AGS 1053 (Advian).
Descent M1,1: Sch P->Set not representable
So consider the category
Mi, : object (S, (E, R)) family of elliptic cures over
morphisms: (f,g) where f:5'->5,g.E'->E,
s.t. $e'(\downarrow) \boxtimes e(\downarrow)$ $S' \longrightarrow S$
and have forgetful functor My, -> Sch
So My Librar category / Sch.
fibero = families, isos amongot families.
So it's a cotegory fibered in groupoids.
F X EOB C, Py Convider C/X.
2-Yoneda: $Hom(C/x, F) \rightarrow P(X)$ sending $(C/x \xrightarrow{9} F) \mapsto g(id_x)$
15 an equivalence of cadegoins.
In our example C=Sch, F=M1,1, X ∈ Sch
e.g. (Schemes 5 families of ell cures) -> {families over X}.
For a quasi inverse, pull buck along a morphism F.X.
Def (tppf site) X, Schx Dafine a Grothendieck topology on X
by $\{U_i \rightarrow U\}$ is a covering if each $U_i \rightarrow U$ flat 8 locally of finite presentation, and $UU_i \rightarrow U$ is surjective.
presentation, and UU;—U is surjective.
X E Sch5, function of pts hx: Sch5 -> Sot
Main technical theorem. his is a see sheaf in Scho w/ the fppf topology. Dug stale site
Con X - hx defines a fully f. functor Sch - (sheared on Schét)
Con X -> hx defines a fully f. functor Sch -> (sheares on Schét) ie extend confermy of schemes in this way.)

General Setup for descent.
C cat with finite fiber products p:F-C fibered Cat. C eg MII -> Sch Y X for each f:X-Y E Mort choose pullback functor f* FO-FO
Def For $\{X_i \rightarrow Y\}_{i \in I}$ morphisms e in C define $F(\{X_i \rightarrow Y_i\})$ to be the following category
Objects: $(\{E_i\}_{i \in I}, \{\sigma_{ij}\}_{i,j \in I})$ where $E \in F(X_i)$ and $\sigma_{ij}: pr_i^* E_i \rightarrow pr_i^* E_{j'}$ is an iso in $F(X_i \times_f X_j)$
and a cocycle condition Morphisms are $\{g_1: E' \rightarrow E_i\}$ in $F(X_i)$ st
Prity -> prits prity -> prits prity -> prits
There is a (restriction) fundor $E: F(Y) \longrightarrow F(\{X, \to Y\})$
Def $\{X_i \rightarrow Y\}$ is of effective descent for Y if E is an equiv of costs. Ex. Shapes on a top so the effective demont some you can always.
Ex. Sheaves on a top sp (the effective dement says you can glue sheaves) Del Let C be a site. A cat libered in groupoids
Def Let C be a site. A cost fibered in groupoids is a stack of $\forall X \in Ob(C)$ and any covering $\{X_i \rightarrow X\}$, the functor $\{(X_i \rightarrow X_i) \rightarrow (\{X_i \rightarrow X\})\}$ is an equiv of codegones.