

Ano Letivo 2016/2017 – 1º Semestre

ELETRÓNICA

Preparação 3º Trabalho de Laboratório

Curso

Licenciatura de Engenharia Informática e de Computadores (LEIC)

Docente

Engenheiro António Maçarico

Alunos

Tiago Castro, Nº 42647

Samuel Costa, № 43552

Foi construído um circuito CMOS para a implementação da função $Y = \bar{A} + BC$. Começou-se por esboçar a rede *pull-up* (PUN) de transístores PMOS, cujas entradas foram negadas em relação à função a implementar. Assim, a rede pull-up implementa $Y = f(A, \bar{B}, \bar{C})$. Portanto, como temos BC na função a implementar, esta rede apresenta $MP\bar{B}$ $MP\bar{C}$ em série, cujas entradas gate recebem os sinais de \bar{B} e \bar{C} respetivamente, obtidos com recurso a dois circuitos inversores; e MPA(a cuja gate se aplica o sinal de A) em paralelo com estes.

Para a construção da rede pull-down (PDN) de transístores NMOS, passou a considerar-se Y=f(\bar{A},B,C). Pretendeu-se obter a função complementar daquela implementada pela rede pull-up. Assim, $MN\bar{B}$ encontra-se em paralelo com $MN\bar{C}$ e estes em série com MNA.

Apresenta-se de seguida um esquema do circuito CMOS construído:

Diagrama do circuito CMOS com rede pull-up e pull-down sem dados de simulação (ver ficheiro Gate-CMOS-esquema.asc)

Neste diagrama incluíram-se referências ao PIN-OUT da montagem, tarefa que se relata de seguida.

Para a montagem do circuito em breadboard, foram utilizados 2 circuitos integrados CI 4007. Devido às especificidades destes integrados, optou-se por utilizar, em cada um, o par P_3/N_3 como inversores para os sinais B e C. No chip 1, o par P_1/N_1 , foi utilizado para o sinal de A, em PUN e PDN, uma vez que as entradas Source de N1 e P1 estão ligadas a VSS e a VDD respetivamente, i.e a entrada source deste transístor terá que estar ligada à massa. Os transístores P_2 no chip 1 e 2 foram utilizados para os sinais \bar{B} e \bar{C} na rede PUN e N_2 foi utilizado para os mesmos sinais na rede PDN.

Na imagem a seguir apresenta-se a montagem do circuito na breadboard, obedecendo ao Pin-Out sugerido anteriormente. A informação presente no diagrama anterior surge completada.

montagem do circuito CMOS em breadboard

Tal como se encontra montado, o circuito está pronto a ser ligado à fonte de tensão (fio verde à "massa", vermelho a VDD). Quanto ao fio laranja, é usado na leitura de V_y em relação a VDD ou a GND conforme seja o caso. Os três condutores restantes são alimentados com os sinais de A (fio preto), B (fio branco) e C (fio cinzento) nas margens verticais da breadboard (as duas linhas horizontais superiores e inferiores na fotografia).

De seguida apresenta-se um detalhe da fotografia anterior, rodada 90° para a direita, por forma a evidenciar as ligações feitas entre os PINs dos CI 4007:

Neste ponto fez-se corresponder a V_A , V_B , V_c e V_y =5V o valor lógico 1 e o valor lógico 0 quando o valor de tensão do sinal é 0V.

Foi simulado o funcionamento do circuito de acordo com as condições propostas no enunciado. Obteve-se o gráfico que se apresenta de seguida:

 $Verde:V_A(t)$; azul: $V_B(t)$; vermelho: $V_C(t)$; ciano: $V_Y(t)$

Como $T_C = 2$ $T_B = 4$ T_A , o gráfico da simulação para um período de C ($T_C = 4$ ms), permite observar o comportamento do sinal Y para cada um dos estados possíveis do circuito.

Elaborou-se uma tabela de verdade que tem como entradas as variáveis A, B e C e como saída a função $Y = \bar{A} + BC$.

a ranção r			11 1 DU.		
С	В	Α	$\bar{A} + BC$		
0	0	0	1		
0	0	1	0		
0	1	0	1		
0	1	1	0		
1	0	0	1		
1	0	1	0		
1	1	0	1		
1	1	1	1		

Observou-se o comportamento do sinal V_Y ao longo do tempo (linha a ciano no gráfico), comparando os dados obtidos com os valores na tabela. Assim, em três intervalos de tempo diferentes, a linha que representa V_Y no gráfico cai abruptamente, aproximando-se do seu mínimo. No primeiro deles, $V_A = 5V$, $V_B = 0V$ e $V_C = 5V$, isto é, A = 1, B = 0 e C = 1. Este estado do circuito corresponde à 7^a linha da tabela acima, em que o valor da função toma o valor 0. Da mesma forma, quando $V_A = 5V$, $V_B = 5V$ e $V_C = 0V$, i.e A = 1, B = 1 e C = 0, a função Y toma o valor $V_C = 0V$, i.e $V_C = 0V$, $V_C = 0V$, i.e $V_C = 0V$,

3. Neste ponto foi considerado o número 6 em base decimal, 110 em base 2, em que A=1, B=1 e C=0.

Foram adicionadas *labels* ao circuito por forma a permitir leitura da tensão em certos pontos do gráfico e feita uma simulação *operating point* a partir do qual foi elaborada a seguinte tabela (*consultar ficheiro gate-CMOS-op.asc para observar posição das labels*).

VDD	5	٧
V(a)	5	>
V(b)	5	>
Vc	0	٧
V(!b)	3,18x10 ⁻⁹	>
V(!c)	5	>
V(j)	1,27 x10 ⁻⁸	>
V(g)	5	٧
V(k)	6,35x10 ⁻⁹	V

A partir dos valores obtidos na simulação foi possível estudar o funcionamento do circuito nas condições descritas.

Como VA = VB = $V\overline{C}$ =5V , MPA, MPB e MP \overline{C} estão OFF e MNA, MNA e MN \overline{C} estão ON. Como VC= $V\overline{B}$ =0, MPC e MP \overline{B} estão ON e MNC e MN \overline{B} estão OFF.

	MPA	MPB	MPC	MPB	
VGS (V)	V _A - VDD= 0V	V _b -VDD=0V	V _C -VDD= -5V	$V\bar{B}$ - VDD=-5V	$V\bar{C}$ - VDD= 0V
<i>VDS</i> (∨)	$V_k - VDD = -5V$	V _h -VDD=-5V	$V\bar{C}$ – VDD=0V	V _g – VDD=0V	$V_h - V_g = -5V$
Estado on/off	OFF	OFF	ON	ON	OFF
	MNA	MNB	MNC	MNB	MNC
<i>VGS</i> (∨)	V_{A} - V_{GND} =5 V	V _B - V _{GND} =5V	V _C -V _{GND} =0V	$V\overline{B} - V_k = 0V$	$V\overline{C}$ - $V_j = 5V$
<i>VDS</i> (∨)	$V_{GND} - V_I = 0V$	V_{GND} - $V\overline{B}$ =0 V	V_{GND} - $V\bar{C}$ =5 V	$V_k - V_j = 0V$	$V_k - V_j = 0V$
Estado on/off	ON	ON	OFF	OFF	ON

 $V_{Y} = 0 V$

Foi verificado que, neste caso, existe um e um só caminho entre GND ou VDD e Y.

Na rede pull-up, não existe nenhum caminho de VDD para Y, pois apesar de $MP\overline{B}$ estar ON, $MP\overline{C}$ não está. Como MPA também está OFF, conclui-se que não há caminho na rede pull-up que ligue VDD a Y.

Por outro lado, na rede pull-down MNA está ON, bem como $MN\overline{C}$, o que estabelece um caminho entre Y e GND.

Como não há ligação entre VDD e Y, por forma a criar uma diferença de potencial entre Y e VDD e V_{GND} é 0V, tem-se que V_Y =0V.

Portanto, no caso da palavra binária ABC = 101, para o circuito CMOS que implementa a função lógica $Y = \bar{A} + BC$ temos que Y=0. Constata-se também que o resultado obtido durante este procedimento está em conformidade com o esperado tendo em conta a tabela de verdade elaborada no ponto 2.

4.

Tornando o sinal de B e o sinal de C constantes ($V_B=V_C=0V$) é possível converter este circuito num circuito inversor, pois V_Y fica a depender somente do sinal de A e do comportamento dos transístores MPA e MNA. O sinal de A é composto por uma onda quadrada de período 1ms que toma valor $V_{A,max}=5V$ (valor lógico 1) e $V_{A,min}=0V$ (valor lógico 0). O gráfico que se apresenta de seguida expressa V_Y em função de $V_{A.}$ Observa-se a transferência de tensão antes, durante e depois do ponto de comutação:

vermelho: VY(VA)

Com o auxílio da ferramenta *cursor* do LTSpice, leram-se:

Valores de saída high e low

 $V_{OH}=5V$ $V_{OL}=0V$

Valores de entrada high e low

 $V_{IH} = 2,22V$ $V_{IL} = 1,93V$

Com base nesses valores, calculou-se margem de ruído para valores high e low

 $NM_H = V_{OH} - V_{IH} = 5-2,22 = 2,78V$

 $NM_L = V_{IL} - V_{OL} = 1,93 - 0 = 1,93V$

Do que se tem que : NM_H >NM_L

Ponto de Comutação

 $V_{SP} = 2,15V$

Este é o ponto do gráfico em que $V_Y = V_A$, isto é, em que **MNA** e **MPA** estão em saturação (|VGS| = |VDS|, i.e. VGS = VDS para **MNA**, e VGS = -VDS para **MPA**).

Neste caso, como esperado, a característica de transferência de tensão é bem diferente da de um inversor lógico ideal. P/ ex., o valor de entrada *high* é bastante inferior a 5V e o valor de entrada *low* é bastante superior a 0V. Mesmo assim, é possível considerar que antes de V_{IL} e depois de V_{IH} , os valores de V_{Y} correspondem a um valor lógico definido, sendo que entre esses dois valores isso não acontece. Assim, antes de V_{IL} , Y toma valor lógico 1 e depois de V_{IH} , Y toma o valor lógico 0. Também se observa que a velocidade de transferência de tensão se acentua de V_{A} = 0V a V_{SP} (o declive da curva de transferência aumenta bruscamente em módulo ligeiramente depois de V_{IL}) e diminui de V_{SP} a V_{A} = 5V (o declive da curva de transferência diminui bruscamente em módulo ligeiramente antes de V_{IH}).