経済分析入門 演習問題 略解 実験経済学I-III 大和担当分

問1)ア)

機体トラブル発生前:単位万円

売り手の分布	仕入れ値
売り手番号	1枚目、2枚目
1	3. 6, 8. 4
2	3. 6, 8. 4
3	3. 6, 8. 4
4	4.6, 8.4
5	4.6, 7.8
6	4.6, 7.8
7	5. 6, 7. 8
8	5. 6, 6. 2
9	5. 6, 6. 2
1 0	6. 2, 7. 8

買い手の分布	最高価格
買い手番号	1枚目、2枚目
1	10.8, 5.2
2	10.8, 5.2
3	10.8, 5.2
4	9.8, 6.2
5	9.8, 6.2
6	9.8, 6.2
7	8. 2, 7. 2
8	8. 2, 7. 2
9	8. 2, 7. 2
1 0	9.8, 8.2

仕入れ値の分布	
仕入れ値	量
3.6	3
4.6	3
5. 6	3
6. 2	3
7.8	4
8.4	4

最高価格の分布	
最高価格	量
10.8	3
9.8	4
8. 2	4
7. 2	3
6. 2	3
5. 2	3

供給表

価格	供給量
P > 8.4	20
P = 8.4	16-20
7.8 < P < 8.4	16
P = 7.8	12-16
6.2 < P < 7.8	12
P = 6.2	9-12
5.6 < P < 6.2	9
P = 5.6	6-9
4.6 < P < 5.6	6
P = 4.6	3-6
3.6< P < 4.6	3
P = 3.6	0-3
P < 3.6	0

需要表

価格	需要量
P < 5.2	20
P = 5.2	17-20
5. 2 < P < 6. 2	17
P = 6.2	14-17
6.2 < P < 7.2	14
P = 7.2	11-14
7.2 < P < 8.2	11
P = 8.2	7-11
8.2 < P < 9.8	7
P = 9.8	3-7
9.8 < P < 10.8	3
P = 10.8	0-3
P > 10.8	0

機体トラブルの影響:

・ 供給曲線:トラブル発生前=トラブル発生後

・ 需要曲線:トラブル発生前(実線)

トラブル発生後(点線): すべての買い手の最高価格が3.4減少。

イ) トラブル発生前:均衡価格=7.2 均衡数量=12 消費者余剰=(10.8-7.2)×3+(9.8-7.2)×4+(8.2-7.2)×4+(7.2-7.2)×1=25.2 生産者余剰=(7.2-3.6)×3+(7.2-4.6)×3+(7.2-5.6)×3+(7.2-6.2)×3=26.4 総余剰:消費者余剰+生産者余剰=51.6

ウ) トラブル発生後:均衡価格=5.6 均衡数量=7

消費者余剰= $(7.4-5.6)\times3+(6.4-5.6)\times4=8.6$

生産者余剰= $(5.6-3.6)\times3+(5.6-4.6)\times3+(5.6-5.6)\times1=9$

総余剰:消費者余剰+生産者余剰=17.6

エ)トラブル発生により、均衡価格、均衡取引数、消費者余剰、生産者余剰、総余剰 の値はすべて減少する。

参考:実験結果は東工大で2004年に実施したもの。

	トラブル発生前		トラブル発生後	
	理論予測	実験結果	理論予測	実験結果
平均価格	7. 2	7. 41	5. 6	5. 75
取引数	12	12	7	8
消費者余剰	25. 2	20. 7	8.6	6. 6
生産者余剰	26. 4	28. 9	9	10. 2
総余剰	51. 6	49. 6	17. 6	16.8

- ・「トラブル発生後」に関して、理論予測より実験結果の方が取引数は多いが、総余剰の値は小さくなっていることに注意しよう。
- ・「取引数を多くすること」と「総余剰を大きくすること」にはトレード・オフがある。

市場均衡より取引数が多くなることは可能だが、総余剰は小さくなってしまう!

経済分析入門 演習問題 略解 大和担当分

問2)

 $s_A=15, s_B=17$ 。各人が真の値を入札することが支配戦略となる。図による説明は省略。

問3)

ベイジアン・ナッシュ均衡:入札額=価値×2/3

確率	1/2	1/2
価値	6万円	3万円
入札額	4万円	2万円

ベイジアン・ナッシュ均衡であることの説明:省略。

方針:

ここでは、自分以外に入札者は二人いることに注意。

- ・他の二人の入札額が共に4万円である確率=1/4、
- ・他の二人の入札額が4万円と2万円である確率= $(1/4)\times2=1/2$ 、
- ・他の二人の入札額が共に2万円である確率=1/4、
- ・二人が同じ最高入札額を書いた場合:二人でジャンケン(勝つ確率=1/2)、
- ・三人が同じ最高入札額を書いた場合:三人でジャンケン(勝つ確率=1/3)、 であることに注意して、期待利得を計算する。
- 1) ケース1:自分の価値が6万円の場合.

各入札額での期待利得の値を比較し、「入札額=4万円」の時の期待利得の値が一番大きくなることを示す。

「入札額=4万円」の時の期待利得の値=

$$\frac{1}{4} \times \frac{1}{3} \times (6-4) + \frac{1}{2} \times \frac{1}{2} \times (6-4) + \frac{1}{4} \times (6-4) = \frac{7}{6}$$

「入札額=5万円」の時の期待利得の値=

$$\frac{1}{4} \times (6-5) + \frac{1}{2} \times (6-5) + \frac{1}{4} \times (6-5) = 1$$

「入札額=6万円」の時の期待利得の値=0

「入札額≥7万円」の時の期待利得の値<0

「入札額=3万円」の時の期待利得の値=
$$\frac{1}{4}$$
×0+ $\frac{1}{2}$ ×0+ $\frac{1}{4}$ ×(6-3)= $\frac{3}{4}$

「入札額=2万円」の時の期待利得の値=
$$\frac{1}{4}$$
×0+ $\frac{1}{2}$ ×0+ $\frac{1}{4}$ × $\frac{1}{3}$ (6-2)= $\frac{1}{3}$

「入札額=1万円」の時の期待利得の値=0

「入札額=0万円」の時の期待利得の値=0

2) ケース2:自分の価値が3万円の場合.

各入札額での期待利得の値を比較し、入札額=2万円である時の期待利得の値が一番大きくなることを示す。

「入札額=2万円」の時の期待利得の値=
$$\frac{1}{4}$$
×0+ $\frac{1}{2}$ ×0+ $\frac{1}{4}$ × $\frac{1}{3}$ ×(3-2)= $\frac{1}{12}$

「入札額=1万円」の時の期待利得の値=0

「入札額=0万円」の時の期待利得の値=0

「入札額=3万円」の時の期待利得の値=0

「入札額≥4万円」の時の期待利得の値<0