Лекция 4. Графы

1 Определение графа

Определение 1: Простой граф

Пусть V – непустое множество

$$V = \{v_1, \dots, v_n\}, \quad V \neq \varnothing.$$

E — множество неупорядоченных пар элементов множества V, за исключением пар, состоящих из одинаковых элементов

$$E \subseteq \{\{v_i, v_i\} : v_i, v_i \in V, v_i \neq v_i\}.$$

Тогда пара множеств (V, E) называется простым графом и обозначается G = (V, E), причём элементы множества V называются вершинами, а элементы множества E – рёбрами.

Рассмотрим пример, в котором множество вершин V состоит из 6 элементов

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\},\$$

а множество рёбер состоит из 5 элементов

$$E = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_2, v_4\}, \{v_4, v_6\}\}.$$

Граф G = (V, E) покажем на рисунке 1.

Рис. 1: Простой граф

Часто слово «простой» опускают, называя их графами.

В случае, если множество E образовано упорядоченными парами, говорят об ориентированном графе, а элементы множества E называют дугами.

Определение 2: Ориентированный граф

Пусть V – непустое множество,

$$V = \{v_1, v_2, \dots, v_n\}, V \neq \emptyset,$$

E — множество всех упорядоченных пар элементов множества V, за исключением пар, состоящих из одинаковых элементов

$$E \subseteq \{(v_i, v_j) : v_i, v_j \in V, v_i \neq v_j\}.$$

Тогда пара множеств (V, E), называется **ориентированным графом** и обозначается G = (V, E). Элементы множества V называют **вершинами**, а элементы множества E – **дугами**.

В качестве примера рассмотрим граф, образованный тем же множеством вершин V, что и в прошлом примере,

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\},\$$

а множество E состоит из упорядоченных пар

$$E = \{(v_1, v_2), (v_2, v_3), (v_3, v_5), (v_2, v_4), (v_6, v_4)\}.$$

В этом случае дуга (v_i, v_j) имеет ориентацию, которую показывают стрелкой от вершины v_i к вершине v_j . Описанный ориентированный граф показан на рисунке 2.

Рис. 2: Ориентированный граф

Для краткости ориентированные графы также называют орграфами. В случае орграфов в литературе встречается задание множества дуг E как подмножества декартова квадрата множества вершин V, тогда

$$E = V^2 \setminus id_V$$
.

Более общей конструкцией является мультиграф – граф в котором «разрешены» кратные рёбра (дуги в случае орграфов). Само название мультиграфа происходит от понятия мультимножества, дадим его ниже.

Определение 3: Мультимножество

 Π усть A – произвольное множество, тогда упорядоченная пара

$$\mathfrak{A} = (A, m),$$

где $m:A\to N$ – отображение, сопоставляющее каждому элементу множества A натуральное число, называемое кратностью, называется мультимножеством.

Необходимость введения такого понятия обусловлена тем, что множество, как мы и говорили в первой лекции, определяется набором входящих в него элементов, а значит $\{a,a\}=\{a\}$, что не позволяет задать кратность элементов.

Определение 4: Мультиграф

Пусть V – непустое множество,

$$V = \{v_1, \dots, v_n\}, V \neq \emptyset,$$

E — множество неупорядоченых пар элементов множества V, за исключением пар, состоящих из одинаковых элементов

$$E \subseteq \{\{v_i, v_i\} : v_i, v_i \in V, v_i \neq v_i\}.$$

 \mathfrak{E} – мультимножество, построенное на множестве E,

$$\mathfrak{E} = (E, m), \quad m : E \to \mathbb{N}.$$

Тогда упорядоченная пара $G = (V, \mathfrak{E})$, называется **мультиграфом**.

Рассмотрим мультиграф на множестве вершин V из предыдущих примеров.

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\},\$$

Элементы мультимножества $\mathfrak E$ для простоты перечислим в фигурных скобках, как и элементы простого множества, но будем иметь ввиду возможную кратность.

$$\mathfrak{E} = \{\{v_1, v_2\}, \{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_2, v_4\}, \{v_4, v_6\}\}.$$

Описанный мультиграф $G = (V, \mathfrak{E})$ показан на рисунке 3.

Рис. 3: Мультиграф

Аналогично предыдущему примеру можно построить ориентированный мультиграф.

Ещё одним обобщением является понятие псевдографа – мультиграфа, в котором «разрешены» петли, т. е. рёбра (дуги) начало и конец которых совпадают.

Определение 5: Псевдограф

Пусть V – непустое множество,

$$V = \{v_1, \dots, v_n\}, V \neq \emptyset,$$

E – множество неупорядоченых пар элементов множества V, за исключением пар, состоящих из одинаковых элементов

$$E \subseteq \{\{v_i, v_i\} : v_i, v_i \in V\}.$$

 \mathfrak{E} – мультимножество, построенное на множестве E,

$$\mathfrak{E} = (E, m), \quad m : E \to \mathbb{N}.$$

Тогда упорядоченная пара $G = (V, \mathfrak{E})$, называется **псевдографом**.

Построим псведограф на множестве вершин V из предыдущих примеров

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}.$$

Мультимножество рёбер зададим как

$$\mathfrak{E} = \{\{v_1, v_2\}, \{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_3\}, \{v_3, v_5\}, \{v_2, v_4\}, \{v_4, v_6\}\}.$$

Описанный граф покажем на рисунке 4.

Рис. 4: Псевдограф

Аналогично можно построить ориентированный псевдограф.

2 Способы задания графов

Определение 6: Смежность

Вершины u и v называют **смежными**, если существует ребро $e = \{u, v\} \in E$, соединяющее их.

Определение 7: Инцидентность

Ребро e называют **инцидентным** вершине v, если она является одним из его концов.

Определение 8: Степень вершины

Степенью вершины $\deg(v)$ неориентированного графа называют число рёбер, инцидентных этой вершине

$$\deg(v) = |\{u : \{v, u\} \in E\}|.$$

Рассмотрим в качестве примера граф, изображенный на рисунке 1.

Этот граф образован множеством вершин

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$$

и множеством рёбер

$$E = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_2, v_4\}, \{v_6, v_4\}\}.$$

При этом:

- Вершины v_1 и v_2 смежные, так как $\{v_1, v_2\} \in E$.
- Вершины v_1 и v_6 не смежные, так как $\{v_1, v_6\} \notin E$.
- Степени вершин: $\deg(v_1) = 1, \deg(v_2) = 3, \deg(v_3) = 2, \deg(v_4) = 2, \deg(v_5) = 1, \deg(v_6) = 1.$

Для ориентированных графов введены понятия полустепени захода и полустепени исхода вершины.

Определение 9

Полустепенью захода $\deg^+(v)$ вершины v называют число заходящих в неё дуг.

Определение 10

Полустепенью исхода $\deg^-(v)$ вершины v называют число исходящих из неё дуг.

Определение 11

Степенью вершины $\deg(v)$ ориентированного графа называют сумму полустепеней захода и исхода этой вершины.

$$\deg(v) = \deg^+(v) + \deg^-(v).$$

В качестве примера рассмотрим граф, показанный на рисунке 2. Данный граф образован множеством вершин

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$$

и множеством дуг

$$E = \{(v_1, v_2), (v_2, v_3), (v_3, v_5), (v_2, v_4), (v_6, v_4)\}.$$

Запишем степени вершин в таблицу.

	v_1	v_2	v_3	v_4	v_5	v_6
$\deg^+(v)$	0	1	1	2	1	0
$\deg^-(v)$	1	2	1	0	0	1
deg(v)	1	3	2	2	1	1

Лемма 1: О рукопожатиях

Для любого графа G = (V, E) справедливо

$$\sum_{v \in V} \deg v = 2|E|.$$

Доказательство

 Γ Так как степень вершины – это количество инцидентных вершине рёбер, при суммировании степеней всех вершин каждое ребро учитывается два раза.

2.1 Список смежности

Ещё одним способом задания графа является список смежности. Для того, чтобы составить его необходимо для каждой вершины указать список смежных с ней вершин.

Рассмотрим построение списка смежности на примере графа с рисунка 1.

Данный граф образован множеством вершин

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$$

и множеством рёбер

$$E = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_2, v_4\}, \{v_6, v_4\}\}.$$

Запишем список смежности таблицей.

Вершина	deg(v)	Список смежных вершин
v_1	1	v_2
v_2	3	v_1, v_3, v_4
v_3	2	v_2, v_5
v_4	2	v_2, v_6
v_5	1	v_3
v_6	1	v_4

2.2 Матрица смежности A(G)

Ещё одним распространённым способом задания графа является построение матрицы смежности (Adjacency matrix).

Определение 12: Матрицы смежности

Пусть A(G) – квадратная матрица размерности $n \times n$, где n – число вершин графа. Элементы этой матрицы определим как

$$a_{i,j} = 1 \Leftrightarrow \{v_i, v_j\} \in E.$$

Матрица, построенная по этим правилам, называется матрицей смежности.

Построим матрицу смежности для графа с рисунка 1.

Данный граф образован множеством вершин

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$$

и множеством рёбер

$$E = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_2, v_4\}, \{v_6, v_4\}\}.$$

В этом графе n=|V|=6, значит матрица смежности A(G) будет иметь размерность 6×6 . Так как в графе есть ребро $\{v_1,v_2\}$, элемент $s_{1,2}=1$, так как в графе нет ребра $\{v_1,v_6\}$, элемент $s_{1,6}=0$. Повторив процедуру для всех рёбер получим

$$A(G) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

Перечислим несколько свойств этой матрицы для разных типов графов:

- У неориентированных графов матрица смежности является симметричной так как $\{v_1, v_2\} = \{v_2, v_1\}$.
- У неориентированных графов на главной диагонали матрицы смежности находятся нули.
- Для ориентированных графов условие имеет вид

$$a_{ij} = 1 \Leftrightarrow (v_i, v_j) \in E.$$

- Для мультиграфов вместо единиц указывают кратность рёбер.
- Для псевдографов на главной диагонали указывают число петель.

2.3 Матрица инцидентности B(G)

Определение 13: Матрица инцидентности неориентированного графа

Пусть B(G) – матрица размерности $n \times m$, где n – число вершин графа, а m – число рёбер (дуг) графа. Элементы этой матрицы определим как

$$b_{i,j} = 1 \Leftrightarrow v_i \in e_j$$
.

Матрица, построенная по этим правилам, называется матрицей инцидентности неориентированного графа.

Построим матрицу инцидентности для графа с рисунка 1.

В этом графе n = |V| = 6 и m = |E| = 5, а значит матрица будет иметь размерность 6×5 .

Для удобства введём дополнительные обозначения:

$$e_1 = \{v_1, v_2\},\$$

$$e_2 = \{v_2, v_3\},\$$

$$e_3 = \{v_3, v_5\},\$$

$$e_4 = \{v_2, v_4\},\$$

$$e_5 = \{v_6, v_4\}.$$

Ребро e_1 инцидентно вершинам v_1 и v_2 , поэтому $b_{1,1} = 1$ и $b_{2,1} = 1$.

Повторив процедуру для всех рёбер получим

$$B(G) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Определение 14: Матрица инцидентности ориентированного графа

Пусть B(G) – матрица размерности $n \times m$, где n – число вершин графа, а m – число рёбер (дуг) графа. Элементы этой матрицы определим как

$$b_{i,j}=\left\{egin{array}{ll} +1, & e_j=(v_i,ullet),\ -1, & e_j=(ullet,v_i),\ 0, & ext{иначе}. \end{array}
ight.$$

Матрица, построенная по этим правилам, называется матрицей инцидентности ориентированного графа.

В качестве примера рассмотрим граф, показанный на рисунке 2.

Данный граф образован множеством вершин

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$$

и множеством дуг

$$E = \{(v_1, v_2), (v_2, v_3), (v_3, v_5), (v_2, v_4), (v_6, v_4)\}.$$

Дуга $e_1 = (v_1, v_2)$ выходит из вершины v_1 и входит v_2 , поэтому $b_{1,1} = +1$ и $b_{2,1} = -1$.

Повторив процедуру для всех дуг получим

$$B(G) = \begin{pmatrix} +1 & 0 & 0 & 0 & 0 \\ -1 & +1 & 0 & +1 & 0 \\ 0 & -1 & +1 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & +1 \end{pmatrix}.$$

2.4 Отношение достижимости

Определение 15: Путь в неориентированном графе

Путём в неориентированном графе из вершины v_1 в v_k называется чередующаяся последовательность вершин и рёбер вида

$$v_1, \{v_1, v_2\}, v_2, \{v_2, v_3\}, v_3, \dots, v_{k-2}, \{v_{k-2}, v_{k-1}\}, v_{k-1}, \{v_{k-1}, v_k\}, v_k$$

Определение 16: Путь в ориентированном графе

Путём в ориентированном графе из вершины v_1 в v_k называется чередующаяся последовательность вершин и дуг вида

$$v_1, (v_1, v_2), v_2, (v_2, v_3), v_3, \dots, v_{k-2}, (v_{k-2}, v_{k-1}), v_{k-1}, (v_{k-1}, v_k), v_k.$$

Заметим при этом, что путь называют **замкнутым**, если вершины v_1 и v_k совпадают. Если все вершины $v_1, v_2, v_3, \ldots, v_{k-1}, v_k$, кроме, может быть, v_1 и v_k , различны, то путь называют **простым**.

Определение 17: Цепь

Простой незамкнутый путь называют цепью.

Говорят, что вершины u и v связаны отношением достижимости, если существует путь из u в v. Если же помимо пути из u в v существует путь и из v в u, говорят об отношении взаимной достижимости.

Теорема 1

Отношение достижимости для неориентированных графов является отношением эквивалентности.

Доказательство

В самом деле, проверим три условия:

- 1. Рефлексивность.
 - Каждая вершина связана сама с собой;
- 2. Симметричность.
 - Если вершина v связана с вершиной u, то u связана с v;
- 3. Транзитивность.

Если вершина v связана с вершиной u, а u связана с w, то v связана с w.

Следовательно, отношение связности разбивает множество вершин V графа на классы эквивалентности, которые называются компонентами связности.

2.5 Связность

Определение 18: Связный граф

Неориентированный граф называют **связным**, если любые две его вершины u и v связаны отношением достижимости.

Определение 19: Сильная связность

Ориентированный граф называют **сильно связным**, если любые две его вершины u и v связаны отношением взаимной достижимости.

Определение 20: Ассоциированный граф

Неориентированный граф $G_1=(V_1,E_1)$ называют **ассоциированным** с ориентированным графом G=(V,E), если $V_1=V$, и

$$E_1 = \{\{u, v\} | (u, v) \in E \text{ или } (v, u) \in E, u \neq v\}.$$

Определение 21: Слабая связность

Ориентированный граф называют **слабо связным**, если ассоциированный с ним неориентированный граф связный.

2.6 Матрица достижимости

В ряде практических задач требуется определить существует ли путь из i-й вершины графа в j-ю. Иными словами необходимо определить связаны ли i-я и j-я вершины отношением достижимости.

Отношение достижимости можно рассматривать как рефлексивно-транзитивное замыкание отношения смежности.

Проведём рассуждения в несколько этапов:

- Если ρ отношение смежности вершин графа, а для вершин v_i и v_j справедливо $v_i \rho v_j$, то указанные вершины смежны, следовательно существует путь длины 1 из v_i в v_i .
- Аналогично, если справедливо $v_i \rho^2 v_j$, то существует путь длины 2 из v_i в v_j и т. д.
- Тогда замыкание

$$\rho^* = \bigcup_{i=0}^{n-1}$$

является отношением достижимости, а его матрица образуется как

$$P = A^0 \vee A^1 \dots \vee A^{n-1}.$$

Рассмотрим построение матрицы достижимости на примере графа, показанного на рисунке 5. Матрица смежности этого графа имеет вид

$$A(G) = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Рис. 5: Граф G = (V, E)

Построим матрицу отношения ρ^2 с помощью булева произведения матрицы A на себя

Аналогично

Тогда

$$P = E \lor A \lor A^2 \lor A^3 \lor A^4 = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Если вместо булевых операций использовать обычное сложение и умножение матриц, мы получим матрицу P', элемент p'_{ij} которой показывает число различных путей из i-й вершины в j-ю.