Reflexão da luz

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

2 de Fevereiro de 2021

Sumário

- Introdução
- Espelho plano
- Espelhos esféricos
- A equação dos espelhos esféricos
- **Aplicações**
- **Apêndice**

Prof. Flaviano W. Fernandes

Introdução

O estudo da luz é algo que vem desde a Grécia antiga, através de Platão e Aristóteles. Newton verificou que a luz se propaga de maneira retilínea, além de verificar que a luz branca era nada mais que a combinação de sete cores. Atualmente. através das descobertas de Maxwell, sabemos que a luz é a combinação de duas ondas transversais que se propagam no vácuo à uma velocidade $c = 3 \times 10^8$ m/s.

Isaac Newton observando a propagação retilínea da luz.

Prof. Flaviano W. Fernandes

Propriedades da luz

Introdução 00000

- ✓ Propagação retilínea da luz: Em um meio homogêneo, a luz tende a se propagar em linha reta.
- ✓ Princípio de reversibilidade dos raios de luz: Os raios de luz são reversíveis.
- ✓ Princípio de independência dos raios de luz: Os raios de luz são independentes entre si

Propagação retilínea [2].

Reversibilidade da luz [2].

Cruzamento entre raios.

Reflexão e refração da onda numa corda.

Reflexão e refração dos raios de luz.

Corollary

Introdução 00000

> A luz como qualquer onda apresenta certos fenômenos ondulatórios, como reflexão, refração, difração e interferência.

Difusão dos raios de luz ao incidir numa superfície rugosa.

Reflexão dos raios de luz ao incidir numa superfície perfeitamente lisa.

Prof. Flaviano W. Fernandes IFPR-Irati

Introdução

As leis da reflexão

Introdução 0000

- ✓ O raio incidente, a normal à superfície refletora no ponto de incidência e o raio refletido estão situados em um mesmo plano.
- ✓ O ângulo de incidência \hat{i} é igual ao ângulo de reflexão \hat{r} .

Ângulos de incidência \hat{i} e reflexão \hat{r} .

Raio incidente e refletido no mesmo plano.

Formação da imagem num espelho plano

Espelho plano

A luz emitida por um objeto e refletida em um espelho plano chega aos olhos de um observador como se estivesse vindo do ponto de encontro dos prolongamentos dos raios refletidos. Nesse ponto, o observador vê uma imagem virtual do obieto.

Imagem virtual

Uma imagem virtual é sempre formada pelos prolongamentos dos raios de luz.

Formação da imagem virtual de um objeto em um espelho plano.

Propriedades do espelho plano

Espelho plano

Como $\hat{r} = \hat{i}$, podemos dizer que os triângulos OAB e IAB são iguais entre si, portanto podemos dizer que $D_O = D_I$.

Corollary

- ✓ Geometricamente, podemos formar uma imagem à partir do encontro de dois ou mais prolongamentos dos raios de luz.
- ✓ A imagem de um objeto em um espelho plano é simétrica em relação a esse espelho:

Distância do objeto e da imagem num espelho plano.

Imagem de um objeto extenso

Cada ponto do objeto extenso irá incidir raios de luz no espelho, que por sua vez irá formar uma imagem simétrica a esse ponto. O conjunto de imagens formadas resultará numa imagem única do objeto extenso de mesmo formato e tamanho, porém simétrica em relação ao espelho.

Imagem de um objeto extenso formada no espelho plano.

Diferenças entre espelho côncavo e convexo

Espelho côncavo.

Espelho convexo.

Corollary

Se o ângulo entre o raio refletido e o espelho for suficientemente pequeno (< 10°), podemos tratar o espelho como se fosse parabólico, onde os raios refletidos convergem para um ponto chamado distância focal.

Foco de um espelho

Um feixe de raios luminosos, incidindo paralelamente ao eixo de um espelho côncavo, é refletido convergindo para um foco real; incidindo em um espelho convexo, diverge, como se fosse emitido de um foco virtual.

Raios paralelos convergindo no foco.

Raios paralelos divergindo do foco.

Distância focal

A distância focal, f, de um espelho esférico é aproximadamente igual à metade do seu raio de curvatura, isto é, f=R/2.

Raio paralelo convergindo no foco.

Raio paralelo divergindo do foco.

Prof. Flaviano W. Fernandes

Espelho côncavo.

Espelho convexo.

Raios principais (reflexão de um raio passando pelo centro de curvatura)

Espelho côncavo.

Espelho convexo.

Espelho convexo.

Formação de imagem num espelho esférico

Real, invertida e menor.

Virtual, direita e maior.

Real, invertida e maior.

Virtual, direita e menor.

Aumento linear

Podemos observar na figura que os triângulos ABV e A'B'V são semelhantes, portanto

$$\frac{A'B'}{AB} = \frac{A'V}{AV}.$$

Mas percebemos que A'V é a distância da imagem e AV é a distância do objeto até o vértice do espelho, portanto

$$\frac{A'B'}{AB} = \frac{D_i}{D_o}.$$

Semelhança entre os triângulos ABV e A'B'V

A equação dos espelhos esféricos

Podemos observar na figura que os triângulos ABC e A'B'C são semelhantes, portanto

$$\frac{A'B'}{AB} = \frac{A'C}{AC}$$

No entanto, podemos perceber também que

$$A'C = CV - A'V = R - D_i = 2f - D_i,$$

 $AC = AV - CV = D_o - R = D_o - 2f.$

Semelhança entre os triângulos ABC e A'B'C

Dividindo as duas equações acima temos

$$\frac{A'C}{AC} = \frac{2f - D_i}{D_o - 2f}$$

A equação dos espelhos esféricos (continuação)

Sabendo que $\frac{A'B'}{AB} = \frac{A'C}{AC}$ temos

$$\frac{A'C}{AC} = \frac{2f - D_i}{D_o - 2f},$$

$$\frac{A'B}{AB} = \frac{2f - D_i}{D_o - 2f}.$$

Mas como foi mostrado anteriormente, sabemos que $\frac{A'B}{AB} = \frac{D_i}{D_o}$, portanto

$$\frac{D_i}{D_o} = \frac{2f - D_i}{D_o - 2f}.$$

Multiplicando cruzado temos

$$D_i(D_o - 2f) = D_o(2f - D_i),$$

 $D_iD_o - 2D_if = 2D_of - D_oD_i,$
 $2D_oD_i = 2fD_o + 2fD_i.$

Dividindo todos os termos por $2fD_oD_i$ temos

$$\frac{1}{f}=\frac{1}{D_o}+\frac{1}{D_i}.$$

As equações do espelho esférico pode ser utilizada para qualquer tipo de espelho.

Equações do espelho esférico

$$\frac{1}{f}=\frac{1}{D_o}+\frac{1}{D_i},$$

$$\frac{A'B'}{AB} = -\frac{D_i}{D_o},$$

(Equação dos espelhos),

A equação dos espelhos esféricos

(Aumento linear).

Corollary

Introdução

Podemos dizer que as distâncias do lado esquerdo do espelho serão positivas e do lado direito serão negativas, e se a imagem for invertida ela será negativa.

Aplicações envolvendo espelhos esféricos

Espelhos retrovisores.

Telescópio refletor [3].

Transformar um número em notação científica

Corollary

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Conversão de unidades em uma dimensão

$$1 \text{ mm} = 1 \times 10^{(-1) \times 2} \text{ dm} \rightarrow 1 \times 10^{-2} \text{ dm}$$

$$2,5 \text{ kg} = 2,5 \times 10^{(1) \times 6} \text{ mg} \rightarrow 2,5 \times 10^{6} \text{ mg}$$

$$10 \text{ ms} = 10 \times 10^{(-1) \times 3} \text{ s} \rightarrow 10 \times 10^{-3} \text{ s}$$

Conversão de unidades em duas dimensões

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2.5 \text{ m}^2 = 2.5 \times 10^{(2) \times 3} \text{ mm}^2 \rightarrow 2.5 \times 10^6 \text{ mm}^2$$

$$10 \text{ ms}^2 = 10 \times 10^{(-2) \times 3} \text{ s}^2 \rightarrow 10 \times 10^{-6} \text{ s}^2$$

Prof. Flaviano W. Fernandes

Conversão de unidades em três dimensões

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times \textcolor{red}{3}} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

$$2,5 \text{ km}^3 = 2,5 \times 10^{(3) \times 6} \text{ mm}^3 \rightarrow 2,5 \times 10^{18} \text{ mm}^3$$

Prof. Flaviano W. Fernandes

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	E	ϵ, ε
Zeta	Z	ζ
Eta	Н	η
Teta	Θ	θ
lota	1	ι
Capa	K	κ
Lambda	Λ	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Р	ρ
Sigma	Σ	σ
Tau	Τ	au
Ípsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

- A. Máximo, B. Alvarenga, C. Guimarães, Física, Contexto e aplicações, v.2. 2.ed., São Paulo, Scipione (2016)
- http://educacao.globo.com/fisica/assunto/ondas-e-luz/principios-dapropagacao-da-luz.html
- https://www.apolo11.com/tudo sobre telescopios 2.php

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.