คู่มือปฏิบัติการ ชุดสาธิตการทดลองพลังงานขยะผลิตไฟฟ้า

รายการอุปกรณ์ชุดทดลอง

รายการอุปกรณ์

- 1. เตาเผาเชื้อเพลิงขยะ
- 2. หม้อต้มแรงดัน
- 3. ชุดกังหันไอน้ำซึ่งต่ออยู่กับเครื่องกำเนิดไฟฟ้า
- 4. ตู้ควบคุม
- 5. หน้าจอแสดงผล
- 6. Emergency Switch
- 7. สวิตช์เปิด-ปิด เครื่อง

<u>หน้าจอแสดงผลและควบคุม</u>

- 1. ปรับระดับความร้อน
- 2. อัตราการใช้ขยะ (กิโลกรัม/วินาที)
- 3. ส่วนควบคุมการ เริ่ม หยุด และรีเซต
- แสดงผลค่าทางไฟฟ้า
 แรงดันไฟฟ้า (โวลต์)
 กระแสไฟฟ้า (แอมป์)
 กำลังไฟฟ้า (วัตต์)
 พลังงานไฟฟ้า (วัตต์ ชั่วโมง)
- 5. แสดงการจับเวลา (วินาที)
- 6. แสดงผลอุณหภูมิและความชื้น

Web application

- 1. ปุ่มปรับระดับความร้อน
- 2. ปุ่มกดเชื่อมต่อกับชุดแลปสาธิต เริ่ม หยุด และแสดงผลเวลา
- 3. แสดงผลอัตราการใช้ขยะ และความร้อน
- 4. แบบทดสอบ
- 5. แสดงผลอุณหภูมิและความชื้น
- 6. แสดงผลค่าทางไฟฟ้า

แรงดันไฟฟ้า (โวลต์)

กระแสไฟฟ้า (แอมป์)

กำลังไฟฟ้า (วัตต์)

พลังงานไฟฟ้า (วัตต์ - ชั่วโมง)

- 7. คู่มือปฏิบัติการ
- 8. คีย์แสดงผลการจับคู่
- 9. ข้อมูลโรงไฟฟ้าขยะ

หลักการและทฤษฎี

เชื้อเพลิงขยะ (Refuse Derived Fuel, RDF)

การใช้ขยะมูลฝอยที่เก็บรวบรวมได้เพื่อการเผาไหม้โดยตรงมักก่อให้เกิดความยุ่งยากในการใช้งาน เนื่องจากความไม่แน่นอนและไม่สม่ำเสมอในองค์ประกอบต่างๆ (Non-homogeneousness) ที่ประกอบกัน ขึ้นเป็นขยะมูลฝอยซึ่งเปลี่ยนแปลงไปตามชุมชนและตามฤดูกาลอีกทั้งขยะมูลฝอยเหล่านี้มีค่าความร้อนต่ำ มี ปริมาณเถ้าและความชื้นสูงสิ่งเหล่านี้ก่อความยุ่งยากให้กับผู้ออกแบบโรงเผาและผู้ปฏิบัติและยังควบคุมการ เกิดผลกระทบต่อสิ่งแวดล้อมได้ยากการแปรรูปขยะมูลฝอยโดยผ่านกระบวนการจัดการต่างๆเพื่อปรับปรุง คุณสมบัติทางกายภาพและคุณสมบัติทางเคมีของขยะมูลฝอยเพื่อทำให้กลายเป็นเชื้อเพลิงขยะ (Refuse Derived Fuel, RDF) จะสามารถแก้ปัญหาดังกล่าวมาข้างต้นได้ซึ่งเชื้อเพลิงที่ได้นั้นสามารถนำไปใช้เป็น เชื้อเพลิงเพื่อผลิตพลังงานได้

เชื้อเพลิงขยะ (RDF) เป็นการปรับปรุงและแปลงสภาพของขยะมูลฝอยให้เป็นเชื้อเพลิงแข็งที่มี
คุณสมบัติในด้านค่าความร้อน (Heating Value) ความชื้น ขนาด และความหนาแน่นเหมาะสมในการใช้เป็น
เชื้อเพลิงป้อนหม้อไอน้ำเพื่อผลิตไฟฟ้าหรือความร้อนและมีองค์ประกอบทั้งทางเคมีและกายภาพสม่ำเสมอ
คุณลักษณะทั่วไปของเชื้อเพลิงขยะประกอบด้วย

- ปลอดเชื้อโรคจากการอบด้วยความร้อน ลดความเสี่ยงต่อการสัมผัสเชื้อโรค
- ไม่มีกลิ่น
- มีขนาดเหมาะสมต่อการป้อนเตาเผา-หม้อไอน้ำ (เส้นผ่านศูนย์กลาง 15-30 มิลลิเมตร ความยาว 30-150 มิลลิเมตร)
- มีความหนาแน่นมากกว่าขยะมูลฝอยและชีวมวลทั่วไป (450-600 kg/m3) เหมาะสมต่อการจัดเก็บ และขนส่ง
- มีค่าความร้อนสูงเทียบเท่ากับชีวมวล (~ 13-18 MJ/kg) และมีความชื้นต่ำ (~ 5-10%)
- ลดปัญหามลภาวะจากการเผาไหม้ เช่น NOx และไดออกซินและฟูราน

รูปที่ 1 กระบวนการผลิตเชื้อเพลิงขยะ RDF

หลักการทำงานของเทคโนโลยีนี้เริ่มจากการคัดแยกขยะที่ไม่สามารถเผาไหม้ได้ (โลหะ แก้ว เศษหิน) ขยะอันตรายและขยะรีไซเคิลออกจากขยะรวมในบางกรณีจะมีการใช้เครื่องคัดแยกแม่เหล็กเพื่อคัดแยกมูลฝอย ที่มีเหล็กเป็นส่วนประกอบ และใช้เครื่อง Eddy Current Separator เพื่อคัดแยกอลูมิเนียมออกจากมูลฝอย จากนั้นจึงป้อนขยะมูลฝอยไปเข้าเครื่องสับ-ย่อยเพื่อลดขนาดและป้อนเข้าเตาอบเพื่อลดความชื้นของมูลฝอย โดยการใช้ความร้อนจากไอน้ำหรือลมร้อนเพื่ออบขยะให้แห้งซึ่งจะทำให้น้ำหนักลดลงเกือบ 50% (ความชื้น เหลือไม่เกิน 15%) และสุดท้ายจะส่งไปเข้าเครื่องอัดเม็ด (Pellet) เพื่อทำให้ได้เชื้อเพลิงขยะอัดเม็ดที่มีขนาด และความหนาแน่นเหมาะสมต่อการขนส่งไปจำหน่ายเป็นเชื้อเพลิง ซึ่งในบางกรณีจะมีการเติมหินปูน (CaO) เข้าไปกับมูลฝอยระหว่างการอัดเป็นเม็ดเพื่อควบคุมและลดปริมาณก๊าซพิษที่เกิดขึ้นจากการเผาไหม้

องค์ประกอบของเชื้อเพลิงขยะจะขึ้นอยู่กับองค์ประกอบของขยะที่นำมาแปรรูป วิธีการจัดเก็บและ กระบวนการที่ใช้ในการแปรรูปคุณลักษณะที่สำคัญของขยะเชื้อเพลิงหลังจากการแปรรูปแล้ว ได้แก่ค่าความ ร้อน ปริมาณความชื้น ปริมาณเถ้า และปริมาณซัลเฟอร์และคลอไรด์นอกจากนี้การแปรรูปขยะเป็นเชื้อเพลิงจะ ช่วยลดความชื้นส่งผลให้ค่าความร้อนขยะมีค่าสูงขึ้นด้วย

การใช้ประโยชน์จากเชื้อเพลิงขยะสามารถใช้ได้ทั้งในรูปผลิตพลังงานไฟฟ้าและความร้อนโดยที่อาจจะ มีการใช้ประโยชน์ในสถานที่ผลิตเชื้อเพลิงขยะหรือขนส่งไปใช้ที่อื่น นอกจากนี้ยังสามารถใช้เผาร่วมกับถ่านหิน (Co-firing) เพื่อลดปริมาณการใช้ถ่านหินลงในอุตสาหกรรมบางประเภท เช่นอุตสาหกรรมซีเมนต์โดยมีรูปแบบ เตาเผาที่ใช้เปลี่ยนเชื้อเพลิงขยะให้เป็นพลังงานความร้อนประกอบด้วย เตาเผาแบบตะกรับ (Stoker) เตาเผา แบบฟลูอิดไดซ์เบด (Fluidized Bed Combustor) หรือเตาเผาแก็สซิฟิเคชั่น (Gasification) หรือไพโรไลซิส (Pyrolysis)

nnw http://online.wsj.com/article/SB122851537257083869.html

รูปที่ 2 ตัวอย่างการใช้ประโยชน์จากเชื้อเพลิงขยะเพื่อผลิตไฟฟ้า

ประสิทธิภาพของการผลิตไฟฟ้าจากพลังงานขยะ

ในการประเมินประสิทธิภาพของการผลิตไฟฟ้าจากพลังงานขยะ จะประเมินจากสัดส่วน ระหว่างพลังงานที่ได้จากขยะ กับ พลังงานไฟฟ้าที่ผลิตได้

ประสิทธิภาพของการผลิตไฟฟ้า = พลังงานที่ได้จากขยะ/พลังงานไฟฟ้าที่ผลิตได้

โดยที่

พลังงานที่ได้จากขยะ = (ปริมาณขยะ ×ค่าความร้อนของขยะ)/1000

- พลังงานที่ได้จากขยะ คือ พลังงานที่ได้จากการเผาขยะ ในหน่วย เมกะจูล (MJ)
- ปริมาณขยะ คือ ปริมาณขยะ ในหน่วย kg
- ค่าความร้อนของขยะ คือ ค่าพลังงานความร้อนที่ได้จากการเผาขยะ ใช้ค่า 11.28 เม กะจูลต่อกิโลกรัม (MJ/kg) ซึ่งเป็นค่าความร้อนของขยะในเขต กทม. และปริมณฑล

และ

พลังงานไฟฟ้าที่ผลิตได้ = กำลังไฟฟ้า (กิโลวัตต์) x เวลา (ชั่วโมง)

- พลังงานไฟฟ้าที่ผลิตได้ คือ พลังงานไฟฟ้าที่ผลิตได้จากเครื่องกำเนิดไฟฟ้า ในหน่วย
 กิโลวัตต์-ชั่วโมง
- กำลังไฟฟ้า คือ กำลังไฟฟ้าที่ได้จากเครื่องกำเนิดไฟฟ้า ในหน่วย กิโลวัตต์
- เวลา คือ จำนวนชั่วโมงที่ใช้ในการทดลอง (ชั่วโมง)

ข้อดี-ข้อจำกัดของการผลิตไฟฟ้าจากพลังงานขยะ

ข้อดีและข้อจำกัดของการผลิตไฟฟ้าจากพลังงานขยะ สามารถสรุปได้ดังตารางดังนี้

ข้อดี	ข้อจำกัด
1. เป็นแหล่งพลังงานราคาถูก	1. เทคโนโลยีบางชนิดใช้เงินลงทุนสูง ถ้าขนาดเล็ก
2. ลดปัญหาเรื่องการกำจัดขยะ	เกินไปจะไม่คุ้มการลงทุน
3. โรงไฟฟ้าขยะจากการฝังกลบช่วยลดภาวะโลก	2. มีค่าใช้จ่ายในการจัดการขยะให้เหมาะสมก่อน
ร้อน	นำไปแปรรูปเป็นพลังงาน
	3. ต้องมีเทคโนโลยีที่เหมาะสมในการจัดการกับฝุ่น
	ควันและสารที่เกิดขึ้นจากการเผาขยะ
	ตัวอย่างเช่นฝุ่นควันที่เกิดจากโรงไฟฟ้าเชื้อเพลิง
	ขยะอาจมีโลหะหนัก เช่น ตะกั่วหรือแคดเมียม
	ปนอยู่ หรือการเผาขยะอาจทำให้เกิดไดอ๊อกซิน
	ซึ่งเป็นสารก่อมะเร็ง
	4. โรงไฟฟ้าขยะมักได้รับการต่อต้านจากชุมชนที่
	อยู่ใกล้เคียง
	5. ข้อจำกัดทางด้านการเป็นเจ้าของขยะ เช่น ผู้
	ลงทุนตั้งโรงไฟฟ้าอาจไม่ใช่เจ้าของขยะ

ขั้นตอนการใช้งาน

- 1. เสียบปลั๊กแหล่งจ่ายไฟฟ้ากระแสสลับ 220 โวลต์ให้กับชุดแลปสาธิต
- 2. ดำเนินการเปิดเบรกเกอร์ตัดต่อไฟฟ้าไปอยู่ตำแหน่ง ON

- 3. บิดสวิชท์ไปยังตำแหน่ง ON ด้านขวา
- 4. เข้า Web application URL : https://encamppowerplant.com/lablite/incinery/

และกดปุ่มเชื่อมต่อ กรณีมีการเชื่อมต่ออยู่จะมีหน้าต่างแจ้งเตือน

เมื่อเชื่อมต่อได้แล้วจะแสดงผลค่าต่าง ๆ และคีย์การเชื่อมต่อ

และสถานะการเชื่อมต่อที่หน้าจอแสดงผลที่ชุดแลปสาธิตขึ้นสถานะ connect

5. กดปุ่มควบคุม On line เพื่อให้ควบคุมการทำงานผ่าน web application

6. เริ่มการทดลองโดยกดปุ่มเริ่มการทำงาน เวลาการทำการทดลองจะเริ่มจับเวลา

7. เมื่อทำการทดลองเสร็จให้กดหยุด และกดยกเลิกการเชื่อมต่อ

วัตถุประสงค์

- 1. เพื่อศึกษาการทำงานของชุดผลิตกระแสไฟฟ้าโดยพลังงานขยะ
- 2. เพื่อศึกษาความสัมพันธ์ระหว่างพลังงานที่ได้จากขยะ กับพลังงานไฟฟ้าที่สามารถผลิตได้

วิธีการทดลอง

- 1. เริ่มจากเติมน้ำสะอาดในหม้อต้มแรงดัน (Boiler) โดยเติมน้ำประมาณ 3 ลิตร ปิดฝาให้แน่น
- 2. เตรียมเชื้อเพลิงขยะให้มีขนาดที่เหมาะสม ขนาดความยาวประมาณ 1.5 ซม. และมีปริมาณความชื้น ไม่เกินร้อยละ 20 ไมควรมีสิ่งเจือปนในเชื้อเพลิง เช่น เศษหิน ดิน ทราย และวัสดุอื่น ๆ
- 3. นำเชื้อเพลิงใส่เตาและจุดเตาเผาเพื่อผลิตความร้อนจากขยะ โดยความร้อนที่ได้จะนำไปต้มน้ำใน หม้อแรงดัน ทำการปรับระดับความแรงของพัดลมเติมอากาศที่จ่ายให้กับเตาเผา ทำให้ได้ความร้อน ในปริมาณที่แตกต่างกัน
- 4. ไอน้ำที่ได้จากหม้อแรงดันจะนำไปขับชุดกังหันไอน้ำซึ่งต่ออยู่กับเครื่องกำเนิดไฟฟ้า ได้เป็น กระแสไฟฟ้าจ่ายให้กับโหลด รอให้ค่าต่างๆ คงที่ แล้วจึงเริ่มจับเวลาและบันทึกผลการทดลอง จับ เวลา 5 นาทีแล้วจึงบันทึกผลอีกครั้ง
- 5. บันทึกผลค่าน้ำหนักเชื้อเพลิงเริ่มต้นและน้ำหนักเชื้อเพลิงเมื่อผ่านไป 5 นาที ความดันไอน้ำ ค่า แรงดันไฟฟ้า ค่ากระแสไฟฟ้า และค่ากำลังไฟฟ้า
- 6 ปรับระดับความแรงของพัดลมเติมอากาศที่จ่ายให้กับเตาเผา เพื่อให้ได้ค่าความร้อนที่แตกต่างกัน 3 ค่าและบันทึกผลการทดลอง

ตารางวิเคราะห์ผลการทดลอง

ครั้งที่	น้ำหนักเชื้อเพลิง (กิโลกรัม)		แรงดันไฟฟ้า (V)	กระแสไฟฟ้า (A)	กำลังไฟฟ้า ที่อ่านค่าได้ (W)	ผลต่าง น้ำหนัก เชื้อเพลิง	จับเวลา (Sec.)	อัตราการ สิ้นเปลือง เชื้อเพลิง	ค่าความ ร้อน เชื้อเพลิง	กำลังของ เชื้อเพลิง (W)	ประสิทธิภาพ ระบบผลิต ไฟฟ้า
	เริ่มจับเวลา	ผ่านไป 5 นาที			, ,	(kg)		(kg/s)	(MJ/kg)		(%)
1											
2											
3											

หมายเหตุ : อัตราการสิ้นเปลืองเชื้อเพลิง (กิโลกรัม/วินาที) = ผลต่างน้ำหนักเชื้อเพลิง (กิโลกรัม) / ผลต่างเวลา (วินาที)
กำลังของเชื้อเพลิง (วัตต์) = อัตราการสิ้นเปลืองเชื้อเพลิง (กิโลกรัม/วินาที) x ค่าความร้อนเชื้อเพลิง (เมกะจูล/กิโลกรัม)
ประสิทธิภาพระบบผลิตไฟฟ้า (%) = [กำลังไฟฟ้าที่จ่ายโหลด (วัตต์) / กำลังของเชื้อเพลิง (วัตต์)] x 100

การวิเคราะห์ผลการทดลอง	
	••••
	.
	•••
	.
สรุปผลการทดลอง	
	· • • •
	•••
	•••
	.
	•••
	•••
	•••
	••••

.....