Indian Institute of Information Technology Vadodara MA 101: Linear Algebra and Matrices Tutorial 8

- 1. Construct the general solution of x' = Ax involving complex eigenfunctions and then obtain the general real solution, where $A = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}$
- 2. Let x(t) be the position of a particle at time t. Let A be a 2×2 matrix with eigenvalues -3 and -1 corresponding to eigenvectors $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Solve the initial value problem x' = Ax with $x(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
- 3. Find the minimal polynomial of following matrix and answer diagonalizability and triangulability of the matrix by analysing minimal polynomial.

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

- 4. Find a 3×3 matrix whose minimal polynomial is λ^2 .
- 5. Show that every matrix $A \in M_n(\mathbb{R})$ with $A^2 = A$ is diagonalisable over \mathbb{R} .
- 6. Give an example of a matrix which is not diagonalisable over \mathbb{C} . Show that every square matrix with complex entries is triangulable over \mathbb{C} .

7. Let
$$P(t) = a_0 + a_1 t + \dots + a_{n-1} t^{n-1} + t^n$$
. Consider $A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & & 0 \\ \vdots & & & & \vdots \\ -a_0 & -a_1 & -a_2 & \dots & -a_{n-1} \end{bmatrix}$.

Show that characteristics polynomial of A is P(t). What can you say about minimal polynomial of A? Construct a 4×4 matrix which is triangulable over \mathbb{R} but not diagonalizable over \mathbb{R} .