5	-				-			·····	····													-										ब्रि
Ga (ref)	p = 0.1 MPa	log Kr	ರರಂ	င် င		<u> </u>	೦೦	ÖÖ	o o o	60	ooo	00	ರರರ	ó	ಶರರ	.vs —	0	ರ ರ ರ	ರರರ	ರರ	ಶರರ	ø ರ	ರರರ	000	ಶರರ	ರರಂ	ಶರರ	ರರ	ರರರ	ರರ	ಶರರ	ne 1983 (1 t
	, ,	δ.Ο.	000	ံ ဝံ	ó	CRYSTAL <> LIQUID TRANSITION	ರರ	ರ ರ	ರರಂ	. ರ	ರರರ	ರರ.	ರಿರರ	ø	ಶರರ	> IDEAL GAS	ö	ರರ	ಶರರ	000	ಶರರ	ÖÖ	ರರರ	ooo	ಶರರ	ರರ	ರರರ	ರರ:	ಶರರ	ರರ	ಶರರ	CURRENT: June 1983 (1 bar)
	Standard State Pressure	 - -	000	ံဝံ	ó	CRYSTAI 1	o o	ೆ ರ	ooc	် ဝေ	ರರರ	00	ರಿರರ	ó	ಶರ	LIQUID <> ID FUGACITY	oʻ	ರರಂ	ಶರ	000	ಶರರ	ÖÖ	ರರರ	ರರಂ	ಶರರ	óóó	ರರ	ರ ರ	ooo	o o o	ಶರರ	
	<u>ي</u>	H*-H*(T,)	-5.561 -4.618	₹ 7 0	0.048	5.714	8.407 11.104	13.780	19.099 21.756 24.413	27.069	32.383 35.040 37.697	40.354	48.324 48.324 50.981	53.638	58.951 61.608	63.643	322.851	324.974 327.094	331,325 333,437	335.547	341.867 341.867 343.971	346.075 348.177	350.279 352.381 354.483	356.585	362.896 362.896 365.002	367.110	373.446 375.565	377.686	381.942 384.077 386.217	388.363	394.841 397.015	
	= T, = 298.15 K	-[G*-H'(T,)]/T	INFINITE 62.261	40.838	40.839	40.842 40.842	46.408 51.237	55.358 58.939	62.102 64.932 67.493	69.828	73.965 75.815 77.546	79.171 80.702	82.150 83.524 84.830	86.075	88.402 89.494	90.301 90.301	91.522	96.505	109.556	116.973	126.611 129.493	132.231	137.321 139.691 141.957	144.125	150.106 151.944	153.712	158.640 158.640 160.168	161.645	162.793 167.090	169.568	17.003 17.003 17.021	į
	mperature	[C	0.16.085		41.000	41.253 59.706	67.426 73.445	78.324 82.428	85.976 89.105	94.436	98.875 100.844 102.677	104.391	108.957 108.957 110.320	111.616	114.033	115.998 220.462	220.662	22.23	23.807	225.214	25.72 27.150 57.72	228.363	230.045 230.045 230.578	231.097	232.582	233519	234.853	235.701	236.520 236.919 237.312	238.079	238.825 239.190	
ja)	eference Te	ដ	18.484	26.064	26.091	26.133 28.493	27.154 26.819	26.694 26.568	26.568 26.568 26.568	26.568	26.568 26.568 26.568	26.568 26.568	26.568 26.568 26.568	26.568	26.568 26.568			21.215	21.131	21.090	21.047	21.029	21.020 21.018 21.020	21.024	21.052	21.087	21.165	21.236	21,375	21.491	22.12 20.12 20.13 20.13	
Gallium (Ga)	Enthalpy Reference Temperature	7/K	-88	298.15	300	302.920	8 8	86	885	200	1300 1400 1200 1200	1700 1700	888	2100	252 2005 2006	2476.570 2476.570	2500	7700 2700 800 800 800 800 800 800 800 800 800	3000	3200	3,400	3600 3700	3800 4 900 900 900	4200	344 868 868	4700	2000 2000 2000	\$200 \$200	\$300 \$400 \$500	\$500 \$700	2000	PREVIOUS:
A, = 69.72 (
Ą.																																

REFERENCE STATE

302.920 K crystal 2476.570 K liquid 2476.570 K ideal monatomic gas

2 2

Refer to the individual tables for details.

1254	•		MALCOLM W. CHASE	
Ga ₁ (cr)	Standard State Pressure = p° = 0.1 MPa $K^{+}mol^{-1}$ $A_{c}H^{\circ}$ $A_{c}H^{\circ}$ $A_{c}H^{\circ}$ $A_{c}H^{\circ}$	-5.561 0. 0. 04.568 0. 0. 04.618 0. 0. 0. 0. 04.618 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		CURRENT: June 1983
Gallium (Ga)	Enthalpy Reference Temperature • T_r = 298.15 K $J \cdot K^{-1} mol^{-1}$. 77K $C_r^* = S^* - [G^* - H^*(T_r)]/T$ H•-	0 0. 0. INFINITE		PREVIOUS-
A,= 69.72 G	$\Delta_t H^{\circ}(0 \text{ K}) = 0 \text{ kJ \cdot mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = 0 \text{ kJ \cdot mol}^{-1}$ $\Delta_{\text{los}} H^{\circ} = 5.59 \pm 0.04 \text{ kJ \cdot mol}^{-1}$	the heat capacity values were based on the studies of Phillips 2 K), Adams et al. (15–323 K), and Clusius and Hartick 298.15 K) = $\Delta_t H^o(g, 298.15 K)$.	rties of the Elements," American Society for Metals, Metals 52).	
Gallium (Ga) CRYSTAL	$S^{\circ}(298 \ 15 \ \text{K}) = 40 \ 838 \pm 0.20 \ \text{J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{tor}} = 302.92 \pm 0.02 \ \text{K}$	Enthalpy of Formation Zero by definition. Heat Capacity and Entropy Heat Capacity and Entropy The adopted thermal functions are those recommended by Hultgren et al. ' The heat capacity values were based on the studies of Phillips (0.1-4.2 K), * Adams et al. (15-323 K), * and Clusius and Hartick (15-200 K), * Refer to Hultgren et al.' for details. Enthalpy of Fusion Refer to the liquid table for details. Enthalpy of Sublimation The enthalpy of sublimation is the enthalpy of formation of the gas, AH" (228.15 K) - A.H" (g. 298.15 K).	References 18. Hultgren, P. D. Desai, et al., "Selected Values of the Thermodynamics Properties of the Elements," American Society for Metals, Metals Parks, Olivol (1973). 29. Sedel and P. H. Keesom, Phys. Rev. 112, 1083 (1958). 30. Sedel and P. H. Keesom, Phys. Rev. 114, 962 (1958). 31. Sedel and P. H. Lohnston and E. C. Ker, J. Am. Chem. 56: 74, 4784 (1952). 32. Sedel and P. H. Johnston and E. C. Ker, J. Am. Chem. 56: 74, 4784 (1952). 34. Clusius and P. Hartick, Z. Physik. Chem. 134, 243 9 (1928).	

Ga₁(I)

Gallium (Ga)

Gallium (Ga)

S°(298.15 K) = [59.253] J·K⁻¹·mol⁻¹

F = 302.92 ± 0.02 K

Enthalpy of Formation

LIGUID

The enthalpy of formation, $\Delta H^{o}(1, 298.15 \text{ K})$, is calculated from that of the crystal by adding the enthalpy of fusion and the difference in

Heat Capacity and Entropy

The heat capacity of the liquid is based on the recommendations of Hultgren et al.! These values are based on the enthalpy data of Kochethova and Rezukhina (315–712 K),² and the heat capacity data of Chen and Turnbull (245–611 K).³ enthalpy, H°(302.92 K)-H°(298.15 K), between the crystal and liquid

The temperature of fusion, T_{im} = 302.92 ± 0.2 K (corrected to IPTS-68), was derived from the study of Boedtker et al.³ The adopted value for the enthalpy of fusion is derived from the direct calonmetric measurement of Roth et al. Enthalpy of Fusion

Enthalpy of Vaporization

The temperature at which $\Delta_i G^* = 0$ (1 bar) for the process $Ga(1) \rightarrow Ga(g)$ is the adopted T_{vap} (1 bar). The difference in the enthalpies of formation of the ideal gas and liquid at T_{vap} is $\Delta_{vap}H^*$. Refer to the ideal gas table for additional information.

'R Hultgren, P. D. Desai, et al., "Selected Values of the Thermodynamics Properties of the Elements," American Society for Metals, Metals Parks, Ohio (1973).

M. Kochekvora and T. N. Rezukhina, Proc. 4th All-Union Conf. on Semiconductor Materials (Eng. transl.), 26 (1961).
 S. Chen and S. Turnbull, Acta Met. 16, 369 (1968).
 A. Roth, I. Meyer and H. Zeumar, Z. Anorg. Chem. 214, 309 (1933); Z. Anorg. Chem. 216, 303 (1934).
 A. Boediker, R. C. LaForce, et al., Trans. Faraday Soc. 61, 665 (1965).

- 0.1 MPa	log K,	ರರರ.		6		ರ ರ ರ	30,		ಕರರ	ರ ರ ರ	ಶಿಲಿಲಿ	00	ರರಂ	00	ာ်ဝံ	-0.051	0.259	-0.628 -0.793 -0.947	
•	Δ _G • log	ರರರ	oj c	ö	L <> LIQUID _ TRANSTITION	ರರರ	ಕರ.	ರಿರಂ	ಶರರ	ರರ	ರ ರ ರ	00	ರರಂ	್ ರರ	م مر .	- 1 car -		33.679 44.050 54.402	
Standard State Pressure	A _t H*	000	o	Ö	CRYSTAL <	ರಿರರ	်ဝ (ာ် ဝင်	ಕರರ	000	ರರಂ	ರರ	000	600	jo	FUGACII I - 258.586	-258.052 -257.515	-256.975 -256.433 -255.888	
	H*-H*(T,)	-5.561 -4.618 -2.448	[7]	0.048	0.124 5.714	7.037 8.407 9.760	1.104	13.780 16.442 19.099	21.756	29.726	32.383 35.040 37.697	40.354	48.324 50.981	53.638 56.295	61.608	i		72.236 74.892 77.549	
. T. = 298.15 K	-[G*-H*(T,)]/T	62.261 43.151	40.838	40.839	40.842	43.660 46.408 48.924	51.237	58.939 50.100	64.932	69.828 71.976	75.815 77.546	19.171	82.150 83.524 84.830	86,075	89.494	90.543	91.551 92.523	93.461 94.367 95.243	
mperature -	- [C	0. 16.085 30.912		41,000	41.253 59.706	63.764 67.426 70.613	73.445	82.428 82.428 85.976	89.105 91.904	94.436	100.844 102.677	104.391	108.957	111.616	115.164	116.249	117.291	119.260 120.192 121.093	
ference Te	೮	0. 18.484 23.815	26.064	26.091	26.133 28.493	27.719 27.154 26.961	26.819	26.56 26.56 26.56 26.56	26.568 26.568	26.568 26.568	26.568 26.568 26.568	26.568 26.568	26.568 26.568 26.568	26.568 26.568	26.568	26.568	26.568 26.568	26.568 26.568 26.568	
Enthalpy Reference Temperature = T.	τÆ	0000	238.15	300	302,920 302,920	8 6 8	8	888	888	862	8 <u>8 8</u>	1700 1700	2008	2200	2400	2500	700 700 700	3800 300 300 300	

CRYSTAL-LIQUID

Refer to the individual tables for details.

0 to 302.92 K crystal above 302.92 K liquid

Gallium (Ga)

CURRENT:

PREVIOUS:

Ga ₁ (g)	Enthalpy Reference Temperature = $T_r = 298.15$ K Standard State Pressure = $p^* = 0.1$ MPa J^*K^{-1} mol ⁻¹ J^*K^{-1} mol ⁻¹ J^*K^{-1} mol ⁻¹ J^*K^{-1} mol ⁻¹ J^*K^{-1} J^*K	0. INFINITE – 6.551 270,970 270,970 II 144.848 189,570 – 4,472 272,105 259,229 – 159,555 171,266 – 2,342 272,066 246,337 164,703 169,452 – 1,1187 272,004 239,913	5 169.042 169.042 0. 271.960 233.736 -40.950 4 169.109 169.043 0.047 271.950 233.499 -40.656 4 169.136 173.198 169.345 1.345 2.66.288 275.966 -34.022 4 175.788 170.064 2.682 2.66.234 272.497 -29.035 175.788 170.089 4.035 2.66.235 217.039 -25.192 175.89 7.57.89 7	187,676 174,247 8,057 266,237 200,656 191,671 176,450 10,648 266,166 189,659 189,502 178,751 13,157 266,018 178,781 197,896 180,267 15,596 265,801 167,888 200,659 184,166 20,310 265,200 146,189 204,656 183,799 22,664 264,838 135,385 206,438 137,002 266,103 264,103 2	208.097 188.735 27.107 264.027 113.872 209.627 190.077 29.324 263.588 103.162 211.048 191.344 31.525 263.132 92.482 212.373 192.543 33.712 262.661 81.831 213.616 193.679 35.886 262.179 71.208	214.786 194.760 38.051 261.687 60.611 215.827 195.771 42.355 260.677 39.497 217.937 197.711 44.497 260.162 28.976 218.86 198.611 46.633 295.642 18.479 219.794 199.475 48.764 259.166 8.005	220.462 200.114 50.394 FUGACITY - 1 bar - 220.662 200.305 50.892 0. 0. 0. 221.495 201.874 55.315 0. 0. 0. 222.295 201.874 55.315 0. 0. 0. 223.875 202.618 57.227 0. 0. 0. 0. 223.875 202.618 57.227 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	224523 204,030 61,478 0. 225,214 204,702 63,588 0. 225,534 205,534 65,696 0. 225,532 205,996 67,803 0. 227,100 205,599 59,998 0.	228.578 205.775 74.115 0. 0. 0. 228.535 205.775 74.115 0. 0. 0. 228.539 208.339 76.218 0. 0. 229.500 208.889 78.320 0. 0. 0. 230.578 209.547 82.524 0. 0. 0.	231.097 210.456 84.626 0. 0. 231.603 210.954 86.779 0. 0. 232.088 231.440 88.832 0. 0. 232.587 211.915 90.937 0. 0. 233.055 212.379 93.043 0. 0.	233.519 212.834 55.150 0. 0. 2.24.417 213.775 99.372 0. 0. 2.24.417 213.715 99.372 0. 0. 2.24.833 214.450 103.635 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	235.701 214.970 236.114 215.373 236.520 215.768 236.919 216.156 237.312 216.537 237.698 216.912	238,079 217,280 118,536 0. 0. 238,625 217,642 120,715 0. 0. 238,825 217,938 122,81 0. 0. 239,190 218,348 125,055 0. 0.
allium (Ga)	Enthalpy Reference T/K C;		298.15 25.346 300 25.394 350 26.430 400 26.974 450 27.120			1900 21.595 2000 21.519 2100 21.449 2200 21.339 2400 21.331	٥	,			4600 21.087 4700 21.109 4800 21.135 4900 21.165 5000 21.165	5100 21.236 5200 21.278 5300 21.374 5400 21.375 5500 21.431	5700 21.536 5800 21.625 5900 21.700 6000 21.780
A _r = 51.996 Gallium (Ga)	$\Delta_t H^0(0 \text{ K}) = 270.97 \pm 2.1 \text{ kJ·mol}^{-1}$ $\Delta_t H^0(298.15 \text{ K}) = 271.96 \pm 2.1 \text{ kJ·mol}^{-1}$			om the third law analysis of seven vaporization ur et al. (1196–1473 K), Alcock et al. (1173–and Johnston (1230–1518 K), Hartick (1198–	eat Capacity and Entropy The thermal functions were calculated using the atomic levels as given by Moore. ¹⁰ The resulting thermal functions are those recommended thingren et al. ¹	lements," American Society for Metals, Metals	Vol. 1, 211-30, 367-8 (1965).	гс. 497, (1952).					A A A A A A A A A A A A A A A A A A A
IDEAL GAS		ronic Levels and Quantum Weigh	Fig. 9. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	mmended by Hultgren et al., ¹ was derived fu vdies are: Matern et al. (1081–1213 K), ² Max Cochran and Foster (1179–1383 K), ⁸ Speiser Gurvich. ⁹	the atomic levels as given by Moore. ¹⁰ The res	ues of the Thermodynamic Properties of the E t. Akad, Nauk SSSR, Metally, (3) 210 (1969	 J. Phys. Chem. 70, 2956 (1966). "Thermodynamics," Proc. Symp. Vienna, nr. Soc. 111, 1170 (1964). em. Soc. 109, 144 (1962). Soc. 75, 1469 (1953). 	0). NBS-35, Vol. II, 1971 [Reprint of NBS Ci					
Gallium (Ga)	IP(Ga. g) = 48380 \pm 5 cm ⁻¹ S'(298.15 K) = 169.042 \pm 0.01 J·K ⁻¹ ·mol ⁻¹			Enthalpy of Formation The enthalpy of formation of Ga(g), as recommended by Hultgren et al., was derived from the third law analysis of seven vaporization studies and a spectroscopic calculation. The studies are: Matern et al. (1081–1213 K), Macur et al. (1196–1473 K), A clock et al. (1173–1477 K), Mumir and Searcy (1174–1603 K), Cochran and Foster (1179–1383 K), Speiser and Johnston (1230–1518 K), Harrick (1198–1391 K), and the spectroscopic calculation by Gurvich.	Heat Capacity and Entropy The thernal functions were calculated using the by Hultgren et al. ¹	References R. Hultgren, P. D. Desai, et al., "Selected Values of the Thermodynamic Properties of the Elements," American Society for Metals, Metals, Park, Ohio, (1973). G. Matern, Yu. A. Sanozhnikov, et al., Zzvest, Akad, Nauk SSSR, Metally, (3) 210 (1969).	 J. Macur, R. K. Edwards, and P. G. Wahlbick, J. Phys. Chem. 70, 2956 (1966). G. B. Alcock, J. B. Cormish and P. Grievson, "Thermodynamics," Proc. Symp. Vienna, Vol. 1, 211–30, 367–8 (1965). A. Munir and A. W. Searcy, J. Electrochem. Soc. 111, 1170 (1964). M. Cochran and L. M. Foster, J. Electrochem. Soc. 109, 14(992). R. Speiser and H. I. Johnston, J. Am. Chem. Soc. 175, 1469 (1953). 	 Hartick, Z. Physik. Chem. 134, 1 (1960). V. Gurvich, Zh. Fiz. Khim. 34, 1690 (1960). C. E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-35, Vol. II, 1971 [Reprint of NBS Circ. 497, (1952). 				. Def Dete	Mono

CURRENT: June 1983 (1 bar)

 $IP(Ga^*, g) = 165458 \pm 5 \text{ cm}^{-1}$ S°(298.15 K) = 161.790 ± 0.04 J·K⁻¹·mol⁻¹ Gallium, Ion (Ga*)

IDEAL GAS

-36	-34
\$ ± 4.0 k	[856.648]
4	4
+1	ve,
~	×
~	∞′
₹,	_
œ	
- 849.8	3
α	
×	
H2(0 K)	Н°(298.
€.	Š.
Æ	<u>C</u>
◁	-
	4
	⋖

	18 -	6, cm ⁻¹	State 'So
	n Weights	Electronic Levels and Quantum Weights	Electronic
λην (298 Δην (298			

$P(Ga^+, g) = 165458 \pm 5 \text{ cm}^{-1}$ $S^{*}(298.15 \text{ K}) = 161.790 \pm 0.04 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$				$\Delta_t H^{\circ}(0 \text{ K}) = 849.8 \pm 4.0 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(798.15 \text{ K}) = [856.6481 \text{ kJ} \cdot \text{mol}^{-1}]$	Enthalpy Re	ference Ter	emperature =	Enthalpy Reference Temperature = T, = 298.15 K		Standard State Pressure = $p^* = 0.1 \text{ MPa}$	Pressure = p	- 0.1 MPa
					7.	ಚ	S -[G	-[G*-H*(T,)]JT	$H^{\bullet}-H^{\bullet}(T_{*})$	Δ,H°	Φ_{G}	log K _r
	Electronic	1 5	um Weights		0 5	0. 787.07		NFINITE	-6.197	849.815		
	State	e, cm ⁻¹	8		288	20.786 20.786		163.691 162.132	-2.040 -1.001			
	လွှင်	0	- .		298.15	20.786		161.790	ó	856.648	814,332	-142.668
	క్తా.	47370 47816	- e		350	20.786	161.919	161.790	0.038	856.677 851.767	814.069 807.783	-141.742 -120.555
	ď.	48750	v,		\$ \$ \$	20.786 20.786 20.786	170,347	162.506 163.333 164.145	2.117 3.156 4.196	852.475 853.201 853.935	801.451 795.030 788.577	-104.659 -92.285 -82.377
					99	20.786	176.326	165.869	6274	855.417	775.307	-67.496
Enumalpy of Formation $\Delta H^{*}(G_{3}, g, 0.K)^{\dagger}$ using the spectroscopic value of IP(G ₃) = 48387.63 + 0.1 cm ⁻¹ /578.837 + 0.001	. 0 K) using th	e spectrosconic value	of IP(Ga) =	48387 63 ± 0.1 cm ⁻¹ (578 837 ± 0.001	88	20.786 20.786	179 <i>5</i> 31 182 <i>3</i> 06	167.598 169.267	8.353 10.431	856.912 858.413	761.837 748.152	-56.849 -48.849
Kimol 1) from Moore. The ionization limit is converted from cm 1 to ki mol 1 using the factor, 1 cm 1 = 0.01196266 kJ mol 1, which is	verted from cm	1- to kJ-mol-1 using	the factor, 1	cm ⁻¹ = 0.01196266 kJ·mol ⁻¹ , which is	88	20.786 20.786	184.754 186.944	170.854 172.356	12.510 14.589	859.913 861.413	734,280	-42.616 -37.621
defived from the 1973 CODATA fundamental constants. Rosenstock et al. and Levin and Lias have summarized additional ionization and appearance potential data.	tants.' Rosensto	xk et al." and Levin	and Lias' hav	e summarized additional ionization and	1200	20.786	188.926	173.774	16.667	862.914	706.050	-33.528
$\Delta H^{*}(Ga^{2}, g_{s}. 298.15 \text{ K})$ is calculated from $\Delta H^{*}(Ga, g_{s}. 0 \text{ K})$ by using IP(Ga) with JANAF' enthalpies, $H^{*}(0 \text{ K}) + H^{*}(298.15 \text{ K})$, for Ga(g), Ga [*] (g), and e (ref). $\Delta H^{*}(Ga \rightarrow Ga^{*} + e^{-}, 298.15 \text{ K})$ differs from a room temperature threshold energy due to inclusion of these enthalpies	Ga, g, 0 K) by K) differs from	using IP(Ga) with JA a room temperature	NAF' enthal	ies, H°(0 K)-H°(298.15 K), for Ga(g), Proceed to inclusion of these enthalpies	84 84 88	20.786 20.786	192.398	976.371 972.771	20.824	865.914	662.705	-24.726
and to threshold effects discussed by Rosenstock et	al. A.H "(298.	15 K) should be chan	1.9- d page	7 kJ mol-1 if it is to be used in the ion	0091	20.786	196.714	179.801	27.060	870.415	633.255	-20.674
convention that excludes the enthalpy of the electron.	œ.				8 0 0 0 0	20.786 20.786	197.974 199.162	180.834 181.819	29.139 31.217	871.916 873.416	618.387	-19.001 -17.511
Heat Capacity and Entropy	•				000 7000 7000	20 786 20 786	200.286 201.352	182.762 183.665	33.2% 35.375	874.917 876.417	588.390 573.271	-16.176 -14.972
The information on electronic energy levels and quantum weights, given by Moore," is incomplete because many theoretically predicted levels have not been observed. Our calculations indicate that any reasonable method of filling in these missing levels and quitting off that	quantum weigh	ts, given by Moore,*	" is incomple	te because many theoretically predicted	2100	20.786	202.366	184.532	37.453	877.917	558.077	-13.881
summation in the partition function? has no effect on the thermodynamic functions to 6000 K. This is a result of the high energy of all levels	n the thermody	namic functions to 60	000 K This is	a result of the high energy of all levels	2300	20 786	204257	186.166	41.610	880.918	527.477	-11.979
other than the ground state and the first three excited states; the next excited state is 70700 cm ⁻¹ above the ground state. Since inclusion of	ed states; the ne	ext excited state is 70	700 cm ⁻¹ ab	we the ground state. Since inclusion of	2200	20.786	205.991	187.683	45.768	625.333	499.064	-10.427
The position of the ¹ P ₀ levels are uncertain by 249 cm ⁻¹ . The reported uncertainty in S°(298.15 K) is due to uncertainties in the relative ionic	amic imedions in '. The repor	(to occor K), we jist of ted uncertainty in S'(nny une groun (298.15 K) is	due to uncertainties in the relative ionic	7200 7200 8300	20.786 20.786	206.806 207.590	188.403	47.846	627.367	493.973	-9.924 -9.456
mass and the fundamental constants. Extension of these calculations above 6000 K of different fill and cutoff procedures.	these calculatio		ıy require cor	may require consideration of the excited states and use	3282	20,786 20,786	209.076 209.076 209.780	190.427 190.427 191.060	54.082 56.161	633.487 635.533	478.241 472.853	-9.021 -8.614 -8.233
References					3100	20.786	210.462	191.675	58.239	637.580	467.397	-7.876
JANAF Themochemical Tables: Ga(g); e-(ref), 3-31-82.	3-31-82.	į			3300	20.786 20.786	211.761	192.853 193.419	62.397 64.475	641.679 643.731	456.288	-7.225 -7.222 -6.923
T. E. Moore, U. S. Nat. Bur. Stand., NSKDS-NBS-54, 8 pp. (1970).	5-34, 8 pp. (19	70).			3500	20.786	212.984	193.969	66.554	645.785	444.930	-6.640
H. M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp. (1977).	1. Pata 4, 003 1. Ref. Data 6, 9	(1973). Supp 1, 783 pp. (197	Ĕ.		3,000	20.786	213.570 214.140	194.505 195.028	68.632	647.838	439.162	-6.372
⁷ R. D. Levin and S. G. Lias, U. S. Nat. Bur. Stand., NSRDS-NBS-71, 634 pp. (1982). ⁶ C. E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-35, Volume II, (1970) [Reprint of NBS Circular 467, Volume II, 1952].	I., NSRDS-NB S-35, Volume	S-71, 634 pp. (1982) II, (1970) [Reprint o). if NBS Circu	ar 467, Volume II, 1952].	3900 4000 4000	20.786 20.786 20.787	215.234 215.234 215.760	195.539 196.037 196.523	72.790 74.868 76.947	654.004 654.004 656.059	421.457 421.522 415.535	-5.876 -5.646 -5.426
J. R. Downey, Jr., The Dow Chemical Company, AFOSR-TR-0960, Contract No.	AFOSR-TR-0	960, Contract No. F2	F44620-75-1-0048, (1978)	0048, (1978).	4200	20.787	216.273	196.999	79,026	658.114	409.497	-5.217
					64 4 500 4 500 6	20.788 20.789 20.790	217.263 217.741 218.209	197.919 198.364 198.799	83.183 85.262 87.341	662.223 664.275 666.327	397.270 391.085 384.853	-4.826 -4.643 -4.467
					4600	20.791	218.665	199.226	89.420	668.377	378.575	-4.299
					6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	20.794	219.550 219.979	200.055	93.578 95.658	672.471	365.887	-3.982
					2000	20.799	220.399	200.852	97.738	676.554	353.029	-3.688
					2300	20.807 20.812	221.215 221.215 221.612	201.619 201.993	77.518 101.898 103.979	680.625 682.654	340.008 333.438	-3.415
					\$400 \$200	20.818	222.383	202.720	106.061 108.143	684.679	326.830 320.184	-3.161 -3.041
					2,000 2,000	20.833 20.843 20.854	222.73 223.138 223.138	203.075 203.423 203.766	110.226	688.715 690.726 697.730	306.784	-2.924 -2.811 -2.700
					2800	20.866	223.846 224.197	204.436	116.480	696.720	293.243	-2.596

PREVIOUS

CURRENT: June 1983 (1 bar)

_
(Ga
<u>o</u>
Gallium,
: 69.72055
M,=

Gallium, Ion (Ga ⁻)	=	IDEAL GAS	Ŋ	M _r = 69.72055 Gallium, Ion (Ga ⁻)	Sallium, I	on (Ga ⁻)						Ga ₁ (g)
EA(Ga, g) = 0.30 \pm 0.15 eV $S^{*}(298.15 \text{ K}) = [175.801 \pm 0.1] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$				$\Delta_t H^{\circ}(0 \text{ K}) = 242.025 \pm 14.6 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(298 \text{ 15 K}) = [238.531] \text{ kJ} \cdot \text{mol}^{-1}$	Enthalpy R	eference Ter	emperature - J·K ⁻¹ mol ⁻¹	Enthalpy Reference Temperature = T_r = 298.15 K $J \cdot K = \frac{J \cdot K^{-1} mol^{-1}}{S} = \frac{J \cdot K^{-1} mol^{-1}}{S}$	H*-H*	Standard State Pressure Lid-mol ⁻¹ $\Delta_t H^*$ $\Delta_t G^*$	Pressure = p	= p = 0.1 MPa
	Electonic Le State	evels and Quar	Electonic Levels and Quantum Weights State		200 o	0. 29.645 30.076	0. 143.110 164.238	INFINITE 201.948 178.410	-8265 -5884 -2834	242.025	•	
	3P ₀	0	1		250	28.867	170.824	176.263	-1.360	118 511	204 547	75 876
	ٽي ٿ	220	mu		98	27.572	175.972	175.802	0.051	238.496	204.336	-35.578
Enthaloy of Formation	2	000	n		388 8	25.437 24.656	183.593 183.593 186.542	176.133 176.855 177.772	2.695 3.947	231 817 230.702 229.562	195.070 195.070 190.684	-25.78 -25.474 -22.134
$\Delta_1H^*(Ga^-; g, 0K)$ is calculated from $\Delta_1H^*(Ga, g, 0K)^1$ using the adopted electron affinity of EA(Ga) = 0.30 \pm 0.15 eV (28.945 \pm 14.473 kJ·mol ⁻¹). This value, recommended by Hotop and Lineberger, 2 is based on a photodetachment threshold (using conventional light sources)	0 K)¹ using the Lineberger,² is	adopted ele based on a p	ctron affinity of EA	$\lambda(Ga) = 0.30 \pm 0.15 \text{ eV} (28.945 \pm 14.473)$ reshold (using conventional light sources)	8 8 8	23.155 22.612	189.107 193.405 196.930	178 780 180.872 182.922	5 163 7.519 9.805	228.395 225.996 223.542	186.427 178.257 170.494	-19.476 -15.519 -12.722
and semempirical extrapolation. ³ ^{a 2} Additional info Rosenstock et al. ⁶ and Massey. ⁷	ormation on Ga	(g) may be	obtained in the criti	cal discussions of Hotop and Lineberger, 23	888	22.287 22.106 22.021	199.926 202.539 204.863	184.865 186.687 188.390	12.049 14.268 16.473	221.050 218.533 216.003	163 086 155.991 149.177	-10.648 -9.053 -7.792
$\Delta_t H^3(Ga^-, g, 298.15 K)$ is obtained from $\Delta_t H^0(Ga, g, 0 K)$ by using EA(Ga) with JANAF¹ enthalpies, $H^0(0 K) - H^0(298.15 K)$, for Ga^(g), and e^(ref). $\Delta_t H^0(Ga^- \to Ga + e^-, 298.15 K)$ differs from a room-temperature threshold energy due to inclusion of these enthalpies and to threshold effects discussed by Rosenstock et al. $^{\circ}\Delta_t H^0(298.15 K)$ should be changed by $+6.197 \text{ kJ} \cdot \text{mol}^{-1}$ if it is to be used in the ion	a, g, 0 K) by usi) differs from a al. ⁶ A _t H°(298.1	ing EA(Ga) I room-temp 15 K) shoulk	with JANAF¹ entha erature threshold e I be changed by +6	lpies, H°(0 K)-H°(298.15 K), for Ga⁻(g), nergy due to inclusion of these enthalpies 197 kJ·mol⁻¹ if it is to be used in the ion	1200 1300 1400 1500	21.998 22.012 22.049 22.097 22.149	206.961 208.875 210.638 212.274 213.801	189.985 191.480 192.887 194.214	18.674 20.874 23.077 25.284 27.497	213.469 210 933 208.401 205.873	142.617 136.288 130.171 124.248	-6.772 -5.932 -5.230 -4.636
convention that excludes the enthalpy of the electron.	Ė				1700	22.199 22.246 22.246	215.232 216.579	196.660 197.793	29.714	200.832	112.931	-3.304
The ground state electronic configuration for Ga ⁻ (g) is given by Hotop and Lineberger, ² Rosenstocsk et al., ⁶ and Massey. ⁷ The	Ja (g) is given	by Hotop	and Lineberger,2	S Rosenstocsk et al., and Massey. The	2000	22.323	219.058	199.903 200.890	36.394	193.305	97.116	-2.670 -2.406
interstudence separation has been calculated via an isociectronic extrapolation sociectronic extrapolation and is that recommended by Hotop and Lineberger.	an isoeiectronic ded by Hotop a	c extrapolar	ion of ratios of ti ger.	ne structure separations and a quadratic	7500 7500 7500 7500	233 235 235	221.295	201.836	43.103	188.304	87.245 82.491	-2.170 -1.959
A comparison of the isoelectronic sequences - Ga [g], Ge(g), As (g), Se**(g) - would suggest that a state, ¹D₂, may exist at low wave numbers. However, this is most likely a metasable state lying at an energy greater than the electron affinity, as in the case of Al [g]. As	ia (g), Ge(g), A state lying at a	As*(g), Se**(in energy gr	g) – would sugges eater than the elect	 would suggest that a state, 'Ds, may exist at low wave er than the electron affinity, as in the case of Al-(g). As 	7500 7500 7500 7500 7500 7500 7500 7500	22.408 22.417 22.417	224.286 225.201	203.618 204.459 205.270	45.343 47.584 49.826	183,312 180,818 -80,261	77.851 73.319 71.339	1.788 1.598 1.491
discussed by Hotop and Lineberger, - Rosenstock stable excited states exist.	et al., and Ma	issey,' no st	able excited states	have been observed. Thus, we assume no	2600 2700	22.423 22.422	226.080 226.927	206.054 206.812	52.068 54.311	-82.221 -84.177	77 442 83 620	-1.556 -1.618
References	;				7500 300 300	22:417 22:410 22:402	227.742 228.528 229.288	207.545 208.255 208.943	56.553 58.794 61.035	-86.131 -88.082 -90.032	89.870 96.190 102.578	-1. <i>677</i> -1.733 -1.786
JANAF Thermochemical Tables: Gaig); e (ref), 3-31-82. H Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data, 14, 731 (1985). D. Feldmann, R Rackwitz, E. Heinicke and H. J. Kaisu, Z. Naturf. 32a, 302 (1977). R I Zollusee 1 Chem Phys. 80, 4241 (1980).	5-31-82. ef. Data, 14, 73 Kaisu, Z. Natur	31 (1985). rf. 32a , 302	(1977).		3300 3300 3400 3400	22.23 22.33 23.35 23.55	230.022 230.733 231.422 232.089	209.611 210.260 210.891 211.505	63.274 65.513 67.750 69.986	-91.981 -93.929 -95.877 -97.825	109.030 115.545 122.122 128.757	-1.837 -1.886 -1.933 -1.978
Hotop and W. C. Linedger, J. Phys. Chem. Ref. Data 4, 539 (1975). H. M. Rosenstock, K. Draxl et al., 1 Phys. Chem. Ref. Data 6, Sumn 1, 7	ef. Data 4, 539 Ref. Data 6, S	(1975).	m (1977)		3600	22.320 22.320 30.30	233.366	212.684	74.453	-99.774 - 101.723 - 103.673	142.198	-2.021 -2.063
⁷ H. S. W. Massey, "Negative Ions," 3rd ed., Cambridge University Press, Cambridge, (1976).	oridge Universit	ty Press, Ca	mbridge, (1976).		3800 3800 4000 4000	22.28 22.268 22.250	234.572 235.150 235.714	213.805 214.345 214.872	78.914 81.141 83.367	-105.624 -107.577 -109.531	155.855 162.762 169.718	-2142 -2180 -2216
					4300 4400 4500 4500	22.23 22.14 22.195 22.176 22.178	236.263 236.799 237.321 237.831 238.329	215.387 215.891 216.383 216.865 217.336	85.591 87.814 90.034 92.253 94.469	-111.488 -113.447 -115.408 -117.373 -119.341	176.724 183.777 190.877 198.022 205.213	-2251 -2286 -2319 -2351 -2382
					450 450 450 450 450 450 450	22.139 22.120 22.102 22.083	238.816 239.292 239.757 240.213	217.798 218.250 218.693 219.128	96.884 98.897 101 108 103.318	-121.312 -123.288 -125.267 -127.252	212.447 219.724 227.043 234.403	-2.412 -2.442 -2.471 -2.499
					\$200 \$200	22.029 22.029	241.096 241.524	219.972 220.382	107.731	-123.241 -131.236 -133.236	241.004 249.245 256.724	2.253 2.253 2.253
					2400 2400 2500	22.011 21.993 21.976	241.943 242.354 242.758	220.785 221.181 221.570	112.136 114.336 116.535	-135.243 -137.256 -139.277	264.243 271.799 279.393	-2629 -2629 -2633
					\$500 \$300 \$300 \$000	21 958 21 941 21.924 21.908 21.891	243.154 243.542 243.924 244.298	221.951 222.327 222.696 223.059 223.416	118.732 120.927 123.120 125.311 127.501	-141.305 -143.341 -145.385 -147.438 -149.501	287.023 294.690 302.393 310.131 317.903	-2.677 -2.701 -2.723 -2.746 -2.768

Enthalpy of Formation

Heat Capacity and Entropy

References

PREVIOUS.