Electro-hydraulic Rolling Soft Robot

Khoi Ly

- Lack system integration
- Lack modeling
- Lack speed regulator

Shift of Center of Mass

(Xuelei et. al., 2014)

(Nguyen et. al., 2017)

(Must, 2015)

(Masuda, 2017)

Geometry Deformation

(Kim et. al., 2020

(Chiu et. al., 2018)

(Sugiyama, 2006)

Shell Bulging

(Correll et. al., 2010)

(Wait et. al, 2010)

(Potz et. al., 2010)

1. Mechanical Design

1. Mechanical Design

Research Aim 2

Research Aim 2

Ly, et. al. (In preparation)

BACK

Optocoupler X 16

MARK 8

III. Hybrid dynamic modeling

1. Dynamics modeling of the rolling robot

- Platform-fixed frame \mathcal{F} : { \hat{E}_x , \hat{E}_y , \hat{E}_z }
- The refence frame \mathcal{P} : { \hat{p}_1 , \hat{p}_2 , \hat{p}_3 }
- The reference frame \mathcal{R} : { \hat{e}_1 , \hat{e}_2 , \hat{e}_3 }

Assumption $\mathcal{F}\vec{v}_{R}^{\mathcal{R}} = \vec{0}$

Velocity of the Robot's Center of Mass (point C)

1. Dynamics modeling of the rolling robot

$$\begin{bmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{bmatrix}$$
: Inertia Tensor matrix for the pivot arm and U-mount

L: Distance between the pivot center (A) and the robot's COM (C)

G: COM of the pivot arm and U-mount

Ly, et. al. (In preparation)

Research Aim 2

1. Dynamics modeling of the rolling robot

Translational motion ----

$$-R_{21} + N_{1} = M r \dot{\psi} \dot{\varphi}$$

$$\sum \vec{F} = M \cdot \vec{F} \vec{a}_{C} \qquad -R_{22} - R_{f} + F_{a,2} = M r \ddot{\varphi}$$

$$Mg - R_{23} + N_{3} + F_{a,3} = 0$$

Rotational motion

$$\vec{R}_f - \tau_f = I_1 \ddot{\varphi} + (I_3 - I_2) \dot{\psi}^2 \sin(\varphi) \cos(\varphi)$$

$$\vec{M}_C = \frac{d}{dt} \binom{\mathcal{F}\vec{H}_C}{dt} \qquad r N_1 \cos(\varphi) = I_2 (\ddot{\psi} \sin(\varphi) + \dot{\psi} \dot{\varphi} \cos(\varphi)) + (I_1 - I_3) \dot{\psi} \dot{\varphi} \cos(\varphi)$$

$$-r N_1 \sin(\varphi) = I_3 (\ddot{\psi} \cos(\varphi) - \dot{\psi} \dot{\varphi} \sin(\varphi)) + (I_2 - I_1) \dot{\psi} \dot{\varphi} \sin(\varphi)$$

$$\begin{bmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & I_2 \end{bmatrix}$$
: Inertia Tensor matrix for the rolling robot

1. Dynamics modeling of the rolling robot

$$L r F_2 - r \tau_f - L \tau_f = L I_1 \ddot{\varphi} + r \left(I_3 - I_2\right) \frac{I_{13}}{I_{23}} \ddot{\varphi} \sin(\varphi) \cos(\varphi) + \left(L M r^2 + I_{33} \frac{r^2}{L}\right) \ddot{\varphi}$$

$$\left(L I_1 + L M r^2 + I_{33} \frac{r^2}{L}\right) \ddot{\varphi} = L r F_{a,2} - \left(r \tau_f + L \tau_f\right) sign(\dot{\varphi})$$

$$\begin{bmatrix} \dot{\xi}_1 \\ \dot{\xi}_2 \end{bmatrix} = \begin{bmatrix} \xi_2 \\ \frac{1}{L \, I_1 + L \, M \, r^2 + \, I_{33} \frac{r^2}{L}} \Big(L \, r \, F_{a,2} - (r \, \tau_f + L \, \tau_f) \, sign(\xi_2) \Big) \end{bmatrix}$$

Research Aim 2

 $\xi_1 := \varphi \in \mathbb{R}$ is the angular position of the robot

 $\xi_2 := \dot{\varphi} \in \mathbb{R}$ is the angular velocity of the robot

$$u = \begin{bmatrix} n_{\rm a} \\ \varphi_{\rm a} \\ \varphi_{\rm d} \end{bmatrix}$$

- n_a : the target actuator to be activated
- φ_a : activation angle
- $\varphi_{\rm d}$: deactivation angle

Current actuator index : $\eta = \lfloor \xi_1/(\pi/8) \rfloor$

Contact angle of actuator η^{th} : $\xi_{\text{c}} = \xi_{1} - \eta \ (\pi / 8)$

 $q \in \{0,1\}$: where 0 means not activated, 1 means activated

Activation angle down counter: $\dot{\Delta} = -(1 - q) \xi_2$

Deactivation angle down counter: $\dot{\delta} = -\xi_2$

$$f(\mathbf{x}, u) = \begin{bmatrix} \dot{\xi}_{1} \\ \dot{\xi}_{2} \\ \dot{q} \\ \dot{\delta} \\ \dot{\eta} \end{bmatrix} = \begin{bmatrix} \frac{\xi_{1}}{1} \\ \frac{1}{LI_{1} + LMr^{2} + I_{33}} \frac{r^{2}}{L} (Lr(F_{a} \sin \xi_{c}) - (r\tau_{f} + L\tau_{f})sign(\xi_{2})) \\ 0 \\ -(1 - q) \xi_{2} \\ -\xi_{2} \\ 0 \end{bmatrix}$$

$$F_a(\xi_c, \xi_2, q, \varphi_a) = \frac{1}{\xi_c^{\sigma_1}} \frac{1}{\sigma_2 \xi_2 + \sigma_3} e^{-\frac{(\ln(\xi_c) - \sigma_4)^2}{\sigma_5^2}} q \sigma_6 (\xi_c - \varphi_a)$$

$$\mathcal{H} = (\boldsymbol{C}, f, \boldsymbol{D}, g)$$

$$\mathcal{H} = \begin{cases} \dot{x} = f(x, u) & (x, u) \in \mathbf{C} \\ x^+ = g(x, u) & (x, u) \in \mathbf{D} \\ y = h(x) \end{cases}$$

$$q^{+}=1-q$$

$$\Delta^{+}=q\left(\varphi_{a}+n_{a}\left(\frac{\pi}{8}\right)-\xi_{1}\right)$$

$$\delta^{+}=\varphi_{d}+n_{a}\left(\frac{\pi}{8}\right)-\xi_{1}$$

$$\eta^{+}=q\,n_{a}+(1-q)\,\eta$$

$$\begin{bmatrix} \dot{\xi}_{1} \\ \dot{\xi}_{2} \\ \dot{q} \\ \dot{\delta} \\ \dot{\eta} \end{bmatrix} = \begin{bmatrix} \frac{\xi_{2}}{1} \\ \frac{1}{LI_{1} + LMr^{2} + I_{33} \frac{r^{2}}{L}} (Lr(F_{a} \sin \mathbb{E}\xi_{c}) - (r\tau_{f} + L\tau_{f})sign(\xi_{2})) \\ 0 \\ -(1 - q) \xi_{2} \\ -\xi_{2} \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} {\xi_1}^+ \\ {\xi_2}^+ \\ {q}^+ \\ {\Delta}^+ \\ {\delta}^+ \\ {\eta}^+ \end{bmatrix} = \begin{bmatrix} {\xi_1} \\ {\xi_2} \\ 1 - q \\ q \left(n_a \left(\frac{\pi}{8} \right) + \varphi_a - \xi_1 \right) \\ n_a \left(\frac{\pi}{8} \right) + \varphi_d - \xi_1 \\ q n_a + (1 - q) \eta \end{bmatrix}$$

$$\mathbf{C} := \{ x \in \mathbb{R}^2 \times \{0,1\} \times \mathbb{R}^2 \times \mathbb{N}_{\geq 0} | \\ \sim (\Delta = 0 \land \delta \neq 0 \land q = 0) \land \sim (\Delta = 0 \land \delta = 0 \land q = 1) \}$$

$$\mathbf{D} := \{ x \in \mathbb{R}^2 \times \{0,1\} \times \mathbb{R}^2 \times \mathbb{N}_{\geq 0} | \\ (\Delta = 0 \land \delta \neq 0 \land q = 0) \lor (\Delta = 0 \land \delta = 0 \land q = 1) \}$$

Ly, et. al. (In preparation)

3. Estimation of actuation force function based on measured kinematic data

$$u = \begin{bmatrix} n_{\mathbf{a}} = 16 \bmod (\eta + 1) \\ \varphi_{\mathbf{a}} \\ 22^{o} \end{bmatrix}$$

$$F_a(\xi_c, \xi_2, q, \varphi_a) = \frac{1}{\xi_c^{\sigma_1}} \frac{1}{\sigma_2 \xi_2 + \sigma_3} e^{\frac{-(\ln(\xi_c) - \sigma_4)^2}{\sigma_5^2}} q \sigma_6 (\xi_c - \varphi_a)$$

Research Aim 2

4. Evaluation of actuation force function

 $\{\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6\} = \{1.214, 1.997, 3.836, -1.004, -0.1009, 22.357\}$

Ly, et. al. (In preparation)

1. Description of controller

2. Real-time, multi-threaded implementation

Ly, et. al. (In preparation)

3. Preliminary Results

Step Tracking without Disturbance Estimator

Angular speed (rad/s) Measured speed (rad/s) Referenced speed (rad/s) 15 20 25 30 5 10

Time (s)

Step Tracking with Disturbance Estimator

Ly, et. al. (In preparation)

3. Preliminary Results

Braking Input:

$$u = \begin{bmatrix} n_{a} = 16 \mod (\eta + 2) \\ -22^{o} \\ -22^{o} < \varphi_{d} < 0 \end{bmatrix}$$

Ly, et. al. (In preparation)

Research Aim 2

Summary of Contributions

3 Firsts of shell-bulging soft rolling robots:

- The mobile embedded system driven by electro-hydraulic actuators
- The mathematical model
- The MPC-based controller for speed regulation

Future work

- Modeling and validating the actuation force functions for acceleration and braking
- Untethering the system with onboard power supply and controller.
- Redesigning into a spherical robot or adding an additional wheel-based robot with axle

Thank you

