

Universidad de Guadalajara Centro Universitario de los Lagos

Manual: reconocimiento de imágenes con back propagation

Laboratorio de metrología e instrumentación

Autor:

Oropeza Gómez Gregorio Alejandro

Carrera: IMEC Código: 214614176

Ascensor:

Dr. Miguel Mora Gonzalez

Índice

6.	Resultados	4	
	5.3. La dirección de la imagen a ser clasificada		
	5.2. Dirección del modelo	4	
	5.1. Carpeta del dataset	4	
5.	Realizar predicciones	4	
4.	Entrenar un modelo	3	
3.	. Configuración del dataset		
2.	Partes del programa	3	
1.	Resumen	3	

<u> -</u> .	_	_
T1:	_] _	figuras
Indice	α	nonras
HILLICC	$\mathbf{u}\mathbf{c}$	iis ai as
		0

1. Resumen

En este manual se expone como manejar el algoritmo para el reconocimiento de imágenes usando el algoritmo de back propagación.

2. Partes del programa

- Configuración del dataset
- Entrenar un modelo
- Realizar predicciones

3. Configuración del dataset

Antes de comenzar a usar el programa en python debemos configurar el árbol de carpetas para el dataset. El árbol debe de contener una carpeta principal y dentro de ella sub-carpetas, cada una correspondiente a cada clase a utilizar para el entrenamiento.

Figura 1: Árbol de carpetas para el dataset

4. Entrenar un modelo

Una vez esta listo el dataset los siguiente es crear un modelo usando dicho dataset, para eso hay que abrir el programa nombrado FinalBackP.py y ejecutarlo. El programa nos solicitara introducir la dirección del dataset, tomando como ejemplo la imagen 1 introduciremos la dirección de la carpeta flower_photos quedando de una forma similar a la siguiente en windows:

C:/la/dirección/de/la/carpeta/flower_photos o en linux de la siguiente:

 $/la/direcci\'on/de/la/carpeta/flower_photos.$

Seguido de eso se mostraran las clases que se encuentran en la carpeta introducida y se pedirá que ingrese de forma manual el numero de clases que se mostraron y el numero de épocas a usar, la cantidad de épocas dependerá del dataset pero se recomienda entre 70-100 épocas.

5. Realizar predicciones

Para realizar predicciones con el modelo recientemente entrenado lo se usa PredictBP.py y una vez ejecutado solicita las siguientes direcciones:

- La dirección de la carpeta donde se encuentra el dataset
- La dirección del modelo que se usara para realizar las predicciones
- La imagen que se desea clasificar.

5.1. Carpeta del dataset

Al igual que en el programa donde se entrena el modelo se introduce la carpeta donde está el dataset tomando como ejemplo la figura 1 quedaría como:

C:/la/dirección/de/la/carpeta/flower_photos o en linux:

/la/dirección/de/la/carpeta/flower_photos

5.2. Dirección del modelo

Lo siguiente que solicita es la dirección del modelo que se usara, la direccion debera de ser de la siguiente forma: C:/la/dirección/del/modelo/mi_modelo.h5 o en linux:

/la/dirección/del/modelo/mi modelo.h5

5.3. La dirección de la imagen a ser clasificada

La dirección queda de la misma manera que el modelo: C:/la/dirección/de/la/imagen/imagen.jpg o en linux:

/la/dirección/de/la/imagen/imagen.jpg

6. Resultados

En cuanto a el programa para entrenar el modelo, los resultados sera un modelo con extensión .h5 que se guardara en la misma carpeta que donde se encuentre el programa así como la precisión y el error que se mostraran en una gráfica y en consola. Para el programa de predicción devolverá en consola a que clase pertenece la imagen y con que porcentaje de precisión.