Simplifying Memory Management by Sharing Immutable Succinct Memory Images of Isomorphic Data Objects

Paul Tarau

Department of Computer Science and Engineering
University of North Texas

ISMM'11 Wild And Crazy Ideas, June 4, 2011, 3:30pm-4:30pm

What can 2012 succinctly encode? [1,0,1,1,1,0,1,1,1,1]

Figure: 2012: as a digraph and as a DAG

What else can 2012 succinctly encode?

a set: [2,3,4,6,7,8,9,10]

Figure: 2012: as a graph and as a binary relation

What else can 2012 succinctly encode?

a hypergraph: [[0,1],[2],[0,2],[0,1,2],[3],[0,3],[1,3],[0,1,3]]

Figure: 2012: as a sound track and as a shape

What else can 2012 succinctly encode?

DNA: [Adenine, Thymine, Cytosine, Thymine, Thymine, Cytosine]

Figure: 2012: as DAGs representing a rose tree and a binary tree

The Idea Itself

- from Gödel's theorems: unique natural numbers are associated to formulas and proofs
- from combinatorics: ranking/unranking bijections between trees, graphs etc. and natural numbers
- succinct representations a lot of things fit in a few bits as shown in the previous slides

 \Rightarrow

- share a unique succinct memory image independently of what it represents externally
- this assumes that the image is immutable and the clients know what it means to them - for instance by keeping track of types
- note that objects fitting in a word are (obviously) just copied
- larger objects point to their smaller parts in the monotonically growing store of immutable objects

Paul Tarau University of North Texas

Building such isomorphisms in a principled way

How to build these isomorphisms? 150 pages of literate Haskell at:

- http://logic.csci.unt.edu/tarau/research/2010/ISO.pdf
- http://logic.csci.unt.edu/tarau/research/2010/ISO.hs
- a few of them of them, this time in Java at:

http://logic.csci.unt.edu/tarau/research/bijectiveNSF/

Just in case - various tree types can also be used for *arbitrary size arithmetic computations*, see PPDP'10 paper - draft at:

http://logic.csci.unt.edu/tarau/research/2010/tarau_ppdp2010_draft.pdf

We thank NSF for support (research grant 1018172).

