha, \epsilon < 4.0 \times 10^{-3}\%$
				SF 2.4×10 ⁻⁴ %
246n	1	66.593	45 ns 10	SF≤100%
247	(7/2+)	66.10	3.11 h 3	ε 99.97%, α 0.04%
248	0+	67.241	333.5 d 28	α, SF 2.9×10 ⁻³ %
249	9/2-	69.726	351 y 2	α, SF 5.0×10 ⁻⁷ %
250	0+	71.173	13.08 y 9	α 99.92%, SF 0.08%
251	1/2+	74.137	898 y 44	α , SF
252	0+	76.035	2.645 y 8	α 96.91%, SF 3.09%
253	(7/2+)	79.302	17.81 d 8	β-99.69%, α0.31%
254	0+	81.34	60.5 d 2	SF 99.69%, α0.31%
255	(7/2+)	84.8s	85 m 18	β-
256	0+	87.0s	12.3 m 12	SF, $\beta - < 1\%$, $\alpha = 1.0 \times 10^{-6}\%$
99 Es 240		64.2s		α?, ε?
241		63.8s	8 s +6-5	ε, α
242		64.9s	17.8 s 16	α 57%, ε 43%
243	(7/2+)	64.7s	23 s 3	α 61%, ε 39%, SF<1%
244	(=.,	66.0s	37 s 4	ε 96%, α 4%
245	(3/2-)	66.4s	1.1 m 1	ε 60%, α 40%
246n	1	67.9s	7.5 m 5	ε 90.1%, α 9.9%
247	(7/2+)	68.58	4.55 m 26	$\varepsilon = 93\%$, $\alpha = 7\%$
247n	1	68.58	625 d 84	α
248	(2-,0+)	70.30s	27 m 5	$\epsilon 99.7\%, \alpha = 0.25\%$
249	7/2+	71.18s	102.2 m 6	ε 99.43%, α 0.57%
250	(6+)	73.2s	8.6 h 1	$\varepsilon > 97\%$, $\alpha < 3\%$
250n		73.2s	2.22 h 5	ε≤100%
251	(3/2-)	74.513	33 h 1	ε 99.5%, α0.5%
252	(5-)	77.29	471.7 d 19	α 78%, ε 22%
253	7/2+	79.015	20.47 d 3	SF 8.7×10 ⁻⁶ %, α
254	(7+)	81.993	275.7 d 5	α, β- 1.7×10 ⁻⁴ %, SF<3.0×10 ⁻⁶ %
254n	1 2+	82.077	39.3 h 2	β- 98%, IT<3%,
23411	. 47	04.011	33.3 H Z	μ- 98%, 11<3%, α 0.32%, ε 0.08%,
				SF<0.05%
255	(7/2+)	84.09	39.8 d 12	β- 92%, α 8%,
_00	=./			SF 4 . 1×10 ⁻³ %
			78	

Nuclide Z El A	Δ Jπ (MeV)	T½, Γ, or Abundance	Decay Mode
		25.4 m 24	В-
	+,0-) 87.2s 8+) 87.2s	7.6 h	p- β-
257	89.4s	7.7 d 2	β-, SF
258	92.7s	1.1 u z	α?, ε?
	32.18	0.50	
100Fm 241		0.73 ms 6	SF>78%, α<14%,
2.12	0 00 1		ε<12%
	0+ 68.4s 7/2+) 69.3s	<4 μs 231 ms 9	SF≤100% α91%, SF 9%, ε<10%
	0+ 69.0s	3.12 ms 8	SF>97%, ε<2%.
244	OT 03.08	3.12 ms 5	α<1%
245	70.2s	4.2 s 13	α≤1 <i>/</i> 0 α≤100%
	0+ 70.19	1.54 s 4	α 93.2%, SF 6.8%,
210	0. 10.10	1.0101	ε≤1.3%
247 (7	7/2+) 71.6s	31 s 1	α≥84%, ε≤16%
247m (1		5.1 s 2	α 84%
	0+ 71.894	36 s 2	α 93%, ε 7%, SF 0.1%
249 (7	7/2+) 73.521	2.6 m 7	ε 67%, α 33%
250	0+ 74.074	30 m 3	$\alpha > 90\%$, $\epsilon < 10\%$,
			SF 6.9×10 ⁻³ %
250 m	74.074	1.93 s 15	IT
	9/2-) 75.95	5.30 h 8	ε 98.2%, α 1.8%
	0+ 76.818	25.39 h 4	SF $2.3 \times 10^{-3}\%$, α
	./2)+ 79.349	3.00 d 12	ε 88%, α 12%
	0+ 80.905	3.240 h 2	α 99.94%, SF 0.06%
	/2+ 83.801	20.07 h 7	α, SF 2.4×10 ⁻⁵ %
	0+ 85.487	157.6 m 13	SF 91.9%, α8.1%
	(2+) 88.590		α 99.79%, SF 0.21%
	0+ 90.4s 93.7s	370 μs <i>43</i> 1.5 s <i>3</i>	SF≤100%
259 260	0+ 95.8s	1.5 s 3 =4 ms	SF SF
	/2-) 75.3s	0.90 ms 25	α, SF
245m (0.35 s +23-16	ϵ , α
246m 246m	76.2s	0.9 s 2 4.4 s 8	α
246m 246m	76.2s 76.2s	4.4 s 8 0.9 s 2	$\epsilon > 77\%$, $\alpha < 23\%$ SF?, ϵ ?
	76.2s 7/2-) 75.9s	1.2 s 1	α 99.9%, SF<0.1%
247 (7 247m (1		0.25 s 4	α 79%, SF 21%
248	77.1s	13 s +15-4	α 58%, ε 42%
	7/2-) 77.3s	21.7 s 20	α>60%, ε≤40%
249m (1		1.9 s 9	α?
250	78.6s	25 s +10-5	ε 93%, α 7%
251 (7	7/2-) 78.97	4.3 m 6	ε 90%, α 10%
252	80.5s	2.3 m 8	ε≤100%
253 (7	7/2-) 81.18s	6 m +12-3	ε≤100%, α
254m	83.5s	28 m 8	ε ≤ 100%
254m	83.5s	10 m 3	ε ≤ 100%
255 (7	7/2-) 84.844	27 m 2	ε 92%, α 8%, SF<0.15%
256 (1-) 87.61	77 m 2	ε 90.8%, α 9.2%,
200 (_ ,		SF<3%
	7/2-) 88.997	5.52 h 5	ϵ 85%, α 15%, SF < 1%
258	91.689	51.5 d 3	α, SF
		79	

Nucli			Δ	Τ½, Г, ог	
Z El		Jπ	(MeV)	Abundance	Decay Mode
101Md			91.689	57.0 m 9	ε≥70%, SF
	259		93.6s	96 m 3	SF, α<1.3%
	260		96.6s	31.8 d 5	SF \geq 42%, $\alpha \leq$ 25%, $\epsilon \leq$ 23%, $\beta - \leq$ 10%
	$\frac{261}{262}$		98.6s 101.6s		α? SF?, α?
102 No	248	0+	80.6s	<2 µs	SF?
	249		81.8s		
	250	0+	81.6s	$4.2 \mu s + 12-9$	SF, α<2%
	251	(7/2+)	82.8s	0.80 s 1	α 84%, SF<0.3%, ε
	251m	(1/2+)	82.9s	1.02 s 3	α
	252	0+	82.867	2.47 s 2	α 70 . 7%, SF 29 . 3%, ϵ < 1 . 1%
	252m	(8-)	82.867	110 ms 10	IT
	253	(9/2-)	84.360	1.62 m 15	$\alpha = 80\%$, ϵ
	254	0+	84.72	51 s 10	α 90%, ε 10%, SF 0 . 17%
	254m	0+	84.72	0.28 s 4	IT>80%
	255	1/2+	86.81	3.52 m 21	ε 70%, α 30%
	256	0+	87.825	2.91 s 5	$\alpha99.47\%,SF0.53\%$
	257	(7/2+)	90.251	25 s 3	$\alpha \le 100\%$, SF $\le 1.5\%$
	258	0+	91.5s	1.2 ms 2	SF≤100%
	259		94.1s	58 m 5	α 75%, ε 25%, SF<10%
	260	0+	95.6s	106 ms 8	SF
	261	(3/2+)	98.5s		α?
	262	0+	100.1s	=5 ms	SF
	263		103.1s		α?, SF?
	264	0+	105.2s		α?
$103\mathrm{Lr}$	251		87.9s		ε?, α?
	252		88.7s	0.27 s + 18 - 8	α, ε
	253	(7/2-)	88.7s	0.57 s + 7 - 6	$\alpha = 98.7\%$, $SF = 1.3\%$
		(1/2-)	88.7s	1.49 s + 30 - 21	α 92%, SF 8%
	254	- /-	89.9s	18.4 s 18	α 71.7%, ε 28.3%
	255	1/2-	89.95	31.1 s 13	α 85%, ε 15%
	255m	7/2-	89.98	2.53 s 13	IT 60%, α 40%
	256		91.75	27 s 3	α 85%, ε 15%, SF<0.03%
	257		92.61s	≈4 s	α≤100%
	258		94.8s	4.1 s 3	α>95%, SF<5%
	259		95.85s 98.3s	6.2 s 3 180 s 30	α 78%, SF 22%
	260				α 80%, ε<40%, SF<10%
	261		99.6s	39 m 12	SF
	262		102.0s	=4 h	SF<10%, ε, α
	263		103.7s		α?
	264 265		106.4s 108.3s		SF?, α? SF?, α?
	266		108.3s 111.4s		α?, SF?
104 Rf			93.8s	48 μs +17-10	SF≤100%, α
	253m		93.8s	=1.8 s	$\alpha = 50\%$, SF = 50%

Nucli Z El		Jπ	(MeV)	T½, Γ, or Abundance	Decay Mode
104 Rf	254	0+	93.2s	23 μs 3	$SF \le 100\%$
	255	(9/2-)	94.2s	2.3 s + 8-5	$\alpha~52\%$, SF 48%, $\epsilon~?1\%$
	256	0+	94.22	6.4 ms 2	SF 99.68%, α0.32%
	257	(1/2+)	95.87	4.7 s 3	α<100%, SF≤1.4%, ε>0%
	257 m	(11/2-)	95.87	4.1 s 7	$\alpha < 100\%$, SF $\leq 1.4\%$, $\epsilon > 0\%$
	258	0+	96.34	14.7 ms +12-10	
	259		98.36s	3.2 s 6	α 92%, SF 8%
	$259 \mathrm{m}$		98.36s	2.5 s + 4-3	ε 15%
	260	0+	99.2s	21 ms 1	$SF \le 100\%$, α ?
	261m		101.32	1.9 s 4	SF 73%, α 27%
	261m		101.32	78 s +11-6	α>74%, ε<15%, SF<11%
	262	0+	102.4s	2.3 s 4	$SF \le 100\%$, $\alpha < 3\%$
	263		104.8s	10 m 2	SF, α
	264	0+	106.2s		α?
	265 m		108.8s		SF
	266	0+	110.2s		SF?, α?
	267	_	113.4s		
	268	0+	115.4s		α?, SF?
105 Db			99.7s	1.6 s + 6-4	α 80%, SF=20%
	256		100.5s	1.9 s 4	$\alpha = 70\%$, $\epsilon = 30\%$, SF = 0.02%
	257	(9/2+)	100.3s	1.82 s + 27 - 21	$\alpha 94\%$, SF=6%
	257m		100.3s	0.58 s + 13 - 9	α, SF
	258		101.8s	4.2 s + 4-3	α 65%, ϵ 35%, SF<1%
	258m		101.8s	20 s 10	ε
	259		101.99	0.51 s 16	α
	260		103.36	1.52 s 13	$\alpha \ge 90.4\%$, SF $\le 9.6\%$, $\epsilon < 2.5\%$
	261		104.2s	1.8 s 4	α≥82%, SF≤18%
	262		106.3s	35 s 5	α=67%, SF
	263		107.1s	27 s + 10 - 7	SF 55%, α 41%, ε 3%
	264		109.4s		α?
	265 266		110.5s 112.7s		α?
	267m		112.7s 114.2s	73 m +350-33	α?, SF? SF
	268m		114.2s 117.0s	32 h +11-7	SF
	269		117.0s	32 H +11-7	α?, SF?
	$270\mathrm{m}$		122.0s	23 h	SF, α
106 Sg		0+	105.3s	2.9 ms + 13 - 7	$SF \le 100\%$, α ?
	259	(1/2+)	106.5s	0.32 s + 8-6	α 96%, SF 4%
	259m		106.5s	0.28 s 5	
	260	0+	106.54	3.6 ms 9	SF 50%, α 50%
	260m		106.54	4.95 ms 33	SF 71%, α 29%
	261	0.	108.01	0.23 s 6	α, SF<1%
	262	0+	108.4s	6.9 ms +38-18	SF≥78%, α≤22%
	263 263 m		110.19s	1.0 s 2 0.12 s	α>70%, SF<30%
	263m 264	0.	110.19s		IT, α
	264 265m	0+	110.8s 112.8s	37 ms +27-11 16.2 s +47-35	SF, α<36% α≥65%, SF≤35%
	200111		114.05	81	u=00/0, Dr ≥00/0
				01	

Nucli Z El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
		•			Decay mode
106 Sg	265m 266	0+	113.0s 113.7s	8.9 s +27-19 21 s +20-12	SF>50%, α>18%
	267	0.	115.9s	210.20 12	DI 7 0070, W7 1070
	268	0+	116.9s		SF?, α?
	269	0+	120.0s		or:, u:
	270	0+	121.3s		α?, SF?
	271m	0.1	124.4s	2.4 m +43-10	α=50%, SF=50%
	272	0+	126.4s	2.4 m +40-10	α?, SF?
	273	0.1	129.8s		SF?
107Bh			113.3s	35 ms +19-9	α≤100%
	261		113.2s	11.8 ms +39-24	α
	262m		114.5s	22 ms 4	α<100%
	262m		114.5s	83 ms 14	α<100%
	263		114.5s	0.44 00.40	α?
	264		115.7s	0.44 s +60-16	α≤100%
	265		116.4s	0.9 s +7-3	α
	266m 267m		118.2s	1.7 s +82-8	α
	267m 268		118.9s 120.9s	17 s +14-6	α
	269		120.9s 121.7s		
	270?		124.2s	6×10 ¹ s +29-3	α
	271?		124.2s	0×10 8 +23=3	α?
	272m		128.6s	10 s +12-4	α
	273		130.5s	1001121	α?, SF?
	274		133.3s	0.9 m +42-4	α, SF
	275		135.4s	****	SF?
108 Hs	262		120.0s	0.74 ms +48-21	α≤100%, SF<8.4%
100118	264	0+	119.56	=0.8 ms	SF=50%, α=50%
	265	٠.	121.17	1.9 ms 2	α<100%, SF≤1%
	265m		121.47	0.3 ms +2-1	α<100%
	266	0+	121.1s	2.3 ms +13-6	α. SF<1.4%
	267	(3/2+)	122.65s	52 ms +13-8	α≥80%, SF<20%
	267m		122.65s	0.8 s + 38 - 4	α
	268	0+	122.8s	0.4 s + 18 - 2	α
	269		124.6s	3.6 s + 8 - 14	α
	$269 \mathrm{m}$		124.6s	9.7 s + 97 - 33	α
	270	0+	125.1s	22 s	α
	271		127.8s		α?, SF?
	272	0+	129.1s		SF?, α?
	273		132.1s		α
	274	0+	133.3s		SF?, α?
	275m	_	136.3s	0.15 s + 27 - 6	α
	276	0+	138.0s		α ?, SF?
	277		141.1s		
109 M t			126.6s		α?
	266m		128.0s	1.7 ms +18-16	α≤100%
	267		127.8s		α?
	268m		128.9s	21 ms +8-5	α
	269		129.3s	F 0 04 -	
	270m 271		130.8s 131.5s	5.0 ms +24-3	α
	271		131.3S		α?
				82	
				-	

Nucli		_	Δ	Т½, Г, ог	
Z El		Jπ	(MeV)	Abundance	Decay Mode
109 M t			133.7s		α?, SF?
	273		134.8s		α?, SF?
	274m		137.1s	0.44 s +81-17	α, SF
	275?		138.4s	9.7 ms +460-44	α
	276m		140.9s	0.72 s + 87 - 25	α
	277		142.5s		
	278m		145.1s	8 s +37-4	α, SF
	279		146.8s		α?, SF?
110 Ds	267 m		134.3s	2.8 µs +133-12	α
	268?	0+	133.6s	1	α
	269m		135.03	179 μs +245-66	
	270	0+	134.7s	0.10 ms + 14-4	α, SF<0.2%
	270m		135.9s	6.0 ms + 82 - 22	α>70%, IT≤30%
	271			1.63 ms +44-29	α
	271m		135.95s	69 ms +56-21	$\alpha > 0\%$, IT?
	272	0+	136.0s		SF
	273		138.4s	0.17 ms + 17-6	α
	274?	0+	138.9s		SF?, α?
	275?	_	141.2s		α?
	276?	0+	142.2s		SF?, α?
	277?		145.3s		α?
	278?	0+	145.8s	0.40	SF?, α?
	279m		148.6s	0.18 s +5-3	$SF = 90\%$, $\alpha = 10\%$
	280	0+	149.6s 152.4s	00 00 7	OTT 0 F01 1 F01
	281 281m		152.4s 152.4s	20 s +20-7 9.6 s +50-25	SF 85%, α 15% SF
111 Rg			142.8s	3.8 ms +14-8	α
	273		143.1s		α?
	274m		144.7s	6.4 ms +307-29	α
	275?		145.4s		α?
	276? 277?		147.4s		α?, SF? SF?, α?
	2777 278m		148.4s 150.4s	4.2 ms +76-17	
	278m 279m		150.4s 151.3s	4.2 ms +/6-1/ 0.17 s +81-8	α, SF
	279m 280m		151.3s 153.4s	3.6 s +43-13	α
	281m		154.6s	26 s +25-8	SF, α
	282m		156.7s	0.5 s +25-2	α, SF
	283?		158.1s	0.3 S +23-2	SF?, α?
					DI ., W.
112 Cn		0+	150.6s		
	277 278?	0+	152.4s 152.7s		α?, SF?
	279?	0+	154.7s		SF?, α?
	280?	0+	155.4s		α?, SF?
	280? 281m	0+	155.4s 158.1s		α (, δε (
	282m		158.1s	0.50 ms +33-14	SF
	283m		160.7s	4.0 s +13-7	α≥90%, SF≤10%
	283m		160.7s	6.9 s +69-23	SF 50%, α 50%
	284m		161.5s	101 ms +41-22	SF 30%, 0.30%
	285		164.1s	30 s +30-10	α
113	278m			0.24 ms +114-11	
113	278m 279		159.0s 159.5s	0.24 ms +114-11	u
	413		100.08		

Nucli Z El		Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode
113	280 281		161.2s 161.9s		
	282m		163.6s	0.07 s + 13 - 3	α
	283m		164.0s	100 ms +490-45	α
	284m		166.0s	0.48 s + 58 - 17	α
	285m		166.9s	5.5 s + 50 - 18	α, SF
	286m		168.9s	20 s +94-9	α, SF
	287?		170.1s		α?, SF?
114	285m		171.2s		α
	286m	0+	171.0s	0.16 s + 7 - 3	$SF = 60\%$, $\alpha = 40\%$
	287		173.2s	0.51 s + 18 - 10	α
	288	0+	174.0s	0.52 s + 22 - 13	α
	289		176.5s	0.97 s + 97 - 32	α
	289m		176.5s	2.7 s + 14 - 7	α
115	287?		177.2s	32 ms +155-14	α
	288m		179.0s	87 ms +105-30	α
	289		179.8s	0.22 s + 26 - 8	α, SF
	290		181.6s	16 ms + 76 - 7	α, SF
	291?		182.8s		α?, SF?
116	289		184.8s		
	290	0+	184.4s	15 ms +26-6	α
	291		186.6s	6.3 ms + 116 - 25	α
	292	0+	187.2s	18 ms + 16-6	α
	293		189.6s	53 ms +62-19	α
117	291?		191.0s		SF?, α?
	292?		192.7s		SF?, α?
	293		193.4s	14 ms + 11 - 4	α , SF
	294		195.1s	0.08 s + 37 - 4	α

\mathbf{z}	El	Atomic	Density	Melting		Valence ^b
		Weighta	(g/cc) ^b	Pt. (°C)b	Pt. (°C)b	
1	Н	1.008	8.988×10^{-5} d	-259.34	-252.87	1
2	He	4.0026022	$1.785 \times 10^{-4} f$	<-272.2	-268.93	0
				(26 atm)		
3	Li	6.94	0.534c	180.5	1342	1
4	Ве	9.0121823	1.848c	1287	2471	2
					(5 mm)	
5	В	10.81	2.34h	2075	4000	3
					(subl.)	
6	C	12.011	1.8 to 2.1i	=3550	4827	2,3,4
7	N	14.007	0.0012506j	-210.00	-195.798	3,5
8	O	15.999	0.001308k	-218.79	-182.953	2
9	F	18.9984032 5			-188.12g	1
	Νe	20.17976	8.9990×10^{-4}		-246.053g	
	Νa			97.80	883	1
		24.30506	1.738c	650	1090	2
	Al	26.98153868		660.32	2519	3
	Si	28.085	2.33e	1414	3265	4
15		30.9737622	1.82l	44.15^{l}	280.51	3,5
16		32.06	2.07cm	$115.21^{\rm m}$		2,4,6
	Cl	35.45	0.003214	-101.5	-34.04	1,3,5,7
	Ar	39.948	0.0017837	-189.36	-185.85	0
19		39.0983	0.89	63.5	759	1
	Ca	40.078 4	1.54 ^c	842	1484	2
	Sc	44.9559126	2.989e	1541	2836	3
	Ti	47.867	4.51	1668	3287	2 to 4
23	V	50.9415	6.0	1910	3407	2 to 5
	~	** 000* 0	(18.7°C)		0.054	
	Cr	51.99616	7.15c	1907	2671	2,3,6
		54.938045 5	7.21 to 7.44n		2061	1 to 4,6,7
	Fe Co	55.845 2 58.933195 5	7.874 ^c 8.9 ^c	1538 1495	2861 2927	2,3,4,6 2.3
	Ni	58.6934 2	8.902e	1455	2927	2,3 0 to 3
		63.546 3	8.902° 8.96°	1084.62	2562	1.2
	Zn	65.38 2	7.134e	419.53	907	2
	Ga	69.723	5.904	29.76	2204	2,3
91	Ga	09.723	(29.6°C)	29.76	2204	2,3
20	Ge	72.63	5.323e	938.25	2833	2.4
	As	74.92160 2	5.750	8170	6160	0,±3,5
00	110	74.521002	0.10	(28 atm)		0,±0,0
24	Se	78.96 3	4.79P	221P	685P	-2,4,6
	Br	79.904	3.12u	-7.2	58.8	1,3,5,7
	Kr	83.798 2	0.003733	-157.36	-153.34	0
	Rb	85.46783	1.532c	39.30	688	1
	Sr	87.62	2.64	777	1382	2
39		88.90585 2	4.469e	1522	3345	3
	Zr	91.224 2	6.52c	1855	4409	2 to 4
		92.90638 2	8.57¢	2477	4744	2,3,4?,5
		95.96 2	10.22¢	2623	4639	2 to 6
	Тс	(98)	11.50 ^t	2157	4265	0,2,4 to 7
	Ru	101.07 2	12.1¢	2334	4150	0 to 8
	Rh	102.90550 2	12.41c	1964	3695	3
1.0		2.000002		-501		-

					,
Z El	Atomic	Density	Melting		Valence ^b
	Weighta	(g/cc)b	Pt. (°C)b	Pt. (°C)b	
46 Pd	106.42	12.02c	1554.9	2963	2 to 4
47 Ag	107.86822	10.50c	961.78	2162	1
48 Cd	112.4118	8.69c	321.07	767	2
49 In	114.8183	7.31c	156.60	2072	1 to 3
50 Sn	118.710 7	5.779	231.93	2602	2,4
51 Sb	121.760	6.68c	630.63	1587	$0,\pm 3,5$
52 Te	$127.60 \ 3$	6.23c	449.51	988	2,4,6
53 I	126.904473	4.93V	113.7	184.4	1,3,5,7
54 Xe	131.2936	0.005887W	-111.74	-108.09	0
55 Cs	132.9054519	2 1.873c	28.44	671	1
56 Ba	137.327 7	3.62c	727	1897	2
57 La	138.90547 7	6.145e	920	3464	3
58 Ce	140.116	6.770e	799	3443	3,4
59 Pr	140.907652	6.773r	931	3520	3
		6.64s			
60 Nd	144.2423	7.008	1016	3074	3
61 Pm	(145)	7.264e	1042	3000	3
62 Sm	150.362	7.520r	1072	1794	2,3
		7.40s			
63 Eu	151.964	5.244e	822	1596	2,3
64 Gd	157.25 3	7.901e	1313	3273	3
65 Tb	158.925342	8.230	1356	3230	3,4
66 Dy	162.500	8.551e	1412	2567	3
67 Ho	164.930322	8.795e	1472	2700	3
68 Er	167.2593	9.066e	1529	2868	3
69 Tm	168.934212	9.321e	1545	1950	3
70 Yb	173.0545	6.903r	824	1196	2,3
		6.966s			
71 Lu	174.9668	9.841e	1663	3402	3
72 Hf	178.492	13.31c	2233	4603	4
73 Ta	180.947882	16.4	3017	5458	2?,3,4?,5
74 W	183.84	19.3c	3422	5555	2 to 6
75 Re	186.207	20.8c	3185	5596	4,6,7
76 Os	190.23 3	22.587	3033	5012	0 to 8
77 Ir	192.2173	22.562c	2446	4428	3,4
78 Pt	195.0849	21.45c	1768.2	3825	1?,2,3
79 Au	196.966569 4	=19.3 ^c	1064.18	2856	1,3
80 Hg	200.592	13.546c	-38.83	356.62	1,2
81 Tl	204.38	11.85c	304	1473	1,3
82 Pb	207.2	11.35c	327.46	1749	2,4
83 Bi	208.98040	9.747c	271.4	1564	3,5
84 Po	(209)	9.20	254	962	$0,\pm 2,3?,4,6$
85 At	(210)		302		1,3,5,7
86 Rn		0.00973x	-71	-61.7	0
87 Fr	(223)		27		1
88 Ra	(226)	5	696		2
89 Ac	(227)	10.07 ^t	1050	3198	3
90 Th	232.038062	11.72	1750	4788	2?,3?,4
91 Pa	231.035882	15.37^{t}	1572		4,5
92 U	238.028913	19.1	1135	4131	2 to 6
93 Np	(237)	20.25c	644	3902	3 to 6

Z	El	Atomic Weight ^a	Density (g/cc) ^b	Melting Pt. (°C) ^b		Valence ^b
94	Pu	(244)	19.84e	640	3228	3,to 6
95	Am	(243)	12c	1176	2011	2 to 6
96	$^{\mathrm{C}\mathrm{m}}$	(247)	13.51 ^t	1345		3,4
97	Bk	(247)	14 ^t	996		3,4
98	Cf	(251)	15.1	900		3
99	Es	(252)		860 ^t		3
10	0Fm	(257)		1527		3
10	1Md	(258)		827		2,3
10	2No	(259)		827		2,3
10	2 T.r	(262)		1697		22

Footnotes and References

a) Atomic weights of many elements are not invariant and depend on the origin and treatment of the material. The values given here apply to elements as they exist naturally on earth and are from M. E. Wieser, T.B. Coplen Pure Appl. Chem. 83, 359 (2011). Uncertainty is 1 in last significant figure, unless expressly given.

Masses are scaled to 12 for $^{12}\mathrm{C}.$

Parenthetical whole numbers represent the mass numbers (A) of the longest lived isotopes for radioactive elements.

Isotopic masses (and more precise atomic weights for some monoisotopic elements) may be calculated as $A+(\Delta/931.494),$ where A is the mass number and Δ is the mass excess as given in the Nuclear Wallet Cards.

- b) C.R. Hammond, in CRC Handbook of Chemistry and Physics, 92nd edition, 2011. Where specified, exact temperature and pressure conditions are given; the conditions for all gases have been inferred to be 0°C and 1 atm. The densities for the following gaseous elements are for diatomic molecules: H, N, O, F, Cl. In general, densities for gases (in g/cc) may be approximated by the formula: density-MP/82_05T, where M is the molecular weight in g, P the pressure in atm, and T the temperature in °K. The reported oxidation states do not include some uncommon states, or those states predicted by periodicity, but not confirmed chemically.
- c) At 20°C
- d) For gas; density (liquid)=0.0708 g/cc at b.p.; density (solid)=0.0706 g/cc at $-262^{\circ}\mathrm{C}.$
- e) At 25°C.
- f) For gas; density (liquid)=0.125 g/cc at b.p.
- g) At 1 atm.
- h) For crystal form; density (amorphous)=2.37 g/cc.

 $_{\rm App-I-iii}$

- i) For amorphous carbon; density (graphite)=1.9 to 2.3 g/cc; density (gem diamond)=3.513 g/cc at 25°C; density (other diamond)=3.15 to 3.53 g/cc.
- j) For gas; density (liquid)=0.808 g/cc at b.p.; density (solid)=1.026 g/cc at -252°C.
- k) For gas; density (liquid)=1.14 g/cc at b.p. For Ozone: density=0.001962; m.p.=-193, b.p.=-111.35
- For white phosphorus; density (red)=2.20 g/cc; density (black)=2.25 to 2.69 g/cc.
- m) For rhombic sulfur; melting point (monoclinic)=119.0 $^{\circ}$ C; density (monoclinic)=2.00 g/cc at 20 $^{\circ}$ C.
- n) Depending on allotropic form.
- o) For gray arsenic; density (yellow)=1.97 g/cc.
- p) For gray selenium; density (vitreous)= $4.28~\mathrm{g/cc}$.
- q) For gray tin; density (white)=7.29 g/cc.
- r) For α modification.
- s) For β modification.
- t) Calculated.
- u) For liquid at 20°C; 0.00759 g/cc for gas.
- v) For solid at $20^{\circ} C;\, 0.01127$ g/cc for gas.
- w) For gas; density (liquid)=2.95 g/cc at $-109^{\circ}\mathrm{C}.$
- x) For gas; density (liquid)=4.4 g/cc at $-62^{\circ}C$.

Appendix-II Frequently-Used Constants

The frequently used constants are given below in familiar units. Only approximate values are given; see App-IIa for values to current known precision.

Symbol	Constant	Value
·		
$1/\alpha$ = $\hbar c/e^2$	Fine structure constant	137.0
c	Speed of light in vacuum	$2.998{\times}10^{10}~\text{cm/s}$
h ħ=h/2π ħc	Planck constant	$\begin{array}{c} 6.626{\times}10^{-27} \ \mathrm{erg \ s} \\ 6.582{\times}10^{-22} \ \mathrm{MeV \ s} \\ 197.3 \ \mathrm{MeV \ fm} \end{array}$
$k=R/N_A$	Boltzmann constant	$8.617{\times}10^{-11}~MeV/K$
$r_e = e^2/m_e c^2$	Classical e ⁻ radius	2.818 fm
$\hbar_{\mathrm{C,e}} \text{=} \hbar/m_{\mathrm{e}} c$	Compton wavelength of e-	386.2 fm
$\hbar_{\mathrm{C},p} \text{=} \hbar/m_{p} c$	Compton wavelength of p	0.210 fm
$\rm \chi_{C,\pi} = \hbar/m_\pi c$	Compton wavelength of $\boldsymbol{\pi}$	1.414 fm
u	Atomic mass unit	$931.5~\rm MeV/c^2$
m _e	Electron mass	$0.511~\rm MeV/c^2$
m _n	Neutron mass	$939.6~\rm MeV/c^2$
m_{p}	Proton mass	$938.3~\rm MeV/c^2$
m_{d}	Deuteron mass	$1875.6~MeV/c^2$
$m_\pi \pm$	$\pi^{\pm}\;mass$	$139.6~\rm MeV/c^2$
m_{π°	$\pi^0 \; mass$	$135.0~\rm MeV/c^2$
$m_{\overline{W}}$	W^{\pm} boson mass	$80.2~\rm GeV/c^2$
$\mathbf{m}_{\mathbf{Z}}$	${\bf Z}^0$ boson mass	$91.2~\rm GeV/c^2$
$\mu_N \text{=} \hbar e/2 m_p^{} c$	Nuclear magneton	$3.152\times10^{-18}~MeV/Gauss$
$\mu_{\rm p}$	Proton magnetic moment	$2.793\;\mu_N$
$\boldsymbol{\mu}_n$	Neutron magnetic moment	$-1.913\ \mu_N$
1 fm=10 ⁻¹³ cr	m 1 Å=10 ⁻⁸ cm	π=3.1416
1 barn=10 ⁻²⁴		³ g
1 joule=10 ⁷ e	•	0 ⁹ esu
1 newton=10	⁵ dyne 1 tesla=10 ⁴ gauss	

App-II

Unless otherwise noted, the information presented in this table is from $CODATA\ Values\ of\ Fundamental\ Physical\ Constants: 2006. Fig. 1200. The constants are arranged alphabetically according to the symbols by which they are denoted. The numbers in <math display="inline">italics$ are the one-standard-deviation uncertainty in the last digits of the values given. The unified atomic mass scale $^{12}\text{C=}12$) has been used throughout. Values are given for both SI and cgs units. In cgs units "permittivity of vacuum" μ_0 and "permeability of vacuum" ϵ_0 are dimensionless unit quantities; in SI units they have the values for the state of th

```
\mu_0 = 4\pi\times10^{-7}~m\cdot kg\cdot s^{-2}\cdot A^{-2} = 4\pi\times10^{-7}~N\cdot A^{-2} = 4\pi\times10^{-7}~T\cdot A^{-1} \epsilon_0 = 1/\mu_0c^2
```

The factor in square brackets given in the definition of a quantity is to be omitted to obtain the expression in ${\tt cgs}$ units $^f\!.$

The following abbreviations are used:

A = ampere

C = coulomb

cm = centimeter

emu = electromagnetic unit

esu = electrostatic unit

G = gauss

g = gram

Hz = hertz = cycles/sec

J = joule

K = degree Kelvin

kg = kilogram

m = meter

mol = mole

N = newton

s = second

T = tesla

u = atomic mass unit (unified scale)

V = volt

W = watt

Wb = Weber

	Symbol	Constant	Value	Units (SI) ^b	Units (cgs)b
	$a_0 = r_e/\alpha^2$	Bohr radius	5.2917721092 17	$10^{-11} \ m$	$10^{-9}~\mathrm{cm}$
	$^{\alpha=e^{2}/\hbarc[4\pi\epsilon_{_{\scriptstyle 0}}]}_{1/\alpha}$	Fine structure constant	$\begin{array}{c} 0.0072973525698\ 24 \\ 137.035999679\ 94 \end{array}$		
	c	Speed of light in vacuum	2.99792458 ^(e)	$10^8\ m\ s^{-1}$	$10^{10}\ {\rm cm\ s^{-1}}$
	$c_1 = 2\pi h c^2$	First radiation constant	3.74177153 <i>17</i>	$10^{-16}~\mathrm{W}~\mathrm{m}^2$	$10^{-5} \ \rm erg \ cm^2 \ s^{-1}$
	$c_2 = hc/k$	Second radiation constant	1.4387770 13	$10^{-2}~\mathrm{m}~\mathrm{K}$	cm K
Δpp-	e	Elementary charge	1.602176565 35	$10^{-19} \; \mathrm{C}$	$10^{-20}~\mathrm{emu}$
App-IIa-ii	2e/h	Josephson frequency-voltage ratio	4.83597870 11	$10^{14}~{\rm Hz}~{\rm V}^{-1}$	
	$-e/m_{e}$	Electron specific charge	$-1.758820088\ 39$	$10^{11} \; \rm C \; kg^{-1}$	$10^7~\mathrm{emu~g^{-1}}$
	$F=N_A^e$	Faraday constant	9.64853365 21	$10^4~\mathrm{C~mol^{-1}}$	$10^3~{ m emu~mol^{-1}}$
	$\gamma_{\mathbf{p}}$	Gyromagnetic ratio of proton	2.675222005 63	$10^8 \; \rm s^{-1} \; T^{-1}$	$10^4~{\rm s}^{-1}~{\rm G}^{-1}$
		Proton magnetic shielding correction	0.000025694 14		
	G	Gravitational constant	6.67384 80	$10^{-11}\;\rm m^{3}\;kg^{-1}\;s^{-2}$	$10^{-8}\ \mathrm{cm^{-3}\ g^{-1}\ s^{-2}}$

	Symbol	Constant	Value	Units (SI)b	Units (cgs)b
	h	Planck constant	6.62606957 29	$10^{-34} \ { m J \ s}$	$10^{-27}~{ m erg~s}$
	$\hbar\!=\!h/2\pi$		1.054571726 47	$10^{-34} \ { m J \ s}$	$10^{-27}~{ m erg~s}$
	h/2e	Quantum of magnetic flux	2.067833758 46	$10^{-15} \; Wb$	$10^{-7}~\mathrm{G~cm^2}$
	$k=R/N_A$	Boltzmann constant	1.3806488 13	$10^{-23} \ \mathrm{J} \ \mathrm{K}^{-1}$	$10^{-16} \ {\rm erg} \ {\rm K}^{-1}$
	$\lambda_{\mathrm{C},e} {=} h/m_{e}c$	Compton wavelength of electron	2.4263102389 16	$10^{-12} \ m$	$10^{-10}\ \mathrm{cm}$
Apı	$\lambda_{C,p} = h/m_p c$	Compton wavelength of proton	1.32140985623 94	$10^{-15} \ m$	$10^{-13}\ \mathrm{cm}$
App–IIa–iii	$\lambda_{\mathrm{C,n}} {=} h/m_{\mathrm{n}} c$	Compton wavelength of neutron	1.3195909068 11	$10^{-15} \ m$	$10^{-13}\ \mathrm{cm}$
Ē:	m_{e}	Electron mass	$5.4857990946\ 22$	$10^{-4} \ u$	$10^{-4}\ \mathrm{u}$
	m_{H}	Mass of hydrogen atom	1.00782503207 10 ^(c)	u	u
	\boldsymbol{m}_{μ}	Muon mass	$0.1134289267\ 29$	u	u
	m_n	Neutron mass	1.00866491600 55	u	u
	m_{p}	Proton mass	1.007276466812 90	u	u
	$m_{\pi\pm}$	$\pi^{\pm} \; mass$	139.57018 35 ^(d)	MeV	
	$m_{\pi 0}^{}$	$\pi^0 \; mass$	$134.9766 \ 6^{(d)}$	MeV	

	Symbol	Constant	Value	Units (SI) ^b	Units (cgs) ^b		
	$\mu_B\text{=[c]e}\hbar/2m_ec$	Bohr magneton	9.27400968 20	$10^{-24}~{\rm J}~{\rm T}^{-1}$	$10^{-21} \; \rm erg \; G^{-1}$		
	μ_e/μ_B	Magnetic moment of electron	-1.00115965218076 27				
	μ_{μ}	in units of $\mu_{\rm B}$ Muon magnetic moment	-4.49044807 15	$10^{-26}\;J\;T^{-1}$	$10^{-23} \; \rm erg \; Gs^{-1}$		
	$\mu_N\text{=[c]e\hbar/2m}_pc$	Nuclear magneton	5.05078353 11	$10^{-27}\ J\ T^{-1}$	$10^{-24} \ \rm erg \ G^{-1}$		
-	N_A	Avogadro constant	6.02214129 27	$10^{23}\ {\rm mol^{-1}}$	$10^{23} \ \mathrm{mol^{-1}}$		
νρ-IIa-iv	R	Molar gas constant	8.3144621 75	$\rm J~mol^{-1}~K^{-1}$	$10^7 \ \rm erg \ mol^{-1} \ K^{-1}$		
	$R_{_{\infty}}\text{=}m_{_{e}}c\alpha^{2}/2h$	Rydberg constant for infinite mass	1.0973731568539 55	$10^7 \; m^{-1}$	$10^5~\mathrm{cm}^{-1}$		
	$r_e = \hbar \alpha / m_e c$	Classical e- radius	2.8179403267 27	$10^{-15} \ m$	$10^{-13} \ cm$		
	$\sigma = \atop (\pi^2/60) k^4/\hbar^3 c^2$	Stefan-Boltzmann constant	5.670373 21	$^{10^{-8}Wm^{-2}K^{-4}}_{erg\;cm^{-2}\;s^{-1}K^{-4}}$	10^{-5}		
	$u = 1/N_A$	Atomic mass unit	1.66053873 13 ^(c) 931.494013 37 ^(c)	$_{\rm MeV}^{10^{-27}~kg}$	$10^{-24} \; {\rm g}$		

 $1~\text{year (sidereal)} = 365.25636~\text{days} = 3.1558150 \times 10^7~\text{s},~1~\text{year (tropical)} = 365.242~\text{days} = 3.15569 \times 10^7~\text{s}$

- a) P.J. Mohr, B.N. Taylor, and D.B. Newell Jl. of Phys. and Chem. Ref. Data 37, 1187 (2008); Rev. Mod. Phys. 80, 633 (2008). Data taken from http://physics.nist.gov/constants.
- b) Quantities are given in the International System of Units (SI) except for the atomic mass unit; this unit is not part of the SI.
- c) The AME2003 atomic mass evaluation, G. Audi, A.H. Wapstra, and C. Thibault, Nuclear Physics A729, 337 (2003)
- d) Review of Particle Physics, C. Amsler, et al., Physics Letters B667, 1 (2008); http://pdg.lbl.gov/
- e) Speed of light in vacuum is an exact constant as a result of redefinition of the meter [P. Giacomo, Metrologia 20, 25 (1984)].
- f) General Section by H.L. Anderson and E.R. Cohen in A Physicist's Desk Reference, H.L. Anderson, Editor-in-Chief, AIP, New York (1989)

Appendix-III Energy-Equivalent Factors†

units	erg	eV	s^{-1}	${ m cm^{-1}}$
erg	1.0	$1.602176565\ 35{\times}10^{-12}$	$6.62606957\ 29{ imes}10^{-27}$	1.986445684 88×10 ⁻¹⁶
eV	$6.24150934~14\!\!\times\!\!10^{11}$	1.0	$4.135667516~91\!\!\times\!\!10^{-15}$	$1.239841930\ 27{\times}10^{-4}$
s^{-1}	$1.509190311\ 67\!\!\times\!\!10^{26}$	$\scriptstyle 2.417989348\ 53\times 10^{14}$	1.0	$2.99792458 \times \! 10^{10}$
${ m cm}^{-1}$	$5.03411701\ 22{\times}10^{15}$	$8.06554429\ 18{\times}10^3$	$\scriptstyle{3.335640951\times10^{-11}}$	1.0
K	$7.2429716\ 22{\times}10^{15}$	$1.1604519~11\!\!\times\!\!10^4$	$4.7992434~44{\times}10^{-11}$	1.4387770 13
g	$1.112650056\!\!\times\!\!10^{-21}$	$1.782661845\ 39{\times}10^{-33}$	$7.37249668\ 33{\times}10^{-48}$	$2.210218902\ 98{\times}10^{-37}$
u	$6.70053662\ 53\!\!\times\!\!10^2$	$1.073544150\ 24\!\!\times\!\!10^{-9}$	$4.4398216689~31\!\!\times\!\!10^{-2}$	4 1.33102505120 94×10 $^{-13}$
	(1 cal = 4.1840 J, 1 J	= 10 ⁷ erg)		

Note: In the above table all entries in the same column are equivalent. The various units of energy are connected as follows:

1 erg =
$$1/c^2$$
 g = $1/(mc^2)$ u = $1/(hc)$ cm⁻¹ = $1/h$ s⁻¹ = $1/k$ 0 K = $1/e$ eV

$$Examples: 1 \ eV = 1.602.. \times 10^{-12} \ erg \ = 1.073.. \times 10^{-9} \ u = 3.829.. \times 10^{-20} \ cal$$

$$e/h = 2.417..\times10^{14} \text{ s}^{-1}, e/(hc) = 8.0654..\times10^{3} \text{ cm}^{-1}$$

$${\rm e/c^2} = 1.782..\times 10^{-33}~{\rm g},~{\rm e/m\,c^2} = 1.073..\times 10^{-9}~{\rm u}$$

$$e/k = 1.160.. \times 10^4 \text{ K}$$

Appendix-III Energy-Equivalent Factors†

units	deg K	g	u
erg	1.3806488 13×10 ⁻¹⁶	$8.987551787 \times 10^{20}$	1.492417954 66×10 ⁻³
eV	8.6173324 78×10 ⁻⁵	$5.60958885~12{\times}10^{32}$	$9.31494061\ 21\!\!\times\!\!10^8$
s^{-1}	2.0836618 19×10 ¹⁰	$1.356392608~60\!\!\times\!\!10^{47}$	$2.2523427168\ 16{\times}10^{23}$
cm^{-1}	6.9503476 63×10 ⁻¹	$4.52443873\ 20{\times}10^{36}$	$7.5130066042\ 53{\times}10^{12}$
K	1.0	$^{6.5096582~59\times10^{36}}$	$1.08095408~98\!\!\times\!\!10^{13}$
g	1.5361790 <i>14</i> ×10 ⁻³⁷	1.0	$1.660538921\ 73{\times}10^{-24}$
u	9.2510868 <i>84</i> ×10 ⁻¹⁴	$\scriptstyle 6.02214129\ 27\times 10^{23}$	1.0
	!		

Note: In the above table all entries in the same column are equivalent.

Example: $1u \equiv 1.492.. \times 10^{-3} \text{ erg} = 9.314.. \times 10^{8} \text{ eV} = 3.567.. \times 10^{-11} \text{ cal, etc.}$

[†] From CODATA Values of Fundamental Physical Constants: 2006, P.J. Mohr, B.N. Taylor, and D.B. Newell, Jour. of Phys. and Chem. Ref. Data 37, 1187 (2008), Rev. Mod. Phys. 80, 633 (2008). Data taken from http://physics.nist.gov/constants (Aug, 2011)

Appendix-IV Observed Λ Hypernuclides†

El	A	J(g.s.) B _A (g.s.)	Excited states (MeV)
н		1/2+	0.13 5 1+	
	4	0+	2.04 4	1.05 4 1+
He		0+	$2.39 \ 3$	1.15 4
		1/2+	3.12 2	
	6		4.18 10	
	8		7.16 70	
Li	6 7	1/2+a	5.58 3	0.692 4 3/2+,2.050 1 5/2+, 2.521 2 7/2+,3.878 5 1/2+
	8	1-	6.80 3	2.0212 1/21,0.010 0 1/21
	9		8.50 12	
Re	7	1/2+	5.16 8	
	8	1,2.	6.84 5	
	9	1/2+	6.71 4	3.024 4 5/2+, 3.067 4 3/2+
	10		9.1122	·
В	9		8.29 18	
	10		8.89 12	2.5 2,6.2 2,9.5 3
	11		10.245	0.263 1 7/2+, 1.483 1 1/2+,
				1.987 1 3/2+
	12	1-	11.376	
C	12	1-	10.80 18 ^b	0.161 1 2-, 2.832 3 1-
	13	1/2+	11.69 12	4.88 2 3/2+,10.83 6 3/2-,
				10.98 6 1/2-
	14		$12.17\ 33$	
N	14	- /- 0		
	15	3/2+c		2.268 1 1/2+, 4.229 1 1/2+,
	16		13.76 16 ^d	4.710 1 3/2+
_				
o	16	0-	12.425	0.026 2 1-, 6.562 2 1-, 6.786 6 2-
	18			0.780 0 Z=
Al				
AI				
	28	е		
Si			16.62	$B\Lambda = 7.0 \ 2 \ (p)$
\mathbf{s}	32			
Ca	40			
v	51		20.02	BA=11.2 3 (p), 2.6 3 (d)
Fe	56			
v	89		23.15	BA=16.5 14 (p), 9.1 13 (d),
				2.3 12 (f)
	139		24.5 12	BΛ=20.4 6 (p), 14.3 6 (d), 8.0 6 (f), 1.6 6 (g)
Pb	208		26.3 8	BΛ=21.9 6 (p), 16.8 7 (d), 11.7 6 (f), 6.6 6 (g)
Bi	209			32,40

App-IV-i

Appendix-IV Observed A Hypernuclides†

† This table has been prepared by **D.J. Millener** (BNL). The Λ binding energies (s_{∇} single-particle energies), BA, for $A\!\leq\!14$ come from emulsion data compiled by D.H. Davis and J. Pniewski, $Contemp.\ Phys.\ 27,\ 91\ (1986).$ Most of the rest of the data comes from a review by O. Hashimoto and H Tamura, $Prog.\ Part.\ Nucl.\ Phys.\ 57,\ 564\ (2006),$ which lists all counter experiments for hypernuclei up to 2004. The BA values for A>16 from (π_+K_+) reactions, as do the Λ single-particle binding energies for higher orbits (listed by their orbital angular momentum p, d, f, or g).

The precise excitation energies given for bound excited states of hypernuclei from A=7 to A=16 come from γ -rays measured in coincidence with the outgoing meson in $(\pi +, K +)$ or $(K -, \pi -)$ reactions by a Ge detector array (NaI for A=13; for the latest results, see H. Tamura et al., Nucl. Phys. A835, 3 (2010). Many particle unbound states of these nucei are seen in $(\pi +, K +), (K -, \pi -)$, and (e, e'K +) reactions.

In addition to these single-A hypernuclides, several instances of double-A species have been reported, including the important case of $^6_{\Lambda\Lambda}$ He, as reviewed by K. Nakazawa it Nucl. Phys. A835, 207 (2010).

- a J. Sasao it et al., Phys. Lett. B579, 258 (2004).
- b P. Dluzewski it et al., Nucl. Phys. A484, 520 (1988)1mm]
- c M. Agnello it et al., Phys. Lett. B681, 139 (2009 1mm]
- d F. Cusanno it et al., Phys. Rev. Lett. 103, 202501 (200901mm]
- e O. Hashimoto it Nucl. Phys. A835, 121 (2010).

Half-lives of fully-ionized (bare) and highly-charged atoms†

El	A	T1/2(bare)	T1/2(neutral) D	ecay mod	e Ref
Ne	19	18.5(6) s #	17.22(2) s	ε	[1]
Mn	52m	22.7(30) m	21.1(2) m	ϵ ,IT	[2]
Fe	52	12.5(+15-12) h	8.275(8) h	ε	[2]
	53	8.5(3) m	8.51(2) m	ε	[2]
	53m	2.48(5) m	2.54(2) m	IT	[2]
Sb	133m	>60 µs	16.54(19) µs	IT?	[15]
Се	125m	2.2(+11-1) m	4.4 s (est.)	IT	[3]
Pr	140	7.3(4) m	3.39(1) m	ε	[5]
		3.04(9) m &			[5]
		3.84(17) m \$			[5]
Pm	142	56.4(32) s	40.5(5) s	ε	[6]
		39.2(7) s &			[6]
		39.6(14) s \$			[6]
Tb	144m	12(2) s	4.25(15) s	ϵ ,IT	[7]
Dу	149m	11(1) s	0.490(15) s	IT,ε	[7]
	163	47(+5-4) d	stable	β-	[8]
Ho	163	beta-stable	4570(25) y	ε	[8]
\mathbf{Er}	151m	19(3) s	0.58(2) s	IT,ε	[7]
$_{\rm Hf}$	183m	10(+48-5) s &		$IT,\beta-?$	[16]
	184m1	1.9(+12-7) m	48(10) s	IT	[16]
	184m2	12(+10-4) m		$IT,\beta-?$	[16]
	186m	>20 s		$IT,\beta-?$	[16]
Ta	168	5.2(7) m	2.0(1) m	ε	[4]
	186m	3.4(+24-14) m	& 1.54(5) m	IT,β-?	[16]
	187	2.3(6) m		β-	[16]
	187m1	22(9) s		$IT,\beta-?$	[16]
	187m2	>5 m		$IT,\beta-?$	[16]
Re	187	32.9(20) y	4.33(7)×10 ¹⁰ y		[9]
	192m	61(+40-20) s		IT	[18]
Hg	205	5.61(9) m	5.14(9) m	β-	[11]
Tl	207	4.25(19) m	4.77(3) m	β-	[10]
	207	4.72(19) m	4.77(3) m	β-	[11]
	207m	1.47(32) s	1.33(11) s	IT	[12]
_	213	1.7(+81-8) m		β-	[14]
Po	221	1.9(+10-5) m @		β-	[14]
	222	2.4(+116-11) m		β-	[14]
At	224	1.3(+23-4) m @	= .	β-	[14]
Ac	234	45(2) s \$	44(7) s	β-	[13]
	235	62(4) s &	6% longer (est.		[13]
	236	1.2(+58-6) m		β–	[14]

- & H-like
 \$ He-like
 # 11% contamination by beta-decay of O-15 is suggested [1].
 @ Can be a mixture of bare, H-like and He-like states [14].

† Table prepared by Yuri A. Litvinov (GSI, Darmstadt and MPI, Heidelberg) and Balraj Singh (McMaster Univ.) September 12, 2011, on the basis of review article [17] and other papers cited here for fully-ionized (bare) or highly-charged (H-like, He-like) atoms.

Half-lives of fully-ionized (bare) and highly-charged atoms†

- [1] H. Geissel et al., Phys. Rev. Lett. 68 (1992) 3412
- [2] H. Irnich et al., Phys. Rev. Lett. 75 (1995) 4182
- [3] B. Sun et al., Eur. Phys. J. A31 (2007) 393
- [4] F. Attallah et al., Nucl. Phys. A 701 (2002) 561c
- [5] Yu.A. Litvinov et al., Phys. Rev. Lett. 99 (2007) 262501
- [6] N. Winckler et al., Phys. Lett. B679 (2009) 36
- [7] Yu.A. Litvinov et al., Phys. Lett. B 573 (2003) 80
- [8] M. Jung et al., Phys. Rev. Lett. 69 (1992) 2164
- [9] F. Bosch et al., Phys. Rev. Lett. 77 (1996) 5190
- [10] T. Ohtsubo et al., Phys. Rev. Lett. 95 (2005) 052501
- [11] J. Kurcewicz et al., Acta Phys. Pol. B41 (2010) 525
- [12] F. Bosch et al., Int. J. Mass Spectrometry 251 (2006) 212
- [13] L. Chen, Ph.D. Thesis, Justus-Liebig University, Giessen (2008)
- [14] L. Chen et al., Phys. Lett. B 691 (2010) 234
- [15] B. Sun et al., Phys. Lett. B 688 (2010) 294
- [16] M. Reed et al., Phys. Rev. Lett. 105 (2010) 172501
- [17] Y.A. Litvinov and F. Bosch: Rep. Prog. Phys. 74 (2011) 016301
- [18] M. Reed et al., J. Phys. Conf. Series (to be published)

Radioactive Decay Chains in Nature

The following three radioactive decay chains occur in nature:

The Thorium Series:

 $\begin{array}{c} ^{232}{\rm Th}(\alpha)^{228}{\rm Ra}(\beta^-)^{228}{\rm Ac}(\beta^-)^{228}{\rm Th}(\alpha) \\ ^{224}{\rm Ra}(\alpha)^{220}{\rm Rn}(\alpha)^{216}{\rm Po}(\alpha)^{212}{\rm Pb}(\beta^-) \\ ^{212}{\rm Bi}(\beta^-)^{212}{\rm Po}(\alpha)^{208}{\rm Pb}, \\ ^{212}{\rm Bi}(\alpha)^{208}{\rm Tl}(\beta^-)^{208}{\rm Pb} \end{array}$

The Uranium Series:

 $^{238}U(\alpha)^{234}Th(\beta^{-})^{234}Pa(\beta^{-})^{234}U(\alpha)$ $\begin{array}{l} ^{238}\mathrm{U}(\alpha)^{234}\mathrm{Th}(\beta^{-})^{234}\mathrm{Pa}(\beta^{-})^{294}\mathrm{U}(\alpha) \\ ^{230}\mathrm{Th}(\alpha)^{226}\mathrm{Ra}(\alpha)^{222}\mathrm{Rn}(\alpha)^{218}\mathrm{Po}(\beta^{-}) \\ ^{218}\mathrm{At}(\alpha)^{214}\mathrm{Bi}(\beta^{-})^{214}\mathrm{Po}(\alpha)^{210}\mathrm{Pb}(\beta^{-}), \\ ^{218}\mathrm{Po}(\alpha)^{214}\mathrm{Pb}(\beta^{-})^{214}\mathrm{Bi}(\alpha)^{210}\mathrm{Tl}(\beta^{-}) \\ ^{210}\mathrm{Pb}(\beta^{-})^{210}\mathrm{Bi}(\alpha)^{206}\mathrm{Tl}(\beta^{-})^{206}\mathrm{Pb}, \\ ^{210}\mathrm{Pb}(\alpha)^{206}\mathrm{Hg}(\beta^{-})^{206}\mathrm{Tl}(\beta^{-})^{206}\mathrm{Pb}, \\ ^{210}\mathrm{Bi}(\beta^{-})^{210}\mathrm{Po}(\alpha)^{206}\mathrm{Pb} \end{array}$

The Actinium Series

The Actinium Series $^{235}U(\alpha)^{231}Th(\beta^-)^{231}Pa(\alpha)^{227}Ac(\beta^-)$ $^{227}Th(\alpha)^{223}Ra(\alpha),^{227}Ac(\alpha)^{223}Fr(\beta^-)$ $^{223}Ra(\alpha)^{219}Rn(\alpha),^{223}Fr(\alpha)^{219}At(\beta^-)$ $^{219}Rn(\alpha)^{215}Po(\alpha),^{219}At(\alpha)^{215}Bi(\beta^-)$ $^{215}Po(\beta^-)^{215}At(\alpha)^{211}Bi(\beta^-)^{211}Po(\alpha)$ $^{207}Pb,^{215}Po(\alpha)^{211}Pb(\beta^-)^{211}Bi(\alpha)$ $^{207}Db,^{207}D$ $^{207}\text{Tl}(\beta^{-})^{207}\text{Pb}$

Radioactive Nuclides in Nature

		Decay
Nuclide	Half-life	Modes
1 H 3	12.32 y	β
4 Be 7	53.24 d	ε
6 C 14	5700 y	β
19 K 40	1.248×10 ⁹ y	β
23 V 50	$>2.1\times10^{17}$ y	ε, β-
37 Rb 87	4.81×10 ¹⁰ y	β-
48 Cd 113	8.00×10 ¹⁵ y	β_
49 In 115	4.41×10 ¹⁴ y	β_
52 Te 123	>9.2×10 ¹⁶ y	ε
57 La 138	1.02×10 ¹¹ y	ε, β–
60 Nd 144	$2.29 \times 10^{15} \text{ v}$	α
62 Sm 147	1.060×10 ¹¹ y	α
148	7×10 ¹⁵ y	α
64 Gd 152	1.08×10 ¹⁴ y	α
71 Lu 176	$3.76 \times 10^{10} \text{ y}$	β
72 Hf 174	$2.0 \times 10^{15} \text{ y}$	α
73 Ta 180m	$>1.2\times10^{15} \text{ y}$	ε, β-
75 Re 187	$4.33 \times 10^{10} \text{ y}$	β-, α
76 Os 186	$2.0 \times 10^{15} \text{ y}$	α
78 Pt 190	$6.5 \times 10^{11} \text{ y}$	α
81 Tl 206	4.202 m	β–
207	4.77 m	β-
208	3.053 m	β-
210	1.3 m	β-, β-n
82 Pb 210 211	22.2 y 36.1 m	β-, α
211	10.64 h	β– β–
214	26.8 m	β_
83 Bi 210	5.012 d	β-, α
211	2.14 m	α, β-
212	1.009 h	β-, α
214	19.9 m	β-, α
215	7.6 m	β–
84 Po 210 211	138.4 d	α
211	0.516 s 0.299 µs	α
214	164.3 μs	α
215	1.781 ms	α, β–
216	0.145 s	α
218	3.098 m	α, β–
85 At 215	0.1 ms	α
218	1.5 s	α, β–
219	56 s	α, β–
86 Rn 219 220	3.96 s 55.6 s	α
220	99.6 S	Œ

App-Vb

Radioactive Nuclides in Nature

Nuclide	Half-life	Decay Modes
86 Rn 222	3.823 d	α
87 Fr 223	22 m	β-, α
88 Ra 223 224 226 228	11.43 d 3.632 d 1600 y 5.75 y	$\begin{array}{c} \alpha , ^{14}C \\ \alpha , ^{14}C \\ \alpha , ^{14}C \\ \beta - \end{array}$
89 Ac 227 228	21.77 y 6.15 h	$\beta-$, α $\beta-$
90 Th 227 228 230 231 232 234 91 Pa 231 234	$\begin{array}{c} 18.68 \text{ d} \\ 1.912 \text{ y} \\ 7.54 \times 10^4 \text{ y} \\ 1.063 \text{ d} \\ 1.40 \times 10^{10} \text{ y} \\ 24.1 \text{ d} \\ 3.276 \times 10^4 \text{ y} \\ 6.7 \text{ h} \end{array}$	α α , ^{20}O α , Ne, SF β -, α α , SF β - α , SF
92 U 234 235 238	$2.455 \times 10^{5} \text{ y}$ $7.04 \times 10^{8} \text{ y}$ $4.468 \times 10^{9} \text{ y}$	α , SF, Mg, Ne α , SF, Mg, Ne α , SF

Li 3 Na 11

IA IIA IIIB IVB VB VIB VIIB --- VIII--- IB IIB IIIA IVA VA VIA VIIA VIIIA 2 B C N O F 5 6 7 8 9 Al 13 Si P S Cl 14 15 16 17 Ge As Se Br 32 33 34 35 Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 56 57- 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Ra ** Rf Db Sg Bh Hs Mt Ds Rg Cn 88 89- 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Lanthanides
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Actinides
89 90 91 92 93 94 495 96 97 98 99 100 101 102 103

Appendix-VIa Periodic Table of Elements

Appendix-VIb List of Elements - Alphabetical Name Symbol Z Name Symbol Z

Name	Symbol	Z	Name	Symbol	Z
Actinium	Ac	89	Meitnerium	Μt	109
Aluminum	Al	13	Mendelevium	Md	101
Americium	Am	95	Mercury	Hg	80
Antimony	Sb	51	Molybdenum	Mo	42
Argon	Ar	18	Neodymium	Nd	60
Arsenic	As	33	Neon	Ne	10
Astatine	At	85	Neptunium	Np	93
Barium	Ba	56	Nickel	Ni	28
Berkelium	Bk	97	Niobium	Nb	41
Beryllium	Be	4	Nitrogen	N	7
Bismuth	Bi	83	Nobelium	No	102
Bohrium	Bh	107	Osmium	Os	76
Boron	В	5	Oxygen	О	8
Bromine	Br	35	Palladium	Pd	46
Cadmium	Cd	48	Phosphorus	P	15
Calcium	Ca	20	Platinum	Pt	78
Californium	Cf	98	Plutonium	Pu	94
Carbon	C	6	Polonium	Po	84
Cerium	Ce	58	Potassium	K	19
Cesium	Cs Cl	55 17	Praseodymium	Pr	59
Chlorine Chromium	Cr	24	Promethium Protactinium	Pm Pa	61 91
Cobalt	Co	27	Radium	Pa Ra	88
Copernicium	Cn	112	Radon	ка Rn	86 86
Copper	Cu	29	Roentgenium	Rg	111
Curium	Cm	96	Rhenium	Re	75
Darmstadtium	Ds	110	Rhodium	Rh	45
Dubnium	Db	105	Rubidium	Rb	37
Dysprosium	Dy	66	Ruthenium	Ru	44
Einsteinium	Es	99	Rutherfordium	Rf	104
Erbium	Er	68	Samarium	Sm	62
Europium	En	63	Scandium	Sc	21
Fermium	Fm	100	Selenium	Se	34
Fluorine	F	9	Seaborgium	Sg	106
Francium	Fr	87	Silicon	Si	14
Gadolinium	Gd	64	Silver	Ag	47
Gallium	Ga	31	Sodium	Na	11
Germanium	Ge	32	Strontium	Sr	38
Gold	Au	79	Sulfur	S	16
Hafnium	Hf	72	Tantalum	Ta	73
Hassium	Hs	108	Technetium	Tc	43
Helium	He	2	Tellurium	Te	52
Holmium	Ho	67	Terbium	Tb	65
Hydrogen	H	1	Thallium	Tl	81
Indium	In	49	Thorium	Th	90
Iodine	I	53	Thulium	Tm	69
Iridium	Ir	77	Tin	Sn	50
Iron	Fe Kr	26	Titanium	Ti W	22 74
Krypton	Kr La	36 57	Tungsten	U	92
Lanthanum Lawrencium	La Lr	103	Uranium Vanadium	V	23
Lawrencium	Lr Ph	82	Vanadium Xenon	V Xe	54
Leau Lithium	Li	82 3	Xenon Ytterbium	Yb	70
Lutetium	Lu	3 71	Yttrium	Y	39
Magnesium	Mg	12	Zinc	Zn	30
Manganese	Mn	25	Zirconium	Zr	40
			-VIb		
		Арр	- v 1D		

Appendix-VIc List of Elements - by Z

Z Symbol Name			ZS	Z Symbol Name		
1	H	Hydrogen	57	La	Lanthanum	
2	He	Helium	58	Ce	Cerium	
3	Li	Lithium	59	Pr	Praseodymium	
4	Ве	Beryllium	60	Nd	Neodymium	
5	В	Boron	61	Pm	Promethium	
6	C	Carbon	62	Sm	Samarium	
7	N	Nitrogen	63	Eu	Europium	
8	O	Oxygen	64	Gd	Gadolinium	
9	F	Fluorine	65	Tb	Terbium	
10	Ne	Neon	66	Dy	Dysprosium	
11	Na	Sodium	67	Ho	Holmium	
12	Mg	Magnesium	68	Er	Erbium	
13	Al	Aluminum	69	Tm	Thulium	
14	Si	Silicon	70	Yb	Ytterbium	
15	P	Phosphorus	71	Lu	Lutetium	
16 17	S	Sulfur	72 73	Hf Ta	Hafnium	
	C1	Chlorine			Tantalum	
18 19	Ar K	Argon	74 75	W Re	Tungsten	
20	Ca	Potassium Calcium	76	Os	Rhenium Osmium	
21	Sc	Scandium	77	Us Ir	Iridium	
22	Ti	Titanium	78	Pt.	Platinum	
23	V	Vanadium	79	Au	Gold	
24	Čr	Chromium	80	Hg	Mercury	
25	Mn	Manganese	81	TI	Thallium	
26	Fe	Iron	82	Pb	Lead	
27	Co	Cobalt	83	Bi	Bismuth	
28	Ni	Nickel	84	Po	Polonium	
29	Cu	Copper	85	At	Astatine	
30	Zn	Zinc	86	Rn	Radon	
31	Ga	Gallium	87	Fr	Francium	
32	Ge	Germanium	88	Ra	Radium	
33	As	Arsenic	89	Ac	Actinium	
34	Se	Selenium	90	Th	Thorium	
35	$_{\rm Br}$	Bromine	91	Pa	Protactinium	
36	Kr	Krypton	92	U	Uranium	
37	Rb	Rubidium	93	Np	Neptunium	
38	Sr	Strontium	94	Pu	Plutonium	
39	Y	Yttrium	95	Am	Americium	
40	\mathbf{Zr}	Zirconium	96	Cm	Curium	
41	Nb	Niobium	97	Bk	Berkelium	
42	Мо	Molybdenum	98	Cf	Californium	
43	Тс	Technetium	99	Es	Einsteinium	
44	Ru	Ruthenium		Fm	Fermium	
45	Rh	Rhodium	101		Mendelevium	
46	Pd	Palladium	102		Nobelium	
47	Ag	Silver	103		Lawrencium	
48	Cd	Cadmium	104		Rutherfordium	
49	In	Indium	105		Dubnium	
50 51	Sn Sb	Tin	106		Seaborgium	
52	Sb Te	Antimony	107 108		Bohrium Hassium	
53	Te I	Tellurium Iodine	108		Hassium Meitnerium	
53 54	I Xe	Xenon	110		Meitnerium Darmstadtium	
55	Cs	Aenon Cesium				
56	Ba	Barium	111 112		Roentgenium Copernicium	
50	ыа	Darram .	112	OII	Cobermeram	

App-VIc

Additional Copies Of These Wallet Cards May Be Obtained From

National Nuclear Data Center Brookhaven National Laboratory Building 197D P.O. Box 5000 Upton, New York 11973-5000 U.S.A.

> E-mail: nndc@bnl.gov Tel: (631) 344-2902 Fax: (631) 344-2806