Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

VITMO

ЛАБОРАТОРНАЯ РАБОТА №4 ПРЕДМЕТ «ЭЛЕКТРОННЫЕ УСТРОЙСТВА СИСТЕМ УПРАВЛЕНИЯ» ТЕМА «ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ В СПЕЦИАЛИЗИРОВАННЫХ СХЕМАХ»

Вариант №10

Преподаватель: Жданов В. А.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ЭлУСУ R22 бак 1.2

Содержание

1	Цел	ь работы	3				
2	Исх	одные данные	3				
	2.1	Таблица 1	3				
	2.2	Набор схем	3				
	2.3	Таблица 2	3				
3	Исследование схем ограничения выходного напряжения на ОУ						
	3.1	Расчет параметров схемы	3				
	3.2	Схема ограничителя выходного напряжения на ОУ: вид ограничения 1	3				
	3.3	Зависимость выходного напряжения от входного	4				
	3.4	Различные входные сигналы	4				
	3.5	Схема ограничителя выходного напряжения на ОУ: вид ограничения 2	5				
	3.6	Зависимость выходного напряжения от входного	6				
	3.7	Различные входные сигналы	6				
	3.8	Расчет схемы симметричного ограничителя	7				
	3.9	Схема симметричного ограничителя	7				
	3.10	Зависимость выходного напряжения от входного	8				
	3.11	Исследование синусоидального сигнала	8				
	3.12	Вывод относительно влияния нелинейных элементов в цепи обратной					
		связи	8				
4	Исс	ледование нуль-компаратора	9				
	4.1	Схема нуль-компаратора	9				
	4.2	Исследование синусоидального сигнала	9				
	4.3	Вывод	13				
5	Исс	Исследование одновходового компаратора					
	5.1	Расчет параметров схемы	13				
	5.2	Схема одновходового компаратора	13				
	5.3	Зависимость выходного напряжения от входного	14				
	5.4	Вывод	14				
6	Исс	ледование двухвходового компаратора	14				
	6.1	Схема двухвходового компаратора без гистерезиса	14				
	6.2	Зависимость выходного напряжения от входного	15				
	6.3	Вывод	15				
	6.4	Расчет параметров схемы двухвходового компаратора с гистерезисом					
		на ОУ	15				
	6.5	Схема двухвходового компаратора с гистерезисом на ОУ	15				
	6.6	Гистерезис	16				
	6.7	Зависимость выходного напряжения от входного	16				
	6.8	Расчет параметров схемы триггера Шмитта с однополярным выходом .	18				
	6.9	Схема триггера Шмитта с однополярным выходом	18				
	6.10	Гистерезис	19				
	6.11	Зависимость выходного напряжения от входного	19				

7	Общий вывод по работе	20
	6.15 Вывод	20
	6.14 Зависимость выходного напряжения от входного	20
	6.13 Схема компаратора с окном	20
	6.12 Расчет параметров схемы компаратора с окном	19

Цель работы

Цель работы – исследование характеристик специализированных устройств, построенных на операционных усилителях.

Исходные данные

Таблица 1

Диод	Стабилитрон	K_U	ОУ	
1N 58 18	EDZV10B	2	LT1014	

Набор схем

(а) Вид цепи ограничения: схема 1

(b) Вид цепи ограничения: схема 2

Таблица 2

Обозначим α – двухвходовый компаратор, β – триггер Шмитта, γ – компаратор с окном

Обозн.	задан.	α	α	β	β	γ	γ
U_{nop}, B	$U_{\rm O\Pi},{ m B}$	$U_{\rm O\Pi},{ m B}$	U_{Γ} , B	$U_{\rm BTO},{ m B}$	$U_{\rm HTO},{ m B}$	$U_{\rm BTO},{ m B}$	$U_{\mathrm{HTO}},\mathrm{B}$
-2	2	1	2	5	2	7.5	6.5

Исследование схем ограничения выходного напряжения на ОУ

Расчет параметров схемы

Соберем схему ограничителя выходного напряжения на ОУ. Вид цепи ограничения представлен на рис. 1а. Рассчитаем параметры резисторов R_1, R_2 в соответствии с коэффициентом усиления

$$K_U = rac{U_{ ext{вых}}}{U_{ ext{вх}}} = rac{R_2}{R_1} = 2 \Rightarrow R_2 = 2 \ ext{кОм}, \ R_1 = 1 \ ext{кОм};$$

Схема ограничителя выходного напряжения на ОУ: вид ограничения 1

Построим схему в соответствии с вариантом и расчетами. Вид цепи ограничения представлен на рис. 1a. Схема представлена на рис. 2

Рис. 2: Схема ограничителя выходного напряжения на ОУ с видом ограничения 1

Снимем зависимость $U_{\text{вых}} = f\left(U_{\text{вх}}\right)$. Значение входного напряжения изменяем в диапазоне от $-1.1U_{\text{пит}}$ до $1.1U_{\text{пит}}$. Укажем на схеме в LTspice в источник тока Vin значение DC 0 и поставим на схему .dc Vin $\{-1.1*\text{Vcc}\}\ \{1.1*\text{Vcc}\}\ 0.01$. Получаем

Рис. 3: Выходное напряжение при $-1.1U_{\text{пит}} \leq U_{\text{вх}} \leq 1.1U_{\text{пит}}$ В

Наблюдаем ограничение для $U_{\text{вых}} > 0$. Для $U_{\text{вых}} < 0$ ограничение по питанию.

Различные входные сигналы

Подадим на вход ограничителя от внешнего генератора синусоидальный сигнал амплитуды 5 В и частоты 1 кГц SINE(0 5 1k) (амплитуда превышает значение ограничения). Зарисуем осциллограмму $U_{\rm вых}$

Рис. 4: Выходное напряжение при SINE(0 5 1k)

Наблюдаем ограничение для $U_{\text{вых}} > 0$. Попробуем подать постоянный ток в -5 В

Рис. 5: Выходное напряжение при постоянном токе -5 В

Наблюдаем ограничение для $U_{\text{вых}} > 0$. Попробуем подать 5 В

Рис. 6: Выходное напряжение при постоянном токе 5 В

Получилось усиление с коэффициентом -2 (инвертирующий усилитель).

Схема ограничителя выходного напряжения на ОУ: вид ограничения 2

Поменяем в схеме на рис. 2 вид ограничения на представленный на рис. 1b. Обновленная схема представлена на рис. 7

Рис. 7: Схема ограничителя выходного напряжения на ОУ с видом ограничения 2

Снимем зависимость $U_{\text{вых}} = f\left(U_{\text{вх}}\right)$ аналогичным образом. Получаем

Рис. 8: Выходное напряжение при $-1.1 U_{\text{пит}} \le U_{\text{вх}} \le 1.1 U_{\text{пит}}$ В

Наблюдаем ограничение для $U_{\text{вых}} > 10$. Для $U_{\text{вых}} < 0$ ограничение по питанию.

Различные входные сигналы

Проведем аналогичный первому виду ограничения эксперимент. Зарисуем осциллограмму $U_{\scriptscriptstyle \mathrm{Bbix}}$

Рис. 9: Выходное напряжение при SINE(0 10 1k)

Теперь ограничение для $U_{\text{вых}} > 10$. Попробуем подать постоянный ток в $-10~\mathrm{B}$

Рис. 10: Выходное напряжение при постоянном токе -10 В

Напряжение на выходе не превышает ограничения в 10 B (было бы 20 B). Попробуем подать 10 B

Рис. 11: Выходное напряжение при постоянном токе 10 В

Получилось усиление с коэффициентом -2.

Расчет схемы симметричного ограничителя

Пусть напряжение на диодах $U_{\rm Д}=0.4$ В, тогда

$$U_{\text{orp}} = U_{\text{ct}} + 2U_{\text{Д}} = 10 + 2 \cdot 0.4 = 10.8 \text{ B}$$

Перепад напряжения

$$\Delta U = U_{\text{пит}} - U_{\text{огр}} = 22 - 10.8 = 11.2 \text{ B}$$

Пусть ток на диодах $I_{\rm Д}=20$ мA, тогда

$$R_2 = \frac{\Delta U}{I_{\Pi}} = \frac{11.2}{0.02} = 560 \text{ Om}$$

Пусть максимальное входное напряжение $U_{\rm bx}=\pm 22~{
m B},$ а ток не должен превышать $I_{\rm bx~Makc}=1~{
m mA},$ тогда

$$R_1 = \frac{22}{0.001} = 22 \text{ кОм}$$

Схема симметричного ограничителя

Построим схему с учетом предыдущих расчетов

Рис. 12: Схема симметричного ограничителя

Снимем зависимость $U_{\text{вых}} = f\left(U_{\text{вх}}\right)$ аналогичным образом. Получаем

Рис. 13: Выходное напряжение при $-1.1U_{\text{пит}} \leq U_{\text{вх}} \leq 1.1U_{\text{пит}}$ В

Наблюдаем ограничение $-10 < U_{\text{вых}} < 10$.

Исследование синусоидального сигнала

Подадим на вход системы синусоидальный сигнал SINE(0 5 1k) и снимем осциллограмму $U_{\text{вых}}$. V(n004) — выход, V(n007) — вход

Рис. 14: Выходное напряжение при SINE(0 5 1k)

Синус стал прямоугольной волной из-за ограничений на $\pm 10~{\rm B}.$

Вывод относительно влияния нелинейных элементов в цепи обратной связи

При использовании только диода выходное напряжение ограничивалось на уровне чуть больше нуля (порог открывания диода). Добавление стабилитрона внесло сдвиг порога ограничения. Сигнал стал ограничиваться на уровне около 10 В (напряжение стабилизации 10 В). Таким образом, нелинейные элементы в цепи ОС позволяют формировать управляемое ограничение.

Исследование нуль-компаратора

Схема нуль-компаратора

Соберем схему нуль-компаратора на ОУ. Установим значение сопротивления $R_1 = 10$ кОм. Схема представлена на рис. 15

Рис. 15: Схема нуль-компаратора

Исследование синусоидального сигнала

Подадим на вход системы синусоидальный сигнал с амплитудой 1 мВ, частоту будем варьировать f=0.1,0.3,0.5,1 к Γ ц. Снимем осцилограммы $U_{\rm вx}$ и $U_{\rm выx}$. После этого изменим амплитуду синусоиды на 1 В и повторим эксперимент

Рис. 16: Входное напряжение при SINE(0 0.001 100)

Рис. 17: Выходное напряжение при SINE(0 0.001 100)

Рис. 18: Входное напряжение при SINE(0 0.001 300)

Рис. 19: Выходное напряжение при SINE(0 0.001 300)

Рис. 20: Входное напряжение при SINE(0 0.001 500)

Рис. 22: Входное напряжение при SINE(0 0.001 1k)

Рис. 24: Входное напряжение при SINE(0 1 100)

Рис. 26: Входное напряжение при SINE(0 1 300)

Рис. 27: Выходное напряжение при SINE(0 1 300)

Рис. 28: Входное напряжение при SINE(0 1 500)

Рис. 29: Выходное напряжение при SINE(0 1 500)

Рис. 30: Входное напряжение при SINE(0 1 1k)

Рис. 31: Выходное напряжение при SINE(0 1 1k)

Вывод

Уровня входного сигнала в 1 мВ недостаточно для корректной работы компаратора. При усилении сигнала до 1 В компаратор работает стабильно и верно.

Исследование одновходового компаратора

Расчет параметров схемы

Соберем схему одновходового компаратора. Зададим значение сопротивления резистора $R_1=100$ Ом. Из таблицы 2 берем значение $U_{\rm пор}=-2$ В. По условию $U_{\rm О\Pi}=10$ В. Рассчитаем значения сопротивлений резисторов R_2,R_3

$$U_{\text{пор}} = -U_{\text{ОП}} \frac{R_1}{R_2}, \ R_3 = \frac{R_1 R_2}{R_1 + R_2},$$

$$-2 = -10 \cdot \frac{100}{R_2} \Rightarrow R_2 = 500 \text{ Om}, \ R_3 = \frac{100 \cdot 500}{100 + 500} \approx 83.33 \text{ Om};$$

Схема одновходового компаратора

Соберем схему согласно расчетам и варианту. Схема представлена на рис. 32

Рис. 32: Схема одновходового компаратора

Снимем зависимость $U_{\text{вых}} = f\left(U_{\text{вх}}\right)$ аналогично заданию с ограничителем. Получаем

Рис. 33: Выходное напряжение при $-1.1U_{\text{пит}} \le U_{\text{вх}} \le 1.1U_{\text{пит}}$ В, $U_{\text{пор эксп}} = -1.986$ В

Вывод

При прохождении сигналом порога в -2 В компаратор корректно переключился между положительным и отрицательным насыщением.

Исследование двухвходового компаратора

Схема двухвходового компаратора без гистерезиса

Соберем схему двухвходового компаратора без гистерезиса на ОУ при $U_{\rm O\Pi}=1$. Значения резисторов произвольные – они не влияют на порог сравнения. Схема представлена на рис. 34

Рис. 34: Схема двухвходового компаратора без гистерезиса

Снимем зависимость $U_{\text{вых}} = f(U_{\text{вх}})$ как в задании с ограничителем. Получаем

Рис. 35: Выходное напряжение при $-1.1U_{\text{пит}} \le U_{\text{вх}} \le 1.1U_{\text{пит}}$ В, $U_{\text{пор эксп}} = 1.014$ В

Вывод

Вывод аналогичен заданию с одновходовым компаратором – двухвходовый компаратор без гистерезиса отработал корректно.

Расчет параметров схемы двухвходового компаратора с гистерезисом на $\mathbf{O} \mathbf{\mathcal{Y}}$

Соберем схему двухвходового компаратора с гистерезисом на операционном усилителе. Рассчитаем параметры схемы. R_3 берем произвольно, он не влияет на гистерезис. Зафиксируем $R_2=10$ кОм. В нашем случае $U_{\rm hac+}=|U_{\rm hac-}|=U_{\rm пит}-1=21$ В. Из таблицы 2 берем значение размаха гистерезиса $U_{\Gamma}=2$ В. Определим значение R_1

$$U_{\Gamma} = 2 \cdot \frac{R_1}{R_1 + R_2} U_{\text{\tiny Hac}+}, \ 2 = \frac{2R_1}{R_1 + 10000} \cdot 21 \Rightarrow R_1 = 500 \text{ Om};$$

Схема двухвходового компаратора с гистерезисом на ОУ

Соберем одноименную схему согласно расчетам и варианту

Рис. 36: Схема двухвходового компаратора с гистерезисом на ОУ

Гистерезис

Подадим SINE(0 5 100) и снимем V(Vin), чтобы увидеть петлю гистерезиса. Привязка Vin через net к проводу после источника питания

Рис. 37: Гистерезис при SINE(0 5 100): V(Vin)

Зависимость выходного напряжения от входного

Снимем зависимость $U_{\text{вых}} = f\left(U_{\text{вх}}\right)$ как в задании с ограничителем. Получаем

Рис. 38: Выходное напряжение при $-1.1U_{\text{пит}} \le U_{\text{вх}} \le 1.1U_{\text{пит}}$ В, $U_{\text{пор эксп}} = 1.950$ В

Снимем зависимость $U_{\text{вых}}=f\left(U_{\text{вх}}\right)$ для гармонического входного воздействия амплитудой 2 В, частотой от 100 Гц до 1 кГц. V(n003) – выходное напряжение, V(vin) – входное

Рис. 39: Выходное напряжение при ${\rm SINE}(0\ 2\ 100)$

Рис. 40: Выходное напряжение при SINE(0 2 300)

Рис. 41: Выходное напряжение при ${\rm SINE}(0\ 2\ 500)$

Рис. 42: Выходное напряжение при SINE(0 2 1k)

Расчет параметров схемы триггера Шмитта с однополярным выходом

Имеем такие данные:

$$U_{
m BTO}=5$$
 В, $U_{
m HTO}=2$ В, $U_{
m O\Pi}=U_{
m \Pi}=22$ В, $U_{
m Hac}=U_{
m \Pi}-1=21$ В,
$$I_{
m nen}=1$$
 мА, $I_{
m H}=3$ мА;

Рассчитаем R_1, R_2, R_3, R_4, R_6 . Определим сумму $R_2 + R_3$

$$R_2 + R_3 = \frac{U_{
m BTO}}{I_{
m дел}} = 5 \
m kOm,$$

Определим R_1

$$R_1 = \frac{U_{
m O\Pi} - U_{
m BTO}}{I_{
m дел}} = \frac{22 - 5}{0.001} = 17$$
 кОм;

Выберем транзистор 2N2222 с $U_{\mathrm{K9}_{\mathrm{nac}}}=0.3$ В, $U_{\mathrm{E9}}=0.7$ В, $h_{\mathrm{21}_{\mathrm{min}}}=50.$ Определим R_{2}

$$R_2 = \frac{(U_{\rm HTO} - U_{\rm K \vartheta_{\rm Hac}})\,R_1}{U_{\rm OII} - U_{\rm HTO} + U_{\rm K \vartheta_{\rm Hac}}} = \frac{2 - 0.3}{22 - 2 + 0.3} \cdot 17000 \approx 1423.645 \,\, {\rm Om},$$

Из вычисленной суммы $R_2 + R_3$ выразим R_3

$$1423.645 + R_3 = 5000 \Rightarrow R_3 = 3576.355 \text{ Om},$$

Определим сопротивление базы транзистора

$$R_6 = \frac{U_{\text{\tiny Hac}} - U_{\text{\tiny B9}}}{I_{\text{\tiny Дел}}/h_{21_{\text{min}}}} = \frac{21 - 0.7}{0.001/50} \approx 1 \text{ MOm};$$

Выберем стабилитрон EDZV5.1B с параметрами $U_{\rm ct}=5.1$ B, $I_{\rm ct}=2$ мА

$$R_4 = \frac{U_{\text{\tiny HAC}} - U_{\text{\tiny CT}}}{I_{\text{\tiny CT}} + I_{\text{\tiny H}}} = \frac{21 - 5.1}{0.002 + 0.003} = 3180 \text{ Om}$$

Таким образом, имеем

$$R_1 = 17 \ {
m kOm}, \ R_2 \approx 1.4 \ {
m kOm}, \ R_3 \approx 3.6 \ {
m kOm}, \ R_6 \approx 1 \ {
m MOm}, \ R_4 \approx 3.2 \ {
m kOm};$$

Схема триггера Шмитта с однополярным выходом

Соберем одноименную схему согласно расчетам и варианту

Рис. 43: Схема триггера Шмитта с однополярным выходом

Гистерезис

Подадим SINE(0 10 100) и снимем V(Vin), чтобы увидеть петлю гистерезиса

Рис. 44: Гистерезис при SINE(0 10 100): V(Vin)

Зависимость выходного напряжения от входного

Снимем зависимость $U_{\text{вых}} = f\left(U_{\text{вх}}\right)$ как в задании с ограничителем. Получаем

Рис. 45: Выходное напряжение при $-1.1U_{\text{пит}} \leq U_{\text{вх}} \leq 1.1U_{\text{пит}}$ В, $U_{\text{пор эксп}} = -2.947$ В

Расчет параметров схемы компаратора с окном

Имеем такие данные:

$$U_{\rm BTO} = 7.5 \; {\rm B}, \; U_{\rm HTO} = 6.5 \; {\rm B}, \; U_{\rm O\Pi} = U_{\Pi} = 22 \; {\rm B}, \; R_{\rm H} = 2 \; {\rm \kappa Om}, \; I_{\rm дел} = 5 \; {\rm mA};$$

Рассчитаем R_1, R_2, R_3

$$\begin{split} R_1 &= \frac{U_{\rm OII} - U_{\rm BTO}}{I_{\rm дел}} = \frac{22 - 7.5}{0.005} = 2.9 \text{ кОм}, \\ R_2 &= \frac{U_{\rm BTO} - U_{\rm HTO}}{I_{\rm дел}} = \frac{7.5 - 6.5}{0.005} = 200 \text{ Ом}, \\ R_3 &= \frac{U_{\rm HTO}}{I_{\rm лел}} = \frac{6.5}{0.005} = 1.3 \text{ кОм}; \end{split}$$

Схема компаратора с окном

Соберем одноименную схему согласно расчетам и варианту

Рис. 46: Схема компаратора с окном

Зависимость выходного напряжения от входного

Снимем зависимость $U_{\text{вых}} = f\left(U_{\text{вх}}\right)$ как в задании с ограничителем. Получаем

Рис. 47: Выходное напряжение при $-1.1U_{\text{пит}} \leq U_{\text{вх}} \leq 1.1U_{\text{пит}}$ В, $U_{\text{пор эксп}} = [-7.536, -6.490]$ В

Вывод

Компараторы работает верно и подтверждают корректность расчетов и рассуждений.

Общий вывод по работе

В ходе лабораторной работы были рассмотрены различные схемы с операционными усилителями, такие как ограничитель выходного напряжения, нуль-компаратор, одновходовый и двухвходовый компараторы, двухвходовый компаратор с гистерезисом, триггер Шмитта с однополярным выходом и компаратор с окном. Были промоделированы схемы, в качестве результатов были сняты осцилограммы выходных напряжений в зависимости от входного. Результаты подтвердили корректность вычислений и рассуждений.