

Pagina 1 din 5

Olimpiada Națională de Fizică Vaslui 2015

IX

0,25

0,25

Proba teoretică

Barem

Subiectul 1 – Refracție Parțial **Punctaj** Barem subject 1 10p A. **6**p $\sin r = \frac{n \sin i}{}$ 0,5 $CI = h \cdot tgr$ 0,5 0.5 CN = CI + IN0,5 $d = \sqrt{CN^2 + (h+H)^2}$ 0,5 Numeric: $d \cong 10 \,\mathrm{m}$ 0,5 $v = \sqrt{v_P^2 + v_S^2}$ 0,25 Numeric: $v \cong 0.45 \text{ m/s}$ 0,25 $n_{aer} \sin r' = n \sin i'$ $r' = 45^{\circ} \Rightarrow \sin i' = \frac{3\sqrt{2}}{8}$ 0,25 0,25

 $tgi' = \frac{I'N}{H}$

 $CN = \frac{l}{2} + I'N$

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 2 din 5 Clasa a IX-a

		Clasa a IX-a
$ \begin{array}{c c} A & h & N \\ \hline & & & \\ $		
$tg\alpha = \frac{v_s}{v_p}$ $tg\alpha = \frac{1}{2} \Rightarrow \sin\alpha = \frac{\sqrt{5}}{5}$	0,25	
$tg\alpha = \frac{1}{2} \Rightarrow \sin\alpha = \frac{\sqrt{5}}{5}$	0,25	
$AN = \frac{H}{\mathrm{tg}\alpha}$	0,25	
AC = AN - CN	0,25	
$CB = AC\sin\alpha$	0,25	
Numeric: $CB \cong 0.95 \text{ m}$	0,25	
B. Pentru miopie:		3 p
$\frac{1}{x_2} - \frac{1}{x_R'} = \frac{1}{f_C}$	0,3	-
1 1 1 1 1		
$\frac{1}{x_2} - \frac{1}{x_R} = \frac{1}{f_C} + \frac{1}{f_O}$	0,3	
$x_R = -\infty$	0,3	
$\frac{1}{x_2} = \frac{1}{f_C} + \frac{1}{f_O}$	0,3	
$x'_R = f_O; \ x'_R < 0 \implies f_O < 0 \ \text{(lentilă divergentă)}$	0,3	
Pentru hipermetropie:		
$\frac{1}{x_2} - \frac{1}{x_P'} = \frac{1}{f_C}$	0,3	
$\frac{1}{x_2} - \frac{1}{x_P} = \frac{1}{f_C} + \frac{1}{f_O}$	0,3	
$f_O = \frac{x_P' x_P}{x_P - x_P'}$	0,3	
$ x_P' > x_P $	0,3	
$x_P < 0$ și $x_P' < 0 \Rightarrow f_O > 0$ (lentilă convergentă)	0,3	
Oficiu		1p

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 3 din 5 Clasa a IX-a

Subiectul 2 - Navigație	Parțial	Punctaj
Barem subject 2	1 41 3141	10p
A.		6p
În situația în care $\frac{v_b}{v_b} > 1$:		
$v_{r\hat{a}u}$		
Barca traversează râul în timpul cel mai scurt atunci când viteza bărcii față		
de apă (\vec{v}_b) este orientată perpendicular pe viteza apei față de mal $(\vec{v}_{r\hat{a}u})$.		
$(1) t_1 = \frac{l}{v_h}$	1	
v_b	1	
Barca traversează râul pe drumul cel mai scurt atunci când viteza bărcii		
față de mal (\vec{v}_2) este perpendiculară pe viteza apei față de mal $(\vec{v}_{r\hat{a}u})$.		
$(2) t_{\star} = \frac{l}{l}$	1	
$(2) t_2 = \frac{l}{v_2}$	1	
$v_2 = \sqrt{v_b^2 - v_{r\hat{a}u}^2}$	1	
$t = \frac{1}{1}$		
$\Rightarrow \frac{t_1}{t_2} = \sqrt{1 - \frac{1}{p^2}}$	1	
2 1 1		
În situația în care $\frac{v_b}{v_{r\hat{a}u}} < 1$:		
Barca traversează râul pe drumul cel mai scurt		
atunci când viteza bărcii față de mal (\vec{v}_2')		
formează unghiul cel mai mare cu viteza apei		
față de mal $(\vec{v}_{r\hat{a}u})$. $\vec{v}_{r\hat{a}u}$		
(3) $v_2' = \sqrt{v_{r\hat{a}u}^2 - v_b^2}$	1	
$t_2' = \frac{l \cdot v_{r\hat{a}u}}{l}$	0.5	
$u_2 = \frac{v_b \cdot v_2'}{v_b \cdot v_2'}$	0,5	
$\Rightarrow \frac{t_1}{t'} = \sqrt{1-p^2}$	0.5	
$\Rightarrow \frac{1}{t_2'} = \sqrt{1-p}$	0,5	
В.		3p
În timp ce sunetul se propagă până la peretele B și înapoi, vasul a		
avansat, astfel încât noua poziție a punctului A este în A''.		
$/i_1^{r}$		
/ ! \		
$A \qquad A' \qquad A''$		
$r \equiv i$	0,25	
Ca urmare $AB^2 = AA'^2 + BA'^2 \Rightarrow \left(c\frac{t_B}{2}\right)^2 = \left(v\frac{t_B}{2}\right)^2 + d^2$	0.25	
Ca urmare $AB^{-} = AA^{-} + BA^{-} \Rightarrow c^{-} = v^{-} + d^{-}$	0,25	1

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 4 din 5 Clasa a IX-a

$t_B = \frac{2d}{\sqrt{c^2 - v^2}}$	0,5	
Timpul după care este recepționat sunetul reflectat de peretele C este: $t_C = \frac{d}{c - v} + \frac{d}{c + v} \Rightarrow t_C = \frac{2dc}{c^2 - v^2}$	0,5	
Rezultă: $\Delta t = \frac{2d}{c^2 - v^2} \left(c - c \sqrt{1 - \left(\frac{v}{c}\right)^2} \right) \Rightarrow \Delta t = \frac{dv^2}{c(c^2 - v^2)}$	0,5	
$v = c\sqrt{\frac{c\Delta t}{d + c\Delta t}}$	0,5	
Numeric: $v \cong 9.3 \text{ m/s}$	0,5	
Oficiu		1p

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 5 din 5 Clasa a IX-a

Subiectul 3 – Corpuri sferice	Parțial	Punctaj
Barem subject 3		10p
A.		6 p
$\mathbf{a)} \ F = C \cdot S \cdot v^2$	0,5	
$S = \pi R^2$	0,25	
Viteza devine constantă când $a = 0$, deci $F = mg$ (neglijând forța	0,75	
arhimedică)	0,73	
$m = \rho V = \rho \frac{4}{3} \pi R^3$	0,5	
$v^2 = \frac{4\rho gR}{3C}$	0,5	
$\frac{v_1}{v_2} = \sqrt{\frac{R_1}{R_2}}$	0,5	
b) În punctul de înălțime maximă vectorul viteză este orientat orizontal.	0,5	
Ca urmare, forța rezultantă are modulul: $F_R = \sqrt{(C' \cdot S \cdot v^2)^2 + (mg)^2}$	0,5	
$a = \sqrt{\left(\frac{C' \cdot S \cdot v^2}{m}\right)^2 + g^2} \Rightarrow \frac{C' \cdot S}{m} = \frac{\sqrt{a^2 - g^2}}{v^2}$	0,5	
Imediat după lovirea mingii: $m a' = mg + C' \cdot S \cdot v'^2$	0,5	
$ a' = g + \sqrt{a^2 - g^2} \left(\frac{v'}{v}\right)^2$	0,5	
Numeric: $ a' \cong 13.7 \text{ m/s}^2$	0,5	
В.		3 p
Pentru cărămida aflată în echilibru pe minge:		
$p\pi r^2 = mg + p_0\pi r^2$, unde r este raza cercului de contact dintre	1	
cărămidă și minge, iar m este masa cărămizii		
$r^2 + \left(R - \frac{x}{2}\right)^2 = R^2 \Rightarrow r^2 \cong Rx$	0,25	
$mg = (p - p_0)\pi Rx$	0,25	
Pentru cărămida aflată în echilibru pe resort: $mg = k \cdot x$	0,5	
$k = (p - p_0)\pi R$	0,5	
Numeric: $k \approx 6.3 \cdot 10^3 \frac{\text{N}}{\text{m}}$	0,5	
Oficiu		1p

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.