Computability theory

FAMAF - UNC

SLP

Contents

1	Introduction					
2	Codi	ing infinite tuples	4			
	2.1	The i th prime function	4			
	2.2	Orders over Σ	6			
	2.3	Extending the order to words	8			
3	Enui	merable and computable sets	9			
	3.1	Prime numbers and enumerable sets	11			
4	Turi	ng	13			
	4.1	Turing machine	13			
	4.2	Deterministic Turing machine	14			
	4.3	Instantaneous descriptions	14			
	4.4	State transitions	14			
	4.5	Halting and languages	17			
	4.6	Σ -Turing computable functions	19			
5	Godel 21					
	5.1	Primitive recursion	21			
	5.2	Numeric to numeric primitive recursion	22			
	5.3	Numeric to alphabet primitive recursion	23			
	5.4	Alphabet to numeric primitive recursion	23			
	5.5	Alphabet to alphabet primitive recursion	24			
	5.6	The point of primitive recursion	24			
	5.7	The primitive recursive set	24			
	5.8	Predicates	25			
	5.9	Primitive recursive sets	25			
	5.10	Case division	27			
	5.11	Summation, product and concatenation	28			
	5.12	Predicate quantification	30			
		Minimization of numeric variable	31			
	5.14	Recursive function	32			
		Minimization of alphabetic variable	33			
		Enumerable sets	34			
		Recursive sets	34			
		Alphabet independence	34			

6	Neur	nann	35
	6.1	The \mathcal{S}^{Σ} language	35
	6.2	Variables, labels, and instructions	35
	6.3	Programs in \mathcal{S}^Σ	36
	6.4	States in programs of S^{Σ}	37
	6.5	Instantaneous description of a program in S^{Σ}	38
	6.6	Computation from a given state	38
	6.7	Halting	39
	6.8	Σ -computable functions	39
	6.9	Macros	42
	6.10	Enumerable sets	45
	6.11	Σ -computable sets	46
7	Para	digm battles	47
	7.1	Neumann triumphs over Godel	47
	7.2	Godel triumphs over Neumann	50
	7.3	Interacting programs	53
	7.4	Church's thesis	60
8	Exte	nding Σ -recursion	61
	8.1	The Halting problem	62
9	Prob	lems from final exams and the feared Tómbola	64
10	Fina	1 2019-07	77
11	Fina	les	82
	11.1	Final 2020-02	82
	11.2	Final 2022-07	84

1 Introduction

These are my notes on computability theory. The only definitions that ought to be known first-hand are the following.

Let Σ denote an arbitrary language, $\omega := \mathbb{N} + \{0\}$, and $n, m \ge 0$ fixed elements in ω . Then:

- A Σ -mixed function is a function s.t. $\mathcal{D}_f \subseteq \omega^n \times \Sigma^{*m} \mapsto \varphi$ with either $\varphi = \omega$ or $\varphi = \Sigma^*$.
- A Σ -mixed function is Σ -effectively computable if we can find some algorithmic procedure that, given an input in $\omega^n \times \Sigma^{*m}$, outputs the value of $f(\overrightarrow{x}, \overrightarrow{\alpha})$.
- Any set $S \subseteq \omega^n \times \Sigma^{*m}$ is termed a Σ -mixed set.
- If there is an algorithmic procedure that enumerates S, we say S is Σ -effectively enumerable.
- If there is an algorithmic procedure that decides the belonging to S, we say S is Σ -effectively computable.

Here, the notion of "algorithmic procedure" is non-rigorous. The principal subject of this study are three formalizations of this concept: Turing computability, recursive computability (Godel), and imperative computability (von Neumann).

2 Coding infinite tuples

We define $\omega^{\mathbb{N}} := \{(s_1, s_2, \ldots) : s_i \in \omega\}$ and $\omega^{[\mathbb{N}]} \subseteq \omega^{\mathbb{N}} := \{(s_1, s_2, \ldots) : s_i \in \omega \land \exists k \in \mathbb{N} : i \geq k \Rightarrow s_i = 0\}.$

2.1 The *i*th prime function

We define

$$pr : \mathbb{N} \mapsto \omega$$
 $n \mapsto \text{ the } n\text{th prime number}$

Theorem 1 For all $x \in \mathbb{N}$ there is a unique infinituple $\overrightarrow{s} \in \omega^{[\mathbb{N}]}$ s.t.

$$x = \prod_{i=1}^{\infty} pr(i)^{s_i}$$

The theorem follows trivially from the definition of $\omega^{[\mathbb{N}]}$ and the fundamental theorem of arithmetic.

Problem 1 *Prove the previous theorem via complete induction.*

The base case is trivial. Assume the statement holds for all $n \le k$. The fundamental theorem of arithmetic ensures that $k+1=p_1\cdot\ldots\cdot p_m$ where p_i is prime. Assume the factorization above is ordered (this is, $p_{j+1}>p_j$ for all $j\in[1,m]$). Then $k+1=p_m\cdot q$ with $q=p_1\cdot\ldots\cdot p_{m-1}$.

Subproof. We will prove $k+1=p_m\cdot q\Rightarrow q\leq k$. Assume the premise holds and the consequence does not. Since q>k we have $q\cdot x>k+1$ for all x>1. Then $q\cdot x>k+1$ for all x that is prime. Then $q\cdot p_m\neq k+1$ which is a contradiction. Then, if $k+1=q\cdot p_m$, we have $q\leq k$.

Since $q \le k$, via inductive hypothesis, q takes the productorial form of the theorem above. Then $k+1=q\cdot pr(j)$ where $pr(j)=p_m$. Then the theorem holds for all $n\in\mathbb{N}$.

Theorem 2 If p, p_1, \ldots, p_m are prime $(m \ge 1)$ and $p \mid p_1 \ldots p_m$, then $p = p_i$ for some i.

Proof. Assume $p \mid p_1 \dots p_m$. $\therefore p \leq p_1 \dots p_m$. The uniqueness of the prime factorization tells us that $p_1 \dots p_n$ are factors of a unique integer x.

Assume $p \nmid p_j$ for any j = 1, ..., m. $\therefore p$ is a prime factor of $p_1 ... p_m$ distinct from p_j for all p_j . $\therefore x = p_1 ... p_m p \neq x$. $\therefore \bot$

$$\therefore p \mid p_i \text{ for some } i = 1, \dots, m. \blacksquare$$

We use $\langle s_1, s_2, \ldots \rangle$ to denote the number $x = \prod_{n=1}^{\infty} pr(n)^{s_n}$. We use $(x)_i$ to denote s_i in said tuple and (x) to denote the infinituple itself.

Theorem 3 *The functions*

$$\mathbb{N} \mapsto \omega^{[\mathbb{N}]} \qquad \qquad \omega^{[\mathbb{N}]} \mapsto \mathbb{N}$$
$$x \mapsto (x) = ((x)_1, (x)_2, \ldots) \qquad (s_1, s_2, \ldots) \mapsto \langle s_1, s_2, \ldots \rangle$$

are bijections each the inverse of the other.

The theorem should be intuitive. The function that maps a number *x* to the infinituple of its prime exponents is the inverse of the function which takes an infinituple and maps it to the product of its prime factors with the corresponding exponents.

Theorem 4

$$(x)_i = \max_{t} \left(pr(i)^t \mid x \right)$$

Proof. Let $x \in \mathbb{N}$ be s.t. $x = p_1^{s_1} \dots p_m^{s_m}$ with p_j prime and $m_j \neq 0$ for all $j = 1, \dots, m$. Evidently $(x)_i = s_i$.

Let $x \in \mathbb{N}$ and

$$\mathscr{P}_i := \left\{ t \in \omega : pr(i)^t \mid x \right\}$$

Since $\mathcal{P}_i \subseteq \mathbb{N}$ is necessary finite it has a maximum m_i . The fundamental theorem of arithmetic directly gives $x = pr(1)^{m_1}pr(2)^{m_2}\dots$ Then by definition $m_i = (x)_i$.

We define

$$Lt: \mathbb{N} \mapsto \omega$$

$$x \mapsto \begin{cases} \max_i \ (x)_i \neq 0 & x \neq 1 \\ 0 & x = 1 \end{cases}$$

The function returns the index of the maximum prime factor (that is not zero-exponentiated) in the factorization of x. Since, in this factorizations, all prime factors beyond Lt(x) are zero, Lt(x) can be understood as an upper bound of the factorization. This is formalized in the following theorem.

Theorem 5

$$x = \prod_{i=1}^{Lt(x)} pr(i)^{(x)_i}$$

Problem 2 Prove the previous theorem.

$$x = \prod_{i=1}^{\infty} pr(i)^{(x)_i} \wedge (x) \in \omega^{[\mathbb{N}]} :: \exists k \in \omega : i \geq k \Rightarrow (x)_i = 0$$

 $:: x = \prod_{i=1}^{k-1} pr(i)^{(x)_i} \times \prod_{i=k}^{\infty} pr(i)^0 = \prod_{i=1}^{k-1} pr(i)^{(x)_i}.$ But $k-1 := \max_i (x)_i \neq 0 := Lt(x).$

Prime numbers closely relate to set enumerability. The reason is that the prime decomposition of a number associates to any unique $x \in \mathbb{N}$ an infinite number of inters $(x)_1, (x)_2, \ldots$ Say we want to generate all possible pairs $(x, y, z) \in \omega^3$ given a unique input $x \in \mathbb{N}$. Then, letting $(x, y, z) = ((x)_1, (x)_2, (x)_3)$, we have

$$x = 1 \mapsto (0, 0, 0)$$

$$x = 2 \mapsto (1, 0, 0)$$

$$x = 3 \mapsto (0, 1, 0)$$

$$x = 4 \mapsto (2, 0, 0)$$

$$x = 5 \mapsto (0, 0, 1)$$

$$x = 6 \mapsto (1, 1, 0)$$

$$x = 7 \mapsto (0, 0, 0)$$

$$x = 8 \mapsto (3, 0, 0)$$

$$x = 9 \mapsto (0, 2, 0)$$

$$\vdots$$

It is easy to see that any $(x, y, z) \in \omega^3$ is reached. This generalizes to ω^n , $n \in \omega$ and to $\omega^n \times \Sigma^{*m}$ via the $*^{\leq}$ function (which we shall study in the following section).

2.2 Orders over Σ

Let Σ an alphabet with n symbols. We want to find a bijection between ω and Σ^* assuming some order \leq over Σ . Let $s^{\leq}: \Sigma^* \mapsto \Sigma^*$ be

$$s^{\leq} ((a_n)^m) = (a_1)^{m+1} \qquad m \geq 0$$

$$s^{\leq} (\alpha a_i (a_n)^m) = \alpha a_{i+1} (a_1)^m \qquad 1 \leq i < n, m \geq 0$$

This function enumerates the language ordered Σ . For example, consider $\Sigma = \{@, !\}$ with @ < !. Then

$$s^{\leq}(\varepsilon) = s^{\leq}(!^{0}) = @$$

$$s^{\leq}(@) = s^{\leq}(\varepsilon@(!)^{0}) = \varepsilon!\varepsilon = !$$
:

Repeated application of this logic outputs the following enumeration:

The reason why $s \le (\beta)$ enumerates the language is that every β is either of the form $(a_n)^m$ or $\alpha a_i(a_n)^m$. This is, it is either a word with only the last character to a certain exponent, or a word with some subchain before the last character to a certain exponent.

Now we are ready to define a bijection between ω and Σ^* . Let

$$*^{\leq}: \omega \mapsto \Sigma^{*}$$

$$x \mapsto \begin{cases} \varepsilon & x = 0 \\ s^{\leq} \left(*^{\leq} (i) \right) & x = i + 1 \end{cases}$$

For example, using the same alphabet as before, this function maps

$$0 \mapsto \varepsilon$$
 $1 \mapsto @$
 $2 \mapsto !$
 $3 \mapsto @@$
 $4 \mapsto @!$
 $5 \mapsto !@$
 $6 \mapsto !!$
 $7 \mapsto @@@$
 \vdots

Now, observe that any $\alpha \in \Sigma^*$ is a concatenation of unique symbols, and that each of this unique symbols is the *i*th element of Σ^* for some *i*. We write to express this $\alpha = a_{i_k} \dots a_{i_0}$ where $i_k, i_{k-1}, \dots, i_{k_0} \in \{1, \dots, n\}$. Then we define the inverse of the previous function as follows:

$$\#^{\leq} : \Sigma^* \mapsto \omega$$

$$\varepsilon \mapsto 0$$

$$a_{i_k} \dots a_{i_0} \mapsto i_k n^k + \dots + i_0 n^0$$

For example, consider $\alpha = @!@ = a_1a_2a_1$. Then $\#^{\leq}(\alpha) = 1 \times 2^2 + 2 \times 2^1 + 1 \times 2^0 = 4 + 4 + 1 = 9$. It is easy to verify that $*^{\leq}(9) = @!@$.

Thus, the functions given produce a perfect bijection between numbers and words. Each word can be univocally determined by its numeric position in the language; each number can be univocally determined by a word whose position in the language is that number.

Theorem 6 Let $n \ge 1$. Then any $x \in \mathbb{N}$ is uniquely written as $x = i_k n^k + i_{k-1} n^{k-1} + \dots + i_0 n_0$ with $k \ge 0, 1 \le i_j \le n$ for all j.

2.3 Extending the order to words

We can extend \leq from Σ onto Σ^* by letting $\alpha \leq \beta$ if and only if $\#^{\leq}(\alpha) \leq \#^{(\leq)}(\beta)$.

3 Enumerable and computable sets

Let $\mathcal{F}: \mathcal{D}_{\mathcal{F}} \subseteq \omega^k \times \Sigma^{*l} \to \omega^n \times \Sigma^{*m}$. We define $\mathcal{F}_{(i)} = p_i^{n,m} \circ \mathcal{F}$. Then

$$\begin{split} \mathcal{F}_{(i)} : \mathcal{D}_{\mathcal{F}} \subseteq \omega^k \times \Sigma^{*l} &\mapsto \omega \\ \mathcal{F}_{(i)} : \mathcal{D}_{\mathcal{F}} \subseteq \omega^k \times \Sigma^{*l} &\mapsto \Sigma^* \\ \end{split} \qquad \qquad 1 \leq i \leq n \end{split}$$

We say a set $S \subseteq \omega^n \times \Sigma^{*m}$ is Σ -effectively enumerable if it is empty or there is a function $\mathcal{F}: \omega \to \omega^n \times \Sigma^{*m}$ s.t. $Im_{\mathcal{F}} = S$ and $\mathcal{F}_{(i)}$ is Σ -computable for all $1 \le i \le n+m$.

Theorem 7 A non-empty set $S \subseteq \omega^n \times \Sigma^{*m}$ is Σ -effectively enumerable if and only if there is an effective procedure \mathcal{P} s.t.

- The input space is ω
- \mathcal{P} halts for all $x \in \omega$
- The output set is S—i.e. whenever \mathcal{P} halts, it outputs an element of S, and for every $(\overrightarrow{x}, \overrightarrow{\alpha}) \in S$ there is some input $x \in \omega$ s.t. $\mathcal{P}(x) \mapsto_{halting} (\overrightarrow{x}, \overrightarrow{\alpha})$.

Problem 3 Let $F: \{(x,\alpha) \in \omega \times \Sigma^* : |\alpha|^x \equiv 0 \mod 2\} \mapsto \omega^2 \times \Sigma^*$ be defined as follows:

$$F(x,\alpha) = (x, x^2 + |\alpha|, \varepsilon)$$

Provide $F_{(1)}, F_{(2)}, F_{(3)}$. What function is $[F_{(1)}, F_{(2)}, F_{(3)}]$? By definition, $F_{(i)} = p_i^{1,1} \circ F$. Then

$$F_{(1)}(x,\alpha) = x$$

$$F_{(2)}(x,\alpha) = x + |\alpha|$$

$$F_{(3)}(x,\alpha) = \varepsilon$$

It is evident that the composition given results in F.

Problem 4 *Prove that* $F = [F_{(1)}, \ldots, F_{(n+m)}].$

Let
$$G := [F_{(1)}, \dots, F_{(n+m)}].$$

$$\therefore G(\vec{x}, \vec{\alpha}) = (p_1^{n,m} \circ F(\vec{x}, \vec{\alpha}), \dots, p_{n+m} \circ F(\vec{x}, \vec{\alpha})) = F(\vec{x}, \vec{\alpha}) \blacksquare$$

Theorem 8 Let $S \subseteq \omega^n \times \Sigma^{*m}$. The following statements are equivalent.

- (1) S is Σ -effectively enumerable.
- (2) S is the domain of a Σ -effectively computable function f.
- (3) S is the image of a function $F: \mathcal{D}_f \subseteq \omega^n \times \Sigma^{*m} \mapsto S$ s.t. each $F_{(i)}$ is Σ -effectively computable.
 - That $(1) \Leftrightarrow (3)$ is trivial. $(1) \Leftrightarrow (2)$ can be proven as follows.
 - **Proof.** (\Rightarrow). Assume S is Σ -effectively enumerable. Then there is a procedure $\mathbb P$ s.t. for any $x \in \omega$ the procedure outputs a value of S, and all values of S are mapped. Consider the procedure $\mathbb P'$ s.t. given an input $(\vec x, \vec \alpha) \in S$ it a. computes $\mathbb P$ with input $x = 0, 1, \ldots$ until $\mathbb P$ maps to $(\vec x, \vec \alpha)$ and b. then returns x. Evidently $\mathbb P'$ computes the inverse of the function computed by $\mathbb P$. Observe that $\mathbb P'$ will only halt if $(\vec x, \vec \alpha) \in S$. Then S is the domain of a Σ -effectively computable function.
 - (\Leftarrow) Assume *S* is the domain of a Σ-effectively computable function. Let $(\vec{w}, \vec{\beta})$ an arbitrary element of *S*. Consider a procedure \mathbb{P} which does the following with an input $x \in \omega$.
 - (1) Produce the enumeration of $\omega \times \omega^n \times \Sigma^{*m}$ given by x. This will produce a variable $(t, \vec{x}, \vec{\alpha})$.
 - (2) Run t steps of \mathbb{P}_f with input $(\vec{x}, \vec{\alpha})$. If the program terminated, return $(\vec{x}, \vec{\alpha})$. If not, return $(\vec{w}, \vec{\beta})$.

Evidently, \mathbb{P} enumerates S.

Since any Σ -effectively computable set is Σ -effectively enumerable, point (1) of the previous theorem can be substituted by S is Σ -effectively enumerable—with some loss of generality.

Theorem 9 Let $f: \mathcal{D}_f \subseteq \omega^n \times \Sigma^{*m} \mapsto \varphi$ with φ either ω or Σ^* . Let $S \subseteq I_f$. Then if f is Σ -effectively computable and S is Σ -effectively enumerable, $f^{-1}(S) = \{(\vec{x}, \vec{\alpha}) : f(\vec{x}, \vec{\alpha}) \in S\}$ is Σ -effectively enumerable.

Proof. Assume f is Σ -effectively computable and $S \subseteq I_f$ is Σ -effectively enumerable. Let $(\vec{w}, \vec{\beta})$ an arbitrary element of $f^{-1}(S)$. Consider the following effective procedure operating over an input $x \in \omega$:

- (0) If x = 0 return $(\vec{w}, \vec{\beta})$. Else proceed.
- (1) Enumerate an element of $s \in S$ using input x.
- (2) Use $(\vec{x}, \vec{\alpha}) := ((x)_1, \dots, (x)_n, *^{\leq}((x)_{n+1}), \dots, *^{\leq}((x)_m))$ to compute a value of $f(\vec{x}, \vec{\alpha})$.
- (3) If $f(\vec{x}, \vec{\alpha}) = s$ return $(\vec{x}, \vec{\alpha})$. Else return $(\vec{w}, \vec{\beta})$.

Evidently, the procedure enumerates $f^{-1}(S)$.

The theorem states that the set of inputs which map to a region of a computable function's range is enumerable if that region is enumerable.

Theorem 10 If $f: \mathcal{D}_f \subseteq \omega^n \times \Sigma^{*m} \mapsto \varphi$ with φ either ω or Σ^* , then if $S \subseteq \mathcal{D}_f$ is Σ -effectively enumerable, $f_{|S|}$ is Σ -effectively computable.

3.1 Prime numbers and enumerable sets

Let $\Sigma \neq \emptyset$ be an alphabet with a total order \leq . Let $S \subseteq \omega^n \times \Sigma^{*m}$ a Σ -mixed set of arbitrary dimensions. Notice that for any n-tuple (x_1, \ldots, x_n) , with $x_i \in \omega$, we can find a corresponding $\varphi \in \mathbb{N}$ s.t.

$$\varphi = 2^{x_1} 3^{x_2} \dots pr(n)^{x_n}$$

In other words, (x_1, \ldots, x_n) corresponds to the exponents of the *n* prime factors of a unique natural number. At the same time, the *m*-tuple $(\alpha_1, \ldots, \alpha_m)$ corresponds to a unique $\psi \in \mathbb{N}$ s.t.

$$\psi = 2^{y_1} 3^{y_2} \dots pr(m)^{y_m}$$

where $\alpha_j = * \le (y_j)$. In other words, $(\alpha_1, \dots, \alpha_m)$ corresponds to a unique natural number whose m prime factors have exponents given by the position of each word in the language.

Both of these relations come from the uniqueness of prime factorizations. They provide a way to enumerate Σ -mixed sets. In particular, if S is Σ -total we enumerate it mapping each $x \in \omega$ to $((x)_1, \ldots, (x)_n, *\leq ((x)_{n+1}), \ldots, *\leq ((x)_m))$. If S is not Σ -total, then one can still enumerate it assuming that it is Σ -computable. Indeed, one maps x to the corresponding (n+m)-tuple described above if the tuple is in S, and leaves the procedure undefined (or without halt) otherwise. This can be expressed as follows:

Because Σ -total sets are enumerable (as pointed out above), any Σ -mixed set that is Σ -computable is enumerable (via restriction of the Σ -total enumeration).

Theorem 11 If $S \subseteq \omega^n \times \Sigma^{*m}$ is Σ -effectively computable, then it is Σ -effectively enumerable.

Problem 5 *Prove the following statement: If* $S \subseteq \omega$ *and* $f : S \mapsto \omega$ *is* Σ -effectively computable, then

$$A = \{x \in S : x \text{ is even } \land x/2 \in S \land f(x) = f(x/2)\}$$

is Σ -effectively enumerable.

Assume f is Σ -effectively computable. \therefore S is Σ -effectively enumerable.

Let \mathbb{P}_S be the procedure that enumerates S. Let \mathbb{P}_f denote the procedure which computes $f, w \in S$ fixed and arbitrary, and \mathbb{P} with input $x \in \omega$ the following procedure:

- (0) If x = 0 return w and finish.
- (1) Use \mathbb{P}_S twice, with inputs $(x)_1$, $(x)_2$ respectively, to produce elements $s_1, s_2 \in S$.
- (2) Check if s_1 is even (this is trivially effectively computable). If it isn't, return w and finish.
- (3) Check if $s_2 = s_1/2$. If it isn't, return w and finish.
- (4) Use \mathbb{P}_f to compute $f(s_1)$, $f(s_2)$ and compare these values. If they are not equal, return w and finish.
- (5) Return s_1 .

Evidently, \mathbb{P} enumerates A.

4 Turing

From now on, we will attempt formalizations of three so far informal concepts:

- Σ -effectively computable functions
- Σ -effectively computable sets
- Σ -effectively enumerable sets

The first formalization is given by Turing.

4.1 Turing machine

A Turing machine is a 7-uple $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ where

- Q is a set of states
- $\Gamma \supset \Sigma$ is an alphabet
- Σ is the input alphabet
- $B \in \Gamma \Sigma$ is a blank symbol
- $\delta: \mathcal{D}_{\delta} \subseteq Q \times \Gamma \mapsto Q \times \Gamma \times \{L, R, K\}$
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states

Problem 6 *If M a Turing machine then* δ *is a* Σ *-mixed function.*

A function is said to be a Σ -mixed function if $\mathcal{D}_f \subseteq \omega^n \times \Sigma^{*m}$ for some $n, m \geq 0$ and $I_f \subseteq \omega$ or $I_f \subseteq \Sigma^*$. The δ function satisfies neither of these properties; its domain is a set of states $Q \times \Gamma \not\subseteq \Sigma^{*m}$ and its image is a set of sets

Problem 7 *If M a Turing machine,* \mathcal{D}_{δ} *is a* Σ -*mixed set.*

A set S is said to be Σ -mixed iff $S \subseteq \omega^n \times \Sigma^{*m}$ for some $n, m \ge 0$. We have already mentioned that $\mathcal{D}_{\delta} = Q \times \Gamma \not\subseteq \omega^n \times \Sigma^{*m}$ for any n, m. Then \mathcal{D}_{δ} is not Σ -mixed.

Problem 8 If M a Turing machine, then I_{δ} is Σ -mixed.

False again.

4.2 Deterministic Turing machine

A Turing machine is said to be deterministic iff $|\delta(p,\sigma)| \le 1$ for all $p \in Q, \sigma \in \Gamma$.

4.3 Instantaneous descriptions

An instantaneous description is a word of the form $\alpha q\beta$ where $\alpha, \beta \in \Gamma^*$, $[\beta]_{|\beta|} \neq B$ and $q \in Q$. If the instantaneous description is $\alpha_1 \alpha_2 \dots \alpha_n q\beta_1 \beta_2 \dots \beta_m BBB \dots$, we read: *The Turing machine is in state q and it is reading* β_1 . We use $\mathbb D$ to denote the set of instantaneous descriptions. We define

$$St : \mathbb{D} \mapsto Q$$

 $d \mapsto \text{Only symbol of } Q \text{ that is in } d$

Problem 9 Let $d \in \mathbb{D}$ an instantaneous description. Then Ti(d) is a triple.

False: d is not a triple but a single element of $(\Gamma \cup Q)^*$.

Problem 10 *If*
$$d \in \mathbb{D}$$
 then $St(d) = d \cap Q$

False. The operation $d \cap Q$ makes no sense, insofar as d is a symbol. It would be correct to say $St(d) = \{d_1, d_2, \dots, d_m\} \cap Q$ where d_i are the characters in the word d.

4.4 State transitions

Given $\alpha \in (\Gamma \cup Q)^*$ we define

$$\lfloor \varepsilon \rfloor = \varepsilon$$
$$\lfloor \alpha \sigma \rfloor = \alpha \sigma \text{ if } \sigma \neq B$$
$$|\alpha B| = |\alpha|$$

Thus, $\lfloor \alpha \rfloor$ removes the trailing blank symbols of α (if any).

Given $d_1, d_2 \in \mathbb{D}$ with $d_1 = \alpha p \beta$, we say $d_1 \vdash d_2$ if, given $\alpha \in \Gamma, \alpha, \beta \in \Gamma^*, p, q \in Q$, one of the following three cases hold.

(Case 1) $\alpha \neq \varepsilon$, and

$$\delta\left(p,\left[\beta B\right]_{1}\right)\ni\left(q,\sigma,L\right)$$

and

$$d_2 = \left\lfloor \alpha \widehat{} q[\alpha]_{|\alpha|} \sigma \widehat{} \beta \right\rfloor$$

Interpretation. The Turing machine at state p will write σ at its current position, transition to state q, and move to the left.

Example. Let $\Sigma = \{@, \#\}$. Assuming $\delta(p) = \{(q, \#, L)\}$, then the following is an example of *Case 1*.

$$@ \# @ p @ @ @ BBB \vdash @ \# q @ \# @ @ BB \dots$$

(*Case* 2)

$$\delta(p, [\beta B]_1) \ni (q, \sigma, R)$$

and

$$d_2 = \alpha \sigma q^{\sim} \beta$$

Interpretation. The Turing machine at state p will write σ at its current position, transition to state q, and move to the left.

Example. Let $\Sigma = \{@, \#\}$. Assuming $\delta(p) = \{(q, \#, R)\}$, then the following is an example of *Case 2*.

$$@ \# @ p @ @ @ BBB \vdash @ \# @ \# q @ @ BB \dots$$

(*Case 3*)

$$\delta(p, [\beta B]_1) \ni (q, \sigma, K)$$

and

$$d_2 = |\alpha q \sigma^{\sim} \beta|$$

Interpretation. The Turing machine at state p will write σ at its current position, transition to state q, and stay at the same position.

Example. Let $\Sigma = \{@, \#\}$. Assuming $\delta(p) = \{(q, \#, K)\}$, then the following is an example of *Case 2*.

$$@ \# @ p @ @ @ BBB \vdash @ \# @ q \# @ @ BB ...$$

We say $d \vdash^n d'$ if there are d_1, \ldots, d_{n+1} s.t. $d = d_1, d' = d_{n+1}$, and $d_i \vdash d_{i+1}$ for all $i = 1, \ldots, n$. Observe that $d \vdash^0 d'$ if d = d'. Finally, we denote $d \vdash^* d'$ iff $(\exists n \in \omega) d \vdash^n d'$.

Problem 11 Determine true or false for the following propositions.

- (1) $d \vdash d$ for all $d \in \mathbb{D}$. The proposition is false. It is trivial to find a counterexample.
- (2) If $\alpha p \beta \not\vdash d$ for every $d \in \mathbb{D}$, then $\delta(p, [\beta B]_1) = \emptyset$. Assume $\alpha p \beta \not\vdash d$ for every $d \in \mathbb{D}$. Assume $\delta(p, [\beta B]_1) \neq \emptyset$. Then there must be some $\{(q, \sigma, D)\}$ with $D \in \{L, R, K\}$ that corresponds to this evaluation of δ . But then there would exist some d, given by the case division above and depending on the value of D, s.t. $\alpha p \beta \vdash d$. But this is a contradiction. The statement is true.
- (3) If $(p, \alpha, L) \in \delta(p, a)$ then $pa \not\vdash d$ for all $d \in \mathbb{D}$. This is correct. Remember that for a transition to the left to be defined we require that a substring $\alpha \neq \varepsilon$ precede the Machine's head. (See *Case 1*, requirement $\alpha \neq \varepsilon$.) But here $d_1 = pa$ has an initial segment ε preceding p. Then $pa \neq d$ for any d. The statement is true.
- (4) Given $d_1, d_2 \in \mathbb{D}$, if $d_1 \vdash d_2$ then $|d_1| \leq |d_2| + 1$. It makes no sense to say $|d_1| \leq |d_2| + 1$ insofar as an instantaneous description contains infinitely many symbols B at the end. So the statement, as it is phrased, is false. However, consider the alternative postulate: $d_1 \vdash d_2 \Rightarrow |\lfloor d_1 \rfloor| \leq |\lfloor d_2 \rfloor| + 1$. Two instantaneous description over the same machine always have the same number of symbols. So $|\lfloor d_1 \rfloor| = |\lfloor d_2 \rfloor|$, which makes the statement trivially true.

Problem 12 Prove that M is deterministic iff for each $d \in \mathbb{D}$ there is at most one $d' \in \mathbb{D}$ s.t. $d \vdash d'$.

- (⇒) Assume M is deterministic. Then for any $d ∈ \mathbb{D}$ of the form αqβBB ..., we have either $δ(q) = {(q', σ, D)}$ or δ(q) = ∅. If δ(q) = ∅, then (by definition of ⊢) there is no instantaneous description d' s.t. d ⊢ d'. If $δ(q) = {(q', σ, D)}$, then two cases are possible. (1) d holds the assumptions sustaining the case definition of ⊢, in which case the transition is uniquely determined by (q', σ, D). (2) d does not hold the assumptions sustaining the case definition of ⊢ (e.g. D = L, α = ε), in which case there is by definition no d' s.t. d ⊢ d'
- (⇐) This does not hold!! Assume that, for all $d \in \mathbb{D}$, there is at most one d' s.t. $d \vdash d'$. Consider the case where is no d' s.t. $d \vdash d'$. In the case where $\alpha = \varepsilon$ and

$$\delta(q) = \{(q',\sigma,L), (q'',\sigma',L)\}$$

the machine is non-deterministic without violating the assumption. In other words, that $d \vdash d'$ for at most one d' does not imply that the machine is deterministic.

4.5 Halting and languages

Given $d \in \mathbb{D}$, we say M halts starting from d if there is some $d' \in \mathbb{D}$ s.t.

$$d \vdash^* d'$$

 $d' \nvdash d''$ for all $d'' \in \mathbb{D}$

We say a word $w \in \Sigma^*$ is accepted by a Turing machine M by reach of final state if

$$\exists d \in \mathbb{D} : \lfloor q_0 Bw \rfloor \vdash^* d \land St(d) \in F$$

Observe that we do not require that $d \in St(d)$ satisfies $d \not\vdash d'$ for all $d' \in \mathbb{D}$. In other words, a machine may accept a word by reach of final state and not halt.

The language accepted by a Turing machine is

$$\mathcal{L}(M) = \{ w \in \Sigma^* : w \text{ is accepted by reach of final state } \}$$

Problem 13 Let $\Sigma = \{a, b\}$. Find a Turing machine M that accepts the language $\{w \in \Sigma^* : |\omega|_a = 2|\omega|_b\}$

As examples, here are some words accepted by the language: ε , aab, baa, ababaa, . . . Our machine will operate in the following manner.

(1) It will parse the string looking for a b; if a b is found, it replaces it with y, sets the head of the machine to the beginning, and proceeds to parse for two as and replace them with xs. This gives

$$\delta(q_0, \sigma) = \begin{cases} \{(q_1, y, L)\} & \sigma = b \\ \{(q_0, \sigma, R)\} & \sigma = a \\ \{(q_9, \sigma, L)\} & \sigma = B \end{cases}$$
$$\delta(q_1, \sigma) = \begin{cases} \{(q_1, \sigma, L)\} & \sigma \neq \varepsilon \\ \{(q_2, \varepsilon, R)\} & \sigma = \varepsilon \end{cases}$$

where q_1 resets the machine's head to the initial position. Now

$$\delta(q_2, \sigma) = \begin{cases} \{(q_3, x, R)\} & \sigma = a \\ \{(q_2, \sigma, R)\} & \sigma \neq a \end{cases}$$
$$\delta(q_3, \sigma) = \begin{cases} \{(q_4, x, R)\} & \sigma = a \\ \{(q_3, \sigma, R)\} & \sigma \neq a \end{cases}$$

The state q_4 occurs after two as have been found to correspond to a single b. Thus, we must return to q_0 with the machine head reset to its initial position.

$$\delta(q_4, \sigma) = \begin{cases} \{(q_4, \sigma, L)\} & \sigma \neq \varepsilon \\ \{(q_0, \sigma, R)\} & \sigma = \varepsilon \end{cases}$$

The only undefined state is q_9 . This is the state reached after, in state q_0 , the string is parsed but no b is found. If there is some a left in the string, then the word must not be accepted; but if no a exists, the word must be accepted. Thus, q_9 can parse from right to left looking for as; if ε is reached without as on the way, it should map to a final state. If some a is found, it should never halt.

$$\delta(q_9, \sigma) = \begin{cases} [(q_9, \sigma, L)] & \sigma \neq \in \{a, \varepsilon\} \\ [(q_9, \sigma, K)] & \sigma = a \\ [(q_{\mathcal{F}}, \sigma, K)] & \sigma = \varepsilon \end{cases}$$

where $q_{\mathcal{F}} \in F$ is the only final state. Of course, $\Gamma = \{a, b, x, y, B\}, Q = \{q_0, q_1, q_2, q_3, q_4, q_9, q_{\mathcal{F}}\}.$

We say a word $w \in \Sigma^*$ is accepted by detention (or by a halt) if M halts when starting from $|q_0B|$. We denote

$$\mathcal{H}(M) = \{ w \in \Sigma^* : w \text{ is accepted by detention} \}$$

Theorem 12 *Let* $L \subseteq \Sigma^*$. *Then the following statements are equivalent:*

- (1) There is a Turing machine M s.t. L = L(M).
- (2) There is a Turing machine M s.t. $L = \mathcal{H}(M)$.

4.6 Σ -Turing computable functions

To represent numbers on the Turing tape, we use the *i* letter. Thus, we extend the definition of a Turing machine ensuring that $i \in \Gamma - (\{B\} \cup \Sigma)$ is a symbol.

Let $f: \mathcal{D}_f \subseteq \omega^n \times \Sigma^{*m} \mapsto \Sigma^*$ a Σ -mixed function. We say f is Σ -Turing computable if there is a deterministic Turing machine M s.t.

• If $(\vec{x}, \vec{\alpha}) \in \mathcal{D}_f$, then there is a state $p \in Q$ s.t.

$$\lfloor q_0 B i^{x_1} B \dots i^{x_n} B \alpha_1 B \dots B \alpha_m \rfloor \vdash^* \lfloor pBf(\vec{x}, \vec{\alpha}) \rfloor$$

and $\lfloor pBf(\vec{x}, \vec{\alpha}) \not\vdash d \rfloor$ for all $d \in \mathbb{D}$.

• If $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m} - \mathcal{D}_f$, then the machine does not halt starting from

$$[q_0 B i^{x_1} B \dots i^{x_n} B \alpha_1 B \dots B \alpha_m]$$

When $f \mapsto \omega$, we analogously say a Turing machine computes f iff

• If $(\vec{x}, \vec{\alpha}) \in \mathcal{D}_f$, then there is a state $p \in Q$ s.t.

$$\lfloor q_0 B i^{x_1} B \dots i^{x_n} B \alpha_1 B \dots B \alpha_m \rfloor \vdash^* \lfloor pB i^{f(\vec{x},\vec{\alpha})} \rfloor$$

and $\lfloor pBi^{f(\vec{x},\vec{\alpha})} \not\vdash d \rfloor$ for all $d \in \mathbb{D}$.

• If $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m} - \mathcal{D}_f$, then the machine does not halt starting from

$$|q_0 B i^{x_1} B \dots i^{x_n} B \alpha_1 B \dots B \alpha_m|$$

If M and f satisfy the properties above, we say f is computed by M.

Theorem 13 If $f: \mathcal{D}_f \subseteq \omega^n \times \Sigma^{*m} \mapsto I \in \{\omega, \Sigma^*\}$ is computed by a Turing machine M, then f is Σ -effectively computable.

Problem 14 Determine if the following statements are true or false.

(1) If M a deterministic turing machine and M computes f, then $\mathcal{L}(M) = \mathcal{D}_f$.

Since M computes f, M halts for any $(\vec{x}, \vec{\alpha}) \in \mathcal{D}_f$ and does not halt for any $(\vec{x}, \vec{\alpha}) \notin \mathcal{D}_f$. Then, by definition, $\mathcal{H}(M) = \mathcal{D}_f$. This does not imply $\mathcal{L}(M) = \mathcal{D}_f$. However, it does imply that there necessarily exists a Turing machine M' s.t. $\mathcal{L}(M') = \mathcal{D}_f$.

- (2) If f,g are two functions and M is a Turing machine that computes f and g, then f=g. Assume the premise holds. Then $\mathcal{H}(M)=\mathcal{D}_f=\mathcal{D}_g:=\mathcal{D}$. Furthermore, for any $(\vec{x},\vec{\alpha})\in\mathcal{D}$, the Turing machine halts with an instantaneous description representing $f(\vec{x},\vec{\alpha})$. But since it computes g, the instantaneous description also represents $g(\vec{x},\vec{\alpha})$. This implies $f(\vec{x},\vec{\alpha})=g(\vec{x},\vec{\alpha})$. Then f=g. The statement is true.
- (3) Let M a Turing machine and assume M computes f with f a Σ -total function. Then M halts from d for whichever $d \in \mathbb{D}$. It is true that, since f is Σ -total, for any $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$, $f(\vec{x}, \vec{\alpha})$ is defined. This does imply that every d of the form $\lfloor q_0 i^{x_1} \dots i^{x_n} \alpha_1 \dots \alpha_m \rfloor$ is accepted (I skipped the possibly infinite B symbols in the description). However, there is no restriction in \mathbb{D} as to the number of unit or alphabetic symbols which an arbitrary $d \in \mathbb{D}$ may contain. Thus,

$$\mathbb{D}' \subseteq \mathbb{D} = \{ d \in \mathbb{D} : \lfloor d \rfloor = \lfloor q_0 i^{x_1} \dots i^{x_k} \alpha_1 \dots \alpha_l \rfloor : k \neq n \lor l \notin m \}$$

satisfies $D' \nsubseteq \mathcal{H}(M)$.

5 Godel

Definition 1 A set $S_1 \times ... \times S_n \times L_1 \times ... \times L_m$ is rectangular if $S_i \subseteq \omega, L_i \subseteq \Sigma^*$ for all i.

Lemma 1 *S* is rectangular if and only if $(\overrightarrow{x}, \overrightarrow{\alpha}) \in S \land (\overrightarrow{y}, \overrightarrow{\beta}) \in S$ implies $(\overrightarrow{x}, \overrightarrow{\beta}) \in S$.

Example. The set $\{(0, \#\#), (1, \%\%\%)\}$ is not rectangular ((1, ##), (0, %%%) are not in S.) Observe how this set cannot be expressed as a product of subsets of ω and Σ . Thus, the concept of rectangular set is equivalent to a set formed via Cartesian product.

Notation. If $f: \omega_1 \times \ldots \times \omega_n \times \alpha_1 \times \alpha_m \to \Lambda$ we write $f \sim (n, m, \Lambda)$, and read f is of type n, m to Λ .

Notation. If f_1, \ldots, f_n Σ -mixed functions, then

$$[f_1,\ldots,f_2](\overrightarrow{x},\overrightarrow{\alpha}) = (f_1(\overrightarrow{x},\overrightarrow{\alpha}),\ldots,f_n(\overrightarrow{x},\overrightarrow{\alpha}))$$

5.1 Primitive recursion

Let R a Σ -mixed function s.t. $R \sim (n, m, \varphi)$, where $\varphi = \omega$ or $\varphi = \Sigma^*$. Primitive recursion consists in recursively defining R with two primitive functions f, which gives the base case, and g, which gives the recursive step. The recursion is done over ω , associating $R(t, \vec{x}, \vec{\alpha})$ with $R(t-1, \vec{x}, \vec{\alpha})$, or over Σ^* , associating $R(\vec{x}, \vec{\alpha}, \alpha a)$ with $R(\vec{x}, \vec{\alpha}, \alpha)$. Since the computation of R may depend on the element which the recursion dismisses (t in the numeric case, a in the alphabetic case), g incorporates this value into its arguments. Thus, we have that:

- If $\varphi = \omega$
 - If the recursion is over ω , $f \sim (n-1, m, \omega)$, $g \sim (n+2, m, \omega)$
 - If the recursion is over Σ^* , $f \sim (n, m-1, \omega)$, $g \sim (n+1, m+1, \omega)$.
- If $\varphi = \Sigma^*$
 - If the recursion is over ω , $f \sim (n-1, m, \Sigma^*)$, $g \sim (n+1, m+1, \Sigma^*)$
 - If the recursion is over Σ^* , $f \sim (n, m-1, \Sigma^*)$, $g \sim (n, m+2, \Sigma^*)$.

We say f, g construct R via primitive recursion and we denote R as R(f,g).

5.2 Numeric to numeric primitive recursion

Let $R \sim (n, m, \#)$. Then functions $f \sim (n-1, m, \#), g \sim (n+1, m, \#)$ recursively define R if and only if

$$\begin{cases} R(0,\overrightarrow{x},\overrightarrow{\alpha}) &= f(\overrightarrow{x},\overrightarrow{\alpha}) \\ R(t+1,\overrightarrow{x},\overrightarrow{\alpha}) &= g\left(R(t,\overrightarrow{x},\overrightarrow{\alpha}),t,\overrightarrow{x},\overrightarrow{\alpha}\right) \end{cases}$$

We use the notation R(f, g) to say R is defined by primitive recursion by f and g.

Problem 15 *Find functions that recursively define* $R = \lambda t [2^t]$

Since R(1,0,#) we know $f \sim (0,0,\#)$ is a constant function and $g \sim (2,0,\#)$. Since R(0)=1 we know $f=C_1^{0,0}$. Observe that $R(t+1)=R(t)\times 2$. Thus we may let $g=\lambda x[2\cdot x]\circ p_1^{2,0}$.

Example. $R(2) = \lambda x[2x] \circ p_1^{2,0}(R(1), 2) = 2 \times R(1) = 2 \times (2 \times R(0)) = 2 \times 2 \times 1 = 4$.

Problem 16 Define $R(t) = \lambda t x_1 \begin{bmatrix} x_1^t \end{bmatrix}$ recursively.

Since $R \sim (2, 0, \#)$ we know $f \sim (1, 0, \#)$ and $g \sim (3, 0, \#)$. Now, $R(0, x_1) = 1 \implies f = C_1^{1,0}$. Since $R(t+1, x_1) = R(t, x_1) \cdot x_1$ we observe that $g = \lambda xy[xy] \circ \left[p_1^{3,0}, p_3^{3,0}\right]$. Since each $p_k^{3,0} \sim (3, 0, \#)$ we have that g is of the desired type.

Problem 17 *Is it true that* $R(\lambda xy[0], p_2^{4,0}) = p_1^{3,0}$?

 $R \sim (2, 0, \#); f \sim (2, 0, \#).$ So f cannot be a primitive constructor of R.

Problem 18 Determine true or false: If $f: \omega^2 \to \omega$ and $g: \omega^4 \to \omega$, then for each $(x, y) \in \omega^2$ we have

$$R(f,g)(2,x,y) = g \circ \left(g \circ \left[f \circ \left[p_2^{3,0},p_2^{3,0}\right],p_1^{3,0},p_2^{3,0},p_3^{3,0}\right]\right)(0,x,y).$$

Passing the arguments into the functions this results in

$$R(f,g)(2,x,y) = g \circ (g \circ [f(x,x),0,x,y])$$

= $g \circ (g (f(x,x),0,x,y))$

But the expression makes no sense, since $\zeta = g(f(x, x), 0, x, y) \in \omega$ is not a function and hence $g \circ \zeta$ is undefined.

5.3 Numeric to alphabet primitive recursion

Let $R \sim (n, m, \Sigma)$. Then functions $f \sim (n - 1, m, \Sigma)$, $g \sim (n, m + 1, \Sigma)$ recursively define R if and only if

$$R(0, \overrightarrow{x}, \overrightarrow{\alpha}) = f(\overrightarrow{x}, \overrightarrow{\alpha})$$

$$R(t+1, \overrightarrow{x}, \overrightarrow{\alpha}) = g\left(t, \overrightarrow{x}, \overrightarrow{\alpha}, R(t, \overrightarrow{x}, \overrightarrow{\alpha})\right)$$

Problem 19 Let $\Sigma = \{\%, @, ?\}$. Define $R = \lambda t x_1 [\%@\%\%\%?^t]$ via primitive recursion.

Let
$$f = C_{\%,@\%,\%,\%}^{1,0}$$
 and $g = d_? \circ \left[p_3^{2,1} \right]$. For example, $R(3,x_1) = d_? \circ \left[R(2,x_1) \right] = d_? \circ \left[d_? \circ \left[d_? \circ \left[d_? \circ \left[C_{\%,@\%,\%,\%,\%}^{1,0} \right] \right] \right] = \%.@\%,\%.???$.

Problem 20 True or false: If f, g are Σ -mixed s.t. $R(f, g) \sim (1 + n, m, *)$, then $f \sim (n, m, *)$ and $g \sim (n, m + 1, *)$.

False. The g function must have the same number of numeric arguments than R.

5.4 Alphabet to numeric primitive recursion

If Σ an alphabet, then a Σ -indexed family of functions is a function \mathcal{G} s.t. $D_{\mathcal{G}} = \Sigma$ and for each $a \in D_{\mathcal{G}}$ there is a function $\mathcal{G}(a)$. We write \mathcal{G}_a instead of $\mathcal{G}(a)$.

If $R \sim (n, m, \omega)$ then R can be recursively defined by $f \sim (n, m-1, \omega)$ an indexed family \mathcal{G} s.t. $\mathcal{G}_a \sim (n+1, m, \omega)$ as follows:

$$\begin{cases} R(F,\mathcal{G})(\overrightarrow{x},\overrightarrow{\alpha},\varepsilon) = f(\overrightarrow{x},\overrightarrow{\alpha}) \\ R(f,\mathcal{G})(\overrightarrow{x},\overrightarrow{a},\alpha a) = \mathcal{G}_a\left(R(\overrightarrow{x},\overrightarrow{\alpha},\alpha),\overrightarrow{x},\overrightarrow{\alpha},\alpha\right) \end{cases}$$

Problem 21 Let $\Sigma = \{\%, @, ?\}$. Find f, \mathcal{G} s.t. $R = \lambda \alpha_1 \alpha [|\alpha_1| + |\alpha|_{@}]$. $R \sim (0, 2, \#)$. Since $R(\alpha_1, \varepsilon) = |\alpha_1|$ we let $f := \lambda \alpha = |\alpha|$. Now, $g \sim (1, 2, \#)$ is given by $g := \mathcal{G}$ where

$$\begin{split} \mathcal{G} : \Sigma &\to \{Suc \circ p_1^{1,2}, p_1^{1,2}\} \\ \% &= p_2^{1,2} \\ ? &= p_2^{1,2} \\ @ &= Suc \circ p_2^{1,2} \end{split}$$

For example, $R(??, @\%?@) = \mathcal{G}_@(R(@\%?), ??, @) = 1 + R(??, @\%?)$. This boils down to $1 + R(??, @) = 1 + 1 + R(??, \varepsilon) = 2 + |??| = 2$, the desired output.

5.5 Alphabet to alphabet primitive recursion

If $R \sim (n, m, *)$ then $f \sim (n, m - 1, *)$ and \mathcal{G} a Σ -indexed family, with $\mathcal{G}_a \sim (n, m + 1, *)$ for all $a \in \Sigma$, define R via primitive recursion if

$$\begin{cases} R(\overrightarrow{x}_{n}, \overrightarrow{\alpha}_{m-1}, \varepsilon) &= f(\overrightarrow{x}, \overrightarrow{\alpha}) \\ R(\overrightarrow{x}_{n}, \overrightarrow{\alpha}_{m-1}, \alpha a) &= \mathcal{G}_{a}\left(\overrightarrow{x}, \overrightarrow{\alpha}, \alpha, R(\overrightarrow{x}, \overrightarrow{\alpha}, \alpha)\right) \end{cases}$$

Problem 22 Let $\Sigma = \{@,?\}$. Define $R = \lambda \alpha_1 \alpha [\alpha_1 \alpha]$ recursively.

Observe that $R \sim (0, 2, *)$. $R(\alpha_1, \varepsilon) = \alpha_1 \implies f := \lambda \alpha[\alpha]$. Now, we let $\mathcal{G}_a = d_a \circ p_3^{0,3}$ for all $a \in \Sigma$, and the recursion is complete.

Example. The evaluation for arbitrary inputs looks as follows:

$$R(?@?, @?) = d_? (R(?@?, @))$$

$$= d_? (d_@ (R(?@?, \varepsilon)))$$

$$= d_? (d_@ (?@?))$$

$$= d_? (?@?@)$$

$$=?@?@?$$

5.6 The point of primitive recursion

Theorem 14 If f, g are Σ -computable then R(f, g) is too.

5.7 The primitive recursive set

Let Σ a language. We define $PR_0^{\Sigma} = \left\{Suc, Pred, C_0^{0,0}, C_{\varepsilon}^{0,0}\right\} \cup \left\{d_a\right\} \cup \left\{p_j^{n,m}\right\}$. Observe that every $\mathcal{F} \in PR_0^{\Sigma}$ is Σ -computable. Then we define

$$PR_{k+1} = PR_k^{\Sigma} \cup \left\{ f \circ [f_1 \dots f_r] : f \text{ and } f_i \in PR_k^{\Sigma} \cup \right\} \cup \left\{ R(f,g) : f,g \in PR_k^{\Sigma} \right\}$$

In other words, PR_k^{Σ} is the set of all functions that are either compositions of functions in PR_{k-1}^{Σ} or functions built via primitive recursion by functions in PR_{k-1}^{Σ} . The total primitive recursive set PR^{Σ} is defined as $PR^{\Sigma} = \bigcup_{k \geq 0} PR_k^{\Sigma}$.

Note. Observe that when we include $R(f,g): f,g \in PR_k^{\Sigma}$, we also include the case where g = G an indexed family of functions.

I provide a list of functions that are in PR^{Σ} for any Σ .

- Addition, multiplication and factorial
- String concatenation and string length
- All constant functions $C_k^{n,m}$ for any $k, n, m \in \omega$.
- Two-variable exponentiation: $\lambda xy [x^y]$.
- Two-variable string exponentiation: $\lambda x \alpha \left[\alpha^{x}\right]$.

With $x - y := \max(x - y, 0)$ the list may continue:

- The maximum of two numeric variables
- The predicates $x = y, x \le y, \alpha = \beta$.
- The predicate x is even.
- The predicate $x = |\alpha|$.
- The predicate $\alpha^x = \beta$.

5.8 Predicates

The \vee , \wedge operators are defined only for predicates of the same type. In other words, $P \circ Q$, where $o \in \{\land, \lor\}$, is defined only if $P \sim (n, m, \#) \land Q \sim (n, m, \#)$. If P, Qare Σ -p.r. then $P \circ Q$ and $\neg P$ also are. Furthermore, P, Q must have the same domains.

5.9 **Primitive recursive sets**

A Σ -mixed $S \sim (n, m)$ set is primitive recursive if and only if its characteristic function $\chi_S^{\omega^n \times \Sigma^{m*}}$ is p.r. Recall that $\chi_S^{n,m} = \lambda \overrightarrow{x} \overrightarrow{\alpha} [(\overrightarrow{x}, \overrightarrow{\alpha}) \in S]$. If S_1, S_2 are Σ -p.r. then their union, intersection and difference are. The proof

follows from the fact that

$$\chi_{S_1 \cup S_2} = (\chi_{S_1} \vee \chi_{S_2})$$

$$\chi_{S_1 \cap S_2} = (\chi_{S_1} \wedge \chi_{S_2})$$

$$\chi_{S_1 - S_2} = \lambda x y [x - y] \circ [\chi_{S_1}, \chi_{S_2}]$$

The only property here that may not be immediately intuitive is the last one. But observe that $S_1 - S_2 = \{s \in S_1 : s \notin S_2\}$. Now, let $\chi_{S_1}(\overrightarrow{x}, \overrightarrow{\alpha}) = a, \chi_{S_2}(\overrightarrow{x}, \overrightarrow{\alpha}) = b$. Evidently, if the n + m-tuple is in S_1 but not in S_2 , a - b = 1. If the tuple is in both sets, a - b = 0. Etc.

Theorem 15 A rectangular set $S_1 \times ... \times S_n \times L_1 \times ... L_m$ is Σ -p.r. if and only if each $S_1, ..., S_n, L_1, ..., L_m$ is Σ -p.r.

This theorem is important, insofar as it allows us to evaluate whether a Cartesian product is Σ -p.r. only by looking at its set factors. This theorem should follow from the properties of primitive recursive sets mentioned before.

Theorem 16 If $f \sim (n, m, \Omega)$ is Σ -p.r (not necessarily Σ -total) and S is a Σ -p.r. set, then $f_{|S|}$ is Σ -p.r.

The previous theorem is useful in proving a function is Σ -p.r. For example, let $P = \lambda x \alpha \beta \gamma \left[x = |\gamma| \wedge \alpha = \gamma^{Pred(|\beta|)} \right]$. We cannot use the fact that both predicate functions are Σ -p.r. to conclude that P is Σ -p.r., because $P_1 = \lambda x \alpha \left[x = |\alpha| \right]$ and $P_2 = \lambda x \alpha \beta \gamma \left[\alpha = \gamma^{Pred(|\beta|)} \right]$ do not have the same domains. Simply observe that β cannot take the value ε in P_2 , but it can take in P_1 .

However, observe that $\mathcal{D}_P = \omega \times \Sigma^* \times (\Sigma^* - \varepsilon) \times \Sigma^*$. This set is Σ -p.r. because $\chi_{\mathcal{D}_P}^{1,3} = \neg \lambda \left[\alpha = \beta\right] \circ \left[p_3^{1,3}, C_\varepsilon^{1,3}\right]$ is Σ -p.r. Now, we can safely say that $P = P_{1|\mathcal{D}_P} \wedge P_2$, ensuring with the restriction that both predicates have the same domain. Since \mathcal{D}_P is Σ -p.r. so is $P_{1|\mathcal{D}_P}$, form which readily follows that so is P.

Theorem 17 A set S is Σ -p.r. if and only if it is the domain of a Σ -p.r. function.

Theorem 18 If S_1 , S_2 are Σ -p.r. sets, then $S_1 \cup S_2$, $S_1 \cap S_2$, $S_1 - S_2$ are Σ -p.r. sets.

From the two previous theorems follows that if f_1 , f_2 are Σ -p.r. then $f_1 \cap f_2$ are Σ -p.r. The reason is that $\mathcal{D}_{f_1 \cap f_2} = \mathcal{D}_{f_1} \cap \mathcal{D}_{f_2}$, which are both Σ -p.r. by virtue of being domains of Σ -p.r. functions. Then their intersection is Σ -p.r. Then they are the domain of a Σ -p.r.—namely $f_1 \cap f_2$.

The same *does not* happen with $f_1 \cup f_2$ because this set may violate the definition of a function; namely, that to each $(\vec{x}, \vec{\alpha})$ corresponds a unique element $((\vec{x}, \vec{\alpha}), f(\vec{x}, \vec{\alpha}))$.

5.10 Case division

If f_1, \ldots, f_n are s.t. $D_{f_j} \cap D_{f_k} = \emptyset$ for $j \neq k$ and $f_j \mapsto \Omega$, then $\mathcal{F} = f_1 \cup \ldots \cup f_n$ is s.t.

$$\mathcal{F}: D_{f_1} \cup \ldots \cup D_{f_n} \to \Omega$$

$$e \to \begin{cases} f_1(e) & e \in D_{f_1} \\ \vdots \\ f_n(e) & e \in D_{f_n} \end{cases}$$

Under the same constraints, if f_i is Σ -p.r. for all i, then \mathcal{F} is Σ -p.r. This reveals a proving method. Given a function \mathcal{H} , we can prove it is Σ -p.r. by proving it is the union of Σ -p.r. functions, under the constraint that the domains of these functions are disjoint.

For example, this can be used to prove that $\lambda \alpha$ [$[\alpha]_i$] is Σ -p.r. Assume a language Σ . Then

$$[\alpha a]_i = \begin{cases} a & i = |\alpha| + 1\\ [\alpha]_i & \text{otherwise} \end{cases}$$

for any $a \in \Sigma$. The base case is the trivial $[\varepsilon]_i = \varepsilon$. From this follows that $R = [\alpha]_i \sim (1, 1)$ is difined via primitive recursion by $f = C_{\varepsilon}^{1,0}$ and \mathcal{G} an indexed family where \mathcal{G}_a is of the form above for every a. Evidently f is Σ -p.r.; now we want to prove \mathcal{G}_a is Σ -p.r. for any $a \in \Sigma$.

Observe that the sets $S = \{(i, \alpha, \zeta) : i = |\alpha| + 1\}$ and its complement \overline{S} are disjoint and Σ -p.r. (We skip the proof of this statement.) It follows from the division by cases that

$$\mathcal{G}_a = p_3^{1,2}|_S \cup C_a^{1,2}|_{\overline{S}}$$

is Σ-p.r. Thus, $R = [\alpha]_i$ is Σ-p.r.

Problem 23 Let $\Sigma = \{@,\$\}$. Let $h : \mathbb{N} \times \Sigma^+ \mapsto \omega$ be x^2 if $x + |\alpha|$ is even, 0 otherwise. Prove that f is Σ -p.r.

Let
$$S = \{(n, \alpha) \in \mathbb{N} \times \Sigma^* : n + |\alpha| \equiv 0 \mod 2\}$$
 and $g := \lambda x \alpha [x^2]$. g is Σ -p.r.

$$\therefore$$
 g_S \cup $C_0^{1,1} = f$ is Σ -p.r.

Problem 24 Let h have $\mathcal{D}_h = \{(x, y, \alpha) : x \leq y\}$ and be s.t. $R \mapsto x^2$ if $|\alpha| \leq y$, zero otherwise. Show h is Σ -p.r.

Let $S:=\{(x,y,\alpha)\in\mathcal{D}_h:y\leq |\alpha|\}$. Evidently, $h=f_1=C_0^{2,3}$ when $|\alpha|>y$ (this is, when the argument is in \overline{S}). When the argument is in S, it is $f_2=\lambda x[x^2]\circ [p_1^{2,1}]$. It is trivial to observe both functions are Σ -p.r. Then $h=f_{1|\overline{S}}\cup f_{2|S}$, where of course $S\cup \overline{S}=\mathcal{D}_h$.

5.11 Summation, product and concatenation

Let $f \sim (n+1,m,\#)$ with domain $\mathcal{D}_f = \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$, with $S_i \subseteq \omega, L_i \subseteq \Sigma^*$. Then we define $\sum_{t=x}^{t=y} f(t,\overrightarrow{x},\overrightarrow{\alpha})$ in the usual way, with the constraint that the sum is 0 if y > x. In the same way we deifine $\prod_{t=x}^{t=y} f(t,\overrightarrow{x},\overrightarrow{\alpha})$ and the concatenation $\subset_{t=x}^{t=y} f(t,\overrightarrow{x},\overrightarrow{\alpha})$ for the case $I_f \subseteq \Sigma^*$.

The domain of each of these is $\mathcal{D} = \omega \times \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$, where the first two ω elements are the x, y domains of the sum.

Theorem 19 If f is Σ -p.r. then the functions are Σ -p.r.

To understand why, let $G = \lambda t x \overrightarrow{x} \overrightarrow{\alpha} \left[\sum_{i=x}^{i=t} f(i, \overrightarrow{x}, \overrightarrow{\alpha}) \right]$. Evidently, $G = \circ \left[p_2^{n+2,m}, p_1^{n+2,m}, p_3^{n+2,m}, \ldots, p_{n+2+m}^{n+2,m} \right]$ and so we only need to prove G is Σ -p.r. Observe that

$$G(0, x, \overrightarrow{x}, \overrightarrow{\alpha}) = \begin{cases} 0 & x > 0 \\ f(0, \overrightarrow{x}, \overrightarrow{\alpha}) & x = 0 \end{cases}$$

$$G(t+1, x, \overrightarrow{x}, \overrightarrow{\alpha}) = \begin{cases} 0 & x > t+1 \\ G(t, x, \overrightarrow{x}, \overrightarrow{\alpha}) + f(t+1, \overrightarrow{x}, \overrightarrow{\alpha}) \end{cases}$$

Thus, if we let each of these functions be called h, g we have that G = R(h, g). Suffices to show h, g are Σ -p.r. This can be proven using division by cases and domain restriction.

Problem 25 Prove that $G = \lambda x x_1 \left[\sum_{t=1}^{t=x} Pred(x_1)^t \right]$ is Σ -p.r.

We know $f = \lambda xt \left[Pred(x)^t \right]$ is Σ -p.r. (trivial to show). Let $\mathcal{G} = \lambda xyx_1 \left[\sum_{t=x}^{t=y} f(x_1,t) \right]$. We know from the last theorem that \mathcal{G} is Σ -p.r. It is evident that $G = \mathcal{G} \circ \left[C_1^{2,0}, p_1^{2,0}, p_2^{2,0} \right]$. Then G is Σ -p.r. \blacksquare

Show it to me. Well, $G(x, x_1) = \left(\mathcal{G} \circ \left[C_1^{2,0}, p_1^{2,0}, p_2^{2,0} \right] \right) (x, x_1) = \mathcal{G}(0, x, x_1) = \sum_{t=0}^{t=x} f(x_1, t).$

Problem 26 Show that $G = \lambda xy\alpha \left[\prod_{t=y+1}^{t=|\alpha|} (t+|\alpha|) \right]$ is Σ -p.r.

It is trivial to show $f = \lambda t \alpha [t + |\alpha|]$ is Σ -p.r. Let

$$\mathcal{G} = \lambda x y \alpha \left[\prod_{t=x}^{t=y} (t + |\alpha|) \right]$$

which is Σ -p.r. Observe that $G(x, y, \alpha) = \mathcal{G}(y + 1, |\alpha|, \alpha)$. Then

$$G = \mathcal{G} \circ \left[Suc \circ p_2^{2,1}, \lambda \alpha[|\alpha|] \circ p_3^{2,1}, p_3^{2,1} \right]$$

Then G is Σ -p.r.

Problem 27 Prove that

$$\lambda xyz\alpha\beta\begin{bmatrix} t=z+5\\ \subset\\ t=3 \end{bmatrix}\alpha^{Pred(z)\cdot t}\beta^{Pred(Pred(|\alpha|))}$$

is Σ -p.r.

Let G denote the function in question. First of all, observe that $\mathcal{D}_G = \omega^2 \times \mathbb{N} \times \Sigma^{*2}$ —which means G is not Σ -total. Let us divide our proof by parts.

(1) Let $\mathcal{F} = \lambda xy\alpha\beta \left[\alpha^{Pred(x)\cdot y}\beta^{Pred(Pred(|\alpha|))}\right]$, where evidently $\mathcal{F} \sim (2,2,*)$ with $x \in \mathbb{N}$. Observe that

$$\begin{split} \mathcal{F}_{1} &:= \lambda xy\alpha \left[\alpha^{Pred(x)y}\right] \\ &= \lambda x\alpha \left[\alpha^{x}\right] \circ \left[\lambda xy \left[xy\right] \circ \left[Pred \circ p_{1}^{2,1}, p_{2}^{2,1}\right], p_{3}^{2,1}\right] \\ \mathcal{F}_{2} &:= \lambda \alpha\beta \left[\alpha^{Pred(Pred(|\alpha|))}\right] \\ &= \lambda x\alpha \left[\alpha^{x}\right] \circ \left[p_{1}^{0,2}, Pred \circ \left[Pred \circ \left[\lambda\alpha[|\alpha|] \circ p_{2}^{0,2}\right]\right]\right] \end{split}$$

and evidently

$$\begin{split} \mathcal{F} &= \lambda x y \alpha \beta [\mathcal{F}_1(x,y,\alpha) \mathcal{F}_2(\beta,\alpha)] \\ &= \lambda \alpha \beta [\alpha \beta] \circ \left[\mathcal{F}_1 \circ \left[p_1^{2,2}, p_2^{2,2}, p_3^{2,2} \right], \mathcal{F}_2 \circ \left[p_4^{2,2}, p_3^{2,2} \right] \right] \end{split}$$

This proves \mathcal{F} is Σ -p.r.

(2) It is evident that $G = \lambda xyz\alpha\beta \left[\subset_{t=3}^{t=z+5} \mathcal{F}(z,t,\alpha,\beta) \right]$. If we let

$$\mathcal{G} := \lambda x y z \alpha \beta \begin{bmatrix} z = y \\ \zeta \\ z = x \end{bmatrix} \mathcal{F}(z, t, \alpha, \beta)$$

it is evident that $G = \mathcal{G} \circ \left[C_3^{3,2}, \lambda z[z+5] \circ p_3^{3,2}, p_3^{3,2}, p_4^{3,2}, p_5^{3,2} \right]$. Then G is Σ -p.r. \blacksquare

5.12 Predicate quantification

If $P: S_0 \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$ is a predicate and $S \subseteq S_0$, then $(\forall t \in S)_{t \le x} P(t, \overrightarrow{x}, \overrightarrow{\alpha})$ is 1 when $P(t, \overrightarrow{x}, \overrightarrow{\alpha}) = 1$ for all $t \in \{u \in S : u \le x\}$. The domain of the quantified proposition is $\omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$, where the first argument (accounted by ω) is the upper bound x. We generalize, where $L \subseteq L_{m+1}, S \subseteq S_0$:

$$(\forall t \in S)_{t \leq x} P(t, \overrightarrow{x}, \overrightarrow{\alpha}) : \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \{0, 1\}$$

$$(\exists t \in S)_{t \leq x} P(t, \overrightarrow{x}, \overrightarrow{\alpha}) : \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \{0, 1\}$$

$$(\forall \alpha \in L)_{|\alpha| \leq x} P(\overrightarrow{x}, \overrightarrow{\alpha}, \alpha) : \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \{0, 1\}$$

$$(\exists \alpha \in L)_{|\alpha| \leq x} P(\overrightarrow{x}, \overrightarrow{\alpha}, \alpha) : \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \{0, 1\}$$

It is important to observe that the set over which the quantification is done is a subset of the set from which comes the driving variable t (in the numeric case) or α (in the alphabetic case).

Theorem 20 (1) If $P: S_0 \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m \to \omega$ a predicate Σ -p.r., and $S \subseteq S_0$ is Σ -p.r., then both quantifications over P are Σ -p.r.

(2) If $P: S_1 \times ... \times S_n \times L_1 \times ... \times L_m L_{m+1} \to \omega$ a predicate Σ -p.r., and $L \subseteq L_{m+1}$ is Σ -p.r., then both quantifications over P are Σ -p.r.

The theorem above states that the quantification over a Σ -p.r. set of a Σ -p.r. predicate is itself Σ -p.r. Though unbounded quantification does not preserve these properties, in general a bound exists "naturally" for quantifications, which serves to prove that a bounded quantification is Σ -p.r.. Consider the following example.

Example. The predicate $\lambda xy[x \mid y]$ is Σ -p.r, because $P = x_1x_2[x_2 = tx_1]$ is Σ -p.r. Since P is Σ -p.r., any **bounded** quantification of it over a Σ -p.r. set is itself Σ -p.r. For example,

$$\lambda x x_1 x_2 \left[(\exists t \in \omega)_{t \le x} x_2 = t x_1 \right]$$

is Σ -p.r. Now, observe that if $x_2 = tx_1$ then it is necessary that $t \le x_2$. But

$$\lambda x_1 x_2 \left[(\exists t \in \omega)_{t \le x_2} x_2 = t x_1 \right]$$

= $\lambda x x_1 x_2 \left[(\exists t \in \omega)_{t \le x} x_2 = t x_1 \right] \circ \left[p_2^{2,0}, p_1^{2,0}, p_2^{2,0} \right]$

Then the **bounded** quantification, with x_2 as bound, is Σ -p.r.

Problem 28 *Let* $\Sigma = \{ @, ! \}$ *. Show that* $S = \{ (2^x, @^x, !) : x \in \omega \wedge x \ impar \}$ *is* Σ -p.r.

For clarity, observe that a few elements of S are

$$(2, @, !), (8, @@@, !), (32, @@@@@, !), \dots$$

Let $P_1 = \lambda xy\alpha \left[x = 2^{y+1} \right]$, $P_2 = \lambda xy\alpha \left[\alpha = @^{y+1} \right]$. It is clear that $\mathcal{D}_{P_1} = \mathcal{D}_{P_2}$. It is trivial to prove that both are Σ -p.r. Then $P_1 \wedge P_2$ is Σ -p.r. Then

$$\chi_S^{1,2} = \lambda xy\alpha\beta \left[(\exists k \in \omega)_{k \leq x} \left(P_1(y,k,\alpha) \land P_2(y,y,\alpha) \right) \land \beta = ! \right]$$

is Σ -p.r.

5.13 Minimization of numeric variable

Let P an arbitrary predicate over a numeric variable. If there is some $t \in \omega$ s.t. $P(t, \overrightarrow{x}, \overrightarrow{\alpha})$ holds, we use $\min_t P(t, \overrightarrow{x}, \overrightarrow{\alpha})$ to denote the minimum t that holds. This is **not defined** if there is no tuple $(\overrightarrow{x}, \overrightarrow{\alpha})$ over which the predicate holds. Furthermore, $\min_t P(t, \overrightarrow{x}, \overrightarrow{\alpha}) = \min_i P(i, \overrightarrow{x}, \overrightarrow{\alpha})$; this is, \min_t does not depend on the variable t.

We define

$$M(P) = \lambda \overrightarrow{x} \overrightarrow{\alpha} \left[\min_{t} P(t, \overrightarrow{x}, \overrightarrow{\alpha}) \right]$$

We say M(P) is obtained via minimization of the numeric variable from P.

Example. Let $Q: \omega \times \mathbb{N}$ be s.t. Q(x, y) denotes the quotient of $\frac{x}{y}$. This quotient is by definition the maximum element of $\{t \in \omega : ty \le x\}$. Let $P = \lambda txy$ $[ty \le x]$. Observe that

$$\mathcal{D}_{M(P)} = \left\{ (x, y) \in \omega^2 : (\exists t \in \omega) P(t, x, y) = 1 \right\}$$

If $(x, y) \in \omega \times \mathbb{N}$, one can show that $\min_t x < ty = Q(x, y) + 1$. Then $M(P) = Suc \circ Q$.

The U rule. If f is a Σ -mixed function with type (n, m, #) and we want to find a predicat P s.t. f = M(P), it is sometimes useful to design P so

$$f(\overrightarrow{x}, \overrightarrow{\alpha}) = \text{only } t \in \omega \text{ s.t. } P(t, \overrightarrow{x}, \overrightarrow{\alpha})$$

Problem 29 Use the **U rule** to find a predicate P s.t. $M(P) = \lambda x [integer part of \sqrt{x}]$

Let f(x) denote the integer part of \sqrt{x} . If f(x) = y then $y^2 \le x \land (y+1)^2 > x$. Then letting $P = \lambda xy \left[x^2 \le y \land (x+1)^2 > y \right]$ ensures that M(P(x,y)) = f(x).

Problem 30 Find P s.t. $M(P) = \lambda xy [x - y]$.

Since x - y is unique for each pair $x, y, P = \lambda xyz[z = x - y]$. Then $\min_z P(x, y, z) = \lambda xy[x - y]$. For example, 3 - 5 = 0 and $\min_z P(3, 5, z) = 0$.

Theorem 21 If P a predicate that is effectively computable and \mathcal{D}_P is effectively computable, then M(P) is effectively computable.

5.14 Recursive function

Now we define $R_0^{\Sigma} = PR_0^{\Sigma}$ and

$$R_{k+1}^{\Sigma} = R_k^{\Sigma}$$

$$\cup \left\{ f \circ [f_1, \dots, f_n] : f_i \in R_k^{\Sigma} \right\}$$

$$\cup \left\{ R(f, g) : f, g \in R_k^{\Sigma} \right\}$$

$$\cup \left\{ M(P) : P \text{ is } \Sigma \text{-total } \land P \in R_k^{\Sigma} \right\}$$

In other words, recursive functions are all primitive recursive functions plus all predicate minimization functions over Σ -total and recursive predicates.

We define $R^{\Sigma} = \bigcup_{k>0} R_k^{\Sigma}$.

Theorem 22 If $f \in R^{\Sigma}$ then f is Σ -effectively computable.

Theorem 23 *Not every* Σ -recursive function is Σ -p.r. In other words,

$$PR^{\Sigma} \subseteq R^{\Sigma} \ but \ PR^{\Sigma} \neq R^{\Sigma}$$

It is obvious by definition that if f is Σ -p.r. then it is recursive. But if a function is recursive, it could very well be a minimization predicate over a Σ -total function that is not Σ -p.r. itself! In other words,

$$R^{\Sigma} - PR^{\Sigma} = \{ M(P) : P \text{ is } \Sigma\text{-p.r.} \land P \in R^{\Sigma} \land M(P) \text{ is not } \Sigma\text{-p.r.} \}$$

In fact, the theorems in previous sections ensured that if P is Σ -p.r. and so is \mathcal{D}_P , then M(P) is Σ -effectively computable. Which doesn't entail that it is Σ -p.r.

Theorem 24 If $P \sim (n+1, m, \#)$ is a Σ -p.r. predicate then (1) M(P) is Σ -recursive. If there is a Σ -p.r.function $f \sim (n, m, \#)$ s.t. $M(P)(\overrightarrow{x}, \overrightarrow{\alpha}) = \min_t P(t, \overrightarrow{x}, \overrightarrow{\alpha}) \le f(\overrightarrow{x}, \overrightarrow{\alpha})$ for all $(\overrightarrow{x}, \overrightarrow{\alpha}) \in \mathcal{D}_{M(P)}$, then M(P) is Σ -p.r.

The theorem above gives the conditions to say whether M(P) is recursive and whether it is Σ -p.r. It is recursive simply if P is Σ -p.r. And it is Σ -p.r. if M(P) is bounded by some function f for all values in the domain of M(P).

Theorem 25 *The quotient function, the remainder function, and the ith prime function are* Σ *-p.r.*

5.15 Minimization of alphabetic variable

We define $M^{\leq}(P) = \lambda \overrightarrow{x} \overrightarrow{\alpha} \left[\min_{\alpha}^{\leq} P(\overrightarrow{x}, \overrightarrow{\alpha}, \alpha) \right]$, where \leq is some order over the language Σ in question.

Theorem 26 If P is Σ -p.r. predicate over a string, then the same conditions apply for M(P) to be Σ -p.r. as in the theorem for predicates over numbers.

Problem 31 *Prove that* $\lambda \alpha [\sqrt{\alpha}]$ *is* Σ -*p.r.*

Observe that $\lambda \alpha \left[\sqrt{\alpha} \right] = \min_{\alpha} \lambda \alpha \beta [\beta = \alpha \alpha]$. The predicate, which we call P, is trivially Σ -p.r. This means that $\lambda \alpha [\sqrt{\alpha}] \in R^{\Sigma}$.

Let M(P) denote the minimization above. Then $M(P(\alpha, \beta)) \leq \beta$. In other words, M(P) is bounded by $f = \lambda \alpha \lceil \alpha \rceil$. Then $\lambda \alpha \lceil \sqrt{\alpha} \rceil \in PR^{\Sigma}$.

5.16 Enumerable sets

We say $S \subseteq \omega^n \times \Sigma^{*2}$ is Σ -recursively enumerable if it is empty or there is a function $\mathcal{F}: \omega \to \omega^n \times \Sigma^{*2}$ s.t.

- $Im_{\mathcal{F}} = S$
- $\mathcal{F}_{(i)}$ is Σ -recursive for every $1 \le 1 \le n + m$.

Here, Σ -recursive functions model Σ -computable functions.

5.17 Recursive sets

The Godelian model of a Σ -effectively computable set is simple. A set S is Σ -recursive when χ_S is Σ -recursive.

5.18 Alphabet independence

Theorem 27 Let Σ , Γ two alphabets. If f is Σ -mixed and Γ -mixed, then f is Σ -recursive iff it is Γ -recursive. The analogue applies to recursive sets and this extends to primitive recursion.

The theorem above states that recursiveness or primitive-recursiveness is independent of any given alphabet.

6 Neumann

6.1 The S^{Σ} language

We provide von Neumann's model of Σ -effectively computable function. We use $Num = \{0, 1, ..., 9\}$ a set of *symbols* (not numbers) and define $S: Num^* \mapsto Num^*$ as

$$S(\varepsilon) = 1$$

$$S(\alpha 0) = \alpha 1$$

$$S(\alpha 2) = \alpha 3$$

$$\vdots$$

$$S(\alpha 9) = S(\alpha)0$$

It is easy to observe that S is a "counting" or "enumerating" function of the alphabet Num. We define

$$-: \omega \mapsto Num^*$$

$$\overline{0} \mapsto \varepsilon$$

$$\overline{n+1} \mapsto S(\overline{n})$$

In other words, \overline{n} simply denotes the alphabetic symbol of Num that denotes the number n. The whole syntax of the S^{Σ} language is given by $\Sigma \cup \Sigma_p$, where

$$\Sigma_p = Num \cup \{\leftarrow, +, \equiv, ., \neq, \curvearrowright, \varepsilon, N, K, P, L, I, F, G, O, T, B, E, S\}$$

It is important to note that these are *symbols* or *strings*, not values. The ε in Σ_p is not the empty letter, but the symbol that denotes it. The $\overline{+}$, – signs are not the operations plus and minus, but the same symbols that denote these operations.

6.2 Variables, labels, and instructions

Any word of the form $N\overline{k}$ is a numeric variable; $P\overline{k}$ is an alphabetic variable; $L\overline{k}$ is a label.

A basic instruction in \mathcal{S}^{Σ} is one of the following words:

- $N\overline{k} \leftarrow N\overline{k} 1$
- $N\overline{k} \leftarrow N\overline{k} + 1$

- $N\overline{k} \leftarrow N\overline{n}$
- $N\overline{k} \leftarrow 0$
- $P\overline{k} \leftarrow {}^{\sim}P\overline{k}$
- $P\overline{k} \leftarrow P\overline{k}.a$
- $P\overline{k} \leftarrow P \leftarrow \varepsilon$
- IF $N\overline{k} \neq 0$ GOTO $L\overline{n}$
- IF $P\overline{k}BEGINS$ a GOTO $L\overline{n}$
- $GOTOL\bar{n}$
- SKIP

An instruction is any word of the form αI where $\alpha \in \{L\overline{n} : n \in \mathbb{N}\}$ and I is a basic instruction. We use Ins^{Σ} to denote the set of all instructions in S^{Σ} . When $I = L\overline{n}J$ and J a basic instruction, we say $L\overline{n}$ is the label of J.

6.3 Programs in S^{Σ}

A program in S^{Σ} is any word $I_1 \dots I_n$, with $n \geq 1$, s.t. $I_k \in Ins^{\Sigma}$ for all $1 \leq k \leq n$ and the following property holds:

GOTO Law: For every $1 \le i \le n$, if $GOTOL\overline{m}$ is the end of Ii, then there is some $j, 1 \le j \le n$, s.t. I_j has label $L\overline{m}$.

Informally, a program is any chain of instructions satisfying that GOTO instructions map to actual labels in the program.

We use Pro^{Σ} to denote the set of all programs in S^{Σ} .

Observation. Note that $Ins^{\Sigma} \nsubseteq Pro^{\Sigma}$. The reason is Ins^{Σ} contains chains of instructions that do not satisfy the GOTO law. For example, the single line $IFN1 \neq 0$ $GOTOL1 \in Ins^{\Sigma}$ is not a program.

Theorem 28 Let Σ a finite alphabet. Then

- If $I_1 \ldots I_n = J_1 \ldots J_n$, with $I_k, J_k \in Ins^{\Sigma}$, then n = m and $I_k = J_k$ for all k.
- If $\mathcal{P} \in Pro^{\Sigma}$ then there is a unique set of instructions $I_1 \dots I_n$ s.t. $\mathcal{P} = I_n \dots I_n$.

The theorem above establishes that any program in Pro^{Σ} is a *unique* concatenation of instructions. We use $n(\mathcal{P})$ to denote the number of instructions that make up $\mathcal{P} \in Pro^{\Sigma}$. By convention, if $\mathcal{P} = I_1^{\mathcal{P}} \dots I_{n(\mathcal{P})}^{\mathcal{P}}$, then $I_j^{\mathcal{P}} = \varepsilon$ if $j \notin [1, n(\mathcal{P})]$. In other words, we understand that a program contains infinitely many empty symbols to the right and left (like in Turing machines).

Observation. $n(\alpha)$ and I_j^{α} are defined only when $\alpha \in Pro^{\Sigma}$, $i \in \omega$. This means the domain of $\lambda \alpha[n(\alpha)]$ is $Pro^{\Sigma} \subseteq \Sigma \cup \Sigma_p$ and that of $\lambda i\alpha[I_i^{\alpha}]$ is $\omega \times Pro^{\Sigma}$.

Problem 32 Is is true that $Ins^{\Sigma} \cap Pro^{\Sigma} = \emptyset$? And is it true that $\lambda i \mathcal{P}[I_i^{\mathcal{P}}]$ has domain $\{(i, \mathcal{P}) \in \mathbb{N} \times Pro^{\Sigma} : i \leq n(\mathcal{P})\}$?

Both statements are false. A single instruction in Ins^{Σ} can be a program (as long as it is not a GOTO statement to a non-existent label). Furthermore, $\lambda i \mathcal{P}[I_i^{\mathcal{P}}]$ is defined for i=0 (it maps to ε) and for $i \geq n(\mathcal{P})$ (it also maps to ε).

Problem 33 *Prove:* If $\mathcal{P}_1, \mathcal{P}_2 \in Pro^{\Sigma}$ then $\mathcal{P}_1\mathcal{P}_1 = \mathcal{P}_2\mathcal{P}_2 \Rightarrow \mathcal{P}_1 = \mathcal{P}_2$.

This follows from the theorem that guarantees that any program $\mathcal{P} \in Pro^{\Sigma}$ is a *unique* concatenation of instructions. Let $\mathcal{P}_1 = I_1^{\mathcal{P}_1} \dots I_{n(\mathcal{P}_1)}^{\mathcal{P}_1}$ and $\mathcal{P}_2 = I_1^{\mathcal{P}_2} \dots I_{n(\mathcal{P}_2)}^{\mathcal{P}_2}$. Assume $\mathcal{P}_1 \mathcal{P}_1 = \mathcal{P}_2 \mathcal{P}_2$. Then

$$I_1^{\mathcal{P}_1} \dots I_{n(\mathcal{P}_1)}^{\mathcal{P}_1} I_1^{\mathcal{P}_1} \dots I_{n(\mathcal{P}_1)}^{\mathcal{P}_1} = I_2^{\mathcal{P}_2} \dots I_{n(\mathcal{P}_2)}^{\mathcal{P}_2} I_2^{\mathcal{P}_2} \dots I_{n(\mathcal{P}_2)}^{\mathcal{P}_2}$$

Then, from the last theorem follows that $I_k^{\mathcal{P}_1} = i_k^{\mathcal{P}_2}$. From this follows directly that $\mathcal{P}_1 = \mathcal{P}_2$.

6.4 States in programs of S^{Σ}

We define $Bas: Ins^{\Sigma} \mapsto (\Sigma \cup \Sigma_p)^*$, the program that returns the substring of an instruction corresponding to its basic instruction, as

$$Bas(I) = \begin{cases} J & I = L\overline{k}J\\ I & \text{otherwise} \end{cases}$$

Recall that

We define $\omega^{[\mathbb{N}]} = \{(s_1, s_2, \ldots) : \exists n \in \mathbb{N} : i > n \Rightarrow s_i = 0\}$. Similarly, $\Sigma^{*[\mathbb{N}]}$ denotes the set of infinite alphabetic tuples that contain only ε from some index onwards.

A **state** is a tuple $(\vec{s}, \vec{\sigma}) \in \omega^{\mathbb{N}} \times \Sigma^{*\mathbb{N}}$. If $i \geq i$ we say s_i has the value of the $N\bar{i}$ variable in the state, and σ_i the value of the $P\bar{i}$ variable in the state. Thus, a state is a pair of infinite tuples containing the values of the variables in a program.

We use

$$[[x_1,\ldots x_n, \alpha_1,\ldots,\alpha_m]]$$

to denote the state $((x_1, \ldots, x_n, 0, 0, \ldots), (\alpha_1, \ldots, \alpha_m, \varepsilon, \varepsilon, \ldots))$.

6.5 Instantaneous description of a program in S^{Σ}

Since a program $\mathcal{P} \in Pro^{\Sigma}$ may contain GOTO instructions, it is not always the case that $I_{k+1}^{\mathcal{P}}$ is executed after $I_k^{\mathcal{P}}$. Thus, when running a program, we not only need to consider its state but the specific instruction to be executed. An instantaneous description is a mathematical object which describes all this information.

Formally, an instantaneous description is triple $(i, \overrightarrow{s}, \overrightarrow{\alpha}) \in \omega \times \omega^{\mathbb{N}} \times \Sigma^{*\mathbb{N}}$. This Cartesian product is the set of all possible instantaneous descriptions. The triple reads: The following instruction is $I_i^{\mathcal{P}}$ and the current state is $(\overrightarrow{s}, \overrightarrow{\sigma})$. Observe that if $i \notin [1, n(\mathcal{P})]$, then the description reads: We are in state $(\overrightarrow{s}, \overrightarrow{\sigma})$ and we must execute ε (nothing).

We define the successor function

$$S_{\mathcal{P}}: \omega \times \omega^{\mathbb{N}} \times \Sigma^{*\mathbb{N}} \mapsto \omega \times \omega^{\mathbb{N}} \times \Sigma^{*\mathbb{N}}$$

which maps an instantaneous description to the successor instantaneous description (the one after executing the instruction in the first).

6.6 Computation from a given state

Let $\mathcal{P} \in Pro^{\Sigma}$ and a state $(\overrightarrow{s}, \overrightarrow{\sigma})$. The *computation* of \mathcal{P} from $(\overrightarrow{s}, \overrightarrow{\sigma})$ is defined as

$$((1, \overrightarrow{\sigma}, \overrightarrow{\sigma}), S_{\mathcal{P}}(1, \overrightarrow{s}, \overrightarrow{\sigma}), S_{\mathcal{P}}(S_{\mathcal{P}}(1, \overrightarrow{s}, \overrightarrow{\sigma})), \ldots)$$

In other words, the *computation* of \mathcal{P} is the infinite tuple whose *i*th element is the instantaneous description of \mathcal{P} after i-1 instructions have been executed.

We say $S_{\mathcal{P}}\left(\dots S_{\mathcal{P}}\left(S_{\mathcal{P}}\left(1,\overrightarrow{s},\overrightarrow{\sigma}\right)\right)\right)$ is the instantaneous description obtained after t steps if the number of times $S_{\mathcal{P}}$ was executed is t.

Problem 34 Give true or false for the following statements.

Statement 1: If $S_{\mathcal{P}}(i, \overrightarrow{s}, \overrightarrow{\alpha}) = (i, \overrightarrow{s}, \overrightarrow{\alpha})$ then $i \notin [1, n(\mathcal{P})]$. The statement is false. It could be the case that $i \notin [1, n(\mathcal{P})]$, in which case we would say the program halted. However, consider the program

L1 GOTO L1

Evidently, $S_{\mathcal{P}}(1, \overrightarrow{s}, \overrightarrow{\alpha}) = (1, \overrightarrow{s}, \overrightarrow{\alpha})$, and $1 \le 1 \le n(\mathcal{P})$.

Statement 2. Let $\mathcal{P} \in Pro^{\Sigma}$ and d an instantaneous description whose first coordinate is i. If $I_i^{\mathcal{P}} = N_2 \leftarrow N_2 + 1$, then

$$S_{\mathcal{P}}(d) = (i+1, (N_1, Suc(N_2), N_3, \dots), (P_1, P_2, P_3, \dots))$$

The statement is true via direct application of the $S_{\mathcal{P}}$ function.

Statement 3. Let $\mathcal{P} \in Pro^{\Sigma}$ and $(i, \overrightarrow{s}, \overrightarrow{\sigma})$ an instantaneous description. If $Bas(I_i^{\mathcal{P}}) = IF P_3 BEGINS \ a \ GOTO \ L_6 \ and \ [P_3]_1 = a$, then $S_{\mathcal{P}}(i, \overrightarrow{s}, \overrightarrow{\sigma}) = (j, \overrightarrow{s}, \overrightarrow{\sigma})$, where j is the least number l s.t. $I_l^{\mathcal{P}}$ has label L_6 .

Because $[P_3]_1 = a$, the value of $S_{\mathcal{P}}(i, \overrightarrow{s}, \overrightarrow{\sigma})$ must indeed contain the instruction that has label L_6 . This instruction is the jth instruction for some j, etc. The statement is true.

6.7 Halting

When the first coordinate of $S_{\mathcal{P}}\left(\ldots S_{\mathcal{P}}\left(S_{\mathcal{P}}\left(1,\overrightarrow{s},\overrightarrow{\sigma}\right)\right)\right)$ with t steps is $n(\mathcal{P})+1$, we say \mathcal{P} halts after t steps when starting from $(\overrightarrow{s},\overrightarrow{\sigma})$.

If none of the first coordinates in the computation of \mathcal{P} ,

$$((1, \overrightarrow{\sigma}, \overrightarrow{\sigma}), S_{\mathcal{P}}(1, \overrightarrow{s}, \overrightarrow{\sigma}), S_{\mathcal{P}}(S_{\mathcal{P}}(1, \overrightarrow{s}, \overrightarrow{\sigma})), \ldots)$$

is $n(\mathcal{P})$, we say \mathcal{P} does not halt starting from $(\overrightarrow{s}, \overrightarrow{\sigma})$.

6.8 Σ -computable functions

We give the model of a Σ -effectively computable function in the paradigm of von Neumann. Intuitively, f is Σ -computable if there is some $\mathcal{P} \in Pro^{\Sigma}$ that computes it.

Given $\mathcal{P} \in Pro^{\Sigma}$, for every pair $n, m \geq 0$, we define $\Psi_{\mathcal{P}}^{n,m,\#}$ as follows:

$$\mathcal{D}_{\Psi_{\mathcal{P}}^{n,m,\#}} = \left\{ (\overrightarrow{x}, \overrightarrow{\alpha}) \in \omega^n \times \Sigma^{*m} : \mathcal{P} \text{ halts from } [[x_1, \dots, x_n, \alpha_1, \dots, \alpha_m]] \right\}$$

$$\Psi_{\mathcal{P}}^{n,m,\#} (\overrightarrow{x}, \overrightarrow{\alpha}) = \text{Value of } N_1 \text{ in halting state from } [[x_1, \dots, x_n, \alpha_1, \dots, \alpha_m]]$$

We analogously define $\Psi_{\varphi}^{n,m,*}$ for the alphabetic case, where the domain is the same and the value is that of P_1 in the halting state.

A Σ -mixed function, not necessarily total, is Σ -computable if there is a program $\mathcal{P} \in Pro^{\Sigma}$ s.t. $f \sim (n, m, \varphi) = \Psi_{\mathcal{P}}^{n,m,\varphi}$, with $\varphi \in \{\#, *\}$. We say f is computed by \mathcal{P} .

Theorem 29 *If* f *is* Σ -computable, then it is Σ -effectively computable.

The previous theorem should be obvious. Any program in \mathcal{S}^Σ can be translated into an effective procedure with relative simplicity.

Problem 35 Let $\Sigma = \{@, !\}$. Give a program that computes $f : \{0, 1, 2\} \mapsto \omega$ given by f(0) = f(1) = 0, f(2) = 5.

Evidently $f \sim (1,0,\#)$ and so we must find some $\mathcal{P} \in Pro^{\Sigma}$ s.t. $\Psi_{\mathcal{P}}^{1,0,\#}(x) = f(x)$. The program must let N_1 hold the value 0 if the starting state is either [[0]] or [[1]], and the value 5 if the starting state is [[2]]. In all other cases, it must not halt, to ensure that the domain of $\Psi_{\mathcal{P}}^{1,0,\#}$ is the same as that of f. The desired program is

$$N_{2} \leftarrow N_{1}$$

$$N_{2} \leftarrow N_{2} - 1$$

$$IF \ N_{2} \neq 0 \ GOTO \ L_{1}$$

$$GOTO \ L_{4}$$

$$L_{1} \ N_{2} \leftarrow N_{2} - 1$$

$$IF \ N_{2} \neq 0 \ GOTO \ L_{2}$$

$$GOTO \ L_{3}$$

$$L_{2} \ GOTO \ L_{2}$$

$$L_{3} \ N_{1} \leftarrow N_{1} + 1$$

$$N_{1} \leftarrow N_{1} + 1$$

$$N_{1} \leftarrow N_{1} + 1$$

$$GOTO \ L_{5}$$

$$L_{4} \ N_{1} \leftarrow 0$$

$$L_{5} \ SKIP$$

If \mathcal{P} denotes this program, it is evident that \mathcal{P} only halts for starting states $[[x_1]]$ with $x_1 \in \{0, 1, 2\}$. Thus, the domain of $\Psi_{\mathcal{P}}^{1,0,\#}$ is precisely \mathcal{D}_f . It is easy to verify that, more generally, $\Psi_{\mathcal{P}}^{1,0,\#} = f$.

Problem 36 Using the same alphabet as in the previous problem, find $\mathcal{P} \in Pro^{\Sigma}$ that computes $\lambda xy[x+y]$.

The desired program is

$$L_1 IF N_2 = 0 GOTO L_3$$

 $N_1 \leftarrow N_1 + 1$
 $N_2 \leftarrow N_2 - 1$
 $GOTO L_1$
 $L_3 SKIP$

Problem 37 *Same for* $C_0^{1,1}|_{\{0,1\}\times\Sigma^*}$

Since the domain of the constant function is restricted to $\{0,1\} \times \Sigma^*$, we must ensure the program only halts for states $[[x_1,x_2,\alpha]]$ s.t. $x_1,x_2 \in \{0,1\}$. Thus, the program is

$$\begin{aligned} N_1 &\leftarrow N_1 - 1 \\ N_2 &\leftarrow N_2 - 1 \\ IFN_2 &\neq 0 \ GOTO \ L_1 \\ IFN_1 &\neq 0 \ GOTO \ L_1 \\ GOTO \ L_2 \\ L_1 \ GOTO \ L_1 \\ L_2 \ SKIP \end{aligned}$$

Problem 38 *Same for* $\lambda i\alpha[[\alpha]_i]$ *(same alphabet).*

```
IF N_0 \neq 0 \ GOTO \ L_1
P_1 \leftarrow \varepsilon
GOTO \ L_{100}
L_1 \ N_1 \leftarrow N_1 - 1
L_2 \ N_1 \leftarrow N_1 - 1
P_1 \leftarrow {}^{\frown}P_1
IF \ N_1 \neq 0 \ GOTO \ L_2
IF \ P_1 \ STARTSWITH @ \ GOTO \ L_2
IF \ P_1 \ STARTSWITH ! \ GOTOL_3
GOTOL_{100}
L_3 \ P_1 \leftarrow !
L_2 \ P_1 \leftarrow @
L_{100} \ SKIP
```

Example. Let $\alpha = @!!@@$. Assume we give $[[4, \alpha]]$. Since $4 \neq 0$ we go to L_1 immediately. Here N_1 is set to three. Then N_1 is set to two and P_1 is set to !!@@. Since $N_1 \neq 0$, N_1 is now set to 1 and P_1 to !@@. Once more, N_1 is now set to 0 and P_1 to @@. Since now $N_1 = 0$, we know the starting character of P_1 is the one we looked for. We set P_1 to be its first character (if $P_1 = \varepsilon$ it has no first character and nothings needs to be done, because this means the input $[[x_1, \alpha]]$ had $x_1 > |\alpha|$). The other cases also work.

Problem 39 Give a program that computes s^{\leq} where @ <!.

Recall that $s^{\leq}: \Sigma^* \mapsto \Sigma^*$ is defined as

$$s^{\leq} ((a_n)^m) = (a_1)^{m+1} \qquad m \geq 0$$

$$s^{\leq} (\alpha a_i (a_n)^m) = \alpha a_{i+1} (a_1)^m \qquad 1 \leq i < n, m \geq 0$$

In our case, this functions enumerates the language in question as follows:

$$\varepsilon$$
, @, !, @ @, @ !, !@, !!, @ @ @, @ @ !, @ !@, @ !!, !@ @, !@ !, !!@, !!!, . . .

6.9 Macros

A macro is the template of a program that computes a Σ -mixed function. There are two types:

- Those that assign that simulate setting the value of a variable to a function of others;
- Those that use IF statements that direct a program to a label if a predicate function of other variables is true.

A macro is not a program because it does not necessarily hold to **GOTO law**. The formal definition of a macro is hand-wavy and long; check the source. The variables of a macro that are only used within the macro are the *auxiliary variables*. The variables the receive the input (from within some program) are the *official variables*.

Theorem 30 Let Σ a finite alphabet. Then if f a Σ -computable function, there is a macro $\left[Z\overline{n+1} \leftarrow f\left(V_1,\ldots,V\overline{n},W_1,\ldots,W\overline{m}\right) \right]$ with $Z \in \{V,W\}$ depending on the value of f.

Example. The function $\mathcal{F} = \lambda xy[x+y]$ is Σ -computable. Then there is a macro that computes it. Such macro is:

$$V_{4} \leftarrow V_{2}$$

$$V_{5} \leftarrow V_{3}$$

$$V_{1} \leftarrow V_{4}$$

$$A_{1} IF V_{5} \neq 0 GOTO A_{2}$$

$$GOTO A_{3}$$

$$A_{2} V_{5} \leftarrow V_{5} - 1$$

$$V_{1} \leftarrow V_{1} + 1$$

$$GOTO A_{1}$$

$$A_{3} SKIP$$

We replace V_1 with that variable where the output is to be stored, V_2 , V_3 with the variables the are to be summed, and this performs the sum of two variables. Now, to program $\lambda xy[x \cdot y]$ we can use the following:

$$L_1$$
 IF $N_2 \neq 0$ GOTO L_2
GOTO L_3
 L_2 [$N_3 \leftarrow \mathcal{F}(N_3, N_1)$]
 $N_2 \leftarrow N_2 - 1$
GOTO L_1
 L_3 $N_1 \leftarrow N_3$

Problem 40 Let $\Sigma = \{@, !\}$ and $f \sim (0, 1, \#)$ a Σ -computable function. Let $L = \{\alpha \in \mathcal{D}_f : f(\alpha) = 1\}$. Using the macro $[V_1 \leftarrow f(W_1)]$, give a program $\mathcal{P} \in Pro^{\Sigma}$ s.t. $\mathcal{D}_{\Psi_{\mathcal{P}}^{0,1,\#}} = L$.

 $\mathcal{D}_{\Psi^{0,1,\#}_{\mathcal{P}}}=L$ if and only if \mathcal{P} halts only when starting from a state $[[\alpha\in L]]$ Such \mathcal{P} may be

$$[N_1 \leftarrow f(P_1)]$$

$$IF \ N_1 \neq 0 \ GOTO \ L_1$$

$$GOTO \ L_2$$

$$L_1 \ GOTO \ L_1$$

$$L_2 \ SKIP$$

Incidentally, it is easy to observe that $\Psi_{\varphi}^{0,1,\#} = f_{|L}$.

Problem 41 Let $\Sigma = \{@, !\}$ and $f \sim (1, 0, *)$ a Σ -computable function. Using $[W_1 \leftarrow f(V_1)]$, give a program $\mathcal{P} \in Pro^{\Sigma}$ s.t. $\mathcal{D}_{\Psi_{\mathcal{P}}^{1,0,*}} = Im_f$.

We require a program $\mathcal{P} \in Pro^{\Sigma}$ s.t. \mathcal{P} halts only from a starting state of the form $[[\alpha \in Im_f]]$. Such a program may be

$$L_1 \quad [P_2 \leftarrow f(N_1)]$$

$$[IF \ P_1 = P_2 \ GOTO \ L_2]$$

$$N_1 \leftarrow N_1 + 1$$

$$GOTO \ L_1$$

$$L_2 \quad Skip$$

where $[IF W_1 = W_2 GOTO A_1]$ is the macro

$$W_3 \leftarrow W_1$$
 $W_4 \leftarrow W_2$
 $A_1 \ IF \ W_3 BEGINS @ GOTO \ A_2$
 $IF \ W_3 BEGINS ! \ GOTO \ A_3$
 $A_2 \ IF \ W_4 \ BEGINS @ \ GOTO \ A_4$
 $GOTO \ A_{1000}$
 $A_3 \ IF \ W_4 \ BEGINS ! \ GOTO \ A_4$
 $A_4 \ W_3 \leftarrow {}^{\sim}W_3$
 $W_4 \leftarrow {}^{\sim}W_4$
 $GOTO \ A_5$
 $A_{1000} \ SKIP$

that checks if two *not-empty* strings are equal and jumps to the official label A_5 if the case is true.

6.10 Enumerable sets

A non-empty Σ -mixed set S is Σ -enumerable if and only if there are programs $\mathcal{P}_1, \ldots, \mathcal{P}_{n+m}$ s.t.

$$\mathcal{D}_{\Psi_{\mathcal{P}_{1}}^{n,m,\#}} = \dots = \mathcal{D}_{\Psi_{\mathcal{P}_{n}}^{n,m,\#}} = \omega$$

$$\mathcal{D}_{\Psi_{\mathcal{P}_{n+1}}^{n,m,*}} = \dots = \mathcal{D}_{\Psi_{\mathcal{P}_{n+m}}^{n,m,*}} = \omega$$

and

$$S = Im \left[\Psi_{\mathcal{P}_1}^{n,m,\#}, \dots, \Psi_{\mathcal{P}_n}^{n,m,\#}, \Psi_{\mathcal{P}_{n+1}}^{n,m,*}, \dots, \Psi_{\mathcal{P}_{n+m}}^{n,m,*} \right]$$

In other words, for each input $x \in \omega$, the *i*th program \mathcal{P}_i computes the value of the *i*th element in a tuple of S. Another way to put this is

Theorem 31 If S a non-empty Σ -mixed set, then it is equivalent to say:

- (1) S is Σ -enumerable.
- (2) There is a $\mathcal{P} \in Pro^{\Sigma}$ satisfying the following two properties. a. For all $x \in \omega$, \mathcal{P} halts from [[x]] into a state of the form $[[x_1, \ldots, x_n, \alpha_1, \ldots, \alpha_n]]$ when $(x_1, \ldots, x_n, \alpha_1, \ldots, \alpha_n) \in S$. b. For any tuple $(x_1, \ldots, x_n, \alpha_1, \ldots, \alpha_m) \in S$, there is a $x \in \omega$ s.t. \mathcal{P} halts starting from [[x]] in a state of the form $[[x_1, \ldots, x_n, \alpha_1, \ldots, \alpha_m]]$

When a program satisfies these properties, we say it *enumerates S*.

6.11 Σ -computable sets

A Σ -mixed set S is said to be Σ -computable if $\chi_S^{\omega^n \times \Sigma^{*m}}$ is Σ -computable. This is, S is Σ -computable if and only if there is a $\mathcal{P} \in Pro^{\Sigma}$ s.t. \mathcal{P} commputes $\chi_S^{\omega^n \times \Sigma^{*m}}$.

Observe that this means that \mathcal{P} halts with $N_1 = 1$ when starting from $[\vec{x}, \vec{\alpha}]$ if $(\vec{x}, \vec{\alpha}) \in S$, and halts with $N_1 = 0$ otherwise. We say \mathcal{P} decides the belonging to S.

Observe that if $\chi_S^{\omega^n \times \Sigma^{*m}}$ is Σ -computable, then there is a macro

$$\left[IF \chi_S^{\omega^n \times \Sigma^{*m}} (V_1 \dots, V\overline{n}, W_1, \dots, W\overline{m}) \ GOTO \ A_1\right]$$

We will write this macro as $[IF(V_1, ..., V\overline{n}, W_1, ..., W\overline{m}) \in S \ GOTO \ A_1]$. Of course, this macro is only valid when S is a Σ -computable set.

Theorem 32 In Godel's paradigm, S is Σ -p.r. iff it is the domain of a Σ -p.r. function. This statement does not hold in von Neumman's paradigm. There are sets that are domains of Σ -computable functions that are not Σ -computable themselves.

7 Paradigm battles

7.1 Neumann triumphs over Godel

Theorem 33 *If h is* Σ -recursive then it is Σ -computable.

A corollary is that every Σ -recursive function has a corresponding macro.

Theorem 34 If $S_1, S_2 \subseteq \omega^n \times \Sigma^{*m}$ are Σ -enumerable, then $S_1 \cup S_2$ is Σ -enumerable.

Proof. Via assumption there are $F: \omega \mapsto \omega^n \times \Sigma^{*m}$, $G: \omega \mapsto \omega^n \times \Sigma^{*m}$ s.t. $F_{(i)}, G_{(i)}$ are Σ -computable for every i and $Im_F = S_1$, $Im_G = S_2$. \therefore $F_{(i)}, G_{(i)}$ have associated macros.

 λx [x is even] is Σ -p.r. \therefore it is Σ -computable. $\therefore \lambda x$ [x is even] has an associated macro. \therefore There is an IF macro which checks if a variable holds an even number.

 $\lambda x [x/2]$ is Σ -p.r. \therefore it is Σ -p.r. \therefore it has an associated macro.

Using the macros above, one can write a program $\mathcal{P} \in Pro^{\Sigma}$ that does the following:

If the input N_1 is even, set N_1 to its integer quotient by two and then let $N_1 = F_1(N_1), \dots, N_n = F_n(N_n)$.

If the input N_1 is odd, set N_1 to its integer quotient by two minus one and then let $N_1 = G_1(N_1), \ldots, N_n = G_n(N_n)$.

It is easy to see that this satisfies the theorem of the **Enumerable sets** section of the von Neumann paradigm.

Theorem 35 *If* $S \subseteq \omega^n \times \Sigma^{*m}$ *is* Σ -computable, then S is enumerable.

Proof. Assume $S \subseteq \omega^n \times \Sigma^{*m}$ is Σ -computable. $\therefore {}^{n,m}_S$ is Σ -recursive and has an associated macro.

Recall that $pr: \mathbb{N} \mapsto \omega$ is Σ -p.r. $\therefore pr$ is Σ -recursive and has an associated macro. The same is true of \leq^* , since its definition involves only string concatenations and string exponentiations (which are Σ -p.r.) on two mutually exclusive cases.

Let

$$\mathcal{F}: [1, m] \times \mathbb{N} \mapsto \omega \cup \Sigma^*$$

$$(x, i) \mapsto \begin{cases} (x)_i & 1 \le i \le n \\ * \le ((x)_i) & n+1 \le i \le m \end{cases}$$

The program \mathcal{P}_i with input x, i defined as

$$[N_2 \leftarrow pr(N_2)]$$
 $L_1 \quad [IF \neg (N_2 \mid N_1) \ GOTO \ L_2]$
 $N_3 \leftarrow N_3 + 1$
 $[N_2 \leftarrow N_2 \times N_2]$
 $GOTO \ L_1$
 $L_2 \quad [IF1 \leq N_1 \leq m \ GOTO \ L_3]$
 $[N_1 \leftarrow *^{\leq}(N_3)]$
 $GOTO \ L_{100}$
 $L_3 \quad N_1 \leftarrow N_3$
 $L_{100} \quad SKIP$

when $n+1 \le i \le m$ computes \mathcal{F} . \therefore There is a macro for \mathcal{F} . Let u=n+m+1 and \mathcal{P} the following program:

$$N\overline{u} \leftarrow N_{1}$$

$$[N_{1} \leftarrow \mathcal{F}(N\overline{u}, 1)]$$

$$[N_{2} \leftarrow \mathcal{F}(N\overline{u}, 2)]$$

$$\vdots$$

$$[P_{\overline{m}} \leftarrow \mathcal{F}(N\overline{u}, n + m)]$$

$$[IF \chi_{s}^{n,m}(N_{1}, \dots, N_{\overline{n}}, P_{\overline{m}},) \ GOTO \ L_{100}]$$

$$L_{0} \ GOTO \ L_{0}$$

$$L_{100} \ SKIP$$

a. For any $x \in \omega$, \mathcal{P} halts at a state with instantaneous description $[[x_1, \ldots, x_n, \alpha_1, \ldots, \alpha_m]]$ with $(x_1, \ldots, x_n, \alpha_1, \ldots, \alpha_n) \in S$; b. for any $(\vec{x}, \vec{\alpha}) \in S$ there is some $x \in \omega$ s.t. \mathcal{P} halts at $[[(\vec{x}, \vec{\alpha})]]$ when starting from $x : \mathcal{P}$ enumerates S.

Problem 42 *Prove that, if* $S \subseteq \Sigma^*$ *is* Σ -enumerable, then

$$T = \{ \alpha \in \Sigma^* : \exists \beta \in S : \alpha \text{ is subchain of } \beta \}$$

is Σ -enumerable.

Let $\mathcal{F}: \omega \mapsto \Sigma^*$ denote the function which enumerates S, which is Σ -computable and has a macro. The key to the problem is to observe that, per each $\alpha \in S$, there are $|\alpha| - 1$ subchains of α in T. Thus, for $\mathcal{F}(i)$ we want to enumerate $|\mathcal{F}(i)| - 1$ subchains.

I provide a program that accomplishes this and then illustrate its operation on a finite alphabet. It is easy to verify that the program enumerates T and that this enumeration holds for infinite alphabets as well.

Let \mathcal{P} with input $x \in \omega$ be

$$[P_{1} \leftarrow \mathcal{F}(N_{3})]$$

$$[N_{50} \leftarrow |\mathcal{F}(N_{3})|]$$

$$L_{1} \quad [IF \ N_{1} \geq N_{50} \ GOTO \ L_{2}]$$

$$N_{10} \leftarrow N_{50} - N_{1}$$

$$N_{10} \leftarrow N_{10} - 1$$

$$L_{11} \quad [P_{1} \leftarrow ^{P}_{1}]$$

$$N_{10} \leftarrow N_{10} - 1$$

$$[IF \ N_{10} = 0 \ GOTO \ L_{100}]$$

$$GOTO \ L_{11}$$

$$L_{2} \quad N_{3} \leftarrow N_{3} + 1$$

$$[P_{1} \leftarrow \mathcal{F}(N_{3})]$$

$$[N_{50} \leftarrow N_{50} + |P_{1}|]$$

$$GOTO \ L_{1}$$

$$L_{100} \quad SKIP$$

Example.Let $S = \{abab, bba, bbba, abb\}$. Then the program can be illustrated as follows:

$$x = 0 \mid 0 \le 4 \mid N_{10} = 3 \mapsto a$$

$$x = 1 \mid 1 \le 4 \mid N_{10} = 2 \mapsto ab$$

$$x = 2 \mid 2 \le 4 \mid N_{10} = 1 \mapsto aba$$

$$x = 3 \mid 3 \le 4 \mid N_{10} = 0 \mapsto aba$$

When x = 4, we have $N_{50} \ge N_1$ and so P_1 becomes bba, N_{50} becomes 4+3=7 and

$$x = 4 \mid 4 \leq 7 \mid N_{10} = 2 \mapsto b$$

$$x = 5 \mid 5 \leq 7 \mid N_{10} = 1 \mapsto bb$$

$$x = 6 \mid 6 \leq 7 \mid N_{10} = 0 \mapsto bb$$

When x = 7, the L_2 case is met twice, and so $P_1 = bbba$, $N_{50} = 4 + 3 + 4 = 11$ and

$$x = 7 \mid 7 \leq 11 \mid N_{10} = 3 \mapsto b$$

$$x = 8 \mid 8 \leq 11 \mid N_{10} = 2 \mapsto bb$$

$$x = 9 \mid 9 \leq 11 \mid N_{10} = 1 \mapsto bbb$$

$$x = 10 \mid 10 \leq 11 \mid N_{10} = 0 \mapsto bbb$$

etc. Thus, the program enumerates S and, per each $\alpha \in S$, it enumerates the substrings which make up α . The program is s.t.

```
0 \mapsto The \ smallest \ substring \ of \ \mathcal{F}(0)
1 \mapsto The \ next \ smallest \ substring \ of \ \mathcal{F}(0)
2 \mapsto The \ next \ smallest \ substring \ of \ \mathcal{F}(0)
3 \mapsto The \ next \ smallest \ of \ \mathcal{F}(0)
4 \mapsto The \ smallest \ substring \ of \ \mathcal{F}(1)
5 \mapsto The \ next \ smallest \ \mathcal{F}(1)
6 \mapsto The \ next \ smallest \ substring \ of \ \mathcal{F}(1)
\vdots
```

7.2 Godel triumphs over Neumann

The syntax of S^{Σ} is $(\Sigma \cup \Sigma_p)$ -recursive. Recall that $S: Num^* \mapsto Num!*$ was the (symbolic) successor satisfying $S(\overline{n}) = \overline{n+1}$. In particular, $S(\varepsilon) = 1$, $S(\alpha 0) = \alpha 1$, $S(\alpha 2) = \alpha 3$, ..., $S(\alpha 9) = S(\alpha)0$. It is obvious that the function is Num-p.r. The same can be shown of -: $\omega \mapsto Num^*$.

Theorem 36 Let Σ an arbitrary alphabet. Then S and - are $(\Sigma \cup \Sigma_p)$ -p.r.

Recall that Ins^{Σ} is the set of instructions in S^{Σ} . It can be proven that this set is the union of a series of $(\Sigma \cup \Sigma_p)$ -p.r. sets.

Theorem 37 Let Σ an arbitrary alphabet. Then Ins^{Σ} is $(\Sigma \cup \Sigma_p)$ -p.r.

The following three functions contain all the information relevant to S^{Σ} . Assuming $n, m \in \omega$ are fixed,

$$i^{n,m}\omega \times \omega^{n} \times \Sigma^{*m} x Pro^{\Sigma} \mapsto \omega$$

$$E_{\#}^{n,m}\omega \times \omega^{n} \times \Sigma^{*m} x Pro^{\Sigma} \mapsto \omega^{[\mathbb{N}]}$$

$$E_{*}^{n,m}\omega \times \omega^{n} \times \Sigma^{*m} x Pro^{\Sigma} \mapsto \Sigma^{*[\mathbb{N}]}$$

For brevity, let $f^{n,m}(t, \vec{x}, \vec{a}, \mathcal{P}) = f(t)$ for $f \in \{i^{n,m}, E_{\#}^{n,m}, E_{*}^{n,m}\}$ —this is, let as assume fixed $\vec{x}, \vec{\alpha}, \mathcal{P}$. Then

$$(i^{n,m}(0), E_{\#}^{n,m}(0), E_{*}^{n,m}(0)) = (1, (x_1, \dots, x_n, 0, \dots), (\alpha_1, \dots, \alpha_n, 0, \dots))$$

$$(i^{n,m}(t+1), E_{\#}^{n,m}(t+1), E_{*}^{n,m}(t+1)) = S_{\mathcal{P}} (i^{n,m}(t), E_{\#}^{n,m}(t), E_{*}^{n,m}(t))$$

It is clear that $(i^{n,m}(t,\vec{x},\vec{\alpha},\mathcal{P}),E_{\#}^{n,m}(t,\vec{x},\vec{\alpha},\mathcal{P}),E_{*}^{n,m}(t,\vec{x},\vec{\alpha},\mathcal{P}))$ is the instantaneous description of \mathcal{P} after t steps starting from $[[\vec{x},\vec{\alpha}]]$.

The E functions are not $(\Sigma \cup \Sigma_p)$ -mixed, but if we define $E_{\varphi j}^{n,m}$, with $\varphi \in \{*, \#\}$, as the jth coordinate of $E_{\varphi}^{n,m}$, we find that $E_{\varphi j}^{n,m}$ is $(\Sigma \cup \Sigma_p)$ -mixed.

Theorem 38 The functions $i^{n,m}$, $E_{\varphi j}^{n,m}$ are $(\Sigma \cup \Sigma_p)$ -mixed functions.

Given $n, m \in \omega$, we define

$$Halt^{n,m} = \lambda t \vec{x} \vec{\alpha} \mathcal{P} \left[i^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}) = n(\mathcal{P}) + 1 \right]$$

Observe that $\mathcal{D}_{Halt} = \omega \times \omega^n \times \Sigma^{*m} \times Pro^{\Sigma}$.

Theorem 39 Pro^{Σ} is a $(\Sigma \cup \Sigma_p)$ -p.r. set and $n(\mathcal{P})$, $I_j^{\mathcal{P}}$ are $(\Sigma \cup \Sigma_p)$ -p.r. functions.

Theorem 40 *The Halt function is* Σ *-p.r.*

Proof. Observe that

$$Halt^{n,m} = \lambda xy \left[x = y \right] \circ \left[i^{n,m}, \lambda \mathcal{P} \left[n(\mathcal{P}) \right] \circ p_{n+m+2}^{1+n,m+1} \right]$$

We define $T^{n,m} = M(Halt^{n,m})$. Observe that

$$\mathcal{D}_T^{n,m} = \{(\vec{x}, \vec{\alpha}, \mathcal{P}) \in \omega^n \times \Sigma^{*m} : \mathcal{P} \text{ halts when starting from } [[(\vec{x}, \vec{\alpha})]]\}$$

Theorem 41 $T^{n,m}$ is $(\Sigma \cup \Sigma_p)$ -recursive but it is not $(\Sigma \cup \Sigma_p)$ -p.r.

The previous theorem follows from the fact that $T^{n,m}$ is a minimization over a Σ -p.r. predicate.

Theorem 42 If f is a Σ -computable Σ -mixed function, then f is Σ -recursive.

The previous theorem states that any function computable in von Neumman's paradigm is computable in Godel's paradigm.

Proof. The proof consists in showing that f is $(\Sigma \cup \Sigma_p)$ -recursive. Then, due to the alphabet independence of recursion, it is Σ -recursive.

We define $\Phi^{n,m}_{\#} := \lambda \vec{x} \vec{\alpha} \mathcal{P} \left[\Psi^{n,m,\#}_{\mathcal{P}}(\vec{x},\vec{\alpha}) \right]$. The domain of the function is consists thus in all $(\vec{x},\vec{\alpha},\mathcal{P})$ s.t. $(\vec{x},\vec{\alpha}) \in \mathcal{D}_{\Psi^{n,m,\#}_{\mathcal{P}}}$. We can think of this as the *execution function*, which takes some input and a program and returns the value of that program when executed on that input.

We similarly define $\Phi_{\varphi}^{n,m,*}$.

Theorem 43 The functions $\Phi_{\mathcal{P}}^{n,m,\#}$, $\Phi_{\mathcal{P}}^{n,m,*}$ are $(\Sigma \cup \Sigma_p)$ -recursive.

Proof. Observe that $\mathcal{D}_{T^{n,m}} = \mathcal{D} = \Phi_{\mathcal{P}}^{n,m,\#}$. For any $(\vec{x}, \vec{\alpha}, \mathcal{P}) \in \mathcal{D}_{T^{n,m}}$ we have

$$\Phi_{\mathcal{P}}^{n,m,\#} = E_{\#!}^{n,m} \left(T^{n,m}(\vec{x},\vec{\alpha},\mathcal{P}), \vec{x},\vec{\alpha},\mathcal{P} \right)$$

which implies
$$\Phi_{\mathcal{P}}^{n,m,\#} = E_{\#1}^{n,m} \circ \left[T^{n,m}, p_1^{n,m+1}, \dots, p_{n+m+1}^{n,m+1} \right]$$
.

$$\therefore \Phi_{\mathcal{P}}^{n,m,\#} \text{ is } (\Sigma \cup \Sigma_n) \text{-p.r.}$$

An important consequence of this theorem is that any Σ -computable function is Σ -recursive. From this follows an interesting theorem.

Theorem 44 If $f: \mathcal{D}_f \subseteq \omega^n \times \Sigma^{*m} \mapsto \varphi$, with $\varphi = \omega$ or $\varphi = \Sigma^*$, then there is a Σ -p.r. predicate $P: \mathbb{N} \times \omega^n \times \Sigma^{*m} \mapsto \omega$ and a Σ -p.r. function $g: \mathbb{N} \mapsto \varphi$ s.t. $f = g \circ M(p)$.

Informally, the theorem establishes that any recursive function is some transformation g of the minimal natural number which satisfies some predicate P. The proof is straightforward. Let \mathcal{P}_0 a program which computes f and \leq an order over Σ . Then

$$P := \lambda t \vec{x} \vec{\alpha} \left[Halt^{n,m} \left((t)_1, \vec{x}, \vec{\alpha}, \mathcal{P}_0 \right) \wedge (t)_2 = \#^{\leq} \left(E_{*1}^{n,m} \left((t)_1, \vec{x}, \vec{\alpha}, \mathcal{P}_0 \right) \right) \right]$$

Now let $g := \lambda t \left[* \le ((t)_2) \right]$

Both P and g are Σ -p.r. and evidently $f = g \circ M(P)$.

7.3 Interacting programs

Using the results of the previous section, we can construct programs that depend on other programs. This is illustrated with an example. Say Σ {@, +} and $\mathcal{P}_0 \in Pro^{\Sigma}$ is s.t. $0 \in \mathcal{D}_{\Psi_{\mathcal{P}_t}^{1,0,\#}}$ with $\Psi_{\mathcal{P}_0}^{1,0,\#}(0) = 2$. We will show

$$S = \left\{ x \in \mathcal{D}_{\Psi^{1,0,\#}_{\mathcal{P}_0}} : \Psi^{1,0,\#}_{\mathcal{P}_0}(x) \neq 0 \right\}$$

is Σ -enumerable.

The program will do the following. For each input x, it will test whether \mathcal{P}_0 halts when starting from $[[(x)_1]]$ in $(x)_2$ steps. If it doesn't it will simply return zero (since $0 \in S$). If it does, it will compute \mathcal{P}_0 starting from $[[(x)_1]]$; if the output is not zero, it will return it. If it is zero, it will return 0.

Of course, the program will make use of the $Halt^{1,0}$ function, which is Σ -recursive and thus has an associated macro. It will also use $E_j^{1,0}$ to retrieve the output of \mathcal{P}_0 after $(x)_2$ steps. This function is also Σ -p.r. and thus it also has an associated macro. The program is

$$IF \ N_1 \neq 0 \ GOTO \ L_1$$
 $GOTO \ L_2$
 $L_1 \ [N_3 \leftarrow (N_1)_1]$
 $[N_4 \leftarrow (N_1)_2]$
 $[IF \ Halt^{1,0}(N_4, N_3, \mathcal{P}_0) \ GOTO \ L_3]$
 $GOTO \ L_2$
 $L_3 \ [N_5 \leftarrow E_1^{1,0}(N_4, N_3, \mathcal{P}_0)]$
 $[IF \ N_5 = 0 \ GOTO \ L_2]$
 $N_1 \leftarrow N_5$
 $GOTO \ L_4$
 $L_2 \ N_1 \leftarrow 0$
 $L_4 \ SKIP$

Thus, a program may use another program to operate.

Theorem 45 *If S a* Σ -mixed set then these statements are equivalent:

- (1) S is Σ -enumerable
- (2) $S = I_F$ for $F : \mathcal{D}_F \subseteq \omega^n \times \Sigma^{*m} \mapsto S$ s.t. $F_{(i)}$ is Σ -computable for each $i = 1, \ldots, n + m$.
 - (3) S is the domain of a Σ -computable function.

Proof. (1)
$$\Rightarrow$$
 (2) Assume S is Σ -enumerable. Then there are programs $\mathcal{P}_1, \ldots, \mathcal{P}_{n+m}$ s.t. $S = \text{Image of } \left[\Psi_{\mathcal{P}_1}^{n,m,\#}, \ldots, \Psi_{\mathcal{P}_{n+m}}^{n,m,*}\right]$. Let $f = \left[\Psi_{\mathcal{P}_1}^{n,m,\#}, \ldots, \Psi_{\mathcal{P}_{n+m}}^{n,m,*}\right]$.

- $(2) \Rightarrow (3)$ Assume $S = I_F$ with F a function satisfying the specifications of the theorem. Let $\mathcal{P}_i \in Pro^{\Sigma}$ denote the program that computes $F_{(i)}$. It is possible to construct a program that, from an initial state $[[(\vec{x}, \vec{\alpha})]]$, does the following:
 - (0) Let $N_{n+1} \leftarrow 1$.
 - (1) Evaluate whether each \mathcal{P}_i with initial state

$$[[(x_{n+1})_1,\ldots,(x_{n+1})_n,(*^{\leq}(\alpha_{m+1}))_1,\ldots,(*^{\leq}(\alpha_{m+1}))_m]]$$

halts in $t = (x_{n+1})_{n+1}$ steps.

- (2) If the programs halt, proceed to step (3). Else let $N_1 \leftarrow N_1 + 1$ and return to (1).
- (3) Let N_{n+i} store the output of \mathcal{P}_i for $1 \le i \le n$, and P_{m+i} store the output of \mathcal{P}_i for $n+1 \le i \le m$.
- (4) If $N_{n+i} = N_i \wedge P_{m+i} = P_i$ for all $1B \leq n + m$ return 1. Else loop forever.

The reader may implement this program in the S^{Σ} language using the Halt function. The program attempts to (and must eventually succeed at) generating an element of S using the $F_{(1)},\ldots,F_{(n+m)}$ functions. It then compares whether the values of the input state are equal to the generated element of S. If this is true, then it outputs 1. Otherwise it loops forever. It is evident that the program computes $(\lambda \vec{x} \vec{\alpha} \ [1])_{|S}$.

- (3) \Rightarrow (1) Assume *S* is the domain of a Σ -computable function *f*. One can construct a program that does the following: Given a fixed $w \in S$ and a starting state [[x]],
 - (0) If $N_1 = 0$ set $N_1 \leftarrow w$ and finish.
 - (1) Check if \mathcal{P}_f halts starting from

$$[[(N_1)_1,\ldots,(N_1)_n,*^{\leq}((N_1)_{n+1}),\ldots,*^{\leq}((N_1)_{n+m})]]$$

in $(N_1)_{n+m+1}$ steps. If it does not, set $N_1 \leftarrow N_1 + 1$ and go to (1); else continue.

(2) Set $N_1, \ldots, N_n, P_1, \ldots, P_m$ so that the final state is

$$[[(N_1)_1,\ldots,(N_1)_n,*^{\leq}((N_1)_{n+1}),\ldots,*^{\leq}((N_1)_{n+m})]]$$

and finish.

This program is easy to implement in S^{Σ} . It is evident that it enumerates $\mathcal{D}_f = S$.

Problem 43 Let $\Sigma = \{@, +\}$ and $f : \mathcal{D}_f \subseteq \Sigma^* \mapsto \omega$ a Σ -computable function s.t. $f(\varepsilon) = 1$. Let

$$L = \left\{\alpha \in D_f : f(\alpha) = 1\right\}$$

Provide a program $Q \in Pro^{\Sigma}$ that enumerates L.

Let $\mathcal{P} \in Pro^{\Sigma}$ be the program that computes f. Our program Q, given a starting state [[x]], may operate as follows:

- (0) Check if the input is zero; if it is return ε . (This is important because we will generate strings with the $*^{\leq}$ function, which never maps to ε —without this condition our program would never enumerate ε !) (1) Compute $\beta := *^{\leq} ((x)_1), (x)_2$.
- (2) If \mathcal{P} halts in $(x)_2$ steps starting from β , compute it and go to next step; else return ε (since $\varepsilon \in L$).
- (3) If the output of \mathcal{P} was 1 return β ; else return ε .

$$[IF \ N_{1} = 0 \ GOTO \ L_{2}]$$

$$[P_{1} \leftarrow *^{\leq} ((N_{1})_{1})]$$

$$[N_{1} \leftarrow (N_{1})_{2}]$$

$$[IF \ Halt^{0,1} (N_{1}, P_{1}, \mathcal{P}) \ GOTO \ L_{1}]$$

$$GOTO \ L_{2}$$

$$L_{1} \ [N_{2} \leftarrow E_{*1}^{0,1} (N_{1}, P_{1}, \mathcal{P})]$$

$$[IF \ N_{2} = 1 \ GOTO \ L_{10}]$$

$$L_{2} \ P_{1} \leftarrow \epsilon$$

$$L_{10} \ SKIP$$

Problem 44 Let $\Sigma = \{@, +\}$ and $\mathcal{P}_0 \in Pro^{\Sigma}$. Show that

$$S = \left\{ (x, \alpha) : \Psi_{\mathcal{P}_0}^{1,0,\#}(x) = \Psi_{\mathcal{P}_0}^{0,1,\#}(\alpha) \right\}$$

is Σ -enumerable.

The program may operate as follows. Given an initial state [x],

- (1) Find $(x)_1, (x)_2$.
- (2) Evaluate whether \mathcal{P} halts in $(x)_2$ steps from $[[(x)_1]]$. If it does not, let x = x + 1 and return to (1). If it does go to (3).
- (3) Find $\alpha = * \le ((x)_3), (x)_4$.
- (4) Evaluate whether \mathcal{P} halts in $(x)_4$ steps from $[\alpha]$. If it doesn't let x = x + 1 and to (1); it it does go to (5).
- (5) Check whether the computation of \mathcal{P} from $[[(x)_1]]$ is the same as the computation of \mathcal{P} from $[[\alpha]]$. If it is not, let x = x + 1 and go to (1), else go to (6).
- (6) Set $N_1 \leftarrow (x)_1, P_1 \leftarrow \alpha$.

$$L_{0} \quad [N_{11} \leftarrow (N_{1})_{1}] \\ [N_{12} \leftarrow (N_{1})_{2}] \\ [IF \, Halt^{1,0} \, (N_{12}, N_{11}, \mathcal{P}) \, GOTO \, L_{1}] \\ N_{1} \leftarrow N_{1} + 1 \\ GOTO \, L_{0} \\ L_{1} \quad [P_{11} \leftarrow *^{\leq} ((N_{1})_{3})] \\ [N_{14} \leftarrow (N_{1})_{4}] \\ [IF \, Halt^{0,1} \, (N_{14}, P_{11}, \mathcal{P}) \, GOTO \, L_{2}] \\ N_{1} \leftarrow N_{1} + 1 \\ GOTO \, L_{0} \\ L_{2} \quad [IF \, E_{\#1}^{1,0} (N_{12}, N_{11}, \mathcal{P}) = E_{\#,1}^{0,1} \, (N_{14}, P_{11}, \mathcal{P}) \, GOTO \, L_{3}] \\ N_{1} \leftarrow N_{1} + 1 \\ GOTO \, L_{0} \\ L_{4} \quad N_{1} \leftarrow N_{11} \\ P_{1} \leftarrow P_{11}$$

Problem 45 *If* $S \subseteq \omega$ *and* $f : S \mapsto \omega$ *is* Σ -computable, then

$$W = \{x \in S : x \text{ is even } \land x/2 \in S \land f(x) = f(x/2)\}\$$

is Σ -enumerable.

There is some $\mathcal{P}_f \in Pro^{\Sigma}$ that computes f. : S is Σ -enumerable via some $\mathcal{P}_S \in Pro^{\Sigma}$. Let $w \in W$ an arbitrary element.

$$[IF \ N_1 = 0 \ GOTO \ L_{666}]$$

$$[N_2 \leftarrow (N_1)_1]$$

$$[N_3 \leftarrow (N_1)_2]$$

$$[N_4 \leftarrow \mathcal{P}_S(N_2)]$$

$$[N_5 \leftarrow \mathcal{P}_S(N_3)]$$

$$[IF \ N_4 \ \text{is odd} \ GOTO \ L_{666}]$$

$$[IF \ \gamma(N_5 = N_4/2) \ GOTO \ L_{666}]$$

$$[IF \ f(N_5) \neq f(N_4) \ GOTO \ L_{666}]$$

$$N_1 \leftarrow N_2$$

$$GOTO \ L_1$$

$$L_{666} \ [N_1 \leftarrow w]$$

$$L_1 \ SKIP$$

The program starting from [[x]] generates two elements of $s_1, s_2 \in S$ using $(x)_1, (x)_2$ —unless x = 0, where it just outputs w. If s_1 is even, and $s_2 = s_1/2$, and $f(s_1) = f(s_2)$, it outputs s_1 . Else it outputs w. It is clear that the program enumerates W.

Problem 46 Let $\Sigma = \{@, +\}$ and $\mathcal{P}_0 \in Pro^{\Sigma}$. Prove that

$$W = \{(x, \alpha, \beta) \in \omega \times \Sigma^* \times \Sigma^* : \mathcal{P}_0 \text{ halts from } [[x, \alpha, \beta]] \}$$

is Σ -enumerable.

Observe that $W = \mathcal{D}_f$ where $f = \Psi_{\mathcal{P}_0}^{1,2,\#}$. We have already proven that the domain of a Σ -computable function is Σ -enumerable. Then W is Σ -enumerable.

If the program is still desired, let $(w, \alpha, \beta) \in \mathcal{D}_f$ an arbitrary element of the domain of f. Then

$$[IF \ N_{1} = 0 \ GOTO \ L_{666}]$$

$$[N_{2} \leftarrow (N_{1})_{1}]$$

$$[P_{1} \leftarrow *^{\leq} ((N_{1})_{2})]$$

$$[P_{2} \leftarrow *^{\leq} ((N_{1})_{3})]$$

$$[N_{3} \leftarrow (N_{1})_{4}]$$

$$[IF \neg \left(Halt^{1,2}(N_{3}, N_{2}, P_{1}, P_{2}, \mathcal{P}_{f})\right) \ GOTO \ L_{666}]$$

$$N_{1} \leftarrow N_{2}$$

$$GOTO \ L_{1}$$

$$L_{666} \ [N_{1} \leftarrow w]$$

$$[P_{1} \leftarrow \alpha]$$

$$[P_{2} \leftarrow \beta]$$

$$L_{1} \ SKIP$$

enumerates W.

Problem 47 Let $\Sigma = \{@, +\}$ and $\mathcal{P}_0 \in Pro^{\Sigma}$. Let

$$L = \left\{\alpha \in \Sigma^* : (\exists x \in \mathbb{N}) \ \Psi_{\varphi_0}^{1,1,\#}(x^2,\alpha) = \Psi_{\varphi_0}^{0,2,\#}(\alpha,\alpha)\right\}$$

Provide a program $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ s.t. $\mathcal{D}_{\Psi^{1,0,*}_{\mathcal{P}}} = \omega$ and $I_{\Psi^{1,0,*}_{\mathcal{P}}} = L$.

Let $f = \Psi^{1,1,\#}_{\mathcal{P}_0}$, $g = \Psi^{0,2,\#}_{\mathcal{P}_0}$, which have associated macros by virtue of being Σ -computable. L is the set of strings $\alpha \in \Sigma^*$ s.t. some $x \in \mathbb{N}$ satisfies $f(x^2,\alpha) = g(\alpha,\alpha)$. Given an arbitrary $\varphi \in L$ and a starting state [[x]] we can construct \mathcal{P} as follows:

- (0) If $N_1 = 0$ return φ and finish.
- (1) Let $N_1 \leftarrow (N_1)_1, P_1 \leftarrow * \le ((N_1)_2)$.
- (2) Let $N_3 \leftarrow (N_1)_3, N_4 \leftarrow (N_1)_4$.
- (3) Evaluate whether \mathcal{P}_0 halts with input $[[N_1^2, P_1]]$ in N_3 steps. Evaluate whether \mathcal{P}_0 halts with input $[[P_1, P_1]]$ in N_4 steps. If both are true continue, else set $P_1 \leftarrow \varphi$ and finish.
- (4) Evaluate whether $f(N_1^2, P_1) = g(P_1, P_1)$. If false, set $P_1 \leftarrow \varphi$ and finish. Else continue.
- (5) Finish.

Since $((x)_1, *^{\leq} ((x)_2), (x)_3, (x)_4)$ over $x = 1, 2, \ldots$ explores all possible tuples $(x, \alpha, t_1, t_2) \in \omega \times \Sigma^* \times \omega \times \omega$, the program enumerates L.

Since every $\mathcal{P} \in Pro^{\Sigma}$ is a word in $\Sigma \cup \Sigma_p$, we can enumerate sets of programs $\mathcal{P} \subseteq (\Sigma \cup \Sigma_p)^*$. The enumeration of a set of programs is no different to the enumeration of any set of words. For example, say we want to enumerate

$$\mathcal{P} = \left\{ \mathcal{P} \in Pro^{\Sigma} : \Psi_{\mathcal{P}}^{n,m,\#}(10) = 10 \right\}$$

Observe that $SKIP \in (\Sigma \cup \Sigma_p)$ and the program $\mathcal{P} = SKIP \in \mathcal{P}$. Thus, an enumeration starting at [[x]] can proceed as follows:

- (1) If x = 0 let $P_1 \leftarrow SKIP$ and finish.
- (2) Take $\alpha = * \le ((x)_1), \varphi = (x)_2$.
- (3) If $\alpha \in Pro^{\Sigma}$ and \mathcal{P} halts at a state [[10]] when starting from [[10]] and in φ steps, let $P_1 \leftarrow \alpha$. Else let $P_1 \leftarrow SKIP$.

7.4 Church's thesis

Theorem 46 *If a* Σ -mixed function f is Σ -Turing computable then it is Σ -recursive.

Theorem 47 *If a* Σ -mixed function is Σ -computable then it is Turing-computable.

In virtue of the aforementioned theorems, we have that

Theorem 48 The following statements are equivalent:

- f is Σ -computable
- f is Σ -recursive
- f is Turing-computable

The theorem above extends to set decidability and enumerability. Church's thesis is the following:

Church's thesis. Every Σ -effectively computable function is Σ -recursive.

A formal proof of this thesis has not been given, but there's consensus around that fact that it is most likely true.

8 Extending Σ -recursion

We now extend the Σ -recursive paradigm with results which are easier to prove in the imperative paradigm.

Theorem 49 (Case division) Assume $f_i: \mathcal{D}_{f_i} \subseteq \omega^n \times \Sigma^{*m} \mapsto \varphi$, with $\varphi = \omega$ or $\varphi = \Sigma^*$ and i = 1, 2, ..., k, are Σ -recursive functions. If $\mathcal{D}_{f_i} \neq \mathcal{D}_{f_j}$ for any $i \neq j, i, j \in [1, k]$, then $f_1 \cup ... \cup f_k$ is Σ -recursive.

Proof. Let $\mathcal{P}_1, \ldots, \mathcal{P}_k \in Pro^{\Sigma}$ the programs that compute f_1, \ldots, f_k . We define $H_i = \lambda t \vec{x} \vec{\alpha} \left[Halt^{n,m} \left(t, \vec{x}, \vec{\alpha}, \mathcal{P}_i \right) \right]$. Assume $\varphi = \omega$.

Since $Halt^{n,m}$ is $(\Sigma \cup \Sigma_p)$ -p.r. it is Σ -p.r. Then it is Σ -computable and has an associated IF macro. Then the (pseudo)program

$$L_{0} : N\overline{n+1} \leftarrow N\overline{n+1} + 1$$

$$\left[IF \ Halt^{n,m} \left(N\overline{n+1}, N_{1}, \dots, N_{\overline{n}}, P_{1}, \dots, P_{\overline{m}}, \mathcal{P}_{1} \right) \ GOTO \ L_{2} \right]$$

$$\vdots$$

$$\left[IF \ Halt^{n,m} \left(N\overline{n+1}, N_{1}, \dots, N_{\overline{n}}, P_{1}, \dots, P_{\overline{m}}, \mathcal{P}_{k} \right) \ GOTO \ L_{2} \right]$$

$$L_{1} \left[N_{1} \leftarrow f_{1}(N_{1}, \dots, N\overline{n}, P_{1}, \dots, P\overline{m}) \right]$$

$$GOTO \ L\overline{n(\mathcal{P})}$$

$$L_{2} \left[N_{1} \leftarrow f_{2}(N_{1}, \dots, N\overline{n}, P_{1}, \dots, P\overline{m}) \right]$$

$$GOTO \ L\overline{n(\mathcal{P})}$$

$$\vdots$$

$$L\overline{k} \left[N_{1} \leftarrow f_{k}(N_{1}, \dots, N\overline{n}, P_{1}, \dots, P\overline{m}) \right]$$

$$L\overline{n(\mathcal{P})} \ SKIP$$

Evidently the (pseudo) program computes $f_1 \cup ... \cup f_k$. If $\varphi = \Sigma^*$ the change that is to be done is trivial.

Theorem 50 Let $f: \mathcal{D}_f \subseteq \omega^n \times \Sigma^{*m} \mapsto \varphi$, with $\varphi = \omega$ or $\varphi = \Sigma^*$, a Σ -recursive function. If $S \subseteq \mathcal{D}_f$ is Σ -recursively enumerable, then $f|_S$ is Σ -recursive.

Proof. We will not provide the explicit program but will describe what it should do.

S is Σ -recursively enumerable. \therefore it is Σ -enumerable. \therefore There are $F_{(1)},\ldots,F_{(n+m)}$ s.t. $S=I\left[F_{(1)},\ldots,F_{(n+m)}\right]$ with $F_{(i)}$ Σ -enumerable for each $i\in[1,n+m]$. \therefore There is a macro for each $F_{(i)}$.

A program that from a starting state $[[\vec{x}, \vec{\alpha}]]$

- (1) Generates an element of S using the macros of $F_{(1)}, \ldots, F_{(n+m)}$ from input variable $N\overline{n+1}$
- (2) If the coordinates of the generated element correspond to $(\vec{x}, \vec{\alpha})$, compute $f(\vec{x}, \vec{\alpha})$ and return this computation. Else continue
- (3) Let $N\overline{n+1} \leftarrow N\overline{n+1} + 1$ and go back to (1)

Evidently, this program computes $f_{|S|}$.

Theorem 51 Let S_1 , S_2 be Σ -recursive. Prove that $S_1 \cap S_2$, $S_1 \cup S_2$, $S_1 - S_2$ are Σ -recursive.

Proof. Complete.

Theorem 52 Let $S \subseteq \omega^n \times \Sigma^{*m}$. If S and $\omega^n \times \Sigma^{*m} - S$ are Σ -recursively enumerable, then S is Σ -recursive.

Corollary. If S is Σ -recursively enumerable, then it isn't necessarily Σ -recursive.

Proof. $\chi_S^{\omega^n \times \Sigma^{*m}} = C_1^{n,m}{}_{|S} \cup C_0^{n,m}{}_{|\omega^n \times \Sigma^{*m} - S}$ is Σ -recursive and by hypothesis $S, \omega^n \times \Sigma^{*m} - S$ are Σ -recursively enumerable. $\therefore S$ is Σ -recursive.

Problem 48 Provide a proof of the following theorem in the imperative paradigm.

Theorem 53 Let $S \subseteq \omega^n \times \Sigma^{*m}$. The following statements are equivalent.

- (1) S is Σ -recursively enumerable.
- (2) S is the domain of a Σ -recursive function f.
- (3) S is the image of a function $F: \mathcal{D}_f \subseteq \omega^n \times \Sigma^{*m} \mapsto S$ s.t. each $F_{(i)}$ is Σ -recursive.

Proof. We have proven before this holds for the imperative paradigm. Via paradigm equivalence then this holds for the recursive paradigm.

8.1 The Halting problem

When $\Sigma_p \subseteq \Sigma$, we define

$$AutoHalt^{\Sigma} = \lambda \mathcal{P}\left[(\exists t \in \omega) \, Halt^{0,1}(t,\mathcal{P},\mathcal{P}) \right]$$

Evidently, $AutoHalt^{\Sigma} \mapsto 1$ with input \mathcal{P} if \mathcal{P} halts when inputted to itself.

Theorem 54 AutoHalt^{Σ} is not Σ -effectively computable. This is, there exists no Σ -effectively computable program that determines if a program halts with itself as input.

Proof. Assume AutoHalt is Σ -computable. Then we can make $\mathcal P$

$$L_1$$
 [IF AutoHalt ^{Σ} (P_1) GOTO L_1]

Let the starting state be $[[\mathcal{P}]]$ itself. Observe that \mathcal{P} halts if \mathcal{P} does not halt, and if it does not halt then it halts. \bot This can be easily extended to effectively computable programs beyond the imperative paradigm.

9 Problems from final exams and the feared Tómbola

Problem 49 *If* \leq *is an order over* Σ *and* $|\Sigma| = n \geq 1$, *then*

$$|\alpha| \le x \iff \#^{\le}(\alpha) \le \sum_{i=0}^{i=x-1} nn^i$$

for whatever $x \in \mathbb{N}$, $\alpha \in \Sigma^*$.

Before proving that the statement is true, consider this example.

Let $\Sigma = \{w, z\}$ with $w \le z$; then the language list is

2 with
$$|\alpha| \le 1$$
 2^2 with $|\alpha| \le 2$ 2^3 with $|\alpha| \le 3$ 2^3 with $|\alpha| \le 3$ with $|\alpha| \ge 3$ with $|\alpha| \ge$

It is easy to see that this is generalizable, because there are always n^k words of length k in an alphabet of n symbols.

Proof. Any word of length k is a combination of k symbols from a set of n that can be drawn with repetition. There are n^k words of length k.

- (⇒) Assume $|\alpha| \le x$. There are $n^1 + \ldots + n^x$ words $\varphi \in \Sigma^*$ s.t. $|\varphi| \le x$, to each of which correspond a position $\#^{\le}(\varphi) \in \mathscr{W} := [1, \ldots, n^1 + \ldots + n^x]$. Since $\#^{\le}(\alpha) \in \mathscr{W}$ and $\max \mathscr{W} = n^1 + \ldots + n^x$ we have $\#^{\le}(\alpha) \le \sum_{i=1}^x n^x$. \blacksquare
 - (\Leftarrow) Assume $\#^{\leq}(\alpha) \leq n^1 + \ldots + n^x$ for $x \in \mathbb{N}$.

Assume $|\alpha| > x$.

 \therefore #\(\frac{1}{2}(\alpha) > #\(\frac{1}{2}(\beta)\) for any β s.t. $|eta| \leq x$. There are $n_1 + \ldots + n^x$ words eta s.t. $|eta| \leq x$. Then #\(\frac{1}{2}(\alpha) > n_1 + \ldots + n^x\), which is a contradiction.

 $|\alpha| \leq x$.

Problem 50 Let $\mathcal{P}_0 \in Pro^{\Sigma}$ and P be the predicate

$$\lambda t \vec{x} \vec{\alpha} [Halt^{n,m} \left(t, \vec{x}, \vec{\alpha}, \mathcal{P}_0 \right) \wedge (t)_1 = E_{\#1}^{n,m} (t, \vec{x}, \vec{\alpha}, \mathcal{P}_0))]$$

Then
$$\Psi_{\mathcal{P}_0}^{n,m,\#} = \lambda t \left[(t)_1 \right] \circ M(P)$$
.

Two functions are the same if their domains are equal and their ranges are equal.

(1)

$$\mathcal{D}_{\lambda t[(t)_1] \circ M(P)} = \mathcal{D}_{M(P)} = \{ (\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m} : (\exists t \in \omega) P(t, \vec{x}, \vec{\alpha}) = 1 \}$$

$$\mathcal{D}_{\Psi_{\mathcal{P}_0}^{n,m,\#}} = \{ (\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m} : \mathcal{P}_0 \text{ halts with starting state } [[\vec{x}, \vec{\alpha}]] \}$$

Any $(\vec{x}, \vec{\alpha}) \in \mathcal{D}_{M(P)}$ satisfies that \mathcal{P}_0 halts starting from $(\vec{x}, \vec{\alpha})$; this is, $\mathcal{D}_{M(P)} \subseteq \mathcal{D}_{\Psi^{n,m,\#}_{\mathcal{P}_0}}$. Now consider an arbitrary element $(\vec{x}, \vec{\alpha}) \in \mathcal{D}_{\Psi^{n,m,\#}_{\mathcal{P}_0}}$. We know \mathcal{P}_0 halts at t steps, for some $t \in \omega$, when starting from $[[\vec{x}, \vec{\alpha}]]$. This means it halts at t + k steps for any $k \in \mathbb{N}$. Then, given that input $(\vec{x}, \vec{\alpha})$, there are infinitely many $k \in \mathbb{N}$ s.t. the program halts at t + k steps, and thus there is some t' = t + k s.t. the output of the program is $(t')_1$. Then $\mathcal{D}_{\Psi^{n,m,\#}_{\mathcal{P}_0}} \subseteq \mathcal{D}_{M(P)}$.

- $\therefore \mathcal{D}_{M(P)} = \mathcal{D}_{\Psi_{\mathcal{P}_0}^{n,m,\#}}$
- (2) The value of M(P) is the least t s.t. \mathcal{P}_0 halts in t steps and s.t. the output \mathcal{P}_0 at halt is $(t)_1$. It is trivial to see then that $\Psi_{\mathcal{P}_0}^{n,m,\#} = \lambda t \, [(t)_1] \circ M(P)$.
 - ... The statement is true.

Problem 51 If f is Σ -computable then \mathcal{D}_f is Σ -recursive.

Assume f is Σ -computable. We know that \mathcal{D}_f is not necessarily Σ -computable itself. This directly implies \mathcal{D}_f is not necessarily Σ -recursive.

Problem 52 If
$$\mathcal{P} \in Pro^{\Sigma}$$
 s.t. $\mathcal{D}_{\Psi_{\varphi}^{1,0,*}} = \omega$ then $\mathcal{D}_{\Psi_{\varphi}^{1,1,*}} = \omega \times \Sigma^*$

The statement is false. Observe that the program $\mathcal{P}_{\#}$ s.t. $\Psi_{\mathcal{P}_{\#}}^{1,0,*} = \#^{\leq}$ satisfies the antecedent (that the function has an associated program follows from the fact that it is Σ -p.r. and hence Σ -computable).

Add to the first line of $\mathcal{P}_{\#}$ the instruction L_1 [IF $P_1 \neq \varepsilon$ GOTO L_1], which is a valid macro expansion because $\lambda \alpha$ [$\alpha \neq \epsilon$] is Σ -r and then Σ -computable. It is evident that this program still satisfies the antecedent, but does not satisfy the consequent, since

$$\mathcal{D}_{\Psi_{\rho_{\sharp}}^{1,1,*}} = \{(x,\alpha) \in \omega^{n} \times \Sigma^{*m} : \alpha = \varepsilon\}$$

Problem 53 Let M a Turing machine that computes $p_1^{2,0}$. Then M computes $p_1^{1,0}$.

The statement is not necessarily true. Consider the arbitrary instantaneous description

$$\lfloor q_0 B i^{x_1} B i^{x_2} \rfloor$$

The Turing machine may be programmed so that not having a i symbol after the second B symbol leads to a non-halting state. This could be done without loss of generality under the assumption that the Turing machine leads to a state $\lfloor q_f i^{x_1} \rfloor$. If this were true, then the Machine would not compute $p_1^{1,0}$.

Problem 54 Let $f, g : \omega \mapsto \omega$ s.t. $g \in PR^{\Sigma}$ and $f \in PR_3^{\Sigma} - PR_2^{\Sigma}$. Then $f \circ g \subset PR_5^{\Sigma} - PR_3^{\Sigma}$.

Recall that

$$PR_{k}^{\Sigma} = PR_{k-1}^{\Sigma} \cup \left\{ f \circ [f_{1} \dots f_{m}] : f, f_{i} \in PR_{k-1}^{\Sigma} \right\} \cup \left\{ R(f,g) : f, g \in PR_{k-1}^{\Sigma} \right\}$$

For brevity, we will call the second and third sets in the union A_{k-1} , B_{k-1} From the definition of PR_k^{Σ} follows that

$$PR_{3}^{\Sigma} - PR_{2}^{\Sigma} = PR_{2}^{\Sigma} \cup A_{2} \cup B_{2} - PR_{2}^{\Sigma}$$
$$= A_{2} \cup B_{2}$$

and

$$PR_5^{\Sigma} - PR_3^{\Sigma} = PR_4 \cup A_4 \cup B_4 - PR_3^{\Sigma}$$

= $(PR_3^{\Sigma} \cup A_3 \cup B_3) \cup A_4 \cup B_4 - PR_3^{\Sigma}$
= $A_3 \cup B_3 \cup A_4 \cup B_4$

From this follows that $g \in PR_3^{\Sigma}$, because $g \in A_2 \cup B_2$ is either a composition of functions from PR_2^{Σ} or a function built via primitive recursion with functions of PR_2^{Σ} .

Assume $f \in PR_k^{\Sigma}$ with k > 5. Then $f \circ g \in PR_6^{\Sigma}$. Then f is neither a composition of functions in $PR_3^{\Sigma} \cup PR_4^{\Sigma}$ nor built via primitive recursion by functions in $PR_3^{\Sigma} \cup PR_4^{\Sigma}$. In other words, $f \notin PR_5^{\Sigma} - PR_3^{\Sigma}$. This counter-example suffices to show that the statement is false.

Problem 55 Assume $\Sigma_p \subseteq \Sigma$. Show that for any $\mathcal{P} \in Pro^{\Sigma}$ there is some $Q \in Pro^{\Sigma}$ s.t.

$$\Psi_{\mathcal{P}}^{1,0,\#} \circ \Psi_{Q}^{1,0,\#} = id_{|Im(\Psi_{\mathcal{P}}^{1,0,\#})}$$

For any macro used give the predicate or function associated to it.

Let ${\mathcal P}$ an arbitrary program that computes a Σ -computable function f. Let ${\mathcal Q}$ be

$$N_5 \leftarrow N_1$$

$$L_1 \quad [N_2 \leftarrow f(N_3)]$$

$$[IF \ N_2 = N_5 \ GOTO \ L_2]$$

$$N_3 \leftarrow N_3 + 1$$

$$GOTO \ L_1$$

$$L_2 \quad N_1 \leftarrow N_3$$

where $[IF N_2 = N_5 GOTO L_2]$ denotes (for practicity) the macro $[IF P(V_1, V_2) GOTO A_1]$ with $P = \lambda xy [x = y]$ (which is trivially Σ -computable) and $[V_1 \leftarrow f(V_2)]$ is the macro associated to the Σ -computable function f.

Let
$$f:=\Psi^{1,0,\#}_{\mathcal{P}}, g:=\Psi^{1,0,\#}_{\mathcal{Q}}.$$
 We shall prove $f\circ g=id_{Im(f)}.$

- (1) Observe that Q halts if and only if starting from [[x]] with $x \in Im(f)$. The reason is that Q computes $f(N_3)$ with $N_3 = 0, 1, \ldots$ until $f(N_3) = N_5$. This will only happen if N_5 , which stores the input, is in Im(f).
- (2) Observe that Q starting from [[x]] returns a value y s.t. f(y) = x. In other words, $g(x) = y \Rightarrow f(y) = x$, or rather $(f \circ g)(x) = x$.

Points (1) and (2) entail that

$$(f\circ g)=Id_{Im(f)}\blacksquare$$

Problem 56 Let $\Sigma = \{@, +\}$ and $f : \omega^n \times \Sigma^{*m} \mapsto \omega$ a Σ -p.r. function. Show that the set

$$S = \left\{ (x, y, \alpha) : \exists z \in (\omega - \{1\}) : z \mid \sum_{k=y}^{x+y} f(k^y, \alpha)^x \right\}$$

is Σ -p.r.

The approach to the problem is to simplify S and then show that it is the domain of a Σ -p.r. function. Then, by virtue of the theorem which states that a set is Σ -p.r. iff it is the domain of a Σ -p.r. function, we shall have that S is Σ -p.r.

(1) Let $g = \lambda xy\alpha \left[\sum_{k=y}^{x+y} f(k^y, \alpha)^x \right]$. Let $\mathcal{D}_x = \{ z \in \omega : z \neq 1 \land z \mid x \}$. Evidently, for any $x \neq 1$, $\mathcal{D}_x \neq \emptyset$. So,

$$\langle \exists z \in (\omega - 1) : z \neq 1 : z \mid x \rangle \equiv x \neq 1$$

It follows that $S = \{(x, y, \alpha) : g(x, y, \alpha) \neq 1\}.$

(2) We will prove g is Σ -p.r. Simply observe that by assumption f is Σ -p.r. Then

$$H(x,y,z,\alpha) := f(x^y,\alpha)^z = \lambda xz \left[x^z\right] \circ \left[f \circ \left[\lambda xz \left[x^z\right] \circ \left[p_1^{3,1},p_2^{3,1},\right],p_4^{3,1}\right], \ p_3^{3,1}\right]$$

is Σ -p.r. Then

$$g = \lambda abxy\alpha \left[\sum_{k=a}^{k=b} H(k,y,x,\alpha) \right] \circ \left[p_2^{2,1}, \lambda xy \left[x+y \right] \circ \left[p_1^{2,1}, p_2^{2,1} \right], p_1^{2,1}, p_2^{2,1}, p_3^{2,1} \right]$$

The general summation of a Σ -p.r. function is Σ -p.r., and we have proven g is a composition of this general summation and Σ -p.r. functions. Then g is Σ -p.r.

(3) Observe that $\mathcal{D}_{Suc\circ(Suc\circ g)}$ is Σ -p.r. because the function is Σ -p.r. Evidently, this set is closely related to S, insofar as

$$\mathcal{D}_{Suc\circ(Suc\circ g)} = \{(x, y, \alpha) : g(x, y, \alpha) \neq 1 \land g(x, y, \alpha) \neq 0\}$$

Now consider the set $S' = \{(x, y, \alpha) : g(x, y, \alpha) = 0\}$, potentially empty. The set is Σ -p.r. because

$$\chi_{S'}^{2,1} = \begin{cases} 1 & g(x, y, \alpha) = 0 \\ 0 & otherwise \end{cases}$$

is
$$\lambda xy [x = y] \circ \left[g \circ \left[p_1^{2,1}, p_2^{2,1}, p_3^{2,1} \right], C_0^{2,1} \right]$$

Then, because the union of Σ -p.r. sets is Σ -p.r. we have

$$\mathcal{D}_{Suc\circ(Suc\circ g)}\cup S'=S$$

is Σ -p.r.

Problem 57 Let

$$L = \left\{ \mathcal{P} \in Pro^{\Sigma} : (\exists x \in \omega) \ \Psi^{1,1,*}_{\mathcal{P}}(x,\varepsilon) = \varepsilon \right\}$$

Find a
$$Q \in Pro^{\Sigma}$$
 s.t. $Im(\Psi_Q^{1,0,*}) = L$ and $\mathcal{D}_{\Psi_Q^{1,0,*}} = \omega$

The problem essentially asks for a program Q that enumerates L. Let \mathcal{P} be fixed, arbitrary element of L (For example SKIP, which evidently belongs to L). Using the fact that $(\Sigma \cup \Sigma_p)^*$ is Σ -enumerable (it is $(\Sigma \cup \Sigma_p)$ -total), we can write Q to reproduce the following algorithm with an input x:

- (1) If x = 0 return \mathcal{P} and stop. Else continue.
- (2) Enumerate $(\Sigma \cup \Sigma_p)$ with input $(x)_1$ and store the word in \mathcal{P}' .
- (3) If \mathcal{P}' , from a starting state $[[(x)_2, \varepsilon]]$, halts in $(x)_3$ steps with final state $[[\epsilon]]$, output \mathcal{P}' and finish.
- (4) Output \mathcal{P} .

Let Φ the Σ -computable program which enumerates $(\Sigma \cup \Sigma_p)^*$ and $[V_1 \leftarrow \Phi(V_2)]$ its associated macro. Let $[W_1 \leftarrow \mathcal{P}]$ be the macro that assigns to W_1 the word $\mathcal{P} \in L$. Then the program Q given by

$$IF \ N_1 \neq 0 \ GOTOL_1$$
 $GOTO \ L_4$
 $L_1 \ [P_1 \leftarrow \Phi((N_1)_1)]$
 $[IF \ Halt^{1,1} \ ((N_1)_3, (N_1)_2, \varepsilon, P_1) \ GOTO \ L_2]$
 $GOTO \ L_4$
 $L_2 \ [IF \ E_{*1}^{1,1} \ ((N_1)_3, (N_1)_2, \varepsilon, P_1) \neq \varepsilon \ GOTO \ L_4]$
 $GOTO \ L_5$
 $L_4 \ [P_1 \leftarrow \mathcal{P}]$
 $L_5 \ SKIP$

enumerates L.

Note. Observe that Halt, $(x)_i$, $\lambda\alpha\beta$ [$\alpha\neq\beta$], $E^{1,1}_{*i}$ are all Σ -p.r. Then their compositions are Σ -p.r. and then Σ -computable. By alphabet independence they are $(\Sigma \cup \Sigma_p)$ -computable \therefore The macros used in the program are all valid.

Problem 58 Let $\Sigma = \{@,?,\sim\}$. Prove that

$$S = \{(x, \alpha, \beta) \in \mathbb{N} \times \Sigma^* \times \{?, \sim\}^* : x = t^2 \text{ for some } t \in \mathbb{N} \lor \alpha = \beta\}$$
 is Σ -p.r.

S is Σ -p.r. iff $\chi_S^{1,2}$ is Σ -p.r. Evidently

$$\chi_S^{1,2} = \lambda x \alpha \beta \left[\left((\exists t \in \omega)_{t \le x} \ x = t^2 \ \lor \alpha = \beta \right) \land |\beta|_@ = 0 \right]$$

We will show this function is Σ -p.r. by separating the predicates and showing that each is Σ -p.r. One must only be careful in ensuring that the predicates have the same domains.

(1) Let $P_1 = \lambda x \alpha \beta \left[(\exists t \in \omega)_{t \le x} x = t^2 \right]$. (Of course $x = t^2 \Rightarrow t \le x$, hence the natural bound.) Of course, this is

$$\lambda ux\alpha\beta\left[(\exists t\in\omega)_{t\leq u}\;t=x^2\right]\circ\left[p_1^{1,2},p_1^{1,2},p_2^{1,2},p_3^{1,2}\right]$$

It is a theorem that $\lambda x \vec{x} \vec{\alpha} [(\exists t \in \omega)_{t \le x} Q(\vec{x}, \vec{\alpha})]$, with Q a predicate, is Σ -p.r. if Q is Σ -p.r. In our case it is evident that $t = x^2$ is Σ -p.r. and hence P is Σ -p.r.

- (2) It is a theorem that $P_2 := \lambda x \alpha \beta [\alpha = \beta]$ is Σ -p.r. (3) Let $f = C_0^{0,0}$ and \mathcal{G} be the following indexed family of functions:

$$\mathcal{G}: \Sigma \mapsto \left\{ Suc \circ p_{1}^{1,1}, p_{1}^{1,1} \right\}$$
@ \(\to Suc \circ p_{1}^{1,1}\)
? \(\to p_{1}^{1,1}\)
\(\to p_{1}^{1,1}\)
\(\to \to p_{1}^{1,1}\)

Then evidently $P_3 := \lambda x \alpha \beta [|\beta|_@] = R(f, \mathcal{G})$ is Σ -p.r.

Since all these predicates are Σ -p.r. and have identical domains, then

$$\chi_{\rm S}^{1,2} = (P_1 \vee P_2) \wedge P_3$$

is well-defined and Σ -p.r.

Problem 59 Assume $f: \mathcal{D}_f \subseteq \Sigma^* \mapsto \omega$ is Σ -effectively computable and $g: \mathcal{D}_g \subseteq \Sigma \mapsto \omega$ is Σ -effectively computable. Show

$$L = \{ \alpha \in \mathcal{D}_f \cap \mathcal{D}_g : f(\alpha) = g(\alpha) \}$$

is Σ -effectively enumerable. Assume $\varepsilon \in L$.

Let \mathbb{P}_f , \mathbb{P}_g be the effective procedures which compute f, g respectively. Let \mathbb{P}_L be the following effective procedure, with a unique input $x \in \omega$:

- (1) If x = 0 go to step (7); otherwise go to step (2)
- (2) Let $\alpha = * \le ((x)_1)$.
- (3) If $|\alpha| > 1$ let x = x + 1 and go to step (2). Otherwise, go to step (4).
- (4) Do $(x)_2$ steps of procedure \mathbb{P}_f with input α . If the program finished, return its output in φ and go to (5). If it didn't finish, let x = x + 1 and go to (2).
- (5) Do $(x)_3$ steps of procedure \mathbb{P}_g with input α . If the program finished, store its output in ψ and go to (7); otherwise let x = x + 1 and go to (2).
- (6) If $\varphi = \psi$ go to (8)
- (7) Let $\alpha = \varepsilon$.
- (8) Return α .

The procedure enumerates L.

Problem 60 Determine true or false for the following statements.

(1) $Num^* \neq \omega$.

Certainly true. In fact $Num^* \cap \omega = \emptyset$. The elements of Num are symbols denoting the natural numbers and zero, but *are not* these numbers.

(2) $\{(\omega, 2) \text{ is a function whose domain is } \omega \}$

Tuples containing sets are not defined. Hence $(\omega, 2)$ is an undefined and meaningless expression. The statement is false. However, observe that the set $\{(x, 2) : x \in \omega\}$ is the function $C_2^{1,0}$.

(3) If $(\vec{s}, \vec{\sigma})$ is a state of S^{Σ} , then $Ti(\vec{s}) = n$ -tuple for some n.

The statement is false. By definition, the state of a program in S^{Σ} is a 2-tuple whose first element is a member of $\omega^{[\mathbb{N}]}$. This is the set of infinite tuples that contain only zeros from some index onwards. Then \vec{s} is infinite.

(4) Let $\Sigma = \{@, \sim\}$. Then $\lambda \alpha [@\alpha]$ is the function

$$R\left(C_{@}^{0,0},\left\{(@,d_{@}\circ p_{2}^{0,2}),(\sim,d_{\sim}\circ p_{2}^{0,2})\right\}\right)$$

Let G denote the indexed family of functions which the statement associates to R.

The first observation is that the domains are correct. Since $\lambda \alpha$ [@ α] does recursion over an alphabetic var, mapping to alphabetic values, and has type (0, 1, *), then $f \sim (0, 0, *)$ and $\mathcal{G}_a \sim (0, 2, *)$ for all $a \in \Sigma$.

Evidently $R(f,g)(\epsilon) = @$ which makes the base case function correct. Now, the indexed family of functions maps

$$R(f,g)(\alpha w) = dw \circ R(\alpha)$$

We can prove this is not correct. Let $\alpha \in \Sigma^*$ be s.t. $|\alpha| = n$. Then

$$R(\alpha w) = R(\alpha)w$$

$$= R(\widehat{\alpha})w[\alpha]_{n}$$

$$= R(\widehat{\alpha})w[\alpha]_{n}[\alpha]_{n-1}$$

$$\vdots$$

$$= R(\varepsilon)w[\alpha]_{n}[\alpha]_{n-1}\dots[\alpha]_{1}$$

$$= @w[\alpha]_{n}[\alpha]_{n-1}\dots[\alpha]_{1}$$

Evidently R(f,g) appends @ to the start of the reciprocal of α , which is not what $\lambda \alpha$ [@ α] does.

(5) For whatever $\alpha \in \Sigma^*$, we have $[\varepsilon \alpha]_1 \neq \varepsilon$.

This is false. Assume $\alpha = \varepsilon$. Then $\varepsilon \alpha = \varepsilon$ and $[\varepsilon \alpha]_1 = [\varepsilon \varepsilon]_1 = [\varepsilon]_1 = \varepsilon$.

(6) Let Σ a finite alphabet. Let $S = \{(x, y) \in \omega \times \mathbb{N} : \sqrt{x} \in \mathbb{Q}\}$. Then S is a Σ -mixed set.

By definition, a Σ -mixed set is any set W that satisfies $W \subseteq \omega^n \times \Sigma^{*m}$ for $n, m \ge 0$. Evidently, $S \subseteq \omega \times \mathbb{N}$ does not satisfy this.

(7)
$$f$$
 is Σ-mixed iff $\exists n, m \ge 0$ s.t. $\mathcal{D}_f \subseteq \omega^n \times \Sigma^{*m} \wedge I_f \subseteq \omega \cup \Sigma^*$

The statement is false. The image of a Σ -mixed function must be *either* ω or Σ^* , but it cannot be the union of these.

(8) Let $M = (Q, \Sigma, \Gamma, \delta_0, q_0, B, F)$ a deterministic Turing machine and assume Q is an alphabet disjoint from Γ . Let $d, d' \in \mathbb{D}$. Then it is the case that

$$d \vdash^1 d' \Rightarrow d \neq d'$$

The statement is clearly false. We can provide a counter-example. Let Σ be an arbitrary language. Assume the machine has any non-zero number of states, some of which are final states. If $\delta(q_0, x) = \{(q_0, x, K)\}$ for any $x \in \Sigma$. Let d be the instantaneous description of the machine when it starts. Obviously, $d \vdash^n d$ for any $n \in \mathbb{N}$.

(9) Let M a Turing machine exactly like the one above. Let $d \in \mathbb{D}$. Then if $d \vdash d$ we have that M halts starting from d.

The statement is false. We say a machine halts starting from d

- $(1) d \vdash^* d'$
- $(2) d' \times d''$

for d', $d'' \in \mathbb{D}$. The scenario described does not meet this definition, because $d \vdash d$ implies that it is not true that $d \not\vdash d'$.

(1) $Ins \subseteq Pro^{\Sigma}$

The statement is false. Instructions in Ins^{Σ} may not satisfy the GOTO law.

(2) Let $\Sigma = \Sigma_p$. Then

$$\Psi^{2,1,*}_{\text{PI}\leftarrow\text{PI}.\text{SPI}\leftarrow\text{PI}.\text{KPI}\leftarrow\text{PI}.\text{IPI}\leftarrow\text{PI}.\text{P}} = \lambda\alpha\beta[\alpha\beta] \circ \left[p_1^{2,1},C_{\text{SKIP}}^{2,1}\right]$$

The word $P_1 \leftarrow P_1.SP_1 \leftarrow P_1.KP_1 \leftarrow \dots$ is not a program since it is not a concatenation of instructions.

10 Final 2019-07

Problem 61 Let

$$L = \left\{ \mathcal{P} \in Pro^{\Sigma_p} : (\exists x \in \mathbb{N}) \ \Psi_{\mathcal{P}}^{1,1,*}(x, EBE) = EBE \right\}$$

Find a program $Q \in Pro^{\Sigma_p}$ that enumerates L. For each macro used, give the associated Σ_p -computable function.

Observe that $SKIP \in L$. Observe that Σ_p^* is Σ_p -enumerable (because it is Σ_p -total). Furthermore, Pro^{Σ_p} is Σ -p.r. and therefore $\chi_{Pro^{\Sigma_p}}^{\Sigma_p}$ is Σ -recursive and hence Σ -computable. Let $\mathcal{F}(x)$ be the Σ -computable function which enumerates Σ_p^* . Then

$$[IF \ N_{1} = 0 \ GOTO \ L_{666}]$$

$$[N_{2} \leftarrow (N_{1})_{1}]$$

$$[N_{3} \leftarrow (N_{1})_{2}]$$

$$[N_{4} \leftarrow (N_{1})_{3}]$$

$$[P_{1} \leftarrow \mathcal{F}(N_{2})]$$

$$[IF \ P_{1} \in Pro^{\Sigma_{p}} \ GOTO \ L_{1}]$$

$$GOTO \ L_{666}$$

$$L_{1} \ [IF \ Halt^{1,1} \ (N_{3}, N_{4}, EBE, P_{1}) \ GOTO \ L_{2}]$$

$$GOTO \ L_{666}$$

$$[IF \ E_{*1}^{1,1} \ (N_{3}, N_{4}, EBE, P_{1}) = EBE \ GOTO \ L_{3}]$$

$$L_{666} \ P_{1} \leftarrow SKIP$$

$$L_{3} \ SKIP$$

enumerates L.

Since $E_{*1}^{1,1}$ is Σ_p -p.r. and $\lambda\alpha\beta$ [$\alpha=\beta$] is Σ -p.r. the macro [$IF\ E_{*1}^{1,1}\ldots$] etc. is trivially associated to a Σ -computable. The same can be said of the macro that uses $Halt^{1,1}$.

Problem 62 Let $\Sigma = \{@, \sim\}$. Let

$$\mathcal{F}: \{x \in \omega : x \text{ is odd }\} \times \Sigma^* \mapsto \omega$$

$$(x, \alpha) \mapsto \begin{cases} x & x \geq 3 \\ |\alpha| & otherwise \end{cases}$$

Prove that \mathcal{F} *is* Σ -p.r.

We will present two different proofs of this fact.

- (1) Observe that $\mathcal{D}_{\mathcal{F}} = \{x \in \omega : x \text{ is odd}\} \times \Sigma^*$. Since $\lambda xy [x \mid y]$ is Σ -p.r. we have $\lambda x [2 \mid x]$ is Σ -p.r. The negation of a Σ -p.r. predicate is Σ -p.r. and then $\lambda x [2 \nmid x]$ is Σ -p.r. It is then evident that $\chi_{\mathcal{D}_{\mathcal{F}}}^{\omega \times \Sigma^*} = \lambda x [2 \nmid x]$ is Σ -p.r.
- $\therefore \mathcal{F} \text{ is } \Sigma\text{-p.r.}$
- (2) Let $\mathcal{F}_1(x,\alpha) = x$ and $\mathcal{F}_2(x,\alpha) = |\alpha|$. It is trivial to see both are Σ -p.r. Furthermore, the set $S_1 := \{(x,\alpha) : x \text{ is odd } \land x \geq 3\}$ is Σ -p.r. (trivial) So is the set $S_2 := \{(x,\alpha) : x \text{ is odd } \land x < 3\}$. Then $\mathcal{F}_{1|S_1}, \mathcal{F}_{2|S_2}$ are both Σ -p.r. Since $S_1 \cap S_2 = \emptyset$, we have $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$.
- $\therefore \mathcal{F}$ is Σ -p.r.

Problem 63 Determine true or false for the following statements.

(1) $\{(\omega, w)\}$ is a function whose domain is ω .

The statement is false. In all rigour, $\{(\omega, w) = (\{0, 1, 2, ...\}, w)\}$ which is not a function.

(2) The function x + 1 is Σ -mixed for whatever alphabet Σ .

The expression x + 1 is undefined. If x were defined over \mathbb{Z} , for example, the function would not be Σ -mixed.

(3) Let $\mathbb P$ an effective procedure which computes $f:\mathcal D_f\subseteq\omega\mapsto\omega$. Then the input set of $\mathbb P$ is $\mathcal D_f$

By definition we say \mathbb{P} computes f if \mathbb{P} halts from input $(\vec{x}, \vec{\alpha}) \in \mathcal{D}_f$ with output $f(\vec{x}, \vec{\alpha})$ and does not halt for $(\vec{x}, \vec{\alpha}) \notin \mathcal{D}_f$. However, the proper input set of the procedure is precisely $\omega^n \times \Sigma^{*m}$. So the statement is false.

(4) Let $\Sigma = \{@, *\}$. Then

$$R(p_1^{0,1}, \left\{ (@, p_3^{0,3}), (*, d_* \circ p_3^{0,3}) \right\}) (@*, @*) = @***$$

Let $\mathcal{F} = R(f, g)$. Then by def.

$$\mathcal{F}(@*, @*) = R(@*, @)*$$

$$= R(@*, \varepsilon)*$$

$$= @ **$$

The statement is false.

(5) If P_1, P_2, P_3 are Σ -p.r. predicates with equal domains, then $(P_1 \vee p_2 \wedge P_3)$ is Σ -p.r.

The statement is true by theory.

(6) Let Σ an alphabet and $\mathcal{P} \in Pro^{\Sigma}$. Then

$$\Phi^{n,m}_* \circ \left[p_1^{n,m},\ldots,p_{n+m}^{n,m},C_{\mathcal{P}}^{n,m}\right]$$

is a Σ -mixed function.

 Φ is undefined and hence the statement is false.

(7) If *M* a Turing machine then $\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{L, R, K\}$

The statement is false, insofar as the domain of δ is $\mathcal{D}_{\delta} \subseteq Q \times \Gamma$ but may not be $Q \times \Gamma$.

(8) If $\mathcal{P} \in Pro^{\Sigma}$ is s.t. GOTO is not a sub-word of \mathcal{P} , then $\Psi^{1,0,\#}_{\mathcal{P}}$ is Σ -p.r.

(1) Sea $\mathcal{P}_0 \in Pro^{\Sigma}$ un programa fijo que no tiene enunciados que involucren la sub-palabra GOTO. Podemos deducir que \mathcal{P}_0 se detiene siempre en $n(\mathcal{P}_0) + k$ pasos, con $k \geq 0$. En otras palabras, $\lambda tx \left[Halt^{1,0}(t,x,\mathcal{P}_0) \right] \geq n(\mathcal{P}_0)$. De esto se sigue por definición de $T^{1,0}$ que $T^{1,0}(x,\mathcal{P}_0) = n(\mathcal{P}_0)$ para cualquier $x \in \omega$, o más formalmente

$$\lambda x \left[T^{1,0}(x, \mathcal{P}_0) \right] = \lambda \mathcal{P} \left[n(\mathcal{P}) \right] \circ C_{\mathcal{P}_0}^{1,0}$$

Duda. Por teorema $\lambda \mathcal{P}\left[n(\mathcal{P})\right]$ es $(\Sigma \cup \Sigma_p)$ -p.r. Luego, para nuestro \mathcal{P}_0 fijo, sucede que $\lambda x\left[T^{1,0}(x,\mathcal{P}_0)\right]$ es $(\Sigma \cup \Sigma_p)$ -p.r. Pero esto no parece ser necesario para continuar la demostración. Es decir, todo lo que viene ahora prescinde de este hecho. ¿O me equivoco?

(2) Recuerde que $\lambda x \left[\Psi^{1,0,\#}_{\mathcal{P}_0}(x) \right]$ es, por definición, el valor que resulta en la primer variable numérica de \mathcal{P}_0 cuando termina partiendo de [[x]]. Puesto que sabemos que \mathcal{P}_0 termina en $n(\mathcal{P}_0)$ pasos, es evidente por la misma definición de $E^{1,0}_{\#_j}$ que

$$\begin{split} \lambda x \left[\Psi_{\mathcal{P}_0}^{1,0,\#}(x) \right] &= \lambda x \left[E_{\#1}^{1,0}(n(\mathcal{P}_0),x,\mathcal{P}_0) \right] \\ &= \lambda t x \mathcal{P} \left[E_{\#1}^{1,0}(t,x,\mathcal{P}) \right] \circ \left[\lambda \mathcal{P} \left[n(\mathcal{P}) \right] \circ C_{\mathcal{P}_0}^{1,0}, p_1^{1,0}, C_{\mathcal{P}_0}^{1,0} \right] \end{split}$$

La función constante, la proyección, y $\mathcal{AP}\left[n(\mathcal{P})\right]$ son $(\Sigma \cup \Sigma_p)$ -p.r. Luego la función dada arriba es $(\Sigma \cup \Sigma_p)$ -p.r. Por independencia del alfabeto, se sigue que es Σ -p.r.

$$\therefore \lambda x \left[\Psi_{\mathcal{P}_0}^{1,0,\#}(x) \right] \text{ es } \Sigma\text{-p.r.} \blacksquare$$

De esto se sigue trivialmente que $T^{1,0}(x,\alpha,\mathcal{P}) \leq n(\mathcal{P})$. Puesto que (por un teorema del teórico) la función $\lambda\mathcal{P}\left[n(\mathcal{P})\right]$ es $(\Sigma \cup \Sigma_p)$ -p.r., tenemos que $T^{1,0}(x,\alpha,\mathcal{P})$ es menor o igual a una función $(\Sigma \cup \Sigma_p)$ -p.r. Recordemos el teorema que establece que

Si $P: \mathcal{D}_f \subseteq \omega^n \times \Sigma^{*m}$ un predicado Σ -p.r. y $M(P) \leq f(\vec{x}, \vec{\alpha})$ con f una función Σ -p.r., entonces M(P) es Σ -p.r.

El predicado $Halt^{n,m}$ es $(\Sigma \cup \Sigma_p)$ -p.r. para cualesquiera $n,m \in \omega$. Luego $T^{1,0}(x,\mathcal{P})$ es $(\Sigma \cup \Sigma_p)$ -p.r.

(2) Denotemos $\mathcal{T} = \lambda x \left[T^{1,0}(x,\mathcal{P}) \right]$ y $\mathcal{E} = \lambda x \left[E_\#^{1,0}(\mathcal{T}(x),x,\mathcal{P}) \right]$. Es decir, \mathcal{E} mapea un elemento x al valor de la primer variable numérica que resulta de ejecutar \mathcal{P} desde el estado [[x]], donde \mathcal{P} termina con la cantidad mínima de pasos. Es evidente entonces que $\Psi_\mathcal{P}^{1,0,\#} = \mathcal{E}$. Pero dado que

$$\mathcal{T} = T^{1,0} \circ \left[p_1^{1,0}, C_{\mathcal{P}}^{1,0} \right]$$

es evidentemente ($\Sigma \cup \Sigma_p$)-p.r., y $E_{\#}^{1,0}$ es ($\Sigma \cup \Sigma_p$)-p.r., entonces

$$\mathcal{E} = E_{\#}^{1,0} \circ [\mathcal{T} \circ p_{1}^{1,0}, p_{1}^{1,0}, C_{\mathcal{P}}^{1,0}]$$

es $(\Sigma \cup \Sigma_p)$ -p.r. Por independencia del alfabeto, $\mathcal E$ is Σ -p.r. Pero $\Psi_{\mathcal P}^{1,0,\#} = \mathcal E$.

11 Finales

11.1 Final 2020-02

Problem 64 *Let* $\Sigma = {\sim, @}$ *and*

$$L = \left\{ \mathcal{P} \in Pro^{\Sigma} : \exists \alpha \in \Sigma^* : \Psi_{\mathcal{P}}^{1,1,\#}(5,\alpha@) = |\mathcal{P}| \right\}$$

Provide a program $Q \in Pro^{\Sigma \cup \Sigma_p}$ *that enumerates* L.

Observe that $\varphi := N1 \leftarrow N1 \in L$, since $|N1 \leftarrow N1| = 5$ and hence $\Psi_{\varphi}^{1,1,\#}(5,\alpha) = 5 = |\varphi|$ for all $\alpha \in \Sigma^*$.

Let $\mathcal{F}_{\Sigma \cup \Sigma_p}$ be the function which enumerates $(\Sigma \cup \Sigma_p)^*$ (which is enumerable by virtue of being $(\Sigma \cup \Sigma_p)$ -total) and \mathcal{F}_{Σ} that which enumerates Σ^* (enumerable by the same reason).

The desired program is then

$$IF \ N_{1} \neq 0 \ GOTO \ L_{1}$$

$$GOTO \ L_{666}$$

$$L_{1} \ [N_{2} \leftarrow (N_{1})_{1}]$$

$$[N_{3} \leftarrow 5]$$

$$[N_{4} \leftarrow (N_{1})_{2}]$$

$$[N_{5} \leftarrow (N_{1})_{3}]$$

$$[P_{1} \leftarrow \mathcal{F}_{\Sigma \cup \Sigma_{p}}(N_{5})]$$

$$[P_{2} \leftarrow \mathcal{F}_{\Sigma}(N_{4})]$$

$$P_{2} \leftarrow P_{2}.@$$

$$[IF \ P_{1} \in Pro^{\Sigma} \ GOTO \ L_{2}]$$

$$GOTO \ L_{666}$$

$$L_{2} \ [IF \ Halt^{1,1}(N_{2}, N_{3}, P_{2}, P_{1}) \ GOTO \ L_{3}]$$

$$GOTO \ L_{666}$$

$$L_{3} \ [N_{6} \leftarrow |P_{1}|]$$

$$[IF \ E_{*1}^{1,1}(N_{2}, N_{3}, P_{2}, P_{1}) = N_{6} \ GOTO \ L_{4}]$$

$$GOTO \ L_{666}$$

$$L_{666} \ [P_{1} \leftarrow \varphi]$$

$$L_{4} \ SKIP$$

Problem 65 Let $\Sigma = \{@, *\}$ and $S = \{(x, \alpha) \in \omega \times \Sigma^* : [\alpha]_1 = *\}$. Prove that the function

$$F(x,\alpha) = \begin{cases} \prod_{i=x}^{i=x^2} x^i & x \le |\alpha| \\ |\alpha|^2 & otherwise \end{cases}$$

is Σ -p.r.

We shall use division by cases. First, observe that

$$\mathcal{D}_f = \{(x, \alpha) \in \omega \times \Sigma^* : x \le |\alpha|\} \cup \{(x, \alpha) \in \omega \times \Sigma^* : x > |\alpha|\}$$

Call each term in the union of \mathcal{D}_f S_1 , S_2 (left to right). It is evident that $S_1 \cap S_2 = \emptyset$.

(1) Let $F_1 := \lambda x \alpha \left[\prod_{i=x}^{i=x^2} x^i \right]$. It is easy to observe that

$$F_1 = \lambda abx\alpha \left[\prod_{i=a}^{i=b} x^i \right] \circ \left[p_1^{1,1}, \lambda x \left[x^2 \right] \circ p_1^{1,1}, p_1^{1,1}, p_1^{1,1}, p_2^{1,1} \right]$$

The general productorial $\lambda abx\alpha\left[\prod_{i=a}^{i=b}x^i\right]$ is Σ -p.r. if and only if $\lambda xi\left[x^i\right]$ is Σ -p.r. We know that exponentiation is Σ -p.r. Then the general productorial is Σ -p.r. Then F_1 is Σ -p.r.

(2) It is trivial to observe that $F_2 = \lambda x \alpha \left[|\alpha|^2 \right]$ is Σ -p.r. Simply observe that

$$\lambda x \alpha[|\alpha|^2] = \lambda x y \left[x^y \right] \circ \left[\lambda \alpha \left[|\alpha| \right] \circ p_2^{1,1}, p_1^{1,1} \right]$$

- (3) Both S_1, S_2 are Σ -recursive. This is simple to prove. Simply observe that $\chi_{S_1}^{\omega \times \Sigma^*} = \lambda x \alpha \left[x \leq |\alpha| \right] = \lambda x y \left[x < y \right] \circ \left[p_1^{1,1}, \lambda \alpha \left[|\alpha| \right] \circ p_2^{1,1} \right]$ which is evidently Σ -p.r. That $\chi_{S_2}^{\omega \times \Sigma^*}$ is Σ -p.r. is proven similarly.
- (4) It is a theorem that a Σ -p.r. function restricted to a Σ -p.r. set is Σ -p.r. Then $F_{1|S_1}$, $F_{2|S_2}$ are Σ -p.r. It is obvious that $F = F_{1|S_1} \cup F_{2|S_2}$.
- \therefore By case division, F is Σ -p.r.

11.2 Final 2022-07

Problem 66 Let $\Sigma = \{@, !\}$ and

$$L = \left\{ \mathcal{P} \in Pro^{\Sigma} : @@ \in Im\left(\Psi_{\mathcal{P}}^{2,1,*}\right) \right\}$$

Find a program that belongs to L and then give $Q \in Pro^{\Sigma \cup \Sigma_p}$ s.t. $\mathcal{D}_Q = \omega$ and Im(Q) = L.

- (1) $SKIP \in L$ since $\Psi^{2,1,*}_{SKIP}(x, y, @@) = @@$ for any $x, y \in \omega$.
- (2) $Pro^{\Sigma \cup \Sigma_p}$ es Σ -p.r. in accordance to a lemma. Then it is Σ -computable and there is a macro $[IF \ \chi_{Pro^{\Sigma \cup \Sigma_p}}^{(\Sigma \cup \Sigma_p)^*}(V_1) \ GOTO \ A_1]$, which we will call $[IF \ V_1 \in Pro^{\Sigma \cup \Sigma_p} \ GOTO \ A_1]$ for simplicity.
- (3) We know by theory that $\lambda xi[(x)_i]$, $\lambda x[*\le (x)]$ are Σ -recursive. By alphabet independence they are then $(\Sigma \cup \Sigma_p)$ -recursive. The same is true of $Halt^{2,1}$ and $E_{i*}^{2,1}$.

Since $E_{j*}^{2,1}$ is $(\Sigma \cup \Sigma_p)$ -p.r., $\lambda txy\alpha \mathcal{P}\beta \left[E_{*1}^{2,1}(t,x,y,\alpha,\mathcal{P}) = \beta \right]$ is $(\Sigma \cup \Sigma_p)$ -p.r. (trivial to show).

(4) Let *Q* be

$$IF \ N_{1} \neq 0 \ GOTO \ L_{1}$$

$$GOTO \ L_{666}$$

$$L_{1} \ [N_{2} \leftarrow (N_{1})_{1}]$$

$$[N_{3} \leftarrow (N_{1})_{2}]$$

$$[N_{4} \leftarrow (N_{1})_{3}]$$

$$[P_{2} \leftarrow *^{\leq}((N_{1})_{4})]$$

$$[P_{3} \leftarrow *^{\leq}((N_{1})_{5})]$$

$$[IF \ P_{3} \in Pro^{\Sigma \cup \Sigma_{p}} \ GOTO \ L_{2}]$$

$$GOTO \ L_{666}$$

$$L_{2} \ [IF \ Halt^{2,1}(N_{2}, N_{3}, N_{4}, P_{2}, P_{3}) \ GOTO \ L_{3}]$$

$$GOTO \ L^{666}$$

$$L_{3} \ [IF \ E_{*1}^{2,1}(N_{2}, N_{3}, N_{4}, P_{2}, P_{3}) = @@ \ GOTO \ L_{4}]$$

$$L_{666} \ P_{1} \leftarrow SKIP$$

$$GOTO \ L_{10}$$

$$L_{4} \ P_{1} \leftarrow P_{3}$$

$$L_{100} \ SKIP$$

Observe that here $*^{\leq}$ is defined over $(\Sigma \cup \Sigma_p)^*$. Starting from [[x]] the program obtains the $(x)_4$ th and $(x)_5$ th words from $(\Sigma \cup \Sigma_p)^*$ and values $(x)_1, (x)_2, (x)_3$. If the $(x)_5$ th word is a program, it determines whether it halts in $(x)_1$ steps with input $(x)_2, (x)_3$ and $*^{\leq} ((x)_4)$. If it halts it checks whether the output is @@. If it is it returns the program obtained. If any of the checks fail, it returns SKIP.

Problem 67 Let $\Sigma = \{@, !\}$. Show that

$$S = \left\{ (x, y, \alpha, \beta) \in \omega^2 \times \Sigma^{*2} : x \ge 5 \land (\exists \gamma \in \Sigma^*) \otimes b = \gamma^y \right\}$$

is Σ -p.r.

Observe that

$$\chi_S^{\omega^2 \times \Sigma^{*2}}(x,y,\alpha,\beta) = \lambda xy\alpha\beta \left[x \geq 5 \right] \wedge \lambda xy\alpha\beta \left[(\exists \in \Sigma^*)@b = \gamma^y \right]$$

Consider $F = \lambda xy\alpha\beta$ [$(\exists \gamma \in \Sigma^*)$ @ $b = \gamma^y$]. It is evident that any $\gamma \in \Sigma^*$ s.t. @ $b = \gamma^y$ for some $y \in \omega$ is s.t. $|\gamma| = 1$.

Problem 68 Sea \mathcal{P}_0 un programa fijo $y \ f : \omega \mapsto \omega$ una función. Asuma que para toda $x \in \omega$ el programa \mathcal{P}_0 termina partiendo de [[x]]. Más aún, asuma que termina en $t \leq f(x)$ pasos. Demuestre que $\Psi_{\mathcal{P}_0}^{1,0,\#}$ es Σ -p.r.

No veo como encarar el problema sin asumir algún tipo de computablidad para f. Vamos a ver cómo se ve el problema (1) asumiendo que f es Σ -p.r. y (2) asumiendo que es Σ -recursiva.

Sea g la función computada por \mathcal{P}_0 . Considere el conjunto

$$G = \{x \in \omega : (x, g(x))\}$$

(1) Asuma f es Σ -p.r. Por las definiciones de $\Psi^{1,0,\#}_{\mathcal{P}}, E^{1,0}_{\# 1}$, tenemos que

$$\Psi_{\mathcal{P}_0}^{1,0,\#} = E_{\#1}^{1,0} \circ \left[f \circ p_1^{1,0}, p_1^{1,0}, C_{\mathcal{P}_0}^{1,0} \right]$$

Esto se sigue de que, al saber que \mathcal{P}_0 desde [[x]] terminará en $t \leq f(x)$ pasos, el estado de \mathcal{P}_0 al terminar es el mismo que el estado de \mathcal{P}_0 tras f(x) pasos. Ahora bien, $E_{\#j}^{1,0}$, las proyecciones y la función constante, son $(\Sigma \cup \Sigma_p)$ -p.r. Luego, por independencia del alfabeto, son Σ -p.r. Como f es Σ -p.r. tenemos que $\Psi_{\mathcal{P}_0}^{1,0,\#}$ es Σ -p.r.

(2) Asuma que f es Σ -recursiva. Se sigue que es o bien Σ -p.r. o bien f=M(P) para algún predicado $P:\omega^2\mapsto\omega$ que es Σ -recursivo. Si fuera Σ -p.r. la demostración del punto (1) resuelve el problema. Asumamos que $f=M(P_0)$ para algún predicado $P_0:\omega^2\mapsto\omega$, donde P_0 es Σ -recursivo.

Como f es Σ -recursiva, es Σ -computable y tiene un macro $[V1 \leftarrow f(V2)]$ asociado.

$$[N_2 \leftarrow f(N_1)]$$

 $[N_1 \leftarrow E_1^{1,0}(N_2, N_1, \mathcal{P}_0)]$

Problem 69 Let

$$L = \left\{ \mathcal{P} \in Pro^{\Sigma_p} : (\exists n \in \mathbb{N}) \ \Psi^{1,1,*}_{\mathcal{P}}(x, EBE) = EBE \right\}$$

Find a program $Q \in Pro^{\Sigma_p}$ that enumerates L.

Observe that $SKIP \in L$. The program in question will make effective the following procedure with input $x \in \omega$:

- (1) If x = 0 go to (7).
- (2) Compute $(x)_1, (x)_2, (x)_3, (x)_4$.
- (3) Let $\alpha = * \le ((x)_4)$, $\beta = * \le ((x)_3)$.
- (4) If $\alpha \notin Pro^{\Sigma_p}$ go to (7).
- (5) Evaluate whether α halts in $(x)_1$ steps with input $(x)_2$, β . If it does not, go to (7).
- (6) Evaluate whether the output of α after $(x)_1$ steps with input
- $(x)_2$, β is *EBE*. If it is, go to (8).
- (7) Return SKIP and stop.
- (8) Return α and stop.

The program is

$$IF \ N_1 \neq 0 \ GOTO \ L_1$$
 $GOTO \ L_{666}$
 $L_1 \ [N_2 \leftarrow (N_1)_1]$
 $[N_3 \leftarrow (N_1)_2]$
 $[N_4 \leftarrow (N_1)_3]$
 $[N_5 \leftarrow (N_1)_4]$
 $[P_1 \leftarrow *^{\leq}(N_5)]$
 $[P_2 \leftarrow *^{\leq}(N_4)]$
 $[IF \ P_1 \in Pro^{\sum_p} \ GOTO \ L_2]$
 $GOTO \ L_{666}$
 $L_2 \ [IF \ Halt^{1,1}(N_2, N_3, P_2, P_1) \ GOTO \ L_3]$
 $GOTO \ L_{666}$
 $L_3 \ [IF \ E_*^{1,1} \ (N_2, N_3, P_2, P_1) = EBE \ GOTO \ L_4]$
 $L_{666} \ P_1 \leftarrow SKIP$
 $L_4 \ SKIP$

The macros we use correspond to $(x)_i$ the *i*th prime function, which is Σ -p.r. We $Halt^{n,m}$ function is Σ^* p.r. etc.

Problem 70 Let $\Sigma = \{@, !\}$ and

$$P: \{x \in \omega : x \ odd \ \} \times \Sigma^* \mapsto \omega$$
$$(x, \alpha) \mapsto \begin{cases} x & x \geq 3 \\ |\alpha| & otherwise \end{cases}$$

Prove that P is Σ *-p.r.*

- (1) Let $f_1 := \lambda x \alpha[x]$, $f_2 : \lambda x \alpha[|\alpha|]$. Both functions are Σ -p.r.
- (2) The set of tuples (x, α) with x odd is Σ -p.r. Simply observe that if S denotes that set, $\chi_S^{\omega \times \Sigma^*} = \lambda x \alpha \ [\neg x \text{ is even}]$, which is Σ -p.r.
- (3) Let $S' = \{(x, \alpha) \in S : x \ge 3\}$. This is trivially a Σ -p.r. set. Then it is clear that

$$P = f_{1|S'} \cup f_{2|\overline{S'}}$$

Then P is a union of Σ -p.r. functions with disjoint domains restricted to Σ -p.r. sets. Then P is Σ -p.r.

Problem 71 *True or false?*

Problem 72 Let $\Sigma = \{\%, !\}$ and

$$S = \{(x, x + 1, x + 2, \%\%!!) : x \in \omega\}$$

Give a program that enumerates S without using macros.

Since the fourth element in the tuples of S is constantly %%!! and all other elements are functions of a single natural number $x \in \omega$, we enumerate S with the following program \mathcal{P} :

$$P_1 \leftarrow P_1.\%$$

$$P_1 \leftarrow P_1.\%$$

$$P_1 \leftarrow P_1.!$$

$$P_1 \leftarrow P_1.!$$

$$N_2 \leftarrow N_1 + 1$$

$$N_3 \leftarrow N_2 + 1$$

Then, for any $x \in \omega$, \mathcal{P} starting from [[x]] halts at a state [[x,x+1,x+2,%%!!]. Furthermore, for any $(x,x+1,x+2,\%\%!!) \in S$, running the program with input x leads to a final state [[x,x+1,x+2,%%!!]. Then condition (2) of the previous proposition holds. Then \mathcal{P} enumerates S.