Lecture 20: Queues As Random Walks

Parimal Parag

0.1 GI/GI/1 Queueing Model

Consider a GI/GI/1 queue. Customers arrive in accordance with a renewal process having an arbitrary interarrival distribution F, and the service distribution is G. Let the interarrival times be $X_1, X_2...$ and let the service times be $Y_1, Y_2...$ and let D_n denote the delay in queue of the n^{th} arrival. The following recursion for D_n is easy to verify:

$$D_{n+1} = \begin{cases} D_n + Y_n - X_{n+1} & \text{if } D_n + Y_n \ge X_{n+1} \\ 0 & \text{if } D_n + Y_n < X_{n+1} \end{cases}$$

Let $U_n \equiv Y_n - X_{n+1}, \ n \ge 1$,

$$D_{n+1} = \max\{0, D_n + U_n\}, \ n \ge 0.$$

Iterating the above relation yields

$$\begin{split} D_{n+1} &= \max\{0, D_n + U_n\} \\ &= \max\{0, U_n + \max\{0, D_{n-1} + U_{n-1}\}\} \\ &= \max\{0, U_n, U_n + U_{n-1} + D_{n-1}\} \\ &\vdots &= \max\{0, U_n, U_n + U_{n-1}, \dots U_n + U_{n-1} + \dots U_1\}, \end{split}$$

where in the last step we have used the fact that $D_1 = 0$. Hence, for c > 0,

$$Pr(D_{n+1} \ge c) = Pr(\max\{0, U_n, U_n + U_{n-1}, \dots, U_n + \dots + U_1\} \ge c)$$

= $Pr(\max\{0, U_1, U_2 + U_1, \dots, U_1 + \dots + U_n\} \ge c),$

where the last equality follows from duality. Thus the following proposition holds.

Proposition 0.1. If D_n is the delay in the queue of the n^{th} customer in a GI/GI/1 queue with interarrival times X_i , $i \geq 1$, and service times i, $i \geq 1$ then

$$Pr(D_{n+1} \ge c) = Pr(the \ random \ walk \ S_j, \ j \ge 1, \ crosses \ c \ by \ time \ n),$$
 (1)

where

$$S_j = \sum_{i=1}^{j} (Y_i - X_{i+1}).$$

From Proposition 0.1 that $Pr(D_{n+1} \ge c)$ is nondecreasing in n. Let

$$Pr(D_{\infty} \ge c) = \lim_{n \to \infty} Pr(D_n \ge c),$$

we have from 1

$$Pr(D_{\infty} \ge c) = Pr(\text{the random walk } S_j, \ j \ge 1, \text{ ever crosses } c).$$
 (2)

If E[U] = E[Y] - E[X] is positive, then by Strong Law of Large Numbers (SLLN) the random walk will converge to positive infinity with probability 1. Hence,

$$Pr(D_{\infty} \ge c) = 1, \ \forall c \text{ if } E[Y] > E[X].$$

The above will also be true when E[Y] = E[X] and hence we get that E[Y] < E[X] will imply the existence of a stationary distribution.

Let $M_n = \max\{0, S_1, S_2 \dots S_n\}, n \ge 1$. We have the following proposition.

Proposition 0.2. Spitzer's Identity

$$E[M_n] = \sum_{k=1}^{n} \frac{1}{k} E[S_k^+].$$

Proof. We represent M_n as

$$M_n = 1_{\{S_n > 0\}} M_n + 1_{\{S_n < 0\}} M_n.$$

Consider first $1_{S_n>0}M_n$.

$$1_{\{S_n>0\}}M_n = 1_{\{S_n>0\}} \max_{1 \le i \le n} S_i = 1_{\{S_n>0\}} (X_1 + \max\{0, X_2, \dots X_2 + \dots + X_n\})$$

Taking expectation,

$$E[1_{\{S_n>0\}}M_n] = E[1_{\{S_n>0\}}X_1] + E[1_{\{S_n>0\}}\max\{0, X_2, \dots X_2 + \dots + X_n\}].$$
(3)

The joint distribution of $X_1, \ldots X_n$ and $X_n, X_1, \ldots X_{n-1}$ are the same.

$$E[1_{\{S_n>0\}} \max\{0, X_2, \dots X_2 + \dots + X_n\}] = E[1_{\{S_n>0\}} M_{n-1}]. \tag{4}$$

Since X_i, S_n has the same joint distribution for all i,

$$E[S_n 1_{\{S_n > 0\}}] = E[\sum_{i=1}^n X_i 1_{\{S_n > 0\}}] = nE[X_1 1_{\{S_n > 0\}}].$$

Hence,

$$E[X_1 1_{\{S_n > 0\}}] = \frac{1}{n} = E[S_n 1_{\{S_n > 0\}}] = \frac{1}{n} E[S_n^+].$$
 (5)

From equations 3, 4, 5, we have that

$$E[1_{\{S_n>0\}}M_n] = E[1_{\{S_n>0\}}M_{n-1}] + \frac{1}{n}E[S_n^+].$$

Also, $S_n \leq 0$ implies that $M_n = M_{n-1}$, it follows that

$$1_{\{S_n \le 0\}} M_n = 1_{\{S_n \le 0\}} M_{n-1}.$$

Thus.

$$E[M_n] = E[M_{n-1}] + \frac{1}{n}E[S_n^+].$$

Upon recursion, we get

$$E[M_n] = \sum_{k=2}^{n} \frac{1}{k} E[S_k^+] + E[M_1].$$

Since, $M_1 = S_1^+$, the result follows. From Proposition 0.1, with $M_n = \max\{0, S_1, \dots S_n\}$

$$Pr(D_{n+1} \ge c) = Pr(M_n \ge c).$$

Hence.

$$E[D_{n+1}] = E[M_n].$$

From Spitzer's identity we see that

$$E[D_{n+1}] = \sum_{k=1}^{n} \frac{1}{k} E[S_k^+].$$

0.2 Some Remarks Concerning Exchangeable Random Variables

Definition 0.3. X_1, \ldots, X_n is exchangeable if X_{i_1}, \ldots, X_{i_n} has the same joint distribution for all permutations $(i_1, i_2 \ldots i_n)$ of $(1, \ldots, n)$. The infinite sequence of random variables $X_1, X_2 \ldots$ is said to be exchangeable if every finite subsequence X_1, \ldots, X_n is exchangeable.

Example 0.4. Suppose balls are selected randomly, without replacement, from an urn consisting of n balls of which k are white. If we let

$$X_1 = \begin{cases} 1 & \text{if } i^{\text{th}} \text{ selection is white} \\ 0 & \text{otherwise,} \end{cases}$$

then $X_1, \ldots X_n$ will be exchangeable but not independent.

Example 0.5. Let Λ denote a random variable having distribution G. Given that $\Lambda = \lambda, X_1, X_2 \dots$ are *iid* with distribution F_{λ} . The random variables are exchangeable since

$$Pr(X_1 \le x_1 \dots, X_n \le x_n) = \int \prod_{i=1}^n F_{\lambda}(x_i) dG(\lambda),$$

which is symmetric in $(x_1, \ldots x_n)$. The are not independent.

Theorem 0.6. (De Finetti's Theorem) To every infinite sequence of random variables $X_1, X_2 ...$ taking values either 0 or 1, there corresponds a probability distribution G on [0,1] such that, for all $0 \le k \le n$,

$$Pr(X_1 = X_2 = \dots X_k = 1, X_{k+1} = \dots X_n = 0) = \int_0^1 \lambda^k (1 - \lambda)^{n-k} dG(\lambda).$$

Proof. Let $m \geq n$.

$$Pr(X_1 = X_2 ... X_k = 1, X_{k+1} = ... X_n 0)$$

$$= \sum_{j=0}^{m} Pr(X_1 = ... X_k = 1, X_{k+1} = X_n = 0 | S_m = j) Pr(S_m = j)$$

$$= \sum_{j} \frac{j(j-1)...(j-k+1)(m-j)(m-j-1)...(m-j-(n-k)+1)}{m(m-1)...(m-n+1)} Pr(S_m = j).$$

The last equation follows by exchangeability as given $S_m = j$ each subset of size j of $X_1 \dots X_m$ is equally likely to be the one consisting of all 1's. Letting $S_m = mY_m$, the above equation for large m is roughly equal to $E[Y_m^k(1 - Y_m)^{n-k}]$,

and the theorem follows letting $m\to\infty$. Indeed, from a result known as Helly's theorem it can be shown that for some subsequence m' converging to ∞ , the distribution of Y'_m will converge to a distribution G and we get

$$E[Y_{\infty}^{k}(1-Y_{\infty})^{n-k}] = \int_{0}^{1} \lambda^{k}(1-\lambda)^{n-k} dG(\lambda).$$