InSense

Signal and Data Analysis

Procedure

- 5 subjects
- 2 exams per subject = 10 exams
- ≈20 secs each

2 exams chosen for demonstration

Raw Signal

Exam A:

Raw Signal

Applying LP and HP filters

Notes:

- 3r order Butterworth filters
- Low-pass @ Fc = 18 Hz
- High-pass @ Fc = 2 Hz
- Fs = 500 Hz
- Processed in Matlab

Applying LP and HP filters

Ecg wave - Fiducial Points

Ecg fiducial points*

Distances among the Ecg fiducials*

time

^{* -} Figures extracted from paper entitled "Ecg to identify individuals", Steven A. Israel et al, Pattern Recognition, 2005

Signal Quality

Good quality:

- 1 subject
- 2 exams

Bad quality:

- 4 subjects
- 8 exams

- → R peak well depicted
- → T peak well observed in most cases
- → P peak not easily or not observed at all

* - Using the Pan-Thompkins algorithm

Exam A:

Detecting R peaks*

* - Using the Pan-Thompkins algorithm

Detecting T peaks

Detecting T peaks

Biometrics: RT segments

For the Features:

- RT segment
- RT segment / mean of RR intervals

We computed:

- Mean
- Coefficient of variation (Sd / Mean)

Subject	Exam	$RT_{-}Mean^*$	RT_Cv**	RT/RRm_Mean	RT/RRm_Cv**
Fabio	1	0.208	4.37	0.251	4.37
	2	0.209	3.73	0.249	3.73
JP Cunha	1	0.224	4.44	0.260	4.44
	2	0.226	6.96	0.258	6.96
Óscar	1	0.189	20.18	0.212	20.18
	2	0.176	19.62	0.194	19.62
Paulo	1	0.264	20.24	0.295	20.24
	2	0.269	16.28	0.303	16.28
Tiago	1	0.194	12.57	0.211	12.57
	2	0.214	23.68	0.216	23.68

^{* -} given in seconds

Biometrics: RT segments

Subject	Exam	RT_Mean*	$RT_{-}Cv^{**}$	RT/RRm_Mean	RT/RRm_Cv**
Fabio	1	0.208	4.37	0.251	4.37
	2	0.209	3.73	0.249	3.73
JP Cunha	1	0.224	4.44	0.260	4.44
	2	0.226	6.96	0.258	6.96
Óscar	1	0.189	20.18	0.212	20.18
	2	0.176	19.62	0.194	19.62
Paulo	1	0.264	20.24	0.295	20.24
	2	0.269	16.28	0.303	16.28
Tiago	1	0.194	12.57	0.211	12.57
	2	0.214	23.68	0.216	23.68

Biometrics: individual intervals

By simply defining 1 interval per subject: (mean -+ sd)

```
[0.1989, 0.2181]

[0.2115, 0.2395]

[0.1400, 0.2200]

[0.2201, 0.3190]

[0.1560, 0.2490]
```

Impossible to get non-overlapping intervals.

Too much variation occurs in the last 3 subjects.

To sum up

RT segments alone cannot differentiate people!*

Because either:

- 1. The Ecg is too noisy for most cases
- 2. Or further investigation is needed: more features need to be extracted, different models applied..

^{* -} Based on this model and within this context.

Thank you

Team:

João Paulo Cunha Paulo Azevedo Pedro Pinto da Silva