

Efficient graph algorithms

Bruno Rodriguez Carrillo ¹

Supervisors: Daniel Kressner ¹ & Aristeidis Mastoras ²

¹École Polytechnique Fédérale de Lausanne (EPFL) ²Computing Systems Laboratory, Huawei Zurich Research Center

Background

GraphBLAS is a framework for graph algorithms that are expressed as linear algebra operations. The key idea behind GraphBLAS is to leverage the mathematical foundations of linear algebra to provide a unified framework for graph computations. GraphBLAS classifies operations on scalars, vectors and matrices as level-1, level-2 and level-3 operations, respectively. The GraphBLAS API C establishes two execution modes for each GraphBLAS function [1]. In the *blocking* mode, invoking a function implies its execution; that is, once the function is called all computations the function is responsible for are performed and then the function returns. Conversely, in the *nonblocking* mode, calling a function does not necessarily imply its execution; a function in this mode may return without having performed its operations. The main idea of the nonblocking mode is to delay the execution of a GraphBLAS function so that it is executed whenever it is necessary for correct results in the program. On the other hand, ALP/GraphBLAS is a C++11 implementation that follows the GraphBLAS API C [4].

Sparse matrix - sparse matrix (SpM-SpM) product

In the blocking mode of ALP/GraphBLAS, the SpM-SpM product $\mathbf{C} = \mathbf{AB}$ for matrices $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathbb{R}^{n \times n}$ is performed by using the Gustavson's row-wise methods, i.e., \mathbf{C} is computed one row at a time based on (1).

$$\mathbf{C}(i,:) = \sum_{k} \mathbf{A}(i,k)\mathbf{B}(k,:), \tag{1}$$

where $\mathbf{A}(i,k)$ and $\mathbf{B}(k,:)$ represent the element of \mathbf{A} at position i,k and the kth row of \mathbf{B} , respectively.

In ALP/GraphBLAS, the operation C = AB is performed by the function mxm(C,A,B,phase). Invoking mxm(C,A,B,RESIZE) implies allocating sufficient memory for storing all nonzeros of C whereas mxm(C,A,B,EXECUTE) performs the actual computations.

Let us say that in a program we are interested in computing C = AB and E = CD for $D, E \in \mathbb{R}^{n \times n}$. These operations access C. In blocking execution, these operations must be called in the program in the order: mxm(C,A,B,RESIZE), mxm(C,A,B,EXECUTE), mxm(E,C,D,RESIZE), mxm(E,C,D,EXECUTE). This implies that data from C is loaded into cache twice, which impacts the program performance. In the current implementation of the nonblocking mode in ALP/GraphBLAS, level-3 operations are not considered.

Problem statement

Consequently, based on the ideas presented in [2], in this work, the current design and implementation of ALP/GraphBLAS are extended such that level-3 operations are supported in the the nonblocking execution mode. Particular emphasis is found on the implementation of the spM-spM multiplication.

Application to the triangle counting problem

The implementation of mxm in the nonblocking execution mode is applied to the triangle counting problem. From Theorem 1.1. in [3], given the adjacency matrix \mathbf{A} of an undirected or directed simple graph G = (V, E) with vertices V, edges E, and n vertices, the number of triangles in G can be computed using (2).

#triangles in
$$G = \frac{1}{6} \operatorname{tr} \left(\mathbf{A}^3 \right)$$
. (2)

References

- [1] Aydin Buluç et al. "Design of the GraphBLAS API for C". In: 2017 IEEE international parallel and distributed processing symposium workshops (IPDPSW). IEEE. 2017, pp. 643–652.
- [2] Aristeidis Mastoras, Sotiris Anagnostidis, and Albert-Jan N Yzelman. "Design and implementation for nonblocking execution in GraphBLAS: tradeoffs and performance". In: *ACM Transactions on Architecture and Code Optimization* 20.1 (2022), pp. 1–23.
- [3] Nazanin Movarraei and MM Shikare. "On the number of paths of lengths 3 and 4 in a graph". In: *International Journal of Applied Mathematics Research* 3.2 (2014), p. 178.
- [4] AN Yzelman et al. "A C++ GraphBLAS: specification, implementation, parallelisation, and evaluation". In: *Preprint* (2020).

Nonblocking execution of the (SpM-SpM) product

Following [2], the nonblocking execution mode in ALP/GraphBLAS is achieved by delaying the execution of ALP/GraphBLAS functions, loop fusion, loop tiling, and loop parallelization. Let use imagine that the operations $\mathbf{C} = \mathbf{AB}$, $\mathbf{D} = \mathbf{B} + \mathbf{C}$, and $s = \sum_{i,j=1}^{n} \mathbf{D}(i,j)$ are to be performed in a program. \mathbf{C} and \mathbf{D} are divided into 4 row-wise tiles, see Figure 1.

Figure 1. Matrix tiling.

Idea of nonblocking execution: tile T1 delays all its computations for ${\bf C}$ and ${\bf D}$ until it has to compute the sum of all its elements. By doing this, T1 loads into cache the data it needs from all matrices involved in the operations once; same ideas apply to the other tiles and each tile is independent from the others.

Results

Matrix in Table 1 is an adjacency matrix from an undirected graph, and density of nonzeros corresponds to $\frac{\# \text{ nnz}}{\# \text{rows}^2} * 100\%$. We compare the computing time of mxm in the nonblocking mode with the blocking's in equation (2).

Figure 2. Computing time comparison for nonblocking and blocking execution.

Conclusions and future work

The single-threaded-single-tile execution of mxm in the nonblocking mode outperforms the computing time of the blocking mode due to reusage of data on cache memory. Similarly, the multi-threaded nonblocking execution leads to further speed-ups due to parallel execution. For future research, it may be worth

- testing the performance of a program that utilizes level-2 and level-3 operations in the nonblocking execution mode
- implementing distinct algorithms to compute the SpM-SpM product