Radio-Interferometric Measurement Equation

Introductory Radio Interferometry Course

Radio Astronomy Techniques and Technologies Group (RATT)

Rhodes University

Modhurita Mitra

February 18, 2015

Radio-Interferometric Measurement Equation (RIME)

- Compact, intuitive, matrix-based way of representing propagation effects in radio interferometry.
- Useful for calibration (solving for and correcting these propagation effects).

Introduction

 e'_x , e'_y : Components of electric field vector in reference frame of sky, at the observer

 v_a , v_b : Voltages measured by antenna feed (linearly or circularly polarized)

red)

Propagation effects

Antenna

$$e = \begin{pmatrix} e_x \\ e_y \end{pmatrix}$$

Can be represented as vectors:

$$oldsymbol{e}' = egin{pmatrix} e_\chi' \ e_y' \end{pmatrix}$$

$$v = \begin{pmatrix} v_a \\ v_b \end{pmatrix}$$

 $e_{x_i} e_y$: Components of electric field vector in reference frame of sky, at the source

Propagation effects absent

Antenna

Electric vector remains unchanged during propagation: e' = eEmitted and measured electric vector are the same.

Propagation effects present

Correlation

Visibility

• The correlator computes the visibility, V_{pq} , on the baseline pq:

Correlation

$$egin{aligned} oldsymbol{v}_p &= oldsymbol{J}_p oldsymbol{e} \ oldsymbol{V}_{pq} &= 2 \langle oldsymbol{v}_p oldsymbol{v}_q^H
angle \ &= 2 \langle oldsymbol{J}_p oldsymbol{e} oldsymbol{J}_q oldsymbol{e} oldsymbol{H}
angle \ &= 2 \langle oldsymbol{J}_p (oldsymbol{e} oldsymbol{e}^H) oldsymbol{J}_q^H
angle \ &= \langle oldsymbol{J}_p (2oldsymbol{e} oldsymbol{e}^H) oldsymbol{J}_q^H
angle \end{aligned}$$

Coherency, or Brightness

$$\mathbf{V}_{pq} = \langle \mathbf{J}_{p} (2\mathbf{e}\mathbf{e}^{H}) \mathbf{J}_{q}^{H} \rangle$$

By definition, the coherency, or brightness, B, is given by:

$$\mathbf{B} = \langle 2\mathbf{e}\mathbf{e}^{H} \rangle = \begin{pmatrix} I + Q & U + iV \\ U - iV & I - Q \end{pmatrix}$$

I, *Q*, *U*, *V*: Stokes parameters

$$\mathbf{V}_{pq} = \mathbf{J}_{p} \mathbf{B} \mathbf{J}_{q}^{H}$$

Radio-Interferometric Measurement Equation (RIME)

Visibility Brightness
$$\mathbf{V}_{pq} = \mathbf{J}_{p} \ \mathbf{B} \ \mathbf{J}_{q}^{H}$$
 Jones matrices

$$\begin{pmatrix} v_{aa} & v_{ab} \\ v_{ba} & v_{bb} \end{pmatrix} = \begin{pmatrix} j_{11a} & j_{12a} \\ j_{21a} & j_{22a} \end{pmatrix} \begin{pmatrix} I + Q & U + iV \\ U - iV & I - Q \end{pmatrix} \begin{pmatrix} j_{11b} & j_{12b} \\ j_{21b} & j_{22b} \end{pmatrix}^{H}$$

The Jones matrix for an antenna is a product of several component Jones matrices, corresponding to different corrupting effects along the signal path

Jones chain:

$$J=J_n J_{n-1} \cdots J_2 J_1$$
Later in signal path Earlier in signal path

Antenna
$$p$$
: $J_p = J_{pn} J_{p(n-1)} \cdots J_{p2} J_{p1}$

Antenna
$$q:$$
 $J_q = J_{qn} J_{q(n-1)} \cdots J_{q2} J_{q1}$

Visibility Brightness
$$\mathbf{V}_{pq} = \mathbf{J}_{p} \ \mathbf{B} \ \mathbf{J}_{q}^{H}$$
 Jones matrices

$$\mathbf{V}_{pq} = \mathbf{J}_{pn} \, \mathbf{J}_{p(n-1)} \cdots \, \mathbf{J}_{p2} \, \mathbf{J}_{p1} \, \mathbf{B} \, \mathbf{J}_{q1}^H \, \mathbf{J}_{q2}^H \, \cdots \, \mathbf{J}_{q(n-1)}^H \, \mathbf{J}_{qn}^H$$

$$\mathbf{V}_{pq} = J_{pn} (J_{p(n-1)} (\cdots (J_{p2} (J_{p1} \mathbf{B} J_{q1}^{H}) J_{q2}^{H}) \cdots) J_{q(n-1)}^{H}) J_{qn}^{H}$$

Calibration

Calibration: Determining and correcting for propagation effects in order to compute the brightness.

i.e., solve for Jones matrices / to compute B:

Direction-independent and direction-dependent effects

Propagation effects can be of two kinds:

- Direction-independent effects
- Direction-dependent effects

These effects can be represented by different Jones matrices:

Direction-independent and direction-dependent effects

$$\mathbf{V}_{pq} = \mathbf{J}_{p} \mathbf{B} \mathbf{J}_{q}^{H}$$
 $\mathbf{V}_{pq} = \mathbf{G}_{p} (\mathbf{E}_{p} \mathbf{B} \mathbf{E}_{q}^{H}) \mathbf{G}_{q}^{H}$

Direction-independent and direction-dependent effects

Direction-independent effects

Direction-dependent effects

Structure of Jones matrices

Most Jones matrices have a simple form:

•
$$J_{\text{rotation}} = \begin{bmatrix} e^{j\theta} & 0 \\ 0 & e^{-j\theta} \end{bmatrix}$$

•
$$J_{\text{leakage}} = \begin{bmatrix} 1 & D^R \\ D^L & 1 \end{bmatrix}$$

•
$$J_{\text{gain}} = \begin{bmatrix} G^R & 0 \\ 0 & G^L \end{bmatrix}$$

(in a circularly polarized basis)

Rotation matrices

•
$$J_{\text{rotation}} = \begin{bmatrix} e^{j\theta} & 0 \\ 0 & e^{-j\theta} \end{bmatrix}$$

Examples:

Parallactic angle feed rotation:

$$\mathbf{P} = \begin{bmatrix} e^{-j\alpha} & 0 \\ 0 & e^{j\alpha} \end{bmatrix}$$

Parallactic angle

Ionospheric Faraday rotation:

$$\mathbf{T} = \begin{bmatrix} e^{j\chi} & 0 \\ 0 & e^{-j\chi} \end{bmatrix}$$

Faraday rotation angle

Leakage matrices

•
$$J_{\text{leakage}} = \begin{bmatrix} 1 & D^R \\ D^L & 1 \end{bmatrix}$$

Examples:

Polarization leakage:
$$D = \begin{bmatrix} 1 & d^R \\ d^L & 1 \end{bmatrix}$$

Polarization leakage terms

Gain matrices

•
$$J_{\text{gain}} = \begin{bmatrix} G^R & 0 \\ 0 & G^L \end{bmatrix}$$

Examples:

Instrumental gain:
$$G = \begin{bmatrix} g^R & 0 \\ 0 & g^L \end{bmatrix} = \begin{bmatrix} a^R e^{j\phi^R} & 0 \\ 0 & a^L e^{j\phi^L} \end{bmatrix}$$

Bandpass gain:
$$\mathbf{B} = \begin{bmatrix} B^R & 0 \\ 0 & B^L \end{bmatrix} = \begin{bmatrix} b^R(v)e^{j\psi^R(v)} & 0 \\ 0 & b^L(v)e^{j\phi^L(v)} \end{bmatrix}$$

Direction dependent effect: Primary beam

- The primary beam of the antenna is the most important direction-dependent effect
- Becomes important in wide-field, wide-band observations
- The primary beam pattern has a multiplicative effect in the image plane, convolutional effect in the visibility plane
- We will consider the example of an EVLA (Expanded Very Large Array)
 antenna here

Primary beam amplitude variation with distance from center

EVLA primary beam

Primary beam rotation

An EVLA antenna has an alt-azimuth mount; the primary beam rotates during the course of an observation

Variation of primary beam with frequency

Incorporating primary beam in calibration

Calibration without primary beam included

Calibration with primary beam included

Field around radio source 3C147, imaged with EVLA

(After taking position-dependent effect of primary beam on noise into account)

Calibration procedure

- 1. Start with visibility data, V_{pq} , and initial brightness model, B.
- 2. Solve $\min_{G} |\mathbf{V}_{pq} \mathbf{J}_{p} \mathbf{B} \mathbf{J}_{q}^{H}|$ for $\mathbf{J}s$.
- 3. Calculate residual visibility data $\mathbf{V}_{pq}^{\text{residual}} = \mathbf{V}_{pq} \mathbf{J}_{p} \mathbf{B} \mathbf{J}_{q}^{H}$.
- 4. Image V_{pq}^{residual} to create a residual image, I.
- 5. Perform a source-finding procedure to find sources in the residual image, and add these to the initial model **B** to form a new, updated model **B**^{new}.
- 6. Set $\mathbf{B} = \mathbf{B}^{\text{new}}$, and repeat steps 2-5 until the residual image I is noise-like.

Differential gains

- Differential gain solutions encompass the unknown and unmodelled direction-dependent effects in the signal path.
- The Jones matrix in the direction of source s is then given by:

Differential gains

• Differential gain solutions are computed (in the direction of a few bright sources) and applied after regular calibration in order to correct for leftover, uncalibrated effects.

Incorporating differential gains in calibration

(Without primary beam incorporated in calibration)

Without differential gain solutions

With differential gain solutions applied

Differential gains

 As more corrupting effects are modelled and accounted for, the calibration becomes more comprehensive, and differential gain solutions approach unity.

Incorporating primary beam in calibration

Differential gain plots

Without primary beam

With primary beam

- Flattened differential gain curves, nearly 1 over the whole range
- Residual variation due to remaining uncorrected direction-dependent effects (like antenna pointing errors)

References

- Thompson, A. R., Moran, J. M., and Swenson, Jr., G. W. (2001), Interferometry and Synthesis in Radio Astronomy, 2nd Edition
- G. B. Taylor, C. L. Carilli, & R. A. Perley, editors (1999), Synthesis
 Imaging in Radio Astronomy II, volume 180 of Astronomical Society of
 the Pacific Conference Series
- 14th Synthesis Imaging Workshop <u>lecture slides</u> (2014), National Radio Astronomy Observatory, Socorro, New Mexico, USA
- Oleg Smirnov's <u>RIME lecture</u> from *3GC3 Workshop and Interferometry School* (2013), Port Alfred, South Africa

References (continued)

- Smirnov, O. M. (2011). Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism. Astronomy & Astrophysics, Volume 527, A106
- Smirnov, O. M. (2011). Revisiting the radio interferometer measurement equation. II. Calibration and direction-dependent effects. Astronomy & Astrophysics, Volume 527, A107
- Smirnov, O. M. (2011). Revisiting the radio interferometer measurement equation. III. Addressing direction-dependent effects in 21 cm WSRT observations of 3C 147. Astronomy & Astrophysics, Volume 527, A108

References (continued)

- Hamaker, J. P., Bregman, J. D., and Sault, R. J. (1996). *Understanding radio polarimetry*. *I. Mathematical foundations*. A&AS, 117, 137–147
- Sault, R. J., Hamaker, J. P., and Bregman, J. D. (1996). Understanding radio polarimetry. II. Instrumental calibration of an interferometer array. A&AS, 117, 149–159
- Hamaker, J. P. and Bregman, J. D. (1996). *Understanding radio polarimetry. III. Interpreting the IAU/IEEE definitions of the Stokes parameters*. A&AS, 117, 161–165
- Hamaker, J. P. (2000). *Understanding radio polarimetry. IV. The full-coherency analogue of scalar self-calibration: Self-alignment, dynamic range and polarimetric fidelity*. A&AS, 143, 515–534