

10.2 Thermal-Structural Testing

Larry Hudson

NASA Dryden Flight Research Center **February 28, 2008**

Cleared for Public Release

Outline

- Thermal-Structural Testing of Hypersonic Vehicles
- Laboratories for Thermal-Structural Testing
- Overview of Past Test Programs
- Test Flow Diagram
- Test Development
- High-Temperature Instrumentation
- Thermal-Structural Testing Challenges
- Current Test Activity

Thermal-Structural Testing of Hypersonic Vehicles

Thermal-Structural Testing Laboratories

Flight Loads Laboratory NASA DFRC, Edwards, CA

Structures & Materials Research Laboratory NASA LaRC, Hampton, VA

- Large-scale thermal, structural and dynamic testing
 - Thermal-structural and dynamic analyses
 - High-temperature instrumentation
 - Non-destructive evaluation

4

- First reusable superalloy (Inconel X) structure designed to withstand the thermal environment of hypersonic reentry
- "Heat sink" aircraft

- Static loading at 260°F (Mach 2, 36k ft)
- Simulated fueled and unfueled conditions
- Report No. ASD-TRD-62-595 (AFRL-WP)

B-58 Heating & Loading Test (AFRL-WP, Bldg 65, '60s)

Hypersonic Educational Initiative

- Simulated Mach 3 cruise condition
- Tested the effect of elevated structural temperatures on measurements air loads
- Declassified report: NASA TM X-3061

- TPS and hot structures
- C/C hot structure control surfaces
- Control surface temperatures in excess of 2500°F

- NASP / NGLT Carbon-Carbon Elevon (2003)
 - Concept validation test of a flight-weight C/C hot structure component
 - Advanced C/C, C/SiC Torque Tube, Rene 41 fittings
 - Fabricated in 1989 for the NASP program
 - Simultaneous heating and loading to 2000°F and 100% DLL in nitrogen purged atmosphere
 - 128 quartz-lamp heaters (32 control zones)
 - Instrumentation
 - 50 thermocouples
 - 54 strain gages (14 fiber-optic strain sensors)

Sect. 10.2

- X-37 Carbon-Carbon Flaperon (2005)
 - Thermal & mechanical qualification test of a flight-weight C/C hot structure control surface
 - Tested in nitrogen purged atmosphere
 - 35 quartz lamp heaters (18 control zones)
 - Instrumentation

Sect. 10.2

- 82 thermocouples
- 14 fiber-optic strain sensors
- 12 deflection measurements

Thermal-Structural Test Flow Diagram

Test Requirement Definition

- Test article description (material, size, type, etc.)
- Type of test (proof, acceptance, qualification, validation, research)
- Type of loading (thermal, mechanical, dynamic, combined)
- Type of heating system (quartz lamp, graphite)
- Type of test atmosphere (purged, air)
- Instrumentation (type, number, location)
- Boundary conditions (thermal, mechanical)
- Test matrix definition (impact of test sequence on material/structure)
- Handling requirements
- Safety requirements
- Inspection requirements
- Reporting requirements

Negotiate customer requirements to fit within lab capabilities

Plan to meet negotiated customer requirements

- Goal: Design test setup to simulate desired load and boundary conditions
 - Heating system to meet desired temperature distribution
 - Mechanical loading system to meet desire pressure distribution

Heating System Design Process

- Use the predicted aerodynamic heating to calculate the transient temperature response of the test article
- Select locations on test article to temperature control
 - Use heat flux distribution and calculated test article temperatures to determine the required number of temperature control zones
 - Typically keep thermocouple locations away from heat sink areas on the test article
- Select the appropriate type of heating system
 - Quartz lamp and/or graphite heaters depending upon temperature and heat flux requirements
- Determine the heater layout
 - Arrange heaters into zones
 - Group heaters as required to approximate the predicted aerodynamic heating distribution
 - Extend heaters past the edges of the test article to minimize end effects
 - Stagger heaters to minimize effect of lamp end losses
 - Create heater boundary conditions
 - Separate zones with radiation barriers to minimize "cross-talk"
 - Use barriers around heaters to minimize edge effects and reduce natural / forced convection

Heating System Design Process – Heater Selection (Quartz Lamp)

- For application <2700°F
- Polished aluminum reflector
- · Water & gas cooled
- Quartz window
- Six 2000W quartz lamps
- 36KW @ 480V (double rated)

Heating System Design Process – Heater Selection (Graphite Heater)

- For applications >2700°F
- Test article temperatures beyond 3000°F
- Requires purged environment

Heating System Design Process – Heater Selection (Custom Heater)

- Custom heater designs are often required for unique heating applications
- Structures with heat sinks or complex shapes may require tailored lamp spacing, lamp lengths, and/or voltage requirements

Heating System Design Process

Heater Selection & Heating Zone Layout

Heating System Design & Fab

Hypersonic Educational Initiative

- Heating System Design Process Thermal Boundary Conditions
 - Test article radiates to
 - Space (test area)
 - Controlled temperature boundary (heat exchanger, coldplate, heaters)
 - Temperature varying boundary (heat sinks, insulated surfaces)
 - Use end / edge reflectors around heaters to minimize end effects
 - End reflectors simulate having heaters that extend past test article edge
 - Can use reflective plates, ceramic boards, etc.
 - Use barriers around heating system to minimize the effect of natural and forced convection

Heating System Design Process

- Test Conditions
 - Thermal simulation in a nitrogen purged atmosphere
- Thermal Boundary Conditions
 - Heating on windward, leading edge, inboard/outboard surfaces
 - Leeward surface radiated to constant temperature coldplate
 - Trailing edge radiates to chamber

Heating System Design Process

Sect. 10.2

Hypersonic Educational Initiative

Mechanical Loading System Design Process

- Use the predicted aerodynamic loads to calculate the pressure load distribution on the test article
- If mechanical loading is combined with heating
 - Introduce loads into test article at hard points or at locations where the loading system will not adversely affect test article heating
- If mechanical loading is not combined with heating
 - For re-entry heating simulation, aerodynamic and aerothermal loading is usually separated in time so they can be treated as separate events
 - Design loading system to closely match distributed pressure loading
 - Conformal load pads are used to apply distributed pressure loading
 - Use whiffle-tree loading system to distribute loads to the load pads

25

Load Pad Layout

Load Pad Design & Fab

Hypersonic Educational Initiative

Mechanical Loading System Design Process

- Goal: Design test setup to simulate <u>desired</u> load and boundary conditions
 - Heating system to meet desired temperature distribution
 - Mechanical loading system to meet desire pressure distribution

Provides more representative pre-test predictions

Sect. 10.2

Provides best correlation between test data and analysis

Hypersonic Educational Initiative

Thermal-Structural Test Instrumentation

Issues

- Hypersonic structures are utilizing advanced materials that operate at temperatures that exceed current abilities to measure structural performance
- Robust strain sensors that operate accurately and reliably beyond 1800°F do not exist

Implications

Hinders ability to validate analysis and modeling techniques
Hinders ability to optimize structural designs

Thermal-Structural Test Instrumentation

- Goal: Provide valid strain and temperature data to analysts
 - Supports the validation of finite element modeling techniques and thermalstructural analysis
- Key Issue: Develop attachment techniques for strain & temperature sensors on hot structure materials (C/SiC & C/C)
 - Validate attachment techniques through characterization testing

30

Typical Systems for Sensor Validation Testing

Thermal-Structural Test Instrumentation

Thermal-Structural Testing Challenges

Instrumentation

- Developing higher temperature strain, temperature, heat flux, and accelerometer sensors
- Sensor attachment techniques on hypersonic materials (C/SiC, C/C, SiC/SiC, etc.)
- Sensor validation testing

Test Technique Development

- Controlling heating via heat flux
- High-temperature modal survey of hypersonic components / vehicles
- Non-contact methods of sensing strain and temperature beyond 2500°F

Non-Destructive Evaluation

- Developing techniques to inspect hypersonic structures to support ground and flight applications
- Engineered calibration standards for hypersonic materials
- Maintaining U.S. core competencies in large-scale thermalstructural test capabilities (test systems & skilled workforce)

32

Current Thermal-Structural Test Activity

- Objective: Test a C/SiC Ruddervator Subcomponent under relevant thermal, mechanical & dynamic loading
 - Thermal-structural mission cycling for re-entry and hypersonic cruise conditions
 - High-temperature modal survey to study the effect of heating on mode shap natural frequencies and damping
- Supports NASA ARMD Hypersonics Material & Structures Prograr
- Partners: NASA Dryden / Langley / Glenn, Lockheed-Martin, Materials Research & Design, GE CCP
- Test Phases
 - Phase 1: Acoustic-Vibration Testing (LaRC) completed
 - Phase 2: Thermal-Mechanical Testing (DFRC) in assembly
 - Phase 3: Mechanical Testing (DFRC) in assembly

Sect. 10.2

C/Sic Ruddervator

Subcomponent

33

Hypersonic Educational Initiative