UNIVERSITY OF GLASGOW

Degrees of MEng, BEng, MSc and BSc in Engineering

CONTROL M (ENG5022)

Monday 13th December 2021 Release time: 09:00AM (GMT) for 2.5 hours

Exam duration: 2 hours to complete exam plus 30 mins for download/upload of submission

Answer ALL questions in Section A and ONE question from Section B and ONE question from Section C.

The numbers in square brackets in the right-hand margin indicate the marks allotted to the part of the question against which the mark is shown. These marks are for guidance only.

A FORMULA SHEET IS PROVIDED AT THE END OF PAPER

A calculator may be used. Show intermediate steps in calculations.

SECTION A Attempt BOTH questions

Q1	(a)	Draw the block diagram of an open-loop control system and that of a two-degree-of-freedom feedback control system. Show the different signals, including disturbances, and explain their physical meaning. Explain which additional components are required in the feedback control structure. [5]		
	(b)	Describe potential benefits and drawbacks of a closed-loop control strategy and contrast these to an open-loop strategy. In your analysis, focus on the characteristics of each structure with respect to plant disturbances, changes in the plant gain, and stabilisation. [5]		
	(c)	In your own words, explain what is meant by observability in the context of state feedback control. Describe a test for observability of a state space system. [5]		
	(d)	Explain in your own words what is meant by state estimator feedback control. Use a block diagram to illustrate your explanations and mark the elements which form the compensator. [5]		
Q2	(a)	Consider a continuous and a discrete sinusoidal signal, both with the same frequency.		
		(i)	Derive an expression relating the continuous and discrete poles. [4]	
		(ii)	Show why this correspondence is one-to-many, and how the frequencies relate. [3]	
		(iii)	With the aid of a sketch of the complex s-plane, show and justify a possible way to remove the one-to-many ambiguity. [4]	
	(b)	Given a generic continuous signal $R(s)$ in the frequency domain:		
		(i)	State an expression for the spectrum (also in the frequency domain) of its sampled counterpart. [3]	
		(ii)	Sketch the spectrum of a generic signal after it has been sampled, highlighting its components and graphically showing the phenomenon of aliasing. [3]	
		(iii)	Draw a similar sketch for the same signal, this time using an anti-	

aliasing filter before sampling.

SECTION B Attempt ONE question

- Q3 (a) Explain why 'peaking' in the sensitivity function S_0 and the complementary sensitivity function T_0 should be avoided. The explanation should be based on performing the following analysis.
 - (i) Derive the closed-loop equations of a feedback control system in terms of S_o and T_o , considering the output responses to the reference, disturbance and noise. Discuss how peaking would affect the system's response to these signals. [4]
 - (ii) Show that the complementary vector margin for the inverse loop gain is equal to the inverse of the peak value of $|T_0|$. By a symmetry argument, briefly describe the effect of $|S_0|$ on the vector margin for the loop gain. Based on this, explain what a strongly oscillatory response of a closed-loop system means for stability-robustness. [5]
 - (iii) Show that T_0 is equal to the sensitivity of S_0 to changes in the plant P_0 . By a symmetry argument, briefly describe the effect of S_0 on the sensitivity of T_0 to plant changes. [5]
 - (b) Explain in your own words what is meant by controller design using loop-shaping. [3]
 - (c) Consider a simple proportional controller in a feedback control configuration. Explain how varying the controller gain affects the frequency response of the loop gain and discuss related limitations of using a proportional controller. [3]

- Q4 (a) Describe the concept of state feedback control using a block diagram and derive the differential equation of the closed loop system. Explain the role of the different components in your block diagram. [5]
 - (b) How can the structure in Q4(a) be extended to include a reference input? Use a block diagram to illustrate your answer and derive the corresponding equations. [5]
 - (c) Explain in your own words what is meant by *controller design by pole assignment* in the context of state feedback control. [3]
 - (d) A pendulum can be represented by the state following state space system

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -9.375 & -18.39 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 0 & 0.9375 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

Design a state feedback controller K for this system using the pole placement method in such a way that the closed system has an overshoot of $M_p = 1\%$ and a rise time of $t_r = 0.1$ seconds. You can use the following equations to derive the natural frequency and the damping of the desired closed loop system:

$$\omega_n \cong \frac{1.8}{t_r}$$
 $\xi = -\frac{\ln M_p}{\sqrt{\pi^2 + (\ln M_p)^2}}; 0 \le \xi < 1$

[4]

(e) For the system in Q4(d), calculate the corresponding reference input gain. [3]

SECTION C Attempt ONE question

Q5 Consider the following digital plant, with sample time T = 0.1 s:

$$G_{ZAS}(z) = 0.0043361 \frac{z + 0.861}{(z - 1.051)(z - 0.6065)}$$

- (a) Select a controller (PI or PD) with proportional gain *K*, that cancels the unstable pole of the plant, such that the closed-loop system has zero steady-state error due to a step input. Justify your choice. Find the open-loop transfer function. [4]
- (b) Describe the procedure and equations to find the gain *K* of the controller chosen in (a), such that the percentage overshoot of the closed loop is 10%. [7]
- (c) Now set the proportional gain K = 12.84, and find the natural frequency of the closed-loop system. [3]
- (d) Estimate settling time and the steady-state error (of the closed-loop system) in response to a unit ramp input. [6]
- Q6 Consider the following low-pass filter:

$$G(s) = \frac{20}{(s+2)(s+5)}$$

- (a) Calculate its discrete equivalent when preceded by a zero-order hold (ZOH) and followed by a sampler (T = 0.1 s). [6]
- (b) Re-design another discrete equivalent, using the Tustin rule with pre-warping such that the gain is preserved at $\omega_c = 3.14 \text{ rad/s}$. [6]
- (c) Compute gain (in dB) and phase (in degrees) of the Tustin-equivalent at ω_c , and verify that the gain is preserved by comparing it to the analogue filter. [4]
- (d) Estimate the steady-state response of the digital filter (Tustin) to the following input:

$$u_k = 2\cos(0.314k) \tag{4}$$

Laplace and Z Transforms for Causal Functions

$f(t)$ $t \ge 0 \ (causal)$	F(s)	F(z) $(t=kT, T = Sample Time, k = Index)$
δ (t)	1	1 = z ⁻⁰
$\delta (t - kT)$	e^{-kTs}	z^{-k}
u(t)	$\frac{1}{s}$	$\frac{z}{z-1}$
Ţ	$\frac{1}{s^2}$	$\frac{T \cdot z}{(z-1)^2}$
$\frac{t^k}{k!}$	$\left(\frac{1}{s}\right)^{k+1}$	$\underset{\alpha \to 0}{Limit} \frac{(-1)^k}{k!} \cdot \frac{\partial^k}{\partial \alpha^k} \left(\frac{z}{z - e^{-\alpha T}} \right)$
e ^{-at}	$\frac{1}{s+a}$	$\frac{z}{z - e^{-aT}}$
$t \cdot e^{-at}$	$\frac{1}{\left(s+a\right)^2}$	$\frac{T \cdot z \cdot e^{-aT}}{(z - e^{-aT})^2}$
$e^{-at} \cdot \cos(bt)$	$\frac{(s+a)}{\left(s+a\right)^2+b^2}$	$\frac{z \cdot (z - e^{-aT} \cdot \cos(bt))}{z^2 - z \cdot (2 \cdot e^{-aT} \cdot \cos(bt)) + e^{-2aT}}$
$e^{-at} \cdot \sin(bt)$	$\frac{b}{\left(s+a\right)^2+b^2}$	$\frac{z \cdot e^{-aT} \cdot \sin(bt)}{z^2 - z \cdot (2 \cdot e^{-aT} \cdot \cos(bt)) + e^{-2aT}}$

TABLE 1