### STRAIGHT LINES Exercise 7.1

# Contents

| 1 | Problem      | 1 |
|---|--------------|---|
| 2 | Construction | 2 |
| 3 | Solution     | 2 |

## 1 Problem

Q3. AD and BC are equal perpendiculars to a line segment. Show that CD bisects AB.



Figure 1:

#### 2 Construction

The input parameters for this construction are

| Symbol | Values                                   | Description |
|--------|------------------------------------------|-------------|
| A      | $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$  | point A     |
| В      | $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$   | point B     |
| C      | $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$   | point C     |
| D      | $\begin{pmatrix} -4 \\ -3 \end{pmatrix}$ | point D     |
| О      | $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$   | point O     |

Table 2:

#### **Solution** 3

Given:

$$AD = BC (1)$$

$$\angle CBO = \angle DAO$$
 (2)

To prove:

$$\angle ODA = \angle OCB$$
 (3)

### **Proof**

The directional vectors are:

$$m_1 = O - D \tag{4}$$

$$\mathbf{m_2} = \mathbf{D} - \mathbf{A} \tag{5}$$

The Normal vectors are:

$$\mathbf{n_1} = \mathbf{O} - \mathbf{C} \tag{6}$$

$$\mathbf{n_2} = \mathbf{C} - \mathbf{B} \tag{7}$$

(8)

$$\theta_1 = \cos^{-1}\left(\frac{\mathbf{m_1}^T \mathbf{m_2}}{\|\mathbf{m_1}\| \|\mathbf{m_2}\|}\right) \tag{9}$$

$$\theta_1 = \cos^{-1} \left( \frac{\mathbf{m_1}^T \mathbf{m_2}}{\|\mathbf{m_1}\| \|\mathbf{m_2}\|} \right)$$

$$\theta_2 = \cos^{-1} \left( \frac{\mathbf{n_1}^T \mathbf{n_2}}{\|\mathbf{n_1}\| \|\mathbf{n_2}\|} \right)$$
(9)

If  $\theta_1 = \theta_2$ 

$$\triangle OBC \cong \triangle OAD \tag{11}$$

$$OA = OB (12)$$