English Abstract of JP-A-63-227688

The present invention provides a sizing agent for a glass fiber comprising a film forming agent, lubricant agent, antistatic agent and coupling agent, wherein the coupling agent comprises acryloxy silane. A thermosetting resin article reinforced with a glass fiber to which the sizing agent is applied, have an improved water resistance and resistance to boiled water.

Bibliographic data: JP 63227866 (A)

SIZING AGENT FOR GLASS FIBER

Publication

1988-09-22

date: Inventor(s):

MAFDA TAKESHI: MATSUBA TERUO +

Applicant(s):

NIPPON SHEET GLASS CO LTD +

C08J5/08; D06M13/00; D06M13/02; D06M13/322; D06M13/325;

Classification:

D06M13/328; D06M13/35; D06M13/352; D06M13/402; D06M13/405; D06M13/438; D06M13/463; D06M13/50; international:

D06M13/51; D06M13/513; D06M13/517; D06M15/00; D06M101/00; (IPC1-7): C08J5/08; D06M13/00; D06M13/50;

D06M15/00

Application

- European: JP19870058265 19870313

number: Priority number(s):

JP19870058265 19870313

Abstract not available for JP 63227866 (A)

Last updated: 26.04.2011 Worldwide Database 5.7.22; 92p

19 日 本 国 特 許 庁 (J P)

① 特許出願公開

② 公開特許公報(A)

昭63-227866

@Int,Cl.4	識別記号	庁内整理番号		❷公開	昭和63年(19	88) 9月22日
D 06 M 13/00 C 08 J 5/08 D 06 M 13/50 15/00		6768-4L 6363-4F 6768-4L 6768-4L	審査請求	未請求	発明の数 1	(全 4頁)

の発明の名称 ガラス繊維用サイジング剤

②特 頭 昭62-58265

20出 頤 昭62(1987)3月13日

⑩発 明 者 前 田 健 大阪府大阪市東区道修町4丁目8番地 日本板硝子株式会 土内

@発 明 者 松 葉 輝 夫 大阪府大阪市東区道修町4丁目8番地 日本板硝子株式会 社内

俞出 爾 人 日本板硝子株式会社 大阪府大阪市東区道修町4丁目8番地

⑩代 理 人 弁理士 大野 精市

明細

1. 発明の名称

ガラス繊維用サイジング剤

2. 特許請求の範囲

(1) フィルム形成剤、潤滑剤、帯電防止剤、お よびカップリンダ剤からなるガラス繊維用サイジ ング剤において、上記カップリング剤がアクリロ キシッランを含むことを特徴とするガラス繊維用 サイジング剤。

- (2) 前記アクリロキンシランはアーアクリロキンプロピルトリメトキンシランまたはアーアクリロキシプロピルトリクロロシランである特許請求の範囲第1項記載のガラス繊維用サイジング剤。
- (3) 前記フィルム形成剤はポリ酢酸ビニル個脂 またはエチレン一酢酸ビニル共直合体樹脂のエマ ルジョンを含むものである特許額求の範囲第1項 記載のガラス繊維用サイジング剤。
- 3、発明の詳細な説明
- [産業上の利用分野]

本発明は不飽和ポリエステル樹脂をマトリクス 樹脂とする副水性、耐煮焼性の良好なガラス繊維 強化熱吸化性樹脂成形物(以下FRPと称する。) 物にSMCに開いられるガラス繊維のサイジング 耐に関するものである。

[従来の技術]

従来からFRPはバスタブ、浄化槽、パネルタンク、舟縣、便槽、下水管、パイブ等耐水性、耐 煮沸性等を要求される成形品に多く用いられてき

これらFRPの耐水性、耐療機性を向上させる ためにマトリクス樹脂における改良が多くおこな れた実来のオルソフタル酸系、イソフタル酸系の 不飽和ポリエステル樹脂からテレフタル酸系ピス フェノール人系の不飽和ポリエステル樹脂、また はエポキン母脂酸よばエポキンアクリレート 系動 脂 (ビニルエステル樹脂) が用いられるようにな ってきた。しかし、価格の点から使来のオルソフ タル酸系、イソフタル酸系の不飽和ポリエステル 棚節が用いるれていることが多い。

特開昭63-227866(2)

一方耐水件、耐者減件が要求される用液に用い られるFRPに生じる欠点のうち、ガラス繊維と マトリクス樹脂の界面に侵入した水が原因となり ブリスターやふくれを生じるものがある。そして それはガラス繊維の表面処理剤であるサイジング 剤が原因となっている場合がある。

FRP用ガラス繊維のサイジング剤は、一般に フィルム形成器、潤滑剤、帯電防止剤およびシラ ンカップリング剤から成っており、ガラス繊維の 紡糸直後にローラー式またはベルト式のアプリケ ーターや雰囲によりガラス繊維表面に塗布される。 その機能としては主にガラス繊維製品の製造工程 での作業性の向上、様々なFRP成形法における その加工件の向上及びFRP成形品特件の向上で ある。従来ガラス繊維のサイジング剤に用いられ ているフィルム形成剤としてはポリ酢酸ビニル樹 脂、酢酸ビニル共重合体、ポリアクリル酸エステ ル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリ ウレタン樹脂などの樹脂エマルジョンが潤滑剤、 帯電防止剤、カップリング剤と共にその目的に応

じ選択、組合わされて使用されており、耐水性、 耐煮沸性が要求されるFRPに対しては、そのガ ラス繊維用サイジング剤の主成分であるフィルム 形成剤として特開駅51-82095にあるよう な金銭イオン架橋ポリエステル樹脂をはじめとし、 ポリ酢酸ピニル樹脂または酢酸ビニル共振合体を たはポリエステル樹脂またはエポキシ樹脂が単独 または組み合わされて使用されているのが実情で ある。またカップリング剤としては、アーメタク リロキシプロピルトリエトキシシランが単独にま たはアクリロキシシランを除く他のシランカップ リング剤と混合されて用いられることが多い。

[発明の解決しようとする問題点]

上記従来のガラス繊維用サイジング剤を用いた ガラス繊維と不飽和ポリエステル樹脂とからなる FRPでは長時間水中または沸騰水中に浸漬する と水分が補強ガラス繊維の界面に侵入してFRP 表面にプリスターやふくれを生じるという問題点 があった。

[問題点を解決するための手段]

上記の従来の問題点を解決するために鋭意検討 した結果従来のボリ酢酸ビニル系のサイジング剤 のカップリング剤成分の1部または全部をアクリ

ロキシシランに覆換することによりそのサイジン グ剤を塗布したガラス繊維を用いたFRPの耐水 性、耐煮沸性が向上することを見い出した。 本祭明のサイジング剤の適切な銀成は以下の通

固形分

ポリ	酢酸エマ	ピ	ニルジョ	系ン	樹	Ħä					5.	0	~	15	. 0	Æ	뮲	×
潤	滑	3	FI								0.	01	~	0	. 5			
帯司	防止	剤									0.	03	~	ı	.0			
7 1	リロ	+ :	12	5	ν						0.	0 1	~	4	. 0			
他の	カッ	ナリ	リン	1	剤						0		~	3	. 9	9		
۲	こで	7 :	, 1	U	+	シ	'n	ź	v	ځ	他	Ø	ħ	"	ナ	ij	×	1
剤の	固形	分分	り和	ü	٠.	4		0	重	量	%	以	ፑ	M	作	棠	性	Ø
点か	ら考	えり	子虫	ι	Ļ١	•												

[作用]

りである。

本発明のサイジング剤中におけるアクリロキシ

シランの作用については明らかではないがガラス 繊維とマトリクス樹脂である不飽和ポリエステル 樹脂との接着性を向上させることがFRPの耐水 姓、耐者連件を向上させる原因と考えられる。

サイジング剤中のカップリング剤の作用として は、ガラス繊維と不飽和ポリエステル樹脂との相 溶性、接着性の向上、また特に耐水性、耐煮沸性 を要求されるFRPにおいてはガラス繊維と不飽 和ポリエステル樹脂との界面への疎水性の付与が 考えられる。

これらの作用を考慮して耐水性、耐煮沸性を摂 求されるFRPにおいてはサイジング剤中のカッ プリング剤として従来、ビニルトリクロロシラン、 ピニルトリスーβーメトキシェトキシシラン、ビ ニルトリエトキシシラン、ャーメタクリロキシブ ロビルトリメトキシシラン特にァーメタクリロキ シプロビルトリメトキシシランが主として用いる れている。

不飽和ポリエステル樹脂の炭素一炭素の二重結 合との反応性の点において前記従来のカップリン

特問服63-227866(3)

グ州の有機管能基末端の炭素一炭素の二重結合上 りも本発明における、アクリロトンの有砂 のの変素・炭素の二重結合の方がその がしまってが、アドアトにおいてガラス酸離と不整粒の ボリェステル機能との接着力を一層向上させそ的 耐が生、耐液体性を向上させるもの思われる。 こでで本アクリロキンシランの作用を考え酸 は、は、アイジング剤のフィルム形成剤としてポリ酢を は、世球が、アクリルを取る、大力が、アクリール は、ボリアクリル酸エステル健康とル共変合成。 大小性脂、エリアクリル酸エステル健康が、ボリアクリルの は、ボリアクリルのよったがであり、イルの エマルジョンを含むフィルム形成剤を用いれて のサイソング剤を望布したガラス酸離を用いたド ドアの耐水性、耐煮沸性の向上をはかることがで さる。

本発明において、潤滑剤としてはペラフィンワ ックスのような脂肪蒸炭化水窯、 ラウリルアルコ ール、スチアリルアルコール等の動肪張アルコー ル、パルチミン酸アミド、ステアリン酸アミド等 の脂肪酸アミド、飽和、不飽和の高級モノカルギ ン酸、ジカルボン酸、オキシカルボン酸とブタノール、オクタノールなどの一値アルコールなどを用いることができる。

また、将電的止剤としては、無機物では塩化リ チウム、塩化アルミニウムのような全間の塩化物 有機物ではトリエタノールアミンのかポン酸地 スルホン酸性、磁酸エステル塩、リン酸エステル 塩、アルキルアミンの酸化エチレン付加体、イミ ダゾリン、高酸酸肪酸と低酸ポリアミンからのア ミンアミドとその塩、アルキルトリメチルアンモ コウム塩のような第4級アンモニウム塩等を用い るためできる。

[実施例]

(実施例1)

ポリ酢酸ビニル樹脂エマルション (固形分50X)	20.0重量
脂肪酸アミド	0.05
第4級アンモニウム塩	0.1
γ - アクリロキシプロピル トリメトキシシラン	1.0
1 N酢酸 (PH調整用)	微量

イオン交換水

78.85

	100.0重量X
上記サイジング剤を紡糸直後の	ガラス線維にロ
ーラーコーターにて塗布し、ガラ	ス繊維ストラン
ドとして巻き取った後110~1	50℃にて水分
を除去した。該ガラス繊維ストラ	ンドを25mに
カットし、不飽和ポリエステル樹	脂及び炭酸カル
シウム、水酸化アルミニウム等の	フィラーを含む
一般的な樹脂コンパウンドにてガ	ラス繊維含量が
25重量%となるようにSMCシ	ートを作製した。
40℃にて24時間熟成させた該	SMCシートを
用いてプレスにて型温140℃、	プレス圧100
kg/Cifにて厚さ3mmのSMC成	形板を作製した。
該SMC成形板を所定の大きさに	切り出した後、
イオン交換水の沸騰水中に浸液し	、ブリスターが
発生するまでの時間を測定したと	ころ150時間
投資後もほとんどブリスターを発	生しなかった。
(実施例2)	
ポリ酢酸ビニル樹脂エマルジョン (固形分50%)	12.0重量%

エチレン一酢酸ピニル共重合体 樹脂エマルジョン (1902会像20%、間形分50%)

(- , m m and the to by a and	
脂肪酸アミド	0.02
第4級アンモニウム塩	0.1
γ - メタクリロキシプロピル トリメトキシシラン	0.5
ァーアクリロキシブロビル トリメトキシシラン	0.5
1 N酢酸 (PH調整用)	微量
イオン交換水	78.88

計 100.0取得 x

上記サイジング剤にて紡糸されたガラス繊維を 用いて実施例1と同様な方法で煮沸テストを行な った結果240時間浸漬後もほとんどブリスター を発生しなかった。

(比較例1)

(lol	N	25	30	<i>א</i> (
Æ	IJj	酸	7	ŧ	k								0,	05	
绑	4	級	7	v	ŧ	=	ゥ	٨	塩				0.	1	

ポリ酢酸ビニル樹脂エマルジョン

ァーメタクリロキンプロピル I.0

特開昭63-227868(4)

トリメトキシンラン
1 N 約数 (P 日調整用) 被数
イオン交換水 78.85

100.0面量X
トロッイリング側に下前糸されたガラス機構を

上記サイジング剤にて助糸されたガラス繊維を 用いて実施例1と同様な方法で煮沸テストを行な った結果100時間浸液後にブリスターを発生し

3† 100.0重量%

上記サイジング別にて訪糸されたガラス繊維を 用いて実施例1と同様な方法で煮沸テストを行な った結果240時間浸渍後にブリスターを発生し

以上実施例、比較例の結果を第1表にまとめて 示す。

1

サイジング剤成分	実施例1	実施例2	比較例1	比較例 2
ポリ酢酸ビニル樹脂 エマルジョン	20.0 (Wt%)	12.0	20.0	12.0
エチレンー酢酸ビニル共重合 体樹脂エマルジョン	-	8.0		8.0
脂肪酸アミド	0.05	0.02	0.05	0.02
第4級アンモニウム塩	0.1	0.1	0.1	0.1
~ − 7 クク00キシブロビルトリメトキシシラン	1.0	0.5	-	
y ー メラクリロキシブロビルトリメトキシシラン	_	0.5	1.0	1.0
1 N酢酸 (PH調整用)	微量	微量	微量	微量
イオン交換水	78.85	78.88	78.85	78.88
イルスターを生までの時間(ar)	150 以上	240 以上	100	240