Synchronizability

Nicole

August 23, 2025

Contents

1	Formal Languages					
	1.1	Words	2			
	1.2	Alphabets	S			
2	Communicating Automata and System Definitions					
	2.1	Communicating Automata	4			
		2.1.1 Messages and Actions	4			
		2.1.2 Projections on Words and Languages	5			
		2.1.3 Shuffles and the Shuffled Language	7			
	2.2	Network of Communicating Automata	S			
	2.3		10			
	2.4		11			
	2.5		13			
			14			
			14			
			14			
			15			
			15			
		2.5.6 Lemma 4.4 and preparations	15			
	2.6		16			
		2.6.1 First Proof Direction Mix Constructions	16			
3	Cor	nmunicating Automata and System Lemmas	17			
	3.1		17			
	3.2		20			
			24			
			27			
	3.3	, 1	28			
	3.4	<u> </u>	33			
		3.4.1 Helpful Conclusions about Language, Runs, etc. for				
		•	33			
	3.5		40			

	3.6	Mailbo	ox System	44
		3.6.1	Semantics	44
		3.6.2	Mailbox System Step Conversions Both Directions	49
		3.6.3	Mailbox System Run Semantics	51
		3.6.4	Mailbox System Traces	53
		3.6.5	Language Hierarchy	53
	3.7	Synchi	ronisability	57
	3.8		ronisability is Deciable for Tree Topology in Mailbox	
		-	unication	58
		3.8.1	Tree Topology and Related Lemmas	58
		3.8.2	Root and Node Specifications and More Tree Lemmas	63
		3.8.3	parent-child relationship in tree	67
		3.8.4	Path to Root and Path Related Lemmas	70
		3.8.5	Path from Root Downwards to a Node	75
		3.8.6	Influenced Language	80
		3.8.7	Influenced Language and its Shuffles	83
		3.8.8	Root Related Lemmas	85
		3.8.9	Simulate Synchronous Execution with Mailbox Word .	89
		3.8.10	Lemma 4.4 and Preparations	92
	3.9		d Lemmas for New Formalization	95
4	Ext	ress P	aper Formalizations	99
	4.1		a 4.4	99
	4.2			102
	4.3		*	108
	4.4			114
	•		anguages	
		ts Main	$HOL-Library.LaTeX sugar\ HOL-Library.Optional Sugar$	
bε	gin			
1	T2.	1	T	

1 Formal Languages

type-synonym 'a word = 'a list type-synonym 'a language = 'a word set

1.1 Words

 $\begin{array}{l} \textbf{abbreviation} \ emptyWord :: 'a \ word \ (\varepsilon) \ \textbf{where} \\ \varepsilon \equiv [] \end{array}$

abbreviation $concat:: 'a\ word \Rightarrow 'a\ word \Rightarrow 'a\ word\ (infixl \cdot 60)$ where $v \cdot w \equiv v \ @\ w$

abbreviation length-of-word :: 'a word \Rightarrow nat (|-| [90] 60) where

```
|w| \equiv length w
```

1.2 Alphabets

```
locale Alphabet =
  fixes Letters :: 'a set (\Sigma)
  assumes not-empty:
                                  \Sigma \neq \{\}
      and finite-letters: finite \Sigma
begin
inductive-set WordsOverAlphabet :: 'a word set (\Sigma^* 100) where
EmptyWord: \varepsilon \in \Sigma^*
Composed: [a \in \Sigma; w \in \Sigma^*] \Longrightarrow (a\#w) \in \Sigma^*
\mathbf{lemma}\ \textit{word-over-alphabet-rev}\colon
  fixes a :: 'a
    and w :: 'a word
  assumes ([a] \cdot w) \in \Sigma^*
  shows a \in \Sigma and w \in \Sigma^*
  using assms WordsOverAlphabet.cases[of <math>a#w]
  by auto
\mathbf{lemma}\ concat\text{-}words\text{-}over\text{-}an\text{-}alphabet:
  fixes v w :: 'a word
  assumes v \in \Sigma^*
      \text{ and } w \in \Sigma^*
    shows (v \cdot w) \in \Sigma^*
  using assms
proof (induct\ v)
  case EmptyWord
  assume w \in \Sigma^*
  thus (\varepsilon \cdot w) \in \Sigma^*
    by simp
next
  case (Composed \ a \ v)
  assume a \in \Sigma
  moreover assume w \in \Sigma^* \Longrightarrow (v \cdot w) \in \Sigma^* and w \in \Sigma^*
  hence (v \cdot w) \in \Sigma^*.
  ultimately show ((a\#v) \cdot w) \in \Sigma^*
    \mathbf{using}\ \mathit{WordsOverAlphabet}. \mathit{Composed}[\mathit{of}\ \mathit{a}\ \mathit{v}\ \boldsymbol{\cdot}\ \mathit{w}]
    by simp
qed
\mathbf{lemma}\ split-a\text{-}word\text{-}over\text{-}an\text{-}alphabet:
  fixes v w :: 'a word
  assumes (v \cdot w) \in \Sigma^*
  shows v \in \Sigma^* and w \in \Sigma^*
  using assms
proof (induct v)
```

```
case Nil
    case 1
    \mathbf{show}\ \varepsilon \in \Sigma^*
      using EmptyWord
      by simp
  next
    case 2
    \mathbf{assume}\ \varepsilon \bullet w \in \Sigma^*
    thus w \in \Sigma^*
      \mathbf{by} \ simp
  }
\mathbf{next}
  case (Cons \ a \ v)
  assume a\#v • w\in \Sigma^*
  hence A1: a \in \Sigma and A2: v \cdot w \in \Sigma^*
    using word-over-alphabet-rev[of a v \cdot w]
    by simp-all
  assume IH1: v \cdot w \in \Sigma^* \implies v \in \Sigma^* and IH2: v \cdot w \in \Sigma^* \implies w \in \Sigma^*
  {
    case 1
    from A1 A2 IH1 show a\#v \in \Sigma^*
      using Composed[of \ a \ v]
      \mathbf{by} \ simp
  next
    case 2
    from A2 IH2 show w \in \Sigma^*
      by simp
  }
qed
end
end
theory Defs
    {f imports}\ HOL-Library. Sublist\ Formal Languages
begin
```

2 Communicating Automata and System Definitions

2.1 Communicating Automata

2.1.1 Messages and Actions

```
datatype ('information, 'peer') message = Message 'information 'peer' peer' (-\rightarrow- [120, 120, 120] 100)

primrec get-information :: ('information, 'peer') message \Rightarrow 'information where
```

```
get-information (i^{p \to q}) = i
primrec get-sender :: ('information, 'peer) message \Rightarrow 'peer where
  get\text{-}sender\ (i^{p\rightarrow q})=p
\mathbf{primrec} \ \textit{get-receiver} :: (\textit{'information, 'peer}) \ \textit{message} \Rightarrow \textit{'peer} \ \mathbf{where}
  qet-receiver (i^{p \to q}) = q
datatype ('information, 'peer) action =
  Output ('information, 'peer) message (!\langle - \rangle [120] \ 100) |
  Input ('information, 'peer) message (?\langle - \rangle [120] 100)
primrec is-output :: ('information, 'peer) action \Rightarrow bool where
  is\text{-}output\ (!\langle m\rangle) = True\ |
  is\text{-}output\ (?\langle m\rangle) = False
abbreviation is-input :: ('information, 'peer) action \Rightarrow bool where
  is\text{-}input\ a \equiv \neg(is\text{-}output\ a)
primrec get-message :: ('information, 'peer) action \Rightarrow ('information, 'peer) mes-
sage where
  get\text{-}message\ (!\langle m\rangle)=m\mid
  get\text{-}message \ (?\langle m\rangle) = m
primrec get-actor :: ('information, 'peer) action ⇒ 'peer where
  get-actor (!\langle m \rangle) = get-sender m \mid
  get-actor (?\langle m \rangle) = get-receiver m
primrec get-object :: ('information, 'peer) action \Rightarrow 'peer where
  get-object (!\langle m \rangle) = get-receiver m \mid
  get-object (?\langle m \rangle) = get-sender m
abbreviation get-info :: ('information, 'peer) action \Rightarrow 'information where
  get-info a \equiv get-information (get-message a)
2.1.2 Projections on Words and Languages
abbreviation projection-on-outputs
 :: ('information, 'peer) \ action \ word \Rightarrow ('information, 'peer) \ action \ word \ (\downarrow, [90])
110)
  where
    w\downarrow_! \equiv filter \ is\text{-}output \ w
abbreviation projection-on-outputs-language
  :: ('information, 'peer) \ action \ language \Rightarrow ('information, 'peer) \ action \ language
  (-\lfloor 1/20 \rfloor 100)
  where
    L \downarrow_! \equiv \{ w \downarrow_! \mid w. \ w \in L \}
```

```
abbreviation projection-on-inputs :: ('information, 'peer') action we
```

:: ('information, 'peer) action word \Rightarrow ('information, 'peer) action word (- \downarrow ? [90] 110)

where

 $w\downarrow_? \equiv filter is\text{-}input w$

abbreviation projection-on-inputs-language

:: ('information, 'peer) action language \Rightarrow ('information, 'peer) action language (-1, [120] 100)

where

 $L|_? \equiv \{w\downarrow_? \mid w.\ w \in L\}$

abbreviation ignore-signs

:: ('information, 'peer) action word \Rightarrow ('information, 'peer) message word (- \downarrow !? [90] 110)

where

 $w\downarrow_{!?} \equiv map \ get\text{-}message \ w$

abbreviation ignore-signs-in-language

— projection on receptions towards p and sends from p

abbreviation projection-on-single-peer :: ('information, 'peer) action word \Rightarrow 'peer \Rightarrow ('information, 'peer) action word (-\psi_ [90, 90] 110)

where

 $w\downarrow_p \equiv filter (\lambda x. \ get-actor \ x = p) \ w$

abbreviation projection-on-single-peer-language

 $:: ('information, 'peer) \ action \ language \Rightarrow 'peer \Rightarrow ('information, 'peer) \ action \ language$

$$(- \downarrow - [90, 90] \ 110)$$
 where $(L \downarrow_p) \equiv \{(w \downarrow_p) \mid w. \ w \in L\}$

abbreviation projection-on-peer-pair

:: ('information, 'peer) action word \Rightarrow 'peer \Rightarrow 'peer \Rightarrow ('information, 'peer) action word (-\$\psi_{-,-}\$ [90, 90, 90] 110)

where

 $w{\downarrow}_{\{p,q\}} \equiv \mathit{filter}\ (\lambda x.\ (\mathit{get-object}\ x=q \land \mathit{get-actor}\ x=p) \lor (\mathit{get-object}\ x=p \land \mathit{get-actor}\ x=q)) \ w$

abbreviation projection-on-peer-pair-language

 $:: ('information, 'peer) \ action \ language \Rightarrow 'peer \Rightarrow 'peer \Rightarrow ('information, 'peer) \ action \ language$

$$\begin{array}{l} (\hbox{-}{\downarrow}_{\{\hbox{-},\hbox{-}\}} \ [90,\ 90,\ 90] \ 110) \ \mathbf{where} \\ (L{\downarrow}_{\{p,q\}}) \equiv \{(w{\downarrow}_{\{p,q\}}) \mid w.\ w \in L\} \end{array}$$

2.1.3 Shuffles and the Shuffled Language

```
inductive shuffled ::('information, 'peer) action word \Rightarrow ('information, 'peer) ac-
tion \ word \Rightarrow bool \ \mathbf{where}
  refl: shuffled w w |
  swap: \llbracket is\text{-}output \ a; \ is\text{-}input \ b; \ w = (xs @ a \# b \# ys) \rrbracket
         \implies shuffled w (xs @ b # a # ys) |
  trans: \llbracket \text{ shuffled } w \text{ } w'; \text{ shuffled } w' \text{ } w'' \rrbracket \Longrightarrow \text{ shuffled } w \text{ } w''
abbreviation valid-input-shuffles-of-w :: ('information, 'peer) action word \Rightarrow ('information,
'peer) action language where
  \textit{valid-input-shuffles-of-w} \ w \ \equiv \ \{\textit{w'}. \ \textit{shuffled} \ \textit{w} \ \textit{w'}\}
abbreviation valid-input-shuffle ::
  ('information, 'peer) \ action \ word \Rightarrow ('information, 'peer) \ action \ word \Rightarrow bool
(infixl \sqcup \sqcup_? 6\theta) where
  w' \sqcup \sqcup_? w \equiv shuffled \ w \ w'
definition all-shuffles:: ('information, 'peer) action word \Rightarrow ('information, 'peer)
action word set where
  all-shuffles w = \{w'. \text{ shuffled } w \text{ } w'\}
definition shuffled-lang :: ('information, 'peer) action language \Rightarrow ('information,
'peer) action language where
  shuffled-lang L = (\bigcup w \in L. \ all\text{-shuffles} \ w)
abbreviation shuffling-possible :: ('information, 'peer) action word \Rightarrow bool where
  shuffling-possible w \equiv (\exists xs \ a \ b \ ys. \ is-output \ a \land is-input \ b \land w = (xs @ a \# b)
\# ys))
abbreviation shuffling-occurred :: ('information, 'peer) action word \Rightarrow bool where
  shuffling-occurred w \equiv (\exists xs \ a \ b \ ys. \ is-output \ a \land is-input \ b \land w = (xs @ b \# a)
\# ys))
abbreviation rightmost-shuffle :: ('information, 'peer) action word \Rightarrow ('information,
'peer) action word \Rightarrow bool where
  rightmost-shuffle w w' \equiv (\exists xs \ a \ b \ ys. \ is-output \ a \land is-input \ b \land w = (xs @ a \#
b \# ys) \land (\neg shuffling\text{-possible } ys) \land w' = (xs @ b \# a \# ys))
{f locale}\ Communicating Automaton =
  fixes peer
                       :: 'peer
    and States
                        :: 'state set
                       :: 'state
    and initial
    and Messages
                         :: ('information, 'peer) message set
```

```
and Transitions :: ('state \times ('information, 'peer) action \times 'state) set
  assumes finite-states:
                                      finite States
   and initial-state:
                                 initial \in States
   and message-alphabet:
                                     Alphabet Messages
   and well-formed-transition: \bigwedge s1 a s2. (s1, a, s2) \in Transitions \Longrightarrow
                                s1 \in States \land get\text{-}message \ a \in Messages \land get\text{-}actor \ a
= peer \land
                                 get-object a \neq peer \land s2 \in States
begin
inductive-set ActionsOverMessages :: ('information, 'peer) action set where
  AOMOutput: m \in Messages \Longrightarrow !\langle m \rangle \in ActionsOverMessages \mid
  AOMInput: m \in Messages \implies ?\langle m \rangle \in ActionsOverMessages
inductive-set Actions :: ('information, 'peer) action set (Act) where
  ActOfTrans: (s1, a, s2) \in Transitions \implies a \in Act
inductive-set CommunicationPartners :: 'peer set where
  CPAction: (s1, a, s2) \in Transitions \implies get-object \ a \in Communication Partners
inductive-set SendingToPeers :: 'peer set where
 SPSend: [(s1, a, s2) \in Transitions; is-output a] \Longrightarrow get-object a \in SendingToPeers
inductive-set ReceivingFromPeers :: 'peer set where
 RPRecv: [(s1, a, s2) \in Transitions; is-input a] \Longrightarrow get-object a \in ReceivingFromPeers
abbreviation step
 :: 'state \Rightarrow ('information, 'peer) \ action \Rightarrow 'state \Rightarrow bool \ (---\rightarrow_{\mathcal{C}} - [90, 90, 90])
110)
  where
   s1 - a \rightarrow_{\mathcal{C}} s2 \equiv (s1, a, s2) \in Transitions
inductive run :: 'state \Rightarrow ('information, 'peer) action word \Rightarrow 'state list \Rightarrow bool
where
  REmpty2:
                 run \ s \ \varepsilon \ ([]) \ |
  RComposed2: [run \ s1 \ w \ xs; \ s0 \ -a \rightarrow_{\mathcal{C}} \ s1] \implies run \ s0 \ (a \ \# \ w) \ (s1 \ \# \ xs)
inductive-set Traces:: ('information, 'peer) action word set where
  STRun: run initial w xs \implies w \in Traces
abbreviation Lang :: ('information, 'peer) action language where
  Lang \equiv Traces
abbreviation LangSend :: ('information, 'peer) action language where
  LangSend \equiv Lang \lfloor 1 \rfloor
abbreviation LangRecv :: ('information, 'peer) action language where
```

```
LangRecv \equiv Lang \mid_?
```

end

2.2 Network of Communicating Automata

```
locale NetworkOfCA =
  fixes automata :: 'peer \Rightarrow ('state set \times 'state \times
                     ('state \times ('information, 'peer) \ action \times 'state) \ set) \ (\mathcal{A} \ 1000)
    and messages :: ('information, 'peer) message set
                                                                                        (M 1000)
  assumes finite-peers:
                                  finite (UNIV :: 'peer set)
    and automaton-of-peer: \bigwedge p. Communicating Automaton p (fst (A p)) (fst (snd)
(\mathcal{A} p))) \mathcal{M}
                                   (snd (snd (\mathcal{A} p)))
   and message-alphabet: Alphabet M
    and peers-of-message: \bigwedge m. m \in \mathcal{M} \Longrightarrow get-sender m \neq get-receiver m
    and messages-used:
                                \forall m \in \mathcal{M}. \exists s1 \ a \ s2 \ p. \ (s1, \ a, \ s2) \in snd \ (snd \ (\mathcal{A} \ p)) \land 
                              m = qet\text{-}message a
begin
— get all the peers in the network
abbreviation get-peers :: 'peer set (P 110) where
 \mathcal{P} \equiv (UNIV :: 'peer set)
abbreviation get-states :: 'peer \Rightarrow 'state set (S - [90] 110) where
  S(p) \equiv fst (A p)
abbreviation get-initial-state :: 'peer \Rightarrow 'state (\mathcal{I} - [90] 110) where
 \mathcal{I}(p) \equiv fst \ (snd \ (\mathcal{A} \ p))
abbreviation get-transitions
  :: 'peer \Rightarrow ('state \times ('information, 'peer) \ action \times 'state) \ set \ (\mathcal{R} - [90] \ 110)
where
 \mathcal{R}(p) \equiv snd \ (snd \ (\mathcal{A} \ p))
abbreviation Words OverMessages :: ('information, 'peer) message word set (\mathcal{M}^*)
100) where
  \mathcal{M}^* \equiv Alphabet.WordsOverAlphabet \mathcal{M}
— all peers that p sends to in Ap (for which there is a transition !p->q in Ap)
abbreviation sending ToPeers-of-peer :: 'peer \Rightarrow 'peer set (\mathcal{P}_1 - [90] 110) where
  \mathcal{P}_{!}(p) \equiv CommunicatingAutomaton.SendingToPeers (snd (snd (A p)))
— all peers that p receives from in Ap (for which there is a transition ?q->p in Ap)
abbreviation receiving From Peers-of-peer :: 'peer \Rightarrow 'peer set (\mathcal{P}_{?} - [90] 110)
where
 \mathcal{P}_{?}(p) \equiv CommunicatingAutomaton.ReceivingFromPeers (snd (snd (A p)))
abbreviation Peers-of :: 'peer \Rightarrow 'peer set where
```

```
Peers-of p \equiv CommunicatingAutomaton.CommunicationPartners (snd (A)
p)))
abbreviation step-of-peer
 :: 'state \Rightarrow ('information, 'peer) \ action \Rightarrow 'peer \Rightarrow 'state \Rightarrow bool
 (----)_{C} - [90, 90, 90, 90] 110) where
 s1 - a \rightarrow_{\mathcal{C}} p \ s2 \equiv (s1, a, s2) \in snd \ (snd \ (\mathcal{A} \ p))
abbreviation language-of-peer
  :: 'peer \Rightarrow ('information, 'peer) action language (\mathcal{L} - [90] 110) where
  \mathcal{L}(p) \equiv CommunicatingAutomaton.Lang (fst (snd (A p))) (snd (snd (A p)))
{\bf abbreviation}\ output\mbox{-} language\mbox{-} of\mbox{-} peer
  :: 'peer \Rightarrow ('information, 'peer) action language (\mathcal{L}_{!} - [90] 110) where
  \mathcal{L}_1(p) \equiv CommunicatingAutomaton.LangSend (fst (snd (A p))) (snd (snd (A p)))
p)))
abbreviation input-language-of-peer
 :: 'peer \Rightarrow ('information, 'peer) action language (\mathcal{L}_? - [90] 110) where
  \mathcal{L}_{?}(p) \equiv CommunicatingAutomaton.LangRecv (fst (snd (A p))) (snd (snd (A
p)))
  — start in s1, read w (in 0 or more steps) and end in s2
abbreviation path-of-peer
  :: 'state \Rightarrow ('information, 'peer) \ action \ word \Rightarrow 'peer \Rightarrow 'state \Rightarrow bool
  (----)^* - - [90, 90, 90, 90] 110) where
 s1 - w \rightarrow^* p \ s2 \equiv (s1 = s2 \land w = \varepsilon \land s1 \in \mathcal{S} \ p) \lor (\exists xs. \ Communicating Automa-
ton.run (\mathcal{R} p) s1 w xs \wedge last xs = s2)
abbreviation run-of-peer
  :: 'peer \Rightarrow ('information, 'peer) action word \Rightarrow 'state list \Rightarrow bool where
  run-of-peer p w xs \equiv (CommunicatingAutomaton.run (<math>\mathcal{R} p) (\mathcal{I} p) w xs)
{\bf abbreviation}\ run	ext{-}of	ext{-}peer	ext{-}from	ext{-}state
  :: 'peer \Rightarrow 'state \Rightarrow ('information, 'peer) \ action \ word \Rightarrow 'state \ list \Rightarrow bool
where
  run-of-peer-from-state p \ s \ w \ xs \equiv (CommunicatingAutomaton.run \ (\mathcal{R} \ p) \ s \ w \ xs)
fun get-trans-of-run :: 'state \Rightarrow ('information, 'peer) action word \Rightarrow 'state list \Rightarrow
('state \times ('information, 'peer) \ action \times 'state) \ list \ \mathbf{where}
  get-trans-of-run s0 \varepsilon [] = [] |
  get-trans-of-run s\theta [a] [s1] = [(s\theta, a, s1)]
 get-trans-of-run s0 (a \# as) (s1 \# xs) = (s0, a, s1) \# get-trans-of-run s1 as xs
2.3
        Synchronous System
```

```
definition is-sync-config :: ('peer \Rightarrow 'state) \Rightarrow bool where is-sync-config C \equiv (\forall p. \ C \ p \in \mathcal{S}(p))
```

```
abbreviation initial-sync-config :: 'peer \Rightarrow 'state (\mathcal{C}_{\mathcal{I}\mathbf{0}}) where
  C_{\mathcal{I}\mathbf{0}} \equiv \lambda p. \ \mathcal{I}(p)
inductive sync-step
  :: ('peer \Rightarrow 'state) \Rightarrow ('information, 'peer) \ action \Rightarrow ('peer \Rightarrow 'state) \Rightarrow bool
  (--\langle -, \mathbf{0} \rangle \rightarrow -[90, 90, 90] \ 110) where
  SynchStep: [is-sync-config C1; a = !\langle (i^{p \to q})\rangle; C1 \ p \ -!\langle (i^{p \to q})\rangle \to_{\mathcal{C}} p \ (C2 \ p);
               C1 \stackrel{q}{q} - ?\langle (i^{p \to q}) \rangle \to_{\mathcal{C}} q (C2 \stackrel{q}{q}); \forall x. \ x \notin \{p, q\} \longrightarrow C1(x) = C2(x) \implies
C1 - \langle a, \mathbf{0} \rangle \rightarrow C2
inductive sync-run
  :: ('peer \Rightarrow 'state) \Rightarrow ('information, 'peer) \ action \ word \Rightarrow ('peer \Rightarrow 'state) \ list
\Rightarrow bool
  where
     SREmpty: sync-run C \in ([])
    SRComposed: [sync-run\ C0\ w\ xc;\ last\ (C0\#xc)\ -\langle\ a,\ {\bf 0}\rangle \rightarrow\ C]] \Longrightarrow sync-run\ C0
(w \cdot [a]) (xc@[C])
— E(Nsync)
inductive-set SyncTraces :: ('information, 'peer) action language (<math>\mathcal{T}_0 120) where
  STRun: sync-run C_{\mathcal{I}\mathbf{0}} w xc \Longrightarrow w \in \mathcal{T}_{\mathbf{0}}
— T(Nsync)
abbreviation SyncLang :: ('information, 'peer) action language (L<sub>0</sub> 120) where
  \mathcal{L}_0 \equiv \mathcal{T}_0
2.4
          Mailbox System
definition is-mbox-config
  :: ('peer \Rightarrow ('state \times ('information, 'peer) \ message \ word)) \Rightarrow bool \ where
  is-mbox-config C \equiv (\forall p. fst (C p) \in \mathcal{S}(p) \land snd (C p) \in \mathcal{M}^*)
— all mbox configurations of system
abbreviation mbox-configs
  :: ('peer \Rightarrow 'state \times ('information, 'peer) message list) set (C_m) where
  C_{\mathfrak{m}} \equiv \{C \mid C. \text{ is-mbox-config } C\}
abbreviation initial-mbox-config
  :: 'peer \Rightarrow ('state \times ('information, 'peer) \ message \ word) \ (\mathcal{C}_{\mathcal{I}\mathfrak{m}}) \ \mathbf{where}
  \mathcal{C}_{\mathcal{I}\mathfrak{m}} \equiv \lambda p. \ (\mathcal{I} \ p, \, \varepsilon)
definition is-stable
  :: ('peer \Rightarrow ('state \times ('information, 'peer) \ message \ word)) \Rightarrow bool \ \mathbf{where}
  is-stable C \equiv is-mbox-config C \land (\forall p. snd (C p) = \varepsilon)
type-synonym \ bound = nat \ option
abbreviation nat\text{-}bound :: nat \Rightarrow bound (\mathcal{B} - \lceil 90 \rceil \ 110) where
```

 $\mathcal{B} \ k \equiv Some \ k$

```
abbreviation unbounded :: bound (\infty 100) where
  \infty \equiv None
primrec is-bounded :: nat \Rightarrow bound \Rightarrow bool (- <_{\mathcal{B}} - [90, 90] 110) where
  n <_{\mathcal{B}} \infty = True \mid
  n <_{\mathcal{B}} \mathcal{B} \ k = (n < k)
inductive mbox-step
  :: ('peer \Rightarrow ('state \times ('information, 'peer) \ message \ word)) \Rightarrow ('information, 'peer)
action \Rightarrow
         bound \Rightarrow ('peer \Rightarrow ('state \times ('information, 'peer) message word)) \Rightarrow bool
  \textit{MboxSend: } \llbracket \textit{is-mbox-config C1}; \ a = ! \langle (i^{p \to q}) \rangle; \ \textit{fst (C1 p)} \ -! \langle (i^{p \to q}) \rangle \to_{\mathcal{C}} \textit{p (fst)} 
(C2 p);
              snd\ (C1\ p) = snd\ (C2\ p);\ (\mid (snd\ (C1\ q))\mid) <_{\mathcal{B}} k;
              C2 \ q = (fst \ (C1 \ q), \ (snd \ (C1 \ q)) \cdot [(i^{p \to q})]); \ \forall x. \ x \notin \{p, q\} \longrightarrow C1(x)
= C2(x) \implies
              mbox-step C1 a k C2 |
  MboxRecv: [is\text{-mbox-config }C1; a = ?\langle (i^{p \to q}) \rangle; fst (C1 q) - ?\langle (i^{p \to q}) \rangle \to_{\mathcal{C}} q (fst)
(C2 q);
              (snd\ (C1\ q)) = \lceil (i^{p \to q}) \rceil \cdot snd\ (C2\ q); \ \forall x.\ x \neq q \longrightarrow C1(x) = C2(x) \rceil
              mbox-step C1 a k C2
abbreviation mbox-step-bounded
 :: ('peer \Rightarrow ('state \times ('information, 'peer) \ message \ word)) \Rightarrow ('information, 'peer)
action \Rightarrow
       nat \Rightarrow ('peer \Rightarrow ('state \times ('information, 'peer) message word)) \Rightarrow bool
  (--\langle -, -\rangle \rightarrow -[90, 90, 90, 90] 110) where
  C1 - \langle a, n \rangle \rightarrow C2 \equiv mbox\text{-step } C1 \ a \ (Some \ n) \ C2
{f abbreviation}\ mbox-step-unbounded
 :: ('peer \Rightarrow ('state \times ('information, 'peer) \ message \ word)) \Rightarrow ('information, 'peer)
action \Rightarrow
       ('peer \Rightarrow ('state \times ('information, 'peer) message word)) \Rightarrow bool
  (--\langle -, \infty \rangle \to -[90, 90, 90] \ 110) where
  C1 - \langle a, \infty \rangle \rightarrow C2 \equiv mbox\text{-step } C1 \text{ a None } C2
inductive mbox-run
  :: ('peer \Rightarrow ('state \times ('information, 'peer) \ message \ word)) \Rightarrow bound \Rightarrow
       ('information, 'peer) \ action \ word \Rightarrow
       ('peer \Rightarrow ('state \times ('information, 'peer) message word)) list \Rightarrow bool where
                          mbox-run C k \varepsilon ([])
  MREmpty:
  MRComposedNat: [mbox-run\ CO\ (Some\ k)\ w\ xc;\ last\ (CO\#xc)\ -\langle\ a,\ k\rangle \rightarrow\ C] \Longrightarrow
                   mbox-run\ C0\ (Some\ k)\ (w\cdot [a])\ (xc@[C])\ |
  MRComposedInf: [mbox-run \ C0 \ None \ w \ xc; \ last \ (C0\#xc) - \langle a, \infty \rangle \rightarrow C] \Longrightarrow
                   mbox-run\ CO\ None\ (w[a])\ (xc@[C])
```

```
- E(mbox)
inductive-set MboxTraces
  :: nat option \Rightarrow ('information, 'peer) action language (T<sub>-</sub> [100] 120)
  for k :: nat option where
    MTRun: mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} k w xc \Longrightarrow w \in \mathcal{T}_k
— T(mbox)
abbreviation MboxLang :: bound \Rightarrow ('information, 'peer) action language (L-
[100] 120)
  where
    \mathcal{L}_k \equiv \{ w \downarrow_! \mid w. \ w \in \mathcal{T}_k \}
abbreviation MboxLang-bounded-by-one :: ('information, 'peer) action language
(\mathcal{L}_1 \ 120) where
 \mathcal{L}_{\mathbf{1}} \equiv \mathcal{L}_{\mathcal{B} \ 1}
abbreviation MboxLang-unbounded :: ('information, 'peer) action language (\mathcal{L}_{\infty})
120) where
  \mathcal{L}_{\infty} \equiv \mathcal{L}_{\infty}
abbreviation MboxLangSend :: bound \Rightarrow ('information, 'peer) action language
(\mathcal{L}_{!-} [100] 120)
  where
    \mathcal{L}_{!k} \equiv (\mathcal{L}_k) |_!
abbreviation MboxLangRecv :: bound \Rightarrow ('information, 'peer) action language
(\mathcal{L}_{?-} [100] 120)
  where
    \mathcal{L}_{?k} \equiv (\mathcal{L}_k) |_?
          Synchronisability
abbreviation is-synchronisable :: bool where
  is-synchronisable \equiv \mathcal{L}_{\infty} = \mathcal{L}_{\mathbf{0}}
type-synonym 'a topology = ('a \times 'a) set
— the topology graph of all peers
inductive-set Edges :: 'peer \ topology \ (\mathcal{G} \ 110) where
  TEdge: i^{p \to q} \in \mathcal{M} \Longrightarrow (p, q) \in \mathcal{G}
abbreviation Successors :: 'peer topology \Rightarrow 'peer \Rightarrow 'peer set (-\langle - \rightarrow \rangle \ [90, 90]
110) where
  E\langle p \rightarrow \rangle \equiv \{q. (p, q) \in E\}
abbreviation Predecessors :: 'peer topology \Rightarrow 'peer \Rightarrow 'peer set (-\langle \rightarrow - \rangle [90, 90]
110) where
  E \stackrel{\checkmark}{\rightarrow} q \rangle \equiv \{ p. \ (p, q) \in E \}
```

2.5.1 Topology is a Tree

```
inductive is-tree :: 'peer set \Rightarrow 'peer topology \Rightarrow bool where
  ITRoot: is-tree \{p\} \{\} \}
  ITNode: \llbracket is\text{-tree } P \ E; \ p \in P; \ q \notin P \rrbracket \implies is\text{-tree (insert } q \ P) \ (insert \ (p, \ q) \ E)
abbreviation tree-topology :: bool where
  tree-topology \equiv is-tree \ (UNIV :: 'peer \ set) \ (\mathcal{G})
abbreviation is-root-from-topology :: 'peer \Rightarrow bool where
  is-root-from-topology p \equiv (tree-topology \land \mathcal{G}(\rightarrow p) = \{\})
abbreviation is-root-from-local :: 'peer \Rightarrow bool where
  is-root-from-local p \equiv tree-topology \land \mathcal{P}_?(p) = \{\} \land (\forall q. p \notin \mathcal{P}_!(q))
abbreviation is-root :: 'peer \Rightarrow bool where
  is-root p \equiv is-root-from-local p \lor is-root-from-topology p
abbreviation is-node-from-topology :: 'peer \Rightarrow bool where
  is-node-from-topology p \equiv (tree-topology \land (\exists q. \mathcal{G} \langle \rightarrow p \rangle = \{q\}))
abbreviation is-node-from-local :: 'peer \Rightarrow bool where
  is-node-from-local p \equiv tree-topology \land (\exists q. \mathcal{P}_?(p) = \{q\} \lor p \in \mathcal{P}_!(q))
abbreviation is-node :: 'peer \Rightarrow bool where
  is-node p \equiv is-node-from-topology p \lor is-node-from-local p
2.5.2 Parent-Child Relationship in Trees
inductive is-parent-of :: 'peer \Rightarrow 'peer \Rightarrow bool where
  node\text{-}parent: [is\text{-}node\ p;\ \mathcal{G}\langle \rightarrow p \rangle = \{q\}]] \Longrightarrow is\text{-}parent\text{-}of\ p\ q
2.5.3
           Path to Root
inductive path-to-root :: 'peer \Rightarrow 'peer list \Rightarrow bool where
  PTRRoot: [is-root \ p] \implies path-to-root \ p \ [p]
  PTRNode: [tree-topology; is-parent-of p q; path-to-root q as; distinct (p # as)]
\implies path\text{-}to\text{-}root\ p\ (p\ \#\ as)
definition get\text{-}root :: 'peer topology \Rightarrow 'peer where <math>get\text{-}root E = (THE \ x. \ is\text{-}root
abbreviation get-path-to-root :: 'peer \Rightarrow 'peer list where
  \textit{get-path-to-root}\ p\ \equiv\ (\textit{THE ps. path-to-root}\ p\ ps)
inductive path-from-root :: 'peer \Rightarrow 'peer list \Rightarrow bool where
  PFRRoot: [is-root \ p] \implies path-from-root \ p \ [p]
  PFRNode: [tree-topology; is-parent-of p q; path-from-root q as; distinct (as @
[p] \Longrightarrow path-from-root p (as @ [p])
```

```
inductive path-from-to :: 'peer \Rightarrow 'peer \Rightarrow 'peer list \Rightarrow bool where path-refl: \llbracket tree\text{-topology}; \ p \in \mathcal{P} \rrbracket \implies path\text{-from-to} \ p \ p \ [p] \mid path\text{-step}: \llbracket tree\text{-topology}; \ is\text{-parent-of} \ p \ q; \ path\text{-from-to} \ r \ q \ as; \ distinct \ (as @ [p]) \rrbracket \implies path\text{-from-to} \ r \ p \ (as @ [p])
```

2.5.4 Influenced Language

inductive is-in-infl-lang:: 'peer \Rightarrow ('information, 'peer) action word \Rightarrow bool where IL-root: $\llbracket is\text{-root }r; \ w \in \mathcal{L}(r) \rrbracket \implies is\text{-in-infl-lang }r \ w \mid$ — influenced language of root r is language of r

IL-node: $\llbracket tree-topology; is-parent-of p \ q; \ w \in \mathcal{L}(p); is-in-infl-lang \ q \ w'; \ ((w\downarrow_?)\downarrow_{!?}) = (((w'\downarrow_{\{p,q\}})\downarrow_!)\downarrow_{!?}) \rrbracket \Longrightarrow is-in-infl-lang \ p \ w - p \ is \ any \ node \ and \ q \ its \ parent \ has a matching send for each of p's receives$

abbreviation InfluencedLanguage :: 'peer \Rightarrow ('information, 'peer) action language (\mathcal{L}^* - [90] 100) where \mathcal{L}^* $p \equiv \{w. is-in-infl-lang p w\}$

abbreviation InfluencedLanguageSend :: 'peer \Rightarrow ('information, 'peer) action language ($\mathcal{L}_!^*$ - [90] 100) where $\mathcal{L}_!^*$ $p \equiv (\mathcal{L}^*$ $p)|_!$

abbreviation InfluencedLanguageRecv :: 'peer \Rightarrow ('information, 'peer) action language ($\mathcal{L}_?^*$ - [90] 100) where $\mathcal{L}_?^*$ $p \equiv (\mathcal{L}^*$ p)|?

abbreviation ShuffledInfluencedLanguage :: 'peer \Rightarrow ('information, 'peer) action language ($\mathcal{L}^*_{\sqcup \sqcup}$ - [90] 100) **where** $\mathcal{L}^*_{\sqcup \sqcup}$ $p \equiv shuffled$ -lang (\mathcal{L}^* p)

— p receives from no one and there is no q that sends to p **abbreviation** no-sends-to-or-recvs-in :: 'peer \Rightarrow bool **where** no-sends-to-or-recvs-in $p \equiv (\mathcal{P}_?(p) = \{\} \land (\forall q. p \notin \mathcal{P}_!(q)))$

2.5.5 Add Matching Receives Function

fun add-matching-recvs :: ('information, 'peer) action word \Rightarrow ('information, 'peer) action word where add-matching-recvs [] = [] | add-matching-recvs (a # w) = (if is-output a then a # (?\(\frac{2}{3}\)\(\text{get-message a}\)) # add-matching-recvs w

2.5.6 Lemma 4.4 and preparations

 $else\ a\ \#\ add\text{-}matching\text{-}recvs\ w)$

inductive acc-infl-lang-word :: 'peer \Rightarrow ('information, 'peer) action word \Rightarrow bool where

ACC-root: [[is-root r; $w \in \mathcal{L}^*(r)$]] \implies acc-infl-lang-word r w | — influenced language of root r is language of r

```
ACC-node: [tree-topology; is-parent-of p q; w \in \mathcal{L}^*(p); acc-infl-lang-word q w'; ((w\downarrow_?)\downarrow_{!?}) = (((w'\downarrow_{\{p,q\}})\downarrow_!)\downarrow_{!?})] \Longrightarrow acc-infl-lang-word p (w' @ w) — p is any node and q its parent has a matching send for each of p's receives
```

```
inductive concat-infl :: 'peer \Rightarrow ('information, 'peer) action word \Rightarrow 'peer list \Rightarrow ('information, 'peer) action word \Rightarrow bool for p::'peer and w:: ('information, 'peer) action word where
```

```
at-p: [[tree-topology; w \in \mathcal{L}^*(p); path-to-root p ps]] \Longrightarrow concat-infl p w ps w | reach-root: [[is-root q; qw \in \mathcal{L}^*(q); path-to-root x (x \# [q]); (\forall g. w-acc \downarrow_g \in \mathcal{L}^*(g)); concat-infl p w (x \# [q]) w-acc; (((w-acc \downarrow_x) \downarrow_?) \downarrow_!?) = (((qw \downarrow_{\{x,q\}}) \downarrow_!) \downarrow_!?)]] \Longrightarrow concat-infl p w [q] (qw \cdot w-acc) |
```

```
node-step: [tree-topology; \mathcal{P}_?(x) = \{q\}; (\forall g. w-acc\downarrow_g \in \mathcal{L}^*(g)); path-to-root x (x \# q \# ps); qw \in \mathcal{L}^*(q); concat-inft p w (x \# q \# ps) w-acc; (((w-acc\downarrow_x)\downarrow_?)\downarrow_!?) = (((qw\downarrow_{\{x,q\}})\downarrow_!)\downarrow_!?)] \Longrightarrow concat-inft p w (q\#ps) (qw \cdot w-acc)
```

2.6 New Formalization of the Main Theorem

$$_{q} \ddagger w \ddagger_{p} \equiv \{(x \downarrow_{!}) \downarrow_{\{p,q\}} \mid x. \ (w \cdot x) \in \mathcal{L}^{*}(q) \}$$

```
definition subset-condition :: 'peer \Rightarrow 'peer \Rightarrow bool

where subset-condition p \ q \longleftrightarrow (\forall \ w \in \mathcal{L}^*(p). \ \forall \ w' \in \mathcal{L}^*(q).

(((w'\downarrow_!)\downarrow_{\{p,q\}})\downarrow_{!?} = ((w\downarrow_?)\downarrow_{!?})) \longrightarrow ((q^{\ddagger}w'^{\ddagger}p)\downarrow_{!?} \subseteq (^{\ddagger}w^{\ddagger}p))\downarrow_{!?})
```

definition theorem-rightside :: bool

```
where theorem-rightside \longleftrightarrow (\forall p \in \mathcal{P}. \forall q \in \mathcal{P}. ((is\text{-parent-of } p \ q) \longrightarrow ((subset\text{-condition } p \ q) \land ((\mathcal{L}^*(p)) = (\mathcal{L}^*_{\sqcup \sqcup}(p)))))
```

2.6.1 First Proof Direction Mix Constructions

fun mix-pair :: ('information, 'peer) action word \Rightarrow ('information, 'peer) action word \Rightarrow ('information, 'peer) action word \Rightarrow ('information, 'peer) action word where

```
\begin{array}{l} \textit{mix-pair} \ [] \ [] \ \textit{acc} = \textit{acc} \ | \\ \textit{mix-pair} \ (\textit{a} \# \textit{w'}) \ [] \ \textit{acc} = \textit{mix-pair} \textit{w'} \ [] \ (\textit{a} \# \textit{acc}) \ | \\ \textit{mix-pair} \ [] \ (\textit{a} \# \textit{w}) \ \textit{acc} = \textit{mix-pair} \ [] \ \textit{w} \ (\textit{a} \# \textit{acc}) \ | \\ \textit{mix-pair} \ (\textit{a} \# \textit{w'}) \ (\textit{b} \# \textit{w}) \ \textit{acc} = (\textit{if} \ \textit{a} = ! \langle \textit{get-message} \ \textit{b} \rangle \\ \textit{then} \ (\textit{if} \ \textit{b} = ? \langle \textit{get-message} \ \textit{a} \rangle \ \textit{then} \ \textit{mix-pair} \ \textit{w'} \ \textit{w} \ (\textit{a} \# \textit{b} \# \textit{acc}) \ \textit{else} \ \textit{mix-pair} \\ (\textit{a} \# \textit{w'}) \ \textit{w} \ (\textit{b} \# \textit{acc})) \\ \textit{else} \ \textit{mix-pair} \ \textit{w'} \ (\textit{b} \# \textit{w}) \ (\textit{a} \# \textit{acc})) \end{array}
```

```
inductive mix-shuf :: ('information, 'peer) action word \Rightarrow ('information, 'peer) action word \Rightarrow ('information, 'peer) action word \Rightarrow bool where mix-shuf-constr: [vq\downarrow_!\downarrow_{\{p,q\}}\downarrow_!?=v\downarrow_?\downarrow_!?; v'\in\mathcal{L}^*_{\sqcup\sqcup}(p); v'\sqcup\sqcup_? v; v\in\mathcal{L}^*(p); vq\in\mathcal{L}^*(q); vq=(as\cdot a\text{-send}\ \#\ bs);\ v=xs\cdot b\ \#\ a\text{-recv}\ \#\ ys;\ get\text{-message}\ a\text{-recv}=get\text{-message}\ a\text{-send};\ is\text{-input}\ a\text{-recv};\ is\text{-output}\ a\text{-send};\ is\text{-output}\ b] \Longrightarrow mix\text{-shuf}\ vq\ v\ v'\ ((mix\text{-pair}\ as\ xs\ [])\cdot a\text{-send}\ \#\ b\ \#\ a\text{-recv}\ \#\ (mix\text{-pair}\ bs\ ys\ [])) end end end theory CommunicatingAutomaton imports Defs begin declare [[quick\text{-and-dirty}=true]]
```

3 Communicating Automata and System Lemmas

3.1 Projection Simplifications for General Cases of Words

```
lemma proj-trio-inv:
 shows ((w\downarrow_q)\downarrow_!)\downarrow_{\{p,q\}} = ((w\downarrow_!)\downarrow_q)\downarrow_{\{p,q\}}
proof (induct w)
  case Nil
  then show ?case by simp
next
  case (Cons\ a\ w)
  then show ?case by fastforce
qed
lemma proj-trio-inv2:
 shows (((w'\downarrow_!)\downarrow_q)\downarrow_{\{p,q\}}) = (((w'\downarrow_{\{p,q\}})\downarrow_!)\downarrow_q)
proof (induct w')
  case Nil
  then show ?case by simp
next
  case (Cons\ a\ w)
 then show ?case by (metis (no-types, lifting) filter.simps(2))
qed
lemma filter-recursion: filter f (filter f xs) = filter f xs by simp
```

```
lemma filter-head-helper:
  assumes x \# (filter f xs) = (filter f (x \# xs))
  shows f x
proof (induction xs)
  case Nil
  then show ?case by (meson Cons-eq-filterD assms)
  case (Cons a xs)
  then show ?case by simp
qed
{f lemma} output-proj-input-yields-eps:
  assumes (w\downarrow_!) = w
 shows (w\downarrow_?) = \varepsilon
  by (metis assms filter-False filter-id-conv)
lemma input-proj-output-yields-eps:
  assumes (w\downarrow_?) = w
  shows (w\downarrow_!) = \varepsilon
 by (metis assms filter-False filter-id-conv)
\mathbf{lemma}\ input-proj-nonempty-impl-input-act:
  assumes (w\downarrow_?) \neq \varepsilon
  shows \exists xs \ a \ ys. \ ((w\downarrow_?) = (xs @ [a] @ ys)) \land is-input \ a
  by (metis append.left-neutral append-Cons assms filter.simps(2) filter-recursion
      input-proj-output-yields-eps list.distinct(1) list.exhaust)
\mathbf{lemma}\ output\text{-}proj\text{-}nonempty\text{-}impl\text{-}input\text{-}act:}
  assumes (w\downarrow_!) \neq \varepsilon
 shows \exists xs \ a \ ys. \ ((w\downarrow_!) = (xs @ [a] @ ys)) \land is\text{-}output \ a
 by (metis append.left-neutral append-Cons assms filter-empty-conv filter-recursion
split-list)
\mathbf{lemma}\ decompose\text{-}send:
  assumes (w\downarrow_1) \neq \varepsilon
  shows \exists v \ a \ q \ p. \ (w\downarrow_!) = v \cdot [!\langle (a^{q \to p})\rangle]
  have \exists v x. (w\downarrow_!) = v \cdot [x] by (metis assms rev-exhaust)
  then obtain v \ x where (w\downarrow_!) = v \cdot [x] by auto
  then have is-output x by (metis assms filter-id-conv filter-recursion last-in-set
last-snoc)
 then obtain a q p where x = !\langle (a^{q \to p}) \rangle by (metis action.exhaust is-output.simps(2))
message.exhaust)
 then show ?thesis by (simp add: \langle w \downarrow_! = v \cdot x \# \varepsilon \rangle)
qed
lemma only-one-actor-proj:
 assumes w = w \downarrow_q and p \neq q
```

```
shows w\downarrow_p = \varepsilon
  by (metis\ (mono-tags,\ lifting)\ assms(1,2)\ filter-False\ filter-id-conv)
lemma filter-pair-commutative:
  shows filter g (filter f xs) = filter f (filter g xs)
proof (induction xs)
  case Nil
  then show ?case by simp
next
  case (Cons \ x \ xs)
  then show ?case
    by (simp add: conj-commute)
qed
lemma pair-proj-to-object-proj:
  assumes (w\downarrow_p) = w
  shows w\downarrow_{\{p,q\}} = (filter\ (\lambda x.\ get\text{-}object\ x=q)\ w)
  by (smt (verit, del-insts) assms filter-cong filter-id-conv)
lemma actor-proj-app-inv:
  assumes (u@v)\downarrow_p = (u@v)
  shows u = u \downarrow_p \land v = v \downarrow_p
  using assms
proof -
  from assms have (u@v)\downarrow_p = u @ v
  moreover have (u@v)\downarrow_p = (u)\downarrow_p @ (v)\downarrow_p
    by (rule filter-append)
  ultimately have eq: (u)\downarrow_p @ (v)\downarrow_p = u @ v by argo
  have u-len: length (u\downarrow_p) \leq length u using length-filter-le by blast
  have v-len: length (v\downarrow_p) \leq length \ v using length-filter-le by blast
  have t1: (u)\downarrow_p = u
  proof (rule ccontr)
    assume u\downarrow_p \neq u
     then have length (u\downarrow_p) < length u by (metis u-len \langle (u \cdot v) \downarrow_p = u\downarrow_p \cdot v\downarrow_p \rangle
\langle u \downarrow_p \neq u \rangle append-eq-append-conv assms le-neq-implies-less)
    then have length ((u)\downarrow_p @ (v)\downarrow_p) \leq length ((u@v)) by (metis \langle (u \cdot v)\downarrow_p =
u\downarrow_p \cdot v\downarrow_p > length-filter-le)
    have length ((u)\downarrow_p @ (v)\downarrow_p) = length (u\downarrow_p) + length (v\downarrow_p) by simp
     have length (u\downarrow_p) + length (v\downarrow_p) < length (u) + length (v) by (simp add:
\langle |u\downarrow_p| < |u| \rangle \ add-less-le-mono)
    then show False using eq length-append less-not-refl by metis
  qed
  have t2: (v) \downarrow_p = v
  proof (rule ccontr)
    assume v\downarrow_p \neq v
     then have length (v\downarrow_p) < length v by (metis v-len \langle (u \cdot v) \downarrow_p = u\downarrow_p \cdot v\downarrow_p \rangle
\langle v \downarrow_p \neq v \rangle append-eq-append-conv assms le-neq-implies-less)
     then have length ((u)\downarrow_p @ (v)\downarrow_p) \leq length ((u@v)) by (metis \langle (u \cdot v)\downarrow_p =
```

```
u\downarrow_p \cdot v\downarrow_p \mapsto length\text{-}filter\text{-}le)
    \mathbf{have}\ length\ ((u){\downarrow_p}\ @\ (v){\downarrow_p}) = length\ (u{\downarrow_p}) \ + \ length\ (v{\downarrow_p})\ \mathbf{by}\ simp
     then show False using \langle (u \cdot v) \downarrow_p = u \downarrow_p \cdot v \downarrow_p \rangle \langle u \downarrow_p = u \rangle \langle v \downarrow_p \neq v \rangle assms
same-append-eq by metis
  ged
  show ?thesis using t1 t2 by simp
\mathbf{qed}
lemma actors-4-proj-app-inv:
  assumes (a @ b @ c @ d) \downarrow_p = (a @ b @ c @ d)
  shows a\downarrow_p = a \land b\downarrow_p = b \land c\downarrow_p = c \land d\downarrow_p = d
  by (metis actor-proj-app-inv assms)
\mathbf{lemma}\ not\text{-}only\text{-}sends\text{-}impl\text{-}recv:
  assumes w \neq w \downarrow_!
  shows \exists x. \ x \in set \ w \land is\text{-}input \ x
  by (metis assms filter-True)
lemma orderings-inv-for-prepend:
  assumes w\downarrow_? = w'\downarrow_? and w\downarrow_! = w'\downarrow_!
  shows (a \# w)\downarrow_? = (a \# w')\downarrow_? \land (a \# w)\downarrow_! = (a \# w')\downarrow_!
  by (simp \ add: \ assms(1,2))
lemma orderings-inv-for-prepend-rev:
  assumes (a \# w)\downarrow_? = (a \# w')\downarrow_? and (a \# w)\downarrow_! = (a \# w')\downarrow_!
  shows w\downarrow_? = w'\downarrow_? \land w\downarrow_! = w'\downarrow_!
  by (metis (no-types, lifting) assms(1,2) filter.simps(2) list.inject)
lemma prefix-trans:
  assumes prefix x z
  shows \exists y. prefix y z \land x = y
  by (simp add: assms)
lemma prefix-inv-no-signs:
  assumes prefix w w'
shows prefix (w\downarrow_{!?}) (w'\downarrow_{!?})
  using map-mono-prefix assms by auto
3.2
          Shuffles and the Shuffled Language
lemma shuffled-rev:
  assumes shuffled w w'
  shows w = w' \lor (\exists \ a \ b \ xs \ ys. \ w = (xs @ a \# b \# ys) \land is\text{-}output \ a \land is\text{-}input
b \wedge w' = (xs \otimes b \# a \# ys)) \vee (\exists tmp. shuffled w tmp \wedge shuffled tmp w')
  using assms shuffled.refl by blast
```

lemma shuffled-prepend-inductive:

assumes shuffled w w'

```
shows shuffled (a \# w) (a \# w')
  using assms
proof (induct)
  case (refl\ w)
  then show ?case using shuffled.refl by auto
  case (swap \ a \ b \ w \ xs \ ys)
  then show ?case by (metis (no-types, lifting) Cons-eq-appendI shuffled.simps)
next
  case (trans w w' w'')
  then show ?case using shuffled.trans by auto
lemma fully-shuffled-gen:
  assumes xs = xs\downarrow_1
 shows shuffled (xs @ [?\langle (a^{q \to p})\rangle]) ([?\langle (a^{q \to p})\rangle] @ xs)
  using assms
proof (induct xs)
  case Nil
  then show ?case by (simp add: shuffled.refl)
next
  case (Cons \ y \ ys)
  then have ys = ys\downarrow_! by (metis\ filter.simps(2)\ impossible-Cons\ length-filter-le
 then have shuffled (ys \cdot ?\langle (a^{q \to p}) \rangle \# \varepsilon) (?\langle (a^{q \to p}) \rangle \# \varepsilon \cdot ys) using Cons.hyps
by blast
 have is-output y by (meson Cons.prems Cons-eq-filterD)
  then have last-step: shuffled (y \# ?\langle (a^{q \to p}) \rangle \# ys) (?\langle (a^{q \to p}) \rangle \# \varepsilon \cdot y \# ys)
by (metis\ Cons-eq-appendI\ eq-Nil-appendI\ is-output.simps(2)\ shuffled.swap)
 have shuffled (y \# ys \cdot ?\langle (a^{q \to p}) \rangle \# \varepsilon) (y \# ?\langle (a^{q \to p}) \rangle \# ys) using \langle shuffled \rangle
(ys \cdot ?\langle (a^{q \to p}) \rangle \# \varepsilon) (?\langle (a^{q \to p}) \rangle \# \varepsilon \cdot ys) \rangle \text{ shuffled-prepend-inductive by } fastforce
  then show ?case by (meson last-step shuffled.trans)
qed
lemma fully-shuffled-w-prepend:
  assumes xs = xs\downarrow_1
 shows shuffled (w @ xs @ [?\langle (a^{q \to p})\rangle]) (w @ [?\langle (a^{q \to p})\rangle] @ xs)
  using assms
proof (induct w)
  case Nil
  then show ?case by (metis append-Nil fully-shuffled-gen)
next
  case (Cons\ a\ w)
  then show ?case using shuffled-prepend-inductive by auto
lemma shuffle-preserves-length:
  shuffled w w' \Longrightarrow length w = length w'
  by (induction rule: shuffled.induct) auto
```

```
\mathbf{lemma} \ \mathit{shuffled-lang-subset-lang} \ :
 assumes w \in L
 shows valid-input-shuffles-of-w w \subseteq shuffled-lang L
 using all-shuffles-def assms shuffled-lang-def by fastforce
\mathbf{lemma}\ input\text{-}shuffle\text{-}implies\text{-}shuffled\text{-}lang\ :}
  assumes w \in L and w' \in valid\text{-}input\text{-}shuffles\text{-}of\text{-}w w
 shows w' \in shuffled\text{-}lang L
 using assms(1,2) shuffled-lang-subset-lang by auto
lemma shuffled-lang-not-empty:
 shows (valid-input-shuffles-of-w w) \neq {}
 using shuffled.refl by auto
lemma valid-input-shuffles-of-lang:
 assumes w \in L
 shows \exists w'. (w' \sqcup \sqcup_? w \land w' \in shuffled\text{-}lang L)
 by (metis assms input-shuffle-implies-shuffled-lang mem-Collect-eq shuffled.reft)
{f lemma}\ valid	ext{-input-shuffle-partner}:
 assumes \{\} \neq valid-input-shuffles-of-w w
 shows \exists w'. w' \sqcup \sqcup_? w
 using assms by auto
\mathbf{lemma} \mathit{shuffle-id}:
 assumes w \in L
 shows w \in shuffled-lang L
 using assms by (simp add: input-shuffle-implies-shuffled-lang shuffled.reft)
lemma shuffled-prepend:
 assumes w' \sqcup \sqcup_? w
 shows a \# w' \sqcup \sqcup_? a \# w
 using assms
proof (induct rule: shuffled.induct)
 case (refl w)
 then show ?case using shuffled.refl by blast
  case (swap \ a \ b \ w \ xs \ ys)
  then show ?case by (metis append-Cons shuffled.swap)
next
  case (trans w w' w'')
 then show ?case using shuffled.trans by auto
qed
\mathbf{lemma}\ \mathit{fully-shuffled-implies-output-right}\ :
 assumes xs = xs\downarrow_? and is-output a
 shows shuffled ([a] @ xs) (xs @ [a])
 using assms
```

```
proof (induct xs)
 case Nil
  then show ?case by (simp add: shuffled.refl)
 case (Cons y ys)
 then have ys @ [a] \sqcup \sqcup_? (a \# ys)
    by (metis append-Cons append-eq-append-conv-if drop-eq-Nil2 filter.simps(2)
impossible-Cons\ length-filter-le\ list.sel(3))
 have is-input y by (metis Cons.prems(1) filter-id-conv list.set-intros(1))
  then have y \# [a] \sqcup \sqcup_? (a \# [y]) using append.assoc append.right-neutral
assms(2) same-append-eq shuffled.simps by fastforce
 then have y \# a \# ys \sqcup \sqcup_? a \# y \# ys by (metis <is-input y> append-self-conv2
assms(2) shuffled.swap)
  then have y \# ys @ [a] \sqcup \sqcup_? y \# a \# ys using \langle ys \cdot a \# \varepsilon \sqcup \sqcup_? a \# ys \rangle
shuffled-prepend by auto
 then show ?case using \langle y \# a \# ys \sqcup \sqcup \rfloor? a \# y \# ys \rangle shuffled.trans by auto
qed
lemma shuffle-keeps-outputs-right-shuffled:
 assumes shuffled w w' and is-output (last w)
 shows is-output (last w')
using assms
proof (induct rule: shuffled.induct)
 case (refl\ w)
  then show ?case by simp
next
  case (swap \ a \ b \ w \ xs \ ys)
 then show ?case by auto
next
 case (trans w w' w'')
 then show ?case by simp
lemma all-shuffles-rev:
 assumes w' \in all\text{-}shuffles w
 shows shuffled w w'
 using all-shuffles-def assms by auto
lemma shuffled-lang-rev:
 assumes w \in shuffled-lang L
 shows \exists w'. w' \in L \land w \in all\text{-shuffles } w'
 using assms shuffled-lang-def by auto
{\bf lemma}\ shuffled-lang-impl-valid-shuffle:
 assumes v \in shuffled\text{-}lang\ L
 shows \exists v'. (v \sqcup \sqcup_? v' \land v' \in L)
 by (meson all-shuffles-rev assms shuffled-lang-rev)
lemma fully-shuffled-valid-gen:
```

```
assumes (xs @ [?\langle (a^{q \to p})\rangle]) \in L \text{ and } xs = xs\downarrow_!
  shows ([?\langle(a^{q\to p})\rangle] @ xs) \sqcup \sqcup_? (xs @ [?\langle(a^{q\to p})\rangle])
  by (meson \ assms(2) \ fully-shuffled-gen)
lemma shuffling-possible-to-existing-shuffle:
  assumes shuffling-possible w
 shows \exists w'. shuffled w w' \land w \neq w' using assms shuffled.swap by fastforce
          Rightmost Shuffle
3.2.1
lemma rightmost-shuffle-exists:
  assumes v \in shuffled-lang L and shuffling-occurred v
 shows \exists xs \ a \ b \ ys. \ v = (xs @ b \# a \# ys) \land v \sqcup \sqcup_? (xs @ a \# b \# ys)
  using assms(2) shuffled.swap by blast
lemma length-index-bound:
  shows Suc (length xs) < length (xs @ a \# b \# ys)
  have length (xs @ a \# b \# ys) = length xs + length (a \# b \# ys)
  also have length (a \# b \# ys) = 2 + length ys
   by simp
 finally show ?thesis
   by simp
qed
{f lemma} shuffle-index-exists:
  assumes shuffling-possible v
  shows \exists i. is\text{-}output (v!i) \land is\text{-}input (v!(Suc i)) \land (Suc i) < length v
proof -
  obtain xs a b ys where is-output a and is-input b and v = (xs @ a \# b \# b)
ys) using assms by auto
 have t1: v!(length \ xs) = a by (simp \ add: \langle v = xs \cdot a \# b \# ys \rangle)
  then have t2: v!(Suc\ (length\ xs)) = b by (metis\ Cons-nth-drop-Suc\ \langle v = xs - v|)
a \# b \# ys append-eq-conv-conj drop-all linorder-le-less-linear
       list.distinct(1) \ list.inject)
  have t3: (Suc\ (length\ xs)) < length\ v\ by (simp\ add: \langle v = xs \cdot a \ \# \ b \ \# \ ys \rangle)
  from t1 t2 t3 have is-output (v!(length\ xs)) \land is-input\ (v!(Suc\ (length\ xs))) \land
(Suc\ (length\ xs)) < length\ v
   by (simp\ add: \langle is\text{-}input\ b\rangle \langle is\text{-}output\ a\rangle)
  then show ?thesis by auto
qed
lemma rightmost-shuffle-index-exists:
  {\bf assumes}\ shuffling\text{-}possible\ v
  shows \exists i. is-output (v!i) \land is-input (v!(Suc\ i)) \land (Suc\ i) < length\ v \land \neg
(shuffling-possible\ (drop\ (Suc\ i)\ v))
  using assms
```

```
proof (induct v)
 case Nil
  then show ?case by simp
next
 case (Cons\ a\ w)
 then show ?case
 proof (cases shuffling-possible w)
   case True
   then obtain xs \ ys \ x \ y where w-decomp: is-output x \land is-input y \land w = xs.
x \# y \# ys  by blast
   then obtain i where i-def: is-output (w ! i) \land
       is\text{-}input (w ! Suc i) \land
       Suc i < |w| \land (\nexists xs \ a \ b \ ys. \ is output \ a \land is input \ b \land drop \ (Suc \ i) \ w = xs
a \# b \# ys
     using Cons.hyps by blast
   have (a \# w) = a \# (xs \cdot x \# y \# ys) by (simp \ add: w-decomp)
   have t1: is-output ((a \# w) ! (Suc i)) by (simp \ add: i\text{-}def)
   have t2: is\text{-}input ((a \# w) ! (Suc (Suc i))) by (simp \ add: i\text{-}def)
   have t3: (Suc\ (Suc\ i)) < |(a \# w)| by (simp\ add:\ i\text{-}def)
  have t_4: \neg (shuffling-possible (drop (Suc (Suc i)) (a#w))) by (metis drop-Suc-Cons
i-def)
   show ?thesis using t1 t2 t3 t4 by blast
  next
   case False
    then have \exists b \ ys. \ (a \# w) = (a \# b \# ys) \land is\text{-input } b \land is\text{-output } a \ \text{by}
(metis Cons.prems list.sel(1,3) self-append-conv2 tl-append2)
   then obtain b ys where (a \# w) = (a \# b \# ys) \land is\text{-input } b \land is\text{-output } a
by blast
   then have \neg shuffling-possible (b\#ys) using False by blast
   have is-output ((a \# w) ! \theta) \land
       is-input ((a \# w) ! Suc \theta) \land
       Suc 0 < |(a \# w)| by (simp \ add: \langle a \# w = a \# b \# ys \land is\text{-input } b \land
is-output \ a > )
  then show ?thesis by (metis Cons-nth-drop-Suc False Suc-lessD drop0 list.inject)
 qed
qed
lemma rightmost-shuffle-concrete:
 assumes shuffling-possible v
  shows \exists xs \ a \ b \ ys. \ is-output \ a \land is-input \ b \land v = (xs @ a \# b \# ys) \land \neg
(shuffling-possible\ ys)
 using assms
proof (induct v)
 case Nil
 then show ?case by simp
\mathbf{next}
 case (Cons\ a\ w)
  then show ?case using Cons assms
 proof (cases shuffling-possible w)
```

```
case True
   then have \exists xs \ a \ b \ ys. is-output a \land is-input b \land w = xs \cdot a \# b \# ys by blast
   then have \exists xs \ a \ b \ ys.
      is-output a \land 
      is\text{-input }b \wedge w = xs \cdot a \# b \# ys \wedge (\nexists xs \ a \ b \ ysa. \ is\text{-output }a \wedge is\text{-input }b \wedge is
ys = xs \cdot a \# b \# ysa) using Cons by blast
   then obtain xs \ ys \ x \ y where w-decomp: is-output x \land is-input y \land w = xs
x \# y \# ys \land \neg (shuffling\text{-}possible ys) by blast
   \mathbf{have}\ (a\ \#\ w) = a\ \#\ (xs\ \boldsymbol{\cdot}\ x\ \#\ y\ \#\ ys)\quad \mathbf{by}\ (simp\ add\colon w\text{-}decomp)
    then have is-output x \wedge is-input y \wedge (a\#w) = (a\#xs) \cdot x \# y \# ys \wedge \neg
(shuffling-possible\ ys)
     using w-decomp by auto
   then show ?thesis by blast
 next
   case False
    then have \exists b \ ys. \ (a \# w) = (a \# b \# ys) \land is\text{-input } b \land is\text{-output } a \ \text{by}
(metis\ Cons.prems\ list.sel(1,3)\ self-append-conv2\ tl-append2)
   then obtain b ys where (a \# w) = (a \# b \# ys) \land is-input b \land is-output a
by blast
   then have \neg shuffling-possible (b#ys) using False by blast
  then have is-output a \wedge is-input b \wedge (a\#w) = [] \cdot a \# b \# ys \wedge \neg (shuffling-possible)
ys) by (metis Cons-eq-appendI \langle a \# w = a \# b \# ys \wedge is-input b \wedge is-output
a \rightarrow append-self-conv2)
   then show ?thesis by blast
 qed
qed
lemma rightmost-shuffle-is-shuffle:
 assumes rightmost-shuffle v w
 shows w \sqcup \sqcup_? v
 using assms
proof -
 have rightmost-shuffle v w using assms by simp
 then have (\exists xs \ a \ b \ ys. \ is\text{-output} \ a \land is\text{-input} \ b \land v = (xs @ a \# b \# ys) \land (\neg
shuffling-possible ys) \land w = (xs @ b \# a \# ys)) by blast
  @ a \# b \# ys) \land (\neg shuffling-possible ys) <math>\land w = (xs @ b \# a \# ys) by blast
  have (xs @ b \# a \# ys) \sqcup \sqcup_? (xs @ a \# b \# ys) by (simp \ add: shuf-decomp
shuffled.swap)
  then show ?thesis by (simp add: shuf-decomp)
qed
lemma rightmost-shuffle-exists-2:
 assumes shuffling-possible v
 shows \exists w. rightmost-shuffle v w
 using assms
proof -
 have shuffling-possible v using assms by blast
 then have \exists xs \ a \ b \ ys. is-output a \land is-input b \land v = (xs @ a \# b \# ys) \land \neg
```

```
(shuffling-possible\ ys)\ using\ rightmost-shuffle-concrete[of\ v]\ by\ blast
  then obtain xs \ a \ b \ ys where is-output a \land is-input b \land v = (xs @ a \# b \# ys)
\wedge \ (\neg \ \mathit{shuffling\text{-}possible} \ \mathit{ys}) \ \mathbf{by} \ \mathit{blast}
  then have rightmost-shuffle v (xs @ b \# a \# ys) by blast
  then show \exists w. rightmost-shuffle v w by blast
qed
lemma fully-shuffled-valid-w-prepend:
  assumes (w @ [?\langle (a^{q \to p})\rangle] @ xs) \in L \text{ and } xs = xs\downarrow_!
  \mathbf{shows} \ (w \ @ \ [?\langle (a^{q \to p})\rangle] \ @ \ xs) \ \sqcup \sqcup_? \ (w \ @ \ xs \ @ \ [?\langle (a^{q \to p})\rangle])
  by (meson assms(2) fully-shuffled-w-prepend)
3.2.2
           Shuffles and Send/Reception Order
lemma shuffled-keeps-send-order:
  assumes shuffled v v'
  shows v\downarrow_! = v'\downarrow_!
  using assms
proof (induct)
  case (refl w)
  then show ?case by simp
next
  case (swap \ a \ b \ w \ xs \ ys)
  have w-decomp: w\downarrow_! = xs\downarrow_! \cdot [a,b]\downarrow_! \otimes ys\downarrow_! by (simp\ add:\ swap.hyps(3))
  \mathbf{have}\ \mathit{pair-decomp}\colon [a,b] \downarrow_! = [b,a] \downarrow_! \ \mathbf{by}\ (\mathit{simp\ add:\ swap.hyps}(2))
  then show ?case by (simp add: w-decomp)
next
  case (trans w w' w'')
  then show ?case by simp
\mathbf{lemma}\ \mathit{shuffle-keeps-send-order}\colon
  assumes v' \sqcup \sqcup_? v
  shows v\downarrow_! = v'\downarrow_!
  by (simp add: assms shuffled-keeps-send-order)
{f lemma} shuffled-keeps-recv-order:
  assumes shuffled v v'
  shows v\downarrow_? = v'\downarrow_?
  using assms
proof (induct)
  case (refl w)
  then show ?case by simp
next
  case (swap \ a \ b \ w \ xs \ ys)
  have w-decomp: w\downarrow_? = xs\downarrow_? \cdot [a,b]\downarrow_? \otimes ys\downarrow_? by (simp\ add:\ swap.hyps(3))
  have pair-decomp: [a,b]\downarrow_? = [b,a]\downarrow_? by (simp\ add:\ swap.hyps(1))
  then show ?case by (simp add: w-decomp)
next
```

```
case (trans w w' w'')
 then show ?case by simp
qed
lemma shuffle-keeps-recv-order:
 assumes v' \sqcup \sqcup_? v
 shows v\downarrow_? = v'\downarrow_?
 by (simp add: assms shuffled-keeps-recv-order)
       A Communicating Automaton
3.3
context CommunicatingAutomaton begin
lemma ActionsOverMessages-rev:
 assumes a \in ActionsOverMessages
 shows get-message a \in Messages
 using ActionsOverMessages.simps assms by force
{\bf lemma}\ Actions Over Messages-is-finite:
 {\bf shows} \ finite \ Actions Over Messages
 \mathbf{using}\ message-alphabet\ Alphabet\ .finite-letters[of\ Messages]
 by (simp add: ActionsOverMessages-def ActionsOverMessagesp.simps)
lemma action-is-action-over-message:
  fixes s1 s2 :: 'state
             :: ('information, 'peer) action
 assumes (s1, a, s2) \in Transitions
 shows a \in ActionsOverMessages
 using assms
proof (induct a)
 case (Output \ m)
 assume (s1, !\langle m \rangle, s2) \in Transitions
 thus !\langle m \rangle \in ActionsOverMessages
   using well-formed-transition [of s1 !\langle m \rangle s2] AOMOutput [of m]
   by simp
\mathbf{next}
 case (Input m)
 assume (s1, ?\langle m \rangle, s2) \in Transitions
 thus ?\langle m \rangle \in ActionsOverMessages
   using well-formed-transition[of s1 ?\langle m \rangle s2] AOMInput[of m]
   by simp
qed
lemma transition-set-is-finite:
 shows finite Transitions
proof -
 have Transitions \subseteq \{(s1, a, s2). \ s1 \in States \land a \in ActionsOverMessages \land s2\}
\in States\}
```

using well-formed-transition action-is-action-over-message

```
by blast
  moreover have finite \{(s1, a, s2). s1 \in States \land a \in ActionsOverMessages \land a\}
s2 \in States
   using finite-states ActionsOverMessages-is-finite
   by simp
 ultimately show finite Transitions
   \mathbf{using}\ finite\text{-}subset[of\ Transitions
       \{(s1, a, s2). \ s1 \in States \land a \in ActionsOverMessages \land s2 \in States\}\}
   by simp
\mathbf{qed}
lemma Actions-rev:
 assumes a \in Act
 shows \exists s1 s2. (s1, a, s2) \in Transitions
 by (meson Actions.cases assms)
{f lemma} Act-is-subset-of-Actions OverMessages:
 shows Act \subseteq ActionsOverMessages
proof
 fix a :: ('information, 'peer) action
 assume a \in Act
 then obtain s1 \ s2 where (s1, a, s2) \in Transitions
   by (auto simp add: Actions-def Actionsp.simps)
 hence get-message a \in Messages
   using well-formed-transition[of s1 a s2]
   by simp
  thus a \in ActionsOverMessages
 proof (induct a)
   case (Output m)
   assume get-message (!\langle m \rangle) \in Messages
   thus !\langle m \rangle \in ActionsOverMessages
     using AOMOutput[of m]
     \mathbf{by} \ simp
 next
   case (Input m)
   assume get-message (?\langle m \rangle) \in Messages
   thus ?\langle m \rangle \in ActionsOverMessages
     using AOMInput[of m]
     by simp
 qed
qed
lemma Act-is-finite:
 shows finite Act
 {\bf using} \ Actions Over Messages-is-finite \ Act-is-subset-of-Actions Over Messages
   finite-subset[of Act ActionsOverMessages]
 by simp
```

 $\mathbf{lemma}\ \textit{ComunicationPartners-is-finite} :$

```
shows finite CommunicationPartners
proof -
  have CommunicationPartners \subseteq \{p. \exists a. a \in ActionsOverMessages \land p = a\}
get-object a}
   using action-is-action-over-message
  by (auto simp add: CommunicationPartners-def CommunicationPartnersp.simps)
  moreover have finite \{p. \exists a. a \in ActionsOverMessages \land p = get-object a\}
   using ActionsOverMessages-is-finite
   by simp
  ultimately show finite CommunicationPartners
   using finite-subset[of CommunicationPartners
       \{p. \exists a. a \in ActionsOverMessages \land p = get\text{-}object a\}\}
   by simp
qed
lemma Sending To Peers-rev:
 fixes p :: 'peer
 assumes p \in SendingToPeers
 shows \exists s1 \ a \ s2. \ (s1, \ a, \ s2) \in Transitions \land is-output \ a \land get-object \ a = p
 using assms
 by (induct, blast)
\mathbf{lemma}\ Sending To Peers-is-subset-of-Communication Partners:
 shows SendingToPeers \subseteq CommunicationPartners
 {f using}\ Communication Partners. intros\ Sending To Peersp. simps\ Sending To Peersp-Sending To Peers-eq
 by auto
{f lemma}\ Receiving From Peers-rev:
  fixes p :: 'peer
 assumes p \in ReceivingFromPeers
 shows \exists s1 \ a \ s2. \ (s1, \ a, \ s2) \in Transitions \land is-input \ a \land get-object \ a = p
 using assms
 by (induct, blast)
{\bf lemma}\ Receiving From Peers-is-subset-of-Communication Partners:
 shows ReceivingFromPeers \subseteq CommunicationPartners
 {\bf using} \ \ Communication Partners. intros \ \ Receiving From Peersp. simps
   ReceivingFromPeersp-ReceivingFromPeers-eq
 by auto
— this is to show that if p receives from no one, then there is no transition where
p is the receiver
lemma empty-receiving-from-peers:
 fixes p :: 'peer
 assumes p \notin ReceivingFromPeers and (s1, a, s2) \in Transitions and is-input a
 shows get-object a \neq p
proof (rule ccontr)
 assume \neg get-object a \neq p
  then show False
```

```
proof
       have get\text{-}object\ a = p\ \mathbf{using}\ \langle \neg\ get\text{-}object\ a \neq p \rangle\ \mathbf{by}\ auto
       moreover have p \in ReceivingFromPeers
           using ReceivingFromPeers.intros \langle \neg get\text{-object } a \neq p \rangle assms(2,3) by auto
       moreover have False
           using assms(1) calculation by auto
       ultimately show get-object a \neq p using assms(1) by auto
    qed
qed
lemma run-rev:
   assumes run \ s\theta \ (a \# w) \ (s1 \# xs)
   shows run s1 w xs \wedge s0 -a \rightarrow_{\mathcal{C}} s1
   by (smt (verit, best) assms list.discI list.inject run.simps)
lemma run-rev2:
   assumes run s0 (w) (xs) and w \neq \varepsilon
   shows \exists v vs \ a \ s1. \ run \ s1 \ vvs \land s0 \ -a \rightarrow_{\mathcal{C}} s1 \land w = (a \# v) \land xs = (s1 \# vs)
   using assms(1,2) run.cases by fastforce
lemma run-app:
   assumes run s0 (u @ v) xs and u \neq \varepsilon
   shows \exists us \ vs. \ run \ s0 \ u \ us \land run \ (last \ us) \ v \ vs \land xs = us @ vs
    using assms
proof (induct u@v xs arbitrary: u v rule: run.induct)
    case (REmpty2 \ s)
    then show ?case by simp
next
    case (RComposed2 \ s1 \ w \ xs \ s0 \ a)
   then have a \# w = u \cdot v by simp
   then have \exists u'. w = u' \cdot v \wedge u = a \# u'
       by (metis RComposed2.prems append-eq-Cons-conv)
    then obtain u' where w-decomp: w = u' @ v and u-decomp: u = a \# u' by
    then have run s1 (u' @ v) xs using RComposed2.hyps(1) by auto
   then show ?case
   proof (cases u' = \varepsilon)
       \mathbf{case} \ \mathit{True}
       then have run s1 v xs using RComposed2.hyps(1) w-decomp by auto
       then have run \ s\theta \ [a] \ [s1]
             \mathbf{by}\ (metis\ Communicating Automaton. RComposed 2\ Communicating A
ton.REmpty2
                   Communicating Automaton-axioms \ RComposed 2.hyps(3))
        then have run s0 (a \# v) (s1 \# xs) by (simp \ add: RComposed2.hyps(3)
\langle run\ s1\ v\ xs \rangle\ run.RComposed2)
         then show ?thesis using True \langle run \ s0 \ (a \# \varepsilon) \ (s1 \# \varepsilon) \rangle \langle run \ s1 \ v \ xs \rangle
u-decomp by auto
   next
       case False
```

```
then obtain us' vs where xs-decomp: run s1 u' us' \wedge run (last us') v vs \wedge xs
= us' \cdot vs
    using RComposed2.hyps(2) w-decomp by blast
    then have run s0 (a # w) (s1 # us' @ vs) using RComposed2.hyps(1,3)
run.RComposed2 by auto
   then have full-run-decomp: run s0 (a \# u' @ v) (s1 \# us' @ vs) by (simp
add: w-decomp)
   then have run s1 u' us' by (simp add: xs-decomp)
    then have run s0 [a] [s1] by (simp add: RComposed2.hyps(3) REmpty2
run.RComposed2)
   then have run (last us') v vs by (simp add: xs-decomp)
  then have run s0 u (s1 \# us') by (simp add: RComposed2.hyps(3) run.RComposed2
u-decomp xs-decomp)
   then have run s0 u (s1 # us') \wedge run (last (s1 # us')) v vs \wedge s1 # xs = (s1
# us') • vs
    using False run.cases xs-decomp by force
   then show ?thesis by blast
 qed
qed
lemma run-second:
 assumes run \ s\theta \ (u \ @ \ v) \ (us@vs) and u \neq \varepsilon and run \ s\theta \ u \ us
 shows run (last us) v vs
 using assms
proof (induct \ u@v \ us@vs \ arbitrary: u \ v \ us \ vs \ rule: run.induct)
 case (REmpty2 \ s)
 then show ?case by simp
next
 case (RComposed2 \ s1 \ w \ xs \ s0 \ a)
 then show ?case by (smt (verit) append-eq-Cons-conv append-self-conv2 last-ConsL
last-ConsR list.discI
      list.inject run.simps)
qed
lemma Traces-rev:
 fixes w :: ('information, 'peer) action word
 assumes w \in Traces
 shows \exists xs. run initial w xs
 using assms
 by (induct, blast)
— since all states are final, if u sqdot > v is valid then u must also be valid otherwise
some transition for u is missing and hence u sqdot> v would be invalid
lemma Traces-app :
 assumes (u @ v) \in Traces
 shows u \in \mathit{Traces}
 by (metis CommunicatingAutomaton.REmpty2 CommunicatingAutomaton-axioms
Traces.cases
     Traces.intros assms run-app)
```

```
lemma Traces-second: assumes (u @ v) \in Traces and u \neq \varepsilon shows \exists s0 \ us \ vs. \ run \ s0 \ (u @ v) \ (us@vs) \land run \ (last \ us) \ v \ vs using Traces-rev assms(1,2) \ run-app by blast
```

 $\quad \mathbf{end} \quad$

3.4 Network of Communicating Automata

```
\begin{array}{c} \textbf{context} \ \textit{NetworkOfCA} \\ \textbf{begin} \end{array}
```

```
lemma peer-trans-to-message-in-network:

assumes (s1, a, s2) \in \mathcal{R}(p)

shows get-message a \in \mathcal{M}

by (meson CommunicatingAutomaton.ActionsOverMessages-rev CommunicatingAutomaton.action-is-action-over-message

assms automaton-of-peer)
```

3.4.1 Helpful Conclusions about Language, Runs, etc. for Concrete Cases

```
\mathbf{lemma}\ empty\text{-}receiving\text{-}from\text{-}peers2:
  fixes p :: 'peer
 assumes p \notin ReceivingFromPeers and (s1, a, s2) \in \mathcal{R}(p) and is-input a
  shows get-object a \neq p
proof (rule ccontr)
  assume \neg get\text{-}object \ a \neq p
  then show False
  proof
    have get-object a = p using \langle \neg get\text{-object } a \neq p \rangle by auto
    moreover have False
     by (metis CommunicatingAutomaton.well-formed-transition \langle \neg get\text{-object } a \neq a \rangle
p \mapsto assms(2)
          automaton-of-peer)
    ultimately show get-object a \neq p using assms(1) by auto
  qed
qed
\mathbf{lemma}\ empty\text{-}receiving\text{-}from\text{-}peers3\ :
  fixes p :: 'peer
 assumes \mathcal{P}_{?}(p) = \{\} and (s1, a, s2) \in \mathcal{R}(p) and is-input a
  shows get-object a \neq p
proof (rule ccontr)
  assume \neg get-object a \neq p
  then show False
  proof
    have get-object a = p using \langle \neg get\text{-object } a \neq p \rangle by auto
    moreover have False
```

```
by (metis CommunicatingAutomaton.well-formed-transition \langle \neg get\text{-object } a \neq a \rangle
p \mapsto assms(2)
         automaton-of-peer)
   ultimately show get-object a \neq p using assms(1) by auto
 ged
qed
lemma empty-receiving-from-peers4 :
  fixes p :: 'peer
  assumes \mathcal{P}_{?}(p) = \{\} and (s1, a, s2) \in \mathcal{R}(p)
 shows is-output a
 by (metis\ Communicating Automaton.Receiving From Peers.intros\ assms(1,2)\ automaton-of-peer
      empty-iff)
{f lemma} no-input-trans-root:
  fixes p :: 'peer
  assumes is-input a and \mathcal{P}_{?}(p) = \{\}
 shows (s1, a, s2) \notin \mathcal{R}(p)
 using assms(1,2) empty-receiving-from-peers4 by auto
{f lemma}\ act\mbox{-}in\mbox{-}lang\mbox{-}means\mbox{-}trans\mbox{-}exists :
  fixes p :: 'peer
  assumes [a] \in \mathcal{L}(p)
  shows \exists s1 \ s2. \ (s1, \ a, \ s2) \in \mathcal{R}(p)
  by (smt (verit) CommunicatingAutomaton. Traces-rev CommunicatingAutoma-
ton.run.cases\ assms\ automaton-of-peer\ list.distinct(1)
      list.inject)
{f lemma} act	entit{-}not	entit{-}in	entit{-}lang	entit{-}no	entit{-}trans :
  fixes p :: 'peer
  assumes \forall s1 \ s2. \ (s1, \ a, \ s2) \notin \mathcal{R}(p)
  shows [a] \notin \mathcal{L}(p)
 using act-in-lang-means-trans-exists assms by auto
{f lemma} no-input-trans-no-word-in-lang:
  fixes p :: 'peer
 assumes (a \# w) \in \mathcal{L}(p)
 shows \exists s1 \ s2. \ (s1, \ a, \ s2) \in \mathcal{R}(p)
  by (smt (verit, ccfv-SIG) CommunicatingAutomaton. Traces-rev Communicatin-
gAutomaton.run.cases assms automaton-of-peer
      list.distinct(1) \ list.inject)
lemma no-word-no-trans:
  \mathbf{fixes}\ p::\ 'peer
  assumes \forall s1 \ s2. \ (s1, \ a, \ s2) \notin \mathcal{R}(p)
  shows (a \# w) \notin \mathcal{L}(p)
  using assms no-input-trans-no-word-in-lang by blast
{f lemma} root-head-is-output:
```

```
fixes p :: 'peer
    assumes \mathcal{P}_{?}(p) = \{\} and (a \# w) \in \mathcal{L}(p)
    shows is-output a
    using assms(1,2) no-input-trans-root no-word-no-trans by blast
{f lemma}\ root	ext{-}head	ext{-}is	ext{-}not	ext{-}input:
    fixes p :: 'peer
    assumes \mathcal{P}_{?}(p) = \{\} and is-input a
   shows (a \# w) \notin \mathcal{L}(p)
    using assms(1,2) root-head-is-output by auto
lemma eps-always-in-lang:
    fixes p :: 'peer
   assumes \mathcal{L}(p) \neq \{\}
   shows \varepsilon \in \mathcal{L}(p)
  \mathbf{by}\ (meson\ Communicating Automaton.\ Traces.simps\ Communicating Automaton.run.simps
automaton-of-peer)
{f lemma} no-recvs-no-input-trans:
    fixes p :: 'peer
    assumes \mathcal{P}_{?}(p) = \{\}
   shows \forall s1 \ as2. \ (is\text{-input} \ a \longrightarrow (s1, \ a, \ s2) \notin \mathcal{R}(p))
   by (simp add: assms no-input-trans-root)
{f lemma} no-input-trans-no-recvs:
    fixes p :: 'peer
    assumes \forall s1 \ as2. \ (is\text{-input} \ a \longrightarrow (s1, a, s2) \notin \mathcal{R}(p))
   shows \mathcal{P}_{?}(p) = \{\}
  \mathbf{by}\ (meson\ Communicating Automaton. Receiving From Peers. simps\ assms\ automaton-of-peer
subsetI subset-empty)
lemma Lang-app :
    assumes (u @ v) \in \mathcal{L}(p)
   shows u \in \mathcal{L}(p)
   by (meson CommunicatingAutomaton. Traces-app assms automaton-of-peer)
lemma lang-implies-run:
    assumes w \in \mathcal{L}(p)
    shows \exists xs. Communicating Automaton.run (<math>\mathcal{R} p) (\mathcal{I} p) w xs
   by (meson CommunicatingAutomaton. Traces. simps assms automaton-of-peer)
{f lemma}\ lang-implies-prepend-run:
    assumes (a \# w) \in \mathcal{L}(p)
   shows \exists xs \ s1. Communicating Automaton.run (\mathcal{R} \ p) \ (s1) \ w \ xs \land Communicatin
gAutomaton.run (\mathcal{R} p) (\mathcal{I} p) [a] [s1]
  \mathbf{by}\ (smt\ (verit)\ Communicating Automaton. RComposed 2\ Communic
ton.REmpty2
         Communicating Automaton.run.cases assms automaton-of-peer concat.simps(1)
list.distinct(1)
```

```
list.inject lang-implies-run)
\mathbf{lemma}\ \mathit{trans-to-edge}\ :
  assumes (s1, a, s2) \in \mathcal{R}(p)
 shows qet-message a \in \mathcal{M}
 by (meson CommunicatingAutomaton.well-formed-transition assms automaton-of-peer)
\mathbf{lemma}\ valid-message-to-valid-act:
  assumes get-message a \in \mathcal{M}
  shows \exists i p q. i^{p \to q} \in \mathcal{M} \land (i^{p \to q}) = get\text{-message } a
  \mathbf{by}\ (\mathit{metis}\ \mathit{assms}\ \mathit{message.exhaust})
lemma input-message-to-act :
  assumes get-message a \in \mathcal{M} and is-input a and get-actor a = p
 shows \exists i \ q. \ i^{q \to p} \in \mathcal{M} \land (i^{q \to p}) = qet\text{-}message \ a
 by (metis\ action.exhaust\ assms(1,2,3)\ qet-actor.simps(2)\ qet-message.simps(2)
qet-receiver.simps is-output.simps(1)
      valid-message-to-valid-act)
lemma output-message-to-act:
  assumes get-message a \in \mathcal{M} and is-output a and get-actor a = p
 shows \exists i \ q. \ i^{p \to q} \in \mathcal{M} \land (i^{p \to q}) = \textit{get-message } a
 by (metis action.exhaust assms(1,2,3) get-actor.simps(1) get-message.simps(1)
get-sender.simps is-output.simps(2)
      valid-message-to-valid-act)
lemma input-message-to-act-both-known:
 assumes get-message a \in \mathcal{M} and is-input a and get-actor a = p and get-object
 shows \exists i. i^{q \to p} \in \mathcal{M} \land (i^{q \to p}) = qet\text{-message } a
 by (metis action.exhaust assms(1,2,3,4) get-message.simps(2) get-object.simps(2)
qet-sender.simps
      input-message-to-act is-output.simps(1))
{\bf lemma}\ output{-}message{-}to{-}act{-}both{-}known:
 assumes qet-message a \in \mathcal{M} and is-output a and qet-actor a = p and qet-object
a = q
 shows \exists i. i^{p \to q} \in \mathcal{M} \land (i^{p \to q}) = \text{qet-message } a
 by (metis action.exhaust assms(1,2,3,4) get-message.simps(1) get-object.simps(1)
qet-receiver.simps
      is\text{-}output.simps(2)\ output\text{-}message\text{-}to\text{-}act)
\mathbf{lemma}\ trans-to-act-in-lang:
  fixes p :: 'peer
  assumes (\mathcal{I} p, a, s2) \in \mathcal{R}(p)
 shows [a] \in \mathcal{L}(p)
proof -
 have CommunicatingAutomaton.run\ (\mathcal{R}\ p)\ (\mathcal{I}\ p)\ [a]\ [s2] by (meson\ Communi-
catingAutomaton.run.simps assms automaton-of-peer concat.simps(1))
```

```
then show ?thesis by (meson CommunicatingAutomaton. Traces.intros automaton-of-peer)
qed
lemma lang-implies-run-alt :
  assumes w \in \mathcal{L}(p)
 shows \exists s2. (\mathcal{I} p) - w \rightarrow^* p s2
  using assms lang-implies-run by blast
\mathbf{lemma}\ \mathit{Lang-app-both}:
  assumes (u @ v) \in \mathcal{L}(p)
 shows \exists s2 \ s3. \ (\mathcal{I} \ p) \ -u \rightarrow^* p \ s2 \ \land \ s2 \ -v \rightarrow^* p \ s3
 \mathbf{by}\ (metis\ Communicating Automaton.initial-state Communicating Automaton.run-app
assms
      automaton-of-peer lang-implies-run self-append-conv2)
lemma lang-implies-trans:
  assumes s1 - [a] \rightarrow^* p \ s2
 shows s1 - a \rightarrow_{\mathcal{C}} p \ s2
 by (smt (verit, best) CommunicatingAutomaton.run.cases assms automaton-of-peer
last.simps
      list.distinct(1) \ list.inject)
lemma Lang-last-act-app :
  assumes (u @ [a]) \in \mathcal{L}(p)
  shows \exists s1 \ s2. \ s1 \ -a \rightarrow_{\mathcal{C}} p \ s2
 by (meson Lang-app-both assms lang-implies-trans)
lemma Lang-last-act-trans:
  assumes (u @ [a]) \in \mathcal{L}(p)
 shows \exists s1 \ s2. \ (s1, \ a, \ s2) \in \mathcal{R} \ p
 using Lang-last-act-app assms by auto
lemma act-in-word-has-trans:
  assumes w \in \mathcal{L}(p) and a \in set w
  shows \exists s1 \ s2. \ (s1, \ a, \ s2) \in \mathcal{R} \ p
proof -
 have \exists xs \ ys. \ (xs \ @ [a] \ @ \ ys) = w \ by \ (metis \ Cons-eq-appendI \ append-self-conv2
assms(2) in-set-conv-decomp-first)
  then obtain xs \ ys \ where (xs \ @ [a] \ @ \ ys) = w \ by blast
  then have (xs @ [a] @ ys) \in \mathcal{L}(p) by (simp \ add: \ assms(1))
  then have (xs @ [a]) \in \mathcal{L}(p) by (metis \ Lang-app \ append-assoc)
  then show ?thesis by (simp add: Lang-last-act-trans)
qed
lemma recv-proj-w-prepend-is-in-w:
  assumes (w\downarrow_?) = (x \# xs) and w \in \mathcal{L}(p)
 shows \exists ys zs. w = ys @ [x] @ zs
  using assms
proof (induct length (w\downarrow_?) arbitrary: w x xs)
```

```
case \theta
  then show ?case by simp
\mathbf{next}
  case (Suc \ n)
 then show ?case by (metis Cons-eq-filterD append-Cons append-Nil)
qed
lemma recv-proj-w-prepend-has-trans:
 assumes (w\downarrow_?) = (x \# xs) and w \in \mathcal{L}(p)
 shows \exists s1 \ s2. \ (s1, \ x, \ s2) \in \mathcal{R} \ p
 using assms
proof (induct length (w\downarrow_?) arbitrary: w x xs)
 case \theta
 then show ?case by simp
\mathbf{next}
 case (Suc\ n)
 then obtain ys zs where w-def: w = ys @ [x] @ zs using recv-proj-w-prepend-is-in-w
by blast
 then have (ys @ [x] @ zs) \in \mathcal{L}(p) using Suc.prems(2) by blast
 then have (ys @ [x]) \in \mathcal{L}(p) by (metis\ Lang-app\ append-assoc)
  then have \exists s1 \ s2. \ (s1, \ x, \ s2) \in \mathcal{R} \ p \ using \ Lang-app-both \ lang-implies-trans
\mathbf{by} blast
 then show ?case by simp
qed
lemma send-proj-w-prepend-is-in-w:
 assumes (w\downarrow_!) = (x \# xs) and w \in \mathcal{L}(p)
 shows \exists ys zs. w = ys @ [x] @ zs
 using assms
proof (induct length (w\downarrow_!) arbitrary: w \times xs)
 case \theta
 then show ?case by simp
\mathbf{next}
 case (Suc \ n)
 then show ?case by (metis Cons-eq-filterD append-Cons append-Nil)
qed
lemma send-proj-w-prepend-has-trans:
 assumes (w\downarrow_!) = (x \# xs) and w \in \mathcal{L}(p)
 shows \exists s1 \ s2. \ (s1, \ x, \ s2) \in \mathcal{R} \ p
 using assms
proof (induct length (w\downarrow_!) arbitrary: w x xs)
 case \theta
 then show ?case by simp
\mathbf{next}
 case (Suc \ n)
 then obtain ys zs where w-def: w = ys @ [x] @ zs using send-proj-w-prepend-is-in-w
bv blast
 then have (ys @ [x] @ zs) \in \mathcal{L}(p) using Suc.prems(2) by blast
```

```
then have (ys @ [x]) \in \mathcal{L}(p) by (metis\ Lang-app\ append-assoc)
  then have \exists s1 \ s2. \ (s1, \ x, \ s2) \in \mathcal{R} \ p \ using \ Lang-app-both \ lang-implies-trans
\mathbf{by} blast
  then show ?case by simp
qed
{f lemma} no-inputs-implies-only-sends:
  assumes \mathcal{P}_{?}(p) = \{\}
 shows \forall w. \ w \in \mathcal{L}(p) \longrightarrow (w = w \downarrow_!)
  using assms
proof auto
  \mathbf{fix} \ w
  show \mathcal{P}_? p = \{\} \Longrightarrow w \in \mathcal{L} p \Longrightarrow w = w \downarrow_!
 proof -
    assume w \in \mathcal{L} p
    then show w = w \downarrow_1
    proof (induct length w arbitrary: w)
      case \theta
      then show ?case by simp
    \mathbf{next}
      case (Suc \ x)
       then obtain v a where w-def: w = v @ [a] and v-len: length v = x by
(metis\ length-Suc-conv-rev)
      then have v \in \mathcal{L} p using Lang-app Suc.prems by blast
      then have v = v \downarrow_! by (simp add: Suc.hyps(1) v-len)
      then obtain s2 s3 where v-run: (\mathcal{I} p) - v \rightarrow^* p s2 and a-run: s2 - [a] \rightarrow^* p
s3
        using Lang-app-both Suc.prems w-def by blast
         then have \forall s1 \ s2. \ (s1, \ a, \ s2) \in \mathcal{R}(p) \longrightarrow is\text{-}output \ a \ using} \ assms
no-recvs-no-input-trans by blast
      then have (s2, a, s3) \in \mathcal{R}(p) using a-run lang-implies-trans by force
      then have is-output a by (simp add: \forall s1 \ s2. \ s1 \ -a \rightarrow_{\mathcal{C}} p \ s2 \longrightarrow is-output
a > )
      then show ?case using \langle v = v \downarrow_! \rangle w-def by auto
    qed
 qed
\mathbf{qed}
lemma no-inputs-implies-only-sends-alt:
  assumes \mathcal{P}_{?}(p) = \{\} and w \in \mathcal{L}(p)
 shows w = w \downarrow_!
  using assms(1,2) no-inputs-implies-only-sends by auto
{f lemma} no-inputs-implies-send-lang:
  assumes \mathcal{P}_{?}(p) = \{\}
 shows \mathcal{L}(p) = (\mathcal{L}(p))|_{!}
  show \mathcal{L} \ p \subseteq (\mathcal{L} \ p)|_! using assms no-inputs-implies-only-sends-alt by auto
\mathbf{next}
```

show $(\mathcal{L} p)|_{!} \subseteq \mathcal{L} p$ using assms no-inputs-implies-only-sends-alt by auto qed

3.5 Synchronous System

```
{\bf lemma}\ initial\ configuration\ is\ synchronous\ configuration:
  shows is-sync-config C_{\mathcal{I}\mathbf{0}}
  unfolding is-sync-config-def
proof clarify
  fix p :: 'peer
  show C_{\mathcal{I}\mathbf{0}}(p) \in \mathcal{S}(p)
    using automaton-of-peer[of p]
       Communicating Automaton.initial-state [of p \ \mathcal{S} \ p \ \mathcal{C}_{\mathcal{I}\mathbf{0}} \ p \ \mathcal{M} \ \mathcal{R} \ p]
    by simp
\mathbf{qed}
lemma  sync-step-rev:
  fixes C1 C2 :: 'peer \Rightarrow 'state
                  :: ('information, 'peer) action
  assumes C1 - \langle a, \mathbf{0} \rangle \rightarrow C2
  shows is-sync-config C1 and is-sync-config C2 and \exists\,i\ p\ q.\ a=!\langle(i^{p\to q})\rangle
     and get-actor a \neq get-object a and C1 (get-actor a) -a \rightarrow_{\mathcal{C}} (get-actor a) (C2)
(get-actor\ a))
   and \exists m. \ a = !\langle m \rangle \land C1 \ (get\text{-}object \ a) - (?\langle m \rangle) \rightarrow_{\mathcal{C}} (get\text{-}object \ a) \ (C2 \ (get\text{-}object \ a))
    and \forall x. \ x \notin \{get\text{-}actor \ a, \ get\text{-}object \ a\} \longrightarrow C1(x) = C2(x)
  using assms
proof induct
  case (SynchStep C1 a i p q C2)
  assume A1: is-sync-config C1
  thus is-sync-config C1.
  assume A2: a = !\langle (i^{p \to q}) \rangle
  thus \exists i \ p \ q. \ a = ! \langle (i^{p \to q}) \rangle
  assume A3: C1 p - (!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p (C2 p)
  with A2 show C1 (get-actor a) -a \rightarrow_{\mathcal{C}} (get\text{-actor a}) (C2 (get-actor a))
  have A_4: Communicating Automaton p (S p) (I p) M (R p)
    using automaton-of-peer[of p]
    by simp
  with A2 A3 show get-actor a \neq get-object a
     using Communicating Automaton. well-formed-transition [of p \ S \ p \ I \ p \ \mathcal{M} \ \mathcal{R} \ p
C1 p a C2 p
  assume A5: C1 q - (?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q (C2 q)
  with A2 show \exists m. \ a = !\langle m \rangle \land C1 \ (get\text{-object } a) \ -(?\langle m \rangle) \rightarrow_{\mathcal{C}} (get\text{-object } a) \ (C2)
(get\text{-}object\ a))
    by auto
  assume A6: \forall x. \ x \notin \{p, q\} \longrightarrow C1 \ x = C2 \ x
```

```
with A2 show \forall x. x \notin \{get\text{-}actor\ a,\ get\text{-}object\ a\} \longrightarrow C1(x) = C2(x)
    by simp
  show is-sync-config C2
    unfolding is-sync-config-def
  proof clarify
    \mathbf{fix}\ x:: 'peer
    show C2(x) \in \mathcal{S}(x)
    proof (cases x = p)
      assume x = p
      with A3 A4 show C2(x) \in S(x)
        using Communicating Automaton.well-formed-transition[of p S p I p M R]
p C1 p
            !\langle (i^{p \to q}) \rangle \ C2 \ p]
        by simp
    \mathbf{next}
      assume B: x \neq p
      show C2(x) \in \mathcal{S}(x)
      proof (cases x = q)
        assume x = q
        with A5 show C2(x) \in S(x)
          using automaton-of-peer[of q]
              Communicating Automaton.well-formed-transition[of q S q I q M R q]
C1 q
               ?\langle (i^{p\rightarrow q})\rangle \ C2 \ q
          \mathbf{by} \ simp
      next
        assume x \neq q
        with A1 A6 B show C2(x) \in S(x)
          unfolding is-sync-config-def
          \mathbf{by}\ (\mathit{metis}\ \mathit{empty-iff}\ \mathit{insertE})
      qed
    qed
  qed
\mathbf{qed}
lemma sync-step-output-rev:
  fixes C1 C2 :: 'peer \Rightarrow 'state
    and i
              :: 'information
    and p \ q :: 'peer
  assumes C1 - \langle !\langle (i^{p \to q}) \rangle, \mathbf{0} \rangle \to C2
 shows is-sync-config C1 and is-sync-config C2 and p \neq q and C1 p - (!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p
    and C1 \ q - (?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \ (C2 \ q) and \forall x. \ x \notin \{p, q\} \longrightarrow C1(x) = C2(x)
  using assms sync-step-rev[of C1 !\langle (i^{p \to q}) \rangle C2]
  by simp-all
lemma sync-run-rev :
  \mathbf{assumes}\ sync\text{-}run\ C\theta\ (w\textbf{-}[a])\ (xc@\lceil C\rceil)
  shows sync-run C0 w xc \wedge last (C0 \# xc) - \langle a, \mathbf{0} \rangle \rightarrow C
```

```
{\bf lemma}\ run\text{-}produces\text{-}synchronous\text{-}configurations:}
  fixes C C' :: 'peer \Rightarrow 'state'
    and w :: ('information, 'peer) action word
    and xc :: ('peer \Rightarrow 'state) list
  \mathbf{assumes}\ sync\text{-}run\ C\ w\ xc
    and C' \in set xc
 shows is-sync-config C'
  using assms
proof induct
  case (SREmpty\ C)
  assume C' \in set
 \mathbf{hence}\ \mathit{False}
    by simp
  thus is-sync-config C'
   \mathbf{by} \ simp
next
  case (SRComposed\ C0\ w\ xc\ a\ C)
 assume A1: C' \in set \ xc \implies is\text{-sync-config} \ C' \ \text{and} \ A2: last \ (C0 \# xc) - \langle a, \mathbf{0} \rangle \rightarrow
    and A3: C' \in set (xc \cdot [C])
  show is-sync-config C'
  proof (cases C = C')
   assume C = C'
    with A2 show is-sync-config C'
      using sync-step-rev(2)[of last (C0 \# xc) a C]
     by simp
  \mathbf{next}
    assume C \neq C'
    with A1 A3 show is-sync-config C'
      by simp
 qed
\mathbf{qed}
lemma run-produces-no-inputs:
  fixes C C' :: 'peer \Rightarrow 'state
    and w :: ('information, 'peer) action word
   and xc :: ('peer \Rightarrow 'state) list
  assumes sync-run C w xc
 shows w\downarrow_! = w and w\downarrow_? = \varepsilon
  using assms
proof induct
  case (SREmpty\ C)
  show \varepsilon \downarrow_! = \varepsilon and \varepsilon \downarrow_? = \varepsilon
    by simp-all
  case (SRComposed\ C0\ w\ xc\ a\ C)
 assume w\downarrow_! = w
```

```
moreover assume last (C0 \# xc) - \langle a, \mathbf{0} \rangle \rightarrow C
       hence A: is-output a
             using sync-step-rev(3)[of last (C0 \# xc) a C]
             by auto
       ultimately show (w \cdot [a]) \downarrow_! = w \cdot [a]
             by simp
       assume w\downarrow_? = \varepsilon
       with A show (w \cdot [a]) \downarrow_? = \varepsilon
             by simp
qed
\mathbf{lemma}\ \mathit{SyncTraces-rev}:
       assumes w \in \mathcal{T}_0
       shows \exists xc. \ sync-run \ \mathcal{C}_{\mathcal{I}\mathbf{0}} \ w \ xc
       using SyncTraces.simps assms by auto
{f lemma} no-inputs-in-synchronous-communication:
      shows \mathcal{L}_{\mathbf{0}}|_{!} = \mathcal{L}_{\mathbf{0}} and \mathcal{L}_{\mathbf{0}}|_{?} \subseteq \{\varepsilon\}
proof -
      have \forall w \in \mathcal{L}_0. w\downarrow_! = w
             using SyncTraces.simps run-produces-no-inputs(1)
             by blast
       thus \mathcal{L}_0|_! = \mathcal{L}_0
             by force
       have \forall w \in \mathcal{L}_0. w \downarrow_? = \varepsilon
             using SyncTraces.simps run-produces-no-inputs(2)
             by blast
       thus \mathcal{L}_0|_? \subseteq \{\varepsilon\}
             by auto
qed
\mathbf{lemma}\ sync\text{-}send\text{-}step\text{-}to\text{-}recv\text{-}step:
       assumes C1 - \langle !\langle (i^{p \to q}) \rangle, \mathbf{0} \rangle \to C2
      shows C1 \ q \ -(?\langle(i^{p \to q})\rangle) \to_{\mathcal{C}} q \ (C2 \ q)
      using assms sync-step-output-rev(5) by auto
{f lemma} act-in-sync-word-to-sync-step:
       assumes w \in \mathcal{L}_0 and a \in set w
       shows \exists C1 C2. C1 - \langle a, \mathbf{0} \rangle \rightarrow C2
      sorry
\mathbf{lemma}\ \mathit{act-in-sync-word-to-matching-peer-steps}\colon
       assumes w \in \mathcal{L}_0 and (!\langle (i^{p \to q}) \rangle) \in set \ w
      \mathbf{shows} \,\, \exists \,\, C1 \,\, C2. \,\, C1 \,\, p \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, q \,\, -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \,\, (C2 \,\, p) \,\, \wedge \,\, C1 \,\, (C2 \,\, p) 
    using act-in-sync-word-to-sync-step assms(1,2) sync-send-step-to-recv-step sync-step-output-rev(4)
      by blast
```

lemma *sync-lang-app*:

```
assumes (u @ v) \in \mathcal{L}_0
  shows u \in \mathcal{L}_0
  sorry
lemma sync-lang-sends-app:
  assumes (u@v)\downarrow_! \in \mathcal{L}_0
  shows u\downarrow_! \in \mathcal{L}_0
  by (metis assms filter-append sync-lang-app)
lemma sync-run-word-configs-len-eq:
  assumes sync-run C0 w xc
  shows length w = length xc
  using assms proof (induct rule: sync-run.induct)
  case (SREmpty\ C)
  then show ?case by simp
  case (SRComposed C0 w xc a C)
  then show ?case by simp
3.6
         Mailbox System
3.6.1
           Semantics
lemma initial-mbox-alt :
  shows (\forall p. \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ p = (\mathcal{C}_{\mathcal{I}\mathbf{0}} \ p, \ \varepsilon))
  by simp
{\bf lemma}\ initial\hbox{-} configuration\hbox{-} is\hbox{-} mailbox\hbox{-} configuration:
  shows is-mbox-config \mathcal{C}_{\mathcal{I}\mathfrak{m}}
  unfolding is-mbox-config-def
proof clarify
  fix p :: 'peer
  show fst (\mathcal{C}_{\mathcal{I}\mathbf{0}} \ p, \, \varepsilon) \in \mathcal{S} \ p \wedge snd \ (\mathcal{C}_{\mathcal{I}\mathbf{0}} \ p, \, \varepsilon) \in \mathcal{M}^*
    using automaton-of-peer[of p] message-alphabet Alphabet.EmptyWord[of M]
       Communicating Automaton.initial-state[of p \ \mathcal{S} \ p \ \mathcal{I} \ p \ \mathcal{M} \ \mathcal{R} \ p]
    by simp
qed
{\bf lemma}\ initial\hbox{-} configuration\hbox{-} is\hbox{-} stable:
  shows is-stable \mathcal{C}_{\mathcal{I}\mathfrak{m}}
  unfolding is-stable-def using initial-configuration-is-mailbox-configuration
  by simp
\mathbf{lemma}\ sync\text{-}config\text{-}to\text{-}mbox:
  assumes is-sync-config C
  shows \exists C'. is-mbox-config C' \land C' = (\lambda p. (C p, \varepsilon))
  using assms initial-configuration-is-mailbox-configuration is-mbox-config-def
    is-sync-config-def by auto
```

```
lemma mbox-step-rev:
    fixes C1 C2 :: 'peer \Rightarrow ('state \times ('information, 'peer) message word)
       and a
                               :: ('information, 'peer) action
       and k
                               :: bound
    assumes mbox-step C1 a k C2
    shows is-mbox-config C1 and is-mbox-config C2
       and \exists i \ p \ q. \ a = ! \langle (i^{p \to q}) \rangle \lor a = ? \langle (i^{p \to q}) \rangle and get-actor a \neq get-object a \neq get
       and fst\ (C1\ (get\text{-}actor\ a))\ -a \rightarrow_{\mathcal{C}} (get\text{-}actor\ a)\ (fst\ (C2\ (get\text{-}actor\ a)))
       and is-output a \Longrightarrow snd (C1 (get\text{-}actor a)) = snd (C2 (get\text{-}actor a))
       and is-output a \Longrightarrow ( \mid (snd \ (C1 \ (get\text{-}object \ a))) \mid ) <_{\mathcal{B}} k
       and is-output a \Longrightarrow C2 \ (get\text{-}object \ a) =
                                          (fst\ (C1\ (get\text{-}object\ a)),\ (snd\ (C1\ (get\text{-}object\ a))) \bullet [get\text{-}message]
a])
          and is-input a \implies (snd (C1 (get-actor a))) = [get-message a] \cdot snd (C2)
(get\text{-}actor\ a))
       and is-output a \Longrightarrow \forall x. \ x \notin \{\text{qet-actor } a, \text{ qet-object } a\} \longrightarrow C1(x) = C2(x)
       and is-input a \Longrightarrow \forall x. \ x \neq get\text{-}actor \ a \longrightarrow C1(x) = C2(x)
    using assms
proof induct
    case (MboxSend\ C1\ a\ i\ p\ q\ C2\ k)
    assume A1: is-mbox-config C1
    thus is-mbox-config C1.
    assume A2: a = !\langle (i^{p \to q}) \rangle
    thus \exists i \ p \ q. \ a = ! \langle (i^{p \to q}) \rangle \lor a = ? \langle (i^{p \to q}) \rangle
    assume A3: fst (C1 p) -(!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p (fst (C2 p))
    with A2 show fst (C1 (get-actor a)) -a \rightarrow_{\mathcal{C}} (get-actor a) (fst (C2 (get-actor
a)))
       by simp
    have A_4: Communicating Automaton p (S p) (I p) M (R p)
       using automaton-of-peer[of p]
       by simp
    with A2 A3 show get-actor a \neq get-object a
        using Communicating Automaton. well-formed-transition [of p S p I p \mathcal{M} R p
fst (C1 p) a
               fst (C2 p)
       by auto
    assume A5: snd (C1 p) = snd (C2 p)
   with A2 show is-output a \Longrightarrow snd (C1 (get-actor a)) = snd (C2 (get-actor a))
       by simp
    assume (|snd(C1 q)|) <_{\mathcal{B}} k
    with A2 show is-output a \Longrightarrow (|(snd (C1 (get-object a)))|) <_{\mathcal{B}} k
    assume A6: C2 q = (fst (C1 q), snd (C1 q) \cdot [i^{p \to q}])
    with A2 show is-output a \Longrightarrow C2 (get-object a) =
                               (fst\ (C1\ (get\text{-}object\ a)),\ (snd\ (C1\ (get\text{-}object\ a))) \cdot [get\text{-}message\ a])
       by simp
    from A2 show is-input a \Longrightarrow (snd (C1 (qet\text{-}actor a))) = [qet\text{-}message a] \cdot snd
(C2 (get-actor a))
```

```
by simp
  assume A7: \forall x. x \notin \{p, q\} \longrightarrow C1 \ x = C2 \ x
  with A2 show is-output a \Longrightarrow \forall x. \ x \notin \{get\text{-}actor \ a, \ get\text{-}object \ a\} \longrightarrow C1(x)
= C2(x)
    by simp
  from A2 show is-input a \Longrightarrow \forall x. \ x \neq get\text{-}actor \ a \longrightarrow C1(x) = C2(x)
    by simp
  show is-mbox-config C2
    unfolding is-mbox-config-def
  proof clarify
    fix x :: 'peer
    show fst (C2 \ x) \in \mathcal{S}(x) \land snd \ (C2 \ x) \in \mathcal{M}^*
    proof (cases x = p)
      assume B: x = p
      with A3 A4 have fst (C2 x) \in S(x)
        using Communicating Automaton. well-formed-transition [of p S p I p \mathcal{M} \mathcal{R}
p fst (C1 p)
            !\langle (i^{p \to q}) \rangle \ fst \ (C2 \ p)]
        by simp
      moreover from A1 A5 B have snd (C2 x) \in \mathcal{M}^*
        unfolding is-mbox-config-def
        by metis
      ultimately show fst (C2 x) \in S(x) \land snd (C2 x) \in \mathcal{M}^*
        by simp
    \mathbf{next}
      assume B: x \neq p
      show fst (C2 \ x) \in \mathcal{S}(x) \land snd (C2 \ x) \in \mathcal{M}^*
      proof (cases x = q)
        assume x = q
        moreover from A1 A6 have fst (C2 \ q) \in \mathcal{S}(q)
          unfolding is-mbox-config-def
          by simp
        moreover from A3 A4 have i^{p \to q} \in \mathcal{M}
          using CommunicatingAutomaton.well-formed-transition[of p \ S \ p \ I \ p \ M
\mathcal{R} p
              fst (C1 p) !\langle (i^{p \to q}) \rangle fst (C2 p)
          by simp
        with A1 A6 have snd (C2 q) \in \mathcal{M}^*
          unfolding is-mbox-config-def
         using message-alphabet Alphabet.EmptyWord[of \mathcal{M}] Alphabet.Composed[of
\mathcal{M} i^{p \to q} \varepsilon
            Alphabet.concat\text{-}words\text{-}over\text{-}an\text{-}alphabet[of \mathcal{M} snd (C1 q) [i^{p \to q}]]
        ultimately show fst (C2 \ x) \in S(x) \land snd (C2 \ x) \in \mathcal{M}^*
          by simp
      \mathbf{next}
        assume x \neq q
        with A1 A7 B show fst (C2 x) \in S(x) \land snd (C2 x) \in \mathcal{M}^*
          unfolding is-mbox-config-def
```

```
by (metis\ insertE\ singletonD)
      \mathbf{qed}
    qed
  qed
next
  case (MboxRecv\ C1\ a\ i\ p\ q\ C2\ k)
  assume A1: is-mbox-config C1
  thus is-mbox-config C1.
  assume A2: a = ?\langle (i^{p \to q}) \rangle
  thus \exists i \ p \ q. \ a = !\langle (i^{p \to q}) \rangle \lor a = ?\langle (i^{p \to q}) \rangle
    by blast
  assume A3: fst (C1 q) -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q (fst (C2 q))
  with A2 show fst (C1 (get-actor a)) -a \rightarrow_{\mathcal{C}} (get\text{-actor a}) (fst (C2 (get-actor
a)))
    by simp
  have A4: Communicating Automaton g(\mathcal{S}, q)(\mathcal{I}, q) \mathcal{M}(\mathcal{R}, q)
    using automaton-of-peer[of q]
    by simp
  with A2 A3 show get-actor a \neq get-object a
    using Communicating Automaton. well-formed-transition [of q \mathcal{S} q \mathcal{I} q \mathcal{M} \mathcal{R} q
fst (C1 q) a
        fst (C2 q)
    by auto
 from A2 show is-output a \Longrightarrow snd (C1 (get-actor a)) = snd (C2 (get-actor a))
    by simp
  from A2 show is-output a \Longrightarrow (|(snd (C1 (get-object a)))|) <_{\mathcal{B}} k
  from A2 show is-output a \Longrightarrow C2 (get-object a) =
                (fst\ (C1\ (get\text{-}object\ a)),\ (snd\ (C1\ (get\text{-}object\ a))) \cdot [get\text{-}message\ a])
    by simp
  assume A5: snd (C1 q) = [i^{p \to q}] \cdot snd (C2 q)
  with A2 show is-input a \Longrightarrow (snd (C1 (get\text{-}actor a))) = [get\text{-}message a] \cdot snd
(C2 (get-actor a))
    by simp
  from A2 show is-output a \Longrightarrow \forall x. \ x \notin \{get\text{-actor } a, get\text{-object } a\} \longrightarrow C1(x)
= C2(x)
    by simp
  assume A6: \forall x. \ x \neq q \longrightarrow C1 \ x = C2 \ x
  with A2 show is-input a \Longrightarrow \forall x. \ x \neq get\text{-}actor \ a \longrightarrow C1(x) = C2(x)
    by simp
  show is-mbox-config C2
    unfolding is-mbox-config-def
  proof clarify
    \mathbf{fix} \ x :: 'peer
    show fst (C2 \ x) \in \mathcal{S}(x) \land snd (C2 \ x) \in \mathcal{M}^*
    proof (cases \ x = q)
      assume B: x = q
      with A3 A4 have fst (C2 x) \in S(x)
        using CommunicatingAutomaton.well-formed-transition[of q S q I q M R]
```

```
q fst (C1 q)
             ?\langle (i^{p \to q}) \rangle \ fst \ (C2 \ q)]
        by simp
      moreover from A3 A4 have i^{p \to q} \in \mathcal{M}
        using CommunicatingAutomaton.well-formed-transition[of q \ \mathcal{S} \ q \ \mathcal{I} \ q \ \mathcal{M} \ \mathcal{R}
q fst (C1 q)
             ?\langle (i^{p \to q}) \rangle \ fst \ (C2 \ q)]
        by simp
      with A1 A5 B have snd (C2 x) \in \mathcal{M}^*
        unfolding is-mbox-config-def
        using message-alphabet
          Alphabet.split-a-word-over-an-alphabet(2)[of \mathcal{M} [i^{p \to q}] snd (C2 q)]
        by metis
      ultimately show fst (C2 x) \in S(x) \land snd (C2 x) \in \mathcal{M}^*
        by simp
    next
      assume x \neq q
      with A1 A6 show fst (C2 x) \in S(x) \land snd (C2 x) \in \mathcal{M}^*
        unfolding is-mbox-config-def
        by metis
    qed
  qed
qed
\mathbf{lemma}\ mbox\text{-}step\text{-}output\text{-}rev:
  fixes C1 C2 :: 'peer \Rightarrow ('state \times ('information, 'peer) message word)
    and i
                :: 'information
    and p \ q :: 'peer
    and k
                :: bound
  assumes mbox-step C1 (!\langle (i^{p \to q})\rangle) k C2
  shows is-mbox-config C1 and is-mbox-config C2 and p \neq q
    and fst\ (C1\ p)\ -(!\langle (i^{p\rightarrow q})\rangle)\rightarrow_{\mathcal{C}} p\ (fst\ (C2\ p)) and snd\ (C1\ p)=snd\ (C2\ p)
    and ( \mid (snd (C1 q)) \mid ) <_{\mathcal{B}} k
    and C2 \ q = (fst \ (C1 \ q), \ (snd \ (C1 \ q)) \cdot [get\text{-}message \ (!\langle (i^{p \to q}) \rangle)])
    and \forall x. \ x \notin \{p, q\} \longrightarrow C1(x) = C2(x)
proof -
  show is-mbox-config C1
    using assms mbox-step-rev(1)[of C1 !\langle (i^{p \to q}) \rangle k C2]
    by simp
  show is-mbox-config C2
    using assms mbox-step-rev(2)[of C1 !\langle (i^{p \to q}) \rangle k C2]
    by simp
  show p \neq q
    using assms mbox-step-rev(4)[of C1 !\langle (i^{p \to q}) \rangle k C2]
  show fst (C1 \ p) \ -(!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p \ (fst \ (C2 \ p))
    using assms mbox-step-rev(5)[of C1 !\langle (i^{p \to q}) \rangle k C2]
    by simp
  show snd (C1 p) = snd (C2 p)
```

```
using assms mbox-step-rev(6)[of C1 !\langle (i^{p \to q}) \rangle k C2]
   by simp
 show ( \mid (snd (C1 q)) \mid ) <_{\mathcal{B}} k
   using assms mbox-step-rev(7)[of C1 !\langle (i^{p \to q}) \rangle k C2]
   by fastforce
  show C2 \ q = (fst \ (C1 \ q), \ (snd \ (C1 \ q)) \cdot [get\text{-}message \ (!\langle (i^{p \to q}) \rangle)])
   using assms mbox-step-rev(8)[of C1 !\langle (i^{p \to q}) \rangle \ k \ C2]
 show \forall x. \ x \notin \{p, q\} \longrightarrow C1(x) = C2(x)
   using assms mbox-step-rev(10)[of C1 !\langle (i^{p \to q}) \rangle k C2]
   by simp
qed
lemma mbox-step-input-rev:
 fixes C1 C2 :: 'peer \Rightarrow ('state \times ('information, 'peer) message word)
   and i
             :: 'information
   and p \ q :: 'peer
   and k
               :: bound
  assumes mbox-step C1 (?\langle (i^{p \to q}) \rangle) k C2
 shows is-mbox-config C1 and is-mbox-config C2 and p \neq q
    and fst (C1 \ q) - (?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q (fst (C2 \ q)) and (snd \ (C1 \ q)) = [i^{p \to q}]
snd (C2 q)
   and \forall x. \ x \neq q \longrightarrow C1(x) = C2(x)
  using assms mbox-step-rev[of C1 ?\langle (i^{p \to q}) \rangle k C2]
 by simp-all
— if mbox can take a bounded step, it can also take an unbounded step
lemma mbox-step-inclusion:
 assumes mbox-step C1 a (Some k) C2
 shows mbox-step C1 a None C2
 by (smt (verit) MboxRecv MboxSend NetworkOfCA.mbox-step-input-rev(6) NetworkOfCA-axioms
    get-actor.simps(1,2) get-message.simps(1,2) get-object.simps(1) get-receiver.simps
    get-sender.simps is-bounded.simps(1) is-output.simps(1,2) mbox-step-output-rev(5)
     mbox-step-rev(1,10,3,5,8,9) these-empty)
3.6.2
         Mailbox System Step Conversions Both Directions
lemma send-step-to-mbox-step:
 assumes [a] \in \mathcal{L} \ p and is-output a
```

```
shows \exists C. \mathcal{C}_{\mathcal{I}\mathfrak{m}} - \langle a, \infty \rangle \rightarrow C
  using assms
proof -
 obtain s2 where s2-def: (\mathcal{I} p, a, s2) \in \mathcal{R} p by (meson \ assms(1) \ lang-implies-run
lang-implies-trans)
  then obtain q i where a-def: a = !\langle (i^{p \to q}) \rangle
  by (metis Communicating Automaton-def action.exhaust assms(2) automaton-of-peer
        get-actor.simps(1) get-sender.simps is-output.simps(2) message.exhaust)
  then have p \neq q by (metis Communicating Automaton. well-formed-transition
```

```
\langle \wedge thesis. (\wedge s2. C_{I0} \ p - a \rightarrow_{C} p \ s2 \Longrightarrow thesis) \Longrightarrow thesis \rangle \ automaton-of-peer
         get-object.simps(1) get-receiver.simps)
  let ?C0 = (\mathcal{C}_{\mathcal{Im}})(p := (s2, \varepsilon))
  let ?C = (?C0)(q := (\mathcal{I} \ q, \lceil (i^{p \to q}) \rceil))
  have is-mbox-config ?C by (smt (verit) Alphabet.WordsOverAlphabet.simps Com-
municating Automaton.well-formed-transition
          a-def automaton-of-peer fun-upd-apply get-message.simps(1)
       initial\-configuration\-is\-sync\-ronous\-configuration\ is\-mbox-config-def\ is\-sync\-config-def
          message-alphabet s2-def snd-conv split-pairs)
  then have C-prop: \forall x. \ x \notin \{p, q\} \longrightarrow \mathcal{C}_{\mathcal{Im}}(x) = ?C(x) by simp
  then have fst (\mathcal{C}_{\mathcal{I}\mathfrak{m}} p) = \mathcal{I} p by auto
  then have fst \ (?C \ p) = s2 \ \text{by} \ (simp \ add: \langle p \neq q \rangle)
  have (\mathcal{I} p) - (!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p \ s2 using a-def s2-def by auto
  have is-mbox-config \mathcal{C}_{\mathcal{I}\mathfrak{m}} by (simp add: initial-configuration-is-mailbox-configuration)
  have fst (\mathcal{C}_{\mathcal{I}\mathfrak{m}} p) - (!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p (fst (?\mathcal{C} p))
    using \langle fst (((\lambda p. (\mathcal{C}_{\mathcal{I}\mathbf{0}} p, \varepsilon)) (p := (s2, \varepsilon), q := (\mathcal{C}_{\mathcal{I}\mathbf{0}} q, i^{p \to q} \# \varepsilon))) p) = s2 \rangle
a-def
       s2-def by auto
  then have C-prop2: snd (\mathcal{C}_{Im} p) = snd (?C p) by (simp add: \langle p \neq q \rangle)
  then have C-prop3: ?C \ q = (fst \ (\mathcal{C}_{Im} \ q), \ (snd \ (\mathcal{C}_{Im} \ q)) \cdot [(i^{p \to q})]) by simp
  then have mbox-step C_{Im} a None ?C
    using C-prop2 MboxSend
       \langle fst \ (((\lambda p. \ (\mathcal{C}_{\mathcal{I}\mathbf{0}} \ p, \, \varepsilon)) \ (p := (s2, \, \varepsilon), \ q := (\mathcal{C}_{\mathcal{I}\mathbf{0}} \ q, \ i^{p \to q} \# \varepsilon))) \ p) = s2 \rangle \ a\text{-def}
       initial-configuration-is-mailbox-configuration s2-def by force
  then show ?thesis by auto
qed
lemma gen-send-step-to-mbox-step:
  assumes (s1, !\langle (i^{p \to q})\rangle, s2) \in \mathcal{R} \ p and fst \ (C0 \ p) = s1 and fst \ (C1 \ p) = s2
      and snd (C0 p) = snd (C1 p) and C1 q = (fst (C0 q), (snd (C0 q)))
[(i^{p \to q})] and is-mbox-config C0
    and \forall x. \ x \notin \{p, q\} \longrightarrow C\theta(x) = C1(x)
  shows C\theta - \langle !\langle (i^{p \to q})\rangle, \infty \rangle \to C1
  using assms
proof auto
  have fst (C0 \ p) - (!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p (fst (C1 \ p)) by (simp \ add: assms(1,2,3))
  have all: is-mbox-config C0 \wedge fst (C0 p) - (!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p (fst (C1 p)) \wedge
              snd\ (C0\ p) = snd\ (C1\ p) \land (\mid (snd\ (C0\ q))\mid) <_{\mathcal{B}} None \land
                C1 \ q = (fst \ (C0 \ q), \ (snd \ (C0 \ q)) \cdot [(ip \rightarrow q)]) \land (\forall x. \ x \notin \{p, q\} \rightarrow q\})
C\theta(x) = C1(x)
     using assms by auto
  show ?thesis by (simp add: NetworkOfCA.MboxSend NetworkOfCA-axioms all)
\mathbf{lemma}\ valid\text{-}send\text{-}to\text{-}p\text{-}not\text{-}q:
  assumes (s1, !\langle (i^{p \to q})\rangle, s2) \in \mathcal{R} p
  shows p \neq q
 by (metis Communicating Automaton. well-formed-transition assms automaton-of-peer
       get-object.simps(1) get-receiver.simps(1)
```

```
lemma \ valid-recv-to-p-not-q :
  assumes (s1, ?\langle (i^{p \to q})\rangle, s2) \in \mathcal{R} p
 shows p \neq q
 \textbf{by} \ (metis\ Communicating Automaton-def\ Network Of CA. automaton-of-peer\ Network Of CA-axioms
assms
      get-object.simps(2) get-sender.<math>simps)
— define the mbox step for a given send step (of e.g. a root)
\mathbf{lemma}\ send\text{-}trans\text{-}to\text{-}mbox\text{-}step:
 assumes (s1, !\langle (i^{p\to q})\rangle, s2) \in \mathcal{R} p and is-mbox-config C0 and fst (C0 p) = s1
  shows let p-buf = snd (C0 p); C1 = (C0)(p := (s2, p-buf)); q0 = fst (C0 q);
q-buf = snd (C0 q);
  C2 = (C1)(q := (q0, q-buf \cdot [(i^{p \to q})])) in
mbox-step C0 (!\langle (i^{p \to q})\rangle) None C2
 using assms
proof -
  let ?p\text{-}buf = snd (C0 p)
  let ?C1 = (C0)(p := (s2, ?p-buf))
 let ?q\theta = fst (C\theta q)
 let ?q-buf = snd (C0 q)
 let ?C2 = (?C1)(q := (?q0, ?q-buf \cdot [(i^{p \to q})]))
 have q \neq p using assms(1) valid-send-to-p-not-q by blast
 have m1: snd (C0 p) = snd (?C2 p) using \langle q \neq p \rangle by auto
 have m2: fst\ (C0\ p)\ -(!\langle (i^{p\rightarrow q})\rangle)\rightarrow_{\mathcal{C}} p\ (fst\ (?C2\ p)) using \langle q\neq p\rangle\ assms(1,3)
by fastforce
  have m3: ?C2 q = (fst (C0 q), (snd (C0 q)) \cdot [(i^{p \to q})]) by simp
 have m4: (\forall x. \ x \notin \{p, q\} \longrightarrow CO(x) = ?C2(x)) by simp
 have m5: ( | (snd (C0 q)) | ) <_{\mathcal{B}} None by simp
 have mbox-step C0 (!\langle (i^{p \to q}) \rangle) None ?C2 using assms(2) gen-send-step-to-mbox-step
m1 m2 m3 m4 by blast
  then show ?thesis by auto
qed
          Mailbox System Run Semantics
\mathbf{lemma}\ mbox{-}run{-}rev{-}unbound:
 assumes mbox-run C0 None (w \cdot [a]) (xc@[C])
  shows mbox-run C0 None w xc \wedge last (C0 \# xc) - \langle a, \infty \rangle \rightarrow C
```

```
by (smt (verit) Nil-is-append-conv append1-eq-conv assms mbox-run.simps
     not-Cons-self2)
lemma mbox-run-rev-bound:
 assumes mbox-run C0 (Some k) (w \cdot [a]) (xc@[C])
 shows mbox-run C0 (Some k) w xc \land last (C0 \# xc) - \langle a, k \rangle \rightarrow C
 by (smt (verit) Nil-is-append-conv append1-eq-conv assms mbox-run.simps
     not-Cons-self2)
```

lemma run-produces-mailbox-configurations:

```
fixes C C' :: 'peer \Rightarrow ('state \times ('information, 'peer) message word)
   and k :: bound
             :: ('information, 'peer) action word
   and w
   and xc :: ('peer \Rightarrow ('state \times ('information, 'peer) message word)) list
 assumes mbox-run \ C \ k \ w \ xc
   and C' \in set xc
 shows is-mbox-config C'
 using assms
proof induct
 case (MREmpty\ C\ k)
 assume C' \in set []
 hence False
   \mathbf{by} \ simp
 thus is-mbox-config C'
   by simp
 \mathbf{case} \ (MRComposedNat \ C0 \ k \ w \ xc \ a \ C)
 assume A1: C' \in set \ xc \implies is\text{-mbox-config} \ C' \ \text{and} \ A2: last \ (C0 \# xc) - \langle a, k \rangle \rightarrow
   and A3: C' \in set (xc \cdot [C])
 show is-mbox-config C'
 proof (cases C = C')
   assume C = C'
   with A2 show is-mbox-config C'
     using mbox-step-rev(2)[of last (C0\#xc) a Some k C]
     by simp
 next
   assume C \neq C'
   with A1 A3 show is-mbox-config C'
     by simp
 qed
next
 case (MRComposedInf\ C0\ w\ xc\ a\ C)
  assume A1: C' \in set \ xc \implies is\text{-mbox-config} \ C' \ \text{and} \ A2: \ last \ (C0\#xc) \ -\langle a, a, b, c \rangle
\infty \rightarrow C
   and A3: C' \in set (xc \cdot [C])
 show is-mbox-config C'
 proof (cases C = C')
   assume C = C'
   with A2 show is-mbox-config C'
     using mbox-step-rev(2)[of last (C0\#xc) a None C]
     by simp
 next
   assume C \neq C'
   with A1 A3 show is-mbox-config C'
     by simp
 qed
qed
```

```
lemma mbox-step-to-run:
  assumes mbox-step C0 a None C
 shows mbox-run C0 None [a] [C]
 by (metis MRComposedInf MREmpty append.left-neutral assms last-ConsL)
3.6.4
        Mailbox System Traces
\mathbf{lemma}\ \mathit{Mbox-Traces-rev}:
  assumes w \in \mathcal{T}_k
  shows \exists xc. mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} k w xc
 by (metis MboxTraces.cases assms)
lemma mbox-run-inclusion:
  assumes mbox-run \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ (Some \ k) \ w \ xc
 shows mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None w xc
 using assms
proof (induct rule: mbox-run.induct)
  case (MREmpty\ C\ k)
  then show ?case by (simp add: mbox-run.MREmpty)
  case (MRComposedNat\ C0\ k\ w\ xc\ a\ C)
  then show ?case by (simp add: MRComposedInf mbox-step-inclusion)
  case (MRComposedInf\ C0\ w\ xc\ a\ C)
  then show ?case by (simp add: mbox-run.MRComposedInf)
qed
{f lemma}\ mbox-bounded-lang-inclusion:
  shows \mathcal{T}_{(Some\ k)} \subseteq \mathcal{T}_{None}
 using MboxTraces-def MboxTracesp.simps mbox-run-inclusion by fastforce
lemma execution-implies-mbox-trace :
  assumes w \in \mathcal{T}_k
 shows w\downarrow_! \in \mathcal{L}_k
  using assms by blast
{\bf lemma}\ mbox-trace-implies-execution:
  assumes w \in \mathcal{L}_k
  shows \exists w'. \ w' \downarrow_! = w \land w' \in \mathcal{T}_k
 using assms by blast
3.6.5
         Language Hierarchy
theorem sync\text{-}word\text{-}in\text{-}mbox\text{-}size\text{-}one:
  shows \mathcal{L}_0 \subseteq \mathcal{L}_1
proof clarify
  \mathbf{fix} \ v :: ('information, 'peer) \ action \ word
  assume v \in \mathcal{L}_0
  then obtain xcs C0 where sync-run C0 v xcs and C0 = \mathcal{C}_{\mathcal{I}0}
   using \ SyncTracesp.simps \ SyncTracesp-SyncTraces-eq
   by auto
```

```
hence \exists w \ xcm. \ mbox{-run} \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ (\mathcal{B} \ 1) \ w \ xcm \ \land \ v = w \downarrow_! \ \land
            (\forall p. \ last \ (\mathcal{C}_{\mathcal{I}\mathfrak{m}} \# xcm) \ p = (last \ (\mathcal{C}_{\mathcal{I}\mathfrak{0}} \# xcs) \ p, \ \varepsilon))
   proof induct
     case (SREmpty\ C)
     have mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} (\mathcal{B} 1) \varepsilon []
        using MREmpty[of \ \mathcal{C}_{Im} \ \mathcal{B} \ 1]
        by simp
     moreover have \varepsilon = \varepsilon \downarrow_!
        by simp
     moreover have \forall p. \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ p = (\mathcal{C}_{\mathcal{I}\mathbf{0}} \ p, \ \varepsilon)
        by simp
     ultimately show \exists w \ xcm. \ mbox{-run} \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ (\mathcal{B} \ 1) \ w \ xcm \ \land \ \varepsilon = w \downarrow_! \ \land
                            (\forall p. \ last \ (\mathcal{C}_{\mathcal{I}\mathfrak{m}} \# xcm) \ p = (last \ [\mathcal{C}_{\mathcal{I}\mathbf{0}}] \ p, \, \varepsilon))
        by fastforce
  next
     case (SRComposed\ C0\ v\ xc\ a\ C)
     assume C0 = \mathcal{C}_{\mathcal{I}\mathbf{0}} \Longrightarrow \exists w \ xcm. \ mbox{-run} \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ (\mathcal{B} \ 1) \ w \ xcm \ \land \ v = w \downarrow_! \ \land
                (\forall p. \ last \ (\mathcal{C}_{\mathcal{I}\mathfrak{m}} \# xcm) \ p = (last \ (\mathcal{C}_{\mathcal{I}\mathbf{0}} \# xc) \ p, \ \varepsilon))
        and B1: C\theta = \mathcal{C}_{\mathcal{I}\mathbf{0}}
     then obtain w xcm where B2: mbox-run C_{Im} (B 1) w xcm and B3: v = w \downarrow_!
        and B4: \forall p. \ last \ (\mathcal{C}_{Im} \# xcm) \ p = (last \ (\mathcal{C}_{I0} \# xc) \ p, \ \varepsilon)
        by blast
     assume last (C0 \# xc) - \langle a, \mathbf{0} \rangle \rightarrow C
     with B1 obtain C1 where B5: C1 = last (C_{I0}\#xc) and B6: C1 -\langle a, 0 \rangle \rightarrow
C
        by blast
     from B6 obtain i p q where B7: a = !\langle (i^{p \to q}) \rangle and B8: C1 p - a \to_{\mathcal{C}} p (C p)
        and B9: C1 q - (?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q (C q) and B10: p \neq q
        and B11: \forall x. \ x \notin \{p, q\} \longrightarrow C1 \ x = C \ x
        using sync-step-rev[of C1 a C]
        by auto
     define C2::'peer \Rightarrow ('state \times ('information, 'peer) message word) where
         C2-def: C2 \equiv \lambda x. if x = p then (C p, \varepsilon) else (C1 x, if x = q then [i^{p \to q}]
else \varepsilon)
     define C3::'peer \Rightarrow ('state \times ('information, 'peer) message word) where
        C3-def: C3 \equiv \lambda x. (C x, \varepsilon)
     from B2 have is-mbox-config (last (C_{Im}\#xcm))
        using run-produces-mailbox-configurations [of \mathcal{C}_{Im} \mathcal{B} 1 \text{ w xcm last xcm}]
           initial\-configuration\-is\-mailbox\-configuration
        by simp
    moreover from B4 B5 B7 B8 have fst (last (C_{Im} \# xcm) p) - (!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p
(fst (C2 p))
       unfolding C2-def
        by simp
     moreover from B4 have snd (last (C_{Im}\#xcm) p) = snd (C2 p)
        unfolding C2-def
        by simp
     moreover from B_4 have (|snd(last(C_{Im}\#xcm)q)|) <_{\mathcal{B}} \mathcal{B} 1
        by simp
```

```
moreover from B4 B5 B10
    have C2 \ q = (fst \ (last \ (\mathcal{C}_{Im} \# xcm) \ q), \ snd \ (last \ (\mathcal{C}_{Im} \# xcm) \ q) \cdot [i^{p \to q}])
       unfolding C2-def
       by simp
    moreover from B4 B5 have \forall x. x \notin \{p, q\} \longrightarrow last (\mathcal{C}_{Im} \# xcm) \ x = C2 \ x
       unfolding C2-def
       by simp
    ultimately have B12: last (C_{Im}\#xcm) - \langle a, 1 \rangle \rightarrow C2
       using B7 MboxSend[of last (C_{Im}\#xcm)!\langle (i^{p \to q}) \rangle i p q C2 B 1]
       by simp
    hence is-mbox-config C2
       using mbox-step-rev(2)[of last (C_{Im}\#xcm) a \mathcal{B} 1 C2]
    moreover from B9 B10 have fst (C2\ q) - (?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q (fst (C3\ q))
       unfolding C2-def C3-def
    moreover from B10 have snd (C2 \ q) = [i^{p \to q}] \cdot snd (C3 \ q)
       unfolding C2-def C3-def
       by simp
    moreover from B11 have \forall x. \ x \neq q \longrightarrow C2 \ x = C3 \ x
       unfolding C2-def C3-def
       by simp
     ultimately have C2 - \langle ?\langle (i^{p \to q}) \rangle, 1 \rangle \to C3
       using MboxRecv[of C2?\langle (i^{p\rightarrow q})\rangle \ i \ p \ q \ C3 \ \mathcal{B} \ 1]
     with B2 B12 have mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} (\mathcal{B} 1) (w \cdot [a, ?\langle (i^{p \to q}) \rangle]) (xcm \cdot [C2, C3])
       using MRComposedNat[of \ \mathcal{C}_{Im} \ 1 \ w \ xcm \ a \ C2]
          MRComposedNat[of \ \mathcal{C}_{\mathcal{Im}} \ 1 \ w \cdot [a] \ xcm \cdot [C2] \ ? \langle (i^{p \to q}) \rangle \ C3]
       by simp
    moreover from B3 B7 have v \cdot [a] = (w \cdot [a, ?\langle (i^{p \to q}) \rangle]) \downarrow_!
       using filter-append [of is-output w [a, ?\langle (i^{p\to q})\rangle]]
     moreover have \forall p. \ last \ (\mathcal{C}_{Im}\#(xcm\cdot[C2,\ C3])) \ p = (last \ (\mathcal{C}_{I0}\#(xc\cdot[C])) \ p,
\varepsilon)
       unfolding C3-def
       by simp
    ultimately show \exists w \ xcm. \ mbox-run \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ (\mathcal{B} \ 1) \ w \ xcm \ \land \ v \cdot [a] = w \downarrow_! \land
                         (\forall p. \ last \ (\mathcal{C}_{\mathcal{I}\mathfrak{m}} \# xcm) \ p = (last \ (\mathcal{C}_{\mathcal{I}\mathfrak{0}} \# (xc \cdot [C])) \ p, \varepsilon))
       by blast
  qed
  then obtain w xcm where A1: mbox-run \mathcal{C}_{Im} (\mathcal{B} 1) w xcm and A2: v = w \downarrow_!
    by blast
  from A1 have w \in \mathcal{T}_{\mathcal{B}, 1}
    by (simp add: MboxTraces.intros)
  with A2 show \exists w. \ v = w \downarrow_! \land w \in \mathcal{T}_{\mathcal{B}, 1}
    by blast
qed
```

 ${\bf lemma}\ mbox-sync-lang-unbounded\text{-}inclusion\text{:}$

```
by force
- C1 ->send-> C1(p:= (C2 p)) ->recvrightarrow> C2
— shows that a sync step can be simulated with two Mbox steps
\mathbf{lemma}\ sync\text{-}step\text{-}to\text{-}mbox\text{-}steps:
  assumes C1 - \langle !\langle (i^{p \to q})\rangle, \mathbf{0}\rangle \to C2
  shows let c1 = \lambda x. (C1 \ x, \ \varepsilon); c3 = \lambda x. (C2 \ x, \ \varepsilon); c2 = (c3)(q := (C1 \ q, \ \varepsilon))
[(i^{p\rightarrow q})]) in
  mbox-step c1 (!\langle (i^{p \to q}) \rangle) None c2 \wedge mbox-step c2 (?\langle (i^{p \to q}) \rangle) None c3
proof - C1 -> C2 in sync means we have c1 -> c2 -> c3 in mbox, where in
c2 the message is in the mbox of the respective peer
  let ?c1 = \lambda x. (C1 \ x, \ \varepsilon) — C1 as mbox config
  let ?c3 = \lambda x. (C2 x, \varepsilon) — C2 as mbox config
 let ?c2 = (?c3)(q := (C1 \ q, [(i^{p \to q})])) — additional step in mbox that isnt there
in sync (sequential vs synchronously)
  let ?a = !\langle (i^{p \to q}) \rangle
 have O1: (C1 p) - (!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p (C2 p) by (simp add: assms sync-step-output-rev(4))
 then have (C1\ q) - (?\langle (i^p \rightarrow q) \rangle) \rightarrow_{\mathcal{C}} q \ (C2\ q) by (simp\ add:\ assms\ sync\ -step\ -output\ -rev(5))
 then have \forall x. x \notin \{p, q\} \longrightarrow C1(x) = C2(x) using assms sync-step-output-rev(6)
by blast
 then have S0: fst (?c2\ p) = C2\ p using assms sync-step-output-rev(3) by auto
 then have S1: is-mbox-config ?c1 using assms sync-config-to-mbox sync-step-rev(1)
  then have S2: fst (?c1 \ p) - (!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p (fst (?c2 \ p)) using O1 S0 by auto
  then have S3: snd (?c1 p) = snd (?c2 p) using assms sync-step-output-rev(3)
by auto
  then have S4: ( | (snd (?c1 q)) | ) <_{\mathcal{B}} None by simp
  then have S5: ?c2 \ q = (fst \ (?c1 \ q), \ (snd \ (?c1 \ q)) \cdot [(i^{p \to q})]) by simp
  then have S6: (\forall x. \ x \notin \{p, \ q\} \longrightarrow ?c1(x) = ?c2(x)) by (simp \ add: \forall x. \ x \notin add)
\{p, q\} \longrightarrow C1 \ x = C2 \ x > 0
  \textbf{then have} \textit{ is-mbox-config } ?c1 \land ?a = ! \langle (i^{p \to q}) \rangle \land \textit{fst } (?c1 \ p) \ - (! \langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p
(fst \ (?c2 \ p)) \land
             snd \ (?c1 \ p) = snd \ (?c2 \ p) \land ( \ | \ (snd \ (?c1 \ q)) \ | \ ) <_{\mathcal{B}} None \land
              ?c2 \ q = (fst \ (?c1 \ q), \ (snd \ (?c1 \ q)) \cdot [(i^{p \to q})]) \land (\forall x. \ x \notin \{p, q\} \longrightarrow \{p, q\})
?c1(x) = ?c2(x)
    using S1 S2 S3 S4 S5 by blast
  then have mbox-step-1: mbox-step ?c1 (!\langle (i^{p \to q}) \rangle) None ?c2 using MboxSend
by blast
       — we have shown that mbox takes a send step from ?c1 to ?c2, now we need
to show the receive step
  have R1: is-mbox-config ?c2 using mbox-step-1 mbox-step-rev(2) by auto
  then have R2: fst (?c2 q) = C1 q by simp
  then have R3: fst\ (?c3\ q) = C2\ q by simp
  then have R4: fst\ (?c2\ q)\ -(?\langle(i^{p\rightarrow q})\rangle)\rightarrow_{\mathcal{C}} q\ (fst\ (?c3\ q)) using R2\ R3\ \langle(C1)\rangle
q) \ - (\ ? \langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} \ q \ (\ C \ 2 \ q) \rangle \ \mathbf{by} \ simp
  then have R5: (snd\ (?c2\ q)) = [(i^{p \to q})] \cdot snd\ (?c3\ q) by simp
  then have R6: \forall x. \ x \neq q \longrightarrow ?c2(x) = ?c3(x) by simp
```

 ${\bf using} \ Network Of CA. mbox-bounded-lang-inclusion \ Network Of CA-axioms \ sync-word-in-mbox-size-one \ and \ an arrow of the property of the property$

shows $\mathcal{L}_0 \subseteq \mathcal{L}_\infty$

```
then have is-mbox-config ?c2 \land fst \ (?c2 \ q) - (?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \ (fst \ (?c3 \ q)) \land
                                      (snd\ (?c2\ q)) = [(i^{p \to q})] \cdot snd\ (?c3\ q) \land (\forall x.\ x \neq q \longrightarrow ?c2(x) =
 ?c3(x)
          using R1 R4 by auto
      then have mbox-step-2: mbox-step ?c2 (?\langle (i^{p\rightarrow q})\rangle) None ?c3 by (simp add:
MboxRecv)
      then have mbox-step ?c1 (!\langle (i^{p \to q}) \rangle) None ?c2 \land mbox-step ?c2 (?\langle (i^{p \to q}) \rangle)
None ?c3 by (simp add: mbox-step-1)
     then have ?c1 - \langle ! \langle (i^{p \to q}) \rangle, \infty \rangle \to ?c2 \land ?c2 - \langle ? \langle (i^{p \to q}) \rangle, \infty \rangle \to ?c3 by simp
     then show ?thesis by auto
qed
— shows that sync step means mbox steps exist in general
\mathbf{lemma}\ sync\text{-}step\text{-}to\text{-}mbox\text{-}steps\text{-}existence:
     assumes C1 - \langle ! \langle (i^{p \to q}) \rangle, \mathbf{0} \rangle \to C2
    shows \exists c1 c2 c3. mbox-step c1 (!\langle (i^{p \to q}) \rangle) None c2 \land mbox-step c2 (?\langle (i^{p \to q}) \rangle)
None c3
     by (meson assms sync-step-to-mbox-steps)
lemma \ sync-step-to-mbox-steps-alt:
      assumes C1 - \langle ! \langle (i^{p \to q}) \rangle, \mathbf{0} \rangle \to C2 and c1 = (\lambda x. (C1 \ x, \varepsilon)) and c3 = (\lambda x.
(\mathit{C2}\ x,\,\varepsilon))\ \mathbf{and}\ \mathit{c2} = (\mathit{c3})(q := (\mathit{C1}\ q,\,\lceil(i^{p \to q})\rceil))
     shows mbox-step c1 (!\langle (i^{p \to q}) \rangle) None c2 \wedge mbox-step c2 (?\langle (i^{p \to q}) \rangle) None c3
      using assms
proof auto
       have let c1 = \lambda x. (C1 \ x, \ \varepsilon); c3 = \lambda x. (C2 \ x, \ \varepsilon); c2 = (c3)(q := (C1 \ q, \ e))
\lceil (i^{p \to q}) \rceil) in
      mbox-step c1 (!\langle (i^{p \to q}) \rangle) None c2 \wedge mbox-step c2 (?\langle (i^{p \to q}) \rangle) None c3
          by (simp add: assms(1) sync-step-to-mbox-steps)
    then show (\lambda x. (C1 x, \varepsilon)) - \langle ! \langle (i^{p \to q}) \rangle, \infty \rangle \to (\lambda x. (C2 x, \varepsilon)) (q := (C1 q, i^{p \to q}))
\# \varepsilon)) by meson
next
       have let c1 = \lambda x. (C1 \ x, \ \varepsilon); c3 = \lambda x. (C2 \ x, \ \varepsilon); c2 = (c3)(q := (C1 \ q, \ \varepsilon))
[(i^{p\rightarrow q})]) in
      mbox-step c1 (!\langle (i^{p \to q}) \rangle) None c2 \wedge mbox-step c2 (?\langle (i^{p \to q}) \rangle) None c3
          by (simp add: assms(1) sync-step-to-mbox-steps)
      \textbf{then show } (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \iota))(q := (\mathit{C1} \ q, \ \iota))
(C2 \ x, \ \varepsilon)) by meson
qed
lemma eps-in-mbox-execs: \varepsilon \in \mathcal{T}_{None} using MREmpty MboxTraces.intros by
blast
```

3.7 Synchronisability

```
lemma Edges-rev:
fixes e:: 'peer \times 'peer
assumes e \in \mathcal{G}
shows \exists i \ p \ q. \ i^{p \to q} \in \mathcal{M} \land e = (p, q)
```

```
proof -
  obtain p \ q where A: e = (p, q)
   by fastforce
  with assms have (p, q) \in \mathcal{G}
   bv simp
  from this A show \exists i \ p \ q. \ i^{p \to q} \in \mathcal{M} \land e = (p, q)
   by (induct, blast)
qed
lemma w-in-peer-lang-impl-p-actor:
  assumes w \in \mathcal{L}(p)
 shows w = w \downarrow_p
 using assms
proof (induct length w arbitrary: w)
  case \theta
  then show ?case by simp
next
  case (Suc \ x)
 then obtain v a where w-def: w = v \otimes [a] and v-len: length v = x and v-def
: v \in \mathcal{L} p
   by (metis (no-types, lifting) Lang-app length-Suc-conv-rev)
  then have v\downarrow_p = v using Suc.hyps(1) Suc.prems by auto
  then obtain s2 s3 where v-run: (\mathcal{I} p) - v \rightarrow^* p s2 and a-run: s2 - [a] \rightarrow^* p s3
   using Lang-app-both Suc.prems(1) w-def by blast
  then have s2 - a \rightarrow_{\mathcal{C}} p \ s3 by (simp add: lang-implies-trans)
  then have (s2, a, s3) \in \mathcal{R} \ p \ \text{by } simp
 then have qet-actor a = p using CommunicatingAutomaton.well-formed-transition
     automaton-of-peer by fastforce
  then show ?case
   by (simp \ add: \langle v \downarrow_p = v \rangle \ w\text{-}def)
qed
```

3.8 Synchronisability is Deciable for Tree Topology in Mailbox Communication

3.8.1 Tree Topology and Related Lemmas

```
lemma is-tree-rev:
   assumes is-tree P E
   shows (\exists p. P = \{p\} \land E = \{\}) \lor (\exists P' E' p \ q. is-tree P' E' \land p \in P' \land q \notin P' \land P = insert \ q \ P' \land E = insert \ (p, \ q) \ E')
   using assms
   proof (induction P E rule: is-tree.induct)
   case (ITRoot \ p)
   then show ?case by simp
   next
   case (ITNode \ P \ E \ p \ q)
   then show ?case
   by (intro disjI2, auto \ simp: insert-commute)
   qed
```

```
\mathbf{lemma}\ \textit{is-tree-rev-nonempty}:
  assumes is-tree P E and E \neq \{\}
 shows (\exists P' E' p \ q. \ is\text{-tree} \ P' E' \land p \in P' \land q \notin P' \land P = insert \ q \ P' \land E =
insert (p, q) E'
  using assms(1,2) is-tree-rev by auto
lemma edge-on-peers-in-tree:
  fixes P :: 'peer set
    and E :: 'peer topology
    and p \ q :: 'peer
  assumes is-tree P E
    and (p, q) \in E
 shows p \in P and q \in P
 using assms
proof induct
  case (ITRoot \ x)
  assume (p, q) \in \{\}
  thus p \in \{x\} and q \in \{x\}
   by simp-all
\mathbf{next}
  case (ITNode\ P\ E\ x\ y)
 assume (p, q) \in E \Longrightarrow p \in P and (p, q) \in E \Longrightarrow q \in P and x \in P
    and (p, q) \in insert(x, y) E
  thus p \in insert \ y \ P and q \in insert \ y \ P
    by auto
qed
\mathbf{lemma}\ \mathit{at-most-one-parent-in-tree}\colon
 \mathbf{fixes}\ P :: \ 'peer\ set
    and E :: 'peer topology
    and p :: 'peer
  assumes is-tree P E
 shows card (E\langle \rightarrow p \rangle) \leq 1
  using assms
proof induct
  case (ITRoot x)
  have \{\}\langle \rightarrow p \rangle = \{\}
    by simp
  thus card (\{\}\langle \rightarrow p \rangle) \leq 1
    \mathbf{by} \ simp
\mathbf{next}
  case (ITNode\ P\ E\ x\ y)
  assume A1: is-tree P E and A2: card (E\langle \rightarrow p \rangle) \leq 1 and A3: y \notin P
  show card (insert (x, y) \ E\langle \rightarrow p \rangle) \leq 1
  proof (cases \ y = p)
    assume B: y = p
    with A1 A3 have E\langle \rightarrow p \rangle = \{\}
      using edge-on-peers-in-tree(2)[of P E - p]
```

```
by blast
    with B have insert (x, y) E\langle \rightarrow p \rangle = \{x\}
     \mathbf{by} \ simp
    thus card (insert (x, y) \ E(\rightarrow p)) \leq 1
     by simp
  \mathbf{next}
    assume y \neq p
   hence insert (x, y) E\langle \rightarrow p \rangle = E\langle \rightarrow p \rangle
     by simp
    with A2 show card (insert (x, y) \ E(\rightarrow p)) \leq 1
      by simp
 qed
qed
{f lemma}\ edge\mbox{-}doesnt\mbox{-}vanish\mbox{-}in\mbox{-}growing\mbox{-}tree:
  assumes is-tree P E and qa \in P and card (E\langle \rightarrow qa \rangle) = 1 and is-tree (insert
q P) (insert (p, q) E)
   and qa \neq p and qa \neq q
  shows card (insert (p, q) E(\rightarrow qa)) = 1
  using assms
proof -
  have before-le-1 : card (E\langle \rightarrow qa \rangle) \le 1 by (simp\ add:\ assms(3))
 have after-le-1: card (insert (p, q) E(\rightarrow qa)) \leq 1 using assms(4) at-most-one-parent-in-tree
by presburger
  have at-least-1 : card (E\langle \rightarrow qa \rangle) = 1 by (simp\ add:\ assms(3))
  then show card (insert (p, q) E(\rightarrow qa)) = 1 using assms(6) by auto
qed
\mathbf{lemma}\ edge\text{-}doesnt\text{-}vanish\text{-}in\text{-}growing\text{-}tree2\ :}
 assumes card (E\langle \rightarrow qa \rangle) = 1 and p \neq qa and q \neq qa
 shows card (insert (p, q) E(\rightarrow qa)) = 1
 using assms(1,3) by auto
lemma tree-acyclic:
 fixes P :: 'peer set
    and E :: 'peer topology
 assumes is-tree P E and (p,q) \in E
 shows (q,p) \notin E
  using assms
proof(induct rule: is-tree.induct)
  case (ITRoot \ p)
  then show ?case by simp
\mathbf{next}
  case (ITNode\ P\ E\ p\ q)
  then show ?case using edge-on-peers-in-tree(1) by blast
qed
lemma tree-acyclic-gen:
 fixes P :: 'peer set
```

```
and E :: 'peer topology
  assumes is-tree P E and (p,q) \in E and E\langle \rightarrow p \rangle = \{\} \lor E\langle \rightarrow p \rangle = \{x\} and x
\neq y
  shows (y,p) \notin E
  using assms(3,4) by fastforce
lemma root-exists:
  fixes P :: 'peer set
   and E :: 'peer topology
  assumes is-tree P E
 shows \exists p. p \in P \land E \langle \rightarrow p \rangle = \{\}
  using assms
proof (induct)
  case (ITRoot p)
  then show ?case by simp
  case (ITNode\ P\ E\ p\ q)
  then obtain p' where p'-def: p' \in P \land E(\rightarrow p') = \{\} by blast
  then have new-tree: is-tree (insert q P) (insert (p, q) E) by (simp add: ITN-
ode.hyps(1,3,4) is-tree.ITNode)
  then have p'-not-q: p' \neq q using ITNode.hyps(4) p'-def by auto
 then have is-tree (insert qP) (insert (p', q)E) by (simp add: ITNode.hyps(1,4)
is-tree.ITNode p'-def)
  then have t2: (insert (p', q) E) \langle \rightarrow p' \rangle = \{\} by (simp add: p'-def p'-not-q)
  then have t1: p' \in (insert \ q \ P) using p'-def by auto
  then have p' \in (insert \ q \ P) \land (insert \ (p', \ q) \ E) \langle \rightarrow p' \rangle = \{\}  using t2 by auto
  then have p' \in (insert \ q \ P) \land (insert \ (p, \ q) \ E) \langle \rightarrow p' \rangle = \{\} by blast
  then show ?case by blast
\mathbf{qed}
lemma at-most-one-parent:
  assumes is-tree P E
 shows card (E\langle \rightarrow q \rangle) \leq 1
 using assms at-most-one-parent-in-tree by auto
lemma unique-root:
  fixes P :: 'peer set
   and E :: 'peer topology
  assumes is-tree P E and p \in P and E(\rightarrow p) = \{\} and q \neq p and q \in P
  shows (card\ (E\langle \rightarrow q \rangle)) = 1
  using assms
proof (induct P E rule: is-tree.induct)
  case (ITRoot p)
  then show ?case by simp
\mathbf{next}
  case (ITNode\ P\ E\ p'\ q')
  then have p \in insert \ q' \ P \land insert \ (p', \ q') \ E\langle \rightarrow p \rangle = \{\} by blast
  then have E\langle \rightarrow p \rangle = \{\} by simp
  then show card (insert (p', q') E(\rightarrow q)) = 1
```

```
proof (cases card (E\langle \rightarrow q \rangle) = 1)
    {f case} True
    then show ?thesis
    by (smt (verit) Collect-cong ITNode.hyps(1,4) card-1-singletonE edge-on-peers-in-tree(2)
          empty-def insert-iff insert-not-empty prod.inject)
  next
    case False
    have is-tree P E by (simp \ add: ITNode.hyps(1))
   then have q-le-1: card (E\langle \rightarrow q \rangle) \leq 1 by (metis \langle is\text{-}tree\ P\ E \rangle\ at\text{-}most\text{-}one\text{-}parent)
    then have q-\theta: card (E\langle \rightarrow q \rangle) = \theta using False by linarith
    then have q \notin P
      using False ITNode.hyps(2) ITNode.prems(1,2) assms(4) by blast
    then have p \in P using ITNode.prems(1,4) assms(4) by auto
    then have q = q'
      using ITNode.prems(4) \langle q \notin P \rangle by auto
    then have (insert (p', q') E(\rightarrow q)) = (insert (p', q) E(\rightarrow q)) by auto
    then have (\{(p', q)\}\langle \rightarrow q \rangle) = \{p'\} by auto
    then have card (insert (p', q) E(\rightarrow q)) = card (E(\rightarrow q)) + card \{p'\}
        by (smt\ (verit,\ ccfv\text{-}SIG)\ Collect\text{-}cong\ ITNode.hyps(1,4)\ \langle q=q'\rangle\ add\text{-}0
edge-on-peers-in-tree(2)
          insert-iff q-0 singleton-iff)
    then have card (insert (p', q) E(\rightarrow q)) = 1
      by (simp \ add: \ q-\theta)
    then show ?thesis
      using \langle insert\ (p',\ q')\ E\langle \rightarrow q\rangle = insert\ (p',\ q)\ E\langle \rightarrow q\rangle\rangle by fastforce
  qed
qed
— P? is defined on each automaton p, G is the topology graph
— This means there may be P?(p) = \text{but p in} > P!(q), thus (q,p) in > G> and q
in> G>langle>rightarrow>prangle>, but q notin>
lemma sends-of-peer-subset-of-predecessors-in-topology:
  fixes p :: 'peer
 shows \mathcal{P}_?(p) \subseteq \mathcal{G}\langle \to p \rangle
proof (cases \mathcal{P}_{?}(p) = \{\})
  case True
  then show ?thesis by simp
next
  case False
  show ?thesis
  proof
    \mathbf{fix} \ q
    assume q \in \mathcal{P}_{?}(p)
   then have \exists s1 \ as2. (s1, a, s2) \in \mathcal{R}(p) \land is\text{-input a using } no\text{-input-trans-no-recvs}
    then have \exists s1 \ as2. (s1, a, s2) \in \mathcal{R}(p) \land is\text{-input } a \land get\text{-object } a = q
    using CommunicatingAutomaton.ReceivingFromPeers-rev \langle q \in \mathcal{P}_7 | p \rangle automaton-of-peer
by fastforce
    then obtain s1 s2 a where (s1, a, s2) \in \mathcal{R}(p) \land is\text{-input } a \land get\text{-object } a =
```

```
by (metis CommunicatingAutomaton.well-formed-transition automaton-of-peer)
    then have get-message a \in \mathcal{M}
     by (metis trans-to-edge)
    then have \exists i. i^{q \to p} = qet\text{-}message \ a
       using \langle s1 - a \rightarrow_{\mathcal{C}} p \ s2 \land is\text{-input } a \land get\text{-object } a = q \land get\text{-actor } a = p \rangle
input-message-to-act-both-known
      by blast
    then obtain i where a = (?\langle (i^{q \to p}) \rangle)
     by (metis \langle s1 - a \rightarrow_{\mathcal{C}} p \ s2 \land is\text{-input } a \land get\text{-object } a = q \land get\text{-actor } a = p \rangle
action.exhaust\ get\text{-}message.simps(2)
          is-output.simps(1)
    then have (q, p) \in \mathcal{G}
      using Edges.intros \langle get\text{-}message \ a \in \mathcal{M} \rangle by force
    then show q \in \mathcal{G}\langle \to p \rangle
      by simp
  qed
qed
3.8.2
          Root and Node Specifications and More Tree Lemmas
\mathbf{lemma}\ \mathit{local-to-global-root}\ :
  assumes \mathcal{P}_{?}(p) = \{\} and (\forall q. p \notin \mathcal{P}_{!}(q)) and tree-topology
 shows \mathcal{G}\langle \to p \rangle = \{\}
  using assms
proof auto
  \mathbf{fix} \ q
  assume (q, p) \in \mathcal{G}
  then show False
  proof -
    have (q, p) \in \mathcal{G} by (simp \ add: \langle (q, p) \in \mathcal{G} \rangle)
    then obtain i where i-def: i^{q \to p} \in \mathcal{M} by (metis Edges.cases)
    then obtain s1 a s2 x where trans: (s1, a, s2) \in snd (snd (A x)) \land
                             (i^{q \to p}) = \text{get-message a using messages-used by blast}
  then have x = p \lor x = q by (metis Communicating Automaton. well-formed-transition
NetworkOfCA.automaton-of-peer
       NetworkOfCA.output-message-to-act\ NetworkOfCA-axioms\ input-message-to-act-both-known
          message.inject)
    then have x = q by (metis CommunicatingAutomaton.SendingToPeers.intros
assms(1,2) automaton-of-peer i-def
       local.trans\ message.inject\ no-recvs-no-input-trans\ output-message-to-act-both-known)
  then have a = !\langle (i^{q \to p}) \rangle by (metis Communicating Automaton. well-formed-transition
action.exhaust\ automaton-of-peer
          get\text{-}message.simps(1,2) \ get\text{-}object.simps(2) \ get\text{-}sender.simps \ local.trans)
  then have \neg (\forall q. p \notin \mathcal{P}_!(q)) using CommunicatingAutomaton.SendingToPeers.intros
automaton\mbox{-}of\mbox{-}peer\ local.trans
      by fastforce
    then show ?thesis by (simp \ add: assms(2))
  qed
```

 $q \wedge get\text{-}actor\ a = p$

```
qed
```

```
\mathbf{lemma}\ \mathit{global-to-local-root}\colon
  assumes \mathcal{G}\langle \rightarrow p \rangle = \{\} and tree-topology
  shows \mathcal{P}_{?}(p) = \{\} \land (\forall q. p \notin \mathcal{P}_{!}(q))
proof auto
  \mathbf{fix} \ q
  assume q \in \mathcal{P}_{?} p
  then obtain s1 i a s2 where trans-def: (s1, a, s2) \in snd (snd (A p))
   and a = ?\langle (i^{q \to p}) \rangle by (metis (mono-tags, lifting) Collect-mem-eq Collect-mono-iff
assms(1) empty-Collect-eq
        sends-of-peer-subset-of-predecessors-in-topology)
 then show False using \langle q \in \mathcal{P}_7 | p \rangle assms(1) sends-of-peer-subset-of-predecessors-in-topology
by force
\mathbf{next}
  \mathbf{fix} \ q
  assume p \in \mathcal{P}_! q
  then have \exists s1 \ a \ s2. \ (s1, \ a, \ s2) \in snd \ (snd \ (\mathcal{A} \ q)) \land is\text{-}output \ a \land get\text{-}object \ a
   by (metis\ Communicating Automaton. Sending To Peers. simps\ automaton-of-peer)
  then obtain s1 i a s2 where trans-def: (s1, a, s2) \in snd (snd (A q))
    and a = !\langle (i^{q \to p}) \rangle
   by (metis\ Edges.intros\ assms(1)\ empty-Collect-eq\ output-message-to-act-both-known
         trans-to-edge)
  then show False using Edges.simps assms(1) trans-to-edge by fastforce
qed
lemma edge-impl-psend-or-grecv:
  assumes \mathcal{G}\langle \rightarrow p \rangle = \{q\} and tree-topology
  shows (\mathcal{P}_? p = \{q\} \lor p \in \mathcal{P}_!(q))
proof (rule ccontr)
  assume \neg (\mathcal{P}_? p = \{q\} \lor p \in \mathcal{P}_!(q))
  then show False
  proof -
    have \mathcal{P}_? p \neq \{q\} using \langle \neg (\mathcal{P}_? p = \{q\} \lor p \in \mathcal{P}_! q) \rangle by auto
    have p \notin \mathcal{P}_!(q) using \langle \neg (\mathcal{P}_? p = \{q\} \lor p \in \mathcal{P}_! q) \rangle by auto
    have \exists i. i^{q \to p} \in \mathcal{M} using Edges.simps \ assms(1) by auto
    then obtain i where m: i^{q \to p} \in \mathcal{M} by auto
    then have \exists s1 \ a \ s2 \ pp. \ (s1, \ a, \ s2) \in snd \ (snd \ (\mathcal{A} \ pp)) \land 
                                 (i^{q \to p}) = get\text{-}message \ a \ \mathbf{using} \ messages\text{-}used \ \mathbf{by} \ auto
    then have \exists s1 \ a \ s2. ((s1, a, s2) \in \mathcal{R} \ p \lor (s1, a, s2) \in \mathcal{R} \ q) \land
                                  (i^{q \to p}) = get\text{-}message \ a \ \ \mathbf{by} \ (metis \ (mono\text{-}tags, \ lifting)
Communicating Automaton. well-formed-transition
   NetworkOfCA.input-message-to-act-both-known\ NetworkOfCA-axioms\ automaton-of-peer
message.inject
    output-message-to-act-both-known)
    then obtain s1 a s2 where ((s1, a, s2) \in \mathcal{R} \ p \lor (s1, a, s2) \in \mathcal{R} \ q) \land (i^{q \to p})
= get\text{-}message \ a \ \mathbf{by} \ blast
```

```
then show ?thesis
    proof (cases is-output a)
      {f case}\ True
        then have (s1, a, s2) \in \mathcal{R} q by (metis Communicating Automaton-def
Network Of CA. automaton-of-peer\ Network Of CA. output-message-to-act-both-known
               NetworkOfCA-axioms \langle (s1 - a \rightarrow_{\mathcal{C}} p \ s2 \lor s1 - a \rightarrow_{\mathcal{C}} q \ s2) \land i^{q \rightarrow p} =
get-message a> message.inject)
    then show ?thesis by (metis CommunicatingAutomaton.SendingToPeers.intros
True
            automaton-of-peer m message.inject
            output-message-to-act-both-known)
    next
      {\bf case}\ \mathit{False}
     then have (s1, a, s2) \in \mathcal{R} p by (metis \langle (s1 - a \rightarrow_{\mathcal{C}} p \ s2 \lor s1 - a \rightarrow_{\mathcal{C}} q \ s2) \land
i^{q \to p} = \text{get-message } a \mapsto \text{empty-receiving-from-peers2}
             input-message-to-act-both-known insert-absorb insert-not-empty m mes-
sage.inject)
      then have is-input a by (simp add: False)
    then have q \in \mathcal{P}_{?}(p) by (metis Communicating Automaton. Receiving From Peers. intros
           \langle (s1 - a \rightarrow_{\mathcal{C}} p \ s2 \lor s1 - a \rightarrow_{\mathcal{C}} q \ s2) \land i^{q \rightarrow p} = get\text{-message } a \lor \langle s1 - a \rightarrow_{\mathcal{C}} p \rangle
s2> automaton-of-peer
            input-message-to-act-both-known m message.inject)
      have (\mathcal{P}_?(p)) = \{q\}
      proof
        show \{q\} \subseteq \mathcal{P}_? \ p \ \mathbf{by} \ (simp \ add: \langle q \in \mathcal{P}_? \ p \rangle)
        show \mathcal{P}_? \ p \subseteq \{q\}
        proof (rule ccontr)
          assume \neg \mathcal{P}_? p \subseteq \{q\}
          then obtain pp where pp \in \mathcal{P}_? p and pp \neq q by auto
       then have pp \in \mathcal{G}(\rightarrow p) using sends-of-peer-subset-of-predecessors-in-topology
by auto
          then show False by (simp \ add: \langle pp \neq q \rangle \ assms(1))
        qed
      qed
      then show ?thesis by (simp add: \langle \mathcal{P}_? p \neq \{q\} \rangle)
    qed
  qed
qed
lemma root-or-node:
  assumes tree-topology
  shows is-root p \vee (\exists q. \mathcal{P}_?(p) = \{q\} \vee p \in \mathcal{P}_!(q))
  using assms
proof (cases \mathcal{G}\langle \to p \rangle = \{\})
  case True
  then show ?thesis by (simp add: assms)
next
  case False
```

```
then have card (\mathcal{G}(\rightarrow p)) \neq 0 by (metis card-0-eq finite-peers finite-subset
top-greatest)
  have card (\mathcal{G}(\rightarrow p)) \leq 1 using assms at-most-one-parent by auto
  then have card\ (\mathcal{G}\langle \rightarrow p \rangle) = 1 using \langle card\ (\mathcal{G}\langle \rightarrow p \rangle) \neq 0 \rangle by linarith
  then obtain q where \mathcal{G}\langle \rightarrow p \rangle = \{q\} using card-1-singletonE by blast
  then show ?thesis using assms edge-impl-psend-or-greev by blast
\mathbf{qed}
lemma root-defs-eq:
  shows is-root-from-topology p = is-root-from-local p
  using global-to-local-root local-to-global-root by blast
\mathbf{lemma}\ local	ext{-}global	ext{-}eq	ext{-}node:
  assumes is-node-from-topology p
  shows is-node-from-local p
  using assms edge-impl-psend-or-greev by auto
lemma global-local-eq-node:
  assumes is-node-from-local p
  shows is-node-from-topology p
proof -
  have local-p: tree-topology \land (\exists q. \mathcal{P}_?(p) = \{q\} \lor p \in \mathcal{P}_!(q)) by (simp add:
assms)
  then have t1: tree-topology by simp
  then show ?thesis using assms
  proof (cases \exists q. \mathcal{P}_?(p) = \{q\})
    case True
    then obtain q where \mathcal{P}_{?}(p) = \{q\} by auto
    then have q \in \mathcal{G}(\rightarrow p) using sends-of-peer-subset-of-predecessors-in-topology
by auto
    have \neg (is-root p) using \langle \mathcal{P}_{?} | p = \{q\} \rangle \langle q \in \mathcal{G} \langle \rightarrow p \rangle \rangle by blast
    have card (\mathcal{G}\langle \rightarrow p \rangle) \leq 1 using at-most-one-parent t1 by auto
     then have card (\mathcal{G}\langle \rightarrow p \rangle) = 1 by (smt\ (verit)\ Collect\text{-}cong\ \langle q \in \mathcal{G}\langle \rightarrow p \rangle)
edge-on-peers-in-tree(2) empty-Collect-eq empty-iff root-exists t1
          unique-root)
    then show ?thesis by (meson is-singleton-altdef is-singleton-the-elem t1)
 next
    case False
    then obtain q where p \in \mathcal{P}_{!}(q) using local-p by auto
    then obtain s1 a s2 where is-output a and get-actor a = q and get-object a
= p \text{ and } (s1,a,s2) \in \mathcal{R} \ q
    \mathbf{by}\ (meson\ Communicating Automaton. Sending To Peers-rev\ Communicating Au-
tomaton.well\mbox{-}formed\mbox{-}transition
          automaton-of-peer)
  then have q \in \mathcal{G}(\rightarrow p) by (metis Edges intros mem-Collect-eq output-message-to-act-both-known
trans-to-edge)
    have card (\mathcal{G}(\rightarrow p)) \leq 1 using at-most-one-parent t1 by auto
     then have card\ (\mathcal{G}(\rightarrow p)) = 1 by (smt\ (verit)\ Collect\text{-}cong\ \langle q \in \mathcal{G}(\rightarrow p)\rangle
edge-on-peers-in-tree(2) empty-Collect-eq empty-iff root-exists t1
```

```
unique-root)
    then show ?thesis by (meson is-singleton-altdef is-singleton-the-elem t1)
  qed
qed
lemma node-defs-eq:
  shows is-node-from-topology p = is-node-from-local p
  using edge-impl-psend-or-greev global-local-eq-node by blast
3.8.3
          parent-child relationship in tree
lemma is-parent-of-rev:
  assumes is-parent-of p q
 shows is-node p and \mathcal{G}\langle \rightarrow p \rangle = \{q\}
  using assms
proof (cases rule: is-parent-of.cases)
  case node-parent
  then show is-node p by simp
next
  have is-node p by (metis assms is-parent-of.cases)
 then show \mathcal{G}\langle \rightarrow p \rangle = \{q\} by (metis assms is-parent-of.cases)
qed
lemma is-parent-of-rev2:
  assumes is-parent-of p q
 shows is-node p and \mathcal{P}_{?}(p) = \{q\} \lor p \in \mathcal{P}_{!}(q)
  using assms
proof (cases rule: is-parent-of.cases)
  case node-parent
  then show is-node p by simp
next
  have is-node p by (metis assms is-parent-of.cases)
  then show \mathcal{P}_{?}(p) = \{q\} \lor p \in \mathcal{P}_{!}(q) using assms edge-impl-psend-or-qrecv
is-parent-of-rev(2) by blast
qed
\mathbf{lemma}\ \mathit{local-parent-to-global}:
 assumes tree-topology and \mathcal{P}_{?}(p) = \{q\} \lor p \in \mathcal{P}_{!}(q)
  shows \mathcal{G}\langle \to p \rangle = \{q\}
proof -
  show ?thesis using assms
  proof (cases \mathcal{P}_{?}(p) = \{q\})
    \mathbf{case} \ \mathit{True}
    then have q \in \mathcal{G}(\rightarrow p) using sends-of-peer-subset-of-predecessors-in-topology
by auto
    have \neg (is-root p) using \langle \mathcal{P}_? | p = \{q\} \rangle \langle q \in \mathcal{G} \langle \rightarrow p \rangle \rangle by blast
    have card (\mathcal{G}(\rightarrow p)) \leq 1 using at-most-one-parent assms by auto
     then have card (\mathcal{G}\langle \rightarrow p \rangle) = 1 by (smt\ (verit)\ Collect\text{-}cong\ \langle q \in \mathcal{G}\langle \rightarrow p \rangle\rangle
```

edge-on-peers-in-tree(2) empty-Collect-eq empty-iff root-exists assms

```
unique-root)
   then show ?thesis by (metis \langle q \in \mathcal{G}(\rightarrow p) \rangle card-1-singletonE singletonD)
  next
    case False
   then have p \in \mathcal{P}_!(q) using assms by auto
   then obtain s1 a s2 where is-output a and get-actor a=q and get-object a
= p \text{ and } (s1,a,s2) \in \mathcal{R} q
    by (meson\ Communicating Automaton. Sending To Peers-rev\ Communicating Au-
tomaton.well\mbox{-}formed\mbox{-}transition
         automaton-of-peer)
  then have c1: q \in \mathcal{G}(\rightarrow p) by (metis Edges.intros mem-Collect-eq output-message-to-act-both-known
trans-to-edge)
   have c2: card (\mathcal{G}(\rightarrow p)) \leq 1 using at-most-one-parent assms by auto
   have c3: finite (\mathcal{G}\langle \to p \rangle) using finite-peers rev-finite-subset by fastforce
   from c3 c1 c2 have card (\mathcal{G}(\rightarrow p)) = 1 using assms(1) root-exists unique-root
by force
   then show ?thesis by (metis c1 card-1-singletonE singleton-iff)
  qed
qed
lemma parent-child-diff:
  assumes is-parent-of p q
  shows p \neq q
proof (rule ccontr)
  assume \neg p \neq q
  then have is-parent-of p p using assms by auto
 then have is-node p \land \mathcal{G}(\rightarrow p) = \{p\} using is-parent-of-rev(2) is-parent-of-rev2(1)
bv force
 then show False by (metis insert-iff mem-Collect-eq tree-acyclic)
qed
lemma child-word-filters-unique-parent:
 assumes is-parent-of p q and w \in \mathcal{L}(p)
 shows (filter (\lambda x. \ get\text{-}object \ x = q) \ (w\downarrow_?)) = (w\downarrow_?)
  using assms
proof (induct length w arbitrary: w)
  case \theta
  then show ?case by simp
next
  case (Suc \ x)
  then obtain a v where w-def: w = v \otimes [a] and length v = x by (metis
length-Suc-conv-rev)
  then have v \in \mathcal{L}(p) using Lang-app Suc.prems(2) by blast
  then have filter (\lambda x. \ get\text{-}object \ x = q) \ (v\downarrow_?) = v\downarrow_? \ \ \textbf{using} \ Suc.hyps(1) \ |v| =
x \mapsto assms(1) by blast
 have (v @ [a]) \in \mathcal{L} \ p \ using Suc.prems(2) \ w\text{-def by } auto
  then have \exists s1 \ s2. \ (s1, a, s2) \in \mathcal{R} \ p using Lang-app-both lang-implies-trans
by blast
  then obtain s1 s2 where (s1, a, s2) \in \mathcal{R} p by blast
```

```
then have get-actor a = p by (meson\ CommunicatingAutomaton.well-formed-transition
Network Of CA. automaton-of-peer
         NetworkOfCA-axioms)
  then show ?case using Suc
  proof (cases is-input a)
    \mathbf{case} \ \mathit{True}
    then have [a]\downarrow_? = [a] by simp
    then show ?thesis using True
    proof (cases get-object a = q)
      case True
      have (w\downarrow_?) = (v @ [a])\downarrow_? by (simp \ add: w-def)
      then have (v @ [a])\downarrow_? = (v\downarrow_?) @ [a] using \langle (a \# \varepsilon)\downarrow_? = a \# \varepsilon \rangle by force
     then have obj-proj-decomp: (filter (\lambda x. get-object x = q) (w \downarrow_?)) = (filter (\lambda x.
get-object x = q) (v\downarrow_?)) @ (filter (\lambda x. \ get-object \ x = q) ([a]))
        using w-def by force
       then show ?thesis using True <filter (\lambda x. qet-object x = q) (v \downarrow_{?}) = v \downarrow_{?}>
w-def by fastforce
    next
      case False
      then obtain qq where get-object a = qq and qq \neq q by simp
      then have qq \in \mathcal{G}(\rightarrow p) by (metis Edges.intros True \langle get\text{-}actor\ a=p\rangle\ \langle s1\rangle
-a \rightarrow_{\mathcal{C}} p \ s2 \rightarrow input\text{-}message\text{-}to\text{-}act\text{-}both\text{-}known mem\text{-}Collect\text{-}eq}
             trans-to-edge)
      then have qq \in \mathcal{P} by auto
      have q \in \mathcal{G}(\rightarrow p) using assms(1) is-parent-of-rev(2) by auto
      then have \mathcal{G}\langle \rightarrow p \rangle \neq \{q\} using \langle qq \in \mathcal{G}\langle \rightarrow p \rangle \rangle \langle qq \neq q \rangle by blast
      then show ?thesis using assms(1) is-parent-of-rev(2) by auto
    ged
  \mathbf{next}
    case False
    then have is-output a by auto
    then have [a]\downarrow_? = \varepsilon by simp
    then have (w\downarrow_?) = (v\downarrow_?) using w-def by fastforce
      then show ?thesis using \langle filter\ (\lambda x.\ get\text{-}object\ x=q)\ (v\downarrow_?)=v\downarrow_?\rangle by
presburger
  qed
qed
lemma pair-proj-recv-for-unique-parent:
  assumes is-parent-of p q and w \in \mathcal{L}(p)
  shows (w\downarrow_?)\downarrow_{\{p,q\}} = (w\downarrow_?)
proof -
  have ((w)\downarrow_p) = w using assms(2) w-in-peer-lang-impl-p-actor by auto
  then have ((w\downarrow_p)\downarrow_?) = (w\downarrow_?) by presburger
  then have ((w\downarrow_?)\downarrow_p) = (w\downarrow_?) by (metis filter-pair-commutative)
 then have (w\downarrow_?)\downarrow_{\{p,q\}} = (filter\ (\lambda x.\ get-object\ x=q)\ (w\downarrow_?)) using pair-proj-to-object-proj
by fastforce
 have (filter (\lambda x.\ get-object x=q) ((w\downarrow_?)) = ((w\downarrow_?)) using assms child-word-filters-unique-parent
by auto
```

```
then show ?thesis using \langle w \downarrow ? \downarrow_{\{p,q\}} = filter \ (\lambda x. \ get\text{-object} \ x = q) \ (w \downarrow ?) \rangle by
presburger
qed
lemma filter-ignore-false-prop:
  assumes filter (\lambda x. False) w = \varepsilon
  shows filter (\lambda x. \ False \lor B) \ w = filter \ (\lambda x. \ B) \ w
 by (metis assms filter-False filter-True)
\mathbf{lemma}\ \mathit{recv-lang-child-pair-proj-subset1}\colon
  assumes is-parent-of p q
  shows (((\mathcal{L}(p))|_?)) \subseteq ((((\mathcal{L}(p))|_?)|_{\{p,q\}}))
proof auto
 \mathbf{fix} \ w
  show w \in \mathcal{L} \ p \Longrightarrow \exists wa. \ w\downarrow_? = wa\downarrow_{\{p,q\}} \land (\exists w. \ wa = w\downarrow_? \land w \in \mathcal{L} \ p) by
(metis (no-types, lifting) assms pair-proj-recv-for-unique-parent)
lemma child-recv-lang-inv-to-proj-with-parent:
  assumes is-parent-of p q
  shows (((\mathcal{L}(p))|_?)) = ((((\mathcal{L}(p))|_?)|_{\{p,q\}}))
proof -
 have t1: (((\mathcal{L}(p))|_?)) \subseteq ((((\mathcal{L}(p))|_?)|_{\{p,q\}})) using assms recv-lang-child-pair-proj-subset1
by blast
  have t2: ((((\mathcal{L}(p))|_?)|_{\{p,q\}})) \subseteq (((\mathcal{L}(p))|_?)) by (smt (z3) \ Collect-mono-iff
filter-recursion mem-Collect-eq t1)
 from t1 t2 show ?thesis by blast
qed
          Path to Root and Path Related Lemmas
lemma path-to-root-rev:
  assumes path-to-root p ps and ps \neq [p]
  shows \exists q \ as. \ is-parent-of \ p \ q \land path-to-root \ q \ as \land ps = (p \ \# \ as) \land distinct \ (p \ \# \ as)
\# as
 using assms
  by (meson path-to-root.simps)
lemma path-to-root-rev-empty:
  assumes path-to-root p ps and ps = [p]
  shows is-root p
 by (metis\ (no-types,\ lifting)\ assms(1,2)\ list.distinct(1)\ list.inject\ path-to-root.simps)
lemma path-ends-at-root:
  assumes path-to-root p ps
  shows is-root (last ps)
  using assms
proof (induct rule: path-to-root.induct)
```

```
case (PTRRoot p)
  then show ?case by auto
next
  case (PTRNode \ p \ q \ as)
 then show ?case by (metis last-ConsR list.discI path-to-root.cases)
qed
lemma single-path-impl-root:
 assumes path-to-root p[p]
 shows is-root p
 using assms path-to-root-rev-empty by blast
lemma path-to-root-first-elem-is-peer:
 assumes path-to-root p (x \# ps)
 shows p = x
 using assms path-to-root-rev by auto
lemma path-to-root-stepback:
 assumes path-to-root p (p \# ps)
 shows ps = [] \lor (\exists q. is-parent-of p q \land path-to-root q ps)
 using assms path-to-root-rev by auto
lemma path-to-root-unique:
 assumes path-to-root p ps and path-to-root p qs
 shows qs = ps
 using assms
proof (induct p ps arbitrary: qs rule: path-to-root.induct)
 case (PTRRoot p)
 then show ?case by (metis (mono-tags, lifting) ITRoot empty-iff is-parent-of.cases
local-to-global-root path-to-root.simps
       root-exists)
next
 case (PTRNode \ p \ q \ as)
 then have path-to-root p (p \# as) using path-to-root.PTRNode by blast
  then have \forall ys. (path-to-root qys) \longrightarrow as = ys using PTRNode.hyps(4) by
 then have pq: is\text{-}parent\text{-}of \ p \ q \ by \ (simp \ add: PTRNode.hyps(2))
 then have as \neq qs by (metis PTRNode.hyps(3) PTRNode.prems \forall ys. path-to-root
q \ ys \longrightarrow as = ys \land (path-to-root \ p \ (p \# as))
       list.inject not-Cons-self2 path-to-root-rev)
 have qs \neq [] using path-to-root.cases PTRNode.prems by auto
 then obtain x qqs where qs-decomp: qs = x \# qqs using list.exhaust by auto
 then have path-to-root p (x \# qqs) using PTRNode.prems by auto
 then have x = p using path-to-root-first-elem-is-peer by auto
 then have qs = p \# qqs by (simp \ add: \ qs\text{-}decomp)
 then have qqs = [] \lor (\exists y. is-parent-of p \ y \land path-to-root \ y \ qqs) using \langle path-to-root \ y \ qqs \rangle
p(x \# qqs) \land \langle x = p \rangle path-to-root-stepback by auto
 then have qqs \neq [] using pq using \langle path-to-root p (x \# qqs) \rangle \langle x = p \rangle is-parent-of-rev(2)
root\text{-}defs\text{-}eq\ single\text{-}path\text{-}impl\text{-}root
```

```
by fastforce
  then have (\exists y. is\text{-parent-of } p \ y \land path\text{-to-root } y \ qqs) \ \mathbf{using} \ \langle qqs = \varepsilon \lor (\exists y.
is-parent-of p \ y \land path-to-root y \ qqs) > \mathbf{by} \ auto
  then obtain y where is-parent-of p y \wedge path-to-root y qqs by auto
  then have is-parent-of p \neq is-parent-of p \neq by (simp add: pq)
  then have \mathcal{G}\langle \to p \rangle = \{q\} \land \mathcal{G}\langle \to p \rangle = \{y\} using is-parent-of-rev(2) by auto
  then have q = y by blast
  then have is-parent-of p \neq A path-to-root q \neq A by (simp add: A is-parent-of p \neq A
\land path-to-root y qqs \gt)
  then show ?case by (simp add: PTRNode.hyps(4) \langle qs = p \# qqs \rangle)
qed
\mathbf{lemma}\ peer-on\text{-}path\text{-}unique:
  assumes path-to-root p ps
 shows distinct ps
  using assms distinct-singleton path-to-root-rev by fastforce
lemma only-peer-impl-root:
  assumes is-tree (\mathcal{P}) (\mathcal{G}) and (\mathcal{P}) = \{p\}
  shows is-root p
 by (metis\ assms(1,2)\ root-exists\ singleton-iff)
lemma leaf-exists:
  assumes tree-topology
  shows \exists q. \ q \in \mathcal{P} \land \mathcal{G}\langle q \rightarrow \rangle = \{\}
  using assms
proof (induct)
  case (ITRoot p)
  then show ?case by simp
next
  case (ITNode\ P\ E\ p\ q)
  then show ?case using edge-on-peers-in-tree(1) prod.inject by fastforce
qed
lemma leaf-root-or-child:
  assumes tree-topology and q \in \mathcal{P} \land \mathcal{G}\langle q \rightarrow \rangle = \{\}
 shows is-root q \lor (\exists p. is-parent-of q p)
 using assms(1) is-parent-of.simps node-defs-eq root-or-node by presburger
{f lemma}\ finite\text{-}set\text{-}card\text{-}union\text{-}with\text{-}singleton:
  assumes finite A and a \in A and card A \leq 1
  shows A = \{a\}
proof (rule ccontr)
  assume A \neq \{a\}
 have A \neq \{\} using assms(2) by auto
  then show False by (metis One-nat-def \langle A \neq \{a\} \rangle assms(1,2,3) card-0-eq
card	ext{-}1	ext{-}singleton	ext{-}iff\ less-Suc0\ linorder-le-less-linear
        order-antisym-conv singletonD)
qed
```

```
\mathbf{lemma}\ \mathit{tree-impl-finite-sets}\colon
  assumes tree-topology
  shows finite (P) and finite (G)
proof -
  show finite (P) by (simp \ add: finite-peers)
  show finite (G) by (meson\ UNIV-I\ finite-peers\ finite-prod\ finite-subset\ subset I)
qed
lemma leaf-ingoing-edge:
  assumes tree-topology and card (\mathcal{P}) \geq 2 and q \in \mathcal{P} \land \mathcal{G}(q \rightarrow) = \{\}
  shows \exists p. \mathcal{G}\langle \rightarrow q \rangle = \{p\}
  using assms
proof (induct arbitrary: q)
  case (ITRoot \ p)
  then show ?case by simp
next
  case (ITNode\ P\ E\ x\ y)
  then show ?case using ITNode
  proof (cases q \in P \land E\langle q \rightarrow \rangle = \{\})
    case True
    then have IH-q: 2 \leq card \ P \Longrightarrow q \in P \land E\langle q \rightarrow \rangle = \{\} \Longrightarrow \exists \ p. \ E\langle \rightarrow q \rangle = \{\}
\{p\} using ITNode.hyps(2) by presburger
    have y \neq q using ITNode.hyps(4) True by auto
    then show ?thesis
    proof (cases 2 \leq card P)
      case True
     then have \exists p. \ E \langle \rightarrow q \rangle = \{p\} \text{ using } IH\text{-}q \ ITNode.prems(2) \ \langle y \neq q \rangle \text{ by } auto
      have insert (x, y) E\langle \rightarrow q \rangle = E\langle \rightarrow q \rangle using \langle y \neq q \rangle by blast
      then show ?thesis by (simp add: \langle \exists p. E \langle \rightarrow q \rangle = \{p\} \rangle)
    next
      {f case} False
      then have 1 \ge card P by simp
      have q \in P by (simp \ add: True)
      have is-tree P E by (simp \ add: ITNode.hyps(1))
        then have finite P \wedge finite E by (metis UNIV-I finite-peers finite-prod
finite-subset subsetI)
      then have finite P by blast
         then have cq: card P = 1 by (metis\ ITNode.hyps(3) \ \langle card\ P \leq 1 \rangle
finite\text{-}set\text{-}card\text{-}union\text{-}with\text{-}singleton\ is\text{-}singletonI
            is-singleton-altdef)
      then have card P = 1 \land q \in P by (simp \ add: \langle q \in P \rangle)
    then have \{q\} = P by (metis < card P \le 1) < finite P > finite-set-card-union-with-singleton)
      then show ?thesis using ITNode.hyps(3) ITNode.prems(2) by blast
    qed
  next
    case False
    then have y = q using ITNode.prems(2) by auto
    then have E\langle \rightarrow q \rangle = \{\} using ITNode.hyps(1,4) edge-on-peers-in-tree(2) by
```

```
auto
   then have \forall g. (g, q) \notin E by simp
   then have insert (x, q) E\langle \rightarrow q \rangle = E\langle \rightarrow q \rangle \cup \{x\} by simp
   then have insert (x, q) E\langle \rightarrow q \rangle = \{x\} by (simp\ add: \langle E\langle \rightarrow q \rangle = \{\}\rangle)
   then show ?thesis using \langle y = q \rangle by auto
  qed
qed
lemma app-path-peer-is-parent-or-root:
  assumes path-to-root p (xs @ [q] @ ys) and xs \neq []
 shows is-root q \lor (\exists qq. is-parent-of qq q)
  using assms
\mathbf{proof}\ (\mathit{induct}\ p\ \mathit{xs}\ @\ [q]\ @\ \mathit{ys}\ \mathit{arbitrary:}\ \mathit{xs}\ q\ \mathit{ys})
  case (PTRRoot p)
 then have p = q by (metis (no-types, lifting) Nil-is-append-conv append-eq-Cons-conv
list.distinct(1)
  then have is-root q using PTRRoot.hyps(1) by auto
  then show ?case by blast
  case (PTRNode \ x \ y \ as)
  then show ?case
 proof (cases \exists xs \ ys. \ as = (xs \cdot (q \# \varepsilon \cdot ys)))
   case True
     then show ?thesis by (metis Cons-eq-appendI[of q \varepsilon q \# \varepsilon \varepsilon -] PTRN-
ode.hyps(2,3) PTRNode.hyps(4)[of - q]
         list.inject[of\ q\ -\ y]\ path-to-root.cases[of\ y\ as]\ self-append-conv2[of\ -\ \varepsilon])
  next
   case False
   then have \forall xs \ ys. \ as \neq (xs \cdot (q \# \varepsilon \cdot ys)) by simp
  then have q \neq x by (metis\ PTRNode.hyps(6)\ PTRNode.prems\ append-eq-Cons-conv)
  then have q \neq y by (metis Cons-eq-appendI False PTRNode.hyps(3) eq-Nil-appendI
path-to-root-rev)
   then have \forall xs \ ys. \ (x\# as) \neq (xs \cdot (q \# \varepsilon \cdot ys)) by (metis\ PTRNode.hyps(6)
PTRNode.prems \ \langle \forall \ xs \ ys. \ as \neq xs \cdot (q \# \varepsilon \cdot ys) \rangle \ append-eq-Cons-conv)
   then show ?thesis using PTRNode.hyps(6) by auto
 qed
qed
lemma app-path-peer-is-parent-or-root2:
  assumes path-to-root p ps and ps!i = q and i < length ps
 shows is-root q \vee is-parent-of q (ps!(Suc i))
  using assms
proof (induct p ps arbitrary: i q)
  case (PTRRoot p)
  then show ?case using Suc-length-conv append-self-conv2 by auto
next
  case (PTRNode \ x \ y \ as)
  then show ?case
  proof (cases i = \theta)
```

```
case True
   then have x = q using PTRNode.prems(1) by auto
   then have is-parent-of q y using PTRNode.hyps(2) by auto
  then show ?thesis by (metis PTRNode.hyps(3) True nth-Cons-0 nth-Cons-Suc
path-to-root.simps)
 next
   case False
   then have i \geq 1 by auto
   then have as!(i-1) = q using PTRNode.prems(1) by auto
    then have (i-1) < length as by (metis\ One-nat-def\ PTRNode.prems(2))
Suc\text{-}pred \land 1 \leq i \land le\text{-}less\text{-}Suc\text{-}eq \ length\text{-}Cons \ less\text{-}imp\text{-}diff\text{-}less
        less-numeral-extra(1) linorder-le-less-linear order.strict-trans2)
    then have is-root q \lor is-parent-of q (as!i) by (metis One-nat-def PTRN-
ode.hyps(4) Suc-pred UNIV-def \langle 1 \leq i \rangle \langle as! (i-1) = q \rangle less-eq-Suc-le
        root-defs-eq)
   then show ?thesis by simp
 qed
qed
lemma path-to-root-of-root-exists:
 assumes is-root p
 shows path-to-root p [p]
 using PTRRoot assms by auto
lemma adj-in-path-parent-child:
 assumes path-to-root p (x \# y \# ps)
 shows \mathcal{P}_{?}(x) = \{y\} \lor x \in \mathcal{P}_{!}(y)
 by (metis assms is-parent-of-rev2(2) neq-Nil-conv path-to-root-first-elem-is-peer
     path-to-root-stepback)
3.8.5
        Path from Root Downwards to a Node
lemma path-to-root-downwards:
 assumes path-to-root q qs and is-parent-of p q
 shows path-to-root p (p \# qs)
 using assms
proof (induct \ q \ arbitrary: \ p)
 case (PTRRoot p)
 then show ?case by (metis (lifting) NetworkOfCA.PTRNode NetworkOfCA-axioms
distinct-length-2-or-more
     distinct-singleton empty-iff is-parent-of .simps\ local-to-global-root path-to-root-of-root-exists
       singletonI)
next
 case (PTRNode \ x \ y \ as)
 then have path-to-root x (x \# as) by blast
 then have tree-topology \wedge is-parent-of p \times \wedge path-to-root x \times \#as using PTRN-
ode.hyps(1) PTRNode.prems by auto
 have p \neq x by (metis PTRNode.hyps(2,3,5) PTRNode.prems distinct-length-2-or-more
is-parent-of-rev(2) path-to-root-rev
```

```
singleton-inject)
  have distinct (p\#x\#as)
  proof (rule ccontr)
   assume \neg distinct (p \# x \# as)
   then have \neg distinct (p \# as) using PTRNode.hyps(5) \langle p \neq x \rangle by auto
    then have \exists i. \ as!i = p \land i < length \ as \ by \ (meson\ PTRNode.hyps(5)\ dis-
tinct.simps(2) in-set-conv-nth)
   then obtain i where as!i = p and i < length as by blast
   then show False
   proof (cases\ last\ as = p)
     {f case} True
     then have is-root p using PTRNode.hyps(3) path-ends-at-root by auto
    then show ?thesis using PTRNode.prems is-parent-of-rev(2) local-to-global-root
by force
   next
     case False
       then have path-to-root y as \land as!i = p \land i < length as by (simp add:
PTRNode.hyps(3) \langle as ! i = p \rangle \langle i < |as| \rangle
    then have is-root p \vee is-parent-of p (as!(Suc i)) using app-path-peer-is-parent-or-root2
by blast
    then have is-parent-of p (as!(Suc i)) by (metis PTRNode.prems insert-not-empty
is-parent-of.simps is-parent-of-rev2(2))
     then have c1: is-node p \land \mathcal{G}(\rightarrow p) = \{(as!(Suc\ i))\}\ using PTRNode.hyps(1)
is-parent-of-rev(2) by auto
     have x \notin set \ as \ using \ PTRNode.hyps(5) by auto
     have \forall j. \ j < length \ as \longrightarrow as! j \neq x \ using \langle x \notin set \ as \rangle \ by \ auto
      have c3: (as!(Suc\ i)) \neq x by (metis\ False\ Suc\ lessI\ \langle \forall j < |as|.\ as\ !\ j \neq x \rangle
\langle \neg distinct (p \# as) \rangle \langle as ! i = p \rangle \langle i < |as| \rangle append 1-eq-conv
        append-butlast-last-id\ distinct-singleton\ length-Suc-conv-rev\ nth-append-length)
     have is-parent-of p \times y (simp add: PTRNode.prems)
    then have c2: is-node p \land \mathcal{G}(\rightarrow p) = \{x\} using PTRNode.hyps(1) is-parent-of-rev(2)
by auto
     then show ?thesis using c1 c2 c3 by simp
   qed
 qed
  then show ?case using \langle is\text{-}tree \ (\mathcal{P}) \ (\mathcal{G}) \ \wedge \ is\text{-}parent\text{-}of \ p \ x \ \wedge \ path\text{-}to\text{-}root \ x \ (x
\# as)> path-to-root.PTRNode by blast
qed
lemma path-from-root-rev:
  assumes path-from-root p ps
  shows is-root p \lor (\exists q \ as. \ tree-topology \land is-parent-of p \ q \land path-from-root q \ as
\wedge distinct (as @ [p]))
 by (metis assms path-from-root.cases)
lemma path-to-from:
  assumes path-to-root p ps
  shows path-from-root p (rev ps)
  using assms
```

```
proof (induct)
  case (PTRRoot\ p)
  then show ?case using PFRRoot by force
  case (PTRNode \ p \ q \ as)
  then show ?case using PFRNode PTRNode.hyps(1,2,4,5) by force
qed
lemma path-from-to:
  assumes path-from-root p ps
 shows path-to-root p (rev ps)
 using assms
proof (induct)
  case (PFRRoot p)
  then show ?case using PTRRoot by force
  case (PFRNode \ p \ q \ as)
 then show ?case using PTRNode PFRNode.hyps(1,2,4,5) by force
lemma paths-eq:
 shows (\exists ps. path-from-root p ps) = (\exists qs. path-to-root p qs)
  using path-from-to path-to-from by blast
lemma path-from-to-rev:
  assumes path-from-to r p r2p
  shows (r = p) \lor (\exists q \ qs. \ path-from-to \ r \ q \ qs \land r2p = (qs@[p]) \land is-parent-of \ p
q)
 by (metis assms path-from-to.simps)
lemma path-from-root-2-path-from-to:
  assumes path-from-root p ps and is-root r
 shows path-from-to r p ps
  using assms
proof (induct \ p \ ps)
  case (PFRRoot p)
  then have is-root p by auto
  then have \mathcal{G}\langle \rightarrow p \rangle = \{\} using root-defs-eq by auto
  have is-root r using PFRRoot.prems by auto
  then have \mathcal{G}\langle \rightarrow r \rangle = \{\} using root-defs-eq by auto
 have r \in \mathcal{P} by simp
  have p \in \mathcal{P} by simp
  have r = p
  proof (rule ccontr)
   assume r \neq p
    then have is-tree (\mathcal{P}) (\mathcal{G}) \land p \in \mathcal{P} \land \mathcal{G} \langle \rightarrow p \rangle = \{\} \land r \neq p \land r \in \mathcal{P} \text{ using }
PFRRoot.hyps \langle \mathcal{G} \langle \rightarrow p \rangle = \{\} \rangle  by auto
   then have card (\mathcal{G}(\rightarrow r)) = 1 using unique-root by blast
   then show False by (simp add: \langle \mathcal{G} \langle \rightarrow r \rangle = \{\} \rangle)
```

```
then show ?case by (metis\ NetworkOfCA.path-from-to.simps\ NetworkOfCA-axioms
PFRRoot.prems \langle p \in \mathcal{P} \rangle)
\mathbf{next}
  case (PFRNode \ p \ q \ as)
  then have path-from-to r q as by simp
  then have tree-topology \land is-parent-of p \neq \land path-from-to r \neq as \land distinct (as
@ [p]) using PFRNode.hyps(1,2,5) by auto
  then show ?case using path-step by blast
qed
lemma p2root\text{-}down\text{-}step:
  (is\text{-parent-of }p\ q \land path\text{-to-root }q\ qs) \implies path\text{-to-root }p\ (p\# qs)
 using path-to-root-downwards by auto
lemma path-to-root-exists:
  assumes tree-topology and p \in \mathcal{P}
  shows \exists ps. path-to-root p ps
using assms proof (induct)
  case (ITRoot \ r)
  hence p = r
   by simp
 hence path-to-root p[p] sorry
  then show ?case by blast
next
  case (ITNode\ P\ E\ x\ q)
  assume IH: p \in P \Longrightarrow \exists a. path-to-root p a
  assume a: p \in insert \ q \ P
  then show ?case
   proof (cases p = q)
     case True
     then show ?thesis sorry
   next
     {\bf case}\ \mathit{False}
     with IH a show ?thesis by blast
   qed
\mathbf{qed}
lemma edge-elem-to-edge:
  assumes q \in \mathcal{G}\langle \to p \rangle
 shows (q, p) \in \mathcal{G}
 using assms by (meson Set.CollectD Set.CollectE)
lemma matching-words-to-peer-sets:
  assumes tree-topology and ((w\downarrow_?)\downarrow_!?)=((w'\downarrow_!)\downarrow_!?) and w\in\mathcal{L}(p) and w'\in\mathcal{L}(p)
\mathcal{L}(q) and is-node p and is-parent-of p q and (w\downarrow_?) \neq \varepsilon
 shows \mathcal{P}_{?}(p) = \{q\} and p \in \mathcal{P}_{!}(q)
  using assms
proof -
```

```
have t1: tree-topology using assms by simp
  have pq: is-parent-of p q using assms by simp
  have is-node p using assms(5) by blast
  then have \mathcal{G}\langle \rightarrow p \rangle = \{q\} by (metis is-parent-of.cases pq)
 then have local-node: is-node-from-local p using edge-impl-psend-or-grecv using
t1 by blast
 then have \mathcal{P}_{?}(p) = \{q\} \lor p \in \mathcal{P}_{!}(q) using pq by (meson edge-impl-psend-or-qrecv
is-parent-of.cases)
  then have (q,p) \in \mathcal{G} using is-parent-of-rev(2) pq by auto
  then have qintop: q \in \mathcal{G}\langle \rightarrow p \rangle by blast
  then have (\mathcal{G}\langle \rightarrow p \rangle) \neq \{\} by blast
  then have no0: card (\mathcal{G}(\rightarrow p)) \neq 0 by (meson card-0-eq finite-peers finite-subset
top-greatest)
  have le1: card (\mathcal{G}(\rightarrow p)) \leq 1 using at-most-one-parent t1 by auto
  then have card\ (\mathcal{G}\langle \rightarrow p \rangle) \neq 0 \land card\ (\mathcal{G}\langle \rightarrow p \rangle) \leq 1 by (simp\ add:\ no0)
  have card (\{q\}) = 1 by simp
  \mathbf{have}\ (\forall\,pp.\ (pp\neq q)\longrightarrow (pp,p)\notin\mathcal{G})\ \mathbf{using}\ \langle\mathcal{G}\langle\rightarrow p\rangle=\{q\}\rangle\ \mathbf{by}\ \mathit{auto}
  have \exists a \text{ as } b \text{ bs. } (a\#as) = (w\downarrow_?) \land (b\#bs) = (w'\downarrow_!) by (metis \ assms(2,7))
list.map-disc-iff\ neq-Nil-conv)
   then have \exists a \ as \ b \ bs. \ (a\#as) = (w\downarrow_?) \land (b\#bs) = (w'\downarrow_!) \land ((a\#as)\downarrow_!?) =
((b\#bs)\downarrow_{!?}) by (metis\ assms(2))
  then obtain a as b bs where as-def: (a\#as) = (w\downarrow_?) and bs-def: (b\#bs) =
(w'\downarrow_!) and newt: ((a\#as)\downarrow_!?) = ((b\#bs)\downarrow_!?)
    by blast
 then have (([a]\downarrow_{!?}) @ (as\downarrow_{!?})) = (([b]\downarrow_{!?}) @ (bs\downarrow_{!?})) by (metis\ Cons\text{-}eq\text{-}appendI)
append-self-conv2 map-append)
  then have ([a]\downarrow_{!?}) = ([b]\downarrow_{!?}) by simp
  have (w\downarrow_?) = [a] @ (as) by (simp\ add:\ as\text{-}def)
  have (w'\downarrow_!) = [b] @ (bs) by (simp \ add: \ bs-def)
  then have is-input a
  proof auto
    assume a-out: is-output a
    then show False
    proof -
       have (w\downarrow_?) = [a] @ as by (simp add: \langle w\downarrow_? = a \# \varepsilon \cdot as \rangle)
        have (a\#as)\downarrow_? = ([a]\downarrow_?) \otimes (as)\downarrow_? by (metis \langle w\downarrow_? = a \# \varepsilon \cdot as \rangle \ as-def
filter-append)
       then have ([a]\downarrow?) = [] using a-out by auto
       then show False by (metis Cons-eq-filterD as-def filter.simps(1,2))
    qed
  \mathbf{qed}
  have is-output b
  proof (rule ccontr)
    assume b-out: is-input b
    then show False
    proof -
       have (w'\downarrow_!) = [b] @ bs by (simp \ add: \langle w'\downarrow_! = b \# \varepsilon \cdot bs \rangle)
         have (b\#bs)\downarrow_! = ([b]\downarrow_!) \otimes (bs)\downarrow_! by (metis \langle w'\downarrow_! = b \# \varepsilon \cdot bs \rangle bs-def
filter-append)
```

```
then have c1: ([b]\downarrow_!) = [] using b-out by auto
                     have (w'\downarrow_!)\downarrow_! = (w'\downarrow_!) by fastforce
                     then have ([b] @ bs)\downarrow_! = [b] @ bs using \langle w'\downarrow_! = b \# \varepsilon \cdot bs \rangle by auto
                      have ([b] @ bs)\downarrow_! = ([b]\downarrow_!) @ (bs)\downarrow_! using \langle (b \# bs)\downarrow_! = (b \# \varepsilon)\downarrow_! \cdot bs\downarrow_! \rangle
\langle w' \downarrow_! = b \# \varepsilon \cdot bs \rangle bs - def  by argo
                     then have ([b]\downarrow_!) @ (bs)\downarrow_! = [] @ (bs)\downarrow_! using c1 by blast
                    have (w'\downarrow_!)\downarrow_! = ([b] @ bs)\downarrow_! using \langle (b \# \varepsilon \cdot bs)\downarrow_! = (b \# \varepsilon)\downarrow_! \cdot bs\downarrow_! \rangle \langle (b \# \varepsilon)\downarrow_! 
(bs)\downarrow_! = (b \# \varepsilon)\downarrow_! \cdot bs\downarrow_! \rightarrow bs\text{-}def  by argo
                      then have (w'\downarrow_!)\downarrow_! = ([] @ bs)\downarrow_! using \langle (b \# bs)\downarrow_! = (b \# \varepsilon)\downarrow_! \cdot bs\downarrow_! \rangle c1
by auto
               then have ([] @ bs) \neq (w'\downarrow_!) by (metis append.left-neutral bs-def not-Cons-self2)
                     have (([b] @ bs)\downarrow_!)\downarrow_! = (([b] @ bs)\downarrow_!) by auto
                     have \forall c. length (c\downarrow!) = length ((c\downarrow!)\downarrow!) by simp
               then show False by (metis \langle w' \downarrow_! \downarrow_! = (\varepsilon \cdot bs) \downarrow_! \rangle append-Nil bs-def impossible-Cons
length-filter-le)
              qed
       aed
      then have is-input a \wedge is-output b \wedge get-message a = get-message b using \langle (a + b) \rangle = get-message b using b
\# \varepsilon \downarrow_{!?} = (b \# \varepsilon) \downarrow_{!?} \langle is\text{-input } a \rangle \text{ by } auto
     then have \exists s1 \ s2. \ (s1, a, s2) \in \mathcal{R} \ p by (metis NetworkOfCA.recv-proj-w-prepend-has-trans
 NetworkOfCA-axioms as-def assms(3))
        then have \mathcal{P}_{?}(p) = \{q\}
              by (metis \ \langle is\text{-}input \ a \rangle \ is\text{-}parent\text{-}of\text{-}rev(2) \ no\text{-}recvs\text{-}no\text{-}input\text{-}trans \ pq)
                             sends-of-peer-subset-of-predecessors-in-topology\ subset-singleton D)
       then show \mathcal{P}_{?}(p) = \{q\} by blast
     have \exists q1 \ q2. \ (q1, b, q2) \in \mathcal{R} \ q by (metis \ assms(4) \ bs-def \ send-proj-w-prepend-has-trans)
     then have p \in \mathcal{P}_1(q) by (metis Communicating Automaton. Sending To Peers. simps
  Communicating Automaton. well-formed-transition
                                      \langle \exists s1 \ s2. \ s1 \ -a \rightarrow_{\mathcal{C}} p \ s2 \rangle \langle is\text{-input } a \land is\text{-output } b \land get\text{-message } a =
get-message b> automaton-of-peer
                     input-message-to-act-both-known message.inject output-message-to-act-both-known)
       then show p \in \mathcal{P}_!(q) by simp
qed
                                     Influenced Language
lemma is-in-infl-lang-rev-tree:
      assumes is-in-infl-lang p w
      shows tree-topologu
       using assms is-in-infl-lang.simps by blast
lemma is-in-infl-lang-rev-root:
        assumes is-in-infl-lang p w and is-root p
       shows w \in \mathcal{L}(p)
       using assms(1) is-in-infl-lang.simps by blast
lemma is-in-infl-lang-rev-node:
        assumes is-in-infl-lang p w and is-node p
       shows \exists q \ w'. is-parent-of p \ q \land w \in \mathcal{L}(p) \land is-in-infl-lang q \ w' \land ((w\downarrow_?)\downarrow_!?) =
```

```
(((w'\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?)
  using assms
{f proof}\ induct
  case (IL\text{-}root\ r\ w)
  then show ?case using root-defs-eq by fastforce
  case (IL-node p \neq w w')
  then show ?case by blast
qed
lemma w-in-infl-lang: is-in-infl-lang p w \Longrightarrow w \in \mathcal{L}(p) using is-in-infl-lang.simps
\textbf{lemma} \ \textit{recv-has-matching-send} \ : \ \llbracket \mathcal{P}_?(p) \ = \ \{q\}; \ \textit{$w \in \mathcal{L}(p)$; is-in-infl-lang $q$ $w'$;}
((w\downarrow_?)\downarrow_!?) = (((w'\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?) \implies ((w\downarrow_?)\downarrow_!?) \in ((((\mathcal{L}(q))\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?)
  using w-in-infl-lang by blast
lemma child-matching-word-impl-in-infl-lang:
  assumes tree-topology and is-parent-of p q and w \in \mathcal{L}(q) and is-in-infl-lang q
w and ((w'\downarrow_?)\downarrow_{!?}) = (((w\downarrow_{\{p,q\}})\downarrow_!)\downarrow_{!?}) and w' \in \mathcal{L}(p)
  shows is-in-infl-lang p w'
  using IL-node assms(1,2,4,5,6) by blast
lemma is-in-infl-lang-rev2:
  assumes w \in \mathcal{L}^* p and is-node p
 shows w \in \mathcal{L}(p) and \exists q w'. is-parent-of p \neq w \in \mathcal{L}(p) \land w' \in \mathcal{L}^* \neq w \land ((w\downarrow_?)\downarrow_{!?})
=(((w'\!\!\downarrow_{\{p,q\}})\!\!\downarrow_!)\!\!\downarrow_{!?})
  using assms
proof -
  show w \in \mathcal{L}(p) using assms(1) is-in-infl-lang.simps by blast
  have is-in-infl-lang p w \wedge is-node p using assms(1,2) by auto
  then have \exists q \ w'. is-parent-of p \ q \land w \in \mathcal{L}(p) \land \text{is-in-infl-lang} \ q \ w' \land ((w\downarrow_?)\downarrow_{!?})
= (((w'\downarrow_{p,q})\downarrow_!)\downarrow_!?) using is-in-infl-lang-rev-node by auto
  then show \exists q \ w'. is-parent-of p \ q \land w \in \mathcal{L}(p) \land w' \in \mathcal{L}^* \ q \land ((w\downarrow_?)\downarrow_{!?}) =
(((w'\downarrow_{\{p,q\}})\downarrow_!)\downarrow_{!?}) by blast
qed
lemma infl-lang-subset-of-lang:
  shows (\mathcal{L}^* p) \subseteq (\mathcal{L} p)
  using w-in-infl-lang by fastforce
lemma lang-subset-infl-lang:
  assumes is-root p
  shows (\mathcal{L} \ p) \subseteq (\mathcal{L}^* \ p)
proof auto
  \mathbf{fix} \ x
  assume x \in \mathcal{L} p
  show is-in-infl-lang p x using IL-root \langle x \in \mathcal{L} p \rangle assms by presburger
qed
```

```
lemma root-lang-is-infl-lang:
  assumes is-root p and w \in \mathcal{L}(p)
  shows w \in \mathcal{L}^*(p)
  using IL-root assms(1,2) by blast
lemma eps-in-infl:
  assumes tree-topology and p \in \mathcal{P}
  shows \varepsilon \in \mathcal{L}^*(p)
proof -
  have a1: \forall q. ((\varepsilon\downarrow_?)\downarrow_!?) = (((\varepsilon\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?) by simp
  have a2: \varepsilon \in \mathcal{L}(p) by (meson Communicating Automaton. REmpty2 Communi-
catingAutomaton.Traces.simps automaton-of-peer)
  have \exists ps. path-to-root p ps by (simp add: assms(1) path-to-root-exists)
  then obtain ps where path-to-root p ps by blast
  from this a2 show ?thesis
  proof (induct arbitrary: ps)
    case (PTRRoot p)
    then show ?case using root-lang-is-infl-lang by blast
    case (PTRNode \ p \ q \ as)
   have \varepsilon \in \mathcal{L} q by (meson Communicating Automaton. REmpty2 Communicatin-
gAutomaton. Traces. simps automaton-of-peer)
    then have \varepsilon \in \mathcal{L}^* q using PTRNode.hyps(4) by auto
     then have is-parent-of p \ q \land \varepsilon \in \mathcal{L}(p) \land is-in-infl-lang \ q \ \varepsilon \land ((\varepsilon \downarrow_?) \downarrow_!?) =
(((\varepsilon\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?) by (simp\ add:\ PTRNode.hyps(2)\ PTRNode.prems)
    then show ?case using IL-node assms(1) by blast
  ged
qed
lemma infl-lang-has-tree-topology:
  assumes w \in \mathcal{L}^*(p)
  shows tree-topology
  using assms is-in-infl-lang.simps by blast
{f lemma}\ infl-parent-child-matching-ws:
  fixes w :: ('information, 'peer) action word
 assumes w \in \mathcal{L}^*(p) and is-parent-of p q
  shows \exists w'. w' \in \mathcal{L}^*(q) \land ((w\downarrow_?)\downarrow_!?) = (((w'\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?)
proof -
 have \exists q \ w'. is-parent-of p \ q \land w \in \mathcal{L}(p) \land w' \in \mathcal{L}^* \ q \land ((w \downarrow_?) \downarrow_!?) = (((w' \downarrow_{\{p,q\}}) \downarrow_!) \downarrow_!?)
using assms(1,2) is-in-infl-lang-rev2(2) is-parent-of.simps by blast
  then show ?thesis by (metis (mono-tags, lifting) assms(2) is-parent-of-rev(2)
mem-Collect-eq singleton-conv)
qed
lemma infl-parent-child-matching-ws2:
 fixes w :: ('information, 'peer) action word
```

```
assumes w \in \mathcal{L}^*(q) and is-parent-of p \neq q and ((w'\downarrow_?)\downarrow_!?) = (((w\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?)
and w' \in \mathcal{L}(p)
 shows w' \in \mathcal{L}^*(p)
  using IL-node assms(1,2,3,4) is-parent-of-rev2(1) by blast
          Influenced Language and its Shuffles
3.8.7
lemma word-in-shuffled-infl-lang:
  fixes w :: ('information, 'peer) action word
 assumes w \in \mathcal{L}^*(p)
 shows w \in \mathcal{L}^*_{\sqcup \sqcup}(p)
 by (meson assms shuffle-id)
\mathbf{lemma}\ language\text{-}shuffle\text{-}subset:
  shows \mathcal{L}^*(p) \subseteq \mathcal{L}^*_{\sqcup \sqcup}(p)
  using word-in-shuffled-infl-lang by auto
lemma shuffled-infl-lang-rev:
  assumes v \in \mathcal{L}^*(p)
 shows \exists v'. (v' \sqcup \sqcup_? v \land v' \in \mathcal{L}^*_{\sqcup \sqcup}(p))
 using assms by (rule valid-input-shuffles-of-lang)
\mathbf{lemma} shuffled-infl-lang-impl-valid-shuffle:
  assumes v \in \mathcal{L}^*_{\sqcup \sqcup}(p)
 shows \exists v'. (v \sqcup \sqcup_? v' \land v' \in \mathcal{L}^*(p))
 using assms shuffled-lang-impl-valid-shuffle by auto
lemma shuffle-prepend:
  assumes y \sqcup \sqcup_? x
  shows (w \cdot y) \sqcup \sqcup_? (w \cdot x)
  using assms proof (induct x y rule: shuffled.induct)
  case (refl\ w)
  then show ?case using shuffled.refl by blast
next
  case (swap \ a \ b \ w \ xs \ ys)
  then show ?case by (metis append.assoc shuffled.swap)
  case (trans w w' w'')
 then show ?case using shuffled.trans by blast
qed
\textbf{lemma} \textit{ shuffle-append:}
  assumes y \sqcup \sqcup_? x
  shows (y \cdot w) \sqcup \sqcup_? (x \cdot w)
  using assms proof (induct x y rule: shuffled.induct)
  case (refl\ w)
```

then show ?case using shuffled.refl by blast

```
next
  case (swap \ a \ b \ w \ xs \ ys)
  then show ?case by (simp add: shuffled.swap)
  case (trans w w' w'')
  then show ?case using shuffled.trans by blast
qed
lemma full-shuffle-of:
  shows \exists xs ys. (xs \cdot ys) \sqcup \sqcup_? x \wedge xs \downarrow_? = xs \wedge ys \downarrow_! = ys
proof (induct \ x)
  case Nil
  then show ?case by (metis append.right-neutral filter.simps(1) shuffled.reft)
next
  case (Cons a as)
  then obtain xs \ ys where shuf: xs \cdot ys \sqcup \sqcup_{?} as and xs\text{-}def: xs\downarrow_{?} = xs and
ys\text{-}def : ys\downarrow_! = ys \text{ by } blast
  then show ?case proof (cases is-input a)
    case True
    then have ([a] \cdot xs)\downarrow_? = ([a] \cdot xs) by (simp \ add: xs-def)
  have new-shuf: [a] \cdot xs \cdot ys \sqcup \sqcup_? ([a] \cdot as) by (simp\ add:\ shuf\ shuffled\ -prepend\ -inductive)
   then show ?thesis by (metis \langle (a \# \varepsilon \cdot xs) \downarrow_? = a \# \varepsilon \cdot xs \rangle append-eq-Cons-conv
self-append-conv2 ys-def)
  \mathbf{next}
   {\bf case}\ \mathit{False}
    then have a-ys-def: ([a] \cdot ys) \downarrow_! = ([a] \cdot ys) by (simp \ add: \ ys-def)
   have xs \cdot [a] \sqcup \sqcup_? ([a] \cdot xs) using fully-shuffled-implies-output-right by (metis
False xs-def)
    then have xs \cdot [a] \cdot ys \sqcup \sqcup_? ([a] \cdot xs \cdot ys) using shuffle-append by blast
    then have new-shuf: xs \cdot [a] \cdot ys \sqcup \sqcup_{?} ([a] \cdot as) by (metis (no-types, lifting)
append.assoc shuf shuffle-prepend shuffled.trans)
    then show ?thesis using a-ys-def xs-def by fastforce
  qed
qed
lemma full-shuffle-of-concrete:
  shows ((x\downarrow_?) \cdot (x\downarrow_!)) \sqcup \sqcup_? x
proof (induct \ x)
  case Nil
  then show ?case by (metis append.right-neutral filter.simps(1) shuffled.reft)
  case (Cons a as)
  then show ?case using Cons proof (cases is-input a)
    case True
    have (a \# as)\downarrow_? = ([a]\downarrow_? \cdot as\downarrow_?) by simp
   moreover have [a]\downarrow_? = [a] by (simp \ add: \ True)
  then show ?thesis by (metis Cons-eq-appendI filter.simps(1,2) filter-head-helper
```

```
local. Cons shuffled-prepend-inductive)
  next
   {\bf case}\ \mathit{False}
   have (a \# as)\downarrow_! = ([a]\downarrow_! \cdot as\downarrow_!) by simp
   moreover have [a]\downarrow_! = [a] by (simp \ add: False)
   moreover have (a \# as)\downarrow_? = as\downarrow_? using False by auto
   moreover have is-output a using False by auto
   ultimately show ?thesis by (metis (mono-tags, lifting) append.right-neutral
append-Nil filter-append full-shuffle-of
      input-proj-output-yields-eps\ output-proj-input-yields-eps\ shuffled-keeps-recv-order
         shuffled-keeps-send-order)
 qed
qed
lemma shuffle-keeps-outputs-right:
  assumes w' \sqcup \sqcup_{?} (w) and is-output (last w)
 shows is-output (last w')
 using assms shuffle-keeps-outputs-right-shuffled by metis
3.8.8
         Root Related Lemmas
lemma root-graph:
  assumes \mathcal{P} = \{p\} and tree-topology
 shows \mathcal{G}\langle \to p \rangle = \{\}
  by (metis (full-types, lifting) UNIV-I assms(1,2) empty-Collect-eq singleton-iff
tree-acyclic)
lemma p-root:
  assumes path-to-root p [p] and tree-topology
  shows \mathcal{G}\langle \to p \rangle = \{\}
proof auto
  \mathbf{fix} \ q
  assume (q, p) \in \mathcal{G}
  then show False
  \mathbf{by} \; (smt \; (verit, \, ccfv\text{-}threshold) \; Communicating Automaton. Sending To Peers. intros
     Communicating Automaton. well-formed-transition\ Edges-rev\ Network Of CA. no-input-trans-root
NetworkOfCA-axioms
     assms(1) automaton-of-peer qet-receiver.simps qlobal-to-local-root input-message-to-act
messages-used
        output-message-to-act-both-known prod.inject single-path-impl-root)
qed
lemma root-lang-word-facts:
  assumes \mathcal{P}_{?}(q) = \{\} and (\forall p. q \notin \mathcal{P}_{!}(p)) and w \in \mathcal{L}^{*}(q) and tree-topology
 shows w = w \downarrow_q \land w = w \downarrow_! \land w \in \mathcal{L}(q)
 \textbf{using} \ assms(1,3) \ no-inputs-implies-only-sends-alt \ w-in-infl-lang \ w-in-peer-lang-impl-p-actor
\mathbf{by} auto
```

```
lemma root-lang-is-mbox:
  assumes is-root p and w \in \mathcal{L}(p)
  shows w \in \mathcal{T}_{None}
  sorry
\mathbf{lemma}\ \mathit{parent-in-infl-has-matching-sends}\colon
  assumes w \in \mathcal{L}^*(p) and path-to-root p (p\#q\#ps)
  \mathbf{shows} \; \exists \, w'. \; w' \in \mathcal{L}^*(q) \, \land \, ((w \downarrow_?) \downarrow_!?) = (((w' \downarrow_{\{p,q\}}) \downarrow_!) \downarrow_!?)
 \textbf{using} \ assms(1,2) \ infl-parent-child-matching-ws \ path-to-root-first-elem-is-peer \ path-to-root-stepback
  by blast
lemma send-proj-on-infl-word:
  assumes v \in ((\mathcal{L}_!^*(p)))
  shows v = v \downarrow_!
  using assms
proof (induct v)
  case Nil
  then show ?case by simp
next
  case (Cons a as)
  then show ?case by force
\mathbf{qed}
\mathbf{lemma}\ v\text{-}in\text{-}send\text{-}infl\text{-}to\text{-}send\text{-}L:
  assumes v \in (\mathcal{L}_!^*(p))
  shows v \in (\mathcal{L}_!(p))
  using assms w-in-infl-lang by (induct, auto)
lemma send-infl-subset-send-lang: (\mathcal{L}_!^*(p)) \subseteq (\mathcal{L}_!(p)) using v-in-send-infl-to-send-L
by blast
lemma pair-proj-comm: v\downarrow_{\{p,q\}} = v\downarrow_{\{q,p\}} by meson
lemma pair-proj-inv-with-send-proj:
  assumes v = v \downarrow_!
  shows (v\downarrow_{\{p,q\}})=(v\downarrow_{\{p,q\}})\downarrow_!
  using assms
proof (induct v)
  case Nil
  then show ?case using eps-always-in-lang by auto
\mathbf{next}
  case (Cons a as)
  then show ?case by (metis (no-types, lifting) filter.simps(2) list.distinct(1)
list.inject
         output-proj-input-yields-eps)
qed
\mathbf{lemma} \ \mathit{send-infl-lang-pair-proj-inv-with-send} \colon
  assumes v \in ((\mathcal{L}_!^*(q))|_{\{p,q\}})
```

```
shows v = v \downarrow_!
  using assms
proof (induct v)
  case Nil
  then show ?case by simp
next
  case (Cons\ a\ as)
  obtain v' where (a\#as) = (v'\downarrow_{\{p,q\}}) and v' \in (\mathcal{L}_!^*(q)) using Cons.prems by
blast
  then have (v') = (v') \downarrow_! by force
 then have (v'\downarrow_{\{p,q\}}) = (v'\downarrow_{\{p,q\}})\downarrow_! using pair-proj-inv-with-send-proj by fastforce
  then show ?case using \langle a \# as = v' \downarrow_{\{p,q\}} \rangle by presburger
qed
lemma projs-on-peer-eq-if-in-peer-lang:
  assumes v \in ((\mathcal{L}_!^*(q))|_{\{p,q\}}) and is-parent-of p \neq q
  shows v = (v) \downarrow_a
proof -
  have v \in ((\mathcal{L}_!(q))|_{\{p,q\}}) using assms(1) w-in-infl-lang by auto
  then have v \in (((\mathcal{L}(q))|_!)|_{\{p,q\}}) by blast
 have \forall x. (x \in (\mathcal{L}(q))) \longrightarrow (x = (x \downarrow_q)) by (simp add: w-in-peer-lang-impl-p-actor)
  then have \forall v'. ((((v')\downarrow!)\downarrow_{\{p,q\}}) = v \land v' \in (\mathcal{L}(q))) \longrightarrow (v' = (v'\downarrow_q)) by simp
  then have \forall v'. ((((v')\downarrow!)\downarrow_{\{p,q\}}) = v \land v' \in (\mathcal{L}(q))) \longrightarrow (((((v')\downarrow!)\downarrow_{\{p,q\}})) = v \land v' \in (\mathcal{L}(q)))
((((((v')\downarrow_!)\downarrow_{\{p,q\}}))\downarrow_q)) by (metis\ (mono-tags,\ lifting)\ filter-recursion\ proj-trio-inv
proj-trio-inv2)
  then show ?thesis using \langle v \in (\mathcal{L} q)|_{!}|_{\{p,q\}} \rightarrow \text{by } blast
qed
lemma is-in-infl-lang-app:
  assumes is-in-infl-lang p (u @ v)
  shows is-in-infl-lang p u
  using assms
proof (induct p (u @ v) arbitrary: u v)
  case (IL-root r w)
  then show ?case using Lang-app is-in-infl-lang.IL-root by blast
  case (IL-node p \neq w w')
  then have is-in-infl-lang p(w' \cdot v) using is-in-infl-lang.IL-node by blast
 then have w \in \mathcal{L}^*(q) \wedge (((w' \cdot v)\downarrow_?)\downarrow_!?) = (((w\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?) using IL-node.hyps(4,6)
  then have p-w-match: (((w' \cdot v)\downarrow_?)\downarrow_!?) = (((w\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?) by blast
  have p\text{-}decomp: (((w' \cdot v)\downarrow_?)\downarrow_!?) = (((w')\downarrow_?)\downarrow_!?) @ (((v)\downarrow_?)\downarrow_!?) by simp
  have \exists w'' w'''. w = (w'' @ w''') \land (((w')\downarrow_?)\downarrow_!?) = (((w''\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?)
  proof (induct length w' arbitrary: w')
    case 0
    then show ?case by fastforce
```

```
next
    case (Suc \ x)
  then obtain a as where x = |as| and w' = as @ [a] by (metis length-Suc-conv-rev)
      then have \exists w'' \ w'''. w = w'' \cdot w''' \wedge as \downarrow_? \downarrow_{!?} = w'' \downarrow_{\{p,q\}} \downarrow_! \downarrow_{!?} using
Suc.hyps(1) by presburger
    then obtain w'' w''' where w = w'' \cdot w''' and as \downarrow_? \downarrow_!? = w'' \downarrow_{\{p,q\}} \downarrow_! \downarrow_!? by
blast
    then have is-in-infl-lang q(w'') using IL-node.hyps(5) by blast
    then show ?case sorry
  qed
 then obtain w'' w''' where w = (w'' @ w''') and (((w')\downarrow_?)\downarrow_!?) = (((w''\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?)
by blast
  then have is-in-infl-lang q w'' by (meson IL-node.hyps(5))
  have w' \in \mathcal{L} p using IL-node.hyps(3) Lang-app by blast
  then have tree-topology \land is-parent-of p \ q \land w' \in \mathcal{L}(p) \land is-in-infl-lang q \ w''
\wedge ((w'\downarrow_?)\downarrow_{!?}) = (((w''\downarrow_{\{p,q\}})\downarrow_!)\downarrow_{!?})
    using IL-node.hyps(1,2) \langle is-in-infl-lang q \ w'' \rangle \langle w' \downarrow_? \downarrow_{!?} = w'' \downarrow_{\{p,q\}} \downarrow_! \downarrow_{!?} \rangle by
blast
  then have is-in-infl-lang p w' using is-in-infl-lang.IL-node[of p q w' w''] by
  then show ?case by simp
qed
lemma infl-word-impl-prefix-valid:
  assumes (u @ v) \in \mathcal{L}^* p
  shows u \in \mathcal{L}^* p
  using assms is-in-infl-lang-app by blast
lemma peer-pair-infl-send-nosymb-comm: (((\mathcal{L}_!^*(q))|_{\{q,p\}})|_{!?}) = (((\mathcal{L}_!^*(q))|_{\{p,q\}})|_{!?})
proof -
  have (((\mathcal{L}_!^*(q))|_{\{q,p\}})) = (((\mathcal{L}_!^*(q))|_{\{p,q\}})) by (simp\ add:\ pair-proj-comm)
  then show ?thesis by presburger
qed
lemma child-send-is-from-parent:
  assumes is-input a and is-parent-of p q and get-actor a = p and (s1, a, s2) \in
(\mathcal{R} p)
  shows get-object a = q
proof (rule ccontr)
  assume get-object a \neq q
  then obtain qq where qq \neq q and get-object a = qq and qq \in \mathcal{P} by simp
 then have qq \in \mathcal{P}_{?} p by (metis Communicating Automaton. empty-receiving-from-peers
assms(1,4) automaton-of-peer)
  have card (\mathcal{P}_? p) \leq 1 using \langle get\text{-}object \ a = qq \rangle \langle get\text{-}object \ a \neq q \rangle \langle qq \in \mathcal{P}_?
p \mapsto assms(2) is-parent-of-rev(2)
      sends-of-peer-subset-of-predecessors-in-topology by fastforce
 then have \mathcal{P}_{?} p = \{qq\} by (meson \land qq \in \mathcal{P}_{?} p) finite-peers finite-set-card-union-with-singleton
finite-subset subset-UNIV)
```

```
then show False using \langle \mathcal{P}; p = \{qq\} \rangle \langle qq \neq q \rangle assms(2) insert-subset is-parent-of-rev(2)
sends-of-peer-subset-of-predecessors-in-topology singleton-iff by metis
qed
lemma infl-word-actor-app:
  assumes (w @ xs) \in (\mathcal{L}^*(q))
  shows (w\downarrow_q = w) \land (xs\downarrow_q = xs)
  using assms proof -
  have (w @ xs) \in (\mathcal{L}(q)) using assms w-in-infl-lang by auto
  then have (w @ xs)\downarrow_q = (w @ xs) using w-in-peer-lang-impl-p-actor by
presburger
  then show ?thesis by (metis actor-proj-app-inv)
qed
3.8.9
          Simulate Synchronous Execution with Mailbox Word
lemma add-matching-recvs-app:
 shows add-matching-recvs (x \cdot ys) = (add-matching-recvs xs) \cdot (add-matching-recvs
proof (induct xs arbitrary: ys rule: add-matching-recvs.induct)
 case 1
  then show ?case by simp
  case (2 \ a \ w)
  then show ?case by simp
qed
lemma adding-recvs-keeps-send-order:
  shows w\downarrow_! = (add\text{-}matching\text{-}recvs\ w)\downarrow_!
proof (induct w)
  case Nil
  then show ?case by simp
next
  case (Cons a w')
  then show ?case using Cons
  proof (cases is-input a)
   {\bf case}\ {\it True}
   then show ?thesis by (simp add: local.Cons)
 next
   case False
   then show ?thesis by (simp add: local.Cons)
  qed
\mathbf{qed}
\mathbf{lemma}\ simulate\text{-}sync\text{-}step\text{-}with\text{-}matching\text{-}recvs\text{-}helper2:
  assumes c1 - \langle (!\langle (i^{p \to q}) \rangle), \infty \rangle \to c2 \wedge c2 - \langle ?\langle (i^{p \to q}) \rangle, \infty \rangle \to c3
 shows mbox-run c1 None [!\langle (i^{p\to q})\rangle, ?\langle (i^{p\to q})\rangle] [c2,c3]
  using assms
proof -
```

```
\begin{array}{lll} \textbf{have} \ mbox\text{-}run \ c1 \ None \ [] \ [] \ \textbf{by} \ (simp \ add: MREmpty) \\ \textbf{have} \ last \ (c1 \ \# \ []) \ -\langle !\langle (i^{p \to q})\rangle, \ \infty \rangle \to \ c2 \ \ \textbf{by} \ (simp \ add: \ assms) \end{array}
   have mbox-run c1 None [!\langle (i^{p\to q})\rangle] [c2] by (metis MRComposedInf \langle last \ (c1)\rangle
\# \varepsilon) -\langle !\langle (i^{p\rightarrow q})\rangle, \infty\rangle \rightarrow c2\rangle \langle mbox\mbox{-run } c1 \ None \ \varepsilon \varepsilon\rangle
           self-append-conv2)
  have last (c1 \# [c2]) - \langle ?\langle (i^{p \to q})\rangle, \infty \rangle \to c3 by (simp \ add: \ assms)
  have mbox-run c1 None [!\langle (i^{p\to q})\rangle, ?\langle (i^{p\to q})\rangle] [c2, c3] using MRComposedInf
\langle last\ (c1\ \#\ c2\ \#\ \varepsilon)\ -\langle ?\langle (i^{p\to q})\rangle,\ \infty\rangle \to c3\rangle \\ \langle mbox\text{-}run\ c1\ None\ (!\langle (i^{p\to q})\rangle\ \#\ \varepsilon)\ (c2\ \#\ \varepsilon)\rangle\ \mathbf{by}\ fastforce
   \mathbf{show} \ ? the sis \ \mathbf{by} \ (simp \ add: \ \langle mbox-run \ c1 \ None \ (! \langle (i^{p \to q}) \rangle \ \# \ ? \langle (i^{p \to q}) \rangle \ \# \ \varepsilon)
(c2 \# c3 \# \varepsilon))
qed
\mathbf{lemma}\ simulate\text{-}sync\text{-}step\text{-}with\text{-}matching\text{-}recvs\text{:}
  assumes c1 - \langle (!\langle (i^{p \to q}) \rangle), \infty \rangle \to c2 \wedge c2 - \langle ?\langle (i^{p \to q}) \rangle, \infty \rangle \to c3
  shows mbox-run c1 None (add-matching-recvs [!\langle (i^{p\to q})\rangle]) [c2,c3]
  by (simp add: assms simulate-sync-step-with-matching-recvs-helper2)
— shows that we can simulate a synchronous run by adding the matching receives
after each send
— this also shows that both the first config and the last config of the mbox run are
the same as in sync run
\mathbf{lemma}\ sync	ext{-}run	ext{-}to	ext{-}mbox	ext{-}run:
  assumes sync-run C_{\mathcal{I}\mathbf{0}} w xcs and xcs \neq []
  shows \exists xcm. mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None (add-matching-recvs w) xcm \land (\forall p. (last xcm))
p ) = ((last xcs) p, \varepsilon))
   using assms
proof (induct length w arbitrary: w xcs)
   then have sync-run \ \mathcal{C}_{\mathcal{I}\mathbf{0}} \ w \ xcs = sync-run \ \mathcal{C}_{\mathcal{I}\mathbf{0}} \ [] \ xcs \ \mathbf{by} \ simp
   then have sync-run \ \mathcal{C}_{\mathcal{I}\mathbf{0}} \ w \ xcs = sync-run \ \mathcal{C}_{\mathcal{I}\mathbf{0}} \ [] \ []
     by (simp add: 0.prems(1) SREmpty)
   then show ?case
   by (metis\ 0.prems(2) \land sync-run\ \mathcal{C}_{\mathcal{I}\mathbf{0}}\ w\ xcs = sync-run\ \mathcal{C}_{\mathcal{I}\mathbf{0}}\ \varepsilon\ xcs \rightarrow append-is-Nil-conv
           not-Cons-self2 sync-run.simps)
next
   case (Suc \ x)
  then have fact1: sync-run C_{\mathcal{I}\mathbf{0}} w xcs by auto
   then have fact2: Suc x = |w| using Suc.hyps(2) by auto
  then obtain v a xc s-a where w = v @ [a] and v-sync: sync-run C_{\mathcal{I}\mathbf{0}} v xc and
xc\text{-}def:xcs=xc @ [s\text{-}a]
     by (metis Suc.prems(2) fact1 sync-run.simps)
   then have length v = x
     by (simp add: Suc-inject fact2)
   then show ?case using assms Suc
   proof (cases xc \neq \varepsilon)
     case True
    have \exists xcm. mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None (add-matching-recvs v) xcm \land (\forall p. (last xcm))
```

90

```
p ) = ((last xc) p, \varepsilon))
      by (simp\ add: Suc.hyps(1)\ True\ \langle |v|=x\rangle\ v\text{-}sync)
     then obtain xcm where v-mbox: mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None (add-matching-recvs
      and v-state : (\forall p. (last xcm p) = ((last xc) p, \varepsilon)) by auto
    then obtain s-1 where s-1-1: sync-step s-1 a s-a and s-1-2: s-1 = last xc
      by (metis \langle w = v \cdot a \# \varepsilon \rangle \langle xc \neq \varepsilon \rangle fact1 last-ConsR sync-run-rev xc-def)
    then obtain i p q where a-decomp: a = !\langle (i^{p \to q}) \rangle using sync-step-rev(3) by
blast
    let ?c1 = (\lambda x. (s-1 x, \varepsilon))
    let ?c3 = (\lambda x. (s-a x, \varepsilon))
    let ?c2 = (?c3)(q := ((s-1) \ q, [(i^{p \to q})]))
    have c1-def: ?c1 = (\lambda x. (s-1 \ x, \varepsilon)) by simp
    have c3-def: ?c3 = (\lambda x. (s-a \ x, \ \varepsilon)) by simp
    have c2-def : ?c2 = (?c3)(q := ((s-1) q, [(i^{p \to q})])) by \mathit{simp}
    have sync-step s-1 (!\langle (i^{p \to q}) \rangle) s-a using a-decomp s-1-1 by auto
    then have sync\text{-}abb: s\text{-}1 - \langle !\langle (i^{p\rightarrow q})\rangle, \mathbf{0}\rangle \rightarrow s\text{-}a by simp
   then have mbox-steps: let c1 = \lambda x. (s-1 \ x, \ \varepsilon); c3 = \lambda x. (s-a \ x, \ \varepsilon); c2 = (c3)(q)
:= (s-1 \ q, \ [(i^{p \to q})])) \ in
   mbox-step c1 (!\langle (i^{p\to q})\rangle) None c2 \land mbox-step c2 (?\langle (i^{p\to q})\rangle) None c3 by
(simp\ add:\ sync-step-to-mbox-steps)
    then have mbox-steps-init: mbox-step ?c1 (!\langle (i^{p \to q}) \rangle) None ?c2 \land mbox-step
?c2 (?\langle (i^{p\rightarrow q})\rangle) None ?c3 by metis
    then have a-mbox-run: mbox-run ?c1 None (add-matching-recvs ([a])) ([?c2,
?c3]) using a-decomp simulate-sync-step-with-matching-recvs by blast
    then have (\forall p. fst (last xcm p) = (s-1) p) by (simp add: s-1-2 v-state)
    then have (\forall p. (last xcm p) = ?c1 p) by (simp add: v-state)
    then have last-config-xcm : last xcm = ?c1 by auto
    then have (last\ xcm) - \langle !\langle (i^{p \to q})\rangle, \infty \rangle \to ?c2 by (metis\ mbox-steps)
     then have mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None (add-matching-recvs v) xcm by (simp add:
v-mbox)
   then have mbox-inter: mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None ((add-matching-recvs v)@ [!\langle (i^{p\rightarrow q})\rangle])
(xcm@[?c2])
      by (smt (verit) Nil-is-append-conv
            \langle last \ xcm \ -\langle !\langle (i^{p\rightarrow q})\rangle, \ \infty\rangle \rightarrow (\lambda x. \ (s-a \ x, \ \varepsilon)) \ (q:=(s-1 \ q, \ i^{p\rightarrow q} \ \# \ \varepsilon))\rangle
\langle xc \neq \varepsilon \rangle
                add-matching-recvs.elims last-ConsR list.distinct(1) mbox-run.simps
sync-run.cases
           v-sync)
   then have (last\ (xcm@[?c2])) - \langle ?\langle (i^{p\rightarrow q})\rangle, \infty\rangle \rightarrow ?c3 by (simp\ add:\ mbox-steps-init)
   then have mbox-inter2: mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None ((add-matching-recvs v)@[!\langle(i^{p\rightarrow q})\rangle]@[?\langle(i^{p\rightarrow q})\rangle]
(xcm@[?c2]@[?c3])
      using MRComposedInf mbox-inter by fastforce
            found existing run when xc not empty
   then have mbox-run-final: mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None ((add-matching-recvs (v@[a])))
(xcm@[?c2,?c3])
      using NetworkOfCA.add-matching-recvs-app NetworkOfCA-axioms a-decomp
append-Cons by fastforce
      then have xc-nonempty-thesis: mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None ((add-matching-recvs
```

```
(v@[a]))) (xcm@[?c2,?c3]) \land (\forall p. (last (xcm@[?c2,?c3]) p) = ((last xcs) p, \varepsilon))
      by (simp \ add: xc\text{-}def)
    then show ?thesis using \langle w = v \cdot a \# \varepsilon \rangle by blast
    case False
    then have xc\text{-}empty: xc = \varepsilon by simp
   then have w-a: w = [a] using NetworkOfCA. sync-run. cases NetworkOfCA-axioms
\langle w = v \cdot a \# \varepsilon \rangle \ v\text{-sync by } blast
   then have sync-run C_{\mathcal{I}\mathbf{0}} w xcs = sync-run C_{\mathcal{I}\mathbf{0}} [a] xcs by (simp add: SREmpty
fact1)
     then obtain i \ p \ q \ C where C-def: sync-run C_{\mathcal{I}\mathbf{0}} [a] [C] and C-def2: xcs =
[C] and a-def: a = !\langle (i^{p \to q}) \rangle
     by (metis fact1 self-append-conv2 sync-run-rev sync-step-rev(3) xc-def xc-empty)
    let ?c1 = (\lambda p. (\mathcal{C}_{\mathcal{I}\mathbf{0}} p, \varepsilon))
    let ?c3 = (\lambda x. (C x, \varepsilon))
    let ?c2 = (?c3)(q := ((\mathcal{C}_{I0}) \ q, [(i^{p \to q})]))
    have c1-def: ?c1 = (\lambda x. (\mathcal{C}_{\mathcal{I}\mathbf{0}} x, \varepsilon)) by simp
    have c3-def : ?c3 = (\lambda x. (C x, \varepsilon)) by simp
    have c2\text{-}def : ?c2=(?c3)(q:=((\mathcal{C}_{\mathcal{I}\mathbf{0}})\ q,\ [(i^{p	o q})])) by simp
    have (\forall p. \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ p = (\mathcal{C}_{\mathcal{I}\mathbf{0}} \ p, \, \varepsilon)) by simp
    then have \mathcal{C}_{\mathcal{I}\mathfrak{m}} = (\lambda p.~(\mathcal{C}_{\mathcal{I}\mathbf{0}}~p,\,\varepsilon)) by \mathit{simp}
    then have ?c1 = \mathcal{C}_{Im} by simp
     have sync-step C_{\mathcal{I}\mathbf{0}} a C by (metis C-def2 \langle w = v \cdot a \# \varepsilon \rangle fact1 last-ConsL
self-append-conv2 sync-run-rev)
    then have C_{\mathcal{I}\mathbf{0}} - \langle ! \langle (i^{p \to q}) \rangle, \mathbf{0} \rangle \to C by (simp \ add: \ a\text{-}def)
      then have steps: mbox-step ?c1 (!\langle (i^{p \to q}) \rangle) None ?c2 \wedge mbox-step ?c2
(?\langle(i^{p\rightarrow q})\rangle) None ?c3
      by (metis sync-step-to-mbox-steps)
    then have mbox-run ?c1 None (add-matching-recvs ([a])) [?c2, ?c3]
      using a-def simulate-sync-step-with-matching-recvs by blast
     then have mbox-run ?c1 None (add-matching-recvs w) [?c2, ?c3] by (simp
add: w-a
    then have mbox-run ?c1 None (add-matching-recvs w) [?c2, ?c3] by simp
    then have mbox-run (\lambda p. (\mathcal{C}_{\mathcal{I}\mathbf{0}} p, \varepsilon)) None (add-matching-recvs w) [?c2, ?c3]
    then show ?thesis using C-def2 by auto
  qed
qed
\mathbf{lemma}\ empty-sync-run-to-mbox-run:
  assumes sync-run C_{\mathcal{I}\mathbf{0}} w xcs and xcs = []
  shows mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None (add-matching-recvs w)
 using assms by (metis\ (no\text{-}types,\ lifting)\ MREmpty\ Nil-is-append-conv\ add-matching-recvs.simps(1)
      not-Cons-self2 sync-run.simps)
```

3.8.10 Lemma 4.4 and Preparations

```
lemma concat-infl-path-rev:
assumes concat-infl p \ w \ (q \# ps) \ w'
```

```
shows path-to-root q (q \# ps)
  using assms
\mathbf{proof}(induct\ (q \# ps)\ w'\ arbitrary:\ q\ ps\ rule:\ concat-infl.induct)
  case at-p
  then show ?case using path-to-root-first-elem-is-peer by blast
next
  case (reach-root q qw x w-acc)
  then show ?case using path-to-root-first-elem-is-peer path-to-root-stepback by
blast
next
  case (node\text{-}step \ x \ q \ ps \ qw \ w\text{-}acc)
 then show ?case by (metis list discI path-to-root-first-elem-is-peer path-to-root-stepback)
qed
lemma concat-infl-tree-rev:
  assumes concat-infl p w ps w'
 shows tree-topology
 using assms concat-infl.cases by blast
\mathbf{lemma}\ \mathit{concat}\text{-}\mathit{infl}\text{-}\mathit{p}\text{-}\mathit{first}\text{-}\mathit{or}\text{-}\mathit{not}\text{-}\mathit{exists}\text{:}
  assumes concat-infl p w ps w'
  shows (\exists qs. ps = p \# qs) \lor (\forall xs ys. ps \neq xs @ [p] @ ys)
  using assms
 sorry
lemma concat-infl-actor-consistent:
  assumes concat-infl p w ps w-acc
  shows w-acc \downarrow_p = w
 using assms
proof (induct ps w-acc rule: concat-infl.induct)
  case (at-p ps)
  then show ?case using w-in-infl-lang w-in-peer-lang-impl-p-actor by force
  case (reach-root q qw x w-acc')
  then have qw \in \mathcal{L} q by (simp add: w-in-infl-lang)
  then have qw\downarrow_q = qw using w-in-peer-lang-impl-p-actor by fastforce
  then show ?case
  proof (cases q = p) — can't be the case because then concat<sub>i</sub>nfl_{isnottrue}
   case True
   then have qw\downarrow_p = qw using \langle qw\downarrow_q = qw\rangle by blast
   then have qw \in \mathcal{L} p using True \langle qw \in \mathcal{L} | q \rangle by blast
   then have is-root p using True reach-root.hyps(1) by auto
  then have \neg path-to-root p (x # q # \varepsilon) by (metis True list.distinct(1) list.inject
path-to-root-first-elem-is-peer path-to-root-stepback
        path-to-root-unique)
   have concat-infl p w (x # q # \varepsilon) w-acc' by (simp add: reach-root.hyps(5))
   then have path-to-root x (x # q # \varepsilon) by (simp add: reach-root.hyps(3))
   then have x \neq q using True \langle \neg path-to-root p(x \# q \# \varepsilon) \rangle by auto
```

```
have (\forall xs ys. (x \# q \# \varepsilon) \neq xs @ [p] @ ys) using True (x \neq q) concat-infl-p-first-or-not-exists
reach-root.hyps(5) by blast
   have (x \# q \# \varepsilon) = [x] @ [p] @ [] using True by auto
   then show ?thesis using \langle \forall xs ys. x \# q \# \varepsilon \neq xs \cdot (p \# \varepsilon \cdot ys) \rangle by blast
 next
   case False
   then have qw\downarrow_p = \varepsilon by (metis \langle qw\downarrow_q = qw\rangle only-one-actor-proj)
   then show ?thesis by (simp add: reach-root.hyps(6))
 qed
next
 case (node-step x q w-acc' ps qw)
 then have qw \in \mathcal{L} q by (meson mem-Collect-eq w-in-infl-lang)
 then have qw\downarrow_q=qw using w-in-peer-lang-impl-p-actor by fastforce
 then show ?case
 proof (cases q = p) — can't be the case because then concat_i nfl_{isnottrue}
   case True
   then have qw\downarrow_p = qw using \langle qw\downarrow_q = qw\rangle by blast
   then have qw \in \mathcal{L} p using True \langle qw \in \mathcal{L} | q \rangle by blast
   have concat-infl p w (x # q # ps) w-acc' by (simp add: node-step.hyps(6))
   then have path-to-root x (x \# q \# ps) by (simp add: node-step.hyps(4))
   then have x \neq q by (metis insert-subset mem-Collect-eq node-step.hyps(1,2)
sends-of-peer-subset-of-predecessors-in-topology
        tree-acyclic)
     have (\forall xs ys. (x \# q \# ps) \neq xs @ [p] @ ys)
                                                                     using True \langle x \neq q \rangle
concat-infl-p-first-or-not-exists node-step.hyps(6) by blast
   have (x \# q \# ps) = [x] @ [p] @ ps using True by auto
   then show ? thesis using \forall xs \ ys. \ x \# q \# ps \neq xs \cdot (p \# \varepsilon \cdot ys) \rangle by blast
 next
   case False
   then have qw\downarrow_p = \varepsilon by (metis \langle qw\downarrow_q = qw\rangle only-one-actor-proj)
   then show ?thesis by (simp add: node-step.hyps(7))
 qed
\mathbf{qed}
lemma concat-infl-word-exists:
 assumes concat-infl p w ps w and is-root r
 shows \exists w'. concat-infl p w [r] w'
 sorry
lemma concat-infl-mbox:
 assumes concat-infl p w [q] w-acc
 shows w-acc \in \mathcal{T}_{None}
proof -
 define xp where xp-def: xp = [q]
 with assms have concat-infl p w xp w-acc
 from this xp-def show w-acc \in \mathcal{T}_{None}
 proof (induct)
```

```
case (at-p ps)
   then show ?case sorry
   case (reach-root q qw x w-acc)
   then show ?case sorry
   case (node-step x q w-acc ps qw)
   then show ?case sorry
 qed
qed
lemma concat-infl-children-not-included:
 assumes concat-infl p w ps w-acc and is-parent-of q p
 shows w-acc\downarrow_q = \varepsilon
 using assms
proof (induct)
 case (at-p ps)
 then show ?case sorry
 case (reach-root q qw x w-acc)
 then show ?case sorry
 case (node-step x q w-acc ps qw)
 then show ?case sorry
qed
lemma concat-infl-w-in-w-acc:
 assumes concat-infl p w ps w-acc
 shows \exists xs. w-acc = xs @ w
 using assms
\mathbf{proof} induct
 case (at-p ps)
 then show ?case by simp
 case (reach-root q qw x w-acc)
 then show ?case by (metis append.assoc)
next
 case (node-step x q w-acc ps qw)
 then show ?case by (metis append.assoc)
qed
3.9
       Related Lemmas for New Formalization
lemma prefix-mbox-trace-valid:
 assumes (w@v) \in \mathcal{L}_{\infty}
 shows w \in \mathcal{L}_{\infty}
 sorry
```

```
lemma mbox-exec-to-peer-act:
  assumes w \in \mathcal{T}_{None} \mid_{!} and (!\langle (i^{q \to p}) \rangle) \in \text{set } w and tree-topology shows \exists s1 s2 . (s1, !\langle (i^{q \to p}) \rangle, s2) \in \mathcal{R} q
  sorry
lemma mbox-exec-to-infl-peer-word:
   assumes w \in \mathcal{T}_{None}
  shows \mathbf{w}\downarrow_p \in \mathcal{L}^* p
  sorry
lemma peer-recvs-in-exec-is-prefix-of-parent-sends:
   assumes e \in \mathcal{T}_{None} and is-parent-of p q
  shows prefix (((e\downarrow_p)\downarrow_?)\downarrow_{!?}) ((((e\downarrow_q)\downarrow_!)\downarrow_{\{p,q\}})\downarrow_{!?})
   sorry
lemma root-infl-word-no-recvs:
   assumes is-root p and w \in \mathcal{L}^* p
   shows \mathbf{w}\downarrow_! = \mathbf{w}
proof (rule ccontr)
   assume w\downarrow_! \neq w
   then have \exists x. x \in \text{set } w \land \text{is-input } x \text{ by (simp add: not-only-sends-impl-recv)}
   then obtain x where x \in set w and is-input x by auto
   with assms show False sorry
qed
lemma matching-recvs-word-matches-sends-explicit:
   assumes e \in \mathcal{T}_{None} and is-parent-of p q
  shows (((e\downarrow!)\downarrow_q)\downarrow_{\{p,q\}})\downarrow_{!?} = (((add-matching-recvs (e\downarrow!)\downarrow?)\downarrow_p)\downarrow_{!?})
  sorry
lemma mbox-exec-recv-append:
assumes (\mathbf{w} \cdot [!\langle (\mathbf{i}^{q \to p})\rangle]) \in \mathcal{T}_{None} and \mathbf{w} \downarrow_p \cdot [?\langle (\mathbf{i}^{q \to p})\rangle] \in \mathcal{L}^* p and (((((\mathbf{w})\downarrow_q)\downarrow_!)\downarrow_{\{p,q\}})\downarrow_{!?}) = ((((\mathbf{w})\downarrow_p)\downarrow_?)\downarrow_{!?}) and is-parent-of p q shows \mathbf{w} \cdot [!\langle (\mathbf{i}^{q \to p})\rangle] \cdot [?\langle (\mathbf{i}^{q \to p})\rangle] \in \mathcal{T}_{None}
  sorry
lemma no-sign-recv-prefix-to-sign-inv:
   assumes prefix (w\downarrow_{!?}) (w'\downarrow_{!?}) and w\downarrow_{?} = w and w'\downarrow_{?} = w'
   shows prefix w w'
  \mathbf{using} \ \mathrm{assms}
  apply (induct w)
    apply auto
  sorry
```

```
\mathbf{lemma} \ \mathrm{match-exec-and-child-prefix-to-parent-match:}
  assumes ((((((v')\downarrow_r)\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) = ((((v')\downarrow_q)\downarrow_?)\downarrow_!?) and prefix (wq\downarrow_?)(((v')\downarrow_q)\downarrow_?)
and is-parent-of q r
and \mathbf{v}' \in \mathcal{T}_{None}
shows \exists \mathbf{wr}'. prefix \mathbf{wr}' ((\mathbf{v}') \downarrow_r) \land (((\mathbf{wr}' \downarrow_!) \downarrow_{\{q,r\}}) \downarrow_{!?}) = (((\mathbf{wq}) \downarrow_?) \downarrow_{!?}) \land \mathbf{wr}' \in \mathcal{L}^*
   sorry
lemma subset-cond-from-child-prefix-and-parent:
  assumes subset-condition q r and wq \in \mathcal{L}^* q and wr' \cdot x' \in \mathcal{L}^* r and (((wr' \downarrow_!) \downarrow_{\{q,r\}}) \downarrow_{!?})
=(((wq)\downarrow_?)\downarrow_!?)
   shows \exists x. (wq \cdot x) \in \mathcal{L}^* q \wedge (((wq \cdot x)\downarrow_?)\downarrow_{!?}) = ((((wr' \cdot x')\downarrow_!)\downarrow_{\{q,r\}})\downarrow_{!?})
   apply (rule ccontr)
   sorry
lemma mbox-exec-app-send:
    assumes (e \downarrow_q \cdot [a]) \in (\mathcal{L}^*(q)) and (e) \in \mathcal{T}_{None} and is-output a
   shows (e \cdot [a]) \in \mathcal{T}_{None}
   sorry
lemma mbox-trace-to-root-word:
   \begin{array}{l} \textbf{assumes} \ (v \boldsymbol{\cdot} [! \langle (i^{q \to p}) \rangle]) \in \mathcal{T}_{None} |_! \ \textbf{and} \ is\text{-root} \ q \\ \textbf{shows} \ (v \downarrow_q \boldsymbol{\cdot} [! \langle (i^{q \to p}) \rangle]) \in (\mathcal{L}^*(q)) \end{array}
   sorry
lemma no-shuffle-implies-output-input-exists:
   assumes \neg(w' \sqcup \sqcup_? w) and w \downarrow_? = w' \downarrow_? and w \downarrow_! = w' \downarrow_!
   shows \exists xs a ys b zs xs' ys' zs'. is-input a \land is-output b \land w = (xs @ [a] @ ys @
[b] @ zs) ∧
w' = (xs' @ [b] @ ys' @ [a] @ zs')
   sorry
lemma exec-append-missing-recvs:
\begin{array}{l} \textbf{assumes} \ (((\mathbf{wq} \boldsymbol{\cdot} \mathbf{xs}) \boldsymbol{\downarrow}_?) \boldsymbol{\downarrow}_!?) = (((((\mathbf{v} \boldsymbol{\cdot} [\mathbf{a}]) \boldsymbol{\downarrow}_!) \boldsymbol{\downarrow}_r) \boldsymbol{\downarrow}_{\{q,r\}}) \boldsymbol{\downarrow}_!?) \\ \textbf{and} \ (\mathbf{wq} \boldsymbol{\cdot} \mathbf{xs}) \in \mathcal{L}^* \ \mathbf{q} \ \textbf{and} \ (\mathbf{v} \boldsymbol{\cdot} [\mathbf{a}]) \in \mathcal{T}_{None} \boldsymbol{\mid}_! \ \textbf{and} \ \mathbf{e} \in \mathcal{T}_{None} \ \textbf{and} \ \mathbf{e} \boldsymbol{\downarrow}_q = \mathbf{wq} \end{array}
and e \downarrow_! = (v \cdot [a])
shows (e · xs) \in \mathcal{T}_{None}
   sorry
```

```
assumes \text{wq}\downarrow_? = (\text{v}'\downarrow_q \cdot [\text{a}])\downarrow_? and \text{wq}\downarrow_! = (\text{v}'\downarrow_q \cdot [\text{a}])\downarrow_!
and \neg((v'\downarrow_q \cdot [a]) \sqcup \sqcup_? wq) and wq \neq (v'\downarrow_q \cdot [a])
and e \in \mathcal{T}_{None} and e \downarrow_q = wq and v' \in \mathcal{T}_{None} and (v \cdot [a]) \in \mathcal{T}_{None} \mid_! and v' = vq
(add-matching-recvs v)
and \mathbf{v}' \downarrow_q \in \mathcal{L}^* q and \mathbf{w} \mathbf{q} \in \mathcal{L}^* q
shows e_{\downarrow!} \neq (v' \cdot [a])_{\downarrow!}
   sorry
lemma subset-cond-from-child-prefix-and-parent-act:
   assumes subset-condition q r and wq \in \mathcal{L}^* q and wr' • [!\langle (i^{r \to q}) \rangle] \in \mathcal{L}^* r and
(((\operatorname{wr}'\downarrow_!)\downarrow_{\{q,r\}})\downarrow_{!?}) = (((\operatorname{wq})\downarrow_?)\downarrow_{!?})
and is-parent-of q r and ((\mathcal{L}^*(q)) = (\mathcal{L}^*_{\sqcup \sqcup}(q)))
 shows (\operatorname{wq} \cdot [?\langle (i^{r \to q}) \rangle]) \in \mathcal{L}^* \neq \bigwedge (((\operatorname{wq} \cdot [?\langle (i^{r \to q}) \rangle]) \downarrow_?) \downarrow_!?) = ((((\operatorname{wr}' \cdot [!\langle (i^{r \to q}) \rangle]) \downarrow_!) \downarrow_{\{q,r\}}) \downarrow_!?)
  have \exists x. (wq \cdot x) \in \mathcal{L}^* q \wedge (((wq \cdot x)\downarrow_?)\downarrow_!?) = ((((wr' \cdot [!\langle (i^{r \to q})\rangle])\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?)
using
subset-cond-from-child-prefix-and-parent assms by blast
  then obtain x where wqx-def: (wq \cdot x) \in \mathcal{L}^* q and wqx-match: (((wq \cdot x)\downarrow_?)\downarrow_{!?})
=((((\operatorname{wr}' \cdot [!\langle (i^{r \to q})\rangle])\downarrow!)\downarrow_{\{q,r\}})\downarrow_{!?}) by auto
     then obtain xs ys where x-shuf: (xs \cdot ys) \sqcup \sqcup_{?} x and xs \downarrow_{?} = xs and ys \downarrow_{!} = ys
using full-shuffle-of by blast
    then have xsys-recvs: (((\text{wq} \cdot (\text{xs} \cdot \text{ys}))\downarrow_?)\downarrow_{!?}) = ((((\text{wr}' \cdot [!\langle (i^{r \to q})\rangle])\downarrow_!)\downarrow_{\{a,r\}})\downarrow_{!?})
         using shuffled-keeps-recv-order wqx-match by force
      have (wq \cdot xs \cdot ys) \sqcup \sqcup_? (wq \cdot x) using x-shuf shuffle-prepend by auto
    then have y \cdot x \cdot y \in \mathcal{L}^* q by (metis assms(6) input-shuffle-implies-shuffled-lang
mem-Collect-eq wqx-def)
       then have wqxs-L: wq • xs \in \mathcal{L}^* q using local.infl-word-impl-prefix-valid by
    have (wq \cdot xs)\downarrow_! = wq\downarrow_! by (simp add: \langle xs\downarrow_? = xs\rangle input-proj-output-yields-eps)
     have xs\downarrow_? = (xs \cdot ys)\downarrow_? by (simp add: \langle ys\downarrow_! = ys\rangle output-proj-input-yields-eps)
      have (xs \cdot ys)\downarrow_? = (x)\downarrow_? using x-shuf by (metis shuffled-keeps-recv-order)
      then have xs\downarrow_? = (x)\downarrow_? using \langle xs\downarrow_? = (xs \cdot ys)\downarrow_? \rangle by presburger
      \mathbf{have}\ (((\mathrm{wq} \bullet \mathrm{x}) \downarrow_?) \downarrow_{!?}) = (((\mathrm{wq} \bullet \mathrm{xs}) \downarrow_?) \downarrow_{!?}) \ \mathbf{by}\ (\mathrm{simp}\ \mathrm{add}\colon \langle \mathrm{xs} \downarrow_? = \mathrm{x} \downarrow_? \rangle)
       \textbf{then have} \ \ \textbf{t0} : ((((\mathbf{wr}' \boldsymbol{\cdot} [!\langle (\mathbf{i}^{r \to q}) \rangle]) \downarrow_!) \downarrow_{\{q,r\}}) \downarrow_!?) = (((\mathbf{wq} \boldsymbol{\cdot} \mathbf{xs}) \downarrow_?) \downarrow_!?) \ \ \textbf{using}
wqx-match by presburger
    then have t1: (\text{wq} \cdot \text{xs}) \in \mathcal{L}^* \text{ q} \wedge (((\text{wq} \cdot \text{xs})\downarrow_?)\downarrow_{!?}) = ((((\text{wr}' \cdot [!\langle (i^{r \to q})\rangle])\downarrow_!)\downarrow_{\{q,r\}})\downarrow_{!?})
using wqxs-L by presburger
      have xs = [?\langle (i^{r \to q}) \rangle] sorry
      then show ?thesis using t0 wqxs-L by argo
   ged
```

lemma diff-peer-word-impl-diff-trace:

lemma matched-mbox-run-to-sync-run:

```
assumes mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None (add-matching-recvs w) xcm and w \in \mathcal{T}_{None}!
  shows sync-run \mathcal{C}_{\mathcal{I}\mathbf{0}} w xcs
  sorry
lemma decompose-vq-given-decomposed-vp:
  \textbf{assumes} \ vq \downarrow ! \downarrow_{\{p,q\}} \downarrow_{!?} = v \downarrow_{?} \downarrow_{!?} \ \textbf{and} \ v' \in \mathcal{L}^*_{\sqcup \sqcup}(p) \ \textbf{and} \ v' \sqcup \sqcup_{?} \ v \ \textbf{and} \ v \in \mathcal{L}^*(p)
and vq \in \mathcal{L}^*(q)
and is-output b and is-input a and v = xs \cdot b \# a \# ys
\mathbf{shows} \; \exists \; \text{as bs. } \mathrm{vq} \downarrow_! \downarrow_{\{p,q\}} = (\mathrm{as} \downarrow_! \downarrow_{\{p,q\}} \bullet (! \langle \text{get-message a} \rangle) \; \# \; \mathrm{bs} \downarrow_! \downarrow_{\{p,q\}})
  sorry
end
end
theory Express
  imports CommunicatingAutomaton
begin
context NetworkOfCA
begin
```

4 Express Paper Formalizations

4.1 Lemma 4.4

```
lemma lemma4-4:
 fixes w :: ('information, 'peer) action word
    and q :: 'peer
  assumes tree-topology and w \in \mathcal{L}^*(q) and q \in \mathcal{P}
  shows \exists w'. (w' \in \mathcal{T}_{None} \land w' \downarrow_q = w \land ((is\text{-parent-of } p \ q) \longrightarrow w' \downarrow_p = \varepsilon))
  using assms
proof (cases is-root q)
  \mathbf{case} \ \mathit{True} - \mathbf{q} = \mathbf{r}
  then have w \in \mathcal{L}(q) using assms(2) is-in-infl-lang.cases by blast
  then have w = w\downarrow_! by (meson NetworkOfCA.no-inputs-implies-only-sends-alt
NetworkOfCA-axioms True\ assms(1)\ global-to-local-root
        p-root)
  then have w\downarrow_? = \varepsilon by (simp add: output-proj-input-yields-eps)
  then have t2: w = w \downarrow_q  by (simp \ add: \langle w \in \mathcal{L} \ q \rangle \ w-in-peer-lang-impl-p-actor)
  then have \forall p. p \neq q \longrightarrow w \downarrow_p = \varepsilon by (metis only-one-actor-proj)
  then have t3: (\forall p. (p \in \mathcal{P} \land \mathcal{P}_?(p) = \{q\}) \longrightarrow w \downarrow_p = \varepsilon) by (metis\ True
assms(1) global-to-local-root insert-not-empty )
       — need to prove lemma that if w is w of root r, then mbox (unbounded) has
a run for it basically construct the configs, where it starts with (I>(r), epsilon>)
and each step appends a send to the buffer of the respective receiver
```

```
then have w \in \mathcal{L}(q) by (simp \ add: \langle w \in \mathcal{L} \ q \rangle)
     then have is-root q using True by auto
     then have w \in \mathcal{T}_{None} using \langle w \in \mathcal{L} | q \rangle root-lang-is-mbox by auto
     have w\downarrow_q = w using t2 by auto
     then have (is-parent-of p \ q \longrightarrow w \downarrow_p = \varepsilon) by (metis True is-parent-of-rev(2)
iso-tuple-UNIV-I only-one-actor-proj root-defs-eq t3)
     then show ?thesis by (metis \langle w \in \mathcal{T}_{None} \rangle t2)
     case False
     then obtain p where q-parent: is-parent-of q p by (metis\ UNIV-I\ assms(1)
path-to-root.cases path-to-root-exists)
      then obtain ps where p2root: path-to-root p (p \# ps) by (metis \ UNIV-I
assms(1) path-to-root-exists path-to-root-rev)
    then have is-node q by (metis\ is\text{-parent-of.cases}\ q\text{-parent})
    have w \in \mathcal{L}^*(q) using assms(2) by auto
    then have is-parent-of q p by (simp add: q-parent)
     then have \exists w'. w' \in \mathcal{L}^* p \land ((w\downarrow_?)\downarrow_!?) = (((w'\downarrow_{\{q,p\}})\downarrow_!)\downarrow_!?) using assms(2)
infl-parent-child-matching-ws by blast
    then obtain w' where w'-w: ((w\downarrow_?)\downarrow_!?) = (((w'\downarrow_{\{q,p\}})\downarrow_!)\downarrow_!?) and w'-Lp: w' \in
\mathcal{L}^* p bv blast
     then have w' \in \mathcal{L} p by (meson mem-Collect-eq w-in-infl-lang)
    have tree-topology using assms(1) by auto
     have c1: ((w\downarrow_?)\downarrow_!?) = (((w'\downarrow_{\{q,p\}})\downarrow_!?) \land w \in \mathcal{L}(q) \land w' \in \mathcal{L}(p) \land is\text{-node } q
using \langle is\text{-}parent\text{-}of \ q \ p \rangle
              \langle is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{G}\langle \rightarrow q \rangle = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ qa
\{qa\} \lor q \in \mathcal{P}_! \ qa) \lor \langle w' \in \mathcal{L} \ p \rangle
             assms(2) is-in-infl-lang-rev2(1) w'-w by blast
     obtain r where is-root r using assms(1) root-exists by blast
     have path-to-root q (q \# p \# ps) using p2root p2root-down-step q-parent by
     then have concat-infl q w (q \# p \# ps) w using assms(1,2) at-p by auto
     have w \in \mathcal{L}(q) by (simp add: c1)
     then have w\downarrow_q = w using w-in-peer-lang-impl-p-actor by auto
    obtain w-acc where concat-infl q w [r] w-acc by (meson < concat-infl q w (q \#
p \# ps) w
                  \langle is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \land \mathcal{P}_? \ r = \{\} \land (\forall q. \ r \notin \mathcal{P}_! \ q) \lor is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \land \mathcal{G} \langle \rightarrow r \rangle
= \{\}
                  concat-infl-word-exists)
    then have w-acc \in \mathcal{T}_{None} by (simp \ add: \ concat-infl-mbox)
   have w-acc \downarrow_q = w using \langle concat-infl q \ w \ (r \# \varepsilon) \ w-acc \rangle \ concat-infl-actor-consistent
by blast
    then have (\forall p. (is\text{-parent-of } p \ q) \longrightarrow w\text{-}acc\downarrow_p = \varepsilon) using \langle concat\text{-}infl \ q \ w \ (r) \rangle
\# \varepsilon) w-acc> concat-infl-children-not-included by blast
    then show ?thesis using \langle w \text{-}acc \in \mathcal{T}_{None} \rangle \langle w \text{-}acc \downarrow_q = w \rangle by blast
```

```
lemma lemm4-4-extra:
  fixes w :: ('information, 'peer) action word
    and q :: 'peer
  assumes tree-topology and w \in \mathcal{L}^*(q) and q \in \mathcal{P}
  shows \exists w'. (w' \in \mathcal{T}_{None} \land w' \downarrow_q = w \land ((is\text{-parent-of } p \ q) \longrightarrow w' \downarrow_p = \varepsilon)) \land
(\exists xs. (xs @ w) = w')
  using assms
proof (cases is-root q)
  case True - q = r
  then have w \in \mathcal{L}(q) using assms(2) is-in-infl-lang.cases by blast
  then have w = w \downarrow_1 by (meson NetworkOfCA.no-inputs-implies-only-sends-alt
NetworkOfCA-axioms True assms(1) global-to-local-root
        p-root)
  then have w\downarrow_? = \varepsilon by (simp add: output-proj-input-yields-eps)
  then have t2: w = w\downarrow_q by (simp\ add: \langle w \in \mathcal{L}\ q \rangle\ w-in-peer-lang-impl-p-actor)
  then have \forall p. p \neq q \longrightarrow w \downarrow_p = \varepsilon by (metis only-one-actor-proj)
  then have t3: (\forall p. (p \in \mathcal{P} \land \mathcal{P}_?(p) = \{q\}) \longrightarrow w \downarrow_p = \varepsilon) by (metis True
assms(1) global-to-local-root insert-not-empty)
      — need to prove lemma that if w is w of root r, then mbox (unbounded) has
a run for it basically construct the configs, where it starts with (I>(r), epsilon>)
and each step appends a send to the buffer of the respective receiver
  then have w \in \mathcal{L}(q) by (simp \ add: \langle w \in \mathcal{L} \ q \rangle)
  then have is-root q using True by auto
  then have w \in \mathcal{T}_{None} using \langle w \in \mathcal{L} | q \rangle root-lang-is-mbox by auto
  have w\downarrow_q = w using t2 by auto
  then have (is-parent-of p \ q \longrightarrow w \downarrow_p = \varepsilon) by (metis True is-parent-of-rev(2)
iso-tuple-UNIV-I only-one-actor-proj root-defs-eq t3)
  then show ?thesis by (metis \langle w \in \mathcal{T}_{None} \rangle append-self-conv2 t2)
next
  case False
  then obtain p where q-parent: is-parent-of q p by (metis UNIV-I assms(1)
path-to-root.cases path-to-root-exists)
   then obtain ps where p2root: path-to-root p (p \# ps) by (metis \ UNIV-I
assms(1) path-to-root-exists path-to-root-rev)
  then have is-node q by (metis is-parent-of.cases q-parent)
  have w \in \mathcal{L}^*(q) using assms(2) by auto
  then have is-parent-of q p by (simp add: q-parent)
  then have \exists w'. w' \in \mathcal{L}^* p \land ((w\downarrow_?)\downarrow_!?) = (((w'\downarrow_{\{q,p\}})\downarrow_!)\downarrow_!?) using assms(2)
infl-parent-child-matching-ws by blast
 then obtain w' where w'-w: ((w\downarrow_?)\downarrow_!?) = (((w'\downarrow_{\{q,p\}})\downarrow_!)\downarrow_!?) and w'-Lp: w' \in
\mathcal{L}^* p by blast
  then have w' \in \mathcal{L} p by (meson mem-Collect-eq w-in-infl-lang)
  have tree-topology using assms(1) by auto
  \mathbf{have} \ c1{:}\ ((w\downarrow_?)\downarrow_{!?}) = (((w'\downarrow_{\{q,p\}})\downarrow_!)\downarrow_{!?})\ \land\ w\in\mathcal{L}(q)\ \land\ w'\in\mathcal{L}(p)\ \land\ is\text{-node}\ q
```

```
using \langle is\text{-}parent\text{-}of \ q \ p \rangle
                   \langle is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{G}\langle \rightarrow q \rangle = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ qa. \ qa. \ qa) \ \lor \ (\exists \ qa. \
\{qa\} \lor q \in \mathcal{P}_! \ qa) \lor \lessdot w' \in \mathcal{L} \ p \lor
                 assms(2) is-in-infl-lang-rev2(1) w'-w by blast
      obtain r where is-root r using assms(1) root-exists by blast
      have path-to-root q (q \# p \# ps) using p2root p2root-down-step q-parent by
      then have concat-infl q w (q \# p \# ps) w using assms(1,2) at-p by auto
      have w \in \mathcal{L}(q) by (simp add: c1)
      then have w\downarrow_q = w using w-in-peer-lang-impl-p-actor by auto
      obtain w-acc where concat: concat-infl q w [r] w-acc by (meson < concat-infl q
w (q \# p \# ps) w
                        \langle is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \land \mathcal{P}_? \ r = \{\} \land (\forall q. \ r \notin \mathcal{P}_! \ q) \lor is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \land \mathcal{G} \langle \rightarrow r \rangle
= \{\}
                       concat-infl-word-exists)
     then have w-acc \in \mathcal{T}_{None} by (simp \ add: concat-infl-mbox)
    have w-acc \downarrow_q = w using \langle concat-infl q \ w \ (r \# \varepsilon) \ w-acc \rangle concat-infl-actor-consistent
\mathbf{by} blast
      then have (\forall p. (is\text{-}parent\text{-}of p q) \longrightarrow w\text{-}acc\downarrow_p = \varepsilon) using \langle concat\text{-}infl q w (r) \rangle
\# \varepsilon) w-acc> concat-infl-children-not-included by blast
    then have t1: w\text{-}acc \in \mathcal{T}_{None} \land w\text{-}acc\downarrow_q = w \land ((is\text{-}parent\text{-}of\ p\ q) \longrightarrow w\text{-}acc\downarrow_p
= \varepsilon) using \langle w \text{-}acc \in \mathcal{T}_{None} \rangle \langle w \text{-}acc \downarrow_q = w \rangle by blast
     have \exists es. w-acc = es @ w  using concat by (simp add: concat-infl-w-in-w-acc)
      then show ?thesis using t1 using \forall p. is-parent-of p \ q \longrightarrow w\text{-}acc\downarrow_p = \varepsilon \rightarrow by
blast
qed
4.2
                         Theorem 4.5 Preparations
\textbf{lemma} \ mbox-trace-with-matching-recvs-is-mbox-exec:
```

```
assumes w \in \mathcal{T}_{None}|_{!} and tree-topology and theorem-rightside
 shows (add\text{-}matching\text{-}recvs\ w) \in \mathcal{T}_{None}
 using assms
proof (induct length w arbitrary: w)
  case \theta
  then show ?case by (simp add: eps-in-mbox-execs)
next
 case (Suc\ n)
  then obtain v a where w-def: w = v \cdot [a] and v-len: length v = n by (metis
length-Suc-conv-rev)
 then have v \in \mathcal{T}_{None}! using Suc.prems(1) prefix-mbox-trace-valid by blast
 then have v-IH-prems: n = |v| \land v \in \mathcal{T}_{None}|_! \land is-tree (\mathcal{P}) (\mathcal{G}) \land theorem-rightside
using Suc.prems(3) assms(2) v-len by blast
 let ?v' = add-matching-recvs v
```

```
have v\text{-}IH: ?v' \in \mathcal{T}_{None} using v\text{-}IH\text{-}prems\ Suc\ by\ blast
  have (v \cdot [a]) = (v \cdot [a]) \downarrow_! using Suc.prems(1) w-def by fastforce
  then obtain i \ p \ q where a\text{-}def: a = (!\langle (i^{q \to p}) \rangle) by (metis \ Nil\text{-}is\text{-}append\text{-}conv)
append1-eq-conv decompose-send neq-Nil-conv)
  then have \exists s1 \ s2 \ . \ (s1, !\langle (i^{q \to p})\rangle, \ s2) \in \mathcal{R} \ q \ using \ Suc.prems(1) \ assms(2)
mbox-exec-to-peer-act w-def by auto
 then have p \in \mathcal{P}_1(q) by (metis Communicating Automaton. Sending To Peers. intros
automaton-of-peer get-message.simps(1)
       is-output.simps(1) message.inject output-message-to-act-both-known trans-to-edge)
  then have \mathcal{G}\langle \rightarrow p \rangle = \{q\} by (simp\ add:\ assms(2)\ local-parent-to-global)
  then have pq: is-parent-of p q using assms by (simp add: node-parent)
  have (?v')\downarrow_q \in \mathcal{L}^* q using mbox-exec-to-infl-peer-word v-IH by auto
  have w-sends-0: w = ((?v') \cdot [a]) \downarrow_! by (metis \langle v \cdot a \# \varepsilon = (v \cdot a \# \varepsilon) \downarrow_! \rangle
adding-recvs-keeps-send-order filter-append w-def)
 then have w-sends-1: w = (?v')\downarrow_! \cdot [a] using \langle v \in \mathcal{T}_{None} |_! \rangle adding-recvs-keeps-send-order
w-def by fastforce
  have a-facts: is-output a \land get-actor a = q \land get-object a = p \land p \neq q using
a-def is-output.simps(1) by (simp add: \langle is-parent-of p \mid q \rangle parent-child-diff)
  then have [a]\downarrow_q = [a] by simp
  have [a]\downarrow_? = \varepsilon using a-def a-facts by simp
  have v'-q-recvs-inv-to-a: (?v'\downarrow_q)\downarrow_? = ((?v'\bullet[a])\downarrow_q)\downarrow_? using \langle (a\#\varepsilon)\downarrow_? = \varepsilon\rangle by
auto
  have p \in \mathcal{P} \land q \in \mathcal{P} by simp
 then have (is-parent-of p \ q) \longrightarrow ((subset-condition p \ q) \land ((\mathcal{L}^*(p)) = (\mathcal{L}^*_{\sqcup \sqcup}(p))))
using assms(3) theorem-rightside-def by blast
  then have theorem-right-pq: ((subset-condition\ p\ q) \land ((\mathcal{L}^*(p)) = (\mathcal{L}^*_{\perp | | \perp}(p))))
using pq by auto
  then have a-send-ok: (?v' \cdot [a]) \in \mathcal{T}_{None} using a-def Suc assms
  proof (cases is-root q)
    case True
     then have (v\downarrow_q \cdot [!\langle (i^{q\to p})\rangle]) \in (\mathcal{L}^*(q)) using mbox-trace-to-root-word [of v i
q p] using Suc.prems(1) a-def w-def by fastforce
     have (v'\downarrow_q) = ((v'\downarrow_q)\downarrow_!) using root-infl-word-no-recvs[of q (v'\downarrow_q)] using True
\langle add\text{-}matching\text{-}recvs\ v\downarrow_q\in\mathcal{L}^*\ q\rangle\ \mathbf{by}\ presburger
    then have ?v'\downarrow_q \cdot [a] \in \mathcal{L}^* q by (metis\ (no-types,\ lifting)\ \langle v\downarrow_q \cdot !\langle (i^{q \to p})\rangle \ \#
\varepsilon \in \mathcal{L}^* \ q \land \ \langle w = add\text{-}matching\text{-}recvs \ v \downarrow_! \bullet \ a \ \# \ \varepsilon \land \ a\text{-}def
            append1-eq-conv filter-pair-commutative w-def)
    show ?thesis using mbox-exec-app-send[of q ?v' a] using <add-matching-recvs
v\downarrow_q \cdot a \# \varepsilon \in \mathcal{L}^* \ q \mapsto a\text{-facts }v\text{-IH } \mathbf{by }\ linarith
    case False
    obtain e where e-def: e \in \mathcal{T}_{None} and e-trace: e \downarrow ! = w using Suc.prems(1)
     then obtain wq where wq-def: wq = e \downarrow_q and wq-in-q: wq \in \mathcal{L}^* q using
mbox-exec-to-infl-peer-word by presburger
```

```
have v'a\theta: ((?v')\downarrow_q \cdot [a])\downarrow_! = ((?v')\downarrow_q)\downarrow_! \cdot [a]\downarrow_! by simp
       have v'a1: ((?v')\downarrow_a)\downarrow_! \cdot [a]\downarrow_! = ((?v')\downarrow_a)\downarrow_! \cdot [a] using a-facts by simp
      then have v'a2: ((?v')\downarrow_a)\downarrow_! \cdot [a] = v\downarrow_a \cdot [a] by (smt\ (verit,\ ccfv-threshold)\ \langle v \cdot |
a \# \varepsilon = (v \cdot a \# \varepsilon)\downarrow_{\downarrow} adding\ recvs\ keeps\ send\ order\ append\ 1\ -eq\ conv\ filter\ -append\ 1\ -eq\ filter\ -append\ 1\ -eq\ conv\ filter\ -append
filter-pair-commutative same-append-eq)
       have wq\downarrow_! = w\downarrow_q using e-trace filter-pair-commutative wq-def by blast
       have wq \cdot v'-sends: wq \downarrow_! = ((?v') \downarrow_! \cdot [a]) \downarrow_q  using \forall w = add-matching-recvs v \downarrow_!
• a \# \varepsilon \rightarrow \langle wq \downarrow_! = w \downarrow_q \rightarrow \mathbf{by} \ fastforce
       have v'a3: ((?v')\downarrow_! \cdot [a])\downarrow_q = ((?v')\downarrow_!)\downarrow_q \cdot [a]\downarrow_q by simp
      have v'a4: ((?v')\downarrow!)\downarrow_q \cdot [a]\downarrow_q = ((?v')\downarrow_q)\downarrow! \cdot [a]\downarrow_q  using filter-pair-commutative
       have [a]\downarrow_q = [a] using a-def by simp
       have wq\text{-}to\text{-}v'a\text{-}trace: wq\downarrow_! = ((?v')\downarrow_q)\downarrow_! \cdot [a] using \langle (a \# \varepsilon)\downarrow_q = a \# \varepsilon \rangle \ v'a3
v'a4 wq-v'-sends by argo
     have is-node q by (metis False NetworkOfCA.root-or-node NetworkOfCA-axioms
assms(2)
     then obtain r where is-parent-of q r by (metis False UNIV-I path-to-root.cases
path-to-root-exists)
     have v'-recvs-match: (((?v'\downarrow!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_{!?} = (((add\text{-matching-recvs}((?v'\downarrow!))\downarrow_?)\downarrow_q)\downarrow_{!?})
using matching-recvs-word-matches-sends-explicit [of ?v' q r] using \forall is-parent-of q
r \rightarrow v-IH by simp
     then have (((?v'\downarrow!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_{!?} = (((?v'\downarrow?)\downarrow_q)\downarrow_{!?}) using \forall w = add-matching-recvs
v\downarrow_! \cdot a \# \varepsilon \rightarrow w\text{-}def  by fastforce
     then have wr-0: (((?v'\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_{!?} = (((?v'\downarrow_q)\downarrow_?)\downarrow_{!?}) by (metis\ filter-pair-commutative)
     e \ q \ r using (is-parent-of q r) e-def by linarith
        then have wq\text{-}e\text{-}pref: prefix (((wq)\downarrow?)\downarrow!?) ((((e\downarrow_r)\downarrow!)\downarrow_{\{q,r\}})\downarrow!?) using wq\text{-}def
by fastforce
       have e-trace2: (e\downarrow_!) = ((?v' \cdot [a])\downarrow_!) using \forall w = (add\text{-}matching\text{-}recvs\ v \cdot a\ \#
\varepsilon)\downarrow_! \rightarrow e\text{-trace by } blast
     then have prefix (((wq)\downarrow?)\downarrow!?) (((((?v' \cdot [a])\downarrow_r)\downarrow!)\downarrow_{\{q,r\}})\downarrow!?) by (metis (no-types,
lifting) e-pref filter-pair-commutative
                   wq-def)
        have ((((?v' \cdot [a])\downarrow_!)\downarrow_{\{q,r\}})\downarrow_{!?}) = ((((?v')\downarrow_!)\downarrow_{\{q,r\}})\downarrow_{!?}) \cdot (((([a])\downarrow_!)\downarrow_{\{q,r\}})\downarrow_{!?})
       have (((([a])\downarrow_!)\downarrow_{\{q,r\}})\downarrow_{!?}) = ((([a])\downarrow_{\{q,r\}})\downarrow_{!?}) using a-facts by simp
       have r \neq q using \langle is-parent-of q r \rangle parent-child-diff by blast
       have p \neq q by (simp add: a-facts)
       have r \neq p proof (rule ccontr)
           assume \neg r \neq p
           then have r = p by simp
           then have is-parent-of q p using \langle is-parent-of q r \rangle by auto
           then have g1: \mathcal{G}\langle \rightarrow q \rangle = \{p\} using is-parent-of-rev by simp
           then have e1:(p, q) \in \mathcal{G} by auto
           have g2: \mathcal{G}\langle \rightarrow p \rangle = \{q\} using pq is-parent-of-rev by simp
           then have e2: (q, p) \in \mathcal{G} by auto
```

```
show False using tree-acyclic [of P G p q] using assms(2) e1 e2 by auto
     qed
     have [a]\downarrow_{\{q,r\}} = \varepsilon using a-facts using \langle r \neq p \rangle by auto
     then have ((([a])\downarrow_{\{q,r\}})\downarrow_{!?})=(\varepsilon)\downarrow_{!?} using a-facts by simp
     then have ((((?v' \cdot [a])\downarrow!)\downarrow_{\{q,r\}})\downarrow!?) = ((((?v')\downarrow!)\downarrow_{\{q,r\}})\downarrow!?) by simp
    have ((((?v' \cdot [a])\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) = (((e\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) using \langle e\downarrow_! = (add\text{-}matching\text{-}recvs)
v \cdot a \# \varepsilon)\downarrow_! \rightarrow \mathbf{by} \ presburger
    then have (((e\downarrow!)\downarrow_{\{q,r\}})\downarrow_{!?}) = ((((?v')\downarrow!)\downarrow_{\{q,r\}})\downarrow_{!?}) using \langle (add\text{-}matching\text{-}recvs)\rangle
v \cdot a \# \varepsilon \downarrow_{!} \downarrow_{\{q,r\}} \downarrow_{!} = add\text{-}matching\text{-}recvs \ v \downarrow_{!} \downarrow_{\{q,r\}} \downarrow_{!} > 
        have v'-match: (((((?v')\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_!?) = ((((?v')\downarrow_?)\downarrow_q)\downarrow_!?) using \forall w =
add-matching-recvs v\downarrow_! \cdot a \# \varepsilon > v'-recvs-match w-def by force
     then have e-v'-match: ((((e\downarrow!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_{!?})=((((?v')\downarrow_?)\downarrow_q)\downarrow_{!?}) using \langle (a\#) \downarrow_{!?} \rangle
\varepsilon)\downarrow_{\{q,r\}} = \varepsilon \wedge \langle w = add\text{-matching-recvs } v\downarrow_! \cdot a \# \varepsilon \rangle \text{ e-trace by force}
        then have wq-recvs-pref: prefix (((wq)\downarrow?)\downarrow!?) ((((?v)\downarrow?)\downarrow?)\downarrow!?) by (metis
filter-pair-commutative wg-e-pref)
   have v'-proj-inv: ((((?v')\downarrow?)\downarrow_q)\downarrow??) = ((((?v')\downarrow_q)\downarrow?)\downarrow?) by (metis\ filter\ pair\ commutative)
     then have wq-recvs-prefix: prefix (wq\downarrow_?) (((?v')\downarrow_q)\downarrow_?) by (metis\ wq\text{-recvs-pref}
filter-recursion no-sign-recv-prefix-to-sign-inv)
   have (((((?v' \cdot [a])\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_!?) = ((((?v' \cdot [a])\downarrow_?)\downarrow_q)\downarrow_!?) by (metis\ (no-types,
lifting) e-trace2 e-v'-match filter-pair-commutative v'-q-recvs-inv-to-a)
      have prefix (wq\downarrow_?) (((?v' \cdot [a])\downarrow_q)\downarrow_?) using v'-q-recvs-inv-to-a wq-recvs-prefix
by presburger
     have wq-pref-of-rq-sends: prefix (((wq)\downarrow_?)\downarrow_!?) (((((?v)\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_!?) using
v'-match wq-recvs-pref by argo
    \textbf{then have } \textit{prefix } (((wq)\downarrow_?)\downarrow_!?) \ ((((?v'\downarrow_r)\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) \ \textbf{by } \ (\textit{metis filter-pair-commutative})
       have v'-match-alt: (((((?v')\downarrow_r)\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) = ((((?v')\downarrow_q)\downarrow_?)\downarrow_!?) by (metis
(no-types, lifting) filter-pair-commutative v'-match)
     then have \exists wr'. prefix wr'((?v')\downarrow_r) \land (((wr'\downarrow_!)\downarrow_{\{q,r\}})\downarrow_{!?}) = (((wq)\downarrow_?)\downarrow_{!?}) \land
wr' \in \mathcal{L}^* r
       using match-exec-and-child-prefix-to-parent-match[of r q ?v'wq] < is-parent-of
q \mapsto v-IH wq-recvs-prefix by blast
       then obtain wr' x' where v'r-def: ((?v')\downarrow_r) = wr' \cdot x' and wr'-match:
(((wr'\downarrow_!)\downarrow_{\{q,r\}})\downarrow_{!?})=(((wq)\downarrow_?)\downarrow_{!?}) \text{ and } wr'\in\mathcal{L}^* \ r \ \text{by } (\textit{meson prefixE})
     have ((?v)\downarrow_r) \in \mathcal{L}^* \ r \ \text{using} \ mbox-exec-to-infl-peer-word}[of ?v' \ r] \ \text{using} \ v\text{-}IH
     then have wr' \cdot x' \in \mathcal{L}^* \ r \ \text{by} \ (simp \ add: \ v'r-def)
     have q \in \mathcal{P} \land r \in \mathcal{P} by simp
    then have (is-parent-of q r) \longrightarrow ((subset-condition q r) \land ((\mathcal{L}^*(q)) = (\mathcal{L}^*_{\sqcup \sqcup}(q))))
using assms(3) theorem-rightside-def by blast
     then have theorem-right-qr: ((subset\text{-}condition\ q\ r) \land ((\mathcal{L}^*(q)) = (\mathcal{L}^*_{\sqcup\sqcup}(q))))
by (simp\ add: \langle is-parent-of\ q\ r \rangle)
     have \exists x. (wq \cdot x) \in \mathcal{L}^* \ q \land (((wq \cdot x)\downarrow_?)\downarrow_!?) = ((((wr' \cdot x')\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) using
subset\text{-}cond\text{-}from\text{-}child\text{-}prefix\text{-}and\text{-}parent[
           of q r wq wr' x'  using \langle wr' \cdot x' \in \mathcal{L}^* r \rangle theorem-right-qr wq-in-q wr'-match
```

```
then obtain x where wqx-def: (wq \cdot x) \in \mathcal{L}^* q and wqx-match: (((wq \cdot x) \cdot x) \cdot x) \cdot x
(x)\downarrow_?)\downarrow_!?) = ((((wr' \cdot x')\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) by auto
      then have wqx-match-v': (((wq \cdot x)\downarrow_?)\downarrow_!?) = (((((?v' \cdot [a])\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_!?)
using e-trace2 e-v'-match v'-match-alt v'-proj-inv v'r-def by argo
     then obtain xs \ ys where x-shuf: (xs \cdot ys) \sqcup \sqcup_? x and xs \downarrow_? = xs and ys \downarrow_! =
ys using full-shuffle-of by blast
     then have xsys-recvs: (((wq \cdot (xs \cdot ys))\downarrow_?)\downarrow_!?) = (((((?v' \cdot [a])\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_!?)
by (metis (mono-tags, lifting) filter-append shuffled-keeps-recv-order wqx-match-v')
     have (wq \cdot xs \cdot ys) \sqcup \sqcup_? (wq \cdot x) using x-shuf shuffle-prepend by auto
     then have wq \cdot xs \cdot ys \in \mathcal{L}^* \ q \ \text{by} \ (\textit{metis UNIV-def} \ \langle \textit{is-parent-of} \ q \ r \rangle \ \langle \textit{wq} \cdot \textit{x}
\in \mathcal{L}^* q> assms(3) input-shuffle-implies-shuffled-lang
             mem-Collect-eq theorem-rightside-def)
     then have wqxs-L: wq \cdot xs \in \mathcal{L}^* q using local infl-word-impl-prefix-valid by
simp
    have (wq \cdot xs)\downarrow_! = wq\downarrow_! by (simp\ add: \langle xs\downarrow_? = xs\rangle\ input\text{-}proj\text{-}output\text{-}yields\text{-}eps)
    have wqx-match-v'a: ((((?v' \cdot [a])\downarrow_a)\downarrow_?)\downarrow_!?) = (((wq \cdot x)\downarrow_?)\downarrow_!?) using e-trace2
e-v'-match v'-proj-inv v'-q-recvs-inv-to-a wqx-match-v' by presburger
    have xs\downarrow_? = (xs \cdot ys)\downarrow_? by (simp\ add: \langle ys\downarrow_! = ys\rangle\ output\text{-}proj\text{-}input\text{-}yields\text{-}eps)
     have (xs \cdot ys)\downarrow_? = (x)\downarrow_? using x-shuf by (metis shuffled-keeps-recv-order)
     then have xs\downarrow_? = (x)\downarrow_? using \langle xs\downarrow_? = (xs \cdot ys)\downarrow_? \rangle by presburger
     have (((wq \cdot x)\downarrow_?)\downarrow_!?) = (((wq \cdot xs)\downarrow_?)\downarrow_!?) by (simp\ add: \langle xs\downarrow_? = x\downarrow_?\rangle)
     then have xs-recvs: (((wq \cdot xs)\downarrow_?)\downarrow_!?) = (((((?v' \cdot [a])\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_!?) using
wqx-match-v' wqx-match-v'a by argo
    \mathbf{have}\ v'-eq:\left(\left(\left(\left(\left(\left(?v'\bullet\left[a\right]\right)\downarrow_{!}\right)\downarrow_{r}\right)\downarrow_{\left\{q,r\right\}}\right)\downarrow_{!?}\right)=\left(\left(\left(?v'\bullet\left[a\right]\right)\downarrow_{q}\right)\downarrow_{?}\right)\downarrow_{!?}\ \mathbf{using}\ e\text{-}trace2
e-v'-match v'-proj-inv v'-q-recvs-inv-to-a by presburger
   then have (((wq \cdot xs)\downarrow_?)\downarrow_{!?}) = (((?v' \cdot [a])\downarrow_q)\downarrow_?)\downarrow_{!?} using xs-recvs by presburger
   then have (wq \cdot xs)\downarrow_? = (((?v' \cdot [a])\downarrow_q)\downarrow_?) using no-sign-recv-prefix-to-sign-inv[of
(wq \cdot xs)\downarrow_? (((?v' \cdot [a])\downarrow_q)\downarrow_?)] by (metis\ filter\ recursion\ no\ sign\ recv\ prefix\ to\ sign\ inv
prefix-order.dual-order.antisym
             prefix-order.dual-order.refl)
     then have wqxs-order:(wq \cdot xs)\downarrow_? = (((?v' \cdot [a])\downarrow_q)\downarrow_?) \land (wq \cdot xs)\downarrow_! = ((?v'))
• [a])\downarrow_q)\downarrow_! using \langle (a \# \varepsilon) \downarrow_q = a \# \varepsilon \rangle \langle (wq \bullet xs) \downarrow_! = wq \downarrow_! \rangle w-sends-0 w-sends-1
wq-to-v'a-trace by force
    have wqxs-trace-match: (((wq \cdot xs)\downarrow_?)\downarrow_!?) = (((((v \cdot [a])\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_!?) using
\langle v \cdot a \# \varepsilon = (v \cdot a \# \varepsilon) \downarrow_! \rangle e-trace e-trace2 w-def xs-recvs by presburger
     let ?wq = wq \cdot xs
     show ?thesis using wqxs-order
     proof (cases (?v'\downarrow_q \cdot [a]) \sqcup \sqcup_? (?wq))
        case True
       then have (?v'\downarrow_q \cdot [a]) \in (\mathcal{L}^*_{\sqcup\sqcup}(q)) using input-shuffle-implies-shuffled-lang
wqxs-L by blast
        then have (?v'\downarrow_q \cdot [a]) \in (\mathcal{L}^*(q)) using theorem-right-qr by simp
        then show ?thesis using mbox-exec-app-send[of q ?v' a] using a-facts v-IH
by blast
     next
        case False
```

by fastforce

```
then have (?v'\downarrow_q \cdot [a]) \neq (?wq) by (metis shuffled.refl)
        then have \neg ((?v'\downarrow_q \cdot [a]) \sqcup \sqcup_? (?wq)) using False by blast
        then have \neg ((?v'\downarrow_q \cdot [a]) \sqcup \sqcup_? (?wq)) \wedge (wq \cdot xs)\downarrow_? = (((?v' \cdot [a])\downarrow_q)\downarrow_?) \wedge
(wq \cdot xs)\downarrow_! = ((?v' \cdot [a])\downarrow_q)\downarrow_!
          using wqxs-order by blast
        then have \exists xs' a' ys' b' zs' xs'' ys'' zs''. is-input a' \land is-output b' \land (?wq)
= (xs' @ [a'] @ ys' @ [b'] @ zs') \land
(?v'\downarrow_q \cdot [a]) = (xs'' @ [b'] @ ys'' @ [a'] @ zs'') using no-shuffle-implies-output-input-exists [of
           ?wq \ (?v'\downarrow_q \cdot [a])] by (metis \langle (a \# \varepsilon)\downarrow_q = a \# \varepsilon \rangle \text{ filter-append})
        have diff-trace-prems: ?wq\downarrow_? = (?v'\downarrow_q \cdot [a])\downarrow_? \land ?wq\downarrow_! = (?v'\downarrow_q \cdot [a])\downarrow_! \land
\neg((?v'\downarrow_q \bullet [a]) \sqcup \sqcup_? ?wq) \land ?wq \neq (?v'\downarrow_q \bullet [a])
  \land e \in \mathcal{T}_{None} \land ?v' \in \mathcal{T}_{None} \land (v \cdot [a]) \in \mathcal{T}_{None} \  \  \, |\cdot| \land ?v' = (add\text{-}matching\text{-}recvs) \\  v) \land ?v' \downarrow_q \in \mathcal{L}^* \  \, q 
\land ?wq \in \mathcal{L}^* q
          by (metis (no-types, lifting) False Suc.prems(1) \langle (a \# \varepsilon) \downarrow_q = a \# \varepsilon \rangle \langle (wq) \rangle
• xs)\downarrow_! = wq\downarrow_!
            \langle ((wq \cdot xs)\downarrow_?) = ((add\text{-}matching\text{-}recvs\ v \cdot a \# \varepsilon)\downarrow_q)\downarrow_? \rangle \langle add\text{-}matching\text{-}recvs
v\downarrow_q \cdot a \# \varepsilon \neq wq \cdot xs
                    \langle add\text{-}matching\text{-}recvs\ v \downarrow_q \in \mathcal{L}^*\ q \rangle\ e\text{-}def\ filter\text{-}append\ v'a1\ v\text{-}IH\ w\text{-}def
wq-to-v'a-trace wqxs-L)
         have (e \cdot xs) \in \mathcal{T}_{None} using exec-append-missing-recvs [of wq xs r q v a e]
using diff-trace-prems wq-def wqxs-trace-match
             e-trace w-def by blast
        have (e \cdot xs)\downarrow_q = e\downarrow_q \cdot xs\downarrow_q by simp
        have xs\downarrow_q = xs using infl-word-actor-app by (meson wqxs-L)
          then have (e \cdot xs)\downarrow_q = ?wq using \langle (e \cdot xs)\downarrow_q = e\downarrow_q \cdot xs\downarrow_q \rangle wq-def by
       have (e \cdot xs)\downarrow_! = e\downarrow_! by (simp\ add: \langle xs\downarrow_? = xs\rangle\ input\-proj\-output\-yields\-eps)
        have diff-trace-prems2: ?wq\downarrow_? = (?v'\downarrow_q \cdot [a])\downarrow_? \land ?wq\downarrow_! = (?v'\downarrow_q \cdot [a])\downarrow_! \land
\neg((?v'\downarrow_q \cdot [a]) \sqcup \sqcup_? ?wq) \land ?wq \neq (?v'\downarrow_q \cdot [a])
\land ?wq \in \mathcal{L}^* \ q \ \mathbf{using} \ \langle (e \cdot xs) \downarrow_q = wq \cdot xs \rangle \ \langle e \cdot xs \in \mathcal{T}_{None} \rangle \ diff\text{-}trace\text{-}prems \ \mathbf{by}
blast
        then have (e \cdot xs)\downarrow_! \neq (?v' \cdot [a])\downarrow_! using diff-peer-word-impl-diff-trace
             [of ?wq \ q \ ?v' \ a \ (e \cdot xs) \ v] by simp
        then show ?thesis using \langle (e \cdot xs) \downarrow_! = e \downarrow_! \rangle e-trace2 by argo
     qed
  qed
```

then have $((add\text{-}matching\text{-}recvs\ v)\downarrow_q @ [a]\downarrow_q) \in \mathcal{L}^*\ q\ \text{using}\ mbox\text{-}exec\text{-}to\text{-}infl\text{-}peer\text{-}word$

```
by fastforce
  then have q-full: ((add\text{-}matching\text{-}recvs\ v)\downarrow_q @ [!\langle (i^{q\to p})\rangle]) \in \mathcal{L}^*\ q \text{ using } a\text{-}def
by simp
 have v'p-in-L: (add-matching-recvs v)\downarrow_p \in \mathcal{L}^* p using mbox-exec-to-infl-peer-word
v-IH by blast
 have v'-recvs-match-pq: (((?v'\downarrow_!)\downarrow_q)\downarrow_{\{p,q\}})\downarrow_{!?} = (((add\text{-matching-recvs}\ ((?v'\downarrow_!))\downarrow_?)\downarrow_p)\downarrow_{!?})
   p \not q \rightarrow v\text{-}IH \textbf{ by } simp
   then have v'-recvs-match-pq2: (((?v'\downarrow!)\downarrow_q)\downarrow_{\{p,q\}})\downarrow_{!?} = (((?v'\downarrow?)\downarrow_p)\downarrow_{!?}) using
\langle w = add\text{-}matching\text{-}recvs\ v\downarrow_! \bullet a \# \varepsilon \rangle \text{ w-}def \ \mathbf{by} \ fastforce
  let ?wp = (?v'\downarrow_p)
  let ?wq\text{-}full = ((add\text{-}matching\text{-}recvs\ v)\downarrow_q @ [!\langle (i^{q \to p})\rangle])
 \mathbf{have} \left( ?wp \cdot [?\langle (i^{q \to p})\rangle] \right) \in \mathcal{L}^* \ p \land (((?wp \cdot [?\langle (i^{q \to p})\rangle])\downarrow_?)\downarrow_?) \downarrow_?) = ((((?wq - full)\downarrow_!)\downarrow_{\{p,q\}})\downarrow_!?)
    using subset-cond-from-child-prefix-and-parent-act [of p q ?wp (?v'\downarrow_q) i] by (smt)
(verit, ccfv-SIG) filter-pair-commutative pq q-full theorem-right-pq v'-recvs-match-pq2
         v'p-in-L)
  then have (((?v')\downarrow_p \cdot [(?\langle (i^{q\rightarrow p})\rangle)])) \in \mathcal{L}^* \ p \ \text{by} \ simp
  then have a\text{-}ok\theta: (?v' \cdot ([!\langle (i^{q \to p})\rangle] \cdot [?\langle (i^{q \to p})\rangle])) \in \mathcal{T}_{None} using mbox\text{-}exec\text{-}recv\text{-}append[of ?v' i q p]} using a\text{-}def a\text{-}send\text{-}ok by (metis)
(no-types, lifting) append1-eq-conv append-assoc filter-pair-commutative pq v'-recvs-match-pq
w-def
         w-sends-1)
   have a-match: (add\text{-matching-recvs }[a]) = ([!\langle (i^{q \to p})\rangle] \cdot [?\langle (i^{q \to p})\rangle]) using
a-def by force
  then have a-ok: ((add\text{-}matching\text{-}recvs\ v) \cdot (add\text{-}matching\text{-}recvs\ [a])) \in \mathcal{T}_{None}
using a-ok\theta by auto
  then show ?case by (simp add: add-matching-recvs-app w-def)
qed
4.3
          Theorem 4.5 Final Version
theorem synchronisability-for-trees:
  assumes tree-topology
 p \ q) \wedge ((\mathcal{L}^*(p)) = (\mathcal{L}^*_{\sqcup \sqcup}(p))))))) (is ?L \longleftrightarrow ?R)
proof
  assume ?L
  show ?R
  proof clarify
    fix p q
    assume q-parent: is-parent-of p q
    have sync\text{-}def: \mathcal{T}_{None}|_{!} = \mathcal{L}_{\mathbf{0}} using \langle ?L \rangle by simp
```

```
show subset-condition p \ q \land \mathcal{L}^* \ p = \mathcal{L}^*_{\sqcup \sqcup} \ p
     proof (rule conjI)
        show subset-condition p q unfolding subset-condition-def
        proof auto
          fix w w' x'
          assume w-Lp: is-in-infl-lang <math>p w
             and w'-Lq: is-in-infl-lang q w'
             and w'-w-match: filter (\lambda x. is-output x \wedge (get\text{-object } x = q \wedge get\text{-actor } x
= p
                        \vee get-object x = p \wedge get-actor x = q) w' \downarrow_{!?} = w \downarrow_{?} \downarrow_{!?}
             and w'x'-Lq: is-in-infl-lang q(w' \cdot x')
         then show \exists wa. filter (\lambda x. is-output x \land (get-object x = q \land get-actor x = q)
p \vee get\text{-}object \ x = p \wedge
                      get-actor \ x = q)) \ x'\downarrow_{!?} = wa\downarrow_{!?} \land (\exists x. \ wa = x\downarrow_? \land is-in-infl-lang)
p((w \cdot x))
             using w-Lp w'-Lq w'-w-match w'x'-Lq
          proof (cases is-root q)
             case True
             then have (w' \cdot x') \in \mathcal{L} q using w'x'-Lq w-in-infl-lang by auto
             then have (w' \cdot x') \in \mathcal{T}_{None} using root-lang-is-mbox True by blast
             have w'\downarrow_!\downarrow_{\{p,q\}}\downarrow_!?=w\downarrow_?\downarrow_!? using w'-w-match by force
             let ?mix = (mix\text{-}pair w'w [])
            have ?mix \cdot x' \in \mathcal{T}_{None} sorry then obtain t where t \in \mathcal{L}_0 \land t \in \mathcal{T}_{None} \mid_! \land t = (?mix \cdot x') \downarrow_! using
sync-def by fastforce
                 then obtain xc where t-sync-run : sync-run C_{\mathcal{I}\mathbf{0}} t xc using Sync-
 Traces.simps by auto
            then have \exists xcm. mbox-run \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ None \ (add-matching-recvs \ t) \ xcm \ using
empty-sync-run-to-mbox-run\ sync-run-to-mbox-run\ \mathbf{by}\ blast
                 then have sync-exec: (add-matching-recvs\ t) \in \mathcal{T}_{None} using Mbox-
 Traces.intros by auto
             then have \exists x. (add\text{-}matching\text{-}recvs\ t) \downarrow_p = w \cdot x \text{ sorry}
             then obtain x where x-def: (add\text{-}matching\text{-}recvs\ t)\downarrow_p = w \cdot x \text{ by } blast
             then have w'x'-wx-match: (w' \cdot x') \downarrow_! \downarrow_{\{p,q\}} \downarrow_!? = (w \cdot x) \downarrow_! \downarrow_!? sorry
         have (w \cdot x) \in \mathcal{L}^* p using sync-exec x-def by (metis mbox-exec-to-infl-peer-word)
have \exists wa. \ x' \downarrow_! \downarrow_{\{p,q\}} \downarrow_{!?} = wa \downarrow_{!?} \land (\exists x. \ wa = x \downarrow_? \land \textit{is-in-inft-lang } p \ (w \cdot x)) using \forall w \cdot x \in \mathcal{L}^* \ p \land \forall w' \downarrow_! \downarrow_{\{p,q\}} \downarrow_{!?} = w \downarrow_? \downarrow_{!?} \lor w'x' - \textit{wx-match } \mathbf{by} \ \textit{auto}
             then show ?thesis by simp
          next
```

case False

then have is-node q by $(metis\ NetworkOfCA.root-or-node\ NetworkOfCA-axioms\ assms)$

then obtain r where qr: is-parent-of q r by (metis False UNIV-I path-from-root.simps path-to-root-exists paths-eq)

 $\begin{array}{l} \textbf{have} \ (w' \cdot x') \in \mathcal{L}^* \ q \ \textbf{by} \ (simp \ add: \ w'x'\text{-}Lq) \\ \textbf{then have} \ \exists \ w''. \ \ w'' \in \mathcal{L}^*(r) \land (((w' \cdot x') \downarrow_?) \downarrow_!?) = (((w'' \downarrow_{\{q,r\}}) \downarrow_!) \downarrow_!?) \\ \textbf{using} \ infl\text{-}parent\text{-}child\text{-}matching\text{-}ws[of} \ (w' \cdot x') \ q \ r] \ \textbf{using} \ qr \ \textbf{by} \ blast \\ \textbf{then obtain} \ w'' \ \textbf{where} \ w'' \text{-}w'\text{-}match: \ w'' \downarrow_! \downarrow_{\{q,r\}} \downarrow_!? = (w' \cdot x') \downarrow_? \downarrow_!?} \ \textbf{and} \\ w'' \text{-}def: \ w'' \in \mathcal{L}^* \ r \ \textbf{by} \ (metis \ (no\text{-}types, \ lifting) \ filter\text{-}pair\text{-}commutative}) \end{array}$

have \exists e. $(e \in \mathcal{T}_{None} \land e \downarrow_r = w'' \land ((is\text{-}parent\text{-}of\ q\ r) \longrightarrow e \downarrow_q = \varepsilon))$ using $lemma4\text{-}4[of \ w''\ r\ q]$ using $\langle w'' \in \mathcal{L}^*\ r \rangle$ assms by blast then obtain e where e-def: $e \in \mathcal{T}_{None}$ and e-proj-r: $e \downarrow_r = w''$

and e-proj-q: $e \downarrow_q = \varepsilon$ using qr by blast

let $?mix = (mix\text{-}pair\ w'\ w\ [])$

have $e \cdot ?mix \cdot x' \in \mathcal{T}_{None}$ sorry

then obtain t where $t \in \mathcal{L}_{\mathbf{0}} \wedge t \in \mathcal{T}_{None}|_{!} \wedge t = (e \cdot ?mix \cdot x')\downarrow_{!}$ using sync-def by fastforce

then obtain xc where t-sync-run : sync-run $C_{\mathcal{I}\mathbf{0}}$ t xc using Sync-Traces.simps by auto

then have $\exists xcm. mbox-run \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ None \ (add-matching-recvs \ t) \ xcm \ using empty-sync-run-to-mbox-run \ sync-run-to-mbox-run \ by \ blast$

then have sync-exec: (add-matching-recvs t) $\in \mathcal{T}_{None}$ using Mbox-Traces.intros by auto

then have $\exists x. (add\text{-}matching\text{-}recvs\ t)\downarrow_p = w \cdot x \text{ sorry}$ then obtain x where x-def: $(add\text{-}matching\text{-}recvs\ t)\downarrow_p = w \cdot x \text{ by } blast$ then have w'x'-wx-match: $(w' \cdot x')\downarrow_!\downarrow_{\{p,q\}}\downarrow_!? = (w \cdot x)\downarrow_?\downarrow_!? \text{ sorry}$

have $(w \cdot x) \in \mathcal{L}^*$ p using sync-exec x-def by (metis mbox-exec-to-infl-peer-word) have $w' \downarrow_! \downarrow_{\{p,q\}} \downarrow_! ?= w \downarrow_! \downarrow_! ?$ using w'-w-match by force have $\exists wa. x' \downarrow_! \downarrow_{\{p,q\}} \downarrow_! ?= wa \downarrow_! ? \land (\exists x. wa = x \downarrow_! ? \land is-in-infl-lang p (w)$

• x)) using $\langle w \cdot x \in \mathcal{L}^* p \rangle \langle w' \downarrow | \downarrow_{\{p,q\}} \downarrow_{!?} = w \downarrow_? \downarrow_{!?} \rangle w'x'$ -wx-match by auto then show ?thesis by simp

 $\begin{array}{c} qed \\ qed \end{array}$

 $\mathbf{show}\ \mathcal{L}^*(p) = \mathcal{L}^*_{\sqcup \sqcup}(p)$ \mathbf{proof}

show $\mathcal{L}^*(p) \subseteq \mathcal{L}^*_{\sqcup\sqcup}(p)$ using language-shuffle-subset by auto

```
show \mathcal{L}^*_{\sqcup\sqcup}(p)\subseteq\mathcal{L}^*(p)
        proof
          fix v'
          assume v' \in \mathcal{L}^*_{\sqcup \sqcup}(p)
           then obtain v where v-orig: v' \sqcup \sqcup_? v and orig-in-L: v \in \mathcal{L}^*(p) using
shuffled-infl-lang-impl-valid-shuffle by auto
          then show v' \in \mathcal{L}^*(p)
          proof (induct \ v \ v')
            \mathbf{case}\ (\mathit{refl}\ w)
            then show ?case by simp
          next
            case (swap \ b \ a \ w \ xs \ ys)
            then have \exists vq. vq \in \mathcal{L}^*(q) \land ((w\downarrow_?)\downarrow_{!?}) = (((vq\downarrow_{\{p,q\}})\downarrow_!)\downarrow_{!?})
                 using infl-parent-child-matching-ws[of w p q] orig-in-L q-parent by
blast
           then obtain vq where vq-v-match: ((w\downarrow_?)\downarrow_!?) = (((vq\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?) and
vq\text{-}def: vq \in \mathcal{L}^* \ q \ \mathbf{by} \ auto
              have lem4-4-prems: tree-topology \land w \in \mathcal{L}^*(p) \land p \in \mathcal{P} using assms
swap.prems by auto
            then show ?case using assms swap vq-v-match vq-def lem4-4-prems
            proof (cases is-root q)
              {\bf case}\ {\it True}
              have vq \in \mathcal{L} q using vq-def w-in-infl-lang by auto
              then have vq \in \mathcal{T}_{None} using root-lang-is-mbox True by simp
              let ?w' = xs \cdot a \# b \# ys
              have \exists acc. mix-shuf vq v v' acc sorry
              then obtain mix where mix-shuf vq v v' mix by blast
              let ?mix = mix
              have ?mix \in \mathcal{T}_{None} sorry
               then obtain t where t \in \mathcal{L}_0 \land t \in \mathcal{T}_{None}|_! \land t = (?mix)\downarrow_! using
sync-def by fastforce
                then obtain xc where t-sync-run : sync-run C_{I0} t xc using Sync-
Traces.simps by auto
                 then have \exists xcm. mbox-run \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ None \ (add-matching-recvs \ t) \ xcm
using empty-sync-run-to-mbox-run sync-run-to-mbox-run by blast
                then have sync-exec: (add\text{-}matching\text{-}recvs\ t) \in \mathcal{T}_{None} using Mbox-
Traces.intros by auto
              then have (add\text{-}matching\text{-}recvs\ t)\downarrow_p = ?w' sorry
              then have ?w' \in \mathcal{L}^* p using sync-exec mbox-exec-to-infl-peer-word by
metis
              then show ?thesis by simp
            next
```

```
case False
           then have is-node q by (metis NetworkOfCA.root-or-node NetworkOfCA-axioms
assms)
                 then obtain r where qr: is-parent-of q r by (metis False UNIV-I
path-from-root.simps path-to-root-exists paths-eq)
               then have \exists vr. vr \in \mathcal{L}^*(r) \land ((vq\downarrow_?)\downarrow_{!?}) = (((vr\downarrow_{\{q,r\}})\downarrow_!)\downarrow_{!?})
                    using infl-parent-child-matching-ws[of vq q r] orig-in-L vq-def by
blast
             then obtain vr where vr-def: vr \in \mathcal{L}^*(r) and vr-vq-match: ((vq\downarrow_?)\downarrow_{!?})
=(((vr\downarrow_{\{q,r\}})\downarrow_!)\downarrow_!?) by blast
              have \exists e. (e \in \mathcal{T}_{None} \land e \downarrow_r = vr \land ((is\text{-parent-of } q r) \longrightarrow e \downarrow_q = \varepsilon))
using lemma4-4 [of
                      vr \ r \ q] \ \mathbf{using} \ \langle vr \in \mathcal{L}^* \ r \rangle \ assms \ \mathbf{by} \ blast
               then obtain e where e-def: e \in \mathcal{T}_{None} and e-proj-r: e \downarrow_r = vr
                 and e-proj-q: e\downarrow_q = \varepsilon using qr by blast
               let ?w' = xs \cdot a \# b \# ys
               have \exists acc. mix-shuf vq v v' acc sorry
               then obtain mix where mix-shuf vq v v' mix by blast
               let ?mix = mix
               have e \cdot ?mix \in \mathcal{T}_{None} sorry
              then obtain t where t \in \mathcal{L}_0 \land t \in \mathcal{T}_{None} |_{!} \land t = (e \cdot ?mix) |_{!} using
sync-def by fastforce
                 then obtain xc where t-sync-run : sync-run C_{I0} t xc using Sync-
Traces.simps by auto
                 then have \exists xcm. mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None (add-matching-recvs t) xcm
\mathbf{using}\ empty\text{-}sync\text{-}run\text{-}to\text{-}mbox\text{-}run\ sync\text{-}run\text{-}to\text{-}mbox\text{-}run\ }\mathbf{by}\ blast
                 then have sync\text{-}exec: (add\text{-}matching\text{-}recvs\ t) \in \mathcal{T}_{None} using Mbox-
Traces.intros by auto
               then have (add\text{-}matching\text{-}recvs\ t)\downarrow_p = ?w' sorry
              then have ?w' \in \mathcal{L}^* p using sync-exec mbox-exec-to-infl-peer-word by
metis
               then show ?thesis by simp
             qed
           next
             case (trans w w' w'')
             then show ?case by simp
           qed
        qed
      qed
    qed
```

qed

```
next
```

```
assume ?R
  show ?L — show that TMbox = TSync, i.e. L > = (i.e. the sends are equal
  proof auto — cases: w in TMbox, w in TSync
    show w \in \mathcal{T}_{None} \Longrightarrow w \downarrow_! \in \mathcal{L}_0
    proof -
      assume w \in \mathcal{T}_{None}
then have (w\downarrow_!) \in \mathcal{T}_{None} \downarrow_! by blast
      then have match-exec: add-matching-recvs (w\downarrow_!) \in \mathcal{T}_{None}
      using mbox-trace-with-matching-recvs-is-mbox-exec \forall p \in \mathcal{P}. \forall q \in \mathcal{P}. is-parent-of
p\ q \longrightarrow subset\text{-}condition\ p\ q \ \land \ \mathcal{L}^*\ p = \mathcal{L}^*_{\ \sqcup \sqcup}\ p {\scriptstyle >}\ assms\ theorem\text{-}rightside\text{-}def
        by blast
       then obtain xcm where mbox-run C_{Im} None (add-matching-recvs (w\downarrow_!))
xcm by (metis MboxTraces.cases)
    then show (w\downarrow_!) \in \mathcal{L}_0 using SyncTraces.simps \langle w\downarrow_! \in \mathcal{T}_{None} \downarrow_! \rangle matched-mbox-run-to-sync-run
by blast
    qed
  next — w in TSync -> show that w' (= w with recvs added) is in EMbox
    show w \in \mathcal{L}_0 \Longrightarrow \exists w'. \ w = w' \downarrow_! \land w' \in \mathcal{T}_{None}
    proof -
      assume w \in \mathcal{L}_0
        — For every output in w, Nsync was able to send the respective message and
directly receive it
      then have w = w \downarrow_! by (metis SyncTraces.cases run-produces-no-inputs(1))
         then obtain \mathit{xc} where \mathit{w\text{-}sync\text{-}run} : \mathit{sync\text{-}run} \mathcal{C}_{\mathcal{I}\mathbf{0}} \mathit{w} \mathit{xc} using \mathit{Sync\text{-}}
Traces.simps \langle w \in \mathcal{L}_{\mathbf{0}} \rangle by auto
       then have w \in \mathcal{L}_{\infty} using \langle w \in \mathcal{L}_{\mathbf{0}} \rangle mbox-sync-lang-unbounded-inclusion
by blast
      obtain w' where w' = add-matching-recvs w by simp
           — then Nmbox can simulate the run of w in Nsync by sending every mes-
sage first to the mailbox of the receiver and then receiving this message
      then show ?thesis
      proof (cases xc = []) — this case distinction isn't in the paper but i need it
here to properly get the simulated run
         case True
         then have mbox-run \mathcal{C}_{Im} None (w') [] using \langle w' = add-matching-recvs
w \rightarrow empty-sync-run-to-mbox-run \ w-sync-run \ \mathbf{by} \ auto
        then show ?thesis using \langle w \in \mathcal{T}_{None}|_{!} \rangle by blast
      next
         {f case} False
          then obtain xcm where sim-run: mbox-run C_{Im} None w' xcm \land (\forall p.
(last\ xcm\ p\ ) = ((last\ xc)\ p, \varepsilon\ ))
           using \langle w' = add-matching-recvs w \rangle sync-run-to-mbox-run w-sync-run by
blast
```

```
then have w' \in \mathcal{T}_{None} using MboxTraces.intros by auto then have w = w' \downarrow_! using \langle w = w \downarrow_! \rangle \langle w' = add\text{-}matching\text{-}recvs \ w \rangle
adding-recvs-keeps-send-order by auto
           then have (w'\downarrow_!) \in \mathcal{L}_{\infty} using \langle w' \in \mathcal{T}_{None} \rangle by blast then show ?thesis using \langle w = w'\downarrow_! \rangle \langle w' \in \mathcal{T}_{None} \rangle by blast
        qed
      \mathbf{qed}
   qed
\mathbf{qed}
            Topology is a Forest
4.4
inductive is-forest :: 'peer set \Rightarrow 'peer topology \Rightarrow bool where
   IFSingle: is-tree P E \Longrightarrow is-forest P E \mid
   IFAddTree: [is	ext{forest P1 E1}; is	ext{tree P2 E2}; P1 \cap P2 = \{\}]] \implies is	ext{forest } (P1 \cup P2) = [is	ext{forest P1 E1}; is	ext{forest P2 E2}; P1 \cap P2]
P2) (E1 \cup E2)
abbreviation forest-topology :: bool where
  forest-topology \equiv is-forest (UNIV :: 'peer set) (\mathcal{G})
end
end
```