JINGJING JIANG

Email: jingjingjiang2017@gmail.com Website: https://jingjing12110.github.io

EDUCATION

Xi'an Jiaotong University

Ph.D. in Pattern Recognition and Computer Vision Institute of Artificial Intelligence and Robotics

Xi'an Jiaotong University

M.S in Control Science and Engineering Institute of Artificial Intelligence and Robotics

Sep. 2017 - Jan. 2019

Advisor: Nanning Zheng

Mar. 2019 - Present

Advisor: Nanning Zheng, Xuetao Zhang

PUBLICATION

- **Jingjing Jiang**, Zhixiong Nan, Yifan Liu, and Nanning Zheng. Granularity-aware visual semantic reasoning for video question answering. (Submitted to CVPR2021)
- **Jingjing Jiang**, Zhixiong Nan, Hui Chen, and Nanning Zheng. Predicting short-term next-active-object through visual attention and hand position. *Neurocomputing*. (Accepted)
- Hui Chen, Zhixiong Nan, **Jingjing Jiang**, and Nanning Zheng. Learning to infer unseen attribute-object compositions. *IEEE TPAMI*. (Submitted)
- Zhixiong Nan, **Jingjing Jiang**, Xiaofeng Gao, Sanping Zhou, Pin Wei, and Nanning Zheng. Inferring Task-driven Attention via Integrating Bottom-up Stimulus and Top-down Guidance. *Pattern Recognition*. (Submitted)
- **Jingjing Jiang**, Peixin Xue, Shitao Chen, Ziyi Liu, Xuetao Zhang, and Nanning Zheng. Line feature based extrinsic calibration of LiDAR and camera. In *ICVES*, 2018.

PROJECTS

Human-Robot Interaction

Jan. 2019 - Jan. 2020

- Next-Active-Object Prediction: proposed a two-stream network that integrates the cues from visual attention and hand positions to predict the next-active-object in human-robot interaction activities. We applied the model to our industrial robot.

Autonomous Driving: Perception

Sep. 2017 - Jan. 2019

- LiDAR-Camera Calibration: proposed a line feature based LiDAR-Camera calibration and online rectification algorithm and used it for our autonomous driving platform.
- **Drivable Area Detection**: proposed an unsupervised approach for detecting drivable area using image and point cloud data and realized the cross-platform transplantation of the algorithm.
- LiDAR-based Object Detection & Tracking: proposed an object detection and tracking model based on multi-level enhancement of point cloud to alleviate the sparsity of point cloud and used it for our autonomous driving platform.

SKILLS

Programming: Python, C/C++, MATLAB, Shell **Framework:** Pytorch, Tensorflow, Caffe, ROS