Hochschild–Kostant–Rosenberg decompositions for surfaces

Pieter Belmans

		$HH^1(S)$		$HH^2(S)$			$HH^3(S)$	
К	surface S	$h^0(T_S)$	$h^1(\mathcal{O}_S) = q$	$h^0(\omega_S^\vee)$	$h^1(T_S)$	$h^2(\mathcal{O}_S) = p_g$	$h^1(\omega_S^{\vee})$	$h^2(T_S)$
8	\mathbb{P}^2	8	0	10	0	0	0	0
	$\mathbb{P}^1\times\mathbb{P}^1$	6	0	9	0	0	0	0
	\mathbb{F}_2	7	0	9	1	0	0	0
	\mathbb{F}_n for $n \ge 3$	n+5	0	n+6	n-1	0	n-3	0
	$\operatorname{Bl}_1\mathbb{P}^2$	6	0	9	0	0	0	0
	$\operatorname{Bl}_2\mathbb{P}^2$	4	0	8	0	0	0	0
	$\operatorname{Bl}_3\mathbb{P}^2$	2	0	7	0	0	0	0
	$\operatorname{Bl}_4\mathbb{P}^2$	0	0	6	0	0	0	0
	$\operatorname{Bl}_5\mathbb{P}^2$	0	0	5	2	0	0	0
	$\operatorname{Bl}_6\mathbb{P}^2$	0	0	4	4	0	0	0
	$\operatorname{Bl}_7\mathbb{P}^2$	0	0	3	6	0	0	0
	$\operatorname{Bl}_8\mathbb{P}^2$	0	0	2	8	0	0	0
0	abelian surface	2	2	1	4	1	0	2
	bielliptic surface		1			0		
	Enriques surface	0	0	0	10	0	0	
	K3 surface	0	0	1	20	1	0	0

2 ...