w09-Lec1

Data Representation Part I Integer

Assembled for 204111 by Kittipitch Kuptavanich Ratsameetip Wita

204111: Fundamentals of Computer Science

Representing Data

- เราสามารถเก็บข้อมูลต่าง ๆ ในชีวิตประจำวันไว้ใน คอมพิวเตอร์ได้ เช่น
 - เอกสาร รูปภาพ เสียง ตัวเลข ฯลฯ
- คอมพิวเตอร์จะมีวิธีการเก็บในรูปแบบของเลขฐาน 2
 - เข้ารหัสข้อมูล (Encode) แปลงข้อมูล ->เลขฐาน 2
 - ถอดรหัสข้อมูล (Decode) เลขฐาน 2 -> ข้อมูล

Integer and Real Number

- Digital Data
- Integer Representation
- Binary Arithmetic
- Negative Integer Encoding
- Real Number and Floating Point Representation
- Rounding

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

2

Representing Data

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Why Base 2?

- รูปแบบของเลขฐาน 2 ประกอบด้วยเลข 0 และ 1
 - Represent 15213₄₀ as 11101101101101₃
 - Represent 1.20₁₀ as 1.0011001100110011[0011]...
- เลข 0 และ 1 สามารถตีความได้เป็นสถานะ เปิด/ปิด ของกระแสไฟฟ้า
 - การส่งสัญญาณในคอมพิวเตอร์เป็นการไหลของ กระแสไฟฟ้า

Computer Systems: A Programmer's Perspective - Bryant & O'Hallaron

204111: Fundamentals of Computer Science

Bits, Bytes and Words

- หน่วยของข้อมูลที่เล็กที่สุดในคอมพิวเตอร์คือ Bits มีค่า 0 หรือ 1 (Binary Digits)
- กลุ่มของ Bits ที่ใช้ในการแทนค่าข้อมูลใด ๆ จะเรียกว่า Bytes ซึ่ง 1 Bytes จะประกอบด้วย 8 Bits (เช่น 1 ตัวอักษร)
- ในการอ่านข้อมูลของคอมพิวเตอร์ จะมีการอ่านกลุ่มของ Bytes ในลักษณะเป็นก้อน ๆ หรือ fixed-sized chunks เรียกว่า Word
- Word จะมีขนาด 4 bytes (32 bits) หรือ 8 bytes (64 bits) ขึ้นกับรูปแบบสถาปัตยกรรม

Computer Systems: A Programmer's Perspective - Bryant & O'Hallaron

In this class we assume a word size of 4 bytes

Digital Data

- ข้อมูลต่างๆในระบบคอมพิวเตอร์ มีลักษณะดังนี้
 - ระดับไฟฟ้า binary physical states (high or low voltages, etc.)
 - สามารถแปลความหมายได้ในรูปแบบบิต (bit -1s and 0s)

• เราสามารถแปลความหมายบิต เพื่อเก็บข้อมูลประเภทต่างๆ เช่น integers, real numbers, text, ...

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

Types interpret bits

- a 32-bit "word" might be
- what this means depends on the machinery to interpret it, could be (explore with 0xED)

Туре	Interpret
bits	1100 1100 1011 0111 0000 0000 0000 0000
Floating point number	6.59339 X 10-41
String (Unicode UTF-16)	첷
RGB pixel color	
Little-endian integer	47052

Information Capacity

จำนวน Bits	ค่าที่เป็นไปได้	จำนวนของข้อมูลที่ เป็นไปได้ทั้งหมด
1	01	2 (21)
2	00 01 10 11	4 (2 ²)
3	000 001 010 011 100 101 110 111	8 (2³)
4	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111	16 (2 ⁴)

k bits สามารถแสดงผลข้อมูลที่ต่างกันได้ทั้งหมดจำนวน 2^k ค่า

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

9

11

Place-value numerals in general

- กำหนด b เป็นเลขฐาน (base หรือ radix)
- เลขที่เป็นไปได้ในการแสดงผล จะมีจำนวน b ตัว
 - base 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - base 2:0,1
 - base 8:0, 1, 2, 3, 4, 5, 6, 7
 - base 16: 0, 1, ..., 9, A, B, C, D, E, F
- การแสดงผล จำนวน n ในฐาน b
 - ทำการหาร n ด้วย b เพื่อจำเศษที่เหลือจากการหาร r (a digit)
 - หารไปเรื่อย ๆจนกว่า n_.= 0
 - เศษของการหารที่ได้ เรียงลำดับแบบ reverse order จะเป็นค่า ของ n ในฐาน b

Place-value numerals (base 10)

- The numeral we write: 15627
- What it means:

$$^{\circ}$$
 7 × 10⁰ + 2 × 10¹ + 6 × 10² + 5 × 10³ + 1 × 10⁴

- Problem: electronic circuitry for base-10 arithmetic is slow.
- Solution: use place-value numerals, but in base
 2-binary notation

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

Binary place-value example

- Base 2 ตัวเลขแสดงผลที่ใช้ได้คือ......
- ต้องการแสดง 6 ในฐาน 2:

• เลข 6 สามารถแสดงในรูปแบบฐาน 2 =

•
$$\times 2^0$$
 + $\times 2^1$ + $\times 2^2$ = 6_{10}

Binary place-value example

- Base 2 ตัวเลขแสดงผลที่ใช้ได้คือ 0,1
- ต้องการแสดง 6 ในฐาน 2:
 - 6 // 2 = 3 เศษ 0 • 3 // 2 = 1 เศษ 1 • 1 // 2 = 0 เศษ 1
- เลข 6 สามารถแสดงในรูปแบบฐาน 2 = 1 1 02
- $0 \times 2^{0} + 1 \times 2^{1} + 1 \times 2^{2} = 6_{10}$

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Encoding Byte Values

- Byte = 8 bits
- Binary 000000002 to 111111112
- Decimal: 0₁₀ to 255₁₀
- Hexadecimal 00₁₆ to FF₁₆
- Base 16 (Hexadecimal)
 - ใช้สัญญลักษณ์ '0' to '9' และ 'A' to 'F'
 - Write FA1D37B₁₆ as
 - 0xFA1D37B
 - 0xfa1d37b

		Yno I Gm;
He	h Dec	imalary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	0 1 2 3 4 5 6 7 8	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
0 1 2 3 4 5 6 7 8 9 A B C D E	10 11 12 13 14	0000 0001 0010 0011 0100 0101 0111 1000 1001 1010 1100 1101 1110 1110
D	13	1101
Е	14	1110
F	15	1111

Base Number in Computer

- เลขฐานที่เกี่ยวข้องกับคอมพิวเตอร์ ประกอบด้วย
 - Base 2 (Binary): แทนค่าในระดับบิท (0 1)
 - Base 8 (Octal) : มีความสัมพันธ์กับเลขฐาน 2 โดย เลขฐาน 2 จำนวน 3 บิท สามารถแทนได้ด้วยเลขฐาน 8 จำนวน 1 บิท ทำให้การเขียนตัวเลขสั้นลง เช่น (110111)₂ = (67)₈
 - Base 16 (Hexadecimal) : เลขฐาน 2 จำนวน 4 บิท สามารถแทนได้ด้วยเลขฐาน 16 จำนวน 1 บิท ทำให้ การเขียนตัวเลขสั้นลง

เช่น (11010101)₂ = (D5)₁₆

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

Conversion Exercise

2 ⁸	2 ⁷	2 ⁶	25	24	2 ³	2 ²	2 ¹	2
256	128	64	32	16	8	4	2	1

Practice Problem 2.3: Fill in the missing entries

Decimal	Binary	Hexadecimal
0	0000 0000	0x00
167		
62		
188		
	0011 0111	
	1000 1000	
	1111 0011	
		0x52
		OxAC
		0xE7

Number System (Revisited)

• Integer จำนวนเต็มใด ๆ สามารถเป็นได้ทั้งจำนวนบวก และลบ

- Rational จำนวนตรรกยะ (สามารถแทนได้ด้วยเศษส่วน ของจำนวนเต็ม)
- Irrational จำนวนอตรรกยะ (ไม่สามารถแทนด้วยเศษส่วน ของจำนวนเต็มได้)
- Real จำนวนจริง หมายถึงระบบตัวเลขทั้งหมด

Real Numbers

Rational

Integer

Whole

Natural

Natural

Real Numbers

Irrational

There are more irrationals than rationals than rationals—this should really be the biggest area!

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

Integer Representation

- จากความรู้ในเรื่องเลขฐาน Bit Byte Word จะเห็นว่า การเก็บข้อมูลในคอมพิวเตอร์นั้นมีจำนวนจำกัด
- การแทนค่าข้อมูลตัวเลข จึงมีจำนวนจำกัด ขึ้นอยู่ กับความจุ (Capacity) ของหน่วยความจำ

Bits	Minimum	Maximum
8	0	2 ⁸ – 1 (255)
16	0	2 ¹⁶ – 1 (65,535)
32	0	2 ³² – 1 (4,294,967,295)
64	0	2 ⁶⁴ – 1 (18,446,744,073,709,551,615)

Ranges for typical computer "word" sizes

Integer Representation

- เลขจำนวนเต็ม Integer ประกอบด้วย
 - จำนวนเต็มบวก Positive Integer
 - ศูนย์ Zero
 - จำนวนเต็มลบ Negative Integer
- ในการเก็บข้อมูลจำนวนเต็ม จะเป็นการเก็บใน รูปแบบเลขฐาน 2 ขนาดตามกำหนดโดย Data Type

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

Binary Arithmetic

Binary	Decimal
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8
1001	9
1010	10

+	0	1
0	0	1
1	1	10

х	0	1
0	0	0
1	0	1

18

Binary Arithmetic

• ในการบวกจะทำงานปกติ และแสดงผลด้วยเลข 0 หรือ 1 เท่านั้น

• สมมติ ขนาดของข้อมูล = 4 bits

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

Overflow

 หากกำหนดให้ขนาดของข้อมูลมีขนาด k bits ใด ๆ แล้ว ข้อมูลที่บรรจุก็จะมีได้ไม่เกิน k หลัก เท่านั้น

• ข้อมูลที่เก็บจริงในหน่วยความจำจะมีค่า 0100 เท่านั้น (20 mod 16 = 4)

Binary Arithmetic

• ในการบวกจะทำงานปกติ และแสดงผลด้วยเลข 0 หรือ 1 เท่านั้น

• สมมติ ขนาดของข้อมูล = 4 bits

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

Overflow Concept

Base 10:2 digits

• 102 mod $10^2 = 02$

• Base 2: 4 digits

1 0 1 0 0

• 10100 mod 2⁴ = 0100

23

21

Negative Integer

- จาก Integer Representation เราทราบว่าการเก็บตัวเลข มีการแปลงและเก็บในรูปแบบฐาน 2
- วิธีที่ง่ายที่สุด ใช้ Bit ที่สำคัญที่สุด (most significant bit: MSB) เป็นตัวบอกเครื่องหม**้าย** ถ้า MSB (ซ้ายสุด) เป็น 1 ______ แสดุงว่าเป็นจำนวน<u>ลบ</u> ถ้าเป็น 0 แสดงว่าเป็นจำนวนบวก วิธีนี้เรียกว่า sign and magnitude

- ปัญหา จะทำให้เกิด 0, -0 (0000₂,<mark>1</mark>0000₂)
- เมื่อทำมาบวกลบกัน จะทำให้ค่าผิดเพี้ยน

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

Two's Complement for Negative Integer [1]

- สิ่งที่ต้องคำนึงถึงในการแทนข้อมูลคือต้องสามารถ ทำ operation ทางคณิตศาสตร์ได้และให้ผลลัพธ์ ถูกต้อง
- ใช้แนวคิดของการทำ Modular Arithmetic (mod)
- เมื่อมีจำนวน k bits จะทำการ mod ด้วย 2^k
- We define negative numbers as additive inverse
 - ให้ –x = y แล้ว จะได้ x + y = 0 mod 2^k เรียกว่า เป็น two's complement ของ X

Signed Bit

Let's try some operation

Computer Systems: A Programmer's Perspective - Bryant & O'Hallaron

204111: Fundamentals of Computer Science

Two's Complement for Negative Integer [2]

• ตัวอย่าง Base 2: 4 bits 1= 0001. -1 =?

25

Unsigned and Signed Integer

Unsigned Integer (3 bits)

•	Signed	Integer	(3	bits)
---	--------	---------	----	-------

Bit Represent	Decimal Value
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Bit Represent	Decimal Value
000	0
001	+1
010	+2
011	+3
1 00	- 4
1 01	- 3
1 10	- 2
1 11	- 1

Computer Systems: A Programmer's Perspective, 2nd Edition

29

204111: Fundamentals of Computer Science

Two's-Complement Encodings [1]

- มองหาบิตซ้ายสุด (MSB- Most Significant Bit)
 - 1 คือ...... 0 คือ.....
- วิธีที่ 1: complement the bits and then increment กลับ บิตแล้วบวก 1
 - () 0101 → 1010+1 → 1011 ()
- วิธีที่ 2: Let k be the position of the rightmost 1, we complement each bit to the left of bit position k (หา 1 ตัวขวาสุด แล้วกลับ bit เฉพาะทางซ้ายของ 1 ตัวนั้น)
 - $^{\bullet}$ () 1100 \rightarrow 1100 \rightarrow 0100 ()

Two's Complement Integer

204111: Fundamentals of Computer Science

Two's-Complement Encodings [1]

- มองหาบิตซ้ายสุด (MSB- Most Significant Bit)
 - 1 คือ..จำนวนเต็มลบ..... 0 คือ.....จำนวนเต็มบวก......
- วิธีที่ 1: complement the bits and then increment กลับ บิตแล้วบวก 1
 - $^{\bullet}$ (5) 0101 \rightarrow 1010+1 \rightarrow 1011 (-5)
- วิธีที่ 2: Let k be the position of the rightmost 1, we complement each bit to the left of bit position k (หา 1 ตัวขวาสุด แล้วกลับ bit เฉพาะทางซ้ายของ 1 ตัวนั้น)
 - $(-4)1100 \rightarrow 1100 \rightarrow 0100 (4)$

Two's-Complement Encodings [2]

- แนวคิดคือ ในกรณี MSB เป็น 1 นอกจาก จะ
 หมายความว่า จำนวนดังกล่าวเป็นจำนวนลบแล้ว
 bit นี้ยังมีน้ำหนักค่าเท่ากับ -2ⁿ⁻¹
- Bit อื่น ๆ มีค่าปรกติ เช่นกรณี 4 bit (-2³ to 2³-1)

Computer Systems: A Programmer's Perspective - Bryant & O'Hallaron

204111: Fundamentals of Computer Science

Range Calculation

- Consider an <u>unsigned</u> environment (0 and positive integer)
 For 4 bits
 - We can represent 2⁴ different numbers : 0000, 0001, 0010, 1111
 - The maximum is
 - $1111_2 = 15_{10} = 2^4 1$
 - In <u>signed representations</u>, about half of the range will be assigned

Bits	<u>un</u> signed data range	value
2	$0 - (2^2 - 1)$	0 - 3
4	$0 - (2^4 - 1)$	0 - 15
		•••
W	$0 - (2^w - 1)$	

to represent the negative numbers for w bits the range will be -2^{w-1} to $2^{w-1}-1$

Two's Complement Exercise

• ให้ทำการหาค่า Two's Complement ของตัวเลข ต่อไปนี้

X		-X		
Bit Represent	Decimal Value	Bit Represent	Decimal Value	
1010				
		1001		
			3	
		0100		
	5			
1000				

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

Range Calculation Exercise

Fill in the rest of the entries

Bits	Unsigned range	Unsigned value	Signed range	Signed value
2	0 to 2 ² - 1	0 to 3		
4	0 to 2 ⁴ - 1	0 to 15		
8	0 to 2 ⁸ - 1	0 to 255		
16				
32				
W	0 to 2 ^w - 1			

33

Two's Complement Exercise (Ans.)

• ให้ทำการหาค่า Two's Complement ของตัวเลข ต่อไปนี้

X		-X		
Bit Represent	Decimal Value	Bit Represent	Decimal Value	
1010	-6	0110	6	
0111	7	1001	-7	
1101	-3	0011	3	
1100	-4	0100	4	
0101	5	1011	-5	
1000	-8	1000	-8	

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

Conversion Exercise (Ans.)

Practice Problem 2.3: Fill in the missing entries

Decimal	Binary	Hexadecimal
0	0000 0000	0x00
167	1010 0111	0xA7
62	0011 1110	0x3E
188	1011 1100	0xBC
55	0011 0111	0x37
136	1000 1000	0x88
243	1111 0011	0xF3
82	0101 0010	0x52
172	1010 1100	OxAC
231	1110 0111	0xE7

Computer Systems: A Programmer's Perspective - Bryant & O'Hallaron

37

Range Calculation Exercise (Ans.)

• Fill in the rest of the entries

Bits	Unsigned range	unsigned value	Signed range	Signed value
2	0 to 2 ² - 1	0 to 3	-2¹ to 2¹-1	-2 to 1
4	0 to 2 ⁴ - 1	0 to 15	-2 ³ to 2 ³ -1	-8 to 7
8	0 to 2 ⁸ - 1	0 to 255	-2 ⁷ to 2 ⁷ -1	-128 to 127
16	0 to 2 ¹⁶ - 1	0 to 65535	-2 ¹⁵ to 2 ¹⁵ -1	-32768 to 32767
32	0 to 2 ³² - 1	0 to 4294967295	-2 ³¹ to 2 ³¹ -1	-2147483648 to - 2147483647
W	0 to 2 ^w - 1		-2 ^{w-1} to 2 ^{w-1} -1	
Computer Systems: A Programmer's Perspective - Bryant & O'Hallaron				

Computer Systems: A Programmer's Perspective - Bryant & O'Hallaron