

14

Emerging
Trends,
Technologies,
and Application

Learning Objectives (1 of 2)

- Summarize new trends in software and service distribution
- Describe virtual reality components and applications
- Discuss uses of radio frequency identification
- Explain quick response codes
- Summarize new uses of biometrics

Learning Objectives (2 of 2)

- Describe new trends in networking, including grid, utility, and cloud computing
- Discuss uses of nanotechnology
- Describe blockchain technology and cryptocurrency

Trends in Software and Service Distribution (1 of 7)

- Pull technology
 - User states a need before getting information
 - Example: entering a URL in a Web browser to go to a certain website
- Push technology (i.e., webcasting)
 - Web server delivers information to users who have signed up for the service
 - Supported by many Web browsers

Trends in Software and Service Distribution (2 of 7)

- Delivers content to users automatically at set intervals or when a new event occurs
- Streamlines the process of users getting software updates and updated content
- Benefits vendors by keeping in constant touch with users, thus creating customer loyalty
- Examples: Microsoft Direct Push (AT&T), Apple Push Notification, and Facebook Push Notification

Trends in Software and Service Distribution (3 of 7)

- Application service providers (ASPs)
 - Provide access to software or services for a fee
 - Software as a service (SaaS)
 - ASP delivers software to users for a fee for temporary or long-term use
 - Offers the recent version of the software
 - Allows users to save all application data on the ASP's server

Trends in Software and Service Distribution (4 of 7)

- Forms of SaaS model
 - Software services for general use
 - Specific service
 - Service in a vertical market

Trends in Software and Service Distribution (5 of 7)

- Advantages of ASPs
 - Customers do not need to be concerned about whether software is current
 - Information systems (IS) personnel time is freed up to focus on important applications
 - Software development costs are spread over several customers
 - Software is kept up to date, based on users' requests

Trends in Software and Service Distribution (6 of 7)

- ASP contract guarantees a certain level of technical support
- Organization's software costs can be reduced to a predictable monthly fee

Trends in Software and Service Distribution (7 of 7)

- Disadvantages of ASPs
 - Users must accept applications as provided by ASPs; software customization is not offered
 - Risk of applications not fully meeting the organization's needs exists
 - Integration with the customer's other applications and systems might be challenging

Virtual Reality (1 of 3)

- Uses computer-generated, threedimensional images to create the illusion of interaction in a real-world environment
 - Simulation: giving objects in a VR environment texture and shading for a 3D appearance
 - Interaction: enabling users to act on objects in a VR environment
 - Immersion: giving users the feeling of being part of an environment

Virtual Reality (2 of 3)

- Telepresence: giving users the sense that they are in another location and can manipulate objects as though in reality
- Full-body immersion: allowing users to move around freely by combining interactive environments with cameras, monitors, and other devices

Virtual Reality (3 of 3)

 Networked communication: allowing users in different locations to interact and manipulate the same world at the same time by connecting two or more virtual worlds

Types of Virtual Environments (1 of 2)

- Egocentric environment
 - User is totally immersed in the VR world
 - Technologies used with the environment
 - Head-mounted display (HMD)
 - Virtual retinal display (VRD)

Types of Virtual Environments (2 of 2)

- Exocentric environment
 - User is given a "window view"
 - Data is rendered in 3D, but users can only view it on screen
 - Users cannot interact with objects

Components of a Virtual Reality System (1 of 2)

- Visual and aural systems
 - Allow users to see and hear the virtual world
- Manual control for navigation
 - Allows the user to navigate in the VR environment and control various objects

Components of a Virtual Reality System (2 of 2)

- Central coordinating processor and software system
 - Generates and manipulates high-quality graphics in real time and needs a very fast processor
- Walker
 - Captures and records movements of the user's feet as they walk or turn in different directions

CAVE

- Cave automatic virtual environment (CAVE)
 - Consists of a cube-shaped room in which the walls are rear-projection screens
 - Holographic device that creates, captures, and displays images in true 3D form
 - Used for research in archaeology, architecture, engineering, geology, and physics
 - Used by engineering companies to improve product design and development

Exhibit

14.3 Example of a CAVE

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Virtual Reality Applications

- Many applications
 - Conduct bloodless surgeries
 - Games and theaters
 - Business applications
 - Assistance for the disabled, architectural design, education, and flight simulation
 - Videoconferencing and group support systems
 - VR-based therapy

Obstacles in Using VR Systems

- Major obstacle
 - Lack of fiber-optic cables to carry data transmissions needed
- Other problems to be solved
 - Confusion between VR and a real environment
 - Mobility and other problems with HMDs
 - Difficulty representing sound
 - Need for additional computing power

Virtual Worlds (1 of 2)

- Simulated environment designed for users to interact via avatars
 - 2D or 3D graphical representation of a person in the virtual world
 - Used for gaming, in chat rooms, entertainment, and to conduct a variety of business activities

Virtual Worlds (2 of 2)

- Widely used virtual worlds
 - ActiveWorlds
 - Club Penguin
 - · EGO
 - Entropia Universe
 - Habbo
 - RuneScape
 - Second Life

Augmented Reality (1 of 2)

- Augmented reality (AR): branch of virtual reality that generates a virtual scene that is overlaid on the real object
 - Goal: enhance the user's perception of the real-world objects that the user is seeing or interacting with

Augmented Reality (2 of 2)

- Difference between augmented reality (AR) and virtual reality
 - Augmented reality: users stay in the realworld environment while interacting with objects
 - Aware that they are still in the real world
 - Virtual reality: users are immersed in the virtual world
 - Mind is tricked into thinking they are in a new virtual world

Radio Frequency Identification: An Overview (1 of 2)

- Radio frequency identification (RFID) tag
 - Small electronic device consisting of a small chip and an antenna provides a unique identification for the card or the object carrying the tag
 - Passive type: includes no internal power supply and can be very small
 - Active: includes an internal power source and is more reliable than a passive tag

Radio Frequency Identification: An Overview (2 of 2)

- Privacy and security issues
 - Ability to read a tag's contents after an item has left the store
 - Tags being read without the customer's knowledge
 - Tags with unique serial numbers being linked to credit card numbers

14.1 RFID Applications

Category	Examples
Tracking and identification	Railway cars and shipping containers, livestock and pets, supply-chain management, inventory control, retail checkout and POS systems, and recycling and waste disposal
Payment and stored-value systems	Electronic toll systems, contactless credit cards, subway and bus passes, casino tokens, and concert tickets
Access control	Building access cards, ski-lift passes, and car ignition systems
Anticounterfeiting	Casino tokens, high-denomination currency notes, luxury goods, and prescription drugs
Healthcare	Tracking medical tools and patients, process control, and monitoring patient data

Quick Response Codes

- Matrix barcode consisting of black modules arranged in a square pattern on a white background
 - High storage capacity, small printout size, and dirt and dust resistant
 - Readable from any direction
 - Compatible with the Japanese character set
 - Can be read by smartphones equipped with cameras

Biometrics: A Second Look (1 of 3)

- Offer a high degree of accuracy that is not possible with other security measures
 - Used in e-commerce and banking by phone
 - Example: using voice synthesizers and customers' voices as the biometric element that identifies them remotely

Biometrics: A Second Look (2 of 3)

- Current and future applications
 - ATM, credit, and debit cards
 - Network and computer login security
 - Web page security
 - Voting
 - Employee time clocks
 - Member identification in sport clubs
 - Airport security and fast check-in

Biometrics: A Second Look (3 of 3)

- Passports and highly secured government ID cards
- Sporting events
- Cell phones and smart cards

Trends in Networking (1 of 15)

- Wireless Fidelity (Wi-Fi)
 - Broadband wireless technology that can transmit information over short distances
 - Enables one to connect computers, mobile phones and smart phones, MP3 players, PDAs, and game consoles to the Internet
 - Connections are easy to set up and have fast data transfer rates
 - Offers mobility and flexibility

Trends in Networking (2 of 15)

- Disadvantages of Wireless Fidelity (Wi-Fi)
 - Susceptible to interference from other devices and to being intercepted
 - Raises security concerns
 - Lack of support for high-quality media streaming

Trends in Networking (3 of 15)

- Worldwide Interoperability for Microwave Access (WiMAX)
 - Broadband wireless technology based on the IEEE 802.16 standards
 - Covers a range of 30 miles for fixed stations and three to ten miles for mobile stations
 - Fast and easy to install
 - Enables devices using the same frequency to communicate

Trends in Networking (4 of 15)

- Disadvantages WiMAX
 - Interference from other wireless devices
 - High costs
 - Interruptions from weather conditions
 - Need for a lot of power
 - Transmission speed decreases when bandwidth is shared among users

Trends in Networking (5 of 15)

Bluetooth

- Wireless technology for transferring data over short distances for fixed and mobile devices
- Used to create a personal area network (PAN)
- Uses a radio technology called Frequency Hopping Spread Spectrum (FHSS)

Trends in Networking (6 of 15)

- Used to connect devices such as computers, global positioning systems (GPSs), mobile phones, laptops, printers, and digital cameras
- Has no line-of-sight limitations
- Susceptible to interception

Trends in Networking (7 of 15)

- Grid computing
 - Involves combining the processing powers of various computers
 - Allows users to make use of other computers' resources to solve problems involving large-scale, complex calculations
 - Each participant in a grid is called a "node"
 - Processing on overused nodes can be switched to idle servers or desktop systems

Trends in Networking (8 of 15)

- Used in bioinformatics, oil and gas drilling, and financial applications
- Advantages
 - Improved reliability
 - Parallel processing
 - Scalability
- Disadvantages
 - Some applications are not suitable

Trends in Networking (9 of 15)

- Applications requiring extensive memory that a single node cannot provide cannot be used on a grid
- Licensing agreements can be challenging
- Synchronizing operations in several different network domains can be difficult
 - Require sophisticated network management
- Some organizations are resistant to sharing resources, even if doing so benefits them

Exhibit

14.8 Grid Computing Configuration

Trends in Networking (10 of 15)

- Utility (on-demand) computing
 - Provision of IT services on demand
 - Users pay for computing or storage resources on an as-needed basis
 - Advantage: convenience and cost savings
 - Drawbacks: privacy and security
 - Can work with the SaaS model
 - Enables one to request computing power and memory from the provider

Trends in Networking (11 of 15)

- Cloud computing
 - Incorporates many recent technologies under one platform
 - Includes SaaS model, Web 2.0, grid computing, and utility computing
 - Includes components in the form of:
 - Infrastructure as a service (laaS)
 - Platform as a service (PaaS)
 - Software as a service (SaaS)

Trends in Networking (12 of 15)

- Cloud computing includes many of the advantages and disadvantages of distributed computing
 - Users can request services, applications, and storage
 - Services typically require a fee; some are free

Trends in Networking (13 of 15)

- Public, private, hybrid, and community clouds: which one to choose
 - Organizations choose clouds based on security needs and level of involvement required
 - Public cloud: users connect with an off-site infrastructure over the Internet, which is shared by a large number of users
 - Private cloud: services and the infrastructure are run on a private network

Trends in Networking (14 of 15)

- Hybrid cloud: chosen by organizations that operate on both private and public data; collection of at least one private and at least one public cloud
- Community cloud: infrastructure is designed for exclusive use by a specific community of users from organizations that share common concerns

Trends in Networking (15 of 15)

- Cloud computing versus edge computing
 - Edge computing pushes processing and data to the near edge of the network that enables timely collection, processing, and analysis
 - Provides on-device processing and analytics in real time
 - Cloud computing processes data in centralized cloud and data centers
 - May not be as fast and efficient

Cloud Computing Security (1 of 2)

- Organization that uses cloud computing should:
 - Provide end-user education
 - Force software updates
 - Work with the cloud computing provider to spot unusual activities

Cloud Computing Security (2 of 2)

- Cloud-computing security risks
 - Privileged user access
 - Regulatory compliance
 - Data location
 - Data segregation
 - Recovery
 - Investigative support
 - Long-term viability

Nanotechnology

- Incorporates techniques involving structure and composition of materials on a nanoscale
 - Plays a role in several areas
 - Energy
 - Information and communication
 - Heavy industry
 - Consumer goods incorporating nanotechnology (nanomaterials) are available in the market

Blockchain Technology and Cryptocurrency (1 of 6)

- Blockchain: decentralized and distributed network
 - Used to record transactions across connected devices as blocks of data that cannot be altered after being recorded

Blockchain Technology and Cryptocurrency (2 of 6)

- Blockchain applications
 - Tracking food and other goods
 - Secure software development
 - Digital content management
 - Improving healthcare records integrity
 - Mortgage approval process
 - Improving and speeding up insurance claims processing

Blockchain Technology and Cryptocurrency (3 of 6)

- Blockchain applications (continued)
 - Audit trail
 - Electronic voting
 - Smart contracts

Blockchain Technology and Cryptocurrency (4 of 6)

- Cryptocurrency: digital money created from computer codes
 - Monitored by a peer-to-peer Internet protocol
 - No third party bank or financial institution
- Popular types
 - Bitcoin (BTC), Ripple (XRP), Ethereum (ETH), Monero (XMR), LiteCoin (LTC), and Zcash (ZEC)

Blockchain Technology and Cryptocurrency (5 of 6)

- Cryptocurrency advantages
 - Cannot be counterfeited or reversed by the sender
 - Immediate settlement
 - Lower transaction fees
 - No risk for credit theft

Blockchain Technology and Cryptocurrency (6 of 6)

- Cryptocurrency disadvantages
 - Not widely accepted
 - No way to reverse the payment
 - Uncertainty with respect to the regulations
 - Potential for financial loss because of data loss
 - Potential for high price volatility and manipulation
 - Often not exchangeable for fiat currency

Summary (1 of 3)

- Recent trends in software and service distribution include pull technology, push technology, and ASPs
- VR technology has added the third dimension, so users can interact with objects in a way not possible before
- RFID devices are more popular with the retail industry and other industries

Summary (2 of 3)

- QR codes have grown in popularity as a marketing tool
- Recent trends in networking technologies include wireless technologies, grid computing, WiMAX, and cloud computing
- Nanotechnology is currently too expensive to justify its use in many applications

Summary (3 of 3)

- A blockchain is a decentralized and distributed network
 - Used to record transactions across connected devices as blocks of data that cannot be altered after being recorded
 - Cryptocurrency is probably the most popular application of blockchain technology

