TUGAS TERSTRUKTUR PERTEMUAN 10 STATISTIK DAN DATA ANALYSIS

NAMA	:	ASEP RIDWAN HIDAYAT	MATAKULIAH		STATISTIK DAN DATA ANALYSIS
NIM	:	231012050036	PERTEMUAN	:	TUGAS TERSTRUKTUR 10
KELAS	:	02MKME001	DOSEN	:	Dr. Tukiyat, M.Si

PENUGASAN

Buat Datasets minimal 17 data tentang suatu permasalahan. silahkan membangun model regresi berganda. minimal ada 3 variabel bebas dan 1 variabel terikat. obyek kajian bebas.

dari data tersebut

- 1. buat model regresi
- 2. analisis Asumsi Klasik (uji hipotesis asumsi kalsik), jelaskan

JAWABAN

Data set yang digunakan yaitu Hasil produksi panen padi (ton), Curah hujan, Suhu rata-rata dan penggunaan pupuk, dan yang akan dianalisa adalah Pengaruh ketiga variable tersebut terhadap Produksi Padi. Maka diketahui

- 1. Variabel Dependen (Y): Hasil panen padi (ton),
- 2. Variabel Independen:
 - a. Curah hujan (X1) dalam mm
 - b. Suhu rata-rata (X2) dalam °C
 - c. Penggunaan pupuk (X3) dalam kg per hektar.

No	Hasil Panen (Y)	Curah Hujan (X1)	Suhu Rata-rata (X2)	Penggunaan Pupuk (X3)
1	8	300	28	150
2	7	280	27	140
3	9	320	29	160
4	10	350	30	170
5	11	360	31	180
6	12	370	32	190
7	13	380	33	200
8	14	390	34	210
9	15	400	35	220
10	16	410	36	230
11	17	420	37	240
12	18	430	38	250
13	19	440	39	260
14	20	450	40	270
15	21	420	38	250
16	22	350	36	260
17	23	420	40	270
18	25	400	38	250

1. Model Regeresi

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	-4.102	2.327		-1.763	.100		
	Curah Hujan (mm)	027	.012	243	-2.376	.032	.222	4.500
	Suhu (C)	.010	.002	.218	4.026	.001	.791	1.264
	Penggunaan Pupuk	.136	.014	1.075	9.929	.000	.198	5.042

a. Dependent Variable: Hasil Panen (ton)

Dari output cofficients didapat model regeresi seperti berikut:

$$Y = a + b_1 X_1 + b_2 X_2 + b_3 X_3$$

$$Y = -4.102 - 0.027X_1 + 0.010X_2 + 0.138X_3$$

Dari persamaan diatas bisa dilihat curah hujan cendrung negative untuk produksi padi, artinya besarnya curah hujan akan menjadikan produksi berkurang, tetapi untuk suhu dan penggunaan pupuk bernilai positif untuk penambahan produksi padi.

2. ANALISIS ASUMSI KLASIK

1. UJI MULTIKOLONIERITAS

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	-4.102	2.327		-1.763	.100		
	Curah Hujan (mm)	027	.012	243	-2.376	.032	.222	4.500
	Suhu (C)	.010	.002	.218	4.026	.001	.791	1.264
	Penggunaan Pupuk	.136	.014	1.075	9.929	.000	.198	5.042

a. Dependent Variable: Hasil Panen (ton)

Dari output Coefficients di atas, kita lihat kolom Tolerance untuk Curah Hujan 0.222, Suhu 0.791 dan Penggunaan Pupuk 0.198, karena nilai tolerance lebih besar dari 0.10 maka tidak terjadi multikolonieritas dalam model regeresi.

Dari output Coefficients di atas, kita lihat kolom VIF untuk Curah Hujan 4.5, Suhu 1.264 dan Penggunaan Pupuk 5.042, karena nilai VIF lebih kecil dari 10 maka artinya tidak terjadi multikolonieritas dalam model regeresi.

2. UJI HETEROSKIDASITAS

Output yang dihasilkan:

Correlations

			Unstandardiz ed Residual	Curah Hujan (mm)	Suhu (C)	Penggunaan Pupuk
Spearman's rho	Unstandardized Residual	Correlation Coefficient	1.000	366	235	277
		Sig. (2-tailed)		.135	.349	.265
		N	18	18	18	18
	Curah Hujan (mm)	Correlation Coefficient	366	1.000	.874**	.822**
		Sig. (2-tailed)	.135		.000	.000
		N	18	18	18	18
	Suhu (C)	Correlation Coefficient	235	.874**	1.000	.953**
		Sig. (2-tailed)	.349	.000		.000
		N	18	18	18	18
	Penggunaan Pupuk	Correlation Coefficient	277	.822**	.953**	1.000
		Sig. (2-tailed)	.265	.000	.000	
		N	18	18	18	18

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Dari output Correlations di atas, dapat diketahui korelasi antara Curah Hujan -0.366 dengan Unstandardized Residual, menghasilkan nilai signifikansi 0,135, korelasi antara suhu dengan Unstandardized Residual menghasilkan nilai signifikansi 0,349 dan korelasi antara penggunaan pupuk dengan Unstandardized Residual menghasilkan nilai signifikansi 0.265.

Karena nilai signifikansi korelasi lebih dari 0,05, maka dapat disimpulkan bahwa pada model regresi tidak ditemukan adanya masalah heteroskedastisitas.

3. UJI AUTOKORELASI

Model Summary^b

	Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
'	1	.984ª	.967	.960	1.081	2.309

- a. Predictors: (Constant), Penggunaan Pupuk, Suhu (C), Curah Hujan (mm)
- b. Dependent Variable: Hasil Panen (ton)

Dari output di atas didapat nilai DW yang dihasilkan dari model regresi adalah 2,309.

Sedangkan dari tabel DW dengan signifikansi 0.05 dan jumlah data (n) = 18, seta k= 3 (k adalah jumlah variabel independen) diperoleh nilai dl sebesar 0.9331 dan du sebesar 1.6961 (lihat Tabel Durbin-Watson).

Tabel Durbin-Watson (DW), α = 5%

	k=	Ĺ	k=2		k=	3	ĺ
n	dL	dU	dL	dU	dL	dU	dL.
6	0.6102	1.4002					
7	0.6996	1.3564	0.4672	1.8964			
8	0.7629	1.3324	0.5591	1.7771	0.3674	2.2866	
9	0.8243	1.3199	0.6291	1.6993	0.4548	2.1282	0.2957
10	0.8791	1.3197	0.6972	1.6413	0.5253	2.0163	0.3760
11	0.9273	1.3241	0.7580	1.6044	0.5948	1.9280	0.4441
12	0.9708	1.3314	0.8122	1.5794	0.6577	1.8640	0.5120
13	1.0097	1.3404	0.8612	1.5621	0.7147	1.8159	0.5745
14	1.0450	1.3503	0.9054	1.5507	0.7667	1.7788	0.6321
15	1.0770	1.3605	0.9455	1.5432	0.8140	1.7501	0.6852
16	1.1062	1.3709	0.9820	1.5386	0.8572	1.7277	0.7340
17	1.1330	1.3812	1.0154	1.5361	0.8968	1.7101	0.7790
18	1.1576	1.3913	1.0461	1.5353	0.9331	1.6961	0.8204
19	1.1804	1.4012	1.0743	1.5355	0.9666	1.6851	0.8588

Ho: Tidak ada Autokorelasi (r=0)

H₁: ada Autokorelasi

Kriteria uji tidak ada Autokorelasi: dU < d < 4 - dU

 $1,6961 < 1,277 < 2,3039 \rightarrow$ kriteria tidak terpenuhi

Karena kriteria tidak terpenuhi dan d berada pada daerah antara dl dan du, maka tidak menghasilkan kesimpulan yang pasti (berada di daerah keragu-raguan).

Dan karena nilai DW di antara -2 sampai +2, maka tidak ada autokorelasi.

4. UJI NORMALITAS

a. Uji Normalitas Dengan Kolmogorov-Smirnov

One-Sample Kolmogorov-Smirnov Test						
		Unstandardiz ed Residual				
N		18				
Normal Parameters ^{a,b}	Mean	.0000000				
	Std. Deviation	.98109962				
Most Extreme Differences	Absolute	.260				
	Positive	.260				
	Negative	214				
Test Statistic		.260				
Asymp. Sig. (2-tailed)		.002°				
a. Test distribution is Normal.						

- b. Calculated from data.
- c. Lilliefors Significance Correction.

Berdasar hasil output diperoleh nilai sign 0,002 dan nilai ini lebih kecil dibanding dengan 0,05, maka dapat disimpulkan bahwa data berdistribusi Tidak Normal.

5. UJIL LINEARITAS

Contoh suhu dengan produksi panen padi

Hasil Panen (ton) * Suhu (C)

Report

Hasil Panen (ton)

Suhu (C)	Mean	N	Std. Deviation
27	7.00	1	
28	8.00	1	
29	9.00	1	
30	10.00	1	
31	11.00	1	
32	12.00	1	
33	13.00	1	
34	14.00	1	
35	15.00	1	
36	19.00	2	4.243
37	17.00	1	
38	19.50	2	2.121
39	19.00	1	
40	20.00	1	
400	25.00	1	
420	23.00	1	
Total	15.56	18	5.437

ANOVA Table

			Sum of Squares	df	Mean Square	F	Sig.
Hasil Panen (ton) * Suhu	Between Groups	(Combined)	479.944	15	31.996	2.844	.291
(C)		Linearity	173.302	1	173.302	15.405	.059
		Deviation from Linearity	306.642	14	21.903	1.947	.391
	Within Groups		22.500	2	11.250		
	Total		502.444	17			

Bedasar pada nilai sign pada deviation of linearity sebesar 0,391 dan > 0,05, **maka dapat disimpulkan terdapat hubungan linear** antara vairabel bebas (suhu) dengan variabel terikat (produksi padi).