山东大学计算机科学与技术学院

数据挖掘实验报告

实验题目: Homework 2: NBC 学号: 201814852

Email: zhoupeiyan123@hotmail.com

实验目的:

- 1) 实现朴素贝叶斯分类器,测试其在 20 Newsgroups 数据集上的效果。
- 2) 比较不同三种计算模型的优劣,观察分类效果

硬件环境:

Inter Core i7-7700 @ 3.60GHz 四核 + Dell 062KRH + 4G + P3-256

软件环境:

Windows 10 + Git + JetBrains PyCharm Community Edition 2018.2.4

实验步骤与内容:

- 一、数据集
 - 1) 数据集的预处理

数据集的获取和划分 Homework1 中已经介绍,这里不在赘述,从已经分词预处理之后的文档(训练、测试)开始操作。

- 二、 NBC
 - 1) 生成文档词频计数及合并后计数----FileNB.py

统计预处理后的文档的词频计数。

首先读入所有的文档,每篇文档记录其词生成的词典:

word_list {"文档名": "["a", "b", ...] ..."}

生成每篇文档的词频计数:

countlist {"文档名": Counter('car': 12, ...), ...}

将训练数据和测试数据的 countlist 以 json 形式分别存储下来。

FileNB: 训练文档词频计数

FileNBTesting: 测试文档词频计数

训练数据合并同类别文档,为了之后 NBC 计算方便。

具体就是遍历 countlist,将相同类别的统一计算词频,在每一个类别

的 value 值词典中加入键值"zhoupeiyan", 他的 value 为该类别下文档总数, 方便计算 $P(V_j)$:

merge_countlist {"类别": Counter('car': 12, ...'zhoupeiyan': 5555), ...}

将 merge_countlist 以 json 形式存储下来,文件名为 MergeFileNB。这里需要注意一下,伯努利模型下不需要考虑训练数据中的的词频重复,所以每篇训练文档的词频计数都更改为 1,再次调用上述的合并同类别文档,以 json 形式存储下来,命名为 MergeCountFileNB。

MergeFileNB: 生成合并后的文档词频计数 MergeCountFileNB: 生成合并后的文档篇数计数

2) Naïve Bayes Classifier

朴素贝叶斯分类器公式推导: vj为不同类别,x1···xn为测试文档里的每一个词

$$v_{MAP} = \operatorname{arg\,max}_{v_j \in V} P(v_j | x_1, x_2, \dots, x_n)$$

运用 bayes's rule

$$= \arg \max_{v_j \in V} \frac{P(x_1, x_2, ..., x_n | v_j) P(v_j)}{P(x_1, x_2, ..., x_n)}$$

因为对于不同的vj,比较的分母都是相同的,所以

$$= \operatorname{arg\,max}_{v_j \in V} P(x_1, x_2, \dots, x_n | v_j) P(v_j)$$

使用 naïve bayes 假设,条件独立

$$v_{NB} = \arg\max_{v_j \in V} P(v_j) \prod_i p(x_i|v_j)$$

- 3) 小 tricks
 - (1) 将连乘 Π 取对数 (\log) 变为连加 Σ ,有效的减轻了计算量,而且连乘也会最后越来越趋向于 0,导致比较效果不好。
 - (2) 如果测试数据中的词在某个类别的词频词典中没有出现过,那么 P(xi|vj)等于 0, 乘起来就等于 0, 效果肯定不好,所以采取**平滑处 理技术(Laplace 技术)**, 具体方法就是:

$$\hat{P}(w_i \mid c) = \frac{count(w_i, c)}{\sum_{w \in V} \left(count(w, c)\right)}$$

$$= \frac{count(w_i, c) + 1}{\left(\sum_{w \in V} count(w, c)\right) + |V|}$$

虽然很土很朴实,但是直接且有效。

- (3) 如果只是判断"是不是"问题的话,即分类类别为 2 时,可以直接将 $\log(P(xi|v0)/P(xi|v1))$ 求和,判断和 0 的大小比较得出归为哪一种类别。但是此次实验做的是 20 个类别,所以该 trick 并不能用。
- 4) 编程实现 NBC---naïve bayes.py

- (1) 多项式模型,重复的词语视为出现多次,统计和判断都关注重复次数。因此会有一些 P(xi|vj) 的次幂。使用 MergeFileNB。
- (2) 伯努利模型,重复的词语视为只出现一次,这样会更加简化和方便。因为它丢失了词频的信息,所以效果可能会差一些。使用 MergeCountFileNB。
- (3) 混合模型,统计时考虑词语出现的次数,不过判断时不考虑,这样一折,也因为丢失了词频的信息,效果会差一些。使用 MergeFileNB。
- (4) 反混合模型,这个老师没有讲,是我自己瞎想的,就是统计时不考虑词语出现的次数,判断时考虑词语出现的次数,和混合模型一样效果会差一些。使用 MergeCountFileNB。

观察运行结果:

"D:\Program Files (x86)\python3\python.exe" D:/project 采用polynomial的模式

分类正确文档数目 3139, 全部测试文档数目 3759

测试数据正确率为 0.8350625166267625

采用bernoulli的模式

分类正确文档数目 3063, 全部测试文档数目 3759 测试数据正确率为 0.8148443735035914

采用combine的模式

分类正确文档数目 3083, 全部测试文档数目 3759 测试数据正确率为 0.8201649374833733

采用uncombine的模式

分类正确文档数目 3113, 全部测试文档数目 3759 测试数据正确率为 0.828145783453046

Process finished with exit code 0

明显得知多项式模型分类最好,达到 83.5%,然而伯努利模型分类效果最差,为81.5%,混合模型和(自己瞎整的)反混合模型分类结果居中,分别为82.0%和82.8%,和之前分析的词频重要性影响分类效果一致。

---NBC vs vsm&knn:

运行时间 NBC 更短, 1、2 分钟就可以; 然而 vsm&knn 就要半个小时左右。 分类效果 NBC 是 83.5%, vsm&knn 是 75.4%, NBC 分类效果更好。

----NBC 优缺点:

-优点:

- (1) 对待预测样本进行预测,过程简单速度快(求和,log下的加法)。
- (2) 对于多分类问题同样很有效,复杂度也不会有大程度上升。
- (3) 在分布独立这个假设成立的情况下,贝叶斯分类器效果奇好,会略胜于逻辑回归,同师我们需要的样本量也更少一点。

-缺点:

- (1) 对于测试集中的一个类别变量特征,如果训练集中没有出现过,直接计算概率 P(xi|vj) 就是 0 了,分类效果会减少很多。当然采取平滑技术可以缓解,最常见的是 Laplace 技术。
- (2) 朴素贝叶斯算出的概率结果,比较大小还凑活,实际物理意义会小的可怜,不要太当真。
- (3) 朴素贝叶斯有分布独立的假设前提,但现实生活中很难完全独立。

结论分析与体会:

Homework2 的代码量比 Homework1 简洁很多,运算时间和分类效果也都更好,看来对于分类问题 NBC 更有优势,也知晓了 NBC 的优点和缺点,更理解了朴素贝叶斯分类器的原理和实现,分类效果在我看来已经蛮好了。虽说 NBC 看起来蠢萌,再加上看起来土土的 laplace 平滑技术,但实践证明在垃圾邮件识别的应用还令人诧异地好。引自 Paul Graham《黑客与画家》"1000 封垃圾邮件能够被过滤掉995 封,并且没有一个误判。"