Laporan Final Project Internet of Things

"Sistem Monitoring Suhu dan Kelembapan Ruang Server"

Anggota kelompok:

- 1. Affan Ardana 20.11.3636
- 2. Darussalaam Nur Rasyidu 20.11.3637
 - 3. Tonik Purwanto 20.11.3652

Program Studi Informatika
Universitas Amikom Yogyakarta
2022/2023

BAB I

LATAR BELAKANG

Server merupakan salah satu bagian terpenting dari sebuah jaringan komputer. Banyak perusahaan dan organisasi menyimpan data-data penting mereka dalam bentuk digital ke dalam server. Hal ini tidak lain karena data dalam bentuk digital lebih mudah diorganisir dan menghemat sumber daya dibandingkan dengan menyimpan data dalam bentuk fisik. Ditambah lagi data di dalam server mudah diakses oleh seluruh anggota organisasi dimana pun dan kapan pun.

Namun, server yang berisi kumpulan *hard disk* yang merupakan perangkat elektronik akan menghasilkan panas. Cara yang digunakan untuk menangani hal tersebut biasanya adalah dengan menggunakan pendingin ruangan yang digabungkan dengan sistem pendingin lainnya seperti *water cooling*. Kondisi ruangan yang tidak sesuai dapat mengakibatkan kerusakan perangkat sehingga dapat mengakibatkan *downtime* pada jaringan yang pastinya akan merugikan organisasi tersebut. Oleh karena itu, dibutuhkan sebuah sistem yang bisa memantau suhu dan kelembapan ruang server secara *real-time* dan bisa memutuskan kondisi ruang server.

Salah satu solusi yang dapat digunakan adalah menggunakan teknologi *Internet of Things* (IoT). IoT memungkinkan berbagai perangkat elektronik untuk saling berkomunikasi menggunakan internet. Hal ini memungkinkan untuk melakukan pertukaran data antar perangkat secara *real-time*. Data suhu dan kelembapan dapat di simpan secara berkala menggunakan teknologi IoT.

Solusi lainnya adalah penggunaan kecerdasan buatan untuk memutuskan kondisi ruang server. Algoritma yang dapat digunakan untuk menentukan kondisi ruang server yang tidak pasti adalah menggunakan *Fuzzy Logic*. Dengan menggunakan *Fuzzy Logic* sistem dapat memutuskan kondisi ruang server berdasarkan data yang diterima.

BAB II

ANALISIS PROYEK IOT

A. Analisis Kebutuhan Fungsional

Kebutuhan fungsional:

- 1. Sistem harus dapat terhubung ke internet.
- 2. Sensor harus dapat mengukur suhu dan kelembapan.
- 3. Sensor harus bisa menjangkau semua sudut ruangan.
- 4. Sistem harus bisa mengirimkan data sensor.
- 5. Sistem harus bisa menyimpan data yang dikirim sensor pada database.
- 6. Sistem harus bisa menentukan keadaan ruang server.
- 7. Sistem harus memiliki user interface.
- 8. *User interface* harus menampilkan semua data dari sensor.
- 9. User interface harus menampilkan keadaan ruang server.
- 10. Sistem harus menampilkan data secara *real-time*.

B. Analisis Kebutuhan Non Fungsional

Kebutuhan non fungsional:

- 1. <u>User interface</u> harus bisa berjalan pada desktop.
- 2. Sistem harus dapat dikembangkan seperti penambahan sensor.
- 3. Tampilan *user interface* harus mudah dipahami.
- 4. Sistem harus bisa menyimpan data pada perangkat lokal.
- 5. Sistem harus bisa memproses data dengan cepat dan akurat.

C. Analisis Kebutuhan Pengguna

Kebutuhan pengguna:

- 1. Memberikan informasi yang akurat tentang kondisi di dalam ruang server.
- 2. Pengguna harus dapat mengakses data suhu dan kelembapan secara *real-time*.

- 3. Pengguna dapat mengakses tampilan sistem melalui sebuah aplikasi.
- 4. Pengguna dapat melihat data suhu dan kelembapan yang ada dalam database.
- 5. Sistem harus mudah digunakan.

D. Analisis Bisnis

Analisis bisnis dilakukan menggunakan *Business Model canvas* yang ditampilkan sebagai berikut.

Key partners
- Penyedia nanufakstur alat
- Penyedia layanan server
- Penyedia layanan server
- Penyedia layanan server
- Penyedia layanan server
- Riset dan pengembangan
-

The Business Model Canvas

Source: Strategyzer AG | License: CC By-SA 3.0

E. Analisis Keamanan IoT

Analisis keamanan dilakukan menggunakan Framework ARMET. Berikut adalah penggambaran spesifikasi menggunakan UML.

<Enumeration> Action

PUBLISH

```
FAIL
```

```
MonitoringRuangServerWokWiSpec
  - mqtt_topic1: char = "iot/sensor1"

- mqtt_topic2: char = "iot/sensor2"

- mqtt_topic3: char = "iot/sensor3"

- mqtt_topic4: char = "iot/sensor4"

- mqtt_topic5: char = "iot/sensor5"
  - lokasi_sensor1: char = "kiri bawah"
- lokasi_sensor2: char = "kanan bawah"
- lokasi_sensor3: char = "kiri atas"
- lokasi_sensor4: char = "kanan atas"
- lokasi_sensor5: char = "tengah"
  - doc1:Json
- doc2:Json
- doc3:Json
- doc4:Json
- doc5:Json
    -sensorToJsonData(h1: float,
                 c1: float,
h2: float,
c2: float,
h3: float,
c3: float,
h4: float,
c4: float,
c5: float,
c5: float,
  ):void
+publishJsonData():Action
         ntext MonitoringRuangServerSpec::sensorToJsonData(
                                                                                                                             h1: float,
c1: float,
h2: float,
c2: float,
h3: float,
c3: float,
c4: float,
c5: float,
c5: float,
/
+pre: (isnan(h1) || isnan(c1))&&(isnan(h2) || isnan(c2))&&(isnan(h3) || isnan(c3))
&& (isnan(h4) || isnan(c4)) &&(isnan(h5) || isnan(c5))
 +post:
                      doc1 ={
                                        'topic':mqtt_topic1,
'tokasi': lokasi_sensor1,
'suhu': String(c1).c_str(),
'kelembapan': String(h1).c_str()
                                       'topic':mqtt_topic2,
'lokasi': lokasi_sensor2,
'suhu': String(c2).c_str(),
'kelembapan': String(h2).c_str()
                                       "topic':mqtt_topic3,
"lokasi": lokasi_sensor3,
'suhu': String(c3).c_str(),
'kelembapan': String(h3).c_str()
                     }
doc4 = {
                                        'topic':mqtt_topic4,
'tokasi': lokasi_sensor4,
'suhu': String(c4).c_str(),
'kelembapan': String(h4).c_str()
                  }
doc5 = {
                                        'topic':mqtt_topic5,
'tokasi': lokasi_sensor5,
'suhu': String(c5).c_str(),
'kelembapan': String(h5).c_str()
context MonitoringRuangServerSpec::publishJsonData():Action 
+pre: forall(a: Action ( (a = PUBLISH implies client connected) and 
(a = FAIL implies client not connected) 
+post result = PUBLISH implies client.publish(mqtt_lopic1,doc1), client.publish(mqtt_lopic2,doc2), 
client.publish(mqtt_lopic3,doc3), client.publish(mqtt_lopic4,doc4), client.publish(mqtt_lopic5,doc5) 
and FAIL implies print('gagal')
```

```
SubscriberSpec
window:Tk=Tk()
suhu: float
kelembapan: float
tuple: Tuple = (0,0)
tsk: List<Tuple>=[(0,0),(0,0),(0,0),(0,0),(0,0)]
data_sensor_value:Tuple
score:float
+ insertSensorData(data_sensor_value:Tuple):void
+ getLastSensorDataFromDB():void
+ insertMeanSensorData(tuple: Tuple):void
getLastMeanSensorData():void
+ fuzzyLogic(suhu:float, kelembapan: float):float
+ update_dashboard(tsk:List<Tuple>, score: float, tuple:Tuple): void
context SubscriberSpec:insertSensorData(data_sensor_value:Tuple)
+ pre: on_message
post: cursor.execute("insert into log_sensor (columns) values (data_sensor_value)")
context SubscriberSpec:getLastSensorDataFromData()
+ pre: on_message
+ post: cursor.execute("select * log_sensor order by timestamps desc limit 1")
context SubscriberSpec:insertMeanSensorData(tuple:Tuple)
+ pre: on message
+ post: cursor.execute("insert into log_mean (columns) values (tuple)")
context SubscriberSpec:getLastMeanSensorData()
+ pre: on message
+ post: cursor.execute("select * log_mean order by timestamps desc limit 1")
context SubscriberSpec:fuzzyLogic(suhu:float, kelembapan: float)
+ pre: on_message
+ post:
       fuzzyCtrl.input['suhu'] = suhu
       fuzzyCtrl.input['kelembapan'] =kelembapan
       fuzzyCtrl.compute()
       return fuzzyCtrl.output['kondisi']
context SubscriberSpec:update_dashboard(tsk:List<Tuple>, score: float, tuple:Tuple)
+ pre: on_message
+ post: window.display(tsk)
window.display(score)
window.display(tuple)
```

F. Analisis Kebutuhan Service

Protokol yang digunakan pada sistem adalah dengan MQTT. Dengan menggunakan MQTT sistem mendapat beberapa keuntungan dibandingkan dengan menggunakan protokol lain. Keuntungan yang didapat antara lain ukuran pesan yang dikirim kecil sehingga dapat digunakan pada perangkat dengan kapasitas memori terbatas, dapat terhubung dengan berbagai jenis perangkat serta mekanisme komunikasi

data yang memungkinkan perangkat dengan mudah mengirim dan menerima data melalui *broker*.

G. Analisis Kebutuhan Server Database

Analisis kebutuhan server databas dilakukan menggunakan ERD. Berikut adalah rancangan ERD dari database yang menyimpan data dari sensor.

BAB III

RANCANGAN SERVER IOT

A. Desain Topologi Server

a. Rancangan Node Sensor

Sensor yang digunakan adalah DHT22. Sensor tersebut dapat membaca suhu dan kelembapan. Sensor dihubungkan dengan mikrokontroler ESP32 menggunakan kabel. Berikut adalah gambar sensor DHT22 yang dihubungkan ke ESP32 pada Wokwi.

b. Rancangan WSN

Terdapat lima sensor DHT22 untuk memantau suhu dan kelembapan ruangan server. Sensor diletakkan pada setiap sudut dan pada tengah ruangan. Lima sensor dipakai karena untuk memperbesar cakupan sensor pada seluruh ruang server. Kelima sensor terhubung dengan satu mikrokontroler ESP32 dengan topologi star. Berikut adalah rancangan WSN dan penerapannya pada Wokwi.

c. Rancangan Server IoT

Sensor DHT22 akan membaca keadaan suhu dan kelembapan ruang server. Data dari lima sensor akan diterima oleh ESP32. Pada ESP32 data dari seluruh sensor akan diubah menjadi JSON. Selanjutnya JSON akan dikirim ke jaringan publik melalui WIFI menuju ke NGROK. Data akan dilakukan *forwarding* oleh NGROK menuju port 1883 yang pada jaringan privat. Data yang berbentuk JSON akan di-*subscribe* oleh program server. Berikut adalah rancangan server IoT.

B. Kode Program Server

a. Kode Program Server

Berikut adalah kode pada program server.

```
from paho.mqtt import client as mqtt_client
import skfuzzy as fuzz
from skfuzzy import control as ctrl
import numpy as np
import random
import time
import sqlite3
import json
import matplotlib.pyplot as plt
from tkinter import *
from PIL import Image
broker = "localhost"
port = 1883
topic1 = "iot/sensor1"
topic2 = "iot/sensor2"
topic3 = "iot/sensor3"
topic4 = "iot/sensor4"
topic5 = "iot/sensor5"
client_id = f'python-mqtt-{random.randint(0, 100)}'
```

```
# fuzzy logic
# antecedent -> consequent
suhu = ctrl.Antecedent(np.arange(0, 34, 1), 'suhu')
kelembapan = ctrl.Antecedent(np.arange(0, 101, 1),
'kelembapan')
kondisi = ctrl.Consequent(np.arange(0, 11, 1), 'kondisi')
# variabel fuzzy untuk suhu
suhu['rendah'] = fuzz.trimf(suhu.universe, [0, 0, 18])
suhu['sedang'] = fuzz.trimf(suhu.universe, [13, 18, 23])
suhu['tinggi'] = fuzz.trimf(suhu.universe, [18, 33, 33])
# variabel fuzzy untuk kelembapan
kelembapan['rendah'] = fuzz.trimf(kelembapan.universe, [0,
0, 501)
kelembapan['sedang'] = fuzz.trimf(kelembapan.universe, [30,
50, 701)
kelembapan['tinggi'] = fuzz.trimf(kelembapan.universe, [50,
100, 100])
# variabel fuzzy untuk kondisi
kondisi['buruk'] = fuzz.trimf(kondisi.universe, [0, 0, 5])
kondisi['lumayan baik'] = fuzz.trimf(kondisi.universe, [2,
kondisi['baik'] = fuzz.trimf(kondisi.universe, [5, 10, 10])
# rules
rule1 = ctrl.Rule(suhu['rendah'] & kelembapan['rendah'],
kondisi['buruk'])
rule2 = ctrl.Rule(suhu['rendah'] & kelembapan['sedang'],
                  kondisi['lumayan baik'])
rule3 = ctrl.Rule(suhu['rendah'] & kelembapan['tinggi'],
kondisi['buruk'])
rule4 = ctrl.Rule(suhu['sedang'] & kelembapan['rendah'],
                  kondisi['lumayan baik'])
rule5 = ctrl.Rule(suhu['sedang'] & kelembapan['sedang'],
kondisi['baik'])
rule6 = ctrl.Rule(suhu['sedang'] & kelembapan['tinggi'],
```

```
kondisi['lumayan baik'])
rule7 = ctrl.Rule(suhu['tinggi'] & kelembapan['rendah'],
kondisi['buruk'])
rule8 = ctrl.Rule(suhu['tinggi'] & kelembapan['sedang'],
                  kondisi['lumayan baik'])
rule9 = ctrl.Rule(suhu['tinggi'] & kelembapan['tinggi'],
kondisi['buruk'])
kondisi ctrl = ctrl.ControlSystem([
   rule1, rule2, rule3,
   rule4, rule5, rule6,
   rule7, rule8, rule9
])
kondisi fuzzy = ctrl.ControlSystemSimulation(kondisi ctrl)
# dashboard
# window
window = Tk()
window.title("MQTT Dashboard")
window.geometry('1130x600') # Width, Height
window.resizable(False, False) # Width, Height
window.configure(bg="white")
# suhu
# gambar suhu
rezizer = Image.open("suhu img.png")
rezizer = rezizer.resize((50, 50))
rezizer.save("suhu img resized.png")
# kelembapan
# gambar kelembapan
rezizer = Image.open("hum_img.png")
rezizer = rezizer.resize((40, 40))
rezizer.save("hum img resized.png")
# gambar pemisah
```

```
rezizer = Image.open("pembatas.png")
rezizer = rezizer.resize((30, 600))
rezizer.save("pembatas resized.png")
# kelembapan
# gambar kelembapan
rezizer = Image.open("hum img.png")
rezizer = rezizer.resize((40, 40))
rezizer.save("hum img resized.png")
# box
# gambar box
rezizer = Image.open("box.png")
rezizer = rezizer.resize((210, 130))
rezizer.save("box resized.png")
# textBox
# gambar textBox
rezizer = Image.open("textBox.png")
rezizer = rezizer.resize((340, 75))
rezizer.save("textBox resized.png")
# boxInformation
# gambar boxInformation
rezizer = Image.open("boxInformation.png")
rezizer = rezizer.resize((340, 374))
rezizer.save("boxInformation resized.png")
# baik
# gambar baik
rezizer = Image.open("baik.png")
rezizer = rezizer.resize((340, 75))
rezizer.save("baik_resized.png")
# lumayan baik
# gambar lumayan baik
```

```
rezizer = Image.open("lumayan baik.png")
rezizer = rezizer.resize((340, 75))
rezizer.save("lumayan baik resized.png")
# buruk
# gambar buruk
rezizer = Image.open("buruk.png")
rezizer = rezizer.resize((340, 75))
rezizer.save("buruk resized.png")
# circle
# gambar circle
rezizer = Image.open("circle.png")
rezizer = rezizer.resize((100, 107))
rezizer.save("circle resized.png")
# background
# gambar background
rezizer = Image.open("background.png")
rezizer = rezizer.resize((1130, 600))
rezizer.save("background resized.png")
# resize gambar
img suhu = PhotoImage(file="suhu img resized.png")
img kelembaban = PhotoImage(file="hum img resized.png")
img_pembatas = PhotoImage(file='pembatas_resized.png')
img box = PhotoImage(file='box resized.png')
img textBox = PhotoImage(file='textBox resized.png')
img background = PhotoImage(file='background resized.png')
img boxInformation =
PhotoImage(file='boxInformation resized.png')
img baik = PhotoImage(file='baik resized.png')
img lumayan baik =
PhotoImage(file='lumayan_baik_resized.png')
img buruk = PhotoImage(file='buruk resized.png')
img circle = PhotoImage(file='circle resized.png')
```

```
def connect mqtt() -> mqtt client:
    def on connect(client, userdata, flags, rc):
        if rc == 0:
            print("Connected to MQTT Broker!")
        else:
            print("Failed to connect, return code %d\n", rc)
    client = mqtt client.Client(client id)
    client.on connect = on connect
    client.connect(broker, port)
   return client
# buat database
con = sqlite3.connect("log sensor.sqlite")
cur = con.cursor()
buat_tabel_log_sensor1 = '''CREATE TABLE IF NOT EXISTS
log sensor1 (
topic TEXT NOT NULL,
timestamp DATETIME DEFAULT CURRENT TIMESTAMP,
lokasi TEXT NOT NULL,
suhu REAL NOT NULL,
kelembapan REAL NOT NULL); '''
cur.execute(buat tabel log sensor1)
con.commit()
con = sqlite3.connect("log sensor.sqlite")
cur = con.cursor()
buat_tabel_log_sensor2 = '''CREATE TABLE IF NOT EXISTS
log sensor2 (
topic TEXT NOT NULL,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,
lokasi TEXT NOT NULL,
suhu REAL NOT NULL,
kelembapan REAL NOT NULL);'''
cur.execute(buat tabel log sensor2)
```

```
con.commit()
con = sqlite3.connect("log sensor.sqlite")
cur = con.cursor()
buat tabel log sensor3 = '''CREATE TABLE IF NOT EXISTS
log sensor3 (
topic TEXT NOT NULL,
timestamp DATETIME DEFAULT CURRENT TIMESTAMP,
lokasi TEXT NOT NULL,
suhu REAL NOT NULL,
kelembapan REAL NOT NULL);'''
cur.execute(buat tabel log sensor3)
con.commit()
con = sqlite3.connect("log sensor.sqlite")
cur = con.cursor()
buat tabel log sensor4 = '''CREATE TABLE IF NOT EXISTS
log sensor4 (
topic TEXT NOT NULL,
timestamp DATETIME DEFAULT CURRENT TIMESTAMP,
lokasi TEXT NOT NULL,
suhu REAL NOT NULL,
kelembapan REAL NOT NULL); '''
cur.execute(buat tabel log sensor4)
con.commit()
con = sqlite3.connect("log sensor.sqlite")
cur = con.cursor()
buat tabel log sensor5 = '''CREATE TABLE IF NOT EXISTS
log sensor5 (
topic TEXT NOT NULL,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,
lokasi TEXT NOT NULL,
suhu REAL NOT NULL,
kelembapan REAL NOT NULL); '''
cur.execute(buat tabel log sensor5)
con.commit()
```

```
con = sqlite3.connect("log sensor.sqlite")
cur = con.cursor()
buat tabel log gabungan = '''CREATE TABLE IF NOT EXISTS
log mean (
mean suhu bawah REAL NOT NULL,
mean kelembapan REAL NOT NULL,
timestamp DATETIME DEFAULT CURRENT TIMESTAMP);'''
cur.execute(buat tabel log gabungan)
con.commit()
def subscribe(client: mqtt client):
    def on message(client, userdata, msg):
        print(f"Received {msg.payload.decode()} from
{msg.topic} topic")
        data = json.loads(msg.payload.decode())
        topic = data['topic']
        timestamp = time.strftime('%Y-%m-%d %H:%M:%S')
        lokasi = data['lokasi']
        suhu = data['suhu']
        kelembapan = data['kelembapan']
        con = sqlite3.connect("log sensor.sqlite")
        cur = con.cursor()
        data sensor val = (topic, timestamp, lokasi, suhu,
kelembapan)
        if (topic == topic1):
            cur.execute(
                "INSERT INTO log sensor1 (topic, timestamp,
lokasi, suhu, kelembapan) VALUES (?, ?, ?, ?, ?);",
data sensor val)
            con.commit()
        elif (topic == topic2):
            cur.execute(
```

```
"INSERT INTO log sensor2 (topic, timestamp,
lokasi, suhu, kelembapan) VALUES (?, ?, ?, ?, ?);",
data sensor val)
            con.commit()
        elif (topic == topic3):
            cur.execute(
                "INSERT INTO log sensor3 (topic, timestamp,
lokasi, suhu, kelembapan) VALUES (?, ?, ?, ?, ?);",
data sensor val)
            con.commit()
        elif (topic == topic4):
            cur.execute(
                "INSERT INTO log_sensor4 (topic, timestamp,
lokasi, suhu, kelembapan) VALUES (?, ?, ?, ?, ?);",
data sensor val)
            con.commit()
        elif (topic == topic5):
            cur.execute(
                "INSERT INTO log_sensor5 (topic, timestamp,
lokasi, suhu, kelembapan) VALUES (?, ?, ?, ?, ?);",
data sensor val)
            con.commit()
            cur.execute(
                INSERT INTO log mean (mean suhu,
mean kelembapan)
                VALUES (
                    ((select suhu from log sensor1 order by
timestamp DESC limit 1)+
                    (select suhu from log sensor3 order by
timestamp DESC limit 1)+
                    (select suhu from log_sensor4 order by
timestamp DESC limit 1)+
                    (select suhu from log_sensor5 order by
timestamp DESC limit 1)+
                    (select suhu from log sensor2 order by
timestamp DESC limit 1))/5,
```

```
((select kelembapan from log sensor1
order by timestamp DESC limit 1)+
                    (select kelembapan from log_sensor2
order by timestamp DESC limit 1)+
                    (select kelembapan from log sensor3
order by timestamp DESC limit 1)+
                    (select kelembapan from log sensor4
order by timestamp DESC limit 1)+
                    (select kelembapan from log sensor5
order by timestamp DESC limit 1))/5
                );""")
            con.commit()
            cur.execute("""
                select mean suhu, mean kelembapan from
log mean order by timestamp DESC limit 1
            """)
            con.commit()
            tuple = cur.fetchone()
            kondisi fuzzy.input['suhu'] = tuple[0]
            kondisi_fuzzy.input['kelembapan'] = tuple[1]
            tsk = [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0)]
            for i in range(5):
               cur.execute("select suhu, kelembapan from
log sensor" +
                            str(i+1)+" order by timestamp
DESC limit 1")
                con.commit()
                tsk[i] = cur.fetchone()
            kondisi fuzzy.compute()
            score = kondisi_fuzzy.output['kondisi']
            print(score)
            update_dashboard(tsk, score, tuple)
            if (score < 3.33):
                print('Kondisi ruangan buruk')
            elif (score < 6.67):
```

```
print('kondisi ruangan lumayan baik')
            else:
                print('kondisi ruangan baik')
   client.subscribe(topic1)
    client.subscribe(topic2)
    client.subscribe(topic3)
    client.subscribe(topic4)
    client.subscribe(topic5)
    client.on message = on message
def create dashboard():
    canvas b = Canvas(window, bg='#aaaaaa',
                      highlightthickness=0, width=1130,
height=600)
   canvas b.place(x=0, y=0)
    canvas b.create image(0, 0, anchor=NW,
image=img background)
    # sensor 1
    canvas b.create image(20, 440, anchor=NW, image=img box)
    canvas b.create image(35, 460, anchor=NW,
image=img suhu)
    canvas b.create image(40, 510, anchor=NW,
image=img kelembaban)
    canvas b.create text(90, 485, text='...'+" °C",
                         font=("Helvetica", 20),
fill="white", anchor="w")
    canvas b.create text(87, 535, text='...'+" %",
                         font=("Helvetica", 20),
fill="white", anchor="w")
    # sensor 2
    canvas b.create image(500, 440, anchor=NW,
image=img box)
    canvas b.create image (515, 460, anchor=NW,
image=img suhu)
```

```
canvas b.create image (520, 510, anchor=NW,
image=img kelembaban)
    canvas_b.create_text(570, 480, text='...'+" °C",
                         font=("Helvetica", 20),
fill="white", anchor="w")
    canvas b.create text(567, 535, text='...'+" %",
                         font=("Helvetica", 20),
fill="white", anchor="w")
    # sensor 3
    canvas b.create image(20, 30, anchor=NW, image=img box)
    canvas b.create image(35, 50, anchor=NW, image=img suhu)
    canvas b.create image(40, 100, anchor=NW,
image=img kelembaban)
    canvas b.create text(90, 75, text='...'+" °C",
                         font=("Helvetica", 20),
fill="white", anchor="w")
    canvas b.create text(87, 125, text='...'+" %",
                         font=("Helvetica", 20),
fill="white", anchor="w")
    # sensor 4
    canvas b.create image(500, 30, anchor=NW, image=img box)
    canvas b.create image(515, 50, anchor=NW,
image=img suhu)
    canvas b.create image (520, 100, anchor=NW,
image=img kelembaban)
    canvas_b.create_text(570, 70, text='...'+" °C",
                         font=("Helvetica", 20),
fill="white", anchor="w")
    canvas b.create text(567, 120, text='...'+" %",
                         font=("Helvetica", 20),
fill="white", anchor="w")
    # sensor 5
    canvas b.create image(260, 235, anchor=NW,
image=img box)
```

```
canvas b.create image(275, 255, anchor=NW,
image=img suhu)
    canvas b.create image(280, 305, anchor=NW,
image=img kelembaban)
    canvas_b.create_text(325, 275, text='...'+" °C",
                         font=("Helvetica", 20),
fill="white", anchor="w")
    canvas b.create text(322, 325, text='...'+" %",
                         font=("Helvetica", 20),
fill="white", anchor="w")
    canvas b.create image(730, 0, anchor=NW,
image=img pembatas)
    canvas b.create image(770, 10, anchor=NW,
image=img textBox)
   canvas b.create text(940, 65, text="Kondisi Ruangan",
font=(
        "Helvetica", 20), fill="white", anchor="s")
    canvas b.create image(770, 111, anchor=NW,
image=img baik)
    canvas b.create text(940, 166, text="...", font=(
        "Helvetica", 20), fill="white", anchor="s")
    canvas b.create image(770, 206, anchor=NW,
image=img boxInformation)
    canvas b.create text(940, 236, text="Rata-rata",
                         font=("Helvetica", 16),
fill="white", anchor="s")
    canvas b.create image(822, 276, anchor=NW,
image=img circle)
    canvas b.create image(957, 276, anchor=NW,
image=img circle)
    canvas b.create image(847, 306, anchor=NW,
image=img suhu)
```

```
canvas b.create image(987, 306, anchor=NW,
image=img kelembaban)
    canvas_b.create_text(832, 416, text='...'+" °C",
                         font=("Helvetica", 20),
fill="white", anchor="w")
    canvas b.create text(972, 416, text='...'+" %",
                         font=("Helvetica", 20),
fill="white", anchor="w")
    canvas b.create text(822, 526, text="Skor = "+'...',
                         font=("Helvetica", 20),
fill="white", anchor="w")
def update dashboard(tsk, score, tskr):
    canvas b = Canvas(window, bg='#aaaaaa',
                      highlightthickness=0, width=1130,
height=600)
    canvas b.place(x=0, y=0)
    canvas b.create image(0, 0, anchor=NW,
image=img background)
    # sensor 1
    canvas b.create image(20, 440, anchor=NW, image=img box)
    canvas b.create image(35, 460, anchor=NW,
image=img suhu)
    canvas b.create image(40, 510, anchor=NW,
image=img kelembaban)
    canvas b.create text(90, 485, text=str(
        tsk[0][0])+" °C", font=("Helvetica", 20),
fill="white", anchor="w")
    canvas_b.create_text(87, 535, text=str(
        tsk[0][1])+" %", font=("Helvetica", 20),
fill="white", anchor="w")
    # sensor 2
    canvas b.create image (500, 440, anchor=NW,
image=img box)
```

```
canvas b.create image (515, 460, anchor=NW,
image=img suhu)
    canvas b.create image(520, 510, anchor=NW,
image=img kelembaban)
    canvas b.create text(570, 480, text=str(
        tsk[1][0])+" °C", font=("Helvetica", 20),
fill="white", anchor="w")
    canvas b.create text(567, 535, text=str(
        tsk[1][1])+" %", font=("Helvetica", 20),
fill="white", anchor="w")
    # sensor 3
    canvas b.create image(20, 30, anchor=NW, image=img box)
    canvas b.create image(35, 50, anchor=NW, image=img suhu)
    canvas b.create image(40, 100, anchor=NW,
image=img kelembaban)
    canvas b.create text(90, 75, text=str(
        tsk[2][0])+" °C", font=("Helvetica", 20),
fill="white", anchor="w")
    canvas b.create text(87, 125, text=str(
        tsk[2][1])+" %", font=("Helvetica", 20),
fill="white", anchor="w")
    # sensor 4
    canvas b.create image(500, 30, anchor=NW, image=img box)
    canvas b.create image(515, 50, anchor=NW,
image=img suhu)
    canvas b.create image (520, 100, anchor=NW,
image=img kelembaban)
    canvas b.create text(570, 70, text=str(
        tsk[3][0])+" °C", font=("Helvetica", 20),
fill="white", anchor="w")
    canvas b.create text(567, 120, text=str(
        tsk[3][1])+" %", font=("Helvetica", 20),
fill="white", anchor="w")
```

sensor 5

```
canvas b.create image(260, 235, anchor=NW,
image=img box)
    canvas b.create image(275, 255, anchor=NW,
image=img suhu)
    canvas b.create image(280, 305, anchor=NW,
image=img kelembaban)
    canvas b.create text(325, 275, text=str(
        tsk[4][0])+" °C", font=("Helvetica", 20),
fill="white", anchor="w")
    canvas b.create text(322, 325, text=str(
        tsk[4][1])+" %", font=("Helvetica", 20),
fill="white", anchor="w")
    canvas b.create image(730, 0, anchor=NW,
image=img pembatas)
    canvas b.create image(770, 10, anchor=NW,
image=img textBox)
    canvas b.create text(940, 65, text="Kondisi Ruangan",
font=(
        "Helvetica", 20), fill="white", anchor="s")
    if (score < 3.33):
        canvas b.create image(770, 111, anchor=NW,
image=img buruk)
        canvas b.create text(940, 166, text="Buruk", font=(
            "Helvetica", 20), fill="white", anchor="s")
    elif (score < 6.67):
        canvas b.create image(770, 111, anchor=NW,
image=img lumayan baik)
        canvas b.create text(940, 166, text="Lumayan Baik",
font=(
            "Helvetica", 20), fill="white", anchor="s")
    else:
        canvas b.create image(770, 111, anchor=NW,
image=img baik)
        canvas b.create text(940, 166, text="Baik", font=(
```

```
canvas b.create image(770, 206, anchor=NW,
image=img boxInformation)
    canvas b.create text(940, 236, text="Rata-rata",
                         font=("Helvetica", 16),
fill="white", anchor="s")
    canvas b.create image(822, 276, anchor=NW,
image=img circle)
    canvas b.create image(957, 276, anchor=NW,
image=img circle)
    canvas b.create image(847, 306, anchor=NW,
image=img suhu)
   canvas b.create image(987, 306, anchor=NW,
image=img kelembaban)
    canvas b.create text(832, 416, text=str(
        round(tskr[0], 2))+" °C", font=("Helvetica", 20),
fill="white", anchor="w")
    canvas b.create text(972, 416, text=str(
        round(tskr[1], 2))+" %", font=("Helvetica", 20),
fill="white", anchor="w")
    canvas b.create text(822, 526, text="Skor =
"+str(round(score, 2)),
                         font=("Helvetica", 20),
fill="white", anchor="w")
def run():
   client = connect mqtt()
    subscribe(client)
   create_dashboard()
   client.loop start()
   window.mainloop()
    client.loop stop()
```

"Helvetica", 20), fill="white", anchor="s")

```
if __name__ == '__main__':
    # suhu.view()
    # kelembapan.view()
    # kondisi.view()
    # plt.show()

run()
```

b. Kode Program Node Sensor

Berikut adalah kode mikrokontroler pada Wokwi.

```
#include <WiFi.h>
#include <WiFiClient.h>
#include <BlynkSimpleEsp32.h>
#include <PubSubClient.h>
#include <DHT.h>
#include <ArduinoJson.h>
#define MAX CHARACTER 50
#define MQTT_SERVER "0.tcp.ap.ngrok.io"
char ssid[] = "Wokwi-GUEST";
char pass[] = "";
int mqtt port = 19688;
char mqtt topic1[] = "iot/sensor1";
char mqtt_topic2[] = "iot/sensor2";
char mqtt topic3[] = "iot/sensor3";
char mqtt topic4[] = "iot/sensor4";
char mqtt topic5[] = "iot/sensor5";
DHT dht1(2, DHT22); // kiri bawah
DHT dht2(4, DHT22); // kanan bawah
DHT dht3(13, DHT22); // kiri atas
DHT dht4(12, DHT22); // kanan atas
DHT dht5(14, DHT22); // tengah
```

```
char lokasi_sensor1[] = "kiri bawah";
char lokasi sensor2[] = "kanan bawah";
char lokasi sensor3[] = "kiri atas";
char lokasi sensor4[] = "kanan atas";
char lokasi sensor5[] = "tengah";
WiFiClient espClient;
PubSubClient client(espClient);
void setupWifi(){
  Serial.print("Menghubungkan ke ");
  Serial.println(ssid);
  WiFi.mode(WIFI STA);
  WiFi.begin(ssid, pass);
  while (WiFi.status() != WL CONNECTED) {
    delay(500);
    Serial.print(".");
  }
  randomSeed(micros());
  Serial.println("");
  Serial.print("Terhubung ke ");
  Serial.println(ssid);
  Serial.print("IP address: ");
  Serial.println(WiFi.localIP());
  Serial.println("");
}
void setupMqtt() {
  while (!client.connected()) {
    Serial.println("Menghubungkan ke MQTT...");
    String idClient = "client-";
    idClient += String(random(0xffff), HEX);
```

```
if (client.connect(idClient.c_str())) {
      Serial.println("MQTT terhubung");
      Serial.println();
    }
    else{
      Serial.print("Error: ");
      Serial.print(client.state());
      Serial.println("Mencoba lagi...");
      delay(5000);
    }
  }
}
void setup() {
  pinMode(2, INPUT);
  Serial.begin(9600);
  setupWifi();
  client.setServer(MQTT_SERVER, mqtt_port);
  dht1.begin();
  dht2.begin();
  dht3.begin();
  dht4.begin();
  dht5.begin();
}
void loop() {
  if (!client.connected()){
    setupMqtt();
  client.loop();
  float h1 = dht1.readHumidity();
  float c1 = dht1.readTemperature();
```

```
float h2 = dht2.readHumidity();
  float c2 = dht2.readTemperature();
  float h3 = dht3.readHumidity();
  float c3 = dht3.readTemperature();
  float h4 = dht4.readHumidity();
  float c4 = dht4.readTemperature();
  float h5 = dht5.readHumidity();
  float c5 = dht5.readTemperature();
  if (isnan(h1) || isnan(c1)) {
    Serial.println(F("Sensor 1 tidak terbaca!"));
    return;
  }
  if (isnan(h2) || isnan(c2)) {
    Serial.println(F("Sensor 2 tidak terbaca!"));
    return;
  }
  if (isnan(h3) || isnan(c3)) {
    Serial.println(F("Sensor 3 tidak terbaca!"));
   return;
  }
  if (isnan(h4) || isnan(c4)) {
    Serial.println(F("Sensor 4 tidak terbaca!"));
    return;
  if (isnan(h5) || isnan(c5)) {
    Serial.println(F("Sensor 5 tidak terbaca!"));
    return;
  }
// publish sensor 1
String celcius1 = String(c1).c str();
String humidity1 = String(h1).c str();
StaticJsonDocument<200> doc1;
```

```
doc1["topic"] = mqtt topic1;
doc1["lokasi"] = lokasi sensor1;
doc1["suhu"] = celcius1;
doc1["kelembapan"] = humidity1;
String jsonString1;
serializeJson(doc1, jsonString1);
char json1[jsonString1.length() + 1];
jsonString1.toCharArray(json1, jsonString1.length() + 1);
if (client.publish(mqtt topic1, json1)) {
  Serial.println("Data berhasil dikirim ke topic " +
String(mqtt topic1));
} else {
  Serial.println("Gagal mengirim data ke topic " +
String(mqtt topic1));
}
// publish sensor 2
String celcius2 = String(c2).c str();
String humidity2 = String(h2).c str();
StaticJsonDocument<200> doc2;
doc2["topic"] = mqtt topic2;
doc2["lokasi"] = lokasi sensor2;
doc2["suhu"] = celcius2;
doc2["kelembapan"] = humidity2;
String jsonString2;
serializeJson(doc2, jsonString2);
char json2[jsonString2.length() + 1];
jsonString2.toCharArray(json2, jsonString2.length() + 1);
if (client.publish(mqtt topic2, json2)) {
  Serial.println("Data berhasil dikirim ke topic " +
String(mqtt topic2));
} else {
```

```
Serial.println("Gagal mengirim data ke topic " +
String(mqtt topic2));
}
// publish sensor 3
String celcius3 = String(c3).c str();
String humidity3 = String(h3).c str();
StaticJsonDocument<200> doc3;
doc3["topic"] = mqtt_topic3;
doc3["lokasi"] = lokasi sensor3;
doc3["suhu"] = celcius3;
doc3["kelembapan"] = humidity3;
String jsonString3;
serializeJson(doc3, jsonString3);
char json3[jsonString3.length() + 1];
jsonString3.toCharArray(json3, jsonString3.length() + 1);
if (client.publish(mqtt topic3, json3)) {
  Serial.println("Data berhasil dikirim ke topic " +
String(mqtt topic3));
} else {
  Serial.println("Gagal mengirim data ke topic " +
String(mqtt topic3));
}
// publish sensor 4
String celcius4 = String(c4).c str();
String humidity4 = String(h4).c str();
StaticJsonDocument<200> doc4;
doc4["topic"] = mqtt topic4;
doc4["lokasi"] = lokasi_sensor4;
doc4["suhu"] = celcius4;
doc4["kelembapan"] = humidity4;
String jsonString4;
```

```
serializeJson(doc4, jsonString4);
char json4[jsonString4.length() + 1];
jsonString4.toCharArray(json4, jsonString4.length() + 1);
if (client.publish(mqtt topic4, json4)) {
 Serial.println("Data berhasil dikirim ke topic " +
String(mqtt topic4));
} else {
  Serial.println("Gagal mengirim data ke topic " +
String(mqtt topic4));
// publish sensor 5
String celcius5 = String(c5).c str();
String humidity5 = String(h5).c str();
StaticJsonDocument<200> doc5;
doc5["topic"] = mqtt topic5;
doc5["lokasi"] = lokasi sensor5;
doc5["suhu"] = celcius5;
doc5["kelembapan"] = humidity5;
String jsonString5;
serializeJson(doc5, jsonString5);
char json5[jsonString5.length() + 1];
jsonString5.toCharArray(json5, jsonString5.length() + 1);
if (client.publish(mqtt topic5, json5)) {
  Serial.println("Data berhasil dikirim ke topic " +
String(mqtt topic5));
} else {
 Serial.println("Gagal mengirim data ke topic " +
String(mqtt topic5));
}
delay(5000);
```

BAB IV

RANCANGAN DASHBOARD IOT

A. Wireframe Dashboard IoT

Berdasarkan analisis kebutuhan, ada beberapa komponen yang harus ada pada *dashboard*. Kebutuhan yang harus ada antara lain yaitu semua data suhu dan kelembapan dari semua sensor, rata-rata suhu dan kelembapan yang dihitung dari semua sensor, dan kondisi ruangan yang didapat dari hasil proses menggunakan Logika Fuzzy. *Dashboard* menampilkan semua data suhu dan kelembapan yang dikirim dari semua sensor secara *real-time*. Hal ini sejalan dengan kebutuhan fungsional dan non fungsional yang telah dijabarkan sebelumnya. Berikut merupakan *layout* dan tampilan *dashboard*.

B. Desain Asset

Semua aset yang ditampilkan pada *dashboard* didapat dari internet. Gambar aset yang ukurannya belum sesuai dengan yang diharapkan akan diubah ukurannya menggunakan *library* PIL pada Python dan jika diperlukan akan dilakukan pengeditan menggunakan aplikasi Adobe Photoshop. Berikut merupakan beberapa aset yang ditampilkan pada *dashboard*.

C. High Fidelity Dashboard IoT

Pada *dashboard* data yang ditampilkan adalah data yang disubscribe pada saat itu juga. Hal ini dilakukan agar suhu dan kelembapan
yang muncul adalah suhu dan kelembapan pada ruang server pada waktu
yang bersamaan atau biasa disebut *real-time*. Selain data suhu dan
kelembapan, *dashboard* menampilkan kondisi ruangan dari hasil proses
Logika Fuzzy dengan input rata-rata suhu dan kelembapan.

BAB V

UNIT TESTING

Unit testing dilakukan dengan menggunakan Blackbox Testing yang merupakan metode pengujian suatu sistem tanpa mengetahui bagaimana suatu sistem itu dibuat atau komputasi apa yang ada pada dalam sistem. Pengujian dilakukan dengan mencocokkan input sensor DHT22 pada Wokwi dengan output pada Dashboard. Berikut adalah hasil pencocokan sensor dengan output.

Sensor kanan atas

Sensor kiri atas

Sensor kanan bawah

Sensor kiri bawah

Sensor tengah

BAB VI

KESIMPULAN

Salah satu solusi yang bisa digunakan dalam melakukan pemantauan suhu dan kelembapan ruang server adalah dengan menggunakan Sistem Monitoring Ruang Server yang berbasiskan IoT. Dengan menggunakan teknologi IoT sensorsensor pada ruang server dapat mengirimkan data ke internet melalui jaringan publik menuju jaringan privat menggunakan NGROK. Terdapat lima sensor pada WSN untuk memperluas cakupan sensor pada seluruh ruang server. Sistem dapat menyimpan data sensor ke dalam database dan menampilkannya pada *dashboard*. Penentuan kondisi ruang server dilakukan menggunakan Logika Fuzzy yang hasilnya juga ditampilkan pada *dashboard*.