

Rachel Cox

Department of Computer Science

101100001000 101100001000 101100001000 101100001000 101100001000

Announcements and Reminders:

- > Enroll in the class Moodle. https://moodle.cs.colorado.edu
- First homework (on Moodle) is due Friday 7 September at 12pm 1 attempt per problem. infinite attempts for codeRunner. Clicking "Check" locks in your answer...don't do it!
- Enroll in the class Piazza: https://piazza.com/colorado/fall2018/csci2824
- ➤ Keep updated with the Schedule: https://goo.gl/DFuboZ
- > CA office hours in CSEL (1st floor Engineering Center). A link to the schedule is on Piazza.

Definition: Let p and q be two propositions. The <u>conditional</u> "if p then q", denoted by $p \rightarrow q$, is false when p is true but q is false, and true otherwise.

- o The conditional describes an if-then relationship between the two propositions.
- Think of the conditional p→q as defining a rule. What are the cases where the rule holds or where the rule is broken.

$m{p} oldsymbol{ o} m{q}$		р
$m{q} \longrightarrow m{p}$	converse	7
$\neg p \rightarrow \neg q$	inverse	
$\neg q \rightarrow \neg p$	contrapositive	F

р	q	$oldsymbol{p} o oldsymbol{q}$	
<u></u>		1	
7		F	
F	+		
F	F	T	

Definition: The compound propositions p and q are called **logically equivalent** if $p \Leftrightarrow q$ is a tautology. The notation $p \equiv q$ denotes that p and q are logically equivalent.

> A tautology is when a statement is always true.

	·			conditiona	converse	inverse	Contropositive
р	q	$\neg p$	$\neg q$	$oldsymbol{p} o oldsymbol{q}$	$egin{array}{c} oldsymbol{q} & \longrightarrow oldsymbol{p} \end{array}$	$ eg p \rightarrow eg q$	agray q ightarrow agray p
	↓	¥ J	7 +				
			4	F			F
F			F	7		F	T
F		T =	>				

Definition: The compound propositions p and q are called **logically equivalent** if $p \iff q$ is a tautology. The notation $p \equiv q$ denotes that p and q are logically equivalent.

> A tautology is when a statement is always true.

				Cond. <> contra	CONV A I'NV.
m p o q	$oxed{q ightarrow p}$	eg p ightarrow eg q	$ \neg q ightarrow \neg p$	$(p \rightarrow q) \Leftrightarrow (\neg q \rightarrow \neg p)$	$(q \rightarrow p) \Leftrightarrow (\neg p \rightarrow \neg q)$
Т	T	Т	Т		
F	Т	Т	F		
Т	F	F	Т		7
Т	Т	Т	Т		

The conditional and the contrapositive are logically equivalent.

The converse and inverse are logically equivalent.

$$(p \rightarrow q) \Leftrightarrow (\neg q \rightarrow \neg p) \mid (p \rightarrow q) \Leftrightarrow (\neg q \rightarrow \neg p)$$

On an island there are two types of people: Knights who always tell the truth, and Knaves who always lie.

Example: On the island you encounter two people, who we'll call A and B. A tells you that "I am a Knave or B is a Knight." Use a truth table to determine what type of people A and B are.

Let p: A is a knight.

Let q: B is a knight.

How can we represent A's comment symbolically?

New Strategy: We'd like to know the combinations of truth values of p and q that ensure that statements made by A and B are consistent with their nature as Knights or Knaves. (i.e. we don't want A to be a Knight but utter a False statement.)

In this example, one way to accomplish this is to test that p (the statement that A is a Knight) is equivalent in truth value to the statement that he uttered

(i.e.
$$\neg p \lor q$$
) $\Rightarrow (\neg p \lor q)$

Example: On the island you encounter two people, who we'll call A and B. A tells you that "I am a Knave or B is a Knight." Use a truth table to determine what type of people A and B are.

On an island there are two types of people: Knights who always tell the truth, and Knaves who always lie.

Example: On the island you encounter two people, who we'll call A and B. Person A tells you that "B and I are of opposite types." Person B tells you that "A is a knave and I am a knight." Use a truth table to determine what type of people A and B are.

p: A is a Knight.
q: B is a Knight.
A's statement: P£9.
B's Statement: ¬p19.

we want As and B's nature to be consistent with their statements.

Example: (continued) On the island you encounter two people, who we'll call A and B. Person A tells you that "B and I are of opposite types." Person B tells you that "A is a knave and I am a knight." Use a truth table to determine what type of people A and B are.

р	q	pÔq	79	-1P19	P (P (P q)	2=>(-p/19)	$P \Leftrightarrow (P \oplus q)$ $q \Leftrightarrow (\neg p \land q)$
T	T	F	F	F	F		F
7	F	T	F	F	+	7	+ 4
F	1	1	1	1	F	T	F
F	F	F	7	F	1	T	7 *

A: cannot determine nature B: is a Knave.

Application: Necessary and Sufficient Conditions

Example: Let n be a natural number. It is **sufficient** that n be divisible by 12 for n to be divisible by 6

Let r = n is divisible by 12 and s = n is divisible by 6

How could we represent this claim using a conditional?

Application: Necessary and Sufficient Conditions

Example: Let n be a natural number. It is **necessary** that n^2 be divisible by 9 for n to be divisible by 6

Let $q = n^2$ is divisible by 9 and s = n is divisible by 6

How could we represent this claim using a conditional?

Example: Wason selection task

Consider the following four cards. They have letters on one side and numbers on the other. Suppose I tell you the following rule:

If a card has an odd number, then its letter is a vowel.

Question: What card(s) do you need to turn over in order to verify that the given rule is true?

Logical equivalence

- We have found that $p \to q \equiv \neg q \to \neg p$. So. Who cares?
- Turns out, this can be very useful in proving things.
- Mathematical arguments/proofs:
 - progressing from a set of assumptions to useful/interesting conclusions
 - logical equivalences link the steps together
- To prove $p \rightarrow q$, you might suppose p is true, then work your way forward to show that it must be the case that q is true.
- But it might be easier to suppose that q is false, then work your way toward showing that it must be the case that p is also false.
 - And because $p \rightarrow q \equiv \neg q \rightarrow \neg p$, either way is valid.

Example: Suppose n is an integer. Prove that if n^2 is even, then n must be even.