8.1 Esercizio

Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli:

$$2x^4 - x$$
 in $[0, 1]$; e^{-x^2} in $[-2, 2]$
 $\cos |x| - |\cos x|$ in $[-2\pi, 2\pi]$; $\cos x + |\sin x|$ in $[-\pi/2, \pi/2]$

8.2 Esercizio

Calcolare gli eventuali estremo superiore, estremo inferiore, massimo e minimo delle seguenti funzioni, nell'intervallo indicato:

$$2 - e^{-x}$$
 in $[0, +\infty)$; $\log(1 + x^2)$ in \mathbb{R} ; $\cos(x^2)$ in \mathbb{R} ; $\frac{1}{1 + x^2 + x^6}$ in $[0, +\infty)$

8.3 Esercizio

Determinare per quali valori dei parametri a, b, c la funzione

$$f(x) = \begin{cases} x^2 + bx + c, & x < 0 \\ a & x = 0 \\ \frac{2}{\pi} \arctan \frac{1}{x}, & x > 0, \end{cases}$$

risulta essere derivabile in tutto l'asse reale. In corrispondenza di questi valori, determinare il massimo e il minimo di f nell'intervallo $[-1, \sqrt{3}]$.

8.4 Esercizio

Studiare la convessità delle seguenti funzioni, nell'insieme nel quale sono definite, determinando gli eventuali punti di flesso

$$x^{3}(x-1)^{2}$$
; $(|x|-1)^{2}$; $x^{2}(4-2\log x)$.

8.5 Esercizio

i) Determinare il numero di soluzioni dell'equazione

$$arctg x = x^3 + x$$

(Suggerimento: studiare la funzione $f(x) = \arctan x - x^3 - x$).

ii) Dimostrare che

$$\log x \le x - 1 \qquad \forall x \in (0, +\infty).$$

8.6 Esercizio

Determinare l'insieme di definizione, insieme di continuità, limiti, asintoti, insieme di derivabilità, intervalli di crescenza e decrescenza, intervalli di concavità e convessità della funzione

$$f(x) = \frac{x|x|}{\log|x|}$$

e disegnarne il grafico.

8.7 Esercizio

Determinare i polinomi di Taylor $T_m(x)$ relativi alla funzione $F(x) = \sqrt{1+x}$ nel punto $x_0=0$, di ordini m=1,2,3.

8.8 Esercizio

Sia $f(x) = \sin x + \cos x$. Calcolare $f(\frac{1}{2})$ con un errore minore di 10^{-3} .

8.9 Esercizio

Assegnata la funzione

$$f(x) = \sin x - x \cos x - \frac{x^3}{3}$$

- i) si determini il suo ordine di infinitesimo in $x_0 = 0$;
- ii) si determini il suo polinomio di Taylor $T_5(x)$ relativo a $x_0 = 0$ e ordine m = 5;
- iii) si esamini se in $x_0 = 0$ la funzione abbia un minimo o un massimo relativo.

8.10 Esercizio

 $Sia f(x) = \log(1 + x^2).$

- i) Determinare la retta tangente al grafico nel punto P = (1, f(1)).
- ii) Determinare i polinomi di Taylor $T_1(x)$ e $T_2(x)$ relativi a $x_0 = 0$.
- iii) Determinare il massimo del modulo $|f(x) T_1(x)|, x \in [0, 2].$