5. Graph mateices y-Applications

- -> Grouphs were abstraction of software structure. whenever
- a graph is used as a model, we teace paths through it to find a Set of covering paths, a Set of values used for the logic function that controls the flow, processing time of the soutine, the equations that define the domain (or) whether a state is reachable (or) not.
- -> path is not easy, you can miss a link here there. con cover some links twice.
- > one solution to this problem is to represented graph as a mateix of to use mateix operations equivalent to path teacing.
 - -> The basic algorithm consists of mateix multiplication which is used to get the path expression from every node to every other node.
 - -) A paelitioning algorithm for converting graphs with loop free graphs con equivalent classes
 - > A collapsing process which gets the path expression from any node to any other node.

Matrix of a Grraph

- 7 A graph matrix is a squale allay with one rows one column for every node in the graph.
- -> Each now-column combination corresponds to a relation between the node corresponding to the row & the node corresponding to the column.

- > The relation for example, could be as simple as the link name, if there is a link between the nodes.

 The size of the matrix equals the number of nodes.

 There is a place to put every possible direct connection or link between any y any other node.

 The entey at a row of column intersection is the link
- > The entey at a row & column sheesection is the link weight of the link that connects two nodes in that direction.
- -) A connection from node 2 to 3 does not she imply a connection from node 9 to node ?
- If there are several links between two nodes, then the entey is sum, the '+ sign denotes parallel links.

Some graphs & their materices (D) (S) (A) (A) (D) (D) (D) (D) (A) (D) (D)

Simple weight

-) A simplest weight we can use is to note that there is also isn't a committee ish ta connection.

Let 'I' means there is a connectionly of means no cornection - The arithmetic roules are

1+1=1 1+0=1 0+0=0 0+0=0

-) A material is a connection material

> connection moterier is obtained by replacing each entary with if there is a link, and o'it there is no link,

- -> Each row of a motive denoter. The outlines of the node consesponding to that row.
- -) Each column denotes the in links consesponding to
- -) A branch is a node with more than one non zero entry in its and
 -) A Junction is node with more than one nonzero entry in its column
 - TA self loop is an entry along the diagonal. cydomatic complexity

Is obtained by subtrailing I from the total number of enteres in each rowly ignoring rows with no enteres, we obtain equivalent number of decisions for each row Adding more valuedly than adding I do me sure yields me graph's againsthic complexity.

141=2 (ydornatile complexity)

Relations: Is a property that exits between 2 objects Ext- Node is a connected to node b (or) arb where

a)=b or aRb where R means greater than or equal A graph consists of set of objects called nodes y a relation & between the rides.

- of if arb means a has the relation R to b, it is denoted by a link from a to b.
 - 1) Transitive leation
 - 2) Reflexive Relation
 - 3) Symmetric Relation
 - 4) Antisymmetric Relation
 - 5) Equiralence Relation
 - 6) partial ordering Relation

Transflive Relation: A relation & hanselive of arb and bre implies are

) most relations used in testing are transitive.

- -> Exist transitive revation include: is connected to, is greater han or equal to, is less than or equal to, is a relative of, is faster than, is slower than, takes more thre man, is a subset of, indudes,
- -) Exm of intransitive relations include; is a forend of is a neighbor of, is lied to, has a chain between.

Reflexive Relations

A relation R is reflexive if for everya, ara

-) reflerive relation is equivalent to a selfloop at every node.

Ex. equals, is a relative of

Ex. of isreflexive relation include: not equals, is under, 2s a friend of,

- -> A relation R 22 symmetric if for every a and b,
- Symmetric relation mean that if there is a link from a to b then there is also a ling from b to a
- -) A graph whose relations are not symmetric are cauled directed graph. A graph over a symmeter realion is called undirected graph.
- -) The motein of an undirected graph is Symmetric (ag= ag; for all i,j)

Antisymmeteic relations

- -> A relation R & antisyon metric it for every a and b, if arb and bra then a=b, or they are the same
- > Ex. is greater than or equal to, is a subset of. Exu of monantisymmetric relations: és connected to, Can be reached from, is greater than, is a friend of,

is a relative of. Equivalence Relations: Is a relation +nat

- -) satisfies the seflexive, transitive & symmetex proporties. equality is the most familial example of an equivalence relation
- If set of objects satisfy an equivalence relation we say that they form an equivalence relation.
 - -) the importance of equivalence classes and relations is that any member of equivalence class with respectto the relation equivalent to any other member of that class.

Partial ordering Relations: satisfier reflexive,

transitive, and antisymmetric properties

-) These partial ordering graphs have several importan properties, they are loop free, there is atteast one maximum element & there is atteast 1 minimum element.

power of a matein: Each entry in the

graph's matrix expresses a relation between the pair of nodes that corresponds to that entry

- -) graph matrix vields a new matrix that express the relation between each pair of nodes via one intermediate node under the assumption that the relation is transitive.
- > the square of the matrix represents all posts segments two links long, the third power represents all parts segments 3 links long.
- > Given a materi whose enteres are ag , the square of that mater is obtained by replacing every entey with 1) n

2) ag= Earaxg

given two matrices A and B with entires are and be, but respectively, their product is a newmateix 'c' whose entires are (if i) n 2) =1

Coj = Eabki

Partitioning Algorithm:

-> consider any graph over a toansitive relation. The graph may have loops. We have to partition the graph by grouping nodes in such a way that every loop is contained within one group (08). another. Such graph is partially ordered.

stan in a from and ? to made ? " -> There are many used for an algorithm includes 5-8 we might want to embed the loops within a submoutine So as to have a resulting graph which is loop

free at the top level. -) Many graphs with loops are easy to analyze if you know where to break the loops.

Ex: flow graphs

			,						
Grap	h		R	ما	tit	770	Mc	rtei	ナ
mate	DL.		-				1		
7	•	1				_,,	-		
	٦.	1.	•				5		
			. 1	1	,				
				1	1"	1			
			1		1				
				- /-		1			
	=	1	1				1		•
) 1					1	

Diagonal enteres are made to represent self loop. If diagonal values are all it means it is transitive. -) the transitive dosule mateix (A+I) can be obtained

by using the following steps

step! : mark all diagonal values by I

Steps: The flow from node I to node 6 is

1-2-7-2-3-4-5-3-4-6

So mark nodes 1,2,3,4,5,6,7 by 1 & the fust row

Step3: The flow from node 2 to node 6 is 2-1-2-3-4-5-3-4-6

so mark nodes 2,3,4,5,6,7 by 1 in the Second row.

step 4: The flow from nade 3 to node 6 28 3-4-5-3-4-6. So mark modes 3,4,5,6, by 1 is the foresth row. Step 5: The flow from node 4 to node 6 is 4-5-3-4-6. so mark nodes 3,4,5,6 by 1 in fourth row. Step 6: The flow from node 5 to node 6 is 5-3-4-6.50 mark nodes 3,4,5,6 by I in the fifth now. Step 1: The flow from node 6 is only 6. so make node 6 by 1 in the Sixth now. Step 8: The flow from node 1 to node 6 is 7-2-3-4-5-3--4-6. So mark nodes 2,3,4,5,677 by + in sevents row. Step9: The flow from node 8 to node 6 is 8-3-4-5-3-4-6.50 malk nodes 3,4,5,6,8 by 1 2n the 8th you. Therefore the transitive closure mateix The teanspose of (A+2)) 2 1 1 1 3 4 5 1 7 . 1 The Intersection of teansitive closure mateix (A+I)? & teanspose mater (A+I) " & given by identifying Similal rows of columns entires from (AFI) and

(A+I)

Lis.

5-19	Va .		2	_ 3	ч	Zames Carrier	G_	7	8
		1			A STATE OF THE PARTY OF THE PAR	1	1 157	11 12 1 T	2
2	-	-	1	Sanda April 100	rounde (Care	Capital de Literatura	esterate three streets	1	
3		MATERIAL POR POST CONTROL OF		1	1	1_			
4		Market and the same to the sam		1	1	1_		Ÿ.	N
5	-			1	1	1		Ì,	1
٤. ي			,	,	ļ	k	1	-	
7		1400-4-1	11					1	
8				_					1
	1				1	1	-		1

-) from the above mateix by comparing a sow columns with other sows/columns, the equilibration to be grouped.
-) After grouping A=[1],B=[2,7], C=[3,4,5],D=[6],E-[8]
- The graphy graph matrix representation to the obove values is given by

Building Tools

- -) The out-degree of a node is the number of outlinks it has. The average degree of a node is between the two nodes
 - The in-degree of a node is the no. of in links it has
 - out-degree.