Accelerated Lecture 5: Data Visualization

Harris Coding Camp – Accelerate Track

Summer 2022

Today's lesson

- Conceptual goal: How does a data visualization communicate about the underlying data?
- Coding goal: How do we tell the computer how to make the plot
 - How to map data to aesthetics with aes()
 - How to visualize the mappings with geoms
 - How to get more out of your data by using multiple aesthetics
 - How to use facets to add dimensionality

We have entire courses on data visualization. This is just a sample.

How have annual housing sales in Texas changed over time?

"Look at the data"

```
## # A tibble: 10 x 2
##
       year total_volume
##
      <int>
                    <dbl>
##
    1
       2000 33342410971
##
    2
       2001
             35804815138
##
    3
       2002 37798888462
##
       2003
             41674204834
    4
##
    5
       2004
             47913188880
##
    6
       2005
             56534755111
##
    7
       2006
             65237510783
       2007
             64393979596
##
    8
##
             54198855809
    9
       2008
       2009
             48450447327
##
   10
```

What if we make a plot of annual housing sales over time. . .

How do we tell the computer how to plot from the underlying data?

A "grammar of graphics" (Wickham 2010, Wilkinson et. al 2005, Bertin 1983)

- ► Grammar = "the whole system and structure of a language"
- ▶ i.e a set of rules for how to combine information in order to communicate

ggplot code structure

Basic Components of ggplot (Layers)

- Layer 1: ggplot()
 - bring in data
 - how data are mapped to visual information, the "aesthetic mapping"
- ► Layer 2: geom_xxx()
 - ▶ say how to visualize the aesthetic mapping bars, dots, etc.
- ► Layer 3: labs()
 - communicate main point + what the aesthetics represent
 - title, legend, axes-labels, etc

An "aesthetic" is a visual property of the objects in your plot

- ▶ We map data to aesthetics
 - col1 will be represented by color
 - ▶ col2 will be represented by the x-position

ggplot() tells R to prepare to make a plot.

```
# Layer 1, data frame
ggplot(data = annual_sales)
```

Layer 1: adding an aesthetic mapping

mapping = aes() declares how to map the data to "aesthetics":

- map each row of the data (year, total_volume) to the (x,y)
- automatically picks scale for axes

```
ggplot(data = annual_sales,
    mapping = aes(x = year, y = total_volume))
```


Layer 2: visualizing the mapping with geom_point()

Each observation or row has a (year, total_volume) mapped to the coordinate pair (x,y)

Layer 2: visualizing the mapping with geom_col()

 Each observation or row has a (year, total_volume) mapped to the coordinate pair (x,y)

Layer 2: visualizing the mapping with geom_line

Here we see a line connecting each (x,y) pair using geom_line().

Layer 2: visualizing the mapping with geom

The data can be visualized with different geoms that can be composed (+) together:

Layer 3: Adding labels makes the plot more readable:

Annual Sales in Texas

Over laying multiple geoms: adding vertical lines

- add horizontal lines with geom_hline()
- ▶ add any linear fit with geom_abline() by providing a slope and intercept 18/62

aesthetics beyond the x and y position

We'll use midwest data and start with only mapping to x and y

ggplot(): Using color

- color maps data to the color of points or lines
 - Each state is assigned a color
 - ▶ This works with discrete data and continuous data

ggplot(): Using shape

- shape maps data to the shape of points
 - Each state is assigned a shape
 - ► This works with discrete data only

ggplot(): Using color + shape

- Combining color and shape:
 - Each state is assigned a shape and color

ggplot(): Using alpha

- alpha maps data to the transparency of points
- we map the percentage of people within a known poverty status to alpha

ggplot(): Using size

- size maps data to the size of points and width of lines.
- we map the percentage of people within a known poverty status to size

ggplot(): Using multiple aesthetics together

We can combine any and all aesthetics, and even map the same variable to multiple aesthetics

ggplot(): Using multiple aesthetics together

Facets: a tool to explore multidimensional data

Facets: a tool to explore multidimensional data

Facets: a tool to explore multidimensional data

ggplot(): Using aesthetics to explore data

Different geoms have specific aesthetics that go with them.

▶ the ggplot cheat sheet shows all the geoms with their associated aesthetics

 Adjust code to reproduce the following plot (sample codes provided in the next slide):

2. Adjust code to reproduce the following plot (sample codes provided in the next slide):

Write your own labels with labs()

Write your own labels with labs()

Thinking about how underlying data maps to aesthetics

discrete vs continuous data

Here discrete and continuous have different meaning than in math

aes	discrete	continuous
	limited number of classes i.e. < 10 values usually chr or 1g1	unlimited number of values any number of values numeric
x, y	yes	yes
color, fill	yes	yes
shape	yes (6 or fewer)	no
size, alpha	not advised	yes
facet	yes	not advised

▶ If your "discrete" data is numeric, use as.character() or as_factor() to enforce the decision.

color can be continuous (but default not great)

color can be continuous

lots of tools to explore, need to think about what is being communicated

shape does not play well with many categories

- Will only map to 6 categories, the rest become NA.
- ▶ We can override this behavior and get up to 25 distinct shapes

alpha and size can be misleading with discrete data

Warning: Using alpha for a discrete variable is not adv

Thinking about how underlying data maps to type of figure (geom)

Type of figures

- 1. Distribution of univariate (single variable)
- boxplot, histogram, density plot, etc
- 2. Relationship between bivariate (two variables)
- scatter plot, line plot, boxplot, (segmented) bar plot, etc
- 3. Relationship between many variables at once
- usually focusing on the relationship between two while conditioning for others

Univariate: histogram

```
midwest |>
  ggplot(aes(x = percollege)) +
  geom_histogram(binwidth = 1)
```


Univariate: density

```
midwest |>
  ggplot(aes(x = percollege)) +
    geom_density()
```


Univariate: box plots

```
midwest |>
  ggplot(aes(x = percollege)) +
    geom_boxplot()
```


Univariate: bar plot

Like geom_histogram(), geom_bar() counts your data.

```
midwest |>
  ggplot(aes(x = state)) +
  geom_bar()
```


Bivariate: scatter plot

Bivariate: scatter + smooth Line plot

Bivariate: scatter + smooth Line plot

Bivariate: box plots

Recap: There are many ways you can visualize your data!

- Visualizations provide insights into variable relationships
 - Making quick plots helps us understand data and makes us aware of data issues
- ggplot starts by mapping data to "aesthetics"
 - e.g. What data shows up on x and y axes and how color, size and shape appear on the plot
- ▶ Then, we use geoms to create a visualization based on the mapping
- ▶ We many consider adding labels to make plots more readable

Next steps

Labs

► Today: Data visualization with ggplot (may run into tomorrow)

I can produce basic plots to explore and communicate about data

Lecture

Data analysis with grouped data

Appendix: Some graphs you made along the way

- annual_sales
- Distributions
- Grouped bar graph
- ► Faceted bar graph

Today's data: annual_sales

```
annual_sales <-
  txhousing |>
  group_by(year) |>
  summarize(total_volume = sum(volume, na.rm = TRUE))
```

Appendix: distributions

- geom_density() only requires an x aesthetic and it calculates the distribution to plot.
- We can set the aesthetics manually, independent of data for nicer graphs.

```
chi_sq_samples <-
tibble(x = c(rchisq(100000, 2),
              rchisq(100000, 3),
              rchisq(100000, 4)),
        df = rep(c("2", "3", "4"), each = 1e5))
chi_sq_samples |>
  ggplot(aes(x = x, fill = df)) +
  geom_density( alpha = .5) +
  labs(fill = "df", x = "sample")
```

Appendix: distributions

Appendix: grouped bar graph

- position = "dodge2" tells R to put bars next to each other, rather than stacked on top of each other.
- ▶ Notice we use fill and not color because we're "filling" an area.

Appendix: grouped bar graph

Appendix: faceted bar graph

- Notice that we manipulate our data to the right specification before making this graph
- Using facet_wrap we get a distinct graph for each time period.

Appendix: faceted bar graph

