ex) $T: p^4 \rightarrow p^2$ given by T(f(x)) = f''(x) $[T]^{\epsilon}$ uses ϵ_{y} for inputs: $\{1, x, x^{2}, x^{3}, x^{4}\}$ and Ez for outputs. $[T]_{\varepsilon}^{\varepsilon} = [O]_{\varepsilon} [O]_{\varepsilon} [2]_{\varepsilon} [6x]_{\varepsilon} [12x^{2}]_{\varepsilon}$ Terminology: T:V >> W · V is the domain, dom (T) · W is the codomain, codom (T) · Range (T) is a subspace of W which is all the outputs of T. · NUI Space of T, (N(T) is a subspace of which is all the inputs that get taken to o by T. · Null space is also known as Kernel (T).

**Composition ; for
$$T: V \rightarrow W$$

and $S: W \rightarrow Y$

we make $S \circ T: V \rightarrow Y$

by $(S \circ T)(\vec{x}) = S(T(\vec{x}))$

**If A represent T and B

represent S (for same basis on W)

then $S \circ T$ is represented by

 BA (matrix multiplication)

More terminology

**T: $V \rightarrow W$ is one-to-one (1-1) when

each output has only exactly one input.

For $\vec{n} \in R(T)$ if $T(\vec{a}) = \vec{n} = T(\vec{b})$

then $\vec{a} = \vec{b}$. (T is injective)

Theorem. T is one-to-one if and only if

 $N(T) = \vec{b} \cdot \vec{0}$.

Proof: Assume $N(T) = \vec{b} \cdot \vec{0}$.

Then if $T(\vec{a}) = T(\vec{b}) = \vec{0}$
 $T(\vec{a} - \vec{b}) = \vec{0}$ (linearity)

 $\vec{a} = \vec{b}$

Next, Assume $N(T) \neq \vec{b} \cdot \vec{0}$, so $N(T) = \vec{b} \cdot \vec{0} \cdot \vec{x}$, ...}

then $T(\vec{0}) = \vec{0} = T(\vec{x})$, not 1-1. D

T:V > W is lontol (surjective)
when $R(T) = W$
· If T is 1-1 and onto, Tis an isomorphism
Finding N(T) and R(T):
- Same exact process as finding
solution to $A\vec{x} = \vec{0}$ and $col(A)$.
where $A = [T]^e$,
B
-> Find both: note that augment is o
1) r.r. A to r.r.e.f.
Recall: free variables are all
non-pivot columns
2) write solution as a span, that's N(T).
3) write col(A) as a span of
the original columns of A
which correspond to pivots in r.r.e.f.
That's R(T).
4) Use bases B+C to describe
N(T) (using B, the input basis)
N(T) (using B, the impat basis) and R(T) (using C, the output basis.)
-> Note: since pivots + non-pivots =
all the columns of A
we see that:
장마 경영화 중심하는 사람들이 살아 가는 사람들이 있는 사람들이 가게 들어 있었다면 사용하다 하나 하는 것이 바람이
dim(R(T)) + dim (N(T)) = dim (dom(T))

.