

The running time of an NTM is t: N-TT IF XX EZ

Mhalts in atmost O(t(|x|)) Steps. The maximum number of steps M uses on any branch of its computation on x is O(t(|x|)) Steps

Theorem. Every t(n) time ND Single tope TM has an equivalent 20(t(n)) time delerministic single tope TM.

Theorem. Every t(n) time multitage DTM has an equivalent $O(t^2(n))$ time Single tape DTM.

NP-completeness.

Cook-Levin Theorem. SATEP iff P=NP.

Polynomial time reduction.

A function $f: \mathcal{E}^* \to \mathcal{E}^*$ is a polynomial time computable function if some polynomial time. Thexist that given x writes f(x) on its tape.

A is polynomial time reducible to $B: A \leq pB$ if $\exists a polynomial time computable function <math>f: \Sigma^* \to \Sigma^*$ such that

bor every w,

WEA iff F(W)EB.

Theorem. If $A \leq pB$ and $B \in P$ then $A \in P$.

Proof. Let M be the polynomial time TM at L(M)=A.

Construct a polynomial time TM N as follows:

On input w:

- 1. Write F(w) on the tape.
- 2. Run Mon F(w) and accept if Maccepts.

WEA IFF F(W) EB IFF F(W) EL(M) IFF WEL(N).

N runs in polynomial time since steps 1 and 2 runs in polynomial time

NP-completeness.

Longuage A is NP-complete if it satisfies:

- 1. AENP
- 2. every Bis NP is polynomial time reducible to A.

Theorem. if A is NP-complete and A EP ILEN P=NP.

Theorem. if A is NP-complete and A \lefter B for B in NP, then B is NP-complete.

Proof. Polynomial time reductions compose.

Since A is NP-complete C=pA &CENP.

By assumption $A \leq pB$.

Thus CEPB YCENP. So Cis NP-Complete.

Theorem. SAT is NP-Gomplete.

- 1. SATENP we already sow this.
- 2. Any language in NP is polynomial time reducible to SAT.

Let N be a NTM S.t L(N) = A and Noruns in time nk.

Build a tableau for N - nk xnk table - rows are configuration

								ı			
#	8	-	a_{i}	a_2		α_n	Ц		#	/	<u> </u>
#			,		•	•			# #		
#									#		
											nk
											\bigvee

1⁵⁺ row: initial configuration.

Tis accepting if any now of T is an accepting configuration.

 $A \leq_{p} SAT$: on input $w \xrightarrow{f} \varphi$ formula. Let $C = QU\Gamma U \{ \# \}$.

Propositions in 0:

For each Cell (i,j) and each &EC Itere is a proposition $x_{i,j,s}$.

Interpretation. if $x_{i,j,s}$ is true then (ell(i,j)) contains & in T.

Total number of cells in T: $(n^k)^2$.

To construct 4 s.t 4 is satisfiable iff Here is an accepting tableau for Nonw.

Q = (PCell 1 Pstort 1 Paccept 1 9 move)