

VPCs & Multiple EC2 Instances

Managing your own network in the cloud

- Understanding VPCs
- Private vs Public Instances
- Managing Network Requests

A Simple Setup

A More Realistic Setup

Public vs Private IP Addresses

Understanding IP (IPv4) Addresses

An IP address is a 32-bit number

172.31.0.0

4 x 8-bit

This is just a notation thing though (for human readability)

IPv4 Addresses Are A Rare Resource

Less than 4.3bn available IPv4 addresses

Not enough for all the devices (with internet access) we have around the world

Introducing Virtual Private Clouds (VPCs)

VPCs & Subnets

Public vs Private Subnets

What About Security Groups?

Security Group

Firewalls, directly attached to EC2 instances

Technically, requests still reach the instances

Security groups just allow which requests to allow or block

Private Subnets

Not directly attached to instances

Instead: Contain multiple EC2 instances

Technical isolation from the internet: Requests technically don't reach the instances

Public vs Private Subnets

Public Subnet

Associated with a route table that has an internet gateway route

Instances can communicate with each other **AND** the internet

Private Subnet

Associated with a route table that has **no internet gateway route**

Instances can communicate with each other only

To still allow for outgoing internet access, a **NAT gateway** can be used

Understanding CIDR IP Ranges

An IP address is a 32-bit number $\begin{array}{c}
172.31.0.0 / 16 \\
\hline
4 \times 8\text{-bit}
\end{array}$ This is just a notation thing though (for human readability)

Understanding CIDR IP Ranges

172.31.0.0/16

172.31.0.0/24

0.0.0.0/0

16 bits are fixed

Range

172.31.0.0

172.31.255.255

65,536 available addresses

24 bits are fixed

Range

172.31.0.0

172.31.0.255

256 available addresses

0 bits are fixed

Range

Unlimited

All possible IP addresses

A <u>higher</u> /X number implies <u>less</u> available IP addresses in the range

Automatically assigned IPs (by subnet) will change when instances are stopped / restarted

You can't control which public IP address gets assigned to an instance

Elastic IPs are managed & assigned by you

Elastic IPs don't change and can be re-assigned

Always Use Elastic IPs?

Automatically assigned IPs (by subnet) will change when instances are stopped / restarted

You can't control which public IP address gets assigned to an instance

Elastic IPs are managed & assigned by you

Elastic IPs don't change and can be re-assigned

Elastic IPs should be used with care

Scarce resource: You can only have a few EIPs per region & account

Unused EIPs incur charges

There often are better alternatives

e.g., use DNS for exposing applications / websites to the world

e.g., use application integration services (like SQS) for connecting workloads

Security Groups & Network ACLs

Security Group

Preferred

Firewall for a single EC2 instance

Checks incoming / outgoing requests and conditionally blocks or allows them

Stateful: Responses are always allowed (if the request passed)

Multiple instances can have different security groups

Security groups can be re-used for multiple instances

Network ACL (Access Control List)

Firewall for entire subnets

Checks incoming / outgoing requests and conditionally blocks or allows them

Stateless: Requests & responses are decoupled

One NACL can be associated with multiple subnets

Private / Public Subnets

Defines technical connectivity

No internet access without internet gateway (incoming + outgoing) or NAT gateway (outgoing)

Does not control any requests or responses

Multiple instances can be in the same subnet

VPC Peering & Transit Gateways

VPC Endpoints & AWS PrivateLink

Summary

VPCs(Virtual Private Cloud)

Your own network in the cloud (for grouping EC2 instances)

A VPC contains at least two subnets & one route table

Subnets can be "public" or "private"

Route table settings control subnet "visibility"

Network Management

Every VPC has an IP CIDR block assigned (range of IPs)

Subnets get parts of the VPC CIDR block assigned

EC2 instances receive autoassigned public and private IPs

Elastic IPs can be used for fixed IP addresses

VPC peering or transit gateways can connect VPCs

Request Management

Internet gateways allow for twoway internet access

NAT gateways enable outgoing internet requests

NACLs allow or deny requests on subnet-level

Endpoints (PrivateLink) connect AWS services to VPCs