PHY306 Advanced Quantum Mechanics Jan-Apr 2025: Assignment 7

Prof. Kavita Dorai, Department of Physics, IISERM, kavita@iisermohali.ac.in

1. Find an upper bound on the ground-state energy of the one-dimensional infinite square well using the triangular trial wave function

$$\psi(x) = Ax, \ 0 \le x \le a/2,$$

= $A(a-x), \ a/2 < x < a,$
= 0, otherwise

Find A from the normalization.

- 2. Find the best bound on E_g for the delta-function potential $-\alpha\delta(x-a/2)$ using the triangular trial wave function given above, where a is an adjustable parameter.
- 3. Assume a Yukawa potential of the form

$$V(r) = -\frac{e^2 e^{-\mu r}}{4\pi\epsilon_0 r}$$

where $\mu = m_{\gamma}c/\hbar$. Choose any trial wave function you want to and estimate the binding energy of a "hydrogen" atom with this potential. Assume $\mu a \ll 1$ and give your answer correct to order $(\mu a)^2$.

- 4. Consider a particle of mass m moving under a central force potential $V(r) = -\alpha e^{-2\mu r}$, where $\alpha, \mu > 0$. Use a variational trial wavefunction $\psi_{\lambda}(r) = Ce^{-\lambda r}$. Find C using the normalization of the wavefunction. Using the variational method find the lowest energy. A useful integral is $\int_0^\infty dx x^n e^{-x} = n!$.
- 5. Prove the corollary to the variational principle that if $\langle \psi | \psi_g \rangle = 0$, then $\langle H \rangle \geq E_f$ where E_f is the energy of the first excited state. What kinds of trial functions should one use in order to get an upper bound on the first excited state?
- 6. Find the best bound on the first excited state of the one-dimensional harmonic oscillator using the trial function $\psi(x) = Axe^{-bx^2}$

- 7. Use the variational principle to prove that first-order nondegenerate perturbation theory always overestimates (or never underestimates) the ground state energy. Use this to confirm that second-order correction to the ground state is always negative.
- 8. Consider a two-level system with unperturbed Hamiltonian H_0 and eigenstates ψ_a, ψ_b and $E_a < E_b$. Turn on a perturbation H' with diagonal elements 0 and off-diagonal elements h. Estimate the ground-state energy of the perturbed system using the variational principle with a trial wavefunction $\psi = \cos \phi \psi_a + \sin \phi \psi_b$, where ϕ is an adjustable parameter. Now consider an electron at rest in a uniform magnetic field $B = B_z \hat{k}$ with the Hamiltonian $H_0 = \frac{eB_z}{m} S_z$ with eigen spin wave functions χ_a, χ_b (which are eigenstates of S_z) and energies E_a, E_b . Turn on a perturbation which is a uniform field in the x direction with the Hamiltonian $H' = \frac{eB_x}{m} S_x$. Find the matrix elements of H' and what is h in this case? Use the above more general results to find the variational bound on the ground-state energy.