Critical Forest Density

Group 8: 'Quite Some Sweat'

Gijs van Langen, Karlijn Limpens, Roman Peerboom, Wenbo Sun

Two frameworks in modelling forest fires:

Theoretical background

Li and Magill: Cellular automata

- Zylstra: Forest fire as a complex system

Bush Flammability: (1) probability of being set on fire, (2) the

Flammability:

- intensity of the fire, & (3) the duration of the fire (Zylstra, 2011) The heat conditions of the day (Li and Magill, 2000)

Flammability randomly drawn from uniform distribution

Allows for diversity in forest layout (Li and Magill, 2000)

- Our approach: combining both frameworks and extending to
- different distributions

How does the density in plant growth with different flammability distributions influence the critical point of the spread of a forest fire in a dry season?

Research Question & hypothesis

• The critical density for a forest with maximum flammability for all vegetation starts at 0.41

For initial flammability drawn from • a normal distribution, we expect a low amount of fires during the beginning of the model but the fire sizes will increase over time

- a uniformdistribution, we expect there to be constant outbreaks of fires over time.
- a bimodal distribution, we expect there to be big fire in the beginning of the model, but large pieces of the forest will survive the season
- Our model **Assumptions**

Grid representing a forest (100 x 100) Cell representing a piece of forest with or without flammable vegetation

Parameters

• Cellular Automata https://github.com/projectmesa/mesa/tree/main/examples/forest_fire

- Forest density: percentage of places on the grid with plant growth
- Flammability: the chance of catching fire: 1. Spontanious Combustion, i.e. the fire starting at that cell
- 2. Neighbour dynamics, i.e. fire spreading from neighbouring cells Trees burn for the duration of one time step
- \bullet Catching fire due to neighbors: $P(f) = (1-(1-X_t)^{N_f})$ Increase in flammability X over time t due to increased environmental heat

0.4

0.3

• 90 time steps

- 1.0 0.9
- 0.8 0,10 0.7 0,20 0.6 0,30 0.5

 $X_{t+1} = (0,02 * X_t + 1) * X_t$

1.0

0.9

0.8

0.7

0.6

0.5

0.3

0.2

0.1

0

0.010 0.005 0

0.020

Bimodal is two normal distributions combined

an initial flammability outside of 0.02 and 0.54. Its

1% for the bimodal distribution.

0,02

0,05

0,40

0,50

1.0 0.9

0.3 0.2 0.1

0.8

0.7

0.6

0.5

0.4

0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Spreading propability

Spreading propability

0.2 0.210.220.230.240.250.260.270.280.29 0.3

0

Normal distribution

Finding the critical density

Bimodal distribution

Uniform distribution

- Literature
- approach. Complexity International, 8(1), 1-14.
 Malamud, B.D., Millington, J.D.A., & Perry, G.L.W. (2005): Characterizing wild fire regimes in the United States. PNAS, 102(13), 4694-4699.
 Palmieri, L., & Jensen, H. J. (2020). The Forest Fire Model: The Subtleties of Criticality and Scale Invariance. Frontiers in Physics, vol 8, 257.

significantly different to the other to critical densities

• Li, X., & Magill, W. (2001). Modeling fire spread under environmental influence using a cellular automaton

• Zylstra, P. J. (2011). Forest flammability: modelling and managing a complex system. University of New South Wales, Australian Defence Force Academy, School of Physical, Environmental and Mathematical Sciences..

*there is at least a 90% certainty that the critical density of the normal ditribution is