Advecção com difusão e forçante para uma fonte do poluente

Alejandro H. D. Peralta*

Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo

9 de outubro de 2022

4 Resumo

A emissão de um poluente pode variar ao longo do tempo, como no caso de uma chaminé que emite o pulso senoidal no campo básico com velocidade do vento constante. Este trabalho mostra os cálculos para resultados analíticos e numéricos (Euler progressivo-regressivo, leapfrog (2^a e 4^a ordem) e implícito como o esquema Crank-Nicolson). Alguns métodos numéricos geraram oscilações do modo computacional pelo que foram filtrados. Outros experimentos foram considerados para o método implícito com a variação da resolução do tempo Δt para obter diferentes números de Courant (CFL) para valores de 1, 2 e 4. A aproximação da ordem 1 é um importante esquema que não precisa de filtros devido à simplicidade do método. No entanto, o esquema é difuso pelo que as concentrações são subestimadas se comparar com a solução analítica. Outros esquemas como leapfrog e Crank-Nicolson geram resultados com oscilações que contradizem o fenômeno físico, pelo que a aplicação de filtros é importante para preservar a monotonicidade. Os resultados dos experimentos são importantes a fim de representar a realidade do fenômeno do transporte dos poluentes na atmosfera, como no caso dos modelos de qualidade do ar.

6 1. Introdução

17 XXX

10

11

12

13

14

15

Conforme com Doos et al. (2020), a discretização de segundo ordem da derivada é expresado como segue,

$$\left(\frac{d^2u}{dx^2}\right)_i \approx \left[\frac{d}{dx}\left(\frac{du}{dx}\right)\right]_i \approx \frac{\frac{u_{j+1}-u_j}{\Delta x} - \frac{u_j-u_{j-1}}{\Delta x}}{\Delta x} = \frac{u_{j+1}-2u_j+u_{j-1}}{(\Delta x)^2} \tag{1}$$

2. Descrição da metodologia

A aproximação considerou as condições do exercício 2 com a adição do efeito da difusão; a equação que governa este problema é dada por:

$$\frac{\partial C}{\partial t} + U \frac{\partial C}{\partial x} = K \frac{\partial^2 C}{\partial^2 x} + F \tag{2}$$

Onde F é a mesma fonte periódica do Ex. 2, localizado na metade da grade com uma resolução horizontal $\Delta x = 2500$ metros e temporal $\Delta t = 50$ segundos. O requerimento do exercício 3 é determinar o fator K de forma que o tempo de decaimento seja da ordem de 3 horas. Inicialmente F está no tempo n, como segue

$$\frac{\partial C}{\partial t} \to \frac{(C^{n+1} - C^{n-1})}{2\Delta t}$$

^{*}Estudante de doutorado, email aperalta@usp.br

e radiacional nas condições de fronteira. A eq. 2 foi discretizada para o esquema leapfrog (eq. 3), considerando a advecção e a difusão no tempo n-1 com a forçante no tempo n-1. Depois a forçante é introduzido com o método splitting.

$$C_j^{n+1} = C_j^{n-1} - 2\Delta t U \frac{C_{j+1}^n - C_{j-1}^n}{2\Delta x} + 2\Delta t K \frac{C_{j+1}^{n-1} - 2C_j^{n-1} + C_{j-1}^{n-1}}{(\Delta x)^2} + 2\Delta t F_j^{n-1}$$
(3)

ou também expressado como,

$$C_{j}^{n+1} = C_{j}^{n-1} - \alpha (C_{j+1}^{n} - C_{j-1}^{n}) + 2\nu (C_{j+1}^{n-1} - 2C_{j}^{n-1} + C_{j-1}^{n-1}) + 2\Delta t F_{j}^{n-1},$$

onde $lpha=rac{U\,\Delta t}{\Delta x}$ como número de Courant e $u\approxeq K\,\Delta t/(\Delta x)^2$ número de diffusão.

3. Resultados

4. Discussão dos resultados

32 Bibliografia

Doos, K., Lundberg, P., Campino, A.A. (2020). Basic Numerical Methods in Meteorology and Oceanography, 1. ded. Department of Meteorology, Stockholm University, Stockholm.

35 Apêndice A

36 XXX