Theory of Computation

Lesson 19a - Encodings

Summer- I 2024 - W. Schny

Review

Last Time:

- 1. All known models of Computation are equivalent to the TM.
 - Shown for the multitape machine
 - Discussed Java, ...
- 2. Church's Thesis:
 - Each algorithm can be implemented on a Turing machine
- 3. Hilbert's 10th problem:
 - recognizable, not decidable
- 4. Closure Properties
- \bullet Closure properties for decidable: ${\bf A} \cup {\bf B}$, ${\bf A} \cap {\bf B}$, \overline{A}
- \bullet Closure properties for recognizable: $A \cup B$, $A \cap B$

Summer-1 2024 - W. Schnyde

Review

Last Time:

- 5. A decidable \Leftrightarrow A and \overline{A} are recognizable
 - Hilbert undecidable ⇒ Hilbert or Hilbert not recognizable
 - Hilbert recognizable ⇒ Hilbert not recognizable
 - → Recognizable languages not closed under complement
- 6. Enumerators (machines with attached printer)
 - A recognizable \Leftrightarrow A has an enumerator (that prints A)
 - Proof with "clocks".

Summer- I 2024 - W. Schnyd

Encodings

Poll 19.1 (Graded on attendance)

Have you ever seen a natural number?

- (a) Yes.
- (b) No. ← correct
- (c) Don't know.
- (d) This question doesn't make sense.

95

Summer- I 2024 - W. Schnyd

Encodings

Encoding: Representation of objects as strings over the finite input alphabet Σ of a Turing machine or computer.

Object \mathcal{O} ----- encoding $\langle \mathcal{O} \rangle$

Requirements:

- (1) Must be able to (easily) decide whether a string is encoding $\{ w \in \Sigma^* \mid w = <\mathcal{O}> \text{ for some } \mathcal{O} \}$
 - must be (easily) decidable.
- (2) Must be able to easily retrieve (all properties of) \mathcal{O} from $<\mathcal{O}>$

96

Summer-1 2024 - W. Schnyder

Encodings

Example. Encoding in $\Sigma = \{0,1\}$

Objects: natural numbers

Encoding: $\langle n \rangle = bin(n)$ (binary representation of n)

Satisfy conditions?

(1) Given string $s \in \{0,1\}^*$, decide if s encodes some number?

Easy: (i) $s \neq \varepsilon$, (ii) no leading 0

(2) If $s = \langle n \rangle$ can easily recover properties of n? Yes

97

Summer- I 2024 - W. Schnyder

Encodings

Example. Polynomials with integer coefficients and variables $x_0, x_1, x_2, ...$

$$p = 2x_1^3 x_4^5 - 3x_2 x_3^{10} + 4x_1^4 x_3^2 + 5x_2 - 38$$

= 2x_1^3x_4^5 - 3x_2x_3^{10} + 4x_1^4 x_3^2 + 5x_2 - 38

format: LaTeX

uses alphabet $+, -, _, ^{\land}, 0, 1, ..., 9, x, \{,\}$

Summer-1 2024 - W. Schnyd

Encodings

Example. Graphs

Encoding 1:

$$(\underbrace{1,2,3,4}_{\text{vertices}})$$
 $(\underbrace{(1,2),(2,3),(3,1),(1,4)}_{\text{edges}})$

Encoding 2:

0111 | 1010 | 1100 | 1000

mer-1 2024 - W. Schnyd

Encodings

Encoding of tuples.

tuple
$$(\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_k)$$
 encoding $\langle \mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_k \rangle$

For example

$$\langle \mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_k \rangle = \langle \langle \mathcal{O}_1 \rangle \# \langle \mathcal{O}_2 \rangle \# \dots \# \langle \mathcal{O}_k \rangle \rangle$$

where # is symbol not in the encoding alphabet of $\mathcal{O}_1, \mathcal{O}_2, ..., \mathcal{O}_k$

Requirement:

(3) Must be able to easily retrieve $\langle \mathcal{O}_1 \rangle$, $\langle \mathcal{O}_2 \rangle$, ..., $\langle \mathcal{O}_k \rangle$ from $\langle \mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_k \rangle$

Poll 19.2 (Graded on attendance)

> Given sequence of binary numbers 10, 0, 11, 1010 How to encode over $\Sigma = \{0,1\}$?

Encodings

- (a) 100111010 ← bad (can't retrieve the numbers)
- (b) 1100100010111111011001100 ← good fixed length encoding $0 \leftrightarrow 00$ 1 ↔ 11

101

, ↔ 10 (c) neither $\langle \langle \mathcal{O}_1 \rangle \# \langle \mathcal{O}_2 \rangle \# ... \# \langle \mathcal{O}_k \rangle \rangle$

Encodings

For set S of objects, define language $\langle S \rangle = \{ \langle \mathcal{O} \rangle \mid \mathcal{O} \in S \}$

Example. Even = $\{n \in \mathbb{N} \mid n \text{ is even}\}$

binary strings without leading 0's $\langle \text{Even} \rangle =$ that end with 0

Odd = $\{n \in \mathbb{N} \mid n \text{ is odd}\}$

binary strings without leading 0's that end with 1

 $\langle Odd \rangle = \overline{\langle Even \rangle}$? Question. $\langle \overline{\text{Even}} \rangle \neq \overline{\langle \text{Even} \rangle}$ Is

> No! $\langle \text{Even} \rangle$ includes ε , 000, 010, ...

Encodings

For set S of objects, define language $\langle S \rangle = \{ \langle \mathcal{O} \rangle \mid \mathcal{O} \in S \}$

Relationship between $\langle \overline{S} \rangle$ and $\overline{\langle S \rangle}$? $|\overline{\langle S \rangle} = \langle \overline{S} \rangle \cup \{\text{strings that are not encodings}\}$ Σ^*

 $\langle \overline{S} \rangle$

 $\langle \overline{S} \rangle$ decidable/recognizable

 $\Rightarrow \overline{\langle S \rangle}$ decidable/recognizable

 $\langle \overline{S} \rangle = \overline{\langle S \rangle} \cap \{\text{strings that are encodings}\}\$ thus

 $\overline{\langle S \rangle}$ decidable/recognizable $\Rightarrow \langle \overline{S} \rangle$ decidable/recognizable

That is,

strings that are

not encodings

of objects

 $\langle S \rangle$

 $\langle \overline{S} \rangle$ decidable/recognizable $\Leftrightarrow \overline{\langle S \rangle}$ decidable/recognizable 103

 $\langle S \rangle$

Dictionary for Informal People

Given set S of objects have defined $\langle S \rangle = \{ \langle \mathcal{O} \rangle \mid \mathcal{O} \in S \}$

informally say	exactly mean			
S is decidable	$\langle S \rangle$ is decidable			
S is recognizable	$\langle S \rangle$ is recognizable			

Then

- S decidable $\Leftrightarrow \langle S \rangle$ decidable
 - $\Leftrightarrow \langle S \rangle$ recognizable and $\overline{\langle S \rangle}$ recognizable
 - $\Leftrightarrow \langle S \rangle$ recognizable and $\langle \overline{S} \rangle$ recognizable
 - \Leftrightarrow S recognizable and \overline{S} recognizable

104

S....... 1 2024 VA/ Sales

Theory of Computation

Lesson 19b - Encoding Turing Machines

C....... 1 2024 W/ Cebeuden

Encoding of Turing Machines

Goal: Want to feed (encodings of) Turing machines as input to other Turing machines.

Extreme case: Want to feed < T > as input to T!

Real life example (N. Wirth): PASCAL compilers are PASCAL programs. A PASCAL compiler must be able to compile itself (very quickly).

106

Summer- I 2024 - W. Schnyd

Encoding of Turing Machines

Requirement: Turing machines with input alphabet Σ should be encoded in Σ .

Example. Encoding of $M = (Q, \Sigma, \Gamma, \delta, s, q_{accept}, q_{reject})$ where $\Sigma = \{0, 1\}$

(1) Assign a number to each symbol in Γ and state in Q $\Gamma = \{a_0, a_1, a_2, a_3, \dots\}$

whereby
$$a_0=0$$
 , $a_1=1$, $a_2=\sqcup$
$$Q \,=\, \{q_0,q_1,q_2,q_3,\dots\}$$

whereby $q_0 = s$, $q_1 = q_{accept}$, $q_2 = q_{reject}$

107

Summer-I 2024 - W. Sch

Encoding of Turing Machines

- (2) To specify M only need to know the quintuples
 - $\operatorname{code}(q_i, a_j, q_k, a_\ell, \operatorname{move}) = q \operatorname{bin}(i) a \operatorname{bin}(j) q \operatorname{bin}(k) a \operatorname{bin}(\ell) \operatorname{move}$

example: $code(q_3, a_5, q_2, a_7, R) = q_{11}a_{101}q_{10}a_{111}R$

• If quintuples are $\delta_1, \delta_2, ..., \delta_n$ then $code(M) = code(\delta_1) code(\delta_2) ... code(\delta_n)$

Yields encoding of M over the alphabet $\{q, a, L, R, S, 0, 1\}$

108

Summer-1 2024 - W. Schnyder

Encoding of Turing Machines

(3) Encode M over the alphabet $\Sigma = \{0,1\}$

Replace symbols q, a, L, R, S, 0, 1 with 3-bit strings

0	1	q	а	L	R	S	#
000	111	011	110	100	001	010	101

Notice that # is not used

109

Summer-1 2024 - W. Schnyder

Encoding of Turing Machines

Exercise. Let $\Sigma = \{0,1\}$. If Turing machines are encoded as described on the last three slides, what is the language accepted by the machine M with encoding below?

 $\langle M \rangle =$

011 000 110 000 011 000 110 111 010 011 000 110 111 011 111 111 110 000 100 011 010 110 111 000 011 111 000 110 111 010

Summer-I 2024 - W. Schnyde

CQ - Encoding of Turing Machines

Question. If $\Sigma = \{1\}$ (has only one symbol) how do we encode Turing machines from alphabet $\{q, a, L, R, S, 0, 1\}$ into Σ ?

Answer. Turing machine T is string over $\{q, a, L, R, S, 0, 1\}$. Encode as 1^n where n = shortlex number of T

Summer-I 2024 - W. Schnyder

Encoding Turing Machines

110

Theorem. There exists a universal Turing machine \mathcal{U} :

On input $\langle M, w \rangle$ where

(1) M is a Turing machine with input alphabet Σ and

(2) $w \in \Sigma^*$,

 \mathcal{U} simulates M started on w.

(\mathcal{U} accepts/rejects/loops if M accepts/rejects/loops.)

Theorem discovered before stored program machines were invented

Proof. Construct 3-tape machine T that on input $\langle M, w \rangle$ on tape 1,

- writes w on tape 2
- writes < M > on tape 3
- runs M (on input w) on tape 2.

 \mathcal{U} : one-tape machine simulating T.

Summer-1 2024 - W. Sc

Theory of Computation

Lesson 19c - Encoding Computations + application to Enumerable Languages

Summer-I 2024 - W. Schny

Encoding Computations

Computation history of T on input w is a sequence of configurations

 C_0, C_1, \ldots, C_n

such that

- 1. C_0 is the start configuration of T on input w
- 2. Each configuration C_i with i > 0 results from the previous configuration by application of a transition of T.

Computation history is accepting / rejecting if last configuration is in state $q_{\rm accept}$ / $q_{\rm reject}$.

114

Summer- I 2024 - W. Schnyde

Encoding Computations

Computation histories can be encoded

 $C_0, C_1, \dots, C_n \longrightarrow \langle C_0, C_1, \dots, C_n \rangle$

- As before, can encode a computation first in $\{0, 1, q, a, L, R, S, \#\}$ then in $\{0,1\}$.
- Given machine M and string s, it is easy to check whether s encodes a computation history of M.

115

Summer- I 2024 - W. Schnyder

Encodings

Poll 19.3

In lecture 18 we proved

L is recognizable $\Leftrightarrow L$ has an enumerator

Which direction was more difficult, i.e. needed clocks?

- (a) ⇒ ← needed clocks
- (b) **←**

116

Summer-1 2024 - W. Schnyd

Enumerators

Theorem 4 (revisited).

Language L is recognizable \Leftrightarrow there exists an enumerator for L.

Proof of \Rightarrow : Suppose L is recognized by machine M.

Let $s_0, s_1, s_2, ...$ be the strings of Σ^* in shortlex order

Enumerators by Computation Encoding

Theorem (revisited). Let $L \subseteq \Sigma^*$. Then L recognizable $\Leftrightarrow L$ has an enumerator.

Proof (more formal).

- ←: As before. Suppose that L has an enumerator. Recognizer takes input w on tape 1, then runs enumerator on tapes 2, 3.
 Each word printed is compared with w. If match, accept w.
- ⇒: Suppose that *L* is recognized by machine *M* and let $s_0, s_1, s_2, ...$ be the words of Σ^* in shortlex order.

• for i = 0, 1, 2, ... do

if s_i is the encoding of an accepting computation of M then print the input of the computation.

1 118

Summer- I 2024 - W. Schny

Theory of Computation

Lesson 19d - Acceptance Problems

119

Summer- I 2024 - W. Schny

The Acceptance Problem

Assume fixed $\Sigma = \{0,1\}$ throughout this discussion.

Acceptance Problem:

DFA, NFA, REX, CFG, PDA, TM

Given:

- ullet Computation Model C with alphabet Σ
- String $w \in \Sigma^*$

Decide: whether $w \in L(C)$

How is (C, w) "given" to computer or TM?

 $^{\Box}$ As encoded pair $\langle C, w \rangle$

120

Summer-1 2024 - W. Schnyder

Acceptance Problem for DFAs

Problem reformulated as language:

Definition. Acceptance Problem for DFAs.

 $A_{DFA} = \{ \langle M, w \rangle \mid M \text{ is a DFA and } M \text{ accepts } w \}$

more formally:

 $A_{DFA} = \{ \langle M, w \rangle \mid M \text{ is a DFA with input alphabet } \Sigma, \\ w \in \Sigma^*, \text{ and } M \text{ accepts } w \}$

121

Summer-1 2024 - W. Schnyde

Acceptance Problem for DFAs

Acceptance Problem for DFAs.

 $A_{DFA} = \{ \langle M, w \rangle \mid M \text{ is a DFA and } M \text{ accepts } w \}$

Theorem 1. A_{DFA} is decidable

Proof: Give algorithm (Turing machine) to decide $u \in A_{DFA}$:

On input string $u \in \Sigma^*$

- 1. Reject if u is not encoding of the form $\langle M, w \rangle$ with M a DFA
- 2. Otherwise simulate M on input w
 - i) accept u if M accepts w
 - ii) reject u if M doesn't accept w.

Summer- I 2024 - W. Schnyde

Acceptance Problem for NFAs

Definition. Acceptance Problem for NFAs.

 $A_{NFA} = \{ \langle M, w \rangle \mid M \text{ is a NFA and } M \text{ accepts } w \}$

Theorem 2. A_{NFA} is decidable

Proof: Give algorithm to decide $u \in A_{NFA}$:

On input string $u \in \Sigma^*$

- 1. Reject if u is not encoding of the form $\langle M, w \rangle$
- 2. Otherwise convert M to DFA \hat{M}
 - accept u if \hat{M} accepts w
 - reject u if \hat{M} doesn't accept w.

Summer- I 2024 - W. Schnyde

Acceptance Problem for NFAs

Definition. Acceptance Problem for NFAs.

 $A_{NFA} = \{\langle M, w \rangle \mid M \text{ is a NFA and } M \text{ accepts } w\}$

Theorem 2. A_{NFA} is decidable

Proof by reduction: Give algorithm to decide $u \in A_{NFA}$:

On input string $u \in \Sigma^*$

- 1. Reject if u is not encoding of the form $\langle M, w \rangle$
- 2. Otherwise convert M to DFA \hat{M}

Give $\langle \hat{M}, w \rangle$ as input to Turing machine T of Theorem 1.

- accept u if T accepts $\langle \hat{M}, w \rangle$
- reject u if T rejects $\langle \hat{M}, w \rangle$.

124

Summer-1 2024 - W. Schnyde