Introdução aos Modelos Biomatemáticos - aulas Teórico-Práticas

Mestrado em BBC, 2008/2009

1 Capítulo 1

Nos exercícios 1) e 2) suponha que o crescimento é exponencial.

- 1. Entre 1700 e 1800 a população humana teve um crescimento muito rápido (exponencial) à escala do globo. Deu-se um crescimento de 600 milhões para 910 milhões de pessoas durante este período. Qual o valor de r? [0.0042 ano^{-1}]
- 2. O United Nations Demographic Yearbook estima que a população humana cresceu em todo o mundo de 4490 milhões para 5290 milhões de indivíduos na década entre 1980 e 1990.
 - a) Qual o valor de r? Compare com o exercício anterior. $[0.016 \, ano^{-1}]$
 - b) Assumindo que o crescimento exponencial continua com o mesmo r, e que há cerca de $1.49 \times 1014\,m^2$ de terra seca no planeta (incluindo Antártica, Groenlândia central, Saara, etc.), quanto tempo falta para que o número de pessoas exceda o número de metros quadrados disponível? [624, 74 anos]
- 3. Em quanto tempo duplica o número de indivíduos de uma população que cresce segundo a lei de Malthus com taxa intrínseca de crescimento r? $[\ln 2/r]$
- 4. Equação de Malthus com taxa intrínseca de crescimento dependente das estações

Considere a equação

$$(*)$$
 $N' = r(t)N, \quad t \in \mathbb{R}$

onde $r(t) = 2 + \sin t$ é periódica de período $p = 2\pi$.

i) Repetindo as passagens feitas nas teóricas para a equação $N'=rN,\,\,$ mostre que a solução do PVI

$$N' = (2 + \sin t)N, \quad N(0) = N_0 > 0$$

é dada por

$$N(t) = N_0 e^{2t} e^{1 - \cos 2t}.$$

Observe que a função $Q(t)=e^{1-\cos 2t}$ é periódica de período 2π e positiva. Esboce o gráfico de N(t) para entender a seguinte afirmação " N(t) appresenta um crescimento exponencial com taxa de crescimento 2 modulado por uma função periódica Q(t)."

ii) A taxa intrínseca de crescimento média \bar{r} é definida como

$$\bar{r} = \frac{1}{p} \int_0^p r(s) \, ds.,$$

onde p é o período de r(t). Verifique que se $r(t)=2+\sin t$, então $\bar{r}=2$. Conclua que

$$N(t) = N_0 e^{\bar{r}t} Q(t).$$

(o resultado é verdadeiro para uma taxa r(t) periódica qualquer, ver ex. 24).

5. (Equação de von Bertalanffy) Seja L(t) o comprimento de um peixe de idade t e suponha que $L(0) = L_0 > 0$. Tem-se

$$\frac{\mathrm{d}L}{\mathrm{d}t} = k(L_{\infty} - L),\tag{1}$$

onde $L_{\infty} > L_0$ e k > 0.

- a) Resolva a equação (1). (Sugestão: Defina $U(t)=L_{\infty}-L(t)$ e mostre que U'(t)=-kU(t).)
- b) Faria sentido não impor as restrições $L_0 > 0$, $L_\infty > L_0$ e k > 0?
- c) Justifique a afirmação: 'a constante L_{∞} designa-se **comprimento assimptótico** do peixe'.

Equação logística

- 6. a) Diga quais as considerações e quais os pressupostos que conduzem à construção da equação logística a partir da equação de Malthus $N'=(b-d)N,\ b,d>0.$
 - b) Uma certa população, cujo crescimento é bem descrito pelo modelo logístico, tem uma taxa instantânea de crescimento per capita de 30 por cento por ano quando não é influenciada pela competição interespecífica. Experimentalmente observa-se que quando o número de indivíduos aumenta 1000 a taxa instantânea de natalidade per capita diminui 10 por 1000 por ano, e a taxa instantânea de mortalidade per capita aumenta 50 por 1000 por ano. Prove que a equação logística que modela esta espécie é dada por

$$N' = 0.3N \left(1 - \frac{N}{5000} \right).$$

7. (Solução explícita da equação logística) Considere a equação logística

$$N' = rN\left(1 - \frac{N}{K}\right).$$

onde N(t) é o número de indivíduos de uma dada população no instante t, sendo o tempo medido em anos.

- a) Qual o significado e as unidades de medida de r e K?
- b) Mostre que $N_0 = 0$ e $N_0 = K$ são equilíbrios da equação.
- c) (*) Utilize o método de separação das variáveis para determinar as soluções não constantes da equação anterior. Mais precisamente:

i) Prove que
$$H(N) = P\left(\frac{K}{rN(K-N)}\right) = \frac{1}{r}\log\frac{|N|}{|K-N|}$$

(Sugestão: Verifique que

$$\frac{K}{rN(K-N)} = \frac{1}{rN} + \frac{1}{r(K-N)}$$

e recorde que a primitiva de uma soma é a soma das primitivas e e que se a,b>0, então $\log a - \log b = \log \frac{a}{b}.)$

ii) Sendo $N(0)=N_0$ diferente de 0 e de K, explicite N na relação

$$H(N) - H(N_0) = t - t_0$$

e verifique que

(*)
$$N(t) = \frac{KN_0}{N_0 + (K - N_0)e^{-r(t - t_0)}}$$
.

- d) Determine $\lim_{t\to\infty} N(t)$ para as soluções não constantes.
- 8. A pesca do halibut (peixe achatado parecido com uma solha) do oceano Pacífico é modelada pela equação logística com capacidade de sustentação $K=80.5\times 10^6 kg$ e taxa intrínseca de crescimento $r=0.714\,ano^{-1}$.
 - i) Escreva a equação logística correspondente.
 - ii) Se a biomassa inicial é um quarto da capacidade de sustentação, encontre a biomassa após um ano e o tempo necessário para a biomassa crescer até metade da capacidade de sustentação. (**Sugestão:** utilize a fórmula (*) para escrever explicitamente a solução do PVI relativo à equação encontrada em i) e correspondente à biomassa inicial) [32.610⁶ Kg, 1.54 anos]
 - iii) Considere a mesma população da alínea anterior, mas suponha agora que as observações são feitas utilizando unidades de medida diferentes: o tempo é medido em meses e a biomassa em toneladas. Se denotarmos por $\tilde{N}(\tau)$ a biomassa de halibut medida em toneladas, no instante τ medido em meses e por N(t) a biomassa de halibut medida em kg, no instante t medido em anos, quais das seguintes igualdades são verdadeiras?
 - a) $\tilde{N}(\tau) = 10^{-3} N(12\tau);$
 - b) $\tilde{N}(\tau) = 10^3 N(\tau/12)$
 - c) $\tilde{N}(\tau) = 10^{-3} N(\tau/12)$
 - d) $N(t) = 10^3 \tilde{N}(t/12)$.
 - iv) Qual a equação logística satisfeita pela função $\tilde{N}(\tau)$? (Sugestão: Derive em ordem a τ a igualdade $\tilde{N}(\tau) = 10^{-3}N(\tau/12)$, tenha em conta a regra da cadeia e que N(t) satisfaz a equação logística que encontrou em i).)

$$[\frac{d\tilde{N}}{d\tau}=\frac{r}{12}\tilde{N}(1-\frac{\tilde{N}}{K/1000}),$$
 onde r e K são como em $i).$]

9. Em geral, mudar a unidade de medida com a qual se mede uma população e a unidade de tempo corresponde a um rescalonamento das variáveis envolvidas (uma para a população e uma para o tempo) da seguinte forma:

$$\tilde{N} = \alpha N, \quad t = \beta \tau,$$

onde os números α , $\beta>0$ correspondem à mudança de escala. Suponha que N(t) é solução da equação logística

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right).$$

Sendo $\tilde{N}(\tau)=\alpha N(\beta\tau)$ prove que $\tilde{N}(\tau)$ satisfaz a seguinte equação logística:

$$\frac{d\tilde{N}}{d\tau} = r\beta \tilde{N} \left(1 - \frac{\tilde{N}}{\alpha K} \right).$$

Uma escolha oportuna de α e β permite eliminar os parâmetros da equação. Qual é essa escolha?

10. (*) Mostre que para uma população que satisfaz o modelo logístico a velocidade máxima de crescimento é dada por rK/4 e que essa velocidade é atingida quando o tamanho da população é K/2.

Estudo qualitativo de x' = f(x)

11. Analise graficamente as seguintes equações $x' = f(x), x \in \mathbb{R}$. Em cada caso desenhe o gráfico de f(x), determinando analiticamente os zeros, os máximos e os mínimos de f, classifique a estabilidade dos equilíbrios e desenhe o correspondente retrato de fases.

a)
$$x' = x$$
 b) $x' = x^3$ c) $x' = x(2-x)$

d)
$$x' = x(2-x)^2$$
 e) $x' = -9x + 3x^3$

No caso da equação da alínea e), o que acontece à solução com condição inicial x(0) = 0.1 quando $t \to +\infty$?

12. Considere os seguintes retratos de fase:

- a) Para cada retrato, esboce o gráfico de uma função f(x) tal que a equação diferencial x' = f(x) seja compatível com esse retrato.
- b) Para cada retrato, escreva uma equação diferencial compatível com esse retrato.
- c) O retrato de fase ii) pode corresponder à evolução de uma população que cresce segundo a lei logística?
- 13. Classifique a estabilidade dos equilíbrios no exercício 9) usando, quando possível, o teorema de linearização. Nesses casos especifique como se comporta uma pequena perturbação do equilíbrio.
- 14. (O efeito de Allee) Em casos de espécies que se reproduzem sexualmente pode haver um decréscimo no crescimento da população quando o número de indivíduos é baixo. Isto deve-se à dificuldade em encontrar um parceiro adequado neste caso. Uma extensão da equação logística que incorpora este efeito é

$$\frac{\mathrm{d}N}{\mathrm{d}t} = rN(N-A)\left(1 - \frac{N}{K}\right)$$

5

com A, r, K constantes positivas. Vamos supor 0 < A < K.

- a) Encontre os equilíbrios e determine a sua estabilidade. Desenhe o retrato de fases correspondente e esboce o gráfico de N(t) considerando condições iniciais N_0 que satisfazem $0 < N_0 < A, \ A < N_0 < K$ e $N_0 > K$.
- b) Interprete os resultados obtidos e conclua que também neste caso K é uma capacidade de sustentação.
- 15. Suponha que a biomassa x de uma população de uma dada espécie é determinada pela equação $\frac{\mathrm{d}x}{\mathrm{d}t} = f(x)$ onde $f(x) = \frac{2x^2}{1+x^3} x, \ x \ge 0.$
 - a) Determine os pontos de equilíbrio para $x \geq 0$. (Sugestão: para determinar os zeros do segundo membro faça o mínimo denominador comum. Dois zeros do numerador da fracção obtida são x=0 e x=1. Para encontrar o terceiro zero utilize a regra de Ruffini) $[x_1=0,\,x_2=\frac{\sqrt{5}-1}{2},x_3=1]$
 - b) Determine a estabilidade de cada um dos equilíbrios das seguintes formas:
 - i) utilizando o teorema de linearização; (pode usar a calculadora para calcular $f'(x_2)$.)
 - ii) estudando o sinal do numerador da fracção obtida em a). Observe que para x>0, esse sinal é o mesmo do polinómio $p(x)=-x^3+2x-1$. Pode estudar esse sinal, por exemplo, desenhando num mesmo referencial os gráficos de g(x)=2x-1 e $h(x)=x^3$ e tendo em conta que

$$p(x) = g(x) - h(x) \ge 0 \iff g(x) \ge h(x).$$

(Em alternativa, pode desenhar directamente o gráfico de p(x), ou, ainda, utilizar a decomposição $p(x) = -(x - x_1)(x - x_2)(x - x_3)$ e estudar o sinal do produto no segundo membro).

c) Como evolui a densidade da população quando $t \to +\infty$ se x(0) = 0.001, x(0) = 0.8 ou x(0) = 10?

Equações dependentes de um parâmetro. Exemplos de bifurcações

16. Uma população de peixes que evoluiria de acordo com a lei logística está a ser sujeita à pesca. O processo é modelado pela seguinte equação:

$$x' = rx(1 - \frac{x}{K}) - Ex$$

onde E diz-se o esforço de pesca (fishing effort).

a) Mostre que o equiíbrio positivo na presença de pesca é

$$x = x(E) = K\left(1 - \frac{E}{r}\right), \quad 0 < E < r.$$

- b) Esboce o diagrama de bifurcação quando $0 \le E \le r$.
- c) A quantidade Y(E) = Ex(E) diz-se o rendimento (yield) da pesca. O que é que representa, mais precisamente, Y(E)?

Determine o valor máximo de Y(E) quando 0 < E < r (a este valor, chama-se esforço máximo sustentável).

- 17. a) A evolução do numero de elementos de uma população é descrita pela equação diferencial $x' = x(e^{3-x} 1)$. Encontre os equilíbrios e determine a sua estabilidade. [$x_0 = 0$, instável; $x_1 = 3$, estável]
 - b) Em cada unidade de tempo, uma fracção p ($0) da população considerada em a) é removida de tal forma que o numero de elementos da população passa agora a ser descrito pela equação <math>x' = x(e^{3-x}-1)-px$. Para que valores de p existe um equilíbrio positivo estável? [para todo o $p \in]0,1[$. O equilíbrio é $x(p) = 3 \log(1+p)$.]
- 18. Considere a equação diferencial

$$x' = 2x^2 + rx + 2$$
.

Encontre os pontos (x_0, r_0) onde pode ocorrer uma bifurcação sela-nó.

- 19. Para cada $r \in \mathbb{R}$, estude a estabilidade dos equilíbrios e determine o retrato de fase da equação $x' = r + x^2$. Desenhe o diagrama de bifurcação dessa equação.
- 20. Mostre que o diagrama de bifurcação da equação

$$x' = r - x^3 + x$$

é o seguinte:

A afirmação seguinte é verdadeira? "No caso da equação ii), suponha que r < 0 e que o sistema se encontra no equilíbrio menor. Então, ao aumentar de r, há um valor \hat{r} desse parâmetro ultrapassando o qual o sistema salta abruptamete para um equilíbrio maior. Para além disso, se agora r diminuir, o sistema não volta ao equilíbrio menor logo que r ultrepassar \hat{r} ."

Alguns exercícios mais teóricos

Nos exercícios seguintes f é uma função com derivada contínua em \mathbb{R} .

21. (*) Mostre que se x(t) é uma solução não constante da equação x' = f(x) que admite um ponto de inflexão ¹ para $t = \overline{t}$, então $\overline{x} = x(\overline{t})$ satisfaz $f'(\overline{x}) = 0$.

 $^{^{1}}$ Recordamos que um ponto de inflexão de uma função é um ponto onde a segunda derivada da função é zero, tendo sinais opostos à esquerda e à direita desse ponto

a) Mostre que se x(t) é solução da equação

$$x' = f(x) \tag{2}$$

então para todo o $c \in \mathbb{R}$ também a função $y_c(t) = x(t+c)$ é solução de (2). Interprete geometricamente o resultado.

b) Se x(t) é solução do problema de valores iniciais

$$\begin{cases} x' = f(x) \\ x(0) = x_0 \end{cases}$$

qual é a solução do problema de valores iniciais

$$\begin{cases} x' = f(x) \\ x(t_0) = x_0? \end{cases}$$

(Sugestão: Utilize o resultado anterior e a unicidade das soluções de (2).)

- 23. (*) Qual das duas definições seguintes parece-lhe mais apropriada para definir o conceito de estabilidade de um equilíbrio x_0 da equação x' = f(x)?
 - 1) para cada $\epsilon > 0$ existe um $0 < \delta < \epsilon$ tal que para cada $\bar{x} \in]x_0 \delta, x_0 + \delta[$ a solução x(t) de x' = f(x) tal que $x(0) = \bar{x}$ satisfaz $x(t) \in]x_0 \epsilon, x_0 + \epsilon[$ para todo o $t \geq 0$;
 - 2) existe um $\epsilon > 0$ e existe um $0 < \delta < \epsilon$ tal que para cada $\bar{x} \in]x_0 \delta, x_0 + \delta[$ a solução x(t) de x' = f(x) tal que $x(0) = \bar{x}$ satisfaz $x(t) \in]x_0 \epsilon, x_0 + \epsilon[$ para todo o t > 0.
- 24. (*) Seja x(t) uma solução de (2) do exercício 22 e suponhamos que

$$\lim_{t \to +\infty} x(t) = \bar{x} \in \mathbb{R}.$$

Mostre que $f(\bar{x}) = 0$.

(Sugestão: Observe que $\exists \lim_{t\to +\infty} x'(t)$ e que $\lim_{t\to +\infty} x'(t) = f(\bar{x})$. Conclua utilizando a seguinte relação, consequência do Teorema de Lagrange², $x(n+1)-x(n) = x'(\xi_n), \ \xi_n \in [n, n+1]$.)

²Se $f:[a,b]\to\mathbb{R}$ é uma função contínua em [a,b] e diferenciável em]a,b[existe $c\in]a,b[$ tal que f(b)-f(a)=f'(c)(b-a)

Equações de variáveis separáveis

Recordamos que uma equação da forma

(*)
$$\frac{dx}{dt} = g(t)f(x)$$

diz-se equação de variáveis separáveis, sendo t a variável independente e x a variável dependente. Se f for continuamente diferenciável e g for contínua, então o PVI associado admite solução única. Se $x_0 \in \mathbb{R}$ é tal que $f(x_0) = 0$, então a função $x(t) = x_0$ é a única solução de (*) tal que $x(t_0) = x_0$. Se $f(x_0) \neq 0$ a solução do correspondente PVI é dada por

$$H(x) = H(x_0) + G(t) - G(t_0)$$

onde
$$H(x) = P\left(\frac{1}{f(x)}\right) \in G(t) = P(g(t)).$$

A expressão H(x) = G(t) + c, $c \in \mathbb{R}$ diz-se solução geral de (*).

25. Demonstrou-se que a variação do volume de alguns tumores ³ satisfaz a seguinte lei

$$V'(t) = ke^{-\alpha t}V(t), \tag{*}$$

onde V(t) designa o volume do tumor no instante t e k e α são constantes positivas.

- a) Seja V_0 o volume do tumor no instante zero. Determine a solução V(t) de (*).
- b) Prove que $\lim_{t\to +\infty}V(t)=V_0\mathrm{e}^{\frac{k}{\alpha}}$, isto é o limite do volume depende do seu valor inicial.
- 26. Equação de Malthus com taxa intrínseca de crescimento dependente das estações.

Considere a equação

$$(*) \quad N' = r(t)N,$$

onde $t \to r(t), t \in \mathbb{R}$, é uma função contínua e periódica em t de período p > 0, isto é, $r(t+p) = r(t), \forall t \in \mathbb{R}$.

a) Prove que a solução de (*) que satisfaz $N(t_0)=N_0>0$ é dada por:

$$N(t) = N_0 e^{\int_{t_0}^t r(s) \, ds}$$

Nas alíneas seguintes vamos ver que o comportamento das soluções positivas de (*) depende da taxa intrínseca de crescimento média \bar{r} definida por

$$\bar{r} = \frac{1}{p} \int_0^p r(s) \, ds.$$

³Laird, A.K. (1964). Dynamics of tumor growth. Brit. Journal of Cancer, 18, 490-502

Vamos utilizar alguns factos:

- $i) \quad e^{a+b} = e^a e^b;$
- ii) se f(x) é uma função T periódica, então $\int_a^{a+T} f(x) dx = \int_0^T f(x) dx$, $\forall a \in \mathbb{R}$:
- iii) $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$, $\forall a, b, c \in \mathbb{R}$.
- b) Prove que se $\bar{r} = 0$ todas as soluções de (*) são periódicas de período p, isto é $N(t+p) = N(t), \quad \forall t \in \mathbb{R}$. (vale também a implicação contrária)

(Sugestão: Complete a seguinte cadeia de igualdades:

$$N(t+p) = N_0 e^{\int_{t_0}^{t+p} r(s) \, ds} \underbrace{=}_{por\ iii} N_0 e^{\int_{t_0}^{t} r(s) \, ds + \int_{t}^{t+p} r(s) \, ds} = \dots = N(t)$$

c) Se $\bar{r} \neq 0$, então as soluções são da forma

$$N(t) = N_0 e^{\bar{r}(t-t_0)} Q(t)$$

onde Q(t) é uma função p periódica e positiva.

(Sugestão:

$$N(t) = N_0 e^{\int_{t_0}^t (r(s) - \bar{r} + \bar{r}) \, ds} = N_0 e^{\int_{t_0}^t \bar{r} \, ds + \int_{t_0}^t (r(s) - \bar{r}) \, ds} = N_0 e^{\int_{t_0}^t \bar{r} \, ds} e^{\int_{t_0}^t (r(s) - \bar{r}) \, ds}.$$

Observe que a função $t \to r(t) - \bar{r}$ é p periódica e tem média nula. Conclua que a função positiva $Q(t) = e^{\int_{t_0}^t (r(s) - \bar{r}) \, ds}$ é p periódica.)

d) O que pode concluir sobre o comportamento das soluções se $\bar{r}>0$? E se $\bar{r}<0$?

Nas próximas equações de variáveis separáveis a variável independente é x e a variável dependente é y.

- 27. Determine a solução geral da equação $\frac{dy}{dx} = \frac{-2y}{x}$
- 28. Determine a solução do problema de valores iniciais

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y(-d+h\mu x)}{x(r-\mu y)} \\ y(x_0) = y_0, \quad x_0, y_0 > 0 \end{cases}$$

10

onde $d, h, r, \mu > 0$.

(Sugestão: observe que
$$\frac{y(-d+h\mu x)}{x(r-\mu y)} = \left(\frac{-d}{x} + h\mu\right)\left(\frac{y}{r-\mu y}\right)$$
.)