Entrega 3: Discriminació d'estats quàntics

Sandro Barissi, Arnau Mas

31 d'octubre de 2018

Problema 1

Si $|\psi_1\rangle$ i $|\psi_2\rangle$ són estats ortonormals aleshores l'operador $A=|\psi_1\rangle\langle\psi_1|-|\psi_2\rangle\langle\psi_2|$ és hermític i per tant es correspon a un observable. Aleshores, si $|\psi\rangle$ és l'estat desconegut i mesurem A sobre $|\psi\rangle$ obtindrem 1 amb probabilitat 1 si $|\psi\rangle=|\psi_1\rangle$ i -1 amb probabilitat 1 si $|\psi\rangle=|\psi_2\rangle$.

Problema 2

Si $|\psi_1\rangle$ i $|\psi_2\rangle$ són estats no ortogonals aleshores no hi ha cap mesura que els pugui diferenciar. Si existís aquesta mesura, el corresponent operador hauria de tenir-los com a vectors propis —de manera que obtindriem amb probabilitat 1 un dels resultats si l'estat és $|\psi_1\rangle$ i amb probabilitat 1 l'altre resultat si l'estat és $|\psi_2\rangle$ —. Però això no pot ser ja que els vectors propis amb valor propi diferent d'un operador hermític són ortogonals.

Problema 3

Tenim $|\psi_1\rangle = |0\rangle$ i $|\psi_2\rangle = \frac{\sqrt{3}}{2}|0\rangle - \frac{1}{2}|1\rangle$ amb $\langle 0|1\rangle = 0$, i triem un estat d'entre els dos de manera aleatòria.

(a) Tenim

$$\langle \psi_1 | \psi_2 \rangle = \frac{\sqrt{3}}{2} \langle 0 | 1 \rangle - \frac{1}{2} \langle 0 | 1 \rangle = \frac{\sqrt{3}}{2} \neq 0.$$

- **(b)** Considerem $A = |1\rangle\langle 1|$. És clar que $|1\rangle$ és vector propi de A amb valor propi 1. I com que $A|0\rangle = |1\rangle\langle 1|0\rangle = 0$, tenim que $|0\rangle$ és l'altre vector propi amb valor propi 0.
- (c) Com que si mesurem A sobre $|\psi_1\rangle$ obtenim 0 amb probabilitat 1, obtindrem 1 amb probabilitat 0. I per tant si obtenim 1 sabem segur que l'estat previ a la mesura era $|\psi_2\rangle$.

(d) Per determinar per quin estat hem d'apostar hem de calcular les probabilitats $p(\psi_1|0)$ i $p(\psi_2|0)$. Tenim

$$p(0|\psi_1) = \left| \langle 0|\psi_1 \rangle \right|^2 = 1$$

i

$$p(1|\psi_2) = |\langle 0|\psi_2\rangle|^2 = \left|\frac{\sqrt{3}}{2}\right|^2 = \frac{3}{4}.$$

Ara, aplicant el teorema de Bayes obtenim

$$p(\psi_1|0) = \frac{p(\psi_1)p(0|\psi_1)}{p(0)} = \frac{p(\psi_1)p(0|\psi_1)}{p(\psi_1)p(0|\psi_1) + p(\psi_2)p(0|\psi_2)} = \frac{\frac{1}{2}}{\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{3}{4}} = \frac{4}{7}.$$

I com que $p(\psi_2|0) = 1 - p(\psi_1|0) = \frac{3}{7}$ i per tant si obtenim 0 hem d'apostar per l'estat $|\psi_1\rangle$.

(e) La probabilitat d'encertar serà $p(1)p(\psi_2|1) + p(0)p(\psi_1|0)$. Tenim

$$p(1) = p(1|\psi_1)p(\psi_1) + p(1|\psi_2)p(\psi_2) = 0 \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}.$$

I per tant $p(0) = 1 - p(1) = \frac{7}{8}$. I així la probabilitat d'encertar és

$$\frac{1}{8} \cdot 1 + \frac{7}{8} \cdot \frac{4}{7} = \frac{5}{8} = 0.625.$$

Problema 4

Si fixem l'eix z al llarg de l'spin que correspon a $|0\rangle$ aleshores $A = |0\rangle\langle 0|$ és precisament l'operador que correspon a un Stern-Gerlach en la direcció z.

Fixem a l'esfera de Bloch les coordenades que corresponen a la base $|0\rangle$, $|1\rangle$ de manera que podem escriure

$$|\psi_2\rangle = \cos\frac{\pi}{6}|0\rangle + e^{i\pi}\sin\frac{\pi}{6}|1\rangle = \cos\frac{\pi}{6}|0\rangle - \sin\frac{\pi}{6}|1\rangle$$

L'operador que correspon a un Stern-Gerlach qualsevol ve donat per

$$\sigma_{\mathbf{n}} = |+n\rangle\langle +n| - |-n\rangle\langle -n|$$

amb

$$|+n\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

i

$$|-n\rangle = \sin\frac{\theta}{2}|0\rangle - e^{i\phi}\cos\frac{\theta}{2}|1\rangle$$
.

Observem que per simetria, $\phi = 0$ o $\phi = \pi$.

Repetim els càlculs de l'apartat anterior. Calculem primer les probabilitats de la mesura de $\sigma_{\bf n}$ sobre els estats:

$$\langle \psi_1|+n\rangle = \cos\frac{\theta}{2} \implies p(+n|\psi_1) = \cos\left(\frac{\theta}{2}\right)^2$$

$$\langle \psi_1|-n\rangle = \sin\frac{\theta}{2} \implies p(-n|\psi_1) = \sin\left(\frac{\theta}{2}\right)^2$$

$$\langle \psi_2|+n\rangle = \cos\frac{\pi}{6}\cos\frac{\theta}{2} \pm \sin\frac{\pi}{6}\sin\frac{\theta}{2} = \cos\left(\frac{\theta}{2} \pm \frac{\pi}{6}\right) \implies p(+n|\psi_2) = \cos\left(\frac{\theta}{2} \pm \frac{\pi}{6}\right)^2$$

$$\langle \psi_2|-n\rangle = \cos\frac{\pi}{6}\sin\frac{\theta}{2} \pm \sin\frac{\pi}{6}\cos\frac{\theta}{2} = \sin\left(\frac{\theta}{2} \pm \frac{\pi}{6}\right) \implies p(-n|\psi_2) = \sin\left(\frac{\theta}{2} \pm \frac{\pi}{6}\right)^2.$$

Per calcular la probabilitat d'encertar hauriem de trobar les probabilitats $p(\psi_1|\pm n)$ i $p(\psi_2|\pm n)$ per determinar quina és la millor estratègia, és a dir, per decidir per quin estat hem d'apostar en funció del resultat de la mesura. Ara bé, sigui com sigui hi ha només dues estratègies possibles: apostar per ψ_1 si obtenim +n, o bé apostar per ψ_2 si obtenim +n. En el primer cas, la probabilitat d'encertar serà $p(+n)p(\psi_1|+n)+p(-n)p(\psi_2|-n)$. I en el segon serà $p(+n)p(\psi_2|+n)+p(-n)p(\psi_1|-n)$. Però pel teorema de Bayes tenim:

$$p = p(+n)p(\psi_1|+n) + p(-n)p(\psi_2|-n) = p(\psi_1)p(+n|\psi_1) + p(\psi_2)p(-n|\psi_2)$$

1 - p = p(+n)p(\psi_2|+n) + p(-n)p(\psi_1|-n) = p(\psi_2)p(+n|\psi_2) + p(\psi_1)p(-n|\psi_1).

Per tant la probabilitat de encertar serà max $\{p, 1-p\}$. Tenim, amb $\phi = 0$,

$$p_0 = \frac{1}{2} \left(\cos \left(\frac{\theta}{2} \right)^2 + \sin \left(\frac{\theta}{2} + \frac{\pi}{6} \right)^2 \right).$$

i amb $\phi = \pi$,

$$p_{\pi} = \frac{1}{2} \left(\cos \left(\frac{\theta}{2} \right)^2 + \sin \left(\frac{\theta}{2} - \frac{\pi}{6} \right)^2 \right).$$

I per tot $\theta \in [0, \pi]$, $p_0 > p_{\pi}$, per tant, amb la primera estatègia tindrem probabilitat màxima amb $\phi = 0$. Si maximitzem p_0 respecte θ , trobem que p assoleix un valor màxim de $\frac{3}{4}$ per $\theta = \frac{\pi}{3}$. La representació en la base que hem triat d'aquest observable és

$$\sigma_0 = \frac{1}{2} \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}.$$

Obtenim també probabilitat d'encertar $\frac{3}{4}$ seguint l'altra estratègia quan $\phi = \pi$ i $\theta = \frac{2\pi}{3}$. Si representem el corresponent observable obtenim

$$\sigma_{\pi} = -\frac{1}{2} \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix} = -\sigma_0.$$

Observem, però, que de fet σ_{π} té els mateixos vectors propis amb els valors propis canviats de signe. Així que obtenir +n com a resultat d'una mesura de σ_0 és el mateix que obtenir -n com a resultat d'una mesura de σ_{π} . Per tant, l'estratègia que ens ha portat a σ_{π} de fet és exactament la mateixa que seguim quan mesurem σ_0 . En termes més planers, σ_{π} no és més que capgirar σ_0 .

Problema 5

Considerem ara una parella d'estats qualssevol, $|\psi_1\rangle$ i $|\psi_2\rangle$. Fixem coordenades a l'esfera de Bloch de manera que l'eix z es correspongui amb l'spin ψ_1 , i l'origen de ϕ estigui al semipla generat per ψ_1 i ψ_2 . D'aquesta manera, si $|0\rangle$ i $|1\rangle$ són els estats propis de l'Stern-Gerlach en la direcció z en les coordenades que hem triat, podem escriure

$$\begin{aligned} |\psi_1\rangle &= |0\rangle \\ |\psi_2\rangle &= \cos\frac{\alpha}{2} |0\rangle + \sin\frac{\alpha}{2} |1\rangle \end{aligned}$$

amb $\alpha \in [0,\pi]$ l'angle que separa els espins ψ_1 i ψ_2 . Ens preguntem per l'Stern-Gerlach que maximitza la probabilitat de distingir entre els estats, tenint en compte que el sistema està en l'estat $|\psi_1\rangle$ amb probabilitat p, i per tant amb probabilitat 1-p en l'estat $|\psi_2\rangle$. Els càlculs són idèntics a l'apartat anterior, amb $\frac{\alpha}{2}$ en lloc de $\frac{\pi}{6}$ i p i 1-p en lloc de $\frac{1}{2}$.

Amb $\phi = 0$, denotem per P_0 la probabilitat d'encertar apostant per ψ_1 si obtenim +ni per ψ_2 si obtenim -n, i per P_{π} la probabilitat d'encertar seguint la mateixa estratègia si $\phi = \pi$. Aleshores

$$P_0(\theta) = p \cos\left(\frac{\theta}{2}\right)^2 + (1 - p) \sin\left(\frac{\theta - \alpha}{2}\right)^2$$

$$P_{\pi}(\theta) = p \cos\left(\frac{\theta}{2}\right)^2 + (1 - p) \sin\left(\frac{\theta + \alpha}{2}\right)^2$$
(5.1)

$$P_{\pi}(\theta) = p \cos\left(\frac{\theta}{2}\right)^{2} + (1 - p) \sin\left(\frac{\theta + \alpha}{2}\right)^{2}$$
(5.2)

Les probabilitats d'encertar seguint les estratègies oposades són, naturalment, $1-P_0$ i $1-P_{\pi}$. Observem que $P_0(\theta)=1-P_{\pi}(\pi-\theta)$, Que es correspon amb el que hem argumentat abans: capgirar l'aparell Stern-Gerlach i canviar l'estratègia ens porta al mateix resultat. Així la probabilitat d'encertar serà $P(\theta) = \max \{P_0(\theta), 1 - P_0(\theta)\}.$

Les pitjors condicions per encertar es donaran pels α i θ tals que $P(\theta) = \frac{1}{2}$, ja que això vol dir que la millor estratègia és equivalent a triar a l'atzar. Quan $\alpha \to 0$, $P_0(\theta) \to \frac{1}{2}$, de manera que com més propers són dos espins, més díficil és de distingir-los. Evidentment si $\alpha = 0$ aleshores tenim dos estats idèntics i per tant la probabilitat d'encertar és 1.

Problema 6

Demostrem que poder clonar estats és equivalent a poder distingir estats. Per una banda, si podem distingir dos estats qualssevol, tenim un observable que els té com a estats propis. Per tant, si anem fent mesures d'aquest observable sobre estats qualssevol, anirem obtenint còpies dels dos estats originals.

D'altra banda, suposem que volem distingir entre dos estats qualssevol $|\psi_1\rangle$ i $|\psi_2\rangle$. Si ψ és el nostre estat desconegut i podem clonar-lo, podem fer tantes mesures sobre ψ sense alterar-lo (una sobre cada còpia). Si anem mesurant els observables $|\psi_1\rangle\langle\psi_1|$ i $|\psi_2\rangle\langle\psi_2|$ sobre ψ en algun moment obtindrem 0 com a resultat d'alguna de les mesures. Si obtenim 0 com a resultat de mesurar $|\psi_1\rangle\langle\psi_1|$, sabem segur que $|\psi\rangle=|\psi_2\rangle$ ja que si $|\psi\rangle$ fos $|\psi_1\rangle$, el resultat de mesurar $|\psi_1\rangle\langle\psi_1|$ és 1 amb probabilitat 1. De la mateixa manera, si obtenim 0 quan mesurem $|\psi_2\rangle\langle\psi_2|$ sabem del cert que $|\psi\rangle=|\psi_1\rangle$.

Així doncs, com que poder distingir entre estats qualssevol i poder clonar-los és equivalent, com que ja hem vist que no es poden distingir estats no ortogonals, tampoc podem clonar-los.