

T-Test,
A Strong Way to Validate
Your Experiment

Bahy Helmi Hartoyo Putra ML Engineer @DOKU github.com/bahyhelmihp/sesi-berbagi Community of Practice Data Science

Adopted from:

Statistics for the Behavioral Science 9th ed. by Frederick J. Gravetter, Larry B. Wallnau

Key Concepts

Population vs Sample

Key Concepts

```
Sample size (n) = 11

Sample mean (M) = 44/11 = 4

Sum of Squares (SS) = (1-4)^2 + (2-4)^2 + ... = 30

Sample variance (s²) = (1-4)^2 + (2-4)^2 + ... / (11-1) = 3
```

Sample Size,
Sample Mean,
Sample SS,
Sample Variance

Introduction

Group 1: Experiment-Based Learning

Group 2: Reading-Based Learning

Introduction

Midterm Test Score Group #1: **Experiment-Based Learning** [70, 90, 80, 75, ...], n = 15 M = 93

Experiment-Based shows higher average than Reading-Based.

Sure about this? Is this difference significant?

What is t-test?

- A t-test is a type of inferential statistic used to determine if there is a significant difference between the means of two groups.
- T-test is used when:
 - One or more treatment(s) done to a population.
 - Population variance is unknown.
 - Sample size is relatively small (n <= 30)*.
- T-test exists for two kind of research design:
 - Independent-measures research design.
 - Repeated-measures research design.

Kind of T-Test

Two Independent SamplesT-Test

Revisit Problem

Midterm Test Score Group #1: [70, 90, 80, 75, ...], n = 15 M = 93

Midterm Test Score Group #2: [75, 65, 80, 85, ...], n = 15 M = 85

Two possible explanations about the above case:

- It is possible that there is really a difference between the two treatment conditions so that the method used by Group #1 produces better score than the method used by Group #2.
- It is possible that **there is no difference between** the the method used by **Group #1** and **Group #2**. The **mean difference obtained** in the experiment is simply the **result of sampling error**.

The Problem

Average High School Grade

Experiment-based		Reading-based	
86	99	90	79
87	97	89	83
91	94	82	86
97	89	83	81
98	92	85	92
n = 10		n = 10	
M = 93		M = 85	
SS = 200		SS = 160	

Based on the data on the left, Is there a **significant difference** between the **two groups**? Use a **two-tailed test** with $\alpha = 0.01$.

#1: Define Hypothesis

μ₁ = Population Mean of Experiment-based learning

$$H_0: \mu_1 - \mu_2 = 0$$
 or $H_0: \mu_1 = \mu_2$

μ₂ = Population Mean of Reading-based learning

Null hypothesis:

- **No mean difference** between the population means.
- **Experiment-based** learning and **reading-based** learning comes from an exactly **same** population.

$$H_1: \mu_1 - \mu_2 \neq 0$$
 or $H_0: \mu_1 \neq \mu_2$

Alternative hypothesis:

- There is a mean difference between the population means.
- Experiment-based learning and reading-based learning comes from a different population.

#2: Find the critical region

We set the alpha level for this experiment, $\alpha = 0.01$, two-tailed.

This is an independent-measures design. The t statistic for these data has degrees of freedom determined by

$$df = df_1 + df_2$$
= $(n_1 - 1) + (n_2 - 1)$
= $9 + 9$
= 18

Given these informations, how we could find the **critical region**?

#2: Find the critical region (cont.)

The t distribution for df = 18 is and $\alpha = 0.01$, the critical region consists of the extreme 1% of the distribution and has boundaries of t = +2.878 and t = -2.878.

#3: Find the t-statistic

$$t = \frac{\text{sample mean - population mean}}{\text{estimated standard error}} = \frac{M - \mu}{s_M}$$

$$t = \frac{\text{sample mean difference - population mean difference}}{\text{estimated standard error}} = \frac{\left(M_1 - M_2\right) - \left(\mu_1 - \mu_2\right)}{s_{(M_1 - M_2)}}$$

#3: Find the t-statistic (cont.)

$$t = \frac{\text{sample mean difference - population mean difference}}{\text{estimated standard error}} = \frac{\left(M_1 - M_2\right) - \left(\mu_1 - \mu_2\right)}{s_{\left(M_1 - M_2\right)}}$$

REMEMBER!

M = sample mean
 s² = sample variance
 s² = pooled variance
 n = sample size
 SS = sum of squares
 df = degrees of freedom

$$s_{(M_1 - M_2)} = \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$$

pooled variance
$$= s_p^2 = \frac{SS_1 + SS_2}{df_1 + df_2}$$

#3: Find the t-statistic (cont.)

$$t = \frac{\text{sample mean difference} - \text{population mean difference}}{\text{estimated standard error}} = \frac{\frac{93 - 85}{(M_1 - M_2) - (\mu_1 - \mu_2)}}{\frac{S_{(M_1 - M_2)}}{2}}$$

REMEMBER!

M = sample mean
 s² = sample variance
 s² = pooled variance
 n = sample size
 SS = sum of squares
 df = degrees of freedom

$$s_{(M_1 - M_2)} = \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$$
10 10
$$pooled variance = s_p^2 = \frac{SS_1 + SS_2}{df_1 + df_2}$$
9 9

#4: Locate the t-statistic

The t distribution for df = 18 is and $\alpha = 0.01$, the critical region consists of the extreme 1% of the distribution and has boundaries of t = +2.878 and t = -2.878.

We can be confidence to reject the H₀. Therefore, we can conclude that there is a significant difference between the two groups.

#5: Calculate the effect size

estimated
$$d = \frac{\text{estimated mean difference}}{\text{estimated standard deviation}} = \frac{M_1 - M_2}{\sqrt{s_p^2}}$$

$$d = \frac{M_1 - M_2}{\sqrt{s_p^2}} = \frac{93 - 85}{\sqrt{20}} = \frac{8}{4.7} = \boxed{1.79}$$

SMALL Effect Size How huge is the effect size?

#6: Reporting the result

APA Style:

The students who study using experiment-based learning had higher high school grades (M=93, SD=4.71) than the students who study using reading-based learning (M=85, SD=4.22). The mean difference was significant, t(18)=4.00, p <0.01, d=1.79.

Other way:

The difference was significant, t(18)=4.00, p=0.01, d=1.79.

What can we conclude?

Thank you!

Email: <u>bahyhelmi97@gmail.com</u>

GitHub: https://github.com/bahyhelmihp

LinkedIn: https://linkedin.com/in/bahy