Rajkumar Choudhury 8751 19055582140 BSc(Prog.)Computer Science

Question 1: Solve first order differential equation: $dy/dx + 3y=e^x$ and plot its solutions for (c1=3,c2=-3; c1=1,c2=-6; c1=3,c2=4)

In[26]:= sol = DSolve[y'[x] + 3 y[x] == Exp[x], y[x], x]
sol1 = Evaluate[y[x] /. sol[1] /. {C[1]
$$\rightarrow$$
 3 , C[2] \rightarrow -3}]
sol2 = y[x] /. sol[1] /. {C[1] \rightarrow 1 , C[2] \rightarrow -6}
sol3 = y[x] /. sol[1] /. {C[1] \rightarrow 3 , C[2] \rightarrow 4}
Plot[{sol1, sol2, sol3}, {x, -5, 3}, PlotRange \rightarrow {-30, 30},
PlotStyle \rightarrow {{Red, Thickness[0.01]}, {Green, Thick}}, PlotLegends \rightarrow {sol1, sol2, sol3}]

Out[26]=
$$\left\{ \left\{ y[x] \rightarrow \frac{e^x}{4} + e^{-3x} c_1 \right\} \right\}$$

Out[27]=
$$3 e^{-3 x} + \frac{e^x}{4}$$

Out[28]=
$$e^{-3 \times + \frac{e^{\times}}{4}}$$

Out[29]=
$$3 e^{-3 x} + \frac{e^x}{4}$$

Question 2: Solve third order differential equation: $d^3y/dx^3 - 9d^2y/dx^2 + 4y = \sin(2x)$ and plot its two solutions for (c1=3,c2=1,c3=6; c1=8,c2=9,c3=7)

sol = DSolve[y'''[x] - 9 y''[x] + 4 y[x] == Sin[2 x], y[x], x] sol1 = Evaluate[y[x] /. sol[1] /. {C[1]
$$\rightarrow$$
 3 , C[2] \rightarrow 1, C[3] \rightarrow 6}] sol2 = y[x] /. sol[1] /. {C[1] \rightarrow 8 , C[2] \rightarrow 9 , C[3] \rightarrow 7} Plot[{sol1, sol2}, {x, -5, 3}, PlotRange \rightarrow {-30, 30}, PlotStyle \rightarrow {{Red, Thickness[0.01]}, {Green, Thick}}, PlotLegends \rightarrow {sol1, sol2}]

Question 3: Find the solution for the system of ordinary differential equations. $dx/dt + dy/dt - 2x - 4y = e^t \qquad dx/dt + dy/dt - y = e^4t$

Solution:

$$\begin{aligned} &\text{DSolve}[\{x \ '[t] + y \ '[t] - 2 \ x[t] - 4 \ y[t] == \ \text{Exp}[t], \ x \ '[t] + y \ '[t] - y[t] == \ \text{Exp}[4 \ t] \}, \ \{x[t], \ y[t]\}, \ t] \\ &\text{Out}[46] = \ &\left\{ \left\{ x[t] \rightarrow -e^{t} \left(-1 + e^{3 \ t} \right) + \frac{1}{3} \times \left(3 \ e^{-2 \ t} \left(-e^{3 \ t} + e^{6 \ t} \right) + e^{-2 \ t} \ c_{1} \right), \right. \\ & \left. y[t] \rightarrow e^{t} \left(-1 + e^{3 \ t} \right) - \frac{2}{9} \times \left(3 \ e^{-2 \ t} \left(-e^{3 \ t} + e^{6 \ t} \right) + e^{-2 \ t} \ c_{1} \right) \right\} \right\} \end{aligned}$$

Question 4: Solve second order differential equation: $d^2y/dt^2+6y=Cot(t)$ by variation parameter method.

$$\begin{aligned} &\text{In}(35) := & \text{Sol} = \text{DSolve}[y''[t] + 6 \ y[t] := 0, \ y[t], \ t] \\ &\text{Sol} 1 = \text{Evaluate}[y[t] \ / . \ \text{Sol}[1] \ / . \ (C[1] \to 1, \ C[2] \to 0)] \\ &\text{Sol} 2 = y[t] \ / . \ \text{Sol}[1] \ / . \ (C[1] \to 0, \ C[2] \to 1) \\ &\text{fs} = \{\text{sol} 1, \ \text{sol} 2\} \\ &\text{wm} = \{\text{fs}, \ D[\text{fs}, \ t]\}; \ \text{wm} \ / \ \text{MatrixForm} \\ &\text{wd} = \text{Simplify}[\text{Det}[\text{wm}]] \\ &\text{u1} = (\text{Integrate}[- \ \text{sol} 2 \ \text{Cot}[t], \ t]) \ / \text{wd} \\ &\text{u2} = (\text{Integrate}[\text{sol} 1 \ \text{Cot}[t], \ t]) \ / \text{wd} \\ &\text{yc} = \text{DSolve}[y''[t] + 6 \ y[t] := 0, \ y[t], \ t] \\ &\text{yp} = \text{Simplify}[\text{Evaluate}[y[t] \ / . \ \text{sol}[1] \ / . \ \{\text{C[1]} \to \text{u1}, \ \text{C[2]} \to \text{u2}\}]] \\ &\text{yg} = \text{yc} + \text{yp} \\ &\text{Out}_{|35|} = \left\{ \left\{ y[t] \to c_1 \ \text{Cos} \left[\sqrt{6} \ t \right] + c_2 \ \text{Sin} \left[\sqrt{6} \ t \right] \right\} \right\} \\ &\text{Out}_{|36|} = \text{Cos} \left[\sqrt{6} \ t \right] \\ &\text{Out}_{|39|} = \left\{ \text{Cos} \left[\sqrt{6} \ t \right] \ \text{Sin} \left[\sqrt{6} \ t \right] \right\} \\ &\text{Out}_{|39|} \text{MatrixForm} = \\ &\text{Cos} \left[\sqrt{6} \ t \right] \ \text{Sin} \left[\sqrt{6} \ t \right] \\ &\text{Out}_{|40|} = \sqrt{6} \end{aligned}$$

$$\frac{1}{12 \sqrt{6}} i e^{-i \sqrt{6} t} \left(\sqrt{6} \text{ Hypergeometric2F1} \left[1, -\sqrt{\frac{3}{2}}, 1 - \sqrt{\frac{3}{2}}, e^{2it} \right] + \frac{\sqrt{6}}{6} e^{2i \sqrt{6} t} \text{ Hypergeometric2F1} \left[1, \sqrt{\frac{3}{2}}, 1 + \sqrt{\frac{3}{2}}, e^{2it} \right] + \frac{\sqrt{6}}{2} e^{2i \sqrt{6} t} \text{ Hypergeometric2F1} \left[1, 1 - \sqrt{\frac{3}{2}}, 2 - \sqrt{\frac{3}{2}}, e^{2it} \right] + \frac{\sqrt{6}}{2} e^{2i \sqrt{6} t} \text{ Hypergeometric2F1} \left[1, 1 - \sqrt{\frac{3}{2}}, 1 - \sqrt{\frac{3}{2}}, e^{2it} \right] + \frac{1}{12 \sqrt{6}} e^{-i \sqrt{6} t} \left(\sqrt{6} \text{ Hypergeometric2F1} \left[1, -\sqrt{\frac{3}{2}}, 1 - \sqrt{\frac{3}{2}}, e^{2it} \right] - \sqrt{6} e^{2i \sqrt{6} t} \text{ Hypergeometric2F1} \left[1, \sqrt{\frac{3}{2}}, 1 + \sqrt{\frac{3}{2}}, e^{2it} \right] + \frac{3}{2} e^{2it} \left(2 + \sqrt{6} \right) \text{ Hypergeometric2F1} \left[1, 1 - \sqrt{\frac{3}{2}}, 2 - \sqrt{\frac{3}{2}}, e^{2it} \right] - \left(-2 + \sqrt{6} \right) e^{2i \sqrt{6} t} \text{ Hypergeometric2F1} \left[1, 1 + \sqrt{\frac{3}{2}}, 2 - \sqrt{\frac{3}{2}}, e^{2it} \right] \right)$$

$$Out(42) = \begin{cases} \left\{ y(t) \rightarrow c_1 \cos \left[\sqrt{6} t \right] + c_2 \sin \left[\sqrt{6} t \right] \right\} \right\}$$

$$Out(44) = \frac{1}{12 \sqrt{6}} e^{-i \sqrt{6} t} \left(\sqrt{6} \text{ Hypergeometric2F1} \left[1, -\sqrt{\frac{3}{2}}, 1 - \sqrt{\frac{3}{2}}, e^{2it} \right] + \sqrt{6} \text{ Hypergeometric2F1} \left[1, \sqrt{\frac{3}{2}}, 1 + \sqrt{\frac{3}{2}}, e^{2it} \right] + \sqrt{6} \text{ Hypergeometric2F1} \left[1, \sqrt{\frac{3}{2}}, 1 + \sqrt{\frac{3}{2}}, e^{2it} \right] + \sqrt{6} \text{ Hypergeometric2F1} \left[1, 1 - \sqrt{\frac{3}{2}}, 2 - \sqrt{\frac{3}{2}}, e^{2it} \right] + \left(-2 + \sqrt{6} \right) \text{ Hypergeometric2F1} \left[1, 1 + \sqrt{\frac{3}{2}}, 2 + \sqrt{\frac{3}{2}}, e^{2it} \right] + \left(-2 + \sqrt{6} \right) \text{ Hypergeometric2F1} \left[1, 1 + \sqrt{\frac{3}{2}}, 2 + \sqrt{\frac{3}{2}}, e^{2it} \right] \right) \left(-i \cos \left[\sqrt{6} t \right] + \sin \left[\sqrt{6} t \right] \right)$$

$$\begin{split} & \text{Out}_{|45|=} \quad \Big\{ \Big\{ \Big(\text{y[t]} \to \mathbf{c}_1 \, \text{Cos} \Big[\, \sqrt{6} \, \, \text{t} \Big] + \mathbf{c}_2 \, \text{Sin} \Big[\, \sqrt{6} \, \, \text{t} \Big] \Big) + \\ & \quad \frac{1}{12 \, \sqrt{6}} \, e^{-i \, \sqrt{6} \, \, \text{t}} \, \Bigg(\sqrt{6} \, \, \text{Hypergeometric2F1} \, \Big[1 \, , \, -\sqrt{\frac{3}{2}} \, , \, 1 - \sqrt{\frac{3}{2}} \, , \, e^{2 \, i \, \text{t}} \Big] + \\ & \quad \sqrt{6} \, \, \text{Hypergeometric2F1} \, \Big[1 \, , \, \sqrt{\frac{3}{2}} \, , \, 1 + \sqrt{\frac{3}{2}} \, , \, e^{2 \, i \, \text{t}} \Big] + \\ & \quad 3 \, e^{2 \, i \, \text{t}} \, \Bigg(2 + \sqrt{6} \, \Big) \, \text{Hypergeometric2F1} \, \Big[1 \, , \, 1 - \sqrt{\frac{3}{2}} \, , \, 2 - \sqrt{\frac{3}{2}} \, , \, e^{2 \, i \, \text{t}} \Big] + \Big(-2 + \sqrt{6} \, \Big) \\ & \quad \text{Hypergeometric2F1} \, \Big[1 \, , \, 1 + \sqrt{\frac{3}{2}} \, , \, 2 + \sqrt{\frac{3}{2}} \, , \, e^{2 \, i \, \text{t}} \Big] \Big) \Big(-i \, \text{Cos} \Big[\sqrt{6} \, \, \text{t} \, \Big] + \, \text{Sin} \Big[\sqrt{6} \, \, \text{t} \, \Big] \Big) \Big\} \Big\} \end{split}$$

Question 5: Obtain the solution of the linear equation $y^*ux - 2xy^*uy = 2xu$, with the Cauchy data $u(0,y) = y^3$.