ME101: Engineering Mechanics (3 1 0 8) 2019-20 (II Semester)

LECTURE: 4

A rigid body will remain in equilibrium provided

- Sum of all the external forces acting on the body is equal to zero, and
- Sum of the moments of the external forces about a point is equal to zero

$$\Sigma F_x = 0$$

$$\Sigma F_y = 0$$

$$\Sigma F_z = 0$$

$$\Sigma M_x = 0$$
$$\Sigma M_y = 0$$
$$\Sigma M_z = 0$$

Free-Body Diagrams

Space Diagram: A sketch showing the physical conditions of the problem.

Free-Body Diagram: A sketch showing only the forces on the selected particle.

Support Reactions

Prevention of
Translation or
Rotation of a body

Various Supports 2-D Force Systems

Rigid Body Equilibrium	CATEGORIES OF EQUILIBRIUM IN TWO DIMENSIONS		
	Force System	Free-Body Diagram	Independent Equations
Categories in 2-D	1. Collinear	\mathbf{F}_1 \mathbf{F}_2 \mathbf{F}_3 x	$\Sigma F_x = 0$
	2. Concurrent at a point	\mathbf{F}_1 \mathbf{F}_2 \mathbf{F}_3 \mathbf{F}_3	$\Sigma F_x = 0$ $\Sigma F_y = 0$
	3. Parallel	\mathbf{F}_{2} \mathbf{F}_{3} \mathbf{F}_{4}	$\Sigma F_x = 0$ $\Sigma M_z = 0$
	4. General	\mathbf{F}_{1} \mathbf{F}_{2} \mathbf{F}_{3} \mathbf{F}_{4} \mathbf{F}_{4}	$\Sigma F_x = 0 \qquad \Sigma M_z = 0$ $\Sigma F_y = 0$ 7

Categories in 3-D

Equilibrium of a Rigid Body in Two Dimensions

• For all forces and moments acting on a twodimensional structure,

$$F_z = 0$$
 $M_x = M_y = 0$ $M_z = M_O$

• Equations of equilibrium become

$$\sum F_x = 0$$
 $\sum F_y = 0$ $\sum M_A = 0$ where A is any point in the plane of the structure.

- The 3 equations can be solved for no more than 3 unknowns.
- The 3 equations can not be augmented with additional equations, but they can be replaced

$$\sum F_x = 0$$
 $\sum M_A = 0$ $\sum M_B = 0$

Free body diagram

Free body diagram example

Free body diagram example

Equilibrium of a Two-Force Body

- Consider a plate subjected to two forces $\mathbf{F_1}$ and $\mathbf{F_2}$.
- For static equilibrium, the sum of moments about A must be zero. The moment of $\mathbf{F_2}$ must be zero. It follows that the line of action of $\mathbf{F_2}$ must pass through A.
- Similarly, the line of action of $\mathbf{F_1}$ must pass through B for the sum of moments about B to be zero.
- Requiring that the sum of forces in any direction be zero leads to the conclusion that $\mathbf{F_1}$ and $\mathbf{F_2}$ must have equal magnitude but opposite sense.

Equilibrium of a Three-Force Body

- Consider a rigid body subjected to forces acting at only 3 points.
- Assuming that their lines of action intersect, the moment of $\mathbf{F_1}$ and $\mathbf{F_2}$ about the point of intersection represented by D is zero.
- Since the rigid body is in equilibrium, the sum of the moments of $\mathbf{F_1}$, $\mathbf{F_2}$, and $\mathbf{F_3}$ about any axis must be zero. It follows that the moment of $\mathbf{F_3}$ about D must be zero as well and that the line of action of $\mathbf{F_3}$ must pass through D.
- The lines of action of the three forces must be concurrent or parallel.

A man raises a 10-kg joist, of length 4 m, by pulling on a rope.

Find the tension *T* in the rope and the reaction at *A*.

SOLUTION:

- Create a free-body diagram of the joist. Note that the joist is a 3 force body acted upon by the rope, its weight, and the reaction at A.
- The three forces must be concurrent for static equilibrium. Therefore, the reaction R must pass through the intersection of the lines of action of the weight and rope forces. Determine the direction of the reaction R.
 - Utilize a force triangle to determine the magnitude of the reaction **R**.

- Create a free-body diagram of the joist.
- Determine the direction of the reaction **R**.

$$BF = AB\cos 45^{\circ} = (4 \text{ m})\cos 45^{\circ} = 2.828 \text{ m}$$

 $CD = AE = \frac{1}{2}AF = 1.414 \text{ m}$

$$BD = CD \cot (45^{\circ} + 25^{\circ}) = (1.414 \text{ m}) \tan 20^{\circ} = 0.515 \text{ m}$$

$$CE = BF - BD = (2.828 - 0.515) \text{ m} = 2.313 \text{ m}$$

$$\tan \alpha = \frac{CE}{AE} = \frac{2.313}{1.414} = 1.636$$

$$\alpha = 58.6^{\circ}$$

• Determine the magnitude of the reaction **R**.

$$\frac{T}{\sin 31.4^{\circ}} = \frac{R}{\sin 110^{\circ}} = \frac{98.1 \text{ N}}{\sin 38.6^{\circ}}$$

$$T = 81.9 \,\mathrm{N}$$
$$R = 147.8 \,\mathrm{N}$$

Equilibrium of a Rigid Body in Three Dimensions

• Six scalar equations are required to express the conditions for the equilibrium of a rigid body in the general three dimensional case.

$$\sum F_{x} = 0 \qquad \sum F_{y} = 0 \qquad \sum F_{z} = 0$$
$$\sum M_{x} = 0 \qquad \sum M_{y} = 0 \qquad \sum M_{z} = 0$$

- These equations can be solved for no more than 6 unknowns which generally represent reactions at supports or connections or unknown applied forces.
- The scalar equations are conveniently obtained by applying the vector forms of the conditions for equilibrium,

$$\sum \mathbf{F} = 0$$
 $\sum \mathbf{M}_O = \sum (\mathbf{r} \times \mathbf{F}) = 0$

A sign of uniform density weighs 1200 N and is supported by a ball-and-socket joint at *A* and by two cables.

Determine the tension in each cable and the reaction at *A*.

SOLUTION:

- Create a free-body diagram for the sign.
- Apply the conditions for static equilibrium to develop equations for the unknown reactions.

• Create a free-body diagram for the sign.

Since there are only 5 unknowns, the sign is partially constrained. It is free to rotate about the *x* axis. It is, however, in equilibrium for the given loading.

$$\mathbf{T}_{BD} = T_{BD} \frac{\overrightarrow{BD}}{BD}$$

$$= T_{BD} \left(-\frac{2}{3} \mathbf{i} + \frac{1}{3} \mathbf{j} - \frac{2}{3} \mathbf{k} \right)$$

$$\mathbf{T}_{EC} = T_{EC} \frac{\overrightarrow{EC}}{EC}$$

$$= T_{EC} \left(-\frac{6}{7} \mathbf{i} + \frac{3}{7} \mathbf{j} + \frac{2}{7} \mathbf{k} \right)$$

 Apply the conditions for static equilibrium to develop equations for the unknown reactions.

$$\sum \mathbf{F} = \mathbf{A} + \mathbf{T}_{BD} + \mathbf{T}_{FC} - (1200 \text{ N}) \mathbf{j} = 0$$

i:
$$A_x - \frac{2}{3}T_{BD} - \frac{6}{7}T_{EC} = 0$$

j:
$$A_v + \frac{1}{3}T_{BD} + \frac{3}{7}T_{EC} - 1200 \text{ N} = 0$$

$$\mathbf{k}: A_z - \frac{2}{3}T_{BD} + \frac{2}{7}T_{EC} = 0$$

$$\sum \mathbf{M}_{A} = \mathbf{r}_{B} \times \mathbf{T}_{BD} + \mathbf{r}_{E} \times \mathbf{T}_{EC} + (1.2 \text{ m})\mathbf{i} \times (-1200 \text{ N})\mathbf{j} = 0$$

$$\mathbf{j}$$
: $1.6T_{RD} - 0.514T_{EC} = 0$

$$\mathbf{k}: 0.8T_{BD} + 0.771T_{EC} - 1440 \,\mathrm{N} \cdot \mathrm{m} = 0$$

Solve the 5 equations for the 5 unknowns,

$$T_{BD} = 450 \text{ N}$$
 $T_{EC} = 1400.8 \text{ N}$
 $\mathbf{A} = (1500.7 \text{ N})\mathbf{i} + (449.7 \text{ N})\mathbf{j} - (100.2 \text{ N})\mathbf{k}$

What if...?

Can the sign be in static equilibrium if cable *BD* is removed?

Discuss, and be sure to provide the reason(s) for your answer.

The sign cannot be in static equilibrium because T_{EC} causes a moment about the y-axis (due to the existence of $T_{EC,Z}$) which must be countered by an equal and opposite moment. This can only be provided by a cable tension that has a z-component in the negative-z direction, such as what T_{RD} has.