

Description

Features

- V_{DS} =600V, I_{D} =20A $R_{DS(ON)}$ <0.19Ω @ V_{GS} =10V
- Multi-Epi process SJ-MOSFET
- Smart design in high voltage technology
- Ultra lower on-resistance
- Ultra low gate charge
- Low reverse recovery charge
- Fast switching

Application

- Power factor correction (PFC)
- Switched mode power supplies (SMPS)
- Uninterruptible power supply (UPS)

100% UIS 100% ΔVds

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	TUBE (PCS)	Inner Box (PCS)	Per Carton (PCS)
VSM20N60-TF	VSM20N60	TUBE	TO-220F	50	1,000	8,000

Absolute Maximum Ratings (Tc=25°C unless otherwise specified)

Symbol	pol Parameter		Max.	Units	
V _{DSS}	Drain-Source Voltage		600	V	
V_{GSS}	Gate-Source Voltage		±30	V	
I _D	Continuous Drain Current	T _C = 25 °C	20	Α	
		T _C = 100℃	13		
I_{DM}	Pulsed Drain Current note1		80	Α	
E _{AS}	Single Pulsed Avalanche Energy note2		238	mJ	
P _D	Power Dissipation	T _C = 25 °C	34	W	
$R_{ heta JC}$	Thermal Resistance, Junction to Case		3.67	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient		80	°C/W	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	$^{\circ}$	

Electrical Characteristics (Tc=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V,I _D =250µA	600	_	_	V		
I _{DSS}	Zana Cata Valtana Duain Commant	$V_{DS} = 600V, V_{GS} = 0V,$ $T_{C} = 25^{\circ}C$	-	0.05	1	μA		
	Zero Gate Voltage Drain Current	V_{DS} =600V, V_{GS} = 0V, T_{C} = 125°C	-	-	100	μA		
I _{GSS}	Gate to Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 30V$	-	-	±100	nA		
On Charac	teristics							
V _{GS(th)}	Gate Threshold Voltage	V_{DS} = V_{GS} , I_D =250 μ A	2.0	-	4.0	V		
R _{DS(on)}	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =10A	-	0.15	0.19	Ω		
Dynamic C	Characteristics							
C _{iss}	Input Capacitance	./ 50/// 0//	-	1950	-	pF		
Coss	Output Capacitance	$V_{DS} = 50V, V_{GS} = 0V,$	-	150	-	pF		
Crss	Reverse Transfer Capacitance	f = 1.0MHz	-	5	-	pF		
Qg	Total Gate Charge	\/ -400\/ -204	-	45	70	nC		
Q _{gs}	Gate-Source Charge	V _{DS} =480V, I _D =20A, V _{GS} =10V	-	9	-	nC		
Q_{gd}	Gate-Drain("Miller") Charge	VGS - 10 V	ı	18	-	nC		
Switching	Characteristics							
t _{d(on)}	Turn-on Delay Time		-	11	-	ns		
t _r	Turn-on Rise Time	$V_{DS} = 380V, I_{D} = 10A,$	-	6	-	ns		
t _{d(off)}	Turn-off Delay Time	V_{GS} =10V, R_{G} =4 Ω	-	61	100	ns		
t _f	Turn-off Fall Time		-	4.5	12	ns		
Drain-Soul	rce Diode Characteristics and Maxim	um Ratings						
Is	Maximum Continuous Drain to Source Diode Forward Current			-	20	А		
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	80	Α		
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} =0V, I _S =20A	-	0.9	1.2	V		
trr	Reverse Recovery Time	V _{GS} =0V, I _S =20A,	-	310	-	ns		
Qrr	Reverse Recovery Charge	di/dt=100A/μs	•	5	-	μC		

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

^{2.} Ias = 6.9A, V_{DD} = 50V, R_G = 25 Ω , H=10mH, Starting T_J = 25 $^{\circ}$ C

^{3.} Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms