A Two-Step Approach for Automatic OCR Post-Correction

Staatsbibliothek zu Berlin

Preußischer Kulturbesitz

Robin Schaefer & Clemens Neudecker Staatsbibliothek zu Berlin - Preußischer Kulturbesitz {firstname.lastname}@sbb.spk-berlin.de

1. Introduction

Motivation: The quality of Optical Character Recognition (OCR) is a key factor in the digitisation of historical documents. OCR errors are a major obstacle for downstream tasks and have hindered advances in the usage of the digitised documents.

A post-correction pipeline has the following tasks:

- 1. To correct OCR errors.
- 2. To ignore the already correct data.

Previous work: OCR post-correction has been approached using techniques like statistical language modelling [1], Anagram Hashing [2] and Statistical/Neural Machine Translation [3,4]. Experiments showed, that post-correction becomes more difficult as the Character Error Rate (CER) decreases.

2. Data [i]

Using OCR-D [5, ii] we created two data sets based on historical German works (Deutsches Textarchiv, "German Text Archive") (17th - 19th century).

Processing steps:

- 1. Aligned lines of GT and OCRed documents using dinglehopper [iii].
- 2. Calculated CER for each OCR sequence.
- 3. Removed line pairs if CER > 10%.
- 4. Applied sliding window approach (4 tokens per window).
- 5. Removed non-German sequence pairs.

Data sets:

(T = translator; D = detector)

	Set I	Set II
Used for	T (One-Step) &	T (Two-Step)
training of	D (Two-Step)	
Training	365,000	196,000
Validation	56,800	22,000
Testing	56,800	22,000

SPONSORED BY THE

Our approach: We propose an alternative two-step pipeline for OCR post-correction consisting of the following components:

- 1. **Detector**: Reads OCRed sequence and decides if error exists. Forwards sequence to *translator* only if it is erroneous.
- 2. **Translator**: Reads sequence declared as erroneous by *detector* and corrects errors.

Benefits of the two-step approach:

- (i) By decreasing the proportion of correct OCRed data, the CER fed into the translator is increased.
- (ii) By excluding correct sequences from translation, we can avoid to insert additional errors.

3. The Standard Approach (One-Step)

First, we approached OCR post-correction using a standard sequence-to-sequence model.

The model has two LSTM-based components:

- Encoder: Reads the OCRed sequence and derives a matrix representation.
- **Decoder**: Reads the matrix representation and converts it to the correct(ed) output sequence.

Hyperparameters and other design choices:

- Decoder: based on attention component
- Hidden node size: 256
- Number of layers: 1
- Epochs: 970
- Learning rate: 0.0001
- Batch size: 200

Results:

Approach	CER (pre)	CER (post)
One-Step	1.2%	1.6%

The low CER of the dataset seems to be difficult to correct for the one-step approach.

4. The Two-Step Pipeline [iv]

Detector: An LSTM model that outputs for every encoding probabilities of it being correct or incorrect.

Training objective: Achieve a high precision and a low false positive rate, i.e. a small number of sequences wrongly classified as erroneous.

Hyperparameters:

- Hidden node size: 512
- Number of layers: 3
- Epochs: 138
- Learning rate: 0.0001
- Batch size: 200

Results:

F1	Precision	Recall
81%	90%	74%

5. Applying the Full Pipeline

We applied the full pipeline on both test sets. No correct sequences were removed manually.

Results (Detector):

F 1	Precision	Recall
79%	87%	72%

19,800 sequences were classified as erroneous and forwarded to the translator.

Results (Translator):

(NEI = new errors introduced)

Approach	CER (pre)	CER (post)	NEI
Two-Step	1.1%	0.9%	0.3%
One-Step	1.1%	2.1%	6%

Confusion matrix: (pos = incorrect; neg = correct)

	Predicted neg.	Predicted pos.
Target neg.	41386	1123
Target pos.	3730	10561

In accordance with our training objective, we received a high precision (see confusion matrix: Predicted pos.). About 90% of sequences are correctly classified as incorrect.

Translator: Hyperparameters and architecture are identical to the one-step model. Model was trained on data set II, which contains 90% incorrect sequences (in accordance with the detector results).

Results:

Approach	CER (pre)	CER (post)
Two-Step	4.3%	3.6%

6. Conclusion

The results confirm the benefits of our approach.

Inserting the detector...

- 1. ...substantially increases the translation results. (1.1% to 0.9% vs 2.1%)
- 2. ...substantially decreases the number of newly introduced errors. (NEI: 0.3% vs 6%)

Outlook:

- Improve the decoder's attention mechanism.
- Experiment with alternative translation architectures (e.g. Generative Adversarial Nets)

Resources & References

Data & Code:

- [i] Data (two-step approach): https://zenodo.org/communities/stabi/.
- [ii] OCR-D implementation: https://github.com/qurator-spk/ocrd-galley.
- [iii] dinglehopper: https://github.com/qurator-spk/dinglehopper.
- [iv] Code (two-step approach): https://github.com/qurator-spk/sbb_ocr_postcorrection.

References:

- [1] Tong & Evans (1996). A Statistical Approach to Automatic OCR Error Correction in Context.
- [2] Reynaert (2008). Non-interactive OCR post-correction for giga-scale digitization projects.
- [3] Amrhein & Clematide (2018). Supervised OCR error detection and correction using statistical and neural machine translation methods.
- [4] Rigaud, Doucet, Coustaty & Moreux (2019). ICDAR 2019 Competition on post-OCR text correction.
- [5] Neudecker, Baierer, Federbusch, Boenig, Würzner, Hartmann & Herrmann (2019). *OCR-D: An end-to-end open source OCR framework for historical printed documents*.