ALGEBRA LINEARE E ANALISI NUMERICA

Aritmetica di macchina e stabilità numerica

Andrea Franceschetti – 4357070

RELAZIONE LABORATORIO 4 - MatLab

Esercizio 1

L'esercizio richiede di generare una matrice A ($m \times 3$), dove m viene calcolato dal numero di matricola $m = 10(d_0 + 1) + d_1$, quindi calcolare le decomposizioni in valori singolari di A e A^t e confrontare i risultati con la "Matrice Immagine" di A e A^t con U e la "Kernel" di A e A^t con V.

La matrice è definita nel modo seguente:

$$A = \begin{pmatrix} 1 & x_1 & x_1^2 \\ \vdots & \vdots & \vdots \\ 1 & x_m & x_m^2 \end{pmatrix}$$

Dove
$$x_i = \frac{i}{m}$$
 per $i = 1, ..., m$.

La decomposizione a valori singolari è una fattorizzazione della matrice designata, basata sull'uso degli autovettori e autovalori.

$$M=U\sum V^*$$

Dove:

- *U* è la matrice unitaria di dimensione m x m;
- ullet matrice diagonale di dimensione m x n, composta dai valori singolari di m;
- V^* è la trasposta di una matrice unitaria V di dimensione n x n.

Procediamo quindi nella risoluzione dell'esercizio, iniziando dalla creazione della matrice e calcolando di conseguenza le decomposizioni a valori singoli grazie alla funzione **svd** di Matlab.

Otteniamo che per A e A^t i valori singolari sono: [4.9934, 1.4559, 0.2053].

Calcoliamo ora gli autovalori di A^tA e AA^t e otteniamo [0.0421, 2.1196, 24.9343], bisogna però fare una precisazione gli autovalori di AA^t , essi sono 17 di cui 14 sono *zeri*.

Confrontando quindi gli *SVD* di A e gli autovalori di A^tA e AA^t si nota che l'ordine degli indici è cambiato.

Utilizzando la funzione **orth** confrontiamo l'immagine di A rispetto ad A^t con la matrice degli SVD di A rispetto ad A^t .

Immagine di A

-0.1678	0.3702	-0.5068	-0.2637	-0.0717	0.1877
-0.1741	0.3457	-0.3312	-0.2753	-0.1307	0.1158
-0.1809	0.3181	-0.1781	-0.2874	-0.1928	0.0215
-0.1882	0.2873	-0.0475	-0.2999	-0.2581	-0.0953
-0.1960	0.2534	0.0606	-0.3130	-0.3265	-0.2346
-0.2042	0.2164	0.1462	-0.3265	-0.3980	-0.3964
-0.2129	0.1762	0.2094			
-0.2221	0.1329	0.2500	Immagine d	li A'	
-0.2318	0.0865	0.2682	-0.8088	0.5700	-0.1447
-0.2420	0.0369	0.2638	-0.4758	-0.4897	0.7306
-0.2526	-0.0158	0.2370	-0.3456	-0.6598	-0.6673

Utilizzando la funzione **null** confrontiamo il nucleo (*Kernel*) di A rispetto ad A^t con la matrice degli *SVD* di A rispetto ad A^t .

Otteniamo che il nucleo di A è una matrice nulla, mentre il nucleo di A^t è una matrice di 17 righe e 14 colonne.

Nota: gli output completi sono nella cartella /output

Esercizio 2

L'esercizio chiede di calcolare la matrice triangolare superiore B di ordine n crescente, i cui elementi sono:

$$b_{ij} = \begin{cases} 1 & se \ i = j \\ -1 & se \ i < j \\ 0 & se \ i > j \end{cases}$$

Generata la matrice, si devono calcolare i suoi valori singolari, studiare l'andamento rispetto a n del SVD massimo e minimo e del condizionamento in norma 2. Successivamente si dovrà perturbare l'elemento $b_{n,1}$ della quantità -2^{2-n} e calcolare i nuovi autovalori.

Per rispondere al problema, utilizzeremo una matrice che verrà ricreata ciclicamente e crescerà di volta in volta partendo da una dimensione n = 5, fino a giungere al valore di 25. Con questa crescita, potremo vedere il variare degli *SVD*, il variare del condizionamento e gli *SVD* e gli autovalori della matrice perturbata.

Si sono ottenuti i seguenti risultati:

- Matrice di taglia nxn con n=5

Valori singolari: [1, 1, 1, 1, 1]

Condizionamento in norma 2: 29.4275

Autovalori della matrice perturbata:

[-0.0000 + 0.0000i, 1.0600 + 0.7299i, 1.0600 - 0.7299i, 1.4400 + 0.1986i, 1.4400 - 0.1986i]

- Matrice di taglia nxn con n=10

Valori singolari [1, 1, 1, 1, 1, 1, 1, 1, 1]

Condizionamento in norma 2: 1.9185e+03

Autovalori della matrice perturbata:

[-0.0000 + 0.0000i, 0.5332 + 0.7087i, 0.5332 - 0.7087i,

1.0973 + 0.6065i, 1.0973 - 0.6065i, 1.3041 + 0.3623i,

1.3041 - 0.3623i, 1.3714 + 0.1664i, 1.3714 - 0.1664i

1.3878 + 0.0000i]

- Matrice di taglia nxn con n=15

Valori singolari: [1,1,1,1,1,1,1,1,1,1,1,1,1,1]

Condizionamento in norma 2: 9.5279e+04

Autovalori della matrice perturbata

[-0.0000 + 0.0000i, 0.3127 + 0.5928i, 0.3127 - 0.5928i,

0.8031 + 0.7011i, 0.8031 - 0.7011i, 1.1011 + 0.5700i,

1.1011 - 0.5700i, 1.2467 + 0.4125i, 1.2467 - 0.4125i 1.3176 + 0.2755i, 1.3176 - 0.2755i, 1.3522 + 0.1578i 1.3522 - 0.1578i, 1.3666 + 0.0514i, 1.3666 - 0.0514i]

.... Altri output nella cartella /output

Si può osservare come all'aumentare delle dimensioni della matrice, gli autovalori della matrice perturbata diventino sempre più piccoli e tendenti a 0. Infatti, si può notare che il primo valore è quasi nullo essendo pari 0.000 + 0.0000i.

Possiamo infine affermare di saper calcolare il rango della matrice b_{ij} dato che è pari al numero degli SVD non nulli: $rank(b_{ij}) = rank(\Sigma)$.

Esercizio 3

L'esercizio chiede di calcolare la matrice A del primo esercizio e porre:

$$y = \begin{pmatrix} \sin x_1 \\ \vdots \\ \sin x_m \end{pmatrix}$$

Si deve quindi determinare la soluzione ai minimi quadrati del sistema Ac = y utilizzando:

- La decomposizione in valori singolari;
- La decomposizione QR
- Le equazioni normali $A^tAc = A^ty$;
- Il comando MatLab: c = A/y.

Procediamo quindi costruendo la matrice A e il vettore y, applichiamo i metodi richiesti e troviamo i risultati:

Risoluzione di Ac = y con SVD	- Risoluzione di Ac = y con A'Ac =
0.0070	A'y
0.9567	0.0070
-0.1263	0.9567
-0.1203	-0.1263
- Risoluzione di Ac = y con QR	
- Risoluzione di Ac = y con QR 0.0070	- Risoluzione di Ac = y con c = A\y
0.0070	<pre>- Risoluzione di Ac = y con c = A\y 0.0070</pre>
,	

Si può osservare che i metodi usati per il calcolo dei minimi quadrati portino tutti a risultati equivalenti.