МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П. О. СУХОГО

Машиностроительный факультет

Кафедра «Технология машиностроения»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 3 по дисциплине «Теория резания»

на тему: ИССЛЕДОВАНИЕ ДЕФОРМАЦИИ СРЕЗАЕМОГО СЛОЯ

Выполнил: студент гр. АП-21 Аль-хаушаби Ф.А.

Принял: Карпов А.А.

Дата сдачи отчета: _	
Дата допуска к защите: _	
Дата защиты: _	

Цель работы: 1. Освоить и закрепить практически основные положения теории стружкообразования. 2. Ознакомиться с методами определения деформации срезаемого слоя и их количественными значениями. 3. Исследовать зависимости деформации срезаемого слоя от условий обработки.

Теоретическая часть

Различают три основных вида стружки: сливную, элементную и надлома. Каждый из указанных видов стружки характеризуется степенью деформирования и определённой внутренней связью отдельных её параметров. Сливная стружка (рис.1,1) состоит из слабо заметных и тесно связанных между собой элементов. (рис.1,1) Элементная стружка имеет резко выраженные периодически повторяющиеся и сдвинутые относительно друг друга элементы. Сливная и элементная стружки получаются при обработке Углеродистые пластичных материалов. И легированные конструкционные стали при практических режимах резания более склонны к образованию сливной стружки. При резании жаропрочных сталей и сплавов, в особенности титановых сплавов, в широком диапазоне применяемых режимов резания образуется элементная стружка.

Стружка надлома (рис.1, 3) получается, как правило, при обработке малопластичных (хрупких) металлов с пониженным сопротивлением разрыву, таких, как чугун, бронза и др. Она состоит из неправильных и нередко не связанных между собой элементов, имеющих шероховатую приконтактную поверхность.

Рис.1 – 1 – сливная стружка; 2 – элементная стружка; 3 – стружка надлома

Усадка определяется коэффициентами усадки стружки. Различают коэффициенты усадки стружки по толщине Ка , по ширине Кв и по длине Кλ . Они выражаются соотношениями:

$$K_a = \frac{a_1}{a}$$
; $K_e = \frac{e_1}{e}$; $K_\ell = \frac{\ell}{\ell_1}$,

где: a1, в1, λ 1 — соответственно толщина, ширина и длина стружки; a, в, λ —соответственно толщина, ширина и длина срезаемого слоя.

Элементы сечения срезаемого слоя определяются расчётом по формулам:

$$a = S_o \cdot \sin \varphi$$
 и $e = \frac{t}{\sin \varphi}$,

где: So – подача на оборот, мм/об; t – глубина резания, мм; ϕ – угол в плане, град.

В соответствии с условием постоянства объёма деформируемого тела до и после деформации связь между указанными коэффициентами усадки сливной стружки выражается зависимостью:

$$K_{\ell} = K_a \cdot K_e .$$

Усадка стружки по толщине Ка зависит от угла сдвига $\beta 1$ и переднего угла γ . Эта зависимость имеет вид:

$$K_a = \frac{\cos(\beta_1 - \gamma)}{\sin\beta_1}.$$

Более точной характеристикой степени пластической деформации при резании является относительный сдвиг ϵ .

$$\varepsilon = \frac{K_a^2 - 2K_a \cdot \sin \gamma + 1}{K_a \cdot \cos \gamma}.$$

Практическая часть

	Nº		A1	B1	Α	В	Ka	Кв	KI	3
Серия t	T1	0,25	0,85	0,81	0,07	0,35	12,1	2,31	27,95	12,02
	T2	0,3	0,71	0,76	0,07	0,42	10,1	1,8	18,18	10
	T3	0,5	0,59	1,37	0,07	0,7	8,4	1,95	16,38	8,3
	T4	1	0,85	2,65	0,07	1,41	12,1	1,87	22,6	12,02
Серия S	S1	0,1	1,04	1,09	0,07	0,35	14,9	3,11	46,3	14,85
	S2	0,2	0,2	0,58	0,14	0,35	1,43	1,65	2,34	1,8
	S3	0,3	0,79	1,31	0,21	0,35	3,76	3,74	14,1	3,73
	S4	0,4	0,7	1,26	0,28	0,35	2,5	3,6	9	2,5
Серия V(n)	N1	250	0,65	0,64	0,07	0,35	9,3	1,83	17	9,2
	N2	400	0,63	0,62	0,07	0,35	9	1,77	15,9	8,9
	N3	500	0,39	0,98	0,07	0,35	5,57	2,8	15,6	5,48
	N4	630	0,37	0,79	0,07	0,35	5,3	2,25	11,9	5,22

Вывод: в ходе выполнения лабораторной работы