PwA Cheatsheet

Common Distributions

Common Bioti				
Discrete				
Name	pmf	cdf	mean	variance
Binomial(n,p)	$\binom{n}{k}p^k(1-p)^{n-k}$	$F(k; n, p) = \Pr(X \le k) = \sum_{i=0}^{\lfloor k \rfloor} {n \choose i} p^{i} (1-p)^{n-i}$	np	np(1-p)
Neg. Binomial(r,p)	$\binom{i-1}{r-1}p^r(1-p)^{i-r}$	-	$\frac{r}{p}$	$r\frac{1-p}{p^2}$
Bernoulli(p)	$\begin{cases} q = (1-p) & \text{for } k = 0 \\ p & \text{for } k = 1 \end{cases}$	$\begin{cases} 0 & \text{for } k < 0 \\ 1 - p & \text{for } 0 \le k < 1 \\ 1 & \text{for } k \ge 1 \end{cases}$	p	p(1-p)
Uniform(a,b)	$\frac{1}{n}, n = b - a + 1$	$\frac{\lfloor k \rfloor - a + 1}{n}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$
Geometric(p)	$p(1-p)^{i-1}$	$1-(1-p)^i$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$Hypergeometric(N,K,n)$ "k successes \subset N, K suc \in N"	$\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$	-	$n\frac{K}{N}$	$n \frac{K}{N} \frac{(N-K)}{N} \frac{N-n}{N-1}$
Poisson(λ)	$\frac{\lambda^k e^{-\lambda}}{k!}$	$e^{-\lambda} \sum_{i=0}^{\lfloor k \rfloor} \frac{\lambda^i}{i!}$	λ	λ

- 1					
┨	Continuous				
١	Name	pdf	cdf	mean	variance
	Uniform(a,b)	$\begin{cases} \frac{1}{b-a} & \text{for } x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} 0 & \text{for } x < a \\ \frac{x-a}{b-a} & \text{for } x \in [a,b) \\ 1 & \text{for } x \ge b \end{cases}$	<u>a+b</u> 2	$\frac{(b-a)^2}{12}$
	Normal (μ, ω^2)	$\frac{1}{\sqrt{2\sigma^2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$\frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{x - \mu}{\sigma \sqrt{2}} \right) \right]$	μ	σ^2
1	Exponential(λ)	$\lambda e^{-\lambda x}$	$1-e^{-\lambda x}$	1/λ	$1/\lambda^2$
┨	Hazard/Failure Rate Functions				
4	Survival	Hazard	Distribution	Rate	Book
	$\bar{F}(t) = 1 - F(t)$	$\lambda(t) = \frac{f(t)}{\bar{f}(t)}$	$F(t) = 1 - exp\{-\int_0^t \lambda(t)dt\}$	λ	p217

Events	
Sample Space	$S = \{all\ possible\ outcomes\}$
Event	$E \subset S$
Union (either or both)	$E \cup F$
Intersection (both)	$E \cap F$ or EF
Complement	$E^C = S \setminus E \Rightarrow P(E^C) = 1 - P(E)$
Inclusion- Exclusion	$\hookrightarrow P(A \cup B) = P(A) + P(B) - P(A \cap B)$
DeMorgan's Law	1. $(E_1 \cup \cup E_n)^C = E_1^C \cap \cap E_n^C$ 2. $(E_1 \cap \cap E_n)^C = E_1^C \cup \cup E_n^C$
Axioms	1. $0 \le P(E) \le 1$ 2. $P(S)1$ 3. For mutually excl. events $A_i, i \ge 1$: $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$
Finite S, Equal Probability for all point sets:	$P(A) = A \div S $
Odds of Event	$\alpha = P(A) = P(A)$

Odds of Event	$\alpha = \frac{P(A)}{P(A^C)} = \frac{P(A)}{1 - P(A)}$
Conditional Pro	bability and Independence I
Conditional Probability	$P(F \mid E) = \frac{P(F \cap E)}{P(E)}$
Independence if	$P(F \cap E) = P(F)P(E)$
Multiplication Rule	$P(E_1E_2\cdots E_n) = P(E_1)P(E_2 \mid E_1)\cdots P(E_n \mid E_1\cdots E_{n-1})$
Bayes Formula (simple)	$P(A \mid B) = \frac{P(B A)P(A)}{P(B)}.$
Bayes Formula (full)	$P(A_i \mid B) = \frac{P(B A_i)P(A_i)}{\sum_j P(B A_j)P(A_j)} \cdot$
Conditional pmf (discrete)	$p_{X Y}(x \mid y) = \frac{p(x,y)}{p_Y(y)}$
Conditional pdf (discrete)	$F_{X Y}(x \mid y) = \sum_{a \le x} p_{X Y}(a \mid y)$
Conditional Density (continuous)	$f_{X Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)}$
Conditional Probabilities (continuous)	$P\{X \in A \mid Y = y\} = \int_A f_{X Y}(x \mid y) dx$

Random Variable	es (Discrete)
Distribution Function	$F(x) = P\{X \le x\}$
Probability Mass Function	p(x) = PX = x
Joint Probability Mass Function	$P(X = x \text{ and } Y = y)$ $= P(Y = y \mid X = x) \cdot P(X = x)$ $= P(X = x \mid Y = y) \cdot P(Y = y)$
Expectation	$E[X] = \sum_{x:p(x)>0} xp(x)$
\hookrightarrow note:	$E[g(X)] = \sum_{x:p(x)>0} g(x)p(x)$
Variance	$Var(X) = E[(X - E[X])^{2}]$ = $E[X^{2}] - (E[X])^{2}$
Standard Deriva- tion	$\sigma = \sqrt{Var(X)}$
Covariance	Cov(X,Y) = E[(X - E[X])(Y - E[Y])] $= E[XY] - E[X]E[Y]$
Moment Gener. Function	$M(t) = E[e^{tX}]$ (same for continuous RVs)

Moment Gener. Function	$M(t) = E[e^{tX}]$ (same for continuous RVs)
Random Variabl	es (Continuous) I
Probability Density Function	f such that $P\{X \in B\} = \int_B f(x)dx$
Distribution Func- tion	F such that $\frac{d}{dx}F(x) = f(x)$
Expectation	$E[X] = \int_{-\infty}^{\infty} x f(x) dx$ $E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) dx$
\hookrightarrow note:	$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$
Variance	$Var(X) = E[(X - E[X])^{2}]$ = $E[X^{2}] - (E[X])^{2}$
Standard Deriva- tion	$\sigma = \sqrt{Var(X)}$
Covariance	Cov(X,Y) = E[(X - E[X])(Y - E[Y])] $= E[XY] - E[X]E[Y]$
Joint Probability	$P\{(X,Y) \in C\} = \iint_{(x,y)\in C} f(x,y)dxdy$
Mass Function	$P\{X \in A, Y \in B\} = \int_{B} \int_{A} f(x, y) dx dy$

Random Variables (Continuous) II $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$ Marginal pmfs $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$

```
More on Expectation, Variance, ...
E[X+Y] = E[X] + E[Y]
 E[\alpha X] = \alpha E[X]
 Var(X + a) = Var(X)
 Var(aX + b) = a^2 Var(X)
 Var(X + Y) = E[(X + Y)^{2}] - (E[X + Y])^{2}
               = E[X^{2} + 2XY + Y^{2}] - (E[X] + E[Y])^{2}
               = E[X^2] + 2E[XY] + E[Y^2] -
                   (E[X])^2 - 2E[X]E[Y] - (E[Y])^2
               = Var(X) + Var(Y) + 2(E[XY] - E[X]E[Y])
               = Var(X) + Var(Y) + 2(Cov(X, Y))
                   \Rightarrow E[f(X)g(Y)] = E[f(X)]E[g(Y)]
                   \Rightarrow E[XY] = E[X]E[Y]
 Independence
                  \Rightarrow Cov(X,Y) = 0
                  \Rightarrow Var(X + Y) = Var(X) + Var(Y)
 Correlation corr(X,Y) = \rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}
     1. -1 \le \rho(X, Y) \le 1
     2. Independence \Rightarrow \rho(X, Y) = 0
         Y = mX + cm, m \neq 0 and c:
     3. m > 0 \Rightarrow \rho(X, Y) = 1
         m < 0 \Rightarrow \rho(X, Y) = -1
E[X] = E[E[X \mid Y]]
Disc.: E[X] = \sum_{y} E[X \mid Y = y] P\{Y = y\}

Cont.: E[X] = \int_{-\infty}^{\infty} E[X \mid Y = y] f_y(y) dy
```

Combinatorial Analysis

Order matters and k = n	Permutation
Order does matter and k < n	Variation
Order does not matter and k < n	Combination

Counting	
Basic Counting	Experiments E_1, E_2, E_r with n_1, n_2, n_r pos-
Principle	sible outcomes. Total outcomes: $\prod_{i=1}^{r} n_i$
Permutations (without Repeats)	$n! = n \cdot (n-1) \cdot \ldots \cdot 1$
Permutations	$\frac{n!}{k!} = n \cdot (n-1) \cdot \ldots \cdot (k+1)$
(with Repeats)	$k! = n \cdot (n - 1) \cdot \dots \cdot (n + 1)$
Variations	$n \cdot (n-1) \cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!}$
(without Repeats)	(
Variations	$n \cdot \ldots \cdot n = n^k$
(with Repeats)	k-times
Combinations	
(without Repeats)	$\frac{n!}{(n-k)! k!} = \frac{n(n-1)(n-2)(n-k+1)}{k!} = \binom{n}{n-k} = \binom{n}{k}$
"Binomial Coefficient"	· · · · · · · · · · · · · · · · · · ·
Multinominal Coef-	$\frac{n!}{n_1!n_2!n_r!} = \binom{n!}{n_1,n_2,,n_r}$
ficient	"divide n into r non-overlapping subgroups of sizes n1,n2,"
Combinations	$\frac{(n+k-1)!}{(n-1)! k!} = \binom{n+k-1}{k} = \binom{n+k-1}{n-1}$
(with Repeats)	(n-1)!k! - (k) - (n-1)

Limit Theorems

$$Z_n = \frac{((X_1 + X_2 + \dots + X_n) - n\mu)}{\sigma\sqrt{n}}$$

Central Limit Theorem

Then as
$$n \to \infty$$

$$P(Z_n \le x) \to \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} exp(-\frac{1}{2}u^2) du$$

i.e. $P(Z_n \le x) \to P(Y \le X)$ where $Y \sim N(0, 1)$ $E[X_i] = \mu \quad Var(X_i) = \sigma^2$

 $P\{lim_{n\to\infty}(X_1+X_2+\ldots+X_n)\div n=\mu\}=1$

Weak Law of Large Numbers

$$s_n = \frac{1}{n}(X_1 + \dots + X_n)$$
then for any $\epsilon > 0$

 $\lim_{n\to\infty} P(|s_n-\mu|>\epsilon)=0$

Strong Law of Large Numbers Markov's Inequal-

ity

 \hookrightarrow

$$p\{x \ge a\} \le \frac{E[X]}{a}$$

Chebyshev's equality

$$E[Y^{2}] < \infty, \forall a > 0.$$
$$P(|Y| \ge \frac{1}{a^{2}} E[Y^{2}])$$

 $P\{|X-\mu| \ge a\} \le \frac{\sigma^2}{a^2}$

One-sided Chebyshev (mean 0)

$$P\{X \ge a\} \le \frac{\sigma^2}{\sigma^2 + a^2}$$

$$P\{X \ge a\} \le e^{-ta}M(t) \quad t > 0$$

Chernoff Bounds $P\{X \le a\} \le e^{-ta} M(t) \quad t < 0$

Markov Chains

Discrete

 $P_{i,j} = P(\text{system is in state } j \text{ at time } n+1 \mid \text{system in state } i \text{ at time } n)$

Transition Matrix:
$$P = \begin{pmatrix} p_{1,1} & p_{1,2} & \cdots & p_{1,n} \\ p_{2,1} & p_{2,2} & \cdots & p_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n,1} & p_{n,2} & \cdots & p_{n,n} \end{pmatrix}$$

Probability vector $\pi^{(n)}$: Probabilities that we are in state i at n.

$$\pi^{(n+1)} = \pi^{(n)} P$$

$$\pi^{(n)} = \pi^{(0)} P^n$$

A Markov Chain is ergodic (aperiodic and irreducible) iff there exists $n \in \mathbb{N}^+$ such that P^n has no zero entries. It then has a Steady State Probability vector $\pi = \lim_{n \to \infty} \pi^{(n)}$ independent of $\pi^{(0)}$.

1.
$$\pi_0 + \pi_1 + \ldots + \pi_N - 1 = 1$$

2. $\pi = \pi P$

Continuous

Poisson

$$P(\tilde{N}(t) = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$
 if

- 1. For any fixed t, $\tilde{N}(t)$ is a discrete RV
- 2. $\tilde{N}(0) = 0$
- 3. # of events in disjoint intervals are independent
- 4. $\widetilde{N}(t+h) \widetilde{N}(t) = \#$ of events in [t, t+h] for $h \to 0$
- 5. $P(\widetilde{N}(h) = 1) = P(\text{event occurs in } [t, t+h]) = \lambda h + E(h)$ $(E(h)/h \rightarrow 0, \text{ as } h \rightarrow 0)$
- 6. $\frac{1}{h}P(\tilde{N}(h) \ge 2) \to 0$, as $h \to 0$

Birth-Death

Birth Rates
$$\lambda_{i,i+1} = b_i$$

Death Rates $\lambda_{i,i-1} = d_i$
 $\lambda_{i,i} = 0$, otherwise

 \rightarrow Have steady state prob. vector if b_i s and d_i s are non-zero and we have a finite number of states.

1.
$$\pi_0 + \pi_1 + \dots + \pi_N - 1 = 1$$

2. $\pi_j = \frac{b_0 \cdots b_{j-1}}{d_0 \cdots d_{j-1}} \pi_0$

2.
$$\pi_j = \frac{b_0 \cdots b_{j-1}}{d_0 \cdots d_{j-1}} \pi_0$$

M/M/S Oueue

Customers arrive with Poisson Process rate λ , S servers, Service time exponentially distributed with mean $\frac{1}{u}$. State j = j customers in queue,

$$b_j = \lambda, d_j = \begin{cases} j\mu, & j = 1, 2, \dots, S \\ S\mu, & j \ge S \end{cases}$$

 \rightarrow Has steady state prob. vector if $\lambda < S\mu$.

M/M/1 Queue

$$\pi_j = (1 - \frac{\lambda}{\mu})(\frac{\lambda}{\mu})^j$$
, Mean Queue Length $E[J] = \frac{\lambda}{\mu - \lambda}$

Surprise, Uncert	
Entropy	$H(X) := -\sum_{k} p_{x}(x_{k}) log_{2} p_{x}(x_{k})$ $(0log_{2}(0) := 0)$
Surprise	$S(X = x_k) = -\log_2 p_x(x_k)$
→ Properties	1. $S(1) = 0 \neq S(0)$ (which is undefined) 2. S decreases: $p < q \Rightarrow S(q) < S(p)$ 3. $S(pq) = S(p) + S(q)$ If S is continuous and these are satisfied, $\exists \mathscr{C} > 0. \forall p \in [0, 1], S(p) = -\mathscr{C}log(p)$
Average Uncer- tainty	$H(X,Y) := -\sum_{j} \sum_{k} p_{X,Y}(x_{j}, y_{k}) log_{2} p_{X,Y}(x_{j}, y_{k})$
Uncertainty of X given Y	$H_{Y=y_k}(X) := -\sum_{j} p_{X (Y=y_k)}(x_j) log_2 p_{X (Y=y_k)}(x_j)$
Conditional En- tropy	$H_Y(X) := \sum_k H_{Y=y_k}(X) p_Y(y_k)$

Coding Theory		
Code &	A map from $\{x_k\} \subset \mathbb{R}$ into sequences of 0's and 1's. Sequences are called code words.	
Code Word length	$x_k \mapsto 0111 \Rightarrow n+k =$	
Expected Length of Code C	$E[\mathfrak{C}] = \sum_{k} n_{k} p_{k} = \sum_{k} n_{k} P(X = x_{k})$	
Acceptable Code	No code word extends another one: $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Noiseless Coding Theorem	For any acceptable code assigning n_k bits to x_k the following holds: $E[\mathfrak{C}] = \sum_k n_k p_k \ge H(X) = -\sum_k p_k log_2 p_k$	
	Where $p_k = P(X = x_k)$ and n_k length of a codeword associated with x_k	
	For any discrete RV X there exists an acceptable code with the expected length $E[\mathfrak{C}] = L$ such that	
	$H(X) \le L < H(X) + 1$	

Algorithm for finding an acceptable code with expected length $H(X) \le E[\mathfrak{C}] = L < H(X) + 1$ for discrete RV X:

- 1. Let n_i be the integer satisfying $-log_2p_i \ge n_i < -log_2p_i + 1$
- 2. Find any acceptable code assigning n_i bits to x_i

There is no unique nearly-optimal code in general. Optimal or nearly-optimal coding depends on the pmg of X.

Common Moment Generating Functions M(t)		
Binomial	$(pe^t + 1 - p)^n$	
Neg. Binomial	$[(pe^t) \div (1 - (1 - p)e^t)]^r$	
Poisson	$exp(\lambda(e^t-1))$	
Uniform	$(e^{tb}-e^{ta}) \div (t(b-a))$	
Exponential	$\lambda \div (\lambda - t)$	
Normal	$exp(\mu t + ((\sigma^2 t^2) \div 2)$	