Figure 13 NUCLEOTIDE SEQUENCE F PLASHID POAVIOO

KpnI site (with 3't rminal sequence)

8087

CATGGAATTTACAAAGAAGTAAGTTGTTGGATCTTTATTCACAATTCTTTTAACAATGAC -Acgcatalatggacgtalackagcaattggaatagcaggaagggccattgtalactgtgt-TCCTGCTGATGCCGCTGCAGAAAGGATAGATGCTATCGTACGCATAAACCCCCCCTAT. ttgttcatctgctgctttatatatcttctgccaatctagotgatatttgctttqaat ... GCTGTTTCCAAAAGCTTGCATCATCGGATTTTCAATTAAATGGATTGGATTTGCAGAATT ~ tcctarratageceraeceatetraageagttarretatteteceteergeageere agatataattaageggaggaacegagggttaaattecagggtectecggagagagatate tageatcaggccaagaagtgaaccaaaaagacttgtaagtagaagttgtctgatatgctt t ggagaggactgtäaaaattgcaaaacggtatctaatgaccatttcttctttacttttac atctgtatcatgttetccatcagaaggtcttattgggaagtaccattggtccagccatc titgaagacitctgtticttgaaattctgttttcggtaagcgactagcagttatggtatt AGGAATATTGACGGTAATGTTATTCACATCTACAATTTCTGGAGGAATCCATCTTGCATA ggatgaatgggttttgtgggttctttcaatataattgcgaggaggtttttccaaa tctctgaacataagtattttctgattttggcggttttttgctttttcgcgctcttttct tggctttggtctttqaaattttttcttccttttctgtaggctcctcctgctaaggtgt GTTATTTGTGACGTACATCCTGTTAGCTACACGATTTTCCCGGACTGCAAATTTTTTTGX Caratggarregarattgctgaraccttctattartcatatrarttgtcretggartcat GAATCAGATAGTGCAGGATTTTTTCTTTTTGATACTGATAATTTATACTATTATGTATTG Gatchagistcttggataigittaagagataiaactcitcaitgtgatcgcaigiggtia GCGGTTTGTTTTGTTTGTGCAAATCTAAATTTGATGTACACAATATTCTAGCGGGAGTA Catgitatgtaatgaaaatgacgtcgggattgaatggattgagccttatttgacatttt tctgtgatttttttgccttattaggaaataaatttgtggcgccagtacgatggagattgc atggtat cagcagatatttaacccaatatggattaagccaaatttatgggctttctctga ttttttaaaaaatggcctttattatggctagcgacttggcgttgtaaatcttagat CCCTGGTAATGTTTGTAACAAACTTGATATCATCAAGAAGATCTTCCTGAAGATTTTAC CGTGTCTATGTTTTGTGTCTTAGTGTGTTGGCTTGCTTTCTGTAAAGGTTCTAATTT acctgaaactaccoccacacttgtcccccccacactttctcccccccacttcaact aataaaaccctaatttttagtttgtaaaaatagaattcaaattttaaccccacaatcàc ttcggcccactttctgttgaatttccttatgtttctaagccaattgttccatggcctgc ttcggcatcttctaataattcatcdagtcagaatattgactttcctcttcttaaaccaga TCRAGATCCARTAGCCTTCTTTCARACTRACARTACGGCTTACTTACRACCTGGRGCTAC TTATTACTGGAAGTGTATCGAACTGTCAAAGCCTATTCACATTTACGGTCAAGCAGCTAG AGTACAACTTGTCGGACCTGGACCTGTCTTTGTTTTCAACAGTGAAAGTGTTATTCCTGA Agrititirgicgictitgaarxiatcaactitritgigaagatitccirtiacaag TGGCCAGTTAAGTTTAGGACTTACAACTCACAGTGCTGTATGGTTTATCAATGTATGGAA aacttcaatagtcaaitgiaacittaaaaatttiaggggagcggctctttggtattcaga Taniagaaattittiggaatgegagaaaatggaateageageatttagitteaaattgteg ttttaatggttgtagaattggaatttctaatactggttcatctggaatattccatagccag tcaaatcaatittatgattotcaaatctotttaatgtaaccggggtaattggtctag Aartaalaatgitattgitaactgtagatgtgcttatctgcatgttggagataacatgtg GTATGAAGGECATTCCGAAAATAATAATCCCGCTAAGGGTACTTTCTGCAATAACATAAT tanccatecteataacegagecaatetctegectacteaetttaaacttacagategate Arcgatacagitagcatcatittatittgatgataatcaagaaattccaccitgitatag cggtaattttcattggtttggagatgtaaacattgtaaatttttttctaccacaaaactga Tabatggtgcattactggatgtaatttctatggtaatacacatgcagctaacgatgctgg tcaagitcaggttgctgaagctgtaaaagcagaagtgttaitaitattgggggitctggiaa TAATGTAACCATGAAAATATTGTAGAAGGTAACATGACTCCAAAAATTGGTACAATAAA gtaaaaactttttattcaaaacaaaatggatttacatttaaacgttttacatattga**tt** ctgcgtataagttcttttttttaaacactcttctaatttccatacatgcttgataaaacac acittctaaattcataaatataggtttgacttgatcagaaggtgaataatagctccatct aaatgatteggtaataggaacattattatatatatabaccagctatatitttgagttagetct TGCATGATCCACTATATCTTTAAGTACAGGGATAAGTGCACTCGGAAATCCAAAAGAATA GTTTTTAATAAATCTATTTATCTGTGAAGAATCAAGCTGCGGGCTAATAACATGACATTT

8087

tgattgaattttta**aa**tg**ctt**aatatttcctct**atcatga**cgcgggttcatattatgtaa AACTACTACAACAGTCTAACCATTACATTTGGCAAATCTATTAAAAATTTTTGACGGTAA AGCATGAAAGAAGAACTTATAGAATGACATGATCCCAATTGATTCATACATTCATCTAT TATAATACAGATAGATCCTTCACTTGCAGCTCTGCAGAATATATTATCTGGATTATCAAT ATTTAGATTAGTATCGGAAATAGCATCTITGAAAGCTAATTGTATAAATTTTGGATTTAA TGTTTTTGTTAGTGGATTAGAGAATGCATCGTAGTTTCCTTCAACACACTGTGCT1TCCA cgcaatttttttcttctaatggaacagtacctttttctggagttatgaaaaaattgtttc tggtattggatcaattag**ttttccagatataata**tt<mark>tcttataaattgagattttc</mark>cgct acctotogogiccatatacagtaacaatgaatgottotaatccocagttaaactgogtat ACAGCCATCTTTTAACAGATTGTGAGCCTCATTTACAGTTTTTTGATAATTTACAGCAAT ttctggaaatggatttctgcaaatagaaggatctatctttacaacatcatttttccaatt TAATGTGTCACTTAAAAATTTTCCCAAAAAGGATTTCTGTCAATGGTTCTTGCGGTCTT GGATTTGGGTGTCTCTTGTCGTACGGGTAAAGTAAGTATCCTTTCTTCCACTGGATCCCT ttcctcatcgtttcatccttccaaggtctcagaattctggttagttgcttctctaccacc GTGAATGGTACATCGGTTCCACTTGCGGTTTGCAGTGTCTTTTTTAAACTTTTCCTCGAT GTCTGAAACTCTTTCTGTGGTTGTTCTAATAAATTATAGTCAGTAAAACAATGTTTTAGA atitcatagettaaacaatttttagcatgacctttggctcttaagettccttctccaata aatttacagittitacaagitatgtcttttaaagcatataatttaggagctaaaataca? CARCITAGACATGGATGTTTTTCATCAAAGATTAAATTTGAGTTATATTTTTTAAGTCTA tgtarteettttgatarcatgagttggtggecettttetgttaagaataacgagtetgta TCACCATAAATACTTTTTATCTCCCTTTCTATGTAAGGTTTACCCATATCTTCGGCATAT AAAATTTCTGCCCACTCACTCATGAAAGCTCTGGTCCAAGCCAGCACAAAGGATGCTATG I GROTTGGATATEGGTTGTTCTTGATECATTCTTCCTTATECTCAATAGTTGTTAAAATT Aaatcattacaatcagcagataaaaagttataggcttaaaagtcacgtgatcttgattt cctataaaaagtggaaaattaaaattitcatttgtgtctttggaatctttgggcggcatt tcaggtaggtttgaaaatactgattccactcaaatgaacgttttggtaatgattacta atcacagitgigtatgatgiaatticagctgatccattitctaatctittititatctitc tcttcaatattttcagcaaacactactttcttttttatctatacgggtagcaaacgaacca~ tataaagcaitt gataacaattiacitatacitcgctgaatcitgitgitacitttacit GCTTTTTCTTTAGCCATAATATTTACTTTCACATATTTTTGACATAACGGTTTCCAGTCA CTCCATACAGCATACATTTCAGAGCTTTTCATTATTTTTGCATTTCCATCCTCTATTGTGT Aaggtgattaaatcgatagaggtcagtacttcatttaatgtttcatttgaccagcat aactttccactttttttagaacataatggaggtaacacatcaagataatctaatgaggg GGTTCACAATCGGCTACCACAATCATAGGTTTGATTGAATTGTCAAAATAATCTATTTTT tcttttcttgtagtagttcttgaaagtaatctatttgtcgtttggcttcaaaagcattt aaagittitteeatatggaagtggatgegttaaggcactaggatalatteeggagatatca TACACATATATTGCTTCTTCAAATATTCCTAAAAATGAAGGATAACATCTTCCTCCTCTT Aaactcattctaacaaaatcatacatttttttctgatggggttccaaatttcttaggaat tcacacccatgatettetteataaaagatttgttaaacaatgettgactacta CTAATTGTAGGACGTTGGAATATATTAAAAGAACACTCAAGCTTTAAAGATGTTGTACAG Aactetteataacettetataagttitteaactaatteagecgtaactataacatete TGTAAALATTCTTCAAATGAAATCCAALATTTTTGAACTGGATAACCATTGTTTTCTTTT tcrtrttctcccarcrtrraaaaatcrttgattgccctgtraggrcaataacctttgctr acactcaactatecagtagcagtctctttaaagaagagtgggttaacaaaaatgtg TCCCTAACCATAAATTTTATACCTTGCCATTTCATATCTTCAAAATTAATAATTCCATTT ttccatctttcataagttgtatgaaggtttcttaaagcaaggatttggaagagataat GTAATATCATTAAATAACAGTTTTCCAGCACGAGGCATAAAGCTTCTTGTCAGCTTAAAC ATTGAAAGTTCYTCACTGTCTATTCCTTCTAATACATGACTTGCAAGTATGATTTCATCA AAACCACAGATATTATGACCTACTACATATAATTCAATATATCTTGGTTCGCACTGTTTT AATTTTTTTTTTTTTATTAAGACCATGATGTCTTCATATGATAAATTTGATTCAAGACCA TCATTTTCACAAAACGTTGACCAGTATTTTTTAGCTACTGAAATTTGTAGCTCTGTTCTG CTGTTTACCTCATAACCTATATCGGTAGCTATTTTAGAAGCAATTTTTATGAGTGATTTA CATCCAATTAACTTAAAAACCAACAAGTAAGGAGTTAACTGTTTTCCATACAAAGAATGG Targtatatgtttcartatacatalaaaagacgttttgctttatggctccaact ggattaaatttgaitttittcccacca/aagttttgtttcatggtgaatattgtgataatac AAGTCCCGTCTTCTGGATGAGCAGTTGTGTATALTACTATAAATTGTTCCGCAGAATTCA~ Cattiatectgitgittaacagittitattaaatattitcicciiitaaaatcaataa tctattggtaacaaatttccattaagaatttcttcagtcatcttaaaaaatcttttgttg AACTTCCATATTTTAAAATACGGGGGTGTTAGAATCACAAAGTTTTAAAACATCTTAAAA

8087

ACATTITCTACTTTCTTGAAAGAATTTAATTTTAAACCCTGAATTGCAAAGTAATTATAA AAACTTTTTTCAAAATTCTTGTAGTATATAATTTTTATATATGTATCCTCATATATTCCA GTAATATAAGTAGTAGTTCTTTGCTTTATTATTGTCTTTGAAGCCATCTGTTTAAAGCCG cttcccgtactcccccaaagcttcttaaaacaacttcatttgtactatagccaacaattc CAGACAATTTTATTCTAARTGCTATTTCAACTGAATCTAAATCTGAAAATCCGTGTTTA cttgg:tgattacttcttctatgcicccactgtcttctacgaagtctatatcttgaagta ATTGGTCTCTTCTGGGAGTTGAAAAAGAGTAAGATCTTTCATTAGCTTCTATAATTC ctalalatcacgagttattctgctatatagttgtctcaatgcttgtgtttctctattaa Accabactetagtabatatatettetecaettteatttetaectettaatataatttgaa Canatiggatic Cartaitetegeagetracetatetegeactaraterageatrage AATATAGCGTGCTTGCCACATGCTCTAATATAAAGAAATACACTAACCATTTTTGAATAA aatcatcagecaatctatetteattataaaatetaataagtaatgaaaaaatecacttc cgtaattaaaaaattactccttcttgcttcaggagffaattcttcttctaaattttgaa ttaaaiciactattgaagctatcacttcatcattaaattcttccctactcagatcgcttg asctegsetesesatetsaarateettsatettetatitsassaacastaasassaara tagaagtitcitcaacattccitaccctttggcgtctattaacaggtaatctatcaataa aicitctgatiacatcaecccitgaacgtcicatiatitcagiaatagcictataaitti ccctaggecteaatcigaatggeaatcctactcttgtccctgaccttaaagttaatcctc gatttteagettetggaatttecagetgtgaaaattcatetataaaaageteaatecaga ATTCAGAAAAAGGTAAGTCTAATACATTCACTATTATGCATGTTAGACAAAATTAAAA atttacataaagcttttttaattttacaaattaactttataaggtaagtatccctttctt gcaratttaralccatarargcttgrgarargcttgrtratcctgreagaractet tctgattttgagctgaartagcggagccaaraccttgcatgtctgcaagttgcagactcg CTACATTTTGAATTGCTCTCATATATGACCCAGTATTTATGGAGTATGAACAATCAGTTA **AARTTTGCCRGGTCRTGCGTCTCTCRAARCTTRTRGGTGAAAGATRCAACTTRTATGAAA** tgttgctgtaagt¢¢gctgat¢aaacagatactggttaaaactcgcgccacataaaaat PT99AJAATTAATTTGGTGGAGGTTCTCTTTGGTGGTTGAATTAAKTAATCACCCAA CTCTTGGGCGTAAATCGAGTAATTGAGTCACTGGATAATTAAAAAATCGATTAGCCCATT ttattcecctttcatgtatagtcettgacetggcantaettegattattaaggteaagtg TTANACGTANATATCGTANGGTATGTTGACTTTGCCCAGTGNGTTGTTGCCATTGGTGAA TCTGCAAGGCAAACAAAAATTTATCTTATTACTGCAGATGCATCCTATTTTACAAAATT tacgitcatcatiggaaactccagacttatcaagcaactccccgggcacgtcaaataaaa atgaaaaagatgaatttgaaccagcagttggcatttctagcaaaccatctgatgaattta atatgagacgatctcaaagacatgataatttacctaaaagtcagataccagtagtagata CTTGCATAAAACTTCATGATTCTAAACAATTAAAAACTGATATGTTCAGGCCGGATTTTG ctggaactagtccagctcaaagacacatagaagcccaaagctaaagagaaatggatcit ATACTCGTACTTTAGAACAATGCACACATCATTCTTTTATAAGTCATGTTAAACAATTAG titciagaccattiatatctctaggiaftacatattiggatgattttttgcagacttatt TAGATCATACTGAATCGTCTTCTTTAAACTTTCAACTGTTTACTTTAATAAATCACTGTT Cagaaaatactitaaaacggattitaaaacacatitciaaaaaaaaatgaaaaaatcaa atgiaaatcaatggttgattgatctcattacatgtatatatctaattataacacatgaac aaaatgitacagaacaagtiaatgcccttttagtaactagtaatcacttagctttacatt ttgcxxxgxxxgctxcxgctggxttctxtcctxcxgcxgxcxxxittxgcgxxgxctcxtx tttttttcaacacaataatttagcaatactttcgctagcagaaagtataggttgctata CTOTOXATCCATATTGCAAAAATCCTTTGAAAAAGTCAAAAGTAGAAGTAEAACCAAGTG accanatotatatottexcettaaaaggigeacttgaacateetgatteegaegaagaeg aagacagtggacttcaaaatgaataattatcataaatggacttctaatgttatagatgca attciatcraecaagetetttagetetaaaaatttaaaagteaaeegittgeaaaca Aattgaatgetttagaatcagcagttgtgecetecaagaaaagatgataetcet@aaaatga tagcaratotttaaaagaattagttgotttgggagctattcgcagtgatgaagttgggc attigcaractitaacaggagacattaratcacticaatccgatataattagaagticeg acattoccaai tiaagiaaicaagitoititaaaiacattititaaai cittocccicaa atgagacacctaatattacagittttagaicaggaaatgatacittaattcaggitaaca tarcaggarticatacaattrattiggatgrifttaraartitaaarattitaaa gaatagtattaacaggtgaatttattccaggtgatattacaagcagactaacagctaata-Caagagtactgctttattttcttgctccttttacaaatgataatacattcacacctgata CTTTTCTAGCTTTACTCATGAAATTATATAGATTGACAGTTTCTTCTGCTTTAGATTTTG arcarcarctgractgractracartates acceptables accepted the contraction of the contract of the con

Figure 13

141477731

VACCINATION WITH CAV205 OR PLASMID DNA

Figure 14

COMBINATION VACCINATION

Figure 15

Table 1. Vaccination f sheep with various combinations of vaccine delivery systems and "

number of T. ovis cysticera found four weeks after a challenge infecti n.					
Sheep No.	Group	Vaccine	1gG, titre	IgG, titre	No. cysts
21	1	1° protein/Quil A	#360	#400	62
41	1	2° protein/Quil A	2400	1500	1
43	1		2500	2000	1
78	ī		15000	13000	0
79	ī		1050	550	34
93	1		1100	110	3 '
45	2	1º protein/Quil A	2100	2200	2
83	2	2º Adeno	4000	1700	0
95	2		4100	7400	0
73	3	1° Adeno	880	0	ND*
85	3	2º protein/Quil A	1100	700	18
97	3	- pro-in, x-100-	1200	2050	26
23	9^	1° DNA	4700	1800	0
74	9	2° DNA	7000	7 50	0
87	9	3° Adeno	9000	690	1
24	10	Nil	180	0	99
25	10	- -	O .	0	129
26	10		0	a	111
42	10		0	180	24
80	10		130	0	17
94	10		0	0	2

^{# 45}W-specific IgG₁ and IgG₂ ELISA titres are shown for sera collected at the time of challenge infection

141477732

^{*} Sheep number 73 died prior to the assessment of the *T. ovis* challenge infection from causes which were unrelated to the experimental protocol.

[^] These animals were inoculated with OAV205 five weeks after the second vaccination.