

สรุปการทดลอง Mini Project ชุดข้อมูล : Cancer

จัดทำโดย

นายภูมิระพี เสริญวณิชกุล รหัสนิสิต 6510405750 หมู่ 1

เสนอ

รองศาสตราจารย์ ดร. นวลวรรณ สุนทรภิษัช

รายงานฉบับนี้เป็นส่วนหนึ่งของวิชา

Artificial Intelligence (01418261)

ชุดข้อมูลที่ได้รับ: cancer.csv

ในไฟล์ cancer.csv จะเป็นข้อมูลผู้ป่วยที่รักษาโรคมะเร็งตับ โดยจะแบ่งออกเป็น 4 ระยะ (CA Level) ซึ่งจะมีข้อมูลแต่ละคอลัมน์ดังนี้ Sex, Ascites, Hepatomegaly, Spiders, Edema, Bilirubin, Cholesterol, Albumin, Copper, Alk Phos, SGOT, Tryglicerides, Platelets, Prothrombin, CA level

Sex	Ascites	Hepatom	Spiders	Edema	Bilirubin	Cholester	Albumin	Copper	Alk_Phos	SGOT	Tryglicerio	Platelets	Prothrom	CA level
F	Υ	Y	Υ	Υ	14.5	261	2.6	156	1718	137.95	172	190	12.2	4
F	N	Y	Υ	N	1.1	302	4.14	54	7394.8	113.52	88	221	10.6	3
M	N	N	N	S	1.4	176	3.48	210	516	96.1	55	151	12	4
F	N	Y	Υ	S	1.8	244	2.54	64	6121.8	60.63	92	183	10.3	4
F	N	Y	Υ	N	3.4	279	3.53	143	671	113.15	72	136	10.9	3
F	N	Y	N	N	0.8	248	3.98	50	944	93	63	200	11	3
F	N	Y	N	N	1	322	4.09	52	824	60.45	213	204	9.7	3

cancer.csv

1. Preprocessing

ในชุดข้อมูลที่ได้รับมีบางคอลัมน์ที่มีข้อมูลที่เป็นสตริง เราก็ต้องแปลงข้อมูลให้อยู่ในรูปแบบ ชนิดเลขจำนวนเต็มก่อนเริ่มทำการเทรน หลังจากนั้นเราก็เลือกคอลัมน์ Sex, Ascites, Hepatomegaly, Spiders, Edema, Bilirubin, Cholesterol, Albumin, Copper, Alk_Phos, SGOT, Tryglicerides, Platelets, Prothrombin เป็นฟีเจอร์ และ CA level เป็นคลาส

2. Classification Model

2.1 Decision Tree

2.1.1 การแบ่งข้อมูล

ทำการแบ่งข้อมูลออกเป็นข้อมูลที่ใช้สำหรับเทรน 75% และทดสอบ 25%

2.1.2 การสร้างโมเดล

ทำการสร้างโมเดลโดยใช้เกณฑ์ Entropy เพื่อวัดค่าความไม่แน่นอน (ค่าต่ำยิ่งดี)
หลังจากนั้นกำหนดความลึกของต้นไม้คือ 3

2.1.3 ผลลัพส์

ทดสอบได้ความแม่นยำประมาณ 51.28%

2.2 Support Vector Machine (SVM)

2.2.1 การแบ่งข้อมูล

ทำการแบ่งข้อมูลออกเป็นข้อมูลที่ใช้สำหรับเทรน 70% และทดสอบ 30%

2.2.2 การสร้างโมเดล

ใช้ GridSearchCV เพื่อเลือกปรับ Hyperparameter ให้มีความเหมาะสมที่สุด โดยกำหนดค่าใน Grid ดังนี้ C: [0.01, 0.1, 1, 10], kernel: ['linear', 'poly', 'rbf', 'sigmoid'], degree: [1, 3, 5, 7], gamma: [0.01, 1] จากนั้นทำ MultiClass-Classification โดยใช้ Linear Support Vector Classificationและใช้ OneVsOne เพื่อ แบ่งคู่ในการจำแนก

2.2.3 ผลลัพธ์

ทดสอบได้ความแม่นยำประมาณ 54.84%

2.3 Naïve Bayes

2.3.1 การแบ่งข้อมูล

ทำการแบ่งข้อมูลออกเป็นข้อมูลที่ใช้สำหรับเทรน 70% และทดสอบ 30%

2.3.2 การสร้างโมเดล

สร้างโมเดลโดยใช้ Multinomial Naïve Nayes โดยมีการกำหนดพารามิเตอร์ดังนี้ alpha=1.5, class_prior=None, fir_prior=True alpha: สำหรับหลีกเลี่ยง zero probability

class_prior: ความน่าจะเป็นของคลาส (เราไม่ได้กำหนดก็จะทำการคำนวณจากข้อมูล) fit_prior: กำหนดว่าให้มีการเรียนรู้ class prior probabilities

2.3.3 ผลลัพธ์

ทดสอบได้ความแม่นยำประมาณ 41.94%

2.4 K-nearest neighbors

2.3.1 การแบ่งข้อมูล

ทำการแบ่งข้อมูลออกเป็นข้อมูลที่ใช้สำหรับเทรน 75% และทดสอบ 25%

2.3.2 การสร้างโมเดล

ทำการปรับข้อมูลให้เป็นมาตรฐานมากขึ้นด้วยฟังก์ชัน StandardScaler() หลังจากนั้นทำการสร้างโมเดล KNN โดยทำการระบุพารามิเตอร์ n_neighbors=7 ซึ่งหมายความว่าตัวโมเดลจะใช้ 7 ตัวอย่างที่ใดล้ที่สุดเพื่อใช้ในการทำนาย โดยเลือก n_neighbors จะขึ้นอยู่กับโมเดลและประสิทธิภาพของผลลัพธ์ที่เกิดจากตัวโมเดล

2.3.3 ผลลัพธ์

ทดสอบได้ความแม่นยำประมาณ 58.97%

3. Conclusion

จากการวิเคราะห์ทั้ง 4 โมเดล จากผลลัพธ์ที่ได้จากการทดสอบและประเมินประสิทธิภาพของ แต่ละโมเดลพบว่า K-nearest neighbors (KNN) เป็นตัวแบบที่ดีที่สุดสำหรับชุดข้อมูลนี้

Accuracy: 0.5897435897435898									
Confusion Matrix:									
[[0 0 1	0]								
[156	0]								
[0 6 19	5]								
[049	22]]								
Classification Report:									
	precisio	n recall	f1-score	support					
	0 0.0	0.00	0.00	1					
	1 0.3	3 0.42	0.37	12					
	2 0.5	4 0.63	0.58	30					
	3 0.8	1 0.63	0.71	35					
accurac	у		0.59	78					
macro av	g 0.4	2 0.42	0.42	78					
weighted av	g 0.6	3 0.59	0.60	78					

4. How Different?

I. Decision Tree

- เป็นการแบ่งข้อมูลโดยเลือกตัวแปรที่สามารถแยกข้อมูลได้มากที่สุดมาเป็น
Root และแยกข้อมูลไปเรื่อยๆ แสดงแผนภาพที่เข้าใจ ง่ายต่อการวิเคราะห์ แต่
มีโอกาสเกิด Overfitting

II. SVM

- เป็นการหาเส้นแบ่งระหว่างคลาสในข้อมูลโดยสามารถจัดการกับข้อมูลที่เป็น non-linear ได้ และเหมาะกับข้อมูลที่มีมิติ แต่ใช้เวลาในการทำนายค่อยข้าง นานและยังอาจเกิด Overfitting ได้ในบางกรณี

III. Naïve Bayes

- เป็นการจัดหมวดหมู่โดยอ้างอิงจากความน่าจะเป็น มีความรวดเร็วต่าการ ทำนาย เหมาะกับข้อมูลที่เป็นข้อความในบางกรณี แต่ถ้าข้อมูลไม่มีความเป็น อิสระก็อาจทำให้ผลลัพธ์การทำนายไม่ถูกต้อง

IV. K-Nearest Neighbors

- เป็นการจัดกลุ่มข้อมูลโดยเลือกตัวข้อมูลตัวที่ใกล้ที่สุดกับข้อมูลที่เราสนใจ โดย สามารถทำนายโดยที่ไม่ต้องฝึก เหมาะกับข้อมูลขนาดเล็กไปจนถึงปานกลาง แต่ อาจทำให้ประสิทธิภาพลดลงถ้าเป็นข้อมูลที่มีมิติซับซ้อนเกินไป ไม่เหมาะกับ ข้อมูลขนาดใหญ่