

# Tutorial 11 Sections 009/010

TA: Greydon Gilmore Physiology 2130 Nov 26<sup>th</sup>, 2019



## Your TA reminding you...

- 2<sup>nd</sup> Peerwise assignment (1.5%)
  - Post 2 MC questions: due Nov 27<sup>th</sup> @ midnight
  - Answer 5 MC questions: due Nov 29<sup>th</sup> @ midnight
  - Valid content: autonomic nervous system, muscle and cardiovascular physiology
- 2<sup>nd</sup> Quiz (1%)
  - Opens: Dec 2<sup>nd</sup> @ 4pm
  - Closes: Dec 3<sup>rd</sup> @ 4pm
- 2<sup>nd</sup> Midterm (15%)
  - When: Dec 19th @ 9am-10am
  - Room Assignments:
    - ABBA-GANE: Alumni Hall 15
    - GHAB-POSA: Alumni Hall 201
    - PRIM-WOOD: Alumni Hall Stage
    - WU-ZIA: Somerville House 2316
  - Review session: Monday Dec 16<sup>th</sup> from 6-8pm (Auditorium B University Hospital)



# **Today**

- Group work activity
- Learning Catalytics Question
- Cardiovascular anatomy



### **Group Work**



# Teach each other the cardiac cycle using the flip chart paper provided! Each member should teach one part of the cycle to the rest of the group.

- If you don't fully understand that's okay, try your best!
- You can refer to your notes
- Please take a picture and send me an email:
  - greydon.gilmore@gmail.com



# **Cardiac Cycle**

#### **Atrial Systole (Atrial Contraction)**

- P-wave: Atria contract
- Pressure: Atria > Ventricles
- AV valve already open
- Blood (30%) fills ventricles to EDV

#### Early Ventricular Systole (Isovol. Contraction)

- QRS: Ventricles begin to contract
- Pressure: Aorta > Ventricles > Atria
- AV valve close
- No change in volume

#### Ventricular Systole (Ventricular Ejection)

- Ventricles finish contracting
- Pressure: Ventricles > Aorta
- Aortic valve open
- Blood leaves ventricles to ESV
- T-wave





# **Cardiac Cycle**

#### Early Ventricular Diastole (Isovol. Relaxation)

- Ventricles relax
- Pressure: Aorta>Ventricles>Atria
- Aortic valve close
- No change in volume

#### Late Ventricular Diastole (Ventricular Filling)

- Ventricles finish relaxing
- Pressure: Atria > Ventricles
- AV valve open
- Blood (70%) fills ventricles





### **Learning Catalytic Question**



# The Cardiovascular System: General Function, Organization and Anatomy

**Chapter 7: Professor Stavraky** 



# Functions of the cardiovascular system

- 1. Transports oxygen and nutrients
- 2. Removes carbon dioxide and waste
- 3. Regulates body temperature and pH
- 4. Transports and distributes hormones throughout the body



#### **Blood volume distribution**

- Total Blood Volume (TBV) = 5 liters
- Heart and Pulmonary circ. = 15%
- Systemic arteries/arterioles = 10%
  - distribution vessels
- Systemic capillaries = 5%
  - exchange vessels
- Systemic veins/venules= 70%
  - capacitance vessels
  - low pressure, require valves to stop backflow





#### **Heart Flow**







# The \_\_\_\_ supply blood to the heart muscle itself.

- a. coronary arteries
- b. coronary veins
- c. pulmonary arteries
- d. pulmonary veins



The \_\_\_\_\_ supply blood to the heart muscle itself.

- a. coronary arteries
- b. coronary veins
- c. pulmonary arteries
- d. pulmonary veins



# Which of the following is the correct sequence for the spread of cardiac action potentials?

- a. SA node → internodal pathways → AV node → AV bundle
   → bundle branches → Purkinje fibers
- b. SA node → AV node → internodal pathways → AV bundle
   → bundle branches → Purkinje fibers
- c. SA node → internodal pathways → AV node → bundle branches → AV bundle → Purkinje fibers
- d. SA node → internodal pathways → AV node → AV bundle
   → Purkinje fibers → bundle branches



# Which of the following is the correct sequence for the spread of cardiac action potentials?

- a. SA node → internodal pathways → AV node → AV bundle
   → bundle branches → Purkinje fibers
- b. SA node → AV node → internodal pathways → AV bundle
   → bundle branches → Purkinje fibers
- c. SA node → internodal pathways → AV node → bundle branches → AV bundle → Purkinje fibers
- d. SA node → internodal pathways → AV node → AV bundle
   → Purkinje fibers → bundle branches



#### **Significance Action Potential Direction**

#### SA Node

- Located in right atrial wall below opening of superior vena cava
- "Pacemaker" of heart, controlling rate of heart beat

#### AV Node

- Located in interatrial septum (floor of right atrium)
- Electrical relay station, slowing the electrical current from SA node by 1/10<sup>th</sup> of second
  - This allows atria to contract first, then ventricles

#### Conducting cells

 Interconnect the two nodes and distribute stimulus throughout myocardium



AV Ring electrically isolates atria from ventricles so they contract separately



#### **Significance Action Potential Direction**

#### Significance of AP propagation (p.198):

- 1. Allows atria to contract first then ventricles contract
- 2. Atria muscles contract from top to bottom to push blood down into ventricles. Ventricular muscles contract from bottom to top in order to eject blood up and into vessels (pulmonary artery and aorta).





# **Signal Flow**

- SA Node: Pacemaker of the heart
  - How does it generate fast spontaneous APs?
    - Permeability to Na<sup>+</sup> and Ca<sup>2+</sup>
    - Permeability to K<sup>+</sup>
  - These properties naturally bring the cell to threshold





#### **SA Node Action potential**



- 1 Pacemaker potential This slow depolarization is due to both opening of Na<sup>+</sup> channels and closing of K<sup>+</sup> channels. Notice that the membrane potential is never a flat line.
- 2 Depolarization The action potential begins when the pacemaker potential reaches threshold. Depolarization is due to Ca<sup>2+</sup> influx through Ca<sup>2+</sup> channels.
- 3 Repolarization is due to Ca<sup>2+</sup> channels inactivating and K+ channels opening. This allows K+ efflux, which brings the membrane potential back to its most negative voltage.

# **Compare/Contrast – Action Potentials**

|                 | Action Potential                    | Cardiac AP                                     |
|-----------------|-------------------------------------|------------------------------------------------|
| RMP             | RMP = -70 mV                        | RMP = ~-60 mV                                  |
| Threshold       | Threshold = -55 mV                  | Threshold = -40 mV                             |
| Stimulus        | Graded Potential                    | Slow Leak (Na <sup>+</sup> /Ca <sup>2+</sup> ) |
| Depol. Channels | Depolarization = VG Na <sup>+</sup> | Depolarization = VG Ca <sup>2+</sup>           |
| Repol. Channels | Repolarization = VG K <sup>+</sup>  | Repolarization = VG K <sup>+</sup>             |
| Hyperpol.       | Hyperpolarization = Leak channels   | N/A                                            |



# **Cardiac Cycle**

#### **Atrial Systole (Atrial Contraction)**

- P-wave: Atria contract
- Pressure: Atria > Ventricles
- AV valve already open
- Blood (30%) fills ventricles to EDV

#### Early Ventricular Systole (Isovol. Contraction)

- QRS: Ventricles begin to contract
- Pressure: Aorta > Ventricles > Atria
- AV valve close
- No change in volume

#### Ventricular Systole (Ventricular Ejection)

- Ventricles finish contracting
- Pressure: Ventricles > Aorta
- Aortic valve open
- Blood leaves ventricles to ESV
- T-wave





# **Cardiac Cycle**

#### Early Ventricular Diastole (Isovol. Relaxation)

- Ventricles relax
- Pressure: Aorta>Ventricles>Atria
- Aortic valve close
- No change in volume

#### Late Ventricular Diastole (Ventricular Filling)

- Ventricles finish relaxing
- Pressure: Atria > Ventricles
- AV valve open
- Blood (70%) fills ventricles





# Next Tutorial (Dec 3<sup>rd</sup>)

More Cardio physiology!



### What Questions Do You Have?

You can ask in the Owl forums as well!

Also anonymously ask questions in the online dropbox!!

