Advanced Web Security

Secure Messaging (OTR)

OTR Messaging

- Off-the-Record messaging
 - No one else can hear the conversation
 - Neither Alice nor Bob can provide proof of what has been said

- Allow the following properties
 - Encryption
 - Authentication
 - Deniability
 - Perfect Forward Secrecy
- Protocol has high focus on usability and practical aspects

Authentication and Key Agreement (AKA)

- Diffie-Hellman key agreement
 - Exchange signed Diffie-Hellman values and public keys

$$A \to B$$
 : $(g^{x_1})_{SK_A}$, PK_A
 $B \to A$: $(g^{y_1})_{SK_B}$, PK_B

- ▶ How should we verify public keys?
 - PKI is not suitable in messaging protocols
 - We can not assume that they have met and exchanged public keys, or fingerprints
- Without knowing each other's public key they can not verify it.
 - Vulnerable to MitM-attacks
- ▶ Still, they probably have *some* shared *low entropy* secret

Socialist Millionaires Problem

- Millionaires problem
 - Two people wish to known who is richest but they do not want to reveal their wealth
- Variant: Socialist Millionaires Problem
 - Two people want to know if they have the same wealth, but not to reveal how much they have.

EITN41 - Advanced Web Security

ļ

Socialist Millionaires Problem (SMP)

- Alice has value x, Bob has value y.
 - Use a protocol that verifies if x = y
- Naïve solution: Exchange hash values.
 - Vulnerable to brute force, does not meet the low entropy requirement
- Use a protocol that allows exchange of values that do not give away *any* information
 - See lecture notes for a protocol.

SMP applied to AKA

Add SMP to the protocol

$$A \to B$$
 : $(g^{x_1})_{SK_A}$, PK_A
 $B \to A$: $(g^{y_1})_{SK_B}$, PK_B

$$x = y = H(PK_A \parallel PK_B \parallel g^{x_1y_1} \parallel "shared secret")$$

SMP

- Eve now has only one chance to guess the secret in a MitM
 - If she fails, SMP will fail → Alice and Bob will know

Encryption and authentication of messages

- Diffie-Hellman provides Perfect Forward Secrecy
- However, if exponents are broken or leaked, the session is broken
- "Solution": Make each message its own session

: $A \to B$: g^{x_i} , $E(M_j, k_{i-1,i-1})$ $B \to A$: g^{y_i} , $E(M_{j+1}, k_{i,i-1})$ $A \to B$: $g^{x_{i+1}}$, $E(M_{j+2}, k_{i,i})$ $B \to A$: $g^{y_{i+1}}$, $E(M_{j+3}, k_{i+1,i})$

 Authenticate messages with MAC (derived from Diffie-Hellman)

Add Deniability

- With a MAC, only Alice or Bob can have created the message
- After verifying MAC, it is sent in clear in the next message.
- Make it possible to modify plaintexts
 - Not only repudiation, but also forgeability
- Use stream cipher so that it is also easy to modify known plaintexts to another known plaintext

$$c_i \oplus 1 = m_i \oplus k_i \oplus 1 = m_i \oplus 1 \oplus k_i.$$

EITN41 - Advanced Web Security

8