Analytical derivation of Lensing rates 1

Note: I will interchangeably use term like observable events and detectable events.

Define the all the parameters involved.

- Source parameters: $\theta \in \{m_1, m_2, D_l, \iota, \phi, \psi, ra, dec\}$
- Lens parameters: $\theta_L \in \{\sigma(\text{velocity-dispersion}), q(\text{axis-ratio}), \psi(\text{axis-rotation}), \gamma(\text{spectral-index}), \}$ $[\gamma_1, \gamma_2]$ (external-shear)
- z_L : red-shift of the galaxy lens
- image param: $\{\beta(\text{source position}), \mu(\text{magnification}), dt(\text{time-delay})\}.$

Given $dN_{obs}^L(z_s)$ is the number of lensed GW detectable events from sources at red-shift z_s in a spherical shell of thickness dz_s , then, let rate of lensing (number of lensed events happening per unit time) is given by,

$$\mathcal{R}_{L} = \int_{z_{min}}^{z_{max}} \frac{dN_{obs}^{L}(z_{s})}{dt_{obs}}$$

$$= \int_{z_{min}}^{z_{max}} \frac{dN_{obs}^{L}(z_{s})}{dt \, dV_{c}} \frac{dV_{c}}{dz_{s}} dz_{s}$$

$$(1a)$$

$$= \int_{z_{min}}^{z_{max}} \frac{dN_{obs}^L(z_s)}{dt \, dV_c} \frac{dV_c}{dz_s} dz_s$$
 (1b)

 $\frac{dN^L_{obs}(z_s)}{dt\;dV_c}$ is the merger rate density at detector-frame, and $\frac{dV_c}{dz_s}$ is the deferential co-moving volume at red-shift z_s . After taking care of time-dilation, the expression looks,

$$\mathcal{R}_L = \int_{z_{min}}^{z_{max}} \frac{dN_{obs}^L(z_s)}{dt \, dV_c} \frac{1}{1+z_s} \frac{dV_c}{dz_s} dz_s$$
 (2a)

$$= \int_{z_{min}}^{z_{max}} R_{obs}^L(z_s) dz_s \tag{2b}$$

Observed rate of lensed events at source red-shift z_s (source-frame) is given by $R_{obs}^L(z_s) = \frac{dN_{obs}^L(z_s)}{dt \, dV_c} \frac{1}{1+z_s} \frac{dV_c}{dz_s}$. And, let $R(z_s)$ be the rate of the merger of unlensed events (source frame), regardless of whether it is detectable or not.

$$\mathcal{R}_L = \int_{z_{min}}^{z_{max}} R_{obs}^L(z_s) dz_s \tag{3a}$$

$$= \int_{z_{min}}^{z_{max}} R(z_s) P(obs, SL|z_s) dz_s$$
 (3b)

 $P(obs, SL|z_s)$ is the probability of observing strong lensing event at red-shift

$$\mathcal{R}_L = \int_{z_{min}}^{z_{max}} R(z_s) P(obs|z_s, SL) P(SL|z_s) dz_s$$
 (4a)

Probability of observing an event given that it is located at redshift z_s and it's strongly lensed: $P(obs|z_s, SL)$. Strong lensing probability with source at redshift z_s (optical depth): $P(SL|z_s)$. Now, using bayes theorem,

$$P(SL|z_s) = \frac{P(z_s|SL)P(SL)}{P(z_s)}$$
 (5a)

$$P(z_s)P(SL|z_s) = P(z_s|SL)P(SL)$$
(5b)

$$\frac{R(z_s)}{N_1}P(SL|z_s) = P(z_s|SL)P(SL)$$
 (5c)

Normalizing factor: $N_1 = \int_{z_{min}}^{z_{max}} R(z_s) dz_s$. Similarly, when lensing condition applied, let $N_2 = \int_{z_{min}}^{z_{max}} R(z_s) P(SL|z_s) dz_s$.

$$P(SL) = \int_{z_{min}}^{z_{max}} P(SL|z_s)P(z_s)dz_s$$
 (6a)

$$= \int_{z_{min}}^{z_{max}} P(SL|z_s) \frac{R(z_s)}{N_1} dz_s$$
 (6b)

$$=\frac{N_2}{N_1} \tag{6c}$$

Now putting together, equation 5c becomes,

$$\frac{R(z_s)}{N_1} P(SL|z_s) = P(z_s|SL) \frac{N_2}{N_1}$$
 (7a)

$$R(z_s)P(SL|z_s) = N_2P(z_s|SL)$$
(7b)

Replace the above result in the integrand of 4a. This also take cares of the normalizing factor. Note that $P(z_s|SL)$ is a normalised pdf of source red-shifts, z_s , conditioned on strong lensing.

$$\mathcal{R}_{L} = N_{2} \int_{z_{min}}^{z_{max}} P(z_{s}|SL) P(obs|z_{s}, SL) dz_{s}$$

$$consider \int \rightarrow \int_{zl} \int_{\beta} \int_{\theta} \int_{\theta_{L}}$$
(8a)

$$\mathcal{R}_{L} = N_{2} \int P(z_{s}|SL)P(obs|\theta, \theta_{L}, \beta, z_{s}, SL)$$

$$P(\beta|\theta_{L}, z_{s}, SL)P(\theta_{L}|z_{s}, SL)P(\theta)d\beta d\theta d\theta_{L}dz_{s}$$
(8b)

For $P(z_s|SL) = \frac{R(z_s)}{N_2} P(SL|z_s)$, from equation 7b, I have considered 'optical depth' $(\tau(z_s) = P(SL|z_s))$ is a function of z_s only. Otherwise, we need to considered the cross-section $(P(SL|z_s,\theta_L))$ which will be discussed in another section. Below shows how to get $P(SL|z_s)$, i.e. probability of strong lensing of source at z_s . $dN(z_l)$ is the number of galaxy lens at red-shift z_l (in dz_l).

$$P(SL|z_s) = \int_0^{z_s} \frac{P(SL|\theta_L, z_s)}{4\pi} dN(z_l)$$
(9a)

$$P(SL|z_s) = \int \frac{P(SL|z_s, z_l, \sigma, q)}{4\pi} \frac{dN(z_l)}{dz_l d\sigma dq} dz_l d\sigma dq$$
 (9b)

$$P(SL|z_s) = \int \frac{P(SL|z_s, z_l, \sigma, q)}{4\pi} \frac{dN(z_l)}{dV_c d\sigma dq} \frac{dV_c}{dz_l} dz_l d\sigma dq$$
(9c)

writing the cross-section $P(SL|z_s, z_l, \sigma, q)$ as ϕ

$$P(SL|z_s) = \int \frac{\phi}{4\pi} \frac{dN(z_l)}{dV_c d\sigma da} \frac{dV_c}{dz_l} dz_l d\sigma dq$$
 (9d)

(9e)

Consider SIS case (Ref Haris et al. 2018). Take ϕ as ϕ_{SIS} .

$$P(SL|z_s) = \int \frac{\phi_{SIS}}{4\pi} \frac{dN(z_l)}{dV_c d\sigma} \frac{dV_c}{dz_l} dz_l d\sigma$$
 (10a)

$$P(SL|z_s) = \int \frac{\pi \theta_E^2}{4\pi} \langle n \rangle_{\sigma \in P(\sigma)} P(\sigma) \frac{dV_c}{dz_l} dz_l d\sigma$$
 (10b)

Cross-section of SIS lens is $\pi \theta_E^2$, where θ_E is the Einstein radius. Haris have considered number density of lens, $\langle n \rangle_{\sigma \in P(\sigma)}$ and pdf of velocity dispersion, $P(\sigma)$ is independent of z_l . Take $\langle n \rangle_{\sigma \in P(\sigma)} = n_o = 8 \times 10^{-3} h^3 Mpc^{-3}$.

$$P(SL|z_s) = \int \frac{\theta_E^2}{4} n_o P(\sigma) \frac{dV_c}{dz_l} dz_l d\sigma$$
 (11a)

$$P(SL|z_s) = \int_0^{z_s} \Phi_{SIS}(z_l) dz_l$$
 (11b)

where,
$$\Phi_{SIS}(z_l) = \int \frac{\theta_E^2}{4} n_o P(\sigma) \frac{dV_c}{dz_l} d\sigma$$
. (11c)

$$\Phi_{SIS}(z_l) = \left\langle \frac{\theta_E^2}{4} n_o \frac{dV_c}{dz_l} \right\rangle_{\sigma \in P(\sigma)}$$
(11d)

Note: θ_E and $\frac{dV_c}{dz_l}$ are functions of z_l .

Consider SIE case with σ distribution dependent z_l . The expression for optical depth reads,

$$P(SL|z_s) = \int \frac{\phi_{SIE}}{4\pi} \frac{dN(z_l)}{dV_c d\sigma dq} \frac{dV_c}{dz_l} dz_l d\sigma dq$$
 (12a)

$$P(SL|z_s) = \int \frac{\phi_{SIS}}{4\pi} \frac{\phi_{CUT}^{SIE}(q)}{\pi} \langle n \rangle_{\sigma,q \in P(\sigma,q)} P(q|\sigma,z_l) P(\sigma|z_l) \frac{dV_c}{dz_l} dz_l d\sigma dq$$
(12b)

$$P(SL|z_s) = \int \frac{\phi_{SIS}}{4\pi} \frac{\phi_{CUT}^{SIE}(q)}{\pi} n_o P(q|\sigma, z_l) P(\sigma|z_l) \frac{dV_c}{dz_l} dz_l d\sigma dq$$
 (12c)

 $\frac{\phi_{CUT}^{SIE}(q)}{\sigma}$ will be found through interpolation.

$$P(SL|z_s) = \int_0^{z_s} \Phi_{SIE}(z_l) dz_l$$
 (12d)

where,
$$\Phi_{SIE}(z_l) = \int \frac{\phi_{SIS}}{4\pi} \frac{\phi_{CUT}^{SIE}(q)}{\pi} n_o P(q|\sigma, z_l) P(\sigma|z_l) \frac{dV_c}{dz_l} d\sigma dq$$
. (12e)

$$\Phi_{SIE}(z_l) = \left\langle \frac{\phi_{SIS}}{4\pi} \frac{\phi_{CUT}^{SIE}(q)}{\pi} n_o \frac{dV_c}{dz_l} \right\rangle_{q \in P(q|\sigma, z_l), \sigma \in P(\sigma|z_l)}$$
(12f)

If
$$\sigma$$
 is independent of z_l , then (12g)

$$\Phi_{SIE}(z_l) = \left\langle \frac{\phi_{SIS}}{4\pi} \frac{\phi_{CUT}^{SIE}(q)}{\pi} n_o \frac{dV_c}{dz_l} \right\rangle_{q \in P(q|\sigma), \sigma \in P(\sigma)}$$
(12h)

Final equation of the observed rate of lensed events is shown below. Note that, z_s sampled from it's prior distribution and then rejection sampled wrt to optical depth.

$$\mathcal{R}_{L} = N_{2} \left\langle P(obs|\theta, \theta_{L}, \beta, z_{s}, SL) \right\rangle_{z_{s} \in P(z_{s}|SL), \theta \in P(\theta), \theta_{L} \in P(\theta_{L}|z_{s}, SL), \beta \in P(\beta|\theta_{L}, z_{s}, SL)}$$
(13a)

But in LeR implementation,

$$\mathcal{R}_{L} = N_{2} \left\langle P(obs|\theta, \theta_{L}, \beta, z_{s}, SL) \right\rangle_{z_{s} \in P_{1}; \theta \in P_{2}; z_{l}, \sigma, q \in P_{3}; \beta, e_{1}, e_{2}, \gamma_{1}, \gamma_{2}, \gamma \in P_{4}}$$
(13b)

Prior distributions are given below.

$$P_1 = P(z_s|SL) \tag{14a}$$

$$P_2 = P(\theta) \tag{14b}$$

$$P_3 = P(z_l, \sigma, q | z_s, SL) \tag{14c}$$

$$P_4 = P(\beta, e_1, e_2, \gamma_1, \gamma_2, \gamma | \theta_L, z_s, SL)$$
(14d)

Where the sampling priors can be further simplify as follows,

$$P(z_s|SL) = P(SL|z_s) P(z_s)$$
(15a)

$$P(\theta_L|z_s, SL) = P(SL|z_s, \theta_L) P(\theta_L|z_s)$$
(15b)

$$P(\beta|z_s, \theta_L, SL) = P(SL|z_s, \theta_L, \beta) P(\beta|z_s, \theta_L)$$
(15c)

This allows z_s to sample from astrophysical prior, $P(z_s)$, and then later rejection sample wrt optical depth, $P(SL|z_s)$. Same is the case for θ_L (z_l, σ, q) . Strong lensing condition is applied through rejection sampling wrt to $\phi_{CUT}^{SIE}(q)$ $(\propto \theta_E^2 \phi_{CUT}^{SIE})$. For the source position, β , it is sample within the caustic and then check whether it has 2 or more images or not.

Order of sampling in LeR is listed below.

- 1. z_s from $\frac{R(z_s)}{N_1}$. And Apply rejection sample with optical depth, $P(SL|z_s)$. Other source parameters are sampled separately, $P(\theta)$.
- 2. z_l from $P(z_l|z_s)$.
- 3. σ together from $P(\sigma|z_l, SL)$.
- 4. q from $P(q|\sigma)$.
- 5. Calculation of Einstein radius and apply lensing condition to the sampled lens parameters, $P(SL|z_s, z_l, \sigma, q) \propto \theta_E^2 \phi_{CUT}^{SIE}$.
- 6. Other lens parameters $(e_1, e_2, \gamma_1, \gamma_2, \gamma)$ are sampled independent to the SL condition, $P(e_1, e_2, \gamma_1, \gamma_2, \gamma)$. But, this will be rejection sampled later along with the image position.
- 7. Draw image position, β , from within the caustic boundary and solve lens equation. Accept it if it results in 2 or more images, otherwise resample β . Sometimes (once in 2-3 million), 2 or more images condition cannot be satisfied, so resample $e_1, e_2, \gamma_1, \gamma_2, \gamma$ again and repeat the process.