Covid-19 Document Classification

Applying BERT-style Transfer Learning to Covid-19 Related Publications

Helena Balabin, Natural Language Processing (Summer Semester 2020)

Introduction

LitCovid Database [1]

Transfer Learning in the Context of Document Classification [2]

4

BERT-style Models

Model	Pre-Training Corpora
BERT [2]	BooksCorpus (800M words), English Wikipedia (2,500M words)
BioBERT [3]	BooksCorpus (800M words), English Wikipedia (2,500M words) + PubMed abstracts (4500M words)
CovidBERT [4]	BooksCorpus (800M words), English Wikipedia (2,500M words) + CORD-19 dataset (≈13000 full-text publications)

Hypothesis

Hypothesis

Increased Covid-19 Relatedness of Training Corpora

BERT

BioBERT

CovidBERT

Performance

Results

F1-score per Category

→ The performances of the three models do not differ significantly (except for the "Mechanism" category)

roughly 6500 abstracts

Modified Hypothesis

Modified Hypothesis

Including pre-trained word representations

Building an entirely task-specific model

Fine-tuning of pre-trained models

Performance

Excursus: Doc2Vec [5]

- Similar to Word2Vec
- Additionally Use a Paragraph ID vector

F1-score per Category (Including the Doc2Vec Baseline)

- Better performance of the BERT-style models: Diagnosis, Mechanism, Treatment
- Equal: Case Report
- Worse: Prevention

Trying to Find an Explanation

Excursus: t-distributed Stochastic Neighbor Embedding (t-SNE) Dimensionality Reduction [6]

"The similarity of datapoint \mathbf{x}_{j} to datapoint \mathbf{x}_{i} is the **conditional probability** $\mathbf{p}_{j|i}$ that \mathbf{x}_{i} would pick \mathbf{x}_{j} as its neighbor if neighbors were picked in proportion to their probability density under a Gaussian centered at \mathbf{x}_{i} ."

- → similarity measure based on the **Student t-distribution**
- → non-linear projection of data points into lower dimensional space with the objective of **minimizing the Kullback-Leibler divergence**

Exemplary t-SNE Visualization for the "Diagnosis" Category

→ Covid-BERT and BERT have a smaller convex hull than BioBERT

Exemplary t-SNE Visualization for the "Treatment" Category

→ Covid-BERT has the smallest convex hull again

Other Explanations

- Abstracts are not distinctive enough → Performance might differ on full-text
- Quality of Covid-19 publications is an issue
- Additional fine-tuning corpora are too small and/or do not add much value

Takeaways

Takeaways

- Domain-specific fine-tuning might not be as effective as it seems
- Using pre-trained (BERT-style) models increases the classification performance
- t-SNE is sensitive on hyperparameter settings and hard to interpret

Questions?

References

References

- [1] "LitCovid NCBI NLM NIH." https://www.ncbi.nlm.nih.gov/research/coronavirus/ (accessed May 26, 2020).
- J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," p. 16, May 2019.
- [3] J. Lee *et al.*, "BioBERT: a pre-trained biomedical language representation model for biomedical text mining," *Bioinformatics*, p. btz682, Sep. 2019.
- [4] "deepset/covid_bert_base · Hugging Face." https://huggingface.co/deepset/covid_bert_base (accessed May 26, 2020).
- [5] Q. Le, and T. Mikolov. "Distributed representations of sentences and documents." *International conference on machine learning*, pp. 1188-1196, Jan. 2014.
- [6] L. van der Maaten, and G. Hinton. "Visualizing data using t-SNE." *Journal of machine learning research,* pp. 2579-2605, Nov. 2008.