RWorksheet#4b_Parrenas

Erikka Jane Parrenas

2023-11-08

```
#Using Loop Function
#1. Using the for loop, create an R script that will display a 5x5 matrix as shown in Figure 1. It must
  vectorA \leftarrow c(1, 2, 3, 4, 5)
  zeroMatrix <- matrix(0, nrow = 5, ncol = 5)</pre>
  for (i in 1:5){
 for (j in 1:5){
    diff <- abs(vectorA[i] - j)</pre>
    cat(diff, " ")
  cat("\n")
## 0 1 2 3 4
## 1 0 1 2 3
## 2 1 0 1 2
## 3 2 1 0 1
## 4 3 2 1 0
#2. Print the string "*" using for() function. The output should be the same as shown in Figure
for(i in 1:5){
    ejp <- rep("*", i)
    print(ejp)
}
## [1] "*"
## [1] "*" "*"
## [1] "*" "*" "*"
## [1] "*" "*" "*" "*"
## [1] "*" "*" "*" "*" "*"
#3. Get an input from the user to print the Fibonacci sequence starting from the 1st input up to 500. U
user_input <- as.numeric(readline("Enter a number to start the Fibonacci sequence: "))</pre>
## Enter a number to start the Fibonacci sequence:
a <- 0
b <- 1
cat("Fibonacci sequence starting from", user_input, ": ")
```

```
## Fibonacci sequence starting from NA :
cat(user_input, " ")
## NA
repeat {
 fiboSeq <- a + b
  if (fiboSeq > 500) {
   break
  }
  cat(fiboSeq, " ")
 a <- b
 b <- fiboSeq
## 1 2 3 5 8 13 21 34 55 89 144 233 377
#4a. Import the data set as shown in Figure 1 you have created previously.
library(readr)
shoeSizes <- read_csv("shoeSizes.csv")</pre>
## Rows: 28 Columns: 3
## -- Column specification -----
## Delimiter: ","
## chr (1): gender
## dbl (2): shoe_Size, height
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
View(shoeSizes)
## Warning in View(shoeSizes): unable to open display
## Error in .External2(C_dataviewer, x, title): unable to start data viewer
#b. Create a subset for gender(female and male). How many observations are there in Male? How about in
male <- shoeSizes[shoeSizes$gender == "M",]</pre>
   female <- shoeSizes[shoeSizes$gender == "F",]</pre>
   maleCount <- nrow(male)</pre>
   femaleCount <- nrow(female)</pre>
   cat("Numbers of male: ", maleCount, "\n")
## Numbers of male: 14
   cat("Numbers of female: ", femaleCount, "\n")
```

Numbers of Male and Female

Gender

```
#5. The monthly income of Dela Cruz family was spent
mypie <- c(60, 10, 5, 25)

pie(mypie,
    main = "Monthly Income of Dela Cruz family",
    col = rainbow(length(mypie)),
    labels = c("60%", "10%", "5%","25%"),

)
legend("topright", legend = c("Food", "Electricity", "Savings", "Miscellaneous"), fill = rainbow(length)</pre>
```

Monthly Income of Dela Cruz family


```
print(petwin)
```

```
## [1] 1.199333
```

```
#c. Create a pie chart for the Species distribution. Add title, legends, and colors. Write the R script

specCount <- table(iris$Species)

pie(specCount,
    main = "Species",
    col = rainbow(length(specCount)),
    labels = c("setosa", "versicolor", "Virginica")
    )

legend("topleft", legend = c("Setosa", "Versicolor", "Virginica"), fill = rainbow(length(specCount))</pre>
```

Species

#d. Subset the species into setosa, versicolor, and virginica. Write the R scripts and show the last si

setsub <- iris[iris\$Species == "setosa" | iris\$Species == "Versicolor" | iris\$Species == "virgini setsub"

##		Sepal.Length	Sepal.Width	${\tt Petal.Length}$	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa
##	7	4.6	3.4	1.4	0.3	setosa
##	8	5.0	3.4	1.5	0.2	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa
##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa

##	17	5.4	3.9	1.3	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa
##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
##	32	5.4	3.4	1.5	0.4	setosa
##	33	5.2	4.1	1.5	0.1	setosa
##	34	5.5	4.2	1.4	0.2	setosa
##	35	4.9	3.1	1.5	0.2	setosa
##	36	5.0	3.2	1.2	0.2	setosa
##	37	5.5	3.5	1.3	0.2	setosa
##	38	4.9	3.6	1.4	0.1	setosa
##	39	4.4	3.0	1.3	0.2	setosa
##	40	5.1	3.4	1.5	0.2	setosa
##	41	5.0	3.5	1.3	0.3	setosa
##	42	4.5	2.3	1.3	0.3	setosa
##	43	4.4	3.2	1.3	0.2	setosa
##	44	5.0	3.5	1.6	0.6	setosa
##	45	5.1	3.8	1.9	0.4	setosa
##	46	4.8	3.0	1.4	0.3	setosa
##	47	5.1	3.8	1.6	0.2	setosa
##	48	4.6	3.2	1.4	0.2	setosa
##	49	5.3	3.7	1.5	0.2	setosa
##	50	5.0	3.3	1.4	0.2	setosa
##	101	6.3	3.3	6.0	2.5 v	irginica
##	102	5.8	2.7	5.1	1.9 v	irginica
##	103	7.1	3.0	5.9		irginica
##	104	6.3	2.9	5.6	1.8 v	irginica
##	105	6.5	3.0	5.8	2.2 v	irginica
##	106	7.6	3.0	6.6	2.1 v	irginica
##	107	4.9	2.5	4.5	1.7 v	irginica
##	108	7.3	2.9	6.3	1.8 v	irginica
##	109	6.7	2.5	5.8	1.8 v	irginica
##	110	7.2	3.6	6.1	2.5 v	irginica
##	111	6.5	3.2	5.1	2.0 v	irginica
##	112	6.4	2.7	5.3	1.9 v	irginica
##	113	6.8	3.0	5.5	2.1 v	irginica
##	114	5.7	2.5	5.0	2.0 v	irginica
##	115	5.8	2.8	5.1	2.4 v	irginica
##	116	6.4	3.2	5.3	2.3 v	irginica
##	117	6.5	3.0	5.5	1.8 v	irginica
##	118	7.7	3.8	6.7	2.2 v	irginica
##	119	7.7	2.6	6.9	2.3 v	irginica
##	120	6.0	2.2	5.0	1.5 v	irginica

```
## 121
                6.9
                             3.2
                                           5.7
                                                       2.3 virginica
## 122
                5.6
                             2.8
                                           4.9
                                                       2.0 virginica
## 123
                7.7
                             2.8
                                          6.7
                                                       2.0 virginica
                             2.7
## 124
                6.3
                                          4.9
                                                       1.8 virginica
## 125
                6.7
                             3.3
                                          5.7
                                                       2.1 virginica
## 126
                                                       1.8 virginica
                7.2
                             3.2
                                          6.0
## 127
                6.2
                             2.8
                                                       1.8 virginica
                                          4.8
## 128
                6.1
                             3.0
                                          4.9
                                                       1.8 virginica
## 129
                6.4
                             2.8
                                          5.6
                                                       2.1 virginica
## 130
                7.2
                             3.0
                                          5.8
                                                       1.6 virginica
## 131
                7.4
                             2.8
                                          6.1
                                                       1.9 virginica
## 132
                7.9
                             3.8
                                          6.4
                                                       2.0 virginica
## 133
                6.4
                             2.8
                                          5.6
                                                       2.2 virginica
## 134
                6.3
                             2.8
                                          5.1
                                                       1.5 virginica
## 135
                6.1
                             2.6
                                          5.6
                                                       1.4 virginica
## 136
                7.7
                             3.0
                                          6.1
                                                       2.3 virginica
## 137
                                          5.6
                6.3
                             3.4
                                                       2.4 virginica
## 138
                6.4
                             3.1
                                          5.5
                                                       1.8 virginica
## 139
                             3.0
                                                       1.8 virginica
                6.0
                                          4.8
## 140
                6.9
                             3.1
                                          5.4
                                                       2.1 virginica
## 141
                6.7
                             3.1
                                          5.6
                                                       2.4 virginica
## 142
                6.9
                             3.1
                                          5.1
                                                       2.3 virginica
## 143
                             2.7
                5.8
                                          5.1
                                                       1.9 virginica
## 144
                             3.2
                                          5.9
                6.8
                                                       2.3 virginica
## 145
                6.7
                             3.3
                                          5.7
                                                       2.5 virginica
## 146
                6.7
                             3.0
                                          5.2
                                                       2.3 virginica
## 147
                6.3
                             2.5
                                          5.0
                                                       1.9 virginica
## 148
                6.5
                             3.0
                                          5.2
                                                       2.0 virginica
                                                       2.3 virginica
## 149
                6.2
                             3.4
                                          5.4
## 150
                5.9
                             3.0
                                          5.1
                                                       1.8 virginica
      tail(setsub, 6)
##
       Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                             Species
## 145
                6.7
                             3.3
                                          5.7
                                                       2.5 virginica
## 146
                6.7
                             3.0
                                          5.2
                                                       2.3 virginica
## 147
                             2.5
                6.3
                                          5.0
                                                       1.9 virginica
## 148
                6.5
                             3.0
                                          5.2
                                                       2.0 virginica
## 149
                6.2
                             3.4
                                          5.4
                                                       2.3 virginica
## 150
                5.9
                             3.0
                                          5.1
                                                       1.8 virginica
#e. Create a scatterplot of the sepal.length and sepal.width using the different species(setosa, versico
plot(iris$Sepal.Length, iris$Sepal.Width,
     col = as.numeric(iris$Species),
     pch = as.numeric(iris$Species),
     main = "Iris Dataset",
     sub = "Sepal Width and Length",
     xlab = "Sepal Length", ylab = "Sepal Width"
)
```

legend("topright", legend = levels(iris\$Species), col = unique(as.numeric(iris\$Species)), pch = unique(

Iris Dataset

#6f. The scatterplot displays the relationship between the sepal length and width. #Basic Cleaning and Transformation of Objects #7. Import the alexa-file.xlsx. Check on the variations. Notice that there are extra whitespaces among library(readxl) alexa_file <- read_excel("alexa_file.xlsx")</pre> ## Error: `path` does not exist: 'alexa_file.xlsx' View(alexa file) ## Error in eval(expr, envir, enclos): object 'alexa_file' not found library(readxl) alexa file\$variation <- gsub("Black Dot", "BlackDot", alexa file\$variation) ## Error in eval(expr, envir, enclos): object 'alexa_file' not found alexa_file\$variation <- gsub("Black Plus", "BlackPlus", alexa_file\$variation)</pre> ## Error in eval(expr, envir, enclos): object 'alexa_file' not found alexa_file\$variation <- gsub("Black Show", "BlackShow", alexa_file\$variation)</pre> ## Error in eval(expr, envir, enclos): object 'alexa_file' not found alexa_file\$variation <- gsub("Black Spot", "BlackSpot", alexa_file\$variation)</pre> ## Error in eval(expr, envir, enclos): object 'alexa_file' not found alexa_file\$variation <- gsub("White Dot", "WhiteDot", alexa_file\$variation)</pre>

```
## Error in eval(expr, envir, enclos): object 'alexa_file' not found
alexa_file$variation <- gsub("White Plus", "WhitePlus", alexa_file$variation)</pre>
## Error in eval(expr, envir, enclos): object 'alexa_file' not found
alexa_file$variation <- gsub("White Show", "WhiteShow", alexa_file$variation)
## Error in eval(expr, envir, enclos): object 'alexa_file' not found
alexa_file$variation <- gsub("White Spot", "WhiteSpot", alexa_file$variation)
## Error in eval(expr, envir, enclos): object 'alexa file' not found
alexa file
## Error in eval(expr, envir, enclos): object 'alexa_file' not found
#b. Get the total number of each variations and save it into another object. Save the object as variati
library("dplyr")
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
vari <- alexa_file</pre>
## Error in eval(expr, envir, enclos): object 'alexa_file' not found
 count(alexa_file$variation)
## Error in eval(expr, envir, enclos): object 'alexa_file' not found
vari
## Error in eval(expr, envir, enclos): object 'vari' not found
save(vari, file = "variations.RData")
## Error in save(vari, file = "variations.RData"): object 'vari' not found
#c. From the variations.RData, create a barplot(). Complete the details of the chart which include the
   load("variations.RData")
## # A tibble: 16 x 2
##
      `alexa_file$variation`
                                       n
##
      <chr>>
                                   <int>
## 1 Black
                                     261
## 2 Black Dot
                                     516
                                     270
## 3 Black Plus
## 4 Black Show
                                     265
## 5 Black Spot
                                     241
## 6 Charcoal Fabric
                                     430
## 7 Configuration: Fire TV Stick
                                     350
```

```
## 8 Heather Gray Fabric
                                       157
## 9 Oak Finish
                                       14
## 10 Sandstone Fabric
                                       90
## 11 Walnut Finish
                                        9
## 12 White
                                        91
## 13 White Dot
                                       184
## 14 White Plus
                                       78
## 15 White Show
                                        85
## 16 White Spot
                                       109
 namevari <- vari$`alexa_file$variation`</pre>
 ploto <- barplot(vari$n,</pre>
                      names.arg = namevari,
                      main = "Total number of each variations",
                      xlab = "Name of Variations",
                      ylab = "Total of each Variatons",
                      col = 1:16,
                      space = 0.1,
                      cex.names = 0.5,
                      las = 2)
```

Total number of each variations

#d. Create a barplot() for the black and white variations. Plot it in 1 frame, side byside. Complete th
library(ggplot2)
library(magrittr)

#layout one frame
par(mfrow = c(1, 2), mar = c(2, 2, 2, 2))

```
Blackplot <- vari[vari$`alexa_file$variation` %in% c("Black", "BlackDot", "BlackShow", "BlackPlus", "Bl
Whiteplot <- vari[vari$`alexa_file$variation` %in% c("White", "WhiteDot", "WhiteShow", "WhitePlus", "Wh
# Barplot for Black variations
Black <- barplot(height = Blackplot$n,</pre>
               names.arg = Blackplot$`alexa_file$variation`,
                col = "Black",
               main = "Black Variations",
               xlab = "Number of Variation",
                ylab = "Count",
               las = 0.0,
               cex.names = 0.4,
        space = 0.2
)
# Barplot for White variations
White <- barplot(height = Whiteplot$n,
                 names.arg = Whiteplot$`alexa_file$variation`,
                 col = "White",
                 main = "White Variations",
                 xlab = "Number of Variation",
                 ylab = "Count",
                 las = 0.0,
                 cex.names = 0.4,
                 space = 0.2
```

