MATH 3100 – Homework #6

posted October 24, 2025; due November 3, 2025

Section and exercise numbers correspond to the online notes (the ones in use earlier in the semester). Assignments are expected to be **neat** and **stapled**. **Illegible work may not be marked**.

Required problems for all students

1. Suppose $\sum_{k=0}^{\infty} a_k x^k$ is a power series whose DOC has least upper bound R, where $0 < R < \infty$. Show that $\sum_{k=0}^{\infty} a_k x^k$ converges when |x| < R and diverges when |x| > R.

This completes the proof of the theorem from class characterizing the possible forms of the DOC. Needless to say, you should not assume that theorem in your proof!

- 2. §2.4: 1(b,e,f,k)
- 3. (a) Let f be a real-valued function with domain D and let $x_0 \in D$. The statement that f is continuous at x_0 can be written, in logical notation, as

$$(\forall \epsilon > 0) \ (\exists \delta > 0) \ (\forall x \in D) \ (|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon).$$

Write out the **negation** of this statement, again in logical notation.

- (b) Let f be the function defined by f(x) = 0 when $x \le 0$ and f(x) = 1 when x > 0. Using (a), show that f is not continuous at $x_0 = 0$. Do *not* use the sequential criterion for continuity.
- 4. Let f be a real-valued function with domain D and let $x_0 \in D$. In class, we stated that continuity at x_0 and sequential continuity at x_0 are equivalent.

We proved one direction: Continuity at x_0 implies sequential continuity at x_0 . In this exercise you are asked to tackle the other direction. That is, supposing that f is not continuous at x_0 , prove that f is not sequentially continuous at x_0 .

- (a) Suppose f is not continuous at x_0 . Show that there is some $\epsilon > 0$ with the following property: For every $n \in \mathbb{N}$, there is an $x_n \in D$ with $|x_n x_0| < \frac{1}{n}$ and $|f(x_n) f(x_0)| \ge \epsilon$.
- (b) Show that if the x_n are as in part (a), then $x_n \to x_0$ but $f(x_n) \not\to f(x_0)$. (Hence, f is not sequentially continuous at x_0 .)
- 5. (a) Show that for every pair of real numbers x and y,

$$-|x - y| \le |x| - |y| \le |x - y|.$$

Hint. Use the triangle inequality, writing y = x + h for some h.

- (b) Show that |x| is continuous. (We took this for granted earlier in the semester!)
- 6. Assume that the function " \sqrt{x} " makes sense. That is, there is a real-valued function labeled \sqrt{x} defined for all $x \geq 0$ satisfying

- (a) $\sqrt{x} \ge 0$ for all $x \ge 0$,
- (b) $(\sqrt{x})^2 = x$ for all $x \ge 0$.

(This follows from the Intermediate Value Theorem, to be treated shortly!)

Prove that \sqrt{x} is continuous.

Suggestion. You may wish to prove continuity at $x_0 = 0$ separately from continuity at $x_0 > 0$.

- 7. Let $f(x) = 2x \cos(1/x)$ for $x \neq 0$ and set f(0) = 0. Show that f is continuous at 0 by directly verifying the ϵ - δ definition of continuity. Do *not* use the sequential criterion.
- 8. Prove that $f(x) = x^3$ is continuous at x = 2 by directly verifying the ϵ - δ definition of continuity. Do *not* use the sequential criterion.

Recommended problems

§2.3: 7, 10, 11 Ross: 17.5, 17.6

MATH 3100H problems

The following problems concern the notion of uniform continuity on a domain, which is stronger than ordinary continuity.

Suppose $f: D \to \mathbf{R}$. Recall that f is said to be continuous on D if f is continuous at each point $x_0 \in D$. Putting this in logical notation, saying f is continuous on D amounts to the requirement that

$$(\forall x_0 \in D) \ (\forall \epsilon > 0) \ (\exists \delta > 0) \ (\forall x \in D) \ (|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon).$$

What is uniform continuity and how does it compare? Loosely speaking, we say f is uniformly continuous on D if the δ in the previous definition can be chosen to depend **only** on ϵ , independently of $x_0 \in D$. More precisely, we say f is uniformly continuous on D if the following holds:

$$(\forall \epsilon > 0) \ (\exists \delta > 0) \ (\forall x_0, x \in D) \ (|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon).$$

Notice that the quantifier on x_0 has been moved further into the expression!

If you stare at this long enough, it should become clear that uniform continuity on D always implies continuity on D. (A δ that 'works' in the definition of uniform continuity also 'works' in the definition of continuity, and does so for all $x_0 \in D$ simultaneously.)

- 9. Let f(x) = 1/x on the domain D = (0, 1].
 - (a) Show that for each $n \in \mathbb{N}$, we have $\left|\frac{1}{n} \frac{1}{n+1}\right| < 1/n$ and $\left|f\left(\frac{1}{n}\right) f\left(\frac{1}{n+1}\right)\right| = 1$.

 Don't overthink this part!
 - (b) Prove that f is **not** uniformly continuous on D. Suggestion. Consider $\epsilon = 1$ and use the result of (a).
- 10. In the last problem, we saw an example of a continuous function on (0, 1] that is not uniformly continuous. In this problem, you will show that this cannot happen if (0, 1] is replaced by the closed interval [0, 1]: Whenever $f: [0, 1] \to \mathbf{R}$ is continuous on [0, 1], it must be that f is uniformly continuous on [0, 1].

Suppose for a contradiction that $f: [0,1] \to \mathbf{R}$ is continuous but not uniformly continuous.

- (a) Show that there is some $\epsilon > 0$ for which the following holds: For every $n \in \mathbb{N}$, there are $x_n, y_n \in [0, 1]$ with $|x_n y_n| < 1/n$ but $|f(x_n) f(y_n)| \ge \epsilon$.

 Hint. What is the negation of the definition of uniform continuity?
- (b) Choose sequences $\{x_n\}$, $\{y_n\}$ as in part (a). Explain why $\{x_n\}$ necessarily has a convergent subsequence whose limit belongs to [0,1].
- (c) Write the convergent subsequence from (b) in the form $\{x_{g(n)}\}$, where $g: \mathbb{N} \to \mathbb{N}$ is strictly increasing. Show that $\{y_{g(n)}\}$ is also convergent, and that in fact $\lim y_{g(n)} = \lim x_{g(n)}$.
- (d) Using (c) and the sequential criterion for continuity, show that $\lim_{n \to \infty} f(x_{g(n)}) = \lim_{n \to \infty} f(y_{g(n)})$.
- (e) Derive a contradiction to the result of (d) from our intiial choices of $\{x_n\}$ and $\{y_n\}$.

Hint. What can you say about $|f(x_{q(n)}) - f(y_{q(n)})|$?