Department of Informatics

Series of Exercises 02 Sets, Functions and Binary Relation

Exercice 1 Let the following sets : $A =]-\infty, 3], B = [-2, 8], C =]-5, +\infty[, D = \{x \in \mathbb{R}, |x-3| \le 5\}$

- 1. What are the equality or inclusion relationships that exist between these sets?
- 2. Find the complement in the following cases: $C_{\mathbb{R}}A, C_{\mathbb{R}}B, C_{\mathbb{R}}C, C_{C}B$.
- 3. Find $A \cap B$, $A \cup B$, $B \cap C$, $B \cup C$, A/C, $(\mathbb{R}/A) \cap (\mathbb{R}/B)$, and $A \triangle B$.

Exercice 2 Let the set E and A, B, C are three parts of E

- a. Show that:
 - 1. $(A \cap B) \cup C_E B = A \cup C_E B$
 - 2. $(A/B)/C = A/(B \cup C)$
 - 3. $A/(B \cap C) = (A/B) \cup (A/C)$ (homework)
- b. Simplify
 - 1. $C_E(A \cup B) \cap C_E(C \cup C_E A)$
 - 2. $C_E(A \cap B) \cup C_E(C \cap C_E A)$.

Exercice 3 Let the functions $f : [0,1] \to [0,2]$ with f(x) = 2 - x and $g : [-1,1] \to [0,2]$ with $g(x) = x^2 + 1$

- 1. Find $f(\{\frac{1}{2}\}), f^{-1}(\{0\}), g([-1,1]), g^{-1}[0,2]$
- 2. Is the function f bijective? Justify
- 3. Is the function g bijective? Justify
- 4. Can we calculate $g \circ f$ and $f \circ g$ Justify.

Exercice 4 *I.* Let the function $f : \mathbb{R} \longrightarrow \mathbb{R}$ defined by :

$$f(x) = \begin{cases} 1, & x < 0 \\ 1+x, & x \ge 0 \end{cases}$$

- 1. Find the following sets : $f(\mathbb{R}^+)$, $f^{-1}(\{0\})$, $f^{-1}(\{1\})$, $f^{-1}([1,2])$
- 2. f is one-to-one (injective) function? f is onto (surjective) function?
- **II.** Let the function $g: \mathbb{R} \left\{\frac{1}{2}\right\} \longrightarrow \mathbb{R}^*$ defined by:

$$g(x) = \frac{9}{2x - 1}$$

Show that g is a bijection. Find the inverse function.

Exercice 5 Let f be a function from E to F. Let A and A' be two subsets of E, and let B and B' be two subsets of F

1. Show that

$1-A \subset f^{-1}(f(A))$	$2 - f(f^{-1}(B)) \subset B(\ homework\)$
$S- f(A \cup A') = f(A) \cup f(A') (devoir)$	$4 - f(A \cap A') \subset f(A) \cap f(A')$
$5 - f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$	$6 - f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B') \text{ (homework)}$

2. Show that if f is injective, then we have equality in (4).

Exercice 6 We define the relation \Re on \mathbb{R}^2 :

$$\forall (x,y) \in \mathbb{R}^2, (x,y)\Re(x',y') \Leftrightarrow x+y=x'+y'$$

- 1. Show that \Re is an equivalence relation.
- 2. Find the equivalence class of the pair (0,0).

Exercice 7 We define the relation T in \mathbb{R}^2 :

$$\forall (x,y); (x',y') \in \mathbb{R}^2, (x,y)T(x',y') \Leftrightarrow |x-x'| \le y'-y$$

- 1. Show that T is a order relation.
- 2. Is the order total or partial?

Exercice 8 We define the following relation S on \mathbb{N}^* :

$$\forall (n,m) \in \mathbb{N}^* \times \mathbb{N}^* : nSm \Leftrightarrow there \ exists \ k \in \mathbb{N}^* \ such \ that : n = km$$

- 1. Verify that 6S2 and 5S1.
- 2. Show that the relation S is a partial order relation on \mathbb{N}^* .
- 3. In the following exercise, we assume that the set \mathbb{N}^* is ordered by the relation S. Does \mathbb{N}^* have a maximum? A minimum?

2022/2023 Dr. Neggal bilel

Département d'Informatique

Série de TD 02 Ensembles et Applications

exercice 1 On considère les ensembles suivants : $A =]-\infty, 3]$, B = [-2, 8], $C =]-5, +\infty[$, $D = \{x \in \mathbb{R}, |x-3| \le 5\}$

- 1. Quelles sont les relations d'égalité ou d'inclusion qui existent entre ces ensembles?
- 2. Déterminer le complémentaire dans les cas suivantes : $C_{\mathbb{R}}A$, $C_{\mathbb{R}}B$, $C_{\mathbb{R}}C$, $C_{C}B$ dana F.
- 3. Déterminer $A \cap B$, $A \cup B$, $B \cap C$, $B \cup C$, A/C, $(\mathbb{R}/A) \cap (\mathbb{R}/B)$, et $A \triangle B$.

exercice 2 Soit E un ensemble, A, B et C trois parties de E

a. Montrer que :

- 1. $(A \cap B) \cup C_E B = A \cup C_E B$
- 2. $(A/B)/C = A/(B \cup C)$
- 3. $A/(B \cap C) = (A/B) \cup (A/C)$ (devoir)

b. Simplifier

- 1. $C_E(A \cup B) \cap C_E(C \cup C_E A)$
- 2. $C_E(A \cap B) \cup C_E(C \cap C_E A)$.

exercice 3 Soient les applications $f:[0,1] \to [0,2]$ avec f(x)=2-x et $g:[-1,1] \to [0,2]$ avec $g(x)=x^2+1$

- 1. Déterminer $f(\lbrace \frac{1}{2} \rbrace), f^{-1}(\lbrace 0 \rbrace), g([-1,1]), g^{-1}[0,2]$
- 2. L'application f est-elle bijective? justifier
- 3. L'application g est-elle bijective? justifier
- 4. Est ce que, on peut calculer $g \circ f$ et $f \circ g$ justifier.

exercice 4 *I.* Soit l'application $f : \mathbb{R} \longrightarrow \mathbb{R}$ définie par :

$$f(x) = \begin{cases} 1, & x < 0 \\ 1 + x, & x \ge 0 \end{cases}$$

- 1. Déterminer les ensembles suivants : $f(\mathbb{R}^+), f^{-1}(\{0\}), f^{-1}(\{1\}), f^{-1}([1,2])$
- 2. f est-elle injective? f est-elle surjective?
- II. Soit l'application $g : \mathbb{R} \left\{ \frac{1}{2} \right\} \longrightarrow \mathbb{R}^*$ définie par :

$$g(x) = \frac{9}{2x - 1}$$

Montrer que q est une bijection. Déterminer son application réciproque.

exercice 5 Soit f une application de E vers F. Soient A et A' deux partie de E, et soient B et B' deux partie de F

1. Montrer que

1		
	$1 - A \subset f^{-1}(f(A))$	$2 - f(f^{-1}(B)) \subset B(\ devoir\)$
	$S- f(A \cup A') = f(A) \cup f(A') (devoir)$	$4 - f(A \cap A') \subset f(A) \cap f(A')$
	$5 - f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$	$6 - f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B') (devoir)$

2. Montrer que si f est injective alors on a égalité dans (4).

exercice 6 On définit sur \mathbb{R}^2 la relation \Re par :

$$\forall (x,y) \in \mathbb{R}^2, (x,y)\Re(x',y') \Leftrightarrow x+y=x'+y'$$

- 1. Montrer que \Re une relation d'équivalence.
- 2. Trouver la classe d'équivalence du couple (0,0).

exercice 7 On définit dans \mathbb{R}^2 la relation T par :

$$\forall (x,y); (x',y') \in \mathbb{R}^2, (x,y)T(x',y') \Leftrightarrow |x-x'| \le y'-y$$

- 1. Montrer que T est une relation d'ordre.
- 2. L'ordre est-il total ou partiel?

exercice 8 On définit sur \mathbb{N}^* la relation S suivante :

$$\forall (n,m) \in \mathbb{N}^* \times \mathbb{N}^* : nSm \Leftrightarrow il \ existe \ un \ k \in \mathbb{N}^* \ tel \ que : n = km$$

- 1. Vérifier que 6S2 et 5S1.
- 2. Montrer que la relation S est une relation d'ordre partiel sur \mathbb{N}^* .
- 3. On suppose dans la suite de l'exercice que l'ensemble \mathbb{N}^* est ordonné par la relation S. \mathbb{N}^* possédé-t'il un maximum ? un minimum ?