Algoritmos y Estructuras de Datos I

Primer cuatrimestre de 2013

Departamento de Computación - FCEyN - UBA

Especificación - clase 2

Lógica proposicional - tipos básicos

1

Ejemplos

¿Cuáles son fórmulas?

- $ightharpoonup p \lor q$ no
- $\blacktriangleright (p \lor q) \qquad \mathsf{si}$
- $ightharpoonup p \lor q
 ightharpoonup r$ no
- $(p \lor q) \to r$ no
- $((p \lor q) \to r) \qquad \text{si}$
- $\blacktriangleright \ (p \to q \to r) \qquad \mathsf{no}$

Lógica proposicional - sintaxis

símbolos

true, false, \bot , \neg , \land , \lor , \rightarrow , \leftrightarrow , (,)

variables proposicionales (infinitas)

$$p, q, r, \dots$$

- fórmulas
 - 1. true, false y \perp son fórmulas
 - 2. cualquier variable proposicional es una fórmula
 - 3. si A es una fórmula, $\neg A$ es una fórmula
 - 4. si A_1, A_2, \ldots, A_n son fórmulas, $(A_1 \wedge A_2 \wedge \cdots \wedge A_n)$ es una fórmula
 - 5. si A_1, A_2, \ldots, A_n son fórmulas, $(A_1 \lor A_2 \lor \cdots \lor A_n)$ es una fórmula
 - 6. si A y B son fórmulas, $(A \rightarrow B)$ es una fórmula
 - 7. si A y B son fórmulas, $(A \leftrightarrow B)$ es una fórmula

2

Semántica clásica

- ▶ 2 valores de verdad posibles
 - 1. verdadero (1)
 - 2. falso (0)
- ▶ interpretación:
 - true siempre vale 1
 - ▶ false siempre vale 0
 - ▶ ¬ se interpreta como "no", se llama negación
 - ► ∧ se interpreta como "y", se llama conjunción
 - ▶ ∨ se interpreta como "o" (no exclusivo), se llama disyunción
 - ightharpoonup se interpreta como "si... entonces", se llama implicación
 - → se interpreta como "si y solo si", se llama doble implicación
 o equivalencia

2

.

Semántica clásica

Conociendo el valor de las variables proposicionales de una fórmula, conocemos el valor de verdad de la fórmula

p	$\neg p$
1	0
0	1

р	q	$(p \wedge q)$
1	1	1
1	0	0
0	1	0
0	0	0

р	q	$(p \lor q)$
1	1	1
1	0	1
0	1	1
0	0	0

р	q	(p ightarrow q)
1	1	1
1	0	0
0	1	1
0	0	1

р	q	$(p \leftrightarrow q)$
1	1	1
1	0	0
0	1	0
0	0	1

5

Ejemplo: tabla de verdad para $((p \land q) \rightarrow r)$

р	q	r	$(p \wedge q)$	$((p \land q) \rightarrow r)$
1	1	1	1	1
1	1	0	1	0
1	0	1	0	1
1	0	0	0	1
0	1	1	0	1
0	1	0	0	1
0	0	1	0	1
0	0	0	0	1

6

Semántica trivaluada

- ▶ 3 valores de verdad posibles
 - 1. verdadero (1)
 - 2. falso (0)
 - 3. indefinido (-)
- ▶ es la que vamos a usar en esta materia
- ► ¿por qué?
 - queremos especificar problemas que puedan resolverse con un algoritmo
 - ▶ puede ser que un algoritmo realice una operación inválida
 - dividir por cero
 - raíz cuadrada de un número negativo
 - necesitamos contemplar esta posibilidad en la especificación
- ▶ interpretación:
 - ▶ true siempre vale 1
 - ▶ false siempre vale 0
 - ▶ ⊥ siempre vale −
 - se extienden las definiciones de $\neg, \land, \lor, \rightarrow, \leftrightarrow$

Semántica trivaluada (secuencial)

Se llama secuencial porque

- los términos se evalúan de izquierda a derecha
- ► la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido

Extendemos la semántica de ¬, ∧, ∨

p	$\neg p$
1	0
0	1
_	_

	p	q	$(p \land q)$
	<u>р</u> 1	1	1
	1	0	0
	0	1	0
- 1	0	0	0
	1	_	_
	0	_	0
Γ	_	1	_
		0	_
			_

p	q	$(p \lor q)$
1	1	1
1	0	1
0	1	1
0	0	0
1	_	1
0	_	_
	1	_
_	0	_
	_	_

0

Semántica trivaluada (secuencial)

Extendemos la semántica de \rightarrow , \leftrightarrow

q	(p ightarrow q)
1	1
0	0
1	1
0	1
_	_
_	1
1	_
0	_
_	_
	1 0 1 0 - - 1

p	q	$(p \leftrightarrow q)$
1	1	1
1	0	0
0	1	0
0	0	1
1	_	_
0	_	_
_	1	_
_	0	_
_	_	_

9

Dos conectivos bastan

- ¬ y ∨
 - \blacktriangleright $(A \land B)$ es $\neg(\neg A \lor \neg B)$
 - $(A \rightarrow B)$ es $(\neg A \lor B)$
 - ▶ true es $(A \lor \neg A)$
 - ► false es ¬true
- ¬ y ∧
 - \blacktriangleright $(A \lor B)$ es $\neg(\neg A \land \neg B)$
 - $(A \rightarrow B)$ es $\neg (A \land \neg B)$
 - ▶ false es $(A \land \neg A)$
 - ► true es ¬false
- ¬ v →
 - \blacktriangleright $(A \lor B)$ es $(\neg A \to B)$
 - $(A \wedge B) \text{ es } \neg (A \rightarrow \neg B)$
 - ▶ true es $(A \rightarrow A)$
 - ► false es ¬true

10

Tautologías, contradicciones y contingencias

▶ una fórmula es una tautología si siempre toma el valor 1 para valores definidos de sus variables proposicionales Por ejemplo, $((p \land q) \rightarrow p)$ es tautología:

p	q	$(p \wedge q)$	$((p \land q) \to p)$
1	1	1	1
1	0	0	1
0	1	0	1
0	0	0	1

• una fórmula es una contradicción si siempre toma el valor 0 para valores definidos de sus variables proposicionales Por ejemplo, $(p \land \neg p)$ es contradicción:

р	$\neg p$	$(p \land \neg p)$
1	0	0
0	1	0

 una fórmula es una contingencia cuando no es ni tautología ni contradicción

Relación de fuerza

Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.

También decimos que A fuerza a B o que B es más débil que A.

Por ejemplo,

- \blacktriangleright $\not\vdash$ $(p \lor q)$ es más fuerte que p? no
- ightharpoonup jp es más fuerte que $(q \rightarrow p)$? sí
- ▶ ¿p es más fuerte que q? no
- ▶ ¿p es más fuerte que p? sí
- ▶ ¿hay una fórmula más fuerte que todas? sí, por ej. false
- ▶ ¿hay una fórmula más débil que todas? sí, por ej. true

12

Lenguaje de especificación

- ▶ hasta ahora vimos lógica proposicional
 - ▶ es muy limitada
- nuestro objetivo es especificar (describir problemas)
- ▶ vamos a usar un lenguaje más poderoso
 - permite hablar de elementos y sus propiedades
 - es un lenguaje tipado
 - los elementos pertenecen a distintos dominios o conjuntos (enteros, reales, etc.)

13

Tipo Bool (valor de verdad)

- ▶ valores: 1, 0 , —
- ► constantes: true, false, ⊥ (o Indef)
- Conectivos lógicos: ¬, ∧, ∨, →, ↔ con la semántica trivaluada que vimos antes
 - $ightharpoonup \neg A$ se puede escribir no(A)
 - $(A \wedge B)$ se puede escribir (A && B)
 - ▶ $(A \lor B)$ se puede escribir $(A \mid \mid B)$
 - ▶ $(A \rightarrow B)$ se puede escribir $(A \rightarrow B)$
 - ▶ $(A \leftrightarrow B)$ se puede escribir $(A \leftarrow B)$
- ightharpoonup comparación: A == B
 - ► todos los tipos tienen esta operación (A y B deben ser del mismo tipo T)
 - ▶ es de tipo bool
 - ▶ es verdadero si el valor de *A* igual al valor de *B* (salvo que alguno esté indefinido ver hoja 20)
 - ▶ $A \neq B$ o A! = B es equivalente a $\neg (A == B)$
- semántica secuencial

Tipos de datos

- conjunto de valores con operaciones
- vamos a empezar viendo tipos básicos
- ▶ para hablar de un elemento de un tipo T en nuestro lenguaje, escribimos un término o expresión
 - ▶ variable de tipo *T*
 - ► constante de tipo *T*
 - ► función (operación) aplicada a otros términos (del tipo *T* o de otro tipo)
- ▶ todos los tipos tienen un elemento distinguido: ⊥ o Indef

1

Tipo Int (números enteros)

- ▶ sus elementos son los de ℤ
- ightharpoonup constantes: 0 ; 1 ; -1 ; 2 ; -2 ; ...
- operaciones aritméticas
 - $\rightarrow a + b \text{ (suma)}$
 - $\rightarrow a b$ (resta)
 - ▶ a * b (multiplicación)
 - ► a div b (división entera)
 - ▶ a mod b (resto de dividir a a por b)
 - $ightharpoonup a^b$ o pot(a,b) (potencia)
 - ▶ abs(a) (valor absoluto)
- comparaciones (de tipo bool)
 - ► *a* < *b* (menor)
 - $ightharpoonup a \le b$ o $a \le b$ (menor o igual)
 - ► *a* > *b* (mayor)
 - $\rightarrow a > b$ o a >= b (mayor o igual)
- \triangleright β o beta. Si A es de tipo Bool, se definide como:

$$\beta(A) = \text{beta}(A) = \begin{cases} 1 & \text{si } A \text{ es verdadero} \\ 0 & \text{si } A \text{ es falso} \\ - & \text{si } A \text{ es indefinido} \end{cases}$$

Tipo Float (números reales)

- ▶ sus elementos son los de ℝ
- ightharpoonup constantes: 0 ; 1 ; -7 ; 81 ; 7,4552 ; $\pi \dots$
- operaciones aritméticas
 - las mismas que Int, salvo div y mod
 - ► a/b (división)
 - ▶ $\log_b(a)$ (logaritmo)
 - trigonométricas
- comparaciones (de tipo bool)
 - ► las mismas que para Int
- conversión a entero
 - ▶ [a] o int(a)
- todos los términos de tipo Int pueden usarse como términos de tipo Float

17

Términos

- simples
 - variables del tipo o
 - constantes del tipo
- complejos
 - combinaciones de funciones aplicadas a funciones, constantes y variables

Ejemplos de términos de tipo Int

- **▶** 0 + 1
- $((3+4)*7)^2-1$
- \triangleright 2 * β (1 + 1 == 2)
- ▶ 1 + ord('A')
- ▶ con x variable de tipo Int; y de tipo Float; z de tipo Bool
 - ▶ 2 * x + 1
 - $\beta(y^2 > \pi) + x$
 - $(x \bmod 3) * \beta(z)$

Tipo Char (caracteres)

- sus elementos son los las letras, dígitos y símbolos
- constantes:

$$a', b', c', \ldots, z', \ldots, A', B', C', \ldots, Z', \ldots, 0', 1', 2', \ldots, 9'$$
 (en algún orden)

- función ord
 - numera todos los caracteres
 - ▶ no importa mucho cuál es el valor de cada uno, pero
 - ightharpoonup ord('a') + 1 == ord('b')
 - ord('A') + 1 == ord('B')
 - ord('1') + 1 == ord('2')
- función char
 - ▶ es la inversa de ord
- las comparaciones entre caracteres son comparaciones entre sus órdenes
 - ightharpoonup a < b es equivalente a ord(a) < ord(b)
 - ▶ lo mismo para \leq , >, \geq

18

Semántica de los términos

- vimos que los términos representan elementos de los tipos
- ▶ los términos tienen valor indefinido cuando no se puede hacer alguna operación
 - ▶ 1 div 0
 - $(-1)^{1/2}$
- las operaciones son estrictas (salvo los conectivos de bool)
 - si uno de sus argumentos es indefinido, el resultado también está indefinido
 - ejemplos
 - ▶ $0*(-1)^{1/2}$ es indefinido (* es estricto)
 - ► 0^{1/0} es indefinido (pot es estricto)
 - $((1+1==2) \lor (0>1/0))$ es verdadero $(\lor$ no es estricto)
 - ▶ las comparaciones con \bot son indefinidas
 - en particular, si x está indefinido, x == x es indefinido (no es verdadero)