RSA*Conference2016

Abu Dhabi | 15-16 November | Emirates Palace

SESSION ID: CCS-T08

Virtual Machines vs. Containers vs. Unikernels: The Security Face-Offs

Agenda

- Workload Execution Environments
 - Virtualization, Containers, Unikernels
- A Security Requirements Template
- Built-In Security Defenses of Workload Execution Units
- Applying Higher Level Security Policy to Workloads
- Apply

RSAConference2016 Abu Dhabi

Heterogeneous Multi Form-Factor Workload Execution Units

Virtual Machines

Containers

Containers within VMs (for Tenant Isolation)

Unikernels (Specialized Kernel)

RSAConference2016 Abu Dhabi

Our Security Requirements

What is "Security" for Workloads?

Protect one-self?

"Well-Behaved" applications?

Policy Compliance

Defense against Attacks?

"Whole is Greater than Sum of its Parts"

Built-In Standalone Defense Mechanisms

Orchestrated Security Defense Mechanisms

Built-In Standalone Defense Mechanisms

- Software Hardening
 - Security Audits, Security Upgrades
- Strong Root of Trust
- Granular Access Control Model
- Easy Composability

Orchestrated Security Defense

- Driven by a higher level Operational Policy
 - Business Rule, Compliance Policy, Reactive Action
- Collaborative Defense with real-time Intelligence Sharing
- Unified Management across hybrid deployments
- Full Stack Visibility and Behavioral Analytics
- Easy Re-Composability

A Security Requirements Template

Smaller Footprint, **Better Security** Audit and Hardening

Built-in Protection, Access Control. Permissions. Capabilities

Workload Isolation,

Firewalls, Access Control

Business-Centric Identity and Rights Management

Operational Policy, **Compliance Rules**

Security Life Cycle

Unified Management, Auditing, Remediation **Plans**

Data Protection. **Encryption, Access Control**

Federated Access, Secure Cloud Deployments

RSAConference2016 Abu Dhabi

RSAConference2016 Abu Dhabi

Fundamental Security Capabilities of Workload Environments

VM Security (aka Hypervisor Security)

Execution Isolation

Privileged Operations

Management

Security Audit & Hardening

Hardware Assisted Virtualization

Granular Access Control

Secure Trusted Boot

Hypervisor Security (cont.)

- Other Recommendations...
 - Configuration Versioning with Rollbacks
 - Regular Security Updates and Patches
 - Secure Configuration of Built-in Firewall
 - Segregating VM Management and Hypervisor Host and VM Traffic

More at NIST Publication - "Security Recommendations for Hypervisor Deployment"

Container Security

Execution Isolation

Privileged Operations

Management

Reduced Attack Surface

Security Audit & Hardening

Granular Access Control

Vulnerability Management

Nuts & Bolts: Linux Namespaces

Network Namespaces

Mount Namespaces

IPC Namespaces

Linux Cgroups & Capabilities

https://mairin.wordpress.com/2011/05/13/ideas-for-a-cgroups-ui/

SELinux

Ref - http://blog.linuxgrrl.com/2014/04/16/the-selinux-coloring-book/

RSAConference2016 Abu Dhabi

Security Defense Orchestration

Mapping Higher Level Operational Policies to Security Primitives

Importance of An Operational Policy

Smaller Footprint, **Better Security** Audit and Hardening

Built-in Protection, Access Control. Permissions. Capabilities

Business-Centric Identity and Rights Management

Operational Policy, **Compliance Rules**

Unified Management, Auditing, Remediation **Plans**

Data Protection. **Encryption, Access Control**

Workload Isolation,

Firewalls, Access Control

Federated Access, Secure Cloud Deployments

Inspiration from Policy Defined Networking

- Policy Driven Application Composition
- Promise-Theory Driven
- Security is Implicit Zero Trust Model

 Multi-Level Policy Formats derived from higher level Policy

Building a Policy Format...

A Logical Collection of Workload Units driven by a common policy requirement Filter, Action, Label Contract Endpoint Group - 1 Filter, Action, Label Allow, VM1 Container1 Deny, Mark UniKernel VM2 Container2 Endpoint Group - 2 VM1 Container1 UniKernel VM2 Container2

... with pluggable Extensibility.

A Logical Collection of Workload Units driven by a common policy requirement Intrusion Contract Detection Endpoint Group - 1 Service Graph Insertion Data VM1 Container1 Protection UniKernel VM2 Container2 Traffic Endpoint Group - 2 Encryption VM1 Container1 UniKernel VM2 Container2

Operationalizing the Security Policy

Apply What You Have Learned Today

- Next Week you should:
 - Understand Built-In Security Capabilities of your Workload Environments
 - Verify your Container environment is making right use of Linux Namespaces, cgroups and SELinux.
- In three months, you should:
 - Identify your high-level Operational Policy Set and check if and how it is enforced on your workloads
 - Identify the best workload unit composition (VM, Container etc.) for the type of your workloads
 - Verify and Setup a Software Patch and Upgrade policy for your workload units
- In six months, you should:
 - Setup a mechanism to operationalize your high-level business policy uniformly across different workload environments

RSAConference2016 Abu Dhabi

Email - ssaklika@cisco.com