

Life History Parameters

Jeff Kipp

ASMFC Mock Data Workshop

Week 2: March 22, 2023

Outline

- Week 2: Life History Parameters
 - Data
 - Overall purpose
 - Morphometric relationships
 - Growth
 - Maturity and reproductive capacity
 - Natural Mortality
 - Stock ID
 - Project: Life History

Data

- Life history studies
- Tagging programs
- Survey biosampling
 - Fishery removals
 - Population structure
 - Life history characteristics

Data

- Types of data
 - Length
 - Weight
 - Age
 - Maturity
 - Sex

- * Fecundity
- * Stomach contents
- * Movement/migration
- * Genetics
- * Sex change

 Some data should be collected annually, some only need to be collected periodically

Length and Weight

Type

- Length: fork or centerline,
 standard, total, carapace
- Weight: hole, gutted, head off

- Units and precision
 - Metric, non-metric

Age

Typically estimated from a hard part (otolith,

scale, operculum)

- Annuli
- Hard part margins

Ageing error

- Studies conducted to estimate ageing error
 - Validate age structure
 - Quantify error within ager, among agers
- This information can be incorporated into models
- Campana 2001

http://www.asmfc.org/fisheries-science/research#Ageing

Age

- Do ageing error studies indicate age data are useful?
- Is everyone using the same methods?
- Have methods changed over time?
 - E.g., scales to otoliths
- What do the age data represent?

Maturity

- How was the determination made?
 - Macroscopic or histological

- Classification?
 - Brown-Peterson et al. 2011

Uses for Life History Data

- Stock ID
- Growth
- Natural mortality
- Maturity ogive
- Morphometric conversions
- Catch age compositions

- Differences in life history between sexes
- Sex transitions
- Fecundity ogive
- Predator-prey relationships
- Migration

At the Data Workshop

- You will be working with data from multiple different programs and agencies
- Data collection may not be standardized across sources
- Pay attention to metadata:
 - Units (cm, mm, in, kg, lbs)
 - Measurement types (fork length vs. total length, dressed weight vs. live weight)

Simple Evaluations

- Plot your data!!
 - Magnitudes, Units ...do they 'look right'
 - "In the ball park"
 - Outliers, data gaps
 - Temporal or spatial patterns
 - Discrepancies between data sources
- Time to catch major omissions, extraction issues

Starting to understand the data before being used in life history analyses

Simple Evaluations

Bluefish:
historical NC
data were not
using the Jan. 1
birthdate

Life History Parameters

- What are the biological characteristics of a stock and how do these characteristics change over the lifetime of an individual?
- How productive is the stock?
- How is the stock likely to respond to fishing pressure?

$$YPR = \sum_{a=1}^{\infty} \left[\left(\frac{F_a}{F_a + (M_a)} \right) \cdot \left(1 - e^{-(M_a + F_a)} \right) \cdot N_a (W_a) \right]$$

$$SPR_{y} = \frac{\sum_{a} Mat_{a} W_{a} \prod_{1}^{a} e^{-M_{a} - F_{y,a}}}{\sum_{a} Mat_{a} W_{a} \prod_{1}^{a} e^{-M_{a}}}$$

Life History Parameters

- Stock ID dictates structure of data inputs
- May be used elsewhere in data development (L-W relationship for CAA as we'll see later)
- These are often used in stock assessment models as fixed inputs
- Develop estimates during the Data Workshop to support assessment models earlier in the process

Input Data

- Life history parameters
- Fishery removals
- Biological sampling
- Fishery independent surveys

Stock assessment model

Stock status

Overfished or overfishing?

Morphometric Relationships

- Length-length relationships to convert from one length type to another
- Simple linear regression models with slope-intercept form:
 y = mx+b
 - Where:
 y=dependent length you
 are interested in predicting
 m=slope of the relationship
 x=independent length you
 want to convert
 b=y-intercept
- Typically strong relationships with high R²

Morphometric Relationships

Length-weight relationship to convert length to weight

$$W = aL^b$$

 Can log transform to model with a linear model:

$$log(W) = log(a) + b * log(L)$$

- Where:

log(W)=log transformed weight
b=slope of the relationship
log(L)=log transformed length
log(a)=y-intercept

$$SPR_{y} = \frac{\sum_{a} Mat_{a} W_{a} \prod_{1}^{a} e^{-M_{a} - F_{y,a}}}{\sum_{a} Mat_{a} W_{a} \prod_{1}^{a} e^{-M_{a}}}$$

Length-Weight Example

 For example using Excel see the end of the intro recording for week 3 "Components of a Stock Assessment – Life History" using MLE_exercises.xls at:

https://www.youtube.com/playlist?list=PL21P
zNp1mlVUMu5A lkep5MW1tozrs2 J

• For R example, open length-weight example.R

• Length-at-age, weight-at-age

How does size and weight change across an

individual's life?

Fit model to
 observed paired
 length and age
 data to predict
 the mean size
 at any given age

$$SPR_{y} = \frac{\sum_{a} Mat_{a} W_{a} \prod_{1}^{a} e^{-M_{a} - F_{y,a}}}{\sum_{a} Mat_{a} W_{a} \prod_{1}^{a} e^{-M_{a}}}$$

- Models
 - von Bertalanffy model the most common

$$L_t = L_{\infty} * \left(1 - e^{-K*(t-t_0)}\right)$$

– Where:

Lt = length at age t

 L_{∞} = asymptotic length

K = growth rate coefficient

t = age

t0 = age when L=0

- Growth parameters can be informative of natural mortality
- Growth can also be informative of an appropriate plus group

 Does the growth model provide a good fit to the data? Or is there a better way to predict growth?

- Does growth vary spatially or temporally?
- Does growth vary by sex?

Total Length

Questions?

Break Time

Return at:

Growth Example

For example using Excel see the intro
recording for week 2 "Intro to Modeling"
using MLE_exercises.xls at:
https://www.youtube.com/playlist?list=PL21P
zNp1mlVUMu5A Ikep5MW1tozrs2 J

For R example, open growth example.R

Maturity and Reproductive Capacity

- Maturity ogive
 - What proportion of individuals are mature in each size or age class?
 - L₅₀ parameter informative for size regulations

- Spawning stock biomass
 - Maturity ogive * weight-at-age/size
 - Proxy for reproductive capacity
 - If using a spawner-per-recruit relationship in model, SSB helps you predict R

SPR_y =
$$\frac{\sum_{a} Mat_{a}W_{a} \prod_{1}^{a} e^{-M_{a}-F_{y,a}}}{\sum_{a} Mat_{a}W_{a} \prod_{1}^{a} e^{-M_{a}}}$$

Fecundity (egg production)

Maturity and Reproductive Capacity

Atlantic Striped Bass Female Spawning Stock Biomass and Recruitment

Source: Atlantic Striped Bass Stock Assessment Update, 2022

Atlantic Menhaden Fecundity

Source: ASMFC Atlantic Menhaden Stock Assessment Overview, 2022

Maturity and Reproductive Capacity

- Things to consider:
 - Maturity at length vs. age
 - Does maturity trigger differences in behavior, growth, survival?
 - Has maturity changed over time?
 - Are there spatial differences in maturity schedules?
 - How does maturity relate to fishery regulations?
 - Are there sex differences in maturity schedules?
 - Is weight an adequate proxy for reproductive capacity?
 - If not, are fecundity data available?

Questions?

- Natural mortality (M) = rate of death from natural causes
 - → Predation, disease, starvation, senescence, poor environmental conditions, etc.

- Trends in catch-at-age and FI surveys reflect effect of both natural and fishing mortality
 - Need to be able to tease apart effects of fishing to manage fisheries effectively

$$SPR_{y} = \frac{\sum_{a} Mat_{a}W_{a} \prod_{1}^{a} e^{\underbrace{M_{a} - F_{y,a}}}}{\sum_{a} Mat_{a}W_{a} \prod_{1}^{a} e^{\underbrace{M_{a} - F_{y,a}}}}$$

- Typically:
 - Difficult to estimate empirically
 - Estimated with meta-analyses using other life history information (e.g. maximum age)
 - Varies by age/length/stage
 - Varies over time (especially for prey species)

Empirical estimates of M

→ Track the decline of age classes in unexploited/lightly exploited populations (catch curve analysis)

Tagging studies
(dependent on good
estimates of reporting
rate)

Meta-analysis-based approaches

→ Open up Natural Mortality Estimators.xlsx

- Things to consider
 - Can you estimate it?
 - Does it change with age/size and/or over time?
 - How are your model results affected by assumptions regarding M?
 - Also, think about literature, similar species, what you know...

Questions?

- Stock = a group of individuals of the same species that behave (migrate, spawn) as a unit and are genetically identical, affected by the fishery as a unit
- Is there a single coastwide stock or are there biologically distinct units within the range?

- Nail this down early: it affects the rest of your data decisions and input development
 - Can you split the catch/index/biosample data into separate stock units?
 - Internationally boundaries and data availability

How Do You Define a Stock?

Genetic data

Tagging data

Spawning and larval transport

Other life history differences

- Red Drum
- Managed & assessed as 2 separate stocks
- Life history information
 - Max age and size differences
- Tagging information
- Genetics information

Striped Bass

The coastal migratory population is made up of individuals from the 3 northern stocks.

However, we can't ID the individual stock components of the ocean catch

→ Manage & assess as a single stock

- Is there tagging/genetic/spawning evidence to support a unit stock?
- Do you have the data to assess the entire stock?
 If not, reconsider or caveat your conclusions!
- How serious are substock dynamics relative to model assumptions?
- Unless your model includes migration, it assumes your stock is homogeneous

Questions?

Life History: Project

Project and working session next week....

- 1. Calculate length-weight relationship and size-at-age for 2015. Evaluate spatial or seasonal differences in growth.
- 2. Develop estimates of M using more than one method. Compare the results and recommend a preferred method.

 Give these a try using the examples provided or your own code and bring questions next week

Group Assignments

Life History: L-W, Size-at-Age

(Life History Q1)
Margaret Conroy
Brendan Harrison
CJ Schlick
Holly White

2015 CAA

Caitlin Craig

(Catch Q2 & Q3)
Eddie Leonard
Judd Curtis
Matthew Jargowsky
Ryan Harrell
Tyler Grabowski

Life History: M

(Life History Q2)
Daniel Sasson
Shelby White
Tara Dolan
Michaela Pawluk
Tori Kentner

FD Index

Alexa Galvan
Kelli Mosca
Lulu Bates
Corey Pelletier
Somers Smott

(Indices Q1 & Q2)

Age-Length Keys

(Catch Q1)
Jes Waller
Heather Christiansen
Brooke Lowman
Rich Pendleton
Conor O'Donnell

FI Index

(Indices Q1 & Q2)
Chad Power
Julia Livermore
Jimmy Kilfoil
Ana Vaz
Corinne Truesdale
Halie O'Farrell

Questions?