

EXPERIMENT-9

Student Name: Garv Khurana UID: 21BCS6615

Branch: BE CSE **Section/Group:** 21AML-9/A

Semester: 3 **Date of Performance:** 2-11-22

Subject Name: Data Structures Subject Code: CSH-241

1. Aim/Overview of the practical:

Implement menu driven program in c for the following on binary search tree of integers, create a binary search tree for integers 6,9,5,2,8,15,24,14,7,8,5,2.

Traverse binary search tree in preorder, Inorder and postorder techinique.

2. Task to be done:

Binary Tree has 0,1 or atmost 2 nodes/branching.

Traversing in binary tree is as follows:

- Preorder Root, Left Sub tree, Right Sub tree
- Inorder Left Sub tree, Root, Right Sub tree
- · Postorder- Left Sub tree, Right Sub tree, Root

To perform preorder, postorder and inorder traversing in binary search tree.

3. Algorithm/Flowchart:

Algorithm for preorder traversing:

void preorder(struct node* root){


```
("%d", root->data);
   preorder(root->left);
   preorder(root->right);
   Algorithm for postorder traversing:
   void postOrder(NODE*node){
       if(node!=NULL){
postOrder(node->left);
                             postOrder(node-
>right);
       printf("%d\t", node->data);
Algorithm for inorder traversing:
  void inOrder(NODE*node){
                        inOrder(node-
if(node!=NULL){
             printf("%d\t", node->data);
>left);
      inOrder(node->right);
}
```

4. Code and Output:

#include<stdio.h>


```
#include <stdlib.h>
struct BST
 int data;
          struct
BST*left;
          struct
BST*right;
};
typedef struct BST NODE;
NODE *node;
NODE* createtree(NODE*node,int data)
if(node==NULL)
   NODE*temp;
temp=(NODE*)malloc(sizeof(NODE));
                 temp->left=temp-
temp->data=data;
>right=NULL;
               return temp;
  }
 >left, data);
  }
```



```
else if(data>node->data)
  {
    node-> right=createtree(node->right,data);
      return
node;
void preorder(NODE*node)
if(node!=NULL)
    printf("%d\t",node->data);
preorder(node->left);
                         preorder(node-
>right);
void postOrder(NODE*node){
if(node!=NULL){
postOrder(node->left);
postOrder(node->right);
printf("%d\t", node->data);
  }
```



```
inOrder(NODE*node){
void
if(node!=NULL){
inOrder(node->left);
printf("%d\t",
                  node->data);
inOrder(node->right);
  }
} void
main() {
  int data, ch,i,n;
  NODE*root =NULL;
  while (1)
  {
    printf("\n****Binary Search Tree Operation****\n");
printf("\n1.Insertion in Binary search tree");
printf("\n2. preorder");
                           printf("\n3. inorder");
printf("\n4. postorder"); printf("\n5. Exit!!");
printf("\nEnter your choice: ");
                                   scanf("%d",&ch);
    switch (ch)
    {
```



```
case 1: printf("\nEnter N value:");
scanf("%d",&n);
          printf("\nEnter the values to create BST
like(6,9,5,2,8,15,24,14,7,8,5,2)\n");
for(i=0;i<n;i++)
          {
            scanf("%d",&data);
root=createtree(root,data);
          }
break;
       case 2: printf("\nPreorder Traversal:\n");
preorder(root);
                       break;
       case 3: printf("\nInorder Traversal:\n");
inOrder(root);
                      break;
       case 4: printf("\nPostorder Traversal:\n");
postOrder(root);
                        break;
                                       case 5:
       printf("Exit!!");
exit(0);
               default:
    printf("\nINVALID CHOICE...TRY AGAIN!!");
break;
     }}
```


}

```
PS E:\DSA> cd "e:\DSA\" ; if ($?) { gcc bst2.c -0 bst2 } ; if ($?) { .\bst2 }
****Binary Search Tree Operation****
1.Insertion in Binary search tree
2. preorder
3. inorder
4. postorder
5. Exit!!
Enter your choice: 1
Enter N value:12
Enter the values to create BST like(6,9,5,2,8,15,24,14,7,8,5,2)
9
5
2
8
15
24
14
7
8
5
2
****Binary Search Tree Operation****
```


1.Insertion i	n Binary	search	tree					
preorder								
3. inorder								
4. postorder								
5. Exit!!								
Enter your ch	oice: 2							
Preorder Trav	ersal:							
6 5	2	9	8	7	15	14	24	
****Binary Se	arch Tre	e Operat	ion****					
1.Insertion i	n Binary	search	tree					
2. preorder								
3. inorder								
4. postorder								
5. Exit!!								
Enter your ch	oice: 3							
Inorder Trave	rsal:							
2 5	6	7	8	9	14	15	24	
****Binary Se		e Operat	ion****	-	579	5705	375.0	
1.Insertion i	n Binarv	search	tree					
2. preorder								
3. inorder								
4. postorder								
5. Exit!!								
Enter your ch	oice: 4							
Postorder Tra	versal:							
2 5	7	8	14	24	15	9	6	
****Binary Se	arch Tre		ion****		- Lames	-5500	10000	


```
****Binary Search Tree Operation****

1.Insertion in Binary search tree

2. preorder

3. inorder

4. postorder

5. Exit!!
Enter your choice: 5
Exit!!
PS E:\DSA>
```

Learning outcomes (What I have learnt):

- I have learnt about Data Structures.
- I have learnt about application of Data Structures.
- I have learnt about Tree.
- I have learnt about binary tree and different traversing techniques on binary search tree.

Evaluation Grid (To be created as per the SOP and Assessment guidelines by the faculty):

Sr. No.	Parameters	Marks Obtained	Maximum Marks
1.	PERFORMANCE		12
2.	WORKSHEET		08
3.	VIVA		10

