Hybridization of Mathematical Programming Methods with Evolutionary Algorithms in Mechatronic Design Optimization Problems

Roides Javier Cruz Lara^a, Efrén Mezura Montes^b

^aMaestría en Computación Aplicada Laboratorio Nacional de Informática Avanzada Rébsamen 80 Col. Centro, Xalapa. Veracruz rcruz mca16@lania.edu.mx

^bDepartment Institution B
Institution B
Address
email

La presente investigación realiza un estudio sobre la hibridación de Métodos de programación matemática con Algoritmos Evolutivos. Se resuelven seis problemas de optimización de Diseño Mecatrónico. Los primeros tres problemas son casos de estudio de la "Síntesis Óptima de un Mecanismo de Cuatro Barras", los cuales consisten en minimizar el error respecto a una trayectoria deseada. De forma similar, se procede para los dos casos de la "Síntesis Óptima de un Efector Final de Tres Dedos", donde se necesita maximizar la precisión de los dedos del efector mediante la minimización del error de la trayectoria del acoplador. El último problema resolver es la "Optimización de la Generación de Energía en una micro-red eléctrica aislada". Para este problema se considera cada hora del día como un problema de optimización donde las límites para las variables de diseño varían de acuerdo a lo acontecido en la hora anterior.

Se propone un nuevo enfoque de hibridación que plantea siete lineamientos de diseño. La distribución de diferentes instancias de un buscador local en puntos aleatorios del espacio de búsqueda, la comunicación y el balance entre los métodos de búsqueda global y local son las directrices más representativas. Siguiendo este enfoque se propusieron seis variantes del Algoritmo Híbrido basado en el Método Nelder Mead con Evolución Diferencial (HNMED). El algoritmo divide la población en NS de símpleces los cuales son operados por las instancias del Método Nelder Mead modificado. La Evolución Diferencial es aplicada a un subconjunto élite de la población en cada generación. El diseño experimental se dividió en Experimentos Preliminares y Finales. En los primeros se obtuvieron las primeras cinco variantes HNMED mediante la aplicación de pruebas de estadística descriptiva e inferencial. Teniendo en cuenta los resultados obtenidos se plantea HNMED-V6 la cual alcanza el mejor desempeño. Los experimentos finales comparan las dos ultimas variantes HNMED con la ED/rand/1/bin y C-LSHADE. Los resultados obtenidos muestran que las variantes propuestas son capaces de obtener resultados iguales o mejores a los ya reportados en la literatura utilizando un número significativamente menor de evaluaciones durante el proceso de minimización.