

EEE-A-04

Electrical and Electronics Engineering

Students: Ofir Bar And Ariel Cohen

Advisor: Dr. Meir Yaakov

Fingerprint Identification system - Feature Extraction Algorithm

Introduction:

Fingerprint recognition is a leading method for personal identification, based on minutiae (ridge endings and bifurcations). This process involves four key steps: capturing the fingerprint with a sensor, enhancing the image, extracting features, and matching them to entries in a database.

Objectives:

Improve fingerprint image quality and extract key features such as ridge endings and bifurcations as reliable metrics for matching and identity verification.

Solutions Enabled by this Work:

Enhances fingerprint recognition accuracy, strengthening biometric identification for security, law enforcement, travel, finance, healthcare, and access control.

ZK9500 Infra-red Scanner

Minutiae feature example

Fingerprint Sample

EEE-A-04

Electrical and Electronics Engineering

Students: Ofir Bar And Ariel Cohen

Advisor: Dr. Meir Yaakov

Fingerprint Identification system - Methodology main stages:

1. Preprocessing:

- Loading the Image
- Region Of Interest Extraction
- Average Level Subtraction
- Linear Contrast Stretch
- Binarization Thresholding

Preprocessing result

2. Processing:

- Removing Noise Pixels
- Pruning Edges
- Thinning Process
- Removing Branches
- Removing False Minutiae

processing result

3. Feature Detection

Using Convolution masks:

- Detecting Bifurcations
- Detecting Ridges

Detection result

Detected Features on the original Sample

EEE-A-04

Electrical and Electronics Engineering

Students: Ofir Bar And Ariel Cohen

Advisor: Dr. Meir Yaakov

Fingerprint Identification system – Information extraction & Matching:

4. Feature Extraction

➤ Applying "Breadth First Search" algorithm to calculate the minimum distances between two neighboring Minutiae points.

> Exporting table to CSV File as followed:

<u>5. Histogram Comparison – Proposed</u> matching method

- Organizing the distances vector as a histogram
- ➤ Calculating Histogram Statistics
- Comparing Histograms of different samples
- Using histogram intersection percentage as the matching result

6. Future improvement:

Applying deep learning for sample matching

X	y	type	Distance	Distance bifurcations	Distance combined
			ridges		
column	row	ridge/bifurcation	distance to	distance to nearest	combined distance value
			nearest	bifurcation	
			ridge		

7. Conclusions:

Successfully developed a feature extraction algorithm using MATLAB with a true minutiae detection accuracy exceeding 95%. The extracted features were precisely converted into vectorized information, enabling effective use in both machine learning and deep learningbased matching systems.