APUNTES DE MATEMÁTICA - UCE FACULTAD DE CIENCIAS EXACTAS

Juan Sebastian Obando Pallo

FOLLETO - CAPÍTULO 2: FUNCIONES.

LÓGICA Y TEORÍA DE CONJUNTOS.

FOLLETO DE LÓGICA Y TEORÍA DE CONJUNTOS DE LA FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICA No. 1 (1)

FOLLETO - Capítulo 2: Funciones.: Lógica y Teoría de Conjuntos.

Sebastian Obando.

Responsable de la Edición: J.S.Obando

Registro de derecho autoral No. *(1)

ISBN: 000-0-00000-000

Publicado en linea, Quito, Ecuador.

Primera edición: 2024 Primera impresión: 2024

© 6-001 2024

ÍNDICE GENERAL

CAP. 1	CLASES Y CONJUNTOS	1			
CAP. 2	FUNCIONES				
2.1	Idea intuitiva - Introducción.				
2.2	Conceptos Fundamentales y Definiciones	3			
	2.2.1 Ejemplo de funciones	. 7			
	2.2.2 Ejercicios de la Sección 2.2	12			
2.3	Propiedades de funciones compuestas y funciones in-	-			
	versas				
	2.3.1 Ejercicios de la Sección 2.3	29			
2.4	Imagen directa e imagen inversa bajo funciones	37			
	2.4.1 Ejercicios de la Sección 2.4	40			
2.5	Imagen directa e imagen inversa bajo funciones	51			
	2.5.1 Ejercicios de la Sección 2.5- Tomados en Exámen	54			

CAPÍTULO 1

CLASES Y CONJUNTOS

https://github.com/Sebastian0142/Apuntes-de-logica

CAPÍTULO 2

FUNCIONES

2.1 IDEA INTUITIVA - INTRODUCCIÓN.

Qué son las funciones de una variable?- BLUE DOT

8

https://www.youtube.com/shorts/PFLsC0f4Lus

2.2 Conceptos Fundamentales y Definiciones

Definición 2.1: -(Función)-

Sean A y B clases y f una subclase de AXB. Una función de A en B, es una tripleta $\langle f, A, B \rangle$, que cumple las siguientes propiedades:

$$F_1$$
) $\forall x \in A$, $\exists y \in B$, talque, $(x, y) \in f$.

$$F_2$$
) Si $(x, y_1) \in f$ y $(x, y_2) \in f$, entonces, $y_1 = y_2$.

Es común escribir, $f : A \longrightarrow B$ en lugar de $\langle f, A, B \rangle$.

Definición 2.2

Sea $f:A\longrightarrow B$ una función. Si $(x,y)\in f$ se dice que:

- i) y es la imagen de x. (Con respecto de f).
- ii) x es la pre-imagen de y. (Con respecto de f).
- iii) f asigna x a y. (f mapea x a y). Em símbolos, $x \mapsto y$.

Teorema 2.1

Sean A y B clases y f un grafo. Entonces: $f:A\longrightarrow B$ es una función si, y solo si:

i) F_2 se cumple,

- ii) dom f = A,
- iii) $ranf \subseteq B$.

Demostración. Sean *A* y *B* clases arbitrarias y *f* un grafo genérico.

- a) Primero se supone que, $f:A\longrightarrow B$ es una función, y se va a demostrar i), ii) y iii).
 - i) Se comprueba de manera directa, pues por hipótesis $f:A\longrightarrow B$ es función.
 - ii) Se va a demostrar que, dom f = A, por el literal iv) del Teorema 5, se debe comprobar:
 - 1) $dom f \subseteq A$. Por la Definición 9 se debe comprobar que, si $x \in dom f$, entonces, $x \in A$.

Sea
$$x \in dom f \Longrightarrow \exists y \ni (x,y) \in f$$
, por la Definicin 24 $\Longrightarrow (x,y) \in (AXB)$, pues, $f \subseteq (AXB)$ $\Longrightarrow x \in A$.

2) $A \subseteq dom f$. Por la Definición 9 se debe comprobar que, si $x \in A$, entonces, $x \in dom f$.

Sea
$$x \in A \Longrightarrow \exists y \ni (x,y) \in f$$
, por F_1
 $\Longrightarrow x \in dom f$. Por la Definicin 24

De 1) y 2) se concluye que, dom f = A.

ii) Se va a demostrar que, $ranf \subseteq B$. Por la Definición 9 se debe demostrar que, si $y \in ranf$, entonces, $y \in B$.

Sea
$$y \in ranf \Longrightarrow \exists x \ni (x,y) \in f$$
, por la Definicin 25
 $\Longrightarrow (x,y) \in (AXB)$, pues, $f \subseteq (AXB)$
 $\Longrightarrow y \in B$.

- b) Ahora se supone que i), ii) y iii) se cumple y vamos a demostrar que $f: A \longrightarrow B$ es una función. Para ello, se demuestra lo siguiente,
 - i) $f \subseteq (AXB)$. Por la Definición 9, se debe comprobar que si, $(x,y) \in$

$$f$$
, entonces, $(x,y) \in (AxB)$.

Sea
$$(x,y) \in f \Longrightarrow x \in donf \land y \in ranf$$
,
 $\Longrightarrow x \in A \land y \in B$,
 $\Longrightarrow (x,y) \in (AxB)$.

- ii) F_1 , Sea $x \in A$ arbitrario, luego, $x \in dom f$. Asi, por la Definición 24, se tiene que, $\exists y \ni (x,y) \in f$.
- ii) F_2 , se cumple de manera inmedita por el literal i) del Teorema.

Como A y B clases arbitrarias y f un grafo genérico de a) y b) se demuetra el Teorema.

Observación. Del Teorema 24, se deduce que, si $f:A\longrightarrow B$ es una función, entonces, A es el dominio de f y el rango de f esta contenido en B. Se dice que B es el codominio de $f:A\longrightarrow B$.

Corolario 3. Sean A y B clases y $f:A\longrightarrow B$ una función. Si C es cualquier clase talque $ranf\subseteq C$, entonces, $f:A\longrightarrow C$ es una función.

Demostración. Sean A y B clases arbitrarias. Como $f:A\longrightarrow B$ una función se cumple lo siguiente,

- i) F₂ se cumple,
- ii) dom f = A,
- iii) $ranf \subseteq B$.

De lo anterior se tiene que, F_2 se cumple, y que dom f = A, además por hipótesis se tiene que $ranf \subseteq C$. Así, se cumple i), ii) y iii) del Teorema 24, lo que concluye que, $f : A \longrightarrow C$, es función.

Notación: Sean $f: A \longrightarrow B$ una función y $x \in A$. Se acostumbra a usar el símbolo f(x), para designar la imagen de x, es decir, y = f(x). Así, y = f(x) tiene el mismo significado que $(x,y) \in f$. Además,

- F_1) $\forall x \in A, \exists y \in B, y = f(x).$
- F_2) Si $y_1 = f(x)$ y $y_2 = f(x)$, entonces, $y_1 = y_2$.
- F_2 ') Si $x_1 = x_2$, entonces, $f(x_1) = f(x_2)$.

Teorema 2.2

Sean $f:A\longrightarrow B$ y $g:A\longrightarrow B$ funciones. Entonces, f=g, si, y solo si, f(x)=g(x), para todo $x\in A$.

Demostración. Sean $f: A \longrightarrow B$ y $g: A \longrightarrow B$ funciones arbitrarias.

i) Primero se supone que f = g y se va a demostrar que, f(x) = g(x), para todo $x \in A$.

Sea
$$x \in A$$
 talque $y = f(x) \Longrightarrow (x,y) \in f$,
 $\Longrightarrow (x,y) \in g$, pues $f = g$
 $\Longrightarrow y = g(x)$.

Dado que x es arbitrario, se concluye que f(x) = g(x) para todo $x \in A$.

ii) Ahora se va a suponer que, f(x) = g(x), para todo $x \in A$, y se va a demostrar que, f = g.

Sea
$$(x,y) \in f \iff y = f(x),$$

 $\iff y = g(x), \text{ pues } f(x) = g(x)$
 $\iff (x,y) \in g.$

De esto se concluye que, f = g.

Como $f:A\longrightarrow B$ y $g:A\longrightarrow B$ son funciones arbitrarias de i) y ii) se demuestra el Teorema.

Definición 2.3: -(Función inyectiva)-

Una función $f:A\longrightarrow B$ se dice inyectiva si tiene la siguiente propiedad,

INJ. Si
$$(x_1, y) \in f$$
 y $(x_2, y) \in f$, entonces, $x_1 = x_2$.

INJ'. Si
$$f(x_1) = f(x_2)$$
, entonces, $x_1 = x_2$.

Definición 2.4

[(Función sobreyectiva)]Una función $f:A\longrightarrow B$ se dice sobreyectiva si tiene la siguiente propiedad,

$$SURJ. \forall y \in B, \exists x \in A, y = f(x)$$

Definición 2.5: -(Función biyectiva)-

Una función $f:A\longrightarrow B$ se dice biyectiva, si, y solo si, es inyectiva y sobreyectiva.

Definición 2.6: -(Correspondencia 1-1)-

Sean A y B clases. Si existe una función biyectiva $f:A\longrightarrow B$, se dice que A esta en correspondencia uno a uno con B.

2.2.1 Ejemplo de funciones.

Ejemplo 2.1. –**Función Identidad**– Sea A una clase, la función identidad en A, se escribe como $I_A : A \longrightarrow A$. Para todo $x \in A$.

$$I_A(x) = x$$

En otras palabras,

$$I_A = \{(x, x) : x \in A\}$$

Es inyectiva, sobreyectiva y biyectiva.

Ejemplo 2.2. –**Función constante**– Sea A y B clases. Sea $b \in B$, $K_b : A \longrightarrow B$ tal que

$$K_b(x) = b.$$

Para todo $x \in A$, en otras palabras,

$$K_b = \{(x, b) : x \in A\}$$

No es inyecttiva, ni sobreyectiva.

Ejemplo 2.3. –**Función Inclusión**– Sea A una clase y B subclase de A. Así E_B : $B \longrightarrow A$, tal que $E_B(x) = x$, para todo $x \in B$.

Ejemplo 2.4. –**Función Característica**– Sea 2 elementos $\{0,1\}$. Si A es una clase y $B \subset A$ tal que $C_B : A \longrightarrow 2$ con

$$C_B(x) = \begin{cases} 0 \sin x \in B \\ 1 \sin x \notin B \end{cases}$$

Ejemplo 2.5. –Función Restricción– Sea $f:A\longrightarrow B$ y $C\subseteq A$ tal que $f_{[C]}:$

 $C \longrightarrow B$, para toda $x \in C$ tal que

$$f_{[C]}(x) = f(x)$$

En otras palabras

$$f_{[C]} = \{(x,y) : (x,y) \in f \land x \in C\}.$$

Teorema 2.3

Si $f: B \cup C \longrightarrow A$ es una función, entonces $f = f_{[B]} \cup f_{[C]}$.

Observación. Tenemos,

$$[g \circ f](x) = g(f(x))$$
 y $y = f(x)$ si y sólo si $x = f^{-1}(y)$

Teorema 2.4

Si
$$f: B \cup C \longrightarrow A$$
, entonces, $f = f_{[B]} \cup f_{[C]}$.

Demostración. Se supone que, $f: B \cup C \longrightarrow A$, se va a demostrar que, $f = f_{[B]} \cup f_{[C]}$.

$$Sea \ (x,y) \in f \iff x \in (B \cup C) \land y \in \operatorname{ran} f, \\ \iff (x \in B \lor x \in C) \land y \in \operatorname{ran} f, \\ \iff (x \in B \land y \in \operatorname{ran} f) \lor (x \in C \land y \in \operatorname{ran} f) \\ \iff (x,y) \in f_{[B]} \lor (x,y) \in f_{[C]}, \\ \iff (x,y) \in (f_{[B]} \cup f_{[C]})$$
 ;Por Def 10

Por lo tanto, se concluye que, $f = f_{[B]} \cup f_{[C]}$.

Teorema 2.5

Sean $f_1: B \longrightarrow A$ y $f_2: C \longrightarrow A$ funciones, donde $B \cap C \neq \emptyset$. Si $f = f_1 \cup f_2$, entonces, se cumple lo siguiente:

- i) $f: B \cup C \longrightarrow A$ es una función,
- ii) $f_1 = f_{[B]}$ y $f_2 = f_{[C]}$.

Demostración. Se supone que, $f = f_1 \cup f_2$, talque, $f_1 : B \longrightarrow A$ y $f_2 : C \longrightarrow A$ son funciones, dónde, $B \cap C \neq \emptyset$. Se va a demostrar:

i) $f: B \cup C \longrightarrow A$ es una función. Por la Definición 32 se debe comprobar lo siguiente:

a) $f \subseteq (B \cup C) \times A$. Por la Definición 9, se debe demostrar que, si $(x,y) \in f$, entonces, $(x,y) \in (B \cup C) \times A$.

Sea
$$(x,y) \in f \Longrightarrow (x,y) \in (f_1 \cup f_2)$$
;Por hipótesis.
 $\Longrightarrow (x,y) \in f_1 \lor (x,y) \in f_2$;Por Def 10.
 $\Longrightarrow (x \in dom f_1 \land y \in ran f_1) \lor (x \in dom f_2 \land y \in ran f_2)$,
 $\Longrightarrow (x \in B \land y \in A) \lor (x \in C \land y \in A)$,;Por ii), iii), Teo 24.
 $\Longrightarrow (x \in B \lor x \in C) \land y \in A$;Por v),Teo 4.
 $\Longrightarrow x \in (B \cup C) \land y \in A$;Por Def 10.
 $\Longrightarrow (x,y) \in (B \cup C) \lor A$.

Así, se concluye que, $f \subseteq (B \cup C)XA$.

b) Se demostrará F_1 . Es decir, se comprobará que, $\forall x \in (B \cup C), \exists y \in A \ni (x,y) \in f$.

$$Sea \ x \in (B \cup C) \Longrightarrow x \in B \lor x \in C,; Por Def 10$$

$$\Longrightarrow x \in dom f_1 \lor x \in dom f_2,; Por ii), Teo 24$$

$$\Longrightarrow \exists y \ni (x,y) \in f_1 \lor \exists y \ni (x,y) \in f_2,; Por Def 24$$

$$\Longrightarrow \exists y \ni (x,y) \in (f_1 \cup f_2),; Por Def 10$$

$$\Longrightarrow \exists y \ni (x,y) \in f.$$

Así, F_1 , se cumple.

c) Se demostrará F_2 . Es decir, se comprobará que, si $(x,y_1) \in f$ y $(x,y_2) \in f$, entonces, $y_1 = y_2$. Sean $(x,y_1) \in f$ y $(x,y_2) \in f$, luego, por hipótesis se tiene que, $(x,y_1) \in (f_1 \cup f_2)$ y $(x,y_2) \in (f_1 \cup f_2)$. Asi, por la Definición 10 se tiene que,

$$[(x,y_1) \in f_1 \lor (x,y_1) \in f_2] y [(x,y_2) \in f_1 \lor (x,y_2) \in f_2],$$

Por el literal vi) del Teorema 4, se tiene que,

$$\{(x,y_1) \in f_1 \land [(x,y_2) \in f_1 \lor (x,y_2) \in f_2]\} \lor \{(x,y_1) \in f_2 \land [(x,y_2) \in f_1 \lor (x,y_2) \in f_2]\},$$

Por el literal v) del Teorema 4, se tiene que,

$$[(x,y_1) \in f_1 \land (x,y_2) \in f_1] \lor [(x,y_1) \in f_1 \land (x,y_2) \in f_2], 6,$$

 $[(x,y_1) \in f_2 \land (x,y_2) \in f_1] \lor [(x,y_1) \in f_2 \land (x,y_2) \in f_2],$

De lo anterior se tiene que,

 $[(x,y_1) \in f_1 \land (x,y_2) \in f_1]$, entonces, $y_1 = y_2$, pues f_1 es función. De manera similar, se tiene que,

 $[(x,y_1) \in f_2 \land (x,y_2) \in f_2]$, entonces, $y_1 = y_2$, pues f_2 es función.

Por otra parte,

 $[(x,y_1) \in f_1 \land (x,y_2) \in f_2]$, es falso, pues, si $(x,y_1) \in f_1$, entonces, $x \in dom f_1 = C$,

si $(x, y_2) \in f_2$, entonces, $x \in dom f_2 = B$

Asi, $x \in (B \cap C)$. Pero por hipótesis, $(B \cap C) = \emptyset$, lo cual es una contradicción.

De manera análoga se tiene que,

 $[(x, y_1) \in f_2 \land (x, y_2) \in f_1]$, es falso, pues,

si $(x, y_1) \in f_2$, entonces, $x \in dom f_2 = B$,

si $(x, y_2) \in f_1$, entonces, $x \in dom f_1 = C$

Asi, $x \in (B \cap C)$. Pero por hipótesis, $(B \cap C) = \emptyset$, lo cual es una contradicción.

Asi, se tiene lo siguiente:

$$y_1 = y_2 \vee F \vee F \vee y_1 = y_2,$$

Por lo tanto, se concluye que, $y_1 = y_2$.

Así, F_2 , se cumple.

De a), b) y c) se concluye que, $f : B \cup C \longrightarrow A$ es una función.

- ii) Se va a demostrar que, $f_1 = f_{[B]}$ y $f_2 = f_{[C]}$.
 - a) Primero se va a demostrar, que $f_1 = f_{[B]}$. Por el literal iv) del Teorema 5, se debe demostrar que:
 - 1) $f_1 \subseteq f_{[B]}$. Por la Definición 9 se debe demostrar que, si $(x,y) \in f_1$, entonces $(x,y) \in f_{[B]}$.

$$Sea\ (x,y) \in f_1 \Longrightarrow x \in dom f_1 \land y \in ran f_1$$
 ;Por Def 33
 $\Longrightarrow x \in B \land y \in ran f_1$;Por literal ii), Teo 24
 $\Longrightarrow x \in B \land y \in (ran f_1 \cup ran f_2)$;Por Def 26
 $\Longrightarrow x \in B \land y \in ran (f_1 \cup f_2)$;Por literal ii), Teo 22
 $\Longrightarrow x \in B \ y \in ran f$;Por hipótesis
 $\Longrightarrow (x,y) \in f_{[B]}.$

2) $f_{[B]} \subseteq f_1$. Por la Definición 9 se debe demostrar que, si $(x,y) \in$

$$f_{[B]}$$
, entonces, $(x, y) \in f_1$.

Sea
$$(x,y) \in f_{[B]} \Longrightarrow x \in dom f_{[B]} \land y \in ran f_{[B]};$$
Por Def 33
 $\Longrightarrow x \in B \land y \in ran f_{[B]};$ Por literal ii), Teo 24
 $\Longrightarrow x \in B \land y \in (ran f_{[B]} \cup ran f_{[C]});$ Por Def 26
 $\Longrightarrow x \in B \land y \in ran (f_{[B]} \cup f_{[C]});$ Por literal ii),Teo 22
 $\Longrightarrow x \in B \land y \in ran f;$ Por Teo 26
 $\Longrightarrow (x,y) \in f,$
 $\Longrightarrow (x,y) \in (f_1 \cup f_2);$ Por hipótesis
 $\Longrightarrow (x,y) \in f_1 \lor (x,y) \in f_2;$ Por Def 10

(x,y) no puede estar en f_2 , pues si $(x,y) \in f_2$, entonces, $x \in C$, pero, $x \in B$, lo cual es una contradicción. Por lo tanto, $(x,y) \in f_1$.

De 1) y 2), se concluye que, $f_1 = f_{[B]}$.

- b) Ahora se va a demostrar, que $f_2 = f_{[C]}$. Por el literal iv) del Teorema 5, se debe demostrar que:
 - 1) $f_2 \subseteq f_{[C]}$. Por la Definición 9 se debe demostrar que, si $(x,y) \in f_2$, entonces $(x,y) \in f_{[C]}$.

$$Sea\ (x,y) \in f_2 \Longrightarrow x \in dom f_2 \land y \in ran f_2; Por\ Def\ 33$$

$$\Longrightarrow x \in C \land y \in ran f_2; Por\ literal\ ii), Teo\ 24$$

$$\Longrightarrow x \in C \land y \in (ran f_1 \cup ran f_2); Por\ Def\ 26$$

$$\Longrightarrow x \in C \land y \in ran (f_1 \cup f_2); Por\ literal\ ii), Teo\ 22.$$

$$\Longrightarrow x \in C\ y \in ran f; Por\ hipótesis$$

$$\Longrightarrow (x,y) \in f_{[C]}.$$

2) $f_{[C]} \subseteq f_2$. Por la Definición 9 se debe demostrar que, si $(x,y) \in$

 $f_{[C]}$, entonces, $(x, y) \in f_2$.

$$Sea\ (x,y) \in f_{[C]} \Longrightarrow x \in dom f_{[C]} \land y \in ran f_{[C]}; Por\ Def\ 33$$

$$\Longrightarrow x \in C \land y \in ran f_{[C]}; Por\ literal\ ii), Teo\ 24$$

$$\Longrightarrow x \in C \land y \in (ran f_{[B]} \cup ran f_{[C]}); Por\ Def\ 26$$

$$\Longrightarrow x \in C \land y \in ran (f_{[B]} \cup f_{[C]}); Por\ literal\ ii), Teo\ 22$$

$$\Longrightarrow x \in C \land y \in ran f; Por\ Teo\ 26$$

$$\Longrightarrow (x,y) \in f,$$

$$\Longrightarrow (x,y) \in (f_1 \cup f_2); Por\ hipótesis$$

$$\Longrightarrow (x,y) \in f_1 \lor (x,y) \in f_2; Por\ Def\ 10$$

(x,y) no puede estar en f_1 , pues si $(x,y) \in f_1$, entonces, $x \in B$, pero, $x \in C$, lo cual es una contradicción. Por lo tanto, $(x,y) \in f_2$.

De 1) y 2), se concluye que, $f_2 = f_{[C]}$.

De i) y ii) se concluye el Teorema.

2.2.2 Ejercicios de la Sección 2.2

Ejercicio 2.1. Demuestre que si $f:A\to B$ es una función inyectiva y $C\subseteq A$, entonces $f[C]:C\to B$ es una función inyectiva.

Demostración. Para demostrar que si $f:A\to B$ es una función inyectiva y $C\subseteq A$, entonces $f[C]:C\to B$ es una función inyectiva, procedemos de la siguiente manera:

• Inyectividad de f[C]Queremos demostrar que f[C] es inyectiva, es decir, para cualesquiera $x_1, x_2 \in C$, si $f[C](x_1) = f[C](x_2)$, entonces $x_1 = x_2$. Supongamos que $x_1, x_2 \in C$ y que $f[C](x_1) = f[C](x_2)$. Por la definición de f[C], esto implica que:

$$f(x_1) = f(x_2).$$

Dado que f es inyectiva en todo A, esto implica que:

$$x_1 = x_2$$
.

Por lo tanto, hemos demostrado que $f[C](x_1) = f[C](x_2)$ implica $x_1 = x_2$, lo que significa que f[C] es inyectiva.

Ejercicio 2.2. Sea A una clase y sea $f = \{(x,y) : x \in A\}$. Demuestre que f es una función biyectiva de A a I_A .

Demostración. Para mostrar que $f = \{(x, (x, x)) : x \in A\}$ es una función biyectiva de A a IA, donde $IA = \{(x, x) : x \in A\}$, necesitamos demostrar que f es tanto inyectiva (uno a uno) como suprayectiva (sobre).

Invectividad

Una función f es inyectiva si diferentes elementos en el dominio A se mapean a diferentes elementos en el codominio IA. Formalmente, f es inyectiva si $f(x_1) = f(x_2)$ implica $x_1 = x_2$.

Consideremos dos elementos x_1 y x_2 en A tales que $f(x_1) = f(x_2)$. Por la definición de f,

$$f(x_1) = (x_1, x_1)$$
 y $f(x_2) = (x_2, x_2)$.

Entonces,

$$(x_1, x_1) = (x_2, x_2).$$

Para que los pares ordenados sean iguales, ambos componentes deben ser iguales, es decir,

$$x_1 = x_2$$
.

Por lo tanto, *f* es inyectiva.

Sobreyectividad

Una función f es sobreyectiva si cada elemento en el codominio IA tiene una preimagen en el dominio A. Formalmente, f es sobreyectiva si para cada $g \in IA$, existe un $g \in A$ tal que g(g) = g.

Sea y un elemento arbitrario en IA. Por definición de IA, y es de la forma (a,a) para algún $a \in A$.

Necesitamos encontrar un $x \in A$ tal que f(x) = y.

Elijamos x = a. Entonces,

$$f(x) = f(a) = (a, a) = y.$$

Dado que tal x existe para cada $y \in IA$, f es sobreyectiva. Dado que f es tanto inyectiva como sobreyectiva, f es una biyección.

Por lo tanto, f es una función biyectiva de A a IA.

Ejercicio 2.3. Sean $f:A\to B$ y $g:A\to B$ funciones. Demuestre que si $f\subseteq g$ entonces f=g.

Demostración. Para demostrar que f = g, por el Teorema 25, debemos demostrar que f(x) = g(x), para todo $x \in A$.

Sea $x \in A$, como f es definida por una función $f: A \to B$, entonces f(x) = y, que es equivalente a $(x,y) \in f$. Por hipótesis $f \subset g$, por lo tanto $(x,y) \in g$, es decir g(x) = y.

Por transitividad, f(x) = g(x).

Como $x \in A$ es arbitrario, se tiene que f(x) = g(x), para todo $x \in A$.

Por lo tanto f = g.

Ejercicio 2.4. Sean $f: A \to B$ y $g: C \to D$ funciones. El producto de f y g es la función definida de la siguiente manera:

$$[f \cdot g](x,y) = (f(x),g(y))$$
 para cada $(x,y) \in A \times C$.

Demuestre que $f \cdot g$ es una función de $A \times C$ a $B \times D$. Demuestre que si f y g son inyectivas, entonces $f \cdot g$ es inyectiva, y si f y g son sobreyectivas, entonces $f \cdot g$ es sobreyectiva. Demuestre que $\operatorname{ran}(f \cdot g) = (\operatorname{ran} f) \times (\operatorname{ran} g)$.

Demostración. • Demuestre que $f \cdot g$ es una función de $A \times C$ a $B \times D$. Por el Teorema 24 debemos probar que

- i) F_2 se cumple.
- ii) $dom(f \cdot g) = A \times C$.
- iii) $rang(f \cdot g) \subset B \times D$.
- i) Sean $x = (x_1, x_2) \in A \times C$, Si $(f \cdot g)(x_1, x_2) = (y_1, y_2) = y$ y $(f \cdot g)(x_1, x_2) = (y'_1, y'_2) = y'$.

Probaremos que y = y', para ello diremos que :

$$si (f \cdot g)(x) = y \Longrightarrow (f \cdot g)(x_1, x_2) = (y_1, y_2)$$
$$\Longrightarrow (f(x_1), g(x_2)) = (y_1, y_2)$$

Por el Teorema 15 se tiene que:

$$y_1 = f(x_1) \Longrightarrow (x_1, y_1) \in f.$$
 y $y_2 = g(x_2) \Longrightarrow (x_2, y_2) \in g$ (2.1)

Por otro lado tenemos que:

$$\operatorname{si}(f \cdot g)(x) = y \Longrightarrow (f \cdot g)(x_1, x_2) = (y'_1, y'_2)$$
$$\Longrightarrow (f(x_1), g(x_2)) = (y'_1, y'_2)$$

Por el Teorema 15 se tiene que:

$$y_1' = f(x_1) \Longrightarrow (x_1, y_1') \in f. \quad y \quad y_2' = g(x_2) \Longrightarrow (x_2, y_2') \in g \quad (2.2)$$

como f y g son funciones y de (1)y (2) se tiene que :

$$y_1 = y_1'$$
 y $y_2 = y_2'$

Así,
$$y = y'$$
ii) $dom(f \cdot g) = A \times C$.
Sea $x \in dom(f \cdot g)$, donde $x = (x_1, x_2)$
 $x \in dom(f \cdot g) \iff \exists y \ni (x, y) \in f \cdot g$
 $\iff \exists y, (f \cdot g)(x) = y$
 $\iff (f(x_1), g(x_2)) = (y_1, y_2)$
 $\iff (f(x_1), g(x_2)) = (y_1, y_2)$
 $\iff f(x_1) = y_1 \quad y \quad g(x_2) = y_2$
 $\iff (x_1, y_1) \in f \quad y \quad (x_2, y_2) \in g$
 $\iff (x_1, y_1) \in A \times B \quad y \quad (x_2, y_2) \in C \times D$
 $\iff x_1 \in A \land y_1 B \quad y \quad x_2 \in C \land y_2 D$
 $\iff x_1 \in A \times C$
 $\iff x \in A \times C$
iii) Ahora probaremos que $rang(f \cdot g) \subset B \times D$
Sea $y = (y_1, y_2) \in f \cdot g$,
 $y \in rang(f \cdot g) \implies \exists x \ni (x, y)(f \cdot g)$
 $\implies \exists x, (f \cdot g)(x) = y$
 $\implies (f(x_1), g(x_2)) = (y_1, y_2)$
 $\implies (x_1, y_1) \in f \quad y \quad (x_2, y_2) \in g$
 $\implies (x_1, y_1) \in f \quad y \quad (x_2, y_2) \in C \times D$
 $\implies x_1 \in A \land y_1 B \quad y \quad x_2 \in C \land y_2 D$

Por i),ii) y iii) f es una fución.

• Demuestre que si f y g son inyectivas, entonces $f \cdot g$ es inyectiva

 $\implies y_1 \in B \qquad y \qquad y_2 \in D$ $\implies (y_1, y_2) \in B \times D$ $\implies y \in B \times D$

Ejercicio 2.5. Si $f:B\cup C\to A$ es una función, demuestre que $f=f_{[B]}\cup f_{[c]}.$

 $\textit{Demostración.}\,$ Para demostrar que $f=f_{[B]}\cup f_{[c]},$ por el literal iv) del Teorema

5, debemos probar qué $f \subset f_{[B]} \cup f_{[c]}$ y $f_{[B]} \cup f_{[c]} \subset f$.

• $f \subset f_{[B]} \cup f_{[c]}$

Sea $y \in f$,por la Definición existe un $x \in B \cup C$, talque f(x) = y, donde tenemos los siguientes casos :

Si $x \in B$, entonces $f(x) \in f[B]$.

Si $x \in C$, entonces $f(x) \in f[C]$.

En ambos casos, $f(x) \in f[B] \cup f[C]$. Por lo tanto, $y \in f[B] \cup f[C]$, lo que implica que $f[B \cup C] \subseteq f[B] \cup f[C]$.

• $f \subseteq f[B \cup C]$

recoredemos que podemos decir que Sea $y \in f[B] \cup f[C]$. Entonces, $y \in f[B]$ o $y \in f[C]$.

Si $y \in f[B]$, entonces existe algún $b \in B$ tal que f(b) = y. Como $b \in B \subseteq B \cup C$, tenemos $f(b) \in f[B \cup C]$.

- Si $y \in f[C]$, entonces existe algún $c \in C$ tal que f(c) = y. Como $c \in C \subseteq B \cup C$, tenemos $f(c) \in f[B \cup C]$.

En ambos casos, $y \in f[B \cup C]$, lo que implica que $f[B] \cup f[C] \subseteq f[B \cup C]$. Dado que hemos demostrado ambas inclusiones, $f[B \cup C] = f[B] \cup f[C]$.

Ejercicio 2.6. Sean $f_1: A \to B$ y $f_2: C \to D$ funciones biyectivas, donde $A \cap C = \emptyset$ y $B \cap D = \emptyset$. Sea $f = f_1 \cup f_2$; demuestre que $f: A \cup C \to B \cup D$ es una función biyectiva.

Demostración. Para demostrar que $f:A\cup C\to B\cup D$ es una función biyectiva , debemos probar que :

• i) $f: A \cup C \rightarrow B \cup D$ sea inyectiva.

Para demostrar que $f:A\cup C\to B\cup D$ por Definición de función inyectiva

Sean $x_1, x_2 \in A \cup C$. Si $f(x_1) = f(x_2)$, debemos demostrar que $x_1 = x_2$. Para lo cual dividiremos en los siguientes casos.

a) Si $x_1, x_2 \in A$. Por el Literal ii) del Teorema 27, tenemos que:

$$f(x_1) = f_1(x_1) \text{ y } f(x_2) = f_1(x_2)$$

Asi, $f_1(x_1) = f_1(x_2)$. como f_1 es inyectiva, entonces $x_1 = x_2$.

b) Si $x_1, x_2 \in C$. Por el Literal ii) del Teorema 27, tenemos que:

$$f(x_1) = f_2(x_1) \text{ y } f(x_2) = f_2(x_2)$$

Asi, $f_2(x_1) = f_2(x_2)$. como f_2 es inyectiva, entonces $x_1 = x_2$.

c) Si $x_1 \in A$ y $x_2 \in C$ o $x_1 \in C$ y $x_2 \in A$. Estos casos se descartan, ya que $A \cap C = \emptyset$.

Por lo tanto, $f: A \cup C \rightarrow B \cup D$ sea invectiva.

• ii) $f: A \cup C \rightarrow B \cup D$ sea sobreyectiva.

Ahora, probaremos que $f:A\cup C\to B\cup D$ sea sobreyectiva. Sea $y\in B\cup C$, se va demostrar que existe un $x\in A\cup C$ talque f(x)=y.

De igual manera, analizaremos por casos:

a) Si $y \in B$. Como f_1 es sobreyectiva, existe $x \in A$ talque $f_1(x) = y$.

Como $x \in Af(x) = f_1(x) = y$.

b) Si $y \in D$. Como f_2 es sobreyectiva, existe $x \in C$ talque $f_2(x) = y$.

Como $x \in Cf(x) = f_2(x) = y$.

c) Si $y \in B \cup C$. No se analiza estos casos ya que $B \cap D = \emptyset$. Por i) y

ii) $f: A \cup C \rightarrow B \cup D$ es una función biyectiva .

Ejercicio 2.7. Sea $f: B \to A$ y $g: C \to A$ funciones, y suponga que $f_{[B \cap C]} = g_{[B \cap C]}$. Si $h = f \cup g$, demuestre que $h: B \cup C \to A$ es una función, $f = h_{[B]}$ y $g = h_{[C]}$.

Demostración. Para demostrar que si $f: B \to A$ y $g: C \to A$ son funciones, y se supone que $f[B \cap C] = g[B \cap C]$, entonces $h = f \cup g$ es una función $h: B \cup C \to A$, y además que f = h[B] y g = h[C], procedemos de la siguiente manera: Para ello utilizaremos Definición de $h = f \cup g$ La función $h = f \cup g$ está definida como:

$$h(x) = \begin{cases} f(x) & \text{si } x \in B, \\ g(x) & \text{si } x \in C. \end{cases}$$

Así, si $x \in B \cap C$, entonces h(x) = f(x) y h(x) = g(x). Dado que $f[B \cap C] = g[B \cap C]$, por hipótesis. Ahora se va aprobar que $h: B \cup C \to A$ y es una función

• Demostración de que $h: B \cup C \to A$ es una función. Para que h sea una función, debe estar bien definida, lo que significa que debe asignar un valor único en A a cada $x \in B \cup C$. Si $x \in B \setminus C$, entonces h(x) = f(x). Si $x \in C \setminus B$, entonces h(x) = g(x). Si $x \in B \cap C$,

entonces f(x) = g(x) por la suposición dada, por lo tanto, h(x) toma el mismo valor ya sea que usemos f o g. Por lo tanto, h está bien definida y $h: B \cup C \to A$ es una función.

• f = h[B]

Queremos mostrar que h restringida a B es igual a f, es decir, para todo $x \in B$, h(x) = f(x). Para cualquier $x \in B$:

$$h(x) = \begin{cases} f(x) & \text{si } x \in B, \\ g(x) & \text{si } x \in C. \end{cases}$$

Dado que $x \in B$, por la definición de h, tenemos h(x) = f(x).Por lo tanto, h[B] = f.

• g = h[C]

Queremos mostrar que h restringida a C es igual a g, es decir, para todo $x \in C$, h(x) = g(x). Para cualquier $x \in C$:

$$h(x) = \begin{cases} f(x) & \text{si } x \in B, \\ g(x) & \text{si } x \in C. \end{cases}$$

Dado que $x \in C$, por la definición de h, tenemos h(x) = g(x). Por lo tanto, h[C] = g.

П

Ejercicio 2.8. Sea $f:A\to B$ una función; demuestre que f está en correspondencia uno a uno con A. Por un grafo funcional entendemos un grafo que satisface la Condición F2. Así, G es un grafo funcional si y solo si

$$(x,y_1) \in G \text{ y } (x,y_2) \in G \implies y_1 = y_2.$$

Demostración. Para demostrar que $f: A \to B$ es una función en correspondencia uno a uno con A y entender lo que es un grafo funcional que satisface la condición F2, procedemos de la siguiente manera:

1. Definición de inyectividad:

Una función f es inyectiva si para todos $x_1, x_2 \in A$, si $f(x_1) = f(x_2)$, entonces $x_1 = x_2$.

2. Demostración de que f está en correspondencia uno a uno con A:

Esto se refiere a demostrar que f es inyectiva. Supongamos que $f(x_1) = f(x_2)$ para algunos $x_1, x_2 \in A$. Queremos demostrar que esto implica $x_1 = x_2$.

Por definición de inyectividad, si $f(x_1) = f(x_2)$, entonces necesariamente $x_1 = x_2$. Por lo tanto, f está en correspondencia uno a uno con A.

3. Definición de un grafo funcional:

Un grafo funcional G es un conjunto de pares (x,y) tal que cada x en el dominio tiene un único y en el codominio asociado a él, es decir, satisface la condición F2:

$$(x, y_1) \in G \text{ y } (x, y_2) \in G \implies y_1 = y_2.$$

4. Relación entre función inyectiva y grafo funcional:

Para una función $f: A \to B$, el grafo funcional de f es el conjunto de pares $G = \{(x, f(x)) \mid x \in A\}$.

La condición F2 para G implica que si $(x, y_1) \in G$ y $(x, y_2) \in G$, entonces $y_1 = y_2$. Esto se traduce en que f asigna un único valor f(x) a cada $x \in A$.

5. Demostración de la condición F2:

Supongamos que $(x, y_1) \in G$ y $(x, y_2) \in G$. Esto significa que $y_1 = f(x)$ y $y_2 = f(x)$. Por lo tanto, $y_1 = y_2$.

Esto muestra que G satisface la condición F2, y por lo tanto, G es un grafo funcional.

Ejercicio 2.9. Si G es un grafo funcional, demuestre que toda subclase de G es un grafo funcional.

Demostración. Para demostrar que si *G* es un grafo funcional, entonces toda subclase de *G* es también un grafo funcional, procedemos de la siguiente manera:

1. Definición de un grafo funcional:

Un grafo funcional G es un conjunto de pares (x,y) tal que cada x en el dominio tiene un único y en el codominio asociado a él, es decir, satisface la condición F2:

$$(x, y_1) \in G \text{ y } (x, y_2) \in G \implies y_1 = y_2.$$

2. Demostración de que toda subclase de G es un grafo funcional:

Supongamos que G es un grafo funcional y sea G' una subclase de G, es decir, $G' \subseteq G$.

Queremos demostrar que G' también satisface la condición F2. Es decir, para todo $(x,y_1) \in G'$ y $(x,y_2) \in G'$, debemos mostrar que $y_1 = y_2$.

Dado que $G' \subseteq G$, cualquier par $(x,y) \in G'$ también pertenece a G. Entonces, si $(x,y_1) \in G'$ y $(x,y_2) \in G'$, también tenemos $(x,y_1) \in G$ y $(x,y_2) \in G$.

Como G es un grafo funcional, por la condición F2 para G, sabemos que:

$$(x, y_1) \in G \text{ y } (x, y_2) \in G \implies y_1 = y_2.$$

Por lo tanto, para $(x, y_1) \in G'$ y $(x, y_2) \in G'$, se sigue que $y_1 = y_2$. Esto implica que G' también satisface la condición F2.

En consecuencia, G' es un grafo funcional.

Ejercicio 2.10. Sea G un grafo. Demostrar que G es un grafo funcional si y sólo si para grafos arbitrarios H y J . $(H \cap J) \circ G = (H \circ G) \cap (J \circ G)$

Demostración. Queremos demostrar que G es un grafo funcional si y solo si para grafos arbitrarios H y J,

$$(H \cap J) \circ G = (H \circ G) \cap (J \circ G).$$

Primero, supongamos que si G es un grafo funcional, entonces $(H \cap J) \circ G = (H \circ G) \cap (J \circ G)$

Supongamos que G es un grafo funcional. Tomemos cualquier par $(a,c) \in (H \circ G) \cap (J \circ G)$. Entonces, existe un b tal que:

$$(a,b) \in G \vee (b,c) \in H$$

y

$$(a,b') \in G y (b',c) \in J.$$

Dado que G es un grafo funcional, de $(a,b) \in G$ y $(a,b') \in G$, se sigue que b = b'. Por lo tanto, tenemos que:

$$(a,b) \in G y (b,c) \in H \cap J.$$

Esto implica que $(a,c) \in (H \cap J) \circ G$. Así, hemos demostrado que:

$$(H \circ G) \cap (I$$

Esto implica que $(a,c) \in (H \cap J) \circ G$. Ahora tomemos cualquier par $(a,c) \in (H \cap J) \circ G$. Entonces, existe un b tal que:

$$(a,b) \in G y (b,c) \in H \cap J.$$

Esto significa que $(b,c) \in H$ y $(b,c) \in J$. Por lo tanto, tenemos que:

$$(a,c) \in H \circ G \text{ y } (a,c) \in J \circ G.$$

Esto implica que $(a,c) \in (H \circ G) \cap (J \circ G)$. Así, hemos demostrado que:

$$(H \cap J) \circ G \subseteq (H \circ G) \cap (J \circ G).$$

Combinando las dos inclusiones, obtenemos:

$$(H \cap J) \circ G = (H \circ G) \cap (J \circ G).$$

Ahora , supongamos que Si $(H \cap J) \circ G = (H \circ G) \cap (J \circ G)$, entonces G es un grafo funcional. Supongamos que $(H \cap J) \circ G = (H \circ G) \cap (J \circ G)$ para todos los grafos H y J. Queremos demostrar que G es un grafo funcional. Supongamos que $(a,b) \in G$ y $(a,b') \in G$. Definamos $H = \{(b,c)\}$ y $J = \{(b',c)\}$ donde G es un elemento arbitrario.

Entonces, $H \cap J = \emptyset$ si $b \neq b'$ y $(H \cap J) \circ G = \emptyset$. Por otro lado, $H \circ G = \{(a,c)\}$ y $J \circ G = \{(a,c)\}$. Si b = b', tenemos:

$$(H \cap J) \circ G = (H \circ G) \cap (J \circ G) = \{(a,c)\}.$$

Por lo tanto, si $(a,b) \in G$ y $(a,b') \in G$, entonces b=b', demostrando que G es un grafo funcional.

Ejercicio 2.11. Sea G un grafo funcional. Demostrar que G es inyectivo si y sólo si para grafos arbitrarios J y H . $G \circ (H \cap J) = (G \circ H) \cap (G \circ J)$

Queremos demostrar que G es inyectivo si y solo si para grafos arbitrarios H y J,

$$G \circ (H \cap J) = (G \circ H) \cap (G \circ J).$$

Demostración. Priemro , vamos a suponer que si G es inyectivo, entonces G ◦ $(H \cap J) = (G \circ H) \cap (G \circ J)$

Supongamos que G es inyectivo. Tomemos cualquier par $(a,c) \in (G \circ H) \cap (G \circ I)$. Entonces, existe un b tal que:

$$(a,b) \in H y (b,c) \in G$$

y

$$(a,b') \in J y (b',c) \in G.$$

Dado que G es inyectivo, de $(b,c) \in G$ y $(b',c) \in G$, se sigue que b=b'. Por lo tanto, tenemos que:

$$(a,b) \in H \cap J y (b,c) \in G.$$

Esto implica que $(a, c) \in G \circ (H \cap J)$. Así, hemos demostrado que:

$$(G \circ H) \cap (G \circ J) \subseteq G \circ (H \cap J).$$

Ahora tomemos cualquier par $(a,c) \in G \circ (H \cap J)$. Entonces, existe un b tal que:

$$(a,b) \in H \cap J y (b,c) \in G.$$

Esto significa que $(a, b) \in H$ y $(a, b) \in J$. Por lo tanto, tenemos que:

$$(a,c) \in G \circ H y (a,c) \in G \circ J.$$

Esto implica que $(a,c) \in (G \circ H) \cap (G \circ J)$. Así, hemos demostrado que:

$$G \circ (H \cap J) \subseteq (G \circ H) \cap (G \circ J).$$

Combinando las dos inclusiones, obtenemos:

$$G \circ (H \cap I) = (G \circ H) \cap (G \circ I).$$

Ahora, suponemos que si $G \circ (H \cap J) = (G \circ H) \cap (G \circ J)$, entonces G es inyectivo Supongamos que $G \circ (H \cap J) = (G \circ H) \cap (G \circ J)$ para todos los grafos H y J. Queremos demostrar que G es inyectivo. Supongamos que $(x, y_1) \in G$ y $(x, y_2) \in G$. Definamos $H = \{(a, x)\}$ y $J = \{(b, x)\}$ donde $a \neq b$. Entonces, $H \cap J = \emptyset$ si $a \neq b$ y $G \circ (H \cap J) = \emptyset$. Por otro lado, $G \circ H = \{(a, y_1)\}$ y $G \circ J = \{(b, y_2)\}$. Si $y_1 = y_2$, tenemos:

$$G \circ (H \cap J) = (G \circ H) \cap (G \circ J) = \emptyset.$$

Por lo tanto, si $(x, y_1) \in G$ y $(x, y_2) \in G$, entonces $y_1 = y_2$, demostrando que G es invectivo.

2.3 Propiedades de funciones compuestas y funciones inversas

Teorema 2.6

Sean $f:A\longrightarrow B$ y $g:B\longrightarrow C$ funciones, entonces, $g\circ f:A\longrightarrow C$ es función.

Demostración. Se probara i), ii) y iii) del Teorema 24.

i) F_1 se cumple.

ii) F_2 : Si $(x, y_1) \in g \circ f$ y $(x, y_2) \in g \circ f \Rightarrow y_1 = y_2$. Se supone que $(x, y_1) \in g \circ f \land (x, y_2) \in g \circ f$, entonces por Definición 23, se tiene:

$$\exists z_1 \ni (x, z_1) \in f \land (z_1, y_1) \in g \land \exists z_2 \ni (x, z_2) \in f \land (z_2, y_2) \in g$$

$$\underbrace{(x_1, z_1) \in f \land (x, z_2) \in f}_{z_1 = z_2} \land \underbrace{(z_1, y_1) \in g \land (z_2, y_2) \in g}_{y_1 = y_2}$$

iii) Sea

$$y \in rang \circ f \Longrightarrow \exists \widetilde{x} \ni (\widehat{x}, y) \in g \circ f$$
, Definición 25
 $\Longrightarrow \exists k \ni ((\widehat{x}, k) \in f \land (k, y) \in g)$, Definición 23
 $\Longrightarrow \exists k \ni (\widehat{x}, k) \in f \land \exists k \ni (x, y) \in g$
 $\Longrightarrow \exists k \ni (k, y) \in g$
 $\Longrightarrow y \in rang$.
 $\Longrightarrow Seay \in rang \Longrightarrow \exists x \ni (x, y) \in g$, Definición 25
 $\Longrightarrow (x, y) \in B \times C, g \subseteq B \times C$
 $\Longrightarrow x \in B \land y \in C$
 $\Longrightarrow y \in C$, Teorema 1, literal ii).

Por lo tanto, $g \circ f$ por i), ii) y iii)

• Observación. $[g \circ f] = g(f(x))$

Se puede escribir como:

$$z_1 = (g \circ f)(x_1) = g(f(x_1))$$

 $z'' = (g \circ f)(x_2) = g(f(x_2))$

Definición 2.7

Sea una función $f:A\longrightarrow B$ se dice invertible si $f^{-1}:B\longrightarrow A$ es una función.

Observación. Sea una función $f:A\longrightarrow B$ y sobreyectiva entonces y=f(x) si y solo si $x=f^{-1}(y)$.

Teorema 2.7

Si $f: A \longrightarrow B$ es biyectiva entonces $f^{-1}: B \longrightarrow A$ es biyectiva.

Demostración. Se usa el **Teorema 24, literal ii)** dom f = A y por la Definición de función sobreyectiva ran f = B tal que por el **literal ii) del Teorema 18**, se tiene que:

$$A = dom f = ran f^{-1} \Longrightarrow ran f^{-1} = A$$

 $B = ran f = dom f^{-1} \Longrightarrow dom f^{-1} = B.$

Ahora, se va a probar que f^{-1} es una función (es decir, cumple F_2 , $x \in A$ entonces $f^{-1}(x)$ es unica). Sea $x_1, x_2 \in A$, $y \in B$ tal que

$$(y, x_1) \in f^{-1} \land (y, x_2) \in f^{-1} \Longrightarrow (x_1, y) \in f \land (x_2, y) \in f$$
, por Definición 22 $\Longrightarrow x_1 = x_2$, por Definición 33.

Luego, por el **literal i) del Teorema 24**, $f^{-1}: B \longrightarrow A$ es una función. Segundo, se va a probar que f^{-1} es inyectiva. Sea $x \in A$, $y_1, y_2 \in B$ entonces:

$$(y_1,x)\in f^{-1}\wedge (y_2,x)\in f^{-1}$$

$$\Longrightarrow (x,y_1)\in f\wedge (x,y_2)\in f, \text{por Definición 22}$$

$$\Longrightarrow y_1=y_2.$$

Finalmente, f^{-1} satisface la inyectividad y por lo visto anteriormente sabemos

que $ran f^{-1} = A$ se puede decir que es sobreyectiva por definición. Concluimos, que f^{-1} satisface la **Definición 35**.

Teorema 2.8

Si $f: A \longrightarrow B$ es invertible, entonces $f: A \longrightarrow B$ es biyectiva.

Demostración. Sea f invertible, tal que se tiene f^{-1} una función. Partimos usando el **literal ii) del Teorema 21**, $dom f^{-1} = B$, seguido usamos el **literal i) del Teorema 12**:

$$B = dom f^{-1} = ran f$$
 entonces $ran f = B$,

por la **Definición 35**, se tiene que f es sobreyectiva.

Por consiguiente, se va a probar que f es inyectiva.

Sean $x_1, x_2 \in A, y \in B$,

$$(x_1, y) \in f \land (x_2, y) \in f \Longrightarrow (y, x_1) \in f^{-1} \land (y, x_2) \in f^{-1}$$
, Definicion 22
 $\Longrightarrow x_1 = x_2, F_2$

Por lo tanto, f es biyectiva.

● **Observación.** Sea $f: A \longrightarrow B$ invertible si y solo si es biyectiva además si $f: A \longrightarrow B$ es invertible entonces $f^{-1}: A \longrightarrow B$ es biyectiva.

Teorema 2.9

Sea $f:A\longrightarrow B$ una función invertible entonces:

i.
$$f^{-1} \circ f = I_A$$

i.
$$f \circ f^{-1} = I_B$$

Demostración.

i.
$$f^{-1} \circ f = I_A$$

Sea $(x,y) \in f^{-1} \circ f$ por **Definición 23**
 $\iff \exists z \in (x,z) \in f \land (z,y) \in f^{-1}$
 $\iff (x,z) \in f \land (y,z) \in f$, por **Definición 22**

 $\iff x = yf \text{ inyectiva}$

Además, $f^{-1} \circ f : A \longrightarrow A$ es función por el **Teorema 28**, asi $dom(f^{-1} \circ f) = A, x \in A$, es decir, $(x, x) \in I_A$. Por el **Axioma 1**, se concluye $f^{-1} \circ f = I_A$.

ii.
$$f \circ f^{-1} = I_B$$

 $\operatorname{Como} f \circ f^{-1} : B \longrightarrow B \text{ es función, } \operatorname{dom} f \circ f^{-1} = B.\operatorname{Sea}(x,y) \in f \circ f^{-1}$
 $\iff \exists z \ni (x,z) \in f^{-1} \land (z,y) \in f \text{ por Definición 23}$
 $\iff (x,z) \in f \land (z,y) \in f$
 $\iff x = y \text{ pues f es función.}$

asi,
$$(x,x) \in f \circ f^{-1}$$
, $x \in B \iff (x,x) \in I_B$.
Por **Axioma 1**, se concluye $f \circ f^{-1} = I_B$.

Teorema 2.10

Sean $f: A \longrightarrow B \ y \ g: B \longrightarrow A$ funciones. Si $g \circ F = I_A \ y \ f \circ g = I_B$ entonces f es biyectiva (invertible) $y \ g = f^{-1}$.

П

Demostración.

i) Primero se va a probar que f es inyectiva

$$f(x_1) = f(x_2) \Longrightarrow g(f(x_1)) = g(f(x_2))$$
, por F_2
 $\Longrightarrow (g \circ f)(x_1) = (g \circ f)(x_2)$, por Representación gráfica 1
 $\Longrightarrow I_A(x_1) = I_A(x_2)$, por hipótesis
 $\Longrightarrow x_1 = x_2$.

ii) Ahora, probaremos que f es sobreyectiva.

Sea $y \in B$ arbitrario, entonces:

$$I_B(y) = y$$
 y como $(f \circ g)(y) = f(g(y))$, por hipótesis y Representación gráfica. $y = f(g(y))$, se sabe que por la Observación 1 $g(y) = x$ entonces $y = f(x)$.

iii) Finalmente, se va a probar que $g = f^{-1}$.

$$x = g(y) \Longrightarrow f(x) = f(g(y))$$

 $\Longrightarrow (f \circ g)(x) = I_B(y)$, por hipótesis
 $\Longrightarrow f(x) = y$, por Observación 2 $\Longrightarrow x = f^{-1}$, $f(x) = y$ sii $x = f^{-1}(y)$

luego

$$x = f^{-1} \Longrightarrow y = f(x), \forall y \in B \Longrightarrow g(y) = g(f(x)) = [g \circ f](x)$$

= $I_A(x) = x$

En conclusión,

$$f^{-1}(y) = g(y)$$
, por el Teorema 25, implica que $f^{-1} = g$.

Teorema 2.11

Sea $f:A\longrightarrow B$ una función f es inyectiva si y solo si existe $g:B\longrightarrow A$ tal que $g\circ f=I_A.$

Demostración.

i) Primero, se sume que existe $y: B \longrightarrow A$ tal que $g \circ f = I_A$ **PD)** f es inyectiva.

Sea $x_1, x_2 \in A$ tales que

$$f(x_1) = f(x_2)$$

Se tiene que $g(f(x_1)) = g(f(x_2))$, por F_2 para g

$$\Longrightarrow (g \circ f)(x_1) = (g \circ f)(x_2)$$

$$I_A(x_1) = (g \circ f)(x_2)$$

$$.x_1 = x_2$$

Por la cual, f es invectiva.

ii) Se supone, f es inyectiva.

PD) $\exists g: B \longrightarrow A \text{ tal que } g \circ f = I_A. \text{ Sea } C = ranf.$

Entonces, $f:A\longrightarrow C$ es una función sobreyectiva \widehat{f} es invertible y $\widehat{f^{-1}}$ es una función.

Sea $a \in A$, arbitrario pero fijo y se define

$$k_a: B-C \longrightarrow A \text{ tal que } k_A(y)=a, \forall y \in B-C.$$

Tomando $g = f^{-1} \cup k_a : B \longrightarrow A$, de modo que, Sea $y \in B$

Si
$$y \in ran(f)$$
, existe $x \in A$ tal que $f(x) = y$ entonces $g(y) = x$.
Si $y \notin ranf$, entonces $g(y) = a$.

Sea
$$x \in A$$
 entonces $(g \circ f)(x) = g)f(x)$, por composición. Como $f(x) \in A \Longrightarrow (g \circ f)(x) = x = I_A(x)$.

Sea $y \in B$ tal que $f(x) = y \in C$. Como f es inyectiva sobre C, $x = f^{-1}(y)$.

$$(g \circ f)(x) = g(f(x))$$

$$= g(y)$$

$$= f^{-1}(y)$$

$$= x$$

$$\Rightarrow g \circ f = I_A.$$

Teorema 2.12

Sean $f_A \longrightarrow B$, $g: B \longrightarrow C$ y $g \circ f: A \longrightarrow C$ functiones.

- i) Si f y g son inyectivas, $g \circ f$ es inyectiva.
- ii) Si f y g son sobreyectivas, $g \circ f$ es sobreyectiva.
- iii) Si f y g son biyectivas, g circf es biyectiva.

Demostración. i. Sean f y g funciones inyectivas, se va a probar que $g \circ f$ es inyectiva. Sea $x_1, x_2 \in A$,

$$(g \circ f)(x_1) = (g \circ f)(x_2) \Longrightarrow g(f(x_1)) = g(f(x_2))$$

como g es inyectiva entonces $f(x_1) = f(X_2)$, ahora como f es inyectiva, entonces $x_1 = x_2$.

ii. Sean f y g funciones sobreyectivas, se va a probar que $g \circ f$ es sobreyectiva.

Sea $y \in C$, se va aprobar que existe $x \in A$, $(g \circ f)(x) = y$, $y \in C$, como g es sobreyectiva existe $z \in B$ tal que, g(z) = y, $z \in B$, como f es sobreyectiva, existe $x \in A$ tal que f(x) = z, asi g(f(x)) = y.

Luego, existe $x \in A$ tal que $(g \circ f)(x) = y$, de la **Definición 35**. Se concluye que $g \circ f$ es sobreyectiva.

iii. Sean f y g funciones biyectivas, se va a probar que $g \circ f$ es biyectiva. f y g biyectivas de la **Definición 36**, f y g son inyectivas y sobreyectivas, como f, g son inyectivas por (i), se tiene que $g \circ f$ es inyectiva, como f, g son sobreyectivas, por (ii) se tiene que $g \circ f$ es sobreyectiva, de la **Definición 36**, se concluye que $g \circ f$ es biyectiva.

2.3.1 Ejercicios de la Sección 2.3

Ejercicio 2.12. Sea $f:A\longrightarrow B$ una función. Demostrar que $I_B\circ f=f$ y $I_A\circ f=f$.

Demostración. Sea $I_B: B \longrightarrow B$ y $f: A \longrightarrow B$, usando el teorema 28 es función, entonces:

Sea $x \in A$ y y = f(x), mediante la observación 3 y observación 2 , se tiene que y = f(x).

Así,

$$[I_B \circ f] = I_B(f(x))$$

Luego,

$$I_B(y) = y = f(x)$$

tomando en cuenta el Teorema 25 $[I_B \circ f] = I_B(f(x))$ si y solo si $I_B \circ f = f$ de manera igual forma se hace con $I_A \circ f = f$.

Ejercicio 2.13. Supongamos que $f:A\longrightarrow B$ y $g:B\longrightarrow C$ son funciones. Demostrar que si $g\circ f$ es inyectiva, entonces f es inyectiva; probar que si $g\circ f$ es sobreyectiva, entonces g es inyectiva. Concluir que si $g\circ f$ es biyectiva, entonces f es inyectiva y g es sobreyectiva.

Demostración. Supongamos que $f:A\to B$ y $g:B\to C$ son funciones.

• Si $g \circ f$ es inyectiva, entonces f es inyectiva Supongamos que $g \circ f$ es inyectiva. Para demostrar que f es inyectiva,

tomemos $a_1, a_2 \in A$ tales que $f(a_1) = f(a_2)$. Debemos demostrar que $a_1 = a_2$.

Dado que $g \circ f$ es inyectiva, si $f(a_1) = f(a_2)$, entonces $g(f(a_1)) = g(f(a_2))$. Por lo tanto,

$$g(f(a_1)) = g(f(a_2))$$

Como $g \circ f$ es inyectiva, se sigue que $a_1 = a_2$. Por lo tanto, f es inyectiva.

• Si $g \circ f$ es sobreyectiva, entonces g es sobreyectiva Supongamos que $g \circ f$ es sobreyectiva. Para demostrar que g es sobreyectiva, tomemos cualquier $c \in C$. Debemos encontrar un $b \in B$ tal que g(b) = c. Dado que $g \circ f$ es sobreyectiva, para cada $c \in C$, existe un $a \in A$ tal que g(f(a)) = c. Sea b = f(a). Entonces, $b \in B$ y

$$g(b) = g(f(a)) = c$$

Por lo tanto, g es sobreyectiva.

Si *g* ∘ *f* es biyectiva, entonces *f* es inyectiva y *g* es sobreyectiva
Si *g* ∘ *f* es biyectiva, entonces es tanto inyectiva como sobreyectiva. De la parte 1, sabemos que si *g* ∘ *f* es inyectiva, entonces *f* es inyectiva. De la parte 2, sabemos que si *g* ∘ *f* es sobreyectiva, entonces *g* es sobreyectiva. Por lo tanto, si *g* ∘ *f* es biyectiva, entonces *f* es inyectiva y *g* es sobreyectiva.

Ejercicio 2.14. Ponga un ejemplo para demostrar que lo contrario de la última afirmación del Ejercicio 2 no se cumple.

Demostración. Para mostrar que lo contrario de la afirmación "si $g \circ f$ es biyectiva, entonces f es inyectiva y g es suryectiva"no se cumple, debemos encontrar un ejemplo donde f sea inyectiva y g sea suryectiva, pero $g \circ f$ no sea biyectiva.

Tomemos los conjuntos $A = \{1,2\}$, $B = \{a,b,c\}$, y $C = \{X,Y\}$.

Definamos las funciones $f:A\to B$ y $g:B\to C$ de la siguiente manera:

$$f(1) = a, \quad f(2) = b$$

$$g(a) = X, \quad g(b) = X, \quad g(c) = Y$$

La inyectividad de f: - f es inyectiva porque diferentes elementos en A (1 y 2) son mapeados a diferentes elementos en B (a y b).

La sobreyectividad de g: - g es sobreyectiva porque cada elemento en G (X Y) tiene al menos un preimagen en B: X tiene preimagenes a y b, Y tiene preimagen c. Asi, la composición $g \circ f$:

$$(g \circ f)(1) = g(f(1)) = g(a) = X$$

 $(g \circ f)(2) = g(f(2)) = g(b) = X$

y verificamos la biyectividad de $g \circ f$: - $g \circ f$ no es inyectiva porque $(g \circ f)(1) = (g \circ f)(2) = X$. - $g \circ f$ no es sobreyectiva porque no hay ningún elemento en A que se mapee a Y en C. Aunque f es inyectiva y g es sobreyectiva, la composición $g \circ f$ no es biyectiva. Por lo tanto, este ejemplo muestra que lo contrario de la afirmación no se cumple.

Ejercicio 2.15. Sean $f:A\to B$ y $g:B\to A$ funciones. Supongase que y=f(x) si y solo si x=g(y). Demuestre que f es invertible y que $g=f^{-1}$

Demostracion

Tenemos que demostrar que f es invertible y que $g = f^{-1}$ Primero por el Teorema 32 observamos

$$g \circ f(x) = g(f(x))$$
 $\forall x \in A$
= $g(y)$ por hipótesis
= x por hipótesis
= I_A

Ahora, de la misma manera para

$$f \circ g(y) = f(g(y))$$
 $\forall y \in B$
= $f(x)$ por hipótesis
= y por hipótesis
= I_B

Como $f \circ g = I_A$ y $g \circ f = I_B$, po el Teorema 32 f es biyectiva y por la observacion del Teorema 30 se tiene que f es invertible y $g = f^{-1}$

Ejercicio 2.16. Sean $g: B \to C$ y $h: B \to C$ funciones. Supongase que $g \circ f = h \circ f$ para toda función $f: A \to B$. Demuestre que g = h

Demostración

Por el Teorema 25 se tiene que

$$g \circ f(x) = h \circ f(x)$$
 $\forall x \in A$
 $g(f(x)) = h(f(x))$ Teorema 28
 $g(y) = h(y)$ Corolario 3

Como $y \in B$ fue tomado arbitrario se concluye que g = h.

Ejercicio 2.17. Supongase que $g:A\to B$ y $h:A\to B$ son funciones. Sea C un conjunto con mas de un elemento; supongase que $f\circ g=f\circ h$ para toda función $f:B\to C$. Demuestre que g=h.

Demostración

Dado que C tiene más de un elemento, podemos elegir dos elementos distintos c_1 y c_2 en C.

Por contradicción suponemos que $g(x) \neq h(x)$ para algún $x \in A$.

Dado que $g(x) \neq h(x)$, existen $y_1 = g(x)$ y $y_2 = h(x)$ tales que $y_1 \neq y_2$.

Sea $f: B \rightarrow C$ una función

$$f(y_1) = c_1$$
 y $f(y_2) = c_2$

y para cualquier $y \neq y_1, y_2$, definimos f arbitrariamente, ya que solo nos interesa distinguir entre y_1 y y_2 .

Por hipotesis

$$f(g(x)) = f(h(x))$$
 para todo $x \in A$.

En particular, para el x tal que $g(x) = y_1$ y $h(x) = b_2$, tenemos:

$$f(g(x)) = f(y_1) = c_1$$
 y $f(h(x)) = f(y_2) = c_2$.

Esto lleva a la igualdad:

$$c_1 = c_2$$
,

lo cual es una contradicción porque c_1 y c_2 fueron elegidos para ser distintos. Por lo tanto, hemos demostrado que g=h.

Ejercicio 2.18. Sea $f: B \to C$ una función. Demuestre que f es inyectiva si y solo si, para cada par de funciones $g: A \to B$ y $h: A \to B$, $f \circ g = f \circ h \Longrightarrow g = h$.

Demostracion

 \Rightarrow)Si f es inyectiva, entonces $f \circ g = f \circ h \implies g = h$.

Supongamos que f es inyectiva. Queremos demostrar que $f \circ g = f \circ h$ implica g = h para cualquier par de funciones $g, h : A \to B$. Supongamos que $f \circ g = f \circ h$.

$$f(g(a)) = f(h(a))$$
 para todo $a \in A$.

Como f es inyectiva, f(x) = f(y) implica x = y.

$$f(g(a)) = f(h(a)) \implies g(a) = h(a)$$
 para todo $a \in A$.

Por lo tanto, g(a) = h(a) para todo $a \in A$, es decir, g = h.

Esto demuestra que f invectiva implica $f \circ g = f \circ h \implies g = h$.

 \Leftarrow)Si $f \circ g = f \circ h \implies g = h$ para cualquier par de funciones $g, h : A \to B$, entonces f es inyectiva.

Supongamos que para cada par de funciones $g,h:A\to B, f\circ g=f\circ h\Longrightarrow g=h.$ Queremos demostrar que f es inyectiva. Supongamos, por el contrario, que f no es inyectiva.

Entonces existen $x_1, x_2 \in B$ tales que $x_1 \neq x_2$ y $f(x_1) = f(x_2)$.

Definimos dos funciones $g, h : A \rightarrow B$ tales que:

$$g(a) = x_1$$
 para todo $a \in A$, $h(a) = x_2$ para todo $a \in A$.

Observamos que $f \circ g = f \circ h$:

$$f(g(a)) = f(x_1)$$
 y $f(h(a)) = f(x_2)$ para todo $a \in A$.

Como $f(x_1) = f(x_2)$, se sigue que:

$$f(g(a)) = f(h(a))$$
 para todo $a \in A$.

Sin embargo, $g \neq h$, ya que, $x_1 \neq x_2$:

$$g(a) = x_1$$
 y $h(a) = x_2$ para todo $a \in A$.

Esto contradice nuestra suposición de que $f\circ g=f\circ h\implies g=h$ para cualquier par de funciones $g,h:A\to B$.

Por lo tanto, *f* debe ser inyectiva.

Ejercicio 2.19. Sea $f:A\to B$ una función. Demuestre que f es sobreyectiva si y solo si, para cada par de funciones $g:B\to C$ y $h:B\to C$, $g\circ f=h\circ f\Longrightarrow g=h$.

Demostracion

 \Rightarrow) Si f es sobrey
ectiva, entonces $g\circ f=h\circ f\implies g=h$ para cada $g,h:B\to$

C

Supongamos que f es sobreyectiva. Queremos demostrar que para cada g,h : $B \to C$, si $g \circ f = h \circ f$, entonces g = h.

Sea $b \in B$.

Dado que f es sobreyectiva, existe $a \in A$ tal que f(a) = b.

Supongamos que $g \circ f = h \circ f$.

Entonces, g(f(a)) = h(f(a)) para todo $a \in A$.

En particular, g(b) = h(b) porque f(a) = b. Como b es arbitrario en B, se sigue que g(b) = h(b) para todo $b \in B$. Por lo tanto, g = h.

 \Leftarrow)Si $g \circ f = h \circ f \implies g = h$ para cada $g, h : B \to C$, entonces f es sobreyectiva.

Supongamos que para cada par de funciones $g,h: B \to C$, si $g \circ f = h \circ f$, entonces g = h. Queremos demostrar que f es sobreyectiva.

Supongamos, por el contrario, que f no es sobreyectiva.

Entonces, existe algún $b_0 \in B$ tal que no hay $a \in A$ con $f(a) = b_0$.

Definimos dos funciones $g, h : B \rightarrow C$ de la siguiente manera:

$$g(b) = \begin{cases} c_1 & \text{si } b = b_0, \\ c_0 & \text{si } b \neq b_0, \end{cases}$$
$$h(b) = c_0 \text{ para todo } b \in B,$$

donde c_0 y c_1 son dos elementos distintos en C.

Entonces, para todo $a \in A$, dado que $f(a) \neq b_0$, se tiene:

$$g(f(a)) = c_0 = h(f(a)).$$

Así, $g \circ f = h \circ f$.

Sin embargo, $g \neq h$ porque $g(b_0) = c_1 \neq c_0 = h(b_0)$, lo cual contradice nuestra hipótesis de que $g \circ f = h \circ f \implies g = h$.

Por lo tanto, nuestra suposición de que f no es sobreyectiva debe ser falsa. Así, f es sobreyectiva.

Ejercicio 2.20. Sean $f:A\to C$ Y $f:A\to B$ funciones. Demuestre que existe una función $h:B\to C$ tal que $f=h\circ g$ si y solo si $\forall x\in A$,

$$g(x) = g(y) \Longrightarrow f(x) = f(y)$$

Demuestre que h es única.

Demostracion

Sean $f: A \to C$ y $g: A \to B$ funciones. Queremos demostrar que existe una función $h: B \to C$ tal que $f = h \circ g$ si y solo si para todo $x, y \in A$,

$$g(x) = g(y) \Longrightarrow f(x) = f(y),$$

y que *h* es única.

Existencia

Supongamos que para todo $x,y \in A$, $g(x) = g(y) \Longrightarrow f(x) = f(y)$. Definimos una función $h: B \to C$ por:

$$h(b) = f(x)$$
 para cualquier $x \in A$ tal que $g(x) = b$.

Esta definición es válida porque, por hipótesis, f(x) es constante en cada conjunto $g^{-1}(b)$. Entonces, para todo $x \in A$, tenemos:

$$h(g(x)) = f(x),$$

por lo que $f = h \circ g$.

Unicidad

Supongamos que existe una función $h': B \to C$ tal que $f = h' \circ g$. Para cada $b \in B$, tomamos un $x \in A$ tal que g(x) = b. Entonces,

$$h(b) = f(x) y h'(b) = f(x).$$

Por lo tanto, h(b) = h'(b) para todo $b \in B$, y así h = h'.

Ejercicio 2.21. Sean $f: C \to A$ y $f: B \to A$ funciones, y supongamos que g es biyectiva. Demuestre que existe $h: C \to B$ tal que $f = g \circ h$ si y solo si $ranf \subseteq rang$. Demuestre que h es única.

Demostracion

Sean $f: C \to A$ y $f: B \to A$ funciones, y supongamos que g es biyectiva. Demostremos que existe una función $h: C \to B$ tal que $f = g \circ h$ si y solo si ran $f \subseteq \text{ran } g$. Demostraremos que h es única.

Existencia de *h*

Supongamos que ran $f \subseteq \text{ran } g$. Esto significa que para cada $y \in \text{ran } f$, existe algún $x \in C$ tal que f(x) = y. Dado que g es biyectiva, para cada $y \in \text{ran } f$, existe un único $z \in B$ tal que g(z) = y. Definimos $h : C \to B$ como:

$$h(x) = g^{-1}(f(x))$$
 para cada $x \in C$.

Para cualquier $x \in C$,

$$f(x) = g(h(x)),$$

por lo tanto,

$$f = g \circ h$$
.

Unicidad de h

Supongamos que existe una función $h':C\to B$ tal que $f=g\circ h'$. Para cada $x\in C$,

$$f(x) = g(h'(x)).$$

Como g es biyectiva, la función h que definimos es única porque para cada $x \in C$, h(x) y h'(x) deben ser iguales. Por lo tanto, h = h'.

Ejercicio 2.22. Sea $f:A\to B$ una función, y sea $C\subseteq A$. Demuestre que $f_{[C]}=f\circ E_C$, donde E_C es la función de inclusión C en A.

Demostracion

Sea $f:A\to B$ una función, y sea $C\subseteq A$. Demostremos que $f_{[C]}=f\circ E_C$, donde $E_C:C\to A$ es la función de inclusión.

La función $f_{[C]}$ denota la restricción de f al conjunto C, definida por:

$$f_{[C]}(x) = f(x)$$
 para todo $x \in C$.

La función de inclusión $E_C:C\to A$ es definida por:

$$E_C(x) = x$$
 para todo $x \in C$.

Para cada $x \in C$,

$$(f \circ E_C)(x) = f(E_C(x)) = f(x).$$

Así,

$$f_{[C]}(x) = f(x) = (f \circ E_C)(x).$$

Por lo tanto, $f_{[C]} = f \circ E_C$.

2.4 IMAGEN DIRECTA E IMAGEN INVERSA BAJO FUN-CIONES

Definición 2.8: -Imagen directa-

Sea $f: A \to B$ una función y C cualquier subclase de A. La imagen directa de C bajo f, denotada por $\bar{f}(C)$, es la subclase de B definida por:

$$\bar{f}(C) = \{ y \in B : \exists x \in C \ni y = f(x) \}$$

Definición 2.9: -Imagen inversa-

Sea $f: A \to B$ una función y D cualquier subclase de B. La imagen inversa de D bajo f, denotada por $\check{f}(D)$, es la subclase de A definida por:

$$\check{f}(D) = \{ x \in A : f(x) \in D \}$$

Notación: Si $\{a\}$ y $\{b\}$ son singletones, se notará por $\bar{f}(a)$ en lugar de $\bar{f}(\{a\})$ y $\check{f}(b)$ en lugar de $\check{f}(\{b\})$.

Teorema 2.13

Sea $f: A \rightarrow B$ una función:

- i) Sean $C \subseteq A$ y $D \subseteq A$. Si C = D, entonces $\bar{f}(C) = \bar{f}(D)$.
- ii) Sean $C \subseteq A$ y $D \subseteq A$. Si C = D, entonces $\check{f}(C) = \check{f}(D)$.

Demostración. Sean A y B clases, C y D subclases de A. Sea $f:A\to B$ una función.

i) Supongamos que C = D, entonces

$$y \in \bar{f}(C) \Longleftrightarrow \exists x \in C \ni y = f(x)$$
 por Definición 39 $\iff \exists x \in D \ni y = f(x)$ por hipótesis $\iff y \in \bar{f}(D)$ por Definición 39.

ii) Supongamos que C = D, entonces

$$x \in \check{f}(C) \Longleftrightarrow f(x) \in C$$
 por Definición 40 $\iff f(x) \in D$ por hipótesis $\iff x \in \check{f}(D)$ por Definición 40.

Observación:

 $\mathbf{1.}\bar{f}(C) = \bar{f}(D)$ no siempre implica que C = D.

Ejemplo:

$$f: \mathbb{R} \to \mathbb{R}^+ \tag{2.3}$$

$$x \mapsto f(x) = x^2 \tag{2.4}$$

Basta considerar $C = \mathbb{R}^+$ y $D = \mathbb{R}^-$.

2.
$$\check{f}(C) = \check{f}(D)$$
 no siempre implica que $C = D$.

Teorema 2.14

Sean A y B conjuntos y sea $f:A\to B$ una función, entonces:

- i) $f: \mathcal{P}(A) \to \mathcal{P}(B)$ es una función.
- ii) $\check{f}: \mathcal{P}(B) \to \mathcal{P}(A)$ es una función.

Demostración. Se mostrará que $\bar{f}: \mathcal{P}(A) \to \mathcal{P}(B)$ es una función.

i)**F2** Si
$$\bar{f}(C) = D_1$$
 y $\bar{f}(C) = D_2$
Sea $C \in \mathcal{P}(A) \Rightarrow C \subseteq A$ definición de partes de A
 $\Rightarrow C \subseteq A$ y $C \subseteq A$ por viii), Teorema 4
 $\Rightarrow C = C$ por i), Teorema 5)
 $\Rightarrow f(C) = f(C)$ Teorema 35
 $\Rightarrow D_1 = D_2$

ii) dom
$$f = \mathcal{P}(A)$$

Sea
$$C \in \text{dom } f \Leftrightarrow \exists D \ni (C, D) \in f$$
 Definición 24 $\Leftrightarrow D = f(C)$ $\Leftrightarrow D = \{y \in B : \exists x \in C \ni y = f(x)\}$ Definición 38 $\Leftrightarrow C \subseteq A$ $\Leftrightarrow C \in \mathcal{P}(A)$ Definición 32

iii) ran
$$f \subseteq \mathcal{P}(B)$$

Sea
$$C \in \operatorname{ran} f \Rightarrow \exists C \ni (C, D) \in f$$
 Definición 25

$$\Rightarrow D = f(C)$$

$$\Rightarrow D = \{y \in B : \exists x \in C \ni y = f(x)\} \text{ Definición 38}$$

$$\Rightarrow D \subseteq B \text{ Definición 38}$$

$$\Rightarrow D \in \mathcal{P}(B) \text{ Definición 32}$$

Teorema 2.15: -Teorema 37-

Sea $f:A\to B$ una función, sea $\{C_i\}_{i\in I}$ una familia de subclases de A y $\{D_i\}_{i\in I}$ una familia de subclases de B. Entonces:

i)
$$f(\bigcup_{i\in I} C_i) = \bigcup_{i\in I} f(C_i)$$

ii)
$$\check{f}(\bigcup_{i\in I} D_i) = \bigcup_{i\in I} \check{f}(D_i)$$

iii)
$$\check{f}(\bigcap_{i\in I} D_i) = \bigcap_{i\in I} \check{f}(D_i)$$

Demostración. (Por Literales)

i) Demostración de la propiedad usando doble contenencia

Para demostrar esta propiedad, se muestra la doble contenencia por Definición 9. Consideremos un *y* arbitrario. Así:

$$y \in f\left(\bigcup_{i \in I} C_i\right) \iff \exists x \in \bigcup_{i \in I} C_i \text{ tal que } y = f(x)$$
 Definición 39
$$\iff \text{para algún } j \in I, \exists x \in C_j \text{ tal que } y = f(x) \text{ Definición 27}$$

$$\iff \text{para algún } j \in I, y \in f(C_j) \text{ Definición 39}$$

$$\iff y \in \bigcup_{i \in I} f(C_i) \text{ Definición 27}$$

ii) Demostración de la propiedad usando doble contenencia
 Para demostrar esta propiedad, se muestra la doble contenencia por Definición

9. Consideremos un *x* arbitrario:

$$x \in \check{f}\left(\bigcup_{i \in I} D_i\right) \iff f(x) \in \bigcup_{i \in I} D_i$$
 Definición 40 \iff para algún $j \in I, f(x) \in D_j$ Definición 28 \iff para algún $j \in I, x \in \check{f}(D_j)$ Definición 40 $\iff x \in \bigcup_{i \in I} \check{f}(D_i)$ Definición 28

iii) Demostración de la propiedad usando doble contenencia. Para demostrar esta propiedad, se muestra la doble contenencia por Definición 9. Consideremos un *x* arbitrario:

$$x \in \check{f}\left(\bigcap_{i \in I} D_i\right) \iff f(x) \in \bigcap_{i \in I} D_i \qquad \text{Definición 40}$$

$$\iff \forall j \in I, f(x) \in D_j \qquad \text{Definición 28}$$

$$\iff \forall j \in I, x \in \check{f}(D_j) \qquad \text{Definición 40}$$

$$\iff x \in \bigcap_{i \in I} \check{f}(D_i) \qquad \text{Definición 28}$$

Puesto que los elementos fueron arbitrarios, se concluye para todo elemento de sus respectivos conjuntos.

Nota Es importante resaltar que se cumple para *f*:

$$\bar{f}\left(\bigcap_{i\in I}C_i\right)\subseteq\bigcap_{i\in I}\bar{f}(C_i)$$

Pero no se cumple la contención en el otro sentido.

2.4.1 Ejercicios de la Sección 2.4

Ejercicio 2.23. Supongamos que $f:A\to B$ es una función, $C\subseteq A$ y $D \subseteq B$. a) Demuestre que $C \subseteq \check{f}[\bar{f}(C)]$.

b) Demuestre que $\bar{f}[\check{f}(D)] \subseteq D$

Demostración:

a) Demostrar que $C \subseteq f[\bar{f}(C)]$

Sea $x \in C$.

Por la Definición 39

$$f(x) \in \bar{f}(C)$$
.

Por la Definición 40

$$\check{f}[\bar{f}(C)] = \{ x \in A : f(x) \in \bar{f}(C) \}.$$

Como $f(x) \in \bar{f}(C)$, entonces $x \in \check{f}[\bar{f}(C)]$.

Dado que $x \in C$ fue arbitrario, se concluye que $C \subseteq \check{f}[\bar{f}(C)]$.

b) Demostrar que $\bar{f}[\check{f}(D)] \subseteq D$

Sea $y \in \bar{f}[\check{f}(D)]$.

Por la Definición 39, existe un $x \in \check{f}(D)$ tal que y = f(x):

$$\bar{f}[\check{f}(D)] = \{ y \in B : \exists x \in \check{f}(D) \text{ tal que } y = f(x) \}.$$

Por la Definición 40, el conjunto $\check{f}(D)$ está compuesto por los elementos de A tales que $f(x) \in D$:

$$\check{f}(D) = \{ x \in A : f(x) \in D \}.$$

Por lo tanto, si $x \in \check{f}(D)$, entonces $f(x) \in D$.

Como y = f(x) y $x \in \check{f}(D)$, entonces $f(x) \in D$.

Por lo tanto, $y \in D$.

Como $y \in \bar{f}[\check{f}(D)]$ fue arbitrario, se concluye que $\bar{f}[\check{f}(D)] \subseteq D$.

Ejercicio 2.24. Supongamos que $f:A\to B$ es una función, $C\subseteq A$ y $D\subseteq B$.

- $D \subseteq B$. a) Si f es inyectiva, demuestre que $C = \check{f}[\bar{f}(C)]$
- b) Si f es sobreyectiva, demuestre que $D = \bar{f}[\check{f}(D)]$

Demostración:

a) Si f es inyectiva, demostrar que $C = \check{f}[\bar{f}(C)]$

Por el inciso a) de la demostración anterior, ya sabemos que:

$$C\subseteq \check{f}[\bar{f}(C)].$$

Ahora demostraremos que $\check{f}[\bar{f}(C)] \subseteq C$.

Sea $x \in \check{f}[\bar{f}(C)]$.

Por la Definición 40, tenemos que $f(x) \in \bar{f}(C)$.

Por la Definición 39, esto significa que existe algún $x' \in C$ tal que f(x) = f(x').

Dado que f es inyectiva y f(x) = f(x'), debemos tener x = x'.

Como $x' \in C$, se sigue que $x \in C$.

Dado que $x \in \check{f}[\bar{f}(C)]$ fue arbitrario, se concluye que $\check{f}[\bar{f}(C)] \subseteq C$.

Por lo tanto, hemos demostrado que:

$$C = \check{f}[\bar{f}(C)].$$

b) Si f es sobreyectiva, demostrar que $D=\bar{f}[\check{f}(D)]$ Por el inciso (b) de la demostración anterior, ya sabemos que:

$$\bar{f}[\check{f}(D)] \subseteq D.$$

Ahora demostraremos que $D \subseteq \bar{f}[\check{f}(D)]$.

Sea $y \in D$.

Por Definición 35, existe algún $x \in A$ tal que f(x) = y.

Como $y \in D$, tenemos que $x \in \check{f}(D)$.

Por la Definición 39, y = f(x) y $x \in \check{f}(D)$, se sigue que $y \in \bar{f}[\check{f}(D)]$.

Dado que $y \in D$ fue arbitrario, se concluye que $D \subseteq \bar{f}[\check{f}(D)]$.

Por lo tanto, hemos demostrado que:

$$D = \bar{f}[\check{f}(D)].$$

Ejercicio 2.25. Sea $f:A\to B$ una función. Demuestre lo siguiente: a) Sea $C\subseteq A$ y $D\subseteq A$; si f es inyectiva, entonces $\bar{f}(C)=\bar{f}(D)\Longrightarrow C=D$.

Demostración

Supongamos que f es inyectiva y que $\bar{f}(C) = \bar{f}(D)$.

Sea
$$x \in C \Rightarrow f(x) \in \overline{f}(C)$$

 $\Rightarrow f(x) \in \overline{f}(D)$ Por hipotesis
 $\Rightarrow \exists y \in D \ni f(x) = f(y)$ Definición 39
 $\Rightarrow x = y$ Por hipotesis
 $\Rightarrow x \in D$
 $\Rightarrow C \subseteq D$

De manera similar, podemos demostrar que $D \subseteq C$:

Sea
$$x \in D \Rightarrow f(x) \in \bar{f}(D)$$

 $\Rightarrow f(x) \in \bar{f}(C)$ Por hipotesis
 $\Rightarrow \exists y \in C \ni f(x) = f(y)$ Definición 39
 $\Rightarrow x = y$ Por hipotesis
 $\Rightarrow x \in C$
 $\Rightarrow D \subseteq C$

Combiniendo ambas inclusiones, obtenemos C = D.

b) Sea
$$C \subseteq B$$
 y $D \subseteq B$; si f es sobreyectiva, entonces $\check{f}(C) = \check{f}(D) \Longrightarrow C = D$.

Demostración

Supongamos que f es sobreyectiva y que $\check{f}(C) = \check{f}(D)$.

Sea
$$y \in C \Rightarrow x \in \check{f}(C)$$
 Por Definición 40
 $\Rightarrow x \in \check{f}(D)$ Por hipotesis
 $\Rightarrow f(x) \in D$ Por Definición 40
 $\Rightarrow y \in D$
 $\Rightarrow C \subseteq D$

De manera similar, podemos demostrar que $D \subseteq C$:

Sea
$$y \in D \Rightarrow x \in \check{f}(D)$$
 Por Definición 40
 $\Rightarrow x \in \check{f}(C)$ Por hipotesis
 $\Rightarrow f(x) \in C$ Por Definición 40
 $\Rightarrow y \in C$
 $\Rightarrow D \subseteq C$

Combiniendo ambas inclusiones, obtenemos C = D.

Ejercicio 2.26. Sea $f:A\to B$ una función. Demostrar lo siguiente: a) Si f es inyectiva, entonces $\check{f}\circ\bar{f}$ es biyectiva.

Demostración

Supongamos que f es inyectiva. Queremos demostrar que $\check{f} \circ \bar{f} : \mathcal{P}(A) \to \mathcal{P}(A)$ es una función biyectiva, donde $\mathcal{P}(A)$ denota el conjunto potencia de A.

Inyectividad: Sea $C, D \subseteq A$ tales que $(\check{f} \circ \bar{f})(C) = (\check{f} \circ \bar{f})(D)$.

Por definición de $\check{f} \circ \bar{f}$, tenemos $\check{f}(\bar{f}(C)) = \check{f}(\bar{f}(D))$.

Esto implica que $\{a \in A \mid f(a) \in \{f(c) \mid c \in C\}\} = \{a \in A \mid f(a) \in \{f(d) \mid d \in D\}\}.$

Dado que f es inyectiva, f(a) = f(b) implica a = b, lo cual implica que C = D. Por lo tanto, $\check{f} \circ \bar{f}$ es inyectiva.

Sobreyectividad: Sea $E \subseteq A$. Queremos encontrar un subconjunto $C \subseteq A$ tal que $(\check{f} \circ \bar{f})(C) = E$.

Definamos C = E. Entonces, $(\check{f} \circ \bar{f})(C) = \check{f}(\bar{f}(E))$.

Por definición de \check{f} y \bar{f} , tenemos $\check{f}(\bar{f}(E)) = \{a \in A \mid f(a) \in \{f(e) \mid e \in E\}\} = E$.

Por lo tanto, $\check{f} \circ \bar{f}$ es sobrevectiva.

Dado que $\check{f} \circ \bar{f}$ es invectiva y sobrevectiva, es biyectiva.

b) Si f es sobreyectiva, entonces $\bar{f} \circ \check{f}$ es biyectiva.

Demostración

Supongamos que f es sobreyectiva. Queremos demostrar que $\bar{f} \circ \check{f} : \mathcal{P}(B) \to \mathcal{P}(B)$ es una función biyectiva, donde $\mathcal{P}(B)$ denota el conjunto potencia de B.

Inyectividad: Sea $C, D \subseteq B$ tales que $(\bar{f} \circ \check{f})(C) = (\bar{f} \circ \check{f})(D)$.

Por definición de $\bar{f} \circ \check{f}$, tenemos $\bar{f}(\check{f}(C)) = \bar{f}(\check{f}(D))$.

Esto implica que $\{f(a) \mid a \in \{a \in A \mid f(a) \in C\}\} = \{f(a) \mid a \in \{a \in A \mid f(a) \in D\}\}.$

Dado que f es sobreyectiva, $f(a) \in C$ implica $a \in \check{f}(C)$ y $f(a) \in D$ implica $a \in \check{f}(D)$.

Por lo tanto, C = D.

Esto muestra que $\bar{f} \circ \check{f}$ es inyectiva.

Sobreyectividad: Sea $E \subseteq B$. Queremos encontrar un subconjunto $C \subseteq B$ tal que $(\bar{f} \circ \check{f})(C) = E$.

Definamos C = E. Entonces, $(\bar{f} \circ \check{f})(C) = \bar{f}(\check{f}(E))$.

Por definición de \check{f} y \bar{f} , tenemos $\bar{f}(\check{f}(E)) = \{f(a) \mid a \in \{a \in A \mid f(a) \in E\}\} = E$.

Por lo tanto, $\bar{f} \circ \check{f}$ es sobreyectiva.

Dado que $\bar{f} \circ \check{f}$ es inyectiva y sobreyectiva, es biyectiva.

Ejercicio 2.27. Supongamos que $f: A \to B$ es una función; sea $C \subseteq A$. a) Demuestre que $\bar{f}\{\check{f}[\bar{f}(C)]\} = \bar{f}(C)$.

Demostración

Queremos demostrar que $\bar{f}\{\check{f}[\bar{f}(C)]\} = \bar{f}(C)$.

Por la Definición 39, tenemos:

$$\check{f}[\bar{f}(C)] = \{ a \in A \mid f(a) \in \bar{f}(C) \}.$$

Esto significa que $\check{f}[\bar{f}(C)]$ es el conjunto de todos los elementos de A cuya imagen bajo f está en $\bar{f}(C)$.

Consideremos la imagen de este conjunto bajo f:

$$\bar{f}\{\check{f}[\bar{f}(C)]\} = \{f(a) \mid a \in \check{f}[\bar{f}(C)]\}.$$

Esto significa que estamos tomando todos los $a \in A$ tales que $f(a) \in \bar{f}(C)$ y luego tomando la imagen de estos a bajo f.

Pero, si $a \in \check{f}[\bar{f}(C)]$, entonces $f(a) \in \bar{f}(C)$. Es decir, f(a) es algún f(c) para $c \in C$. Por lo tanto:

$$\{f(a) \mid a \in \check{f}[\bar{f}(C)]\} = \{f(c) \mid c \in C\} = \bar{f}(C).$$

Por lo tanto, hemos demostrado que $\bar{f}\{\check{f}[\bar{f}(C)]\}=\bar{f}(C)$.

b) Utilice el resultado a) para demostrar que $\bar{f} \circ \check{f} \circ \bar{f} = \bar{f}$.

Demostración

Queremos demostrar que $\bar{f} \circ \check{f} \circ \bar{f} = \bar{f}$.

Sea $C \subseteq A$. Aplicamos el resultado de la parte (a):

$$\bar{f}\{\check{f}[\bar{f}(C)]\}=\bar{f}(C).$$

Por definición de composición de funciones, tenemos:

$$(\bar{f} \circ \check{f} \circ \bar{f})(C) = \bar{f}(\check{f}(\bar{f}(C))).$$

Pero de la parte a), sabemos que:

$$\bar{f}(\check{f}(\bar{f}(C))) = \bar{f}(C).$$

Por lo tanto, hemos demostrado que $\bar{f} \circ \check{f} \circ \bar{f} = \bar{f}$.

Ejercicio 2.28. Sea $f:A\to B$ una función. Demuestre lo siguiente: a) Si f es inyectiva, entonces \bar{f} es inyectiva.

Demostración

Supongamos que f es inyectiva. Queremos demostrar que \bar{f} es inyectiva, es decir, si $\bar{f}(C) = \bar{f}(D)$ para $C, D \subseteq A$, entonces C = D.

Supongamos que $\bar{f}(C) = \bar{f}(D)$.

Esto significa que:

$$\{f(a) \mid a \in C\} = \{f(a) \mid a \in D\}.$$

Dado que *f* es inyectiva, no hay dos elementos diferentes en *A* que se mapeen al mismo elemento en *B*. Por lo tanto, los elementos de *C* deben coincidir con los elementos de *D*.

Es decir, C = D. Por lo tanto, hemos demostrado que si f es inyectiva, entonces \bar{f} es inyectiva.

b) Si f es sobreyectiva, entonces \bar{f} es sobreyectiva.

Demostración

Supongamos que f es sobreyectiva. Queremos demostrar que \bar{f} es sobreyectiva, es decir, para cualquier $E \subseteq B$, existe un $C \subseteq A$ tal que $\bar{f}(C) = E$.

Sea $E \subseteq B$.

Como f es sobreyectiva, para cada $y \in E$, existe un $x \in A$ tal que f(x) = y.

Definimos $C = \check{f}(E) = \{a \in A \mid f(a) \in E\}.$

Entonces, la imagen de C bajo f es:

$$\bar{f}(C) = \{ f(a) \mid a \in C \} = E.$$

Por lo tanto, hemos demostrado que si f es sobreyectiva, entonces \bar{f} es sobreyectiva.

c) Si f es biyectiva, entonces \bar{f} es biyectiva.

Demostración

Supongamos que f es biyectiva. Queremos demostrar que \bar{f} es biyectiva, es decir, \bar{f} es tanto inyectiva como sobreyectiva.

Inyectividad:

Ya hemos demostrado en la parte a) que si f es inyectiva, entonces \bar{f} es inyectiva.

Sobreyectividad:

Ya hemos demostrado en la parte b) que si f es sobreyectiva, entonces \bar{f} es sobreyectiva.

Dado que f es tanto inyectiva como sobreyectiva (es decir, biyectiva), \bar{f} también es inyectiva y sobreyectiva. Por lo tanto, \bar{f} es biyectiva.

Ejercicio 2.29. Sea $f: A \to B$ una función. Demuestre lo siguiente: a) Si f es inyectiva, entonces \check{f} es inyectiva.

Demostración

Supongamos que f es inyectiva. Queremos demostrar que \check{f} es inyectiva, es decir, si $\check{f}(C) = \check{f}(D)$ para $C, D \subseteq B$, entonces C = D.

Supongamos que $\check{f}(C) = \check{f}(D)$.

Esto significa que:

$${a \in A \mid f(a) \in C} = {a \in A \mid f(a) \in D}.$$

Dado que f es inyectiva, f(a) toma valores distintos para diferentes $a \in A$. Entonces, la única forma en que las preimágenes bajo f pueden ser iguales es que los conjuntos de imágenes sean iguales.

Es decir, C = D.

Por lo tanto, hemos demostrado que si f es inyectiva, entonces \check{f} es inyectiva. b) Si f es sobreyectiva, entonces \check{f} es sobreyectiva.

Demostración

Supongamos que f es sobreyectiva. Queremos demostrar que \check{f} es sobreyectiva, es decir, para cualquier $E\subseteq A$, existe un $C\subseteq B$ tal que $\check{f}(C)=E$.

Sea $E \subseteq A$.

Dado que f es sobreyectiva, cada elemento de B es la imagen de al menos un elemento de A.

Definimos C = f(E), donde $f(E) = \{f(a) \mid a \in E\}$.

Entonces, la preimagen de C bajo f es:

$$\check{f}(C) = \{ a \in A \mid f(a) \in C \} = \{ a \in A \mid f(a) \in f(E) \}.$$

Dado que $f(a) \in f(E)$ si y solo si $a \in E$, tenemos:

$$\check{f}(C) = E$$
.

Por lo tanto, hemos demostrado que si f es sobreyectiva, entonces \check{f} es sobreyectiva.

c) Si f es biyectiva, entonces \check{f} es biyectiva.

Demostración

Supongamos que f es biyectiva. Queremos demostrar que \check{f} es biyectiva, es decir, \check{f} es tanto inyectiva como sobreyectiva.

Inyectividad:

Ya hemos demostrado en la parte (a) que si f es inyectiva, entonces \check{f} es inyectiva.

Sobreyectividad:

Ya hemos demostrado en la parte (b) que si f es sobreyectiva, entonces \check{f} es sobreyectiva.

Dado que f es tanto inyectiva como sobreyectiva (es decir, biyectiva), \check{f} también es inyectiva y sobreyectiva. Por lo tanto, \check{f} es biyectiva.

Ejercicio 2.30. Sea $f: A \rightarrow B$ una función. Demuestre que

$$\bar{f}(C \cap D) = \bar{f}(C) \cap \bar{f}(D)$$

para cada par de subclases $C \subseteq A$ y $D \subseteq A$ si y solo si f es inyectiva.

Demostración

 \Rightarrow)Si f es inyectiva, entonces $\bar{f}(C \cap D) = \bar{f}(C) \cap \bar{f}(D)$ para cada $C, D \subseteq A$. Supongamos que f es inyectiva. Queremos demostrar que para cada $C, D \subseteq A$:

$$\bar{f}(C \cap D) = \bar{f}(C) \cap \bar{f}(D).$$

1.Sea $x \in \bar{f}(C \cap D)$. Entonces, existe $a \in C \cap D$ tal que f(a) = x.

Dado que $a \in C \cap D$, se sigue que $a \in C$ y $a \in D$. Por lo tanto, $f(a) \in \overline{f}(C)$ y $f(a) \in \overline{f}(D)$, es decir, $x \in \overline{f}(C) \cap \overline{f}(D)$.

Entonces, hemos demostrado que:

$$\bar{f}(C \cap D) \subseteq \bar{f}(C) \cap \bar{f}(D).$$

2.Sea $x \in \bar{f}(C) \cap \bar{f}(D)$. Entonces, $x \in \bar{f}(C)$ y $x \in \bar{f}(D)$. Por lo tanto, existen $a_1 \in C$ y $a_2 \in D$ tales que $f(a_1) = x$ y $f(a_2) = x$.

Dado que f es inyectiva, $f(a_1) = f(a_2)$ implica $a_1 = a_2$. Llamemos a este valor común a. Entonces, $a \in C$ y $a \in D$, por lo que $a \in C \cap D$.

Así, x = f(a) para algún $a \in C \cap D$, lo que implica que $x \in \bar{f}(C \cap D)$.

Entonces, hemos demostrado que:

$$\bar{f}(C) \cap \bar{f}(D) \subseteq \bar{f}(C \cap D).$$

Por lo tanto, si f es inyectiva, se cumple que:

$$\bar{f}(C \cap D) = \bar{f}(C) \cap \bar{f}(D).$$

 $\Leftarrow) \ \text{Si} \ \bar{f}(C \cap D) = \bar{f}(C) \cap \bar{f}(D) \ \text{para cada} \ C, D \subseteq A, \ \text{entonces} \ f \ \text{es inyectiva}.$

Supongamos que para cada par de subclases $C, D \subseteq A$:

$$\bar{f}(C \cap D) = \bar{f}(C) \cap \bar{f}(D).$$

Queremos demostrar que f es inyectiva.

Supongamos, por el contrario, que f no es inyectiva.

Entonces, existen $a_1, a_2 \in A$ tales que $a_1 \neq a_2$ y $f(a_1) = f(a_2) = x$ para algún $x \in B$.

Definimos dos conjuntos C y D en A tales que $a_1 \in C$ y $a_2 \in D$:

$$C = \{a_1\}, \quad D = \{a_2\}.$$

Entonces $C \cap D = \emptyset$.

Aplicamos la condición dada:

$$\bar{f}(C \cap D) = \bar{f}(\emptyset) = \emptyset,$$

 $\bar{f}(C) = \{x\}, \quad \bar{f}(D) = \{x\},$
 $\bar{f}(C) \cap \bar{f}(D) = \{x\}.$

Hemos obtenido:

$$\emptyset \neq \{x\}.$$

Esto contradice nuestra suposición de que f no es inyectiva.

Por lo tanto, *f* debe ser invectiva.

Ejercicio 2.31. Suponga que $f:A\to B$ es una función, $C\subseteq B$ y $D\subseteq B$. Demuestre que

$$\check{f}(C-D) = \check{f}(C) - \check{f}(D).$$

Demostración

Por Definición 40 y Definición 16

$$\check{f}(C-D) = \{ x \in A \mid f(x) \in C \text{ y } f(x) \notin D \}.$$

Por Definición 40

$$\check{f}(C) = \{ x \in A \mid f(x) \in C \}.$$

y

$$\check{f}(D) = \{ x \in A \mid f(x) \in D \}.$$

Definición 16

$$\check{f}(C) - \check{f}(D) = \{ x \in \check{f}(C) \mid x \notin \check{f}(D) \}.$$

Reescribiendo con las definiciones de las preimágenes:

$$\check{f}(C) - \check{f}(D) = \{ x \in A \mid f(x) \in C \text{ y } f(x) \notin D \}.$$

Comparamoslos resultados:

$$\check{f}(C - D) = \{ a \in A \mid f(a) \in C \text{ y } f(a) \notin D \}$$

$$\check{f}(C) - \check{f}(D) = \{ a \in A \mid f(a) \in C \text{ y } f(a) \notin D \}$$

Ambas expresiones son equivalentes, por lo tanto:

$$\check{f}(C-D) = \check{f}(C) - \check{f}(D).$$

Ejercicio 2.32. Sea $f:A\to B$ una función. Demuestre cada una de las siguientes:

a)Si
$$C \subseteq A$$
 y $D \subseteq A$, entonces $\bar{f}(C) - \bar{f}(D) \subseteq \bar{f}(C - D)$.

Demostración

Por definición, $\bar{f}(C) = \{f(x) \mid x \in C\} \text{ y } \bar{f}(D) = \{f(x) \mid x \in D\}.$

Consideremos un elemento $y \in \bar{f}(C) - \bar{f}(D)$. Esto significa que $y \in \bar{f}(C)$ y $y \notin \bar{f}(D)$.

Por la definición de \bar{f} , existe un $x \in C$ tal que f(x) = y.

Además, $y \notin \bar{f}(D)$ implica que no hay $x' \in D$ tal que f(x') = y.

Por lo tanto, $x \in C$ y $x \notin D$, es decir, $x \in C - D$.

Esto implica que $y \in \bar{f}(C-D)$, ya que y = f(x) y $x \in C-D$.

Así, $\bar{f}(C) - \bar{f}(D) \subseteq \bar{f}(C - D)$.

b) $\bar{f}(C) - \bar{f}(D) \subseteq \bar{f}(C - D)$ para cada par de subclases $C \subseteq A$ y $D \subseteq A$ si y solo si f es inyectiva.

Supongamos que f es inyectiva.

Consideremos $b \in \bar{f}(C) - \bar{f}(D)$. Esto significa que $b \in \bar{f}(C)$ y $b \notin \bar{f}(D)$.

Existe un $a \in C$ tal que f(a) = b.

No existe ningún $a' \in D$ tal que f(a') = b.

Por la inyectividad de f, el $a \in C$ que satisface f(a) = b no puede estar en D.

Por lo tanto, $a \in C - D$.

Así,
$$b \in \bar{f}(C-D)$$
.

Esto muestra que $\bar{f}(C) - \bar{f}(D) \subseteq \bar{f}(C - D)$ si f es inyectiva.

2.5 IMAGEN DIRECTA E IMAGEN INVERSA BAJO FUN-CIONES

Definición 2.10: -Imagen directa-

Sea $f: A \to B$ una función y C cualquier subclase de A. La imagen directa de C bajo f, denotada por $\bar{f}(C)$, es la subclase de B definida por:

$$\bar{f}(C) = \{ y \in B : \exists x \in C \ni y = f(x) \}$$

Definición 2.11: -Imagen inversa-

Sea $f: A \to B$ una función y D cualquier subclase de B. La imagen inversa de D bajo f, denotada por $\check{f}(D)$, es la subclase de A definida por:

$$\check{f}(D) = \{ x \in A : f(x) \in D \}$$

Notación: Si $\{a\}$ y $\{b\}$ son singletones, se notará por $\bar{f}(a)$ en lugar de $\bar{f}(\{a\})$ y $\check{f}(b)$ en lugar de $\check{f}(\{b\})$.

Teorema 2.16

Sea $f: A \rightarrow B$ una función:

- i) Sean $C \subseteq A$ y $D \subseteq A$. Si C = D, entonces $\bar{f}(C) = \bar{f}(D)$.
- ii) Sean $C \subseteq A$ y $D \subseteq A$. Si C = D, entonces $\check{f}(C) = \check{f}(D)$.

Demostración. Sean A y B clases, C y D subclases de A. Sea $f:A\to B$ una función.

i) Supongamos que C = D, entonces

$$y \in \bar{f}(C) \Longleftrightarrow \exists x \in C \ni y = f(x)$$
 por Definición 39 $\iff \exists x \in D \ni y = f(x)$ por hipótesis $\iff y \in \bar{f}(D)$ por Definición 39.

ii) Supongamos que C = D, entonces

$$x \in \check{f}(C) \Longleftrightarrow f(x) \in C$$
 por Definición 40 $\iff f(x) \in D$ por hipótesis $\iff x \in \check{f}(D)$ por Definición 40.

Observación. 1. $\bar{f}(C) = \bar{f}(D)$ no siempre implica que C = D.

Ejemplo 2.6.

$$f: \mathbb{R} \to \mathbb{R}^+ \tag{2.5}$$

$$x \mapsto f(x) = x^2 \tag{2.6}$$

П

Basta considerar $C = \mathbb{R}^+$ y $D = \mathbb{R}^-$.

2. $\check{f}(C) = \check{f}(D)$ no siempre implica que C = D.

Teorema 2.17

Sean A y B conjuntos y sea $f:A\to B$ una función, entonces:

- i) $f: \mathcal{P}(A) \to \mathcal{P}(B)$ es una función.
- ii) $\check{f}: \mathcal{P}(B) \to \mathcal{P}(A)$ es una función.

Demostración. Se mostrará que $\bar{f}: \mathcal{P}(A) \to \mathcal{P}(B)$ es una función.

i)**F2** Si
$$\bar{f}(C) = D_1$$
 y $\bar{f}(C) = D_2$
Sea $C \in \mathcal{P}(A) \Rightarrow C \subseteq A$ definición de partes de A
 $\Rightarrow C \subseteq A$ y $C \subseteq A$ por viii), Teorema 4
 $\Rightarrow C = C$ por i), Teorema 5)
 $\Rightarrow f(C) = f(C)$ Teorema 35
 $\Rightarrow D_1 = D_2$

ii) dom $f = \mathcal{P}(A)$

Sea
$$C \in \text{dom } f \Leftrightarrow \exists D \ni (C, D) \in f$$
 Definición 24 $\Leftrightarrow D = f(C)$ $\Leftrightarrow D = \{y \in B : \exists x \in C \ni y = f(x)\}$ Definición 38 $\Leftrightarrow C \subseteq A$ $\Leftrightarrow C \in \mathcal{P}(A)$ Definición 32

iii) ran
$$f \subseteq \mathcal{P}(B)$$

Sea
$$C \in \operatorname{ran} f \Rightarrow \exists C \ni (C, D) \in f$$
 Definición 25
 $\Rightarrow D = f(C)$
 $\Rightarrow D = \{y \in B : \exists x \in C \ni y = f(x)\}$ Definición 38
 $\Rightarrow D \subseteq B$ Definición 38
 $\Rightarrow D \in \mathcal{P}(B)$ Definición 32

Teorema 2.18: -Teorema 37-

Sea $f:A\to B$ una función, sea $\{C_i\}_{i\in I}$ una familia de subclases de A y $\{D_i\}_{i\in I}$ una familia de subclases de B. Entonces:

i)
$$f(\bigcup_{i\in I} C_i) = \bigcup_{i\in I} f(C_i)$$

ii)
$$\check{f}(\bigcup_{i\in I} D_i) = \bigcup_{i\in I} \check{f}(D_i)$$

iii)
$$\check{f}(\bigcap_{i\in I} D_i) = \bigcap_{i\in I} \check{f}(D_i)$$

Demostración. (Por Literales)

i) Demostración de la propiedad usando doble contenencia

Para demostrar esta propiedad, se muestra la doble contenencia por Definición 9. Consideremos un *y* arbitrario. Así:

$$y \in f\left(\bigcup_{i \in I} C_i\right) \iff \exists x \in \bigcup_{i \in I} C_i \text{ tal que } y = f(x)$$
 Definición 39
$$\iff \text{para algún } j \in I, \exists x \in C_j \text{ tal que } y = f(x) \text{ Definición 27}$$

$$\iff \text{para algún } j \in I, y \in f(C_j) \text{ Definición 39}$$

$$\iff y \in \bigcup_{i \in I} f(C_i) \text{ Definición 27}$$

ii) Demostración de la propiedad usando doble contenencia
 Para demostrar esta propiedad, se muestra la doble contenencia por Definición

9. Consideremos un *x* arbitrario:

$$x \in \check{f}\left(\bigcup_{i \in I} D_i\right) \iff f(x) \in \bigcup_{i \in I} D_i$$
 Definición 40
 \iff para algún $j \in I, f(x) \in D_j$ Definición 28
 \iff para algún $j \in I, x \in \check{f}(D_j)$ Definición 40
 $\iff x \in \bigcup_{i \in I} \check{f}(D_i)$ Definición 28

iii) Demostración de la propiedad usando doble contenencia. Para demostrar esta propiedad, se muestra la doble contenencia por Definición 9. Consideremos un *x* arbitrario:

$$x \in \check{f}\left(\bigcap_{i \in I} D_i\right) \iff f(x) \in \bigcap_{i \in I} D_i$$
 Definición 40
 $\iff \forall j \in I, f(x) \in D_j$ Definición 28
 $\iff \forall j \in I, x \in \check{f}(D_j)$ Definición 40
 $\iff x \in \bigcap_{i \in I} \check{f}(D_i)$ Definición 28

Puesto que los elementos fueron arbitrarios, se concluye para todo elemento de sus respectivos conjuntos.

Nota Es importante resaltar que se cumple para f:

$$\bar{f}\left(\bigcap_{i\in I}C_i\right)\subseteq\bigcap_{i\in I}\bar{f}(C_i)$$

Pero no se cumple la contención en el otro sentido.

2.5.1 Ejercicios de la Sección 2.5- Tomados en Exámen.

Ejercicio 2.33. Sea $\{A_i\}_{i\in I}$ y $\{B_{i\in I}\}$ familia de clases pruebe los siguientes literales:

- $\prod_{i \in I} A_i \cap \prod_{j \in J} B_j = \prod_{(i,j) \in I \times J} (A_i \cap B_j)$
 - $\prod_{i \in I} A_i \cup \prod_{j \in J} B_j = \prod_{(i,j) \in I \times J} (A_i \cup B_j)$

$$i)\prod_{i\in I}A_i\cap\prod_{j\in J}B_j=\prod_{(i,j)\in I\times J}(A_i\cap B_j)$$

Demostración. (Implicaciones)

 \Leftarrow) La notación $\prod_{i \in I} A_i$ representa el conjunto de todas las funciones $f: I \to \bigcup_{i \in I} A_i$ tal que $f(i) \in A_i$ para cada $i \in I$. De manera similar, $\prod_{j \in J} B_j$ es el conjunto de funciones $g: J \to \bigcup_{i \in I} B_i$ tal que $g(j) \in B_i$ para cada $j \in J$.

La intersección $\prod_{i \in I} A_i \cap \prod_{j \in J} B_j$ consiste en las funciones $h: I \cup J \to \bigcup_{i \in I} A_i \cup \bigcup_{i \in J} B_i$ que cumplen:

 $h(i) \in A_i$ para cada $i \in I$

 $h(j) \in B_j$ para cada $j \in J$

 \Rightarrow) El producto $\prod_{(i,j)\in I\times J}(A_i\cap B_j)$ consiste en las funciones $k:I\times J\to \bigcup_{(i,j)\in I\times J}(A_i\cap B_j)$ tal que $k(i,j)\in A_i\cap B_j$ para cada par (i,j).

Inclusión: Si $h \in \prod_{i \in I} A_i \cap \prod_{j \in J} B_j$, entonces para cada $(i, j) \in I \times J$, $h(i) \in A_i \setminus h(j) \in B_j$. Por lo tanto, $h(i) \in A_i \cap B_j$, lo que implica que $h \in \prod_{(i,j) \in I \times J} (A_i \cap B_j)$.

Inclusión inversa: Si $k \in \prod_{(i,j)\in I\times J}(A_i\cap B_j)$, entonces para cada $i\in I$, $k(i,j)\in A_i\cap B_j$ para cada $j\in J$. Esto significa que $k(i)\in A_i$ y $k(j)\in B_j$, lo que implica que $k\in \prod_{i\in I}A_i\cap \prod_{i\in J}B_i$.

Por lo tanto, hemos demostrado que:

$$\prod_{i\in I} A_i \cap \prod_{j\in J} B_j = \prod_{(i,j)\in I\times J} (A_i \cap B_j)$$

 $ii)\prod_{i\in I}A_i\cup\prod_{j\in J}B_j=\prod_{(i,j)\in I\times J}(A_i\cup B_j)$

Demostración. (Implicaciones)

 \Leftarrow) La unión $\prod_{i \in I} A_i \cup \prod_{j \in J} B_j$ consiste en las funciones que son de la forma $f: I \to \bigcup_{i \in I} A_i$ o $g: J \to \bigcup_{j \in J} B_j$.

 \Rightarrow) El producto $\prod_{(i,j)\in I\times J}(A_i\cup B_j)$ consiste en las funciones $h:I\times J\to \bigcup_{(i,j)\in I\times J}(A_i\cup B_j)$ tal que $h(i,j)\in A_i\cup B_j$ para cada par (i,j).

Inclusión: Si $f \in \prod_{i \in I} A_i$, entonces para cada $i \in I$, $f(i) \in A_i$. Por lo tanto, para cada $(i,j) \in I \times J$, $f(i) \in A_i \cup B_j$, lo que implica que $f \in \prod_{(i,j) \in I \times J} (A_i \cup B_j)$. Similarmente, si $g \in \prod_{j \in J} B_j$, se puede demostrar que $g \in \prod_{(i,j) \in I \times J} (A_i \cup B_j)$.

Inclusión inversa: Si $h \in \prod_{(i,j) \in I \times J} (A_i \cup B_j)$, entonces para cada (i,j), $h(i,j) \in A_i \cup B_j$. Esto significa que para cada $i \in I$, existe un j tal que $h(i,j) \in A_i$ o $h(i,j) \in B_j$, lo que implica que h puede ser representado como una función en $\prod_{i \in I} A_i$ o en $\prod_{j \in J} B_j$.

Por lo tanto, hemos demostrado que:

$$\prod_{i\in I} A_i \cup \prod_{j\in J} B_j = \prod_{(i,j)\in I\times J} (A_i \cup B_j)$$

Ejercicio 2.34. Sea $\{A_i\}_{i\in I}$ una familia de clases para cualquier $i\in I$, Sea B_i subclases de A_i . Probar que:

$$\bigcap_{i\in I} \hat{P}_i(B) = \prod_{i\in I} B_i$$

 $\bigcap_{i\in I}\hat{P}_i(B)=\prod_{i\in I}B_i.$ donde $\hat{P}_i(B)$ es la imagen inversa de la función proyección.

Demostración. Se parte con $\bigcap_{i \in I} \hat{P}_i(B) \subseteq \prod_{i \in I} B_i$

Supongamos que $x \in \bigcap_{i \in I} \hat{P}_i(B)$. Esto significa que para cada $i \in I$, $x \in I$ $\hat{P}_i(B)$. Por la definición de la imagen inversa, esto implica que $P_i(x) \in B$ para cada $i \in I$.

Dado que x es un elemento de $\prod_{i \in I} A_i$, podemos escribir $x = (x_j)_{j \in I}$. Entonces, para cada $i \in I$, tenemos que $x_i \in B_i$ (ya que $P_i(x) = x_i$). Por lo tanto, $x \in \prod_{i \in I} B_i$.

Se va mostrar que $\prod_{i \in I} B_i \subseteq \bigcap_{i \in I} \hat{P}_i(B)$

Ahora, supongamos que $x \in \prod_{i \in I} B_i$. Esto significa que para cada $i \in I$, $x_i \in B_i$. Por la definición de la imagen inversa, esto implica que $P_i(x) = x_i \in B$ para cada $i \in I$.

Por lo tanto, $x \in \hat{P}_i(B)$ para cada $i \in I$, lo que implica que $x \in \bigcap_{i \in I} \hat{P}_i(B)$. Hemos demostrado que:

$$\bigcap_{i\in I} \hat{P}_i(B) = \prod_{i\in I} B_i.$$