Лекция 10. (14 апреля 20) Положительно определенные квадратичные формы. Критерий Сильвестра.

Определение. Квадратичная функция k(x) на линейном пространстве L называется положительно определенной, если $\forall x \in L, x \neq 0, \ k(x) > 0$ (краткое обозначение этого свойства: k > 0);

отрицательно определенной, если $\forall x \in L, x \neq 0, \ k(x) < 0$ (краткое обозначение : k < 0); неотрицательно определенной, если $\forall x \in L, \ k(x) \geq 0$ (краткое обозначение : $k \geq 0$); неположительно определенной, если $\forall x \in L, \ k(x) \leq 0$ (краткое обозначение : $k \leq 0$); неопределенной, если $\exists x \in L : \ k(x) > 0, \ \exists y \in L : \ k(y) < 0$ (краткое обозначение : k < 0).

Пусть в некотором базисе квадратичная функция записана в виде квадратичной формы

$$k(x) = b_{11}x_1^2 + \dots + b_{nn}x_n^2 + 2\sum_{1 \le i < j \le n} b_{ij}x_ix_j$$
 (1)

с матрицей $B = (b_{ii}) = B^T$

Лемма. Квадратичная форма тогда и только тогда является положительно определенной, когда она приводится к диагональному виду

$$\sum_{i=1}^{n} \alpha_i z_i^2, \ \alpha_i > 0, i = 1, ..., n \ (2)$$

$$\Leftrightarrow$$

к каноническому виду $k(y) = \sum_{i=1}^{n} y_i^2$. (3)

(Замечание. От вида (2) к каноническому виду (3) можно перейти в результате замены $y_i = \sqrt{\alpha_i} z_i, i=1,...,n$).

Доказательство леммы. То, что диагональная форма со всеми положительными коэффициентами или каноническая форма $k(y) = \sum_{i=1}^{n} y_i^2$ является положительно определенной, ясно.

Обратно, допустим, что данная положительно определенная квадратичная форма k(x) имеет канонический вид $k = \sum_{i=1}^p y_i^2 - \sum_{i=p+1}^{p+q} y_i^2$. Если, вопреки доказываемому, $p < n \implies k(0,...,0,1) \le 0$, что противоречит положительной определенности. \square

Примечание. Критерии всех случаев знака квадратичной формы в терминах инвариантов p, q таковы:

$$\begin{array}{lll} k>0 \iff p=n, q=0 \ ; \ k<0 \iff p=0, q=n \,); \ k\geq 0 \iff p=r, q=0 \ ; \ k\leq 0 \iff p=0, q=r \, ; \\ k><0 \iff p>0, q>0 \,). \end{array}$$

В то же время желательно уметь исследовать знакоопределенность квадратичной формы непосредственно по её матрице, без приведения к каноническому виду.

Теорема (Критерий Сильвестра).

Для положительной определенности квадратичной формы k(x) в R^n необходимо и достаточно, чтобы все главные миноры её матрицы В, имеющие вид

$$\Delta_{m} = \det \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mm} \end{bmatrix} , m = 1, \dots n \quad (b_{ij} = b_{ji}, \forall i, j),$$

были положительными.

Доказательство критерия Сильвестра.

Достаточность.

Дано, что все главные миноры матрицы квадратичной формы положительны, надо доказать, что она является положительно определенной.

Воспользуемся методом математической индукции и леммой.

Для n = 1 достаточность очевидна.

Допустим, что n > 1 и из положительности главных миноров матрицы квадратичной формы порядка до n-1 включительно следует возможность приведения квадратичной

формы от
$$n-1$$
 переменных x_1, \dots, x_{n-1} к виду $k(x) = \sum_{i=1}^{n-1} x_i^2$.

Покажем, что в этом случае достаточность будет иметь место и для квадратичной формы, зависящей от n переменных.

В выражении для квадратичной формы, зависящей от n переменных x_1, \dots, x_{n-1}, x_n , выделим слагаемые, содержащие x_n :

$$k(x) = \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} b_{ji} x_j x_i + 2 \sum_{j=1}^{n-1} b_{jn} x_j x_n + b_{nn} x_n^2.$$

Двойная сумма $\sum_{j=1}^{n-1} \sum_{i=1}^{n-1} b_{ji} x_j x_i = k * (x_1, \dots, x_{n-1})$ в правой части этого равенства есть квадратичная

форма $k^*(x)$, зависящая от n-1 переменной, причем её матрица — подматрица порядка n-1 матрицы формы k(x), расположенная в левом верхнем углу, так что главные миноры её матрицы совпадают с главными минорами матрицы k(x) до порядка n-1 включительно, которые, по условию, положительны. Отсюда следует, по предположению индукции, что квадратичная форма $k^*(x)$ положительно определенная и для неё существует невырожденная замена переменных

$$x_j = \sum_{i=1}^{n-1} \sigma_{ji} y_i$$
; $j = 1, ..., n-1$,

приводящая её к каноническому виду: $k^*(x) = \sum_{i=1}^{n-1} y_i^2$.

Запишем квадратичную форму k(x) в новых переменных (x_n пока не заменяли):

$$k = \sum_{i=1}^{n-1} y_i^2 + 2\sum_{i=1}^{n-1} b'_{in} y_i x_n + b_{nn} x_n^2$$

и выделим полные квадраты по $y_1, ..., y_{n-1}$:

В матричном виде эту замену переменных можно записать как

$$\begin{vmatrix} z_1 \\ z_2 \\ \cdots \\ z_{n-1} \\ x_n \end{vmatrix} = \begin{vmatrix} 1 & 0 & \cdots & 0 & b'_{1,n} \\ 0 & 1 & \cdots & 0 & b'_{2,n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & 1 & b'_{n-1,n} \\ 0 & 0 & 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} y_1 \\ y_2 \\ \cdots \\ y_{n-1} \\ x_n \end{vmatrix}$$

и поскольку определитель ее матрицы отличен от нуля, то эта замена невырожденная.

Наконец, вспомним, что определитель матрицы квадратичной формы сохраняет знак при замене базиса. Определитель матрицы В квадратичной функции в исходном базисе положительный, поскольку этот определитель является главным минором порядка n. Но из выражения для k(x) в конечном базисе мы получаем, что определитель матрицы квадратичной формы k равен b_{nn}'' . Поэтому $b_{nn}'' > 0$ и можно ввести переменную $z_n = \sqrt{b_{nn}''} x_n$, в результате чего получаем канонический вид квадратичной формы

$$k = \sum_{i=1}^n z_i^2 .$$

Следовательно, квадратичная функция k(x) положительно определённа. Лостаточность доказана.

Необходимость.

Дано, что квадратичная функция положительно определенна, и надо доказать положительность главных миноров ее матрицы. Снова применим индукцию по числу переменных п. Для n=1 это ясно.

Пусть n > 1 и для форм от меньшего числа переменных утверждение теоремы верно. Поскольку квадратичная форма $k^*(x)$ из доказательства достаточности также является положительно определенной (ее значения — это значения k(x) при $x_n = 0$), то по предположению индукции ее главные миноры, совпадающие с главными минорами матрицы В до порядка n-1, положительны. А определитель самой матрицы В, который является главным минором порядка n,

положителен, поскольку k(x) приводится к каноническому виду $k = \sum_{i=1}^{n} z_i^2$, и определитель

матрицы полученной при этом квадратичной формы равен 1 и имеет такой же знак, как и определитель матрицы В.

Теорема полностью доказана.

Следствие. (Критерий отрицательной определенности). Для отрицательной определенности квадратичной формы k(x) в R^n необходимо и достаточно, чтобы все главные миноры её матрицы В имели чередующиеся знаки, начиная с минуса, т.е. $(-1)^m \Delta_m > 0, m = 1, ..., n$.

Доказательство. Рассмотрим квадратичную форму -k(x) > 0 с матрицей $B' = -B = (-b_{ij})$: для нее, по критерию Сильвестра,

$$\Delta'_{m} = \det \begin{bmatrix} -b_{11} & -b_{12} & \dots & -b_{1m} \\ -b_{21} & -b_{22} & \dots & -b_{2m} \\ \dots & \dots & \dots & \dots \\ -b_{m1} & -b_{m2} & \dots & -b_{mm} \end{bmatrix} = (-1)^{m} \Delta_{m} > 0 \quad , m = 1, \dots n \quad , \text{ ч.т.д.}$$

Примечание. Знакоопределенность квадратичной формы понадобится для проверки достаточного условия экстремума функции нескольких переменных. А именно, пусть функция $f(x) = f(x_1, ..., x_n)$ имеет в окрестности точки $x_0 = (x_1^{(0)}, ..., x_n^{(0)})$ частные производные второго порядка по всем переменным. Если $x_0 = (x_1^{(0)}, ..., x_n^{(0)})$ точка локального экстремума для f(x), то все ее частные производные первого порядка равны нулю в этой точке. Далее можно рассмотреть квадратичную форму второго дифференциала в этой точке:

 $d^2f(x_0) = \sum_{i,j=1}^n \frac{\partial^2 f(x_0)}{\partial x_i \partial x_j} dx_i dx_j$. Если она является положительно определенной, то f(x) имеет в точке x_0 локальный минимум, а если отрицательно определенной, то локальный максимум. Чаще всего применяют критерий Сильвестра к матрице $\left\| \frac{\partial^2 f(x_0)}{\partial x_i \partial x_j} \right\|$ из вторых частных производных в этой точке.