ProblemSet 2 – Representations and characters

George McNinch

2024-01-29

In these exercises, G always denotes a finite group and all vector spaces are assumed to be finite dimensional over the field $F = \mathbb{C}$. In these exercises, you may use results stated but not yet proved in class about characters of representations of G.

- 1. In this problem, we identify the character χ_{Ω} of the *permutation representation* $(\rho, F[\Omega])$ of a group G.
 - a. Let V be a vector space and let $\Phi:V\to V$ a linear mapping If $\mathcal B$ is a basis for V, recall that the *trace* of Φ is defined by

$$\operatorname{tr}(\Phi) = \operatorname{tr}([\Phi]_{\mathcal{B}}).$$

apologies - this is just explanatory; it isn't actually a question

- b. Recall that the *dual* of V is the vector space $V^{\vee} = \operatorname{Hom}_F(V, F)$ of *linear functionals* on V. If b_1, \ldots, b_n is a basis for V, let $b_j^{\vee} : V \to F$ be defined by $b_j^{\vee}(b_i) = \delta_{i,j}$. Show that $b_1^{\vee}, \ldots, b_n^{\vee}$ is a basis for V^{\vee} ; it is known as the *dual basis* to b_1, \ldots, b_n .
- c. Prove that the trace of the linear mapping $\Phi:V\to V$ is given by the expression

$$\operatorname{tr}(\Phi) = \sum_{i=1}^n {b_i}^\vee(\Phi(b_i)).$$

d. Suppose that the finite group G acts on the finite set Ω , and consider the corresponding permutation representation $(\rho, F[\Omega])$ of G. Recall that $F[\Omega]$ is the vector space of all F-values functions on Ω , and that for $f \in F[\Omega]$ and $g \in G$, we have

$$\rho(g)f(\omega) = f(g^{-1}\omega).$$

In particular, we saw in the lecture that

$$\rho(g)\delta_{\omega}) = \delta_{q\omega},$$

where δ_{ω} denotes the *Dirac function* at $\omega \in \Omega$.

Show that

$$\operatorname{tr}(\rho(q)) = \#\{\omega \in \Omega \mid q\omega = \omega\};$$

i.e. the trace of $\rho(g)$ is the number of fixed points of the action of g on Ω .

2. Let V be a representation of G, suppose that W_1, W_2 are invariant subspaces, and that V is the internal direct sum

$$V = W_1 \oplus W_2$$
.

Show that the character χ_V of V satisfies

$$\chi_V = \chi_{W_1} + \chi_{W_2}$$

i.e. for $g \in G$ that

$$\chi_V(g) = \chi_{W_1}(g) + \chi_{W_2}(g).$$

3. Let $G = A_4$ be the alternating group of order $\frac{4!}{2} = 12$.

We are going to find the character table of this group.

a. Confirm that the following list gives a representative for each of the conjugacy classes of G:

(Note that (123) and (124) are conjugate in S_4 , but *not* in A_4).

What are the sizes of the corresponding conjugacy classes?

b. Let $K = \langle (12)(34), (14)(23) \rangle$. Show that K is a normal subgroup of index 3, so that $G/K \simeq \mathbb{Z}/3\mathbb{Z}$.

Let ζ_3 be a primitive 3rd root of unity in F^{\times} and for i=0,1,2 let $\rho_i:G\to F^{\times}$ be the unique homomorphism with the following properties:

i.
$$\rho_i\left((123)\right) = \zeta^i$$

ii.
$$K \subseteq \ker \rho_i$$
.

Explain why $\rho_0 = 1, \rho_1, \rho_2$ determine distinct irreducible (1-dimensional) representations of G.

c. Let $\Omega = \{1, 2, 3, 4\}$ on which G acts by the embedding $A_4 \subset S_4$.

Compute the character χ_{Ω} of the representation $F[\Omega]$. (This means: compute and list the values of χ_{Ω} at the conjugacy class representatives given in a.)

(Use the result of problem 1 above).

d. The span of the vector $\delta_1 + \delta_2 + \delta_3 + \delta_4 \in F[\Omega]$ is an invariant subspace isomorphic to the irreducible representation ρ_0 (the so-called *trivial representation*).

Thus $F[\Omega] = \rho_0 \oplus W$ for a 3-dimensional invariant subspace. Explain why problem 2 shows that the character of W is given by $\chi_W = \chi_\Omega - \mathbf{1}$.

Now prove that $\langle \chi_W, \chi_W \rangle = 1$ and conclude that W is an irreducible representation.

e. Explain why

$$\mathbf{1}, \rho_1, \rho_2, W$$

is a complete set of non-isomorphic irreducible representations of G.

f. Display the *character table* of $G = A_4$.

Bibliography