# المملكة المغربية وترامرة التربية الوطنية و التعليد العالي و قكون الاطر و البحث العلمي المركز الوطني للتعويد و الإمتحانات

الإمتحات الوطنى الموحد لنيل شهادة البكالوريا الدورة الاستدر اكية 2006

المعامل <u>10</u> مدة الإنجاز: أربع ساعات

مادة الرياضيات

مسلك العلوم الرياضية أ و ب

#### استعمال الحاسبة الغير القابلة للبرمجة مسموح به

# التمرين الأول: ( 2,0 ن )

نوزع بطريقة عشوائية أربع كرات غير قابلة للتمييز باللمس و مرقمة 1 و 2 و 3 و 4 و 5 على ستة أشخاص A و B و D و D و D و D و D أو 1 أو 2 أو 2 أو 3 أو 4 كرات )

- 0,50 ن ما هو عدد إمكانيات توزيع الكرات الأربع على الأشخاص الستة ؟
- ما المنافق على الأقل . 2 أحسب احتمال أن يحصل الشخص 4 على كرة واحدة على الأقل .
- يساوي عدد C أحسب احتمال الحدث التالي : " مجموع عددي الكرات المحصل عليها من طرف الشخصين D و D يساوي عدد الكرات المحصل عليها من طرف الشخص D .

# التمرين الثانى: ( 4,0 ن )

 $^{\circ}$  يا المستوى العقدي المنسوب إلى معلم متعامد ممنظم ( $\mathcal{O}, \vec{u}, \vec{v}$ ) نعتبر التطبيق المعرف من  $\mathcal{O}$  نحو

$$f(z) = \frac{1}{6} \left( \left( 1 + i\sqrt{3} \right) z + 2\bar{z} \right)$$

- . f(z)=0 : المعادلة (I) حل في (I) حل في
- .  $z_n$  العدد العقدي  $u_n$  و نرمز ب $u_n$  من الكل  $z_{n+1}=f(z_n)$  و  $z_0=1$  نضع العدد العقدي (II)
  - $(\forall n \in \mathbb{N})$  ;  $0 \le u_{n+1} \le \frac{2}{3}u_n$  : بين أن (1) بين أن (5,50)
  - استنتج أن المتتالية  $(u_n)_{n>0}$  متقاربة و احسب نهايتها .  $\bigcirc$
  - $\mathcal{S}_n = \sum_{k=0}^n \mathcal{O} M_k = \mathcal{O} M_1 + \dots + \mathcal{O} M_n$  : کل n من n نضع (2)

.  $Z_k$  من  $\mathbb{N}$  نعتبر  $M_k$  صورة العدد العقدي الح

- .  $(\forall n \in \mathbb{N})$  ;  $S_n \leq 3$  يين أن (50.50)
- ( عير مطلوب ) متقاربة ( حساب نهاية  $(\mathcal{S}_n)_{n\geq 0}$  عير مطلوب ) متقاربة ( حساب نهاية  $(\mathcal{S}_n)_{n\geq 0}$  عير مطلوب
  - $z=re^{i heta}$  و [III) نضع  $z=re^{i heta}$ 
    - $f(z) = \frac{2}{3}r\cos\left(\theta + \frac{\pi}{6}\right)e^{\frac{i\pi}{6}}$  : بين أن : 1,00
  - .  $(n \in \mathbb{N}^*)$  بين أن النقط  $M_1$  و  $M_2$  و  $M_2$  بين أن النقط  $M_1$  بين أن النقط و  $M_2$

الأجوبة من اقتراح الأستاذ بدر الدين الفاتحي -

المستوى منسوب إلى معلم متعامد ممنظم ( $\vec{\imath}, \vec{\imath}$ ) المستوى منسوب إلى معلم متعامد ممنظم ( $\vec{\imath}, \vec{\imath}$ ) .

$$2y^2 - 4y - 7x = 0$$
 ليكن (۲) المنحنى الذي معادلته

- بین أن  $(\Gamma)$  شلجم و حدد رأسه و بؤرتیه. (1)(I)
- .  $(\mathcal{O},\vec{\imath},\vec{\jmath})$  في المعلم  $(\Gamma)$  في المعلم (2)
- .  $(E): 2(y-1)^2 = 7x + 2$  : المعادلة (II) نعتبر في  $\mathbb{Z}^2$ 
  - .  $y\equiv 2$ [7] أو  $y\equiv 0$  (1) بين أن  $y\equiv 0$  بين أن يا أو الم
  - نامجموعة حلول المعادلة (E) هي:  $\Theta$  استنتج أن مجموعة حلول المعادلة ( $\Theta$ ) استنتج

$$S = \{(14K^2 - 4k ; 7k) / k \in \mathbb{Z}\} \cup \{(14k^2 + 4k ; 7k + 2) / k \in \mathbb{Z}\}$$

 $x \wedge y = 9$  و  $(x,y) \in \mathbb{Z}^2$  : من المنحنى M(x,y) و M(x,y)

## التمرين الرابع: ( 3,0 ن )

$$(\forall t \in \mathbb{R}) \; ; \; \frac{(1+t)^2}{(1+t^2)(3+t^2)} = \frac{t}{(1+t^2)} - \frac{t}{(3+t^2)} + \frac{1}{(3+t^2)} \; : \; \underbrace{0.25}$$

$$(\forall \alpha \in \mathbb{R})$$
 ;  $\int_0^{\alpha} \frac{1}{(3+t^2)} dt = \frac{1}{\sqrt{3}} Arctan\left(\frac{\alpha}{\sqrt{3}}\right)$  : نین أن  $(2)$ 

$$F(x) = \int_0^x \frac{1+\sin u}{2+\cos u} du$$
 : ينتبر الدالة العددية  $F$  المعرفة على  $F$  المعرفة على [0, $\pi$ ] بما يلي (3)

- $[0,\pi]$  بين أن F قابلة للإشتقاق على (0,50) .
- : بين أن باستعمال مكاملة بتغيير المتغير  $t = \tan\left(\frac{u}{2}\right)$  بين أن باستعمال مكاملة بتغيير المتغير

$$(\forall x \in [0, \pi[) ; F(x) = 2 \int_0^{\tan \frac{\pi}{2}} \frac{(1+t)^2}{(1+t^2)(3+t^2)} dt$$

$$u\epsilon[0,\pi[$$
 و  $t= anrac{u}{2}$  : خيث  $\sin u=rac{2t}{1+t^2}$  و  $\cos u=rac{1-t^2}{1+t^2}$  : نذکر أن

0,75 ن باستعمال السؤالين (1) و (2) بين أن:

$$(\forall x \in [0, \pi[) ; F(x) = \ln 3 + \frac{2}{\sqrt{3}} Arctan\left(\frac{\tan\left(\frac{x}{2}\right)}{\sqrt{3}}\right) + \ln\left(\frac{1 + \tan^2\left(\frac{x}{2}\right)}{3 + \tan^2\left(\frac{x}{2}\right)}\right)$$

$$\int_0^u \frac{1+\sin u}{2+\cos u} du = \ln 3 + \frac{\pi}{\sqrt{3}} \quad : ن الدالة F بين أن باستعمال الدالة والدالة و$$

الجوية من اقتراح الأستاذ بدر الدين الفاتحي - الصفحة : 84

التمرين الخامس: ( 3,0 ن ) في هذا التمرين  $\chi$  يرمز لعدد صحيح طبيعي أكبر أو يساوي 2

$$\widehat{f_n(x)} = rac{x}{n} - e^{-nx}$$
 : نعتبر  $f_n$  الدالة العددية المعرفة على  $\mathbb R$  بما يلي:

.  $(\mathcal{O}, \vec{\imath}, \vec{\jmath})$  التمثیل المبیانی للدالة  $f_n$  في معلم متعامد ممنظم ( $\mathcal{E}_n$ ) لیکن

$$\lim_{x \to +\infty} f_n(x)$$
 و  $\lim_{x \to -\infty} f_n(x)$  : أحسب  $f_n(x)$ 

- . ( $\mathcal{C}_n$ ) أدر س الفر عين اللانهائيين للمنحنى أدر س أدر س الفر عين اللانهائيين المنحنى
- .  $f_n$  أحسب  $f_n'(x)$  لكل  $f_n'(x)$  من  $\mathbb{R}$  ثم ضع جدول تغيرات الدالة  $f_n'(x)$
- $\pi_n$  .  $\pi$  في  $\pi_n$  تقبل حلا وحيدا  $\pi_n(x)=0$  في  $\pi_n$  .  $\pi_n(x)=0$  في  $\pi_n$  .

$$f_n\left(\frac{1}{n}\right) < 0$$
 : نين أن  $\underbrace{0,25}$ 

.  $f_n(1)>0$  نُم استنتج أن  $(\forall x \in \mathbb{R})$  ;  $e^x \geq x+1$  نِين أن  $\odot$  0,75

$$\frac{1}{n} < \alpha_n < 1$$
 : بين أن  $0,50$ 

$$(\alpha_2 \approx 0.6: )$$
 (ناخد : 4) (الله عنه المنحنى ( المنحنى ( ناخد ) انشىء المنحنى ( المنحنى ) ( المنحنى ( المنحنى ) ( المنحنى ) ( المنحنى ( المنحنى ) ( المنحنى ) ( المنحنى ) ( المنحنى ( المنحنى ) ( المنحنى ) ( المنحنى ) ( المنحنى ( المنحنى ) ( المنحنى

$$f_{n+1}(\alpha_n) = \frac{ne^{-(n+1)\alpha_n}}{(n+1)} \left( e^{\alpha_n} - \frac{1}{n} - 1 \right)$$
 : لينا أن  $(\forall n \in \mathbb{N})$  بحيث  $2 \ge n$  لدينا أن  $(\forall n \in \mathbb{N})$ 

$$(\forall n \in \mathbb{N}^* - \{1\})$$
 ;  $f_{n+1}(\alpha_n) \geq 0$  : استنتج أن  $\Theta$  استنتج أن  $\Theta$ 

بين أن المتتالية 
$$(lpha_n)_{n\geq 2}$$
 تناقصية ثم استنتج أنها متقاربة .  $\mathfrak{E}$ 

$$(\forall n \in \mathbb{N}^* - \{1\})$$
 ;  $\frac{1}{n^2} < e^{-n\alpha_n} < \frac{1}{n}$  : باستعمال السؤال  $(3)$  باستعمال السؤال  $(3)$ 

$$(\forall \ n \in \mathbb{N}^* \setminus \{1\}) \ ; \ \frac{\ln n}{n} < \alpha_n < \frac{2 \ln n}{n}$$
 : ن استنتج أن :  $\frac{0.50}{n}$ 

$$\lim_{n\to+\infty} \alpha_n$$
 عدد : حدد  $0.25$ 



# <u> التمرين الأول : ( 2,0 ن )</u>

**(1)**■

توزيع أربع كرات مرقمة على 6 أشخاص يمكن أن يتم بخمس طرق مختلفة:

<u>الطريقة الأولى:</u> إعطاء شخص واحد الكرات الأربع.

الطريقة الثانية: إعطاء شخص واحد الكرة الأولى ثم نعطي الشخص الثاني الكرات الثلاث المتبقية.

الطريقة الثالثة: إعطاء شخص واحد كرتين و شخص ثاني كرتين.

الطريقة الرابعة: إعطاء شخص واحد كرة واحدة و شخص ثاني كرة واحدة و شخص ثالث كرتين.

الطريقة الخامسة: نعطى كل شخص كرة واحدة.

### في الطريقة الأولى لدينا:

. إمكانية لاختيار الشخص الذي سنعطيه الكرات الأربع  $\mathcal{C}^1_6$ 

### في الطريقة الثانية لدينا:

- الذي سنعطيه كرة واحدة  $\mathcal{C}^1_6$ 
  - و  $\mathcal{C}_4^1$  إمكانية لاختيار الكرة التي سنعطيها إياه
- و  $rac{1}{5}$  إمكانية لاختيار الشخص الذي سنعطيه الكرات الثلاث المتبقية.

# في الطريقة الثالثة لدينا:

- إمكانية لاختيار الشخص الذي سنعطيه الكرتين  $\mathcal{C}^1_6$ 
  - و  $C_4^2$  إمكانية لاختيار الكرتين.
- و  $C_5^1$  إمكانية لاختيار الشخص الآخر صاحب الكرتين المتبقيتين.

# في الطريقة الرابعة لدينا:

- أمكانية لاختيار الشخص صاحب الكرة الأولى.
  - و  $C_4^1$  إمكانية لاختيار الكرة التي سنعطيه.
- و والكرة الثانية والشخص ماحب الكرة الثانية.  $C_5^1$ 
  - و  $C_3^1$  إمكانية لاختيار الكرة التي سنعطيه.
- و  $C_4^1$  إمكانية لاختيار الشخص صاحب الكرتين المتبقيتين.

## في الطريقة الرابعة لدينا:

- مكانية لاختيار الشخص صاحب الكرة الأولى.  $\mathcal{C}_6^1$
- و و  $C_5^1$  إمكانية لاختيار الشخص صاحب الكرة الثانية.
  - و  $C_3^1$  إمكانية لاختيار الكرة التي سنعطيه.
  - مكانية لاختيار الشخص صاحب الكرة الثالثة.  $C_4^1$ 
    - و  $\mathcal{C}_2^1$  إمكانية لاختيار الكرة التي سنعطيه  $\mathcal{C}_2^1$
- $C_3^1$  إمكانية لاختيار الشخص صاحب الكرة الرابعة. و  $C_1^1$  إمكانية لاختيار الكرة التي سنعطيه.

#### التطبيق العددي:

 الطريقة:
 ط الطريقة:</th

و بالتالي : عدد الإمكانيات لتوزيع الكرات الأربع على الأشخاص الستة هو :

 $6 + 120 + 180 + 1440 + 8640 = \boxed{10386}$ 

----(**2**)ı

الشخص A يمكنه أن يحصل على :

- $C_4^1$  لمكانية.
- أو يحصل على كرتين بـ  $C_4^2$  إمكانية.
- أو يحصل على ثلاث كرات بـ  $C_4^3$  إمكانية.
- أو يحصل على أربع كرات بإمكانية واحدة .

إذن عدد الإمكانيات التي يحصل فيها الشخص A على كرة واحدة على الأقل هو :

 $C_4^1 + C_4^2 + C_4^3 + C_4^4 = 15$ 

و منه : احتمال أن يحصل الشخص A على كرة واحدة على الأقل يساوي :

 $\frac{15}{10386} \approx 0,0015 \equiv 0,15\%$ 

-(3)■

إذا حصل الشخص B على كرة واحدة رقمها m و حصل الشخص B على كرة واحدة رقمها n فإن الشخص A سيحصل على (m+n) كرة و لدينا :

m + n + 2 = 4

 $\Leftrightarrow$  m+n=2

نعلم أن  $m \neq n$  إذن هذه المعادلة لا تقبل حلو لا في المجموعة  $m \neq n$  (4, 3, 4, 4, 5, 2, 1)

و بالتالي نحن بصدد حدث مستحيل و احتمال وقوعه ()

أجوية الدورة الاستدراكية 2006 من إعداد الأستاذ بدر الدين الفاتحي: ( ) رمضان 2012 الصفحة: 86

# ڲۄۄڲڲۄۄڲٷۄڲۄۄڲۿۄۄڲڮۄۄڲڲۄۄڲڲۄۄڲڲۄۄڲڲۄۄڲٷۄٷڲۄۄڲۿۄۄڲ

$$(\forall n \in \mathbb{R})$$
  $0 \le u_{n+1} \le \frac{2}{3}u_n$  : لدينا

$$0 \le u_n \le \frac{2}{3}u_{n-1}$$
 : نحصل على ناجل  $(n-1)$  من أجل

$$\Leftrightarrow 0 \le u_n \le \frac{2}{3}u_{n-1}$$

$$\le \left(\frac{2}{3}\right)\left(\frac{2}{3}\right)u_{n-2}$$

$$\le \left(\frac{2}{3}\right)^3 u_{n-3}$$

$$\vdots$$

$$\vdots$$

$$\le \left(\frac{2}{3}\right)^n u_{n-n}$$

$$\Leftrightarrow 0 \le u_n \le \left(\frac{2}{3}\right)^n u_0$$
 و بالنالي : 
$$\Leftrightarrow 0 \le u_n \le \left(\frac{2}{3}\right)^n$$

$$\lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0 \quad :$$
 Levil

1 لأن  $\left(\frac{2}{3}\right)^n$  متتالية هندسية أساسها موجب و أصغر من

و بالتالي :  $(u_{
m n})_{
m n}$  متقاربة و تؤول إلى الصفر

$$\overline{\lim_{n \infty} (u_n) = 0}$$
 : يعني

-(j)(2)(II) ■

$$\mathcal{S}_n = \mathcal{O}M_0 + \mathcal{O}M_1 + \dots + \mathcal{O}M_n$$
 : دينا

$$\Leftrightarrow \quad \mathcal{S}_n = |z_0| + |z_1| + \dots + |z_n|$$

$$\Leftrightarrow \quad \mathcal{S}_n = u_0 + u_1 + \dots + u_n$$

$$(\forall n \in \mathbb{R})$$
  $0 \le u_n \le \frac{2}{3}u_{n-1}$  : و نعلم أن

$$\begin{cases} u_0 \le 1 \\ u_1 \le \left(\frac{2}{3}\right) \\ \vdots \\ u_n \le \left(\frac{2}{3}\right)^n \end{cases} : 0$$

#### <u>لتمرين الثاني: (4,0 ن)</u>

-(I)■

f(z)=0 : ثم ننطلق من الكتابة z=x+iy

$$\iff (1+i\sqrt{3})z + 2\bar{z} = 0$$

$$\Leftrightarrow (1+i\sqrt{3})(x+iy) + 2(x-iy) = 0$$

$$\Leftrightarrow (3x - \sqrt{3}y) + i(-y + \sqrt{3}x) = 0$$

$$\Leftrightarrow \begin{cases} 3x - \sqrt{3}y = 0 \\ -y + \sqrt{3}x = 0 \end{cases}$$

$$\iff \begin{cases} 3x = \sqrt{3}y \\ 3x = \sqrt{3}y \end{cases}$$

$$\Leftrightarrow$$
  $z = x + i\sqrt{3}x$ 

$$\iff \quad z = x(1 + i\sqrt{3})$$

و منه : مجموعة حلول المعادلة f(z)=0 في T تكتب على الشكل :

$$\mathcal{S} = \left\{ x(1 + i\sqrt{3}) / x\epsilon \mathbb{R} \right\}$$

-(j)(II)■

$$f(z) = \frac{1}{6} \left( \left( 1 + i\sqrt{3} \right) z + 2\bar{z} \right)$$
 ينا :

$$\Leftrightarrow f(z_n) = \frac{1}{6} \Big( \Big( 1 + i\sqrt{3} \Big) z_n + 2\overline{z_n} \Big)$$

$$\Rightarrow |f(z_n)| = \left| \frac{1}{6} \left( \left( 1 + i\sqrt{3} \right) z_n + 2\overline{z_n} \right) \right|$$

. 
$$|z| = |\overline{z}|$$
 و  $|z + z'| \le |z| + |z'|$  .

$$\Rightarrow |f(z_n)| \leq \frac{1}{6} \left| \left( 1 + i\sqrt{3} \right) z_n \right| + \frac{1}{6} |2\overline{z_n}|$$
: نِذِن

$$\Rightarrow |f(z_n)| \le \left(\frac{1}{6}\right) 2|z_n| + \left(\frac{2}{6}\right)|z_n|$$

$$\Rightarrow |f(z_n)| \leq \frac{2}{3}|z_n|$$

$$\Rightarrow |z_{n+1}| \le \frac{2}{3}|z_n|$$

$$\Rightarrow u_{n+1} \leq \frac{2}{3}u_n$$

و نعلم أن معيار عدد عقدي يكون دائما موجبا.

$$(\forall n \in \mathbb{R})$$
  $0 \le u_{n+1} \le \frac{2}{3}u_n$  : إذَن

رة الاستدراكية 2006 من إعداد الأستاذ بدر الدين الفاتحي: ( الصا



$$=\frac{2r}{3}\left(\left(\frac{3\cos\theta}{4}-\frac{\sqrt{3}sin\theta}{4}\right)+\left(i\frac{\sqrt{3}cos\theta}{4}-i\frac{sin\theta}{4}\right)\right)$$

$$= \frac{2r}{3} \left( \frac{\sqrt{3}}{2} \left( \frac{\sqrt{3}}{2} \cos \theta - \frac{1}{2} \sin \theta \right) + \frac{i}{2} \left( \frac{\sqrt{3}}{2} \cos \theta - \frac{1}{2} \sin \theta \right) \right)$$

$$= \frac{2r}{3} \left( \frac{\sqrt{3}}{2} \cos \left( \theta + \frac{\pi}{6} \right) + \frac{i}{2} \cos \left( \theta + \frac{\pi}{6} \right) \right)$$

$$=\frac{2r}{3}\cos\left(\theta+\frac{\pi}{6}\right)\left(\frac{\sqrt{3}}{2}+\frac{1}{2}i\right)$$

$$\iff f(z) = \frac{2r}{3}cos\left(\theta + \frac{\pi}{6}\right)e^{i\left(\frac{\pi}{6}\right)}$$

**(2)(III)** ■

 $k\epsilon\{1,\dots,n\}$  : هو لحق النقطة  $f(z_{k-1})$  . الدينا

$$f(z) = \frac{2r}{3} cos\left(\theta + \frac{\pi}{6}\right) e^{i\left(\frac{\pi}{6}\right)}$$
 : و لدينا

$$\Rightarrow f(z_{k-1}) = \frac{2r}{3}cos\left(\theta + \frac{\pi}{6}\right)e^{i\left(\frac{\pi}{6}\right)}$$

$$\Rightarrow arg(f(z_{k-1})) \equiv arg\left(e^{i\left(\frac{\pi}{6}\right)}\right)[2\pi]$$

$$\Rightarrow arg(f(z_{k-1})) \equiv \frac{\pi}{6}[2\pi]$$

و بالتالي النقط  $M_1$  و  $M_2$  و  $M_1$  تنتمي إلى نفس المستقيم ( $\Delta$ ) المبين في الشكل التالى :



$$u_0 + u_1 + \dots + u_n \le \sum_{k=0}^n \left(\frac{2}{3}\right)^k$$
 : و منه

$$\Leftrightarrow \quad \mathcal{S}_n \le \left(\frac{1 - \left(\frac{2}{3}\right)^{n+1}}{1 - \left(\frac{2}{3}\right)}\right)$$

$$\iff \left( S_n \le 3 \left( 1 - \left( \frac{2}{3} \right)^{n+1} \right) \right)$$

$$-\left(\frac{2}{3}\right)^{n+1} \le 0$$
 اذن :  $\left(\frac{2}{3}\right)^{n+1} \ge 0$  و لدينا

$$\left(1 - \left(\frac{2}{3}\right)^{n+1}\right) \le 1 \quad : 0$$
و منه

$$3\left(1-\left(\frac{2}{3}\right)^{n+1}\right) \le 3 \qquad \vdots$$
يعني

$$\left[ \left( orall n \epsilon \mathbb{N} 
ight) \; : \; \; \mathcal{S}_n \leq 3 
ight]$$
 و بالنالي :

—(÷)(2)(II)■

$$\mathcal{S}_n = \mathcal{O}M_0 + \mathcal{O}M_1 + \dots + \mathcal{O}M_n$$

نلاحظ أن:

لدبنا

$$(\mathcal{O}M_0 + \dots + \mathcal{O}M_n) + \mathcal{O}M_{n+1} > (\mathcal{O}M_0 + \dots + \mathcal{O}M_n)$$

$$S_{n+1} > S_n$$
 : إذن

إذن 
$$(\mathcal{S}_n)_n$$
 متتالية تزايدية

و بما أنها مكبورة بالعدد 3 (يعني : 3  $S_n \leq 3$  ) فإنها متقاربة.

—(1)(III)■

$$f(z) = \frac{1}{6} \left( \left( 1 + i\sqrt{3} \right) z + 2\bar{z} \right) \qquad :$$
البينا

$$\iff f(z) = \frac{1}{6} (r(1 + i\sqrt{3})e^{i\theta} + 2re^{-i\theta})$$

$$\Leftrightarrow$$
  $f(z) = \frac{2r}{3} \left( \left( \frac{1}{4} + i \frac{\sqrt{3}}{4} \right) e^{i\theta} + \frac{e^{-i\theta}}{2} \right)$ 

$$= \frac{2r}{3} \left( \left( \frac{1}{4} + i \frac{\sqrt{3}}{4} \right) (\cos \theta + i \sin \theta) + \frac{1}{2} (\cos \theta - i \sin \theta) \right)$$

$$=\frac{2r}{3}\left(\frac{\cos\theta}{4}+i\frac{\sin\theta}{4}+i\frac{\sqrt{3}\cos\theta}{4}-\frac{\sqrt{3}\sin\theta}{4}+\frac{\cos\theta}{2}-i\frac{\sin\theta}{2}\right)$$

$$\Leftrightarrow f(z) = \frac{2r}{3} \left( \frac{3\cos\theta}{4} + i \frac{\sqrt{3}\cos\theta}{4} - \frac{\sqrt{3}\sin\theta}{4} - i \frac{\sin\theta}{4} \right)$$

أجوبة الدورة الاستدراكية 2006 من إعداد الأستاذ بدر الدين الفاتحي: ( ) رمضان 2012 الصفحة: 88



# التمرين الثالث: (3,5 ن)

-(1)(I) ■

. 
$$y\equiv 0[7]$$
 غي حالة :

$$(\exists k \in \mathbb{Z})$$
 ;  $y = 7k$  : لاينا

$$2y(y-2) = 7x$$
 : و لدينا

$$2(7k)(7k-2) = 7x$$
 : يعني

$$x = 14k^2 - 4k : إذن$$

و في حالة: 
$$y \equiv 2[7]$$

$$(\exists k \in \mathbb{Z})$$
 ;  $y = 7k + 2$  : لدينا

$$2y(y-2)=7x : و لدينا$$

$$2(7k+2)(7k) = 7x$$
 : يعني

$$x = 14k^2 + 4k$$
 : إذن

و بالتالي : مجموعة حلول المعادلة (E) هي :

$$S = \{(14k^2 - 4k; 7k), (14k^2 + 4k; 7k + 2) / k \in \mathbb{Z}\}$$

# -(2)(II) **■**

$$x \wedge y = 9$$
 : لدينا

#### y = 7k و $x = 14k^2 - 4k$ في حالة :

لدينا حسب خو ار ز مية إقليدس:

$$\begin{array}{|c|c|c|c|c|}
\hline
14k^2 - 4k & 7k \\
\hline
-4k & 2k
\end{array}$$

إذن من هذه القسمة الأقليدية نستنتج أن:

$$(14k^2 - 4k) \wedge (7k) = (7k) \wedge (-4k) = k$$
 $7 \wedge (-4) = 1 :$ 

$$x \wedge y = k = 9$$
 : و منه

$$2y^2 - 4y - 7x = 0$$

$$\Rightarrow 2(y^2 - 2y) = 7x$$

$$\Leftrightarrow 2(y-1)^2 = 7x + 2$$

$$\iff (y-1)^2 = \frac{7}{2}x + 1$$

$$\iff (y-1)^2 = \frac{7}{2} \left( x + \frac{2}{7} \right)$$

$$\Omega\left(\frac{-2}{7};1\right)$$
 إذن  $(\Gamma)$  شلجم رأسه :

$$F\left(\frac{7}{8} - \frac{2}{7}; 0 + 1\right)$$
 : و بؤرته

$$F\left(\frac{33}{56};1\right)$$
 يعني :



$$2(v-1)^2 = 7x + 2$$
 : لدينا

$$\Leftrightarrow 2(y^2 - 2y + 1) = 7x + 2$$

$$\Leftrightarrow$$
  $2y(y-2) = 7x$ 

$$\Leftrightarrow$$
 7 / 2 $y(y-2)$ 

و بما أن العدد 7 أولى فإن :

$$\Leftrightarrow$$
 7/2 degree 7/y degree 7/(y-2)

$$\Leftrightarrow y \equiv 0[7] \quad \forall y \equiv 2[7]$$



·(i)(3)■

ــا(3)(ب

$$u \to \frac{1 + \sin u}{2 + \cos u}$$
 : الدينا

دالة متصلة على المجال  $[0,\pi]$  لأنها خارج معرَّف لدالتين متصلتين على  $[0,\pi]$  بحيث : 0 على  $[0,\pi]$ 

 $[0,\pi]$  على المجال المجال . [0, $\pi$ 

.  $[0,\pi]$  على المجال F . يعني F

$$F'(x) = \frac{1 + \sin x}{2 + \cos x}$$
 : و لدينا

 $[0,\pi]$  ليكن x عنصرا من المجال

$$F(x) = \int_0^x \left(\frac{1 + \sin u}{2 + \cos u}\right) du \quad :$$
البينا

$$\frac{dt}{du} = \frac{1+t^2}{2}$$
 : نضع  $t = tan\left(\frac{u}{2}\right)$ 

$$F(x) = \int_0^{\tan\left(\frac{x}{2}\right)} \left(\frac{1 + \left(\frac{2t}{1 + t^2}\right)}{2 + \left(\frac{1 - t^2}{1 + t^2}\right)}\right) \left(\frac{2}{1 + t^2}\right) dt \qquad \text{(3)}$$

$$F(x) = 2 \int_0^{\tan(\frac{x}{2})} \frac{(t+1)^2}{(1+t^2)(3+t^2)} dt$$

$$F(x) = 2 \int_{0}^{\tan\left(\frac{x}{2}\right)} \frac{(t+1)^{2}}{(1+t^{2})(3+t^{2})} dt$$

$$= 2 \int_{0}^{\tan\left(\frac{x}{2}\right)} \left(\frac{t}{1+t^{2}} - \frac{t}{3+t^{2}} + \frac{1}{3+t^{2}}\right) dt$$

$$= 2 \int_{0}^{\tan\left(\frac{x}{2}\right)} \left(\frac{t}{1+t^{2}}\right) dt - 2 \int_{0}^{\tan\left(\frac{x}{2}\right)} \left(\frac{t}{3+t^{2}}\right) dt$$

$$+ 2 \int_{0}^{\tan\left(\frac{x}{2}\right)} \left(\frac{1}{3+t^{2}}\right) dt$$

$$= \left[\ln(1+t^{2})\right]_{0}^{\tan\left(\frac{x}{2}\right)} - \left[\ln(3+t^{2})\right]_{0}^{\tan\left(\frac{x}{2}\right)} + \frac{2}{\sqrt{3}} Arctan\left(\frac{1}{\sqrt{3}} \tan\left(\frac{x}{2}\right)\right)$$

$$y = 7k + 2$$
 و  $x = 14k^2 + 4k$  في حالة :

$$14k^2 + 4k = 2k(7k + 2)$$
 : لدينا

إذن من هذه النتيجة نستنتج أن :

$$(14k^2 + 4k) \wedge (7k + 2) = (7k + 2)$$

$$x \wedge y = 7k + 2 = 9$$
 : و منه

$$k=1$$
 : يعنى

و منه نحصل على النقطة: (9; 18;9).

#### <u> التمرين الرابع: (3,0 ن)</u>

$$\frac{t}{1+t^2} - \frac{t}{3+t^2} + \frac{1}{3+t^2} = \frac{t}{1+t^2} + \frac{1-t}{3+t^2} : \frac{1-t}{3+t^2} = \frac{t(3+t^2) + (1-t)(1+t^2)}{(1+t^2)(3+t^2)}$$

$$= \frac{t(3+t^2) + (1-t)(1+t^2)}{(1+t^2)(3+t^2)}$$

$$= \frac{t^2 + 2t + 1}{(1+t^2)(3+t^2)}$$

$$= \frac{(t+1)^2}{(1+t^2)(3+t^2)}$$

ملاحظة: المسار العكسي لهذه المتساوية ستتم در استه بتفاصيله في السنة الأولى من الأقسام التحضيرية أو الأسدس الثاني من الجامعة أو السنة الأولى من (BTS). و هذه العملية تسمى:

< la décomposition d'une fraction rationnel en éléments simples >

$$\left(\frac{1}{(x-2)(x-3)} = \frac{-1}{(x-2)} + \frac{1}{(x-3)}\right)$$
 : مثال

**-**②■

$$\int_0^\alpha \left(\frac{1}{3+t^2}\right) dt = \frac{1}{3} \int_0^\alpha \left(\frac{1}{1+\frac{t^2}{3}}\right) dt$$
 : لاينا

$$dt = \sqrt{3}du$$
 : نضع  $u = \frac{t}{\sqrt{3}}$ 

$$\int_0^{\alpha} \left( \frac{1}{3+t^2} \right) dt = \frac{\sqrt{3}}{3} \int_0^{\frac{\alpha}{\sqrt{3}}} \left( \frac{1}{1+u^2} \right) dt \quad \text{(a)}$$

$$\iff \int_0^\alpha \left(\frac{1}{3+t^2}\right) dt = \frac{\sqrt{3}}{3} \left[Arctan \, u\right]_0^{\frac{\alpha}{\sqrt{3}}}$$

$$\iff \left| \int_0^\alpha \left( \frac{1}{3+t^2} \right) dt = \frac{1}{\sqrt{3}} Arctan \left( \frac{\alpha}{\sqrt{3}} \right) \right|$$

أجوية الدورة الاستدراكية 2006 من إعداد الأستاذ بدر الدين الفاتحي: ( ) رمضان 2012 الصفحة: 90



·(÷)(1) **■** 

$$\lim_{x \to +\infty} \frac{f_n(x)}{x} = \lim_{x \to +\infty} \left( \frac{1}{n} - \frac{1}{xe^{nx}} \right) = \frac{1}{n} \quad :$$
 لينا

$$\lim_{x \to +\infty} \left( f_n(x) - \frac{1}{n} x \right) = \lim_{x \to +\infty} (-e^{-nx}) = 0 \quad :$$
و لدينا

$$\lim_{x \to +\infty} f_n(x) = +\infty$$
 : کما نعلم أن

 $y=rac{1}{n}$  إذن من هذه النتائج نستنتج أن المستقيم  $y=rac{1}{n}$  مقارب مائل بجوار

$$\lim_{x \to -\infty} \frac{f_n(x)}{x} = \lim_{x \to -\infty} \left( \frac{1}{n} - \frac{1}{xe^{nx}} \right) = +\infty$$
 و لدينا كذلك :

$$= \ln\left(1 + \tan^2\left(\frac{x}{2}\right)\right) - \ln\left(3 + \tan^2\left(\frac{x}{2}\right)\right) + \ln 3$$

$$+ \frac{2}{\sqrt{3}}Arctan\left(\frac{1}{\sqrt{3}}\tan\left(\frac{x}{2}\right)\right)$$

$$= \left( \ln 3 + \frac{2}{\sqrt{3}} Arctan\left(\frac{1}{\sqrt{3}} tan\left(\frac{x}{2}\right)\right) + \ln\left(\frac{1 + tan^2\left(\frac{x}{2}\right)}{3 + tan^2\left(\frac{x}{2}\right)}\right) \right)$$

$$\lim_{x o \pi^-} F(x) = F(\pi)$$
 : إذن  $\pi$  إنن  $\pi$  متصلة على يسار

$$\lim_{x \to \pi^{-}} \left( \ln 3 + \frac{2}{\sqrt{3}} Arctan \left( \frac{1}{\sqrt{3}} tan \left( \frac{x}{2} \right) \right) + \ln \left( \frac{1 + tan^{2} \left( \frac{x}{2} \right)}{3 + tan^{2} \left( \frac{x}{2} \right)} \right) \right) = \int_{0}^{\pi} \left( \frac{1 + sin u}{2 + cos u} \right) du$$

و لدينا:

$$\lim_{x \to \pi^{-}} \ln \left( \frac{1 + \tan^{2} \left( \frac{x}{2} \right)}{3 + \tan^{2} \left( \frac{x}{2} \right)} \right) = \lim_{\substack{u \to +\infty \\ u = tg^{2} \left( \frac{x}{2} \right)}} \ln \left( \frac{1 + \frac{1}{u}}{1 + \frac{3}{u}} \right) = \ln 1 = 0$$

$$\lim_{x \to \pi^{-}} \left( \frac{2}{\sqrt{3}} Arctan\left(\frac{1}{\sqrt{3}} tan\left(\frac{x}{2}\right)\right) \right) = \frac{2}{\sqrt{3}} Arctan("+\infty") = \frac{2}{\sqrt{3}} \cdot \frac{\pi}{2} = \frac{\pi}{\sqrt{3}}$$

$$\lim_{x \to \pi^{-}} \left( \ln 3 + \frac{2}{\sqrt{3}} Arctan \right)$$

$$\lim_{x \to -\infty} f_n(x) = -\infty$$
 :  $0$ 

إذن  $(\mathscr{C}_n)$  يقبل فر عا شلجميا في اتجاه محور الأراتيب نحو الأسفل.

$$f_n'(x) = \left(\frac{x}{n} - e^{-nx}\right)' = \frac{1}{n} + ne^{-nx} > 0$$

.  $\mathbb R$  دالة تز ايدية قطعا على  $f_{\mathrm n}$ 

نستنتج جدول تغيرات الدالة  $f_n$  كما يلى :

نعوض هاتين النهايتين في المتساوية (\*) نحصل علم

$$\ln 3 + \frac{\pi}{\sqrt{3}} = \int_0^\pi \left(\frac{1+\sin u}{2+\cos u}\right) du$$

$$\lim_{x \to +\infty} f_n(x) = \lim_{x \to +\infty} \left( \frac{x}{n} - e^{-nx} \right) = (+\infty) - 0 = +\infty$$

$$\lim_{x \to -\infty} f_n(x) = \lim_{x \to -\infty} x \left( \frac{1}{n} - \frac{e^{-nx}}{x} \right)$$

$$= \lim_{x \to -\infty} x \left( \frac{1}{n} - \frac{1}{xe^{nx}} \right)$$

$$= (-\infty) \left( \frac{1}{n} - \frac{1}{0} \right)$$

$$= -\infty$$

$$\begin{array}{c|cccc}
x & -\infty & +\infty \\
f'_n(x) & + & \\
f_n & & \\
-\infty & & \end{array}$$

.  $f_n$  لدينا حسب جدول تغيرات الدالة

.  $\mathbb R$  دالة متصلة و تزايدية قطعا على  $f_n$ 

 $\mathbb{R}$  انحو $f_n$  ينحو ا $f_n$ 

 $a_n$  بما أن lpha فإنه يمتلك سابقا واحدا lpha من lpha بالتقابل lpha

 $(\exists!\,lpha_n\epsilon\mathbb{R})\;;\;f_n(lpha_n)=0$  : و بالتالي

من إعداد الأستاذ بدر الدين الفاتحي: جوبة الدورة الاستدراكية 2006



و بالتالي حسب مبر هنة القيم الوسيطية :

$$\exists\; c\; \epsilon \left] \frac{1}{n}\;, 1\right[\;\; ;\;\; f_n(c) = 0$$

. 
$$lpha_n$$
 و بما أن المعادلة  $f_n(x)=0$  تقبل حلا وحيدا و هو  $rac{1}{n} و منه :  $lpha_n=c$  فإن$ 





$$f_{n+1}(\alpha_n) = \frac{\alpha_n}{n+1} - e^{-(n+1)\alpha_n}$$

$$\Leftrightarrow f_{n+1}(\alpha_n) = \frac{\alpha_n - ne^{-(n+1)\alpha_n} - e^{-(n+1)\alpha_n}}{(n+1)}$$

$$\Leftrightarrow f_{n+1}(\alpha_n) = \frac{ne^{-(n+1)\alpha_n}}{(n+1)} \left( \frac{\alpha_n}{ne^{-(n+1)\alpha_n}} - 1 - \frac{1}{n} \right)$$

$$e^{-nlpha_n}=rac{lpha_n}{n}$$
 : اِذْن $f_n(lpha_n)=0$  : و نعلم أن

$$\Leftrightarrow \frac{\alpha_n}{ne^{-(n+1)\alpha_n}} = \frac{\alpha_n}{n(e^{-n\alpha_n}) \cdot e^{-\alpha_n}}$$

$$\Leftrightarrow \frac{\alpha_n}{ne^{-(n+1)\alpha_n}} = \frac{\alpha_n}{n \cdot \left(\frac{\alpha_n}{n}\right) \cdot e^{-\alpha_n}}$$

$$\Leftrightarrow \frac{\alpha_n}{ne^{-(n+1)\alpha_n}} = e^{\alpha_n}$$

$$f_{n+1}(lpha_n)= rac{ne^{-(n+1)lpha_n}}{(n+1)}\Big(e^{lpha_n}-1-rac{1}{n}\Big)$$
 : و بانتالي :

# $f_n\left(\frac{1}{n}\right) = \left(\frac{1}{n^2} - \frac{1}{e}\right)$

(<del>-</del>)(3) ■

.  $n^2 \geq 4$  : فإن  $n \geq 2$  : بما أن

$$\frac{1}{n^2} < \frac{1}{e}$$
 و منه  $n^2 \ge 4 > e$  : أي  $\frac{1}{n^2} - \frac{1}{e} < 0$  يعني :

$$(\forall n \geq 2) \; ; \; f_n\left(\frac{1}{n}\right) < 0$$
 و بالنالي :

 $\varphi'(x) = e^x - 1$  : نضع  $\varphi(x) = e^x - x - 1$  : نضع

و منه : نستنتج جدول تغيرات الدالة φ كما يلي :



0 بما أن  $\phi$  دالة متصلة على  $\mathbb R$  و قيمتها الدنوية حسب الجدول هي

$$(orall x \epsilon \mathbb{R})$$
 ;  $\varphi(x) \geq 0$  : فإنه

$$(orall x \epsilon \mathbb{R}) \; ; \; e^x \geq x+1$$
يعني :

$$(\forall n \in \mathbb{N})$$
 ;  $e^n \geq n+1$  : : من هذه المتفاوتة نستنج

$$(\forall n \in \mathbb{N})$$
 ;  $e^n \geq n$  : و منه

$$\Leftrightarrow \frac{1}{e^n} < \frac{1}{n}$$

$$\Leftrightarrow e^{-n} < \frac{1}{n}$$

$$\Leftrightarrow \left(\frac{1}{n} - e^{-n} > 0\right) \quad (*)$$

$$\Leftrightarrow f_n(1) = \frac{1}{n} - e^{-n} > 0$$

.  $\mathbb{R}$  دالة متصلة على  $f_n$ 

. 
$$n \geq 2$$
 : بحيث  $\left[\frac{1}{n}; 1\right]$  بحيث

$$f_n(1) > 0$$
 و لدينا :  $f_n\left(\frac{1}{n}\right) < 0$  .

$$f_n(1) \cdot f_n\left(\frac{1}{n}\right) < 0$$
 : إذن

أجوبة الدورة الاستدراكية 2006 من إعداد الأستاذ بدر الدين الفاتحي: ( ) رمضان 2012 الصفحة: 92

(j)(**5**) ■

 $(\#) \mid e^{lpha_n} \geq lpha_n + 1 \mid \widehat{\ 3}$ لاينا حسب السؤال (@

 $\alpha_n > \frac{1}{n}$  و لدينا حسب السؤال : (3)

 $(##) \left( \alpha_n + 1 > \frac{1}{n} + 1 \right)$  : إذن

 $e^{\alpha_n} \ge \frac{1}{n} + 1$  : من (##) و (##) من (##) من

 $e^{\alpha_n} - \frac{1}{n} - 1 \ge 0$  : يعني

 $\left[egin{array}{c} f_{n+1}(lpha_n) \geq 0 \end{array}
ight]$  : و بالتالي

رائن الكمية  $\frac{ne^{-(n+1)\alpha_n}}{(n+1)}$  موجبة دائما .

(হ)(5) ■

 $(\star)$   $f_{n+1}(\alpha_{n+1}) = 0$  : لدينا

.  $f_{n+1}(x)=0$  : لأن  $f_{n+1}$  حل للمعادلة

 $(\star\star) f_{n+1}(lpha_n) \geq 0$  : و لدينا

 $f_{n+1}(\alpha_n) \geq f_{n+1}(\alpha_{n+1})$  : من  $(\star\star)$  و  $(\star\star)$  نستنتج أن

و بما أن  $f_{n+1}$  دالة تزايدية قطعا على  $\mathbb{R}$ 

 $\alpha_n \geq \alpha_{n+1}$  : فإن

(1) و بالتالي :  $(\alpha_n)_n$  : و بالتالي

 $\frac{1}{n} < \alpha_n$  و لدينا : 0 > 0

 $\alpha_n > 0$  إذن

يعني :  $(\alpha_n)_{n\in\mathbb{N}}$  مصغورة بالعدد

من (1) و (2) نستنتج أن المتتالية  $(\alpha_n)_{n\in\mathbb{N}}$  متقاربة. و سوف نحدد نهایتها فیما بعد

-(j)6)**■** 

 $n \geq 2$ ليكن .  $n \geq 2$ 

 $e^{-nlpha_n}=rac{lpha_n}{n}$  : الدينا $f_n(lpha_n)=0$ 

 $\frac{1}{n^2} < \frac{\alpha_n}{n} < \frac{1}{n}$  : اذن  $\frac{1}{n} < \alpha_n < 1$ 

 $\left| \frac{1}{n^2} < e^{-nlpha_n} < \frac{1}{n} \right|$  و بالتالي :

 $\frac{1}{n^2} < e^{-n\alpha_n} < \frac{1}{n}$ : لدينا

 $\ln\left(\frac{1}{n^2}\right) < \ln(e^{-n\alpha_n}) < \ln\left(\frac{1}{n}\right)$  : إذن

 $\mathbb{R}^+_*$  لأن الدالة ln تزايدية قطعا على ln

 $-2\ln(n) < -n\alpha_n < -\ln(n)$  و منه :

 $\ln(n) < n\alpha_n < 2\ln(n)$ 

 $\frac{\ln(n)}{n} < \alpha_n < \frac{2\ln(n)}{n}$  : و بالتالي

(€)(6) ■

من التأطير الثمين الأخير الذي حصلنا عليه نستنتج أن:

 $\lim_{n \to \infty} (\alpha_n) = 0$ 

 $\lim_{n \to \infty} \left( \frac{\ln n}{n} \right) = \lim_{n \to \infty} \left( \frac{2\ln n}{n} \right) = 0 \quad : \dot{\psi}$ 

= و الحمد لله رب العامين ■