

# **Low-Power Applications Processor**

Check for Samples: OMAPL137-HT

## 1 Low-Power Applications Processor

### 1.1 Features

- Highlights
  - Dual Core SoC
    - 300-MHz ARM926EJ-S™ RISC MPU
    - 300-MHz C674x<sup>™</sup> VLIW DSP
  - TMS320C674x Fixed/Floating-Point VLIW DSP Core
  - Enhanced Direct-Memory-Access Controller 3 (EDMA3)
  - 128K-Byte RAM Shared Memory
  - Two External Memory Interfaces
  - Two External Memory Interfaces Modules
  - LCD Controller
  - Two Serial Peripheral Interfaces (SPI)
  - Multimedia Card (MMC)/Secure Digital (SD)
  - Two Master/Slave Inter-Integrated Circuit
  - One Host-Port Interface (HPI)
  - USB 1.1 OHCI (Host) With Integrated PHY (USB1)
- Applications
  - Industrial Diagnostics
  - Test and measurement
  - Military Sonar/Radar
  - Medical measurement
  - Professional Audio
  - Down Hole Industry
- Software Support
  - TI DSP/BIOS™
  - Chip Support Library and DSP Library
- ARM926EJ-S Core
  - 32-Bit and 16-Bit (Thumb®) Instructions
  - DSP Instruction Extensions
  - Single Cycle MAC
  - ARM<sup>®</sup> Jazelle<sup>®</sup> Technology
  - EmbeddedICE-RT™ for Real-Time Debug
- ARM9 Memory Architecture
- C674x Instruction Set Features
  - Superset of the C67x+™ and C64x+™ ISAs
  - Up to 3648/2736 C674x MIPS/MFLOPS
  - Byte-Addressable (8-/16-/32-/64-Bit Data)
  - 8-Bit Overflow Protection

- Bit-Field Extract, Set, Clear
- Normalization, Saturation, Bit-Counting
- Compact 16-Bit Instructions
- C674x Two Level Cache Memory Architecture
  - 32K-Byte L1P Program RAM/Cache
  - 32K-Byte L1D Data RAM/Cache
  - 256K-Byte L2 Unified Mapped RAM/Cache
  - Flexible RAM/Cache Partition (L1 and L2)
  - 1024KB L2 ROM
- Enhanced Direct-Memory-Access Controller 3 (EDMA3):
  - 2 Transfer Controllers
  - 32 Independent DMA Channels
  - 8 Quick DMA Channels
  - Programmable Transfer Burst Size
- TMS320C674x<sup>™</sup> Fixed/Floating-Point VLIW DSP Core
  - Load-Store Architecture With Non-Aligned Support
  - 64 General-Purpose Registers (32 Bit)
  - Six ALU (32-/40-Bit) Functional Units
    - Supports 32-Bit Integer, SP (IEEE Single Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point
    - Supports up to Four SP Additions Per Clock, Four DP Additions Every 2 Clocks
    - Supports up to Two Floating Point (SP or DP) Approximate Reciprocal or Square Root Operations Per Cycle
  - Two Multiply Functional Units
    - Mixed-Precision IEEE Floating Point Multiply Supported up to:
      - 2 SP x SP -> SP Per Clock
      - 2 SP x SP -> DP Every Two Clocks
      - 2 SP x DP -> DP Every Three Clocks
      - 2 DP x DP -> DP Every Four Clocks
    - Fixed Point Multiply Supports Two 32 x 32-Bit Multiplies, Four 16 x 16-Bit Multiplies, or Eight 8 x 8-Bit Multiplies per Clock Cycle, and Complex Multiples
  - Instruction Packing Reduces Code Size

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

DSP/BIOS, C67x+, C64x+, TMS320C6000, C6000 are trademarks of Texas Instruments. ARM926EJ-S, EmbeddedICE-RT, ETM9, CoreSight are trademarks of ARM Limited.

ARM, Jazelle are registered trademarks of ARM Limited.

Windows is a registered trademark of Microsoft Corporation.



- All Instructions Conditional
- Hardware Support for Modulo Loop Operation
- Protected Mode Operation
- Exceptions Support for Error Detection and Program Redirection
- 128K-Byte RAM Shared Memory
- 3.3V LVCMOS IOs (except for USB interfaces)
- Two External Memory Interfaces:
  - EMIFA
    - NOR (8-/16-Bit-Wide Data)
    - NAND (8-/16-Bit-Wide Data)
    - 16-Bit SDRAM With 128MB Address Space
  - EMIFB
    - 32-Bit or 16-Bit SDRAM With 256MB Address Space
- Three Configurable 16550 type UART Modules:
  - UARTO With Modem Control Signals
  - Autoflow control signals (CTS, RTS) on UART0 only
  - 16-byte FIFO
  - 16x or 13x Oversampling Option
- LCD Controller
- Two Serial Peripheral Interfaces (SPI) Each With One Chip-Select
- Multimedia Card (MMC)/Secure Digital (SD)
   Card Interface with Secure Data I/O (SDIO)
- Two Master/Slave Inter-Integrated Circuit (I<sup>2</sup>C Bus™)
- One Host-Port Interface (HPI) With 16-Bit-Wide Muxed Address/Data Bus For High Bandwidth
- Programmable Real-Time Unit Subsystem (PRUSS)
  - Two Independent Programmable Realtime Unit (PRU) Cores
    - 32-Bit Load/Store RISC architecture
    - 4K Byte instruction RAM per core
    - 512 Bytes data RAM per core
    - PRU Subsystem (PRUSS) can be disabled via software to save power
  - Standard Power Management Mechanism
    - Clock Gating
    - Entire Subsystem Under a Single PSC Clock Gating Domain
  - Dedicated Interrupt Controller
  - Dedicated Switched Central Resource
- USB 1.1 OHCI (Host) With Integrated PHY (USB1)
- USB 2.0 OTG Port With Integrated PHY (USB0):
  - USB 2.0 High-/Full-Speed Client
  - USB 2.0 High-/Full-/Low-Speed Host
  - End Point 0 (Control)

- End Points 1,2,3,4 (Control, Bulk, Interrupt or ISOC) Rx and Tx
- Three Multichannel Audio Serial Ports:
  - Six Clock Zones and 28 Serial Data Pins
  - Supports TDM, I2S, and Similar Formats
  - DIT-Capable (McASP2)
  - FIFO buffers for Transmit and Receive
- 10/100 Mb/s Ethernet MAC (EMAC):
  - IEEE 802.3 Compliant (3.3-V I/O Only)
  - RMII Media Independent Interface
  - Management Data I/O (MDIO) Module
- Real-Time Clock With 32 KHz Oscillator and Separate Power Rail
- Crystal oscillators not validated beyond 125°C.
   Recommend use of external oscillator.
- One 64-Bit General-Purpose Timer (Configurable as Two 32-Bit Timers)
- One 64-Bit General-Purpose Timer/Watchdog Timer (Configurable as Two 32-bit General-Purpose Timers)
- Three Enhanced Pulse Width Modulators (eHRPWM):
  - Dedicated 16-Bit Time-Base Counter With Period And Frequency Control
  - 6 Single Edge, 6 Dual Edge Symmetric or 3 Dual Edge Asymmetric Outputs
  - Dead-Band Generation
  - PWM Chopping by High-Frequency Carrier
  - Trip Zone Input
- Three 32-Bit Enhanced Capture Modules (eCAP):
  - Configurable as 3 Capture Inputs or 3
     Auxiliary Pulse Width Modulator (APWM) outputs
  - Single Shot Capture of up to Four Event Time-Stamps
- Two 32-Bit Enhanced Quadrature Encoder Pulse Modules (eQEP)
- 176-pin PowerPAD<sup>™</sup> Plastic Quad Flat Pack [PTP suffix], 0.5-mm Pin Pitch
- High Temperature (175°C) Application
- Texas Instruments High Temperature Products
  Use Highly Optimized Silicon Solutions with
  Design and Process Enhancements to
  Maximize Performance over Extended
  Temperatures. All Devices are Characterized
  and Qualified for 1000 Hours Continuous
  Operating Life at Maximum Rated Temperature
- Community Resources
  - TI E2E Community
  - TI Embedded Processors Wiki

www.ti.com

## 1.2 Trademarks

DSP/BIOS, TMS320C6000 $^{\text{TM}}$ , C6000, TMS320, TMS320C62x, and TMS320C67x are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.



### 1.3 Description

The OMAPL137 is a low-power applications processor based on an ARM926EJ-S and a C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000 platform of DSPs.

The OMAPL137 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance life through the maximum flexibility of a fully integrated mixed processor solution.

The dual-core architecture of the OMAPL137 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an ARM926EJ-S core.

The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.

The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and 16K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core also has a 8KB RAM (Vector Table) and 64KB ROM.

The OMAPL137 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB RAM shared memory is available for use by other hosts without affecting DSP performance.

The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; two inter-integrated circuit (I2C) bus interfaces; 3 multichannel audio serial ports (McASP) with 16/12/4 serializers and FIFO buffers; 2 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host port interface (HPI); up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with RTS and CTS); 3 enhanced high-resolution pulse width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; 2 32-bit enhanced quadrature pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM.

The Ethernet Media Access Controller (EMAC) provides an efficient interface between the OMAP-L137 and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is available for PHY configuration.

The HPI, I2C, SPI, USB1.1 and USB2.0 ports allow the device to easily control peripheral devices and/or communicate with host processors.

The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.

The device has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows<sup>®</sup> debugger interface for visibility into source code execution.



## 1.4 Functional Block Diagram

Figure 1-1 shows the functional block diagram of the device.



Note: Not all peripherals are available at the same time due to multiplexing.

Figure 1-1. OMAPL137 Functional Block Diagram

## SPRS677B -FEBRUARY 2012-REVISED FEBRUARY 2013



| 1 | Low-  | -Power Applications Processor                                  | . <u>1</u>     | 5.12        | MMC / SD / SDIO (MMCSD)                                           | <u>90</u>   |
|---|-------|----------------------------------------------------------------|----------------|-------------|-------------------------------------------------------------------|-------------|
|   | 1.1   | Features                                                       | . <u>1</u>     | 5.13        | Ethernet Media Access Controller (EMAC)                           | <u>92</u>   |
|   | 1.2   | Trademarks                                                     | . <u>3</u>     | 5.14        | Management Data Input/Output (MDIO)                               | <u>98</u>   |
|   | 1.3   | Description                                                    | <u>4</u>       | 5.15        | Multichannel Audio Serial Ports (McASP0, McASP                    | 1,          |
|   | 1.4   | Functional Block Diagram                                       | <u> 5</u>      |             | and McASP2)                                                       | <u>100</u>  |
| 2 | Devi  | ce Overview                                                    | . 7            | 5.16        | Serial Peripheral Interface Ports (SPI0, SPI1)                    | <u>114</u>  |
|   | 2.1   | Device Characteristics                                         | . <del>7</del> | 5.17        | Enhanced Capture Module (eCAP)                                    | 132         |
|   | 2.2   | Device Compatibility                                           | . 8            | 5.18        | Enhanced Quadrature Encoder Module (eQEP)                         | 135         |
|   | 2.3   | ARM Subsystem                                                  | . 8            | 5.19        | Enhanced High-Resolution Pulse-Width Modulator                    |             |
|   | 2.4   | DSP Subsystem                                                  | 11             | <b>5.00</b> | (eHRPWM)                                                          |             |
|   | 2.5   | Memory Map Summary                                             | 17             | 5.20        | LCD Controller                                                    |             |
|   | 2.6   | Bare Die Information                                           |                | 5.21        | Timers                                                            |             |
|   | 2.7   | Pin Assignments                                                | _              | 5.22        | Inter-Integrated Circuit Serial Ports (I2C0, I2C1) .              | <u>157</u>  |
|   | 2.8   | Terminal Functions                                             |                | 5.23        | Universal Asynchronous Receiver/Transmitter (UART)                | 161         |
| 3 | Devi  | ce Configuration                                               |                | 5.24        | USB1 Host Controller (USB1.1 OHCI)                                |             |
|   | 3.1   | Introduction                                                   | <u>45</u>      | 5.25        | USB0 OTG (USB2.0 OTG)                                             |             |
|   | 3.2   | Boot Modes Supported                                           | 45             | 5.26        | Universal Host-Port Interface (UHPI)                              |             |
|   | 3.3   | SYSCFG Module                                                  | <u>45</u>      | 5.27        | Memory Protection Units (MPU)                                     |             |
| 4 | Devi  | ce Operating Conditions                                        | <u>48</u>      | 5.28        | Power and Sleep Controller (PSC)                                  |             |
|   | 4.1   | Absolute Maximum Ratings Over Operating Case Temperature Range |                | 5.29        | Emulation Logic                                                   |             |
|   | (Unle | ss Otherwise Noted)                                            | 48             | 5.30        | Real Time Clock (RTC)                                             | 188         |
|   | 4.2   | Recommended Operating Conditions                               |                | 6 Devi      | ce and Document Support                                           | <u>191</u>  |
|   | 4.3   | Electrical Characteristics                                     |                | 6.1         | Device Support                                                    | <u>191</u>  |
| 5 | _     | pheral Information and Electrical                              | <u>50</u>      | 6.2         | Documentation Support                                             | 192         |
|   |       | cifications                                                    | 51             | 7 Mecl      | hanical Packaging and Orderable                                   |             |
|   | 5.1   | Parameter Information                                          | 51             | Infor       | mation                                                            | <u> 193</u> |
|   | 5.2   | Recommended Clock and Control Signal Transition                | _              | 7.1         | Device and Development-Support Tool                               |             |
|   |       | Behavior                                                       | <u>51</u>      |             | Nomenclature                                                      |             |
|   | 5.3   | Power Supplies                                                 | <u>52</u>      | 7.2         | Packaging Materials Information                                   |             |
|   | 5.4   | Reset                                                          | <u>53</u>      | 7.3         | Thermal Data for PTP                                              |             |
|   | 5.5   | Crystal Oscillator or External Clock Input                     |                | 7.4         | Supplementary Information About the 176-pin PTP PowerPAD™ Package |             |
|   | 5.6   | Clock PLLs                                                     | <u>56</u>      | 7.5         | Packaging Information                                             |             |
|   | 5.7   | Interrupts                                                     | <u>59</u>      | 7.6         | Mechanical Drawings                                               |             |
|   | 5.8   | General-Purpose Input/Output (GPIO)                            | <u>67</u>      | 7.7         | dMAX                                                              |             |
|   | 5.9   | EDMA                                                           | <u>70</u>      | 7.7         | Key Manager                                                       |             |
|   | 5.10  | External Memory Interface A (EMIFA)                            | <u>75</u>      | 7.8<br>7.9  | SECCTRL                                                           |             |
|   | 5.11  | External Memory Interface B (EMIFB)                            | <u>84</u>      | _           | History                                                           |             |
|   |       |                                                                |                | 1/6/1910[]  | Thatory                                                           | 200         |



## 2 Device Overview

### 2.1 Device Characteristics

Table 2-1 provides an overview of OMAPL137. The table shows significant features of the device, including the capacity of on-chip RAM, peripherals, and the package type with pin count.

Table 2-1. Characteristics of the OMAPL137 Processor

| detail, see the Device Configurations section).    VO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HARDWARE                                                              | FEATURES             |                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flash Card Interface  EDM3  32 independent channels, a DDMA channels, 2 Transfer controllers  dMAX  16 independent channels  Timers  2 64-Bit General Purpose (configurable as 2 separate 32-bit timers, 1 configurable as Watch Dog)  UART  3 (one with RTS and CT's flow control)  SPI  (C 2 (both Master/Slave)  Multichannel Audio Serial Port [McASP]  10/100 Ethernet MAC with Management Data Port [McASP]  10/100 Ethernet MAC with Transmit/receive, FIFO buffer, 16/12/4 serializers)  10/100 Ethernet MAC with Management Data Port [McASP]  10/100 Ethernet MAC with Transmit/receive, FIFO buffer, 16/12/4 serializers)  10/100 Ethernet MAC with Transmit/receive, FIFO buffer, 16/12/4 serializers)  10/100 Ethernet MAC with Transmit/receive, FIFO buffer, 16/12/4 serializers)  10/100 Ethernet MAC with Management Data Port [McMasper]  10/100 Ethernet MAC with Transmit/receive, FIFO buffer, 16/12/4 serializers)  10/100 Ethernet MAC with Transmit/receive, FIFO buffer, 16/12/4 serializers)  10/100 Ethernet MAC with Transmit/receive, FIFO buffer, 16/12/4 serializers)  10/100 Ethernet MAC with Transmit/receive, FIFO buffer, 16/12/4 serializers)  10/100 Ethernet MAC with Transmit/receive, FIFO buffer, 16/12/4 serializers)  10/ |                                                                       | EMIFB                | SDRAM only, 16-bit bus width, up to 256 Mbit                                                                                                                                                                                                                                                          |
| EDMA3 32 independent channels, 8 QDMA channels, 2 Transfer controllers dMAX 16 independent channels dMAX 16 independent independent channels dMAX 16 independent indepen |                                                                       | EMIFA                | Asynchronous (8-bit bus width) RAM, Flash, NOR, NAND                                                                                                                                                                                                                                                  |
| MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       | Flash Card Interface | MMC and SD cards supported.                                                                                                                                                                                                                                                                           |
| Timers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | EDMA3                | 32 independent channels, 8 QDMA channels, 2 Transfer controllers                                                                                                                                                                                                                                      |
| UART   3 (one with RTS and CTS flow control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       | dMAX                 | 16 independent channels                                                                                                                                                                                                                                                                               |
| SPI   2 (Each with one hardware chip select)   Fi <sup>2</sup> C   2 (both Master/Slave)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                       | Timers               |                                                                                                                                                                                                                                                                                                       |
| Peripherals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       | UART                 | 3 (one with RTS and CTS flow control)                                                                                                                                                                                                                                                                 |
| Peripherals Not all peripherals peripherals per a variable at the same time (for more detail, see the Device Configurations section).  HIRPWIM 6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs eHRPWM 6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs eQEP 3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs eQEP 2 32-bit QEP channels with 4 inputs/channel UHPI USB 2.0 (USB0) Full Speed Host Or Device with On-Chip PHY USB 1.1 (USB1) - General-Purpose Input/Output Port LCD Controller 1 (32 KHz oscillator and seperate power trail. Provides time and date tracking and alarm capability.)  Size (Bytes) 488KB RAM, 1088KB ROM DSP 32KB 1.1 Program (L1P)/Cache (up to 32KB) 32KB 1.1 Program (L1P)/Cache (up to 32KB) 32KB 1.1 Data (L1D)/Cache (up to 32KB |                                                                       | SPI                  | 2 (Each with one hardware chip select)                                                                                                                                                                                                                                                                |
| Serial Port [McASP]   3 (each with transmit/receive, FIFO buffer, 16/12/4 Senalizers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       | I <sup>2</sup> C     | 2 (both Master/Slave)                                                                                                                                                                                                                                                                                 |
| 10/100 Ethernet MAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                     |                      | 3 (each with transmit/receive, FIFO buffer, 16/12/4 serializers)                                                                                                                                                                                                                                      |
| eCAP   3 32-bit capture inputs or 3 32-bit auxiliary PVM outputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | are available at the<br>same time (for more<br>detail, see the Device | with Management Data | 1 (RMII Interface)                                                                                                                                                                                                                                                                                    |
| eQEP   2 32-bit QEP channels with 4 inputs/channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Configurations section).                                              | eHRPWM               | 6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs                                                                                                                                                                                                                               |
| UHPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       | eCAP                 | 3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs                                                                                                                                                                                                                                             |
| USB 2.0 (USB0)   Full Speed Host Or Device with On-Chip PHY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       | eQEP                 | 2 32-bit QEP channels with 4 inputs/channel                                                                                                                                                                                                                                                           |
| USB 1.1 (USB1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       | UHPI                 | -                                                                                                                                                                                                                                                                                                     |
| General-Purpose   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       | USB 2.0 (USB0)       | Full Speed Host Or Device with On-Chip PHY                                                                                                                                                                                                                                                            |
| Input/Output Port   CD Controller   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       | USB 1.1 (USB1)       | -                                                                                                                                                                                                                                                                                                     |
| RTC 1 (32 KHz oscillator and seperate power trail. Provides time and date tracking and alarm capability.)    Size (Bytes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                       |                      | 8 banks of 16-bit                                                                                                                                                                                                                                                                                     |
| Size (Bytes)   488KB RAM, 1088KB ROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       | LCD Controller       | 1                                                                                                                                                                                                                                                                                                     |
| On-Chip Memory  Organization   |                                                                       | RTC                  |                                                                                                                                                                                                                                                                                                       |
| SZKB L1 Program (L1P)/Cache (up to 32KB)   32KB L1 Data (L1D)/Cache (up to 32KB)   32KB L1 Data (L1D)/Cache (up to 32KB)   256KB Unified Mapped RAM/Cache (L2)   1024KB ROM (L2)   DSP Memories can be made accessible to ARM, EDMA3, and other peripherals.    ARM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       | Size (Bytes)         | 488KB RAM, 1088KB ROM                                                                                                                                                                                                                                                                                 |
| Rev ID         (CSR.[31:16])         0x1400           C674x Megamodule<br>Revision         Revision ID Register<br>(MM_REVID[15:0])         0x0000           JTAG BSDL_ID         DEVIDR0 register         0x8B7DF02F           CPU Frequency         MHz         674x DSP 300 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | On-Chip Memory                                                        | Organization         | 32KB L1 Program (L1P)/Cache (up to 32KB) 32KB L1 Data (L1D)/Cache (up to 32KB) 256KB Unified Mapped RAM/Cache (L2) 1024KB ROM (L2) DSP Memories can be made accessible to ARM, EDMA3, and other peripherals.  ARM 16KB I-Cache 16KB D-Cache 8KB RAM (Vector Table) 64KB ROM  ADDITIONAL SHARED MEMORY |
| C674x Megamodule<br>Revision         Revision ID Register<br>(MM_REVID[15:0])         0x0000           JTAG BSDL_ID         DEVIDR0 register         0x8B7DF02F           CPU Frequency         MHz         674x DSP 300 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |                      |                                                                                                                                                                                                                                                                                                       |
| JTAG BSDL_ID         DEVIDR0 register         0x8B7DF02F           CPU Frequency         MHz         674x DSP 300 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C674x Megamodule                                                      | Revision ID Register | 0x0000                                                                                                                                                                                                                                                                                                |
| CPU Frequency MHz 674x DSP 300 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JTAG BSDL_ID                                                          |                      | 0x8B7DF02F                                                                                                                                                                                                                                                                                            |
| CPU Frequency MHz ARM926 300 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                      | 674x DSP 300 MHz                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CPU Frequency                                                         | MHz                  | ARM926 300 MHz                                                                                                                                                                                                                                                                                        |



### Table 2-1. Characteristics of the OMAPL137 Processor (continued)

| HARDW                         | ARE FEATURES                                                                        |                                                  |
|-------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------|
| Ovela Time                    |                                                                                     | 674x DSP 3.33 ns                                 |
| Cycle Time                    | ns                                                                                  | ARM926 3.33 ns                                   |
| N/ 1/                         | Core (V)                                                                            | 1.2 V                                            |
| Voltage                       | I/O (V)                                                                             | 3.3 V                                            |
| Package                       |                                                                                     | 24 mm x 24 mm, 176-Pin, 0.5 mm pitch, TQFP (PTP) |
| Product Status <sup>(1)</sup> | Product Preview (PP),<br>Advance Information<br>(AI),<br>or Production Data<br>(PD) | Al                                               |

<sup>(1)</sup> ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice.

## 2.2 Device Compatibility

The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc.

The C674x DSP core is code-compatible with the C6000<sup>™</sup> DSP platform and supports features of both the C64x+ and C67x+ DSP families.

### 2.3 ARM Subsystem

The ARM Subsystem includes the following features:

- ARM926EJ-S RISC processor
- ARMv5TEJ (32/16-bit) instruction set
- · Little endian
- System Control Co-Processor 15 (CP15)
- MML
- 16KB Instruction cache
- 16KB Data cache
- Write Buffer
- Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
- ARM Interrupt controller

#### 2.3.1 ARM926EJ-S RISC CPU

The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications where full memory management, high performance, low die size, and low power are all important. The ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to trade off between high performance and high code density. Specifically, the ARM926EJ-S processor supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes, providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code overhead.

The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a complete high performance subsystem, including:

- ARM926EJ -S integer core
- CP15 system control coprocessor
- Memory Management Unit (MMU)

Device Overview

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

www.ti.com

- Separate instruction and data Caches
- · Write buffer
- Separate instruction and data (internal RAM) interfaces
- Separate instruction and data AHB bus interfaces
- Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)

For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available at http://www.arm.com

#### 2.3.2 CP15

The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as supervisor or system mode.

#### 2.3.3 MMU

A single set of two level page tables stored in main memory is used to control the address translation, permission checks and memory region attributes for both data and instruction accesses. The MMU uses a single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The MMU features are:

- Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme.
- Mapping sizes are:
  - 1MB (sections)
  - 64KB (large pages)
  - 4KB (small pages)
  - 1KB (tiny pages)
- Access permissions for large pages and small pages can be specified separately for each quarter of the page (subpage permissions)
- · Hardware page table walks
- Invalidate entire TLB, using CP15 register 8
- Invalidate TLB entry, selected by MVA, using CP15 register 8
- · Lockdown of TLB entries, using CP15 register 10

### 2.3.4 Caches and Write Buffer

The size of the Instruction Cache is 16KB, Data cache is 16KB. Additionally, the Caches have the following features:

- Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA)
- Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with two dirty bits in the Dcache
- Dcache supports write-through and write-back (or copy back) cache operation, selected by memory region using the C and B bits in the MMU translation tables.
- Critical-word first cache refilling
- Cache lockdown registers enable control over which cache ways are used for allocation on a line fill, providing a mechanism for both lockdown, and controlling cache corruption
- Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the possibility of TLB misses related to the write-back address.
- Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of the Dcache or Icache, and regions of virtual memory.



The write buffer is used for all writes to a noncachable bufferable region, write-through region and write misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a four-address buffer. The Dcache write-back has eight data word entries and a single address entry.

## 2.3.5 Advanced High-Performance Bus (AHB)

The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the Config Bus and the external memories bus.

### 2.3.6 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)

To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an Embedded Trace Macrocell (ETM). The ARM926EJ-S Subsystem in the device also includes the Embedded Trace Buffer (ETB). The ETM consists of two parts:

- Trace Port provides real-time trace capability for the ARM9.
- Triggering facilities provide trigger resources, which include address and data comparators, counter, and sequencers.

The device trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace data.

This device uses ETM9<sup>™</sup> version r2p2 and ETB version r0p1. Documentation on the ETM and ETB is available from ARM Ltd. Reference the 'CoreSight<sup>™</sup> ETM9<sup>™</sup> Technical Reference Manual, revision r0p1' and the 'ETM9 Technical Reference Manual, revision r2p2'.

## 2.3.7 ARM Memory Mapping

By default the ARM has access to most on and off chip memory areas, including the DSP Internal memories, EMIFA, EMIFB, and the additional 128K byte on chip shared SRAM. Likewise almost all of the on chip peripherals are accessible to the ARM by default.

To improve security and/or robustness the device has extensive memory and peripheral protection units which can be configured to limit access rights to the various on / off chip resources to specific hosts; including the ARM as well as other master peripherals. This allows the system tasks to be partitioned between the ARM and DSP as best suites the particular application; while enhancing the overall robustness of the solution.

See Table 2-3 for a detailed top level OMAPL137 memory map that includes the ARM memory space.



### 2.4 DSP Subsystem

The DSP Subsystem includes the following features:

- C674x DSP CPU
- 32KB L1 Program (L1P)/Cache (up to 32KB)
- 32KB L1 Data (L1D)/Cache (up to 32KB)
- 256KB Unified Mapped RAM/Cache (L2)
- 1MB Mask-programmable ROM
- Little endian



Figure 2-1. C674x Megamodule Block Diagram



### 2.4.1 C674x DSP CPU Description

The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two data paths as shown in Figure 2-2. The two general-purpose register files (A and B) each contain 32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40-bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register).

The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory.

The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the C67x core.

Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x 32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with add/subtract capabilities, four 8 x 8 bit multiplies with add operations, and four 16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. The complex multiply (CMPY) instruction takes four 16-bit inputs and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The 32 x 32 bit multiply instructions provide the extended precision necessary for audio and other high-precision algorithms on a variety of signed and unsigned 32-bit data types.

The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.

The C674x core enhances the .S unit in several ways. On previous cores, dual 16-bit MIN2 and MAX2 comparisons were only available on the .L units. On the C674x core they are also available on the .S unit which increases the performance of algorithms that do searching and sorting. Finally, to increase data packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack instructions return parallel results to output precision including saturation support.

#### Other new features include:

- SPLOOP A small instruction buffer in the CPU that aids in creation of software pipelining loops where
  multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size
  associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.
- Compact Instructions The native instruction size for the C6000 devices is 32 bits. Many common instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x compiler can restrict the code to use certain registers in the register file. This compression is performed by the code generation tools.
- Instruction Set Enhancement As noted above, there are new instructions such as 32-bit multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field multiplication.
- Exceptions Handling Intended to aid the programmer in isolating bugs. The C674x CPU is able to detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and from system events (such as a watchdog time expiration).
- Privilege Defines user and supervisor modes of operation, allowing the operating system to give a
  basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with
  read, write, and execute permissions.

www.ti.com

• **Time-Stamp Counter** - Primarily targeted for Real-Time Operating System (RTOS) robustness, a free-running time-stamp counter is implemented in the CPU which is **not** sensitive to system stalls.

For more details on the C674x CPU and its enhancements over the C64x architecture, see the following documents:

- TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732)
- TMS320C64x Technical Overview (literature number SPRU395)





Figure 2-2. TMS320C674x<sup>™</sup> CPU (DSP Core) Data Paths

## 2.4.2 DSP Memory Mapping

The DSP memory map is shown in Section 2.5



By default the DSP also has access to most on and off chip memory areas, with the exception of the ARM RAM, ROM, and AINTC interrupt controller. The DSP also boots first, and must release the ARM from reset before the ARM can execute any code.

Additionally, the DSP megamodule includes the capability to limit access to its internal memories through its SDMA port; without needing an external MPU unit.

#### 2.4.2.1 ARM Internal Memories

The DSP does not have access to the ARM internal memory.

#### 2.4.2.2 External Memories

The DSP has access to the following External memories:

- Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA)
- SDRAM (EMIFB)

#### 2.4.2.3 DSP Internal Memories

The DSP has access to the following DSP memories:

- L2 RAM
- L1P RAM
- L1D RAM

#### 2.4.2.4 C674x CPU

The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2 memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both.

Table 2-2 shows a memory map of the C674x CPU cache registers for the device.

Table 2-2. C674x Cache Registers

| HEX ADDRESS RANGE         | REGISTER ACRONYM | DESCRIPTION                                   |
|---------------------------|------------------|-----------------------------------------------|
| 0x0184 0000               | L2CFG            | L2 Cache configuration register               |
| 0x0184 0020               | L1PCFG           | L1P Size Cache configuration register         |
| 0x0184 0024               | L1PCC            | L1P Freeze Mode Cache configuration register  |
| 0x0184 0040               | L1DCFG           | L1D Size Cache configuration register         |
| 0x0184 0044               | L1DCC            | L1D Freeze Mode Cache configuration register  |
| 0x0184 0048 - 0x0184 0FFC | -                | Reserved                                      |
| 0x0184 1000               | EDMAWEIGHT       | L2 EDMA access control register               |
| 0x0184 1004 - 0x0184 1FFC | -                | Reserved                                      |
| 0x0184 2000               | L2ALLOC0         | L2 allocation register 0                      |
| 0x0184 2004               | L2ALLOC1         | L2 allocation register 1                      |
| 0x0184 2008               | L2ALLOC2         | L2 allocation register 2                      |
| 0x0184 200C               | L2ALLOC3         | L2 allocation register 3                      |
| 0x0184 2010 - 0x0184 3FFF | -                | Reserved                                      |
| 0x0184 4000               | L2WBAR           | L2 writeback base address register            |
| 0x0184 4004               | L2WWC            | L2 writeback word count register              |
| 0x0184 4010               | L2WIBAR          | L2 writeback invalidate base address register |
| 0x0184 4014               | L2WIWC           | L2 writeback invalidate word count register   |
| 0x0184 4018               | L2IBAR           | L2 invalidate base address register           |
| 0x0184 401C               | L2IWC            | L2 invalidate word count register             |
| 0x0184 4020               | L1PIBAR          | L1P invalidate base address register          |



## Table 2-2. C674x Cache Registers (continued)

| HEX ADDRESS RANGE         | REGISTER ACRONYM | DESCRIPTION                                                                     |
|---------------------------|------------------|---------------------------------------------------------------------------------|
| 0x0184 4024               | L1PIWC           | L1P invalidate word count register                                              |
| 0x0184 4030               | L1DWIBAR         | L1D writeback invalidate base address register                                  |
| 0x0184 4034               | L1DWIWC          | L1D writeback invalidate word count register                                    |
| 0x0184 4038               | -                | Reserved                                                                        |
| 0x0184 4040               | L1DWBAR          | L1D Block Writeback                                                             |
| 0x0184 4044               | L1DWWC           | L1D Block Writeback                                                             |
| 0x0184 4048               | L1DIBAR          | L1D invalidate base address register                                            |
| 0x0184 404C               | L1DIWC           | L1D invalidate word count register                                              |
| 0x0184 4050 - 0x0184 4FFF | -                | Reserved                                                                        |
| 0x0184 5000               | L2WB             | L2 writeback all register                                                       |
| 0x0184 5004               | L2WBINV          | L2 writeback invalidate all register                                            |
| 0x0184 5008               | L2INV            | L2 Global Invalidate without writeback                                          |
| 0x0184 500C - 0x0184 5027 | -                | Reserved                                                                        |
| 0x0184 5028               | L1PINV           | L1P Global Invalidate                                                           |
| 0x0184 502C - 0x0184 5039 | -                | Reserved                                                                        |
| 0x0184 5040               | L1DWB            | L1D Global Writeback                                                            |
| 0x0184 5044               | L1DWBINV         | L1D Global Writeback with Invalidate                                            |
| 0x0184 5048               | L1DINV           | L1D Global Invalidate without writeback                                         |
| 0x0184 8000 - 0x0184 80FF | MAR0 - MAR63     | Reserved 0x0000 0000 – 0x3FFF FFFF                                              |
| 0x0184 8100 – 0x0184 817F | MAR64 – MAR95    | Memory Attribute Registers for EMIFA SDRAM Data (CS0) 0x4000 0000 – 0x5FFF FFFF |
| 0x0184 8180 – 0x0184 8187 | MAR96 - MAR97    | Memory Attribute Registers for EMIFA Async Data (CS2) 0x6000 0000 – 0x61FF FFFF |
| 0x0184 8188 – 0x0184 818F | MAR98 – MAR99    | Memory Attribute Registers for EMIFA Async Data (CS2) 0x6200 0000 – 0x63FF FFFF |
| 0x0184 8190 – 0x0184 8197 | MAR100 – MAR101  | Memory Attribute Registers for EMIFA Async Data (CS2) 0x6400 0000 – 0x65FF FFFF |
| 0x0184 8198 – 0x0184 819F | MAR102 – MAR103  | Memory Attribute Registers for EMIFA Async Data (CS2) 0x6600 0000 – 0x67FF FFFF |
| 0x0184 81A0 - 0x0184 81FF | MAR104 – MAR127  | Reserved 0x6800 0000 – 0x7FFF FFFF                                              |
| 0x0184 8200               | MAR128           | Memory Attribute Register for Shared RAM 0x8000 0000 – 0x8001 FFFF              |
| 0.00104 0200              | IVIAN 120        | Reserved 0x8002 0000 – 0x81FF FFFF                                              |
| 0x0184 8204 - 0x0184 82FF | MAR129 – MAR191  | Reserved 0x8200 0000 – 0xBFFF FFFF                                              |
| 0x0184 8300 – 0x0184 837F | MAR192 – MAR223  | Memory Attribute Registers for EMIFD SDRAM Data (CS2) 0xC000 0000 – 0xDFFF FFFF |
| 0x0184 8380 – 0x0184 83FF | MAR224 - MAR255  | Reserved 0xE000 0000 – 0xFFFF FFFF                                              |

See Table 2-3 for a detailed top level OMAPL137 memory map that includes the DSP memory space.



# 2.5 Memory Map Summary

# Table 2-3. OMAPL137 Top Level Memory Map

| Start Address | End Address  | Size          | ARM Mem            | DSP Mem Map                 | EDMA Mem      | dMAX Mem                       | Master                | LCDC       |
|---------------|--------------|---------------|--------------------|-----------------------------|---------------|--------------------------------|-----------------------|------------|
| Otart Address | Liid Addie33 | Oize          | Мар                | DOI MEIII Map               | Мар           | Мар                            | Peripheral<br>Mem Map | Mem<br>Map |
| 0x0000 0000   | 0x0000 0FFF  | 4K            |                    | -                           |               | dMAX Local<br>Address<br>Space | -                     |            |
| 0x0000 1000   | 0x006F FFFF  | 6M +<br>1020K |                    |                             | -             |                                |                       |            |
| 0x0070 0000   | 0x007F FFFF  | 1024K         | -                  | DSP L2 ROM                  |               | -                              |                       |            |
| 0x0080 0000   | 0x0083 FFFF  | 256K          | -                  | DSP L2 RAM                  |               | -                              |                       |            |
| 0x0084 0000   | 0x00DF FFFF  | 5M +<br>768K  |                    |                             | -             |                                |                       |            |
| 0x00E0 0000   | 0x00E0 7FFF  | 32K           | -                  | DSP L1P RAM                 |               | -                              |                       |            |
| 0x00E0 8000   | 0x00EF FFFF  | 992K          |                    |                             | -             |                                |                       |            |
| 0x00F0 0000   | 0x00F0 7FFF  | 32K           | -                  | DSP L1D RAM                 |               | -                              |                       |            |
| 0x00F0 8000   | 0x017F FFFF  | 8M +<br>992K  |                    |                             | -             |                                |                       |            |
| 0x0180 0000   | 0x0180 FFFF  | 64K           | -                  | DSP Interrupt<br>Controller |               | -                              |                       |            |
| 0x0181 0000   | 0x0181 0FFF  | 4K            | -                  | DSP Powerdown<br>Controller |               | -                              |                       |            |
| 0x0181 1000   | 0x0181 1FFF  | 4K            | -                  | DSP Security ID             |               | -                              |                       |            |
| 0x0181 2000   | 0x0181 2FFF  | 4K            | -                  | DSP Revision ID             |               | -                              |                       |            |
| 0x0181 3000   | 0x0181 FFFF  | 52K           | -                  | -                           |               | -                              |                       |            |
| 0x0182 0000   | 0x0182 FFFF  | 64K           | •                  | DSP EMC                     |               | -                              |                       |            |
| 0x0183 0000   | 0x0183 FFFF  | 64K           | -                  | DSP Internal<br>Reserved    |               | -                              |                       |            |
| 0x0184 0000   | 0x0184 FFFF  | 64K           | -                  | DSP Memory<br>System        |               | -                              |                       |            |
| 0x0185 0000   | 0x0187 FFFF  | 192K          |                    |                             | -             |                                |                       |            |
| 0x0188 0000   | 0x01BC 03FF  | 3M +<br>257K  |                    |                             | -             |                                |                       |            |
| 0x01BC 0400   | 0x01BC 042F  | 48            |                    |                             | -             |                                |                       |            |
| 0x01BC 0430   | 0x01BC 044F  | 32            |                    |                             | -             |                                |                       |            |
| 0x01BC 0000   | 0x01BC 0FFF  | 4K            | ARM ETB memory     |                             |               | -                              |                       |            |
| 0x01BC 1000   | 0x01BC 17FF  | 2K            | ARM ETB reg        |                             |               | -                              |                       |            |
| 0x01BC 1800   | 0x01BC 18FF  | 256           | ARM Ice<br>Crusher |                             |               | -                              |                       |            |
| 0x01BC 0500   | 0x01BC FFFF  | 62K +<br>768  |                    |                             | -             |                                |                       |            |
| 0x01BD 0000   | 0x01BD FFFF  | 64K           |                    |                             | -             |                                |                       |            |
| 0x01BE 0000   | 0x01BF FFFF  | 128K          |                    |                             | -             |                                |                       |            |
| 0x01C0 0000   | 0x01C0 7FFF  | 32K           |                    |                             | EDMA3 CC      |                                |                       | -          |
| 0x01C0 8000   | 0x01C0 83FF  | 1024          |                    |                             | EDMA3 TC0     |                                |                       | -          |
| 0x01C0 8400   | 0x01C0 87FF  | 1024          |                    | E                           | EDMA3 TC1     |                                |                       | -          |
| 0x01C0 8800   | 0x01C0 FFFF  | 30K           |                    |                             | -             |                                |                       |            |
| 0x01C1 0000   | 0x01C1 0FFF  | 4K            |                    |                             | PSC 0         |                                |                       | -          |
| 0x01C1 1000   | 0x01C1 1FFF  | 4K            |                    | P                           | LL Controller |                                |                       | -          |
| 0x01C1 2000   | 0x01C1 3FFF  | 8K            |                    |                             | -             |                                |                       |            |
| 0x01C1 4000   | 0x01C1 4FFF  | 4K            |                    |                             | SYSCFG        |                                |                       | _          |



# Table 2-3. OMAPL137 Top Level Memory Map (continued)

| Otant Addings                         | Ford Address | 0:          | A D.M. M       | DOD M M     | FDMA Maria        | ,               |                                 | 1.000              |
|---------------------------------------|--------------|-------------|----------------|-------------|-------------------|-----------------|---------------------------------|--------------------|
| Start Address                         | End Address  | Size        | ARM Mem<br>Map | DSP Mem Map | EDMA Mem<br>Map   | dMAX Mem<br>Map | Master<br>Peripheral<br>Mem Map | LCDC<br>Mem<br>Map |
| 0x01C1 5000                           | 0x01C1 5FFF  | 4K          |                |             | -                 |                 |                                 |                    |
| 0x01C1 6000                           | 0x01C1 6FFF  | 4K          |                |             | -                 |                 |                                 |                    |
| 0x01C1 7000                           | 0x01C1 7FFF  | 4K          |                |             | -                 |                 |                                 |                    |
| 0x01C1 8000                           | 0x01C1 FFFF  | 32K         |                | -           |                   |                 |                                 |                    |
| 0x01C2 0000                           | 0x01C2 0FFF  | 4K          |                |             | Timer64P 0        |                 |                                 | -                  |
| 0x01C2 1000                           | 0x01C2 1FFF  | 4K          |                |             | Timer64P 1        |                 |                                 | -                  |
| 0x01C2 2000                           | 0x01C2 2FFF  | 4K          |                |             | I2C 0             |                 |                                 | -                  |
| 0x01C2 3000                           | 0x01C2 3FFF  | 4K          |                |             | RTC               |                 |                                 | -                  |
| 0x01C2 4000                           | 0x01C2 4FFF  | 4K          |                |             | -                 |                 |                                 |                    |
| 0x01C2 5000                           | 0x01C2 FFFF  | 44K         |                |             | -                 |                 |                                 |                    |
| 0x01C3 0000                           | 0x01C3 01FF  | 512         |                | dMA         | AX Data RAM 0     |                 |                                 | -                  |
| 0x01C3 0200                           | 0x01C3 1FFF  | 7K +        |                |             | -                 |                 |                                 |                    |
|                                       |              | 512         |                |             |                   |                 |                                 |                    |
| 0x01C3 2000                           | 0x01C3 21FF  | 512         |                | dMA         | AX Data RAM 1     |                 |                                 | -                  |
| 0x01C3 2200                           | 0x01C3 3FFF  | 7K +<br>512 |                |             | -                 |                 |                                 |                    |
| 0x01C3 4000                           | 0x01C3 7FFF  | 16K         |                | dMAX        | Control Register  | S               |                                 | -                  |
| 0x01C3 8000                           | 0x01C3 8FFF  | 4K          |                | dMAX MAX    | Configuration M   | lemory          |                                 | -                  |
| 0x01C3 9000                           | 0x01C3 BFFF  | 12K         |                |             | -                 |                 |                                 |                    |
| 0x01C3 C000                           | 0x01C3 CFFF  | 4K          |                | dMAX MAX    | 1 Configuration M | lemory          |                                 | -                  |
| 0x01C3 D000                           | 0x01C3 FFFF  | 12K         |                |             | -                 |                 |                                 |                    |
| 0x01C4 0000                           | 0x01C4 0FFF  | 4K          |                |             | MMC/SD 0          |                 |                                 | -                  |
| 0x01C4 1000                           | 0x01C4 1FFF  | 4K          |                |             | SPI 0             |                 |                                 | -                  |
| 0x01C4 2000                           | 0x01C4 2FFF  | 4K          |                |             | UART 0            |                 |                                 | -                  |
| 0x01C4 3000                           | 0x01C4 3FFF  | 4K          |                |             | -                 |                 |                                 |                    |
| 0x01C4 4000                           | 0x01CF FFFF  | 752K        |                |             | -                 |                 |                                 |                    |
| 0x01D0 0000                           | 0x01D0 0FFF  | 4K          |                | Mc          | ASP 0 Control     |                 |                                 | -                  |
| 0x01D0 1000                           | 0x01D0 1FFF  | 4K          |                | McA         | SP 0 AFIFO Ctrl   |                 |                                 | -                  |
| 0x01D0 2000                           | 0x01D0 2FFF  | 4K          |                | M           | lcASP 0 Data      |                 |                                 | -                  |
| 0x01D0 3000                           | 0x01D0 3FFF  | 4K          |                |             | -                 |                 |                                 |                    |
| 0x01D0 4000                           | 0x01D0 4FFF  | 4K          |                | Mc          | ASP 1 Control     |                 |                                 | -                  |
| 0x01D0 5000                           | 0x01D0 5FFF  | 4K          |                | McA         | SP 1 AFIFO Ctrl   |                 |                                 | -                  |
| 0x01D0 6000                           | 0x01D0 6FFF  | 4K          |                | M           | lcASP 1 Data      |                 |                                 | -                  |
| 0x01D0 7000                           | 0x01D0 7FFF  | 4K          |                |             | -                 |                 |                                 |                    |
| 0x01D0 8000                           | 0x01D0 8FFF  | 4K          |                | Mc          | ASP 2 Control     |                 |                                 | -                  |
| 0x01D0 9000                           | 0x01D0 9FFF  | 4K          |                | McA         | SP 2 AFIFO Ctrl   |                 |                                 | -                  |
| 0x01D0 A000                           | 0x01D0 AFFF  | 4K          |                | M           | lcASP 2 Data      |                 |                                 | -                  |
| 0x01D0 B000                           | 0x01D0 BFFF  | 4K          |                |             | -                 |                 |                                 |                    |
| 0x01D0 C000                           | 0x01D0 CFFF  | 4K          |                |             | UART 1            |                 |                                 | -                  |
| 0x01D0 D000                           | 0x01D0 DFFF  | 4K          |                |             | UART 2            |                 |                                 | -                  |
| 0x01D0 E000                           | 0x01D0 EFFF  | 4K          |                |             | -                 |                 |                                 |                    |
| 0x01D0 F000                           | 0x01DF FFFF  | 964K        | -              |             |                   |                 |                                 |                    |
| 0x01E0 0000                           | 0x01E0 FFFF  | 64K         | USB0           |             |                   |                 | -                               |                    |
| 0x01E1 0000                           | 0x01E1 0FFF  | 4K          |                | UHPI        |                   |                 |                                 | -                  |
| 0x01E1 1000                           | 0x01E1 1FFF  | 4K          |                |             | -                 |                 |                                 |                    |
| 0x01E1 2000                           | 0x01E1 2FFF  | 4K          |                |             | SPI 1             |                 |                                 | -                  |
| · · · · · · · · · · · · · · · · · · · |              |             |                |             |                   |                 |                                 |                    |



# Table 2-3. OMAPL137 Top Level Memory Map (continued)

| Start Address | End Address | Size           | ARM Mem<br>Map | DSP Mem Map | EDMA Mem<br>Map  | dMAX Mem<br>Map | Master<br>Peripheral<br>Mem Map | LCDC<br>Mem<br>Map |
|---------------|-------------|----------------|----------------|-------------|------------------|-----------------|---------------------------------|--------------------|
| 0x01E1 3000   | 0x01E1 3FFF | 4K             | LCD Controller |             | -                |                 |                                 |                    |
| 0x01E1 4000   | 0x01E1 4FFF | 4K             |                | MPU 1       |                  |                 |                                 | -                  |
| 0x01E1 5000   | 0x01E1 5FFF | 4K             |                |             | MPU 2            |                 |                                 | -                  |
| 0x01E1 6000   | 0x01E1 FFFF | 40K            |                | -           |                  |                 |                                 |                    |
| 0x01E2 0000   | 0x01E2 1FFF | 8K             |                | EMAC C      | ontrol Module R  | ΑM              |                                 | -                  |
| 0x01E2 2000   | 0x01E2 2FFF | 4K             |                | EMAC Cor    | ntrol Module Reg | isters          |                                 | -                  |
| 0x01E2 3000   | 0x01E2 3FFF | 4K             |                | EMAC        | Control Register | s               |                                 | -                  |
| 0x01E2 4000   | 0x01E2 4FFF | 4K             |                | EM          | AC MDIO port     |                 |                                 | -                  |
| 0x01E2 5000   | 0x01E2 5FFF | 4K             |                |             | USB1             |                 |                                 | -                  |
| 0x01E2 6000   | 0x01E2 6FFF | 4K             |                |             | GPIO             |                 |                                 | -                  |
| 0x01E2 7000   | 0x01E2 7FFF | 4K             |                |             | PSC 1            |                 |                                 | -                  |
| 0x01E2 8000   | 0x01E2 8FFF | 4K             |                |             | I2C 1            |                 |                                 | -                  |
| 0x01E2 9000   | 0x01E2 9FFF | 4K             |                |             | -                |                 |                                 | 1                  |
| 0x01E2 A000   | 0x01EF FFFF | 856K           |                |             | -                |                 |                                 |                    |
| 0x01F0 0000   | 0x01F0 0FFF | 4K             |                |             | EPWM 0           |                 |                                 | -                  |
| 0x01F0 1000   | 0x01F0 1FFF | 4K             |                |             | HRPWM 0          |                 |                                 | -                  |
| 0x01F0 2000   | 0x01F0 2FFF | 4K             |                |             | eHRPWM 1         |                 |                                 | -                  |
| 0x01F0 3000   | 0x01F0 3FFF | 4K             |                |             | HRPWM 1          |                 |                                 | -                  |
| 0x01F0 4000   | 0x01F0 4FFF | 4K             |                | (           | eHRPWM 2         |                 |                                 | -                  |
| 0x01F0 5000   | 0x01F0 5FFF | 4K             |                |             | HRPWM 2          |                 |                                 | -                  |
| 0x01F0 6000   | 0x01F0 6FFF | 4K             |                |             | ECAP 0           |                 |                                 | -                  |
| 0x01F0 7000   | 0x01F0 7FFF | 4K             |                |             | ECAP 1           |                 |                                 | -                  |
| 0x01F0 8000   | 0x01F0 8FFF | 4K             |                |             | ECAP 2           |                 |                                 | -                  |
| 0x01F0 9000   | 0x01F0 9FFF | 4K             |                |             | EQEP 0           |                 |                                 | -                  |
| 0x01F0 A000   | 0x01F0 AFFF | 4K             |                |             | EQEP 1           |                 |                                 | -                  |
| 0x01F0 B000   | 0x01F0 BFFF | 4K             |                |             | -                |                 |                                 |                    |
| 0x01F0 C000   | 0x116F FFFF | 247M +<br>976K |                |             | -                |                 |                                 |                    |
| 0x1170 0000   | 0x117F FFFF | 1024K          |                | С           | SP L2 ROM        |                 |                                 | -                  |
| 0x1180 0000   | 0x1183 FFFF | 256K           |                | Ε           | SP L2 RAM        |                 |                                 | -                  |
| 0x1184 0000   | 0x11DF FFFF | 5M +<br>768K   |                |             | -                |                 |                                 |                    |
| 0x11E0 0000   | 0x11E0 7FFF | 32K            |                | D           | SP L1P RAM       |                 |                                 | -                  |
| 0x11E0 8000   | 0x11EF FFFF | 992K           |                |             | -                |                 |                                 |                    |
| 0x11F0 0000   | 0x11F0 7FFF | 32K            |                | D           | SP L1D RAM       |                 |                                 | -                  |
| 0x11F0 8000   | 0x3FFF FFFF | 736M +<br>992K |                |             | -                |                 |                                 |                    |
| 0x4000 0000   | 0x5FFF FFFF | 512M           |                | EMIFA :     | SDRAM data (CS   | 80)             |                                 | -                  |
| 0x6000 0000   | 0x61FF FFFF | 32M            |                |             | async data (CS2  | ,               |                                 | -                  |
| 0x6200 0000   | 0x63FF FFFF | 32M            |                | EMIFA       | async data (CS3  | 3)              |                                 | -                  |
| 0x6400 0000   | 0x65FF FFFF | 32M            |                | EMIFA       | async data (CS4  | 1)              |                                 | -                  |
| 0x6600 0000   | 0x67FF FFFF | 32M            |                | EMIFA       | async data (CS5  | 5)              |                                 | -                  |
| 0x6800 0000   | 0x6800 7FFF | 32K            |                | EMIF        | A Control Regs   |                 |                                 | -                  |
| 0x6800 8000   | 0x7FFF FFFF | 383M +<br>992K |                |             | -                |                 |                                 |                    |
| 0000 0008x0   | 0x8001 FFFF | 128K           |                |             | Shared RAM       |                 |                                 | -                  |



# Table 2-3. OMAPL137 Top Level Memory Map (continued)

| Start Address | End Address | Size           | ARM Mem<br>Map              | DSP Mem Map | EDMA Mem<br>Map | dMAX Mem<br>Map | Master<br>Peripheral<br>Mem Map | LCDC<br>Mem<br>Map |
|---------------|-------------|----------------|-----------------------------|-------------|-----------------|-----------------|---------------------------------|--------------------|
| 0x8002 0000   | 0xAFFF FFFF | 767M +<br>896K |                             |             | -               |                 |                                 |                    |
| 0xB000 0000   | 0xB000 7FFF | 32K            |                             |             | EMIFB Control F | Regs            |                                 |                    |
| 0xB000 8000   | 0xBFFF FFFF | 255M +<br>992K |                             |             | -               |                 |                                 |                    |
| 0xC000 0000   | 0xDFFF FFFF | 512M           |                             |             | EMIFB SDRAM     | Data            |                                 |                    |
| 0xE000 0000   | 0xFFFC FFFF | 511M +<br>832K |                             |             | -               |                 |                                 |                    |
| 0xFFFD 0000   | 0xFFFD FFFF | 64K            | ARM local<br>ROM            |             |                 | -               |                                 |                    |
| 0xFFFE 0000   | 0xFFFE DFFF | 56K            |                             |             | -               |                 |                                 |                    |
| 0xFFFE E000   | 0xFFFE FFFF | 8K             | ARM Interrupt<br>Controller |             |                 | -               |                                 |                    |
| 0xFFFF 0000   | 0xFFFF 1FFF | 8K             | ARM local<br>RAM            |             |                 | -               |                                 |                    |
| 0xFFFF 2000   | 0xFFFF FFFF | 56K            |                             |             | -               |                 |                                 |                    |

The DSP L2 ROM is used for boot purposes and cannot be programmed with application code.

www.ti.com

## 2.6 Bare Die Information

| DIE THICKNESS                 | BACKSIDE FINISH | BACKSIDE<br>POTENTIAL | BOND PAD METALLIZATION COMPOSITION | BOND PAD<br>THICKNESS |
|-------------------------------|-----------------|-----------------------|------------------------------------|-----------------------|
| 380 µm Silicon with backgrind |                 | Floating              | TaN/AlCu                           | 1000 nm               |





## **Table 2-4. Bond Pad Coordinates in Microns**

| DESCRIPTION | PAD NUMBER | X MIN    | Y MIN  | X MAX    | Y MAX  |
|-------------|------------|----------|--------|----------|--------|
| AXR1_00     | 1          | 209.005  | 13.225 | 274.005  | 78.225 |
| UART0_RXD   | 2          | 279.005  | 13.225 | 344.005  | 78.225 |
| UART0_TXD   | 3          | 349.005  | 13.225 | 414.005  | 78.225 |
| AXR1_10     | 4          | 419.005  | 13.225 | 484.005  | 78.225 |
| VDDSHV      | 5          | 509.005  | 13.225 | 574.005  | 78.225 |
| N/C         | 6          | 582.755  | 13.225 | 647.755  | 78.225 |
| VSS         | 7          | 652.755  | 13.225 | 717.755  | 78.225 |
| AXR1_11     | 8          | 722.755  | 13.225 | 787.755  | 78.225 |
| SPI0_SCSN   | 9          | 792.755  | 13.225 | 857.755  | 78.225 |
| VDD         | 10         | 862.755  | 13.225 | 927.755  | 78.225 |
| SPI0_CLK    | 11         | 932.755  | 13.225 | 997.755  | 78.225 |
| SPI0_ENAN   | 12         | 1002.755 | 13.225 | 1067.755 | 78.225 |
| SPI1_SOMI   | 13         | 1072.755 | 13.225 | 1137.755 | 78.225 |
| SPI1_SIMO   | 14         | 1142.755 | 13.225 | 1207.755 | 78.225 |
| VDDSHV      | 15         | 1212.755 | 13.225 | 1277.755 | 78.225 |
| VSS         | 16         | 1299.005 | 13.225 | 1364.005 | 78.225 |
| N/C         | 17         | 1372.755 | 13.225 | 1437.755 | 78.225 |
| SPI1_CLK    | 18         | 1442.755 | 13.225 | 1507.755 | 78.225 |
| SPI0_SOMI   | 19         | 1512.755 | 13.225 | 1577.755 | 78.225 |
| SPI0_SIMO   | 20         | 1582.755 | 13.225 | 1647.755 | 78.225 |
| EMA_WAIT    | 21         | 1652.755 | 13.225 | 1717.755 | 78.225 |
| VDD         | 22         | 1722.755 | 13.225 | 1787.755 | 78.225 |
| EMA_OEN     | 23         | 1792.755 | 13.225 | 1857.755 | 78.225 |
| EMA_CSN_2   | 24         | 1862.755 | 13.225 | 1927.755 | 78.225 |
| VDDSHV      | 25         | 1932.755 | 13.225 | 1997.755 | 78.225 |
| N/C         | 26         | 2002.755 | 13.225 | 2067.755 | 78.225 |
| VSS         | 27         | 2089.005 | 13.225 | 2154.005 | 78.225 |
| N/C         | 28         | 2159.005 | 13.225 | 2224.005 | 78.225 |
| N/C         | 29         | 2229.005 | 13.225 | 2294.005 | 78.225 |
| EMA_BA_1    | 30         | 2299.005 | 13.225 | 2364.005 | 78.225 |
| EMA_A_10    | 31         | 2369.005 | 13.225 | 2434.005 | 78.225 |
| VDD         | 32         | 2439.005 | 13.225 | 2504.005 | 78.225 |
| EMA_A_00    | 33         | 2509.005 | 13.225 | 2574.005 | 78.225 |
| EMA_A_01    | 34         | 2579.005 | 13.225 | 2644.005 | 78.225 |
| EMA_A_02    | 35         | 2649.005 | 13.225 | 2714.005 | 78.225 |
| EMA_A_03    | 36         | 2719.005 | 13.225 | 2784.005 | 78.225 |
| VDDSHV      | 37         | 2789.005 | 13.225 | 2854.005 | 78.225 |
| VSS         | 38         | 2879.005 | 13.225 | 2944.005 | 78.225 |
| N/C         | 39         | 2954.005 | 13.225 | 3019.005 | 78.225 |
| EMA_A_04    | 40         | 3024.005 | 13.225 | 3089.005 | 78.225 |
| EMA_A_05    | 41         | 3094.005 | 13.225 | 3159.005 | 78.225 |
| EMA_A_06    | 42         | 3164.005 | 13.225 | 3229.005 | 78.225 |
| EMA_A_07    | 43         | 3234.005 | 13.225 | 3299.005 | 78.225 |
| VDD         | 44         | 3304.005 | 13.225 | 3369.005 | 78.225 |
| EMA_A_08    | 45         | 3374.005 | 13.225 | 3439.005 | 78.225 |
| EMA_A_09    | 46         | 3444.005 | 13.225 | 3509.005 | 78.225 |
| EMA_A_09    | 47         | 3514.005 | 13.225 | 3579.005 | 78.225 |



| DESCRIPTION | PAD NUMBER | X MIN    | Y MIN    | X MAX    | Y MAX    |
|-------------|------------|----------|----------|----------|----------|
| EMA_A_12    | 48         | 3584.005 | 13.225   | 3649.005 | 78.225   |
| N/C         | 49         | 3654.005 | 13.225   | 3719.005 | 78.225   |
| VDDSHV      | 50         | 3739.005 | 13.225   | 3804.005 | 78.225   |
| N/C         | 51         | 3814.005 | 13.225   | 3879.005 | 78.225   |
| N/C         | 52         | 3884.005 | 13.225   | 3949.005 | 78.225   |
| N/C         | 53         | 3954.005 | 13.225   | 4019.005 | 78.225   |
| N/C         | 54         | 4024.005 | 13.225   | 4089.005 | 78.225   |
| VSS         | 55         | 4094.005 | 13.225   | 4159.005 | 78.225   |
| N/C         | 56         | 4284.785 | 209.005  | 4349.785 | 274.005  |
| EMA_D_00    | 57         | 4284.785 | 279.435  | 4349.785 | 344.435  |
| N/C         | 58         | 4284.785 | 349.865  | 4349.785 | 414.865  |
| EMA_D_01    | 59         | 4284.785 | 420.295  | 4349.785 | 485.295  |
| EMA_D_02    | 60         | 4284.785 | 510.725  | 4349.785 | 575.725  |
| N/C         | 61         | 4284.785 | 580.91   | 4349.785 | 645.91   |
| N/C         | 62         | 4284.785 | 650.91   | 4349.785 | 715.91   |
| VDDSHV      | 63         | 4284.785 | 720.91   | 4349.785 | 785.91   |
| N/C         | 64         | 4284.785 | 790.91   | 4349.785 | 855.91   |
| VSS         | 65         | 4284.785 | 860.91   | 4349.785 | 925.91   |
| EMA_D_03    | 66         | 4284.785 | 930.91   | 4349.785 | 995.91   |
| N/C         | 67         | 4284.785 | 1000.91  | 4349.785 | 1065.91  |
| EMA D 04    | 68         | 4284.785 | 1070.91  | 4349.785 | 1135.91  |
| N/C         | 69         | 4284.785 | 1140.91  | 4349.785 | 1205.91  |
| VDD         | 70         | 4284.785 | 1210.91  | 4349.785 | 1275.91  |
| N/C         | 71         | 4284.785 | 1280.91  | 4349.785 | 1345.91  |
| EMA_D_05    | 72         | 4284.785 | 1355.885 | 4349.785 | 1420.885 |
| N/C         | 73         | 4284.785 | 1444.97  | 4349.785 | 1509.97  |
| EMA_D_06    | 74         | 4284.785 | 1514.97  | 4349.785 | 1579.97  |
| N/C         | 75         | 4284.785 | 1584.97  | 4349.785 | 1649.97  |
| VSS         | 76         | 4284.785 | 1654.97  | 4349.785 | 1719.97  |
| VDDSHV      | 77         | 4284.785 | 1724.97  | 4349.785 | 1789.97  |
| N/C         | 78         | 4284.785 | 1794.97  | 4349.785 | 1859.97  |
| N/C         | 79         | 4284.785 | 1864.97  | 4349.785 | 1929.97  |
| N/C         | 80         | 4284.785 | 1934.97  | 4349.785 | 1999.97  |
| EMA_D_07    | 81         | 4284.785 | 2004.97  | 4349.785 | 2069.97  |
| N/C         | 82         | 4284.785 | 2074.97  | 4349.785 | 2139.97  |
| EMA_WEN     | 83         | 4284.785 | 2150.615 | 4349.785 | 2215.615 |
| N/C         | 84         | 4284.785 | 2235.345 | 4349.785 | 2300.345 |
| VDD         | 85         | 4284.785 | 2305.345 | 4349.785 | 2370.345 |
| VSS         | 86         | 4284.785 | 2375.345 | 4349.785 | 2440.345 |
| N/C         | 87         | 4284.785 | 2445.345 | 4349.785 | 2510.345 |
| VDDSHV      | 88         | 4284.785 | 2515.345 | 4349.785 | 2580.345 |
| VDDSHV      | 89         | 4284.785 | 2585.345 | 4349.785 | 2650.345 |
| VDD         | 90         | 4284.785 | 2655.345 | 4349.785 | 2720.345 |
| VDD         | 91         | 4284.785 | 2725.345 | 4349.785 | 2790.345 |
| N/C         | 92         | 4284.785 | 2795.345 | 4349.785 | 2860.345 |
| VSS         | 93         | 4284.785 | 2865.345 | 4349.785 | 2930.345 |
| N/C         | 94         | 4284.785 | 2935.345 | 4349.785 | 3000.345 |
| IN/C        | <b>34</b>  | 4204.700 | 2930.340 | 4348.765 | 3000.343 |



| DESCRIPTION | PAD NUMBER | X MIN    | Y MIN    | X MAX    | Y MAX    |
|-------------|------------|----------|----------|----------|----------|
| VDDSHV      | 95         | 4284.785 | 3015.775 | 4349.785 | 3080.775 |
| VDDAR1      | 96         | 4284.785 | 3106.205 | 4349.785 | 3171.205 |
| N/C         | 97         | 4284.785 | 3176.635 | 4349.785 | 3241.635 |
| N/C         | 98         | 4284.785 | 3247.065 | 4349.785 | 3312.065 |
| VDDNWA1     | 99         | 4284.785 | 3325.925 | 4349.785 | 3390.925 |
| VDDNWA1     | 100        | 4284.785 | 3400.02  | 4349.785 | 3465.02  |
| VDD         | 101        | 4284.785 | 3470.02  | 4349.785 | 3535.02  |
| VSS         | 102        | 4284.785 | 3540.02  | 4349.785 | 3605.02  |
| VDDSHV      | 103        | 4284.785 | 3610.02  | 4349.785 | 3675.02  |
| N/C         | 104        | 4284.785 | 3680.02  | 4349.785 | 3745.02  |
| N/C         | 105        | 4284.785 | 3750.02  | 4349.785 | 3815.02  |
| VSS         | 106        | 4284.785 | 3824.225 | 4349.785 | 3889.225 |
| N/C         | 107        | 4284.785 | 3913.46  | 4349.785 | 3978.46  |
| VDDSHV      | 108        | 4284.785 | 3983.46  | 4349.785 | 4048.46  |
| VDD         | 109        | 4284.785 | 4053.46  | 4349.785 | 4118.46  |
| N/C         | 110        | 4284.785 | 4123.46  | 4349.785 | 4188.46  |
| N/C         | 111        | 4284.785 | 4193.46  | 4349.785 | 4258.46  |
| VSS         | 112        | 4284.785 | 4263.46  | 4349.785 | 4328.46  |
| N/C         | 113        | 4284.785 | 4333.46  | 4349.785 | 4398.46  |
| VDDSHV      | 114        | 4284.785 | 4407.665 | 4349.785 | 4472.665 |
| VSS         | 115        | 4284.785 | 4497.34  | 4349.785 | 4562.34  |
| N/C         | 116        | 4284.785 | 4567.34  | 4349.785 | 4632.34  |
|             |            |          |          |          |          |
| N/C         | 117        | 4284.785 | 4637.34  | 4349.785 | 4702.34  |
| VDDSHV      | 118        | 4284.785 | 4707.34  | 4349.785 | 4772.34  |
| VSS         | 119        | 4284.785 | 4777.34  | 4349.785 | 4842.34  |
| VDDSHV      | 120        | 4284.785 | 4847.34  | 4349.785 | 4912.34  |
| VDD         | 121        | 4284.785 | 4917.34  | 4349.785 | 4982.34  |
| N/C         | 122        | 4284.785 | 4987.34  | 4349.785 | 5052.34  |
| VSS         | 123        | 4284.785 | 5061.535 | 4349.785 | 5126.535 |
| VDDSHV      | 124        | 4284.785 | 5150.345 | 4349.785 | 5215.345 |
| VDD         | 125        | 4284.785 | 5220.345 | 4349.785 | 5285.345 |
| VSS         | 126        | 4284.785 | 5290.345 | 4349.785 | 5355.345 |
| VDDSHV      | 127        | 4284.785 | 5360.345 | 4349.785 | 5425.345 |
| AXR0_00     | 128        | 4284.785 | 5430.345 | 4349.785 | 5495.345 |
| N/C         | 129        | 4284.785 | 5500.345 | 4349.785 | 5565.345 |
| AXR0_01     | 130        | 4284.785 | 5574.545 | 4349.785 | 5639.545 |
| AXR0_02     | 131        | 4284.785 | 5665.445 | 4349.785 | 5730.445 |
| VDD         | 132        | 4090.765 | 5861.225 | 4155.765 | 5926.225 |
| N/C         | 133        | 4020.555 | 5861.225 | 4085.555 | 5926.225 |
| N/C         | 134        | 3949.215 | 5861.225 | 4014.215 | 5926.225 |
| N/C         | 135        | 3878.885 | 5861.225 | 3943.885 | 5926.225 |
| N/C         | 136        | 3808.415 | 5861.225 | 3873.415 | 5926.225 |
| N/C         | 137        | 3738.31  | 5861.225 | 3803.31  | 5926.225 |
| AXR0_03     | 138        | 3663.735 | 5861.225 | 3728.735 | 5926.225 |
| N/C         | 139        | 3588.51  | 5861.225 | 3653.51  | 5926.225 |
| AXR0_05     | 140        | 3518.415 | 5861.225 | 3583.415 | 5926.225 |
| AXR0_06     | 141        | 3447.745 | 5861.225 | 3512.745 | 5926.225 |



| DESCRIPTION  | PAD NUMBER | X MIN    | Y MIN    | X MAX    | Y MAX    |
|--------------|------------|----------|----------|----------|----------|
| VSS          | 142        | 3376.035 | 5861.225 | 3441.035 | 5926.225 |
| VDDSHV       | 143        | 3304.27  | 5861.225 | 3369.27  | 5926.225 |
| AXR0_07      | 144        | 3233.645 | 5861.225 | 3298.645 | 5926.225 |
| AXR0_08      | 145        | 3163.25  | 5861.225 | 3228.25  | 5926.225 |
| AFSX0        | 146        | 3089.875 | 5861.225 | 3154.875 | 5926.225 |
| VDDSHV       | 147        | 3019.115 | 5861.225 | 3084.115 | 5926.225 |
| N/C          | 148        | 2948.625 | 5861.225 | 3013.625 | 5926.225 |
| VSS          | 149        | 2869.395 | 5861.225 | 2934.395 | 5926.225 |
| AHCLKR0      | 150        | 2798.835 | 5861.225 | 2863.835 | 5926.225 |
| AFSR0        | 151        | 2726.12  | 5861.225 | 2791.12  | 5926.225 |
| VPP          | 152        | 2652.81  | 5861.225 | 2717.81  | 5926.225 |
| VPP          | 153        | 2581.05  | 5861.225 | 2646.05  | 5926.225 |
| IFORCE       | 154        | 2510.13  | 5861.225 | 2575.13  | 5926.225 |
| VSENSE       | 155        | 2439.42  | 5861.225 | 2504.42  | 5926.225 |
| VDDA18V_USB1 | 156        | 2369.155 | 5861.225 | 2434.155 | 5926.225 |
| VSS          | 157        | 2298.685 | 5861.225 | 2363.685 | 5926.225 |
| USB1_DP      | 158        | 2228.45  | 5861.225 | 2293.45  | 5926.225 |
| N/C          | 159        | 2158.275 | 5861.225 | 2223.275 | 5926.225 |
| USB1_DM      | 160        | 2087.535 | 5861.225 | 2152.535 | 5926.225 |
| VDDA33_USB1  | 161        | 2009.505 | 5861.225 | 2074.505 | 5926.225 |
| VDD          | 162        | 1936.205 | 5861.225 | 2001.205 | 5926.225 |
| VSS          | 163        | 1865.53  | 5861.225 | 1930.53  | 5926.225 |
| USB0_ID      | 164        | 1795.4   | 5861.225 | 1860.4   | 5926.225 |
| USB0_VBUS    | 165        | 1722.27  | 5861.225 | 1787.27  | 5926.225 |
| VDDA12_USB0  | 166        | 1649.685 | 5861.225 | 1714.685 | 5926.225 |
| VDDA18_USB0  | 167        | 1579.34  | 5861.225 | 1644.34  | 5926.225 |
| VSSA_USB0    | 168        | 1509.05  | 5861.225 | 1574.05  | 5926.225 |
| USB0_DP      | 169        | 1438.645 | 5861.225 | 1503.645 | 5926.225 |
| N/C          | 170        | 1368.375 | 5861.225 | 1433.375 | 5926.225 |
| USB0_DM      | 171        | 1298.05  | 5861.225 | 1363.05  | 5926.225 |
| VSSA33_USB0  | 172        | 1219.04  | 5861.225 | 1284.04  | 5926.225 |
| VDDA33_USB0  | 173        | 1147.91  | 5861.225 | 1212.91  | 5926.225 |
| VSS          | 174        | 1076.44  | 5861.225 | 1141.44  | 5926.225 |
| VDDA12_PLL   | 175        | 998.275  | 5861.225 | 1063.275 | 5926.225 |
| VSSA12_PLL   | 176        | 925.39   | 5861.225 | 990.39   | 5926.225 |
| OSCIN        | 177        | 854.085  | 5861.225 | 919.085  | 5926.225 |
| OSCVSS       | 178        | 782.785  | 5861.225 | 847.785  | 5926.225 |
| RESETN       | 179        | 709.655  | 5861.225 | 774.655  | 5926.225 |
| VDD          | 180        | 637.15   | 5861.225 | 702.15   | 5926.225 |
| N/C          | 181        | 559.62   | 5861.225 | 624.62   | 5926.225 |
| RTC_XI       | 182        | 489.565  | 5861.225 | 554.565  | 5926.225 |
| RTC_VSS      | 183        | 419.505  | 5861.225 | 484.505  | 5926.225 |
| RTC_XO       | 184        | 349.49   | 5861.225 | 414.49   | 5926.225 |
| VDD2         | 185        | 279.295  | 5861.225 | 344.295  | 5926.225 |
| N/C          | 186        | 209.175  | 5861.225 | 274.175  | 5926.225 |
| TRSTN        | 187        | 13.225   | 5666.345 | 78.225   | 5731.345 |
| TRSTN        | 188        | 13.225   | 5595.145 | 78.225   | 5660.145 |



| DESCRIPTION | PAD NUMBER | X MIN   | Y MIN    | X MAX   | Y MAX    |
|-------------|------------|---------|----------|---------|----------|
| N/C         | 189        | 13.225  | 5524.925 | 78.225  | 5589.925 |
| N/C         | 190        | 13.225  | 5454.07  | 78.225  | 5519.07  |
| N/C         | 191        | 13.225  | 5382.485 | 78.225  | 5447.485 |
| N/C         | 192        | 13.225  | 5311.205 | 78.225  | 5376.205 |
| N/C         | 193        | 13.225  | 5228.885 | 78.225  | 5293.885 |
| N/C         | 194        | 13.225  | 5154.21  | 78.225  | 5219.21  |
| N/C         | 195        | 13.225  | 5079.015 | 78.225  | 5144.015 |
| N/C         | 196        | 13.225  | 5008.685 | 78.225  | 5073.685 |
| N/C         | 197        | 13.225  | 4937.99  | 78.225  | 5002.99  |
| N/C         | 198        | 147.195 | 4831.665 | 212.195 | 4896.665 |
| N/C         | 199        | 147.195 | 4735.485 | 212.195 | 4800.485 |
| VSS         | 200        | 147.195 | 4622.615 | 212.195 | 4687.615 |
| VDDSHV      | 201        | 147.195 | 4435.67  | 212.195 | 4500.67  |
| N/C         | 202        | 147.195 | 4360.73  | 212.195 | 4425.73  |
| TDI         | 203        | 147.795 | 4235.69  | 212.795 | 4300.69  |
| VDD         | 204        | 147.795 | 4164.985 | 212.795 | 4229.985 |
| N/C         | 205        | 147.795 | 4069.08  | 212.795 | 4134.08  |
| TCK         | 206        | 147.795 | 3989.035 | 212.795 | 4054.035 |
| N/C         | 207        | 13.225  | 3906.515 | 78.225  | 3971.515 |
| TDO         | 208        | 13.225  | 3836.385 | 78.225  | 3901.385 |
| VDDSHV      | 209        |         |          |         |          |
|             |            | 13.225  | 3766.245 | 78.225  | 3831.245 |
| N/C         | 210        | 13.225  | 3696.23  | 78.225  | 3761.23  |
| VSS         | 211        | 13.225  | 3626.11  | 78.225  | 3691.11  |
| VDDAR       | 212        | 13.225  | 3548.85  | 78.225  | 3613.85  |
| VDDNWA      | 213        | 13.225  | 3478.71  | 78.225  | 3543.71  |
| VDD         | 214        | 13.225  | 3406.13  | 78.225  | 3471.13  |
| VDD         | 215        | 13.225  | 3335.39  | 78.225  | 3400.39  |
| VDDSHV      | 216        | 13.225  | 3264.465 | 78.225  | 3329.465 |
| N/C         | 217        | 13.225  | 3193.185 | 78.225  | 3258.185 |
| N/C         | 218        | 13.225  | 3121.465 | 78.225  | 3186.465 |
| VSS         | 219        | 13.225  | 3051.285 | 78.225  | 3116.285 |
| AFSR1       | 220        | 13.225  | 2977.55  | 78.225  | 3042.55  |
| N/C         | 221        | 13.225  | 2907.235 | 78.225  | 2972.235 |
| VDD         | 222        | 13.225  | 2830.14  | 78.225  | 2895.14  |
| VDD         | 223        | 13.225  | 2746.55  | 78.225  | 2811.55  |
| VDDSHV      | 224        | 13.225  | 2674     | 78.225  | 2739     |
| VSS         | 225        | 13.225  | 2603.34  | 78.225  | 2668.34  |
| VSS         | 226        | 13.225  | 2524.765 | 78.225  | 2589.765 |
| N/C         | 227        | 13.225  | 2452.975 | 78.225  | 2517.975 |
| AXR1_04     | 228        | 13.225  | 2380.355 | 78.225  | 2445.355 |
| AXR1_03     | 229        | 13.225  | 2306.825 | 78.225  | 2371.825 |
| AXR1_02     | 230        | 13.225  | 2236.715 | 78.225  | 2301.715 |
| AXR1_01     | 231        | 13.225  | 2155.32  | 78.225  | 2220.32  |
| N/C         | 232        | 13.225  | 2077.3   | 78.225  | 2142.3   |
| N/C         | 233        | 13.225  | 2006.525 | 78.225  | 2071.525 |
| N/C         | 234        | 13.225  | 1934.25  | 78.225  | 1999.25  |
| N/C         | 235        | 13.225  | 1864.03  | 78.225  | 1929.03  |



| DESCRIPTION | PAD NUMBER | X MIN  | Y MIN    | X MAX  | Y MAX    |
|-------------|------------|--------|----------|--------|----------|
| N/C         | 236        | 13.225 | 1793.885 | 78.225 | 1858.885 |
| N/C         | 237        | 13.225 | 1723.855 | 78.225 | 1788.855 |
| N/C         | 238        | 13.225 | 1653.45  | 78.225 | 1718.45  |
| N/C         | 239        | 13.225 | 1582.67  | 78.225 | 1647.67  |
| N/C         | 240        | 13.225 | 1512.07  | 78.225 | 1577.07  |
| N/C         | 241        | 13.225 | 1436.115 | 78.225 | 1501.115 |
| N/C         | 242        | 13.225 | 1361.85  | 78.225 | 1426.85  |
| N/C         | 243        | 13.225 | 1290.35  | 78.225 | 1355.35  |
| N/C         | 244        | 13.225 | 1218.39  | 78.225 | 1283.39  |
| N/C         | 245        | 13.225 | 1147.875 | 78.225 | 1212.875 |
| N/C         | 246        | 13.225 | 1073.32  | 78.225 | 1138.32  |
| N/C         | 247        | 13.225 | 1000.655 | 78.225 | 1065.655 |
| N/C         | 248        | 13.225 | 929.045  | 78.225 | 994.045  |
| N/C         | 249        | 13.225 | 858.22   | 78.225 | 923.22   |
| N/C         | 250        | 13.225 | 788.035  | 78.225 | 853.035  |
| N/C         | 251        | 13.225 | 715.485  | 78.225 | 780.485  |
| N/C         | 252        | 13.225 | 641.13   | 78.225 | 706.13   |
| N/C         | 253        | 13.225 | 570.685  | 78.225 | 635.685  |
| N/C         | 254        | 13.225 | 488.67   | 78.225 | 553.67   |
| N/C         | 255        | 13.225 | 417.65   | 78.225 | 482.65   |
| N/C         | 256        | 13.225 | 346.84   | 78.225 | 411.84   |
| N/C         | 257        | 13.225 | 275.62   | 78.225 | 340.62   |



## 2.7 Pin Assignments

Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings.

## 2.7.1 Pin Map (Bottom View)

Figure 2-3 shows the pin assignments for the PTP package. Note that micro-vias are not required. Contact your TI representative for routing recommendations.



Figure 2-3. Pin Map (PTP)



#### 2.8 Terminal Functions

Table 2-5 to Table 2-25 identify the external signal names, the associated pin/ball numbers along with the mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin description.

### 2.8.1 Device Reset and JTAG

Table 2-5. Reset and JTAG Terminal Functions

| SIGNAL NAME                    | PIN NO<br>PTP | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | DESCRIPTION                         |  |  |  |
|--------------------------------|---------------|---------------------|---------------------|-------------------------------------|--|--|--|
|                                | FIF           |                     | RESET               |                                     |  |  |  |
| RESET 146 I Device reset input |               |                     |                     |                                     |  |  |  |
|                                | JTAG          |                     |                     |                                     |  |  |  |
| TMS                            | 152           | I                   | IPU                 | JTAG test mode select               |  |  |  |
| TDI                            | 153           | I                   | IPU                 | JTAG test data input                |  |  |  |
| TDO                            | 156           | 0                   | IPD                 | JTAG test data output               |  |  |  |
| TCK                            | 155           | I                   | IPU                 | JTAG test clock                     |  |  |  |
| TRST                           | 150           | I                   | IPD                 | JTAG test reset                     |  |  |  |
| RTCK/GP7[14]                   | 157           | I/O                 | IPD                 | JTAG test-port return clock output. |  |  |  |

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

### 2.8.2 High-Frequency Oscillator and PLL

Table 2-6. High-Frequency Oscillator and PLL Terminal Functions

| SIGNAL NAME      | PIN NO TYPE <sup>(1)</sup> |         | PULL <sup>(2)</sup> | DESCRIPTION                                        |  |  |
|------------------|----------------------------|---------|---------------------|----------------------------------------------------|--|--|
| SIGNAL NAME      | PTP                        | I I PE' | PULL                | DESCRIPTION                                        |  |  |
| 1.2-V OSCILLATOR |                            |         |                     |                                                    |  |  |
| OSCIN            | 143                        | I       |                     | Oscillator input                                   |  |  |
| OSCOUT           | 145                        | 0       |                     | Oscillator output                                  |  |  |
| oscvss           | 144                        | GND     |                     | Oscillator ground (for filter only)                |  |  |
|                  |                            | 1.3     | 2-V PLL             |                                                    |  |  |
| PLL0_VDDA        | 141                        | PWR     |                     | PLL analog V <sub>DD</sub> (1.2-V filtered supply) |  |  |
| PLL0_VSSA        | 142                        | GND     |                     | PLL analog V <sub>SS</sub> (for filter)            |  |  |

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

<sup>(2)</sup> IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor



#### 2.8.3 Real-Time Clock and 32-kHz Oscillator

Table 2-7. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions

| SIGNAL NAME | PIN NO | TYPE <sup>(1)</sup> PI |                     | DESCRIPTION                                                           |
|-------------|--------|------------------------|---------------------|-----------------------------------------------------------------------|
| SIGNAL NAME | PTP    | ITFE''                 | PULL <sup>(2)</sup> | DESCRIPTION                                                           |
| RTC_CVDD    | 149    | PWR                    |                     | RTC module core power ( isolated from rest of chip CV <sub>DD</sub> ) |
| RTC_XI      | 148    | I                      |                     | Low-frequency (32-kHz) oscillator receiver for real-time clock        |

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

## 2.8.4 External Memory Interface A (ASYNC, SDRAM)

Table 2-8. External Memory Interface A (EMIFA) Terminal Functions

| SIGNAL NAME                                      | PIN NO | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | MUXED                          | DESCRIPTION        |
|--------------------------------------------------|--------|---------------------|---------------------|--------------------------------|--------------------|
| SIGNAL NAME                                      | PTP    | ITPE                | PULL(-)             | MIUXED                         | DESCRIPTION        |
| EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] | 54     | I/O                 | IPU                 | MMC/SD,<br>UHPI, GPIO,<br>BOOT |                    |
| EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6]          | 52     | I/O                 | IPU                 |                                |                    |
| EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5]          | 51     | I/O                 | IPU                 |                                | EMIFA data bus     |
| EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4]          | 49     | I/O                 | IPU                 | MMC/SD,                        |                    |
| EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3]          | 48     | I/O                 | IPU                 | UHPI, GPIO                     |                    |
| EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2]          | 46     | I/O                 | IPU                 |                                |                    |
| EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1]          | 45     | I/O                 | IPU                 |                                |                    |
| EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] | 44     | I/O                 | IPU                 | MMC/SD,<br>UHPI, GPIO,<br>BOOT |                    |
| EMA_A[12]/ LCD_MCLK/GP1[12]                      | 42     | 0                   | IPU                 |                                |                    |
| EMA_A[11]/ CCD_AC_ENB_CS/GP1[11]                 | 41     | 0                   | IPU                 |                                | EMIFA address bus  |
| EMA_A[10]/ LCD_VSYNC/GP1[10]                     | 27     | 0                   | IPU                 |                                |                    |
| EMA_A[9]/ LCD_HSYNC/GP1[9]                       | 40     | 0                   | IPU                 |                                |                    |
| EMA_A[8]/ LCD_PCLK/GP1[8]                        | 39     | 0                   | IPU                 | LCD, GPIO                      |                    |
| <b>EMA_A[7]/</b> LCD_D[0]/GP1[7]                 | 37     | 0                   | IPD                 | LCD, GPIO                      | EIVIFA address bus |
| EMA_A[6]/ LCD_D[1]/GP1[6]                        | 36     | 0                   | IPD                 |                                |                    |
| EMA_A[5]/ LCD_D[2]/GP1[5]                        | 35     | 0                   | IPD                 |                                |                    |
| EMA_A[4]/ LCD_D[3]/GP1[4]                        | 34     | 0                   | IPD                 |                                |                    |
| EMA_A[3]/ LCD_D[6]/GP1[3]                        | 32     | 0                   | IPD                 |                                |                    |
| EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2]            | 31     | 0                   | IPU                 | MMCSD,                         |                    |
| EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1]            | 30     | 0                   | IPU                 | UHPI, GPIO                     | EMIFA address bus. |
| EMA_A[0]/ LCD_D[7]/GP1[0]                        | 29     | 0                   | IPD                 | LCD, GPIO                      |                    |
| EMA_BA[1]/ LCD_D[5]/UHPI_HHWIL/GP1[13]           | 26     | 0                   | IPU                 | LCD, UHPI,<br>GPIO             | EMIFA bank address |
| EMA_BA[0]/ LCD_D[4]/GP1[14]                      | 25     | 0                   | IPU                 | LCD, GPIO                      |                    |

<sup>(2)</sup> IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

<sup>2)</sup> IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor



# Table 2-8. External Memory Interface A (EMIFA) Terminal Functions (continued)

| SIGNAL NAME                               | PIN NO | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | MUXED                           | DESCRIPTION                 |  |
|-------------------------------------------|--------|---------------------|---------------------|---------------------------------|-----------------------------|--|
| SIGNAL NAME                               | PTP    | I I FE              | FULL                | WIOXED                          | DESCRIPTION                 |  |
| EMA_CS[3] /AMUTE2/GP2[6]                  | 21     | 0                   | IPU                 | McASP2,<br>GPIO                 | EMIFA Async Chip            |  |
| EMA_CS[2] /UHPI_HCS/GP2[5]/BOOT[15]       | 23     | 0                   | IPU                 | UHPI, GPIO,<br>BOOT             | Select                      |  |
| EMA_WE /UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14] | 55     | 0                   | IPU                 | UHPI,<br>MCASP0,<br>GOPIO, BOOT | EMIFA SDRAM write enable.   |  |
| EMA_OE /UHPI_HDS1/AXR0[13]/GP2[7]         | 22     | 0                   | IPU                 | UHPI,<br>McASP0,<br>GPIO        | EMIFA output enable.        |  |
| EMA_WAIT[0]/ UHPI_HRDY/GP2[10]            | 19     | I                   | IPU                 | UHPI, GPIO                      | EMIFA wait input/interrupt. |  |



## 2.8.5 External Memory Interface B (only SDRAM)

Table 2-9. External Memory Interface B (EMIFB) Terminal Functions

|                           | PIN NO | ->(1)               | <b></b> (2)         |       |                                 |  |
|---------------------------|--------|---------------------|---------------------|-------|---------------------------------|--|
| SIGNAL NAME               | PTP    | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | MUXED | DESCRIPTION                     |  |
| <b>EMB_D[15]</b> /GP6[15] | 74     | I/O                 | IPD                 |       |                                 |  |
| EMB_D[14]/GP6[14]         | 76     | I/O                 | IPD                 |       |                                 |  |
| EMB_D[13]/GP6[13]         | 78     | I/O                 | IPD                 |       |                                 |  |
| EMB_D[12]/GP6[12]         | 79     | I/O                 | IPD                 |       |                                 |  |
| EMB_D[11]/GP6[11]         | 80     | I/O                 | IPD                 |       |                                 |  |
| EMB_D[10]/GP6[10]         | 82     | I/O                 | IPD                 |       |                                 |  |
| EMB_D[9]/GP6[9]           | 83     | I/O                 | IPD                 |       |                                 |  |
| EMB_D[8]/GP6[8]           | 84     | I/O                 | IPD                 | OBIO  | EMIED ODDAM data have           |  |
| EMB_D[7]/GP6[7]           | 62     | I/O                 | IPD                 | GPIO  | EMIFB SDRAM data bus.           |  |
| EMB_D[6]/GP6[6]           | 63     | I/O                 | IPD                 |       |                                 |  |
| EMB_D[5]/GP6[5]           | 64     | I/O                 | IPD                 |       |                                 |  |
| EMB_D[4]/GP6[4]           | 66     | I/O                 | IPD                 |       |                                 |  |
| EMB_D[3]/GP6[3]           | 68     | I/O                 | IPD                 |       |                                 |  |
| EMB_D[2]/GP6[2]           | 70     | I/O                 | IPD                 |       |                                 |  |
| EMB_D[1]/GP6[1]           | 72     | I/O                 | IPD                 |       |                                 |  |
| EMB_D[0]/GP6[0]           | 73     | I/O                 | IPD                 |       |                                 |  |
| EMB_A[12]/GP3[13]         | 89     | 0                   | IPD                 |       |                                 |  |
| <b>EMB_A[11]</b> /GP7[13] | 91     | 0                   | IPD                 |       |                                 |  |
| <b>EMB_A[10]</b> /GP7[12] | 105    | 0                   | IPD                 |       |                                 |  |
| EMB_A[9]/GP7[11]          | 92     | 0                   | IPD                 | CDIO  | EMIFB SDRAM row/column          |  |
| <b>EMB_A[8]</b> /GP7[10]  | 94     | 0                   | IPD                 | GPIO  | address bus.                    |  |
| <b>EMB_A[7]</b> /GP7[9]   | 95     | 0                   | IPD                 |       |                                 |  |
| <b>EMB_A[6]</b> /GP7[8]   | 96     | 0                   | IPD                 |       |                                 |  |
| <b>EMB_A[5]</b> /GP7[7]   | 97     | 0                   | IPD                 |       |                                 |  |
| EMB_A[4]/GP7[6]           | 98     | 0                   | IPD                 |       |                                 |  |
| EMB_A[3]/GP7[5]           | 100    | 0                   | IPD                 |       |                                 |  |
| <b>EMB_A[2]</b> /GP7[4]   | 101    | 0                   | IPD                 |       | EMIFB SDRAM row/column address. |  |
| EMB_A[1]/GP7[3]           | 102    | 0                   | IPD                 | GPIO  | addi ooo.                       |  |
| <b>EMB_A[0]/</b> GP7[2]   | 103    | 0                   | IPD                 |       |                                 |  |
| <b>EMB_BA[1]/</b> GP7[0]  | 106    | 0                   | IPU                 |       | EMIFB SDRAM bank                |  |
| EMB_BA[0]/GP7[1]          | 107    | 0                   | IPU                 |       | address.                        |  |
| EMB_CLK                   | 86     | 0                   | IPU                 |       | EMIF SDRAM clock.               |  |
| EMB_SDCKE                 | 88     | I/O                 | IPU                 |       | EMIFB SDRAM clock enable.       |  |
| EMB_WE                    | 59     | 0                   | IPU                 |       | EMIFB write enable              |  |
| EMB_RAS                   | 110    | 0                   | IPU                 |       | EMIFB SDRAM row address strobe. |  |
| EMB_CAS                   | 57     | 0                   | IPU                 |       | EMIFB column address strobe.    |  |
| EMB_CS[0]                 | 108    | 0                   | IPU                 |       | EMIFB SDRAM chip select 0.      |  |

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

<sup>(2)</sup> IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor



## Table 2-9. External Memory Interface B (EMIFB) Terminal Functions (continued)

| CICNAL NAME                   | PIN NO | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | MUVED | DESCRIPTION                             |  |
|-------------------------------|--------|---------------------|---------------------|-------|-----------------------------------------|--|
| SIGNAL NAME                   | PTP    | ITPE                | PULL                | MUXED | DESCRIPTION                             |  |
| <b>EMB_WE_DQM[1]</b> /GP5[14] | 85     | 0                   | IPU                 | CDIO  | EMIFB write enable/data mask for EMB_D. |  |
| <b>EMB_WE_DQM[0]</b> /GP5[15] | 60     | 0                   | IPU                 | GPIO  |                                         |  |

## 2.8.6 Serial Peripheral Interface Modules (SPI0, SPI1)

Table 2-10. Serial Peripheral Interface (SPI) Terminal Functions

| OLONAL MANE                                  | PIN NO | TVD=(1)             | D. I. (2)           | MUVED                        | DECODIBEION                        |  |  |  |
|----------------------------------------------|--------|---------------------|---------------------|------------------------------|------------------------------------|--|--|--|
| SIGNAL NAME                                  | PTP    | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | MUXED                        | DESCRIPTION                        |  |  |  |
| SPI0                                         |        |                     |                     |                              |                                    |  |  |  |
| SPI0_SCS[0] /UART0_RTS/EQEP0B/GP5[4]/BOOT[4] | 9      | I/O                 | IPU                 | UARTO, EQEPOB,<br>GPIO, BOOT | SPI0 chip select.                  |  |  |  |
| SPIO_ENA /UARTO_CTS/EQEP0A/GP5[3]/BOOT[3]    | 12     | I/O                 | IPU                 | UARTO, EQEPOA,<br>GPIO, BOOT | SPI0 enable.                       |  |  |  |
| SPI0_CLK/EQEP1I/GP5[2]/BOOT[2]               | 11     | I/O                 | IPD                 | eQEP1, GPIO, BOOT            | SPI0 clock.                        |  |  |  |
| SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]           | 18     | I/O                 | IPD                 | eQEP0, GPIO, BOOT            | SPI0 data slave-in-<br>master-out. |  |  |  |
| SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]           | 17     | I/O                 | IPD                 | egero, grio, boot            | SPI0 data slave-<br>out-master-in. |  |  |  |
|                                              | SPI1   |                     |                     |                              |                                    |  |  |  |
| SPI1_SCS[0] /UART2_TXD/GP5[13]               | 8      | I/O                 | IPU                 | LIADTA CDIO                  | SPI1 chip select.                  |  |  |  |
| SPI1_ENA /UART2_RXD/GP5[12]                  | 7      | I/O                 | IPU                 | UART2, GPIO                  | SPI1 enable.                       |  |  |  |
| SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]`              | 16     | I/O                 | IPD                 | eQEP1, GPIO, BOOT            | SPI1 clock.                        |  |  |  |
| <b>SPI1_SIMO[0]</b> /I2C1_SDA/GP5[6]/BOOT[6] | 14     | I/O                 | IPU                 | 12C1, GPIO, BOOT             | SPI1 data slave-in-<br>master-out. |  |  |  |
| <b>SPI1_SOMI[0]</b> /I2C1_SCL/GP5[5]/BOOT[5] | 13     | I/O                 | IPU                 | IZC1, GFIO, BOOT             | SPI1 data slave-<br>out-master-in. |  |  |  |

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor



### 2.8.7 Enhanced Capture/Auxiliary PWM Modules (eCAP0, eCAP1, eCAP2)

The eCAP Module pins function as either input captures or auxiliary PWM 32-bit outputs, depending upon how the eCAP module is programmed.

Table 2-11. Enhanced Capture Module (eCAP) Terminal Functions

| SIGNAL NAME                | PIN NO | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | MUXED        | DESCRIPTION                                         |  |  |
|----------------------------|--------|---------------------|---------------------|--------------|-----------------------------------------------------|--|--|
|                            | PTP    | TYPE                |                     |              |                                                     |  |  |
| eCAP0                      |        |                     |                     |              |                                                     |  |  |
| ACLKX0/ECAP0/APWM0/GP2[12] | 126    | I/O                 | IPD                 | McASP0, GPIO | enhanced capture 0 input or auxiliary PWM 0 output. |  |  |
| eCAP1                      |        |                     |                     |              |                                                     |  |  |
| ACLKR0/ECAP1/APWM1/GP2[15] | 130    | I/O                 | IPD                 | McASP0, GPIO | enhanced capture 1 input or auxiliary PWM 1 output. |  |  |
| eCAP2                      |        |                     |                     |              |                                                     |  |  |
| ACLKR1/ECAP2/APWM2/GP4[12] | 165    | I/O                 | IPD                 | McASP1, GPIO | enhanced capture 2 input or auxiliary PWM 2 output. |  |  |

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

## 2.8.8 Enhanced Pulse Width Modulators (eHRPWM0, eHRPWM1, eHRPWM2)

Table 2-12. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions

| SIGNAL NAME                                         | PIN NO  | (1)                 | PULL <sup>(2)</sup> | MUXED                                | DESCRIPTION                                                  |  |  |  |
|-----------------------------------------------------|---------|---------------------|---------------------|--------------------------------------|--------------------------------------------------------------|--|--|--|
|                                                     | PTP     | TYPE <sup>(1)</sup> |                     |                                      |                                                              |  |  |  |
|                                                     | eHRPWM0 |                     |                     |                                      |                                                              |  |  |  |
| ACLKX1/ <b>EPWM0A</b> /GP3[15]                      | 162     | I/O                 | IPD                 | McASP1, GPIO                         | eHRPWM0 A output.                                            |  |  |  |
| AHCLKX1/ <b>EPWM0B</b> /GP3[14]                     | 160     | I/O                 | IPD                 |                                      | eHRPWM0 B output.                                            |  |  |  |
| AMUTE1/ <b>EPWMTZ</b> /GP4[14]                      | 132     | I/O                 | IPD                 | McASP1,<br>eHRPWM1, GPIO,<br>eHRPWM2 | eHRPWM0 trip zone input.                                     |  |  |  |
| AFSX1/ <b>EPWMSYNCI</b> / <b>EPWMSYNCO</b> /GP4[10] | 163     | I/O                 | IPD                 | McASP1,<br>eHRPWM0, GPIO             | Sync input to eHRPWM0 module or sync output to external PWM. |  |  |  |
|                                                     | eHRPW   | M1                  | *                   | •                                    | •                                                            |  |  |  |
| AXR1[8]/ <b>EPWM1A</b> /GP4[8]                      | 168     | I/O                 | IPD                 | McASP1, GPIO                         | eHRPWM1 A (with high-resolution).                            |  |  |  |
| AXR1[7]/ <b>EPWM1B</b> /GP4[7]                      | 169     | I/O                 | IPD                 |                                      | eHRPWM1 B.                                                   |  |  |  |
| AMUTE1/ <b>EPWMTZ</b> /GP4[14]                      | 132     | I/O                 | IPD                 | McASP1,<br>eHRPWM0, GPIO,<br>eHRPWM2 | eHRPWM1 trip zone input.                                     |  |  |  |
| eHRPWM2                                             |         |                     |                     |                                      |                                                              |  |  |  |

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

<sup>(2)</sup> IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor



Table 2-12. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions (continued)

| SIGNAL NAME                    | PIN NO | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | MUXED                                | DESCRIPTION                       |
|--------------------------------|--------|---------------------|---------------------|--------------------------------------|-----------------------------------|
|                                | PTP    |                     |                     |                                      |                                   |
| AXR1[6]/ <b>EPWM2A</b> /GP4[6] | 170    | I/O                 | IPD                 | McASP1, GPIO                         | eHRPWM2 A (with high-resolution). |
| AXR1[5]/ <b>EPWM2B</b> /GP4[5] | 171    | I/O                 | IPD                 |                                      | eHRPWM2 B.                        |
| AMUTE1/ <b>EPWMTZ</b> /GP4[14] | 132    | I/O                 | IPD                 | McASP1,<br>eHRPWM0, GPIO,<br>eHRPWM2 | eHRPWM2 trip zone input.          |

### 2.8.9 Enhanced Quadrature Encoder Pulse Module (eQEP)

Table 2-13. Enhanced Quadrature Encoder Pulse Module (eQEP) Terminal Functions

| SIGNAL NAME                                 | PIN NO | TVD=(1)             | PULL <sup>(2)</sup> | MUXED            | DESCRIPTION              |  |  |
|---------------------------------------------|--------|---------------------|---------------------|------------------|--------------------------|--|--|
|                                             | PTP    | TYPE <sup>(1)</sup> |                     |                  |                          |  |  |
| eQEP0                                       |        |                     |                     |                  |                          |  |  |
| SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3]    | 12     | I                   | IPU                 | SPIO, UARTO,     | eQEP0A quadrature input. |  |  |
| SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] | 9      | I                   | IPU                 | GPIO, BOOT       | eQEP0B quadrature input. |  |  |
| SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]          | 17     | I                   | IPD                 | ODIO ODIO DOOT   | eQEP0 index.             |  |  |
| SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]          | 18     | I                   | IPD                 | SPI0, GPIO, BOOT | eQEP0 strobe.            |  |  |
|                                             | eQEP   | İ                   | •                   | •                |                          |  |  |
| AXR1[3]/ <b>EQEP1A</b> /GP4[3]              | 174    | I                   | IPD                 | M-ACD4 CDIO      | eQEP1A quadrature input. |  |  |
| AXR1[4]/ <b>EQEP1B</b> /GP4[4]              | 173    | I                   | IPD                 | McASP1, GPIO     | eQEP1B quadrature input. |  |  |
| SPI0_CLK/ <b>EQEP1I</b> /GP5[2]/BOOT[2]     | 11     | I                   | IPD                 | SPI0, GPIO, BOOT | eQEP1 index.             |  |  |
| SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]              | 16     | I                   | IPD                 | SPI1, GPIO, BOOT | eQEP1 strobe.            |  |  |

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

#### 2.8.10 Boot

Table 2-14. Boot Terminal Functions<sup>(1)</sup>

| CIONAL NAME                                      | PIN NO | TYPE <sup>(2)</sup> | PULL <sup>(3)</sup> | MUXED                        | DESCRIPTION |
|--------------------------------------------------|--------|---------------------|---------------------|------------------------------|-------------|
| SIGNAL NAME                                      | PTP    |                     |                     |                              |             |
| EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15]               | 23     | I                   | IPU                 | EMIFA, UHPI, GPIO            | BOOT[15].   |
| EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14]         | 55     | 1                   | IPU                 | EMIFA, UHPI,<br>McASP0, GPIO | BOOT[14].   |
| EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] | 54     | I                   | IPU                 | EMIFA, MMC/SD,               | BOOT[13].   |
| EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] | 44     | I                   | IPU                 | UHPI, GPIO                   | BOOT[12].   |
| AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]         | 129    | I                   | IPD                 | McASP0, EMAC,<br>GPIO        | BOOT[11].   |
| AFSX0/GP2[13]/ <b>BOOT[10]</b>                   | 127    | I                   | IPD                 | McASP0, GPIO                 | BOOT[10].   |

<sup>(1)</sup> Boot decoding will be defined in the ROM datasheet.

<sup>(2)</sup> IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

<sup>(2)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

<sup>(3)</sup> IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor



## Table 2-14. Boot Terminal Functions<sup>(1)</sup> (continued)

| CIONAL NAME                                            | PIN NO | TYPE <sup>(2)</sup> | PULL <sup>(3)</sup> | MUXED                        | DESCRIPTION |
|--------------------------------------------------------|--------|---------------------|---------------------|------------------------------|-------------|
| SIGNAL NAME                                            | PTP    |                     |                     |                              |             |
| UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/ <b>BOOT[9]</b> | 3      | 1                   | IPU                 | UARTO, I2CO,<br>TimerO, GPIO | BOOT[9].    |
| UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/ <b>BOOT[8]</b>  | 2      | I                   | IPU                 | UARTO, I2CO,<br>TimerO, GPIO | BOOT[8].    |
| SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]                         | 16     | I                   | IPD                 | SPI1, eQEP1, GPIO            | BOOT[7].    |
| SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6]                   | 14     | I                   | IPU                 | SPI1, I2C1, GPIO             | BOOT[6].    |
| SPI1_SOMI[0]/I2C1_SCL/GP5[5]/ <b>BOOT[5]</b>           | 13     | I                   | IPU                 |                              | BOOT[5].    |
| SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4]            | 9      | 1                   | IPU                 | SPI0, UARTO,<br>eQEP0, GPIO  | BOOT[4].    |
| SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3]               | 12     | 1                   | IPU                 | SPI0, UARTO,<br>eQEP0, GPIO  | BOOT[3].    |
| SPI0_CLK/EQEP1I/GP5[2]/BOOT[2]                         | 11     | I                   | IPD                 | SPIO, eQEP1, GPIO            | BOOT[2].    |
| SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]                     | 18     | I                   | IPD                 | SPI0, eQEP0, GPIO            | BOOT[1].    |
| SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]                     | 17     | I                   | IPD                 |                              | BOOT[0].    |

## 2.8.11 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2)

Table 2-15. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions

| -                                                 |        |                     | •                   | •                            |                                |  |  |  |
|---------------------------------------------------|--------|---------------------|---------------------|------------------------------|--------------------------------|--|--|--|
| SIGNAL NAME                                       | PIN NO | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | MUXED                        | DESCRIPTION                    |  |  |  |
|                                                   | PTP    |                     |                     |                              |                                |  |  |  |
| UART0                                             |        |                     |                     |                              |                                |  |  |  |
| UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]     | 2      | I                   | IPU                 | I2C0, BOOT,<br>Timer0, GPIO, | UART0 receive data.            |  |  |  |
| UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]    | 3      | 0                   | IPU                 | I2C0, Timer0,<br>GPIO, BOOT  | UART0 transmit data.           |  |  |  |
| SPI0_SCS[0]/ UART0_RTS /EQEP0B/GP5[4]/BOOT[4]     | 9      | 0                   | IPU                 | SPIO, eQEP0,                 | UART0 ready-to-<br>send output |  |  |  |
| SPI0_ENA/ UARTO_CTS /EQEP0A/GP5[3]/BOOT[3]        | 12     | 1                   | IPU                 | GPIO, BOOT                   | UART0 clear-to-<br>send input  |  |  |  |
|                                                   | UART1  |                     |                     |                              |                                |  |  |  |
| <b>UART1_RXD</b> /AXR0[9]/GP3[9] <sup>(3)</sup>   | 122    | I                   | IPD                 | Manager CRIO                 | UART1 receive data.            |  |  |  |
| <b>UART1_TXD</b> /AXR0[10]/GP3[10] <sup>(3)</sup> | 123    | 0                   | IPD                 | McASP0, GPIO                 | UART1 transmit data.           |  |  |  |
| UART2                                             |        |                     |                     |                              |                                |  |  |  |
| SPI1_ENA/UART2_RXD/GP5[12]                        | 7      | I                   | IPU                 | SPI1, GPIO                   | UART2 receive data.            |  |  |  |
| SPI1_SCS[0]/UART2_TXD/GP5[13]                     | 8      | 0                   | IPU                 | Si II, GFIO                  | UART2 transmit data.           |  |  |  |

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

<sup>(2)</sup> IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

<sup>(3)</sup> As these signals are internally pulled down while the device is in reset, it is necessary to externally pull them high with resistors if UART1 boot mode is used. See the OMAP-L137 Applications Processor Stsyem Reference Guide - Literature Number <u>SPRUG84</u> for more for details on entering UART1 boot mode.



#### 2.8.12 Inter-Integrated Circuit Modules (I2C0, I2C1)

Table 2-16. Inter-Integrated Circuit (I2C) Terminal Functions

| SIGNAL NAME                                             | PIN NO  | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | MUXED                        | DESCRIPTION        |  |  |  |
|---------------------------------------------------------|---------|---------------------|---------------------|------------------------------|--------------------|--|--|--|
| SIGNAL NAME                                             | PTP 11F |                     | PULL                | MIUXED                       | DESCRIPTION        |  |  |  |
| I2C0                                                    |         |                     |                     |                              |                    |  |  |  |
| UART0_RXD/ <b>I2C0_SDA</b> /TM64P0_IN12/GP5[8]/BOOT[8]  | 2       | I/O                 | IPU                 | UART0, Timer0,<br>GPIO, BOOT | I2C0 serial data.  |  |  |  |
| UART0_TXD/ <b>I2C0_SCL</b> /TM64P0_OUT12/GP5[9]/BOOT[9] | 3       | I/O                 | IPU                 | UARTO, TimerO,<br>GPIO, BOOT | I2C0 serial clock. |  |  |  |
| I2C1                                                    |         |                     |                     |                              |                    |  |  |  |
| SPI1_SIMO[0]/ <b>I2C1_SDA</b> /GP5[6]/BOOT[6]           | 14      | I/O                 | IPU                 | SPI1, GPIO,                  | I2C1 serial Data.  |  |  |  |
| SPI1_SOMI[0]/ <b>I2C1_SCL</b> /GP5[5]/BOOT[5]           | 13      | I/O                 | IPU                 | BOOT                         | I2C1 serial clock. |  |  |  |

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

#### 2.8.13 Timers

**Table 2-17. Timers Terminal Functions** 

| SIGNAL NAME                                                 | PIN NO            | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | MUXED        | DESCRIPTION         |  |  |
|-------------------------------------------------------------|-------------------|---------------------|---------------------|--------------|---------------------|--|--|
| SIGNAL NAME                                                 | PTP               | ITPE                |                     |              | DESCRIPTION         |  |  |
|                                                             | TIMER0            | •                   |                     |              |                     |  |  |
| UART0_RXD/I2C0_SDA/ <b>TM64P0_IN12</b> /GP5[8]/BOOT[8]      | 2                 | 1                   | IPU                 | UART0, I2C0, | Timer0 lower input. |  |  |
| UART0_TXD/I2C0_SCL/ <b>TM64P0_OUT12</b> /GP5[9]/BOOT[9]     | 3                 | 0                   | IPU                 | GPIO, BOOT   | Timer0 lower output |  |  |
| TIMER1 (Watchdog )                                          |                   |                     |                     |              |                     |  |  |
| No external pins. The Timer1 peripheral pins are not pinned | out as external p | oins.               |                     |              |                     |  |  |

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

#### 2.8.14 Universal Host-Port Interface (UHPI)

#### Note:

The UHPI module requires 16 data pins for the host port interface to function. Therefore on the PTP, the UHPI is not available.

<sup>(2)</sup> IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

<sup>(2)</sup> IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor



#### Table 2-18. Universal Host-Port Interface (UHPI) Terminal Functions

| OLONAL NAME                                               | SIGNAL NAME PIN NO TYPE |     | TYPE( PULL(2) | MUVED                        | DESCRIPTION                            |  |
|-----------------------------------------------------------|-------------------------|-----|---------------|------------------------------|----------------------------------------|--|
| SIGNAL NAME                                               | PTP                     | 1)  | PULL          | MUXED                        | DESCRIPTION                            |  |
| EMA_D[7]/MMCSD_DAT[7]/ <b>UHPI_HD[7]</b> /GP0[7]/BOOT[13] | 54                      | I/O | IPU           | EMIFA, MMC/SD,<br>GPIO, BOOT |                                        |  |
| EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6]                   | 52                      | I/O | IPU           |                              |                                        |  |
| EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5]                   | 51                      | I/O | IPU           |                              |                                        |  |
| EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4]                   | 49                      | I/O | IPU           | EMIFA, MMC/SD,               | UHPI data bus.                         |  |
| EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3]                   | 48                      | I/O | IPU           | GPIO                         |                                        |  |
| EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2]                   | 46                      | I/O | IPU           |                              |                                        |  |
| EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1]                   | 45                      | I/O | IPU           |                              |                                        |  |
| EMA_D[0]/MMCSD_DAT[0]/ <b>UHPI_HD[0]</b> /GP0[0]/BOOT[12] | 44                      | I/O | IPU           | EMIFA, MMC/SD,<br>GPIO, BOOT |                                        |  |
| EMA_A[2]/MMCSD_CMD/ <b>UHPI_HCNTL1</b> /GP1[2]            | 31                      | I/O | IPU           | EMIFA,                       | UHPI access                            |  |
| EMA_A[1]/MMCSD_CLK/ <b>UHPI_HCNTL0</b> /GP1[1]            | 30                      | I/O | IPU           | MMCSD_CMD,<br>GPIO           | control.                               |  |
| EMA_BA[1]/LCD_D[5]/ <b>UHPI_HHWIL</b> /GP1[13]            | 26                      | I/O | IPU           | EMIFA, LCD, GPIO             | UHPI half-word identification control. |  |
| EMA_WE/UHPI_HRW /AXR0[12]/GP2[3]/BOOT[14]                 | 55                      | I/O | IPU           | EMIFA, McASP,<br>GPIO, BOOT  | UHPI read/write.                       |  |
| EMA_CS[2]/ UHPI_HCS /GP2[5]/BOOT[15]                      | 23                      | I/O | IPU           | EMIFA, GPIO,<br>BOOT         | UHPI chip select.                      |  |
| EMA_OE/ UHPI_HDS1 /AXR0[13]/GP2[7]                        | 22                      | I/O | IPU           | EMIFA, McASP0,<br>GPIO       | UHPI data strobe.                      |  |
| EMA_WAIT[0]/ UHPI_HRDY /GP2[10]                           | 19                      | I/O | IPU           | EMIFA, GPIO                  | UHPI ready.                            |  |

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

#### 2.8.15 Multichannel Audio Serial Ports (McASP0, McASP1, McASP2)

#### Table 2-19. Multichannel Audio Serial Ports (McASPs) Terminal Functions

| SIGNAL NAME | PIN NO | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | MUXED | DESCRIPTION |
|-------------|--------|---------------------|---------------------|-------|-------------|
| SIGNAL NAME | PTP    | TYPE" PU            | PULL                |       |             |
| McAS        | SP0    | ,                   | •                   | •     | •           |

2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.



## Table 2-19. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued)

| SIGNAL NAME                                | PIN NO | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | MUXED                      | DESCRIPTION                         |
|--------------------------------------------|--------|---------------------|---------------------|----------------------------|-------------------------------------|
| EMA_OE/UHPI_HDS1/AXR0[13]/GP2[7]           | 24     | I/O                 | IPU                 | EMIFA, UHPI,<br>GPIO       |                                     |
| EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14]   | 55     | I/O                 | IPU                 | EMIFA, UHPI,<br>GPIO, BOOT |                                     |
| <b>AXR0[11]/</b> AXR2[0]/GP3[11]           | 124    | I/O                 | IPD                 | McASP2,<br>GPIO            |                                     |
| <b>AXR0[10]</b> /GP3[10]                   | 123    | I/O                 | IPD                 | GPIO                       |                                     |
| <b>AXR0[9]</b> /GP3[9]                     | 122    | I/O                 | IPD                 | GPIO                       |                                     |
| AXR0[8]/MDIO_D/GP3[8]                      | 121    | I/O                 | IPU                 | MDIO, GPIO                 | McASP0 serial                       |
| AXR0[7]/MDIO_CLK/GP3[7]                    | 120    | I/O                 | IPD                 | MDIO, GPIO                 | data.                               |
| AXR0[6]/RMII_RXER[0]/ACLKR2/GP3[6]         | 118    | I/O                 | IPD                 |                            |                                     |
| AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5]           | 117    | I/O                 | IPD                 |                            |                                     |
| <b>AXR0[4]/</b> RMII_RXD[0]/AXR2[1]/GP3[4] | 116    | I/O                 | IPD                 | EMAC,                      |                                     |
| AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3]         | 115    | I/O                 | IPD                 | McASP2,                    |                                     |
| AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2]           | 113    | I/O                 | IPD                 | GPIO                       |                                     |
| AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1]          | 112    | I/O                 | IPD                 |                            |                                     |
| AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0]           | 111    | I/O                 | IPD                 |                            |                                     |
| AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11]       | 125    | I/O                 | IPD                 | McASP2, USB,<br>GPIO       | McASP0<br>transmit master<br>clock. |
| ACLKX0/ECAP0/APWM0/GP2[12]                 | 126    | I/O                 | IPD                 | eCAP0, GPIO                | McASP0<br>transmit bit<br>clock.    |
| <b>AFSX0</b> /GP2[13]/BOOT[10]             | 127    | I/O                 | IPD                 | GPIO, BOOT                 | McASP0<br>transmit frame<br>sync.   |
| AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]   | 129    | I/O                 | IPD                 | EMAC, GPIO,<br>BOOT        | McASP0 receive master clock.        |
| ACLKR0/ECAP1/APWM1/GP2[15]                 | 130    | I/O                 | IPD                 | eCAP1, GPIO                | McASP0 receive bit clock.           |
| <b>AFSR0</b> /GP3[12]                      | 131    | I/O                 | IPD                 | GPIO                       | McASP0 receive frame sync.          |
|                                            | McASP1 | 1                   | 1                   |                            |                                     |
| <b>AXR1[11]/</b> GP5[11]                   | 6      | I/O                 | IPU                 | GPIO                       |                                     |
| <b>AXR1[10]/</b> GP5[10]                   | 4      | I/O                 | IPU                 | 0110                       |                                     |
| <b>AXR1[8]</b> /EPWM1A/GP4[8]              | 168    | I/O                 | IPD                 | eHRPWM1 A,<br>GPIO         |                                     |
| <b>AXR1[7]</b> /EPWM1B/GP4[7]              | 169    | I/O                 | IPD                 | eHRPWM1 B,<br>GPIO         |                                     |
| <b>AXR1[6]</b> /EPWM2A/GP4[6]              | 170    | I/O                 | IPD                 | eHRPWM2 A,<br>GPIO         | McASP1 serial                       |
| <b>AXR1[5]</b> /EPWM2B/GP4[5]              | 171    | I/O                 | IPD                 | eHRPWM2 B,<br>GPIO         | data.                               |
| <b>AXR1[4]</b> /EQEP1B/GP4[4]              | 173    | I/O                 | IPD                 | eQEP, GPIO                 |                                     |
| <b>AXR1[3]/</b> EQEP1A/GP4[3]              | 174    | I/O                 | IPD                 | CQLI, GIIO                 |                                     |
| <b>AXR1[2]</b> /GP4[2]                     | 175    | I/O                 | IPD                 |                            |                                     |
| <b>AXR1[1]</b> /GP4[1]                     | 176    | I/O                 | IPD                 | GPIO                       |                                     |
| <b>AXR1[0]</b> /GP4[0]                     | 1      | I/O                 | IPD                 |                            | McASP1                              |
| AHCLKX1/EPWM0B/GP3[14]                     | 160    | I/O                 | IPD                 | eHRPWM0,<br>GPIO           | transmit master clock.              |



#### Table 2-19. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued)

|                                               | PIN NO | (1)                 | (2)                 | /==                                      |                                     |  |
|-----------------------------------------------|--------|---------------------|---------------------|------------------------------------------|-------------------------------------|--|
| SIGNAL NAME                                   | PTP    | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | MUXED                                    | DESCRIPTION                         |  |
| ACLKX1/EPWM0A/GP3[15]                         | 162    | I/O                 | IPD                 | eHRPWM0,<br>GPIO                         | McASP1<br>transmit bit<br>clock.    |  |
| AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10]             | 163    | I/O                 | IPD                 | eHRPWM0,<br>GPIO                         | McASP1<br>transmit frame<br>sync.   |  |
| ACLKR1/ECAP2/APWM2/GP4[12]                    | 165    | I/O                 | IPD                 | eCAP2, GPIO                              | McASP1 receive bit clock.           |  |
| <b>AFSR1</b> /GP4[13]                         | 166    | I/O                 | IPD                 | GPIO                                     | McASP1 receive frame sync.          |  |
| AMUTE1/EPWMTZ/GP4[14]                         | 132    | 0                   | IPD                 | eHRPWM0,<br>eHRPWM1,<br>GPIO,<br>eHRPWM2 | McASP1 mute output.                 |  |
| McAs                                          | SP2    |                     |                     |                                          |                                     |  |
| AXR0[2]/RMII_TXEN/ AXR2[3]/GP3[2]             | 113    | I/O                 | IPD                 |                                          | McASP2 serial data.                 |  |
| AXR0[3]/RMII_CRS_DV/ <b>AXR2[2]</b> /GP3[3]   | 115    | I/O                 | IPD                 | McASP0,<br>EMAC, GPIO                    |                                     |  |
| AXR0[4]/RMII_RXD[0]/ <b>AXR2[1]</b> /GP3[4]   | 116    | I/O                 | IPD                 |                                          |                                     |  |
| AXR0[11]/ <b>AXR2[0]</b> /GP3[11]             | 124    | I/O                 | IPD                 | McASP0,<br>GPIO                          |                                     |  |
| AHCLKX0/ <b>AHCLKX2</b> /USB_REFCLKIN/GP2[11] | 125    | I/O                 | IPD                 | McASP0, USB,                             | McASP2<br>transmit master<br>clock. |  |
| AXR0[1]/RMII_TXD[1]/ ACLKX2/GP3[1]            | 112    | I/O                 | IPD                 | GPIO                                     | McASP2<br>transmit bit<br>clock.    |  |
| AXR0[5]/RMII_RXD[1]/ <b>AFSX2</b> /GP3[5]     | 117    | I/O                 | IPD                 | McASP0,<br>EMAC, GPIO                    | McASP2<br>transmit frame<br>sync.   |  |
| AXR0[6]/RMII_RXER[0]/ ACLKR2/GP3[6]           | 118    | I/O                 | IPD                 | McASP0,<br>EMAC, GPIO                    | McASP2 receive bit clock.           |  |
| EMA_CS[3]/AMUTE2/GP2[6]                       | 21     | 0                   | IPU                 | EMIFA, GPIO                              | McASP2 mute output.                 |  |

## 2.8.16 Universal Serial Bus Modules (USB0, USB1)

#### Table 2-20. Universal Serial Bus (USB) Terminal Functions

| SIGNAL NAME                          | PIN NO | TVDE(1) | PULL <sup>(2)</sup> | DESCRIPTION                                |  |  |  |  |
|--------------------------------------|--------|---------|---------------------|--------------------------------------------|--|--|--|--|
| SIGNAL NAME                          | PTP    | ITPE    | PULL                | DESCRIPTION                                |  |  |  |  |
| USB0 2.0 OTG                         |        |         |                     |                                            |  |  |  |  |
| USB0_DM                              | 138    | Α       |                     | USB0 PHY data minus                        |  |  |  |  |
| USB0_DP                              | 137    | Α       |                     | USB0 PHY data plus                         |  |  |  |  |
| USB0_VDDA33                          | 140    | PWR     |                     | USB0 PHY 3.3-V supply                      |  |  |  |  |
| USB0_VDDA18                          | 135    | PWR     |                     | USB0 PHY 1.8-V supply input                |  |  |  |  |
| USB0_VDDA12 <sup>(3)</sup>           | 134    | PWR     |                     | USB0 PHY 1.2-V LDO output for bypass cap   |  |  |  |  |
| AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] | 125    | I       | IPD                 | USB_REFCLKIN. Optional 48 MHz clock input. |  |  |  |  |

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

<sup>(2)</sup> IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

<sup>(3)</sup> Core power supply LDO output for USB PHY. This pin must be connected via a 0.22 -μF capacitor to VSS. When the USB peripheral is not used, the USB\_VDDA12 signal should still be connected via a 1-μF capacitor to VSS.



#### Table 2-20. Universal Serial Bus (USB) Terminal Functions (continued)

| SIGNAL NAME                                   | PIN NO | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | DESCRIPTION                                |  |  |  |  |
|-----------------------------------------------|--------|---------------------|---------------------|--------------------------------------------|--|--|--|--|
| SIGNAL NAME                                   | PTP    | I I I PE''          | PULL                | DESCRIPTION                                |  |  |  |  |
| USB1 1.1 OHCI                                 |        |                     |                     |                                            |  |  |  |  |
| AHCLKX0/AHCLKX2/ <b>USB_REFCLKIN</b> /GP2[11] | 125    | I                   | IPD                 | USB_REFCLKIN. Optional 48 MHz clock input. |  |  |  |  |

#### 2.8.17 Ethernet Media Access Controller (EMAC)

Table 2-21. Ethernet Media Access Controller (EMAC) Terminal Functions

|                                             | PIN NO | T)(D=(1)            | D. I. (2)           |                      | DESCRIPTION                              |  |  |  |  |
|---------------------------------------------|--------|---------------------|---------------------|----------------------|------------------------------------------|--|--|--|--|
| SIGNAL NAME                                 | PTP    | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | MUXED                | DESCRIPTION                              |  |  |  |  |
| RMII                                        |        |                     |                     |                      |                                          |  |  |  |  |
| AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]    | 129    | I/O                 | IPD                 | McASP0, GPIO, BOOT   | EMAC 50-MHz<br>clock input or<br>output. |  |  |  |  |
| AXR0[6]/ <b>RMII_RXER[0]</b> /ACLKR2/GP3[6] | 118    | I                   | IPD                 |                      | EMAC RMII receiver error.                |  |  |  |  |
| AXR0[5]/ <b>RMII_RXD[1]</b> /AFSX2/GP3[5]   | 117    | 1                   | IPD                 |                      | EMAC RMII                                |  |  |  |  |
| AXR0[4]/ <b>RMII_RXD[0]</b> /AXR2[1]/GP3[4] | 116    | 1                   | IPD                 |                      | receive data.                            |  |  |  |  |
| AXR0[3]/ <b>RMII_CRS_DV/</b> AXR2[2]/GP3[3] | 115    | I                   | IPD                 | McASP0, McASP2, GPIO | EMAC RMII carrier sense data valid.      |  |  |  |  |
| AXR0[2]/ <b>RMII_TXEN</b> /AXR2[3]/GP3[2]   | 113    | 0                   | IPD                 |                      | EMAC RMII transmit enable.               |  |  |  |  |
| AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1]           | 112    | 0                   | IPD                 |                      | EMAC RMII trasmit                        |  |  |  |  |
| AXR0[0]/ <b>RMII_TXD[0]</b> /AFSR2/GP3[0]   | 111    | 0                   | IPD                 |                      | data.                                    |  |  |  |  |
|                                             | MDIO   |                     |                     |                      |                                          |  |  |  |  |
| AXR0[8]/ <b>MDIO_D/</b> GP3[8]              | 121    | I/O                 | IPU                 | McASP0, GPIO         | MDIO data clock                          |  |  |  |  |
| AXR0[7]/MDIO_CLK/GP3[7]                     | 120    | 0                   | IPD                 | WICAGEO, GETO        | MDIO data clock.                         |  |  |  |  |

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

#### 2.8.18 Multimedia Card/Secure Digital (MMC/SD)

#### Table 2-22. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions

| SIGNAL NAME                           | PIN NO | TYPE(1) | PULL <sup>(2)</sup> | MUXED             | DESCRIPTION |  |
|---------------------------------------|--------|---------|---------------------|-------------------|-------------|--|
| SIGNAL NAME                           | PTP    | ITPE    | PULL                | MOXED             | DESCRIPTION |  |
| EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1] | 30     | 0       | IPU                 | EMIEA LILIDI CDIO | MMCSD_CLK.  |  |
| EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2] | 31     | I/O     | IPU                 | EMIFA, UHPI, GPIO | MMCSD_CMD.  |  |

<sup>(2)</sup> IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

<sup>2)</sup> IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor



## Table 2-22. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions (continued)

| SIGNAL NAME                                      | PIN NO TYPE <sup>(1)</sup> P |        | PULL <sup>(2)</sup> | MUXED                      | DESCRIPTION  |
|--------------------------------------------------|------------------------------|--------|---------------------|----------------------------|--------------|
| SIGNAL NAME                                      | PTP                          | ITPE\' | PULL                | MIUXED                     | DESCRIPTION  |
| EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] | 54                           | I/O    | IPU                 | EMIFA, UHPI, GPIO,<br>BOOT |              |
| EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6]          | 52                           | I/O    | IPU                 |                            | MMC/SD data. |
| EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5]          | 51                           | I/O    | IPU                 |                            |              |
| EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4]          | 49                           | I/O    | IPU                 | EMIEA LILIDI CDIO          |              |
| EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3]          | 48                           | I/O    | IPU                 | EMIFA, UHPI, GPIO          |              |
| EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2]          | 46                           | I/O    | IPU                 |                            |              |
| EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1]          | 45                           | I/O    | IPU                 |                            |              |
| EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] | 44                           | I/O    | IPU                 | EMIFA, UHPI, GPIO,<br>BOOT |              |



## 2.8.19 Liquid Crystal Display Controller(LCD)

Table 2-23. Liquid Crystal Display Controller (LCD) Terminal Functions

| CIONAL NAME                                    | PIN NO | T)(D=(1)            | D (2)               | MINER                | DESCRIPTION                     |
|------------------------------------------------|--------|---------------------|---------------------|----------------------|---------------------------------|
| SIGNAL NAME                                    | PTP    | TYPE <sup>(1)</sup> | PULL <sup>(2)</sup> | MUXED                | DESCRIPTION                     |
| EMA_A[0]/ <b>LCD_D[7]</b> /GP1[0]              | 29     | I/O                 | IPD                 | EMIEA CDIO           |                                 |
| EMA_A[3]/ <b>LCD_D[6]</b> /GP1[3]              | 32     | I/O                 | IPD                 | EMIFA, GPIO          |                                 |
| EMA_BA[1]/ <b>LCD_D[5]</b> /UHPI_HHWIL/GP1[13] | 26     | I/O                 | IPU                 | EMIFA, UHPI,<br>GPIO |                                 |
| EMA_BA[0]/ <b>LCD_D[4]/</b> GP1[14]            | 25     | I/O                 | IPU                 |                      | LCD data bus.                   |
| EMA_A[4]/ <b>LCD_D[3]</b> /GP1[4]              | 34     | I/O                 | IPD                 |                      |                                 |
| EMA_A[5]/ <b>LCD_D[2]</b> /GP1[5]              | 35     | I/O                 | IPD                 |                      |                                 |
| EMA_A[6]/ <b>LCD_D[1]</b> /GP1[6]              | 36     | I/O                 | IPD                 |                      |                                 |
| EMA_A[7]/ <b>LCD_D[0]</b> /GP1[7]              | 37     | I/O                 | IPD                 |                      |                                 |
| EMA_A[8]/LCD_PCLK/GP1[8]                       | 39     | 0                   | IPU                 | EMIFA, GPIO          | LCD pixel clock.                |
| EMA_A[9]/LCD_HSYNC/GP1[9]                      | 40     | 0                   | IPU                 |                      | LCD horizontal sync.            |
| EMA_A[10]/LCD_VSYNC/GP1[10]                    | 27     | 0                   | IPU                 |                      | LCD vertical sync.              |
| EMA_A[11]/ ICD_AC_ENB_CS /GP1[11]              | 41     | 0                   | IPU                 |                      | LCD AC bias enable chip select. |
| EMA_A[12]/ <b>LCD_MCLK</b> /GP1[12]            | 42     | 0                   | IPU                 |                      | LCD memory clock.               |

<sup>(1)</sup> I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.

Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.

#### 2.8.20 Reserved and No-connect

Table 2-24. Reserved and No-connect Terminal Functions

| SIGNAL NAME | PIN NO<br>PTP | TYPE <sup>(1)</sup>                                                                              | DESCRIPTION |
|-------------|---------------|--------------------------------------------------------------------------------------------------|-------------|
| RSV2        | 133           | PWR Reserved. For proper device operation, this pin <b>must</b> b directly to CV <sub>DD</sub> . |             |
| NC          | 139           | -                                                                                                | -           |
| NC          | 136           | -                                                                                                | -           |

(1) PWR = Supply voltage.

<sup>(2)</sup> IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor



## 2.8.21 Supply and Ground

## **Table 2-25. Supply and Ground Terminal Functions**

| SIGNAL NAME        | PIN NO<br>PTP                                                                                 | TYPE <sup>(1)</sup> | DESCRIPTION                    |  |
|--------------------|-----------------------------------------------------------------------------------------------|---------------------|--------------------------------|--|
| CVDD (Core supply) | 10, 20, 28, 38, 50, 56, 61, 67, 69, 77, 93, 104, 114, 147, 154, 159, 161, 167,                | PWR                 | 1.2-V core supply voltage pins |  |
| DVDD (I/O supply)  | 5, 15, 24, 33, 43, 47, 53, 58, 65, 71, 75, 81, 87, 90, 99, 109, 119, 128, 151, 158, 164, 172, | PWR                 | 3.3-V I/O supply voltage pins. |  |
| VSS (Ground)       | 177                                                                                           | GND                 | Ground pins.                   |  |

<sup>(1)</sup> PWR = Supply voltage, GND - Ground.



## 3 Device Configuration

#### 3.1 Introduction

This device supports a variety of boot modes through an internal DSP ROM bootloader. This device does not support dedicated hardware boot modes; therefore, all boot modes utilize the internal DSP ROM. The input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is determined by the values of the BOOT pins.

See *Using the D800K001 Bootloader Application Report* (SPRAB04) for more details on the ROM Boot Loader.

#### 3.2 Boot Modes Supported

The following boot modes are supported:

- NAND Flash boot
  - 8-bit NAND
  - 16-bit NAND
- NOR Flash boot
  - NOR Direct boot
  - NOR Legacy boot
  - NOR AIS boot
- HPI Boot
- I2C0/I2C1 Boot
  - Master boot
  - Slave boot
  - SPI0/SPI1 Boot
    - Master boot
    - Slave boot

For more details on the boot mode selection, see *TMS3200MAPL137 Digital Audio System-on-Chip User's Guide* SPRUG83.

#### 3.3 SYSCFG Module

The following system level features of the chip are controlled by the SYSCFG peripheral:

- Readable Device, Die, and Chip Revision ID
- · Control of Pin Multiplexing
- Priority of bus accesses different bus masters in the system
- Capture at power on reset the chip BOOT[15:0] pin values and make them available to software
- Special case settings for peripherals:
  - Locking of PLL controller settings
  - Default burst sizes for EDMA3 TC0 and TC1
  - Selection of the source for the eCAP module input capture (including on chip sources)
  - McASP AMUTEIN selection and clearing of AMUTE status for the three McASP peripherals
  - Control of the reference clock source and other side-band signals for both of the integrated USB PHYs
  - Clock source selection for EMIFA and EMIFB
- Selects the source of emulation suspend signal (from either ARM or DSP) from peripherals supporting this function.
- · Control of on-chip inter-processor interrupts for signaling between ARM and DSP



Since the SYSCFG peripheral controls global operation of the device, its registers are protected against erroneous accesses by several mechanisms:

- A special key sequence must be written to KICK0, KICK1 registers before any other registers are writeable.
- Additionally, many registers are accessible only by a host (ARM or DSP) when it is operating in its
  privileged mode. (ex. from the kernel, but not from user space code).
- On a secure OMAPL137 device, some accesses are further restricted to the DSP running in secure mode. Note that this protection does not apply to OMAPL137 devices that are ordered with the "No Security Option".

Table 3-1. System Configuration (SYSCFG) Module Register Access

| Offset      | Acronym  | Register Description                   | Access          |
|-------------|----------|----------------------------------------|-----------------|
| 0x01C1 4000 | REVID    | Revision Identification Register       | _               |
| 0x01C14008  | DIEIDR0  | Device Identification Register 0       | _               |
| 0x01C1 400C | DIEIDR1  | Device Identification Register 1       | _               |
| 0x01C1 4010 | DIEIDR2  | Device Identification Register 2       | _               |
| 0x01C1 4014 | DIEIDR3  | Device Identification Register 3       | _               |
| 0x01C1 4018 | DEVIDR0  | Device Identification Register 0       | _               |
| 0x01C1 4020 | BOOTCFG  | Boot Configuration Register            | Privileged mode |
| 0x01C1 4038 | KICK0R   | Kick 0 Register                        | Privileged mode |
| 0x01C1 403C | KICK1R   | Kick 1 Register                        | Privileged mode |
| 0x01C1 4040 | HOST0CFG | Host 0 Configuration Register          | _               |
| 0x01C1 4044 | HOST1CFG | Host 1 Configuration Register          | _               |
| 0x01C1 40E0 | IRAWSTAT | Interrupt Raw Status/Set Register      | Privileged mode |
| 0x01C1 40E4 | IENSTAT  | Interrupt Enable Status/Clear Register | Privileged mode |
| 0x01C1 40E8 | IENSET   | Interrupt Enable Register              | Privileged mode |
| 0x01C1 40EC | IENCLR   | Interrupt Enable Clear Register        | Privileged mode |
| 0x01C1 40F0 | EOI      | End of Interrupt Register              | Privileged mode |
| 0x01C1 40F4 | FLTADDRR | Fault Address Register                 | Privileged mode |
| 0x01C1 40F8 | FLTSTAT  | Fault Status Register                  | _               |
| 0x01C1 4110 | MSTPRI0  | Master Priority 0 Register             | Privileged mode |
| 0x01C1 4114 | MSTPRI1  | Master Priority 1 Register             | Privileged mode |
| 0x01C1 4118 | MSTPRI2  | Master Priority 2 Register             | Privileged mode |
| 0x01C1 4120 | PINMUX0  | Pin Multiplexing Control 0 Register    | Privileged mode |
| 0x01C1 4124 | PINMUX1  | Pin Multiplexing Control 1 Register    | Privileged mode |
| 0x01C1 4128 | PINMUX2  | Pin Multiplexing Control 2 Register    | Privileged mode |
| 0x01C1 412C | PINMUX3  | Pin Multiplexing Control 3 Register    | Privileged mode |
| 0x01C1 4130 | PINMUX4  | Pin Multiplexing Control 4 Register    | Privileged mode |
| 0x01C1 4134 | PINMUX5  | Pin Multiplexing Control 5 Register    | Privileged mode |
| 0x01C1 4138 | PINMUX6  | Pin Multiplexing Control 6 Register    | Privileged mode |
| 0x01C1 413C | PINMUX7  | Pin Multiplexing Control 7 Register    | Privileged mode |
| 0x01C1 4140 | PINMUX8  | Pin Multiplexing Control 8 Register    | Privileged mode |
| 0x01C1 4144 | PINMUX9  | Pin Multiplexing Control 9 Register    | Privileged mode |
| 0x01C1 4148 | PINMUX10 | Pin Multiplexing Control 10 Register   | Privileged mode |
| 0x01C1 414C | PINMUX11 | Pin Multiplexing Control 11 Register   | Privileged mode |
| 0x01C1 4150 | PINMUX12 | Pin Multiplexing Control 12 Register   | Privileged mode |
| 0x01C1 4154 | PINMUX13 | Pin Multiplexing Control 13 Register   | Privileged mode |
| 0x01C1 4158 | PINMUX14 | Pin Multiplexing Control 14 Register   | Privileged mode |
| 0x01C1 415C | PINMUX15 | Pin Multiplexing Control 15 Register   | Privileged mode |

www.ti.com

## Table 3-1. System Configuration (SYSCFG) Module Register Access (continued)

| Offset      | Acronym          | Register Description                 | Access            |
|-------------|------------------|--------------------------------------|-------------------|
| 0x01C1 4160 | PINMUX16         | Pin Multiplexing Control 16 Register | Privileged mode   |
| 0x01C1 4164 | PINMUX17         | Pin Multiplexing Control 17 Register | Privileged mode   |
| 0x01C1 4168 | PINMUX18         | Pin Multiplexing Control 18 Register | Privileged mode   |
| 0x01C1 416C | PINMUX19         | Pin Multiplexing Control 19 Register | Privileged mode   |
| 0x01C1 4170 | SUSPSRC Reserved | Suspend Source Register —            | Privileged mode — |
| 0x01C1 4174 | CHIPSIG          | Chip Signal Register                 | _                 |
| 0x01C1 4178 | CHIPSIG_CLR      | Chip Signal Clear Register           | _                 |
| 0x01C1 417C | CFGCHIP0         | Chip Configuration 0 Register        | Privileged mode   |
| 0x01C1 4180 | CFGCHIP1         | Chip Configuration 1 Register        | Privileged mode   |
| 0x01C1 4184 | CFGCHIP2         | Chip Configuration 2 Register        | Privileged mode   |
| 0x01C1 4188 | CFGCHIP3         | Chip Configuration 3 Register        | Privileged mode   |
| 0x01C1 418C | CFGCHIP4         | Chip Configuration 4 Register        | Privileged mode   |



## **Device Operating Conditions**

#### **Absolute Maximum Ratings Over Operating Case Temperature Range** (Unless Otherwise Noted) (1)

|                                                       | Core (CVDD, RTC_CVDD, PLL0_VDDA <sup>(2)</sup> ) (3)                                                                                                         | -0.5 V to 1.4 V                                |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Supply voltage ranges                                 | I/O, 1.8V<br>(USB0_VDDA18, USB1_VDDA18) <sup>(3)</sup>                                                                                                       | -0.5 V to 2 V                                  |
|                                                       | I/O, 3.3V<br>(DVDD, USB0_VDDA33, USB1_VDDA33) <sup>(3)</sup>                                                                                                 | -0.5 V to 3.8 V                                |
|                                                       | V <sub>I</sub> I/O, 1.2V<br>(OSCIN, RTC_XI)                                                                                                                  | -0.3 V to CVDD + 0.3V                          |
|                                                       | V <sub>I</sub> I/O, 3.3V<br>(Steady State)                                                                                                                   | -0.3V to DVDD + 0.3V                           |
| Input voltage ranges                                  | V <sub>I</sub> I/O, 3.3V<br>(Transient)                                                                                                                      | DVDD + 20%<br>up to 20% of Signal Period       |
|                                                       | V <sub>I</sub> I/O, USB 5V Tolerant Pins:<br>(USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP)                                                                   | 5.25V <sup>(4)</sup>                           |
|                                                       | V <sub>I</sub> I/O, USB0 VBUS                                                                                                                                | 5.50V <sup>(4)</sup>                           |
| Output valtage ranges                                 | V <sub>O</sub> I/O, 3.3V<br>(Steady State)                                                                                                                   | -0.5 V to DVDD + 0.3V                          |
| Output voltage ranges                                 | V <sub>O</sub> I/O, 3.3V<br>(Transient Overshoot/Undershoot)                                                                                                 | 20% of DVDD for up to 20% of the signal period |
| Clamp Current                                         | Input or Output Voltages 0.3V above or below their respective power rails. Limit clamp current that flows through the I/O's internal diode protection cells. | ±20mA                                          |
| Operating Junction Temperature ranges, T <sub>J</sub> |                                                                                                                                                              | -55°C to 175°C                                 |
| Storage temperature range, T <sub>stg</sub>           |                                                                                                                                                              | -55°C to 150°C                                 |

<sup>(1)</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

 <sup>(2)</sup> This pin is an internal LDO output and connected via 0.22 μF capacitor to USB0\_VDDA12.
 (3) All voltage values are with respect to VSS, PLL0\_VSSA, OSCVSS, RTC\_VSS

<sup>(4)</sup> Up to a max of 24 hours.



#### 4.2 **Recommended Operating Conditions**

|                        |                                                                                 | MIN          | NOM | MAX          | UNIT     |
|------------------------|---------------------------------------------------------------------------------|--------------|-----|--------------|----------|
| CVDD                   | Supply voltage, Core (CVDD, RTC_CVDD, PLL0_VDDA , USB0_VDDA12 <sup>(1)</sup> )  | 1.14         | 1.2 | 1.32         | <b>V</b> |
| DVDD                   | Supply voltage, I/O, 1.8V<br>(USB0_VDDA18, USB1_VDDA18)                         | 1.71         | 1.8 | 1.89         | V        |
| DVDD                   | Supply voltage, I/O, 3.3V (DVDD, USB0_VDDA33, USB1_VDDA33)                      | 3.15         | 3.3 | 3.45         | ٧        |
| VSS                    | Supply ground (VSS, PLL0_VSSA, OSCVSS <sup>(2)</sup> , RTC_VSS <sup>(2)</sup> ) | 0            | 0   | 0            | ٧        |
|                        | High-level input voltage, I/O, 3.3V                                             | 2            |     |              | V        |
| V <sub>IH</sub> (3)    | High-level input voltage, RTC_XI                                                | 0.8*RTC_CVDD |     |              | V        |
|                        | High-level input voltage, OSCIN                                                 | 0.8*CVDD     |     |              |          |
|                        | Low-level input voltage, I/O, 3.3V                                              |              |     | 0.8          | V        |
| V <sub>IL</sub> (3)    | Low-level input voltage, RTC_XI                                                 |              |     | 0.2*RTC_CVDD | V        |
|                        | Low-level input voltage, OSCIN                                                  |              |     | 0.2*CVDD     |          |
| V <sub>HYS</sub>       | Input Hysteresis                                                                |              | 160 |              | mV       |
| USB                    | USB0_VBUS                                                                       | 4.75         | 5   | 5.25         | V        |
| t <sub>t</sub>         | Transition time, 10%-90%, All Inputs                                            |              |     | 10           | ns       |
| T <sub>A</sub>         | Operating ambient temperature range                                             | -55          |     | 175          | °C       |
| F <sub>SYSCLK1,6</sub> | DSP and ARM Operating Frequency (SYSCLK1,6)                                     | 0            |     | 300          | MHz      |

This pin is an internal LDO output and connected via 0.22 µF capacitor to VSS. When an external crystal is used, oscillator ground (OSC\_VSS, RTC\_VSS) must be kept separate from other grounds and connected directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground. These I/O specifications do not apply to USB I/Os. USB0 I/Os adhere to USB2.0 specification. USB1 I/Os adhere to USB1.1



#### 4.3 Electrical Characteristics(1)

|                                | PARAMETER                              | TEST CONDITIONS                                                                      | MIN  | TYP MAX     | UNIT |
|--------------------------------|----------------------------------------|--------------------------------------------------------------------------------------|------|-------------|------|
|                                | Low/full speed:<br>USB0_DM and USB0_DP |                                                                                      | 2.8  | USB0_VDDA33 | V    |
|                                | High speed:<br>USB0_DM and USB0_DP     |                                                                                      | 360  | 440         | mV   |
| V <sub>OH</sub>                | Low/full speed:<br>USB1_DM and USB1_DP |                                                                                      | 2.8  | USB1_VDDA33 | V    |
|                                | High Level autout value as (2.2)/1/2)  | DVDD= 3.15V, I <sub>OH</sub> = -4 mA                                                 | 2.4  |             | V    |
|                                | High-level output voltage (3.3V I/O)   | DVDD= 3.15V, I <sub>OH</sub> = -100 μA                                               | 2.95 |             | V    |
|                                | Low/full speed:<br>USB0_DM and USB0_DP |                                                                                      | 0.0  | 0.3         | V    |
|                                | High speed:<br>USB0_DM and USB0_DP     |                                                                                      | -10  | 10          | mV   |
| V <sub>OL</sub>                | Low/full speed:<br>USB1_DM and USB1_DP |                                                                                      | 0.0  | 0.3         | V    |
|                                | Low-level output voltage (3.3V I/O)    | DVDD= 3.15V, I <sub>OL</sub> = 4mA                                                   |      | 0.4         | V    |
|                                | Low-level output voltage (3.3V 1/O)    | DVDD= $3.15V$ , $I_{OL} = +100 \mu A$                                                |      | 0.2         | ٧    |
|                                |                                        | V <sub>I</sub> = VSS to DVDD without opposing internal resistor                      |      | ±35         | μA   |
| I <sub>I</sub> (2)             |                                        | $V_I$ = VSS to DVDD with opposing internal pullup resistor <sup>(3)</sup>            | -30  | -200        | μA   |
| II ' '                         | Input current                          | V <sub>I</sub> = VSS to DVDD with opposing internal pulldown resistor <sup>(3)</sup> | 50   | 300         | μA   |
|                                |                                        | V <sub>I</sub> = VSS to USB1_VDDA33 - USB1_DM and USB1_DP                            |      | ±40         | μA   |
| I <sub>OH</sub>                | High-level output current              | All peripherals                                                                      |      | -4          | mA   |
| I <sub>OL</sub>                | Low-level output current               | All peripherals                                                                      |      | 4           | mA   |
| I <sub>OZ</sub> <sup>(4)</sup> | I/O Off-state output current           | VO = VDD or VSS; Internal pull disabled                                              |      | ±35         | μΑ   |
|                                |                                        | LVCMOS signals                                                                       |      | 3           |      |
| $C_{\text{I}}$                 | Input capacitance                      | OSCIN                                                                                |      | 5           | pF   |
|                                |                                        | RTC_XI                                                                               |      | 2           |      |
| Со                             | Output capacitance                     | LVCMOS signals                                                                       |      | 3           | pF   |

- (1) Parameters are characterized over -40°C to 125°C unless otherwise noted.
- (2) I<sub>I</sub> applies to input-only pins and bi-directional pins. For input-only pins, I<sub>I</sub> indicates the input leakage current. For bi-directional pins, I<sub>I</sub> indicates the input leakage current and off-state (Hi-Z) output leakage current. Does not apply to USB0 pins. Please see USB2.0 specification.
- (3) Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor.
- (4) I<sub>OZ</sub> applies to output-only pins, indicating off-state (Hi-Z) output leakage current.



- A. See datasheet for absolute maximum and minimum recommended operating conditions.
- B. The predicted operating lifetime vs. junction temperature is based on reliability modeling using electromigration as the dominant failure mechanism affecting device wearout for the specific device process and design characteristics.

Figure 4-1. OMAPL137 Operating Life Derating Chart at 300 MHz, Core 1.2 V



#### 5 Peripheral Information and Electrical Specifications

#### 5.1 Parameter Information

#### 5.1.1 Parameter Information Device-Specific Information



A. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timings.

Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.

Figure 5-1. Test Load Circuit for AC Timing Measurements

The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving.

#### 5.1.1.1 Signal Transition Levels

All input and output timing parameters are referenced to  $V_{ref}$  for both "0" and "1" logic levels. For 3.3 V I/O,  $V_{ref} = 1.65$  V. For 1.8 V I/O,  $V_{ref} = 0.9$  V. For 1.2 V I/O,  $V_{ref} = 0.6$  V."



Figure 5-2. Input and Output Voltage Reference Levels for AC Timing Measurements

All rise and fall transition timing parameters are referenced to  $V_{IL}$  MAX and  $V_{IH}$  MIN for input clocks,  $V_{OL}$ MAX and  $V_{OH}$  MIN for output clocks.



Figure 5-3. Rise and Fall Transition Time Voltage Reference Levels

#### 5.2 Recommended Clock and Control Signal Transition Behavior

All clocks and control signals *must* transition between  $V_{IH}$  and  $V_{IL}$  (or between  $V_{IL}$  and  $V_{IH}$ ) in a monotonic manner.



#### 5.3 Power Supplies

#### 5.3.1 Power-on Sequence

OMAPL137 devices include on chip logic that ensures I/O pins are tri-stated during the power on ramp, as long as the RESET pin is asserted. This is true even if the core voltage (CVDD) has not yet ramped.

Normally, the only requirement during the power on ramp is that both the RESET and TRST pins remain asserted (low) until after the power supply rails have fully ramped.

However, if the on chip USB modules are used; then to limit any noise on the USB0\_DM, andUSB0\_DP, USB1\_DM, and USB1\_DP pins to less than 200mV during the power on ramp, the sequence illustrated in Figure 5-4 must be followed. The requirement is that the core supply (CVDD) must ramp to at least 0.9V (1) before the IO supply (DVDD) reaches the 1.65V point in its ramp (2). And as is always the case, RESET and TRST must remain asserted during the power on ramp and released only after CVDD and DVDD are within their specified ranges.



Figure 5-4. Power Sequence

#### 5.3.2 Unused USB0 (USB2.0) and USB1 (USB1.1) Pin Configurations

If one or both USB modules on the device are not used, then some of the power supplies to those modules may not be required. This can eliminate the requirement for a 1.8V power supply to the USB modules. The required pin configurations for unused USB modules are shown below.

Table 5-1. Unused USB0 and USB1 Pin Configurations

| SIGNAL NAME          | Configuration<br>(When USB0 and USB1 are not used) | Configuration<br>(When USB0 is used<br>and USB1 is not used)       |
|----------------------|----------------------------------------------------|--------------------------------------------------------------------|
| USB0_DM              | No connect                                         | Use as USB0 function                                               |
| USB0_DP              | No connect                                         | Use as USB0 function                                               |
| USB0_VDDA33          | No connect                                         | 3.3V                                                               |
| USB0_VDDA18          | No connect                                         | 1.8V                                                               |
| USB0_ID              | No connect                                         | Use as USB0 function                                               |
| USB0_VBUS            | No connect                                         | Use as USB0 function                                               |
| USB0_DRVVBUS/GP4[15] | No connect or use as alternate function            | Use as USB0 or alternate function                                  |
| USB0_VDDA12          | No connect                                         | Internal USB0 PHY output connected to an external filter capacitor |
| USB1_DM              | No connect                                         | Ground                                                             |
| USB1_DP              | No connect                                         | Ground                                                             |
| USB1_VDDA33          | No connect                                         | No connect                                                         |
| USB1_VDDA18          | No connect                                         | No connect                                                         |

Peripheral Information and Electrical Specifications



#### Table 5-1. Unused USB0 and USB1 Pin Configurations (continued)

| SIGNAL NAME                              | Configuration<br>(When USB0 and USB1 are not used) | Configuration<br>(When USB0 is used<br>and USB1 is not used) |
|------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|
| AHCLKX0/AHCLKX2/USB_REFCLKIN/<br>GP2[11] | No connect or use as alternate function            | Use as USB0 or alternate function                            |

#### 5.4 Reset

#### 5.4.1 Power-On Reset (POR)

A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal logic to its default state. All pins are tri-stated with the exception of RESETOUT which remains active through the reset sequence. RESETOUT is an output for use by other controllers in the system that indicates the device is currently in reset.

RTCK is maintained active through a POR.

A summary of the effects of Power-On Reset is given below:

- All internal logic (including emulation logic and the PLL logic) is reset to its default state
- · Internal memory is not maintained through a POR
- RESETOUT goes active
- All device pins go to a high-impedance state
- The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC

# CAUTION A watchdog reset triggers a POR.

#### 5.4.2 Warm Reset

A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low (TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their default state while leaving others unaltered. All pins are tri-stated with the exception of RESETOUT which remains active through the reset sequence. RESETOUT is an output for use by other controllers in the system that indicates the device is currently in reset.

During emulation, the emulator will maintain TRST high and hence only warm reset (not POR) is available during emulation debug and development.

RTCK is maintained active through a POR.

A summary of the effects of Warm Reset is given below:

- All internal logic (except for the emulation logic and the PLL logic) is reset to its default state
- Internal memory is maintained through a warm reset
- RESETOUT goes active
- All device pins go to a high-impedance state
- The RTC peripheral is not reset during a warm reset. A software sequence is required to reset the RTC

#### 5.4.3 Reset Electrical Data Timings

Table 5-2 assumes testing over the recommended operating conditions.



## Table 5-2. Reset Timing Requirements (1)(2) (3)

| NO. |                                | PARAMETER                                          | MIN  | MAX | UNIT       |
|-----|--------------------------------|----------------------------------------------------|------|-----|------------|
| 1   | t <sub>w(RSTL)</sub>           | Pulse width, RESET/TRST low                        | 100  |     | ns         |
| 2   | t <sub>su(BPV-RSTH)</sub>      | Setup time, boot pins valid before RESET/TRST high | 20   |     | ns         |
| 3   | t <sub>h(RSTH-BPV)</sub>       | Hold time, boot pins valid after RESET/TRST high   | 20   |     | ns         |
| 4   |                                | RESET high to RESETOUT high; Warm reset            | 4096 |     | (4)        |
| 4   | <sup>t</sup> d(RSTH-RESETOUTH) | RESET high to RESETOUT high; Power-on Reset        | 6192 |     | cycles (4) |

- (1) Parameters are characterized from -40°C to 125°C unless otherwise noted.
- (2) RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 2-5 for details.
- (3) For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this table refer to RESET only (TRST is held high).
- (4) OSCIN cycles



Figure 5-5. Power-On Reset (RESET and TRST active) Timing



Figure 5-6. Warm Reset (RESET active, TRST high) Timing



#### 5.5 Crystal Oscillator or External Clock Input

The device includes two choices to provide an external clock input, which is fed to the on-chip PLL to generate high-frequency system clocks. These options are illustrated in Figure 5-7 and Figure 5-8. For input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For input clock frequencies between 20 and 30 MHz, a crystal with 60  $\Omega$  max ESR is recommended. Typical C1, C2 values are 10-20 pF.

The CLKMODE bit in the PLLCTL register must be 0 to use the on-chip oscillator. If CLKMODE is set to 1, the internal oscillator is disabled.

- Figure 5-7 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit.
- Figure 5-8 illustrates the option that uses an external 1.2V clock input.



The oscillator performance is validated up to 125°C, operating above 125°C is recommended to be driven with an external clock source.

Figure 5-7. On-Chip 1.2V Oscillator

**Table 5-3. Oscillator Timing Requirements** 

| NO.              | PARAMETER                                 | MIN | MAX | UNIT |
|------------------|-------------------------------------------|-----|-----|------|
| f <sub>osc</sub> | Oscillator frequency range (OSCIN/OSCOUT) | 12  | 30  | MHz  |



Figure 5-8. External 1.2V Clock Source

**Table 5-4. OSCIN Timing Requirements** 

| NO.                | PARAMETER                                  | MIN | MAX | UNIT |
|--------------------|--------------------------------------------|-----|-----|------|
| f <sub>OSCIN</sub> | OSCIN frequency range (OSCIN)              | 12  | 50  | MHz  |
| $t_{c(OSCIN)}$     | Cycle time, external clock driven on OSCIN | 20  |     | ns   |



#### Table 5-4. OSCIN Timing Requirements (continued)

| NO.                    | PARAMETER                                 | MIN                   | MAX | UNIT |
|------------------------|-------------------------------------------|-----------------------|-----|------|
| t <sub>w(OSCINH)</sub> | Pulse width high, external clock on OSCIN | 0.4                   |     | ns   |
|                        |                                           | $t_{c(OSCIN)}$        |     |      |
| t <sub>w(OSCINL)</sub> | Pulse width low, external clock on OSCIN  | 0.4                   |     | ns   |
| (,                     |                                           | t <sub>c(OSCIN)</sub> |     |      |
| t <sub>t(OSCIN)</sub>  | Transition time, OSCIN                    | 5                     |     | ns   |
| t <sub>j(OSCIN)</sub>  | Period jitter, OSCIN                      | 0.02P                 |     | ns   |

#### 5.6 Clock PLLs

The device has one PLL controller that provides clock to different parts of the system. PLL0 provides clocks (though various dividers) to most of the components of the device.

The PLL controller provides the following:

- Glitch-Free Transitions (on changing clock settings)
- · Domain Clocks Alignment
- Clock Gating
- PLL power down

The various clock outputs given by the controller are as follows:

- Domain Clocks: SYSCLK [1:n]
- Auxiliary Clock from reference clock source: AUXCLK

Various dividers that can be used are as follows:

Post-PLL Divider: POSTDIV
SYSCLK Divider: D1, ¼, Dn

Various other controls supported are as follows:

PLL Multiplier Control: PLLM

Software programmable PLL Bypass: PLLEN

#### 5.6.1 PLL Device-Specific Information

The device DSP generates the high-frequency internal clocks it requires through an on-chip PLL.

The PLL requires some external filtering components to reduce power supply noise as shown in Figure 5-9.



Figure 5-9. PLL External Filtering Components

The input to the PLL is either from the on-chip oscillator (OSCIN pin) or from an external clock on the CLKIN pin. The PLL outputs seven clocks that have programmable divider options. Figure 5-10 illustrates the PLL Topology.

The PLL is disabled by default after a device reset. It must be configured by software according to the allowable operating conditions listed in Table 5-5 before enabling the DSP to run from the PLL by setting PLLEN = 1.





Figure 5-10. PLL Topology



## Table 5-5. Allowed PLL Operating Conditions

| NO. | PARAMETER                                                                                                                                              | Default<br>Value | MIN               | MAX                                                                                                | UNIT |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|----------------------------------------------------------------------------------------------------|------|
| 1   | PLLRST: Assertion time during initialization                                                                                                           | N/A              | 125               | N/A                                                                                                | ns   |
| 2   | Lock time: The time that the application<br>has to wait for the PLL to acquire locks<br>before setting PLLEN, after changing<br>PREDIV, PLLM, or OSCIN | N/A              | N/A               | $\frac{2000 \text{ N}}{\sqrt{M}}$ where N = Pre-Divider Ratio $M = PLL \text{ Multiplier} \tag{1}$ | ns   |
| 3   | PREDIV                                                                                                                                                 | /1               | /1                | /32                                                                                                | ns   |
| 4   | PLL input frequency<br>( PLLREF)                                                                                                                       |                  | 12                | 30 (if internal oscillator is used) 50 (if external clock sourcce is used)                         | MHz  |
| 5   | PLL multiplier values (PLLM)                                                                                                                           | x20              | x4                | x32                                                                                                |      |
| 6   | PLL output frequency. ( PLLOUT )                                                                                                                       | N/A              | 400               | 600 <sup>(1)</sup>                                                                                 | MHz  |
| 7   | POSTDIV                                                                                                                                                | /1               | /2 <sup>(1)</sup> | /32                                                                                                | ns   |

<sup>(1)</sup> PLL post divider / 2 must be used. The /4.5 clock path can be used to generate an EMIF clock from the undivided (i.e. 600 MHz) PLL output clock.



#### 5.6.2 Device Clock Generation

PLL0 is controlled by PLL Controller 0. The PLLC0 manages the clock ratios, alignment, and gating for the system clocks to the chip. The PLLC is responsible for controlling all modes of the PLL through software, in terms of pre-division of the clock inputs, multiply factor within the PLL, and post-division for each of the chip-level clocks from the PLL output. The PLLC also controls reset propagation through the chip, clock alignment, and test points.

#### 5.6.3 PLL Controller 0 Registers

Table 5-6. PLL Controller 0 Registers

| ADDRESS     | ACRONYM | REGISTER DESCRIPTION                        |
|-------------|---------|---------------------------------------------|
| 0x01C1 1000 | REVID   | Revision Identification Register            |
| 0x01C1 10E4 | RSTYPE  | Reset Type Status Register                  |
| 0x01C1 1100 | PLLCTL  | PLL Control Register                        |
| 0x01C1 1104 | OCSEL   | OBSCLK Select Register                      |
| 0x01C1 1110 | PLLM    | PLL Multiplier Control Register             |
| 0x01C1 1114 | PREDIV  | PLL Pre-Divider Control Register            |
| 0x01C1 1118 | PLLDIV1 | PLL Controller Divider 1 Register           |
| 0x01C1 111C | PLLDIV2 | PLL Controller Divider 2 Register           |
| 0x01C1 1120 | PLLDIV3 | PLL Controller Divider 3 Register           |
| 0x01C1 1124 | OSCDIV  | Oscillator Divider 1 Register (OBSCLK)      |
| 0x01C1 1128 | POSTDIV | PLL Post-Divider Control Register           |
| 0x01C1 1138 | PLLCMD  | PLL Controller Command Register             |
| 0x01C1 113C | PLLSTAT | PLL Controller Status Register              |
| 0x01C1 1140 | ALNCTL  | PLL Controller Clock Align Control Register |
| 0x01C1 1144 | DCHANGE | PLLDIV Ratio Change Status Register         |
| 0x01C1 1148 | CKEN    | Clock Enable Control Register               |
| 0x01C1 114C | CKSTAT  | Clock Status Register                       |
| 0x01C1 1150 | SYSTAT  | SYSCLK Status Register                      |
| 0x01C1 1160 | PLLDIV4 | PLL Controller Divider 4 Register           |
| 0x01C1 1164 | PLLDIV5 | PLL Controller Divider 5 Register           |
| 0x01C1 1168 | PLLDIV6 | PLL Controller Divider 6 Register           |
| 0x01C1 116C | PLLDIV7 | PLL Controller Divider 7 Register           |
| 0x01C1 11F0 | EMUCNT0 | Emulation Performance Counter 0 Register    |
| 0x01C1 11F4 | EMUCNT1 | Emulation Performance Counter 1 Register    |
|             |         |                                             |

#### 5.7 Interrupts

The device has a large number of interrupts to service the needs of its many peripherals and subsystems. Both the ARM and C674x CPUs are capable of servicing these interrupts equally. The interrupts can be selectively enabled or disabled in either of the controllers. Also, the ARM and DSP can communicate with each other through interrupts controlled by registers in the SYSCFG module.



#### 5.7.1 ARM CPU Interrupts

The ARM9 CPU core supports 2 direct interrupts: FIQ and IRQ. The ARM Interrupt Controller on the OMAPL137 extends the number of interrupts to 100, and provides features like programmable masking, priority, hardware nesting support, and interrupt vector generation. The OMAPL137 ARM Interrupt controller is enhanced from previous devices like the DM6446 and DM355.

#### 5.7.1.1 ARM Interrupt Controller (AINTC) Interrupt Signal Hierarchy

On OMAPL137, the ARM Interrupt controller organizes interrupts into the following hierarchy:

- Peripheral Interrupt Requests
  - Individual Interrupt Sources from Peripherals
- 100 System Interrupts
  - One or more Peripheral Interrupt Requests are combined (fixed configuration) to generate a System Interrupt.
  - After prioritization, the AINTC will provide an interrupt vector based unique to each System Interrupt
- 32 Interrupt Channels
  - Each System Interrupt is mapped to one of the 32 Interrupt Channels
  - Channel Number determines the first level of prioritization, Channel 0 is highest priority and 31 lowest.
  - If more than one system interrupt is mapped to a channel, priority within the channel is determined by system interrupt number (0 highest priority)
- Host Interrupts (FIQ and IRQ)
  - Interrupt Channels 0 and 1 generate the ARM FIQ interrupt
  - Interrupt Channels 2 through 31 Generate the ARM IRQ interrupt
- Debug Interrupts
  - Two Debug Interrupts are supported and can be used to trigger events in the debug subsystem
  - Sources can be selected from any of the System Interrupts or Host Interrupts

#### 5.7.1.2 AINTC Hardware Vector Generation

The AINTC also generates an interrupt vector in hardware for both IRQ and FIQ host interrupts. This may be used to accelerate interrupt dispatch. A unique vector is generated for each of the 100 system interrupts. The vector is computed in hardware as:

VECTOR = BASE + (SYSTEM INTERRUPT NUMBER × SIZE)

Where BASE and SIZE are programmable. The computed vector is a 32-bit address which may dispatched to using a single instruction of type LDR PC, [PC, #-<offset\_12>] at the FIQ and IRQ vector locations (0xFFFF0018 and 0xFFFF001C respectively).

#### 5.7.1.3 AINTC Hardware Interrupt Nesting Support

Interrupt nesting occurs when an interrupt service routine re-enables interrupts, to allow the CPU to interrupt the ISR if a higher priority event occurs. The AINTC provides hardware support to facilitate interrupt nesting. It supports both global and per host interrupt (FIQ and IRQ in this case) automatic nesting. If enabled, the AINTC will automatically update an internal nesting register that temporarily masks interrupts at and below the priority of the current interrupt channel. Then if the ISR re-enables interrupts; only higher priority channels will be able to interrupt it. The nesting level is restored by the ISR by writing to the nesting level register on completion. Support for nesting can be enabled/disabled by software, with the option of automatic nesting on a global or per host interrupt basis; or manual nesting.

#### 5.7.1.4 AINTC System Interrupt Assignments on OMAPL137

System Interrupt assignments for the OMAPL137 are listed in Table 5-7



## **Table 5-7. AINTC System Interrupt Assignments**

| System<br>Interrupt | Interrupt Name     | Source                                                | System<br>Interrupt | Interrupt Name | Source                                   |
|---------------------|--------------------|-------------------------------------------------------|---------------------|----------------|------------------------------------------|
| 0                   | COMMTX             | ARM                                                   | 51                  | IIC1_INT       | I2C1                                     |
| 1                   | COMMRX             | ARM                                                   | 52                  | LCDC_INT       | LCD Controller                           |
| 2                   | NINT               | ARM                                                   | 53                  | UART_INT1      | UART1                                    |
| 3                   | PRU_EVTOUT0        | PRU Interrupt                                         | 54                  | MCASP_INT      | McASP0, 1, 2 Combined RX / TX Interrupts |
| 4                   | PRU_EVTOUT1        | PRU Interrupt                                         | 55                  | PSC1_ALLINT    | PSC1                                     |
| 5                   | PRU_EVTOUT2        | PRU Interrupt                                         | 56                  | SPI1_INT       | SPI1                                     |
| 6                   | PRU_EVTOUT3        | PRU Interrupt                                         | 57                  | UHPI_ARMINT    | UHPI Arm Interrupt                       |
| 7                   | PRU_EVTOUT4        | PRU Interrupt                                         | 58                  | USB0_INT       | USB0 Interrupt                           |
| 8                   | PRU_EVTOUT5        | PRU Interrupt                                         | 59                  | USB1_HCINT     | USB1 OHCI Host<br>Controller Interrupt   |
| 9                   | PRU_EVTOUT6        | PRU Interrupt                                         | 60                  | USB1_RWAKEUP   | USB1 Remote Wakeup<br>Interrupt          |
| 10                  | PRU_EVTOUT7        | PRU Interrupt                                         | 61                  | UART2_INT      | UART2                                    |
| 11                  | EDMA3_CC0_CCINT    | EDMA CC Region 0                                      | 62                  | -              | Reserved                                 |
| 12                  | EDMA3_CC0_CCERRINT | EDMA CC                                               | 63                  | EHRPWM0        | HiResTimer / PWM0<br>Interrupt           |
| 13                  | EDMA3_TC0_TCERRINT | EDMA TC0                                              | 64                  | EHRPWM0TZ      | HiResTimer / PWM0 Trip<br>Zone Interrupt |
| 14                  | EMIFA_INT          | EMIFA                                                 | 65                  | EHRPWM1        | HiResTimer / PWM1<br>Interrupt           |
| 15                  | IIC0_INT           | I2C0                                                  | 66                  | EHRPWM1TZ      | HiResTimer / PWM1 Trip<br>Zone Interrupt |
| 16                  | MMCSD_INT0         | MMCSD                                                 | 67                  | EHRPWM2        | HiResTimer / PWM2<br>Interrupt           |
| 17                  | MMCSD_INT1         | MMCSD                                                 | 68                  | EHRPWM2TZ      | HiResTimer / PWM2 Trip<br>Zone Interrupt |
| 18                  | PSC0_ALLINT        | PSC0                                                  | 69                  | ECAP0          | ECAP0                                    |
| 19                  | RTC_IRQS[1:0]      | RTC                                                   | 70                  | ECAP1          | ECAP1                                    |
| 20                  | SPI0_INT           | SPI0                                                  | 71                  | ECAP2          | ECAP2                                    |
| 21                  | T64P0_TINT12       | Timer64P0 Interrupt 12                                | 72                  | EQEP0          | EQEP0                                    |
| 22                  | T64P0_TINT34       | Timer64P0 Interrupt 34                                | 73                  | EQEP1          | EQEP1                                    |
| 23                  | T64P1_TINT12       | Timer64P1 Interrupt 12                                | 74                  | T64P0_CMPINT0  | Timer64P0 - Compare 0                    |
| 24                  | T64P1_TINT34       | Timer64P1 Interrupt 34                                | 75                  | T64P0_CMPINT1  | Timer64P0 - Compare 1                    |
| 25                  | UART0_INT          | UART0                                                 | 76                  | T64P0_CMPINT2  | Timer64P0 - Compare 2                    |
| 26                  | -                  | Reserved                                              | 77                  | T64P0_CMPINT3  | Timer64P0 - Compare 3                    |
| 27                  | PROTERR            | MPU1, 2, and SYSCFG<br>Protection Shared<br>Interrupt | 78                  | T64P0_CMPINT4  | Timer64P0 - Compare 4                    |
| 28                  | SYSCFG_CHIPINT0    | SYSCFG CHIPSIG<br>Register                            | 79                  | T64P0_CMPINT5  | Timer64P0 - Compare 5                    |
| 29                  | SYSCFG_CHIPINT1    | SYSCFG CHIPSIG<br>Register                            | 80                  | T64P0_CMPINT6  | Timer64P0 - Compare 6                    |
| 30                  | SYSCFG_CHIPINT2    | SYSCFG CHIPSIG<br>Register                            | 81                  | T64P0_CMPINT7  | Timer64P0 - Compare 7                    |
| 31                  | SYSCFG_CHIPINT3    | SYSCFG CHIPSIG<br>Register                            | 82                  | T64P1_CMPINT0  | Timer64P1 - Compare 0                    |
| 32                  | EDMA3_TC1_TCERRINT | EDMA TC1                                              | 83                  | T64P1_CMPINT1  | Timer64P1 - Compare 1                    |
| 33                  | EMAC_CORXTHRESH    | EMAC - Core 0 Receive<br>Threshold Interrupt          | 84                  | T64P1_CMPINT2  | Timer64P1 - Compare 2                    |
| 34                  | EMAC_CORX          | EMAC - Core 0 Receive<br>Interrupt                    | 85                  | T64P1_CMPINT3  | Timer64P1 - Compare 3                    |



## Table 5-7. AINTC System Interrupt Assignments (continued)

| System<br>Interrupt | Interrupt Name  | Source                                       | System<br>Interrupt | Interrupt Name | Source                |
|---------------------|-----------------|----------------------------------------------|---------------------|----------------|-----------------------|
| 35                  | EMAC_C0TX       | EMAC - Core 0 Transmit<br>Interrupt          | 86                  | T64P1_CMPINT4  | Timer64P1 - Compare 4 |
| 36                  | EMAC_COMISC     | EMAC - Core 0<br>Miscellaneous Interrupt     | 87                  | T64P1_CMPINT5  | Timer64P1 - Compare 5 |
| 37                  | EMAC_C1RXTHRESH | EMAC - Core 1 Receive<br>Threshold Interrupt | 88                  | T64P1_CMPINT6  | Timer64P1 - Compare 6 |
| 38                  | EMAC_C1RX       | EMAC - Core 1 Receive Interrupt              | 89                  | T64P1_CMPINT7  | Timer64P1 - Compare 7 |
| 39                  | EMAC_C1TX       | EMAC - Core 1 Transmit<br>Interrupt          | 90                  | ARMCLKSTOPREQ  | PSC0                  |
| 40                  | EMAC_C1MISC     | EMAC - Core 1<br>Miscellaneous Interrupt     | 91                  | -              | Reserved              |
| 41                  | EMIF_MEMERR     | EMIFB                                        | 92                  | -              | Reserved              |
| 42                  | GPIO_B0INT      | GPIO Bank 0 Interrupt                        | 93                  | -              | Reserved              |
| 43                  | GPIO_B1INT      | GPIO Bank 1 Interrupt                        | 94                  | -              | Reserved              |
| 44                  | GPIO_B2INT      | GPIO Bank 2 Interrupt                        | 95                  | -              | Reserved              |
| 45                  | GPIO_B3INT      | GPIO Bank 3 Interrupt                        | 96                  | -              | Reserved              |
| 46                  | GPIO_B4INT      | GPIO Bank 4 Interrupt                        | 97                  | -              | Reserved              |
| 47                  | GPIO_B5INT      | GPIO Bank 5 Interrupt                        | 98                  | -              | Reserved              |
| 48                  | GPIO_B6INT      | GPIO Bank 6 Interrupt                        | 99                  | -              | Reserved              |
| 49                  | GPIO_B7INT      | GPIO Bank 7 Interrupt                        | 100                 | -              | Reserved              |
| 50                  | -               | Reserved                                     |                     |                |                       |



## 5.7.1.5 AINTC Memory Map

## **Table 5-8. AINTC Memory Map**

| BYTE ADDRESS              | REGISTER NAME       | DESCRIPTION                                       |  |
|---------------------------|---------------------|---------------------------------------------------|--|
| 0xFFFE E000               | REV                 | Revision Register                                 |  |
| 0xFFFE E004               | CR                  | Control Register                                  |  |
| 0xFFFE E008 - 0xFFFE E00F | -                   | Reserved                                          |  |
| 0xFFFE E010               | GER                 | Global Enable Register                            |  |
| 0xFFFE E014 - 0xFFFE E01B | -                   | Reserved                                          |  |
| 0xFFFE E01C               | GNLR                | Global Nesting Level Register                     |  |
| 0xFFFE E020               | SISR                | System Interrupt Status Indexed Set Register      |  |
| 0xFFFE E024               | SICR                | System Interrupt Status Indexed Clear Register    |  |
| 0xFFFE E028               | EISR                | System Interrupt Enable Indexed Set Register      |  |
| 0xFFFE E02C               | EICR                | System Interrupt Enable Indexed Clear Register    |  |
| 0xFFFE E030               | -                   | Reserved                                          |  |
| 0xFFFE E034               | HIEISR              | Host Interrupt Enable Indexed Set Register        |  |
| 0xFFFE E038               | HIDISR              | Host Interrupt Enable Indexed Clear Register      |  |
| 0xFFFE E03C - 0xFFFE E04F | -                   | Reserved                                          |  |
| 0xFFFE E050               | VBR                 | Vector Base Register                              |  |
| 0xFFFE E054               | VSR                 | Vector Size Register                              |  |
| 0xFFFE E058               | VNR                 | Vector Null Register                              |  |
| 0xFFFE E05C - 0xFFFE E07F | -                   | Reserved                                          |  |
| 0xFFFE E080               | GPIR                | Global Prioritized Index Register                 |  |
| 0xFFFE E084               | GPVR                | Global Prioritized Vector Register                |  |
| 0xFFFE E088 - 0xFFFE E1FF | -                   | Reserved                                          |  |
| 0xFFFE E200 - 0xFFFE E20F | SRSR[1] - SRSR[3]   | System Interrupt Status Raw / Set Registers       |  |
| 0xFFFE E20C - 0xFFFE E27F | -                   | Reserved                                          |  |
| 0xFFFE E280 - 0xFFFE E28B | SECR[1] - SECR[3]   | System Interrupt Status Enabled / Clear Registers |  |
| 0xFFFE E28C - 0xFFFE E2FF | -                   | Reserved                                          |  |
| 0xFFFE E300 - 0xFFFE E30B | ESR[1] - ESR[3]     | System Interrupt Enable Set Registers             |  |
| 0xFFFE E30C - 0xFFFE E37F | -                   | Reserved                                          |  |
| 0xFFFE E380 - 0xFFFE E38B | ECR[1] - ECR[3]     | System Interrupt Enable Clear Registers           |  |
| 0xFFFE E38C - 0xFFFE E3FF | -                   | Reserved                                          |  |
| 0xFFFE E400 - 0xFFFE E458 | CMR[0] - CMR[22]    | Channel Map Registers (Byte Wide Registers)       |  |
| 0xFFFE E459 - 0xFFFE E7FF | -                   | Reserved                                          |  |
| 0xFFFE E800 - 0xFFFE E81F | -                   | Reserved                                          |  |
| 0xFFFE E820 - 0xFFFE E8FF | -                   | Reserved                                          |  |
| 0xFFFE E900 - 0xFFFE E904 | HIPIR[1] - HIPIR[2] | Host Interrupt Prioritized Index Registers        |  |
| 0xFFFE E908 - 0xFFFE EEFF | -                   | Reserved                                          |  |
| 0xFFFE EF00 - 0xFFFE EF04 | -                   | Reserved                                          |  |
| 0xFFFE EF08 - 0xFFFE F0FF | -                   | Reserved                                          |  |
| 0xFFFE F100 - 0xFFFE F104 | HINLR[1] - HINLR[2] | Host Interrupt Nesting Level Registers            |  |
| 0xFFFE F108 - 0xFFFE F4FF | -                   | Reserved                                          |  |
| 0xFFFE F500               | HIER                | Host Interrupt Enable Register                    |  |
| 0xFFFE F504 - 0xFFFE F5FF | -                   | Reserved                                          |  |
| 0xFFFE F600               | HIPVR[1] - HIPVR[2] | Host Interrupt Prioritized Vector Registers       |  |
| 0xFFFE F608 - 0xFFFE FFFF | -                   | Reserved                                          |  |



#### 5.7.2 DSP Interrupts

The C674x DSP interrupt controller combines device events into 12 prioritized interrupts. The source for each of the 12 CPU interrupts is user programmable and is listed in Table 5-9. Also, the interrupt controller controls the generation of the CPU exception, NMI, and emulation interrupts. Table 5-10 summarizes the C674x interrupt controller registers and memory locations. For more details on DSP interrupt control, see the TMS320C64x+ DSP Megamodule Reference Guide, Literature Number - SPRU871.

Table 5-9. OMAPL137 DSP Interrupts

| EVT# | Interrupt Name    | Source                                                | EVT# | Interrupt Name  | Source                                         |
|------|-------------------|-------------------------------------------------------|------|-----------------|------------------------------------------------|
| 0    | EVT0              | C674x Int Ctl 0                                       | 64   | T64P0_TINT34    | Timer64P0 Interrupt 34                         |
| 1    | EVT1              | C674x Int Ctl 1                                       | 65   | GPIO_B0INT      | GPIO Bank 0 Interrupt                          |
| 2    | EVT2              | C674x Int Ctl 2                                       | 66   | PRU_EVTOUT4     | PRU Interrupt                                  |
| 3    | EVT3              | C674x Int Ctl 3                                       | 67   | SYSCFG_CHIPINT3 | SYSCFG_CHIPSIG Register                        |
| 4    | T64P0_TINT12      | Timer64P0 - TINT12                                    | 68   | EQEP0           | EQEP0                                          |
| 5    | SYSCFG_CHIPINT2   | SYSCFG _CHIPSIG Register                              | 69   | UART2_INT       | UART2                                          |
| 6    | PRU_EVTOUT0       | PRU Interrupt                                         | 70   | PSC0_ALLINT     | PSC0                                           |
| 7    | EHRPWM0           | HiResTimer/PWM0 Interrupt                             | 71   | PSC1_ALLINT     | PSC1                                           |
| 8    | EDMA3_CC0_INT1    | EDMA3 CC0 Region 1 interrupt                          | 72   | GPIO_B7INT      | GPIO Bank 7 Interrupt                          |
| 9    | EMU-DTDMA         | C674x-ECM                                             | 73   | LCDC_INT -      | LCD ControllerReserved                         |
| 10   | EHRPWM0TZ         | HiResTimer/PWM0 Trip Zone Interrupt                   | 74   | PROTERR         | MPU1, 2, SYSCFG Protection<br>Shared Interrupt |
| 11   | EMU-RTDXRX        | C674x-RTDX                                            | 75   | ı               | Reserved                                       |
| 12   | EMU-RTDXTX        | C674x-RTDX                                            | 76   | -               | Reserved                                       |
| 13   | IDMAINT0          | C674x-EMC                                             | 77   | •               | Reserved                                       |
| 14   | IDMAINT1          | C674x-EMC                                             | 78   | T64P0_CMPINT0   | Timer64P0 - Compare 0                          |
| 15   | MMCSD_INT0        | MMCSD MMC/SD Interrupt                                | 79   | T64P0_CMPINT1   | Timer64P0 - Compare 1                          |
| 16   | MMCSD_INT1        | MMCSD SDIO Interrupt                                  | 80   | T64P0_CMPINT2   | Timer64P0 - Compare 2                          |
| 17   | PRU_EVTOUT1       | PRU Interrupt                                         | 81   | T64P0_CMPINT3   | Timer64P0 - Compare 3                          |
| 18   | EHRPWM1           | HiResTimer/PWM1 Interrupt                             | 82   | T64P0_CMPINT4   | Timer64P0 - Compare 4                          |
| 19   | USB0_INT          | USB0 Interrupt                                        | 83   | T64P0_CMPINT5   | Timer64P0 - Compare 5                          |
| 20   | USB1_HCINT -      | USB1 OHCI Host Controller<br>Interrupt Reserved       | 84   | T64P0_CMPINT6   | Timer64P0 - Compare 6                          |
| 21   | USB1_RWAKEUP -    | USB1 Remote Wakeup Interrupt Reserved                 | 85   | T64P0_CMPINT7   | Timer64P0 - Compare 7                          |
| 22   | PRU_EVTOUT2       | PRU Interrupt                                         | 86   | T64P1_CMPINT0   | Timer64P1 - Compare 0                          |
| 23   | EHRPWM1TZ         | HiResTimer/PWM1 Trip Zone Interrupt                   | 87   | T64P1_CMPINT1   | Timer64P1 - Compare 1                          |
| 24   | EHRPWM2           | HiResTimer/PWM2 Interrupt                             | 88   | T64P1_CMPINT2   | Timer64P1 - Compare 2                          |
| 25   | EHRPWM2TZ         | HiResTimer/PWM2 Trip Zone<br>Interrupt                | 89   | T64P1_CMPINT3   | Timer64P1 - Compare 3                          |
| 26   | EMAC_CORXTHRESH - | EMAC - Core 0 Receive<br>Threshold Interrupt Reserved | 90   | T64P1_CMPINT4   | Timer64P1 - Compare 4                          |
| 27   | EMAC_CORX -       | EMAC - Core 0 Receive Interrupt<br>Reserved           | 91   | T64P1_CMPINT5   | Timer64P1 - Compare 5                          |
| 28   | EMAC_COTX -       | EMAC - Core 0 Transmit<br>Interrupt Reserved          | 92   | T64P1_CMPINT6   | Timer64P1 - Compare 6                          |
| 29   | EMAC_COMISC -     | EMAC - Core 0 Miscellaneous<br>Interrupt Reserved     | 93   | T64P1_CMPINT7   | Timer64P1 - Compare 7                          |
| 30   | EMAC_C1RXTHRESH - | EMAC - Core 1 Receive<br>Threshold Interrupt Reserved | 94   | -               | Reserved                                       |
| 31   | EMAC_C1RX -       | EMAC - Core 1 Receive Interrupt<br>Reserved           | 95   | -               | Reserved                                       |



## Table 5-9. OMAPL137 DSP Interrupts (continued)

| EVT# | Interrupt Name   | Source                                            | EVT# | Interrupt Name | Source        |
|------|------------------|---------------------------------------------------|------|----------------|---------------|
| 32   | EMAC_C1TX -      | EMAC - Core 1 Transmit<br>Interrupt Reserved      | 96   | INTERR         | C674x-Int Ctl |
| 33   | EMAC_C1MISC -    | EMAC - Core 1 Miscellaneous<br>Interrupt Reserved | 97   | EMC_IDMAERR    | C674x-EMC     |
| 34   | UHPI_DSPINT      | UHPI DSP Interrupt                                | 98   | -              | Reserved      |
| 35   | PRU_EVTOUT3      | PRU Interrupt                                     | 99   | -              | Reserved      |
| 36   | IIC0_INT         | I2C0                                              | 100  | -              | Reserved      |
| 37   | SP0_INT          | SPI0                                              | 101  | -              | Reserved      |
| 38   | UART0_INT        | UART0                                             | 102  | -              | Reserved      |
| 39   | PRU_EVTOUT5      | PRU Interrupt                                     | 103  | -              | Reserved      |
| 40   | T64P1_TINT12     | Timer64P1 Interrupt 12                            | 104  | -              | Reserved      |
| 41   | GPIO_B1INT       | GPIO Bank 1 Interrupt                             | 105  | -              | Reserved      |
| 42   | IIC1_INT         | I2C1                                              | 106  | -              | Reserved      |
| 43   | SPI1_INT         | SPI1                                              | 107  | -              | Reserved      |
| 44   | PRU_EVTOUT6      | PRU Interrupt                                     | 108  | -              | Reserved      |
| 45   | ECAP0            | ECAP0                                             | 109  | -              | Reserved      |
| 46   | UART_INT1        | UART1                                             | 110  | -              | Reserved      |
| 47   | ECAP1            | ECAP1                                             | 111  | -              | Reserved      |
| 48   | T64P1_TINT34     | Timer64P1 Interrupt 34                            | 112  | -              | Reserved      |
| 49   | GPIO_B2INT       | GPIO Bank 2 Interrupt                             | 113  | PMC_ED         | C674x-PMC     |
| 50   | PRU_EVTOUT7      | PRU Interrupt                                     | 114  | -              | Reserved      |
| 51   | ECAP2            | ECAP2                                             | 115  | =              | Reserved      |
| 52   | GPIO_B3INT       | GPIO Bank 3 Interrupt                             | 116  | UMC_ED1        | C674x-UMC     |
| 53   | EQEP1            | EQEP1                                             | 117  | UMC_ED2        | C674x-UMC     |
| 54   | GPIO_B4INT       | GPIO Bank 4 Interrupt                             | 118  | PDC_INT        | C674x-PDC     |
| 55   | EMIFA_INT        | EMIFA                                             | 119  | SYS_CMPA       | C674x-SYS     |
| 56   | EDMA3_CC0_ERRINT | EDMA3 Channel Controller 0                        | 120  | PMC_CMPA       | C674x-PMC     |
| 57   | EDMA3_TC0_ERRINT | EDMA3 Transfer Controller 0                       | 121  | PMC_CMPA       | C674x-PMC     |
| 58   | EDMA3_TC1_ERRINT | EDMA3 Transfer Controller 1                       | 122  | DMC_CMPA       | C674x-DMC     |
| 59   | GPIO_B5INT       | GPIO Bank 5 Interrupt                             | 123  | DMC_CMPA       | C674x-DMC     |
| 60   | EMIFB_INT        | EMIFB Memory Error Interrupt                      | 124  | UMC_CMPA       | C674x-UMC     |
| 61   | MCASP_INT        | McASP0,1,2 Combined RX/TX Interrupts              | 125  | UMC_CMPA       | C674x-UMC     |
| 62   | GPIO_B6INT       | GPIO Bank 6 Interrupt                             | 126  | EMC_CMPA       | C674x-EMC     |
| 63   | RTC_IRQS         | RTC Combined                                      | 127  | EMC_BUSERR     | C674x-EMC     |



## Table 5-10. C674x DSP Interrupt Controller Registers

| BYTE ADDRESS              | REGISTER NAME | DESCRIPTION                      |
|---------------------------|---------------|----------------------------------|
| 0x0180 0000               | EVTFLAG0      | Event flag register 0            |
| 0x0180 0004               | EVTFLAG1      | Event flag register 1            |
| 0x0180 0008               | EVTFLAG2      | Event flag register 2            |
| 0x0180 000C               | EVTFLAG3      | Event flag register 3            |
| 0x0180 0020               | EVTSET0       | Event set register 0             |
| 0x0180 0024               | EVTSET1       | Event set register 1             |
| 0x0180 0028               | EVTSET2       | Event set register 2             |
| 0x0180 002C               | EVTSET3       | Event set register 3             |
| 0x0180 0040               | EVTCLR0       | Event clear register 0           |
| 0x0180 0044               | EVTCLR1       | Event clear register 1           |
| 0x0180 0048               | EVTCLR2       | Event clear register 2           |
| 0x0180 004C               | EVTCLR3       | Event clear register 3           |
| 0x0180 0080               | EVTMASK0      | Event mask register 0            |
| 0x0180 0084               | EVTMASK1      | Event mask register 1            |
| 0x0180 0088               | EVTMASK2      | Event mask register 2            |
| 0x0180 008C               | EVTMASK3      | Event mask register 3            |
| 0x0180 00A0               | MEVTFLAG0     | Masked event flag register 0     |
| 0x0180 00A4               | MEVTFLAG1     | Masked event flag register 1     |
| 0x0180 00A8               | MEVTFLAG2     | Masked event flag register 2     |
| 0x0180 00AC               | MEVTFLAG3     | Masked event flag register 3     |
| 0x0180 00C0               | EXPMASK0      | Exception mask register 0        |
| 0x0180 00C4               | EXPMASK1      | Exception mask register 1        |
| 0x0180 00C8               | EXPMASK2      | Exception mask register 2        |
| 0x0180 00CC               | EXPMASK3      | Exception mask register 3        |
| 0x0180 00E0               | MEXPFLAG0     | Masked exception flag register 0 |
| 0x0180 00E4               | MEXPFLAG1     | Masked exception flag register 1 |
| 0x0180 00E8               | MEXPFLAG2     | Masked exception flag register 2 |
| 0x0180 00EC               | MEXPFLAG3     | Masked exception flag register 3 |
| 0x0180 0104               | INTMUX1       | Interrupt mux register 1         |
| 0x0180 0108               | INTMUX2       | Interrupt mux register 2         |
| 0x0180 010C               | INTMUX3       | Interrupt mux register 3         |
| 0x0180 0140 - 0x0180 0144 | -             | Reserved                         |
| 0x0180 0180               | INTXSTAT      | Interrupt exception status       |
| 0x0180 0184               | INTXCLR       | Interrupt exception clear        |
| 0x0180 0188               | INTDMASK      | Dropped interrupt mask register  |
| 0x0180 01C0               | EVTASRT       | Event assert register            |

## 5.7.3 ARM/DSP Communications Interrupts

Communications Interrupts between the ARM and DSP are part of the SYSCFG module on the OMAPL137 family of devices.



#### 5.8 General-Purpose Input/Output (GPIO)

The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs. When configured as an output, a write to an internal register can control the state driven on the output pin. When configured as an input, the state of the input is detectable by reading the state of an internal register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different interrupt/event generation modes. The GPIO peripheral provides generic connections to external devices. The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]).

The device GPIO peripheral supports the following:

- Up to 109 Pins on PTP package configurable as GPIO
- External Interrupt and DMA request Capability
  - Every GPIO pin may be configured to generate an interrupt request on detection of rising and/or falling edges on the pin.
  - The interrupt requests within each bank are combined (logical or) to create eight unique bank level interrupt requests.
  - The bank level interrupt service routine may poll the INTSTATx register for its bank to determine which pin(s) have triggered the interrupt.
  - GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to ARM INTC Interrupt Requests 42, 43, 44, 45, 46, 47, 48, and 49 respectively
  - GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to DSP Events 65, 41, 49, 52, 54, 59, 62 and 72 respectively
  - Additionally, GPIO Banks 0, 1, 2, 3, 4, and 5 Interrupts assigned to EDMA events 6, 7, 22, 23, 28, and 29 respectively.
- Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIO signal(s). This allows multiple firmware processes to toggle GPIO output signals without critical section protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to anther process during GPIO programming).
- · Separate Input/Output registers
- Output register in addition to set/clear so that, if preferred by firmware, some GPIO output signals can be toggled by direct write to the output register(s).
- Output register, when read, reflects output drive status. This, in addition to the input register reflecting
  pin status and open-drain I/O cell, allows wired logic be implemented.

The memory map for the GPIO registers is shown in Table 5-11. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number <u>SPRUFK9</u> for more details.

#### 5.8.1 GPIO Register Description(s)

#### Table 5-11. GPIO Registers

| GPIO<br>BYTE ADDRESS | Acronym        | Register Description                                    |
|----------------------|----------------|---------------------------------------------------------|
| 0x01E2 6000          | REV            | Peripheral Revision Register                            |
| 0x01E2 6004          | -              | Reserved                                                |
| 0x01E2 6008          | BINTEN         | GPIO Interrupt Per-Bank Enable Register                 |
|                      | G              | PIO Banks 0 and 1                                       |
| 0x01E2 6010          | DIR01          | GPIO Banks 0 and 1 Direction Register                   |
| 0x01E2 6014          | OUT_DATA01     | GPIO Banks 0 and 1 Output Data Register                 |
| 0x01E2 6018          | SET_DATA01     | GPIO Banks 0 and 1 Set Data Register                    |
| 0x01E2 601C          | CLR_DATA01     | GPIO Banks 0 and 1 Clear Data Register                  |
| 0x01E2 6020          | IN_DATA01      | GPIO Banks 0 and 1 Input Data Register                  |
| 0x01E2 6024          | SET_RIS_TRIG01 | GPIO Banks 0 and 1 Set Rising Edge Interrupt Register   |
| 0x01E2 6028          | CLR_RIS_TRIG01 | GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register |



## **Table 5-11. GPIO Registers (continued)**

| GPIO<br>BYTE ADDRESS | Acronym        | Register Description                                     |
|----------------------|----------------|----------------------------------------------------------|
| 0x01E2 602C          | SET_FAL_TRIG01 | GPIO Banks 0 and 1 Set Falling Edge Interrupt Register   |
| 0x01E2 6030          | CLR_FAL_TRIG01 | GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register |
| 0x01E2 6034          | INTSTAT01      | GPIO Banks 0 and 1 Interrupt Status Register             |
|                      |                | GPIO Banks 2 and 3                                       |
| 0x01E2 6038          | DIR23          | GPIO Banks 2 and 3 Direction Register                    |
| 0x01E2 603C          | OUT_DATA23     | GPIO Banks 2 and 3 Output Data Register                  |
| 0x01E2 6040          | SET_DATA23     | GPIO Banks 2 and 3 Set Data Register                     |
| 0x01E2 6044          | CLR_DATA23     | GPIO Banks 2 and 3 Clear Data Register                   |
| 0x01E2 6048          | IN_DATA23      | GPIO Banks 2 and 3 Input Data Register                   |
| 0x01E2 604C          | SET_RIS_TRIG23 | GPIO Banks 2 and 3 Set Rising Edge Interrupt Register    |
| 0x01E2 6050          | CLR_RIS_TRIG23 | GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register  |
| 0x01E2 6054          | SET_FAL_TRIG23 | GPIO Banks 2 and 3 Set Falling Edge Interrupt Register   |
| 0x01E2 6058          | CLR_FAL_TRIG23 | GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register |
| 0x01E2 605C          | INTSTAT23      | GPIO Banks 2 and 3 Interrupt Status Register             |
|                      |                | GPIO Banks 4 and 5                                       |
| 0x01E2 6060          | DIR45          | GPIO Banks 4 and 5 Direction Register                    |
| 0x01E2 6064          | OUT_DATA45     | GPIO Banks 4 and 5 Output Data Register                  |
| 0x01E2 6068          | SET_DATA45     | GPIO Banks 4 and 5 Set Data Register                     |
| 0x01E2 606C          | CLR_DATA45     | GPIO Banks 4 and 5 Clear Data Register                   |
| 0x01E2 6070          | IN_DATA45      | GPIO Banks 4 and 5 Input Data Register                   |
| 0x01E2 6074          | SET_RIS_TRIG45 | GPIO Banks 4 and 5 Set Rising Edge Interrupt Register    |
| 0x01E2 6078          | CLR_RIS_TRIG45 | GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register  |
| 0x01E2 607C          | SET_FAL_TRIG45 | GPIO Banks 4 and 5 Set Falling Edge Interrupt Register   |
| 0x01E2 6080          | CLR_FAL_TRIG45 | GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register |
| 0x01E2 6084          | INTSTAT45      | GPIO Banks 4 and 5 Interrupt Status Register             |
|                      |                | GPIO Banks 6 and 7                                       |
| 0x01E2 6088          | DIR67          | GPIO Banks 6 and 7 Direction Register                    |
| 0x01E2 608C          | OUT_DATA67     | GPIO Banks 6 and 7 Output Data Register                  |
| 0x01E2 6090          | SET_DATA67     | GPIO Banks 6 and 7 Set Data Register                     |
| 0x01E2 6094          | CLR_DATA67     | GPIO Banks 6 and 7 Clear Data Register                   |
| 0x01E2 6098          | IN_DATA67      | GPIO Banks 6 and 7 Input Data Register                   |
| 0x01E2 609C          | SET_RIS_TRIG67 | GPIO Banks 6 and 7 Set Rising Edge Interrupt Register    |
| 0x01E2 60A0          | CLR_RIS_TRIG67 | GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register  |
| 0x01E2 60A4          | SET_FAL_TRIG67 | GPIO Banks 6 and 7 Set Falling Edge Interrupt Register   |
| 0x01E2 60A8          | CLR_FAL_TRIG67 | GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register |
| 0x01E2 60AC          | INTSTAT67      | GPIO Banks 6 and 7 Interrupt Status Register             |



#### 5.8.2 GPIO Peripheral Input/Output Electrical Data/Timing

## Table 5-12. Timing Requirements for GPIO Inputs<sup>(1)</sup> (see Figure 5-11)

| NO. |                                                | MIN MAX               | UNIT |
|-----|------------------------------------------------|-----------------------|------|
| 1   | t <sub>w(GPIH)</sub> Pulse duration, GPIx high | 2C <sup>(1)</sup> (2) | ns   |
| 2   | t <sub>w(GPIL)</sub> Pulse duration, GPIx low  | 2C <sup>(1)</sup> (2) | ns   |

- (1) The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the device recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow the device enough time to access the GPIO register through the internal bus.
- (2) C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns.

## Table 5-13. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs (see Figure 5-11)

| NO. | PARAMETER                                      | MIN MAX               | UNIT |
|-----|------------------------------------------------|-----------------------|------|
| 3   | t <sub>w(GPOH)</sub> Pulse duration, GPOx high | 2C <sup>(1)</sup> (2) | ns   |
| 4   | t <sub>w(GPOL)</sub> Pulse duration, GPOx low  | 2C <sup>(1)</sup> (2) | ns   |

- 1) This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the GPIO is dependent upon internal bus activity.
- (2) C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns.



Figure 5-11. GPIO Port Timing

#### 5.8.3 GPIO Peripheral External Interrupts Electrical Data/Timing

## Table 5-14. Timing Requirements for External Interrupts (1) (see Figure 5-12)

| NO. |                       |                                            | MIN MAX               | UNIT |
|-----|-----------------------|--------------------------------------------|-----------------------|------|
| 1   | t <sub>w(ILOW)</sub>  | Width of the external interrupt pulse low  | 2C <sup>(1)</sup> (2) | ns   |
| 2   | t <sub>w(IHIGH)</sub> | Width of the external interrupt pulse high | 2C <sup>(1)</sup> (2) | ns   |

- (1) The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have the device recognize the GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow the device enough time to access the GPIO register through the internal bus.
- (2) C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns.



Figure 5-12. GPIO External Interrupt Timing



#### **5.9 EDMA**

Table 5-15 is the list of EDMA3 Channel Contoller Registers and Table 5-16 is the list of EDMA3 Transfer Controller registers. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number SPRUFK9 for more details.

Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers

| BYTE ADDRESS                                        | Acronym                  | Register Description                                  |  |  |
|-----------------------------------------------------|--------------------------|-------------------------------------------------------|--|--|
| 0x01C0 0000                                         | PID                      | Peripheral Identification Register                    |  |  |
| 0x01C0 0004                                         | CCCFG                    | EDMA3CC Configuration Register                        |  |  |
| Global Registers                                    |                          |                                                       |  |  |
| 0x01C0 0200 QCHMAP0 QDMA Channel 0 Mapping Register |                          | QDMA Channel 0 Mapping Register                       |  |  |
| 0x01C0 0204                                         | QCHMAP1                  | QDMA Channel 1 Mapping Register                       |  |  |
| 0x01C0 0208                                         | QCHMAP2                  | QDMA Channel 2 Mapping Register                       |  |  |
| 0x01C0 020C                                         | QCHMAP3                  | QDMA Channel 3 Mapping Register                       |  |  |
| 0x01C0 0210                                         | QCHMAP4                  | QDMA Channel 4 Mapping Register                       |  |  |
| 0x01C0 0214                                         | QCHMAP5                  | QDMA Channel 5 Mapping Register                       |  |  |
| 0x01C0 0218                                         | QCHMAP6                  | QDMA Channel 6 Mapping Register                       |  |  |
| 0x01C0 021C                                         | QCHMAP7                  | QDMA Channel 7 Mapping Register                       |  |  |
| 0x01C0 0240                                         | DMAQNUM0                 | DMA Channel Queue Number Register 0                   |  |  |
| 0x01C0 0244                                         | DMAQNUM1                 | DMA Channel Queue Number Register 1                   |  |  |
| 0x01C0 0248                                         | DMAQNUM2                 | DMA Channel Queue Number Register 2                   |  |  |
| 0x01C0 024C                                         | DMAQNUM3                 | DMA Channel Queue Number Register 3                   |  |  |
| 0x01C0 0260                                         | QDMAQNUM                 | QDMA Channel Queue Number Register                    |  |  |
| 0x01C0 0284                                         | QUEPRI                   | Queue Priority Register <sup>(1)</sup>                |  |  |
| 0x01C0 0300                                         | EMR                      | Event Missed Register                                 |  |  |
| 0x01C0 0308                                         | EMCR                     | Event Missed Clear Register                           |  |  |
| 0x01C0 0310                                         | QEMR                     | QDMA Event Missed Register                            |  |  |
| 0x01C0 0314                                         | QEMCR                    | QDMA Event Missed Clear Register                      |  |  |
| 0x01C0 0318                                         | CCERR                    | EDMA3CC Error Register                                |  |  |
| 0x01C0 031C                                         | CCERRCLR                 | EDMA3CC Error Clear Register                          |  |  |
| 0x01C0 0320                                         | EEVAL                    | Error Evaluate Register                               |  |  |
| 0x01C0 0340                                         | DRAE0                    | DMA Region Access Enable Register for Region 0        |  |  |
| 0x01C0 0348                                         | DRAE1                    | DMA Region Access Enable Register for Region 1        |  |  |
| 0x01C0 0350                                         | DRAE2                    | DMA Region Access Enable Register for Region 2        |  |  |
| 0x01C0 0358                                         | DRAE3                    | DMA Region Access Enable Register for Region 3        |  |  |
| 0x01C0 0380                                         | QRAE0                    | QDMA Region Access Enable Register for Region 0       |  |  |
| 0x01C0 0384                                         | QRAE1                    | QRAE1 QDMA Region Access Enable Register for Region 1 |  |  |
| 0x01C0 0388                                         | QRAE2                    | QDMA Region Access Enable Register for Region 2       |  |  |
| 0x01C0 038C                                         | QRAE3                    | QDMA Region Access Enable Register for Region 3       |  |  |
| 0x01C0 0400 - 0x01C0 043C                           | Q0E0-Q0E15               | Event Queue Entry Registers Q0E0-Q0E15                |  |  |
| 0x01C0 0440 - 0x01C0 047C                           | Q1E0-Q1E15               | Event Queue Entry Registers Q1E0-Q1E15                |  |  |
| 0x01C0 0600                                         | QSTAT0                   | Queue 0 Status Register                               |  |  |
| 0x01C0 0604                                         | QSTAT1                   | Queue 1 Status Register                               |  |  |
| 0x01C0 0620                                         | QWMTHRA                  | Queue Watermark Threshold A Register                  |  |  |
| 0x01C0 0640                                         | CCSTAT                   | EDMA3CC Status Register                               |  |  |
|                                                     | Global Channel Registers |                                                       |  |  |
| 0x01C0 1000                                         | ER                       | Event Register                                        |  |  |

<sup>(1)</sup> On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC memory-map. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the System Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority.



## Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued)

| BYTE ADDRESS        | Acronym                           | Register Description                |  |  |
|---------------------|-----------------------------------|-------------------------------------|--|--|
| 0x01C0 1008         | ECR                               | Event Clear Register                |  |  |
| 0x01C0 1010         | ESR                               | Event Set Register                  |  |  |
| 0x01C0 1018         | CER                               | Chained Event Register              |  |  |
| 0x01C0 1020         | EER                               | Event Enable Register               |  |  |
| 0x01C0 1028         | EECR                              | Event Enable Clear Register         |  |  |
| 0x01C0 1030         | EESR                              | Event Enable Set Register           |  |  |
| 0x01C0 1038         | SER                               | Secondary Event Register            |  |  |
| 0x01C0 1040         | SECR                              | Secondary Event Clear Register      |  |  |
| 0x01C0 1050         | IER                               | Interrupt Enable Register           |  |  |
| 0x01C0 1058         | IECR                              | Interrupt Enable Clear Register     |  |  |
| 0x01C0 1060         | IESR                              | Interrupt Enable Set Register       |  |  |
| 0x01C0 1068         | IPR                               | Interrupt Pending Register          |  |  |
| 0x01C0 1070         | ICR                               | Interrupt Clear Register            |  |  |
| 0x01C0 1078         | IEVAL                             | Interrupt Evaluate Register         |  |  |
| 0x01C0 1080         | QER                               | QDMA Event Register                 |  |  |
| 0x01C0 1084         | QEER                              | QDMA Event Enable Register          |  |  |
| 0x01C0 1088         | QEECR                             | QDMA Event Enable Clear Register    |  |  |
| 0x01C0 108C         | QEESR                             | QDMA Event Enable Set Register      |  |  |
| 0x01C0 1090         | QSER                              | QDMA Secondary Event Register       |  |  |
| 0x01C0 1094         | QSECR                             | QDMA Secondary Event Clear Register |  |  |
|                     | S                                 | hadow Region 0 Channel Registers    |  |  |
| 0x01C0 2000         | ER                                | Event Register                      |  |  |
| 0x01C0 2008         | ECR                               | Event Clear Register                |  |  |
| 0x01C0 2010         | ESR                               | Event Set Register                  |  |  |
| 0x01C0 2018         | CER                               | Chained Event Register              |  |  |
| 0x01C0 2020         | EER                               | Event Enable Register               |  |  |
| 0x01C0 2028         | EECR                              | Event Enable Clear Register         |  |  |
| 0x01C0 2030         | EESR                              | Event Enable Set Register           |  |  |
| 0x01C0 2038         | SER                               | Secondary Event Register            |  |  |
| 0x01C0 2040         | SECR                              | Secondary Event Clear Register      |  |  |
| 0x01C0 2050         | IER                               | Interrupt Enable Register           |  |  |
| 0x01C0 2058         | IECR                              | Interrupt Enable Clear Register     |  |  |
| 0x01C0 2060         | IESR                              | Interrupt Enable Set Register       |  |  |
| 0x01C0 2068         | IPR                               | Interrupt Pending Register          |  |  |
| 0x01C0 2070         | ICR                               | Interrupt Clear Register            |  |  |
| 0x01C0 2078         | IEVAL                             | Interrupt Evaluate Register         |  |  |
| 0x01C0 2080         | QER                               | QDMA Event Register                 |  |  |
| 0x01C0 2084         | QEER                              | QDMA Event Enable Register          |  |  |
| 0x01C0 2088         | QEECR                             | QDMA Event Enable Clear Register    |  |  |
| 0x01C0 208C         | QEESR                             | QDMA Event Enable Set Register      |  |  |
| 0x01C0 2090         | QSER                              | QDMA Secondary Event Register       |  |  |
| 0x01C0 2094 QSECR C |                                   | QDMA Secondary Event Clear Register |  |  |
|                     | Shadow Region 1 Channel Registers |                                     |  |  |
| 0x01C0 2200         | ER                                | Event Register                      |  |  |
| 0x01C0 2208         | ECR                               | Event Clear Register                |  |  |
| 0x01C0 2210         | ESR                               | Event Set Register                  |  |  |
| 0x01C0 2218         | CER                               | Chained Event Register              |  |  |



## Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued)

| BYTE ADDRESS Acronym                              |       | Register Description                |  |  |
|---------------------------------------------------|-------|-------------------------------------|--|--|
| 0x01C0 2220                                       | EER   | Event Enable Register               |  |  |
| 0x01C0 2228                                       | EECR  | Event Enable Clear Register         |  |  |
| 0x01C0 2230                                       | EESR  | Event Enable Set Register           |  |  |
| 0x01C0 2238                                       | SER   | Secondary Event Register            |  |  |
| 0x01C0 2240                                       | SECR  | Secondary Event Clear Register      |  |  |
| 0x01C0 2250                                       | IER   | Interrupt Enable Register           |  |  |
| 0x01C0 2258                                       | IECR  | Interrupt Enable Clear Register     |  |  |
| 0x01C0 2260                                       | IESR  | Interrupt Enable Set Register       |  |  |
| 0x01C0 2268                                       | IPR   | Interrupt Pending Register          |  |  |
| 0x01C0 2270                                       | ICR   | Interrupt Clear Register            |  |  |
| 0x01C0 2278                                       | IEVAL | Interrupt Evaluate Register         |  |  |
| 0x01C0 2280                                       | QER   | QDMA Event Register                 |  |  |
| 0x01C0 2284                                       | QEER  | QDMA Event Enable Register          |  |  |
| 0x01C0 2288                                       | QEECR | QDMA Event Enable Clear Register    |  |  |
| 0x01C0 228C                                       | QEESR | QDMA Event Enable Set Register      |  |  |
| 0x01C0 2290                                       | QSER  | QDMA Secondary Event Register       |  |  |
| 0x01C0 2294                                       | QSECR | QDMA Secondary Event Clear Register |  |  |
| 0x01C0 4000 - 0x01C0 4FFF — Parameter RAM (PaRAM) |       | Parameter RAM (PaRAM)               |  |  |

## Table 5-16. EDMA3 Transfer Controller (EDMA3TC) Registers

| Offset | Transfer Controller | Transfer Controller | Acronym   | Register Description                                          |
|--------|---------------------|---------------------|-----------|---------------------------------------------------------------|
|        | 0<br>BYTE ADDRESS   | 1<br>BYTE ADDRESS   |           |                                                               |
| 0h     | 0x01C0 8000         | 0x01C0 8400         | PID       | Peripheral Identification Register                            |
| 4h     | 0x01C0 8004         | 0x01C0 8404         | TCCFG     | EDMA3TC Configuration Register                                |
| 100h   | 0x01C0 8100         | 0x01C0 8500         | TCSTAT    | EDMA3TC Channel Status Register                               |
| 120h   | 0x01C0 8120         | 0x01C0 8520         | ERRSTAT   | Error Status Register                                         |
| 124h   | 0x01C0 8124         | 0x01C0 8524         | ERREN     | Error Enable Register                                         |
| 128h   | 0x01C0 8128         | 0x01C0 8528         | ERRCLR    | Error Clear Register                                          |
| 12Ch   | 0x01C0 812C         | 0x01C0 852C         | ERRDET    | Error Details Register                                        |
| 130h   | 0x01C0 8130         | 0x01C0 8530         | ERRCMD    | Error Interrupt Command Register                              |
| 140h   | 0x01C0 8140         | 0x01C0 8540         | RDRATE    | Read Command Rate Register                                    |
| 240h   | 0x01C0 8240         | 0x01C0 8640         | SAOPT     | Source Active Options Register                                |
| 244h   | 0x01C0 8244         | 0x01C0 8644         | SASRC     | Source Active Source Address Register                         |
| 248h   | 0x01C0 8248         | 0x01C0 8648         | SACNT     | Source Active Count Register                                  |
| 24Ch   | 0x01C0 824C         | 0x01C0 864C         | SADST     | Source Active Destination Address Register                    |
| 250h   | 0x01C0 8250         | 0x01C0 8650         | SABIDX    | Source Active B-Index Register                                |
| 254h   | 0x01C0 8254         | 0x01C0 8654         | SAMPPRXY  | Source Active Memory Protection Proxy Register                |
| 258h   | 0x01C0 8258         | 0x01C0 8658         | SACNTRLD  | Source Active Count Reload Register                           |
| 25Ch   | 0x01C0 825C         | 0x01C0 865C         | SASRCBREF | Source Active Source Address B-Reference Register             |
| 260h   | 0x01C0 8260         | 0x01C0 8660         | SADSTBREF | Source Active Destination Address B-Reference Register        |
| 280h   | 0x01C0 8280         | 0x01C0 8680         | DFCNTRLD  | Destination FIFO Set Count Reload Register                    |
| 284h   | 0x01C0 8284         | 0x01C0 8684         | DFSRCBREF | Destination FIFO Set Source Address B-Reference Register      |
| 288h   | 0x01C0 8288         | 0x01C0 8688         | DFDSTBREF | Destination FIFO Set Destination Address B-Reference Register |
| 300h   | 0x01C0 8300         | 0x01C0 8700         | DFOPT0    | Destination FIFO Options Register 0                           |
| 304h   | 0x01C0 8304         | 0x01C0 8704         | DFSRC0    | Destination FIFO Source Address Register 0                    |
| 308h   | 0x01C0 8308         | 0x01C0 8708         | DFCNT0    | Destination FIFO Count Register 0                             |



### Table 5-16. EDMA3 Transfer Controller (EDMA3TC) Registers (continued)

| Offset | Transfer Controller 0 BYTE ADDRESS | Transfer Controller 1 BYTE ADDRESS | Acronym   | Register Description                                |
|--------|------------------------------------|------------------------------------|-----------|-----------------------------------------------------|
| 30Ch   | 0x01C0 830C                        | 0x01C0 870C                        | DFDST0    | Destination FIFO Destination Address Register 0     |
| 310h   | 0x01C0 8310                        | 0x01C0 8710                        | DFBIDX0   | Destination FIFO B-Index Register 0                 |
| 314h   | 0x01C0 8314                        | 0x01C0 8714                        | DFMPPRXY0 | Destination FIFO Memory Protection Proxy Register 0 |
| 340h   | 0x01C0 8340                        | 0x01C0 8740                        | DFOPT1    | Destination FIFO Options Register 1                 |
| 344h   | 0x01C0 8344                        | 0x01C0 8744                        | DFSRC1    | Destination FIFO Source Address Register 1          |
| 348h   | 0x01C0 8348                        | 0x01C0 8748                        | DFCNT1    | Destination FIFO Count Register 1                   |
| 34Ch   | 0x01C0 834C                        | 0x01C0 874C                        | DFDST1    | Destination FIFO Destination Address Register 1     |
| 350h   | 0x01C0 8350                        | 0x01C0 8750                        | DFBIDX1   | Destination FIFO B-Index Register 1                 |
| 354h   | 0x01C0 8354                        | 0x01C0 8754                        | DFMPPRXY1 | Destination FIFO Memory Protection Proxy Register 1 |
| 380h   | 0x01C0 8380                        | 0x01C0 8780                        | DFOPT2    | Destination FIFO Options Register 2                 |
| 384h   | 0x01C0 8384                        | 0x01C0 8784                        | DFSRC2    | Destination FIFO Source Address Register 2          |
| 388h   | 0x01C0 8388                        | 0x01C0 8788                        | DFCNT2    | Destination FIFO Count Register 2                   |
| 38Ch   | 0x01C0 838C                        | 0x01C0 878C                        | DFDST2    | Destination FIFO Destination Address Register 2     |
| 390h   | 0x01C0 8390                        | 0x01C0 8790                        | DFBIDX2   | Destination FIFO B-Index Register 2                 |
| 394h   | 0x01C0 8394                        | 0x01C0 8794                        | DFMPPRXY2 | Destination FIFO Memory Protection Proxy Register 2 |
| 3C0h   | 0x01C0 83C0                        | 0x01C0 87C0                        | DFOPT3    | Destination FIFO Options Register 3                 |
| 3C4h   | 0x01C0 83C4                        | 0x01C0 87C4                        | DFSRC3    | Destination FIFO Source Address Register 3          |
| 3C8h   | 0x01C0 83C8                        | 0x01C0 87C8                        | DFCNT3    | Destination FIFO Count Register 3                   |
| 3CCh   | 0x01C0 83CC                        | 0x01C0 87CC                        | DFDST3    | Destination FIFO Destination Address Register 3     |
| 3D0h   | 0x01C0 83D0                        | 0x01C0 87D0                        | DFBIDX3   | Destination FIFO B-Index Register 3                 |
| 3D4h   | 0x01C0 83D4                        | 0x01C0 87D4                        | DFMPPRXY3 | Destination FIFO Memory Protection Proxy Register 3 |

Table 5-17 shows an abbreviation of the set of registers which make up the parameter set for each of 128 EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 5-18 shows the parameter set entry registers with relative memory address locations within each of the parameter sets.

#### Table 5-17. EDMA Parameter Set RAM

| HEX ADDRESS RANGE          | DESCRIPTION                         |
|----------------------------|-------------------------------------|
| 0x01C0 4000 - 0x01C0 401F  | Parameters Set 0 (8 32-bit words)   |
| 0x01C0 4020 - 0x01C0 403F  | Parameters Set 1 (8 32-bit words)   |
| 0x01C0 4040 - 0x01cC0 405F | Parameters Set 2 (8 32-bit words)   |
| 0x01C0 4060 - 0x01C0 407F  | Parameters Set 3 (8 32-bit words)   |
| 0x01C0 4080 - 0x01C0 409F  | Parameters Set 4 (8 32-bit words)   |
| 0x01C0 40A0 - 0x01C0 40BF  | Parameters Set 5 (8 32-bit words)   |
|                            |                                     |
| 0x01C0 4FC0 - 0x01C0 4FDF  | Parameters Set 126 (8 32-bit words) |
| 0x01C0 4FE0 - 0x01C0 4FFF  | Parameters Set 127 (8 32-bit words) |



### **Table 5-18. Parameter Set Entries**

| HEX OFFSET ADDRESS<br>WITHIN THE PARAMETER SET | ACRONYM      | PARAMETER ENTRY                     |
|------------------------------------------------|--------------|-------------------------------------|
| 0x0000                                         | OPT          | Option                              |
| 0x0004                                         | SRC          | Source Address                      |
| 0x0008                                         | A_B_CNT      | A Count, B Count                    |
| 0x000C                                         | DST          | Destination Address                 |
| 0x0010                                         | SRC_DST_BIDX | Source B Index, Destination B Index |
| 0x0014                                         | LINK_BCNTRLD | Link Address, B Count Reload        |
| 0x0018                                         | SRC_DST_CIDX | Source C Index, Destination C Index |
| 0x001C                                         | CCNT         | C Count                             |

### Table 5-19. EDMA Events

| Event | Event Name / Source    | Event | Event Name / Source   |
|-------|------------------------|-------|-----------------------|
| 0     | McASP0 Receive         | 16    | MMCSD Receive         |
| 1     | McASP0 Transmit        | 17    | MMCSD Transmit        |
| 2     | McASP1 Receive         | 18    | SPI1 Receive          |
| 3     | McASP1 Transmit        | 19    | SPI1 Transmit         |
| 4     | McASP2 Receive         | 20    | dMAX EVTOUT[6]        |
| 5     | McASP2 Transmit        | 21    | dMAX EVTOUT[7]        |
| 6     | GPIO Bank 0 Interrupt  | 22    | GPIO Bank 2 Interrupt |
| 7     | GPIO Bank 1 Interrupt  | 23    | GPIO Bank 3 Interrupt |
| 8     | UART0 Receive          | 24    | I2C0 Receive          |
| 9     | UART0 Transmit         | 25    | I2C0 Transmit         |
| 10    | Timer64P0 Event Out 12 | 26    | I2C1 Receive          |
| 11    | Timer64P0 Event Out 34 | 27    | I2C1 Transmit         |
| 12    | UART1 Receive          | 28    | GPIO Bank 4 Interrupt |
| 13    | UART1 Transmit         | 29    | GPIO Bank 5 Interrupt |
| 14    | SPI0 Receive           | 30    | UART2 Receive         |
| 15    | SPI0 Transmit          | 31    | UART2 Transmit        |



#### 5.10 External Memory Interface A (EMIFA)

EMIFA is one of two external memory interfaces supported on the device. It is primarily intended to support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. However on this device, EMIFA also provides a secondary interface to SDRAM. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number SPRUFK9 for more details.

#### 5.10.1 EMIFA Asynchronous Memory Support

EMIFA supports asynchronous:

- SRAM memories
- NAND Flash memories
- NOR Flash memories

The EMIFA data bus width is up to 8 bits on the PTP package. The device supports up to fifteen address lines and an external wait/interrupt input. Up to four asynchronous chip selects are supported by EMIFA (EMA\_CS[5:2]). Two of the four chip selects are available on the PTP package (EMA\_CS[3:2]).

Each chip select has the following individually programmable attributes:

- · Data Bus Width
- Read cycle timings: setup, hold, strobe
- Write cycle timings: setup, hold, strobe
- · Bus turn around time
- Extended Wait Option With Programmable Timeout
- Select Strobe Option
- NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes.

### 5.10.2 EMIFA Connection Examples

Figure 5-13 illustrates an example of how SDRAM, NOR, and NAND flash devices might be connected to EMIFA of the device simultaneously. The SDRAM chip select must be <u>EMA\_CS[0]</u>. Note that the NOR flash is connected to <u>EMA\_CS[2]</u> and the NAND flash is connected to <u>EMA\_CS[3]</u> in this example. Note that any type of asynchronous memory may be connected to <u>EMA\_CS[3]</u>.

The on-chip bootloader makes some assumptions on which chip select the contains the boot image, and this depends on the boot mode. For NOR boot mode; the on-chip bootloader requires that the image be stored in NOR flash on EMA\_CS[2]. For NAND boot mode, the bootloader requires that the boot image is stored in NAND flash on EMA\_CS[3]. It is always possible to have the image span multiple chip selects, but this must be supported by second stage boot code stored in the external flash.

A likely use case with more than one EMIFA chip select used for NAND flash is illustrated in Figure 5-14. This figure shows how two multiplane NAND flash devices with two chip selects each would connect to the device EMIFA. In this case if NAND is the boot memory, then the boot image needs to be stored in the NAND area selected by EMA\_CS[3]. Part of the application image could spill over into the NAND regions selected by other EMIFA chip selects; but would rely on the code stored in the EMA\_CS[3] area to bootload it. Note that this example could also apply to the OMAPL137 device; except only one multiplane NAND could be supported with only EMA\_CS[3:2] available.





Figure 5-13. OMAPL137 Connection Diagram: SDRAM, NOR, NAND



Figure 5-14. OMAPL137 EMIFA Connection Diagram: Multiple NAND Flash Planes



## 5.10.3 External Memory Interface (EMIF)

Table 5-20 is a list of the EMIF registers. For more information about these registers, see the C674x DSP External Memory Interface (EMIF) User's Guide (literature number SPRU711).

Table 5-20. External Memory Interface (EMIFA) Registers

| BYTE ADDRESS | Register Name   | Register Description                           |
|--------------|-----------------|------------------------------------------------|
| 0x6800 0000  | MIDR            | Module ID Register                             |
| 0x6800 0004  | AWCC            | Asynchronous Wait Cycle Configuration Register |
| 0x6800 0008  | SDCR            | SDRAM Configuration Register                   |
| 0x6800 000C  | SDRCR           | SDRAM Refresh Control Register                 |
| 0x6800 0010  | CE2CFG          | Asynchronous 1 Configuration Register          |
| 0x6800 0014  | CE3CFG          | Asynchronous 2 Configuration Register          |
| 0x6800 0018  | CE4CFG          | Asynchronous 3 Configuration Register          |
| 0x6800 001C  | CE5CFG          | Asynchronous 4 Configuration Register          |
| 0x6800 0020  | SDTIMR          | SDRAM Timing Register                          |
| 0x6800 003C  | SDSRETR         | SDRAM Self Refresh Exit Timing Register        |
| 0x6800 0040  | INTRAW          | EMIFA Interrupt Raw Register                   |
| 0x6800 0044  | INTMSK          | EMIFA Interrupt Mask Register                  |
| 0x6800 0048  | INTMSKSET       | EMIFA Interrupt Mask Set Register              |
| 0x6800 004C  | INTMSKCLR       | EMIFA Interrupt Mask Clear Register            |
| 0x6800 0060  | NANDFCR         | NAND Flash Control Register                    |
| 0x6800 0064  | NANDFSR         | NAND Flash Status Register                     |
| 0x6800 0070  | NANDF1ECC       | NAND Flash 1 ECC Register (CS2 Space)          |
| 0x6800 0074  | NANDF2ECC       | NAND Flash 2 ECC Register (CS3 Space)          |
| 0x6800 0078  | NANDF3ECC       | NAND Flash 3 ECC Register (CS4 Space)          |
| 0x6800 007C  | NANDF4ECC       | NAND Flash 4 ECC Register (CS5 Space)          |
| 0x6800 00BC  | NAND4BITECCLOAD | NAND Flash 4-Bit ECC Load Register             |
| 0x6800 00C0  | NAND4BITECC1    | NAND Flash 4-Bit ECC Register 1                |
| 0x6800 00C4  | NAND4BITECC2    | NAND Flash 4-Bit ECC Register 2                |
| 0x6800 00C8  | NAND4BITECC3    | NAND Flash 4-Bit ECC Register 3                |
| 0x6800 00CC  | NAND4BITECC4    | NAND Flash 4-Bit ECC Register 4                |
| 0x6800 00D0  | NANDERRADD1     | NAND Flash 4-Bit ECC Error Address Register 1  |
| 0x6800 00D4  | NANDERRADD2     | NAND Flash 4-Bit ECC Error Address Register 2  |
| 0x6800 00D8  | NANDERRVAL1     | NAND Flash 4-Bit ECC Error Value Register 1    |
| 0x6800 00DC  | NANDERRVAL2     | NAND Flash 4-Bit ECC Error Value Register 2    |



#### 5.10.4 EMIFA Electrical Data/Timing

Table 5-21 through Table 5-22 assume testing over recommended operating conditions.

Table 5-21. EMIFA Asynchronous Memory Timing Requirements (1)(2)

| NO  |                                     | -                                                                      |      | N   | MAY | LINUT |
|-----|-------------------------------------|------------------------------------------------------------------------|------|-----|-----|-------|
| NO. |                                     |                                                                        | MIN  | Nom | MAX | UNIT  |
|     |                                     | READS and WRI                                                          | TES  |     |     |       |
| 2   | t <sub>w(EM_WAIT)</sub>             | Pulse duration, EM_WAIT assertion and deassertion                      | 2E   |     |     | ns    |
|     |                                     | READS                                                                  |      |     |     |       |
| 12  | t <sub>su(EMDV-EMOEH)</sub>         | Setup time, EM_D[15:0] valid before EM_OE high                         | 3    |     |     | ns    |
| 13  | t <sub>h(EMOEH-EMDIV)</sub>         | Hold time, EM_D[15:0] valid after EM_OE high                           | 0.5  |     |     | ns    |
| 14  | t <sub>su (EMOEL</sub> -<br>EMWAIT) | Setup Time, EM_WAIT asserted before end of Strobe Phase (3)            | 4E+3 |     |     | ns    |
|     |                                     | WRITES                                                                 |      |     |     |       |
| 28  | t <sub>su (EMWEL-</sub><br>EMWAIT)  | Setup Time, EM_WAIT asserted before end of Strobe Phase <sup>(3)</sup> | 4E+3 |     |     | ns    |

- (1) Parameters are characterized from -40°C to 125°C unless otherwise noted.
- (2) E = EMA\_CLK period or in ns. EMA\_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns.
- (3) Setup before end of STROBE phase (if no extended wait states are inserted) by which EM\_WAIT must be asserted to add extended wait states. Figure 5-19 and Figure 5-20 describe EMIF transactions that include extended wait states inserted during the STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where the HOLD phase would begin if there were no extended wait cycles.

Table 5-22. EMIFA Asynchronous Memory Switching Characteristics (1)(2) (3) (4)

| NO. |                              | PARAMETER                                                  | MIN                            | Nom                        | MAX                            | UNIT |
|-----|------------------------------|------------------------------------------------------------|--------------------------------|----------------------------|--------------------------------|------|
|     | +                            | READS and                                                  | d WRITES                       |                            |                                |      |
| 1   | t <sub>d(TURNAROUND)</sub>   | Turn around time                                           | (TA)*E - 3                     | (TA)*E                     | (TA)*E + 3                     | ns   |
|     |                              | REA                                                        | DS                             |                            |                                |      |
| 3   |                              | EMIF read cycle time (EW = 0)                              | (RS+RST+RH)*E - 3              | (RS+RST+RH)*E              | (RS+RST+RH)*E +<br>3           | ns   |
| 3   | t <sub>c(EMRCYCLE)</sub>     | EMIF read cycle time (EW = 1)                              | (RS+RST+RH+(EW<br>C*16))*E - 3 | (RS+RST+RH+(EWC*1<br>6))*E | (RS+RST+RH+(EW<br>C*16))*E + 3 | ns   |
| 4   |                              | Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 0)  | (RS)*E-3                       | (RS)*E                     | (RS)*E+3                       | ns   |
| 4   | t <sub>su(EMCEL-EMOEL)</sub> | Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 1)  | -3                             | 0                          | +3                             | ns   |
| _   |                              | Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 0) | (RH)*E - 3                     | (RH)*E                     | (RH)*E + 3                     | ns   |
| 5   | t <sub>h</sub> (EMOEH-EMCEH) | Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 1) | -3                             | 0                          | +3                             | ns   |
| 6   | t <sub>su(EMBAV-EMOEL)</sub> | Output setup time, EMA_BA[1:0] valid to EMA_OE low         | (RS)*E-3                       | (RS)*E                     | (RS)*E+3                       | ns   |
| 7   | t <sub>h(EMOEH-EMBAIV)</sub> | Output hold time, EMA_OE high to EMA_BA[1:0] invalid       | (RH)*E-3                       | (RH)*E                     | (RH)*E+3                       | ns   |
| 8   | t <sub>su(EMBAV-EMOEL)</sub> | Output setup time, EMA_A[13:0] valid to EMA_OE low         | (RS)*E-3                       | (RS)*E                     | (RS)*E+3                       | ns   |
| 9   | t <sub>h(EMOEH-EMAIV)</sub>  | Output hold time, EMA_OE high to EMA_A[13:0] invalid       | (RH)*E-3                       | (RH)*E                     | (RH)*E+3                       | ns   |

- (1) Parameters are characterized from -40°C to 125°C unless otherwise noted.
- (Z) TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold, MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle Configuration Registers. These support the following range of values: TA[4-1], RS[16-1], RST[64-1], RH[8-1], WS[16-1], WST[64-1], WH[8-1], and MEW[1-256].
- (3) E = EMA\_CLK period or in ns. EMA\_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns.
- (4) EWC = external wait cycles determined by EMA\_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register.



# Table 5-22. EMIFA Asynchronous Memory Switching Characteristics<sup>(1)(2) (3) (4)</sup> (continued)

| NO. |                               | PARAMETER                                                                                      | MIN                            | Nom                        | MAX                            | UNIT |
|-----|-------------------------------|------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|--------------------------------|------|
|     |                               | EMA_OE active low width (EW = 0)                                                               | (RST)*E-3                      | (RST)*E                    | (RST)*E+3                      | ns   |
| 10  | t <sub>w(EMOEL)</sub>         | EMA_OE active low width (EW = 1)                                                               | (RST+(EWC*16))*E-<br>3         | (RST+(EWC*16))*E           | (RST+(EWC*16))*E<br>+3         | ns   |
| 11  | t <sub>d(EMWAITH-EMOEH)</sub> | Delay time from EMA_WAIT deasserted to EMA_OE high                                             | 3E-3                           | 4E                         | 4E+3                           | ns   |
|     |                               | WRI                                                                                            | TES                            |                            |                                |      |
| 15  |                               | EMIF write cycle time (EW = 0)                                                                 | (WS+WST+WH)*E-3                | (WS+WST+WH)*E              | (WS+WST+WH)*E+<br>3            | ns   |
| 15  | t <sub>c(EMWCYCLE)</sub>      | EMIF write cycle time (EW = 1)                                                                 | (WS+WST+WH+(E<br>WC*16))*E - 3 | (WS+WST+WH+(EWC*<br>16))*E | (WS+WST+WH+(E<br>WC*16))*E + 3 | ns   |
| 16  |                               | Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 0)                                      | (WS)*E - 3                     | (WS)*E                     | (WS)*E + 3                     | ns   |
| 16  | t <sub>su(EMCEL-EMWEL)</sub>  | Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 1)                                      | -3                             | 0                          | +3                             | ns   |
| 47  |                               | Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 0)                                     | (WH)*E-3                       | (WH)*E                     | (WH)*E+3                       | ns   |
| 17  | t <sub>h</sub> (EMWEH-EMCEH)  | Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 1)                                     | -3                             | 0                          | +3                             | ns   |
| 18  | t <sub>su(EMDQMV-EMWEL)</sub> | Output setup time, EMA_BA[1:0] valid to EMA_WE low                                             | (WS)*E-3                       | (WS)*E                     | (WS)*E+3                       | ns   |
| 19  | t <sub>h(EMWEH-EMDQMIV)</sub> | Output hold time, EMA_WE high to EMA_BA[1:0] invalid                                           | (WH)*E-3                       | (WH)*E                     | (WH)*E+3                       | ns   |
| 20  | t <sub>su(EMBAV-EMWEL)</sub>  | Output setup time, EMA_BA[1:0] valid to EMA_WE low                                             | (WS)*E-3                       | (WS)*E                     | (WS)*E+3                       | ns   |
| 21  | t <sub>h(EMWEH-EMBAIV)</sub>  | Output hold time, $\overline{\text{EMA\_WE}}$ high to $\overline{\text{EMA\_BA[1:0]}}$ invalid | (WH)*E-3                       | (WH)*E                     | (WH)*E+3                       | ns   |
| 22  | t <sub>su(EMAV-EMWEL)</sub>   | Output setup time, $\overline{\text{EMA\_A[13:0]}}$ valid to $\overline{\text{EMA\_WE}}$ low   | (WS)*E-3                       | (WS)*E                     | (WS)*E+3                       | ns   |
| 23  | t <sub>h(EMWEH-EMAIV)</sub>   | Output hold time, EMA_WE high to EMA_A[13:0] invalid                                           | (WH)*E-3                       | (WH)*E                     | (WH)*E+3                       | ns   |
|     |                               | EMA_WE active low width (EW = 0)                                                               | (WST)*E-3                      | (WST)*E                    | (WST)*E+3                      | ns   |
| 24  | t <sub>w(EMWEL)</sub>         | EMA_WE active low width (EW = 1)                                                               | (WST+(EWC*16))*E<br>-3         | (WST+(EWC*16))*E           | (WST+(EWC*16))*E<br>+3         | ns   |
| 25  | t <sub>d(EMWAITH-EMWEH)</sub> | Delay time from EMA_WAIT deasserted to EMA_WE high                                             | 3E-3                           | 4E                         | 4E+3                           | ns   |
| 26  | t <sub>su(EMDV-EMWEL)</sub>   | Output setup time, EMA_D[15:0] valid to EMA_WE low                                             | (WS)*E-3                       | (WS)*E                     | (WS)*E+3                       | ns   |
| 27  | t <sub>h(EMWEH-EMDIV)</sub>   | Output hold time, EMA_WE high to EMA_D[15:0] invalid                                           | (WH)*E-3                       | (WH)*E                     | (WH)*E+3                       | ns   |

## Table 5-23. Timing Requirements for EMIFA SDRAM Interface

Parameters are characterized from -40°C to 125°C unless otherwise noted.

| NO. |                                 | PARAMETER                                                              | 1.2V |     | 1.1V |     | 1.0V |     | UNIT |
|-----|---------------------------------|------------------------------------------------------------------------|------|-----|------|-----|------|-----|------|
| NO. | IANAMETER                       |                                                                        | MIN  | MAX | MIN  | MAX | MIN  | MAX | UNIT |
| 19  | t <sub>su(EMA_DV-EM_CLKH)</sub> | Input setup time, read data valid on EMA_D[15:0] before EMA_CLK rising | 2    |     | 3    |     | 3    |     | ns   |
| 20  | t <sub>h(CLKH-DIV)</sub>        | Input hold time, read data valid on EMA_D[15:0] after EMA_CLK rising   | 1.6  |     | 1.6  |     | 1.6  |     | ns   |

## Table 5-24. Switching Characteristics for EMIFA SDRAM Interface

Parameters are characterized from -40°C to 125°C unless otherwise noted.

| NO. | PARAMETER                                                                                    | 1.2V |     | 1.1V |     | 1.0V |     | UNIT |
|-----|----------------------------------------------------------------------------------------------|------|-----|------|-----|------|-----|------|
| NO. | PARAWETER                                                                                    | MIN  | MAX | MIN  | MAX | MIN  | MAX | UNIT |
| 1   | $t_{c(\text{CLK})}$ Cycle time, EMIF clock EMA_CLK                                           | 10   |     | 15   |     | 20   |     | ns   |
| 2   | $t_{w(CLK)}$ Pulse width, EMIF clock EMA_CLK high or low                                     | 3    |     | 5    |     | 8    |     | ns   |
| 3   | $t_{d(CLKH\text{-}CSV)}$ Delay time, EMA_CLK rising to $\overline{\text{EMA}_{CS[0]}}$ valid |      | 7   |      | 9.5 |      | 13  | ns   |
| 4   | $t_{oh(CLKH-CSIV)}$ Output hold time, EMA_CLK rising to $\overline{EMA\_CS[0]}$ invalid      | 1    |     | 1    | ·   | 1    |     | ns   |



### Table 5-24. Switching Characteristics for EMIFA SDRAM Interface (continued)

Parameters are characterized from -40°C to 125°C unless otherwise noted.

| NO  |                             | DADAMETED                                                               | 1.  | 2V  | 1.  | 1V  | 1.  | 0V  | LINIT |
|-----|-----------------------------|-------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-------|
| NO. |                             | PARAMETER                                                               | MIN | MAX | MIN | MAX | MIN | MAX | UNIT  |
| 5   | t <sub>d(CLKH-DQMV)</sub>   | Delay time, EMA_CLK rising to EMA_WE_DQM[1:0] valid                     |     | 7   |     | 9.5 |     | 13  | ns    |
| 6   | t <sub>oh(CLKH-DQMIV)</sub> | Output hold time, EMA_CLK rising to EMA_WE_DQM[1:0] invalid             | 1   |     | 1   |     | 1   |     | ns    |
| 7   | t <sub>d(CLKH-AV)</sub>     | Delay time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] valid         |     | 7   |     | 9.5 |     | 13  | ns    |
| 8   | t <sub>oh(CLKH-AIV)</sub>   | Output hold time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] invalid | 1   |     | 1   |     | 1   |     | ns    |
| 9   | t <sub>d(CLKH-DV)</sub>     | Delay time, EMA_CLK rising to EMA_D[15:0] valid                         |     | 7   |     | 9.5 |     | 13  | ns    |
| 10  | t <sub>oh(CLKH-DIV)</sub>   | Output hold time, EMA_CLK rising to EMA_D[15:0] invalid                 | 1   |     | 1   |     | 1   |     | ns    |
| 11  | t <sub>d(CLKH-RASV)</sub>   | Delay time, EMA_CLK rising to EMA_RAS valid                             |     | 7   |     | 9.5 |     | 13  | ns    |
| 12  | t <sub>oh(CLKH-RASIV)</sub> | Output hold time, EMA_CLK rising to EMA_RAS invalid                     | 1   |     | 1   |     | 1   |     | ns    |
| 13  | t <sub>d(CLKH-CASV)</sub>   | Delay time, EMA_CLK rising to EMA_CAS valid                             |     | 7   |     | 9.5 |     | 13  | ns    |
| 14  | t <sub>oh(CLKH-CASIV)</sub> | Output hold time, EMA_CLK rising to EMA_CAS invalid                     | 1   |     | 1   |     | 1   |     | ns    |
| 15  | t <sub>d(CLKH-WEV)</sub>    | Delay time, EMA_CLK rising to EMA_WE valid                              |     | 7   |     | 9.5 |     | 13  | ns    |
| 16  | t <sub>oh(CLKH-WEIV)</sub>  | Output hold time, EMA_CLK rising to EMA_WE invalid                      | 1   |     | 1   |     | 1   |     | ns    |
| 17  | t <sub>dis(CLKH-DHZ)</sub>  | Delay time, EMA_CLK rising to EMA_D[15:0] tri-stated                    |     | 7   |     | 9.5 |     | 13  | ns    |
| 18  | t <sub>ena(CLKH-DLZ)</sub>  | Output hold time, EMA_CLK rising to EMA_D[15:0] driving                 | 1   |     | 1   |     | 1   |     | ns    |



Figure 5-15. EMIFA Basic SDRAM Write Operation





Figure 5-16. EMIFA Basic SDRAM Read Operation



Figure 5-17. Asynchronous Memory Read Timing for EMIFA





Figure 5-18. Asynchronous Memory Write Timing for EMIFA



Figure 5-19. EMA\_WAIT Read Timing Requirements





Figure 5-20. EMA\_WAIT Write Timing Requirements



#### 5.11 External Memory Interface B (EMIFB)

Figure 5-21, EMIFB Functional Block Diagram illustrates a high-level view of the EMIFB and its connections within the device. Multiple requesters have access to EMIFB through a switched central resource (indicated as crossbar in the figure). The EMIFB implements a split transaction internal bus, allowing concurrence between reads and writes from the various requesters. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. — Literature Number SPRUFK9 for more details.



Figure 5-21. EMIFB Functional Block Diagram

EMIFB supports a 3.3V LVCMOS Interface.



#### 5.11.1 Interfacing to SDRAM

The EMIFB supports a glueless interface to SDRAM devices with the following characteristics:

- Pre-charge bit is A[10]
- The number of column address bits is 8, 9, 10 or 11
- The number of row address bits is 13 (in case of mobile SDR, number of row address bits can be 9, 10, 11, 12, or 13)
- The number of internal banks is 1, 2 or 4

Figure 5-22 shows an interface between the EMIFB and a 2M  $\times$  16  $\times$  4 bank SDRAM device. In addition, Figure 5-23 shows an interface between the EMIFB and a 2M  $\times$  32  $\times$  4 bank SDRAM device and Figure 5-24 shows an interface between the EMIFB and two 4M  $\times$  16  $\times$  4 bank SDRAM devices. Refer to Table 5-25, as an example that shows additional list of commonly-supported SDRAM devices and the required connections for the address pins. Note that in Table 5-25, page size/column size (not indicated in the table) is varied to get the required addressability range.



Figure 5-22. EMIFB to 2M × 16 × 4 bank SDRAM Interface



Figure 5-23. EMIFB to 2M × 32 × 4 bank SDRAM Interface





Figure 5-24. EMIFB to Dual 4M × 16 × 4 bank SDRAM Interface

Table 5-25. Example of 16/32-bit EMIFB Address Pin Connections

| SDRAM Size | Width       | Banks |       | Address Pins |
|------------|-------------|-------|-------|--------------|
| 64M bits   | ×16         | 4     | SDRAM | A[11:0]      |
|            |             |       | EMIFB | EMB_A[11:0]  |
|            | ×32         | 4     | SDRAM | A[10:0]      |
|            |             |       | EMIFB | EMB_A[10:0]  |
| 128M bits  | ×16         | 4     | SDRAM | A[11:0]      |
|            |             |       | EMIFB | EMB_A[11:0]  |
|            | <b>x</b> 32 | 4     | SDRAM | A[11:0]      |
|            |             |       | EMIFB | EMB_A[11:0]  |
| 256M bits  | <b>×</b> 16 | 4     | SDRAM | A[12:0]      |
|            |             |       | EMIFB | EMB_A[12:0]  |
|            | <b>x</b> 32 | 4     | SDRAM | A[11:0]      |
|            |             |       | EMIFB | EMB_A[11:0]  |
| 512M bits  | <b>×</b> 16 | 4     | SDRAM | A[12:0]      |
|            |             |       | EMIFB | EMB_A[12:0]  |
|            | <b>x</b> 32 | 4     | SDRAM | A[12:0]      |
|            |             |       | EMIFB | EMB_A[12:0]  |



Table 5-26 is a list of the EMIFB registers.

### Table 5-26. EMIFB Base Controller Registers

| BYTE ADDRESS | Acronym | Register                                          |  |
|--------------|---------|---------------------------------------------------|--|
| 0xB000 0000  | MIDR    | Module ID Register                                |  |
| 0xB000 0008  | SDCFG   | SDRAM Configuration Register                      |  |
| 0xB000 000C  | SDRFC   | SDRAM Refresh Control Register                    |  |
| 0xB000 0010  | SDTIM1  | SDRAM Timing Register 1                           |  |
| 0xB000 0014  | SDTIM2  | SDRAM Timing Register 2                           |  |
| 0xB000 001C  | SDCFG2  | SDRAM Configuration 2 Register                    |  |
| 0xB000 0020  | BPRIO   | Peripheral Bus Burst Priority Register            |  |
| 0xB000 0040  | PC1     | Performance Counter 1 Register                    |  |
| 0xB000 0044  | PC2     | Performance Counter 2 Register                    |  |
| 0xB000 0048  | PCC     | Performance Counter Configuration Register        |  |
| 0xB000 004C  | PCMRS   | Performance Counter Master Region Select Register |  |
| 0xB000 0050  | PCT     | Performance Counter Time Register                 |  |
| 0xB000 00C0  | IRR     | Interrupt Raw Register                            |  |
| 0xB000 00C4  | IMR     | Interrupt Mask Register                           |  |
| 0xB000 00C8  | IMSR    | Interrupt Mask Set Register                       |  |
| 0xB000 00CC  | IMCR    | Interrupt Mask Clear Register                     |  |

## 5.11.2 EMIFB Electrical Data/Timing

### **Table 5-27. EMIFB SDRAM Interface Timing Requirements**

| NO. |                                                                                                 | MIN MAX | UNIT |
|-----|-------------------------------------------------------------------------------------------------|---------|------|
| 19  | t <sub>su(DV-CLKH)</sub> Input setup time, read data valid on EMB_D[31:0] before EMB_CLK rising | 0.8     | ns   |
| 20  | th(CLKH-DIV)  Input hold time, read data valid on EMB_D[31:0] after EMB_CLK rising              | 1.6     | ns   |

### Table 5-28. EMIFB SDRAM Interface Switching Characteristics

|                                                                                 | _                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                                                                                 | PARAMETER                                                                                                                                              | MIN                                                                                                                                               | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UNIT                                                  |
| t <sub>c(CLK)</sub>                                                             | Cycle time, EMIF clock EMB_CLK                                                                                                                         | 7.5                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                    |
| t <sub>w(CLK)</sub>                                                             | Pulse width, EMIF clock EMB_CLK high or low                                                                                                            | 3                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                    |
| t <sub>d(CLKH-CSV)</sub>                                                        | Delay time, EMB_CLK rising to EMB_CS[0] valid                                                                                                          |                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                    |
| t <sub>oh(CLKH-CSIV)</sub>                                                      | Output hold time, EMB_CLK rising to EMB_CS[0] invalid                                                                                                  | 0.9                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                    |
| t <sub>d(CLKH-DQMV)</sub>                                                       | Delay time, EMB_CLK rising to EMB_WE_DQM[3:0] valid                                                                                                    |                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                    |
| t <sub>oh(CLKH-DQMIV)</sub>                                                     | Output hold time, EMB_CLK rising to EMB_WE_DQM[3:0] invalid                                                                                            | 0.9                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                    |
| t <sub>d(CLKH-AV)</sub>                                                         | Delay time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] valid                                                                                        |                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                    |
| Output hold time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] invalid         |                                                                                                                                                        |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                    |
| t <sub>d(CLKH-DV)</sub>                                                         | Delay time, EMB_CLK rising to EMB_D[31:0] valid                                                                                                        |                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                    |
| t <sub>oh(CLKH-DIV)</sub>                                                       | Output hold time, EMB_CLK rising to EMB_D[31:0] invalid                                                                                                | 0.9                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                    |
| t <sub>d(CLKH-RASV)</sub>                                                       | Delay time, EMB_CLK rising to EMB_RAS valid                                                                                                            |                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                    |
| t <sub>oh(CLKH-RASIV)</sub> Output hold time, EMB_CLK rising to EMB_RAS invalid |                                                                                                                                                        | 0.9                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                    |
| t <sub>d(CLKH-CASV)</sub>                                                       | Delay time, EMB_CLK rising to EMB_CAS valid                                                                                                            |                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                    |
| toh(CLKH-CASIV)                                                                 | Output hold time, EMB_CLK rising to EMB_CAS invalid                                                                                                    | 0.9                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                    |
|                                                                                 | td(CLKH-CSV)  toh(CLKH-CSIV)  td(CLKH-DQMIV)  toh(CLKH-DQMIV)  td(CLKH-AIV)  toh(CLKH-AIV)  td(CLKH-DV)  toh(CLKH-DIV)  td(CLKH-RASIV)  td(CLKH-RASIV) | $t_{c(CLK)} \qquad  | $ \begin{array}{c} t_{c(CLK)} & Cycle time, EMIF clock EMB\_CLK & 7.5 \\ t_{w(CLK)} & Pulse width, EMIF clock EMB\_CLK high or low & 3 \\ t_{d(CLKH-CSV)} & Delay time, EMB\_CLK rising to $\overline{EMB\_CS[0]}$ valid & 0.9 \\ t_{oh(CLKH-CSIV)} & Output hold time, EMB\_CLK rising to $\overline{EMB\_CS[0]}$ invalid & 0.9 \\ t_{d(CLKH-DQMV)} & Delay time, EMB\_CLK rising to $EMB\_WE\_DQM[3:0]$ valid & 0.9 \\ t_{d(CLKH-DQMIV)} & Output hold time, EMB\_CLK rising to $EMB\_WE\_DQM[3:0]$ invalid & 0.9 \\ t_{d(CLKH-DQMIV)} & Delay time, EMB\_CLK rising to $EMB\_ME\_DQM[3:0]$ invalid & 0.9 \\ t_{d(CLKH-AV)} & Delay time, EMB\_CLK rising to $EMB\_A[12:0]$ and $EMB\_BA[1:0]$ valid & 0.9 \\ t_{d(CLKH-AIV)} & Output hold time, $EMB\_CLK$ rising to $EMB\_A[12:0]$ and & 0.9 \\ EMB\_BA[1:0]$ invalid & 0.9 \\ t_{d(CLKH-DIV)} & Output hold time, $EMB\_CLK$ rising to $EMB\_D[31:0]$ invalid & 0.9 \\ t_{d(CLKH-RASIV)} & Delay time, $EMB\_CLK$ rising to $\overline{EMB\_RAS}$ valid & 0.9 \\ t_{d(CLKH-RASIV)} & Output hold time, $EMB\_CLK$ rising to $\overline{EMB\_RAS}$ invalid & 0.9 \\ t_{d(CLKH-RASIV)} & Delay time, $EMB\_CLK$ rising to $\overline{EMB\_RAS}$ invalid & 0.9 \\ t_{d(CLKH-RASIV)} & Delay time, $EMB\_CLK$ rising to $\overline{EMB\_RAS}$ invalid & 0.9 \\ t_{d(CLKH-CASIV)} & Delay time, $EMB\_CLK$ rising to $\overline{EMB\_RAS}$ invalid & 0.9 \\ t_{d(CLKH-CASIV)} & Delay time, $EMB\_CLK$ rising to $\overline{EMB\_RAS}$ invalid & 0.9 \\ t_{d(CLKH-CASIV)} & Delay time, $EMB\_CLK$ rising to $\overline{EMB\_RAS}$ invalid & 0.9 \\ t_{d(CLKH-CASIV)} & Delay time, $EMB\_CLK$ rising to $\overline{EMB\_RAS}$ invalid & 0.9 \\ t_{d(CLKH-CASIV)} & Delay time, $EMB\_CLK$ rising to $\overline{EMB\_CAS}$ valid & 0.9 \\ t_{d(CLKH-CASIV)} & Delay time, $EMB\_CLK$ rising to $\overline{EMB\_CAS}$ valid & 0.9 \\ t_{d(CLKH-CASIV)} & Delay time, $EMB\_CLK$ rising to $\overline{EMB\_CAS}$ valid & 0.9 \\ t_{d(CLKH-CASIV)} & Delay time, $EMB\_CLK$ rising to $\overline{EMB\_CAS}$ valid & 0.9 \\ t_{d(CLKH-CASIV)} & Delay time, $EMB\_CLK$ rising to $\overline{EMB\_CAS}$ valid & 0.9 \\ t_{d(CLKH-CASIV)} & Delay time, $EMB\_CLK$ rising to $\overline{EMB\_CAS}$ valid & 0.9 \\ t_{d(CLKH-CASIV)} & Delay time, $EMB\_CLK$ rising to $\overline{EMB\_CAS}$ valid & 0.9 \\ t_{d(CLKH$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |

<sup>(1)</sup> Parameters are characterized from -40°C to 125°C unless otherwise noted.



### Table 5-28. EMIFB SDRAM Interface Switching Characteristics (continued)

| NO. |                            | PARAMETER                                               |     |   |    |
|-----|----------------------------|---------------------------------------------------------|-----|---|----|
| 15  | t <sub>d(CLKH-WEV)</sub>   | Delay time, EMB_CLK rising to EMB_WE valid              |     | 7 | ns |
| 16  | t <sub>oh(CLKH-WEIV)</sub> | Output hold time, EMB_CLK rising to EMB_WE invalid      | 0.9 |   | ns |
| 17  | t <sub>dis(CLKH-DHZ)</sub> | Delay time, EMB_CLK rising to EMB_D[31:0] tri-stated    |     | 7 | ns |
| 18  | t <sub>ena(CLKH-DLZ)</sub> | Output hold time, EMB_CLK rising to EMB_D[31:0] driving | 0.9 |   | ns |



Figure 5-25. EMIFB Basic SDRAM Write Operation





Figure 5-26. EMIFB Basic SDRAM Read Operation



#### 5.12 MMC / SD / SDIO (MMCSD)

### 5.12.1 MMCSD Peripheral Description

The device includes an MMCSD controller which are compliant with MMC V3.31, Secure Digital Part 1 Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications.

The device MMC/SD Controller has following features:

- MultiMediaCard (MMC).
- Secure Digital (SD) Memory Card.
- MMC/SD protocol support.
- · SDIO protocol support.
- Programmable clock frequency.
- 512 bit Read/Write FIFO to lower system overhead.
- · Slave EDMA transfer capability.
- · SD high capacity support.

The MMC/SD Controller does not support SPI mode. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number SPRUFK9 for more details.

### 5.12.2 MMCSD Peripheral Register Description(s)

Table 5-29. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers

| Offset      | Acronym    | Register Description                  |  |
|-------------|------------|---------------------------------------|--|
| 0x01C4 0000 | MMCCTL     | MMC Control Register                  |  |
| 0x01C4 0004 | MMCCLK     | MMC Memory Clock Control Register     |  |
| 0x01C4 0008 | MMCST0     | MMC Status Register 0                 |  |
| 0x01C4 000C | MMCST1     | MMC Status Register 1                 |  |
| 0x01C4 0010 | MMCIM      | MMC Interrupt Mask Register           |  |
| 0x01C4 0014 | MMCTOR     | MMC Response Time-Out Register        |  |
| 0x01C4 0018 | MMCTOD     | MMC Data Read Time-Out Register       |  |
| 0x01C4 001C | MMCBLEN    | MMC Block Length Register             |  |
| 0x01C4 0020 | MMCNBLK    | MMC Number of Blocks Register         |  |
| 0x01C4 0024 | MMCNBLC    | MMC Number of Blocks Counter Register |  |
| 0x01C4 0028 | MMCDRR     | MMC Data Receive Register             |  |
| 0x01C4 002C | MMCDXR     | MMC Data Transmit Register            |  |
| 0x01C4 0030 | MMCCMD     | MMC Command Register                  |  |
| 0x01C4 0034 | MMCARGHL   | MMC Argument Register                 |  |
| 0x01C4 0038 | MMCRSP01   | MMC Response Register 0 and 1         |  |
| 0x01C4 003C | MMCRSP23   | MMC Response Register 2 and 3         |  |
| 0x01C4 0040 | MMCRSP45   | MMC Response Register 4 and 5         |  |
| 0x01C4 0044 | MMCRSP67   | MMC Response Register 6 and 7         |  |
| 0x01C4 0048 | MMCDRSP    | MMC Data Response Register            |  |
| 0x01C4 0050 | MMCCIDX    | MMC Command Index Register            |  |
| 0x01C4 0064 | SDIOCTL    | SDIO Control Register                 |  |
| 0x01C4 0068 | SDIOST0    | SDIO Status Register 0                |  |
| 0x01C4 006C | SDIOIEN    | SDIO Interrupt Enable Register        |  |
| 0x01C4 0070 | SDIOIST    | SDIO Interrupt Status Register        |  |
| 0x01C4 0074 | MMCFIFOCTL | MMC FIFO Control Register             |  |



## 5.12.3 MMC/SD Electrical Data/Timing

Table 5-30. Timing Requirements for MMC/SD Module<sup>(1)</sup>

| NO. |                            |                                                    | MIN | MAX | UNIT |
|-----|----------------------------|----------------------------------------------------|-----|-----|------|
| 1   | t <sub>su(CMDV-CLKH)</sub> | Setup time, MMCSD_CMD valid before MMCSD_CLK high  | 3.2 |     | ns   |
| 2   | t <sub>h(CLKH-CMDV)</sub>  | Hold time, MMCSD_CMD valid after MMCSD_CLK high    | 1.5 |     | ns   |
| 3   | t <sub>su(DATV-CLKH)</sub> | Setup time, MMCSD_DATx valid before MMCSD_CLK high | 3.2 |     | ns   |
| 4   | t <sub>h(CLKH-DATV)</sub>  | Hold time, MMCSD_DATx valid after MMCSD_CLK high   | 1.5 |     | ns   |

<sup>(1)</sup> Parameters are characterized from -40°C to 125°C unless otherwise noted.

## Table 5-31. Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module<sup>(1)</sup>

| NO. |                          | PARAMETER                                          | MIN  | MAX | UNIT |
|-----|--------------------------|----------------------------------------------------|------|-----|------|
| 7   | f <sub>(CLK)</sub>       | Operating frequency, MMCSD_CLK                     | 0    | 52  | MHz  |
| 8   | f <sub>(CLK_ID)</sub>    | Identification mode frequency, MMCSD_CLK           | 0    | 400 | KHz  |
| 9   | t <sub>W(CLKL)</sub>     | Pulse width, MMCSD_CLK low                         | 6.5  |     | ns   |
| 10  | t <sub>W(CLKH)</sub>     | Pulse width, MMCSD_CLK high                        | 6.5  |     | ns   |
| 11  | t <sub>r(CLK)</sub>      | Rise time, MMCSD_CLK                               |      | 3   | ns   |
| 12  | t <sub>f(CLK)</sub>      | Fall time, MMCSD_CLK                               |      | 3   | ns   |
| 13  | t <sub>d(CLKL-CMD)</sub> | Delay time, MMCSD_CLK low to MMCSD_CMD transition  | -4.5 | 2.5 | ns   |
| 14  | t <sub>d(CLKL-DAT)</sub> | Delay time, MMCSD_CLK low to MMCSD_DATx transition | -4.5 | 2.5 | ns   |

(1) Parameters are characterized from -40°C to 125°C unless otherwise noted.



Figure 5-27. MMC/SD Host Command Timing



Figure 5-28. MMC/SD Card Response Timing



Figure 5-29. MMC/SD Host Write Timing





Figure 5-30. MMC/SD Host Read and Card CRC Status Timing

#### 5.13 Ethernet Media Access Controller (EMAC)

The Ethernet Media Access Controller (EMAC) provides an efficient interface between device and the network. The device EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support.

The EMAC controls the flow of packet data from the device to the PHY. The MDIO module controls PHY configuration and status monitoring.

Both the EMAC and the MDIO modules interface to the device through a custom interface that allows efficient data transmission and reception. This custom interface is referred to as the EMAC control module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to multiplex and control interrupts. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number SPRUFK9 for more details.

#### 5.13.1 EMAC Peripheral Register Description(s)

Table 5-32. Ethernet Media Access Controller (EMAC) Registers

| BYTE ADDRESS | REGISTER         | Register Description                                            |
|--------------|------------------|-----------------------------------------------------------------|
| 0x01E2 3000  | TXREV            | Transmit Revision Register                                      |
| 0x01E2 3004  | TXCONTROL        | Transmit Control Register                                       |
| 0x01E2 3008  | TXTEARDOWN       | Transmit Teardown Register                                      |
| 0x01E2 3010  | RXREV            | Receive Revision Register                                       |
| 0x01E2 3014  | RXCONTROL        | Receive Control Register                                        |
| 0x01E2 3018  | RXTEARDOWN       | Receive Teardown Register                                       |
| 0x01E2 3080  | TXINTSTATRAW     | Transmit Interrupt Status (Unmasked) Register                   |
| 0x01E2 3084  | TXINTSTATMASKED  | Transmit Interrupt Status (Masked) Register                     |
| 0x01E2 3088  | TXINTMASKSET     | Transmit Interrupt Mask Set Register                            |
| 0x01E2 308C  | TXINTMASKCLEAR   | Transmit Interrupt Clear Register                               |
| 0x01E2 3090  | MACINVECTOR      | MAC Input Vector Register                                       |
| 0x01E2 3094  | MACEOIVECTOR     | MAC End Of Interrupt Vector Register                            |
| 0x01E2 30A0  | RXINTSTATRAW     | Receive Interrupt Status (Unmasked) Register                    |
| 0x01E2 30A4  | RXINTSTATMASKED  | Receive Interrupt Status (Masked) Register                      |
| 0x01E2 30A8  | RXINTMASKSET     | Receive Interrupt Mask Set Register                             |
| 0x01E2 30AC  | RXINTMASKCLEAR   | Receive Interrupt Mask Clear Register                           |
| 0x01E2 30B0  | MACINTSTATRAW    | MAC Interrupt Status (Unmasked) Register                        |
| 0x01E2 30B4  | MACINTSTATMASKED | MAC Interrupt Status (Masked) Register                          |
| 0x01E2 30B8  | MACINTMASKSET    | MAC Interrupt Mask Set Register                                 |
| 0x01E2 30BC  | MACINTMASKCLEAR  | MAC Interrupt Mask Clear Register                               |
| 0x01E2 3100  | RXMBPENABLE      | Receive Multicast/Broadcast/Promiscuous Channel Enable Register |
| 0x01E2 3104  | RXUNICASTSET     | Receive Unicast Enable Set Register                             |
| 0x01E2 3108  | RXUNICASTCLEAR   | Receive Unicast Clear Register                                  |
| 0x01E2 310C  | RXMAXLEN         | Receive Maximum Length Register                                 |



# Table 5-32. Ethernet Media Access Controller (EMAC) Registers (continued)

| BYTE ADDRESS              | REGISTER          | Register Description                                              |
|---------------------------|-------------------|-------------------------------------------------------------------|
| 0x01E2 3110               | RXBUFFEROFFSET    | Receive Buffer Offset Register                                    |
| 0x01E2 3114               | RXFILTERLOWTHRESH | Receive Filter Low Priority Frame Threshold Register              |
| 0x01E2 3120               | RX0FLOWTHRESH     | Receive Channel 0 Flow Control Threshold Register                 |
| 0x01E2 3124               | RX1FLOWTHRESH     | Receive Channel 1 Flow Control Threshold Register                 |
| 0x01E2 3128               | RX2FLOWTHRESH     | Receive Channel 2 Flow Control Threshold Register                 |
| 0x01E2 312C               | RX3FLOWTHRESH     | Receive Channel 3 Flow Control Threshold Register                 |
| 0x01E2 3130               | RX4FLOWTHRESH     | Receive Channel 4 Flow Control Threshold Register                 |
| 0x01E2 3134               | RX5FLOWTHRESH     | Receive Channel 5 Flow Control Threshold Register                 |
| 0x01E2 3138               | RX6FLOWTHRESH     | Receive Channel 6 Flow Control Threshold Register                 |
| 0x01E2 313C               | RX7FLOWTHRESH     | Receive Channel 7 Flow Control Threshold Register                 |
| 0x01E2 3140               | RX0FREEBUFFER     | Receive Channel 0 Free Buffer Count Register                      |
| 0x01E2 3144               | RX1FREEBUFFER     | Receive Channel 1 Free Buffer Count Register                      |
| 0x01E2 3148               | RX2FREEBUFFER     | Receive Channel 2 Free Buffer Count Register                      |
| 0x01E2 314C               | RX3FREEBUFFER     | Receive Channel 3 Free Buffer Count Register                      |
| 0x01E2 3150               | RX4FREEBUFFER     | Receive Channel 4 Free Buffer Count Register                      |
| 0x01E2 3154               | RX5FREEBUFFER     | Receive Channel 5 Free Buffer Count Register                      |
| 0x01E2 3158               | RX6FREEBUFFER     | Receive Channel 6 Free Buffer Count Register                      |
| 0x01E2 315C               | RX7FREEBUFFER     | Receive Channel 7 Free Buffer Count Register                      |
| 0x01E2 3160               | MACCONTROL        | MAC Control Register                                              |
| 0x01E2 3164               | MACSTATUS         | MAC Status Register                                               |
| 0x01E2 3168               | EMCONTROL         | Emulation Control Register                                        |
| 0x01E2 316C               | FIFOCONTROL       | FIFO Control Register                                             |
| 0x01E2 3170               | MACCONFIG         | MAC Configuration Register                                        |
| 0x01E2 3174               | SOFTRESET         | Soft Reset Register                                               |
| 0x01E2 31D0               | MACSRCADDRLO      | MAC Source Address Low Bytes Register                             |
| 0x01E2 31D4               | MACSRCADDRHI      | MAC Source Address High Bytes Register                            |
| 0x01E2 31D8               | MACHASH1          | MAC Hash Address Register 1                                       |
| 0x01E2 31DC               | MACHASH2          | MAC Hash Address Register 2                                       |
| 0x01E2 31E0               | BOFFTEST          | Back Off Test Register                                            |
| 0x01E2 31E4               | TPACETEST         | Transmit Pacing Algorithm Test Register                           |
| 0x01E2 31E8               | RXPAUSE           | Receive Pause Timer Register                                      |
| 0x01E2 31EC               | TXPAUSE           | Transmit Pause Timer Register                                     |
| 0x01E2 3200 - 0x01E2 32FC | (see Table 5-33)  | EMAC Statistics Registers                                         |
| 0x01E2 3500               | MACADDRLO         | MAC Address Low Bytes Register, Used in Receive Address Matching  |
| 0x01E2 3504               | MACADDRHI         | MAC Address High Bytes Register, Used in Receive Address Matching |
| 0x01E2 3508               | MACINDEX          | MAC Index Register                                                |
| 0x01E2 3600               | TX0HDP            | Transmit Channel 0 DMA Head Descriptor Pointer Register           |
| 0x01E2 3604               | TX1HDP            | Transmit Channel 1 DMA Head Descriptor Pointer Register           |
| 0x01E2 3608               | TX2HDP            | Transmit Channel 2 DMA Head Descriptor Pointer Register           |
| 0x01E2 360C               | TX3HDP            | Transmit Channel 3 DMA Head Descriptor Pointer Register           |
| 0x01E2 3610               | TX4HDP            | Transmit Channel 4 DMA Head Descriptor Pointer Register           |
| 0x01E2 3614               | TX5HDP            | Transmit Channel 5 DMA Head Descriptor Pointer Register           |
| 0x01E2 3618               | TX6HDP            | Transmit Channel 6 DMA Head Descriptor Pointer Register           |
| 0x01E2 361C               | TX7HDP            | Transmit Channel 7 DMA Head Descriptor Pointer Register           |
| 0x01E2 3620               | RX0HDP            | Receive Channel 0 DMA Head Descriptor Pointer Register            |
| 0x01E2 3624               | RX1HDP            | Receive Channel 1 DMA Head Descriptor Pointer Register            |
| 0x01E2 3628               | RX2HDP            | Receive Channel 2 DMA Head Descriptor Pointer Register            |



## Table 5-32. Ethernet Media Access Controller (EMAC) Registers (continued)

| BYTE ADDRESS | REGISTER | Register Description                                   |
|--------------|----------|--------------------------------------------------------|
| 0x01E2 362C  | RX3HDP   | Receive Channel 3 DMA Head Descriptor Pointer Register |
| 0x01E2 3630  | RX4HDP   | Receive Channel 4 DMA Head Descriptor Pointer Register |
| 0x01E2 3634  | RX5HDP   | Receive Channel 5 DMA Head Descriptor Pointer Register |
| 0x01E2 3638  | RX6HDP   | Receive Channel 6 DMA Head Descriptor Pointer Register |
| 0x01E2 363C  | RX7HDP   | Receive Channel 7 DMA Head Descriptor Pointer Register |
| 0x01E2 3640  | TX0CP    | Transmit Channel 0 Completion Pointer Register         |
| 0x01E2 3644  | TX1CP    | Transmit Channel 1 Completion Pointer Register         |
| 0x01E2 3648  | TX2CP    | Transmit Channel 2 Completion Pointer Register         |
| 0x01E2 364C  | TX3CP    | Transmit Channel 3 Completion Pointer Register         |
| 0x01E2 3650  | TX4CP    | Transmit Channel 4 Completion Pointer Register         |
| 0x01E2 3654  | TX5CP    | Transmit Channel 5 Completion Pointer Register         |
| 0x01E2 3658  | TX6CP    | Transmit Channel 6 Completion Pointer Register         |
| 0x01E2 365C  | TX7CP    | Transmit Channel 7 Completion Pointer Register         |
| 0x01E2 3660  | RX0CP    | Receive Channel 0 Completion Pointer Register          |
| 0x01E2 3664  | RX1CP    | Receive Channel 1 Completion Pointer Register          |
| 0x01E2 3668  | RX2CP    | Receive Channel 2 Completion Pointer Register          |
| 0x01E2 366C  | RX3CP    | Receive Channel 3 Completion Pointer Register          |
| 0x01E2 3670  | RX4CP    | Receive Channel 4 Completion Pointer Register          |
| 0x01E2 3674  | RX5CP    | Receive Channel 5 Completion Pointer Register          |
| 0x01E2 3678  | RX6CP    | Receive Channel 6 Completion Pointer Register          |
| 0x01E2 367C  | RX7CP    | Receive Channel 7 Completion Pointer Register          |

## **Table 5-33. EMAC Statistics Registers**

| HEX ADDRESS RANGE | ACRONYM           | REGISTER NAME                                                                                       |
|-------------------|-------------------|-----------------------------------------------------------------------------------------------------|
| 0x01E2 3200       | RXGOODFRAMES      | Good Receive Frames Register                                                                        |
| 0x01E2 3204       | RXBCASTFRAMES     | Broadcast Receive Frames Register<br>(Total number of good broadcast frames received)               |
| 0x01E2 3208       | RXMCASTFRAMES     | Multicast Receive Frames Register<br>(Total number of good multicast frames received)               |
| 0x01E2 320C       | RXPAUSEFRAMES     | Pause Receive Frames Register                                                                       |
| 0x01E2 3210       | RXCRCERRORS       | Receive CRC Errors Register (Total number of frames received with CRC errors)                       |
| 0x01E2 3214       | RXALIGNCODEERRORS | Receive Alignment/Code Errors Register (Total number of frames received with alignment/code errors) |
| 0x01E2 3218       | RXOVERSIZED       | Receive Oversized Frames Register<br>(Total number of oversized frames received)                    |
| 0x01E2 321C       | RXJABBER          | Receive Jabber Frames Register (Total number of jabber frames received)                             |
| 0x01E2 3220       | RXUNDERSIZED      | Receive Undersized Frames Register (Total number of undersized frames received)                     |
| 0x01E2 3224       | RXFRAGMENTS       | Receive Frame Fragments Register                                                                    |
| 0x01E2 3228       | RXFILTERED        | Filtered Receive Frames Register                                                                    |
| 0x01E2 322C       | RXQOSFILTERED     | Received QOS Filtered Frames Register                                                               |
| 0x01E2 3230       | RXOCTETS          | Receive Octet Frames Register<br>(Total number of received bytes in good frames)                    |
| 0x01E2 3234       | TXGOODFRAMES      | Good Transmit Frames Register<br>(Total number of good frames transmitted)                          |
| 0x01E2 3238       | TXBCASTFRAMES     | Broadcast Transmit Frames Register                                                                  |
| 0x01E2 323C       | TXMCASTFRAMES     | Multicast Transmit Frames Register                                                                  |
| 0x01E2 3240       | TXPAUSEFRAMES     | Pause Transmit Frames Register                                                                      |



# Table 5-33. EMAC Statistics Registers (continued)

| HEX ADDRESS RANGE | ACRONYM         | REGISTER NAME                                                       |
|-------------------|-----------------|---------------------------------------------------------------------|
| 0x01E2 3244       | TXDEFERRED      | Deferred Transmit Frames Register                                   |
| 0x01E2 3248       | TXCOLLISION     | Transmit Collision Frames Register                                  |
| 0x01E2 324C       | TXSINGLECOLL    | Transmit Single Collision Frames Register                           |
| 0x01E2 3250       | TXMULTICOLL     | Transmit Multiple Collision Frames Register                         |
| 0x01E2 3254       | TXEXCESSIVECOLL | Transmit Excessive Collision Frames Register                        |
| 0x01E2 3258       | TXLATECOLL      | Transmit Late Collision Frames Register                             |
| 0x01E2 325C       | TXUNDERRUN      | Transmit Underrun Error Register                                    |
| 0x01E2 3260       | TXCARRIERSENSE  | Transmit Carrier Sense Errors Register                              |
| 0x01E2 3264       | TXOCTETS        | Transmit Octet Frames Register                                      |
| 0x01E2 3268       | FRAME64         | Transmit and Receive 64 Octet Frames Register                       |
| 0x01E2 326C       | FRAME65T127     | Transmit and Receive 65 to 127 Octet Frames Register                |
| 0x01E2 3270       | FRAME128T255    | Transmit and Receive 128 to 255 Octet Frames Register               |
| 0x01E2 3274       | FRAME256T511    | Transmit and Receive 256 to 511 Octet Frames Register               |
| 0x01E2 3278       | FRAME512T1023   | Transmit and Receive 512 to 1023 Octet Frames Register              |
| 0x01E2 327C       | FRAME1024TUP    | Transmit and Receive 1024 to 1518 Octet Frames Register             |
| 0x01E2 3280       | NETOCTETS       | Network Octet Frames Register                                       |
| 0x01E2 3284       | RXSOFOVERRUNS   | Receive FIFO or DMA Start of Frame Overruns Register                |
| 0x01E2 3288       | RXMOFOVERRUNS   | Receive FIFO or DMA Middle of Frame Overruns Register               |
| 0x01E2 328C       | RXDMAOVERRUNS   | Receive DMA Start of Frame and Middle of Frame Overruns<br>Register |

## Table 5-34. EMAC Control Module Registers

| BYTE ADDRESS | Acronym        | Register Description                                                             |
|--------------|----------------|----------------------------------------------------------------------------------|
| 0x01E2 2000  | REV            | EMAC Control Module Revision Register                                            |
| 0x01E2 2004  | SOFTRESET      | EMAC Control Module Software Reset Register                                      |
| 0x01E2 200C  | INTCONTROL     | EMAC Control Module Interrupt Control Register                                   |
| 0x01E2 2010  | CORXTHRESHEN   | EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Enable Register |
| 0x01E2 2014  | CORXEN         | EMAC Control Module Interrupt Core 0 Receive Interrupt Enable Register           |
| 0x01E2 2018  | COTXEN         | EMAC Control Module Interrupt Core 0 Transmit Interrupt Enable Register          |
| 0x01E2 201C  | COMISCEN       | EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Enable Register     |
| 0x01E2 2020  | C1RXTHRESHEN   | EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Enable Register |
| 0x01E2 2024  | C1RXEN         | EMAC Control Module Interrupt Core 1 Receive Interrupt Enable Register           |
| 0x01E2 2028  | C1TXEN         | EMAC Control Module Interrupt Core 1 Transmit Interrupt Enable Register          |
| 0x01E2 202C  | C1MISCEN       | EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Enable Register     |
| 0x01E2 2030  | C2RXTHRESHEN   | EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Enable Register |
| 0x01E2 2034  | C2RXEN         | EMAC Control Module Interrupt Core 2 Receive Interrupt Enable Register           |
| 0x01E2 2038  | C2TXEN         | EMAC Control Module Interrupt Core 2 Transmit Interrupt Enable Register          |
| 0x01E2 203C  | C2MISCEN       | EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Enable Register     |
| 0x01E2 2040  | CORXTHRESHSTAT | EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Status Register |
| 0x01E2 2044  | CORXSTAT       | EMAC Control Module Interrupt Core 0 Receive Interrupt Status Register           |
| 0x01E2 2048  | COTXSTAT       | EMAC Control Module Interrupt Core 0 Transmit Interrupt Status Register          |
| 0x01E2 204C  | COMISCSTAT     | EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Status Register     |



### Table 5-34. EMAC Control Module Registers (continued)

| BYTE ADDRESS | Acronym        | Register Description                                                              |
|--------------|----------------|-----------------------------------------------------------------------------------|
| 0x01E2 2050  | C1RXTHRESHSTAT | EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Status Register  |
| 0x01E2 2054  | C1RXSTAT       | EMAC Control Module Interrupt Core 1 Receive Interrupt Status Register            |
| 0x01E2 2058  | C1TXSTAT       | EMAC Control Module Interrupt Core 1 Transmit Interrupt Status Register           |
| 0x01E2 205C  | C1MISCSTAT     | EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Status Register      |
| 0x01E2 2060  | C2RXTHRESHSTAT | EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Status Register  |
| 0x01E2 2064  | C2RXSTAT       | EMAC Control Module Interrupt Core 2 Receive Interrupt Status Register            |
| 0x01E2 2068  | C2TXSTAT       | EMAC Control Module Interrupt Core 2 Transmit Interrupt Status Register           |
| 0x01E2 206C  | C2MISCSTAT     | EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Status Register      |
| 0x01E2 2070  | CORXIMAX       | EMAC Control Module Interrupt Core 0 Receive Interrupts Per Millisecond Register  |
| 0x01E2 2074  | COTXIMAX       | EMAC Control Module Interrupt Core 0 Transmit Interrupts Per Millisecond Register |
| 0x01E2 2078  | C1RXIMAX       | EMAC Control Module Interrupt Core 1 Receive Interrupts Per Millisecond Register  |
| 0x01E2 207C  | C1TXIMAX       | EMAC Control Module Interrupt Core 1 Transmit Interrupts Per Millisecond Register |
| 0x01E2 2080  | C2RXIMAX       | EMAC Control Module Interrupt Core 2 Receive Interrupts Per Millisecond Register  |
| 0x01E2 2084  | C2TXIMAX       | EMAC Control Module Interrupt Core 2 Transmit Interrupts Per Millisecond Register |

#### Table 5-35. EMAC Control Module RAM

| HEX ADDRESS RANGE         | ACRONYM | REGISTER NAME                       |
|---------------------------|---------|-------------------------------------|
| 0x01E2 0000 - 0x01E2 1FFF |         | EMAC Local Buffer Descriptor Memory |

### **Table 5-36. RMII Timing Requirements**

| NO.              | ı                          | PARAMETER                                                 | MIN | TYP | MAX | UNIT |
|------------------|----------------------------|-----------------------------------------------------------|-----|-----|-----|------|
| 1 <sup>(1)</sup> | tc(RMII_MHZ_50_CLK)        | Cycle Time, RMII_MHZ_50_CLK                               |     | 20  |     | ns   |
| 2 <sup>(1)</sup> | tw(RMII_MHZ_50_CLKH)       | Pulse Width, RMII_MHZ_50_CLK High                         | 7   |     | 13  | ns   |
| 3 <sup>(1)</sup> | tw(RMII_MHZ_50_CLKL)       | Pulse Width, RMII_MHZ_50_CLK Low                          | 7   |     | 13  | ns   |
| 6                | tsu(RXD-RMII_MHZ_50_CLK)   | Input Setup Time, RXD Valid before RMII_MHZ_50_CLK High   | 4.5 |     |     | ns   |
| 7                | th(RMII_MHZ_50_CLK-RXD)    | Input Hold Time, RXD Valid after<br>RMII_MHZ_50_CLK High  | 2.1 | 2.1 |     | ns   |
| 8                | tsu(CRSDV-RMII_MHZ_50_CLK) | Input Setup Time, CRSDV Valid before RMII_MHZ_50_CLK High | 4.5 |     |     | ns   |
| 9                | th(RMII_MHZ_50_CLK-CRSDV)  | Input Hold Time, CRSDV Valid after RMII_MHZ_50_CLK High   | 2.1 |     |     | ns   |
| 10               | tsu(RXER-RMII_MHZ_50_CLK)  | Input Setup Time, RXER Valid before RMII_MHZ_50_CLK High  | 4.5 |     |     | ns   |
| 11               | th(RMII_MHZ_50_CLK-RXER)   | Input Hold Time, RXER Valid after RMII_MHZ_50_CLK High    | 2.1 | 2.1 |     | ns   |

<sup>(1)</sup> Parameters are characterized from -40°C to 125°C unless otherwise noted.

## **Table 5-37. RMII Timing Requirements**

| NO. |                         | PARAMETER                                           | MIN | TYP | MAX | UNIT |
|-----|-------------------------|-----------------------------------------------------|-----|-----|-----|------|
| 4   | td(RMII_MHZ_50_CLK-TXD) | Output Delay Time, RMII_MHZ_50_CLKHigh to TXD Valid | 1.8 |     | 14  | ns   |



## Table 5-37. RMII Timing Requirements (continued)

| NO. |                          | PARAMETER                                             | MIN | TYP | MAX | UNIT |
|-----|--------------------------|-------------------------------------------------------|-----|-----|-----|------|
| 5   | td(RMII_MHZ_50_CLK-TXEN) | Output Delay Time, RMII_MHZ_50_CLK High to TXEN Valid | 1.8 |     | 14  | ns   |



Figure 5-31. RMII Timing Diagram



#### 5.14 Management Data Input/Output (MDIO)

The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system.

The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. Only one PHY may be connected at any given time. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. — Literature Number SPRUFK9 for more details.

### 5.14.1 MDIO Registers

For a list of supported MDIO registers see Table 5-38 [MDIO Registers].

Table 5-38. MDIO Register Memory Map

|                           | I                | T                                                        |
|---------------------------|------------------|----------------------------------------------------------|
| HEX ADDRESS RANGE         | ACRONYM          | REGISTER NAME                                            |
| 0x01E2 4000               | REV              | Revision Identification Register                         |
| 0x01E2 4004               | CONTROL          | MDIO Control Register                                    |
| 0x01E2 4008               | ALIVE            | MDIO PHY Alive Status Register                           |
| 0x01E2 400C               | LINK             | MDIO PHY Link Status Register                            |
| 0x01E2 4010               | LINKINTRAW       | MDIO Link Status Change Interrupt (Unmasked) Register    |
| 0x01E2 4014               | LINKINTMASKED    | MDIO Link Status Change Interrupt (Masked) Register      |
| 0x01E2 4018               | _                | Reserved                                                 |
| 0x01E2 4020               | USERINTRAW       | MDIO User Command Complete Interrupt (Unmasked) Register |
| 0x01E2 4024               | USERINTMASKED    | MDIO User Command Complete Interrupt (Masked) Register   |
| 0x01E2 4028               | USERINTMASKSET   | MDIO User Command Complete Interrupt Mask Set Register   |
| 0x01E2 402C               | USERINTMASKCLEAR | MDIO User Command Complete Interrupt Mask Clear Register |
| 0x01E2 4030 - 0x01E2 407C | _                | Reserved                                                 |
| 0x01E2 4080               | USERACCESS0      | MDIO User Access Register 0                              |
| 0x01E2 4084               | USERPHYSEL0      | MDIO User PHY Select Register 0                          |
| 0x01E2 4088               | USERACCESS1      | MDIO User Access Register 1                              |
| 0x01E2 408C               | USERPHYSEL1      | MDIO User PHY Select Register 1                          |
| 0x01E2 4090 - 0x01E2 47FF | _                | Reserved                                                 |

#### 5.14.2 Management Data Input/Output (MDIO) Electrical Data/Timing

Table 5-39. Timing Requirements for MDIO Input<sup>(1)</sup> (see Figure 5-32 and Figure 5-33)

| NO. |                                 |                                                        | MIN | MAX | UNIT |
|-----|---------------------------------|--------------------------------------------------------|-----|-----|------|
| 1   | t <sub>c(MDIO_CLK)</sub>        | Cycle time, MDIO_CLK                                   | 400 |     | ns   |
| 2   | t <sub>w(MDIO_CLK)</sub>        | Pulse duration, MDIO_CLK high/low                      | 180 |     | ns   |
| 3   | t <sub>t(MDIO_CLK)</sub>        | Transition time, MDIO_CLK                              |     | 5   | ns   |
| 4   | t <sub>su(MDIO-MDIO_CLKH)</sub> | Setup time, MDIO data input valid before MDIO_CLK high | 10  |     | ns   |
| 5   | t <sub>h(MDIO_CLKH-MDIO)</sub>  | Hold time, MDIO data input valid after MDIO_CLK high   | 0   |     | ns   |

<sup>(1)</sup> Parameters are characterized from -40°C to 125°C unless otherwise noted.

www.ti.com



Figure 5-32. MDIO Input Timing

Table 5-40. Switching Characteristics Over Recommended Operating Conditions for MDIO Output<sup>(1)</sup> (see Figure 5-33)

| NO. |                                                                                   | MIN | MAX | UNIT |  |
|-----|-----------------------------------------------------------------------------------|-----|-----|------|--|
| 7   | t <sub>d(MDIO_CLKL-MDIO)</sub> Delay time, MDIO_CLK low to MDIO data output valid | 0   | 100 | ns   |  |

(1) Parameters are characterized from -40°C to 125°C unless otherwise noted.



Figure 5-33. MDIO Output Timing



#### 5.15 Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2)

The McASP serial port is specifically designed for multichannel audio applications. Its key features are:

- · Flexible clock and frame sync generation logic and on-chip dividers
- Up to sixteen transmit or receive data pins and serializers
- · Large number of serial data format options, including:
  - TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst)
  - Time slots of 8,12,16, 20, 24, 28, and 32 bits
  - First bit delay 0, 1, or 2 clocks
  - MSB or LSB first bit order
  - Left- or right-aligned data words within time slots
- DIT Mode (optional) with 384-bit Channel Status and 384-bit User Data registers
- Extensive error checking and mute generation logic
- · All unused pins GPIO-capable

Additionally, while the OMAPL137 McASP modules are backward compatible with the McASP on previous devices, the OMAPL137 McASP includes the following new features:

- Transmit & Receive FIFO Buffers for each McASP. Allows the McASP to operate at a higher sample rate by making it more tolerant to DMA latency.
- Dynamic Adjustment of Clock Dividers
  - Clock Divider Value may be changed without resetting the McASP

The three McASPs on the device are configured with the following options:

Table 5-41. OMAPL137 McASP Configurations<sup>(1)</sup>

| Module | Serializers | AFIFO                    | DIT | Pins                                                                  |
|--------|-------------|--------------------------|-----|-----------------------------------------------------------------------|
| McASP0 | 16          | 64 Word RX<br>64 Word TX | N   | AXR0[13:0], AHCLKR0, ACLKR0, AFSR0, AHCLKX0, ACLKX0, AFSX0            |
| McASP1 | 12          | 64 Word RX<br>64 Word TX | N   | AXR1[11:10], AXR1[8:0], ACLKR1, AFSR1, AHCLKX1, ACLKX1, AFSX1, AMUTE1 |
| McASP2 | 4           | 16 Word RX<br>16 Word TX | Y   | AXR2[3:0], ACLKR2, AFSR2, AHCLKX2, ACLKX2, AFSX2, AMUTE2              |

(1) Pins available are the maximum number of pins that may be configured for a particular McASP; not including pin multiplexing.



Figure 5-34. McASP Block Diagram



### 5.15.1 McASP Peripheral Registers Description(s)

Registers for the McASP are summarized in Table 5-42. The registers are accessed through the peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can also be accessed through the DMA port, as listed in Table 5-43

Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 5-44. Note that the AFIFO Write FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control registers are accessed through the peripheral configuration port. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number SPRUFK9 for more details.

Table 5-42. McASP Registers Accessed Through Peripheral Configuration Port

| Offset | McASP0<br>BYTE<br>ADDRESS | McASP1<br>BYTE<br>ADDRESS | McASP2<br>BYTE<br>ADDRESS | Acronym   | Register Description                                                                                                                               |
|--------|---------------------------|---------------------------|---------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0h     | 0x01D0 0000               | 0x01D0 4000               | 0x01D0 8000               | REV       | Revision identification register                                                                                                                   |
| 10h    | 0x01D0 0010               | 0x01D0 4010               | 0x01D0 8010               | PFUNC     | Pin function register                                                                                                                              |
| 14h    | 0x01D0 0014               | 0x01D0 4014               | 0x01D0 8014               | PDIR      | Pin direction register                                                                                                                             |
| 18h    | 0x01D0 0018               | 0x01D0 4018               | 0x01D0 8018               | PDOUT     | Pin data output register                                                                                                                           |
| 1Ch    | 0x01D0 001C               | 0x01D0 401C               | 0x01D0 801C               | PDIN      | Read returns: Pin data input register                                                                                                              |
| 1Ch    | 0x01D0 001C               | 0x01D0 401C               | 0x01D0 801C               | PDSET     | Writes affect: Pin data set register (alternate write address: PDOUT)                                                                              |
| 20h    | 0x01D0 0020               | 0x01D0 4020               | 0x01D0 8020               | PDCLR     | Pin data clear register (alternate write address: PDOUT)                                                                                           |
| 44h    | 0x01D0 0044               | 0x01D0 4044               | 0x01D0 8044               | GBLCTL    | Global control register                                                                                                                            |
| 48h    | 0x01D0 0048               | 0x01D0 4048               | 0x01D0 8048               | AMUTE     | Audio mute control register                                                                                                                        |
| 4Ch    | 0x01D0 004C               | 0x01D0 404C               | 0x01D0 804C               | DLBCTL    | Digital loopback control register                                                                                                                  |
| 50h    | 0x01D0 0050               | 0x01D0 4050               | 0x01D0 8050               | DITCTL    | DIT mode control register                                                                                                                          |
| 60h    | 0x01D0 0060               | 0x01D0 4060               | 0x01D0 8060               | RGBLCTL   | Receiver global control register: Alias of GBLCTL, only receive bits are affected - allows receiver to be reset independently from transmitter     |
| 64h    | 0x01D0 0064               | 0x01D0 4064               | 0x01D0 8064               | RMASK     | Receive format unit bit mask register                                                                                                              |
| 68h    | 0x01D0 0068               | 0x01D0 4068               | 0x01D0 8068               | RFMT      | Receive bit stream format register                                                                                                                 |
| 6Ch    | 0x01D0 006C               | 0x01D0 406C               | 0x01D0 806C               | AFSRCTL   | Receive frame sync control register                                                                                                                |
| 70h    | 0x01D0 0070               | 0x01D0 4070               | 0x01D0 8070               | ACLKRCTL  | Receive clock control register                                                                                                                     |
| 74h    | 0x01D0 0074               | 0x01D0 4074               | 0x01D0 8074               | AHCLKRCTL | Receive high-frequency clock control register                                                                                                      |
| 78h    | 0x01D0 0078               | 0x01D0 4078               | 0x01D0 8078               | RTDM      | Receive TDM time slot 0-31 register                                                                                                                |
| 7Ch    | 0x01D0 007C               | 0x01D0 407C               | 0x01D0 807C               | RINTCTL   | Receiver interrupt control register                                                                                                                |
| 80h    | 0x01D0 0080               | 0x01D0 4080               | 0x01D0 8080               | RSTAT     | Receiver status register                                                                                                                           |
| 84h    | 0x01D0 0084               | 0x01D0 4084               | 0x01D0 8084               | RSLOT     | Current receive TDM time slot register                                                                                                             |
| 88h    | 0x01D0 0088               | 0x01D0 4088               | 0x01D0 8088               | RCLKCHK   | Receive clock check control register                                                                                                               |
| 8Ch    | 0x01D0 008C               | 0x01D0 408C               | 0x01D0 808C               | REVTCTL   | Receiver DMA event control register                                                                                                                |
| ACh    | 0x01D0 00A0               | 0x01D0 40A0               | 0x01D0 80A0               | XGBLCTL   | Transmitter global control register. Alias of GBLCTL, only transmit bits are affected - allows transmitter to be reset independently from receiver |
| A4h    | 0x01D0 00A4               | 0x01D0 40A4               | 0x01D0 80A4               | XMASK     | Transmit format unit bit mask register                                                                                                             |
| A8h    | 0x01D0 00A8               | 0x01D0 40A8               | 0x01D0 80A8               | XFMT      | Transmit bit stream format register                                                                                                                |
| ACh    | 0x01D0 00AC               | 0x01D0 40AC               | 0x01D0 80AC               | AFSXCTL   | Transmit frame sync control register                                                                                                               |
| B0h    | 0x01D0 00B0               | 0x01D0 40B0               | 0x01D0 80B0               | ACLKXCTL  | Transmit clock control register                                                                                                                    |
| B4h    | 0x01D0 00B4               | 0x01D0 40B4               | 0x01D0 80B4               | AHCLKXCTL | Transmit high-frequency clock control register                                                                                                     |
| B8h    | 0x01D0 00B8               | 0x01D0 40B8               | 0x01D0 80B8               | XTDM      | Transmit TDM time slot 0-31 register                                                                                                               |
| BCh    | 0x01D0 00BC               | 0x01D0 40BC               | 0x01D0 80BC               | XINTCTL   | Transmitter interrupt control register                                                                                                             |
| C0h    | 0x01D0 00C0               | 0x01D0 40C0               | 0x01D0 80C0               | XSTAT     | Transmitter status register                                                                                                                        |
| C4h    | 0x01D0 00C4               | 0x01D0 40C4               | 0x01D0 80C4               | XSLOT     | Current transmit TDM time slot register                                                                                                            |



# Table 5-42. McASP Registers Accessed Through Peripheral Configuration Port (continued)

|        | -                         |                           |                           |          |                                                                   |
|--------|---------------------------|---------------------------|---------------------------|----------|-------------------------------------------------------------------|
| Offset | McASP0<br>BYTE<br>ADDRESS | McASP1<br>BYTE<br>ADDRESS | McASP2<br>Byte<br>Address | Acronym  | Register Description                                              |
| C8h    | 0x01D0 00C8               | 0x01D0 40C8               | 0x01D0 80C8               | XCLKCHK  | Transmit clock check control register                             |
| CCh    | 0x01D0 00CC               | 0x01D0 40CC               | 0x01D0 80CC               | XEVTCTL  | Transmitter DMA event control register                            |
| 100h   | 0x01D0 0100               | 0x01D0 4100               | 0x01D0 8100               | DITCSRA0 | Left (even TDM time slot) channel status register (DIT mode) 0    |
| 104h   | 0x01D0 0104               | 0x01D0 4104               | 0x01D0 8104               | DITCSRA1 | Left (even TDM time slot) channel status register (DIT mode) 1    |
| 108h   | 0x01D0 0108               | 0x01D0 4108               | 0x01D0 8108               | DITCSRA2 | Left (even TDM time slot) channel status register (DIT mode) 2    |
| 10Ch   | 0x01D0 010C               | 0x01D0 410C               | 0x01D0 810C               | DITCSRA3 | Left (even TDM time slot) channel status register (DIT mode) 3    |
| 110h   | 0x01D0 0110               | 0x01D0 4110               | 0x01D0 8110               | DITCSRA4 | Left (even TDM time slot) channel status register (DIT mode) 4    |
| 114h   | 0x01D0 0114               | 0x01D0 4114               | 0x01D0 8114               | DITCSRA5 | Left (even TDM time slot) channel status register (DIT mode) 5    |
| 118h   | 0x01D0 0118               | 0x01D0 4118               | 0x01D0 8118               | DITCSRB0 | Right (odd TDM time slot) channel status register (DIT mode) 0    |
| 11Ch   | 0x01D0 011C               | 0x01D0 411C               | 0x01D0 811C               | DITCSRB1 | Right (odd TDM time slot) channel status register (DIT mode) 1    |
| 120h   | 0x01D0 0120               | 0x01D0 4120               | 0x01D0 8120               | DITCSRB2 | Right (odd TDM time slot) channel status register (DIT mode) 2    |
| 124h   | 0x01D0 0124               | 0x01D0 4124               | 0x01D0 8124               | DITCSRB3 | Right (odd TDM time slot) channel status register (DIT mode) 3    |
| 128h   | 0x01D0 0128               | 0x01D0 4128               | 0x01D0 8128               | DITCSRB4 | Right (odd TDM time slot) channel status register (DIT mode) 4    |
| 12Ch   | 0x01D0 012C               | 0x01D0 412C               | 0x01D0 812C               | DITCSRB5 | Right (odd TDM time slot) channel status register (DIT mode) 5    |
| 130h   | 0x01D0 0130               | 0x01D0 4130               | 0x01D0 8130               | DITUDRA0 | Left (even TDM time slot) channel user data register (DIT mode) 0 |
| 134h   | 0x01D0 0134               | 0x01D0 4134               | 0x01D0 8134               | DITUDRA1 | Left (even TDM time slot) channel user data register (DIT mode) 1 |
| 138h   | 0x01D0 0138               | 0x01D0 4138               | 0x01D0 8138               | DITUDRA2 | Left (even TDM time slot) channel user data register (DIT mode) 2 |
| 13Ch   | 0x01D0 013C               | 0x01D0 413C               | 0x01D0 813C               | DITUDRA3 | Left (even TDM time slot) channel user data register (DIT mode) 3 |
| 140h   | 0x01D0 0140               | 0x01D0 4140               | 0x01D0 8140               | DITUDRA4 | Left (even TDM time slot) channel user data register (DIT mode) 4 |
| 144h   | 0x01D0 0144               | 0x01D0 4144               | 0x01D0 8144               | DITUDRA5 | Left (even TDM time slot) channel user data register (DIT mode) 5 |
| 148h   | 0x01D0 0148               | 0x01D0 4148               | 0x01D0 8148               | DITUDRB0 | Right (odd TDM time slot) channel user data register (DIT mode) 0 |
| 14Ch   | 0x01D0 014C               | 0x01D0 414C               | 0x01D0 814C               | DITUDRB1 | Right (odd TDM time slot) channel user data register (DIT mode) 1 |
| 150h   | 0x01D0 0150               | 0x01D0 4150               | 0x01D0 8150               | DITUDRB2 | Right (odd TDM time slot) channel user data register (DIT mode) 2 |
| 154h   | 0x01D0 0154               | 0x01D0 4154               | 0x01D0 8154               | DITUDRB3 | Right (odd TDM time slot) channel user data register (DIT mode) 3 |
| 158h   | 0x01D0 0158               | 0x01D0 4158               | 0x01D0 8158               | DITUDRB4 | Right (odd TDM time slot) channel user data register (DIT mode) 4 |
| 15Ch   | 0x01D0 015C               | 0x01D0 415C               | 0x01D0 815C               | DITUDRB5 | Right (odd TDM time slot) channel user data register (DIT mode) 5 |
| 180h   | 0x01D0 0180               | 0x01D0 4180               | 0x01D0 8180               | SRCTL0   | Serializer control register 0                                     |
| 184h   | 0x01D0 0184               | 0x01D0 4184               | 0x01D0 8184               | SRCTL1   | Serializer control register 1                                     |
| 188h   | 0x01D0 0188               | 0x01D0 4188               | 0x01D0 8188               | SRCTL2   | Serializer control register 2                                     |



### Table 5-42. McASP Registers Accessed Through Peripheral Configuration Port (continued)

|        |                           |                           |                           |                       | pricial configuration i ort (continuca)    |  |  |  |
|--------|---------------------------|---------------------------|---------------------------|-----------------------|--------------------------------------------|--|--|--|
| Offset | McASP0<br>BYTE<br>ADDRESS | McASP1<br>BYTE<br>ADDRESS | McASP2<br>Byte<br>Address | Acronym               | Register Description                       |  |  |  |
| 18Ch   | 0x01D0 018C               | 0x01D0 418C               | 0x01D0 818C               | SRCTL3                | Serializer control register 3              |  |  |  |
| 190h   | 0x01D0 0190               | 0x01D0 4190               | 0x01D0 8190               | SRCTL4                | Serializer control register 4              |  |  |  |
| 194h   | 0x01D0 0194               | 0x01D0 4194               | 0x01D0 8194               | SRCTL5                | Serializer control register 5              |  |  |  |
| 198h   | 0x01D0 0198               | 0x01D0 4198               | 0x01D0 8198               | SRCTL6                | Serializer control register 6              |  |  |  |
| 19Ch   | 0x01D0 019C               | 0x01D0 419C               | 0x01D0 819C               | SRCTL7                | Serializer control register 7              |  |  |  |
| 1A0h   | 0x01D0 01A0               | 0x01D0 41A0               | 0x01D0 81A0               | SRCTL8                | Serializer control register 8              |  |  |  |
| 1A4h   | 0x01D0 01A4               | 0x01D0 41A4               | 0x01D0 81A4               | SRCTL9                | Serializer control register 9              |  |  |  |
| 1A8h   | 0x01D0 01A8               | 0x01D0 41A8               | 0x01D0 81A8               | SRCTL10               | Serializer control register 10             |  |  |  |
| 1ACh   | 0x01D0 01AC               | 0x01D0 41AC               | 0x01D0 81AC               | SRCTL11               | Serializer control register 11             |  |  |  |
| 1B0h   | 0x01D0 01B0               | 0x01D0 41B0               | 0x01D0 81B0               | SRCTL12               | Serializer control register 12             |  |  |  |
| 1B4h   | 0x01D0 01B4               | 0x01D0 41B4               | 0x01D0 81B4               | SRCTL13               | Serializer control register 13             |  |  |  |
| 1B8h   | 0x01D0 01B8               | 0x01D0 41B8               | 0x01D0 81B8               | SRCTL14               | Serializer control register 14             |  |  |  |
| 1BCh   | 0x01D0 01BC               | 0x01D0 41BC               | 0x01D0 81BC               | SRCTL15               | Serializer control register 15             |  |  |  |
| 200h   | 0x01D0 0200               | 0x01D0 4200               | 0x01D0 8200               | XBUF0 <sup>(1)</sup>  | Transmit buffer register for serializer 0  |  |  |  |
| 204h   | 0x01D0 0204               | 0x01D0 4204               | 0x01D0 8204               | XBUF1 (2)             | Transmit buffer register for serializer 1  |  |  |  |
| 208h   | 0x01D0 0208               | 0x01D0 4208               | 0x01D0 8208               | XBUF2 <sup>(2)</sup>  | Transmit buffer register for serializer 2  |  |  |  |
| 20Ch   | 0x01D0 020C               | 0x01D0 420C               | 0x01D0 820C               | XBUF3 <sup>(2)</sup>  | Transmit buffer register for serializer 3  |  |  |  |
| 210h   | 0x01D0 0210               | 0x01D0 4210               | 0x01D0 8210               | XBUF4 <sup>(2)</sup>  | Transmit buffer register for serializer 4  |  |  |  |
| 214h   | 0x01D0 0214               | 0x01D0 4214               | 0x01D0 8214               | XBUF5 <sup>(2)</sup>  | Transmit buffer register for serializer 5  |  |  |  |
| 218h   | 0x01D0 0218               | 0x01D0 4218               | 0x01D0 8218               | XBUF6 <sup>(2)</sup>  | Transmit buffer register for serializer 6  |  |  |  |
| 21Ch   | 0x01D0 021C               | 0x01D0 421C               | 0x01D0 821C               | XBUF7 <sup>(2)</sup>  | Transmit buffer register for serializer 7  |  |  |  |
| 220h   | 0x01D0 0220               | 0x01D0 4220               | 0x01D0 8220               | XBUF8 <sup>(2)</sup>  | Transmit buffer register for serializer 8  |  |  |  |
| 224h   | 0x01D0 0224               | 0x01D0 4224               | 0x01D0 8224               | XBUF9 <sup>(2)</sup>  | Transmit buffer register for serializer 9  |  |  |  |
| 228h   | 0x01D0 0228               | 0x01D0 4228               | 0x01D0 8228               | XBUF10 <sup>(2)</sup> | Transmit buffer register for serializer 10 |  |  |  |
| 22Ch   | 0x01D0 022C               | 0x01D0 422C               | 0x01D0 822C               | XBUF11 <sup>(2)</sup> | Transmit buffer register for serializer 11 |  |  |  |
| 230h   | 0x01D0 0230               | 0x01D0 4230               | 0x01D0 8230               | XBUF12 <sup>(2)</sup> | Transmit buffer register for serializer 12 |  |  |  |
| 234h   | 0x01D0 0234               | 0x01D0 4234               | 0x01D0 8234               | XBUF13 <sup>(2)</sup> | Transmit buffer register for serializer 13 |  |  |  |
| 238h   | 0x01D0 0238               | 0x01D0 4238               | 0x01D0 8238               | XBUF14 <sup>(2)</sup> | Transmit buffer register for serializer 14 |  |  |  |
| 23Ch   | 0x01D0 023C               | 0x01D0 423C               | 0x01D0 823C               | XBUF15 <sup>(2)</sup> | Transmit buffer register for serializer 15 |  |  |  |
| 280h   | 0x01D0 0280               | 0x01D0 4280               | 0x01D0 8280               | RBUF0 <sup>(3)</sup>  | Receive buffer register for serializer 0   |  |  |  |
| 284h   | 0x01D0 0284               | 0x01D0 4284               | 0x01D0 8284               | RBUF1 (3)             | Receive buffer register for serializer 1   |  |  |  |
| 288h   | 0x01D0 0288               | 0x01D0 4288               | 0x01D0 8288               | RBUF2 <sup>(3)</sup>  | Receive buffer register for serializer 2   |  |  |  |
| 28Ch   | 0x01D0 028C               | 0x01D0 428C               | 0x01D0 828C               | RBUF3 <sup>(3)</sup>  | Receive buffer register for serializer 3   |  |  |  |
| 290h   | 0x01D0 0290               | 0x01D0 4290               | 0x01D0 8290               | RBUF4 <sup>(3)</sup>  | Receive buffer register for serializer 4   |  |  |  |
| 294h   | 0x01D0 0294               | 0x01D0 4294               | 0x01D0 8294               | RBUF5 <sup>(3)</sup>  | Receive buffer register for serializer 5   |  |  |  |
| 298h   | 0x01D0 0298               | 0x01D0 4298               | 0x01D0 8298               | RBUF6 <sup>(3)</sup>  | Receive buffer register for serializer 6   |  |  |  |
| 29Ch   | 0x01D0 029C               | 0x01D0 429C               | 0x01D0 829C               | RBUF7 <sup>(3)</sup>  | Receive buffer register for serializer 7   |  |  |  |
| 2A0h   | 0x01D0 02A0               | 0x01D0 42A0               | 0x01D0 82A0               | RBUF8 <sup>(3)</sup>  | Receive buffer register for serializer 8   |  |  |  |
| 2A4h   | 0x01D0 02A4               | 0x01D0 42A4               | 0x01D0 82A4               | RBUF9 <sup>(3)</sup>  | Receive buffer register for serializer 9   |  |  |  |
| 2A8h   | 0x01D0 02A8               | 0x01D0 42A8               | 0x01D0 82A8               | RBUF10 <sup>(3)</sup> | Receive buffer register for serializer 10  |  |  |  |
| 2ACh   | 0x01D0 02AC               | 0x01D0 42AC               | 0x01D0 82AC               | RBUF11 <sup>(3)</sup> | Receive buffer register for serializer 11  |  |  |  |
| 2B0h   | 0x01D0 02B0               | 0x01D0 42B0               | 0x01D0 82B0               | RBUF12 <sup>(3)</sup> | Receive buffer register for serializer 12  |  |  |  |
| 2B4h   | 0x01D0 02B4               | 0x01D0 42B4               | 0x01D0 82B4               | RBUF13 <sup>(3)</sup> | Receive buffer register for serializer 13  |  |  |  |
| 2B8h   | 0x01D0 02B8               | 0x01D0 42B8               | 0x01D0 82BB               | KDUF 1417             | Receive buffer register for serializer 14  |  |  |  |

<sup>(1)</sup> Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT.

<sup>2)</sup> Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT.

<sup>(3)</sup> Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT.



### Table 5-42. McASP Registers Accessed Through Peripheral Configuration Port (continued)

| Offset | McASP0<br>BYTE<br>ADDRESS | McASP1<br>BYTE<br>ADDRESS | McASP2<br>BYTE<br>ADDRESS | Acronym               | Register Description                      |
|--------|---------------------------|---------------------------|---------------------------|-----------------------|-------------------------------------------|
| 2BCh   | 0x01D0 02BC               | 0x01D0 42BC               | 0x01D0 82BC               | RBUF15 <sup>(3)</sup> | Receive buffer register for serializer 15 |

## Table 5-43. McASP Registers Accessed Through DMA Port

| Hex<br>Address    | Register<br>Name | McASP0<br>BYTE<br>ADDRESS | McASP1<br>BYTE<br>ADDRESS | McASP2<br>BYTE<br>ADDRESS | Register Description                                                                                                                                                                                                                                  |
|-------------------|------------------|---------------------------|---------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Read<br>Accesses  | RBUF             | 01D0 2000                 | 01D0 6000                 | 01D0 A000                 | Receive buffer DMA port address. Cycles through receive serializers, skipping over transmit serializers and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Reads from DMA port only if XBUSEL = 0 in XFMT. |
| Write<br>Accesses | XBUF             | 01D0 2000                 | 01D0 6000                 | 01D0 A000                 | Transmit buffer DMA port address. Cycles through transmit serializers, skipping over receive and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Writes to DMA port only if RBUSEL = 0 in RFMT.             |

## Table 5-44. McASP AFIFO Registers Accessed Through Peripheral Configuration Port

| McASP0<br>BYTE ADDRESS | McASP1<br>BYTE ADDRESS | McASP2<br>BYTE ADDRESS | Acronym  | Register Description                   |
|------------------------|------------------------|------------------------|----------|----------------------------------------|
| 0x01D0 1000            | 0x01D0 5000            | 0x01D0 9000            | AFIFOREV | AFIFO revision identification register |
| 0x01D0 1010            | 0x01D0 5010            | 0x01D0 9010            | WFIFOCTL | Write FIFO control register            |
| 0x01D0 1014            | 0x01D0 5014            | 0x01D0 9014            | WFIFOSTS | Write FIFO status register             |
| 0x01D0 1018            | 0x01D0 5018            | 0x01D0 9018            | RFIFOCTL | Read FIFO control register             |
| 0x01D0 101C            | 0x01D0 501C            | 0x01D0 901C            | RFIFOSTS | Read FIFO status register              |



### 5.15.2 McASP Electrical Data/Timing

#### 5.15.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing

Table 5-45 and Table 5-46 assume testing over recommended operating conditions (see Figure 5-35 and Figure 5-36).

Table 5-45. McASP0 Timing Requirements (1) (2)

| NO.                          |                               |                                                                    | MIN                 | MAX | UNI |
|------------------------------|-------------------------------|--------------------------------------------------------------------|---------------------|-----|-----|
| 1 (3)                        |                               | Cycle time, AHCLKR0 external, AHCLKR0 input                        | 20                  |     |     |
| 1(0)                         | t <sub>c(AHCLKRX)</sub>       | Cycle time, AHCLKX0 external, AHCLKX0 input                        | 20                  |     | ns  |
| 2 <sup>(3)</sup> t(ALICLIAN) |                               | Pulse duration, AHCLKR0 external, AHCLKR0 input                    | 10                  |     |     |
| 2(-)                         | t <sub>w(AHCLKRX)</sub>       | Pulse duration, AHCLKX0 external, AHCLKX0 input                    | 10                  |     | ns  |
| 3 <sup>(3)</sup>             |                               | Cycle time, ACLKR0 external, ACLKR0 input                          | greater of 2P or 20 |     |     |
| 3.7                          | t <sub>c(ACLKRX)</sub>        | Cycle time, ACLKX0 external, ACLKX0 input                          | greater of 2P or 20 |     | ns  |
| 4(3)                         |                               | Pulse duration, ACLKR0 external, ACLKR0 input                      | 10                  |     |     |
| 4(0)                         | t <sub>w(ACLKRX)</sub>        | Pulse duration, ACLKX0 external, ACLKX0 input                      | 10                  |     | ns  |
|                              |                               | Setup time, AFSR0 input to ACLKR0 internal (4)                     | 10                  |     |     |
|                              |                               | Setup time, AFSX0 input to ACLKX0 internal                         | 10                  |     |     |
| _                            |                               | Setup time, AFSR0 input to ACLKR0 external input <sup>(4)</sup>    | 3.2                 |     | ns  |
| 5                            | t <sub>su(AFSRX-ACLKRX)</sub> | Setup time, AFSX0 input to ACLKX0 external input                   | 3.2                 |     |     |
|                              |                               | Setup time, AFSR0 input to ACLKR0 external output (4)              | 3.2                 |     |     |
|                              |                               | Setup time, AFSX0 input to ACLKX0 external output                  | 3.2                 |     |     |
|                              |                               | Hold time, AFSR0 input after ACLKR0 internal (4)                   | -0.8                |     |     |
|                              |                               | Hold time, AFSX0 input after ACLKX0 internal                       | -0.8                |     |     |
|                              | t <sub>h(ACLKRX-AFSRX)</sub>  | Hold time, AFSR0 input after ACLKR0 external input (4)             | 0.6                 |     | ns  |
| 6                            |                               | Hold time, AFSX0 input after ACLKX0 external input                 | 0.9                 |     |     |
|                              |                               | Hold time, AFSR0 input after ACLKR0 external output <sup>(4)</sup> | 0.6                 |     |     |
|                              |                               | Hold time, AFSX0 input after ACLKX0 external output                | 0.9                 |     |     |
|                              |                               | Setup time, AXR0[n] input to ACLKR0 internal (4)                   | 10                  |     |     |
|                              |                               | Setup time, AXR0[n] input to ACLKX0 internal (5)                   | 10                  |     |     |
| 7                            |                               | Setup time, AXR0[n] input to ACLKR0 external input <sup>(4)</sup>  | 3.2                 |     |     |
|                              | t <sub>su(AXR-ACLKRX)</sub>   | Setup time, AXR0[n] input to ACLKX0 external input <sup>(5)</sup>  | 3.2                 |     | ns  |
|                              | 'SU(AXR-ACLKRA)               | Setup time, AXR0[n] input to ACLKR0 external output <sup>(4)</sup> | 3.2                 |     |     |
|                              |                               | Setup time, AXR0[n] input to ACLKX0 external output <sup>(5)</sup> | 3.2                 |     |     |

<sup>(1)</sup> ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR = 1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1

<sup>(2)</sup> P = SYSCLK2 period

<sup>(3)</sup> Parameters are characterized from -40°C to 125°C unless otherwise noted.

<sup>(4)</sup> McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0

<sup>(5)</sup> McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0



# Table 5-45. McASP0 Timing Requirements<sup>(1)</sup> (continued)

| NO. |                                                                      |                                                               | MIN I | MAX | UNIT |
|-----|----------------------------------------------------------------------|---------------------------------------------------------------|-------|-----|------|
|     |                                                                      | Hold time, AXR0[n] input after ACLKR0 internal <sup>(4)</sup> | -1.25 |     |      |
|     |                                                                      | Hold time, AXR0[n] input after ACLKX0 internal <sup>(5)</sup> | -1.25 |     |      |
|     |                                                                      | Hold time, AXR0[n] input after ACLKR0 external input (4)      | 0.9   |     |      |
| 8   | t <sub>h(ACLKRX-AXR)</sub>                                           | Hold time, AXR0[n] input after ACLKX0 external input (5)      | 0.9   |     | ns   |
|     |                                                                      | Hold time, AXR0[n] input after ACLKR0 external output (4)     | 0.9   |     |      |
|     | Hold time, AXR0[n] input after ACLKX0 external output <sup>(5)</sup> |                                                               | 0.9   |     |      |



#### Table 5-46. McASP0 Switching Characteristics (1)

| NO.               |                               | PARAMETER                                                      | MIN                                   | MAX  | UNIT |
|-------------------|-------------------------------|----------------------------------------------------------------|---------------------------------------|------|------|
|                   |                               | Cycle time, AHCLKR0 internal, AHCLKR0 output                   | 20                                    |      |      |
| g <sup>(2)</sup>  |                               | Cycle time, AHCLKR0 external, AHCLKR0 output                   | 20                                    |      |      |
| 9(-)              | t <sub>c(AHCLKRX)</sub>       | Cycle time, AHCLKX0 internal, AHCLKX0 output                   | 20                                    |      | ns   |
|                   |                               | Cycle time, AHCLKX0 external, AHCLKX0 output                   | 20                                    |      |      |
|                   |                               | Pulse duration, AHCLKR0 internal, AHCLKR0 output               | (AHR/2) – 2.5 <sup>(3)</sup>          |      |      |
| 10 <sup>(2)</sup> |                               | Pulse duration, AHCLKR0 external, AHCLKR0 output               | (AHR/2) – 2.5 <sup>(3)</sup>          |      |      |
| 10(-)             | t <sub>w</sub> (AHCLKRX)      | Pulse duration, AHCLKX0 internal, AHCLKX0 output               | (AHX/2) - 2.5 <sup>(4)</sup>          |      | ns   |
|                   |                               | Pulse duration, AHCLKX0 external, AHCLKX0 output               | (AHX/2) - 2.5 <sup>(4)</sup>          |      |      |
|                   |                               | Cycle time, ACLKR0 internal, ACLKR0 output                     | greater of 2P or 20 ns <sup>(5)</sup> |      |      |
| 11 <sup>(2)</sup> | $t_{c(ACLKRX)}$               | Cycle time, ACLKR0 external, ACLKR0 output                     | greater of 2P or 20 ns <sup>(5)</sup> |      |      |
| 111-7             |                               | Cycle time, ACLKX0 internal, ACLKX0 output                     | greater of 2P or 20 ns <sup>(5)</sup> |      | ns   |
|                   |                               | Cycle time, ACLKX0 external, ACLKX0 output                     | greater of 2P or 20 ns <sup>(5)</sup> |      |      |
|                   | t <sub>w(ACLKRX)</sub>        | Pulse duration, ACLKR0 internal, ACLKR0 output                 | (AR/2) - 2.5 <sup>(6)</sup>           |      |      |
| 12 <sup>(2)</sup> |                               | Pulse duration, ACLKR0 external, ACLKR0 output                 | (AR/2) - 2.5 <sup>(6)</sup>           |      | ns   |
| 12(-/             |                               | Pulse duration, ACLKX0 internal, ACLKX0 output                 | $(AX/2) - 2.5^{(7)}$                  |      |      |
|                   |                               | Pulse duration, ACLKX0 external, ACLKX0 output                 | $(AX/2) - 2.5^{(7)}$                  |      |      |
|                   |                               | Delay time, ACLKR0 internal, AFSR output (8)                   | 0                                     | 6.2  |      |
|                   |                               | Delay time, ACLKX0 internal, AFSX output                       | 0                                     | 6.2  |      |
|                   |                               | Delay time, ACLKR0 external input, AFSR output (8)             | 2.25                                  | 12.5 |      |
| 13                | $t_{d(ACLKRX-AFSRX)}$         | Delay time, ACLKX0 external input, AFSX output                 | 2.25                                  | 12.5 | ns   |
|                   |                               | Delay time, ACLKR0 external output, AFSR output <sup>(8)</sup> | 2.25                                  | 12.5 |      |
|                   |                               | Delay time, ACLKX0 external output, AFSX output                | 2.25                                  | 12.5 |      |
|                   |                               | Delay time, ACLKX0 internal, AXR0[n] output                    | 0                                     | 6.2  |      |
| 14                | t <sub>d(ACLKX-AXRV)</sub>    | Delay time, ACLKX0 external input, AXR0[n] output              | 2.25                                  | 12.5 | ns   |
| 1-7               | 'd(ACLNX-AXRV)                | Delay time, ACLKX0 external output, AXR0[n] output             | 2.25                                  | 12.5 | 110  |
|                   |                               | Disable time, ACLKX0 internal, AXR0[n] output                  | 0                                     | 6.2  |      |
| 15                | t <sub>dis(ACLKX-AXRHZ)</sub> | Disable time, ACLKX0 external input, AXR0[n] output            | 2.25                                  | 12.5 | ns   |
|                   |                               | Disable time, ACLKX0 external output, AXR0[n] output           | 2.25                                  | 12.5 |      |

<sup>(1)</sup> McASPO ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASPO ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASPOACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASPO ACLKROCTL.CLKRM = 1, PDIR.ACLKR = 1 ACLKR0 external input – McASPO ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKRO external output – McASPO ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1

#### 5.15.2.2 Multichannel Audio Serial Port 1 (McASP1) Timing

Table 5-47 and Table 5-48 assume testing over recommended operating conditions (see Figure 5-35 and Figure 5-36).

<sup>(2)</sup> Parameters are characterized from -40°C to 125°C unless otherwise noted.

<sup>(3)</sup> AHR - Cycle time, AHCLKR0.

<sup>(4)</sup> AHX - Cycle time, AHCLKX0.

<sup>(5)</sup> P = SYSCLK2 period

<sup>(6)</sup> AR - ACLKR0 period.

<sup>(7)</sup> AX - ACLKX0 period.

<sup>(8)</sup> McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0



# Table 5-47. McASP1 Timing Requirements (1) (2)

| NO.              |                               |                                                                      | MIN                 | MAX | UNIT |
|------------------|-------------------------------|----------------------------------------------------------------------|---------------------|-----|------|
| 1 (3)            | _                             | Cycle time, AHCLKR1 external, AHCLKR1 input                          | 20                  |     |      |
| 1(0)             | t <sub>c(AHCLKRX)</sub>       | Cycle time, AHCLKX1 external, AHCLKX1 input                          | 20                  |     | ns   |
| 2 <sup>(3)</sup> |                               | Pulse duration, AHCLKR1 external, AHCLKR1 input                      | 10                  |     |      |
| 2(-)             | t <sub>w(AHCLKRX)</sub>       | Pulse duration, AHCLKX1 external, AHCLKX1 input                      | 10                  |     | ns   |
| 3 <sup>(3)</sup> | _                             | Cycle time, ACLKR1 external, ACLKR1 input                            | greater of 2P or 20 |     |      |
| 3(0)             | t <sub>c(ACLKRX)</sub>        | Cycle time, ACLKX1 external, ACLKX1 input                            | greater of 2P or 20 |     | ns   |
| 4(3)             | _                             | Pulse duration, ACLKR1 external, ACLKR1 input                        | 10                  |     |      |
| 4(0)             | t <sub>w(ACLKRX)</sub>        | Pulse duration, ACLKX1 external, ACLKX1 input                        | 10                  |     | ns   |
|                  |                               | Setup time, AFSR1 input to ACLKR1 internal (4)                       | 11                  |     |      |
|                  |                               | Setup time, AFSX1 input to ACLKX1 internal                           | 11                  |     |      |
| _                |                               | Setup time, AFSR1 input to ACLKR1 external input <sup>(4)</sup>      | 2.7                 |     |      |
| 5                | t <sub>su(AFSRX-ACLKRX)</sub> | Setup time, AFSX1 input to ACLKX1 external input                     | 2.7                 |     | ns   |
|                  |                               | Setup time, AFSR1 input to ACLKR1 external output (4)                | 2.7                 |     |      |
|                  |                               | Setup time, AFSX1 input to ACLKX1 external output                    | 2.7                 |     |      |
|                  |                               | Hold time, AFSR1 input after ACLKR1 internal (4)                     | -1.4                |     |      |
|                  |                               | Hold time, AFSX1 input after ACLKX1 internal                         | -1.4                |     |      |
|                  |                               | Hold time, AFSR1 input after ACLKR1 external input (4)               | 0.7                 |     |      |
| 6                | t <sub>h(ACLKRX-AFSRX)</sub>  | Hold time, AFSX1 input after ACLKX1 external input                   | 0.7                 |     | ns   |
|                  |                               | Hold time, AFSR1 input after ACLKR1 external output <sup>(4)</sup>   | 0.9                 |     |      |
|                  |                               | Hold time, AFSX1 input after ACLKX1 external output                  | 0.9                 |     |      |
|                  |                               | Setup time, AXR1[n] input to ACLKR1 internal (4)                     | 11                  |     |      |
|                  |                               | Setup time, AXR1[n] input to ACLKX1 internal (5)                     | 11                  |     |      |
|                  |                               | Setup time, AXR1[n] input to ACLKR1 external input <sup>(4)</sup>    | 2.7                 |     |      |
| 7                | t                             | Setup time, AXR1[n] input to ACLKX1 external input <sup>(5)</sup>    | 2.7                 |     | ns   |
| •                | t <sub>su(AXR-ACLKRX)</sub>   | Setup time, AXR1[n] input to ACLKR1 external output <sup>(4)</sup>   | 2.7                 |     | 110  |
|                  |                               | Setup time, AXR1[n] input to ACLKX1 external output <sup>(5)</sup>   | 2.7                 |     |      |
|                  |                               | Hold time, AXR1[n] input after ACLKR1 internal (4)                   | -1.4                |     |      |
|                  |                               | Hold time, AXR1[n] input after ACLKX1 internal (5)                   | -1.4                |     |      |
| 8                |                               | Hold time, AXR1[n] input after ACLKR1 external input <sup>(4)</sup>  | 0.6                 |     |      |
|                  | t <sub>h(ACLKRX-AXR)</sub>    | Hold time, AXR1[n] input after ACLKX1 external input <sup>(5)</sup>  | 0.9                 |     | ns   |
|                  |                               | Hold time, AXR1[n] input after ACLKR1 external output <sup>(4)</sup> | 0.9                 |     |      |
|                  |                               | Hold time, AXR1[n] input after ACLKX1 external output <sup>(5)</sup> | 0.9                 |     |      |

(1) ACLKX1 internal – McASP1 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX1 external input – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX1 external output – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR1 internal – McASP1 ACLKRCTL.CLKRM = 1, PDIR.ACLKR = 1 ACLKR1 external input – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR1 external output – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1

(2) P = SYSCLK2 period

(3) Parameters are characterized from -40°C to 125°C unless otherwise noted.

(4) McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1

(5) McASP1 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX1



## Table 5-48. McASP1 Switching Characteristics (1)

| NO.               |                               | PARAMETER                                                      | MIN                                   | MAX  | UNIT |
|-------------------|-------------------------------|----------------------------------------------------------------|---------------------------------------|------|------|
|                   |                               | Cycle time, AHCLKR1 internal, AHCLKR1 output                   | 20                                    |      |      |
| g <sup>(2)</sup>  |                               | Cycle time, AHCLKR1 external, AHCLKR1 output                   | 20                                    |      |      |
| 9(2)              | t <sub>c(AHCLKRX)</sub>       | Cycle time, AHCLKX1 internal, AHCLKX1 output                   | 20                                    |      | ns   |
|                   |                               | Cycle time, AHCLKX1 external, AHCLKX1 output                   | 20                                    |      |      |
|                   |                               | Pulse duration, AHCLKR1 internal, AHCLKR1 output               | (AHR/2) – 2.5 <sup>(3)</sup>          | 5)   |      |
| 10 <sup>(2)</sup> | t <sub>w(AHCLKRX)</sub>       | Pulse duration, AHCLKR1 external, AHCLKR1 output               | (AHR/2) – 2.5 <sup>(3)</sup>          |      | 20   |
| 10 7              |                               | Pulse duration, AHCLKX1 internal, AHCLKX1 output               | (AHX/2) - 2.5 <sup>(4)</sup>          |      | ns   |
|                   |                               | Pulse duration, AHCLKX1 external, AHCLKX1 output               | (AHX/2) - 2.5 <sup>(4)</sup>          |      |      |
|                   |                               | Cycle time, ACLKR1 internal, ACLKR1 output                     | greater of 2P or 20 ns <sup>(5)</sup> |      |      |
| 11 <sup>(2)</sup> |                               | Cycle time, ACLKR1 external, ACLKR1 output                     | greater of 2P or 20 ns <sup>(5)</sup> |      |      |
| 111-7             | t <sub>c(ACLKRX)</sub>        | Cycle time, ACLKX1 internal, ACLKX1 output                     | greater of 2P or 20 ns <sup>(5)</sup> |      | ns   |
|                   |                               | Cycle time, ACLKX1 external, ACLKX1 output                     | greater of 2P or 20 ns <sup>(5)</sup> |      |      |
|                   |                               | Pulse duration, ACLKR1 internal, ACLKR1 output                 | (AR/2) - 2.5 <sup>(6)</sup>           |      |      |
| 12 <sup>(2)</sup> |                               | Pulse duration, ACLKR1 external, ACLKR1 output                 | (AR/2) - 2.5 <sup>(6)</sup>           |      |      |
| 12(-)             | t <sub>w(ACLKRX)</sub>        | Pulse duration, ACLKX1 internal, ACLKX1 output                 | $(AX/2) - 2.5^{(7)}$                  |      | ns   |
|                   |                               | Pulse duration, ACLKX1 external, ACLKX1 output                 | $(AX/2) - 2.5^{(7)}$                  |      |      |
|                   |                               | Delay time, ACLKR1 internal, AFSR output <sup>(8)</sup>        | 0.3                                   | 7    |      |
|                   |                               | Delay time, ACLKX1 internal, AFSX output                       | 0.3                                   | 7    |      |
|                   |                               | Delay time, ACLKR1 external input, AFSR output (8)             | 3                                     | 14.5 |      |
| 13                | $t_{d(ACLKRX-AFSRX)}$         | Delay time, ACLKX1 external input, AFSX output                 | 3                                     | 14.5 | ns   |
|                   |                               | Delay time, ACLKR1 external output, AFSR output <sup>(8)</sup> | 3                                     | 14.5 |      |
|                   |                               | Delay time, ACLKX1 external output, AFSX output                | 3                                     | 14.5 |      |
|                   |                               | Delay time, ACLKX1 internal, AXR1[n] output                    | 0.3                                   | 7    |      |
| 14                | t <sub>d(ACLKX-AXRV)</sub>    | Delay time, ACLKX1 external input, AXR1[n] output              | 3                                     | 14.5 | ns   |
| • •               | -u(MCLNA-AARV)                | Delay time, ACLKX1 external output, AXR1[n] output             | 3                                     | 14.5 | 110  |
|                   |                               | Disable time, ACLKX1 internal, AXR1[n] output                  | 0.3                                   | 7    |      |
| 15                | t <sub>dis(ACLKX-AXRHZ)</sub> | Disable time, ACLKX1 external input, AXR1[n] output            | 3                                     | 14.5 | ns   |
|                   |                               | Disable time, ACLKX1 external output, AXR1[n] output           | 3                                     | 14.5 |      |

McASP1 ACLKX1 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
 McASP1 ACLKX1 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
 McASP1 ACLKX1 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
 McASP1 ACLKR1 internal – ACLKR1CTL.CLKRM = 1, PDIR.ACLKR = 1
 McASP1 ACLKR1 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
 McASP1 ACLKR1 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1

 Parameters are characterized from -40°C to 125°C unless otherwise noted.

#### 5.15.2.3 Multichannel Audio Serial Port 2 (McASP2) Timing

Table 5-49 and Table 5-50 assume testing over recommended operating conditions (see Figure 5-35 and Figure 5-36).

<sup>(3)</sup> AHR - Cycle time, AHCLKR1.

<sup>(4)</sup> AHX - Cycle time, AHCLKX1.

<sup>(5)</sup> P = SYSCLK2 period

<sup>(6)</sup> AR - ACLKR1 period.

<sup>(7)</sup> AX - ACLKX1 period.

<sup>(8)</sup> McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1



# Table 5-49. McASP2 Timing Requirements (1) (2)

| NO.              |                                                                                                                                                          |                                                                      | MIN                 | MAX | UNIT |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------|-----|------|
| 1 (3)            |                                                                                                                                                          | Cycle time, AHCLKR2 external, AHCLKR2 input                          | 13                  |     |      |
| 1(9)             | t <sub>C</sub> (AHCLKRX)                                                                                                                                 | Cycle time, AHCLKX2 external, AHCLKX2 input                          | 13                  |     | ns   |
| 2 <sup>(3)</sup> |                                                                                                                                                          | Pulse duration, AHCLKR2 external, AHCLKR2 input                      | 6.5                 |     |      |
| 2(0)             | <sup>t</sup> w(AHCLKRX)                                                                                                                                  | Pulse duration, AHCLKX2 external, AHCLKX2 input                      | 6.5                 |     | ns   |
| 3 <sup>(3)</sup> |                                                                                                                                                          | Cycle time, ACLKR2 external, ACLKR2 input                            | greater of 2P or 13 |     |      |
| 317              | t <sub>c(AHCLKRX)</sub> t <sub>w(AHCLKRX)</sub> t <sub>c(ACLKRX)</sub> t <sub>w(ACLKRX)</sub> t <sub>su(AFSRX-ACLKRX)</sub> t <sub>h(ACLKRX-AFSRX)</sub> | Cycle time, ACLKX2 external, ACLKX2 input                            | greater of 2P or 13 |     | ns   |
| 4(3)             |                                                                                                                                                          | Pulse duration, ACLKR2 external, ACLKR2 input                        | 6.5                 |     |      |
| 4(0)             | <sup>t</sup> w(ACLKRX)                                                                                                                                   | Pulse duration, ACLKX2 external, ACLKX2 input                        | 6.5                 |     | ns   |
|                  |                                                                                                                                                          | Setup time, AFSR2 input to ACLKR2 internal (4)                       | 11                  |     |      |
|                  |                                                                                                                                                          | Setup time, AFSX2 input to ACLKX2 internal                           | 11                  |     |      |
| _                |                                                                                                                                                          | Setup time, AFSR2 input to ACLKR2 external input <sup>(4)</sup>      | 1.7                 |     |      |
| 5                | t <sub>su(AFSRX-ACLKRX)</sub>                                                                                                                            | Setup time, AFSX2 input to ACLKX2 external input                     | 1.7                 |     | ns   |
|                  |                                                                                                                                                          | Setup time, AFSR2 input to ACLKR2 external output (4)                | 1.7                 |     |      |
|                  |                                                                                                                                                          | Setup time, AFSX2 input to ACLKX2 external output                    | 1.7                 |     |      |
|                  |                                                                                                                                                          | Hold time, AFSR2 input after ACLKR2 internal (4)                     | -1.25               |     |      |
|                  |                                                                                                                                                          | Hold time, AFSX2 input after ACLKX2 internal                         | -1.25               |     |      |
|                  |                                                                                                                                                          | Hold time, AFSR2 input after ACLKR2 external input <sup>(4)</sup>    | 1.3                 |     |      |
| 6                | t <sub>h(ACLKRX-AFSRX)</sub>                                                                                                                             | Hold time, AFSX2 input after ACLKX2 external input                   | 1.3                 |     | ns   |
|                  |                                                                                                                                                          | Hold time, AFSR2 input after ACLKR2 external output <sup>(4)</sup>   | 1.3                 |     |      |
|                  |                                                                                                                                                          | Hold time, AFSX2 input after ACLKX2 external output                  | 1.3                 |     |      |
|                  |                                                                                                                                                          | Setup time, AXR2[n] input to ACLKR2 internal (4)                     | 11                  |     |      |
|                  |                                                                                                                                                          | Setup time, AXR2[n] input to ACLKX2 internal (5)                     | 11                  |     |      |
|                  |                                                                                                                                                          | Setup time, AXR2[n] input to ACLKR2 external input <sup>(4)</sup>    | 1.7                 |     |      |
| 7                | tou(AYP-ACI KPY)                                                                                                                                         | Setup time, AXR2[n] input to ACLKX2 external input <sup>(5)</sup>    | 1.7                 |     | ns   |
|                  | SU(ANT-ACENTA)                                                                                                                                           | Setup time, AXR2[n] input to ACLKR2 external output <sup>(4)</sup>   | 1.7                 |     |      |
|                  |                                                                                                                                                          | Setup time, AXR2[n] input to ACLKX2 external output <sup>(5)</sup>   | 1.7                 |     |      |
|                  |                                                                                                                                                          | Hold time, AXR2[n] input after ACLKR2 internal (4)                   | -1.7                |     |      |
|                  |                                                                                                                                                          | Hold time, AXR2[n] input after ACLKX2 internal (5)                   | -1.7                |     |      |
|                  |                                                                                                                                                          | Hold time, AXR2[n] input after ACLKR2 external input <sup>(4)</sup>  | 1.3                 |     |      |
| 8                | t <sub>h(ACLKRX-AXR)</sub>                                                                                                                               | Hold time, AXR2[n] input after ACLKX2 external input <sup>(5)</sup>  | 1.3                 |     | ns   |
|                  |                                                                                                                                                          | Hold time, AXR2[n] input after ACLKR2 external output <sup>(4)</sup> | 1.3                 |     |      |
|                  |                                                                                                                                                          | Hold time, AXR2[n] input after ACLKX2 external output <sup>(5)</sup> | 1.3                 |     |      |

(1) ACLKX2 internal – McASP2 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX2 external input – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX2 external output – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR2 internal – McASP2 ACLKRCTL.CLKRM = 1, PDIR.ACLKR = 1 ACLKR2 external input – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR2 external output – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1

(2) P = SYSCLK2 period

(3) Parameters are characterized from -40°C to 125°C unless otherwise noted.

(4) McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2

(5) McASP2 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX2



# Table 5-50. McASP2 Switching Characteristics (1)

| NO.               |                               | PARAMETER                                                      | MIN                                   | MAX | UNIT |
|-------------------|-------------------------------|----------------------------------------------------------------|---------------------------------------|-----|------|
|                   |                               | Cycle time, AHCLKR2 internal, AHCLKR2 output                   | 13                                    |     |      |
| g <sup>(2)</sup>  |                               | Cycle time, AHCLKR2 external, AHCLKR2 output                   | 13                                    |     |      |
| 9(2)              | t <sub>c</sub> (AHCLKRX)      | Cycle time, AHCLKX2 internal, AHCLKX2 output                   | 13                                    |     | ns   |
|                   |                               | Cycle time, AHCLKX2 external, AHCLKX2 output                   | 13                                    |     |      |
|                   |                               | Pulse duration, AHCLKR2 internal, AHCLKR2 output               | (AHR/2) – 2.5 <sup>(3)</sup>          |     |      |
| 10 <sup>(2)</sup> |                               | Pulse duration, AHCLKR2 external, AHCLKR2 output               | (AHR/2) – 2.5 <sup>(3)</sup>          |     | 20   |
| 10(-)             | t <sub>w(AHCLKRX)</sub>       | Pulse duration, AHCLKX2 internal, AHCLKX2 output               | (AHX/2) - 2.5 <sup>(4)</sup>          |     | ns   |
|                   |                               | Pulse duration, AHCLKX2 external, AHCLKX2 output               | (AHX/2) - 2.5 <sup>(4)</sup>          |     |      |
|                   |                               | Cycle time, ACLKR2 internal, ACLKR2 output                     | greater of 2P or 13 ns <sup>(5)</sup> |     |      |
| 11 <sup>(2)</sup> |                               | Cycle time, ACLKR2 external, ACLKR2 output                     | greater of 2P or 13 ns <sup>(5)</sup> |     |      |
| 111-7             | t <sub>c(ACLKRX)</sub>        | Cycle time, ACLKX2 internal, ACLKX2 output                     | greater of 2P or 13 ns <sup>(5)</sup> |     | ns   |
|                   |                               | Cycle time, ACLKX2 external, ACLKX2 output                     | greater of 2P or 13 ns <sup>(5)</sup> |     |      |
|                   |                               | Pulse duration, ACLKR2 internal, ACLKR2 output                 | (AR/2) - 2.5 <sup>(6)</sup>           |     |      |
| 12 <sup>(2)</sup> |                               | Pulse duration, ACLKR2 external, ACLKR2 output                 | (AR/2) - 2.5 <sup>(6)</sup>           |     |      |
| 12(-/             | t <sub>w(ACLKRX)</sub>        | Pulse duration, ACLKX2 internal, ACLKX2 output                 | $(AX/2) - 2.5^{(7)}$                  |     | ns   |
|                   |                               | Pulse duration, ACLKX2 external, ACLKX2 output                 | $(AX/2) - 2.5^{(7)}$                  |     |      |
|                   |                               | Delay time, ACLKR2 internal, AFSR output (8)                   | -1.5                                  | 3   |      |
|                   |                               | Delay time, ACLKX2 internal, AFSX output                       | -1.5                                  | 3   |      |
|                   |                               | Delay time, ACLKR2 external input, AFSR output (8)             | 1.6                                   | 11  |      |
| 13                | t <sub>d(ACLKRX-AFSRX)</sub>  | Delay time, ACLKX2 external input, AFSX output                 | 1.6                                   | 11  | ns   |
|                   |                               | Delay time, ACLKR2 external output, AFSR output <sup>(8)</sup> | 1.6                                   | 11  |      |
|                   |                               | Delay time, ACLKX2 external output, AFSX output                | 1.6                                   | 11  |      |
|                   |                               | Delay time, ACLKX2 internal, AXR2[n] output                    | -1.5                                  | 3   |      |
| 14                | t <sub>d(ACLKX-AXRV)</sub>    | Delay time, ACLKX2 external input, AXR2[n] output              | 1.6                                   | 11  | ns   |
|                   | 'd(ACLKX-AXRV)                | Delay time, ACLKX2 external output, AXR2[n] output             | 1.6                                   | 11  | 110  |
|                   |                               | Disable time, ACLKX2 internal, AXR2[n] output                  | -1.5                                  | 3   |      |
| 15                | t <sub>dis(ACLKX-AXRHZ)</sub> | Disable time, ACLKX2 external input, AXR2[n] output            | 1.6                                   | 11  | ns   |
|                   |                               | Disable time, ACLKX2 external output, AXR2[n] output           | 1.6                                   | 11  |      |

<sup>(1)</sup> McASP2 ACLKX2 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 McASP2 ACLKX2 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 McASP2 ACLKX2 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 McASP2 ACLKR2 internal – ACLKR2CTL.CLKRM = 1, PDIR.ACLKR = 1 McASP2 ACLKR2 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 McASP2 ACLKR2 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1

 <sup>(2)</sup> Parameters are characterized from -40°C to 125°C unless otherwise noted.
 (3) AHR - Cycle time, AHCLKR2.

<sup>(4)</sup> AHX - Cycle time, AHCLKX2.

<sup>(5)</sup> P = SYSCLK2 period

<sup>(6)</sup> AR - ACLKR2 period.

<sup>(7)</sup> AX - ACLKX2 period.

<sup>(8)</sup> McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2





- A. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP receiver is configured for falling edge (to shift data in).
- B. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP receiver is configured for rising edge (to shift data in).

Figure 5-35. McASP Input Timings





- A. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP receiver is configured for rising edge (to shift data in).
- B. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP receiver is configured for falling edge (to shift data in).

Figure 5-36. McASP Output Timings



#### 5.16 Serial Peripheral Interface Ports (SPI0, SPI1)

Figure 5-37 is a block diagram of the SPI module, which is a simple shift register and buffer plus control logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives the SPIx\_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many data formatting options.



Figure 5-37. Block Diagram of SPI Module

The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx\_CLK, SPIx\_SIMO, and SPIx\_SOMI) and two optional pins (SPIx\_SCS, SPIx\_ENA).

The optional SPIx\_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are other slave devices on the same SPI port. The device will only shift data and drive the SPIx\_SOMI pin when SPIx\_SCS is held low.

In slave mode, SPIx\_ENA is an optional output and can be driven in either a push-pull or open-drain manner. The SPIx\_ENA output provides the status of the internal transmit buffer (SPIDATO/1 registers). In four-pin mode with the enable option, SPIx\_ENA is asserted only when the transmit buffer is full, indicating that the slave is ready to begin another transfer. In five-pin mode, the SPIx\_ENA is additionally qualified by SPIx\_SCS being asserted. This allows a single handshake line to be shared by multiple slaves on the same SPI bus.

In master mode, the SPIx\_ENA pin is an optional input and the master can be configured to delay the start of the next transfer until the slave asserts SPIx\_ENA. The addition of this handshake signal simplifies SPI communications and, on average, increases SPI bus throughput since the master does not need to delay each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer can begin as soon as both the master and slave have actually serviced the previous SPI transfer.





Figure 5-38. Illustration of SPI Master-to-SPI Slave Connection



## 5.16.1 SPI Peripheral Registers Description(s)

Table 5-51 is a list of the SPI registers. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number SPRUFK9 for more details.

Table 5-51. SPIx Configuration Registers

| SPI0<br>BYTE ADDRESS | SPI1<br>BYTE ADDRESS | REGISTER NAME | DESCRIPTION                              |
|----------------------|----------------------|---------------|------------------------------------------|
| 0x01C4 1000          | 0x01E1 2000          | SPIGCR0       | Global Control Register 0                |
| 0x01C4 1004          | 0x01E1 2004          | SPIGCR1       | Global Control Register 1                |
| 0x01C4 1008          | 0x01E1 2008          | SPIINT0       | Interrupt Register                       |
| 0x01C4 100C          | 0x01E1 200C          | SPILVL        | Interrupt Level Register                 |
| 0x01C4 1010          | 0x01E1 2010          | SPIFLG        | Flag Register                            |
| 0x01C4 1014          | 0x01E1 2014          | SPIPC0        | Pin Control Register 0 (Pin Function)    |
| 0x01C4 1018          | 0x01E1 2018          | SPIPC1        | Pin Control Register 1 (Pin Direction)   |
| 0x01C4 101C          | 0x01E1 201C          | SPIPC2        | Pin Control Register 2 (Pin Data In)     |
| 0x01C4 1020          | 0x01E1 2020          | SPIPC3        | Pin Control Register 3 (Pin Data Out)    |
| 0x01C4 1024          | 0x01E1 2024          | SPIPC4        | Pin Control Register 4 (Pin Data Set)    |
| 0x01C4 1028          | 0x01E1 2028          | SPIPC5        | Pin Control Register 5 (Pin Data Clear)  |
| 0x01C4 102C          | 0x01E1 202C          | Reserved      | Reserved - Do not write to this register |
| 0x01C4 1030          | 0x01E1 2030          | Reserved      | Reserved - Do not write to this register |
| 0x01C4 1034          | 0x01E1 2034          | Reserved      | Reserved - Do not write to this register |
| 0x01C4 1038          | 0x01E1 2038          | SPIDAT0       | Shift Register 0 (without format select) |
| 0x01C4 103C          | 0x01E1 203C          | SPIDAT1       | Shift Register 1 (with format select)    |
| 0x01C4 1040          | 0x01E1 2040          | SPIBUF        | Buffer Register                          |
| 0x01C4 1044          | 0x01E1 2044          | SPIEMU        | Emulation Register                       |
| 0x01C4 1048          | 0x01E1 2048          | SPIDELAY      | Delay Register                           |
| 0x01C4 104C          | 0x01E1 204C          | SPIDEF        | Default Chip Select Register             |
| 0x01C4 1050          | 0x01E1 2050          | SPIFMT0       | Format Register 0                        |
| 0x01C4 1054          | 0x01E1 2054          | SPIFMT1       | Format Register 1                        |
| 0x01C4 1058          | 0x01E1 2058          | SPIFMT2       | Format Register 2                        |
| 0x01C4 105C          | 0x01E1 205C          | SPIFMT3       | Format Register 3                        |
| 0x01C4 1060          | 0x01E1 2060          | Reserved      | Reserved - Do not write to this register |
| 0x01C4 1064          | 0x01E1 2064          | INTVEC1       | Interrupt Vector for SPI INT1            |



### 5.16.2 SPI Electrical Data/Timing

### 5.16.2.1 Serial Peripheral Interface (SPI) Timing

Table 5-52 through Table 5-67 assume testing over recommended operating conditions (see Figure 5-39 through Figure 5-42).

Table 5-52. General Timing Requirements for SPI0 Master Modes (1)(2)

| NO. |                             |                                                                  |                                                | MIN                                            | MAX                   | UNIT |    |
|-----|-----------------------------|------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------|------|----|
| 1   | t <sub>c(SPC)M</sub>        | Cycle Time, SPI0_CLK, All N                                      | Naster Modes                                   | greater of 2P or 20 ns                         | 256P                  | ns   |    |
| 2   | t <sub>w(SPCH)M</sub>       | Pulse Width High, SPI0_CLk                                       | K, All Master Modes                            | 0.5t <sub>c(SPC)M</sub> - 1                    |                       | ns   |    |
| 3   | t <sub>w(SPCL)M</sub>       | Pulse Width Low, SPI0_CLK                                        | , All Master Modes                             | 0.5t <sub>c(SPC)M</sub> - 1                    |                       | ns   |    |
|     |                             | Delay, initial data bit valid                                    | Polarity = 0, Phase = 0, to SPI0_CLK rising    |                                                | 5                     |      |    |
| 4   | t                           |                                                                  | Polarity = 0, Phase = 1, to SPI0_CLK rising    |                                                | $-0.5t_{c(SPC)M} + 5$ | ns   |    |
| 7   | t <sub>d</sub> (SIMO_SPC)M  | edge on SPI0_CLK <sup>(3)</sup>                                  | Polarity = 1, Phase = 0, to SPI0_CLK falling   |                                                | 5                     | 113  |    |
|     |                             |                                                                  | Polarity = 1, Phase = 1, to SPI0_CLK falling   |                                                | $-0.5t_{c(SPC)M} + 5$ |      |    |
|     |                             |                                                                  | Polarity = 0, Phase = 0, from SPI0_CLK rising  |                                                | 5                     |      |    |
| 5   | t                           | Delay, subsequent bits valid on SPI0_SIMO after                  | Polarity = 0, Phase = 1, from SPI0_CLK falling |                                                | 5                     | ns   |    |
| J   | t <sub>d</sub> (SPC_SIMO)M  | 'd(SPC_SIMO)M                                                    | transmit edge of SPI0_CLK                      | Polarity = 1, Phase = 0, from SPI0_CLK falling |                       | 5    | ns |
|     |                             |                                                                  | Polarity = 1, Phase = 1, from SPI0_CLK rising  |                                                | 5                     |      |    |
|     |                             |                                                                  | Polarity = 0, Phase = 0, from SPI0_CLK falling | 0.5t <sub>c(SPC)M</sub> -3                     |                       |      |    |
| 6   | toh(SPC SIMO)M              | Output hold time, SPI0_SIMO valid after receive edge of SPI0_CLK | Polarity = 0, Phase = 1, from SPI0_CLK rising  | 0.5t <sub>c(SPC)M</sub> -3                     |                       | ns   |    |
| U   |                             |                                                                  | Polarity = 1, Phase = 0, from SPI0_CLK rising  | 0.5t <sub>c(SPC)M</sub> -3                     |                       |      |    |
|     |                             |                                                                  | Polarity = 1, Phase = 1, from SPI0_CLK falling | 0.5t <sub>c(SPC)M</sub> -3                     |                       |      |    |
|     |                             |                                                                  | Polarity = 0, Phase = 0, to SPI0_CLK falling   | 0                                              |                       |      |    |
| 7   |                             | Input Setup Time,<br>SPI0 SOMI valid before                      | Polarity = 0, Phase = 1, to SPI0_CLK rising    | 0                                              |                       | ns   |    |
| ı   | t <sub>su(SOMI_SPC)M</sub>  | receive edge of SPI0_CLK                                         | Polarity = 1, Phase = 0, to SPI0_CLK rising    | 0                                              |                       | 113  |    |
|     |                             |                                                                  | Polarity = 1, Phase = 1, to SPI0_CLK falling   | 0                                              |                       |      |    |
|     |                             |                                                                  | Polarity = 0, Phase = 0, from SPI0_CLK falling | 5                                              |                       |      |    |
| 8   | tu (ana cariiiri            | Input Hold Time,<br>SPI0_SOMI valid after                        | Polarity = 0, Phase = 1, from SPI0_CLK rising  | 5                                              |                       | ns   |    |
| J   | t <sub>ih</sub> (SPC_SOMI)M | receive edge of SPI0_CLK                                         | Polarity = 1, Phase = 0, from SPI0_CLK rising  | 5                                              |                       | 115  |    |
|     |                             |                                                                  | Polarity = 1, Phase = 1, from SPI0_CLK falling | 5                                              |                       |      |    |

<sup>(1)</sup> Parameters are characterized from -40°C to 125°C unless otherwise noted.

<sup>2)</sup> P = SYSCLK2 period

<sup>(3)</sup> First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI0\_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0\_SOMI.



## Table 5-53. General Timing Requirements for SPI0 Slave Modes (1)(2)

| NO. |                                         |                                                         |                                                | MIN                        | MAX | UNIT |
|-----|-----------------------------------------|---------------------------------------------------------|------------------------------------------------|----------------------------|-----|------|
| 9   | t <sub>c(SPC)S</sub>                    | Cycle Time, SPI0_CLK, All S                             | Slave Modes                                    | greater of 3P or<br>20 ns  |     | ns   |
| 10  | t <sub>w(SPCH)S</sub>                   | Pulse Width High, SPI0_CLF                              | K, All Slave Modes                             | 18                         |     | ns   |
| 11  | t <sub>w(SPCL)S</sub>                   | Pulse Width Low, SPI0_CLK                               | , All Slave Modes                              | 18                         |     | ns   |
|     |                                         |                                                         | Polarity = 0, Phase = 0, to SPI0_CLK rising    | 2P                         |     |      |
| 40  |                                         | Setup time, transmit data written to SPI before initial | Polarity = 0, Phase = 1, to SPI0_CLK rising    | 2P                         |     |      |
| 12  | t <sub>su</sub> (SOMI_SPC)S             | clock edge from master. (3) (4)                         | Polarity = 1, Phase = 0, to SPI0_CLK falling   | 2P                         |     | ns   |
|     |                                         |                                                         | Polarity = 1, Phase = 1, to SPI0_CLK falling   | 2P                         |     |      |
|     |                                         |                                                         | Polarity = 0, Phase = 0, from SPI0_CLK rising  |                            | 19  |      |
| 10  | t <sub>d(SPC_SOMI)S</sub> valid on      | Delay, subsequent bits                                  | Polarity = 0, Phase = 1, from SPI0_CLK falling |                            | 19  |      |
| 13  |                                         | valid on SPI0_SOMI after transmit edge of SPI0_CLK      | Polarity = 1, Phase = 0, from SPI0_CLK falling |                            | 19  | ns   |
|     |                                         |                                                         | Polarity = 1, Phase = 1, from SPI0_CLK rising  |                            | 19  |      |
|     |                                         |                                                         | Polarity = 0, Phase = 0, from SPI0_CLK falling | 0.5t <sub>c(SPC)S</sub> -3 |     |      |
| 4.4 | t <sub>oh(SPC SOMI)S</sub> SPI0_SOMI va | Output hold time,                                       | Polarity = 0, Phase = 1, from SPI0_CLK rising  | 0.5t <sub>c(SPC)S</sub> -3 |     |      |
| 14  |                                         | receive edge of SPI0_CLK                                | Polarity = 1, Phase = 0, from SPI0_CLK rising  | 0.5t <sub>c(SPC)S</sub> -3 |     | ns   |
|     |                                         |                                                         | Polarity = 1, Phase = 1, from SPI0_CLK falling | 0.5t <sub>c(SPC)S</sub> -3 |     |      |
|     |                                         |                                                         | Polarity = 0, Phase = 0, to SPI0_CLK falling   | 0                          |     |      |
| 45  |                                         | Input Setup Time,                                       | Polarity = 0, Phase = 1, to SPI0_CLK rising    | 0                          |     |      |
| 15  | t <sub>su(SIMO_SPC)S</sub>              | SPI0_SIMO valid before receive edge of SPI0_CLK         | Polarity = 1, Phase = 0, to SPI0_CLK rising    | 0                          |     | ns   |
|     |                                         |                                                         | Polarity = 1, Phase = 1, to SPI0_CLK falling   | 0                          |     |      |
|     |                                         |                                                         | Polarity = 0, Phase = 0, from SPI0_CLK falling | 5                          |     |      |
| 40  |                                         | Input Hold Time,                                        | Polarity = 0, Phase = 1, from SPI0_CLK rising  | 5                          |     |      |
| 16  | tih(SPC_SIMO)S                          | SPI0_SIMO valid after receive edge of SPI0_CLK          | Polarity = 1, Phase = 0, from SPI0_CLK rising  | 5                          |     | ns   |
|     |                                         |                                                         | Polarity = 1, Phase = 1, from SPI0_CLK falling | 5                          |     |      |

Parameters are characterized from -40°C to 125°C unless otherwise noted.

P = SYSCLK2 period

First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI0\_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0\_SIMO.

Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus

cycles must be accounted for to allow data to be written to the SPI module by either the DSP CPU or the dMAX.



## Table 5-54. Additional (1) SPI0 Master Timings, 4-Pin Enable Option (2) (3)

| NO. |                                                                             |                                                               |                                                | MIN MAX                      | UNIT |
|-----|-----------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|------------------------------|------|
|     |                                                                             |                                                               | Polarity = 0, Phase = 0, to SPI0_CLK rising    | 3P + 3.6                     |      |
| 17  | Delay from slave assertion of to SPI                                        |                                                               | Polarity = 0, Phase = 1, to SPI0_CLK rising    | $0.5t_{c(SPC)M} + 3P + 3.6$  | 20   |
| 17  | t <sub>d(ENA_SPC)M</sub> SPI0_ENA active to first SPI0_CLK from master. (4) |                                                               | Polarity = 1, Phase = 0, to SPI0_CLK falling   | 3P + 3.6                     | ns   |
|     |                                                                             |                                                               | Polarity = 1, Phase = 1, to SPI0_CLK falling   | $0.5t_{c(SPC)M} + 3P + 3.6$  |      |
|     |                                                                             |                                                               | Polarity = 0, Phase = 0, from SPI0_CLK falling | P+5                          |      |
| 18  | SPI0 ENA after fir                                                          | Max delay for slave to deassert SPI0_ENA after final SPI0_CLK | Polarity = 0, Phase = 1, from SPI0_CLK falling | 0.5t <sub>c(SPC)M</sub> +P+5 | 20   |
| 10  | t <sub>d</sub> (SPC_ENA)M                                                   | edge to ensure master does not begin the next transfer. (5)   | Polarity = 1, Phase = 0, from SPI0_CLK rising  | P+5                          | ns   |
|     |                                                                             |                                                               | Polarity = 1, Phase = 1, from SPI0_CLK rising  | 0.5t <sub>c(SPC)M</sub> +P+5 |      |

- These parameters are in addition to the general timings for SPI master modes (Table 5-52).
- P = SYSCLK2 period
- Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. (3)
- In the case where the master SPI is ready with new data before SPI0\_ENA assertion.
- In the case where the master SPI is ready with new data before SPI0\_ENA deassertion.

# Table 5-55. Additional<sup>(1)</sup> SPI0 Master Timings, 4-Pin Chip Select Option<sup>(2)(3)</sup> (4)

| NO. |                                             |                                                                       |                                                | MIN                         | MAX | UNIT |
|-----|---------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------|-----------------------------|-----|------|
|     | Polarity = 0, Phase = 0, to SPI0_CLK rising | Delay from SPI0_SCS active to first SPI0_CLK <sup>(5)</sup>           |                                                | 2P -5                       |     |      |
| 19  |                                             |                                                                       | Polarity = 0, Phase = 1, to SPI0_CLK rising    | $0.5t_{c(SPC)M} + 2P - 5$   |     | 20   |
| 19  | t <sub>d</sub> (SCS_SPC)M                   |                                                                       | Polarity = 1, Phase = 0, to SPI0_CLK falling   | 2P -5                       |     | ns   |
|     |                                             |                                                                       | Polarity = 1, Phase = 1, to SPI0_CLK falling   | $0.5t_{c(SPC)M} + 2P - 5$   |     |      |
|     |                                             | Delay from final SPI0_CLK edge to master deasserting SPI0_SCS (7) (8) | Polarity = 0, Phase = 0, from SPI0_CLK falling | 0.5t <sub>c(SPC)M</sub> P-3 |     |      |
| 20  |                                             |                                                                       | Polarity = 0, Phase = 1, from SPI0_CLK falling | P-3                         |     |      |
| 20  | ld(SPC_SCS)M                                |                                                                       | Polarity = 1, Phase = 0, from SPI0_CLK rising  | 0.5t <sub>c(SPC)M</sub> P-3 |     | ns   |
|     |                                             |                                                                       | Polarity = 1, Phase = 1, from SPI0_CLK rising  | P-3                         |     |      |

- (1) These parameters are in addition to the general timings for SPI master modes (Table 5-52).
   (2) Parameters are characterized from -40°C to 125°C unless otherwise noted.
- P = SYSCLK2 period
- Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
- In the case where the master SPI is ready with new data before SPI0\_SCS assertion.
- This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
- Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPIO\_SCS will remain asserted.
- This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].



# Table 5-56. Additional (1) SPI0 Master Timings, 5-Pin Option (2)(3) (4)

| NO. |                             |                                                                                      |                                                | MIN MAX                         | UNIT |
|-----|-----------------------------|--------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------|------|
|     |                             | Max delay for slave to                                                               | Polarity = 0, Phase = 0, from SPI0_CLK falling | P+                              | 5    |
| 18  | t <sub>d(SPC_ENA)M</sub>    | deassert SPI0_ENA after final SPI0_CLK edge to ensure master does not                | Polarity = 0, Phase = 1, from SPI0_CLK falling | 0.5t <sub>c(SPC)M</sub> +P+     | ns   |
| 10  |                             |                                                                                      | Polarity = 1, Phase = 0, from SPI0_CLK rising  | P+                              |      |
|     |                             | tianster.                                                                            | Polarity = 1, Phase = 1, from SPI0_CLK rising  | $0.5t_{c(SPC)M}+P+5$            | 5    |
|     |                             |                                                                                      | Polarity = 0, Phase = 0, from SPI0_CLK falling | $0.5t_{c(SPC)M}$ +P-3           |      |
| 20  |                             | Delay from final<br>SPI0_CLK edge to                                                 | Polarity = 0, Phase = 1, from SPI0_CLK falling | P-3                             | ns   |
| 20  | 20 t <sub>d(SPC_SCS)M</sub> | master deasserting SPI0_SCS (6) (7)                                                  | Polarity = 1, Phase = 0, from SPI0_CLK rising  | $0.5t_{c(SPC)M}$ +P-3           | 115  |
|     |                             |                                                                                      | Polarity = 1, Phase = 1, from SPI0_CLK rising  | P-3                             |      |
| 21  | t <sub>d(SCSL_ENAL)M</sub>  | Max delay for slave SPI to<br>after master asserts SPIO<br>master from beginning the | _SCS to delay the                              | C2TDELAY + F                    | ns   |
|     |                             |                                                                                      | Polarity = 0, Phase = 0, to SPI0_CLK rising    | 2P -5                           |      |
| 22  | t                           | Delay from SPI0_SCS active to first                                                  | Polarity = 0, Phase = 1, to SPI0_CLK rising    | 0.5t <sub>c(SPC)M</sub> + 2P -5 | ns   |
| 22  | t <sub>d</sub> (SCS_SPC)M   | SPI0_CLK <sup>(8)</sup> (9) (10)                                                     | Polarity = 1, Phase = 0, to SPI0_CLK falling   | 2P -5                           | 115  |
|     |                             |                                                                                      | Polarity = 1, Phase = 1, to SPI0_CLK falling   | 0.5t <sub>c(SPC)M</sub> + 2P -5 |      |
|     |                             |                                                                                      | Polarity = 0, Phase = 0, to SPI0_CLK rising    | 3P + 3.0                        | 3    |
| 23  |                             | Delay from assertion of                                                              | Polarity = 0, Phase = 1, to SPI0_CLK rising    | $0.5t_{c(SPC)M} + 3P + 3.6$     |      |
| 23  | t <sub>d</sub> (ENA_SPC)M   | SPI0_ENA low to first<br>SPI0_CLK edge. (11)                                         | Polarity = 1, Phase = 0, to SPI0_CLK falling   | 3P + 3.0                        | ns   |
|     |                             |                                                                                      | Polarity = 1, Phase = 1, to SPI0_CLK falling   | $0.5t_{c(SPC)M} + 3P + 3.6$     | 5    |

- These parameters are in addition to the general timings for SPI master modes (Table 5-53).
- Parameters are characterized from -40°C to 125°C unless otherwise noted.
- P = SYSCLK2 period
- Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0\_ENA deassertion.
- (6) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPIO\_SCS will remain asserted.
- This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
- If SPIO\_ENA is asserted immediately such that the transmission is not delayed by SPIO\_ENA.
- (9) In the case where the master SPI is ready with new data before SPI0\_SCS assertion.
- (10) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
- (11) If SPIO\_ENA was initially deasserted high and SPIO\_CLK is delayed.



## Table 5-57. Additional (1) SPI0 Slave Timings, 4-Pin Enable Option (2)(3) (4)

| NO. |                                                |                                               |                                                  | MIN                                           | MAX                              | UNIT         |
|-----|------------------------------------------------|-----------------------------------------------|--------------------------------------------------|-----------------------------------------------|----------------------------------|--------------|
|     | Polarity = 0, Phase = 0, from SPI0_CLK falling | 1.5 P -3                                      | 2.5 P + 18.5                                     |                                               |                                  |              |
| 24  | 24 t <sub>d(SPC_ENAH)S</sub>                   | Delay from final                              | Polarity = 0, Phase = 1, from SPI0_CLK falling   | - 0.5t <sub>c(SPC)M</sub> + 1.5 P -3          | $-0.5t_{c(SPC)M} + 2.5 P + 18.5$ |              |
| 24  |                                                | <sup>t</sup> d(SPC_ENAH)S                     | H)S SPI0_CLK edge to slave deasserting SPI0_ENA. | Polarity = 1, Phase = 0, from SPI0_CLK rising | 1.5 P -3                         | 2.5 P + 18.5 |
|     |                                                | Polarity = 1, Phase = 1, from SPI0_CLK rising | - 0.5t <sub>c(SPC)M</sub> + 1.5 P -3             | - 0.5t <sub>c(SPC)M</sub> + 2.5 P + 18.5      |                                  |              |

- (1) These parameters are in addition to the general timings for SPI slave modes (Table 5-53).
- 2) Parameters are characterized from -40°C to 125°C unless otherwise noted.
- (3) P = SYSCLK2 period
- (4) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.

# Table 5-58. Additional (1) SPI0 Slave Timings, 4-Pin Chip Select Option (2)(3) (4)

| NO. |                              |                                                      |                                                | MIN                            | MAX      | UNIT |
|-----|------------------------------|------------------------------------------------------|------------------------------------------------|--------------------------------|----------|------|
| 25  | t <sub>d(SCSL_SPC)S</sub>    | Required delay from SPI0_SCS SPI0_CLK edge at slave. | asserted at slave to first                     | 2P                             |          | ns   |
|     |                              | Polarity = 0, Phase = 0, from SPI0_CLK falling       | 0.5t <sub>c(SPC)M</sub> + 2P+5                 |                                |          |      |
| 26  |                              | Required delay from final SPI0 CLK edge before       | Polarity = 0, Phase = 1, from SPI0_CLK falling | 2P+5                           |          | -    |
| 20  |                              | SPI0_SCS is deasserted. Polarity from SF Polarity    | Polarity = 1, Phase = 0, from SPI0_CLK rising  | 0.5t <sub>c(SPC)M</sub> + 2P+5 |          | ns   |
|     |                              |                                                      | Polarity = 1, Phase = 1, from SPI0_CLK rising  | 2P+5                           |          |      |
| 27  | t <sub>ena(SCSL_SOMI)S</sub> | Delay from master asserting SPI SPI0_SOMI valid      | 0_SCS to slave driving                         |                                | P + 18.5 | ns   |
| 28  | t <sub>dis(SCSH_SOMI)S</sub> | Delay from master deasserting SSPI0_SOMI             | SPI0_SCS to slave 3-stating                    |                                | P + 18.5 | ns   |

- (1) These parameters are in addition to the general timings for SPI slave modes (Table 5-53).
- (2) Parameters are characterized from -40°C to 125°C unless otherwise noted.
- (3) P = SYSCLK2 period
- (4) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.



# Table 5-59. Additional<sup>(1)</sup> SPI0 Slave Timings, 5-Pin Option<sup>(2)(3)</sup> (4)

| NO. |                              |                                                          |                                                                     | MIN N                          | ΙAΧ | UNIT |
|-----|------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------|-----|------|
| 25  | t <sub>d(SCSL_SPC)S</sub>    | Required delay from SPI0_SC SPI0_CLK edge at slave.      | S asserted at slave to first                                        | 2P                             |     | ns   |
|     |                              |                                                          | Polarity = 0, Phase = 0, from SPI0_CLK falling                      | 0.5t <sub>c(SPC)M</sub> + 2P+5 |     |      |
| 26  |                              | Required delay from final                                | Polarity = 0, Phase = 1, from SPI0_CLK falling                      | 2P+5                           |     | ns   |
| 20  | t <sub>d</sub> (SPC_SCSH)S   | SPI0_CLK edge before SPI0_SCS is deasserted.             | Polarity = 1, Phase = 0, from SPI0_CLK rising                       | 0.5t <sub>c(SPC)M</sub> + 2P+5 |     | 115  |
|     |                              |                                                          | Polarity = 1, Phase = 1, from SPI0_CLK rising                       | 2P+5                           |     |      |
| 27  | t <sub>ena(SCSL_SOMI)S</sub> | Delay from master asserting SSI0_SOMI valid              | elay from master asserting SPI0_SCS to slave driving PI0_SOMI valid |                                | 8.5 | ns   |
| 28  | t <sub>dis(SCSH_SOMI)S</sub> | Delay from master deasserting SPI0_SOMI                  | SPI0_SCS to slave 3-stating                                         | P + ′                          | 8.5 | ns   |
| 29  | t <sub>ena(SCSL_ENA)S</sub>  | Delay from master deasserting SPI0_ENA valid             | SPI0_SCS to slave driving                                           | ,                              | 8.5 | ns   |
|     |                              |                                                          | Polarity = 0, Phase = 0, from SPI0_CLK falling                      | 2.5 P + ′                      | 8.5 |      |
| 30  |                              | Delay from final clock receive edge on SPI0_CLK to slave | Polarity = 0, Phase = 1, from SPI0_CLK rising                       | 2.5 P + ′                      | 8.5 |      |
| 30  | t <sub>dis</sub> (SPC_ENA)S  | 3-stating or driving high SPI0_ENA. (5)                  | Polarity = 1, Phase = 0, from SPI0_CLK rising                       | 2.5 P + ′                      | 8.5 | ns   |
|     |                              | _                                                        | Polarity = 1, Phase = 1, from SPI0_CLK falling                      | 2.5 P + ′                      | 8.5 |      |

- (1) These parameters are in addition to the general timings for SPI slave modes (Table 5-53).
- (2) Parameters are characterized from -40°C to 125°C unless otherwise noted.
- (3) P = SYSCLK2 period
- (4) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
- (5) SPIO\_ENA is driven low after the transmission completes if the SPIINTO.ENABLE\_HIGHZ bit is programmed to 0. Otherwise it is tristated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master.

## Table 5-60. General Timing Requirements for SPI1 Master Modes (1)(2)

| NO. |                                                                               |                                                    |                                                | MIN                         | MAX                          | UNIT |
|-----|-------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|-----------------------------|------------------------------|------|
| 1   | t <sub>c(SPC)M</sub>                                                          | Cycle Time, SPI1_CLK, All M                        | Master Modes                                   | greater of 3P or 20 ns      | 256P                         | ns   |
| 2   | t <sub>w(SPCH)M</sub>                                                         | Pulse Width High, SPI1_CLK, All Master Modes       |                                                | 0.5t <sub>c(SPC)M</sub> - 1 |                              | ns   |
| 3   | t <sub>w(SPCL)M</sub>                                                         | Pulse Width Low, SPI1_CLK                          | x, All Master Modes                            | 0.5t <sub>c(SPC)M</sub> - 1 |                              | ns   |
|     |                                                                               |                                                    | Polarity = 0, Phase = 0, to SPI1_CLK rising    |                             | 5                            |      |
| 4   | Delay, initial data bit valid on SPI1_SIMO after initial edge on SPI1_CLK (3) | Delay, initial data bit valid                      | Polarity = 0, Phase = 1, to SPI1_CLK rising    |                             | $-0.5t_{c(SPC)M} + 5$        | 20   |
| 4   |                                                                               |                                                    | Polarity = 1, Phase = 0, to SPI1_CLK falling   |                             | 5                            | ns   |
|     |                                                                               |                                                    | Polarity = 1, Phase = 1, to SPI1_CLK falling   |                             | -0.5t <sub>c(SPC)M</sub> + 5 |      |
|     |                                                                               |                                                    | Polarity = 0, Phase = 0, from SPI1_CLK rising  |                             | 5                            |      |
| 5   | t <sub>d(SPC SIMO)M</sub> va                                                  | Delay, subsequent bits                             | Polarity = 0, Phase = 1, from SPI1_CLK falling |                             | 5                            | 20   |
| 5   |                                                                               | valid on SPI1_SIMO after transmit edge of SPI1_CLK | Polarity = 1, Phase = 0, from SPI1_CLK falling |                             | 5                            | ns   |
|     |                                                                               |                                                    | Polarity = 1, Phase = 1, from SPI1_CLK rising  |                             | 5                            |      |

- (1) Parameters are characterized from -40°C to 125°C unless otherwise noted.
- (2) P = SYSCLK2 period
- (3) First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI1\_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI1\_SOMI.



### Table 5-60. General Timing Requirements for SPI1 Master Modes<sup>(1)(2)</sup> (continued)

| NO. |                             |                                                                   |                                                | MIN                        | MAX | UNIT |
|-----|-----------------------------|-------------------------------------------------------------------|------------------------------------------------|----------------------------|-----|------|
|     |                             |                                                                   | Polarity = 0, Phase = 0, from SPI1_CLK falling | 0.5t <sub>c(SPC)M</sub> -3 |     |      |
| 6   |                             | Output hold time,                                                 | Polarity = 0, Phase = 1, from SPI1_CLK rising  | 0.5t <sub>c(SPC)M</sub> -3 |     | no   |
| 0   | t <sub>oh</sub> (SPC_SIMO)M | SPI1_SIMO valid after receive edge of SPI1_CLK                    | Polarity = 1, Phase = 0, from SPI1_CLK rising  | 0.5t <sub>c(SPC)M</sub> -3 |     | ns   |
|     |                             |                                                                   | Polarity = 1, Phase = 1, from SPI1_CLK falling | 0.5t <sub>c(SPC)M</sub> -3 |     |      |
|     |                             | Input Setup Time, SPI1_SOMI valid before receive edge of SPI1_CLK | Polarity = 0, Phase = 0, to SPI1_CLK falling   | 0                          |     |      |
| 7   |                             |                                                                   | Polarity = 0, Phase = 1, to SPI1_CLK rising    | 0                          |     |      |
| 7   | <sup>t</sup> su(SOMI_SPC)M  |                                                                   | Polarity = 1, Phase = 0, to SPI1_CLK rising    | 0                          |     | ns   |
|     |                             |                                                                   | Polarity = 1, Phase = 1, to SPI1_CLK falling   | 0                          |     |      |
|     |                             |                                                                   | Polarity = 0, Phase = 0, from SPI1_CLK falling | 5                          |     |      |
|     |                             | Input Hold Time,                                                  | Polarity = 0, Phase = 1, from SPI1_CLK rising  | 5                          |     | ns   |
| 8   |                             | SPI1_SOMI valid after receive edge of SPI1_CLK                    | Polarity = 1, Phase = 0, from SPI1_CLK rising  | 5                          |     |      |
|     |                             |                                                                   | Polarity = 1, Phase = 1, from SPI1_CLK falling | 5                          |     |      |

## Table 5-61. General Timing Requirements for SPI1 Slave Modes (1)(2)

| NO. |                                        |                                                         |                                                 | MIN                       | MAX | UNIT |
|-----|----------------------------------------|---------------------------------------------------------|-------------------------------------------------|---------------------------|-----|------|
| 9   | t <sub>c(SPC)S</sub>                   | Cycle Time, SPI1_CLK, All S                             | Slave Modes                                     | greater of 3P or<br>40 ns |     | ns   |
| 10  | t <sub>w(SPCH)S</sub>                  | Pulse Width High, SPI1_CLK, All Slave Modes             |                                                 | 18                        |     | ns   |
| 11  | t <sub>w(SPCL)S</sub>                  | Pulse Width Low, SPI1_CLK                               | , All Slave Modes                               | 18                        |     | ns   |
|     |                                        |                                                         | Polarity = 0, Phase = 0, to SPI1_CLK rising     | 2P                        |     |      |
| 40  | $t_{su(SOMI\_SPC)S}$                   | Setup time, transmit data written to SPI before initial | Polarity = 0, Phase = 1, to SPI1_CLK rising     | 2P                        |     |      |
| 12  |                                        | clock edge from<br>master. <sup>(3)</sup> (4)           | Polarity = 1, Phase = 0,<br>to SPI1_CLK falling | 2P                        |     | ns   |
|     |                                        |                                                         | Polarity = 1, Phase = 1,<br>to SPI1_CLK falling | 2P                        |     |      |
|     |                                        |                                                         | Polarity = 0, Phase = 0, from SPI1_CLK rising   |                           | 19  |      |
| 13  | t <sub>d(SPC_SOMI)S</sub> valid on SPI | Delay, subsequent bits                                  | Polarity = 0, Phase = 1, from SPI1_CLK falling  |                           | 19  |      |
| 13  |                                        | valid on SPI1_SOMI after transmit edge of SPI1_CLK      | Polarity = 1, Phase = 0, from SPI1_CLK falling  |                           | 19  | ns   |
|     |                                        |                                                         | Polarity = 1, Phase = 1, from SPI1_CLK rising   |                           | 19  |      |

<sup>(1)</sup> Parameters are characterized from -40°C to 125°C unless otherwise noted.

<sup>(2)</sup> P = SYSCLK2 period

<sup>(3)</sup> First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI1\_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI1\_SIMO.

<sup>(4)</sup> Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus cycles must be accounted for to allow data to be written to the SPI module by either the DSP CPU or the dMAX.



# Table 5-61. General Timing Requirements for SPI1 Slave Modes<sup>(1)(2)</sup> (continued)

| NO. |                             |                                                                                 |                                                            | MIN                                           | MAX | UNIT |    |
|-----|-----------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|-----|------|----|
|     |                             |                                                                                 | Polarity = 0, Phase = 0, from SPI1_CLK falling             | 0.5t <sub>c(SPC)S</sub> -3                    |     |      |    |
| 14  |                             | Output hold time,<br>SPI1_SOMI valid after                                      | Polarity = 0, Phase = 1, from SPI1_CLK rising              | 0.5t <sub>c(SPC)S</sub> -3                    |     | no   |    |
| 14  | t <sub>oh</sub> (SPC_SOMI)S | receive edge of SPI1_CLK                                                        | Polarity = 1, Phase = 0, from SPI1_CLK rising              | 0.5t <sub>c(SPC)S</sub> -3                    |     | ns   |    |
|     |                             |                                                                                 | Polarity = 1, Phase = 1, from SPI1_CLK falling             | 0.5t <sub>c(SPC)S</sub> -3                    |     |      |    |
|     |                             | Input Setup Time, su(SIMO_SPC)S SPI1_SIMO valid before receive edge of SPI1_CLK | Polarity = 0, Phase = 0, to SPI1_CLK falling               | 0                                             |     |      |    |
| 45  |                             |                                                                                 | Polarity = 0, Phase = 1, to SPI1_CLK rising                | 0                                             |     |      |    |
| 15  | <sup>t</sup> su(SIMO_SPC)S  |                                                                                 | Polarity = 1, Phase = 0, to SPI1_CLK rising                | 0                                             |     | ns   |    |
|     |                             |                                                                                 | Polarity = 1, Phase = 1,<br>to SPI1_CLK falling            | 0                                             |     |      |    |
|     |                             |                                                                                 | Polarity = 0, Phase = 0, from SPI1_CLK falling             | 5                                             |     |      |    |
| 40  |                             | Input Hold Time,                                                                | Polarity = 0, Phase = 1, from SPI1_CLK rising              | 5                                             |     |      |    |
| 16  |                             | lih(SPC_SIMO)S                                                                  | (SPC_SIMO)S SPI1_SIMO valid after receive edge of SPI1_CLK | Polarity = 1, Phase = 0, from SPI1_CLK rising | 5   |      | ns |
|     |                             |                                                                                 | Polarity = 1, Phase = 1, from SPI1_CLK falling             | 5                                             |     |      |    |

# Table 5-62. Additional<sup>(1)</sup> SPI1 Master Timings, 4-Pin Enable Option<sup>(2)(3)</sup> (4)

| NO. |                                                                                  |                                                               |                                                | MIN MAX                  | UNIT |
|-----|----------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|--------------------------|------|
|     |                                                                                  | Polarity = 0, Phase = 0,<br>to SPI1_CLK rising                | P+3                                            |                          |      |
| 17  | Delay from slave assertion of SPI1_ENA active to first SPI1_CLK from master. (5) | Delay from slave assertion of                                 | Polarity = 0, Phase = 1, to SPI1_CLK rising    | $0.5t_{c(SPC)M} + P + 3$ | 20   |
| ''  |                                                                                  | SPI1_CLK from master. <sup>(5)</sup>                          | Polarity = 1, Phase = 0, to SPI1_CLK falling   | P+3                      | ns   |
|     |                                                                                  |                                                               | Polarity = 1, Phase = 1, to SPI1_CLK falling   | $0.5t_{c(SPC)M} + P + 3$ |      |
|     |                                                                                  |                                                               | Polarity = 0, Phase = 0, from SPI1_CLK falling | P+5                      |      |
| 18  |                                                                                  | Max delay for slave to deassert SPI1_ENA after final SPI1_CLK | Polarity = 0, Phase = 1, from SPI1_CLK falling | $0.5t_{c(SPC)M}$ +P+5    | 20   |
| 10  | t <sub>d</sub> (SPC_ENA)M                                                        | euge to ensure master does not                                | Polarity = 1, Phase = 0, from SPI1_CLK rising  | P+5                      | ns   |
|     |                                                                                  |                                                               | Polarity = 1, Phase = 1, from SPI1_CLK rising  | $0.5t_{c(SPC)M}$ +P+5    |      |

- (1) These parameters are in addition to the general timings for SPI master modes (Table 5-60).
- (2) Parameters are characterized from -40°C to 125°C unless otherwise noted.
- P = SYSCLK2 period
- Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
- (5)
- In the case where the master SPI is ready with new data before SPI1\_ENA assertion.

  In the case where the master SPI is ready with new data before SPI1\_ENA deassertion.



### Table 5-63. Additional (1) SPI1 Master Timings, 4-Pin Chip Select Option (2)(3) (4)

| NO. |                           |                                                                                                                                                                                                                                     |                                               | MIN                             | MAX | UNIT |
|-----|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------|-----|------|
|     |                           | Delay from SPI1 SCS active to 10 Si 11_CEN listing                                                                                                                                                                                  |                                               | 2P -5                           |     |      |
| 19  |                           |                                                                                                                                                                                                                                     |                                               | 0.5t <sub>c(SPC)M</sub> + 2P -5 |     | 20   |
| 19  | t <sub>d</sub> (SCS_SPC)M |                                                                                                                                                                                                                                     | 2P -5                                         |                                 | ns  |      |
|     |                           |                                                                                                                                                                                                                                     | Polarity = 1, Phase = 1, to SPI1_CLK falling  | 0.5t <sub>c(SPC)M</sub> + 2P -5 |     |      |
|     |                           | Delay from final SPI1_CLK edge to master deasserting SPI1_SCS  (SPC_SCS)M  Delay from final SPI1_CLK edge to master deasserting SPI1_SCS  (SPC_SCS)M  Delay from final SPI1_CLK edge from SPI1_CLK falling  Polarity = 1, Phase = 0 |                                               | 0.5t <sub>c(SPC)M</sub> -3      |     |      |
| 20  |                           |                                                                                                                                                                                                                                     |                                               | -3                              |     | 20   |
| 20  | <sup>1</sup> d(SPC_SCS)M  |                                                                                                                                                                                                                                     | 0.5t <sub>c(SPC)M</sub> -3                    |                                 | ns  |      |
|     |                           |                                                                                                                                                                                                                                     | Polarity = 1, Phase = 1, from SPI1_CLK rising | -3                              |     |      |

- These parameters are in addition to the general timings for SPI master modes (Table 5-60).
- Parameters are characterized from -40°C to 125°C unless otherwise noted.
- P = SYSCLK2 period
- Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1\_SCS assertion.
- This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
- Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1\_SCS will remain asserted.
- This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].

## Table 5-64. Additional<sup>(1)</sup> SPI1 Master Timings, 5-Pin Option<sup>(2)(3)</sup> (4)

| NO. |                            |                                                                                      |                                                | MIN MAX                      | UNIT |
|-----|----------------------------|--------------------------------------------------------------------------------------|------------------------------------------------|------------------------------|------|
|     |                            | Max delay for slave to                                                               | Polarity = 0, Phase = 0, from SPI1_CLK falling | P+3                          |      |
| 18  | t <sub>d</sub> (SPC_ENA)M  | deassert SPI1_ENA after final SPI1_CLK edge to                                       | Polarity = 0, Phase = 1, from SPI1_CLK falling | 0.5t <sub>c(SPC)M</sub> +P+3 | 20   |
| 10  |                            | ensure master does not<br>begin the next<br>transfer. (5)                            | Polarity = 1, Phase = 0, from SPI1_CLK rising  | P+3                          | ns   |
|     |                            | transfer. (4)                                                                        | Polarity = 1, Phase = 1, from SPI1_CLK rising  | 0.5t <sub>c(SPC)M</sub> +P+3 |      |
|     |                            | Delay from final<br>SPI1 CLK edge to                                                 | Polarity = 0, Phase = 0, from SPI1_CLK falling | 0.5t <sub>c(SPC)M</sub> -3   |      |
| 20  |                            |                                                                                      | Polarity = 0, Phase = 1, from SPI1_CLK falling | -3                           |      |
| 20  | t <sub>d(SPC_SCS)M</sub>   | master deasserting<br>SPI1_SCS (6) (7)                                               | Polarity = 1, Phase = 0, from SPI1_CLK rising  | 0.5t <sub>c(SPC)M</sub> -3   | ns   |
|     |                            |                                                                                      | Polarity = 1, Phase = 1, from SPI1_CLK rising  | -3                           |      |
| 21  | t <sub>d(SCSL_ENAL)M</sub> | Max delay for slave SPI to<br>after master asserts SPI1<br>master from beginning the | SCS to delay the                               | C2TDELAY + P                 | ns   |

- These parameters are in addition to the general timings for SPI master modes (Table 5-61). Parameters are characterized from -40°C to 125°C unless otherwise noted.
- P = SYSCLK2 period
- Figure shows only Polarity = 0, Phase = 0 as an example. Table <u>gives para</u>meters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1\_ENA deassertion.
- Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1\_SCS will remain asserted.
- This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].



## Table 5-64. Additional<sup>(1)</sup> SPI1 Master Timings, 5-Pin Option<sup>(2)(3)</sup> (continued)

| NO. |                       |                                                          |                                              | MIN MAX                         | UNIT |
|-----|-----------------------|----------------------------------------------------------|----------------------------------------------|---------------------------------|------|
|     |                       |                                                          | Polarity = 0, Phase = 0, to SPI1_CLK rising  | 2P -5                           |      |
| 22  | 22 targes speak activ | Delay from SPI1_SCS                                      | Polarity = 0, Phase = 1, to SPI1_CLK rising  | 0.5t <sub>c(SPC)M</sub> + 2P -5 |      |
| 22  |                       | S_SPC)M active to first SPI1_CLK <sup>(8)</sup> (9) (10) | Polarity = 1, Phase = 0, to SPI1_CLK falling | 2P -5                           | ns   |
|     |                       |                                                          | Polarity = 1, Phase = 1, to SPI1_CLK falling |                                 |      |
|     |                       |                                                          | Polarity = 0, Phase = 0, to SPI1_CLK rising  | P+3                             |      |
| 23  |                       | Delay from assertion of                                  | Polarity = 0, Phase = 1, to SPI1_CLK rising  | 0.5t <sub>c(SPC)M</sub> + P + 3 |      |
| 23  |                       | SPI1_ENA low to first<br>SPI1_CLK edge. (11)             | Polarity = 1, Phase = 0, to SPI1_CLK falling | P+3                             | ns   |
|     |                       |                                                          | Polarity = 1, Phase = 1, to SPI1_CLK falling | $0.5t_{c(SPC)M} + P + 3$        |      |

- If SPI1\_ENA is asserted immediately such that the transmission is not delayed by SPI1\_ENA. In the case where the master SPI is ready with new data before SPI1\_SCS assertion.
- (10) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
- (11) If SPI1\_ENA was initially deasserted high and SPI1\_CLK is delayed.

## Table 5-65. Additional (1) SPI1 Slave Timings, 4-Pin Enable Option (2)(3) (4)

| NO. |                                                               |                                                |                                               | MIN                                    | MAX                                    | UNIT |
|-----|---------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|----------------------------------------|----------------------------------------|------|
|     | Delay from final SPI1_CLK edge to slave deasserting SPI1_ENA. | Polarity = 0, Phase = 0, from SPI1_CLK falling | 1.5 P -3                                      | 2.5 P + 19                             |                                        |      |
| 24  |                                                               | Polarity = 0, Phase = 1, from SPI1_CLK falling | - 0.5t <sub>c(SPC)M</sub> + 1.5 P -3          | - 0.5t <sub>c(SPC)M</sub> + 2.5 P + 19 |                                        |      |
| 24  |                                                               | Polarity = 1, Phase = 0, from SPI1_CLK rising  | 1.5 P -3                                      | 2.5 P + 19                             | ns                                     |      |
|     |                                                               |                                                | Polarity = 1, Phase = 1, from SPI1_CLK rising | - 0.5t <sub>c(SPC)M</sub> + 1.5 P -3   | - 0.5t <sub>c(SPC)M</sub> + 2.5 P + 19 |      |

- These parameters are in addition to the general timings for SPI slave modes (Table 5-61).
- Parameters are characterized from -40°C to 125°C unless otherwise noted.
- P = SYSCLK2 period (3)
- Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.

## Table 5-66. Additional (1) SPI1 Slave Timings, 4-Pin Chip Select Option (2)(3) (4)

| NO. |                              |                                                                                 |                                                | MIN                            | MAX    | UNIT |
|-----|------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|--------------------------------|--------|------|
| 25  | t <sub>d(SCSL_SPC)S</sub>    | Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave. |                                                | 2P                             |        | ns   |
|     |                              |                                                                                 | Polarity = 0, Phase = 0, from SPI1_CLK falling | 0.5t <sub>c(SPC)M</sub> + 2P+5 |        |      |
| 26  |                              | Required delay from final SPI1_CLK edge before SPI1_SCS is deasserted.          | Polarity = 0, Phase = 1, from SPI1_CLK falling | 2P+5                           |        |      |
| 20  |                              |                                                                                 | Polarity = 1, Phase = 0, from SPI1_CLK rising  | 0.5t <sub>c(SPC)M</sub> + 2P+5 |        | ns   |
|     |                              |                                                                                 | Polarity = 1, Phase = 1, from SPI1_CLK rising  | 2P+5                           |        |      |
| 27  | t <sub>ena(SCSL_SOMI)S</sub> | Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid           |                                                | F                              | P + 19 | ns   |
| 28  | t <sub>dis(SCSH_SOMI)S</sub> | Delay from master deasserting SPI1_SOMI                                         | SPI1_SCS to slave 3-stating                    | F                              | P + 19 | ns   |

- These parameters are in addition to the general timings for SPI slave modes (Table 5-61).
- Parameters are characterized from -40°C to 125°C unless otherwise noted. (2)
- P = SYSCLK2 period
- Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.



## Table 5-67. Additional<sup>(1)</sup> SPI1 Slave Timings, 5-Pin Option<sup>(2)(3)</sup> (4)

| NO. |                              |                                                          |                                                | MIN                                           | MAX   | UNIT |    |
|-----|------------------------------|----------------------------------------------------------|------------------------------------------------|-----------------------------------------------|-------|------|----|
| 25  | t <sub>d(SCSL_SPC)S</sub>    | Required delay from SPI1_SC SPI1_CLK edge at slave.      | S asserted at slave to first                   | 2P                                            |       | ns   |    |
|     |                              |                                                          | Polarity = 0, Phase = 0, from SPI1_CLK falling | 0.5t <sub>c(SPC)M</sub> + 2P                  |       |      |    |
| 26  |                              | SPC_SCSH)S  SPI1_CLK edge before SPI1_SCS is deasserted. | Polarity = 0, Phase = 1, from SPI1_CLK falling | 2P                                            |       | ns   |    |
| 20  | <sup>l</sup> d(SPC_SCSH)S    |                                                          | Polarity = 1, Phase = 0, from SPI1_CLK rising  | 0.5t <sub>c(SPC)M</sub> + 2P                  |       | 115  |    |
|     |                              |                                                          | Polarity = 1, Phase = 1, from SPI1_CLK rising  | 2P                                            |       |      |    |
| 27  | t <sub>ena(SCSL_SOMI)S</sub> | Delay from master asserting SSI1_SOMI valid              | PI1_SCS to slave driving                       | Р                                             | + 19  | ns   |    |
| 28  | t <sub>dis(SCSH_SOMI)S</sub> | Delay from master deasserting SPI1_SOMI                  | SPI1_SCS to slave 3-stating                    | Р                                             | + 19  | ns   |    |
| 29  | t <sub>ena(SCSL_ENA)S</sub>  | Delay from master deasserting SPI1_ENA valid             | SPI1_SCS to slave driving                      |                                               | 19    | ns   |    |
|     |                              |                                                          | Polarity = 0, Phase = 0, from SPI1_CLK falling | 2.5 P                                         | + 19  |      |    |
| 20  |                              | Delay from final clock receive edge on SPI1_CLK to slave | Polarity = 0, Phase = 1, from SPI1_CLK rising  | 2.5 P                                         | + 19  |      |    |
| 30  | t <sub>dis</sub> (SPC_ENA)S  | ldis(SPC_ENA)S                                           | 3-stating or driving high SPI1_ENA. (5)        | Polarity = 1, Phase = 0, from SPI1_CLK rising | 2.5 P | + 19 | ns |
|     |                              |                                                          | Polarity = 1, Phase = 1, from SPI1_CLK falling | 2.5 P                                         | + 19  |      |    |

These parameters are in addition to the general timings for SPI slave modes (Table 5-61). Parameters are characterized from -40 $^{\circ}$ C to 125 $^{\circ}$ C unless otherwise noted.

<sup>(3)</sup> P = SYSCLK2 period

Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.

SPI1\_ENA is driven low after the transmission completes if the SPIINTO.ENABLE\_HIGHZ bit is programmed to 0. Otherwise it is tristated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master.











Figure 5-39. SPI Timings—Master Mode











Figure 5-40. SPI Timings—Slave Mode





Figure 5-41. SPI Timings—Master Mode (4-Pin and 5-Pin)





Figure 5-42. SPI Timings—Slave Mode (4-Pin and 5-Pin)



#### 5.17 Enhanced Capture Module (eCAP)

The device contains up to three enhanced capture (eCAP) modules. Figure 5-43 shows a functional block diagram of a module.

Uses for ECAP include:

- Speed measurements of rotating machinery (e.g. toothed sprockets sensed via Hall sensors)
- Elapsed time measurements between position sensor triggers
- Period and duty cycle measurements of Pulse train signals
- Decoding current or voltage amplitude derived from cuty cycle encoded current/voltage sensors

The ECAP module described in this specification includes the following features:

- 32 bit time base
- 4 event time-stamp registers (each 32 bits)
- Edge polarity selection for up to 4 sequenced time-stamp capture events
- Interrupt on either of the 4 events
- Single shot capture of up to 4 event time-stamps
- · Continuous mode capture of time-stamps in a 4 deep circular buffer
- Absolute time-stamp capture
- · Difference mode time-stamp capture
- All the above resources are dedicated to a single input pin

The eCAP modules are clocked at the SYSCLK2 rate.

The clock enable bits (ECAP1/2/3/4ENCLK) in the PCLKCR1 register are used to turn off the eCAP modules individually (for low power operation). Upon reset, ECAP1ENCLK, ECAP2ENCLK, ECAP3ENCLK, and ECAP4EN CLK are set to low, indicating that the peripheral clock is off.





Figure 5-43. eCAP Functional Block Diagram



Table 5-68 is the list of the ECAP registers. See the *TMS320C674x/OMAP-L1x Processor Peripherals* Overview Reference Guide. – Literature Number SPRUFK9 for more details.

### Table 5-68. ECAPx Configuration Registers

| ECAP0<br>BYTE ADDRESS | ECAP1<br>BYTE ADDRESS | ECAP2<br>BYTE ADDRESS | REGISTER NAME | DESCRIPTION                         |
|-----------------------|-----------------------|-----------------------|---------------|-------------------------------------|
| 0x01F0 6000           | 0x01F0 7000           | 0x01F0 8000           | TSCTR         | Time-Stamp Counter                  |
| 0x01F0 6004           | 0x01F0 7004           | 0x01F0 8004           | CTRPHS        | Counter Phase Offset Value Register |
| 0x01F0 6008           | 0x01F0 7008           | 0x01F0 8008           | CAP1          | Capture 1 Register                  |
| 0x01F0 600C           | 0x01F0 700C           | 0x01F0 800C           | CAP2          | Capture 2 Register                  |
| 0x01F0 6010           | 0x01F0 7010           | 0x01F0 8010           | CAP3          | Capture 3 Register                  |
| 0x01F0 6014           | 0x01F0 7014           | 0x01F0 8014           | CAP4          | Capture 4 Register                  |
| 0x01F0 6028           | 0x01F0 7028           | 0x01F0 8028           | ECCTL1        | Capture Control Register 1          |
| 0x01F0 602A           | 0x01F0 702A           | 0x01F0 802A           | ECCTL2        | Capture Control Register 2          |
| 0x01F0 602C           | 0x01F0 702C           | 0x01F0 802C           | ECEINT        | Capture Interrupt Enable Register   |
| 0x01F0 602E           | 0x01F0 702E           | 0x01F0 802E           | ECFLG         | Capture Interrupt Flag Register     |
| 0x01F0 6030           | 0x01F0 7030           | 0x01F0 8030           | ECCLR         | Capture Interrupt Clear Register    |
| 0x01F0 6032           | 0x01F0 7032           | 0x01F0 8032           | ECFRC         | Capture Interrupt Force Register    |
| 0x01F0 605C           | 0x01F0 705C           | 0x01F0 805C           | REVID         | Revision ID                         |

Table 5-69 shows the eCAP timing requirement and Table 5-70 shows the eCAP switching characteristics.

## Table 5-69. Enhanced Capture (eCAP) Timing Requirement<sup>(1)</sup>

|                     | PARAMETER                 | TEST CONDITIONS | MIN MAX              | UNIT   |
|---------------------|---------------------------|-----------------|----------------------|--------|
| t <sub>w(CAP)</sub> | Capture input pulse width | Asynchronous    | 2t <sub>c(SCO)</sub> | cycles |
|                     |                           | Synchronous     | 2t <sub>c(SCO)</sub> | cycles |

(1) Parameters are characterized from -40°C to 125°C unless otherwise noted.

### Table 5-70. eCAP Switching Characteristics<sup>(1)</sup>

| PARAMETER            |                                       | TEST CONDITIONS | MIN MAX | UNIT |
|----------------------|---------------------------------------|-----------------|---------|------|
| t <sub>w(APWM)</sub> | Pulse duration, APWMx output high/low |                 | 20      | ns   |

(1) Parameters are characterized from -40  $^{\circ}\text{C}$  to 125  $^{\circ}\text{C}$  unless otherwise noted.



#### 5.18 Enhanced Quadrature Encoder Module (eQEP)

The device contains up to two enhanced quadrature encoder (eQEP) modules.



Figure 5-44. eQEP Functional Block Diagram

Table 5-71 is the list of the EQEP registers. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number SPRUFK9 for more details.

Table 5-72 shows the eQEP timing requirement and Table 5-73 shows the eQEP switching characteristics.



## Table 5-71. EQEP Registers

| EQEP0<br>BYTE ADDRESS | EQEP1<br>BYTE ADDRESS | REGISTER NAME | DESCRIPTION                            |
|-----------------------|-----------------------|---------------|----------------------------------------|
| 0x01F0 9000           | 0x01F0 A000           | QPOSCNT       | eQEP Position Counter                  |
| 0x01F0 9004           | 0x01F0 A004           | QPOSINIT      | eQEP Initialization Position<br>Count  |
| 0x01F0 9008           | 0x01F0 A008           | QPOSMAX       | eQEP Maximum Position Count            |
| 0x01F0 900C           | 0x01F0 A00C           | QPOSCMP       | eQEP Position-compare                  |
| 0x01F0 9010           | 0x01F0 A010           | QPOSILAT      | eQEP Index Position Latch              |
| 0x01F0 9014           | 0x01F0 A014           | QPOSSLAT      | eQEP Strobe Position Latch             |
| 0x01F0 9018           | 0x01F0 A018           | QPOSLAT       | eQEP Position Latch                    |
| 0x01F0 901C           | 0x01F0 A01C           | QUTMR         | eQEP Unit Timer                        |
| 0x01F0 9020           | 0x01F0 A020           | QUPRD         | eQEP Unit Period Register              |
| 0x01F0 9024           | 0x01F0 A024           | QWDTMR        | eQEP Watchdog Timer                    |
| 0x01F0 9026           | 0x01F0 A026           | QWDPRD        | eQEP Watchdog Period Register          |
| 0x01F0 9028           | 0x01F0 A028           | QDECCTL       | eQEP Decoder Control Register          |
| 0x01F0 902A           | 0x01F0 A02A           | QEPCTL        | eQEP Control Register                  |
| 0x01F0 902C           | 0x01F0 A02C           | QCAPCTL       | eQEP Capture Control Register          |
| 0x01F0 902E           | 0x01F0 A02E           | QPOSCTL       | eQEP Position-compare Control Register |
| 0x01F0 9030           | 0x01F0 A030           | QEINT         | eQEP Interrupt Enable Register         |
| 0x01F0 9032           | 0x01F0 A032           | QFLG          | eQEP Interrupt Flag Register           |
| 0x01F0 9034           | 0x01F0 A034           | QCLR          | eQEP Interrupt Clear Register          |
| 0x01F0 9036           | 0x01F0 A036           | QFRC          | eQEP Interrupt Force Register          |
| 0x01F0 9038           | 0x01F0 A038           | QEPSTS        | eQEP Status Register                   |
| 0x01F0 903A           | 0x01F0 A03A           | QCTMR         | eQEP Capture Timer                     |
| 0x01F0 903C           | 0x01F0 A03C           | QCPRD         | eQEP Capture Period Register           |
| 0x01F0 903E           | 0x01F0 A03E           | QCTMRLAT      | eQEP Capture Timer Latch               |
| 0x01F0 9040           | 0x01F0 A040           | QCPRDLAT      | eQEP Capture Period Latch              |
| 0x01F0 905C           | 0x01F0 A05C           | REVID         | eQEP Revision ID                       |

# Table 5-72. Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements<sup>(1)</sup>

|                        |                           | TEST CONDITIONS          | MIN MAX              | UNIT   |
|------------------------|---------------------------|--------------------------|----------------------|--------|
| t <sub>w(QEPP)</sub>   | QEP input period          | Asynchronous/synchronous | 2t <sub>c(SCO)</sub> | cycles |
| t <sub>w(INDEXH)</sub> | QEP Index Input High time | Asynchronous/synchronous | 2t <sub>c(SCO)</sub> | cycles |
| t <sub>w(INDEXL)</sub> | QEP Index Input Low time  | Asynchronous/synchronous | 2t <sub>c(SCO)</sub> | cycles |
| t <sub>w(STROBH)</sub> | QEP Strobe High time      | Asynchronous/synchronous | 2t <sub>c(SCO)</sub> | cycles |
| t <sub>w(STROBL)</sub> | QEP Strobe Input Low time | Asynchronous/synchronous | 2t <sub>c(SCO)</sub> | cycles |

<sup>(1)</sup> Parameters are characterized from -40°C to 125°C unless otherwise noted.

# Table 5-73. eQEP Switching Characteristics<sup>(1)</sup>

|                            | PARAMETER                                                  | TEST CONDITIONS | MIN | MAX                  | UNIT   |
|----------------------------|------------------------------------------------------------|-----------------|-----|----------------------|--------|
| t <sub>d(CNTR)xin</sub>    | Delay time, external clock to counter increment            |                 |     | $4t_{c(SCO)}$        | cycles |
| t <sub>d(PCS-OUT)QEP</sub> | Delay time, QEP input edge to position compare sync output |                 |     | 6t <sub>c(SCO)</sub> | cycles |

(1) Parameters are characterized from -40°C to 125°C unless otherwise noted.



### 5.19 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM)

The device contains up to three enhanced PWM Modules (eHRPWM). Figure 5-45 shows a block diagram of multiple eHRPWM modules. Figure 4-4 shows the signal interconnections with the eHRPWM. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. — Literature Number SPRUFK9 for more details.



Figure 5-45. Multiple PWM Modules in the device



## Table 5-74. eHRPWM Module Control and Status Registers Grouped by Submodule

| eHRPWM0<br>BYTE ADDRESS | eHRPWM1<br>BYTE ADDRESS | eHRPWM2<br>BYTE ADDRESS | Acronym                      | Size<br>(×16) | Sha<br>do<br>w | Register Description                                      |
|-------------------------|-------------------------|-------------------------|------------------------------|---------------|----------------|-----------------------------------------------------------|
|                         |                         |                         | Time-Base Submodule Regist   | ers           |                |                                                           |
| 0x01F0 0000             | 0x01F0 2000             | 0x01F0 4000             | TBCTL                        | 1             | No             | Time-Base Control Register                                |
| 0x01F0 0002             | 0x01F0 2002             | 0x01F0 4002             | TBSTS                        | 1             | No             | Time-Base Status Register                                 |
| 0x01F0 0004             | 0x01F0 2004             | 0x01F0 4004             | TBPHSHR                      | 1             | No             | Extension for HRPWM Phase Register (1)                    |
| 0x01F0 0006             | 0x01F0 2006             | 0x01F0 4006             | TBPHS                        | 1             | No             | Time-Base Phase Register                                  |
| 0x01F0 0008             | 0x01F0 2008             | 0x01F0 4008             | TBCNT                        | 1             | No             | Time-Base Counter Register                                |
| 0x01F0 000A             | 0x01F0 200A             | 0x01F0 400A             | TBPRD                        | 1             | Yes            | Time-Base Period Register                                 |
|                         |                         |                         | Counter-Compare Submodule    | Registe       | ers            |                                                           |
| 0x01F0 000E             | 0x01F0 200E             | 0x01F0 400E             | CMPCTL                       | 1             | No             | Counter-Compare Control Register                          |
| 0x01F0 0010             | 0x01F0 2010             | 0x01F0 4010             | CMPAHR                       | 1             | No             | Extension for HRPWM Counter-Compare A Register (1)        |
| 0x01F0 0012             | 0x01F0 2012             | 0x01F0 4012             | CMPA                         | 1             | Yes            | Counter-Compare A Register                                |
| 0x01F0 0014             | 0x01F0 2014             | 0x01F0 4014             | СМРВ                         | 1             | Yes            | Counter-Compare B Register                                |
|                         |                         |                         | Action-Qualifier Submodule R | egisters      | ;              |                                                           |
| 0x01F0 0016             | 0x01F0 2016             | 0x01F0 4016             | AQCTLA                       | 1             | No             | Action-Qualifier Control Register for Output A (eHRPWMxA) |
| 0x01F0 0018             | 0x01F0 2018             | 0x01F0 4018             | AQCTLB                       | 1             | No             | Action-Qualifier Control Register for Output B (eHRPWMxB) |
| 0x01F0 001A             | 0x01F0 201A             | 0x01F0 401A             | AQSFRC                       | 1             | No             | Action-Qualifier Software Force Register                  |
| 0x01F0 001C             | 0x01F0 201C             | 0x01F0 401C             | AQCSFRC                      | 1             | Yes            | Action-Qualifier Continuous S/W Force Register Set        |
|                         |                         |                         | Dead-Band Generator Submod   | dule Reg      | gisters        | <b>i</b>                                                  |
| 0x01F0 001E             | 0x01F0 201E             | 0x01F0 401E             | DBCTL                        | 1             | No             | Dead-Band Generator Control Register                      |
| 0x01F0 0020             | 0x01F0 2020             | 0x01F0 4020             | DBRED                        | 1             | No             | Dead-Band Generator Rising Edge Delay Count Register      |
| 0x01F0 0022             | 0x01F0 2022             | 0x01F0 4022             | DBFED                        | 1             | No             | Dead-Band Generator Falling Edge Delay Count Register     |
|                         |                         |                         | PWM-Chopper Submodule Re     | gisters       |                | 1                                                         |
| 0x01F0 003C             | 0x01F0 203C             | 0x01F0 403C             | PCCTL                        | 1             | No             | PWM-Chopper Control Register                              |
|                         |                         |                         | Trip-Zone Submodule Registe  | rs            |                |                                                           |
| 0x01F0 0024             | 0x01F0 2024             | 0x01F0 4024             | TZSEL                        | 1             | No             | Trip-Zone Select Register                                 |
| 0x01F0 0028             | 0x01F0 2028             | 0x01F0 4028             | TZCTL                        | 1             | No             | Trip-Zone Control Register                                |
| 0x01F0 002A             | 0x01F0 202A             | 0x01F0 402A             | TZEINT                       | 1             | No             | Trip-Zone Enable Interrupt Register                       |
| 0x01F0 002C             | 0x01F0 202C             | 0x01F0 402C             | TZFLG                        | 1             | No             | Trip-Zone Flag Register                                   |
| 0x01F0 002E             | 0x01F0 202E             | 0x01F0 402E             | TZCLR                        | 1             | No             | Trip-Zone Clear Register                                  |
| 0x01F0 0030             | 0x01F0 2030             | 0x01F0 4030             | TZFRC                        | 1             | No             | Trip-Zone Force Register                                  |
|                         |                         |                         | Event-Trigger Submodule Reg  | isters        |                |                                                           |
| 0x01F0 0032             | 0x01F0 2032             | 0x01F0 4032             | ETSEL                        | 1             | No             | Event-Trigger Selection Register                          |
| 0x01F0 0034             | 0x01F0 2034             | 0x01F0 4034             | ETPS                         | 1             | No             | Event-Trigger Pre-Scale Register                          |
| 0x01F0 0036             | 0x01F0 2036             | 0x01F0 4036             | ETFLG                        | 1             | No             | Event-Trigger Flag Register                               |
| 0x01F0 0038             | 0x01F0 2038             | 0x01F0 4038             | ETCLR                        | 1             | No             | Event-Trigger Clear Register                              |
| 0x01F0 003A             | 0x01F0 203A             | 0x01F0 403A             | ETFRC                        | 1             | No             | Event-Trigger Force Register                              |
|                         |                         |                         | High-Resolution PWM (HRPW    | M) Subr       | nodule         | e Registers                                               |
| 0x01F0 1040             | 0x01F0 3040             | 0x01F0 5040             | HRCNFG                       | 1             | No             | HRPWM Configuration Register (1)                          |

<sup>(1)</sup> These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these locations are reserved.



### 5.19.1 Enhanced Pulse Width Modulator (eHRPWM) Timing

PWM refers to PWM outputs on eHRPWM1-6. Table 5-75 shows the PWM timing requirements and Table 5-76, switching characteristics.

Table 5-75. eHRPWM Timing Requirements(1)

|                        | PARAMETER              | TEST CONDITIONS | MIN MAX              | UNIT   |
|------------------------|------------------------|-----------------|----------------------|--------|
| t <sub>w(SYNCIN)</sub> | Sync input pulse width | Asynchronous    | 2t <sub>c(SCO)</sub> | cycles |
|                        |                        | Synchronous     | 2t <sub>c(SCO)</sub> | cycles |

(1) Parameters are characterized from -40°C to 125°C unless otherwise noted.

### Table 5-76. eHRPWM Switching Characteristics (1)

|                          | PARAMETER                                                                                        | TEST CONDITIONS | MIN                  | MAX | UNIT   |
|--------------------------|--------------------------------------------------------------------------------------------------|-----------------|----------------------|-----|--------|
| t <sub>w(PWM)</sub>      | Pulse duration, PWMx output high/low                                                             |                 | 20                   |     | ns     |
| t <sub>w(SYNCOUT)</sub>  | Sync output pulse width                                                                          |                 | 8t <sub>c(SCO)</sub> |     | cycles |
| t <sub>d(PWM)TZA</sub>   | Delay time, trip input active to PWM forced high Delay time, trip input active to PWM forced low | no pin load     |                      | 25  | ns     |
| t <sub>d(TZ-PWM)HZ</sub> | Delay time, trip input active to PWM Hi-Z                                                        |                 |                      | 20  | ns     |

(1) Parameters are characterized from -40°C to 125°C unless otherwise noted.

#### 5.19.2 Trip-Zone Input Timing



A. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software.

Figure 5-46. PWM Hi-Z Characteristics

#### Table 5-77. Trip-Zone Input Timing Requirements<sup>(1)</sup>

|                    |                                            |              | MIN MAX              | UNIT   |
|--------------------|--------------------------------------------|--------------|----------------------|--------|
| t <sub>w(TZ)</sub> | Pulse duration, $\overline{TZx}$ input low | Asynchronous | 1t <sub>c(SCO)</sub> | cycles |
|                    |                                            | Synchronous  | 2t <sub>c(SCO)</sub> | cycles |

(1) Parameters are characterized from -40°C to 125°C unless otherwise noted.

Table 5-78 shows the high-resolution PWM switching characteristics.

#### Table 5-78. High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz)<sup>(1)</sup>

|                                            | MIN | TYP | MAX | UNIT |
|--------------------------------------------|-----|-----|-----|------|
| Micro Edge Positioning (MEP) step size (2) |     | 200 |     | ps   |

<sup>(1)</sup> Parameters are characterized from -40°C to 125°C unless otherwise noted.

<sup>(2)</sup> Maximum MEP step size is based on worst-case process, maximum temperature and maximum voltage. MEP step size will increase with low voltage and high temperature and decrease with voltage and cold temperature.
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per SYSCLKOUT period dynamically while the HRPWM is in operation.



#### 5.20 LCD Controller

Table 5-79 lists the LCD Controller registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. - Literature Number SPRUFK9 for more details.

Table 5-79. LCD Controller (LCDC) Registers

| Address Offset | Acronym            | Register Description                            |
|----------------|--------------------|-------------------------------------------------|
| 0x01E1 3000    | REVID              | LCD Revision Identification Register            |
| 0x01E1 3004    | LCD_CTRL           | LCD Control Register                            |
| 0x01E1 3008    | LCD_STAT           | LCD Status Register                             |
| 0x01E1 300C    | LIDD_CTRL          | LCD LIDD Control Register                       |
| 0x01E1 3010    | LIDD_CS0_CONF      | LCD LIDD CS0 Configuration Register             |
| 0x01E1 3014    | LIDD_CS0_ADDR      | LCD LIDD CS0 Address Read/Write Register        |
| 0x01E1 3018    | LIDD_CS0_DATA      | LCD LIDD CS0 Data Read/Write Register           |
| 0x01E1 301C    | LIDD_CS1_CONF      | LCD LIDD CS1 Configuration Register             |
| 0x01E1 3020    | LIDD_CS1_ADDR      | LCD LIDD CS1 Address Read/Write Register        |
| 0x01E1 3024    | LIDD_CS1_DATA      | LCD LIDD CS1 Data Read/Write Register           |
| 0x01E1 3028    | RASTER_CTRL        | LCD Raster Control Register                     |
| 0x01E1 302C    | RASTER_TIMING_0    | LCD Raster Timing 0 Register                    |
| 0x01E1 3030    | RASTER_TIMING_1    | LCD Raster Timing 1 Register                    |
| 0x01E1 3034    | RASTER_TIMING_2    | LCD Raster Timing 2 Register                    |
| 0x01E1 3038    | RASTER_SUBPANEL    | LCD Raster Subpanel Display Register            |
| 0x01E1 3040    | LCDDMA_CTRL        | LCD DMA Control Register                        |
| 0x01E1 3044    | LCDDMA_FB0_BASE    | LCD DMA Frame Buffer 0 Base Address Register    |
| 0x01E1 3048    | LCDDMA_FB0_CEILING | LCD DMA Frame Buffer 0 Ceiling Address Register |
| 0x01E1 304C    | LCDDMA_FB1_BASE    | LCD DMA Frame Buffer 1 Base Address Register    |
| 0x01E1 3050    | LCDDMA_FB1_CEILING | LCD DMA Frame Buffer 1 Ceiling Address Register |

## 5.20.1 LCD Interface Display Driver (LIDD Mode)

## Table 5-80. LCD LIDD Mode Timing Requirements (1)

| NO |                        | PARAMETER                                                |     | MAX | UNIT |
|----|------------------------|----------------------------------------------------------|-----|-----|------|
| 16 | t <sub>su(LCD_D)</sub> | Setup time, LCD_D[15:0] valid before LCD_CLK (SYSCLK2) ↑ | 7   |     | ns   |
| 17 | t <sub>h(LCD_D)</sub>  | Hold time, LCD_D[15:0] valid after LCD_CLK (SYSCLK2) ↑   | 0.5 |     | ns   |

<sup>(1)</sup> Parameters are characterized from -40°C to 125°C unless otherwise noted.

## Table 5-81. LCD LIDD Mode Timing Characteristics (1)

| NO | PARAMETER                |                                                                | MIN  | MAX | UNIT |
|----|--------------------------|----------------------------------------------------------------|------|-----|------|
| 4  | t <sub>d(LCD_D_V)</sub>  | Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_D[15:0] valid (write)   | -0.5 | 10  | ns   |
| 5  | t <sub>d(LCD_D_I)</sub>  | Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_D[15:0] invalid (write) | -0.5 | 10  | ns   |
| 6  | t <sub>d(LCD_E_A</sub> ) | Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_AC_ENB_CS↓              | -0.5 | 7   | ns   |
| 7  | t <sub>d(LCD_E_I)</sub>  | Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_AC_ENB_CS↑              | -0.5 | 7   | ns   |
| 8  | t <sub>d(LCD_A_A)</sub>  | Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_VSYNC↓                  | -0.5 | 8   | ns   |
| 9  | t <sub>d(LCD_A_I)</sub>  | Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_VSYNC↑                  | -0.5 | 8   | ns   |

Parameters are characterized from -40°C to 125°C unless otherwise noted. (1)



# Table 5-81. LCD LIDD Mode Timing Characteristics<sup>(1)</sup> (continued)

| NO | PARAMETER                  |                                                                                             | MIN  | MAX | UNIT |
|----|----------------------------|---------------------------------------------------------------------------------------------|------|-----|------|
| 10 | t <sub>d(LCD_W_A)</sub>    | Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_HSYNC↓                                               | -0.5 | 8   | ns   |
| 11 | t <sub>d(LCD_W_I)</sub>    | Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_HSYNC↑                                               | -0.5 | 8   | ns   |
| 12 | t <sub>d(LCD_STRB_A)</sub> | Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_PCLK↑                                                | -0.5 | 12  | ns   |
| 13 | t <sub>d(LCD_STRB_I)</sub> | Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_PCLK↓                                                | -0.5 | 12  | ns   |
| 14 | t <sub>d(LCD_D_Z)</sub>    | Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_D[15:0] in 3-state                                   | -0.5 | 12  | ns   |
| 15 | t <sub>d(Z_LCD_D)</sub>    | Delay time, LCD_CLK (SYSCLK2) ↑ to 15 td(Z_LCD_D) 3-state) LCD_D[15:0] (valid from 3-state) | -0.5 | 12  | ns   |



Figure 5-47. Character Display HD44780 Write





Figure 5-48. Character Display HD44780 Read





Figure 5-49. Micro-Interface Graphic Display 6800 Write





Figure 5-50. Micro-Interface Graphic Display 6800 Read





Figure 5-51. Micro-Interface Graphic Display 6800 Status





Figure 5-52. Micro-Interface Graphic Display 8080 Write





Figure 5-53. Micro-Interface Graphic Display 8080 Read





Figure 5-54. Micro-Interface Graphic Display 8080 Status



#### 5.20.2 LCD Raster Mode

#### **Table 5-82. LCD Raster Mode Timing**

See Figure 5-56 through Figure 5-54

| NO.              |                                 | PARAMETER                                            | MIN                 | MAX                  | UNIT |
|------------------|---------------------------------|------------------------------------------------------|---------------------|----------------------|------|
|                  | f <sub>clock(PIXEL_CLK)</sub>   | Clock frequency, pixel clock                         |                     | F/2 <sup>(1)</sup>   | MHz  |
| 1 <sup>(2)</sup> | t <sub>c(PIXEL_CLK)</sub>       | Cycle time, pixel clock                              | 26.6                |                      | ns   |
| 2 <sup>(2)</sup> | t <sub>w(PIXEL_CLK_H)</sub>     | Pulse duration, pixel clock high                     | 10                  |                      | ns   |
| 3 <sup>(2)</sup> | t <sub>w(PIXEL_CLK_L)</sub>     | Pulse duration, pixel clock low                      | 10                  |                      | ns   |
| 4                | t <sub>d(LCD_D_V)</sub>         | Delay time, LCD_PCLK↑ to LCD_D[15:0] valid (write)   | 0                   | 12.5                 | ns   |
| 5                | t <sub>d(LCD_D_IV)</sub>        | Delay time, LCD_PCLK↑ to LCD_D[15:0] invalid (write) | 0                   | 12.5                 | ns   |
| 6                | t <sub>d(ECD_AC_ENB_CS_A)</sub> | Delay time, LCD_PCLK↓ to LCD_AC_ENB_CS↑              | S2+0 <sup>(3)</sup> | S2+12.5 <sup>(</sup> | ns   |
| 7                | t <sub>d(cd_ac_enb_cs_t)</sub>  | Delay time, LCD_PCLK↓ to LCD_AC_ENB_CS↓              | S2+0 <sup>(3)</sup> | S2+12.5 <sup>(</sup> | ns   |
| 8                | t <sub>d(LCD_VSYNC_A)</sub>     | Delay time, LCD_PCLK↓ to LCD_VSYNC↑                  | 0                   | 12.5                 | ns   |
| 9                | t <sub>d(LCD_VSYNC_I)</sub>     | Delay time, LCD_PCLK↓ to LCD_VSYNC↓                  | 0                   | 12.5                 | ns   |
| 10               | t <sub>d(LCD_HSYNC_A)</sub>     | Delay time, LCD_PCLK↑ to LCD_HSYNC↑                  | 0                   | 12.5                 | ns   |
| 11               | t <sub>d(LCD_HSYNC_I)</sub>     | Delay time, LCD_PCLK↑ to LCD_HSYNC↓                  | 0                   | 12.5                 | ns   |

- (1) F = frequency of LCD\_PCLK in ns
- (2) Parameters are characterized from -40°C to 125°C unless otherwise noted.
- (3) S2=SYSCLK2 cycle time in ns.

Frame-to-frame timing is derived through the following parameters in the LCD (RASTER\_TIMING\_1) register:

- Vertical front porch (VFP)
- Vertical sync pulse width (VSW)
- Vertical back porch (VBP)
- Lines per panel (LPP)

Line-to-line timing is derived through the following parameters in the LCD (RASTER\_TIMING\_0) register:

- Horizontal front porch (HFP)
- Horizontal sync pulse width (HSW)
- Horizontal back porch (HBP)
- Pixels per panel (PPL)

LCD\_AC\_ENB\_CS timing is derived through the following parameter in the LCD (RASTER\_TIMING\_2) register:

AC bias frequency (ACB)

The display format produced in raster mode is shown in Figure 5-55. An entire frame is delivered one line at a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line delivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is denoted by the activation of I/O signal LCD\_VSYNC. The beginning of each new line is denoted by the activation of I/O signal LCD HSYNC.





Figure 5-55. LCD Raster-Mode Display Format





Figure 5-56. LCD Raster-Mode Active





Figure 5-57. LCD Raster-Mode Passive





Figure 5-58. LCD Raster-Mode Control Signal Activation





Figure 5-59. LCD Raster-Mode Control Signal Deactivation

www.ti.com

## 5.21 Timers

The timers support the following features:

- Configurable as single 64-bit timer or two 32-bit timers
- Period timeouts generate interrupts, DMA events or external pin events
- Eight 32-bit compare registers
- · Compare matches generate interrupt events
- Capture capability
- 64-bit Watchdog capability (Timer64P1 only)

Table 5-83 lists the timer registers. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number SPRUFK9 for more details.

Table 5-83. Timer Registers

| Timer64P 0  | Timer64P 1  | Acronym    | Register Description                        |
|-------------|-------------|------------|---------------------------------------------|
| 0x01C2 0000 | 0x01C2 1000 | REV        | Revision Register                           |
| 0x01C2 0004 | 0x01C2 1004 | EMUMGT     | Emulation Management Register               |
| 0x01C2 0008 | 0x01C2 1008 | GPINTGPEN  | GPIO Interrupt and GPIO Enable Register     |
| 0x01C2 000C | 0x01C2 100C | GPDATGPDIR | GPIO Data and GPIO Direction Register       |
| 0x01C2 0010 | 0x01C2 1010 | TIM12      | Timer Counter Register 12                   |
| 0x01C2 0014 | 0x01C2 1014 | TIM34      | Timer Counter Register 34                   |
| 0x01C2 0018 | 0x01C2 1018 | PRD12      | Timer Period Register 12                    |
| 0x01C2 001C | 0x01C2 101C | PRD34      | Timer Period Register 34                    |
| 0x01C2 0020 | 0x01C2 1020 | TCR        | Timer Control Register                      |
| 0x01C2 0024 | 0x01C2 1024 | TGCR       | Timer Global Control Register               |
| 0x01C2 0028 | 0x01C2 1028 | WDTCR      | Watchdog Timer Control Register             |
| 0x01C2 0034 | 0x01C2 1034 | REL12      | Timer Reload Register 12                    |
| 0x01C2 0038 | 0x01C2 1038 | REL34      | Timer Reload Register 34                    |
| 0x01C2 003C | 0x01C2 103C | CAP12      | Timer Capture Register 12                   |
| 0x01C2 0040 | 0x01C2 1040 | CAP34      | Timer Capture Register 34                   |
| 0x01C2 0044 | 0x01C2 1044 | INTCTLSTAT | Timer Interrupt Control and Status Register |
| 0x01C2 0060 | 0x01C2 1060 | CMP0       | Compare Register 0                          |
| 0x01C2 0064 | 0x01C2 1064 | CMP1       | Compare Register 1                          |
| 0x01C2 0068 | 0x01C2 1068 | CMP2       | Compare Register 2                          |
| 0x01C2 006C | 0x01C2 106C | CMP3       | Compare Register 3                          |
| 0x01C2 0070 | 0x01C2 1070 | CMP4       | Compare Register 4                          |
| 0x01C2 0074 | 0x01C2 1074 | CMP5       | Compare Register 5                          |
| 0x01C2 0078 | 0x01C2 1078 | CMP6       | Compare Register 6                          |
| 0x01C2 007C | 0x01C2 107C | CMP7       | Compare Register 7                          |



#### 5.21.1 Timer Electrical Data/Timing

## Table 5-84. Timing Requirements for Timer Input<sup>(1)(2) (3)</sup> (see Figure 5-60)

| NO. |                       |                             | MIN   | MAX   | UNIT |
|-----|-----------------------|-----------------------------|-------|-------|------|
| 1   | t <sub>c(TIN)</sub>   | Cycle time, TIM_IN          | 4P    |       | ns   |
| 2   | t <sub>w(TINPH)</sub> | Pulse duration, TIM_IN high | 0.45C | 0.55C | ns   |
| 3   | t <sub>w(TINPL)</sub> | Pulse duration, TIM_IN low  | 0.45C | 0.55C | ns   |
| 4   | t <sub>t(TIN)</sub>   | Transition time, TIM_IN     |       | 0.05C | ns   |

- (1) Parameters are characterized from -40°C to 125°C unless otherwise noted.
- (2) P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use  $P = 37.0\overline{37}$  ns.
- (3) C = TM64P0\_IN12 cycle time in ns. For example, when TM64Px\_IN12 frequency is 27 MHz, use C = 37.037 ns



Figure 5-60. Timer Timing

Table 5-85. Switching Characteristics Over Recommended Operating Conditions for Timer Output<sup>(1)</sup> (2)

| NO. |                                                         | MIN | MAX | UNIT |
|-----|---------------------------------------------------------|-----|-----|------|
| 5   | t <sub>w(TOUTH)</sub> Pulse duration, TM64P0_OUT12 high | 4P  |     | ns   |
| 6   | t <sub>w(TOUTL)</sub> Pulse duration, TM64P0_OUT12 low  | 4P  |     | ns   |

- (1) Parameters are characterized from -40°C to 125°C unless otherwise noted.
- (2) P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use  $P = 37.0\overline{37}$  ns.



Figure 5-61. Timer Timing



## 5.22 Inter-Integrated Circuit Serial Ports (I2C0, I2C1)

## 5.22.1 I2C Device-Specific Information

Having two I2C modules on the device simplifies system architecture, since one module may be used by the DSP to control local peripherals ICs (DACs, ADCs, etc.) while the other may be used to communicate with other controllers in a system or to implement a user interface. Figure Figure 5-62 is block diagram of the I2C Module.

#### Each I2C port supports:

- Compatible with Philips® I2C Specification Revision 2.1 (January 2000)
- Fast Mode up to 400 Kbps (no fail-safe I/O buffers)
- Noise Filter to Remove Noise 50 ns or less
- Seven- and Ten-Bit Device Addressing Modes
- · Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality
- Events: DMA, Interrupt, or Polling
- · General-Purpose I/O Capability if not used as I2C



Figure 5-62. I2C Module Block Diagram



## 5.22.2 I2C Peripheral Registers Description(s)

Table 5-86 is the list of the I2C registers. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number SPRUFK9 for more details.

Table 5-86. Inter-Integrated Circuit (I2C) Registers

| I2C0<br>BYTE ADDRESS | I2C1<br>BYTE ADDRESS | Acronym | Register Description                   |
|----------------------|----------------------|---------|----------------------------------------|
| 0x01C2 2000          | 0x01E2 8000          | ICOAR   | I2C Own Address Register               |
| 0x01C2 2004          | 0x01E2 8004          | ICIMR   | I2C Interrupt Mask Register            |
| 0x01C2 2008          | 0x01E2 8008          | ICSTR   | I2C Interrupt Status Register          |
| 0x01C2 200C          | 0x01E2 800C          | ICCLKL  | I2C Clock Low-Time Divider Register    |
| 0x01C2 2010          | 0x01E2 8010          | ICCLKH  | I2C Clock High-Time Divider Register   |
| 0x01C2 2014          | 0x01E2 8014          | ICCNT   | I2C Data Count Register                |
| 0x01C2 2018          | 0x01E2 8018          | ICDRR   | I2C Data Receive Register              |
| 0x01C2 201C          | 0x01E2 801C          | ICSAR   | I2C Slave Address Register             |
| 0x01C2 2020          | 0x01E2 8020          | ICDXR   | I2C Data Transmit Register             |
| 0x01C2 2024          | 0x01E2 8024          | ICMDR   | I2C Mode Register                      |
| 0x01C2 2028          | 0x01E2 8028          | ICIVR   | I2C Interrupt Vector Register          |
| 0x01C2 202C          | 0x01E2 802C          | ICEMDR  | I2C Extended Mode Register             |
| 0x01C2 2030          | 0x01E2 8030          | ICPSC   | I2C Prescaler Register                 |
| 0x01C2 2034          | 0x01E2 8034          | REVID1  | I2C Revision Identification Register 1 |
| 0x01C2 2038          | 0x01E2 8038          | REVID2  | I2C Revision Identification Register 2 |
| 0x01C2 2048          | 0x01E2 8048          | ICPFUNC | I2C Pin Function Register              |
| 0x01C2 204C          | 0x01E2 804C          | ICPDIR  | I2C Pin Direction Register             |
| 0x01C2 2050          | 0x01E2 8050          | ICPDIN  | I2C Pin Data In Register               |
| 0x01C2 2054          | 0x01E2 8054          | ICPDOUT | I2C Pin Data Out Register              |
| 0x01C2 2058          | 0x01E2 8058          | ICPDSET | I2C Pin Data Set Register              |
| 0x01C2 205C          | 0x01E2 805C          | ICPDCLR | I2C Pin Data Clear Register            |

## 5.22.3 I2C Electrical Data/Timing

## 5.22.3.1 Inter-Integrated Circuit (I2C) Timing

Table 5-87 and Table 5-88 assume testing over recommended operating conditions (see Figure 5-63 and Figure 5-64).

Table 5-87. I2C Input Timing Requirements<sup>(1)</sup>

| NO. |                                                                     |                                                      |               | MIN M | AX UNIT |
|-----|---------------------------------------------------------------------|------------------------------------------------------|---------------|-------|---------|
| 4   |                                                                     | Cools time 1000 COI                                  | Standard Mode | 10    |         |
| ı   | T <sub>c(SCL)</sub>                                                 | Cycle time, I2Cx_SCL                                 | Fast Mode     | 2.5   | μs      |
| 2   |                                                                     | Setup time, I2Cx_SCL high before I2Cx_SDA            | Standard Mode | 4.7   |         |
| 2   | <sup>t</sup> su(SCLH-SDAL)                                          | low                                                  | Fast Mode     | 0.6   | μs      |
| 3   |                                                                     | CLL-SDAL) Hold time, I2Cx_SCL low after I2Cx_SDA low | Standard Mode | 4     |         |
| 3   | th(SCLL-SDAL)                                                       |                                                      | Fast Mode     | 0.6   | μs      |
| 4   |                                                                     | w(SCLL) Pulse duration, I2Cx_SCL low                 | Standard Mode | 4.7   |         |
| 4   | t <sub>w(SCLL)</sub>                                                |                                                      | Fast Mode     | 1.3   | μs      |
| 5   |                                                                     | B. J. W. 100 001111                                  | Standard Mode | 4     |         |
| 5   | t <sub>w(SCLH)</sub>                                                | Pulse duration, I2Cx_SCL high                        | Fast Mode     | 0.6   | μs      |
| 6   |                                                                     | Cotus time 190y CDA hefere 190y COI high             | Standard Mode | 250   |         |
| 6   | t <sub>su(SDA-SCLH)</sub> Setup time, I2Cx_SDA before I2Cx_SCL high | Fast Mode                                            | 100           | ns    |         |

(1) Parameters are characterized from -40°C to 125°C unless otherwise noted.



## Table 5-87. I2C Input Timing Requirements<sup>(1)</sup> (continued)

| NO. |                            |                                                        |               | MIN                    | MAX  | UNIT |  |
|-----|----------------------------|--------------------------------------------------------|---------------|------------------------|------|------|--|
| 7   |                            | A-SCLL) Hold time, I2Cx_SDA after I2Cx_SCL low         | Standard Mode | 0                      |      |      |  |
| /   | $t_{h(SDA-SCLL)}$          |                                                        | Fast Mode     | 0                      | 0.9  | μs   |  |
| 8   |                            | Dulas duration 12Cv CDA high                           | Standard Mode | 4.7                    |      |      |  |
| 0   | t <sub>w</sub> (SDAH)      | Pulse duration, I2Cx_SDA high                          | Fast Mode     | 1.3                    |      | μs   |  |
| 9   |                            | Rise time, I2Cx_SDA                                    | Standard Mode |                        | 1000 | 20   |  |
| ຶ່ນ | t <sub>r(SDA)</sub>        |                                                        | Fast Mode     | 20 + 0.1C <sub>b</sub> | 300  | ns   |  |
| 10  |                            | SCL) Rise time, I2Cx_SCL                               | Standard Mode |                        | 1000 | ns   |  |
| 10  | t <sub>r(SCL)</sub>        |                                                        | Fast Mode     | 20 + 0.1C <sub>b</sub> | 300  |      |  |
| 11  |                            | SDA) Fall time, I2Cx_SDA                               | Standard Mode |                        | 300  | ns   |  |
| 11  | t <sub>f(SDA)</sub>        |                                                        | Fast Mode     | 20 + 0.1C <sub>b</sub> | 300  | 115  |  |
| 12  |                            | Fall time 100v CCI                                     | Standard Mode |                        | 300  | 20   |  |
| 12  | t <sub>f(SCL)</sub>        | Fall time, I2Cx_SCL                                    | Fast Mode     | 20 + 0.1C <sub>b</sub> | 300  | ns   |  |
| 13  |                            | Setup time, I2Cx_SCL high before I2Cx_SDA              | Standard Mode | 4                      |      |      |  |
| 13  | t <sub>su(SCLH-SDAH)</sub> | high                                                   | Fast Mode     | 0.6                    |      | μs   |  |
| 1.1 |                            | Dules duration spike (must be suppressed)              | Standard Mode | N/A                    |      |      |  |
| 14  | <sup>L</sup> w(SP)         | $t_{w(SP)}$ Pulse duration, spike (must be suppressed) | Fast Mode     | 0                      | 50   | ns   |  |
| 15  | 0                          | Canaditive lead for each hus line                      | Standard Mode |                        | 400  | pF   |  |
| 15  | O <sub>b</sub>             | Capacitive load for each bus line                      | Fast Mode     |                        | 400  |      |  |

## Table 5-88. I2C Switching Characteristics (1)(2)

| NO. |                                 | PARAMETER                                       |                              | MIN           | MAX | UNIT |  |
|-----|---------------------------------|-------------------------------------------------|------------------------------|---------------|-----|------|--|
| 16  |                                 | Cycle time 19Cy CCI                             | Standard Mode                | 10            |     |      |  |
| 16  | $t_{c(SCL)}$                    | Cycle time, I2Cx_SCL                            | Fast Mode                    | 2.5           |     | μs   |  |
| 17  |                                 | Setup time, I2Cx_SCL high before I2Cx_SDA       | Standard Mode                | 4.7           |     |      |  |
| 17  | t <sub>su(SCLH-SDAL)</sub>      | SCLH-SDAL)                                      | Fast Mode                    | 0.6           |     | μs   |  |
| 18  | 4                               | Hold time 12Cv SCI law after 12Cv SDA law       | Standard Mode                | 4             |     |      |  |
| 10  | th(SDAL-SCLL)                   | Hold time, I2Cx_SCL low after I2Cx_SDA low      | Fast Mode                    | 0.6           |     | μs   |  |
| 19  | 40                              |                                                 | Pulse duration, I2Cx_SCL low | Standard Mode | 4.7 |      |  |
| 19  | t <sub>w(SCLL)</sub>            | SCLL) Fulse duration, IZCX_SCL low              | Fast Mode                    | 1.3           |     | μs   |  |
| 20  | 00                              | Pulse duration, I2Cx_SCL high                   | Standard Mode                | 4             |     |      |  |
| 20  | t <sub>w(SCLH)</sub>            |                                                 | Fast Mode                    | 0.6           |     | μs   |  |
| 21  |                                 | Setup time, I2Cx_SDA valid before I2Cx_SCL high | Standard Mode                | 250           |     | 20   |  |
| 21  | <sup>L</sup> su(SDAV-SCLH)      |                                                 | Fast Mode                    | 100           |     | ns   |  |
| 22  |                                 | Hold time 190y CDA valid often 190y COL January | Standard Mode                | 0             |     |      |  |
| 22  | th(SCLL-SDAV)                   | Hold time, I2Cx_SDA valid after I2Cx_SCL low    | Fast Mode                    | 0             | 0.9 | μs   |  |
| 23  |                                 | Dulgo duration 190y CDA high                    | Standard Mode                | 4.7           |     |      |  |
| 23  | t <sub>w(SDAH)</sub>            | w(SDAH) Pulse duration, I2Cx_SDA high           | Fast Mode                    | 1.3           |     | μs   |  |
| 28  |                                 | Setup time, I2Cx_SCL high before I2Cx_SDA       | Standard Mode                | 4             |     |      |  |
| 20  | t <sub>su(SCLH-SDAH)</sub> high | high                                            | Fast Mode                    | 0.6           |     | μs   |  |

 <sup>(1)</sup> Parameters are characterized from -40°C to 125°C unless otherwise noted.
 (2) I2C must be configured correctly to meet the timings in Table 5-88.





Figure 5-63. I2C Receive Timings



Figure 5-64. I2C Transmit Timings



## 5.23 Universal Asynchronous Receiver/Transmitter (UART)

The device has 3 UART peripherals. Each UART has the following features:

- 16-byte storage space for both the transmitter and receiver FIFOs
- 1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA
- · DMA signaling capability for both received and transmitted data
- Programmable auto-rts and auto-cts for autoflow control
- · Programmable Baud Rate up to 3MBaud
- Programmable Oversampling Options of x13 and x16
- Frequency pre-scale values from 1 to 65,535 to generate appropriate baud rates
- Prioritized interrupts
- Programmable serial data formats
  - 5, 6, 7, or 8-bit characters
  - Even, odd, or no parity bit generation and detection
  - 1, 1.5, or 2 stop bit generation
- · False start bit detection
- · Line break generation and detection
- · Internal diagnostic capabilities
  - Loopback controls for communications link fault isolation
  - Break, parity, overrun, and framing error simulation
- Modem control functions (CTS, RTS) on UARTO only.

The UART registers are listed in Section 5.23.1

## 5.23.1 UART Peripheral Registers Description(s)

Table 5-89 is the list of UART registers. See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number SPRUFK9 for more details.

#### Table 5-89. UART Registers

| UARTO<br>BYTE ADDRESS | UART1<br>BYTE ADDRESS | UART2<br>BYTE ADDRESS | REGISTER NAME | Register Description                          |
|-----------------------|-----------------------|-----------------------|---------------|-----------------------------------------------|
| 0x01C4 2000           | 0x01D0 C000           | 0x01D0 D000           | RBR           | Receiver Buffer Register (read only)          |
| 0x01C4 2000           | 0x01D0 C000           | 0x01D0 D000           | THR           | Transmitter Holding Register (write only)     |
| 0x01C4 2004           | 0x01D0 C004           | 0x01D0 D004           | IER           | Interrupt Enable Register                     |
| 0x01C4 2008           | 0x01D0 C008           | 0x01D0 D008           | IIR           | Interrupt Identification Register (read only) |
| 0x01C4 2008           | 0x01D0 C008           | 0x01D0 D008           | FCR           | FIFO Control Register (write only)            |
| 0x01C4 200C           | 0x01D0 C00C           | 0x01D0 D00C           | LCR           | Line Control Register                         |
| 0x01C4 2010           | 0x01D0 C010           | 0x01D0 D010           | MCR           | Modem Control Register                        |
| 0x01C4 2014           | 0x01D0 C014           | 0x01D0 D014           | LSR           | Line Status Register                          |
| 0x01C4 2018           | 0x01D0 C018           | 0x01D0 D018           | MSR           | Modem Status Register                         |
| 0x01C4 201C           | 0x01D0 C01C           | 0x01D0 D01C           | SCR           | Scratchpad Register                           |
| 0x01C4 2020           | 0x01D0 C020           | 0x01D0 D020           | DLL           | Divisor LSB Latch                             |
| 0x01C4 2024           | 0x01D0 C024           | 0x01D0 D024           | DLH           | Divisor MSB Latch                             |
| 0x01C4 2028           | 0x01D0 C028           | 0x01D0 D028           | REVID1        | Revision Identification Register 1            |
| 0x01C4 2030           | 0x01D0 C030           | 0x01D0 D030           | PWREMU_MGMT   | Power and Emulation Management Register       |
| 0x01C4 2034           | 0x01D0 C034           | 0x01D0 D034           | MDR           | Mode Definition Register                      |



## 5.23.2 UART Electrical Data/Timing

## Table 5-90. Timing Requirements for UARTx Receive (1)(2) (see Figure 5-65)

| NO. |                                                               | MIN MA     | X UNIT |
|-----|---------------------------------------------------------------|------------|--------|
| 4   | t <sub>w(URXDB)</sub> Pulse duration, receive data bit (RXDn) | 0.96U 1.05 | U ns   |
| 5   | t <sub>w(URXSB)</sub> Pulse duration, receive start bit       | 0.96U 1.05 | U ns   |

- 1) Parameters are characterized from -40°C to 125°C unless otherwise noted.
- (2) U = UART baud time = 1/programmed baud rate.

Table 5-91. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit<sup>(1)(2)</sup> (see Figure 5-65)

| NO. | PARAMETER                                                      | MIN   | MAX   | UNIT  |
|-----|----------------------------------------------------------------|-------|-------|-------|
| 1   | f <sub>(baud)</sub> Maximum programmable baud rate             |       | 3     | MBaud |
| 2   | t <sub>w(UTXDB)</sub> Pulse duration, transmit data bit (TXDn) | U - 2 | U + 2 | ns    |
| 3   | t <sub>w(UTXSB)</sub> Pulse duration, transmit start bit       | U - 2 | U + 2 | ns    |

- (1) Parameters are characterized from -40°C to 125°C unless otherwise noted.
- (2) U = UART baud time = 1/programmed baud rate.



Figure 5-65. UART Transmit/Receive Timing



## 5.24 USB1 Host Controller (USB1.1 OHCI)

All OMAPL137 USB interfaces are compliant with Universal Serial Bus Specifications, Revision 1.1.

Table 5-92 is the list of USB Host Controller registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. - Literature Number SPRUFK9 for more details.

Table 5-92. USB Host Controller (USB1) Registers

| USB<br>BYTE ADDRESS | REGISTER NAME      | Register Description                        |
|---------------------|--------------------|---------------------------------------------|
| 0x01E2 5000         | HCREVISION         | OHCI Revision Number Register               |
| 0x01E2 5004         | HCCONTROL          | HC Operating Mode Register                  |
| 0x01E2 5008         | HCCOMMANDSTATUS    | HC Command and Status Register              |
| 0x01E2 500C         | HCINTERRUPTSTATUS  | HC Interrupt and Status Register            |
| 0x01E2 5010         | HCINTERRUPTENABLE  | HC Interrupt Enable Register                |
| 0x01E2 5014         | HCINTERRUPTDISABLE | HC Interrupt Disable Register               |
| 0x01E2 5018         | HCHCCA             | HC HCAA Address Register <sup>(1)</sup>     |
| 0x01E2 501C         | HCPERIODCURRENTED  | HC Current Periodic Register <sup>(1)</sup> |
| 0x01E2 5020         | HCCONTROLHEADED    | HC Head Control Register <sup>(1)</sup>     |
| 0x01E2 5024         | HCCONTROLCURRENTED | HC Current Control Register <sup>(1)</sup>  |
| 0x01E2 5028         | HCBULKHEADED       | HC Head Bulk Register <sup>(1)</sup>        |
| 0x01E2 502C         | HCBULKCURRENTED    | HC Current Bulk Register <sup>(1)</sup>     |
| 0x01E2 5030         | HCDONEHEAD         | HC Head Done Register <sup>(1)</sup>        |
| 0x01E2 5034         | HCFMINTERVAL       | HC Frame Interval Register                  |
| 0x01E2 5038         | HCFMREMAINING      | HC Frame Remaining Register                 |
| 0x01E2 503C         | HCFMNUMBER         | HC Frame Number Register                    |
| 0x01E2 5040         | HCPERIODICSTART    | HC Periodic Start Register                  |
| 0x01E2 5044         | HCLSTHRESHOLD      | HC Low-Speed Threshold Register             |
| 0x01E2 5048         | HCRHDESCRIPTORA    | HC Root Hub A Register                      |
| 0x01E2 504C         | HCRHDESCRIPTORB    | HC Root Hub B Register                      |
| 0x01E2 5050         | HCRHSTATUS         | HC Root Hub Status Register                 |
| 0x01E2 5054         | HCRHPORTSTATUS1    | HC Port 1 Status and Control Register (2)   |
| 0x01E2 5058         | HCRHPORTSTATUS2    | HC Port 2 Status and Control Register (3)   |

Restrictions apply to the physical addresses used in these registers.

### Table 5-93. Switching Characteristics Over Recommended Operating Conditions for USB1<sup>(1)</sup>

| NO. |                  | PARAMETER                                           |                    | SPEED              | FULL               | ¬ UNIT             |      |
|-----|------------------|-----------------------------------------------------|--------------------|--------------------|--------------------|--------------------|------|
| NO. | TARAMETER        |                                                     | MIN                | MAX                | MAX                | MAX                | UNII |
| U1  | t <sub>r</sub>   | Rise time, USB.DP and USB.DM signals (2)            | 75 <sup>(2)</sup>  | 300 <sup>(2)</sup> | 4 <sup>(2)</sup>   | 20(2)              | ns   |
| U2  | t <sub>f</sub>   | Fall time, USB.DP and USB.DM signals <sup>(2)</sup> | 75 <sup>(2)</sup>  | 300 <sup>(2)</sup> | 4 <sup>(2)</sup>   | 20(2)              | ns   |
| U3  | t <sub>RFM</sub> | Rise/Fall time matching <sup>(3)</sup>              | 80 <sup>(3)</sup>  | 120 <sup>(3)</sup> | 90 <sup>(3)</sup>  | 110 <sup>(3)</sup> | %    |
| U4  | $V_{CRS}$        | Output signal cross-over voltage (2)                | 1.3 <sup>(2)</sup> | 2 <sup>(2)</sup>   | 1.3 <sup>(2)</sup> | 2 <sup>(2)</sup>   | V    |
| U5  | t <sub>j</sub>   | Differential propagation jitter <sup>(4)</sup>      | -25 <sup>(4)</sup> | 25 <sup>(4)</sup>  | -2 <sup>(4)</sup>  | 2 <sup>(4)</sup>   | ns   |
| U6  | f <sub>op</sub>  | Operating frequency <sup>(5)</sup>                  |                    | 1.5                |                    | 12                 | MHz  |

<sup>(1)</sup> Parameters are characterized from -40°C to 125°C unless otherwise noted.

Connected to the integrated USB1.1 phy pins (USB1\_DM, USB1\_DP).

Although the controller implements two ports, the second port cannot be used.

Low Speed: C<sub>L</sub> = 200 pF. High Speed: C<sub>L</sub> = 50pF

 $t_{RFM} = (t_r/t_f) \times 100$ 

<sup>(4)</sup> (4)  $t_{jr} = t_{px(1)} - t_{px(0)}$ (5)  $t_{op} = 1/t_{per}$ 



## 5.25 USB0 OTG (USB2.0 OTG)

The USB2.0 peripheral supports the following features:

- USB 2.0 peripheral at speeds high speed and full speed (FS: 12 Mb/s)
- USB 2.0 host at speeds FS, and low speed (LS: 1.5 Mb/s)
- All transfer modes (control, bulk, interrupt, and isochronous)
- 4 Transmit (TX) and 4 Receive (RX) endpoints in addition to endpoint 0
- FIFO RAM
  - 4K endpoint
  - Programmable size
- Integrated USB 2.0 High Speed PHY
- Connects to a standard Charge Pump for VBUS 5 V generation
- RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB

Table 5-94 is the list of USB OTG registers. See the *TMS320C674x/OMAP-L1x Processor Peripherals* Overview Reference Guide. – Literature Number SPRUFK9 for more details.

Table 5-94. Universal Serial Bus OTG (USB0) Registers

| BYTE ADDRESS | Acronym    | Register Description                                                   |  |
|--------------|------------|------------------------------------------------------------------------|--|
| 0x01E0 0000  |            | Revision Register                                                      |  |
| 0x01E0 0004  | CTRLR      | Control Register                                                       |  |
| 0x01E0 0008  | STATR      | Status Register                                                        |  |
| 0x01E0 000C  |            | Emulation Register                                                     |  |
| 0x01E0 0010  |            | Mode Register                                                          |  |
| 0x01E0 0014  | AUTOREQ    | Autorequest Register                                                   |  |
| 0x01E0 0018  |            | SRP Fix Time Register                                                  |  |
| 0x01E0 001C  |            | RX Teardown Register                                                   |  |
| 0x01E0 0020  | INTSRCR    | USB Interrupt Source Register                                          |  |
| 0x01E0 0024  | INTSETR    | USB Interrupt Source Set Register                                      |  |
| 0x01E0 0028  | INTCLRR    | USB Interrupt Source Clear Register                                    |  |
| 0x01E0 002C  | INTMSKR    | USB Interrupt Mask Register                                            |  |
| 0x01E0 0030  | INTMSKSETR | USB Interrupt Mask Set Register                                        |  |
| 0x01E0 0034  | INTMSKCLRR | USB Interrupt Mask Clear Register                                      |  |
| 0x01E0 0038  | INTMASKEDR | USB Interrupt Source Masked Register                                   |  |
| 0x01E0 003C  | EOIR       | USB End of Interrupt Register                                          |  |
| 0x01E0 0040  | INTVECTR   | USB Interrupt Vector Register                                          |  |
| 0x01E0 0050  | RNDISEP1   | Generic RNDIS Size EP1                                                 |  |
| 0x01E0 0054  | RNDISEP2   | Generic RNDIS Size EP2                                                 |  |
| 0x01E0 0058  | RNDISEP3   | Generic RNDIS Size EP3                                                 |  |
| 0x01E0 005C  | RNDISEP4   | Generic RNDIS Size EP4                                                 |  |
| 0x01E0 0400  | FADDR      | Function Address Register                                              |  |
| 0x01E0 0401  | POWER      | Power Management Register                                              |  |
| 0x01E0 0402  | INTRTX     | Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4       |  |
| 0x01E0 0404  | INTRRX     | Interrupt Register for Receive Endpoints 1 to 4                        |  |
| 0x01E0 0406  | INTRTXE    | Interrupt enable register for INTRTX                                   |  |
| 0x01E0 0408  | INTRRXE    | Interrupt Enable Register for INTRRX                                   |  |
| 0x01E0 040A  | INTRUSB    | Interrupt Register for Common USB Interrupts                           |  |
| 0x01E0 040B  | INTRUSBE   | Interrupt Enable Register for INTRUSB                                  |  |
| 0x01E0 040C  | FRAME      | Frame Number Register                                                  |  |
| 0x01E0 040E  | INDEX      | Index Register for Selecting the Endpoint Status and Control Registers |  |



| BYTE ADDRESS | Acronym                             | Register Description                                                                                                                                                                     |
|--------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x01E0 040F  | TESTMODE                            | Register to Enable the USB 2.0 Test Modes                                                                                                                                                |
|              | Inde These registers operate on the | exed Registers endpoint selected by the INDEX register                                                                                                                                   |
| 0x01E0 0410  | TXMAXP                              | Maximum Packet Size for Peripheral/Host Transmit Endpoint (Index register set to select Endpoints 1-4 only)                                                                              |
| 0x01E0 0412  | PERI_CSR0                           | Control Status Register for Endpoint 0 in Peripheral Mode. (Index register set to select Endpoint 0)                                                                                     |
|              | HOST_CSR0                           | Control Status Register for Endpoint 0 in Host Mode. (Index register set to select Endpoint 0)                                                                                           |
|              | PERI_TXCSR                          | Control Status Register for Peripheral Transmit Endpoint. (Index register set to select Endpoints 1-4)                                                                                   |
|              | HOST_TXCSR                          | Control Status Register for Host Transmit Endpoint. (Index register set to select Endpoints 1-4)                                                                                         |
| 0x01E0 0414  | RXMAXP                              | Maximum Packet Size for Peripheral/Host Receive Endpoint (Index register set to select Endpoints 1-4 only)                                                                               |
| 0x01E0 0416  | PERI_RXCSR                          | Control Status Register for Peripheral Receive Endpoint. (Index register set to select Endpoints 1-4)                                                                                    |
|              | HOST_RXCSR                          | Control Status Register for Host Receive Endpoint. (Index register set to select Endpoints 1-4)                                                                                          |
| 0x01E0 0418  | COUNT0                              | Number of Received Bytes in Endpoint 0 FIFO. (Index register set to select Endpoint 0)                                                                                                   |
|              | RXCOUNT                             | Number of Bytes in Host Receive Endpoint FIFO.<br>(Index register set to select Endpoints 1- 4)                                                                                          |
| 0x01E0 041A  | HOST_TYPE0                          | Defines the speed of Endpoint 0                                                                                                                                                          |
| 0x01E0 041B  | HOST_TXTYPE                         | Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. (Index register set to select Endpoints 1-4 only)                          |
|              | HOST_NAKLIMIT0                      | Sets the NAK response timeout on Endpoint 0. (Index register set to select Endpoint 0)                                                                                                   |
|              | HOST_TXINTERVAL                     | Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. (Index register set to select Endpoints 1-4 only) |
| 0x01E0 041C  | HOST_RXTYPE                         | Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. (Index register set to select Endpoints 1-4 only)                           |
| 0x01E0 041D  | HOST_RXINTERVAL                     | Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint.  (Index register set to select Endpoints 1-4 only) |
| 0x01E0 041F  | CONFIGDATA                          | Returns details of core configuration. (Index register set to select Endpoint 0)                                                                                                         |
|              |                                     | FIFO                                                                                                                                                                                     |
| 0x01E0 0420  | FIFO0                               | Transmit and Receive FIFO Register for Endpoint 0                                                                                                                                        |
| 0x01E0 0424  | FIFO1                               | Transmit and Receive FIFO Register for Endpoint 1                                                                                                                                        |
| 0x01E0 0428  | FIFO2                               | Transmit and Receive FIFO Register for Endpoint 2                                                                                                                                        |
| 0x01E0 042C  | FIFO3                               | Transmit and Receive FIFO Register for Endpoint 3                                                                                                                                        |
| 0x01E0 0430  | FIFO4                               | Transmit and Receive FIFO Register for Endpoint 4                                                                                                                                        |
|              | OTG                                 | Device Control                                                                                                                                                                           |
| 0x01E0 0460  | DEVCTL                              | Device Control Register                                                                                                                                                                  |
|              | Dynan                               | nic FIFO Control                                                                                                                                                                         |
| 0x01E0 0462  | TXFIFOSZ                            | Transmit Endpoint FIFO Size (Index register set to select Endpoints 1-4 only)                                                                                                            |
| 0x01E0 0463  | RXFIFOSZ                            | Receive Endpoint FIFO Size (Index register set to select Endpoints 1-4 only)                                                                                                             |
| 0x01E0 0464  | TXFIFOADDR                          | Transmit Endpoint FIFO Address (Index register set to select Endpoints 1-4 only)                                                                                                         |



| BYTE ADDRESS | Acronym                  | Register Description                                                                                                                                                                       |
|--------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x01E0 0466  | RXFIFOADDR               | Receive Endpoint FIFO Address (Index register set to select Endpoints 1-4 only)                                                                                                            |
|              | Target Endpoint 0 Contro | ol Registers, Valid Only in Host Mode                                                                                                                                                      |
| 0x01E0 0480  | TXFUNCADDR               | Address of the target function that has to be accessed through the associated Transmit Endpoint.                                                                                           |
| 0x01E0 0482  | TXHUBADDR                | Address of the hub that has to be accessed through the associated<br>Transmit Endpoint. This is used only when full speed or low speed<br>device is connected via a USB2.0 high-speed hub. |
| 0x01E0 0483  | TXHUBPORT                | Port of the hub that has to be accessed through the associated<br>Transmit Endpoint. This is used only when full speed or low speed<br>device is connected via a USB2.0 high-speed hub.    |
| 0x01E0 0484  | RXFUNCADDR               | Address of the target function that has to be accessed through the associated Receive Endpoint.                                                                                            |
| 0x01E0 0486  | RXHUBADDR                | Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.        |
| 0x01E0 0487  | RXHUBPORT                | Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.           |
|              | Target Endpoint 1 Contro | ol Registers, Valid Only in Host Mode                                                                                                                                                      |
| 0x01E0 0488  | TXFUNCADDR               | Address of the target function that has to be accessed through the associated Transmit Endpoint.                                                                                           |
| 0x01E0 048A  | TXHUBADDR                | Address of the hub that has to be accessed through the associated<br>Transmit Endpoint. This is used only when full speed or low speed<br>device is connected via a USB2.0 high-speed hub. |
| 0x01E0 048B  | TXHUBPORT                | Port of the hub that has to be accessed through the associated<br>Transmit Endpoint. This is used only when full speed or low speed<br>device is connected via a USB2.0 high-speed hub.    |
| 0x01E0 048C  | RXFUNCADDR               | Address of the target function that has to be accessed through the associated Receive Endpoint.                                                                                            |
| 0x01E0 048E  | RXHUBADDR                | Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.        |
| 0x01E0 048F  | RXHUBPORT                | Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.           |
|              | Target Endpoint 2 Contro | ol Registers, Valid Only in Host Mode                                                                                                                                                      |
| 0x01E0 0490  | TXFUNCADDR               | Address of the target function that has to be accessed through the associated Transmit Endpoint.                                                                                           |
| 0x01E0 0492  | TXHUBADDR                | Address of the hub that has to be accessed through the associated<br>Transmit Endpoint. This is used only when full speed or low speed<br>device is connected via a USB2.0 high-speed hub. |
| 0x01E0 0493  | TXHUBPORT                | Port of the hub that has to be accessed through the associated<br>Transmit Endpoint. This is used only when full speed or low speed<br>device is connected via a USB2.0 high-speed hub.    |
| 0x01E0 0494  | RXFUNCADDR               | Address of the target function that has to be accessed through the associated Receive Endpoint.                                                                                            |
| 0x01E0 0496  | RXHUBADDR                | Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.        |
| 0x01E0 0497  | RXHUBPORT                | Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.           |
|              | Target Endpoint 3 Contro | ol Registers, Valid Only in Host Mode                                                                                                                                                      |
| 0x01E0 0498  | TXFUNCADDR               | Address of the target function that has to be accessed through the associated Transmit Endpoint.                                                                                           |
| ·            | ·                        |                                                                                                                                                                                            |



| BYTE ADDRESS | Acronym                  | Register Description                                                                                                                                                                       |
|--------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x01E0 049A  | TXHUBADDR                | Address of the hub that has to be accessed through the associated<br>Transmit Endpoint. This is used only when full speed or low speed<br>device is connected via a USB2.0 high-speed hub. |
| 0x01E0 049B  | TXHUBPORT                | Port of the hub that has to be accessed through the associated<br>Transmit Endpoint. This is used only when full speed or low speed<br>device is connected via a USB2.0 high-speed hub.    |
| 0x01E0 049C  | RXFUNCADDR               | Address of the target function that has to be accessed through the associated Receive Endpoint.                                                                                            |
| 0x01E0 049E  | RXHUBADDR                | Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.        |
| 0x01E0 049F  | RXHUBPORT                | Port of the hub that has to be accessed through the associated Recei Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.             |
|              | Target Endpoint 4 Contro | Registers, Valid Only in Host Mode                                                                                                                                                         |
| 0x01E0 04A0  | TXFUNCADDR               | Address of the target function that has to be accessed through the associated Transmit Endpoint.                                                                                           |
| 0x01E0 04A2  | TXHUBADDR                | Address of the hub that has to be accessed through the associated<br>Transmit Endpoint. This is used only when full speed or low speed<br>device is connected via a USB2.0 high-speed hub. |
| 0x01E0 04A3  | TXHUBPORT                | Port of the hub that has to be accessed through the associated<br>Transmit Endpoint. This is used only when full speed or low speed<br>device is connected via a USB2.0 high-speed hub.    |
| 0x01E0 04A4  | RXFUNCADDR               | Address of the target function that has to be accessed through the associated Receive Endpoint.                                                                                            |
| 0x01E0 04A6  | RXHUBADDR                | Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub.        |
| 0x01E0 04A7  | RXHUBPORT                | Port of the hub that has to be accessed through the associated Rece<br>Endpoint. This is used only when full speed or low speed device is<br>connected via a USB2.0 high-speed hub.        |
|              | Control and Stat         | tus Register for Endpoint 0                                                                                                                                                                |
| 0x01E0 0502  | PERI_CSR0                | Control Status Register for Endpoint 0 in Peripheral Mode                                                                                                                                  |
|              | HOST_CSR0                | Control Status Register for Endpoint 0 in Host Mode                                                                                                                                        |
| 0x01E0 0508  | COUNT0                   | Number of Received Bytes in Endpoint 0 FIFO                                                                                                                                                |
| 0x01E0 050A  | HOST_TYPE0               | Defines the Speed of Endpoint 0                                                                                                                                                            |
| 0x01E0 050B  | HOST_NAKLIMIT0           | Sets the NAK Response Timeout on Endpoint 0                                                                                                                                                |
| 0x01E0 050F  | CONFIGDATA               | Returns details of core configuration.                                                                                                                                                     |
|              | Control and Stat         | tus Register for Endpoint 1                                                                                                                                                                |
| 0x01E0 0510  | TXMAXP                   | Maximum Packet Size for Peripheral/Host Transmit Endpoint                                                                                                                                  |
| 0x01E0 0512  | PERI_TXCSR               | Control Status Register for Peripheral Transmit Endpoint (peripheral mode)                                                                                                                 |
|              | HOST_TXCSR               | Control Status Register for Host Transmit Endpoint (host mode)                                                                                                                             |
| 0x01E0 0514  | RXMAXP                   | Maximum Packet Size for Peripheral/Host Receive Endpoint                                                                                                                                   |
| 0x01E0 0516  | PERI_RXCSR               | Control Status Register for Peripheral Receive Endpoint (peripheral mode)                                                                                                                  |
|              | HOST_RXCSR               | Control Status Register for Host Receive Endpoint (host mode)                                                                                                                              |
| 0x01E0 0518  | RXCOUNT                  | Number of Bytes in Host Receive endpoint FIFO                                                                                                                                              |
| 0x01E0 051A  | HOST_TXTYPE              | Sets the operating speed, transaction protocol and peripheral endpoin number for the host Transmit endpoint.                                                                               |
| 0x01E0 051B  | HOST_TXINTERVAL          | Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint.                                                     |



| BYTE ADDRESS | Acronym                                                                                                                                             | Register Description                                                                                                                   |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0x01E0 051C  | HOST_RXTYPE                                                                                                                                         | Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint.                           |  |  |
| 0x01E0 051D  | HOST_RXINTERVAL                                                                                                                                     | Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint.  |  |  |
|              | Control and Stat                                                                                                                                    | us Register for Endpoint 2                                                                                                             |  |  |
| 0x01E0 0520  | TXMAXP                                                                                                                                              | Maximum Packet Size for Peripheral/Host Transmit Endpoint                                                                              |  |  |
| 0x01E0 0522  | PERI_TXCSR                                                                                                                                          | Control Status Register for Peripheral Transmit Endpoint (peripheral mode)                                                             |  |  |
|              | HOST_TXCSR                                                                                                                                          | Control Status Register for Host Transmit Endpoint (host mode)                                                                         |  |  |
| 0x01E0 0524  | RXMAXP                                                                                                                                              | Maximum Packet Size for Peripheral/Host Receive Endpoint                                                                               |  |  |
| 0x01E0 0526  | PERI_RXCSR                                                                                                                                          | Control Status Register for Peripheral Receive Endpoint (peripheral mode)                                                              |  |  |
|              | HOST_RXCSR                                                                                                                                          | Control Status Register for Host Receive Endpoint (host mode)                                                                          |  |  |
| 0x01E0 0528  | RXCOUNT                                                                                                                                             | Number of Bytes in Host Receive endpoint FIFO                                                                                          |  |  |
| 0x01E0 052A  | HOST_TXTYPE                                                                                                                                         | Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint.                          |  |  |
| 0x01E0 052B  | 0x01E0 052B HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or response timeout on Bulk transactions for host Transmit en |                                                                                                                                        |  |  |
| 0x01E0 052C  | 0x01E0 052C HOST_RXTYPE Sets the operating speed, transaction protocol and periphera number for the host Receive endpoint.                          |                                                                                                                                        |  |  |
| 0x01E0 052D  | HOST_RXINTERVAL                                                                                                                                     | Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint.  |  |  |
|              | Control and Stat                                                                                                                                    | s Register for Endpoint 3                                                                                                              |  |  |
| 0x01E0 0530  | TXMAXP                                                                                                                                              | Maximum Packet Size for Peripheral/Host Transmit Endpoint                                                                              |  |  |
| 0x01E0 0532  | PERI_TXCSR                                                                                                                                          | Control Status Register for Peripheral Transmit Endpoint (peripheral mode)                                                             |  |  |
|              | HOST_TXCSR                                                                                                                                          | Control Status Register for Host Transmit Endpoint (host mode)                                                                         |  |  |
| 0x01E0 0534  | RXMAXP                                                                                                                                              | Maximum Packet Size for Peripheral/Host Receive Endpoint                                                                               |  |  |
| 0x01E0 0536  | PERI_RXCSR                                                                                                                                          | Control Status Register for Peripheral Receive Endpoint (peripheral mode)                                                              |  |  |
|              | HOST_RXCSR                                                                                                                                          | Control Status Register for Host Receive Endpoint (host mode)                                                                          |  |  |
| 0x01E0 0538  | RXCOUNT                                                                                                                                             | Number of Bytes in Host Receive endpoint FIFO                                                                                          |  |  |
| 0x01E0 053A  | HOST_TXTYPE                                                                                                                                         | Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint.                          |  |  |
| 0x01E0 053B  | HOST_TXINTERVAL                                                                                                                                     | Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. |  |  |
| 0x01E0 053C  | HOST_RXTYPE                                                                                                                                         | Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint.                           |  |  |
| 0x01E0 053D  | HOST_RXINTERVAL                                                                                                                                     | Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint.  |  |  |
|              | Control and Stat                                                                                                                                    | us Register for Endpoint 4                                                                                                             |  |  |
| 0x01E0 0540  | TXMAXP                                                                                                                                              | Maximum Packet Size for Peripheral/Host Transmit Endpoint                                                                              |  |  |
| 0x01E0 0542  | PERI_TXCSR                                                                                                                                          | Control Status Register for Peripheral Transmit Endpoint (peripheral mode)                                                             |  |  |
|              | HOST_TXCSR                                                                                                                                          | Control Status Register for Host Transmit Endpoint (host mode)                                                                         |  |  |
| 0x01E0 0544  | RXMAXP                                                                                                                                              | Maximum Packet Size for Peripheral/Host Receive Endpoint                                                                               |  |  |
|              |                                                                                                                                                     |                                                                                                                                        |  |  |



| BYTE ADDRESS | Acronym         | Register Description                                                                                                                   |
|--------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 0x01E0 0546  | PERI_RXCSR      | Control Status Register for Peripheral Receive Endpoint (periphera mode)                                                               |
|              | HOST_RXCSR      | Control Status Register for Host Receive Endpoint (host mode)                                                                          |
| 0x01E0 0548  | RXCOUNT         | Number of Bytes in Host Receive endpoint FIFO                                                                                          |
| 0x01E0 054A  | HOST_TXTYPE     | Sets the operating speed, transaction protocol and peripheral endp number for the host Transmit endpoint.                              |
| 0x01E0 054B  | HOST_TXINTERVAL | Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. |
| 0x01E0 054C  | HOST_RXTYPE     | Sets the operating speed, transaction protocol and peripheral endp number for the host Receive endpoint.                               |
| 0x01E0 054D  | HOST_RXINTERVAL | Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint.  |
|              | DN              | //A Registers                                                                                                                          |
| 0x01E0 1000  | DMAREV          | DMA Revision Register                                                                                                                  |
| 0x01E0 1004  | TDFDQ           | DMA Teardown Free Descriptor Queue Control Register                                                                                    |
| 0x01E0 1008  | DMAEMU          | DMA Emulation Control Register                                                                                                         |
| 0x01E0 1800  | TGCR[0]         | Transmit Channel 0 Global Configuration Register                                                                                       |
| 0x01E0 1808  | RXGCR[0]        | Receive Channel 0 Global Configuration Register                                                                                        |
| 0x01E0 180C  | RXHPCRA[0]      | Receive Channel 0 Host Packet Configuration Register A                                                                                 |
| 0x01E0 1810  | RXHPCRB[0]      | Receive Channel 0 Host Packet Configuration Register B                                                                                 |
| 0x01E0 1820  | TGCR[1]         | Transmit Channel 1 Global Configuration Register                                                                                       |
| 0x01E0 1828  | RXGCR[1]        | Receive Channel 1 Global Configuration Register                                                                                        |
| 0x01E0 182C  | RXHPCRA[1]      | Receive Channel 1 Host Packet Configuration Register A                                                                                 |
| 0x01E0 1830  | RXHPCRB[1]      | Receive Channel 1 Host Packet Configuration Register B                                                                                 |
| 0x01E0 1840  | TGCR[2]         | Transmit Channel 2 Global Configuration Register                                                                                       |
| 0x01E0 1848  | RXGCR[2]        | Receive Channel 2 Global Configuration Register                                                                                        |
| 0x01E0 184C  | RXHPCRA[2]      | Receive Channel 2 Host Packet Configuration Register A                                                                                 |
| 0x01E0 1850  | RXHPCRB[2]      | Receive Channel 2 Host Packet Configuration Register B                                                                                 |
| 0x01E0 1860  | TGCR[3]         | Transmit Channel 3 Global Configuration Register                                                                                       |
| 0x01E0 1868  | RXGCR[3]        | Receive Channel 3 Global Configuration Register                                                                                        |
| 0x01E0 186C  | RXHPCRA[3]      | Receive Channel 3 Host Packet Configuration Register A                                                                                 |
| 0x01E0 1870  | RXHPCRB[3]      | Receive Channel 3 Host Packet Configuration Register B                                                                                 |
| 0x01E0 2C00  | DMA_SCHED_CTRL  | DMA Scheduler Control Register                                                                                                         |
| 0x01E0 2D00  | ENTRY[0]        | DMA Scheduler Table Word 0                                                                                                             |
| 0x01E0 2D04  | ENTRY[1]        | DMA Scheduler Table Word 1                                                                                                             |
|              |                 |                                                                                                                                        |
| 0x01E0 2DFC  | ENTRY[63]       | DMA Scheduler Table Word 63                                                                                                            |
|              | Queue M         | Manager Registers                                                                                                                      |
| 0x01E0 4000  | QMGRREV         | Queue Manager Revision Register                                                                                                        |
| 0x01E0 4008  | DIVERSION       | Queue Diversion Register                                                                                                               |
| 0x01E0 4020  | FDBSC0          | Free Descriptor/Buffer Starvation Count Register 0                                                                                     |
| 0x01E0 4024  | FDBSC1          | Free Descriptor/Buffer Starvation Count Register 1                                                                                     |
| 0x01E0 4028  | FDBSC2          | Free Descriptor/Buffer Starvation Count Register 2                                                                                     |
| 0x01E0 402C  | FDBSC3          | Free Descriptor/Buffer Starvation Count Register 3                                                                                     |
| 0x01E0 4080  | LRAM0BASE       | Linking RAM Region 0 Base Address Register                                                                                             |
| 0x01E0 4084  | LRAM0SIZE       | Linking RAM Region 0 Size Register                                                                                                     |
| 0x01E0 4088  | LRAM1BASE       | Linking RAM Region 1 Base Address Register                                                                                             |
| 0x01E0 4090  | PEND0           | Queue Pending Register 0                                                                                                               |



| 0x01E0 4094 | Acronym PEND1   | Register Description                     |
|-------------|-----------------|------------------------------------------|
| UXU1EU 4094 |                 | Ougus Danding Dagistar 1                 |
|             |                 | Queue Pending Register 1                 |
| 0x01E0 5000 | QMEMRBASE[0]    | Memory Region 0 Base Address Register    |
| 0x01E0 5004 | QMEMRCTRL[0]    | Memory Region 0 Control Register         |
| 0x01E0 5010 | QMEMRBASE[1]    | Memory Region 1 Base Address Register    |
| 0x01E0 5014 | QMEMRCTRL[1]    | Memory Region 1 Control Register         |
|             |                 |                                          |
| 0x01E0 5070 | QMEMRBASE[7]    | Memory Region 7 Base Address Register    |
| 0x01E0 5074 | QMEMRCTRL[7]    | Memory Region 7 Control Register         |
| 0x01E0 6000 | QCTRL_CTRLA[0]  | Queue Manager Queue 0 Control Register A |
| 0x01E0 6004 | QCTRL_CTRLB[0]  | Queue Manager Queue 0 Control Register B |
| 0x01E0 6008 | QCTRL_CTRLC[0]  | Queue Manager Queue 0 Control Register C |
| 0x01E0 600C | QCTRL_CTRLD[0]  | Queue Manager Queue 0 Control Register D |
| 0x01E0 6010 | QCTRL_CTRLA[1]  | Queue Manager Queue 1 Control Register A |
| 0x01E0 6014 | QCTRL_CTRLB[1]  | Queue Manager Queue 1 Control Register B |
| 0x01E0 6018 | QCTRL_CTRLC[1]  | Queue Manager Queue 1 Control Register C |
| 0x01E0 601C | QCTRL_CTRLD[1]  | Queue Manager Queue 1 Control Register D |
|             |                 |                                          |
| 0x01E0 63F0 | QCTRL_CTRLA[63] | Queue Manager Queue 63 Status Register A |
| 0x01E0 63F4 | QCTRL_CTRLB[63] | Queue Manager Queue 63 Status Register B |
| 0x01E0 63F8 | QCTRL_CTRLC[63] | Queue Manager Queue 63 Status Register C |
| 0x01E0 63FC | QCTRL_CTRLD[63] | Queue Manager Queue 63 Status Register D |
| 0x01E0 6800 | QCTRL_STATA[0]  | Queue Manager Queue 0 Status Register A  |
| 0x01E0 6804 | QCTRL_STATB[0]  | Queue Manager Queue 0 Status Register B  |
| 0x01E0 6808 | QCTRL_STATC[0]  | Queue Manager Queue 0 Status Register C  |
| 0x01E0 6810 | QCTRL_STATA[1]  | Queue Manager Queue 1 Status Register A  |
| 0x01E0 6814 | QCTRL_STATB[1]  | Queue Manager Queue 1 Status Register B  |
| 0x01E0 6818 | QCTRL_STATC[1]  | Queue Manager Queue 1 Status Register C  |
|             |                 |                                          |
| 0x01E0 6BF0 | QCTRL_STATA[63] | Queue Manager Queue 63 Status Register A |
| 0x01E0 6BF4 | QCTRL_STATB[63] | Queue Manager Queue 63 Status Register B |
| 0x01E0 6BF8 | QCTRL_STATC[63] | Queue Manager Queue 63 Status Register C |

## 5.25.1 USB0 Electrical Data/Timing

## Table 5-95. Switching Characteristics Over Recommended Operating Conditions for USB0<sup>(1)</sup> (see Figure 5-66)

| NO. | NO. PARAMETER             |                                                       | LOW SPEED<br>1.5 Mbps |     | FULL SPEED<br>12 Mbps |     | HIGH SPEED<br>480 Mbps |     | UNIT              |
|-----|---------------------------|-------------------------------------------------------|-----------------------|-----|-----------------------|-----|------------------------|-----|-------------------|
|     |                           |                                                       | MIN                   | MAX | MIN                   | MAX | MIN                    | MAX |                   |
| 1   | t <sub>r(D)</sub>         | Rise time, USB0_DP and USB0_DM signals <sup>(2)</sup> | 75                    | 300 | 4                     | 20  | 0.5                    |     | ns                |
| 2   | $t_{f(D)}$                | Fall time, USB0_DP and USB0_DM signals (2)            | 75                    | 300 | 4                     | 20  | 0.5                    |     | ns                |
| 3   | t <sub>rfM</sub>          | Rise/Fall time, matching (3)                          | 80                    | 120 | 90                    | 111 | -                      | -   | %                 |
| 4   | V <sub>CRS</sub>          | Output signal cross-over voltage (2)                  | 1.3                   | 2   | 1.3                   | 2   | -                      | _   | V                 |
| 5   | t <sub>jr(source)NT</sub> | Source (Host) Driver jitter, next transition          |                       | 2   |                       | 2   |                        |     | <sup>(4)</sup> ns |

- (1) Parameters are characterized from -40°C to 125°C unless otherwise noted.
- (2) Low Speed:  $C_L = 200 \text{ pF}$ , Full Speed:  $C_L = 50 \text{ pF}$ , High Speed:  $C_L = 50 \text{ pF}$
- (3)  $t_{RFM} = (t_r/t_f) \times 100$ . [Excluding the first transaction from the Idle state.]
- (4) For more detailed information, see the Universal Serial Bus Specification Revision 2.0, Chapter 7. Electrical.



# Table 5-95. Switching Characteristics Over Recommended Operating Conditions for USB0<sup>(1)</sup> (see Figure 5-66) (continued)

| NO. | PARAMETER                 |                                                               | LOW SPEED<br>1.5 Mbps |      | FULL SPEED<br>12 Mbps |      | HIGH SPEED<br>480 Mbps |      | UNIT |
|-----|---------------------------|---------------------------------------------------------------|-----------------------|------|-----------------------|------|------------------------|------|------|
|     |                           |                                                               | MIN                   | MAX  | MIN                   | MAX  | MIN                    | MAX  |      |
|     | t <sub>jr(FUNC)NT</sub>   | Function Driver jitter, next transition                       |                       | 25   |                       | 2    |                        | (4)  | ns   |
| 6   | t <sub>jr(source)PT</sub> | Source (Host) Driver jitter, paired transition <sup>(5)</sup> |                       | 1    |                       | 1    |                        | (4)  | ns   |
|     | t <sub>jr(FUNC)PT</sub>   | Function Driver jitter, paired transition                     |                       | 10   |                       | 1    |                        | (4)  | ns   |
| 7   | t <sub>w(EOPT)</sub>      | Pulse duration, EOP transmitter                               | 1250                  | 1500 | 160                   | 175  | -                      | -    | ns   |
| 8   | t <sub>w(EOPR)</sub>      | Pulse duration, EOP receiver                                  | 670                   |      | 82                    |      | -                      |      | ns   |
| 9   | t <sub>(DRATE)</sub>      | Data Rate                                                     |                       | 1.5  |                       | 12   |                        | 480  | Mb/s |
| 10  | Z <sub>DRV</sub>          | Driver Output Resistance                                      | -                     | _    | 40.5                  | 49.5 | 40.5                   | 49.5 | Ω    |
| 11  | Z <sub>INP</sub>          | Receiver Input Impedance                                      | 100k                  |      | 100k                  |      | -                      | -    | Ω    |

(5)  $t_{jr} = t_{px(1)} - t_{px(0)}$ 



Figure 5-66. USB0 Integrated Transceiver Interface Timing



#### 5.26 Universal Host-Port Interface (UHPI)

## 5.26.1 HPI Device-Specific Information

The device includes a user-configurable 16-bit Host-port interface (HPI16). See the *TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide.* – Literature Number SPRUFK9 for more details.

## 5.26.2 HPI Peripheral Register Description(s)

Table 5-96. HPI Control Registers

| HEX ADDRESS RANGE         | ACRONYM                        | REGISTER NAME                               | COMMENTS                                                               |
|---------------------------|--------------------------------|---------------------------------------------|------------------------------------------------------------------------|
| 0x01E1 0000               | PID                            | Peripheral Identification Register          |                                                                        |
| 0x01E1 0004               | PWREMU_MGMT                    | HPI power and emulation management register | The CPU has read/write access to the PWREMU_MGMT register.             |
| 0x01E1 0008               | -                              | Reserved                                    |                                                                        |
| 0x01E1 000C               | GPIO_EN                        | General Purpose IO Enable Register          |                                                                        |
| 0x01E1 0010               | GPIO_DIR1                      | General Purpose IO Direction Register 1     |                                                                        |
| 0x01E1 0014               | GPIO_DAT1                      | General Purpose IO Data Register 1          |                                                                        |
| 0x01E1 0018               | GPIO_DIR2                      | General Purpose IO Direction Register 2     |                                                                        |
| 0x01E1 001C               | GPIO_DAT2                      | General Purpose IO Data Register 2          |                                                                        |
| 0x01E1 0020               | GPIO_DIR3                      | General Purpose IO Direction Register 3     |                                                                        |
| 0x01E1 0024               | GPIO_DAT3                      | General Purpose IO Data Register 3          |                                                                        |
| 0x01E1 0028               | -                              | Reserved                                    |                                                                        |
| 0x01E1 002C               | -                              | Reserved                                    |                                                                        |
| 0x01E1 0030               | HPIC                           | HPI control register                        | The Host and the CPU both have read/write access to the HPIC register. |
| 0x01E1 0034               | HPIA<br>(HPIAW) <sup>(1)</sup> | HPI address register (Write)                | The Host has read/write access to the HPIA registers.                  |
| 0x01E1 0038               | HPIA<br>(HPIAR) <sup>(1)</sup> | HPI address register (Read)                 | The CPU has only read access to the HPIA registers.                    |
| 0x01E1 000C - 0x01E1 07FF | -                              | Reserved                                    |                                                                        |

<sup>(1)</sup> There are two 32-bit HPIA registers: HPIAR for read operations and HPIAW for write operations. The HPI can be configured such that HPIAR and HPIAW act as a single 32-bit HPIA (single-HPIA mode) or as two separate 32-bit HPIAs (dual-HPIA mode) from the perspective of the Host. The CPU can access HPIAW and HPIAR independently.



## 5.26.3 HPI Electrical Data/Timing

## Table 5-97. Timing Requirements for Host-Port Interface Cycles (1)(2) (3)

| NO. |                             |                                                                                                                                                         | MIN | MAX | UNIT |
|-----|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|
| 1   | t <sub>su(SELV-HSTBL)</sub> | Setup time, select signals (4) valid before HSTROBE low                                                                                                 | 5   |     | ns   |
| 2   | t <sub>h(HSTBL-SELV)</sub>  | Hold time, select signals <sup>(4)</sup> valid after HSTROBE low                                                                                        | 2   |     | ns   |
| 3   | t <sub>w(HSTBL)</sub>       | Pulse duration, HSTROBE active low                                                                                                                      | 15  |     | ns   |
| 4   | t <sub>w(HSTBH)</sub>       | Pulse duration, HSTROBE inactive high between consecutive accesses                                                                                      | 2M  |     | ns   |
| 11  | t <sub>su(HDV-HSTBH)</sub>  | Setup time, host data valid before HSTROBE high                                                                                                         | 5   |     | ns   |
| 12  | t <sub>h(HSTBH-HDV)</sub>   | Hold time, host data valid after HSTROBE high                                                                                                           | 1   |     | ns   |
| 13  | t <sub>h(HRDYL-HSTBH)</sub> | Hold time, HSTROBE high after HRDY low. HSTROBE should not be inactivated until HRDY is active (low); otherwise, HPI writes will not complete properly. | 0   |     | ns   |

Parameters are characterized from -40°C to 125°C unless otherwise noted.

 <sup>(2)</sup> HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
 (3) M=SYSCLK2 period (CPU clock frequency)/2 in ns. For example, when running parts at 300 MHz, use M=6.67 ns.
 (4) Select signals include: HCNTL[1:0], HR/W and HHWIL.



## Table 5-98. Switching Characteristics for Host-Port Interface Cycles (1)(2) (3) (4)

| NO. |                             | PARAMETE                               | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MIN | MAX | UNIT |
|-----|-----------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|
| 5   | <sup>t</sup> d(HSTBL-HRDYV) | Delay time, HSTROBE low to HRDY valid  | For HPI Write, HRDY can go high (not ready) for these HPI Write conditions; otherwise, HRDY stays low (ready): Case 1: Back-to-back HPIA writes (can be either first or second half-word) Case 2: HPIA write following a PREFETCH command (can be either first or second half-word) Case 3: HPID write when FIFO is full or flushing (can be either first or second half-word) Case 4: HPIA write and Write FIFO not empty  For HPI Read, HRDY can go high (not ready) for these HPI Read conditions: Case 1: HPID read (with auto-increment) and data not in Read FIFO (can only happen to first half-word of HPID access) Case 2: First half-word access of HPID Read without auto-increment For HPI Read, HRDY stays low (ready) for these HPI Read conditions: Case 1: HPID read with auto-increment and data is already in Read FIFO (applies to either half-word of HPID access) Case 2: HPID read without auto-increment and data is already in Read FIFO (applies to either half-word of HPID access) Case 3: HPIC or HPIA read (applies to either half-word access) |     | 12  | ns   |
| 5a  | t <sub>d(HRSL-HRDYV)</sub>  | Delay time HAS low to HRDY v           | alid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 13  |      |
| 6   | t <sub>en(HSTBL-HD)</sub>   | Enable time, HD driven from HS         | STROBE low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2   |     | ns   |
| 7   | t <sub>d(HRDYL-HDV)</sub>   | Delay time, HRDY low to HD va          | alid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 0   | ns   |
| 8   | t <sub>oh(HSTBH-HDV)</sub>  | Output hold time, HD valid after       | HSTROBE high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5 |     | ns   |
| 14  | t <sub>dis(HSTBH-HDV)</sub> | Disable time, HD high-impedan          | ce from HSTROBE high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 12  | ns   |
| 15  | t <sub>d(HSTBL-HDV)</sub>   | Delay time, HSTROBE low to<br>HD valid | For HPI Read. Applies to conditions where data is already residing in HPID/FIFO:  Case 1: HPIC or HPIA read  Case 2: First half-word of HPID read with auto-increment and data is already in Read FIFO  Case 3: Second half-word of HPID read with or without auto-increment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 15  | ns   |
| 18  | t <sub>d(HSTBH-HRDYV)</sub> | Delay time, HSTROBE high to HRDY valid | For HPI Write, HRDY can go high (not ready) for these HPI Write conditions; otherwise, HRDY stays low (ready): Case 1: HPID write when Write FIFO is full (can happen to either half-word) Case 2: HPIA write (can happen to either half-word) Case 3: HPID write without auto-increment (only happens to second half-word)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 12  | ns   |

Parameters are characterized from -40°C to 125°C unless otherwise noted.

M=SYSCLK2 period (CPU clock frequency)/2 in ns. For example, when running parts at 300 MHz, use M=6.67 ns. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. By design, whenever HCS is driven inactive (high), HPI will drive HRDY active (low). (3)





- A. UHPI\_HSTROBE refers to the following logical operation on UHPI\_HCS, UHPI\_HDS1, and UHPI\_HDS2: [NOT(HDS1 XOR HDS2)] OR UHPI\_HCS.
- B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and the state of the FIFO, transitions on UHPI\_HRDY may or may not occur.
- C. UHPI\_HCS reflects typical UHPI\_HCS behavior when UHPI\_HSTROBE assertion is caused by UHPI\_HDS1 or UHPI\_HDS2. UHPI\_HCS timing requirements are reflected by parameters for UHPI\_HSTROBE
- D The diagram above assumes UHPI\_HAS has been pulled high.

Figure 5-67. UHPI Read Timing (HAS Not Used, Tied High)



- A. <u>UHPI\_HSTROBE</u> refers to the following logical operation on <u>UHPI\_HCS</u>, <u>UHPI\_HDS1</u>, and <u>UHPI\_HDS2</u>: [NOT(HDS1 XOR HDS2)] OR <u>UHPI\_HCS</u>.
- B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and the state of the FIFO, transitions on UHPI\_HRDY may or may not occur.
- C. UHPI\_HCS reflects typical UHPI\_HCS behavior when UHPI\_HSTROBE assertion is caused by UHPI\_HDS1 or UHPI\_HDS2. UHPI\_HCS timing requirements are reflected by parameters for UHPI\_HSTROBE.
- D The diagram above assumes UHPI\_HAS has been pulled high.

Figure 5-68. UHPI Write Timing (HAS Not Used, Tied High)

#### 5.27 Memory Protection Units (MPU)

The MPU performs memory protection checking. It inputs a VBUSM or VBUSP bus, checks the address against the fixed and programmable regions to see if the access is allowed. If allowed the transfer is passed unmodified to the output VBUSM or VBUSP bus. If the transfer is illegal (fails the protection check) then the MPU does not pass the transfer to the output bus but rather services the transfer internally back to the input bus (to prevent a hang) returning the fault status to the requestor as well as generating an interrupt about the fault. The following features are supported by the MPU:

- Provides memory protection for fixed and programmable address ranges.
- Supports multiple programmable address region.
- · Supports secure and debug access privileges.
- Supports read, write, and execute access privileges.
- Supports privid(8) associations with ranges.
- Generates an interrupt when there is a protection violation, and saves violating transfer parameters.
- MMR access is also protected.



## **Table 5-99. MPU Register Descriptions**

| MPU1<br>BYTE ADDRESS         | MPU2<br>BYTE ADDRESS         | REGISTER NAME       | DESCRIPTION                        |
|------------------------------|------------------------------|---------------------|------------------------------------|
| 0x01E1 4000                  | 0x01E1 5000                  | REVISION            | Revision                           |
| 0x01E1 4004                  | 0x01E1 5004                  | CONFIGURATION       | Configuration                      |
| 0x01E1 4008 - 0x01E1<br>4009 | 0x01E1 5008 - 0x01E1<br>5009 | RSVD                | Reserved                           |
| 0x01E1 4010                  | 0x01E1 5010                  | INTR_RAW_STATUS     | Interrupt Raw Status/Set           |
| 0x01E1 4014                  | 0x01E1 5014                  | INTR_ENABLED_STATUS | Interrupt Enabled<br>Status/Clear  |
| 0x01E1 4018                  | 0x01E1 5018                  | INTR_ENABLE         | Interrupt Enable                   |
| 0x01E1 401C                  | 0x01E1 501C                  | INTR_ENABLE_CLR     | Interrupt Enable Clear             |
| 0x01E1 4020                  | 0x01E1 5020                  | RSVD                | Reserved                           |
| 0x01E1 4024                  | 0x01E1 5024                  | RSVD                | Reserved                           |
| 0x01E1 4028 - 0x01E1<br>40FF | 0x01E1 5028 - 0x01E1<br>50FF | RSVD                | Reserved                           |
| 0x01E1 4100                  | 0x01E1 5100                  | FIXED_MPSAR         | Fixed 1 Start Address              |
| 0x01E1 4104                  | 0x01E1 5104                  | FIXED_MPEAR         | Fixed 1 End Address                |
| 0x01E1 4108                  | 0x01E1 5108                  | FIXED_MPPA          | Fixed 1 MPPA                       |
| 0x01E1 410C                  | 0x01E1 510C                  | RSVD                | Reserved                           |
| 0x01E1 4110 - 0x01E1<br>41FF | 0x01E1 5110 - 0x01E1<br>51FF | RSVD                | Reserved                           |
| 0x01E1 4200                  | 0x01E1 5200                  | PROG0_MPSAR         | Programmable 1 Start<br>Address    |
| 0x01E1 4204                  | 0x01E1 5204                  | PROG0_MPEAR         | Programmable 1 End<br>Address      |
| 0x01E1 4208                  | 0x01E1 5208                  | PROG0_MPPA          | Programmable 1 MPPA                |
| 0x01E1 420C                  | 0x01E1 520C                  | RSVD                | Reserved                           |
| 0x01E1 4210                  | 0x01E1 5210                  | PROG1_MPSAR         | Additional Programmable Range MMRs |
| 0x01E1 4214                  | 0x01E1 5214                  | PROG1_MPEAR         |                                    |
| 0x01E1 4218                  | 0x01E1 5218                  | PROG1_MPPA          |                                    |
| 0x01E1 421C                  | 0x01E1 521C                  | RSVD                |                                    |
| 0x01E1 4220                  | 0x01E1 5220                  | PROG2_MPSAR         |                                    |
| 0x01E1 4224                  | 0x01E1 5224                  | PROG2_MPEAR         |                                    |
| 0x01E1 4228                  | 0x01E1 5228                  | PROG2_MPPA          |                                    |
| 0x01E1 422C                  | 0x01E1 522C                  | RSVD                |                                    |
| 0x01E1 4230                  | 0x01E1 5230                  | PROG3_MPSAR         |                                    |
| 0x01E1 4234                  | 0x01E1 5234                  | PROG3_MPEAR         |                                    |
| 0x01E1 4238                  | 0x01E1 5238                  | PROG3_MPPA          |                                    |
| 0x01E1 423C                  | 0x01E1 523C                  | RSVD                |                                    |
| 0x01E1 4240                  | 0x01E1 5240                  | PROG4_MPSAR         |                                    |
| 0x01E1 4244                  | 0x01E1 5244                  | PROG4_MPEAR         |                                    |
| 0x01E1 4248                  | 0x01E1 5248                  | PROG4_MPPA          |                                    |
| 0x01E1 424C                  | 0x01E1 524C                  | RSVD                |                                    |
| 0x01E1 4250                  | 0x01E1 5250                  | PROG5_MPSAR         |                                    |
| 0x01E1 4254                  | 0x01E1 5254                  | PROG5_MPEAR         |                                    |
| 0x01E1 4258                  | 0x01E1 5258                  | PROG5_MPPA          |                                    |
| 0x01E1 425C - 0x01E1<br>42FF | 0x01E1 525C                  | RSVD                |                                    |
| -                            | 0x01E1 5260                  | PROG6_MPSAR         |                                    |
| -                            | 0x01E1 5264                  | PROG6_MPEAR         |                                    |



#### Table 5-99. MPU Register Descriptions (continued)

| rable of the mile register becomplished (continued) |                              |                     |                 |  |  |  |
|-----------------------------------------------------|------------------------------|---------------------|-----------------|--|--|--|
| MPU1<br>BYTE ADDRESS                                | MPU2<br>BYTE ADDRESS         | REGISTER NAME       | DESCRIPTION     |  |  |  |
| -                                                   | 0x01E1 5268                  | PROG6_MPPA          |                 |  |  |  |
| -                                                   | 0x01E1 526C                  | RSVD                |                 |  |  |  |
| -                                                   | 0x01E1 5270                  | PROG7_MPSAR         |                 |  |  |  |
| -                                                   | 0x01E1 5274                  | PROG7_MPEAR         |                 |  |  |  |
| -                                                   | 0x01E1 5278                  | PROG7_MPPA          |                 |  |  |  |
| -                                                   | 0x01E1 527C                  | RSVD                |                 |  |  |  |
| -                                                   | 0x01E1 5280                  | PROG8_MPSAR         |                 |  |  |  |
| -                                                   | 0x01E1 5284                  | PROG8_MPEAR         |                 |  |  |  |
| -                                                   | 0x01E1 5288                  | PROG8_MPPA          |                 |  |  |  |
| -                                                   | 0x01E1 528C                  | RSVD                |                 |  |  |  |
| -                                                   | 0x01E1 5290                  | PROG9_MPSAR         |                 |  |  |  |
| -                                                   | 0x01E1 5294                  | PROG9_MPEAR         |                 |  |  |  |
| -                                                   | 0x01E1 5298                  | PROG9_MPPA          |                 |  |  |  |
| -                                                   | 0x01E1 529C                  | RSVD                |                 |  |  |  |
| -                                                   | 0x01E1 52A0                  | PROG10_MPSAR        |                 |  |  |  |
| -                                                   | 0x01E1 52A4                  | PROG10_MPEAR        |                 |  |  |  |
| -                                                   | 0x01E1 52A8                  | PROG10_MPPA         |                 |  |  |  |
| -                                                   | 0x01E1 52AC                  | RSVD                |                 |  |  |  |
| -                                                   | 0x01E1 52B0                  | PROG11_MPSAR        |                 |  |  |  |
| -                                                   | 0x01E1 52B4                  | PROG11_MPEAR        |                 |  |  |  |
| -                                                   | 0x01E1 52B8                  | PROG11_MPPA         |                 |  |  |  |
| -                                                   | 0x01E1 52BC - 0x01E1<br>52FF | RSVD                |                 |  |  |  |
| 0x01E1 4300                                         | 0x01E1 5300                  | MPFAR               | Fault 1 Address |  |  |  |
| 0x01E1 4304                                         | 0x01E1 5304                  | MPFSR               | Fault 1 Status  |  |  |  |
| 0x01E1 4308                                         | 0x01E1 5308                  | MPFCR Fault 1 Clear |                 |  |  |  |

#### 5.28 Power and Sleep Controller (PSC)

The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off, clock on/off, resets (device level and module level). It is used primarily to provide granular power control for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC and provides clock and reset control. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. — Literature Number SPRUFK9 for more details.

The PSC includes the following features:

- Provides a software interface to:
  - Control module clock enable/disable
  - Control module reset
  - Control CPU local reset
- Supports ICEpick TAP Router power, clock and reset features. For details on ICEpick features see http://tiexpressdsp.com/wiki/index.php?title=ICEPICK.

## Table 5-100. Power and Sleep Controller (PSC) Registers

| PSC0        | PSC1        | Register | Description                                        |
|-------------|-------------|----------|----------------------------------------------------|
| 0x01C1 0000 | 0x01E2 7000 | REVID    | Peripheral Revision and Class Information Register |



Table 5-100. Power and Sleep Controller (PSC) Registers (continued)

| PSC0                      | PSC1                      | Register             | Description                                            |
|---------------------------|---------------------------|----------------------|--------------------------------------------------------|
| 0x01C1 0018               | 0x01E2 7018               | INTEVAL              | Interrupt Evaluation Register                          |
| 0x01C1 0040               | 0x01E2 7040               | MERRPR0              | Module Error Pending Register 0 (module 0-15) (PSC0)   |
|                           |                           |                      | Module Error Pending Register 0 (module 0-31) (PSC1)   |
| 0x01C1 0050               | 0x01E2 7050               | MERRCR0              | Module Error Clear Register 0 (module 0-15) (PSC0)     |
|                           |                           |                      | Module Error Clear Register 0 (module 0-31) (PSC1)     |
| 0x01C1 0060               | 0x01E2 7060               | PERRPR               | Power Error Pending Register                           |
| 0x01C1 0068               | 0x01E2 7068               | PERRCR               | Power Error Clear Register                             |
| 0x01C1 0120               | 0x01E2 7120               | PTCMD                | Power Domain Transition Command Register               |
| 0x01C1 0128               | 0x01E2 7128               | PTSTAT               | Power Domain Transition Status Register                |
| 0x01C1 0200               | 0x01E2 7200               | PDSTAT0              | Power Domain 0 Status Register                         |
| 0x01C1 0204               | 0x01E2 7204               | PDSTAT1              | Power Domain 1 Status Register                         |
| 0x01C1 0300               | 0x01E2 7300               | PDCTL0               | Power Domain 0 Control Register                        |
| 0x01C1 0304               | 0x01E2 7304               | PDCTL1               | Power Domain 1 Control Register                        |
| 0x01C1 0400               | 0x01E2 7400               | PDCFG0               | Power Domain 0 Configuration Register                  |
| 0x01C1 0404               | 0x01E2 7404               | PDCFG1               | Power Domain 1 Configuration Register                  |
| 0x01C1 0800 - 0x01C1 083C | 0x01E2 7800 - 0x01E2 787C | MDSTAT0-<br>MDSTAT15 | Module Status <i>n</i> Register (modules 0-15) (PSC0)  |
|                           |                           | MDSTAT0-<br>MDSTAT31 | Module Status <i>n</i> Register (modules 0-31) (PSC1)  |
| 0x01C1 0A00 - 0x01C1 0A3C | 0x01E2 7A00 - 0x01E2 7A7C | MDCTL0-<br>MDCTL15   | Module Control <i>n</i> Register (modules 0-15) (PSC0) |
|                           |                           | MDCTL0-<br>MDCTL31   | Module Control <i>n</i> Register (modules 0-31) (PSC1) |

## 5.28.1 Power Domain and Module Topology

The device includes two PSC modules. Each PSC module consists of an Always On power domain and an additional pseudo/internal power domain that manages the sleep modes for the RAMs present in the DSP subsystem and the L3 RAM, respectively.

Each PSC module controls clock states for several of the on chip modules, controllers and interconnect components. Table 5-101 and Table 5-102 lists the set of peripherals/modules that are controlled by the PSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset) module states. See the device-specific data manual for the peripherals available on a given device. The module states and terminology are defined in Section 5.28.1.2.

Table 5-101. PSC0 Default Module Configuration

| LPSC Number | Module Name                | Power Domain     | Default Module State | Auto Sleep/Wake Only |
|-------------|----------------------------|------------------|----------------------|----------------------|
| 0           | EDMA3 Channel Controller   | AlwaysON (PD0)   | SwRstDisable         | _                    |
| 1           | EDMA Transfer Controller 0 | AlwaysON (PD0)   | SwRstDisable         | _                    |
| 2           | EDMA Transfer Controller 1 | AlwaysON (PD0)   | SwRstDisable         | _                    |
| 3           | EMIFA (BR7)                | AlwaysON (PD0)   | SwRstDisable         | _                    |
| 4           | SPI 0                      | AlwaysON (PD0)   | SwRstDisable         | _                    |
| 5           | MMC/SD 0                   | AlwaysON (PD0)   | SwRstDisable         | _                    |
| 6           | Arm Interrupt Controller — | AlwaysON (PD0) — | SwRstDisable —       | _                    |
| 7           | ARM RAM/ROM —              | AlwaysON (PD0) — | Enable —             | Yes —                |
| 8           | -                          | -                | -                    | _                    |
| 9           | UART 0                     | AlwaysON (PD0)   | SwRstDisable         | _                    |



## **Table 5-101. PSC0 Default Module Configuration (continued)**

| LPSC Number | Module Name                      | Power Domain     | Default Module State | Auto Sleep/Wake Only |
|-------------|----------------------------------|------------------|----------------------|----------------------|
| 10          | SCR0<br>(Br 0, Br 1, Br 2, Br 8) | AlwaysON (PD0)   | Enable               | Yes                  |
| 11          | SCR1<br>(Br 4)                   | AlwaysON (PD0)   | Enable               | Yes                  |
| 12          | SCR2<br>(Br 3, Br 5, Br 6)       | AlwaysON (PD0)   | Enable               | Yes                  |
| 13          | dMAX                             | AlwaysON (PD0)   | SwRstDisable         | _                    |
| 14          | ARM —                            | AlwaysON (PD0) — | SwRstDisable —       | <u> </u>             |
| 15          | DSP                              | PD_DSP (PD1)     | Enable               | _                    |

## **Table 5-102. PSC1 Default Module Configuration**

| LPSC Number | Module Name             | Power Domain     | Module State   | Auto Sleep/Wake Only |
|-------------|-------------------------|------------------|----------------|----------------------|
| 0           | -                       | _                | _              | _                    |
| 1           | USB0 (USB2.0)           | AlwaysON (PD0)   | SwRstDisable   | _                    |
| 2           | USB1 (USB1.1) —         | AlwaysON (PD0) — | SwRstDisable — | _                    |
| 3           | GPIO                    | AlwaysON (PD0)   | SwRstDisable   | _                    |
| 4           | UHPI                    | AlwaysON (PD0)   | SwRstDisable   | _                    |
| 5           | EMAC —                  | AlwaysON (PD0) — | SwRstDisable — | _                    |
| 6           | EMIFB (Br 20)           | AlwaysON (PD0)   | SwRstDisable   | _                    |
| 7           | McASP0 ( + McASP0 FIFO) | AlwaysON (PD0)   | SwRstDisable   | _                    |
| 8           | McASP1 ( + McASP1 FIFO) | AlwaysON (PD0)   | SwRstDisable   | _                    |
| 9           | McASP2( + McASP2 FIFO)  | AlwaysON (PD0)   | SwRstDisable   | _                    |
| 10          | SPI 1                   | AlwaysON (PD0)   | SwRstDisable   | _                    |
| 11          | I2C 1                   | AlwaysON (PD0)   | SwRstDisable   | _                    |
| 12          | UART 1                  | AlwaysON (PD0)   | SwRstDisable   | _                    |
| 13          | UART 2                  | AlwaysON (PD0)   | SwRstDisable   | _                    |
| 14-15 16    | _                       | _                | _              | _                    |
| 16          | LCDC —                  | AlwaysON (PD0) — | SwRstDisable — | _                    |
| 17          | eHRPWM0/1/2             | AlwaysON (PD0)   | SwRstDisable   | _                    |
| 18-19       | Not Used                | _                | _              | _                    |
| 20          | ECAP0/1/2               | AlwaysON (PD0)   | SwRstDisable   | _                    |
| 21          | EQEP0/1                 | AlwaysON (PD0)   | SwRstDisable   | _                    |
| 22-23       | -                       | _                | _              | _                    |
| 24          | SCR8<br>(Br 15)         | AlwaysON (PD0)   | Enable         | Yes                  |
| 25          | SCR7<br>(Br 12)         | AlwaysON (PD0)   | Enable         | Yes                  |
| 26          | SCR12<br>(Br 18)        | AlwaysON (PD0)   | Enable         | Yes                  |
| 27-30       | -                       | _                | _              | _                    |
| 31          | Shared RAM<br>(Br 13)   | PD_SHRAM (PD1)   | Enable         | Yes                  |

#### 5.28.1.1 Power Domain States

A power domain can only be in one of the two states: ON or OFF, defined as follows:

- ON: power to the domain is on
- · OFF: power to the domain is off



In the device, for both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the ON state when the chip is powered-on. This domain is not programmable to OFF state.

- On PSC0 PD1/PD\_DSP Domain: Controls the sleep state for DSP L1 and L2 Memories
- On PSC1 PD1/PD\_SHRAM Domain: Controls the sleep state for the 128K Shared RAM

#### 5.28.1.2 Module States

The PSC defines several possible states for a module. This states are essentially a combination of the module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are defined in Table 5-103.

#### Table 5-103. Module States

| Module State | Module Reset | Module Clock | Module State Definition                                                                                                                                                                                                                 |
|--------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enable       | De-asserted  | On           | A module in the enable state has its module reset de-asserted and it has its clock on. This is the normal operational state for a given module                                                                                          |
| SwRstDisable | Asserted     | Off          | A module in the SwResetDisable state has its module reset asserted and it has its clock disabled. After initial power-on, several modules come up in the SwRstDisable state. Generally, software is not expected to initiate this state |

#### 5.29 Emulation Logic

This section describes the steps to use a third party debugger. The debug capabilities and features for DSP and ARM are as shown below.

For TI's latest debug and emulation information see:

http://tiexpressdsp.com/wiki/index.php?title=Category:Emulation

#### DSP:

- Basic Debug
  - Execution Control
  - System Visibility
- Real-Time Debug
  - Interrupts serviced while halted
  - Low/non-intrusive system visibility while running
- Advanced Debug
  - Global Start
  - Global Stop
  - Specify targeted memory level(s) during memory accesses
  - HSRTDX (High Speed Real Time Data eXchange)
- Advanced System Control
  - Subsystem reset via debug
  - Peripheral notification of debug events
  - Cache-coherent debug accesses
- Security
  - Configurable levels of security and debug visibility
  - Halting on a security violation
  - Debug halts prevented during secure code execution
  - Memory accesses prevented to secure memory



- Analysis Actions
  - Stop program execution
  - Generate debug interrupt
  - Benchmarking with counters
  - External trigger generation
  - Debug state machine state transition
  - Combinational and Sequential event generation
- **Analysis Events** 
  - Program event detection
  - Data event detection
  - External trigger Detection
  - System event detection (i.e. cache miss)
  - Debug state machine state detection
- **Analysis Configuration** 
  - Application access
  - Debugger access

## Table 5-104. DSP Debug Features

| Category      | Hardware Feature           | Availability                                                                                                  |  |
|---------------|----------------------------|---------------------------------------------------------------------------------------------------------------|--|
|               | Software breakpoint        | Unlimited                                                                                                     |  |
|               |                            | Up to 10 HWBPs, including:                                                                                    |  |
| Basic Debug   | Handwara harakasiat        | 4 precise <sup>(1)</sup> HWBPs inside DSP core and one of them is associated with a counter.                  |  |
|               | Hardware breakpoint        | 2 imprecise (1) HWBPs from AET.                                                                               |  |
|               |                            | 4 imprecise <sup>(1)</sup> HWBPs from AET which are shared for watch point.                                   |  |
|               | Watch point                | Up to 4 watch points, which are shared with HWBPs, and can also be used as 2 watch points with data (32 bits) |  |
| Analysis      | Watch point with Data      | Up to 2, Which can also be used as 4 watch points.                                                            |  |
| 7 (1) (1) (1) | Counters/timers            | 1x64-bits (cycle only) + 2x32-bits (water marke counters)                                                     |  |
|               | External Event Trigger In  | 1                                                                                                             |  |
|               | External Event Trigger Out | 1                                                                                                             |  |

Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints will halt the processor some number of cycles after the selected instruction depending on device conditions.

## ARM:

- Basic Debug
  - Execution Control
  - System Visibility
- Advanced Debug
  - Global Start
  - Global Stop
- Advanced System Control
  - Subsystem reset via debug
  - Peripheral notification of debug events
  - Cache-coherent debug accesses



- Security
  - Halting on a security violation (by cross-triggering via INTC)
  - Memory accesses prevented to secure memory (this is ensured by system level security mechanism)
- Program Trace
  - Program flow corruption
  - Code coverage
  - Path coverage
  - Thread/interrupt synchronization problems
- Data Trace
  - Memory corruption
- Timing Trace
  - Profiling
- Analysis Actions
  - Stop program execution
  - Control trace streams
  - Generate debug interrupt
  - Benchmarking with counters
  - External trigger generation
  - Debug state machine state transition
  - Combinational and Sequential event generation
- Analysis Events
  - Program event detection
  - Data event detection
  - External trigger Detection
  - System event detection (i.e. cache miss)
  - Debug state machine state detection
- Analysis Configuration
  - Application access
  - Debugger access

#### Table 5-105. ARM Debug Features

| Category    | Hardware Feature    | Availability                                                                                                                               |
|-------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|             | Software breakpoint | Unlimited                                                                                                                                  |
|             |                     | Up to 14 HWBPs, including:                                                                                                                 |
| Basic Debug |                     | 2 precise <sup>(1)</sup> HWBP inside ARM core which are shared with watch points.                                                          |
| basic Debug | Hardware breakpoint | 8 imprecise <sup>(1)</sup> HWBPs from ETM's address comparators, which are shared with trace function, and can be used as watch point too. |
|             |                     | 4 imprecise <sup>(1)</sup> HWBPs from ICECrusher.                                                                                          |

<sup>(1)</sup> Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints will halt the processor some number of cycles after the selected instruction depending on device conditions.



#### Table 5-105. ARM Debug Features (continued)

| Category                 | Hardware Feature                  | Availability                                                                                            |
|--------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------|
|                          |                                   | Up to 6 watch points, including:                                                                        |
|                          | Watch point                       | 2 from ARM core which is shared with HWBPs and can be associated with a data.                           |
|                          |                                   | 8 from ETM's address comparators, which are shared with trace function, and HWBPs.                      |
|                          |                                   | 2 from ARM core which is shared with HWBPs.                                                             |
| Analysis                 | Watch point with Data             | 8 watch points from ETM can be associated with a data comparator, and ETM has total 4 data comparators. |
|                          | Counters/timers                   | 3x32-bit (1 cycle; 2 event)                                                                             |
|                          | External Event Trigger In         | 1                                                                                                       |
|                          | External Event Trigger Out        | 1                                                                                                       |
|                          | Internal Cross-Triggering Signals | One between ARM and DSP                                                                                 |
|                          | Address range for trace           | 4                                                                                                       |
|                          | Data qualification for trace      | 2                                                                                                       |
|                          | System events for trace control   | 20                                                                                                      |
| Trace Control            | Counters/Timers for trace control | 2x16-bit                                                                                                |
|                          | State Machines/Sequencers         | 1x3-State State Machine                                                                                 |
|                          | Context/Thread ID Comparator      | 1                                                                                                       |
|                          | Independent trigger control units | 12                                                                                                      |
|                          | Capture depth PC                  | 4k bytes ETB                                                                                            |
| On-chip Trace<br>Capture | Capture depth PC + Timing         | 4k bytes ETB                                                                                            |
| Capture                  | Application accessible            | Y                                                                                                       |

## 5.29.1 JTAG Port Description

The target debug interface uses the five standard IEEE 1149.1(JTAG) signals (TRST, TCK, TMS, TDI, and TDO), a return clock (RTCK) due to the clocking requirements of the ARM926EJ-S and EMU0.

 $\overline{\text{TRST}}$  holds the debug and boundary scan logic in reset (normal DSP operation) when pulled low (its default state). Since  $\overline{\text{TRST}}$  has an internal pull-down resistor, this ensures that at power up the device functions in its normal (non-test) operation mode if  $\overline{\text{TRST}}$  is not connected. Otherwise,  $\overline{\text{TRST}}$  should be driven inactive by the emulator or boundary scan controller. Boundary scan test cannot be performed while the  $\overline{\text{TRST}}$  pin is pulled low.

Table 5-106. JTAG Port Description

| PIN  | TYPE | NAME DESCRIPTION                                                                                                                                                                       |                                                                                                                                                            |
|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TRST | I    | Test Logic Reset                                                                                                                                                                       | When asserted (active low) causes all test and debug logic in OMAPL137 to be reset along with the IEEE 1149.1 interface                                    |
| тск  | I    | This is the test clock used to drive an IEEE 1149.1 TAP state n and logic. Depending on the emulator attached to OMAPL137, free running clock or a gated clock depending on RTCK monit |                                                                                                                                                            |
| RTCK | 0    | Returned Test Clock                                                                                                                                                                    | Synchronized TCK. Depending on the emulator attached to OMAPL137, the JTAG signals are clocked from RTCK or RTCK is monitored by the emulator to gate TCK. |
| TMS  | I    | Test Mode Select Directs the next state of the IEEE 1149.1 test access port state                                                                                                      |                                                                                                                                                            |
| TDI  | I    | Test Data Input                                                                                                                                                                        | Scan data input to the device                                                                                                                              |
| TDO  | 0    | Test Data Output                                                                                                                                                                       | Scan data output of the device                                                                                                                             |
| EMU0 | I/O  | Emulation 0                                                                                                                                                                            | Channel 0 trigger + HSRTDX                                                                                                                                 |



## 5.29.2 Scan Chain Configuration Parameters

Table 5-107 shows the TAP configuration details required to configure the router/emulator for this device.

Table 5-107. JTAG Port Description

| Router Port ID | Default TAP | TAP Name | Tap IR Length |
|----------------|-------------|----------|---------------|
| 17             | No          | C674x    | 38            |
| 18             | No          | ARM926   | 4             |
| 19             | No          | ETB      | 4             |

The router is ICEpick revision C and has a 6-bit IR length.

## 5.29.3 Initial Scan Chain Configuration

The first level of debug interface that sees the scan controller is the TAP router module. The debugger can configure the TAP router for serially linking up to 16 TAP controllers or individually scanning one of the TAP controllers without disrupting the IR state of the other TAPs.

## 5.29.3.1 Adding TAPS to the Scan Chain

A Power-On Reset (POR) or the JTAG Test-Logic Reset state configures the TAP router to contain only the router's TAP.

The TAP router must be programmed to add additional TAPs to the scan chain. The following JTAG scans must be completed to add the ARM926EJ-S to the scan chain.



Figure 5-69. Adding ARM926EJ-S to the scan chain

**Pre-amble**: The device whose data reaches the emulator first is listed first in the board configuration file. This device is a pre-amble for all the other devices. This device has the lowest device ID.

**Post-amble**: The device whose data reaches the emulator last is listed last in the board configuration file. This device is a post-amble for all the other devices. This device has the highest device ID.

- Function: Update the JTAG preamble and post-amble counts.
  - Parameter: The IR pre-amble count is '0'.
  - Parameter: The IR post-amble count is '0'.
  - Parameter: The DR pre-amble count is '0'.
  - Parameter: The DR post-amble count is '0'.
  - Parameter: The IR main count is '6'.
  - Parameter: The DR main count is '1'.



- Function: Do a send-only JTAG IR/DR scan.
  - Parameter: The route to JTAG shift state is 'shortest transition'.
  - Parameter: The JTAG shift state is 'shift-ir'.
  - Parameter: The JTAG destination state is 'pause-ir'.
  - Parameter: The bit length of the command is '6'.
  - Parameter: The send data value is '0x00000007'.
  - Parameter: The actual receive data is 'discarded'.
- Function: Do a send-only JTAG IR/DR scan.
  - Parameter: The route to JTAG shift state is 'shortest transition'.
  - Parameter: The JTAG shift state is 'shift-dr'.
  - Parameter: The JTAG destination state is 'pause-dr'.
  - Parameter: The bit length of the command is '8'.
  - Parameter: The send data value is '0x00000089'.
  - Parameter: The actual receive data is 'discarded'.
- Function: Do a send-only JTAG IR/DR scan.
  - Parameter: The route to JTAG shift state is 'shortest transition'.
  - Parameter: The JTAG shift state is 'shift-ir'.
  - Parameter: The JTAG destination state is 'pause-ir'.
  - Parameter: The bit length of the command is '6'.
  - Parameter: The send data value is '0x00000002'.
  - Parameter: The actual receive data is 'discarded'.
- Function: Embed the port address in next command.
  - Parameter: The port address field is '0x0f000000'.
  - Parameter: The port address value is '3'.
- Function: Do a send-only JTAG IR/DR scan.
  - Parameter: The route to JTAG shift state is 'shortest transition'.
  - Parameter: The JTAG shift state is 'shift-dr'.
  - Parameter: The JTAG destination state is 'pause-dr'.
  - Parameter: The bit length of the command is '32'.
  - Parameter: The send data value is '0xa2002108'.
  - Parameter : The actual receive data is 'discarded'.
- Function: Do a send-only all-ones JTAG IR/DR scan.
  - Parameter: The JTAG shift state is 'shift-ir'.
  - Parameter: The JTAG destination state is 'run-test/idle'.
  - Parameter: The bit length of the command is '6'.
  - Parameter: The send data value is 'all-ones'.
  - Parameter: The actual receive data is 'discarded'.
- Function: Wait for a minimum number of TCLK pulses.
  - Parameter : The count of TCLK pulses is '10'.
- Function: Update the JTAG preamble and post-amble counts.
  - Parameter: The IR pre-amble count is '0'.
  - Parameter: The IR post-amble count is '6'.
  - Parameter: The DR pre-amble count is '0'.
  - Parameter: The DR post-amble count is '1'.
  - Parameter : The IR main count is '4'.
  - Parameter: The DR main count is '1'.



The initial scan chain contains only the TAP router module. The following steps must be completed in order to add ETB TAP to the scan chain.



Figure 5-70. Adding ETB to the scan chain

- Function: Do a send-only JTAG IR/DR scan.
  - Parameter: The route to JTAG shift state is 'shortest transition'.
  - Parameter: The JTAG shift state is 'shift-ir'.
  - Parameter: The JTAG destination state is 'pause-ir'.
  - Parameter: The bit length of the command is '6'.
  - Parameter: The send data value is '0x00000007'.
  - Parameter: The actual receive data is 'discarded'.
- Function: Do a send-only JTAG IR/DR scan.
  - Parameter: The route to JTAG shift state is 'shortest transition'.
  - Parameter: The JTAG shift state is 'shift-dr'.
  - Parameter: The JTAG destination state is 'pause-dr'.
  - Parameter: The bit length of the command is '8'.
  - Parameter: The send data value is '0x00000089'.
  - Parameter: The actual receive data is 'discarded'.
- Function: Do a send-only JTAG IR/DR scan.
  - Parameter: The route to JTAG shift state is 'shortest transition'.
  - Parameter: The JTAG shift state is 'shift-ir'.
  - Parameter: The JTAG destination state is 'pause-ir'.
  - Parameter: The bit length of the command is '6'.
  - Parameter: The send data value is '0x00000002'.
  - Parameter: The actual receive data is 'discarded'.
- Function: Embed the port address in next command.
  - Parameter: The port address field is '0x0f000000'.
  - Parameter: The port address value is '3'.
- Function: Do a send-only JTAG IR/DR scan.
  - Parameter: The route to JTAG shift state is 'shortest transition'.
  - Parameter: The JTAG shift state is 'shift-dr'.
  - Parameter: The JTAG destination state is 'pause-dr'.
  - Parameter: The bit length of the command is '32'.
  - Parameter: The send data value is '0xa3302108'.
  - Parameter: The actual receive data is 'discarded'.



- Function: Do a send-only all-ones JTAG IR/DR scan.
  - Parameter: The JTAG shift state is 'shift-ir'.
  - Parameter: The JTAG destination state is 'run-test/idle'.
  - Parameter: The bit length of the command is '6'.
  - Parameter: The send data value is 'all-ones'.
  - Parameter: The actual receive data is 'discarded'.
- Function: Wait for a minimum number of TCLK pulses.
  - Parameter: The count of TCLK pulses is '10'.
- Function: Update the JTAG preamble and post-amble counts.
  - Parameter: The IR pre-amble count is '0'.
  - Parameter: The IR post-amble count is '6 + 4'.
  - Parameter: The DR pre-amble count is '0'.
  - Parameter: The DR post-amble count is '1 + 1'.
  - Parameter: The IR main count is '4'.
  - Parameter: The DR main count is '1'.

## 5.29.4 JTAG 1149.1 Boundary Scan Considerations

To use boundary scan, the following sequence should be followed:

- · Execute a valid reset sequence and exit reset
- · Wait at least 6000 OSCIN clock cycles
- Enter boundary scan mode using the JTAG pins

No specific value is required on the EMU0 pin for boundary scan testing. If TRST is not driven by the boundary scan tool or tester, TRST should be externally pulled high during boundary scan testing.

## 5.30 Real Time Clock (RTC)

The RTC provides a time reference to an application running on the device. The current date and time is tracked in a set of counter registers that update once per second. The time can be represented in 12-hour or 24-hour mode. The calendar and time registers are buffered during reads and writes so that updates do not interfere with the accuracy of the time and date.

Alarms are available to interrupt the CPU at a particular time, or at periodic time intervals, such as once per minute or once per day. In addition, the RTC can interrupt the CPU every time the calendar and time registers are updated, or at programmable periodic intervals.

The real-time clock (RTC) provides the following features:

- 100-year calendar (xx00 to xx99)
- · Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensation
- Binary-coded-decimal (BCD) representation of time, calendar, and alarm
- 12-hour clock mode (with AM and PM) or 24-hour clock mode
- Alarm interrupt
- Periodic interrupt
- · Single interrupt to the CPU
- Supports external 32.768-kHz crystal or external clock source of the same frequency
- Separate isolated power supply

Figure 5-71 shows a block diagram of the RTC. See the *TMS320C674x/OMAP-L1x Processor Peripherals* Overview Reference Guide. – Literature Number SPRUFK9 for more details.





Figure 5-71. Real-Time Clock Block Diagram

#### 5.30.1 Clock Source

The clock reference for the RTC is an external 32.768-kHz crystal or an external clock source of the same frequency. The RTC also has a separate power supply that is isolated from the rest of the system. When the CPU and other peripherals are without power, the RTC can remain powered to preserve the current time and calendar information.

The source for the RTC reference clock may be provided by a crystal or by an external clock source. The RTC has an internal oscillator buffer to support direct operation with a crystal. The crystal is connected between pins RTC\_XI and RTC\_XO. RTC\_XI is the input to the on-chip oscillator and RTC\_XO is the output from the oscillator back to the crystal. A crystal with 70k-ohm max ESR is recommended. Typical C1, C2 values are 10-20 pF.

An external 32.768-kHz clock source may be used instead of a crystal. In such a case, the clock source is connected to RTC\_XI, and RTC\_XO is left unconnected.

If the RTC is not used, the RTC XI pin should be held high and RTC XO should be left unconnected.



The oscillator performance is validated up to 125°C, operating above 125°C is recommended to be driven with an external clock source.

Figure 5-72. Clock Source



## 5.30.2 Registers

Table 5-108 lists the memory-mapped registers for the RTC. See the device-specific data manual for the memory address of these registers.

Table 5-108. Real-Time Clock (RTC) Registers

| BYTE ADDRESS | Acronym     | Register Description                 |
|--------------|-------------|--------------------------------------|
| 0x01C2 3000  | SECOND      | Seconds Register                     |
| 0x01C2 3004  | MINUTE      | Minutes Register                     |
| 0x01C2 3008  | HOUR        | Hours Register                       |
| 0x01C2 300C  | DAY         | Day of the Month Register            |
| 0x01C2 3010  | MONTH       | Month Register                       |
| 0x01C2 3014  | YEAR        | Year Register                        |
| 0x01C2 3018  | DOTW        | Day of the Week Register             |
| 0x01C2 3020  | ALARMSECOND | Alarm Seconds Register               |
| 0x01C2 3024  | ALARMMINUTE | Alarm Minutes Register               |
| 0x01C2 3028  | ALARMHOUR   | Alarm Hours Register                 |
| 0x01C2 302C  | ALARMDAY    | Alarm Days Register                  |
| 0x01C2 3030  | ALARMMONTH  | Alarm Months Register                |
| 0x01C2 3034  | ALARMYEAR   | Alarm Years Register                 |
| 0x01C2 3040  | CTRL        | Control Register                     |
| 0x01C2 3044  | STATUS      | Status Register                      |
| 0x01C2 3048  | INTERRUPT   | Interrupt Enable Register            |
| 0x01C2 304C  | COMPLSB     | Compensation (LSB) Register          |
| 0x01C2 3050  | COMPMSB     | Compensation (MSB) Register          |
| 0x01C2 3054  | OSC         | Oscillator Register                  |
| 0x01C2 3060  | SCRATCH0    | Scratch 0 (General-Purpose) Register |
| 0x01C2 3064  | SCRATCH1    | Scratch 1 (General-Purpose) Register |
| 0x01C2 3068  | SCRATCH2    | Scratch 2 (General-Purpose) Register |
| 0x01C2 306C  | KICK0       | Kick 0 (Write Protect) Register      |
| 0x01C2 3070  | KICK1       | Kick 1 (Write Protect) Register      |



## **Device and Document Support**

#### 6.1 **Device Support**

TI offers an extensive line of development tools for the OMAPL137 platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer Studio™ Integrated Development Environment (IDE).

The following products support development of applications:

### **Software Development Tools:**

Code Composer Studio™ Integrated Development Environment (IDE): including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target software needed to support any application.

## **Hardware Development Tools:**

Extended Development System (XDS™) Emulator

For a complete listing of development-support tools for OMAPL137, visit the Texas Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For information on pricing and availability, contact the nearest TI field sales office or authorized distributor.

Product Folder Links: OMAPL137-HT



#### 6.2 **Documentation Support**

The following documents describe the Applications Processor. Copies of these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box provided at www.ti.com.

#### **DSP Reference Guides**

SPRUG82

TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory caches and describes how the two-level cache-based internal memory architecture in the TMS320C674x digital signal processor (DSP) can be efficiently used in DSP applications. Shows how to maintain coherence with external memory, how to use DMA to reduce memory latencies, and how to optimize your code to improve cache efficiency. The internal memory architecture in the C674x DSP is organized in a two-level hierarchy consisting of a dedicated program cache (L1P) and a dedicated data cache (L1D) on the first level. Accesses by the CPU to the these first level caches can complete without CPU pipeline stalls. If the data requested by the CPU is not contained in cache, it is fetched from the next lower memory level, L2 or external memory.

**SPRUFE8** 

TMS320C674x DSP CPU and Instruction Set Reference Guide. Describes the CPU architecture, pipeline, instruction set, and interrupts for the TMS320C674x digital signal processors (DSPs). The C674x DSP is an enhancement of the C64x+ and C67x+ DSPs with added functionality and an expanded instruction set.

SPRU186

TMS320C6000 Assembly Language Tools User's Guide. Describes the assembly language tools (assembler, linker, and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C6000 platform of devices (including the C64x+, C67x+, and C674x generations).

**SPRU187** 

TMS320C6000 Optimizing Compiler User's Guide. Describes the TMS320C6000 C compiler and the assembly optimizer. This C compiler accepts ANSI standard C source code and produces assembly language source code for the TMS320C6000 platform of devices (including the C64x+, C67x+, and C674x generations). The assembly optimizer helps you optimize your assembly code.

SPRUG83

TMS3200MAPL137 Digital Audio Processor System Reference Guide. Describes the ARM subsystem, DSP subsystem, system memory, device clocking, phase-locked loop controller (PLLC), power and sleep controller (PSC), power management, ARM interrupt controller (AINTC), and system configuration module.

SPRUFK5

TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access (IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth management, and the memory and cache.

**SPRUFK9** 

TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. Provides an overview and briefly describes the peripherals available on the device.

SPRUG84

OMAP-L137 Applications Processor System Reference Guide System-on-Chip (SoC) including the ARM subsystem, DSP subsystem, system memory, device clocking, phaselocked loop controller (PLLC), power and sleep controller (PSC), power management, ARM interrupt controller (AINTC), and system configuration module.



## 7 Mechanical Packaging and Orderable Information

This section describes the device orderable part numbers, packaging options, materials, thermal and mechanical parameters.

## 7.1 Device and Development-Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (e.g., TMS320C6745). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: X, P or NULL (e.g., XOMAPL137). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).

Device development evolutionary flow:

**X** Experimental device that is not necessarily representative of the final device's electrical specifications.

**P** Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification.

**NULL** Fully-qualified production device.

Support tool development evolutionary flow:

**TMDX** Development-support product that has not yet completed Texas Instruments internal qualification testing.

**TMDS** Fully qualified development-support product.

X and P devices and TMDX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

Null devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ZBK), the temperature range (for example, "Blank" is the commercial temperature range), and the device speed range in megahertz (for example, "Blank" is the default).

Figure 7-1 provides a legend for reading the complete device name for any OMAPL13x member.





Figure 7-1. Device Nomenclature (PTP Package)



Figure 7-2. Device Nomenclature (KGD Package)

### 7.2 Packaging Materials Information

The 176-pin PTP package is lead-free (Pb-free) and green. "Lead-free" and "green" are defined as follows:

- **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).



#### 7.3 Thermal Data for PTP

The following table(s) show the thermal resistance characteristics for the PowerPAD<sup>TM</sup> PTP mechanical package.

Table 7-1. Thermal Resistance Characteristics (PowerPAD™ Package) [PTP]

| NO. |                     |                         | °C/W |
|-----|---------------------|-------------------------|------|
| 1   | RΘ <sub>JCTOP</sub> | Junction-to-case top    | 9.3  |
| 2   | $R\Theta_{JB}$      | Junction-to-board       | 10.3 |
| 3   | RΘ <sub>JA</sub>    | Junction-to-free air    | 26.5 |
| 4   | RΘ <sub>JCBOT</sub> | Junction-to-case bottom | 0.2  |
| 5   | Psi <sub>JT</sub>   | Junction-to-package top | 0.4  |
| 6   | Psi <sub>JB</sub>   | Junction-to-board       | 10.1 |

## 7.4 Supplementary Information About the 176-pin PTP PowerPAD™ Package

This section highlights a few important details about the 176-pin PTP PowerPAD™ package. Texas Instruments' PowerPAD Thermally Enhanced Package Technical Brief (literature number SLMA002) should be consulted when creating a PCB footprint for this device.

## 7.4.1 Standoff Height

As illustrated in Figure 7-3, the standoff height specification for this device (between 0.050 mm and 0.150 mm) is measured from the seating plane established by the three lowest package pins to the **lowest** point on the package body. Due to warpage, the lowest point on the package body is located in the center of the package at the exposed thermal pad.

Using this definition of standoff height provides the correct result for determining the correct solder paste thickness. According to Tl's <a href="PowerPAD Thermally Enhanced Package Technical Brief">PowerPAD Thermally Enhanced Package Technical Brief</a> (literature number SLMA002), the recommended range of solder paste thickness for this package is between 0.152 mm and 0.178 mm.



Figure 7-3. Standoff Height Measurement on 176-pin PTP Package

### 7.4.2 PowerPAD™ PCB Footprint

In general, for proper thermal performance, the thermal pad under the package body should be as large as possible. However, the soldermask opening for the PowerPAD™ should be sized to match the pad size on the 176-pin PTP package; as illustrated in Figure 7-4.





Figure 7-4. Soldermask Opening Should Match Size of DSP Thermal Pad

## 7.5 Packaging Information

**Table 7-2. Orderable Part Numbers** 

| ORDERABLE PART<br>NUMBER | PACKAGE | CPU<br>SPEED | EMIFB<br>SDRAM<br>SPEED | CORE<br>SUPPLY | I/O SUPPLY | OPERATING<br>JUNCTION<br>TEMPERATURE<br>RANGE |
|--------------------------|---------|--------------|-------------------------|----------------|------------|-----------------------------------------------|
| OMAPL137BPTPH            | 176 PTP | 300 MHz      | 133 MHz                 | 1.2 V          | 3.3 V      | -55°C to 175°C                                |
| OMAPL137BHKGD1           | KGD die | 300 MHz      | 133 MHz                 | 1.2 V          | 3.3 V      | -55°C to 175°C                                |

## 7.6 Mechanical Drawings

This section contains the detailed mechanical drawing for the PTP PowerPAD<sup>TM</sup> plastic quad flat pack package. Additionally, a detailed drawing of the actual thermal pad dimensions as well as a recommended PCB footprint are provided.



## 7.6.1 PTP (S-PQFP-G176)

## PTP (S-PQFP-G176)

### PowerPAD™ PLASTIC QUAD



- NOTES: A. All linear dimensions are in millimeters.
  - B. This drawing is subject to change without notice.
  - C. Body dimensions do not include mold flash or protrusion.
  - D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package. Texas Instruments Literature No. SLMA002 for information regarding recommend board layout. This document is available at <a href="http://www.ti.com">http://www.ti.com</a>.
  - E. Falls within JEDEC MS-026

PowerPAD is a trademark of Texas Instruments Incorporated.



### 7.7 dMAX

Table 7-3 lists the dMAX control registers.

## Table 7-3. dMAX Control Registers

| Register<br>Address | dMAX<br>Register<br>Name | Register Description                                                                                                                                                                                                                                                                                                  |
|---------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6000 0008h          | DEPR                     | The dMAX event polarity register (DEPR) controls the polarity-rising edge (low to high) or falling edge (high to low)-that sets the flag in the EFR register.                                                                                                                                                         |
| 6000 000Ch          | DEER                     | The events can be enabled by writing a 1 to dMAX Event Enable Register (DEER).                                                                                                                                                                                                                                        |
| 6000 0010h          | DEDR                     | The events can be disabled by writing a 1 to dMAX Event Disable Register (DEDR).                                                                                                                                                                                                                                      |
| 6000 0014h          | DEHPR                    | An event is assigned to the high priority event group when the bit, which corresponds to the event, is set in the dMAX Event High Priority Register (DEHPR).                                                                                                                                                          |
| 6000 0018h          | DELPR                    | An event is assigned to the low priority event group when the bit, which corresponds to the event, is set in the dMAX Event Low Priority Register (DELPR).                                                                                                                                                            |
| 6000 001Ch          | DEFR                     | The dMAX Event Flag Register (DEFR) indicates that an appropriate transition edge (specified in the Event Polarity Register) has occurred on the event signals. All events are captured in the event flag register, even when the events are disabled.                                                                |
| 6000 0034h          | DER0                     | The dMAX event register (DER0) reflects current value of the event signals 7-0.                                                                                                                                                                                                                                       |
| 6000 0054h          | DER1                     | The dMAX event register (DER1) reflects current value of the event signals 15-8.                                                                                                                                                                                                                                      |
| 6000 0074h          | DER2                     | The dMAX event register (DER2) reflects current value of the event signals 23-16.                                                                                                                                                                                                                                     |
| 6000 0094h          | DER3                     | The dMAX event register (DER3) reflects current value of the event signals 31-24.                                                                                                                                                                                                                                     |
| 6000 0040h          | DFSR0                    | dMAX FIFO status register 0. Writing a 1 to the DFSR0 register clears the corresponding bit. Writing 0 has no effect.                                                                                                                                                                                                 |
| 6000 0060h          | DFSR1                    | dMAX FIFO status register 1. Writing a 1 to the DFSR1 register clears the corresponding bit. Writing 0 has no effect.                                                                                                                                                                                                 |
| 6000 0080h          | DTCR0                    | dMAX transfer completion register 0. Writing a 1 to the DTCR0 register clears the corresponding bit. Writing 0 has no effect.                                                                                                                                                                                         |
| 6000 00A0h          | DTCR1                    | dMAX transfer completion register 1. Writing a 1 to the DTCR1 register clears the corresponding bit. Writing 0 has no effect.                                                                                                                                                                                         |
| -                   | DETR                     | dMAX event trigger register. By toggling a bit in this register the CPU can trigger an event. To facilitate faster CPU access, the dMAX Event Trigger Register is not memory-mapped and is placed inside the CPU module.                                                                                              |
| -                   | DESR                     | dMAX event status register. To facilitate low CPU access overhead this register mirrors TCC bits from DTCR0 and DTCR1 registers. The register also keeps track of dMAX controller activity. To facilitate faster CPU access, the dMAX Event Status Register is not memory-mapped and is placed inside the CPU module. |

## 7.8 Key Manager

The Key Manager provides the management of the security keys within the Security Architecture. Its goal as part of the architecture is to provide protection of keys / key information (known from this point on as Keys) against unintended users. The following features are supported by the Key Manager:

- Controls the system level security key information
- Supports a configurable number of 128-bit security keys and 16-bit key checksums (up to 16)
- · EFUSE scan chain snooping capabilities
  - Device Type capture
  - Security Key checksum validation

Mechanical Packaging and Orderable Information

Copyright © 2012–2013, Texas Instruments Incorporated



- Read only VBUSP slave port for register access
  - Access controls for security key information
    - · Configurable mstid and privid filter
    - Support for CBA memory protection sideband signals (secure, priv, privid, emudbg)
  - Clock management interface
- · Interaction with system level Security controller

Table 7-4. Key Manager Register Descriptions

| BYTE ADDRESS            | REGISTER NAME | DESCRIPTION         |
|-------------------------|---------------|---------------------|
| 01xC1 2000              | REVID         | Revision Register   |
| 01xC1 2004              | STAT          | Key Manager Status  |
| 01xC1 2008              | CHKSUMSTAT    | Key Checksum Status |
| 01xC1 200C              | RSVD          | Reserved            |
| 01xC1 2010 - 01xC1 201C | KEY1WRD1      | Key 1               |
| 01xC1 2020 - 01xC1 202C | KEY1WRD1      | Key 2               |
|                         |               |                     |
| 01xC1 20F0 - 01xC1 20FC | KEY1WRD1      | Key 15              |
| 01xC1 2100 - 01xC1 210C | KEY1WRD1      | Key 16              |
| 01xC1 2110 - 01xC1 23FF | RSVD          | Reserved            |

### 7.9 SECCTRL

**Table 7-5. SECCTRL Register Descriptions** 

| BYTE ADDRESS | REGISTER NAME     | DESCRIPTION |
|--------------|-------------------|-------------|
| 01xC1 3000   | PID               |             |
|              | RSVD              | Reserved    |
|              | SYSSTATUS         |             |
|              | SYSWR             |             |
|              | RSVD              | Reserved    |
|              | ARMWR             |             |
|              | SYSCONTROL        |             |
|              | SYSCONTROLPROTECT |             |
|              | SYSTAPEN          |             |
|              | SECRESERVED       |             |
|              | PSTATUS           |             |
|              | PREADDEBUGDAT     |             |
|              | PWRITEDEBUGDAT    |             |



## **Revision History**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| Changes from Revision A (February 2012) to Revision B                        | Page |
|------------------------------------------------------------------------------|------|
| Added bare die information and bond pad coordinates for Known Good Die (KGD) | 21   |
| Added N/C to blank descriptions in Table 2-4                                 | 22   |
| Deleted : Murata BLM31PG500SN1L or Equivalent from Figure 5-9                |      |
| Added device nomenclature for KGD                                            |      |
| Added orderable part number for KGD                                          |      |

Submit Documentation Feedback
Product Folder Links: OMAPL137-HT



## PACKAGE OPTION ADDENDUM

28-Jun-2016

#### PACKAGING INFORMATION

| Orderable Device | Status | Package Type | _       | Pins | _   | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Device Marking | Samples |
|------------------|--------|--------------|---------|------|-----|----------------------------|------------------|--------------------|--------------|----------------|---------|
|                  | (1)    |              | Drawing |      | Qty | (2)                        | (6)              | (3)                |              | (4/5)          |         |
| OMAPL137BHKGD1   | ACTIVE | XCEPT        | KGD     | 0    | 35  | TBD                        | Call TI          | N / A for Pkg Type | -40 to 90    |                | Samples |
| OMAPL137BPTPH    | ACTIVE | HLQFP        | PTP     | 176  | 1   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-4-260C-72 HR | 0 to 90      | OMAPL137BPTPH  | Samples |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight

in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.



## **PACKAGE OPTION ADDENDUM**

28-Jun-2016

## PTP (S-PQFP-G176)

## PowerPAD™ PLASTIC QUAD FLATPACK



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com <a href="https://www.ti.com">www.ti.com</a>.
- E. Falls within JEDEC MO-026

PowerPAD is a trademark of Texas Instruments.



# PTP (S-PQFP-G176)

# PowerPAD™ PLASTIC QUAD FLATPACK

## THERMAL INFORMATION

This PowerPAD package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTE: All linear dimensions are in millimeters





## PTP (S-PQFP-G176)

## PowerPAD™ PLASTIC QUAD FLATPACK



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <a href="https://www.ti.com">http://www.ti.com</a>. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments.



#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

#### Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity