INTRO TO DATA SCIENCE LECTURE 7: PROBABILITY & LOGISTIC REGRESSION

LAST TIME:

- LINEAR REGRESSION
- REGULARIZATION

QUESTIONS?

I. REVIEW OF REGULARIZATION II. LOGISTIC REGRESSION

These regularization problems can also be expressed as:

```
OLS: \min_{\beta} (\|y - X\beta\|_2^2)
L1 regularization: \min_{\beta} (\|y - X\beta\|_2^2 + \alpha \|\beta\|_1)
```

L2 regularization: $\min_{\beta} (\|y - X\beta\|_2^2 + \alpha \|\beta\|_2^2)$

We are no longer just minimizing error but also an additional term to penalize model complexity.

II. LOGISTIC REGRESSION

LOGISTIC REGRESSION

supervised
unsupervisedregression
dimension reductionclassification
clustering

Q: What is logistic regression?

LOGISTIC REGRESSION

LOGISTIC REGRESSION

Q: What is logistic regression?

A: A generalization of the linear regression model to classification problems.

In linear regression, we used a set of covariates to predict the value of a (continuous) outcome variable.

In linear regression, we used a set of covariates to predict the value of a (continuous) outcome variable.

In **logistic regression**, we use a set of covariates to predict **probabilities of class membership**.

In linear regression, we used a set of covariates to predict the value of a (continuous) outcome variable.

In logistic regression, we use a set of covariates to predict probabilities of class membership.

These **probabilities are then mapped to class labels**, thus solving the classification problem.

probability of belonging to class

NOTE

Probability predictions look like this.

value of independent variable

value of independent variable

LOGISTIC REGRESSION

The logistic regression model is an extension of the linear regression model, with a couple of important differences.

LOGISTIC REGRESSION

The logistic regression model is an extension of the linear regression model, with a couple of important differences.

The main difference is in the outcome variable.

OUTCOME VARIABLES

The key variable in any regression problem is the **response type** of the outcome variable y given the value of the covariate x:

The key variable in any regression problem is the conditional mean of the outcome variable y given the value of the covariate x:

In linear regression, we assume that this conditional mean is a linear function taking values in $(-\infty, +\infty)$:

$$E(y|x) = \alpha + \beta x$$

OUTCOME VARIABLES

In logistic regression, we've seen that the conditional mean of the outcome variable takes values only in the unit interval [0, 1].

OUTCOME VARIABLES

In logistic regression, we've seen that the conditional mean of the outcome variable takes values only in the unit interval [O, 1].

The first step in extending the linear regression model to logistic regression is to map the outcome variable E(y|x) into the unit interval.

In logistic regression, we've seen that the conditional mean of the outcome variable takes values only in the unit interval [0, 1].

The first step in extending the linear regression model to logistic regression is to map the outcome variable E(y|x) into the unit interval.

Q: How do we do this?

THE LOGISTIC FUNCTION

A: By using a transformation called the logistic function:

$$E(y|x) = \pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

THE LOGISTIC FUNCTION

A: By using a transformation called the logistic function:

$$E(y|x) = \pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

We've already seen what this looks like:

A: By using a transformation called the logistic function:

$$E(y|x) = \pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

We've already seen what this looks like:

NOTE

For any value of x, y is in the interval [0, 1]

This is a nonlinear transformation!

The **logit function** is an important transformation of the logistic function. Notice that it returns the linear model!

$$g(x) = \ln(\frac{\pi(x)}{1 - \pi(x)}) = \alpha + \beta x$$

The **logit function** is an important transformation of the logistic function. Notice that it returns the linear model!

$$g(x) = \ln(\frac{\pi(x)}{1 - \pi(x)}) = \alpha + \beta x$$

The logit function is also called the log-odds function.