COLIOD. Assignment 5 KSHITIJ A'LWADHI. 2019 EE 30577. Q1. Proof of cookertiners for menge sont. (Refer to smi file for algo). Out other spice a lifet duto two Equal (Et even elements) else 2 vers heith one entre clement in I, Basis: Ef 22 = [], eput ([]) = ([], []) J.M.: elet the like tra versed till now · por . (M) . O & W & W . Split (22) = (0, 02). Mois let tre finisher encourter. the more elements in the list, elet the country i be currently ever. therefore, by algo, NS @ = X1::X2: US: 1 210) 3 prom 1:00 @ Split (xs) = (x,::d, x2::d2) Split (xs) = (x,1, x2) ltile holds. Hence personed (Split furtion). 60 (60) 952

2) Neve ve enconter the fun. mag
celièle morges too sorted lists.
Basin of the same of the
The case of of any of the 2 list entr
non emply cire output.
of lingleton
mende (xiic) 'Aici)
thing with the
(c7.00) = else) =010 [y,m] 22 }3
J.H. OV. J. Closen pet 3-52 not tel : N.
O < cize(a), cize(a) 5 N.
neige(e,,e2) gives a sorted use of
Size (21) + Size (02)
I.S: let WLOG Size(l) = N+1021
nierge (0,, 22) = nierge (n: ns, y::, ys)
assure n < y.
=> n:: menge(ns, y::ys)
Size auriesed by 1. 1972.
Einelan proof by taking
indusion parameter.

```
3 Mois for menge cont.
 Basis: of a, = [], msout(a,) = [],
    [x] = (ib) such [x] = ib [x]
J.H: let 0 \ Rizeran \ N
  test betreve a mentere (,a) treasur
  of lize(d,).
I. S: let lèze of le = N+1.
   me out (ei) = meout (nine)
     = merge (mean (p.), mean (pr))
  (P, p2) = lplit (a,)
   as lize(p,), lize(p2) < N.
  m sout (pi), meant (pz) gives 2 contra
  lists by I.H.
  and merge () gives a sorted
   list as preved in 2.
   also lize (pi) + lize (pz)
          = Size ( meage ( msout (pi), msout (pz))
      Hence plused by audiching
     on lie of l.
```

Q3. a) Addition of 2 numbers: The algorithm is basically emulating the same adding perocodure we peers sa evenler beloods in mess Over a 1 when the even of dégits enced 10 and write remainder. let a = [90,91,92 - - and p = [po, pi, - - - pw-i]. and let n=[No, Ni. - Ni-] contain · the sum till en degits. Dividing the sun outo three parts: (≥) ';' (\geq) + (\leq). (t1) - max (M, W) -1, n is empty.

I.H.: let at i=i-1.

n contain the sum of finst
i degits and corryoners have
i degits and been adjusted.

I.S. i. at the post Case I: if a: +b: < 10 then objet at that place is updated by (ait bi). Case IT: 154 9: + bi >10. elet Qi+ bi = 10p+ q. p = (Q; +06;) div10 9 = (ai + bi) mod 1000 We update the digit at that of and carry over pat the next degree as 10p+q is etule al +60. Heure, J.H. ette holds add (a,b) or gives the of 5 no.2.

12 par (1-2) est 201 . H. I

rinduct K

(23. 6) Subtraction of 2 numbers This algorithm as well is cumbety the same subtera Non procedure we bearn on schools, valueur use subtract the 2 degits and Et the embliaisson à less than o Lop carry over a 10 feren the nent chepit sour (id + 10) let a = [ao, a, _ _ an-i] 16 = Cpo, p, J = pm-1] and let in contain the subtraction till (c-1) digits. H. I'. collea (20(d, 0) bloo m is empty. I.H., let till (1-17 degio, n contain the Subbrachion white larry overs adjusted and accounted for

I.S. at i'm pesu. Case I. et ai > bi. then digit at that place is samply suplaced by (ai-bi). Case II: Et ai < bi use carry over a , forom adjacent place and add to to it. aiti Qi _ -(- - bit bi -). (10 Qi+1 + Qi) - (10 bi H + bi) = 10 (0+-P) + 4; (id-ig) + (i+id - Hip) 01 = = 10 ((ai+1-1) - bi+1) + (ai+10 - bi) Hence, Enduction hypolicein Itill holds. looking only out the previous peat is accounted for and rest is not in ficture yet in iterative version.

Q3. c) multiplication of 2 integers. Defined a fuirement set update (1) which updates the list to make evere all lu degiter aux tre and Use - man 10 durling operation. Also, a representation. as I(e,). The besid multiplied depresented (Cain: Il dist) = I (update (dist)) Basis: update (E3) = [] = ([r]) = Et 4210 mon (umoq10): (u gir10) elle N= 100+6. I(x) = 10 a + b 2 (wpdate [27]) = b + 10a = Z(x)I.H.: let n'eizerleit) SN ((sist) = I (update (sist)) I 7.5. Size(00)= N+1 let le = [190,9] = 2l tel

repolate (n:: y::ns) = (2) ef M>, 10, there (no modio):: update
((2m :: (01vib x + y)) z (update (es)) 90 = 109 +b. = b + 10 (a, +a) + \(\frac{1}{1=2} \) ailo' = = 90 + 100, + E2 a: 10° (I) Et n<10 then n:: update(y::me). Henre personed. Now for multiply (ds. (ds.) = multiply_ster (ds,, ds_, [], 0). zero (n) = [o, o - - 0] - n, zeroes. mul (n::ns, y::ys) ->: let y=[Jo, Jr, --, July [ng, ny, --- xym].

Now, proof for the iter parit. let, le, = = 7: 10° le 2 = M Zi 10° (22) 11/42) E INV. at n= No. p = (\leftilde \frac{100}{5000}) (\leftilde \frac{100}{50000}) thus at N=N, $b=I(ds_1)\times I(ds_2)$. Basis: If lize(ls,) =0 then b 2 toinal for congretou lis, = (2). (226, [M]) Jum := [22, [M] Jetterm $(21) = 1. \times 2.10^{10} = 1. \times 1.10^{10} = 1. \times 1.10^{10}$ Henre basis holds. 5.4: let for size (ds,) 5N.

nuerty(ds,, ds,) = 5(ds,). 5(ds,). I.S. 1+11 = (222) 9528 20 . 2. I multipy (de, les) = otte (ee, ee, ,ee, []. Size of ys = ~ hence holds by I.H. (22b) I (22b) Z =: Here peroud Here we unducted 2120 020 Basi cally what the algerithm is deing ies muliphyong 2. numbers the way we mamally (caugue in preschool). and the putzero (n) furchion is accounting for the zeroes in