最终颜色的算法以及对应材质参数

はじめに:このdocでは日本語版はありません

写在开头:低质量警告

本人对光学一窍不通,也没有学过Shading,这篇文档仅仅用于记录自己写代码时的学习过程,以免遗忘

本项目参照了Phong光照模型

关于这方面请参考关于这个模型的大概情况,看这里

→ https://zhuanlan.zhihu.com/p/352209183

简单来说Phong模型由三种反射光组成,分别是漫反射光、镜面反射光(高光)、环境光

镜面反射(Specular Reflection):

定义:光线以与入射角相同的角度,从光滑表面反射出去的现象。

所以:在物体表面的观察角度与光源角度正好是镜面对称时,即可看到高光

- 反射光线集中在一个方向上,形成清晰的反射光束。
- 在特定角度才能看到反射光,例如,在镜子前才能看到自己的倒影。
- 镜子、水面、金属表面等。

漫反射(Diffuse Reflection):

定义:光线照射到粗糙表面后,向各个方向散射的现象。

- 反射光线向四面八方散射,没有特定的反射方向,看起来很模糊。
- 可以在各个角度看到反射光,例如,从不同角度都能看到墙壁的颜色。
- 纸张、墙壁、衣服、树叶等。

环境光

环境光是照射在其它物体上的光先反射到观察物体上,通过观察物体表面再反射至视 角中

在Phong模型中,环境光是一个常数,公式为: 物体表面的环境光吸收率 * 环境光的强度

但是我们的光线追踪可以解决这一点!实现方法为递归调用cast_ray()来计算光线从光源 \rightarrow 其他物体 \rightarrow 再次反射 \rightarrow 当前物体 \rightarrow 再反射进眼睛的部分

在本项目中,最终进入屏幕的颜色 = 漫反射+高光+反射+折射

	解释	递归	光线追踪中对应项
高光	光线从光源 → 表面 → 以镜面反射 方向打到眼睛,形成明亮高光	否	specular
漫反射光	光线从光源 → 表面 → 朝各方向均 匀反射,部分进入眼睛	否	diffuse
环境光	光线从光源 → 其他物体 → 再次反射 → 当前物体 → 再反射进眼睛 (全局间接光)	是	reflection (间接 漫反射也可能)
透射光 / 折射	光线穿过透明物体发生偏折,如玻 璃、水中物体	是	refraction

Material 包含四个主要参数:

- 折射率 (refractive_index)
- 反照率(albedo[4])
- 漫反射颜色 (diffuse_color)
- 镜面高光指数 (specular_exponent)

1. 折射率 (refractive_index)

- 空气: 1.0 | 水: 约 1.33 | 玻璃: 约 1.5 | 钻石: 约 2.4
- 当光线进入一个具有折射的材质时,程序会根据折射率计算"折射光线"的方向。
- ------

• 折射率 > 1.0时,光线会向法线方向弯曲

• 折射率差异大时可能出现全反射

2. 反照率数组 (albedo[4])

albedo 是一个包含四个float的数组,表示光在命中材质时的四种去向的比例:

albedo[0] = 漫反射比例

albedo[1] = 镜面高光比例

albedo[2] = 镜面反射比例(环境倒影)

albedo[3] = 折射透射比例(透明度)

2.1 漫反射比例 (albedo[0])

- 表示表面自身的"本色",光线打上去后散射到四周。
- 越大,物体越能展示自己的颜色。 0.0 表示无漫反射, 1.0 表示完全哑光。

示例

材质	漫反射系数	效果
粉笔、墙壁	高(~1.0)	呈现物体颜色,完全哑光
玻璃	低(~0.0)	几乎无物体本身颜色表现

2.2 镜面高光比例 (albedo[1])

- 控制光源亮斑(高光)的强度。
- 越高,高光越强烈,物体越有光泽。 0.0 表示无高光, 1.0 表示高光非常亮。

示例

材质	镜面高光系数	效果
汽车漆、玻璃	高(~0.9)	表面亮点强烈,镜面感很强
陶瓷、塑料	中 (0.5)	有光泽但不刺眼
橡胶、纸张	低(~0.0)	表面暗淡无亮点

2.3 镜面反射比例 (albedo[2])

- 控制反射环境光的强度。
- 1.0 完全反射, 0.0 不反射环境。

示例

材质	镜面反射系数	效果
镜子、金属	高(~0.8)	清晰反射其他物体
水面、大理石	中(0.1 0.2)	远处能看到一些倒影
涂漆、塑料	低(~0.0)	看不到任何反射

2.4 折射比例 (albedo[3])

- 控制材质透明程度。
- 0.0 ~ 1.0 越高越透光。

示例

材质	折射系数	效果
玻璃	高(~0.8)	光线能穿透,能看到后面东西
毛玻璃	高(~0.8)	透明但模糊
金属、塑料	0.0	完全不透明

3. 漫反射颜色 (diffuse_color)

• 控制物体在漫射光下呈现什么颜色。就是我们看到的颜色。

例子

材质	diffuse_color	效果
白色墙壁	{1.0, 1.0, 1.0}	漫反射时呈白色
红色塑料	{1.0, 0.0, 0.0}	呈鲜红色
象牙/大理石	{0.4, 0.4, 0.3}	奶白色,略带黄
黑色金属	{0.0, 0.0, 0.0}	完全不呈现颜色(不反光)

4. 镜面高光指数(specular_exponent)

- 控制高光"亮斑"的大小和集中程度。
- 越高,亮点越小越刺眼;越低,亮斑越大越模糊。
- 与 albedo[1] 配合使用: albedo 控亮度,指数控面积。

示例

|--|

镜面金属	1425	高光极尖锐,只有某个角度能看到亮斑
光滑塑料/玻璃	100~200	小范围亮斑
红色橡胶	10	大面积但暗淡高光
粗糙纸张	<10	几乎看不到任何高光

最终颜色的算法以及对应材质参数 5