Contents

13	Supraleitung	2
	13.1 London-Gleichungen (Postulate)	4
	13.1.1 Zwei Flüssigkeiten-Modell	4
	13.2 Flußquantisierung	5

Chapter 13

Supraleitung

$$U=RI=\rho\frac{L}{S}I$$

$$\rho|_{Cu,T=4,2K}\approx 10^{-9}\Omega m$$

für $\rho < 10^{-24} \Omega cm$

 $1911~{\rm Kamerling li\text{-}Onnes}$

 $\begin{array}{ccc} \text{Hg: } T_c \approx 4K \\ N_z & \rightarrow \end{array}$

77K

 H_z $20\mathrm{K}$

 4He 4,2K

1,2KAl ${\rm Im}$ 3,4K

3,7K Sn

Pb 7,2K ${\rm Nb}$ 9,2K

 ${\rm NbN}$ $15\mathrm{K}$

 Nb_3Ge 24K

 $1986\ YBaCu_3O_7$ 92

 $Tl_2Sr_2Ca_2Cu_3O_8 \to 120K$ Supralaeiter ist kein 'idealer' Leiter \to Meissner-Effekt

Bild 11.3: "Idealer Leiter" und Supraleiter im Magnetfeld. Das Magnetfeld wird oberhalb der Sprungtemperatur angelegt und dringt in beide Proben ein. Beim Unterschreiten von T_c bleibt das Magnetfeld im "idealen Leiter" gefangen, während es aus dem Supraleiter verdrängt wird. Nach dem Abschalten des Felds stellen sich zwei unterschiedliche Endzustände ein.

Quelle: Festkörperphysik (Hunklinger)

Arbeit pro Einheitsvolumen der Probe

$$W = -\int_{0}^{B_{a}} \vec{M} \cdot d\vec{B}_{a} = \int_{0}^{B_{a}} dF_{s} = \frac{B_{a}}{\mu_{0}} dB_{a}$$

$$F_S(B_a) - F_S(0) = \frac{B_a^2}{2\mu_0}$$

13.1 London-Gleichungen (Postulate)

- 1) $\vec{E} = \frac{\partial}{\partial t} (\Lambda \vec{\gamma}_S)$ mit $Lambda = \frac{m_S}{n_S e^2}$
- $2) \ \vec{B} = -rot(\Lambda \vec{j}_S)$

13.1 Zwei Flüssigkeiten-Modell

$$\vec{\nabla} \times \vec{\nabla} \times \vec{B} = \mu_0 \vec{\nabla} \times \vec{j}_S = -\frac{\mu_0}{\Lambda} \vec{B}$$

$$\label{eq:mit_def} \text{mit } \vec{\nabla} \times \vec{\nabla} \times \vec{B} = \vec{\nabla} (\vec{\nabla} \vec{B}) - \underbrace{\nabla^2 \vec{B}}_{\text{Laplace}} = -\nabla^2 \vec{B} = \Delta \vec{B}$$

$$\nabla^2 \vec{B} = \frac{1}{\lambda_L^2} \vec{B}$$

mit $\lambda_L = \sqrt{\frac{\Lambda}{\mu_0}} = \sqrt{\frac{m_S}{\mu_0 n_S e^2}}$ als Londonsche eindringtiefe

$$\frac{d^2B}{dx^2} = \frac{1}{\lambda_L^2}B$$

$$B(x) = B_0 e^{-\frac{x}{\lambda_L}}$$

Für $B(0) = B_a$, $B(\infty) = 0$ ergibt sich für x > 0:

$$B(x) = B_a e^{-\frac{x}{\lambda_L}}$$

13.2 Flußquantisierung

Magnetfluß $\Phi=AB=m\Phi_0,\,\Phi_0=\frac{h}{2e}=2,7\cdot 10^{-15}V\cdot s\equiv [Wb]$ Makroskopische Wellenfunktion

$$\Psi(\vec{r})\sqrt{\frac{n_S}{2}}e^{i\Theta(\vec{r})}$$

Elektronen verhalten sich wie Bosonen-Teilchen