Particle swarm optimisation with the use of chaos maps

Piedebout Laurent, Habbal Younes, Demangeon Antoine, Choiset Flore

03 juin 2022

Introduction and motivations

What is optimisation?

Introduction and motivations

PSO algorithm

James Kennedy and Russel Eberhart, 1995

Algorithm

Computation method

$$V_{k+1} = \omega_{v} V_{k} + r_{1} \omega_{I} (P_{localbest} - P_{k}) + r_{2} \omega_{g} (P_{globalbest} - P_{k})$$
 $X_{k+1} = X_{k} + V_{K+1}$
 $\omega_{v} \in [0,1], \ r_{1} \in [0,1], \ r_{2} \in [0,1]$
 r_{1} and r_{2} are computed using the chaos map

$$P_k = \begin{bmatrix} x_{1,1} & x_{2,1} & x_{3,1} & x_{4,1} & \cdots & x_{q,1} \\ x_{1,2} & x_{2,2} & x_{3,2} & x_{4,2} & \cdots & x_{q,2} \\ x_{1,3} & x_{2,3} & x_{3,3} & x_{4,3} & \cdots & x_{q,3} \\ & & & & & & \\ x_{1,n} & x_{2,n} & x_{3,n} & x_{4,n} & \cdots & x_{q,n} \end{bmatrix}; V_k = \begin{bmatrix} x_{1,1} & x_{2,1} & x_{3,1} & x_{4,1} & \cdots & x_{q,1} \\ x_{1,2} & x_{2,2} & x_{3,2} & x_{4,2} & \cdots & x_{q,2} \\ x_{1,3} & x_{2,3} & x_{3,3} & x_{4,3} & \cdots & x_{q,3} \\ & & & & & & \\ x_{1,n} & x_{2,n} & x_{3,n} & x_{4,n} & \cdots & x_{q,n} \end{bmatrix}$$

Algorithm

Computation method

```
k_{max} \leftarrow n
i \leftarrow 0
X_{\nu} \leftarrow X_{0}
X_{kminlocal} \leftarrow X_k
X_{kminglobal} \leftarrow min(X_{kminlocal})
while ERX(X_k) > \epsilon and i < k_{max} do
      V_k \leftarrow \omega_v V_{k-1} + r_1(i)\omega_l(P_{localbest} - P_k)
     V_k \leftarrow V_k + r_2(i)\omega_{g}(P_{globalbest} - P_k)
     X_k \leftarrow X_{k-1} + V_k
     X_{kminlocal} \leftarrow min(X_k)
     X_{kminglobal} \leftarrow min(X_{kminlocal})
      i \leftarrow i + 1
end while
```


Booth function

Comparison between the ERJ obtained with a chaos map and a uniform distribution

Evolution of ERJ in regard of the dimension

Evolution of ERJ in regard of the dimension

Comparison between the ERJ obtained with a chaos map and a uniform distribution

Evolution of ERJ in regard of the log(K)

Evolution of ERJ in regard of the log(K)

Comparison between the ERJ obtained with a chaos map and a uniform distribution

Evolution of ERJ in regard of the log(P)

Evolution of ERJ in regard of the log(P)

Algorithm

Generating rk using the standard normal distribution

rk is a n-sized vector containing random values generated with a standard normal distribution,

```
egin{aligned} X_{min} \leftarrow min(rk) \ X_{max} \leftarrow max(rk) \ i \leftarrow 0 \ & 	ext{while } i < n 	ext{ do} \ rk[i] \leftarrow (rk[i] - X_{min})/(X_{max} - X_{min}) \ i \leftarrow i + 1 \ & 	ext{end while} \end{aligned}
```

Comparison between the ERJ obtained with a chaos map and a normal distribution

Evolution of ERJ in regard of the value of D

Evolution of ERJ in regard of the value of D

Comparison between the ERJ obtained with a chaos map and a normal distribution

Evolution of ERJ in regard of the log(K)

Evolution of ERJ in regard of the log(K)

Comparison between the ERJ obtained with a chaos map and a normal distribution

Evolution of ERJ in regard of the log(P)

Evolution of ERJ in regard of the log(P)

Evolution of ERJ in regard of the number of dimensions | Dimension 2

The value of the final ERJ is: 0.017894385917374578

Evolution of ERJ in regard of the number of dimensions | Dimension 5

The value of the final ERJ is: 2.9848775024190743

Evolution of ERJ in regard of the number of dimensions | Dimension 10

The value of the final ERJ is: 4.014968644746489

Evolution of ERJ in regards of the number of dimensions | Dimension 50

The value of the ERJ is: 205.75578243398908

Evolution of ERJ in regards of the number of dimensions | Dimension 100

The value of the ERJ is: 562.2491221239749

Evolution of ERJ in regard of the dimension

The higher the dimension, the higher the ERJ is

Study of the impact of the parameters on the convergence Optimisation in higher dimensions (above five)

Study of the impact of the parameters on the convergence Optimisation in higher dimensions (above five)

Study of the impact of the parameters on the convergence Evolution of ERJ in regard of the value of K | Rastrigin

ERJ in regard of K for the Rastrigin function

Study of the impact of the parameters on the convergence Evolution of ERJ in regard of the value of K | Booth

ERJ in regard of K for the Booth function

Evolution of the average k in regard of the value of $P \mid Rastrigin$

Average k in regard of P for the Rastrigin function

Evolution of the average k in regard of the value of P \mid Booth

Average k in regard of P for the Booth function

Annexes

Open the annex notebook in Colab
Open the github repository with all the other documents