5. Марковские процессы с конечным числом состояний, процесс Пуассона и мартингалы

Упражнение 5.1. (13 баллов) Пусть заданы начальное распределение μ и Q-матрица Q, что означает $Q_{ii} \leq 0, Q_{ij} \geq 0, \sum_j Q_{ij} = 0$. Пусть заданы также следующие независимые случайные величины:

- 1. $\xi \sim \mu$
- 2. $\tau_i^n \sim Exp(-Q_{ii})$
- 3. η_i^n случайные величины со значениями в множестве $\{1,2,...i-1,i+1,...n\}$ с распределением $P(\eta_i^n=j)=-Q_{ij}/Q_{ii}$
- 4. $\xi^0 = \xi, \xi^n = \eta^n_{\xi^{n-1}}$
- 5. $\sigma^0 = 0, \sigma^n = \sigma^{n-1} + \tau^n_{\xi^{n-1}}$

Докажите, что процесс X_t , заданный следующим образом: $X_t = \xi^n$ при $\sigma^n \le t < \sigma^{n+1}$, является марковским процессом с переходными матрицами $P(t) = \exp(tQ)$ и начальным распределением μ . Для этого следайте следующее:

- 1. Покажите, что μ является начальным распределением.
- 2. Покажите, что $P(X_0 = i, X_t = k, X_{t+h} = j) = P(X_0 = i, X_t = k)(Q_{kj}h + o(h))$
- 3. Покажите, что $P(X_0 = i, X_t = j, X_{t+h} = j) = P(X_0 = i, X_t = j)(1 + Q_{jj}h + o(h))$
- 4. Покажите, что $\sum_{k=1}^{r} P(X_0 = i, X_t = k, X_{t+h} = j) = P(X_0 = i, X_t = j) + h \sum_{k=1}^{r} P(X_0 = i, X_t = k)Q_{kj} + o(h)$
- 5. Покажите, что для $R_{ij}(t) = P(X_0 = i, X_t = j)$ выполнено равенство $\lim_{t\to 0+} \frac{R(t+h)-R(t)}{h} = R(t)Q$
- 6. Покажите, что для $R_{ij}(t) = P(X_0 = i, X_t = j)$ выполнено равенство $\lim_{t\to 0+} \frac{R(t) R(t-h)}{h} = R(t)Q$
- 7. Покажите, что $\frac{dR(t)}{dt} = R(t)Q$ при $t \geq 0$
- 8. Покажите, что $R_{ij}(t) = P(X_0 = i, X_t = j)$
- 9. Покажите, что $P(X_{t_0} i_0, ... X_{t_k} i_k) = \mu_{i_0} Pi_0 i_1(t_1) ... P_{i_{k-1} i_k}(t_k t_{k-1})$

Упражнение 5.2. (2 балла) Докажите, что если σ, τ - моменты остановки фильтрации \mathcal{F}_t , то и $\sigma \vee \tau$ - момент остановки.

Упражнение 5.3. (2 балла) Пусть X_n - процесс, согласованный с фильтрацией \mathcal{F}_n , $n \in \mathbb{N}$. Пусть $M > 0, \tau(\omega) = \min(n : |X_n(\omega)| \ge M)$. Докажите, что τ - момент остановки фильтрации \mathcal{F}_n .

Упражнение 5.4. (3 балла) Докажите, что следующие процессы являются мартингалами:

- 1. $Y_n = X_1 + X_2 + ... + X_n$, где $\{X_i\}_{i=1}^{\infty}$ независимые случайные величины с нулевым математическим ожиданием;
- 2. $(W_t)_{\mathbf{R}_+}$, Винеровский процесс;
- 3. $X_n = \mathbf{E}[X|\mathcal{F}_n]$, где X интегрируемая случайная величина, $\{F_n\}$ фильтрация.

Упражнение 5.5. (5 баллов) Пусть $\xi_1, \xi_2, ...$ - независимые случайные величины, их распределение - стандартное нормальное, $S_n = \xi_1 + ... + \xi_n$, $X_n = \exp(S_n - n/2)$. Пусть \mathcal{F}_n^X - онагебра, порожденная случайными величинами $X_1, ..., X_n$. Докажите, что $(X_n, \mathcal{F}_n^X)_{n \in \mathbb{Z}_+}$ - мартингал.