Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

```
In [1]:
    import pandas as pd

pd.df = "Resources/purchase_data.csv"

purchase_df = pd.read_csv(pd.df)
```

Player Count

· Display the total number of players

Purchasing Analysis (Total)

- Run basic calculations to obtain number of unique items, average price, etc.
- Create a summary data frame to hold the results
- · Optional: give the displayed data cleaner formatting
- · Display the summary data frame

Out[3]:

	Number of Unique Items	Average Price	Number of Purchases	Total Revenue
0	183	\$3.05	780	\$2,379.77

Gender Demographics

- · Percentage and Count of Male Players
- Percentage and Count of Female Players
- Percentage and Count of Other / Non-Disclosed

Out[6]:

	Gender	Total Count	Percentage of Players
0	Male	484	84.03%
1	Female	81	14.06%
2	Other/Non-Disclosed	11	1.91%

Purchasing Analysis (Gender)

- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender
- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
tot_purchase = purchase_df["Price"].count()
male purchase = purchase_df[purchase_df["Gender"] == "Male"]["Price"].count
female purchase = purchase df[purchase df["Gender"] == "Female"]["Price"].
other purchase = (tot purchase - male purchase) - female purchase
tot price avg = purchase df["Price"].mean()
male_price_avg = purchase_df[purchase_df["Gender"] == "Male"]["Price"].mean
female_price_avg = purchase_df[purchase_df["Gender"] == "Female"]["Price"].
other price avg = purchase df[purchase df["Gender"] == "Other / Non-Disclos
male_price_tot = purchase_df[purchase_df["Gender"] == "Male"]["Price"].sum(
female_price_tot = purchase_df[purchase_df["Gender"] == "Female"]["Price"].
other price_tot = purchase_df[purchase_df["Gender"] == "Other / Non-Disclos
total_purchase_count = purchase_df["SN"].count()
male_purchase_count = purchase_df[purchase_df["Gender"] == "Male"]["SN"].cc
female purchase_count = purchase_df[purchase_df["Gender"] == "Female"]["SN"
other purchase count = (total purchase count - male purchase count) - femal
male avg tot = male price tot / male players
female_avg_tot = female_price_tot / female_players
other_avg_tot = other_price_tot / other_players
gender_purchase_df = pd.DataFrame({"Gender" : [ "Male" , "Female", "Other/N
                                   "Purchase Count" : [male_purchase, femal
                         "Avg Purchase Price" : [male price avg, female pri
                           "Total Purchase Value" : [male price tot, female
                                 "Avg Total Purchase per Person" : [male av
gender purchase df["Avg Purchase Price"] = gender purchase df["Avg Purchase
gender_purchase_df["Total Purchase Value"] = gender_purchase_df["Total Purc
gender_purchase_df["Avg Total Purchase per Person"] = gender_purchase_df["A
gender_purchase_df
```

Out[8]:

	Gender	Purchase Count	Avg Purchase Price	Total Purchase Value	Avg Total Purchase per Person
0	Male	652	\$3.02	\$1967.64	\$4.07
1	Female	113	\$3.20	\$361.94	\$4.47
2	Other/Non- Disclosed	15	\$3.35	\$50.19	\$4.56

Age Demographics

- Establish bins for ages
- Categorize the existing players using the age bins. Hint: use pd.cut()
- Calculate the numbers and percentages by age group

- · Create a summary data frame to hold the results
- · Optional: round the percentage column to two decimal points
- Display Age Demographics Table

```
In [9]: bins = [0, 9.90, 14.90, 19.90, 24.90, 29.90, 34.90, 39.90, 99999]
        group = ["<10", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "40+"
        age purchase df = purchase df
        age purchase df["Age Summary"] = pd.cut(age purchase df["Age"], bins, label
        age_purchase df
        age purchase_df = age_purchase_df.groupby("Age Summary")
        age_purchase_df.count()
        summary age df = pd.DataFrame(age purchase df.count())
        summary age df
        summary age df["Purchase ID"] = (summary age df["Purchase ID"]/tot purchase
        summary age df
        summary age df["Purchase ID"] = summary age df["Purchase ID"].map("{:,.2f}%
        summary age df
        sum age df = summary age df[["Purchase ID", "SN"]]
        sum age df
        sum_fin_df = sum_age_df.rename(columns={"Purchase ID": "Percentage of Playe
                                                "SN" : "Total Count" })
        sum fin df
```

Out[9]:

Percentage of Players Total Count

Age Summary		
<10	2.95%	23
10-14	3.59%	28
15-19	17.44%	136
20-24	46.79%	365
25-29	12.95%	101
30-34	9.36%	73
35-39	5.26%	41
40+	1.67%	13

Purchasing Analysis (Age)

- Bin the purchase_data data frame by age
- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below
- · Create a summary data frame to hold the results
- · Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
In [10]: by age df = pd.DataFrame(age purchase df["Purchase ID"].count())
         by age df
         tot_pur_val_df = age_purchase_df["Price"].sum()
         tot pur val df
         tot_purchase_value_df = tot_pur_val_df.map("${:.2f}".format)
         tot purchase value df
         avg price age df = age purchase df["Price"].mean()
         avg price age df
         avg price_byage_df = avg price_age_df.map("${:.2f}".format)
         avg price byage df
         avg_tot_pur_age = tot_pur_val_df/age_purchase_df["Purchase ID"].count()
         avg tot pur age df = avg tot pur age.map("${:.2f}".format)
         avg tot pur age df
         by age df["Average Purchase Price"] = avg price byage df
         by age df["Total Purchase Value"] = tot purchase value df
         by age df["Avg Total Purchase per Person"] = avg tot pur age df
         by age df
         summary age total = by age df.rename(columns={"Purchase ID" : "Purchase Cou
         summary age total
```

Out[10]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Avg Total Purchase per Person
Age Summary				
<10	23	\$3.35	\$77.13	\$3.35
10-14	28	\$2.96	\$82.78	\$2.96
15-19	136	\$3.04	\$412.89	\$3.04
20-24	365	\$3.05	\$1114.06	\$3.05
25-29	101	\$2.90	\$293.00	\$2.90
30-34	73	\$2.93	\$214.00	\$2.93
35-39	41	\$3.60	\$147.67	\$3.60
40+	13	\$2.94	\$38.24	\$2.94

Top Spenders

- Run basic calculations to obtain the results in the table below
- Create a summary data frame to hold the results

- · Sort the total purchase value column in descending order
- · Optional: give the displayed data cleaner formatting
- · Display a preview of the summary data frame

```
In [11]: top purchase df = pd.DataFrame(purchase df)
         top purchase df.head()
         top_spenders_df = top_purchase_df.groupby("SN")
         top spenders df.count()
         by spender df = pd.DataFrame(top spenders df["Purchase ID"].count())
         by_spender df
         sn tot pur value = top spenders df["Price"].sum()
         sn tot pur value
         avg pur sn = top spenders df["Price"].mean()
         by_spender_df["Average Purchase Price"] = avg_pur_sn
         by spender df["Total Purchase Value"] = sn tot pur value
         by spender df["Purchase ID"] = by spender df
         by spender df
         sum sn = by spender df.rename(columns={"Purchase ID" : "Purchase Count"})
         sum sn
         top five = sum sn.sort values("Total Purchase Value", ascending=False)
         sn tot pur value = sn tot pur value.map("${:.2f}".format)
         avg pur sn = avg pur sn.map("${:.2f}".format)
         top five.head()
```

Out[11]:

Purchase Count Average Purchase Price Total Purchase Value

SN			
Lisosia93	5.0	3.792000	18.96
Idastidru52	4.0	3.862500	15.45
Chamjask73	3.0	4.610000	13.83
Iral74	4.0	3.405000	13.62
Iskadarya95	3.0	4.366667	13.10

Most Popular Items

- · Retrieve the Item ID, Item Name, and Item Price columns
- Group by Item ID and Item Name. Perform calculations to obtain purchase count, item price, and total purchase value
- Create a summary data frame to hold the results
- · Sort the purchase count column in descending order
- Optional: give the displayed data cleaner formatting
- · Display a preview of the summary data frame

```
top_item_df = top_purchase_df.groupby(["Item_ID", "Item_Name"])
In [12]:
         top item df
         by_item_df = pd.DataFrame(top_item_df["Purchase ID"].count())
         by item df
         tot item vale = top item df["Price"].sum()
         tot item vale
         tot item value = tot item vale.map("${:.2f}".format)
         tot_item_value
         pur price = top item df["Price"].mean()
         pur price
         pur price tot = pur price.map("${:.2f}".format)
         pur price tot
         by item df["Item Price"] = pur price tot
         by item df["Total Purchase Price"] = tot item value
         by item df
         sum by item df = by item df.rename(columns={"Purchase ID" : "Purchase Count
         top five=sum by item df.sort values("Purchase Count", ascending=False)
         top five.head()
```

Out[12]:

		Purchase Count	Item Price	Total Purchase Price
Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
145	Fiery Glass Crusader	9	\$4.58	\$41.22
108	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77
82	Nirvana	9	\$4.90	\$44.10
19	Pursuit, Cudgel of Necromancy	8	\$1.02	\$8.16

Most Profitable Items

- · Sort the above table by total purchase value in descending order
- Optional: give the displayed data cleaner formatting
- · Display a preview of the data frame

```
In [14]: sum_by_item_df["Total Purchase Value"] = top_item_df["Price"].sum()
    sum_by_item_df

top_five=sum_by_item_df.sort_values("Total Purchase Value", ascending=0)
    top_five.head()
```

Out[14]:

		Purchase Count	Item Price	Total Purchase Price	Total Purchase Value
Item ID	Item Name				
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76	50.76
82	Nirvana	9	\$4.90	\$44.10	44.10
145	Fiery Glass Crusader	9	\$4.58	\$41.22	41.22
92	Final Critic	8	\$4.88	\$39.04	39.04
103	Singed Scalpel	8	\$4.35	\$34.80	34.80

SUMMARY

Based on the data provided we can make three conclusions.

- 1. The top five items are: Oathbreaker, Last Hope of the Breaking Storm, it has 12 purchases with a total purchase value of 50.76.FollowedcloselybyNirvanawith 44.10 purchase value. The least selling objects are: The Decapitator and The Gladiator's Glaive.
- 2. The top spender is: Lisosia93 with almost \$19.00 in spending on five items. The spending trend is a bit low, maybe some types of advertising on the most popular items could help the overall spending.
- 3. The majority of players are between the age of 20-24 with almost half of all players, 46.79%, being in this age range. They also provided the most in spending at \$1,114.06. I would suggest to advertise heavily on social networking sites that reach this age demographic.

```
In [ ]:
```