ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Журнал практики

Студент	Тихонова Мария Алексеевна	(ф.и.о.)			
Институт	№4 Радиоэлектроника, инфокоммуникации и информационная безопасность				
Кафедра	402 «Радиосистемы и комплексы управления, передачи информации и информационная безопасность»				
Учебная г	руппа _М4О-503С-20				
Направлен	ние подготовки (специальность)				
	Радиоэлектронные системы и	и комплексы			
	(название направления, спец	иальности)			
Вид практ	ики научно-исследовательская (учебной, производственной, преддипломной	или другой вид практики)			
Руководит	тель практики от МАИ				
Под	корытов А.Н.				
(фамилия	п, имя, отчество) (подпись)				
	/	20 г Dama)			
	(noonaco eniyocima)	wiiwij			

1. Место и сроки проведения практики
Сроки проведения практики:
-дата начала практики 29.06.2025г
-дата окончания практики <u>26.07.2025</u> г
Наименование предприятия <u>Институт №4 Радиоэлектроника, инфокоммуникации и</u> информационная безопасность, МАИ
Название структурного подразделения (отдел, лаборатория) Кафедра 402 «Радиосистемы и комплексы управления, передачи информации и информационная безопасность»
2. Инструктаж по технике безопасности / Подкорытов А.Н. / (подпись проводившего) " 2024 г. (дата проведения)
3. Индивидуальное задание студенту

Разработка PLC-модема: выбор вида модуляции для эффективной передачи сигнала.

4.	План	выполнения	индивидуаль	ного задания

- 1. Анализ существующих зарубежных стандартов для узкополосных PLC и используемых в них видов модуляции;
- 2. Сборка макета узкополосного PLC-модема на основе структурной схемы СКБ-4 «Сигнал» МАИ;
- 3. Проведение ряда экспериментов по передаче сигнала с разным видом модуляции по сетям электропитания;
- 4. Анализ результатов эксперимента и формирование рекомендаций по улучшению работы PLC-модема.

Руководитель практики от МАИ:			/ Подкорытов А.Н. /			<u>I.</u> /
/	ва М.А.	/	• •	,,		2025 г.
(подпись с	тудента)			(0)	ama)	

5. Отзыв руководителя пра	актики	
Студент заслуживает за пра	актику оценки «».	
Руководитель практики:	<u>Подкорытов А.Н.</u> /	/
	(фамилия, имя, отчество) (подпись)	
«»20 г		

6. Отчет студента о практике

1. Основные цели научно-исследовательской практики

Целью производственной (научно-исследовательской) практики было получение экспериментально-обоснованной рекомендации к применению наиболее эффективного вида модуляции в узкополосных PLC-системах, который позволит повысить помехоустойчивость и качество связи при передаче данных по сетям электропитания.

2. Основные задачи научно-исследовательской практики

- 1) Провести анализ зарубежных стандартов узкополосной PLC-связи и выявить используемые в них виды модуляции;
- 2) Собрать макет узкополосного PLC-модема на базе структурной схемы СКБ-4 «Сигнал» МАИ;
- 3) Выполнить серию экспериментальных исследований по передаче сигнала через силовые сети с применением различных видов модуляции, оценив влияние различных видов искажений;
- 4) Проанализировать полученные экспериментальные данные;
- 5) Разработать рекомендации по выбору оптимального вида модуляции для повышения эффективности передачи сигнала в PLC-системах.

3. Результаты изучения научно-исследовательской практики

3.1 Введение

В современных условиях производственные процессы активно автоматизируются с использованием большого количества станков и оборудования. Для обеспечения безопасности и поддержания высокого качества работы требуется постоянный контроль их состояния, то есть необходима передача телеметрической информации оператору производства.

Передача таких данных может осуществляться различными способами в зависимости от особенностей конкретного производства. Наиболее распространённые решения — это беспроводные локальные сети (WLAN), проводные локальные сети (Ethernet) и другие проводные стандарты связи.

Беспроводные сети представляют собой наиболее простое решение, поскольку не требуют прокладки новых коммуникаций на предприятии. Однако такой способ имеет серьёзный недостаток — безопасность. Существует риск хакерских атак или преднамеренных помех, создаваемых с целью вывести из строя систему. При этом если от хакерской атаки можно обезопасить систему с помощью надёжного шифрования доступа в сеть, то для организации диверсии достаточно разрушить связь по WLAN с помощью постановщика помех. Соответственно, надёжность беспроводной связи изначально невысока.

Проводные решения лишены указанного недостатка, так как представляют собой изолированную внутреннюю сеть предприятия без доступа к внешним ресурсам. Физическая защита линии также выше, так как подключение возможно только при непосредственном доступе к кабелям. Однако реализация такой системы сопряжена с трудностями: большое количество соединений требует продуманной организации и регулярного обслуживания. Особенно сложно внедрение проводной телеметрии на уже функционирующих или старых предприятиях, где требуется серьёзная модернизация инфраструктуры.

В связи с вышесказанным, применение технологии PLC (Power Line Communication) является хорошей альтернативой, так как предполагает передачу

телеметрической информации непосредственно по сетям электропитания одновременно с основной гармоникой сети. Такой подход может обеспечить высокий уровень безопасности и не требует дополнительной инфраструктуры, что делает его легко применимым в текущих условиях на предприятиях.

3.2 Теоретический обзор

Существует множество стандартов для узкополосных PLC, разработанных крупными зарубежными организациями — CENELEC, FCC, ARIB, Homeplug Power Alliance, которые необходимы для реализации технологической совместимости и надежной связи в сетях электропитания. Основные параметры некоторых из них приведены в таблице 1.

Таблица 1 – Параметры стандартов для узкополосной PLC-связи

Стандарт	Рабочая частота	чая частота Ширина Вид модуляции		Скорость передачи	
Стандарт	1 400443 4401014	полосы	Вид модуляции	даных	
			OFDM (Orthogonal		
G3-PLC	36 – 90,6 кГц	± 55 кГц	Frequency Division	5,6 – 45 кбит/с	
			Multiplexing)		
			OFDM (Orthogonal		
PRIME	30 – 90 кГц	\pm 60 к Γ ц	Frequency Division	21 – 128 кбит/с	
			Multiplexing)		
			OFDM (Orthogonal		
IEEE P1901.2	10 – 490 кГц	до 100 кГц	Frequency Division	до 500 кбит/с	
			Multiplexing)		
IEC 61334	60 – 76 кГц	10 кГц и более	S-FSK (Spread – Frequency	1.2 2.9 2.622	
IEC 01554			Shift Keying)	1,2 – 2,8 кбит/с	

В ходе анализа наличия отечественных стандартов в области РLС-связи была выявлена единственная технология — PLC II, разработанная компанией ООО «Инкотекс-СК». Данная система обеспечивает передачу данных со скоростью до 1000 бит/с, реализуя связь посредством нескольких узкополосных каналов с временным разделением в пределах допустимого частотного диапазона 35 – 91 кГц. Повышенная помехоустойчивость технологии достигается за счёт снижения скорости передачи данных, что позволяет обеспечить более надёжную работу в условиях промышленных электросетей. Используемый вид модуляции в данной технологии найти в открытых источниках не удалось.

Для более корректной оценки эффективности видов модуляций, которые может реализовывать генератор в лаборатории, перед экспериментом был составлен список приоритетов. Оценка проводилось по следующим параметрам:

- Простота реализации насколько легко реализовать модуляцию в аппаратуре,
 + ставился тем видам, которые реализуются с минимальными вычислениями
 или простыми компонентами и не требует, например, сложной фильтрации;
- Эффективность использования спектра насколько "экономно" модуляция использует полосу частот по отношению к передаваемым битам, + стоит там, где передаётся много бит на малой полосе;
- Помехоустойчивость насколько хорошо модуляция способна передавать данные при наличии шумов или искажений.

Результаты оценки приведены в таблице 2. Более приоритетными оказались модуляции вида – PSK, FSK, QPSK, OSK и SUM.

Таблица 2 – Оценочный обзор видов модуляции

Вид модуляции	Простота реализации	Эффективность использования спектра	Помехоустойчивость
AM	+	-	-
DSBAM	-	-	-
FM	-	-	+
PM	-	-	+
ASK	+	-	-
PSK	-	+	+
FSK	+	-	+
3FSK	-	-	+
QPSK	-	+	+
OSK	-	+	+
SUM	-	+	+

3.3 Экспериментальная часть

На базе СКБ-4 МАИ был разработан и собран прототип PLC-модема, основанный на приёме и передаче радиоимпульсов в сеть электропитания на несущей частоте 60,15 кГц с шириной полосы приблизительно 10 кГц (рис. 1). Структурная схема измерительной установки приведена на рисунке 2.

Рисунок 1 – Макет PLC-модема (СКБ-4 МАИ)

Рисунок 2 – Структурная схема измерительной установки

Был проведён эксперимент, в ходе которого данные были переданы в розетку через модем и принимались на расстоянии 50 метров через гальваническую развязку на осциллографе. Эксперимент проводился в условиях лаборатории, где в сеть подключены паяльные станции, нагреватели, измерительные приборы, зарядные устройства, то есть приборы, активно эксплуатируемые на производстве.

3.4 Результаты и анализ

Вначале эксперимента мы записали шумовую обстановку (рис. 3), которая изначально есть в сети. Для наглядности на графиках выведены сразу спектры генерируемого сигнала и полученного в приёмной части (рис. 4-7).

Рисунок 3 — Шумовая обстановка в сети электропитания в лаборатории

Рисунок 4 — Спектр сигнала с АМ в приёмной и передающей точках

Рисунок 5 – Спектр сигнала с DSBAM в приёмной и передающей точках

Рисунок 6 – Спектр сигнала с 3FSK в приёмной и передающей точках

Параметром оценки эффективности модуляции был выбран коэффициент корреляции – степень схожести двух спектров, в нашем случае. Результаты были сведены в столбчатую диаграмму (рис. 7), где по оси абсцисс отложены параметры каждой используемой модуляции, красным отмечен коэффициент корреляции больше 0,95.

Рисунок 7 – Сравнение коэффициентов корреляции

Из диаграммы видно, что AM и ASK демонстрируют высокий коэффициент корреляции, недостаточная помехоустойчивость неэффективное однако использование спектра делают их неприемлемыми для практического применения. QPSK. Наилучшие показатели были получены при использовании в энергетическом отношении. Тем не менее, из-за отсутствия анализа фазовых искажений и влияния фазовых соотношений на достоверность передачи информации, окончательные выводы о применимости QPSK сделать затруднительно. В рамках проведённого эксперимента наилучшими кандидатами для использования признаны модуляции класса FSK, а также OSK и SUM.

3.5 Заключение

В результате проведённого теоретического и экспериментального анализа различных видов модуляции для узкополосной PLC-связи наилучшие характеристики по совокупности параметров (помехоустойчивость, спектральная эффективность, реализуемость) показали модуляции класса FSK, а также OSK и SUM. Именно эти варианты могут быть рекомендованы для дальнейшего внедрения в состав PLC-модемов, ориентированных на передачу телеметрической информации в условиях промышленной электросети.

4. Список источников

- Микросхемы узкополосных приёмопередатчиков РLС для промышленного и бытового применения / Троицкий Ю., Нестеров А. // Современная электроника (Москва) 2008. Т.84, №8 С. 16-21.
- 2. Зимин В. В. Промышленные сети: Учебное пособие. // Н.Новгород: НГТУ -2006. $-252~\rm c$.
- 3. Цицикян Г. Н. Электромагнитная совместимость в электроэнергетике: Учебное пособие // СПБ: Изд-во СЗТУ. 2006. 59 с.

Отзыв руководителя от СКБ-4 «Сигнал» - Егорова Василия Валерьевича:

Студент группы М4О-503С-20 Тихонова Мария Алексеевна выполняла летнюю практику в СКБ-4 "Сигнал" МАИ. В ходе практики студенту была поставлена задача исследовать канал передачи информации по стандартным сетям электропитания 0,4 кВ, обосновать оптимальный вид модуляции и провести эксперимент по передачи данных. В ходе выполнения практики студент продемонстрировала высокий уровень теоретической подготовки по теме работы, проявила заинтересованность и выполнила поставленную задачу в срок. Проделанная работа имеет практическую пользу и научную значимость, так как полученные результаты предполагается применить при дальнейшей разработке устройств. Студент заслуживает оценки "отлично".