HOCHSCHULE ALBSTADT-SIGMARINGEN

STUDIENGANG TECHNISCHE INFORMATIK

Praktikum Elektrotechnik

Versuch 3

Grundlagen Messtechnik

Inhaltsverzeichnis

1	Ohn	hmsches Gesetz								
	1.1	Bestät	zigen Sie den Zusammenhang $R = U/I$ (Ohmsche Gesetz)	3						
		1.1.1	Messaufgaben	3						
		1.1.2	Auswertung	4						
2	Eige	nschaft	ten von Messgeräten	Ę						
	2.1	Reche	naufgaben und Erklärungen	Ę						
		2.1.1	Aufgabe 1:	Ę						
		2.1.2	Aufgabe 2:	6						
		2.1.3	Aufgabe 3:	6						
		2.1.4	Aufgabe 4:	6						
	2.2	Spann	ungsrichtiges Messen bei Strom- Spannungs- Messung	6						
		2.2.1	Messaufgaben	6						
		2.2.2	Auswertung	7						
	2.3	Strom	richtiges Messen bei gleichzeitiger Strom- Spannungs- Messung	7						
		2.3.1	Messaufgaben	8						
		2.3.2	Auswertung	Ć						
	2.4	Einflu	ss des Messgeräteinnenwiederstandes auf die Messgenauigkeit	Ć						
		2.4.1	Messaufgaben	10						
		2.4.2	Auswertung	10						
	2.5	Kurve	nformfehler bei Messgeräten	11						
		2.5.1	Messaufgaben	11						
		2.5.2	Auswertung	12						
3	Ken	nwerte	harmonischer Wechselgrößen	13						
	3.1	Reche	naufgaben	13						
		3.1.1	Aufgabe 1:	13						
	3.2	Speisu	ing eines ohmschen Verbrauchers mit einer Sinusspannung	13						
		3.2.1	Messaufgaben	14						
		3.2.2	Auswertung	14						
	3.3	Speisu	ing eines kapazitiven Verbrauchers mit einer Sinusspannung	15						
		3.3.1	Messaufgaben	15						
		3.3.2	Auswertung	16						
	3.4	Bestin	nmen der Größe eines Kondensators anhand der Auf- bzw. Entladekurve	16						
		3.4.1	Messaufgaben	17						
		3 4 2	Auswerting	17						

1 Ohmsches Gesetz

1.1 Bestätigen Sie den Zusammenhang R = U/I (Ohmsche Gesetz)

Messaufbau:

- 1 Widerstand $R = 1 k\Omega$
- 1 Widerstand $R = 47 \Omega$
- 1 Multimeter Typ M2-H
- 1 Multimeter Typ B1020

1.1.1 Messaufgaben

Messaufgabe M1

Aufgabe: Nehmen Sie zwei Messreihen für $R=47\,\Omega$ und $R=1\,\mathrm{k}\Omega$ zur Bestimmung des Zusammenhanges $R=\frac{U}{I}$ mit dem Messgerät M2-H auf.

Durchführung: Schaltung aufbauen. Die Spannung U durch Einstellung der Versorgungsspannung U_V in Schritten von z.B. 1 V erhöhen und die Messwerte U und I protokollieren.

Ergebnisse:

Tabelle 1.1: Messwertetabelle zur Messaufgabe 1.1.M1

	47Ω		$1\mathrm{k}\Omega$			
<u>U</u> [V]	<i>I</i> [mA]	$\frac{U}{I}$ $\left[\frac{V}{A}\right]$	U [V]	<i>I</i> [mA]	$\frac{U}{I}$ $\left[\frac{V}{A}\right]$	
-						

1.1.2 Auswertung

Aufgabe 1:

Stellen Sie die Messreihen für I = f(U) und R = konstant aus Messaufgabe 1 graphisch dar. Ermitteln Sie daraus für jeweils 2 Kurvenpunkte den Proportionalitätsfaktor m. Geben Sie die Funktionsverläufe in der Form von $I = m \cdot U$ an.

Aufgabe 2:

Wie ist der Proportionalitätsfaktor zu interpretieren?

Eigenschaften von Messgeräten

2.1 Rechenaufgaben und Erklärungen

Mit einem Multimeter, einem der einfachsten elektrischen Messgeräte, können i.d.R. mehrere elektrische Größen gemessen werden. Gleichspannung (DC), Gleichstrom, Wechselspanning (AC), Wechselstrom und Widerstand.

ldealer Spannungsmesser Ein idealer Spannungsmesser zeigt genau den Wert U_V an. Der Innenwiderstand des Messgeräts ist unendlich hoch. Dadurch: $I_V = 0$

Realer Spannungsmesser $\,$ Ein realer Spannungsmesser zeigt genau den Wert U_V an. Der Innenwiderstand des Messgeräts ist R_{iV} .

2.1.1 Aufgabe 1:

Wie groß ist der Innenwiderstand eines Voltmeters, wenn in das Voltmeter ein Strom von $I_V = 1 \, \mu \text{A}$ fließt und ein Wert von 1 V angezeigt wird? !!!! Zeichnungen und Erklärungen!!!!

2.1.2 Aufgabe 2:

Wie groß ist der Innenwiderstand eines Amperemeters, wenn über dem Amperemeter eine Spannung von $U_A = 100 \,\text{mV}$ abfällt und ein Wert von $50 \,\text{mA}$ angezeigt wird? !!!! Zeichnungen und Erklärungen !!!!

2.1.3 Aufgabe 3:

Das Netzteil hat einen Innenwiderstand $R_i = 1\,\Omega$. Die Innenwiderstände der Messgeräte sind $R_{iA} = 100\,\Omega$ und $R_{iV} = 1\,\mathrm{M}\Omega$. Die angezeigten Messwerte sind $U_L = 4,95\,\mathrm{V}$ und $I_A = 500\,\mu\mathrm{A}$. Berechnen Sie I_L , R_L und U_0 . !!!! Zeichnungen und Erklärungen !!!!

2.1.4 Aufgabe 4:

Das Netzteil hat einen Innenwiderstand $R_i = 1 \Omega$. Die Innenwiderstände der Messgeräte sind $R_{iA} = 1 \Omega$ und $R_{iV} = 1 M\Omega$. Die angezeigten Messwerte sind $U_L = 4.8 \text{ V}$ und $I_L = 100 \,\mu\text{A}$. Berechnen Sie U_L , R_L und U_0 .

2.2 Spannungsrichtiges Messen bei Strom- Spannungs- Messung

Messaufbau:

- 1 Widerstand $R_1 = 47 \Omega$
- 1 Widerstand $R_2 = 100 \,\Omega$
- 1 Multimeter Typ M2-H
- 1 Multimeter Typ B1020

2.2.1 Messaufgaben

Messaufgabe M1

Aufgabe: Messen und protokollieren Sie die Spannungswerte U_{X1} und U_{X2} , sowie die Stromwerte I_{X1} und I_{X2} bei Spannungsmessung an den Messpunkten X1 und X2.

2 Eigenschaften von Messgeräten

Durchführung: Messschaltung aufbauen. Betriebsspannung $U_V = 6 \text{ V}$ einstellen.

Ergebnisse:

Tabelle 2.1: Messwertetabelle zur Messaufgabe 2.2.M1

$U_{X1}[V]$	
$U_{X2}[{ m V}]$	
$I_{X1}[\mathrm{mA}]$	
$I_{X2}[\mathrm{mA}]$	

2.2.2 Auswertung

Aufgabe 1:

An welchem Messpunkt wird bezogen auf den Widerstand R_2 spannungsrichtig gemessen?

Aufgabe 2:

Berechnen Sie den Innenwiderstand R_I des Multimeters M2-H im Strommessbereich 60 mA anhand der Messwerte.

!!!! Zeichnung !!!!

2.3 Stromrichtiges Messen bei gleichzeitiger Strom- Spannungs-Messung

Messaufbau:

- 1 Widerstand $R_1 = 10 \,\mathrm{k}\Omega$
- 1 Widerstand $R_2 = 33 \,\mathrm{k}\Omega$
- 1 Spannungsmessgerät Typ M2-H
- 1 Strommessgerät Typ B1020

2.3.1 Messaufgaben

Messaufgabe M1

Aufgabe: Messen und protokollieren Sie die Spannungswerte U_{X1} und U_{X2} , sowie die Stromwerte I_{X1} und I_{X2} bei Spannungsmessung an den Messpunkten X1 und X2.

Durchführung: Messschaltung aufbauen. Betriebsspannung $U_V = 6 \text{ V}$ einstellen

Ergebnisse:

Tabelle 2.2: Messwertetabelle zur Messaufgabe 2.3.M1

$U_{X1}[\mathrm{V}]$	
$U_{X2}[{ m V}]$	
$I_{X1}[mA]$	
$I_{X2}[\mathrm{mA}]$	

2.3.2 Auswertung

Aufgabe 1:

An welchem Messpunkt wird bezogen auf den Widerstand R_2 stromrichtig gemessen?

Aufgabe 2:

Berechnen Sie den Innenwiderstand \mathcal{R}_{UI} des Multimeters M2-H anhand der Messwerte.

$$U_X = I_{X1} = I_{X2} =$$
!!!! Zeichnung !!!!

2.4 Einfluss des Messgeräteinnenwiederstandes auf die Messgenauigkeit

Messaufbau:

- 1 Widerstand $R_1 = 100 \,\mathrm{k}\Omega$
- 1 Widerstand $R_2 = 100 \,\mathrm{k}\Omega$
- 1 Messgerät Typ M2-H

2.4.1 Messaufgaben

Messaufgabe M1

Aufgabe: Zeichnen Sie eine Messschaltung nach obiger Schaltung zur Spannungsmessung an R_2 . Stellen Sie den Spannungsmesser in seinem Ersatzschaltbild dar. Verwenden Sie dazu die Werte aus Übung 2.3 für das Messgerät M2- H. Messen Sie die Spannung an R_2

Durchführung: Messschaltung aufbauen. Betriebsspannung $U_V = 6 \text{ V}$ einstellen

Ergebnisse:

 $U_2 =$

2.4.2 Auswertung

Aufgabe 1:

Erläutern Sie die Ergebnisse aus Messaufgabe 1. Berechnen Sie daraus den Innenwiderstand des Multimeters M2-H im verwendeten Messbereich.

Aufgabe 2:

Wie beeinflusst der Innenwiderstand des Spannung- Messgerätes das Messergebnis?

Aufgabe 3:

Zeichnen Sie eine Messschaltung zur Strommessung des Stromes durch R_2 (ohne Spannungsmessung). Stellen Sie den Strommesser in seinem Ersatzschaltbild dar. Verwenden Sie dazu die Werte aus Übung 2.3. für das Messgerät M2-H.

Aufgabe 4:

Wie beeinflusst der Innenwiderstand des Strom- Messgerätes die Messung?

2.5 Kurvenformfehler bei Messgeräten

Messaufbau:

- 1 Widerstand $R = 1 \,\mathrm{k}\Omega$
- 1 Spannungsmessgerät Typ M2-H
- 1 Spannungsmessgerät Typ B1020
- 1 Oszillograph
- 1 Frequenzgenerator

2.5.1 Messaufgaben

Messaufgabe M1

Aufgabe: Messen Sie die unten angegebenen Spannungssignale U(t) mit einem analogen und digitalen Messgerät jeweils im Gleich- und Wechselspannungsmessbereich.

Durchführung: Messchaltung aufbauen. Versorgungsspannung U(t) mit dem Netzteil (Kurve 1) bzw. dem Frequenzgenerator (Kurve 2 bis 4) einstellen. Messwerte in Tabelle eintragen.

Beachte: Nur immer mit einem Messgerät gleichzeitig messen.

Kurvenformen für U(t):

Tabelle 2.3: Spannungskurven für Messaufgabe 2.5 M1

Kurvenformen für U(t)

Kurvenform	U_{SS}	T
Gleichspannung: (vom Netzteil neh	men) U =	= Umax = 6V
Sinuswechselspannung	8V	$5 \mathrm{ms}$
Dreieckwechselspannung, symm.	8V	$5 \mathrm{ms}$
${\bf Rechteck we chsels pannung, symm.}$	8V	$5 \mathrm{ms}$

 $(U_{ss}, U_{pp} = U \text{ Spitze/Spitze oder } 2 * \hat{U})$

2 Eigenschaften von Messgeräten

Ergebnisse:

Tabelle 2.4: Messwertetabelle zur Messaufgabe 2.3.M1

Messgerät	Messprinzip	Messbereich	Gleichspannung	Sinuskurve	Dreieck	Rechteck
М2-Н	Drehspul	6 V				
M2-H	Drehspul	$6\mathrm{V}{\sim}$				
B1020	Digital	6 V				
B1020	Digital	6 V∼				

2.5.2 Auswertung

Aufgabe 1:

Wie kommt der Formfaktor F für Sinusgrößen zustande (math. Herleitung)

Aufgabe 2:

Was messen Sie mit den Multimetern im Gleichspannungsbereich, was im Wechselspannungsbereich? Warum?

Aufgabe 3:

Wie kommen die Anzeigewerte für Dreieck- und Rechteckspannung zustande? (Rechnung)

Aufgabe 4:

Berechnen Sie aus den Anzeigewerten die tatsächlichen Effektivwerte für die obige Dreieckund Rechteckspannung. Geben Sie die Umrechnungsfaktoren an.

3 Kennwerte harmonischer Wechselgrößen

3.1 Rechenaufgaben

3.1.1 Aufgabe 1:

Eine sinusförmige Spannung U(t) mit $f_1 = 50\,\mathrm{Hz}$ hat den Scheitelwert $\hat{U} = 10\,\mathrm{V}$

- a) Beschreiben Sie die Funktion U(t)
- b) Wie groß ist U(t) bei $t_1 = 2 \,\text{ms}$ nach dem Nulldurchgang?
- c) Skizzieren Sie das einseitige Spektrum U(f)
- d) Wie groß wäre die Phase φ , wenn der Nulldurchgang bei $t_2=5\,\mathrm{ms}$ ist, wie lautet dann U(t)?

3.2 Speisung eines ohmschen Verbrauchers mit einer Sinusspannung

Messaufbau:

- 1 Widerstand $R_1 = 1 \,\mathrm{k}\Omega$
- 1 Widerstand $R_m = 100 \,\Omega$

3.2.1 Messaufgaben

Messaufgabe M1

Aufgabe: Messen Sie mit dem Multimeter:

U = I = I

 $U_m =$

Messen Sie mit dem Oszillograph den Phasenwinkel $\varphi(u, I)$ für 10 Augenblickwerte für U(t) und $I(t) = \frac{U_m(t)}{R}$

Durchführung: Schaltung aufbauen. Die Speisespannung U(t) am Frequenzgenerator einstellen: Spannung $U_{SS} = 8 \text{ V}$, Periodendauer T = 10 ms

Ergebnisse:

Tabelle 3.1: Messwertetabelle zur Messaufgabe 3.2.M1

t	[ms]	U(t)	[V]	U_m	[mV]	$I(t) = \frac{U_m}{R_m}$	[mA]	P(t)	[mW]

3.2.2 Auswertung

Aufgabe 1:

Berechnen Sie zu den einzelnen Punkten die momentane Leistung $P(t) = U(t) \cdot I(t)$

Aufgabe 2:

Stellen Sie U(t), I(t) und P(t) graphisch dar. (In einer Zeichnung, verschieden farbig)

Aufgabe 3:

Was messen Sie mit den Strom- und Spannungsmessern im Wechselstrombereich? Welche Leistung können Sie daraus berechnen. (Multimeter benutzen)

Aufgabe 4:

Erläutern Sie die Begriffe Schein-, Blind- und Wirkleistung. P=?; Q=?; S=?

3.3 Speisung eines kapazitiven Verbrauchers mit einer Sinusspannung

Messaufbau:

- 1 Kondensator $C = 0.1 \,\mu\text{F}, 40 \,\text{V}$
- 1 Widerstand $R_M = 100 \,\Omega$

3.3.1 Messaufgaben

Messaufgabe M1

Aufgabe: Messen Sie mit dem Multimeter:

U =

I =

 $U_m =$

Messen Sie mit dem Oszillograph den Phasenwinkel $\varphi(u, I)$ für 10 Augenblickwerte für U(t) und $I(t) = \frac{U_m(t)}{R}$

Durchführung: Schaltung aufbauen. Die Speisespannung U(t) am Frequenzgenerator einstellen: Spannung $U_{SS} = 8 \text{ V}$, Periodendauer T = 10 ms

Ergebnisse:

Tabelle 3.2: Messwertetabelle zur Messaufgabe 3.3.M1

t[ms]	$oxed{U(t)[ext{V}]}$	$U_m[\mathrm{mV}]$	$I(t) = \frac{U_m}{R_m} [\mathrm{mA}]$	ϕ [$^{\circ}$]	P(t)[mW]

3.3.2 Auswertung

Aufgabe 1:

Berechnen Sie zu den einzelnen Punkten die momentane Leistung $P(t) = U(t) \cdot I(t)$

Aufgabe 2:

Stellen Sie U(t), I(t) und P(t) graphisch dar. (In einer Zeichnung, verschieden farbig)

3.4 Bestimmen der Größe eines Kondensators anhand der Aufbzw. Entladekurve

Messaufbau:

- 1 Kondensator C = ?
- 1 Widerstand $R = 10 \,\mathrm{k}\Omega$

3.4.1 Messaufgaben

Messaufgabe M1

Durchführung: Schaltung aufbauen. Die Speisespannung u(t) am Frequenzgenerator einstellen:

 U_{ss} (Spitze/Spitze) = 4 V Periodendauer T = ?

Aufgabe: Bestimmen Sie die Ihrer Meinung nach beste Art (Sinus, Dreieck, Rechteck) und Größe der Frequenz (Hz, kHz, MHz), um eine gut sichtbare Auf- bzw. Entladekurve darzustellen und somit die Größe des Kondensators berechnen zu können. Geben Sie die gewählte Art an.

Ergebnisse:

Tabelle 3.3: Messwertetabelle zur Messaufgabe 3.4.M1

Art	f	t Aufladung	t Entladung

3.4.2 Auswertung

Aufgabe 1: Auf- und Entladekurve graphisch darstellen. Berechnen Sie aus den Messwerten die Größe des Kondensators. Mathematische Darstellung der Berechnung.