Nearest neighbor classifiers

Example: OCR for digits

- 1. Classify images of handwritten digits by the actual digits they represent.
- 2. Classification problem: $\mathcal{Y} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ (a discrete set).

1/21

Nearest neighbor (NN) classifier

Given: labeled examples $D := \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$

Predictor: $\hat{f}_D \colon \mathcal{X} \to \mathcal{Y}$

On input x,

- 1. Find the point x_i among $\{x_i\}_{i=1}^n$ that is "closest" to x (the nearest neighbor).
- 2. Return y_i .

How to measure distance?

A default choice for distance between points in \mathbb{R}^d is the *Euclidean distance* (also called ℓ_2 distance):

$$\|oldsymbol{u} - oldsymbol{v}\|_2 \ \coloneqq \ \sqrt{\sum_{i=1}^d (u_i - v_i)^2}$$

(where $u = (u_1, u_2, \dots, u_d)$ and $v = (v_1, v_2, \dots, v_d)$).

Grayscale $28{\times}28$ pixel images.

Treat as *vectors* (of 784 real-valued *features*) that live in \mathbb{R}^{784} .

Example: OCR for digits with NN classifier

Error rate

► Classify images of handwritten digits by the digits they depict.

0123456789

- $\mathbf{\mathcal{X}} = \mathbb{R}^{784}, \ \mathbf{\mathcal{Y}} = \{0, 1, \dots, 9\}.$
- ▶ Given: labeled examples $D := \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \subset \mathcal{X} \times \mathcal{Y}$.
- ▶ Construct NN classifier \hat{f}_D using D.
- ▶ Question: Is this classifier any good?

ightharpoonup Error rate of classifier f on a set of labeled examples D:

$$\operatorname{err}_D(f) := \frac{\# \text{ of } (x,y) \in D \text{ such that } f(x) \neq y}{|D|}$$

(i.e., the fraction of D on which f disagrees with paired label).

- ightharpoonup Sometimes, we'll write this as err(f, D).
- ▶ **Question**: What is $err_D(\hat{f}_D)$?

5 / 21

6 10

A better way to evaluate the classifier

- ▶ Split the labeled examples $\{(x_i, y_i)\}_{i=1}^n$ into two sets (randomly).
 - ► Training data S.
 - ► Test data T.
- lacktriangle Only use training data S to construct NN classifier \hat{f}_S .
 - ▶ Training error rate of \hat{f}_S : err_S(\hat{f}_S) = 0%.
- Use test data T to evaluate accuracy of \hat{f}_S .
 - ▶ Test error rate of \hat{f}_S : err $_T(\hat{f}_S) = 3.09\%$.

Is this good?

Diagnostics

► Some mistakes made by the NN classifier (test point in *T*, nearest neighbor in *S*):

► First mistake (correct label is "2") could've been avoided by looking at the *three* nearest neighbors (whose labels are "8", "2", and "2").

Z

8 Z Z

test point three nearest neighbors

k-nearest neighbors classifier

Effect of k

Given: labeled examples $D := \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$ Predictor: $\hat{f}_{D,k} \colon \mathcal{X} \to \mathcal{Y}$:

On input x,

Choosing k

- 1. Find the k points $x_{i_1}, x_{i_2}, \ldots, x_{i_k}$ among $\{x_i\}_{i=1}^n$ "closest" to x (the k nearest neighbors).
- 2. Return the plurality of $y_{i_1}, y_{i_2}, \dots, y_{i_k}$.

(Break ties in both steps arbitrarily.)

- ► Smaller *k*: smaller training error rate.
- ▶ Larger *k*: higher training error rate, but predictions are more "stable" due to voting.

OCR digits classification

k	1	3	5	7	9	
Test error rate	0.0309	0.0295	0.0312	0.0306	0.0341	

9 / 21

Better distance functions

- The hold-out set approach
 - 1. Pick a subset $V \subset S$ (hold-out set, a.k.a. validation set).
 - 2. For each $k \in \{1, 3, 5, \dots\}$:
 - ▶ Construct k-NN classifier $\hat{f}_{S \setminus V,k}$ using $S \setminus V$.
 - ▶ Compute error rate of $\hat{f}_{S \setminus V,k}$ on V ("hold-out error rate").
 - 3. Pick the k that gives the smallest hold-out error rate.

(There are many other approaches.)

- ► Strings: edit distance
 - $\operatorname{dist}(u,v) = \# \operatorname{insertions/deletions/mutations}$ needed to change u to v .
- ► Images: shape context distance
 - $\operatorname{dist}(u,v) \ = \ \operatorname{how}$ much "warping" is required to change u to v .
- ► Audio waveforms: dynamic time warping
- ► Etc.

OCR digits classification

Distance	ℓ_2	ℓ_3	Tangent	Shape
Test error rate	3.09%	2.83%	1.10%	0.63%

.

Bad features

Questions of interest

Caution: nearest neighbor classifier can be broken by bad/noisy features!

- 1. How good is the classifier learned using NN on your problem?
- 2. Is NN a good learning method in general?

3 / 21

14/01

Statistical learning theory

Prediction error rate

Basic assumption (main idea):

labeled examples $\{(x_i, y_i)_{i=1}^n$ come from same source as future examples.

More formally:

 $\{(x_i,y_i)\}_{i=1}^n$ is an *i.i.d.* sample from a probability distribution P over $\mathcal{X} \times \mathcal{Y}$.

lacktriangle Define the *(true) error rate* of a classifier $f\colon \mathcal{X} \to \mathcal{Y}$ w.r.t. P to be

$$\operatorname{err}_P(f) := P(f(X) \neq Y)$$

where (X,Y) is a pair of random variables with joint distribution P (i.e., $(X,Y) \sim P$).

- lackbox Let \hat{f}_S be classifier trained using labeled examples S.
- ightharpoonup True error rate of \hat{f}_S is

$$\operatorname{err}_{P}(\hat{f}_{S}) := P(\hat{f}_{S}(X) \neq Y).$$

 \blacktriangleright We cannot compute this without knowing P.

Estimating the true error rate

- ▶ Suppose $\{(x_i, y_i)_{i=1}^n$ (assumed to be an i.i.d. sample from P) is randomly split into S and T, and \hat{f}_S is based only on S.
- \hat{f}_S and T are independent, and the test error rate of \hat{f}_S is an unbiased estimate of the true error rate of \hat{f}_S .
- ▶ If |T| = m, then the test error rate $\operatorname{err}_T(\hat{f}_S)$ of \hat{f}_S (conditional on S) is a binomial random variable (scaled by 1/m):

$$m \cdot \operatorname{err}_{T}(\hat{f}_{S}) \mid S \sim \operatorname{Bin}(m, \operatorname{err}_{P}(\hat{f}_{S})).$$

- ► The expected value of $\operatorname{err}_T(\hat{f}_S)$ is $\operatorname{err}_P(\hat{f}_S)$. (This means that $\operatorname{err}_T(\hat{f}_S)$ is an unbiased estimator of $\operatorname{err}_P(\hat{f}_S)$.)
- ▶ The standard deviation of $\mathbf{err}_T(\hat{f}_S)$ is at most $\frac{1}{\sqrt{m}}$.

Limits of prediction

- ▶ Binary classification: $\mathcal{Y} = \{0, 1\}$.
- ▶ Probability distribution P over $\mathcal{X} \times \{0,1\}$; let $(X,Y) \sim P$.
- ightharpoonup Think of P as being comprised of two parts.
 - 1. Marginal distribution μ of X (a distribution over \mathcal{X}).
 - 2. Conditional distribution of Y given X = x, for each $x \in \mathcal{X}$:

$$\eta(x) := P(Y = 1 \mid X = x).$$

- ▶ If $\eta(x)$ is 0 or 1 for all $x \in \mathcal{X}$ where $\mu(x) > 0$, then optimal error rate is zero (i.e., $\min_f \operatorname{err}_P(f) = 0$).
- ▶ Otherwise it is non-zero.

17 / 21

Bayes optimality

▶ What is the classifier with smallest true error rate?

$$f^*(x) := \begin{cases} 0 & \text{if } \eta(x) \le 1/2; \\ 1 & \text{if } \eta(x) > 1/2. \end{cases}$$

(Do you see why?)

 $lackbox{} f^{\star}$ is called the Bayes (optimal) classifier, and

$$\operatorname{err}_P(f^*) = \min_f \operatorname{err}_P(f) = \mathbb{E}\Big[\min\{\eta(X), 1 - \eta(X)\}\Big]$$

which is called the Bayes (optimal) error rate.

Question:

How far from optimal is the classifier produced by the NN learning method?

Consistency of *k*-NN

We say a learning algorithm A is consistent if

$$\lim_{n \to \infty} \mathbb{E} \Big[\operatorname{err}_P(\hat{f}_n) \Big] = \operatorname{err}(f^*),$$

where \hat{f}_n is the classifier learned using A on an i.i.d. sample of size n.

Theorem (e.g., Cover and Hart 1967)

Assume η is continuous. Then:

- ▶ 1-NN is consistent if $\min_f \operatorname{err}_P(f) = 0$.
- ▶ k-NN is consistent, provided that $k := k_n$ is chosen as an increasing but sublinear function of n:

$$\lim_{n \to \infty} k_n = \infty, \qquad \lim_{n \to \infty} \frac{k_n}{n} = 0.$$

10 / 2

19 / 2

Key takeaways

- 1. k-NN learning procedure; role of k, distance functions, features.
- 2. Training and test error rates.
- 3. Framework of statistical learning theory; estimating the "true" error rate; Bayes optimality; high-level idea of consistency.

21 / 21