STAT 510 Mathematical Statistics Fall 2022

Problem set 7: Due on 11:59pm, Tuesday, 12/06/2022

- 1. Let X_1, \ldots, X_n be i.i.d. random variables following Poisson distribution with the rate parameter $\lambda > 0$. We have seen in class that the sample mean (also the maximum likelihood) estimator $\hat{\lambda} := \overline{X}_n$ achieves the C-R lower bound and thus it is the UMVUE. In this problem, we shall derive this fact and its variant with the Rao-Blackwell theorem.
 - (a) Starting from the unbiased estimator X_1 for λ . Compute

$$\phi(t) = \mathbb{E}[X_1 \mid \sum_{i=1}^n X_i = t]$$

and show that it is the UMVUE for estimating λ . [Hint: use symmetry of X_1, \ldots, X_n .]

Next we want to estimate $\theta = e^{-\lambda}$.

- (b) Show that $\tilde{\theta} = \mathbf{1}(X_1 = 0)$ is an unbiased estimator for θ .
- (c) Compute

$$\hat{\theta} = \mathbb{E}[\mathbf{1}(X_1 = 0) \mid \sum_{i=1}^n X_i = t].$$

Here, $\hat{\theta}$ should only be a function of t (and the sample size n). Use the Rao-Blackwell theorem to conclude $Var(\hat{\theta}) \leq Var(\tilde{\theta})$.

2. Let $X \sim \text{Exponential}(\lambda)$ with the probability density function given by

$$f(x \mid \lambda) = \lambda e^{-\lambda x}, \quad x \ge 0, \, \lambda > 0.$$

For the hypothesis testing problem

$$H_0: \lambda = 1$$
 and $H_1: \lambda \neq 1$,

consider the test that rejects H_0 if |X-1| > 3/4.

- (a) Find the size α of this test.
- (b) Find the power function of this test as a function of λ .
- (c) Find the value of λ that minimizes the power. Find the power at this λ value.

- 3. Let X_1, X_2 be i.i.d. uniform $(\theta, \theta + 1)$. For testing $H_0: \theta = 0$ versus $H_1: \theta > 0$, we have two competing tests: (i) $\phi_1(X_1)$ rejects H_0 if X > 0.95 and $\phi_2(X_1, X_2)$ reject H_0 if $X_1 + X_2 > C$.
 - (a) Find the value of C such that ϕ_2 has the same size as ϕ_1 .
 - (b) Find the power function of each test. Find the regime in $\theta > 0$ where ϕ_2 is less powerful than ϕ_1 .
 - (c) Find a test that has the same size but is more powerful than ϕ_2 .
- 4. Let X_1, \ldots, X_n be a random sample from $N(0, \sigma^2)$ distribution with known $\sigma^2 > 0$. A likelihood ratio test (LRT) of $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ is a test that rejects H_0 if $\sqrt{n}|\overline{X}_n \theta_0|/\sigma > c$.
 - (a) Find an expression in terms of standard Gaussian probabilities for the power function of this test.
 - (b) One desires a type I error probability of 0.05 and a maximum type II error probability of 0.25 at $\theta = \theta_0 + \sigma$. Find values of (n, c) that will achieve this.
- 5. Let $f(x|\theta)$ be the Cauchy probability density function

$$f(x|\theta) = \frac{1}{\pi(1 + (x - \theta)^2)}, \quad x \in \mathbb{R}, \theta \in \mathbb{R}.$$

Show that the test function

$$\phi(x) = \begin{cases} 1 & \text{if } 1 < x < 3 \\ 0 & \text{otherwise} \end{cases}$$

is most powerful of its size for testing $H_0: \theta = 0$ versus $H_1: \theta = 1$. Find the type I and type II error probabilities.