Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

ЛАБОРАТОРНАЯ РАБОТА №1

по дисциплине «Прикладные интеллектуальные системы и экспертные системы»

Бинарная классификация фактографических данных

Студент Посаднев В.В.

Группа М-ИАП-22-1

Руководитель Кургасов В.В.

Доцент

Задание кафедры

- 1) В среде Jupyter Notebook создать новый ноутбук (Notebook)
- 2) Импортировать необходимые для работы библиотеки и модули
- 3) Загрузить данные в соответствии с вариантом
- 4) Вывести первые 15 элементов выборки (координаты точек и метки класса)
- 5) Отобразить на графике сгенерированную выборку. Объекты разных классов должны иметь разные цвета.
- 6) Разбить данные на обучающую (train) и тестовую (test) выборки в пропорции 75% 25% соответственно.
- 7) Отобразить на графике обучающую и тестовую выборки. Объекты разных классов должны иметь разные цвета.
- 8) Реализовать модели классификаторов, обучить их на обучающем множестве. Применить модели на тестовой выборке, вывести результаты классификации:
 - Истинные и предсказанные метки классов
 - Матрицу ошибок (confusion matrix)
 - Значение полноты, точности, f1-меры и аккуратности
 - Значение площади под кривой ошибок (AUC ROC)
 - Отобразить на графике область принятия решений по каждому классу В качестве методов классификации использовать:
 - Метод к-ближайших соседей (n_neighbors = {1, 3, 5, 9})
 - Наивный байесовский метод
 - Случайный лес (n_estimators = {5, 10, 15, 20, 50})
- 9) По каждому пункту работы занести в отчет программный код и результат вывода.
- 10) По результатам п.8 занести в отчет таблицу с результатами классификации всеми методами и выводы о наиболее подходящем методе классификации ваших данных.

11) Изучить, как изменится качестве классификации, если на тестовую часть выделить 10% выборки, 35% выборки. Для этого повторить п.п. 6-10.

Вариант №11

Вид классов: classification

random_state: 15

class_sep: 0.6

n_features: 2

n_redundant: 0

n_informative: 1

n_clusters_per_class: 1

Оглавление

Ход работы	5
Подготовка данных	5
Классификация с помощью метода к-ближайших соседей	8
Классификация с помощью наивного байесовского классификатора	16
Классификация с помощью случайного леса	18
Анализ результатов	28
Заключение	33
Приложение А	34
Приложение Б	40
Приложение В	46

Ход работы

Подготовка данных

Для генерации данных воспользуемся функцией make_classification из пакета sklearn.datasets. Результат генерации данных и вывод первых 15 значений представлен на рисунке 1.

```
X, y = make_classification(n_features=2,
                                     n_samples=1000,
      2
                                     n_redundant=0,
      3
                                     n_informative=1,
      4
                                     n_clusters_per_class=1,
      5
                                     random_state=15,
      6
                                     class_sep=0.6)
      7
        print('Координаты точек: ')
In 5
         print(X[:15])
     2
         print('Метки класса: ')
         print(y[:15])
          Координаты точек:
          [[-0.32654509 -0.48287283]
           [-0.56423228 0.36908979]
           [ 1.80734839  0.64084024]
           [-1.13815022 -0.3922336 ]
           [-0.77269253 0.98787649]
           [-0.76362783 -1.03345078]
           [ 1.27084064    1.02090267]
           [ 0.28768416  0.02922487]
           [-0.19381938 -1.04395297]
           [-0.8936574 -0.64384405]
           [ 0.30631716  0.81656104]
           [-1.64047657 0.40696626]
           [-0.49234077 -1.04988151]
           [ 1.17360256 -0.58037911]
           [-0.66270457 -0.25318302]]
          Метки класса:
          [0 1 1 0 1 0 1 1 0 0 1 1 0 0 0]
```

Рисунок 1 – Генерация данных и вывод первых 15-ти результатов

Для отображения на графике сгенерированной выборки с выделением классов разными цветами воспользуемся функцией scatter из библиотеки matplotlib.pyplot. Результат визуализации данных представлен на рисунке 2.

```
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.show()
```


Рисунок 2 — Визуализация сгенерированных данных

Для разделения данных на обучающую и тестовую выборку воспользуемся функцией train_test_split из пакета sklearn.model_selection. Скрипт для разделения данных представлен на рисунке 3. Результат разбиения выборки на тестовую и обучающую с последующей их визуализацией представлены на рисунке 4 и 5.

Рисунок 3 – Код для разделения выборки

Обучающая выборка

Рисунок 4 — Визуализация обучающей выборки

Рисунок 5 – Визуализация тестовой выборки

Классификация с помощью метода к-ближайших соседей

Использование параметра n_neighbors = 1. Составленный код для использования данного классификатора с данным параметром представлен на рисунке 6. Полученная информация о точности классификации при использовании данного метода представлена на рисунке 7.

```
knn = KNeighborsClassifier(n_neighbors=1, metric='euclidean')

# Обучаем модель данных
knn.fit(X_train, y_train)

# Оцениваем качество модели
prediction = knn.predict(X_test)

# Выводим сводную информацию
show_info(knn, 'ближайшие соседи (1)', y_test, prediction)
```

Рисунок 6 – Код для классификатора с помощью метода к-ближайших соседей с параметром n_neighbors = 1

Матрица неточностей [[113 8] [20 109]]

Точность классификации: 0.888

Полнота:

	precision	recall	f1-score	support
Θ	0.85	0.93	0.89	121
1	0.93	0.73	0.89	129
accuracy			0.89	250
macro avg	0.89	0.89	0.89	250
weighted avg	0.89	0.89	0.89	250

Площадь под кривой: 0.8894227689153693

БЛИЖАЙШИЕ СОСЕДИ (1)

Рисунок 7 — Результат классификации с помощью метода к-ближайших соседей с параметром n_neighbors = 1

Использование параметра n_neighbors = 3. Составленный код для использования данного классификатора с данным параметром представлен на рисунке 8. Полученная информация о точности классификации при использовании данного метода представлена на рисунке 9.

```
knn = KNeighborsClassifier(n_neighbors=3, metric='euclidean')

# Обучаем модель данных
knn.fit(X_train, y_train)

# Оцениваем качество модели
prediction = knn.predict(X_test)

# Выводим сводную информацию
show_info(knn, 'ближайшие соседи (3)', y_test, prediction)
```

Рисунок 8 – Код для классификатора с помощью метода к-ближайших соседей с параметром n_neighbors = 3

Матрица неточностей [[112 9] [13 116]]

Точность классификации: 0.912

Полнота:

		precision	recall	f1-score	support
	0	0.90	0.93	0.91	121
	1	0.93	0.90	0.91	129
accur	асу			0.91	250
macro	avg	0.91	0.91	0.91	250
weighted	avg	0.91	0.91	0.91	250

Площадь под кривой: 0.9124223204561471

БЛИЖАЙШИЕ СОСЕДИ (3)

Первый класс

Рисунок 9 — Результат классификации с помощью метода к-ближайших соседей с параметром n_neighbors = 3

Использование параметра n_neighbors = 5. Составленный код для использования данного классификатора с данным параметром представлен на рисунке 10. Полученная информация о точности классификации при использовании данного метода представлена на рисунке 11.

```
knn = KNeighborsClassifier(n_neighbors=5, metric='euclidean')

# Обучаем модель данных
knn.fit(X_train, y_train)

# Оцениваем качество модели
prediction = knn.predict(X_test)

# Выводим сводную информацию
show_info(knn, 'ближайшие соседи (5)', y_test, prediction)
```

Рисунок 10 – Код для классификатора с помощью метода к-ближайших соседей с параметром n_neighbors = 5

Матрица неточностей [[112 9] [16 113]]

Точность классификации: 0.9

Полнота:

		precision	recall	f1-score	support
	0	0.88	0.93	0.90	121
	1	0.93	0.88	0.90	129
accu	racy			0.90	250
macro	avg	0.90	0.90	0.90	250
weighted	avg	0.90	0.90	0.90	250

Площадь под кривой: 0.9007944134794029

БЛИЖАЙШИЕ СОСЕДИ (5)

Первый класс

Рисунок 11 — Результат классификации с помощью метода к-ближайших соседей с параметром n_neighbors = 5

Использование параметра n_neighbors = 9. Составленный код для использования данного классификатора с данным параметром представлен на рисунке 12. Полученная информация о точности классификации при использовании данного метода представлена на рисунке 13.

```
knn = KNeighborsClassifier(n_neighbors=9, metric='euclidean')

# Обучаем модель данных
knn.fit(X_train, y_train)

# Оцениваем качество модели
prediction = knn.predict(X_test)

# Выводим сводную информацию
show_info(knn, 'ближайшие соседи (9)', y_test, prediction)
```

Рисунок 12 – Код для классификатора с помощью метода к-ближайших соседей с параметром n_neighbors = 9

Матрица неточностей

[[116 5] [15 114]]

Точность классификации: 0.92

Полнота:

		precision	recall	f1-score	support
	Θ	0.89	0.96	0.92	121
	1	0.96	0.88	0.92	129
accura	су			0.92	250
macro a	vg	0.92	0.92	0.92	250
weighted a	vg	0.92	0.92	0.92	250

Площадь под кривой: 0.9211993080914858

БЛИЖАЙШИЕ СОСЕДИ (9)

Первый класс

Рисунок 13 — Результат классификации с помощью метода к-ближайших соседей с параметром n_neighbors = 9

Классификация с помощью наивного байесовского классификатора

Составленный код для использования данного классификатора представлен на рисунке 14. Полученная информация о точности классификации при использовании данного метода представлена на рисунке 15.

```
from sklearn.naive_bayes import GaussianNB

nb = GaussianNB()

# Обучаем модель данных
nb.fit(X_train, y_train)

# Оцениваем качество модели
prediction = nb.predict(X_test)

# Выводим сводную информацию
show_info(nb, 'Наивный байесовский классификатор', y_test, prediction)
```

Рисунок 14 — Код для классификатора с помощью наивного байесовского классификатора

Матрица неточностей [[117 4] [20 109]]

Точность классификации: 0.904

Полнота:

		precision	recall	f1-score	support
	Θ	0.85	0.97	0.91	121
	1	0.96	0.84	0.90	129
accu	racy			0.90	250
macro	avg	0.91	0.91	0.90	250
weighted	avg	0.91	0.90	0.90	250

Площадь под кривой: 0.9059516945352041

НАИВНЫЙ БАЙЕСОВСКИЙ КЛАССИФИКАТОР

Первый класс

Рисунок 15 — Результат классификации с помощью наивного байесовского классификатора

Классификация с помощью случайного леса

Использование параметра n_estimators = 5. Составленный код для использования данного классификатора с данным параметром представлен на рисунке 16. Полученная информация о точности классификации при использовании данного метода представлена на рисунке 17.

```
from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier(n_estimators=5)

# Обучаем модель данных

rfc.fit(X_train, y_train)

# Оцениваем качество модели

prediction = rfc.predict(X_test)

# Выводим сводную информацию

show_info(rfc, 'случайный лес (5)', y_test, prediction)
```

Рисунок 16 – Код для классификатора с помощью случайного леса с параметром n_ estimators = 5

Матрица неточностей [[114 7] [16 113]]

Точность классификации: 0.908

Полнота:

	precision	recall	f1-score	support
Θ	0.88	0.94	0.91	121
1	0.94	0.88	0.91	129
accuracy			0.91	250
macro avg	0.91	0.91	0.91	250
weighted avg	0.91	0.91	0.91	250

Площадь под кривой: 0.9090588762893203

СЛУЧАЙНЫЙ ЛЕС (5)

Первый класс

Рисунок 17 — Результат классификации с помощью случайного леса с параметром n_ estimators = 5

Использование параметра n_estimators = 10. Составленный код для использования данного классификатора с данным параметром представлен на рисунке 18. Полученная информация о точности классификации при использовании данного метода представлена на рисунке 19.

```
rfc = RandomForestClassifier(n_estimators=10)

# Обучаем модель данных
rfc.fit(X_train, y_train)

# Оцениваем качество модели
prediction = rfc.predict(X_test)

# Выводим сводную информацию
show_info(rfc, 'случайный лес (10)', y_test, prediction)
```

Рисунок 18 — Код для классификатора с помощью случайного леса с параметром n_ estimators = 10

Матрица неточностей

[[116 5] [16 113]]

Точность классификации: 0.916

Полнота:

		precision	recall	f1-score	support
	Θ	0.88	0.96	0.92	121
	1	0.96	0.88	0.91	129
accur	racy			0.92	250
macro	avg	0.92	0.92	0.92	250
weighted	avg	0.92	0.92	0.92	250

Площадь под кривой: 0.9173233390992377

СЛУЧАЙНЫЙ ЛЕС (10)

Первый класс

Рисунок 19 — Результат классификации с помощью случайного леса с параметром n_ estimators = 10

Использование параметра n_estimators = 15. Составленный код для использования данного классификатора с данным параметром представлен на рисунке 20. Полученная информация о точности классификации при использовании данного метода представлена на рисунке 21.

```
rfc = RandomForestClassifier(n_estimators=15)

# Обучаем модель данных
rfc.fit(X_train, y_train)

# Оцениваем качество модели
prediction = rfc.predict(X_test)

# Выводим сводную информацию
show_info(rfc, 'случайный лес (15)', y_test, prediction)
```

Рисунок 20 — Код для классификатора с помощью случайного леса с параметром n_ estimators = 15

Матрица неточностей [[114 7] [14 115]]

Точность классификации: 0.916

Полнота:

	precision	recall	f1-score	support
0	0.89	0.94	0.92	121
1	0.94	0.89	0.92	129
accuracy			0.92	250
macro avg	0.92	0.92	0.92	250
weighted avg	0.92	0.92	0.92	250

Площадь под кривой: 0.9168108142738164

СЛУЧАЙНЫЙ ЛЕС (15)

Первый класс

Рисунок 21 — Результат классификации с помощью случайного леса с параметром n_e estimators = 15

Использование параметра n_estimators = 20. Составленный код для использования данного классификатора с данным параметром представлен на рисунке 22. Полученная информация о точности классификации при использовании данного метода представлена на рисунке 23.

```
rfc = RandomForestClassifier(n_estimators=20)

# Обучаем модель данных
rfc.fit(X_train, y_train)

# Оцениваем качество модели
prediction = rfc.predict(X_test)

# Выводим сводную информацию
show_info(rfc, 'случайный лес (20)', y_test, prediction)
```

Рисунок 22 – Код для классификатора с помощью случайного леса с параметром n_ estimators = 20

Матрица неточностей [[115 6] [15 114]]

Точность классификации: 0.916

Полнота:

	precision	recall	f1-score	support
0	0.88	0.95	0.92	121
1	0.95	0.88	0.92	129
accuracy			0.92	250
macro avg	0.92	0.92	0.92	250
weighted avg	0.92	0.92	0.92	250

Площадь под кривой: 0.9170670766865269

СЛУЧАЙНЫЙ ЛЕС (20)

Первый класс

Рисунок 23 — Результат классификации с помощью случайного леса с параметром n_ estimators = 20

Использование параметра n_estimators = 50. Составленный код для использования данного классификатора с данным параметром представлен на рисунке 24. Полученная информация о точности классификации при использовании данного метода представлена на рисунке 25.

```
rfc = RandomForestClassifier(n_estimators=50)

# Обучаем модель данных
rfc.fit(X_train, y_train)

# Оцениваем качество модели
prediction = rfc.predict(X_test)

# Выводим сводную информацию
show_info(rfc, 'случайный лес (50)', y_test, prediction)
```

Рисунок 24 – Код для классификатора с помощью случайного леса с параметром n_ estimators = 50

Матрица неточностей [[116 5] [16 113]]

Точность классификации: 0.916

Полнота:

	precision	recall	f1-score	support
0	0.88	0.96	0.92	121
1	0.96	0.88	0.91	129
accupacy			0.92	250
accuracy macro avg	0.92	0.92	0.92	250
weighted avg	0.92	0.92	0.92	250

Площадь под кривой: 0.9173233390992377

СЛУЧАЙНЫЙ ЛЕС (50)

Первый класс

Рисунок 24 — Результат классификации с помощью случайного леса с параметром n_ estimators = 50

Анализ результатов

Таблица 1 – Результат классификации по методам при 75% обучающей выборки

Метод с параметрами	Точность	Площадь под кривой	
Метод к-ближайших	0.888	0.889	
соседей (n_neighbors = 1)	0.000	0.007	
Метод к-ближайших	0.912	0.912	
coceдей (n_neighbors = 3)	0.912	0.512	
Метод к-ближайших	0.9	0.9	
coceдей (n_neighbors = 5)	0. ,	0.5	
Метод к-ближайших	0.92	0.921	
coceдей (n_neighbors = 9)	3.7 2	0.721	
Наивный байесовский	0.904	0.906	
классификатор			
Случайный лес	0.908	0.909	
(n_estimators = 5)			
Случайный лес	0.916	0.917	
(n_estimators = 10)			
Случайный лес	0.916	0.917	
(n_estimators = 15)			
Случайный лес	0.916	0.917	
(n_estimators = 20)	-		
Случайный лес	0.916	0.917	
(n_estimators = 50)	-	-	

По результатам представленных в таблице 1 можно сделать вывод, что лучше всего себя показали метод к-ближайших соседей при значении параметра n_neighbors = 9 и метод случайного леса при значении параметра n_estimators = 10 и выше.

Рассмотрим случай уменьшения тестовой выборки. Установим, что тестовая выборка составляет 10% и построим графики визуализации обучающей и тестовой выборки, данные графики представлены на рисунках 25 и 26 соответственно.

Рисунок 25 – Обучающая выборка при 90% от общего размера

Рисунок 26 – Тестовая выборка при 10% от общего размера

Таблица 2 – Результат классификации по методам при 90% обучающей выборки

Метод с параметрами	Точность	Площадь под кривой
Метод к-ближайших	0.92	0.92
coceдей (n_neighbors = 1)		
Метод к-ближайших	0.91	0.91
соседей (n_neighbors = 3)		
Метод к-ближайших	0.9	0.9
соседей (n_neighbors = 5)		
Метод к-ближайших	0.9	0.9
соседей (n_neighbors = 9)		
Наивный байесовский	0.9	0.9
классификатор		
Случайный лес	0.88	0.88
$(n_{estimators} = 5)$		
Случайный лес	0.9	0.9
(n_estimators = 10)		
Случайный лес	0.88	0.88
(n_estimators = 15)		
Случайный лес	0.91	0.91
(n_estimators = 20)		
Случайный лес	0.91	0.91
(n_estimators = 50)		

По результатам представленных в таблице 2 можно сделать вывод, что лучше всего себя показали метод к-ближайших соседей при значении параметра n_n eighbors = 1 (его точность составила 92%) и метод случайного леса при значении параметра n_n estimators = 20 и выше (его точность составила 91%).

Рассмотрим случай уменьшения тестовой выборки. Установим, что тестовая выборка составляет 35% и построим графики визуализации обучающей и тестовой выборки, данные графики представлены на рисунках 27 и 28 соответственно.

Рисунок 27 – Обучающая выборка при 65% от общего размера

Рисунок 28 — Тестовая выборка при 35% от общего размера

Таблица 3 – Результат классификации по методам при 65% обучающей выборки

Метод с параметрами	Точность	Площадь под кривой
Метод к-ближайших	0.87	0.87
соседей (n_neighbors = 1)		
Метод к-ближайших	0.91	0.91
соседей (n_neighbors = 3)		
Метод к-ближайших	0.91	0.91
соседей (n_neighbors = 5)		
Метод к-ближайших	0.91	0.91
соседей (n_neighbors = 9)	0.71	
Наивный байесовский	0.9	0.9
классификатор		
Случайный лес	0.91	0.91
(n_estimators = 5)		
Случайный лес	0.9	0.9
(n_estimators = 10)		
Случайный лес	0.91	0.91
(n_estimators = 15)		
Случайный лес	0.91	0.91
(n_estimators = 20)		
Случайный лес	0.91	0.91
(n_estimators = 50)		

По результатам представленных в таблице 3 можно сделать вывод, что лучше всего себя показали метод к-ближайших соседей (его точность составила 91%) и метод случайного леса (его точность составила 91%).

Заключение

В ходе выполнения данной лабораторной работы мною были изучены классификации на примере бинарной классификации методы фактографических данных. Для классификации использовались метод кближайших соседей, наивный байесовский классификатор и случайный лес. Для каждого из классификатора был проведен анализ в ходе которого изменялись параметры классификации и наблюдение за их влиянием на точность классификации. Из анализа моделей классификаторов были составлены таблицы, в которых сравниваются различные методы и их метрики. Также были рассмотрены влияние объема выборки на точность – для хорошей точности необходимо подбирать не слишком маленькую долю для тестовой выборки.

Приложение А

Исходный код при 25% тестовой выборки

```
#!/usr/bin/env python
# coding: utf-8
# # Задание
# ## Для всех:
# ### `n features = 2`
# ### `n redundant = 0`
# ### `n informative = 1`
# ### `n_clusters_per_class = 1`
# ## Для варианта №11
# ### Вид классов: `classification`
# ### Random state: `15`
# ### Class sep: `0.6`
# In[1]:
import numpy as np
from sklearn.datasets import make classification
from sklearn.model selection import train test split
# In[2]:
import matplotlib.pyplot as plt
# In[3]:
def plot 2d separator(classifier, X, fill=False, line=True, ax=None,
eps=None):
    if eps is None:
        eps = 1.0
    x \min, x \max = X[:, 0].\min() - eps, X[:, 0].max() + eps
    y \min, y \max = X[:, 1].min() - eps, X[:, 1].max() + eps
    xx = np.linspace(x min, x max, 100)
    yy = np.linspace(y min, y max, 100)
    x1, x2 = np.meshgrid(xx, yy)
    X grid = np.c [x1.ravel(), x2.ravel()]
    try:
        decision values = classifier.decision function(X grid)
        levels = [0]
        fill levels = [decision values.min(), 0, decision values.max()]
    except AttributeError:
        decision_values = classifier.predict proba(X grid)[:, 1]
        levels = [.5]
        fill levels = [0, .5, 1]
    if ax is None:
        ax = plt.gca()
    if fill:
        ax.contourf(x1,
                     decision values.reshape(x1.shape),
```

```
levels=fill levels,
                    colors=['cyan', 'pink', 'yellow'])
    if line:
        ax.contour(x1,
                   decision values.reshape(x1.shape),
                   levels=levels,
                   colors='black')
    ax.set xlim(x min, x max)
    ax.set ylim(y min, y max)
    ax.set xticks(())
    ax.set yticks(())
# ## Генерация выборки
# In[4]:
X, y = make classification (n features=2,
                           n samples=1000,
                            n redundant=0,
                            n informative=1,
                           n clusters per class=1,
                           random state=15,
                            class sep=0.6)
# In[5]:
print('Координаты точек: ')
print(X[:15])
print('Метки класса: ')
print(y[:15])
# In[6]:
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.show()
# ## Разбитие выборки на обучающее и тестовое множество
# In[7]:
X train, X test, y train, y test = train test split(X,
                                                     test size=0.25,
                                                     random state=42)
# In[8]:
plt.title('Обучающая выборка')
plt.scatter(X train[:, 0], X train[:, 1], c=y train)
```

```
plt.show()
# In[9]:
plt.title('Тестовая выборка')
plt.scatter(X test[:, 0], X test[:, 1], c=y test)
plt.show()
# ## Кластеризация
# In[10]:
from sklearn.metrics import confusion matrix
from sklearn.metrics import accuracy score
from sklearn.metrics import classification report
from sklearn.metrics import roc auc score
def show info(classifier, classifier name, real values, prediction values):
    print(f'Метод классификации: {classifier name}\n')
    # Выводим предсказанное и реальное значение
    print('Предсказанные и реальные значения:')
    print(prediction values)
    print(real values)
    # Выводим матрицу неточностей
    print('\nМатрица неточностей')
    print(confusion matrix(real values, prediction values))
    # Выводим точность классификации
    print(f'\nТочность классификации: {accuracy score(prediction values,
real values) } ')
    # Выводим полноту
    print('\nПолнота: ')
    print(classification report(real values, prediction values))
    # AUC ROC
    print(f'\nПлощадь под кривой: {roc auc score(real values,
prediction values)}')
    plt.xlabel('Первый класс')
    plt.ylabel('Второй класс')
    plt.title(classifier name.upper())
    plot_2d_separator(classifier, X, fill=True)
    plt.scatter(X[:, 0], X[:, 1], c=y, s=70)
# ### Метод k-ближайших соседей (1)
# In[11]:
from sklearn.neighbors import KNeighborsClassifier
# In[12]:
```

```
knn = KNeighborsClassifier(n neighbors=1, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (1)', y test, prediction)
# In[13]:
knn = KNeighborsClassifier(n neighbors=3, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (3)', y test, prediction)
# In[14]:
knn = KNeighborsClassifier(n neighbors=5, metric='euclidean')
# Обучаем модель данных
knn.fit(X_train, y_train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show_info(knn, 'ближайшие соседи (5)', y_test, prediction)
# In[15]:
knn = KNeighborsClassifier(n neighbors=9, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (9)', y test, prediction)
# ## Наивный байесовский классификатор
# In[22]:
from sklearn.naive bayes import GaussianNB
```

```
nb = GaussianNB()
# Обучаем модель данных
nb.fit(X train, y train)
# Оцениваем качество модели
prediction = nb.predict(X test)
# Выводим сводную информацию
show info(nb, 'Наивный байесовский классификатор', y test, prediction)
# ## Случайный лес
# In[17]:
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n estimators=5)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (5)', y test, prediction)
# In[18]:
rfc = RandomForestClassifier(n estimators=10)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (10)', y test, prediction)
# In[19]:
rfc = RandomForestClassifier(n estimators=15)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (15)', y test, prediction)
# In[20]:
```

```
rfc = RandomForestClassifier(n_estimators=20)

# Обучаем модель данных
rfc.fit(X_train, y_train)

# Оцениваем качество модели
prediction = rfc.predict(X_test)

# Выводим сводную информацию
show_info(rfc, 'случайный лес (20)', y_test, prediction)

# In[21]:

rfc = RandomForestClassifier(n_estimators=50)

# Обучаем модель данных
rfc.fit(X_train, y_train)

# Оцениваем качество модели
prediction = rfc.predict(X_test)

# Выводим сводную информацию
show_info(rfc, 'случайный лес (50)', y_test, prediction)
```

Приложение Б

Исходный код при 10% тестовой выборки

```
#!/usr/bin/env python
# coding: utf-8
# # Задание
# ## Для всех:
# ### `n features = 2`
# ### `n redundant = 0`
# ### `n informative = 1`
# ### `n_clusters_per_class = 1`
# ## Для варианта №11
# ### Вид классов: `classification`
# ### Random state: `15`
# ### Class sep: `0.6`
# In[1]:
import numpy as np
from sklearn.datasets import make classification
from sklearn.model selection import train test split
# In[2]:
import matplotlib.pyplot as plt
# In[3]:
def plot 2d separator(classifier, X, fill=False, line=True, ax=None,
eps=None):
    if eps is None:
        eps = 1.0
    x \min, x \max = X[:, 0].\min() - eps, X[:, 0].\max() + eps
    y \min, y \max = X[:, 1].\min() - eps, X[:, 1].max() + eps
    xx = np.linspace(x min, x max, 100)
    yy = np.linspace(y min, y max, 100)
    x1, x2 = np.meshgrid(xx, yy)
    X grid = np.c [x1.ravel(), x2.ravel()]
    try:
        decision values = classifier.decision function(X grid)
        levels = [0]
        fill levels = [decision values.min(), 0, decision values.max()]
    except AttributeError:
        decision_values = classifier.predict proba(X grid)[:, 1]
        levels = [.5]
        fill levels = [0, .5, 1]
    if ax is None:
        ax = plt.gca()
    if fill:
        ax.contourf(x1,
                     decision values.reshape(x1.shape),
```

```
levels=fill levels,
                    colors=['cyan', 'pink', 'yellow'])
    if line:
        ax.contour(x1,
                   decision values.reshape(x1.shape),
                   levels=levels,
                   colors='black')
    ax.set xlim(x min, x max)
    ax.set ylim(y min, y max)
    ax.set xticks(())
    ax.set yticks(())
# ## Генерация выборки
# In[4]:
X, y = make classification(n features=2,
                           n samples=1000,
                           n redundant=0,
                           n informative=1,
                           n clusters per class=1,
                           random state=15,
                           class sep=0.6)
# In[5]:
print('Координаты точек: ')
print(X[:15])
print('Метки класса: ')
print(y[:15])
# In[6]:
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.show()
# ## Разбитие выборки на обучающее и тестовое множество
# In[7]:
X train, X test, y train, y test = train test split(X,
                                                     test size=0.10,
                                                     random state=42)
# In[8]:
plt.title('Обучающая выборка')
plt.scatter(X train[:, 0], X train[:, 1], c=y train)
```

```
plt.show()
# In[9]:
plt.title('Тестовая выборка')
plt.scatter(X test[:, 0], X test[:, 1], c=y test)
plt.show()
# ## Кластеризация
# In[10]:
from sklearn.metrics import confusion matrix
from sklearn.metrics import accuracy score
from sklearn.metrics import classification report
from sklearn.metrics import roc auc score
def show info(classifier, classifier name, real values, prediction values):
    print(f'Метод классификации: {classifier name}\n')
    # Выводим предсказанное и реальное значение
    print('Предсказанные и реальные значения:')
    print(prediction values)
    print(real values)
    # Выводим матрицу неточностей
    print('\nМатрица неточностей')
    print(confusion matrix(real values, prediction values))
    # Выводим точность классификации
    print(f'\nТочность классификации: {accuracy score(prediction values,
real values) } ')
    # Выводим полноту
    print('\nПолнота: ')
    print(classification report(real values, prediction values))
    # AUC ROC
    print(f'\nПлощадь под кривой: {roc auc score(real values,
prediction values)}')
    plt.xlabel('Первый класс')
    plt.ylabel('Второй класс')
    plt.title(classifier name.upper())
    plot_2d_separator(classifier, X, fill=True)
    plt.scatter(X[:, 0], X[:, 1], c=y, s=70)
# ### Метод k-ближайших соседей (1)
# In[11]:
from sklearn.neighbors import KNeighborsClassifier
# In[12]:
```

```
knn = KNeighborsClassifier(n neighbors=1, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (1)', y test, prediction)
# In[13]:
knn = KNeighborsClassifier(n neighbors=3, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (3)', y test, prediction)
# In[14]:
knn = KNeighborsClassifier(n neighbors=5, metric='euclidean')
# Обучаем модель данных
knn.fit(X_train, y_train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show_info(knn, 'ближайшие соседи (5)', y_test, prediction)
# In[15]:
knn = KNeighborsClassifier(n neighbors=9, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (9)', y test, prediction)
# ## Наивный байесовский классификатор
# In[16]:
from sklearn.naive bayes import GaussianNB
```

```
nb = GaussianNB()
# Обучаем модель данных
nb.fit(X train, y train)
# Оцениваем качество модели
prediction = nb.predict(X test)
# Выводим сводную информацию
show info(nb, 'Наивный байесовский классификатор', y test, prediction)
# ## Случайный лес
# In[17]:
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n estimators=5)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (5)', y test, prediction)
# In[18]:
rfc = RandomForestClassifier(n estimators=10)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (10)', y test, prediction)
# In[19]:
rfc = RandomForestClassifier(n estimators=15)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (15)', y test, prediction)
# In[20]:
```

```
rfc = RandomForestClassifier(n_estimators=20)

# Обучаем модель данных
rfc.fit(X_train, y_train)

# Оцениваем качество модели
prediction = rfc.predict(X_test)

# Выводим сводную информацию
show_info(rfc, 'случайный лес (20)', y_test, prediction)

# In[21]:

rfc = RandomForestClassifier(n_estimators=50)

# Обучаем модель данных
rfc.fit(X_train, y_train)

# Оцениваем качество модели
prediction = rfc.predict(X_test)

# Выводим сводную информацию
show_info(rfc, 'случайный лес (50)', y_test, prediction)
```

Приложение В

Исходный код при 35% тестовой выборки

```
#!/usr/bin/env python
# coding: utf-8
# # Задание
# ## Для всех:
# ### `n features = 2`
# ### `n redundant = 0`
# ### `n informative = 1`
# ### `n_clusters_per_class = 1`
# ## Для варианта №11
# ### Вид классов: `classification`
# ### Random state: `15`
# ### Class sep: `0.6`
# In[1]:
import numpy as np
from sklearn.datasets import make classification
from sklearn.model selection import train test split
# In[2]:
import matplotlib.pyplot as plt
# In[3]:
def plot 2d separator(classifier, X, fill=False, line=True, ax=None,
eps=None):
    if eps is None:
        eps = 1.0
    x \min, x \max = X[:, 0].\min() - eps, X[:, 0].\max() + eps
    y \min, y \max = X[:, 1].\min() - eps, X[:, 1].max() + eps
    xx = np.linspace(x min, x max, 100)
    yy = np.linspace(y min, y max, 100)
    x1, x2 = np.meshgrid(xx, yy)
    X grid = np.c [x1.ravel(), x2.ravel()]
    try:
        decision values = classifier.decision function(X grid)
        levels = [0]
        fill levels = [decision values.min(), 0, decision values.max()]
    except AttributeError:
        decision_values = classifier.predict proba(X grid)[:, 1]
        levels = [.5]
        fill levels = [0, .5, 1]
    if ax is None:
        ax = plt.gca()
    if fill:
        ax.contourf(x1,
                     decision values.reshape(x1.shape),
```

```
levels=fill levels,
                    colors=['cyan', 'pink', 'yellow'])
    if line:
        ax.contour(x1,
                   decision values.reshape(x1.shape),
                   levels=levels,
                   colors='black')
    ax.set xlim(x min, x max)
    ax.set ylim(y min, y max)
    ax.set xticks(())
    ax.set yticks(())
# ## Генерация выборки
# In[4]:
X, y = make classification(n features=2,
                           n samples=1000,
                           n redundant=0,
                           n informative=1,
                           n clusters per class=1,
                           random state=15,
                           class sep=0.6)
# In[5]:
print('Координаты точек: ')
print(X[:15])
print('Метки класса: ')
print(y[:15])
# In[6]:
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.show()
# ## Разбитие выборки на обучающее и тестовое множество
# In[7]:
X train, X test, y train, y test = train test split(X,
                                                     test size=0.35,
                                                     random state=42)
# In[8]:
plt.title('Обучающая выборка')
plt.scatter(X train[:, 0], X train[:, 1], c=y train)
```

```
plt.show()
# In[9]:
plt.title('Тестовая выборка')
plt.scatter(X test[:, 0], X test[:, 1], c=y test)
plt.show()
# ## Кластеризация
# In[10]:
from sklearn.metrics import confusion matrix
from sklearn.metrics import accuracy score
from sklearn.metrics import classification report
from sklearn.metrics import roc auc score
def show info(classifier, classifier name, real values, prediction values):
    print(f'Метод классификации: {classifier name}\n')
    # Выводим предсказанное и реальное значение
    print('Предсказанные и реальные значения:')
    print(prediction values)
    print(real values)
    # Выводим матрицу неточностей
    print('\nМатрица неточностей')
    print(confusion matrix(real values, prediction values))
    # Выводим точность классификации
    print(f'\nТочность классификации: {accuracy score(prediction values,
real values) } ')
    # Выводим полноту
    print('\nПолнота: ')
    print(classification report(real values, prediction values))
    # AUC ROC
    print(f'\nПлощадь под кривой: {roc auc score(real values,
prediction values)}')
    plt.xlabel('Первый класс')
    plt.ylabel('Второй класс')
    plt.title(classifier name.upper())
    plot_2d_separator(classifier, X, fill=True)
    plt.scatter(X[:, 0], X[:, 1], c=y, s=70)
# ### Метод k-ближайших соседей (1)
# In[11]:
from sklearn.neighbors import KNeighborsClassifier
# In[12]:
```

```
knn = KNeighborsClassifier(n neighbors=1, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (1)', y test, prediction)
# In[13]:
knn = KNeighborsClassifier(n neighbors=3, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (3)', y test, prediction)
# In[14]:
knn = KNeighborsClassifier(n neighbors=5, metric='euclidean')
# Обучаем модель данных
knn.fit(X_train, y_train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show_info(knn, 'ближайшие соседи (5)', y_test, prediction)
# In[15]:
knn = KNeighborsClassifier(n neighbors=9, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (9)', y test, prediction)
# ## Наивный байесовский классификатор
# In[16]:
from sklearn.naive bayes import GaussianNB
```

```
nb = GaussianNB()
# Обучаем модель данных
nb.fit(X train, y train)
# Оцениваем качество модели
prediction = nb.predict(X test)
# Выводим сводную информацию
show info(nb, 'Наивный байесовский классификатор', y test, prediction)
# ## Случайный лес
# In[17]:
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n estimators=5)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (5)', y test, prediction)
# In[18]:
rfc = RandomForestClassifier(n estimators=10)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (10)', y test, prediction)
# In[19]:
rfc = RandomForestClassifier(n estimators=15)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (15)', y test, prediction)
# In[20]:
```

```
rfc = RandomForestClassifier(n_estimators=20)

# Обучаем модель данных
rfc.fit(X_train, y_train)

# Оцениваем качество модели
prediction = rfc.predict(X_test)

# Выводим сводную информацию
show_info(rfc, 'случайный лес (20)', y_test, prediction)

# In[21]:

rfc = RandomForestClassifier(n_estimators=50)

# Обучаем модель данных
rfc.fit(X_train, y_train)

# Оцениваем качество модели
prediction = rfc.predict(X_test)

# Выводим сводную информацию
show_info(rfc, 'случайный лес (50)', y_test, prediction)
```