MATH 725 HW#4

MARIO L. GUTIERREZ ABED PROF. J. LOUSTAU

Exercise (Exercise 1). Let V be a Hilbert space. Show that V has a Hilbert basis.

Proof. We start our proof by showing that every Hilbert space has an orthonormal basis \mathcal{B} , and then we show that \mathcal{B} is in fact maximal by showing that $\mathcal{B}^{\perp} = \{0\}$.

Let V be a Hilbert space. To see that \mathcal{B} is an orthonormal basis for V, let \mathcal{F} be the collection of all orthonormal subsets of V ordered by set inclusion. If $\Phi \subset \mathcal{F}$ is linearly ordered then $\cup \Phi$ is an upper bound. But then by Zorn's Lemma, there exists a maximal element $\mathcal{B} \in \mathcal{F}$.

Now assume there exists a unit vector $x \in \mathcal{B}^{\perp} \setminus \{0\}$. Then the set $\mathcal{B} \cup \{x\}$ is an orthonormal set properly containing \mathcal{B} , so \mathcal{B} is not maximal. $(\Rightarrow \Leftarrow)$

Thus we have that $\mathcal{B}^{\perp} = \{0\}$, and it follows that every Hilbert space has a Hilbert basis, as desired.

Exercise (Exercise 2). Let V be an inner product space and let $A = \{u_i \mid i \in \Lambda\} \subseteq V$, where all the u_i are pointwise orthogonal. Show that A is linearly independent.

Proof. Let A be defined as above and take scalars $\alpha_i \in \mathbb{F}$. Now suppose that

$$\alpha_1 u_1 + \dots + \alpha_n u_n = 0.$$

Then, for any $k = 1, \ldots, n$, we have

$$0 = \langle \alpha_1 u_1 + \dots + \alpha_n u_n, u_k \rangle$$

$$= \alpha_k \langle u_k, u_k \rangle$$
 (Since $\langle u_i, u_j \rangle = 0$ for $i \neq j$ due to orthogonality)
$$\implies \alpha_k = 0 \quad \forall k.$$

Hence, we have that A is linearly independent, as desired.

Exercise (Exercise 3). Let $L \in \mathcal{L}(V, W)$ be a bounded linear transformation, where V and W are Banach spaces. Show that its adjoint $L^* \in \mathcal{L}(W, V)$ is also bounded and determine the norm $||L^*||$.

Proof. Let $v \in V$ and $w \in W$. Then notice that

$$\begin{aligned} |\langle v, L^*w \rangle| &= |\langle Lv, w \rangle| \\ &\leq \|Lv\| \|w\| \\ &\leq \|L\| \|v\| \|w\|, \end{aligned} \tag{By the Cauchy-Schwarz Inequality}$$

Zorn's Lemma: If P is a partially ordered set in which every chain has an upper bound, then P has a maximal element.

¹Here's Zorn's lemma for reference:

which implies

$$||L^*w|| \le ||L^*|| ||w|| \le ||L|| ||w||,$$

and hence

$$||L^*|| \le ||L||.$$

Thus we have shown that L^* is bounded (by the norm of L).

To determine the norm of L^* , notice the following:

$$\begin{split} \|L^*\| &= \sup_{w \in W: \|w\| = 1} \|L^*w\| = \sup_{\substack{v \in V: \|v\| = 1\\ w \in W: \|w\| = 1}} |\langle v, L^*w \rangle| \\ &= \sup_{\substack{v \in V: \|v\| = 1\\ w \in W: \|w\| = 1}} |\langle Lv, w \rangle| \\ &= \sup_{\substack{v \in V: \|v\| = 1\\ v \in V: \|v\| = 1}} \|Lv\| \\ &= \|L\|. \end{split}$$

Thus we have shown that in fact $||L^*|| = ||L||$.

We have concluded our proof, but just for reference I am also including a slightly more complex proof that involves the *Hahn-Banach Theorem*:²

Suppose $v \in V$, with $Lv \neq 0$, and let

$$w_0 = \frac{Lv}{\|Lv\|} \in W,$$

so that, in particular, $||w_0|| = 1$. Now let w be a functional such that

$$w(\lambda w_0) = \lambda$$

on the set $S \subset W$ of all elements of the form λw_0 . Then we have that $\langle w, w_0 \rangle = 1$, where $\|w\|_{\text{on }S} = 1$. Using the Hahn-Banach theorem, we can extend w to a functional on the whole space W such that $\|w\| = 1$ and

$$\langle w, w_0 \rangle = 1,$$
 i.e., $\langle w, Lv \rangle = ||Lv||.$

Therefore,

$$\|Lv\| = \langle Lv, w \rangle = |\langle v, L^*w \rangle| \le \|v\| \|L^*w\| \le \|v\| \|L^*\| \|w\| = \|v\| \|L^*\|,$$

which implies

$$||L|| \le ||L^*||.$$

Combining this result with the inequality obtained in (\dagger) , we have that $||L^*|| = ||L||$.

²Here's the Hahn-Banach theorem for reference:

⁽Hahn-Banach Theorem) A linear functional defined on a subspace of a vector space V and which is dominated by (i.e. bounded by) a sublinear function defined on V has a linear extension which is also dominated by the sublinear function.