P425/1 PURE MATHEMATICS Paper 1 31 July 2024 3 hours

ENTEBBE JOINT EXAMINATION BUREAU

Uganda Advanced Certificate of Education

MATHEMATICS

Paper 1

3 hours

INSTRUCTIONS TO CANDIDATES:

Attempt ALL the eight questions in Section A and any five from Section B.

Begin every answer on a fresh page.

Any additional questions answered will not be marked.

Mathematical tables and squared paper shall be provided

Silent, non – programmable calculators may be used.

State the degree of accuracy at the end of each answer attempted using a calculator or table and indicate cal for calculator or tab for mathematical table.

SECTION A: 40 MARKS

Attempt all questions in this Section.

- If α and β are roots of the equation $x^2 x 2 = 0$. If α and β are roots of the equation $\alpha = \alpha - 2$. Find a quadratic equation whose roots are $\beta = \frac{1}{\alpha^2}$ and $\alpha = \frac{1}{\beta^2}$ (05 marks) 1.
- A, B and C are angles of a triangle $Cos A = \frac{3}{5} Cos B = \frac{5}{13}$ 2. Without using tables or a calculator, show that $Cos\ C = \frac{33}{65}$ (05 marks)
- Use Maclaurin's theorem to expand $ln\sqrt{1-2x}$ up to the term in x^3 . 3. (05 marks)
- Solve for *x*: $e^{x} = 1 + 6e^{-x}$ (05 marks) 4.
- Find the perpendicular distance from the point P (1, -1, 4) to the 5. (05 marks)
- line $r = i + 2j + \lambda (2i + j + 2k)$ Evaluate $\int_{0}^{\pi/2} x \sin^{2} 3x \, dx$ (05 marks) 6.
- A line with a variable gradient is passing through the point A (2, 3) and cuts 7. the y – axis and x – axis at P and Q respectively. Find the locus of midpoint (05 marks) of PQ.
- Find the volume of the solid generated when the region bounded by the 8. curve $y = \sin 2x$ and the x – axis from x = 0 to $x = \frac{\pi}{2}$ is rotated about the (05 marks) x - axis.

SECTION B

- Show that z = -1 + i is a root of the equation $z^4 2z^3 z^2 + 2z + 10 = 0$. 9. (a) (06 marks) Find the remaining roots.
 - If $z_1 = 4 \left[\cos \frac{13}{24} \pi + i \sin \frac{13}{24} \pi \right]$ and $z_2 = 2 \left[\cos \frac{5}{24} \pi + i \sin \frac{5}{24} \pi \right]$ Find $z_1 z_2$ and $\frac{z_1}{z_2}$ in the form a + ib

(06 marks)

10. By substituting $u = e^x$, show that

$$\int_{0}^{\ln_4} \frac{e^{2x}}{e^{2x} + 3e^x + 2} dx = \ln\left(\frac{8}{5}\right)$$
 (12 marks)

- 11. (a) Express $\sqrt{6} \cos \theta + \sqrt{10} \sin \theta$ in the form $R \cos (\theta \alpha)$ where R > 0 and $0 < \alpha < 90^{\circ}$. Hence solve the equation $\sqrt{6} \cos \theta + \sqrt{10} \sin \theta = 3$ for $0 < \theta < 180^{\circ}$. (06 marks)
 - (b) If $t = tan \frac{\theta}{2}$; state expressions for $sec \theta$ and $tan \theta$ in terms of t. Hence show that: $sec \theta + tan \theta = tan \left(45^0 + \frac{\theta}{2}\right)$ (06 marks)
- 12. The line L₁ passes through the points A(8, -1, 3) and B(4, 0, 3) and line L₂ has vector equation $\mathbf{r} = -2\mathbf{i} + 8\mathbf{j} \mathbf{k} + \mu (\mathbf{i} + 3\mathbf{j} + a\mathbf{k})$ and plane M has equation 4x 2y z + 5 = 0.
 - (a) Find in Cartesian form the equation of the line L_1 . (05 marks)
 - (b) Find the point of intersection of line L_1 and the plane M. (04 marks)
 - (c) Given that line L_2 and plane M are parallel, find the value of a.

 (03 marks)
- 13. Show that the curve $y = \frac{12x}{x^2 + 2x + 4}$ entirely lies in the range $-6 \le y \le 2$. Hence, find the turning points and their nature. Sketch the curve.

 (12 marks)
- 14. (a) Solve the simultaneous equations 7x + 2y 3z = 8 and $\frac{3x y}{3} = \frac{4x z}{4} = 3y 2z$ (06 marks)
 - (b) Find the ranges of values of k for which the equation $2x^2 + 3x = kx k 3$ has two distinct roots. (06 marks)
- 15. (a) ABCD is a square inscribed in a circle $x^2 + y^2 6x 4y 12 = 0$. Find the area of the square. (05 marks)
 - (b) Show that the curve $16x^2 + 9y^2 64x 54y + 1 = 0$ represents an ellipse. Find the foci and equations of directrices. (07 marks)

- 16. (a) Solve $(x^2 + 4) \frac{dy}{dx} = 6xy$ given that y(0) = 32. (04 marks)
 - (b) Mr. Lubega starts to sip a bottle of soda of 1000 cm³ at a rate of 10 cm³ per minute. Given that the rate of consumption is inversely proportional to that of the volume of soda remaining at anytime. *t*. Find the time he takes to empty the bottle.

(08 marks)