Geometria diferencial Curs 2017–18

Àlgebra multilineal i formes

Exercici 1: (Propietats elementals del producte exterior). Siguin S un tensor alternat d'ordre p, T un d'ordre q i U un d'ordre r. Feu la comprovació explícita de les propietats següents:

(a) (Associativitat)

$$(S \wedge T) \wedge U = S \wedge (T \wedge U)$$

(b) (Anticommutativitat)

$$S \wedge T = (-1)^{pq} T \wedge S$$

Solució:

Els càlculs són als apunts de teoria.

L'única observació no trivial que, potser, cal afegir és que una reordenació dels índex $\sigma(1), \ldots, \sigma(\ell)$ consisteix a prendre $\sigma(\tau(1)), \ldots, \sigma(\tau(\ell))$ per a una certa reordenació $\tau(1), \ldots, \tau(\ell)$ dels índexs $1, \ldots, \ell$.

Exercici 2: Sigui $f: \mathbb{R}^n \to \mathbb{R}^m$. Es defineix l'aplicació $f^*: \Lambda^p(\mathbb{R}^m) \to \Lambda^p(\mathbb{R}^n)$ considerant, per a cada tensor alternat T d'ordre p sobre \mathbb{R}^m , l'aplicació $f^*(T)$ que compleix

$$f^*(T)(v_1,\ldots,v_p) = T(f(v_1),\ldots,f(v_p))$$

si v_1, \ldots, v_p són vectors de \mathbb{R}^n .

Feu les comprovacions de:

- (a) $f^*(T)$ és un tensor alternat de \mathbb{R}^n i, per tant, la imatge de f^* està, realment, en $\Lambda^p(\mathbb{R}^n)$.
- (b) f^* és una aplicació lineal. És a dir $f^*(S+T)=f^*(S)+f^*(T)$ i $f^*(\lambda T)=\lambda f^*(T)$.
- (c) f^* és compatible amb el producte exterior: $f^*(S \wedge T) = f^*(S) \wedge f^*(T)$

Solució:

Només s'han d'escriure les definicions. Aplicar f als arguments d'un tensor és compatible amb la suma, el producte per escalars i la reordenació.

Exercici 3: (a) Per a cada família v_1, \ldots, v_n de n vectors de \mathbb{R}^n considerem la matriu $A = \left(a_i^j\right)$ formada per les components dels vectors v_i respecte la base canònica e_1, \ldots, e_n de forma que, per a cada i, es tingui

$$v_i = \sum_j a_i^j \, e_j$$

Demostreu que l'aplicació D determinada per

$$D(v_1,\ldots,v_n)=\det(A)$$

és un element de $\Lambda^n(\mathbb{R}^n)$.

(b) Demostreu que per a cada $T \in \Lambda^n(\mathbb{R}^n)$ existeix una constant α tal que

$$T(v_1,\ldots,v_n)=\alpha D(v_1,\ldots,v_n)$$

(c) Deduïu de l'anterior que, per a qualsevol endomorfisme f de \mathbb{R}^n , l'aplicació $f^*: \Lambda^n(\mathbb{R}^n) \to \Lambda^n(\mathbb{R}^n)$ compleix

$$f^*(T) = \det(f) T$$

Solució:

- (a) No s'ha de fer res, el determinant és una aplicació multilineal alternada.
- (b) La constant α és el valor $T(e_1, \ldots, e_n)$ o, si es vol dir d'una altra manera, el determinant és l'única aplicació multilineal alternada (d'ordre n) que val 1 sobre e_1, \ldots, e_n .
- (c) Si $T = \alpha D$ es complirà $f^*(\alpha D)(e_1, \dots, e_n) = \alpha f^*(D)(e_1, \dots, e_n) = \alpha D(f(e_1), \dots, f(e_n)) = \alpha \det(f) = \det(f) T(e_1, \dots, e_n)$

Exercici 4: Sigui e_1, \ldots, e_4 la base canònica de \mathbb{R}^4 i $\theta_1, \ldots, \theta_4$ la seva base dual $(\theta_i(e_i) = 1)$ i $\theta_i(e_i) = 0$ si $i \neq j$. Demostreu que és impossible escriure

$$\theta_1 \wedge \theta_2 + \theta_3 \wedge \theta_4 = S \wedge T$$

amb $S, T \in \Lambda^1(\mathbb{R}^4)$. (Hi ha 2-tensors alternats que no són producte exterior de dos 1-tensors).

Solució:

Noteu que un tensor de la forma $S \wedge T$, amb S i T d'ordre 1, sempre complirà $(S \wedge T) \wedge (S \wedge T) = S \wedge S \wedge T \wedge T = 0$ mentre que $(\theta_1 \wedge \theta_2 + \theta_3 \wedge \theta_4) \wedge (\theta_1 \wedge \theta_2 + \theta_3 \wedge \theta_4) = 2 \theta_1 \wedge \theta_2 \wedge \theta_3 \wedge \theta_4$ que és diferent del tensor nul (el seu valor sobre e_1, \ldots, e_4 és 2).

Exercici 5: Demostreu que, si T és un producte interior (2-tensor simètric i definit positiu) d'un cert espai vectorial V de dimensió n, existeix una aplicació lineal bijectiva $f: \mathbb{R}^n \to V$ tal que $f^*(T)$ és el producte escalar ordinari de \mathbb{R}^n .

Solució:

Si es té en compte que 2-tensor simètric i definit positiu és una forma sofisticada de dir producte escalar i que per a qualsevol producte escalar es poden construir bases ortonormals, tot el problema es redueix a construir una base ortonormal v_1, \ldots, v_n per a T i considerar l'aplicació lineal f que transforma els vectors de la base canònica de \mathbb{R}^n en els vectors v_i . Prenent aquesta aplicació, $f^*(T)(e_i, e_j) = T(v_i, v_j) = \delta_{ij}$ i, per tant, $f^*(T)$ actua com el producte escalar ordinari.

Recordeu que si es té una família de vectors v_1, \ldots, v_k ortonormals respecte $T\left(T(v_i, v_j) = \delta_{ij}\right)$ i un altre vector v que no estigui en el subespai vectorial que generen, sempre es pot afegir un nou vector v_{k+1} a la família prenent el vector $v - \sum T(v, v_i) v_i$ (que serà perpendicular a tots els anteriors) i dividint aquest resultat per la seva norma.