Sample Questions

- 1. If $\cos \alpha = \frac{p}{q}$ (p and $q \neq 0$ are whole numbers), show that $q^n \cos(n\alpha)$ is a whole number.
- 2. If real numbers x, y and z satisfy $x^2 + y^2 + z^2 = xy + yz + xz$, find $\frac{\sqrt{x}}{\sqrt{x} + \sqrt{y} + \sqrt{z}}$
- 3. Find all polynomials P(x) such that xP(x-1)=(x-12)P(x).
- 4. Solve $(m-9)^2 m! + (n-8)^2 n! + 50p! + 49q! = \sqrt{mnpq}$. Note that m, n, p and q are digits and $\overline{mnpq} = 1000m + 100n + 10p + q$.
- 5. Show that at least six points with rational coordinates exist on the curve $y^2 = x^3 + x + 1370^{1370}$.
- 6. Find all whole numbers m and n that satisfy $\frac{1}{m} + \frac{1}{n} \frac{1}{mn^2} = \frac{3}{4}$.
- 7. Find all odd prime numbers p such that $\frac{2^{p-1}-1}{p}$ becomes a complete square.
- 8. Show that for all natural numbers t, $A = 1^t + 2^t + \ldots + 9^t 3(1 + 6^t + 8^t)$ is a multiple of 18.
- 9. Assume that x_1, x_2, \ldots, x_{12} are real numbers, $|x_i| \ge 1$ and I = [a, b] such that $b a \le 2$. Show that there are fewer than 1000 numbers of the form $t = \sum_{i=1}^{12} r_i x_i$ with $r_i = \pm 1$ on the interval I.
- 10. Find all real numbers $a_1, a_2, \ldots, a_{1375}$ such that for $n = 1, 2, \ldots, 1374$, $2\sqrt{a_n (n-1)} \ge a_{n+1} (n-1)$, and $2\sqrt{a_{1375} 1374} \ge a_1 + 1$.
- 11. Find all real non-negative numbers x, y and z that satisfy $2^x + 3^y = z^2$.