Report

(a) Robert's Operator

For pixel (r, c), calculate r_1, r_2

$$r_1 = I(r+1,c+1) - I(r,c), r_2 = I(r+1,c) - I(r,c+1)$$

gradient magnitude: $\sqrt{r_1^2 + r_2^2}$

If gradient magnitude \geq 12, output(r, c) = 0, else 255.

(b) Prewitt's Edge Detector

For pixel (r, c), calculate p_1, p_2 by the following mask, (r, c) corresponds to the center of the mask.

-1
-1
100000000000000000000000000000000000000

gradient magnitude: $\sqrt{p_1^2 + p_2^2}$

If gradient magnitude \geq 24, output(r, c) = 0, else 255.

(c) Sobel's Edge Detector

For pixel (r, c), calculate s_1, s_2 by the following mask, (r, c) corresponds to the center of the mask.

-1	-2	-1
1	2	1
	Sı	

-1	1
-2	2
-1	1
s	2

gradient magnitude: $\sqrt{s_1^2 + s_2^2}$

If gradient magnitude \geq 38, output(r, c) = 0, else 255.

(d) Frei and Chen's Gradient Operator

For pixel (r, c), calculate f_1 , f_2 by the following mask, (r, c) corresponds to the center of the mask.

-1	$-\sqrt{2}$	-1
1	$\sqrt{2}$	1

-1	1
$-\sqrt{2}$	$\sqrt{2}$
-1	1

gradient magnitude: $\sqrt{f_1^2 + f_2^2}$

If gradient magnitude \geq 30, output(r, c) = 0, else 255.

(e) Kirsch's Compass Operator

For pixel (r, c), calculate $\,k_n\,$ by the following mask, (r, c) corresponds to the center of the mask.

-3	-3	5	-3	5	5	5	5	5	5	5	-3
-3		5	-3		5	-3		-3	5		-3
-3	-3	5	-3	-3	-3	-3	-3	-3	-3	-3	-3
	k ₀			k ₁			k ₂			k3	
5	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
5		-3	5		-3	-3		-3	-3		5
5	-3	-3	5	5	-3	5	5	5	-3	5	5
0.00	k4		200	k5			K6	1,0		k ₁	

If gradient magnitude \geq 135, output(r, c) = 0, else 255.

(f) Robinson's Compass Operator

For pixel (r, c), calculate $\ r_n$ by the following mask, (r, c) corresponds to the center of the mask.

$$\max_{n,n=0,\dots,7} r_n$$
 gradient magnitude:

If gradient magnitude \geq 43, output(r, c) = 0, else 255.

(g) Nevatia-Babu 5x5 Operator

For pixel (r, c), calculate $\,N_n\,$ by the following mask, (r, c) corresponds to the center of the mask.

100	100	100	100	100
100	100	100	100	100
0	0	0	0	0
-100	-100	-100	-100	-100
-100	-100	-100	-100	-100

100	100	100	100	100
100	100	100	78	-32
100	92	0	-92	-100
32	-78	-100	-100	-100
-100	-100	-100	-100	-100
		30°		•

		600		
100	-32	-100	-100	-100
100	78	-92	-100	-100
100	100	0	-100	-100
100	100	92	-78	-100
100	100	100	32	-100

-100	-100	0	100	100
-100	-100	0	100	100
-100	-100	0	100	100
-100	-100	0	100	100
-100	-100	0	100	100
		-000	-	

-100	32	100	100	100
-100	-78	92	100	100
-100	-100	0	100	100
-100	-100	-92	78	100
-100	-100	-100	-32	100
		600		

100	100	100	100	100
-32	78	100	100	100
-100	-92	0	92	100
-100	-100	-100	-78	32
-100	-100	-100	-100	-100
		-200		

 $\max_{\text{gradient magnitude: }^{n,n=0,\dots,5}} \mathbf{N}_n$

If gradient magnitude \geq 12500, output(r, c) = 0, else 255.