

Course	Specialist	Year _	_12	
Student name:	Teacher nan	ne:		
Date: 24 Feb				
Task type:	Response			
Time allowed for this tas	sk:45 mins			
Number of questions:	8			
Materials required:	Calculator with CAS capability (to be	e provided by the stud	ent)	
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters			
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations			
Marks available:	50 marks			
Task weighting:	_10%			
Formula sheet provided:	: Yes/No			
Note: All part questions worth more than 2 marks require working to obtain full marks.				

(2, 2, 3 & 3 = 10 marks)

If z = 2 + 3i and w = -1 + 2i determine exactly the following. (Simplify)

a) z^{W}

b) ww

c) $w \div \overline{w}$

Solution
$$\frac{-1+2i}{-1-2i} \times \frac{-1+2i}{-1+2i} = \frac{1-4-4i}{1+4} = \frac{-3-4i}{5}$$
Specific behaviours

✓ multiplies by conjugate over conjugate
✓ evaluates numerator
✓ evaluates denominator

$$\frac{1}{z} + \frac{1}{w}$$

Solution

$$\frac{1}{2+3i} \frac{2-3i}{2-3i} + \frac{1}{-1+2i} \frac{-1-2i}{-1-2i}$$

$$\frac{2-3i}{13} + \frac{-1-2i}{5}$$

$$\frac{10-15i}{65} + \frac{-13-26i}{65} = \frac{-3-41i}{65}$$

- ✓ uses idea of conjugates
- ✓ expresses both reciprocals with real denominator
- ✓ determines correct simplified sum

Q2 (3.1.3)
$$\frac{43-i}{a+4i} = 5+bi$$
 Determine all possible real values of $a \otimes b$ such that $\frac{43-i}{a+4i} = 5+bi$

✓ solves for two pairs of real values for a & b

(3& 3 = 6 marks)

Consider the quadratic equation $x^2 + bx + c = 0$ where b & c are real.

a) If one root of the above equation is x = 4 - 2i, determine b & c.

Solution

$$(4-2i)^2+b(4-2i)+c=0$$

$$16 - 4 - 16i + 4b - 2bi + c = 0$$

$$12 + 4b + c = 0$$

$$-16 - 2b = 0$$

$$b = -8$$

$$c = -12 + 32 = 20$$

Specific behaviours

- ✓ sets up one equation involving c or b
- ✓ sets up two equations for c & b
- ✓ solves for one pair of real values for c & b

Consider the equation $x^3 + px^2 + qx + w = 0$ where $p, q \otimes w$ are real.

b) If the cubic equation above has roots $x = 2 \& x = \sqrt{3}i$, determine p, q & w.

Solution

$$(x-2)(x-\sqrt{3}i)(x+\sqrt{3}i)$$

$$(x-2)(x^2+3)$$

$$x^3 + 3x - 2x^2 - 6$$

$$x^3 - 2x^2 + 3x - 6$$

$$p = -2, q = 3 \& w = -6$$

- ✓ recognises that conjugate also a root
- ✓ expands at least two linear factors
- ✓ solves for p,q&w

Q4 (3.1.3, 3.1.3, 3.1.3)

(2 marks)

Determine z & w in the form $rcis\theta$ with $-\pi < \theta \le \pi$. (Note: diagram not drawn to scale)

Solution

$$z = 2cis120 \text{ or } 2cis \frac{2\pi}{3}$$

$$w = \frac{7}{2}cis(-160^{\circ})\text{ or } \frac{7}{2}cis\left(\frac{-8\pi}{9}\right)$$

Accept radians or degrees

- ✓ determines z with principal argument
- ✓ determines w with principal argument

(2, 2 & 3 = 7 marks)

Q5 \qquad (3.1.10) Sketch the following regions in the complex plane showing major features.

$$Arg(z) = \frac{3\pi}{4}$$

b)
$$|z+3+4i| \ge |z-5+i|$$

c) Consider all the complex numbers z that satisfy |z-(2+5i)|=3, determine the maximum possible value of $\overset{\cdot}{Arg}(z)$, giving your answer in radians correct to two decimal places.

- ✓ uses left tangent idea for max argument
- ✓ solves for max argument in radians(no need to round to 2 dp)

Q6 (3.1.7, 3.1.12) (4 & 3=7 marks)

a) Determine all the roots of $z^5 = \sqrt{3} + i$ expressing in the form $rcis\theta$ with $-\pi < \theta \le \pi$.

Solution
$$z^{5} = \sqrt{3} + i = 2cis\left(\frac{\pi}{6} + 2n\pi\right), n = 0, \pm 1, \pm 2...$$

$$z = 2^{\frac{1}{5}}cis\left(\frac{\pi}{30} + \frac{2n\pi}{5}\right) = 2^{\frac{1}{5}}cis\left(\frac{\pi}{30} + \frac{12n\pi}{30}\right)$$

$$z_{1} = 2^{\frac{1}{5}}cis\left(\frac{\pi}{30}\right)$$

$$z_{2} = 2^{\frac{1}{5}}cis\left(\frac{13\pi}{30}\right)$$

$$z_{3} = 2^{\frac{1}{5}}cis\left(-\frac{11\pi}{30}\right)$$

$$z_{4} = 2^{\frac{1}{5}}cis\left(\frac{-23\pi}{30}\right)$$

$$z_{5} = 2^{\frac{1}{5}}cis\left(\frac{25\pi}{30}\right) or 2^{\frac{1}{5}}cis\left(\frac{5\pi}{6}\right)$$

- ✓ expresses right hand side into polar form
- ✓ uses De Moivre's theorem
- ✓ obtains five distinct roots in polar form
- ✓ uses principal arguments for all roots
- b) Plot all of these roots on the diagram below.

✓all five roots equally spaced

(1, 2, 2 & 2 = 7 marks)

Consider the functions $f(x) = \sqrt{x-8} \otimes g(x) = x^3$. a) Give the defining rule for $f \circ g(x)$.

	Solution	
$f \circ g(x) = \sqrt{x^3 - 8}$		
7 3 507		
	Specific behaviours	
	Specific Schaviours	
✓ states rule		

a) Does $f \circ g(x)$ exist over the natural domain of g(x)? Explain

Solution

$$r_g: R$$
 $d_f: x \ge 8$
 $r_g \ne d_f$ ∴ does not exist

Specific behaviours

✓ determine appropriate domain and range
✓ shows that condition not meet for natural domain of g

b) State the natural domain and range for $f \circ g(x)$.

Solution $f \circ g(x) = \sqrt{x^3 - 8}$ $y \ge 0$ **Specific behaviours** ✓ states natural domain ✓ states range

Consider the function h(x) = x - 8

$$h(x) = x - 8$$

c) Does the function $[f(x)]^2 = h(x)$? Justify your answer.

Solution		
$ \left[f(x) \right]^2 $ $ d: x \ge 8 $		
$d: x \ge 8$		
h(x)		
d:R		
not equal as different domains		
Specific behaviours		
✓ states not equal with a reason		
✓ shows that domains are different		

Q8 (3.2.3, 3.2.4) Consider the function f(x) drawn below.

(2 & 3, 3 = 8 marks)

a) Sketch $y = f^{-1}(x)$ on the axes above.

Mathematics Department

Perth Modern

b) Given that $f(x) = -2x^2 + 12x - 13$, $x \le 3$, determine the defining rule for $y = f^{-1}(x)$.

Solution

$$y \le 3$$

 $x = -2y^2 + 12y - 13$
 $-2y^2 + 12y - 13 - x = 0$
 $y = \frac{-12 \pm \sqrt{144 - 4(-2)(-13 - x)}}{-4} = \frac{-12 \pm \sqrt{144 - 104 - 8x}}{-4}$
 $= \frac{-12 \pm 2\sqrt{10 - 2x}}{-4} = \frac{-6 \pm \sqrt{2(5 - x)}}{-2}$
 $f^{-1}(x) = 3 - \sqrt{\frac{5 - x}{2}}$

Specific behaviours

- ✓ interchanges x and y to solve for inverse
- ✓ states possible rules for inverse
- ✓ states correct rule with negative only
- c) Consider the function $h(x) = ax^3$ where a is a positive constant. Solve in terms of a, the solution(s) to $h(x) = h^{-1}(x)$.

c) Solution
$$h(x) = h^{-1}(x) = x \quad \text{or } ax^3 = \sqrt[3]{\frac{x}{a}} \implies a^3 x^9 = \frac{x}{a} \implies a^4 x^9 - x = 0 \implies x (a^4 x^8 - 1) = 0$$

$$ax^3 = x$$

$$x(ax^2 - 1) = 0$$

$$x = 0, \frac{1}{\sqrt{a}}, -\frac{1}{\sqrt{a}}$$

- \checkmark sets up equation in terms of x & a
- ✓ factorises equation
- ✓ states all three x values in terms of a.

Mathematics Department

Perth Modern

Working out space