The Union-Find Problem

The Problem: Given a set X of n elements x_1, x_2, \ldots, x_n . We would like to maintain a collection of disjoint subsets (groups) of X.

Initially, the collection is empty.

There are three operations on the elements and the subsets.

Make_set(i): makes x_i a subset and assigns a name for the subset.

Find(i): returns the name of the subset that contains x_i .

Union(i, j): combines subsets that contain x_i and x_j , say S_i and S_j , into a new subset with a unique name. (Any name distinct from other names will do.)

The goal: Design a data structure that will support any sequence of these three operations as efficient as possible.

Note: We assume the types for elements are subrange type. Therefore we can use elements name to index into array (e.g. integer $1, \ldots, n$)

A simple (naive) solution

Store the name of the subset containing the i'th element x_i in A[i].

- $Make_set(i)$: we just set A[i] to i.
- Find(i): we just look at A[i] and find out the name for the subset.
- Union(i, j): (Assume the name of the resulting subset is S_i 's name) Change the subset name for all elements in S_j .

Example:

Make_set(1 7)	1 2 3 4 5 6 7
Union(1, 2)	1 1 3 4 5 6 7
Union(5, 6)	1 1 3 4 5 5 7
Find(6)	5
Union(1, 5)	1 1 3 4 1 1 7
Union(3, 1)	3 3 3 4 3 3 7

Time: n union operations may need $O(n^2)$ time.

An improved implementation

- Each set is represented by a linked list.
- The first node in each list serves as its set's representative.
- Each node of the list contains a set member, a pointer to the next node, and a pointer back to the representative.
- Each list maintains a pointer, head, to the first node and a pointer, tail, to the last node.
- Make_set(i) and Find(i) are easy to implement.
- For the Union(i,j), we will append the smaller list onto the longer list and update representative pointers of the smaller list.

Time: with a sequence of m operations, n of which are Make_set operations, it takes $O(m + n \log n)$ time.

Why: how many times a pointer to its representative can be changed?

Example:

Another implementation

- Instead of making Find operation simple, we make Union operation simple.
- Each set is a tree and each node in a tree is a record: one field for element name, one field for a pointer (parent pointer) to another node.
- \dagger **Find(i)**: from entry *i*, follow parent pointer until we find a node with a nil pointer (root). Return the name in that node.
- † **Union(i, j)**: we change the pointer of the root of set S_j to pointing to the root of set S_i , or vice-versa.

Example:

Make_set(1 ... 7)

1 2 3 4 5 6 7

1 2 3 4 5 6 7

Union(1, 2)

1 1 3 4 5 6 7

1 1 3 4 5 6 7

Union(5, 6)

1 1 3 4 5 5 7

1 1 3 4 5 5 7

Find(6)

5

5

Union(1, 5)

1 1 3 4 1 5 7

1 1 3 4 1 5 7

Union(3, 1)

3 1 3 4 1 5 7

We can consider the whole structure as a forest. Make_set(1 ... 7) 6 5 Union(1, 2) Union(5, 6) Find(6) Union(1, 5) Union(3, 1)

$|\text{Efficient } Union ext{-}Find|$

- *Idea*: balance and collapse the trees.
- Balancing: when union operation is performed, the root pointer of the smaller tree is set to point to the root of larger tree.
 - † Rather than explicitly keeping the size of the subtree rooted at each node, we use another approach.
 - † For each node, we maintain a **rank** that is an upper bound on the height of that node.
 - † In union by rank, the root with smaller rank is made to point to the root with larger rank during an Union operation.
 - If two roots have equal ranks, we arbitrarily choose one of the roots as the the parent, increase its rank by 1, and reset the other root.
 - With Make_set(), the rank is set to 0.

- (1) If union by rank is used, then for any node, its height is bounded by its rank.
- (2) If union by rank is used, then for any node i, its rank is bounded by $\log(size(i))$.

Proof: (of (1)) Induction on the number of Make_set and Union operations.

Base case: the first operation must be Make_set, and (1) is true since we have one node with height 0 and rank 0.

Induction step: consider an Union(i, j) operation and let r_i and r_j be the roots of the trees containing i and j. We assume that $height(r_i) \leq rank[r_i]$ and $height(r_i) \leq rank[r_i]$.

```
† If rank[r_i] > rank[r_j], height(union(i, j))

= \max\{height(r_i), height(r_j) + 1\}

\leq rank[r_i] = rank[root(union(i, j))].

† If rank[r_i] < rank[r_j], height(union(i, j))

= \max\{height(r_i) + 1, height(r_j)\}

\leq rank[r_j] = rank[root(union(i, j))].

† If rank[r_i] = rank[r_j], height(union(i, j))

\leq \max\{height(r_i) + 1, height(r_j) + 1\}

\leq rank[r_i] + 1 = rank[root(union(i, j))].
```


- With balancing (union by rank), for a sequence of m operations, n of which are Make_set operations, the height of any tree is less than or equal to $\log n$, since we only have n elements.
- Any find operation is at most $O(\log n)$
- Any sequence of $m \ge n$ operations will be bounded by $O(m \log n)$.

Union: constant time.

Find: $O(\log n)$ time.

Path compression (collapse the tree)

In the operation of Find(i), do following:

first pass: follow parent pointer to find the root second pass: follow parent pointer and change each of the pointers in the path to point to root.

With path compression alone, for a sequence of m operations, n of which are Make_set operations, the time complexity is $O(m \log n)$.

Theorem. If both balancing and path comparisons are used, then the total number of steps in the worst case for any sequence of $m \ge n$ operations, n of which are Make_set operations, is $O(m \log^* n)$.

Proof: Omitted.

$$\log^*(1) = 0, \log^*(2) = 1.$$

$$\log^*(n) = 1 + \log^*(\lceil \log_2 n \rceil), \qquad n \ge 2.$$

$$\log^*(2) = 1, \qquad 2 = 2$$

$$\log^*(2^2) = 2, \qquad 2^2 = 4$$

$$\log^*(2^{2^2}) = 3, \qquad 2^{2^2} = 2^4 = 16$$

$$\log^*(2^{2^2}) = 4, \qquad 2^{2^2} = 2^{16} = 65536$$

$$\log^*(2^{2^{2^2}}) = 5, \quad 2^{2^{2^2}} = 2^{65536}$$

The number of atoms in the observable universe is estimated to be about 10^{80} which is MUCH SMALLER than $2^{65536}!!$

In practice, above union-find algorithm is linear time.

```
An implementation of efficient union-find data structure.
Make-set(x)
    parent[x] = x;   rank[x] = 0;
Union(x, y)
    Link(Find-set(x), Find-set(y));
Link(x, y)
    if (rank[x] > rank[y])
       parent[y] = x;
    else if (rank[x] < rank[y])
       parent[x] = y;
    else if (x \neq y)
       parent[y] = x; \quad rank[x] = rank[x] + 1;
Find-set(x)
    if x \neq parent[x]
       parent[x] = Find-set(parent[x])
    return(parent[x])
```