EXHIBIT U

'156 Patent

Claim Limitation (Claim 7)	Exemplary Disclosure
[156a] A device comprising:	The Xilinx Virtex-4 family of FPGAs ("Xilinx Virtex-4") discloses a device. See, e.g.:
	"[T]he Virtex®-4 family from Xilinx greatly enhances programmable logic design capabilities, making it a powerful alternative to ASIC technology. Virtex-4 FPGAs comprise three platform families—LX, FX, and SX—offering multiple feature choices and combinations to address all complex applications. The wide array of Virtex-4 FPGA hard-IP core blocks includes the PowerPC® processors (with a new APU interface), tri-mode Ethernet MACs, 622 Mb/s to 6.5 Gb/s serial transceivers, dedicated DSP slices, high-speed clock management circuitry, and source-synchronous interface blocks." Virtex-4 Family Overview (Aug. 30, 2010), available at https://www.xilinx.com/support/documentation/data_sheets/ds112.pdf (hereinafter "Virtex-4 Family Overview"). ²
	"The DSP48 slice is a new element in the Xilinx development model referred to as Application Specific Modular Blocks (ASMBL TM) architecture. The purpose of this model is to deliver off-the-shelf programmable devices with the best mix of logic, memory, I/O, processors, clock management, and digital signal processing." XtremeDSP for Virtex-4 FPGAs at 11 (May 15, 2008) (hereinafter "XtremeDSP"). "Each XtremeDSP tile contains two DSP48 slices to form the basis of a versatile coarse-grain DSP architecture. Many DSP designs follow a multiply with addition. In Virtex®-4 devices, these elements are

¹ The devices discussed in this chart are exemplary of Xilinx devices existing at the time of the alleged invention(s). Google is in the process of pursuing documents from Xilinx, a third party in this action, and Google reserves the right to amend its invalidity charts pending the results of its investigation and Xilinx's production. Thus, this chart should be treated as exemplary of other Xilinx devices and/or floating-point operator version(s) that may also meet the elements of the asserted claim in a manner similar to the charted materials. Indeed, public information suggests that the Virtex-5 and Virtex-6 were released prior to the date of the provisional application to which the patents-in-suit claim priority, and the Virtex-7 was released prior to the date of the earliest parent application to which the patents in suit claim priority. Furthermore, public information suggests that one or more versions of the Xilinx Floating Point operator, beyond the ones referenced herein, were released prior to the date of the provisional and/or earliest parent applications. Google is continuing to pursue discovery regarding these devices/systems.

² All Virtex-4 devices were released for production in 2007. *See* Virtex-4 Family Overview at 9.

Claim Limitation (Claim 7)	Exemplary Disclosure
	supported in dedicated circuits." <i>Id.</i>
	"The DSP48 slices available in all Virtex-4 family members support new DSP algorithms and higher levels of DSP integration than previously available in FPGAs. Minimal use of general FPGA fabric leads to low power, very high performance, and efficient silicon utilization." <i>Id</i> .
[156b] at least one first low precision high dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input	The Xilinx Floating-Point Operator, which is compatible with Xilinx Virtex-4 and DSP48, discloses at least one first low precision high dynamic range (LPHDR) execution unit adapted to execute a first input signal representing a first numerical value to produce a first output signal representing a second numerical value. <i>See</i> , <i>e.g.</i> :
signal representing a first numerical value to produce a first output signal representing a second	"The Xilinx Floating-Point core provides designers with the means to perform floating-point arithmetic on FPGA. The core can be customized to allow optimization for operation, word length, latency, and interface." XILINX-GOOG-SUB00000140.
numerical value,	The Xilinx Floating-Point core is available for FPGAs including the Virtex-4, and "supports operators including multiply, add/subtract, divide, square-root, comparison, conversion from floating-point to fixed-point, conversion from fixed-point to floating point, conversion between floating-point types." XILINX-GOOG-SUB00000140.
	"The DSP48 slices support many independent functions, including multiplier, multiplier-accumulator (MACC), multiplier followed by an adder, three-input adder, barrel shifter, wide bus multiplexers, magnitude comparator, or wide counter. The architecture also supports connecting multiple DSP48 slices to form wide math functions, DSP filters, and complex arithmetic without the use of general FPGA fabric." Xtreme DSP at 11.
	"The Xilinx Floating-Point core allows a range of floating-point arithmetic operations to be performed on FPGAs. The operation is specified when the core is generated, and each variant has a common interface. This interface is shown in Figure 1. When a user selects an operation that requires only one operand, the B input is omitted." XILINX-GOOG-SUB00000140; Xilinx Floating-Point Operator v3.0 (Sept. 28, 2006) at 1 (hereinafter "Xilinx Floating-Point Operator v3.0").

Claim Limitation (Claim 7)			I	Exemplary Disclosure	
	Port Description				
	-	he core are show	n in Figure 1.1	They are described in more detail in Table 2. All	
	Name	Width	Direction	Description	
	A ¹	w	INPUT	Operand A	
	B1	w	INPUT	Operand B: Only present on binary operation.	
	OPERATION ¹	6	INPUT	Operation: Specifies the operation to be performed. Implemented when the core is configured for both add and subtract operations, or as a programmable comparator.	
	OPERATION_ND	1	INPUT	New Data: Must be set high to indicate that operand A, operand B and OPERATION, when required, are valid.	
	OPERATION_RFD	1	OUTPUT	Ready For Data: Set high by core to indicate that it is ready for new operands.	
	SCLR	1	INPUT	Synchronous Reset (optional).	
	CE	1	INPUT	Clock Enable (optional).	
	CLK	1	INPUT	Clock	
	RESULT	w	OUTPUT	Result Output: Result of operation.	
	UNDERFLOW	1	OUTPUT	Underflow: Set high by core when underflow occurs. Supplied in synchronism with associated RESULT.	
	OVERFLOW	1	ОИТРИТ	Overflow: Set high by core when overflow occurs. Supplied in synchronism with associated RESULT.	
X	I LI NX-GOOG-SU	B00000143;	Xilinx Flo	pating-Point Operator v3.0 at 5.	

Claim Limitation (Claim 7)	Exemplary Disclosure
	Optimization Selection
	This parameter allows the type of optimization to be selected. Note that the optimization selected will determine the additional core configuration information requested by subsequent GUI screens. The optimizations supported are:
	Basic (unoptimized): The cores offer a good balance between latency and clock rate.
	Basic core configurations include add, multiply, divide and compare operation types. The multiplier is only available on FPGA families that support embedded multipliers. (Note that multipliers are available for all families when the core is speed optimized). Only single formats are supported. For add/subtract, multiply and compare operations an operand can be issued on every clock cycle. However, to reduce resource requirements the divide operations is multi-cycle and only performs an operation every 30 cycles.
	Speed Optimized: The core is optimized for maximum throughput. Operands can be issued on every clock cycle and a high-level of pipelining is employed to maximize clock rate.
	The speed optimized core configurations include add, multiply, divide and square-root (sqrt) operation types. A range of operand widths is provided. The latency of the speed optimized core depends upon:
	- width of the operands
	- operator type
	- multiplier type (embedded or logic-based) used for multiply operation
	See "The latency of the basic add/subtract and multiply operations is 5 cycles. The latency of the compare operation is 2 cycles and the divide operation 30 cycles." on page 10 for specific values of latency.
	Operation Type
	The floating-point operation may be one of the following:
	• Add
	Subtract
	Multiply
	Divide
	Square-root (only available with speed optimization)
	Compare (not available with speed optimization).
	XILINX-GOOG-SUB00000147.

Claim Limitation (Claim 7)	Exemplary Disclosure									
	Width of the Operand and Results									
		The format widths supported for speed optimized cores is summarized in Table 5. For each valid wordlength configuration, the total format width is also shown in Table 5. Table 5: Supported Widths for Speed Optimized Cores								
	Table 5: Supporte									
				Width]			
	Fraction Width			Exponent Widt	th		1			
	Thum I	4	6	8	10	11				
	8	12	14				1			
	10	14	16]			
	12	16	18]			
	14		20	22						
	16		22	24						
	17		23	25						
	20		26	28	30					
[156c] wherein the dynamic	XILINX-GOOG-SU The Xilinx Floating			ne dynamic ra	nge of the nos	sible valid innu	uts to the first			
range of the possible valid							of the possible valid			
inputs to the first operation is	inputs to the first op	eration, the s	tatistical mear	n, over repeate	ed execution o	f the first opera	tion on each specific			
at least as wide as from 1/1,000,000 through	input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented									
1,000,000 and for at least	by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values of									
X=5% of the possible valid	that same input. Spe					1				
inputs to the first operation,	exponent, which me	•								
the statistical mean, over										
repeated execution of the										
first operation on each										
specific input from the at										

Claim Limitation (Claim 7)

least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input; and

Exemplary Disclosure

Width of the Operand and Results

The format widths supported for speed optimized cores is summarized in Table 5. For each valid wordlength configuration, the total format width is also shown in Table 5.

Table 5: Supported Widths for Speed Optimized Cores

			Width		
Fraction Width			Exponent Width	1	
	4	6	8	10	11
8	12	14			
10	14	16			
12	16	18			
14		20	22		
16		22	24		
17		23	25		
20		26	28	30	

XILINX-GOOG-SUB00000148.

	Exemplary Disclosure									
The latency of the speed optimized Floating-Point core is tabulated for all supported width and operation types in Table 6.										
Table 6: Latency of Speed Optimized Core										
Core Pa	rameters	meters Latency (cycles)								
Function				Multip	oly		Divide			
Fraction width	width	Add	Logic only	MULT18X18	DSP48	DSP48 + logic	and Sqrt			
8	4 & 6	10	6	5	6	6	11			
10	4 & 6	10	6	5	6	6	12			
12	4 & 6	10	7	5	6	6	15			
14	6 & 8	10	7	5	6	6	17			
17	6 & 8	11	7	5	6	6	20			
20	6, 8 & 10	11	7	6	9	11	23			
22	6, 8 & 10	11	7	6	9	11	25			
24	6, 8, & 10	11	8	6	9	11	27			
34	8	12	8	6	9	9	37			
53	11	12	9	10	21	17	56			
	Table 6: La Core Pa Fraction width 8 10 12 14 17 20 22 24 34	Table 6: Latency of Special Core Parameters Fraction width 8	Table 6: Latency of Speed Opt Core Parameters Exponent width Add 8 4 & 6 10 10 4 & 6 10 12 4 & 6 10 14 6 & 8 10 17 6 & 8 11 20 6, 8 & 10 11 22 6, 8 & 10 11 24 6, 8, & 10 11 34 8 12	Table 6: Latency of Speed Optimized Co Core Parameters Exponent width Add Logic only 8 4 & 6 10 6 10 4 & 6 10 6 12 4 & 6 10 7 14 6 & 8 10 7 17 6 & 8 11 7 20 6, 8 & 10 11 7 22 6, 8 & 10 11 7 24 6, 8, & 10 11 8 34 8 12 8	Core Parameters Latency Fraction width Exponent width Add Logic only MULT18X18 8 4 & 6 10 6 5 10 4 & 6 10 6 5 12 4 & 6 10 7 5 14 6 & 8 10 7 5 17 6 & 8 11 7 5 20 6, 8 & 10 11 7 6 22 6, 8 & 10 11 7 6 24 6, 8, & 10 11 8 6 34 8 12 8 6	Table 6: Latency of Speed Optimized Core Core Parameters Latency (cycles) Fraction width Exponent width Add Logic only MULT18X18 DSP48 8 4 & 6 10 6 5 6 10 4 & 6 10 6 5 6 12 4 & 6 10 7 5 6 14 6 & 8 10 7 5 6 17 6 & 8 11 7 5 6 20 6,8 & 10 11 7 6 9 22 6,8 & 10 11 7 6 9 24 6,8,8 10 11 8 6 9 34 8 12 8 6 9	Table 6: Latency of Speed Optimized Core Core Parameters Latency (cycles)	Table 6: Latency of Speed Optimized Core Core Parameters		

Exhibit 13 – Xilinx Virtex-4 FPGA

Claim Limitation (Claim 7)	Exemplary Disclosure
	"The maximum latency of the divide and square root operations is fraction width + 4, and for compare operation it is three cycles. The float-to-float conversion operation is three cycles when either mantissa or exponent width is being reduced, otherwise it is two cycles." <i>Id.</i> at 13.
	To the extent that Singular contends that the Xilinx Floating Point Operator and the Xilinx Virtex-4 SX do not disclose this limitation, notwithstanding their disclosure of a floating point format with 8 fraction bits and 6 exponent bits, that format would have been obvious to one of skill in the art for the reasons explained in the Responsive Contentions Regarding Non-Infringement and Invalidity ("Responsive Contentions"). Among other things, the Responsive Contentions explain how those skilled in the art would mix and match formats depending on application specific needs. Specifically, the Responsive Contentions explain that the reduced-precision formats disclosed in any of Dockser, Lee, Belanović, Belanović and Leeser, Sudha, Shirazi, Aty, and TMS320C32 would have motivated one of skill in the art to implement them in an FPGA, and/or to implement the 8-bit fraction and 6-bit exponent format of the Xilinx Floating-Point core. As one example, based on the disclosure of the Belanović thesis, one of skill in the art would have understood the different combinations of fraction and exponent bits (e.g., 5 fraction bits, 6 exponent bits, and one sign bit, for a total of 12 bits) would have been possible and even desired depending on the application. Indeed, one of skill in the art would have been motivated to apply the teachings of Tong, which disclosed a 5-bit mantissa and 6-bit exponent (see Tong chart), to which Belanović cites. See Belanović, Library of Parameterized Hardware at 73, n.21.
[156d] at least one first computing device adapted to control the operation of the	The Xilinx Virtex-4 teaches or suggests at least one first computing device adapted to control the operation of the at least one first LPHDR execution unit. <i>See, e.g.</i> :
at least one first LPHDR execution unit;	"[T]he Virtex®-4 family from Xilinx greatly enhances programmable logic design capabilities, making it a powerful alternative to ASIC technology. Virtex-4 FPGAs comprise three platform families—LX, FX, and SX—offering multiple feature choices and combinations to address all complex applications. The wide array of Virtex-4 FPGA hard-IP core blocks includes the PowerPC® processors (with a new APU interface), tri-mode Ethernet MACs, 622 Mb/s to 6.5 Gb/s serial transceivers, dedicated DSP slices, high-speed clock management circuitry, and source-synchronous interface blocks." Virtex-4 Family Overview at 1.
	"The Xilinx Floating-Point core provides designers with the means to perform floating-point arithmetic on

Case 1:19-cv-12551-FDS Document 377-24 Filed 11/03/22 Page 11 of 19

Claim Limitation (Claim 7)	Exemplary Disclosure
	FPGA. The core can be customized to allow optimization for operation, word length, latency, and interface." XILINX-GOOG-SUB00000140.
	To the extent that Singular contends that the Xilinx Floating Point Operator and the Xilinx Virtex-4 SX do not disclose this limitation, notwithstanding their disclosure of an FPGA running a floating-point operator, this limitation would have been obvious to one of skill in the art for the reasons explained in the Responsive Contentions. In particular, it would have been obvious to combine a Xilinx FPGA operating Xilinx Floating Point Core software with a controller board like Wildstar.
	As reflected in Pavle Belanović's thesis, <i>Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application</i> , and his related article with Miriam Leeser, <i>Library of Parameterized Floating-Point Modules and Their Use</i> , many reconfigurable computing systems are based on one or more FPGAs connected to a number of memory banks. All designs presented by Belanović and Leeser are implemented on the Wildstar reconfigurable computing engine from Annapolis Micro Systems. Figure 1.2 shows the structure of this board.

Claim Limitation (Claim 7)	Exemplary Disclosure
[156e] wherein the at least one first computing device comprises at least one of a central processing unit (CPU), a graphics processing	Xilinx Virtex-4 teaches or suggests at least one first computing device comprises at least one of a central processing unit (CPU), a graphics processing unit (GPU), a field programmable gate array (FPGA), a microcode-based processor, a hardware sequencer, and a state machine. Specifically, Xilinx Virtex-4 SX discloses an FPGA. <i>See, e.g.</i> :
unit (GPU), a field programmable gate array (FPGA), a microcode-based processor, a hardware sequencer, and a state machine;	"[T]he Virtex®-4 family from Xilinx greatly enhances programmable logic design capabilities, making it a powerful alternative to ASIC technology. Virtex-4 FPGAs comprise three platform families—LX, FX, and SX—offering multiple feature choices and combinations to address all complex applications. The wide array of Virtex-4 FPGA hard-IP core blocks includes the PowerPC® processors (with a new APU interface), tri-mode Ethernet MACs, 622 Mb/s to 6.5 Gb/s serial transceivers, dedicated DSP slices, high-speed clock management circuitry, and source-synchronous interface blocks." Virtex-4 Family Overview at 1.
	To the extent that Singular contends that Xilinx Virtex-4 SX does not disclose this limitation, notwithstanding its disclosure of an FPGA, this limitation would have been obvious to one of skill in the art for the reasons explained in the Responsive Contentions. In particular, it would have been obvious to combine a Xilinx FPGA operating Xilinx Floating Point core software with a controller board like Wildstar.
	As reflected in Pavle Belanović's thesis, <i>Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application</i> , and his related article with Miriam Leeser, <i>Library of Parameterized Floating-Point Modules and Their Use</i> , they made and used a system with at least one first computing device comprises at least one of a central processing unit (CPU), a graphics processing unit (GPU), a field programmable gate array (FPGA), a microcode-based processor, a hardware sequencer, and a state machine. Specifically, Belanović discloses a "host" computer that comprises at least a "state machine," "FPGAs," and various "processing units." <i>See, e.g.</i> , Belanović, <i>Library of Parameterized Hardware</i> at 15 (Fig 1.2) (depicting the Wildstar computer engine, including (1) a PCI 64, which implies an interconnection with a PC and thus a CPU, and (2) an I/O Card and Controller, which qualifies as a state machine).
	Some of the main features of the Wildstar board are: • 3 Xilinx VIRTEX XCV1000 FPGAs, • total of 3 million system gates, • 40 Mbytes of SRAM, • 1.6 Gbytes/sec I/O bandwidth,

Claim Limitation (Claim 7)	Exemplary Disclosure										
	6.4 Gbytes/sec memory bandwidth,										
	• processing clock rates up to 100MHz."										
	Belanović, <i>Librar</i>	y of Par	ameterize	d Hardware a	it 14.						
[156f] and, wherein the number of LPHDR execution units in the device exceeds by at least one hundred the non-negative integer number of execution units in the device adapted to execute at least the operation of multiplication on floating point numbers that are at least 32 bits wide.	the non-negative integer number of execution units in the device adapted to execute at least the operation on floating point numbers that are at least 32 bits wide. Specifically, the Xilinx Virtex-execution units in the vice adapted to execute at least 32 bits wide. Specifically, the Xilinx Virtex-execution units in the vice adapted to execute at least 32 bits wide. Specifically, the Xilinx Virtex-execution units in the vice adapted to execute at least 32 bits wide. Specifically, the Xilinx Virtex-execution units in the device adapted to execute at least the operation of operation on floating sit the non-negative integer number of execution units in the device adapted to execute at least 32 bits wide. Specifically, the Xilinx Virtex-execution units in the device adapted to execute at least 32 bits wide. Specifically, the Xilinx Virtex-execution units in the device adapted to execute at least the operation of operation on floating sit the non-negative integer number of execution units in the device adapted to execute at least the operation of execution units in the device adapted to execute at least 32 bits wide. Specifically, the Xilinx Virtex-execution units in the device adapted to execute at least 32 bits wide. Specifically, the Xilinx Virtex-execution units in the device adapted to execute at least 32 bits wide. Specifically, the Xilinx Virtex-execution units in the device adapted to execute at least 32 bits wide. Specifically, the Xilinx Virtex-execution units in the device adapted to execute at least 32 bits wide. Specifically, the Xilinx Virtex-execution units in the device adapted to execute at least 42 bits wide. Specifically, the Xilinx Virtex-execution units in the device adapted to execute at least 42 bits wide. Specifically, the Xilinx Virtex-execution units in the device adapted to execute at least 42 bits wide. Specifically, the Xilinx Virtex-execution units in the device adapted to execute at least 42 bits wide. Specifically, the Xilinx Virtex-execution units in the device adapted to execute at								eration of		
	Table 1-1: Nu	ımber of	DSP48 Slic	es per Family I	Member						
	Device	DSP48	Columns	Device	DSP48	Columns	Device	DSP48	Columns		
	XC4VLX15	32	1	XC4VSX25	128	4	XC4VFX12	32	1		
	XC4VLX25	48	1	XC4VSX35	192	4	XC4VFX20	32	1		
	XC4VLX40	64	1	XC4VSX55	512	8	XC4VFX40	48	1		
	XC4VLX60	64	1				XC4VFX60	128	2		
	XC4VLX80	80	1				XC4VFX100	160	2		
	XC4VLX100	96	1				XC4VFX140	192	2		
	XC4VLX160	96	1	1	1		1	I			
	AC4VLA160	90	1								

Case 1:19-cv-12551-FDS Document 377-24 Filed 11/03/22 Page 15 of 19

Claim Limitation (Claim 7)	Exemplary Disclosure
	XtremeDSP at 13-14.
	The Xilinx Floating-Point Core features include "[s]upport for DSP48 on Virtex-4." XILINX-GOOG-SUB00000140; see also Floating-Point Operator v3.0 at 1 (includes "[s]upport for DSP48 on Virtex-4 FPGAs and DSP48E on Virtex-5 FPGAs"); Virtex-4 Family Overview at 1 (features include "ExtremeDSP Slice").
	To the extent that Singular contends that Xilinx Virtex-4 does not identify a device with at least 100 multiplication execution units, notwithstanding its disclosure of a system with 512 such units, such a device would have been obvious for the reasons explained in the Responsive Contentions.

'273 Patent

Claim Limitation (Claim 53)	Exemplary Disclosure
[273a] A device:	Xilinx Virtex-4 discloses a device. See [156a].
[273b] comprising at least one first low precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first output signal representing a second numerical value,	The Xilinx Floating-Point Operator, which is compatible with Xilinx Virtex-4 and the DSP48, discloses at least one first low precision high dynamic range (LPHDR) execution unit adapted to execute a first input signal representing a first numerical value to produce a first output signal representing a second numerical value. <i>See</i> [156b].
[273c] wherein the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X % of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input;	The Xilinx Floating-Point Operator discloses the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input. See [156c]; see also Appendix to Responsive Contentions (detailing error rates associated with different mantissa sizes).

Exhibit 13 – Xilinx Virtex-4 FPGA

Claim Limitation (Claim 53)	Exemplary Disclosure
[273d] wherein the number of	Xilinx Virtex-4 discloses the number of LPHDR execution units in the device exceeds by at
LPHDR execution units in the device	least one hundred the non-negative integer number of execution units in the device adapted to
exceeds by at least one hundred the	execute at least the operation of multiplication on floating point numbers that are at least 32
non-negative integer number of	bits wide. See [156f].
execution units in the device adapted	
to execute at least the operation of	
multiplication on floating point	
numbers that are at least 32 bits wide.	

'961 Patent

Claim Limitation (Claim 4)	Exemplary Disclosure
[961a] A device comprising:	Xilinx Virtex-4 discloses a device. See [156a].
[961b] at least one first low precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first	Xilinx Virtex-4 discloses at least one first low precision high dynamic range (LPHDR) execution unit adapted to execute a first input signal representing a first numerical value to produce a first output signal representing a second numerical value. <i>See</i> [156b].
output signal representing a second numerical value,	
[961c] wherein the dynamic range of the possible valid inputs to the first	Xilinx Virtex-4 discloses the dynamic range of the possible valid inputs to the first operation is at least as wide as from $1/1,000,000$ through $1,000,000$ and for at least X=10% of the possible
operation is at least as wide as from 1/1,000,000 through 1,000,000 and	valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first
for at least X=10% of the possible valid inputs to the first operation, the	operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.2% from the result of an
statistical mean, over repeated	exact mathematical calculation of the first operation on the numerical values of that same
execution of the first operation on each specific input from the at least	input. See [156c]; see also Appendix to Responsive Contentions (detailing error rates associated with different mantissa sizes).
X% of the possible valid inputs to	

Claim Limitation (Claim 4)	Exemplary Disclosure
the first operation, of the numerical	
values represented by the first output	
signal of the LPHDR unit executing	
the first operation on that input	
differs by at least Y=0.2% from the	
result of an exact mathematical	
calculation of the first operation on	
the numerical values of that same	
input; and	
[961d] at least one first computing	Xilinx Virtex-4 SX, teaches or suggests at least one first computing device adapted to control
device adapted to control the	the operation of the at least one first LPHDR execution unit. See [156d].
operation of the at least one first	
LPHDR execution unit.	

Claim Limitation (Claim 13)	Exemplary Disclosure
[961e] A device comprising:	Xilinx Virtex-4 SX, discloses an example device. See [156a].
[961f] a plurality of components comprising:	Xilinx Virtex-4 SX, discloses at least one first low precision high dynamic range (LPHDR) execution unit adapted to execute a first input signal representing a first numerical value to produce a first output signal representing a second numerical value. <i>See</i> [156b]. <i>See also</i> Xilinx Virtex-4 SX, discloses at least one first computing device adapted to control the operation of the at least one first LPHDR execution unit. <i>See above</i> [156d].
[961g] at least one first low precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first output signal representing a second numerical value,	The Xilinx Floating Point Operator discloses at least one first low precision high dynamic range (LPHDR) execution unit adapted to execute a first input signal representing a first numerical value to produce a first output signal representing a second numerical value. See [156b].

Claim Limitation (Claim 13)	Exemplary Disclosure
[961h] wherein the dynamic range	The Xilinx Floating Point Operator discloses the dynamic range of the possible valid inputs to
of the possible valid inputs to the	the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least
first operation is at least as wide as	X=10% of the possible valid inputs to the first operation, the statistical mean, over repeated
from 1/1,000,000 through 1,000,000	execution of the first operation on each specific input from the at least X% of the possible
and for at least X=10% of the	valid inputs to the first operation, of the numerical values represented by the first output signal
possible valid inputs to the first	of the LPHDR unit executing the first operation on that input differs by at least Y=0.2% from
operation, the statistical mean, over	the result of an exact mathematical calculation of the first operation on the numerical values of
repeated execution of the first	that same input. See [156c]; see also Appendix to Responsive Contentions (detailing error
operation on each specific input	rates associated with different mantissa sizes).
from the at least X% of the possible	
valid inputs to the first operation, of	
the numerical values represented by	
the first output signal of the LPHDR	
unit executing the first operation on	
that input differs by at least Y=0.2%	
from the result of an exact	
mathematical calculation of the first	
operation on the numerical values of	
that same input.	