Université de Rennes 1-Année 2020/2021 L3—PSIN/PRB–Feuille de TD 7-Corrigé

Dans la suite, on dira qu'une fonction $f: \mathbf{R} \to \mathbf{R}$ définit une densité de probabilité si $f \ge 0$, si f est continue sauf en au plus un nombre fini de points et si $\int_{-\infty}^{+\infty} f(t)dt$ existe et est égale à 1.

Exercice 1. Soit X une v.a.r suivant la loi uniforme sur [-1,1]. Montrer que $Y = X^2$ suit une loi continue dont on déterminera la densité.

Solution : Soit $y \in \mathbf{R}$. Si y < 0, alors $F_Y(y) = \mathbf{P}(Y \le y) = \mathbf{P}(X^2 \le y) = 0$, car $X^2 \ge 0$.

Soit $y \geq 0$; alors $F_Y(y) = \mathbf{P}(X^2 \leq y) = \mathbf{P}(-\sqrt{y} \leq X \leq \sqrt{y}) = \frac{1}{2} \int_{-\sqrt{y}}^{\sqrt{y}} \mathbf{1}_{[-1,1]}(t) \ dt$, et donc

 $F_Y(y) = \sqrt{y}$ si $y \le 1$ et $F_Y(y) = 1$ si $y \ge 1$. Pour tout $y \in \mathbf{R}$, on a $F_Y(y) = \int_{-\infty}^y f_Y(s) ds$, où est la densité f_Y de Y. On obtient f_Y en dérivant

$$f_Y(y) = \begin{cases} & 0 \text{ si } y \le 0\\ & \frac{1}{2\sqrt{y}} \text{ si } 0 < y \le 1\\ & = 0 \text{ si } y > 1. \end{cases}$$

c-à-d $f_Y(y) = \frac{1}{2\sqrt{y}} \mathbf{1}_{]0,1]}$.

Exercice 2. Soit X une v.a.r de densité $f: \mathbf{R} \to \mathbf{R}, t \mapsto e^{-|t|}/2$

(i) Vérifier que f est bien une densité de probabilité. Solution: \bullet $f \ge 0$; \bullet f est continue sur \mathbf{R} ;

•
$$f$$
 est continue sur \mathbf{K} ,
• $f_{-\infty}^{+\infty} f(t)dt = \frac{1}{2} \int_{-\infty}^{+\infty} e^{-|t|} dt = \int_{0}^{+\infty} e^{-t} dt = -e^{-t} |_{0}^{+\infty} = 1$.

(ii) Calculer la fonction de répartition F_X de X .

Solution: $F_X(x) = \int_{-\infty}^x f(t) dt = \begin{cases} \frac{1}{2} \int_{-\infty}^x e^t dt = \frac{e^x}{2} & \text{si } x \leq 0 \\ \frac{1}{2} \int_{-\infty}^0 e^t dt + \frac{1}{2} \int_{0}^x e^{-t} dt = 1 - \frac{e^{-x}}{2} & \text{si } x \geq 0 \end{cases}$

(iii) Montrer que $\mathbf{E}(X)$ et $\text{Var}(X)$ existent et les calculer.

Solution : X possède un moment d'ordre 2 , car $t^2e^{-|t|}=O(1/t^2)$ pour $t\to\pm\infty$ et $t\mapsto\frac{1}{t^2}$ est intégrable sur $[1, +\infty[$. Donc $\mathbf{E}(X)$ et $\mathrm{Var}(X)$ existent. Comme $t\mapsto te^{-|t|}$ est une fonction impaire, on a $\mathbf{E}(X) = \frac{1}{2} \int_{-\infty}^{+\infty} t e^{-|t|} dt = 0.$

On a, par parité, $\mathbf{E}(X^2) = \frac{1}{2} \int_{-\infty}^{+\infty} t^2 e^{-|t|} dt = \int_0^{+\infty} t^2 e^{-t} dt$ et une IPP montre que $\int_0^{+\infty} t^2 e^{-t} dt = \int_0^{+\infty} t^2 e^{-t} dt$ 2. D'où $Var(X) = \mathbf{E}(X^2) - \mathbf{E}(X)^2 = 2 - 0 = 2$.

Exercice 3. Soit X une variable aléatoire continue de densité $f: x \mapsto$ $\frac{2}{r^3}\mathbf{1}_{[1,+\infty[}(x).$

(i) Vérifier que f est bien une densité de probabilité.

Solution : Il est clair que $f \ge 0$ et que f est continue sur $\mathbb{R} \setminus \{1\}$. De plus, $\int_{\mathbb{R}} f(t)dt = 2 \int_{1}^{+\infty} t^{-3}dt = 0$ $2[-t^{-2}/2]_{1}^{+\infty} = 0 - (-1) = 1.$

(ii) Calculer les probabilités $\mathbf{P}(X=3)$, $\mathbf{P}(\frac{1}{2} < X \le 2)$ et $\mathbf{P}(X \ge a)$ pour $a \geq 1$. Solution : On a P(X = 3) (car X est une variable aléatoire continue); $P(\frac{1}{2} < X \leq 2) = 2 \int_{1}^{2} t^{-3} dt = 2[-t^{-2}/2]_{1}^{2} = 2(1/2 - 1/8) = 3/4$;

 $\mathbf{P}(X \ge a) = 2 \int_a^{+\infty} t^{-3} dt = 2[-t^{-2}/2]_a^{+\infty} = 1/a^2.$

(iii) Calculer l'espérance de X; X possède-t-elle un moment d'ordre 2? Solution : $\mathbf{E}(X) = \int_{\mathbf{R}} t f(t) dt = 2 \int_{1}^{+\infty} t^{-2} dt = 2[-t^{-1}]_{1}^{+\infty} = 2$.

On a $\int_{\mathbf{R}} t^2 f(t) dt = 2 \int_1^{+\infty} t^{-1} dt = 2[\log t]_1^{+\infty} = +\infty$; donc : X ne possède pas de moment d'ordre

(iv) Soit $Y = \ln(X)$, où on définit $\ln(x) = 0$ pour $x \leq 0$. Déterminer la densité de la loi de Y.

La densité f_Y de Y s'obtient en dérivant F_Y : on a $f_Y(y)=0$ pour $y\leq 0$ et $f_Y(y)=2e^{-2y}$ pour y>0; qui est la densité d'une loi exponentielle $\mathcal{E}(2)$; donc $Y\sim\mathcal{E}(2)$.

Exercice 4. Soit X une variable aléatoire continue de densité $f: x \mapsto$ $\overline{\pi(1+x^2)}$

(i) Montrer que f définit une densité de probabilité.

$$\oint_{-\infty}^{+\infty} f(x) dx = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx = \frac{1}{\pi} \arctan x \Big|_{-\infty}^{+\infty} = \frac{1}{\pi} (\frac{\pi}{2} + \frac{\pi}{2}) = 1.$$

• f est continue sur \mathbf{R} ; • $\int_{-\infty}^{+\infty} f(x) dx = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx = \frac{1}{\pi} \arctan x|_{-\infty}^{+\infty} = \frac{1}{\pi} (\frac{\pi}{2} + \frac{\pi}{2}) = 1$. (ii) Calculer la fonction de répartition F_X de X. Solution: Pour tout $x \in \mathbf{R}$, on a $F_X(x) = \frac{1}{\pi} \int_{-\infty}^{x} \frac{1}{1+t^2} dt = \frac{1}{\pi} \arctan t|_{-\infty}^{x} = \frac{1}{\pi} \arctan x + \frac{1}{2}$. (iii) Montrer que X ne possède pas d'espérance. Solution: On a $\frac{x}{1+x^2} = O(\frac{1}{x})$ pour $x \to +\infty$. Or $x \mapsto \frac{1}{x}$ n'est pas intégrable sur $[1, +\infty[$. Il s'ensuit que $\mathbf{E}(X)$ n'existe pas que $\mathbf{E}(X)$ n'existe pas.

Exercice 5. Soit X v.a.r continue de loi sur [-1,1]. Déterminer la loi de

Y = f(X) pour $f:]-1, 1[\to \mathbf{R}$ définie par $f(x) = \frac{1}{2} \log(\frac{1+x}{1-x})$. Solution: f est bijective, d'inverse $f^{-1}: \mathbf{R} \to]-1, 1[$ donnée par $f^{-1}(y) = \frac{e^{2y}-1}{e^{2y}+1}$. Soit $y \in \mathbf{R}$. On a, pour la fonction de répartition F_Y de Y:

$$F_Y(y) = \mathbf{P}(f(X) \le y) = \mathbf{P}(X \le f^{-1}(y)) = \frac{1}{2} \int_{-1}^{f^{-1}(y)} dx = \frac{1}{2} (\frac{e^{2y} - 1}{e^{2y} + 1} + 1).$$
 On obtient la densité g de Y en dérivant $F_Y : g(y) = \frac{2e^{2y}}{(e^{2y} + 1)^2}$ pour tout $y \in \mathbf{R}$.

Exercice 6. Soit X une v.a.r suivant la loi normale $\mathcal{N}(0,1)$ et soit $Y=X^2$.

(i) Déterminer une densité g de Y.

(1) Determiner time defisite g de I.

Solution: Pour y < 0, on a $F_Y(y) = \mathbf{P}(Y \le y) = \mathbf{P}(X^2 \le y) = 0$, car $X^2 \ge 0$. Soit $y \ge 0$. Alors $F_Y(y) = \mathbf{P}(Y \le y) = \mathbf{P}(X^2 \le y) = \mathbf{P}(-\sqrt{y} \le X \le \sqrt{y}) = \frac{1}{\sqrt{2\pi}} \int_{-\sqrt{y}}^{\sqrt{y}} e^{-t^2/2} dt = \frac{2}{\sqrt{2\pi}} \int_0^{\sqrt{y}} e^{-t^2/2} dt$; par changement de variable $t = \sqrt{s}$, on obtient $F_Y(y) = \frac{2}{\sqrt{2\pi}} \int_0^y \frac{e^{-s/2}}{2\sqrt{s}} ds$.

La densité g de Y s'obtient en dérivant F_Y

$$g(y) = \left\{ \begin{array}{c} \frac{1}{\sqrt{2\pi}} \frac{e^{-y/2}}{\sqrt{y}} \text{ si } y \geq 0 \\ 0 \text{ si } y < 0. \end{array} \right.$$

(ii) Calculer, en justifiant leur existence, $\mathbf{E}(Y)$ et $\mathrm{Var}(Y)$.

Solution: Comme X possède un moment d'ordre 2, $\mathbf{E}(Y) = \mathbf{E}(X^2)$ existe; comme $\mathbf{E}(X) = 0$, on a $\mathbf{E}(Y) = \operatorname{Var}(X) = 1.$

 $Y \text{ possède un moment d'ordre deux, car } t^4 e^{-t^2/2} = o(\frac{1}{t^2}) \text{ pour } t \to +\infty \text{ et } t \mapsto \frac{1}{t^2} \text{ est intégrable sur } [1, +\infty[. \text{ Donc } \mathbf{E}(X^4) \text{ existe et on a, par une IPP, } \mathbf{E}(X^4) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t^4 e^{-t^2/2} dt = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} t^4 e^{-t^2/2} dt = 3. \text{ D'où } \text{Var}(Y) = \mathbf{E}(Y^2) - \mathbf{E}(Y)^2 = \mathbf{E}(X^4) - \mathbf{E}(X^2)^2 = 2.$

Exercice 7. Soit X une v.a.r suivant une loi exponentielle de paramère λ . Déterminer la loi de la partie entière [X] de X. **Solution :** Posons Y := [X].

• On a $Y(\Omega) \subset \mathbf{Z}$, car $[x] \in \mathbf{Z}$ pour tout $x \in \mathbf{R}$. (On rappelle que [x] est l'unique $n \in \mathbf{Z}$ tel que

• Soit $n \in \mathbf{Z}$. On a $\mathbf{P}(Y=n) = \mathbf{P}(n \le X < n+1) = \int_n^{n+1} \lambda e^{-\lambda x} \mathbf{1}_{[0,+\infty[}(x) dx$. Pour $n \ge 0$, on a alors $\mathbf{P}(Y=n) = \lambda \int_n^{n+1} e^{-\lambda x} dx = -e^{-\lambda x} |_n^{n+1} = e^{-\lambda n} - e^{-\lambda (n+1)} = e^{-\lambda n} (1-e^{-\lambda}) = (1-p)^n p$ pour $p := 1 - e^{-\lambda}$. Pour n < 0, on a $n + 1 \le 0$ et donc $\mathbf{P}(Y = n) = \int_{n}^{n+1} 0 dx = 0$.

Ce qui précède montre que Y+1 suit une loi géométrique $\mathcal{E}(1-e^{-\lambda})$.

Exercice 8. On dit qu'une v.a.r X sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbf{P})$ est sans mémoire si $\mathbf{P}(X > s) > 0$ et $\mathbf{P}(X > t + s | X > s) = \mathbf{P}(X > t)$ pour tous t, s > 0.

(i) Soit X une v.a.r de loi exponentielle. Montrer que X est sans mémoire. Solution: Pour tous s, t > 0, on a, d'une part, $\mathbf{P}(X > t) = \int_t^\infty e^{-\lambda x} dx = e^{-\lambda t}$. D'autre part, on a $\mathbf{P}(X > t + s | X > s) = \frac{\mathbf{P}(X > t + s, X > s)}{\mathbf{P}(X > s)} = \frac{\mathbf{P}(X > t + s)}{\mathbf{P}(X > s)}$

$$\mathbf{P}(X > t + s | X > s) = \frac{\mathbf{P}(X > t + s, X > s)}{\mathbf{P}(X > s)} = \frac{\mathbf{P}(X > t + s)}{\mathbf{P}(X > s)}$$

$$\mathbf{P}(X>t+s|X>s) = \frac{\lambda \int_{t+s}^{\infty} e^{-\lambda x} dx}{\lambda \int_{s}^{\infty} e^{-\lambda x} dx} = \frac{e^{-\lambda t+s}}{e^{-\lambda s}} = e^{-\lambda t}; \text{ d'où } \mathbf{P}(X>t+s|X>s) = \mathbf{P}(X>t).$$

(ii) (*) Soit X une v.a.r X à valeurs dans \mathbf{R}_+^* , à densité et sans mémoire. Montrer que X suit une loi exponentielle. (Indication : on pourra considérer la fonction continue h définie sur **R** par $h(x) = \log(\mathbf{P}(X > x))$.

Solution: Soient x, y > 0. Comme vu en (i), on a $\mathbf{P}(X > x + y | X > y) = \frac{\mathbf{P}(X > x + y)}{\mathbf{P}(X > y)}$. Comme X est sans mémoire, on a donc $\mathbf{P}(X > x + y) = \mathbf{P}(X > x)\mathbf{P}(X > y)$. Soit $h: \mathbf{R} \to \mathbf{R}$ définie par $h(x) = \log(1 - F_X(x)) = \log(\mathbf{P}(X > x).$ Pour $x \le 0$, on a $\mathbf{P}(X > x) = 1$ car X est à valeurs dans \mathbf{R}_+^* et donc h(x) = 0.

Soient x, y > 0. Alors $\log(\mathbf{P}(X > x + y)) = \log(\mathbf{P}(X > x)\mathbf{P}(X > y)) = \log(\mathbf{P}(X > x)) + \log(\mathbf{P}(X > x))$ y)), c-à-d h satisfait la relation

(*) pour tous x, y > 0. h(x+y) = h(x) + h(y)

Comme $h = \log(1 - F_X)$ et comme F_X est continue (car X est à densité), h est continue. Posons a:=h(1) et observons que $a=\log(\mathbf{P}(X>1))\leq 0$ car $\mathbf{P}(X>1)\leq 1$. Soit $n \in \mathbb{N}$. Alors, par la relation (*), on a

$$h(n) = h(\underbrace{1 + \dots + 1}_{n\text{-fois}}) = nh(1) = na.$$

De plus, si $n \neq 0$, la relation (*) montre également que $a = h(1) = h(n\frac{1}{n}) = nh(\frac{1}{n})$ et donc $h(\frac{1}{n}) = a/n$. Soient $m, n \in \mathbf{N}$ avec $n \neq 0$. De nouveau avec relation (*), on a

$$h(\frac{m}{n}) = h(m\frac{1}{n}) = mh(\frac{1}{n}) = a\frac{m}{n}.$$

Il s'ensuit que h(q) = aq pour tout $q \in \mathbf{Q}_+^*$. Soit $x \in \mathbf{R}_+^*$. Il existe une suite $(q_n)_n$ dans \mathbf{Q}_+^* avec $\lim_n q_n = x$. Comme h est continue, on a alors $h(x) = \lim_{n} h(q_n) = \lim_{n} (aq_n) = a \lim_{n} q_n = ax.$

En résumé, on a h(x) = 0 pour $x \le 0$ et h(x) = ax pour x > 0. Comme $F_X = 1 - e^h$, ceci signifie

$$F_X(x) = \begin{cases} & 0 \text{ si } x \le 0 \\ & 1 - e^{ax} \text{ si } x > 0 \end{cases}.$$

Donc X suit une loi exponentielle $\mathcal{E}(-a)$.