

唐老狮系列教程

流动的2D河流基本原理

WELCOME TO THE UNITY SPECIALTY COURSE

STUDY

主要讲解内容

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

主要讲解内容

- 1. 想要达到的目标
- 2. 波浪感的关键因素
- 3. 基本原理

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

想要达到的目标

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

想要达到的目标

我们的目标是让一个矩形网格面片,通过顶点动画,实现出河流的效果。(如下图)

所谓的河流效果,就是呈现出波浪感

而想要呈现出波浪感,我们必须了解 波长、波动频率、波动幅度 这些关键因素

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

波浪感的关键因素

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

波浪感的关键因素

波长: 指两个相邻波峰或波谷之间的距离。波长越大,波动越缓慢,波形周期越长。

波长的倒数: 1/波长, 倒数越大, 表示波动越频繁, 波形周期越短

波动频率: 指波动在单位时间内发生的次数 (相当于波浪变化的频率)

波动幅度: 指波峰或波谷相对于中线 (静止位置) 的最大偏移位置

我们需要在我们的Shader代码中,声明这三个关键因素变量,用于控制顶点的偏移

从而实现流动的2D河流效果

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

基本原理

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

基本原理

基本原理: 让我们的顶点在对应的轴向产生偏移。

主要运用的就是Shader中的内置函数 sin,以及内置时间变量 _Time.y

sin 是正弦函数,正弦函数是一个周期性函数,常用与表示波动和震荡效果,它的返回值是 -1~1 _ Time.y 是切换到当前场景后所经过的时间,参与到计算中,可以让我们的波浪周期性变化

再结合 波长的倒数、波动评率、波动幅度 等可变参数,参与到计算中,便可以实现效果

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

基本原理

关键步骤一: 让顶点上下动起来

我们可以利用sin函数让顶点在希望移动的轴向上产生偏移,并且为了能够周期性变化,可以让时间

参与到计算中: sin(_Time.y)

该函数随着时间的变化,会不停地返回 -1~1 之间的数

为了控制波动评率,我们可以声明波动评率变量参与计算: sin(_Time.y * 波动频率)

用得到的返回值,作为顶点在某一轴向的偏移值,便可以让顶点动起来

问题: 所有顶点偏移的会一样, 会呈现出整体移动的效果

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

基本原理

关键步骤二: 让顶点有差异性的动起来

为了让顶点之间偏移位置有差异,我们可以在计算 sin 时利用每个顶点的不同点制造差异性

对于顶点来说,不同点主要来自坐标,我们可以利用他们变化某个轴的坐标制造差异性

sin(_Time.y * 波动频率 + 顶点某轴坐标)

用得到的返回值,作为顶点在某一轴向的偏移值,便可以让顶点有差异性的动起来

问题: 无法体现波长和波动幅度

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

基本原理

关键步骤三: 体现波长和波动幅度

sin(Time.y * 波动频率 + 顶点某轴坐标) 已经可以帮助我们实现波动变化了

想要体现出波长和波动幅度,我们只需要将这两个变量参与计算即可

波长的体现: sin(Time.y * 波动频率 + 顶点某轴坐标 * 波长的倒数)

倒数越大, 波形周期越短

波动幅度体现: sin(_Time.y * 波动频率 + 顶点某轴坐标 * 波长的倒数) * 波动幅度

相当于将 -1~1 范围扩大了

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

基本原理

流动的2D河流基本原理,就是利用下面这个公式,对顶点位置进行偏移计算

某轴位置偏移量 = sin(_Time.y * 波动频率 + 顶点某轴坐标 * 波长的倒数) * 波动幅度

其中

具体轴向根据模型空间决定

波动频率、波长倒数、波动幅度为自定义变量,可以外部调节

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

总结

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

主要讲解内容

1. 想要达到的目标

让一个矩形网格面片,通过顶点动画,实现出河流的波浪感效果

2. 波浪感的关键因素

波长(波长的倒数)、波动频率、波动幅度

3. 基本原理

某轴位置偏移量 =

sin(_Time.y * 波动频率 + 顶点某轴坐标 * 波长的倒数) * 波动幅度

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

唐老狮系列教程

排您的您的年

WELCOME TO THE UNITY SPECIALTY COURSE

STUDY