Simulating QCD Jet Production in e^+e^- annihilation

- concepts of Monte Carlo event generators for collider experiments -

Steffen Schumann

Institut für Theoretische Physik

Uni Göttingen SS 24 Intro Lecture – part I 07/06/24

Scope of the project

Methods & Physics of Monte-Carlo event generators for the simulation of high-energy scattering events

Particle Physics at High-Energy Colliders

- investigate nature of short-range phenomena by scattering experiments
- ullet bring high-energetic particle beams to collision, e.g. e^+e^- , ep, or pp
- measure & analyse the resulting final states
 - \sim experimental challenge: identify & measure all particles emerging from individual beam clashes, reconstruct energies & momenta, specific detector components for γ , e^\pm , μ^\pm , n, p, ..., $\not\!\!\!E_T$
 - → theoretical challenge: confront measurements with hypotheses for the
 underlying physics

The HEP trinity

Theory

QFT in Lagrangian formulation of quantum nature, non-deterministic benchmark Standard Model $\mathcal{L}_{\mathrm{SM}}$ hypothetical New Physics $\mathcal{L}_{\mathrm{BSM}}$

Experiment

complex multi-component detector ATLAS, CMS, LHCb, ... reconstruction of individual events degrading, upgrades, improvements

Simulation: linking theory & experiment

multi-purpose Monte Carlo generators

- stochastic simulation of particle-level events
- HERWIG, PYTHIA, SHERPA, ...

detector simulation codes

- detailed models for all detector components
- Geant4 based, Neural Network approaches, ...

provide fully-simulated event samples

Particle detectors & Real collider data

ATLAS event display: $pp o H o ZZ^* o 2e2\mu + X$ event

Monte Carlo Event Generators: the global picture

- perturbative methods
 - Hard interaction exact matrix elements $|\mathcal{M}|^2$ LO,NLO,NNLO – QCD, NLO – EW
 - Radiative corrections
 parton showers in the initial and final state
 resummation of soft-collinear logs: LL, NLL
- non-perturbative models
 - Multiple Interactions
 beyond factorization: modelling
 - Hadronization
 parton-hadron transition
 - Hadron Decays
 phase space or effective theories
- → predict fully exclusive final states
- → factorize short & long range physics
- \hookrightarrow subject to approximations/compromises
- → variety of specialized methods & tools

Real-world LHC applications

Di-Photon production

Higgs-Boson production

- confronting experiment with Standard Model theory predictions
- precision Standard Model measurements and searches for New Physics

Outline of the project

physics issues related to the modelling of high-energy collisions

- Part I: hard process generation, here $e^+e^- o qar q$ at lowest order
 - ullet integrate cross section for $e^+e^- o qar q$
 - generate corresponding scattering events fully differentially
- Part II: final-state parton showering, i.e. soft- & collinear gluon emissions
 - ullet simulate $qar{q}$ -initiated final-state parton cascade
 - analyse QCD jet observables, compare to reference data

aspects of numerical methods/solutions used to tackle these

- Monte Carlo Importance Sampling
- Markov Chain parton-branching simulation
- sequential jet reconstruction algorithms

Nuts & Bolts

Monte Carlo techniques

Monte-Carlo techniques

"Spatial" problems: without memory

- What is the volume of a given body?
 Pick a point at random, use uniform probability in this area.
- What is the integrated cross section of a given process?
 Pick an event at random, according to the differential cross section.

"Temporal" problems: have memory

- Financial systems: What is the probability for a stock to have price X at time t, given the price Y at t₀?
- Parton shower: What is the probability for a parton to branch at a scale Q, given that it was created at a scale Q_0 ?

In particle physics often combined problems

What is the probability for a parton to branch at Q, with the daughters sharing the mother momentum in some specific way?

Monte-Carlo techniques: "Spatial" problems

Assume function f(x) in range $x_{\min} \le x \le x_{\max}$, where $f(x) \ge 0$ everywhere (in practise x is multi-dimensional)

Two standard tasks

Calculate definite integral (approximatively)

 \rightarrow error scales with $1/\sqrt{N}$, independent of d

 \rightarrow estimate improves by adding single point to the current estimate

Select x at random according to f(x)

Monte-Carlo techniques: Basics

Select x according to f(x)

as
$$P(x) \sim f(x) = \int_{0}^{f(x)} dy$$

equivalent to uniform selection of (x, y) in area

$$x_{\min} \le x \le x_{\max} \& 0 \le y \le f(x)$$

$$\sim \int_{x_{\min}}^{\infty} f(x')dx' = \# \int_{x_{\min}}^{x_{\min}} f(x')dx'$$

Analytical solution: inverse transform

known primitive function F(x) and inverse F^{-1}

$$F(x) - F(x_{\min}) = \#(F(x_{\max}) - F(x_{\min})) = \#A_{\text{tot}}$$

$$\rightsquigarrow x = F^{-1}(F(x_{\min}) + \#A_{\text{tot}})$$

Example:
$$f(x) = e^{-x}$$
 for $x \ge 0$

$$F(x) = 1 - e^{-x}$$

$$1 - e^{-x} = #1 \sim x = -\ln(#)$$

Variance reduction techniques: Motivation

- MC error estimate scales as $1/\sqrt{N}$, independent of dimension
- ullet second limiting factor, the intrinsic variance of the integrand, i.e. V_N
 - → devise techniques to reduce variance, thus enhancing MC convergence:

 stratified sampling, control variates, importance sampling

Example: Battleships

Use of (cleverly chosen) random points.

Importance Sampling

- large variation of f(x) leads to large uncertainty on MC estimate
- MC most efficient when each point x_i has nearly same weight $f(x_i)$
- arrange by choosing large number of points where function is largest
- compensate for overpopulation by reducing function value accordingly
- mathematically, IS corresponds to change of integration variable

$$\int f(x')dx' = \int \frac{f(x')}{g(x')}g(x')dx' = \int \frac{f(x')}{g(x')}dG(x')$$
with $g(x) = \frac{dG}{dx} = \frac{\partial^d}{\partial x_1 \dots \partial x_d}G(x)$

 \sim points chosen according to G(x) instead of uniformly

 $\sim f$ weighted inversely by g(x) = dG/dx

 \sim relevant variance is V(f/g), small if g(x) & f(x) similar in shape

Importance Sampling cont'd

conditions on the mapping function g(x)

- (i) g(x) is probability density: $g(x) \ge 0$ and $\int g(x')dx' = 1$
- (ii) G(x), the integral of g(x), is known analytically (integrated distribution, increasing monotonically with x)
- (iii) either function G(x) can be inverted (solved) for x analytically or, alternatively, a g-distributed random-number generator is available
- (iv) the ratio f(x)/g(x) is ideally nearly constant

$$\sim$$
 variance $V(f/g)$ will be small compared to $V(f)$

$$E_N = \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{g(x_i)}, \qquad V_N \left(\frac{f}{g}\right) = \frac{1}{N} \sum_{i=1}^N \left(\frac{f(x_i)}{g(x_i)}\right)^2 - E_N^2$$

Importance Sampling: disadvantages

dangerous if function g(x) approaches zero where f is non-vanishing, then V(f/g) becomes infinite and usual techniques to estimate the variance from sample points may not detect this, if region of g=0 is small

Breit-Wigner propagator – particle with mass M and decay width Γ

$$I = \int_{s_{\min}}^{s_{\max}} \frac{\mathrm{d}s}{(s - M^2)^2 + M^2 \Gamma^2}$$

use mapping (variable transform) $s = M\Gamma \tan \rho + M^2$

$$\sim ds = M\Gamma \sec^2 \rho d\rho$$

such that

$$I = \int_{\rho_{\min}}^{\rho_{\max}} \frac{M\Gamma \sec^2 \rho \, d\rho}{M^2 \Gamma^2 \tan^2 \rho + M^2 \Gamma^2}$$
$$= \frac{1}{M\Gamma} \int_{\rho_{\min}}^{\rho_{\max}} d\rho \quad \rightsquigarrow \quad \delta I = 0$$

 \sim pick ρ uniformly from

$$\begin{array}{rcl} \rho & = & \rho_{\min} + \#(\rho_{\max} - \rho_{\min}) \\ \\ \rho_{\min/\max} & = & \arctan\left(\frac{s_{\min/\max} - M^2}{M\Gamma}\right) \end{array}$$

Monte-Carlo techniques: Hit-or-Miss method

Sampling according to f(x)

known g(x) as local overestimate for target f(x):

$$g(x) \ge f(x)$$
 in $x_{\min} \le x \le x_{\max}$

and
$$G(x) = \int_{x_{\min}}^{x} g(x')dx' \& G^{-1}(y)$$
 are simple

- select x = according to distribution g(x)
- 2 select y = #g(x)
- if $y \le f(x)$ accept point $[N_{\text{acc}}++, N_{\text{try}}++]$ if y > f(x) reject point $[N_{\text{fail}}++, N_{\text{try}}++]$

Monte-Carlo techniques: Hit-or-Miss method

Example: $f(x) = xe^{-x}$ and $g(x) = Ne^{-x/2}$

ensure that g(x) is local overestimate:

$$\frac{f(x)}{g(x)} = \frac{xe^{-x/2}}{N} \stackrel{!}{\leq} 1 \rightarrow \text{find maximum}$$

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{1}{N}\left(1 - \frac{x}{2}\right)e^{-x/2} \stackrel{!}{=} 0 \rightsquigarrow x = 2$$

normalize such that $g(2) = f(2) \rightsquigarrow N = 2/e$

from
$$G(x) \sim 1 - e^{-x/2} = \#_1$$

$$\sim x = -2 \ln(\#_1), y = \#_2 g(x) = \#_2 2e^{-(1+x/2)}$$

 \sim efficiency IS: $N_{\rm acc}/N_{\rm try}=68.4\%$

$$\sim$$
 efficiency $f_{\rm max} = e^{-1}$: $N_{\rm acc}/N_{\rm try} = 13.5\%$

The radioactive decay problem

- known probability $f(t) \ge 0$ that something will happen at time t [nucleus decays, parton branches, transistor fails]
- something happens at t only if it didn't happen at t' < t

The radioactive decay problem

- known probability $f(t) \ge 0$ that something will happen at time t [nucleus decays, parton branches, transistor fails]
- ullet something happens at t only if it didn't happen at t' < t

Define: N(t): probability that *nothing* happend until t [N(0) = 1]

$$P(t) = -dN(t)/dt = f(t)N(t)$$
: probability for decay at time t

The radioactive decay problem

- known probability $f(t) \ge 0$ that something will happen at time t [nucleus decays, parton branches, transistor fails]
- ullet something happens at t only if it didn't happen at t' < t

Define:
$$N(t)$$
: probability that *nothing* happend until $t\ [N(0)=1]$

$$P(t) = -dN(t)/dt = f(t)N(t)$$
: probability for decay at time t

Solution:

$$N(t) = \exp\left\{-\int_0^t f(t')dt'\right\}$$
 $[f(t) = \lambda \text{ simple radioactive decay}]$
 $P(t) = f(t) \exp\left\{-\int_0^t f(t')dt'\right\}$

- naïve answer P(t) = f(t) modified by exponential suppression $[P(t) \approx f(t)]$ at small t only, otherwise damping
- in parton-shower picture, N(t) is called the Sudakov form factor

The radioactive decay problem: solution

- assume f(t) has primitive function F(t) with known inverse F^{-1}
- standard solution to find "decay" time t:

$$\int_{0}^{t} P(t')dt' = N(0) - N(t) = 1 - \exp\{-(F(t) - F(0))\} = 1 - \#$$

$$\exp\{-(F(t) - F(0))\} = \#$$

$$volume t = F^{-1}(F(0) - \ln(\#))$$

ullet simple radioactive decay, i.e. $f(t) = \lambda$

$$F(t) = \lambda t = -\ln(\#) \quad \sim \quad t = -\ln(\#)/\lambda$$

- if f(t) not sufficiently "nice", use importance sampling & Hit-or-Miss
- however, simple condition $f(t) \le g(t) \ \forall \ t \ge 0$ is not sufficient

$$\Rightarrow \hat{P}(t) = g(t) \exp \left\{ -\int_{0}^{t} g(t')dt' \right\}$$

→ does not yield proper exponential factor

The Veto Algorithm [Seymour 1995]

if f(t) has no simple F(t) or F^{-1} : use "nice" $g(t) \geq f(t)$

- start with i = 0 and $t_0 = 0$
- ② increment i and select $t_i = G^{-1}(G(t_{i-1}) \ln(\#_1))$ [according to g(t), but with constraint $t_i > t_{i-1}$]
- if $f(t_i)/g(t_i) \le \#_2$ go back to step 2 otherwise, keep t_i as "decay" time
- \sim next step only depends on the very previous one
- → Markovian process

Iterative Proof

consider the various ways in which a specific time t can be selected

ullet probability that first try is accepted, i.e. $t=t_1$, such that no intermediate t values need to be rejected

$$P_0^g(t) = \exp\left\{-\int_0^t g(t')dt'\right\}g(t) \times \underbrace{\frac{f(t)}{g(t)}}_{P^g(t)} \text{ prob. to accept } t$$

• consider case, where one intermediate step, t_1 , got rejected, only second step, $t=t_2$, is accepted, i.e. $0 \le t_1 \le t_2 = t$

$$P_1^{g}(t) = \underbrace{\int\limits_0^t \exp\left\{-\int\limits_0^{t_1} g(t')dt'\right\}g(t_1)}_{\text{prob. to select }t_1 < t}\underbrace{\left(1 - \frac{f(t_1)}{g(t_1)}\right)}_{\text{prob. to reject }t_1} \times \exp\left\{-\int\limits_{t_1}^t g(t'')dt''\right\}g(t)\frac{f(t)}{g(t)}dt_1$$

$$P_1^g(t) = P_0^g(t) \int_{-\infty}^{\infty} (g(t_1) - f(t_1)) dt_1$$

Iterative Proof cont'd

ullet considering arbitrary intermediate steps the probability to accept t yields

$$P^{g}(t) = \sum_{i=0}^{\infty} P_{i}^{g}(t)$$

$$= P_{0}^{g}(t) \sum_{i=0}^{\infty} \frac{1}{i!} \left(\int_{0}^{t} (g(t') - f(t')) dt' \right)^{i}$$

$$= f(t) \exp \left\{ - \int_{0}^{t} g(t') dt' \right\} \exp \left\{ \int_{0}^{t} (g(t') - f(t')) dt' \right\}$$

$$= f(t) \exp \left\{ - \int_{0}^{t} f(t') dt' \right\}$$

$$= P(t) \text{ q.e.d.}$$

Discussion

- Veto Algorithm standard tool in event generation, e.g. QCD parton showers
- numerical implementation of true Markovian decay/emission process
- ullet process can be stopped at any intermediate scale/time $t_{
 m max}$
- ullet usually f(t) function of additional variables x, however, easy to generalise
 - find suitable g(t,x) with $f(t,x) \le g(t,x)$, the g(t) used in the veto algorithm is then simply given by the integral

$$g(t) = \int g(t, x') dx'$$

- each time a value t_i is selected also the x_i need to be picked, following density $g(t_i, x) dx$
- the point (t_i, x_i) gets accepted with probability $f(t_i, x_i)/g(t_i, x_i)$

Monte-Carlo techniques

Summary

- use Monte Carlo methods to perform integrals and sample distributions
 - need only few points to estimate $\int f(x')dx'$
 - each additional point increases accuracy
- techniques generalise to many dimensions
 - typical LHC phase space $\sim d^3 \vec{p} \times 100$'s particles
 - error scales as $1/\sqrt{N}$ vs. $1/N^{2/d}$ or $1/N^{4/d}$ (Trapezoidal or Simpson's Rule)
- suitable for complicated integration regions
 - kinematic cuts or detector cracks
- can sample distributions where exact solutions cannot be found
- use of adaptive techniques to reduce variances
- Veto Algorithm applicable for parton-shower simulations

Questions/Self-Tests

- Implement the above discussed variance reduction example, *i.e.* $f(x) = xe^{-x}$ with $g(x) = 2e^{(-1+x/2)}$
- How to sample points $x \in [\epsilon, 1 \epsilon]$ according to $f(x) = \frac{(1-x)}{x}$?
- Plot the Breit–Wigner distribution for the SM Higgs-boson propagator ($M_H=125.1$ GeV, $\Gamma_H=4.2$ MeV)
- Repeat the proof of the Veto Algorithm, see also backup

Literature/Further Reading

- Buckley et al. "General-purpose event generators for LHC physics" Phys. Rept. 504 (2011), 145-233 arXiv:1101.2599 [hep-ph]
- Salam "Elements of QCD for hadron colliders" CERN Yellow Rep. School Proc. 5 (2020), 1-56 arXiv:1011.5131 [hep-ph]
- Ellis, Stirling, Webber "QCD and collider physics"
 Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8 (1996), 1-435

Backup slides

Breit-Wigner propagator – Jacobian

consider
$$\int_{s_{\min}}^{s_{\max}} ds \ f(s) \rightarrow \int_{0}^{1} d\# \frac{1}{g_{\text{prop}}(s(\#))} f(s(\#))$$

Breit-Wigner mapping

$$\int\limits_{s_{\min}}^{s_{\max}} ds = \int\limits_{\rho_{\min}}^{\rho_{\max}} M\Gamma \sec^2 \rho \, d\rho$$
with $\rho(\#) = \rho_{\min} + \#(\rho_{\max} - \rho_{\min})$

$$\frac{d\rho}{d\#} = \rho_{\max} - \rho_{\min}$$

$$\int\limits_{s_{\min}}^{s_{\max}} ds = \int\limits_{0}^{1} d\# \frac{(s_\# - M^2)^2 + M^2\Gamma^2}{M\Gamma} (\rho_{\max} - \rho_{\min})$$
where $s_\# = s(\rho(\#)) = M\Gamma \tan(\rho(\#)) + M^2$

Iterative Proof cont'd

• for $P_2^g(t)$ need to consider two intermediate times, i.e. $0 \le t_1 \le t_2 \le t_3 = t$

$$P_{2}^{g}(t) = P_{0}^{g}(t) \underbrace{\int_{0}^{t} dt_{1} (g(t_{1}) - f(t_{1})) \int_{t_{1}}^{t} dt_{2} (g(t_{2}) - f(t_{2}))}_{\text{nested integrals}}$$

$$= P_{0}^{g}(t) \frac{1}{2} \left(\int_{0}^{t} (g(t') - f(t)') dt' \right)^{2}$$

Iterative Proof cont'd

• for $P_2^g(t)$ need to consider two intermediate times, i.e. $0 \le t_1 \le t_2 \le t_3 = t$

$$P_2^{g}(t) = P_0^{g}(t) \underbrace{\int\limits_0^t dt_1 \left(g(t_1) - f(t_1)\right) \int\limits_{t_1}^t dt_2 \left(g(t_2) - f(t_2)\right)}_{\text{nested integrals}}$$

$$= P_0^g(t)\frac{1}{2}\left(\int\limits_0^t \left(g(t')-f(t)'\right)dt'\right)^2$$

Proof - nested integrals

to prove the last equality consider inclusion of the region where $\it t_2 < \it t_1$

$$\int_{0}^{t} dt_{1} \left(g(t_{1}) - f(t_{1}) \right) \int_{t_{1}}^{t} dt_{2} \left(g(t_{2}) - f(t_{2}) \right) + \int_{0}^{t} dt_{2} \left(g(t_{2}) - f(t_{2}) \right) \int_{t_{2}}^{t} dt_{1} \left(g(t_{1}) - f(t_{1}) \right)$$

$$= \int_{0}^{t} dt' \left(g(t') - f(t') \right) \left[2 \int_{0}^{t} dt'' \left(g(t'') - f(t'') \right) \right] = \left(\int_{0}^{t} dt' \left(g(t') - f(t') \right) \right)^{2}$$

l

Iterative Proof cont'd

ullet for $P_2^{m{g}}(t)$ need to consider two intermediate times, i.e. $0 \leq t_1 \leq t_2 \leq t_3 = t$

$$P_2^g(t) = P_0^g(t) \underbrace{\int\limits_0^t dt_1 \left(g(t_1) - f(t_1)\right) \int\limits_{t_1}^t dt_2 \left(g(t_2) - f(t_2)\right)}_{\text{nested integrals}}$$

$$= P_0^g(t) \frac{1}{2} \left(\int_0^t \left(g(t') - f(t)' \right) dt' \right)^2$$

Proof – nested integrals

generalisation to n factors

$$\frac{1}{n!}\int_0^t \left(\int_{t''}^t f(t')dt'\right)^n f(t'')dt'' = \frac{1}{(n+1)!} \left(\int_0^t f(t)dt\right)^{n+1}$$