

HEINO, Maarit
PETERSON, Part
SCOTT, Hamish
ANTONARAKIS, Stylianos
LALIOTI, Maria D.
SHIMIZU, Nobuyoshi D.
KUDOH, Jun D.

KUDOH, Jun D. <120> NOVEL GENE DEFECTIVE IN APECED AND ITS USE <130> u 012653-9 <140> 09/508,658 2000-11-03 <141> <160> 41 <170> PatentIn version 3.2 <210> 1 <211> 2036 <212> DNA <213> HOMO SAPIENS <220> <221> CDS <222> (137)..(1771) <223> /product="AIR-1" <220> <221> mat_peptide <222> (1)..(545) <223> /product="AIR-1" <400> 1 60 aqaccqqqqa qacqqqcqqq cqcacaqccq qcqcqqaqqc cccacaqccc cqccqqqacc cgaggccaag cgaggggctg ccagtgtccc gggacccacc gcgtccgccc cagccccggg 120 teceegegee caeece atg geg acg gae geg eta ege egg ett etg agg 172 Met Ala Thr Asp Ala Ala Leu Arg Arg Leu Leu Arg ctg cac cgc acg gag atc gcg gtg gcc gtg gac agc gcc ttc cca ctg 220 Leu His Arg Thr Glu Ile Ala Val Ala Val Asp Ser Ala Phe Pro Leu 15 20

ctg cac gcg ctg gct gac cac gac gtg gtc ccc gag gac aag ttt cag

Leu	His 30	Ala	Leu	Ala	Asp	His 35	Asp	Val	Val	Pro	Glu 40	Asp	Lys	Phe	Gln	
				ctg Leu												316
				tgg Trp 65												364
				ctg Leu												412
				ctg Leu												460
ccc Pro	cgg Arg 110	aag Lys	Gly aaa	agg Arg	aag Lys	ccc Pro 115	ccg Pro	gcc Ala	gtc Val	ccc Pro	aag Lys 120	gct Ala	ttg Leu	gta Val	ccg Pro	508
				ccc Pro												556
				gcc Ala 145												604
				aag Lys												652
				ctc Leu												700
				gcc Ala												748
gcc Ala 205	gtg Val	gag Glu	ggg Gly	atc Ile	ctc Leu 210	atc Ile	cag Gln	cag Gln	gtg Val	ttt Phe 215	gag Glu	tca Ser	ggc Gly	ggc Gly	tcc Ser 220	796
aag Lys	aag Lys	tgc Cys	atc Ile	cag Gln 225	gtt Val	ggc Gly	Gly 999	gag Glu	ttc Phe 230	tac Tyr	act Thr	ccc Pro	agc Ser	aag Lys 235	ttc Phe	844
gaa Glu	gac Asp	tcc Ser	ggc Gly 240	agt Ser	ggg Gly	aag Lys	aac Asn	aag Lys 245	gcc Ala	cgc Arg	agc Ser	agc Ser	agt Ser 250	ggc Gly	ccg Pro	892

•

							gcc Ala 265		940
							gcc Ala		988
							gac Asp		1036
							ggc Gly		1084
							gag Glu		1132
							gtc Val 345		1180
							ccc Pro		1228
							gta Val		1276
							gtc Val		1324
							ctg Leu		1372
							cag Gln 425		1420
							acg Thr		1468
	_		_	 _			tgc Cys		1516
							aga Arg		1564

														agc Ser		1612
														cac His		1660
														cac His		1708
														ccg Pro		1756
	ccc Pro				tgad	ccca	aga t	ggc	eggga	ac at	gcag	getei	ga1	tgaga	agag	1811
tgc	tgaga	aag q	gacad	cctc	ct to	cctca	agtco	tgg	gaago	ccgg	ccg	gctgg	gga 1	tcaag	gaaggg	1871
gac	agcg	cca d	cctct	ttgt	ca gt	gct	egget	gta	aaaca	agct	ctgt	gtt	ct q	3333	acacca	1931
gcc	atcai	tgt (gccts	ggaaa	at ta	aaac	cctgo	c cc	cact	ctc	tact	ctg	gaa q	gtcc	ccggga	1991
gcc	tctc	ctt g	gcctg	ggtga	ac ct	cacta	aaaa	a tat	caaaa	aatt	agct	g				2036

<210> 2

<211> 545

<212> PRT

<213> HOMO SAPIENS

<400> 2

Met Ala Thr Asp Ala Ala Leu Arg Arg Leu Leu Arg Leu His Arg Thr 1 5 10 15

Glu Ile Ala Val Ala Val Asp Ser Ala Phe Pro Leu Leu His Ala Leu 20 25 30

Ala Asp His Asp Val Val Pro Glu Asp Lys Phe Gln Glu Thr Leu His 35 40 45

Leu Lys Glu Lys Glu Gly Cys Pro Gln Ala Phe His Ala Leu Leu Ser 50 55 60

Trp Leu 65	Leu I	Thr Gl	n Asp 70	Ser	Thr	Ala	Ile	Leu 75	Asp	Phe	Trp	Arg	Val 80
Leu Phe	Lys A	Asp Ty 85		Leu	Glu	Arg	Tyr 90	Gly	Arg	Leu	Gln	Pro 95	Ile
Leu Asp		Phe Pr 100	o Lys	Asp	Val	Asp 105	Leu	Ser	Gln	Pro	Arg 110	Lys	Gly
Arg Lys	Pro F 115	Pro Al	a Val	Pro	Lys 120	Ala	Leu	Val	Pro	Pro 125	Pro	Arg	Leu
Pro Thr 130		Arg Ly	s Ala	Ser 135	Glu	Glu	Ala	Arg	Ala 140	Ala	Ala	Pro	Ala
Ala Leu 145	Thr F	Pro Ar	g Gly 150	Thr	Ala	Ser	Pro	Gly 155	Ser	Gln	Leu	Lys	Ala 160
Lys Pro	Pro I	Lys Ly 16		Glu	Ser	Ser	Ala 170	Glu	Gln	Gln	Arg	Leu 175	Pro
Leu Gly		31y I1 180	e Gln	Thr	Met	Ser 185	Ala	Ser	Val	Gln	Arg 190	Ala	Val
Ala Met	Ser S 195	Ser Gl	y Asp	Val	Pro 200	Gly	Ala	Arg	Gly	Ala 205	Val	Glu	Gly
Ile Leu 210		Gln Gl	n Val	Phe 215	Glu	Ser	Gly	Gly	Ser 220	Lys	Lys	Cys	Ile
Gln Val 225	Gly G	Gly Gl	u Phe 230	Tyr	Thr	Pro	Ser	Lys 235	Phe	Glu	Asp	Ser	Gly 240
Ser Gly	Lys A	Asn Ly 24		Arg	Ser	Ser	Ser 250	Gly	Pro	Lys	Pro	Leu 255	Val
Arg Ala		Gly Al 260	a Gln	Gly	Ala	Ala 265	Pro	Gly	Gly	Gly	Glu 270	Ala	Arg

Leu Gly Gln Gln Gly Ser Val Pro Ala Pro Leu Ala Leu Pro Ser Asp

- Pro Gln Leu His Gln Lys Asn Glu Asp Glu Cys Ala Val Cys Arg Asp 290 295 300
- Gly Gly Glu Leu Ile Cys Cys Asp Gly Cys Pro Arg Ala Phe His Leu 305 310 315 320
- Ala Cys Leu Ser Pro Pro Leu Arg Glu Ile Pro Ser Gly Thr Trp Arg 325 330 335
- Cys Ser Ser Cys Leu Gln Ala Thr Val Gln Glu Val Gln Pro Arg Ala 340 345 350
- Glu Glu Pro Arg Pro Gln Glu Pro Pro Val Glu Thr Pro Leu Pro Pro 355 360 365
- Gly Leu Arg Ser Ala Gly Glu Glu Val Arg Gly Pro Pro Gly Glu Pro 370 375 380
- Leu Ala Gly Met Asp Thr Thr Leu Val Tyr Lys His Leu Pro Ala Pro 385 390 395 400
- Pro Ser Ala Ala Pro Leu Pro Gly Leu Asp Ser Ser Ala Leu His Pro 405 410 415
- Leu Leu Cys Val Gly Pro Glu Gly Gln Gln Asn Leu Ala Pro Gly Ala 420 425 430
- Arg Cys Gly Val Cys Gly Asp Gly Thr Asp Val Leu Arg Cys Thr His
 435
 440
 445
- Cys Ala Ala Ala Phe His Trp Arg Cys His Phe Pro Ala Gly Thr Ser 450 455 460
- Arg Pro Gly Thr Gly Leu Arg Cys Arg Ser Cys Ser Gly Asp Val Thr 465 470 475 480
- Pro Ala Pro Val Glu Gly Val Leu Ala Pro Ser Pro Ala Arg Leu Ala 485 490 495
- Pro Gly Pro Ala Lys Asp Asp Thr Ala Ser His Glu Pro Ala Leu His

500 505 510

Arg Asp Asp Leu Glu Ser Leu Leu Ser Glu His Thr Phe Asp Gly Ile

520 515 Leu Gln Trp Ala Ile Gln Ser Met Ala Arg Pro Ala Ala Pro Phe Pro 535 530 Ser 545 <210> 3 <211> 1545 <212> DNA <213> HOMO SAPIENS <220> <221> CDS <222> (237)..(1283) <220> <221> mat_peptide <222> (1)..(348) <223> /product="AIR-2" <400> 3 agagaaagtg aggtcttctc aggctcttaa gagcatggcg tttggtccag gctgtacccg 60 ctgctctcag ctgggcccgt gggtgggccg ggcgcccctg ctatagccag gaggtcaagg 120 atccactggg aatgccatgc tcatctttcg tccccagcat ggtttcttaa tggggtagaa 180 gcaggtcggg agagacctcc ctgggcctgg ccccactgcc ctgtgaggaa gggttc atg 239 Met 1 tgg ttg gtg tac agt tcc ggg gcc cct gga acg cag cct gca aga 287 Trp Leu Val Tyr Ser Ser Gly Ala Pro Gly Thr Gln Gln Pro Ala Arg aac cgg gtt ttc ttc cca ata ggg atg gcc ccg ggg ggt gtc tgt tcg 335 Asn Arg Val Phe Phe Pro Ile Gly Met Ala Pro Gly Gly Val Cys Ser 20 25 383 aga cca gat gga tgg gga aca ggt ggt cag ggc aga att tca ggc cct Arg Pro Asp Gly Trp Gly Thr Gly Gly Gln Gly Arg Ile Ser Gly Pro 40

						ggt Gly		431
						ctc Leu		479
	Ser					ctg Leu		527
						gag Glu 110		575
						ctg Leu		623
						agc Ser		671
						ccc Pro		719
						agg Arg		767
						ggc Gly 190		815
						gca Ala		863
						tgt Cys		911
						Gly 999		959
						gct Ala		1007
						G1 y 393		1055

cgc tgc aga tcc tgc tca gga gac gtg acc cca gcc cct gtg gag ggg Arg Cys Arg Ser Cys Ser Gly Asp Val Thr Pro Ala Pro Val Glu Gly 275 280 285	1103
gtg ctg gcc ccc agc ccc gcc cgc ctg gcc cct ggg cct gcc aag gat Val Leu Ala Pro Ser Pro Ala Arg Leu Ala Pro Gly Pro Ala Lys Asp 290 295 300 305	1151
gac act gcc agt cac gag ccc gct ctg cac agg gat gac ctg gag tcc Asp Thr Ala Ser His Glu Pro Ala Leu His Arg Asp Asp Leu Glu Ser 310 315 320	1199
ctt ctg agc gag cac acc ttc gat ggc atc ctg cag tgg gcc atc cag Leu Leu Ser Glu His Thr Phe Asp Gly Ile Leu Gln Trp Ala Ile Gln 325 330 335	1247
agc atg gcc cgt ccg gcg gcc ccc ttc ccc tcc t	1293
ccgggacatg cagctctgat gagagagtgc tgagaaggac acctccttcc tcagtcctgg	1353
aagccggccg gctgggatca agaaggggac agcgccacct cttgtcagtg ctcggctgta	1413
aacagetetg tgtttetggg gacaceagee atcatgtgee tggaaattaa accetgeeee	1473
acttetetae tetggaagte eeegggagee teteettgee tggtgaceta etaaaaatat	1533
aaaaattagc tg	1545

<210> 4

<211> 348

<212> PRT

<213> HOMO SAPIENS

<400> 4

Met Trp Leu Val Tyr Ser Ser Gly Ala Pro Gly Thr Gln Gln Pro Ala 1 5 10 15

Arg Asn Arg Val Phe Phe Pro Ile Gly Met Ala Pro Gly Gly Val Cys 20 25 30

Ser Arg Pro Asp Gly Trp Gly Thr Gly Gly Gln Gly Arg Ile Ser Gly 35 40 45

Pro Gly Ser Met Gly Ala Gly Gln Arg Leu Gly Ser Ser Gly Thr Gln 50 55 60

Arg 65	Cys	Cys	Trp	Gly	Ser 70	Cys	Phe	Gly	Lys	Glu 75	Val	Ala	Leu	Arg	Arg 80
Val	Leu	His	Pro	Ser 85	Pro	Val	Cys	Met	Gly 90	Val	Ser	Cys	Leu	Cys 95	Gln
Lys	Asn	Glu	Asp 100	Glu	Cys	Ala	Val	Cys 105	Arg	Asp	Gly	Gly	Glu 110	Leu	Ile
Cys	Cys	Asp 115	Gly	Cys	Pro	Arg	Ala 120	Phe	His	Leu	Ala	Cys 125	Leu	Ser	Pro
Pro	Leu 130	Arg	Glu	Ile	Pro	Ser 135	Gly	Thr	Trp	Arg	Cys 140	Ser	Ser	Cys	Leu
Gln 145	Ala	Thr	Val	Gln	Glu 150	Val	Gln	Pro	Arg	Ala 155	Glu	Glu	Pro	Arg	Pro 160
Gln	Glu	Pro	Pro	Val 165	Glu	Thr	Pro	Leu	Pro 170	Pro	Gly	Leu	Arg	Ser 175	Ala
Gly	Glu	Glu	Val 180	Arg	Gly	Pro	Pro	Gly 185	Glu	Pro	Leu	Ala	Gly 190	Met	Asp
Thr	Thr	Leu 195	Val	Tyr	Lys	His	Leu 200	Pro	Ala	Pro	Pro	Ser 205	Ala	Ala	Pro
Leu	Pro 210	Gly	Leu	Asp	Ser	Ser 215	Ala	Leu	His	Pro	Leu 220	Leu	Cys	Val	Gly
Pro 225	Glu	Gly	Gln	Gln	Asn 230	Leu	Ala	Pro	Gly	Ala 235	Arg	Сув	Gly	Val	Cys 240
Gly	Asp	Gly	Thr	Asp 245	Val	Leu	Arg	Cys	Thr 250	His	Cys	Ala	Ala	Ala 255	Phe
His	Trp	Arg	Cys 260	His	Phe	Pro	Ala	Gly 265	Thr	Ser	Arg	Pro	Gly 270	Thr	Gly

Leu Arg Cys Arg Ser Cys Ser Gly Asp Val Thr Pro Ala Pro Val Glu

. 275 280 285

Gly Val Leu Ala Pro Ser Pro Ala Arg Leu Ala Pro Gly Pro Ala Lys 290 295 300	
Asp Asp Thr Ala Ser His Glu Pro Ala Leu His Arg Asp Asp Leu Glu 305 310 315 320	
Ser Leu Leu Ser Glu His Thr Phe Asp Gly Ile Leu Gln Trp Ala Ile 325 330 335	
Gln Ser Met Ala Arg Pro Ala Ala Pro Phe Pro Ser 340 345	
<210> 5 <211> 1463 <212> DNA <213> HOMO SAPIENS	,
<220> <221> CDS <222> (237)(1001) <223> /product=:AIR-3"	
<220> <221> mat_peptide <222> (1)(254) <223> /product="AIR-3"	
<400> 5 agagaaagtg aggtettete aggetettaa gageatggeg tttggteeag getgtaeeeg	60
ctgctctcag ctgggcccgt gggtgggccg ggcgcccctg ctatagccag gaggtcaagg	120
atccactggg aatgccatgc tcatctttcg tccccagcat ggtttcttaa tggggtagaa	180
gcaggtcggg agagacctcc ctgggcctgg ccccactgcc ctgtgaggaa gggttc atg Met 1	239
tgg ttg gtg tac agt tcc ggg gcc cct gga acg cag cag cct gca aga Trp Leu Val Tyr Ser Ser Gly Ala Pro Gly Thr Gln Gln Pro Ala Arg 5 10 15	287
aac cgg gtt ttc ttc cca ata ggg atg gcc ccg ggg ggt gtc tgt tgg Asn Arg Val Phe Phe Pro Ile Gly Met Ala Pro Gly Gly Val Cys Trp	335

						att Ile				383
						ggt Gly				431
						ctc Leu				479
						ctg Leu			•	527
						gag Glu 110				575
						ctg Leu				623
						agc Ser				671
_						ccc Pro		_		719
						agg Arg				767
						tgc Cys 190				815
						ctg Leu				863
						gta Val				911
						gca Ala				959

ccg gga cgg gcc tgc gct gca gat cct gct cag gag acg tga Pro Gly Arg Ala Cys Ala Ala Asp Pro Ala Gln Glu Thr 245 250
ccccagcccc tgtggagggg gtgctggccc ccagccccgc ccgcctggcc cctgggcctg
ccaaggatga cactgccagt cacgagcccg ctctgcacag ggatgacctg gagtcccttc
tgagcgagca caccttcgat ggcatcctgc agtgggccat ccagagcatg gcccgtccgg
cggccccctt cccctcctga ccccagatgg ccgggacatg cagctctgat gagagagtgc
tgagaaggac acctccttcc tcagtcctgg aagccggccg gctgggatca agaaggggac
agegecaect ettgteagtg eteggetgta aacagetetg tgtttetggg gacaccagee
atcatgtgcc tggaaattaa accetgeeee acttetetae tetggaagte eeegggagee
tctccttgcc tggtgaccta ctaaaaatat aaaaattagc tg
<210> 6 <211> 254 <212> PRT <213> HOMO SAPIENS
<400> 6
Met Trp Leu Val Tyr Ser Ser Gly Ala Pro Gly Thr Gln Gln Pro Ala 1 5 10 15
Arg Asn Arg Val Phe Phe Pro Ile Gly Met Ala Pro Gly Gly Val Cys 20 25 30
Trp Arg Pro Asp Gly Trp Gly Thr Gly Gly Gln Gly Arg Ile Ser Gly 35 40 45
Pro Gly Ser Met Gly Ala Gly Gln Arg Leu Gly Ser Ser Gly Thr Gln 50 55 60
Arg Cys Cys Trp Gly Ser Cys Phe Gly Lys Glu Val Ala Leu Arg Arg 65 70 75 80
Val Leu His Pro Ser Pro Val Cys Met Gly Val Ser Cys Leu Cys Gln 85 90 95
Lys Asn Glu Asp Glu Cys Ala Val Cys Arg Asp Gly Gly Glu Leu Ile

. 1121

Cys Cys Asp Gly Cys Pro Arg Ala Phe His Leu Ala Cys Leu Ser Pro 120 Pro Leu Arq Glu Ile Pro Ser Gly Thr Trp Arg Cys Ser Ser Cys Leu 135 Gln Ala Thr Val Gln Glu Val Gln Pro Arg Ala Glu Glu Pro Arg Pro 155 145 150 Gln Glu Pro Pro Val Glu Thr Pro Leu Pro Pro Gly Leu Arg Ser Ala 170 165 Gly Glu Glu Pro Arg Cys Gln Gly Trp Thr Pro Arg Pro Cys Thr Pro 185 180 Tyr Cys Val Trp Val Leu Arg Val Ser Arg Thr Trp Leu Leu Val Arg 195 200 Val Ala Gly Cys Ala Glu Met Val Arg Thr Cys Cys Gly Val Leu Thr 215 Ala Pro Leu Pro Ser Thr Gly Ala Ala Thr Ser Gln Pro Ala Pro Pro 240 230 235 Gly Pro Gly Arg Ala Cys Ala Ala Asp Pro Ala Gln Glu Thr 245 250 <210> 7 <211> 20

<223> Description of Artificial Sequence: PRIMER

<400> 7

<212> DNA

<213> ARTIFICIAL

gatgacactg ccagtcacga

<210> 8

<211> 22 <212> DNA

<213> ARTIFICIAL

```
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 8
                                                                     22
gttcccgagt ggaaggcgct gc
<210> 9
<211> 20
<212> DNA
<213> ARTIFICIAL
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 9
                                                                     20
aggggacagg caggccaggt
<210> 10
<211> 24
<212> DNA
<213> ARTIFICIAL
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 10
                                                                     24
gagttcaggt acccagagat gctg
<210> 11
<211> 20
<212> DNA
<213> ARTIFICIAL
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 11
                                                                     20
ctcgctcaga agggactcca
<210> 12
<211> 23
<212> DNA
<213> ARTIFICIAL
<223> Description of Artificial Sequence: PRIMER
                                                                     23
ggattcagac catgtcagct tca
```

```
<210> 13
<211> 21
<212> DNA
<213> ARTIFICIAL
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 13
                                                                    21
gtgctgttca aggatcacaa c
<210> 14
<211> 21
<212> DNA
<213> ARTIFICIAL
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 14
                                                                    21
tggatgagga tcccctccac g
<210> 15
<211> 27
<212> DNA
<213> ARTIFICIAL
<223> Description of Artificial Sequence: PRIMER
<400> 15
                                                                     27
ccatcctaat acgactcact atagggc
<210> 16
<211> 20
<212> DNA
<213> ARTIFICIAL
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 16
                                                                     20
tgcaggctgt gggaactcca
<210> 17
<211> 22
<212> DNA
<213> ARTIFICIAL
```

<220>

<223>	Description of	Artificial	Sequence:	PRIMER	
<400>	17				
agaaaa	agag ctgtaccctg	tg			22
<210>	18				
<211>	22				
	DNA				
<213>	ARTIFICIAL				
<220>					
<223>	Description of	Artificial	Sequence:	PRIMER	
<400>	18				
		ac			22
tgcaagg	gaag aggggcgtca	gc			22
-210-	19				
<210> <211>	21				
<211>	DNA				
	ARTIFICIAL				
(213)	ARTIFICIAL				
<220>					
<223>	Description of	Artificial	Sequence:	PRIMER	
<400>	19				
tccacca	acaa gccgaggaga	t			21
<210>	20				
<211>	21				
<212>	DNA				
<213>	ARTIFICIAL				
<220>					
<223>	Description of	Artificial	Sequence:	PRIMER	
<400>	20				
	cct caaacaccac	t			21
<210>	21				
<211>	24				
<212>	DNA				
<213>	ARTIFICIAL				
<220>					
<223>	Description of	Artificial	Sequence:	PRIMER	
/	Debettperon of		55445466.		
<400>	21				24
tggagat	ggg caggccgcag	ggtg			24

```
<210> 22
<211> 24
<212> DNA
<213> ARTIFICIAL
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 22
                                                                     24
cagtccagct gggctgagca ggtg
<210> 23
<211> 24
<212> DNA
<213> ARTIFICIAL
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 23
                                                                     24
gcggctccaa gaagtgcatc cagg
<210> 24
<211> 24
<212> DNA
<213> ARTIFICIAL
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 24
                                                                     24
ctccaccctg caaggaagag gggc
<210> 25
<211> 16
<212> PRT
<213> ARTIFICIAL
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 25
Thr Leu His Leu Lys Glu Lys Glu Gly Cys Pro Val Gln Ala Phe His
                                   10
               5
<210> 26
<211> 15
<212> PRT
<213> ARTIFICIAL
```

```
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 26
Cys Lys Asn Lys Ala Arg Ser Ser Ser Gly Pro Lys Pro Leu Val
                                  10
<210> 27
<211> 24
<212> DNA
<213> ARTIFICIAL
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 27
                                                                     24
atggcgacgg acgcggcgct acgc
<210> 28
<211> 24
<212> DNA
<213> ARTIFICIAL
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 28
                                                                     24
cctggatgta cttcttggag ccgc
<210> 29
<211> 24
<212> DNA
<213> ARTIFICIAL
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 29
                                                                     24
gagcccgagg ggccgtggag ggga
<210> 30
<211> 24
<212> DNA
<213> ARTIFICIAL
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 30
```

ggctgca	acct cctggactgt	tgcc		24
	31			
<211>				
<212>				
<213>	ARTIFICIAL			
<220>				
<223>	Description of	Artificial	Sequence:	PRIMER
<400>	31			
	gctc aggagacgtg	accc		24
540005	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
<210>	32			
<211>				
<212>				
	ARTIFICIAL			
12237				
<220>				
<223>	Description of	Artificial	Sequence:	PRIMER
<400>	32			
caccago	gcaa ggagaggctc	ccgg		24
<210>	33			
<211>	20			
<212>				
	ARTIFICIAL			•
222				
<220>	B	7	Q ·	DDIMED
<223>	Description of	Artificial	Sequence:	PRIMER
<400>	33			
ccacccc	catg gcgacggacg			20
<210>	34			
<211>	29			
<212>	DNA			
<213>	ARTIFICIAL			
<220>				
<223>	Description of	Artificial	Sequence:	PRIMER
	•			
<400>	34			. 29
ggaatto	cgga ggggaagggg	gccgccgga		29
.0.7.0	25			
<210>	35			
<211>	24			
<212>	DNA			

```
<213> ARTIFICIAL
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 35
                                                                  24
ggactgagga aggaggtgtc cttc
<210> 36
<211> 20
<212> PRT
<213> ARTIFICIAL
<220>
<223> Description of Artificial Sequence: PRIMER
<400> 36
Asp Gly Ile Leu Gln Trp Ala Ile Gln Ser Met Ala Arg Pro Ala Ala
Pro Phe Pro Ser
<210> 37
<211> 42
<212> PRT
<213> Homo sapiens
<400> 37
Cys Ala Val Cys Arg Asp Gly Glu Leu Ile Cys Cys Asp Gly Cys
               5
Pro Arg Ala Phe His Leu Ala Cys Leu Ser Pro Pro Leu Arg Glu Ile
                   25
Pro Ser Gly Thr Trp Arg Cys Ser Ser Cys
    35
<210> 38
<211> 42
<212> PRT
<213> HOMO SAPIENS
```

<400> 38

Cys Gly Val Cys Gly Asp Gly Thr Asp Val Leu Arg Cys Thr His Cys 10

Ala Ala Phe His Trp Arg Cys His Phe Pro Ala Gly Thr Ser Arg 25

Pro Gly Thr Gly Leu Arg Cys Arg Ser Cys

<210> 39

<211> 42

<212> PRT

<213> HOMO SAPIENS

<400> 39

Cys Glu Val Cys Gln Gln Gly Gly Glu Ile Ile Leu Cys Asp Thr Cys

Pro Arq Ala Thr His Met Val Cys Leu Asp Pro Asp Met Glu Lys Ala 25 30

Pro Glu Gly Leu Trp Ser Cys Pro His Cys

<210> 40

<211> 42

<212> PRT

<213> HOMO SAPIENS

<400> 40

Cys Arg Val Cys Lys Asp Gly Glu Leu Ile Cys Cys Asp Thr Cys 1 5

Pro Ser Ser Tyr His Ile His Cys Leu Asn Pro Pro Leu Pro Glu Ile 20 25

Pro Asn Gly Glu Trp Leu Cys Pro Arg Cys 40

<210> 41 <211> 42

<212> PRT

<213> HOMO SAPIENS

<400> 41

Cys Ala Val Cys Gln Asn Gly Gly Glu Leu Ile Cys Cys Glu Lys Cys 1 5 10 15

Pro Lys Val Phe His Leu Ser Cys His Val Pro Thr Leu Thr Asn Phe 20 25 30

Pro Ser Gly Glu Trp Ile Cys Thr Phe Cys 35 40