Esame di Calcolo delle Probabilità e Statistica [2959]

Corso di Studi di Ingegneria Gestionale (D.M.270/04) (L)

Dipartimento di Meccanica, Matematica e Management Politecnico di Bari

Cognome:	A.A.: 2020/2021
Nome:	Docente: Gianluca Orlando
Matricola:	Appello: gennaio
Corso di studi:	Data: 25/01/2022

È richiesto di risolvere al massimo 3 dei 5 esercizi in un tempo massimo di 90 minuti.

Il punteggio massimo di ogni esercizio è di 10 punti.

Si può scegliere di rispondere a uno dei due quesiti teorici facoltativi. Il punteggio massimo per i quesiti teorici è di 6 punti.

Indicare esplicitamente sulla traccia gli esercizi e il quesito teorico da valutare.

Consegna: Scansionare la traccia svolta tramite un'app di scansione e inviare un unico file pdf nominato Cognome_Nome.pdf all'indirizzo gianluca.orlando@poliba.it

Esercizio 1. Per lo studio dell'inquinamento di un corso d'acqua, si misura la concentrazione della sostanza inquinante in 5 siti con diverse distanze dalla sorgente inquinante. Nella tabella seguente si presentano le misure effettuate:

- 1. Rappresentare i dati in un diagramma a dispersione (scatterplot).
- 2. Determinare la retta di regressione lineare.
- 3. Disegnare la retta di regressione lineare.
- 4. Calcolare il coefficiente di correlazione lineare.

Esercizio 2. Un campione di ampiezza 17 viene estratto da una popolazione avente densità normale con media μ e varianza σ^2 . La realizzazione della varianza campionaria risulta uguale a 25.

1. Determinare un intervallo di confidenza al 95% per la varianza σ^2 .

Supponiamo di sapere in aggiunta che la media campionaria del campione sia uguale a 9.

2. Determinare un intervallo di confidenza al 99% per la media μ .

Esercizio 3. Sia X una variabile aleatoria continua avente la seguente funzione di densità di probabilità

$$f(x) = \begin{cases} \frac{1}{|x| + k} & \text{se } |x| < a, \\ 0 & \text{altrimenti,} \end{cases}$$

dove k > 0 e a > 0.

- 1. Determinare il valore dei parametri k e a per cui f sia una densità di probabilità tale che X soddisfi a $\mathbf{P}(X > 1) = 1/3$.
- 2. Calcolare valore atteso e varianza di X. (Si consiglia di effettuare i conti sostituendo il valore esplicito di k e a solo alla fine.)
- 3. Calcolare la probabilità che X < 1 sapendo che si è verificato l'evento X > 0.

Esercizio 4. Un'urna contiene 20 palline. Tre delle palline sono bianche, le restanti sono nere.

- 1. Si supponga di pescare casualmente 1 pallina. Qual è la probabilità di pescare una pallina bianca?
- 2. Si supponga di pescare casualmente 3 palline (senza reinserimento). Qual è la probabilità che le 3 palline pescate siano bianche?

3. Si supponga di pescare casualmente 4 palline (senza reinserimento). Qual è la probabilità di pescare 3 palline bianche?

Esercizio 5. Bob ha deciso di non studiare il programma di Probabilità ma di provare a passare l'esame comunque. Ad ogni appello ha il 10% di probabilità di passare l'esame (indipendentemente dalle prove svolte precedentemente). Prova e riprova l'esame finché non lo passa.

- 1. Qual è la probabilità che passi l'esame entro il terzo appello?
- 2. Entro quale appello può passare l'esame almeno con il 50% di probabilità?

Quesito teorico 1. Sia x_1, \ldots, x_n un campione di dati e sia S_n la deviazione standard campionaria del campione. Sia x_{n+1} un nuovo dato e si supponga che la deviazione standard campionaria del nuovo campione di ampiezza n+1 resti invariata, ovvero $S_{n+1}=S_n$. Esprimere i possibili valori della media campionaria \overline{X}_{n+1} del campione di ampiezza n+1 in funzione di S_n e x_{n+1} . Applicare la formula nel caso in cui n=5, $s_0=2$, $s_0=4$ per calcolare i possibili valori di $s_0=3$.

Quesito teorico 2. Sia X_1, \ldots, X_n un campione estratto da una v.a. X distribuita secondo una legge di Poisson con parametro λ incognito. Calcolare lo stimatore di massima verosimiglianza di λ in funzione di X_1, \ldots, X_n . È uno stimatore corretto?