Дискретная математика. Глава б. Цепи и антицепи.

А.В.Пастор

Дискретная математика Глава 6. Цепи и антицепи

А. В. Пастор

20.03.2023

Цепи и антицепи

- Напомним, что частично упорядоченным множеством называется упорядоченная пара (X,\succ) , где X множество и \succ отношение частичного порядка на X.
- Для определенности будем считать, что \succ отношение строгого частичного порядка, то есть оно иррефлексивно, антисимметрично и транзитивно.

Определение

Пусть (M,\succ) — конечное частично упорядоченное множество.

ullet Цепью в M называется линейно упорядоченное подмножество $X\subset M$

$$ightharpoonup$$
 т. е. элементы X образуют монотонную последовательность

$$x_1 \succ x_2 \succ \ldots \succ x_m$$

- Антицепью в M называется подмножество $Y \subset M$, любые два различных элемента которого несравнимы
 - ▶ т. е. такие $y_1, y_2, ..., y_n$, что $y_i \not\succ y_i$ при $i \neq j$.

Дискретная математика. Глава 6. Цепи и антицепи.

Замечание

• Пусть (M, \succ) — конечное частично упорядоченное множество.

- Построим соответствующий ему орграф D_M следующим образом:
 - \triangleright $V(D_M)=M$:
 - $A(D_M) = \{xy \mid x \succ y\}.$
 - Заметим, что тогда $\triangleright D_M$ — орграф без циклов:
 - **у** цепь в M это простой ориентированный путь в D_M ;
 - **Р** антицепь в M это независимое множество в D_M .
 - Обратно, любой орграф D без циклов задает отношение частичного порядка на множестве своих вершин.
 - ightharpoonup Для этого нужно построить транзитивное замыкание орграфа D, то есть провести стрелки, соединяющие начало любого простого пути в D с его концом.

Далее, нас будут интересовать разбиения M на наименьшее возможное число цепей и на наименьшее возможное число антицепей.

Лискретная Глава 6. Цепи и антицепи.

Лискретная

Теорема (Мирский, 1971)

Длина максимальной цепи в M равна минимальному количеству антицепей, на которые разбивается M.

Доказательство.

- Пусть m длина максимальной цепи в M;
- k минимальное число антицепей, на которые разбивается M.
- Неравенство $k \ge m$ тривиально, поскольку цепь и антицепь могут иметь не более одного общего элемента.
- Докажем, что $k \leq m$. Для этого нужно построить разбиение множества M на m антицепей.
 - ▶ Пусть $\ell(x)$ длина максимальной цепи с началом в x.
 - \blacktriangleright Для каждого $i \in [1..m]$ введем обозначение $Y_i \stackrel{\mathrm{def}}{=} \{x \in M \mid \ell(x) = i\}.$
 - ightharpoonup Легко видеть, что Y_1,\ldots,Y_m антицепи в M, причем каждый элемент M принадлежит ровно одной из этих антицепей.
 - \triangleright Следовательно, Y_1, \ldots, Y_m разбиение M на m антицепей.

Теорема Мирского и раскраски графов

Замечание

- Наряду с орграфом D_M , можно также рассмотреть соответствующий неориентированный граф $G_M \stackrel{\text{def}}{=} D_M$.
- Заметим, что тогда
 - ightharpoonup цепи в M соответствуют кликам в графе G_M ;
 - ightharpoonup антицепи в M соответствуют независимым множествам в G_M .
- Тогда длина максимальной цепи в M равна $\omega(G_M)$; • минимальное число антицепей, на которые разбивается M, равно $\chi(G_M)$.
- То есть теорема Мирского утверждает, что $\chi(G_M) = \omega(G_M)$.
- Легко видеть, что аналогичное равенство верно и для любого индуцированного подграфа G_M .

Определение

Граф G называется *совершенным*, если для любого его индуцированного подграфа H выполнено равенство $\chi(H)=\omega(H)$.

• То есть из теоремы Мирского следует, что граф G_M — совершенный.

Глава б. Цепи и антицепи.

Дискретная

Лискретная

Теорема (Дилуорс, 1950)

Размер максимальной антицепи в M равен минимальному количеству цепей, на которые разбивается M.

Замечание

Эта теорема уже была доказана в курсе теории графов, как следствие теоремы Галлаи-Мильграма. Здесь мы приведем другое доказательство теоремы Дилуорса.

Доказательство. Пусть n — размер максимальной антицепи в M; k — минимальное число цепей, на которые разбивается M.

- Как и в предыдущей теореме, неравенство $k \geq n$ тривиально, поскольку цепь и антицепь могут иметь не более одного общего элемента.
- Докажем, что $k \leq n$. Для этого нужно построить разбиение множества M на n цепей.
- Пусть $M = \{u_1, u_2, ..., u_p\}$ и $D = D_M$ соответствующий орграф.

Доказательство теоремы Дилуорса

- "Удвоим" орграф D. Т. е. построим следующий двудольный граф H:
- **хаждой вершине** $u_i \in M$ ставим в соответствие пару вершин a_i, b_i :
- \blacktriangleright если в D есть стрелка u_iu_i , то проводим в H ребро a_ib_i .

 \triangleright Действительно, пусть W — вершинное покрытие в H.

▶ пусть $A = \{a_1, \dots, a_n\}, B = \{b_1, \dots, b_n\}, V(H) = A \cup B$;

• Можно считать, что b_i — это "вход" в вершину u_i , а a_i — "выход".

• Пусть F — множество стрелок D, соответствующих ребрам из S.

- Докажем, что $\beta(H) > p n$.
 - \triangleright Рассмотрим подмножество $W' \subset M$, состоящее из элементов.
 - соответствующих вершинам из W. ightharpoonup Тогда W' — вершинное покрытие в D.
- ▶ Следовательно, $M \setminus W'$ независимое множество, т. е. антицепь в M.
- По теореме Кёнига $\alpha'(H) = \beta(H) \ge p n$.
- Тогда в G есть паросочетание S, где |S| > p n.
- Рассмотрим подграф D' = (M, F) орграфа D.
- В нем p вершин и не менее p-n стрелок.

Глава 6. Цепи и антицепи.

Лискретная

Завершение доказательства теоремы Дилуорса

- ullet Все компоненты слабой связности D' простые ориентированные пути.
 - ightharpoonup Компонента не может быть циклом, т. к. в D циклов нет.
- ullet Эти пути являются цепями в M и задают разбиение M на цепи.
- Путей не более n, т. к. если в пути ℓ стрелок, то в нем $\ell+1$ вершина.

Замечание

Мы вывели теорему Дилуорса из теоремы Кёнига. Можно сделать и наоборот. Давайте выведем теорему Кёнига из теоремы Дилуорса.

- Пусть $H = (V_1, V_2, E)$ двудольный граф.
- Обозначим через D ориентацию графа H, в которой все стрелки ориентированны из V_1 в V_2 .
- Орграф D задает отношение частичного порядка на множестве $V = V_1 \cup V_2$.
- Очевидно, что любая цепь в получившемся частично упорядоченном множестве состоит из не более, чем двух вершин. Более того, цепи из двух элементов это стрелки орграфа D.

математика. Глава 6. Цепи и антицепи.

- Таким образом, любое разбиение V на непересекающиеся цепи состоит из нескольких не имеющих общих концов стрелок (эти стрелки задают некоторое паросочетание в H) и отдельных вершин.
- Следовательно, минимальное количество цепей, на которые можно разбить V, равно $v(G) \alpha'(G)$.
- С другой стороны, подмножество $W \subset V$ является антицепью если и только если W является независимым множеством в графе H.
- Таким образом, размер максимальной антицепи равен $\alpha(H) = \nu(H) \beta(H)$.
- Тогда по теореме Дилуорса $v(H)-\alpha'(H)=v(H)-\beta(H)$, откуда $\alpha'(H)=\beta(H)$.

Теорема (Эрдёш-Секереш)

подпоследовательность.

Доказательство.

Из любой последовательности различных вещественных чисел длины mn+1 можно выбрать либо возрастающую подпоследовательность из m+1 числа, либо убывающую подпоследовательность из n+1 числа.

- Пусть $L = (x_1, x_2, \dots, x_{mn+1})$ последовательность из условия.
- Рассмотрим множество $X = \{x_1, x_2, \dots, x_{mn+1}\}$ и введем на нем следующее отношение порядка:
- $b \rightarrow a \succ b$, если и только если a > b и число a стоит левее, чем b.
- Тогда любая убывающая подпоследовательность в L является цепью, а любая возрастающая подпоследовательность антицептю.
- Предположим, что возрастающей подпоследовательности из m+1 числа в L нет. Тогда размер максимальной антицепи не более m.
- По теореме Дилуорса, X можно разбить на не более, чем m цепей. Одна из них будет иметь длину хотя бы n+1 и задаст искомую убывающую

Определение

- Пусть X конечное множество, |X| = n и $M = \mathcal{P}(X)$.
- Зададим на M отношение частичного порядка $A\subset B$.
- Цепь $\mathcal{C} = \{A_1, A_2, \dots, A_k\}$ в (M, \subset) называется *симметричной*, если выполняются следующие два условия:
 - 1. $|A_1| + |A_k| = n$;
 - 2. $\forall i \in [1..k-1] (|A_{i+1}| = |A_i| + 1).$

Замечание

- В частности, тогда $|A_i| + |A_{k+1-i}| = n$ при всех $i \in [1..k]$.
- Элементы множества M можно записывать как последовательности нулей и единиц (т.е. элементы из $\{0,1\}^n$).

Системы подмножеств и симметричные цепи • Пусть $A = (a_1, \dots, a_n)$ и $B = (b_1, \dots, b_n)$ — элементы $\{0, 1\}^n$.

- ▶ Тогда $A \prec B$, если $\forall i (a_i < b_i)$ и хотя бы одно из неравенств строгое.
- ightharpoonup Симметричная цепь в $\{0,1\}^n$ это такая последовательность упорядоченных наборов нулей и единиц, в которой каждый следующий набор получается из предыдущего заменой одного нуля на единицу и суммарное число единиц в первом и последнем наборе равно n.

Теорема

Множество M можно разбить на $C_n^{[\frac{n}{2}]}$ симметричных цепей.

Переход $(n-1 \to n)$: пусть $X = \{x_1, \dots, x_{n-1}, x_n\}$.

Доказательство. Индукция по n.

База: при n=1 утверждение очевидно.

- Рассмотрим множество $X' = \{x_1, \dots, x_{n-1}\}$. По индукционному
- предположению, $\mathcal{P}(X')$ можно разбить на симметричные цепи. • Пусть $C = \{A_1, \dots, A_{k-1}, A_k\}$, где $A_1 \subset \dots \subset A_{k-1} \subset A_k$ — одна из цепей в разбиении $\mathcal{P}(X')$ на симметричные цепи.

Глава 6. Цепи и антицепи. А. В. Пастор

Лискретная

Системы подмножеств и симметричные цепи

Дискретная математика. Глава 6. Цепи и антицепи.

- Тогда рассмотрим следующие цепи в $\mathcal{P}(X)$:

 - ▶ C_i'' : $A_1 \cup \{x_n\} \subset \ldots \subset A_{k-1} \cup \{x_n\}$ (в случае k > 1).
- Легко видеть, что цепи C_i' и C_i'' и все цепи такого вида задают разбиение множества $\mathcal{P}(X)$.
- Количество цепей равно $C_n^{[\frac{n}{2}]}$, поскольку каждая симметричная цепь
- в $\mathcal{P}(X)$ содержит ровно одно подмножество мощности $[\frac{n}{2}]$.

А.В.Пастор

Теорема (Шпернер, 1928)

Пусть X — конечное множество, |X| = n и $M = \mathcal{P}(X)$. Тогда размер максимальной антицепи в M равен $C_n^{\left[\frac{n}{2}\right]}$.

Доказательство.

- ullet Мы доказали, что M можно разбить на $C_n^{\lfloor \frac{n}{2} \rfloor}$ симметричных цепей.
- Следовательно, по теореме Дилуорса, размер максимальной антицепи в M не превосходит $C_n^{\left[\frac{n}{2}\right]}$.
- С другой стороны, антицепь размера $C_n^{[\frac{n}{2}]}$ в M есть: это все подмножества мощности $[\frac{n}{2}]$.
- На самом деле, этот результат является частным случаем более общей теоремы.
- В ней мы, в частности, получим другое доказательство теоремы Шпернера.

Теорема (Любелл, 1966) Пусть X — конечное множество, |X| = n, $M = \mathcal{P}(X)$ и \mathcal{F} — антицепь в M.

Тогда $\sum_{A \in \mathcal{T}} \frac{1}{C_n^{|A|}} \le 1.$

Доказательство.

• Рассмотрим все возможные максимальные цепи в М. То есть последовательности подмножеств вида

$$\emptyset = A_0 \subsetneq A_1 \subsetneq A_2 \subsetneq \ldots \subsetneq A_n = X.$$

- Всего таких цепей n!. Каждое подмножество $A \subset X$ содержится ровно в |A|!(n-|A|)! максимальных цепях.
- ullet При этом, каждая максимальная цепь пересекает антицепь ${\mathcal F}$ максимум по одному элементу.
- Следовательно, $\sum_{A \in \mathcal{F}} |A|!(n-|A|)! \le n!$.
- Сократив это неравенство на n!, получим требуемое.

антицепи.

А. В. Пастор

Лискретная Глава 6. Цепи и