Spis treści

1	Literatura	2
2	Język2.1Funkcje języka2.2Nauka o języku2.3Definicja	2 2 2 2
3	Alfabet	2
4	Słowo 4.1 Konkatenacja 4.2 Podsłowo 4.3 Długość słowa 4.4 Potęga słowa 4.5 Odbicie	3 3 3 3
	Język 5.1 Konkatenacja języków 5.2 Potęga języka 5.3 Dzielenie słów Domknięcie Kleenego	3 4 4 4
7	Automaty7.1 Deterministyczne automaty skończone7.1.1 Funkcja przejść7.1.2 Rozszerzona funkcja przejść7.1.3 Przykład7.2 Niedeterministyczne automaty skończone7.2.1 Rozszerzona funkcja przejść7.2.2 Twierdzenie Scotta7.2.3 Przekształcenie niedet \rightarrow det7.3 Automaty z przejściem7.3.1 Domknięcie stanu7.3.2 Domknięcie zbioru stanów7.3.3 Rozszerzona funkcja przejść7.3.4 Przekształcenie $\epsilon \rightarrow$ ndet	5 5 5 6 6 7 7 7 8 9 9
8	8.1 Operacje . 8.2 Przykłady . 8.3 Tw. Kleenego . 8.3.1 $w = u + v$. 8.3.2 $w = uv$.	10 10 10 10 10 11 11
9		11 11
	9.1.1 Lemat o pompowaniu dla języków regularnych	12 13

10	ramatyki	13
	0.1 Typu 3 (regularne)	13
	10.1.1 Wyprowadzanie słowa w jednym kroku	13
	10.1.2 Wyprowadzanie słowa w wielu krokach	13
	10.1.3 Język generowany przez gramatykę	13
	10.1.4 Przykład prosty	13
	10.1.5 Przykład złożony	14

1 Literatura

- J.E. Hopencroft "Wprowadzenie do teorii automatów i obliczeń"
- M. Sipser "Wprowadzenie do teorii obliczeń"
- G.E. Revesz "Introduction to formal languages"
- H.R. Lewin, Papadimitriou "Elements of the Theory of Computation"

2 Język

 ∞ zdań + n reguł = język

2.1 Funkcje języka

- 1. Poznawcza
- 2. Społeczna
- 3. Ekspresywna

2.2 Nauka o języku

- 1. syntaktyka budowa
- 2. semantyka co znaczy?
- 3. pragmatyka jak się używa?

Przykład:2 + 3 · 4: różna semantyka \rightarrow wieloznaczność syntaktyczna

2.3 Definicja

Język składa się z gramatyk i automatów. Gramatyka generuje język, automat rozpoznaje język.

3 Alfabet

Alfabet to zbiór atomowych dozwolonych symboli

Przykład: $\{a, b, c, d\}$

4 Słowo

Słowo to skończony ciąg symboli nad alfabetem.

- \bullet ε słowo puste
- $\{K, L, O, P, S\} \neq "KLOPS"$, ponieważ słowa mają dodane znaczenie, w postaci tego do którego języka należą.

4.1 Konkatenacja

- Dla $P = a_1...a_n$ i $Q = b_1...b_n$, to $PQ = a_1...a_nb_1...b_n$
- $P\epsilon = P$
- $\bullet \ \epsilon\epsilon = \epsilon$

4.2 Podsłowo

- $P = Q_1|Q|Q_2$
- $\bullet \ \ Q \subset P$

4.3 Długość słowa

- $|\epsilon| = 0$
- |Pa| = |P| + 1
- $\bullet |PQ| = |P| + |Q|$

4.4 Potęga słowa

- $\bullet \ P^0 = \epsilon$
- $P^{n+1} = P^n P$

4.5 Odbicie

- $\bullet \ \epsilon^- 1 = \epsilon$
- $(Pa)^-1 = aP^-1$

5 Język

Zbiór dozwolonych słów nad alfabetem.

- $\bullet~V^*$ zbiór wszystkich języków
- $\bullet \ V^+ = V^* \ \epsilon$
- $\bullet \ L \in V^*$
- $\bullet \ \{a,ab\} \neq \epsilon, a,ab$ ponieważ inaczej operacje na językach by nie działały

Konkatenacja jezyków 5.1

$$L_1 = \{a, aa\}, L_2 = \{b, aba\}, L_1L_2 = \{ab, aaba, aab, aaaba\}$$

Tabela 1: Tabela konkatenacji języków L_1 i L_2

 $|L_1L_2| \leq |L_1| \cdot |L_2|$ bo eps wszystko psuje

$$L_1 = \{a^n : n \ge 0\}, L_2 = \{b^n : n \ge 0\}, L_1L_2 = \{a^nb^m : n, m \ge 0\}$$

5.2Potega jezyka

$$L = \{a, ab\}, L^0 = \{\epsilon\}, L^1 = \{a, ab\}, L^2 = L \cdot L$$

Potęgowanie na językach jest dziwne

$$L = \{a^n : n \ge 0\}, L^2 = \{a^n a^m : a, m \ge 0\} = \{a^n : a \ge 0\} = L$$

Potęgowanie języku nie zwiększyło mocy

$$L = \{a^n : n > 0\}, L^2 = \{a^n a^m : a, m > 0\} = L \setminus \{a\} = \{a^n : n > 1\}$$

Potęgowanie języku zmniejszyło moc

5.3Dzielenie słów

 $P \in L^n \to \text{można podzielić } P \text{ na } n \text{ (niekoniecznie różnych) słów}$

$$L = \{a, ab\}, "aababaabab" \in L^n, n = ?$$

Jest to problem wykładniczy, który wymaga stworzenia drzewa różnych możliwości.

Domknięcie Kleenego 6

$$L^* = \bigcup_{n \ge 0}^{\infty} L^n$$
$$L^+ = \bigcup_{n \ge 1}^{\infty} L^n$$

$$L^+ = \bigcup_{n \ge 1}^{\infty} L^r$$

$$L_1 = \{a\}, L_1^* = \{a^n : n \ge 0\}, L_1^+ = \{a^n : n > 0\}$$

$$L_2 = {\epsilon, a}, L_2^* = {a^n : n \ge 0} = L_2^+$$

 $L = \{aa, ab, ba, bb\}, L^* = \{P \in \{a, b\}^* : 2||P|\} =$ wszystkie słowa nad alfabetem a, b o parzystej długości

- $L^+ \subset L^*$
- $\epsilon \in L \to L^+ = L^*$
- $(L^*)^* = L^*$
- $L_1 \subset L_2 \to L_1^* \subset L_2^*$

$$L = \{a^n : n > 1\}, L^1 \neq L^2, L^* = L^2$$

7 Automaty

- nieskończona taśma
- rejestry
- w każdym rejestrze symbol z alfabetu T
- głowica, która porusza się od lewej do prawej po rejestrach taśmy, aż do momentu, kiedy napotka pusty rejestr. Głowica zawsze jest w jednym ze stanów z zbioru stanów

7.1 Deterministyczne automaty skończone

Automat skończenie stanowy jest uporządkowaną piątką

$$\mathfrak{A} = \langle K, T, \delta, q_0, H \rangle$$

- \bullet K zbiór stanów
- T alfabet symbole z tego alfabetu znajdują się w rejestrach
- $\delta: K \times T \to K$ funkcja przejścia automatu
- $\bullet \ q_0$ stan początkowy automatu
- H zbiór stanów akceptowalnych/końcowych

7.1.1 Funkcja przejść

Zbiory K i T są skończone, co oznacza, że funkcję δ można przedstawić w formie tabelki. Przykład:

$$K = \{q_0, q_1, q_2\}, T = \{a, b\}, H = \{q_2\}$$

$$\delta: K \times T \to K$$

 q_2

b

) b

Diagram 1: Tabela konkatenacji języków L_1 i L_2 oraz graf przejść automatu

7.1.2 Rozszerzona funkcja przejść

$$\stackrel{\wedge}{\delta}: K \times T^* \to K$$

- $\bullet \ \stackrel{\wedge}{\delta} (q,\epsilon) = q$
- $\stackrel{\wedge}{\delta}(q, Pa) = \delta(\stackrel{\wedge}{\delta}(q, P), a)$

7.1.3 Przykład

Narysuj diagram przejścia deterministycznego automatu skończenie stanowego $\mathfrak A$ w którym $T=\{0,1\}, P\in L(\mathfrak A)$ wtedy i tylko wtedy gdy w P występuje na pierwszym od końca miejscu.

Diagram 2: Diagram przejścia automatu do wykrywania 1 na pierwszym miejscu od końca

Narysuj diagram przejścia deterministycznego automatu skończenie stanowego \mathfrak{A} w którym $T = \{0,1\}, P \in L(\mathfrak{A})$ wtedy i tylko wtedy gdy w P występuje na drugim od końca miejscu 1.

Diagram 3: Diagram przejścia automatu do wykrywania 1 na drugim miejscu od końca

Widać na diagramie 3 wprost zależność że w zależności od miejsca od końca na którym ma być jeden rośnie ilość stanów. Ilość stanów maszyny |K| do wykrywania 1 na n-tym miejscu od końca można wyrazić w następujący sposób: $|K|=2^n$

7.2 Niedeterministyczne automaty skończone

- zamiast jednego stanu początkowego jest zbiór stanów początkowych
- niedeterministyczna funkcja przejścia, która zwraca zbiór wyjściowych stanów

$$\mathfrak{A} = \langle K, T, \delta, Q_0, H \rangle$$

gdzie oznaczenia są identyczne jak dla deterministycznego automatu z dwoma różnicami:

- $\delta: K \times T \rightarrow a \in K$ funkcja przejścia automatu
- $\bullet~Q_0$ zbi
ór stanów początkowych automatu

$$L(\mathfrak{A}) = \{ P \in T^* : \stackrel{\wedge}{\delta} (Q_0, P) \cap H \neq \emptyset \}$$

Diagram 4: Niedeterministyczna wersja automatu 🎗 z rysunku 3

Diagram 5: Diagram przejścia automatu do wykrywania słów o długości podzielnej przez 2 lub 3

Jak widać zamiast 4 stanów potrzeba tylko 3, to dlatego, że dla wersji niedeterministycznej |K| = n + 1

7.2.1 Rozszerzona funkcja przejść

$$\stackrel{\wedge}{\delta}: P(K) \times T^* \to P(K)$$

- $\overset{\wedge}{\delta}(A,\epsilon) = A$
- $\bullet \ \stackrel{\wedge}{\delta} (A,Pa) = \bigcup\nolimits_{q \in \stackrel{\wedge}{\delta} (A,P)} \delta (q,a)$

$$\overset{\wedge}{\delta}(\{p\}, a) = \delta(p, a)$$

7.2.2 Twierdzenie Scotta

• każdy **nie**deterministyczny automat skończony można zastąpić równoważnym deterministycznym automatem skończonym

$$\mathfrak{L}_{ndet} \subset \mathfrak{L}_{det}$$

 każdy deterministyczny automat skończony można zastąpić równoważnym niedeterministycznym automatem skończonym

$$\mathfrak{L}_{det} \subset \mathfrak{L}_{ndet}$$

• liczba stanów automatu deterministycznego jest wykładnicza w stosunku do liczby stanów automatu niedeterministycznego

$$\mathfrak{L}_{det} = \mathfrak{L}_{ndet}$$

Zatem co nam daje niedeterministyczność? Przede wszystkim prostotę, ale kosztem wykładniczej złożoności. Narysuj diagram przejścia deterministycznego automatu skończenie stanowego $\mathfrak A$ w którym $T=\{a\}, P\in L(\mathfrak A)$ wtedy i tylko wtedy gdy $(2||P|)\vee(3||P|)$.

Jak widzimy na diagramie 5 przyjmuje postać cyklu o okresie 6, ponieważ NWW(3,2)=6. Problem z diagramami deterministycznym się pojawia dla wyższych liczb, np.: 7 i 5, wtedy NWW(7,5)=35. Zatem narysujmy diagram niedeterministyczny 6.

Jako, że automaty niedetermnistyczne pozwalają na kilka stanów początkowych, to tworzymy diagram niespójny, który w zależności od tego czy |P| jest podzielne przez 5 czy 7 przechodzi do odpowiedniego pod-automatu. Najłatwiej to można sobie wyobrazić jako dwa równoległe automaty z alternatywą na koniec.

7.2.3 Przekształcenie niedet \rightarrow det

$$\mathfrak{A} = \langle K, T, \delta, Q_0, H \rangle$$

$$\mathfrak{A}' = \langle K', T', \delta', q_0', H' \rangle$$

$$L(\mathfrak{A}) = L(\mathfrak{A}')$$

Diagram 6: Diagram przejścia automatu ndet do wykrywania słów o długości podzielnej przez 5 lub 7

- T' = T bo nie ma sensu zmieniać taśmy
- K' = P(K) Wykładniczy wzrost liczby stanów w przekształceniu będziemy używać systemu etykiet(konstrukcja potęgowa) aby zamieniać zbiory stanów na pojedyncze stany

$$\{q_0, q_1\} = q^{01}$$

 $P(K) = \{q^{\emptyset}, q^1, q^0, q^{10}, \dots\}$

- $\bullet \ q_0' = Q_0$ stan odpowiadający zbiorowi stanów początkowych
- $\bullet \ H' = \{ A \in K' : A \cap H \neq \emptyset \}$
- $\delta'(A, a) = \bigcup_{q \in A} \delta(q, a)$

Dla automatu 4 zbudujmy równoważny automat deterministyczny. Korzystając z powyższych zasad otrzymujemy:

- $K' = P(K) = \{\emptyset, \{q_0\}, ..., \{q_1, q_2\}, \{q_0, q_1, q_2\}\} = \{q^{\emptyset}, q^0, ..., q^{12}, q^{012}\}$
- $\bullet \ H' = \{q^2, q^{12}, q^{02}, q^{012}\}$
- $q_0' = \{q_0\} = q^0$

Diagram 7: Zdeterminizowany automat z rysunku 4 i jego tabela przejść

Jak widać na diagramie 7 liczba stanów wzrosła z 3 do 8, co jest zgodne z przewidywaniami. Jednocześnie widać, że diagram 3 zawiera się w diagramie 7, co niekoniecznie oznacza, że są sobie równoważne, lecz jako, że stany dodatkowe są nieosiągalne to te dwa automaty są równoważne. Nie zawsze równoważność automatów będzie tak oczywista.

7.3 Automaty z przejściem

Co jeśli moglibyśmy zmienić stan ale nie ruszyć głowicy? Wtedy mamy do czynienia z automatem z przejściem.

 $\epsilon \in T, \epsilon = \text{nie ruszaj głowicy automatu}$

$$\delta: K \times (T \cup \{\epsilon\}) \to P(K)$$

Każdy automat z przejściem jest niedeterministyczny

Diagram 8: Automat z przejściem

Automat przedstawiony na rysunku 8 akceptuje języki o następującej postaci $L(\mathfrak{A}) = \{0^n 1^m 2^k : n, m, k \ge 0\}$. Nie istnieją różne epsilony: $00\epsilon 1\epsilon 222 = 00122$

7.3.1 Domknięcie stanu

E(q) = zbiór stanów osiągalnych z q przez dowolną liczbę epsilonów

- 1. $q \in E(q)$
- 2. $r \in E(q) \land p \in \delta(r, \epsilon) \rightarrow p \in E(q)$

7.3.2 Domknięcie zbioru stanów

$$E(A) = \bigcup_{q \in A} E(q)$$

7.3.3 Rozszerzona funkcja przejść

$$\stackrel{\wedge}{\delta}: P(K) \times T^* \to P(K)$$

- $\overset{\wedge}{\delta}(A, \epsilon) = E(A)$
- $\bullet \ \stackrel{\wedge}{\delta} (A,Pa) = \bigcup_{q \in \stackrel{\wedge}{\delta}(A,P)} E(\delta(q,a))$

7.3.4 Przekształcenie $\epsilon \rightarrow$ ndet

$$\mathfrak{A}' = \langle K', T', \delta', Q_0', H' \rangle$$

$$T' = T, K' = K, H' = H, Q'_0 = E(Q_0), \delta'(A, a) = E(\delta(q, a))$$

$$\mathfrak{L}_{\mathfrak{ndet}} = \mathfrak{L}_{\epsilon} = \mathfrak{L}_{\mathfrak{det}}$$

Diagram 9: Przekształcenie automatu z przejściem na niedeterministyczny

8 Wyrażenia regularne

Reg(V) = zbiór wyrażeń regularnych nad alfabetem V

- $o \in Reg(V)$
- $e \in Reg(V)$
- $a \in V \rightarrow a \in Reg(V)$
- $u, v \in Reg(V) \rightarrow (u+v), (u\cdot v), (u^*) \in Reg(V)$

8.1 Operacje

W kolejności od najwyższego priorytetu do najniższego

- 1. $P \in Reg(V) \to L(P) \neq \emptyset$
- 2. $L(u^*) = (L(u))^*$
- 3. $L(uv) = L(u) \cdot L(v)$
- 4. $L(u+v) = L(u) \cup L(v)$
- 5. $L(u) = \{u\}$

8.2 Przykłady

$$L(ba^*) = \{ba^n : n \ge 0\}$$

$$L(ba^*) = L(b)L(a^*) = \{b\} \cdot (L(a))^* = \{b\} \cdot \{a\}^* = \{ba^n : n \ge 0\}$$

 $L((a+b)^*ab(a+b)^*)$ - wszystkie słowa nad alfabetem $\{a,b\}$ zaczynające się od a i kończące się b

8.3 Tw. Kleenego

$$\forall_{v \in Reg(V)} L(v) \subset \mathfrak{L}_{det}$$

Każdy język generowany przez wyrażenie regularne jest językiem akceptowanym przez automat skończony. Dowód opiera się na konstrukcji automatu ϵ odpowiadającego operatorowi wyrażenia regularnego.

8.3.1 w = u + v

$$L(u+v) = L(u) \cup L(v)$$

$$L(u) = L(\mathfrak{A}_u), L(v) = L(\mathfrak{A}_v)$$

$$L(\mathfrak{A}) = L(\mathfrak{A}_u) \cup L(\mathfrak{A}_v)$$

Diagram 10: Konstrukcja automatu dla wyrażenia regularnego u+v

8.3.2 w = uv

$$L(uv) = L(u) \cdot L(v)$$

$$L(u) = L(\mathfrak{A}_u), L(v) = L(\mathfrak{A}_v)$$

$$L(\mathfrak{A}) = L(\mathfrak{A}_u) \cdot L(\mathfrak{A}_v)$$

$$\operatorname{tart} \longrightarrow \overbrace{q_0} \xrightarrow{\epsilon} \underbrace{\mathfrak{A}_u} \xrightarrow{\epsilon} \underbrace{\mathfrak{A}_v}$$

Diagram 11: Konstrukcja automatu dla wyrażenia regularnego uv

8.3.3
$$w = u^*$$

$$L(u^*) = (L(u))^*$$

$$L(u) = L(\mathfrak{A}_u)$$

$$L(\mathfrak{A}) = (L(\mathfrak{A}_u))^*$$

Diagram 12: Konstrukcja automatu dla wyrażenia regularnego u^{\ast}

9 Klasy języków

Diagram 13: Nadzbiory języków regularnych

9.1 Języki regularne

Diagram 14: Konstrukcja automatu dla automatu a^*b^*

Język regularny to język akceptowany przez wyrażenie regularne, czyli język akceptowany przez automat skończony.

Diagram 15: Konstrukcja automatu akceptującego język $L = \{a^n b^n : 1 \le n \le 3\}$ bez śmietnika

Czy można zapisać automat deterministyczny (lub nie) skończenie stanowy, akceptujący język $L = \{a^nb^n : n \ge 1\}$?

Nie da się, ponieważ wymagałoby to nieskończonej ilości stanów. Zatem język L nie jest językiem regularnym.

9.1.1 Lemat o pompowaniu dla języków regularnych

Służy do dowodzenia, że język nie jest regularny.

Jeżeli $L = L(\mathfrak{A})$

to: istnieje $k \geq 0$, taki, że każde słowo $P \in L$ o długości $|P| \geq k$ można zapisać jako P = XYZ, spełniające warunki:

Lemat o pompowaniu jest warunkiem koniecznym ale nie wystarczającym. To oznacza, że wszystkie języki regularne spełniają warunek lematu o pompowaniu, ale nie wszystkie języki spełniający warunek lematu o pompowaniu są regularne. Warunkiem dostatecznym jest zdefiniowanie automatu skończenie stanowego akceptującego język.

- $Y \neq \epsilon$
- |XY| < k
- $\forall_{i>0} XY^iZ \in L$

Parafrazując: jeśli język jest regularny, to nie ma w nim słowa, którego nie mógłbyś podzielić na trzy części, takie, że środkowa część jest powtarzalna.

Przykład zgodny

Dlaczego język $L = \{a^n b^m : n, m \ge 1\}$ jest regularny?

- $k > 2, P \in L$
- $|P| > k \rightarrow n + m > k$
- $P = a^{n-x}a^xb^m$ czyli P = XYZ gdzie $X = a^{n-x}, Y = a^x, Z = b^m$
- $n x + x < k \leftrightarrow |XY| \le k$
- dla i > 0 $XY^iZ = a^{n-x}a^{xi}b^m = a^{n+x(i-1)}b^m$, co jak widzimy jest w języku L

Przykład niezgodny

Dlaczego język $L = \{a^n b^n : n \ge 1\}$ nie jest regularny?

- $k > 2, P \in L$
- $|P| \ge k \to 2n \ge k$
- $|XY| < k \rightarrow XY = a^n \lor XY = b^n$
- dla $i = 2 XY^2Z = a^nb^nb^n \notin L$

Zatem muszą istnieć języki nieregularne

9.1.2 Przechodniość regularności

Z tw. Kleenego:

$$L_1, L_2 \in \mathfrak{L}_{reg} \to L_1 \cup L_2, L_1 \cdot L_2, L_1^*, L_2^* \in \mathfrak{L}_{reg}$$

$$L_1 \cup L_2 = L(v+w) = L(v) \cup L(w) = L_1 \cup L_2$$

$$L_1 \cap L_2 = \overline{L_1 \cap L_2} = \overline{\overline{L_1} \cup \overline{L_2}}$$

10 Gramatyki

Gramatyki służą do generowania języków. Działanie gramatyk wyraża się przy pomocy reguły przepisującej.

$$(P,Q)$$
 – słowa

Jeżeli
$$P \to Q$$
 oraz $U = P_1 P P_2$ to $U \Rightarrow P_1 Q P_2$

Jeżeli reguła przepisująca jest wykonywana wielokrotnie to używamy oznaczenia $\stackrel{*}{\Rightarrow}$.

10.1 Typu 3 (regularne)

$$G = \langle V_N, V_T, S, F \rangle$$

gdzie:

- \bullet V_N zbiór nieterminali (symboli zastępowanych)
- V_T zbiór terminali (symboli niezastępowanych)
- \bullet S symbol początkowy
- F zbiór reguł przepisujących

$$V_N \cap V_T = \emptyset$$

10.1.1 Wyprowadzanie słowa w jednym kroku

Dla gramatyki G mówimy, że W jest wyprowadzane w jednym kroku z U (oznaczane $U \Rightarrow W$) jeżeli istnieje reguła $P \to Q \in F$ taka, że $U = P_1 P Q_2$ oraz $W = P_1 Q Q_2$.

10.1.2 Wyprowadzanie słowa w wielu krokach

Dla gramatyki G mówimy, że W jest wyprowadzane w wielu krokach z U (oznaczane $U \stackrel{*}{\Rightarrow} W$) wtedy gdy U = W, lub gdy istnieją słowa $R_1 \dots R_n : n > 1$ gdzie $R_1 = U$ a $R_n = W$.

$10.1.3 \quad \text{Język generowany przez gramatykę}$

$$L(G) = \{ W \in V_T^* : S \stackrel{*}{\Rightarrow} W \}$$

10.1.4 Przykład prosty

$$L(G) = \{a^n : n \ge 0\} = L(a^*)$$

$$G = \langle \{S\}, \{a\}, S, \{S \to aS, S \to \epsilon\} \rangle$$

10.1.5 Przykład złożony

$$L(G) = \{a^n b^n : n \ge 1\} \notin \mathfrak{L}_{reg}$$

$$G = \langle \{S\}, \{a,b\}, S, \{S \rightarrow aSb, S \rightarrow ab\} \rangle$$