

Instituto Superior de Engenharia de Coimbra

Licenciaturas em Engenharia Informática

Análise Matemática II Exame da época normal do ano letivo 2022/2023

Data: 26/06/2023 Duração: 105+45 minutos

Escreva na caixa seguinte de edição de texto o seu:

Nome Completo:

Curso:

Notas:

i) Caso pretenda desistir deve escrever na caixa de texto sequinte:

"Declaro que desisto" incluindo a Data: e Hora:
ii) Atendendo a que existe uma nota mínima de 5 valores, se não fizeram nada ou praticamente nada cuja soma das cotações seja muito baixa, o melhor mesmo e aconselhável é desistirem.

iii) Para além das observações e aviso que leu na página de rosto e entrada nesta prova, não facilitem, não esgotem totalmente o tempo de prova e não a

submetam apenas nos últimos segundos.

iv) As questões de resposta livre, isto é, sem correção automática devem ser feitas em papel na folha de prova, devidamente identificada, sem necessidade de

digitalização e submissão.

v) No final de concluir a prova deve selecionar o botão "terminar e submeter" existente na última página.

Pergunta 2

Não respondida Nota: 3,000

Marcar pergunta

Editar pergunta

A padroeira da Cidade de Coimbra é a Rainha Santa Isabel.

Nos anos pares as Festas da Cidade de Coimbra são mais completas e grandiosas, uma vez que, o imponente andor da Rainha Santa Isabel percorre em majestosa procissão algumas das ruas e avenidas da cidade, desde o Convento de Santa Clara-a-Nova até à Igreja de Santa Cruz na Baixa de Coimbra no dia 7 de julho e vice-versa no dia 10 de julho, sendo a 4 de julho o Dia da Cidade de Coimbra.

A figura seguinte é uma imagem da Rainha Santa Isabel e os pontos marcados têm as seguintes coordenadas:

$$A = (-0.67, 2.31), B = (0, 1.65), C = (0.67, 2.31)$$

$$D = (-0.67, 1), E = (0, 0), F = (0.67, 1)$$

Créditos da imagem: Confraria da Rainha Santa Isabel [https://rainhasantaisabel.org/, acedido a 04/07/2022]

a) Defina polinómio interpolador.

- b) Aplicando a interpoladora de Newton das diferenças divididas, determine:
- i. O polinómio interpolador de grau 2 da função f(x) cuja gráfico é a linha que define parte do contorno do rosto da imagem da Rainha entre os pontos A, B e C:
- $\dot{ ext{ii}}$. Os polinómios interpoladores de grau 1 das funções g(x) e h(x), cujos gráficos são as linhas que marcam o pequeno decote, junto ao cordão que a Rainha tem ao pescoço, entre os pontos D e E e entre os pontos F e E.
- c) Sem calcular, estabeleça em coordenadas cartesianas os integrais duplos que lhe permitiriam determinar aproximadamente:
- i. A medida de área da região do rosto da Rainha sob o nariz, limitada pela função f(x) e o segmento de reta que une os pontos A e C;
- ii. A medida de área da região do decote limitado pelas funções $g(x),\,h(x)$ e o segmento de reta que une os pontos D e F.
- d) Qual é a medida de área das regiões da figura/imagem definidas na alínea anterior?

- Editar pergunta
- (b) Para $A(x,y)=x^2-3$:

(No answer given) \$

(i) A equação diferencial não é linear e de 1ª ordem.

(No answer given) \$

(ii) Determine a solução geral da ED e introduza a constante com %c.

 $y = f(x; c) \Leftrightarrow$

- (c) Para A(x,y)=0
 - (i) determine a solução particular da equação diferencial que satisfaz a a condição inicial y(0)=5.

 $y = f(x) \Leftrightarrow$

(ii) Sendo a figura 1 o gráfico e campo direcional da ED, qual das figuras 2 ou 3 é o gráfico da sua solução geral?

Figura =

Figura 1

Figura 2

Figura 3

Pergunta 4 Não respondida Nota: 2,000	Considere o sistema de funções $\operatorname{SF}=\{\sin(7\cdot x),\cos(7\cdot x)\}$. a) Calcule o Wronskiano do sistema de funções SF. $\det(W)=$ b) SF constitui um Sistema Fundamental de Soluções (SFS) de uma equação (No answer given) \diamondsuit c) As funções de SF são soluções da equação diferencial $y''+7y=0$. (No answer given) \diamondsuit d) Determine a solução geral da equação diferencial $y''+49y=0$. $y=c_1*$ $+c_2*$ $\cos c_1,c_2\in\mathbb{R}$.	Tidy STACK question tool 1 Ques
Pergunta 5 Não respondida Nota: 2,000 Maroar pergunta Editar pergunta	Considere o PVI de ordem 2 definido por: $ \begin{pmatrix} y''-49y=0\\ y(0)=1\\ y'(0)=0 \end{pmatrix} $ a) Determine a solução particular de P. $ y=y(t)\Leftrightarrow \boxed{\hspace{2cm}} $ b) Transforme o problema diferencial P num PVI de ordem 1, isto é, com um sist $ \begin{pmatrix} \begin{cases} u'=f(t,u,v)\\ v'=g(t,u,v)\\ u(0)=1\\ v(0)=0 \end{cases} $ $ f(t,u,v)=\boxed{\hspace{2cm}} $ $ g(t,u,v)=\boxed{\hspace{2cm}} $	Tidy STACK question tool ① Question is
Pergunta 6 Não respondida Nota: 4,000 Maroar pergunta Editar pergunta	Considere as funções reais de duas variáveis reais definidas por: $f(x,y) = y^2 + x^2, g(x,y) = -\sqrt{1-f(x,y)}$ $h(x,y) = f(x,y) - 1 \text{ se } 1 < x^2 + y^2 \le 4$ $j(x,y) = \begin{cases} g(x,y) \\ h(x,y) \end{cases}$ a) Determine as derivadas parciais seguintes: $\frac{\partial g}{\partial x}(x,y) = $ $\frac{\partial h}{\partial y}(x,y) = $ b) Determine a equação da reta tangente à curva C de interseção da superfície de e $P(x,y) = (1,2).$ i) Qual é o declive da reta tangente à curva C no ponto P ? $m_t = $ ii) A equação da reta tangente é dada por: $x = 1 \land z = $ c) A temperatura de uma placa de metal aquecida é dada por $T(x,y) = y^2 + x^2.$ Determine a taxa de variação de T em relação à distância no ponto no ponto $P(x,y)$ i) do eixo dos $xx = $ iii) do eixo dos $yy = $	

iii) do vetor que faz um ângulo de 30º com a direção positiva do eixo dos xx =

$$\text{d) Se } z = -\sqrt{-y^2 - x^2 + 1}, \ x = \rho \cos(\theta), \ y = \rho \sin(\theta) \Rightarrow \frac{\partial^2 z}{\partial \theta^2} + \frac{\partial z}{\partial \rho} = \left(\frac{\partial z}{\partial y}\right)^2 + \left(\frac{\partial z}{\partial x}\right)^2$$

(No answer given) \$

e) O domínio da função h é um círculo fechado.

(No answer given) \$

f) O conjunto $C=\left\{(x,y)\in\mathbb{R}^2: x^2+y^2=1
ight\}$ é uma curva de nível da função j onde é contínua.

(No answer given) \$

g) Das figuras seguintes qual delas é o gráfico da função:

$$z=j(x,y) o$$
 Figura =

Figura 1

Figura 2

Figura 3

Pergunta 7 Não respondida Nota: 4.000

Marcar pergunta

Editar pergunta Tidy STACK question tool A figura seguinte representa um cálice da Rainha Santa Isabel - Padroeira da Cidade de Coimbra. O sólido é composto por 4 partes/superficies, a saber:

- segmento de um paraboloide de largura máxima de raio 2 e altura 4;
- calote esférica de raio 1;
- cone de raio e altura 2;
- Cilindro de raio 2 e altura $h=rac{1}{4}$

(a) Associando os conjuntos seguintes a sistemas de coordenadas 3D, complete-os de forma a definir corretamente o sólido $S=S_1\cup S_2\cup S_3\cup S_4$:
$S=S_1 \cup S_2 \cup S_3 \cup S_4.$ $S_1=\{(ho, heta,z): r_1 \leq ho \leq 2 \ \land 0 \leq heta \leq heta_2 \ \land \ z=z(ho, heta)\}$
$r_1 = $
$\theta_2 = \boxed{\hspace{1cm}}$
z(ho, heta)=
$S_2 = \{(R, heta, \phi): R = r_1 \ \land 0 \leq heta \leq 2\pi \ \land \ \phi_1 \leq \phi \leq \pi \} \ r_1 = oxed{r_1}$
$\phi_1 = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
$S_3 = ig\{(x,y,z): x^2+y^2 \leq r^2 \ \land z_1 \leq z \leq z(x,y)ig\} \ r = igsqcup $
$z_1 = oxed{\begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_$
$z(x,y) = oxed{}$
$S_4 = \{(ho, heta, z): ho_1 \leq ho \leq 2 \ \land 0 \leq heta \leq 2\pi \ \land -3.25 \leq z \leq z_2\} \ ho_1 = $
$z_2 = oxed{}$
(b) Determine o volume que "ocupa" o vinho dentro deste cálice (capacidade do cálice - $V(S_1 \cup S_2)$) e a massa da base do cálice $M(S_3 \cup S_4)$ sabendo que a sua densidade é $\rho(x,y,z)=7$ Nota: por uma questão de simplificação dos cálculos para o cálculo do volume de vinho, considere que a espessura do cálice é desprezável. (i) $V(S_1 \cup S_2) = V(S_1) + V(S_2)$ $V(S_1) = $ (ii) $M(S_3 \cup S_4) = M(S_3) + M(S_4)$ $M(S_3) = $ $M(S_4) = $
(c) Defina S_3 em coordenadas cilíndricas completando o conjunto seguinte:
$S_3 = \{(ho, heta, z): ho_1 \leq ho \leq ho_2 \ \land 0 \leq heta \leq heta_2 \ \land \ z_1 \leq z \leq z(ho, heta)\}$
$ ho_1 = oxed{igsquare}$
$ ho_2=$
$\theta_2 = \boxed{\hspace{1cm}}$
$z_1 = oxed{igsquare}$
z(ho, heta)=
(d) A expressão seguinte permite determinar o volume do segmento do paraboloide S_1 .
$I = \int^2 \int^{2\pi} \int^3 ho \mathrm{d}z \mathrm{d} heta \mathrm{d} ho + \int^1 \int^{2\pi} \int^0 ho \mathrm{d}z \mathrm{d} heta \mathrm{d} ho$

$$I = \int_0^2 \int_0^{2\pi} \int_{\rho^2 - 1}^3 \rho \, \mathrm{d}z \mathrm{d}\theta \mathrm{d}\rho + \int_0^1 \int_0^{2\pi} \int_{\rho^2 - 1}^0 \rho \, \mathrm{d}z \mathrm{d}\theta \mathrm{d}\rho$$

(No answer given) \$

Pergunta 8

Não respondida Nota: 2,000

Marcar pergunta

Editar pergunta

Complete as linhas de código de uma Live Script em Matlab que permitiram esboçar o Cálice da Rainha Santa Isabel tratado analiticamente na questão anterior.

O sólido é composto por 4 partes/superfícies, a saber:

1. Segmento de um paraboloide de largura máxima de raio 2 e altura 4;

2. Calote esférica de raio 1

```
0 theta = linspace(0,___, 50);
1 phi = linspace(__,0,50);
2 [theta,phi] = meshgrid(theta,___);
3 R = __;
4 [x2,y2,z2] = sph2cart(theta,___,R);
5 mesh(x2,y2,z2)
6 axis equal
```


3. Cone de raio 2 e altura 2

```
0 rho = linspace(__,2,50);
1 theta = linspace(0,___,50);
2 [rho,theta] = meshgrid(rho,____);
3 z = -rho-___;
4 [x3,y3,z3] = pol2cart(___,_,z);
5 surf(x3,y3,z3)
6 axis equal
```


4. Cilindro de raio 2 e altura 0.25

```
0 z = linspace(____,-3,50);
1 theta = linspace(0,2*pi, 50);
2 [z,theta] = meshgrid(____,theta);
3 rho = ___;
4 [x4,y4,z4] = pol2cart(___,rho,___);
5 surf(x4,y4,z4)
6 axis equal
```


4.1 Disco circular de raio 2 localizado em z=-3.25

```
no rho = linspace(__,__,50);
theta = linspace(0,2*pi, 50);
[rho,theta] = meshgrid(___,theta);
z = -3.25*ones(___,50);
[x5,y5,z5] = pol2cart(theta,rho,___);
surf(x5,y5,z5)
axis equal
```


5. Montagem das partes

```
1 mesh(x1,y1,z1)
2 hold on
3 mesh(x2,y2,z2)
4 surf(x3,y3,z3)
5 surf(x4,y4,z4)
6 surf(x5,y5,z5)
7 hold off
8 axis equal
```


