第15讲 函数极限的性质与运算法则

● 函数在无穷远处极限定义一览

极限	定义
$ \lim_{x \to +\infty} f(x) = A $	$\forall \varepsilon > 0$, $\exists X > 0$,
$ \lim_{x \to -\infty} f(x) = A $	$\forall \varepsilon > 0$, $\exists X > 0$,
$\lim_{x\to\infty}f(x)=A$	$\forall \varepsilon > 0$, $\exists X > 0$,

● 函数在无穷远处极限定义一览

极限	定义
$ \lim_{x \to +\infty} f(x) = A $	$\forall \varepsilon > 0$, $\exists X > 0$,
$\lim_{x\to -\infty} f(x) = A$	$\forall \varepsilon > 0$, $\exists X > 0$,
$\lim_{x\to\infty}f(x)=A$	$\forall \varepsilon > 0$, $\exists X > 0$,

● 函数在有限点处极限定义一览

极限	定义
$\lim_{x \to x_0} f(x) = A$	$\forall \varepsilon > 0$, $\exists \delta > 0$,
$\lim_{x \to x_0^+} f(x) = A$	$\forall \varepsilon > 0$, $\exists \delta > 0$, $\stackrel{\text{d}}{=} 0 < x - x_0 < \delta$ 时, $ f(x) - A < \varepsilon$
$\lim_{x \to x_0^-} f(x) = A$	$\forall \varepsilon > 0$, $\exists \delta > 0$, $\dot{\exists} -\delta < x - x_0 < 0$ 时, $ f(x) - A < \varepsilon$

● 函数在有限点处极限定义一览

极限	定义
$\lim_{x \to x_0} f(x) = A$	$\forall \varepsilon > 0$, $\exists \delta > 0$,
$\lim_{x \to x_0^+} f(x) = A$	$\forall \varepsilon > 0$, $\exists \delta > 0$, $\overset{\text{d}}{=} 0 < x - x_0 < \delta$ 时, $ f(x) - A < \varepsilon$
$\lim_{x \to x_0^-} f(x) = A$	$\forall \varepsilon > 0$, $\exists \delta > 0$, $\dot{\exists} - \delta < x - x_0 < 0$ 时, $ f(x) - A < \varepsilon$

函数极限的性质

函数的四则运算法则

复合运算的极限

定理1(惟一性)设 $\lim_{x\to x_0} f(x) = A$,则极限值A惟一.

定理2(有界性)设 $\lim_{x\to x_0} f(x) = A$,则存在 $\delta > 0$,使 f(x)在去心邻域 $0 < |x - x_0| < \delta$ 中有界.(局部有界性)

定理3(保号性)设 $\lim_{x\to x_0} f(x) = A$,且A > 0,则存在 $\delta > 0$,使当 $0 < |x - x_0| < \delta$ 时,f(x) > 0. ($f(x) > \frac{A}{2}$)

推论 设 $\lim_{x \to x_0} f(x) = A$,且存在 $\delta > 0$,使当 $0 < |x - x_0| < \delta$ 时,有 $f(x) \ge 0$,则有 $A \ge 0$.

定理4(四则运算的极限)假定下面考虑的都是对自变量 x 的同

一变化过程的极限.设 $\lim f(x)$ 和 $\lim g(x)$ 存在,则

(1)
$$\lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x);$$

(2)
$$\lim[f(x)g(x)] = \lim f(x)\lim g(x);$$

(3)
$$\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)} \quad (\lim g(x) \neq 0).$$

特别 , $\lim[Cf(x)] = C\lim f(x)$, 其中 C 为常数 $\lim[f(x)]^n = [\lim f(x)]^n$, 其中 n 为正整数

例1 证明: 若 $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} g(x) = B$, 且存在 $\delta > 0$ 使得当 $0 < |x - x_0| < \delta$ 时有 $f(x) \ge g(x)$, 则 $A \ge B$. (保序性)

$$\lim_{x \to x_0} [f(x) - g(x)] = A - B \xrightarrow{f(x) - g(x) \ge 0} A - B \ge 0$$

例2 设n 次多项式 $P_n(x) = a_0 + a_1 x + \dots + a_n x^n, x_0 \in \mathbb{R}$,则 $\lim_{x \to x_0} P_n(x) = P_n(x_0).$

例3 设
$$R(x) = \frac{x^2 - 4x + 3}{x^2 - 9}$$
, 试求 $\lim_{x \to 2} R(x)$, $\lim_{x \to 3} R(x)$.

例4 求 $\lim_{x\to\infty} \frac{a_0x^m + a_1x^{m-1} + \dots + a_m}{b_0x^n + b_1x^{n-1} + \dots + b_n}$, 其中 $a_0b_0 \neq 0$, m,n为正整数,且 $m \leq n$.

例5 求
$$\lim_{x\to 2} \left(\frac{1}{x-2} - \frac{4}{x^2-4} \right)$$
.

例6 求
$$\lim_{x \to 3} \sqrt{\frac{x-3}{x^2-9}}$$
 ·
$$\lim_{x \to 3} \frac{x-3}{x^2-9} = \frac{1}{6} \quad \lim_{u \to 1/6} \sqrt{u} = \frac{1}{\sqrt{6}}$$

$$y = \sqrt{\frac{x-3}{x^2-9}} \iff y = \sqrt{u}, \ u = \frac{x-3}{x^2-9}$$

定理5 (复合函数的极限) 设函数 $u = \varphi(x)$ 在 x_0 的去心邻域 $U_0(x_0)$ 内

有定义,
$$\varphi(x) \neq u_0$$
, 且 $\lim_{x \to x_0} \varphi(x) = u_0$. 又 $y = f(u)$ 在 u_0 的去心邻

域 $U_0(u_0)$ 内有定义,且 $\lim_{u\to u_0} f(u) = A$,则极限 $\lim_{x\to x_0} f[\varphi(x)]$ 存在,且

$$\lim_{x \to x_0} f[\varphi(x)] = \lim_{u \to u_0} f(u) = A.$$

