Conducción autónoma sobre plataforma real y simulada con seguimiento de carril e identificación de señales de tráfico y peatones mediante redes neuronales

Álvaro Mariscal Ávila

a.mariscal.2018@alumnos.urjc.es

Trabajo fin de grado

xx de xxxxxxx de 2022

(CC) Julio Vega

Este trabajo se entrega bajo licencia CC BY-NC-SA.
Usted es libre de (a) compartir: copiar y redistribuir el material en
cualquier medio o formato; y (b) adaptar: remezclar, transformar
y crear a partir del material. El licenciador no puede revocar estas
libertades mientras cumpla con los términos de la licencia.

Contenidos

- Introducción
- Objetivos
- 3 Plataforma de desarrollo
- 4 Sistema de conducción autónoma
- Conclusiones

Introducción

Inteligencia artificial

(b)

Visión artificial

- La tecnología está cada vez más presente en la vida cotidiana.
- Los robots de servicio aparecen en el mercado.
- La domótica presenta cada vez más aplicaciones domésticas.

Deep Learning

(a)

(b)

Coches autónomos

Primera revolución industrial de 1800

Productos fabricados por máquinas. La máquina de vapor fue clave.

AMRs

Primera revolución industrial de 1800

Productos fabricados por máquinas. La máquina de vapor fue clave.

Objetivos

Descripción del problema

relación

Requisitos

relación

Plataforma de desarrollo

Hardware

- Crear una herramienta multiplataforma.
- Sin necesidad de instalación.
- Toda ejecución vía web.

Software

- Crear una herramienta multiplataforma.
- Sin necesidad de instalación.
- Toda ejecución vía web.

Sistema de conducción autónoma

Modelo

- Se usa una matriz RT(4x4) en lugar de R y T.
- La matriz RT rota θ grados en los ejes X, Y y Z:

Resistencia de un material

 Si material piezoresistivo se deforma, cambia su resistencia eléctrica. donde:

R : resistencia del material $[\Omega]$

 ρ : resistividad $[\Omega - m]$

1 : longitud [m]

A: área de sección transversal $[m^2]$

• El cambio de resistencia se obtiene a partir de:

Circuito

- Se usa una matriz RT(4x4) en lugar de R y T.
- La matriz RT rota θ grados en los ejes X, Y y Z:

Redes neuronales en el entorno real

 Si material piezoresistivo se deforma, cambia su resistencia eléctrica. donde:

R : resistencia del material $[\Omega]$

 ρ : resistividad $[\Omega - m]$

1 : longitud [m]

A: área de sección transversal $[m^2]$

• El cambio de resistencia se obtiene a partir de:

Conclusiones

Conclusiones

- Se usa una matriz RT(4x4) en lugar de R y T.
- La matriz RT rota θ grados en los ejes X, Y y Z:

Líneas futuras

- Se usa una matriz RT(4x4) en lugar de R y T.
- La matriz RT rota θ grados en los ejes X, Y y Z:

Conducción autónoma sobre plataforma real y simulada con seguimiento de carril e identificación de señales de tráfico y peatones mediante redes neuronales

Álvaro Mariscal Ávila

a.mariscal.2018@alumnos.urjc.es

Trabajo fin de grado

xx de xxxxxxx de 2022