

SEQUENCE LISTING

<110> Bachmann, Martin F
Maurer, Patrik F

<120> Hapten-Carrier Conjugates and Uses Thereof

<130> 1700.0300001

<150> US 60/396,575
<151> 2002-07-18

<160> 33

<170> PatentIn version 3.2

<210> 1
<211> 185
<212> PRT
<213> Hepatitis B virus

<400> 1

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu
1 5 10 15

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp
20 25 30

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys
35 40 45

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu
50 55 60

Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Glu Asp Pro Ala
65 70 75 80

Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys
85 90 95

Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg
100 105 110

Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr
115 120 125

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro
130 135 140

Glu Thr Thr Val Val Arg Arg Arg Asp Arg Gly Arg Ser Pro Arg Arg
145 150 155 160

Arg Thr Pro Ser Pro Arg Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg
 165 170 175

Arg Ser Gln Ser Arg Glu Ser Gln Cys
 180 185

<210> 2
 <211> 182
 <212> PRT
 <213> Escherichia coli

<400> 2

Met Lys Ile Lys Thr Leu Ala Ile Val Val Leu Ser Ala Leu Ser Leu
 1 5 10 15

Ser Ser Thr Thr Ala Leu Ala Ala Thr Thr Val Asn Gly Gly Thr
 20 25 30

Val His Phe Lys Gly Glu Val Val Asn Ala Ala Cys Ala Val Asp Ala
 35 40 45

Gly Ser Val Asp Gln Thr Val Gln Leu Gly Gln Val Arg Thr Ala Ser
 50 55 60

Leu Ala Gln Glu Gly Ala Thr Ser Ser Ala Val Gly Phe Asn Ile Gln
 65 70 75 80

Leu Asn Asp Cys Asp Thr Asn Val Ala Ser Lys Ala Ala Val Ala Phe
 85 90 95

Leu Gly Thr Ala Ile Asp Ala Gly His Thr Asn Val Leu Ala Leu Gln
 100 105 110

Ser Ser Ala Ala Gly Ser Ala Thr Asn Val Gly Val Gln Ile Leu Asp
 115 120 125

Arg Thr Gly Ala Ala Leu Thr Leu Asp Gly Ala Thr Phe Ser Ser Glu
 130 135 140

Thr Thr Leu Asn Asn Gly Thr Asn Thr Ile Pro Phe Gln Ala Arg Tyr
 145 150 155 160

Phe Ala Thr Gly Ala Ala Thr Pro Gly Ala Ala Asn Ala Asp Ala Thr
 165 170 175

Phe Lys Val Gln Tyr Gln
180

<210> 3
<211> 132
<212> PRT
<213> Bacteriophage Qbeta

<400> 3

Ala Lys Leu Glu Thr Val Thr Leu Gly Asn Ile Gly Lys Asp Gly Lys
1 5 10 15

Gln Thr Leu Val Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly Val
20 25 30

Ala Ser Leu Ser Gln Ala Gly Ala Val Pro Ala Leu Glu Lys Arg Val
35 40 45

Thr Val Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys Val
50 55 60

Gln Val Lys Ile Gln Asn Pro Thr Ala Cys Thr Ala Asn Gly Ser Cys
65 70 75 80

Asp Pro Ser Val Thr Arg Gln Ala Tyr Ala Asp Val Thr Phe Ser Phe
85 90 95

Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Phe Val Arg Thr Glu Leu
100 105 110

Ala Ala Leu Leu Ala Ser Pro Leu Leu Ile Asp Ala Ile Asp Gln Leu
115 120 125

Asn Pro Ala Tyr
130

<210> 4
<211> 329
<212> PRT
<213> Bacteriophage Qbeta

<400> 4

Met Ala Lys Leu Glu Thr Val Thr Leu Gly Asn Ile Gly Lys Asp Gly
1 5 10 15

Lys Gln Thr Leu Val Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly
20 25 30

Val Ala Ser Leu Ser Gln Ala Gly Ala Val Pro Ala Leu Glu Lys Arg
 35 40 45

Val Thr Val Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys
 50 55 60

Val Gln Val Lys Ile Gln Asn Pro Thr Ala Cys Thr Ala Asn Gly Ser
 65 70 75 80

Cys Asp Pro Ser Val Thr Arg Gln Ala Tyr Ala Asp Val Thr Phe Ser
 85 90 95

Phe Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Phe Val Arg Thr Glu
 100 105 110

Leu Ala Ala Leu Leu Ala Ser Pro Leu Leu Ile Asp Ala Ile Asp Gln
 115 120 125

Leu Asn Pro Ala Tyr Trp Thr Leu Leu Ile Ala Gly Gly Ser Gly
 130 135 140

Ser Lys Pro Asp Pro Val Ile Pro Asp Pro Pro Ile Asp Pro Pro Pro
 145 150 155 160

Gly Thr Gly Lys Tyr Thr Cys Pro Phe Ala Ile Trp Ser Leu Glu Glu
 165 170 175

Val Tyr Glu Pro Pro Thr Lys Asn Arg Pro Trp Pro Ile Tyr Asn Ala
 180 185 190

Val Glu Leu Gln Pro Arg Glu Phe Asp Val Ala Leu Lys Asp Leu Leu
 195 200 205

Gly Asn Thr Lys Trp Arg Asp Trp Asp Ser Arg Leu Ser Tyr Thr Thr
 210 215 220

Phe Arg Gly Cys Arg Gly Asn Gly Tyr Ile Asp Leu Asp Ala Thr Tyr
 225 230 235 240

Leu Ala Thr Asp Gln Ala Met Arg Asp Gln Lys Tyr Asp Ile Arg Glu
 245 250 255

Gly Lys Lys Pro Gly Ala Phe Gly Asn Ile Glu Arg Phe Ile Tyr Leu
 260 265 270

Lys Ser Ile Asn Ala Tyr Cys Ser Leu Ser Asp Ile Ala Ala Tyr His
 275 280 285

Ala Asp Gly Val Ile Val Gly Phe Trp Arg Asp Pro Ser Ser Gly Gly
 290 295 300

Ala Ile Pro Phe Asp Phe Thr Lys Phe Asp Lys Thr Lys Cys Pro Ile
 305 310 315 320

Gln Ala Val Ile Val Val Pro Arg Ala
 325

<210> 5
 <211> 28
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> p1.44 primer

<220>
 <221> misc_feature
 <222> (1)..(2)
 <223> n can be any nucleotide, preferably a

<400> 5
 nnccatggca aataagccaa tgcaaccg

28

<210> 6
 <211> 132
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Bacteriophage Qbeta 240 mutant

<400> 6

Ala Lys Leu Glu Thr Val Thr Leu Gly Asn Ile Gly Arg Asp Gly Lys
 1 5 10 15

Gln Thr Leu Val Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly Val
 20 25 30

Ala Ser Leu Ser Gln Ala Gly Ala Val Pro Ala Leu Glu Lys Arg Val
 35 40 45

Thr Val Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys Val
 50 55 60

Gln Val Lys Ile Gln Asn Pro Thr Ala Cys Thr Ala Asn Gly Ser Cys

65

70

75

80

Asp Pro Ser Val Thr Arg Gln Lys Tyr Ala Asp Val Thr Phe Ser Phe
 85 90 95

Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Phe Val Arg Thr Glu Leu
 100 105 110

Ala Ala Leu Leu Ala Ser Pro Leu Leu Ile Asp Ala Ile Asp Gln Leu
 115 120 125

Asn Pro Ala Tyr
 130

<210> 7
<211> 132
<212> PRT
<213> Artificial Sequence

<220>
<223> Bacteriophage Q-beta 243 mutant

<400> 7

Ala Lys Leu Glu Thr Val Thr Leu Gly Lys Ile Gly Lys Asp Gly Lys
 1 5 10 15

Gln Thr Leu Val Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly Val
 20 25 30

Ala Ser Leu Ser Gln Ala Gly Ala Val Pro Ala Leu Glu Lys Arg Val
 35 40 45

Thr Val Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys Val
 50 55 60

Gln Val Lys Ile Gln Asn Pro Thr Ala Cys Thr Ala Asn Gly Ser Cys
 65 70 75 80

Asp Pro Ser Val Thr Arg Gln Lys Tyr Ala Asp Val Thr Phe Ser Phe
 85 90 95

Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Phe Val Arg Thr Glu Leu
 100 105 110

Ala Ala Leu Leu Ala Ser Pro Leu Leu Ile Asp Ala Ile Asp Gln Leu
 115 120 125

Asn Pro Ala Tyr
130

<210> 8
<211> 132
<212> PRT
<213> Artificial Sequence

<220>
<223> Bacteriophage Q-beta 250 mutant

<400> 8

Ala	Arg	Leu	Glu	Thr	Val	Thr	Leu	Gly	Asn	Ile	Gly	Arg	Asp	Gly	Lys
1									10					15	

Gln	Thr	Leu	Val	Leu	Asn	Pro	Arg	Gly	Val	Asn	Pro	Thr	Asn	Gly	Val
									25				30		

Ala	Ser	Leu	Ser	Gln	Ala	Gly	Ala	Val	Pro	Ala	Leu	Glu	Lys	Arg	Val
									35			40		45	

Thr	Val	Ser	Val	Ser	Gln	Pro	Ser	Arg	Asn	Arg	Lys	Asn	Tyr	Lys	Val
									50		55		60		

Gln	Val	Lys	Ile	Gln	Asn	Pro	Thr	Ala	Cys	Thr	Ala	Asn	Gly	Ser	Cys
									65		70		75		80

Asp	Pro	Ser	Val	Thr	Arg	Gln	Lys	Tyr	Ala	Asp	Val	Thr	Phe	Ser	Phe
									85		90		95		

Thr	Gln	Tyr	Ser	Thr	Asp	Glu	Glu	Arg	Ala	Phe	Val	Arg	Thr	Glu	Leu
									100		105		110		

Ala	Ala	Leu	Leu	Ala	Ser	Pro	Leu	Leu	Ile	Asp	Ala	Ile	Asp	Gln	Leu
									115		120		125		

Asn Pro Ala Tyr
130

<210> 9
<211> 132
<212> PRT
<213> Artificial Sequence

<220>
<223> Bacteriophage Q-beta 251 mutant

<400> 9

Ala Lys Leu Glu Thr Val Thr Leu Gly Asn Ile Gly Lys Asp Gly Arg

1

5

10

15

Gln Thr Leu Val Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly Val
 20 25 30

Ala Ser Leu Ser Gln Ala Gly Ala Val Pro Ala Leu Glu Lys Arg Val
 35 40 45

Thr Val Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys Val
 50 55 60

Gln Val Lys Ile Gln Asn Pro Thr Ala Cys Thr Ala Asn Gly Ser Cys
 65 70 75 80

Asp Pro Ser Val Thr Arg Gln Lys Tyr Ala Asp Val Thr Phe Ser Phe
 85 90 95

Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Phe Val Arg Thr Glu Leu
 100 105 110

Ala Ala Leu Leu Ala Ser Pro Leu Leu Ile Asp Ala Ile Asp Gln Leu
 115 120 125

Asn Pro Ala Tyr
 130

<210> 10
<211> 132
<212> PRT
<213> Artificial Sequence

<220>
<223> Bacteriophage Q-beta 259 mutant

<400> 10

Ala Arg Leu Glu Thr Val Thr Leu Gly Asn Ile Gly Lys Asp Gly Arg
 1 5 10 15

Gln Thr Leu Val Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly Val
 20 25 30

Ala Ser Leu Ser Gln Ala Gly Ala Val Pro Ala Leu Glu Lys Arg Val
 35 40 45

Thr Val Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys Val
 50 55 60

Gln Val Lys Ile Gln Asn Pro Thr Ala Cys Thr Ala Asn Gly Ser Cys
 65 70 75 80

Asp Pro Ser Val Thr Arg Gln Lys Tyr Ala Asp Val Thr Phe Ser Phe
 85 90 95

Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Phe Val Arg Thr Glu Leu
 100 105 110

Ala Ala Leu Leu Ala Ser Pro Leu Leu Ile Asp Ala Ile Asp Gln Leu
 115 120 125

Asn Pro Ala Tyr
 130

<210> 11
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> linker

<400> 11

Gly Gly Lys Gly Gly
 1 5

<210> 12
<211> 49
<212> PRT
<213> Artificial Sequence

<220>
<223> GCN4

<400> 12

Pro Ala Ala Leu Lys Arg Ala Arg Asn Glu Ala Ala Arg Arg Ser Arg
 1 5 10 15

Ala Arg Lys Leu Gln Arg Met Lys Gln Leu Glu Asp Lys Val Glu Glu
 20 25 30

Leu Leu Ser Lys Asn Tyr His Leu Glu Asn Glu Val Ala Arg Leu Lys
 35 40 45

Lys

<210> 13

<211> 128
<212> PRT
<213> Bacteriophage PP7

<400> 13

Met Ser Lys Thr Ile Val Leu Ser Val Gly Glu Ala Thr Arg Thr Leu
1 5 10 15

Thr Glu Ile Gln Ser Thr Ala Asp Arg Gln Ile Phe Glu Glu Lys Val
20 25 30

Gly Pro Leu Val Gly Arg Leu Arg Leu Thr Ala Ser Leu Arg Gln Asn
35 40 45

Gly Ala Lys Thr Ala Tyr Arg Val Asn Leu Lys Leu Asp Gln Ala Asp
50 55 60

Val Val Asp Cys Ser Thr Ser Val Cys Gly Glu Leu Pro Lys Val Arg
65 70 75 80

Tyr Thr Gln Val Trp Ser His Asp Val Thr Ile Val Ala Asn Ser Thr
85 90 95

Glu Ala Ser Arg Lys Ser Leu Tyr Asp Leu Thr Lys Ser Leu Val Ala
100 105 110

Thr Ser Gln Val Glu Asp Leu Val Val Asn Leu Val Pro Leu Gly Arg
115 120 125

<210> 14
<211> 131
<212> PRT
<213> Bacteriophage AP205

<400> 14

Met Ala Asn Lys Pro Met Gln Pro Ile Thr Ser Thr Ala Asn Lys Ile
1 5 10 15

Val Trp Ser Asp Pro Thr Arg Leu Ser Thr Thr Phe Ser Ala Ser Leu
20 25 30

Leu Arg Gln Arg Val Lys Val Gly Ile Ala Glu Leu Asn Asn Val Ser
35 40 45

Gly Gln Tyr Val Ser Val Tyr Lys Arg Pro Ala Pro Lys Pro Glu Gly
50 55 60

Cys Ala Asp Ala Cys Val Ile Met Pro Asn Glu Asn Gln Ser Ile Arg
 65 70 75 80

Thr Val Ile Ser Gly Ser Ala Glu Asn Leu Ala Thr Leu Lys Ala Glu
 85 90 95

Trp Glu Thr His Lys Arg Asn Val Asp Thr Leu Phe Ala Ser Gly Asn
 100 105 110

Ala Gly Leu Gly Phe Leu Asp Pro Thr Ala Ala Ile Val Ser Ser Asp
 115 120 125

Thr Thr Ala
 130

<210> 15
<211> 3635
<212> DNA
<213> Artificial Sequence

<220>

<223> Plasmid, pAP283-58, encoding RNA phage AP205 coat protein

<400> 15

cgagctcgcc cctggcttat cgaaatata acgactcaat atagggagac cggaaattcga	60
gctcgcccg ggatcctcta gaattttctg cgcacccatc ccgggtggcg cccaaagtga	120
ggaaaatcac atggcaaata agccaatgca accgatcaca tctacagcaa ataaaattgt	180
gtggtcggat ccaactcggt tatcaactac atttcagca agtctgttac gccaacgtgt	240
taaaagggtt atagccgaac tgaataatgt ttcaggtcaa tatgtatctg tttataagcg	300
tcctgcacct aaaccggaag gttgtgcaga tgcctgtgtc attatgccga atgaaaacca	360
atccattcgc acagtgattt cagggtcagc cgaaaacttg gctacctaa aagcagaatg	420
ggaaaactcac aaacgtaacg ttgacacact cttcgcgagc ggcaacgccc gtttgggttt	480
ccttgacctt actgcccccta tcgtatcgtc tgatactact gcttaagctt gtattctata	540
gtgtcaccta aatcgatgt gtatgataca taaggttatg tattaattgt agccgcgttc	600
taacgacaat atgtacaagc ctaattgtgt agcatctggc ttactgaagc agaccctatc	660
atctctctcg taaactgccc tcagagtcgg tttgggttggc cgaaccttct gagttctgg	720
taacgccgtt ccgcaccccg gaaatggtca ccgaaccaat cagcagggtc atcgctagcc	780
agatcctcta cggccggacgc atcgtggccg gcatcaccgg cgccacaggt gcggttgctg	840
gcccctatat cggccacatc accgatgggg aagatcgggc tcgcccacttc gggctcatga	900
cgcttgggtt cggcgtgggt atggtggcag gccccgtggc cgggggactg ttggggcgcca	960

tcccttgca tgcaccattc cttgcggcg cggtgctcaa cggcctcaac ctactactgg 1020
gctgcttcct aatgcaggag tcgcataagg gagagcgtcg atatggtgca ctctcagtac 1080
aatctgctct gatgccgcat agttaagcca actccgctat cgctacgtga ctgggtcatg 1140
gctgcgcccc gacacccgccc aacacccgct gacgcgcctt gacgggcttg tctgctcccg 1200
gcacccgctt acagacaaggc tgtgaccgtc tccgggagct gcatgtgtca gaggtttca 1260
ccgtcatacac cggaaacgcgc gaggcagctt gaagacgaaa gggcctcgtg atacgcctat 1320
ttttataggt taatgtcatg ataataatgg tttcttagac gtcaggtggc acttttcggg 1380
gaaatgtgcg cggaaacccctt atttggat ttttctaaat acattcaaattt atgtatccgc 1440
tcatacgacataaaccctga taaatgcttc aataatattt aaaaaggaag agtatgagta 1500
ttcaacattt ccgtgtcgcc cttattccct ttttgcggc attttgcctt cctgttttg 1560
ctcaccaga aacgctggtg aaagtaaaag atgctgaaga tcagttgggt gcacgagtgg 1620
gttacatcga actggatctc aacagcggta agatcctga gagtttcgc cccgaagaac 1680
gttttccaaat gatgagactt tttaaagttc tgctatgtgg cgccgttattt tcccgtattt 1740
acggccggca agagcaactc ggtcgcccga tacactattt tcagaatgac ttgggtttagt 1800
actcaccagt cacagaaaag catcttacgg atggcatgac agtaagagaa ttatgcagtg 1860
ctgccataac catgagtgat aacactgcgg ccaacttact tctgacaacg atcggaggac 1920
cgaaggagct aaccgctttt ttgcacaaca tgggggatca tgtaactcgc cttgatcgat 1980
gggaaccgga gctgaatgaa gccataccaa acgacgagcg tgacaccacg atgcctgttag 2040
caatggcaac aacgttgcgc aaactattaa ctggcgaact acttactcta gcttcccgcc 2100
aacaattaat agactggatg gaggcggata aagttgcagg accacttctg cgctcgcccc 2160
ttccggctgg ctggtttattt gctgataat ctggagccgg tgagcgtggg tctcgccgta 2220
tcattgcagc actggggcca gatggtaagc cctcccgat cgtagttatc tacacgacgg 2280
ggagtcaggc aactatggat gaacgaaata gacagatcgc tgagataggt gcctcactga 2340
ttaagcattt gtaactgtca gaccaagttt actcatatat acttttagattt gatttaaaac 2400
ttcattttta attttaaaagg atctaggtga agatcctttt tgataatctc atgaccaaaa 2460
tcccttaacg tgagtttgc ttccactgag cgtcagaccc cgtagaaaag atcaaaaggat 2520
cttcttgaga tcctttttt ctgcgcgtaa tctgctgctt gcaaaacaaaa aaaccaccgc 2580
taccagcggt ggtttgtttt ccggatcaag agctaccaac tcttttcccg aaggtaactg 2640
gcttcagcag agcgcagata ccaaatactg tccttcttagt gtagccgtag ttaggcccacc 2700
acttcaagaa ctctgttagca ccgcctacat acctcgctct gctaattcctg ttaccagtgg 2760
ctgctgccag tggcgataag tcgtgtctta ccgggttgaa ctcaagacga tagttaccgg 2820

ataaggcgca	gcggtcgggc	tgaacggggg	gttcgtgcac	acagcccagc	ttggagcgaa	2880
cgacctacac	cgaactgaga	tacctacagc	gcgagcattg	agaaagcgcc	acgcttccc	2940
aagggagaaa	ggcgacagg	tatccgtaa	gcggcagggt	cggaacagga	gagcgcacga	3000
gggagcttcc	agggggaaac	gcctggtatac	tttatagtcc	tgtcgggtt	cgccacctct	3060
gactttagcg	tcgattttg	tgatgctcgt	cagggggcg	gagcctatgg	aaaaacgcca	3120
gcaacgcggc	cttttacgg	ttcctggcct	tttgctggcc	tttgctcac	atgttcttcc	3180
ctgcgttatac	ccctgattct	gtggataacc	gtattaccgc	ctttgagtga	gctgataaccg	3240
ctcgccgcag	ccgaacgacc	gagcgcagcg	agtcaagttag	cgaggaagcg	gaagagcgcc	3300
caatacgcaa	accgcctctc	cccgcggtt	ggccgattca	ttaatgcagc	tgtggtgtca	3360
tggtcggtga	tcgccagggt	gccgacgcgc	atctcgactg	catggtgcac	aatgcttct	3420
ggcgtcaggc	agccatcgga	agctgtggta	tggccgtgca	ggtcgtaaat	cactgcataaa	3480
ttcgtgtcgc	tcaaggcgca	ctcccggtct	ggataatgtt	tttgcgccg	acatcataaac	3540
ggttctggca	aatattctga	aatgagctgt	tgacaattaa	tcatcgaact	agtttaactag	3600
tacgcaagtt	cacgtaaaaaa	gggtatcgcg	gaatt			3635

<210>	16					
<211>	57					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	putative AP205 ribosomal binding site of plasmid pAP283-58					
<400>	16					
tctagaattt	tctgcgcacc	catccgggt	ggcgccaaa	gtgagggaaaa	tcacatg	57

<210>	17					
<211>	35					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	Shine Delagarno sequence of vector pQb185					
<400>	17					
tctagattaa	cccaacgcgt	aggagtcagg	ccatg			35

<210>	18
<211>	131
<212>	PRT
<213>	Artificial Sequence
<220>	
<223>	Bacteriophage AP205 mutant

<400> 18

Met	Ala	Asn	Lys	Thr	Met	Gln	Pro	Ile	Thr	Ser	Thr	Ala	Asn	Lys	Ile
1					5				10					15	

Val	Trp	Ser	Asp	Pro	Thr	Arg	Leu	Ser	Thr	Thr	Phe	Ser	Ala	Ser	Leu
								25					30		

Leu	Arg	Gln	Arg	Val	Lys	Val	Gly	Ile	Ala	Glu	Leu	Asn	Asn	Val	Ser
					35		40					45			

Gly	Gln	Tyr	Val	Ser	Val	Tyr	Lys	Arg	Pro	Ala	Pro	Lys	Pro	Glu	Gly
					50		55				60				

Cys	Ala	Asp	Ala	Cys	Val	Ile	Met	Pro	Asn	Glu	Asn	Gln	Ser	Ile	Arg
65					70				75			80			

Thr	Val	Ile	Ser	Gly	Ser	Ala	Glu	Asn	Leu	Ala	Thr	Leu	Lys	Ala	Glu
					85			90				95			

Trp	Glu	Thr	His	Lys	Arg	Asn	Val	Asp	Thr	Leu	Phe	Ala	Ser	Gly	Asn
							100	105				110			

Ala	Gly	Leu	Gly	Phe	Leu	Asp	Pro	Thr	Ala	Ala	Ile	Val	Ser	Ser	Asp
					115		120				125				

Thr	Thr	Ala
	130	

<210>	19
<211>	3613
<212>	DNA
<213>	Artificial Sequence

<220>

<223> Plasmid, pAP281-32, encoding RNA phage AP205 coat protein

<400> 19

cgagctcgcc	cctggcttat	cgaaatata	acgactca	ataggagac	cggaattcga	60
gctcgcccgg	ggatcctcta	gattaaccca	acgcgttagga	gtcaggccat	ggcaaataag	120
acaatgcaac	cgatcacatc	tacagcaa	aaaattgtgt	ggtcggatcc	aactcgttta	180
tcaactacat	tttcagcaag	tctgttacgc	caacgtgttta	aagttggtat	agccgaactg	240
aataatgttt	caggtcaata	tgtatctgtt	tataagcgtc	ctgcaccaa	accggaaggt	300
tgtgcagatg	cctgtgtcat	tatgccaat	aaaaaccaat	ccattcgcac	agtgatttca	360
gggtcagccg	aaaacttggc	tacctaaaaa	gcagaatggg	aaactcacaa	acgtaacgtt	420

gacacactct tcgcgagcgg caacgccgtt ttgggtttcc ttgaccctac tgccggctatc	480
gtatcgctcg atactactgc ttaagcttgtt attctatagt gtcacctaaa tcgtatgtgt	540
atgatacata aggttatgtt ttaattgttag ccgcgttcta acgacaatat gtacaaggct	600
aattgtgttag catctggctt actgaagcag accctatcat ctctctcgta aactgccgtc	660
agagtcggtt tggttggacg aaccttctga gtttctggta acgcccgttcc gcaccccgga	720
aatggtcacc gaaccaatca gcagggtcat cgctagccag atcctctacg ccggacgcac	780
cgtggccggc atcacccggcg ccacaggtgc ggttgctggc gcctatatacg ccgacatcac	840
cgatggggaa gatcgggctc gccacttcgg gctcatgagc gcttgtttcg gcgtgggtat	900
ggtggcaggc cccgtggccg gggactgtt gggcgccatc tccttgcattt caccattcct	960
tgcggcggcg gtgctcaacg gcctcaacct actactgggc tgcttcctaa tgcaaggagtc	1020
gcataaggga gagcgtcgat atggtgcact ctcagtacaa tctgctctga tgccgcata	1080
ttaagccaac tccgctatcg ctacgtgact gggcatggc tgccgcggc cacccgc	1140
cacccgctga cgccgcctga cgggcttgcc tgctccggc atccgcctac agacaagctg	1200
tgaccgtctc cgggagctgc atgtgtcaga ggttttacc gtcatcaccg aaacgcgcga	1260
ggcagcttga agacgaaagg gcctcgat acgcctattt ttataggtta atgtcatgat	1320
aataatgggtt tcttagacgt caggtggcac ttttcggggaa aatgtgcgcg gaacccctat	1380
ttgttttattt ttctaaatac attcaaatac gtatccgctc atgagacaat aaccctgata	1440
aatgcttcaa taatattgaa aaaggaagag tatgagtatt caacattcc gtgtcgccct	1500
tattcccttt tttgcggcat tttgccttcc tggtttgtt caccagaaa cgctggtgaa	1560
agtaaaaagat gctgaagatc agttgggtgc acgagtggt tacatcgaac tggatctcaa	1620
cagcggtaag atccttgaga gtttcgccc cgaagaacgt tttccaatga tgagcacttt	1680
taaagttctg ctatgtggcg cggattatc ccgtattgac gcccggcaag agcaactcgg	1740
tcgccccata cactattctc agaatgactt gggttggatc tcaccagtca cagaaaagca	1800
tcttacggat ggcatttgcg taagagaatt atgcagtgtt gccataacca tgagtgataa	1860
cactgcggcc aacttacttc tgacaacgtt cggaggaccg aaggagctaa ccgtttttt	1920
gcacaacatg ggggatcatg taactcgct tgatcggtt gaaaccggagc tgaatgaagc	1980
cataccaaac gacgagcgtg acaccacgtt gcctgttagca atggcaacaa cgttgcgcac	2040
actattaact ggcgaactac ttactctagc ttcccgccaa caattaatag actggatgga	2100
ggcggataaa gttgcaggac cacttctgcg ctcggccctt ccggctggct gggttattgc	2160
tgataaaatct ggagccggtg agcgtgggtc tcgcggatc attgcagcac tggggccaga	2220

tggtaagccc tcccgatatcg tagttatcta cacgacgggg agtcaggcaa ctatggatga	2280
acgaaataga cagatcgctg agataggtgc ctcactgatt aagcatttgt aactgtcaga	2340
ccaagtttac tcataatatac tttagattga tttaaaactt cattttaat tttaaaaggat	2400
ctaggtgaag atccttttg ataatctcat gacaaaatc ccttaacgtg agttttcggt	2460
ccactgagcg tcagaccccg tagaaaagat caaaggatct tcttgagatc cttttttct	2520
gocgcgttaatc tgctgcttgc aaacaaaaaa accaccgcta ccagcggtgg tttgtttgcc	2580
ggatcaagag ctaccaactc ttttccgaa ggtaactggc ttcagcagag cgacagataacc	2640
aaatactgtc cttctagtgt agccgtagtt agggcaccac ttcaagaact ctgttagcacc	2700
gcctacatac ctcgctctgc taatcctgtt accagtggct gctgccagtg gcgataagtc	2760
gtgtcttacc gggttggact caagacgata gttaccggat aaggcgcagc ggtcgggctg	2820
aacgggggggt tcgtgcacac agcccagctt ggagcgaacg acctacaccg aactgagata	2880
cctacagcgc gaggattgag aaagcgccac gcttccgaa gggagaaaagg cggacaggta	2940
tccggtaagc ggcagggctg gaacaggaga gcgcacgagg gagcttccag gggaaaacgc	3000
ctggtatctt tatagtcctg tcgggtttcg ccacctctga cttgagcgtc gattttgtg	3060
atgctcgtca ggggggcgga gcctatggaa aaacgccagc aacgcggcct ttttacggtt	3120
cctggccttt tgctggcctt ttgctcacat gttcttcct gcgttatccc ctgattctgt	3180
ggataaccgt attaccgcct ttgagtgagc tgataccgct cgccgcagcc gaacgaccga	3240
gcgcagcgcag tcagtgagcg aggaagcgga agagcgccca atacgcaaac cgctctccc	3300
cgcgcgttgg ccgattcatt aatgcagctg tggtgtcatg gtcggtgatc gccagggtgc	3360
cgacgcgcatt ctcgactgca tggtgacca atgcttctgg cgtcaggcag ccatcgaaag	3420
ctgtggtatg gccgtgcagg tcgtaaatca ctgcataatt cgtgtcgctc aaggcgcact	3480
cccgttctgg ataatgttt ttgcgccgac atcataacgg ttctggaaa tattctgaaa	3540
tgagctgttg acaattaatc atcgaactag ttaactagta cgcaagttca cgaaaaagg	3600
gtatcgcgga att	3613

<210> 20
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> p1.45 primer

<220>
 <221> misc_feature
 <222> (1)..(2)

```

<223> n can be any nucleotide, preferably a
<400> 20
nntctagaat tttctgcgca cccatccgg 30

<210> 21
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> p1.46 primer

<220>
<221> misc_feature
<222> (1)..(2)
<223> n can be any nucleotide, preferably a

<400> 21
nnaagcttaa gcagtagtat cagacgatac g 31

<210> 22
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> p1.47 primer

<400> 22
gagtgatcca actcgtttat caactacatt ttcagcaagt ctg 43

<210> 23
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> p1.48 primer

<400> 23
cagacttgct gaaaatgtag ttgataaaacg agttggatca ctc 43

<210> 24
<211> 129
<212> PRT
<213> Bacteriophage R17

<400> 24

Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asn Asp Gly Gly Thr Gly
1 5 10 15

Asn Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu Trp
20 25 30

```

Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser Val
 35 40 45

Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu Val
 50 55 60

Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val Ala
 65 70 75 80

Ala Trp Arg Ser Tyr Leu Asn Met Glu Leu Thr Ile Pro Ile Phe Ala
 85 90 95

Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu Leu
 100 105 110

Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly Ile
 115 120 125

Tyr

<210> 25
<211> 130
<212> PRT
<213> Bacteriophage fr

<400> 25

Met Ala Ser Asn Phe Glu Glu Phe Val Leu Val Asp Asn Gly Gly Thr
 1 5 10 15

Gly Asp Val Lys Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu
 20 25 30

Trp Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser
 35 40 45

Val Arg Gln Ser Ser Ala Asn Asn Arg Lys Tyr Thr Val Lys Val Glu
 50 55 60

Val Pro Lys Val Ala Thr Gln Val Gln Gly Gly Val Glu Leu Pro Val
 65 70 75 80

Ala Ala Trp Arg Ser Tyr Met Asn Met Glu Leu Thr Ile Pro Val Phe
 85 90 95

Ala Thr Asn Asp Asp Cys Ala Leu Ile Val Lys Ala Leu Gln Gly Thr
 100 105 110

Phe Lys Thr Gly Asn Pro Ile Ala Thr Ala Ile Ala Asn Ser Gly
 115 120 125

Ile Tyr
 130

<210> 26
<211> 130
<212> PRT
<213> Bacteriophage GA

<400> 26

Met Ala Thr Leu Arg Ser Phe Val Leu Val Asp Asn Gly Gly Thr Gly
 1 5 10 15

Asn Val Thr Val Val Pro Val Ser Asn Ala Asn Gly Val Ala Glu Trp
 20 25 30

Leu Ser Asn Asn Ser Arg Ser Gln Ala Tyr Arg Val Thr Ala Ser Tyr
 35 40 45

Arg Ala Ser Gly Ala Asp Lys Arg Lys Tyr Ala Ile Lys Leu Glu Val
 50 55 60

Pro Lys Ile Val Thr Gln Val Val Asn Gly Val Glu Leu Pro Gly Ser
 65 70 75 80

Ala Trp Lys Ala Tyr Ala Ser Ile Asp Leu Thr Ile Pro Ile Phe Ala
 85 90 95

Ala Thr Asp Asp Val Thr Val Ile Ser Lys Ser Leu Ala Gly Leu Phe
 100 105 110

Lys Val Gly Asn Pro Ile Ala Glu Ala Ile Ser Ser Gln Ser Gly Phe
 115 120 125

Tyr Ala
 130

<210> 27
<211> 132
<212> PRT
<213> Bacteriophage SP

<400> 27

Met Ala Lys Leu Asn Gln Val Thr Leu Ser Lys Ile Gly Lys Asn Gly
 1 5 10 15

Asp Gln Thr Leu Thr Leu Thr Pro Arg Gly Val Asn Pro Thr Asn Gly
 20 25 30

Val Ala Ser Leu Ser Glu Ala Gly Ala Val Pro Ala Leu Glu Lys Arg
 35 40 45

Val Thr Val Ser Val Ala Gln Pro Ser Arg Asn Arg Lys Asn Phe Lys
 50 55 60

Val Gln Ile Lys Leu Gln Asn Pro Thr Ala Cys Thr Arg Asp Ala Cys
 65 70 75 80

Asp Pro Ser Val Thr Arg Ser Ala Phe Ala Asp Val Thr Leu Ser Phe
 85 90 95

Thr Ser Tyr Ser Thr Asp Glu Glu Arg Ala Leu Ile Arg Thr Glu Leu
 100 105 110

Ala Ala Leu Leu Ala Asp Pro Leu Ile Val Asp Ala Ile Asp Asn Leu
 115 120 125

Asn Pro Ala Tyr
 130

<210> 28
 <211> 329
 <212> PRT
 <213> Bacteriophage SP

<400> 28

Ala Lys Leu Asn Gln Val Thr Leu Ser Lys Ile Gly Lys Asn Gly Asp
 1 5 10 15

Gln Thr Leu Thr Leu Thr Pro Arg Gly Val Asn Pro Thr Asn Gly Val
 20 25 30

Ala Ser Leu Ser Glu Ala Gly Ala Val Pro Ala Leu Glu Lys Arg Val
 35 40 45

Thr Val Ser Val Ala Gln Pro Ser Arg Asn Arg Lys Asn Phe Lys Val
 50 55 60

Gln Ile Lys Leu Gln Asn Pro Thr Ala Cys Thr Arg Asp Ala Cys Asp

65

70

75

80

Pro Ser Val Thr Arg Ser Ala Phe Ala Asp Val Thr Leu Ser Phe Thr
 85 90 95

Ser Tyr Ser Thr Asp Glu Glu Arg Ala Leu Ile Arg Thr Glu Leu Ala
 100 105 110

Ala Leu Leu Ala Asp Pro Leu Ile Val Asp Ala Ile Asp Asn Leu Asn
 115 120 125

Pro Ala Tyr Trp Ala Ala Leu Leu Val Ala Ser Ser Gly Gly Asp
 130 135 140

Asn Pro Ser Asp Pro Asp Val Pro Val Val Pro Asp Val Lys Pro Pro
 145 150 155 160

Asp Gly Thr Gly Arg Tyr Lys Cys Pro Phe Ala Cys Tyr Arg Leu Gly
 165 170 175

Ser Ile Tyr Glu Val Gly Lys Glu Gly Ser Pro Asp Ile Tyr Glu Arg
 180 185 190

Gly Asp Glu Val Ser Val Thr Phe Asp Tyr Ala Leu Glu Asp Phe Leu
 195 200 205

Gly Asn Thr Asn Trp Arg Asn Trp Asp Gln Arg Leu Ser Asp Tyr Asp
 210 215 220

Ile Ala Asn Arg Arg Cys Arg Gly Asn Gly Tyr Ile Asp Leu Asp
 225 230 235 240

Ala Thr Ala Met Gln Ser Asp Asp Phe Val Leu Ser Gly Arg Tyr Gly
 245 250 255

Val Arg Lys Val Lys Phe Pro Gly Ala Phe Gly Ser Ile Lys Tyr Leu
 260 265 270

Leu Asn Ile Gln Gly Asp Ala Trp Leu Asp Leu Ser Glu Val Thr Ala
 275 280 285

Tyr Arg Ser Tyr Gly Met Val Ile Gly Phe Trp Thr Asp Ser Lys Ser
 290 295 300

Pro Gln Leu Pro Thr Asp Phe Thr Gln Phe Asn Ser Ala Asn Cys Pro
 305 310 315 320

Val Gln Thr Val Ile Ile Ile Pro Ser
325

<210> 29
<211> 130
<212> PRT
<213> Bacteriophage MS2

<400> 29

Met Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asp Asn Gly Gly Thr
1 5 10 15

Gly Asp Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu
20 25 30

Trp Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser
35 40 45

Val Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu
50 55 60

Val Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val
65 70 75 80

Ala Ala Trp Arg Ser Tyr Leu Asn Met Glu Leu Thr Ile Pro Ile Phe
85 90 95

Ala Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu
100 105 110

Leu Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly
115 120 125

Ile Tyr
130

<210> 30
<211> 133
<212> PRT
<213> Bacteriophage M11

<400> 30

Met Ala Lys Leu Gln Ala Ile Thr Leu Ser Gly Ile Gly Lys Lys Gly
1 5 10 15

Asp Val Thr Leu Asp Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly

20

25

30

Val Ala Ala Leu Ser Glu Ala Gly Ala Val Pro Ala Leu Glu Lys Arg
 35 40 45

Val Thr Ile Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys
 50 55 60

Val Gln Val Lys Ile Gln Asn Pro Thr Ser Cys Thr Ala Ser Gly Thr
 65 70 75 80

Cys Asp Pro Ser Val Thr Arg Ser Ala Tyr Ser Asp Val Thr Phe Ser
 85 90 95

Phe Thr Gln Tyr Ser Thr Val Glu Glu Arg Ala Leu Val Arg Thr Glu
 100 105 110

Leu Gln Ala Leu Leu Ala Asp Pro Met Leu Val Asn Ala Ile Asp Asn
 115 120 125

Leu Asn Pro Ala Tyr
 130

<210> 31
<211> 133
<212> PRT
<213> Bacteriophage MX1

<400> 31

Met Ala Lys Leu Gln Ala Ile Thr Leu Ser Gly Ile Gly Lys Asn Gly
 1 5 10 15

Asp Val Thr Leu Asn Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly
 20 25 30

Val Ala Ala Leu Ser Glu Ala Gly Ala Val Pro Ala Leu Glu Lys Arg
 35 40 45

Val Thr Ile Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys
 50 55 60

Val Gln Val Lys Ile Gln Asn Pro Thr Ser Cys Thr Ala Ser Gly Thr
 65 70 75 80

Cys Asp Pro Ser Val Thr Arg Ser Ala Tyr Ala Asp Val Thr Phe Ser
 85 90 95

Phe Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Leu Val Arg Thr Glu
 100 105 110

Leu Lys Ala Leu Leu Ala Asp Pro Met Leu Ile Asp Ala Ile Asp Asn
 115 120 125

Leu Asn Pro Ala Tyr
 130

<210> 32
<211> 330
<212> PRT
<213> Bacteriophage NL95

<400> 32

Met Ala Lys Leu Asn Lys Val Thr Leu Thr Gly Ile Gly Lys Ala Gly
 1 5 10 15

Asn Gln Thr Leu Thr Leu Thr Pro Arg Gly Val Asn Pro Thr Asn Gly
 20 25 30

Val Ala Ser Leu Ser Glu Ala Gly Ala Val Pro Ala Leu Glu Lys Arg
 35 40 45

Val Thr Val Ser Val Ala Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys
 50 55 60

Val Gln Ile Lys Leu Gln Asn Pro Thr Ala Cys Thr Lys Asp Ala Cys
 65 70 75 80

Asp Pro Ser Val Thr Arg Ser Gly Ser Arg Asp Val Thr Leu Ser Phe
 85 90 95

Thr Ser Tyr Ser Thr Glu Arg Glu Ala Leu Ile Arg Thr Glu Leu
 100 105 110

Ala Ala Leu Leu Lys Asp Asp Leu Ile Val Asp Ala Ile Asp Asn Leu
 115 120 125

Asn Pro Ala Tyr Trp Ala Ala Leu Leu Ala Ala Ser Pro Gly Gly Gly
 130 135 140

Asn Asn Pro Tyr Pro Gly Val Pro Asp Ser Pro Asn Val Lys Pro Pro
 145 150 155 160

Gly Gly Thr Gly Thr Tyr Arg Cys Pro Phe Ala Cys Tyr Arg Arg Gly

165

170

175

Glu Leu Ile Thr Glu Ala Lys Asp Gly Ala Cys Ala Leu Tyr Ala Cys
 180 185 190

Gly Ser Glu Ala Leu Val Glu Phe Glu Tyr Ala Leu Glu Asp Phe Leu
 195 200 205

Gly Asn Glu Phe Trp Arg Asn Trp Asp Gly Arg Leu Ser Lys Tyr Asp
 210 215 220

Ile Glu Thr His Arg Arg Cys Arg Gly Asn Gly Tyr Val Asp Leu Asp
 225 230 235 240

Ala Ser Val Met Gln Ser Asp Glu Tyr Val Leu Ser Gly Ala Tyr Asp
 245 250 255

Val Val Lys Met Gln Pro Pro Gly Thr Phe Asp Ser Pro Arg Tyr Tyr
 260 265 270

Leu His Leu Met Asp Gly Ile Tyr Val Asp Leu Ala Glu Val Thr Ala
 275 280 285

Tyr Arg Ser Tyr Gly Met Val Ile Gly Phe Trp Thr Asp Ser Lys Ser
 290 295 300

Pro Gln Leu Pro Thr Asp Phe Thr Arg Phe Asn Arg His Asn Cys Pro
 305 310 315 320

Val Gln Thr Val Ile Val Ile Pro Ser Leu
 325 330

<210> 33
 <211> 129
 <212> PRT
 <213> Bacteriophage f2

<400> 33

Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asn Asp Gly Gly Thr Gly
 1 5 10 15

Asn Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu Trp
 20 25 30

Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser Val
 35 40 45

Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu Val
50 55 60

Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val Ala
65 70 75 80

Ala Trp Arg Ser Tyr Leu Asn Leu Glu Leu Thr Ile Pro Ile Phe Ala
85 90 95

Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu Leu
100 105 110

Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly Ile
115 120 125

Tyr