Classificação das álgebras de divisão sobre os reais

Gabriel Alves de Lima *
Licenciatura em Matemática - UFPR

gabalvesdelima@gmail.com

Prof. Maria Eugênia Martin (Orientadora) Departamento de Matemática - UFPR

eugenia@ufpr.br

Palavras-chave: classificação de álgebras, álgebras de divisão, álgebras alternativas.

Resumo:

Classificar objetos de certa classe é um dos problemas fundamentais da matemática moderna. Uma coleção de grande interesse para a matemática é a coleção de sistemas numéricos munidos de uma noção de divisão. No contexto da álgebra moderna, tais objetos são conhecidos como álgebras de divisão.

Uma álgebra A sobre um corpo \mathbb{K} é uma *álgebra de divisão* se para todo par de elementos $a,b\in A$ com $b\neq 0$, existe um único $x\in A$ tal que a=bx e um único $y\in A$ tal que a=yb. No caso em que a álgebra em questão for associativa, a definição é equivalente à dizer que todo elemento não nulo em A possui um inverso multiplicativo.

Para álgebras associativas sobre \mathbb{R} , o exemplo mais trivial é o próprio corpo dos números reais. É sabido que o corpo dos complexos \mathbb{C} é uma extensão de \mathbb{R} com $\dim_{\mathbb{R}} \mathbb{C} = 2$. Será possível definir um produto num espaço vetorial de dimensão 3 sobre os reais de modo que se verifiquem os axiomas de corpo? O matemático irlandês W. Hamilton por muitos anos buscou uma solução para tal problema, mas não parecia ser possível obter um produto que desse origem à noção de divisão. Em 1843 surge a ideia de ao invés de dimensão 3, estender a construção para uma álgebra de dimensão 4. Hamilton acabara de descobrir os números hoje conhecidos como quatérnios, que em sua homenagem levam a notação \mathbb{H} . Dessa forma, Hamilton conseguiu generalizar os complexos, entretanto, acabou perdendo a comutatividade da multiplicação.

Em 1877, o matemático alemão F. Frobenius provou que estes são os únicos exemplos de álgebras associativas com divisão, completando assim a classificação das mesmas. Este fato é conhecido na literatura como "Teorema de Frobenius":

Teorema de Frobenius (1877): As únicas álgebras com divisão sobre os reais são (a menos de isomorfismo) o corpo dos números reais, o corpo dos números complexos e a álgebra dos quatérnios reais.

^{*}Bolsista do Programa PET-Matemática

Deixando a hipótese de associatividade de lado, é possível estender a construção de Hamilton para dimensão 8 obtendo-se assim a álgebra dos octônios $\mathbb O$, a qual obedece uma forma mais fraca de associatividade, as chamadas leis alternativas: $x(xy) = x^2y$ e $(yx)x = yx^2$. De modo geral, álgebras que satisfazem tais leis são chamadas de *álgebras alternativas*

Generalizando o resultado de Frobenius, pode-se provar também que toda álgebra alternativa de divisão sobre $\mathbb R$ com dimensão finita é isomorfa aos reais, complexos, quatérnios ou octônios.

O objetivo principal deste trabalho é estudar a construção das álgebras de divisão reais, provar a impossibilidade de existência de uma álgebra de divisão real de dimensão 3 e além disso, apresentar as ferramentas necessárias para entender o teorema de Frobenius e sua generalização para o caso de álgebras alternativas.

Referências:

CURTIS, M.; PLACE, P. **Abstract Linear Algebra**. Universitext, Springer New York, 1990.

FELZENSZWALB, B. Álgebras de Dimensão Finita. Rio de Janeiro: IMPA, 1979.

ONETO, A. **Alternative real division algebras of finite dimension**. Divulgaciones Matemáticas, 10 (2002), pp. 161–169.