Lab 1

Björn Edblom (bjoed735) och Eskil Brännerud (eskbr129)

2023-09-21

Uppgift 3.1.1

Simulering av normalfördelning. Simulera 100 och 10000 dragningar från en normalfördelning med u=10 och o=4.

1) Visualisera fördelningarna i två histogram. Visualisera fördelningens pdf i samma graf. Nedan simuleras normalfördelningen med olika antalet dragningar, samt ett histogram av dragningarna från normal-fördelningen.

```
x1 <- rnorm(1000, mean = 10, sd = 4)
hist(x1, probability = TRUE)
xfit <- seq(min(x1), max(x1), 1)
yfit <- dnorm(xfit, mean = 10, sd = 4)
lines(xfit, yfit, col="green")</pre>
```



```
x2 <- rnorm(100, mean = 10, sd = 4)
hist(x2, probability = TRUE)
xfit <- seq(min(x2), max(x2), 1)
yfit <- dnorm(xfit, mean = 10, sd = 4)</pre>
```


2) Beskriv skillnaden mellan de olika graferna. I graf har fler dragningar, vilket gör att den är mer stabil mellan körningar. Den närmar sig mer normalfördelningen.

Uppgift 3.1.2

Simulera och visualisera andra fördelningar.

1) Simulera och visualisera följande fördelningar med 10000 dragningar från varje fördelningar täthetsfunktioner Diskreta fördelningar

```
x1 <- rbern(10000, 0.2)
hist(x1, probability = TRUE, breaks=c(-0.5,0.5,1.5))
xfit <- seq(min(x1), max(x1), 1)
yfit <- dbern(xfit, prob = 0.2)
points(xfit, yfit, col="green")</pre>
```



```
x2 <- rbinom(20,10000,0.1)
hist(x2, probability = TRUE)
xfit <- seq(min(x2), max(x2), 1)
yfit <- dbinom(xfit, size = 10000, prob = 0.1)
lines(xfit, yfit, col="green")</pre>
```



```
x3 <- rbinom(20,10000,0.5)
hist(x3, probability = TRUE)
xfit <- seq(min(x3), max(x3), 1)
yfit <- dbinom(xfit, size = 10000, prob = 0.5)
lines(xfit, yfit, col="green")</pre>
```



```
x4 <- rgeom(10000, 0.1)
hist(x4, probability = TRUE)
xfit <- seq(min(x4), max(x4), 1)
yfit <- dgeom(xfit, prob = 0.1)
lines(xfit, yfit, col="green")</pre>
```



```
x5 <- rpois(10000,10)
hist(x5, probability = TRUE)
xfit <- seq(min(x5), max(x5), 1)
yfit <- dpois(xfit, lambda= 10)
lines(xfit, yfit, col="green")</pre>
```


Kontinuerliga fördelningar

```
y1 <- runif(10000,0,1)
hist(y1, probability = TRUE)
xfit <- seq(min(y1), max(y1), 0.01)
yfit <- dunif(xfit, min = 0, max = 1)
points(xfit, yfit, col="green")</pre>
```



```
y2 <- rexp(10000,3)
hist(y2, probability = TRUE)
xfit <- seq(min(y2), max(y2), 1)
yfit <- dexp(xfit, rate = 3)
lines(xfit, yfit, col="green")</pre>
```



```
y3 <- rgamma(10000,2,1)
hist(y3, probability = TRUE)
xfit <- seq(min(y3), max(y3), 1)
yfit <- dgamma(xfit, shape = 2, rate = 1)
lines(xfit, yfit, col="green")</pre>
```



```
y4 <- rt(10000,3)
hist(y4, probability = TRUE)
xfit <- seq(min(y4), max(y4), 1)
yfit <- dt(xfit, df = 3)
lines(xfit, yfit, col="green")</pre>
```



```
y5 <- rbeta(10000, shape1=0.1, shape2=0.1)
hist(y5, probability = TRUE)
xfit <- seq(min(y5), max(y5), 0.01)
yfit <- dbeta(xfit, shape1=0.1, shape2=0.1)
lines(xfit, yfit, col="green")
```



```
y6 <- rbeta(10000,1,1)
hist(y6, probability = TRUE)
xfit <- seq(min(y6), max(y6), 0.01)
yfit <- dbeta(xfit,shape1 = 1,shape2 =1)
lines(xfit, yfit, col="green")</pre>
```



```
y7 <- rbeta(10000,10,5)
hist(y7, probability = TRUE)
xfit <- seq(min(y7), max(y7), 0.01)
yfit <- dbeta(xfit,shape1 = 10,shape2 =5)
lines(xfit, yfit, col="green")</pre>
```


Uppgift 3.1.3

```
x1 <- rbinom(n= 10000, size = 1000 ,prob = 0.001 )
hist(x1, probability = TRUE)
xfit <- seq(min(x1), max(x1))
yfit <- dbinom(xfit, size= 1000, prob = 0.001)
lines(xfit, yfit, col="green")</pre>
```



```
x2 <- rt(n=10000, df=1000)
hist(x2, probability = TRUE)
xfit <- seq(min(x2), max(x2), 1)
yfit <- dt(xfit, df = 1000)
lines(xfit, yfit, col="green")</pre>
```


(2) Ta reda på (t ex via Wikipedia eller föreläsningarnas slides) vilken annan fördelning som respektive fördelning börjar konvergera mot. Binomial fördelning konvergerar mot Poisson fördelning Student t fördelningen kovergerar mot Standard Normal fördelning

```
x1 <- rpois(10000, 1)
hist(x1, probability = TRUE)
xfit <- seq(min(x1), max(x1))
yfit <- dpois(xfit, 1)
lines(xfit, yfit, col="green")</pre>
```

(3) Simulera dragningar från dessa fördelning och jämför resultatet med de resultat du fick i **Histogram of x1**


```
(1). X1

x2 <- rnorm(10000, 1)
hist(x2, probability = TRUE)
xfit <- seq(min(x2), max(x2))
yfit <- dnorm(xfit, 1)
lines(xfit, yfit, col="green")</pre>
```


Vi simulerade, och det är tydligt att de är väldigt lika.

Uppgift 3.1.4

```
x \leftarrow dbinom(0, size=10, prob = 0.1)
y \leftarrow rbinom(10000, size = 10, prob = 0.1)
print(paste("P(Y=0)", x))
1)
## [1] "P(Y=0) 0.3486784401"
print(paste("Simulated 10000 times", mean(y==0)))
## [1] "Simulated 10000 times 0.3508"
#P(X<0)
a \leftarrow pnorm(0, mean = 0, sd = 1)
print(a)
2)
## [1] 0.5
#P(X<0)
b \leftarrow pnorm(1, mean = 0, sd = 1) - (pnorm(-1, mean = 0, sd = 1))
print(b)
## [1] 0.6826895
```

```
#P(1.096<X)
c \leftarrow 1-pnorm(1.96, mean = 0, sd = 1)
print(c)
## [1] 0.0249979
\#P(X<0)
d <- pbinom(10, 10, 0.1) - pbinom(0, 10, 0.1)
print(d)
## [1] 0.6513216
e \leftarrow pbinom(-0.0001,10, 0.1) + pbinom(0.0001, 10, 0.1)
print(e)
## [1] 0.3486784
#P(1.096<X)
f <- e + d
print(f)
## [1] 1
x \leftarrow rnorm(10000, 0, 1)
y <- rbinom(10000, 10, 0.1)
p1 \leftarrow sum(x < 0) / 10000
print(p1)
3) Beräkna samma sannolikheter som i (2) men genom att simulera dragningar från X och Y
iR.
## [1] 0.4974
p2 \leftarrow (sum(x < 1) - sum(x <= -1)) / 10000
print(p2)
## [1] 0.6777
p3 \leftarrow sum(x > 1.96) / 10000
print(p3)
## [1] 0.0274
p4 \leftarrow (sum(y < 10) - sum(y <= 0)) / 10000
print(p4)
## [1] 0.6507
p5 \leftarrow sum(y == 0) / 10000
print(p5)
## [1] 0.3493
p6 \leftarrow (sum(y \leftarrow 10) - sum(y \leftarrow 0)) / 10000
print(p6)
## [1] 1
```

3.1.5 Berakna (icke-triviala) sannolikheter.

(1)

```
# Old system
x_{old} \leftarrow rbinom(10000, 337, 0.1)
print(sum(x_old)/10000)
## [1] 33.7945
# New system
p <- sum(runif(10000, 0.02, 0.16)) / 10000
x_new <- rbinom(10000, 337, p)</pre>
print(sum(x_new) / 10000)
## [1] 30.3367
(2)
print(sum(x_old > x_new)/10000)
## [1] 0.6514
(3)
print(sum(x_old > 50)/10000)
## [1] 0.0017
print(sum(x_new > 50)/10000)
## [1] 2e-04
3.2.1 Stora talens lag
(1)
E(x) = NP = 10 \ 0.2 = 2
E(y) = a/b = 2/2 = 1
(2)
# Sequence of draws
pols \leftarrow c(seq(10,100,10), seq(100,1000,100), seq(1000,10000,1000))
# List of means
bMeans <- numeric(length(pols))</pre>
gMeans <- numeric(length(pols))</pre>
for ( x in 1:length(pols)){
 n <- pols[x]
  gMeans[x] <- mean(rgamma(n,2,2))
  bMeans[x] <- mean(rbinom(n,10,0.2))</pre>
plot(x=pols,y=bMeans, xlim=c(0,10000), ylim=c(1.3,2.7), type="l")
```


plot(x=pols,y=gMeans, xlim=c(0,10000), ylim=c(0.6,1.4), type="l")

3.3.1

(1)
$$E(X) = 1 \ / \ 10 = 0.1 \ Var(X) = 1 \ / \ (10^2) = 0.01 \ E(Y) = 3 \ Var(Y) = 3$$

(2) Simulera 10~000 varden

```
x \leftarrow rexp(10000, 10)
print(mean(x))
## [1] 0.1007093
print(var(x))
## [1] 0.01028045
y <- rpois(10000,3)
print(mean(y))
## [1] 2.9822
print(var(y))
## [1] 2.933176
(3)
E(3) = 3
E(3X + 2) = E(3x) + E(2) = 3 E(x) + 2 = 2.3
E(x+y) = 0.1 + 3 = 3.1
E(xy) = 0.1 \ 3 = 0.3
E(3x + 2y - 3) = 3 * 0.1 + 2 * 3 - 3 = 3.3
Var(2 * x - 5) = 2^2 * Var(x) = 0.01 * 4 = 0.01
Var(x+y) = 0.01 + 3 = 3.01
print(mean(3))
## [1] 3
print(mean(3*x +2))
## [1] 2.302128
print(mean(x + y))
## [1] 3.082909
print(mean(x*y))
## [1] 0.2990195
print(mean(3*x +2*y -3))
## [1] 3.266528
print(var(2*x -5))
## [1] 0.04112178
print(var(x + y))
## [1] 2.940825
```

3.4.1

(1)

```
x <- rpois(1000, 5)
hist(x, probability = TRUE)
xfit <- seq(min(x), max(x), 1)
yfit <- dpois(xfit, 5)
lines(xfit, yfit, col="green")</pre>
```



```
y <- rexp(1000, 1)
hist(y, probability = TRUE)
xfit <- seq(min(y), max(y), 1)
yfit <- dexp(xfit, 1)
lines(xfit, yfit, col="green")</pre>
```



```
z <- rbinom(1000, 10 ,0.01)
hist(z, probability = TRUE)
xfit <- seq(min(z), max(z), 1)
yfit <- dbinom(xfit, 10, 0.01)
lines(xfit, yfit, col="green")</pre>
```



```
print(var(x))
## [1] 4.654559
print(var(y))
## [1] 0.9796795
print(var(z))
```

[1] 0.09529429

(2) Skriv en loop/funktion

```
x <- numeric(0)
y <- numeric(0)
for(i in 1:1000){
  x <- c(x, mean(rpois(10,5)))</pre>
  y \leftarrow c(y, mean(rexp(10,1)))
hist(x)
```

Histogram of x

hist(y)

(3)

```
# 30 values
x30 <- numeric(0)
y30 <- numeric(0)
z30 <- numeric(0)
for(i in 1:1000){
    x30 <- c(x30, mean(rpois(30,5)))
    y30 <- c(y30, mean(rexp(30,1)))
    z30 <- c(z30, mean(rbinom(30,10,0.01)))
}
hist(x30)</pre>
```


hist(y30)

Histogram of y30

hist(z30)


```
# 100 values
x100 <- numeric(0)
y100 <- numeric(0)
z100 <- numeric(0)
for(i in 1:1000){
    x100 <- c(x100, mean(rpois(100,5)))
    y100 <- c(y100, mean(rexp(100,1)))
    z100 <- c(z100, mean(rbinom(100,10,0.01)))
}
hist(x100)</pre>
```


hist(y100)

Histogram of y100

hist(z100)


```
# 1000 value
x1000 <- numeric(0)
y1000 <- numeric(0)
z1000 <- numeric(0)
for(i in 1:1000){
    x1000 <- c(x1000, mean(rpois(1000,5)))
    y1000 <- c(y100, mean(rexp(1000,1)))
    z1000 <- c(z1000, mean(rbinom(1000,10,0.01)))
}
hist(x1000)</pre>
```


hist(y1000)

Histogram of y1000

hist(z1000)

Vi kan se att Z har lägst varians. Detta gör att kurvan blir smalare (pga mindre spridning), och därav så konvergerar Z snabbare mot en normalfördelning

$$Var(X) = 5$$

$$Var(Y) = 1/(1^2) = 1$$

$$Var(Z) = 10 * 0.01 = 0.1$$