Table S3: Simulation study results summary with exchangeable working correlation matrix

				Mean rela	Coverage (%)					Mean SE					MCSD							
k	$ ho_O$	$ ho_M$	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE
10	0.05	0	-2.4	3.1	0.0	0.0	0.7	89.9	83.4	91.4	91.6	95.2	0.268	0.217	0.276	0.276	0.294	0.290	0.297	0.298	0.297	0.294
		0.1	-2.3	2.9	-0.1	0.7	0.3	92.1	83.3	92.8	89.9	95.4	0.266	0.214	0.274	0.280	0.294	0.283	0.293	0.290	0.310	0.287
		0.3	-1.4	3.2	0.4	1.8 2.8	$0.5 \\ 0.3$	$90.7 \\ 91.8$	82.7	91.5	83.9	95.0	0.268	0.216	0.274 0.274	0.297	0.301	0.292	0.303	0.297	0.378	0.297
		0.5	-1.1	3.0	0.1				81.9	91.8	76.5	96.1	0.269	0.216		0.315	0.309	0.290	0.300	0.295	0.446	0.296
	0.1	$0 \\ 0.1$	-2.6 -2.5	$\frac{2.7}{2.5}$	-0.2	-0.2	$0.5 \\ 0.3$	$91.5 \\ 91.1$	$75.6 \\ 76.2$	$91.4 \\ 91.2$	$91.6 \\ 89.3$	94.2	0.313	$0.212 \\ 0.211$	0.320 0.320	$0.320 \\ 0.327$	0.333 0.334	$0.342 \\ 0.336$	$0.352 \\ 0.349$	$0.346 \\ 0.344$	$0.346 \\ 0.365$	$0.348 \\ 0.337$
		$0.1 \\ 0.3$	-2.5 -1.5	2.9	$-0.5 \\ 0.0$	$0.2 \\ 1.6$	$0.5 \\ 0.6$	91.1 91.1	76.2	91.2	85.4	94.7 93.8	0.313 0.316	0.211 0.212	0.320 0.321	0.327 0.350	0.334	0.330 0.342	0.349 0.355	0.344 0.348	0.303 0.443	0.337 0.347
		0.5	-1.1	2.9	-0.1	3.1	0.3	91.8	73.8	92.1	78.2	95.4	0.318	0.212	0.321	0.371	0.348	0.345	0.357	0.350	0.528	0.348
	0.2	0	-2.7	1.8	-0.4	-0.4	0.5	91.0	63.1	91.5	91.4	92.3	0.390	0.203	0.394	0.394	0.402	0.428	0.442	0.429	0.430	0.435
	٠.ــ	0.1	-2.6	2.0	-0.6	0.3	0.3	90.8	63.5	91.9	89.8	92.4	0.395	0.205	0.399	0.408	0.408	0.432	0.448	0.436	0.461	0.435
		0.3	-1.7	2.3	-0.3	2.5	0.4	91.6	63.3	91.6	85.1	93.0	0.399	0.205	0.402	0.438	0.414	0.437	0.454	0.440	0.558	0.439
		0.5	-1.5	2.4	-0.6	4.6	0.1	90.8	62.4	90.7	79.9	92.7	0.402	0.205	0.404	0.464	0.421	0.439	0.457	0.443	0.667	0.442
25	0.05	0	-2.7	2.9	-0.3	-0.3	0.6	93.2	85.4	93.3	93.2	96.2	0.174	0.141	0.180	0.180	0.185	0.178	0.183	0.186	0.186	0.180
		0.1	-2.7	2.5	-0.7	-0.8	0.2	94.0	86.0	94.3	93.8	96.3	0.174	0.140	0.179	0.189	0.187	0.176	0.181	0.181	0.194	0.180
		0.3	-2.0	2.6	-0.6	-0.1	0.0	93.5	85.1	93.8	91.1	94.9	0.177	0.141	0.180	0.217	0.190	0.182	0.187	0.186	0.242	0.185
		0.5	-1.5	2.6	-0.6	0.6	-0.0	92.7	84.1	93.8	87.5	95.8	0.178	0.141	0.180	0.245	0.193	0.185	0.189	0.187	0.295	0.189
	0.1	0	-2.8	2.4	-0.6	-0.6	0.4	93.3	75.6	93.6	93.7	95.2	0.205	0.137	0.210	0.210	0.213	0.212	0.219	0.219	0.219	0.214
		$0.1 \\ 0.3$	-2.6 -2.1	$\frac{2.3}{2.4}$	-0.7 -0.6	-0.8 -0.1	$0.2 \\ 0.1$	94.1 93.2	$78.8 \\ 77.5$	94.0 93.6	$94.4 \\ 90.9$	$95.4 \\ 95.0$	$0.206 \\ 0.208$	$0.138 \\ 0.139$	0.210 0.211	$0.220 \\ 0.254$	0.214 0.218	$0.210 \\ 0.216$	$0.216 \\ 0.221$	0.214 0.218	0.227 0.281	0.213 0.218
		0.5	-2.1 -1.5	$\frac{2.4}{2.4}$	-0.6	1.0	$0.1 \\ 0.1$	93.2 92.8	75.8	93.6	88.3	95.0	0.208 0.211	0.139 0.139	0.211 0.213	0.234 0.288	0.218 0.222	0.210 0.219	0.221 0.224	0.216 0.220	0.231 0.347	0.218 0.221
	0.2	0	-3.0	1.5	-0.9	-0.9	0.1	94.0	65.1	94.3	94.0	95.2	0.259	0.131	0.261	0.261	0.265	0.264	0.275	0.267	0.267	0.265
	0.2	0.1	-2.8	1.5	-1.1	-1.3	0.0	93.4	62.2	93.8	93.6	94.2	0.259	0.131	0.260	0.201 0.273	0.265	0.204 0.271	0.278	0.271	0.287	0.205 0.276
		0.3	-2.4	1.5	-1.2	-0.6	-0.2	92.5	65.1	93.0	91.5	93.8	0.262	0.133	0.263	0.315	0.268	0.275	0.281	0.275	0.350	0.278
		0.5	-1.8	1.6	-0.9	1.1	-0.1	92.4	63.6	93.1	89.2	94.0	0.264	0.133	0.265	0.361	0.271	0.280	0.284	0.279	0.433	0.285
50	0.05	0	-2.5	2.7	-0.4	-0.4	0.6	93.7	87.4	95.1	95.1	95.0	0.125	0.100	0.129	0.129	0.131	0.124	0.126	0.127	0.127	0.126
		0.1	-2.4	2.6	-0.5	-0.3	0.3	93.5	85.2	94.6	93.7	95.5	0.126	0.100	0.129	0.137	0.131	0.130	0.132	0.133	0.144	0.131
		0.3	-1.8	2.7	-0.3	0.2	0.4	93.0	83.0	94.3	91.9	95.9	0.127	0.100	0.129	0.164	0.133	0.133	0.136	0.136	0.180	0.135
		0.5	-1.1	2.8	-0.1	0.7	0.5	93.3	83.2	93.6	90.8	95.1	0.128	0.101	0.129	0.192	0.135	0.134	0.137	0.136	0.219	0.135
	0.1	0	-2.6	2.4	-0.7	-0.7	0.6	93.9	80.1	95.1	95.0	95.6	0.147	0.098	0.150	0.150	0.151	0.145	0.148	0.147	0.147	0.148
		0.1	-2.5	2.3	-0.7	-0.5	0.3	93.9	79.0	94.1	94.4	95.4	0.148	0.098	0.150	0.158	0.152	0.150	0.154	0.153	0.164	0.152
		$0.3 \\ 0.5$	-1.9 -1.3	$\frac{2.4}{2.5}$	-0.6 -0.4	$0.1 \\ 0.8$	$0.4 \\ 0.4$	$93.9 \\ 94.2$	$77.2 \\ 75.8$	$94.4 \\ 95.2$	$92.7 \\ 90.9$	$96.4 \\ 94.9$	$0.149 \\ 0.151$	$0.098 \\ 0.098$	0.151 0.152	$0.190 \\ 0.225$	0.153 0.156	$0.154 \\ 0.155$	$0.158 \\ 0.159$	$0.156 \\ 0.156$	0.204 0.251	$0.156 \\ 0.156$
	0.9																					
	0.2	$0 \\ 0.1$	-2.7 -2.5	$\frac{1.6}{1.7}$	-0.9 -0.8	-0.9 -0.8	$0.5 \\ 0.3$	$94.6 \\ 94.2$	$66.8 \\ 65.5$	94.8 94.9	94.7 94.0	$95.8 \\ 95.1$	$0.185 \\ 0.186$	0.094 0.093	$0.186 \\ 0.187$	$0.186 \\ 0.197$	$0.188 \\ 0.189$	$0.181 \\ 0.187$	$0.186 \\ 0.193$	$0.180 \\ 0.189$	$0.180 \\ 0.202$	$0.185 \\ 0.191$
		0.1	-2.3 -2.1	1.8	-0.9	0.1	0.3	94.6	63.8	94.6	93.0	94.8	0.188	0.093	0.188	0.137 0.235	0.109 0.191	0.191	0.195 0.197	0.103 0.192	0.252	0.191 0.194
		0.5	-1.4	1.9	-0.6	1.0	0.4	94.1	63.0	94.2	91.7	95.7	0.190	0.094		0.281	0.194	0.194	0.200		0.318	0.196

Note: k = # clusters per arm; ρ_O is the ICC of the (conditional) outcome model (see Eqn. 6 in the manuscript text); ρ_M is the ICC of the probability of missing (POM) model (see Eqn. 7B in the manuscript text); MCSD = Monte Carlo standard deviation. Note that all GEE models converged except for 5 W-GEE and approximately 100 for CW-GEE across all simulations, with almost all issues in the small sample case (i.e. k=10).