Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Lista M 2

9 października 2014 r.

M 2.1. 1,5 punktu Zaproponować sposób uniknięcia utraty cyfr znaczących wyniku w związku z obliczaniem wartości wyrażeń

(a)
$$w(x) := -e^{-2x} + e^x$$
; (b) $r_i(p,q) := -p + (-1)^i \sqrt{p^2 - q}$ $(i = 1, 2)$.

M 2.2. | 1 punkt | Pole n-kąta foremnego $(n \ge 4)$ wpisanego w okrąg o promieniu 1 wynosi

$$P_n = \frac{1}{2}n\sin\frac{2\pi}{n}.$$

Wartość P_n jest przybliżeniem liczby π – tym lepszym, im większe jest n. Następujący algorytm pozwala oszczędnie obliczać kolejno P_4 , P_8 , P_{16} , . . .:

$$s_2 := 1, \quad c_2 := 0, \quad P_4 := 2;$$

 $s_k := \sqrt{\frac{1}{2}(1 - c_{k-1})}, \quad c_k := \sqrt{\frac{1}{2}(1 + c_{k-1})}, \quad P_{2^k} := 2^{k-1} s_k \qquad (k = 3, 4, \ldots).$

- a) Uzasadnić powyższy algorytm.
- b) Stosując wybraną arytmetykę t-cyfrową obliczyć P_{2^k} dla $k=2,3,\ldots,2t.$
- c) Czy wyniki są zgodne z oczekiwaniami? Jeśli nie, to jakie jest źródło kłopotów? Jak można ich uniknąć?

 \mathbf{M} 2.3. | 1 punkt | Zbadać uwarunkowanie zadania obliczania wartości funkcji f, podanej wzorem

- (a) $f(x) = 1/(x^2 + c)$, gdzie c jest stałą; (b) $f(x) = (1 \cos x)/x$ dla $x \neq 0$.

M 2.4. T punkt Zbadać uwarunkowanie zadania obliczania iloczynu skalarnego $S(\boldsymbol{a},\boldsymbol{b}) := \sum_{k=1}^n a_k b_k \neq 0$ 0 wektorów $\mathbf{a} = [a_1, a_2, \dots, a_n]^T$, $\mathbf{b} = [b_1, b_2, \dots, b_n]^T \in \mathbb{R}^n$.

M 2.5. 1 punkt Wartość sumy $\sum_{k=1}^n a_k$, gdzie $n:=2^m$ dla pewnego $m\in\mathbb{N}$, można wyznaczyć stosując strategię dziel i zwyciężaj. Np. dla m=3 obliczenia wykonywane są wówczas zgodnie z następującym diagramem:

gdzie $s_{ij} := a_i + a_{i+1} + \ldots + a_j$. Wykazać, że ten algorytm jest numerycznie poprawny i — dla dużych wartości n — dokładniejszy niż zwykły algorytm sumowania.

- **M 2.6.** 1 punkt Wartość wielomianu $L(x) := a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ w punkcie x można obliczyć według następującego $schematu\ Hornera$:
 - Oblicz wielkości pomocnicze w_0, w_1, \ldots, w_n za pomocą wzorów
 - a) $w_n := a_n$
 - b) $w_k := w_{k+1} \times x + a_k \quad (k = n 1, n 2, \dots, 0).$
 - Wynik: $L(x) = w_0$.

Zakładając, że a_0, a_1, \ldots, a_n oraz x są liczbami zmiennopozycyjnymi wykazać, że schemat Hornera jest algorytmem numerycznie poprawnym.

M 2.7. 1,5 punktu Uproszczoną metodę Newtona

$$x_{n+1} := x_n - \frac{f(x_n)}{f'(x_0)}$$
 $(n = 0, 1, ...)$

stosujemy do wyznaczenia pojedynczego zera funkcji f. Jaki jest rząd zbieżności tej metody?

- **M 2.8.** 1,5 punktu Uzasadnić, że odwrotność liczby c można obliczać bez wykonywania dzieleń, za pomocą wzoru $x_{n+1} := x_n(2 c x_n) \quad (n = 0, 1, \ldots)$. Uzasadnić (lokalną?) zbieżność tej metody. Dla jakich wartości x_0 metoda jest zbieżna?
- **M 2.9.** I punkt Niech będzie $a=2^d r$, gdzie d jest liczbą całkowitą, a r ułamkiem z przedziału $[\frac{1}{2},1)$. Zaproponować efektywną metodę obliczania \sqrt{a} , otrzymaną przez zastosowanie metody Newtona do wyznaczania zera pewnej funkcji f. Jak wyznaczyć przybliżenie początkowe x_0 ?