ECE520 Introduction to VLSI, Project 4

Name: Arijit Sengupta, ID: 001441748

Part A

SysF schematic

SysF symbol

SysF layout (Top level)

SysF layout (Lower level)

SysF extracted view (Top Level)

SysF extracted view (Lower Level)

SysF analog extracted view

Part B

Mult3x3 schematic

Mult3x3 symbol

Mult3x3 Layout (Top Level)

Mult3x3 Layout (Lower Level)

Mult3x3 Layout (zoomed in to individual SysF cells)

Mult3x3 extracted view (Top Level)

Mult3x3 extracted view (Lower Level)

TBmul33 schematic

Part C

B2	B1	В0	A2	A1	Α0	P5	P4	P3	P2	P1	P0
0	0	0	1	1	1	0	0	0	0	0	0
0	0	1	1	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	1	1	1	0
0	1	1	1	1	1	0	1	0	1	0	1
1	0	0	1	1	1	0	1	1	1	0	0
1	0	1	1	1	1	0	1	1	1	1	1
1	1	0	1	1	1	1	0	1	0	1	0
1	1	1	1	1	1	1	1	0	0	0	1

I chose the MSBs B2, B1 and B0 as 3 vpulse with the following values:

- B2: Period = 4T, Pulse width = 1.95T, Delay = 1ns, Rise time = Fall time = 0.05T
- B1: Period = 2T, Pulse width = 0.95T, Delay = 1ns, Rise time = Fall time = 0.05T
- B0: Period = T, Pulse width = 0.45T, Delay = 1ns, Rise time = Fall time = 0.05T

I added vdc to the LSBs A2, A1, A0 and gave the DC voltage as D (Don't care!). D can be set as 5V (for logic 1) and 0V (for logic 0) during simulation. For our results, since it's a multiplier D=5V will be much more beneficial to yield proper values because multiplying anything by 0 will only return 0.

So, we obtain unique values for P5...P0 for these 8 input vectors from the ATPG33.

ATPG33 schematic

ATPG33 symbol

ATPG33 ADE L

ATPG33 output waveform

TBmul33 ADE L

TBmul33 output waveform

The values from the plot matches exactly with the calculated values in the table above. Hence, the circuit works fine.

Part D

B7	В6	B5	B4	В3	B2	B1	В0	A7	A6	A5	A4	А3	A2	A1	A0
0	0	0	0	D	D	D	D	D	D	D	D	D	D	D	D
0	0	0	1	D	D	D	D	D	D	D	D	D	D	D	D
0	0	1	0	D	D	D	D	D	D	D	D	D	D	D	D
0	0	1	1	D	D	D	D	D	D	D	D	D	D	D	D
0	1	0	0	D	D	D	D	D	D	D	D	D	D	D	D
0	1	0	1	D	D	D	D	D	D	D	D	D	D	D	D
0	1	1	0	D	D	D	D	D	D	D	D	D	D	D	D
0	1	1	1	D	D	D	D	D	D	D	D	D	D	D	D
1	0	0	0	D	D	D	D	D	D	D	D	D	D	D	D
1	0	0	1	D	D	D	D	D	D	D	D	D	D	D	D
1	0	1	0	D	D	D	D	D	D	D	D	D	D	D	D
1	0	1	1	D	D	D	D	D	D	D	D	D	D	D	D
1	1	0	0	D	D	D	D	D	D	D	D	D	D	D	D
1	1	0	1	D	D	D	D	D	D	D	D	D	D	D	D
1	1	1	0	D	D	D	D	D	D	D	D	D	D	D	D
1	1	1	1	D	D	D	D	D	D	D	D	D	D	D	D

I chose the MSBs B7, B6, B5 and B4 as 4 vpulse with the following values:

- B7: Period = 8T, Pulse width = 3.95T, Delay = 1ns, Rise time = Fall time = 0.05T
- B6: Period = 4T, Pulse width = 1.95T, Delay = 1ns, Rise time = Fall time = 0.05T
- B5: Period = 2T, Pulse width = 0.95T, Delay = 1ns, Rise time = Fall time = 0.05T
- B4: Period = T, Pulse width = 0.45T, Delay = 1ns, Rise time = Fall time = 0.05T

I added vdc to the other bits B3...B0, A7...A0 and gave the DC voltage as D (Don't care!). D can be set as 5V (for logic 1) and OV (for logic 0) during simulation. For our results, since it's a multiplier **D=5V** (logic 1) will be much more beneficial to yield proper values because multiplying anything by 0 will only return 0.

These 16 values will basically cover about 90% of the 65536 test cases as we can replace any 4-bits with any other 4-bits (say B7...B4 with A7...A4 and obtain similar results). So basically, what we do here is create $2^4 = 16$ combinations from 4 input bits, which in turn can be fed to any 4 of the 16 bits and give about the same results as testing all $2^{16} = 65536$ combinations.

So, we obtain unique values for P15...P0 for these 16 input vectors from the ATPG16.

TBmul88 schematic

ATPG16 schematic

ATPG16 schematic ADE L

ATPG16 output waveform

The values from the plot matches exactly with the calculated values from the table hence it confirms the circuit will work fine.

Part E

ATPG16 schematic

ATPG16 symbol

Load4SysF schematic

Load4SysF symbol

Mult8x8 schematic

Mult8x8 symbol

TBmul88 schematic

TBmul88 schematic ADE L

TBmul88 output waveform (schematic only, 10MHz)

The values from the plot matches exactly with the calculated values hence it confirms the circuit works fine.

Now we push it hard and decrease T to 10ns from 100ns. (i.e. we increase the frequency becomes 100MHz from 10MHz!)

TBmul88 output waveform (schematic only, 100MHz)

Propagation delays (schematic only):

F04 Delay	Expression/Remarks	Value
t _{pd} (P0)	P0 is constant	N/A
t _{pd} (P1)	P1 is constant	N/A
t _{pd} (P2)	P2 is constant	N/A
t _{pd} (P3)	P3 is constant	N/A
t _{pd} (P4)	1.79E-9	1.79ns
t _{pd} (P5)	1.795E-9	1.795ns
t _{pd} (P6)	568.9E-12	568.9ps
t _{pd} (P7)	1.781E-9	1.781ns
t _{pd} (P8)	793.8E-12	793.8ps
t _{pd} (P9)	1.419E-9	1.419ns
t _{pd} (P10)	1.423E-9	1.423ns
t _{pd} (P11)	1.42E-9	1.42ns
t _{pd} (P12)	1.42E-9	1.42ns
t _{pd} (P13)	1.435E-9	1.435ns
t _{pd} (P14)	1.413E-9	1.413ns
t _{pd} (P15)	1.336E-9	1.336ns

Therefore, the worst-case input-output 50%-50% propagation delay for schematic-only simulation came to be **1.795ns**.

Since we kept the value of D as 1 (5V), hence the lowermost bits remain constant which depends only on the values of A0, B0...A3, B3 and hence the summed values are either constant at 1 or at 0, as evident from the waveform.

Part F

Mult8x8 layout (Top Level)

Mult8x8 layout (Lower Level)

Mult8x8 layout (zoomed in)

Mult8x8 layout (further zoomed in)

X DRC	×
Checking Method • flat	○ hierarchical ○ hier w/o optimization
	incremental by area
Coordin	Sel by Cursor
Switch Names	Set Switches
Run-Specific Command File	
Inclusion Limit	1000 Limit Rule Errors 🔲 🛭
Join Nets With Same Name	Limit Run Errors □
Echo Commands	
Rules File	divaDRC.rul
Rules Library	■ SU_TechLib_ami06
Machine	● local ○ remote Machine
Ignore Missing Cell Masters	
	OK Cancel Defaults Apply Help

Mult8x8 extracted view (Top Level)

Mult8x8 extracted view (Lower Level)

The net-lists match for Mult8x8!

We do *cat si.out* to check the LVS file from the terminal.

SysF extracted view (Top Level)

SysF extracted view (Lower Level)

SysF analog extracted view

So now, we will simulate the TBmul88 using config view under the same parameters (i.e. T = 10ns and D = 5V) and check the delay.

TBmul88 tree view

We set the view for all the SysF to use as analog_extracted and simulate the circuit.

TBmul88 config ADE L

TBmul88 output waveform (including parasitics, 100MHz)

Propagation delays (including parasitics):

F04 Delay	Expression/Remarks	Value
t _{pd} (P0)	P0 is constant	N/A
t _{pd} (P1)	P1 is constant	N/A
t _{pd} (P2)	P2 is constant	N/A
t _{pd} (P3)	P3 is constant	N/A
t _{pd} (P4)	1.706E-9	1.706ns
t _{pd} (P5)	1.709E-9	1.709ns
t _{pd} (P6)	1.689E-9	1.689ns
t _{pd} (P7)	1.698E-9	1.698ns
t _{pd} (P8)	723.5E-12	723.5ps
t _{pd} (P9)	1.151E-9	1.151ns
t _{pd} (P10)	1.117E-9	1.117ns
t _{pd} (P11)	1.12E-9	1.12ns
t _{pd} (P12)	1.134E-9	1.134ns
t _{pd} (P13)	1.154E-9	1.154ns
t _{pd} (P14)	1.764E-9	1.764ns
t _{pd} (P15)	1.966E-9	1.966ns

Therefore, the worst-case input-output 50%-50% propagation delay for schematic-only simulation came to be **1.966ns** which is worse than the schematic-only output. Though all the individual delays are not higher, but the worst-case delay is more compared to the previous value. It is very normal that layout parasitics, that too in a huge circuit like this will increase the propagation delay.

Since we kept the value of D as 1 (5V), hence the lowermost bits remain constant which depends only on the values of AO, BO...A3, B3 and hence the summed values are either constant at 1 or at 0, as evident from the waveform.