More Results from Courant-Fischer (cont'd)

Let
$$\mathbf{A}, \mathbf{B} \in \mathbb{S}^{n}$$
, $\mathbf{z} \in \mathbb{R}^{n}$

• (Interlacing) $\lambda_{k+1}(\mathbf{A}) \leq \lambda_{k}(\mathbf{A} \pm \mathbf{z}\mathbf{z}^{T}) \leq \lambda_{k-1}(\mathbf{A})$ for proper k

$$\lambda_{k} \left(\mathbf{A} + \mathbf{z}\mathbf{z}^{T} \right) = \min_{\substack{\mathbf{S} \subseteq \{\mathbb{R}^{n} \\ \mathbf{A} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n} \\ \mathbf{A} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n} \\ \mathbf{A} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n} \\ \mathbf{A} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n} \\ \mathbf{A} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n} \\ \mathbf{A} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n} \\ \mathbf{A} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n} \\ \mathbf{A} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n} \in \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n} \\ \mathbf{X} \cap \mathbf{S} = \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n}}} \prod_{\substack{\mathbf{X} \in \mathbb{N}^{n}$$

> min SEIR XESA Span {Z} (XTAX ± XZZTX)

din(s)=n-K+1 Note that dim (S 1 span { 2}) = dm (S) + dbm(span { 23})

- dim (S+ spen {23 })=n-k It follows that nr (A = == T) = min red dim(S) = r xes r xTAx retn-k, n] FINER TENER TO THE CAY

More Results from Courant-Fischer (cont'd)

Let $\mathbf{A}, \mathbf{B} \in \mathbb{S}^n$, $\mathbf{z} \in \mathbb{R}^n$

• If $rank(B) \le r$, then $\lambda_{k+r}(A) \le \lambda_k(A+B) \le \lambda_{k-r}(A)$ for proper k

• (Weyl) $\lambda_{j+k-1}(\mathbf{A} + \mathbf{B}) \le \lambda_j(\mathbf{A}) + \lambda_k(\mathbf{B})$ for proper j, k

• For any semi-orthogonal $\mathbf{U} \in \mathbb{R}^{n \times r}$, $\lambda_{k+n-r}(\mathbf{A}) \leq \lambda_k(\mathbf{U}^T \mathbf{A} \mathbf{U}) \leq \lambda_k(\mathbf{A})$ for proper k

Extend Variational Characterization to Sum of Eigenvalues

Theorem

For any $\mathbf{A} \in \mathbb{S}^n$.

eorem any
$$\mathbf{A} \in \mathbb{S}^n$$
,
$$\sum_{i=1}^r \lambda_i = \max_{\mathbf{U} \in \mathbb{R}^{n \times r} \\ \|\mathbf{u}_i\|_2 = 1 \ \forall i, \ \mathbf{u}_i^T \mathbf{u}_j = 0 \ \forall i \neq j} \sum_{i=1}^r \mathbf{u}_i^T \mathbf{A} \mathbf{u}_i = \max_{\mathbf{U} \in \mathbb{R}^{n \times r} \\ \mathbf{U}^T \mathbf{U} = \mathbf{I}} \operatorname{tr}(\mathbf{U}^T \mathbf{A} \mathbf{U})$$

$$\Upsilon = \{1, \dots, r\}$$

• This can be proved using $\lambda_k(\mathbf{U}^T \mathbf{A} \mathbf{U}) \leq \lambda_k(\mathbf{A})$, but we may try another way of proof to get better understanding of trace, which uses the fact that

$$\max_{\substack{\mathbf{U} \in \mathbb{R}^{n \times r} \\ \mathbf{U}^T \mathbf{U} = \mathbf{I}}} \operatorname{tr}(\mathbf{U}^T \mathbf{A} \mathbf{U}) = \max_{\substack{\mathbf{U} \in \mathbb{R}^{n \times r} \\ \mathbf{U}^T \mathbf{U} = \mathbf{I}}} \operatorname{tr}(\mathbf{U}^T \Lambda \mathbf{U})$$

Other Extensions

(Von Neumann) For any $\mathbf{A}, \mathbf{B} \in \mathbb{S}^n$,

$$\operatorname{tr}(\mathbf{AB}) \leq \sum_{i=1}^{n} \lambda_{i}(\mathbf{A}) \lambda_{i}(\mathbf{B})$$

(Lidskii) For any $\mathbf{A}, \mathbf{B} \in \mathbb{S}^n$ and any $1 \le i_1 \le i_2 \le \cdots \le i_k \le n$,

$$\sum_{j=1}^k \lambda_{i_j}(\mathbf{A}+\mathbf{B}) \leq \sum_{j=1}^k \lambda_{i_j}(\mathbf{A}) + \sum_{j=1}^k \lambda_{i_j}(\mathbf{B})$$

Matrix Computations Chapter 5: Positive Semidefinite Matrices Section 5.1 Properties of Positive Semidefinite Matrices

Jie Lu ShanghaiTech University

Quadratic Form

Let $\mathbf{A} \in \mathbb{S}^n$. For $\mathbf{x} \in \mathbb{R}^n$, the matrix product

$$\mathbf{x}^T \mathbf{A} \mathbf{x}$$

is called a quadratic form

Facts:

- $\mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$
- It suffices to consider symmetric **A** because for general $\mathbf{A} \in \mathbb{R}^{n \times n}$,

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \left[\frac{1}{2} (\mathbf{A} + \mathbf{A}^T) \right] \mathbf{x}$$

• Complex case: The quadratic form is defined as $\mathbf{x}^H \mathbf{A} \mathbf{x}$, where $\mathbf{x} \in \mathbb{C}^n$

• For
$$\mathbf{A} \in \mathbb{H}^n$$
, $\mathbf{x}^H \mathbf{A} \mathbf{x}$ is real for any $\mathbf{x} \in \mathbb{C}^n$

$$(\chi^H \mathbf{A} \mathbf{x})^{\frac{1}{2}} = (\chi^H \mathbf{A} \chi)^{\frac{1}{2}} = \chi^H \mathbf{A}^H \chi = \chi^H \mathbf{A} \chi$$

Positive Semidefinite Matrices

A matrix $\mathbf{A} \in \mathbb{S}^n$ is said to be

- positive semidefinite (PSD) if $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$
- positive definite (PD) if $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} \neq \mathbf{0}$
- negative semidefinite (NSD) if -A is PSD
- negative definite (ND) if -A is PD
- indefinite if **A** is neither PSD nor NSD

Notation:

- A ≻ 0 means that A is PSD
- $A \succ 0$ means that A is PD
- $\mathbf{A} \leq \mathbf{0}$ means that \mathbf{A} is NSD
- $A \prec 0$ means that A is ND
- $A \not\succeq 0$ or $A \not\preceq 0$ means that A is indefinite

Example: Covariance Matrices

- Let $\mathbf{y}_0, \mathbf{y}_1, \dots \mathbf{y}_{T-1} \in \mathbb{R}^n$ be multi-dimensional data samples
 - Examples: patches in image processing, multi-channel signals in signal processing, history of returns of assets in finance, etc.¹
- Sample mean: $\hat{\boldsymbol{\mu}}_y = \frac{1}{T} \sum_{t=0}^{T-1} \mathbf{y}_t$
- Sample covariance: $\hat{\mathbf{C}}_y = \frac{1}{T} \sum_{t=0}^{T-1} (\mathbf{y}_t \hat{\boldsymbol{\mu}}_y) (\mathbf{y}_t \hat{\boldsymbol{\mu}}_y)^T$
- A sample covariance is PSD: $\mathbf{x}^T \hat{\mathbf{C}}_y \mathbf{x} = \frac{1}{T} \sum_{t=0}^{T-1} |(\mathbf{y}_t \hat{\boldsymbol{\mu}}_y)^T \mathbf{x}|^2 \ge 0$
- The (statistical) covariance of \mathbf{y}_t is also PSD
 - To put into context, assume that \mathbf{y}_t is a wide-sense stationary random process
 - The covariance, defined as $\mathbf{C}_y = \mathrm{E}[(\mathbf{y}_t \boldsymbol{\mu}_y)(\mathbf{y}_t \boldsymbol{\mu}_y)^T]$ where $\boldsymbol{\mu}_y = \mathrm{E}[\mathbf{y}_t]$, can be shown to be PSD

Example: Hessian

- Let $f: \mathbb{R}^n \to \mathbb{R}$ be a twice continuously differentiable function
- The Hessian (matrix) of f, denoted by $\nabla^2 f(\mathbf{x}) \in \mathbb{S}^n$, is a matrix whose (i,j)th entry is given by

$$\left[\nabla^2 f(\mathbf{x})\right]_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

- Fact: f is convex if and only if $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$ for all \mathbf{x} in the problem domain
- Example: The Hessian of the quadratic function

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{R} \mathbf{x} + \mathbf{q}^T \mathbf{x} + c$$

is given by $\nabla^2 f(\mathbf{x}) = \mathbf{R}$

f is convex if and only if $\mathbf{R} \succeq \mathbf{0}$

Illustration of Quadratic Functions

PSD Matrices and Eigenvalues

Theorem

Let $\mathbf{A} \in \mathbb{S}^n$ with eigenvalues $\lambda_1, \ldots, \lambda_n$. Then,

- $\mathbf{A} \succeq \mathbf{0} \iff \lambda_i \geq 0 \ \forall i = 1, \dots, n$
- $\mathbf{A} \succ \mathbf{0} \iff \lambda_i > 0 \ \forall i = 1, \dots, n$

Proof: Let $\mathbf{A} = \mathbf{V} \Lambda \mathbf{V}^T$ be the eigendecomposition of \mathbf{A} (always exists for $\mathbf{A} \in \mathbb{S}^n$) $\not\succeq$

$$\mathbf{A} \succeq \mathbf{0} \iff \mathbf{x}^T \mathbf{V} \widehat{\Lambda} \mathbf{V}^T \mathbf{x} \ge 0, \quad \text{for all } \mathbf{x} \in \mathbb{R}^n$$

$$\iff \mathbf{z}^T \Lambda \mathbf{z} \ge 0, \quad \text{for all } \mathbf{z} \in \mathcal{R}(\mathbf{V}^T) = \mathbb{R}^n$$

$$\iff \sum_{i=1}^n \lambda_i |z_i|^2 \ge 0, \quad \text{for all } \mathbf{z} \in \mathbb{R}^n$$

$$\iff \lambda_i > 0 \text{ for all } i$$

The PD case can be proved in the same way

Example: Ellipsoid

• An ellipsoid of \mathbb{R}^n centered at the origin is defined as

$$\mathcal{E} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^T \mathbf{P} \mathbf{x} \le 1 \},\$$

for some PD $\mathbf{P} \in \mathbb{S}^n$

• Let $\mathbf{P} = \mathbf{V} \Lambda \mathbf{V}^T$ be the eigendecomposition (\mathbf{V} orthogonal). Then, each semi-axis of the ellipsoid is given by

$$\mathbf{s}_i = \lambda_i^{-\frac{1}{2}} \mathbf{v}_i$$

- The orthonormal eigenvectors determine the directions of the semi-axes
- The eigenvalues determine the lengths of the semi-axes

Example: Multivariate Gaussian Distribution

• Probability density function for a Gaussian-distributed vector $\mathbf{x} \in \mathbb{R}^n$:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{n}{2}} (\det(\Sigma))^{\frac{1}{2}}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

where μ and Σ are the mean and covariance of \mathbf{x} , respectively

- Σ is PD
- Σ determines how x is spread

Example: Multivariate Gaussian Distribution (cont'd)

(a)
$$\mu = \mathbf{0}$$
, $\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

(b)
$$\mu = \mathbf{0}, \ \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

PSD Matrices and Square Root

Theorem

A matrix $\mathbf{A} \in \mathbb{S}^n$ is PSD if and only if it can be factored as

$$\mathbf{A} = \mathbf{B}^T \mathbf{B}$$

for some $\mathbf{B} \in \mathbb{R}^{m \times n}$ and for some positive integer m.

Proof:

- Sufficiency (\iff): $\mathbf{A} = \mathbf{B}^T \mathbf{B} \Longrightarrow \mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{B}^T \mathbf{B} \mathbf{x} = \|\mathbf{B} \mathbf{x}\|_2^2 \ge 0$ for all \mathbf{x}
- Necessity (\Longrightarrow): Let $\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^T$ $\mathbf{A} \succeq \mathbf{0} \Longrightarrow \mathbf{A} = (\mathbf{V}\Lambda^{1/2})(\Lambda^{1/2}\mathbf{V}^T), \text{ where } \Lambda^{1/2} = \mathrm{Diag}(\lambda_1^{1/2}, \dots, \lambda_n^{1/2})$ where $\Lambda^{1/2}\mathbf{V}^T$ is real because Λ and \mathbf{V} are real

PSD Matrices and Square Root (cont'd)

- Let $\mathbf{A} = \mathbf{V} \Lambda \mathbf{V}^T$ be the eigendecomposition of $\mathbf{A} \in \mathbb{S}^n$
- The factorization $\mathbf{A} = \mathbf{B}^T \mathbf{B}$ has non-unique factor \mathbf{B}
 - For any orthogonal $\mathbf{U} \in \mathbb{R}^{n \times n}$, $\mathbf{B} = \mathbf{U} \Lambda^{1/2} \mathbf{V}^T$ is a factor for $\mathbf{A} = \mathbf{B}^T \mathbf{B}$
- Denote

$$\mathbf{A}^{1/2} = \mathbf{V} \Lambda^{1/2} \mathbf{V}^{7}$$

$$\mathbf{A}^{1/2} = \mathbf{V} \Lambda^{1/2} \mathbf{V}^T$$

- $\mathbf{B} = \mathbf{A}^{1/2}$ is a factor for $\mathbf{A} = \mathbf{B}^T \mathbf{B}$
- A^{1/2} is also a symmetric factor
- $A^{1/2}$ is the unique PSD factor for $A = B^T B$
- A^{1/2} is called the PSD square root of A
 - In general, a matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$ is said to be a square root of another matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ if $\mathbf{A} = \mathbf{B}^2$

Properties of PSD Matrices

It is straightforward to see from the definition that

- $\mathbf{A} \succeq \mathbf{0} \Longrightarrow a_{ii} \geq 0$ for all i
- $\mathbf{A} \succ \mathbf{0} \Longrightarrow a_{ii} > 0$ for all i

A straightforward extension: Partition A as

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} \qquad A_{11} , A_{22} \qquad \text{Square}$$

$$\mathbf{A} \succeq \mathbf{0} \Longrightarrow \mathbf{A}_{11} \succeq \mathbf{0}, \mathbf{A}_{22} \succeq \mathbf{0}$$

 $\mathbf{A} \succ \mathbf{0} \Longrightarrow \mathbf{A}_{11} \succ \mathbf{0}, \mathbf{A}_{22} \succ \mathbf{0}$

Further extension:

- Given $I = \{i_1, \ldots, i_m\} \subseteq \{1, \ldots, n\}$, m < n, let \mathbf{A}_I be the submatrix obtained by keeping only the rows and columns of \mathbf{A} indicated by I, i.e., $[\mathbf{A}_I]_{jk} = a_{i_j,i_k}$ for all $j,k \in \{1,\ldots,m\}$. We call \mathbf{A}_I a principal submatrix of \mathbf{A}
- If A is PSD (resp. PD), then any principal submatrix of A is PSD (resp. PD)

Properties of PSD Matrices (cont'd)

Let $\mathbf{A} \in \mathbb{S}^n$, $\mathbf{B} \in \mathbb{R}^{n \times m}$, and $\mathbf{C} = \mathbf{B}^T \mathbf{A} \mathbf{B}$. The following properties hold:

1.
$$A \succeq 0 \Longrightarrow C \succeq 0$$
 For any $\pi \in \mathbb{R}^{m}$, $\pi^{T} \subset \pi = \chi^{T} \not \in \mathbb{R}^{T} A \not \in \mathbb{R}^{m}$

2. With A > 0. =(BX) TA (BX) >0

$$C \succ 0 \iff B$$
 has full column rank

of B tinearly independent if and whife X = 0

Properties for Symmetric Factorization

Property: Let $\mathbf{A} \in \mathbb{R}^{m \times k}$ and $\mathbf{B} \in \mathbb{R}^{k \times n}$. Suppose **B** has full row rank. Then,

$$\mathcal{R}(\mathbf{AB}) = \mathcal{R}(\mathbf{A})$$

Proof:

• Observe that dim $\mathcal{R}(\mathbf{B}) = \operatorname{rank}(\mathbf{B}) = k$, which implies $\mathcal{R}(\mathbf{B}) = \mathbb{R}^k$

•
$$\mathcal{R}(\mathbf{AB}) = \{\mathbf{y} = \mathbf{Az} \mid \mathbf{z} \in \mathcal{R}(\mathbf{B})\} = \{\mathbf{y} = \mathbf{Az} \mid \mathbf{z} \in \mathbb{R}^k\} = \mathcal{R}(\mathbf{A})$$

• $\{y = \mathbf{A} \not \models \pi \mid \chi \in \mathcal{R}^n\}$
• Corollary: Let \mathbf{R} be a PSD matrix. Suppose $\mathbf{R} = \mathbf{BB}^T$ for some

full-column rank **B**. Then, $\mathcal{R}(\mathbf{R}) = \mathcal{R}(\mathbf{B})$

Property: Suppose **B**, **C** $\in \mathbb{R}^{n \times k}$ have full column rank. Then,

$$\mathbf{B}\mathbf{B}^T = \mathbf{C}\mathbf{C}^T \iff \mathbf{C} = \mathbf{B}\mathbf{Q} \text{ for some orthogonal } \mathbf{Q} \in \mathbb{R}^{k \times k}$$

The proof needs pseudo inverse (later)

Matrix Computations Chapter 5: Positive Semidefinite Matrices Section 5.2 Examples of Applications

Jie Lu ShanghaiTech University

Application: Spectral Analysis via Subspace

Consider the complex harmonic time-series

$$y_t = \sum_{i=1}^k \alpha_i e^{j2\pi f_i t} + w_t, \quad t = 0, 1, ..., T-1$$

where $\alpha_i \in \mathbb{C}$ is the amplitude-phase coefficient of the *i*th sinusoid; $f_i \in \left[-\frac{1}{2}, \frac{1}{2}\right)$ is the frequency of the *i*th sinusoid; w_t is noise; T is the observation time length

- **Aim**: Estimate the frequencies f_1, \ldots, f_k from $\{y_t\}_{t=0}^{T-1}$
 - Can be done by applying the Fourier transform
 - The spectral resolution of Fourier-based methods is often limited by T
- Our interest: study a subspace approach which can enable "super-resolution" ¹

Illustration

An illustration of the Fourier spectrum. T = 64, k = 5, $\{f_1, \dots, f_k\} = \{-0.213, -0.1, -0.05, 0.3, 0.315\}$

Spectral Analysis: Formulation

Let $z_i = e^{\mathbf{j} 2\pi f_i}$. Given a positive integer d, let

$$\mathbf{y}_t = \begin{bmatrix} y_t \\ y_{t+1} \\ \vdots \\ y_{t+d-1} \end{bmatrix} = \sum_{i=1}^k \alpha_i \begin{bmatrix} z_i^t \\ z_i^{t+1} \\ \vdots \\ z_i^{t+d-1} \end{bmatrix} + \begin{bmatrix} w_t \\ w_{t+1} \\ \vdots \\ w_{t+d-1} \end{bmatrix} = \sum_{i=1}^k \alpha_i \begin{bmatrix} 1 \\ z_i \\ \vdots \\ z_i^{d-1} \end{bmatrix} z_i^t + \begin{bmatrix} w_t \\ w_{t+1} \\ \vdots \\ w_{t+d-1} \end{bmatrix}$$

Let $\mathbf{Y} = [\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_{T_d-1}]$ where $T_d = T - d + 1$. We can write

$$Y = ADS + W,$$

where $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]$, $\mathbf{D} = \mathrm{Diag}(\alpha_1, \dots, \alpha_k)$, $\mathbf{W} = [\mathbf{w}_0, \dots, \mathbf{w}_{T_d-1}]$,

$$\mathbf{S} = \begin{bmatrix} 1 & z_1 & z_1^2 & \dots & z_1^{T_d-1} \\ 1 & z_2 & z_2^2 & \dots & z_2^{T_d-1} \\ \vdots & & & \vdots \\ 1 & z_k & z_k^2 & \dots & z_k^{T_d-1} \end{bmatrix}$$

Spectral Analysis: Formulation (cont'd)

Let $\mathbf{R}_y = \frac{1}{T_d} \sum_{t=0}^{T_d-1} \mathbf{y}_t \mathbf{y}_t^H = \frac{1}{T_d} \mathbf{Y} \mathbf{Y}^H$ be the correlation matrix of \mathbf{y}_t

$$\mathbf{R}_{y} = \mathbf{A} \underbrace{\left(\frac{1}{T_{d}} \mathbf{D} \mathbf{S} \mathbf{S}^{H} \mathbf{D}^{H}\right)}_{=\mathbf{\Phi}} \mathbf{A}^{H} + \frac{1}{T_{d}} \mathbf{A} \mathbf{D} \mathbf{S} \mathbf{W}^{H} + \frac{1}{T_{d}} \mathbf{W} \mathbf{S}^{H} \mathbf{D}^{H} \mathbf{A}^{H} + \frac{1}{T_{d}} \mathbf{W} \mathbf{W}^{H}$$

(This requires knowledge of random processes) Assume that w_t is a temporally white circular Gaussian process with mean zero and variance σ^2 . Then, as $T_d \to \infty$,

$$\frac{1}{T_d} \mathbf{S} \mathbf{W}^H \to \mathbf{0}, \qquad \frac{1}{T_d} \mathbf{W} \mathbf{W}^H \to \sigma^2 \mathbf{I}$$

Therefore, we can approximate \mathbf{R}_{ν} by

$$\mathbf{R}_{y} = \mathbf{A}\mathbf{\Phi}\mathbf{A}^{H} + \sigma^{2}\mathbf{I}$$

Spectral Analysis: Formulation (cont'd)

Model: The correlation matrix $\mathbf{R}_y = \frac{1}{T_d} \mathbf{Y} \mathbf{Y}^H$ is modeled as

$$\mathbf{R}_{y} = \mathbf{A}\mathbf{\Phi}\mathbf{A}^{H} + \sigma^{2}\mathbf{I}$$

where $\sigma^2 > 0$ is the noise power; $\Phi = \frac{1}{T_d} \mathbf{DSS}^H \mathbf{D}^H$; $\mathbf{D} = \mathrm{Diag}(\alpha_1, \dots, \alpha_k)$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ z_1 & z_2 & & z_k \\ \vdots & \vdots & & \vdots \\ z_1^{d-1} & z_2^{d-1} & \dots & z_k^{d-1} \end{bmatrix} \in \mathbb{C}^{d \times k}, \ \mathbf{S} = \begin{bmatrix} 1 & z_1 & z_1^2 & \dots & z_1^{T_d-1} \\ 1 & z_2 & z_2^2 & \dots & z_2^{T_d-1} \\ \vdots & & & & \vdots \\ 1 & z_k & z_k^2 & \dots & z_k^{T_d-1} \end{bmatrix} \in \mathbb{C}^{k \times T_d},$$

with $z_i = e^{\mathbf{j} 2\pi f_i}$

Observation: **A** and S^H are both Vandemonde

Spectral Analysis: Subspace Properties

Assumptions:

- 1. $\alpha_i \neq 0$ for all i
- 2. $f_i \neq f_i$ for all $i \neq j$
- 3. d > k
- 4. $T_d \ge k$

Consequences:

- A has full column rank, S has full row rank
- Φ is positive definite (and thus nonsingular)
 - Proof: $\mathbf{x}^H \mathbf{D} \mathbf{S} \mathbf{S}^H \mathbf{D}^H \mathbf{x} = \|\mathbf{S}^H \mathbf{D}^H \mathbf{x}\|_2^2$, and $\mathbf{S}^H \mathbf{D}^H \mathbf{x} = \mathbf{0} \Longleftrightarrow \mathbf{x} = \mathbf{0}$ because \mathbf{S}^H has full column rank and \mathbf{D} has full rank
- $\mathcal{R}(\mathbf{A}\mathbf{\Phi}\mathbf{A}^H) = \mathcal{R}(\mathbf{A})$
 - Proof: \mathbf{A}^H has full row rank \Longrightarrow rank($\mathbf{\Phi}\mathbf{A}^H$) = rank($\mathbf{\Phi}$). Since $\mathbf{\Phi}$ is PD (and thus full rank), $\mathbf{\Phi}\mathbf{A}^H$ has full row rank. Then use the property on the last page of Section 5.1
- $\operatorname{rank}(\mathbf{A}\mathbf{\Phi}\mathbf{A}^H) = \operatorname{rank}(\mathbf{A}) = k$, and $\mathbf{A}\mathbf{\Phi}\mathbf{A}^H$ has k nonzero eigenvalues