京东用户行为分析报告

姓名: 黄泽森

邮箱: json.wong.work@gmail.com

目 录

1.	前言	1
	1.1 分析背景	1
	1.2 数据来源	1
	1.3 分析工具	1
	1.4 数据介绍	1
2.	分析目的及框架	2
	2.1 提出问题	2
	2.2 分析框架	2
	结论汇总	
	3.1 整体分析结论	3
	3.2 时间维度分析结论	3
	3.3 用户分析结论	
	3.4 商品分析结论	5
4.	整体情况分析	6
	4.1 整体情况分析框架及相应指标	6
	4.2 流量情况	6
	4.3 销售情况	7
	4.4 小结	8
5.	时间维度分析	10
	5.1 时间维度分析框架及相应指标	10
	5.2 按日期分析	10
	5.3 按时段分析	12
	5.4 小结	14

6. 用户分析	15
6.1 用户分析框架及相应指标	15
6.2 整体用户	15
6.3 消费用户	22
6.4 小结	25
7. 商品分析	27
7.1 商品分析框架及相应指标	27
7.2 整体情况	27
7.3 商品指标与下单数的关系	27
7.4 热门复购商品	30
8. 附录: 各分析模块 SQL 代码	32
8.1 整体情况	32
8.2 时间维度分析	37
8.3 用户分析	40
8.4 商品分析	48

1. 前言

1.1 分析背景

本次分析根据京东 2018 年 4 月上半月(1-15 日)用户行为数据进行指标分析,了解该段时间运营状况,发掘用户行为规律,找出问题并提出建议。

1.2 数据来源

本次分析的数据来源于 <u>JDATA 竞赛</u>的用户行为数据表,并截取其中日期为 2018 年 4 月 1 日-2018 年 4 月 15 日的用户行为数据作为此次分析的数据。

1.3 分析工具

本次分析将数据集导入 MySQL 8.0 并使用 Navicat Premium 15 客户端进行数据查询,查询结果的可视化图表则使用 FineBI 绘制。

1.4 数据介绍

导入 MySQL 的数据表字段描述如下:

字段	含义	字段类型
user_id	用户唯一标识	int
sku_id	商品唯一标识	int
type	行为类型: 1.浏览; 2.下	tinyint
	单; 3.关注; 4.评论; 5.加	
	购物车	
day	行为日期	tinyint
hour	行为时段	tinyint

表 1.1 2018 年 4 月上半月用户行为数据表(April_action)字段描述

2. 分析目的及框架

2.1 提出问题

- (1) 从整体角度: 流量指标和销售过程中各项指标及转化率是多少?
- (2) 从时间角度:按日期和按时段分析访问用户、浏览数和下单数的变化?
- (3) 从用户角度: 用户的各项指标情况? 各行为路径转化率? 用户数量变化及留存?消费用户的指标情况? 消费次数分布及消费次数搞得客户?
- (4) 从商品角度:商品的各项指标情况?商品销量与指标的关系?热销商品是哪些?

2.2 分析框架

根据分析目的,本次分析的整体框架如下:

图 2.1 用户行为分析框架

3. 结论汇总

3.1 整体分析结论

结论 1: 跳失率较高, 为 22.93%。

建议 1: 完善 UI 布局和操作体验,提高页面设计和内容吸引力,给与用户更好的第一印象。

结论 2: 浏览转化率低,仅 12%。

建议 2:

- (1) 优化商品页面的界面排布和信息介绍;
- (2) 优化推荐系统,提高商品和用户需求的匹配度:
- (3) 在用户浏览过程中创建场景,诱导产生进一步行为。如:提示用户加购/ 关注可即时获得价格变动、活动信息。。

3.2 时间维度分析结论

结论 1:每日 10 时左右和 21、22 时是每天活跃用户最多的时间。

建议 1:

- (1) 在该时段进行活动和商品推送,如:新品上线、商品限时折扣;
- (2) 在该时段向用户发放优惠券,如:如促销或库存类商品优惠券。

结论 2:每日 20~22 时用户平均浏览数增加,浏览量当日最高,但下单转化率较低。

建议 2:

- (1) 提高推荐系统商品推送精准度;
- (2) 在该时段进行活动和商品推送,如:新品上线、商品限时折扣;
- (3) 在该时段向用户发放优惠券,如:如促销或库存类商品优惠券。

3.3 用户分析结论

结论 1: 关注功能使用频率低且转化率低。

建议 1:

- (1) 丰富关注功能所能提供的信息与功能;
- (2) 优化关注到下单之间的操作流程。

结论 2: 日新增用户逐日减少。

建议 2: 调整拉新措施,根据当前活跃用户的信息,确定目标拉新群体的普遍特征,寻找合适的渠道进行推广引流。

结论 3: 老用户流失加快。

建议3:

- (1) 福利召回。如:优惠券、抽奖礼品、等活动;
- (2) 社交召回。如:商品评价邀请、好友优惠助力邀请:
- (3) 新活动、新功能召回。如:新活动推送、新玩法。

结论 4: 用户留存低

建议 4:

- (1) 培养用户日常习惯。如:日常签到奖励、连续登录奖励:
- (2) 鼓励用户行为。如:用户等级:
- (3) 在特定时间(节日/生日)推送相关内容;
- (4) 用户关注/购物车信息变动时及时通知。

结论 5: 登陆天数的越长,平均下单数越大。

结论 6: 用户复购率较低。

建议 6:

- (1) 提高售时售后的服务质量,提升用户体验;
- (2) 推荐系统精准商品推送;

- (3) 根据用户关注/购买内容,及时推送相关活动;
- (4) 老用户回馈。如:优惠券、积分抽奖。

3.4 商品分析结论

结论 1: 商品从浏览到关注/加购的转化率比较低。

建议1:

- (1) 提高推荐系统商品推送的精准度;
- (2) 提高商品页的页面设计和内容吸引力。

结论 2: 评论数高的商品更能吸引用户,提高商品下单率。

建议 2:

- (1) 优化评论奖励机制,培养用户评论行为;
- (2) 优化评论展现方式,使用户更容易获取评论数及关键词。

建议3:研究热门商品吸引用户复购的点(商品本身特点、价格变动),以借鉴推广到其他商品。

4. 整体情况分析

4.1 整体情况分析框架及相应指标

图 4.1 整体情况分析框架及相应指标

4.2 流量情况

4.1.1 流量规模

图 4.2 总 UV 和总 PV 查询结果

4.1.2 流量质量

图 4.3 用户平均浏览数和跳失率查询结果

可见,用户平均浏览数为 8.26,而跳失率较高,为 22.93%。在不考虑误触的情况下,用户仅浏览网站一次即离开,说明用户对首页或商品页的初印象不佳,因而没有进一步操作的兴趣。因此想要降低跳失率,可以对页面设计、操作体验、

内容表达等进行改善,以提升的第一印象,增加用户进一步操作的概率。

4.3 销售情况

4.2.1 售时情况

	关注数	用户平均关注数	加购数	用户平均加购数	下单数	用户平均下单数
Þ	89703	0.13	600979	0.86	450741	0.65

图 4.4 用户关注/加购/下单及人均情况查询结果

用户关注/加购/下单平均数均小于 1,明显低于用户平均浏览数 8.26,可见用户的操作以浏览居多,而关注、加购、下单、评论的操作较少,表明用户浏览体验尚可,但进一步行为的转化率较低,需要引导用户产生更进一步的行为。

4.2.2 售后情况

图 4.5 用户评论情况查询结果

4.2.3 各环节转化

由于关注行为可以发生在浏览与下单之间、加购前后,因此将加购与关注合并为一个环节。

图 4.6 用户行为各环节转化情况查询结果

图 4.7 用户行为整体指标转化漏斗

可见:

- (1)浏览-加购/关注环节:仅有 12%的转化率,说明用户对浏览到的的很多商品没有进一步行为的欲望,需要进一步分析是商品页面差还是商品推荐匹配度低的原因;
- (2) 加购/关注-下单环节:转化率为 65%,说明用户加购/关注的商品有很大概率购买;
- (3)下单-评论转化率为 41%,可以进一步采取评论积分等措施提高,以 形成良好的购物反馈,既能丰富商品相关信息,又能吸引更多的用户关注。

4.4 小结

结论 1: 跳失率较高, 为 22.93%。

建议 1: 完善 UI 布局和操作体验,提高页面设计和内容吸引力,给与用户更好的第一印象。

结论 2: 浏览转化率低,仅12%。

建议 2:

(1) 优化商品页面的界面排布和信息介绍;

- (2) 优化推荐系统,提高商品和用户需求的匹配度;
- (3) 在用户浏览过程中创建场景,诱导产生进一步行为。如:提示用户加购/ 关注可即时获得价格变动、活动信息。

5. 时间维度分析

5.1 时间维度分析框架及相应指标

图 5.1 时间维度分析框架及相应指标

5.2 按日期分析

	日期	日独立访问用户数	日浏览数	日下单数
١	1	102604	382480	28082
	2	105061	371455	29342
	3	108092	382546	29713
	4	97015	347718	25600
	5	99207	381516	27378
	6	107025	407287	30028
	7	104609	393052	30613
	8	105819	376773	30696
	9	110950	411047	32101
	10	110828	415211	33267
	11	110850	401970	32496
	12	107958	395572	31830
	13	104145	384996	30376
	14	101774	371916	30644
	15	95325	349140	28575

图 5.2 每日 UV、PV、下单数查询结果

图 5.3 各项指标每日变化趋势基本同步

由图表可见:

- (1) 4号是一个明显的低谷, 当天是清明假期的前一天;
- (2) 8号复工至9号、10号各项指标提升并达到15天内最大值;
- (3) 10 号过后各项指标呈逐渐降低趋势,直至 15 号。

注: 1、8、15 是周日; 5、6、7 号三天是是清明假期, 8 号复工; 15 号是休息日。

以上可尝试作出的假设有:

(1) 4 号是长假前一天,假期前夕用户出行或工作量大导致各项指标下降;

(2)每周各项指标从周一逐日提高至周三达最高点,然后逐日降低,至休息 日降低至每周最低点。

但由于数据时间区间只有两周,且有一周包含了3天假期和工作日调整,故 无法判断指标的周规律,而只有一个假期也无法判定假期对指标的影响,此外, 由于无法得知该段时间业务方是否在某天举办了活动,故需要更长的时间周期数 据支撑,进行对比分析才能验证以上推断。

5.3 按时段分析

图 5.4 各时段 PV/UV/下单数查询结果

图 5.5 各时段 PV/UV/下单数变化

由图表可见,各时段指标的变化整体上可以分四个阶段:

- (1) 23 时至次日 4 时:各项指标都在快速下降,1 时过后下降速度逐渐趋缓,于 4 时达到当日最低点
 - (2) 5至10时:各项指标都开始攀升,并在10时达到早高峰;
 - (3) 11 时至 16 时: 各项指标整体较为平稳;
- (4) 17 时至 18 时: 各项指标有小幅下降,并在 18 时降至早高峰和晚高峰 之间的最低点;
- (5) 19 时至 22 时:各项指标逐渐提升,并在 21、22 时达到晚高峰。其中,PV 的在 20~22 时明显高于其他时段(包括早高峰),而 UV 和下单数的晚高峰和早高峰水平接近。

以上可得:

- (1)除去深夜时间,10时和21、22时是每天用户最多也最活跃的时间,相对而言,17时至18时是相对不活跃的时间;
- (2) 20~22 是 PV 明显高于其它时间,但 UV 并没有明显提高,说明该时段内用户平均浏览数增加;
- (3) 20~22 是 PV 明显高于其它时间,但下单数并没有明显提高,说明该时段的高浏览量没能有效地转换成下单数。

5.4 小结

结论 1:每日 10 时左右和 21、22 时是每天活跃用户最多的时间。 建议 1:

- (1) 在该时段进行活动和商品推送,如:新品上线、商品限时折扣;
- (2) 在该时段向用户发放优惠券,如:如促销或库存类商品优惠券。

结论 2:每日 20~22 时用户平均浏览数增加,浏览量当日最高,但下单转化率较低。

建议 2:

- (1) 提高推荐系统商品推送精准度;
- (2) 在该时段进行活动和商品推送,如:新品上线、商品限时折扣;
- (3) 在该时段向用户发放优惠券,如:如促销或库存类商品优惠券。

6. 用户分析

6.1 用户分析框架及相应指标

图 6.1 用户分析框架及相应指标

6.2 整体用户

6.2.1 整体情况

图 6.2 整体用户的情况

6.2.2 下单行为路径

图 6.3 路径:浏览-下单

	浏览用户数	加购用户数	下单用户数
١	599899	182082	127428

图 6.4 路径:浏览-加购-下单

图 6.5 路径:浏览-关注-下单

	浏览用户数	关注/加购用户数	下单用户数
Þ	599899	24594	20104

图 6.6 路径:浏览-加购且关注-下单

可见:在购买用户的行为路径中,转化率最高的是"浏览-下单",转化率为0.296;其次为路径:浏览-加购-下单,专化率为:0.1870;再者是"浏览-加购且关注-下单",转化率为0.0296;最后是"浏览-关注-下单",转化率为0.0213。

结论:

- (1) 比起关注后再下单,更多的用户选择加购后再下单,可能是因为购物 车页面比起关注页面所能获得的信息更丰富、操作更便捷;
- (2)下单前有关注行为的用户只有 5%,可能是因为关注后再进行下一步操作的流程较为复杂。

6.2.3 用户数量变化

以4月1日至4月15日为时间区间,4月1日至4月15日有过行为记录的用户为对象,将每日第一次出现用户定义为当日新增(除1号),将每日最后一次支付用户定义为次日流失用户(除15号),查找对象在时间区间内的每日新增/流失情况如下:

新增日期	日新增用户数		流失日期	日流失用户数
1	102604	Þ	2	27744
2	75576		3	30174
3	65157		4	31904
4	49246		5	28891
5	47551		6	31308
6	46812		7	36035
7	41884		8	37323
8	40432		9	39869
9	39714		10	44339
10	37654		11	47926
11	35790		12	53317
12	32791		13	57410
13	29612		14	63545
14	28493		15	73650
15	25444		16	95325

图 6.7 用户日新增/流失数查询结果

图 6.8 日新增用户和流失用户数目

由图可见:

- (1)每日新增用户在 2 号到 4 号期间快速减少,然后速度减缓稳定减少直至 15 号:
- (2)每日流失用户除了在 4 号至 7 号有一个小低谷(降低再升高),流失数量一直在增加,且 7 号过后流失速度有加快的趋势;
- (3)9号过后的每日流失用户数大于每日新增用户数,且流失速度大于新增速度。

分析:

- (1)2号到4号是清明节前三天,可能是为节日作购物准备,每日新增用户较平日增多,而4号过后的每日新增趋势才是正常的;
- (2) 部分用户在节 2 号到 4 号期间进行节日购物之后便没有再登录过京东,所以 2 号到 4 号的流失用户数较平日较高,之后恢复到正常流失水平。 结论:
 - (1) 日新增用户逐日减少,需要调整拉新措施;

- (2) 老用户流失加快,可通过老用户福
- (3) 利等活动等进行挽留和召回。

6.2.4 用户留存

	日期	次日留存(%)	三日留存(%)	七日留存(%)	半月留存(%)
١	1	28.74	25.31	20.16	16.26
	2	22.45	17.11	14.20	0.00
	3	18.82	14.69	13.21	0.00
	4	18.21	15.34	11.82	0.00
	5	19.36	14.88	10.54	0.00
	6	18.05	13.78	9.93	0.00
	7	17.39	14.01	8.73	0.00
	8	18.47	13.87	8.33	0.00
	9	18.42	13.70	7.82	0.00
	10	17.22	12.88	0.00	0.00
	11	16.66	12.22	0.00	0.00
	12	16.78	11.91	0.00	0.00
	13	16.01	11.19	0.00	0.00
	14	15.46	0.00	0.00	0.00
	15	0.00	0.00	0.00	0.00

图 6.9 每日的次日/三日/七日/半月留存查询结果

图 6.10 每日的次日/三日/七日/半月留存

注:由于数据日期区间为1号至15号,1号为数据日期头一天不好判定新增用户,15号不存在相关指标。

由图表可知:

- (1) 2号的次日留存率明显较高,推测是由于 2、3号是清明假期前的一个下单小高峰,因此;
- (2)从 1号到 8号的各项留存都处于小幅波动的状态,较为稳定。但由于 9号过后日流失用户数大于新增用户数,且流失速度大于新增速度,意味者有 旧用户的减少且越来越多,于是次日留存、三日留存、七日留存分别在在 9号、8号、4号过后开始有所降低。
- (3)正常情况下,次日留存率在 18%~19%的水平,三日留存在 14~15%的水平,七日留存在 12%左右的水平,比较低,但小部分用户粘性高。

结论:对于购物类产品,大多数用户只在有购物需求时才会使用,难以像社交、游戏产品产生持续性行为,因而难有较高的留存率。若要增加用户粘性,可以通过设计类似连续登录奖励机制、需要用户间互动的活动,来增加用户的留存率。

6.2.5 登陆天数与下单数的关系

登陆天数	用户数	平均下单数
1	349315	0.5438
2	157070	0.6739
3	78871	0.7418
) 4	43024	0.7995
5	24531	0.8250
6	14898	0.8435
7	9283	0.8707
8	6325	0.8574
9	4334	0.8899
10	3164	0.9292
11	2250	0.9809
12	1765	0.9677
13	1422	1.0809
14	1208	1.1995
15	1300	1.5638

图 6.11 用户登陆天数对应的用户数与平均下单数查询结果

图 6.12 用户登录天数及对应用户数、平均下单数

图 6.13 用户的登陆天数分布

可见:

- (1) 登陆天数的越长,平均下单数越大;
- (2)50%的用户登陆天数为1,90%的用户登陆天数在4天以内,只有10%的用户登陆天数大于4天。

结论:需要针对登陆天数少的用户采取措施进行优化。用户登陆天数少的原因可能有多种:除去用户本身没有需求,还有用户使用体验不佳、对内容不感冒等。所以有优化主要分为两部分:一方面优化界面和操作,提高用户的好感;另一方面通过商品精准推荐、定期活动推送等方式召回登陆天数少的用户,以增强用户粘性。

6.3 消费用户

6.3.1 整体情况

	复购率(%)	平均浏览量	平均关注数	平均加购数	平均下单数	平均评论数
Þ	13.16	9.5600	0.1783	1.1362	1.2078	0.2501
			22	2		

图 6.14 消费用户复购率及各项指标平均数

可见:

- (1)消费用户人均浏览数高于人均浏览数,说明消费用户的浏览次数普遍高于不消费的用户;
- (2) 消费用户依旧存在浏览到进一步操作的转化率较低的现象;
- (3)人均加购数 + 人均关注数 ≈ 人均下单数,说明消费用户只要加购或关注就很可能会下单;
- (4) 消费用户复购率较低, 只有 13%。

6.3.2 消费频次分布

下单次数	用户数		
>	324097	19	7
	35253	20	6
	7828	21	2
	4 2789	22	3
	5 1571	23	1
	670	24	1
	7 303	25	3
	3 213	27	1
!	9 146	28	1
1	105	29	1
1	1 46	30	1
1	2 41	31	2
1	3 34	34	1
1-	4 21	36	1
1	5 12	51	1
1	5 12	53	1
1	7 12	68	1
1	5	133	1

图 6.15 用户下单次数分布查询结果

图 6.16 用户下单次数占比

可见,15天内,只购买1次的用户占比87%,购买2次的用户占比9%,购买3次的用户占比2%,购买4次的用户占比1%,购买5次及以上的用户占比不到1%,而最高购买次数达133。

6.3.3 下单数前十的用户

	user_id	登陆天数	浏览量	关注数	加购数	下单数	评论数
١	1187177	15	316	0	154	133	0
	502169	11	74	0	47	68	17
	600837	3	300	0	202	53	0
	453216	4	100	0	84	51	0
	1372747	8	16	1	35	36	0
	1243056	8	23	0	0	34	0
	112205	14	97	0	23	31	1
	420489	15	112	0	39	31	10
	1470958	11	80	0	4	30	1
	570913	13	285	10	23	29	23

图 6.17 下单数前十的用户查询结果

可以发现下单数高的用户有以下特征:

- (1) 累计登录天数和浏览数至少有一项比较高;
- (2) 更倾向于加购而不是关注;
- (3) 大多数不评论商品,可能是因为待评商品过多。

6.4 小结

结论 1: 关注功能使用频率低且转化率低。

建议 1:

- (1) 丰富关注功能所能提供的信息与功能;
- (2) 优化关注到下单之间的操作流程。

结论 2: 日新增用户逐日减少。

建议 2: 调整拉新措施,根据当前活跃用户的信息,确定目标拉新群体的普遍特征,寻找合适的渠道进行推广引流。

结论 3: 老用户流失加快。

建议3:

- (1) 福利召回。如:优惠券、抽奖礼品、等活动;
- (2) 社交召回。如:商品评价邀请、好友优惠助力邀请:

(3) 新活动、新功能召回。如: 新活动推送、新玩法。

结论 4: 用户留存低

建议 4:

- (1) 培养用户日常习惯。如:日常签到奖励、连续登录奖励;
- (2) 鼓励用户行为。如:用户等级;
- (3) 在特定时间(节日/生日)推送相关内容;
- (4) 用户关注/购物车信息变动时及时通知。

结论 5: 登陆天数的越长,平均下单数越大。

结论 6: 用户复购率较低。

建议 6:

- (1) 提高售时售后的服务质量,提升用户体验;
- (2) 推荐系统精准商品推送;
- (3) 根据用户关注/购买内容,及时推送相关活动;
- (4) 老用户回馈。如:优惠券、积分抽奖。

7. 商品分析

7.1 商品分析框架及相应指标

图 7.1 商品分析框架及相应指标

7.2 整体情况

图 7.2 商品整体情况查询结果

可见商品从浏览到关注/加购的转化率比较低,表明向用户推荐的商品与用户实际需求的匹配度较低,需要提高商品推送的精准度。

7.3 商品指标与下单数的关系

	sku_id	UV	PV	follow	add2cart	buy	comments
١	152092	6901	8772	65	1168	1643	802
	232801	2689	2716	15	360	1482	289
	37284	3082	4075	60	1122	1449	285
	224207	7356	16859	120	0	1346	173
	44024	3565	4543	72	443	1261	340
	327151	3416	3917	46	614	1233	233
	261934	2464	3147	87	267	1042	246
	199489	3374	4221	39	203	1017	197
	83032	2408	2661	46	520	1006	189
	10006	2421	2972	33	642	987	183

图 7.3 下单数前十商品查询结果

	sku_id	UV	PV	follow	add2cart	buy	comments
١	224207	7356	16859	120	0	1346	173
	258625	4009	10020	65	0	389	224
	248051	4948	9341	82	0	0	52
	152092	6901	8772	65	1168	1643	802
	31583	4345	8519	72	380	0	75
	21301	2260	7527	71	12	0	0
	217024	4506	6024	66	617	0	188
	258492	4503	5686	53	401	0	92
	19643	4267	5457	78	699	950	188
	101645	4279	5410	60	498	0	128

图 7.4 浏览数前十商品查询结果

	sku_id	UV	PV	follow	add2cart	buy	comments
١	97170	373	68	187	87	218	266
	356813	436	444	150	145	208	93
	34545	978	1142	150	119	195	35
	7709	240	179	134	89	195	72
	8234	721	776	127	222	168	29
	312074	382	450	126	83	141	122
	224207	7356	16859	120	0	1346	173
	147759	285	365	120	71	193	148
	316571	279	292	115	108	169	22
	198767	1663	1930	114	398	579	178

图 7.5 关注数前十商品查询结果

初步发现:

- (1) 仅有 2 项商品同时在下单数前十和浏览数前十;
- (2) 仅有1项商品同时在在下单数前十和关注数前十;
- (3)浏览数前十的商品中,有6项下单数为0,其评论数明显低于其他有下单数的商品(大多<100)。

注:由于加购数据的缺失,此处不作关系探索。

分别进行分析:

(1) 流量高下单少,说明用户可能对能够高频浏览到的商品不感兴趣。

假设:推荐的商品与用户的需求不匹配,导致高浏览量商品没有转换成相 应的下单数。

验证:取前下单数和浏览数前 100 的商品进行连接,查看同时在榜的商品。

下单数前100商品中浏览数前100商品 ▶ 28

发现仅有 28 件商品同时在榜,这说明浏览量高的商品到下单的转化率较低,反映了推送的商品与用户需求的匹配度并不高。

(4) 关注高的商品下单数不高,说明用户关注商品的目的不一定是为了下单。

假设: 高关注商品不一定是热销商品。

验证:取下单数前100商品中关注数前100的商品数。

发现仅有 15 件商品同时在榜,可见关注数不是衡量商品是否热销的指标,用户会基于除了买之外的目的对商品进行关注,假设成立。

(4)商品浏览量高,却没能明显转化成销量,而这部分商品评论数都比较低。

假设: 高浏览量的商品中, 高评论数的商品下单数高于低评论数商品。

下面进行验证,查看浏览量前 100 中,评论数高于浏览量前 100 商品平均数的商品下单数占比:

可见,评论数高于平均的商品下单数占比超过90%,故假设成立。

假设:销量高的商品往往伴随着高评论数。取前下单数和评论数前 100 的商品进行连接:

发现共有 48 件商品同时在榜。说明:下单数与评论数正相关,更多的用户评论能够更吸引浏览的消费者兴趣,增强了商品的信息度和可信度,增加下单概率,从而提高销量,形成正向循环。

综上,建议采取措施如下:

- (1) 优化推荐系统,提高推送的精准率,以提高浏览量商品的下单转化率:
- (2) 优化评论奖励机制,诱导下单用户评论,丰富商品的表面和数据相 关信息,以吸引更多用户,提高商品下单率。

7.4 热门复购商品

	sku_id	复购UV	UV	PV	follow	add2cart	buy	comments
Þ	224207	215	7356	16859	120	0	1346	173
	258625	49	4009	10020	65	0	389	224
	37284	38	3082	4075	60	1122	1449	285
	142398	37	2984	3313	10	540	708	62
	310796	32	1320	1508	6	30	459	76
	232801	29	2689	2716	15	360	1482	289
	225078	25	861	985	7	224	348	97
	371494	23	381	596	0	34	225	22
	82107	22	364	287	1	2	256	10
	42533	21	1619	4788	42	421	114	105

图 7.6 复购用户数前十商品查询结果

针对复购用户多的商品,可以具体研究其吸引用户复购的点(商品本身特点、价格变动)以借鉴推广到其他商品。

7.5 小结

结论 1: 商品从浏览到关注/加购的转化率比较低。

建议 1:

- (1) 提高推荐系统商品推送的精准度;
- (2) 提高商品页的页面设计和内容吸引力。

结论 2: 评论数高的商品更能吸引用户,提高商品下单率。建议 2:

- (1) 优化评论奖励机制,培养用户评论行为;
- (2) 优化评论展现方式,使用户更容易获取评论数及关键词。

建议 3: 研究热门商品吸引用户复购的点(商品本身特点、价格变动),以借鉴推广到其他商品。

```
8. 附录: 各分析模块 SQL 代码
```

```
8.1 整体情况
```

```
DROP TABLE IF EXISTS t_user_behaviour_tmp;
DROP TABLE IF EXISTS t_bounce_tmp;
```

-- 统计用户行为的临时表

```
CREATE TEMPORARY TABLE t_user_behaviour_tmp
```

```
SELECT
```

```
COUNT(DISTINCT user_id) AS UV,
SUM(IF(type=1, 1, 0)) AS browse,
SUM(IF(type=2, 1, 0)) AS buy,
SUM(IF(type=3, 1, 0)) AS follow,
SUM(IF(type=4, 1, 0)) AS review,
SUM(IF(type=5, 1, 0)) AS add2cart
```

FROM

april_actions;

-- 统计跳失用户的临时表

CREATE TEMPORARY TABLE t_bounce_tmp

SELECT

COUNT(*) AS bounce_n

FROM

(

SELECT

user_id

FROM

april_actions

```
GROUP BY
       user_id
   HAVING
       COUNT(*) = 1
) AS t_bounce;
-- 流量规模
SELECT
   t_user_behaviour_tmp.UV AS '独立访客数(UV)',
   t_user_behaviour_tmp.browse AS '浏览量(PV)'
FROM
   t_user_behaviour_tmp;
-- 流量质量
SELECT
   ROUND(t_user_behaviour_tmp.browse / t_user_behaviour_tmp.UV, 2) AS '用户
平均浏览数',
   ROUND(t_bounce_tmp.bounce_n / t_user_behaviour_tmp.UV * 100, 2) AS '跳失
率(%)'
FROM
   t_user_behaviour_tmp,
   t_bounce_tmp;
-- 售时
```

SELECT

t_user_behaviour_tmp.follow AS '关注数',

ROUND(t_user_behaviour_tmp.follow / t_user_behaviour_tmp.UV, 2) AS '用户 平均关注数',

t_user_behaviour_tmp.add2cart AS '加购数',

ROUND(t_user_behaviour_tmp.add2cart / t_user_behaviour_tmp.UV, 2) AS '用户平均加购数',

t_user_behaviour_tmp.buy AS '下单数',

ROUND(t_user_behaviour_tmp.buy / t_user_behaviour_tmp.UV, 2) AS '用户平均下单数'

FROM

t_user_behaviour_tmp;

-- 售后

SELECT

t_user_behaviour_tmp.review AS '评论数',

ROUND(t_user_behaviour_tmp.review / t_user_behaviour_tmp.UV, 2) AS '用户平均评论数'

FROM

t_user_behaviour_tmp;

-- 整体行为转化漏斗

SELECT

t_user_behaviour_tmp.browse AS '浏览量',

ROUND((t_user_behaviour_tmp.follow + t_user_behaviour_tmp.add2cart) / t_user_behaviour_tmp.browse * 100, 2) AS '浏览-加购/关注转化率(%)',

t_user_behaviour_tmp.follow + t_user_behaviour_tmp.add2cart AS '加购/关注数'.

ROUND(t_user_behaviour_tmp.buy / (t_user_behaviour_tmp.follow + t_user_behaviour_tmp.add2cart) * 100, 2) AS '加购/关注-下单转化率(%)', t_user_behaviour_tmp.buy AS '下单数',

ROUND(t_user_behaviour_tmp.review / t_user_behaviour_tmp.buy * 100, 2) AS '下单-评论转化率(%)',

t_user_behaviour_tmp.review AS '评论数'

FROM

t_user_behaviour_tmp;

- -- -- 汇总整体指标
- -- SELECT
- -- t_user_behaviour_tmp.UV AS '独立访客数(UV)',
- -- t_user_behaviour_tmp.browse AS '浏览量(PV)',
- -- ROUND(t_user_behaviour_tmp.browse / t_user_behaviour_tmp.UV, 2) AS '用户平均浏览数',
- -- t_user_behaviour_tmp.buy AS '下单数',
- -- ROUND(t_user_behaviour_tmp.buy / t_user_behaviour_tmp.UV, 2) AS '用户平均下单数',
- -- t_user_behaviour_tmp.follow AS '关注数',
- -- ROUND(t_user_behaviour_tmp.follow / t_user_behaviour_tmp.UV, 2) AS '用户 平均关注数',
- -- t_user_behaviour_tmp.review AS '评论数',
- -- ROUND(t_user_behaviour_tmp.review / t_user_behaviour_tmp.UV, 2) AS '用户平均评论数',
- -- t_user_behaviour_tmp.add2cart AS '加购数',
- -- ROUND(t_user_behaviour_tmp.add2cart / t_user_behaviour_tmp.UV, 2) AS '用户平均加购数',
- -- ROUND(t_bounce_tmp.bounce_n / t_user_behaviour_tmp.UV * 100, 2) AS '跳失率(%)'
- -- FROM

- -- t_user_behaviour_tmp,
- -- t_bounce_tmp;

--

- -- -- 整体行为转化漏斗
- -- SELECT
- -- t_user_behaviour_tmp.browse AS '浏览量',
- -- ROUND((t_user_behaviour_tmp.follow + t_user_behaviour_tmp.add2cart) / t_user_behaviour_tmp.browse * 100, 2) AS '浏览-加购/关注转化率(%)',
- -- t_user_behaviour_tmp.follow + t_user_behaviour_tmp.add2cart AS '加购/关注数 '.
- -- ROUND(t_user_behaviour_tmp.buy / (t_user_behaviour_tmp.follow + t_user_behaviour_tmp.add2cart) * 100, 2) AS '加购/关注-下单转化率(%)',
- -- t_user_behaviour_tmp.buy AS '下单数',
- -- ROUND(t_user_behaviour_tmp.review / t_user_behaviour_tmp.buy * 100, 2)
 AS '下单-评论转化率(%)',
- -- t_user_behaviour_tmp.review AS '评论数'
- -- FROM
- -- t_user_behaviour_tmp;

```
8.2 时间维度分析
```

DROP TABLE IF EXISTS t_day_trend_tmp;

DROP TABLE IF EXISTS t_hour_trend_tmp;

-- 统计每天数据

CREATE TEMPORARY TABLE t_day_trend_tmp

SELECT

day,

COUNT(DISTINCT user_id) AS UV,

SUM(IF(type=1, 1, 0)) AS PV,

SUM(IF(type=2, 1, 0)) AS buy,

SUM(IF(type=3, 1, 0)) AS follow,

SUM(IF(type=4, 1, 0)) AS review,

SUM(IF(type=5, 1, 0)) AS add2cart

FROM

april_actions

GROUP BY

day;

-- 统计各时段数据

CREATE TEMPORARY TABLE t_hour_trend_tmp

SELECT

hour,

COUNT(DISTINCT user_id) AS UV,

SUM(IF(type=1, 1, 0)) AS PV,

SUM(IF(type=2, 1, 0)) AS buy,

SUM(IF(type=3, 1, 0)) AS follow,

SUM(IF(type=4, 1, 0)) AS review, SUM(IF(type=5, 1, 0)) AS add2cart

FROM

april_actions

GROUP BY

hour;

-- 查看每日 UV, PV, buy

SELECT

day AS '日期',

UV AS '日独立访问用户数',

PV AS '日浏览数',

buy AS '日下单数'

FROM

t_day_trend_tmp;

-- 查看各时段 UV, PV, buy

SELECT

hour AS '时段',

UV AS '时段内独立访问用户数',

PV AS '时段内浏览数',

buy AS '时段内下单数'

FROM

t_hour_trend_tmp;

-- -- 查看每日统计信息

- -- SELECT
- __ *
- -- FROM
- -- t_day_trend_tmp;
- --
- -- -- 查看时段统计信息
- -- SELECT
- __ *
- -- FROM
- -- t_hour_trend_tmp;

```
8.3 用户分析
```

DROP TABLE IF EXISTS t_user_tmp;

DROP TABLE IF EXISTS t_consumer_tmp;

-- 用户信息临时表

CREATE TEMPORARY TABLE t_user_tmp

SELECT

user_id,

MIN(day) AS first_day,

MAX(day) AS recent_day,

COUNT(DISTINCT day) AS login_days,

SUM(IF(type=1, 1, 0)) AS browse,

SUM(IF(type=3, 1, 0)) AS follow,

SUM(IF(type=5, 1, 0)) AS add2cart,

SUM(IF(type=2, 1, 0)) AS buy,

SUM(IF(type=4, 1, 0)) AS review

FROM

april_actions

GROUP BY

user_id;

-- 消费用户信息临时表

CREATE TEMPORARY TABLE t_consumer_tmp

SELECT

user_id,

COUNT(DISTINCT day) AS login_days,

SUM(IF(type=1, 1, 0)) AS browse,

SUM(IF(type=3, 1, 0)) AS follow,

```
SUM(IF(type=5, 1, 0)) AS add2cart,
SUM(IF(type=2, 1, 0)) AS buy,
SUM(IF(type=4, 1, 0)) AS review
```

FROM

april_actions

GROUP BY

user_id

HAVING

SUM(IF(type=2, 1, 0)) > 0;

-- 用户整体情况

SELECT

@total_n AS '用户数',

COUNT(*) AS '消费用户数',

COUNT(*) / @total_n AS '用户购买率'

FROM

t_consumer_tmp,

(SELECT @total_n := (SELECT COUNT(*) FROM t_user_tmp)) AS var;

- -- 行为路径分析。由于分析的行为路径起点为浏览,以下行为的分析基于有浏览 行为的下单用户
- -- 浏览-下单

SELECT

@browse_user_n AS '浏览用户数',

SUM(IF(buy > 0, 1, 0)) AS '下单用户数'

FROM

t_user_tmp

WHERE

browse > 0 AND follow = 0 AND add2cart = 0;

-- 浏览-关注/加购-下单

SELECT

@browse_user_n AS '浏览用户数',

COUNT(*) AS '关注/加购用户数',

SUM(IF(buy > 0, 1, 0)) AS '下单用户数'

FROM

t_user_tmp

WHERE

browse > 0 AND follow > 0 AND add2cart > 0;

-- 浏览-关注-下单

SELECT

@browse_user_n AS '浏览用户数',

COUNT(*) AS '关注用户数',

SUM(IF(buy > 0, 1, 0)) AS '下单用户数'

FROM

t_user_tmp

WHERE

browse > 0 AND follow > 0 AND add2cart = 0;

-- 浏览-加购-下单

SELECT

@browse_user_n AS '浏览用户数',

COUNT(*) AS '加购用户数',

SUM(IF(buy > 0, 1, 0)) AS '下单用户数'

FROM

```
t_user_tmp
```

WHERE

browse > 0 AND follow = 0 AND add2cart > 0;

-- 日新增用户数

SELECT

first_day '新增日期',

COUNT(*) AS '日新增用户数'

FROM

t_user_tmp

GROUP BY

first_day

ORDER BY

first_day;

-- 日流失用户数:最近登陆日期为前一天的用户数。如最近一次登陆日期为 1 号,表明用户在 2 号流失。

SELECT

recent_day + 1 AS '流失日期',

COUNT(*) AS '日流失用户数'

FROM

t_user_tmp

GROUP BY

recent_day

ORDER BY

recent_day;

```
-- 留存率
WITH
t_retention_n AS
(
   SELECT
       first_day,
       nday,
       COUNT(DISTINCT user_id) AS retention_n
   FROM
    (
       SELECT
           uit.user_id,
           uit.first_day,
           fa.day - uit.first_day AS nday
       FROM
           t_user_tmp AS uit
       LEFT JOIN
           april_actions AS fa
       ON
           uit.user_id = fa.user_id
   ) AS t
   GROUP BY
       first_day,
       nday
   ORDER BY
       first_day,
       nday
)
```

```
SELECT
   first_day AS '日期',
   ROUND(SUM(IF(nday = 1, retention_n, 0)) / SUM(IF(nday = 0, retention_n, 0))
* 100, 2) AS '次日留存(%)',
   ROUND(SUM(IF(nday = 2, retention_n, 0)) / SUM(IF(nday = 0, retention_n, 0))
* 100, 2) AS '三日留存(%)',
   ROUND(SUM(IF(nday = 6, retention_n, 0)) / SUM(IF(nday = 0, retention_n, 0))
* 100, 2) AS '七日留存(%)',
   ROUND(SUM(IF(nday = 14, retention_n, 0)) / SUM(IF(nday = 0, retention_n, 0))
* 100, 2) AS '半月留存(%)'
FROM
   t_retention_n
GROUP BY
   first_day;
-- 用户登陆天数分布及平均下单数
SELECT
   login_days AS '登陆天数',
   COUNT(*) AS '用户数',
   AVG(buy) AS '平均下单数'
FROM
   t_user_tmp
GROUP BY
   login_days
ORDER BY
   login_days;
```

```
-- 消费用户整体情况
WITH
t AS (
   SELECT
       COUNT(*) AS purchase_n,
       SUM(browse) AS browse,
       SUM(follow) AS follow,
       SUM(add2cart) AS add2cart,
       SUM(buy) AS buy,
       SUM(review) AS review,
       SUM(IF(buy > 1, 1, 0)) AS repurchase_n
   FROM
       t_consumer_tmp
)
SELECT
   ROUND(repurchase_n / purchase_n * 100, 2) AS '复购率(%)',
   browse / purchase_n AS '平均浏览量',
   follow / purchase_n AS '平均关注数',
   add2cart / purchase_n AS '平均加购数',
   buy / purchase_n AS '平均下单数',
   review / purchase_n AS '平均评论数'
FROM
   t;
-- 下单次数分布
SELECT
   buy AS '下单次数',
   COUNT(*) AS '用户数'
```

```
FROM
```

t_consumer_tmp

GROUP BY

buy

ORDER BY

buy;

-- 下单数前十的用户

SELECT

user_id,

login_days AS '登陆天数',

browse AS '浏览量',

follow AS '关注数',

add2cart AS '加购数',

buy AS '下单数',

review AS '评论数'

FROM

t_consumer_tmp

ORDER BY

buy DESC

LIMIT 10;

8.4 商品分析

DROP TABLE IF EXISTS t_sku_tmp;

CREATE TEMPORARY TABLE t_sku_tmp

SELECT

sku_id,

COUNT(DISTINCT user_id) AS UV,

SUM(IF(type=1, 1, 0)) AS PV,

SUM(IF(type=3, 1, 0)) AS follow,

SUM(IF(type=5, 1, 0)) AS add2cart,

SUM(IF(type=2, 1, 0)) AS buy,

SUM(IF(type=4, 1, 0)) AS comments

FROM

april_actions

GROUP BY

sku_id;

-- 商品的整体情况

SELECT

COUNT(*) AS '商品数',

SUM(IF(buy > 0, 1, 0)) AS '有下单数据的商品',

SUM(IF(buy > 0, 1, 0)) / COUNT(*) * 100 AS '有下单数据的商品占比(%)',

AVG(UV) AS '平均访问人数',

AVG(PV) AS '平均浏览量',

AVG(follow) AS '平均关注数',

AVG(add2cart) AS '平均加购数',

AVG(buy) AS '平均下的那数',

AVG(comments) AS '平均评论数'

FROM

t_sku_tmp;

-- 有下单数据商品的情况

SELECT

AVG(UV) AS '平均访问人数',

AVG(PV) AS '平均浏览量',

AVG(follow) AS '平均关注数',

AVG(add2cart) AS '平均加购数',

AVG(buy) AS '平均下的那数',

AVG(comments) AS '平均评论数'

FROM

t_sku_tmp

WHERE

buy > 0;

-- 查看下单前十的商品

SELECT

*

FROM

t_sku_tmp

ORDER BY

buy DESC

LIMIT 10;

-- 浏览量前十商品

SELECT

```
FROM
   t_sku_tmp
ORDER BY
   PV DESC
LIMIT 10;
-- 关注数前十商品
SELECT
FROM
   t_sku_tmp
ORDER BY
   follow DESC
LIMIT 10;
-- 下单数前 100 商品中浏览数前 100 商品
WITH
t_cnt AS (
   SELECT
      sku_id,
      SUM(IF(type=1, 1, 0)) AS PV,
      SUM(IF(type=2, 1, 0)) AS buy,
      SUM(IF(type=4, 1, 0)) AS comments
   FROM
      april_actions
```

GROUP BY

)

sku_id

```
SELECT
   COUNT(*) AS '下单数前 100 商品中浏览数前 100 商品'
FROM
(
   SELECT
   FROM
      t_cnt
   ORDER BY
      buy DESC
   LIMIT 100
) AS b_100
JOIN
(
   SELECT
   FROM
      t_cnt
   ORDER BY
      PV DESC
   LIMIT 100
) AS p_100
ON
   b_100.sku_id = p_100.sku_id;
-- 下单数前 100 商品中评论数前 100 商品
WITH
t_cnt AS (
```

SELECT

```
sku_id,
      SUM(IF(type=1, 1, 0)) AS PV,
      SUM(IF(type=2, 1, 0)) AS buy,
      SUM(IF(type=4, 1, 0)) AS comments
   FROM
      april_actions
   GROUP BY
      sku_id
)
SELECT
   COUNT(*) AS '下单数前 100 商品中评论数前 100 商品'
FROM
(
   SELECT
   FROM
      t_cnt
   ORDER BY
      buy DESC
   LIMIT 100
) AS b_100
JOIN
(
   SELECT
   FROM
       t_cnt
   ORDER BY
      comments DESC
```

```
LIMIT 100
) AS c_100
ON
   b_{100.sku_id} = c_{100.sku_id};
-- 下单数前 100 商品中关注数前 100 商品
WITH
t_cnt AS (
   SELECT
      sku_id,
      SUM(IF(type=1, 1, 0)) AS PV,
      SUM(IF(type=2, 1, 0)) AS buy,
      SUM(IF(type=3, 1, 0)) AS follow
   FROM
      april_actions
   GROUP BY
      sku_id
)
SELECT
   COUNT(*) AS '下单数前 100 商品中关注数前 100 的商品'
FROM
(
   SELECT
   FROM
       t_cnt
   ORDER BY
      buy DESC
```

```
LIMIT 100
) AS b_100
JOIN
(
   SELECT
   FROM
      t_cnt
   ORDER BY
      follow DESC
   LIMIT 100
) AS f_100
ON
   b_100.sku_id = f_100.sku_id;
-- 浏览数前 100 商品中, 评论数高于平均评论数的商品下单数占比
WITH
p_100 AS
   SELECT
      sku_id,
      buy,
      comments
   FROM
      SELECT
         sku_id,
         SUM(IF(type=1, 1, 0)) AS PV,
```

```
SUM(IF(type=2, 1, 0)) AS buy,
          SUM(IF(type=4, 1, 0)) AS comments
       FROM
          april_actions
       GROUP BY
          sku_id
   ) AS cnt
   ORDER BY
       PV DESC
   LIMIT 100
)
SELECT
   SUM(IF(tst.comments > (SELECT\ AVG(comments)\ FROM\ p\_100),\ tst.buy,\ 0))\ /
SUM(tst.buy) AS '评论数高于平均的商品下单数占比'
FROM
   p_100 AS p
JOIN
   t_sku_tmp AS tst
ON
   p.sku_id = tst.sku_id;
-- 复购用户前十的商品及其购买次数
WITH tt
AS (
SELECT
   user_id,
   sku_id,
   COUNT(*) AS cnt
```

```
FROM
   april_actions
GROUP BY
   user_id,
   sku\_id
HAVING
   SUM(IF(type=2, 1, 0)) > 1
)
SELECT
   tt.sku_id,
   COUNT(DISTINCT tt.user_id) AS '复购 UV',
   tst.UV,
   tst.PV,
   tst.follow,
   tst.add2cart,
   tst.buy,
   tst.comments
FROM
   tt
JOIN
   t_sku_tmp AS tst
ON
   tt.sku_id = tst.sku_id
GROUP BY
   tt.sku\_id
ORDER BY
   `复购 UV` DESC
LIMIT 10;
```