

Automatic Inhalation Resuscitator

Breathing AIR into Patients

Goal

Reduce the amount of medical attention and expertise required to operate a bag valve mask

Features

- Configurable settings for pressure, volume, and breath rate
- Pre-set configurations between adults, children, and infants
- Bag valve mask remains accessible under operation
- Detects airway blockages and alerts operator
- Adjustable bag support

Existing Challenges

Amongst 174 Medical Professionals:

- 88% delivered excessive pressure
- 74% delivered excessive volume
- 49% delivered insufficient breath rate

Average Adult Requires:

- 400 500 mL per breath
- $20 30 \text{ cm H}_20 \text{ of pressure}$

Average Infant Requires: [3]

- 21 29 mL per breath
- $13.6 24.8 \text{ cm H}_20 \text{ of pressure}$

Breath Rates Vary Between Patients

Infants	Children	Adults
40 - 60	20 - 30	10 - 12
	Breaths per Minute	

Design Details

Developing Countries

- Modern ventilators are not easily accessible
- Family members are often trained to perform manual bag valve mask resuscitation for hours at a time
- Inconsistencies in breath parameters become even more significant when operated by someone less experienced, or for prolonged periods

First Responders

- 73,500 calls requiring resuscitation per year to emergency services in Ontario, totalling \$1.52 billion [2].
- Performing bag valve mask resuscitation improperly can result in complications, such as hypoventilation
- Long term resuscitation can lead to fatigue and inconsistencies
- Inconsistencies are more prevalent in high-stress situations

"I believe that paramedics and other emergency personnel would benefit greatly from a solution to this problem"

> - Noah McEvoy Leads and Grenville Paramedic Service

Consultants

Financial Sponsors

SICKICS

System Verification

- Recorded volume output at different servo commands
- Generated a curve of best fitValidated with data
- Validated with data
 from a test lung
- Average prediction error of 0.47%

- Multiple trials taken at various motor commands
- Deviation from average volume is shown for each trial
- Maximum deviation is 3.75 mL or 1.9% on average

- Test setup in the Respiratory
 Therapy Lab at Conestoga College
- Equipment included a Michigan Instruments Simulated Test Lung
- Wright Respirometer used for precision volume measurements
- Experiments performed under supervision and guidance of program director