Apellido, nombre y carrera:

*****Recordar que sólo una de las opciones es correcta.****

1. La siguiente matriz es normal:

(A)
$$\left[\begin{array}{ccc} 2i & 1+i & 0 \\ -i & 2i & 1-i \\ 0 & -1-i & 1-i \end{array} \right].$$

(B)
$$\left[\begin{array}{ccc} 2i & i & 0 \\ 1-i & 2i & 1-i \\ 0 & 1-i & 3i \end{array} \right].$$

(C)
$$\begin{bmatrix} 2i & i & 0 \\ i & 2i & 1-i \\ 0 & -1-i & 3i \end{bmatrix} .$$

(D)
$$\left[\begin{array}{ccc} 2i & i & 0 \\ i & 2i & 1-i \\ 0 & -i & 3i \end{array} \right].$$

- 2. Sea A una matriz y $S=\left[\begin{array}{ccc} 4 & 1-i & 0 \\ 1+i & i & 0 \\ 7 & 2 & 1 \end{array}\right]$ diagonaliza a A. Entonces:
 - (A) x = (4, 1 i, 0) es autovector de A.
 - (B) $S^{-1}AS$ tiene todas entradas distintas en la diagonal.
 - (C) x = (4, 1 + i, 7) es autovector de A.
 - (D) Ninguna de las anteriores es una condición necesaria.
- 3. Consideramos la secuencia

$$g_0 = 0; \ g_1 = 1; \ g_{k+2} = \frac{g_{k+1} + g_k}{2}, k \ge 0.$$

Definimos $x_k = \begin{bmatrix} g_{k+1} \\ g_k \end{bmatrix}$.

a) Sea A tal que, para todo $k \ge 0$, $x_{k+1} = Ax_k$. Entonces,

(A)
$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix}$$
.

(C)
$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 0 \end{bmatrix}.$$

(B)
$$A = \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

(D)
$$A = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
.

- b) Sea A tal que, para todo $k \ge 0$, $x_{k+1} = Ax_k$. Para i = 1, 2, sea λ_i autovalor de A, V_i su autoespacio asociado y $\lambda_1 > \lambda_2$. Entonces:
 - (A) $V_1 = \langle (1,1) \rangle$ y $V_2 = \langle (\frac{1}{2},1) \rangle$.
 - (B) $V_1 = \langle (1,1) \rangle$ y $V_2 = \langle (1,-\frac{1}{2}) \rangle$.
 - (C) $V_1 = \langle (1,1) \rangle$ y $V_2 = \langle (1,-2) \rangle$.
 - (D) $V_1 = \langle (1,1) \rangle$ y $V_2 = \langle (-2,1) \rangle$.
- c) (A) $g_k = -\frac{2}{3} \left[1 \left(-\frac{1}{2} \right)^k \right].$

(B)
$$g_k = \frac{2}{3} \left[1 - \left(-\frac{1}{2} \right)^k \right].$$

(C) $g_k = -\frac{2}{3} \left[1 - \left(-\frac{1}{2} \right)^{k+1} \right].$
(D) $g_k = \frac{2}{3} \left[1 - \left(-\frac{1}{2} \right)^{k+1} \right].$

- 4. *a*) Para toda matriz *A*, podemos afirmar que:
 - (A) Existe una matriz unitaria U tal que $U^{-1}AU$ es una matriz diagonal.
 - (B) Existe una matriz normal N tal que $N^{-1}AN$ es una matriz diagonal.
 - (C) Existe una matriz normal N tal que $N^{-1}AN$ es una matriz triangular.
 - (D) Ninguna de las afirmaciones anteriores es correcta.
 - b) Consideramos la matriz $A = \begin{bmatrix} -5+i & -15 \\ 2 & 6+i \end{bmatrix}$.

La siguiente matriz U es unitaria y triangulariza a A (Lema de Schur):

(A)
$$U = \frac{1}{10} \begin{bmatrix} -3 & 1\\ 1 & 3 \end{bmatrix}$$
.
(B) $U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1\\ 1 & 1 \end{bmatrix}$.

(C)
$$U = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
.

(D)
$$U = \frac{1}{\sqrt{10}} \begin{bmatrix} -3 & 1\\ 1 & 3 \end{bmatrix}$$
.

- 5. Sea $A(t)=\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right]+t\left[\begin{array}{cc} 1 & -1 \\ 0 & 0 \end{array}\right]$. Entonces:
 - a) (A) Existe $t \in \mathbb{C}$ tal que los dos autovalores de A(t) son números complejos conjugados, no reales.
 - (B) Para todo $t \in \mathbb{C}$, A(t) tiene dos autovalores de multiplicidad 1.
 - (C) Existe $t \in \mathbb{C}$ tal que $\lambda = 1$ es un autovalor de A(t) de multiplicidad 2.
 - (D) Existe $t \in \mathbb{C}$ tal que $\lambda = 2$ es un autovalor de A(t) de multiplicidad 2.
 - b) (A) Existe $t \in \mathbb{C}$ tal que (-3, 1) es un autovector de A(t).
 - (B) No existe $v \in \mathbb{C}^2$ tal que v es autovector de A(t) para todo $t \in \mathbb{C}$.
 - (C) Existe $t \in \mathbb{C}$ tal que A(t) tiene un autovalor de multiplicidad 1 y la dimensión del autoespacio asociado es 2.
 - (D) Existen $v_1, v_2 \in \mathbb{C}^2$ linealmente independientes autovectores de A(t) para todo $t \in \mathbb{C}$.
 - c) (A) A(t) es diagonalizable para todo t.
 - (B) No existe valor de t tal que A(t) resulta diagonalizable.
 - (C) Existe un único valor de t tal que A(t) resulta diagonalizable.
 - (D) Ninguna de las afirmaciones anteriores es correcta.