Kit de Desenvolvimento XM111

Manual de Operação e Manutenção

Exsto Tecnologia Ltda.

Rua Juca Castelo, 219 – Centro Santa Rita do Sapucaí – MG CEP: 37540-000 +55 35 3471 6898 www.exsto.com.br

Revisão	Principais Autores	Descrição da Versão	Término
A	José Domingos Adriano	Versão inicial	08/02/2006
	Amin Yossef Helou		
В	Marcelo M. Maia do Couto	Atualização dos descritivos;	18/03/2008
	Luiz Gustavo de Carvalho	Reformatação e adição de	
	Amorim	alterações	
С	Joice Barbosa Magalhães	Revisão da placa e dados do	19/04/2010
		manual	
D	Cássio Almeida da Gama	Adequação à nova codificação	05/01/2012

© Copyright 2006 por Exsto Tecnologia Ltda. Todos os direitos reservados

"Desenvolvido e produzido com orgulho no Brasil"

Exsto Tecnologia Ltda

Rua Juca Castelo, 219 - Centro Santa Rita do Sapucaí - MG CEP: 37540-000 +55 35 3471 6898 www.exsto.com.br

Sumário

Li	ista de Figuras	4
Li	ista de Tabelas Introdução	5
M	Ianual de Operação e Manutenção	8
1	Hardware	9
	1.1 Conversor RS-232	9
	1.2 Display's	9
	1.3 Módulo DAC	11
	1.4 Potenciômetro	12
	1.5 Potenciômetro digital	12
	1.6 Display 7 segmentos	12
	1.7 Teclado	13
	1.8 USB	14
	1.9 Módulo Aquecedor/Refrigerador	14
	1.10 Módulo Relógio	15
	1.11 EEPROM I^2C	15
	1.12 Buzzer	15
	1.13 Driver de motor de passo	15
	1.14 Conector de expansão	16
	1.15 Conector ICSP	16
	1.16 Chaves	16
	1.17 Osciladores	17
	1.18 Fonte de alimentação	17
	1.19 Jumpers	17
	1.20 Leds	19
2	Conteúdo do Kit:	2 0
3	Conteúdo do CD em pastas	21
4	Instalação de Software e Hardware	22
	4.1 Instalação da IDE MPLAB 8.00 Microchip	22
	4.2 Instalação do compilador MPLAB C18 V3.15 Student Edition Microchip	26
	4.3 Instalação de Hardware	27
5	Resolvendo Problemas	2 9
	Suporte Técnico	20

Lista de Figuras

1	Visão da placa do kit XM111
1.1	Endereços das células do LCD
1.2	Resumo das instruções do modo LCD
1.3	Tabela de caracteres do display alfanumérico
1.4	Tabela de caracteres do display alfanumérico
1.5	Representação da conexão dos displays com o microcontrolador
1.6	Esquema simplificado do módulo teclado
1.7	Indicação de pinos do conector CN30
1.8	Indicação de pinos do conector CN10
3.1	Distribuição em árvore do conteúdo do CD

Lista de Tabelas

1.1	Conexões dos jumpers do módulo DAC	12
1.2	Conexões dos jumpers do módulo Potenciômetro Digital	12
1.3	Conexões dos jumpers do Display de 7 segmentos	13
1.4	Conversão para acionamento dos Displays de 7 segmentos	13
1.5	Conexões do teclado	14
	Conexões dos jumpers do Módulo Aquecedor/Refrigerador	14
1.7	Conexões do conector U11	15
1.8	Conexões das Chaves	17
1.9	Jumpers de Habilitação de LEDs e Display	17
1.10	Oscilador Secundário	18
1.11	JP9 - Seleção de RC2/CCP1	18
1.12	JP10 - Seleção de RC1/CCP2	18
1.13	JP11 - Back-light do LCD	18
1.14	JP12 - Seleção de RA0/AN0	18
1.15	JP13 - Seleção de RA3/AN3/VREF+	18
1.16	Seleção do microcontrolador	19
1.17	Conexões dos jumpers	19

Introdução

Parabéns! Você acaba de adquirir um produto de alta qualidade e tecnologia de ponta. O XM111 será de grande auxílio no aprendizado e desenvolvimento com microcontroladores da linha PICMicro da Microchip.

A Exsto Tecnologia é uma empresa situada em Santa Rita do Sapucaí, Minas Gerais, conhecida como o "Vale da Eletrônica" por seu destaque na indústria eletroeletrônica e pela excelência de suas instituições de ensino. Nossa missão é sempre fornecer as melhores ferramentas para o desenvolvimento e aprendizado em eletrônica e, em especial, microcontroladores. Visite nosso site www.exsto.com.br para conhecer outras soluções e produtos oferecidos.

Este documento contém as principais características do Sistema de desenvolvimento XM111 e visa ser o guia de instalação e utilização desse sistema.

O XM111 é um ambiente de desenvolvimento composto por hardware e software que visa facilitar o aprendizado e o desenvolvimento com microcontroladores das linhas PIC 16F, 18F e 12F, utilizando especificamente os CI´s PIC18F4520 e PIC18F4550, além de maximizar as possibilidades de experimentos. Algumas das suas características:

- 1. O microcontrolador PIC de 40 pinos (PIC18F4520 ou PIC18F4550);
- 2. Conjunto de 8 LED's e sete chaves tácteis de uso geral;
- 3. Filtro de sinal PWM para geração de sinal analógico;
- 4. Potenciômetro digital SPI MCP41010;
- 5. Interface de comunicação RS232;
- 6. Conector para display alfanumérico e gráfico;
- 7. Quatro displays de sete segmentos multiplexados;
- 8. Teclado matricial de 16 teclas;
- 9. Conector USB (para uso com o PIC18F4550);
- 10. Ventoinha;
- 11. Resistência para aquecimento e sensor de temperatura;
- 12. Relógio/calendário com bateria própria;
- 13. Memória I2C 24C08;

- 14. Buzzer;
- 15. Driver para motor de passo (motor não incluso);

Abaixo temos uma visão do layout da placa:

Figura 1: Visão da placa do kit XM111

MANUAL DE OPERAÇÃO E MANUTENÇÃO

O manual de operação e manutenção descreve os circuitos do kit didático, detalhando seu funcionamento. São também apresentados os esquemas elétricos desses circuitos e valores de componentes, de forma a permitir a manutenção do equipamento.

Hardware

O kit XM111 é formado por periféricos que possibilitam sua interação com sinais de áudio, controles PWM, display gráfico e alfanumérico, comunicação serial e ethernet, codec de áudio, trimpot's para simulação de entradas analógicas e controle de PWM, chaves tácteis de interrupção e reset, led's para uso geral bem como acesso a todos os pinos dos portais do componente.

1.1 Conversor RS-232

O conversor RS-232 incorporado ao XM111 converte sinais da faixa de tensão TTL para as faixas de tensão determinadas pelo padrão RS-232. O conector DB9 pode ser ligado diretamente a um computador ou outro dispositivo serial RS-232 com o cabo fornecido pelo kit.

Para utilizar a interface de comunicação RS-232, os jumpers JP21 e JP22 devem estar na posição 1.

1.2 Display's

O Kit possui os conectores para controle e operação com display's alfanuméricos e gráficos, estabelecendo assim uma interface visual direta para o usuário. Desta forma pode-se ter uma interface mais amigável durante a execução dos seus projetos e o seu uso facilitado.

Os conectores de encaixe para cada display estão disponibilizados e identificados através das indicações: Display Alfanumérico e Display Gráfico, sendo o primeiro (alfanumérico) parte integrante do kit e o segundo (gráfico) um acessório opcional.

Deve-se fortemente observar o encaixe correto de ambos os displays nos seus respectivos conectores para que não ocorra danos aos mesmos! Verifica-se ainda que não se possam colocar ambos os displays ao mesmo tempo.

Para ajustar o contraste de ambos os displays, bastam utilizar o trimpot "contrast" para se alterar o nível de contraste do display de cristal líquido. Este contraste é utilizado em conjunto entre o display de cristal líquido e o display gráfico, atuando nos dois da mesma forma.

O LCD alfanumérico de duas linhas por dezesseis colunas é conectado através do conector P1. A comunicação com o microcontrolador é feita de forma paralela, no modo oito bits.

Os endereços de cada posição no display são dados pela tabela abaixo. Para que um caractere seja escrito em uma determinada posição, envia-se o valor dessa posição como comando e em seguida envia-se o caractere a ser escrito.

80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F
C0	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	СВ	CC	CD	CE	CF

Figura 1.1: Endereços das células do LCD

Abaixo é apresentada uma tabela resumida de códigos hexadecimais de comandos do LCD.

Descrição do Comando	Modo	RS	R/W	Código do Comando (Hexadecimal)
Controle do display	Ativo (sem cusor)	0	0	0C
	Inativo	0	0	0A, 08
Limpeza do Display com retorno do cursor		0	0	01
Retorno do cursor à 1ª linha e da mensagem à sua posição inicial		0	0	02
	Ativo (ligado, fixo)	0	0	0E
I	Inativo	0	0	0C
I	Alternado	0	0	0F
Controle do Cursor	Desloc. à esquerda	0	0	10
I	Desloc. à direita	0	0	14
I	Retorno	0	0	02
	Piscante	0	0	0D
Sentido de deslocamento do cursor	Para esquerda	0	0	04
na entrada de um novo caracter	Para direita	0	0	06
Deslocamento da mensagem com a	Para esquerda	0	0	07
entrada de um novo caracter	Para direita	0	0	05
Deslocamento da mensagem sem entrada	Para esquerda	0	0	18
de novos caracteres	Para direita	0	0	1C
Endereço da primeira	1ª Linha	0	0	80
posição (à esquerda)	2ª Linha	0	0	C0

Figura 1.2: Resumo das instruções do modo LCD

Atenção: A tabela apresentada a seguir é meramente ilustrativa. Os caracteres apresentados podem variar conforme o fabricante de LCD, contudo dos caracteres entre 00 e 7F são sempre válidos.

Upper thit Lower	0000	0001 (1)	0010 (2)	0011 (3)	0100 (4)	0101 (5)	0110 (6)	0111 (7)	1000 (8)	1001 (9)	1010 (A)	1011 (B)	1100 (C)	1101 (D)	1110 (E)	1111 (F)
0000	CG RAM (J)		6.000 B							Ê		::::	::::		cc	p
0001	(2)			1			.:::		Ü	è	1	::::	Ŀ			
0010	(3)						Ŀ					ij			H	₿
0011	(4)					5						1		8* . 88	H	
0100 (4)	(5)	8868B 866BB 866BB	:::					8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					:	88.888 88.888 88.888	H	GT2
0101 (5)	(6)									٠				•		F
0110 (6)	(7)					W									P	
0111 (7)	(8)												:::			
1000	(J)						ŀ				H					

Figura 1.3: Tabela de caracteres do display alfanumérico

Upper	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010 (A)	1011 (B)	1100 (C)	1101 (D)	1110 (E)	1111 (F)
1001 (9)	(2)															y
1010 (A)	(3)														j	В
1011 (B)	(4)			:	K		l:						H			
1100 (C)	(5)	HE-HE HE-HE HE-HE HE-HE HE-HE					1					1	41			Ñ
1101 (D)	(6)		88888				m				ш	H			<u>ş</u>	Щ
1110 (E)	(7)	FEETER BETTER BETTER			Н		· · ·					H	Ö		HÚ	1
1111 (F)	(8)										Æ				Ш	

Figura 1.4: Tabela de caracteres do display alfanumérico

Trata-se de uma tabela dos bits mais significativos (colunas) pelos menos significativos (linhas). Dessa forma, para escrevermos um caractere deve-se usar essas duas escalas para compor o código a ser enviado. Por exemplo, o caractere 'A' está no cruzamento da linha "1" com a coluna "5", logo seu código hexadecimal é 51.

A ligação do barramento dos displays LCD alfanumérico e gráfico com o microcontrolador é dado através do esquemático abaixo, onde podemos notar que o barramento de ambos os LCD's são compartilhados entre eles.

Figura 1.5: Representação da conexão dos displays com o microcontrolador

O manual de configuração do LCD gráfico está disponível no CD incluso com o kit, na pasta "manuais".

1.3 Módulo DAC

O XM111 apresenta ao usuário um módulo conversor digital para analógico (DAC) implementado a partir de PWM. O sinal gerado pelo PWM (CCP1) é aplicado a um filtro passa-baixas de segunda ordem. Na saída desse filtro temos um sinal DC proporcional ao duty-cicle do sinal PWM. A amplitude desse sinal é ajustada através de R54.

Uma vez calibrado o potenciômetro, o usuário poderá, através de um sinal PWM, controlar a variação de tensão e fazer a leitura da mesma pelo canal AD, ligado ao PORTA pino RA1.

A tensão de saída pode variar dentro na faixa de 0 a 10 volts, conforme o ajuste de ganho. O ramo de automação industrial utiliza largamente a sua função, como por exemplo, o controle de um inversor de frequência, cuja frequência do mesmo varia de acordo com um sinal de 0 a 10 volts.

Abaixo segue a tabela de conexão dos jumpers referentes a esse módulo.

Periférico	Jumper	Posição	Pino do Microcontrolador
DAC Input	JP9	1	RC2
DAC Output			RA1

Tabela 1.1: Conexões dos jumpers do módulo DAC.

1.4 Potenciômetro

Para realização de experiências com o conversor ADC, o XM111 disponibiliza um trimpot convencional (R26) conectado de forma que seu cursor forneça uma tensão entre 0 e 5 VDC.

O sinal de saída do potenciômetro pode ser medido através de RA0/AN0 ou RA3/AN3.

1.5 Potenciômetro digital

Mais uma inovação do kit XM111. O potenciômetro digital utiliza a comunicação serial SPI (Serial Peripheral Interface), que é utilizada para a comunicação entre dois componentes em curta distância.

Assim como o potenciômetro convencional, o potenciômetro digital está ligado de tal maneira que é possível ler o valor de seu cursor, tensão esta que varia de 0 a 5V.

Abaixo segue a tabela de conexão dos jumpers referentes a esse módulo.

Periféricos	Jumper	Posição	Pino do Microcontrolador
EEPOT	JP10	2	RC1
	JP3	1	

Tabela 1.2: Conexões dos jumpers do módulo Potenciômetro Digital.

O sinal de saída do potenciômetro digital pode ser medido através de RAO/ANO ou RA3/AN3.

1.6 Display 7 segmentos

Através de 4 displays de 7 segmentos multiplexados o usuário poderá implementar várias aplicações envolvendo caracteres hexadecimais (0 a 9, A a F).

O envio de dados para os displays, que estão em paralelo é feito através do PORTD do microcontrolador.

Abaixo segue a tabela de conexão dos jumpers referentes a esse módulo.

Periférico	Jumper	Pino do microcontrolador
Display 1	5	RA5
Display 2	6	RA2
Display 3	7	RE0
Display 4	8	RE2
Display data bus	-	PORTD

Tabela 1.3: Conexões dos jumpers do Display de 7 segmentos.

A tabela a seguir apresenta a conversão necessária para o acionamento do segmento.

Dígito	Acionamento do display
1	10000110
2	11011011
3	11001111
4	11100110
5	11101101
6	1111101
7	10000111
8	11111111
9	11100111
0	10111111

Tabela 1.4: Conversão para acionamento dos Displays de 7 segmentos.

1.7 Teclado

Trata-se de um teclado de 16 teclas (0 à 9, A, B, C, D, E e F) feito como matriz (4 linhas por 4 colunas), de forma a permitir varredura. Um esquema simplificado é apresentado na figura abaixo. O esquema elétrico completo encontra-se na pasta "Esquemas" do CD.

Figura 1.6: Esquema simplificado do módulo teclado

O teclado é conectado ao PIC conforme a tabela a seguir:

Teclado	PIC	Direção
C0	RB0	Saída
C1	RB1	Saída
C2	RB2	Saída
С3	RB3	Saída
L0	RB7	Entrada
L1	RB6	Entrada
L2	RB5	Entrada
L3	RB4	Entrada

Tabela 1.5: Conexões do teclado.

1.8 USB

Acompanhando a forte tendência em protocolos de comunicação, o XM111 oferece ao usuário, um módulo no qual poderá desenvolver aplicações que utilizam comunicação USB (Universal Serial Bus), largamente utilizado em computadores pessoais e dispositivos portáteis. Ainda o XM111 possui um conector USB com conexão para PIC18F4550, que possui um módulo interno USB.

⇒Atenção: Somente o PIC18F4550 tem módulo USB. Para trabalhar com esse microcontrolador, é necessário que os jumpers de JP15, JP16, JP17, JP18, JP19 e JP20 estejam na posição 2.

1.9 Módulo Aquecedor/Refrigerador

O XM111 possuí um módulo Aquecedor/Refrigerador para aplicações que envolvem controle de temperatura.

Um sensor de temperatura é ligado ao resistor R64 que dissipará uma determinada temperatura provocada por um sinal PWM. O usuário poderá controlar a potência dissipada no resistor variando o duty-cicle do sinal PWM de CCP2. Com isso, a leitura será feita por um sensor de temperatura ligado ao canal analógico do PORTA, pino RA0.

O último item do módulo é uma ventoinha ligada ao resistor R64 para poder refrigerá-lo. A velocidade de giro da ventoinha pode ser controlada através do duty-cicle do PWM de CCP1. A intenção desse módulo é apresentar ao usuário uma interface com o mundo analógico representado pela temperatura.

Abaixo segue a tabela de conexão dos jumpers referentes a esse módulo.

Periférico	Jumper	Posição	Pino do MCU
Sensor de Temperatura	JP12	3	RA0
Resistor aquecedor	JP10	3	RC1
	JP11	1	
Ventoinha	JP9	2	RC2
SWCH0	JP3	2	

Tabela 1.6: Conexões dos jumpers do Módulo Aquecedor/Refrigerador.

1.10 Módulo Relógio

O relógio-calendário é o circuito integrado dedicado HT1380 (Holtek). Para mais detalhes sobre o HT1380, inclusive o protocolo de comunicação, vide o manual do CI no CD.

Além do HT1380, a placa tem de uma bateria de NiCd (Níquel-Cádmio) que faz com que o relógio não pare de funcionar mesmo quando for retirada a alimentação externa. Possui ainda um cristal que serve como referência de clock. Os demais componentes são para desacoplamento do cristal e o circuito de carga/comutação da bateria.

1.11 EEPROM I^2C

Para facilitar a vida do desenvolvedor, o kit XM111 apresenta uma memória externa 24C08 com 8Kbits de memória de dados.

O nome I^2C é proveniente da abreviação Inter-Integrated Circuit. É um protocolo desenvolvido pela Philips para comunicação de baixa a curta distância entre componentes.

O desenvolvedor poderá usar a memória interna do microcontrolador para salvar seu software e a memória externa 24C08 para salvar dados, como por exemplo: senhas, horas, datas, sequência de comandos e etc.

1.12 Buzzer

O buzzer instalado no XM111 (U16) permite a geração de sons, sendo conectado ao módulo CCP. Para acionar esse buzzer é necessário gerar uma onda quadrada na frequência desejada.

1.13 Driver de motor de passo

O XM111 possui quatro driver para cargas DC de até 12 Volts. Esse driver pode ser usado para o acionamento de motor de passo (opcional) com corrente de até 300mA por fase. Os driver são do tipo coletor aberto. Seus sinais podem ser acessados através do conector U11 e está ligado conforme a tabela a seguir.

Pino	Conector	Conexão
1	+12V	+12V
2	FA4	RD4
3	FA3	RD5
4	FA2	RD6
5	FA1	RD7
6	GND	GND

Tabela 1.7: Conexões do conector U11.

Atenção: para acionamento de motores de passo é recomendado o uso de uma fonte externa para alimentar o comum do motor, uma vez que a fonte do XM111 não é dimensionada para esse fim.

1.14 Conector de expansão

No canto esquerdo do XM111 existe um conector que dá acesso a todos os pinos do microcontrolador. Através dele o usuário poderá conectar o XM111 a outros circuitos, placas universais e proto-boards.

Atenção: fique atento para que os circuitos conectados externamente não entrem em conflito com os circuitos já existentes na placa. Muitos dos circuitos da placa podem ser desativados retirando-se os jumpers adequados.

1.15 Conector ICSP

Existem dois conectores preparados para ligar o circuito a um equipamento ICD2. Estes conectores permitem a gravação do PIC no kit e ainda sua depuração em tempo real, permitindo assim a emulação em tempo real no sistema.

Na placa, estes dois conectores estão ligados diretamente ao microcontrolador e estão em paralelo. Com isso, é importante não utilizar os dois ao mesmo tempo, sendo que isso pode danificar a placa.

Estes dois conectores são o CN10 e o CN30, sendo um composto por uma barra de pinos e o outro de um conector RJ12 fêmea.

Figura 1.7: Indicação de pinos do conector CN30

Figura 1.8: Indicação de pinos do conector CN10

1.16 Chaves

No XM111 existem sete chaves de uso geral conectadas conforme a seguir.

Chave	Pino do microcontrolador	Função Especial	
INT	RB0/INT	Interrupção INT	
INT2*	RB1/INT1	Interrupção INT1	
INT1*	RB2/INT2	Interrupção INT2	
CH0	RC1/CCP2	Entrada/Saída do CCP2	
CH1	RE1/AN6	Entrada analógica 6	
TMR0	RA4/T0CKI	Entrada de clock do timer 0	
TMR1	RC0/T13CKI	Entrada de clock dos timers 1 e 3	

Tabela 1.8: Conexões das Chaves.

Além destas há uma chave de Reset do microcontrolador.

1.17 Osciladores

Como os microcontroladores da família PIC18 tem a possibilidade de operar com dois osciladores, o XM111 foi equipado com um oscilador principal de 8 MHz (que pode gerar um clock de até 32MHz no modo HS-PLL) e um oscilador secundário de 32.768 Hz. O oscilador secundário é selecionado via jumper, conforme será descrito a seguir.

1.18 Fonte de alimentação

A fonte de alimentação, conectada através do conector CN1 segue as seguintes especificações:

• Entrada: 127/220 VAC

• Saída: 9 VDC / 300 mA

1.19 Jumpers

O XM111 foi desenvolvido para permitir o uso do máximo de recursos do microcontrolador. Para que isso seja possível, diversos pinos têm suas funções compartilhadas por vários circuitos. Isto é feito através de jumpers, cuja descrição de função vem a seguir.

Jump	Jumpers de Habilitação de LEDs e Display		
JP1	Habilita LEDs		
JP5	Habilita Dígito 1		
JP6	Habilita Dígito 2		
JP7	Habilita Dígito 3		
JP8	Habilita Dígito 4		

Tabela 1.9: Jumpers de Habilitação de LEDs e Display

	Oscilador Secundário		
JP2	1	RC0 conectado ao cristal	
	2	RC0 conectado a chave TMR1	
JP3	1	RC1 conectado ao cristal	
	2	RC1 conectado a JP10	

Tabela 1.10: Oscilador Secundário

JP9 - Seleção de RC2/CCP1		
Posição Função		
1	RC2/CCP1 conectado à entrada do DAC	
2	2 RC2/CCP1 conectado ao driver da ventoinha	
3 RC2/CCP1 conectado ao buzzer		

Tabela 1.11: JP9 - Seleção de RC2/CCP1

	JP10 - Seleção de RC1/CCP2		
Posição	Função		
1	RC1/CCP2 conectado à chave CH0		
2	RC1/CCP2 conectado ao Chip Select da SPI		
3	RC1/CCP2 conectado ao driver do aquecedor		

Tabela 1.12: JP10 - Seleção de RC1/CCP2

JP11 - Back-light do LCD		
Posição	Função	
1	Driver do back-light do LCD ligado (+5V)	
2*	2* Driver do back-light do LCD conectado a RC1/CCP2	

Tabela 1.13: JP11 - Back-light do LCD

 $^{^{\}ast}$ atenção para que esta configuração não esteja em conflito com a do jumper 9

JP12 - Seleção de RA0/AN0		
Posição	Função	
1	RA0/AN0 conectado ao potenciômetro (R26)	
2	RA0/AN0 conectado ao potenciômetro digital	
3	RA0/AN0 conectado ao sensor de temperatura	

Tabela 1.14: JP12 - Seleção de RA0/AN0

JP13 - Seleção de RA3/AN3/VREF+		
Posição	Função	
1	RA3/AN3/VREF+ conectado ao potenciômetro (R26)	
2	RA3/AN3/VREF+ conectado ao potenciômetro digital	
3	Reservado	

Tabela 1.15: JP13 - Seleção de RA3/AN3/VREF+

Os jumpers de JP15 a JP20 permitem a seleção entre os PIC18F4550 e os PIC
s PIC18F452 e PIC16F87x.

Seleção do microcontrolador		
	PIC18F452x/PIC16F87x	PIC18F4550
JP15	1	2
JP16	1	2
JP17	1	2
JP18	1	2
JP19	1	2
JP20	1	2

Tabela 1.16: Seleção do microcontrolador

Comunicação serial (RS232 / RS485)		
JP21	1	RC7/RXD conectado ao conversor RS-232
	2	RC7/RXD conectado ao conversor RS-485
JP22	1	RC6/TXD conectado ao conversor RS-232
	2	RC6/TXD conectado ao conversor RS-485

Tabela 1.17: Conexões dos jumpers

1.20 Leds

No XM111 existem 8 LED's conectados ao PORTD. Os LED's são habilitados via jumper.

• Atenção: os LED's são baixo ativos, isto é, são ativos em '0'.

Conteúdo do Kit:

Depois de retirar o seu kit de desenvolvimento da caixa, verifique se o mesmo possui os seguintes itens:

- 01 Fonte de alimentação de 9Vdc;
- 01 Cabo de USB;
- 01 Cabo de comunicação serial;
- 01 Placa de desenvolvimento XM111;
- 01 PIC 18F4550;
- 01 PIC 18F4520;
- 01 Display 16X2;
- 01 Manual;
- 01 CD com vários simuladores, material de consulta técnica e cópia dos materiais impressos;

Conteúdo do CD em pastas

Figura 3.1: Distribuição em árvore do conteúdo do CD

Instalação de Software e Hardware

Para se iniciar a operação com o Kit XM111 deve-se instalar sua IDE de desenvolvimento no computador que irá programar/depurar o Kit.

A IDE proposta aqui para ser utilizada é o MPLAB, ferramenta de desenvolvimento em Assembly, C e C++ para plataformas Microchip. Inclusive, todos os exemplos que acompanham o CD são baseados nesta plataforma que é oferecida gratuitamente pela própria fabricante do microcontrolador.

Com a IDE já instalada, pode-se optar por duas linguagens de programação disponíveis: Assembly ou C. Caso se deseje usar o assembly não há a necessidade de se utilizar nenhum outro programa adicional, entretanto, se for programar em C, deve-se instalar um compilador compatível. Aqui se recomenda a instalação do compilador C18 utilizado para desenvolvimento em plataformas PIC, que deve ser instalada impreterivelmente após a instalação do MPLAB.

Este compilador é também fornecido pela própria Microchip, sendo de uso free e com todas suas funções ativas durante 60 dias após a instalação. Ao passar de 60 dias, somente a parte de otimização de código é desativada, sendo que isto não impede a utilização do compilador, somente o código gerado para ser gravado no microcontrolador não estará otimizado.

O CD fornecido com o kit já conta com uma cópia do compilador C18 e da IDE da Microchip, o MPLAB.

4.1 Instalação da IDE MPLAB 8.00 Microchip

A Microchip, fabricante dos microcontroladores PIC, disponibiliza gratuitamente uma IDE (Integrated Development Environment - Ambiente de Desenvolvimento Integrado) chamado MPLAB. Ele permite criar projetos, editar arquivos, compilá-los e gravá-los. Além disso, dá suporte também a simulação.

O MPLAB está presente no CD que acompanha o kit, em sua versão mais recente no momento em que este manual é escrito. Recomendamos, contudo, que periodicamente se verifique o lançamento de novas versões em www.microchip.com/MPLAB.

Para instalar o MPLAB, siga os passos abaixo:

1. Insira o CD no driver. Uma página para navegação pelo conteúdo do CD deverá abrir automaticamente. Clique em Instalar MPLAB. Iniciada a instalação a primeira tela que

aparacerá é a mostrada a seguir. Caso não se abra automaticamente a página, vá na pasta Programas\MPLAB e execute o arquivo MPLAB.Install.exe.

2. Na tela de apresentação, clique em Next.

3. Na tela seguinte é apresentado a licença de uso do programa. Leia atentamente os termos, estando de acordo, marque a opção I accept the terms of the license agreement e clique em Next.

4. Na próxima tela é possível escolher o tipo de instalação. Recomendamos marcar a opção Complete. Em seguida clique em Next.

5. Na tela seguinte é possível escolher a pasta onde o MPLAB será instalado. Recomendamos que seja mantida a pasta padrão . Clique em Next.

6. Nas telas anteriores são apresentados as licenças de uso de outros programas que fazem parte do pacote MPLAB. Leia-as com atenção e, estando de acordo com os termos, marque a opção I accept the terms of the lincense agreement e clique em Next.

7. Nesta tela é apresentado um resumo das opções escolhidas. Estando tudo em ordem clique em Next. Caso haja algum problema ou queira mudar alguma configuração, clique em Back para voltar as telas anteriores.

8. A instalação teve início! A tela acima informará o andamento do processo.

9. Uma vez concluída a instalação é necessário que se reinicie o computador. Para isso basta marcar a opção Yes, I want to restart my computer now e clicar em Finish.

4.2 Instalação do compilador MPLAB C18 V3.15 Student Edition Microchip

• Tela de apresentação do C18 Student Edition:

• Confirmação de acordo de licença:

• Pagina para seleção de componentes:

Após esta tela o procedimento tomado é igual ao procedimento da instalação do MPLAB, quando terminada a instalação então reinicie o computador para que se possa fazer a integração entre o C18 instalado e o MPLAB.

4.3 Instalação de Hardware

Para a instalação do hardware devemos ter em mãos a placa do kit XM111 e sua fonte de alimentação. O procedimento de ativação do hardware é simples sendo feito através dos seguintes passos:

• Verifique qual é a tensão fornecida pela tomada na qual você ligará o kit, dependendo da tensão da tomada é necessário adequar à tensão na fonte do kit em 110 v ou 220 v;

• Conecte a fonte de alimentação no kit, verificando se o LED D7 próximos à entrada da fonte acendeu.

Depois de alimentada a placa, você estará pronto para utilizar o kit, entretanto para poder gravar qualquer programa no kit é necessário o uso do gravador ICD2. Caso já possua o gravador, proceda da seguinte forma para ligá-lo ao kit:

- Conecte o cabo que acompanha gravador ICD2 tomando como referência o próprio conector RJ12, onde a parte de encaixe fica voltada para cima. Se estiver usando o conector CN10 ao invés do RJ12, observe a pinagem referenciada no kit principalmente com relação aos pinos de Vpp ou MClear;
- Conecte a outra extremidade do cabo do ICD2 ao conector RJ12 existente no próprio ICD2.

É necessário ressaltar que não é possível o uso do kit sem a utilização do ICD2 como ferramenta de gravação.

Ao conectar qualquer item a placa, esta sempre deverá ser desligada!

Resolvendo Problemas

Suporte Técnico

A Exsto Tecnologia oferece suporte técnico gratuito para questões de utilização de seus produtos através do e-mail suporte@exsto.com.br ou do telefone (35) 3471-6898.