Data Structures

17. Binary Tree Implementation

Tree ADT

- Data Type: Any type of objects can be stored in a tree
- Accessor methods
 - root() return the root of the tree
 - parent(p) return the parent of a node
 - children(p) return the children of a node
- Query methods
 - size() return the number of nodes in the tree
 - isEmpty() return true if the tree is empty
 - elements() return all elements
 - isRoot(p) return true if node p is the root
- Other methods
 - Tree traversal, Node addition/deletion, create/destroy

Binary Tree Storage

- Contiguous storage
- Linked list based storage

Contiguous Storage

Array Storage (1)

- We can store a binary tree as an array
- Traverse tree in breadth-first order, placing the entries into array
 - Storage of elements (i.e., objects/data) starts from root node
 - Nodes at each level of the tree are stored left to right

Array Storage Example (1)

[1]	Α
[2]	В
[3]	С
[4]	D
[5]	Е
[6]	F
[7]	G
[8]	Н
[9]	I

Array Storage Example (2)

Unused nodes in tree represented by a predefined bit pattern

[1]	Α
[2]	В
[3]	-
[4]	C
[5]	-
[6]	-
[7]	-
[8]	D
[9]	-
	•••
[16]	Е

Exercise

- If the following is stored in an array, what does the tree look like?
 (Draw it)
- ABCDE-F
- Solution:

```
A(0)
/ \
B(1) C(2)
/ \
\
D(3) E(4) F(6)
```

Array Storage (3)

- The children of the node with index k are in 2k and 2k + 1
- The parent of node with index k is in $k \div 2$

Array Storage Example (3)

- Node 10 has index 5
 - Its children 13 and 23 have indices 10 and 11, respectively

Array Storage Example (4)

- Node 10 has index 5
 - Its children 13 and 23 have indices 10 and 11, respectively
 - Its parent is node 9 with index 5/2 = 2

Array Storage (4)

- Why array index is not started from 0
 - In C++, this simplifies the calculations

```
parent = k >> 1;
left_child = k << 1;
right_child = left_child | 1;
```


Array Storage: Disadvantage

- Why not store any tree as an array using breadth-first traversals?
 - There is a significant potential for a lot of wasted memory
- Consider the following tree with 12 nodes
 - What is the required size of array?

Array Storage: Disadvantage

- Why not store any tree as an array using breadth-first traversals?
 - There is a significant potential for a lot of wasted memory
- Consider the following tree with 12 nodes
 - What is the required size of array? 32
 - What will be the array size if a child is added to node K?

Array Storage: Disadvantage

- Why not store any tree as an array using breadth-first traversals?
 - There is a significant potential for a lot of wasted memory
- Consider the following tree with 12 nodes
 - What is the required size of array? 32
 - What will be the array size if a child is added to node K? double

Implementation Exercise

- How to write code for implementing a tree in an array?
- One possible approach:
- Start with an empty array representing the size of the tree.
- First add the root node in tree[0] (or tree[1], if you want to use the shift operators).
- Then write a set_left and set_right function to add a left child and right child to the root node.
- Then keep making calls to set_left and set_right to set children of all subsequent nodes.

Solution

```
// C++ implementation of tree using array
// numbering starting from 0 to n-1.
#include < bits/stdc++.h>
using namespace std;
char tree[10];
int root(char key) {
if (tree[0]!= '\0')
               cout << "Tree already had root";</pre>
else
               tree[0] = key;
return 0;
int set_left(char key, int parent) {
if (tree[parent] == '\0')
               cout << "\nCan't set child at "
               << (parent * 2) + 1
               << ", no parent found";
else
               tree[(parent * 2) + 1] = key;
return 0;
}
}
```

```
int set_right(char key, int parent) {
if (tree[parent] == '\0')
                cout << "\nCan't set child at "</pre>
                << (parent * 2) + 2
                << ", no parent found";
else
                tree[(parent * 2) + 2] = key;
return 0;
int print_tree() {
cout << "\n";
for (int i = 0; i < 10; i++) {
                if (tree[i] != '\0')
                cout << tree[i];</pre>
                else
                cout << "-";
}
return 0;
}
                                              A(0)
// Driver Code
int main() {
root('A');
                                        B(1) C(2)
set left('B',0);
set_right('C', 0);
set_left('D', 1);
                                   D(3) E(4)
                                                          F(6)
set_right('E', 1);
set_right('F', 2);
print_tree();
```

return 0;

Practice exercise 1

 Write an alternate print function that prints the tree visually as a tree, something like this:

```
A(0)
/ \
B(1) C(2)
/ \
D(3) E(4) F(6)
```

Practice Exercise 2

- Using the recursive definition of a perfect binary tree, determine, for a given array representing a tree, whether it is a perfect binary tree.
- Recursive definition:
 - A binary tree of height h = 0 is perfect.
 - A binary tree with height h > 0 is perfect
 - ➤ If both sub-trees are prefect binary trees of height h 1
- Write a recursive function bool isPerfect(char*, int) which should take a char array representing the tree and return a Boolean value of true if the tree is perfect and false if it is not.

Linked List Storage

As Linked List Structure (1)

- We can implement a binary tree by using a class which:
 - Stores an element
 - A left child pointer (pointer to first child)
 - A right child pointer (pointer to second child)

```
class Node{
   Type value;
   Node *LeftChild,*RightChild;
}root;
```

- The root pointer points to the root node
 - Follow pointers to find every other element in the tree
- Leaf nodes have LeftChild and RightChild pointers set to NULL

As Linked List Structure: Example

Tree Traversal

Tree Traversal

- To traverse (or walk) the tree is to visit each node in the tree exactly once
 - Traversal must start at the root node
 - > There is a pointer to the root node of the binary tree
- Two types of traversals
 - Breadth-First Traversal
 - Depth-First Traversal

Breadth-First Traversal (For Arbitrary Trees)

- All nodes at a given depth d are traversed before nodes at d+1
- Can be implemented using a queue

Order: ABHCDGIEFJK

Breadth-First Traversal – Implementation

- Create a queue and push the root node onto the queue
- While the queue is not empty:
 - Enqueue all children of the front node onto the queue
 - Dequeue the front node

Depth-First Traversal (For Arbitrary Trees)

- Traverse as much as possible along the branch of each child before going to the next sibling
 - Nodes along one branch of the tree are traversed before backtracking
- Each node could be visited multiple times in such a scheme
 - The first time the node is approached (before any children)
 - The last time it is approached (after all children)

Depth-First Tree Traversal (Binary Trees)

- For each node in a binary tree, there are three choices
 - Visit the node first
 - Visit one of the subtrees first
 - Visit both the subtrees first
- These choices lead to three commonly used traversals
 - Inorder traversal: (Left subtree) visit Root (Right subtree)
 - Preorder traversal: visit Root (Left subtree) (Right subtree)
 - Postorder traversal: (Left subtree) (Right subtree) visit Root

Inorder Traversal

- Algorithm
 - Traverse the left subtree in inorder
 - 2. Visit the root
 - 3. Traverse the right subtree in inorder

A, B, C, D, E, F, G, H, I, J

Inorder Traversal

Algorithm

- Traverse the left subtree in inorder
- 2. Visit the root
- 3. Traverse the right subtree in inorder

Example

- Left + Right
- [Left * Right] + [Left + Right]
- (A * B) + [(Left * Right) + E)
- (A * B) + [(C * D) + E]

Inorder Traversal – Implementation

```
void inorder(Node *p) const
   if (p != NULL)
      inorder(p->leftChild);
      cout << p->info << " ";</pre>
      inorder(p->rightChild);
void traverse_inorder () {
   inorder (root);
```

Preorder Traversal

Algorithm

- Visit the node
- 2. Traverse the left subtree
- 3. Traverse the right subtree

Example

- + Left Right
- + [* Left Right] [+ Left Right]
- + (* AB) [+ * Left Right E]
- +*AB + *CDE

Preorder Traversal – Implementation

```
void preorder(Node *p) const
   if (p != NULL)
      cout << p->info << " ";</pre>
      preorder(p->leftChild);
      preorder(p->rightChild);
void traverse_preorder () {
   preorder (root);
```

Postorder Traversal

Algorithm

- Traverse the left subtree
- 2. Traverse the right subtree
- 3. Visit the node

Example

- Left Right +
- [Left Right *] [Left Right+] +
- (AB*) [Left Right * E +]+
- (AB*) [C D * E +]+
- AB*CD*E++

Postorder Traversal – Implementation

```
void postorder(Node *p) const
   if (p != NULL)
      postorder(p->leftChild);
      postorder(p->rightChild);
      cout << p->info << " ";</pre>
void traverse_postorder () {
   postorder (root);
```

Example: Printing a Directory Hierarchy

- Consider the directory structure presented on the left
 - Which traversal should be used?


```
/
usr/
bin/
local/
var/
adm/
cron/
log/
```

Expression Tree

Expression Tree

- Each algebraic expression has an inherent tree-like structure
- An expression tree is a binary tree in which
 - The parentheses in the expression do not appear
 - > Tree representation captures the intent of parenthesis
 - The leaves are the variables or constants in the expression
 - The non-leaf nodes are the operators in the expression
 - Binary operator has two non-empty subtrees
 - Unary operator has one non-empty subtree

Convert Postfix into Expression Tree – Algorithm

```
1 while(not the end of the expression)
2 {
      if(the next symbol in the expression is an operand)
3
4
5
        create a node for the operand;
6
        push the reference to the created node onto the stack;
8
      if(the next symbol in the expression is a binary operator)
10
        create a node for the operator;
11
        pop from the stack a reference to an operand;
12
        make the operand the right subtree of the operator node;
13
        pop from the stack a reference to an operand;
14
        make the operand the left subtree of the operator node;
15
        push the reference to the operator node onto the stack;
     }
16
17 }
```

Convert Postfix into Expression Tree – Example (1)

```
while(not the end of the expression)
   if(the next symbol is an operand)
      create a node for the operand;
      push the reference to the created node onto the stack;
                                                               Example:
                                                               ab + cde + * *
   if(the next symbol is a binary operator)
      create an operator node;
      pop operant from the stack;
     make the operand the right subtree;
      pop operand from the stack;
      make the operand the left subtree;
      push the operator node onto the stack;
```

Convert Postfix into Expression Tree – Example (2)

```
while(not the end of the expression)
   if(the next symbol is an operand)
      create a node for the operand;
      push the reference to the created node onto the stack ;
                                                              Example:
                                                              ab + cde + * *
   if(the next symbol is a binary operator)
      create an operator node;
      pop operant from the stack;
      make the operand the right subtree;
      pop operand from the stack;
      make the operand the left subtree;
      push the operator node onto the stack;
```

Convert Postfix into Expression Tree – Example (3)

```
while(not the end of the expression)
   if(the next symbol is an operand)
      create a node for the operand;
      push the reference to the created node onto the stack;
                                                              Example:
                                                              ab + cde + * *
   if(the next symbol is a binary operator)
      create an operator node;
      pop operant from the stack;
     make the operand the right subtree;
      pop operand from the stack;
      make the operand the left subtree;
      push the operator node onto the stack;
```

Convert Postfix into Expression Tree – Example (4)

```
while(not the end of the expression)
   if(the next symbol is an operand)
      create a node for the operand;
      push the reference to the created node onto the stack ;
                                                              Example:
                                                              ab + cde + * *
   if(the next symbol is a binary operator)
      create an operator node;
      pop operant from the stack;
     make the operand the right subtree;
      pop operand from the stack;
      make the operand the left subtree;
      push the operator node onto the stack;
```

Convert Postfix into Expression Tree – Example (5)

```
while(not the end of the expression)
   if(the next symbol is an operand)
      create a node for the operand;
      push the reference to the created node onto the stack ;
                                                               Example:
                                                               ab + cde + * *
   if(the next symbol is a binary operator)
      create an operator node;
      pop operant from the stack;
      make the operand the right subtree;
      pop operand from the stack;
      make the operand the left subtree;
      push the operator node onto the stack;
                                11-Tree Imple
```

Convert Postfix into Expression Tree – Example (6)

```
while(not the end of the expression)
   if(the next symbol is an operand)
      create a node for the operand;
      push the reference to the created node onto the stack ;
                                                               Example:
                                                               ab + cde + * *
   if(the next symbol is a binary operator)
      create an operator node;
      pop operant from the stack;
      make the operand the right subtrea
      pop operand from the stack;
      make the operand the left subtree
      push the operator node onto the st
                                 11-Tree
```

Why Expression Tree?

- Expression trees impose a hierarchy on the operations
 - Terms deeper in the tree get evaluated first
 - Establish correct precedence of operations without using parentheses
- A compiler will read an expression in a language like C++/Java, and transform it into an expression tree
- Expression trees can be very useful for:
 - Evaluation of the expression
 - Generating correct compiler code to actually compute the expression's value at execution time

Evaluating an Expression Tree

- Perform a post-order traversal of the tree
 - Ask each node to evaluate itself
- An operand node evaluates itself by just returning its value
- An operator node has to apply the operator
 - To the results of evaluations from its left subtree and right subtree

Order of evaluation: $\frac{3}{(2 + ((5 - 1) * 3))}$

Evaluating an Expression Tree – Example

• Expression: a b + c d e + **1 2 + 3 4 5 + **

Evaluating an Expression Tree - Implementation

```
1 evaluate(ExpressionTree t){
2   if(t is a leaf)
3    return value of t's operand;
4   else{
5    operator = t.element;
6    operand1 = evaluate(t.left);
7    operand2 = evaluate(t.right);
8    return(applyOperator(operand1, operator, operand2);
9   }
10 }
```

Any Question So Far?

