

Answer Keys and Solutions

	/// maniana go	74 mainte	//i	7% marine (o	7%. Examinar (O	//.	7 // 1 1 1 1 1 1 1 1 1 1	77. 8
ANSWER KEY								
1. (4.00) 9. (3) nathongo	2. (1) 10. (3) athongo	3. (3) /// mathongo	4. (1) ///. mathongo	5. (2) /// mathongo	6. (3) /// mathongo	7. (3) ///. mathongo	8. (1) ///. mathongo	
,								
1. (4.00) mathographi	n = 1 mathongo							
$\int 1+i$ 1+	-i n							
$\Rightarrow \left(\frac{1}{1-i} \times \frac{1}{1+i}\right)^2$	$\binom{i}{i} = 1$ $mathongo$ $= 1$							
$\Rightarrow \left(\frac{1^2 + i^2 + 2i}{1 - i^2}\right)$) = 1 ///. mathongo							
$ ightarrow \left(rac{2i}{2} ight) \ = \ ightarrow i^n = 1$	1							
	n integer multiple of	4.//. mathongo						
	est positive integer va							
2. (1) We have z =	$=rac{3+2i\cos heta}{1-3i\cos heta}, heta\in\left(0,rac{\pi}{2} ight)$							
$\Rightarrow \mathbf{z} = \frac{3+2i\mathrm{co}}{1-2i\mathrm{co}}$	$\frac{1-3i\cos\theta}{1-3i\cos\theta}$, $\frac{1+3i\cos\theta}{1-3i\cos\theta}$							
$\Rightarrow \mathbf{z} = \frac{\overset{1-3i \text{ co}}{(3+2i)}}{\overset{1}{=}}$	$\frac{3+2i\cos\theta}{1-3i\cos\theta}, \theta \in \left(0, \frac{\pi}{2}\right)$ $\frac{\cos\theta}{\cos\theta} \times \frac{1+3i\cos\theta}{1+3i\cos\theta}$ $\frac{1+3i\cos\theta}{\cos\theta} \times \frac{1+3i\cos\theta}{1+9\cos^2\theta}$ $\frac{1+9\cos^2\theta}{\cos^2\theta+8i\cos\theta}$ $\frac{1+9\cos^2\theta}{\cos^2\theta+8i\cos\theta}$							
\Rightarrow z = $\frac{\left(3-666\right)}{1}$	$\frac{\cos^2\theta + 8i\cos\theta}{1 + 9\cos^2\theta}$							
Now, $Re(z)$	$= \frac{3 - 6\cos^2\theta}{1 + 9\cos^2\theta} = 0$ $\theta = 0$							
$\Rightarrow 3 - 6\cos^2$ $\Rightarrow \theta = \frac{\pi}{4}$	$\theta = 0$							
	$\theta + \cos^2 \theta = \sin^2 3 \Big(\cdot$	$\left(\frac{\pi}{4}\right) + \cos^2\left(\frac{\pi}{4}\right) = 1.$						
3. (3) Let $z = x$		1)						
//. mailz=25 o	5 ///. mathongo							
$ \overline{z-1} =$	9							
$\Rightarrow \frac{(x-25)+}{(x-1)+}$	$\left = 5 \right $							
	5)+iy =5 (x-1)+iy methongo							
$\Rightarrow \sqrt{(x-x)^2}$	$-\frac{1}{(25)^2+y^2}=5\sqrt{(x-1)^2}$	$\left(-1 ight)^{2}+y^{2}$						
w. mathongo	both sides, we get							
On squaring	both sides, we get							
$(x-25)^2 + 1$	$y^2 = 25\Big\{ (x-1)^2 +$	y^2 mathona						
	$60x + 625 + y^2 = 25$ mathongo							
$\Rightarrow 24x^2 +$								
$y \mapsto h x^2 + $	$y^2=25$ athongo							
$\Rightarrow \sqrt{x^2 + mathonage}$	$y^2 = 5$ $ z = 1$	$\sqrt{(x^2+y^2)}igg]$						
$\Rightarrow z = 5$								
→ ≈ - 3								

Answer Keys and Solutions

70							·	 	
4.	(1) thongo mathongo If a complex number if purely ima								
	$\Rightarrow \frac{z-\alpha}{z+\alpha} = -\left(\frac{\bar{z}-\alpha}{\bar{z}+\alpha}\right)$ $\Rightarrow z\bar{z} + \alpha z - \alpha\bar{z} - \alpha^2 = -\left(z\bar{z} - \alpha^2\right)$ $\Rightarrow z ^2 = \alpha^2$	$-lpha z + lpha ar{z} - lpha^2 ig)$							
	$\Rightarrow \alpha^2 = 4$ $\Rightarrow \alpha = \pm 2$ mathongo								
5.	(2) $\sqrt{x^2 + y^2} - x \le 1$ $\Rightarrow \sqrt{x^2 + y^2} \le x + 1$ though $\Rightarrow x^2 + y^2 \le x^2 + 2x + 1$ $\Rightarrow y^2 \le 2x + 1$								
14.									
6.	(3) $\frac{(1+i)^{5}(1+\sqrt{3}i)^{2}}{-2i(-\sqrt{3}+i)} = \frac{(\sqrt{2})^{5}(\frac{1}{\sqrt{2}})}{-2i(-\sqrt{3}+i)}$	$\left(\frac{+\frac{\mathbf{i}}{\sqrt{2}}}{2}\right) \cdot 2^{2} \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\mathbf{i}\right)$ $\left(\frac{\sqrt{3}}{2} - \frac{\mathbf{i}}{2}\right) \text{ thouse}$							
	$\therefore \text{ argument} = \frac{5\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{2} + \frac{2\pi}{3}$ mathongo mathongo $\frac{5\pi}{4}$	$\frac{\pi}{6} = \frac{19\pi}{12}$ mathongo							
7.	∴ principal argument is $-\frac{5\pi}{12}$ (3) Taking modulus and squaring of $ 1+i ^2 \cdot 1+2i ^2 \cdot \dots \cdot 1-(1+1) \cdot (1+4) \cdot \dots \cdot (1+n)$	$+\operatorname{ni} ^2= lpha+\mathrm{i}eta ^2$							
///. 8.	2.5.10(1+n								
	Given that $ z_1 = z_2 + z_1 - z_2 $, $ z_1 = z_2 = z_1 - z_2 $ $\therefore z_1 - z_2 = z_1 - z_2 $								
	Now, $argz_1 = argz_2$ $\Rightarrow \arg\left(\frac{z_1}{z_2}\right) = 0$ mothonoo $\Rightarrow Im\left(\frac{z_1}{z_2}\right) = 0$.								
9.	(3) thongo mathongo We have, $z^2 = \bar{z}$								
	Let $z = x + iy$ $z^2 = (x + iy)^2 = x^2 + y^2 + i2xy$ $\bar{z} = x - iy$ (ii)	(i) mathongo							
	From (i) and (ii) on equating imaginary parts								
	$\Rightarrow 2xy = -y$ $\Rightarrow y(2x+1) = 0$ $\Rightarrow y = 0 \text{ or } x = -\frac{1}{2}$								
	on equating real parts $\Rightarrow x^2 - y^2 = x$ Case 1: when $y = 0$ $\Rightarrow x^2 - x = 0$								
	$\Rightarrow x(x-1) = 0$ $\Rightarrow x = 0 \text{ or } x = 1$ Case 2: when $x = -\frac{1}{2}$								
	$\Rightarrow \frac{1}{4} - y^2 = -\frac{1}{2}$ $\Rightarrow y^2 = \frac{3}{4}$								
	$\Rightarrow y = \pm \frac{\sqrt{3}}{2}$ hence there exist 4 solution of z								

Allswer Keys and Solutions				JEE Main Crash Course
10. (3) $x + i(y + 1) + \sqrt{2} x + iy + 1 = 0$				
$y+1=0 \Rightarrow y=-1$: $ x+iy+1 $ mathongo mathongo mathongo mathongo	is real mathongo ///.			
so $x + \sqrt{2} x - i + 1 = 0$ $(x + 2)^{2} = 0 \Rightarrow x = -2$				