

Different Approaches

nchaki@gmail.com

1

Outline

- Ricart-Agrawala algorithm
- Token based algorithm for Ring topology
- Raymond's algorithm
- Limitations of Raymond's algorithm
- Quorum based algorithm

30 May 2024

Outline

- Ricart-Agrawala algorithm
- Token based algorithm for Ring topology
- Raymond's algorithm
- Limitations of Raymond's algorithm
- Quorum based algorithm

30 May 2024

2

Basic Ideas

- The requesting process has to get the approval of all processes to enter its CS
- A processes currently in its own CS, cannot give approval to another candidate
- What would be the response of another candidate process to a request

30 May 202

,

Major Steps

- Process P_m that wants to enter the CS sends request to the remaining (n-1) nodes for approval
- P_m waits for the n-1 approvals to arrive
- When P_m receives all of the n-1 approvals, it enters its CS

30 May 2024

5

Major Steps

- Process P_k receiving request from another process P_m
 - If P_k is not a candidate and currently not in its CS, then P_k sends approval to P_m
 - If P_k is in its own CS, then it enters Id of P_m in a local list and does not send the approval to P_m

30 May 2024

Major Steps

- If P_k is another candidate process then
 - if time stamp of incoming request is less than that for its own CS request then P_k sends approval to P_m
 - if time stamp of incoming request is greater than that for its own CS request then P_k enters Id of P_m in a local list and does not send the approval to P_m

30 May 2024

7

Major Steps

 When a process P_m comes out of the CS, it sends approval to all the processes whose lds have been stored in the local list maintained with P_m

30 May 202

S

Ricart-Agrawala DME algorithm

- Being a Symmetric algorithm, decisions are taken collectively and based on mutual consent
- 2*(N-1) messages are exchanged for each access to CS
- In case of a network size of N, for M requests there will be 2M*(N-1) control message exchanges ~ O(N*M)

30 May 2024

29

Ricart-Agrawala DME algorithm

T(A)= {9, 2}

A

B, C, D, M

В

 $T(C) \leq T(A)$

30 May 2024

Outline

- Ricart-Agrawala algorithm
- Token based algorithm for Ring topology
- Raymond's algorithm
- Limitations of Raymond's algorithm
- Quorum based algorithm

30 May 2024

33

Outline

- Ricart-Agrawala algorithm
- Token based algorithm for Ring topology
- Raymond's algorithm
- Limitations of Raymond's algorithm
- Quorum based algorithm

30 May 2024

51

Basic Premises

- Raymond's algorithm uses an inverted spanning tree to reduce the number of control messages per CS access.
- The algorithm assumes that the underlying network guarantees message delivery.
- All nodes of the network are completely reliable.

30 May 2024

Basic Premises

- A node needs to hold information about and communicate only to its 1-hop neighboring nodes.
- In stead of token, Raymond used the term PRIVILEGE
- Only one node can be in possession of the PRIVILEGE (next onwards we'll refer it as Token) at any time

30 May 2024

53

Basic Premises

- When there are no nodes requesting for the token, it remains in possession of the node that last used it.
- We would refer the token holding node at any point of time as P_{hold}

30 May 2024

Major Steps in Raymond's Algorithm

- For a process P_m that wants to enter the CS, the following steps are done:
 - ID of the requesting node, m in this case, is entered in a local queue of site for P_m
 - A token request is sent to the parent node of P_m in the tree, say to node P_k

30 May 2024

55

Major Steps in Raymond's Algorithm

- For any intermediate node P_k, on receipt of a token request from one of its decedents, P_m in this case, , the following steps are done:
 - ID of the requesting node P_m is entered in the local queue of site for P_k
 - A new token request for node P_k is sent to its parent, if no such request is already pending

30 May 2024

Major Steps in Raymond's Algorithm

- Instead of an intermediate node P_k, if the recipient for a token request is P_{hold} itself, then only the following step is executed:
 - ID of the requesting node P_m is entered in the local queue of site for P_{hold}

30 May 2024

57

Major Steps in Raymond's Algorithm

- When P_{hold} comes out of the CS, the following steps are performed:
 - An ID from its local queue is deleted, say X
 - The edge between P_{hold} and P_x is reversed in the spanning tree
 - The token is sent to P_x
 - If the local queue of P_{hold} is not empty then a token request is sent to P_x
 - P_x becomes the new P_{hold}

Major Steps in Raymond's Algorithm

- When node P_x gets token from parent node, the following steps are performed:
 - An ID from the local queue is deleted, say Z
 - If this ID is same as that for P_x itself (i.e., if X=Z as in this case) then
 - Node $P_X = P_Z$ enters the CS
 - If X ≠ Z then
 - the token will be passed to node P_Z
 - If the local queue at P_x is not empty then a token request is sent to P_z

59

Safety in Raymond's Algorithm

- Whenever a node receives a token (PRIVILEGE), it becomes privileged.
- Similarly, whenever a node releases the token, it becomes unprivileged.
- No node is privileged between the instants when one node releases token and the next node acquires it.
- Thus, there is at most one privileged node at any point of time in the system that can enter CS.

