

Practical Machine Learning

Day 8: Mar22 DBDA

Kiran Waghmare

Agenda

Preprocessing Techniques

Data Integration

- Data integration:
- Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id = B.cust-#
 - Integrate metadata from different sources
- Entity identification problem:
 - Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may be able to be detected by correlation analysis and covariance analysis
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

Correlation Analysis (Nominal Data)

• X² (chi-square) test

$$\chi^{2} = \sum \frac{(Observed - Expected)^{2}}{Expected}$$

- The larger the X² value, the more likely the variables are related
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
- Correlation does not imply causality
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	250(90)	200(360)	450
Not like science fiction	50(210)	1000(840)	1050
Sum(col.)	300	1200	1500

 X² (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

It shows that like_science_fiction and play_chess are correlated in the group

Correlation Analysis (Numeric Data)

Correlation coefficient (also called Pearson's product moment coefficient)

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{(n-1)\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n\overline{A}\overline{B}}{(n-1)\sigma_A \sigma_B}$$

where n is the number of tuples, and are the respective means of A and B, σ_A and σ_B are the respective standard deviation of A and B, and $\Sigma(a_ib_i)$ is the sum of the AB cross-product.

- If $r_{A,B} > 0$, A and B are positively correlated (A's values increase as B's). The higher, the stronger correlation.
- $r_{A,B} = 0$: independent; $r_{AB} < 0$: negatively correlated

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1.

Data Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values s.t.
 each old value can be identified with one of the new values
- Methods
 - Smoothing: Remove noise from data
 - Attribute/feature construction
 - New attributes constructed from the given ones
 - Aggregation: Summarization, data cube construction
 - Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
 - Discretization: Concept hierarchy climbing

20

Normalization

Min-max normalization: to [new_min_A, new_max_A]

$$v' = v - min_1$$
 $max_1 - min_1$
 $max_2 - min_3$
 $max_4 - min_4$

- Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,000 is mapped to
- Z-score normalization (μ: mean, σ: standard deviation):

$$\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$$

$$v' = \frac{v - \mu_A}{\sigma_A}$$

- Ex. Let $\mu = 54,000$, $\sigma = 16,000$. Then
- · Normalization by decimal scaling

$$\frac{73,600 - 54,000}{16,000} = 1.225$$

$$v' = \frac{v}{10^{j}}$$

Where j is the smallest integer such that Max(|v'|) < 1

Data Reduction Strategies

- Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet
 produces the same (or almost the same) analytical results
- Why data reduction? A database/data warehouse may store terabytes of data. Complex data analysis
 may take a very long time to run on the complete data set.
- Data reduction strategies
 - Dimensionality reduction, e.g., remove unimportant attributes
 - Wavelet transforms
 - Principal Components Analysis (PCA)
 - · Feature subset selection, feature creation
 - Numerosity reduction (some simply call it: Data Reduction)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data cube aggregation
 - Data compression

Mapping Data to a New Space

- Fourier transform
- Wavelet transform

Two Sine Waves

Two Sine Waves + Noise

Frequency

Parametric Data Reduction: Regression and Log-Linear Models

Linear regression

- Data modeled to fit a straight line
- Often uses the least-square method to fit the line

Multiple regression

 Allows a response variable Y to be modeled as a linear function of multidimensional feature vector

Log-linear model

Approximates discrete multidimensional probability distributions

Regression Analysis

- Regression analysis: A collective name for techniques for the modeling and analysis of numerical data consisting of values of a *dependent variable* (also called *response variable* or *measurement*) and of one or more *independent variables* (aka. *explanatory variables* or *predictors*)
- The parameters are estimated so as to give a "best fit" of the data
- Most commonly the best fit is evaluated by using the *least* squares method, but other criteria have also been used

 Used for prediction (including forecasting of time-series data), inference, hypothesis testing, and modeling of causal relationships

Histogram Analysis

• Divide data into buckets and store average (sum) for each bucket

- Partitioning rules:
 - Equal-width: equal bucket range
 - Equal-frequency (or equal-depth)

Clustering

- Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is clustered but not if data is "smeared"
- Can have hierarchical clustering and be stored in multi-dimensional index tree structures
- There are many choices of clustering definitions and clustering algorithms
- Cluster analysis will be studied in depth in Chapter 10

Sampling

- Sampling: obtaining a small sample s to represent the whole data set N
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
- Key principle: Choose a representative subset of the data
 - Simple random sampling may have very poor performance in the presence of skew
 - Develop adaptive sampling methods, e.g., stratified sampling:
- Note: Sampling may not reduce database I/Os (page at a time)

Sampling: With or without Replacement

Sampling: Cluster or Stratified Sampling

Raw Data

Cluster/Stratified Sample

Data Cube Aggregation

- The lowest level of a data cube (base cuboid)
 - The aggregated data for an individual entity of interest
 - E.g., a customer in a phone calling data warehouse
- Multiple levels of aggregation in data cubes
 - Further reduce the size of data to deal with
- Reference appropriate levels
 - Use the smallest representation which is enough to solve the task
- Queries regarding aggregated information should be answered using data cube, when possible

Data Compression

Discretization

- Three types of attributes
 - Nominal—values from an unordered set, e.g., color, profession
 - Ordinal—values from an ordered set, e.g., military or academic rank
 - **Numeric**—real numbers, e.g., integer or real numbers
- **Discretization:** Divide the range of a continuous attribute into intervals
 - Interval labels can then be used to replace actual data values
 - Reduce data size by discretization
 - Supervised vs. unsupervised
 - Split (top-down) vs. merge (bottom-up)
 - Discretization can be performed recursively on an attribute
 - Prepare for further analysis, e.g., classification

Binning Methods for Data Smoothing

- □ Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by **bin means**:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by **bin boundaries**:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Discretization Without Using Class Labels (Binning vs. Clustering)

31

Automatic Concept Hierarchy Generation

- Some hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute in the data set
 - The attribute with the most distinct values is placed at the lowest level of the hierarchy
 - Exceptions, e.g., weekday, month, quarter, year

Summary

- Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
- Data cleaning: e.g. missing/noisy values, outliers
- **Data integration** from multiple sources:
 - Entity identification problem
 - Remove redundancies
 - Detect inconsistencies
- Data reduction
 - Dimensionality reduction
 - Numerosity reduction
 - Data compression
- Data transformation and data discretization
 - Normalization
 - Concept hierarchy generation

```
In [2]: dataset= pd.read_csv('D:/Test/Data.csv')
In [4]: dataset.head()
Out[4]
             Country
                     Age
                            Salary
                                     chased
              France 44.0 72000.0
          0
                                         No
               Spain 27.0 48000.0
                                        Yes
            Germany 30.0 54000.0
                                         No
          3
               Spain 38.0 61000.0
                                         No
            Germany 40.0
                                        Yes
                             NaN
```

```
In [5]: X=dataset.iloc[:,:-1].values
y=dataset.iloc[:,3].values
```

```
In [12]: from sklearn.preprocessing import LabelEncoder, OneHotEncoder
         labelX=LabelEncoder()
         X[:,0]=labelX.fit_transform(X[:,0])
In [13]: X
Out[13]: array([[0, 44.0, 72000.0],
                [2, 27.0, 48000.0],
                [1, 30.0, 54000.0],
                [2, 38.0, 61000.0],
                [1, 40.0, 63777.7777777778],
                [0, 35.0, 58000.0],
                [2, 38.777777777778, 52000.0],
                [0, 48.0, 79000.0],
                [1, 50.0, 83000.0],
                [0, 37.0, 67000.0]], dtype=object)
 In [ ]: from sklearn.preprocessing import OneHotEncoder
 In [ ]:
```

