

Medição da vazão em um túnel de vento com placa de orifício utilizando visão computacional

Discentes:
Danielle Nogueira Bernartt
Vinicius Bubiak
Vinicius Prestes de Oliveira
Vitoria Regina de Oliveira

Docente: Guilherme de Oliveira Kunz

Cronograma

- Fundamentação
- Objetivos
- Componentes
- Metodologia
- Desenvolvimento
- Resultados

Fundamentação

Fundamentação

Objetivo

 Realizar a implementação e calibração de sistema de medição de vazão em um tubo com placa de orifício, utilizando visão computacional.

Componentes

Ventilador Portátil

Alimentação 12V

Componentes

Placa de orifício

3 Placas em MDF

Diâmetros internos:

8, 15 e 22 mm.

Tubo em U + Webcam Satellite

Fluido manométrico: Água com corante verde

Webcam 30 fps

Metodologia

Desenvolvimento

- Processamento de imagem em Python
- Conversão de pixel para milímetros
- Conversão de altura em vazão
- Cálculo do Coeficiente de Descarga

Processamento de imagem

- Bibliotecas opency e numpy
- Foram desenvolvidas funções para:
- Segmentação do fluido na imagem da câmera
- Identificar os pontos máximos
- Calcular a diferença de altura entre os pontos
- Média móvel das medições

Conversão pixel para altura

- Retângulo de 54 px
- 10mm ou 1cm na régua

Procedimentos para realizar os cálculos

Razão entre o diâmetro do orifício e o diâmetro da tubulação

$$\beta = \frac{d_{orificio}}{D_{tubo}}$$

Equação de Reynolds

$$Re = \frac{V.D}{v}$$

Equação da Vazão

$$Q = C_d. At \left(\frac{2(P1 - P2)}{\rho}\right)^{\frac{1}{2}} \qquad \Delta P = \rho_{man}. g. h$$

Procedimentos para realizar os cálculos

Equação do coeficiente de descarga

$$C_d \cong f(\beta) + 91,71\beta^{2,5}Re_d^{-0,75} + \frac{0,09\beta^4}{1-\beta^4}F_1 - 0,0337\beta^3F_2$$

Razão entre o diâmetro do orifício e o diâmetro da tubulação

$$f(\beta) = 0,5959 + 0,312\beta^{2,1} - 0,184\beta^{8}$$

Procedimentos para realizar os cálculos


```
def taps(escolha, D):
   Esta função calcula os valores F1 e F2 com base no tipo de "tap" (escolhida) e diâmetro.
   Argumentos:
   escolha (int): Um inteiro representando o tipo de escolha
   d (float): O diâmetro do flange em polegadas.
   Retorno:
   Valores F1 e F2.
  ler: https://instrumentationtools.com/types-of-orifice-plates-orifice-plate-tappings/
   if escolha == 1: # Corner Taps
       F1=0
       F 2 = 0
   elif escolha == 2: # 1/2D Taps
       F 1 = 0.4333
       F 2 = 0.47
   elif escolha == 3: # Flange Taps
       Din = D / 25.4 # Converte para polegadas
       F 2 = 1 / Din
       if Din > 2.3:
           F1 = 1 / Din
           F 1 = 0.4333
       raise ValueError("Escolha incorreta. Selecione 1 para corner taps, 2 para 1/2D taps, or 3 para flange taps.")
   return F_1, F_2
```

Encontrar o tipo de taps do sistema

(S)

- Um diâmetro à montante;
- Em cima da Vena à jusante;
- Se comportam de modo similar ao flange taps.

Cálculo iterativo coeficiente de descarga "Cd"


```
# Iterações para encontrar o Cd verdadeiro

tol = 1e-6 # Telerância para a convergência

max_iter = 100 # Número máximo de iterações
```

$$V (chute inicial) \rightarrow Re_D \rightarrow * \Delta h \atop * \beta \rightarrow Cd \rightarrow V_{orificio} \rightarrow V (novo chute)$$

$$Q = V.A$$

Procedimento de obtenção de dados

- Foram aferidos 6 pontos das curvas de vazão por tensão e altura por tensão, com intervalo de 2V.
- 5 medições para cada ponto nas curvas.

PLACA COM ORIFÍCIO DE 8mm											
2V		4V		6V		8V		10V		12V	
H (mm)	Q (mm/s)	H (mm)	Q (mm/s)	H (mm)	Q (mm/s)	H (mm)	Q (mm/s)	H (mm)	Q (mm/s)	H (mm)	Q (mm/s)
1,04	0,13	2,54	0,201	5,4	0,289	9,2	0,376	13,52	0,456	16	0,494
0,96	0,121	2,4	0,194	5,54	0,289	9,6	0,384	13,56	0,458	15,98	0,494
0,92	0,124	2,38	0,193	5,6	0,289	9,4	0,38	13,64	0,458	15,96	0,494
0,88	0,119	2,4	0,194	5,38	0,289	9,56	0,383	13,74	0,459	15,96	0,494
0,96	0,125	2,38	0,193	5,6	0,289	9,52	0,381	13,84	0,461	15,94	0,493

PEACA COM ONIFICIO DE 13111111											
2V		4V		6V		8V		10V		12V	
H (mm)	Q (mm/s)	H (mm)	Q (mm/s)	H (mm)	Q (mm/s)	H (mm)	Q (mm/s)	H (mm)	Q (mm/s)	H (mm)	Q (mm/s)
0,2	0,217	1,28	0,52	3,78	0,878	6,34	1,129	10,52	1,446	13,98	1,663
0,2	0,217	1,3	0,524	3,78	0,878	6,28	1,122	10,54	1,448	14	1,664
0,2	0,217	1,3	0,524	3,78	0,878	6,24	1,119	10,54	1,448	13,92	1,659
0,2	0,217	1,3	0,524	3,76	0,875	6,2	1,117	10,52	1,446	13,94	1,66
0,2	0,217	1,3	0,524	3,74	0,873	6,2	1,117	10,5	1,445	13,98	1,663
PLACA COM ORIFÍCIO DE 22mm											

PERCA COPI ONIFICIO DE 22/IIIII											
2V		4V		6V		8V		10V		12V	
H(mm)	Q (mm/s)	H (mm)	Q (mm/s)								
0,7	0,39	1,5	0,562	3,36	0,829	5,42	1,046	6,89	1,171	8,36	1,292
0,66	0,379	1,52	0,565	3,34	0,827	5,44	1,048	6,77	1,149	8,38	1,294
0,62	0,368	1,54	0,569	3,32	0,824	5,46	1,05	6,73	1,143	8,4	1,295
0,6	0,363	1,56	0,572	3,3	0,822	5,48	1,052	6,74	1,146	8,36	1,292
0,58	0,357	1,58	0,576	3,28	0,819	5,5	1,053	6,84	1,167	8.26	1,285

Resultados

- Demonstração do funcionamento
- Curva de Altura x Tensão
- Curva de Vazão x Tensão
- Incerteza na medição da Vazão
- Conclusão e trabalhos futuros

Curva de Altura por Tensão

Curva de Vazão por Tensão

Incerteza na medição da Vazão

 O desvio padrão máximo encontrado, amplificado pelo fator de t-student para 4 GDL (t=2,87) foi de ± 0,040 mm³/s

Incerteza na medição da Vazão

- A incerteza de medição da altura (pixel -> mm) foi estimada em ± 0,5 mm
- Propagando a incerteza da medição da altura, obtemos uma incerteza de ± 0,042 mm³/s
- Relacionando as fontes de incerteza pela equação

$$\bullet \ u_c = \sqrt{u_P^2 + u_R^2}$$

Finalmente obtemos

$$Uc = \pm 0.058 \text{ mm}^3/\text{s}$$

Incerteza da medição de vazão

$$\Delta P = \rho_{man} \cdot g \left(\frac{g}{h} \right)$$

$$Q = C_d \cdot At \left(\frac{2(P1 - P2)}{\rho} \right)^{\frac{1}{2}}$$

Conclusão

- O processo de medição foi realizado duas vezes, apresentando uma grande variação nas medidas.
- Alta frequência de aquisição (30Hz) dificultava a coleta precisa dos dados, pois era necessário selecionar as medidas coletadas e exibidas.
- Buscou-se estimar um intervalo suficiente para cobrir a variação esperada do sistema sobre a medida real.

Trabalhos futuros

- Implementação de um sistema automatizado para aquisição das medidas
- Com uma amostra maior de dados, será possível compreender mais profundamente a magnitude da incerteza do sistema.

Referências

- Viscosity of Air, Dynamic and Kinematic: Engineers Edge. Disponível em: https://www.engineersedge.com/physics/viscosity_of_air_dynamic_and_kinematic_14483.htm
- Water Density Viscosity Specific Weight Engineers Edge: Disponível em:
 https://www.engineersedge.com/physics/water_density_viscosity_specific_weight_13146.htm>
- Orifice-Taps. Disponivel em:
 https://instrumentationtools.com/wp-content/uploads/2018/01/Orifice-Taps.png?ezimgfmt=ng:webp/ngcb2>
- Documentação completa no GitHub:
 https://github.com/prestesvinicius/CV-flowmeter

Agradecemos pela atenção!