Student Name

University Name

July 14, 2025

- Project Overview & Background
- 2 Methodology
- Key Results
- 4 Key Findings
- 6 Challenges & Solutions
- 6 Current Progress & Next Steps
- Conclusion



# **Project Overview & Background**

## Why Taboo Games for LLM Evaluation?

- Constrained Communication: Tests forbidden word avoidance
- Creative Language Use: Requires linguistic flexibility
- Multi-dimensional Assessment: Evaluates understanding and creativity

#### **Current Evaluation Limitations**

- Traditional benchmarks focus on classification
- Limited creative generation assessment
- Lack of constraint-following evaluation

#### Research Innovation

First comprehensive Taboo game evaluation framework for LLMs



### Primary Research Questions

- How do different LLMs perform in constrained communication?
- What factors influence Taboo game success?
- Oo "thinking" models outperform traditional models?
- What linguistic features affect performance?

## **Project Objectives**

- Develop comprehensive Taboo evaluation framework
- Compare 4 state-of-the-art LLMs
- Analyze linguistic features impact
- Identify optimal constrained generation strategies



# Methodology

#### **Experimental Setup**

- Models: 4 LLMs
  - Claude Sonnet 4
  - GPT-4o
  - Gemini 2.5 Pro
  - DeepSeek Chat V3
- Dataset: 300 words
- **Games**: 4,800 total
- Structure: Max 4 turns



## Specialized Terms (200 words)

- Hard Science-Pure: Chemistry (50)
- **Hard Science-Applied**: Computer Science (50)
- Soft Science-Applied: Finance (50)
- **Soft Science-Pure**: Philosophy (50)
- General: Common vocabulary (100)

#### Data Sources

- IUPAC Gold Book (Chemistry)
- Ada CS Glossary (Computer Science)
- Investopedia Dictionary (Finance)
- Stanford Encyclopedia (Philosophy)
- Manual cleaning and validation



#### Performance Metrics

- Success Rate: Games won
- Efficiency: Average turns
- Turn 1 Success: First-attempt rate
- Rule Compliance: Violation rate

#### Statistical Methods

Chi-square, correlation, ANOVA tests

### **Analysis Dimensions**

- **Model Comparison**: Performance ranking
- Linguistic Factors: Frequency, POS, concreteness
- **Domain Effects**: Cross-domain variation
- Error Analysis: Failure patterns

# **Key Results**

## Performance Ranking

| Model            | Success Rate | Avg Tur | ns      |
|------------------|--------------|---------|---------|
| Gemini 2.5 Pro   | 96.7%        | 1.6     | ١.,     |
| Claude Sonnet 4  | 95.9%        | 1.4     | 0.8     |
| DeepSeek Chat V3 | 89.4%        | 2.0     | 90 O.A. |
| GPT-4o           | 80.5%        | 2.0     | 0.2     |



## Major Finding

Top two models significantly outperform bottom two, suggesting distinct capability tiers

#### Model Classification

- Thinking Models:
  - Claude Sonnet 4
  - Gemini 2.5 Pro
- Normal Models:
  - GPT-40
  - DeepSeek Chat V3



#### Performance Comparison

| Туре            | Success Rate |       | Success Rate Violation |  |
|-----------------|--------------|-------|------------------------|--|
| Thinking Models | 96.3%        | 2.9%  |                        |  |
| Normal Models   | 84.9%        | 4.5%  |                        |  |
| Difference      | +11.4%       | -1.6% |                        |  |

#### Critical Discovery

Thinking models show systematic advantages in efficiency and rule compliance

# Frequency Categories

| Frequency   | Success Rate | Games |
|-------------|--------------|-------|
| Very Common | 97.7%        | 256   |
| Common      | 94.9%        | 1,008 |
| Uncommon    | 96.0%        | 1,312 |
| Rare        | 93.1%        | 1,152 |
| Very Rare   | 75.7%        | 1,072 |



Word frequency is a stronger predictor of performance than domain knowledge



## Apparent Domain Effects

| Domain           | Success Rate |
|------------------|--------------|
| Finance          | 98.2%        |
| Computer Science | 97.1%        |
| Philosophy       | 92.6%        |
| Chemistry        | 89.8%        |
| General          | 83.0%        |

### **Initial Interpretation**

- Specialized domains outperform general
- Technical knowledge appears beneficial
- 15.2% performance gap

#### Critical Reanalysis

When controlling for word frequency:

- 65.9% of domain effects disappear
- Frequency explains most variation
- True domain effects are minimal

# Key Insight

Word frequency is the primary performance factor

## Part-of-Speech Effects

| POS       | Success Rate | Difficulty |
|-----------|--------------|------------|
| Noun      | 92.0%        | Easiest    |
| Verb      | 87.5%        | Medium     |
| Adjective | 81.1%        | Hardest    |



#### Concreteness Effects

• Concrete words: 92.4% success

• Abstract words: 84.7% success

• Difference: 7.7 percentage points (p ¡

0.01)





Polysony Effect Multiple services print correlately

#### Failure Reasons

| Failure Type       | Count | %     |
|--------------------|-------|-------|
| Max Turns Exceeded | 234   | 52.0% |
| Taboo Violation    | 177   | 39.3% |
| Format Error       | 39    | 8.7%  |

#### Error Insights

- Most failures due to difficulty, not rule violations
- Constraint adherence varies significantly
- Format errors minimal with clear instructions

## Model-Specific Patterns

- GPT-4o: Highest violation rate (5.1%)
- Gemini: Lowest violation rate (1.8%)
- Claude: Best efficiency (1.4 turns)

# Improvement Opportunities

- Better constraint instruction methods
- Adaptive turn limits
- Enhanced rule compliance training



# **Key Findings**

### 1. Thinking Model Superiority

Thinking models systematically outperform normal models by 11.4% in success rate

#### 2. Frequency Dominance

Word frequency explains 65.9% of apparent domain effects (r = 0.225, p ; 0.001)

#### 3. Performance Hierarchy

Clear model ranking: Gemini ≈ Claude ¿¿ DeepSeek ¿ GPT-4o

### Secondary Findings

- Nouns easier than adjectives
- Concrete words outperform abstract words
- Rule compliance varies significantly across models

#### For Al Research

- Internal reasoning mechanisms matter for constrained tasks
- Training data frequency distribution critically affects performance
- Domain specialization claims may be overestimated
- Constraint-following capabilities require specific attention

#### For Cognitive Science

- LLMs exhibit human-like frequency effects
- Creative language generation follows predictable patterns
- Constrained communication reveals linguistic flexibility limits

#### For Practical Applications

- Model selection depends on constraint requirements
- Vocabulary frequency guides evaluation design LLM Performance in Taboo Games: Midterm Progress Student Name (University Name)

# **Challenges & Solutions**

#### API and Infrastructure Issues

- Challenge: Rate limits and cost management
- Solution: Batch processing, async requests, retry mechanisms

### Data Quality Control

- Challenge: Detecting taboo word violations
- **Solution**: Automated checking + manual validation

#### **Evaluation Consistency**

- Challenge: Subjective success determination
- Solution: Clear criteria, multiple evaluators, statistical validation

# Scale Management

• Challenge: 4,800 games across 4 models

## Initial Approach Limitations

- Simple binary success/failure metrics
- Limited linguistic feature analysis
- Basic statistical comparisons

#### **Enhanced Framework**

- Multi-dimensional performance metrics
- Comprehensive linguistic feature integration
- Advanced statistical analysis (ANOVA, correlation, effect sizes)
- Systematic error pattern analysis

#### Quality Assurance

- Reproducible experimental protocols
- Statistical significance testing
  Student Name (University Name)

# **Current Progress & Next Steps**

## Completed Work (✓)

- ✓ Literature review and methodology design
- ✓ Dataset construction and validation (300 words)
- ✓ Experimental framework implementation
- ✓ Data collection (4,800 games across 4 models)
- ✓ Core statistical analysis and visualization
- ✓ Major findings identification

#### **Current Status**

- 90% complete: Main analysis and results
- In progress: Deep dive analysis and validation
- Starting: Thesis writing and documentation

24 / 30

## Short-term (Next 4-6 weeks)

- Finalize supplementary analysis
- Validate key findings through additional testing
- Begin thesis writing (methodology and results chapters)
- Prepare code and data for reproducibility

## Medium-term (Following 6-8 weeks)

- Complete thesis writing
- Conduct final review and validation
- Prepare conference paper submission
- Develop open-source evaluation framework

#### Risk Mitigation

#### Academic Outcomes

- MSc Thesis: Comprehensive 80-100 page document
- Conference Paper: Target venue submission
- Evaluation Framework: Reusable methodology for future research

#### Practical Contributions

- **Open Dataset**: 300-word Taboo evaluation set
- Code Repository: Complete experimental pipeline
- Performance Benchmarks: Baseline results for 4 LLMs
- Best Practices: Guidelines for constraint-based evaluation

#### Impact Potential

- Advance LLM evaluation methodologies
- Inform model selection for constraint-sensitive apps

# **Conclusion**

#### What We've Accomplished

- Methodological Innovation: First systematic Taboo game evaluation for LLMs
- Empirical Discoveries: Thinking model advantages, frequency dominance
- Comprehensive Analysis:
   Multi-dimensional performance assessment
- Practical Insights: Model selection guidance and optimization strategies



Performance Metrics Table

|                  | Success Rate | Efficiency | Fule Compilance | First Yes Succe |
|------------------|--------------|------------|-----------------|-----------------|
| Claude Sernet 4  | 0.999        | 4.703      | 0.99            | 1.683           |
| DeepSeek Chat V3 | 0.894        | 0.596      | 0.962           | 8.577           |
| GPT-4e           | 0.065        | 0.645      | 0.948           | 8.659           |
| Cerrini 2.5 Pre  | 0.567        | 0.453      | 0.982           | 0.637           |

## Research Impact

This work establishes foundation for more reliable and controllable AI systems through

## Immediate Applications

- Model selection guidance for constraint-sensitive tasks
- Training data optimization recommendations
- Evaluation methodology improvements
- Benchmark establishment for future research

#### Future Research Directions

- Expand to multilingual evaluation
- Test additional model architectures
- Investigate fine-tuning for constraint adherence
- Explore other constrained generation tasks

## Project Confidence

Strong empirical foundation with 4,800 data points

# Thank You!

# Questions & Discussion

Contact: student.email@university.edu

Project Repository: github.com/username/taboo-llm-eval

Progress Updates: [Project Website/Blog]