```
In [23]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
data = pd.read_csv('train.csv')
data.shape
```

Out[2]:

(614, 13)

In [3]:

data.columns

Out[3]:

In [4]:

data.head()

Out[4]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coappl
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	

```
In [5]:
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):
 #
     Column
                          Non-Null Count
                                            Dtype
                                            ____
                                            object
 0
     Loan ID
                           614 non-null
 1
     Gender
                           601 non-null
                                            object
 2
     Married
                           611 non-null
                                            object
 3
     Dependents
                          599 non-null
                                            object
 4
     Education
                           614 non-null
                                            object
 5
     Self Employed
                          582 non-null
                                            object
 6
     ApplicantIncome
                          614 non-null
                                            int64
 7
     CoapplicantIncome
                          614 non-null
                                            float64
 8
                          592 non-null
                                            float64
     LoanAmount
 9
     Loan Amount Term
                           600 non-null
                                            float64
 10
     Credit History
                          564 non-null
                                            float64
 11
     Property_Area
                           614 non-null
                                            object
 12
     Loan Status
                           614 non-null
                                            object
dtypes: float64(4), int64(1), object(8)
memory usage: 62.5+ KB
In [6]:
data = data.drop(columns=['Loan ID'])
In [7]:
data.head()
Out[7]:
Education
         Self_Employed
                     ApplicantIncome
                                    CoapplicantIncome
                                                    LoanAmount Loan Amount Term
 Graduate
                               5849
                                                           NaN
                                                                           360.0
                  No
                                                 0.0
 Graduate
                                                           128.0
                  No
                               4583
                                              1508.0
                                                                           360.0
 Graduate
                  Yes
                               3000
                                                 0.0
                                                           66.0
                                                                           360.0
                  No
                               2583
                                              2358.0
                                                           120.0
                                                                           360.0
```

0.0

141.0

360.0

Basic data exploration

No

6000

Graduate Graduate

In [8]:

data.describe()

Out[8]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	614.000000	614.000000	592.000000	600.00000	564.000000
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
std	6109.041673	2926.248369	85.587325	65.12041	0.364878
min	150.000000	0.000000	9.000000	12.00000	0.000000
25%	2877.500000	0.000000	100.000000	360.00000	1.000000
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000

In [9]:

data.describe(include=['object'])

Out[9]:

	Gender	Married	Dependents	Education	Self_Employed	Property_Area	Loan_Status
count	601	611	599	614	582	614	614
unique	2	2	4	2	2	3	2
top	Male	Yes	0	Graduate	No	Semiurban	Υ
freq	489	398	345	480	500	233	422

```
In [11]:
data.isna().sum()
Out[11]:
Gender
                      13
Married
                       3
                      15
Dependents
Education
                       0
Self Employed
                      32
                       0
ApplicantIncome
CoapplicantIncome
                       0
LoanAmount
                      22
Loan_Amount_Term
                      14
                      50
Credit History
                       0
Property_Area
Loan Status
                       0
dtype: int64
In [17]:
cat cols = data.dtypes == 'object'
cat_cols = list(cat_cols[cat_cols].index)
num_cols = data.dtypes != 'object'
num_cols = list(num_cols[num_cols].index)
In [18]:
cat_cols
Out[18]:
['Gender',
 'Married',
 'Dependents',
 'Education',
 'Self_Employed',
 'Property Area',
 'Loan Status']
In [19]:
num cols
Out[19]:
['ApplicantIncome',
 'CoapplicantIncome',
 'LoanAmount',
 'Loan_Amount_Term',
 'Credit History']
```

In [21]:

data[cat_cols].head()

Out[21]:

	Gender	Married	Dependents	Education	Self_Employed	Property_Area	Loan_Status
0	Male	No	0	Graduate	No	Urban	Υ
1	Male	Yes	1	Graduate	No	Rural	N
2	Male	Yes	0	Graduate	Yes	Urban	Υ
3	Male	Yes	0	Not Graduate	No	Urban	Υ
4	Male	No	0	Graduate	No	Urban	Υ

In [22]:

data[num_cols].head()

Out[22]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
0	5849	0.0	NaN	360.0	1.0
1	4583	1508.0	128.0	360.0	1.0
2	3000	0.0	66.0	360.0	1.0
3	2583	2358.0	120.0	360.0	1.0
4	6000	0.0	141.0	360.0	1.0

```
In [24]:
```

```
sns.countplot(data= data, x='Loan_Status')
```

Out[24]:

<AxesSubplot:xlabel='Loan_Status', ylabel='count'>


```
In [25]:
```

```
data['Loan_Status'].value_counts()
```

```
Out[25]:
```

Y 422 N 192

Name: Loan_Status, dtype: int64

In []:

Applicant's income

In [31]:

```
plt.figure(figsize=(15, 6))

plt.subplot(121)
sns.distplot(data['ApplicantIncome'])

plt.subplot(122)
sns.boxplot(y= data['ApplicantIncome'])

plt.show()
```

/Users/mohit/opt/anaconda3/lib/python3.8/site-packages/seaborn/distrib utions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use eit her `displot` (a figure-level function with similar flexibility) or `h istplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

In [32]:

```
plt.figure(figsize=(15, 6))
plt.subplot(121)
sns.distplot(data['CoapplicantIncome'])
plt.subplot(122)
sns.boxplot(y= data['CoapplicantIncome'])
plt.show()
```

/Users/mohit/opt/anaconda3/lib/python3.8/site-packages/seaborn/distrib utions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use eit her `displot` (a figure-level function with similar flexibility) or `h istplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

In [33]:

```
np.quantile(data['CoapplicantIncome'], 0.25)
```

Out[33]:

0.0

```
In [ ]:
```

In [34]:

```
plt.figure(figsize=(15, 6))

plt.subplot(121)
sns.distplot(np.log(data['ApplicantIncome']))

plt.subplot(122)
sns.boxplot(y= np.log(data['ApplicantIncome']))

plt.show()
```

/Users/mohit/opt/anaconda3/lib/python3.8/site-packages/seaborn/distrib utions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use eit her `displot` (a figure-level function with similar flexibility) or `h istplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)


```
In [38]:
```

```
data.boxplot(column = 'ApplicantIncome', by = 'Education', figsize=(15, 6))
plt.show()
```



```
In [ ]:
```

```
data.groupby(by='Loan_Status').mean()['ApplicantIncome']
```

```
Loan_Status
N 5446.078125
Y 5384.068720
Name: ApplicantIncome, dtype: float64
```

```
In [ ]:
```

In [40]:

Out[40]:

Simple Feature Engineering

```
In [41]:
bins = [0, 2500, 4000, 6000, 81000]
group = ['Low', 'Avg', 'High', 'Very High']
```

```
In [45]:
data['Income_bin'] = pd.cut(data['ApplicantIncome'], bins, labels=group)
```

```
In [46]:
data.head()
Out[46]:
Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_His
                        5849
                                           0.0
                                                                        360.0
          No
                                                       NaN
          No
                        4583
                                         1508.0
                                                      128.0
                                                                        360.0
         Yes
                        3000
                                           0.0
                                                       66.0
                                                                        360.0
          No
                        2583
                                         2358.0
                                                      120.0
                                                                        360.0
          No
                        6000
                                           0.0
                                                      141.0
                                                                        360.0
In [ ]:
In [47]:
pd.crosstab(data['Income_bin'], data['Loan_Status'])
Out[47]:
 Loan_Status
                  Υ
             Ν
 Income_bin
       Low 34
                 74
             67
                159
        Avg
                 98
       High
            45
   Very High 46
                 91
In [ ]:
```

```
In []:
bins = [0, 2500, 4000, 6000, 81000]
group = ['Low', 'Avg', 'High', 'Very High']
```

```
In [58]:
```

data['CoApplicantIncome_bin'] = pd.cut(data['CoapplicantIncome'], bins, labels=group

In []:

In [59]:

data.head()

Out[59]:

oan_Amount_Ter	rm	Credit_History	Property_Area	Loan_Status	Income_bin	CoApplicantIncome_bin
360	0.0	1.0	Urban	Υ	High	NaN
360	0.0	1.0	Rural	N	High	Low
360	0.0	1.0	Urban	Υ	Avg	NaN
360	0.0	1.0	Urban	Υ	Avg	Low
360	0.0	1.0	Urban	Υ	High	NaN

In [61]:

CoapplicantIncome = pd.crosstab(data['CoApplicantIncome_bin'], data['Loan_Status'])
CoapplicantIncome

Out[61]:

Loan_Status N Y

CoApplicantIncome_bin

Low 53 161

Avg 24 48

High 11 26

Very High 8 10

In [62]:

CoapplicantIncome.div(CoapplicantIncome.sum(axis=1), axis=0)

Out[62]:

Loan_Status	N	Y
CoApplicantIncome_bin		
Low	0.247664	0.752336
Avg	0.333333	0.666667
High	0.297297	0.702703
Very High	0.444444	0.555556

In [63]:

CoapplicantIncome = pd.crosstab(data['CoApplicantIncome_bin'], data['Loan_Status'])
CoapplicantIncome.div(CoapplicantIncome.sum(axis=1), axis=0).plot(kind='bar')

Out[63]:

<AxesSubplot:xlabel='CoApplicantIncome_bin'>


```
In [64]:
data['CoapplicantIncome'].value_counts().head()
Out[64]:
0.0
            273
2500.0
              5
2083.0
              5
1666.0
              5
1625.0
              3
Name: CoapplicantIncome, dtype: int64
In [ ]:
In [65]:
data['TotalIncome'] = data['ApplicantIncome'] + data['CoapplicantIncome']
In [66]:
data.head()
Out[66]:
n Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_I
                                                                      360.0
            No
                         5849
                                           0.0
                                                      NaN
te
                         4583
                                         1508.0
                                                     128.0
                                                                      360.0
te
            No
te
           Yes
                         3000
                                           0.0
                                                      66.0
                                                                      360.0
эt
            No
                         2583
                                         2358.0
                                                     120.0
                                                                      360.0
te
            No
                         6000
                                           0.0
                                                     141.0
                                                                       360.0
te
In [ ]:
In [67]:
bins = [0, 2500, 4000, 6000, 81000]
group = ['Low', 'Avg', 'High', 'Very High']
```

```
In [68]:
```

```
data['TotalIncome_bin'] = pd.cut(data['TotalIncome'], bins, labels=group)
```

In [69]:

```
data.head()
```

Out[69]:

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome
0	Male	No	0	Graduate	No	5849	0.0
1	Male	Yes	1	Graduate	No	4583	1508.0
2	Male	Yes	0	Graduate	Yes	3000	0.0
3	Male	Yes	0	Not Graduate	No	2583	2358.0
4	Male	No	0	Graduate	No	6000	0.0

In [70]:

```
TotalIncome = pd.crosstab(data['TotalIncome_bin'], data['Loan_Status'])
TotalIncome.div(TotalIncome.sum(axis=1), axis=0).plot(kind='bar')
```

Out[70]:

<AxesSubplot:xlabel='TotalIncome_bin'>

In []:

Loan term & Loan amaount

```
In [75]:
```

```
data['Loan_Amount_Term'] = (data['Loan_Amount_Term']/12).astype('float')
```

In [76]:

```
sns.countplot(x='Loan_Amount_Term', data=data)
```

Out[76]:

<AxesSubplot:xlabel='Loan_Amount_Term', ylabel='count'>

In []:

In [77]:

data.head()

Out[77]:

Credit_History	Property_Area	Loan_Status	Income_bin	CoApplicantIncome_bin	TotalIncome	Tota
1.0	Urban	Υ	High	NaN	5849.0	
1.0	Rural	N	High	Low	6091.0	
1.0	Urban	Υ	Avg	NaN	3000.0	
1.0	Urban	Υ	Avg	Low	4941.0	
1.0	Urban	Υ	High	NaN	6000.0	

In [78]:

```
data['Loan_Amount_per_year'] = data['LoanAmount']/ data['Loan_Amount_Term']
```

```
In [ ]:
```

In [79]:

data.head()

Out[79]:

Status	Income_bin	CoApplicantIncome_bin	TotalIncome	TotalIncome_bin	Loan_Amount_per_year
Υ	High	NaN	5849.0	High	NaN
N	High	Low	6091.0	Very High	4.266667
Υ	Avg	NaN	3000.0	Avg	2.200000
Υ	Avg	Low	4941.0	High	4.000000
Υ	High	NaN	6000.0	High	4.700000

In [84]:

```
data['EMI'] = np.round(data['Loan_Amount_per_year']*1000/12, 2)
```

In [85]:

data.head()

Out[85]:

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome
0	Male	No	0	Graduate	No	5849	0.0
1	Male	Yes	1	Graduate	No	4583	1508.0
2	Male	Yes	0	Graduate	Yes	3000	0.0
3	Male	Yes	0	Not Graduate	No	2583	2358.0
4	Male	No	0	Graduate	No	6000	0.0

In [86]:

```
data['Able_to_pay_EMI'] = (data['EMI'] < data['TotalIncome']*0.1)</pre>
```

In [88]:

data.head()

Out[88]:

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome
0	Male	No	0	Graduate	No	5849	0.0
1	Male	Yes	1	Graduate	No	4583	1508.0
2	Male	Yes	0	Graduate	Yes	3000	0.0
3	Male	Yes	0	Not Graduate	No	2583	2358.0
4	Male	No	0	Graduate	No	6000	0.0

In [90]:

sns.countplot(x='Able_to_pay_EMI', data=data, hue='Loan_Status')

Out[90]:

<AxesSubplot:xlabel='Able_to_pay_EMI', ylabel='count'>


```
In [101]:
data['Dependents'].value_counts()
Out[101]:
0
     345
1
     102
2
     101
3
      51
Name: Dependents, dtype: int64
In [102]:
data['Dependents'].replace('3+', 3, inplace=True)
In [106]:
data['Dependents'] = data['Dependents'].astype('float')
In [ ]:
In [108]:
sns.countplot(x='Dependents', data=data, hue='Loan_Status')
Out[108]:
<AxesSubplot:xlabel='Dependents', ylabel='count'>
                                        Loan Status
                                          Y
  200
  150
  100
   50
                                          3.0
          0.0
                     1.0
                                2.0
                       Dependents
```

```
In [109]:

data['Credit_History'].value_counts()

Out[109]:

1.0     475
0.0     89
Name: Credit_History, dtype: int64

In [110]:

sns.countplot(x='Credit_History', data=data, hue='Loan_Status')

Out[110]:
```

<AxesSubplot:xlabel='Credit_History', ylabel='count'>

In []:

Missing Values

In [111]:

```
data.isna().sum()
```

Out[111]:

3
15
0
32
0
0
22
14
50
0
0
0
273
0
0
36
36
0

In []:

In [113]:

```
def missing_to_df(df):
    #Number and percentage of missing data in training data set for each column
    total_missing_df = df.isnull().sum().sort_values(ascending =False)
```

percent_missing_df = (df.isnull().sum()/df.isnull().count()*100).sort_values(asc missing_data_df = pd.concat([total_missing_df, percent_missing_df], axis=1, keys return missing_data_df

```
In [115]:
```

```
missing_df = missing_to_df(data)
missing_df[missing_df['Total']> 0]
```

Out[115]:

	Total	Percent	
CoApplicantIncome_bin	273	44.462541	
Credit_History	50	8.143322	
ЕМІ	36	5.863192	
Loan_Amount_per_year	36	5.863192	
Self_Employed	32	5.211726	
LoanAmount	22	3.583062	
Dependents	15	2.442997	
Loan_Amount_Term	14	2.280130	
Gender	13	2.117264	
Married	3 0.488599	0.488599	

In [116]:

```
data['Credit_History'].fillna(2, inplace=True)
```

In [117]:

```
data['Self_Employed'].value_counts()
```

Out[117]:

No 500 Yes 82

Name: Self_Employed, dtype: int64

In [118]:

```
data['Self_Employed'].fillna('Others', inplace=True)
```

```
In [124]:
```

```
from sklearn.impute import SimpleImputer

median_imputer = SimpleImputer(strategy='median')

data['EMI'] = median_imputer.fit_transform(pd.DataFrame(data['EMI']))
data['LoanAmount'] = median_imputer.fit_transform(pd.DataFrame(data['LoanAmount']))
data['Loan_Amount_per_year'] = median_imputer.fit_transform(pd.DataFrame(data['Loan_data['Loan_Amount']))
data['Loan_Amount_Term'] = median_imputer.fit_transform(pd.DataFrame(data['Loan_Amount']))
```

In [125]:

```
missing_df = missing_to_df(data)
missing_df[missing_df['Total']> 0]
```

Out[125]:

	Total	Percent	
CoApplicantIncome_bin	273	44.462541	
Dependents	15	2.442997	
Gender	13	2.117264	
Married	3	0.488599	

In [131]:

```
# data[pd.isna(data['Married'])]
```

In [132]:

```
freq_imputer = SimpleImputer(strategy='most_frequent')
```

In [135]:

```
data['Dependents'] = freq_imputer.fit_transform(pd.DataFrame(data['Dependents']))
data['Gender'] = freq_imputer.fit_transform(pd.DataFrame(data['Gender']))
data['Married'] = freq_imputer.fit_transform(pd.DataFrame(data['Married']))
```

In [136]:

```
missing_df = missing_to_df(data)
missing_df[missing_df['Total']> 0]
```

Out[136]:

	Total	Percent
CoApplicantIncome_bin	273	44.462541

```
In [137]:
data.drop('CoApplicantIncome_bin', axis=1, inplace=True)
In [138]:
missing_df = missing_to_df(data)
missing_df[missing_df['Total']> 0]
Out[138]:
  Total Percent
In [ ]:
Converting categorical to Numeric Encoding
 1. LabelEncoding
In [139]:
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
In [143]:
enc_label = LabelEncoder()
# enc_label.fit_transform()
```

In [142]:

ohe = OneHotEncoder()
ohe.fit_transform()

```
In [144]:
! pip install category encoders
Collecting category encoders
  Downloading category encoders-2.5.0-py2.py3-none-any.whl (69 kB)
                                      69 kB 6.4 MB/s eta 0:00:011
Requirement already satisfied: statsmodels>=0.9.0 in /Users/mohit/opt/
anaconda3/lib/python3.8/site-packages (from category encoders) (0.12.
2)
Requirement already satisfied: pandas>=1.0.5 in /Users/mohit/opt/anaco
nda3/lib/python3.8/site-packages (from category encoders) (1.2.4)
Requirement already satisfied: patsy>=0.5.1 in /Users/mohit/opt/anacon
da3/lib/python3.8/site-packages (from category encoders) (0.5.1)
Requirement already satisfied: scipy>=1.0.0 in /Users/mohit/opt/anacon
da3/lib/python3.8/site-packages (from category_encoders) (1.6.2)
Requirement already satisfied: numpy>=1.14.0 in /Users/mohit/opt/anaco
nda3/lib/python3.8/site-packages (from category encoders) (1.20.1)
Requirement already satisfied: scikit-learn>=0.20.0 in /Users/mohit/op
t/anaconda3/lib/python3.8/site-packages (from category encoders) (0.2
Requirement already satisfied: python-dateutil>=2.7.3 in /Users/mohit/
```

Requirement already satisfied: python-dateutil>=2.7.3 in /Users/mohit/opt/anaconda3/lib/python3.8/site-packages (from pandas>=1.0.5->categor y_encoders) (2.8.1)

Requirement already satisfied: pytz>=2017.3 in /Users/mohit/opt/anacon da3/lib/python3.8/site-packages (from pandas>=1.0.5->category_encoder s) (2021.1)

Requirement already satisfied: six in /Users/mohit/opt/anaconda3/lib/p ython3.8/site-packages (from patsy>=0.5.1->category_encoders) (1.15.0) Requirement already satisfied: joblib>=0.11 in /Users/mohit/opt/anaconda3/lib/python3.8/site-packages (from scikit-learn>=0.20.0->category_encoders) (1.0.1)

Requirement already satisfied: threadpoolctl>=2.0.0 in /Users/mohit/op t/anaconda3/lib/python3.8/site-packages (from scikit-learn>=0.20.0->ca tegory encoders) (2.1.0)

Installing collected packages: category-encoders Successfully installed category-encoders-2.5.0

In [145]:

from category encoders import TargetEncoder

```
In [146]:
```

```
te = TargetEncoder()
# te.fit_transform()
```

/Users/mohit/opt/anaconda3/lib/python3.8/site-packages/category_encode rs/target_encoder.py:92: FutureWarning: Default parameter min_samples_ leaf will change in version 2.6.See https://github.com/scikit-learn-contrib/category_encoders/issues/327 (https://github.com/scikit-learn-contrib/category_encoders/issues/327)

warnings.warn("Default parameter min_samples_leaf will change in ver sion 2.6."

/Users/mohit/opt/anaconda3/lib/python3.8/site-packages/category_encode rs/target_encoder.py:97: FutureWarning: Default parameter smoothing wi ll change in version 2.6.See https://github.com/scikit-learn-contrib/category_encoders/issues/327 (https://github.com/scikit-learn-contrib/category_encoders/issues/327)

warnings.warn("Default parameter smoothing will change in version 2.
6."

 L .	