1 Problem

Consider the following system:

$$\dot{x}_1(t) = -x_1(t) + x_2^2(t),\tag{1a}$$

$$\dot{x}_2(t) = -x_1(t)x_2(t) + u(t), \tag{1b}$$

with $x_1, x_2 \in \mathbb{R}, u \in \mathbb{R}$ and $t \geq 0$.

- (a) [1p] Suppose that the linear feedback control law $u(t) = -\gamma x_2(t)$ with $\gamma > 0$ is designed for the system. Let $x(t) = [x_1(t), x_2(t)]^{\top} \in \mathbb{R}^2$ and consider the Lyapunov function candidate $V(x) = \frac{1}{2}||x||^2$. Prove that under the aforementioned control law, the system converges to origin asymptotically.
- (b) [1p] In order to implement the controller on a digital platform, the state of the system is sampled aperiodically at a sequence of time instants $\{t_k\}, k \in \mathbb{N}$, and the control signal is now given by:

$$u(t) = -\gamma x_2(t_k), \quad t \in [t_k, t_{k+1}).$$
 (2)

Write the closed loop equations of the system in terms of the states $x_1(t)$, $x_2(t)$ and the state error $e_2(t)$, where $e_2(t) = x_2(t_k) - x_2(t)$, $t \in [t_k, t_{k+1})$.

(c) [2p] Let $e(t) = [0, e_2(t)]^{\top} \in \mathbb{R}^2$. By using the same Lyapunov function candidate as in (a) find a relation between the norms ||e(t)|| of the error and ||x(t)|| of the state such that the event-based control law (2) renders the origin asymptotically stable. Determine also the event-triggered condition under which the control updates are calculated. Useful property: $\alpha_1 z_1 + \alpha_2 z_2 \ge \min\{\alpha_1, \alpha_2\}(z_1 + z_2)$ for all $\alpha_1, \alpha_2, z_1, z_2 > 0$.

In the following tasks, you are going to show that the closed-loop system with the event-triggered condition that you have computed does not exhibit Zeno behavior. For the rest of this exercise, consider $t \in [t_k, t_{k+1})$.

- (d) [2p] Observing that $\dot{e}_2(t) = -\dot{x}_2(t)$, write an upper bound for $\dot{e}_2(t)$ that depends only on ||x(t)|| and on constant factors. Using the property that ||x(t)|| is monotonically decreasing, rewrite the upper bound so that it depends only on $||x(t_k)||$ and on constant factors. Then, observing that $e_2(t) = \int_{t_k}^t \dot{e}_2(\tau) d\tau$, write an upper bound for $e_2(t)$ that depends only on $||x(t_k)||$, $(t t_k)$ and on constant factors.
- (e) [2p] Observing that $\frac{\mathrm{d}\|x(t)\|}{\mathrm{d}t} = \frac{x(t)^{\top}\dot{x}(t)}{\|x(t)\|}$, and using the property that $\|x(t)\|$ is monotonically decreasing, write a lower bound for $\frac{\mathrm{d}\|x(t)\|}{\mathrm{d}t}$ that depends only on $\|x(t_k)\|$. Then, observing that $\|x(t)\| = \|x(t_k)\| + \int_{t_k}^t \frac{\mathrm{d}\|x(\tau)\|}{\mathrm{d}\tau} \,\mathrm{d}\tau$, write a lower bound for $\|x(t)\|$ that depends only on $\|x(t_k)\|$, $(t-t_k)$ and on constant factors.
- (f) [2p] Using the results in (d) and (e), find a lower bound for $(t t_k)$ to violate the condition that you have computed in (d). Your lower bound should only depend on initial conditions (i.e., x(0)) and constant parameters. Conclude that the closed-loop system does not exhibit Zeno behavior.

(a) Under the given control law, the closed loop system is written as:

$$\dot{x}_1(t) = -x_1(t) + x_2^2(t), \tag{3a}$$

$$\dot{x}_2(t) = -x_1(t)x_2(t) - \gamma \ x_2(t). \tag{3b}$$

By computing the time derivative of V along the trajectories of the system (3) we get:

$$\dot{V}(x) = x_1 \dot{x}_1 + x_2 \dot{x}_2
= x_1(-x_1 + x_2^2) + x_2(-x_1 x_2 - \gamma x_2)
= -x_1^2 + x_1^2 x_2 - x_1^2 x_2 - \gamma x_2^2
= -x_1^2 - \gamma x_2^2.$$
(4)

Thus, we have that $\dot{V} < 0$ which implies that the system is asymptotically stable.

(b) By substituting $u(t) = -\gamma x_2(t_k) = -\gamma \left[e_2(t) + x_2(t)\right]$ in (1) we closed loop system:

$$\dot{x}_1(t) = -x_1(t) + x_2^2(t), \tag{5a}$$

$$\dot{x}_2(t) = -x_1(t)x_2(t) - \gamma e_2(t) - \gamma x_2(t). \tag{5b}$$

(c) By computing the time derivative of V along the trajectories of the system (5) is written as:

$$\dot{V}(x) = x_{1}\dot{x}_{1} + x_{2}\dot{x}_{2}
= x_{1}(-x_{1} + x_{2}^{2}) + x_{2}(-x_{1}x_{2} - \gamma e_{2} - \gamma x_{2})
= -x_{1}^{2} + x_{1}^{2}x_{2} - x_{1}^{2}x_{2} - x_{2}\gamma e_{2} - \gamma x_{2}^{2}
= -x_{1}^{2} - \gamma x_{2}^{2} - \gamma x_{2}e_{2}
\leq -\min\{1, \gamma\} ||x||^{2} + \gamma |x_{2}||e_{2}|
\leq -\min\{1, \gamma\} ||x||^{2} + \gamma ||x||||e||
= \gamma ||x|| \left[-\frac{\min\{1, \gamma\}}{\gamma} ||x|| + ||e|| \right].$$
(6)

Thus, the required condition that renders $\dot{V} < 0$ is:

$$||e|| \le \sigma ||x||, \sigma \in \left(0, \frac{\min\{1,\gamma\}}{\gamma}\right).$$

Therefore, under the aperiodic control law (2) the closed loop system is asymptotically stable. The event-triggered condition is given by:

$$t_{k+1} = \inf_{t} \{t > t_k : ||e(t)|| = \sigma ||x(t)|| \}.$$

(d) We can compute

$$\dot{e}_{2}(t) = -\dot{x}_{2}(t) = -x_{1}(t)x_{2}(t) + u(t)
= -x_{1}(t)x_{2}(t) - \gamma x_{2}(t_{k})
\leq ||x(t)|| ||x(t)|| + \gamma ||x(t_{k})||
\leq ||x(t_{k})||^{2} + \gamma ||x(t_{k})||.$$
(7)

Simply integrate (7) to have

$$|e_2(t)| \le ||x(t_k)|| [||x(t_k)|| + \gamma] (t - t_k).$$

(e) We can compute

$$\frac{\mathrm{d}\|x(t)\|}{\mathrm{d}t} = \frac{1}{\|x(t)\|} \left[-x_1^2(t) + x_2(t)u(t) \right]
= \frac{1}{\|x(t)\|} \left[-x_1^2(t) - \gamma x_2(t)x_2(t_k) \right]
\ge \frac{1}{\|x(t)\|} \left[-\|x(t)\|^2 - \gamma \|x(t)\| \|x(t_k)\| \right]
\ge -\|x(t)\| - \gamma \|x(t_k)\|
\ge -(1+\gamma) \|x(t_k)\|.$$
(8)

Simply integrate (8) to have

$$||x(t)|| \ge ||x(t_k)|| - (1+\gamma)||x(t_k)||(t-t_k)$$

$$= ||x(t_k)|| [1 - (1+\gamma)(t-t_k)].$$
(9)

(f) From (d) and (e), we can see that to violate the condition $||e(t)|| < \sigma ||x(t)||$ it is necessary that

$$||x(t_k)|| [||x(t_k)|| + \gamma] (t - t_k) \ge \sigma ||x(t_k)|| [1 - (1 + \gamma)(t - t_k)].$$

Solving for $(t - t_k)$, we have

$$(t - t_k) \ge \frac{\sigma}{\|x(t_k)\| + \gamma + \gamma\sigma + \sigma}$$
.

Using the monotonicity of ||x(t)||, we have

$$(t - t_k) \ge \frac{1}{\|x(t_0)\| + \gamma + \gamma \sigma + \sigma} > 0.$$

Since this lower bound is positive, there cannot be accumulation points of the update times t_k . Hence, the closed-loop system does not exhibit Zeno behavior.