Algoritmi e Strutture Dati a.a. 2009/10

Compito del 16/7/2010

Cognom	e:		Nome:		
Matricol	a:		E-mail:		
		(30 minuti	Parte I ; ogni esercizio vale 2 p	unti)	
			umero totale di nodi in e la correttezza della r		ompleto in funzione
			a in modo che se f vientotico, lo si indichi espl		(g(n)) = O(g(n)). Se due o
	n n	$\frac{2^n}{2}$ $\lg n$	$n \lg n \\ n - n^3 + 7n^5$	n^3 $n^2 + \lg n$	

3. Si enunci e si dimostri il teorema fondamentale della NP-completezza.

Algoritmi e Strutture Dati

a.a. 2009/10

Compito del 16/7/2010

Cognome:	Nome:
Matricola:	E-mail:

Parte II

(2.5 ore; ogni esercizio vale 6 punti)

- 1. Dato un vettore v di n interi non necessariamente distinti, si dice che un elemento è di **maggioranza** se appare in v almeno $\lceil n/2 \rceil$ volte. Scrivere due funzioni in C di complessità in spazio aggiuntivo costante e in tempo
 - a. $\Theta(n^2)$
 - b. $\Theta(n \log n)$

per stabilire se *v* contiene un elemento di maggioranza, e in caso affermativo lo restituisca.

- 2. Dato un albero binario, progettare un algoritmo **ricorsivo** che costruisce un array bidimensionale m tale che, per ogni coppia di nodi u e v, l'elemento m[u][v] sia il minimo antenato comune di u e v. L'algoritmo deve richiedere tempo $O(n^2)$.
 - Osservate che durante la ricorsione sul nodo corrente u, potete individuare quali coppie di nodi hanno u come minimo antenato comune.
 - [Il **minimo antenato comune** di due nodi u e v è l'antenato comune di u e v che si trova più lontano dalla radice dell'albero.]
- 3. L'arbitraggio è un'operazione finanziaria per lucrare dalla differenza di prezzi tra le varie piazze e mercati. Sia $V = \{v_1, v_2, ..., v_n\}$ un insieme di n valute e si indichi con C_{ij} il tasso di cambio tra le valute v_i e v_j (cioè, vendendo 1 unità di valuta v_i si ottengono C_{ij} unità di valuta v_j). Un arbitraggio è possibile se esiste una sequenza di azioni elementari di cambio (transazioni) che inizi con 1 unità di una certa valuta e termini con più di 1 unità della stessa valuta. Per esempio, se i tassi di cambio sono: 1.53 franchi svizzeri per 1 euro, 0.94 dollari americani per 1 franco svizzero, e 0.77 euro per 1 dollaro americano, possiamo convertire 1 euro in 1.1 euro, realizzando un guadagno del 10%. Si formuli il problema dell'arbitraggio come un problema (noto) di ricerca su grafi e si sviluppi un algoritmo efficiente per la sua risoluzione, discutendone correttezza e complessità.
- 4. Si stabilisca se le seguente affermazioni sono vere o false, fornendo una dimostrazione nel primo caso e un controesempio nel secondo:
 - a. « Sia G = (V, E, w) un grafo orientato e pesato, e sia G' = (V, E, w') il grafo pesato ottenuto da G aggiungendo una costante k ai pesi (in altri termini, G' ha gli stessi vertici e gli stessi archi di G, e w'(u,v) = k + w(u,v), per ogni arco (u,v) di E'=E). Allora, $p=<x_0,...,x_q>$ è un cammino minimo in G se e solo se P è un cammino minimo in G'. »
 - b. « Sia G = (V, E, w) un grafo connesso non orientato e pesato, e sia G' = (V, E, w') il grafo pesato ottenuto da G aggiungendo una costante k ai pesi (in altri termini, G' ha gli stessi vertici e gli stessi archi di G, e w'(u,v) = k + w(u,v), per ogni arco (u,v) di E'=E). Allora, T è un albero di copertura minimo di G se e solo se T è un albero di copertura minimo di G'. »