Классификация траекторий динамических систем с помощью физически-информированных нейросетей

Терентьев Александр

Московский физико-технический институт, Физтех-школа прикладной математики и информатики Кафедра интеллектуальных систем Научный руководитель: к.ф.-м.н. Исаченко Р.В.

15.06.2024, Москва

Цель работы

Проблема

Существующие методы классификации многомерных рядов не имеют априорных знаний о динамике, изучаемых систем. Методы используют слишком громоздкие модели. Либо они требуют большой обучающей выборки для выделения необходимых признаков и свойств изучаемых систем.

Цель

Целью работы является предложить метод для классификации многомерных временных рядов, являющимися траекториями динамических систем, использующие априорную информацию о физической природе рядов.

Идея

Каждому временному ряду сопоставить динамическую систему. Классифицировать не траектории, а динамические системы.

Постановка задачи классификации многомерных рядов

Дано

Дана выборка $D=\{(X_i,y_i)\}_{i=1}^N$, где X_i — траектории размерности r и длинной T, $y_i\in\overline{1,K}$ — метка i-ой траектории Траекторией размерности r и длинной T назовем $X=[X_1,X_2,,,,X_T]$ такой, что $X_i=[\mathbf{q}_i,\dot{\mathbf{q}}_i],~\dot{\mathbf{q}}_i\in\mathbb{R}^r$ — скорость в i-ый момент времени, $\mathbf{q}_i\in\mathbb{R}^r$ — координата в i-ый момент времени

Найти

Требуется найти метод классификации $p(\hat{y}|X,D) = p(\hat{y}|L,D)p(L|X), \text{ где } \hat{y} \in \overline{1,K}^N - \text{предсказанные}$ метки классов, p(L|X) - метод сопоставления траектории X лагарнжиану L. В работе в качестве метода рассматривается точечная оценка $p(L|X) = [L = \hat{L}]$

Критерий

Модели сравниваются с помощью метрик Accuracy и F1Macro

Постановка задачи восстановления трактории

Дано

Дана выборка $D=\{(X_i,\mathbf{y}_i)\}_{i=1}^N$, где X – траектории размерности r и длинной T, $\mathbf{y}_i==\ddot{\mathbf{q}}_i\in\mathbb{R}^r$ – ускорение в i-ый момент времени.

Найти

Требуется найти функцию $p(\hat{\mathbf{y}}|X,D) = p(\hat{y}|X,L)p(L|D)$, где D – данная обучающая выборка, $\hat{Y} = \hat{X} = \{\hat{\mathbf{y}}_i = \hat{\mathbf{q}}_i\}_{i=1}^N$ – предсказанная динамика траектории, $L \in Q$, где Q - это семейство рассматриваемых функций

Критерий

В качестве функции потерь берется средняя квадратичная ошибка

$$\mathcal{L}(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{T} \sum_{i=1}^{T} \|\hat{\mathbf{y}}_i - \mathbf{y}_i\|_2^2,$$

Лагарнжева нейронная сеть

$$\mathbf{x}_i = (\mathbf{q}_i, \dot{\mathbf{q}}_i) \xrightarrow{\hat{L}: (\mathbf{x}|\mathbf{w}) \to L_\mathbf{x}} L_\mathbf{x} \xrightarrow{\nabla L} \frac{d}{dt} \frac{\partial L}{\partial \dot{\mathbf{q}}} = \frac{\partial L}{\partial \mathbf{q}} \xrightarrow{\ddot{\mathbf{q}}_i = g(\mathbf{q}_i, \dot{\mathbf{q}}_i)} \mathbf{y}_i = \ddot{\mathbf{q}}_i$$
Рис.: Схема нейронной сети

Параметризация

 $p(L|D),\ L\in Q=\{hatL\colon (\mathbf{x}|\mathbf{w})\to L_{\mathbf{x},\mathbf{w}}\}\ \hat{L}$ - полносвязная нейронная сеть с функцией активации SoftPlus, w - параметры нейронной сети.

 $p(L|D)=[L=\hat{L}]$, где \hat{L} — ОМП лагранжиана системы, полученная из $\mathcal{L}(\hat{\mathbf{y}},\mathbf{y}) o min$

Система для нахождения ускорений

$$p(\hat{y}|X,L): \left(\nabla_{\dot{\mathbf{q}}\dot{\mathbf{q}}}L\right)\ddot{\mathbf{q}} = \left[\nabla_{q}L - \left(\nabla_{\dot{\mathbf{q}}\mathbf{q}}L\right)\dot{\mathbf{q}}\right].$$

Модификация сети

В исходной архитектуре сети в каждой точки траектории мы решаем СЛАУ. Проблема в том, что у матрицы $H_L(\mathbf{q},\dot{\mathbf{q}})=\nabla_{\dot{\mathbf{q}}\dot{\mathbf{q}}}L$ собственные значения могут быть сколь угодно маленькими.

$$H\hat{\mathbf{q}} = \hat{b} = (\nabla_{\dot{\mathbf{q}}\dot{\mathbf{q}}}L)^{-1} \left[\nabla_{q}L - (\nabla_{\dot{\mathbf{q}}\mathbf{q}}L) \,\dot{\mathbf{q}} \right]$$
$$\hat{\mathbf{q}} = H^{-1} \left[\nabla_{q}L - (\nabla_{\dot{\mathbf{q}}\mathbf{q}}L) \,\dot{\mathbf{q}} \right].$$

Тогда изменим функцию потерь так, чтобы штрафовать за собственные значения матрицы H меньше 1, а вместо разности ускорений возьмем невязку для полученной СЛАУ

 $H\ddot{\mathbf{a}} = b$

$$\mathcal{L}^{mod}(\mathbf{w}) = \frac{1}{T} \sum_{i=1}^{T} \|\hat{\mathbf{b}}_i - \mathbf{b}_i\|_2^2 + \alpha \text{act}(\beta(\lambda(H_{\ddot{q}}) - 1)).$$

Идея классификатора

$$A(L) =
abla_q L - \left(
abla_{\dot{\mathbf{q}}\mathbf{q}} L \right) \dot{\mathbf{q}}, H(L) =
abla_{\dot{\mathbf{q}}\dot{\mathbf{q}}} L$$
 $X \xrightarrow{LNN} \hat{L} = g(x|w) \xrightarrow{L_N^i = A(L)(\mathbf{q}_i, \dot{\mathbf{q}}_i)} L_N \in \mathbb{R}^N \xrightarrow{\text{classifier:} R^N o K} \hat{y}$
 $Q_N \sim U([-L, L]^{2r})$
Рис.: Схема нейронной сети

Аппроксимация нормы

$$\overline{|A(L)(\mathbf{q},\dot{\mathbf{q}})|^2 + \|H(L)(\mathbf{q},\dot{\mathbf{q}})\|_2^2}$$
$$\|H(L)(\mathbf{q},\dot{\mathbf{q}})\|_2^2 \approx const$$

Эквивалентность нахождения минимума невязки и отклонения ускорений

Норма

$$A(L) = \nabla_{\mathbf{q}} L - (\nabla_{\dot{\mathbf{q}}\mathbf{q}} L) \, \dot{\mathbf{q}}, H(L) = \nabla_{\dot{\mathbf{q}}\dot{\mathbf{q}}} L$$

$$\|L\|_{L} = \|(A(L), H(L))\|_{2}$$

$$A(L)(\mathbf{q}, \dot{\mathbf{q}}) = H(L)(\mathbf{q}, \dot{\mathbf{q}}) \ddot{\mathbf{q}}$$
(1)

Теорема (Терентьев, 2024)

 $\|\delta L\|_L = 0 \Leftrightarrow$ п.в. $\delta \ddot{q} = 0$, где $\delta L = L' - L$, $\delta \ddot{q} = \ddot{q}' - \ddot{q}$, где L', $L \in \mathcal{X}$ являются вариациями лагранжиана и ускорения на множестве \mathcal{X} , на котором функциональное уравнение 1 относительно L имеет единственное решение, и $\forall L \in \mathcal{X}: \ \mathbf{H}(L) \not\equiv 0$,.

Эквивалентность исходной оптимизационной задачи и задачи с ограничениями

$$\mathcal{L}^{mod}(\mathbf{w}) = \frac{1}{T} \sum_{i=1}^{T} \|\hat{\mathbf{b}}_i - \mathbf{b}_i\|_2^2 + \alpha \mathrm{act}(\beta(\lambda(H_{\ddot{q}}) - 1)).$$

Теорема (Терентьев, 2024)

Если лагранжианы заданы на компакте, то существуют неотрицательные числа a,b такие, что $detH \geq a$, а собственные значения матрицы H не меньше b

Аппроксимация нормы

$$A(L) = \nabla_{\mathbf{q}} L - (\nabla_{\dot{\mathbf{q}}\mathbf{q}} L) \dot{\mathbf{q}}, H(L) = \nabla_{\dot{\mathbf{q}}\dot{\mathbf{q}}} L$$
$$\|L\|_{L} = \|(A(L), H(L))\|_{2}$$
$$A(L)(\mathbf{q}, \dot{\mathbf{q}}) = H(L)(\mathbf{q}, \dot{\mathbf{q}}) \ddot{\mathbf{q}}$$

Теорема (Терентьев, 2024)

Исходная норма $\|\cdot\|_L$ с любой наперед заданной точностью ϵ приближается I_2 -нормой, при стремлении числа сэмплов N и меры пространства из которого берут сэмплы Ω к бесконечности

$$\|(A(L), H(L))\|_{2} = \sqrt{\int |A(L)(\mathbf{q}, \dot{\mathbf{q}})|^{2} + \|H(L)(\mathbf{q}, \dot{\mathbf{q}})\|_{2}^{2} d\Omega} \approx \mu(\Omega) \cdot \overline{|A(L)(\mathbf{q}, \dot{\mathbf{q}})|^{2} + \|H(L)(\mathbf{q}, \dot{\mathbf{q}})\|_{2}^{2}}$$

Эквивалентность приближенной задачи исходной

Теорема (Терентьев, 2024)

Пусть есть конечное семейство непересекающихся замкнутых выпуклых множеств $\mathcal A$ в нормированном пространстве $\mathbb L$, тогда существует $\epsilon>0$, что для любого преобразования пространства ϕ такое, что $\|\phi(\mathcal A_i)-\mathcal A_i\|<\epsilon$ множества из семейства $\phi\mathcal A$ попарно сильно отделимы.

Вычислительный эксперимен

Исследования проводились на наборе данных Physical Activity Monitoring(PAMAP2) Набор данных содержит записи с трех наборов гироскопов и акселерометров: закрепленных на запястье преобладающей руки, закрепленных на груди, закрепленных на локте преобладающей руки. Число испытуемых: M=9. Число видов активностей(классов): K=24, каждая активность длилась 2-4 минуты , частота сэмплирования $100\ \Gamma$ ц.

Остатки траектории в зависимоти от регуляризации

Возьмем синтетический набор данных для траекторий двойного маятника и построим график остатков в случае регуляризации и без.

Рис.: График остатков для траектории двойного маятника, слева с регуляризацией, справа без

Восстановление динамики системы

Рис.: Временной ряд зависимости ускорения от времени для тестовой выборки

Кривые обучения

Рис.: График обучения модели

Распределение классов в пространстве Лагранжианов

Рис.: Проекция пространства лагранжианов на плоскость

Распределение классов в пространстве Лагранжианов

Рис.: Проекция пространства лагранжианов в трехмерное пространство

Результат работы классификаторов

Рис.: Точность классификации выбранных метод в зависимости от количества главных компонент

Результат работы классификаторов

Классификатор	Метрика		
	Accuracy	Balanced-accuracy	F1 Macro
Логистическая регрессия	$0,927 \pm 0.014$	$0,924\pm0,13$	$0,927 \pm 0,14$
Гауссовский процесс	$\textbf{0}, \textbf{946} \pm \textbf{0}, \textbf{010}$	$\textbf{0}, \textbf{941} \pm \textbf{0}, \textbf{011}$	$\textbf{0}, \textbf{946} \pm \textbf{0}, \textbf{010}$
Случайный лес	$0,932 \pm 0,007$	$0,928\pm0,008$	$0,933 \pm 0,008$
К-ближайших соседей	$0,939 \pm 0,009$	$0,935\pm0,010$	$0,940 \pm 0,008$
SVC с гауссовским ядром	$0,933\pm0,012$	$0,927 \pm 0,013$	$0,933 \pm 0,011$

Таблица: Результат классификаторов на предложенной векторизации данных

Выносится на защиту

- 1. Предложен метод физико-информированного подхода к классификации многомерных временных рядов, на основе классификации систем их порождающие.
- 2. Предложен метод оценки лагарнжиана системы на основе LNN-сетей и регуляризация устраняющая нефизические колебания системы.
- 3. Доказано, что, если исходные лагранжианы отделимы, то и их оценки тоже отделимы.
- 4. Доказана эквивалентность задачи нахождения минимума невязки и отклонения ускорений, и показаны достаточные условия для этого.
- 5. Доказано, что выбранная проекция пространства лагранжианов приближает норму с любой наперед заданной точностью.
- Исследованы методы метрической классификации в данном пространстве и показано, что линейные классификаторы дают лучшие метрики классификации.