Simetrías en lógicas de descripción

Giovanni Rescia

FaMAFyC

1 de Junio, 2017

- Introducción: intuición, conceptos básicos, qué se hizo en esta tesis
- Marco teórico del trabajo
- Detalles de implementación
- Evaluación empírica y análisis de resultados obtenidos

Concepto principal: simetría

Concepto principal: simetría

▶ Contexto: RA / LF

Concepto principal: simetría

► Contexto: RA / LF

▶ Ejemplo: SAT

Concepto principal: simetría

Contexto: RA / LF

Ejemplo: SAT

 Simetría: permutación de variables que mantiene modelos

Concepto principal: simetría

Contexto: RA / LF

Ejemplo: SAT

 Simetría: permutación de variables que mantiene modelos

$\varphi = (p \lor q)$		φ	=	(p	٧	q)
------------------------	--	-----------	---	----	---	----

P (P · 4)			
v	$v(\varphi)$	$\sigma(v)$	
00	0	00	
01	1	10	
10	1	01	
11	1	11	

Concepto principal: simetría

Contexto: RA / LF

Ejemplo: SAT

 Simetría: permutación de variables que mantiene modelos $\varphi = (p \vee q)$

v	$v(\varphi)$	$\sigma(v)$
00	0	00
01	1	10
10	1	01
11	1	11

► En particular aquí: lógicas de descripción (DL)

Concepto principal: simetría

Contexto: RA / LF

Ejemplo: SAT

 Simetría: permutación de variables que mantiene modelos

1	(1	1/
v	$v(\varphi)$	$\sigma(v)$
00	0	00
Λ1	1	10

 $\varphi = (p \lor q)$

\overline{v}	$v(\varphi)$	$\sigma(v)$
00	0	00
01	1	10
10	1	01
11	1	11

- ► En particular aquí: lógicas de descripción (DL)
- Estudio: detección y uso de simetrías
 - Aquí: solo detección

Concepto principal: simetría

Contexto: RA / LF

Ejemplo: SAT

 Simetría: permutación de variables que mantiene modelos

11

 $\varphi = (p \lor q)$

- ► En particular aquí: lógicas de descripción (DL)
- Estudio: detección y uso de simetrías
 - Aquí: solo detección
- Enfoque:

11

Concepto principal: simetría

Contexto: RA / LF

Ejemplo: SAT

 Simetría: permutación de variables que mantiene modelos $\varphi = (p \vee q)$

v	v(arphi)	$\sigma(v)$
00	0	00
01	1	10
10	1	01
11	1	11

- ► En particular aquí: lógicas de descripción (DL)
- Estudio: detección y uso de simetrías
 - Aquí: solo detección
- Enfoque:
 - Todo de cero

Concepto principal: simetría

Contexto: RA / LF

Ejemplo: SAT

 Simetría: permutación de variables que mantiene modelos

φ	=	(p	٧	q)	

v	$v(\varphi)$	$\sigma(v)$
00	0	00
01	1	10
10	1	01
11	1	11

- ► En particular aquí: lógicas de descripción (DL)
- Estudio: detección y uso de simetrías
 - Aquí: solo detección
- Enfoque:
 - Todo de cero
 - Aprovechando nexos y estudios previos en lógica modal

Concepto principal: simetría

Contexto: RA / LF

Ejemplo: SAT

 Simetría: permutación de variables que mantiene modelos

$\varphi =$	$(p \lor$	q)
-------------	-----------	----

v	$v(\varphi)$	$\sigma(v)$
00	0	00
01	1	10
10	1	01
11	1	11

- ► En particular aquí: lógicas de descripción (DL)
- Estudio: detección y uso de simetrías
 - Aquí: solo detección
- Enfoque:
 - Todo de cero
 - Aprovechando nexos y estudios previos en lógica modal

Un subconjunto decidible de LPO

- Un subconjunto decidible de LPO
- DLs con diferentes expresividades

- Un subconjunto decidible de LPO
- DLs con diferentes expresividades
- Utilizadas para la representación de conocimiento

- Un subconjunto decidible de LPO
- DLs con diferentes expresividades
- Utilizadas para la representación de conocimiento
- Una base de conocimiento es una tupla <TBox, ABox> y define una ontología

- Un subconjunto decidible de LPO
- DLs con diferentes expresividades
- Utilizadas para la representación de conocimiento
- Una base de conocimiento es una tupla <TBox, ABox> y define una ontología
 - Una ontología puede pensarse como conocimiento jerárquico, como una generalización de una taxonomía

- Un subconjunto decidible de LPO
- DLs con diferentes expresividades
- Utilizadas para la representación de conocimiento
- Una base de conocimiento es una tupla <TBox, ABox> y define una ontología
 - Una ontología puede pensarse como conocimiento jerárquico, como una generalización de una taxonomía
- Expresamos estas ontologías en una computadora a través de OWL

- Un subconjunto decidible de LPO
- DLs con diferentes expresividades
- Utilizadas para la representación de conocimiento
- Una base de conocimiento es una tupla <TBox, ABox> y define una ontología
 - Una ontología puede pensarse como conocimiento jerárquico, como una generalización de una taxonomía
- Expresamos estas ontologías en una computadora a través de OWI.
 - OWL es un formato estandar para expresar ontologías

Un lenguaje para definiciones de conceptos

- Un lenguaje para definiciones de conceptos
 - ▶ TBox

- Un lenguaje para definiciones de conceptos
 - TBox
 - ▶ $Persona \equiv Mujer \sqcup Hombre$

- Un lenguaje para definiciones de conceptos
 - TBox
 - ▶ $Persona \equiv Mujer \sqcup Hombre$
 - Padre ≡ Persona □ ∃ tieneHijo.Persona

- Un lenguaje para definiciones de conceptos
 - TBox
 - ▶ $Persona \equiv Mujer \sqcup Hombre$
 - Padre ≡ Persona □ ∃ tieneHijo.Persona
- Un lenguaje para aserciones

- Un lenguaje para definiciones de conceptos
 - TBox
 - ▶ $Persona \equiv Mujer \sqcup Hombre$
 - Padre ≡ Persona □ ∃ tieneHijo.Persona
- Un lenguaje para aserciones
 - ABox

- Un lenguaje para definiciones de conceptos
 - TBox
 - ▶ $Persona \equiv Mujer \sqcup Hombre$
 - Padre ≡ Persona □ ∃ tieneHijo.Persona
- Un lenguaje para aserciones
 - ABox
 - tieneCapital(Italia, Roma)

- Un lenguaje para definiciones de conceptos
 - TBox
 - ▶ $Persona \equiv Mujer \sqcup Hombre$
 - Padre ≡ Persona □ ∃ tieneHijo.Persona
- Un lenguaje para aserciones
 - ABox
 - tieneCapital(Italia, Roma)
 - Músico(Mozart)

- Un lenguaje para definiciones de conceptos
 - TBox
 - ▶ $Persona \equiv Mujer \sqcup Hombre$
 - Padre ≡ Persona □ ∃ tieneHijo.Persona
- Un lenguaje para aserciones
 - ABox
 - tieneCapital(Italia, Roma)
 - Músico(Mozart)
- Modelos relacionales

Desarrollada en los 60

- Desarrollada en los 60
- Extiende a la lógica proposicional, incluyendo modalidades

- Desarrollada en los 60
- Extiende a la lógica proposicional, incluyendo modalidades
 - $[m_i]p \vee \langle m_j \rangle q$

- Desarrollada en los 60
- Extiende a la lógica proposicional, incluyendo modalidades
 - $[m_i]p \vee \langle m_j \rangle q$
- Utilizada para model checking

- Desarrollada en los 60
- Extiende a la lógica proposicional, incluyendo modalidades
 - $[m_i]p \vee \langle m_i \rangle q$
- Utilizada para model checking
- Un ejemplo particular de lógica modal: Lógica temporal

- Desarrollada en los 60
- Extiende a la lógica proposicional, incluyendo modalidades
 - $[m_i]p \vee \langle m_i \rangle q$
- Utilizada para model checking
- Un ejemplo particular de lógica modal: Lógica temporal
- Modelos relacionales (como en DL)

- Desarrollada en los 60
- Extiende a la lógica proposicional, incluyendo modalidades
 - $[m_i]p \vee \langle m_i \rangle q$
- Utilizada para model checking
- Un ejemplo particular de lógica modal: Lógica temporal
- Modelos relacionales (como en DL)

ML	DL
p_i	C_i , y C_i es un concepto atómico
$\neg \varphi$	$\neg C$, y C es un concepto
$\varphi \lor \Psi$	$C_j \sqcup C_i$, con C_j , C_i conceptos
$\langle R \rangle \varphi$	$\exists R.C_j$, y R es un rol atómico y C_j es un concepto

De OWL a ML

Ya vimos que existe un nexo sintáctico y semántico entre DL y ML

De OWL a ML

Ya vimos que existe un nexo sintáctico y semántico entre DL y ML

```
\begin{array}{rcl} \Psi(\mathcal{R} \, some \, Values From \, \mathcal{C}) & \doteq & \langle \mathcal{R} \rangle \Psi(\mathcal{C}) \\ \Psi(\, complement \, Of(\mathcal{C})) & \doteq & \neg \Psi(\mathcal{C}) \\ \Psi(\, Sub \, Class \, Of(\mathcal{C}_1 \, \mathcal{C}_2)) & \doteq & A(\Psi(\mathcal{C}_1) \Longrightarrow \Psi(\mathcal{C}_2)) \\ \Psi(\, Equivalent \, Classes(\mathcal{C}_1 \equiv \mathcal{C})) & \doteq & \Psi(\mathcal{C}_1 \sqsubseteq \mathcal{C}_2) \land \Psi(\mathcal{C}_2 \sqsubseteq \mathcal{C}_1) \\ \Psi(\, union \, Of(\mathcal{C}_1 \, \mathcal{C}_2)) & \doteq & \Psi(\mathcal{C}_1) \lor \Psi(\mathcal{C}_2) \end{array}
```

Simetrías

Simetrías

Pipeline de procesamiento

Pipeline de procesamiento

Ejemplo de base de conocimiento

TBox =

```
gato ⊆ mamífero
perro ⊆ mamífero
caballo ⊆ mamífero
gatito ≡ gato □ ∃ críaDe.gato
cachorro ≡ perro □ ∃ críaDe.perro
potrillo ≡ caballo □ ∃ críaDe.caballo
gato ⊆ mamífero □ ∃cuadrúpedo.mamífero
perro ⊆ mamífero □ ∃cuadrúpedo.mamífero
caballo ⊆ mamífero □ ∃cuadrúpedo.mamífero
```

▶ Toma la ontología en OWL y devuelve la fórmula modal

- ► Toma la ontología en OWL y devuelve la fórmula modal
- Implementado para esta tesis

- ► Toma la ontología en OWL y devuelve la fórmula modal
- Implementado para esta tesis
- Programado en Scala

- ► Toma la ontología en OWL y devuelve la fórmula modal
- Implementado para esta tesis
- Programado en Scala
 - Con la API de Scowl (wrapper de la API de OWL)

- ► Toma la ontología en OWL y devuelve la fórmula modal
- Implementado para esta tesis
- Programado en Scala
 - Con la API de Scowl (wrapper de la API de OWL)
- Trabaja solo sobre la TBox de la ontología

- Toma la ontología en OWL y devuelve la fórmula modal
- Implementado para esta tesis
- Programado en Scala
 - Con la API de Scowl (wrapper de la API de OWL)
- Trabaja solo sobre la TBox de la ontología

```
<Class rdf:about="http://www.famaf.unc.edu.ar/giovanni/test.owl#cachorro">
   <equivalentClass>
       <Class>
           <intersectionOf rdf:parseType="Collection">
    <rdf:Description rdf:about="http://www.famaf.unc.edu.ar/giovanni/test.owl#perro"/>
               <Restriction>
                   <onProperty rdf:resource="http://www.famaf.unc.edu.ar/giovanni/test.owl#criaDe"/>
                   <someValuesFrom rdf:resource="http://www.famaf.unc.edu.ar/giovanni/test.owl#perro"/>
               </Restriction>
           </intersectionOf>
       </Class>
    </equivalentClass>
                                                                 begin (A(P8 --> P11));
                                                                 ((A(P5 --> (P8 ^ (<R1>P8)))) ^ (A((P8 ^ (<R1>P8)) --> P5)));
                                                                 ((A(P8 --> (P11 ^ (<R2>P11)))) ^ (A((P11 ^ (<R2>P11)) --> P8)));
                                                                ((A(P3 --> (P11 ^ (<R2>P11)))) ^ (A((P11 ^ (<R2>P11)) --> P3)))
                                                                 end
```

• Retorna la CNF de una fórmula modal

- Retorna la CNF de una fórmula modal
- Desarrollado en Haskell

- Retorna la CNF de una fórmula modal
- Desarrollado en Haskell
- Adaptado para este proyecto

- Retorna la CNF de una fórmula modal
- Desarrollado en Haskell
- Adaptado para este proyecto

```
begin (A(P8 --> P11));
((A(P5 --> (P6 ^ (<TI>P8)))) ^ (A((P8 ^ (<TI>P8)) --> P5)));
((A(P8 -- (P11 ^ (<T2>P11)))) ^ (A((P11 ^ (<T2>P11)) --> P8)));
...
((A(P3 --> (P11 ^ (<T2>P11)))) ^ (A((P11 ^ (<T2>P11)) --> P3)))
end

begin
A (P3 v -P17);
A (P7 v P11);
...
A (-P18 v -[R1]-P10);
A (-P19 v -[R2]-P11)
end
```

▶ Crea el grafo de una fórmula en CNF

- Crea el grafo de una fórmula en CNF
- Desarrollado en Haskell

- Crea el grafo de una fórmula en CNF
- Desarrollado en Haskell
- Adaptado para este proyecto

- Crea el grafo de una fórmula en CNF
- Desarrollado en Haskell
- Adaptado para este proyecto

BLISS

▶ Desarrollado en C++

BLISS

- ▶ Desarrollado en C++
- Automorfismos en grafos

BLISS

- ▶ Desarrollado en C++
- Automorfismos en grafos

MAPPER

Python, adaptado

MAPPER

- Python, adaptado
- Nodos del grafo -> variables proposicionales -> conceptos de la ontología

MAPPER

- Python, adaptado
- Nodos del grafo -> variables proposicionales -> conceptos de la ontología

► +20 Ontologías obtenidas en la web

- ▶ +20 Ontologías obtenidas en la web
- La mayoría utilizadas por razonadores

- ► +20 Ontologías obtenidas en la web
- La mayoría utilizadas por razonadores
- Diferentes expresividades

- ► +20 Ontologías obtenidas en la web
- La mayoría utilizadas por razonadores
- Diferentes expresividades
- Algunas muy conocidas

- ► +20 Ontologías obtenidas en la web
- La mayoría utilizadas por razonadores
- Diferentes expresividades
- Algunas muy conocidas
 - Go: vocabulario de términos sobre material bioquímico

- ► +20 Ontologías obtenidas en la web
- La mayoría utilizadas por razonadores
- Diferentes expresividades
- Algunas muy conocidas
 - Go: vocabulario de términos sobre material bioquímico
 - NCIT: vocabulario para la atención clínica, información pública, etc.

- ► +20 Ontologías obtenidas en la web
- La mayoría utilizadas por razonadores
- Diferentes expresividades
- Algunas muy conocidas
 - Go: vocabulario de términos sobre material bioquímico
 - NCIT: vocabulario para la atención clínica, información pública, etc.
 - Uberon: ontología de anatomía para representar partes del cuerpo

Resultados

- Go
 - Tamaño de la TBox: 104783
 - Tamaño del grafo: Nodos: 432315, Aristas: 528394
 - Generadores detectados: 8496
 - ► Tiempo para la detección de automorfismos: 57.93 seg.

Resultados

- Go
 - Tamaño de la TBox: 104783
 - Tamaño del grafo: Nodos: 432315, Aristas: 528394
 - Generadores detectados: 8496
 - ► Tiempo para la detección de automorfismos: 57.93 seg.
- NCIT
 - Tamaño de la TBox: 46940
 - Tamaño del grafo: Nodos: 164267, Aristas: 183694
 - Generadores detectados: 10218
 - Tiempo para la detección de automorfismos: 37.24 seg.

Resultados

Go

- Tamaño de la TBox: 104783
- Tamaño del grafo: Nodos: 432315, Aristas: 528394
- Generadores detectados: 8496
- ► Tiempo para la detección de automorfismos: 57.93 seg.

NCIT

- Tamaño de la TBox: 46940
- Tamaño del grafo: Nodos: 164267, Aristas: 183694
- Generadores detectados: 10218
- Tiempo para la detección de automorfismos: 37.24 seg.

Uberon

- Tamaño de la TBox: 25683
- Tamaño del grafo: Nodos: 107903, Aristas: 135288
- Generadores detectados: 818
- ► Tiempo para la detección de automorfismos: 6.18 seg.

Análisis

- Simetrías en todas las ontologías utilizadas
- Tiempo despreciable
- Memoria despreciable

Trabajo futuro

- Solo trabajamos con la TBox de cada ontología
 - Extender Ψ para que traduzca la ABox también
- Implementar las simetrías en los razonadores para en cuánto mejora el rendimiento de los mismos

Outro

Preguntas?