CLAIMS

1. A polycarboxylic acid cement dispersant

which provides a cement composition having a penetration resistance value exponent of 55 MPa or more and a slump retention exponent of 80% or more.

2. The polycarboxylic acid cement dispersant according to claim 1,

wherein the polycarboxylic acid cement dispersant comprises a polycarboxylic acid polymer having

a polyoxyalkylene ester constituent unit (I) represented by the following general formula (1):

$$\begin{array}{c}
-\left(\text{CH}_2-\text{CH}\right) \\
\mid \\
\text{COO(R}^1\text{O)}_{\mathbf{m}^1}\text{R}^2
\end{array}$$

5

10

15

20

25

30

35

(wherein R^1O may be the same or different and each represents an oxyalkylene group containing 2 to 18 carbon atoms; m^1 represents the average molar number of addition of the oxyalkylene groups and is a number of 100 to 200; and R^2 represents a hydrogen atom or a hydrocarbon group containing 1 to 3 carbon atoms), and

a carboxylic acid constituent unit (II) represented by the following general formula (2):

$$\begin{array}{c|c}
-(CH-CH) \\
 & | \\
 & R^3 & COOM^1
\end{array}$$
(2)

(wherein R^3 represents a hydrogen atom, a methyl group or $-COOM^2$; and M^1 and M^2 may be the same or different and each represents a hydrogen atom, a monovalent metal, a divalent metal, ammonium or organic ammonium).

3. A method of producing a concrete product which comprises a process of curing under a condition of

a temperature of 30°C or more, using the polycarboxylic acid cement dispersant according to claim 1.

4. A method of producing a concrete product which comprises a process of curing under a condition of a temperature of 30°C or more, using the polycarboxylic acid cement dispersant according to claim 2.

5

25

30

35

- 5. A method of producing a concrete product
 which comprises a process of curing by covering a periphery
 of a formwork with an insulating material, using the
 polycarboxylic acid cement dispersant according to claim 1.
- 6. A method of producing a concrete product
 which comprises a process of curing by covering a periphery
 of a formwork with an insulating material, using the
 polycarboxylic acid cement dispersant according to claim 2.
- 7. A method of producing a concrete product
 which makes use of a copolymer derived by using monomer components comprising

a monomer (A) represented by the following general formula (3):

$$\begin{array}{ccc}
R^4 & R^6 \\
C & C \\
C & C \\
R^5 & (CH_2)p'(CO)q'O(R^7O)nR^8
\end{array} (3)$$

(wherein R^4 , R^5 and R^6 may be the same or different and each represents a hydrogen atom or a methyl group; p^1 represents a number of 0 to 2; q^1 represents a number of 0 or 1; R^7 0 may be the same or different and each represents an oxyalkylene group containing 2 to 18 carbon atoms; n represents the average molar number of addition of the oxyalkylene groups and is a number of 2 to 300; and R^8 represents a hydrogen atom or a hydrocarbon group containing 1 to 30 carbon atoms),

a monomer (B) represented by the following general formula

$$\begin{array}{ccc}
R^9 & R^{11} \\
 & | & | \\
C & C & (4) \\
 & | & | \\
R^{10} & COOM^3
\end{array}$$

(4):

5

10

15

35

(wherein R^9 and R^{10} may be the same or different and each represents a hydrogen atom, a methyl group or $-COOM^4$, provided that R^9 and R^{10} does not simultaneously represent $-COOM^4$; R^{11} represents a hydrogen atom, a methyl group or $-CH_2COOM^5$, in which in the case where R^{11} represents $-CH_2COOM^5$, R^9 and R^{10} may be the same or different and each represents a hydrogen atom or a methyl group; and M^3 , M^4 and M^5 may be the same or different and each represents a hydrogen atom, a monovalent metal, a divalent metal, ammonium or organic ammonium), and

a monomer (C) represented by the following general formula (5):

$$\begin{array}{c|cccc}
 & R^{12} & R^{13} \\
 & & | & | \\
 & C & C & (5) \\
 & & | & | \\
 & H & X
\end{array}$$

$$O$$
 Z

$$O-R^{14}SO_3M^7$$
, CH_3

(wherein R^{12} and R^{13} may be the same or different and each represents a hydrogen atom or a methyl group; Y and Z represent a hydroxyl group or $-SO_3M^9$, in which in the case where Y represents a hydroxyl group, Z represents $-SO_3M^9$, while in the case where Y represents $-SO_3M^9$, Z represents a hydroxyl group; R^{14} represents an alkylene group containing 2 to 4 carbon atoms; and M^6 , M^7 , M^8 and M^9 may be the same or different and each represents a hydrogen atom, a monovalent metal, a divalent metal, ammonium or organic ammonium),

wherein the mass ratio of the monomer (C) relative to the total monomer components is not less than 0.1% by mass and not more than 35% by mass.

The method of producing a concrete product according
 to claim 7,

which comprises a process of curing under a condition of a temperature of 30°C or more.

The method of producing a concrete product according
 to claim 7,

which comprises a process of curing by covering a periphery of a formwork with an insulating material.