instance is "yes" or "no"

Closure Properties of recursive and recursively

Enumerable languages

Theorem 1

The complement of a recursive language is recursing

Proof

- * Let 2 be a recursive language and M
 a tuing machine that halls on all inputs and
 accepts 2
- * Construct M' from M so that it M enters: a final state on input w then M' halts without accepting.
- * It M halls without accepting. M' enters a final state.
- an algorithm.
 - thus the complement of L is a recursive language.

1

construction does not work. * Since M, may not half. * Instead. M ean simultaneously simulate M, and Ma on separate tapes: * If either accepts, then M accepts. Theorem 3: If a language & and its complement I are both recursively Enumerable, then I cand hence I) is recursive. Proof * Let M, and M2 accept L and I respectively. & Construct M to simulate simultaneously M, and M2 * M accepts w if 'M, accepts w and nejects w If Ma accepts w

- Since w is in wither L UT I, we know must exactly one of M, or M2 will accept accept * Thus M will always say either 'yes' or 'no' but will never say both * Since M is an algorithm that accepts 1, it follows that I is recursive. UNIVERSAL TURING MACHINE: * Diagnolization is used to show the Problem