

CD4099BMS

CMOS 8-Bit Addressable Latch

FN3333 Rev 0.00 December 1992

Features

- High Voltage Type (20V Rating)
- · Serial Data Input
- Active Parallel Output
- · Storage Register Capability
- Master Clear
- · Can Function as Demultiplexer
- 100% Tested for Quiescent Current at 20V
- 5V, 10V and 15V Parametric Ratings
- Standardized Symmetrical Output Characteristics
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range)
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- · Multi-Line Decoders
- A/D Converters

Description

CD4099BMS 8-bit addressable latch is a serial input, parallel output storage register that can perform a variety of functions.

Data are inputted to a particular bit in the latch when that bit is addressed (by means of inputs A0, A1, A2) and when WRITE DISABLE is at a low level. When WRITE DISABLE is high, data entry is inhibited; however, all 8 outputs can be continuously read independent of WRITE DISABLE and address inputs.

A master RESET input is available, which resets all bits to a logic "0" level when RESET and WRITE DISABLE are at a high level. When RESET is at a high level, and WRITE DISABLE is at a low level, the latch acts as a 1 of 8 demultiplexer; the bit that is addressed has an active output which follows the data input, while all unaddressed bits are held to a logic "0" level.

The CD4099BMS is supplied in these 16-lead outline packages:

Braze Seal DIP H4X
Frit Seal DIP H1F
Ceramic Flatpack H6W

Pinout

Functional Diagram

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V Operating Temperature Range.....-55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Lead Temperature (During Soldering) +265°C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

Thermal Resistance	θ_{ia}	$\theta_{\sf ic}$
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD	o) at +125°C	
For TA = -55°C to +100°C (Package Ty	pe D, F, K)	500mW
For TA = +100°C to +125°C (Package 1	Type D, F, K)	Derate
Linear	ity at 12mW/	C to 200mW
Device Dissipation per Output Transistor .		100mW
For TA = Full Package Temperature Rai	nge (All Pack	age Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ
				2	+125°C	-	1000	μΑ
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μА
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	0.5V	1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	1.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.	6V	1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	4	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VE	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	٧

implemented.

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max.

^{2.} Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	400	ns
Data to Output	TPLH1		10, 11	+125°C, -55°C	-	540	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	400	ns
Write Disable to Output	TPLH2		10, 11	+125°C, -55°C	-	540	ns
Propagation Delay	TPHL3	VDD = 5V, VIN = VDD or GND	9	+25°C	-	350	ns
Reset to Output			10, 11 +125°C, -55		-	473	ns
Propagation Delay	TPHL4	VDD = 5V, VIN = VDD or GND	9	+25°C	-	450	ns
Address to Output	TPLH4		10, 11	+125°C, -55°C	-	608	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	-	270	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μА
				+125°C		150	μА
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μА
				+125°C	1	300	μА
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	1	10	μА
				+125°C	1	600	μА
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	+7	-	V
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	150	ns
Data to Output	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	100	ns
Propagation Delay	TPHL2	VDD = 10V	1, 2, 3	+25°C	-	160	ns
Write Disable to Output	TPLH2	VDD = 15V	1, 2, 3	+25°C	-	120	ns
Propagation Delay	TPHL3	VDD = 10V	1, 2, 3	+25°C	-	160	ns
Reset to Output		VDD = 15V	1, 2, 3	+25°C	-	130	ns
Propagation Delay	TPHL4	VDD = 10V	1, 2, 3	+25°C	-	200	ns
Address to Output	TPLH4	VDD = 15V	1, 2, 3	+25°C	-	150	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Minimum Hold time Data	TH	VDD = 5V	1, 2, 3	+25°C	-	150	MHz
to Write Disable		VDD = 10V	1, 2, 3	+25°C	-	75	MHz
		VDD = 15V	1, 2, 3	+25°C	-	50	MHz
Minimum Data Setup	TS	VDD = 5V	1, 2, 3	+25°C	-	100	ns
Time Data to Write Disable		VDD = 10V	1, 2, 3	+25°C	-	50	ns
Bloable		VDD = 15V	1, 2, 3	+25°C	-	35	ns
Minimum Pulse Width	TW	VDD = 5V	1, 2, 3	+25°C	-	200	ns
Data		VDD = 10V	1, 2, 3	+25°C	-	100	ns
		VDD = 15V	1, 2, 3	+25°C	-	80	ns
Minimum Pulse Width	TW	VDD = 5V	1, 2, 3	+25°C	-	400	ns
Address		VDD = 10V	1, 2, 3	+25°C	-	200	ns
		VDD = 15V	1, 2, 3	+25°C	-	125	ns
Minimum Pulse Width	TW	VDD = 5V	1, 2, 3	+25°C	-	150	ns
Reset		VDD = 10V	1, 2, 3	+25°C	-	75	ns
		VDD = 15V	1, 2, 3	+25°C	-	50	ns
Input Capacitance	CIN	Any inputs	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μА
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	LIMITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND VDD = 3V, VIN = VDD or GND	1	+25°C	VOH > VDD/2	VOL < VDD/2	V
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFO	RMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (F	Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas	
Interim Test	3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B Subgroup B-5		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
Subgroup B-6		Sample 5005	1, 7, 9	
Group D	•	Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	PRE-IRRAD POST-IRRAD		POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE Q	DIIDN IN /	AND IDDADIATION T	EST CONNECTIONS
IADLE 0.	DUKN-IN A	AND IRRADIATION I	EST CONNECTIONS

					OSCIL	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 Note 1	1, 9-15	2-8	16			
Static Burn-In 2 Note 1	1, 9-15	8	2-7, 16			
Dynamic Burn- In Note 1	-	5-8	16	1, 9-15	2, 4	3
Irradiation Note 2	1, 9-15	8	2-7, 16			

NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

Logic Diagram

FIGURE 1. LOGIC DIAGRAM OF CD4099BMS AND DETAIL OF 1 OF 8 LATCHES

MODE SELECTION			
WD	R	ADDRESSED LATCH	UNADDRESSED LATCH
0	0	Follows Data	Holds Previous State
0	1	Follows Data	Reset to "0"
		(Active High 8-Channel Demultiplexer)	
1	0	Holds Previous State	
1	1	Reset to "0"	Reset to "0"
WD = Write Disable R = Reset			

FIGURE 2. DEFINITION OF WRITE DISABLE ON TIME

FIGURE 3. MASTER TIMING DIAGRAM

FIGURE 4. 1 OF 16 DECODER/DEMULTIPLEXER

FIGURE 5. MULTIPLE SELECTION DECODING - 4 x 4 CROSSPOINT SWITCH

FIGURE 6. A/D CONVERTER

Typical Performance Characteristics

AMIDIENT TEMPERATURE (I_A) = +25 C

GATE-TO-SOURCE VOLTAGE (VGS) = 15V

10.0

7.5

5.0

5V

DRAIN-TO-SOURCE VOLTAGE (VDS) (V)

AMBIENT TEMPERATURE (T_A) = +25°C

FIGURE 7. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 8. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

Typical Performance Characteristics (Continued)

DRAIN-TO-SOURCE VOLTAGE (VDS) (V)

-15
-10
-5

AMBIENT TEMPERATURE (T_A) = +25°C

GATE-TO-SOURCE VOLTAGE (VGS) = -5V

-10V

-10V

-10V

-15
-10
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10 -5
-10

FIGURE 9. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 11. TYPICAL PROPAGATION DELAY TIME (DATA TO Qn) vs LOAD CAPACITANCE

FIGURE 12. TYPICAL TRANSITION TIME vs LOAD CAPACITANCE

FIGURE 13. TYPICAL DYNAMIC POWER DISSIPATION vs ADDRESS CYCLE TIME

Chip Dimensions and Pad Layout

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

© Copyright Intersil Americas LLC 1999. All Rights Reserved.

All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

