LP Logintutkija 1.3 käyttöohje

Ennakkovaatimukset

LP logintutkija -ohjelmaa ei varsinaisesti asenneta, mutta sen ajaminen vaatii Java ajonaikaisen ympäristön asentamista. Javan asennusmekanismit kannattaa tarkastaa oman tietokoneen käyttöjärjestelmän dokumentaatiosta. Tässä yleiset ohjeet:

Käyttöjärjestelmä	Java asennus	Huomautuksia
Ubuntu Linux	Openjdk Java on jo asennettu	
Windows	https://java.com/en/download/	
Mac OSX	https://java.com/en/download/	

200 MT vapaata muistia ja noin 10 MT levytilaa.

Ohjelma ladataan osoitteesta

hhttps://github.com/karhulitos/MLPlogintutkija/blob/master/bin/Logintutkija.jar tietokoneen paikalliseen hakemistoon, johon käyttäjällä pitää olla kirjoitus- ja lukuoikeudet.

Ohjelman ajaminen

Kun ennakkovaatimukset ovat täytetty, voi ohjelman käynnistää tuplaklikkaamalla Java-arkistoa Logintutkija.jar. Jos tietokoneesi tiedostopäätteiden liitokset eivät viittaa jar-päätettä Javaan ja ohjelma ei käynnisty, voit avata sen myös klikkaamalla Logintutkija.jar tiedostoa hiiren oikealla näppäimellä ja valitsemalla Java ajonaikaisen ympäristön (Java Runtime). Kopioi lämpöpumpusta hakemasi lokitiedostot johonkin valitsemaasi hakemistoon.

Isoilla logeilla, kuten esimerkiksi koko vuoden mittaisilla, saattaa Javan muistivaraus loppua kesken. Tällöin Logintutkija vaikuttaa vain lopettavat analysoinnin ilman tuloksia. Käyttämällä Javan parametrejä, voidaan muistivarausta ja maksimimuistia kasvattaa. Seuraava komentoriviltä tehty käynnistys salli koko vuoden logien lukemisen talologgerin kannasta:

Tässä kerrotaan pienimmän muistivarauksen olevan 2 gigatavua ja maksimin 4 gigatavua. Samat parametrit voidaan lisätä myös käynnistimeen tai ympäristömuuttujiin riippuen käyttöjärjestelmästä, jotta saadaan pysyvä asetus.

Lokitietojen hakeminen

Ohjelman käynnistyttyä, voit valita luetko lokitiedostoja vai teetkö tietokantahaun.

Painaessasi "Logit" painiketta, saat tiedostovalintaikkunan, jossa voit hakea sen hakemiston, mihin siirsit lokitiedostot lämpöpumpustasi. Tällöin ohjelma lukee hakemistosta löytyvät Niben .LOG tai CTC:n .csv -päätteiset tiedostot ja tekee analyysin niistä. Voit vaihtoehtoisesti valita hakemistosta vain yhden lokitiedoston. Ohjelma tallentaa viimeisimmän käytetyn lokitiedoston tai hakemiston asetuksiinsa, jolloin seuraavalla kerralla tiedostovalikko avataan tästä samasta tiedostosta.

Jos painat "DB" painiketta, saat ikkunan, jossa pyydetään tietokantayhteyden vaatimat tiedot.

Tietokantayhteydessä kysytään tietokannan tyyppi eli ajuri, vaihtoehtoina SQLite paikallisesti tallennettuihin tietoihin ja MySQL etäällä olevalle tietokannalle. Tietokannan verkko-osoite, nimi tai IP-osoite. Käyttäjä ja salasana sekä hakuehdon ajankohdat, mistä ajan hetkestä mihin saakka.

Painaessasi OK, haetaan lokitiedot tietokannasta. Ohjelma kertoo tilakentässään toiminnon tilan ja jos tietoja löytyi, päivittyvät yhteenvetonäkymän tiedot.

Käyrät

Arvojen tutkiminen ajan funktiona on hyödyllistä jonkin tapahtuman tutkimisessa, jossa useamman suureen vaikutus toisiinsa voidaan nähdä. Käyrät-näkymässä oletuksena näkyvät suureet ovat valittuna ikkunan alaosassa. Esivalittuja tai muita suureita voi lisätä tai poistaa tarpeen mukaan.

Näkymässä voi lähentää tarkasteluikkunaa maalaamalla alueen, jolloin tuosta alueesta tulee käyränpiirtoalueen rajat. Näkymä siis lähenee. Palautus tapahtuu maalaamalla negatiivinen alue eli oikeasta alakulmasta vasempaan yläkulmaan. Zoomaamisen voi tehdä myös hiiren rullalla vierittämällä. Ajassa voi liikkua zoomaamalla tietyllä ajanhetkellä sisään ja edessäpäin olevalla hetkellä ulos.

Jos olet hakenut tiedot tietokannasta ja olet käyttänyt oletushakuaikaväliä (edellinen vrk), saat mahdollisuuden käyrän sekä yhteenvetotietojen automaattiseen päivitykseen. Päivitysväli on maalämpöpumppuun asettamasi mittausväli.

Paikallinen tallennus

Jos olet lukenut lokit tiedostoista, luo ohjelma oletuksena paikallisen SQLite-tietokantatiedoston. Luetut lokitiedot tallennetaan kantaan myöhempää käyttöä varten, lähinnä tietojen vertailua varten. Tietokantatiedoston nimi on oletuksena logintutkija.db, jonka voi vaihtaa asetustiedostossa kuten myös tietojen tallennuksen ohjelman lopetettua. Tietokannasta haettuja arvoja ei tallenneta paikalliseen tietokantaan.

Paikallisen tietokannan edistyneempään hallintaan suositellaan "DB Browser for SQLite" -ohjelmaa, http://sqlitebrowser.org.

Asetustiedosto

Jotta LP Logintutkija voi muistaa käyttäjän valinnat, tallentaa se asetuksensa logintutkija.asetukset nimiseen tiedostoon. Jos tiedostoa ei ole, luodaan se oletustiedoilla.

asetus=arvo	Selite			
paikallinen_tietokanta_tallennus=1	tallennetaanko lokitiedot paikalliseen tietokantaan?			
laske_kaynnistys_jos_kaynnissa=1	Lasketaanko käynnistykseksi, jos login ensimmäisellä tietueella kone käy. Arvo 1 ottaa ensimmäisen tietueen käynnin mukaan käynnistyslaskuun. Arvo 0 ohittaa ensimmäisen tietueen käynnin ja ei laske sitä käynnistyksiin.			
paikallinen_tietokanta_osoite=logintutkija.db	paikallisen tietokannan polku ja tiedostonimi			
tietokanta_dbms=sqlite	mikä tietokanta-ajuri oli käytössä viimeksi?			
tietokanta_nimi=talologger	etätietokannan nimi			
tietokanta_osoite=10.0.0.44	etätietokannan internet-osoite			
tietokanta_salasana=salasana	tietokantakäyttäjän salasana			
tietokanta_kayttaja=tunnus	tietokantakäyttäjän käyttäjätunnus			
F1345_lisaysaskel=9	F1345: asennetun ulkoisen lisäyksen teho kilowatteina. Oletus 0.			
cop_045=3.77 cop_035=4.81	Maalämpöpumpun valmistajan ilmoitus standardiolosuhteiden lämpökertoimista. Käytetään COP:n laskemiseen. Lisää oman pumppusi asentajan käsikirjasta EN14511 mitatut COP tiedot! *)			
tietokanta_arvo_*= <talologger mittauspisteen="" nimi=""></talologger>	26 tietokannasta löytyvää arvoa millä LP Logintutkija pystyy tekemään analyysinsä. Nimeä omien Talologgerissa antamiesi mittauspisteiden mukaan.			
tietokanta_arvo_EP14-Prio=EB100-EP14-Prio	Prioriteetti eli mitä prosessia 1. kompressori tekee			
tietokanta_arvo_BT7=BT7	KV-varaajan yläosan lämpötila			
tietokanta_arvo_BT6=BT6	KV-varaajan alaosan lämpötila			
tietokanta_arvo_BT3=EB100-EP14-BT3	kompressorin lämmönjaon paluulämpötila			

tietokanta_arvo_CS=CalcSupply	Laskettu menolämpötila
tietokanta_arvo_BT1=BT1	Ulkolämpötila
tietokanta_arvo_BT14=EB100-EP14-BT14	1. kompressorin kuumakaasu
tietokanta_arvo_BT12=EB100-EP14-BT12	kompressorin menolämpötila
tietokanta_arvo_BT11=EB100-EP14-BT11	kompressorin keruupiirin menolämpötila
tietokanta_arvo_BT10=EB100-EP14-BT10	kompressorin keruupiirin tulolämpötila
tietokanta_arvo_BT17=EB100-EP14-BT17	1. kompressorin imukaasu
tietokanta_arvo_EB100-EP14-PCA=EB100-EP14-PCA	1. kompressorin toimintatila PCA_Relays_Base binääri
tietokanta_arvo_EP15-BT10=EB100-EP15-BT10	2. kompressorin keruupiirin tulolämpötila
tietokanta_arvo_EP15-Prio=EB100-EP15-Prio	2. kompressorin prioriteetti
tietokanta_arvo_EP15-BT17=EB100-EP15-BT17	2. kompressorin imukaasu
tietokanta_arvo_EP15-BT3=EB100-EP15-BT3	2. kompressorin lämmönjaon paluulämpötila
tietokanta_arvo_EP15-BT14=EB100-EP15-BT14	2. kompressorin kuumakaasu
tietokanta_arvo_EP15-BT12=EB100-EP15-BT12	2. kompressorin menolämpötila
tietokanta_arvo_EP15-BT11=EB100-EP15-BT11	2. kompressorin keruupiirin menolämpötila
tietokanta_arvo_DM=DegreeMinutes	Asteminuutit
tietokanta_arvo_BT50=BT50	Sisälämpötila
tietokanta_arvo_BT25=BT25	Menolämpötila puskurivaraajan jälkeen
tietokanta_arvo_TotIntAdd=TotIntAdd	Lisäenergia (suorasähkö)
tietokanta_arvo_EP14-Frequency=ComprFreq	Kompressorin taajuus
tietokanta_arvo_EP14-GP1=EB100-EP14-GP1	Kiertovesipumpun nopeus
tietokanta_arvo_EP14-GP2=EB100-EP14-GP2	Keruupumpun nopeus
tietokanta_arvo_EP15-GP2=EB100-EP15-GP2	EP15 koneikon keruupumpun nopeus
tietokanta_arvo_BE1=BE1	vaiheen L1 virta
tietokanta_arvo_BE2=BE2	vaiheen L2 virta
tietokanta_arvo_BE3=BE3	vaiheen L3 virta
CTC=GSi12,0,68,1,7,10,11,14,16,17,18,19,22,50,51,53,5 5,56,57,58	CTC pumppujen lokitiedoston sarakeindeksit. Kts. "CTC pumppujen lisääminen"

^{*)} F1145 koneiden COP tiedot asentajan käsikirjasta

3x400V		5	6	8	10	12	15	17
Tehotiedot EN 14511:2011 mukaan	Fehotiedot EN 14511:2011 mukaan							
0/35								
Antoteho	kW	4,65	6,07	7,67	9,66	11,48	15,37	16,89
Sähköteho	kW	1,08	1,32	1,64	2,01	2,51	3,48	3,93
COP _{EN14511}	-	4,30	4,59	4,68	4,81	4,57	4,42	4,30
0/45							,	
Antoteho	kW	3,98	5,19	6,70	8,55	10,99	14,68	16,10
Sähköteho	kW	1,17	1,46	1,83	2,27	3,02	4,09	4,49
COP _{EN14511}	-	3,40	3,56	3,67	3,77	3,64	3,63	3,59

CTC pumppujen lisääminen

Logintutkijan asetustiedossa on versiosta 1.3.5 uusi kenttä CTC, jolla kontrolloidaan, mistä sarakkeesta Logintutkija lukee arvot.

Esim. GSi12 pumpun tapauksessa asetus näyttää seuraavalta: CTC=GSi12,0,68,1,7,10,11,14,16,17,18,19,22,50,51,53,55,56,57,58

Muoto on siis pilkkueroteltu rivi, jossa jokainen arvo on CTC lokitiedoston indeksi. Indeksi on numero nollasta viimeisen sarakkeen juoksevaan numeroon.

kenttä	oletus	suure	huom
1	GSI12		muuta tähän oman pumppusi malli
2	0	päivämäärä	
3	68	kompressorin käynti	tällä lasketaan Niben Relays PCA Base
4	1	lämmitys	tällä lasketaan Niben Relays PCA Base
5	7	käyttövesi	tällä lasketaan Niben Relays PCA Base
6	10	lisäenergia	
7	11	BT7/kv varaaja yläosa	
8	14	BT6/kv varaaja täyttö	
9	16	BT1/ulkolämpö	
10	17	BT12/lauhduttimelta lähtö	
11	18	pyynti	
12	19	BT50/sisälämpö	
13	22	asteminuutit	
14	50	BT10/keruu tulo	
15	51	BT11/keruu meno	
16	53	kompressorin taajuus	
17	55	BT3/lämmönjako paluu	
18	56	BT2/lämmönjako meno	
19	57	BT14/kuumakaasu	
20	58	BT17/imukaasu	

Huom! CTC lokien lukeminen on edelleen kokeellista täyden sarakelistan puuttuessa.

Talologger ohjelmiston asennus Nibe F1145 lämpöpumpun lokitietojen lukemiseen

Yleistä

Jotta voidaan tutkia lämpöpumpun käyntiarvoja jatkuvalla periaatteella, tulee tietojen luvun tapahtua ohjelmallisesti ilman käyttäjää vaativaa tietojen siirtoa USB-muistitikulla. Kattava talotekniikan monitorointiohjelma Talologger, ladattavissa ja asennettavissa osoitteesta http://olammi.iki.fi/sw/taloLogger/, auttaa tässä suhteessa. Ideana lähestymisessä on lukea Talologger-ohjelmistolla tarvittavat tiedot suoraan lämpöpumpulta käyttäen hyväksi ohjelmiston tukemaa Modbus RTU protokollaa ja tallentaa samalla tietokoneella sijaitsevaan MySQL-tietokantaan.

Valmistajan itsensä tähän tarkoitukseen tarjoamat ratkaisut ovat joko kuukausilaskutteisia tai muuten melko hintavia.

Huom! Ohjeen tekijä ei vastaa niiden oikeellisuudesta, eikä anna ratkaisulle mitään takuuta. Kuvatun kytkennän tekeminen saattaa olla hengenvaarallista! Teetä työ sähköalan ammattilaisella.

Ennakkovaatimukset

Yhteyden muodostamiseen tarvitaan kaksi pääkomponenttia. Ensimmäinen on Modbus RTU yhteyskäytännön mahdollistava USB RS485 adapteri, joka löytyy hintaluokassa 10€ esimerkiksi verkkomarkkinapaikka eBaysta. Tämän ohjeen pohjana käytetty yksilö tuli Malesiasta alle kuukaudessa. Tuotteen nimi on "USB Transfer to RS485 Interface TTL Adapter FTDI FT232RL 75176 Module New".

Toinen peruskomponentti on tietokone jossa Talologger ohjelma ja sen tiedon tallennusvarastona toimiva MySQL kanta sijaitsevat. Tähän tarpeeseen sopiva on keväällä 2015 ilmestynyt "Raspberry Pi 2 Model B", jonka ohjeen kirjoittaja sai Suomesta hintaan 59€ sisältäen kotelon tietokoneelle. Kotelo on tärkeä jos haluaa suojata ja kiinnittää tietokoneen tekniseen tilaan lämpöpumpun läheisyyteen. Lisäksi pitää hankkia USB virtalähde, mielellään 1 A jatkuvaan virranantoon kykenevä, esimerkiksi tabletin laturi. Tässä työssä käytettiin vanhaa ASUS merkkisen tabletin ylimääräistä laturia. Tiedon ja käyttöjärjestelmän tallennukseen pitää hankkia vähintään 8 GB kapasiteettinen nopeusluokan 10 MicroSD kortti. Riippuen USB RS485 muuntimen ja minitietokoneen välimatkasta toisiinsa, tulee näiden välille hankkia sopivan pituinen USB A - USB B välijohto. Tärkeää on huomioida RS485 muuntimen B tyyppinen USB liitin kaapelia hankkiessa.

Lisäksi tarvitaan tapauskohtaisesti asennustarvikkeita kuten ruuveja, asennuskaapelia sarjaliikenteelle (LiYY, EKKX tai vastaava) sekä työkalut. Kirjoittaja käytti vanhaa audiokäyttöön tarkoitettua linjatason koaksiaalikaapelia hyvällä menestyksellä.

Lukuyhteyden muodostamiseksi minitietokoneesta MLP logintutkijaan, se pitää kytkeä kodin lähiverkkoon jollakin yhteyskäytännöllä. Tässä esimerkissä yhteys muodostettiin sähköverkon yli toimivalla HomePlug standardin mukaisella laiteparilla teknisen tilan ja kodin lähiverkon reitittimen välillä. Laitteina käytettiin paria ZyXEL PLA4201-mediamuuntimia.

Asennus, laitteet

Huom! Sammuta lämpöpumppu ja irrota se sähköverkosta kytkemällä ulkoinen turvakytkin 0-asentoon.

Asennus aloitetaan kytkemällä USB RS485 adapteri Nibe Fighter lämpöpumppuun. Kytkentä on lähes sama kuin Nibe Modbus 40 ohjeessa. Ainoana erona, ettei nastaa 12 lämpöpumpun liitinterminaalissa AA3-X4 kytketä lainkaan. Tämä siksi että USB RS485 muunnin saa käyttösähkönsä siihen liitetystä tietokoneesta.

Kuva 1: Modbus RTU kytkentäkaavio lämpöpumpuille F1145 ja F1155. (Lähde: http://www.nibe.fi/nibedocuments/15050/031725-6.pdf.)

Aloita avaamalla lämpöpumpun etukansi ja kuvan osoittama kytkentärasian kansi. Vedä johdotus lämpöpumpun takaa niin, että toinen pää tulee läpivientireijistä lämpöpumpun etupuolelle kytkentärasian alapuolelle. Kytke kaapeli kuvan 1 osoittamalla tavalla USB RS485 muuntimeen.

AA3-X4 nasta	USB RS485 muunnin
9	GND
10	B-
11	A+

Kuva 2: Lämpöpumpun etukansi ja kytkentärasian kansi avattuna

Seuraavaksi asenna sähkörasia ja Raspberry Pi 2 tietokoneen kotelo sopivaan paikkaan kuvan 3 mukaisesti, johon juuri asentamasi kaapeli yltää.

Kuva 3: RS485 muuntimen ja Raspberry Pi 2:n asennus seinään

Sähkörasiasta avattu keskimmäinen johdon läpivienti mahdollistaa RS485 muuntimen USB-B naarasliittimen työntämisen joustavasta reiästä läpi. Muunnin on juuri sopivan mittainen tavalliseen kytkentärasiaan. Kytke USB-A–USB-B kaapeli muuntimen ja tietokoneen liittimiin. Tietokoneesta kytketään Ethernet-parikaapeli talon lähiverkon reitittimeen, kuvassa kuitenkin HomePlug adapteriin, joka siirtää yhteyden sähköverkon yli eri tilassa sijaitsevaan reitittimeen.

Lopuksi sulje rasioiden kannet.

Kuva 4: Fyysinen asennus valmis

Koska yhteyden testaaminen lämpöpumpun ja RS485-adapterin välillä vaatii toimivan ohjelmiston, älä kytke Modbus tiedonsiirtoa lämpöpumpusta vielä tässä kohtaa. Kytke lämpöpumppuun virransyöttö takaisin ja käynnistä lämpöpumppu.

Asennus, ohjelmistot

Kytke Raspberry-minitietokoneeseen jokin näyttö HDMI kaapelilla, sekä kytke USB-näppäimistö. Näitä kahta tarvitaan periaatteessa vain asennuksen ajaksi, mutta voit jättää konsolin ja näppäimistön tietokoneeseen halutessasi. Ohjeessa varsinaiset annetut komennot ovat Courierfontilla, esim. sudo reboot.

- Lataa ja asenna Raspbian käyttöjärjestelmä, ohjeen http://www.raspberrypi.org/documentation/installation/installing-images/README.md mukaisesti.
- 2. Kun olet ladannut käyttöjärjestelmän MicroSD-kortille, laita se minitietokoneeseen sille varattuun paikkaan.
- 3. Kytke minitiekoneeseen USB virtalähde, tietokone käynnistyy ensimmäistä kertaa

- aloitusvalikkoon (kuva 5). Jos et saa aloitusvalikkoa niin kirjaudu sisään (pi:raspberry) ja anna komento sudo raspi-config.
- 4. Laajenna tiedostojärjestelmä muistinkortin kokoiseksi ja anna *pi*-pääkäyttäjälle salasana. *Advanced*-valikosta voit halutessasi muuttaa minitiekoneen nimen ja tarkistaa että ssh palvelu on päällä. Tarvitset sitä ottaessasi yhteyttä minitietokoneeseen muualta. Poistu asetusvalikosta ja käynnistä minitietokone uudelleen komennolla sudo reboot.
- 5. Kun kone käynnistyy uudelleen, kirjaudu sisään tunnuksella *pi* ja juuri antamallasi uudella salasanalla.
- 6. Se saa kotisi lähiverkon reitittimeltä osoitteen, ota se ylös komennolla ifconfig. Eth0 on ulospäin kommunikointiin käytetty portti.

Kuva 5: Raspbian-käyttöjärjestelmän aloitusvalikko

- 7. Raspbian käyttöjärjestelmä tulee ensiksi päivittää. Tee se komennolla sudo apt-get update && sudo apt-get upgrade.
- 8. Seuraavaksi asenna Talogger sen omien ohjeiden mukaan http://zil.olammi.iki.fi/sw/taloLoggerPi/howto.php.
- 9. Koska haluamme käyttää tietokantaa muualta kuin tältä paikalliselta koneelta, asennamme MySQL-tietokannan. Anna komento sudo apt-get install mysql-server.
- 10. MySQL asennus kysyy tietokannan root-käyttäjän salasanaa, keksittyäsi sen kirjaa salasana ylös. Asennuksen voi palauttaa alkutilaan salasanoineen komennolla sudo dpkg-reconfigure mysql-server-5.5.
- 11. Kannattaa kokeilla kirjautumista etäältä eli muualta kuin minitietokoneen konsolilta (näyttö ja näppäimistö). Kodin lähiverkosta anna komento ssh pi@<minitietokoneen osoite kohdasta 6> eli esimerkiksi ssh pi@10.0.0.44. Saatat tarvita PuTTY ohjelman tai vastaavan jos käytät Windows-työasemaa.
- 12. Editoi (esim vi-editorilla (http://www.cs.colostate.edu/helpdocs/vi.html)) MySQL konfigurointitiedostoa sijainnissa sudo vi /etc/mysql/my.cnf. Etsi avainsana "bindaddress" joka oletuksena sallii yhteydet kantaan vain paikalliselta koneelta. Kommentoi rivi laittamalla risuaita rivin eteen. # bind-address = 127.0.0.1. Tallenna tiedosto. Käynnistä MySQL uudelleen komennolla sudo service mysql restart.
- 13. Kirjaudu MySQL:n root-tunnuksella komennolla sudo mysql -p<antamasi salasana kohdassa 10> -uroot eli esimerkiksi sudo mysql -psalasana -uroot.
- 14. Luodaan Talologger-ohjelman käyttämä tietokanta. Anna SQL komennot: drop database if exists talologger; create database talologger;

use talogger;

- 15. Lukemiseen ('tunnus') ja kirjoittamiseen ('nibe') vaadittavat käyttäjät luodaan seuraavasti: create user 'tunnus'@'localhost' identified by 'salasana'; create user 'nibe'@'localhost' identified by 'salasana';
- 16. Oikeudet lukea etäältä ja kirjoittaa kantaa annetaan seuraavasti: grant select on talologger.* to 'tunnus'@'%' identified by 'salasana'; grant all privileges on talologger.* to 'nibe'@'localhost' identified by 'salasana' with grant option;
- 17. TaloLoggerin oletuskonfiguraatiotiedosto ei sisällä MLP logintutkijan vaatimia mittauspisteitä, joten kannattaa kopioida tässä ohjeessa oleva konfigurointitiedosto kokonaisuudessaan taloLogger-tietokoneelle. Konfiguraatiotiedoston sijainti on /home/talo/etc/taloLogger.conf. Jos haluaa lisätä taloLoggerin tietokantaan kirjaamia kenttiä, ne löytyvät tiedostosta sen alkupäästä sijainnissa /home/talo/bin/taloLogger/modules/datasources/nibe/nibeBusRS485.py.
- 18. Lopuksi taloLogger sammutetaan, jolloin se käynnistyy automaattisesti uudelleen lukien juuri kopioidun konfiguraatiotiedoston. Anna komennot sudo su talo (vaihtaa käyttäjäksi "talo") killall python (sammuttaa kaikki python-ohjelmat jollainen taloLoggerkin on). taloLogger käynnistyy uudelleen ja jos seuraat ohjelman lokia komennolla tail -f /home/talo/log/taloLogger.log pitäisi ohjelman käynnistyminen näkyä lokitekstissä. Saat virheitä Nibe Modbus moduulilta, mutta tämä on normaalia ennen seuraavaa vaihetta. Jätä komento lukemaan lokia.

Asennus, lämpöpumpun asetukset

Jotta Nibe lämpöpumpusta pystyy lukemaan tietoja Modbus RTU:n yli, pitää se aktivoida. Mene lämpöpumpun luokse ja paina Takaisin-painiketta 7 sekuntia päästäksesi asetusvalikkoon.

Navigointi

Kuva 6. Nibe lämpöpumpun ohjauspainikkeet (Lähde: http://www.nibe.fi/nibedocuments/15050/031725-6.pdf)

Valikossa *5.2 järjestelmäasetukset*, alavalikossa *5.2.4 lisävarusteet*, valitse listalta *modbus*. Palaa Takaisin-painikkeella alkunäkymään.

Asennus, ongelmanselvitys

Nyt lämpöpumppu keskustelee taloLoggerin kanssa jos tiedonsiirto toimii. Jos tiedonsiirto ei toimi, muuttuu lämpöpumpun normaalisti vihreä statusvalo punaiseksi ja lämpöpumpun lokiin tulee tiedonsiirtovirhe. Lämpöpumppu ei tee lämmintä käyttövettä tässä vikatilanteessa. Tarkista kytkennät. Katso taloLogger-ohjelman lokia, jos se antaa vihjeen onko ongelma Raspberry Pi 2:n ja RS485 adapterin välisessä tietoliikenteessä vai RS485 adapterin ja Nibe lämpöpumpun välissä. Tarvittaessa nosta taloLoggerin lokikirjoituksen tarkkuustasoa konfiguraatiotiedoston avainsanalla VERBOSE_LOGGING = true ja käynnistä TaloLogger uudelleen.

Jos lämpöpumpun statusvalo pysyy vihreänä, lue seuraavaksi taloLoggerin lokia, jonka jätit näkyville ssh/PuTTY istunnossa. Jos näet seuraavan kaltaisen rivin: 10.05.2015 19:06:21: NibeRS485: Received identification: F1145-10 EXP, toimii tietojen vaihto taloLoggerin ja lämpöpumpun välillä. Nyt mittausarvot tallettuvat minitietokoneen MySQL-kantaan ja ovat valmiit luettaviksi MLP logintutkijalla.

Varmistus

Vaikka tietokannan varmistukseen on monta eri mahdollisuutta ja tapaa, kuvaan tässä omani koska syyskuussa 2016 menetin kaikki edelliset 18kk datat. Tässä varmistuksessa käytetään AutoMySQLBackup -ohjelmaa.

- 1. Lataa AutoMySQLBackup osoitteesta https://sourceforge.net/projects/automysqlbackup/ ja vie se Raspberrylle pi tunnuksen kotihakemistoon
- 2. Pura pakkaus komennolla gunzip automysqlbackup-v3.0 rc6.tar.gz
- 3. Pura paketti komennolla tar -xvf automysqlbackup-v3.0_rc6.tar
- 4. asenna komennolla sudo ./install.sh
- 5. Luo backup hakemisto sudo mkdir /var/backup
- 6. Editoi asetustiedostoa sudo vi /etc/automysqlbackup/myserver.conf, muuta:
 - CONFIG mysql dump username='root'
 - CONFIG_mysql_dump_host='localhost'
 - CONFIG backup dir='/var/backup/db'
 - CONFIG_db_names=('talologger')
 - CONFIG rotation daily=6
 - CONFIG mysql dump port=3306
- 7. Tee joko ssh avaimien vaihto tai asenna ssh pass komennolla sudo apt-get install sshpass
- 8. Luo skripti /etc/cron.daily/runmysqlbackup sudo vi /etc/cron.daily/runmysqlbackup ja kopioi seuraava sisältö:

```
#!/bin/sh
/usr/local/bin/automysqlbackup /etc/automysqlbackup/myserver.conf
chown root.root /var/backup/db* -R
find /var/backup/db* -type f -exec chmod 400 {} \;
find /var/backup/db* -type d -exec chmod 700 {} \;
tar -cvzf /var/backup/talologger.tar.gz /var/backup/db/*
sshpass -p <verkkolevyn salasana> scp /var/backup/talologger.tar.gz
<verkkolevyn tunnus>@<verkkolevyn
osoite>:</media/polku/jonnekin/>talologger.tar.gz
```

- 9. anna skriptille ajo-oikeudet sudo chmod a+x /etc/cron.daily/runmysqlbackup
- 10. testaa varmistus ajamalla käsin sudo /etc/cron.daily/runmysqlbackup
- 11. katso seuraavana päivänä että verkkolevyllä olevan varmistustiedoston aikaleima on kyseiseltä päivältä ja avaa tiedostot jotta näet että kaikki on ok

TaloLogger-ohjelmiston asennusdokumentin Liite 1. TaloLogger.conf esimerkkitiedosto, joka kerää MLP logintutkijan vaatimat mittauspisteet Nibe lämpöpumpusta.

2015-09-06: lisätty Logintutkija 1.1.6 versiosta lähtien lisäsähkön käytön kirjaaminen (2 viimeistä arvoa esimerkkitiedostossa.

2015-12-05: Logintutkija 1.2.6 lähtien EP15 (2. kompressori) mittauspisteet voi jättää pois jos kyseessä ei ole F1345 lämpöpumppu

2015-12-14: Logintutkija 1.2.8 lähtien BT2 luetaan jos löytyy (muutoin BT12 korvaa BT2:n)

2016-11-06: GP1 ja GP2 pumput mukaan

2018-02-24: F1345 ja F1x55 mittauspisteet kommentoitu, poista kommentit jos omaat kyseiset koneet

taloLogger.conf # File: # Donationware, see attached LICENSE file for more # License: information # # Olli Lammi (olammi@iki.fi) # Author: # 1.1e # Version: # 08.02.2016 # Date: # # Description: Configuration file for taloLogger.py Minimal example for TaloLoggerPi, Raspberry Pi # version.

logger configuration

###

#####

CONSOLE_LOGGING = false
VERBOSE_LOGGING = false
DAEMON_MODE = false
LOGFILE = /home/talo/log/taloLogger.log
LOG_INTERVAL = 60
LOG_INTERVAL_LIMIT = 5
PERSISTENT_STATE_DIRECTORY = /home/talo/var/taloLogger/state

data sources

@DATASOURCE=NIBERS485:NIBERS485

#@DATASOURCE=DUMMY: DUMMY

```
#####
# Nibe Bus RS485 Serial configuration
#####
NIBERS485:TYPE = SERIAL
NIBERS485:SERIAL PORT = /dev/ttyUSB0
#####
# data stores
#####
#@DATASTORE=SOLITEDB:SOLITEDB
@DATASTORE=MYSQLDB: MYSQLDB
# SQLite Database data store configuration
#SOLITEDB: NAME = /home/talo/data/talo.db
#SQLITEDB:DB SCHEMA VERSION = 1
#####
# MySql Database data store configuration
#####
MYSQLDB:HOST = localhost
MYSQLDB:PORT = 3306
MYSQLDB:USER = nibe
MYSQLDB:PASSWD = salasana
MYSQLDB:NAME = talologger
MYSQLDB:DB SCHEMA VERSION = 1
#####
# Logged measurement points and data store key configuration
#####
#@MEASURE = outdoor:DUMMY.AnyDummyValue
#measurement for Nibe Bus RS485 Serial
#@MEASURE=<itse annettu nimi>:<Niben rekesterin nimi nibeBusRS485.py -
tiedostossa>
@MEASURE=BT50:NIBERS485.BT50 Room Temp S1
@MEASURE=BT1:NIBERS485.BT1 Outdoor temp
@MEASURE=BT2:NIBERS485.BT2 supply temp S1
@MEASURE=EB100-EP14-BT12:NIBERS485.EB100-EP14-BT12 Cond out
@MEASURE=EB100-EP14-BT3:NIBERS485.EB100-EP14-BT3 Return temp
@MEASURE=BT25:NIBERS485.BT25 external supply temp
@MEASURE=BT7:NIBERS485.BT7 Hot Water top
@MEASURE=BT6:NIBERS485.BT6 Hot Water load
@MEASURE=EB100-EP14-BT10:NIBERS485.EB100-EP14-BT10 Brine in temp
@MEASURE=EB100-EP14-BT11:NIBERS485.EB100-EP14-BT11 Brine out temp
@MEASURE=EB100-EP14-BT14:NIBERS485.EB100-EP14-BT14 Hot gas temp
```

```
@MEASURE=EB100-EP14-BT17:NIBERS485.EB100-EP14-BT17 Suction
@MEASURE=EB100-EP14-Prio:NIBERS485.EB100-EP14 Prio
#F1345#@MEASURE=EB100-EP15-BT10:NIBERS485.EB100-EP15-BT10 Brine in temp
#F1345#@MEASURE=EB100-EP15-BT11:NIBERS485.EB100-EP15-BT11 Brine out temp
#F1345#@MEASURE=EB100-EP15-BT14:NIBERS485.EB100-EP15-BT14 Hot gas temp
#F1345#@MEASURE=EB100-EP15-BT17:NIBERS485.EB100-EP15-BT17 Suction
#F1345#@MEASURE=EB100-EP15-BT12:NIBERS485.EB100-EP15-BT12 Cond out
#F1345#@MEASURE=EB100-EP15-BT3:NIBERS485.EB100-EP15-BT3 Return temp
#F1345#@MEASURE=EB100-EP15-Prio:NIBERS485.EB100-EP15 Prio
@MEASURE=CalcSupply:NIBERS485.Calculated Supply Temperature S1
@MEASURE=DegreeMinutes:NIBERS485.Degree Minutes
@MEASURE=TotIntAdd:NIBERS485.Int eladd Power
@MEASURE=EB100-EP14-PCA:NIBERS485.PCA-Base Relays EP14
@MEASURE=EB100-EP14-GP1:NIBERS485.HM-pump Status EP14
@MEASURE=EB100-EP14-GP2:NIBERS485.Brinepump Status EP14
#F1x55#@MEASURE=ComprFreq:NIBERS485.Compressor freq current
#F1x55#@MEASURE=EP14-BF1:NIBERS485.BF1 Flow
```