Checking the equivalence of context-free session types

Andreia Mordido and Vasco T. Vasconcelos

LASIGE, Faculdade de Ciências, Universidade de Lisboa

Motivation

```
1 data Tree = Leaf | Node Int Tree Tree
1 sendTree Leaf c =
2 select Leaf c
3 sendTree (Node x | r) c =
4 let c1 = select Node c
5 c2 = send x c1
6 c3 = sendTree | c2
7 c4 = sendTree r c3
8 in c4
```


Plan

Definition (Type equivalence problem)

Given any context-free session types S and T, the type equivalence problem consists in deciding if types S and T are equivalent, i.e., $S \sim T$.

- Implement an algorithm that decides the type equivalence problem.
- Prove its soundness and completeness w.r.t. the metatheory of context-free session types proposed by Thiemann and Vasconcelos.
- Provide results on complexity.

Algorithm for checking the equivalence of CFST Main stages

Convert types to a grammar

Translates types into a (finite) set of productions

Prune unnormed productions

Streamlines the grammar by pruning unnormed productions

Simplify and expand

Alternates between simplification and expansion operations, until reaching a successful branch in the expansion tree or concluding that all branches are unsuccessful

We consider a finite set of productions $X \stackrel{a}{\to} \vec{Y}$ where:

- X, Y represent non-terminal variables
- a is a *label* in the labelled transition system

Context-free session types are seen as simple grammars, i.e.:

- context-free grammars in Greibach normal form
- ullet s.t. for each X and a there is at most one production $X\stackrel{a}{
 ightarrow} \vec{Y}$

Example

```
S \triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int}\}); (\mu z.! \text{ int}; z; z)
T \triangleq (\mu y. \& \{n: y; y, \ell: \text{ skip}\}; ? \text{ int}); (\mu z.! \text{ int}; z)
```


Example

$$S \triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int}\}); (\mu z.! \text{ int}; z; z)$$

$$T \triangleq (\mu y. \& \{n: y; y, \ell: \text{ skip}\}; ? \text{ int}); (\mu z.! \text{ int}; z)$$

Productions for *S*

$$X_{1} \xrightarrow{\&n} X_{1}X_{1}X_{2}$$

$$X_{1} \xrightarrow{\&\ell} X_{3}$$

$$X_{2} \xrightarrow{? \text{ int}} \varepsilon$$

$$X_{3} \xrightarrow{? \text{ int}} \varepsilon$$

$$X_{4} \xrightarrow{! \text{ int}} X_{4}X_{4}$$

$$Y_1 \xrightarrow{\&n} Y_1 Y_1 Y_2$$

$$Y_1 \xrightarrow{\&\ell} Y_2$$

$$Y_2 \xrightarrow{? \text{ int}} \varepsilon$$

$$Y_3 \xrightarrow{! \text{ int}} Y_3$$

Example

$$S \triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int}\}); (\mu z.! \text{ int}; z; z)$$

$$T \triangleq (\mu y. \& \{n: y; y, \ell: \text{ skip}\}; ? \text{ int}); (\mu z.! \text{ int}; z)$$

Type to grammar
Prune unnormed productions
Simplify and expand

Productions for S	
$X \xrightarrow{!()} X_1 X_4$	
$X_1 \xrightarrow{\&n} X_1 X_1 X_2$	
$X_1 \xrightarrow{\&\ell} X_3$	
$X_2 \xrightarrow{? \text{ int}} \varepsilon$	
$X_3 \xrightarrow{? \text{ int}} \varepsilon$	
$X_4 \xrightarrow{! int} X_4 X_4$	

$$Y \xrightarrow{!(1)} Y_1 Y_3$$

$$Y_1 \xrightarrow{\&n} Y_1 Y_1 Y_2$$

$$Y_1 \xrightarrow{\&\ell} Y_2$$

$$Y_2 \xrightarrow{? \text{int}} \varepsilon$$

$$Y_3 \xrightarrow{! \text{int}} Y_3$$

Algorithm for checking the equivalence of CFST Main stages

Convert types to a grammar

LOHaskellCode \sim 100

Soundness ✓

- 1. Conversion of types into BPAs is sound^a.
- 2. Conversion of BPAs to Greibach Normal Form without altering the solution is sound^b

Prune unnormed productions

Simplify and expand

^aThiemann and Vasconcelos. Context-free session types. 2016.

^bBaeten et al. Decidability of bisimulation equivalence for process generating context-free languages. 1993.

Prune unnormed productions

Definition ((Un)normed terms¹)

A term α is *normed* if there is a path from α to ε . Otherwise, it is said to be *unnormed*.

Christensen, Huttel, and Stirling noted that: whenever α is unnormed, $\alpha \sim \alpha \beta$.

¹ Christensen et al. Bisimulation equivalence is decidable for all CF processes. 1995

Prune unnormed productions

Definition ((Un)normed terms¹)

A term α is *normed* if there is a path from α to ε . Otherwise, it is said to be *unnormed*.

Christensen, Huttel, and Stirling¹ noted that:

whenever α is unnormed, $\alpha \sim \alpha \beta$.

Example

$$S \triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int}\}); (\mu z.! \text{ int}; z; z)$$

$$X_1 \xrightarrow{\&n} X_1 X_1 X_2$$
$$X_1 \xrightarrow{\&\ell} X_3$$

$$\lambda_1 \longrightarrow \lambda_3$$
? int.

$$X_2 \xrightarrow{? \text{ int}} \varepsilon$$

$$X_3 \xrightarrow{? \text{ int}} \varepsilon$$

$$X_4 \xrightarrow{! \text{ int}} X_4 X_4$$

¹ Christensen et al. Bisimulation equivalence is decidable for all CF processes. 1995

Prune unnormed productions

Definition ((Un)normed terms¹)

A term α is *normed* if there is a path from α to ε . Otherwise, it is said to be *unnormed*.

Christensen, Huttel, and Stirling¹ noted that:

whenever α is unnormed, $\alpha \sim \alpha \beta$.

Example

$$S \triangleq (\mu x. \& \{n: x; x; ? \text{int}, \ell: ? \text{int}\}); (\mu z.! \text{int}; z; z)$$

Productions for S	Productions for pruned S
$X_1 \xrightarrow{\&n} X_1 X_1 X_2$	$X_1 \xrightarrow{\&n} X_1 X_1 X_2$
$X_1 \xrightarrow{\& \ell} X_3$	$X_1 \stackrel{\&\ell}{\longrightarrow} X_3$
$X_2 \xrightarrow{? \text{ int}} \varepsilon$	$X_2 \xrightarrow{? \text{ int}} \varepsilon$
$X_3 \xrightarrow{? \text{ int}} \varepsilon$	$X_3 \xrightarrow{? \text{ int}} \varepsilon$
$X_4 \xrightarrow{! \text{ int}} X_4 X_4$	$X_4 \xrightarrow{! \mathrm{int}} X_4$

¹ Christensen et al. Bisimulation equivalence is decidable for all CF processes. 1995

Algorithm for checking the equivalence of CFST Main stages

Following the ideas from Hirshfeld, Jančar, Moller, a bisimulation between processes is seen as an **expansion tree**²³, that alternates between:

- expansion operations
- simplification operations

²Hirshfeld. Bisimulation trees and the decidability of weak bisimulations. 1997

³Jančar and Moller. Techniques for decidability and undecidability of bisimilarity. 1999

An expansion tree alternates between:

 expansion operations - a single derived node results from the expansion of the parent node.

⁴ Jančar, Moller. Techniques for decidability and undecidability of bisimilarity. 1999

An expansion tree alternates between:

- expansion operations a single derived node results from the expansion of the parent node.
- simplification operations
 - reflexive rule: omit from a node N any reflexive pair.
 - **congruence rule**: omit from a node *N* any pair that belongs to the least congruence containing the ancestors of *N*.

⁴ Jančar, Moller. Techniques for decidability and undecidability of bisimilarity. 1999

⁵Christensen et al. Bisimulation equivalence is decidable for all CF processes. 1995

An expansion tree alternates between:

- expansion operations a single derived node results from the expansion of the parent node.
- simplification operations
 - reflexive rule: omit from a node N any reflexive pair.
 - **congruence rule**: omit from a node *N* any pair that belongs to the least congruence containing the ancestors of *N*.
 - basic process algebra rules⁴⁵

⁴Jančar, Moller. Techniques for decidability and undecidability of bisimilarity. 1999 ⁵Christensen et al. Bisimulation equivalence is decidable for all CF processes. 1995

All these transformation rules preserve the safeness property:

Safeness property⁵

 $S \sim T$ iff the expansion tree rooted at $\{(S, T)\}$ has a successful branch.

The finite witness property holds⁵:

Finite witness property⁵⁶

If $S \sim T$, then there exists a **finite successful branch** in the expansion tree.

⁶Christensen et al. Bisimulation equivalence is decidable for all CF processes. 1995

$$S \triangleq (\mu x. \& \{n: x; x; ? \text{int}, \ell: ? \text{int}\}); (\mu z.! \text{int}; z; z)$$

$$T \triangleq (\mu y. \& \{n: y; y, \ell: \text{skip}\}; ? \text{int}); (\mu z.! \text{int}; z)$$

 (X_1X_4, Y_1Y_3)

Productions for pruned S

 $X_{1} \xrightarrow{\&n} X_{1}X_{1}X_{2}$ $X_{1} \xrightarrow{\&\ell} X_{3}$ $X_{2} \xrightarrow{? \text{int}} \varepsilon$ $X_{3} \xrightarrow{! \text{int}} \varepsilon$ $X_{4} \xrightarrow{! \text{int}} X_{4}$

$$\begin{array}{c} Y_1 \xrightarrow{\&n} Y_1 Y_1 Y_2 \\ Y_1 \xrightarrow{\&\ell} Y_2 \\ Y_2 \xrightarrow{?int} \varepsilon \\ Y_3 \xrightarrow{lint} Y_3 \end{array}$$

Example
$$S \triangleq (\mu x. \& \{n: x; x; ? \text{int}, \ell: ? \text{int}\}); (\mu z.! \text{int}; z; z)$$
$$T \triangleq (\mu y. \& \{n: y; y, \ell: \text{skip}\}; ? \text{int}); (\mu z.! \text{int}; z)$$

$$\begin{array}{c|c} & & & & & & & \\ & & & & & \\ & & & & \\ \hline (X_1X_4,Y_1Y_3) & & & \\ \hline (X_1X_4,Y_1Y_3) & & & & \\ \hline (X_1X_4,Y_1Y_3) & & & \\ \hline$$

$$Y_{1} \xrightarrow{\&n} Y_{1}Y_{1}Y_{2}$$

$$Y_{1} \xrightarrow{\&\ell} Y_{2}$$

$$Y_{2} \xrightarrow{?int} \varepsilon$$

$$Y_{3} \xrightarrow{lint} Y_{3}$$

Example
$$S \triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int} \}); (\mu z.! \text{ int}; z; z)$$
$$T \triangleq (\mu y. \& \{n: y; y, \ell: \text{skip}\}; ? \text{ int}); (\mu z.! \text{ int}; z)$$

$$\begin{array}{c} Y_1 \xrightarrow{\&\ell} Y_1 Y_1 Y_2 \\ Y_1 \xrightarrow{\&\ell} Y_2 \\ Y_2 \xrightarrow{?int} \varepsilon \\ Y_3 \xrightarrow{lint} Y_3 \end{array}$$

$$S \triangleq (\mu x. \& \{n: x; x; ? \text{int}, \ell: ? \text{int}\}); (\mu z.! \text{int}; z; z)$$
Example
$$T \triangleq (\mu y. \& \{n: y; y, \ell: \text{skip}\}; ? \text{int}); (\mu z.! \text{int}; z)$$

$$S \triangleq (\mu x. \& \{n: x; x; ? \text{int}, \ell: ? \text{int}\}); (\mu z.! \text{int}; z; z)$$
Example
$$T \triangleq (\mu y. \& \{n: y; y, \ell: \text{skip}\}; ? \text{int}); (\mu z.! \text{int}; z)$$

$$S \triangleq (\mu x. \& \{n: x; x; ? \text{int}, \ell: ? \text{int}\}); (\mu z.! \text{int}; z; z)$$
Example
$$T \triangleq (\mu y. \& \{n: y; y, \ell: \text{skip}\}; ? \text{int}); (\mu z.! \text{int}; z)$$

$$S \triangleq (\mu x. \& \{n: x; x; ? \text{int}, \ell: ? \text{int}\}); (\mu z.! \text{int}; z; z)$$
Example
$$T \triangleq (\mu y. \& \{n: y; y, \ell: \text{skip}\}; ? \text{int}); (\mu z.! \text{int}; z)$$

$S \triangleq (\mu x. \& \{n: x; x; ? \text{int}, \ell: ? \text{int}\}); (\mu z.! \text{int}; z; z)$ Example $T \triangleq (\mu y. \& \{n: y; y, \ell: \text{skip}\}; ? \text{int}); (\mu z.! \text{int}; z)$

$S \triangleq (\mu x. \& \{n: x; x; ? \text{ int}, \ell: ? \text{ int} \}); (\mu z.! \text{ int}; z; z)$ Example $T \triangleq (\mu y. \& \{n: y; y, \ell: \text{ skip} \}; ? \text{ int}); (\mu z.! \text{ int}; z)$

$S \triangleq (\mu x. \& \{n: x; x; ? \text{int}, \ell: ? \text{int}\}); (\mu z.! \text{int}; z; z)$ Example $T \triangleq (\mu y. \& \{n: y; y, \ell: \text{skip}\}; ? \text{int}); (\mu z.! \text{int}; z)$

Algorithm for checking the equivalence of CFST Main stages

Implementation strategies

Implementation choice:

• Breadth-first search on the tree

Implementation strategies

Implementation choice:

• Breadth-first search on the tree

Strategic options that can enhance performance:

- Instead of looking for a fixed point, iterate the simplification phase
- Apply BPA rules wrapped with blocks of reflexive and congruence rules

Implementation strategies

Implementation choice:

• Breadth-first search on the tree

Strategic options that can enhance performance:

- Instead of looking for a fixed point, iterate the simplification phase
- Apply BPA rules wrapped with blocks of reflexive and congruence rules

We showcase runtimes for four scenarios:

	Fixed Point Scenario		Iterated Scenario	
	wrapped	unwrapped	wrapped	unwrapped
Simplification	find fixed point		iterate	
BPAs wrapped	√	×	√	×

Running times (\sim 150 tests)

Towards completeness...

Finite witness property⁷⁸

If $S \sim T$, then there exists a **finite successful branch** in the expansion tree.

Implementation choices aiming to achieve completeness:

- Instead of looking for a fixed point, iterate the simplification phase (there may not be a fixed point)
- Double ended enqueue, prepending promising nodes, as opposed to queuing all new nodes

⁷Christensen et al. Bisimulation equivalence is decidable for all CF processes. 1995

 $^{^8\}mathrm{Jan}\check{\mathrm{car}},\ \mathrm{Moller}.\ \mathrm{Techniques}$ for decidability and undecidability of bisimilarity. 1999

Ongoing Work

- Soundness √
- Completeness ? ... on our way to achieve it.
- Complexity? ... in practice seems to take not much than parsing!
- Lines of Haskell code: approx.\ 300

Coming soon:

FreeST, a compiler for context-free session types! (demos on demand)

Thank you!