Name: Caleb McWhorter — Solutions

MATH 308 Fall 2023

"The study of Mathematics, like the Nile, begins in minuteness but ends in magnificence."

HW 8: Due 10/12

- Charles Caleb Colton

Problem 1. (10pt) Let $A = \{2, 6, 8, 10\}$, B be the set of nonnegative even numbers that are at most 10, and C be the set of perfect squares less than 10. Define $f: A \to \mathbb{Z}$ and $g: B \setminus C \to \mathbb{Z}$ via $x \to \frac{15(x+8)}{x}$ and $x \mapsto \frac{5(x^2-16x+88)}{4}$, respectfully. Fully justifying your answer, determine whether $f \equiv g$.

Solution. To show that two functions f, g are equal, i.e. f = g or $f \equiv g$, we need to show that they have the same domain, the same codomain, and their outputs are the same everywhere on their 'common domain.'

Equal Domains, A = B: We need to show A = B that is, we need to show that A and B have all the same elements. We know that $A = \{2, 6, 8, 10\}$. Now B is the set of nonnegative even numbers less than 10, i.e. $B = \{0, 2, 4, 6, 8, 10\}$. Furthermore, C is the set of perfect squares less than 10, i.e. $C = \{0, 4, 9\}$. But then $B \setminus C = \{2, 6, 8, 10\}$. Therefore, $A = B \setminus C$.

Equal Codomains, $\mathbb{Z} = \mathbb{Z}$: It is immediately clear that f and g have the same codomain—namely, \mathbb{Z} .

Equivalent on their Common Domain: To check whether f and g have the same outputs for every element of their 'common domain', we can simply compute f, g for the values in $\{2, 6, 8, 10\}$:

$$f(2) = \frac{15(2+8)}{2} = \frac{150}{2} = 75$$

$$g(2) = \frac{5(2^2 - 16(2) + 88)}{4} = \frac{300}{4} = 75$$

$$f(6) = \frac{15(6+8)}{6} = \frac{210}{6} = 35$$

$$g(6) = \frac{5(6^2 - 16(6) + 88)}{4} = \frac{140}{4} = 35$$

$$f(8) = \frac{15(8+8)}{8} = \frac{240}{8} = 30$$

$$g(8) = \frac{5(8^2 - 16(8) + 88)}{4} = \frac{120}{4} = 30$$

$$f(10) = \frac{15(10+8)}{10} = \frac{270}{10} = 27$$

$$g(10) = \frac{5(10^2 - 16(10) + 88)}{4} = \frac{140}{4} = 35$$

Observe that f(2) = g(2) = 75, f(6) = g(6) = 35, and f(8) = g(8) = 30. However, $f(10) = 27 \neq 35 = g(10)$. Therefore, f and g do not agree on their 'common domain.'

Because f and g do not agree on their 'common domain', f and g are not equal, i.e. $f \not\equiv g$.

¹Note: This is not the same as the two functions having the same image. For example, take $A = \{1, 2\}$ and $B = \{a, b\}$. Define $f, g: A \to B$ via f(1) = a, f(2) = b, and g(1) = b and g(2) = a. Clearly, f, g have the same domain and codomains. The image of both f and g are the same—namely, the set $\{a, b\}$, but observe $a = f(1) \neq g(1) = b$ and $b = f(2) \neq g(2) = a$.

Problem 2. (10pt) Define the following real-valued functions:

$$f(x) = 2x - 1$$

$$g(x) = x^2 + x + 1$$

$$h(x) = x^2$$

$$f(x) = \frac{x - 1}{x + 2}$$

$$k(x) = \sin(\pi x)$$

$$\ell(x) = 1 - x^2$$

Showing all your work, for each of the following, either compute the function at the specified value or find a general rule for the given function operation:

- (a) (f+g)(0)
- (b) $(j \ell)(2)$
- (c) (gk)(5)
- (d) $\left(\frac{f}{j}\right)$ (3)
- (e) $(h \circ k)(1)$
- (f) $(2f + \ell)(x)$
- (g) (fg)(x)
- (h) $\left(\frac{h}{f}\right)(x)$
- (i) $(k \circ \ell)(x)$
- (j) $(\ell \circ g \circ f)(x)$

Solution.

(a)
$$(f+g)(0) = f(0) + g(0) = (2 \cdot 0 - 1) + (0^2 + 0 + 1) = -1 + 1 = 0$$

(b)
$$(j-\ell)(2) = j(2) - \ell(2) = \frac{2-1}{2+2} - (1-2^2) = \frac{1}{4} - (-3) = \frac{13}{4}$$

(c)
$$(gk)(5) = g(5)k(5) = (5^2 + 5 + 1) \cdot \sin(5\pi) = 31 \cdot 0 = 0$$

(d)
$$\left(\frac{f}{i}\right)(3) = \frac{f(3)}{j(3)} = \frac{2\cdot 3-1}{(3-1)/(3+2)} = \frac{5}{2/5} = \frac{25}{2}$$

(e)
$$(h \circ k)(1) = h(k(1)) = h(\sin(\pi)) = h(0) = 0 \cdot 2^0 = 0$$

(f)
$$(2f + \ell)(x) = 2f(x) + \ell(x) = 2(2x - 1) + (1 - x^2) = -x^2 + 4x - 1$$

(g)
$$(fq)(x) = f(x)q(x) = (2x-1)(x^2+x+1) = 2x^3+x^2+x-1$$

(h)
$$\left(\frac{h}{f}\right)(x) = \frac{h(x)}{f(x)} = \frac{x2^x}{2x-1}$$

(i)
$$(k \circ \ell)(x) = k(\ell(x)) = k(1 - x^2) = \sin(\pi(1 - x^2)) = \sin(\pi - \pi x^2) = \sin(\pi)\cos(\pi x^2) - \cos(\pi)\sin(\pi x^2) = \sin(\pi x^2)$$

(j)
$$(\ell \circ g \circ f)(x) = \ell(g(f(x))) = \ell(g(2x-1)) = \ell((2x-1)^2 + (2x-1) + 1) = \ell(4x^2 - 2x + 1) = 1 - (4x^2 - 2x + 1)^2 = -16x^4 + 16x^3 - 12x^2 + 4x$$

Problem 3. (10pt) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $x \mapsto x^2 + 4x - 5$.

- (a) Determine f(-5).
- (b) Compute f([0, 1]).
- (c) Is $16 \in \text{im } f$? Explain.
- (d) Determine $f^{-1}(0)$.
- (e) Find the domain, codomain, and range for f(x).

Solution.

(a)
$$f(-5) = (-5)^2 + 4(-5) - 5 = 25 - 20 - 5 = 0$$
.

(b) We know that $f([0,1]) = \{f(x) \colon x \in [0,1]\}$. Observe that if f is strictly increasing, then if x < y, then f(x) < f(y). But observe that f is differentiable and f'(x) = 2x + 4. Observe that f' is positive on the interval [0,1]. But because f'(x) > 0 for all $x \in [0,1]$, we know that f is strictly increasing on [0,1]. Finally, observe that because f is differentiable, f is continuous. Using the Intermediate Value Theorem, we see that f takes on every value between f(0) and f(1). Because f(0) = -5 and f(1) = 0, we have f([0,1]) = [-5,0]. We can also see this from the graph of $f(x) = x^2 + 4x - 5 = (x + 2)^2 - 9$:

(c) If $16 \in \text{im } f$, then there is an $x \in \mathbb{R}$ such that f(x) = 16. But then...

$$f(x) = 16$$

$$x^{2} + 4x - 5 = 16$$

$$x^{2} + 4x - 21 = 0$$

$$(x - 3)(x + 7) = 0$$

But then x = -7 or x = 3. Observe that f(-7) = 16 or f(3) = 16. Therefore, $16 \in \text{im } f$.

(d) If $x \in f^{-1}(0)$, then f(x) = 0. But then...

$$f(x) = 0$$
$$x^{2} + 4x - 5 = 0$$
$$(x - 1)(x + 5) = 0$$

But then x = -5 or x = 1. Observe that f(-5) = 0 and f(1) = 0. Therefore, $f^{-1}(0) = \{-5, 1\}$.

(e) Clearly, the domain and codomain are \mathbb{R} , as given in the problem statement. We know the range of f is the image of f, i.e. $\operatorname{im} f = \{f(x) \colon x \in \mathbb{R}\}$. Examining the graph of f, we can see that $\operatorname{im} f = f(\mathbb{R}) = [-9, \infty)$. We can also see this from the fact that $f(x) = (x+2)^2 - 9$.

To prove this, suppose that $y \in [-9, \infty)$, choose $x := \sqrt{9+y} - 2$, which is well-defined because $y \ge -9$. But then...

$$f(x) = (\sqrt{9+y} - 2)^2 + 4(\sqrt{9+y} - 2) - 5 = (y+13 - 4\sqrt{9+y}) + 4(\sqrt{9+y} - 2) + 4 = y$$

So if $y \in [-9,\infty)$, $y \in \text{im } f$. Clearly, if y < -9, then $y \notin \text{im } f$: if there were an $x \in \mathbb{R}$ such that f(x) = y, then $(x+2)^2 - 9 = y < -9$. This shows that $(x+2)^2 < 0$, which is impossible. Therefore, $\text{im } f = [-9,\infty)$. Alternatively, we know that f(-2) = -9, $\lim_{x \to -\infty} f(x) = \infty$, and $\lim_{x \to \infty} f(x) = \infty$ (because f is an even degree polynomial). We can see that $f(x) = (x+2)^2 - 9 \ge 0 - 9 = -9$. Finally, because f is continuous, by the Intermediate Value Theorem, it must be that f takes on any value in [-9,c] for all $c \in (-9,\infty)$. This again shows that im $f = [-9,\infty)$.

Problem 4. (10pt) Being sure to justify your answer, complete the following:

- (a) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = 5 x^2$. Is f an increasing function? Explain. Is f a decreasing function? Explain.
- (b) Let $g : \mathbb{R} \to \mathbb{R}$ be given by g(x) = 5x 8. Is g a positive function? Explain. Is g a negative function? Explain.
- (c) Let g be as in (b) and define $A=[2,\infty)$ and $B=(-\infty,0)$. Is $g\big|_A$ a positive function? Explain. Is $g\big|_B$ a negative function? Explain.
- (d) Let $h : \mathbb{R} \to \mathbb{R}$ be given by...

$$h(x) = \begin{cases} 1 - x, & x < 2\\ 3x + 5, & x \ge 2 \end{cases}$$

Find the largest possible interval $S\subseteq\mathbb{R}$ such that $h|_S$ is a nondecreasing function. Is h monotone on S? Is h strictly monotone on S?

Solution.

- (a) If f were increasing, then for all $x, y \in \mathbb{R}$ with x < y, we would have f(y) > f(x). However, observe that 0 < 1 but $4 = f(1) \not> f(0) = 5$. Therefore, f is not an increasing function. If f is a decreasing function, then for all $x, y \in \mathbb{R}$ with x < y, we would have f(y) < f(x). However, observe that -1 < 0 but $5 = f(0) \not< f(-1) = 4$. Therefore, f is not decreasing.
- (b) If g is a positive function, then g(x) > 0 for all $x \in \mathbb{R}$. However, observe that $g(0) = -8 \not> 0$. Therefore, g is not a positive function. If g is a negative function, then g(x) < 0 for all $x \in \mathbb{R}$. However, observe that $g(2) = 2 \not< 0$. Therefore, g is not a negative function.
- (c) From the graph of $g|_A$, we can see that g is not a negative function and g is a positive function.

To see that g is not negative, observe that $2 \in A$ and $g(2) = 2 \not< 0$. To prove that g is positive, observe that if $x \ge 2$, then...

$$x \ge 2$$

$$5x \ge 10$$

$$5x - 8 \ge 2$$

$$g(x) \ge 2$$

But then for $x \ge 2$, $g(x) \ge 2 > 0$. Therefore, g is positive on $A = [2, \infty)$. Now from the graph of $g|_B$, we can see that g is negative but not positive.

To see that g is not positive, observe that $g(0) = -8 \ge 0$. Therefore, g is not positive. To see that g is negative, observe that if x < 0, then...

$$x < 0$$

$$5x < 0$$

$$5x - 8 < -8$$

$$g(x) < -8$$

But then g(x) < -8 < 0. Therefore, g is negative on $B = (-\infty, 0)$.

(d) We first plot h, which is shown below.

Clearly, h is linear on $[2,\infty)$ and $(-\infty,2)$. On $(-\infty,2)$, $h\equiv 1-x$. Because this linear function has negative slope, it is decreasing. In particular, h is not nondecreasing. On $[2,\infty)$, $h\equiv 3x+5$. Because this linear function has positive slope, it is increasing. In particular, h is then nondecreasing. But then the largest interval on which h is nondecreasing is $S:=[2,\infty)$. Because h is nondecreasing or nonincreasing on $[2,\infty)$, h is monotone on $[2,\infty)$. However, because h is not (strictly) increasing or (strictly) decreasing on $S:=[2,\infty)$, h is not strictly monotone on $S:=[2,\infty)$.