

Cannabis Data Science

Cananbis Data Science #143

January 18th, 2024

Research Question

What factors may contribute to healthy cannabis plants?

- Genetics (e.g. strain)
- Environment
- Cultivator-specific techniques
- Plant source (seed or clone)
- Year planted
- Month planted
- Application of pesticides

Washington State Traceability Data.

WSLCB Cultivation Data 2022 through 2023

	2022	2023	Percent Change
Cultivators	607	538	-11%
Areas	9,531	3,157	-67%
Strains	11,834	14,662	24%
Mother Plants	46,270	41,830	-10%
Destroyed Plants	794,600	495,456	-38%
Harvested Plants	3,592,215	1,875,483	-48%

Lifetime of Destroyed Plants by Reason

Research Question

Do licensees who have had a banned pesticide detected in their produts have a lower or greater survival rate than other licensees?

Total tests for the top 10 producers in WA in 2023

Tests for licensees with the most banned pesticide detections in WA in 2023

The Benefit of Using Banned Pesticides

Given

- LTV_{plant} is the lifetime value of a plant.
- N_{plant} is the number of plants.
- $\Delta Pr(\text{survival})_{pesticides}$ is the change in the survival rate of plants when pesticides are applied.

The benefit to using banned pesticides is

$$LTV_{plant} \times N_{plant} \times \Delta Pr(survival)_{pesticides}$$

The Cost of Using Banned Pesticides

Given

- Cost_{pesticides} is the cost of banned pesticides.
- Cost_{enforcement} is the cost when enforcement happens
- Pr_{enforcement} is the probability of enforcement

The **cost** to using banned pesticides is

 $\mathsf{Cost}_{pesticides} + Pr_{\mathsf{enforcement}} \times \mathsf{Cost}_{\mathsf{enforcement}}$

Why does this matter? The incentive to use pesticides

Cultivators will **not use** banned pesticides when*:

$$N_{plant} \times \Delta Pr(s)_{pesticides} \leq Pr_{enforcement} \times Cost_{enforcement}$$

Likelihood of use increases when:

- $N_{plant} \uparrow$
- $\Delta Pr(s)_{pesticides} \uparrow$

Likelihood of use decreases when:

- $Pr_{\text{enforcement}} \uparrow$
- Cost_{enforcement} ↑

^{*} Assuming Cost_{Desticides} is approximately 0 and Cost_{enforcement} is normalized to LTV_{plant}.

Lessons of the Day

• Survive, then thrive.

Cannabis Data Science