<u>Help</u>

sandipan_dey >

<u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Unit 1: Functions of two variab... / Lecture 1: Level curves and partial derivati...

(1)

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

44:55:21

Explore

Partial derivatives

Start of transcript. Skip to the end.

PROFESSOR: So we have a notation.

This is a curly d.

And it is not a straight d, and it is not a delta.

It's a d that kind of curls backwards

And the way you have this symbol is "partial".

0:00 / 0:00

▶ 2.0x

X 0

cc s

66

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u> <u>Download Text (.txt) file</u>

In single variable calculus, the derivative of a function f(x) is the slope of the tangent line at x, which is defined by the following limit:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$
 (2.8)

Note: The notation f'(x) and the notation $\frac{df}{dx}$ both describe the derivative of f with respect to x.

Question: How do we define a derivative for a function of more than one variable?

For a function f(x,y), we can take what are called **partial derivatives** of the function with respect to each variable. For example, to compute the derivative of f(x,y) with respect to x, we treat y as a constant and differentiate each term with respect to x only. Formally, the definition is as follows:

Definition 10.1 The **partial derivative of** $f\left(x,y\right)$ **with respect to** x is defined by

$$f_x(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}.$$
 (2.9)

The Leibniz notation for this is $\frac{\partial f}{\partial x}$.

Definition 10.2 The **partial derivative of** $f\left(x,y\right)$ **with respect to** y is defined by

$$f_{y}\left(x,y\right) = \lim_{\Delta y \to 0} \frac{f\left(x,y + \Delta y\right) - f\left(x,y\right)}{\Delta y}.$$
(2.10)

The Leibniz notation for this is $\dfrac{\partial f}{\partial y}$.

▼ Spoiler: Extension to higher dimension

We can extend the definition of partial derivatives to functions of more than two variables as follows.

Definition 10.3 For a function in n dimensions $f(x_1, x_2, \ldots, x_n)$, the partial derivative with respect to the variable x_k is defined by

$$f_{x_k} = \lim_{\Delta x_k \to 0} \frac{f(x_1, \dots, x_k + \Delta x_k, \dots, x_n) - f(x_1, \dots, x_k, \dots, x_n)}{\Delta x_k}$$
 (2.11)

for $1 \leq k \leq n$. The Leibniz notation for this is $\dfrac{\partial f}{\partial x_k}$.

<u>Hide</u>

10. Partial derivatives: definitions

Hide Discussion

Topic: Unit 1: Functions of two variables / 10. Partial derivatives: definitions

Add a Post

Show all posts 💙	by recent activity 🗸
Thanks for the Spoiler! I had always heard it was easy to extend to higher dimensions beyond 3 but this is the first time I have seen a clear e	1 xplanation. Tha
Thank you for the visual approach I did Prof. Auroux's class on OCW, and I loved it. It is very analytical in nature though. Not sure about this entire class	yet, but so far I

< Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

<u>Careers</u>

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>