Dead Reckoning

- Orientation uncertainty is the largest contributor to Odometry errors.
- Dead Reckoning is the use of an independent heading sensor to find orientation of the robot. Odometry is still used to find distance traveled.
- Problem: accuracy and noise of heading sensor
- Many autonomous vehicles use expensive (\$3k \$65k) laser ring gyros with very little drift.

Gyroscope

- MEMS Gyros will typically drift due to temperature dependent bias.
- Bias must be regularly calibrated out
- rc_calibrate_gyro() will measure bias and subtract it...
- Bumps and impulses can create false gyro readings
- Gyro data can be fused with magnetometer, but useless indoors

"Gyrodometry"

- Idea: Fuse Odometry with Gyro based heading estimate
- If wheels aren't moving, we can ignore the gyro
- If gyro reads significantly different than odometry probably hit a bump and should trust the gyro

Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Apr. 22-28, 1996, pp. 423-428.

Gyrodometry: A New Method for Combining Data from Gyros and Odometry in Mobile Robots

J. Borenstein and L. Feng The University of Michigan

"Gyrodometry"

 Experimentally determine a threshold for the algorithm

Have a better idea? Try it and compare.

$$\Delta_{\text{G-O}} = \Delta \theta_{\text{gyro}}$$
 - $\Delta \theta_{\text{odo}}$

if
$$(|\Delta_{G-O,i}| > \Delta\theta_{thres})$$

then
$$\theta_i = \theta_{i-1} + \Delta \theta_{gyro,i} T$$

else
$$\theta_i = \theta_{i-1} + \Delta \theta_{odo,i} T$$

Trajectory Following

Lecture 16

Trajectory Following

- Want to follow a path s(t)
- Problem $s(t) \rightarrow v(t), ω(t)$
- Path could be predefined (i.e. square trajectory)
- Path could be dynamic (obstacle avoidance / dynamic obstacles)
- Potential paths defined by system
 - Maximum Acceleration
 - Maximum Velocity
 - Turning Velocity/Aceeleration

Holonomic vs. Non Holonomic

- Holonomic
 - controllable degrees of freedom = total degrees of freedom
- Non-Holonomic
 - controllable degrees of freedom < total degrees of freedom

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} v\cos\theta \\ v\sin\theta \\ \omega \end{bmatrix}$$

Robot Frame Velocity

$$v = \frac{v_R + v_L}{2}$$

$$\omega = \frac{v_R - v_L}{b}$$

$$v_R = v + \frac{b}{2}\omega$$

$$v_L = v - \frac{b}{2}\omega$$

Trajectory Following (Open Loop)

- Precompute trajectory based on motion segments of clearly defined shape
- lines & circle segments
- Send commands that would produce the motion
- Resulting trajectories are usually not particularly accurate

Dubins Path

Constant velocity paths

 Can always find optimal path for velocity & turning

Symbol	Steering: u
S	0
L	1
R	-1

Reeds-Shepp Curves

Extends Dubins paths to include reversing

Symbol	Gear: u_1	Steering: u_2
S^+	1	0
S^-	-1	0
L^+	1	1
L^{-}	-1	1
R^+	1	-1
R^{-}	-1	-1

Feedback Control

- Drive the robot from current position to goal position by minimizing error to goal
- Optionally ignore end orientation
- Simple way: Rotate,
 Translate, Rotate (RTR)
- More advanced method: Use state feedback.

Conversion to Polar Coordinates

Offsets from goal position

$$\Delta x = x_g - x$$

$$\Delta y = y_g - y$$

Distance to goal position

$$d = \sqrt{\Delta x^2 + \Delta y^2}$$

 Angle between current heading and heading towards goal

$$\alpha = \operatorname{atan2}(\Delta y, \Delta x) - \theta$$

 Angle between current heading and goal heading

$$\beta = \theta_q - \theta$$

Control Law

We want a control law to drive

$$d \rightarrow 0$$

$$\alpha \to 0$$

$$\beta \to 0$$

Feedback Control to a Point

- ignore final orientation
- In world frame we want to move:

$$\dot{x} = v\cos\theta$$

 $\dot{y} = v \sin \theta$

$$\dot{\theta} = \omega$$

Convert to polar coordinates in robot frame:

$$d = \sqrt{\Delta x^2 + \Delta y^2}$$
$$\alpha = \operatorname{atan2}(\Delta y, \Delta x) - \theta$$

Control Law:

$$v_{sp} = K_v d$$
$$\omega_{sp} = K_\omega \alpha$$

What should happen if goal is behind us?

RTR Controller

■ Rotate toward desired goal, until $\alpha \approx 0$

$$\omega_{sp} = K_{\omega}\alpha$$
$$v_{sp} = 0$$

• Maintain heading and drive to goal until $d \approx 0$

$$\omega_{sp} = K_{\omega}\alpha$$
$$v_{sp} = K_v d$$

Rotate to final orientation

$$\omega_{sp} = K_{\omega}\beta$$
$$v_{sp} = 0$$

Feedback Control to a Pose

It can be shown that with:

$$v = K_d d$$
$$\omega = K_\alpha \alpha + K_\beta \beta$$

The feedback controlled system shown will drive the robot to:

$$(\rho, \alpha, \beta) \to (0, 0, 0)$$

$$\begin{bmatrix} \dot{d} \\ \dot{\alpha} \\ \dot{\beta} \end{bmatrix} = \begin{bmatrix} -K_d d \cos \alpha \\ K_d \sin \alpha - K_\alpha \alpha - K_\beta \beta \\ -K_d \sin \alpha \end{bmatrix}$$

- Control signal v has constant sign
- ullet Can prove stability if: $K_d>0; K_{eta}<0; K_{lpha}-K_d>0$
- See Siegwart & Nourbakhsh

Resulting Path

Carrot Following

- Consider a desired path s(t)
- Discretize path

Carrot Following

- Consider a desired path s(t)
- Discretize path
- Calculate Poses based on tangents
- Use pose control to next point
- Switch to next point when within threshold

Intro to Probabilistic Robotics

Probabilistic Robotics

Main idea: explicit representation of uncertainty using the calculus of probability theory

Perception = state estimation

Action = utility optimization

Localization & Mapping with Uncertainty

- Uncertainty in location is product of uncertainty in actions of the robot (odometry) and map of the environment coupled with uncertainty in our sensors.
- Want to find most probable location given most probable map of the environment and knowledge about the errors introduced by our sensors

Localization & Mapping with Uncertainty

most likely a wall P=0.95

Basics of Probability

Pr(A) denotes probability that proposition A is true.

- $0 \le \Pr(A) \le 1$
- Pr(True) = 1 Pr(False) = 0
- $Pr(A \lor B) = Pr(A) + Pr(B) Pr(A \land B)$

A Closer Look at Axiom 3

$$Pr(A \lor B) = Pr(A) + Pr(B) - Pr(A \land B)$$

Continuous Random Variables

- X takes on any value in the continuum
- p(X = x), or p(x), is a probability density function

$$\Pr(x \in (a,b)) = \int_{a}^{b} p(x)dx$$

Discrete Random Variables

- X denotes a random variable
- X can take on a countable number of values in $\{x_1, x_2, ..., x_n\}$
- $P(X = x_i)$ or $P(x_i)$, is the probability that the random variable X takes on value x_i .
- $\blacksquare P(*)$ is called probability mass function

Joint and Conditional Probability

- Joint Probability: P(X = x & Y = y) = P(x, y)
- If X and Y are independent then

$$P(x,y) = P(x) P(y)$$

■ Conditional Probability: $P(x \mid y)$ "the probability of x given y"

$$P(x \mid y) = P(x,y) / P(y)$$

$$P(x,y) = P(x \mid y) P(y)$$

■ If *X* and *Y* are independent:

$$P(x \mid y) = P(x)$$

Laws of Total & Marginal Probability

Discrete case

$$\sum_{x} P(x) = 1$$

$$\int p(x) \, dx = 1$$

$$P(x) = \sum_{y} P(x, y)$$

$$p(x) = \int p(x, y) \, dy$$

$$P(x) = \sum_{v} P(x \mid y) P(y)$$

$$P(x) = \sum P(x \mid y)P(y) \qquad p(x) = \int p(x \mid y)p(y) \, dy$$

Bayes Formula

$$P(x, y) = P(x \mid y)P(y) = P(y \mid x)P(x)$$

$$\Rightarrow$$

$$P(x|y) = \frac{P(y|x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

- *x* is value of interest
- y is new information

Bayes' Rule

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

- If A is a quantity we would like to infer from data B:
- $\blacksquare p(A)$ is the *prior* probability of A
- p(A|B) is the *posterior* probability after taking data B into account
- p(B|A) is the *likelihood* of the data given the hypothesis
- p(B) is the *prior* probability of the data and effectively normalizes the posterior.

Why is Bayes' Rule so useful?

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

- Diagnostic evidence $p(disease \mid symptom)$ is often hard to get but what you want to know.
- Causal evidence $p(symptom \mid disease)$ is often easier to get.
- p(disease) is easy to get
- p(symptom) is just a normalizer

Bayes Filters: Framework

Given:

- Stream of observations z and action data u: $d_t = \{u_1, z_2, ..., u_{t-1}, z_t\}$
- Sensor model P(z|x).
- Action model P(x|u,x').
- Prior probability of the system state P(x).

Wanted:

- Estimate of the state X of a dynamical system.
- The posterior of the state is also called Belief:

$$Bel(x_t) = P(x_t | u_1, z_2, ..., u_{t-1}, z_t)$$

Goal: SLAM Problem

Given:

- Robot Commands: $\mathbf{U}_{0:k} = \{u_1, u_2, ..., u_k\}$
- ullet Sensor Measurements: $\mathbf{Z}_{0:k} = \{\mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_k\}$

Desired:

- ullet Map of features: $\mathbf{m}=\{m_1,m_2,..m_n\}$
- lacksquare Path of robot: $\mathbf{X}_{0:k} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k\}$

$$p(m, \mathbf{X}_{0:k} | \mathbf{U}_{0:k}, \mathbf{Z}_{0:k})$$

Markov Assumption

Underlying Assumptions

- Static world
- Given the present, the future is independent of the past
- Given the state x_t , the observation z_t is independent of the past

Examples of Bayes Filters

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

Bayes Filter Algorithm

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

- 1. Algorithm Bayes_filter(Bel(x),d):
- 2. $\eta = 0$
- 3. If d is a perceptual data item z then
- 4. For all x do
- 5. $Bel'(x) = P(z \mid x)Bel(x)$
- 6. $\eta = \eta + Bel'(x)$
- 7. For all x do
- 8. $Bel'(x) = \eta^{-1}Bel'(x)$
- 9. Else if d is an action data item u then
- 10. For all x do
- 11. $Bel'(x) = \int P(x \mid u, x') Bel(x') dx'$
- 12. Return Bel'(x)

- Begin with unknown location in known map
- Uniform prior probability $Bel^-(x_0)$

- Sensor observation $P(z_0|x_0)$
- $\blacksquare Bel(x_0) = \eta P(z_0|x_0)Bel^-(x_0)$

- Apply action model $P(x_1|u_0,x_0)$
- Proposal: $Bel^{-}(x_1) = \int P(x_1 | u_0, x_0) Bel(x_0) dx_0$

- Combine with sensor observation $P(z_0|x_0)$
- $Bel(x_1) = \eta P(z_1|x_1)Bel^-(x_1)$

- Apply action model again: $P(x_1|u_0,x_0)$
- Proposal: $Bel^{-}(x_2) = \int P(x_2|u_1,x_1) Bel(x_1) dx_1$