Contents

1	Inti	roduct	ion	13
	1.1	Cellul	ar Automata Creating Artificial Reality	14
	1.2	Backg	ground of this book	15
	1.3	Overv	riew of the Book	16
2	A (Compr	ehensive Survey On Cellular Automata	18
	2.1	Cellul	ar Automata - Structural Variations	19
	2.2	Cellul	ar Automata (CA) Behavior - Local to Global Mapping	21
		2.2.1		22
		2.2.2	Non-Linear CA	24
	2.3	The I	nverse Problem - Global to Local Mapping	24
	2.4	CA A	pplications	26
		2.4.1	CA Games	26
		2.4.2	CA as Parallel Computing Machine	27
		2.4.3	Modeling Non-linear Dynamics	27
		2.4.4	CA For Modeling Physical and Biological Systems	28
		2.4.5	CA Application in Social Sciences	28
		2.4.6	Diverse Applications in VLSI era	29
		2.4.7	Pattern Recognition	31
	2.5	Concl	usion	32
3	Ana	alysis (of CA State Space - A Vector Space Theoretic Approach	35
	3.1	Cellul	ar Automata Preliminaries	36
		3.1.1	CA Terminologies	37
		3.1.2	Cellular Automata (CA) Characterization	38
		919	Croup and Non Croup CA	20

	3.2	Vecto	r Space Theoretic Analysis of Linear CA (LCA)	42
		3.2.1	Derivation of Elementary Divisors From T Matrix (Step 1 of Algorithm 3.1)	44
		3.2.2	Generation of Cyclic Sub-space of Elementary Divisors (Step 2 of Algorithm 3.1)	46
		3.2.3	Generation of Cycle Structure of an LCA having Multiple Elementary Divisors (Step 3 of Algorithm 3.1)	50
	3.3	Vector	Space Theoretic Analysis of Additive CA (ACA)	59
		3.3.1	Method to determine the presence of cycle of length (k) in an ACA (Property P_1)	60
		3.3.2	Special class of C' for which cycle structure is identical to that of C (Property P_2)	61
		3.3.3	Class of ACA with cycle structure different from that of LCA (Property P_3)	63
		3.3.4	Algorithm for Enumerating Cycle Structure of an ACA	69
	3.4	Conclu	usion	71
4	Cel	lular A	utomata Synthesis	79
	4.1	Synthe	esis of a Linear CA (LCA)	79
		4.1.1	Generation of $EFCS$ from cycle structure (CS) - Step A of Algorithm 4.1	81
		4.1.2	Generation of ECS from $EFCS$ - Step B of Algorithm 4.1	86
		4.1.3	Find Elementary Divisors (EDs) for ECS - Step C of Algorithm 4.1	89
		4.1.4	LCA Synthesis from Elementary Divisors - Step D of Algorithm 4.1	91
	4.2	Synthe	esis of Additive Cellular Automata (ACA)	94
		4.2.1	Generation of $EFCS'$ from Cycle Structure (CS') - Step A of Algorithm 4.1	97
		4.2.2	Generation of ECS from $EFCS'$ - Step B of Algorithm 4.1	102
		4.2.3	Synthesis of Inversion Vector - Step E of Algorithm 4.1	103
	4.3	The C	ellular Automata Toolkit (CAT)	104
	4.4	Conclu	asion	106
5	Ana	alysis a	f nd Synthesis of Multiple Attractor Cellular Automata ($MACA$)	115
	5.1	Multip	ole Attractor Cellular Automata $(MACA)$	116
	5.2	MAC	A Based Hamming Hash Family (HHF)	120
		5.2.1	Computation of Expected Occurrence (EO)	122

	5.3	MAC	A Synthesis - A GA (Genetic Algorithm) Formulation	127
		5.3.1	The Encoding Scheme - A Pseudo Chromosome Format	128
		5.3.2	Random Generation of the Initial Population	129
		5.3.3	Mutation Algorithm	131
		5.3.4	Crossover Algorithm	132
		5.3.5	Selection, Crossover and Mutation Probability	133
	5.4	Depen	ndency Vector/String for MACA Characterization	134
		5.4.1	Dependency Vector and Dependency String for Characterizing a Vector Subspace	135
		5.4.2	Legal Dependency Vector and String	136
		5.4.3	Application of Dependency String (DS) for Identification of PEF of an attractor basin	138
		5.4.4	Synthesis of Dependency Matrix From Dependency String	140
	5.5	Genet	ic Algorithm (GA) for Evolution of Dependency Vector and String	143
		5.5.1	Chromosome Format	143
		5.5.2	Random Generation of Initial Population	143
		5.5.3	Crossover Algorithm	144
		5.5.4	Mutation Algorithm	145
	5.6	Concl	usion	146
6	MA	.CA Ba	ased Associative Memory Model for Pattern Classification/Clus	tering157
	6.1	Patter	rn Recognition - A Brief Survey	159
		6.1.1	Definition, Categorization & Applications	159
		6.1.2	Similarity Measures	160
		6.1.3	${\bf Template\ Matching,\ Syntactic\ and\ Statistical\ Pattern\ Recognition} .$	161
		6.1.4	Decision Tree	162
		6.1.5	Neural Networks	163
		6.1.6	Hopfield Network	163
		6.1.7	Clustering Techniques	164
	6.2	MAC	A Modeling Associative Memory	165
		6.2.1	Design Guidelines	166
		6.2.2	Pattern Recognition	168
		6.2.3	Evolutionary Synthesis of $MACA$ Modeling Associative Memory $\ .$.	169
		6.2.4	Theoretical Analysis and Experimental Results	170
		6.2.5	Multiple MACA Based Associative Memory Model	179

	6.3	Design	of $MACA$ Based Pattern Classifier	185
		6.3.1	Two-Class Classifier	185
		6.3.2	Performance Analysis of $MACA$ based Classifier	189
		6.3.3	Two Stage Two Class Classifier (TCC)	193
	6.4	Schem	e I: Hierarchical Two Class Classifier (HTCC)	196
	6.5	Schem	e II - MACA Based Tree-Structured Classifier (MTSC)	199
		6.5.1	Design of MACA Tree	200
		6.5.2	MACA Selection to build MACA tree	202
	6.6	Applic	eation of MACA Based Pattern Classifier	203
		6.6.1	MACA Based Pattern Classifier For Data Mining	204
		6.6.2	Experimental Set-up	204
		6.6.3	Performance of MACA based pattern classifiers	206
	6.7	Patter	n Clustering	208
		6.7.1	MACA Based Pattern Clustering Model	209
		6.7.2	Experimental Results	214
	6.8	Conclu	asion	216
7	Hie	rarchic	eal Cellular Automata (HCA)	217
7	Hie : 7.1		eal Cellular Automata (HCA)	217 218
7			` '	
7		Extens	sion Field	218
7		Extens	Sion Field	218 218
7		Extens 7.1.1 7.1.2 7.1.3	Sion Field	218218219
7	7.1	Extens 7.1.1 7.1.2 7.1.3	Sion Field	218218219221
7	7.1	Extens 7.1.1 7.1.2 7.1.3 $GF(2^p)$	Sion Field	218 218 219 221 222 222
7	7.1	Extens 7.1.1 7.1.2 7.1.3 $GF(2^p$ 7.2.1	Sion Field	218 218 219 221 222 222
7	7.1	Extens 7.1.1 7.1.2 7.1.3 $GF(2^p$ 7.2.1 7.2.2	Sion Field	218 219 221 222 222 224
7	7.1	Extens 7.1.1 7.1.2 7.1.3 $GF(2^p)$ 7.2.1 7.2.2 7.2.3	Sion Field	218 219 221 222 222 224 224
7	7.1	Extens 7.1.1 7.1.2 7.1.3 $GF(2^p)$ 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5	Sion Field	218 219 221 222 222 224 224 226
7	7.1	Extens 7.1.1 7.1.2 7.1.3 $GF(2^p)$ 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5	Extension Field $GF(2^p)$	218 219 221 222 222 224 224 226 233
7	7.1	Fxtens 7.1.1 7.1.2 7.1.3 GF(2 ^p 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 Additi	Sion Field	218 219 221 222 222 224 224 226 233 236
7	7.1	Extens 7.1.1 7.1.2 7.1.3 GF(2 ^p 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 Additi 7.3.1	Extension Field $GF(2^p)$ $GF(2^p)$ Field Elements Operations in Extension Field $GF(2^p)$ $CP(2^p)$ CA $CF(2^p)$ CA Structure Hardware Realization of $GF(2^p)$ CA Characterization of $GF(2^p)$ CA Characterization of $GF(2^p)$ CA Non-Group $GF(2^p)$ CA Extension Field $GF(2^p)$ CA Cycle Structure and Depth	218 218 219 221 222 222 224 224 226 233 236 237
7	7.1	Extens 7.1.1 7.1.2 7.1.3 GF(2 ^p 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 Additi 7.3.1 7.3.2 7.3.3	Extension Field $GF(2^p)$ $GF(2^p)$ Field Elements Operations in Extension Field $GF(2^p)$ $GF(2^p)$ CA $GF(2^p)$ CA Structure Hardware Realization of $GF(2^p)$ CA Characterization of $GF(2^p)$ CA Characterization of $GF(2^p)$ CA Non-Group $GF(2^p)$ CA ve $GF(2^p)$ CA Cycle Structure and Depth Group ACA Characterization	218 218 219 221 222 222 224 224 226 233 236 237 238

		7.4.2	Enumerating Cycle Structure of an LCA having a single Elementary Divisor	245
		7.4.3	Terminologies	245
		7.4.4	Vector Space Theoretic Analysis Based on Elementary Divisor	246
		7.4.5	Deriving Elementary Divisors From T Matrix	247
		7.4.6	Enumerating Cycle Structure and Depth from Elementary Divisors	248
	7.5	Vector	Space Theoretic Analysis of Additive $GF(2^p)$ CA	251
	7.6	Advan	tages of $GF(2^p)$ CA	259
	7.7	Extens	sion of Extension Field	260
	7.8	Hierar	chical Cellular Automata (HCA)	261
		7.8.1	Hierarchical CA Structure	263
		7.8.2	Hardware Implementation of HCA	264
		7.8.3	Reduction of Overhead due to XOR gates	266
	7.9	Charae	cterization of HCA	266
		7.9.1	Group HCA	266
		7.9.2	Non-Group HCA	270
		7.9.3	Enumerating Cycle Structure and Depth of HCA from Elementary Divisors	270
		7.9.4	Algorithm to Find Cycle structure	271
	7.10	Synthe	esis of Hierarchical Cellular Automata	273
		7.10.1	Conversion of Cycle Structure to Elementary Component	273
		7.10.2	Conversion of Elementary Components into Elementary Divisor	274
		7.10.3	Generation of the CA from the Elementary Divisor	275
	7.11	Conclu	ısion	277
8	$\mathbf{C}\mathbf{A}$	\mathbf{Based}	BIST Structure For Testing VLSI Circuits	278
	8.1	BIST S	Structure - A Brief Survey	279
		8.1.1	Test Pattern Generation	279
		8.1.2	Response Analysis	280
		8.1.3	BIST Structures - the Current Trends	281
	8.2	$GF(2^p$) CABIST	283
		8.2.1	Design of $GF(2^p)$ $CATPG$	283
		8.2.2	Design of $GF(2^p)$ $CABIST$	297
		8.2.3	Experimental Results	302

8.3	Hierar	chical TPG	307
	8.3.1	HCATPG For a CUT with Hierarchical Structural Description	308
	8.3.2	HCATPG For a Flat Circuit without Hierarchical Structural De-	
		scription	316
8.4	Fault	Diagnosis	321
	8.4.1	Overview of Diagnosis Scheme	322
	8.4.2	MACA Revisited	324
	8.4.3	Design of $MACA$ Based Pattern Classifier	325
	8.4.4	MACA Based Fault Diagnosis	338
	8.4.5	Experimental Results	343
8.5	Design	n of Test Pattern Generator Without Prohibited Pattern Set	351
	8.5.1	GF(2) CA Theory Revisited	352
	8.5.2	Design of PRPG Without PPS	353
	8.5.3	Experimental Results	360
	8.5.4	Conclusion	363
9 Pı	ogramı	mable Cellular Automata(PCA)	364
9.1	Progra	ammable CA cells	364
	9.1.1	Programmable Cell of Linear $CA(LCA)$	365
	9.1.2	Programmable Cell of Additive CA(ACA)	366
	9.1.3	Universal Programmable CA(UPCA) cell	367
9.2	Progra	am Instruction of a PCA	368
9.3	Cellul	ar Automata Processor (CAP)	369
	9.3.1	Functional Blocks of CAP Architecture	369
	9.3.2	CAP Instructions	371
	9.3.3	Execution of CAP Instruction	372
9.4	Progra	ammable Hierarchical CA (PHCA)	372
	9.4.1	$\mathrm{GF}(2^p)$ CA Revisited	373
	9.4.2	Programmable HCA (PHCA) cell	376
	9.4.3	Program Structure for PHCA	380
10 Da	ta Ence	ompression	385
10.	Data (Compression and Encryption - A Brief Overview	386
	10.1.1	Data Compression	386
		Data Encryption	389

10.2	Encompression - An overview	389
	10.2.1 CA Based Model for Compression Operation in Encompression	389
	10.2.2 CA Based Model for Encryption Operation in Encompression	391
10.3	Cellular Automata (CA) Transforms	391
	10.3.1 Linear/Additive CA	392
	10.3.2 Group CA: Reversible Transform	393
	10.3.3 Non Group CA: Non-reversible Transform	393
	10.3.4 Multiple Attractor Cellular Automata (MACA)	394
	10.3.5 Non Linear CA	398
10.4	MACA - As A Pattern Classifier to Model Compression Operation	399
	10.4.1 MACA Based Two Stage Classifier	400
10.5	CA Based Model of Vector Quantization Scheme	401
	10.5.1 Codebook Design	402
	10.5.2 Image Analysis and Modeling	403
	10.5.3 Codebook Generation	405
	10.5.4 CA Based Model of PTSVQ	406
	10.5.5 Experimental Results of CA based Compression	406
10.6	CA Based Cryptosystem (CAC)	409
	10.6.1 Experimental Results of CA based Cryptography (CAC)	410
10.7	Architecture of Encompression Technology	410
10.8	Conclusion	412
11 Cell	ular Automata Models for Authentication and Watermarking	416
11.1	Authentication and Watermarking - A Brief Survey	417
11.2	Single Attractor Cellular Automata $(SACA)$	418
	11.2.1 $GF(2^p)$ CA Preliminaries	418
	11.2.2 SACA Characterization	419
	11.2.3 $SACA$ as a unique address generator	422
11.3	Cellular Automata based Authentication (CAA)	423
	11.3.1 Protocol for Message Authentication	424
	11.3.2 Hash Function for Generation of Message Digest	424
	11.3.3 Security Analysis	427
11.4	CAA for Fragile Watermarking	431
	11.4.1 Watermark Insertion	431

	11.4.2	Watermark Extraction	433
	11.4.3	Experimental Results	436
11.5	CAA]	Based Robust Watermarking For Image Data	437
	11.5.1	Watermarking for Image Compressed with DCT	437
	11.5.2	Watermarking for Image Compressed with Wavelet Transform \dots	448

List of Figures

1	Associative Memory Model	5
2	Classification Model	6
3	Associative Memory Model	6
3.1	Configuration of a 3-neighborhood CA cell	36
3.2	A 5-cell group CA with rule vector <102, 240, 102, 150, 240> and its cycle structure $CS = [1(1),1(3),1(7),1(21)]$	40
3.3	State Transition Diagram of a 4-cell non-group CA with rule vector <102 , $60, 90, 60> \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	41
3.4	State Transition Diagram, T matrix, characteristic polynomial, minimal polynomial, and elementary divisors of a 7-cell non-group CA Note: As per the formulation noted in $Section \ 3.2$, both the T matrices in $Fig. \ 3.4$ $(a) \ & (b)$ have identical characteristic polynomial expressed in Elementary Divisor form and generate identical cycle structure	75
3.5	An example LCA with its elementary divisors and corresponding elementary cycle structures (ECS s)	76
3.6	Formation of final cycle structure	77
3.7	Additive CA with its rule vector $< 195, 195, 195, 15>, T$ matrix and inversion	
	vector along with its cycle structure	78
5.1	Associative Memory Model	116
5.2	Classification Model	116
5.3	State transition diagram of a 5-cell $MACA$ with 4 attractor basins having Characteristic Matrix T, Rule Vector $< 204, 170, 90, 240, 204 >$, and characteristic polynomial $x^3(1+x)^2 \dots \dots \dots \dots \dots \dots \dots \dots$	117
E 1		117
5.4 5.5	Concatenation of m number of 2-attractor $MACA$ to form an $MACA(n, m)$ Expected Distribution of $MACA$ with two attractors $(m = 1) \dots \dots$	119 124
	-	124 127
5.6	Expected Occurrence (EO(w,n,2)) with 8 attractors $(m=3)$ Expected Occurrence (EO(w,n,2)) with 8 attractors $(m=3)$	127 197
a /	EXPECTED ACCURRENCE FRAME IN ALL WITH X aftractors $(m=3)$	127

5.8	Encoding of $MACA$ in pseudo-chromosome format derived out $MACA$ rule vector, T matrix, elementary divisors and corresponding sub-matrices	128
5.9	MACA rule vector, Characteristic Matrix T and its $pseudo-chromosome$ $formation of the second second$	t129
5.10	Different methods to arrange two matrices	130
5.11	Illustration of Mutation Algorithm	131
5.12	An Example of Cross-over Technique	133
5.13	Illustration of Identical attractor basins of three $MACAs$	135
5.14	State transition diagram of a 5 cell $MACA$ with 4 attractor basins with attractors $0(00000)$, $3(00011)$, $4(00100)$, and $7(00111)$. Note: (i) PEF (as explained in Section 5.4.3 and Example 5.9) covers 3rd and 4th bit position of an attractor with Most Significant Bit (MSB) counted as 1st bit. (ii) Dependency matrix T formed out of block diagonal placement of two	
5.15	sub-matrices T_1 and T_2	137
5.16	two Dependency Vectors of T_1 and T_2 respectively - which are placed in non-overlapping positions	138
	(DVs). Note: Each Dependency Vector (DV) contributes one bit (0 or 1) of the <i>PEF</i> (pseudo-exhaustive field) of an attractor basin	139
5 17	An example chromosome for current GA formulation	143
	An example of crossover technique	144
	An example of mutation technique	145
6.1	Associative Memory Model	157
6.2	State transition diagram, Characteristic Matrix T (Rule Vector $< 204, 170, 90, 20$ of a 5 cell $MACA$ having 4 attractor basins and depth d as 3	40,204 >) 165
6.3	Division of State Space around the given pattern set $\mathcal{P}=<01010,\ 01111,\ 10010,\ 10001>$ referred to as pivot points	167
6.4	MACA based Associative Memory	168
6.5	Experimental Results of noise recovery capacity of $MACA$ Note: w denotes noise in number of bits and $p(w)$ reflects the noise recovery capacity, while k is the number of n bit patterns to be memorized	173

6.6	Theoretical Estimation (Relation 6.9) of noise recovery capacity of $MACA$ at memorizing capacity for $n = 10, 30, 40, 60$.	
	Note: While w denotes noise in terms of number of bits, $p(w)$ reflects the	
	noise recovery capacity.	174
6.7	Experimental data and theoretical evaluation of recovery capacity $p(w)$ of noise (w) for $n = \text{number of bits in a pattern} = 40$, and $k = \text{number of patterns to be learnt} = 22 \dots $	175
6.8	Gaussian Probability Distribution Function of the relation $N(n, m) = f(1, n, m, m)$	
0.0	and its corresponding Standard Normal form obtained through scaling	177
6.9	Ideal basins of attraction and Noise Recovery Graph	180
6.10	Enhancement of noise recovery capacity achieved through use of Multiple	
	MACA	182
6.11	Noise Recovery capacity of $(n = 40)$ Multiple $MACA$ with $\mathcal{N} =$ number of $MACA$ s=1,6,20	183
6.12	MACA based Classification Strategy	
	Note: MSB and LSB of attractor states constitute PEF (Pseudo Exhaustive	100
	Field)	186
6.13	Distribution of patterns in Class 1 and Class 2 (<i>HD</i> denotes Hamming Distance)	190
6.14	Cluster detection by Two-class classifier	192
	Two Stage Classifier	193
	Hierarchical Two Class Classifier (HTCC) modeling a multi-class classifier .	197
	Decision tree	200
	Basic architecture of MACA based tree-structured pattern classifier	201
	PEF (Pseudo Exhaustive Field) of MACA attractors storing cluster informa-	
	tion.	
	Note: Most Significant Bit (MSB) and Least Significant Bit (LSB) constitute the PEF	210
6.20	An MACA-tree for a dataset={00000, 01000, 11000, 11001, 10010, 10011,	
	11111, 01111}	211
7.1	The field elements of $GF(2^2)$	220
7.2	General structure of a $GF(2^p)$ CA	222
7.3	A 3-cell $GF(2^2)$ CA	223
7.4	T matrix of the example 3-cell $GF(2^2)$ CA with its generator polynomial and corresponding plus and star tables	224
7.5	T matrix and state transitions of a 3-cell $GF(2^2)$ group CA	227
7.6	T matrix of a 3-cell $GF(2^2)$ non-group CA and its state transitions	228

7.7	A 2-cell $GF(2^2)$ non – group CA state transition	234
7.8	A 3-cell $GF(2^2)$ group ACA along with its characteristic matrix (T) and the inversion vector (F) with cycle structure $[4(4), 4(12)]$	
	Note: Cyclic state transitions of two representative cycles are only shown .	238
7.9	State transition diagram of a 3-cell non-group $\mathrm{GF}(2^2)$ ACA	241
7.10	State transition diagram of a 3-cell non-group $\mathrm{GF}(2^2)$ LCA	243
7.11	State Transition Diagram of a 3-cell non-group $\mathrm{GF}(2^2)$ ACA	243
7.12	Characteristic Matrix (T) and Inversion Vector (F) of a 5 cell $GF(2^2)$ $EAM(C')$ [For the corresponding ELM , F is the all 0s vector]	(T,F)).
7.13	Hierarchical structures of field elements	262
7.14	General structure of an n -cell Hierarchical CA	263
7.15	Structure of a $GF(2^{p^{q^r}})$ Hierarchical CA cell	264
7.16	A 3-Cell $GF(2^{2^3})$ HCA (a group CA)	265
7.17		270
8.1	A generic n -cell null boundary $CATPG$	284
8.2	General structure of a $GF(2^p)$ CATPG cell	285
8.3	High-level model for s349 4-bit multiplier	286
8.4	Pseudo control input of a CUT	286
8.5	Construction of dependency matrix $D.$	289
8.6	A 3-cell $GF(2^3)$ uniform $CATPG$	290
8.7	A 3-cell $GF(2^3)$ hybrid $CATPG$	291
8.8	Construction of dependency matrix D in 3-neighborhood	293
8.9	Extraction of disjoint paths from dependence graph	295
8.10	Cone point extraction to detect HFs	296
8.11	Transition count	296
8.12	Folding of a $GF(2^p)$ $CATPG$	298
8.13	Folding of SignatureAnalyzer	300
8.14	High-level model for modified c432 bench circuit & the $HCATPG$ of the CUT	.310
8.15	The example CUT ' L '	324
8.16	State Transition diagram of a 3-cell non-group $GF(2^2)$ CA	325
8.17	0-basin of a 3-cell $GF(2^2)$ D1-MACA	326
8.18	The 2-Cell $GF(2^2)$ $D1$ - $MACA$ based classification	327
8.19	Three class classification with 2-Cell $GF(2^2)$ $D1$ - $MACA$	328
8 2N	The $n \times n$ tri-diagonal T matrix	330

8.21	T matrix and tri-graph of a 5-cell $GF(2^2)$ D1-MACA	331
8.22	Multi-class classification to identify the class i of an element S_{ij}	332
8.23	Partitioning of pattern set in disjoint classes	332
8.24	The 2-cell $GF(2^2)$ $D1-MACA$	334
8.25	Module diagnosis of an example CUT ' L_1 '	340
8.26	Diagnosis of an example CUT ' L_2 '	342
8.27	Hierarchical classification	343
8.28	Fault partitioning.	347
8.29	Valid nodes of the tri-graph in $GF(2^p)$	350
8.30	PRPG without the prohibited patterns	354
9.1	Programmable cell of LCA with control vector $\langle c_{i-1} c_i c_{i+1} \rangle$	365
9.2	Programmable cell of Additive (ACA) CA with control $\ \ldots \ \ldots \ \ldots \ \ldots$	367
9.3	Structure of a Universal Programmable CA (UPCA) cell	367
9.4	PCA operated by program	368
9.5	The structure of programmed instruction executed on a PCA $$	369
9.6	CAP(Cellular Automata Processor) Architecture	370
9.7	Instruction Format of CAP	371
9.8	$\mathrm{GF}(2^p)$ CA structure	373
9.9	Hardware realization of 3 cell $\mathrm{GF}(2^P)$ CA	376
9.10	HCA cell structure with its generator polynomial generating weight $w=2$	379
9.11	Matrix representation and cell structure of a $GF(2^4)$ HCA cell with two different generator polynomials generating weighted output with weight values	
	3 and 4 $$	380
9.12	A GF(2^p) PHCA cell structure with p=3 and generator polynomial as $x^3 + x^2 + 1 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	382
9.13	A GF(2^p) PHCA cell with p=4	383
9.14	Subfield structure of Field 1	383
9.15	Program Instructions of n cell PHCA	384
10.1	Basic principle of Encompression	389
10.2	Architecture of Encompression- Encoder	390
10.3	Block Diagram of Encryption Scheme	391
10.4	State transition diagram of a maximum length group CA	393
10.5	State transition diagram of a non-maximum length group CA	393

	State Transition Diagram of a 5-cell non-group CA (MACA) with 4 attractor basins	394
	T_1, T_2, \dots , etc. in Block Diagonal Form. T_i (T_j) has no dependency on T_j (T_i)	
10.8	An n-bit Dependency String (DS) consists of m number of Dependency Vectors (DVs). Note: Each Dependency Vector (DV) contributes the value of each pseudo-exhaustive bit (either 0 or 1) of an attractor basin	396
	Dependency String (DS) of Dependency Matrix (T) of Fig.10.3.3 which is formed through concatenation of two Dependency Vectors. Note: (i) While the first Dependency Vector contributes the value of first pseudo-exhaustive bit, second Dependency Vector gives the value of another bit. (ii) Dependency String of T Matrix is obtained by concatenating two Dependency Vectors of T_1 and T_2 respectively - which are placed in non-overlapping positions	397
	MACA based two class classification strategy	400
	Two Stage Classifier	401
10.12	Encoder and Decoder	402
10.13	Block Diagram of Codebook Generation scheme	403
	Curve of Standard Deviation against different block size of human portrait	
	images	404
10.15	The logical Structure of multi-class Classifier equivalent to the $PTSVQ$	407
10.16	Original image and Decompressed image with compression ratio= 98.82%	407
10.17	Original image and Decompressed image with compression ratio= 98.73%	408
10.18	Original and Decompressed image of brain MRI with compression ratio 97.36%	408
10.19	Original and Decompressed image of brain MRI with compression ratio 98.35%	408
	PSNR of all test images for CA based compression and other standard algorithms when performing lossy encoding at 0.25, 0.5 1 and 2 bpp and other	
	standard	409
10.21	Programmable CA(PCA) with XOR/XNOR rule	411
10.22	Architecture of Encompression- Decoder	411
11.1	General Structure of a $GF(2^p)$ CA (For p=1, It's a Conventional $GF(2)$ CA)	417
11.2	State Transition Diagram of 3-cell $\mathrm{GF}(2^2)$ $SACA$ and Its Dual \ldots	420
11.3	Unique Hash Addressing Using 3-cell $\mathrm{GF}(2^2)$ $SACA$	423
11.4	Message Authentication	424
11.5	Watermark Extraction for Fragile/Robust to JPEG Method	435
11.6	Original and Watermark Embedded Host Image Lenna	435
11.7	Watermark Insertion and Extraction for Robust to JPEG Watermarking	439

11.8 NC vs. MSE for True and False Watermarking	444
11.9 Watermarking	445
11.10NC vs. Quality in JPEG Lossy Compression	448
11.11NC vs. Quality in JPEG2000 Lossy Compression	449
11.12Watermark Insertion for Robust to JPEG2000 Watermarking	450
11.13 Derive_Data (Step 1.)	451
11.14Derive_Data (Function of Step 2.)	452
11.15 Derive_Data (Result of Step 2.)	453
11.16 Derive_Data (Step 3. and Step 4.)	454
11.17 Derive_Image (Function of Step 1.)	455
11.18 Derive_Image (Result of Step 1.)	456
11.19 Derive_Image (Step 2.)	457
11.20Embedding in Brief	458
11.21Derive_Data (Step 1.)	459
11.22 Derive_Data (Function of Step 2.)	460
11.23 Derive_Data (Result of Step 2.)	461
11.24Derive_Data (Step 3. and Step 4.)	462

List of Tables

3.1	Additive CA Rules	37
4.1	Computation of elementary cycle structure (ECS)	109
5.1	System of Linear Equations representing a set of Vectors	135
6.1	Applications of Pattern Recognition	160
6.2	Memorizing Capacity (Experimental Result) at different values of n	170
6.3	Fraction of $MACA$ Pool Required to Memorize Patterns	176
6.4	Experimental Results on Classification Accuracy of MACA based classifier .	190
6.5	Cluster Detection by $MACA$ based Classifier	192
6.6	Comparison of Memory Overhead Between Single Stage (SS) and Two Stage (TS) Two Class Classifier	195
6.7	Description of Datasets and Experimental Setup	205
6.8	Comparison of Classification Accuracy between Different Algorithms	207
6.9	Comparison of Memory Overhead between Different Algorithms	208
6.10	Comparison of MACA Based Tree-Structured Classifier and Decision Tree (C4.5)	209
6.11	Performance on Synthetic and Real-life Binary Dataset	215
6.12	Performance on synthetic and real-life real-Valued dataset	216
7.1	The star_table and plus_table for $GF(2)$	219
7.2	The star_table and plus_table for $x^2 + x + 1 \dots \dots \dots$.	221
7.3	The star_table and plus_table for $x^3 + x + 1$	221
7.4	Cycle structure: primitive vs non-primitive weights	231
7.5	Hierarchy in CA	263
7.6	Example converting cycle structure to elementary component	274
8 1	Test results with $GF(2^p)$ $CATPG$	304

8.2	Test results on running hard fault (HF) detection algorithms	305
8.3	Comparison of test results	306
8.4	Overhead reduction in CABIST	307
8.5	Circuit descriptions	315
8.6	Test results of customized design	316
8.7	Randomness Test I	318
8.8	Randomness Test II	319
8.9	Test results of HCA	320
8.10	Comparison of test results	321
8.11	Test results of dictionary method for ISCAS benchmarks	344
8.12	Test results of diagnosis scheme I $\dots \dots \dots \dots \dots \dots \dots$	345
8.13	Circuits with hierarchical descriptions	346
8.14	Results of hierarchical fault diagnosis I	347
8.15	Results of hierarchical fault diagnosis II	348
8.16	$follow-nodes$ of valid-node in $GF(2^2)$	351
8.17	$start$ and $final$ nodes in $GF(2^2)$	351
8.18	Success rate of the $PRPG$ design	361
8.19	Randomness Test I	362
8.20	Randomness Test II	362
8.21	Comparison of Test Results	363
9.1	CA rules	365
9.2	Control bits of an LCA cell	366
9.3	Control bits of XNOR rules of an ACA cell with $c'=1$	366
9.4	Matrix Representation of extension field element for generator polynomial x^4+x+1	375
9.5	Matrix Representation of extension field element for generator polynomial $x^4 + x^3 + 1$	377
9.6	Matrix Representation of $GF(2^3)$ elements with generator polynomial $x^3 + x^2 + 1 \dots \dots$	378
9.7	16 bit Control Vector(input to 16 bit control register in Fig 9.13) generating variable weights w=0 to 15 for 2 different generator polynomials	378
10.1	Results of human face Image	413
10.2	Results of brain-MRI	413

10.3	Differential Cryptanalysis of CAC scheme and Comparative Study with DES and AES	414
10.4	Measurement of Shannon's Security Quotient and comparative study with DES and AES	414
10.5	Comparison of Execution Time of Software Version of CAC and AES	415
11.1	Speed of Generation of $SACA$	427
11.2	Results of Avalanche Effect on CAA and MD5 \dots	428
11.3	Results of Related-Key Cryptanalysis on CAA and MD5	429
11.4	Differential cryptanalysis on CAA and MD5	430
11.5	Comparative Performance regarding speed in Windows NT 4.00-1381, IBM $$.	431
11.6	Comparison of PSNR at Fragile Watermarking	436
11.7	Comparative PSNR and NC at Robust watermarking	443
11.8	Different NC values for Different Compression Ratio in JPEG	447
11.9	Different NC values for 0.25 bpp in JPEG2000	447
11.10	Different NC values for 0.50 bpp in JPEG2000	450
11.11	Different NC values for 0.25 bpp in JPEG2000	460