The Macroeconomics of Health Savings Accounts

Juergen Jung Maryland

Chung Tran Towson University Australian National University Canberra

Lisbon PET 13

This project was supported by grant number R03HS019796 from	
the Agency for Healthcare Research and Quality	

The content is solely the responsibility of the authors and does not necessarily represent the official views of the Agency for Healthcare

Research and Quality.

the Agency for Healthcare Research and Quality.

Dysfunctional U.S. Health Care System

▶ Low Coverage: about 50 million uninsured in 2012 (17%)

► High Cost: 17% of GDP in 2012 and close to 20% by 2015

Comprehensive Health Care Reforms

Health care reforms:

- 1. Health Savings Accounts (HSAs) in 2003
- The Affordable Care Act in 2010 (aka Obama Health Care Reform)
- 3. Other proposals: public option, universal medical vouchers

Goals:

- 1. control total health expenditure
- 2. increase the number of insured individuals

What are HSAs?

Medicare Prescription Drug, Improvement, and Modernization Act (2003)

- 1. HSAs are tax free trust accounts to save for medical expenses
- 2. Interest earnings are not taxable
- 3. Funds roll over into next period
- 4. Age < 65 with **high deductible** health insurance (at least \$1,100)
- 5. 10% penalty for non-medical expenses
- 6. Age > 65 funds can be withdrawn without penalty (income tax applies)
- 7. Annual contribution limit (\$2,850)

Intuitively, a twin reform: a capital income tax reform coupled with a health insurance reform

HSAs and Health Expenditures: Price and Income Effects

HSAs and Medical Consumption

HSAs and Health Insurance: Price and Income Effects

HSAs and Health Insurance

This Paper

- Conduct a general equilibrium analysis of HSAs
 - 1. Determine the success of HSAs
 - 2. Quantify tax revenue loss resulting from HSAs

Findings and Contribution

- Findings:
 - 1. HSAs increase health insurance coverage but fail to control health expenditure costs
 - 2. General equlibrium effects are quantitatively important

- Contribution:
 - 1. A macroeconomic model with health as a durable good
 - 2. Quantify macroeconomic effects of HSAs

Related Literature

- Quantitative macroeconomics: Hugget(1993), Aiyagari(1994), Imrohoroglu et al. (1995)
- Health micro/econometrics: Grossman(1972a,1972b), Grossman(2000)
- ► Health macroeconomics: Suen(2006), Jeske and Kitao (2010), Jung and Tran(2010)
- ► HSAs empirical: Buntin et al. (2011), Haviland et al. (2011, 2012)

The Model

- Standard overlapping generations framework
 - 1. Agents live at most J periods: J_1 periods as workers and $J-J_1$ periods as retirees
 - 2. Competitive production sector
 - 3. Government with social insurance programs
 - 4. Incomplete financial markets
- New ingredients
 - 1. Health as a durable good (consumption and production)
 - 2. Health shocks
 - 3. Health spending and financing
 - 4. Health savings accounts

Preferences and Technology

Preferences:

$$u(c_j, h_j) = \frac{\left(c_j^{\eta_j} h_j^{1-\eta_j}\right)^{1-\sigma}}{1-\sigma}$$

► Health production:

$$h_{j} = \phi_{j} m_{j}^{\xi} + (1 - \delta(h_{j})) h_{j-1} + \varepsilon_{j}$$

Markov switching between health shocks:

$$P_{j}(\varepsilon_{j},\varepsilon_{j-1}) = \Pr(\varepsilon_{j}|\varepsilon_{j-1},j)$$

Human capital:

$$e_j = \left(e^{\beta_0 + \beta_1 j + \beta_2 j^2}\right)^{\chi} (h_{j-1}^{\theta})^{1-\chi} \text{ for } j = \{1, ..., J_1\},$$

where $\beta_0, \beta_2 < 0$, $\beta_1 > 0$, $\chi \in (0,1)$ and $\theta \in [0,1]$

Financing Health Expenditures

- Health insurance:
 - $in_i = 1$: low deductible health insurance
 - \rightarrow in_i = 2 : high deductible health insurance
 - \rightarrow $in_i = 3$: no insurance
- ► Total health expenditure: p_mm
- Out of pocket expenditures

$$o\left(m_{j}\right) = \begin{cases} p_{m,nolns}m & \text{if } in_{j} = 3, \\ \min\left[p_{m,lns}m_{j}, \gamma + \rho\left(p_{m,lns}m_{j} - \gamma\right)\right] & \text{if } in_{j} = 1, 2 \end{cases}$$

Key Features of HSAs

- HSA only with high deductible insurance
- ▶ Save a_j^m tax-free in HSAs at the market interest rate
- age < 65: penalty tax τ^m applies if spent on 'non-health' items
- $age \ge 65$: no penalty, but income tax
- ▶ Maximum contribution \bar{s}^m (e.g. \$2,850 for an individual or \$5,650 for a family per year)

Worker's Program

- ► Agent state $x_j = \{a_{j-1}, a_{j-1}^m, h_{j-1}, in_{j-1}, \varepsilon_j\}$
- ► Agents receive income (wage, interest income, accidental bequests, profits, and social insurance)
- Pay taxes (payroll and progressive income tax)
- Agents simultaneously choose:
 - 1. Consumption c_j and asset holdings a_j
 - 2. Health expenditures m_j
 - 3. Insurance state for next period $in_i = \{1, 2, 3\}$
 - 4. If $in_j = 2$, saving a_i^m in HSA is possible
- ▶ If net investment into HSA $NI < 0 \rightarrow$ penalty τ^m

Worker's Dynamic Programming

$$V_{j}(x_{j}) = \max_{\left\{c_{j}, m_{j}, a_{j}^{m}, in_{j}\right\}} \left\{u\left(c_{j}, h_{j}\right) + \beta \pi_{j} E_{\varepsilon}\left[V_{j+1}\left(x_{j+1}\right) \middle| \varepsilon_{j}\right]\right\}$$

s.t.

$$\begin{aligned} & c_{j} + a_{j} + 1_{\left\{in_{j}=2\right\}} a_{j}^{m} + o^{W}\left(m_{j}\right) + 1_{\left\{in_{j}=1\right\}} p_{j} + 1_{\left\{in_{j}=2\right\}} p_{j}' \\ & =_{j} + R\left(a_{j-1} + T^{Beq}\right) + R^{m} a_{j-1}^{m} + T^{Insprofit} + T_{j}^{SI} - Tax_{j} \\ & h_{j} = \phi_{j} m_{j}^{\xi} + \left(1 - \delta\left(h_{j}\right)\right) h_{j-1} + \varepsilon_{j} \\ & e_{j} = \left(e^{\beta_{0} + \beta_{1} j + \beta_{2} j^{2}}\right)^{\chi} \left(h_{j-1}^{\theta}\right)^{1-\chi} \\ & 0 \leq a_{j}, a_{j}^{m} \end{aligned}$$

Retiree's Program

- ▶ Agent state: $x_j = \{a_{j-1}, a_{j-1}^m, h_{j-1}, in_{j-1}, \varepsilon_j\}$
- Agents receive income (pension, interest income, accidental bequests, profits, and social insurance)
- Pay taxes (progressive income tax)
- ▶ Forced into Medicare \rightarrow pay p_j^{Med}
- Agents simultaneously choose:
 - 1. Consumption c_j and asset holdings a_j
 - 2. Health expenditures m_j
 - 3. Funds in HSA a_j^m
- ▶ If net investment into HSA $NI < 0 \rightarrow$ forgone income tax

Retiree's Dynamic Programming

$$V_{j}(x_{j}) = \max_{\left\{c_{j}, m_{j}, a_{j}, a_{j}^{m}\right\}} \left\{u\left(c_{j}, h_{j}\right) + \beta \pi_{j} E_{\varepsilon}\left[V_{j+1}\left(x_{j+1}\right) \middle| \varepsilon_{j}\right]\right\}$$
s.t.

$$c_{j} + a_{j}^{m} + o^{R}(m_{j}) + p_{j}^{Med}$$

$$= R\left(a_{j-1} + T^{Beq}\right) + R^{m}a_{j-1}^{m} + T^{Insprofit} + T_{j}^{Soc} + T_{j}^{SI} - Tax_{j}$$

$$h_{j} = \phi_{j} m_{j}^{\xi} + (1 - \delta(h_{j})) h_{j-1} + \varepsilon_{j}$$

$$NI_{j} \leq 0$$

$$0 \leq a_{j}, a_{j}^{m}$$

Firms and Insurance Companies

Firms:

$$\max_{\{K,L\}} \left\{ AK^{\alpha_1}L^{\alpha_2} - qK - wL \right\}, \text{ given } (q,w)$$

► Insurance Companies:

$$(1 + \omega) \times \sum_{j=2}^{J_{1}+1} \mu_{j} \int \left[I_{\{in_{j}=1\}} (1 - \gamma) \max(0, \rho_{m,lns} m_{j}(x) - \rho) \right] d\Lambda_{j}(x)$$

$$= \sum_{j=1}^{J_{1}} \mu_{j} \int I_{\{in_{j}=1\}} \rho_{j}(x) d\Lambda_{j}(x)$$

$$(1 + \omega) \times \sum_{j=2}^{J_{1}+1} \mu_{j} \int \left[I_{\{in_{j}=2\}} (1 - \gamma') \max(0, \rho_{m,lns} m_{j}(x) - \rho') \right] d\Lambda_{j}(x)$$

$$= \sum_{j=1}^{J_{1}} \mu_{j} \int I_{\{in_{j}=2\}} \rho_{j}'(x) d\Lambda_{j}(x)$$

▶ Profits $T^{Insprofit}(\omega)$ are distributed back to households in a lump-sum payment.

Government I

Bequests:

$$\sum_{j=1}^{J} \mu_{j} \int T_{j}^{Beq}(x) d\Lambda_{j}(x)$$

$$= \sum_{j=1}^{J} \nu_{j} \int a_{j}(x) d\Lambda_{j}(x) + \sum_{j=1}^{J} \nu_{j} \int a_{j}^{m}(x) d\Lambda_{j}(x)$$

Social Security:

$$\begin{split} & \sum\nolimits_{j = {J_1} + 1}^J {{\mu _j}} \int {T_j^{Soc} \left(x \right)d{\Lambda _j}\left(x \right)} \\ & = & \sum\nolimits_{j = 1}^{{J_1}} {{\mu _j}} \int {\left[{\begin{array}{*{20}{c}} {0.5{\tau ^{Soc}}w{e_j}\left(x \right) + 0.5{\tau ^{Soc}}} \\ {\rm{ }} \times \left({{{\tilde w}_j}\left(x \right) - 1_{\left\{ {i{n_j}\left(x \right) = 1} \right\}}{p_j} - 1_{\left\{ {i{n_j}\left(x \right) = 2} \right\}}{p_j^\prime}} \right)} \right]d{\Lambda _j}\left(x \right) \end{split}$$

Government II

► Medicare:

$$\begin{split} & \sum\nolimits_{j = {J_1} + 1}^J {{\mu _j}} \int {\left({1 - {\gamma ^{Med}}} \right)\max \left({0,{m_j}\left(x \right) - {\rho ^{Med}}} \right)d\Lambda _j\left(x \right)} \\ & = & \sum\nolimits_{j = 1}^{{J_1}} {{\mu _j}} \int {\left[{\begin{array}{*{20}{c}} {0.5{\tau ^{Med}}w{e_j}\left(x \right) + 0.5{\tau ^{Med}}}\\ {\times \left({{{\tilde w}_j}\left(x \right) - 1_{\left\{ {i{n_j}\left(x \right) = 1} \right\}}{p_j} - 1_{\left\{ {i{n_j}\left(x \right) = 2} \right\}}{p_j^\prime}} \right)} \right]d\Lambda _j\left(x \right)} \\ & + \sum\nolimits_{j = {J_1} + 1}^J {{\mu _j}\int {p_j^{Med}}d\Lambda _j\left(x \right)} \end{split}$$

Government budget is balanced:

$$G + \sum\nolimits_{j = 1}^J {{\mu _j}} \int {\left| {{T_j^{SI}}\left(x \right)d\Lambda _j} \left(x \right) \right| = \sum\nolimits_{j = 1}^J {{\mu _j}} \int {\left| {{Ta{x_j}}\left(x \right)d\Lambda _j} \left(x \right) \right|}$$

Calibration

Preferences:

$$u(c_j, h_j) = \frac{\left(c_j^{\eta_j} h_j^{1-\eta_j}\right)^{1-\sigma}}{1-\sigma}$$

► Health production:

$$h_{j} = \phi_{j} m_{j}^{\xi} + (1 - \delta(h_{j})) h_{j-1} + \varepsilon_{j}$$

Markov switching between health shocks:

$$P_{j}(\varepsilon_{j},\varepsilon_{j-1}) = \Pr(\varepsilon_{j}|\varepsilon_{j-1},j)$$

Human capital:

$$e_j = \left(e^{\beta_0 + \beta_1 j + \beta_2 j^2}\right)^{\chi} (h_{j-1}^{\theta})^{1-\chi} \text{ for } j = \{1, ..., J_1\},$$

where $\beta_0, \beta_2 < 0$, $\beta_1 > 0$, $\chi \in (0,1)$ and $\theta \in [0,1]$

Calibration

	Baseline Parameters		
$J_1 = 6$	Health Production:	Insurance:	
$J_2 = 3$	$\phi_i = [.65, 0.9, 1,, 1]$	$ ho^{Med} = \$1,076$	
	$\xi = 0.27$	$\gamma^{Med} = 0.25$	
Preferences:	$\delta_h = [0.0001,, 0.08]$	$\rho = 305	
$\sigma = 3$.		$\gamma = 0.25$	
$\beta = .98$	Health Productivity:	$\rho' = \$2,330$	
$\eta_j = 0.9$	heta=[0,1]	$\gamma' = 0.20$	
Technology:		Exogenous	
$\alpha = 0.33$		premium growth:	
$\delta = 8.5\%$		1.5%	

Model vs. Data: Insurance, Human Capital and Asset Holdings

Model vs. Data: Distribution of Medical Expenditures

	Data (in %)	Model (in %)
Percent of Total Population		
1%	22.000	17.940
5%	49.000	52.823
10%	64.000	74.950
50%	97.000	99.900

HSAs: General vs. Partial Equilibrium Effects

	Benchmark No HSA	HSA G.E.	HSA P.E.
Output: Y	100.000	100.980	
Capital stock: K	100.000	102.999	
Standard assets: a in $\%$	100.000	43.700	75.004
Assets in HSAs: a^m in %	0.000	56.300	24.996
Consumption: C	100.000	107.512	102.738
Health Capital: <i>H</i>	100.000	100.349	100.157
Human capital: <i>Hk</i>	100.000	100.000	100.000
Interest rate: r in %	3.377	3.235	
Wages: w	100.000	100.860	
Medical spending: $p_m M$	100.000	107.474	102.572
Medical spending: $p_m M/Y$ in %	17.233	18.341	
Insured workers - low deduct. %	62.215	0.000	38.380
Insured workers - high deduct. %	0.000	99.168	36.917
Government spending: G/Y in %	18.663	13.115	
Welfare	-100.000	-85.251	-93.951

Table : Steady state results without human capital effect, $\theta=0$

Mechanism: HSAs and Health Expenditures

- Partial Equilibrium Effects
 - 1. ↑ effective price of health care services
 - 2. ↓ demand for health care "PE substitution effect"
 - 3. \uparrow household income due to tax deductible
 - 4. ↑ demand for health care "PE income effect"
- General Equilibrium Effects:
 - 1. the saving effect and the human capital effect result in changes in household income 'GE income effect'
 - 2. ↓ or ↑ demand for health care depending on "GE income effect"
- ► The net effect determines health expenditures

Mechanism: HSAs and Number of Insured Individuals

- Partial Equilibrium Effect
 - 1. ↓ price of high deductible insurance
 - 2. \uparrow demand for health insurance "PE substitution effect"
 - 3. \uparrow household income due to tax deductible
 - 4. \uparrow demand for health insurance "PE income effect"
- General Equilibrium Effect
 - 1. the saving effect and the human capital effect result in changes in household income - "GE income effect"
 - 2. if income \downarrow , demand for health insurance \downarrow
 - 3. and number of insured individuals ↓
 - 4. if income ↑, demand for health insurance ↑
- The net effect determines the number of insured individuals

HSAs: General vs. Partial Equilibrium Effects 2

	Benchmark No HSA	HSA G.E.	HSA P.E.
Output: Y	100.000	100.876	
Capital stock: K	100.000	102.710	
Standard assets: a in $\%$	100.000	48.521	51.603
Assets in HSAs: a^m in %	0.000	51.479	48.397
Consumption: C	100.000	105.556	102.095
Health Capital: <i>H</i>	100.000	100.144	100.120
Human capital: <i>Hk</i>	100.000	99.984	99.999
Interest rate: r in %	3.876	3.767	
Wages: w	100.000	100.678	
Medical spending: $p_m M$	100.000	112.684	108.228
Medical spending: $p_m M/Y$ in %	14.774	16.503	
Insured workers - low deduct. %	60.319	0.000	11.301
Insured workers - high deduct. %	0.002	99.762	85.575
Government spending: G/Y in %	19.794	14.471	
Welfare	-100.000	-87.442	-93.373

Table : Steady state results with human capital effect, $\theta=1$

Contribution Limits and the Success of HSAs

Conclusion

- ► A macromodel with health capital i.e. a generalized version of the Grossman model
- Macroeconomic implications of health care reforms
- General equilibrium channels are quantitatively important in determining the sucess of HSAs