

BLANK PAGE

Indian Standard

SPECIFICATION FOR PISTON RINGS FOR IC ENGINES

PART II TAPER FACED COMPRESSION RINGS FROM 30 UP TO 200 mm NOMINAL DIAMETER

M-RINGS

- 1. Scope Specifies dimensions, tolerances, tangential loads and other details of M-rings (taper faced compression rings) from 30 up to 200 mm nominal diameter for internal combustion engines.
- 2. Dimensions and Tolerances Shall be as given in the Table 1 read along with Fig. 1

FIG. 1 TAPER FACED COMPRESSION RING (M-RING)

- 3. Designation Shall include:
 - a) Type of ring,
 - b) Nominal diameter d_1 ,
 - c) Axial width h_1 ,
 - d) Number of this standard,
 - e) Material symbol,
 - f) Manufacturing process,
 - g) Whether inside edges chamfered KI, and
 - h) Type of coating.

Example:

A taper faced compression ring (M-ring) having a nominal diameter d_1 =90 mm, axial width h_1 =2.5 mm, made of alloyed cast iron (A4), with inside edges chamfered (KI) and phosphate coated (P) shall be designated as:

M-Ring 90×2.5 IS: 8422 (Part II) A4 KI P

Adopted 14 April 1977

© October 1977, ISI

Gr 4

(Clause 2, and Fig. 1)

(All dimensions in millimetres)

Nominal Inside Diameter Diameter	Radial Wall Thickness		Axial Width of Ring h ₁ -0.010 -0.022			Closed Gap	Chamfering of Inside	Tangential Force F_1^* , in N±20%, for h_1 Shown in column			
d_1	d ₂	a 1	1 2 3			s ₁	Edges Ki	1	2	3	
30 32 34	27·5 29·3 31·1	1 ·25 1 ·35 1 ·45							3·9 4·4 4·8	5·2 5·8 6·4	6·5 7·3 8·0
35 36 38 (38·455)	32·1 33 34·8 35·255	1·45 1·5 1·6	+0·10 -0·15 with a maximum				+0·20 0·15 0		4·5 4·7 5·1	6·0 6·3 6·8 6·8	7·5 7·8 8·6
40 42 44	36·6 38·5 40·3	1·7 1·75 1·85	variation of 0·10 in a ring						5·6 5·5 5·9	7·4 7·3 7·9	9·3 9·2 9·9
45 46 48	41·2 42·1 44	1·9 1·95 2		1.5	2	2.5		0·2±0·1	6·1 6·3 6·3	8·2 8·5 8·4	10·2 10·6 10·5
50 52 53 54	45·8 47·6 48·5 49·4	2·1 2·2 2·25 2·3		1.0	2	2.5	0.20 + 0.20		6·7 7·1 7·3 7·6	8·9 9·5 9·8 10·1	11·2 11·9 12·2 12·6
55 (55·07) 56 (57·0) 58	50·4 50·47 51·3 52·1 53·1	2·3 2·3 2·35 2·45 2·45	+0·10 -0·20 with a maximum variation of 0·15 in a ring						7·3 7·5 — 7·9	9·7 9·66 10·0 9·5 10·6	12·1 12·5 13·2
60 (60·33) (61·5) 62 63 64	54·9 55·93 56·3 56·3 57·7 58·6	2·55 2·55 2·6 2·6 2·65 2·7	u mg				+0·20 0·25 0		8·3 — 8·3 8·5 8·7	11.1 10.88 10.7 11.0 11.3	13·9 — 13·8 14·1 14·5

65 66 (66·68) 67	59·5 60·4 61·08 61·4	2·75 2·8 2·8 2·8							8·9 9·1 — 8·8	11.9 12.2 11.8 11.8	14·9 15·2 — 14·7
68 (69·88) 70 (70·04) 72 (73·02) 74	62 3 63 98 64 1 64 14 65 9 66 82 67 8	2·85 2·95 2·95 2·95 3·05 3·1 3·1	+0·10 −0·20 with a maximum variation of 0·15 in a ring				0·25 0	0·2±0·1	9·1 9·5 9·9 9·8	12·1 11·6 12·6 12·58 13·2 12·66	15·1 15·8 16·5 16·4
75 76 (77-0) 78	68·7 69·6 70·4 71·4	3·15 3·2 3·3 3·3		1.5	1.5 2	2.5			10·1 10·3 10·7	13·4 13·7 13·2 14·3	16·8 17·1 — 17·8
(79·38) 80 82 (82·55) 84	72 68 73 3 75 1 75 65 76 9	3.95 3.35 3.45 3.45 3.55	+0·10 -0·25 with a maximum variation of 0·18 in a ring				0.30 +0.20		10·6 11·1 11·5	13·56 14·2 14·7 14·3 15·3	17·7 18·4 19·1
85 86 (87·31) 88 (88·9) (88·92)	77·8 78·88 79·91 80·6 81·5 81·52	3·6 3·6 3·7 3·7 3·7 3·7						0·3±0·15	11.7 11.4 11.8	15·6 15·2 14·55 15·3 15·3	19·5 19·0 — 19·7 —

Note 1 — Dimensions within the parenthesis are not valid for new designs.

Note 2 — For intermediate sizes and oversizes for reboring, the dimensions and characteristics (other than d_2) of the next smaller nominal diameter apply.

Note 3 — Tangential force F_t values in columns 1, 2 and 3 correspond to the values of axial width h_i shown in columns 1, 2 and 3.

*Tangential load values are specified for material A, only [see IS: 5791-1977 Technical supply conditions for piston rings for internal combustion engines (first revision)]. For other materials, load factors given in IS: 5791-1977 shall be used.

(Continued)

TABLE 1 DIMENSIONS AND TANGENTIAL LOADS FOR M-RINGS — Contd
(All dimensions in millimetres)

Nominal Inside Diameter d ₁ d ₂	Radial Wall Thickness		Axial Width of Ring h1 — 0.010			Closed Gap	Chamfering of Inside Edges	Tangential Force F _t *, in N±20%, fo h ₁ Shown in Column			
	8,	Tol	-0.022			s ₁	KI	1	2	3	
				1	2	3					
90 92 (92·08) 94	82 4 84 2 84 28 86 1	3.8 3.9 3.9 3.95							16·4 16·9 — 16·8	20·4 21·2 21·14 21	24·5 25·4 — 25·2
95 (95·25) 96 98 (98·42) (98·43)	87 87·25 87·9 89·7 90·12 90·13	4 4 4·05 4·15 4·15 4·5					+0-25		17·1 17·4 18	21 4 21 22 21 8 22 5 22 2 22 19	25·7 ————————————————————————————————————
100-00 (100-61) (101-69) 102 (103-17) (103-35) 104	91·6 92·21 93·09 93·4 94·57 94·75 95·4	4·2 4·2 4·3 4·3 4·3 4·3	+0·10 -0·25 with a maximum variation of 0·18 in a ring	2	2.5	3	0·40 0	0·3±0·15	17·9 — 18·4 — 17·6	22·3 21·88 21·82 23·0 22·19 22·07 22·0	26·8 — 27·6 — 26·4
105 106 (107-95) 108	96·1 97 98·95 99	4:45 4:5 4:5 4:5							19·2 19·5 18·7	24·0 24·3 23·26 23·3	28·8 29·2 28·0
110 (111·18) 112 114 (114·3)	100·8 101·78 102·6 104·6 104·9	4·6 4·7 4·7 4·7		2.5	3	3.5			23·9 24·6 23·6	28·7 27·8 29·5 28·4 28·07	33·5 34·4 33·1

115 116 118	105·4 106·4 108·2	4·8 4·8 4·9			3	3.5	+0·25 0·40	0·3±0·15	24·7 24·2 24·9	29·6 29·1 29·8	34·6 33·9 34·8
120 122 124	110 112 114	5 5 5					0		25·5 24·5 23·6	30·6 29·5 28·4	35·6 34·4 33·1
125 126 128	114·6 115·6 117·6	5·2 5·2 5·2		2.5					26·2 25·8 24·8	31·4 30·9 29·8	36·7 36·1 34·8
130 (130·17) 132 134	119·2 119·37 121·2 123·2	5·4 5·4 5·4 5·4	-				0·50 ⁺ 0·25 0·50	0·4±0·15	26·9 26 25·2	32·3 32·17 31·3 30·2	37·7 — 36·5 35·2
135 136 138	124 125 127	5·5 5·5 5·5	+0·10 -0·25 with a maximum variation of 0·18 in a ring						26·1 25·7 24·9	31·4 30·9 29·9	36·6 36 34·8
140 142 (142-87) 144	128·6 130·6 131·47 132·6	5·7 5·7 5·7 5·7			3.5	4			32·2 31·2 — 30·2	37·6 36·\$ 35·8 35·3	43 41·7 — 40·3
145 146 148	133·2 134·2 136·2	5.9 5.9 5.9							33·1 32·6 31·6	38·6 38·1 36·9	44·1 43·5 42·1
150 152 154	138 140 142	6 6 6		3					32·2 31·3 30·3	37·6 36·5 35·4	43 41·7 40·5
155 156 158	142·6 143·6 145·6	6·2 6·2 6·2					0·60 0		33·1 32·6 31·7	38·6 38·1 36·9	44·1 43·5 42·2
160 162 164	147·2 149·2 151·2	6·4 6·4 6·4							33·9 33 32	39·5 38·4 37·4	45·2 43·9 42·7

Note 1 — Dimensions within the parenthesis are not valid for new designs.

Note 2 — For intermediate sizes and oversizes for reboring, the dimensions and characteristics (other than d_2) of the next smaller nominal diameter apply.

Note 3 — Tangential force Ft values in columns 1, 2 and 3 correspond to the values of axial width h_1 shown in columns 1, 2 and 3.

^{*}Tangential load values are specified for material A₁ only [see IS : 5791-1977 Technical supply conditions for piston rings for internal combustion engines (first revision)]. For other materials, load factors given in IS: 5791-1977 shall be used.

TABLE 1 DIMENSIONS AND TANGENTIAL LOADS FOR M-RINGS — Contd (All dimensions in millimetres)

Nominal Inside Diameter	Inside Diameter				Axial Wide of Ring h ₁ -0.010		Closed Gap	Chamfering of Inside Edges	Tangential Force F_1^* , in N \pm 20%, for h_1 Shown in Column		
d ₁	d ₃	aı	Tol	h ₁ -0.010 -0.022			s ₁	KI	1	2	3
			_	1	2	3					
165 166 168	152 153 155	6·5 6·5 6·5	+0·10 0.25 with a	3	3.5	4	0.60 + 0.25	0·4±0·15	33 1 32 7 31 7	38·6 38·1 37	44·1 43·5 42·3
170 172 1 74	156·6 158·6 160·6	6·7 6·7 6·7	maximum variation of 0.18 in a ring				0		33·9 33 32·1	39·5 38·5 37·5	45·2 44 42·8
175 176 178	161·2 162·2 164·2	6·9 6·9 6·9							40·4 40 38·9	46·2 45·7 44·5	=
180 182 184	165·8 167·8 169·8	7·1 7·1 7·1		3.5	4.0		0·70 ^{+0·25} 0	0·6±0·2	41·3 40·3 39·3	47·2 46·1 44·9	
185 186 188	170·6 171·6 173·6	7·2 7·2 7·2	+0·15 -0·30 with a maximum variation of						40·4 40 39	46·2 45·7 44·5	
190 192 194	175·2 177·2 179·2	7·4 7·4 7·4	0.23 in a ring						41·3 40·3 39·4	47·2 46·1 45	
195 196 198 200	180 181 183 184-6	7·5 7·5 7·5 7·7							40·5 40 39·1 41·3	46·2 45·7 44·6 47·2	

Note 1 — Dimensions within the parenthesis are not valid for new designs.

Note 2 — For intermediate sizes and oversizes for reboring, the dimensions and characteristics (other than d₂) of the next smaller nominal diameter apply.

Note 3 — Tangential force Ft values in columns 1, 2 and 3 correspond to the values of axial width h_1 shown in columns 1, 2 and 3.

^{*}Tangential load values are specified for material A₁ only [see IS: 5791-1977 Technical supply conditions for piston rings for internal combustion engines (first revision)]. For other materials, load factors given in IS: 5791-1977 shall be used.

IS: 8422 (Part II) - 1977

- 4. General Requirements Shall be as given in IS: 5791-1977.
- 5. Marking The rings which are to be fitted in a particular direction shall be marked with the word 'TOP' on the top sides of the rings. For other markings reference should be made to IS: 5791-1977.
- 5.1 /S/ Certification Marking Details available with the Indian Standards Institution.

EXPLANATORY NOTE

This standard is one of the series of Indian Standards on piston ring dimensions, tangential force, etc. IS: 5791-1977 is a necessary adjunct to this standard which gives details of materials, surface finish, gap types and sizes, surface coatings, manufacturing processes, etc.

In the preparation of this standard due consideration has been given to the prevalent sizes in the industry. It is recommended that for new designs, only the sizes given in this standard be used. The sizes given within parenthesis are non-preferred and should be avoided.

In the preparation of this standard assistance has been derived from DIN 70911 'Piston rings for automotive engineering, M-rings, taper faced compression rings from 30 up to 200 mm nominal diameter', issued by Deutscher Institut für Normung (DIN).