© Laurent Garcin MP Dumont d'Urville

Devoir à la maison $n^{\circ}10$

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

1 Par inégalité triangulaire,

$$\forall x \in \mathbb{R}, \ \left|\frac{1}{2^n}\cos(nx) + \frac{1}{3^n}\sin(nx)\right| \leq \left|\frac{1}{2^n}\cos(nx)\right| + \left|\frac{1}{3^n}\sin(nx)\right| \leq \frac{1}{2^n} + \frac{1}{3^n}\sin(nx)$$

Les séries géométriques $\sum \frac{1}{2^n}$ et $\sum \frac{1}{3^n}$ convergent donc la série $\sum \frac{1}{2^n} + \frac{1}{3^n}$ converge également. On en déduit que $\sum_{n=0}^{\infty} \left(\frac{1}{2n}\cos(nx) + \frac{1}{3n}\sin(nx)\right)^{2}$ converge normalement sur \mathbb{R} .

2 Soit un entier $p \ge 2$. Alors $\left| \frac{e^{ix}}{p} \right| = \frac{1}{2} < 1$ donc la série géométrique $\sum_{n \ge 0} \left(\frac{e^{ix}}{p} \right)^n$ converge et

$$\sum_{n=0}^{+\infty} \left(\frac{e^{ix}}{p}\right)^n = \frac{1}{1 - \frac{e^{ix}}{p}} = \frac{p}{p - e^{ix}} = \frac{p(p - e^{-ix})}{p^2 - 2p\cos(x) + 1} = \frac{p^2 - p\cos(x)}{p^2 - 2p\cos(x) + 1} + i\frac{p\sin(x)}{p^2 - 2p\cos(x) + 1}$$

On en déduit en passant aux parties réelle et imaginaire que

$$\sum_{n=0}^{+\infty} \frac{\cos(nx)}{p^n} = \frac{p^2 - p\cos(x)}{p^2 - 2p\cos(x) + 1} \qquad \qquad \sum_{n=0}^{+\infty} \frac{\sin(nx)}{p^n} = \frac{p\sin(x)}{p^2 - 2p\cos(x) + 1}$$

$$\sum_{n=0}^{+\infty} \frac{\sin(nx)}{p^n} = \frac{p\sin(x)}{p^2 - 2p\cos(x) + 1}$$

En considérant les cas p = 2 et p = 3, on trouve

$$\sum_{n=0}^{+\infty} \left(\frac{1}{2^n} \cos(nx) + \frac{1}{3^n} \sin(nx) \right) = \frac{4 - 4\cos(x)}{5 - 4\cos(x)} + \frac{3\sin(x)}{10 - 6\cos(x) + 1}$$

3 Remarquons que pour tout $x \in \mathbb{R}$, $\varphi(x) = \text{Re}(\exp(e^{ix}))$. On sait que

$$\exp(e^{ix}) = \sum_{n=0}^{+\infty} \frac{\left(e^{ix}\right)^n}{n!} = \sum_{n=0}^{+\infty} \frac{e^{inx}}{n!} = \sum_{n=0}^{+\infty} \frac{\cos(nx)}{n!} + i \sum_{n=0}^{+\infty} \frac{\sin(nx)}{n!}$$

On en déduit que

$$\forall x \in \mathbb{R}, \ \varphi(x) = \sum_{n=0}^{+\infty} \frac{\cos(nx)}{n!}$$

- 4 Il suffit de prendre $a_n = \frac{1}{n+1}$. La série $\sum a_n \cos(nx)$ diverge pour x = 0: elle ne converge donc pas simplement sur \mathbb{R} .
- 5 En utlisant l'indication de l'énoncé

$$S_n = u_0 v_0 + \sum_{k=1}^n u_k (V_k - V_{k-1})$$

$$= u_0 v_0 + \sum_{k=1}^n u_k V_k - \sum_{k=1}^n u_k V_{k-1}$$

$$= u_0 V_0 + \sum_{k=1}^n u_k V_k - \sum_{k=0}^{n-1} u_{k+1} V_k$$

$$= \sum_{k=0}^n u_k V_k - \sum_{k=0}^{n-1} u_{k+1} V_k$$

$$= u_n V_n + \sum_{k=0}^{n-1} (u_k - u_{k+1}) V_k$$

© Laurent Garcin MP Dumont d'Urville

6 La suite (V_n) est bornée : notons M un majorant de la suite $(|V_n|)$. Alors

$$|(u_n - u_{n+1})V_n| \le M(u_n - u_{n+1})$$

La série télescopique $\sum u_n - u_{n+1}$ converge puisque (u_n) converge. On en déduit que la série $\sum |(u_n - u_{n+1})V_n|$ converge. Ainsi la série $\sum (u_n - u_{n+1})V_n$ converge absolument et donc converge. Par conséquent, la suite de terme général $\sum_{k=0}^{n-1} (u_k - u_{k+1})V_k$ converge. De plus, (u_nV_n) converge vers 0 car (u_n) converge vers 0 et (V_n) est bornée. D'après la question précédente, (S_n) converge i.e. la série $\sum u_nv_n$ converge.

7 Soit $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$. Alors

$$\sum_{k=1}^{n} e^{ikx} = e^{ix} \cdot \frac{e^{inx} - 1}{e^{ix} - 1}$$

Par la méthode de l'arc-moitié,

$$\sum_{k=1}^{n} e^{ikx} = e^{\frac{i(n+1)x}{2}} \cdot \frac{\sin(nx/2)}{\sin(x/2)}$$

Par passage à la partie imaginaire,

$$\sum_{k=1}^{n} \sin(kx) = \frac{\sin((n+1)x/2)\sin(nx/2)}{\sin(x/2)}$$

8 Remarquons déjà que si $x \in 2\pi\mathbb{Z}$, la série $\sum_{n\geq 1} \frac{\sin(nx)}{\sqrt{n}}$ converge.

Soit maintenant $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$. Posons $u_n = \frac{1}{\sqrt{n}}$ et $v_n = \sin(nx)$. La suite (u_n) converge bien vers 0 et en posant $V_n = \sum_{k=1}^n v_k$,

$$|V_n| = \left| \frac{\sin((n+1)x/2)\sin(nx/2)}{\sin(x/2)} \right| \le \frac{1}{|\sin(x/2)|}$$

donc (V_n) est bornée. D'après ce qui précède, la série $\sum u_n v_n$ converge.

On en déduit que la série trigonométrique $\sum \frac{\sin(nx)}{\sqrt{n}}$ converge simplement sur \mathbb{R} .

- 9 La fonction $x \mapsto \left| \frac{\sin(nx)}{\sqrt{n}} \right|$ admet pour maximum $\frac{1}{\sqrt{n}}$ (atteint en $\frac{\pi}{2n}$ par exemple). Or la série $\sum \frac{1}{\sqrt{n}}$ diverge donc la série $\sum_{n \ge 1} \frac{1}{\sqrt{n}} \sin(nx)$ ne converge pas normalement sur \mathbb{R} .
- **10** Pour tout $x \in \mathbb{R}$,

$$|a_n \cos(nx) + b_n \sin(nx)| \le |a_n| + |b_n|$$

Or la série $\sum |a_n| + |b_n|$ converge par hypothèse donc la série trigonométrique $\sum (a_n \cos(nx) + b_n \sin(nx))$ converge normalement sur \mathbb{R} .

11 Posons $z = a + ib = re^{i\theta}$ avec $r = |z| = \sqrt{a^2 + b^2}$ et $\theta \in \mathbb{R}$. Remarquons que

$$a\cos x + b\sin x = \text{Re}(ze^{-ix}) = r\cos(\theta - x)$$

On en déduit bien que le maximum de $x \mapsto |a\cos(x) + b\sin(x)|$ vaut $r = \sqrt{a^2 + b^2}$ (atteint en $x = \theta$ par exemple).

12 D'après la question précédente, la convergence normale de la série $\sum (a_n \cos(nx) + b_n \sin(nx))$ équivaut à la convergence de la série $\sum \sqrt{a_n^2 + b_n^2}$. Mais pour tout $n \in \mathbb{N}$,

$$|a_n| \le \sqrt{a_n^2 + b_n^2} \qquad |b_n| \le \sqrt{a_n^2 + b_n^2}$$

donc les séries $\sum a_n$ et $\sum b_n$ converge absolument. De plus, les suites (a_n) et (b_n) convergent alors vers 0.

13 Comme les fonctions $x \mapsto a_n \cos(nx) + b_n \sin(nx)$ sont 2π -périodiques, la convergence simple assure que f est également 2π -périodique.

De plus, les fonctions $x \mapsto a_n \cos(nx) + b_n \sin(nx)$ sont continues sur \mathbb{R} donc la convergence normale et a fortiori uniforme assure que f est continue sur \mathbb{R} .

Ainsi $f \in \mathcal{C}_{2\pi}$.

© Laurent Garcin MP Dumont d'Urville

14 Soit $n \in \mathbb{N}^*$.

$$\int_{-\pi}^{\pi} \cos^2(nx) \, dx = \frac{1}{2} \int_{-\pi}^{\pi} (1 + \cos(2nx)) \, dx = \pi$$

Soit $(k, n) \in \mathbb{N}^2$.

$$\int_{-\pi}^{\pi} \sin(kx) \cos(nx) \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \sin((k+n)x) \, dx + \frac{1}{2} \int_{-\pi}^{\pi} \sin((k-n)x) \, dx = 0$$

15 Soit $n \in \mathbb{N}$. Posons $u_k(x) = a_k \cos(kx) + b_k \sin(kx)$. Alors

$$\forall x \in \mathbb{R}, |u_k(x)\cos(nx)| \leq ||u_k||_{\infty}$$

La convergence normale de la série $\sum_{k\in\mathbb{N}}u_k$ sur \mathbb{R} entraîne donc la convergence normale de la série $\sum_{k\in\mathbb{N}}u_k(x)\cos(nx)$ sur \mathbb{R} , et a fortiori la convergence uniforme sur le segment $[-\pi,\pi]$. Ceci permet d'intervertir intégrale et série dans ce qui suit :

$$\pi \alpha_{n}(f) = \int_{-\pi}^{\pi} \sum_{k=0}^{+\infty} (a_{k} \cos(kx) \cos(nx) + b_{k} \sin(kx) \cos(nx)) dx$$

$$= \sum_{k=0}^{+\infty} \int_{-\pi}^{\pi} (a_{k} \cos(kx) \cos(nx) + b_{k} \sin(kx) \cos(nx)) dx$$

$$= \sum_{k=0}^{+\infty} \left(a_{k} \int_{-\pi}^{\pi} \cos(kx) \cos(nx) dx + b_{k} \int_{-\pi}^{\pi} \sin(kx) \cos(nx) dx \right)$$

On en déduit via la question précédente et le résultat admis que tous les termes de la somme précédente sont nuls hormis celui d'indice k = n qui vaut πa_n si $n \in \mathbb{N}^*$ et $2\pi a_0$ si n = 0. Ainsi $\alpha_n(f) = a_n$ si $n \in \mathbb{N}^*$ et $\alpha_0(f) = 2a_0$.

- **16** La question précédente, montre directement que pour $\alpha_n(f) = \alpha_n(g)$ et $\beta_n(f) = \beta_n(g)$.
- 17 Remarquons que f et g appartiennent tous deux à l'espace vectoriel $C_{2\pi}$ donc f-g également. Par linéarité de l'intégrale, $\alpha_n(f-g)=\alpha_n(f)-\alpha_n(g)=0$ et $\beta_n(f-g)=\beta_n(f)-\beta_n(g)=0$ donc f-g est nulle d'après le résultat admis. Ainsi f(x)=g(x) pour tout $x\in\mathbb{R}$.
- 18 Si f est paire, $x \mapsto f(x)\sin(2nx)$ est impaire donc son intégrale sur le segment $[-\pi, \pi]$ est nulle i.e. $\beta_n(f) = 0$. La parité de $x \mapsto f(x)\cos(2nx)$ permet d'affirmer que $\alpha_n(f) = 2\int_0^{\pi} f(x)\cos(nx) dx$.
- 19 Puisque f est paire, $\beta_n(f) = 0$ pour tout $n \in \mathbb{N}$. Par intégration par parties, on obtient

$$\alpha_n(f) = \begin{cases} \frac{4 \cdot (-1)^n}{n^2} & \text{si } n \neq 0 \\ \frac{2\pi^2}{3} \text{si } n = 0 \end{cases}$$

Comme les séries $\sum \alpha_n(f)$ et $\sum \beta_n(f)$ convergent absolument, on peut affirmer d'après ce qui précède que

$$\forall x \in \mathbb{R}, \ f(x) = \frac{\pi^2}{3} + 4 \sum_{n=1}^{+\infty} \frac{(-1)^n}{n} \cos(nx)$$

la série étant normalement convergente sur \mathbb{R} .

20 En prenant x = 0 et $x = \pi$ dans la relation précédente, on obtient

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12} \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

21 Comme la série $\sum \frac{1}{n^2}$ converge, la famille $\left(\frac{1}{n^2}\right)$ est sommable et on peut utiliser le théorème de sommation par paquets en utilisant la partition $\mathbb{N}^* = \{2n, \ n \in \mathbb{N}^*\} \sqcup \{2n+1, \ n \in \mathbb{N}\}$. Ainsi

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \sum_{n=1}^{+\infty} \frac{1}{(2n^2)} + \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{1}{4} \sum_{n=1}^{+\infty} \frac{1}{n^2} + \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$$

On en déduit que

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{3}{4} \cdot \frac{\pi^2}{6} = \frac{\pi^2}{8}$$

© Laurent Garcin MP Dumont d'Urville

22 La fonction f de la question 19 est la somme d'une série trigonométrique normalement convergente. Pourtant, elle n'est pas dérivable en π par exemple. En effet, le taux de variation de cette fonction en π admet 2π pour limite à gauche et -2π pour limite à droite.

Néanmoins, supposons que les séries $\sum na_n$ et $\sum nb_n$ convergent absolument. Posons alors $u_n: x \mapsto a_n \cos(nx) + b_n \sin(nx)$.

Puisque $a_n = o(na_n)$ et $a_n = o(na_n)$, les séries $\sum a_n$ et $\sum b_n$ convergent absolument. D'après ce qui précède, la série $\sum u_n$ converge normalement et donc simplement sur $\mathbb R$. Pour tout $n \in \mathbb N$, u_n est de classe $\mathcal C^1$ et pour tout $x \in \mathbb R$, $u_n'(x) = -na_n \sin(nx) + nb_n \cos(nx)$. Puisque $\sum na_n$ et $\sum nb_n$ convergent absolument, ce qui précède permet d'affirmer que $\sum u_n'$ converge normalement et donc uniformément sur $\mathbb R$.

Le théorème de dérivabilité d'une série de fonctions garantit que la somme f de la série $\sum u_n$ est de classe C^1 sur \mathbb{R} et que pour tout $x \in \mathbb{R}$, $f'(x) = \sum_{n=0}^{+\infty} u'_n(x)$.

23 En prenant $a_n=0$ et $b_n=1/3^n$, les séries $\sum na_n$ et $\sum nb_n$ convergent absolument. La question précédente permet d'affirmer que la fonction f définie par $f(x)=\sum_{n=0}^{+\infty}\frac{\sin(nx)}{3^n}$ est de classe \mathcal{C}^1 sur \mathbb{R} et que

$$\forall x \in \mathbb{R}, \ f'(x) = \sum_{n=0}^{+\infty} \frac{n \cos(nx)}{3^n}$$

Or on a vu à la question 2 que

$$\forall x \in \mathbb{R}, \ f(x) = \sum_{n=0}^{+\infty} \frac{\sin(nx)}{3^n} = \frac{3\sin(x)}{10 - 6\cos(x)}$$

Un calcul élémentaire montre que

$$\forall x \in \mathbb{R}, \ f'(x) = \sum_{n=0}^{+\infty} \frac{n \cos(nx)}{3^n} = \frac{3}{2} \cdot \frac{5 \cos(x) - 3}{(5 - 3\cos(x))^2}$$