Name: Ezhilarasan C

Roll Number:225229151

Natural Language Processing Lab

Lab 3: Computing Documents Similarity using VSM

Exercise-1: Print TFIDF values

```
In [7]:
         1
             from sklearn.feature extraction.text import TfidfVectorizer
             import pandas as pd
          3
             docs=[
                 "good movie", "not a good movie", "did not like", "i like it", "good one"]
          4
            tfidf=TfidfVectorizer(min_df=2 , max_df=0.5 ,ngram_range=(1,2))
          6
             features=tfidf.fit_transform(docs)
          8
             print(features)
         10
                        0.7071067811865476
          (0, 2)
          (0, 0)
                        0.7071067811865476
                        0.5773502691896257
          (1, 2)
          (1, 0)
                        0.5773502691896257
          (1, 3)
                        0.5773502691896257
          (2, 3)
                        0.7071067811865476
                        0.7071067811865476
          (2, 1)
          (3, 1)
                        1.0
In [8]:
         df=pd.DataFrame(features.todense(),columns=tfidf.get_feature_names())
          2 print(df)
           good movie
                           like
                                     movie
                                                 not
             0.707107 0.000000 0.707107 0.000000
             0.577350 0.000000
                                 0.577350
                                            0.577350
             0.000000
                       0.707107
                                 0.000000
                                            0.707107
             0.000000 1.000000 0.000000 0.000000
             0.000000 0.000000
                                 0.000000 0.000000
```

Exercise-2:

1.Change the values of min_df and ngram_range and observe various output

```
In [9]:
         1 tfidf=TfidfVectorizer(min_df=1,max_df=.5,ngram_range=(2,4))
         2 features=tfidf.fit_transform(docs)
         3 print(features)
          (0, 2)
                        1.0
                        0.49552379079705033
          (1, 2)
          (1, 5)
                        0.6141889663426562
          (1, 6)
                        0.6141889663426562
          (2, 0)
                        0.5773502691896258
          (2, 7)
                        0.5773502691896258
                        0.5773502691896258
          (2, 1)
          (3, 4)
                        1.0
          (4, 3)
```

```
In [10]:
          1 df=pd.DataFrame(features.todense(),columns=tfidf.get_feature_names())
          2 print(df)
            did not did not like good movie good one like it not good
           0.00000
                         0.00000
                                    1.000000
                                                          0.0 0.000000
                                                  0.0
         1 0.00000
                         0.00000
                                    0.495524
                                                   0.0
                                                           0.0 0.614189
         2 0.57735
                         0.57735
                                    0.000000
                                                   0.0
                                                           0.0 0.000000
           0.00000
                         0.00000
                                    0.000000
                                                   0.0
                                                           1.0 0.000000
                                    0.000000
           0.00000
                         0.00000
                                                   1.0
                                                           0.0 0.000000
            not good movie not like
         0
                  0.000000
                            0.00000
                  0.614189
                            0.00000
         1
                  0.000000
                            0.57735
         2
         3
                  0.000000
                            0.00000
                  0.000000
                            0.00000
```

Exercise-3: Compute Cosine Similarity between 2 Documents

```
In [11]:
        1 from sklearn.metrics.pairwise import linear_kernel
In [12]:
          1 doc1 = features[0:1]
          2 doc2 = features[1:2]
          3 score = linear_kernel(doc1, doc2)
         [[0.49552379]]
In [13]:
          1 scores = linear_kernel(doc1, features)
          2 print(scores)
         [[1.
                      0.49552379 0.
                                                                ]]
          1 query = "I like this good movie"
In [14]:
          2 qfeature = tfidf.transform( [query])
             score2 = linear_kernel(doc1, features)
          4 print(score2)
         [[1.
                      0.49552379 0.
                                           0.
                                                      0.
                                                                ]]
```

Exercise-4: Find Top-N Similar Documents

1. Consider the following documents and compute TFIDF values

2. Compute cosine similarity between 3rd document ("the mouse ran away from the house") with all other documents. Which is more similar documents

```
1 tfidf = TfidfVectorizer(min_df=2, max_df=0.5, ngram_range=(1, 2))
In [16]:
           2 features = tfidf.fit_transform(docs)
           3 print(features)
           (0, 1)
                         0.7071067811865476
           (0, 3)
                         0.7071067811865476
           (1, 0)
                         0.7071067811865476
           (1, 2)
                         0.7071067811865476
           (2, 1)
                         0.7071067811865476
                         0.7071067811865476
           (2, 3)
           (3, 0)
                         0.7071067811865476
                         0.7071067811865476
           (3, 2)
In [18]:
          1 doc1=features[0:3]
           2 s=linear_kernel(doc1, features)
           3 print(s)
         [[1. 0. 1. 0. 0.]
          [0. 1. 0. 1. 0.]
          [1. 0. 1. 0. 0.]]
```

3. Find Top-2 similar documents for the 3rd document based on cosine similarity value?