N = 1400	Bubble	Selection	Insertion	Quick	Merge	Tree	Heap	sort
N	4.86	1.69	2.98	.58	.48	.43	.64	0.00
2N	39.16	10.99	26.85	1.16	.89	.58	1.14	0.00
4N	507.16	122.12	342.58	3.83	1.91	1.04	3.28	0.02
8N				14.71	4.51	2.36	10.62	0.03
16N				72.91	10.51	5.12	46.56	0.05

(All sorts are correct)

The data indicates that the ranking should be

- 1. Tree
- 2. Merge
- 3. Heap
- 4. Quick
- 5. Selection
- 6. Insertion
- 7. Bubble

Getting values of 8N and 16N for the n^2 searches would take too long > 30 mins so I did not collect those values. The Linux sort command far outpaced the other sorts in the competition. The n^2 searches, while slow, are easy to implement and understand and tree sort, which has the most challenging implementation was the fastest to run. Generally, the faster $n\log(n)$ sorts were much harder to implement and understand.