Регрессионный анализ, часть 2

Математические методы в зоологии - на R

Марина Варфоломеева

осень 2015

- 1 Множественная линейная регрессия
- 2 Условия применимости линейной регрессии
- Проверка условий применимости линейной регрессии

Вы сможете

- Подобрать модель множественной линейной регрессии, проверить ее валидность и интерпретировать коэффициенты при разных предикторах.
- Проверить условия применимости линейной регрессии при помощи анализа остатков

Множественная линейная регрессия

Пример: птицы Австралии

Зависит ли обилие птиц в лесах Австралии от характеристик леса? (Loyn, 1987, пример из кн. Quinn, Keough, 2002)

56 лесных участков в юго-восточной Виктории, Австралия

- 110area Площадь леса, га
- 110dist Расстояние до ближайшего леса, км (логарифм)
- 1101dist Расстояние до ближайшего леса большего размера, км (логарифм)
- yr.isol Продолжительности изоляции, лет
- abund Обилие птиц

Открываем данные

```
# установите рабочую директорию
# birds <- read.delim(file = "loyn.csv") # us .csv
library(readxl)
birds <- read_excel("loyn.xls", sheet = 1)</pre>
str(birds)
```

```
Classes 'tbl df', 'tbl' and 'data.frame': 56 obs. of 21 variables:
 $ abund
          : num 5.3 2 1.5 17.1 13.8 14.1 3.8 2.2 3.3 3 ...
 $ area
          : num 0.1 0.5 0.5 1 1 1 1 1 1 1 ...
 $ vr.isol : num 1968 1920 1900 1966 1918 ...
 $ dist : num 39 234 104 66 246 234 467 284 156 311 ...
 $ ldist : num
                 39 234 311 66 246 ...
 $ graze : num 2 5 5 3 5 3 5 5 4 5 ...
 $ alt
          : num 160 60 140 160 140 130 90 60 130 130 ...
 $ 110dist : num 1.59 2.37 2.02 1.82 2.39 ...
 $ 1101dist: num 1.59 2.37 2.49 1.82 2.39 ...
 $ 110area : num -1 -0.301 -0.301 0 0 ...
 $ cvr.isol: num 18.2 -29.8 -49.8 16.2 -31.8 ...
 $ cl10area: num
                 -1.932 -1.233 -1.233 -0.932 -0.932 ...
 $ cgraze : num -0.9821 2.0179 2.0179 0.0179 2.0179 ...
 $ resid1 : num
                 -4.22 -1.03 -1.86 2.28 7.14 ...
 $ predict1: num
                 9.52 3.03 3.36 14.82 6.66 ...
                 -16.49 -3.28 -6.69 -1.78 4.71 ...
 $ arearesv: num
 $ arearesx: num
                 -1.642 -0.3 -0.647 -0.543 -0.326 ...
                 $ grazresy: num
  Марина Варфоломеева
                          Регрессионный анализ, часть 2
                                                              осень 2015
```

Задача: запишите формулу модели регрессии

Как зависит обилие птиц от характеристик леса? Запишите в обозначениях R модель множественной линейной регрессии

$$Y_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + b_3 x_{3i} + b_4 x_{4i}$$

Используйте названия переменных вместо $x_{1i}-x_{4i}$

- abund Обилие птиц
- 110area Площадь леса, га
- 110dist Расстояние до ближайшего леса, км (логарифм)
- 1101dist Расстояние до ближайшего леса большего размера, км (логарифм)
- vr.isol Продолжительности изоляции, лет

Решение

В обозначениях R модель множественной линейной регрессии

$$abund \sim l10$$
area $+$ $l10$ dist $+$ $l10$ ldist $+$ $yr.$ isol

Названия переменных:

- abund Обилие птиц
- 110area Площадь леса, га
- 110dist Расстояние до ближайшего леса, км (логарифм)
- 1101dist Расстояние до ближайшего леса большего размера, км (логарифм)
- yr.isol Продолжительности изоляции, лет

Подбираем параметры модели и проверяем валидность с помощью t-критерия

```
bird_lm <- lm(abund ~ l10area + l10dist + l10ldist + yr.isol, data = birds)
summary(bird_lm)</pre>
```

```
# Call:
 lm(formula = abund ~ l10area + l10dist + l10ldist + yr.isol,
#
    data = birds)
 Residuals:
    Min 1Q Median 3Q
                               Max
 -16.663 -3.546 0.086 2.884 16.530
#
# Coefficients:
            Estimate Std. Error t value Pr(>|t|)
#
# (Intercept) -224.4246 74.8504 -3.00 0.0042 **
# 110area 9.2348 1.2760 7.24 0.0000000023 ***
# 110dist -0.7046 2.7077 -0.26 0.7957
# 110ldist -1.5935 2.0954 -0.76 0.4505
# yr.isol 0.1236 0.0379 3.26 0.0020 **
 Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
#
                                           4□ > 4□ > 4□ > 4□ > 4□ > □
```

 $H_0: \beta_i = 0$

#

Задача: Запишите уравнение множественной линейной регрессии

Запишите уравнение множественной линейной регрессии

В качестве подсказки:

```
# (Intercept) 110area 110dist 1101dist yr.iso1
# -224.425 9.235 -0.705 -1.593 0.124
bird_lm$call
```

```
# lm(formula = abund ~ l10area + l10dist + l10ldist + yr.isol,
# data = birds)
```

Уравнение множественной линейной регрессии

coef(bird_lm)

```
# (Intercept) 110area 110dist 1101dist yr.isol
# -224.425 9.235 -0.705 -1.593 0.124
```

Уравнение регрессии:

abund = - 224.42 + 9.23 l10area - 0.70 l10dist - 1.59 l10ldist + 0.12 yr.isol более формальная запись:

$$Y = -224.42 + 9.23 X1 - 0.70 X2 - 1.59 X3 + 0.12 X4$$

Интерпретация коэффициентов регрессии

```
coef(bird_lm)
```

```
# (Intercept) 110area 110dist 1101dist yr.isol
# -224.425 9.235 -0.705 -1.593 0.124
```

Обычные коэффициенты

• величина зависит от единиц измерения

Сравнение влияния разных факторов

```
# (Intercept) scale(110area) scale(110dist) scale(110ldist)
# 19.514 7.502 -0.292 -0.916
# scale(yr.isol)
# 3.161
```

Бета-коэффициенты

- измерены в стандартных отклонениях
- относительная оценка влияния фактора
- можно сравнивать

Задача: Сравните влияние разных факторов

Определите по значениям beta-коэффициентов, какие факторы сильнее всего влияют на обилие птиц

```
#
# Call:
 lm(formula = abund ~ scale(110area) + scale(110dist) + scale(110ldist) +
     scale(vr.isol), data = birds)
#
 Residuals:
     Min
             10 Median
                           30
                                 Max
 -16.663 -3.546 0.086 2.884 16.530
#
 Coefficients:
#
               Estimate Std. Error t value Pr(>|t|)
                           0.879 22.20
 (Intercept)
               19.514
                                             < 2e-16 ***
# scale(110area) 7.502 1.037 7.24 0.0000000023 ***
# scale(110dist) -0.292 1.120 -0.26
                                              0.796
 scale(110ldist) -0.916 1.205 -0.76
                                              0.450
 scale(vr.isol) 3.161
                            0.971
                                    3.26
                                              0.002 **
 Signif. codes:
               0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
#
 Residual standard error: 6.58 on 51 degrees of freedom
```

summary(scaled_bird_lm)

Оценка качества подгонки модели

summary(bird_lm)\$adj.r.squared

[1] 0.625

Скорректированный R^2

• Учитывает число переменных в модели

Условия применимости линейной регрессии

Условия применимости линейной регрессии

Условия применимости линейной регрессии должны выполняться, чтобы тестировать гипотезы

- Независимость
- Пинейность
- Пормальное распределение
- Томогенность дисперсий
- Отсутствие колинеарности предикторов (для множественной регрессии)

1. Независимость

- Значения у_і должны быть независимы друг от друга
 - берегитесь псевдоповторностей и автокорреляций (например, временных)
- Контролируется на этапе планирования
- Проверяем на графике остатков

900

2. Линейность связи

- проверяем на графике рассеяния исходных данных
- проверяем на графике остатков

Остаточная изменчивость (Рис. из кн. Diez et al., 2010, стр_₹ 332, рис_₹ 7.8).

Что бывает, если неглядя применять линейную регрессию

Квартет Энскомба - примеры данных, где регрессии одинаковы во всех случаях (Anscombe, 1973)

$$y_i = 3.0 + 0.5x_i$$

$$r^2 = 0.68$$

$$H_0: \beta_1 = 0, t = 4.24, p = 0.002$$

Квартет Энскомба (рис. из кн. Quinn, Keough, 2002, стр. 97, рис. 5.9

3. Нормальное распределение остатков

Нужно, т.к. в модели $Y_i=eta_0+eta x_i+\epsilon_i$ зависимая переменная $Y\sim \mathit{N}ig(0,\sigma^2ig)$, а значит $\epsilon_i\sim\mathit{N}ig(0,\sigma^2ig)$

- Нужно для тестов параметров, а не для подбора методом наименьших квадратов
- Нарушение не страшно тесты устойчивы к небольшим отклонениям от нормального распределения
- Проверяем распределение остатков на нормально-вероятностном графике

Условие нормальности и гомогенность дисперсий (рис. 11.4 из кн. Watkins et al., 2008, стр. 743)

4. Гомогенность дисперсий

Нужно, т.к. в модели $Y_i=\beta_0+\beta x_i+\epsilon_i$ зависимая переменная $Y\sim N(0,\sigma^2)$ и дисперсии $\sigma_1^2=\sigma_2^2=...=\sigma_i^2$ для каждого Y_i Но, поскольку $\epsilon_i\sim N(0,\sigma^2)$, можно проверить равенство дисперсий остатков ϵ_i

- Нужно и важно для тестов параметров
- Проверяем на графике остатков по отношению к предсказанным значениям
- Можно сделать тест С Кокрана (Cochran's C), но только если несколько значений у для каждого х

Условие нормальности и гомогенность дисперсий (рис. 11.4 из кн. Watkins et al., 2008, стр. 743)

Диагностика регрессии по графикам остатков

Диагностика регрессии по графикам остатков (рис. 8.5 d из кн. Logan, 2010, стр. 174)

- (а) все условия выполнены
- (b) разброс остатков разный (wedge-shaped pattern)
- (c) разброс остатков одинаковый, но нужны дополнительные предикторы
- (**d)** к нелинейной зависимости применили линейную регрессию

Задача: Проанализируйте графики остатков

Скажите пожалуйста

- какой регрессии соответствует какой график остатков?
- все ли условия применимости регрессии здесь выполняются?
- назовите случаи, в которых можно и нельзя применить линейную регрессию?

Display 3.84 Four scatterplots.

Display 3.85 Four residual plots.

Графики регрессий и остатков (рис. 3.84-3.85 из кн. Watkins et al. 2008, стр. 177)

осень 2015

Решение

- А-І нелинейная связь нельзя;
- В-ІІ все в порядке, можно;
- С-III все в порядке, можно;
- D-IV синусоидальный тренд в остатках, нарушено условие независимости или зависимость нелинейная - нельзя.

Display 3.84 Four scatterplots.

Display 3.85 Four residual plots.

Графики регрессий и остатков (рис. 3.84-3.85 из кн. Watkins et al. 2008, стр. 177)

Какие наблюдения влияют на ход регрессии больше других?

Влиятельные наблюдения (рис. 5.8 из кн. Quinn, Keough, 2002, стр. 96)

осень 2015

Какие наблюдения влияют на ход регрессии больше других?

Влиятельные наблюдения, выбросы, outliers

- большая абсолютная величина остатка
- близость к краям области определения (leverage - рычаг, сила; иногда называют hat)

Какие наблюдения влияют на ход регрессии больше других?

Влиятельные наблюдения, выбросы, outliers

- большая абсолютная величина остатка
- близость к краям области определения (leverage - рычаг, сила; иногда называют hat)

На графике точки и линии регрессии построенные с их включением

- 1 не влияет
- 2 умеренно влияет (большой остаток, малая сила влияния)
- 3 очень сильно влияет (большой остаток, большая сила влияния)

Как оценить влиятельность наблюдений?

Pасстояние Кука (Cook's d, Cook, 1977)

- Учитывает одновременно величину остатка и близость к краям области определения (leverage)
- Условное пороговое значение: выброс, если $d \geq 4/(N-k-1)$, где N объем выборки, k число предикторов.

Как оценить влиятельность наблюдений?

Pасстояние Кука (Cook's d, Cook, 1977)

- Учитывает одновременно величину остатка и близость к краям области определения (leverage)
- Условное пороговое значение: выброс, если $d \geq 4/(N-k-1)$, где N объем выборки, k число предикторов.

Дж. Фокс советует не обращать внимания на пороговые значения (Fox, 1991)

Влиятельные наблюдения (рис. 5.8 из кн. Quinn, Keough, 2002, стр. 96)

Что делать с влиятельными точками и с выбросами?

- Проверить, не ошибка ли это.
 Если нет, не удалять обсуждать!
- Проверить, что будет, если их исключить из модели

Колинеарность предикторов

Колинеарность

Когда предикторы коррелируют друг с другом, т.е. не являются взаимно независимыми

Последствия

- Модель неустойчива к изменению данных
- При добавлении или исключении наблюдений может меняться оценка и знак коэффициентов

Что делать с колинеарностью?

- Удалить из модели избыточные предикторы
- Получить вместо скоррелированных предикторов один новый комбинированный при помощи метода главных компонент

Проверка на колинеарность

Толерантность (tolerance)

 $1-\mathit{R}^2$ регрессии данного предиктора от всех других $T \leq 0.25$ - колинеарность

Показатель инфляции для дисперсии

(коэффициент распространения дисперсии, Variance inflation factor, VIF)

$$VIF = 1/T$$

 $\sqrt{VIF} > 2$ - коллинеарность

Проверка условий применимости линейной регрессии

Как проверить условия применимости?

- Величина остатков, влиятельность наблюдений, тренды на графике остатков от предсказанных значений
- Форма распределения остатков нормальновероятностный график
- Колинеарность предикторов толерантность и показатель инфляции для дисперсии

Для анализа остатков выделим нужные данные в новый датафрейм

```
library(ggplot2) # мам есть функция fortify()
bird_diag <- fortify(bird_lm)
head(bird_diag, 2)
```

```
# abund l10area l10dist l10ldist yr.isol .hat .sigma .cooksd
# 1 5.3 -1.000 1.59 1.59 1968 0.1662 6.64 0.000383
# 2 2.0 -0.301 2.37 2.37 1920 0.0853 6.63 0.003242
# .fitted .resid .stdresid
# 1 5.89 -0.589 -0.098
# 2 4.62 -2.623 -0.417
```

Кроме abund, 110area, 110dist, 110ldist и yr.isol нам понадобятся

- .cooksd расстояние Кука
- .fitted предсказанные значения
- resid ОСТАТКИ
- stdresid Стандартизованные остатки

Задача: Постройте график зависимости стандартизованных остатков от предсказанных значений

Используйте данные из bird_diag

```
ggplot()
aes()
geom_point()
```

Стандартизованные остатки

$$\frac{y_i - \hat{y}_i}{\sqrt{MS_e}}$$

- можно сравнивать между регрессиями
- можно сказать, какие остатки большие, какие нет
 - < 2SD обычные
 - \circ > 3*SD* редкие

Решение:

График зависимости стандартизованных остатков от предсказанных значений

```
theme_set(theme_bw(base_size = 8) + theme(legend.key = element_blank()))
gg_resid <- ggplot(data = bird_diag, aes(x = .fitted, y = .stdresid))
gg_resid + geom_point()</pre>
```


График стандартизованных остатков от предсказанных значений

График станет информативнее, если кое-что добавить

```
gg_resid <- gg_resid + geom_point(aes(size = .cooksd)) + # расстояние Кум geom_smooth(method=''loess'', se = FALSE) + # линия тренда geom_hline(yintercept = 0) # горизонтальная линия y = 0 gg_resid
```


Можно подписать остатки больше двух стандартных отклонений на предыдущем графике

Стандартизованные остатки $\leq 2SD$ - обычные, > 3SD - редкие

```
# Создаем логический вектор, где TRUE, если стандартизованный остаток больше 2
f_outlier <- abs(bird_diag$.stdresid) > 2
# Создаем будущие ярлыки
labs <- ifelse(test = f_outlier,</pre>
               yes = row(bird_diag), # Ecau test == TRUE
               no = '"') # Ecau test == FALSE
gg_resid_lab <- gg_resid +
  geom_text(aes(label = labs), hjust=2, colour = "blue", size = 2)
gg_resid_lab
```


Интерпретируем график стандартизованных остатков от предсказанных значений

Какие выводы можно сделать по графику остатков?

Интерпретируем график стандартизованных остатков от предсказанных значений

Какие выводы можно сделать по графику остатков?

- Большая часть стандартизованных остатков в пределах двух стандартных отклонений. Есть отдельные влиятельные наблюдения, которые нужно проверить
- Разброс остатков не совсем одинаков. Похоже на гетерогенность дисперсий
- Тренда среди остатков нет

Нормальновероятностный график стандартизованных остатков

Используется, чтобы оценить форму распределения. Если точки лежат на одной прямой - нормальное распределение.

```
mean_val <- mean(bird_diag$.stdresid)
sd_val <- sd(bird_diag$.stdresid)
ggplot(bird_diag, aes(sample = .stdresid)) + geom_point(stat = ''qq'') +
geom_abline(intercept = mean_val, slope = sd_val) + # точки должны быть здесь
labs(x = ''Квантили стандартного нормального распределения'', y = ''Квантили набора
```


Интерпретируем нормальновероятностный график

Какие выводы можно сделать по нормальновероятностному графику?

Интерпретируем нормальновероятностный график

Какие выводы можно сделать по нормальновероятностному графику?

• Отклонений от нормального распределения нет

Проверим, есть ли в этих данных колинеарность предикторов

```
library(car)
vif(bird_lm) # variance inflation factors
  110area 110dist 110ldist yr.isol
#
     1.37
              1.60
                       1.84
                                1.20
sqrt(vif(bird_lm)) > 2 # есть ли проблемы?
  110area 110dist 110ldist vr.isol
#
    FALSE.
             FALSE
                      FALSE.
                               FALSE
1/vif(bird lm) # tolerance
```

0.732

110area 110dist 110ldist vr.isol

0.627

0.542

0.835

Проверим, есть ли в этих данных колинеарность предикторов

```
library(car)
vif(bird_lm) # variance inflation factors
  110area 110dist 110ldist yr.isol
     1.37
              1.60
                       1.84
                                1.20
sqrt(vif(bird_lm)) > 2 # есть ли проблемы?
  110area 110dist 110ldist vr.isol
#
    FALSE.
             FALSE
                      FALSE.
                               FALSE
1/vif(bird lm) # tolerance
```

Все в порядке, предикторы независимы

110area 110dist 110ldist vr.isol

0.542

0.627

0.732

#

0.835

Take home messages

- Для сравнения влияния разных предикторов можно использовать бета-коэффициенты
- Условия применимости линейной регрессии должны выполняться, чтобы тестировать гипотезы
 - Независимость
 - Пинейность
 - В Нормальное распределение
 - Томогенность дисперсий
 - ⑤ Отсутствие колинеарности предикторов (для множественной регрессии)

Дополнительные ресурсы

Учебники

- Quinn, Keough, 2002, pp. 92-98, 111-130
- Open Intro to Statistics: Chapter 8. Multiple and logistic regression, pp. 354-367.
- Logan, 2010, pp. 170-173, 208-211
- Sokal, Rohlf, 1995, pp. 451-491, 609-653
- Zar, 2010, pp. 328-355, 419-439

Упражнения для тренировки

- OpenIntro Labs, Lab 7: Introduction to linear regression (Осторожно, они используют базовую графику а не ggplot)
 - Обычный вариант, после упражнения 4
 - Интерактивный вариант на Data Camp, после вопроса 4
- OpenIntro Labs, Lab 8: Multiple linear regression
 - Обычный вариант, до упражнения 11
 - Интерактивный вариант на Data Camp, до вопроса 8