1 Центральная предельная теорема

Теорема 1.1 (Линдеберга). Пусть $\{\xi_k\}_{k\geqslant 1}$ — независимые случайные величины, $\mathsf{E}\xi_k^2<+\infty,\ \forall k,\ обозначим\ m_k=\mathsf{E}\xi_k,\ \delta_k^2=\mathsf{D}\xi_k;\ S_n=\sum\limits_{i=1}^n S_i;\ \mathsf{D}_n^2=\sum\limits_{k=0}^n \delta_k^2\ u\ F(x)$ — функция распределения ξ_k . Пусть выполнено условие Линдербега, т.е.

$$\forall \xi > 0, \frac{1}{\mathsf{D}^2} \sum_{k=1}^n \int_{\{x: |x-m_k| > \varepsilon \mathsf{D}_n\}} (x-m_k)^2 \, dF(x) \xrightarrow[n \to \infty]{} 0$$

Тогда

$$\frac{S_n - \mathsf{E}S_n}{\sqrt{\mathsf{D}S_n}} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1), \ n \to \infty.$$

2 Гауссовский случайный вектор

Определение 1. Слаучайный вектор $\vec{\xi} \sim \mathcal{N}(m, \sum)$ — гауссовский, если его характеристическая функция $\varphi_{\xi}(\vec{t}) = e^{i(\vec{m}, \vec{t}) - \frac{1}{2}(\sum \vec{t}, \vec{t})}, \ \vec{m} \in \mathcal{R}^n, \ \sum$ — симметрическая, неотрицательно-определенная матрица.

Определение 2. Случайный вектор $\vec{\xi}$ — гауссовский, если он представляется в следующем виде: $\vec{\xi} = A\vec{\eta} + \vec{B}$, где $\vec{B} \in \mathbb{R}^n, A \in \mathrm{Mat}(n \times m)$ и $\vec{\eta} = \{\vec{\eta}_1, \dots, \vec{\eta}_m\}$ — независимые, $n \sim \mathcal{N}(0,1)$

Определение 3. Случайный вектор $\overrightarrow{\xi}$ — гауссовский, если $\forall \lambda \in \mathbb{R}^n$ случайный вектор $(\overrightarrow{\lambda}, \overrightarrow{\xi})$ имеет нормальное распределение

Теорема 2.1 (об эквивалентности определений гауссовского вектора). *Предыдущие три определния эквиваленты*

3 Задачи по астрономии

Задача №1. Загадочный круг

Установите астрономический азимут восхода звезды ε CMa ($6^h58^m38^s$, $-28^\circ58'$) при наблюдении из самой северной равноудаленной от Санкт-Петербурга ($59^\circ57'$ с.ш., $30^\circ19'$ в.д.) и Красной поляны ($43^\circ41'$ с.ш.,

 $40^{\circ}11'$ в.д.) точки земной поверхности. Атмосферой пренебрегите, а Земля — шар.

Задача №2. К Сатурну!

Космический корабль запустили с поверхности Земли к Сатурну по наиболее энергетически выгодной траектории. При движении по орбите корабль пролетел мимо астероида-троянца (624) Гектор.

Определите большую полуось и экцентреситет полученной орбиты, скорость старта с поверхности, а также угол между направлением Солнце и на Сатурн в момент старта корабля. Орбиты планет считать круговыми. Оцените относительную скорость корбля и астероида в момент сближения

Задача №3. Н II

Предположим, что за пределами солнечного круга кривая вращения Галактики плоская, параметр плато $v=240~{\rm km/c}$. Пусть известно, что диск нейтроального водорода простирается до галакто-центрического расстояния $R_{\rm max}=50~{\rm knk}$. Мы наблюдаем облако нейтрального водорода на галактической долготе $l=140^{\circ}$. Оцените минимально возможное значение лучевой скорости этого облака.

Задача №4. Обратный комптон-эффект

Обратным комптон-эффектом (ОЭК) называют явление рассеяния фотона на ултрарелятивистском свободном электроне, при котором происходит перенос энергии от электрона к фотону. Рассмотрим ОЭК для фотонов реликтового излучения. При какой энергии электронов в направленном пучке рассеяное излучение можно будет зарегистрировать на фотоприёмнике?

4 Отзыв

- Наверное, один из самых полезных курсов на физтехе, который с большой вероятностью пригодится в жизни
- Хотелось бы побольше примеров. Теория всегда хорошо, но

практика находится в большем приоритете.

• Самый лучший лектор — это твой сверстник: с ним всегда можно найти общий язык