ME 620: Fundamentals of Artificial Intelligence

Lecture 13: Knowledge Representation and Reasoning

Shyamanta M Hazarika

Biomimetic Robotics and Artificial Intelligence Lab Mechanical Engineering and M F School of Data Sc. & AI IIT Guwahati

Intelligent Behaviour: Human vs. Artificial

☐ Human Intelligence

- Most complex and mysterious phenomenon
- Striking aspect of intelligent behaviour is that it is clearly conditioned by knowledge.
- Decisions for a wide range of activities are based on what we know (or belief).
- ☐ Intelligent behaviour through computational means;
 - Knowledge Representation and Reasoning is concerned with how an agent uses what it knows in deciding what to do.
 - ☐ Structures for representing the knowledge.
 - ☐ Computational processes for reasoning with those structures.

Knowledge

data	
	primitive verifiable facts, of any representation. Data reflects current world, often voluminous frequently changing.
information	
	interpreted data
knowledge	
	relation among sets of data (information), that is very often used for further information deduction.
	Knowledge is (unlike data) general.
	Knowledge contains information about behaviour of abstract models of the world.

Symbolic Vs. Connectionist AI

Symbolic AI

- ☐ Believed in developing an intelligent system based on rules and knowledge and whose actions were interpretable.
- ☐ The traditional symbolic approach, introduced by Newell & Simon in 1976 describes AI as the development of models using symbolic manipulation.

Connectionist AI

☐ Strived to build a computational system inspired by the human brain.

Knowledge Representation Hypothesis

Knowledge representation is an essential problem of symbolic-based artificial intelligence.

Any mechanically embodied intelligent process will comprise of structural ingredients, that

- a. will represent the propositional account of knowledge the overall process exhibits
- b. independently of such a formal semantics will play formal and causal role in performing the behaviour that manifests the knowledge.

Knowledge Representation Hypothesis Brian Smith (1982)

Symbol System Hypothesis

☐ The **physical symbol system hypothesis** is a position in the philosophy of AI.

A physical symbol system has the necessary and sufficient means for general intelligent action.

Allen Newell and Herbert A. Simon

- human thinking is a kind of symbol manipulation (because a symbol system is necessary for intelligence)
- machines can be intelligent (because a symbol system is sufficient for intelligence).

Symbol System Hypothesis

- □ Knowledge may be represented as symbol structures
 - Essentially, complex data structures representing bits of knowledge (objects, concepts, facts, rules, strategies).
 - E.g., "red" represents colour red.
 - "car1" represents my car.
 - red(car1) represents fact that my car is red.
- ☐ Intelligent behaviour can be achieved through manipulation of symbol structures.
 - How to represent knowledge?
 - How to implement the process of reasoning?

Representation

- □ **Representation** is a relationship between two domains, where the first is meant to "stand for" or take the place of the second.
 - Usually, the first domain, the representor, is more concrete, immediate, or accessible in some way than the second.
 - □ For example, a drawing of a hamburger on a sign might stand for a less immediately visible fast food restaurant;
- ☐ The type of representor that we will be most concerned with here is the formal **symbol**
 - A character or group of characters taken from some predetermined alphabet.
 - The digit "7," for example, stands for the number 7, as does the group of letters "VII"

- Role I: A KR is a Surrogate
 - Imperfect Surrogates mean incorrect inferences are inevitable
- Role II: A KR is a Set of Ontological Commitments
 - Commitment begins with the earliest choices
 - The commitments accumulate in layers
 - Reminder: A KR is not a data structure
- Role III: A KR is a Fragmentary Theory of Intelligent Reasoning
 - What is intelligent reasoning?
 - Intelligent reasoning: the logical view and the psychological view
 - Which inferences are sanctioned?
 - Form and content of the answers
 - Which inferences are recommended?
- Role IV: A KR is a Medium for Efficient Computation
- Role V: A KR is a Medium of Human Expression

R. Davis, H. Shrobe, and P. Szolovits. What is a Knowledge Representation? *AI Magazine*, 14(1):17-33, 1993

- A knowledge representation is fundamentally a surrogate
 - a substitute for the thing itself
 - used to enable an entity to determine consequences by reasoning about the world.
- □ It is a set of ontological commitments,
 - i.e., an answer to the question:
 In what terms should I think about the world?

☐ It is a fragmentary theory of intelligent reasoning, expressed in terms of three components:

- 1. the representation's fundamental conception of intelligent reasoning;
- 2. the set of inferences the representation sanctions;
- 3. the set of inferences it recommends.

- ☐ It is a medium for pragmatically efficient computation, i.e., the computational environment in which reasoning is accomplished.
 - One contribution to this pragmatic efficiency is supplied by the guidance a representation provides for organizing information so as to facilitate making the recommended inferences.
- ☐ It is a medium of human expression, i.e., a language in which we say things about the world.

- □ A **subarea of Artificial Intelligence** concerned with understanding, designing, and implementing ways of representing information in computers so that programs (agents) can use this information
 - to derive information that is implied by it,
 - to converse with people in natural languages,
 - to decide what to do next
 - to plan future activities,
 - to solve problems in areas that normally require human expertise.

What is Reasoning?

- □ Reasoning is the use of symbolic representations of some statements in order to derive new ones.
 - While statements are abstract objects, their representations are concrete objects and can be easily manipulated.
- □ Knowledge representation schemes are useless without the ability to reason with them.
 - Knowledge Representation and Reasoning!

How KR & R Works

- ☐ Intelligence requires knowledge
- Computational models of intelligence require models of knowledge
- ☐ Use formalisms to write down knowledge
 - Expressive enough to capture human knowledge
 - Precise enough to be understood by machines
- Separate knowledge from computational mechanisms that process it
 - Important part of cognitive model is what the organism knows!

How can knowledge be represented?

■ Symbolic methods

- Declarative Languages (Logic)
- Imperative Languages (C, C++, Java, etc.)
- Hybrid Languages (Prolog)
- Rules
- Frames
- Semantic Networks
- **...**

■ Non – symbolic methods

- Neural Networks
- Genetic Algorithms

Knowledge representation languages

- □ Rather than use general C++/Java data structures, use special purpose formalisms.
- □ A KR language should allow one to:
 - represent adequately the knowledge one needs for the problem
 - do it in a clear, precise and "natural" way.
 - allow one to reason on that knowledge, drawing new conclusions.

Requirements for KR language

- A KR language should have the following characteristics
 - Representational Adequacy
 - Clear syntax/semantics
 - Inferential adequacy
 - Inferential efficiency
 - Naturalness

In practice no one language is perfect, and different languages are suitable for different problems.

Representational adequacy

- Consider the following facts:
 - Mohan believes no-one likes cricket.
 - Most children believe in Santa.
 - Mr. Kumar will have to finish his assignment before he can start working on his project.
- ☐ Can all be represented as a string?
 - May be Yes!
 - But hard then to manipulate and draw conclusions.
- ☐ How do we represent these formally in a way that can be manipulated in a computer program?
 - Some notations/languages only allow you to represent certain things.
 - Time, beliefs, uncertainty, all hard to represent.

Well-defined syntax/semantics

- Knowledge representation languages should have precise syntax and semantics.
- □ You must know exactly what an expression means in terms of objects in the real world.

Syntax of a KR language

- □ Need to specify which groups of symbols, arranged in what way, are to be considered properly formed.
 - In English, for example, the string of words

 The cat my mother loves is a well-formed phrase

 The my loves mother cat is not a well-formed phrase.
- The **syntax** consists of a set of symbols used by the language and a set of rules according to which the symbols can be combined to form proper sentences.

Semantics of a KR language

- □ For a KR language, need to specify what the wellformed expressions are supposed to mean.
- □ The **semantics** determine a mapping between symbols, combinations of symbols, propositions of the language and concepts of the world to which they refer
- A proposition in a KR language does not mean anything on its own
 - The semantics (i.e. the meaning) of the proposition must be defined by the language author through an interpretation

Inferential Adequacy

- □ Representing knowledge not very interesting unless you can use it to make inferences:
 - Draw new conclusions from existing facts.
 - □ "If its raining John never goes out" + "It's raining today" so...
 - Come up with solutions to complex problems, using the represented knowledge.
- □ Inferential adequacy refers to **how easy it is to draw inferences** using represented knowledge.
- □ Representing everything as natural language strings has good representational adequacy and naturalness, but very poor inferential adequacy.

Inferential Efficiency

- □ You may be able, in principle, to **make complex deductions** given knowledge represented in a sophisticated language.
 - But it may be just too inefficient.
 - Generally the more complex the possible deductions, the less efficient will be the reasoner.
- □ Need representation and inference system sufficient for the task, without being hopelessly inefficient.

Natural representation scheme

- □ Also helpful if our representation scheme is quite **intuitive** and **natural** for human readers!
- Could represent the fact that my car is red using the notation:
 - "xyzzy ! Zing"
 - where xyzzy refers to redness, Zing refers to by car, and ! used in some way to assign properties.
- □ But this wouldn't be very helpful; compared with
 - car(smh) AND colour(red).
 - where car(x) refers to owner x; colour(x) refer to `x' colour.

Desired Features of KR languages

- □ Epistemological Level
 - Clarity
 - Expressiveness
- □ Logical Level
 - Elegant syntax & semantics
 - Decidability / Tractability
 - Sound and complete inference mechanism
- □ Implementation Level
 - Space & Time efficiency
 - Extensibility