----- 35 ------

Approximation Algorithms

Two approaches to NP-hard problems:

- (1) Exponential algorithms: (for small inputs)
 - brute-force search
 - branch-and-bound
- (2) Near-optimal solutions: (polynomial time)
 - approximation algorithms (with performance bounds)
 - heuristic algorithms

Performance bounds (*n* is the input size)

ratio bound:
$$\begin{cases} C/C^* \leq \rho(n) & \text{for minimization} \\ C^*/C \leq \rho(n) & \text{for maximization} \end{cases}$$
 (Note that $\rho(n) \geq 1$.)

relative error bound:
$$\frac{|C-C^*|}{C^*} \le \varepsilon(n)$$
 (for both minimization & maximization)

* For many problems, there are approximation algorithms with constant ratio bounds (relative error bounds), independent of *n*.

35.1 The vertex-cover problem

A **vertex cover** of an undirected graph G=(V,E) is a subset C of V such that for each $(u, v) \in E$, either $u \in C$ or $v \in C$.

The *vertex-cover problem* is to find for *G* a vertex cover of minimum size. (an NP-hard problem)

* (e): a vertex cover $C=\{b, c, d, e, f, g\}$ (f): the optimal vertex cover $C^*=\{b, d, e\}$

APPROX-VERTEX-COVER (G)

```
1 C \leftarrow \emptyset

2 E' \leftarrow E[G]

3 while E' \neq \emptyset

4 do let (u, v) be an arbitrary edge of E'

5 C \leftarrow C \cup \{u, v\}

6 remove from E' every edge incident

7 return C on either u or v
```

* Time: *O(E)*

Theorem 35.1: Approx-Vertex-Cover has $\rho(n) = 2$. **Proof:** Let A be the set of edges picked in Line 4. Since no two edges in A share an endpoint, we have |C|=2|A|.

Let C^* be an optimal cover. C^* should cover A. That is, C^* should include at least one endpoint of each edge in A. Since no two edges in A share an endpoint, we have $|C^*| \ge |A|$ (=|C|/2) and thus $C/C^* \le 2$.

35.2 The traveling-salesman problem (NP-C)

35.2.1 The Euclidean TSP problem (NP-C)

The **Euclidean traveling-salesman problem** is to find in a *complete* weighted undirected graph G=(V,E) a hamiltonian cycle (a tour) with minimum cost. The edges weights c(u,v) are nonnegative integers. And, the weight function satisfies the following **triangle inequality:**

$$C(U,W) \leq C(U,V) + C(V,W).$$

APPROX-TSP-TOUR(G, c)

- 1 select a vertex $r \in G.V$ to be a "root" vertex
- compute a minimum spanning tree T for G from root r using MST-PRIM(G, c, r)
- 3 let H be a list of vertices, ordered according to when they are first visited in a preorder tree walk of T
- 4 **return** the hamiltonian cycle H

(b): T: a minimum spanning tree T

(c): W: a full walk of T

(d): *H*: a tour of length 19.074

(e): H^* : an optimal tour of length 14.715

Time: $O(E) = O(V^2)$

Theorem 35.2: Approx-TSP-Tour has $\rho(n) = 2$. **Proof:** Let T be a minimum spanning tree. Deleting any edge from H^* , we can obtain a spanning tree. Thus, $|T| \le |H^*|$.

A *full walk*, denoted by *W*, of *T* lists the vertices when they are first visited and also whenever they are return to after a visit to a subtree. In our example,

W=(a, b, c, b, h, b, a, d, e, f, e, g, e, d, a).

Clearly, |W|=2|T|. Thus, $|W| \le 2|H^*|$.

Note that W is not a tour. It visits a vertex more than once. However, by triangle inequality, we can delete unnecessary visits to a vertex without increasing the cost to obtain H. (In our example, H=(a, b, c, h, d, e, f, g).) Thus, $|H| \le |W| \le 2|H^*|$. Q.E.D.

35.2.2 The general TSP problem

Without triangle inequality, an approximation algorithm with constant ratio bound does not exist unless P = NP.

35.5 The subset-sum problem

Approximation scheme: an approximation algorithm takes as input not only an instance of the problem, but also a constant relative error bound $\varepsilon > 0$.

Polynomial-time approximation scheme: an approximation scheme runs in $O(n^k)$ time, where k is a constant. (e.g., $O(n^{3/\varepsilon})$.)

Fully polynomial-time approximation scheme: an approximation scheme runs in $O((1/\varepsilon)^c n^k)$ time, c and k are constants. (e.g., $O((1/\varepsilon)^2 n^3)$ time)

The subset-sum problem:

Decision version: Given a set S of positive integers and an integer t, determine whether there is a subset of S that adds up exactly to the target t.

Optimalization version: find a subset of *S* whose sum is as large as possible but not larger than *t*.

An exponential-time algorithm

EXACT-SUBSET-SUM(S, t)

```
1 n \leftarrow |S|

2 L_0 \leftarrow \langle 0 \rangle

3 for i \leftarrow 1 to n

4 do L_i \leftarrow \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)

5 remove from L_i every element that is greater than i \in \mathbb{R}
```

Example: Let
$$S=(2, 2, 14, 3)$$
 and $t = 15$. $\Rightarrow L_0 = <0 > <0 > \cup (<0 > +2) = <0, 2 > $\Rightarrow L_1 = <0, 2 >$$

 $<0,2>\cup(<0,2>+2)=<0,2,2,4> \Rightarrow L_2=<0,2,4>$ $L_2\cup(L_2+14)=<0,2,4,14,16,18> \Rightarrow L_3=<0,2,4,14>$ $L_3\cup(L_3+3)=<0,2,3,4,5,7,14,17>$ $\Rightarrow L_4=<0,2,3,4,5,7,14>$

Time: $\sum_{0 \le i \le n-1} 2 |L_i| = O(2^n)$. Note that $|L_i| = O(2^i)$.

- * In case t is polynomial in n, we have $|L_i| = O(t)$. Thus, the algorithm performs in polynomial time.
- * In case all integers in S are bounded by a polynomial in *n*, the algorithm also performs in polynomial time.

A fully polynomial-time approximation scheme

To **trim** a list L by δ is to remove as many elements from L as possible, in such a way that if L' is the result of trimming L, then for every element y that was removed from L, there is an element $z \le y$ still in L' such that

$$y \le z(1+\delta)$$
 $(y-z \le \delta z)$

(We can think of "z representing y" in L'.)

```
Example:
```

```
Let L = (10, \underline{11}, 12, 15, 20, \underline{21}, \underline{22}, 23, \underline{24}, 29).

If \delta = 0.1, we have L' = (10, 12, 15, 20, 23, 29).
```

Let $L = (y_1, y_2, ..., y_m)$. The following procedure trims L in O(m) time.

```
TRIM(L, \delta)
```

- 1 $m \leftarrow |L|$
- 2 $L' \leftarrow \langle y_1 \rangle$
- 3 $last \leftarrow y_1$
- 4 for $i \leftarrow 2$ to m
- 5 **do if** $y_i > last \cdot (1 + \delta)$
- 6 then append y_i onto the end of L'
- $last \leftarrow y_i$
- 8 return L'

An approximation scheme (0 < ε < 1)

APPROX-SUBSET-SUM (S, t, ϵ)

- $1 \quad n \leftarrow |S|$
- $2 L_0 \leftarrow \langle 0 \rangle$
- 3 for $i \leftarrow 1$ to n
- 4 **do** $L_i \leftarrow \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$
- $5 L_i \leftarrow \text{TRIM}(L_i, \epsilon/n)$
- remove from L_i every element that is greater
- 7 let z^* be the largest value in L_n
- 8 return z^*

35-11

Example: Let S=<104, 102, 201, 101>, t=308, and ε = 0.2. We have $\delta = \varepsilon/4 = 0.05$ and

line 2: $L_0 = \langle 0 \rangle$,

line 4: $L_1 = \langle 0, 104 \rangle$,

line 5: $L_1 = \langle 0, 104 \rangle$,

line 6: $L_1 = \langle 0, 104 \rangle$,

line 4: $L_2 = (0, 102, 104, 206)$,

line 5: $L_2 = \langle 0, 102, 206 \rangle$,

line 6: $L_2 = (0, 102, 206)$,

line 4: $L_3 = \langle 0, 102, 201, 206, 303, 407 \rangle$,

line 5: $L_3 = \langle 0, 102, 201, 303, 407 \rangle$,

line 6: $L_3 = \langle 0, 102, 201, 303 \rangle$,

line 4: $L_4 = \langle 0, 101, 102, 201, 203, 302, 303, 404 \rangle$,

line 5: $L_4 = \langle 0, 101, 201, 302, 404 \rangle$,

line 6: $L_4 = \langle 0, 101, 201, 302 \rangle$.

The answer is $z^*=302$, which is well within $\varepsilon=20\%$. (The optimal answer is 307 (=104+102+101).)

Theorem 35.8 Approx-Subset-Sum is a fully polynomial-time approximation scheme.

Proof:

(a) Clearly, the answer is legal. (not larger than *t* and being the sum of a subset).

(b) relative error bound is within ε .

$$z_{1} \leftarrow t^{*}$$

$$z_{2} \leftarrow t^{*}$$

$$z_{2} \leftarrow t^{*}$$

$$z_{2} \leftarrow t^{*}$$

$$z_{2} \leftarrow t^{*}$$

$$t^{*} - z^{*} = \sum_{1 \le i \le k} (z_{i-1}^{*} - z_{i}^{*})$$

$$\leq \sum_{1 \le i \le k} \delta \times z_{i}$$

$$\leq k \delta t^{*}$$

$$\leq n \delta t^{*}$$

$$\leq \varepsilon t^{*}$$

(c) fully polynomial-time:

$$L_i$$
: $y_1 = 0$, y_2 , y_3 , ..., y_k

Since $y_2 \ge 1$ and $y_i > y_{i-1} \times (1+\delta)$, we have $y_k > (1+\delta)^{k-2}$.

Since $y_k \le t$, we have

$$k$$
-2 $\leq \log_{1+\delta} t$. Thus,

$$|L_{i}| \leq \log_{1+\delta} t + 2$$

$$= \frac{\ln t}{\ln(1+\delta)} + 2$$

$$\leq \frac{(1+\delta)\ln t}{\delta} + 2$$

$$(by (3.17), \frac{x}{1+x} \leq \ln(1+x) \text{ for } x > -1)$$

$$\leq \frac{n(1+\frac{\varepsilon}{n})\ln t}{\varepsilon} + 2$$

$$\leq \frac{2n\ln t}{\varepsilon} + 2 \quad (by \frac{\varepsilon}{n} < 1)$$

Time =
$$O(\sum_{0 \le i \le n-1} |L_i|)$$

= $O(n(\frac{2n \ln t}{\epsilon} + 2))$
= $O(\frac{1}{\epsilon}n^2 \log t)$

Q.E.D.

Homework: Ex. 35.1-4, 35.5-4.

Differences in the 3rd Edition

```
Approximation scheme: (1st)
                     (defined by relative error bound)
    Given a parameter: \alpha
                                          (0.6)
    Goal: \varepsilon = \alpha
                                          (0.6)
        (or simply "Given \varepsilon")
                                          (0.06 \text{ for } n = 10)
        (set \delta = \varepsilon / n)
Approximation scheme: (2nd, 3rd)
    Approximation Scheme:
                     (defined by ratio bound)
    Given a parameter: \alpha
    Goal: \rho = 1 + \alpha
                                        (1.6)
        (for MAX, set \delta = \alpha / 2n) (0.03 for n = 10)
        (In the textbook, \varepsilon is used to denote \alpha)
```

APPROX-SUBSET-SUM (S, t, ϵ)

```
1 n \leftarrow |S|

2 L_0 \leftarrow \langle 0 \rangle

3 for i \leftarrow 1 to n

4 do L_i \leftarrow \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)

5 L_i \leftarrow \text{TRIM}(L_i, \epsilon/2n)

6 remove from L_i every element that is greater

7 let z^* be the largest value in L_n

8 return z^*
```