DAY 2

In last section, we have discussed about direct method of Arithmetic Mean. In this section, we shall discuss about Assumed Mean Method of finding Arithmetic Mean.

Assumed Mean Method:

In direct method if there are larger values like 125, 213, 189 etc. then its difficult to multiply such large values, to solve this problem, we have **Assumed Mean** method.

- Here first we find mid values of class intervals (x)
- From mid values (x), we assume any value, written as **A** (either in x or not).
- Then we find deviations d = x A
- Multiply **d** by given frequency **f** to find **f d**
- Then add values of f and fd, replace in the following formula:

$$\overline{X} = A + \frac{\sum fd}{\sum f}$$
 where $A = Assumed Value, $d = x - A$$

1. Find the mean of the following distribution:

Class Interval	110-120	120-130	130-140	140-150	150-160
Frequency	26	19	12	18	25
ol:-	~ -				

Sol:-

Class <mark>-</mark> Interval	f	Mid-value <i>x</i>	d = x - A	fd
110-120	26	115	115 - 135 = -20	-520
120-130	19	125	125 - 135 = -10	-190
130-140	12	135 A	135 - 135 = 0	0
140-150	18	145	145 - 135 = 10	180
150-160	25	155	155 - 135 = 20	500
Total	$N=\Sigma f=100$			$\Sigma fd = -30$

$$\bar{X} = A + \frac{\sum fd}{\sum f}$$

= 135 + $\frac{-30}{100}$ = 135 - 0.3 = 134.7

2. Find the mean of the following distribution:

Marks	0-15	15-30	30-45	45-60	60-75	75-90
Students	14	25	13	11	15	12

Sol:-

Class- Interval	f	Mid-value <i>x</i>	d = x - A	fd
0-15	14	7.5	7.5 - 37.5 = -30	$-4\overline{20}$

15-30	25	22.5	22.5 - 37.5 = -15	-375
30-45	13	37.5 A	37.5 - 37.5 = 0	0
45-60	11	52.5	52.5 - 37.5 = 15	165
60-75	15	67.5	67.5 - 37.5 = 30	450
75-80	12	82.5	82.5 - 37.5 = 45	540
Total	$N=\Sigma f=90$			$\Sigma fd = 360$

$$\bar{X} = A + \frac{\sum fd}{\sum f}$$

= 37.5 + $\frac{360}{90}$ = 37.5 + 4 = 41.5

3. Find the mean of the following distribution:

Class Interval	100-200	200-300	300-400	400-500	500-600	600-700
Frequency	11	10	7	4	3	5

Sol:-

Class-	f	Mid-value	d = x - A	fd
Interval		\boldsymbol{x}		
100-200	11	150	150 - 450 = -300	-3300
200-300	10	250	250 - 450 = -200	-2000
300- <mark>40</mark> 0	7	350	350 - 450 = -100	-700
400-500	4	450 A	450 - 450 = 0	0
500- <mark>6</mark> 00	3	550	550 - 450 = 100	300
600-700	5	650	650 - 450 = 200	1000
Total	$N=\Sigma f=40$	0		$\Sigma fd = -4700$

$$\bar{X} = A + \frac{\sum fd}{\sum f}$$

= $450 + \frac{-4700}{40} = 450 - 117.5 = 332.5$

STEP DEVIATION METHOD:

This method is applicable when terms of d are divided by a single common factor. This is Deviation method can be further simplified on dividing the deviation by width of the class interval.

- All process to find Arithmetic Mean is same as in Assumed Mean upto d.
- Divide terms of *d* with common factor
- Then add and replace in the following formula:

$$\overline{\mathbf{X}} = \mathbf{A} + \frac{\sum \mathbf{f} \mathbf{d}'}{\sum \mathbf{f}} \times \mathbf{i}$$
; $\mathbf{d}' = \frac{\mathbf{x} - \mathbf{A}}{\mathbf{i}}$
 $\mathbf{i} = \text{width of the class interval}$

1. Find the mean of the following distribution by Step Deviation Method:

Class Interval	10-25	25-40	40-55	55-70	70-85	85-100
Frequency	2	3	7	6	6	6

Sol:-

Class-	f	Mid-value	d = x - A	$d' = \frac{d}{i=15}$	fd'
Interval		x		i=15	
10-25	2	17.5	17.5 - 47.5 = -30	-2	-4
25-40	3	32.5	32.5 - 47.5 = -15	-1	-3
40-55	7	47.5 A	47.5 - 47.5 = 0	0	0
55-70	6	62.5	62.5 - 47.5 = 15	1	6
70-85	6	77.5	77.5 - 47.5 = 30	2	12
85-100	6	92.5	92.5 - 47.5 = 45	3	18
Total	$N=\Sigma f=30$				$\Sigma f d' = 29$

$$\bar{X} = A + \frac{\sum fd'}{\sum f} \times i$$

= $47.5 + \frac{29}{30} \times 15 = 47.5 + 14.5 = 62$

2. Find the mean of the following distribution by Step Deviation Method:

Class Interval	25-35	<mark>3</mark> 5-45	45-55	55-65	65-75	75-85
Frequency	7	9	8	10	110	5

Sol:-

9	J1					
	Class-	f	Mid-value	d = x - A	$d' = \frac{d}{i=10}$	fd'
	Interval		x		i=10	
	25-35	7	30	30 - 60 = -30	-3	-21
	35-45	9	40	40 - 60 = -20	-2	-18
	45-55	8	50	50 - 60 = -10	-1	-8
	55-65	10	60 A	60 - 60 = 0	0	0
	65-75	11	70	70 - 60 = 10	1	11
	75-85	8	80	80 - 60 = 20	2	16
	Total	$N = \Sigma f = 50$				$\Sigma f d' = -26$

$$\bar{X} = A + \frac{\sum fd'}{\sum f} \times i$$

= $60 + \frac{-26}{50} \times 10 = 60 - 5.2 = 54.8$

EXERCISE

1. Ex 14.1, Do Q 1,2,4,6,7,9 with Assumed Mean Method and Step Deviation Method.