Learning outcomes:

After solving these exercises, you should be able to understand the following:

- 1. Applying Neural Networks on multiple data sets
- 2. Importance of Standardizing data
- 3. Visualizing and interpreting the results

Today's activities

Activity1

- 1. Importing "UniversalBank.csv" files's data into R dataframe using read.csv function. bank_Data = read.csv(file="UniversalBank.csv", header=TRUE, sep=",")
- 2. Understand the structure the summary of the data using str and summary R commands
- 3. Convert all the variables to appropriate type
 - To numeric using as.numeric()
 - To categoical using as.factor()
 - To ordinal using as.factor() with ordered argument set to TRUE or using as.ordered()
- 4. Using subset remove 'ID' and 'ZIP.Code' columns from the data
- 5. R neuralnet library takes only numeric attribues as input
 - Convert all categorical and ordinal attributes to numeric using appropriate technique. Hint: dummies
 - E.g. convert "Education" categorical attribute to numeric using dummy function in dummies R library
 - Drop actual Education attribute from orginal data set
 - Add created dummy Education variables to orginal data set
- 6. Separate Target Variable and Independent Variables.
 - In this case "Personal.Loan" is a target variable and all others are independent variable.
- 7. Standardization the independent variables using decostand funcion in vegan R library
 - Note: To standardize the data using 'Range' method
- 8. Prepare train and test data in 60:40 ratio
- 9. See data distribution in response variable in both Train and Test data:
- 10. Load neuralnet R library and build a Neural Network having 1 hidden layer with 2 nodes
 - nn = neuralnet(Personal.Loan ~

Age+Experience+Income+Family+CCAvg+Mortgage+Securities.Account+CD.Account+Online+CreditCard+

Education1+Education2+Education3, data=train_Data, hidden=2)

- 11. See covariate and result varaibls of neuralnet model
 - out <- cbind(nn\$covariate, nn\$net.result[[1]])
- 12. Remove rownames and set column names

"Education1", "Education2", "Education3", "nn_Output"))

- 13. To view top records in the data set
- 14. Plot the neural network plot(nn)
- 15. Compute confusion matrix and calculate recall on Train Data predicted = factor(ifelse(nn\$net.result[[1]] > 0.5, 1, 0)) conf_Matrix = table(train_Data\$Personal.Loan, predicted)
- 16. Remove target attribute from Test Data
- 17. Predict

nn_predict <- compute(nn, covariate= test_Data_No_Target)</pre>

- 18. View the predicted values
- 19. Compute confusion matrix and calculate recall for Test Data predicted = factor(ifelse(nn_predict\$net.result > 0.5, 1, 0)) conf_Matrix<-table(test_Data\$Personal.Loan, predicted)

Activity2

- Objective:
 - Build multi-class classification neural network model, that takes features as input and predicts the alphabet id
- Data:
 - all features.txt"
 - Has data that is collected from the image of Hindi alphabet.
 - Class/Target attribute is the alphabet id
 - In the given data set Target variable in the first column
 - Other 72 attributes are features collected from the image of that alphabet
 - Each row has details about one alphabet

