第二讲 整除的概念

- 一、带余除法
- 二、整除的定义
- 三、整除的性质
- 四、思考题

一、带余除法

定理1.1.1 对 $\forall f(x), g(x) \in P[x], g(x) \neq 0$,

一定存在 $q(x),r(x) \in P[x]$, 使

$$f(x) = q(x)g(x) + r(x)$$

成立, 其中 $\partial(r(x)) < \partial(g(x))$ 或 r(x) = 0,

并且这样的 g(x),r(x) 是唯一决定的.

称 q(x) 为 g(x) 除 f(x) 的商, r(x)为 g(x) 除 f(x) 的余式.

Proof: 先证存在性.

- ① 若 f(x) = 0, 则令 q(x) = r(x) = 0. 结论成立.
- ② 若 $f(x) \neq 0$, 设f(x),g(x)的次数分别为n,m,

当 n < m 时, 显然取 q(x) = 0, r(x) = f(x)即有

f(x) = q(x)g(x) + r(x), 结论成立.

下面讨论 $n \ge m$ 的情形,对 n 作数学归纳法.

次数为0时结论显然成立.

假设对次数小于n的 f(x), 结论已成立.

现在来看次数为n的情形.

设 f(x)的首项为 ax^n , g(x)的首项为 bx^m , $(n \ge m)$ 则 $b^{-1}ax^{n-m}g(x)$ 与 f(x)首项相同, 因而,多项式 $f_1(x)=f(x)-b^{-1}ax^{n-m}g(x)$

的次数小于n或 f_1 为0.

若
$$f_1(x)=0$$
, 令 $q(x)=b^{-1}ax^{n-m}$, $r(x)=0$ 即可.

若 $\partial(f_1(x)) < n$, 由归纳假设,存在 $q_1(x), r_1(x)$ 使得 $f_1(x) = q_1(x)g(x) + r_1(x)$

其中
$$\partial(r_1(x)) < \partial(g(x))$$
 或者 $r_1(x) = 0$. 于是
$$f(x) = (b^{-1}ax^{n-m} + q_1(x))g(x) + r_1(x).$$

即有
$$q(x) = b^{-1}ax^{n-m} + q_1(x), r(x) = r_1(x)$$
使
$$f(x) = q(x)g(x) + r(x),$$

成立.

由归纳法原理,对 $\forall f(x), g(x) \neq 0, q(x), r(x)$

的存在性得证.

再证唯一性.

若同时有
$$f(x)=q(x)g(x)+r(x)$$
,

其中
$$\partial(r(x)) < \partial(g(x))$$
或 $r(x) = 0$.

和
$$f(x)=q'(x)g(x)+r'(x)$$
,

其中
$$\partial(r'(x)) < \partial(g(x))$$
或 $r'(x) = 0$.

则
$$q(x)g(x)+r(x)=q'(x)g(x)+r'(x)$$

$$\mathbb{P}\left(q(x)-q'(x)\right)g(x)=r'(x)-r(x).$$

若
$$q(x) \neq q'(x)$$
, 由 $g(x) \neq 0$, 有 $r'(x) - r(x) \neq 0$

$$\therefore \partial(q(x) - q'(x)) + \partial(g(x)) = \partial(r'(x) - r(x))$$

$$\leq \max(\partial(r), \partial(r'))$$

$$< \partial(g(x))$$

但
$$\partial(q(x)-q'(x))+\partial(g(x)) \geq \partial(g(x))$$
, 矛盾.

所以
$$q(x)=q'(x)$$
, 从而 $r'(x)=r(x)$.

唯一性得证.

例1. 求 $x^2 - 3x + 1$ 除 $3x^3 + 4x^2 - 5x + 6$ 的商和余式

解:

所以,

$$3x^3 + 4x^2 - 5x + 6 = (3x + 13)(x^2 - 3x + 1) + (31x - 7).$$

二、整除的定义

1. 定义1.1.3

设 $f(x),g(x) \in P[x]$, 若存在 $h(x) \in P[x]$ 使

$$f(x) = g(x)h(x)$$

则称 g(x)整除 f(x), 记作 g(x)|f(x).

2. 说明

- ① g(x)|f(x)时,称g(x)为f(x)的因式,f(x)为g(x)的倍式。
 - ② g(x)不能整除 f(x) 时记作: g(x) + f(x).

③ 允许 g(x) = 0,此时有 0 = 0h(x), $\forall h(x) \in P[x]$ 即 0|0.

即0|0. S=0
 零多项式整除零多项式,有意义. S=0
 除数为零,无意义.

④ 当 g(x)|f(x)时,如果 $g(x) \neq 0$,则 g(x)除 f(x)所得的商可表成 $\frac{f(x)}{g(x)}$.

3. 整除的判定

定理1.1.4 $\forall f(x), g(x) \in P[x], g(x) \neq 0$,

$$g(x)|f(x) \longrightarrow g(x)$$
除 $f(x)$ 的余式 $r(x) = 0$.

证明: 由带余除法可得。

三. 整除的性质

- 1) 对 $\forall f(x) \in P[x]$, 有 f(x) | f(x), f(x) | 0; 对 $\forall f(x) \in P[x]$, $\forall a \in P, a \neq 0$, 有 a | f(x).
- 即,任一多项式整除它自身; 零多项式能被任一多项式整除; 零次多项式整除任一多项式.
- 2) 若 f(x)|g(x), 则 af(x)|bg(x), $\forall a,b \in P(a \neq 0)$. $a \neq 0$ 时, f(x)与 af(x)有相同的因式和倍式.

3) 若 g(x)|f(x), f(x)|g(x), 则 f(x)=cg(x), $c \neq 0$.

证: $f(x)|g(x) \Rightarrow \exists h_1(x)$ 使得 $g(x) = f(x)h_1(x)$; $g(x)|f(x) \Rightarrow \exists h_2(x)$ 使得 $f(x) = g(x)h_2(x)$. $\Rightarrow f(x) = h_1(x)h_2(x)f(x).$ 若 f(x) = 0, 则 g(x) = 0,

$$\Rightarrow \partial (h_1(x)) + \partial (h_2(x)) = 0$$

$$\Rightarrow \partial(h_1(x)) = \partial(h_2(x)) = 0.$$

 $\therefore h_1(x), h_2(x)$ 皆为非空常数.

故有 f(x)=cg(x), $c \neq 0$ 成立.

4) 若 f(x)|g(x), g(x)|h(x), f(x)|h(x)

(整除关系的传递性)

5) 若
$$f(x)|g_i(x)$$
, $i = 1,2,\dots,r$
则对 $\forall u_i(x) \in P[x]$, $i = 1,2,\dots,r$ 有
 $f(x)|(u_1(x)g_1(x)+u_2(x)g_2(x)+\dots u_r(x)g_r(x))$
注: 反之不然. 如 $f(x)=3x-2$,
 $g_1(x)=x^2+1$, $g_2(x)=2x+3$,
 $u_1(x)=-2$, $u_2(x)=x$,
 $(u_1(x)g_1(x)+u_2(x)g_2(x)=-2+3x$,
 $\therefore f(x)|(u_1(x)g_1(x)+u_2(x)g_2(x))$
但 $f(x) \nmid g_1(x)$, $f(x) \nmid g_2(x)$.

6) 整除不变性:

两多项式的整除关系不因系数域的扩大而改变.

思考题

1. 求实数 m, p, q 满足什么条件时多项式 $x^2 + mx - 1$ 整除多项式 $x^3 + px + q$.

2. 设 $f(x) \in P[x]$, f(x) = f(-x), 如果 (x-a)|f(x), 证明: $(x^2-a^2)|f(x)$.