Exercises 7: Random walks and quantum walks

Lecturer: Simon Apers (apers@irif.fr)

Exercise 1 (Reflecting around $|\pi\rangle$). We can use a quantum walk W to reflect around the quantum state $|\pi\rangle$, i.e., implement the map

$$|\psi\rangle = \alpha |\pi\rangle + \beta |\pi^{\perp}\rangle \longrightarrow (2|\pi\rangle \langle \pi| - I) |\psi\rangle = \alpha |\pi\rangle - \beta |\pi^{\perp}\rangle.$$

Assume that $|\psi\rangle = \alpha |\pi\rangle + \sum_j \beta_j |v_j\rangle$ such that $W|\pi\rangle = |\pi\rangle$ and $W|v_j\rangle = e^{i2\pi\theta_j} |v_j\rangle$ with $1/2 > |\theta_j| > \Delta > 0$. We call Δ the spectral gap of the quantum walk. Analyze the following circuit (where QPE represents quantum phase estimation on W to precision $\Delta/2$). How many calls does it make to the quantum walk operator?

Exercise 2 (Quantum walk search). We can implement Grover search using quantum walks by considering the initial state $|\pi\rangle$, a marked element $|\psi_m\rangle$ (for $m \in V$), and the Grover operator

$$(2|\pi\rangle\langle\pi|-I)(2|\psi_m\rangle\langle\psi_m|-I).$$

How many times do we have to apply the Grover operator on $|\pi\rangle$ to have a good overlap with $|\psi_M\rangle$? Argue that this yields a quantum walk algorithm for finding a marked element that makes $O\left(\frac{1}{\Delta\sqrt{\pi(M)}}\right)$ calls to a quantum walk.¹

Exercise 3. In this exercise we will prove that

$$MT(\epsilon) \le \frac{1}{\delta} \left(\frac{1}{2} \log(n) + \log\left(\frac{1}{\epsilon}\right) \right),$$

or equivalently

$$||P^t p_0 - \pi||_1 \le \epsilon$$

for any initial distribution p_0 if $t \ge \frac{1}{\delta} \left(\frac{1}{2} \log(n) + \log\left(\frac{1}{\epsilon}\right) \right)$.

• We first bound the 2-norm distance. Consider the spectral decomposition

$$P = \sum_{j \ge 1} \lambda_j v_j v_j^T,$$

with $v_1 = \frac{1}{\sqrt{n}} \sum_x e_x$ the uniform eigenvalue-1 eigenvector of P, and v_j for $1 \le j \le n$ the remaining eigenvectors with corresponding eigenvalues $-1 + \delta < \lambda_j < 1 - \delta$. Show that

$$||P^t p_0 - \pi||_2 \le \epsilon$$

if
$$t \ge \frac{1}{\delta} \log \frac{1}{\epsilon}$$
.

¹Szegedy (FOCS'04) showed that $\Delta \in \Omega(\sqrt{\delta})$ so this becomes $O(1/\sqrt{\delta\pi(M)})$, quadratically improving over the upper bound $O(1/(\delta\pi(m)))$ on the classical hitting time of a random walk.

ullet From this bound we get a bound for the 1-norm distance. Use Cauchy-Schwarz² to show that

$$||P^t p_0 - \pi||_1 \le \sqrt{n} ||P^t p_0 - \pi||_2.$$

From this, deduce that

$$||P^t p_0 - \pi||_1 \le \epsilon$$

if
$$t \ge \frac{1}{\delta} \left(\frac{1}{2} \log(n) + \log\left(\frac{1}{\epsilon}\right) \right)$$
.

Conversely, one can (but we won't) prove that $MT(\epsilon) \in \Omega\left(\frac{1}{\delta}\log\left(\frac{1}{\epsilon}\right)\right)$, so that this bound is tight up to the $\log(n)$ -factor.

Exercise 4 (Extra). Here we prove that the hitting time

$$\operatorname{HT}(M) \in \widetilde{O}\left(\frac{1}{\delta} \frac{1}{\pi(M)}\right).$$

- Prove that $||p \pi||_1 \le \epsilon$ implies that $p(M) \ge \pi(M) \epsilon$.
- Let $\epsilon_M = \pi(M)/2$. Argue that after $MT(\epsilon_M) \in \widetilde{O}(1/\delta)$ steps the probability of hitting an element in M is at least $\pi(M)/2$.
- Use this to prove the bound on the expected hitting time.

²For any $v, w \in \mathbb{R}^n$ it holds that $\langle v, w \rangle \leq ||v||_2 ||w||_2$.