Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 6

Consigna

- 1. En \mathbb{C}^3 con producto interno habitual, sean v=(2,1+i,i) y w=(2-i,2,1+2i). Calcular:
 - $\langle v, w \rangle$, $||v||^2$, $||w||^2$, $||v + w||^2$.
 - Verificar Cauchy-Schwarz y desigualdad triangular.
- 2. En C[0,1] con $\langle f,g \rangle = \int_0^1 f(t)g(t)dt$, sean f(t)=t y $g(t)=e^t$. Calcular: $\langle f,g \rangle$, $||f||^2$, $||g||^2$, $||f+g||^2$.

 - Verificar Cauchy-Schwarz y desigualdad triangular.

Resolución

Parte 1

Considerando el producto interno habitual en \mathbb{C}^n :

$$\langle v, w \rangle = \sum_{i=1}^{n} v_i \overline{w_i}$$

Calculemos lo indicado en la letra:

- $\bullet \ \ \langle v,w\rangle = \langle (2,1+i,i), (2-i,2,1+2i)\rangle = 2\overline{(2-i)} + (1+i)\overline{2} + i\overline{(1+2i)} = 4+2i+2i+2i$ 2 + 2i + i + 2 = 8 + 5i
- $2i)\overline{(1+2i)} = 5 + +4 + 1 + 4 = 14$ • $\|v+w\|^2 = \langle v,v \rangle + \langle v,w \rangle + \overline{\langle v,w \rangle} + \langle w,w \rangle = 7 + 8 + 5i + 8 - 5i + 14 = 37$

Verifiquemos las dos desigualdades que nos faltan:

Cauchy-Schwarz:

$$|\langle v, w \rangle| \leq \|v\| \|w\| \iff |\langle v, w \rangle|^2 \leq \|v\|^2 \|w\|^2 \iff |8 + 5i|^2 \leq 7 \cdot 14 \iff 8^2 + 5^2 \leq 98 \iff 89 \leq 98$$

Por lo tanto esto se cumple.

Desigualdad triangular:

$$\|v+w\| \leq \|v\| + \|w\| \iff \sqrt{37} \leq \sqrt{7} + \sqrt{14} \iff \sqrt{37}^2 \leq (\sqrt{7} + \sqrt{14})^2 \iff 37 \leq 7 + 2\sqrt{7}\sqrt{14} + 14 \iff 16 \leq 37 \leq 7 + 2\sqrt{7}\sqrt{14} + 2\sqrt{7}\sqrt{14}$$

Cómo lo último se cumple, verificamos que la desigualdad triangular se cumple.