CSE215 Foundations of Computer Science

State University of New York, Korea

Sequences

"Mathematics is the art of giving the same name to different things." - Henri Poincaré

What are sequences?

Types of sequences

- Finite sequence: $a_m, a_{m+1}, a_{m+2}, \ldots, a_n$ e.g.: $1^1, 2^2, 3^2, \ldots, 100^2$
- Infinite sequence: $a_m, a_{m+1}, a_{m+2}, \ldots$ e.g.: $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots$

Term

• Closed-form formula: $a_k = f(k)$

e.g.:
$$a_k = \frac{k}{k+1}$$

• Recursive formula: $a_k = g(k, a_{k-1}, \dots, a_{k-c})$

e.g.:
$$a_k = a_{k-1} + (k-1)a_{k-2}$$

Growth of sequences

Increasing sequence

e.g.:
$$2, 3, 5, 7, 11, 13, 17, \dots$$

Decreasing sequence

e.g.:
$$\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots$$

Sums and products of sequences

Sum

• Summation form:

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_{m+2} + \dots + a_n$$

where, k= index, m= lower limit, n= upper limit e.g.: $\sum_{k=m}^n \frac{(-1)^k}{k+1}$

Product

Product form:

$$\prod_{k=m}^{n} a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \cdot \dots \cdot a_n$$

where, k= index, m= lower limit, n= upper limit e.g.: $\prod_{k=m}^n \frac{k}{k+1}$

Properties of sums and products

• Suppose $a_m, a_{m+1}, a_{m+2}, \ldots$ and $b_m, b_{m+1}, b_{m+2}, \ldots$ are sequences of real numbers and c is any real number

Sum

- $\sum_{k=m}^{n} a_k = \sum_{k=m}^{i} a_k + \sum_{k=i+1}^{n} a_k$ for $m \le i < n$ where, i is between m and n-1 (inclusive)
- $c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} (c \cdot a_k)$
- $\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)$

Product

 $\bullet (\prod_{k=m}^n a_k) \cdot (\prod_{k=m}^n b_k) = \prod_{k=m}^n (a_k \cdot b_k)$

Proof by Mathematical Induction

Proof for dominos

Core idea

A starting domino falls. From the starting domino, every successive domino falls. Then, every domino from the starting domino falls.

Mathematical Induction

- Let P(n) denote a predicate, and our objective is to prove P(n) for all integers n>=0. Mathematical induction works in two steps.
- Base step: prove P(0)
- Inductive step: prove P(k) -> P(k+1) for any k>=0

Proof by mathematical induction: Example 1

Proposition

•
$$\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdots\left(1-\frac{1}{n}\right)=\frac{1}{n}$$
 for all integers $n\geq 2$.

Proof by mathematical induction: Example 1

Proposition

• $\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdots\left(1-\frac{1}{n}\right)=\frac{1}{n}$ for all integers $n\geq 2$.

Proof

Let
$$P(n)$$
 denote $\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdots\left(1-\frac{1}{n}\right)=\frac{1}{n}$.

- Basis step. P(2) is true.
- Induction step.

Assume
$$P(k)$$
: $\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdots\left(1-\frac{1}{k}\right)=\frac{1}{k}$ for some $k\geq 2$.

➤ How?

Prove
$$P(k+1)$$
: $(1-\frac{1}{2})(1-\frac{1}{3})\cdots(1-\frac{1}{k+1})=\frac{1}{k+1}$

LHS of P(k+1)

$$= \left[\left(1 - \frac{1}{2} \right) \left(1 - \frac{1}{3} \right) \cdots \left(1 - \frac{1}{k} \right) \right] \left(1 - \frac{1}{k+1} \right)$$

$$=\frac{1}{k}\left(1-\frac{1}{k+1}\right)$$
 (:: $P(k)$ is true)

$$=\frac{1}{k}\cdot\frac{k}{k+1}$$
 (:: common denominator)

$$=\frac{1}{k+1}$$
 (:: remove common factor)

$$= \mathsf{RHS} \; \mathsf{of} \; P(k+1)$$

Proof by mathematical induction: Example 2

Proposition

• Fibonacci sequence is: F(0)=1, F(1)=1, and F(n)=F(n-1)+F(n-2) for $n\geq 2$. Prove that: $F(0)^2+F(1)^2+\cdots+F(n)^2=F(n)F(n+1)$ for all $n\geq 0$.

Proof by Mathematical Induction — Guideline

- The problem usually looks like this:
 - Prove: For any integer n >=1, P(n) holds
- Check P(1), P(2) ... before the proof
- Try to solve P(k) -> P(k+1)
- Write a proof that has:
 - A notation for predicate P(n)
 - A base step
 - An inductive step

Exercises

(a) [5 points] For all integers $n \ge 1$,

$$\sum_{i=1}^{n} i(i!) = (n+1)! - 1.$$

(a) [5 points] For all integers $n \ge 1$,

$$\sum_{i=1}^{n} i(i!) = (n+1)! - 1.$$

- Proof.
 - We will prove this proposition with mathematical induction.
 - Let P(n) denote the predicate 1(1!) + 2(2!) + ... + n(n!) = (n+1)! -1
 - Base step: We prove P(1).
 - LHS is 1, and RHS is 2! 1=1
 - Inductive step: We prove P(k) -> P(k+1) for all integer k>=1
 - Let k be an arbitrary integer and k>=1.
 - Assume P(k) holds. That is 1(1!) + 2(2!) + ... + k(k!) = (k+1)! -1
 - We want to prove P(k+1), namely, 1(1!) + 2(2!) + ... + k(k!) + (k+1)(k+1)! = (k+2)! -1
 - LHS can be reduced to (k+1)! -1 + (k+1) (k+1)! following assumption P(k)
 - The latter can be further reduced to (k+2)! -1, namely RHS.
- QED.

(b) [5 points] Consider the Fibonacci sequence: $f_0 = 0$, $f_1 = 1$, and $f_n = f_{n-1} + f_{n-2}$, for $n \ge 2$. For all integers $n \ge 2$,

$$f_{n+2} = 1 + \sum_{i=0}^{n} f_i.$$

(b) [5 points] Consider the Fibonacci sequence: $f_0 = 0$, $f_1 = 1$, and $f_n = f_{n-1} + f_{n-2}$, for $n \ge 2$. For all integers $n \ge 2$,

$$f_{n+2} = 1 + \sum_{i=0}^{n} f_i.$$

- Proof.
 - We will prove this proposition with mathematical induction.
 - Let P(n) be the predicate $f_{n+2} = 1 + f_0 + f_1 + ... + f_n$
 - Base step: We first prove P(2) holds.

• LHS =
$$f = 4 = 3$$
. RHS = $1 + f = 0 + f = 1 + f = 2 = 1 + 0 + 1 + 1 = 3$

- Inductive step:: Then we prove P(k) -> P(k+1) for all k>=2
 - Let k be an arbitrary integer and k>=2
 - Assume P(k) holds, namely, $f \{k+2\} = 1 + f + 0 + f + 1 + \dots + f + k$
 - We want to prove P(k+1), that is, $f_{k+3} = 1 + f_0 + f_1 + ... + f_k + f_{k+1}$
 - LHS = f {k+2}+f {k+1} from Definition of Fobonacci Sequence.
 - Thus, LHS = 1+ f_0+f_1 +... + f_k + f_{k+1} following assumption P(k)
 - Thus equals RHS

Plan

- Review exercises on Mathematical Induction
- Recursive sequences

(a) [5 points] For all natural numbers n,

$$1^{2} \times 2 + 2^{2} \times 3 + 3^{2} \times 4 + \dots + n^{2} \times (n+1) = \frac{n(n+1)(n+2)(3n+1)}{12}$$

(a) [5 points] For all natural numbers n,

$$1^{2} \times 2 + 2^{2} \times 3 + 3^{2} \times 4 + \dots + n^{2} \times (n+1) = \frac{n(n+1)(n+2)(3n+1)}{12}$$

- Proof.
 - We will prove this proposition with mathematical induction.
 - Let P(n) be the predicate $1^2 * 2 + ... + n^2 * (n+1) = n (n+1) (n+2) (3n+1)/12$
 - Base step: We first prove P(1) holds.
 - LHS = 1^2 * 2=2. RHS = 1*2*3*4/12 = 2.
 - Inductive step: Then, we prove P(k) -> P(k+1) for all k>=1
 - Let k be an arbitrary integer and k>=1.
 - Assume P(k) holds. That is, 1² + 2 + ... + k² (k+1) = k (k+1) (k+2) (3k+1)/12
 - We want to prove P(k+1), that is, $1^2 * 2 + ... + k^2 * (k+1) + (k+1)^2 * (k+2) = (k+1) (k+2) (k+3) (3k+4)/12$
 - LHS = k (k+1) (k+2) (3k+1)/12 + + (k+1)^2 * (k+2) following assumption P(k)
 - The latter can be further reduced to $(k+1)(k+2)/12 * (3k^2+k + 12k+12) = RHS$
- QED.

(b) [5 points] For all natural numbers n,

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n \times (n+1)} = \frac{n}{n+1}$$

(b) [5 points] For all natural numbers n,

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n \times (n+1)} = \frac{n}{n+1}$$

- Proof.
 - We will prove this proposition with mathematical induction.
 - Let P(n) be the predicate $1/(1^2) + 1(2^3) + ... + 1/(n^{(n+1)}) = n/(n+1)$
 - Base step: We first prove P(1) holds.
 - LHS is 1/2, and RHS is 1/(1+1) = 1/2
 - Inductive step: Then, we prove P(k) -> P(k+1) for all integer k>=1
 - Let k be an arbitrary integer and k>=1.
 - Assume P(k) holds. That is 1/(1*2) + 1(2*3) + ... + 1/(k*(k+1)) = k/(k+1)
 - We want to prove P(k+1), namely, 1/(1*2) + 1(2*3) + ... + 1/(k*(k+1)) + 1/((k+1)*(k+2)) = (k+1)/(k+2)
 - LHS can be reduced to k/(k+1) + 1/((k+1)*(k+2)) following the assumption P(k)
 - The latter can be further reduced to $(k^2+2k+1)/((k+2)(k+1))$, which equals to RHS.
- QED.

Recursive sequences

Recursion = Repeating itself

- recursive sequences
- recursive functions
- recursive data structures

Example

Examples

• Suppose f(n) = n!, where $n \in \mathbb{W}$. Then, if n = 0.

$$f(n) = \begin{cases} 1 & \text{if } n = 0, \\ n \cdot f(n-1) & \text{if } n \ge 1. \end{cases}$$

Closed-form formula: $f(n) = n \cdot (n-1) \cdot \cdots \cdot 1$

Examples

Examples

• Suppose f(n) = n!, where $n \in \mathbb{W}$. Then,

$$f(n) = \begin{cases} 1 & \text{if } n = 0, \\ n \cdot f(n-1) & \text{if } n \ge 1. \end{cases}$$

Closed-form formula: $f(n) = n \cdot (n-1) \cdot \cdots \cdot 1$

• Suppose F(n) = nth Fibonacci number. Then,

$$F(n)=egin{cases} 1 & ext{if} & n=0 ext{ or } 1, \ F(n)=egin{cases} F(n)+F(n-2) & ext{if} & n\geq 2. \end{cases}$$

Closed-form formula: F(n) = ?

Example: Arithmetic sequence

Let a_0, a_1, a_2, \ldots be the sequence defined recursively as follows: For all integers $k \geq 1$,

- (1) $a_k = a_{k-1} + 2$ recurrence relation
- (2) $a_0 = 1$ initial condition.

- Write out a_1, a_2, a_3, a_4, and a_5
- Derive an explicit formula of the sequence
- Confirm the explicit formula satisfies the recursive definition

Example: Geometric sequence

You deposit \$100,000 in a bank account for a 3% interest compounded annually. How much will you get after 21 years?

Solution

• Suppose $A_k =$ Amount in your account after k years. Then, 100,000 if k = 0.

$$A_k = \begin{cases} 100,000 & \text{if } k = 0, \\ (1+3\%) \times A_{k-1} & \text{if } k \ge 1. \end{cases}$$

Solving the recurrence by the method of iteration, we get

$$A_k = ((1.03)^k \cdot 100,000) \text{ dollars}$$

- Homework: Confirm the explicit formula
- satisfies the recursive definition

$$A_{21} = ((1.03)^{21} \cdot 100,000) \approx 186,029.46$$
 dollars

Application

Problem

• There are k disks on peg 1. Your aim is to move all k disks from peg 1 to peg 3 with the minimum number of moves. You can use peg 2 as an auxiliary peg. The constraint of the puzzle is that at any time, you cannot place a larger disk on a smaller disk.

What is the minimum number of moves required to transfer all k disks from peg 1 to peg 3?

Demo: https://www.mathsisfun.com/games/towerofhanoi.html

Solution

Suppose k = 1. Then, the 1-step solution is:

1. Move disk 1 from peg A to peg C.

Solution

Suppose k = 2. Then, the 3-step solution is:

- 1. Move disk 1 from peg A to peg B.
- 2. Move disk 2 from peg A to peg C.
- 3. Move disk 1 from peg B to peg C.

Solution

For any $k \geq 2$, the recursive solution is:

- 1. Transfer the top k-1 disks from peg A to peg B.
- 2. Move the bottom disk from peg A to peg C.
- 3. Transfer the top k-1 disks from peg B to peg C.

Towers-of-Hanoi(k, A, C, B)

- 1. if k=1 then
- 2. Move disk k from A to C.
- 3. elseif $k \geq 2$ then
- 4. Towers-of-Hanoi(k-1, A, B, C)
- 5. Move disk k from A to C.
- 6. Towers-of-Hanoi(k-1, B, C, A)

<u>Code</u> Demo

Solution (continued)

• Let M(k) denote the minimum number of moves required to move k disks from one peg to another peg. Then

$$M(k) = \begin{cases} 1 & \text{if } k = 1, \\ 2 \cdot M(k-1) + 1 & \text{if } k \ge 2. \end{cases}$$

• Solving the recurrence by the method of iteration, we get
$$\boxed{M(k) = 2^k - 1} \rhd \text{How?}$$

Why minimum? https://proofwiki.org/wiki/Tower_of_Hanoi

Exercises

Exercise 1

 Consider the recursive sequence below. Find its explicit form and prove your answer, namely Confirm the explicit formula satisfies the recursive definition

$$a_k = ka_{k-1}$$
, for all integers $k \ge 1$
 $a_0 = 1$

Solution

We have: $a_k = k \cdot a_{k-1} = k \cdot (k-1) \cdot a_{k-2} = k(k-1)(k-2) \cdots 1 \cdot a_0 = k!$

- To prove it indeed satisfies the recursive definition, we plug it to the recursive definition:
 - The explicit form clearly satisfies a_0=1
 - The explicit form also satisfies a_k = k a_{k-1}, since the left is k!, the right is k * (k-1)! which is also k!

Exercise 2

 Consider the recursively defined sequence below. Find its explicit form and prove your answer.

$$b_k = \frac{b_{k-1}}{1 + b_{k-1}}$$
, for all integers $k \ge 1$
 $b_0 = 1$

Solution

- We have b_0=1, b_1= 1/2, b_2=1/3, b3=1/4... So a possible explicit form is b_n=1/(n+1)
- To prove it indeed satisfies the recursive definition, we plug it to the recursive definition:
 - The explicit form clearly satisfies b_0=1
 - The explicit form also satisfies b_k = b_{k-1} / (1+b_{k-1}), since LHS=1/(k+1),
 RHS = 1/(k+1) / (1 + 1/(k+1)) = 1/(k+1)

Exercise 3

 Consider the recursively defined sequence below. Find its explicit form and prove your answer.

$$c_k = 3c_{k-1} + 1$$
, for all integers $k \ge 2$
 $c_1 = 1$

Solution

- We have c_1=1, c_2= 4, c_3=13, b4=40... So a possible explicit form is c_n=(3^n-1)/2
- To prove it indeed satisfies the recursive definition, we plug it to the recursive definition:
 - The explicit form clearly satisfies c_1=1
 - The explicit form also satisfies_____, since LHS= ____ RHS = ___ = ____