5.5 Ejercicios Las respuestas a los problemas impares seleccionados comienzan en la página RESP-14.

En los problemas 1 a 8, halle las funciones f + g, f - g, fg y f/g y describa sus dominios.

1.
$$f(x) = x^2 + 1$$
, $g(x) = 2x^2 - x$

2.
$$f(x) = x^2 - 4$$
, $g(x) = x + 3$

3.
$$f(x) = x$$
, $g(x) = \sqrt{x-1}$

4.
$$f(x) = x - 2$$
, $g(x) = \frac{1}{x + 8}$

5.
$$f(x) = 3x^3 - 4x^2 + 5x$$
, $g(x) = (1 - x)^2$

6.
$$f(x) = \frac{4}{x-6}$$
, $g(x) = \frac{x}{x-3}$

7.
$$f(x) = \sqrt{x+2}$$
, $g(x) = \sqrt{5-5x}$

8.
$$f(x) = \frac{1}{x^2 - 9}$$
, $g(x) = \frac{\sqrt{x + 4}}{x}$

9. Complete la tabla

x	0	1	2	3	4
f(x)	-1	2	10	8	0
g(x)	2	3	0	1	4
$(f \circ g)(x)$					

10. Complete la tabla, donde *g* es una función impar.

х	0	1	2	3	4
f(x)	-2	-3	0	-1	-4
g(x)	9	7	-6	-5	13
$(g \circ f)(x)$					

En los problemas 11 a 14, halle las funciones $f \circ g$ y $g \circ f$ y describa sus dominios.

11.
$$f(x) = x^2 + 1$$
, $g(x) = \sqrt{x - 1}$

12.
$$f(x) = x^2 - x + 5$$
, $g(x) = -x + 4$

13.
$$f(x) = \frac{1}{2x - 1}$$
, $g(x) = x^2 + 1$

14.
$$f(x) = \frac{x+1}{r}$$
, $g(x) = \frac{1}{r}$

En los problemas 15 a 20, determine las funciones $f \circ g \vee g \circ f$.

15.
$$f(x) = 2x - 3$$
, $g(x) = \frac{1}{2}(x + 3)$

16.
$$f(x) = x - 1$$
, $g(x) = x^3$

17.
$$f(x) = x + \frac{1}{x^2}$$
, $g(x) = \frac{1}{x}$

18.
$$f(x) = \sqrt{x-4}$$
, $g(x) = x^2$

19.
$$f(x) = x + 1$$
, $g(x) = x + \sqrt{x - 1}$

20.
$$f(x) = x^3 - 4$$
, $g(x) = \sqrt[3]{x+3}$

En los problemas 21 a 24, determine las funciones $f \circ f y f \circ (1/f)$.

21.
$$f(x) = 2x + 6$$

22.
$$f(x) = x^2 + 1$$

23.
$$f(x) = \frac{1}{x^2}$$

24.
$$f(x) = \frac{x+4}{x}$$

En los problemas 25 y 26, determine $(f \circ g \circ h)(x) = f(g(h(x)))$.

25.
$$f(x) = \sqrt{x}$$
, $g(x) = x^2$, $h(x) = x - 1$

26.
$$f(x) = x^2$$
, $g(x) = x^2 + 3x$, $h(x) = 2x$

27. En el caso de las funciones
$$f(x) = 2x + 7$$
, $g(x) = 3x^2$, determine $(f \circ g \circ g)(x)$.

28. En el caso de las funciones
$$f(x) = -x + 5$$
, $g(x) = -4x^2 + x$, determine $(f \circ g \circ f)(x)$.

En los problemas 29 y 30, determine $(f \circ f \circ f)(x) = f(f(f(x)))$.

29.
$$f(x) = 2x - 5$$

30.
$$f(x) = x^2 - 1$$

En los problemas 31 a 34, determine las funciones f y g tales que $F(x) = f \circ g$.

31.
$$F(x) = (x^2 - 4x)^5$$

32.
$$F(x) = \sqrt{9x^2 + 16}$$

33.
$$F(x) = (x-3)^2 + 4\sqrt{x-3}$$

34.
$$F(x) = 1 + |2x + 9|$$

En los problemas 35 y 36 trace las gráficas de las composiciones $f \circ g$ y $g \circ f$.

35.
$$f(x) = |x| - 2$$
, $g(x) = |x - 2|$

36.
$$f(x) = [x - 1], g(x) = |x|$$

37. Se tiene la función
$$y = f(x) + g(x)$$
, donde $f(x) = x$ y $g(x) = -[x]$. Llene los espacios en blanco y a continua-

ción bosqueje la gráfica de la suma f+g en los intervalos indicados.

38. En el caso de la función y = f(x) + g(x), donde f(x) = |x| y g(x) = [x]. Proceda como en el problema 37 y a continuación grafique la suma de f + g.

En los problemas 39 y 40, trace la gráfica de la suma f + g.

39.
$$f(x) = |x - 1|, g(x) = |x|$$

40.
$$f(x) = x$$
, $g(x) = |x|$

En los problemas 41 y 42, trace la gráfica del producto fg.

41.
$$f(x) = x$$
, $g(x) = |x|$

42.
$$f(x) = x$$
, $g(x) = [x]$

En los problemas 43 y 44, trace la gráfica del recíproco 1/f.

43.
$$f(x) = |x|$$

44.
$$f(x) = x - 3$$

En los problemas 45 y 46.

- a) Determine los puntos de intersección de las gráficas de las funciones indicadas.
- Calcule la distancia vertical d entre las gráficas en el intervalo I definido por las coordenadas x de sus puntos de intersección,
- Use el concepto de vértice de una parábola para calcular el valor máximo de d en el intervalo I.

FIGURA 5.5.3 Gráfica para el problema 45

46.

FIGURA 5.5.4 Gráfica para el problema 46

En los problemas 47 a 58,

- a) Calcule el cociente de diferencias $\frac{f(x+h) f(x)}{h}$ para la función dada.
- b) Halle la pendiente de la secante que pasa por los puntos (3, f(3)), (3.1, f(3.1)).

47.
$$f(x) = -4x^2$$

48.
$$f(x) = x^2 - x$$

49.
$$f(x) = 3x^2 - x + 7$$

50.
$$f(x) = 2x^2 + x - 1$$

$$f(x) = x^3 + 5x - 4$$

$$f(x) = 2x^3 + x^2$$

53.
$$f(x) = \frac{1}{4-x}$$

54.
$$f(x) = \frac{3}{2x - 4}$$

55.
$$f(x) = \frac{x}{x-1}$$

56.
$$f(x) = \frac{2x+3}{x+5}$$

57.
$$f(x) = x + \frac{1}{x}$$

58.
$$f(x) = \frac{1}{x^2}$$

En los problemas 59 y 60, calcule el cociente de diferencias $\frac{f(x+h)-f(x)}{h}$ para la función dada. Use las operaciones algebraicas correctas para cancelar la h del denominador.

59.
$$f(x) = 2\sqrt{x}$$

60.
$$f(x) = \sqrt{2x+1}$$

■Aplicaciones diversas

61. De aves Un avistador de aves ve un pájaro a 100 pies hacia el este de su posición. Si el ave vuela hacia el sur a una velocidad de 500 pies/min, exprese la distancia *d* del avistador al ave en función del tiempo *t*. Calcule la distan-