

ECE606: Solid State Devices Lecture 32: MOS Electrostatics

Muhammad Ashraful Alam alam@purdue.edu

Outline

1. Background

- 2. Band diagram in equilibrium and with bias
- 3. Qualitative Q-V characteristics of MOS capacitor
- 4. Conclusion

REF: Chapters 15-18 from SDF

Outline of the Course

Device-specific system design

Physical Principle of device Operation

TFT for Displays

CMOS-based Circuits for mP

LASERS for Disk Drives

MEMS for Read heads

EE606

Resistors (5 wk)

Diodes (3 wk)

Bipolar (3 wk)

MOSFETs (3 wks)

Quantum
Mechanics
+
Statistical
Mechanics

Transport
Equations

Scaling of MOSFETs

Vacuum Tubes

1906-1950s

Bipolar

1947-1980s

MOSFET

1960-until now

Now??

Spintronics

Bio Sensors

Displays

Basic Configuration of a MOSFET

Almost like a lateral bipolar transistor!

Symbols

Background

Strained MOSFET

High-k/metal gate MOSFET

Sources: IBM J. Res. Dev. Google Images Intel website

Alam ECE-606 S09

Outline

- 1. Background
- 2. Band diagram in equilibrium and with bias
- 3. Qualitative Q-V characteristics of MOS capacitor
- 4. Conclusion

Topic Map

	Equilibrium	DC	Small signal	Large Signal	Circuits
Diode					
Schottky					
BJT/HBT					
MOS					

Electrostatics of MOS Capacitor in Equilibrium

Schottky barrier with an interposed dielectric

Idealized MOS Capacitor

Potential, Field, Charges

Topic Map

	Equilibrium	DC	Small signal	Large Signal	Circuits
Diode					
Schottky					
BJT/HBT					
MOSCAP					

Electrostatics under Bias

Where do charges come from?

• Integrate charge to find potential.

Response Time

Dielectric Relaxation

$$\tau = \frac{\sigma}{\kappa_s \varepsilon_0}$$

SRH Recombination-Generation

$$R = \frac{np - n_i^2}{\tau_n(p + p_1) + \tau_p(n + n_1)} \rightarrow \frac{-n_i}{\tau_n + \tau_p}$$

Ref. Lecture no. 15

Outline

- 1. Background
- 2. Band diagram in equilibrium and with bias
- 3. Qualitative Q-V characteristics of MOS capacitor
- 4. Conclusion

Charges and Surface Potential

Solution of $Q_s(\psi_s)$

$$\nabla \bullet \vec{D} = \rho$$

$$\nabla \bullet \left(\vec{J}_n / -q \right) = \left(G - R \right)$$

$$\nabla \bullet (\vec{J}_p / q) = (G - R)$$

Poisson equation

$$\frac{d^2\psi}{dx^2} = \frac{-q}{\kappa_{Si}\varepsilon_0} \left[p_0(x) - n_0(x) + N_D^+ - N_A^- \right]$$

(Depletion) Potential, Field, Charges

Surface Potential

(2)
$$\psi_s = \frac{1}{2} \left(\frac{q N_A W}{\kappa_s \varepsilon_0} \right) W = \left(\frac{q N_A W^2}{2 \kappa_s \varepsilon_0} \right)$$

$$(3) \qquad W = \sqrt{\frac{2\kappa_s \varepsilon_0 \psi_s}{qN_A}}$$

(1)
$$\mathcal{E}(0^+) = -\frac{qN_AW}{\kappa_s \varepsilon_0}$$

$$(4) \quad V_G = V_{ox} + \psi_s$$

Gate Voltage /Surface Potential in Depletion Region

$$V_G = \mathcal{E}_{ox}(0^-)x_0 + \left(\frac{qN_AW^2}{2\kappa_s\mathcal{E}_0}\right)$$

$$= \left[\frac{qN_AW}{\kappa_{ox}\varepsilon_0}\right] x_0 + \left(\frac{qN_AW^2}{2\kappa_s\varepsilon_0}\right)$$

$$=\frac{qN_Ax_0}{\kappa_{ox}\varepsilon_0}\sqrt{\frac{2\kappa_{ox}\varepsilon_0}{qN_A}}\sqrt{\psi_s}+\psi_s$$

$$\equiv \mathcal{B}\sqrt{\psi_s} + \psi_s$$

....because
$$\psi_s = \left(\frac{qN_AW^2}{2\kappa_s\varepsilon_0}\right)$$

 V_G known, determine ψ_S

Gate Voltage and Depletion Charge

$$Q_{S}(\psi_{S}) = -qN_{A}W = \sqrt{2qN_{A}\kappa_{Si}\varepsilon_{0}\psi_{S}}$$

$$\log_{10}|Q_{s}(\psi_{s})|$$

$$\sim \sqrt{\psi_{S}}$$

$$\psi_{s}(V)$$

Conclusion

MOSFET is the dominant electronic device now, not because it is superior to BJTs in terms of performance, but because it consumes far less power and allow denser integration.

MOSFET is an inherently 2D device. We separate out the vertical and horizontal components to qualitatively explore the mechanics of its operation.

We explored relation between gate voltage and induced charge for a MOS-C today. We will continue this discussion in the next class.