#### INF 285 - Computación Científica Ingeniería Civil Informática

14: Integración Numérica

#### Introducción

#### Definición 1 (Integración Numérica o Cuadratura)

Es la obtención de la constante  $c \in \mathbb{R}$ , o una aproximación de c, de una integral definida

$$c = \int_{a}^{b} f(x) \, \mathrm{d}x$$

utilizando algún método numérico

#### Suma de Riemann

Una función es integrable cuando las sumas izquierdas y derechas de Riemann convergen al mismo valor c:

$$c = \int_{a}^{b} f(x) \, \mathrm{d}x$$

#### Suma de Riemann

#### Por la izquierda:

$$c = \sum_{k=0}^{m-1} f(x_k)(x_{k+1} - x_k) + E_L$$



#### Suma de Riemann

#### Por la derecha:

$$c = \sum_{k=0}^{m-1} f(x_{k+1})(x_{k+1} - x_k) + E_R$$







$$m = 16$$
,  $c \approx 2,50036$ .

#### Punto Medio

$$\int_{x_0}^{x_1} f(x) \, \mathrm{d}x \approx f\left(\frac{x_0 + x_1}{2}\right) \, (x_1 - x_0)$$

El error viene dado por:

$$E_{PM} = \frac{h^3}{24}f''(\xi)$$

donde  $\xi \in [x_0, x_1]$ .

Sea f(x) una función con segunda derivada continua definida en  $[x_0, x_1]$ . Sean los valores  $y_0 = f(x_0)$  e  $y_1 = f(x_1)$ . Consideremos el polinomio interpolador de Lagrange de grado 1  $P_1(x)$  que pasa por los puntos  $(x_0, y_0)$  y  $(x_1, y_1)$ :

$$f(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0} + \frac{(x - x_0)(x - x_1)}{2!} f''(\xi)$$
  
=  $P(x) + E(x)$ 

donde  $\xi \in [x_0, x_1]$ 

Utilizando lo anterior, integramos a ambos lados obteniendo lo siguiente:

$$\int_{x_0}^{x_1} f(x) \, \mathrm{d}x = \int_{x_0}^{x_1} P(x) \, \mathrm{d}x + \int_{x_0}^{x_1} E(x) \, \mathrm{d}x$$

Tomemos la primera parte:

$$\int_{x_0}^{x_1} P(x) dx = \int_{x_0}^{x_1} y_0 \frac{x - x_1}{x_0 - x_1} dx + \int_{x_0}^{x_1} y_1 \frac{x - x_0}{x_1 - x_0} dx$$
$$= y_0 \frac{h}{2} + y_1 \frac{h}{2} = h \frac{(y_0 + y_1)}{2}$$

 $donde h = (x_1 - x_0)$ 

Tomemos ahora la segunda parte:

$$\int_{x_0}^{x_1} E(x) dx = \frac{1}{2!} \int_{x_0}^{x_1} (x - x_0)(x - x_1) f''(\xi) dx$$
$$= \frac{f''(\xi)}{2} \int_{x_0}^{x_1} (x - x_0)(x - x_1) dx$$
$$= \frac{f''(\xi)}{2} \int_0^h u(u - h) du = -\frac{h^3}{12} f''(\xi)$$

Luego, obtenemos la **regla del trapecio**:

$$\int_{x_0}^{x_1} f(x) \, \mathrm{d}x = \frac{h}{2} (y_0 + y_1) - \frac{h^3}{12} f''(\xi)$$

donde  $\xi \in [x_0, x_1]$ .

De igual forma tomando el polinomio interpolador de Lagrange de segundo grado, se puede obtener la siguiente aproximación:

$$f(x) = y_0 \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} + y_1 \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}$$

$$+ y_2 \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} + \frac{(x-x_0)(x-x_1)(x-x_2)}{3!} f'''(\xi)$$

$$= P(x) + E(x)$$

donde  $\xi \in [x_0, x_2]$ .

Integrando se obtiene:

$$\int_{x_0}^{x_2} f(x) dx = \int_{x_0}^{x_2} P(x) dx + \int_{x_0}^{x_2} E(x) dx$$

Tomemos la primera parte:

$$\int_{x_0}^{x_2} P(x) dx = \int_{x_0}^{x_2} y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} dx$$

$$+ \int_{x_0}^{x_2} y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} dx$$

$$+ \int_{x_0}^{x_2} y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} dx$$

$$= y_0 \frac{h}{3} + y_1 \frac{4h}{3} + y_2 \frac{h}{3} = h \frac{(y_0 + 4y_1 + y_2)}{3}$$

La segunda parte del error viene dada por:

$$\int_{x_0}^{x_2} E(x) \, \mathrm{d}x = \int_{x_0}^{x_2} \frac{(x - x_0)(x - x_1)(x - x_2)}{3!} f'''(\xi) = -\frac{h^5}{90} f^{(\mathrm{iv})}(\xi)$$

Luego se obtiene la **regla de Simpson**:

$$\int_{x_0}^{x_2} f(x) dx = \frac{h}{3} (y_0 + 4y_1 + y_2) - \frac{h^5}{90} f^{(iv)}(\xi)$$
 (1)

donde  $\xi \in [x_0, x_2]$ .

#### Ejemplo 1

Aplicar la regla del Trapecio y la regla de Simpson para aproximar:

$$\int_{1}^{1.5} \log(x) \, \mathrm{d}x$$

y encuentre una cota superior para el error de la aproximación.

La regla del Trapecio estima que:

$$\int_{1}^{1.5} \log(x) dx \approx \frac{h}{2} (y_0 + y_1) = \frac{0.5}{2} (\log(1) + \log(1.5))$$
$$= \frac{\log(1.5)}{4} \approx 0.101366$$

El error para la regla del Trapecio viene dado por  $-h^3f''(\xi)/12$ , donde  $\xi \in [1, 1.5]$ . Dado que  $f''(x) = -1/x^2$ , la magnitud del error es a lo más:

$$-\frac{h^3 f''(\xi)}{12} = \frac{h^3}{12 \xi^2} = \frac{0.5^3}{12 \xi^2} \le \frac{0.125}{12} \approx 0.01042$$

En otras palabras, la regla del Trapecio indica que:

$$\int_{1}^{1.5} \log(x) \, \mathrm{d}x = 0.101366 \pm 0.01042$$

La regla de Simpson estima que:

$$\int_{1}^{1.5} \log(x) dx \approx \frac{h}{3} (y_0 + 4y_1 + y_2)$$

$$= \frac{0.25}{3} (\log(1) + 4 \log(1.25) + \log(1.5))$$

$$\approx 0.108169$$

El error para la regla de Simpson viene dado por  $-h^5 f^{(iv)}(\xi)/90$ , donde  $\xi \in [1, 1.5]$ . Dado que  $f^{(iv)}(x) = -6/x^4$ , la magnitud del error es a lo más:

$$-\frac{h^5 f^{(iv)}(\xi)}{90} = \frac{6 h^5}{90 \xi^4} = \frac{6 (0.25)^5}{90 \xi^4} \le \frac{6 (0.25)^5}{90} \approx 0.00007$$

En otras palabras, la regla de Simpson indica que:

$$\int_{1}^{1.5} \log(x) \, \mathrm{d}x = 0.108169 \pm 0.00007$$

Las reglas del Trapecio y Simpson están limitadas a ser aplicadas en un intervalo. Sin embargo, una integral se puede aplicar sobre varios subintervalos y sumarlos. Por lo tanto, se puede aplicar sobre cada intervalo alguna regla de integración numérica y luego sumar. Esta estrategia se denomina **integración numérica compuesta**.

Consideremos que un subintervalo [a, b] se subdivide en una grilla con puntos equiespaciados:

$$a = x_0 < x_1 < x_2 < \dots < x_{m-2} < x_{m-1} < x_m = b$$

donde  $h = x_{i+1} - x_i$  para cada i = 0, ..., m - 1

Aplicamos la regla del Trapecio a cada subintervalo:

$$\int_{x_i}^{x_{i+1}} f(x) \, \mathrm{d}x = \frac{h}{2} (f(x_i) + f(x_{i+1})) - \frac{h^3}{12} f''(\xi_i) \tag{2}$$

Si sumamos todas las aproximaciones se tiene que:

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left[ f(a) + f(b) + 2 \sum_{i=1}^{m-1} f(x_i) \right] - \sum_{i=0}^{m-1} \frac{h^3}{12} f''(\xi_i)$$
 (3)

El término del error puede ser escrito como:

$$\sum_{i=0}^{m-1} \frac{h^3}{12} f''(\xi_i) = \frac{h^3}{12} \sum_{i=0}^{m-1} f''(\xi_i) = \frac{h^3}{12} m f''(\xi)$$

Dado que mh = (b-a), el término del error es  $(b-a)h^2f''(\xi)/12$ . Luego la **regla del Trapecio Compuesta** viene dada por:

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left[ y_0 + y_m + 2 \sum_{i=1}^{m-1} y_i \right] - \frac{(b-a)h^2}{12} f''(\xi)$$
 (4)

donde h = (b - a)/m y  $\xi \in [a, b]$ .

Para la regla de Simpson se sigue la misma estrategia. Consideremos la grilla de puntos equiespaciados:

$$a = x_0 < x_1 < x_2 < \dots < x_{2m-2} < x_{2m-1} < x_{2m} = b$$

donde  $h = x_{i+1} - x_i$ . Luego, en cada subintervalo  $[x_{2i}, x_{2i+2}]$ , para i = 0, ..., m-1, de longitud 2h se aplica la aproximación:

$$\int_{x_{2i}}^{x_{2i+2}} f(x) dx = \frac{h}{3} \left[ f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2}) \right] - \frac{h^5}{90} f^{(iv)}(\xi_i)$$
(5)

Si sumamos todas las aproximaciones se tiene que:

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[ f(a) + f(b) + 4 \sum_{i=1}^{m} f(x_{2i-1}) + 2 \sum_{i=1}^{m-1} f(x_{2i}) \right] - \sum_{i=0}^{m-1} \frac{h^{5}}{90} f^{(iv)}(\xi_{i})$$

El término del error puede ser escrito como:

$$\sum_{i=0}^{m-1} \frac{h^5}{90} f^{(iv)}(\xi_i) = \frac{h^5}{90} \sum_{i=0}^{m-1} f^{(iv)}(\xi_i) = \frac{h^5}{90} m f^{(iv)}(\xi)$$

Dado que m(2h)=(b-a), el término del error es  $(b-a)h^4f''(\xi)/180$ .

Luego la regla de Simpson Compuesta viene dada por:

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[ y_0 + y_{2m} + 4 \sum_{i=1}^{m} y_{2i-1} + 2 \sum_{i=1}^{m-1} y_{2i} \right] - \frac{(b-a)h^4}{180} f^{(iv)}(\xi)$$
(6)

donde  $\xi \in [a, b]$ .

#### Ejemplo 2

Utilizando 4 subintervalos aproxime

$$I = \int_0^2 \exp(x) \, \mathrm{d}x$$

por medio de las reglas del Trapecio y de Simpson compuestas.

Para la regla del Trapecio compuesta sobre [0,2] se tiene que h=1/2. La aproximación entonces es:

$$I \approx \frac{\frac{1}{2}}{2} \left[ y_0 + y_4 + 2 \sum_{i=1}^{3} y_i \right]$$

$$= \frac{1}{4} \left[ \exp(0) + \exp(2) + 2 \left( \exp(0.5) + \exp(1) + \exp(1.5) \right) \right]$$

$$\approx 6.52161011$$

Y el error es a lo más

$$\frac{(b-a)h^2}{12}|f''(\xi)| = \frac{\frac{1}{2}}{12}|\exp(\xi)| \le \frac{\exp(2)}{24} \approx 0.307877$$

La regla de Simpson compuesta sobre [0,2] considera h=1/4. La aproximación entonces es:

$$I \approx \frac{\frac{1}{4}}{3} \left[ y_0 + y_8 + 4 \sum_{i=1}^4 y_{2i-1} + 2 \sum_{i=1}^3 y_{2i} \right]$$

$$= \frac{1}{12} \left[ \exp(0) + \exp(2) + 4 \left( \exp(0.25) + \exp(0.75) + \exp(1.25) + \exp(1.75) \right) + 2 \left( \exp(0.5) + \exp(1) + \exp(1.5) \right) \right]$$

$$\approx 6.38919373$$

Y el error es a lo más

$$\frac{(b-a)h^4}{180}|f^{(\mathrm{iv})}(\xi)| = \frac{\frac{1}{2^7}}{180}|\exp(\xi)| \le \frac{\exp(2)}{23040} \approx 0.00032071$$

Si lo comparamos con el valor real de la integral:

$$\int_0^2 \exp(x) \, \mathrm{d}x = \exp(2) - \exp(0) = 6.38905609$$

Podemos notar que la aproximación con la regla de Simpson compuesta alcanza 3 dígitos de precisión.

#### Cuadratura Gaussiana

La Cuadratura Gaussiana es un método de integración numérica que logra mejor precisión que las aproximaciones anteriores.

Para explicar cómo funciona, comencemos con la siguiente definición:

#### Definición 2

El conjunto de funciones no nulas  $\{p_0, ..., p_n\}$  en el intervalo [a, b] es **ortogonal** sobre [a, b] si

$$\int_{a}^{b} p_{j}(x) p_{k}(x) dx = \begin{cases} 0 & j \neq k \\ \neq 0 & j = k \end{cases}$$
 (7)

#### Cuadratura Gaussiana

Revisemos los siguientes teoremas:

#### Teorema 1

Si  $\{p_0,...,p_n\}$  es un conjunto ortogonal de polinomios sobre el intervalo [a,b], donde el grado de  $p_i=i$ , entonces  $\{p_0,...,p_n\}$  es una base para el espacio vectorial de polinomios de grado a lo más n sobre [a,b].

#### Teorema 2

Si  $\{p_0,...,p_n\}$  es un conjunto ortogonal de polinomios sobre el intervalo [a,b] y si el grado de  $p_i=i$ , entonces  $p_i$  tiene i raíces distintas en el intervalo (a,b).

Cuadratura Gaussiana

#### Ejemplo 3

Encontrar un conjunto de 3 polinomios ortogonales en el intervalo [-1,1]

Comencemos con  $p_0(x) = 1$  y  $p_1(x) = x$ . Se puede observar que:

$$\int_{-1}^{1} 1 \cdot x \, \mathrm{d}x = 0$$

por lo tanto, son ortogonales.

Sigamos con  $p_2(x) = x^2$ :

$$\int_{-1}^{1} p_0(x) \cdot x^2 \, \mathrm{d}x = \int_{-1}^{1} x^2 \, \mathrm{d}x = \frac{2}{3} \neq 0$$

Luego no son ortogonales.

#### Cuadratura Gaussiana

Ajustemos  $p_2(x) = x^2 + c$ :

$$\int_{-1}^{1} p_0(x) \cdot (x^2 + c) dx = \int_{-1}^{1} (x^2 + c) dx = \frac{2}{3} + 2c = 0$$

por lo tanto c = -1/3. Se invita al estudiante a comprobar que  $p_2(x) = x^2 - 1/3$  es ortogonal con  $p_1(x)$ .

Luego, el conjunto de 3 polinomios  $\{1, x, x^2 - 1/3\}$  es ortogonal sobre [-1, 1].

Los 3 polinomios del ejemplo anterior, pertenecen al conjunto descubierto por **Legendre**.

#### Cuadratura Gaussiana

El conjunto de los polinomios de Legendre

$$p_i(x) = \frac{1}{2^i i!} \frac{d^i}{dx^i} \left[ (x^2 - 1)^i \right]$$
 (8)

para  $0 \le i \le n$  es ortogonal sobre [-1, 1].

Por el Teorema 2 el polinomio n-ésimo de Legendre tiene n raíces  $x_1,...,x_n$  sobre [-1,1].

La Cuadratura Gaussiana de una función es simplemente una combinación lineal de funciones evaluadas en las raíces de Legendre.

#### La Cuadratura Gaussiana viene dada por:

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} c_i f(x_i)$$
(9)

donde

$$c_i = \int_{-1}^{1} L_i(x) dx, \qquad i = 1, ..., n$$
 (10)

y  $x_i$  son las raíces del polinomio de Legendre de grado n.

#### Cuadratura Gaussiana

A continuación se muestran las raíces de los polinomios de Legendre para n=2,3,4:

| n | roots $x_i$                                            | coefficients $c_i$                               |
|---|--------------------------------------------------------|--------------------------------------------------|
| 2 | $-\sqrt{1/3} = -0.57735026918963$                      | 1 = 1.000000000000000                            |
|   | $\sqrt{1/3} = 0.57735026918963$                        | 1 = 1.000000000000000                            |
| 3 | $-\sqrt{3/5} = -0.77459666924148$                      | 5/9 = 0.5555555555555                            |
|   | 0 = 0.00000000000000                                   | 8/9 = 0.88888888888888                           |
|   | $\sqrt{3/5} = 0.77459666924148$                        | 5/9 = 0.5555555555555                            |
| 4 | $-\sqrt{\frac{15+2\sqrt{30}}{35}} = -0.86113631159405$ | $\frac{90 - 5\sqrt{30}}{180} = 0.34785484513745$ |
|   | $-\sqrt{\frac{15-2\sqrt{30}}{35}} = -0.33998104358486$ | $\frac{90+5\sqrt{30}}{180} = 0.65214515486255$   |
|   | $\sqrt{\frac{15 - 2\sqrt{30}}{35}} = 0.33998104358486$ | $\frac{90+5\sqrt{30}}{180} = 0.65214515486255$   |
|   | $\sqrt{\frac{15+2\sqrt{30}}{35}} = 0.86113631159405$   | $\frac{90 - 5\sqrt{30}}{180} = 0.34785484513745$ |

Cuadratura Gaussiana

#### Ejemplo 4

A proximar

$$\int_{-1}^{1} \exp\left(-x^2\right) \, \mathrm{d}x$$

utilizando Cuadratura Gaussiana.

Para n=2, la aproximación sería:

$$\int_{-1}^{1} \exp(-x^{2}) dx \approx c_{1} f(x_{1}) + c_{2} f(x_{2})$$

$$= 1 \cdot f\left(-\sqrt{1/3}\right) + 1 \cdot f\left(\sqrt{1/3}\right) \approx 1.43306262$$

#### Cuadratura Gaussiana

Para n = 3, la aproximación sería:

$$\int_{-1}^{1} \exp(-x^{2}) dx \approx c_{1} f(x_{1}) + c_{2} f(x_{2}) + c_{3} f(x_{3})$$

$$= \frac{5}{9} f\left(-\sqrt{3/5}\right) + \frac{8}{9} f(0) + \frac{5}{9} f\left(\sqrt{3/5}\right)$$

$$\approx 1.498679$$

Se invita al estudiante a que realice la aproximación con n = 4.

#### Cuadratura Gaussiana

Aproximación de integrales en el intervalo [a, b].

Se utiliza la substitución t = (2x - a - b)/(b - a).

$$\int_{a}^{b} f(x) dx = \frac{(b-a)}{2} \int_{-1}^{1} f\left(\frac{(b-a)t}{2} + \frac{(b+a)}{2}\right) dt$$

Cuadratura Gaussiana

#### Ejemplo 5

 $A proximar\ la\ integral$ 

$$\int_{1}^{2} \log(x) \, \mathrm{d}x$$

utilizando cuadratura Gaussiana con n = 4.