Numerikus módszerek 1.

6. előadás: Vektor- és mátrixnormák

Krebsz Anna

ELTE IK

Tartalomjegyzék

1 Vektornormák

2 Mátrixnormák

3 Természetes mátrixnormák, avagy indukált normák

4 Mátrixnormák további tulajdonságai – válogatás

Tartalomjegyzék

1 Vektornormák

2 Mátrixnormák

3 Természetes mátrixnormák, avagy indukált normák

4 Mátrixnormák további tulajdonságai – válogatás

Emlékeztető: Vektorok "hossza"

Definíció: vektorok "hossza"

Az $x \in \mathbb{R}^n$ vektor hagyományos értelemben vett hosszát, avagy "kettes normáját" jelölje $\|.\|_2$.

A következőképpen számolható:

$$\|x\|_2 := \sqrt{\langle x, x \rangle} = \sqrt{x^\top x} = \left(\sum_{k=1}^n x_i^2\right)^{\frac{1}{2}}.$$

A (vektor)norma a "hossz", "nagyság" általánosítása.

Definíció: vektornorma

Legyen $n \in \mathbb{N}$ rögzített. Az $\|.\| : \mathbb{R}^n \to \mathbb{R}$ leképezést vektornormának nevezzük, ha:

- $||x|| = 0 \iff x = 0,$
- **4** $||x + y|| \le ||x|| + ||y|| \quad (\forall x, y \in \mathbb{R}^n).$

Azaz a leképezés "pozitív", "pozitív homogén" és "szubadditív" (háromszög-egyenlőtlenség). Ezek a vektornormák *axiómái*.

Vektornormák

Állítás: skaláris szorzat által generált vektornorma

Ha adott az $\langle .,. \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ skaláris szorzat, akkor az $f(x) := \sqrt{\langle x,x \rangle}$ függvény *norma*. Jele: $\|x\|_2$.

Biz.: Nem kell.

Ez a "hagyományos hossz".

Állítás: Cauchy–Bunyakovszki–Schwarz-egyenlőtlenség (CBS)

$$|\langle x, y \rangle| \le ||x||_2 \cdot ||y||_2 \quad (x, y \in \mathbb{R}^n)$$

Biz.: Bármely $\alpha \in \mathbb{R}$ esetén $||x - \alpha y||_2^2 \ge 0$.

$$0 \le \|x - \alpha y\|_{2}^{2} = \langle x - \alpha y, x - \alpha y \rangle =$$

$$= \underbrace{\langle x, x \rangle}_{\|x\|_{2}^{2}} -2\alpha \langle x, y \rangle + \alpha^{2} \underbrace{\langle y, y \rangle}_{\|y\|_{2}^{2}} \qquad (\forall \alpha \in \mathbb{R}).$$

Diszkrimináns nempozitív: $\langle x, y \rangle^2 - ||x||_2^2 \cdot ||y||_2^2 \le 0$, így

$$\langle x, y \rangle^2 \le ||x||_2^2 \cdot ||y||_2^2$$
.

Állítás: Gyakori vektornormák $(1,2,\infty)$

A következő formulák vektornormákat **definiálnak** \mathbb{R}^n felett:

•
$$\|x\|_1 := \sum_{i=1}^n |x_i|$$
 (Manhattan-norma),

•
$$\|x\|_2 := \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$$
 (Euklideszi-norma),

•
$$\|x\|_{\infty} := \max_{i=1}^{n} |x_i|$$
 (Csebisev-norma).

Biz.: Hf.

Példa: vektornormák

Számítsuk ki a következő vektorok $1, 2, \infty$ normáját:

$$x = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \qquad y = \begin{bmatrix} 4 \\ -8 \\ 1 \end{bmatrix}.$$

$$||x||_1 = 3 + 4 = 7$$
, $||x||_2 = \sqrt{3^2 + 4^2} = 5$, $||x||_\infty = \max\{3, 4\} = 4$.

$$\|y\|_1 = 4 + |-8| + 1 = 13$$
, $\|y\|_2 = \sqrt{4^2 + (-8)^2 + 1^2} = \sqrt{73}$, $\|y\|_{\infty} = \max\{4, |-8|, 1\} = 8$.

Állítás: p-normák

A következő $\mathbb{R}^n \to \mathbb{R}$ függvények is vektornormákat **definiálnak**:

$$\|x\|_{p} := \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p} \qquad (p \in \mathbb{R}, \ 1 \le p < \infty).$$

Biz.: Nem kell. A háromszög-egyenlőtlenség a Minkovszki-egyenlőtlenség.

Megjegyzések:

- $0 \le p < 1$ esetén nem norma,
- $p_1 \leq p_2 \Longrightarrow ||x||_{p_1} \geq ||x||_{p_2}$,
- Speciális esetek: $p = 1 \rightsquigarrow \|x\|_1$, $p = 2 \rightsquigarrow \|x\|_2$,
- Sőt: $\lim_{n \to \infty} ||x||_p = ||x||_{\infty}$.

Állítás: normák közötti egyenlőtlenségek

$$\bullet \|x\|_{\infty} \leq \|x\|_1 \leq n \cdot \|x\|_{\infty},$$

•
$$||x||_{\infty} \le ||x||_2 \le \sqrt{n} \cdot ||x||_{\infty}$$
,

•
$$||x||_2 \le ||x||_1 \le \sqrt{n} \cdot ||x||_2$$
,

• sőt ezek alapján
$$||x||_{\infty} \le ||x||_2 \le ||x||_1$$
.

Biz.: Nem kell.

(Az elsőbe könnyű belegondolni, a negyedikre láttunk példát.)

Vektornormák

Definíció: ekvivalens normák

Az $\|.\|_a$ és $\|.\|_b$ vektornormák *ekvivalensek*, ha $\exists c_1, c_2 \in \mathbb{R}^+$, hogy

$$c_1 \cdot \|x\|_b \le \|x\|_a \le c_2 \cdot \|x\|_b \qquad (\forall x \in \mathbb{R}^n).$$

Állítás: végesdimenziós normák ekvivalenciája

Tetszőleges \mathbb{R}^n -en értelmezett vektornorma ekvivalens az Euklideszi-vektornormával. (Azaz adott végesdimenziós térben minden norma ekvivalens.)

Definíció: konvergencia vektornormában

Az $(x_k)\subset \mathbb{R}^n$ sorozat konvergens, ha létezik $x^*\in \mathbb{R}^n$ melyre

$$\lim_{k\to\infty}\|x_k-x^*\|=0.$$

x* a sorozat határértéke.

Megj.: Mivel \mathbb{R}^n -en a vektornormák ekvivalensek, ezért ha egy sorozat konvergens az egyik vektornormában, akkor mindegyikben.

Ekvivalens átfogalmazások a konvergenciára:

• Az $(x_k) \subset \mathbb{R}^n$ sorozat konvergens, ha létezik $x^* \in \mathbb{R}^n$ melyre $\forall \, \varepsilon > 0 \, \exists \, N_0 \in \mathbb{N} \, \, \forall \, k \geq N_0 : \, \, \|x_k - x^*\| < \varepsilon.$

• Az
$$(x_k)\subset \mathbb{R}^n$$
 sorozat konvergens, ha létezik $x^*\in \mathbb{R}^n$ melyre

$$\forall \varepsilon > 0 \ \exists \ N_0 \in \mathbb{N} \ \forall \ k \geq N_0 : \ x_k \in K_{\varepsilon}(x^*).$$

Matlab példák *p*-normákra, egységgömbökre ($p = 1, 2, \infty, \dots$).

Tartalomjegyzék

1 Vektornormák

2 Mátrixnormák

3 Természetes mátrixnormák, avagy indukált normák

4 Mátrixnormák további tulajdonságai – válogatás

Definíció: mátrixnorma

Legyen $n \in \mathbb{N}$ rögzített. Az $\|.\| : \mathbb{R}^{n \times n} \to \mathbb{R}$ leképezést mátrixnormának nevezzük, ha:

- **2** $||A|| = 0 \iff A = 0$,
- **4** $||A + B|| \le ||A|| + ||B|| \quad (\forall A, B \in \mathbb{R}^{n \times n}),$

Ugyanaz, mint a vektornormáknál, plusz: "szubmultiplikativitás". Ezek a mátrixnormák axiómái.

Definíció: Frobenius-norma

A következő függvényt Frobenius-normának nevezzük:

$$\|.\|_F: \mathbb{R}^{n \times n} \to \mathbb{R}, \qquad \|A\|_F = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}.$$

Állítás: Frobenius-norma

A $\|.\|_F$ függvény valóban mátrixnorma.

Biz.: 1–4. következik a $\|.\|_2$ vektornorma tulajdonságaiból.

Az 5. belátható CBS segítségével.

Példa: egyszerű mátrixnormák

Számítsuk ki a következő mátrixok Frobenius-normáját.

$$A = \begin{bmatrix} 1 & -4 \\ 2 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} 3 & 2 \\ 1 & 5 \end{bmatrix}.$$

$$||A||_F = \sqrt{1^2 + (-4)^2 + 2^2 + 2^2} = 5$$

 $||B||_F = \sqrt{3^2 + 2^2 + 1^2 + 5^2} = 6$

Tartalomjegyzék

1 Vektornormák

- 2 Mátrixnormák
- 3 Természetes mátrixnormák, avagy indukált normák
- 4 Mátrixnormák további tulajdonságai válogatás

Definíció: indukált norma, természetes mátrixnormák

Legyen $\|.\|_{V}: \mathbb{R}^{n} \to \mathbb{R}$ tetszőleges vektornorma. Ekkor a

$$||.||: \mathbb{R}^{n \times n} \to \mathbb{R}, \qquad ||A||:= \sup_{x \neq 0} \frac{||Ax||_{v}}{||x||_{v}}$$

függvényt a $\|.\|_v$ vektornorma által indukált mátrixnormának hívjuk. Egy mátrixnormát természetesnek nevezünk, ha van olyan vektornorma, ami indukálja.

Tétel: indukált normák

Az "indukált mátrixnormák" valóban mátrixnormák.

Biz.: Be kell látni, hogy a megadott alak teljesíti a mátrixnorma axiómáit.

- \blacksquare Az ||A|| értéke nemnegatív, hiszen vektorok normájának (nemnegatív számok) hányadosainak szuprémuma.
- **2** Ha A=0, azaz nullmátrix, akkor $\|Ax\|_v=0$ minden x vektorra, így a szuprémum értéke is 0. Valamint megfordítva, ha a szuprémum 0, akkor minden x-re Ax-nek nullvektornak kell lennie, ez csak úgy lehet, ha A nullmátrix.

3

$$\|\lambda A\| = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|\lambda A\mathbf{x}\|_{\mathbf{v}}}{\|\mathbf{x}\|_{\mathbf{v}}} = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{|\lambda| \cdot \|A\mathbf{x}\|_{\mathbf{v}}}{\|\mathbf{x}\|_{\mathbf{v}}} = |\lambda| \cdot \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|A\mathbf{x}\|_{\mathbf{v}}}{\|\mathbf{x}\|_{\mathbf{v}}} = |\lambda| \cdot \|A\|.$$

Biz. (folytatás):

4

$$||A + B|| = \sup_{x \neq 0} \frac{||(A + B)x||_{v}}{||x||_{v}} \le \sup_{x \neq 0} \frac{||Ax||_{v} + ||Bx||_{v}}{||x||_{v}} \le \sup_{x \neq 0} \frac{||Ax||_{v} + ||Bx||_{v}}{||x||_{v}} \le \sup_{x \neq 0} \frac{||Ax||_{v}}{||x||_{v}} + \sup_{x \neq 0} \frac{||Bx||_{v}}{||x||_{v}} = ||A|| + ||B||$$

6 $B=0 \Rightarrow ||B||=0$, valamint $A \cdot B = A \cdot 0 = 0 \Rightarrow ||AB||=0$. Az egyenlőtlenség mindkét oldalán 0 áll, tehát igaz az állítás.

Biz. (folytatás): Ha $B \neq 0$, akkor

$$\begin{split} \|A \cdot B\| &= \sup_{x \neq 0} \frac{\|ABx\|_{v}}{\|x\|_{v}} = \sup_{x \neq 0, Bx \neq 0} \frac{\|ABx\|_{v}}{\|Bx\|_{v}} \cdot \frac{\|Bx\|_{v}}{\|x\|_{v}} \leq \\ &\leq \sup_{Bx \neq 0} \frac{\|ABx\|_{v}}{\|Bx\|_{v}} \cdot \sup_{x \neq 0} \frac{\|Bx\|_{v}}{\|x\|_{v}} \leq \sup_{v \neq 0} \frac{\|Ay\|_{v}}{\|y\|_{v}} \cdot \sup_{x \neq 0} \frac{\|Bx\|_{v}}{\|x\|_{v}} = \|A\| \cdot \|B\| \,. \end{split}$$

Meggondolható, hogy a $Bx \neq 0$ feltétel nem változtatja meg a szuprémum értékét; közben bevezettük az y := Bx jelölést.

Megjegyzések:

• Átfogalmazás:

$$||A|| = \sup_{x \neq 0} \frac{||Ax||_{v}}{||x||_{v}} = \sup_{||y||_{v} = 1} ||Ay||_{v}.$$

- A sup helyett max is írható.
- Átfogalmazás:

$$||A|| = \sup_{x \neq 0} \frac{||Ax||_{v}}{||x||_{v}} \implies \frac{||Ax||_{v}}{||x||_{v}} \leq ||A|| \implies ||Ax||_{v} \leq ||A|| \cdot ||x||_{v}.$$

Sőt: ||A|| a legkisebb ilyen felső korlát.

Definíció: illeszkedő normák

Ha egy mátrix- és egy vektornormára

$$||Ax||_{\mathbf{v}} \le ||A|| \cdot ||x||_{\mathbf{v}}$$
 $(\forall x \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n})$

teljesül, akkor illeszkedőknek nevezzük őket.

Állítás: természetes mátrixnormák illeszkedéséről

A természetes mátrixnormák illeszkednek az őket indukáló vektornormákhoz.

Biz.: Láttuk az előbb. Az x = 0 eset meggondolandó.

Milyen mátrixnormákat indukálnak az elterjedt vektornormák?

Tétel: Nevezetes mátrixnormák $(1, 2, \infty)$

A $\|.\|_p$ $(p=1,2,\infty)$ vektornormák által indukált mátrixnormák:

- $\|A\|_1 = \max_{j=1}^n \sum_{i=1}^n |a_{ij}|$ (oszlopnorma),
- $||A||_{\infty} = \max_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|$ (sornorma),
- $\|A\|_2 = \left(\max_{i=1}^n \lambda_i(A^\top A)\right)^{1/2}$ (spektrálnorma).

Jel.: $\lambda_i(M)$: az M mátrix i-edik sajátértéke ($Mv = \lambda v, v \neq 0$).

Állítás: $||A||_1 = \max_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|$.

A bizonyítás "dallama":

- Az adott f(A) értékre: $||Ax||_{V} \le f(A) \cdot ||x||_{V}$.
- Van olyan x vektor, hogy $||Ax||_{V} = f(A) \cdot ||x||_{V}$.
- Ekkor az f(A) érték, tényleg a $\|.\|_v$ vektornorma által indukált mátrixnorma, ezért jelölhetjük így: $\|A\|_v$.

Bizonyítás ||.||₁ esetén:

$$||Ax||_{1} = \sum_{i=1}^{n} |(Ax)_{i}| = \sum_{i=1}^{n} \left| \sum_{j=1}^{n} a_{ij} x_{j} \right| \leq \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}| \cdot |x_{j}| =$$

$$= \sum_{j=1}^{n} \left(|x_{j}| \cdot \sum_{i=1}^{n} |a_{ij}| \right) \leq \left(\max_{j=1}^{n} \sum_{i=1}^{n} |a_{ij}| \right) \cdot ||x||_{1}.$$

Legyen $x = e_k$, ahol a k-adik oszlopösszeg maximális. Ekkor

$$\|Ae_k\|_1 = \underbrace{\dots}_{\underline{\|e_k\|_1}}.$$

Bizonyítás $\|.\|_{\infty}$ esetén:

Állítás:
$$\|A\|_{\infty} = \max_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|.$$

- A becslés ugyanolyan stílusú, mint $\|.\|_1$ esetén. Gyakorlaton.
- Válasszuk az

$$x = \begin{pmatrix} \pm 1 \\ \vdots \\ \pm 1 \end{pmatrix}$$

vektort az egyenlőséghez, megfelelően választott előjelekkel...

Bizonyítás $\|.\|_2$ esetén:

Állítás:
$$||A||_2 = \left(\max_{i=1}^n \lambda_i(A^\top A)\right)^{1/2}$$
.

- Előbb belátjuk, hogy a sajátértékek nemnegatívak.
- A becslés a diagonalizálás alapján adódik.
- Válasszuk a legnagyobb sajátértékhez tartozó sajátvektort az egyenlőséghez.

Biz. (folytatás): Először belátjuk, hogy $A^{T}A$ szimmetrikus és sajátértékei nemnegatívak (azaz $A^{T}A$ pozitív szemidefinit).

- $(A^{\top}A)^{\top} = A^{\top}(A^{\top})^{\top} = A^{\top}A$, azaz $A^{\top}A$ szimmetrikus, vagyis $A^{\top}A$ sajátértékei valósak.
- Legyen $y \neq 0$ az $A^{T}A$ mátrix λ -hoz tartozó sajátvektora, azaz

$$A^{\top}Ay = \lambda \cdot y.$$

Szorozzuk meg mindkét oldalt balról az y^{\top} vektorral:

$$y^{\top} A^{\top} A y = \lambda \cdot y^{\top} y.$$

Innen

$$\lambda = \frac{y^{\top}A^{\top}Ay}{y^{\top}y} = \frac{(Ay)^{\top}(Ay)}{y^{\top}y} = \frac{\|Ay\|_2^2}{\|y\|_2^2} \ge 0.$$

Biz. (folytatás): Ezután az indukált mátrixnormák definícióját követve *Ax* normáját fogjuk vizsgálni.

Kihasználjuk, hogy $A^{\top}A$ szimmetrikus, és így (lásd lineáris algebra) létezik U ortogonális (unitér) mátrix, amire

$$A^{\top}A = U^{\top}DU \Leftrightarrow UA^{\top}AU^{\top} = D$$

úgy, hogy a diagonálisban $A^{\top}A$ sajátértékei vannak (ezek nemnegatívak). Bevezetjük az y=Ux jelölést.

$$||Ax||_{2}^{2} = (Ax)^{\top}(Ax) = x^{\top}A^{\top}Ax = x^{\top}U^{\top}DUx = (Ux)^{\top}D(Ux)$$

= $y^{\top}Dy = \sum_{i=1}^{n} \underbrace{d_{ii}}_{>0} \cdot |y_{i}|^{2} \le \max_{i=1}^{n} d_{ii} \cdot \sum_{i=1}^{n} |y_{i}|^{2} = \max_{i=1}^{n} \lambda_{i}(A^{\top}A) \cdot ||y||_{2}^{2}.$

Belátjuk, hogy $||y||_2^2 = ||x||_2^2$.

$$\|y\|_2^2 = y^\top y = (Ux)^\top (Ux) = x^\top U^\top Ux = x^\top x = \|x\|_2^2$$
, ezért $\|Ax\|_2^2 \le \ldots \le \max_{i=1}^n \lambda_i (A^\top A) \cdot \|x\|_2^2$.

 $x \neq 0$ esetén:

$$\frac{\|Ax\|_2}{\|x\|_2} \le \left(\max_{i=1}^n \lambda_i(A^\top A)\right)^{1/2}$$

Még azt kell belátni, hogy van is olyan $x \neq 0$ vektor, amire a szuprémum felvétetik.

Legyen $\lambda_m = \max \lambda_i(A^\top A)$ és $v_m \neq 0$, $\|v_m\|_2 = 1$ a hozzá tartozó sajátvektor.

$$||Av_m||_2^2 = (Av_m)^\top (Av_m) = v_m^\top \underbrace{A^\top A v_m}_{\lambda_m \cdot v_m} = \lambda_m \cdot \underbrace{v_m^\top v_m}_{=1} = \lambda_m.$$

Definíció: spektrálsugár

Egy
$$A \in \mathbb{R}^{n \times n}$$
 mátrix spektrálsugara $\varrho(A) := \max_{i=1}^{n} |\lambda_i(A)|$.

Megj.: A spektrálnormát a spektrálsugárral is meg tudjuk adni:

$$||A||_2 = \sqrt{\varrho(A^\top A)}.$$

Állítás:

Egy $A \in \mathbb{R}^{n \times n}$ szimmetrikus (önadjungált) mátrix spektrálnormája

$$||A||_2 = \varrho(A).$$

Biz.: Trivi.

Állítás:

Ha A normális ($A^*A = AA^*$), akkor $\|A\|_2 = \varrho(A)$. (Spec.: ha A önadjungált, akkor normális.)

Biz.: Lineáris algebrából ismert, hogy normális mátixok esetén létezik U unitér hasonlósági transzformáció, mellyel A diagonális alakra hozható.

$$U^*AU = D = \operatorname{diag}(\lambda_i(A)) \Leftrightarrow A = UDU^*$$

$$A^*A = (UDU^*)^*UDU^* = UD^*U^*UDU^* = UD^*DU^*$$

$$\lambda_i(A^*A) = \lambda_i(D^*D) = |\lambda_i(A)|^2$$

$$\varrho(A^*A) = \varrho(A)^2$$

Innen $||A||_2 = \varrho(A^*A)^{1/2} = \varrho(A)$.

Mátrixnormák

Példa: $\|.\|_1$ és $\|.\|_{\infty}$ mátrixnormára

Számítsuk ki a következő mátrix $\|.\|_1$ és $\|.\|_{\infty}$ mátrixnormáját.

$$A = \begin{bmatrix} 1 & -4 \\ 2 & 2 \end{bmatrix}$$

$$||A||_1 = \max\{1+2, |-4|+2\} = 6$$

 $||A||_{\infty} = \max\{1+|-4|, 2+2\} = 5$

Példa: ||.||₂ mátrixnorma

Számítsuk ki a következő mátrix $\|.\|_2$ mátrixnormáját.

$$A = \begin{bmatrix} 1 & -4 \\ 2 & 2 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 1 & 2 \\ -4 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & -4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 20 \end{bmatrix},$$

Szerencsénkre látjuk a sajátértékeit...

$$||A||_2 = \left(\max_{i=1}^n \lambda_i(A^\top A)\right)^{1/2} = \sqrt{\max\{5, 20\}} = \sqrt{20} \approx 4.4721.$$

Tartalomjegyzék

1 Vektornormák

- 2 Mátrixnormák
- 3 Természetes mátrixnormák, avagy indukált normák
- 4 Mátrixnormák további tulajdonságai válogatás

Állítás

A Frobenius-norma nem természetes mátrixnorma.

Biz.: Tekintsük az $I \in \mathbb{R}^{n \times n}$ egységmátrix normáját.

- Indukált mátrixnormák esetén $\|I\| = \sup_{x \neq 0} \frac{\|Ix\|_v}{\|x\|_v} = 1.$
- Másrészt $||I||_F = \sqrt{n}$.
- Tehát nincs olyan vektornorma, ami a Frobenius-normát indukálná (ha n>1).

Állítás: spektrálsugár és norma

$$\varrho(A) \leq ||A||$$

Biz.: Belátjuk, hogy $|\lambda| \leq \|A\|$. (Legyen λ tetszőleges sajátérték és $v \neq 0$ a hozzátartozó sajátvektor.)

$$Av = \lambda v$$

$$Avv^{\top} = \lambda vv^{\top}$$

$$||A|| \cdot ||vv^{\top}|| \ge ||Avv^{\top}|| = ||\lambda vv^{\top}|| = |\lambda| \cdot ||vv^{\top}||$$

Leosztva
$$||vv^{\top}|| \neq 0$$
-val $||A|| \geq |\lambda|$.

Feladatok gyakorlatra

lgazoljuk a következő állításokat.

- (a) Ha Q ortogonális (unitér), akkor
 - $||Qx||_2 = ||x||_2$,
 - $||Q||_2 = 1$,
 - $\|QA\|_2 = \|AQ\|_2 = \|A\|_2$.

Feladatok gyakorlatra

- **(b)** $||A||_F^2 = \text{tr}(A^T A)$, ahol $\text{tr}(B) := \sum_{k=1}^n b_{kk}$ a mátrix *nyoma*.
- (c) Ha Q ortogonális (unitér), akkor $||QA||_F = ||AQ||_F = ||A||_F$.
- (d) $||A||_F^2 = \sum_{i=1}^n \lambda_i (A^\top A)$.
- (e) $\|.\|_F$ és $\|.\|_2$ ekvivalens mátrixnormák.
- (f) A Frobenius-norma illeszkedik a kettes vektornormához.

Példák Matlab-ban

- **1** Indukált mátrixnorma szemléltetése \mathbb{R}^2 , p=2 esetén.
- **2** Indukált mátrixnormák közelítő számítása tetszőleges \mathbb{R}^n és p esetén ($m=100,\ldots,1000$ vektor próbájával).