Traffic Sign Recognition

Build a Traffic Sign Recognition Project

The step of this project are the followings:

- * Load the data set
- * Explore, summarize and visualize the data set
- * Design, train and test a model architecture
- * Use the model to make predictions on new images
- * Analyze the softmax probabilities of the new images
- * Summarize the results with a written report

1. Dataset Summary and Visualization

I used the pandas library to calculate summary statistics of the traffic signs data set:

- The size of the training set is 34799
- The size of the validation set is 4410
- The size of the test set is 12630
- The shape of a traffic sign image is (32,32,3)
- The number of unique labels of the dataset is 43

Here is an exploratory visualization of the data set. It is a bar chart showing how the data distributed in training set

2. Design and Test a model Architecture

I tried to use different kinds of image processing methods including gray scale ,Gaussian Blur and normalization.The best result I got for is :

- (1) convert image to gray scale
- (2) Scale data to [0,1]

I used the similar model architecture as the LeNet as the following layers. I applied some bit of parameters tuning.

Layer	Description
Input	32×32×1 Gray image
Convolution 5×5	1×1strides valid padding 28×28×12
Batch normalization	

Max pooling	2×2strides valid padding 14×14×12
Convolution 5×5	1×1strides valid padding 10×10×24
Batch normalization	
Max pooling	2×2strides valid padding 5×5×24
Flatten layer	600 number of units
Fully connected	400 number of units
Batch normalization	
Fully connected	120 number of units
Batch normalization	
Fully connected	84 number of units
Batch normalization	
softmax	43 number of classes

I employed AdamOptimizer to train the model.Because I used batch normalization layer to accelerate the training,the learning rate was chosen as 0.002.I set the batch size to 128 training with 30 epochs.My final model result were:

Training set accuracy of 100%

Validation set accuracy of 95.74%

Testing set accuracy of 93.59%

The number of parameters is much less than RGB images, so I used more complex model with larger number of filters in order to avoid

underfitting. I used batch normalization layers to accelerate training steps so that I can use larger learning rate and skip the drop layer. The experiment result shows that batch normalization is more robust than dropout layers.

3.Test model on new images

I downloaded nine German traffic sign images from the internet. Here are those images.

I resized all these images to $32 \times 32 \times 1$ gray scale as the training set before. Here is the prediction result.

Ground Truth	prediction
Speed limited(70km/h)	Speed limited(70km/h)
Road work	Road work
stop	stop
Ahead only	Ahead only
Priority road	Priority road
Turn left ahead	Turn left ahead
Speed limit(60km/h)	Speed limit(60km/h)
Yield	Yield

The model successfully predicted all 9 images correctly, giving an accuracy of 100%. This compares favorably to the accuracy on the test set of 93.59%.

As observed, the model is extremely sure to its prediction. Here are the top 5 softmax probability of the first image.

probability	labels
1.0	Speed limit (70km/h)
0.0	Speed limit (20km/h)
0.0	Speed limit (30km/h)
0.0	Speed limit (50km/h)
0.0	Speed limit (60km/h)

All other images got the same softmax probabilities. The largest output in logits is much larger than other outputs so 'winner take all' happened.