KURS BARDZOPODSTAWOWY INTEL EDISON

By Dominik Kras

Spis treści

BUDOWA EDISONA	3
PIERWSZE URUCHOMIENIE	4
INSTALACJA OPROGRAMOWANIA	4
Wgrywanie pierwszego programu	6
Programowanie Edisona oraz starter kit	7
SHIELD	7
Różnica między analogiem, a cyfrą	8
Cyfra:	8
Analog	8
Programowanie	<u>c</u>
Obsługa peryferiów z zestawu	9
Wgrywanie bibliotek	9
Załączniki	<u>9</u>

BUDOWA EDISONA

- 1 Gniazdo na samym dole to **przejściówka UART-USB** oparta na układzie FT232R. Po podłączeniu do komputera (oraz instalacji sterowników), będzie ona widoczna jako port szeregowy. Za jej pomocą mamy **dostęp do linii poleceń systemu Linux oraz, co najważniejsze, komunikatów systemowych i bootloader-a.**
- **2** Środkowe gniazdo służy do **zasilania płytki** oraz **wgrywania programów**. <u>Aby było aktywne należy ustawić przełącznik **SW1** w dolnej pozycj</u>i (znajduje się między górnym, a środkowym gniazdem) jest to typowa konfiguracja podczas pisania i wgrywania programów z Arduino IDE.
- **3** Gdybyśmy jednak chcieli wykorzystać interfejs USB-host, możemy przełączyć **SW1** w górną pozycję. Musimy jednak zasilić wtedy płytkę z zewnętrznego źródła oraz nie będziemy mieli możliwości wgrywania programów z Arduino IDE.

Odnośnie dokładniejszej budowy (procesor, zworki, przyciski) odsyłam tutaj: https://www.dobreprogramy.pl/cyryllo/Intel-Edison-wersja-Standard-i-Mini,58427.html

PIERWSZE URUCHOMIENIE

INSTALACJA OPROGRAMOWANIA

Sterowniki

Pobieramy **Windows *64 bit** z linku poniżej i instalujemy zgodnie z wskazówkami na ekranie. https://software.intel.com/en-us/iot/hardware/edison/downloads

Po poprawnej instalacji oprogramowania, płytka z Edisonem powinna być widoczna w *Menedżerze urządzeń* systemu Windows.

Instalacja i konfiguracja środowiska

Musimy się również zaopatrzyć w środowisko programistyczne np. **Arduino IDE** https://www.arduino.cc/download handler.php

Przed jakimkolwiek wgrywaniem programu trzeba się upewnić, że płytka jest podpięta do gniazda nr 2 (rysunek 1) a przełącznik SW1 skierowany jest na dół. Inaczej nie będzie działać,

- 1. Po instalacj wchodzimy w zakładkę Narzędzia > Płytka: i z listy wybieramy "Menedżer płytek...". W wyszukiwarkę wpisujemy "Edison" i pobieramy
- 2. Następnym krokiem jest wybór portu. Nie powiem który, bo na różnych komputerach jest inny. Odpowiedź jest prosta. Tylko jeden będzie działał (u mnie COM5)

Całość powinna wyglądać mniej więcej tak:

Wgrywanie pierwszego programu

Przechodzimy do zakładki Plik > Przykłady > Basics > Blink oraz klikamy program na płytkę. Jeśli wszystko poszło poprawnie, na arduino powinna zacząć migać dioda.

Programowanie Edisona oraz starter kit

Pisanie programów na płytkę jest bardzo proste. Odsyłam do kursu dla arduino: http://forbot.pl/blog/artykuly/programowanie/kurs-arduino-2-podstawy-programowania-porty-io-id3648

Natomiast ja opisze tutaj jak korzystać z nakładki na płytkę z zestawu starter kit. (Uwaga! Najpierw zapoznać się z składnią programowania)

SHIELD

Po założeniu go na piny GPIO nadal mamy do nich dostęp, przez niebieskie wtyczki. Mamy również przełącznik napięcia (VCC), przycisk reset, oraz diodę sygnalizującą napięcie.

Najbardziej rzucają się w oczy białe złącza, do których podpinamy czujniki z zestawu startowego, które powinny być opisane, jakich złączy potrzebują.

Generalnie:

- UART Komunikacja szeregowa
- 12C Wyświetlacz
- D4-D8 We/Wyjścia cyfrowe
- A0-A4 We/Wy analogowe

Różnica między analogiem, a cyfrą

Cyfra:

1 lub 0 logiczne. Programujemy jako HIGH lub LOW (albo 0V albo 5Vv). Gdy przykładowo podłączymy potencjometr jako digitalRead(4) będzie działał jak przełącznik.

Wykres:

Analog:

Pozwalają na pomiar napięcia (w zakresie 0-5V). Dzięki nim możemy np. zrobić ściemniacz światła. Dioda nie tylko ma 2 stanów (albo świeci albo nie) Może świecić z zakresu np. od 0 do 216 (zależy od diody)

Wykres:

Programowanie

Tutaj nie ma nic nowego. Przykładowo gdy podpinamy Diodę do portu D4 w funkcji Setup() deklarujemy pinMode(4, OUTPUT); lub potencjometr – pinMode(A0, INPUT);

Obsługa peryferiów z zestawu

Do obsługi większości czujników/wyświetlacza potrzebujemy pobrać biblioteki, które znaleźć możemy na stronie producenta http://wiki.seeed.cc – Mamy tam specyfikacje techniczną, pomysły na wykorzystanie, biblioteki i przykładowe kody.

Wgrywanie bibliotek

Po pobraniu biblioteki przechodzimy do Arduino IDE Szkic > Dołącz bibliotekę > Dodaj bibliotekę .zip Po załadowaniu możemy ją dodać ręcznie, lub kliknąć na nią w menu bibliotek (Dołącz bibliotekę). W zakładce Plik >Przykłady mamy do wyboru przykładowe programy z jej wykorzystaniem

Załączniki

To chyba tyle z ważniejszych rzeczy. Dołączam jeszcze moje przykładowe programy.

meteo.ino – Stacja meterologiczna z dni techniki

potencjometr.ino – Sterowanie dwoma diodami za pomocą przycisku i potencjometra

swiatla_drogowe.ino – Symulacja świateł drogowych