Data preprocessing & Apply Machine Learning Techniques

Data Preprocessing

1.import real dataset & dependencies

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
```

df= pd.read_csv('fake_currency_data.csv')
df

₹		Country	Denomination	Counterfeit	SerialNumber	SecurityFeatures	Weight	Lei
	0	USA	\$100	1	25973198	Hologram	1.731759	130.24
	1	USA	\$20	1	95903230	Security Thread	1.002179	152.59
	2	EU	€10	0	82937914	Hologram	2.306713	152.85°
	3	USA	€20	1	23612989	Microprint	1.366965	143.13
	4	EU	€20	1	56025342	Watermark	1.796075	129.66 ₄
	999995	EU	\$100	1	24436622	Watermark	1.472511	134.88
	999996	EU	£20	1	82654212	Hologram	2.355633	147.83
	999997	USA	\$5	0	59174754	Microprint	1.393764	150.05
	999998	EU	£10	0	55268089	Watermark	2.026417	142.85
	999999	EU	£10	0	59464296	Watermark	0.867139	127.64

1000000 rows × 9 columns

2.remove the missing values from datasets

• here no-null values in datasets

df.isnull().sum()

3. Adding new features from existing features

- Area=length x width
- volume=length x width x thickness
- Aspect_ratio=length / width

- · weight_to_Area_ratio= weight / Area
- weight_to_volume_ratio= weigth / volume

```
df['Area'] = df['Length'] * df['Width']
df['Volume'] = df['Length'] * df['Width'] * df['Thickness']
df['Aspect_Ratio'] = df['Length'] / df['Width']
df['Weight_to_Area_Ratio'] = df['Weight'] / df['Area']
df['Weight_to_Volume_Ratio'] = df['Weight'] / df['Volume']
```

4. Remove the unnecessary & not depending for results columns

· serial_number is not depending the results because it has unique identifier

```
df = df.drop(['SerialNumber'], axis=1)
df
```

→		Country	Denomination	Counterfeit	SecurityFeatures	Weight	Length	Width
	0	USA	\$100	1	Hologram	1.731759	130.243185	66.537999
	1	USA	\$20	1	Security Thread	1.002179	152.596364	76.135834
	2	EU	€10	0	Hologram	2.306713	152.857126	66.772442
	3	USA	€20	1	Microprint	1.366965	143.133672	78.377052
	4	EU	€20	1	Watermark	1.796075	129.664777	75.916093
	999995	EU	\$100	1	Watermark	1.472511	134.888731	75.425943
	999996	EU	£20	1	Hologram	2.355633	147.830149	65.232274
	999997	USA	\$5	0	Microprint	1.393764	150.050308	69.273269
	999998	EU	£10	0	Watermark	2.026417	142.852137	77.878841
	999999	EU	£10	0	Watermark	0.867139	127.645125	72.608513

¹⁰⁰⁰⁰⁰⁰ rows × 13 columns

5.Datasets cleaning for uniformly distrubated dataset

- this datastets are uniformly distrubted.that why i remove some counterfeits notes.
- only 5% of counterfeits notes are presents in new datasets
- this 5% note are equally country, denomination and seacurity features by counterfeits.

```
# create a new dataset only 5% counterfeit present and all non counterfeit present in df.in sample country,denomir
# Separate counterfeit and non-counterfeit data
counterfeit = df[df['Counterfeit'] == 1]
non_counterfeit = df[df['Counterfeit'] == 0]
# Sample 5% of counterfeit data
counterfeit_sample = counterfeit.sample(frac=0.05)
# Combine sampled counterfeit data with all non-counterfeit data
new_df = pd.concat([counterfeit_sample, non_counterfeit])
# Shuffle the new dataset
new_df = new_df.sample(frac=1).reset_index(drop=True)
# Update the country, denomination, and security features by 5%
new_df['Country'] = new_df['Country'].apply(lambda x: 'other' if np.random.random() < 0.05 else x)
new_df['Denomination'] = new_df['Denomination'].apply(lambda x: 100 if np.random.random() < 0.05 else x)</pre>
new_df['SecurityFeatures'] = new_df['SecurityFeatures'].apply(lambda x: 'high' if np.random.random() < 0.05 else >
# Print the new dataset
new_df
```

	Country	Denomination	Counterfeit	SecurityFeatures	Weight	Length	Width
0	USA	£5	0	Microprint	1.951739	120.342934	76.342520
1	EU	€10	0	Security Thread	1.973224	143.249467	78.939662
2	EU	\$100	0	Hologram	1.375517	127.144896	63.188832
3	UK	\$5	0	Watermark	1.576948	124.839820	68.335544
4	UK	100	0	Hologram	0.987226	136.402692	77.702892
525574	USA	100	0	Microprint	2.464214	159.134403	66.011519
525575	EU	\$20	0	Security Thread	1.223090	137.254132	78.175685
525576	USA	\$100	0	Security Thread	1.220706	145.120703	68.195325
525577	other	\$5	0	Security Thread	1.814900	126.424226	76.442372
525578	EU	\$20	0	Hologram	1.641367	147.055068	74.235277

525579 rows × 13 columns

6. Encoding for the categorical featurs

here used one hot encoding for country, denomination and seacurity features

```
# one hot encoding for Country Denomination and SecurityFeatures

new_df = pd.get_dummies(new_df, columns=['Country', 'Denomination', 'SecurityFeatures'], dtype=int)
new_df
```

e	-	_
	۸	$\overline{}$
	-	

	Counterfeit	Weight	Length	Width	Thickness	Area	Volume	Asp
0	0	1.951739	120.342934	76.342520	0.099082	9187.282800	910.292480	
1	0	1.973224	143.249467	78.939662	0.067950	11308.064435	768.384908	
2	0	1.375517	127.144896	63.188832	0.083753	8034.137481	672.882234	
3	0	1.576948	124.839820	68.335544	0.056304	8530.996979	480.332534	
4	0	0.987226	136.402692	77.702892	0.090591	10598.883658	960.161630	
525574	0	2.464214	159.134403	66.011519	0.089326	10504.703588	938.340540	
525575	0	1.223090	137.254132	78.175685	0.053399	10729.935732	572.964435	
525576	0	1.220706	145.120703	68.195325	0.058913	9896.553425	583.031356	
525577	0	1.814900	126.424226	76.442372	0.072203	9664.167667	697.781986	
525578	0	1.641367	147.055068	74.235277	0.075097	10916.673755	819.809470	

525579 rows × 32 columns

new_df.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 525579 entries, 0 to 525578
 Data columns (total 32 columns):

#	Column	Non-Null Count	Dtype
0	Counterfeit	525579 non-null	int64
1	Weight	525579 non-null	float64
2	Length	525579 non-null	float64
3	Width	525579 non-null	float64
4	Thickness	525579 non-null	float64
5	Area	525579 non-null	float64
6	Volume	525579 non-null	float64
7	Aspect_Ratio	525579 non-null	float64
8	Weight_to_Area_Ratio	525579 non-null	float64
9	<pre>Weight_to_Volume_Ratio</pre>	525579 non-null	float64
10	Country_EU	525579 non-null	int64
11	Country_UK	525579 non-null	int64
12	Country_USA	525579 non-null	int64
13	Country_other	525579 non-null	int64
14	Denomination_100	525579 non-null	int64
15	Denomination_\$1	525579 non-null	int64
16	Denomination_\$10	525579 non-null	int64
17	Denomination_\$100	525579 non-null	int64
18	Denomination_\$20	525579 non-null	int64
19	Denomination_\$5	525579 non-null	int64
20	Denomination_\$50	525579 non-null	int64
21	Denomination_£10	525579 non-null	int64
22	Denomination_£20	525579 non-null	int64
23	Denomination_£5	525579 non-null	int64
24	Denomination_€10	525579 non-null	int64
25	Denomination_€20	525579 non-null	int64
26	Denomination_€5	525579 non-null	int64
27	SecurityFeatures_Hologram	525579 non-null	int64
28	SecurityFeatures_Microprint	525579 non-null	int64
29	SecurityFeatures_Security Thread	525579 non-null	int64
30	SecurityFeatures_Watermark	525579 non-null	int64
31	SecurityFeatures_high	525579 non-null	int64
dtvn	es: float64(9), int64(23)		

dtypes: float64(9), int64(23)
memory usage: 128.3 MB

7. Normalization techniques for the numerical features as well as encoding catogirical

· here standarscaler use for all columns

```
# all colums transforms to standard scaler except counterfeit

from sklearn.preprocessing import StandardScaler

# Create a StandardScaler object
scaler = StandardScaler()

# Fit the scaler to the numerical columns except for 'Counterfeit'
scaler.fit(new_df.drop('Counterfeit', axis=1))

# Transform the numerical columns except for 'Counterfeit'
new_df[new_df.columns.difference(['Counterfeit'])] = scaler.transform(new_df.drop('Counterfeit', axis=1))

# Print the transformed dataset
new_df
```

→		Counterfeit	Weight	Length	Width	Thickness	Area	Volume	Aspect_Ra
	0	0	1.795804	-0.293699	-0.231928	-0.29399	0.615146	-0.559029	-1.705
	1	0	-0.556854	-0.293699	-0.231928	-0.29399	0.658942	-0.559029	0.278
	2	0	-0.556854	-0.293699	-0.231928	-0.29399	-0.559471	1.788816	-1.116
	3	0	-0.556854	-0.293699	-0.231928	-0.29399	-0.148857	-0.559029	-1.316
	4	0	-0.556854	-0.293699	-0.231928	-0.29399	-1.350992	1.788816	-0.314
	525574	0	1.795804	-0.293699	-0.231928	-0.29399	1.659815	-0.559029	1.654
	525575	0	-0.556854	-0.293699	-0.231928	-0.29399	-0.870189	-0.559029	-0.241
	525576	0	-0.556854	-0.293699	-0.231928	-0.29399	-0.875048	-0.559029	0.440
	525577	0	-0.556854	-0.293699	-0.231928	-0.29399	0.336202	-0.559029	-1.179
	525578	0	-0.556854	-0.293699	-0.231928	-0.29399	-0.017542	1.788816	0.607

525579 rows × 32 columns

new_df['Country_EU']

```
→ 0
           1.098806
           1.548682
   1
           -1.179670
   2
   3
          -0.288159
           1.334449
   525574 -0.690726
           1.416346
   525575
   525576 -0.312448
   525577
           1.116102
          0.733790
   525578
   Name: Country_EU, Length: 525579, dtype: float64
```

8. Dimensions reduction for scaled data

• here 31 colums used are in training which lots of time taken to traing that why used in dimension reduction techniques

```
# dimension reduction for all colums except counterfeit colums

from sklearn.decomposition import PCA

# Create a PCA instance with 20 components
pca = PCA(n_components=20)

# Fit the PCA instance to the scaled data
new_df_reduced = pca.fit_transform(new_df.drop('Counterfeit', axis=1))

# Convert the reduced data back to a DataFrame
new_df_reduced = pd.DataFrame(new_df_reduced, columns=[f"PC{i+1}" for i in range(20)])

# Print the reduced data
new_df_reduced
```

₹		PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	
	0	-0.071473	-2.779175	0.810168	-2.147168	-0.624003	1.607269	-0.207548	1.442548	-1.3
	1	-0.551810	-1.322070	1.295156	1.437781	-1.208118	-1.209345	-1.510702	-1.379438	-0.2
	2	0.777361	0.108055	- 1.571103	-1.681333	-1.125946	-1.346702	1.772576	-0.948061	-0.1
	3	2.279677	-0.976669	-1.509885	0.604846	1.742494	-0.374048	-0.182807	0.884069	1.8
	4	-3.058643	-1.575388	-0.495288	-0.604619	1.743375	-0.383214	1.771362	-0.916322	-0.2
	525574	0.012879	2.170762	2.780677	-0.770017	-0.616550	1.616295	-0.151643	1.450816	-1.4
	525575	-0.708596	-1.533118	-1.161928	2.211188	-1.131349	-1.185890	-1.472503	-1.409947	-0.1
	525576	-0.240707	0.805940	-1.394542	1.223429	-0.543476	1.757775	-1.438491	-1.323689	-0.1
	525577	0.558330	-2.217285	0.036853	0.097417	-0.024370	0.061467	-1.526770	-1.388498	-0.2
	525578	-1.265175	-0.222027	0.654549	0.608182	-1.114148	-1.282989	1.792487	-0.963647	-0.1
	525579 rd	ows × 20 colu	ımns							

9. scatter plot between components

```
# create scatter plot pc1 vs pc2
import matplotlib.pyplot as plt

# Create a scatter plot of PC1 vs PC2
plt.scatter(new_df_reduced['PC1'], new_df_reduced['PC2'])

# Label the axes
plt.xlabel('PC1')
plt.ylabel('PC2')

# Show the plot
plt.show()
```


Apply Machine Learning Techniques

A.supervised learning

1.Logistics regression

accuracy:95.25%

```
# from sklearn.model_selection import train_test_split
# from sklearn.linear_model import LogisticRegression
# from sklearn.metrics import accuracy_score

# # Split the data into train and test sets
# X_train, X_test, y_train, y_test = train_test_split(new_df_reduced, new_df['Counterfeit'], test_size=0.2, randon

# # Train a Logistic Regression model
# model_logistic = LogisticRegression()
# model_logistic.fit(X_train, y_train)

# # Evaluate the model on the test set
# y_pred = model_logistic.predict(X_test)
# accuracy = accuracy_score(y_test, y_pred)
# print(f"Accuracy: {accuracy}")
```

2.DecisionTreeClassifier

• accuracy:90.04%

```
# from sklearn.tree import DecisionTreeClassifier
# from sklearn.model_selection import train_test_split
# from sklearn.metrics import accuracy_score
# # Split the data into training and testing sets
# X_train, X_test, y_train, y_test = train_test_split(new_df_reduced, new_df['Counterfeit'], test_size=0.2, randon
# # Train a decision tree classifier
# clf = DecisionTreeClassifier()
# clf.fit(X_train, y_train)
# # Evaluate the classifier on the test set
# score = clf.score(X_test, y_test)
# # Print the accuracy score
# print("Accuracy:", score)
```

3.Random forest

acurracy:95.19%

```
# from sklearn.ensemble import RandomForestClassifier
# from sklearn.model_selection import train_test_split
# from sklearn.metrics import accuracy_score
# # Separate features and target
# X = new_df_reduced
# y = new_df['Counterfeit']

# # Split data into training and test sets
# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# # Train a classifier
# classifier = RandomForestClassifier()
# classifier.fit(X_train, y_train)

# # Evaluate the classifier on the test set
# y_pred = classifier.predict(X_test)
# accuracy = accuracy_score(y_test, y_pred)
# print(f"Accuracy: {accuracy}")
```

4. Support vector machine

· accuracy:

```
# from sklearn.svm import SVC
# from sklearn.model_selection import train_test_split
# from sklearn.metrics import accuracy_score
# # Split the data into training and test sets
# X_train, X_test, y_train, y_test = train_test_split(new_df_reduced, new_df['Counterfeit'], test_size=0.2, randon
# # Train a support vector machine model
# model = SVC()
# model.fit(X_train, y_train)

# # Evaluate the model on the test set
# y_pred = model.predict(X_test)
# accuracy = accuracy_score(y_test, y_pred)
# print("Accuracy:", accuracy)
```

B.unsupervised learning

1.k-means culstering

- · visulize the how cluster look like
- increse the value of k cluster not differences
- in elbow plot k=2 and k=3 are points which effectively work this techniques
- highest at k=2 accuracy is 54.05% (note:in unsupervised learning it doesnt means label)

```
# Apply k-means clustering algorithms
from sklearn.model_selection import train_test_split
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
# Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(new_df_reduced, new_df['Counterfeit'], test_size=0.2, random_st
# Create a KMeans object with 2 clusters
kmeans = KMeans(n_clusters=2)
# Fit the KMeans object to the data
kmeans.fit(X_train)
# Predict the cluster labels for the test data
cluster_labels = kmeans.predict(X_test)
# Plot the clusters
plt.scatter(X_test['PC1'], X_test['PC2'], c=cluster_labels)
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.title('K-Means Clustering with 2 Clusters')
plt.show()
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The warnings.warn(


```
#k=3,4,5 cluster visulization
import matplotlib.pyplot as plt
# Create a figure with 2 subplots
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
# Plot the clusters for K=3
kmeans = KMeans(n_clusters=3)
kmeans.fit(X_train)
cluster_labels = kmeans.predict(X_test)
ax1.scatter(X_test['PC1'], X_test['PC2'], c=cluster_labels)
ax1.set_title('K=3')
# Plot the clusters for K=4
kmeans = KMeans(n_clusters=4)
kmeans.fit(X_train)
cluster_labels = kmeans.predict(X_test)
ax2.scatter(X_test['PC1'], X_test['PC2'], c=cluster_labels)
ax2.set_title('K=4')
# Plot the clusters for K=5
kmeans = KMeans(n_clusters=5)
kmeans.fit(X train)
cluster_labels = kmeans.predict(X_test)
ax3.scatter(X_test['PC1'], X_test['PC2'], c=cluster_labels)
ax3.set_title('K=5')
# Show the plot
plt.show()
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The warnings.warn(


```
# Optimal K Value is determined using either trial and error ranging from (1 to 5) or techniques like elbow plot.
# Elbow method to determine optimal k value
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score
# Calculate inertia for different k values
inertia = []
for k in range(1, 6):
   kmeans = KMeans(n_clusters=k)
   kmeans.fit(X_train)
   inertia.append(kmeans.inertia_)
# Plot the inertia for each k value
plt.plot(range(1, 6), inertia)
plt.xlabel('Number of clusters (k)')
plt.ylabel('WCSS')
plt.title('Elbow Method')
plt.show()
# Choose the k value with the lowest inertia
optimal_k = 2
# Create a KMeans object with the optimal k value
kmeans = KMeans(n_clusters=optimal_k)
# Fit the KMeans object to the data
kmeans.fit(X_train)
# Predict the cluster labels for the test data
cluster_labels = kmeans.predict(X_test)
# Calculate the accuracy score
accuracy = accuracy_score(y_test, cluster_labels)
# Print the accuracy score
print(f"Accuracy: {accuracy}")
```

```
🚁 /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
      warnings.warn(
2.DBSCAN technique
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:8/0: FutureWarning: The
from sklearn.cluster import DBSCAN
# Apply DBSCAN clustering algorithm
# Create a DBSCAN object with eps=2 and min_samples=500
dbscan = DBSCAN(eps=2, min_samples=500)
# Fit the DBSCAN object to the data
dbscan.fit(X_train)
# Predict the cluster labels for the test data
cluster_labels = dbscan.predict(X_test)
# Plot the clusters
plt.scatter(X_test['PC1'], X_test['PC2'], c=cluster_labels)
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.title('DBSCAN Clustering')
plt.show()
# Calculate the accuracy score
accuracy = accuracy_score(y_test, cluster_labels)
# Print the accuracy score
print(f"Accuracy: {accuracy}")
# Choose the optimal eps and min_samples values using techniques like grid search or silhouette analysis.
# Grid search to determine optimal eps and min samples values
from sklearn.model_selection import GridSearchCV
# Define a grid of values for eps and min samples
param_grid = {'eps': [0.1, 0.2, 0.3, 0.4, 0.5], 'min_samples': [50, 100, 150, 200]}
```

Create a DBSCAN object

dbscan = DBSCAN()