

TABLE A-2 Ideal2gas specific heats of various common gases (a) At 300 K Gas constant, R c_p kJ/kg·K C_{v} kJ/kg·K Gas Formula kJ/kg·K 1.005 1.400 Air 0.2870 0.718 Argon Ar 0.2081 0.5203 0.3122 1.667 C_4H_{10} Butane 0.1433 1.7164 1.5734 1.091 Carbon dioxide CO_2 0.1889 0.846 0.657 1.289 Carbon monoxide CO 0.2968 1.040 0.744 1.400 0.2765 1.7662 1.4897 1.186 Ethane C_2H_6 Ethylene C_2H_4 0.2964 1.5482 1.2518 1.237 Helium He 2.0769 5.1926 3.1156 1.667 Hydrogen H_2 4.1240 14.307 10.183 1.405 1.299 Methane CH₄ 0.5182 2.2537 1.7354 Neon Ne 0.4119 1.0299 0.6179 1.667 Nitrogen 0.2968 1.039 0.743 1.400 N_2 Octane C_8H_{18} 0.0729 1.7113 1.6385 1.044 1.395 Oxygen O_2 0.2598 0.918 0.658 Propane C₃H₈ 0.1885 1.6794 1.4909 1.126 H_2O 0.4615 1.8723 1.4108 Steam 1.327

Note: The unit kJ/kg·K is equivalent to kJ/kg·8C.

Source of Data: B. G. Kyle, Chemical and Process Thermodynamics, 3rd ed. (Upper Saddle River, NJ: Prentice Hall, 2000).

TABLE A-2

Ideal2gas specific heats of various common gases (Continued)

(b) /	Αt	vari	ous	tem	per	ature	S
----	-----	----	------	-----	-----	-----	-------	---

c_p c_v c_p c_v kJ/kg·K kJ/kg·K k	$c_p \qquad c_v \ ext{kJ/kg·K} \qquad ext{kJ/kg·K} $
Temperature, K Air Carbon dioxide, ÇO	Carbon monoxide, CO
250 1.003 0.716 1.401 0.791 0.602 1.314	1.039 0.743 1.400
300 1.005 0.718 1.400 0.846 0.657 1.288	1.040 0.744 1.399
350 1.008 0.721 1.398 0.895 0.706 1.268	1.043 0.746 1.398
400 1.013 0.726 1.395 0.939 0.750 1.252	1.047 0.751 1.395
450 1.020 0.733 1.391 0.978 0.790 1.239	1.054 0.757 1.392
500 1.029 0.742 1.387 1.014 0.825 1.229	1.063 0.767 1.387
550 1.040 0.753 1.381 1.046 0.857 1.220	1.075 0.778 1.382
600 1.051 0.764 1.376 1.075 0.886 1.213	1.087 0.790 1.376
650 1.063 0.776 1.370 1.102 0.913 1.207	1.100 0.803 1.370
700 1.075 0.788 1.364 1.126 0.937 1.202	1.113 0.816 1.364
750 1.087 0.800 1.359 1.148 0.959 1.197	1.126 0.829 1.358
800 1.099 0.812 1.354 1.169 0.980 1.193	1.139 0.842 1.353
900 1.121 0.834 1.344 1.204 1.015 1.186	1.163 0.866 1.343
1000 1.142 0.855 1.336 1.234 1.045 1.181	1.185 0.888 1.335
Hydrogen, ฝู Nitrogen, Ŋ	Oxygen, Q
250 14.051 9.927 1.416 1.039 0.742 1.400	0.913 0.653 1.398
300 14.307 10.183 1.405 1.039 0.743 1.400	0.918 0.658 1.395
350 14.427 10.302 1.400 1.041 0.744 1.399	0.928 0.668 1.389
400 14.476 10.352 1.398 1.044 0.747 1.397	0.941 0.681 1.382
450 14.501 10.377 1.398 1.049 0.752 1.395	0.956 0.696 1.373
500 14.513 10.389 1.397 1.056 0.759 1.391	0.972 0.712 1.365
550 14.530 10.405 1.396 1.065 0.768 1.387	0.988 0.728 1.358
600 14.546 10.422 1.396 1.075 0.778 1.382	1.003 0.743 1.350
650 14.571 10.447 1.395 1.086 0.789 1.376	1.017 0.758 1.343
700 14.604 10.480 1.394 1.098 0.801 1.371	1.031 0.771 1.337
750 14.645 10.521 1.392 1.110 0.813 1.365	1.043 0.783 1.332
800 14.695 10.570 1.390 1.121 0.825 1.360	1.054 0.794 1.327
900 14.822 10.698 1.385 1.145 0.849 1.349	1.074 0.814 1.319
1000 14.983 10.859 1.380 1.167 0.870 1.341	1.090 0.830 1.313

Source of Data: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw2Hill, 1983), p. 783, Table A-4M. Originally published in Tables of Thermal Properties of Gases, NBS Circular 564, 1955.

TABLE A - 4

Saturated water—Temperature table

			c volume,	Int	ernal en	ergy,		Enthalpy	′,		Entrop	у,
		m	³/kg		kJ/kg			kJ/kg			kJ/kg·K	
	Sat.	Sat.	Sat.	Sat.		Sat.	Sat.		Sat.	Sat.		Sat.
Temp.,		liquid,	vapor,	liquid,	Evap.,		liquid,	Evap.,	vapor,	liquid,		vapor,
<i>T</i> 8C	P _{sat} kPa	V_f	V_g	U _f	U_{fg}	U_g	h_f	h_{fg}	h_g	S _f	S _{fg}	S_g
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9	0.0000		9.1556
5 10	0.8725 1.2281	0.001000 0.001000	147.03 106.32	21.019 42.020	2360.8 2346.6	2381.8 2388.7	21.020 42.022	2489.1 2477.2	2510.1 2519.2		8.9487 8.7488	
15	1.7057	0.001000	77.885	62.980	2332.5	2395.5		2465.4	2528.3	0.2245		8.7803
20	2.3392	0.001002	57.762	83.913	2318.4	2402.3	83.915	2453.5	2537.4	0.2965	8.3696	8.6661
25	3.1698	0.001003	43.340	104.83	2304.3	2409.1	104.83	2441.7	2546.5	0.3672	8.1895	8.5567
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9	125.74	2429.8	2555.6		8.0152	
35 40	5.6291 7.3851	0.001006 0.001008	25.205 19.515	146.63 167.53	2276.0 2261.9	2422.7 2429.4	146.64 167.53	2417.9 2406.0	2564.6 2573.5		7.8466 7.6832	
45	9.5953	0.001000	15.251	188.43	2247.7	2436.1	188.44	2394.0	2582.4		7.5247	
50	12.352	0.001012	12.026	209.33	2233.4	2442.7	209.34	2382.0	2591.3	0.7038	7.3710	8.0748
55	15.763	0.001015	9.5639	230.24	2219.1	2449.3	230.26	2369.8	2600.1		7.2218	
60	19.947	0.001017	7.6670	251.16	2204.7		251.18	2357.7	2608.8		7.0769	
65 70	25.043 31.202	0.001020 0.001023	6.1935 5.0396	272.09 293.04	2190.3 2175.8	2462.4 2468.9	272.12 293.07	2345.4 2333.0	2617.5 2626.1	0.8937	6.9360	7.8296
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	1.0158		7.6812
80	47.416	0.001020	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0	1.0756	6.5355	
85	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4		6.4089	
90	70.183 84.609	0.001036	2.3593	376.97	2117.0	2494.0 2500.1	377.04	2282.5	2659.6 2667.6	1.1929		7.4782
95		0.001040	1.9808	398.00	2102.0		398.09	2269.6			6.1647	
100 105	101.42 120.90	0.001043 0.001047	1.6720 1.4186	419.06 440.15	2087.0 2071.8	2506.0 2511.9	419.17 440.28	2256.4 2243.1	2675.6 2683.4	1.3634	6.0470 5.9319	7.3542
110	143.38	0.001052	1.2094	461.27	2056.4	2517.7	461.42	2229.7	2691.1		5.8193	
115	169.18	0.001056	1.0360	482.42	2040.9	2523.3	482.59	2216.0	2698.6	1.4737		7.1829
120	198.67	0.001060	0.89133	503.60	2025.3	2528.9	503.81	2202.1	2706.0		5.6013	
125	232.23	0.001065	0.77012 0.66808	524.83	2009.5	2534.3 2539.5	525.07	2188.1	2713.1 2720.1	1.5816	5.4956	
130 135	270.28 313.22	0.001070 0.001075	0.58179	546.10 567.41	1993.4 1977.3	2539.5	546.38 567.75	2173.7 2159.1	2726.9		5.3919 5.2901	
140	361.53	0.001075	0.50850	588.77	1960.9	2549.6	589.16	2144.3	2733.5		5.1901	
145	415.68	0.001085	0.44600	610.19	1944.2	2554.4	610.64	2129.2	2739.8	1.7908	5.0919	6.8827
150	476.16	0.001091	0.39248	631.66	1927.4	2559.1	632.18	2113.8	2745.9		4.9953	
155	543.49	0.001096	0.34648	653.19	1910.3	2563.5	653.79	2098.0	2751.8		4.9002	
160 165	618.23 700.93	0.001102 0.001108	0.30680 0.27244	674.79 696.46	1893.0 1875.4	2567.8 2571.9	675.47 697.24	2082.0 2065.6	2757.5 2762.8		4.8066 4.7143	
170	792.18	0.001114	0.24260	718.20	1857.5	2575.7	719.08	2048.8	2767.9		4.6233	
175	892.60	0.001121	0.21659	740.02	1839.4	2579.4	741.02	2031.7	2772.7	2.0906	4.5335	6.6242
	1002.8	0.001127	0.19384	761.92	1820.9	2582.8	763.05	2014.2	2777.2		4.4448	
	1123.5 1255.2	0.001134 0.001141	0.17390 0.15636	783.91 806.00	1802.1 1783.0	2586.0 2589.0	785.19 807.43	1996.2 1977.9	2781.4 2785.3	2.1875 2.2355	4.3572 4.2705	
	1398.8	0.001141	0.13030	828.18	1763.6	2589.0	807.43	1977.9	2788.8		4.2705	
	1554.9	0.001157	0.12721	850.46	1743.7		852.26	1939.8	2792.0		4.0997	

TABLE A-4

Saturat	ted water	—Temper	ature table	e (<i>Conclu</i>	ded)							
			<i>c volume,</i> ³/kg	Into	<i>ernal en</i> kJ/kg	ergy,		<i>Enthalpy</i> kJ/kg	<i>',</i>		Entrop kJ/kg·K	
Temp., T8C	Sat. press., P _{sat} kPa	Sat. liquid, <i>v_f</i>	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., <i>h_{fg}</i>	Sat. vapor, h_g	Sat. liquid, <i>S_f</i>	Evap., <i>S_{fg}</i>	Sat. vapor, S_g
205 210 215 220 225	1724.3 1907.7 2105.9 2319.6 2549.7	0.001164 0.001173 0.001181 0.001190 0.001199	0.11508 0.10429 0.094680 0.086094 0.078405	872.86 895.38 918.02 940.79 963.70	1723.5 1702.9 1681.9 1660.5 1638.6	2596.4 2598.3 2599.9 2601.3 2602.3	897.61 920.50 943.55	1920.0 1899.7 1878.8 1857.4 1835.4	2794.8 2797.3 2799.3 2801.0 2802.2	2.4245 2.4712 2.5176	4.0154 3.9318 3.8489 3.7664	6.3930 6.3563 6.3200 6.2840 6.2483
230 235 240 245 250	2797.1 3062.6 3347.0 3651.2 3976.2	0.001209 0.001219 0.001229 0.001240 0.001252	0.071505 0.065300 0.059707 0.054656 0.050085	986.76 1010.0 1033.4 1056.9 1080.7	1593.2 1569.8 1545.7	2602.9 2603.2 2603.1 2602.7 2601.8	1013.7 1037.5	1765.5 1740.8	2802.9 2803.2 2803.0 2802.2 2801.0	2.6560 2.7018 2.7476	3.5216 3.4405 3.3596	6.2128 6.1775 6.1424 6.1072 6.0721
255 260 265 270 275	4322.9 4692.3 5085.3 5503.0 5946.4	0.001263 0.001276 0.001289 0.001303 0.001317	0.045941 0.042175 0.038748 0.035622 0.032767	1104.7 1128.8 1153.3 1177.9 1202.9	1495.8 1469.9 1443.2 1415.7 1387.4	2600.5 2598.7 2596.5 2593.7 2590.3	1159.8 1185.1	1661.8 1633.7	2799.1 2796.6 2793.5 2789.7 2785.2	2.8847 2.9304 2.9762	3.1169 3.0358 2.9542	6.0369 6.0017 5.9662 5.9305 5.8944
280 285 290 295 300	6416.6 6914.6 7441.8 7999.0 8587.9	0.001333 0.001349 0.001366 0.001384 0.001404	0.030153 0.027756 0.025554 0.023528 0.021659	1228.2 1253.7 1279.7 1306.0 1332.7	1358.2 1328.1 1296.9 1264.5 1230.9	2586.4 2581.8 2576.5 2570.5 2563.6	1263.1 1289.8 1317.1	1476.9	2779.9 2773.7 2766.7 2758.7 2749.6	3.1144 3.1608 3.2076	2.7066 2.6225 2.5374	5.8579 5.8210 5.7834 5.7450 5.7059
305 310 315 320 325	9209.4 9865.0 10,556 11,284 12,051	0.001425 0.001447 0.001472 0.001499 0.001528	0.019932 0.018333 0.016849 0.015470 0.014183	1360.0 1387.7 1416.1 1445.1 1475.0		2555.8 2547.1 2537.2 2526.0 2513.4	1431.6 1462.0	1366.3 1325.9 1283.4 1238.5 1191.0	2739.4 2727.9 2715.0 2700.6 2684.3	3.3506 3.3994 3.4491	2.2737 2.1821 2.0881	5.6657 5.6243 5.5816 5.5372 5.4908
330 335 340 345 350	12,858 13,707 14,601 15,541 16,529	0.001560 0.001597 0.001638 0.001685 0.001741	0.012979 0.011848 0.010783 0.009772 0.008806	1505.7 1537.5 1570.7 1605.5 1642.4	993.5 945.5 893.8 837.7 775.9	2499.2 2483.0 2464.5 2443.2 2418.3		1140.3 1086.0 1027.4 963.4 892.7	2666.0 2645.4 2622.0 2595.1 2563.9	3.6050 3.6602 3.7179	1.7857 1.6756 1.5585	5.4422 5.3907 5.3358 5.2765 5.2114
360 365 370	17,570 18,666 19,822 21,044 22,064	0.001808 0.001895 0.002015 0.002217 0.003106	0.007872 0.006950 0.006009 0.004953 0.003106	1682.2 1726.2 1777.2 1844.5 2015.7	706.4 625.7 526.4 385.6 0	2388.6 2351.9 2303.6 2230.1 2015.7	1714.0 1761.5 1817.2 1891.2 2084.3	812.9 720.1 605.5 443.1 0	2526.9 2481.6 2422.7 2334.3 2084.3	3.9165 4.0004	1.1373 0.9489 0.6890	5.1384 5.0537 4.9493 4.8009 4.4070

Source of Data: Tables A-4 through A-8 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K to 473.15 K," ASHRAE Trans., Part 2A, Paper 2793, 1983.

TABLE A-5

Satura	ted wate	er—Pressu	re table									
		,	<i>c volume,</i> /kg	Int	<i>ternal en</i> kJ/kg	ergy,		<i>Enthalp</i> y kJ/kg	/,		Entropy kJ/kg·K	
Press., P kPa	Sat. temp., T_{sat} 8C	Sat. liquid, <i>V</i> _f	Sat. vapor, v_g	Sat. liquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, <i>h</i> _f	Evap., <i>h_{fg}</i>	Sat. vapor, h_g	Sat. liquid, <i>S</i> _f	Evap., S _{fg}	Sat. vapor, S_g
1.0 1.5 2.0 2.5 3.0	6.97 13.02 17.50 21.08 24.08	0.001000 0.001001 0.001001 0.001002 0.001003	87.964 66.990 54.242 45.654	88.422 100.98	2355.2 2338.1 2325.5 2315.4 2306.9	2384.5 2392.8 2398.9 2403.8 2407.9	29.303 54.688 73.433 88.424 100.98	2459.5 2451.0 2443.9	2524.7 2532.9 2539.4 2544.8	0.2606 0.3118 0.3543	8.6314 8.4621 8.3302 8.2222	8.8270 8.7227 8.6421 8.5765
4.0 5.0 7.5 10 15	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2423.0 2405.3 2392.1 2372.3	2553.7 2560.7 2574.0 2583.9 2598.3	0.4762 0.5763 0.6492 0.7549	7.9176 7.6738 7.4996 7.2522	8.3938 8.2501 8.1488 8.0071
20 25 30 40 50	60.06 64.96 69.09 75.86 81.32	0.001017 0.001020 0.001022 0.001026 0.001030	7.6481 6.2034 5.2287 3.9933 3.2403	251.40 271.93 289.24 317.58 340.49	2204.6 2190.4 2178.5 2158.8 2142.7	2456.0 2462.4 2467.7 2476.3 2483.2	251.42 271.96 289.27 317.62 340.54	2345.5 2335.3 2318.4 2304.7	2608.9 2617.5 2624.6 2636.1 2645.2	0.8932 0.9441 1.0261 1.0912	6.9370 6.8234 6.6430 6.5019	7.8302 7.7675 7.6691 7.5931
125 150	91.76 99.61 5 99.97 105.97 111.35	0.001037 0.001043 0.001043 0.001048 0.001053	2.2172 1.6941 1.6734 1.3750 1.1594	384.36 417.40 418.95 444.23 466.97	2111.8 2088.2 2087.0 2068.8 2052.3	2496.1 2505.6 2506.0 2513.0 2519.2	384.44 417.51 419.06 444.36 467.13	2257.5 2256.5 2240.6 2226.0	2662.4 2675.0 2675.6 2684.9 2693.1	1.3028 1.3069 1.3741 1.4337	6.0562 6.0476 5.9100 5.7894	7.3589 7.3545 7.2841 7.2231
175 200 225 250 275	116.04 120.21 123.97 127.41 130.58	0.001057 0.001061 0.001064 0.001067 0.001070	1.0037 0.88578 0.79329 0.71873 0.65732	520.47 535.08	2037.7 2024.6 2012.7 2001.8 1991.6	2524.5 2529.1 2533.2 2536.8 2540.1	487.01 504.71 520.71 535.35 548.86	2201.6 2191.0 2181.2	2700.2 2706.3 2711.7 2716.5 2720.9	1.5302 1.5706 1.6072	5.5968 5.5171 5.4453	7.1270 7.0877 7.0525
300 325 350 375 400	133.52 136.27 138.86 141.30 143.61	0.001073 0.001076 0.001079 0.001081 0.001084	0.60582 0.56199 0.52422 0.49133 0.46242	572.84 583.89 594.32 604.22	1982.1 1973.1 1964.6 1956.6 1948.9	2543.2 2545.9 2548.5 2550.9 2553.1	561.43 573.19 584.26 594.73 604.66	2155.4 2147.7 2140.4	2724.9 2728.6 2732.0 2735.1 2738.1	1.7005 1.7274 1.7526	5.2645 5.2128 5.1645	6.9650 6.9402 6.9171
450 500 550 600 650	147.90 151.83 155.46 158.83 161.98	0.001088 0.001093 0.001097 0.001101 0.001104	0.41392 0.37483 0.34261 0.31560 0.29260	639.54 655.16 669.72 683.37	1934.5 1921.2 1908.8 1897.1 1886.1	2557.1 2560.7 2563.9 2566.8 2569.4	623.14 640.09 655.77 670.38 684.08	2108.0 2096.6 2085.8 2075.5	2743.4 2748.1 2752.4 2756.2 2759.6	1.8604 1.8970 1.9308 1.9623	4.9603 4.8916 4.8285 4.7699	6.8207 6.7886 6.7593 6.7322
700 750	164.95 167.75	0.001108 0.001111	0.27278 0.25552		1875.6 1865.6	2571.8 2574.0	697.00 709.24		2762.8 2765.7			

TABLE A-5 Saturated water—Pressure table (*Concluded*)

Satura	Saturated water—Pressure table (Concluded) Specific volume, Internal energy, Enthalpy, Entropy,											
		Specific m³/		Inte	ernal en kJ/kg	ergy,		<i>Enthalp</i> y kJ/kg	/,		Entropy kJ/kg·K	
Press., PkPa	Sat. temp., T _{sat} 8C	Sat. liquid, <i>V_f</i>	Sat. vapor, v_g	Sat. liquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, <i>h</i> _f	Evap., <i>h</i> _{fg}	Sat. vapor, h_g	Sat. liquid, <i>S</i> _f	Evap.,	Sat. vapor, s_g
800 850 900 950 1000	170.41 172.94 175.35 177.66 179.88	0.001115 0.001118 0.001121 0.001124 0.001127	0.24035 0.22690 0.21489 0.20411 0.19436	731.00 741.55 751.67	1856.1 1846.9 1838.1 1829.6 1821.4		720.87 731.95 742.56 752.74 762.51	2047.5 2038.8 2030.5 2022.4 2014.6	2770.8 2773.0 2775.2	2.0705 2.0941 2.1166	4.6160 4.5705 4.5273 4.4862 4.4470	6.6409 6.6213 6.6027
1100 1200 1300 1400 1500	184.06 187.96 191.60 195.04 198.29	0.001133 0.001138 0.001144 0.001149 0.001154	0.17745 0.16326 0.15119 0.14078 0.13171	796.96 813.10 828.35	1805.7 1790.9 1776.8 1763.4 1750.6	2587.8	781.03 798.33 814.59 829.96 844.55	1999.6 1985.4 1971.9 1958.9 1946.4	2783.8 2786.5 2788.9	2.2159 2.2508 2.2835	4.3735 4.3058 4.2428 4.1840 4.1287	6.5217 6.4936 6.4675
1750 2000 2250 2500 3000	205.72 212.38 218.41 223.95 233.85	0.001166 0.001177 0.001187 0.001197 0.001217	0.11344 0.099587 0.088717 0.079952 0.066667	906.12 933.54 958.87	1720.6 1693.0 1667.3 1643.2 1598.5	2596.7 2599.1 2600.9 2602.1 2603.2	878.16 908.47 936.21 961.87 1008.3	1917.1 1889.8 1864.3 1840.1 1794.9	2798.3 2800.5 2801.9	2.4467 2.5029 2.5542	4.0033 3.8923 3.7926 3.7016 3.5402	6.3390 6.2954 6.2558
3500 4000 5000 6000 7000	242.56 250.35 263.94 275.59 285.83	0.001235 0.001252 0.001286 0.001319 0.001352	0.057061 0.049779 0.039448 0.032449 0.027378	1082.4 1148.1 1205.8	1557.6 1519.3 1448.9 1384.1 1323.0	2603.0 2601.7 2597.0 2589.9 2581.0	1087.4 1154.5 1213.8	1753.0 1713.5 1639.7 1570.9 1505.2	2800.8 2794.2 2784.6	2.7966 2.9207 3.0275	3.3991 3.2731 3.0530 2.8627 2.6927	6.0696 5.9737 5.8902
8000 9000 10,000 11,000 12,000	295.01 303.35 311.00 318.08 324.68	0.001384 0.001418 0.001452 0.001488 0.001526	0.023525 0.020489 0.018028 0.015988 0.014264	1350.9 1393.3 1433.9	1264.5 1207.6 1151.8 1096.6 1041.3	2570.5 2558.5 2545.2 2530.4 2514.3	1363.7 1407.8 1450.2	1441.6 1379.3 1317.6 1256.1 1194.1	2742.9 2725.5 2706.3	3.2866 3.3603 3.4299	2.5373 2.3925 2.2556 2.1245 1.9975	5.6791 5.6159 5.5544
13,000 14,000 15,000 16,000 17,000	330.85 336.67 342.16 347.36 352.29	0.001566 0.001610 0.001657 0.001710 0.001770	0.012781 0.011487 0.010341 0.009312 0.008374	1548.4 1585.5 1622.6	985.5 928.7 870.3 809.4 745.1	2477.1	1649.9	1131.3 1067.0 1000.5 931.1 857.4	2637.9 2610.8 2581.0	3.6232 3.6848 3.7461	1.8730 1.7497 1.6261 1.5005 1.3709	5.3728 5.3108 5.2466
18,000 19,000 20,000 21,000 22,000 22,064	356.99 361.47 365.75 369.83 373.71 373.95	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.007504 0.006677 0.005862 0.004994 0.003644 0.003106	1740.3 1785.8 1841.6 1951.7	675.9 598.9 509.0 391.9 140.8 0	2092.4	1776.8 1826.6 1888.0	777.8 689.2 585.5 450.4 161.5	2466.0 2412.1 2338.4 2172.6	3.9396 4.0146 4.1071	1.2343 1.0860 0.9164 0.7005 0.2496 0	5.0256 4.9310 4.8076

TARI	E A-6											
	heated wa	ater										
-			h		.,		<i>b</i>		.,		<i>b</i>	
<i>T</i> 8C	<i>v</i> m³/kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	<i>s</i> kJ/kg∙K	<i>v</i> m³/kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	<i>s</i> kJ/kg·K	<i>v</i> m³/kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	<i>s</i> kJ/kg⋅K
	<i>P</i> 5	0.01 MPa	a (45.818	3C)*	<i>P</i> 5	0.05 MPa	a (81.328	BC)	P S	5 0.10 MF	Pa (99.61	L8C)
Sat.†	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.3589
50	14.867		2592.0	8.1741								
100	17.196		2687.5	8.4489	3.4187	2511.5 2585.7		7.6953 7.9413				7.3611 7.6148
150 200	19.513 21.826		2783.0 2879.6	8.6893 8.9049	3.8897 4.3562	2660.0		8.1592		2582.9 2658.2		
250	24.136		2977.5	9.1015	4.8206	2735.1		8.3568				8.0346
300	26.446		3076.7	9.2827	5.2841	2811.6		8.5387				8.2172
400	31.063		3280.0	9.6094	6.2094	2968.9		8.8659				8.5452
500	35.680		3489.7	9.8998	7.1338	3132.6		9.1566				8.8362
600 700	40.296 44.911			10.1631 10.4056	8.0577 8.9813	3303.1 3480.6		9.4201 9.6626		3302.8		9.0999 9.3424
800	49.527			10.4030	9.9047	3665.2		9.8883				9.5682
900	54.143			10.8429	10.8280	3856.8		10.1000				9.7800
1000	58.758	4055.3	4642.8	11.0429	11.7513	4055.2		10.3000	5.8755	4055.0	4642.6	9.9800
1100	63.373			11.2326	12.6745	4259.9		10.4897				10.1698
1200	67.989			11.4132	13.5977	4470.8		10.6704				10.3504
1300	72.604			11.5857	14.5209	4687.3		10.8429				10.5229
		0.20 MP				0.30 MPa				0.40 MP		
Sat.		2529.1		7.1270	0.60582							6.8955
150 200		2577.1 2654.6		7.2810 7.5081	0.63402 0.71643			7.0792 7.3132				6.9306 7.1723
250		2731.4		7.7100	0.71045		2967.9	7.5132				7.1723
300		2808.8		7.8941	0.87535		3069.6	7.7037				7.5677
400	1.54934			8.2236	1.03155			8.0347				7.9003
500	1.78142			8.5153	1.18672			8.3271				8.1933
600 700		3302.2 3479.9		8.7793 9.0221	1.34139 1.49580			8.5915 8.8345				8.4580 8.7012
800		3664.7		9.0221	1.65004			9.0605				8.9274
900		3856.3		9.4598	1.80417		4397.3					9.1394
1000		4054.8		9.6599	1.95824			9.4726				9.3396
1100		4259.6		9.8497	2.11226			9.6624				9.5295
1200				10.0304	2.26624			9.8431				9.7102
1300				10.2029	2.42019	4686.9	5413.0	10.0157	1.81516	4686.7	5412.8	9.8828
		0.50 MP				0.60 MPa				0.80 MP		
Sat.				6.8207				6.7593				6.6616
200 250		2643.3 2723.8		7.0610 7.2725	0.35212			6.9683 7.1833				6.8177 7.0402
300		2803.3		7.4614	0.39390			7.1033				7.0402
350		2883.0		7.6346				7.5481				7.4107
400		2963.7		7.7956	0.51374			7.7097				7.5735
500		3129.0		8.0893				8.0041				7.8692
600		3300.4		8.3544				8.2695				8.1354
700		3478.6		8.5978	0.74725			8.5132				8.3794
800 900		3663.6 3855.4		8.8240 9.0362	0.82457			8.7395 8.9518				8.6061 8.8185
1000		4054.0		9.0302	0.90179			9.1521				9.0189
1100				9.4263	1.05603			9.3420				9.2090
1200	1.35972	4470.0		9.6071	1.13309	4469.8	5149.6	9.5229	0.84980	4469.4	5149.3	9.3898
1300	1.45214	4686.6	5412.6	9.7797	1.21012	4686.4	5412.5	9.6955	0.90763	4686.1	5412.2	9.5625

^{*}The temperature in parentheses is the saturation temperature at the specified pressure. † Properties of saturated vapor at the specified pressure.

TAB	LE A-6											
Supe	rheated w	ater (<i>Co</i>	oncluded	7)								
T	V	И	h	S	V	и	h	S	V	И	h	S
8C	m³/kg	kJ/kg	kJ/kg	kJ/kg?K		kJ/kg	kJ/kg	kJ/kg·K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K
	<i>P</i> 5	1.00 MPa	•		<i>P</i> 5	1.20 MPa	a (187.96	58C)	<i>P</i> 5	1.40 MPa	(195.04	8C)
Sat.	0.19437				0.16326				0.14078	2591.8		6.4675
200 250	0.20602 0.23275		2828.3 2943.1	6.6956 6.9265	0.16934 0.19241				0.14303 0.16356	2602.7 2698.9		6.4975 6.7488
300	0.25799	2793.7		7.1246	0.21386				0.18233	2785.7		6.9553
350	0.28250		3158.2	7.3029	0.23455				0.20029	2869.7	3150.1	7.1379
400		2957.9	3264.5	7.4670	0.25482				0.21782	2953.1		7.3046
500 600	0.35411 0.40111		3479.1 3698.6	7.7642 8.0311	0.29464 0.33395				0.25216 0.28597	3121.8 3295.1		7.6047 7.8730
700	0.44783	3476.3	3924.1		0.33393				0.31951	3474.4		8.1183
800	0.49438		4156.1		0.41184				0.35288		4154.3	
900	0.54083			8.7150	0.45059				0.38614	3852.7		8.5587
1000	0.58721 0.63354			8.9155 9.1057	0.48928				0.41933 0.45247	4051.7 4257.0		8.7595 8.9497
1100 1200	0.63334	4469.0	5148.9	9.1057	0.52792 0.56652				0.43247	4468.3		9.1308
1300	0.72610	4685.8	5411.9	9.4593	0.60509				0.51866	4685.1		9.3036
	<i>P</i> 5	1.60 MPa	(201.37	8C)	<i>P</i> 5	1.80 MP	a (207.1	18C)	<i>P</i> 5	2.00 MPa	(212.38	8C)
Sat.	0.12374	2594.8	2792.8	6.4200	0.11037	2597.3	2795.9	6.3775	0.09959	2599.1	2798.3	6.3390
225	0.13293			6.5537	0.11678				0.10381		2836.1	
250	0.14190		2919.9	6.6753	0.12502				0.11150		2903.3	
300 350	0.15866 0.17459		3035.4 3146.0	6.8864 7.0713	0.14025 0.15460				0.12551 0.13860		3024.2 3137.7	
400	0.19007			7.2394	0.15400				0.15122		3248.4	
500	0.22029		3472.6	7.5410	0.19551				0.17568		3468.3	
600	0.24999		3693.9	7.8101	0.22200				0.19962		3690.7	
700 800	0.27941 0.30865		3920.5 4153.4	8.0558 8.2834	0.24822 0.27426				0.22326 0.24674		3918.2 4151.5	
900	0.33780			8.4965	0.30020				0.24074		4391.1	
1000	0.36687			8.6974	0.32606				0.29342		4637.1	
1100	0.39589		4890.0	8.8878	0.35188				0.31667		4889.1	
1200	0.42488		5147.7	9.0689	0.37766				0.33989		5147.0	
1300	0.45383		5410.9	9.2418	0.40341	4064.5	5410.0	9.1072	0.36308	4004.2	5410.3	9.1364
		2.50 MPa					(233.85			3.50 MPa		
Sat. 225	0.07995 0.08026		2801.9 2805.5		0.06667	2603.2	2803.2	6.1856	0.05706	2603.0	2802.7	6.1244
250	0.08705			6.4107	0.07063	2644.7	2856.5	6.2893	0.05876	2624.0	2829.7	6.1764
300	0.09894				0.08118				0.06845		2978.4	
350	0.10979 0.12012			6.8424	0.09056				0.07680 0.08456		3104.9 3223.2	
400 450	0.12012			7.0170 7.1768	0.09938 0.10789				0.08436		3338.1	
500	0.13999			7.3254	0.11620				0.09919		3451.7	
600	0.15931		3686.8	7.5979	0.13245				0.11325		3678.9	
700	0.17835			7.8455	0.14841				0.12702		3909.3	
800 900	0.19722 0.21597		4149.2 4389.3	8.0744 8.2882	0.16420 0.17988				0.14061 0.15410		4144.6 4385.7	
1000	0.21397			8.4897	0.17500				0.15410		4632.7	
1100	0.25330	4254.7	4887.9	8.6804	0.21105	4253.6	4886.7	8.5955	0.18087	4252.5	4885.6	8.5236
1200	0.27190			8.8618	0.22658				0.19420		5144.1	
1300	0.29048	4683.4	5409.5	9.0349	0.24207	4682.6	5408.8	8.9502	0.20750	4681.8	5408.0	8.8786

TAB	LE A-6										
Supe	rheated water (<i>C</i>	ontinued)									
T	V U	h s		<i>V</i>	И	h	S	<i>V</i>	и	h	S
8C	m³/kg kJ/kg	kJ/kg k	J/kg·K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K
	<i>P</i> 5 4.0 MP	a (250.358C	C)	<i>P</i> 5	4.5 MPa	(257.448	BC)	<i>P</i> 5	5.0 MPa	(263.94	BC)
Sat.	0.04978 2601.7		5.0696		2599.7	2798.0	6.0198	0.03945			5.9737
275 300	0.05461 2668.9 0.05887 2726.2		5.2312 5.3639	0.04733 0.05138	2651.4 2713.0	2864.4 2944.2	6.1429 6.2854	0.04144 0.04535			6.0571 6.2111
350	0.03667 2720.2		5.5843	0.05136		3081.5	6.5153	0.04333			6.4516
400	0.07343 2920.8		5.7714	0.06477	2914.2	3205.7	6.7071	0.05784			6.6483
450	0.08004 3011.0		5.9386	0.07076	3005.8	3324.2	6.8770	0.06332			6.8210
500	0.08644 3100.3		7.0922	0.07652	3096.0	3440.4	7.0323	0.06858			6.9781
600 700	0.09886 3279.4 0.11098 3462.4		7.3706 7.6214	0.08766 0.09850	3276.4 3460.0	3670.9 3903.3	7.3127 7.5647	0.07870 0.08852			7.2605 7.5136
800	0.11096 3402.4		7.8523	0.10916		4140.0	7.7962	0.08832			7.7458
900	0.13476 3844.8		3.0675	0.11972		4382.1	8.0118	0.10769			7.9619
1000	0.14653 4045.1	4631.2 8	3.2698	0.13020	4043.9	4629.8	8.2144	0.11715			8.1648
1100	0.15824 4251.4		3.4612	0.14064		4883.2	8.4060	0.12655			8.3566
1200	0.16992 4463.5		3.6430	0.15103	4462.6	5142.2	8.5880	0.13592			8.5388
1300	0.18157 4680.9	5407.2 8	3.8164	0.16140	4680.1	5406.5	8.7616	0.14527	4079.3	5405.7	8.7124
	<i>P</i> 5 6.0 MPa	a (275.598C	:)	<i>P</i> 5	7.0 MPa	(285.838	BC)	<i>P</i> 5	8.0 MPa	(295.01	8C)
Sat.	0.03245 2589.9		5.8902	0.027378			5.8148	0.023525			
300	0.03619 2668.4		5.0703	0.029492			5.9337	0.024279			
350 400	0.04225 2790.4 0.04742 2893.7		5.3357 5.5432	0.035262 0.039958		3016.9	6.2305 6.4502	0.029975 0.034344			
450	0.05217 2989.9		5.7219	0.039938		3288.3	6.6353	0.034344			
500	0.05667 3083.1		5.8826	0.048157			6.8000	0.041767			
550	0.06102 3175.2		7.0308	0.051966		3531.6	6.9507	0.045172			
600	0.06527 3267.2		7.1693	0.055665			7.0910	0.048463			
700 800	0.07355 3453.0 0.08165 3643.2		7.4247 7.6582	0.062850 0.069856			7.3487 7.5836	0.054829 0.061011			
900	0.08163 3043.2		7.8751	0.009850			7.8014	0.067082			
1000	0.09756 4040.1		3.0786	0.083571			8.0055	0.073079			
1100	0.10543 4247.1		3.2709	0.090341	4245.0	4877.4	8.1982	0.079025			
1200	0.11326 4459.8		3.4534	0.097075		5137.4	8.3810	0.084934			
1300	0.12107 4677.7	5404.1 8	3.6273	0.103781	46/6.1	5402.6	8.5551	0.090817	46/4.5	5401.0	8.4925
	<i>P</i> 5 9.0 MPa	a (303.358C	()	<i>P</i> 5	10.0 MPa	(311.00		<i>P</i> 5	12.5 MPa	(327.81	.8C)
Sat.	0.020489 2558.5		5.6791	0.018028			5.6159	0.013496	2505.6	2674.3	5.4638
325	0.023284 2647.6		5.8738	0.019877			5.7596	0.016130	2624.0	2026.6	F 7120
350 400	0.025816 2725.0 0.029960 2849.2		5.0380 5.2876	0.022440 0.026436			5.9460 6.2141	0.016138			
450	0.033524 2956.3		5.4872	0.020430			6.4219	0.020030			
500	0.036793 3056.3		5.6603	0.032811			6.5995	0.025630			
550	0.039885 3153.0		5.8164	0.035655			6.7585	0.028033			
600	0.042861 3248.4			0.038378			6.9045	0.030306			
650 700	0.045755 3343.4 0.048589 3438.8		7.0954 7.2229	0.041018 0.043597			7.0408 7.1693	0.032491 0.034612			
800	0.048589 3438.8			0.043597			7.1693	0.034612			
900	0.059562 3829.6		7.6802	0.053547			7.6290	0.030724			
1000	0.064919 4032.4	4616.7 7	7.8855	0.058391	4029.9	4613.8	7.8349	0.046641	4023.5	4606.5	7.7269
1100	0.070224 4240.7			0.063183			8.0289	0.050510			
1200	0.075492 4454.2		3.2625	0.067938			8.2126	0.054342			
1300	0.080733 4672.9	5599.5 8	0.43/11	0.072007	40/1.3	5598.0	8.38/4	0.058147	4007.3	5594.1	6.2819

TAB	LE A-6											
Supe	rheated wa	ater (<i>Co</i>	ncluded)								
T	V	и	h	S	V	И	h	S	V	и	h	S
8C	m³/kg	kJ/kg	kJ/kg	kJ/kg·K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K
	<i>P</i> 5 :	15.0 MPa	(342.168	BC)	P 5 1	7.5 MPa	(354.67	'8C)	P 5 2	20.0 MPa	(365.75	8C)
Sat.	0.010341	2455.7	2610.8	5.3108	0.007932	2390.7	2529.5	5.1435	0.005862	2294.8	2412.1	4.9310
350	0.011481				0.010460	20042	2002	- 7011	0.000050	0617.0	2016.0	F FF0.6
400 450	0.015671 0.018477				0.012463 0.015204				0.009950 0.012721			
500	0.010477				0.013204				0.012721			
550	0.022945				0.017305				0.014733			
600	0.024921	3209.3	3583.1	6.6796	0.021073				0.018185			
650	0.026804				0.022742				0.019695			
700	0.028621				0.024342				0.021134			
800 900	0.032121 0.035503				0.027405 0.030348				0.023870 0.026484			
1000	0.035503				0.030348				0.026484			
1100	0.042062				0.035213				0.023020			
1200	0.045279				0.038806				0.033952			
1300	0.048469	4663.3	5390.3	8.1952	0.041556				0.036371	4655.2	5382.7	8.0574
		<i>P</i> 5 25.	0 MPa			<i>P</i> 5 30.0	МРа			<i>P</i> 5 35.0) MPa	
375	0.001978	1799.9	1849.4	4.0345	0.001792	1738.1	1791.9	3.9313	0.001701	1702.8	1762.4	3.8724
400	0.006005				0.002798				0.002105			
425	0.007886				0.005299				0.003434			
450 500	0.009176 0.011143				0.006737 0.008691				0.004957 0.006933			
550	0.011143				0.008091				0.000933			
600	0.014140				0.011445				0.009523			
650	0.015430				0.012590				0.010565	3190.9	3560.7	6.3030
700	0.016643				0.013654				0.011523			
800	0.018922				0.015628				0.013278			
900	0.021075 0.023150				0.017473 0.019240				0.014904 0.016450			
1100	0.025170				0.019240				0.010430			
1200	0.027157				0.022630				0.019398			
1300	0.029115				0.024279				0.020827			
		<i>P</i> 5 40.0) MPa			<i>P</i> 5 50.0	MPa			<i>P</i> 5 60.0) MPa	
375	0.001641				0.001560				0.001503	1609.7	1699.9	3.7149
400			1931.4		0.001731				0.001633			
425	0.002538				0.002009				0.001816			
450	0.003692				0.002487				0.002086			
500 550	0.005623 0.006985				0.003890 0.005118				0.002952 0.003955			
600	0.008089				0.006108				0.004833			
650	0.009053				0.006957				0.005591			
700	0.009930				0.007717				0.006265			
800	0.011521				0.009073				0.007456			
900	0.012980				0.010296				0.008519			
1000 1100	0.014360 0.015686				0.011441 0.012534				0.009504 0.010439			
1200	0.015080				0.012554				0.010439			
1300					0.014620				0.012213			

TABLE A-11

Satu	rated refri	igerant-134	a—Tempe	erature 1	table							
		<i>Specific</i> m³/	<i>volume,</i> kg	Inte	ernal end kJ/kg	ergy,		<i>Enthalp</i> y kJ/kg	/,		Entropy kJ/kg•K	
	Sat.	Sat.	Sat.	Sat.		Sat.	Sat.	_	Sat.	Sat.	_	Sat.
	., press.,	liquid,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,
78C	P _{sat} kPa	V_f	V_g	U_f	U_{fg}	U_g	h_f	h _{fg}	h_g	S_f	S _{fg}	S_g
240	51.25	0.0007053	0.36064	20.036	207.42	207.38	0.00	225.86	225.86	0.00000	0.96869	0.96869
238	56.86	0.0007082			2 206.06	208.53		224.62		0.01071		
236	62.95	0.0007111			7 204.69	209.68		223.37		0.02137		
234	69.56	0.0007141			203.32	210.83		222.10		0.03196		
232	76.71	0.0007171		10.04	201.94	211.97	10.09	220.83		0.04249		
230	84.43	0.0007201	0.22577	12.58	200.55	213.12	12.64	219.55		0.05297		
228	92.76	0.0007232		15.12	199.15	214.27	15.19	218.25		0.06339		
226	101.73	0.0007264		17.67	197.75	215.42	17.75	216.95		0.07376		
224	111.37	0.0007296		20.23	196.34	216.57		215.63		0.08408		
222 220	121.72 132.82	0.0007328 0.0007361	0.15999 0.14735	22.80 25.37	194.92 193.49	217.71 218.86	22.89 25.47	214.30 212.96		0.09435 0.10456		
218	144.69	0.0007301	0.14733	27.96	193.49	220.00	28.07	212.90		0.10430		
216	157.38	0.0007394	0.13569	30.55	192.03	221.15	30.67	210.23		0.11475		
214	170.93	0.0007428	0.12550	33.15	189.14	222.29	33.28	208.84		0.12400		
212	185.37	0.0007403	0.11003	35.76	187.66	223.42	35.90	207.44		0.13497		
210	200.74	0.0007533	0.099600	38.38	186.18	224.56	38.53	206.02		0.15496		
28	217.08	0.0007570	0.092438	41.01	184.69	225.69	41.17	204.59		0.16491		
26	234.44	0.0007607		43.64	183.18	226.82		203.14		0.17482		
24	252.85	0.0007644	0.079889	46.29	181.66	227.94	46.48	201.66		0.18469		
22	272.36	0.0007683	0.074388	48.94	180.12	229.07	49.15	200.17	249.33	0.19452	0.73819	0.93271
0	293.01	0.0007722	0.069335	51.61	178.58	230.18	51.83	198.67	250.50	0.20432	0.72726	0.93158
2	314.84	0.0007761	0.064690	54.28	177.01	231.30	54.53	197.14	251.66	0.21408	0.71641	0.93050
4	337.90	0.0007802	0.060412	56.97	175.44	232.40	57.23	195.58	252.82	0.22381	0.70565	0.92946
6	362.23	0.0007843	0.056469	59.66	173.84	233.51	59.95	194.01		0.23351		
8	387.88	0.0007886	0.052829	62.37	172.23	234.60	62.68	192.42		0.24318		
10	414.89	0.0007929	0.049466	65.09	170.61	235.69	65.42	190.80		0.25282		
12	443.31	0.0007973	0.046354	67.82	168.96	236.78	68.17	189.16		0.26243		
14	473.19	0.0008018	0.043471	70.56	167.30	237.86	70.94	187.49		0.27201		
16	504.58	0.0008064	0.040798	73.31	165.62	238.93	73.72	185.80		0.28157		
18	537.52	0.0008112	0.038317	76.07	163.92	239.99	76.51	184.08		0.29111		
20 22	572.07 608.27	0.0008160 0.0008209	0.036012 0.033867	78.85 81.64	162.19 160.45	241.04 242.09	79.32 82.14	182.33 180.55		0.30062 0.31012		
24	646.18	0.0008269	0.033867	84.44	158.68	242.09	84.98	178.74		0.31012		
26	685.84	0.0008312	0.031009	87.26	156.89	244.15	87.83	176.74		0.31939		
28	727.31	0.0008366	0.030000	90.09	155.08	245.17	90.70	175.03		0.32903		
30	770.64	0.0008421	0.026648	92.93	153.24	246.17	93.58	173.13		0.33043		
32	815.89	0.0008477	0.025131	95.79	151.37	247.17	96.49	171.19		0.35734		
34	863.11	0.0008535	0.023712	98.67	149.48	248.15	99.41	169.21		0.36675		
36	912.35	0.0008595	0.022383		147.55	249.11		167.19		0.37615		
38	963.68	0.0008657	0.021137		145.60	250.07		165.13		0.38554		
40	1017.1	0.0008720	0.019968		143.61	251.00		163.03		0.39493		
42	1072.8	0.0008786	0.018870		141.59	251.92		160.89		0.40432		
44	1130.7	0.0008854	0.017837	113.30	139.53	252.83	114.30	158.70	273.00	0.41371	0.50036	0.91407

34.22 259.02 0.72224 0.09169 0.81393

TABLE A-11 Saturated refrigerant-134a—Temperature table (Concluded) Specific volume, Internal energy, Enthalpy, Entropy, m³/kg kJ/kg kJ/kg kJ/kg•K Sat. Sat. Sat. Sat. Sat. Sat. Sat. Sat. Sat. vapor, liquid, vapor, liquid, Temp., press., liquid, vapor, liquid, Evap., Evap., Evap., vapor, *T*8C $P_{\rm sat}$ kPa U_f U_{fg} U_g h_{f} h_{fg} h_g S_f V_q S_g 1191.0 46 48 1253.6 0.0008997 0.015951 119.28 135.30 254.58 120.41 154.17 274.57 0.43251 0.48001 0.91252 52 0.0009151 0.014276 125.35 130.89 256.24 126.62 149.41 276.03 0.45136 0.45948 0.91084 0.0009317 0.012782 131.52 126.29 257.81 132.94 144.41 277.35 0.47028 0.43870 0.90898 56 1529.1 60 1682.8 $0.0009498 \ 0.011434 \ 137.79 \ 121.45 \ 259.23 \ 139.38$ 139.09 278.47 0.48930 0.41746 0.90676 1891.0 65 0.0009751 0.009959 145.80 115.06 260.86 147.64 132.05 279.69 0.51330 0.39048 0.90379 70 0.0010037 0.008650 154.03 108.17 262.20 156.15 124.37 280.52 0.53763 0.36239 0.90002 2118.2 $0.0010373 \quad 0.007486 \ 162.55 \quad 100.62 \quad 263.17 \ 165.01$ 75 280.88 0.56252 0.33279 0.89531 2365.8 115.87 80 0.0010774 0.006439 171.43 92.22 263.66 174.27 106.35 280.63 0.58812 0.30113 0.88925 2635.3 85 0.0011273 0.005484 180.81 82.64 263.45 184.11 95.39 279.51 0.61487 0.26632 0.88120 2928.2 0.0011938 0.004591 190.94 277.04 0.64354 0.22638 0.86991 90 3246.9 71.19 262.13 194.82 82.22 0.0012945 0.003713 202.49 95 3594.1 56.25 258.73 207.14 64.94 272.08 0.67605 0.17638 0.85243

0.0015269 0.002657 218.73

Source of Data: Tables A211 through A213 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner2Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and pressures up to 70 MPa," J. Phys. Chem, Ref. Data, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at 2408C (and 2408F).

29.72 248.46 224.80

100

3975.1

TABLE A-12

Satur	rated ref	rigerant-13	4a—Press	ure tabl	е							
		Specific m³,	<i>volume,</i> /kg	Inte	<i>ernal en</i> kJ/kg	ergy,		<i>Enthalp</i> kJ/kg	у,		Entropy kJ/kg•K	
Press.	., Sat.	Sat.	Sat.	Sat.		Sat.	Sat.		Sat.	Sat.		Sat.
Р	temp.,	liquid,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,
kPa	$T_{\rm sat}$ 8C	V_f	V_g	U_f	U_{fg}	u_g	h_{f}	h_{fg}	h_g	S_f	S_{fg}	S_g
60	236.95	0.0007097	0.31108	3.795	205.34	209.13	3.837	223.96	227.80	0.01633	0.94812	0.96445
70	233.87	0.0007143	0.26921	7.672	203.23	210.90	7.722	222.02	229.74	0.03264	0.92783	0.96047
80	231.13	0.0007184		11.14		212.48	11.20	220.27	231.47	0.04707	0.91009	0.95716
90	228.65	0.0007222	0.21261	14.30		213.90	14.36	218.67	233.04	0.06003	0.89431	0.95434
100	226.37	0.0007258	0.19255	17.19		215.21	17.27	217.19	234.46	0.07182	0.88008	0.95191
120	222.32	0.0007323	0.16216	22.38	195.15	217.53	22.47	214.52	236.99	0.09269	0.85520	0.94789
140	218.77	0.0007381	0.14020	26.96	192.60	219.56	27.06	212.13	239.19	0.11080	0.83387	0.94467
160	215.60	0.0007435	0.12355	31.06	190.31	221.37	31.18	209.96	241.14	0.12686	0.81517	0.94202
180	212.73	0.0007485	0.11049	34.81	188.20	223.01	34.94	207.95	242.90	0.14131	0.79848	0.93979
200	210.09	0.0007532	0.099951	38.26	186.25	224.51	38.41	206.09	244.50	0.15449	0.78339	0.93788
240	25.38	0.0007618	0.083983	44.46	182.71	227.17	44.64	202.68	247.32	0.17786	0.75689	0.93475
280	21.25	0.0007697	0.072434	49.95	179.54	229.49	50.16	199.61	249.77	0.19822	0.73406	0.93228
320	2.46	0.0007771	0.063681	54.90	176.65	231.55	55.14	196.78	251.93	0.21631	0.71395	0.93026
360	5.82	0.0007840	0.056809	59.42		233.41	59.70	194.15	253.86	0.23265	0.69591	0.92856
400	8.91	0.0007905	0.051266	63.61	171.49	235.10	63.92	191.68	255.61	0.24757	0.67954	0.92711
450	12.46	0.0007983	0.045677	68.44		237.03	68.80	188.78	257.58	0.26462		0.92555
500	15.71	0.0008058	0.041168	72.92		238.77	73.32	186.04	259.36	0.28021		0.92420
550	18.73	0.0008129	0.037452	77.09		240.38	77.54	183.44	260.98	0.29460		0.92302
600	21.55	0.0008198	0.034335	81.01		241.86	81.50	180.95	262.46	0.30799		0.92196
650	24.20	0.0008265				243.23	85.26	178.56	263.82	0.32052		0.92100
700	26.69	0.0008331				244.51	88.82	176.26	265.08	0.33232		0.92012
750	29.06	0.0008395	0.027398	91.59		245.70	92.22	174.03	266.25	0.34348		0.91930
800	31.31	0.0008457		94.80		246.82	95.48	171.86	267.34	0.35408		0.91853
850	33.45	0.0008519	0.024091			247.88	98.61	169.75	268.36	0.36417		0.91779
900	35.51	0.0008580	0.022703			248.88		167.69		0.37383		0.91709
950	37.48	0.0008640	0.021456			249.82		165.68	270.20	0.38307		0.91641
1000	39.37	0.0008700	0.020329			250.71		163.70	271.04	0.39196		0.91574
1200	46.29	0.0008935	0.016728			253.84		156.12	273.92	0.42449		0.91320
1400	52.40	0.0009167				256.40		148.92	276.17	0.45325		0.91067
1600	57.88	0.0009400	0.012134			258.50		141.96	277.92	0.47921		0.90802
1800	62.87	0.0009639	0.010568			260.21		135.14	279.23	0.50304		0.90517
2000	67.45	0.0009887			111.75			128.36	280.15	0.52519		0.90204
2500	77.54	0.0010567				263.49		111.18	280.84	0.57542		0.89243
3000	86.16	0.0011410	0.005272	183.09	80.17	263.26	186.51	92.5/	279.08	0.62133	0.25759	0.87893

TAB	LE A-13	3										
Supe	rheated i	efrigera	nt-134a									
T	V	и	h	S	V	и	h	S	V	и	h	S
8C	m³/kg	kJ/kg	kJ/kg	kJ/kg·K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K
	<i>P</i> 5 0.0)6 MPa (7	5 236.9	958C)	<i>P</i> 5 0.1	LO MPa (7	_{sat} 5 226.3	378C)	<i>P</i> 5 0.3	L4 MPa (7	_{sat} 5 218.7	778C)
Sat.	0.31108	209.13	227.80	0.9645	0.19255	215.21	234.46	0.9519	0.14020	219.56	239.19	0.9447
220	0.33608				0.19841							
210	0.35048				0.20743				0.14605			0.9724
0	0.36476				0.21630				0.15263			1.0032
10	0.37893				0.22506				0.15908			1.0331
20	0.39302				0.23373				0.16544			1.0625
30	0.40705				0.24233				0.17172			1.0913
40 50	0.42102 0.43495		289.99		0.25088 0.25937				0.17794 0.18412			1.1196 1.1475
60	0.43493				0.23937				0.19025			1.1750
70	0.44863				0.27626				0.19635			1.2021
80	0.47651				0.27020				0.20242			1.2289
90	0.49032				0.29303				0.20847			1.2554
100	0.50410				0.30138				0.21449	314.19		1.2815
		18 MPa (20 MPa (T _{sat} 5 25.3	
Sat.	0.11049		242.90		0.09995				0.08398	227.17	247.32	0.9348
210	0.11189				0.09991							
0	0.11722				0.10481			0.9699	0.08617		251.98	
	0.12240		262.05		0.10955			1.0005		239.00	260.66	
20	0.12748		270.60		0.11418				0.09423		269.38	1.0134
30 40	0.13248				0.11874				0.09812		278.17 287.07	1.0429
50	0.13741 0.14230		297.00		0.12322 0.12766			1.1164	0.10193 0.10570	270.73		1.0718 1.1002
	0.14230		306.07		0.12700				0.10370		305.24	
	0.14713				0.13641				0.11310		314.53	
80	0.15673		324.65		0.14074			1.1984	0.11675			1.1826
90	0.16149			1.2340	0.14504					304.62	333.51	
	0.16622				0.14933				0.12398			
Sat.		.28 MPa (229.49			0.06368	0.32 MPa			0.051266		(T _{sat} 5 8.9	
0		230.46			0.00500	231.33	231.33	0.5505	0.031200	, 233.10	233.01	0.5271
10		238.29			0.06609	237.56	258.70	0.9545	0.051506	235.99	256.59	0.9306
20		246.15			0.06925				0.054213		265.88	0.9628
30		254.08			0.07231		276.66		0.056796		275.09	0.9937
40		262.12			0.07530				0.059292			1.0237
50		270.28			0.07823				0.061724		293.61	1.0529
60	0.09324	278.58	304.69	1.1143	0.08111	278.17	304.12	1.1022	0.064104	277.34	302.98	1.0814
70		287.01			0.08395				0.066443			1.1095
80		295.59			0.08675				0.068747			1.1370
90		304.30			0.08953				0.071023			1.1641
100		313.17			0.09229				0.073274		341.59	
110		322.18			0.09503				0.075504		351.55	1.2172
120		331.34			0.09775				0.077717			1.2432
130		340.65			0.10045				0.079913		371.89	
140	0.11818	350.11	383.20	1.3251	0.10314	349.88	382.89	1.3136	0.082096	349.42	382.26	1.2943

TAE	BLE A-13											
Supe	erheated re	efrigera	nt-134a	(Conclu	ded)							
<i>T</i> 8C	<i>v</i> m³/kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	<i>s</i> kJ/kg∙K	<i>v</i> m³/kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	<i>s</i> kJ/kg∙K	<i>v</i> m³/kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	<i>s</i> kJ/kg·K
	<i>P</i> 5 0.5	0 MPa (7	sat 5 15.7	18C)	P 5 0.6	60 MPa (T _{sat} 5 21.5	558C)	<i>P</i> 5 0.7	'0 MPa (T _{sat} 5 26.6	98C)
Sat. 20	0.042115	242.42	263.48	0.9384	0.034335				0.029392			
30 40 50	0.044338 0.046456 0.048499	259.27	282.50	1.0011	0.035984 0.037865 0.039659	257.88	280.60	0.9817	0.029966 0.031696 0.033322	256.41	278.59	0.9642
60	0.050485	276.27	301.51	1.0600	0.041389	275.17	300.00	1.0417	0.034875	274.03	298.44	1.0257
70	0.052427				0.043069 0.044710				0.036373 0.037829			
80 90	0.054331 0.056205				0.044710				0.037829			
100	0.058053				0.047900				0.040642			
110	0.059880				0.049458				0.042010			
120 130	0.061687 0.063479				0.050997 0.052519				0.043358 0.044688			
140	0.065256				0.054027				0.046004			
150	0.067021				0.055522				0.047306			
160	0.068775	368.34	402.73	1.3250	0.057006	367.83	402.03	1.3089	0.048597	367.31	401.32	1.2952
			_{sat} 5 31.3				(T _{sat} 5 35.				T _{sat} 5 39.3	
Sat.	0.025645				0.022686				0.020319			
40 50	0.027035 0.028547				0.023375 0.024809				0.020406 0.021796			
60	0.029973				0.026146				0.023068			
70	0.031340				0.027413				0.024261			
80 90	0.032659 0.033941				0.028630 0.029806				0.025398 0.026492			
100	0.035941				0.029800				0.020492			
110	0.036420	318.47	347.61	1.1531	0.032068				0.028584			
120	0.037625				0.033164				0.029592			
130 140	0.038813 0.039985				0.034241 0.035302				0.030581 0.031554			
150	0.039963				0.035302				0.031554			
160	0.042290				0.037384				0.033457			
170	0.043427				0.038408				0.034392			
180	0.044554	387.01	422.65	1.3328	0.039423	386.54	422.02	1.3221	0.035317	386.06	421.38	1.3125
			5 46.2				(<i>T</i> _{sat} 5 52.				_{sat} 5 57.8	
	0.016728 0.017201				0.014119	256.40	276.17	0.9107	0.012134	258.50	277.92	0.9080
60					0.015005	264.46	285.47	0.9389	0.012372	260.91	280.71	0.9164
70	0.019502	277.23	300.63	0.9939	0.016060	274.62	297.10	0.9733	0.013430	271.78	293.27	0.9536
80					0.017023				0.014362			
90	0.021506 0.022442				0.017923 0.018778				0.015215 0.016014			
110					0.019597				0.016773			
120					0.020388				0.017500			
	0.025086 0.025927				0.021155 0.021904				0.018201 0.018882			
	0.025927				0.021904				0.018882			
	0.027566	364.63	397.71	1.2450	0.023355				0.020194	362.40	394.71	1.2164
170					0.024061				0.020830			
180	0.029158	385.10	420.09	1.2955	0.024757	384.12	418./8	1.2808	0.021456	383.13	417.46	1.26//

2.44

0.403

0.177

0.392

0.157

0.362

0.335

0.1477

1.404

1.32

1.667

1.400

1.044

1.395

1.124

1.329

Ideal-gas specific heats of various common gases (a) At 808F C_{V} Gas constant, R Btu/lbm?R Btu/lbm?R Gas Formula Btu/lbm?R k Air 0.06855 0.240 0.171 1.400 Ar 0.04971 0.1253 0.0756 1.667 Argon **Butane** C_4H_{10} 0.03424 0.415 0.381 1.09 Carbon dioxide CO₂ 0.04513 0.203 0.158 1.285 Carbon monoxide CO 0.07090 0.249 0.178 1.399 Ethane C_2H_6 0.06616 0.427 0.361 1.183 Ethylene C_2H_4 0.07079 0.411 0.340 1.208 Helium He 0.4961 1.25 0.753 1.667

3.43

0.532

0.246

0.248

0.409

0.219

0.407

0.445

Source of Data: Gordon J. Van Wylen and Richard E. Sonntag, Fundamentals of Classical Thermodynamics, English/SI Version, 3rd ed. (New York: John Wiley & Sons, 1986), p. 687, Table A-8E.

0.9851

0.1238

0.09840

0.07090

0.01742

0.06206

0.04504

0.1102

TABLE A-2E

Hydrogen

Methane

Nitrogen

Octane

Oxygen

Propane

Steam

Neon

H₂ CH₄

Ne

 N_2

02

 C_8H_{18}

 C_3H_8

 H_2O

TABLE A-2E

Ideal-gas specific heats of various common gases (Continued) (b) At various temperatures

Temp., 8F	<i>c_p</i> Btu/lbm?F	<i>c</i> _v R Btu/lbm?R	k	<i>c_p</i> Btu/lbm?R	<i>c</i> _ν Btu/lbm?	R <i>k</i>	<i>c_p</i> Btu/lbm?R	<i>c_ν</i> Btu/lbm?R	k		
		Air		Carl	bon dioxide	e, <i>Ç0</i>	Car	bon monoxi	de, CO		
40	0.240	0.171	1.401	0.195	0.150	1.300	0.248	0.177	1.400		
100	0.240	0.172	1.400	0.205	0.160	1.283	0.249	0.178	1.399		
200	0.241	0.173	1.397	0.217	0.172	1.262	0.249	0.179	1.397		
300	0.243	0.174	1.394	0.229	0.184	1.246	0.251	0.180	1.394		
400	0.245	0.176	1.389	0.239	0.193	1.233	0.253	0.182	1.389		
500	0.248	0.179	1.383	0.247	0.202	1.223	0.256	0.185	1.384		
600	0.250	0.182	1.377	0.255	0.210	1.215	0.259	0.188	1.377		
700	0.254	0.185	1.371	0.262	0.217	1.208	0.262	0.191	1.371		
800	0.257	0.188	1.365	0.269	0.224	1.202	0.266	0.195	1.364		
900	0.259	0.191	1.358	0.275	0.230	1.197	0.269	0.198	1.357		
1000	0.263	0.195	1.353	0.280	0.235	1.192	0.273	0.202	1.351		
1500	0.276	0.208	1.330	0.298	0.253	1.178	0.287	0.216	1.328		
2000	0.286	0.217	1.312	0.312	0.267	1.169	0.297	0.226	1.314		
		Hydrogen, रू	1	1	Nitrogen, A	1		Oxygen, <u>Q</u>			
40	3.397	2.412	1.409	0.248	0.177	1.400	0.219	0.156	1.397		
100	3.426	2.441	1.404	0.248	0.178	1.399	0.220	0.158	1.394		
200	3.451	2.466	1.399	0.249	0.178	1.398	0.223	0.161	1.387		
300	3.461	2.476	1.398	0.250	0.179	1.396	0.226	0.164	1.378		
400	3.466	2.480	1.397	0.251	0.180	1.393	0.230	0.168	1.368		
500	3.469	2.484	1.397	0.254	0.183	1.388	0.235	0.173	1.360		
600	3.473	2.488	1.396	0.256	0.185	1.383	0.239	0.177	1.352		
700	3.477	2.492	1.395	0.260	0.189	1.377	0.242	0.181	1.344		
800	3.494	2.509	1.393	0.262	0.191	1.371	0.246	0.184	1.337		
900	3.502	2.519	1.392	0.265	0.194	1.364	0.249	0.187	1.331		
1000	3.513	2.528	1.390	0.269	0.198	1.359	0.252	0.190	1.326		
1500	3.618	2.633	1.374	0.283	0.212	1.334	0.263	0.201	1.309		
2000	3.758	2.773	1.355	0.293	0.222	1.319	0.270	0.208	1.298		

Note: The unit Btu/lbm?R is equivalent to Btu/lbm?8F.

Source of Data: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), p. 830, Table A-4. Originally published in Tables of Properties of Gases, NBS Circular 564, 1955.

TABLE A-4E

Saturated water—Temperature table

			<i>ic volume,</i> /lbm		<i>rnal energ</i> tu/lbm	gy,		<i>nthalpy,</i> Btu/lbm			E <i>ntropy,</i> tu/lbm?R	
Temp T8F	Sat. o., press., P _{sat} psia	Sat. liquid, <i>v_f</i>	Sat. vapor, <i>v_g</i>	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapoı, u _g	Sat. liquid, <i>h</i> _f	Evap., <i>h_{fg}</i>	Sat. vapor, <i>h_g</i>	Sat. liquid, s _f	Evap., <i>S_{fg}</i>	Sat. vapor, <i>S</i> _g
32.0 35 40 45 50	18 0.08871 0.09998 0.12173 0.14756 0.17812	0.01602 0.01602 0.01602 0.01602 0.01602	3299.9 2945.7 2443.6 2035.8 1703.1	3.004	1021.0 1019.0 1015.6 1012.2 1008.9	1021.0 1022.0 1023.7 1025.3 1026.9	3.004	1075.2 1073.5 1070.7 1067.8 1065.0	1075.2 1076.5 1078.7 1080.9 1083.1	0.00609 0.01620 0.02620	2.18672 2.17011 2.14271 2.11587 2.08956	2.1762 2.1589 2.1421
55 60 65 70 75	0.21413 0.25638 0.30578 0.36334 0.43016	0.01603 0.01604 0.01604 0.01605 0.01606	1430.4 1206.1 1020.8 867.18 739.27	23.07 28.08 33.08 38.08 43.07	1005.5 1002.1 998.76 995.39 992.02	1028.6 1030.2 1031.8 1033.5 1035.1	23.07 28.08 33.08 38.08 43.07	1062.2 1059.4 1056.5 1053.7 1050.9	1085.3 1087.4 1089.6 1091.8 1093.9	0.05554 0.06511 0.07459	2.06377 2.03847 2.01366 1.98931 1.96541	2.0940 2.0788 2.0639
80 85 90 95 100	0.50745 0.59659 0.69904 0.81643 0.95052	0.01607 0.01609 0.01610 0.01612 0.01613	632.41 542.80 467.40 403.74 349.83	48.06 53.06 58.05 63.04 68.03	988.65 985.28 981.90 978.52 975.14	1036.7 1038.3 1040.0 1041.6 1043.2	48.07 53.06 58.05 63.04 68.03	1048.0 1045.2 1042.4 1039.5 1036.7	1096.1 1098.3 1100.4 1102.6 1104.7	0.10248 0.11161 0.12065	1.94196 1.91892 1.89630 1.87408 1.85225	2.0214 2.0079 1.9947
110 120 130 140 150	1.2767 1.6951 2.2260 2.8931 3.7234	0.01617 0.01620 0.01625 0.01629 0.01634	264.96 202.94 157.09 122.81 96.929	78.01 88.00 97.99 107.98 117.98	968.36 961.56 954.73 947.87 940.98	1046.4 1049.6 1052.7 1055.9 1059.0	78.02 88.00 97.99 107.99 117.99	1031.0 1025.2 1019.4 1013.6 1007.8	1109.0 1113.2 1117.4 1121.6 1125.7	0.16466 0.18174 0.19855	1.80970 1.76856 1.72877 1.69024 1.65291	1.9332 1.9105 1.8888
160 170 180 190 200	4.7474 5.9999 7.5197 9.3497 11.538	0.01639 0.01645 0.01651 0.01657 0.01663	77.185 61.982 50.172 40.920 33.613	127.98 138.00 148.02 158.05 168.10	934.05 927.08 920.06 912.99 905.87	1062.0 1065.1 1068.1 1071.0 1074.0		989.85 983.76	1129.8 1133.9 1137.9 1141.8 1145.7	0.24739 0.26318 0.27874	1.61670 1.58155 1.54741 1.51421 1.48191	1.8289 1.8106 1.7930
210 212 220 230 240	14.136 14.709 17.201 20.795 24.985	0.01670 0.01671 0.01677 0.01684 0.01692	27.798 26.782 23.136 19.374 16.316	178.15 180.16 188.22 198.31 208.41	898.68 897.24 891.43 884.10 876.70	1076.8 1077.4 1079.6 1082.4 1085.1	178.20 180.21 188.28 198.37 208.49	970.09 965.02 958.59	1149.5 1150.3 1153.3 1157.0 1160.5	0.31222 0.32414 0.33887	1.45046 1.44427 1.41980 1.38989 1.36069	1.7565 1.7439 1.7288
250 260 270 280 290	29.844 35.447 41.877 49.222 57.573	0.01700 0.01708 0.01717 0.01726 0.01735	13.816 11.760 10.059 8.6439 7.4607	218.54 228.68 238.85 249.04 259.26	869.21 861.62 853.94 846.16 838.27	1087.7 1090.3 1092.8 1095.2 1097.5	218.63 228.79 238.98 249.20 259.45	938.65 931.76 924.74	1164.0 1167.4 1170.7 1173.9 1177.0	0.38198 0.39601 0.40989	1.33216 1.30425 1.27694 1.25018 1.22393	1.6862 1.6730 1.6601
300 310 320 330 340	67.028 77.691 89.667 103.07 118.02	0.01745 0.01755 0.01765 0.01776 0.01787	4.9144 4.3076	269.51 279.79 290.11 300.46 310.85	830.25 822.11 813.84 805.43 796.87	1099.8 1101.9 1104.0 1105.9 1107.7	269.73 280.05 290.40 300.80 311.24	902.75 895.09 887.25	1180.0 1182.8 1185.5 1188.1 1190.5	0.45065 0.46396 0.47716	1.19818 1.17289 1.14802 1.12355 1.09945	1.6235 1.6120 1.6007
360 370 380	134.63 153.03 173.36 195.74 220.33	0.01799 0.01811 0.01823 0.01836 0.01850	2.3361	321.29 331.76 342.29 352.87 363.50	788.16 779.28 770.23 761.00 751.58	1109.4 1111.0 1112.5 1113.9 1115.1	321.73 332.28 342.88 353.53 364.25	862.53 853.86 844.96	1192.7 1194.8 1196.7 1198.5 1200.1	0.51607 0.52884 0.54152	1.07570 1.05227 1.02914 1.00628 0.98366	1.5683 1.5580 1.5478

TABLE A-4E

Saturated water—Temperature table (Concluded)

	<i>Specific vo</i> ft³/lbm		<i>ternal en</i> Btu/lbm	27.		Enthalpy Btu/lbm		ı	Entropy Btu/lbm?	
Sat. Temp., press., 78F P _{sat} psia		at. Sat. apor, liquid, u _f	Evap., <i>u_{fg}</i>	Sat. vapor, u_g	Sat. liquid, h _f	Evap., <i>h_{fg}</i>	Sat. vapor, h_g	Sat. liquid, <i>S_f</i>	Evap., <i>S_{fg}</i>	Sat. vapor, <i>S_g</i>
400 247.26 410 276.69 420 308.76 430 343.64 440 381.49	0.01878 1.6 0.01894 1.5 0.01910 1.3	8639 374.19 6706 384.94 5006 395.76 3505 406.65 2178 417.61	741.97 732.14 722.08 711.80 701.26	1116.2 1117.1 1117.8 1118.4 1118.9	375.04 385.90 396.84 407.86 418.97	826.39 816.71 806.74 796.46 785.87	1201.4 1202.6 1203.6 1204.3 1204.8	0.56663 0.57907 0.59145 0.60377 0.61603	0.96127 0.93908 0.91707 0.89522 0.87349	1.5279 1.5182 1.5085 1.4990 1.4895
450 422.47 460 466.75 470 514.52 480 565.96 490 621.24	0.01962 0.9 0.01981 0.9 0.02001 0.8	0999 428.66 99510 439.79 90158 451.01 81794 462.34 74296 473.77	690.47 679.39 668.02 656.34 644.32	1119.1 1119.2 1119.0 1118.7 1118.1	430.18 441.48 452.90 464.43 476.09	774.94 763.65 751.98 739.91 727.40	1205.1 1205.1 1204.9 1204.3 1203.5	0.62826 0.64044 0.65260 0.66474 0.67686	0.85187 0.83033 0.80885 0.78739 0.76594	1.4708 1.4615 1.4521
500 680.56 510 744.11 520 812.11 530 884.74 540 962.24	0.02067 0.6 0.02092 0.5 0.02118 0.5	67558 485.32 61489 496.99 56009 508.80 51051 520.76 46553 532.88	631.94 619.17 605.99 592.35 578.23	1117.3 1116.2 1114.8 1113.1 1111.1	487.89 499.84 511.94 524.23 536.70	714.44 700.99 687.01 672.47 657.31	1202.3 1200.8 1199.0 1196.7 1194.0	0.68899 0.70112 0.71327 0.72546 0.73770		1.4049
550 1044.8 560 1132.7 570 1226.2 580 1325.5 590 1430.8	0.02207 0.3 0.02242 0.3 0.02279 0.3	42465 545.18 38740 557.68 35339 570.40 32225 583.37 29367 596.61	563.58 548.33 532.45 515.84 498.43	1108.8 1106.0 1102.8 1099.2 1095.0	549.39 562.31 575.49 588.95 602.75	641.47 624.91 607.55 589.29 570.04	1190.9 1187.2 1183.0 1178.2 1172.8	0.75000 0.76238 0.77486 0.78748 0.80026	0.59003 0.56679	1.3853 1.3752 1.3649 1.3543 1.3433
600 1542.5 610 1660.9 620 1786.2 630 1918.9 640 2059.3	0.02411 0.2 0.02464 0.2 0.02524 0.3	26737 610.18 24309 624.11 22061 638.47 19972 653.35 18019 668.86	480.10 460.73 440.14 418.12 394.36	1090.3 1084.8 1078.6 1071.5 1063.2	616.92 631.52 646.62 662.32 678.74	549.67 528.03 504.92 480.07 453.14	1166.6 1159.5 1151.5 1142.4 1131.9	0.81323 0.82645 0.83998 0.85389 0.86828	0.51871 0.49363 0.46765 0.44056 0.41206	1.3201
650 2207.8 660 2364.9 670 2531.2 680 2707.3 690 2894.1	0.02767 0.1 0.02884 0.1 0.03035 0.1	16184 685.16 14444 702.48 12774 721.23 11134 742.11 09451 766.81	368.44 339.74 307.22 269.00 220.77	1053.6 1042.2 1028.5 1011.1 987.6	696.08 714.59 734.74 757.32 784.24	423.65 390.84 353.54 309.57 253.96	1119.7 1105.4 1088.3 1066.9 1038.2	0.88332 0.89922 0.91636 0.93541 0.95797	0.27163	1.2651 1.2483 1.2293 1.2070 1.1789
700 3093.0 705.10 3200.1		07482 801.75 04975 866.61	146.50 0	948.3 866.6	822.76 896.07	168.32 0	991.1 896.1	0.99023 1.05257		1.1354 1.0526

(

Source of Data: Tables A-4E through A-8E are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturate Phase 1701. The North Ref. Data, 27, 1983.

TABLE A-5E

Saturated	water_	Praccura	table
Saturated	water—	riessule	lable

	Specific volume, ft³/lbm Sat. Sat. Sat.			ernal ene Btu/lbm	ergy,		<i>nthalpy,</i> Btu/lbm			<i>ntropy,</i> u/lbm?R		
Press., P psia	Sat. temp., <i>T</i> _{sat} 8F	Sat. liquid, <i>v_f</i>	Sat. vapor, <i>v_g</i>	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, <i>h</i> _f	Evap., <i>h_{fg}</i>	Sat. vapor, <i>h_g</i>	Sat. liquid, <i>s_f</i>	Evap., <i>S_{fg}</i>	Sat. vapor, <i>s_g</i>
1 2 3 4 5	101.69 126.02 141.41 152.91 162.18	0.01614 0.01623 0.01630 0.01636 0.01641	333.49 173.71 118.70 90.629 73.525	69.72 94.02 109.39 120.89 130.17	973.99 957.45 946.90 938.97 932.53	1043.7 1051.5 1056.3 1059.9 1062.7	94.02 109.40	1035.7 1021.7 1012.8 1006.0 1000.5	1105.4 1115.8 1122.2 1126.9 1130.7	0.17499 0.20090 0.21985	1.84495 1.74444 1.68489 1.64225 1.60894	1.9194 1.8858 1.8621
6 8 10 14.696 15	170.00 182.81 193.16 211.95 212.99	0.01645 0.01652 0.01659 0.01671 0.01672	61.982 47.347 38.425 26.805 26.297	138.00 150.83 161.22 180.12 181.16	927.08 918.08 910.75 897.27 896.52	1065.1 1068.9 1072.0 1077.4 1077.7	138.02 150.86 161.25 180.16 181.21	995.88 988.15 981.82 970.12 969.47	1133.9 1139.0 1143.1 1150.3 1150.7	0.26757 0.28362 0.31215	1.58155 1.53800 1.50391 1.44441 1.44441	1.8056 1.7875 1.7566
20 25 30 35 40	227.92 240.03 250.30 259.25 267.22	0.01683 0.01692 0.01700 0.01708 0.01715	20.093 16.307 13.749 11.901 10.501	196.21 208.45 218.84 227.92 236.02	885.63 876.67 868.98 862.19 856.09	1081.8 1085.1 1087.8 1090.1 1092.1	196.27 208.52 218.93 228.03 236.14	959.93 952.03 945.21 939.16 933.69	1156.2 1160.6 1164.1 1167.2 1169.8	0.35347 0.36821 0.38093	1.39606 1.36060 1.33132 1.30632 1.28448	1.7141 1.6995 1.6872
45 50 55 60 65	274.41 280.99 287.05 292.69 297.95	0.01721 0.01727 0.01732 0.01738 0.01743	9.4028 8.5175 7.7882 7.1766 6.6560	243.34 250.05 256.25 262.01 267.41	850.52 845.39 840.61 836.13 831.90	1093.9 1095.4 1096.9 1098.1 1099.3	243.49 250.21 256.42 262.20 267.62	928.68 924.03 919.70 915.61 911.75	1172.2 1174.2 1176.1 1177.8 1179.4	0.41125 0.41958 0.42728	1.26506 1.24756 1.23162 1.21697 1.20341	1.6588 1.6512 1.6442
70 75 80 85 90	302.91 307.59 312.02 316.24 320.26	0.01748 0.01752 0.01757 0.01761 0.01765	6.2075 5.8167 5.4733 5.1689 4.8972	272.50 277.31 281.87 286.22 290.38	827.90 824.09 820.45 816.97 813.62	1100.4 1101.4 1102.3 1103.2 1104.0	272.72 277.55 282.13 286.50 290.67	908.08 904.58 901.22 898.00 894.89	1180.8 1182.1 1183.4 1184.5 1185.6	0.44741 0.45335 0.45897	1.19078 1.17895 1.16783 1.15732 1.14737	1.6264 1.6212 1.6163
95 100 110 120 130	324.11 327.81 334.77 341.25 347.32	0.01770 0.01774 0.01781 0.01789 0.01796	4.6532 4.4327 4.0410 3.7289 3.4557	294.36 298.19 305.41 312.16 318.48	810.40 807.29 801.37 795.79 790.51	1104.8 1105.5 1106.8 1107.9 1109.0	294.67 298.51 305.78 312.55 318.92	891.89 888.99 883.44 878.20 873.21	1186.6 1187.5 1189.2 1190.8 1192.1	0.47427 0.48341 0.49187	1.13791 1.12888 1.11201 1.09646 1.08204	1.6032 1.5954 1.5883
140 150 160 170 180	353.03 358.42 363.54 368.41 373.07	0.01802 0.01809 0.01815 0.01821 0.01827	3.2202 3.0150 2.8347 2.6749 2.5322	324.45 330.11 335.49 340.62 345.53	785.49 780.69 776.10 771.68 767.42	1109.9 1110.8 1111.6 1112.3 1113.0	324.92 330.61 336.02 341.19 346.14	868.45 863.88 859.49 855.25 851.16	1193.4 1194.5 1195.5 1196.4 1197.3	0.51405 0.52061 0.52682	1.06858 1.05595 1.04405 1.03279 1.02210	1.5700 1.5647 1.5596
190 200 250 300 350	377.52 381.80 400.97 417.35 431.74	0.01833 0.01839 0.01865 0.01890 0.01912	2.4040 2.2882 1.8440 1.5435 1.3263	350.24 354.78 375.23 392.89 408.55	. —	1113.6 1114.1 1116.3 1117.7 1118.5	350.89 355.46 376.09 393.94 409.79	847.19 843.33 825.47 809.41 794.65	1198.1 1198.8 1201.6 1203.3 1204.4	0.54379 0.56784 0.58818	1.01191 1.00219 0.95912 0.92289 0.89143	1.5460 1.5270 1.5111
400 450 500 550 600	444.62 456.31 467.04 476.97 486.24	0.01934 0.01955 0.01975 0.01995 0.02014	1.1617 1.0324 0.92819 0.84228 0.77020	458.90	696.31 683.52 671.42 659.91 648.88	1119.0 1119.2 1119.1 1118.8 1118.3	424.13 437.30 449.51 460.93 471.70	780.87 767.86 755.48 743.60 732.15	1205.0 1205.2 1205.0 1204.5 1203.9	0.63595 0.64900 0.66107	0.86350 0.83828 0.81521 0.79388 0.77400	1.4742 1.4642 1.4550
700 800	503.13 518.27	0.02051 0.02087	0.65589 0.56920		627.98 608.30	1116.9 1115.0	491.62 509.83	710.29 689.48	1201.9 1199.3		0.73771 0.70502	

TABLE A-5E

Saturated water—Pressure table (Concluded)

		Specific volume, ft³/lbm		Internal energy, Btu/lbm				<i>nthalpy,</i> Btu/lbm		Entropy, Btu/lbm?R		
Press., P psia	Sat. temp., <i>T</i> _{sat} 8F	Sat. liquid, <i>v_f</i>	Sat. vapor, v_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, <i>s_f</i>	Evap., S _{fg}	Sat. vapor, s_g
900 1000 1200	532.02 544.65 567.26	0.02124 0.02159 0.02232	0.50107 0.44604 0.36241	523.19 538.58 566.89	589.54 571.49 536.87	1112.7 1110.1 1103.8	526.73 542.57 571.85	669.46 650.03 612.39	1196.2 1192.6 1184.2	0.72793 0.74341 0.77143	0.67505 0.64722 0.59632	1.3906
1400 1600 1800 2000 2500	587.14 604.93 621.07 635.85 668.17	0.02307 0.02386 0.02470 0.02563 0.02860	0.30161 0.25516 0.21831 0.18815 0.13076	592.79 616.99 640.03 662.33 717.67	503.50 470.69 437.86 404.46 313.53	1096.3 1087.7 1077.9 1066.8 1031.2	598.76 624.06 648.26 671.82 730.90	575.66 539.18 502.35 464.60 360.79	1174.4 1163.2 1150.6 1136.4 1091.7	0.79658 0.81972 0.84144 0.86224 0.91311	0.54991 0.50645 0.46482 0.42409 0.31988	1.3262 1.3063 1.2863
3000 3200.1	695.41 705.10	0.03433 0.04975	0.08460 0.04975	783.39 866.61	186.41 0	969.8 866.6	802.45 896.07	214.32 0	1016.8 896.1	0.97321 1.05257	0.18554 0	1.1587 1.0526

TAB	LE A-6E											
Supe	rheated w	ater										
<i>T</i> 8F	<i>v</i> ft³/lbm	<i>u</i> Btu/lbm		s Btu/lbm	<i>v</i> l f tt³/lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	<i>s</i> ı Btu/lbm?F	<i>v</i> lft³/lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	<i>s</i> n Btu/ lbm?
	<i>P</i> 5	1.0 psia	(101.698	F)*	Р	5 5.0 psi	a (162.1	88F)	F	'5 10 psi	a (193.16	68F)
Sat!	333.49		1105.4				1130.7			1072.0		
200	392.53		1150.1				1148.5			1074.5		
240	416.44		1168.3				1167.1			1089.1		
280	440.33		1186.5				1185.6			1103.4		
320	464.20		1204.8				1204.1			1117.6		
360	488.07		1223.3				1222.6			1131.9		
400	511.92				102.25					1146.2		
440	535.77		1260.4 1 1288.6 1		107.03					1160.5 1182.2		
500	571.54				114.21							
600 700	631.14 690.73		1336.2 1 1384.6 1		126.15 138.09					1219.0 1256.5		
800	750.31		1433.9		150.03					1294.8		
1000	869.47		1535.1		173.86					1374.1		
1200			1640.0		197.70					1457.0		
	1107.8		1748.7		221.54				110.762			
1.00												
Cat			(212.998 1150.7		20.093		a (227.9)		10.501	25 40 psi		
	26.297 27.429		1163.9				1162.3		10.501	1092.1	1169.8	1.0700
	29.085		1183.2		21.739				10.713	10073	1176.6	1 6858
	30.722		1202.2		22.980				11.363		1197.1	
	32.348		1221.1				1220.2		11.999		1216.9	
	33.965		1239.9				1239.3		12.625		1236.5	
	35.576		1258.8		26.644				13.244		1256.0	
	37.986		1287.3		28.458				14.165		1285.0	
	41.988		1335.3		31.467				15.686		1333.6	
700	45.981		1383.9		34.467				17.197		1382.6	
800	49.967		1433.3		37.461	1294.5	1433.1	2.0247	18.702		1432.3	
1000	57.930	1374.0	1534.8	2.1312	43.438	1373.8	1534.6	2.0994	21.700	1373.4	1534.1	2.0227
1200	65.885	1456.9	1639.8	2.1986	49.407	1456.8	1639.7	2.1668	24.691	1456.5	1639.3	2.0902
1400	73.836	1543.6	1748.5	2.2604	55.373	1543.5	1748.4	2.2287	27.678	1543.3	1748.1	2.1522
1600	81.784	1634.0	1861.0	2.3178	61.335	1633.9	1860.9	2.2861	30.662	1633.7	1860.7	2.2096
	<i>P</i> !	5 60 psia	(292.698	F)	Р	5 80 psi	a (312.02	28F)	P	5 100 ps	ia (327.8	318F)
Sat.	7.1766		1177.8				1183.4		4.4327	1105.5	1187.5	1.6032
320	7.4863	1109.6	1192.7	1.6636	5.5440	1105.9	1187.9	1.6271				
360			1213.5				1209.9			1119.8		
400			1233.7				1230.8			1136.4		
440		1156.1	1253.6				1251.2			1152.4		
500			1283.1				1281.2			1175.9		
	10.4256		1332.2				1330.8		6.2167		1329.4	
	11.4401		1381.6				1380.5			1253.0		
	12.4484	1293.3	1431.5				1430.6		7.4457		1429.8	
	14.4543	1373.0	1533.5		10.8313				8.6575		1532.4	
	16.4525	1456.2	1638.9		12.3331				9.8615		1638.1	
	18.4464	1543.0	1747.8		13.8306				11.0612			
	20.438	1633.5	1860.5		15.3257				12.2584		1860.0	
	22.428		1976.6		16.8192				13.4541			
2000	24.417	1825.2	2096.3	2.2094	18.3117	1825.0	2096.1	2.23/0	14.6487	1824.9	2096.0	2.2130

^{*}The temperature in parentheses is the saturation temperature at the specified pressure.

 $^{^{\}dagger}$ Properties of saturated vapor at the specified pressure.

TAB	LE A-6E											
Supe	rheated w	ater (<i>Co</i>	ncluded	1)								
<i>T</i> 8F	ν ft³/lbm	<i>u</i> Btu/lbm		<i>s</i> Btu/lbmî	<i>v</i> ¹Æt³/lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	<i>s</i> Btu/lbm?l	<i>ν</i> Rft³/lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	s Btu/ lbm?R
	<i>P</i> 5	120 psia	(341.25	8F)	Р	5 140 ps	ia (353.0	38F)	Р	5 160 psi	a (363.5	48F)
Sat. 360	3.7289 3.8446		1190.8 1202.1			1109.9 1113.4			2.8347	1111.6	1195.5	1.5647
400 450 500 550	4.0799 4.3613 4.6340 4.9010	1154.5 1174.4 1193.9	1224.6 1251.4 1277.3 1302.8	1.6594 1.6872 1.7131	3.7147 3.9525 4.1845	1131.5 1152.6 1172.9 1192.7	1248.9 1275.3 1301.1	1.6403 1.6686 1.6948	3.0076 3.2293 3.4412 3.6469	1150.7 1171.4 1191.4	1218.0 1246.3 1273.2 1299.4	1.6234 1.6522 1.6788
600 700 800 1000	5.1642 5.6829 6.1950 7.2083	1252.2	1328.0 1378.4 1429.0 1531.8	1.7829 1.8247	4.8604 5.3017	1212.3 1251.4 1290.8 1371.3	1377.3 1428.1	1.7652 1.8072	3.8484 4.2434 4.6316 5.3968	1250.6 1290.2	1325.2 1376.3 1427.3 1530.7	1.7498 1.7920
1200 1400 1600 1800	8.2137 9.2149 10.2135 11.2106	1542.3 1633.0	1637.7 1746.9 1859.8 1976.1	1.9684 2.0305 2.0881	7.0367 7.8961 8.7529	1455.0 1542.1 1632.8 1727.0	1637.3 1746.6 1859.5	1.9512 2.0134 2.0711	6.1540 6.9070 7.6574 8.4063	1454.7 1541.8 1632.6	1636.9 1746.3 1859.3 1975.7	1.9363 1.9986 2.0563
	12.2067	1824.8	2095.8			1824.6			9.1542		2095.5	
	<i>P</i> 5	180 psia	(373.07	8F)	Р	5 200 ps	ia (381.8	08F)	Р	5 225 psi	a (391.8	08F)
Sat. 400 450 500 550 600 700	2.5322 2.6490 2.8514 3.0433 3.2286 3.4097 3.7635	1126.3 1148.7 1169.8 1190.2 1210.2 1249.8	1243.7 1271.2 1297.7 1323.8 1375.2	1.5752 1.6082 1.6376 1.6646 1.6897 1.7361	2.5488 2.7247 2.8939 3.0586 3.3796	1114.1 1123.5 1146.7 1168.2 1188.9 1209.1 1249.0	1210.9 1241.0 1269.0 1296.0 1322.3 1374.1	1.5602 1.5943 1.6243 1.6516 1.6771 1.7238	2.0423 2.0728 2.2457 2.4059 2.5590 2.7075 2.9956	1115.3 1119.7 1144.1 1166.2 1187.2 1207.7 1248.0	1206.0 1237.6 1266.3 1293.8 1320.5 1372.7	1.5427 1.5783 1.6091 1.6370 1.6628 1.7099
800 900 1000 1200 1400 1600 1800 2000	4.1104 4.4531 4.7929 5.4674 6.1377 6.8054 7.4716 8.1367	1329.7 1370.5 1454.3	1426.5 1478.0 1530.1 1636.5 1746.0 1859.1 1975.6 2095.4	1.8179 1.8549 1.9231 1.9855 2.0432 2.0971	4.0031 4.3099 4.9182 5.5222 6.1238	1288.9 1329.2 1370.1 1454.0 1541.4 1632.2 1726.5 1824.3	1477.3 1529.6 1636.1 1745.7 1858.8 1975.4	1.8059 1.8430 1.9113 1.9737 2.0315 2.0855	3.2765 3.5530 3.8268 4.3689 4.9068 5.4422 5.9760 6.5087	1288.1 1328.5 1369.5 1453.6 1541.1 1632.0 1726.4 1824.1	1476.5 1528.9 1635.6 1745.4 1858.6 1975.2	1.7925 1.8296 1.8981 1.9606 2.0184 2.0724
	<i>P</i> 5	250 psia	(400.97	8F)	Р	5 275 ps	ia (409.4	58F)		<i>P</i> 5 300	O psia (4	17.358F)
500 550 600 650 700 800 900 1000 1200 1400 1600 1800	1.8440 2.0027 2.1506 2.2910 2.4264 2.5586 2.6883 2.9429 3.1930 3.4403 3.9295 4.4144 4.8969 5.3777 5.8575	1116.3 1141.3 1164.1 1185.6 1206.3 1226.8 1247.0 1287.3 1327.9 1369.0 1453.3 1540.8 1631.7 1726.2 1823.9	1201.6 1234.0 1263.6 1291.5 1318.6 1345.1 1371.4 1423.5 1475.6 1528.2 1635.0 1745.0 1858.3 1974.9 2094.9	1.5636 1.5953 1.6237 1.6499 1.6743 1.6974 1.7406 1.7804 1.8177 1.8863 1.9488 2.0066 2.0607	1.8034 1.9415 2.0715 2.1964 2.3179 2.4369 2.6699 2.8984 3.1241 3.5700 4.0116 4.4507 4.8882	1117.0 1138.5 1162.0 1183.9 1204.9 1225.6 1246.0 1286.5 1327.3 1368.5 1452.9 1540.5 1631.5 1726.0 1823.8	1230.3 1260.8 1289.3 1316.7 1343.5 1370.0 1422.4 1474.8 1527.4 1634.5 1744.6 1858.0 1974.7	1.5499 1.5825 1.6115 1.6380 1.6627 1.6860 1.7294 1.7694 1.8068 1.8755 1.9381 1.9960 2.0501	1.5435 1.6369 1.7670 1.8885 2.0046 2.1172 2.2273 2.4424 2.6529 2.8605 3.2704 3.6759 4.0789 4.4803 4.8807	1135.6 1159.8 1182.1 1203.5 1224.4 1244.9 1285.7 1326.6 1367.9 1452.5 1540.2 1631.3 1725.8	1203.3 1226.4 1257.9 1287.0 1314.8 1341.9 1368.6 1421.3 1473.9 1526.7 1634.0 1744.2 1857.7 1974.5 2094.6	1.5369 1.5706 1.6001 1.6270 1.6520 1.6755 1.7192 1.7593 1.7968 1.8657 1.9284 1.9863 2.0404

TAB	LE A-6E											
Supe	rheated w	ater (Co	ntinuea	1)								
T	<i>V</i>	u	h	5	<i>V</i>	u	h	5	V	и	h	5
8F	ft ³ /lbm	Btu/lbm	Btu/lbm	i Btu/lbm:	/ltt³/lbm	Btu/lbm	Btu/lbm	Btu/lbm?l	Rft³/lbm	Btu/Ibm	Btu/lbm	Btu/ lbm?R
	<i>P</i> 5	350 psia	(431.74	l8F)	<i>P</i> !	5 400 ps	ia (444.6	528F)	Р	5 450 ps	ia (456.3	18F)
Sat.	1.3263	1118.5	1204.4	1.4973	1.1617	1119.0	1205.0	1.4852	1.0324	1119.2	1205.2	1.4742
450	1.3739	1129.3				1122.5	1209.4	1.4901				
	1.4921	1155.2					1245.6		1.1233	1145.4	1238.9	1.5103
	1.6004	1178.6					1277.3		1.2152		1272.3	
	1.7030	1200.6					1306.9		1.3001	1194.6		
	1.8018	1221.9					1335.3		1.3807	1216.9		
	1.8979	1242.8					1362.9		1.4584	1238.5		
	2.0848	1284.1					1417.0		1.6080	1280.8		
	2.2671	1325.3					1470.4		1.7526		1468.6	
	2.4464	1366.9					1523.9		1.8942		1522.4	
	2.7996	1451.7					1632.0		2.1718		1631.0	
	3.1484	1539.6					1742.7		2.4450	1538.4		
	3.4947	1630.8					1856.5		2.7157	1629.8		
	3.8394	1725.4					1973.6		2.9847	1724.6		
2000	4.1830	1823.3	2094.2	2.0742	3.6597	1023.0	2093.9	2.0594	3.2527	1822.6	2093.5	2.0402
		500 psia	(467.04	l8F)	<i>P</i> !	5 600 ps	ia (486.2	248F)		5 700 ps		
Sat.	0.92815	1119.1			0.77020				0.65589	1116.9	1201.9	1.4305
	0.99304	1140.1			0.79526							
	1.07974		1267.0		0.87542				0.72799			
	1.15876	1191.4			0.94605				0.79332			
	1.23312	1214.3	1328.4		1.01133				0.85242			
	1.30440	1236.4	1357.0		1.07316				0.90769			
	1.44097		1412.5		1.19038				1.01125			
	1.57252	1321.4	1466.9		1.30230				1.10921			
	1.70094		1521.0		1.41097				1.20381			
	1.82726	1406.2			1.51749				1.29621			
	1.95211	1449.4	1630.0		1.62252				1.38709			
	2.1988	1537.8	1741.2		1.82957				1.56580			
	2.4430	1629.4	1855.4		2.0340				1.74192			
	2.6856 2.9271	1724.2 1822.3	1972.7 2093.1		2.2369 2.4387		2092.4		1.91643 2.08987			
2000	2.9271	1022.5	2093.1	2.0343	2.4307	1021.7	2092.4	2.0141	2.00907	1021.0	2091.7	1.9909
		800 psia					sia (544.			5 1250 ps		
Sat.	0.56920	1115.0			0.44604				0.34549	1102.0	1181.9	1.3623
	0.61586	1139.4			0.45375							
	0.67799				0.51431				0.37894			
	0.73279	1197.6			0.56411				0.42703			
	0.78330	1222.4			0.60844				0.46735			
	0.83102	1246.0			0.64944				0.50344			
	0.87678	1268.9			0.68821				0.53687			
	0.96434	1313.3			0.76136				0.59876			
	1.04841	1357.0			0.83078				0.65656			
	1.13024	1400.7	1568.0		0.89783				0.71184			
	1.21051	1444.6	1623.8		0.96327				0.76545			
	1.36797	1534.2			1.09101				0.86944			
	1.52283	1626.5			1.21610				0.97072			
	1.67606	1721.9			1.33956				1.07036			
2000	1.82823	1820.4	2091.0	1.9819	1.46194	1819.1	2089.6	1.9568	1.16892	181/.5	2087.9	1.9315

TABI	LE A-6E											
Supe	rheated w	ater (<i>Co</i>	ncludea	<i>t</i>)								
<i>T</i> 8F	<i>v</i> ft³/lbm	<i>u</i> Btu/lbm		<i>s</i> Btu/lbmí	<i>v</i> ¹Æt³/lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	<i>s</i> ı Btu/lbm?F	<i>v</i> Rft³/lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	s Btu/ lbm?R
	<i>P</i> 5	1500 psi	a (596.26	58F)	<i>P</i> 5	1750 ps	sia (617.	178F)	P 5	2000 ps	sia (635.	858F)
	0.27695 0.28189	1092.1 1097.2	1169.0 1175.4		0.22681	1080.5	1153.9	1.3112	0.18815	1066.8	1136.4	1.2863
700 750 800 850 900 1000 1100	0.33310 0.37198 0.40535 0.43550 0.46356 0.49015 0.54031	1147.2 1183.6 1214.4 1242.2 1268.2 1293.1 1340.9 1387.3	1286.9 1326.9 1363.1 1396.9 1429.2 1490.8 1550.5	1.4433 1.4771 1.5064 1.5328 1.5569 1.6007 1.6402	0.26292 0.30252 0.33455 0.36266 0.38835 0.41238 0.45719	1166.8 1201.5 1231.7 1259.3 1285.4 1334.9 1382.4	1264.7 1309.8 1349.1 1385.1 1419.0 1482.9 1544.1	1.4108 1.4489 1.4807 1.5088 1.5341 1.5796 1.6201	0.20586 0.24894 0.28074 0.30763 0.33169 0.35390 0.39479	1147.6 1187.4 1220.5 1250.0 1277.5 1328.7 1377.5	1239.8 1291.3 1334.3 1372.8 1408.5 1474.9 1537.6	1.3783 1.4218 1.4567 1.4867 1.5134 1.5606 1.6021
1400 1600 1800	0.63355 0.72172 0.80714 0.89090 0.97358	1433.3 1525.7 1619.8 1716.4 1815.9	1726.0 1843.8 1963.7	1.7432 1.8033 1.8589	0.53932 0.61621 0.69031 0.76273 0.83406	1522.6 1617.4 1714.5	1722.1 1840.9 1961.5	1.7245 1.7852 1.8410	0.46864 0.53708 0.60269 0.66660 0.72942	1519.5 1615.0 1712.5	1718.3 1838.0 1959.2	1.7081 1.7693 1.8255
	<i>P</i> 5	<i>2</i> 500 psi	a (668.17	78F)	<i>P</i> 5	3000 ps	sia (695.	418F)		P 5 35	00 psia	
650 700 750 800 850 900 950 1000 1100 1200 1400 1600 1800	0.13076 0.16849 0.20327 0.22949 0.25174 0.27165 0.29001 0.30726 0.33949 0.36966 0.42631 0.48004 0.53205 0.58295	1031.2 1098.4 1154.9 1195.9 1230.1 1260.7 1289.1 1316.1 1367.3 1416.6 1513.3 1610.1 1708.6	1091.7 1176.3 1249.0 1302.0 1346.6 1386.4 1423.3 1458.2 1524.4 1587.6 1710.5	1.2330 1.3072 1.3686 1.4116 1.4463 1.4761 1.5028 1.5271 1.5710 1.6103 1.6802 1.7424 1.7991	0.08460 0.09838 0.14840 0.17601 0.19771 0.21640 0.23321 0.24876 0.27732 0.30367 0.35249 0.39830 0.44237 0.48532	969.8 1005.3 1114.1 1167.5 1208.2 1242.8 1273.9 1302.8 1356.8 1408.0 1507.0 1605.3 1704.7	1016.8 1059.9 1196.5 1265.3 1317.9 1362.9 1403.3 1440.9 1510.8 1576.6 1702.7 1826.4 1950.3	1.1587 1.1960 1.3118 1.3676 1.4086 1.4423 1.4716 1.4978 1.5441 1.5850 1.6567 1.7199 1.7773	0.02492 0.03065 0.10460 0.13639 0.15847 0.17659 0.19245 0.20687 0.23289 0.25654 0.29978 0.33994 0.37833 0.41561	663.7 760.0 1057.6 1134.3 1183.8 1223.4 1257.8 1289.0 1346.1 1399.3 1500.7 1600.4 1700.8	679.9 779.9 1125.4 1222.6 1286.5 1337.8 1382.4 1423.0 1496.9 1565.4 1694.8 1820.5 1945.8	1.3224 1.3721 1.4106 1.4428 1.4711 1.5201 1.5627 1.6364 1.7006 1.7586
		<i>P</i> 5 400	0 psia			<i>P</i> 5 50	00 psia			<i>P</i> 5 60	00 psia	
700 750 800 850 900 950 1000 1100 1200 1300 1400 1600 1800	0.02448 0.02871 0.06370 0.10520 0.12848 0.14647 0.16176 0.17538 0.19957 0.22121 0.24128 0.26028 0.29620 0.33033 0.36335	657.9 742.3 962.1 1094.2 1156.7 1202.5 1240.7 1274.6 1335.1 1390.3 1443.0 1494.3 1595.5 1696.8 1799.7	763.6 1009.2 1172.1 1251.8 1310.9 1360.5 1404.4 1482.8 1554.1 1621.6 1687.0 1814.7 1941.4	1.2734 1.3355 1.3799 1.4157 1.4463 1.4983 1.5426 1.5821 1.6182 1.6835 1.7422	0.02379 0.02678 0.03373 0.05937 0.08551 0.10390 0.11863 0.13128 0.15298 0.17185 0.18902 0.20508 0.23505 0.26320 0.29023	721.8 821.8 986.9 1092.4 1155.9 1203.9 1244.0 1312.2 1372.1 1427.8 1481.4 1585.6 1689.0	746.6 853.0 1041.8 1171.5 1252.1 1313.6 1365.5 1453.8 1531.1 1602.7 1671.1 1803.1 1932.5	1.1581 1.2593 1.3198 1.3643 1.4004 1.4590 1.5070 1.5490 1.5868 1.6542 1.7142	0.02325 0.02564 0.02981 0.03949 0.05815 0.07584 0.09010 0.10208 0.12211 0.13911 0.15434 0.16841 0.19438 0.21853 0.24155	1018.6 1103.5 1163.7 1211.4 1288.4 1353.4 1412.5 1468.4 1575.7 1681.1	736.5 821.8 941.0 1083.1 1187.7 1263.7 1324.7 1424.0 1507.8 1583.8 1655.4 1791.5 1923.7	1.2603 1.3153 1.3578 1.4237 1.4758 1.5203 1.5598 1.6294 1.6907

(

TABLE A-11E

Saturated	refrigerar	t-13/1a	Temperature	table
Saturated	remuerar	IL-134a—	remberature	table

		Specific ft ³ /II	· <i>volume,</i> bm	, Internal energy, Btu/lbm			<i>Enthalpy,</i> Btu/lbm		<i>Entropy,</i> Btu/lbm?R			
	Sat. ., press.,	Sat. liquid,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,
<i>T</i> 8F	$P_{\rm sat}$ psia	V_f	V_g	U_f	U_{fg}	u_g	h_f	$h_{\!fg}$	h_g	S_f	S_{fg}	S_g
240	7.432	0.01130	5.7769	20.016	89.174	89.16	0.000	97.104	97.10	0.00000	0.23136	0.23136
235	8.581	0.01136	5.0489	1.483	88.360	89.84	1.501	96.360	97.86	0.00355	0.22689	0.23044
230	9.869	0.01143	4.4286	2.987	87.542	90.53	3.008	95.608	98.62	0.00707	0.22250	0.22957
225	11.306	0.01149	3.8980	4.497	86.717	91.21	4.522	94.849	99.37	0.01057	0.21819	0.22870
220	12.906	0.01156	3.4424	6.014	85.887	91.90	6.041	94.080	100.12	0.01404	0.21396	0.22800
215	14.680	0.01163	3.0495	7.536	85.050	92.59	7.568	93.303	100.87	0.01748	0.20981	0.22729
210	16.642	0.01170	2.7097	9.065	84.206	93.27	9.102	92.515	101.62	0.02090	0.20572	0.22662
25	18.806	0.01178	2.4146	10.601	83.355	93.96	10.642	91.717	102.36	0.02430	0.20171	0.22600
0	21.185	0.01185	2.1575	12.143	82.496	94.64	12.190	90.907	103.10	0.02767	0.19775	0.22542
5	23.793	0.01193	1.9328	13.693	81.628	95.32	13.745	90.085	103.83	0.03103	0.19385	0.22488
10	26.646	0.01200	1.7358	15.249	80.751	96.00	15.308	89.251	104.56	0.03436	0.19001	0.2243
15	29.759	0.01208	1.5625	16.813	79.865	96.68	16.879	88.403	105.28	0.03767	0.18623	0.2239
20	33.147	0.01216	1.4097	18.384	78.969	97.35	18.459	87.541	106.00	0.04097	0.18249	0.2234
25	36.826	0.01225	1.2746	19.963	78.062	98.03	20.047	86.665	106.71	0.04424	0.17880	0.2230
30	40.813	0.01233	1.1548	21.550	77.144	98.69	21.643	85.772	107.42	0.04750	0.17515	0.2226
35	45.124	0.01242	1.0482	23.145	76.214	99.36	23.249	84.863	108.11	0.05074	0.17154	0.2222
40	49.776	0.01251	0.95323			100.02	24.864	83.937	108.80	0.05397	0.16797	0.2219
45	54.787	0.01261	0.86837	26.361	74.317	100.68	26.489	82.993	109.48	0.05718	0.16443	0.22162
50	60.175	0.01270	0.79236	27.983	73.347	101.33	28.124	82.029	110.15	0.06038	0.16093	0.2213
55	65.957	0.01280	0.72414	29.614	72.363	101.98	29.770	81.046	110.82	0.06357	0.15746	0.2210
60	72.152	0.01290	0.66277	31.254	71.364	102.62	31.426	80.041	111.47	0.06674	0.15401	0.2207
65	78.780	0.01301	0.60744	32.904	70.348	103.25	33.094	79.014	112.11	0.06991	0.15058	0.2204
70	85.858	0.01311	0.55746	34.565	69.315	103.88	34.773	77.964	112.74	0.07306	0.14718	0.2202
75	93.408	0.01323	0.51222	36.237	68.264	104.50	36.465	76.889	113.35	0.07621	0.14379	0.22000
80	101.45	0.01334	0.47119	37.920	67.193	105.11	38.170	75.788	113.96	0.07934	0.14042	0.21976
85	110.00	0.01346	0.43391	39.614	66.102	105.72	39.888	74.660	114.55	0.08247	0.13706	0.2195
90	119.08	0.01359	0.39997	41.321	64.989	106.31	41.620	73.503	115.12	0.08560	0.13371	0.21933
95	128.72	0.01372	0.36902	43.041	63.852	106.89	43.367	72.315	115.68	0.08872	0.13036	0.2190
100	138.93	0.01386	0.34074	44.774	62.690	107.46	45.130	71.094	116.22	0.09183	0.12702	0.21885
105	149.73	0.01400	0.31486	46.521	61.501	108.02	46.909	69.838	116.75	0.09495	0.12367	0.21862
110	161.16	0.01415	0.29113	48.284	60.284	108.57	48.706	68.544	117.25	0.09806	0.12031	0.21838
115	173.23	0.01430	0.26933	50.063	59.035	109.10	50.521	67.210	117.73	0.10118	0.11694	0.21813
120	185.96		0.24928					65.833	118.19	0.10430	0.11356	0.2178
130	213.53	0.01482	0.21373	55.505	55.075	110.58	56.091	62.935	119.03	0.11056	0.10672	0.21728
140	244.06	0.01522	0.18331	59.237	52.221	111.46	59.925	59.813	119.74	0.11686	0.09973	0.21660
150	277.79	0.01567	0.15707	63.070	49.151	112.22	63.875	56.419	120.29	0.12324	0.09253	0.21577
	314.94		0.13423					52.690	120.66	0.12971	0.08502	
170	355.80		0.11413					48.509	120.75	0.13637	0.07703	0.21340
	400.66		0.09619					43.721	120.49	0.14327	0.06834	0.2116
190	449.90	0.01861	0.07982	80.093	32.929	113.02	81.642	38.025	119.67	0.15057	0.05852	0.20909
200	504.00	0.02010	0.06441	85.297	26.629	111.93	87.172	30.761	117.93	0.15872	0.04662	0.2053
210	563.76	0.02309	0.04722	91.993	16.498	108.49	94.402	19.015	113.42	0.16924	0.02839	0.19763

Source of Data: Tables A-11E through A-13E are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner-Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and pressures up to 70 MPa," J. Phys. Chem, Ref. Data, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at -40°C (and 240°F).

TABLE A-12E

Saturated refrigerant-134a—Pressure table

			<i>volume</i> lbm	, Int	ernal er Btu/lbm			Enthalp Btu/lbm			Entropy Btu/lbm?	
Sa	at.	Sat.	Sat.	Sat.		Sat.	Sat.		Sat.	Sat.		Sat.
Press., to		liquid,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,
P psia 7	Ţ _{at} 8F	V_f	V_g	U_f	U_{fg}	u_g	h_f	h_{fg}	h_g	S_f	S_{fg}	S_g
5 25	3.09	0.01113	8.3740	23.914	91.283	87.37	23.903	99.021	95.12	20.00944	0.24353	0.23409
	29.52	0.01143	4.3740	3.132	87.463	90.59	3.153	95.536	98.69	0.00741	0.22208	0.22949
15 21	4.15	0.01164	2.9882	7.796	84.907	92.70	7.828	93.170	101.00	0.01806	0.20911	0.22717
	22.43	0.01181	2.2781	11.393	82.915	94.31	11.436	91.302	102.74	0.02603	0.19967	0.22570
	7.17		1.8442	14.367	81.249	95.62	14.422	89.725	104.15	0.03247	0.19218	0.22465
	15.37	0.01209	1.5506	16.929	79.799	96.73	16.996	88.340	105.34	0.03792	0.18595	0.22386
	22.57	0.01221		19.195	78.504	97.70	19.274	87.093	106.37	0.04265	0.18058	0.22324
	29.01		1.1773	21.236	77.326	98.56	21.327	85.950	107.28	0.04686	0.17586	0.22272
	34.86		1.0510	23.101	76.240	99.34	23.205 24.939	84.889	108.09	0.05065	0.17164	0.22229
	40.23 45.20	0.01252 0.01261	0.94909 0.86509	24.824 26.428	75.228 74.277	100.05 100.70	24.939	83.894 82.954	108.83 109.51	0.05412 0.05732	0.16780 0.16429	0.22192 0.22160
	49.84	0.01201	0.79462	27.932	73.378	100.70	28.073	82.060	110.13	0.05732	0.16429	0.22100
	54.20	0.01278	0.73462	29.351	72.523	101.87	29.505	81.205	110.13	0.06306	0.15801	0.22107
	58.30	0.01270	0.68290	30.696	71.705	102.40	30.862	80.385	111.25	0.06567	0.15518	0.22084
	62.19	0.01295	0.63784	31.975	70.921	102.90	32.155	79.594	111.75	0.06813	0.15251	0.22064
	65.89	0.01303	0.59822	33.198	70.167	103.36	33.391	78.830	112.22	0.07047	0.14998	0.22045
85 6	69.41	0.01310	0.56309	34.369	69.438	103.81	34.575	78.089	112.66	0.07269	0.14758	0.22027
	72.78	0.01318	0.53173	35.494	68.733	104.23	35.713	77.369	113.08	0.07481	0.14529	0.22011
	76.02	0.01325	0.50356	36.577	68.048	104.63	36.810	76.668	113.48	0.07684	0.14311	0.21995
	79.12	0.01332	0.47811	37.623	67.383	105.01	37.870	75.984	113.85	0.07879	0.14101	0.21981
	35.00	0.01346	0.43390	39.614	66.102	105.72	39.888	74.660	114.55	0.08247	0.13706	0.21953
	90.49	0.01360	0.39681	41.489	64.878	106.37	41.791	73.388	115.18	0.08590	0.13338	0.21928
	95.64 00.51	0.01374 0.01387	0.36523 0.33800	43.263 44.951	63.704 62.570	106.97 107.52	43.594 45.311	72.159 70.967	115.75 116.28	0.08912 0.09215	0.12993 0.12668	0.21905 0.21883
	05.12	0.01367	0.33600	46.563	61.473	107.52	46.952	69.807	116.26	0.09213	0.12000	0.21861
	09.50	0.01400	0.29339	48.109	60.406	108.51	48.527	68.674	117.20	0.09302	0.12339	0.21840
	13.69	0.01416	0.27487	49.595	59.366	108.96	50.043	67.564	117.61	0.10036	0.11783	0.21819
	17.69	0.01439	0.25833	51.027	58.349	109.38	51.507	66.475	117.98	0.10286	0.11513	0.21799
190 12	21.53	0.01452	0.24346	52.412	57.353	109.76	52.922	65.402	118.32	0.10526	0.11252	0.21778
200 12	25.22	0.01464	0.23001	53.753	56.375	110.13	54.295	64.345	118.64	0.10757	0.11000	0.21757
220 13	32.21	0.01490	0.20662	56.321	54.462	110.78	56.927	62.267	119.19	0.11195	0.10519	0.21714
	38.73	0.01516	0.18694	58.757	52.596	111.35	59.430	60.225	119.65	0.11606	0.10063	0.21669
	44.85	0.01543	0.17012	61.082	50.763	111.84	61.824	58.205	120.03	0.11994	0.09627	0.21622
	50.62	0.01570	0.15555	63.313	48.951	112.26	64.126	56.197	120.32	0.12364	0.09207	0.21571
	56.09	0.01598	0.14279	65.460	47.154	112.61	66.347	54.195	120.54	0.12717	0.08800	0.21517
	68.64	0.01672	0.11673	70.567	42.632	113.20	71.651	49.109	120.76	0.13545	0.07815	0.21360
	79.86 90.02	0.01758 0.01860	0.09643 0.07979	75.401 80.112	37.957 32.909	113.36 113.02	76.702 81.662	43.794 38.003	120.50 119.67	0.14317 0.15060	0.06847 0.05849	0.21164 0.20909
	90.02	0.01800	0.07979	84.900	27.096	113.02	86.748	31.292	119.07	0.15000	0.03649	0.20558
300 13	JJ. Z J	0.01997	0.00555	04.500	27.030	112.00	30.740	31.232	110.04	0.15010	0.04740	0.20550

	TABLE A-13E												
ı	Supe	rheated	refriger	ant-134	а								
	<i>T</i> 8F	ν ft³/lbm	<i>u</i> Btu/lbm	<i>h</i> n Btu/lbm	<i>s</i> n Btu/lbm?R	ν ft³/lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	<i>s</i> n Btu/lbm?R	<i>v</i> ft³/lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	<i>s</i> Btu/lbm?F
		<i>P</i> 5 :	10 psia (ζ _{at} 5 229.	528F)	<i>P</i> 5	15 psia (ζ _{at} 5 214.	158F)	<i>P</i> 5	20 psia (ζ _{at} 5 22.4	138F)
	Sat.	4.3740	90.59		0.22949	2.9882	92.70	101.00	0.22717	2.2781	94.31	102.74	0.22570
	220 0	4.4856 4.7135			0.23351 0.24175	3.1001	05.08	103.69	0.23312	2.2922	04.73	103 21	0.22673
	20	4.7133			0.24173	3.2551		103.09	0.23312	2.2922			0.23506
	40				0.25763		101.96		0.24924				0.24313
	60				0.26533		105.51		0.25702				0.25099
	80				0.27290	3.7064	109.14	119.42	0.26465				0.25868
	100	5.8165	113.02	123.78	0.28035	3.8540	112.85	123.54	0.27214	2.8726	112.67	123.30	0.26623
	120				0.28768		116.64		0.27952				0.27364
	140				0.29492		120.52		0.28678				0.28094
	160				0.30205		124.49		0.29395				0.28814
	180				0.30910		128.53		0.30102				0.29523
	200 220				0.31606 0.32293		132.67 136.89		0.30800 0.31489				0.30223 0.30914
	220	7.1000	130.99	130.14	0.32293	4.7239	130.69	130.00	0.31469				
		<i>P</i> 5	30 psia (T _{sat} 5 15	378F)	<i>P</i> 5	40 psia	(T _{at} 5 29.0	018F)	<i>P</i> 5	50 psia (ζ _{at} 5 40.2	238F)
	Sat.	1.5506			0.22386	1.1773	98.56	107.28	0.22272	0.9491	100.05	108.83	0.22192
	20	1.5691			0.22583								
	40				0.23416			109.59					
	60				0.24220		104.35		0.23567				0.23033
	80				0.25003		108.12		0.24365				0.23849
	100 120				0.25769 0.26519		111.94 115.83		0.25142 0.25902				0.24639 0.25408
	140				0.20319		119.79		0.26646				0.25400
	160				0.27981		123.82		0.27377				0.26898
	180				0.28695		127.92		0.28096				0.27622
	200				0.29399		132.10		0.28805				0.28335
	220				0.30094		136.37		0.29503				0.29037
	240	2.4141	140.90	154.30	0.30780	1.8007	140.70	154.03	0.30192	1.4326	140.51	153.76	0.29730
	260				0.31458		145.12		0.30873		144.94		
	280	2.5598	149.79	164.00	0.32128	1.9114	149.62	163.77	0.31545	1.5223	149.45	163.53	0.31087
		<i>P</i> 5	60 psia (T _{sat} 5 49.	848F)	<i>P</i> 5	70 psia (T _{sat} 5 58.3	308F)	<i>P</i> 5 80 psia (<i>T</i> _{sat} 5 65.898F)			398F)
	Sat.	0.7946	101.31	110.13	0.22132	0.6829	102.40	111.25	0.22084	0.5982	103.36	112.22	0.22045
	60				0.22572		102.74		0.22157				
	80	0.8636	107.24	116.82	0.23408	0.7271	106.77	116.18	0.23018	0.6243	106.27	115.51	0.22663
	100	0.9072	111.17	121.24	0.24212			120.69	0.23838				0.23501
	120				0.24992		114.79		0.24630				0.24305
	140				0.25753		118.86		0.25399				0.25084
	160				0.26497		122.98		0.26151				0.25843
	180				0.27227		127.16		0.26886				0.26585
	200				0.27945		131.40 135.72		0.27608 0.28318				0.27312
	220 240				0.28651 0.29346		140.11		0.28318				0.28026 0.28728
	260				0.29340		144.57		0.29706				0.29420
	280				0.30709			163.06					0.30102
	300				0.31378		153.71		0.31057				0.30775
	320				0.32039		158.40		0.31720				0.31440

TABLE A-13E								
Sup	perheated refrigerant-134a (<i>C</i>	Concluded)						
T	v u h s	V	u h	5	V	и	h	S
8F	ft³/lbm Btu/lbm Btu/lbm Bt	u/lbm? <mark>R ft³/lbm</mark>	Btu/lbm Btu/l	bm Btu/lbm?R	ft³/lbm	Btu/lbm	Btu/lbm	Btu/lbm?F
	<i>P</i> 5 90 psia (Z_{at} 5 72.788 F) P5 10	00 psia (<i>Ţ</i> _{at} 5	79.128F)	<i>P</i> 5 1	.20 psia ((Z at 5 90.4	198F)
Sat	0.53173 104.23 113.08 0.2	2011 0.47811	105.01 113.	85 0.21981	0.39681	106.37	115.18	0.21928
80			105.19 114.					
10			109.46 118.		0.41013			
120			113.66 123.		0.43692			
140			117.86 128.		0.46190			
160 180			122.09 133. 126.36 137.		0.48563 0.50844			0.24853
200			130.68 142.		0.53054			0.26370
220			135.05 147.		0.55206			0.27102
240			139.50 152.		0.57312			0.27819
260			144.00 157.		0.59379			0.28523
280			148.58 162.		0.61413			0.29216
300	0 0.85633 153.39 167.65 0.3	0524 0.76749	153.22 167.	42 0.30297	0.63420	152.89	166.97	0.29898
320	0.88195 158.09 172.78 0.3	1191 0.79079	157.94 172.	57 0.30966	0.65402	157.62	172.15	0.30571
	P 5 140 psia (T _{sat} 5 100.518	F) <i>P</i> 5 16	0 psia (<i>T</i> _{sat} 5 1	L09.508F)	P 5 18	30 psia (T _{sat} 5 117.	698F)
Sat	. 0.33800 107.52 116.28 0.2	1883 0.29339	108.51 117.	20 0.21840	0.25833	109.38	117.98	0.21799
120	0.36243 111.97 121.36 0.2	2775 0.30578	111.01 120.	07 0.22339	0.26083	109.95	118.64	0.21912
140	0.38551 116.42 126.40 0.2		115.63 125.		0.28231	114.78	124.18	0.22852
160			120.14 130.		0.30154			0.23720
180			124.63 135.		0.31936			0.24542
200			129.13 140.		0.33619			0.25332
220			133.65 145.		0.35228			0.26095
240			138.21 150.		0.36779			
260 280			142.82 155. 147.48 160.		0.38284 0.39751			0.27564
300			152.21 166.		0.39731			0.28273
320			156.99 171.		0.42594			0.29658
340			161.84 176.		0.43980			0.30333
360			166.75 181.		0.45347			0.30998
	<i>P</i> 5 200 psia (<i>T</i> _{sat} 5 125.228	F) <i>P</i> 5 30	0 psia (<i>T</i> _{sat} 5 1	L56.098F)	<i>P</i> 5 40	00 psia (1	T _{sat} 5 179.	868F)
Sat	0.23001 110.13 118.64 0.2	1757 0.14279	112.61 120.	54 0.21517	0.09643	113.36	120.50	0.21164
140								
160	0.26412 118.67 128.44 0.2	3386 0.14656	113.82 121.	96 0.21747				
180	0.28115 123.36 133.77 0.2	4231 0.16355	119.53 128.	61 0.22803	0.09658	113.42	120.56	0.21174
200	0.29704 128.01 139.00 0.2	5037 0.17776	124.79 134.	66 0.23734	0.11440	120.53	128.99	0.22473
220			129.86 140.		0.12746			
240			134.83 146.		0.13853			
260			139.77 151.		0.14844			
280			144.71 157.		0.15756			
300			149.66 162.		0.16611			
320 340			154.63 168. 159.65 173.		0.17423 0.18201			
360			159.65 173. 164.71 179.		0.18201			
300	0.40552 100.10 101.19 0.3	0.20139	104./1 1/9.	23 0.29/00	0.10931	103.10	177.19	0.29037

NOMENCLATURE

а	Acceleration, m/s ²		
a		MEP	Mean effective pressure, kPa
A	Specific Helmholtz function, $u - Ts$, kJ/kg Area, m ²	mf	Mass fraction
A		n	Polytropic exponent
AF	Helmholtz function, $U - TS$, kJ Air–fuel ratio	N	Number of moles, kmol
		P	Pressure, kPa
C	Speed of sound, m/s	$P_{\rm cr}$	Critical pressure, kPa
C	Specific heat, kJ/kg·K	P_{i}	Partial pressure, kPa
c_p	Constant pressure specific heat, kJ/kg·K	P_m	Mixture pressure, kPa
c_{v}	Constant volume specific heat, kJ/kg·K	P_r	Relative pressure
COP	Coefficient of performance	P_R	Reduced pressure
COPHE		P_{ν}	Vapor pressure, kPa
COPR	Coefficient of performance of a refrigerator	P_0	Surroundings pressure, kPa
d, D	Diameter, m	pe	Specific potential energy, gz, kJ/kg
e	Specific total energy, kJ/kg	PE	Total potential energy, mgz, kJ
EED	Total energy, kJ	q	Heat transfer per unit mass, kJ/kg
EER	Energy efficiency rating	Q Q	Total heat transfer, kJ
F	Force, N		Heat transfer rate, kW
FA	Fuel-air ratio	Q_H	Heat transfer with high-temperature body, kJ
g	Gravitational acceleration, m/s ²	Q_L	Heat transfer with low-temperature body, kJ
8	Specific Gibbs function, $h - Ts$, kJ/kg	r	Compression ratio
G	Total Gibbs function, $H - TS$, kJ	R	Gas constant, kJ/kg·K
h	Convection heat transfer coefficient,	r_c	Cutoff ratio
*	W/m²-K	$r_p \\ R_u$	Pressure ratio
h	Specific enthalpy, $u + Pv$, kJ/kg	R_u	Universal gas constant, kJ/kmol·K
H	Total enthalpy, $U + PV$, kJ	S	Specific entropy, kJ/kg·K
$\frac{h_C}{\bar{\tau}}$	Enthalpy of combustion, kJ/kmol fuel	S	Total entropy, kJ/K
h_f	Enthalpy of formation, kJ/kmol	Sgen	Specific entropy generation, kJ/kg·K
h_R	Enthalpy of reaction, kJ/kmol	Sgen	Total entropy generation, kJ/K
HHV	Higher heating value, kJ/kg fuel	SG	Specific gravity or relative density
i	Specific irreversibility, kJ/kg	t	Time, s
I	Electric current, A	T	Temperature, °C or K
1	Total irreversibility, kJ	T	Torque, N·m
k	Specific heat ratio, c_p/c_v	$T_{\rm cr}$	Critical temperature, K
k_s	Spring constant	$T_{ m db}$	Dry-bulb temperature, °C
k_{t}	Thermal conductivity	$T_{\rm dp}$	Dew-point temperature, °C
K_p	Equilibrium constant	T_f T_H	Bulk fluid temperature, °C
ke	Specific kinetic energy, $V^2/2$, kJ/kg	T_H	Temperature of high-temperature body, K
KE	Total kinetic energy, $mV^2/2$, kJ	T_L	Temperature of low-temperature body, K
LHV	Lower heating value, kJ/kg fuel	T_R	Reduced temperature
m	Mass, kg	$T_{ m wb}$	Wet-bulb temperature, °C
m	Mass flow rate, kg/s	T_0	Surroundings temperature, °C or K
M	Molar mass, kg/kmol	и	Specific internal energy, kJ/kg
Ma	Mach number	U	Total internal energy, kJ

V	Specific volume, m ³ /kg	φ	Specific closed system exergy, kJ/kg
V _{cr}	Critical specific volume, m ³ /kg	Φ	Total closed system exergy, kJ
V_r	Relative specific volume	ψ	Stream exergy, kJ/kg
V_R	Pseudoreduced specific volume	γ_s	Specific weight, N/m ³
V	Total volume, m ³	ω	Specific or absolute humidity,
V.	Volume flow rate, m ³ /s		kg H ₂ O/kg dry air
V	Voltage, V		
V	Velocity, m/s	Subsc	ripts
$V_{\rm avg}$	Average velocity	а	Air
w	Work per unit mass, kJ/kg	abs	Absolute
W	Total work, kJ	act	Actual
Ŵ	Power, kW	atm	Atmospheric
$W_{\rm in}$	Work input, kJ	avg	Average
$W_{\rm out}$	Work output, kJ	c	Combustion; cross-section
$W_{\rm rev}$	Reversible work, kJ	cr	Critical point
x	Quality	CV	Control volume
x	Specific exergy, kJ/kg	e	Exit conditions
X	Total exergy, kJ	f	Saturated liquid
x_{dest}	Specific exergy destruction, kJ/kg	fg	Difference in property between saturated
X_{dest}	Total exergy destruction, kJ	70	liquid and saturated vapor
$X_{ m dest} \ \dot{X}_{ m dest}$	Rate of total exergy destruction, kW	g	Saturated vapor
у	Mole fraction	gen	Generation
z	Elevation, m	H	High temperature (as in T_H and Q_H)
Z	Compressibility factor	i	Inlet conditions
Z_h	Enthalpy departure factor	i	ith component
Z_s	Entropy departure factor	L	Low temperature (as in T_L and Q_L)
		m	Mixture
Greek	Letters	r	Relative
α	Absorptivity	R	Reduced
α	Isothermal compressibility, 1/kPa	rev	Reversible
β	Volume expansivity, 1/K	S	Isentropic
Δ	Finite change in quantity	sat	Saturated
ε	Emissivity	surr	Surroundings
€	Effectiveness	sys	System
	Thermal efficiency	ν	Water vapor
$\eta_{ ext{th}}$	Second-law efficiency	0	Dead state
$\eta_{ m II} \ heta$	Total energy of a flowing fluid, kJ/kg	1	Initial or inlet state
	Joule-Thomson coefficient, K/kPa	2	Final or exit state
$\mu_{ m JT}$	Chemical potential, kJ/kg		
μ	Stoichiometric coefficient	Supe	rscripts
ν		· (ove	er dot) Quantity per unit time
ρ	Density, kg/m ³	The second secon	er bar) Quantity per unit mole
σ	Stefan-Boltzmann constant	° (cir	
σ_n	Normal stress, N/m ²		terisk) Quantity at 1 atm pressure
σ_s	Surface tension, N/m		
φ	Relative humidity		

DIMENSION	METRIC	METRIC/ENGLISH
Acceleration	$1 \text{ m/s}^2 = 100 \text{ cm/s}^2$	1 m/s ² = 3.2808 ft/s ² 1 ft/s ² = 0.3048* m/s ²
Area	$1 \text{ m}^2 = 10^4 \text{ cm}^2 = 10^6 \text{ mm}^2 = 10^{-6} \text{ km}^2$	$\begin{array}{c} 1 \text{ m}^2 = 1550 \text{ in}^2 = 10.764 \text{ ft}^2 \\ 1 \text{ ft}^2 = 144 \text{ in}^2 = 0.09290304* \text{ m}^2 \end{array}$
Density	$1 \text{ g/cm}^3 = 1 \text{ kg/L} = 1000 \text{ kg/m}^3$	$ \begin{array}{c} 1 \text{ g/cm}^3 = 62.428 \text{ lbm/ft}^3 = 0.036127 \text{ lbm/in}^3 \\ 1 \text{ lbm/in}^3 = 1728 \text{ lbm/ft}^3 \\ 1 \text{ kg/m}^3 = 0.062428 \text{ lbm/ft}^3 \\ \end{array} $
Energy, heat, work, internal energy, enthalpy	$\begin{array}{l} 1 \text{ kJ} = 1000 \text{ J} = 1000 \text{ N} \cdot \text{m} = 1 \text{ kPa} \cdot \text{m}^3 \\ 1 \text{ kJ/kg} = 1000 \text{ m}^2/\text{s}^2 \\ 1 \text{ kWh} = 3600 \text{ kJ} \\ 1 \text{ cal}^\dagger = 4.184 \text{ J} \\ 1 \text{ IT cal}^\dagger = 4.1868 \text{ J} \\ 1 \text{ Cal}^\dagger = 4.1868 \text{ kJ} \end{array}$	$ \begin{array}{l} 1 \text{ kJ} = 0.94782 \text{ Btu} \\ 1 \text{ Btu} = 1.055056 \text{ kJ} \\ = 5.40395 \text{ psia·ft}^3 = 778.169 \text{ lbf·ft} \\ 1 \text{ Btu/lbm} = 25,037 \text{ ft}^2/\text{s}^2 = 2.326* \text{ kJ/kg} \\ 1 \text{ kJ/kg} = 0.430 \text{ Btu/lbm} \\ 1 \text{ kWh} = 3412.14 \text{ Btu} \\ 1 \text{ therm} = 10^5 \text{ Btu} = 1.055 \times 10^5 \text{ kJ} \\ \text{ (natural gas)} \end{array} $
Force	$1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2 = 10^5 \text{ dyne}$ 1 kgf = 9.80665 N	1 N = 0.22481 lbf 1 lbf = 32.174 lbm·ft/s ² = 4.44822 N
Heat flux	1 W/cm ² = 10 ⁴ W/m ²	1 W/m ² = 0.3171 Btu/h·ft ²
Heat transfer coefficient	$1 \text{ W/m}^2 \cdot ^{\circ}\text{C} = 1 \text{ W/m}^2 \cdot \text{K}$	1 W/m ² ·°C = 0.17612 Btu/h·ft ² ·°F
Length	$1 \text{ m} = 100 \text{ cm} = 1000 \text{ mm} = 10^6 \mu\text{m}$ $1 \text{ km} = 1000 \text{ m}$	1 m = 39.370 in = 3.2808 ft = 1.0926 yd 1 ft = 12 in = 0.3048* m 1 mile = 5280 ft = 1.6093 km 1 in = 2.54* cm
Mass	1 kg = 1000 g 1 metric ton = 1000 kg	1 kg = 2.2046226 lbm 1 lbm = 0.45359237* kg 1 ounce = 28.3495 g 1 slug = 32.174 lbm = 14.5939 kg 1 short ton = 2000 lbm = 907.1847 kg
Power, heat transfer rate	1 W = 1 J/s 1 kW = 1000 W = 1.341 hp 1 hp‡ = 745.7 W	1 kW = 3412.14 Btu/h = 737.56 lbf·ft/s 1 hp = 550 lbf·ft/s = 0.7068 Btu/s = 42.41 Btu/min = 2544.5 Btu/h = 0.74570 kW 1 boiler hp = 33,475 Btu/h 1 Btu/h = 1.055056 kJ/h 1 ton of refrigeration = 200 Btu/min
Pressure .	$1 \text{ Pa} = 1 \text{ N/m}^2$ $1 \text{ kPa} = 10^3 \text{ Pa} = 10^{-3} \text{ MPa}$ 1 atm = 101.325 kPa = 1.01325 bars = 760 mm Hg at 0°C $= 1.03323 \text{ kgf/cm}^2$ 1 mm Hg = 0.1333 kPa	$1 \text{ Pa} = 1.4504 \times 10^{-4} \text{ psia}$ $= 0.020886 \text{ lbf/ft}^2$ $1 \text{ psi} = 144 \text{ lbf/ft}^2 = 6.894757 \text{ kPa}$ $1 \text{ atm} = 14.696 \text{ psia} = 29.92 \text{ in Hg at } 30^{\circ}\text{F}$ $1 \text{ in Hg} = 3.387 \text{ kPa}$
pecific heat	1 kJ/kg·°C = 1 kJ/kg·K = 1 J/g·°C	1 Btu/lbm·°F = 4.1868 kJ/kg·°C 1 Btu/lbmol·R = 4.1868 kJ/kmol·K 1 kJ/kg·°C = 0.23885 Btu/lbm·°F = 0.23885 Btu/lbm·R

^{*}Exact conversion factor between metric and English units.

Calorie is originally defined as the amount of heat needed to raise the temperature of 1 g of water by 1°C, but it varies with temperature. The international steam table (IT) calorie (generally preferred by engineers) is exactly 4.1868 J by definition and corresponds to the specific heat of water at 15°C. The the thermochemical calorie (generally preferred by physicists) is exactly 4.184 J by definition and corresponds to the specific heat of water at 15°C. The The difference between the two is about 0.06 percent, which is negligible. The capitalized Calorie used by nutritionists is actually a kilocalorie (1000 IT)

DIMENSION	METRIC	METRIC/ENGLISH
Specific volume	$1 \text{ m}^3/\text{kg} = 1000 \text{ L/kg} = 1000 \text{ cm}^3/\text{g}$	$1 \text{ m}^3/\text{kg} = 16.02 \text{ ft}^3/\text{lbm}$ $1 \text{ ft}^3/\text{lbm} = 0.062428 \text{ m}^3/\text{kg}$
Temperature	$T(K) = \pi^{\circ}C) + 273.15$ $\Delta \pi(K) = \Delta \pi^{\circ}C)$	$\pi(R) = \pi^{\circ}F) + 459.67 = 1.8 T(K)$ $\pi^{\circ}F) = 1.8 \pi^{\circ}C) + 32$ $\Delta\pi^{\circ}F) = \Delta\pi(R) = 1.8 \Delta\pi(K)$
Thermal conductivity	1 W/m⋅°C = 1 W/m⋅K	1 W/m⋅°C = 0.57782 Btu/h⋅ft⋅°F
Velocity	1 m/s = 3.60 km/h	1 m/s = 3.2808 ft/s = 2.237 mi/h 1 mi/h = 1.46667 ft/s 1 mi/h = 1.6093 km/h
Volume	$1 \text{ m}^3 = 1000 \text{ L} = 10^6 \text{ cm}^3 \text{ (cc)}$	$1 \text{ m}^3 = 6.1024 \times 10^4 \text{ in}^3 = 35.315 \text{ ft}^3$ $= 264.17 \text{ gal (U.S.)}$ $1 \text{ U.S. gallon} = 231 \text{ in}^3 = 3.7854 \text{ L}$ $1 \text{ fl ounce} = 29.5735 \text{ cm}^3 = 0.0295735 \text{ L}$ $1 \text{ U.S. gallon} = 128 \text{ fl ounces}$
Volume flow rate	$1 \text{ m}^3/\text{s} = 60,000 \text{ L/min} = 10^6 \text{ cm}^3/\text{s}$	$1 \text{ m}^3/\text{s} = 15,850 \text{ gal/min (gpm)} = 35.315 \text{ ft}^3/\text{s}$ = 2118.9 ft ³ /min (cfm)

[‡]Mechanical horsepower. The electrical horsepower is taken to be exactly 746 W.

Some Physical Constants	
Universal gas constant	$R_u = 8.31447 \text{ kJ/kmol·K}$ = $8.31447 \text{ kPa·m}^3/\text{kmol·K}$ = $0.0831447 \text{ bar·m}^3/\text{kmol·K}$ = $82.05 \text{ L·atm/kmol·K}$ = $1.9858 \text{ Btu/lbmol·R}$ = $1545.37 \text{ ft·lbf/lbmol·R}$ = $10.73 \text{ psia·ft}^3/\text{lbmol·R}$
Standard acceleration of gravity	$g = 9.80665 \text{ m/s}^2$ = 32.174 ft/s ²
Standard atmospheric pressure	1 atm = 101.325 kPa = 1.01325 bar = 14.696 psia = 760 mm Hg (0°C) = 29.9213 in Hg (32°F) = 10.3323 m H ₂ O (4°C)
Stefan-Boltzmann constant	$\sigma = 5.6704 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$ = 0.1714 × 10 ⁻⁸ Btu/h·ft ² ·R ⁴
Boltzmann's constant	$k = 1.380650 \times 10^{-23} \text{ J/K}$
Speed of light in vacuum	$c_o = 2.9979 \times 10^8 \text{ m/s}$ = $9.836 \times 10^8 \text{ ft/s}$
Speed of sound in dry air at 0°C and 1 atm	c = 331.36 m/s = 1089 ft/s
Heat of fusion of water at 1 atm	$h_{if} = 333.7 \text{ kJ/kg}$ = 143.5 Btu/lbm
Enthalpy of vaporization of water at 1 atm	$h_{fg} = 2256.5 \text{ kJ/kg}$ = 970.12 Btu/lbm