Exercise 1

Let h be a function defined by $h(x) = \frac{2\sin(3x)}{5\sqrt{3x^2}}$. Which of the following definitions of f and g satisfy $(f \cdot g)(x) = h(x)$?

Multiple Choice:

(a)
$$f(x) = 2\sin(3x)$$
 and $g(x) = 5\sqrt{3x^2}$

(b)
$$f(x) = \frac{1}{2\sin(3x)}$$
 and $g(x) = 5\sqrt{3x^2}$

(c)
$$f(x) = \sin(3x)$$
 and $g(x) = \frac{10}{\sqrt{3x^2}}$

(d)
$$f(x) = \frac{2\sin(3x)}{5}$$
 and $g(x) = \frac{1}{\sqrt{3x^2}}$ \checkmark

Let h be a function defined by $h(x) = 2x^2 + 2x - 2$. Which of the following definitions of f and g satisfy (f + g)(x) = h(x)?

Multiple Choice:

(a)
$$f(x) = 2x^2$$
 and $g(x) = 2x + 2$

(b)
$$f(x) = x^2$$
 and $g(x) = x^2 + 2x$

(c)
$$f(x) = x^2 + x - 1$$
 and $g(x) = x^2 + x - 1$

(d)
$$f(x) = x^2$$
 and $g(x) = x^2 + 2x - 1$

Let h be a function defined by $h(x) = \sin(x) - \cos(x)$. Which of the following definitions of f and g satisfy (f - g)(x) = h(x)?

Multiple Choice:

(a)
$$\sin(x) + \tan(x)$$
 and $g(x) = \cos(x) + \tan(x)$ \checkmark

(b)
$$f(x) = 2\sin(x)$$
 and $g(x) = \cos(x)$

(c)
$$f(x) = \sin(x)$$
 and $g(x) = -\cos(x)$

(d)
$$f(x) = -\cos(x)$$
 and $g(x) = \sin(x)$