No determinismo

Juan Gutiérrez

August 26, 2022

Resumen

AFN

Relación entre AFN y AFD

Actividad en clases

Otro tipo de AFNs

Actividad en clases

Operaciones regulares

AFN

• Tiene la capacidad de estar en varios estados a la vez

- Tiene la capacidad de estar en varios estados a la vez
- Puede "conjeturar" algo sobre su entrada

- Tiene la capacidad de estar en varios estados a la vez
- Puede "conjeturar" algo sobre su entrada

- Tiene la capacidad de estar en varios estados a la vez
- Puede "conjeturar" algo sobre su entrada
- ullet Ahora δ devuelve un conjunto de estados, y no solo uno

Un AFN

Un AFN

Qué cadenas reconoce el autómata?

Un AFN es una 5-tupla $(Q, \sum, \delta, q_0, F)$, donde

1 Q es un conjunto finito de elementos llamados estados,

- 1 Q es un conjunto finito de elementos llamados estados,
- $2 \sum$ es un conjunto finito llamado *alfabeto*,

- 1 Q es un conjunto finito de elementos llamados estados,
- 2 \(\sum \) es un conjunto finito llamado *alfabeto*,
- 4 $q_0 \in Q$ es el *estado inicial*, y

- 1 Q es un conjunto finito de elementos llamados estados,
- 2 \(\sum \) es un conjunto finito llamado *alfabeto*,
- 4 $q_0 \in Q$ es el *estado inicial*, y
- 5 $F \subseteq Q$ es el conjunto de *estados de aceptación*,

- 1 Q es un conjunto finito de elementos llamados estados,
- $2 \sum$ es un conjunto finito llamado *alfabeto*,
- 3 $\delta: Q \times \Sigma \rightarrow \{A: A \subseteq Q\}$ es la función de transición,
- 4 $q_0 \in Q$ es el *estado inicial*, y
- 5 $F \subseteq Q$ es el conjunto de *estados de aceptación*,

Ahora δ devuelve un conjunto de estados !

• Note que, en la figura, $\delta(q_1,0)=\emptyset$

- Note que, en la figura, $\delta(q_1,0) = \emptyset$
- En ese caso, no existe la salida correspondiente

- Note que, en la figura, $\delta(q_1,0) = \emptyset$
- En ese caso, no existe la salida correspondiente
- En un AFN puede ocurrir esto, pero nunca en un AFD

- Note que, en la figura, $\delta(q_1,0) = \emptyset$
- En ese caso, no existe la salida correspondiente
- En un AFN puede ocurrir esto, pero nunca en un AFD
- Para aceptar una cadena, basta llegar a por lo menos un estado final (no es necesario llegar a todos)

Cual es la definición formal del autómata de la figura?

Otro AFN

Un AFN

Qué cadenas reconoce el autómata?

Lenguaje aceptado por un AFN

Decimos que el AFN A reconoce el lenguaje L si $L = \{w : A \text{ acepta } w\}.$

Es decir, al leer la cadena w, M llega a **por lo menos** un estado final

Ejercicios

Diseñe AFN's para los siguientes lenguajes

- (i) Cadenas, con alfabeto {0,1}, que tienen a 0101 como subcadena
- (ii) Cadenas, con alfabeto $\{0,1,2,3\}$, cuyo último dígito ya apareció antes

Relación entre AFN y AFD

Lenguaje aceptado por un AFN

Los AFN reconocen más lenguajes que los AFD?

Lenguaje aceptado por un AFN

TeoremaTodo AFN tiene un AFD equivalente, es decir, un AFD que reconoce el mismo lenguaje

• Prueba por construcción

- Prueba por construcción
- Sea N un AFN que reconoce L

- Prueba por construcción
- Sea N un AFN que reconoce L

- Prueba por construcción
- Sea N un AFN que reconoce L
- Debemos construir un AFD M a partir de N, que también reconoce L

- Prueba por construcción
- Sea N un AFN que reconoce L
- Debemos construir un AFD M a partir de N, que también reconoce L
- *M* debe simular *N* en cada paso

- Prueba por construcción
- Sea N un AFN que reconoce L
- Debemos construir un AFD M a partir de N, que también reconoce L
- *M* debe simular *N* en cada paso
- Recuerde que N está en varios estados al mismo tiempo

- Prueba por construcción
- Sea N un AFN que reconoce L
- Debemos construir un AFD M a partir de N, que también reconoce L
- *M* debe simular *N* en cada paso
- Recuerde que N está en varios estados al mismo tiempo
- M puede simular este comportamiento si en cada momento sabe todos los estados en los que está N

- Prueba por construcción
- Sea N un AFN que reconoce L
- Debemos construir un AFD M a partir de N, que también reconoce L
- *M* debe simular *N* en cada paso
- Recuerde que N está en varios estados al mismo tiempo
- M puede simular este comportamiento si en cada momento sabe todos los estados en los que está N
- Si N tiene k estados, entonces M tiene 2^k estados

• Sea
$$N = \{Q, \Sigma, \delta, q_0, F\}$$

• Sea
$$N = \{Q, \Sigma, \delta, q_0, F\}$$

- Sea $N = \{Q, \Sigma, \delta, q_0, F\}$
- Construímos $M = \{Q', \Sigma, \delta', q'_0, F'\}$ como

- Sea $N = \{Q, \Sigma, \delta, q_0, F\}$
- ullet Construímos $M=\{Q',\Sigma,\delta',q_0',F'\}$ como
- $Q' = \{S : S \subseteq Q\}$ (el conjunto potencia)

- Sea $N = \{Q, \Sigma, \delta, q_0, F\}$
- ullet Construímos $M=\{Q',\Sigma,\delta',q_0',F'\}$ como
- $Q' = \{S : S \subseteq Q\}$ (el conjunto potencia)
- $\delta'(S, a) = \bigcup_{p \in S} \delta(p, a)$

- Sea $N = \{Q, \Sigma, \delta, q_0, F\}$
- ullet Construímos $M=\{Q',\Sigma,\delta',q_0',F'\}$ como
- $Q' = \{S : S \subseteq Q\}$ (el conjunto potencia)
- $\delta'(S, a) = \bigcup_{p \in S} \delta(p, a)$
- $q_0' = \{q_0\}$

- Sea $N = \{Q, \Sigma, \delta, q_0, F\}$
- Construímos $M = \{Q', \Sigma, \delta', q'_0, F'\}$ como
- $Q' = \{S : S \subseteq Q\}$ (el conjunto potencia)
- $\delta'(S, a) = \bigcup_{p \in S} \delta(p, a)$
- $q_0' = \{q_0\}$
- $F' = \{S \in Q' : S \text{ tiene un estado de aceptación de } N\}$

Un ejemplo

Un ejemplo

Cual es el AFD resultante de aplicar el algoritmo?

Un ejemplo

Podemos simplificar dicho AFD?

Actividad en clases

Actividad en clase

(a) Convertir el siguiente AFN en AFD:

(b) Diseñe un AFN para el siguiente lenguaje: cadenas, con alfabeto $\{0,1\}$, que tienen a 0101 como subcadena. Luego conviértalo a un AFD con la técnica vista.

Otro tipo de AFNs

Recordemos la pregunta

La operación de concatenación de lenguajes regulares, es cerrada? Es decir, si L_1 y L_2 son regulares, entonces $L_1 \cdot L_2$ es regular?

Recordemos la pregunta

Para responder dicha pregunta, necesitamos extender un poco la definición de AFN

AFN con transiciones ϵ (AFN- ϵ)

 El autómata hace transiciones sin recibir ningún símbolo de entrada

AFN con transiciones ϵ (AFN- ϵ)

- El autómata hace transiciones sin recibir ningún símbolo de entrada
- ullet Transiciones ϵ : transiciones espontáneas

AFN con transiciones ϵ (AFN- ϵ)

- El autómata hace transiciones sin recibir ningún símbolo de entrada
- ullet Transiciones ϵ : transiciones espontáneas
- No dan más poder computacional, pero proporcionan "facilidades de programación"

Un AFN- ϵ

Un AFN- ϵ

Qué cadenas reconoce el autómata?

Otro AFN- ϵ

Otro AFN- ϵ

Son aceptadas las cadenas aabbaa y babaaa?

Un AFN- ϵ es una 5-tupla $(Q, \sum, \delta, q_0, F)$, donde

1 Q es un conjunto finito de elementos llamados estados,

- 1 Q es un conjunto finito de elementos llamados estados,
- $2 \sum$ es un conjunto finito llamado *alfabeto*,

- 1 Q es un conjunto finito de elementos llamados estados,
- $2 \sum$ es un conjunto finito llamado *alfabeto*,
- 4 $q_0 \in Q$ es el *estado inicial*, y

- 1 Q es un conjunto finito de elementos llamados estados,
- $2 \sum$ es un conjunto finito llamado *alfabeto*,
- 4 $q_0 \in Q$ es el *estado inicial*, y
- 5 $F \subseteq Q$ es el conjunto de *estados de aceptación*,

- 1 Q es un conjunto finito de elementos llamados estados,
- 2 \(\sum \) es un conjunto finito llamado *alfabeto*,
- 3 $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow \{A: A \subseteq Q\}$ es la función de transición,
- 4 $q_0 \in Q$ es el *estado inicial*, y
- 5 $F \subseteq Q$ es el conjunto de *estados de aceptación*,

Cual es la definición formal del autómata presentado anteriormente?

Cual es la definición formal del autómata presentado anteriormente?

Sea $N = (Q, \sum, \delta, q_0, F)$ un AFN- ϵ Sea w una cadena en el alfabeto \sum . Entonces N acepta w si podemos escribir w como $w = y_1y_2 \dots y_n$, donde cada y_i está en el alfabeto $\sum \bigcup \{\epsilon\}$ y existe una secuencia de estados $r_0, r_1 \dots r_n$ en Q con las siguientes condiciones:

$$1 r_0 = q_0$$
,

Sea $N = (Q, \sum, \delta, q_0, F)$ un AFN- ϵ Sea w una cadena en el alfabeto \sum . Entonces N acepta w si podemos escribir w como $w = y_1 y_2 \dots y_n$, donde cada y_i está en el alfabeto $\sum \bigcup \{\epsilon\}$ y existe una secuencia de estados $r_0, r_1 \dots r_n$ en Q con las siguientes condiciones:

- $1 r_0 = q_0,$
- 2 $r_{i+1} \in \delta(r_i, y_{i+1})$, para $i = 0, \dots, n-1$, y

Sea $N = (Q, \sum, \delta, q_0, F)$ un AFN- ϵ Sea w una cadena en el alfabeto \sum . Entonces N acepta w si podemos escribir w como $w = y_1y_2 \dots y_n$, donde cada y_i está en el alfabeto $\sum \bigcup \{\epsilon\}$ y existe una secuencia de estados $r_0, r_1 \dots r_n$ en Q con las siguientes condiciones:

- $1 r_0 = q_0$,
- 2 $r_{i+1} \in \delta(r_i, y_{i+1})$, para i = 0, ..., n-1, y
- $3 r_n \in F$.

babaaa es aceptado por el siguente autómata?

Clausuras respecto de ϵ

• En el ejemplo anterior podemos descomponer babaaa como baba ϵ a ϵ a

Clausuras respecto de ϵ

- En el ejemplo anterior podemos descomponer babaaa como baba ϵ a ϵ a
- Pero no siempre es tan fácil ver cómo hacer esa descomposición al intentar computar una cadena

Clausuras respecto de ϵ

- En el ejemplo anterior podemos descomponer babaaa como babaaaa
- Pero no siempre es tan fácil ver cómo hacer esa descomposición al intentar computar una cadena
- Podemos introducir un nuevo concepto: Clausura de un estado (cℓ)

- En el ejemplo anterior podemos descomponer babaaa como babaεaεa
- Pero no siempre es tan fácil ver cómo hacer esa descomposición al intentar computar una cadena
- Podemos introducir un nuevo concepto: Clausura de un estado (cl)
- $c\ell(p) = \{q: \ q \text{ puede ser alcanzado por } p \text{ usando 0 o más transiciones } \epsilon\}$

Indique cuales son las clausuras de cada uno de los estados del siguiente autómata

• Para facilidad, extenderemos un poco la definición de $c\ell$ para $\mathcal{C}\ell$

- Para facilidad, extenderemos un poco la definición de $c\ell$ para $\mathcal{C}\ell$
- ullet Ahora ${\cal C}\ell$ puede ser aplicada a un conjunto de estados

- Para facilidad, extenderemos un poco la definición de $c\ell$ para $\mathcal{C}\ell$
- Ahora ${\cal C}\ell$ puede ser aplicada a un conjunto de estados
- En el ejemplo $\mathcal{C}\ell(\{q_3,q_4\}) = c\ell(q_3) \cup c\ell(q_4) = \{q_3,q_5\} \cup \{q_4,q_6\} = \{q_3,q_4,q_5,q_6\}$

- Para facilidad, extenderemos un poco la definición de $c\ell$ para $\mathcal{C}\ell$
- ullet Ahora ${\cal C}\ell$ puede ser aplicada a un *conjunto de estados*
- En el ejemplo $\mathcal{C}\ell(\{q_3,q_4\}) = c\ell(q_3) \cup c\ell(q_4) = \{q_3,q_5\} \cup \{q_4,q_6\} = \{q_3,q_4,q_5,q_6\}$
- En general $\mathcal{C}\ell(S) = \bigcup_{q \in S} c\ell(q)$

Otra definición de computación en un AFN- ϵ

Sea $N=(Q,\sum,\delta,q_0,F)$ un AFN- ϵ . Sea $w=w_1w_2\ldots w_n$ una cadena, donde cada w_i está en el alfabeto \sum . Entonces N acepta w si existe una secuencia de estados $r_0,r_1\ldots r_n$ en Q con las siguientes condiciones:

1
$$r_0 \in c\ell(q_0)$$
,

Otra definición de computación en un AFN- ϵ

Sea $N=(Q,\sum,\delta,q_0,F)$ un AFN- ϵ . Sea $w=w_1w_2\ldots w_n$ una cadena, donde cada w_i está en el alfabeto \sum . Entonces N acepta w si existe una secuencia de estados $r_0,r_1\ldots r_n$ en Q con las siguientes condiciones:

```
1 r_0 \in c\ell(q_0),
2 r_{i+1} \in \mathcal{C}\ell(\delta(r_i, w_{i+1})), para i=0,\ldots,n-1, y
```

Otra definición de computación en un AFN- ϵ

Sea $N=(Q,\sum,\delta,q_0,F)$ un AFN- ϵ . Sea $w=w_1w_2\ldots w_n$ una cadena, donde cada w_i está en el alfabeto \sum . Entonces N acepta w si existe una secuencia de estados $r_0,r_1\ldots r_n$ en Q con las siguientes condiciones:

- $1 r_0 \in c\ell(q_0),$
- 2 $r_{i+1} \in \mathcal{C}\ell(\delta(r_i, w_{i+1}))$, para i = 0, ..., n-1, y
- $3 r_n \in F$.

Lenguaje aceptado por un AFN- ϵ

Los AFN- ϵ tienen más poder computacional que los AFN? Es decir, los AFN- ϵ reconocen más lenguajes que los AFN?

Teorema

Todo AFN- ϵ tiene un AFD equivalente, es decir, un AFD que reconoce el mismo lenguaje

• La prueba es escencialmente la misma que para el caso de AFN

- La prueba es escencialmente la misma que para el caso de AFN
- Prueba por construcción

- La prueba es escencialmente la misma que para el caso de AFN
- Prueba por construcción
- ullet Sea N un AFN- ϵ que reconoce L

- La prueba es escencialmente la misma que para el caso de AFN
- Prueba por construcción
- Sea N un AFN- ϵ que reconoce L
- Debemos construir un AFD M a partir de N, que también reconoce L

- La prueba es escencialmente la misma que para el caso de AFN
- Prueba por construcción
- Sea N un AFN- ϵ que reconoce L
- Debemos construir un AFD M a partir de N, que también reconoce L
- Si N tiene k estados, entonces M tiene 2^k estados

Conversión \overline{AFN} - ϵ a \overline{AFD}

- La prueba es escencialmente la misma que para el caso de AFN
- Prueba por construcción
- Sea N un AFN- ϵ que reconoce L
- Debemos construir un AFD M a partir de N, que también reconoce L
- Si N tiene k estados, entonces M tiene 2^k estados
- En este último paso vamos a simplificar el número de estados desde el comienzo

• Sea
$$N = \{Q, \Sigma, \delta, q_0, F\}$$

- Sea $N = \{Q, \Sigma, \delta, q_0, F\}$
- Construímos $M = \{Q', \Sigma, \delta', q'_0, F'\}$ como

- Sea $N = \{Q, \Sigma, \delta, q_0, F\}$
- ullet Construímos $M=\{Q',\Sigma,\delta',q_0',F'\}$ como
- $Q' = \{S : S \subseteq Q\}$ (el conjunto potencia)

- Sea $N = \{Q, \Sigma, \delta, q_0, F\}$
- Construímos $M = \{Q', \Sigma, \delta', q'_0, F'\}$ como
- $Q' = \{S : S \subseteq Q\}$ (el conjunto potencia)
- $\delta'(S, a) = \mathcal{C}\ell(\bigcup_{p \in S} \delta(p, a))$

- Sea $N = \{Q, \Sigma, \delta, q_0, F\}$
- Construímos $M = \{Q', \Sigma, \delta', q'_0, F'\}$ como
- $Q' = \{S : S \subseteq Q\}$ (el conjunto potencia)
- $\delta'(S, a) = \mathcal{C}\ell(\bigcup_{p \in S} \delta(p, a))$
- $q_0' = c\ell(q_0)$

- Sea $N = \{Q, \Sigma, \delta, q_0, F\}$
- Construímos $M = \{Q', \Sigma, \delta', q'_0, F'\}$ como
- $Q' = \{S : S \subseteq Q\}$ (el conjunto potencia)
- $\delta'(S, a) = \mathcal{C}\ell(\bigcup_{p \in S} \delta(p, a))$
- $q_0' = c\ell(q_0)$
- $F' = \{S \in Q' : S \text{ tiene un estado de aceptación de } N\}$

• Para evitar muchos estados, comenzamos desde q_0' y seguimos por niveles

- Para evitar muchos estados, comenzamos desde q_0' y seguimos por niveles
- Paso 0: $q_0' := c\ell(q_0), P_1 := \{q_0'\}, i := 1$

- Para evitar muchos estados, comenzamos desde q_0' y seguimos por niveles
- Paso 0: $q'_0 := c\ell(q_0), P_1 := \{q'_0\}, i := 1$
- Paso i: Para cada símbolo a y cada estado p en P_i , calculamos $\delta'(p,a)$

- Para evitar muchos estados, comenzamos desde q_0' y seguimos por niveles
- Paso 0: $q'_0 := c\ell(q_0), P_1 := \{q'_0\}, i := 1$
- Paso i: Para cada símbolo a y cada estado p en P_i , calculamos $\delta'(p, a)$
- Sea P_{i+1} el conjunto de nuevos estados creados en el paso i

- Para evitar muchos estados, comenzamos desde q_0' y seguimos por niveles
- Paso 0: $q'_0 := c\ell(q_0), P_1 := \{q'_0\}, i := 1$
- Paso i: Para cada símbolo a y cada estado p en P_i, calculamos δ'(p, a)
- Sea P_{i+1} el conjunto de nuevos estados creados en el paso i
- Si $P_{i+1} = \emptyset$, entonces terminamos; caso contrario ejecutamos el Paso i+1

Actividad en clase

Ejercicio

Para cada uno de los siguientes autómatas:

- Calcular la clausura de cada estado y cada conjunto de estados
- Computar la cadena babb
- Convertir el autómata en AFD

Actividad en clases

Actividad en clase

Actividad en clase

• Sean A y B dos lenguajes regulares

- Sean A y B dos lenguajes regulares
- **Unión**: $A \cup B = \{x : x \in A \text{ o } x \in B\}$

- Sean A y B dos lenguajes regulares
- Unión: $A \cup B = \{x : x \in A \text{ o } x \in B\}$
- Concatenación: $A \cdot B = \{xy : x \in A , y \in B\}$

Operaciones regulares

- Sean A y B dos lenguajes regulares
- Unión: $A \cup B = \{x : x \in A \text{ o } x \in B\}$
- Concatenación: $A \cdot B = \{xy : x \in A \text{ , } y \in B\}$
- Estrella: $A^* = \{x_1 x_2 \dots x_k : x_i \in A\}$

Recordemos la pregunta

La operación de concatenación de lenguajes regulares, es cerrada?

Recordemos la pregunta

Ya podemos responder dicha pregunta, usando AFN- ϵ

Recordemos la pregunta

Primero, volvamos nuevamente a la operación de unión

Teorema

La clase de lenguajes regulares es cerrada bajo la operación de unión. Es decir, si L_1 y L_2 son lenguajes regulares, entonces $L_1 \cup L_2$ también es regular.

• Idea de la prueba.

- Idea de la prueba.
- ullet Sea un AFN- ϵ N_1 que reconoce L_1

- Idea de la prueba.
- ullet Sea un AFN- ϵ N_1 que reconoce L_1
- ullet Sea un AFN- ϵ \emph{N}_2 que reconoce \emph{L}_2

- Idea de la prueba.
- ullet Sea un AFN- ϵ N_1 que reconoce L_1
- Sea un AFN- ϵ N_2 que reconoce L_2
- Construimos un nuevo AFN- ϵ N que reconoce $L_1 \cup L_2$

- Idea de la prueba.
- Sea un AFN- ϵ N_1 que reconoce L_1
- Sea un AFN- ϵ N_2 que reconoce L_2
- Construimos un nuevo AFN- ϵ N que reconoce $L_1 \cup L_2$
- N tiene un nuevo estado inicial que salta hacia los estados iniciales de L_1 y L_2 usando transiciones ϵ

- Idea de la prueba.
- Sea un AFN- ϵ N_1 que reconoce L_1
- Sea un AFN- ϵ N_2 que reconoce L_2
- Construimos un nuevo AFN- ϵ N que reconoce $L_1 \cup L_2$
- N tiene un nuevo estado inicial que salta hacia los estados iniciales de L_1 y L_2 usando transiciones ϵ

- Idea de la prueba.
- Sea un AFN- ϵ N_1 que reconoce L_1
- Sea un AFN- ϵ N_2 que reconoce L_2
- Construimos un nuevo AFN- ϵ N que reconoce $L_1 \cup L_2$
- N tiene un nuevo estado inicial que salta hacia los estados iniciales de L_1 y L_2 usando transiciones ϵ
- N intenta adivinar de manera no deterministica cual de los dos $\mathsf{AFN}\text{-}\epsilon$ acepta la cadena
- Si alguno de ellos acepta, N también acepta

• Prueba.

- Prueba.
- ullet Sea un AFN- ϵ $\mathit{N}_1 = (\mathit{Q}_1, \Sigma, \delta_1, \mathit{q}_1, \mathit{F}_1)$ que reconoce L_1

- Prueba.
- ullet Sea un AFN- ϵ $\mathit{N}_1 = (\mathit{Q}_1, \Sigma, \delta_1, \mathit{q}_1, \mathit{F}_1)$ que reconoce L_1
- Sea un AFN- ϵ $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ que reconoce L_2

- Prueba.
- Sea un AFN- ϵ $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ que reconoce L_1
- Sea un AFN- ϵ $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ que reconoce L_2
- ullet Construimos un nuevo AFN- ϵ $\mathit{N} = (\mathit{Q}, \Sigma, \delta, \mathit{q}_0, \mathit{F})$ según

- Prueba.
- Sea un AFN- ϵ $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ que reconoce L_1
- Sea un AFN- ϵ $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ que reconoce L_2
- Construimos un nuevo AFN- ϵ $N = (Q, \Sigma, \delta, q_0, F)$ según
- $\bullet \ \ Q = \{q_0\} \cup Q_1 \cup Q_2$

- Prueba.
- Sea un AFN- ϵ $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ que reconoce L_1
- Sea un AFN- ϵ $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ que reconoce L_2
- Construimos un nuevo AFN- ϵ $N = (Q, \Sigma, \delta, q_0, F)$ según
- $\bullet \ \ Q = \{q_0\} \cup Q_1 \cup Q_2$
- $\bullet \ \ F = F_1 \cup F_2$

- Prueba.
- Sea un AFN- ϵ $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ que reconoce L_1
- Sea un AFN- ϵ $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ que reconoce L_2
- Construimos un nuevo AFN- ϵ $N = (Q, \Sigma, \delta, q_0, F)$ según
- $\bullet \ \ Q = \{q_0\} \cup Q_1 \cup Q_2$
- $\bullet \ \ F = F_1 \cup F_2$

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & \text{si } q \in Q_1, \\ \delta_2(q,a) & \text{si } q \in Q_2, \\ \{q_1,q_2\} & \text{si } q = q_0 \text{ y } a = \epsilon, \\ \emptyset & \text{si } q = q_0 \text{ y } a \neq \epsilon. \end{cases}$$

Teorema

La clase de lenguajes regulares es cerrada bajo la operación de concatenación. Es decir, si L_1 y L_2 son lenguajes regulares, entonces $L_1 \cdot L_2$ también es regular.

• Idea de la prueba.

- Idea de la prueba.
- ullet Sea un AFN- ϵ N_1 que reconoce L_1

- Idea de la prueba.
- Sea un AFN- ϵ N_1 que reconoce L_1
- ullet Sea un AFN- ϵ \emph{N}_2 que reconoce \emph{L}_2

- Idea de la prueba.
- Sea un AFN- ϵ N_1 que reconoce L_1
- Sea un AFN- ϵ N_2 que reconoce L_2
- Construimos un nuevo AFN- ϵ N que reconoce $L_1 \cdot L_2$

- Idea de la prueba.
- Sea un AFN- ϵ N_1 que reconoce L_1
- Sea un AFN- ϵ N_2 que reconoce L_2
- Construimos un nuevo AFN- ϵ N que reconoce $L_1 \cdot L_2$
- N simula N_1 y, al llegar a un estado final de N_1 , intenta adivinar de manera no deterministica si la cadena restante es aceptada por N_2

- Idea de la prueba.
- Sea un AFN- ϵ N_1 que reconoce L_1
- Sea un AFN- ϵ N_2 que reconoce L_2
- Construimos un nuevo AFN- ϵ N que reconoce $L_1 \cdot L_2$
- N simula N_1 y, al llegar a un estado final de N_1 , intenta adivinar de manera no deterministica si la cadena restante es aceptada por N_2
- Si N₂ acepta, entonces N también acepta

- Idea de la prueba.
- Sea un AFN- ϵ N_1 que reconoce L_1
- Sea un AFN- ϵ N_2 que reconoce L_2
- Construimos un nuevo AFN- ϵ N que reconoce $L_1 \cdot L_2$
- N simula N_1 y, al llegar a un estado final de N_1 , intenta adivinar de manera no deterministica si la cadena restante es aceptada por N_2
- Si N₂ acepta, entonces N también acepta
- Podemos pensar que N intenta adivinar de manera no determinística donde particionar la cadena

• Prueba.

- Prueba.
- ullet Sea un AFN- ϵ $\mathit{N}_1 = (\mathit{Q}_1, \Sigma, \delta_1, \mathit{q}_1, \mathit{F}_1)$ que reconoce L_1

- Prueba.
- ullet Sea un AFN- ϵ $\mathit{N}_1 = (\mathit{Q}_1, \Sigma, \delta_1, \mathit{q}_1, \mathit{F}_1)$ que reconoce L_1
- Sea un AFN- ϵ $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ que reconoce L_2

- Prueba.
- Sea un AFN- ϵ $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ que reconoce L_1
- Sea un AFN- ϵ $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ que reconoce L_2
- ullet Construimos un nuevo AFN- ϵ ${\it N}=({\it Q},\Sigma,\delta,{\it q}_1,{\it F})$ según

- Prueba.
- Sea un AFN- ϵ $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ que reconoce L_1
- Sea un AFN- ϵ $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ que reconoce L_2
- Construimos un nuevo AFN- ϵ $N = (Q, \Sigma, \delta, q_1, F)$ según
- $\bullet \ \ Q=Q_1\cup Q_2$

- Prueba.
- Sea un AFN- ϵ $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ que reconoce L_1
- Sea un AFN- ϵ $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ que reconoce L_2
- Construimos un nuevo AFN- ϵ $N = (Q, \Sigma, \delta, q_1, F)$ según
- $\bullet \ \ Q = Q_1 \cup Q_2$
- $\bullet \ \ F=F_2$

- Prueba.
- Sea un AFN- ϵ $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ que reconoce L_1
- Sea un AFN- ϵ $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ que reconoce L_2
- Construimos un nuevo AFN- ϵ $N = (Q, \Sigma, \delta, q_1, F)$ según
- $\bullet \ \ Q = \mathit{Q}_1 \cup \mathit{Q}_2$
- $F = F_2$

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & \text{si } q \in Q_1 \text{ y } q \notin F_1, \\ \delta_1(q,a) & \text{si } q \in F_1 \text{ y } a \neq \epsilon, \\ \delta_1(q,a) \cup \{q_2\} & \text{si } q \in F_1 \text{ y } a = \epsilon, \\ \delta_2(q,a) & \text{si } q \in Q_2. \end{cases}$$

Teorema

La clase de lenguajes regulares es cerrada bajo la operación de estrella. Es decir, si L_1 es un lenguaje regular, entonces L_1^* también es regular.

• Idea de la prueba.

- Idea de la prueba.
- ullet Sea un AFN- ϵ N_1 que reconoce L_1

- Idea de la prueba.
- ullet Sea un AFN- ϵ N_1 que reconoce L_1

- Idea de la prueba.
- Sea un AFN- ϵ N_1 que reconoce L_1
- ullet Construimos un nuevo AFN- ϵ $\it N$ que reconoce $\it L_1^*$

- Idea de la prueba.
- Sea un AFN- ϵ N_1 que reconoce L_1
- ullet Construimos un nuevo AFN- ϵ N que reconoce L_1^*
- N aceptará la cadena si puede ser particionada en subcadenas, cada una de las cuales es aceptada por N_1

- Idea de la prueba.
- Sea un AFN- ϵ N_1 que reconoce L_1
- ullet Construimos un nuevo AFN- ϵ N que reconoce L_1^*
- N aceptará la cadena si puede ser particionada en subcadenas, cada una de las cuales es aceptada por N_1
- N simula N_1 y, al llegar a un estado final de N_1 , regresa al inicio para intentar leer otra cadena aceptada por N_1

- Idea de la prueba.
- Sea un AFN- ϵ N_1 que reconoce L_1
- Construimos un nuevo AFN- ϵ N que reconoce L_1^*
- N aceptará la cadena si puede ser particionada en subcadenas, cada una de las cuales es aceptada por N_1
- N simula N_1 y, al llegar a un estado final de N_1 , regresa al inicio para intentar leer otra cadena aceptada por N_1
- Si N₁ acepta, entonces N también acepta

- Idea de la prueba.
- Sea un AFN- ϵ N_1 que reconoce L_1
- Construimos un nuevo AFN- ϵ N que reconoce L_1^*
- N aceptará la cadena si puede ser particionada en subcadenas, cada una de las cuales es aceptada por N₁
- N simula N_1 y, al llegar a un estado final de N_1 , regresa al inicio para intentar leer otra cadena aceptada por N_1
- Si N₁ acepta, entonces N también acepta
- Como un caso aparte, N siempre debe aceptar la cadena vacía, para lo cual adicionamos un nuevo estado

• Prueba.

- Prueba.
- ullet Sea un AFN- ϵ $\mathit{N}_1 = (\mathit{Q}_1, \Sigma, \delta_1, \mathit{q}_1, \mathit{F}_1)$ que reconoce L_1

- Prueba.
- ullet Sea un AFN- ϵ $\mathit{N}_1 = (\mathit{Q}_1, \Sigma, \delta_1, \mathit{q}_1, \mathit{F}_1)$ que reconoce L_1

- Prueba.
- ullet Sea un AFN- ϵ $\mathit{N}_1 = (\mathit{Q}_1, \Sigma, \delta_1, \mathit{q}_1, \mathit{F}_1)$ que reconoce L_1
- Construimos un nuevo AFN- ϵ $N=(Q,\Sigma,\delta,q_0,F)$ según

- Prueba.
- Sea un AFN- ϵ $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ que reconoce L_1
- Construimos un nuevo AFN- ϵ $N = (Q, \Sigma, \delta, q_0, F)$ según
- $\bullet \ \ Q=\{q_0\}\cup Q_1$

- Prueba.
- ullet Sea un AFN- ϵ $\mathit{N}_1 = (\mathit{Q}_1, \Sigma, \delta_1, \mathit{q}_1, \mathit{F}_1)$ que reconoce L_1
- Construimos un nuevo AFN- ϵ $N = (Q, \Sigma, \delta, q_0, F)$ según
- $Q = \{q_0\} \cup Q_1$
- $F = \{q_0\} \cup F_1$

- Prueba.
- Sea un AFN- ϵ $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ que reconoce L_1
- Construimos un nuevo AFN- ϵ $N=(Q,\Sigma,\delta,q_0,F)$ según
- $Q = \{q_0\} \cup Q_1$
- $F = \{q_0\} \cup F_1$

•

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & \text{si } q \in Q_1 \text{ y } q \notin F_1, \\ \delta_1(q, a) & \text{si } q \in F_1 \text{ y } a \neq \epsilon, \\ \delta_1(q, a) \cup \{q_1\} & \text{si } q \in F_1 \text{ y } a = \epsilon, \\ \{q_1\} & \text{si } q = q_0 \text{ y } a \neq \epsilon, \\ \emptyset & \text{si } q = q_0 \text{ y } a \neq \epsilon \end{cases}$$

Ejercicios. Sean $L_1=\{w: \text{la longitud de } w \text{ es máximo 5}\}$ y $L_2=\{w: \text{termina en 01}\}$ sobre $\Sigma=\{0,1\}$. Construir AFN- ϵ para los siguientes lenguajes

• $L_1 \cup L_2$

Ejercicios. Sean $L_1 = \{w : \text{la longitud de } w \text{ es máximo 5} \}$ y $L_2 = \{w : \text{termina en 01} \}$ sobre $\Sigma = \{0,1\}$. Construir AFN- ϵ para los siguientes lenguajes

- $L_1 \cup L_2$
- $L_1 \cdot L_2$

Ejercicios. Sean $L_1=\{w: \text{la longitud de } w \text{ es máximo 5}\}$ y $L_2=\{w: \text{termina en 01}\}$ sobre $\Sigma=\{0,1\}$. Construir AFN- ϵ para los siguientes lenguajes

- $L_1 \cup L_2$
- \bullet $L_1 \cdot L_2$
- L_1^* y L_2^*

Gracias