

❖基本内容

- 静态误差定义与计算
- 系统类型与静差的关系
- 静态误差的解释
- 扰动引起的静差
- 系统暂态特性的定义
- 二阶系统和高阶系统的动态特性

1. 误差和静态误差定义

误差: $e_y = y_{y} - y_{y}$

静态误差: $e_y(t \rightarrow \infty)$

表现在框图上

b = yH 反映y的实际值,r体现对y的要求值

$$\therefore e = r - yH$$

静差表示系统的静态精度,只有稳定系统才谈得上静差

对于有些复杂情况,从框图上找不到e

要求
$$e = r - y$$

是否可以把它变换成

1. 先求出
$$\frac{y}{r} = \frac{HG}{1 + GF}$$

2. 求出对应的 $G_{\pi}(s)$,即求出对应于闭环传递函数 $(G_{\Xi} = y/r)$

的单位反馈的开环传递函数 $G_{\pi}(s)$

即
$$\frac{G_{\#}}{1+G_{\#}}=\frac{y}{r}=G_{\bowtie}$$

所以:
$$G_{\mathcal{H}} = \frac{G_{\text{闭}}}{1 - G_{\text{闭}}} = \frac{GH}{1 + GF - GH}$$

2、静差与输入

静差与输入信号有关,用一些典型输入信号作为标准

阶跃
$$1(t) \rightarrow \frac{1}{s}$$

$$A = \begin{cases} X(t) \\ X(t) = A \end{cases}$$

斜坡
$$t \rightarrow \frac{1}{s^2}$$

加速度
$$\frac{1}{2}t^2 \rightarrow \frac{1}{s^3}$$

$$x(t) = Bt$$

$$x(t) = \frac{1}{2}Ct^2$$

静态误差的计算

静态误差的计算

针对一般情况

$$\frac{e(s)}{r(s)} = \frac{1}{1 + G_{\#}(s)} \qquad \therefore e(s) = \frac{1}{1 + G_{\#}(s)} r(s)$$

可见误差与 $G_{\pi}(s)$ 和输入r(s)有关

静态误差可以用Laplace 变换的终值定理求得

$$e(\infty) = \lim_{s \to 0} se(s) = e_{st}$$

系统在三种典型输入信号下的静差

$$r(s) = \frac{1}{s} \quad e_{st} = \lim_{s \to 0} se(s) = \lim_{s \to 0} s \frac{1}{1 + G_{\pi}(s)} \frac{1}{s} = \lim_{s \to 0} \frac{1}{1 + G_{\pi}(s)}$$

$$r(s) = \frac{1}{s^{2}} \quad e_{st} = \lim_{s \to 0} se(s) = \lim_{s \to 0} s \frac{1}{1 + G_{\pi}(s)} \frac{1}{s^{2}} = \lim_{s \to 0} \frac{1}{sG_{\pi}(s)}$$

$$r(s) = \frac{1}{s^{3}} \quad e_{st} = \lim_{s \to 0} se(s) = \lim_{s \to 0} s \frac{1}{1 + G_{\pi}(s)} \frac{1}{s^{3}} = \lim_{s \to 0} \frac{1}{s^{2}G_{\pi}(s)}$$

定义误差系数
$$k_p = \lim_{s \to 0} G_{\pi}(s)$$
 位置误差系数 $k_v = \lim_{s \to 0} sG_{\pi}(s)$ 速度误差系数 $k_a = \lim_{s \to 0} s^2G_{\pi}(s)$ 加速度误差系数

对三种典型输入 的静态误差为

$$e_{st} = egin{cases} rac{1}{1+k_p} & ext{ 阶跃输入} \ rac{1}{k_v} & ext{ 斜坡输入} \ rac{1}{k_a} & ext{ 加速度输入} \end{cases}$$

静态误差举例

前面定义了误差系数,导出了在特定输入信号的作用下,静差与误差系数的关系,而误差系数与系统的开环传递函数有关,即与系统的参数和结构有关。

问题: 开环传递函数的什么结构影响了闭环系统的静差?

设
$$G_{\pi}(s) = \frac{k(\tau_1 s + 1) \cdots (\tau_m s + 1)}{s^{\gamma}(T_1 s + 1) \cdots (T_n s + 1)}$$
 $(\gamma = 0, 1, 2 分别称为0型, 1型, 2型系统)$

对0型系统:

$$egin{aligned} k_p &= \lim_{s o 0} G_{\scriptscriptstyle H}(s) = k & \text{ 阶跃输入下的静态误差} & e_{st} &= 1/(1+k) \ k_v &= \lim_{s o 0} s G_{\scriptscriptstyle H}(s) = 0 & ext{斜坡输入下的静态误差} & e_{st} &= 1/k_v = \infty \ k_a &= \lim_{s o 0} s^2 G_{\scriptscriptstyle H}(s) = 0 & ext{ 加速度输入下的静态误差} & e_{st} &= 1/k_a = \infty \end{aligned}$$

对1型系统:

$$egin{cases} k_p = \infty & ext{N跃输入下的静态误差} & e_{st} = 0 \ k_v = k & ext{Alymin} Alymin Alymin Alymin} & e_{st} = 1/k \ k_a = 0 & ext{Discrete} & e_{st} = \infty \end{cases}$$

对2型系统:

$$egin{cases} k_p = \infty & ext{MDSSTMANTON PROPERTY} & e_{st} = 0 \ k_v = \infty & ext{Albanical Property} & e_{st} = 0 \ k_a = k & ext{Distribution Property} & e_{st} = 0 \ k_a = k & ext{Distribution Property} & e_{st} = 1/k \end{cases}$$

总结如下表:

重要提醒:讨论静差一定在系统稳定的前提下

静态误差的解释

静态误差的物理解释

初始条件: 平衡位置 h_0 , 阀门开度 l_0

进水 Q_0 , 出水 M_0

当M增大,水位h降低,l变大,从而Q变大,h回升,

当达到新的平衡,此时 h_1 ? $= h_0$

如果要保证 $Q_1 > Q_0$

就必须使得 $I_1 > I_0, : h_1 < h_0$

这是一个有差系统

静态误差的物理解释

初始状态: $h = h_0, \Delta u = 0, l = l_0, M_0 = Q_0$

当M升为 M_1 , h下降, $\Delta u > 0$, 电动机动作,

提高 l, l_0 升为 l_1, Q 升为 Q_1

直到 $Q_1 = M_1$ 达到新平衡

此时 $h_1? = h_0$

试想: 只要 $h_1 \neq h_0$, $\Delta u \neq 0$, 电动机就转, 阀门就动作 (不是开大就是

关小) 直到 $h = h_0$ 达到新平衡

这是一个无静差系统

静态误差理论解释

数学模型

静态误差理论解释

两者不同,前者是0型,后者是1型,多了一个电动机,在把速度信号变为位置信号时多了一个积分环节。

扰动P(t)也是一种输入,系统静差由两部分组成,由r(t)引起的静差和

由p(t)引起的静差的代数和。

- 1. 由r(t)引起的误差,可根据r(t)的性质和 $G_{\pi}(s)$ 求得对应输入静差,此时p(t)=0
- 2. 由p(t)引起的误差,令r(t)=0,做框图变形,求得

$$\begin{array}{c|c}
 & -e \\
\hline
 & F(t) & -e \\
\hline
 &$$

$$\frac{e(s)}{p(s)} = -\frac{GH}{1 + GHK}$$
 在已知p(t)下,求出对应的扰动静差

试分析 K(s)含积分和K(s)不含积分两种情况下的阶跃扰动静差

$$e_{st} = \lim_{s \to 0} se(s) = -\lim_{s \to 0} \frac{GH}{1 + GHK}$$

$$K = \frac{k_1}{S(\cdots)(\cdots)} \quad \blacksquare$$

K(s)含积分
$$K = \frac{k_1}{s(\cdots)(\cdots)}$$
即扰动作用点之前(左)含积分,对阶跃扰动无静差 $e_{st} = -\lim_{s\to 0} \frac{GH}{1 + GH \frac{k_1}{s(\cdots)(\cdots)}} = -\lim_{s\to 0} \frac{sGH(\cdots)(\cdots)}{s(\cdots)(\cdots) + k_1GH} = 0$ K(s)不含积分 $K = \frac{k_1}{(\cdots)(\cdots)}$

$$K = \frac{k_1}{(\cdots)(\cdots)}$$

练习题: 求以下3题的静差 e = r - c

1) 第一种情况: r(t)=1(t), f(t)=1(t)

第二种情况: r(t)=t, f(t)=1(t)

求解过程

- 1.判稳:假设系统稳定
- 2.由r(t)引起的误差, 令p(t)=0
 - 1型系统,静态误差可查表

$$r(t) = 1(t), e_{r1} = 0;$$
 $r(t) = t, e_{r2} = \frac{1}{K1K2}$

3.由p(t)引起的误差, 令r(t)=0

扰动作用点之前不含积分,扰动作用点之后含有积分,对阶跃扰动的静态误差

$$e_f = -\frac{1}{K1}$$

第一种情况:
$$r(t)=1(t)$$
, $f(t)=1(t)$
$$e_{st}=-\frac{1}{K1}$$
 第二种情况: $r(t)=t$, $f(t)=1(t)$
$$e_{st}=\frac{1}{K1K2}-\frac{1}{K1}$$

2) 第一种情况: r(t)=1(t), f(t)=1(t) 第二种情况: r(t)=t, f(t)=1(t)

求解过程:

- 1. 判稳:假设系统稳定
- 2. 由r(t)引起的误差,令p(t)=0
 - 2 型系统,静态误差可查表

$$r(t) = 1(t), e_{r1} = 0$$

$$r(t) = t$$
, $e_{r2} = 0$

3. 由p(t)引起的误差, 令r(t)=0

f(t)=1(t),扰动作用点之前含有积分,对阶跃扰动无静差 $e_{stf}=0$

所以:第一种情况: r(t)=1(t), f(t)=1(t) $e_{st}=0$

第二种情况: r(t)=t, f(t)=1(t) $e_{st}=0$

3) 第一种情况: r(t)=1(t) 第二种情况: r(t)=t

求解过程:

$$G_{\text{F}}(s) = \frac{s+10}{10+s(s+1)}$$

等效开环传递函数: $G_{\pi}(s) = \frac{s+10}{s^2}$

2 型系统,对阶跃信号和斜坡信号的稳态误差均为 0

所以: 第一种情况: r(t)=1(t), $e_{st}=0$ 第二种情况: r(t)=t, $e_{st}=0$

答案:

$$r(t)=1(t), f(t)=1(t)$$

$$r(t)=t, f(t)=1(t)$$

1)

$$-1/K_{1}$$

$$1/K_1K_2 - 1/K_1$$

2)

0

0

3)

0

0

控制系统的动态指标

动态性能指标

1. t_r 上升时间

y(t) 第一次达到 $y(\infty)$ 的时间

$2.t_d$ 延迟时间

y(t) 达到 $y(\infty)$ 一半的时间

3. t_s 过渡过程时间

y(t) 达到 $y(\infty) \pm 5\%$ 或±2%的时间

4. t_p 峰值时间

y(t) 达到 y_{max} 的时间

动态性能指标

5. 超调量

$$\sigma = \frac{y_{max} - y(\infty)}{y(\infty)} \times 100\%$$

6. 振荡次数

7. 误差积分指标

$$\int_{0}^{\infty} e^{2}(t)dt, \int_{0}^{\infty} te^{2}(t)dt, \int_{0}^{\infty} |e(t)| dt$$

在阶跃函数作用下,误差的某个函数的积分值,无论哪一种都希望越小越好。

一般情况下,相对主要的指标是:过渡过程时间和超调量

典型二阶系统动态性质

二阶系统的运动

典型二阶系统

$$T^2 \frac{d^2 y}{dt^2} + 2\zeta T \frac{dy}{dt} + y = v$$

T 时间常数, ζ 阻尼系数

另一种形式:

$$rac{d^2y}{dt^2} + 2\zeta\omega_nrac{dy}{dt} + \omega_n^2y = \omega_n^2v$$
 $\omega_n = rac{1}{T}$ 无阻尼自振频率

在零初始条件下,解此方程有以下几种情况:

(1)
$$0 \le \zeta < 1, s_{1,2} = -\frac{\zeta}{T} \pm j \frac{\sqrt{1-\zeta^2}}{T} (= -\omega_n \zeta \pm j \omega_d)$$

 $(\omega_d$ 是阻尼振荡频率)

二阶系统的运动

y(t)的阶跃响应

$$y(t) = 1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\frac{\zeta}{T}t} \sin(\frac{\sqrt{1 - \zeta^2}}{T}t + \arctan\frac{\sqrt{1 - \zeta^2}}{\zeta})$$

曲线如图

二阶系统的运动

(2)
$$\zeta = 1$$
, 两个相等的负实根, $S_{1,2} = -\frac{1}{T}$, $y(t) = 1 - (1 + \frac{t}{T})e^{-\frac{t}{T}}$

(3)
$$\zeta > 1$$
,两个不相等的负实根, $s_{1,2} = -\frac{-\zeta \pm \sqrt{\zeta^2 - 1}}{T}$ $y(t) = 1 + a_1 e^{s_1 t} + a_2 e^{s_2 t}$

y(t)单调趋近于1

分析:

(1)看ζ的作用:

 $0 \le \zeta < 1$, 欠阻尼; $\zeta = 0$, 无阻尼, 带振荡性 $\zeta = 1$, 临界阻尼; $\zeta > 1$, 过阻尼

(2) t/T 总在一起,T是个时间尺度,曲线展宽或压缩

二阶系统运动的动态指标

性能指标:

(1)
$$t_r$$
, $y(t_r) = 1$

$$y(t_r) = 1 = 1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\frac{\zeta}{T}t_r \sin(\omega_d t_r + \theta)}$$

即
$$sin(\omega_d t_r + \theta) = 0 \rightarrow \omega_d t_r + \theta = \pi$$
 $t_r = \frac{\pi - \theta}{\omega_d}$

(3) 求σ, 将
$$t = t_p$$
 代入 y(t), 求出 y_{max} , $y(\infty) = 1$

$$: \sigma = e^{-(\zeta \pi / \sqrt{1 - \zeta^2})}$$

(4)
$$t_s$$
 近似估计值, $t_s \approx \frac{3\sim 4}{\zeta \omega_n} = \frac{3\sim 4}{\zeta} T$ (误差带5%~2%)

二阶系统运动的动态指标

课堂练习

试分析当r(t)=1(t),在以下三种不同k, τ 参数下,该二阶系统的主要特征,并画出阶跃输入下的y(t)曲线

1)
$$k = 1, \tau = 1;$$

$$(\zeta = 0.5, T = 1, t_s = 6)$$

2)
$$k = 4, \tau = 1;$$

$$(\zeta = 0.25, T = \frac{1}{2}, t_s = 6)$$

3)
$$k = 1, \tau = 4;$$

$$(\zeta = 0.25, T = 2, t_s = 24)$$

二阶系统运动的动态指标

曲线如下

二阶系统运动的动态指标

小结: 1) 二阶系统 T, ζ 对动态性能的影响

$$\sigma = e^{-(\frac{\zeta\pi}{\sqrt{1-\zeta^2}})} \qquad t_p = \frac{\pi T}{\sqrt{1-\zeta^2}} \qquad t_s \approx \frac{3}{\zeta\omega_n}$$

2) 能根据主要特征绘制阶跃响应曲线

一个高阶系统的闭环传递函数,可以写成如下的形式

$$\frac{y(s)}{r(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \cdots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0} = \frac{k(s + z_1)(s + z_2) \cdots (s + z_m)}{(s + p_1)(s + p_2) \cdots (s + p_n)}$$

$$-p_i (i = 1, \dots n)$$
 系统的闭环极点

$$-z_i$$
 $(j=1,\cdots m)$ 系统的闭环零点

在单位阶跃输入和零初始条件下,且假设这些零极点都是实数且互不相同, 于是有:

$$y(s) = \frac{A_0}{s} + \sum_{i=1}^{n} \frac{A_i}{s + p_i}$$

 A_0, A_i 是相应于 $s = 0, s = -p_i$ 极点处的留数

有

$$y(t) = A_0 + \sum_{i=1}^n A_i e^{-p_i t}$$

$$A_0 = [y(s)s]_{s=0}$$
 $A_i = [y(s)(s+p_i)]_{s=-p}$

留数描述了该极点对应运动模态的重要性程度

(1) 设一极点 $-p_k$ 远离原点,此极点处的留数为

$$A_{k} = y(s)(s + p_{k})|_{s=-p_{k}}$$

$$= \frac{k(s + z_{1}) \cdots (s + z_{m})}{s(s + p_{1}) \cdots (s + p_{k}) \cdots (s + p_{n})} (s + p_{k})|_{s=-p_{k}}$$

$$= \frac{k(-p_{k} + z_{1}) \cdots (-p_{k} + z_{m})}{(-p_{k})(-p_{k} + p_{1}) \cdots (-p_{k} + p_{n})} \approx \frac{k(p_{k})^{m}}{(p_{k})^{n}} \qquad n > m$$

 A_k 很小

这表示远离原点的极点所对应的运动成分对于阶跃响应的影响很小

(2) 设一零点 $-z_r$ 和一极点 $-p_k$ 很靠近,即 $|-p_k+z_r|$ 很小,这一对零极点称为偶极子。此极点的留数

$$A_{k} = \frac{k(s+z_{1})\cdots(s+z_{r})\cdots(s+z_{m})}{s(s+p_{1})\cdots(s+p_{k})\cdots(s+p_{n})}(s+p_{k})|_{s=-p_{k}}$$

$$= \frac{k(-p_{k}+z_{1})\cdots(-p_{k}+z_{r})\cdots(-p_{k}+z_{m})}{(-p_{k})(-p_{k}+p_{1})\cdots(-p_{k}+p_{n})} \qquad n>m$$

可见 A_k 很小

表明如果有一零点与一极点相近,则这个极点所对应的运动成分在阶跃响应中所占的比重很小。

(3)主导极点

在分析高阶系统时,可以把上述两种情况的极点化为次要因素而忽略。

主导极点:稳定系统的部分极点,在它们附近没有零点,且其他极点离它们较远,并远离虚轴。

主导极点可以是一个、两个或者多个;可以是实数或者复数;如果只有一对左半平面的共轭复极点符合要求,则这个系统就可以近似化为一个二阶系统,其动态特性是由这一对主导极点决定。

$$G_1(s) = \frac{1}{(s+5)(s+6)(s^2+0.9s+1)}$$

$$G_2(s) = \frac{0.033}{(s^2 + 0.9s + 1)}$$

远离原点的极点所对应的运动成分对于阶跃响应的影响很小,可忽略

阶跃响应图

$$G_1(s) = \frac{1}{(s+0.2)(s^2+0.9s+1)}$$

靠近原点的极点不能去掉

$$G_2(s) = \frac{5}{(s^2 + 0.9s + 1)}$$

零极点图

$$G_1(s) = \frac{s+5}{(s+5.1)(s^3+2s^2+3s+4)}$$

$$G_2(s) = \frac{1}{(s^3 + 2s^2 + 3s + 4)}$$

如果有一零点与一极点相近,则这个极点所对应的运动成分在阶跃响应中所占的比重很小。

本章结束