Cross-linguality and machine translation without bilingual data

Eneko Agirre @eagirre

Joint work with: Mikel Artetxe, Gorka Labaka

IXA NLP group – University of the Basque Country (UPV/EHU) http://ixa.eus

Motivation

Cross-lingual word representations:

- Word embeddings key for Natural Language Processing
- Mapped embeddings represent languages in a single space
 - Depend on seed bilingual dictionaries
- Exciting results in dictionary induction, transfer learning, crosslingual applications, interlingual semantic representations

Motivation

Cross-lingual word representations:

- Word embeddings key for Natural Language Processing
- Mapped embeddings represent languages in a single space
 - Depend on seed bilingual dictionaries
- Exciting results in dictionary induction, transfer learning, crosslingual applications, interlingual semantic representations

Our focus: extend mappings to any pair of languages

- Most language pairs have very few bilingual resources
- Key research area for wide adoption of NLP tools

Motivation

Cross-lingual word representations:

- Word embeddings key for Natural Language Processing
- Mapped embeddings represent languages in a single space
 - Depend on seed bilingual dictionaries
- Exciting results in dictionary induction, transfer learning,
 crosslingual applications, interlingual semantic representations

Our focus: extend mappings to any pair of languages

- Most language pairs have very few bilingual resources
- Key research area for wide adoption of NLP tools

In particular: no bilingual resources at all

- Unsupervised embedding mappings
- Unsupervised neural machine translation

Arabic monolingual corpora

Chinese monolingual corpora

Arabic monolingual corpora

Chinese monolingual corpora

Arabic monolingual corpora

Chinese monolingual corpora

Bilingual dictionaries

Crosslingual & multilingual applications

Machine translation

Arabic monolingual corpora

Chinese monolingual corpora

Bilingual dictionaries

Crosslingual & multilingual applications

Machine translation

Outline

- Bilingual embedding mappings
 - Introduction to vector space models (embeddings)
 - Bilingual embedding mappings (AAAI18)
 - Reduced supervision
 - Self-learning, semi-supervised (ACL17)
 - Self-learning, fully unsupervised (ACL18)
 - Conclusions
- Unsupervised neural machine translation
 - Introduction to NMT
 - From bilingual embeddings to uNMT (ICLR18)
 - Unsupervised statistical MT (EMNLP18)
 - Conclusions

Outline

- Bilingual embedding mappings
 - Introduction to vector space models (embeddings)
 - Bilingual embedding mappings (AAAI18)
 - Reduced supervision
 - Self-learning, semi-supervised (ACL17)
 - Self-learning, fully unsupervised (ACL18)
 - Conclusions
- Unsupervised neural machine translation
 - Introduction to NMT
 - From bilingual embeddings to uNMT (ICLR18)
 - Unsupervised statistical MT (EMNLP18)
 - Conclusions

Geographical space

Geographical space

- Cities

- Cities
- Meaningful distances

- Cities
- Meaningful distances

- Cities
- Meaningful distances

- Cities
- Meaningful distances
- Meaningful relations

- Cities
- Meaningful distances
- Meaningful relations

- Cities
- Meaningful distances
- Meaningful relations
- 2 dimensions

- Cities
- Meaningful distances
- Meaningful relations
- 2 dimensions
- Cartographers from 3D world

Geographical space

- Cities
- Meaningful distances
- Meaningful relations
- 2 dimensions
- Cartographers from 3D world

Geographical space

- Cities
- Meaningful distances
- Meaningful relations
- 2 dimensions
- Cartographers from 3D world

Semantic space

- Words

Geographical space

- Cities
- Meaningful distances
- Meaningful relations
- 2 dimensions
- Cartographers from 3D world

Semantic space

- Words

Geographical space

- Cities
- Meaningful distances
- Meaningful relations
- 2 dimensions
- Cartographers from 3D world

- Words
- Meaningful distances

Geographical space

- Cities
- Meaningful distances
- Meaningful relations
- 2 dimensions
- Cartographers from 3D world

- Words
- Meaningful distances

Geographical space

- Cities
- Meaningful distances
- Meaningful relations
- 2 dimensions
- Cartographers from 3D world

- Words
- Meaningful distances

Geographical space

- Cities
- Meaningful distances
- Meaningful relations
- 2 dimensions
- Cartographers from 3D world

- Words
- Meaningful distances
- Meaningful relations

Geographical space

- Cities
- Meaningful distances
- Meaningful relations
- 2 dimensions
- Cartographers from 3D world

- Words
- Meaningful distances
- Meaningful relations

Geographical space

- Cities
- Meaningful distances
- Meaningful relations
- 2 dimensions
- Cartographers from 3D world

- Words
- Meaningful distances
- Meaningful relations

Geographical space

- Cities
- Meaningful distances
- Meaningful relations
- 2 dimensions
- Cartographers from 3D world

- Words
- Meaningful distances
- Meaningful relations

Geographical space

- Cities
- Meaningful distances
- Meaningful relations
- 2 dimensions
- Cartographers from 3D world

- Words
- Meaningful distances
- Meaningful relations
- 300 dimensions

Geographical space

- Cities
- Meaningful distances
- Meaningful relations
- 2 dimensions
- Cartographers from 3D world

- Words
- Meaningful distances
- Meaningful relations
- 300 dimensions
- Neural networks / linear algebra from co-occurrence counts

Introduction to embedding mappings

Introduction to embedding mappings

Introduction to embedding mappings

• *Z* Bayona • Bilbao S. Sebastián Vitoria

Bilbo

Baiona

Iruñea

Bilbao

Bayona

Pamplona

State-of-the-art in supervised mappings Artetxe et al. AAAI 2018

- Use 5000 sized seed bilingual dictionary
- Framework subsuming previous work that learns two mappings $W_X \, W_Z$ as sequences of (optional) linear mappings:
 - (opt.) Pre-process
 - 1. (opt.) Whitening
 - 2. Orthogonal mapping
 - 3. (opt.) Re-weighting
 - 4. (opt.) De-whitening
- The optional steps, properly combined, bring up to 5 points improvement

Two sequences of (optional) linear transformations:

$$W_X = \prod_i W_{X(i)}$$
 $W_Z = \prod_i W_{Z(i)}$

Two sequences of (optional) linear transformations:

$$W_X = \prod_i W_{X(i)}$$
 $W_Z = \prod_i W_{Z(i)}$

S1 (opt.) Whitening : turn covariance
$$W_{X(1)} = (X^T X)^{-0.5}$$
 matrices into the identity matrix $W_{Z(1)} = (Z^T Z)^{-0.5}$

Two sequences of (optional) linear transformations:

$$W_X = \prod_i W_{X(i)}$$
 $W_Z = \prod_i W_{Z(i)}$

$$W_{X(1)} = (X^T X)^{-0.5}$$

 $W_{Z(1)} = (Z^T Z)^{-0.5}$

$$W_{X(2)} = U$$

 $W_{Z(2)} = V$ $USV^T = X_{(1)}^T Z_{(1)}$

Two sequences of (optional) linear transformations:

$$W_X = \prod_i W_{X(i)}$$
 $W_Z = \prod_i W_{Z(i)}$

S3 (opt.) Re-weight each component
$$W_{X(3)} = S$$
, $W_{Z(3)} = I$ according to its cross-correlation $W_{X(3)} = I$, $W_{Z(3)} = S$

$$W_{X(1)} = (X^T X)^{-0.5}$$

 $W_{Z(1)} = (Z^T Z)^{-0.5}$

$$W_{X(2)} = U$$

 $W_{Z(2)} = V$ $USV^T = X_{(1)}^T Z_{(1)}$

$$W_{X(3)} = S, \ W_{Z(3)} = I$$

 $W_{X(3)} = I, \ W_{Z(3)} = S$

Two sequences of (optional) linear transformations:

$$W_X = \prod_i W_{X(i)}$$
 $W_Z = \prod_i W_{Z(i)}$

- SO (opt.) Pre-processing: length normalization, mean centering
- S1 (opt.) Whitening: turn covariance matrices into the identity matrix
- S2 Orthogonal mapping: map into a shared space (Procrustes)
- S3 (opt.) Re-weight each component according to its cross-correlation
- S4 (opt.) De-whitening: restore original variance in every direction

$$W_{X(1)} = (X^T X)^{-0.5}$$

 $W_{-1} = (Z^T Z)^{-0.5}$

$$W_{Z(1)} = (Z^T Z)^{-0.5}$$

$$W_{X(2)} = U$$

 $W_{Z(2)} = V$ $USV^T = X_{(1)}^T Z_{(1)}$

$$W_{X(3)} = S$$
, $W_{Z(3)} = I$

$$W_{X(3)} = I, \ W_{Z(3)} = S$$

$$W_{A(4)} = W_{B(2)}^T W_{B(1)}^{-1} W_{B(2)}^{-1}$$

Two sequences of (optional) linear transformations:

$$W_X = \prod_i W_{X(i)}$$
 $W_Z = \prod_i W_{Z(i)}$

SO (opt.) Pre-processing: length normalization, mean centering

matrices into the identity matrix
$$W_{Z(1)} = (Z^T Z)^{-0.5}$$

$$W_{Z(2)} = U$$

 $W_{Z(2)} = V$ $USV^T = X_{(1)}^T Z_{(1)}$

$$W_{X(3)} = S, \ W_{Z(3)} = I$$

 $W_{X(3)} = I, \ W_{Z(3)} = S$

 $W_{X(1)} = (X^T X)^{-0.5}$

$$W_{A(4)} = W_{B(2)}^T W_{B(1)}^{-1} W_{B(2)}^{-1}$$

S5 (opt) Dimensionality reduction: keep the first *n* components only

$$W_{X(5)} = W_{Z(5)} = (I_n \ 0)^T$$

		SO (I)	S0 (m)	S1	S2	S3	S4 (src)	S4 (trg)	S5
OLS	Mikolov et al. (2013)			Χ	Х	src	trg	trg	
	Shigeto et al. (2015)			Χ	Х	trg	src	src	
CCA	Faruqui and Dyer (2014)	X	Х	Х	Х				Х
Orth.	Xing et al. (2015)	Х			Х				
	Artetxe et al. (2016)	Χ	Х		Χ				
	Zhang et al. (2016)				Χ				
	Smith et al. (2017)	Χ			Х				Х

		SO (I)	S0 (m)	S1	S2	S3	S4 (src)	S4 (trg)	S5
OLS	Mikolov et al. (2013)			Х	Х	src	trg	trg	
	Shigeto et al. (2015)			Χ	Х	trg	src	src	
CCA	Faruqui and Dyer (2014)	Х	Х	Χ	Х				Х
Orth.	Xing et al. (2015)	Χ			Х				
	Artetxe et al. (2016)	Χ	Х		Χ				
	Zhang et al. (2016)				Χ				
	Smith et al. (2017)	X			Χ				X
	Our method (AAAI18)	Χ	Х	Χ	Χ	trg	src	trg	Х

Dataset by Dinu et al. (2015) extended to German, Finnish, Spanish ⇒ Monolingual embeddings (CBOW + negative sampling)

- ⇒ Monolingual embeddings (CBOW + negative sampling)
- ⇒ Seed dictionary: 5,000 word pairs

- ⇒ Monolingual embeddings (CBOW + negative sampling)
- ⇒ Seed dictionary: 5,000 pairs
- ⇒ Test dictionary: 1,500 pairs (Nearest neighbor, P@1)

- ⇒ Monolingual embeddings (CBOW + negative sampling)
- ⇒ Seed dictionary: 5,000 pairs
- ⇒ Test dictionary: 1,500 pairs (Nearest neighbor, P@1)

Method	EN-IT	EN-DE	EN-FI	EN-ES
Mictiloa				LIVES

Dataset by Dinu et al. (2015) extended to German, Finnish, Spanish

- ⇒ Monolingual embeddings (CBOW + negative sampling)
- ⇒ Seed dictionary: 5,000 pairs
- ⇒ Test dictionary: 1,500 pairs (Nearest neighbor, P@1)

Method	EN-IT	EN-DE	EN-FI	EN-ES
Mikolov et al. (2013)	34.93 [†]	35.00 [†]	25.91 [†]	27.73 [†]
Faruqui and Dyer (2014)	38.40*	37.13 [*]	27.60*	26.80 [*]
Shigeto et al. (2015)	41.53 [†]	43.07 [†]	31.04 [†]	33.73 [†]
Dinu et al. (2015)	37.7	38.93 [*]	29.14 [*]	30.40*
Lazaridou et al. (2015)	40.2	-	-	-
Xing et al. (2015)	36.87 [†]	41.27 [†]	28.23 [†]	31.20 [†]
Artetxe et al. (2016)	39.27	41.87*	30.62*	31.40*
Zhang et al. (2016)	36.73 [†]	40.80 [†]	28.16 [†]	31.07 [†]
Smith et al. (2017)	43.1	43.33 [†]	29.42 [†]	35.13 [†]

† our publicly available reimplementation

- ⇒ Monolingual embeddings (CBOW + negative sampling)
- ⇒ Seed dictionary: 5,000 pairs
- ⇒ Test dictionary: 1,500 pairs (Nearest neighbor, P@1)

Method	EN-IT	EN-DE	EN-FI	EN-ES	
Mikolov et al. (2013)	34.93 [†]	35.00 [†]	25.91 [†]	27.73 [†]	
Faruqui and Dyer (2014)	38.40*	37.13 [*]	27.60*	26.80 [*]	
Shigeto et al. (2015)	41.53 [†]	43.07 [†]	31.04 [†]	33.73 [†]	
Dinu et al. (2015)	37.7	38.93 [*]	29.14 [*]	30.40*	
Lazaridou et al. (2015)	40.2	-	-	-	
Xing et al. (2015)	36.87 [†]	41.27 [†]	28.23 [†]	31.20 [†]	
Artetxe et al. (2016)	39.27	41.87*	30.62*	31.40*	
Zhang et al. (2016)	36.73 [†]	40.80 [†]	28.16 [†]	31.07 [†]	
Smith et al. (2017)	43.1	43.33 [†]	29.42 [†]	35.13 [†]	
Our method (AAAI18)	45.27	44.13	32.94	36.60	

Why does it work?

Why does it work?

Languages are (to a large extent) isometric in word embedding space (!)

Outline

- Bilingual embedding mappings
 - Introduction to vector space models (embeddings)
 - Bilingual embedding mappings (AAAI18)
 - Reduced supervision
 - Self-learning, semi-supervised (ACL17)
 - Self-learning, fully unsupervised (ACL18)
 - Conclusions
- Unsupervised neural machine translation
 - Introduction to NMT
 - From bilingual embeddings to uNMT (ICLR18)
 - Unsupervised statistical MT (EMNLP18)
 - Conclusions

bilingual signal for training

Previous work

- parallel corpora
- comparable corpora
- (big) dictionaries

bilingual signal for training

- parall corr ra - rompa abl corpora - r - (Fg) dictionaries - r

Our work

- 25 word dictionary
- numerals (1, 2, 3...)
- nothing

Monolingual embeddings

Monolingual embeddings

Dictionary

proposed self-learning method

Too good to be true?

- Given monolingual embeddings plus seed bilingual dictionary (train dictionary):
 - 25 word pairs
 - Pairs of numerals

- Given monolingual embeddings plus seed bilingual dictionary (train dictionary):
 - 25 word pairs
 - Pairs of numerals
- Induce bilingual dictionary using self-learning for full vocabulary

- Given monolingual embeddings plus seed bilingual dictionary (train dictionary):
 - 25 word pairs
 - Pairs of numerals
- Induce bilingual dictionary using self-learning for full vocabulary
- Evaluation
 - Compare translations to existing bilingual dictionary (test dictionary)
 - Accuracy

Semi-supervised experiments (ACL17)

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

$$\underline{\text{Implicit objective}}: \quad W^* = \underset{W}{\text{arg max}} \sum_{i} \max_{j} (X_{i*}W) \cdot Z_{j*} \qquad \text{s.t.} \quad WW^T = W^TW = I$$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

$$\underline{\text{Implicit objective}}: \quad W^* = \underset{W}{\text{arg max}} \sum_{i} \max_{j} (X_{i*}W) \cdot Z_{j*} \qquad \text{s.t.} \quad WW^T = W^TW = I$$

Independent from seed dictionary!

$$\underline{\text{Implicit objective}}: \quad W^* = \underset{W}{\text{arg max}} \sum_{j} \max_{j} (X_{i*}W) \cdot Z_{j*} \qquad \text{s.t.} \quad WW^T = W^TW = I$$

Implicit objective:
$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \underset{j}{\operatorname{max}} (X_{i*}W) \cdot Z_{j*}$$
 s.t. $WW^T = W^TW = I$

Independent from seed dictionary!

So why do we need a seed dictionary?

Avoid poor local optima!

$$\underline{\text{Implicit objective}}: \quad W^* = \underset{W}{\text{arg max}} \sum_{j} \max_{j} (X_{i*}W) \cdot Z_{j*} \qquad \text{s.t.} \quad WW^T = W^TW = I$$

Next steps

Is there a way we can avoid the seed dictionary?

Would an initial noisy initialization suffice?

- 1. Compute intra-language similarity
- 2. Words which are translations of each other would have analoguous similarity histograms (isometry hyp.)

- 1. Compute intra-language similarity
- Words which are translations of each other would have analoguous similarity histograms (isometry hyp.)

- 1. Compute intra-language similarity
- Words which are translations of each other would have analoguous similarity histograms (isometry hyp.)

- 1. Compute intra-language similarity
- Words which are translations of each other would have analoguous similarity histograms (isometry hyp.)

Initial dictionary:

- 1. Compute intra-language similarity
- 2. Words which are translations of each other would have analoguous similarity histograms (isometry hyp.)

It works, but very weak: Accuracy 0.52%

Initial dictionary:

- 1. Compute intra-language similarity
- Words which are translations of each other would have analoguous similarity histograms (isometry hyp.)

It works, but very weak: Accuracy 0.52%

For self-learning to work we had to add:

- 1. Stochastic dictionary induction
- 2. Frequency-based vocabulary cut-off
- 3. Hubness problem: Instead of inducing dictionary with nearest-neighbour use CSLS (Lample et al. 2018)

$$2cos(x,y) - mnn_T(x) - mnn_S(y)$$

$$mnn_T(x) = \frac{1}{K} \sum_{i=1}^{K} cos(x, nn_i)$$

• Dataset by Dinu et al. (2015) extended German, Finnish, Spanish

Supervision	Method	EN-IT	EN-DE	EN-FI	EN-ES

Dataset by Dinu et al. (2015) extended German, Finnish, Spanish
 ⇒ Monolingual embeddings (CBOW + negative sampling)

Supervision	Method	EN-IT	EN-DE	EN-FI	EN-ES

None

- Dataset by Dinu et al. (2015) extended German, Finnish, Spanish
 - ⇒ Monolingual embeddings (CBOW + negative sampling)
 - ⇒ Seed dictionary: 5,000 word pairs / 25 word pairs / none

EN-IT	EIN-DE	EN-FI	EN-ES

- Dataset by Dinu et al. (2015) extended German, Finnish, Spanish
 - ⇒ Monolingual embeddings (CBOW + negative sampling)
 - ⇒ Seed dictionary: 5,000 word pairs / 25 word pairs / none
 - ⇒ Test dictionary: 1,500 word pairs

None

Supervision	Method	EN-IT	EN-DE	EN-FI	EN-ES
5k dict.					
SK UICL.					
25 dict.					

- Dataset by Dinu et al. (2015) extended German, Finnish, Spanish
 - ⇒ Monolingual embeddings (CBOW + negative sampling)
 - ⇒ Seed dictionary: 5,000 word pairs / 25 word pairs / none
 - ⇒ Test dictionary: 1,500 word pairs

Supervision	Method	EN-IT	EN-DE	EN-FI	EN-ES
	Mikolov et al. (2013)	34.93 [†]	35.00 [†]	25.91 [†]	27.73 [†]
5k dict.	Artetxe et al. (2016)	39.27	41.87*	30.62*	31.40*
	Smith et al. (2017)	43.1	43.33 [†]	29.42 [†]	35.13 [†]
	Our method (AAAI18)	45.27	44.13	32.94	36.60
25 dict.					

None

- Dataset by Dinu et al. (2015) extended German, Finnish, Spanish
 - ⇒ Monolingual embeddings (CBOW + negative sampling)
 - ⇒ Seed dictionary: 5,000 word pairs / 25 word pairs / none
 - ⇒ Test dictionary: 1,500 word pairs

Supervision	Method	EN-IT	EN-DE	EN-FI	EN-ES
	Mikolov et al. (2013)	34.93 [†]	35.00 [†]	25.91 [†]	27.73 [†]
5k dict.	Artetxe et al. (2016)	39.27	41.87*	30.62*	31.40*
25 dict.	Our method (ACL17)				

None

- Dataset by Dinu et al. (2015) extended German, Finnish, Spanish
 - ⇒ Monolingual embeddings (CBOW + negative sampling)
 - ⇒ Seed dictionary: 5,000 word pairs / 25 word pairs / none
 - ⇒ Test dictionary: 1,500 word pairs

Supervision	Method	EN-IT	EN-DE	EN-FI	EN-ES
	Mikolov et al. (2013)	34.93 [†]	35.00 [†]	25.91 [†]	27.73 [†]
5k dict.	Artetxe et al. (2016)	39.27	41.87*	30.62*	31.40*
25 dict.	Our method (ACL17)	37.27	39.60	28.16	-

None

- Dataset by Dinu et al. (2015) extended German, Finnish, Spanish
 - ⇒ Monolingual embeddings (CBOW + negative sampling)
 - ⇒ Seed dictionary: 5,000 word pairs / 25 word pairs / none
 - ⇒ Test dictionary: 1,500 word pairs

Supervision	Method	EN-IT	EN-DE	EN-FI	EN-ES
5k dict.					
on aroti					
25 dict.					
	Zhang et al. (2017)				
None	Conneau et al. (2018)				

- Dataset by Dinu et al. (2015) extended German, Finnish, Spanish
 - ⇒ Monolingual embeddings (CBOW + negative sampling)
 - ⇒ Seed dictionary: 5,000 word pairs / 25 word pairs / none
 - \Rightarrow Test dictionary: 1,500 word pairs

Previous work convergence problems! Also observed by Sogard et al. (2018)

Supervision	Method	EN-	EN-FI	EN-ES
•				

5k dict.

25 dict.					
	Zhang et al. (2017)	0.00	0.00	0.01	0.01
None	Conneau et al. (2018)	13.55	42.15	0.38	21.23

- Dataset by Dinu et al. (2015) extended German, Finnish, Spanish
 - ⇒ Monolingual embeddings (CBOW + negative sampling)
 - ⇒ Seed dictionary: 5,000 word pairs / 25 word pairs / none
 - ⇒ Test dictionary: 1,500 word pairs

	Supervision	Method	EN-IT	EN-DE	EN-FI	EN-ES
--	-------------	--------	-------	-------	-------	-------

5k dict.

25 dict.					
	Zhang et al. (2017)	0.00	0.00	0.01	0.01
None	Conneau et al. (2018)	13.55	42.15	0.38	21.23
	Our method (ACL18)	48.13	48.19	32.63	37.33

- Dataset by Dinu et al. (2015) extended German, Finnish, Spanish
 - ⇒ Monolingual embeddings (CBOW + negative sampling)
 - ⇒ Seed dictionary: 5,000 word pairs / 25 word pairs / none
 - ⇒ Test dictionary: 1,500 word pairs

Supervision	Method	EN-IT	EN-DE	EN-FI	EN-ES
5k dict.	Mikolov et al. (2013)	34.93 [†]	35.00 [†]	25.91 [†]	27.73 [†]
	Artetxe et al. (2016)	39.27	41.87*	30.62*	31.40*
	Smith et al. (2017)	43.1	43.33 [†]	29.42 [†]	35.13 [†]
	Our method (AAAI18)	45.27	44.13	32.94	36.60
25 dict.	Our method (ACL17)	37.27	39.60	28.16	_
None	Zhang et al. (2017)	0.00	0.00	0.01	0.01
	Conneau et al. (2018)	13.55	42.15	0.38	21.23
	Our method (ACL18)	48.13	48.19	32.63	37.33

- Simple self-learning method to train bilingual embedding mappings
- Unsupervised matches results of supervised methods!
- Implicit optimization objective independent from seed dictionary

- Simple self-learning method to train bilingual embedding mappings
- Unsupervised matches results of supervised methods!
- Implicit optimization objective independent from seed dictionary
- High quality dictionaries:
 Manual analysis shows that real accuracy > 60%
 High frequency words up to 80%

- Simple self-learning method to train bilingual embedding mappings
- Unsupervised matches results of supervised methods!
- Implicit optimization objective independent from seed dictionary
- High quality dictionaries:
 Manual analysis shows that real accuracy > 60%
 High frequency words up to 80%
- Full reproducibility (including datasets):
 https://github.com/artetxem/vecmap

- Simple self-learning method to train bilingual embedding mappings
- Unsupervised matches results of supervised methods!
- Implicit optimization objective independent from seed dictionary
- High quality dictionaries:
 Manual analysis shows that real accuracy > 60%
 High frequency words up to 80%
- Full reproducibility (including datasets):
 https://github.com/artetxem/vecmap
- Shows that languages share "semantic" structure to a large degree

References: cross-lingual mappings

- Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018. **Generalizing** and Improving Bilingual Word Embedding Mappings with a Multi-Step Framework of Linear Transformations. In *AAAI-2018*.
- Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017. Learning bilingual word embeddings with (almost) no bilingual data. In ACL-2017.
- Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018. A robust selflearning method for fully unsupervised cross-lingual mappings of word embeddings. In ACL-2018.

Outline

- Bilingual embedding mappings
 - Introduction to vector space models (embeddings)
 - Bilingual embedding mappings (AAAI18)
 - Reduced supervision
 - Self-learning, semi-supervised (ACL17)
 - Self-learning, fully unsupervised (ACL18)
 - Conclusions
- Unsupervised neural machine translation
 - Introduction to NMT
 - From bilingual embeddings to uNMT (ICLR18)
 - Unsupervised statistical MT (EMNLP18)
 - Conclusions

• Given pairs of sentences with known translation $(x_1...x_n, y_1...y_m)$

This is my dearest dog </s>

Este es mi perro preferido </s>

- Given pairs of sentences with known translation $(x_1...x_n, y_1...y_m)$ This is my dearest dog </s> Este es mi perro preferido </s>
- Train an encoder based on Recurrent Neural Nets return all hidden states, encoding input x₁...x_n

- Given pairs of sentences with known translation $(x_1...x_n, y_1...y_m)$
 - This is my dearest dog </s>
 - Este es mi perro preferido </s>
- Train an **encoder** based on Recurrent Neural Nets return all hidden states, encoding input $x_1...x_n$
- Train a decoder based on Recurrent Neural Nets
 - based on hidden states and last word in translation y_{i-1}
 - plus an attention mechanism
 - classifier guesses next word y_i

• Given pairs of sentences with known translation $(x_1...x_n, y_1...y_m)$

This is my dearest dog </s>
Este es mi perro preferido </s>

- Train an **encoder** based on Recurrent Neural Nets return all hidden states, encoding input $x_1...x_n$
- Train a decoder based on Recurrent Neural Nets
 - based on hidden states and last word in translation y_{i-1}
 - plus an attention mechanism
 - classifier guesses next word y_i

End-to-end training

Source: Wu et al. 2016 (~ 30 authors – Also known as Google NMT)

• Now that we can represent words in two languages in the same embeddings space without bilingual dictionaries...

... what can we do?

• Now that we can represent words in two languages in the same embeddings space without bilingual dictionaries...

... what can we do?

- We change the architecture of the NMT system:
 - Handle both directions together (L1 -> L2, L2 -> L1)
 - Shared encoder for the two languages (E)
 - Two decoders for each language (D1, D2)
 - Fixed embeddings

- We change the architecture of the NMT system:
 - Handle both directions together (L1 -> L2, L2 -> L1)
 - Shared encoder for the two languages (E)
 - Two decoders for each language (D1, D2)
 - Fixed embeddings
- We change the training regime, mixing mini-batches:
 - Denoising autoencoder: noisy input in L1, output in the same language (E+D1)
 - Denoising autoencoder: noisy input in L2, output in the same language (E+D2)
 - Backtranslation: input in L1, translate E+D2, translate E+D1, output in L1
 - Backtranslation: input in L2, translate E+D1, translate E+D2, output in L2

Training

Training

Training

Supervised

Shared encoder (FR/EN)

de Los Angeles.

Training

Supervised

Une fusillade a eu lieu à l'aéroport international de Los Angeles.

There was a shooting in Los Angeles International Airport.

Training

Supervised

Training

Supervised

Training

Supervised

Training

- Supervised
- Autoencoder

Une fusillade a eu lieu à l'aéroport international de Los Angeles.

Une fusillade a eu lieu à l'aéroport international de Los Angeles.

Training

- Supervised
- Autoencoder

Training

Supervised

Une <mark>lieu</mark> fusillade <mark>a eu</mark> à

international Angeles.

l'aéroport de Los

Denoising Autoencoder

Une fusillade a eu lieu à l'aéroport international de Los Angeles.

- Supervised
- Denoising Autoencoder

Training

- Supervised
- Denoising Autoencoder

There a shooting was in Airport Los Angeles International.

There was a shooting in Los Angeles International Airport.

- Supervised
- Denoising Autoencoder

Training

- Supervised
- Denoising
- Backtranslation

Une fusillade a eu lieu à l'aéroport international de Los Angeles.

- Supervised
- Denoising
- Backtranslation

- Supervised
- Denoising
- Backtranslation

- Supervised
- Denoising
- Backtranslation

- Supervised
- Denoising
- Backtranslation

- We change the architecture of the NMT system:
 - Handle both directions together (L1 -> L2, L2 -> L1)
 - Shared encoder for the two languages (E)
 - Two decoders for each language (D1, D2)
 - Fixed embeddings
- We change the training regime, mixing mini-batches:
 - Denoising autoencoder: noisy input in L1, output in the same language (E+D1)
 - Denoising autoencoder: noisy input in L2, output in the same language (E+D2)
 - Backtranslation: input in L1, translate E+D2, translate E+D1, output in L1
 - Backtranslation: input in L2, translate E+D1, translate E+D2, output in L2

Test on WMT released data (test and monolingual corpora)

FR-EN EN-FR DE-EN EN-DE

Unsupervised NMT

Test on WMT released data (test and monolingual corpora)

		FR-EN	EN-FR	DE-EN	EN-DE
Unsupervised NMT	Baseline (emb. nearest neighbor)	9.98	6.25	7.07	4.39

Test on WMT released data (test and monolingual corpora)

		FR-EN	EN-FR	DE-EN	EN-DE
Unsupervised NMT	Baseline (emb. nearest neighbor)	9.98	6.25	7.07	4.39
	Proposed (denoising)	7.28	5.33	3.64	2.40

Test on WMT released data (test and monolingual corpora)

		FR-EN	EN-FR	DE-EN	EN-DE
Unsupervised NMT	Baseline (emb. nearest neighbor)	9.98	6.25	7.07	4.39
	Proposed (denoising)	7.28	5.33	3.64	2.40
	Proposed (+backtranslation)	15.56	15.13	10.21	6.55

It works!

Test on WMT released data (test and monolingual corpora)

		FR-EN	EN-FR	DE-EN	EN-DE
Unsupervised NMT	Baseline (emb. nearest neighbor)	9.98	6.25	7.07	4.39
	Proposed (denoising)	7.28	5.33	3.64	2.40
	Proposed (+backtranslation)	15.56	15.13	10.21	6.55
Semi-supervised	Proposed (full) + 10k parallel	18.57	17.34	11.47	7.86
NMT	Proposed (full) + 100k parallel	21.81	21.74	15.24	10.95

It can be easily combined with training data (interesting for low resource MT)

Test on WMT released data (test and monolingual corpora)

		FR-EN	EN-FR	DE-EN	EN-DE
Unsupervised NMT	Baseline (emb. nearest neighbor)	9.98	6.25	7.07	4.39
	Proposed (denoising)	7.28	5.33	3.64	2.40
	Proposed (+backtranslation)	15.56	15.13	10.21	6.55
	Lample et al. 2018	14.31	15.06	-	-
	(Same conference!)				

State-of-the-art (not anymore...)

Test on WMT released data (test and monolingual corpora)

		FR-EN	EN-FR	DE-EN	EN-DE
Unsupervised NMT	Baseline (emb. nearest neighbor)	9.98	6.25	7.07	4.39
	Proposed (denoising)	7.28	5.33	3.64	2.40
	Proposed (+backtranslation)	15.56	15.13	10.21	6.55
	Lample et al. 2018	14.31	15.06	-	-
	Lample et al. 2018b				

Lample et al. 2018b (EMNLP)

- No embedding mappings
- BPE jointly over monolingual corpora. Fails for less related languages (Russian).
- Shared decoder for both languages
- Transformer (instead of LSTM)

Test on WMT released data (test and monolingual corpora)

		FR-EN	EN-FR	DE-EN	EN-DE
Unsupervised NMT	Baseline (emb. nearest neighbor)	9.98	6.25	7.07	4.39
	Proposed (denoising)	7.28	5.33	3.64	2.40
	Proposed (+backtranslation)	15.56	15.13	10.21	6.55
	Lample et al. 2018	14.31	15.06	-	-
	Lample et al. 2018b	24.2	25.1	21.0	17.2

Lample et al. 2018b (EMNLP)

- No embedding mappings
- BPE jointly over monolingual corpora. Fails for less related languages (Russian).
- Shared decoder for both languages
- Transformer (instead of LSTM)

- Estimate PBMT parameters
 - Learn monolingual embeddings for bigrams and trigrams
 - Initialize phrase table using prob. estimates from cross-lingual mappings
 - Unsupervised tuning based on back-translation
- Use backtranslation and train reverse PBMT from scratch. Iterate.

Test on WMT released data (test and monolingual corpora). WMT14 and WMT16

		FR-EN	EN-FR	DE-EN	EN-DE	DE-EN	EN-DE
Unsupervised	Artetxe et al. 2018	15.56	15.13	10.21	6.55		
NMT	Lample et al. 2018b	24.2	25.1			21.0	17.2
Unsupervised							
PBMT							

- Estimate PBMT parameters
 - Learn monolingual embeddings for bigrams and trigrams
 - Initialize phrase table using prob. estimates from cross-lingual mappings
 - Unsupervised tuning based on back-translation
- Use backtranslation and train reverse PBMT from scratch. Iterate.

Test on WMT released data (test and monolingual corpora). WMT14 and WMT16

		FR-EN	EN-FR	DE-EN	EN-DE	DE-EN	EN-DE
Unsupervised	Artetxe et al. 2018	15.56	15.13	10.21	6.55		
NMT	Lample et al. 2018b	24.2	25.1			21.0	17.2
Unsupervised	Artetxe et al. 2018b	25.87	26.22	17.43	14.08	23.05	18.23
PBMT							

- Estimate PBMT parameters
 - Learn monolingual embeddings for bigrams and trigrams
 - Initialize phrase table using prob. estimates from cross-lingual mappings
 - Unsupervised tuning based on back-translation
- Use backtranslation and train reverse PBMT from scratch. Iterate.

Test on WMT released data (test and monolingual corpora). WMT14 and WMT16

		FR-EN	EN-FR	DE-EN	EN-DE	DE-EN	EN-DE
Unsupervised	Artetxe et al. 2018	15.56	15.13	10.21	6.55		
NMT	Lample et al. 2018b	24.2	25.1			21.0	17.2
Unsupervised	Artetxe et al. 2018b	25.87	26.22	17.43	14.08	23.05	18.23
PBMT	Lample et al. 2018b	27.16	28.11			22.68	17.77

- Estimate PBMT parameters
 - Learn monolingual embeddings for bigrams and trigrams
 - Initialize phrase table using prob. estimates from cross-lingual mappings
 - Unsupervised tuning based on back-translation
- Use backtranslation and train reverse PBMT from scratch. Iterate.

Getting closer to supervised machine translation!

Figure 2: Comparison between supervised and unsupervised approaches on WMT'14 En-Fr, as we vary the number of parallel sentences for the supervised methods.

Source: (Lample et al. 2018)

Getting closer to supervised machine translation!

number of parallel training sentences

Figure 2: Comparison between supervised and unsupervised approaches on WMT'14 En-Fr, as we vary the number of parallel sentences for the supervised methods.

Source: (Lample et al. 2018)

Why does it work?

Why does it work?

Early to say... but intuition:

Why does it work?

Early to say... but intuition:

- Mapped embedding space provides information for k-best possible translations
- NMT / PBMT figures out how to best "combine" them

Conclusions

New research area – unsupervised Machine Translation

The main Machine Translation competition (WMT18) has now an **unsupervised track**

- Performance up, 28 BLEU En-Fr
- Plenty of margin for improvement
- Code for replicability

```
https://github.com/artetxem/undreamt
```

References: unsupervised MT

- Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017.
 Unsupervised Neural Machine Translation. In ICLR-2018.
- Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018.
 Unsupervised Statistical Machine Translation. In EMNLP-2018.

Final words

- Word embeddings key for Natural Language Processing
- Mappings represent languages in common space
 - Most of language pairs have very few resources
 - New research area: only monolingual resources

Final words

- Word embeddings key for Natural Language Processing
- Mappings represent languages in common space
 - Most of language pairs have very few resources
 - New research area: only monolingual resources
- Cross-lingual unsupervised mappings enabled breakthroughs in
 - Bilingual dictionary induction
 - Unsupervised machine translation
 - Confirmed in (Conneau et al. 2018; Lample et al. 2018)

Final words

- Word embeddings key for Natural Language Processing
- Mappings represent languages in common space
 - Most of language pairs have very few resources
 - New research area: only monolingual resources
- Cross-lingual unsupervised mappings enabled breakthroughs in
 - Bilingual dictionary induction
 - Unsupervised machine translation
 - Confirmed in (Conneau et al. 2018; Lample et al. 2018)
- Unexplored area in its infancy
 - Potential for MT in low resource languages and domains
 - Potential for transforming the NLP landscape
 - From monolingual NLP (e.g. English) to multilingual tools
 - Universal sentence representations

Thank you!

@eagirre http://ixa2.si.ehu.eus/eneko

https://github.com/artetxem/vecmap https://github.com/artetxem/undreamt https://github.com/artetxem/monoses