MACT 2132 Spring 2016

Midterm 1 March 15, 2016

Name:	UID:

- Show your work to receive full credit.
- Calculators are allowed.
- Time: 75 minutes.

Problem	Score	Points
1		9
2		10
3		8
4		7
5		8
Total		42

Problem 1. (3 pts each) Consider the following system of equations

$$x + 4y - 2z = 1$$

$$x + 7y - 6z = 6$$

$$3y + qz = t$$

a) Which number q makes the corresponding coefficient matrix noninvertible?

b) For which value t will the system have infinitely many solutions?

c) Find the solution that has z = 1.

Problem 2. (5 pts each)

a) Solve for A.

$$(A^{-1} - 2I)^T = -2 \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

b) Prove that if A,B, and C are $n\times n$ matrices and ABC=I, then B is invertible and $B^{-1}=CA$

Problem 3. (4 pts each)

a) If the Gaussian elimination leads to x + y = 1 and 2y = 3. Find two possible original problems whose solution set is equivalent to the latter.

b) For which three numbers a will elimination fail to give three pivots?

$$A = \left(\begin{array}{ccc} a & 2 & 3 \\ a & a & 4 \\ a & a & a \end{array}\right).$$

MACT 2132 Spring 2016

Problem 4. Given
$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
 with $det(A) = -3$. Find

a) (2 pts)
$$det(4A^{-1}(A^T)^2)$$
,

b) (2 pts)
$$det((-A^4)^{-1} \times det(A)),$$

c) (3 pts)
$$det \begin{pmatrix} 5d & -a & 4g - 7a \\ 5e & -b & 4h - 7b \\ 5f & -c & 4i - 7c \end{pmatrix}$$
.

Problem 5.

a) (4 pts) Represent $A = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 2 \\ 3 & 4 & 5 \end{pmatrix}$ as a product of elementary matrices.

b) (2 pts)Is A an invertible matrix? Explain your answer.

c) (2 pts) Is the LU factorization of A unique? Explain your answer.

MACT 2132 Spring 2016

Draft: