# DISPOSITIVOS ELECTRÓNICOS

MATERIALES SEMICONDUCTORES (REPASO)

# MATERIALES SEMICONDUCTORES

# MATERIALES SEMICONDUCTORES



### **Semiconductor**

Clase especial de elemento cuya conductividad se encuentra entre la de un buen conductor y la de un aislante.

# MATERIALES SEMICONDUCTORES MÁS UTILIZADOS: Ge, Si, GaAs



### Germanio (Ge):

- Fácil de Encontrar
- Fácil de refinar
- Gran sensibilidad a la temperatura

### Silicio (Si)

- Material muy abundante
- Menos sensible a la temperatura que el Ge
- Muchos años de desarrollo
- Su velocidad no es muy alta

### Arseniuro de Galio (GaAs)

- Mucho más rápido que el silicio
- Más difícil de refinar hasta altos niveles de pureza
- En la actualidad se utiliza mucho

# MATERIALES SEMICONDUCTORES MÁS UTILIZADOS: Ge, Si, GaAs



### Germanio (Ge):

- Fácil de Encontrar
- Fácil de refinar
- Gran sensibilidad a la temperatura

### Silicio (Si)

- Material muy abundante
- Menos sensible a la temperatura que el Ge
- Muchos años de desarrollo
- Su velocidad no es muy alta

### Arseniuro de Galio (GaAs)

- Mucho más rápido que el silicio
- Más difícil de refinar hasta altos niveles de pureza
- En la actualidad se utiliza mucho

# MATERIALES INTRÍNSECOS

### MATERIALES INTRÍNSECOS - MODELO DE BOHR



<sup>\*</sup> Imágenes obtenidas del libro Electrónica: teoría de circuitos y dispositivos electrónicos Autores: BOYLESTAD y NASHELSKY

### MATERIALES INTRÍNSECOS - MODELO DE BOHR



<sup>\*</sup> Imágenes obtenidas del libro Electrónica: teoría de circuitos y dispositivos electrónicos Autores: BOYLESTAD y NASHELSKY

# ENLACE COVALENTE (MATERIAL INTRÍNSECO)





### MATERIAL INTRÍNSECO - Nomenclatura

- Material Intrínseco: cualquier material semiconductor que haya sido refinado para reducir el número de impurezas a un nivel muy bajo.
- Electrones libres debidos a causas externas: portadores intrínsecos
- Capacidad de los electrones libres a moverse por todo el material: movilidad relativa(μ<sub>n</sub>)

| Semiconductor | Portadores intrínsecos<br>(por centímetro cúbico) |
|---------------|---------------------------------------------------|
| GaAs          | $1.7 \times 10^{6}$                               |
| Si            | $1.5 \times 10^{10}$                              |
| Ge            | $2.5 \times 10^{13}$                              |

| Semiconductor | $\mu_n  (\text{cm}^2/\text{V·s})$ |
|---------------|-----------------------------------|
| Si            | 1500                              |
| Ge            | 3900                              |
| GaAs          | 8500                              |

### NIVELES DE ENERGÍA



### NIVELES DE ENERGÍA



# MATERIALES EXTRÍNSECOS

### MATERIALES EXTRÍNSECOS MATERIALES TIPO N Y TIPO P

- Se pueden cambiar las características de un semiconductor intrínseco adicionando impurezas.
- El proceso de adición de impurezas se conoce como: DOPADO
- Un material **semiconductor** sometido a un proceso de **dopado** se conoce como material **extrínseco**.

Hay dos materiales extrínsecos de gran importancia en la fabricación de dispositivos semiconductores:



**MATERIALES TIPO N** 

**MATERIALES TIPO P** 

# MATERIAL TIPO N (negativo)

- Para incrementar el número de electrones en la banda de conducción del silicio intrínseco se agregan átomos de impureza pentavalente (cinco electrones en la banda de valencia) tales como:
  - Arsénico (As), Fósforo (P), Bismuto (Bi) o Antimonio (Sb)
- Cada átomo pentavalente forma enlaces covalentes con cuatro átomos de silicio adyacentes.
- Se utilizan cuatro de los electrones de valencia del átomo pentavalente para formar enlaces covalentes con átomos de silicio y queda un electrón extra.
- Este electrón extra llega a ser un electrón de conducción porque no interviene en el enlace.
- El átomo pentavalente cede un electrón → átomo donador.



## MATERIAL TIPO P (positivo)

- Para incrementar el número de huecos en el silicio intrínseco, se agregan átomos de impureza trivalentes tales como:
  - Boro (B), Indio (In) y Galio (Ga).
- Cada átomo trivalente forma enlaces covalentes con cuatro átomos de silicio adyacentes.
- Se utilizan los tres electrones de valencia del átomo trivalente en los enlaces covalentes, y como son necesarios 4 electrones, se forma un hueco cuando se agrega cada átomo trivalente.
- El átomo trivalente puede tomar un electrón → átomo aceptor.
- Un hueco creado mediante este proceso de dopado no está acompañado por un electrón de conducción (libre)



### MATERIAL TIPO P (positivo)

- Para incrementar el número de huecos en el silicio intrínseco, se agregan átomos de impureza trivalentes tales como:
  - Boro (B), Indio (In) y Galio (Ga).
- Cada átomo trivalente forma enlaces covalentes con cuatro átomos de silicio adyacentes.
- Se utilizan los tres electrones de valencia del átomo trivalente en los enlaces covalentes, y como son necesarios 4 electrones, se forma un hueco cuando se agrega cada átomo trivalente.
- El átomo trivalente puede tomar un electrón → átomo aceptor.
- Un hueco creado mediante este proceso de dopado no está acompañado por un electrón de conducción (libre)



### PORTADORES MAYORITARIOS Y MINORITARIOS

### Material tipo N

- Portadores mayoritarios: electrones
- Portadores minoritarios: huecos (térmicamente se generan pares electrón-hueco)

### Material tipo P

- Portadores mayoritarios: huecos
- Portadores minoritarios: electrones en la banda de conducción (generados térmicamente)



# FIN DE LA PRESENTACIÓN