3.6 Predictive Analytics for Fraud Detection

3.6.1 Intro

The aim is to build an analytical model predicting a target measure of interest

<u>Two types of predictive analytics</u> can be distinguished depending on the measurement level of the target:

- Regression.
- · Classification.

3.6.2 Regression #Regression

Target variable:

- Continuous.
- · Varies along a predefined interval.
 - Limited (e.g., between 0 and 1).
 - Unlimited (e.g., between 0 and infinity).

3.6.3 Classification #Classification

Target variable:

- Categorical.
- It can only take on a limited set of predefined values:
 - Binary classification: only two classes are considered (e.g., fraud versus nofraud).
 - Multiclass classification: the target can belong to more than two classes (e.g., severe fraud, medium fraud, no fraud).

3.6.4 Target Variable Definition #TargetVariable

The target fraud indicator is usually hard to (obtain) and determine.

- One can never be fully sure that a certain transaction is fraudulent.
- The target labels are typically not noise-free.
- => Complex analytical modeling exercise.

3.6.5 Linear Regression #LinearRegression

Technique to model a continuous target variable.

The general formulation of the linear regression model:

$$Y = eta_0 + eta_1 X_1 + \ldots + eta_N X_N$$

- Y represents the target variable.
- X_1, \ldots, X_N the explanatory variables.
- β parameters measure the impact on the target variable Y of each of the individual explanatory variables.

3.6.5.1 Parameter Estimation

The β parameters can then be estimated by *minimizing a squared error function*:

$$rac{1}{2}\sum_{i=1}^n e_i^2 = rac{1}{2}\sum_{i=1}^n (Y_i - ar{Y}_i)^2 = rac{1}{2}\sum_{i=1}^n (Y_i - (eta_0 + eta_1 X_{1i} + \ldots + eta_N X_{Ni}))^2$$

Observation	<i>X</i> ₁	X 2		X _N	Y
1	X ₁₁	X ₂₁		X_{N1}	Y_1
2	X ₁₂	X ₂₂	***	X_{N2}	Y ₂

п	X_{1n}	X_{2n}	***	X_{Nn}	Y_n

3.6.5.2 Ordinary least squares (OLS) regression #oLS

Minimizing the sum of all error squares.

Goal of Linear regression: find the best fit line that can accurately predict the output for the continuous dependent variable with the help of independent variables.

Example:

Company	Revenue	Employees	VATCompliant	Fraud	Y
ABC	3,000k	400	Y	No	0
BCD	200k	800	N	No	0
CDE	4,2000k	2,200	N	Yes	1
XYZ	34k	50	N	Yes	1

<u>Linear regression</u>: $Y = \beta_0 + \beta_1 Revenue + \beta_2 Employees + \beta_3 VATCompliant$

When estimating this using OLS, two key problems arise:

- 1. The *errors/target are not normally distributed* but follow a Bernoulli distribution with only two values.
- 2. There is *no guarantee that the target is between 0 and 1*, which would be handy since it can then be interpreted as a probability.

3.6.6 Logistic Regression

Consider now the following bounding function:

The outcome is always between 0 and 1.

#DEF Logistic Regression Model: Combination of the linear regression with the bounding function

$$\begin{aligned} \text{Given } Z &= \beta_0 + \beta_1 Revenue + \beta_2 Employees + \beta_3 VATCompliant \\ f(Z) &= \frac{1}{1 + e^{-(\beta_0 + \beta_1 Revenue + \beta_2 Employees + \beta_3 VATCompliant)}} \end{aligned}$$

Outcome: bounded between 0 and 1 == probability.

Then we have: P(fraud = yes | Revenue, Employees, VATCompliant)

3.6.6.1 ACTIVATION FUNCTION

We pass the weighted sum of inputs through an activation function that can map values in between 0 and 1.

Such activation function is known as **sigmoid function** and the curve obtained is called as *sigmoid curve or S-curve*.

The β_i parameters of a *logistic regression model* are estimated using the **maximum likelihood optimization**.

3.6.6.2 LOGISTIC REGRESSION PROPERTY

It estimates a linear decision boundary to separate both classes.

3.6.7 Linear and Logistic Regression

Linear Regression

Logistic Regression

<u>Linear Regression</u>	<u>Logistic Regression</u>
Predicting the continuous dependent variable with independent variables.	Predict the categorical dependent variable with independent variables.
Predict the output for the continuous dependent variable.	It estimates a linear decision boundary to separate both classes.
Finds the linear relationship between dependent variable and independent variable.	Based on the concept of Maximum Likelihood estimation.
Based on Ordinary Least Squares	Used for: Classification/Regression/where the probabilities is required.
Output: continuous values	Output: between the 0 and 1.

Next chapter: <u>Decision Trees</u>