Szeregowanie zadań Wykład nr 5

dr Hanna Furmańczyk

Procesory dedykowane

Przypomnienie:

- zadania są podzielone na operacje (zadanie Z_j składa się z operacji O_{ij} do wykonania na maszynach M_i , o długościach czasowych p_{ij}); zadanie kończy się wraz z wykonaniem swej najpóźniejszej operacji,
- dopuszcza się sytuacje, gdy zadanie nie wykorzystuje wszystkich maszyn (operacje puste),
- żadne dwie operacje tego samego zadania nie mogą wykonywać się rownocześnie,
- żaden procesor nie może rownocześnie pracować nad różnymi operacjami.

Procesory dedykowane cd.

Trzy główne typy systemów obsługi dla maszyn dedykowanych:

- system przepływowy (ang. flow shop) operacje każdego zadania są wykonywane przez procesory w tej samej kolejności wyznaczonej przez numery maszyn (przykład 3),
- system otwarty (ang. open shop) kolejność wykonania operacji w obrębie zadań jest dowolna (przykład 2),
- system gniazdowy (ang. job shop) dla każdego zadania mamy dane przyporządkowanie maszyn operacjom oraz wymaganą kolejność.

Flow-shop - system przepływowy

Twierdzenie

Problem $F3||C_{max}|$ jest NP-trudny.

Flow-shop - system przepływowy

Twierdzenie

Problem $F3||C_{\text{max}}|$ jest NP-trudny.

Dowód

Redukcja Problemu Podziału (PP):

Dany jest ciąg liczb naturalnych a_1, a_2, \ldots, a_n tż. $S = \sum_{i=1}^n a_i$ jest l. parzystą.

Pytanie: Czy istnieje jego podciąg o sumie S/2?

Flow-shop - system przepływowy

Twierdzenie

Problem $F3||C_{max}|$ jest NP-trudny.

Dowód

Redukcja Problemu Podziału (PP):

Dany jest ciąg liczb naturalnych a_1, a_2, \ldots, a_n tż. $S = \sum_{i=1}^n a_i$ jest l. parzystą.

Pytanie: Czy istnieje jego podciąg o sumie S/2?

Redukcja: bierzemy n zadań o czasach $(0, a_i, 0)$ i = 1, ..., n oraz jedno z czasami (S/2, 1, S/2). Pytamy o istnienie uszeregowania z

System zwykły a permutacyjny (PF)

Permutacyjny system przepływowy (PF)

system przepływowy + kolejność podejmowania operacji z poszczególnych zadań musi być jednakowa na każdej maszynie (permutacja numerów zadań).

System zwykły a permutacyjny (PF)

Permutacyjny system przepływowy (PF)

system przepływowy + kolejność podejmowania operacji z poszczególnych zadań musi być jednakowa na każdej maszynie (permutacja numerów zadań).

Zwykły system przepływowy

Operacje w zadaniach wykonują się w tej samej kolejności (numeracja procesorów) ale kolejność podejmowania zadań może się zmieniać pomiędzy maszynami. Jest to możliwe nawet w harmonogramie optymalnym.

Przykład

 $m=4,\,n=2.$ Czasy wykonania (1,4,4,1) dla Z_1 i (4,1,1,4) dla $Z_2.$

Harmonogramy permutacyjne:

$M_{_1}$	$Z_{_{2}}$	Z ₁				
M_{2}		Z		Z ₁		
M_3			Z_{2}		Z ₁	
$M_{_4}$				Z ₂		$Z_{_{1}}$
						14

Przykład

Harmonogram niepermutacyjny:

Obserwacje

Jeżeli $p_{ij} > 0$, to istnieje optymalne uszeregowanie flow shopu, w którym kolejność podejmowania zadań jest jednakowa na pierwszych dwóch maszynach, oraz jednakowa na ostatnich dwóch.

Obserwacje

Jeżeli $p_{ij} > 0$, to istnieje optymalne uszeregowanie flow shopu, w którym kolejność podejmowania zadań jest jednakowa na pierwszych dwóch maszynach, oraz jednakowa na ostatnich dwóch.

Harmonogram optymalny dla $PFm||C_{max}$ ($p_{ij} > 0$) jest optymalny dla $Fm||C_{max}$ przy $m \le 3$ (sprawdzamy więc tylko harmonogramy permutacyjne, mniej do przeszukania!).

Szukanie C_{max} dla zadanej permutacji zadań - skan z książki M. Pinedo (Scheduling. Theory, Algorithms and Systems; Prentice Hall 2002)

jobs	j_1	j_2	<i>j</i> ₃	j 4	<i>j</i> 5
p_{1,j_k}	5	5	3	6	3
p_{2,j_k}	4	4	2	4	4
p_{3,j_k}	4	4	3	4	1
p_{4,j_k}	3	6	3	2	5

Wartość C_{\max} się nie zmienia dla problemu dualnego - zadania wykonujemy w odwrotnej kolejności (permutacja Z_n, \ldots, Z_1), odwrotna kolejność maszyn M_m, \ldots, M_1 - przykład.

jobs	j_1	j_2	j_3	j_4	js
p_{1,j_k}	5	5	3	6	3
p_{2,j_k}	4	4	2	4	4
p_{3,j_k}	4	4	3	4	1
p_{4,j_k}	3	6	3	2	5

jobs	j_1	j_2	<i>j</i> ₃	j 4	j 5
p_{1,j_k}	5	2	3	6	3
p_{2,j_k}	1	4	3	4	4
p_{3,j_k}	4	4	2	4	4
p_{4,j_k}	3	6	3	5	5

$F2||C_{\text{max}}, (F2|pmtn|C_{\text{max}})|$

Jedyny problem *flow* rozwiazywalny w czasie wielomianowym, kiedy to zadania są dowolne.

Algorytm Johnsona, $O(n \log n)$

- Podziel zadania na zbiory $N_1 = \{Z_j : p_{1j} < p_{2j}\},\ N_2 = \{Z_j : p_{1j} \ge p_{2j}\}.$
- ② Porządkuj N_1 w kolejności niemalejącej p_{1j} a N_2 według nierosnącego p_{2j}
- 3 Utwórz harmonogram permutacyjny (maksymalnie "przesunięty w lewo") na podstawie kolejności N_1 , N_2 .

Przykład - alg. Johnsona

Zmodyfikowany algorytm Johnsona

Stosujemy, gdy M_2 jest zdominowana przez M_1 ($\forall_{i,j}p_{1i} \geq p_{2j}$) lub przez M_3 ($\forall_{i,j}p_{3i} \geq p_{2j}$) można użyć Johnsona stosując zmodyfikowane czasy wykonania ($p_{1i} + p_{2i}, p_{2i} + p_{3i}$), $i = 1, \ldots, n$.

Przykład - slajdy dodatkowe

Algorytm graficzny

- Na osi OX odkładamy kolejne odcinki o długości p₁₁, p₂₁,..., p_{m1} (czasy pracy maszyn nad Z₁). Na osi OY odkładamy odcinki o długości p₁₂, p₂₂,..., p_{m2} (czasy pracy maszyn nad Z₂).
- Zaznaczamy obszary zakazane wnętrza prostokątów będących iloczynami kartezjańskimi odpowiednich odcinków (ta sama maszyna nie pracuje równocześnie nad dwoma zadaniami).
- ③ Szukamy najkrótszej łamanej o odcinkach równoległych do osi (praca jednej maszyny) lub biegnących pod kątem $\pi/4$ (równoczesna praca obu maszyn), łączącej (0,0) z $(\sum_i p_{i1}, \sum_i p_{i2})$. Jej długość to długość harmonogramu. $(d((x_1, x_2), (y_1, y_2)) = \max\{|x_1 x_2|, |y_1 y_2|\})$.

Przykład - algorytm graficzny

System przepływowy permutacyjny proporcjonalny, $Fm|pmtn, p_{ij} = p_i|C_{max}$

Reguła SPT-LPT

Zbiór zadań podzielony jest na dwie części:

1. część: $p_{j_1} \leq p_{j_2} \leq \cdots \leq p_{j_k}$

2. część: $p_{j_k} \geq p_{j_{k+1}} \geq \cdots \geq p_{j_n}$

System przepływowy permutacyjny proporcjonalny, $Fm|pmtn, p_{ii} = p_i|C_{max}$

Reguła SPT-LPT

Zbiór zadań podzielony jest na dwie części:

1. część: $p_{j_1} \leq p_{j_2} \leq \cdots \leq p_{j_k}$

2. część: $p_{j_k} \geq p_{j_{k+1}} \geq \cdots \geq p_{j_n}$

Może być kilka takich podziałów

System przepływowy permutacyjny proporcjonalny, $Fm|pmtn, p_{ij} = p_j|C_{max}$

Twierdzenie

Dla problemu $Fm|pmtn, p_{ij} = p_j|C_{\mathsf{max}}$

$$C_{\max} = \sum_{j=1}^{n} p_j + (m-1) \max\{p_1, \dots, p_n\}$$

i nie zależy od uszeregowania.

Złożoność flow shop - Książka P. Bruckera

$F2 \mid p_{ij} = 1; prec; r_i \mid \sum C_i$	Baptiste & Timkowsky $[23]$	
$Fm \mid p_{ij} = 1; intree \mid \sum C_i$	Averbakh etal.[11]	
$F \mid p_{ij} = 1; outtree; r_i \mid C_{\text{max}}$	Bruno et al. [60]	$O(n^2)$
$F \mid p_{ij} = 1; tree \mid C_{\text{max}}$	Bruno et al.[60]	O(n)
$F2 \parallel C_{ ext{max}}$	Johnson [120]	$O(n \log n)$
	6.2.1	
$F2 \mid pmtn \mid C_{\text{max}}$	Gonzales & Sahni [105]	$O(n \log n)$
$F \mid p_{ij} = 1; intree \mid L_{\text{max}}$	Bruno et al. [60]	$O(n^2)$
$F2 \mid p_{ij} = 1; prec; r_i \mid L_{\text{max}}$	Bruno et al. [60]	$O(n^3 \log n)$
$F \mid p_{ij} = 1; outtree; r_i \mid \sum C_i$	Brucker & Knust [44]	$O(n \log n)$
$F2 \mid p_{ij} = 1; prec \mid \sum C_i$	Brucker & Knust [44]	$O(n^{\log 7})$
$F \mid p_{ij} = 1; r_i \mid \sum w_i U_i$	Single machine problem	$O(n^3)$
$F \mid p_{ij} = 1; r_i \mid \sum w_i T_i$	Single machine problem	$O(n^3)$

Table 6.4: Polynomially solvable flow shop problems.

```
* F \mid p_{ij} = 1; intree; r_i \mid C_{max} Brucker & Knust [44]
*F \mid p_{ii} = 1; prec \mid C_{max}
                                 Leung et al. [156]
* F2 | chains | Cmax
                                  Lenstra et al. [155]
* F2 \mid chains; pmtn \mid C_{max}
                                  Lenstra [150]
*F2 \mid r_i \mid C_{max}
                                      Lenstra et al. [155]
*F2 \mid r_i; pmtn \mid C_{max}
                                      Gonzales & Sahni [105]
*F3 \parallel C_{max}
                                      Garev et al. [100]
*F3 \mid pmtn \mid C_{max}
                                      Gonzales & Sahni [105]
* F \mid p_{ij} = 1; outtree \mid L_{\text{max}}
                                      Brucker & Knust [44]
*F2 \parallel L_{\text{max}}
                                      Lenstra et al. [155]
*F2 \mid pmtn \mid L_{max}
                                      Gonzales & Sahni [105]
*F2 \parallel \sum C_i
                                      Garey et al. [100]
* F2 \mid pmtn \mid \sum C_i
                         Du & Leung [83]
* Fm | p_{ij}=1; chains \mid \sum w_i C_iTanaev et al. [194]
* Fm \mid p_{ii} = 1; chains \mid \sum U_i \mid Brucker & Knust [44]
 for each m > 2
* Fm \mid p_{ij} = 1; chains \mid \sum T_i \mid Brucker & Knust [44]
  for each m \geq 2
```

Table 6.5: \mathcal{NP} -hard flow shop problems.