Digital Integrated Circuit Lecture 3 Introduction

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

GIST Lecture

Review of Previous Lecture

Lecture 2

- Complementary CMOS gates
 - Pull-down & pull-up: Conduction complements
 - Inverter, NAND, NOR, and compound gates
- Pass transistors
 - Transistors can be used as switches.
 - Transmission gate

1.4 CMOS Logic

1.4. CMOS logic (10)

- Tristates (0, 1, and Z)
 - Tristate buffer produces Z when not enabled
 - Transmission gate acts as a tristate buffer.
 - But, it is nonrestoring.

EN	А	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

Truth table of a tristate buffer

Fig. 1.25

1.4. CMOS logic (11)

- Tristate inverter
 - It produces a restored output.
 - It violates the conduction complements rule. (Why?)

Fig. 1.27

1.4. CMOS logic (12)

- Multiplexers (muxes)
 - It chooses the output from several inputs based on a select signal.

S	D1	D0	Υ
0	X	0	0
0	X	1	1
1	0	X	0
1	1	X	1

Truth table of a 2:1 multiplexer

Fig. 1.28(b)

1.4. CMOS logic (13)

- Implementation
 - Using transmission gates (nonrestoring)
 - Using tristate inverters (inverting)

Fig. 1.28(a)

Fig. 1.29(b)

1.4. CMOS logic (14)

- Larger multiplexers
 - Example) 4:1 multiplexer
 - Two levels of 2:1 muxes
 - Or four tristates

Fig. 1.30

1.5 CMOS Fabrication and Layout

1.5. CMOS fabrication (1)

- Inverter cross-section
 - P-type substrate for NMOS transistors
 - N-well for body of PMOS transistors

1.5. CMOS fabrication (2)

- Well and substrate taps
 - The substrate must be tied to GND. Likewise, the n-well must be tied to V_{DD} .

– Taps to connect GND and V_{DD} to the substrate and n-well, respectively

1.5. CMOS fabrication (3)

Interver mask

1.5. CMOS fabrication (4)

Blank wafer

p substrate

1.5. CMOS fabrication (5)

- Oxidation
 - -Grow SiO₂ on top of Si wafer
 - High temperature (typically 900 ~ 1200 °C)

SiO₂

1.5. CMOS fabrication (6)

- Photoresist
 - Photoresist is a light-sensitive organic polymer.

Photoresist

 SiO_2

1.5. CMOS fabrication (7)

- Lithography
 - -The photoresist is exposed through the n-well mask.
 - The soften photoresist is removed to expose the oxide.

Photoresist

 SiO_2

1.5. CMOS fabrication (8)

- Etch
 - -The oxide is etched with hydrofluoric acid (HF). (The photoresist protects the oxide.)

1.5. CMOS fabrication (9)

- Strip photoresist
 - -The remaining photoresist is stripped away.

```
p substrate
```

SiO₂

1.5. CMOS fabrication (10)

- N-well
 - -The well is formed where the substrate is not covered with oxide.
 - Two ways to add dopants are diffusion and ion implantation.

SiO₂

1.5. CMOS fabrication (11)

- Strip oxide
 - -The remaining oxide is stripped with HF to leave the bare wafer with wells in the appropriate places.

n well p substrate

1.5. CMOS fabrication (12)

- Gate oxide and polysilicon
 - -The thin oxide is grown in a furnace.
 - -Then, the polysilicon layer is grown.

Polysilicon
Thin gate oxide

1.5. CMOS fabrication (13)

Gate patterning

1.5. CMOS fabrication (14)

Protective layer

1.5. CMOS fabrication (15)

- N-diffusion
 - Patterned with the n-diffusion mask

1.5. CMOS fabrication (16)

- Ion implantation
 - Due to the historical reason, it is called *n-diffusion*.
 - The gate blocks the diffusion so the source & drain are separated by a channel under the gate.
 - This is called a *self-aligned* process.

1.5. CMOS fabrication (17)

- P-diffusion
 - Repeat the previous process for the p-diffusion mask.

1.5. CMOS fabrication (18)

Contacts

- -The field oxide is grown to insulate the wafer from metal.
- It is patterned with the contact mask.

1.5. CMOS fabrication (19)

 Metalization Metal Metal Thick field oxide p+ n+ n+ p+ p+ n+ n well p substrate

1.5. CMOS layout (1)

Layout

- Minimum dimensions of masks determine transistor size.
- Feature size refers to minimum transistor length.
- $-\lambda$ is half the feature size.
- Transistor dimensions specified as Width / Length in λ .

- In digital systems, transistors are typically chosen to have the

V_{DD}

minimum possible length.

Fig. 1.40

1.5. CMOS layout (2)

- Standard cell design methodology
 - Four horizontal strips: metal groun at the bottom, n-diffusion, p-diffusion, and metal power at the top
 - -The power and ground lines are often called *supply rails*.
 - Gate lines run vertically to form transistor gates.

Fig. 1.41(b)

1.5. CMOS layout (3)

• NAND3

Fig. 1.42

Thank you!