Introduction to Algorithms

Meng-Tsung Tsai

10/22/2019

Announcements

Written Assignment 2 is due by Oct 31, 15:40. at https://e3.nctu.me

Programming Assignment 2 was extended, and is due by Nov 5, 23:59. at https://oj.nctu.me

Quiz 1 will be held in class on Oct 24.

Scope: slides 01 - 09, assignments, and their generalizations.

About Quiz 1

Asymptotic Bounds: was1-p1, was1-p2, was2-p1.

Basic DP: was2-p2, pas2-p1.

Reduction: was1-p5, was2-p6.

Don't forget the "I don't know" policy.

You may bring two cheating sheets in A4 size.

Dynamic Sets

Dynamic Sets

Input: a sequence of insert(T, x), delete(T, x), and search(T, x) operations. Let n denote the number of operations and let $U = \{0, 1, 2, ..., m-1\}$ denote the universe of keys, i.e. x in [0, m-1].

Output: for each search(x), answer "Yes" if x is currently in T, or "No" otherwise.

Reading Assignment

Binary Search Trees can support insertions and deletions, each in O(height) time. I2A pp. 294

Red-Black Trees is an implementation of Binary Search Trees while always keeping the height of n-node trees O(log n). I2A pp. 308

n keys	search cost	insertion cost	deletion cost
BST	O(height)	O(height)	O(height)
RBT	O(log n)	O(log n)	O(log n)

Reading Assignment

Binary Search Trees can support insertions and deletions, each in O(height) time. I2A pp. 294

Red-Black Trees is an implementation of Binary Search Trees while always keeping the height of n-node trees O(log n). I2A pp. 308

n keys	search cost	insertion cost	deletion cost
BST	O(height)	O(height)	O(height)
RBT	O(log n)	O(log n)	O(log n)

BST is an implementation of dynamic sets.

Hash Tables

Direct-Address Tables

If the universe U is small, then one may use the identity function

$$hash_{I}(x) = x$$

as a hash function to access a hash table T of size |U|.

```
--- Example ---
```

```
// T[0..m-1] = {0};
insert(T, 11); // T[hash<sub>I</sub>(11)] ++;
insert(T, 3); // T[hash<sub>I</sub>(3)] ++;
delete(T, 11); // T[hash<sub>I</sub>(11)] --;
search(T, 3); // print T[hash<sub>I</sub>(3)] > 0;
...
search(T, 21); // print T[hash<sub>I</sub>(21)] > 0;
```

Direct-Address Tables

If the universe U is small, then one may use the identity function

$$hash_I(x) = x$$

as a hash function to access a hash table T of size |U|.

--- Downside ---

If U is the set of all 32-bit integers, then T has size 4G bytes.

Hash Tables

If one can afford an array of s entries, then one may use

$$hash_{M}(x) = x \mod s$$

as a hash function to access a hash table T of size p.

--- Issues ---

Say p = 13, and process insert(T, 2) and insert(T, 15). Then we have

$$hash_M(2) = hash_M(15)$$
.

Two different keys access the same table entry, i.e. a *collision*.

Hash Tables

If one can afford an array of s entries, then one may use

$$hash_{M}(x) = x \mod s$$

as a hash function to access a hash table T of size p.

--- Resolve Collisions by Chaining ---

Each table entry is replaced with a linked list L.

search: a linear scan in O(|L|) time.

insertion: add to the front in O(1) time.

deletion: a linear scan in O(|L|) time followed by re-wiring in O(1) time.

Random Hash Functions

A Uniformly-Random Function

Given n keys, and a table of n entries.

Suppose one can hash every key uniformly at random to a table entry, then a longest chain has length O(log n) w.h.p.

The Power of Two Choices

Given n keys, and a table of n entries.

Suppose one can hash every key uniformly at random to two table entries and add the newly inserted keys into a shorter list, then a longest chain has length loglog n+O(1) w.h.p.

The Power of d Choices

Given n keys, and a table of n entries.

Suppose one can hash every key uniformly at random to k table entries and add the newly inserted keys into a shortest list, then a longest chain has length ($\log \log n$)/($\log d$)+O(1) w.h.p.

Universal Hashing Family

 $H = \{h_{ab}(x) = ((ax + b \mod p) \mod s)\}$ for some prime p > |U| > s.

Given n keys, pick a random hash function from H, then the expected length of a longest chain has length O(1).

Comparison

n keys	search cost	insertion cost	deletion cost	space
BST	O(height)	O(height)	O(height)	O(n)
RBT	O(log n)	O(log n)	O(log n)	O(n)
hash _I	O(1)	O(1)	O(1)	O(U)
$hash_{M}$	O(n)	O(1)	O(n)	O(n)
hash _{U(0, n-1)}	O(log n) w.h.p.	O(1)	O(log n) w.h.p.	O(n)
hash _{U(0, n-1)} + d choices	O(dloglog n/log d) w.h.p.	O(d)	O(dloglog n/log d) w.h.p.	O(n)
hashuniversal	expected O(1)	expected O(1)	expected O(1)	O(n)

Exercise

Pick up the notion of expection, varianece, Union bound, Markov inequality, Chebyshev inequality, Chernoff bound, independence, k-wise independence in a probability course.

We will cover the proof in the lecture of probabilitic data structures at the end of this semester.