Ne soyez pas avares de mots : détaillez vos réponses, prouvez vos affirmations.

IMPORTANT : Pensez à noter le numéro du sujet sur votre copie.

Durée : 1h. Documents autorisés. Pas de calculettes. Pas d'ordinateur. Pas de téléphone.

Question 1

Poser la multiplication suivante en base 3 :

$$2022 \times 12$$
.

Question 2

Effectuer les conversions suivantes

- (a) $(4A7)_{16}$ en base 2.
- (b) $(6463)_8$ en base 16.

Question 3

Soient a et b deux nombres qui s'écrivent, respectivement, avec n et m chiffres binaires. Combien de chiffres binaires faut-il au plus pour représenter a + b? Et $a \times b$?

Question 4

Prouver que

$$q \to (p \to r) \models (q \land p) \to r.$$

Question 5

En utilisant les règles de la déduction naturelle, écrire la preuve formelle de

$$r \vdash p \to (p \land r).$$

Question 6

Mettre la formule suivante en forme normale prénexe

$$\neg \exists y. \Big(\big(\forall x. Q(x,y) \big) \land \neg \big(\forall x. R(x,y) \big) \Big).$$

Question 7

En utilisant exclusivement les symboles $+, -, \times, /, =, \le$, les constantes $0, 1, 2, \ldots$ et le calcul des prédicats, écrire en langage logique l'affirmation « 0 n'a pas d'inverse ».

Solutions

Solution 1

Solution 2

(a) On convertit chaque chiffre hexadécimal en base 2 :

$$(4)_{16} = (0100)_2, \quad (A)_{16} = (1010)_2, \quad (7)_{16} = (0111)_2$$

et on concatène

$$(4A7)_{16} = (10010100111)_2.$$

(b) De la même façon, on passe d'abord par la base 2 :

$$(6)_8 = (110)_2, \quad (4)_8 = (100)_2, \quad (6)_8 = (110)_2, \quad (3)_8 = (011)_2$$

$$(6463)_8 = (110100110011)_2.$$

Ensuite on regroupe en blocs de quatre et on convertit en base 16 :

$$(1101)_2 = (D)_{16}, \quad (0011)_2 = (3)_{16}, \quad (0011)_2 = (3)_{16}$$

$$(6463)_8 = (D33)_{16}.$$

Solution 3 Si a et b s'écrivent avec n et m chiffres binaires, alors $a < 2^n$ et $b < 2^m$. Supposons que $n \ge m$, on en déduit que

$$a+b < 2^n + 2^m < 2^n + 2^n < 2^{n+1}$$
.

donc a+b s'écrit avec au plus n+1 chiffres binaires. Un raisonnement analogue vaut si m>n. De la même façon, on a

$$ab < 2^n 2^m = 2^{n+m}$$
.

donc ab s'écrit avec au plus n+m chiffres binaires.

Solution 4 Il suffit d'écrire les tables de vérité.

q	p	r	$q \to (p \to r)$	$(q \land p) \to r$
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

On remarque qu'à chaque fois que la proposition de gauche est vraie, celle de droite l'est aussi. Donc $(q \land p) \to r$ est bien une conséquence logique de $q \to (p \to r)$. En fait, on peut observer même plus : les deux propositions sont sémantiquement équivalentes!

Solution 5

$$\frac{\frac{\overline{p \vdash p}^{H}}{r, p \vdash p} W \qquad \frac{\overline{r \vdash r}^{H}}{r, p \vdash r} W}{\frac{r, p \vdash p \land r}{r \vdash p \rightarrow (p \land r)}} I_{\land}$$

Solution 6

$$\begin{split} \neg \exists y. \Big(\big(\forall x. Q(x,y) \big) \wedge \neg \big(\forall x. R(x,y) \big) \Big) &\equiv \\ \neg \exists y. \Big(\big(\forall x. Q(x,y) \big) \wedge \big(\exists x. \neg R(x,y) \big) \Big) &\equiv \\ \neg \exists y. \Big(\big(\forall x. Q(x,y) \big) \wedge \big(\exists z. \neg R(z,y) \big) \Big) &\equiv \\ \neg \exists y. \forall x. \exists z. \big(Q(x,y) \wedge \neg R(z,y) \big) &\equiv \\ \forall y. \exists x. \forall z. \neg \big(Q(x,y) \wedge \neg R(z,y) \big) &\equiv \\ \forall y. \exists x. \forall z. \big(\neg Q(x,y) \vee R(z,y) \big). \end{split}$$

Solution 7 Un inverse d'un nombre a est un nombre b tel que ab=ba=1. Alors une façon d'écrire la propriété « 0 n'a pas d'inverse » est :

$$\neg \exists a. (0 \times a = 1).$$