

Université de Montréal

FICHE DE NOTE

Probabilités

Julien Hébert-Doutreloux

Julien Hébert-Doutreloux	-Page
Tanen Hebert-Doutteloux	-1 agc

Contents

1	Chapitre 1	2
2	Chapitre 2	3

Julien Hébert-Doutreloux -Page 2

1 Analyse combinatoire

Théorème 1 (Principe de multiplication). Soit r le nombre d'expérience à réaliser tel que pour chaque expérience il y a n_i possibilités avec $i = 1, 2, 3, \ldots, r$ alors le total des possibilités est donné par

$$\prod_{i}^{r} n_{i} \tag{1}$$

Définition 1 (Permutation). On appelle permutation un arrangement de n objets considérés en même temps et pris dans un ordre donné.

Théorème 2. Le nombre de permutaitons de n objets discernables est n!.

Théorème 3 (Permutations d'objets partiellement indiscernables). Le nombre de permutations de n objets dont n_1 sont indiscernables entre eux, n_2 sont indiscernables entre eux, ..., n_r sont indiscernables entre eux est donné par :

Remarque. Une permutation de n objets est un arrangement de ces objets considérés tous en même temps. Dans certains cas, on peut faire un arrangement de r objets choisis parmi n, avec ou sans répétition.

1. Permutation sans répétition,

$$A_r^n := \frac{n!}{(n-1)!}$$

2. Permutation avec répétition,

$$n \cdot n \cdot \cdot \cdot n = n^r$$

Définition 2 (Coefficient binomial). Toute disposition de r objets choisis sans répétition dans un ensemble qui en contient n est appelé combinaison de r objets pris parmi n. On note le coefficient binomial par

$$\binom{n}{k} = C_k^n = \frac{n!}{k!(n-k)!} \tag{2}$$

Théorème 4. $\binom{n}{r}$ est le nombre de combinaisons de r objets pris parmi n.

Remarque. $\binom{n}{r}$ est nombre de façons de choisir r objets sans répétition dans un ensemble qui en contient n. Les cas particuliers,

$$\binom{n}{0} = 1 \quad , \quad \binom{n}{1} = n \quad , \quad \binom{n}{n} = 1 \quad , \quad \binom{n}{n-1} = n$$

Théorème 5 (Théorème du binôme).

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} \tag{3}$$

Quelques s'identités remarquables

$$(x+y)^2 = x^2 + 2xy + y^2$$

$$(x+y)^3 = 3x^2y + x^3 + 3xy^2 + y^3$$

$$(x+y)^4 = 6x^2y^2 + 4x^3y + x^4 + 4xy^3 + y^4$$

$$(x+y)^5 = 10x^3y^2 + 10x^2y^3 + 5x^4y + x^5 + 5xy^4 + y^5$$

$$(x+y)^6 = 15x^4y^2 + 20x^3y^3 + 15x^2y^4 + 6x^5y + x^6 + 6xy^5 + y^6$$

$$(x+y)^7 = 21x^5y^2 + 35x^4y^3 + 35x^3y^4 + 21x^2y^5 + 7x^6y + x^7 + 7xy^6 + y^7$$

$$(x+y)^8 = 28x^6y^2 + 56x^5y^3 + 70x^4y^4 + 56x^3y^5 + 28x^2y^6 + 8x^7y + x^8 + 8xy^7 + y^8$$

$$(x+y)^9 = 36x^7y^2 + 84x^6y^3 + 126x^5y^4 + 126x^4y^5 + 84x^3y^6 + 36x^2y^7 + 9x^8y + x^9 + 9xy^8 + y^9$$

Lemme 6.

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n}{r} \tag{4}$$

Julien Hébert-Doutreloux —Page 3

Définition 3 (Coefficients multinomiaux). Soit n_1, n_2, \dots, n_r des entiers positifs tels que $\sum_{i=1}^r n_i = n$. On définit le coefficients multinomiaux par

$$\binom{n}{n_1, n_2, \cdots, n_r} = \frac{n}{n_1! \cdot n_2! \cdot \cdots \cdot n_r!} = \sum_{i=1}^r n_i \cdot \left(\prod_{i=1}^r (n_i)!\right)^{-1}$$
 (5)

Théorème 7 (Formule du multinôme de Newton).

$$(x_{1} + x_{2} + \dots + x_{r})^{n} = \sum_{\substack{(n_{1}, n_{2}, \dots, n_{r}):\\ n_{1} + n_{2} + \dots + n_{r} = n}} \binom{n}{n_{1}, n_{2}, \dots, n_{r}} x_{1}^{n_{1}} x_{2}^{n_{2}} \dots x_{r}^{n_{r}}$$

$$= \sum_{\substack{(n_{1}, n_{2}, \dots, n_{r}):\\ n_{1} + n_{2} + \dots + n_{r} = n}} \left\{ \prod_{i=1}^{r} x_{i}^{n_{i}} \binom{n}{n_{1}, n_{2}, \dots, n_{r}} \right\}$$

$$= \sum_{\substack{(n_{1}, n_{2}, \dots, n_{r}):\\ n_{1} + n_{2} + \dots + n_{r} = n}} \left\{ \prod_{i=1}^{r} x_{i}^{n_{i}} \cdot \sum_{i=1}^{r} n_{i} \cdot \left(\prod_{i=1}^{r} (n_{i})!\right)^{-1} \right\}$$

$$= \sum_{\substack{(n_{1}, n_{2}, \dots, n_{r}):\\ n_{1} + n_{2} + \dots + n_{r} = n}} \left\{ \sum_{i=1}^{r} n_{i} \cdot \prod_{i=1}^{r} \frac{x_{i}^{n_{1}}}{(n_{i})!} \right\}$$

Théorème 8. Il y a $\binom{n+r-1}{r-1}$ vecteurs (n_1, n_2, \cdots, n_r) à composantes entières et non négatives satisfaisant à la relation $n_1 + n_2 + \cdots + n_r = n$

2 Axiomes de probabilités

Définition 4 (Ensemble fondamental). L'ensemble des résultats possibles d'une expérience est appelé ensemble fondamental et est noté S.

Définition 5 (Événement). Tout sous-ensemble E de S est appelé événement.

Remarque.

- 1. L'événement $\{a\}$ contenant un seul élément de S est appelé événement élémentaire.
- 2. L'ensemble vide noté Ø et S sont des événements. Le premier est appelé événement impossible, alors que le deuxième est appelé événement certain.

Définition 6. Si un résultat de l'expérience est contenu dans E, on dit que E est réalisé.