

Pitney Bowes Data Challenge

Baruch College Team 8

About us

Chi Nguyen

MSc Statistics

Huong Nguyen
MSc Statistics

Linh Bui

MS Business Analytics

Aizazurrahmantah

MS Business Analytics

Table of contents

- Business Understanding
- 02 Data Understanding
- 03 Data Preparation
- **6** Feature Engineering
- 05 Model Fitting
- O6 Conclusion and Recommendation

Business Understanding

Pitney Bowes is one of the leading solution providers in Postage Meters, which allows businesses to simplify their shipping and mailing process.

VALUE PROPOSITION

Help customer:

- Save time (skip the Post Office and easily buy and print USPS® postage)
- Save money (access to discounted postage)

CUSTOMER SEGMENT

Businesses who ship large quantities of mail through the USPS

REVENUE STREAM

- -Direct sales (selling postage meter equipment)
- -Subscription plan (month posting printing fee)

COST STRUCTURE

- -Production and maintenance cost of postage meters
- -Labor cost
- -Selling & marketing cost
- -Research, Development & Intellectual Property cost

GOAL

Predict which meters will fail within the next 7 days to reduce down-time risks of meters deployed at Pitney Bowes' customers to avoid any sort of disruption

ML TASK

- Categorization
- Input: 54 attributes providing information regarding charge/discharge, restart times, time-off...
- Output: fail_7

OFFLINE EVALUATION

Apply:

- PCA method to select significant variables
- ML methods for classification (random forest, KNN, Naive Bayes...) to build prediction model

DATA SOURCE

Train set & test set provided by Pitney Bowes

Data Understanding

Train Set

40,500 records and 55 attributes

4,500 records and 54 attributes

New added variables: Life_of_device and Total_off_life

Data Preparation

Handling Imbalanced Data

Use undersampling method

Modelling Process

Prepare Training Data after Feature Engineering

Fitting Classification Algorithms

Apply PCA with data set and fit model

Select model with highest accuracy score

Feature Engineering

charge_cycle_time_below_12 is
transformed into a dummy
variable.

Check multicollinearity

- Using VIF score to quantify the extent of correlation between one predictor and the other predictors.
- Remove variables with VIF > 10

Scale data

- Standardization scale

Model Fitting

Random Forest

Accuracy: **68.60**%

Logistic Regression

Accuracy: 66.95%

Naive Bayes

Accuracy: **66.96**%

Kernel SVM

Accuracy: **67.19**%

Decision Tree

Accuracy: **59.50%**

Knn

Accuracy: **56.55**%

Principal Component Analysis

Keep 23 Principal Components as they explain more than 90% variance of the data

The accuracy score is lower than the original data set

Model Selection

Random Forest

k-fold Cross Validation results indicate that we would have an accuracy anywhere between 65% to 69%

Precision: 66.40%

Recall: 69.30%

Improvement

Score

50%

Failed Machine -Unrealistic

Recommendations

Task 1 Task 2 Task 3 Dealing with imbalanced data without losing many observations Better feature engineering to have higher accuracy score Running model to specific types of machines to increase accuracy

Thanks!

