THE CHINESE UNIVERSITY OF HONG KONG (SHENZHEN)

School of Science and Engineering

Tutorial - 11

Fundamental of Artificial Intelligence

CSC3180

1. Answer the following questions:

(a) Why Artificial Neural Network (ANN)? (L12: P4-8)

Challenge: Modern computer

- Traditional
- Powerful
- Sequential
- Logic-based digital
- Less successful for other types of problems like common human activity.

(b) What's ANN? What's the assumption of ANN (L12: P10-14)? And list some applications of ANN. (L12: P16)

Definition:

- An information-processing system that has certain performance characteristics in common biological neural networks
- Developed as generalizations of mathematical models of human neural biology, based on the assumptions:
 - Information processing occurs at neurons
 - Signals are passed between neurons
 - Each connection link has an associated weight
 - An activation function is applied to each neurons

Assumption:

- The processing element receives many signals which may be modified by a weight at the receiving synapse
- The processing element sums the weighted inputs
- The neuron transmits a single output to many other neurons (fanout)
- Information processing is local
- A synapse's strength may be modified
- Neurotransmitters for synapses may be excitatory or inhibitory
- The processing element receives many signals which may be modified by a weight at the receiving synapse
- The processing element sums the weighted inputs
- The neuron transmits a single output to many other neurons (fanout)
- Information processing is local
- A synapse's strength may be modified
- Neurotransmitters for synapses may be excitatory or inhibitory
- ANN can be characterized by
 - its pattern of connections (architectures)
 - its method of determining the weights (called training or learning)
 - its activation function
- ANN consists of a large numbers of simple processing elements called neurons, units, cells or nodes
- ANN is motivated by a desire to try both to understand the brain and to emulate some of its strengths

Application:

- Signal Processing
 - Suppress noise on a telephone line
- Control
 - Learn how to steer the truck for the trailer to reach a dock
- Pattern Recognition
 - Automatic recognition of handwritten characters
 - Handle large variation in sizes, positions & styles of writing
- Medicine
 - Store a large no. of medical records, each includes information on symptoms diagnosis, & treatment for a particular case
- Speech Production and Recognition
 - Read new one after training English words
 - Train speaker-independent recognition
- Business
 - Mortgage assessment work (Use past experience to train ANN to provide more consistent & reliable evaluation of mortgage applications & determine whether the applicant should be given a loan)

(c) Please understand some ANN designs (L12: P18)

- Setting the Weights
 - Supervised training
 - Unsupervised training
 - Fixed weights
- Common Activation Functions
 - Identity function
 - Binary step function
 - Binary sigmoid (0,1)
 - Bipolar sigmoid (-1,1)

(d) What's the Hebb net? How to optimize the Hebb net? What's the application? (L12: P30-33)

Hebb net: a single-layer (feed-forward) ANN trained by the Hebb rule is defined as Hebb net. For Hebb net, data is represented in bipolar form. The weight is defined as: $w_i(new) = w_i(old) + x_i y$.

Application: Fit AND function, OR function and classify two-dimensional input patterns.

(e) What is perceptron learning? Which difference between Hebb net and perceptron? (L12: P35-37)

- More powerful learning rule than Hebb rule
- Its iterative learning procedure can be proved to converge to the correct weights
- The original perceptron had three layers of neurons sensory units, associator units, and a response unit
- Use binary step function with an arbitrary, but fixed, threshold as its activation function

$$f(y_{in}) = \begin{cases} 1 & if \ y_{in} > \theta \\ 0 & if -\theta \le y_{in} \le \theta \\ -1 & if \ y_{in} < -\theta \end{cases}$$

• If an error occurred for a particular training input pattern, the weight would be changed according to the formula

$$w_i(new) = w_i(old) + \alpha(t-f(y in)) x_i$$

where t is the target and α is the gain or step size.

(f) What's BP? Please describe the BP algorithm. (L12: P43-48)

Back-Propagation:

- Play a major role in the reemergence of ANNs as a tool to solve a wide range of problems;
- BP also known as generalized delta rule.
- A gradient descent method to minimize the total squared error of the output computed by the net
- Step 0. Initialize weights. (Set to small random values).
- Step I. While stopping condition is false, do Steps 2-9.
- Step 2. For each training pair, do Steps 3-8.

Feedforward:

- **Step 3.** Each input unit $(X_i, i = 1, ..., n)$ receives input signal x_i and broadcasts this signal to all units in the layer above (the hidden units).
- **Step 4.** Each hidden unit $(Z_j, j = 1, ..., p)$ sums its weighted input signals, $z_i n_j = b_j + \sum x_i v_{ij}$, applies its activation function
 - to compute its output signal, $z_j = f(z_i n_j)$, and sends this signal to all units in the layer above (output units). Here, taking Sigmoid function as example,

$$z_j = f(z_i n_j) = \frac{1}{1 + e^{-z_i n_j}}$$

Step 5. Each output unit $(Y_k, k = 1, ..., m)$ sums its weighted input signals, $y_{\underline{i}} n_k = b_k + \sum z_j w_{jk}$, and applies its activation function to compute its output signal, $y_k = f(y_{\underline{i}} n_k)$.

Backpropagation of error:

Step 6. Each output unit $(Y_k, k = 1, ..., m)$ receives a target pattern corresponding to the input training pattern, computes its error information term, $\delta_k = (t_k - y_k)f'(y_in_k)$. Here, takes Sigmoid activation function, for example, $f(y_in_k) = \frac{1}{1+e^{-y_in_k}}$. Its derivate is $f'(y_in_k) = f(y_in_k) \left(1 - f(y_in_k)\right)$. Calculate its weight correction term, $\Delta w_{jk} = \alpha \delta_k z_j$, calculate its bias correction, $\Delta b_k = \alpha \delta_k$, and send δ_k to units in the layer below. Here, α is the learning rate, which is the step size for updating the parameters.

Tips: The derivate of $f(x) = \frac{1}{1+e^{-x}}$. $f'(x) = \frac{-(1+e^{-x})'}{(1+e^{-x})^2} = \frac{e^{-x}}{(1+e^{-x})^2} = \frac{1}{1+e^{-x}} \cdot \frac{e^{-x}}{1+e^{-x}} = f(x) \cdot \frac{1+e^{-x}-1}{1+e^{-x}}$ $= f(x) \cdot \left(\frac{1+e^{-x}}{1+e^{-x}} - \frac{1}{1+e^{-x}}\right) = f(x)(1-f(x))$ **Step 7.** Each hidden unit $(Z_j, j = 1, ..., p)$ sums its delta inputs (from units in the layer above), $\delta_- i n_j = \sum \delta_k w_{jk}$, multiplies by the derivative of its activation function to calculate it error information term, $\delta_j = \delta_- i n_j f'(z_- i n_j) = \delta_{i n_j} f(z_- i n_j)(1 - f(z_- i n_j))$, calculates its weight correction term, $\Delta v_{ij} = \alpha \delta_j x_i$, and calculates its bias correction term, $\Delta b_j = \alpha \delta_j$.

Update weights and biases:

Step 8. Each output unit $(Y_k, k = 1, ..., m)$ updates its bias and weights (j = 1, ..., p):

$$w_{jk}(new) = w_{jk}(old) + \Delta w_{jk}$$

 $b_k(new) = b_k(old) + \Delta b_k$

Each hidden unit $(Z_{j, j} = 1, ..., p)$ updates its bias and weights (i = 1, ..., n)

$$v_{ij}(new) = v_{ij}(old) + \Delta v_{ij}$$

 $b_i(new) = b_i(old) + \Delta b_i$

Step 9. Test stopping condition.

2. Set that we have a dataset with 4 samples in two classes just as in the Table 1 and a Hebb net for it just as in Figure 1. Initialize the weight w_1 , w_2 and b with 0. Please update the weight with Hebb rule and calculate the weight after training.

$\overline{x_1}$	x_2	y
0	1	1
1	0	1
-1	0	-1
0	-1	-1

Table 1: Samples for Hebb net.

Figure 1: Hebb net

- (1) Input data point (0,1,1): $w_1=0+0*1=0$; $w_2=0+1*1=1$; b=0+1=1.
- (2) Input data point (1,0,1): $w_1=0+1*1=1$; $w_2=1+0*1=1$; b=1+1=2.
- (3) Input data point (-1,0,-1): $w_1=1+-1*-1=2$; $w_2=1+0*-1=1$; b=2-1=1.
- (4) Input data point (0,-1,-1): $w_1=2+0*-1=2$; $w_2=1+-1*-1=2$; b=1-1=0.

After training, $w_1=2$, $w_2=2$, b=0. The threshold function will set the output large than 0 to be 1 and the output smaller than 0 to be -1. Finally, the Hebb net can classify the given dataset.

3. Table 2 is a dataset with 4 samples in two classes. And a very simple network with only one single neuron is designed to fit y in Figure 2. Initialize the weight w_I , w_2 and b with 0. The loss function is defined as $L = \frac{1}{4} \sum_{i=1}^{4} \|y - f(x_1(i), x_2(i))\|^2$. $x_1(i)$ and $x_2(i)$ represent x_I and x_2 in row i of Table 2. Set the learning rate to be 0.1. Please update the weight for 1 iteration with the BP algorithm.

x_1	x_2	y
0	1	1
1	0	1
-1	0	0
0	-1	0

Table 2: Samples for BP.

Figure 2: Network with one single neuron.

Forward: Calculate $f(x_1, x_2)$ and the loss:

(x_1,x_2,y)	$f(x_1,x_2)=w_1x_1+w_2x_2+b$	$ y-f(x_1,x_2) ^2$
(0,1,1)	0*0+0*1=0	1
(1,0,1)	0*1+0*0=0	1
(-1,0,0)	0*-1+0*0=0	0
(0,-1,0)	0*0+0*-1=0	0

$$L=1/4*(1+1+0+0)=0.5$$

Backward: Calculate the derivate:

$$\frac{\partial L}{\partial f} = \frac{1}{2}(f(x_1, x_2) - y)$$

$$\frac{\partial f}{\partial w_1} = x_1$$

$$\frac{\partial f}{\partial w_2} = x_2$$

$$\frac{\partial f}{\partial b} = 1$$

Gradient of w_1, w_2, b :

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial f} \frac{\partial f}{\partial w_1} = \frac{1}{2} (f(x_1, x_2) - y) x_1$$

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial f} \frac{\partial f}{\partial w_2} = \frac{1}{2} (f(x_1, x_2) - y) x_2$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial f} \frac{\partial f}{\partial b} = \frac{1}{2} (f(x_1, x_2) - y)$$

(x_1,x_2,y)	Gradient of wi	Gradient of w2	Gradient of b
(0,1,1)	0	-0.5	-0.5
(1,0,1)	-0.5	0	-0.5
(-1,0,0)	0	0	0
(0,-1,0)	0	0	0

Gradient of w1 = 0-0.5+0+0=-0.5;

Gradient of w2 = -0.5+0+0+0=-0.5;

Gradient of b = -0.5 - 0.5 + 0 + 0 = -1;

Update the weight:

$$w1 = 0-0.1*-0.5=0.05;$$

- 4. A neural network with two inputs, x1 and x2, and one output, y, is given in Lecture 12, which has three layers for XOR applications.
 - 1) Please understand the three stages: Feedforward, Backpropagation of Error, and Update Weights & Biases.

2) There are ten characters, A, B, ..., J (each 7x9 binary pixels). Please design a neural network which has both 63 input and 63 output layers to implement data compression. Note that the tolerance could be 0.2.

