Recitation 4: Solutions for Exercise Problem

Shunkei Kakimoto

Let me know when you have any questions.

Summer 2013 environment prelim

Two consumers are the only members of an island economy. They have identical preferences over two goods, a private numeraire good x and a pure public good q. Preferences are given by

$$U_i(x_i, q) = \ln x_i + 2 \ln q.$$

Each consumer is endowed with $\omega_i = 10$ of the private good, of which x_i is consumed directly and the remainder $z_i = \omega_i - x_i$ is contributed to the provision of the public good. q is produced according to the simple production function $q = z_1 + z_2$.

- a. Determine the outcome (x_1, x_2, z_1, z_2) , that a benevolent social planner would choose so as to maximize the unweighted sum of preferences, $W = U_1(x_1, q) + U_2(x_2, q)$.
- b. Find the voluntary-contribution equilibrium for this economy. Show that the VCE level of the public good, \hat{q} is less than q^* .
- c. Find the Lindahl price at which the consumers, taking this price as given when selecting their contribution z_i , will choose the socially optimal level of contribution to the public good.

Solution

Part a

The aggregate endowment is $\omega = \omega_1 + \omega_2 = 20$. The social planner's problem is to allocate this endowmnet to x_1 , x_2 , and q so that the social welfare function $W = U_1(x_1, q) + U_2(x_2, q) = log x_1 + log x_2 + 4log$ is maximized:

$$\max_{x_1, x_2, q} W = \log x_1 + \log x_2 + 4\log q$$
s.t. $q = 20 - x_1 - x_2$

Note that $x_1 > 0$, $x_2 > 0$, and q > 0 by the form of U_j . So we should have an interior solution.

$$L = log x_1 + log x_2 + 4log q + \lambda(20 - x_1 - x_2 - q)$$

F.O.Cs are

$$\frac{\partial L}{\partial x_1} = \frac{1}{x_1} - \lambda = 0 \quad \cdots (1)$$

$$\frac{\partial L}{\partial x_2} = \frac{1}{x_2} - \lambda = 0 \quad \cdots (2)$$

$$\frac{\partial L}{\partial q} = \frac{4}{q} - \lambda = 0 \quad \cdots (3)$$

$$\frac{\partial L}{\partial \lambda} = 20 - x_1 - x_2 - q = 0 \quad \cdots (4)$$

By the conditions (1) and (2),

$$x_2 = x_1$$

By the the conditions (1) and (3),

$$q = 4x_1$$

Substituting these for condition (4),

$$20 - x_1 - x_1 - 4x_1 = 0$$

Thus,
$$x_1^{PO} = \frac{10}{3}.$$
 Then, $x_2^{PO} = \frac{10}{3}$ and $q^{PO} = \frac{40}{3}.$

In summary, the socially optimum outcome is $(x_1^{PO}, x_2^{PO}, z_1^{PO}, z_2^{PO}, z_2^{PO}) = (\frac{10}{3}, \frac{10}{3}, \frac{20}{3}, \frac{20}{3})$. The optimal level of public goods is $q^{PO} = \frac{40}{3}$.

Part b

Consumer i's $(i \in 1, 2)$ problem is

$$\max_{x_i, z_i} \quad U_i = \log x_i + 2\log q$$
s.t.
$$x_i = 10 - z_i$$

$$q = z_i + z_{-i}$$

By incorporating the contraints into the objective function, this maximization problem becomes

$$\max_{x} U_i = log(10 - z_i) + 2log(z_i + z_{-i})$$

The first order condition for this unconstrained maximization problem is

$$-\frac{1}{10-z_i} + \frac{2}{z_i + z_{-i}} = 0$$

or

$$z_i = \frac{20 - z_{-i}}{3}$$

(Note that this is person i's response function to the other person's choice on contribution to the public goods.) This condition must hold for i = 1, 2. That is, the following must hold

$$z_1 = \frac{20 - z_2}{3} z_2 = \frac{20 - z_1}{3}$$

By solving this equaltions simultaneously, we get $z_1^{VCE}=z_2^{VCE}=5$. So, $x_1^{VCE}=x_2^{VCE}=10-5=5$.

In summary, the VCE is $(x_1^{VCE}, x_2^{VCE}, z_1^{VCE}, z_2^{VCE}) = (5, 5, 5, 5)$, and $q^{VCE} = z_1^{VCE} + z_2^{VCE} = 10$, which is less than q^{PO} as expected.

Part c

Let p_1 and p_2 be the Lindahl prices of the public good for consumer 1 and consumer 2. **Each consumer solves**,

$$\max_{x_i} \quad U_i = \log x_i + 2\log q$$
s.t.
$$x_i + p_i q = 10$$

Again, the solution should be interior.

$$L = log x_i + 2log q + \lambda (10 - x_i - p_i q)$$

F.O.Cs are

$$\begin{split} \frac{\partial L}{\partial x_i} &= \frac{1}{x_1} - \lambda = 0 \\ \frac{\partial L}{\partial q} &= \frac{2}{q} - \lambda p_i = 0 \\ \frac{\partial L}{\partial \lambda} &= 10 - x_i - p_i q \end{split}$$

From the first two conditions,

$$\frac{1}{x_1} = \frac{1}{p_i} \cdot \frac{2}{q}$$

$$\iff q = \frac{2}{p_i} x_i \quad \cdots (*1)$$

Substituting this for the last F.O.C.,

$$10 - x_i + p_i \cdot \frac{2}{p_i} x_i = 0$$

$$\iff x_i = \frac{10}{3}$$

So, substituting this for condition (*1), we have,

$$q = \frac{2}{p_i} \cdot \frac{10}{3}$$

$$\iff p_i = \frac{3}{20}q \quad \cdots (*2) \quad (\text{for } i = 1, 2)$$

The producer's problem is

$$\max_{q,z} \quad p \cdot q - z$$
s.t. $q = z$

, where $p = p_1 + p_2$ and $z = z_1 + z_2$.

$$L = p \cdot q - z + \lambda(z - q)$$

F.O.C.

$$\begin{split} \frac{\partial L}{\partial q} &= p - \lambda = 0 \\ \frac{\partial L}{\partial z} &= -1 + \lambda = 0 \\ \frac{\partial L}{\partial \lambda} &= z - q = 0 \end{split}$$

From the first two conditions, we have p = 1, or $p_1 + p_2 = 1$. Together with condition (*2),

$$\frac{3}{20}q + \frac{3}{20}q = 1$$

$$\iff q = \frac{10}{3}$$

Substituting this for condition (*2), we have the Lindahl price

$$p_i = \frac{1}{2} \quad \text{for } i = 1, 2$$