INTERNATIONAL UNIVERSITY OF AFRICA CIVIL ENGINEERING DEPARTMENT ANALYSIS AND DESIGN OF STEEL WORKS II GRADE 4 7TH SEMESTER

Un-Restrained beams

solved example

Solved example

Beam with unrestrained compression flange

Design the simply supported beam for the loading shown in Figure. The loads *P* are normal loads. The beam ends are restrained against torsion with the compression flange free to rotate in plan. The compression flange is unrestrained between supports. Use Grade \$275 steel.

P = 25 kN dead load 12 kN imposed load W = 2.0 kN/m dead load

Reaction due to loads unfactored = (25*1+25*2.5+25*4)/5 + (2*5)/2 + (12*1+12*2.5+12*4)/5

See corus table

see table 16

Table 18

see table 9

see table 13

Factored load (Q @ support) =
$$(1.4 \times 37.5) + (1.4 \times 5) + (1.6 \times 18) = 88.3 \text{ kN}$$
,
Factored moment = $1.4(37.5 \times 2.5 - 25 \times 1.5) + 1.4 \times 2 \times 52/8 + 1.6(18 \times 2.5 - 12 \times 1.5) = 130.7 \text{ kN m}$.

Try 457×152 UB 60. The properties are:

$$ry = 3.23 cm; x = 37.5, u = 0.869, Sx = 1280 cm3.$$

Note that a check will confirm this is a plastic section.

Design strength py 275 N/mm2 (Table 9, BS 5950)

The effective length, LE from Table 13 of BS 5950-1: 2000:

 $LE = 1.0L_{LT} = 5000 \text{ mm}.$

Equivalent slenderness $\lambda LT = uv\lambda \sqrt{\beta w}$

$$\lambda = 5000/32.3 \ = 154.8,$$

$$\eta = 0.5$$
 and $x = 37.5$, $\lambda/x = 154.8/37.5 = 4.13$.

v = 0.855 from Table 19 of BS 5950-1: 2000

$$\lambda LT = 0.869 \times 0.855 \times 154.8 \times 1.0 = 115.$$

Bw = 1 for plastic swction

Bending strength, pb $\,$ 102 N/mm2 (Table 16 BS 5950) Buckling resistance moment:

$$Mb = 102 \times 1280 \times 103 = 130.6 \ kN \ m$$

$$mLT = 0.925$$

Mb/ $mLT = 130.6/0.925 = 141.2$ kN m

Shear capacity:

Overall depth, D = 454.7 mm, Web thickness, t = 8.0 mm,

$$Pv = 0.6 \times 275 \times 454.7 \times 8 \times 10^{-3} = 600.2 \text{ kN} < Q = 88$$

The section is satisfactory.

SHORT LIST OF TABLES IN BS 5950

Table 9 — Design strength p_{v}

Steel grade	Thickness ^a less than or equal to	Design strength p_y
	mm	N/mm ²
S 275	16	275
	40	265
	63	255
	80	245
	100	235
	150	225
S 355	16	355
	40	345
	63	335
	80	325
	100	315
	150	295
S 460	16	460
	40	440
	63	430
	80	410
	100	400

Table 11 - Limiting width-to-thickness ratios for sections other than CHS and RHS

	Compression e	lement	Ratios		Limiting valu	reh
				Class 1 plastic	Class 2 compact	Class 3 semi-compac
Outstand elen		Rolled section	b/T	9ε	10€	15€
compression f	lange	Welded section	b/T	8E	9ε	13ε
Internal elem- compression f		Compression due to bending	b/T	28ε	32€	40ε
		Axial compression	b/T	Not applical	ole	0.000
Web of an I-,	Neutral axis	at mid-depth	d/t	80€	100€	120€
H- or box sections	Generally ^d	If r_1 is negative:	d/t	3	$\frac{100\varepsilon}{1+r_1}$	8.
		If r_1 is positive:	d/t	$\frac{80\varepsilon}{1+r_1}$ but $\geq 40\varepsilon$	$\frac{100\varepsilon}{1 + 1.5r_1}$ but $\geq 40\varepsilon$	$\frac{120\varepsilon}{1+2r_2}$ but $\geq 40\varepsilon$
	Axial compre	ession ^d	d/t	Not applical	ole	10
Web of a chan	nel		d/t	40ε	40€	40ε
Angle, compre	ession due to b	ending	b/t	9€	10€	15€
Both criteria	should be sati	sfied)	d/t	9€	10€	15ε
	or double angle sparated, axial		b/t d/t	Not applical	ole	15ε 15ε
(All three crite	eria should be	satisfied)	(b+d)/t	200000000000000000000000000000000000000		24ε
	of an angle in o n a double ang		b/t	9€	10e	15€
	of an angle wit ntact with ano	h its back in ther component				
Stem of a T-se I- or H-section		r cut from a rolled	D/t	8£	9ε	18ε

Dimensions b, D, d, T and t are defined in Figure 5. For a box section b and T are flange dimensions and d and t are web dimensions, where the distinction between webs and flanges depends upon whether the box section is bent about its major axis or its minor axis, see 3.5.1.
 The parameter ε = (275(p_x))^{1/5}.
 For the web of a hybrid section ε should be based on the design strength p_{xt} of the flanges.
 The stress ratios r₁ and r₂ are defined in 3.5.5.

Table 12 — Limiting width-to-thickness ratios for CHS and RHS

	Compr	ession element	Ration	8 111	Limiting value ^h	
				Class 1 plastic	Class 2 compact	Class 3 semi-compact
CHS	Compress	sion due to bending	D/t	40ε²	$50\varepsilon^2$	$140\varepsilon^2$
	Axial com	ipression	D/t	Not applicable	50	80e²
HF RHS	Flange	Compression due to bending	b/t	28ε but $\leq 80\varepsilon - d/t$	32ε but $\leq 62\varepsilon - 0.5d/t$	40ε
		Axial compression	b/t	Not applicable	8	
	Web	mid-depth		64 <i>e</i>	80€	120€
		Generally ^{ed}	d/t	$\frac{64\varepsilon}{1 + 0.6r_1}$ but $\geq 40\varepsilon$	$\frac{80\varepsilon}{1+r_1}$ but $\geq 40\varepsilon$	$\frac{120\varepsilon}{1+2r_2}$ but $\geq 40\varepsilon$
		Axial compression	d/t	Not applicable		
CF RHS	Flange	Compression due to bending	b/t	26ε but $\leq 72\varepsilon - d/t$	28ε but $\leq 54\varepsilon - 0.5d/t$	35€
		Axial compression ^d	b/t	Not applicable		14839
		Neutral axis at mid-depth	d/t	56e	70ε	105ε
		Generally ^{ed}	d/t	$\frac{56\varepsilon}{1 + 0.6r_1}$ but $\geq 35\varepsilon$	$\frac{70\varepsilon}{1+r_1}$ but $\geq 35\varepsilon$	$\begin{array}{l} \frac{105\varepsilon}{1+2r_2}\\ \text{but}\geq35\varepsilon \end{array}$
		Axial compression ^d	d/t	Not applicable	4	

Abbreviations

CF Cold formed;

CHS Circular hollow section — including welded tube;

RHS Rectangular hollow section — including square hollow section.

* For an RHS, the dimensions b and d should be taken as follows:

—for HF RHS to BS EN 10210: b = B - 3t: d = D - 3t

—for CF RHS to BS EN 10210: b = B - 3t: d = D - 3t

and B, D and t are defined in Figure 5. For an RHS subject to bending B and b are always flange dimensions and D and d are always web dimensions, but the definition of which sides of the RHS are webs and which are flanges changes according to the axis of bending, see 3.5.1.

The parameter \(\xi = (275 \text{b_g})^{1/5}, \)

For RHS subject to momenta about both axes see H.3.

The stress ratios \(r_i \) and \(r_i \) are defined in 3.5.5.

Table 13 — Effective length $L_{\rm E}$ for beams without intermediate restraint

nditions of restraint at supports	Loading	g condition
	Normal	Destabilizing
Both flanges fully restrained against rotation on plan.	$0.7L_{\mathrm{LT}}$	$0.85L_{\mathrm{LT}}$
Compression flange fully restrained against rotation on plan.	$0.75L_{\mathrm{LT}}$	$0.9L_{\mathrm{LT}}$
Both flanges partially restrained against rotation on plan.	$0.8L_{\mathrm{LT}}$	$0.95L_{\mathrm{LT}}$
Compression flange partially restrained against rotation on plan.	$0.85L_{\mathrm{LT}}$	$1.0L_{\mathrm{LT}}$
Both flanges free to rotate on plan.	$1.0L_{\mathrm{LT}}$	$1.2L_{\mathrm{LT}}$
Partial torsional restraint against rotation about longitudinal axis provided by connection of bottom flange to supports.	1.0L _{LT} + 2D	$1.2L_{\mathrm{LT}} + 2D$
Partial torsional restraint against rotation about longitudinal axis provided only by pressure of bottom flange onto supports.	$1.2L_{LT} + 2D$	$1.4L_{\mathrm{LT}} + 2D$
	Both flanges fully restrained against rotation on plan. Compression flange fully restrained against rotation on plan. Both flanges partially restrained against rotation on plan. Compression flange partially restrained against rotation on plan. Both flanges free to rotate on plan. Partial torsional restraint against rotation about longitudinal axis provided by connection of bottom flange to supports. Partial torsional restraint against rotation about longitudinal axis provided only by	Both flanges fully restrained against rotation on plan. Compression flange fully restrained against rotation on plan. Both flanges partially restrained against of $0.75L_{\rm LT}$ rotation on plan. Both flanges partially restrained against rotation on plan. Compression flange partially restrained against rotation on plan. Both flanges free to rotate on plan. Partial torsional restraint against rotation about longitudinal axis provided by connection of bottom flange to supports. Partial torsional restraint against rotation about longitudinal axis provided only by

Table 16 — Bending strength $p_{\rm b}$ (N/mm²) for rolled sections

ALT	0				Ste	el grad	e and d	esign s	trength	p, (Nh	mm=)				
	4.5		S 275	8		Ī _		S 355	95		1		S 460	á	
	235	245	255	265	275	315	325	335	345	355	400	410	430	440	460
25	235	245	255	265	275	315	325	335	345	355	400	410	430	440	460
30	235	245	255	265	275	315	325	335	345	355	395	403	421	429	446
35	235	245	255	265	273	307	316	324	332	341	378	386	402	410	426
40	229	238	246	254	262	294	302	209	317	325	359	367	382	389	404
45	219	227	235	242	250	280	287	294	302	309	340	347	361	367	381
50	210	217	224	231	238	265	272	279	285	292	320	326	338	344	356
55	199	206	213	219	226	251	257	263	268	274	299	305	315	320	330
60	189	195	201	207	213	236	241	246	251	257	278	283	292	296	304
65	179	185	190	196	201	221	225	230	234	239	257	261	269	272	279
70	169	174	179	184	188	206	210	214	218	222	237	241	247	250	256
75	159	164	168	172	176	192	195	199	202	205	219	221	226	229	234
80	150	154	158	161	165	178	181	184	187	190	201	203	208	210	214
85	1.40	144	147	151	154	165	168	170	173	175	185	187	190	192	195
90	132	135	138	141	144	153	156	158	160	162	170	172	175	176	179
95	124	126	129	131	134	143	144	146	148	150	157	158	161	162	164
001	116	118	121	123	125	132	134	136	137	139	145	146	148	149	151
105	109	111	113	115	117	123	125	126	128	129	134	135	137	138	140
110	102	104	106	107	109	115	116	117	119	120	124	125	127	128	129
115	96	97	99	101	102	107	108	109	110	111	115	116	118	118	120
120	90	91	93	94	96	100	101	102	103	104	107	108	109	110	111
125	85	86	87	89	90	94	95	96	96	97	100	101	102	103	104
130	80	81	82	83	84	88	89	90	90	91	94	94	95	96	97
135	75	76	77	78	79	83	83	84	85	85	88	88	89	90	90
140	71	72	73	74	75	78	78	79	80	80	82	83	84	84	85
145	67	68	69	70	71	73	74	74	75	75	77	78	79	79	80
150	64	64	65	66	67	69	70	70	71	71	73	73	74	74	75
155	60	61	62	62	63	65	66	66	67	67	69	69	70	70	71
160	87	58	59	-59	60	62	62	63	63	63	65	65	66	66	67
165	54	55	56	56	57	59	59	59	60	60	61	62	62	62	63
170	52	52	53	53	.54	56	56	56	57	57	58	58	59	59	60
175	49	50	50	51	51	53	50	53	54	54	55	55	56	56	56
180	47	47	48	48	49	50	51	51	51	51	52	53	53	53	54
185	45	45	46	46	46	48	48	48	49	49	50	50	50	51	51
190	43	43	44	44	44	46	46	46	46	47	48	48	48	48	48
195	41	41	42	42	42	43	44	44	44	44	45	45	46	46	46
200	39	39	40	40	40	42	42	42	42	42	43	43	44	44	44
210	36	36	37	37	37	38	38	38	388	39	39	40.	40	40	40
220	33	33.	34	34	34	35	35	35	35	36	36	36	37	37	37
230	31	31	31	31	31	32	32	33	33	33	33	33	34	34	34
240	28	29	29	29	29	30	30	30	30	30	31	31	51	31	31
250	26	27	27	27	27	28	28	28	28	28	29	29	29	29	29
lL0	37.1	36.3	35,6	35.0	.34.3	32.1	31.6	31.1	30.6	30.2	28.4	28.1	27.4	27.1	26

Table 17 — Bending strength p_b (N/mm²) for welded sections

$\lambda_{1,T}$	100				Ste	el grad	e and d	esign s	trength	p_{γ} (N/n	nm²)				
	10 1	e)	S 275	ļ	vi		875 - X	S 355	Ų.		,c		S 460	ļ.,	
	235	245	255	265	275	315	325	335	345	355	400	410	430	440	460
25	235	245	255	265	275	315	325	335	345	355	400	410	430	440	460
30	235	245	255	265	275	315	325	335	345	355	390	397	412	419	434
35	235	245	255	265	272	300	307	314	321	328	358	365	378	385	398
40	224	231	237	244	250	276	282	288	295	301	328	334	346	352	364
45	206	212	218	224	230	253	259	265	270	276	300	306	316	321	332
50	190	196	201	207	212	233	238	243	248	253	275	279	288	293	302
55	175	180	185	190	195	214	219	223	227	232	251	255	263	269	281
60	162	167	171	176	180	197	201	205	209	212	237	242	253	258	269
65	150	154	158	162	166	183	188	194	199	204	227	232	242	247	256
70	139	142	146	150	155	177	182	187	192	196	217	222	230	234	242
75	130	135	140	145	151	170	175	179	184	188	207	210	218	221	228
50	126	131	136	141	146	163	168	172	176	179	196	199	205	208	214
85	122	127	131	136	140	156	160	164	167	171	185	187	190	192	195
90	118	123	127	131	135	149	152	156	159	162	170	172	175	176	179
95	114	118	122	125	129	142	144	146	148	150	157	158	161	162	164
00	110	113	117	120	123	132	134	136	137	139	145	146	148	149	151
05	106	109	112	115	117	123	125	126	128	129	134	135	137	138	140
10	101	104	106	107	109	115	116	117	119	120	124	125	127	128	129
15	96	97	99	101	102	107	108	109	110	111	115	116	11#	118	120
20	90	91	93	94	96	100	101	102	103	104	107	108	109	110	111
25	85	86	87	89	90	94	95	96	96	97	100	101	102	103	104
30	80	81	82	83	84	88	89	90	90	91	94	94	95	96	97
35	75	76	77	78	79	83	83	84	85	85	88	88	89	90	90
40	71	72	73	74	75	78	78	79	80	80	82	83	84	84	85
45	67	68	69	70	71	73	74	74	75	75	77	78	79	79	80
50	64	64	65	66	67	69	70	.70	71	71	73	73	74	74	75
55	60	61	62	62	63	65	66	66	67	67	69	69	70	70	71
60	57	58	59	59	60	62	6/2	63	63	63	65	65	66	66	67
65	54	55	56	56	57	59	59	59	60	60	61	62	62	62	63
70	52	52	53	53	54	56	56	56	57	57	58	58	59	59	60
75	49	50	50	51	51	58	53	53	54	54	55	55	56	56	56
80	47	47	48	48	49	50	51	51	51	51	52	53	53	53	54
85	45	45	46	46	46	48	48	48	49	49	50	50	50	51	51
90	43	43	44	44	44	46	46	46	46	47	48	48	48	48	48
95	41	41	42	42	42	43	44	44	44	44	45	45	46	46	46
00	.39	39	40	40	40	42	42	42	42	42	43	43	44	44	44
10	36	36	37	37	37	38	38	38	39	39	39	40	40	40	40
20	33	33	34	34	34	35	35	35	35	36	36	36	37	37	37
30	31	31	31	31	-31	32	32	33	3525	33	33	33	34	34	34
40	28	29	29	29	29	30	30	30	30	30	31	31	31	31	31
50	26	27	27	27	27	28	28	28	28	28	29	29	29	29	29
to	37.1	36.3	35.6	35.0	34.3	32.1	31.6	31.1	30,6	30.2	28.4	28.1	27.4	27.1	26.3

 ${\bf Table~18-Equivalent~uniform~moment~factor~\it m_{\rm LT}~for~lateral-torsional~buckling} \atop (continued~overleaf)$

Table 19 - Slenderness factor v for sections with two plain flanges

λ/x	Un		ges, larger npression	flange in	Equal flanges	Une	qual flange com	s, smaller f pression	lange in
	-	T	Com	pression		Com	pression	-	T
	-	L,	т	ension		т	ension		
			η	_	η			η	
	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1
0.5	0.81	0.84	0.88	0.93	1.00	1,11	1.28	1.57	2.20
1.0	0.80	0.83	0.87	0.92	0.99	1.10	1.27	1.53	2.11
1.5 2.0	0.80	0.82	0.86	0.91	0.96	1.08	1.24	1.48	1.98
2.5	0.78	0.80	0.83	0.88	0.93	1.03	1.16	1.35	1.70
3.0	0.76	0.78	0.82	0.86	0.91	1.00	1.12	1.29	1.57
3.5	0.74	0.77	0.80	0.84	0.89	0.97	1.07	1.22	1.46
4.0	0.73	0.75	0.78	0.82	0.86	0.94	1.03	1.16	1.36
4.5	0.71	0.73	0.76	0.80	0.84	0.91	0.99	1.11	1.27
5.0	0.70	0.72	0.75	0.78	0.82	0.88	0.95	1.05	1.20
5.5	0.68	0.70	0.73	0.76	0.79	0.85	0.92	1.01	1.13
6.0	0.67	0.69	0.71	0.74	0.77	0.82	0.89	0.97	1.07
6.5	0.65	0.67	0.70	0.72	0.75	0.80	0.86	0.93	1.02
7.0	0.64	0.66	0.68	0.70	0.73	0.78	0.83	0.89	0.97
7.5	0.63	0.65	0.67	0.69	0.72	0.76	0.80	0.86	0.93
8.0	0.62	0.63	0.65	0.67	0.70	0.74	0.78	0.83	0.89
8.5	0.60	0.62	0.64	0.66	0.68	0.72	0.76	0.80	0.86
9.0	0.59	0.61	0.63	0.64	0.67	0.70	0.74	0.78	0.83
9.5	0.58	0.60	0.61	0.63	0.65	0.68	0.72	0.76	0.80
0.0	0.57	0.59	0.60	0.62	0.64	0.67	0.70	0.74	0.78
1.0	0.55	0.57	0.58	0.60	0.61	0.64	0.67	0.70	0.73
2.0	0.54	0.55	0.56	0.58	0.59	0.61	0.64	0.66	0.70
3.0	0.52	0.53	0.54	0.56	0.57	0.59	0.61	0.64	0.66
4.0	0.51	0.52	0.53	0.54	0.55	0.57	0.59	0.61	0.63
5.0	0.49	0.50	0.51	0.52	0.53	0.55	0.57	0.59	0.61
6.0	0.48	0.49	0.50	0.51	0.52	0.53	0.55	0.57	0.59
17.0	0.47	0.48	0.49	0.49	0.50	0.52	0.53	0.55	0.57
18.0	0.46	0.47	0.47	0.48	0.49	0.50	0.52	0.53	0.55
19.0	0.45	0.46	0.46	0.47	0.48	0.49	0.50	0.52	0.53
20.0	0.44	0.45 as see B.2.8	0.45	0.46	0.47	0.48	0.49	0.50	0.51

Table 23 - Allocation of strut curve

Type of section	Maximum	Axis	of buckling
	(see note 1)	x-x	у-у
Hot-finished structural hollow section		a)	a)
Cold-formed structural hollow section		c)	c)
Rolled I-section	≤40 mm	a)	b)
	>40 mm	b)	c)
Rolled H-section	≤ 40 mm	b)	c)
	>40 mm	c)	d)
Welded I or H-section (see note 2 and 4.7.5)	≤40 mm	b)	c)
	>40 mm	b)	d)
Rolled I-section with welded flange cover plates with	≤40 mm	a)	b)
0.25 < U/B < 0.8 as shown in Figure 14a)	>40 mm	b)	c)
Rolled H-section with welded flange cover plates with	≤40 mm	b)	c)
0.25 < U/B < 0.8 as shown in Figure 14a)	>40 mm	c)	d)
Rolled I or H-section with welded flange cover plates with	≤40 mm	b)	a)
U/B ≥ 0.8 as shown in Figure 14b)	>40 mm	c)	b)
Rolled I or H-section with welded flange cover plates with	≤40 mm	b)	c)
$U/B \le 0.25$ as shown in Figure 14c)	>40 mm	b)	d)
Welded box section (see note 3 and 4.7.5)	≤ 40 mm	b)	b)
	>40 mm	c)	c)
Round, square or flat bar	≤40 mm	b)	b)
	>40 mm	c)	c)
Rolled angle, channel or T-section		Any axis:	c)
Two rolled sections laced, battened or back-to-back		N. Committee	
Compound rolled sections			

NOTE 1 For thicknesses between 40 mm and 50 mm the value of p_c may be taken as the average of the values for thicknesses up to 40 mm and over 40 mm for the relevant value of p_c .

NOTE 2 For welded I or H-sections with their flanges thermally cut by machine without subsequent edge grinding or machining, for buckling about the y-y axis, strut curve b) may be used for flanges up to 40 mm thick and strut curve c) for flanges over 40 mm thick.

NOTE 3 The category "welded box section" includes any box section fabricated from plates or rolled sections, provided that all of the longitudinal welds are near the corners of the cross-section. Box sections with longitudinal stiffeners are NOT included in this category.

Table 24 — Compressive strength p_c (N/mm²)

λ	T				124	eel grae	de and	lecion :	treneti	o (Nie	nm2)				
	8		ar are		. 51	eer grad	ae and s		strengti	p _y (No	IIII-)		E 440		
	S	1	S 275	100	15 2		1	S 355	T van	2	8		S 460	43 - 2	
	235	245	255	265	275	315	325	335	345	355	400	410	430	440	460
15	235	245	255	265	275	315	325	335	345	355	399	409	429	439	458
20	234	244	254	264	273	312	322	332	342	351	395	405	424	434	453
25	232	241	251	261	270	309	318	328	338	347	390	400	419	429	448
30	229	239	248	258	267	305	315	324	333	343	385	395	414	423	442
35	226	236	245	254	264	301	310	320	329	338	380	389	407	416	434
40	223	233	242	251	260	296	305	315	324	333	373	382	399	408	426
42	222	231	240	249	258	294	303	312	321	330	370	378	396	404	422
44	221	230	239	248	257	292	301	310	519	327	366	375	392	400	417
46	219	228	237	246	255	290	299	307	316	325	363	371	388	396	413
48	218	227	236	244	253	288	296	305	313	322	359	367	383	391	407
50	216	225	234	242	251	285	293	302	310	318	355	363	378	386	401
52	215	223	232	241	249	282	291	299	307	315	350	358	373	380	395
54	213	222	230	238	247	279	287	205	303	311	345	353	367	374	388
56	211	220	228	236	244	276	284	292	300	307	340	347	361	368	381
58	210	218	226	234	242	273	281	288	295	303	334	341	354	360	372
	220	220		13377		25535		222		5.55		2220	10000	125	
60	2016	216	224	232	239	269	277	284	291	298	328	334	346	352	364
62	206	214	221	229	236	266	273	280	286	293	321	327	338	344	354
64	19014	211	219	226	234	262	268	275	281	288	314	320	330	335	344
88	201	209	216	223	230	257	264	270	276	282	307	312	321	326	334
68	199	206	213	220	227	253	259	265	270	276	299	303	312	316	324
70	196	203	210	217	224	248	254	250	265	270	291	295	303	306	313
72	194	201	207	214	220	243	248	253	258	263	282	286	293	296	302
74	191	198	204	210	216	238	243	247	252	256	274	277	283	286	292
76	188	194	200	206	212	232	237	241	245	249	265	268	274	276	281
78	185	191	197	202	208	227	231	235	239	242	257	259	264	267	271
80	182	188	193	198	203	221	225	229	232	235	248	251	255	257	261
82	179	184	189	194	199	215	219	222	225	228	240	242	246	248	251
84	176	181	185	190	194	209	213	216	219	221	232	234	237	239	242
86	172	177	181	186	190	204	207	209	212	214	224	225	229	230	233
88	169	173	177	181	185	198	200	203	205	208	216	218	220	222	224
90	165	169	173	177	180	192	195	197	199	201	209	210	213	214	216
92	162	166	169	173	176	186	189	191	193	194	201	203	205	206	208
94	158	162	165	168	171	181	183	185	187	188	194	196	198	199	200
96	154	158	161	164	166	175	177	179	181	182	188	180	191	192	193
98	151	154	157	159	162	170	172	173	175	176	181	182	184	185	186
ma.	1.47	150	17.0			205	200	100	1.00	101	100	170	170	100	100
00	147	150	153 149	155	157	165 160	167	168	169	171	175 169	176	178	178	180
02	144	146		151	153		161	163	164	165	5.77	170	172	172	174
04	140	142	145	147	149	155	156	158	159	160	164	165	166	166	168
06	136	139	141	143	145	150	152	153	154	155	158	159	160	161	162
80	133	135	137	139	141	146	147	148	149	150	153	154	155	156	157

82 C BSI 05-2001

Table 24 — Compressive strength pc (N/mm²) (continued)

	37			2)	values o	of p. (Nh	mm²) w	ith à ≥	110 for	strut cu	irve a				
λ					Ste	el grad	e and d	esign st	rength	p _y (in N	/mm²)				
			5 275	2		X.		S 355					S 460		
	235	245	255	265	275	315	325	335	345	355	400	410	430	440	400
110	130	132	133	135	137	142	143	144	144	145	148	149	150	150	151
112	126	128	130	131	133	137	138	139	140	141	144	144	145	1.46	146
114	123	125	126	128	129	133	134	135	136	136	139	140	141	141	142
116	120	121	123	124	125	129	130	131	132	132	135	135	136	137	137
118	117	118	120	121	122	126	126	127	128	128	131	131	132	132	133
120	114	115	116	118	119	122	123	123	124	125	127	127	128	128	129
122	111	112	113	114	115	119	119	120	120	121	123	123	124	124	125
124	108	109	110	111	112	115	116	116	117	117	119	120	120	121	121
126	105	106	107	108	109	112	113	113	114	114	116	116	117	117	118
128	103	104	105	105	106	109	109	110	110	111	112	113	113	114	114
130	100	101	102	103	103	106	106	107	107	108	109	110	110	110	111
135	94	95	95	96	97	99	99	100	100	101	102	102	100	103	103
140	88	89	90	90	91	93	93	9/3	94	94	95	95	96	96	96
145	83	84	84	85	85	87	87	87	88	88	89	89	90	90	90
150	78	79	79	80	80	82	82	62	82	83	83	84	84	84	84
155	74	74	75	75	75	77	77	77	77	78	78	79	79	79	79
160	70	70	70	71	71	72	72	7.3	73	73	74	74	74	74	75
165	66	66	67	67	67	68	68	69	69	69	70	70	70	70	70
170	62	63	63	63	64	64	65	65	65	65	66	66	66	66	66
175	59	59	60	60	60	61	61	61	61	62	62	62	62	63	63
180	56	56	57	57	57	58	58	58	58	58	59	59	59	59	59
185	53	54	54	54	54	35	-55	55	55	55	56	56	56	56	56
190	51	51	51	51	52	52	52	52	53	53	53	53	53	50	53
195	48	49	49	49	49	50	50	50	50	50	50	51	51	51	51
200	46	46	.46	47	47	47	47	47	48	48	48	48	48	48	48
210	42	42	42	43	43	43	43	43	43	43	44	44	44	44	44
220	39	39	39	39	39	39	39	40	40	40	40	40	40	40	40
230	35	36	36	36	36	36	36	36	7365	36	37	37	37	37	37
240	33	33	33	33	33	33	33	33	33	33	34	34	34	34	34
250	30	30	30	30	30	31	31	31	31	31	31	31	31	31	31
260	28	26	28	28	28	28	29	29	29	29	29	29	29	29	29
270	26	26	26	26	26	26	27	27	27	27	27	27	27	27	27
280	24	24	24	24	24	25	25	25	25	25	25	25	25	25	25
290	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
300	21	21	21	21	21	22	22	92	99	22	22	22	22	22	22
310	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
320	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19
330	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18
340	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
350	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16

© BSI 05-2001 83

Table 24 — Compressive strength p_c (N/mm²) (continued)

-	-			.,						strut er					
A					St	eel grae	de and o		trengtl	n p _y (N/n	nm²)				
			S 275					S 355					5 460		
	235	245	255	265	275	315	325	335	345	355	400	410	430	440	460
15	235	245	255	265	275	315	325	335	345	355	399	409	428	438	457
20	234	243	253	263	272	310	320	330	339	349	391	401	420	429	448
25	229	239	248	258	267	304	314	323	332	342	384	393	411	421	439
30	225	234	243	253	262	298	307	316	325	335	375	384	402	411	429
35	220	229	238	247	256	291	300	309	318	327	366	374	392	400	417
40	216	224	233	241	250	284	293	301	310	318	355	364	380	388	404
42	213	222	231	239	248	281	289	298	306	314	351	359	375	383	399
44	211	220	228	237	245	278	286	294	302	310	346	#54	369	377	392
46	209	218	226	234	242	275	283	291	298	306	341	349	364	371	386
48	207	215	223	231	239	271	279	287	294	302	336	343	356	365	379
50	205	213	221	229	237	267	275	283	290	298	330	337	351	358	372
52	203	210	218	226	234	264	271	278	286	293	324	331	344	351	364
54	200	208	215	223	230	280	267	274	281	288	318	325	337	344	356
56	198	205	213	220	227	256	263	269	276	283	312	318	330	336	347
58	195	202	210	217	224	252	258	265	271	278	305	311	322	328	339
60	190	200	207	214	221	247	254	260	266	272	298	304	314	320	330
62	190	197	204	210	217	243	249	255	261	266	291	296	306	311	320
64	187	194	200	207	213	238	244	249	255	261	284	289	298	302	311
66	154	191	197	203	210	233	239	244	249	255	276	281	289	294	301
68	181	188	194	200	206	228	233	239	244	249	269	273	281	285	292
70	178	185	190	196	202	223	228	233	238	242	261	265	272	276	282
72	175	181	187	193	198	218	223	227	232	236	254	257	264	267	273
74	172	178	183	189	194	213	217	992	226	230	246	249	255	258	264
76	169	175	180	185	190	208	212	216	220	223	238	241	247	250	255
78	166	171	176	181	186	203	206	210	214	217	231	234	239	241	246
80	163	168	172	177	181	197	201	204	208	211	224	226	231	233	237
82	160	164	169	173	177	192	196	199	202	205	217	219	223	225	229
84	156	161	165	169	178	187	190	193	196	199	210	212	216	218	221
86	150	157	161	165	100	182	185	188	190	193	203	205	208	210	213
88	150	154	158	161	165	177	180	182	185	187	196	198	201	203	206
90	146	150	154	157	161	172	175	177	179	181	190	192	195	196	199
92	143	147	150	153	156	167	170	172	174	176	184	185	188	189	192
94	140	143	147	150	152	162	165	167	169	171	178	179	182	183	185
96	137	140	143	146	148	158	160	162	164	165	172	173	176	177	179
98	134	137	139	142	145	153	155	157	159	160	167	168	170	171	173
00	130	133	136	138	141	149	151	152	154	155	161	162	164	165	167
02	127	130	132	135	137	145	146	148	149	151	156	157	159	160	162
04	124	127	129	131	133	141	142	144	145	146	151	152	154	155	156
06	121	124	126	128	130	137	138	139	141	142	147	148	149	150	151
08	118	121	123	125	126	133	134	135	137	138	142	143	144	145	147

84 C BSI 05-2001

Table 24 — Compressive strength p_c (N/mm²) (continued)

				4) 1	Values o	of pc (N	mm²) w	rith λ ≥	110 for	strut e	urve h				
λ					St	eel gra	de and o	design s	trengtl	p _y (N/r	nm²)				
			S 275					S 355					S 460		
	235	245	255	265	275	315	325	335	345	355	400	410	430	440	460
110	115	118	120	121	123	129	130	131	133	134	138	139	140	141	142
12	113	115	117	118	120	125	127	128	129	130	134	134	136	136	138
114	110	112	114	115	117	122	123	124	125	126	130	130	132	132	133
116	107	109	111	112	114	119	120	121	122	122	126	126	128	128	129
18	105	106	108	109	111	115	116	117	118	119	122	123	124	124	125
20	102	104	105	107	108	112	113	114	115	116	119	119	120	121	122
22	100	101	103	104	105	109	110	111	112	112	115	116	117	117	118
24	97	99	100	101	102	106	107	108	109	109	112	112	113	114	115
126	95	96	98	99	100	163	104	105	106	106	109	109	110	111	111
128	93	94	95	96	97	101	101	102	103	103	106	106	107	107	108
130	90	92	93	94	95	98	99	99	100	101	103	103	104	105	105
135	85	86	#7	88	89	92	93	93	94	94	96	97	97	98	98
140	80	81	82	83	84	86	87	87	88	88	90	90	91	91	92
145	76	77	78	78	79	81	82	82	83	83	84	85	85	86	86
150	72	72	73	74	74	76	77	77	78	78	79	80	80	80	81
155	68	69	69	70	70	72	72	73	73	73	75	75	75	76	76
160	64	65	65	66	66	68	68	69	69	69	70	71	71	71	72
165	61	62	62	62	63	64	65	65	65	65	66	67	67	67	68
170	58	58	59	59	60	61	61	61	62	62	63.	63	63	64	64
175	55	55	56	56	57	58	58	58	59	59	60	60	60	60	60
180	52	53	53	53	54	55	55	55	56	56	56	57	57	57	57
185	50	50	51	51	51	52	52	53	53	53	54	54	54	54	54
190	48	48	48	48	49	50	50	50	50	50	51	51	51	51	52
195	45	46	46	46	46	47	47	48	48	48	49	49	49	49	49
200	43	44	44	44	44	45	45	45	46	46	46	46	47	47	47
210	40	40	40	40	41	41	41	41	42	42	42	42	42	43	43
220	36	37	37	37	37	38	38	38	38	38	39	39	39	39	39
230	34	34	34	34	34	35	35	35	35	35	35	36	36	36	36
240	31	31	31	31	32	32	32	32	32	32	33	33	33	33	33
250	29	29	29	29	29	30	30	30	30	30	30	30	30	30	30
260	27	27	27	27	27	27	28	28	28	28	28	28	28	28	28
270	25	25	25	25	25	26	26	26	26	26	26	26	26	26	26
280	23	23	23	23	24	24	24	24	34	24	24	24	24	24	24
290	22	20	22	22	22	22	22	22	22	22	23	23	23	23	23
100	20	20	21	21	21	21	21	21	21	21	21	21	21	21	21
310	19	19	19	19	19	20	20	20	20	20	20	20	20	20	20
320	18	18	18	18	18	18	18	19	19	19	19	19	19	19	19
130	17	17	17	17	17	17	17	17	17	18	18	18	18	18	18
340	16	16	16	16	16	16	16	16	17	17	17	17	17	17	17
350	15	15	15	15	15	16	16	16	16	16	16	16	16	16	16

Table 24 — Compressive strength pc (N/mm2) (continued)

	- 23			5)	Values	of p. (N	/mm²) x	vith à <	110 for	strut c	urve c				
λ	Steel grade and design strength p_y (N/mm ²)														
	8		8 275		- 8			S 355		- (1		S 460		
	235	245	255	265	275	315	325	335	345	355	400	410	430	440	460
15	235	245	255	265	275	315	325	335	345	355	398	408	427	436	455
20	233	242	252	261	271	308	317	326	336	345	387	396	414	424	442
25	226	235	245	254	263	299	308	317	326	335	375	384	402	410	428
30	220	228	237	246	255	289	298	307	315	324	363	371	388	396	413
35	213	221	230	238	247	280	288	296	305	313	349	357	374	382	397
40	206	214	999	230	238	270	278	285	293	301	335	343	358	365	380
42	203	211	219	227	235	266	273	281	288	296	329	337	351	358	373
44	200	208	216	224	231	261	269	276	284	291	323	330	344	351	365
46	197	205	213	220	228	257	264	271	279	286	317	324	337	344	357
48	195	202	209	217	224	253	260	267	274	280	311	317	330	337	349
50	192	199	206	213	220	248	255	262	268	275	304	510	323	329	341
52	189	196	203	210	217	244	250	257	263	270	297	303	315	321	333
54	186	193	199	206	213	239	245	252	258	264	291	296	308	313	324
56	183	189	196	202	209	234	240	246	252	258	284	289	300	305	315
58	179	186	192	199	205	929	235	241	247	252	277	282	292	297	306
60	176	183	189	195	201	225	230	236	241	247	270	274	284	289	298
62	173	179	185	191	197	220	225	230	236	241	262	267	276	280	289
64	170	176	182	188	193	215	220	225	230	235	255	260	268	272	280
66	167	173	178	184	189	210	215	220	224	229	248	252	260	264	271
68	164	169	175	180	185	205	210	214	219	223	241	245	252	256	262
70	161	166	171	176	181	200	204	209	213	217	004	238	244	248	00.4
72	100	200		2000		195		100	100	Territ	234	ALC: U.S.	7500000		254
74	157 154	163 159	168	172 169	177	190	199 194	203 198	207	211 205	227 220	231 223	237	232	246 238
76	151	156	160	165	169	185	189	193	196	200	214	217	229	225	230
78	148	152	157	161	165	180	184	187	191	194	207	210	215	217	222
2011		www.	24.07			o de se		2000		400		022.0		1000	
80	145	149	153	157	161	176	179	182	185	188	201	203	208	210	215
82	142	146	150	154	157 154	171	174 169	177	180	183 178	195 189	197 191	201 195	203 197	207
84 88	139	142	146 143	150	150	167 162	1 1	172	175	0.000		185	189	197	201
88	132	136	139	146	146	158	165 160	168 163	170 165	173 168	183 177	179	183	184	194 187
1000	5510	550°	220		200	555	5450 5450	250	12000	LINES LANG	1923	720	222		200
90	129	133	136	139	142	153	156	158	161	163	172	173	177	178	181
92	126	130	133	136	139	149	152	154	156	158	166	168	171	173	175
94	124	127	130	133	135	145	147	149	151	153	161	163	166	167	170
96 98	121 118	124 121	127 123	129 126	132 129	141 137	143 139	145 141	147	149 145	156 151	158 153	160 155	162 157	164 159
1	C10-11	1000	Stretch Dataset	1000	1990	040	0358	10000	0.000	533	2650	5000A	15000	1333	\$1548 \$1500
00	115	118	120	123	125	134	135	137	139	140	147	148	151	152	154
02	113	115	118	120	122	130	132	133	135	136	143	144	146	147	149
04	110	112	115	117	119	126	128	130	131	133	138	139	142	142	144
06	107	110	112	114	116	123	125	126	127	129	134	135	137	138	140
08	165	107	109	111	113	120	121	123	124	125	130	131	133	134	136

86 c BSI 05-2001

Table 24 — Compressive strength pc (N/mm2) (continued)

	-			6)			/mm²) v								
Ж.					St	cel gra	de and o	-	trengt	n p _y (N/n	nm²)				
			S 275	N.	202 0			S 355	8	500 - 10	ļ.,	9	S 460		33
500.5	235	245	255	265	275	315	325	335	345	355	400	410	430	440	460
110	102	104	106	108	110	116	118	119	120	122	126	127	129	130	132
112	100	102	104	106	107	113	115	116	117	118	123	124	125	126	128
114	98	100	101	103	105	110	112	113	114	115	119	120	122	123	124
16	95	97	99	101	102	108	109	110	111	112	116	117	118	119	120
18	93	95	97	98	100	105	106	107	108	109	113	114	115	116	117
20	91	93	94	96	97	102	103	104	105	106	110	110	112	112	113
99	89	190	92	903	95	99	100	101	102	103	107	107	109	109	110
24	87	88	90	91	92	97	98	99	100	100	104	104	106	106	107
26	85	86	88	59	90	94	95	96	97	98	101	102	103	103	104
28	83	84	86	87	88	92	93	94	95	95	98	99	100	100	101
30	81	82	84	85	86	90	91	91	92	93	96	96	97	98	99
35	77	78	79	80	81	84	85	86	87	87	90	90	91	92	92
40	72	74	75	76	76	79	80	81	81	82	84	85	85	86	87
45	69	70	71	71	72	75	76	76	77	77	79	80	80	81	81
150	65	66	67	68	68	71	71	72	72	73	75	75	76	76	76
55	62	63	63	64	65	67	67	68	68	69	70	71	71	72	72
160	59	59	60	61	61	63	64	64	65	65	66	67	67	67	68
65	56	56	57	58	58	60	60	61	61	61	63	63	64	64	64
70	53	54	54	55	55	57	57	58	58	58	60	60	60	60	61
75	51	51	52	52	53	54	54	55	55	35	56	57	57	57	56
180	48	49	49	50	50	51	52	52	52	53	54	54	54	54	55
85	46	46	47	47	48	49	49	50	50	50	51	51	52	52	52
90	44	44	45	45	45	47	47	47	47	48	49	49	49	49	49
195	42	42	43	43	43	45	45	45	45	45	46	46	47	47	47
200	40	41	41	41	42	43	43	43	43	43	44	44	45	45	45
210	37	37	38	38	38	39	39	39	40	40	40	40	41	41	41
220	34	34	35	35	35	36	36	2345	36	36	37	37	37	37	38
230	31	32	32	32	32	33	33	33	33	34	34	34	34	34	35
240	29	29	30	30	30	30	31	31	31	31	-31	31.	32	32	32
250	27	27	27	28	28	28	28	28	29	29	29	29	29	29	29
260	25	25	26	26	26	26	26	26	27	27	27	27	27	27	27
270	23	24	24	24	24	24	25	25	25	25	25	25	25	25	25
80	22	99	22	22	22	23	23	23	23	23	23	24	24	24	24
90	21	21	21	21	21	21	21	22	22	22	22	92	22	22	22
900	19	19	20	20	20	20	20	20	20	20	21	21	21	21	21
10	18	18	18	19	19	19	19	19	19	19	19	19	19	19	20
20	17	17	17	17	18	18	18	18	18	18	18	18	18	18	18
130	16	16	16	16	17	17	17	17	17	17	17	17	17	17	17
140	15	15	15	16	16	16	16	16	16	16	16	16.	16	16	16
350	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15

Table 24 — Compressive strength pc (N/mm2) (continued)

	60			.9.	04.504.5002	of pc (N	SOUSKELL	*******		o en un com	10.00000000				
λ	8				Si	eel grae	de and o	-	trength	p _y (N/s	nm²)				
	33 3	2	S 275	89	xs = 3		e -	S 355	22		5-	88	S 460	\.	733
	235	245	255	265	275	315	325	335	345	355	400	410	430	440	460
15	235	245	255	265	275	315	325	335	345	355	397	407	425	435	453
20	232	241	250	259	269	305	314	323	332	341	381	390	408	417	434
25	223	231	240	249	257	292	301	309	318	326	365	373	390	398	415
30	213	222	230	238	247	279	287	296	304	312	348	356	372	380	396
35	204	212	220	228	236	267	274	282	290	297	331	339	353	361	375
40	195	203	210	218	225	254	261	268	275	283	314	321	334	341	355
42	192	199	206	214	221	249	256	263	270	277	307	514	327	333	346
44	188	195	202	209	216	244	251	257	264	271	300	306	319	325	337
46	185	192	199	205	212	239	245	252	258	265	293	299	311	317	329
48	181	188	195	201	208	234	240	246	252	259	286	291	303	309	320
50	178	184	191	197	204	228	235	241	247	253	278	284	295	301	311
52	174	181	187	193	199	223	229	235	241	246	271	277	287	292	303
54	171	177	183	189	195	218	224	229	235	240	264	269	279	284	294
56	167	173	179	185	191	213	219	224	229	234	257	262	271	276	285
58	164	170	175	181	187	208	213	218	224	229	250	255	264	268	277
60	161	166	172	177	182	203	208	213	218	223	243	247	256	260	268
62	157	163	168	173	178	198	203	208	212	217	236	240	248	252	260
64	154	159	164	169	174	193	198	202	207	211	229	233	241	245	252
66	150	156	160	165	170	188	193	197	201	205	223	226	234	237	244
68	147	152	157	162	166	184	188	192	196	200	216	220	226	230	236
-	233	7.40		1.00	200	179	100	100	100	10.1	210	210	210	000	
70	144	149	153	158	162	0.00	183	187	190 185	194	210	213	219	222	228
72 74	141 138	145	150 146	154 150	158 154	174 170	178 173	182	180	189 183	203 197	207	213 206	215	221 214
76	135	139	143	147	151	165	169	172	175	178	191	194	199	202	207
78	132	136	139	143	147	161	164	167	170	173	186	188	193	195	200
80	129	132	136	140	143	156	160	163	165	168	180	182	187	189	194
82	126	129	133	136	140	152	155	158	161	163	175	177	181	183	187
84	123	126	130	133	136	148	151	154	156	159	169	171	176	177	181
88	120 117	123 120	127 123	130 127	133 129	144	147 143	149 145	152 148	154 150	164 159	166 161	170 165	172 167	175 170
		120.71	2020		5.000.00		5-20-1	0.75	2000000						
90	114	118	121	123	126	137	139	141	144	146	154	156	160	161	164
92	112	115	118	120	123	133	135	137	139	142	150	152	155	156	159
94	109	112	115	117	120	129	132	134	136	138	145	147	150	152	154
96	107	109	112	115	117	126	128	130	132	134	141	143	146	147	150
98	104	107	109	112	114	123	125	126	128	130	137	138	141	143	145
00	102	104	107	109	111	119	121	123	125	126	133	134	137	136	141
102	99	102	104	106	108	116	118	120	121	123	129	131	133	134	136
104	97	99	102	104	106	113	115	116	118	120	126	127	129	130	132
106	95	97	99	101	103	110	112	113	115	116	122	123	125	126	128
108	93	95	97	99	101	107	109	110	112	113	119	120	122	123	125

Table 24 — Compressive strength pc (N/mm2) (continued)

	46			41600			on one by	46 (500)		strut cı	309960				
À					St	eel gra	de and o		trengt	n py (N/n	nm²)				
		35 5	S 275		68			S 355	1	000	. s		S 460	g .	52
20-	235	245	255	265	275	315	325	335	345	355	400	410	430	440	460
10	91	93	95	96	98	105	106	108	109	110	115	116	118	119	121
12	88	90	92	94	96	102	103	105	106	107	112	113	115	116	118
114	86	88	90	92	94	99	101	102	103	104	109	110	112	113	114
16	85	86	88	90	91	97	98	99	101	102	108	107	109	110	111
118	83	84	86	88	89	95	96	97	98	99	103	104	106	107	108
20	81	82	84	86	87	92	93	94	95	96	101	101	103	104	105
22	79	51	82	84	85	90	91	92	93	94	98	99	100	101	102
24	77	79	80	82	83	88	89	90	91	.92	95	96	98	98	99
26	76	77	78	80	81	86	87	88	89	89	93	94	95	96	97
28	74	75	77	78	79	84	85	85	86	87	91	91	93	93	94
130	72	74	75	76	77	82	83	83	84	85	88	89	90	91	92
135	68	70	71	72	73	77	78	79	79	80	83	84	85	85	88
40	65	66	67	68	69	73	73	74	75	75	78	79	80	80	81
145	62	63	64	65	65	69	69	70	71	71	74	74	75	75	76
150	59	60	60	61	62	65	66	66	67	67	69	70	71	71	72
55	56	57	57	56	59	62	62	63	63	64	66	66	67	67	68
60	53	54	55	55	56	58	59	59	60	60	62	62	63	63	64
65	50	51	52	55	53	35	56	56	57	57	59	59	60	60	61
70	48	49	49	50	51	53	53	54	54	54	56	56	57	57	57
175	46	47	47	48	48	50	-51	51	51	52	55	53	54	54	55
180	44	45	45	46	46	48	48	49	49	49	50	51	51	51	52
185	42	43	43	44	44	46	46	46	47	47	48	48	49	49	49
190	40	41	41	42	42	44	44	44	44	45	46	46	46	47	47
195	38	39	39	40	40	42	42	42	42	43	44	44	44	45	45
200	37	37	38	38	39	40	40	40	41	41	42	42	42	43	43
210	34	34	35	35	35	37	37	37	37	37	38	38	39	39	39
220	31	3522	32	32	33	34	34	34	34	34	35	35	36	36	36
230	29	29	30	30	30	31	31	31	32	32	32	33	33	33	33
240	27	27	28	28	28	29	29	29	29	29	30	30	30	30	31
250	25	25	26	26	26	27	27	27	27	27	28	28	28	28	28
260	24	24	24	24	24	25	25	25	25	25	26	26	26	26	26
270	92	99	22	23	23	23	23	23	24	24	24	24	24	24	25
280	21	21	21	21	21	22	22	22	22	22	23	23	23	23	23
190	19	20	20	20	20	20	21	21	21	21	21	21	21	21	21
100	18	18	19	19	19	19	19	19	19	20	20	20	20	20	20
110	17	17	17	18	18	18	18	18	18	18	19	19	19	19	19
120	16.	16	16	17	17	17	17	17	17	17	18	18	18	18	18
130	15	15	16	16	16	16	16	16	16	16	17	17	17	17	17
340	15	15	15	15	15	15	15	15	15	15	16	16	16	16	16
350	14	14	14	14	14	14	14	15	15	15	15	15	15	15	15

Table 26 — Equivalent uniform moment factor m for flexural buckling

104 C BSI 05-2001

Universal beams

Dimensions and properties to BS 4: Part 1: 1993

Designation	Designation Mass		Depth of Width of		Thickness	Root	Depth between	Ratios for Local Buckling		Second Moment of Area	
Serial Size	per metre kg/m	Section D mm	Section B mm	of Web t mm	of Flange T mm	Radius r mm	fillets d mm	Flange B/2T	Web d/t	Axis x-x cm ⁴	Axis y-y cm⁴
457 x 152 x 82	82.1	465.8	155.3	10.5	18.9	10.2	407.6	4.11	38.8	36590	1185
457 x 152 x 74	74.2	462.0	154.4	9.6	17.0	10.2	407.6	4.54	42.5	32670	1047
457 x 152 x 67	67.2	458.0	153.8	9.0	15.0	10.2	407.6	5.13	45.3	28930	913
457 x 152 x 60	59.8	454.6	152.9	8.1	13.3	10.2	407.6	5.75	50.3	25500	795

Universal beams

Dimensions and properties to BS 4: Part 1: 1993

Radius of Axis x-x cm	f Gyration Axis y-y cm	Elastic Axis x-x cm³	Modulus Axis y-y cm³	Plastic Axis x-x cm³	Modulus Axis y-y cm³	Buckling Parameter u	Torsional Index x	Warping Constant H dm ⁶	Torsional Constant J cm ⁴	Area of Section cm²	Mass per metre kg/m	Designation Serial Size
18.7	3.37	1571	153	1811	240	0.873	27.4	0.591	89.2	105	82.1	457 x 152 x 82
18.6	3.33	1414	136	1627	213	0.873	30.1	0.518	65.9	94.5	74.2	457 x 152 x 74
18.4	3.27	1263	119	1453	187	0.869	33.6	0.448	47.7	85.6	67.2	457 x 152 x 67
18.3	3.23	1122	104	1287	163	0.868	37.5	0.387	33.8	76.2	59.8	457 x 152 x 60