

Lógica para Programação

Solução da Repescagem do Primeiro Teste

27 de Junho de 2013

11:30-13:00

- 1. **(2.0)** Para cada uma das seguintes questões, indique se é verdadeira ou falsa. Cada resposta certa vale 0.5 valores e *cada resposta errada desconta* 0.2 *valores*.
 - (a) A regra de inferência derivada conhecida por *modus tollens* afirma que numa prova que contém $\neg \alpha$ e $\alpha \to \beta$ se pode derivar $\neg \beta$.

Resposta:

Falsa

(b) Uma fórmula na forma clausal corresponde a uma disjunção de conjunções de literais.

Resposta:

Falsa

(c) Num BDD não ordenado podem existir caminhos com ordenações incompatíveis.

Resposta:

Verdadeira

(d) As ordenações para OBDDs [P,Q,S] e [R,P,S,T,Q] são compatíveis.

Resposta:

Falsa

- 2. Considere a linguagem da lógica proposicional e a semântica da lógica proposicional como definidas nas aulas. Suponha que o sistema dedutivo desta lógica utilizava a abordagem da dedução natural e apenas continha duas regras de inferência, a regra da premissa e a seguinte regra de inferência (*Liberalização*, abreviada por "Lib"): em qualquer ponto de uma prova, podemos introduzir qualquer *fbf* por liberalização. Diga, justificando, se esta lógica é:
 - (a) (0.5) Correcta.

Resposta:

A lógica não é correcta pois qualquer argumento é demonstrável. Considermos o argumento inválido ($\{\alpha, \alpha \to \beta\}, \neg \beta$). A seguinte prova corresponde a uma demonstração deste argumento:

$$\begin{array}{ccc} 1 & \alpha & & \text{Prem} \\ 2 & \alpha \rightarrow \beta & & \text{Prem} \\ 3 & \neg \beta & & \text{Lib} \end{array}$$

(b) **(0.5)** Completa.

Resposta:

A lógica é completa pois como qualquer argumento é demonstrável, todos os argumentos válidos também são demonstráveis.

3. Considere as frases que podem ser construídas a partir de *Todos os X são Y*, tendo em conta que X, Y \in {animais, mamíferos, cães, cachorros}. Com base nas frases assim definidas (ex: *Todos os cachorros são mamíferos*), defina um argumento:

(a) (0.5) Válido, com premissas e conclusão falsas. Justifique a sua resposta. Resposta:

({Todos os animais são mamíferos, Todos os mamíferos são cães}, Todos os animais são cães) é um argumento válido (é impossível ter as premissas verdadeiras e a conclusão falsa), apesar das premissas e da conclusão em si serem falsas.

(b) (0.5) Inválido, com premissas e conclusão verdadeiras. Justifique a sua resposta.

Resposta:

({Todos os cachorros são cães, Todos os cães são mamíferos}, Todos os cachorros são animais) é um argumento inválido (é possível ter as premissas verdadeiras e a conclusão falsa), apesar das premissas e da conclusão em si serem verdadeiras.

4. (1.5) Prove o seguinte teorema usando o sistema de dedução natural da lógica proposicional. Deve usar apenas as regras de inferência básicas (Prem, Rep, Hip, Rei, I∧, E∧, I→, E→, I¬, E¬, I∨, E∨) e a regra de I↔:

$$\neg\neg P \leftrightarrow P$$

Resposta:

1
$$\neg P$$
 Hip
2 P E¬, 1
3 $\neg P \rightarrow P$ I→, (1, 2)
4 P Hip
5 P Hip
6 P Rei, 4
7 Rep, 5
8 $P \rightarrow P$ I¬, (5, (6, 7))
9 $P \rightarrow P$ I→, (4, 8)
10 $P \rightarrow P$ I↔, (3, 9)

5. **(1.5)** Prove o seguinte teorema usando o sistema de dedução natural da lógica proposicional. Deve usar apenas as regras de inferência básicas (Prem, Rep, Hip, Rei, I∧, E∧, I→, E→, I¬, E¬, I∨, E∨):

$$\neg (P \lor Q) \to (\neg P \land \neg Q)$$

Resposta:

Número: _____ Pág. 3 de 9

1
$$\neg (P \lor Q)$$
 Hip
2 P Hip
3 $I \lor Q$ $I \lor Q$ $I \lor Q$
4 $\neg (P \lor Q)$ Rei, 1
5 $\neg P$ $I \lnot Q$ Hip
7 $P \lor Q$ $I \lor Q$ $I \lor Q$
8 $P \lor Q$ $I \lor Q$ Rei, 1
9 $\neg Q$ $I \lnot Q$ Rei, 1
9 $\neg Q$ $I \lnot Q$ $I \lnot$

6. (a) (0.5) Diga o que é uma regra de inferência derivada.

Resposta:

Uma é qualquer padrão de raciocínio correspondente à aplicação de várias regras de inferência. Uma regra de inferência derivada corresponde a uma abstracção através da qual podemos agrupar a aplicação de várias regras de inferência num único passo.

(b) **(1.5)** Considere a regra de inferência derivada *modus tollens*. Enuncie-a e justifique-a através de uma prova.

Resposta:

A regra de *modus tollens* é uma regra de inferência derivada, formalizada dizendo que numa prova que contém tanto $\neg \beta$ como $\alpha \to \beta$, podemos derivar $\neg \alpha$.

$$\begin{array}{ccc}
n & \neg \beta \\
\vdots & \vdots \\
m & \alpha \to \beta \\
\vdots & \vdots \\
k & \neg \alpha & \text{MT, } (n, m)
\end{array}$$

Prova que justifica a regra de *modus tollens*:

$$\begin{array}{cccc} 1 & \neg Q & & \text{Prem} \\ 2 & P \rightarrow Q & & \text{Prem} \\ 3 & & P & & \text{Hip} \\ 4 & & P \rightarrow Q & & \text{Rei, 2} \\ 5 & & Q & & E \rightarrow, (3, 4) \\ 6 & & \neg Q & & \text{Rei, 1} \\ 7 & \neg P & & I \neg, (3, (5, 6)) \end{array}$$

- 7. Considere as fórmulas α e β , ambas satisfazíveis.
 - (a) O que pode dizer quando à satisfazibilidade das fórmulas abaixo? Justifique as suas respostas.

Número: _____ Pág. 4 de 9

i. (0.5) $\alpha \wedge \beta$

Resposta:

Esta fórmula pode ser satisfazível ou não. Por exemplo, se $\alpha = P = \beta$ será satisfazível; se $\alpha = P$ e $\beta = \neg P$, será contraditória (logo não satisfazível).

ii. (0.5) $\alpha \vee \beta$

Resposta:

Esta fórmula é sempre satisfazível, pois se α (ou β) o é, haverá pelo menos uma interpretação que a torna verdadeira.

iii. (0.5) $\beta \vee \neg \beta$

Resposta:

Esta fórmula também é satisfazível (é uma tautologia).

(b) (1.0) Será que $\neg \beta \land \beta$ é consequência lógica de $\Delta = \{\alpha, \alpha \lor \beta\}$? Justifique a sua resposta.

Resposta:

 $\neg \beta \land \beta$ é uma fórmula contraditória, pelo que é falso que todos os modelos de Δ (que existem pelas alíneas anteriores) sejam modelos desta fórmula (nenhum o é). Ou seja, para todos os modelos de Δ , $\neg \beta \land \beta$ toma o valor falso, logo não é consequência lógica de Δ .

Número: _____ Pág. 5 de 9

8. (1.0) Seja Δ um conjunto de *fbfs* e α uma *fbf*. Suponha que $\Delta \models \alpha$. O que pode ser dito sobre o conjunto $\Delta \cup \{\neg \alpha\}$? Justifique a sua resposta.

Resposta:

Se $\Delta \models \alpha$ então todos os modelos que satisfazem Δ também satisfazem α . Daqui resulta que não existe nenhum modelo que satisfaça $\Delta \cup \{ \neg \alpha \}$, pelo que este conjunto é insatisfazível.

9. **(1.5)** Transforme a seguinte *fbf* na forma clausal:

$$\neg (A \to \neg B) \lor (\neg C \land D)$$

Resposta:

- Eliminação de \rightarrow : $\neg(\neg A \lor \neg B) \lor (\neg C \land D)$
- Redução do domínio de \neg : $(A \land B) \lor (\neg C \land D)$
- Obtenção da forma conjuntiva normal: $(A \lor \neg C) \land (A \lor D) \land (B \lor \neg C) \land (B \lor D)$
- Eliminação de \land : $\{A \lor \neg C, A \lor D, B \lor \neg C, B \lor D\}$
- Eliminação de \vee : $\{\{A, \neg C\}, \{A, D\}, \{B, \neg C\}, \{B, D\}\}$
- 10. **(1.5)** Considere o conjunto de cláusulas $\Delta = \{\{P,Q\}, \{\neg P, \neg Q\}, \{P\}\}\}$. Faça uma demonstração por refutação de $\neg Q$ a partir de Δ , usando a estratégia de resolução *linear*.

Resposta:

Número: _____ Pág. 6 de 9

11. Considere a seguinte árvore binária que representa a fbf α :

(a) **(0.5)** Indique na figura quais os rótulos de cada nó da árvore resultantes da aplicação do algoritmo *rotula*.

Resposta:

(b) (0.5) De acordo com os rótulos calculados na alínea anterior, apresente o OBDD resultante da aplicação do algoritmo *compacta*.

Resposta:

(c) (1.5) Considere agora o seguinte OBDD, correspondente à fbf β . Calcule, usando o algoritmo *aplica*, o OBDD correspondente à fbf $\alpha \vee \beta$. Indique os cálculos efectuados.

Número: _____ Pág. 7 de 9

Resposta:

Número: _____ Pág. 8 de 9

(d) (1.0) Qual seria o resultado para $\alpha \vee \beta$ se tivesse considerado que α e β eram BDDs (e não OBDDs)?

Resposta:

(e) **(1.0)** Qual a desvantagem da abordagem anterior em comparação com o algoritmo *aplica*?

Resposta:

Com a abordagem anterior um mesmo símbolo pode ter mais do que uma ocorrência ao longo de um caminho. Por exemplo, os símbolos A e B ocorrem mais do que uma vez. Logo, apesar de α e β serem OBDDs, no final é obtido um BDD.

(f) (0.5) Sem fazer novos cálculos, indique qual seria o OBDD associado à fbf $\neg \beta$. Justifique a sua resposta.

Resposta:

Bastaria trocar os valores lógicos das folhas do OBDD β .

Número:	Pág. 9 de 9

