Лабораторная работа №4

Системы линейных уравнений

Хохлачева Яна Дмитриевна, НПМмд-02-22

Содержание

1	1 Цель работы	5
2	2 Задание	6
3	3 Выполнение лабораторной рабо ⁻	7
		 7
	3.2 Шаг 2	 8
	3.3 Шаг 3	 9
	3.4 Шаг 4	 10
4	4 Выводы	12
Сп	Список литературы	13

Список иллюстраций

3.1	Метод Гаусса и поиск треугольной формы и изменение формата
	вывода чисел
3.2	Левое деление
3.3	LU-разложение
3.4	LU-разложение
35	LUP-разложение матрицы 1

Список таблиц

1 Цель работы

Научиться решать системы линейных уравнений с помощью Octave.

2 Задание

Решить систему уравнений методом Гаусса, с использованием левого деления и с помощью LU-разложения и LUP-разложения.

3 Выполнение лабораторной работы

3.1 Шаг 1

Построила расширенную матрицу системы линейных уравнений. Сначала добавила к третьей строке первую строку, умноженную на –1. Далее добавила к третьей строке вторую строку, умноженную на –1.5. Из полученной треугольной матрицы, представленной на Рисунке 1 (рис - fig. 1), как и выполненные для ее получения команды, можно получить решение. Для непосредственного поиска треугольной формы матрицы использовала встроенную функцию. Из результата ее выполнения, представленного на Рисунке 1 (рис - fig. 1), решение системы очевидно.

```
>> B = [ 1 2 3 4 ; 0 -2 -4 6 ; 1 -1 0 0 ]
 1 2 3 4
0 -2 -4 6
1 -1 0 0
>> B (1, :)
ans =
 1 2 3 4
>> B(3,:) = (-1) * B(1,:) + B(3,:)
  1 2 3 4
0 -2 -4 6
0 -3 -3 -4
>> B(3,:) = -1.5 * B(2,:) + B(3,:)
   >> rref(B)
   1.0000 0 0 5.6667
0 1.0000 0 5.6667
0 0 1.0000 -4.3333
>> format long
>> rref(B)
ans =
Columns 1 through 3:
  1.0000000000000000
       0 1.000000000000000
Column 4:
  5.66666666666667
  5.66666666666666
  -4.333333333333333
```

Рис. 3.1: Метод Гаусса и поиск треугольной формы и изменение формата вывода чисел

3.2 Шаг 2

Для решения системы вида Ax=b использовала встроенную операцию левого деления, что продемонстрированно на рисунке 2 (рис - fig. 2).

```
>> A = B(:,1:3)
A =

1  2  3
0  -2  -4
0  0  3

>> b = B (:,4)
b =

4  6
-13

>> A\b
ans =

5.6667
5.6667
-4.3333
```

Рис. 3.2: Левое деление

3.3 Шаг 3

С помощью Octave расписала LU-разложение данной матрицы в файле l_u.m, содержание которого показано на Рисунке 2 (рис - fig. 2). Запуск файла и результат выполнения показан на Рисунке 3 (рис - fig. 3).

Рис. 3.3: LU-разложение

```
>> 1 u
  1 2
         3
  0 -2
        -4
  1 -1
  1.0000
               0
                       0
          1.0000
  0.3333 0.4167
                   1.0000
U=
  1.0000 2.0000
                 3.0000
       0 -2.0000 -4.0000
       0
               0
                 0.6667
>> L*U
ans =
  1.0000 2.0000 3.0000
       0 -2.0000 -4.0000
  0.3333 -0.1667
```

Рис. 3.4: LU-разложение

3.4 Шаг 4

На Рисунке 4 (рис - fig. 4) показано вычисление LUP-разложения матрицы с помощью встроенной функции.

Рис. 3.5: LUP-разложение матрицы

4 Выводы

Ознакомилась с решением систем линейных уравнений в Octave, а именно использованием метода Гаусса, левого деления, LU-разложения и LUP-разложения.

Список литературы