Computability Theory Preliminary

Qingshui Xue

Shanghai Jiao Tong University

Sep. 14, 2015

PRELIMINARIES

SET

► A set is an unordered collection of elements, say no duplications.

- A set is an unordered collection of elements, say no duplications.
- Examples and notations:
 - ► {*a*, *b*, *c*}
 - ▶ $\{x | x \text{ is an even integer}\} \rightarrow \{0, 2, 4, 6, \cdots\}$

- A set is an unordered collection of elements, say no duplications.
- Examples and notations:
 - ► {*a*, *b*, *c*}
 - $\{x|x \text{ is an even integer}\} \rightarrow \{0,2,4,6,\cdots\}$
 - φ: empty set

- A set is an unordered collection of elements, say no duplications.
- Examples and notations:
 - ► {*a*, *b*, *c*}
 - $\{x|x \text{ is an even integer}\} \rightarrow \{0,2,4,6,\cdots\}$
 - φ: empty set
 - ▶ $\mathbb{N} = \{0, 1, 2, ...\}$: natural numbers (nonnegative integers)
 - Arr $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$: integers
 - ▶ R: real numbers
 - E: even numbers
 - O: odd numbers

Cardinality of a set: the number of distinct elements.

- Cardinality of a set: the number of distinct elements.
- ▶ Set Equality: $S = T \rightarrow x \in S$ iff $x \in T$
- Subset: A set S is a subset of T, S ⊆ T, if every element of S is an element of T

- Cardinality of a set: the number of distinct elements.
- ▶ Set Equality: $S = T \rightarrow x \in S$ iff $x \in T$
- Subset: A set S is a subset of T, S ⊆ T, if every element of S is an element of T
- ▶ Proper subset: a subset of T is a subset other than the empty set Ø or T itself (Use of word proper, proper subsequence or proper substring)
- Strict Subset: S is a strict subset, S ⊂ T, if not equal to T

Set Operations

- ▶ Union: $S \cup T \rightarrow$ the set of elements that are either in S or in T.
 - ▶ $S \cup T = \{s | s \in S \text{ or } s \in T\}$
 - $\{a, b, c\} \cup \{c, d, e\} = \{a, b, c, d, e\}$
 - $\blacktriangleright |S \cup T| \leq |S| + |T|$
- ► Intersection: *S* ∩ *T*
 - ▶ $S \cap T = \{s | s \in S \text{ and } s \in T\}$
 - ► $\{a, b, c\} \cap \{c, d, e\} = \{c\}$
- ▶ Difference: $S T \rightarrow \text{set of all elements in } S \text{ not in } T$
 - ▶ $S T = \{s | s \in S \text{ but not in } T\} = S \cap \overline{T}$
- Complement:
 - Need universal set U
 - ▶ $\overline{S} = \{s | s \in U \text{ but not in } S\}$

Set Operations

Cartesian Product

- In a graph G = (V, E), the edge set E is the subset of Cartesian product of vertex set V. E ⊆ V × V.

Power Set

- 2^S set of all subsets of S
- Note: notation |2^S| = 2^{|S|}, meaning 2^S is a good representation for power set.
- S = {a, b, c}, then
 2^S = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

Indicator Vector: We can use a zero/one vector to represent the elements in power set.

	а	b	C
Ø	0	0	0
{ a }	1	0	0
{ b }	0	1	0
{a, b, c}	1	1	1

Ordered Pair

- (x, y): ordered pair of elements x and y; $(x, y) \neq (y, x)$.
- ▶ (x_1, \dots, x_n) : ordered *n*-tuple \rightarrow as \widetilde{x} .
- $\blacktriangleright A_1 \times A_2 \times \cdots \times A_n = \{(x_1, \cdots, x_n) : x_1 \in A_1, \cdots, x_n \in A_n\}.$
- $A \times A \times \cdots \times A = A^n.$
- $ightharpoonup A^1 = A.$

FUNCTION

Function Notation

- ▶ f is a set of ordered pairs s.t. if $(x, y) \in f$ and $(x, z) \in f$, then y = z, and f(x) = y.
- ▶ Dom(f): Domain of f, $\{x : f(x) \text{ is defined}\}$.
- ▶ f(x) is undefined if $x \notin Dom(f)$.
- ► Ran(f): Range of f, $\{f(x) : x \in Dom(f)\}$.
- ▶ f is a function from A to B: $Dom(f) \subseteq A$ and $Ran(f) \subseteq B$.
- ▶ $f: A \rightarrow B$: f is a function from A to B with Dom(f) = A.

Mapping

- ▶ Injective: if $x, y \in Dom(f)$, $x \neq y$, then $f(x) \neq f(y)$.
- ▶ Inverse f^{-1} : the unique function g s.t. Dom(g) = Ran(f), and g(f(x)) = x.
- Surjective: if Ran(f) = B.
- Bijective: both injective and surjective.

Operation

- 1. f|X: Restriction of f to X. Domain $X \cap Dom(f)$. Write f(X) for Ran(f|X).
- 2. $f^{-1}(Y) = \{x : f(x) \in Y\}$: inverse image of Y under f.
- 3. $f \subseteq g$: g extends f, f = g|Dom(f). $Dom(f) \subseteq Dom(g)$ and $\forall x \in Dom(f)$, f(x) = g(x).
- 4. $f \circ g$: composition of f and g. Domain $\{x : x \in Dom(g) \text{ and } g(x) \in Dom(f)\}$, value f(g(x)).
- 5. f_{\emptyset} : function defined nowhere. $Dom(f_{\emptyset}) = Ran(f_{\emptyset}) = \emptyset$. $f_{\emptyset} = g|\emptyset$ for any function g.

\simeq : similar-or-equal-to

Suppose $\alpha(\widetilde{x})$ and $\beta(\widetilde{x})$ are expressions involving $\widetilde{x} = (x_1, \cdots, x_n)$, then $\alpha(\widetilde{x}) \simeq \beta(\widetilde{x})$ means $\forall \widetilde{x}, \alpha(\widetilde{x})$ and $\beta(\widetilde{x})$ are either bother defined, or both undefined, and if defined they are equal.

- $f(x) \simeq g(x)$ is a kind of f = g.
- ▶ $f(x) \simeq y$ means f(x) is defined and f(x) = y.

Partial and Total Function

- ▶ *n*-ary function: $f(\widetilde{x})$, $f(x_1, \dots, x_n)$, $f: \mathbb{N}^n \to \mathbb{N}$.
- ▶ Partial function: Dom(f) is not necessarily the whole \mathbb{N}^n . (In our class function means partial function)
- ▶ Total function: $Dom(f) = \mathbb{N}^n$.
- ▶ Zero function: $\mathbf{0} : \mathbb{N} \to \mathbb{N}$.

RELATIONS

Relation

If A is a set, a property $M(x_1, \dots, x_n)$ that holds for some n-tuple from A^n and does not hold for all other n-tuples from A^n is called an n-ary relation or predicate on A.

- Property x < y. 2 < 5, 6 < 4.
- ▶ f from \mathbb{N}^n to \mathbb{N} gives rise to predicate $M(\widetilde{x}, y)$ by: $M(x_1, \dots, x_n, y)$ iff $f(x_1, \dots, x_n) \simeq y$.

Equivalence Relation

► A binary relation R on A is called equivalence relation if

$$\left. \begin{array}{ll} \text{reflexivity} & \forall x \in A \ R(x,x) \\ \text{symmetry} & R(x,y) \Rightarrow R(y,x) \\ \text{transitivity} & R(x,y), R(y,z) \Rightarrow R(x,z) \end{array} \right\} \text{ equivalence}$$

A binary relation R on A is called a partial order if

```
\left.\begin{array}{ll} \text{irreflexivity} & \neg R(x,x) \\ \text{transitivity} & R(x,y), R(y,z) \Rightarrow R(x,z) \end{array}\right\} \text{ partial order}
```

Example

	reflexive	symmetric	transitive
<	No	No	Yes
\leq	Yes	No	Yes
Parent of	No	No	No
=	Yes	Yes	Yes

DIAGONAL METHOD

The First Theorem

Theorem

The set of reals is uncountable.

The Second Theorem

Theorem

The power set of a set is always of greater cardinality than the set itself.

Hand Writing

- Small letters for elements and functions.
 - ▶ a, b, c for elements,
 - ▶ f, g for functions,
 - ▶ *i*, *j*, *k* for integer indices,
 - ► x, y, z for variables,
- ► Capital letters for sets. A, B, S. $A = \{a_1, \dots, a_n\}$
- ▶ Bmall letters with tilde for vectors. \widetilde{x} , \widetilde{y} . $\widetilde{v} = \{v_1, \dots, v_m\}$
- ▶ Bold capital letters for collections. **A**, **B**. $S = \{S_1, \dots, S_n\}$
- ▶ Blackboard bold capitals for domains (standard symbols).
 N, R, Z.
- ▶ German script for collection of functions. ℰ, ℐ, ℐ.
- ▶ Greek letters for parameters or coefficients. α , β , γ .
- Double strike handwriting for bold letters.