Multiple Sequence Alignment

Definition

Given N sequences $x^1, x^2, ..., x^N$:

- Insert gaps (-) in each sequence xⁱ, such that
 - All sequences have the same length L
 - Score of the global map is maximum

Applications

Gene structure

exon = protein-coding intron = non-coding

Codon:

A triplet of nucleotides that is converted to one amino acid

Gene Finding

Nature Biotechnology 28, 421–423 (2010)

- Classes of Gene predictors
 - Ab initio: Only look at the genomic DNA of target genome
 - De novo: Target genome + aligned informant genome(s)

Using Comparative Information


```
Alignment 1
Seq1: human
Seq2: macaque
Reg id: 75
Reg length: 100
Plot min: 50
Regions: 7
```

Alignment 2 Seq1: human Seq2: pig Reg id: 75 Reg length: 100 Plot min: 50 Regions: 6

Alignment 3 Seq1: human Seq2: rabbit Reg id: 75 Reg length: 100 Plot min: 50 Regions: 4

Alignment 4 Seq1: human Seq2: mouse Reg id: 75 Reg length: 100 Plot min: 50 Regions: 5

Alignment 5
Seq1: human
Seq2: rat
Reg id: 75
Reg length: 100
Plot min: 50
Regions: 5

Alignment 6 Seq1: human Seq2: chicken Reg id: 75 Reg length: 100 Plot min: 50 Regions: 0

Resolution: 4 Window size: 100 Start: 1

Exon UTR CNS

Metazoan

Chordate

Mammal

Rodent

Patterns of Conservation

Scoring Function: Sum Of Pairs

Definition: Induced pairwise alignment

A pairwise alignment induced by the multiple alignment

Example:

```
x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG
```

Induces:

```
x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG
```

Sum Of Pairs (cont'd)

Heuristic way to incorporate evolution tree:

$$S(m) = \Sigma_{k < l} w_{kl} s(m^k, m^l)$$

A Profile Representation

A C G T

0	1	0	0	0	0	1	0	0	. 8	0	0	0	0	0	.7
. 6	0	0	0	1	0	0	. 4	1	0	. 6	. 2	0	0	.3	0
0	0	1	. 2	0	0	0	0	0	. 2	0	0	. 4	1	. 4	0
.2	0	0	0	0	1	0	. 6	0	0	0	0	. 2	0	. 3	0
. 2	0	0	.8	0	0	0	0	0	0	. 4	. 8	. 4	0	0	.3

- Replace each column m_i with profile entry p_i
 - Frequency of each letter, gap in Σ
 - Optional: # gap openings, extensions, closings
- Can think of this as a "likelihood" of each letter in each position

Multiple Sequence Alignments

Algorithms

Multidimensional DP

Generalization of Needleman-Wunsh:

$$S(m) = \sum_{i} S(m_i)$$

(sum of column scores)

$$F(i_1,i_2,...,i_N)$$
: Optimal alignment up to $(i_1, ..., i_N)$

$$F(i_1, i_2, ..., i_N) = \max_{(all \text{ neighbors of cube})} (F(nbr) + S(nbr))$$

Multidimensional DP

Example: in 3D (three sequences):

7 neighbors/cell

Multidimensional DP

Running Time:

1. Size of matrix: L^N;

Where L = length of each sequence N = number of sequences

2. Neighbors/cell: 2^N – 1

Therefore...... $O(2^N L^N)$

Progressive Alignment

- When evolutionary tree is known:
 - Align closest first, in the order of the tree
 - In each step, align two sequences x, y, or profiles p_x , p_y , to generate a new alignment with associated profile p_{result}

Weighted version:

- Tree edges have weights, proportional to the divergence in that edge
- New profile is a weighted average of two old profiles

Progressive Alignment

Example

Profile: (A, C, G, T, -) $p_{\mathbf{x}} = (0.8, 0.2, 0, 0, 0)$ $\mathbf{p_v} = (0.6, 0, 0, 0, 0.4)$

- When evolutionary tree is known:
 - Align closest first, in the order of
 - alignment with associated profile

$s(p_x, p_v) = 0.8*0.6*s(A, A) + 0.2*0.6*s(C, A)$ + 0.8*0.4*s(A, -) + 0.2*0.4*s(C, -)

In each step, align two sequence Result: $p_{xy} = (0.7, 0.1, 0, 0, 0.2)$

$$s(p_x, -) = 0.8*1.0*s(A, -) + 0.2*1.0*s(C, -)$$

Result: $p_{x-} = (0.4, 0.1, 0, 0, 0.5)$

Weighted version:

- Tree edges have weights, propo
- New profile is a weighted average

Progressive Alignment

- When evolutionary tree is unknown:
 - Perform all pairwise alignments
 - Define distance matrix D, where D(x, y) is a measure of evolutionary distance, based on pairwise alignment
 - Construct a tree (UPGMA / Neighbor Joining / Other methods)
 - Align on the tree

Heuristics to improve alignments

Iterative refinement schemes

A*-based search

Consistency

Simulated Annealing

•

One problem of progressive alignment:

Initial alignments are "frozen" even when new evidence comes

Example:

x: GAAGTT

y: GAC-TT

Frozen!

z: GAACTG

w: GTACTG

Now clear correct y = GA-CTT

Algorithm (Barton-Stenberg):

- For j = 1 to N, Remove x^{j} , and realign to x^{1} ... $x^{j-1}x^{j+1}...x^{N}$
- Repeat 4 until convergence

allow y to vary x,z fixed projection

Example: align (x,y), (z,w), (xy, zw):

x: GAAGTTA

y: GAC-TTA

z: GAACTGA

w: GTACTGA

After realigning y:

x: GAAGTTA

y: G-ACTTA

z: GAACTGA

w: GTACTGA

+ 3 matches

Example not handled well:

x: GAAGTTA

 y_1 : GAC-TTA

 y_2 : GAC-TTA

 y_3 : GAC-TTA

z: GAACTGA

w: GTACTGA

Realigning any single y_i changes nothing

Consistency

Consistency

Basic method for applying consistency

- Compute all pairs of alignments xy, xz, yz, ...
- When aligning x, y during progressive alignment,
 - For each (x_i, y_j) , let $s(x_i, y_j) = function_of(x_i, y_j, a_{xz}, a_{yz})$
 - Align x and y with DP using the modified s(.,.) function

Real-world protein aligners

- MUSCLE
 - High throughput
 - One of the best in accuracy
- ProbCons
 - High accuracy
 - Reasonable speed

MUSCLE at a glance

- 1. Fast measurement of all
 - $D_{DRAFT}(x, y)$ defined in
- 2. Build tree T_{DRAFT} based
- 3. Progressive alignment of
- 4. Measure new Kimura-ba
- Build tree T based on D
- 6. Progressive alignment of
- 7. Iterative refinement; for
 - Tree Partitioning: Split
 - If new alignment M' has

PROBCONS at a glance

- 1. Computation of all posterior matrices M_{xy} : $M_{xy}(i, j) = Prob(x_i \sim y_i)$, using a HMM
- 2. Re-estimation of posterior matrices M'_{xv} with *probabilistic consistency*

•
$$M'_{xy}(i, j) = 1/N \sum_{\text{sequence } z} \sum_{k} M_{xz}(i, k) \times M_{yz}(j, k);$$
 $M'_{xy} = Avg_z(M_{xz}M_{zy})$

- 3. Compute for every pair x, y, the maximum expected accuracy alignment
 - A_{xy} : alignment that maximizes $\sum_{\text{aligned (i, j) in A}} M'_{xy}(i, j)$
 - Define $E(x, y) = \sum_{\text{aligned (i, j) in Axy}} M'_{xy}(i, j)$
- 4. Build tree T with hierarchical clustering using similarity measure E(x, y)
- 5. Progressive alignment on T to maximize E(.,.)
- 6. Iterative refinement; for many rounds, do:
 - Randomized Partitioning: Split sequences in M in two subsets by flipping a coin for each sequence and realign the two resulting profiles

Mammalian alignments

References

- <u>Lindblad-Toh et al. Nature</u>
 478:476-482, 2011
- <u>Lin et al. Genome Research</u>
 21:1916-1928, 2011

Genome Evolutionary Rate Profiling (GERP)

ncRNA

10,1%

doi:10.1371/journal.pcbi.1001025.t001

2.0

A. Average Position Conservation Score