ProcAID: Process Anomaly-based Intrusion Detection

Austin "AJ" Read

School of Engineering and Applied Sciences George Washington University

November 11th, 2021

Agenda

Motivation and Challenges

Methodology

Algorithm Comparison

Results

Future Work

Implications and Conclusion

Agenda

Motivation and Challenges

Methodology

Algorithm Comparison

Results

Future Work

Implications and Conclusion

Motivation

- Advanced Persistent Threat (APT) success in current landscape
 - Nation-state actors
 - Well-funded and well-staffed
- APT targets:
 - Critical infrastructure, trade secrets, supply chains
- Offensive preference in computer science, cybersecurity, information technology and networking

Challenges

- First intrusion detection model, invented by Dorothy Denning
 - Definition: any deviation in normal operations on a system
- State of intrusion detection
 - Signature-based
 - Anomaly-based
 - ProcAID
- APTs have breached the capabilities of current assets

 Organization must employ multiple assets at the host and network level to effectively respond

https://miro.medium.com/max/1024/1*dSn6e4V_cP-5Nm9LhACpLw.png

Signature-based Detection Challenges

- Focus on pattern/signature matching in database
- Un-intelligent system
- Principal failure:
 - To detect unknown attacks
 - To detect patterns in behavior
- Common APT characteristics
 - "Live off the land"
 - Zero-Days
 - Blend-in with the environment
 - Intelligent exploitation

Prior Work in Anomaly Detection

Link Prediction

Non-Link Prediction With Graphs

Non-Link Prediction without Graphs

Agenda

Motivation and Challenges

Methodology

Algorithm Comparison

Results

Future Work

Implications and Conclusion

ProcAID Methodology

Stage One: Unsupervised Anomaly Detection via Link Prediction

Stage Two: Inverse Graph Leadership and Inverse Graph Density Analysis

ProcAID Algorithm

- Ingests all host logs
- Returns anomalies with maliciousness scores
- Stage One
 - Lines 1-4
- Stage Two
 - Lines 6-20

Algorithm 1 ProcAID Algorithm

Input: HostLogs

Output: Anom, MalScore

- 1: //Stage One
- 2: ProcGraphTrain=CreateGraph(CreateProcTrain)
- 3: ProcGraphTest=CreateGraph(CreateProcTest)
- 4: ProcAnomalies=GraphAnomaly(ProcGraphTrain,ProcGraphTest,Thres)
- 5: //Stage Two
- 6: MalEdgeCollection=FindLogs(ProcAnomalies)
- 7: for edge in MalEdgeCollection do
- 8: **for** parentproc in edge **do**
- 9: ParentProcData=SplitTime(parentproc,Time)
- 10: EvaluationGraph=CreateAnomalyGraph(ParentProcData)
- 11: EdgeDataParentProc=LeadershipDensity(EvaluationGraph)
- 12: end for
- 13: for proc in edge do
- 14: ProcData=SplitTime(proc,Time)
- 15: EvaluationGraph=CreateAnomalyGraph(ProcData)
- 16: EdgeDataProc=LeadershipDensity(EvaluationGraph)
- 17: end for
- 18: Anom, MalScore=CombineData(EdgeDataParentProc,EdgeDataProc)
- 19: end for
- 20: return Anom, MalScore

ProcAID Stage One

- Goal: Find anomalous process creations
- Method: Model user and process interactions
- Key Characteristics:
 - Node2Vec Embedding
 - Logistic Regression

Algorithm 1 ProcAID Algorithm

Input: HostLogs

Output: Anom.MalScore

- 1: //Stage One
- ProcGraphTrain=CreateGraph(CreateProcTrain)
- ProcGraphTest=CreateGraph(CreateProcTest)
- 4: ProcAnomalies=GraphAnomaly(ProcGraphTrain,ProcGraphTest,Thres)
- 5: //Stage Two
- 6: MalEdgeCollection=FindLogs(ProcAnomalies)
- 7: for edge in MalEdgeCollection do
- 8: for parentproc in edge do
- 9: ParentProcData=SplitTime(parentproc,Time)
- 10: EvaluationGraph=CreateAnomalyGraph(ParentProcData)
- 11: EdgeDataParentProc=LeadershipDensity(EvaluationGraph)
- 12: end for
- 13: for proc in edge do
- 14: ProcData=SplitTime(proc,Time)
- 15: EvaluationGraph=CreateAnomalyGraph(ProcData)
- 16: EdgeDataProc=LeadershipDensity(EvaluationGraph)
- 17: end for
- 18: Anom, MalScore=CombineData(EdgeDataParentProc,EdgeDataProc)
- 19: end for
- 20: return Anom, MalScore

Stage One: Graph Creation

Host Logs

Stage One

Process

Graph
Graph
Fredcton

Fredcton

Fredcton

Fredcton

Fredcton

- Form two Process Creation Graphs (train and test) with host logs
- Graph Schema
 - Nodes: User, Process Path, or Parent Process
 Path
 - Edges: Executions/interactions

Example: User "ajread" spawns "winword.exe" from "explorer.exe"

- Learn information from training Process Creation Graph through embedding
- Random walks
 - node2vec: Scalable feature learning for networks¹
 - Second order parameters
 - p: return parameter
 - q: in-out parameter
 - Depth-first search: high p, low q
 - Breadth-first search: low p, high q
- Focus on local neighborhood vs. larger network
- Hadamard embedding of edges

node2vec: Scalable feature learning for networks1

$$[f(u) \boxdot f(v)]_i = f_i(u) * f_i(v)$$

Stage One: Link Prediction

Slage One
Process

Graph

Graph

Graph

Graph

Graph

Graph

Processes

Processes

Processes

Processes

Processes

- Predict existence of test graph edges
- ML Algorithm: Logistic Regression
 - Quick training time
 - Well calibrated probabilities
 - Pe=0, edge does not exist
 - Pe=1, edge does exist

$$p_e = \frac{1}{1 + \exp^{-x*T}}$$

- Prediction Threshold (τ)
 - Edge anomaly if probability less than threshold

$$r$$
 $P_{e}=0$
 $P_{e}=1$

$$e_{anom} = \begin{cases} 1 & p_e < \tau \\ 0 & \text{otherwise} \end{cases}$$

Dataset

DARPA

- Operationally Transparent Cyber Data Release (OpTC)
- 1000 hosts with multiple days of benign and malicious activity
- Logs formulated into "object" and "action" pairs for analytics

Host	Type of Exploitation	Post-Exploitation Actions
0201	Batch file containing Powershell code	PowerShell Empire, Mimikatz, registry edits
0501	Phishing with Macro-enabled Word Document	DeathStar, PowerShell Empire, Windows Management Instrumentation (WMI) subscriptions, SSH forwarding

Stage One Evaluation Metrics

Metrics:

- True Positive: edge found in Process
 Creation Graph that is present in Red
 Team notes
- False Positive: edge found in Process
 Creation graph that is not in Red Team notes
- False Negative: edge not found in Process
 Creation graph that is in Red Team notes
- True Negative: edge not found in Process
 Creation graph that is not in Red team
 notes
- Important: Red Team notes do not track all Red Team activity

$$Precision = \frac{TruePositive}{TruePositive + FalsePositive} = \frac{RedTeam_{edge}}{RedTeam_{edge} + RedTeam'_{edge}}$$

$$Recall = \frac{TruePositive}{TruePositive + FalseNegative} = \frac{RedTeam_{edge}}{RedTeam_{edge} + RedTeam_{edge'}}$$

$$F1_{Score} = 2 \frac{Recall * Precision}{Recall + Precision}$$

Host 0201

- ProcAID discovers all malicious process creation events
- False positives impact precision

Host 0501

- ProcAID discovers majority of malicious process creation events
- Overwhelmed by false positives

<u>Conclusion:</u> Engineer Stage Two to intelligently filter false positives

Host	Precision	Recall	F1 Score
0201	33.871	100.00	50.602
0501	11.852	84.211	20.779

Stage One: Link Prediction Threshold Optimization

Recall F1 Score 80 60 20

Figure 4.7: Host 0201 τ Evaluation

Figure 4.8: Host 0501 τ Evaluation

Stage One: Random Walk Optimization

Figure 4.6: Host 0501 Random Walk Evaluation

ProcAID: Stage Two

- Goal: Scrutinize anomalous process from Stage One
- Method: Examine anomalous edges using graph analytics
- Substages
 - Data Preparation
 - Formats data for Graph Creation
 - Graph Creation
 - Anomalous Process Graph creation
 - Analysis
 - Inverse Graph Leadership
 - Inverse Graph Density

Algorithm 1 ProcAID Algorithm

Input: HostLogs

Output: Anom, MalScore

- 1: //Stage One
- ${\tt 2: \ ProcGraphTrain=CreateGraph(CreateProcTrain)}\\$
- 3: ProcGraphTest=CreateGraph(CreateProcTest)
- 4: ProcAnomalies=GraphAnomaly(ProcGraphTrain,ProcGraphTest,Thres)
- 5: //Stage Two
- 6: MalEdgeCollection=FindLogs(ProcAnomalies)
- 7: for edge in MalEdgeCollection do
- : for parentproc in edge do
- 9: ParentProcData=SplitTime(parentproc,Time)
- 10: EvaluationGraph=CreateAnomalyGraph(ParentProcData)
- 11: EdgeDataParentProc=LeadershipDensity(EvaluationGraph)
- 12: end for
 - for proc in edge do
- 14: ProcData=SplitTime(proc,Time)
- 15: EvaluationGraph=CreateAnomalyGraph(ProcData)
- 16: EdgeDataProc=LeadershipDensity(EvaluationGraph)
- 17: end for
- 18: Anom. MalScore=CombineData(EdgeDataParentProc.EdgeDataProc)
- 19: **end for**
- 20: return Anom, MalScore

Stage Two: Graph Creation

- Purpose: Model process entire interaction with host
- Graph Schema
 - Nodes: PID, Parent PID, Registry Values, Registry Keys, Source IP, Destination IP
 - Edges: Interactions

Analysis Background

Leadership:

 Measure of the extent of which a graph is dominated by a single node

$$L = \frac{\sum_{i=1}^{n} d_{max} - d_{i}}{(n-1)(n-2)}$$

Density

 Measure of the number of connections between nodes in comparison to the number of possible connections between nodes

$$D = \frac{2m}{n(n-1)}$$

Stage Two: Analysis

Assumption 1:

 The Anomalous Process Graph for a malicious process will have a high inverse graph leadership value because process execution will be dominated by multiple objects.

$$L^{-1} = \frac{(n-1)(n-2)}{\sum_{i=1}^{n} d_{max} - d_i}$$

Assumption 2:

 The Anomalous Process Graph for a malicious process will have a high inverse graph density value because objects will interact with a wide range of unique subjects during execution.

$$D^{-1} = \frac{n(n-1)}{2m}$$

Final Maliciousness Score

Assumption 3:

 The total maliciousness score for a malicious process will be higher than the total maliciousness score for a benign process.

$$MalScore_{process} = \sum_{i=0}^{N} [L^{-1}[i] + D^{-1}[i]]$$

Agenda

Motivation and Challenges

Methodology

Results

Future Work

Implications and Conclusion

Algorithm Comparison

- Independent Variables:
 - Training and Testing Data
 - Features: user, process path, and parent process path
- NewEdge Graph Algorithm
 - Returns new edges found in the Test Graph that are **not** in the Training Graph
 - Key: No threshold

- Unsupervised ML Algorithm:
 - Distance-based: K-Means Clustering
 - Statistical: Hierarchical Based
 Outlier Score (HBOS)
 - Classification: One-Class
 Support Vector Machine
 (OC-SVM)

Algorithm Comparison: K-Means Clustering

Algorithm

 Iterative assignment of data points to clusters

https://www.gatevidyalay.com/tag/k-means-clustering/

Anomaly Definition:

 Data with large distance to assigned centroid

$$e_{anom} = \begin{cases} 1 & e_{euclid} \in \tau_d \\ 0 & \text{otherwise} \end{cases}$$

Algorithm Comparison: HBOS

- Algorithm
 - Frequency calculation of features
 - Logarithmic sum of histograms creates score
- **Anomaly Definition:**
 - Highest scores represent the most anomalous activity

$$HBOS_{instance} = \sum_{i=0}^{d} \log \frac{1}{hist_i(instance)}$$

Algorithm Comparison: OC SVM

Algorithm:

 Learns a decision boundary to group input data

$$g(x) = \boldsymbol{\omega}^T \boldsymbol{\phi}(x) - \boldsymbol{\rho}$$

Anomaly Definition:

- Any data point below the learned linear boundary is an anomaly
- No threshold

$$label = \begin{cases} anomalous & \text{if } g(x) < 0 \\ benign & \text{if } g(x) > 0 \end{cases}$$

Algorithm Comparison Results

Agenda

Motivation and Challenges

Methodology

Algorithm Comparison

Future Work

Implications and Conclusion

Results for Host 0201

- Placement of malicious activity at the highest percentiles of the results
 - Assumption 3 is affirmed
- Effectively filters false positives from Stage One
- Processes:
 - 4632, 2952, 1284
- Average Run Time: 30.966 sec

Threshold	Precision	Recall	
Top 1	1.000	0.500	
Top 5	0.800	0.800	
Top 10	0.600	0.857	
Top 15	0.467	1.000	
Top 20	0.400	1.000	

Table 4.8: Top-*K* Comparison for Host 0201

Figure 4.9: Box and Whisker Plot for Scores on Host 0201

Results for Host 0501

- Stage One

 Graph

 Graph
- Increased number of false positives impact results
- Placement of malicious activity at higher percentiles of results
 - Assumption 3 is affirmed
- Processes:
 - 2804 (5076), 1748, 648
- Average Run Time: 268.23 sec

Threshold	Precision	Recall
Top 1	0.000	0.000
Top 5	0.800	1.000
Top 10	0.400	1.000
Top 15	0.267	1.000
Top 20	0.200	1.000

Table 4.10: Top-*K* Comparison for Host 0501

Figure 4.10: Box and Whisker Plot for Scores on Host 0501

ProcAID Results Across Multiple Hosts

- **Enterprise Implementation**
- Scores reflect both malicious and benign processes
- Compromised hosts show clear increased mean and standard deviation

Agenda

Motivation and Challenges

Methodology

Algorithm Comparison

Results

Future Work

Implications and Conclusion

Future Work

- Graph embedding techniques other than Node2Vec
- Datasets
 - Los Alamos National Laboratory (LANL) Dataset
 - Any verbose dataset with Windows Security Event ID 4688 or similar
- Full enterprise implementation
 - Placement of users and administrators based on process creation activity in Stage One

Agenda

Motivation and Challenges

Methodology

Algorithm Comparison

Results

Future Work

Implications and Conclusion

Implications and Conclusions

Implications

- ProcAID application is simple and vast in the cybersecurity space
 - No rule creation, no supervision
 - However, training required

Conclusion

- Fusion of unsupervised link prediction, inverse graph leadership, and inverse graph density
- Efficient and effective host-based anomaly detection system for combatting APTs

Questions?

Supplemental Slides

