Analyse von Workflow-Modellen

Prof. Dr. Heiner Stuckenschmidt Basiert auf Material von Prof. Dr. Will van der Aalst (TU Eindhoven)

Workflow Netze

- Ein Workflow Netz (WF-Netz) ist ein Petri Netz mit den folgenden Eigenschaften:
 - Es gibt eine Input Stelle start, die keine Vorgänger hat
 - Es gibt eine Output Stelle end, die keine Nachfolger hat
 - Das Workflow Netz ist ,sound'

Typische Fehler in Modellen

- Aufgaben ohne In- bzw. Output
- Aufgaben, die niemals ausgeführt werden (können)
- Sich gegenseitig blockierende Aufgaben
- Unendliche Zyklen
- Aktivitäten nach Abschluss des Prozesses
- Übriggebliebene Token nach Abschluss des Prozesses

Beispiel:

Welches Problem hat dieses Modell?

Eigenschaften von WF Netzen

- Ein WF-Netz ist sound, wenn
 - 1. Jedes Token in der *start* Stelle genau ein Token in der *end* Stelle produziert
 - Alle anderen Stellen leer sind, sobald ein Token in der end Stelle ist
 - Für jede Transition ist es möglich vom Ausgangszustand in einen Zustand zu gelangen, in dem die Transition enabled ist
- Spezialfall: Ein WF Netz ist safe, wenn es niemals mehr als ein Token in einer Stelle gibt.

Ist dieses Netz safe?

Bestimmung von Safeness

- Ersetzungseigenschaft:
 - Die Ersetzung einer Transition mit genau einer input und einer output Stelle in einem sicheren WF Netz durch ein sicheres WF Netz ergibt wieder ein sicheres WF Netz

Sichere Teilnetze 1

1. Basisnetz

2. Sequenz

3. Implizites ODER

У

4. Iteration

Sichere Teilnetze 2

5. ODER split

6. ODER join

7. AND

Aufgabe

• Ist dieses Netz *safe*?

Bestimmung von Soundness

• Ein WF-Netz ist *sound*, genau dann wenn das dazugehörige Petri-Netz, erweitert um eine Transition t* von *end* nach *start die* Eigenschaften *live* und *bounded* hat.

Performanz-Analyse

Wie viele Fälle können pro Zeiteinheit abgearbeitet werden?

Wie lange dauert es, bis ein Fall abgearbeitet ist?

Wie gut sind die Ressourcen (in der Regel Mitarbeiter) ausgelastet ?

Beispiel

 Wie effizient ist dieser Prozess für zwei voneinander unabhängige Aktivitäten t1 und t2?

Parallelisierung

• Inwieweit wird der Prozess effizienter?

Durchschnitt: 2 Ressourcen Typ 1

24 Fälle 4 Minuten

Pro Stunde Bearbeitungszeit

2,5 Minuten

2 Ressourcen Typ 2

4 Minuten

Bearbeitungszeit

Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik

Zusammenlegung von Arbeitsschritten

• Inwieweit wird der Prozess effizienter?

4 Ressourcen
7 Minuten
Bearbeitungszeit
24 Fälle
Pro Stunde
2,5 Minuten
Abstand

1 Ressourcen
7 Minuten
8 Bearbeitungszeit
1 t1,t2 c3

Flexibilisierung von Ressourcen

• Inwieweit wird der Prozess effizienter?

Fallspezifische Bearbeitung

• Inwieweit wird der Prozess effizienter?

Priorisierung

• Inwieweit wird der Prozess effizienter?

Zusammenfassung

Prozess		Dauer	Bearbeitungszeit	Wartezeit
Prozess 1	Sequenz	22,2	8	14,2
Prozess 2	Parallel	15	4	11
Prozess 3	Komposition	9,5	7	2,5
Prozess 4	Flexibilisierung	14	8	6
Prozess 5	Selektion	31,1	8	23,1
Prozess 6	Priorisierung	14	8	6

Analyse von Prozessen

 Wie lang ist die durchschnittliche Bearbeitungszeit bei 10 Fällen/Zeiteinheit?

Warteschlangentheorie

 Mathematischer Modell für die Kapazitätsberechnung

– Anzahl Fälle:
$$\lambda$$

- Kapazität:
$$\mu$$

– Genutzte Kapazität
$$\rho = \lambda/\mu$$

– Aktuell bearbeitete Fälle:
$$L = \rho/(1-\rho)$$

– Wartezeit:
$$W = L/\mu = \rho/(\mu-\lambda)$$

- Bearbeitungszeit:
$$S = W + 1/\mu = 1/(\mu - \lambda)$$

Berechnung von Bearbeitungszeiten

- Systematisches Vorgehen für große Netze notwendig
- Vereinfachtes Modell: Gegeben eine Input-Größe bestimmte Kapazitätsanforderungen basierend auf der Netz-Struktur
- Vorgehen:
 - Bestimmung von Fallzahlen
 - Bestimmung von Kapazitäten
 - Berechnung von Bearbeitungszeiten pro Aktivität
 - Berechnung der Gesamtbearbeitungszeit

Bestimmung von Fallzahlen

1. Basisnetz

2. Sequenz

3. Implizites ODER

4. Iteration

Berechnungsregeln 2

5. ODER split

6. ODER join

7. AND

UNIVERSITÄT Fakultät für Wirtschaftsinformatik und MANNHEIMirtschaftsmathematik

Anzahl der Fälle

Kapazitäten

Analyse von Prozessen

Wie lang ist die durchschnittliche Bearbeitungszeit bei 10 Fällen/Stunde?

Berechnung der Bearbeitungszeit

•
$$S = 1/(\mu - \lambda)$$

•
$$S(contact_client) = 1/(12-10) = 0.5 * 1 = 0.5$$

•
$$S(contact_department) = 1/(12-10) = 0.5 * 1 = 0.5$$

•
$$S(assess) = 1/(15-11,111) = 0,257 * 1,1111 = 0,285$$

•
$$S(pay) = 1/(12-7) = 0.2 * 0.7$$
 = 0.14

• S(send_letter) =
$$1/(4.8-3)$$
 = 0.555 * 0.3 = 0.1665

Kapazitätsplanung

- Prozessmodell mit durchschnittlichen Bearbeitungszeiten
- Wie viele Ressourcen werden pro Task benötigt?

Kapazitätsplanung

• Benötigte Kapazität bei 50 Fällen pro Tag:

Task	Anzahl	Bearbeitungs- zeit	Benötigte Gesamtzeit
record	50	0	0
contact_client	50	10	500
contact_department	50	15	750
collect	50	0	0
assess	56	20	1111
pay	35	10	350
send_letter	15	25	375
file	50	0	0

Spezialisierte Ressourcen

Aufgaben erfordern eine gewissen
 Qualifikation, die berücksichtigt werden muss

assess: Assessor

– pay: Finance

– all other: Complaints

Arbeitszeit: 8*60 = 480 Minuten 80% Auslastung: 384 Minuten 60% Auslastung: 288 Minuten

Ressource	Minuten	bei 80% Auslastung	bei 60% Auslastung
Assessor	1111	2,90	3,86
Finance	350	0,91	1,22
Complaints	1625	4,23	5,64

Prozessoptimierung

- Auslastung nicht zu hoch werden lassen
- Wenn möglich Parallelisieren
- Wenn möglich Ressourcen Flexibilisieren
- Wenn Sinnvoll, Tätigkeiten zusammenlegen

