Package 'pros'

2 predict.cv_pros

Arguments

X the data matrix

y the response vector

K_fold partition size

alpha convex combination

lambdas A vector of Lagrangian penalization values to be evaluated

algorithm the optimization algorithm

Value

A class cv_pros with

- best_lambda the best lambda.
- lambdas the lambda values
- risks the cross-validation risks

predict.cv_pros

CV Prediction

Description

The Prediction function

Usage

```
## S3 method for class 'cv_pros'
predict(cv_pros0bj, X_new)
```

Arguments

cv_pros0bj an object of class cv_pros

X_new the data matrix

Value

A vector of predictions

predict.pros 3

predict.pros

Prediction

Description

The Prediction function

Usage

```
## S3 method for class 'pros'
predict(prosObj, X)
```

Arguments

pros0bj an object of class pros

X the data matrix

Value

A vector of predictions

pros

Fit

Description

The fit function for a specific lambda value

Usage

```
pros(X, y, alpha, lambda, algorithm = "proximal_gradient_cd")
```

Arguments

X the data matrix

y the response vector response

alpha convex combination

lambda The Lagrangian penalization value

 $\label{eq:algorithm} \textbf{algorithm} \qquad \quad \textbf{the optimization algorithm}$

Value

A class pros with

Index

```
cv.pros, 1
predict.cv_pros, 2
predict.pros, 3
pros, 3
```