11.1. Три муфты

Возможное решение

Пусть в результате удара через стержень передаётся импульс p: $p = \int F(t)dt$, где F — сила упругости.

Запишем изменение импульса для муфт А и С:

$$m\upsilon - p\sin\alpha = 3m\upsilon_{AC}$$
.

Тогда изменение импульса для муфты B равно

$$p\cos\alpha = 3m\nu_B$$
.

Из кинематической связи следует: $\upsilon_{AC} \operatorname{tg} \alpha = \upsilon_{B}$. Решая полученные уравнения найдём:

$$\upsilon_{AC} = \upsilon \frac{\cos^2 \alpha}{3};$$

$$\upsilon_{B} = \upsilon \frac{\sin(2\alpha)}{6}.$$

11.2. Отрыв цилиндра

Возможное решение

При отсутствии трения натяжение вдоль ленты одинаково по величине и T = F для любого участка ленты.

Если сила давления на ленту со стороны шайбы \vec{N} , а $\vec{T_1}$ и $\vec{T_2}$ натяжения ленты справа и слева от обхватывающего шайбу участка, то $\vec{N} + \vec{T_1} + \vec{T_2} = 0$. При пренебрежимо малой массе этого участка сумма векторов сил, приложенных к нему равна нулю.

В момент отрыва шайба от ленты $\vec{N}=0$, а $\vec{T_1}+\vec{T_2}=0$. Так как натяжение направлено вдоль ленты, то отрыв цилиндра от ленты происходит в момент, когда вся лента становится горизонтальной.

При переходе в горизонтальное положение свободный конец ленты смещается по горизонтали на $x = R(1-\cos\alpha)$ и работа силы F, приложенной к этому концу, $A = Fx = FR(1-\cos\alpha)$.

Эта работа идёт на приращение механической энергии цилиндра:

$$A = FR \left(1-\cos\alpha\right) = m\upsilon^2/2 + mgR\sin\alpha \text{ , откуда } m\upsilon^2/2 = R\Big[F\left(1-\cos\alpha\right) - mg\sin\alpha\Big],$$
 или $\upsilon = \sqrt{2R\Big[F\left(1-\cos\alpha\right)/m - g\sin\alpha\Big]}$.

Ответ имеет смысл если подкоренное выражение положительно.

11.3. Дифференциальный термометр

Возможное решение

Для начального состояния газов в сосудах можно записать уравнение Менделеева-Клапейрона: $\frac{p_0(V+LS/2)}{T_0} = \nu R$, здесь p_0 – давление газа вначале, а $V_0 = V + LS/2$.

Если температура в левом сосуде повысится на ΔT_1 , а в правом понизится на ΔT_2 и поршень сместится влево на ΔL , то новые уравнения состояния примут вид: $\frac{p(V_0 + \Delta LS)}{T_0 + \Delta T_1} = \nu R$ и

$$\frac{p(V_0 - \Delta LS)}{T_0 - \Delta T_2} = \nu R$$
 . Приравнивая левые части с учетом $\Delta LS << V$, получим:

$$T_0-\Delta T_2$$

$$\Delta L=rac{V_0(\Delta T_1+\Delta T_2)}{2ST_0}\,, \ {
m otkyda, \ yчитывая, \ что}\ \Delta T=\Delta T_1+\Delta T_2, \ {
m okohчательно}\ \Delta L=rac{V_0\Delta T}{2ST_0}\,.$$
 Из

выведенного уравнения следует, что при малых изменениях температур сосудов малые смещения поршня связаны линейно с разностью температур ΔT .

Заметим, что 4-м делениям шкалы термометра соответствует 9 см. Следовательно, цена деления шкалы $\Delta T^{\partial e \tau} = \frac{2ST_0\Delta L_1}{V + LS/2} \approx 1,2 \text{ K}.$

Таким образом, шкала термометра, показывающего разность температур T_1 – T_2 должна выглядеть так:

11.4. И так можно измерять

Возможное решение

Условие равновесия заряда на конце нити: равенство нулю суммы кулоновских сил со стороны Q_1 и Q_2 и натяжения нити, направленного к точке O.

Исключим натяжение, рассмотрев составляющие кулоновских сил, поперечные нити. Из условия равновесия следует

ые нити. Из условия равновесия
$$L_2$$
 Q_2 Q_2 Q_2 Q_2

где R_1 и R_2 расстояния от конца нити до зарядов, а α_1 и α_2 углы, образуемые кулоновскими силами с нитью.

Поскольку
$$R_1 \sin \alpha_1 = L_1 \sin \beta$$
, $R_2 \sin \alpha_2 = L_2 \sin \beta$ (2)

и
$$\frac{Q_1 L_1}{R_1^3} = \frac{Q_2 L_2}{R_2^3}$$
, то $Q_1 = Q_2 \left(\frac{L_2}{L_1}\right) \left(\frac{R_1}{R_2}\right)^3$ (3)

Из теоремы косинусов находим $R_1^2 = R^2 + L_1^2 + 2RL_1 \cos \beta$, $R_2^2 + L_2^2 + 2RL_2 \cos \beta$, (4)

Откуда находим
$$Q_1 = Q_2 \left(\frac{L_2}{L_1}\right) \left(\frac{R^2 + L_1^2 - 2RL_1 \cos \beta}{R^2 + L_2^2 + 2RL_2 \cos \beta}\right)^{3/2}$$
 (5)

При нити, отклонённой от прямой, соединяющей заряды Q_1 и Q_2 , равновесие устойчиво так как с изменением β возникнет возвращающая сила. При $\beta=0$ и 180° равновесие будет при любом Q_1 , но оно не обязательно устойчиво.

Минимальный измеримый заряд Q_{\min} достигается при стремлении β к 0, а максимальный Q_{\max} – к 180° .

(6)

При указанных в условии значениях $L_{\!\scriptscriptstyle 1}=2L_{\!\scriptscriptstyle 2},\;R=3L_{\!\scriptscriptstyle 2}$ получим, что при

$$Q_{\min} = \frac{1}{128} Q_2$$
 и $Q_{\max} \ge \frac{10^3}{128} Q_2 = \frac{125}{16} Q_2$. (7)

Более компактная запись решения получается, если задачу решать в векторном виде.

11.5. Составной конденсатор

Возможное решение

1) Три пластины представляют собой два последовательно соединённых конденсатора емкостью $C_1 = \frac{\varepsilon_0 S}{d}$, $C_2 = \frac{\varepsilon_0 S}{2d}$. Заряд на обоих конденсаторах равен q. Ёмкость эквивалентного конденсатора $C_{2_{\mathrm{KB}}} = \frac{\varepsilon_0 S}{3d}$.

Запишем закон сохранения энергии:

$$\frac{q^2}{2C_1} + \frac{q^2}{2C_2} = \frac{LI_{\text{max}}^2}{2}.$$
 (1)

Из записанных уравнений найдём

$$I_{\text{max}} = q \sqrt{\frac{3d}{\varepsilon_0 SL}}.$$

2) Верхний конденсатор можно представить как два, соединённых параллельно:

$$C_{11} = \frac{\varepsilon \varepsilon_0 S/2}{d}$$
, $C_{12} = \frac{\varepsilon_0 S/2}{2d}$. Их суммарная емкость $C_1 = \frac{\varepsilon_0 S}{2d} (1+\varepsilon)$.

В рассматриваемом случае закон сохранения выглядит так же как (1). После подстановки в него выражений для C_{11} и C_{12} , получим:

$$I_{\text{max}} = q \sqrt{\frac{2d}{\varepsilon_0 SL} \frac{2 + \varepsilon}{1 + \varepsilon}}.$$

11 класс Критерии оценивания

Задача 1. Три муфты			
1.	Идея связи изменения импульсов шайб на разных стержнях		
	с проекцией силы реакции стержня	2 балла	
2.	Получено соотношение для изменения импульсов шайб		
	$\Delta p_{\rm AC} = \Delta p_{\rm B} {\rm tg} \alpha$	2 балла	
3.	Получено соотношение для связи $\upsilon_{\scriptscriptstyle AC}$ и $\upsilon_{\scriptscriptstyle B}$	2 балла	
4.	Обоснованно получен верный ответ для $\upsilon_{\scriptscriptstyle { m AC}}$	2 балла	
5.	Обоснованно получен верный ответ для $\upsilon_{\scriptscriptstyle \mathrm{B}}$	2 балла	
Задача 2. Отрыв цилиндра			
1.	Отмечено, что $\vec{N} + \vec{T_1} + \vec{T_2} = 0$	1 балл	
2.	Показано, что, отрыв цилиндра от ленты происходит в момент,		
	когда вся лента принимает горизонтальное положение	1 балл	
3.	Найдено смещение конца ленты к моменту отрыва цилиндра	2 балла	
4.	Найдена работа A силы F к моменту отрыва цилиндра от ленты	2 балла	
5.	Отмечено, что работа A пошла на приращение механической		
	энергии цилиндра	1 балл	
6.	Записан закон сохранения механической энергии	2 балла	
7.	Получено выражение для скорости цилиндра	1 балл	
Задача 3. Дифференциальный термометр			
1.	Уравнения состояния для новых температур сосудов	2 балла	
2.	Связь между смещением поршня и разностью температур	3 балла	
3.	Вывод о линейности шкалы	1 балл	
4.	Определение цены деления шкалы термометра	2 балла	
5.	Рисунок с оцифрованной шкалой	2 балл	
Задача 4. И так можно измерять			
1.	Условие равновесия заряда на конце нити (условие (1))	2 балла	
2.	Установлены тригонометрические соотношения (2)	1 балл	
3.	Получено выражение (3)	1 балл	
4.	Получено выражение (4)	1 балл	
5.	Получено выражение (5)	2 балла	
6.	Записано условие устойчивости равновесия	1 балл	
7.	Получен ответ (7)	2 балла	

LII Всероссийская олимпиада школьников по физике. Региональный этап. 17 января 2018 г.

Задача 5. Составной конденсатор

Случай (1)

•			
1.	Записан закон сохранения энергии	2 балла	
2.	Получено выражение для максимума силы тока	2 балл	
3.	Найдена максимальная сила тока	1 балл	
Случай (2)			
4.	Записан закон сохранения энергии	2 балла	
5.	Получено выражение для максимума силы тока	2 балл	
6.	Найдена максимальная сила тока	1 балл	