Обзор: Три математических опоры искусственного интеллекта

Автор: Альтернативная редакция лекции по ИИ Июль 2025

Ключевые разделы математики в ИИ

- 1. **Теория вероятностей и статистика**: Байесовский подход, Центральная предельная теорема, Оценка максимального правдоподобия
- 2. **Методы оптимизации**: Идеи Ферма и Лагранжа, стохастический градиентный спуск
- 3. **Линейная алгебра**: SVD, PCA, спектральные методы

1 Вероятностные модели и статистические методы

1.1 Байесовский взгляд и задача многорукого бандита

- После l_k неудач и w_k удачных попыток апостериорное распределение:

$$\rho_{P_k}(x) = \frac{(l_k + w_k + 1)!}{l_{\nu}! w_{\nu}!} x^{w_k} (1 - x)^{l_k}$$

• Ожидаемая вероятность выигрыша:

$$\mathbb{E}P_k = \frac{w_k + 1}{l_k + w_k + 2}$$

1.2 Центральная предельная теорема (ЦПТ)

 Сумма независимых одинаково распределённых величин стремится к нормальному распределению:

$$\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \xi_k \xrightarrow{d} \mathcal{N}(0, \sigma^2)$$

• Плотность Гаусса:

$$\rho(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

1.3 Статистические оценки и доверительные интервалы

• Оценка среднего:

$$\hat{h} = \frac{1}{n} \sum \xi_k$$

• Доверительный интервал:

$$\mathbb{P}\left(\left|\hat{h} - h\right| \le \frac{\sigma}{\sqrt{n}}\sqrt{\ln(1/\delta)}\right) \ge 1 - \delta$$

• Метод максимального правдоподобия:

$$\hat{x} = \arg\max_{x} \prod_{k} p(\xi_k, x)$$

• Пример линейной регрессии:

$$v_k = H \cdot r_k + \varepsilon_k, \quad \hat{H} = \arg\min_{H} \sum_{k} (v_k - Hr_k)^2$$

2 Оптимизация и машинное обучение

2.1 Байесовская регуляризация и LASSO

$$\hat{x} = \arg\min_{x} \left[\frac{1}{2\sigma_{\xi}^{2}} \sum_{k} (\xi_{k} - x)^{2} + \frac{x^{2}}{2\sigma_{x}^{2}} \right]$$

Для L1-регуляризации:

$$\hat{x} = \arg\min_{x} \left[\frac{1}{2\sigma_{\xi}^{2}} \sum_{k} (\xi_{k} - x)^{2} + \lambda |x| \right]$$

2.2 Машинное обучение и статистика: различия

ML:
$$\min_{x} \frac{1}{n} \sum_{x} (y_k - f(a_k, x))^2$$

Статистика: $y = f(a, x) + \xi$, $\xi \sim \mathcal{N}(0, \sigma^2)$

2.3 Переобучение и валидация

- Необходимость разделения на обучающую и тестовую выборки
- Проблема переобучения при увеличении числа параметров

3 Фундаментальные идеи и комментарии

- Теория вероятностей объясняет случайность и неопределённость
- Статистика восстанавливает скрытые зависимости из выборок
- Оптимизация обучает модели и минимизирует ошибки
- Линейная алгебра даёт инструменты для анализа и сжатия данных

«Если множество случайных факторов взаимодействует, результат
— гауссовское распределение.»