Baltian tie 2002

Tartto, 2.11.2002

Aikaa: 4,5 tuntia

Ensimmäisen puolen tunnin aikana vastataan tehtäviä koskeviin kyselyihin.

1. Ratkaise reaalilukuyhtälöryhmä

$$\begin{cases} a^3 + 3ab^2 + 3ac^2 - 6abc = 1\\ b^3 + 3ba^2 + 3bc^2 - 6abc = 1\\ c^3 + 3ca^2 + 3cb^2 - 6abc = 1. \end{cases}$$

2. Olkoot a, b, c ja d reaalilukuja, joille

$$a+b+c+d = -2,$$

$$ab+ac+ad+bc+bd+cd = 0.$$

Todista, että ainakin yksi luvuista a, b, c, d on korkeintaan -1.

3. Etsi kaikki reaalilukujonot $a_0 \leqslant a_1 \leqslant a_2 \leqslant \ldots$, joille

$$a_{m^2+n^2} = a_m^2 + a_n^2$$

pätee kaikilla kokonaisluvuilla $m, n \ge 0$.

4. Olkoon n positiivinen kokonaisluku. Todista, että

$$\sum_{i=1}^{n} x_i (1 - x_i)^2 \le \left(1 - \frac{1}{n}\right)^2$$

pätee kaikilla epänegatiivisilla reaaliluvuilla x_1, x_2, \dots, x_n , joille $x_1 + x_2 + \dots + x_n = 1$.

5. Etsi kaikki positiiviset rationaalilukuparit (a, b), joille

$$\sqrt{a} + \sqrt{b} = \sqrt{2 + \sqrt{3}} .$$

- 6. Seuraavaa lautapasianssia pelataan yksikköruuduista koostuvalla suorakulmaisella $m \times n$ -laudalla, missä $m,n\geqslant 2$. Ensiksi torni sijoitetaan jollekin ruudulle. Jokaisella siirrolla tornia voidaan siirtää mielivaltainen määrä ruutuja vaakatai pystysuuntaan, ja lisäksi jokaisen siirron täytyy olla myötäpäivään kohtisuorassa edelliseen siirtoon nähden. (Esim. vasempaan suuntautuvan siirron jälkeen seuraava on ylöspäin, sitten oikealle jne.) Millä lukujen m ja n arvoilla on mahdollista, että torni käy jokaisessa laudan ruudussa täsmälleen kerran ja palaa aloitusruutuunsa? (Tornin sanotaan käyvän vain niissä ruuduissa, joihin se pysähtyy, ei niissä, joiden kautta se kulkee.)
- 7. Tasoon on piirrettynä n kuperaa nelikulmiota, jotka jakavat tason alueisiin. (Alueista yksi on ääretön.) Määritä, mikä on suurin mahdollinen määrä tällaisia alueita.
- 8. Olkoon P $n \geqslant 3$ tasopisteen joukko, missä mitkään kolme pistettä eivät ole samalla suoralla. Kuinka monella eri tavalla voidaan valita sellainen $\binom{n-1}{2}$ kolmion joukko T, että kolmioiden kärjet ovat kaikki joukossa P ja että jokaisella joukon T kolmiolla on sivu, joka ei ole joukon T minkään toisen kolmion sivu?
- 9. Kaksi taikuria esittää seuraavan tempun. Ensimmäinen taikuri poistuu huoneesta. Toinen taikureista tarttuu 100 kortin pakkaan, jonka kortit on merkitty luvuilla 1,2,...,100, ja pyytää kutakin kolmesta katselijasta valitsemaan vuorollaan kortin pakasta. Tämä taikuri näkee, minkä kortin kukin katselijoista valitsee. Tämän jälkeen hän lisää valittuihin kortteihin yhden kortin jäljellejääneestä pakasta. Katselijat sekoittavat nämä kortit, kutsuvat ensimmäisen taikurin sisään ja antavat hänelle nämä 4 korttia. Ensimmäinen taikuri katsoo 4 korttia ja "arvaa", minkä kortin valitsi ensimmäinen, minkä toinen ja minkä kolmas katselija. Todista, että taikurit voivat suoriutua tempusta.

- 10. Olkoon N positiivinen kokonaisluku. Kaksi pelaajaa pelaa seuraavaa peliä. Ensimmäinen pelaaja kirjoittaa listan korkeintaan luvun 25 suuruisia positiivisia kokonaislukuja, jotka eivät välttämättä ole eri lukuja ja joiden summa on vähintään 200. Toinen pelaajista voittaa, jos hän voi valita listan luvuista jotkin, joiden summa S toteuttaa ehdon $200 N \leqslant S \leqslant 200 + N$. Mikä on pienin sellainen luvun N arvo, että toisella pelaajalla on voittostrategia?
- 11. Olkoon n positiivinen kokonaisluku. Tasoon on piirretty n pistettä, joista mitkään kolme eivät ole samalla suoralla ja joiden välisistä etäisyyksistä mitkään kaksi eivät ole samat. Yhdistetään kukin piste vuorollaan janoilla kahteen sitä lähimpään pisteeseen. (Aiemmin piirrettyjä janoja ei pyyhitä pois.) Todista, ettei pisteiden joukossa ole sellaista, josta kulkisi jana yli 11 muuhun pisteeseen.
- 12. S on neljän eri tasopisteen joukko. Jokaisella pisteellä $X \in S$ voidaan nimetä loput pisteet Y:ksi, Z:ksi ja W:ksi siten, että

$$|XY| = |XZ| + |XW|.$$

Todista, että kaikki neljä pistettä ovat samalla suoralla.

- 13. Olkoon ABC teräväkulmainen kolmio, jossa $\angle BAC > \angle BCA$, ja olkoon D sellainen sivun AC piste, että |AB| = |BD|. Olkoon edelleen F kolmion ABC ympäri piirretyn ympyrän sellainen piste, että suora FD on kohtisuorassa sivua BC vastaan ja pisteet F ja B ovat suoran AC eri puolilla. Todista, että suora FB ja sivu AC ovat toisiaan vastaan kohtisuorassa.
- 14. Olkoot L, M ja N sellaiset pisteet kolmion ABC sivuilla AC, AB ja BC, että BL on kulman $\angle ABC$ puolittaja ja janoilla AN, BL ja CM on yhteinen piste. Todista, että jos $\angle ALB = \angle MNB$, niin $\angle LNM = 90^{\circ}$.
- 15. Hämähäkki ja kärpänen istuvat kuution pinnalla. Kärpänen haluaa, että lyhin polku siitä hämähäkkiin kuution pintaa pitkin on niin pitkä kuin mahdollista. Onko kärpäsen aina parasta olla hämähäkkiä vastapäisessä pisteessä? ("Vastapäinen" tarkoittaa "symmetrinen kuution keskipisteen suhteen".)
- 16. Etsi kaikki epänegatiiviset kokonaisluvut m, joille

$$a_m = \left(2^{2m+1}\right)^2 + 1$$

on jaollinen korkeintaan kahdella eri alkuluvulla.

17. Osoita, että jono

$$\binom{2002}{2002}$$
, $\binom{2003}{2002}$, $\binom{2004}{2002}$, ...,

tarkasteltuna modulo 2002, on jaksollinen.

- 18. Etsi kaikki kokonaisluvut n > 1, joilla luvun $n^6 1$ alkutekijät jakavat luvun $(n^3 1)(n^2 1)$.
- 19. Olkoon n positiivinen kokonaisluku. Todista, että yhtälöllä

$$x + y + \frac{1}{x} + \frac{1}{y} = 3n$$

ei ole positiivisia rationaalilukuratkaisuja x, y.

20. Onko olemassa ääretöntä epävakiota aritmeettista jonoa, jonka jokainen termi on muotoa a^b , missä a ja b ovat positiivisia kokonaislukuja ja $b \geqslant 2$?

2