IN THE CLAIMS

1	1. (Currently Amended) A method for designing a system on a target device utilizing a				
2	programmable logic device (PLD) with an electronic automation design tool (EDA), comprising				
3	having the EDA tool determine a first location on the PLD to place a user defined logic				
4	region in response to user specified constraints for placement of the user defined logic region;				
5	and				
6	having the EDA tool determine a second location to place the user defined logic region,				
7	wherein the second location is determined independent of the user specified constraints for				
8	placement; and				
9	determining routing resources to allocate to user specified signals on the target device in				
10	response to user specified routing constraints.				
1	2. (Previously Presented) The method of Claim 1, wherein having the EDA tool				
2	determine the second location is performed in response to the first location not satisfying design				
3	parameters.				
1	3. (Previously Presented) The method of Claim 1, wherein having the EDA tool				
2	determine the second location is performed in response to the first location not satisfying the user				
3	specified constraints.				
1	4. (Previously Presented) A method for designing a system on a target device utilizing a				
2	programmable logic device (PLD), comprising:				

determining a first location on the PLD to place a user defined logic region in response to user specified constraints for placement of the user defined logic region; and

determining a second location to place the user defined logic region, wherein the second location is determined independent of the user specified constraints for placement in response to having a threshold number of first locations generated.

- 5. (Previously Presented) The method of Claim 1, wherein having the EDA tool determine the second location is performed in response to a triggering event.
- 1 6. (Previously Presented) The method of Claim 1, further comprising determining positions to place components within user defined logic regions on the target device.

3

4

5

6

7

1

2

1	7. (Previously Presented) The method of Claim 6, wherein determining positions to				
2	place the components is an iterative procedure that includes:				
3	selecting positions;				
4	evaluating the positions with a cost function; and				
5	accepting the positions if the cost function yields a desired value.				
1	8. (Previously Presented) The method of Claim 6, wherein determining the positions				
2	comprises removing constraints associated with the user defined logic regions.				
1	9. (Cancelled)				
1	10. (Currently Amended) The method of Claim 19, wherein determining routing				
2	resources is an iterative procedure that includes:				
3	selecting routing resources;				
4	determining whether routing resource selections satisfy the user specified routing				
5	constraints; and				
6	re-selecting routing resources if the routing resource selections do not satisfy the user				
7	specified routing constraints.				
1	11. (Currently Amended) The method of Claim 19, wherein re-selecting the routing				
2	resources comprises determining routing resources to allocate to the user specified signals on the				
3	PLD by removing the user specified routing constraints.				
1	12. (Currently Amended) A method for positioning components of a system onto a				
2	target device utilizing a programmable logic device (PLD) using an electronic design automation				
3	tool, comprising:				
4	having the EDA tool determine a first location on the PLD to place a user defined logic				
5	region in response to user specified constraints for placement of the user defined logic region;				
6	determining whether the user specified constraint is a soft constraint in response to the				
7	system not satisfying timing; and				
8	having the EDA tool determine a second location to place the user defined logic region,				
9	wherein the second location is determined independent of the user specified constraints for				
10	placement if the user specified constraint is a soft constraint, and in response to having a				
11	threshold number of first locations determined.				

1	13. (Previously Presented) The method of Claim 12, wherein determining the first				
2	location to place the user defined logic region comprises:				
3	assigning an initial location for the user defined logic region;				
4	moving the user defined logic region to a new location; and				
5	evaluating a cost function associated with the user defined logic region in the new				
6	location.				
1	14. (Original) The method of Claim 13, wherein evaluating the cost function comprises				
2	determining a timing of the system associated with the user defined logic region in the				
3	new location; and				
4	determining routing resources requirements associated with the user defined logic region				
5	in the new location.				
1	15. (Previously Presented) The method of Claim 12, further comprising determining				
2	possible locations to place a component in the user defined logic region that includes:				
3	assigning an initial location for the component in the user defined logic region; and				
4	evaluating a cost function as the user defined logic region and the component are moved				
1	16. (Previously Presented) The method of Claim 15, further comprising determining				
2	possible locations to move the component from the possible locations to place the component				
3	independent of the constraints associated with the user defined logic region.				
1	17. (Previously Presented) The method of Claim 16, wherein determining possible				
2	locations to move the component is performed in response to the possible locations not satisfying				
3	user specified constraints.				
1	18. (Cancelled)				
1	19. (Currently Amended) A method for designing a system on a programmable logic				
2	device (PLD) using an electronic design automation (EDA) tool, comprising:				
3	having the EDA tool determine routing strategies for routing signals on the PLD in				
4	response to user specified routing constraints that pertain to categories of routing resources to				
5	use by selecting routing resources for a user specified signal on the PLDs in response to the user				

1	specified fourting constraints, and selecting fourting resources for a non-user specified signal on				
2	the PLDs without utilizing the user specified routing constraints; and				
3	having the EDA tool determine additional routing strategies for routing the signals on the				
4	PLD where the additional routing strategies are independent of the user specified routing				
5	constraints.				
1	20. (Cancelled)				
1	21. (Original) The method of Claim 19, wherein determining additional routing				
2	strategies for routing the signals comprises selecting routing resources for the user specified				
3	signal on the PLDs independent of the user specified routing constraints.				
1	22. (Original) The method of Claim 19, wherein determining additional routing				
2	strategies for routing the signals is performed in response to the routing strategies not satisfying				
3	user specified routing constraints.				
1	23. (Original) The method of Claim 19, wherein determining additional routing				
2	strategies for routing the signals is performed in response to the routing strategies not satisfying				
3	design parameters.				
1	24. (Currently Amended) The method of Claim 19, wherein determining additional				
2	routing strategies for routing the signal is performed A method for designing a system on a				
3	programmable logic device (PLD) using an electronic design automation (EDA) tool,				
4	comprising:				
5	having the EDA tool determine routing strategies for routing signals on the PLD in				
6	response to user specified routing constraints that pertain to categories of routing resources to				
7	use; and				
8	having the EDA tool determine additional routing strategies in response to a threshold				
9	number of routing strategies being determined.				
1	25. (Cancelled)				
1	26. (Cancelled)				

27	(Cancel	144
21.	Cancei	rea i

28. (Previously Presented) A machine-readable medium having stored thereon sequences of instructions, the sequences of instructions including instructions which, when executed by a processor, causes the processor to perform:

determining a first location on a programmable logic device (PLD) to place a user defined logic region in response to user specified constraints for placement of the user defined logic region; and

determining a second location to place the user defined logic region wherein the second location is determined independent of the user specified constraints for placement in response to having a threshold number of first locations determined.

29. (Cancelled)

- 30. (Currently Amended) The machine-readable medium of Claim 285, further comprising determining locations to place components within user defined logic regions on the target device.
- 31. (Previously Presented) The machine-readable medium of Claim 30, further comprising determining locations to place the components on the target device by removing constraints associated with the user defined logic regions.
- 32. (Currently Amended) The machine readable medium of Claim 25, further comprising A machine-readable medium having stored thereon sequences of instructions, the sequences of instructions including instructions which, when executed by a processor, causes the processor to perform:

determining a first location on a programmable logic device (PLD) to place a user defined logic region in response to user specified constraints for placement of the user defined logic region; and

determining a second location to place the user defined logic region wherein the second location is determined independent of the user specified constraints for placement; and

determining routing resources to allocate to user specified signals on the target device in response to user specified routing constraints.

33. (Previously Presented) The machine-readable medium of Claim 32, further
comprising ignoring the user specified routing constraints.

Serial No. 10/618,416