Züchtungslehre - Eigenschaften von BLUP-Zuchtwerten

Peter von Rohr

2016-11-18

Vergleich verschiedener Zuchtwertschätzmethoden

- ► Einige Methoden zur Schätzung / Vorhersage von Zuchtwerten
 - Zuchtwerte aufgrund von Eigenleistungen
 - Zuchtwerte aufgrund von Nachkommenleistungen
 - ► BLUP Zuchtwertschätzung mit Vatermodell
 - BLUP Zuchtwertschätzung mit Tiermodell
- Vergleich zwischen Methoden
 - Vor- und Nachteile
 - Welche Tiere bekommen Zuchtwerte
 - Berücksichtigung der Umwelt
 - Verwandtschaft.

Daten

- Merkmal: Zunahmen bis zu Absetzen
- ▶ Folgende Tabelle gibt eine Übersicht über das Datenmaterial

Kalb	Geschlecht	Vater	Mutter	WWG
4	M	1	NA	4.5
5	F	3	2	2.9
6	F	1	2	3.9
7	M	4	5	3.5
8	М	3	6	5.0

▶ Varianzkomponenten: $\sigma_e^2 = 40$ und $\sigma_a^2 = 20$.

Eigenleistungen

• Geschätzter Zuchtwert $\hat{a}_i = h^2(y_i - \mu)$

Tier	Zuchtwert
4	0.180
5	-0.353
6	-0.020
7	-0.153
8	0.347

- Annahme: $\mu = \frac{1}{n} \sum_{i=1}^{n} y_i = 3.96$
- ▶ Nur Tiere mit Eigenleistung bekommen Zuchtwerte
- Verwandtschaft nicht berücksichtigt
- ightharpoonup Abgesehen von μ keine Umwelteffekte berücksichtigt

Nachkommenleistungen

• Geschätzter Zuchtwert: $\hat{a} = \frac{2n}{n+k}(\tilde{y} - \mu)$

Tier	n	у	BV
1	2	4.20	0.074
2	2	3.40	-0.172
3	2	3.95	-0.003

- n steht für die Anzahl Nachkommen
- $k = \frac{4-h^2}{h^2}$

Vatermodell

- Vorläufer des Tiermodells, immer noch verwendet
- Lineares gemischtes Modell
 - fixe Effekte analog zum Tiermodell
 - ▶ Vatereffekte *s* als zufällige Effekte
- Verwandtschaften nur über Väter
- nur Väter bekommen Zuchtwerte
- Modell

$$y = Xb + Zs + e$$

wobei
$$var(s) = A * \sigma_s^2$$

 $ightharpoonup \sigma_s^2$: Varianz der Vatereffekte mit $\sigma_s^2=\frac{1}{4}\sigma_a^2$

Beispiel

Gleicher Datensatz, wie beim Tiermodell

Kalb	Geschlecht	Vater	Mutter	WWG
4	М	1	NA	4.5
5	F	3	NA	2.9
6	F	1	NA	3.9
7	M	4	NA	3.5
8	М	3	NA	5.0

Ziele:

- Schätzung der fixen Effekte für das Geschlecht
- Vorhersage der Zuchtwerte für Väter

Inzidenzmatrizen

- ▶ X gleich wie beim Tiermodell
- Z verknüpft Beobachtungen zu Vatereffekten s

$$Z = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right]$$

Verwandtschaft nur über Väter

$$A^{-1} = \begin{bmatrix} 1.333 & 0.000 & -0.667 \\ 0.000 & 1.000 & 0.000 \\ -0.667 & 0.000 & 1.333 \end{bmatrix}$$

Mischmodellgleichungen

$$\begin{bmatrix} 3.000 & 0.000 & 1.000 & 1.000 & 1.000 \\ 0.000 & 2.000 & 1.000 & 1.000 & 0.000 \\ 1.000 & 1.000 & 16.663 & 0.000 & -7.337 \\ 1.000 & 1.000 & 0.000 & 13.000 & 0.000 \\ 1.000 & 0.000 & -7.337 & 0.000 & 15.663 \end{bmatrix} \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \hat{s}_1 \\ \hat{s}_2 \\ \hat{s}_3 \end{bmatrix} = \begin{bmatrix} 13.0 \\ 6.8 \\ 8.4 \\ 7.9 \\ 3.5 \end{bmatrix}$$

Lösungen

$$\begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \hat{s}_1 \\ \hat{s}_2 \\ \hat{s}_3 \end{bmatrix} = \begin{bmatrix} 4.336 \\ 3.382 \\ 0.022 \\ 0.014 \\ -0.043 \end{bmatrix}$$

Vergleich: Tiermodell - Vatermodell

Effekt	Tiermodell	Vatermodell
M	4.36	4.34
F	3.40	3.38

- Schätzungen der Effekte verschieden
- ▶ Differenzen zwischen Schätzungen gleich

Zuchtwerte

Tier	Tiermodell	Vatermodell
1	0.098	0.022
2	-0.019	NA
3	-0.041	0.014
4	-0.009	-0.043
5	-0.186	NA
6	0.177	NA
7	-0.249	NA
8	0.183	NA

- ▶ Im Vatermodell bekommen nur Väter Zuchtwerte
- Rangierung verschieden zwischen Tier- und Vatermodell
- ► Im Tiermodell werden Paarungspartner und alle Nachkommen berücksichtigt

Zerlegung von geschätzten Zuchtwerten mit Tiermodell

einfaches Modell

$$y_i = \mu + a_i + e_i \tag{1}$$

mit y_i Beobachtung für Tier i

 a_i Zuchtwert von Tier *i* mit Varianz $(1 + F_i)\sigma_a^2$

 e_i zufälliger Rest mit Varianz σ_e^2

 μ übrige fixe Effekte im Modell

- jedes Tier nur eine Beobachtung
- Tier i hat Eltern s und d
- ▶ Tier *i* hat *n* Nachkommen k_i (wobei j = 1, ..., n)
- ▶ Tier i hat n Paarungspartner l_j (wobei j = 1, ..., n)

Zerlegung

$$y_{i} = \hat{\mu} + \left[1 + \alpha \delta^{(i)} + \frac{\alpha}{4} \sum_{j=1}^{n} \delta^{(k_{j})}\right] \hat{a}_{i} - \frac{\alpha}{2} \delta^{(i)} \hat{a}_{s} - \frac{\alpha}{2} \delta^{(i)} \hat{a}_{d} - \frac{\alpha}{2} \sum_{j=1}^{n} \delta^{(k_{j})} \hat{a}_{k_{j}} + \frac{\alpha}{4} \sum_{j=1}^{n} \delta^{(k_{j})} \hat{a}_{l_{j}}$$
(2)

Lösen wir die Gleichung (2) nach \hat{a}_i auf so folgt

$$\hat{a}_{i} = \frac{1}{1 + \alpha \delta^{(i)} + \frac{\alpha}{4} \sum_{j=1}^{n} \delta^{(k_{j})}} \left[y_{i} - \hat{\mu} + \frac{\alpha}{2} \left\{ \delta^{(i)} (\hat{a}_{s} + \hat{a}_{d}) + \sum_{j=1}^{n} \delta^{(k_{j})} (\hat{a}_{k_{j}} - \frac{1}{2} \hat{a}_{l_{j}}) \right\} \right]$$
(3)

Regeln für A^{-1}

- Für Tier i mit Eltern s und d,
 - \triangleright addiere δ_i zum Element (i, i),
 - ▶ addiere $-\delta_i/2$ zu (s,i), (i,s), (d,i) und (i,d) ▶ addiere $\delta_i/4$ zu (s,s), (s,d), (d,s) und (d,d)
- Für Tier i mit bekanntem Elternteil d,
 - \triangleright addiere δ_i zum Element (i, i),
 - ▶ addiere $-\delta_i/2$ zu den Elementen (d, i) und (i, d) und
 - ▶ addiere $\delta_i/4$ zu den Elementen (d,d)
- ▶ Für Tier i mit unbekannten Eltern
 - \triangleright addiere δ_i zum Element (i,i)
- Ohne Inzucht ist

$$\delta_i = \left\{ \begin{array}{c} 2 \quad \text{bei bekannten Eltern} \\ 4/3 \quad \text{bei einem bekannten Elternteil} \\ 1 \quad \text{bei unbekannten Eltern} \end{array} \right.$$

Ein Beispiel

Rechte Handseite

$$X^{T}y = \begin{bmatrix} \sum_{j=1}^{n} y_{i} \\ y_{2} \end{bmatrix}$$
$$Z^{T}y = \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \end{bmatrix}$$

Pedigree

```
## sire dam
## 1 <NA> <NA>
## 2 <NA> <NA>
## 3 <NA> <NA>
## 4 1 2
## 5 4 3
```

$$A^{-1} = \begin{bmatrix} 1.50 & 0.50 & 0.00 & -1.00 & 0.00 \\ 0.50 & 1.50 & 0.00 & -1.00 & 0.00 \\ 0.00 & 0.00 & 1.50 & 0.50 & -1.00 \\ -1.00 & -1.00 & 0.50 & 2.50 & -1.00 \\ 0.00 & 0.00 & -1.00 & -1.00 & 2.00 \end{bmatrix}$$

Mischmodellgleichungen (MMG)

$$\begin{bmatrix} 5.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ 1.00 & 4.00 & 1.00 & 0.00 & -2.00 & 0.00 \\ 1.00 & 1.00 & 4.00 & 0.00 & -2.00 & 0.00 \\ 1.00 & 0.00 & 0.00 & 4.00 & 1.00 & -2.00 \\ 1.00 & -2.00 & -2.00 & 1.00 & 6.00 & -2.00 \\ 1.00 & 0.00 & 0.00 & -2.00 & -2.00 & 5.00 \end{bmatrix} \begin{bmatrix} \hat{\mu} \\ \hat{a}_1 \\ \hat{a}_2 \\ \hat{a}_3 \\ \hat{a}_4 \\ \hat{a}_5 \end{bmatrix} = \begin{bmatrix} 19.8 \\ 4.5 \\ 2.9 \\ 3.9 \\ 3.5 \\ 5.0 \end{bmatrix}$$

▶ Beispiel: Beobachtung für Tier 4

Gleichung der Beobachtung y₄ für Tier 4

$$\begin{array}{c|c}
\mu \\
\hat{a}_1 \\
\hat{a}_2 \\
\hat{a}_3 \\
\hat{a}_4 \\
\hat{a}_5
\end{array} = \begin{bmatrix}
19.8 \\
4.5 \\
2.9 \\
3.9 \\
3.5 \\
5.0
\end{bmatrix}$$

Zerlegung für Tier 4

- Eltern 1 und 2
- Nachkomme 5
- Paarungspartner 3
- $\sim \alpha = 2$

$$y_4 = \hat{\mu} + (-2) * \hat{a}_1 + (-2) * \hat{a}_2 + (1) * \hat{a}_3 + (6) * \hat{a}_4 + (-2) * \hat{a}_5$$

nach â₄ aufgelöst bekommen wir

$$\hat{a}_4 = \frac{1}{6} \left[y_4 - \hat{\mu} + 2 * \hat{a}_1 + 2 * \hat{a}_2 - \hat{a}_3 + 2 * \hat{a}_5 \right]$$

Komponenten der Zerlegung

► Tier:

$$\left[1 + \alpha \delta^{(i)} + \frac{\alpha}{4} \sum_{j=1}^{n} \delta^{(k_j)}\right]^{-1} = \left[1 + 2 * 2 + 0.5 * 2\right]^{-1} = 1/6$$

► Eltern:

$$\frac{\alpha}{2} \left\{ \delta^{(i)} (\hat{a}_s + \hat{a}_d) \right\} = \frac{2}{2} \left\{ 2(\hat{a}_1 + \hat{a}_2) \right\} = 2(\hat{a}_1 + \hat{a}_2)$$

Nachkommen:

$$\frac{\alpha}{2} \sum_{i=1}^{n} \delta^{(k_j)} \hat{a}_{k_j} = \frac{2}{2} * 2 * \hat{a}_5 = 2 * \hat{a}_5$$

Paarungspartner:

$$-\frac{\alpha}{2} \sum_{i=1}^{n} \delta^{(k_j)} \frac{1}{2} \hat{a}_{l_j} = -\frac{2}{2} * 2 * \frac{1}{2} \hat{a}_3 = -\hat{a}_3$$

Weshalb die Vergleiche?

- ▶ Wie werden Tier ausgewählt?
- Was wird berücksichtigt bei der Auswahl
- ▶ Was geben die ausgewählten Tiere weiter an Nachkommen?

Zusammenfassung

Eigenleistung

$$\hat{a}_i = h^2(y_i - \mu)$$

Nachkommen

$$\hat{a}_i = \frac{2n}{n+k}(\bar{y}_i - \mu)$$

BLUP-Tiermodell

$$\hat{a}_{i} = \left[1 + \alpha \delta^{(i)} + \frac{\alpha}{4} \sum_{j=1}^{n} \delta^{(k_{j})}\right]^{-1} \left[y_{i} - \hat{\mu} + \frac{\alpha}{2} \left\{\delta^{(i)}(\hat{a}_{s} + \hat{a}_{d}) + \sum_{j=1}^{n} \delta^{(k_{j})}(\hat{a}_{k_{j}} - \frac{1}{2}\hat{a}_{l_{j}})\right\}\right]$$