MAT3253 Homework 6

Due date: 12 Mar.

Question 1. (Bak&Newman Ex.2.9) Find the radius of convergence of the following power series (a). $\sum_{n=0}^{\infty} z^{n!}$; (b). $\sum_{n=0}^{\infty} (n+2^n)z^n$.

Question 2. (Bak&Newman Ex.2.10) Suppose $\sum_n c_n z^n$ has radius of convergence R. Find the radius of convergence of

(a). $\sum_{n=0}^{\infty} n^p c_n z^n$; (b). $\sum_{n=0}^{\infty} |c_n| z^n$; (c). $\sum_{n=0}^{\infty} c_n^2 z^n$.

Question 3. (Bak&Newman Ex.2.17) Suppose $\sum_{k=0}^{\infty} a_k = A$ and $\sum_{k=0}^{\infty} b_k = B$. Suppose further that each of the series is absolutely convergent. Show that if

$$c_k := \sum_{j=0}^k a_j b_{k-j}$$

then

$$\sum_{k=0}^{\infty} c_k = AB.$$

Outline: Use the fact that $\sum |a_k|$ and $\sum |b_k|$ converge to show that $\sum d_k$ converges, where

$$d_k := \sum_{j=0}^{k} |a_j| |b_{k-j}|.$$

In particular

$$d_{n+1} + d_{n+2} + \cdots \rightarrow 0$$
 as $n \rightarrow \infty$.

Note then that if

$$A_n := a_0 + a_1 + \dots + a_n$$

 $B_n := b_0 + b_1 + \dots + b_n$
 $C_n := c_0 + c_1 + \dots + c_n$,

 $A_nB_n=C_n+R_n$, where $|R_n|\leq d_{n+1}+d_{n+2}+\cdots+d_{2n}$, and the result follows by letting $n\to\infty$.

Question 4. (Bak&Newman Ex.3.15) Verify the identities for complex number z:

- (a). $\sin 2z = 2\sin z \cos z$,
- (c). $(\sin z)' = \cos z$.

Question 5. (Bak&Newman Ex.3.20) Show that

$$\sin(x+iy) = \sin x \cosh y + i \cos x \sinh y.$$

Question 6. Solve

$$\sin(z) = i.$$

(You may check your answer by substituting it into the identity in Question 5.)