КВАРЦЕВЫЕ РЕЗОНАТОРЫ

Кварцевые резонаторы - устройства, использующие пьезоэлектрический эффект для возбуждения электрических колебаний заданной частоты. При совпадении частоты приложенного напряжения с одной из собственных механических частот кварцевого вибратора в приборе возникает явление резонанса, приводящее к резкому увеличению проводимости. Обладая среди резонаторов самой высокой добротностью $Q \sim 10^5 - 10^7$ (добротность колебательного LC-контура не превышает 10^2 , пьезокерамики - 10^3), кварцевые резонаторы имеют также высокую температурную стабильность и низкую долговременную нестабильность частоты ($10^6 - 10^8$).

Кварцевые резонаторы применяются в генераторах опорных частот, в управляемых по частоте генераторах, селективных устройствах: фильтрах, частотных дискриминаторах и т.д.

СИСТЕМА ОБОЗНАЧЕНИЙ

Тип резонатора номинальтип корпуса — ная частота Устойчивость в интервале температурДиапазон температур

Точность настройки

Обозна- чение	Точность настройки, ×10 ⁻⁶	Обозна- чение	Точность настройки, ×10 ⁻⁶	Обозна- чение	Точность настройки, ×10-6
1	+/-0,5	8	+/-30	15	+/-7,5
2	+/-0,1	9	+/-50	16	+/-25
3	+/-3,0	10	+/-75	17	+/-150
4	+/-5,0	11	+/-100	18	+/-200
5	+/-1,5	12	+/-1,5	19	+/-500
6	+/-15	13	+/-2,0		
7	+/-20	14	+/-2,5		

Обозн.	диап. темпер., °C	Обозн.	диап. темпер., °C	Обозн.	диап. темпер., °C
Α	-10+60	Г1	-50+70	Н	0+60
Б	-30+60	Д	-60+85	П	-20+70
В	-40+70	E	-60+100	P	-25+55
B1	-40+55	Л	0+45	С	-40+85
Г	-60+70	М	0+50	Т	-60+90

Обоз начен.	Устойчив. в интервале темп., ×10 ⁻⁶	Обоз- начен.	Устойчив. в интервале темп., ×10 ⁻⁶	Обоз- начен.	Устойчив. в интервале темп., ×10 ⁻⁶
Α	+/-0,1	И	+/-3,0	С	+/-30,0
Б	+/-0,2	K	+/-5,0	θ	+/-35,0
В	+/-0,5	Л	+/-7,5	Т	+/-40,0
Г	+/-1,0	М	+/-10,0	У	+/-50,0
Д	+/-1,5	Н	+/-15,0	ы	+/-75,0
E	+/-2,0	П	+/-20,0	Х	+/-100,0
ж	+/-2,5	P	+/-25,0	ц	+/-150,0

ТИПЫ КОРПУСОВ КВАРЦЕВЫХ РЕЗОНАТОРОВ

MA

Миниатюрный плоский металлический корпус с 2 выводами под панель

МД (HC-49/U

MM (HC-52)

Микроминиатюр-

ный плоский ме-

Ø 0.5 макс

HC49/S

Микроминиатюрный цилиндрический металлический корпус с 2 гибкими выводами под пайку

HC-49SM

DT-38T

Микроминиатюрный цилиндрический металлический корпус с 2 гибкими выводами под пайку

Кварцевый резонатор на ПАВ

Микроминиатюрный плоский металлический корпус с 2 гибкими выводвми под пайку

fn - номинальная частота

от 2.000 МГц до 30.000 МГц - основная волна от 20.000 кГц до 100.000 кГц - 3-я гармоника

МД (НС-494)

от 15.000 МГц до 33.000 МГц основная волна от 45.000 кГц до 110.000 кГц - 3-я гармоника

UM-1 UM-

Тип	РГ05	PK169	PK206	PK353	PK374	PK422	РПК01*
резонатора							
Диапазон	5.0-100.0	5.0-100.0	32768	8000-18000 кГц	13000-48000кГц	16500-19000кГц	20000-100000кГц
частот	МГц	МГц	Гц	14-50 МГц	2.0-50.0МГц	49.0-100.0МГц	2.0-35.0МГц
Тип корпуса	MA	MA	AA	MA	МД	MM	HC-49/U

* - Обозначение рабочей частоты обратно отечественной маркировке: при работе на основной волне значение частоты выражается в МГц, при работе на высших гармониках - в кГц.

РПК01 – КВАРЦЕВЫЕ РЕЗОНАТОРЫ, ИЗГОТАВЛИВАЕМЫЕ НА НОВЕЙШЕМ ИМПОРТНОМ ОБОРУДОВАНИИ

Тип корпуса	HC-49/U, UM-1		
Диапазон частот	2.000-35.000 МГц (основная волна) 20000-100000 кГц (3 гармоника)		
Точность настойки	+/-15*10-6		
Интервал рабочих температур	-40+70°C		
Устойчивость в интервале температур	+/-30*10-6		
Динамическре сопротивление	25 Ом		
Нагрузочная емкость	16, 20, 30 пФ и т.д.		