ES723 Dispositivos Eletromecânicos

Gabarito da Prova 2 – 27/11/06 – Parte 1

Nome: RA: Nota:

1) A figura ao lado representa uma locomotiva e um vagão. Há uma mola e um amortecedor entre ambos, que também sofrem a ação do atrito com o solo, considerado viscoso. Determine o BG completo que representa o sistema e inclua um atuador e o diagrama de blocos do controlador que deve atenuar a vibração do vagão em relação à locomotiva.

Solução:

Para o desenho do BG pode-se adotar um procedimento sistemático onde se atribui uma junção-0 a cada velocidade envolvida, sem esquecer que existe também a velocidade nula do referencial parado. Representando-se também a velocidade nula, facilita a concepção do BG, uma vez que se posicionam junções-1 entre cada par de velocidades, às quais se conectam cada elemento 1-porta respectivo. Depois são eliminadas a junção-0, representando a velocidade nula, e todas as suas conexões e simplificado o diagrama eliminando-se as junções desnecessárias.. O resultado é o BG da figura abaixo.

Para o controle da vibração entre a locomotiva e o vagão pode-se adotar um atuador posicionado entre os dois, de acordo com o diagrama misto abaixo, onde o sinal de controle é aplicado através de uma fonte de esforço modulado.

2) O desenho ao lado representa um elevador de massa *M* movendo-se sob a ação de uma fonte de força. Dentro do elevador encontra-se um dispositivo que atenua a vibração transmitida à massa *m*, cujo BG está na figura. Determine o BG do conjunto, com a causalidade, e o explique. Existe alguma causalidade diferencial?

Solução:

Observe que a conexão entre o elevador e o dispositivo, um tipo de suspensão, é rígida, mas para a carcaça do dispositivo não foi dada a massa, assim ela pode ser desprezada em comparação com as do elevador e a massa suspensa. Assim, a força aplicada ao elevador resulta na velocidade da massa M, e portanto trata-se de uma junção-1 que deve transmite a mesma velocidade à carcaça da suspensão. O BG então apenas acrescenta a fonte de esforço e a junção-1. O diagrama respectivo está apresentado a seguir, ao qual foi adicionada a causalidade.

Pode-se observar que ocorre uma causalidade diferencial na inércia do fluido. São possíveis diferentes atribuições da causalidade, porém sempre vai ocorrer pelo menos uma diferencial. A causalidade acima foi atribuída seguindo o seguinte procedimento:

- 1. Inicialmente, atribui-se a causalidade da fonte;
- 2. Em seguida, pode-se atribuir a causalidade integral à inércia do elevador (poderia ter sido escolhida um outro armazenador de energia, mas esse faz mais sentido);
- 3. A terceira causalidade da primeira junção-1 será portanto como mostrada na figura, para que ela tenha apenas uma causalidade definida externamente à junção;
- 4. Em seguida, pode-se atribuir a causalidade de um outro elemento armazenador, no caso a massa suspensa m;
- 5. Em consequência a junção-0 e o transformador estão determinados.
- 6. Tendo determinado o transformador, as demais causalidades da segunda junção-1 estão determinadas, resultando na causalidade diferencial para a inércia do fluido.

O BG pode ser assim explicado: a fonte de esforço, representando a força F, é aplicada ao elevador, com o qual compartilha a velocidade que também é a mesma da suspensão; a força F é dividida entre as aplicadas à massa M e à suspensão; a força aplicada à suspensão é transmitida ao seu fluido que suporta a massa suspensa m e através da relação da área do pistão é transformada em pressão; a pressão é transmitida através do tubo à câmera pneumática contendo ar, e que pode ser representada pela compliância Ca; o efeito inercial do fluido bem como a restrição à sua passagem para a câmera estão também representados, todos com a mesma vazão resultante.

3) Para o sistema hidráulico da figura ao lado, considere que os tubos são rígidos e os tanques cilíndricos. Determine o BG correspondente e a equação de estado. Considere que a restrição das válvulas é a mesma e que 13=1,5*12=2*11.

Obs: desprezar o efeito inercial do fluido.

Solução:

Os elementos a serem representados são os 3 tanques como capacitores generalizados, as três válvulas com a mesma restrição e as perdas de cargas nos diversos lances de tubulação. A capacitância do tanque pode ser calculada como

$$C = \frac{A}{\rho g},$$

e nesse caso a variável esforço é a pressão devido à coluna d'água. Pode também ser considerado a própria área, com a variável esforço correspondendo à altura da coluna. O BG será o mesmo para ambos os casos. Nomeando os tanques 1, 2 e 3, da esquerda para a direita, a capacitância do primeiro e do segundo são iguais e a do terceiro menor, dadas por

$$C_1 = C_2 = \frac{1}{4}\pi d^2 = C$$
 $C_3 = \frac{1}{16}\pi d^2 = \frac{1}{4}C$.

A resistência devido à perda de carga pode ser considerada proporcional ao comprimento do tubo, assim, teremos

$$R_1 = R$$
 $R_2 = \frac{4}{3}R$ $R_3 = 2R$,

onde o índice refere-se ao tubo com os tamanhos respectivos. Deve-se notar que de ambos os lados da tubulação saem vazões para a atmosfera, ou seja à mesma pressão que pode ser considerada de referência. O efeito capacitivo devido à existência de ar dentro dos tanques fechados pode ser desconsiderado na modelagem.

As duas questões a seguir baseiam-se nas atividades realizadas em laboratório. Assim, considere as informações e especificações do PLC ZAP500 e do Supervisório Elipse E3 vistas durante o semestre para resolvê-las.

- 1) Um totalizador de vazão gera um sinal de duração de 1 segundo a cada 5 segundos para indicar que 7,5 litros de um determinado fluido passaram por ele (a figura 1 representa o processo). A saída do totalizador está ligada a entrada digital I0 de um PLC ZAP500. Com estas informações você deverá desenvolver um programa Ladder que desempenhe as seguintes funções:
- a) Contabilizar os pulsos do totalizador em uma memória e convertê-los para m³.
- b) A cada 3 m³, executar o seguinte procedimento: fechar uma válvula para evitar que o fluido continue escoando(O10) e acionar uma saída digital(O11) por 1 minuto responsável por descarregar a quantidade armazenada em uma parte do processo.

Observações:

- A resolução do timer no ZAP500 é 0.01 segundos;
- A saída O10 deve estar acionada para fechar a válvula e interromper o escoamento.
- 2) Explique o que é Sistema de Supervisão, cite (no mínimo) três funcionalidades ou elementos de um sistema de Supervisão e Proponha uma variável (endereço e função) a ser configurada e/ou monitorada por um Sistema de Supervisão para ser utilizado junto ao ZAP500 do exercício anterior.

Solução:

- 1) Arquivo Ladder anexo
- 2) Os Sistemas de Supervisão (ou supervisórios) são programas de computador responsáveis por coletar dados em tempo-real de equipamentos de aquisição de dados e/ou controle, como os PLCs (Controladores Lógicos Programáveis), e vários outros equipamentos.

As funções comuns a grande parte dos Supervisórios são:

- Telas: permitem criar uma IHM (Interface Homem-Máquina) localmente, pela rede local ou Internet, com o intuito de exibir o status atual ou passado dos dados em várias formas, e também permite a atuação no processo habilitando / desabilitando a escrita de dados;
- Alarmes e Eventos: monitoram o acontecimento de situações específicas podendo indicar em Telas ou executar uma ação específica (disparar alarme sonoro, enviar e-mails, etc);
- Históricos: armazenamento de dados em banco de dados relacionais;
- Relatórios: permitem visualizar e imprimir os dados, alarmes antigos;
- Gerenciamento de acesso a dados / informações por usuários.

Para a aplicação anterior é possível citar várias variáveis que seriam utilizadas para monitorar/configurar o processo:

- R1 indica que O10 e O11 estão acionados;
- D0 indica o Volume em litros e D1 em m³;
- Duas outras variáveis que poderiam ser utilizadas D2 e D3 para, respectivamente, configurar o volume programado para descarregar o conteúdo e programar o tempo de descarregamento.

SPDSW - Versão 1.8.04

Aplicação: Prova2 Endereço de acesso: 255 Projeto: PROVA

Projeto: PROVA
Controlador: ZAP500
I H M: Nenhum
Versão: 1.000

Descrição:

Responsavel: HI Tecnologia - Eng. de Aplicação
Empresa: HI Tecnologia Ind. e Com. Ltda
Criado por: SPDSW Ver 1.8.04
Criado em: 26/11/2006 10:05:52

Criado em: 26/11/2006 10:05:52
Última carga: 26/11/2006 10:05:52
Última modificação: 26/11/2006 11:09:09

					Especificaçã	o dos mód	ılos do controlador	
Rack	Slot	Código		Módulo		Canais		
00 Proc. o	00 :/ 2 car		5.510.000 s, 10 led´s prog,	MPB510 4 EDig PNP, 2 E		27 ig PNP e 1	canal Cont. Rápido	
Canal	lo	dent.	Tipo		Des	crição		
00	C	00000	Saída digital p/	Led				
01	C	00001	Saída digital p/					
02		00002	Saída digital p/					
03		00003	Saída digital p/					
04		00004	Saída digital p/					
05		00005 00006	Saída digital p/ Saída digital p/					
06 07		00007	Saída digital p/					
08		00007	Saída digital p/					
09		00009	Saída digital p/					
10		COM0	Canal serial RS	S232-C/RS485				
11	C	COM1	Canal serial RS					
12		0000	Contador Quad					
13		0000	Entrada Digital					
14		0001	Entrada Digital					
15 16		0002 0003	Entrada Digital Entrada Digital					
17		0003	Entrada Digital					
18		0005	Entrada Digital					
21		00010	Saída Digital P					
22		00011	Saída Digital P					
23	C	00012	Saída Digital P					
24	C	00013	Saída Digital P	NP Isolada				
Rack	Slot	Código		Módulo		Canais		
00	01		5.400.000	ZEM400		20		
I/O c/ 4	4 EDig	PNP, 4 SI	Dig PNP, 8 EAn	alog, 2 SAnalog, 2	2 Ger. Freq. Pr	ogramavel		
Canal	lo	dent.	Tipo		Des	scrição		
00		8000	Entrada Digital					
01		0009	Entrada Digital					
02		0010	Entrada Digital					
03 04		0011 00016	Entrada Digital Saída Digital P					
05	_	00010	Saída Digital P					
06		00017	Saída Digital P					
07		00019	Saída Digital P	NP Isolada				
08		0000	Entrada Analóg					
09		0001	Entrada Analóg					
10		0002	Entrada Analóg					
11		0003	Entrada Analóg					
12 13		0004 0005	Entrada Analóg Entrada Analóg					
14		0005	Entrada Analóg					
15		0007	Entrada Analóg					
16		80000	Saída Analógic					
17		80001	Saída Analógic	a simples				
18		0000	Frequencia Pro					
19	Т	0001	Frequencia Pro	gramável				

Identificadores de Contato auxiliar				
Ident.	NU	Tag	Descrição	
R0000 R0001			Pulso de 7,5 litros contato auxiliar indicando qu já se passaram 3 m³	

Obs: NU = X -> Contato auxiliar associada não utilizada no programa.

				Identificadores de Memória inteira
ldent.	NU	Tag	Descrição	

M0000

Obs: NU = X -> Memória inteira associada não utilizada no programa.

	Identificadores de Memória real				
Ident.	NU	Tag	Descrição		
D0000 D0001			Contabilização dos pulsos		

Obs: NU = X -> Memória real associada não utilizada no programa.

Tabela de Constante inteira				
Ident.	NU	Valor	Tag	Descrição
K0000 K0001				1(min)x60(segundos)x100(resolução do timer) [6000] Zero [0]

Obs: NU = X -> Constante inteira associada não utilizada no programa.

Tabela de Constante real				
Ident.	NU	Valor	Tag	Descrição
Q0000 Q0001		7.500000 1000.000000		litros por pulso [7.500000]
Q0001 Q0002		3.000000	3M³	conversão de litros para m³ (1m³ = 1000 litros) [1000.000000] Valor a ser comparado para acionar a saída durante 1 minuto [3.000000]

Obs: NU = X -> Constante real associada não utilizada no programa.

------ [Contato auxiliar] ------R0001: contato auxiliar indicando qu já se passaran A saída é acionada durante 1 minuto para descarregar a ----- [Memória inteira] -----quantidade armazenada a uma outra parte do processo. M0000: Ao final, a contabilização é zerada. ----- [Memória real] ------D0000: Contabilização dos pulsos ⊢MOV− ⊢TMR¬ ----- [Constante inteira] ------K0001: Zero [0] M0000 K0001 K0000: 1(min)x60(segundos)x100(resolução do timo R0001 K0000 D0000 END