G.2.1 Video-Lecture Catalog

To allow the content in the video lectures to be more easily located and navigated, a catalog of the video lectures is included below. This catalog contains a list of all slides covered in the lectures, where each slide in the list has a link to the corresponding time offset in the YouTube video where the slide is covered. By using this catalog, it is a trivial exercise to jump to the exact point in the video lectures where a specific slide/topic is covered (i.e., simply click on the appropriate hyperlink).

G.2.1.1 Introduction

The following is a link to the full video:

```
https://youtu.be/jApBXeFQTMk [duration: 00:23:12]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [intro] Unit: Introduction
- ♦ 00:18: [intro] Signals
- ♦ 01:41: [intro] Classification of Signals
- ♦ 06:01: [intro] Graphical Representation of Signals
- ♦ 07:09: [intro] Systems
- ♦ 07:44: [intro] Classification of Systems
- ♦ 09:19: [intro] Signal Processing Systems
- ♦ 11:50: [intro] Communication Systems
- ♦ 14:01: [intro] Control Systems
- ♦ 17:52: [intro] Why Study Signals and Systems?
- ♦ 20:03: [intro] System Failure Example: Tacoma Narrows Bridge
- ♦ 22:41: [intro] System Failure Example: Tacoma Narrows Bridge (Continued)

G.2.1.2 Complex Analysis

The following is a link to the full video:

```
♦ https://youtu.be/8_KKaTEUZB0 [duration: 00:45:42]
```

- ♦ 00:00: [complex] Unit: Complex Analysis
- ♦ 00:26: [complex] Complex Numbers
- ♦ 01:45: [complex] Complex Numbers (Continued)
- ♦ 03:07: [complex] Geometric Interpretation of Cartesian and Polar Forms
- ♦ 03:58: [complex] The arctan Function
- ♦ 07:14: [complex] The atan2 Function
- ♦ 08:32: [complex] Conversion Between Cartesian and Polar Form
- ♦ 09:46: [complex] Properties of Complex Numbers
- ♦ 11:02: [complex] Conjugation
- ♦ 12:08: [complex] Properties of Conjugation
- ♦ 13:37: [complex] Addition
- ♦ 14:38: [complex] Multiplication
- ♦ 15:44: [complex] Division
- ♦ 17:47: [complex] Properties of the Magnitude and Argument
- ♦ 18:56: [complex] Euler's Relation and De Moivre's Theorem
- ♦ 20:06: [complex] Roots of Complex Numbers
- ♦ 21:05: [complex] Quadratic Formula
- ♦ 22:04: [complex] Complex Functions
- ♦ 23:35: [complex] Continuity
- ♦ 25:11: [complex] Differentiability
- ♦ 26:40: [complex] Open Disks
- ♦ 27:53: [complex] Analyticity

```
29:51: [complex] Example A.10
30:27: [complex] Example A.11
31:25: [complex] Zeros and Singularities
35:20: [complex] Zeros and Poles of a Rational Function
39:00: [complex] Example A.12
```

G.2.1.3 Preliminaries — Introduction

The following is a link to the full video:

```
https://youtu.be/0950-nR1KqQ [duration: 00:00:26]
```

The following are links to particular offsets within the video:

♦ 00:00: [prelim] Unit: Preliminaries

G.2.1.4 Preliminaries — Functions, Sequences, System Operators, and Transforms

The following is a link to the full video:

```
https://youtu.be/LREmWSf5v3k [duration: 00:33:33]
```

The following are links to particular offsets within the video:

```
♦ 00:00: [prelim] Section: Functions, Sequences, System Operators, and Transforms
```

```
♦ 00:11: [prelim] Sets
```

```
♦ 01:07: [prelim] Notation for Intervals on the Real Line
```

```
♦ 03:41: [prelim] Mappings
```

```
♦ 06:19: [prelim] Functions
```

♦ 22:48: [prelim] Remarks on Operator Notation for CT Systems

- ♦ 30:08: [prelim] Example 2.7
- ♦ 31:38: [prelim] Transforms
- ♦ 32:49: [prelim] Examples of Transforms

G.2.1.5 Preliminaries — Signal Properties

The following is a link to the full video:

```
https://youtu.be/iWDh nhVEII [duration: 00:08:59]
```

The following are links to particular offsets within the video:

```
♦ 00:00: [prelim] Section: Properties of Signals
```

```
♦ 00:10: [prelim] Even Symmetry
```

- ♦ 01:53: [prelim] Odd Symmetry
- ♦ 03:59: [prelim] Conjugate Symmetry
- ♦ 05:04: [prelim] Periodicity
- ♦ 06:46: [prelim] Periodicity (Continued 1)
- ♦ 07:49: [prelim] Periodicity (Continued 2)

G.2.1.6 CT Signals and Systems — Introduction

The following is a link to the full video:

```
♦ https://youtu.be/9wJGqOaEbWg [duration: 00:00:23]
```

The following are links to particular offsets within the video:

♦ 00:00: [ctsigsys] Unit: Continuous-Time (CT) Signals and Systems

G.2.1.7 CT Signals and Systems — Independent/Dependent-Variable Transformations

The following is a link to the full video:

```
♦ https://youtu.be/dtfMWDJPqEs [duration: 00:38:00]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [ctsigsys] Section: Independent- and Dependent-Variable Transformations
- ♦ 00:18: [ctsigsys] Time Shifting (Translation)
- ♦ 01:24: [ctsigsys] Time Shifting (Translation): Example
- ♦ 03:17: [ctsigsys] Time Reversal (Reflection)
- ♦ 04:45: [ctsigsys] Time Compression/Expansion (Dilation)
- ♦ 06:02: [ctsigsys] Time Compression/Expansion (Dilation): Example
- ♦ 08:04: [ctsigsys] Time Scaling (Dilation/Reflection)
- ♦ 10:21: [ctsigsys] Time Scaling (Dilation/Reflection): Example
- ♦ 11:57: [ctsigsys] Combined Time Scaling and Time Shifting
- ♦ 19:36: [ctsigsys] Exercise 3.3
- ♦ 25:55: [ctsigsys] Combined Time Scaling and Time Shifting: Example
- ♦ 28:26: [ctsigsys] Two Perspectives on Independent-Variable Transformations
- ♦ 31:14: [ctsigsys] Demonstration: Two Views of Time-Shifting Transformations
- ♦ 33:26: [ctsigsys] Amplitude Scaling
- ♦ 35:19: [ctsigsys] Amplitude Shifting
- ♦ 36:11: [ctsigsys] Combined Amplitude Scaling and Amplitude Shifting

G.2.1.8 CT Signals and Systems — Function Properties

The following is a link to the full video:

```
https://youtu.be/PRD3WoWrxa4 [duration: 00:26:30]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [ctsigsys] Section: Properties of Functions
- ♦ 00:11: [ctsigsys] Symmetry and Addition/Multiplication
- ♦ 02:28: [ctsigsys] Decomposition of a Function into Even and Odd Parts
- ♦ 04:48: [ctsigsys] Theorem 3.1
- ♦ 08:17: [ctsigsys] Sum of Periodic Functions
- ♦ 11:50: [ctsigsys] Example 3.2
- ♦ 14:00: [ctsigsys] Example 3.4
- ♦ 17:17: [ctsigsys] Right-Sided Functions
- ♦ 19:49: [ctsigsys] Left-Sided Functions
- ♦ 21:54: [ctsigsys] Finite-Duration and Two-Sided Functions
- ♦ 23:32: [ctsigsys] Bounded Functions
- ♦ 25:14: [ctsigsys] Energy and Power of a Function

G.2.1.9 CT Signals and Systems — Elementary Functions

The following is a link to the full video:

```
https://youtu.be/qVurOxA8oYM [duration: 00:51:59]
```

- ♦ 00:00: [ctsigsys] Section: Elementary Functions
- ♦ 00:17: [ctsigsys] Real Sinusoidal Functions
- ♦ 00:49: [ctsigsys] Complex Exponential Functions
- ♦ 01:23: [ctsigsys] Real Exponential Functions
- ♦ 02:35: [ctsigsys] Complex Sinusoidal Functions
- ♦ 03:49: [ctsigsys] Complex Sinusoidal Functions (Continued)
- ♦ 04:15: [ctsigsys] Plots of Complex Sinusoidal Functions
- ♦ 05:14: [ctsigsys] General Complex Exponential Functions

```
♦ 07:00: [ctsigsys] General Complex Exponential Functions (Continued)
♦ 07:44: [ctsigsys] Unit-Step Function
♦ 09:08: [ctsigsys] Signum Function
♦ 09:50: [ctsigsys] Rectangular Function
♦ 10:59: [ctsigsys] Cardinal Sine Function
♦ 12:55: [ctsigsys] Unit-Impulse Function
♦ 17:25: [ctsigsys] Unit-Impulse Function as a Limit
♦ 19:55: [ctsigsys] Properties of the Unit-Impulse Function
♦ 22:17: [ctsigsys] Figure: Graphical Interpretation of Equivalence Property
♦ 24:23: [ctsigsys] Example 3.8
♦ 25:55: [ctsigsys] Example 3.9
♦ 36:30: [ctsigsys] Representing a Rectangular Pulse (Using Unit-Step Functions)

♦ 39:08: [ctsigsys] Example 3.11

♦ 43:06: [ctsigsys] Representing Functions Using Unit-Step Functions
♦ 44:21: [ctsigsys] Example 3.12
```

G.2.1.10 CT Signals and Systems — Systems

The following is a link to the full video:

```
https://youtu.be/InFEzaTvClo [duration: 00:05:40]
```

The following are links to particular offsets within the video:

```
♦ 00:00: [ctsigsys] Section: Continuous-Time (CT) Systems
```

- ♦ 00:13: [ctsigsys] CT Systems
- ♦ 02:36: [ctsigsys] Block Diagram Representations
- ♦ 02:57: [ctsigsys] Interconnection of Systems

G.2.1.11 CT Signals and Systems — System Properties

The following is a link to the full video:

```
https://youtu.be/C53uS3lkeJQ [duration: 01:14:19]
```

```
♦ 00:00: [ctsigsys] Section: Properties of (CT) Systems
```

- ♦ 00:11: [ctsigsys] Memory
- ♦ 02:45: [ctsigsys] Memory (Continued)
- ♦ 04:42: [ctsigsys] Example 3.15
- ♦ 06:09: [ctsigsys] Example 3.16
- ♦ 08:02: [ctsigsys] Causality
- ♦ 11:14: [ctsigsys] Causality (Continued)
- ♦ 12:58: [ctsigsys] Example 3.19
- ♦ 14:36: [ctsigsys] Example 3.20
- ♦ 16:28: [ctsigsys] Invertibility
- ♦ 20:53: [ctsigsys] Invertibility (Continued)
- ♦ 22:39: [ctsigsys] Example 3.23
- ♦ 27:28: [ctsigsys] Example 3.24
- ♦ 31:22: [ctsigsys] Bounded-Input Bounded-Output (BIBO) Stability
- ⋄ 37:46: [ctsigsys] Example 3.28
- ♦ 40:37: [ctsigsys] Time Invariance (TI)
- ♦ 43:30: [ctsigsys] Time Invariance (Continued)
- ♦ 44:59: [ctsigsys] Example 3.32
- ♦ 47:28: [ctsigsys] Example 3.33

51:27: [ctsigsys] Additivity, Homogeneity, and Linearity
56:03: [ctsigsys] Additivity, Homogeneity, and Linearity (Continued 1)
58:38: [ctsigsys] Additivity, Homogeneity, and Linearity (Continued 2)
01:00:21: [ctsigsys] Example 3.35
01:03:58: [ctsigsys] Example 3.36
01:08:59: [ctsigsys] Eigenfunctions of Systems
01:10:44: [ctsigsys] Example 3.41

G.2.1.12 CT LTI Systems — Introduction

The following is a link to the full video:

```
https://youtu.be/o012SX3Fzw8 [duration: 00:02:24]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [ctltisys] Unit: Continuous-Time Linear Time-Invariant (LTI) Systems
- ♦ 00:52: [ctltisys] Why Linear Time-Invariant (LTI) Systems?

G.2.1.13 CT LTI Systems — Convolution

The following is a link to the full video:

```
https://youtu.be/q2n613-gi_c [duration: 00:57:49]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [ctltisys] Section: Convolution
- ♦ 00:15: [ctltisys] CT Convolution
- ♦ 03:32: [ctltisys] Example X.4.1
- ♦ 10:46: [ctltisys] Practical Convolution Computation
- ♦ 14:25: [ctltisys] Example 4.1
- ♦ 46:21: [ctltisys] Properties of Convolution
- ♦ 49:03: [ctltisys] Theorem 4.1
- ♦ 56:06: [ctltisys] Representation of Functions Using Impulses

G.2.1.14 CT LTI Systems — Convolution and LTI Systems

The following is a link to the full video:

```
https://youtu.be/fnH51-gRigg[duration: 00:25:29]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [ctltisys] Section: Convolution and LTI Systems
- ♦ 00:19: [ctltisys] Impulse Response
- ♦ 03:03: [ctltisys] Theorem 4.5
- ♦ 07:14: [ctltisys] Example 4.5
- ♦ 10:52: [ctltisys] Step Response
- ♦ 12:52: [ctltisys] Block Diagram Representation of LTI Systems
- ♦ 13:31: [ctltisys] Interconnection of LTI Systems
- ♦ 16:31: [ctltisys] Example 4.7

G.2.1.15 CT LTI Systems — Properties of LTI Systems

The following is a link to the full video:

```
♦ https://youtu.be/cOhpZyxyDW8 [duration: 00:46:04]
```

- ♦ 00:00: [ctltisys] Section: Properties of LTI Systems
- ♦ 00:35: [ctltisys] Memory
- ♦ 04:03: [ctltisys] Example 4.8

```
06:21: [ctltisys] Example 4.9
07:14: [ctltisys] Causality
09:32: [ctltisys] Example 4.10
12:09: [ctltisys] Example 4.11
14:29: [ctltisys] Example 4.12
20:12: [ctltisys] BIBO Stability
21:56: [ctltisys] Example 4.14
27:32: [ctltisys] Example 4.15
32:22: [ctltisys] Eigenfunctions of LTI Systems
35:10: [ctltisys] Representations of Functions Using Eigenfunctions
38:07: [ctltisys] Example: Corollary of Theorem 4.12
41:29: [ctltisys] Example 4.16
```

G.2.1.16 Interlude

The following is a link to the full video:

```
https://youtu.be/5pliTVUox0I [duration: 00:04:54]
```

The following are links to particular offsets within the video:

♦ 00:00: Interlude

G.2.1.17 CT Fourier Series — Introduction

The following is a link to the full video:

```
♦ https://youtu.be/YxQ2Bi3Z4Iw [duration: 00:01:33]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [ctfs] Unit: Continuous-Time Fourier Series (CTFS)
- ♦ 00:31: [ctfs] Introduction

G.2.1.18 CT Fourier Series — Fourier Series

The following is a link to the full video:

```
https://youtu.be/u55IQ5kSGoM[duration: 00:19:23]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [ctfs] Section: Fourier Series
- ♦ 00:16: [ctfs] Harmonically-Related Complex Sinusoids
- ♦ 01:42: [ctfs] CT Fourier Series
- ♦ 03:51: [ctfs] CT Fourier Series (Continued)
- ♦ 06:37: [ctfs] Example 5.1
- ♦ 13:28: [ctfs] Example 5.3

G.2.1.19 CT Fourier Series — Convergence Properties of Fourier Series

The following is a link to the full video:

```
https://youtu.be/Vrf1Q93-JFM [duration: 00:28:16]
```

- ♦ 00:00: [ctfs] Section: Convergence Properties of Fourier Series
- ♦ 00:32: [ctfs] Remarks on Equality of Functions
- ♦ 06:06: [ctfs] Convergence of Fourier Series
- ♦ 08:48: [ctfs] Convergence of Fourier Series (Continued)
- ♦ 10:38: [ctfs] Convergence of Fourier Series: Continuous Case
- ♦ 11:40: [ctfs] Convergence of Fourier Series: Finite-Energy Case
- ♦ 12:55: [ctfs] Dirichlet Conditions

- ♦ 17:21: [ctfs] Convergence of Fourier Series: Dirichlet Case
- ♦ 18:50: [ctfs] Example 5.6
- ♦ 22:14: [ctfs] Gibbs Phenomenon
- ♦ 23:28: [ctfs] Gibbs Phenomenon: Periodic Square Wave Example
- ♦ 23:41: [ctfs] Gibbs Phenomenon: Periodic Square Wave Example [Annotated]

G.2.1.20 CT Fourier Series — Properties of Fourier Series

The following is a link to the full video:

♦ https://youtu.be/WRCjY pPAZE [duration: 00:10:15]

The following are links to particular offsets within the video:

- ♦ 00:00: [ctfs] Section: Properties of Fourier Series
- ♦ 00:14: [ctfs] Properties of (CT) Fourier Series
- ♦ 00:33: [ctfs] Linearity
- ♦ 01:25: [ctfs] Even and Odd Symmetry
- ♦ 02:07: [ctfs] Real Functions
- ♦ 04:36: [ctfs] Trigonometric Forms of a Fourier Series
- ♦ 08:07: [ctfs] Other Properties of Fourier Series
- ♦ 09:20: [ctfs] Zeroth Coefficient of Fourier Series

G.2.1.21 CT Fourier Series — Fourier Series and Frequency Spectra

The following is a link to the full video:

```
https://youtu.be/FDyi1EUAC9M [duration: 00:22:08]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [ctfs] Section: Fourier Series and Frequency Spectra
- ♦ 00:20: [ctfs] A New Perspective on Functions: The Frequency Domain
- ♦ 01:50: [ctfs] Motivating Example
- ♦ 04:53: [ctfs] Motivating Example (Continued)
- ♦ 07:01: [ctfs] Fourier Series and Frequency Spectra
- ♦ 10:10: [ctfs] Fourier Series and Frequency Spectra (Continued)
- ♦ 12:20: [ctfs] Example 5.7
- ♦ 20:20: [ctfs] Frequency Spectra of Real Functions

G.2.1.22 CT Fourier Series — Fourier Series and LTI Systems

The following is a link to the full video:

```
https://youtu.be/Vhwaw0NdCDM [duration: 00:25:47]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [ctfs] Section: Fourier Series and LTI Systems
- ♦ 00:22: [ctfs] Frequency Response
- ♦ 03:26: [ctfs] Fourier Series and LTI Systems
- ♦ 05:24: [ctfs] Example 5.9
- ♦ 09:27: [ctfs] Filtering
- ♦ 10:42: [ctfs] Ideal Lowpass Filter
- ♦ 12:05: [ctfs] Ideal Highpass Filter
- ♦ 13:26: [ctfs] Ideal Bandpass Filter
- ♦ 15:20: [ctfs] Example 5.10

G.2.1.23 CT Fourier Transform — Introduction

The following is a link to the full video:

https://youtu.be/uqnNXbisNgA [duration: 00:01:40]

The following are links to particular offsets within the video:

- ♦ 00:00: [ctft] Unit: CT Fourier Transform
- ♦ 00:38: [ctft] Motivation for the Fourier Transform

G.2.1.24 CT Fourier Transform — Fourier Transform

The following is a link to the full video:

```
https://youtu.be/3ghUBR8AHxg [duration: 00:12:45]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [ctft] Section: Fourier Transform
- ♦ 00:13: [ctft] Development of the Fourier Transform [Aperiodic Case]
- ♦ 01:44: [ctft] Development of the Fourier Transform [Aperiodic Case] (Continued)
- ♦ 03:58: [ctft] Generalized Fourier Transform
- ♦ 05:33: [ctft] CT Fourier Transform (CTFT)
- ♦ 07:12: [ctft] Example 6.1
- ♦ 09:43: [ctft] Example 6.3

G.2.1.25 CT Fourier Transform — Convergence Properties

The following is a link to the full video:

```
♦ https://youtu.be/hWc6Gkscx0A [duration: 00:13:45]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [ctft] Section: Convergence Properties of the Fourier Transform
- ♦ 00:32: [ctft] Convergence of the Fourier Transform
- ♦ 02:26: [ctft] Convergence of the Fourier Transform: Finite-Energy Case
- ♦ 04:14: [ctft] Dirichlet Conditions
- ♦ 08:45: [ctft] Convergence of the Fourier Transform: Dirichlet Case
- ♦ 10:45: [ctft] Example 6.6

G.2.1.26 CT Fourier Transform — Properties of the Fourier Transform

The following is a link to the full video:

```
https://youtu.be/laIz9zjetzc[duration: 01:22:02]
```

- ♦ 00:00: [ctft] Section: Properties of the Fourier Transform
- ♦ 00:19: [ctft] Properties of the (CT) Fourier Transform
- ♦ 00:36: [ctft] Properties of the (CT) Fourier Transform (Continued)
- ♦ 00:52: [ctft] (CT) Fourier Transform Pairs
- ♦ 02:08: [ctft] Linearity
- ♦ 03:09: [ctft] Example 6.7
- ♦ 05:33: [ctft] Time-Domain Shifting (Translation)
- ♦ 06:24: [ctft] Example 6.9
- ♦ 11:37: [ctft] Frequency-Domain Shifting (Modulation)
- ♦ 12:24: [ctft] Example 6.10
- ♦ 17:40: [ctft] Time- and Frequency-Domain Scaling (Dilation)
- ♦ 18:42: [ctft] Example 6.11
- ♦ 23:01: [ctft] Conjugation
- ♦ 23:53: [ctft] Example 6.12
- ♦ 24:56: [ctft] Duality
- ♦ 30:35: [ctft] Example 6.13
- ♦ 33:15: [ctft] Time-Domain Convolution
- ♦ 34:35: [ctft] Example 6.14
- ♦ 37:34: [ctft] Time-Domain Multiplication

39:58: [ctft] Example 6.15
45:09: [ctft] Time-Domain Differentiation
46:48: [ctft] Example 6.16
48:26: [ctft] Frequency-Domain Differentiation
49:15: [ctft] Example 6.17
51:20: [ctft] Time-Domain Integration
53:00: [ctft] Example 6.18
55:22: [ctft] Parseval's Relation
56:54: [ctft] Example 6.19
59:12: [ctft] Even/Odd Symmetry
59:53: [ctft] Real Functions
01:01:33: [ctft] More Fourier Transforms
01:01:47: [ctft] Example 6.26
01:07:21: [ctft] Exercise 6.5(g)
01:16:00: [ctft] Exercise 6.2(j)

G.2.1.27 CT Fourier Transform — Fourier Transform of Periodic Functions

The following is a link to the full video:

```
♦ https://youtu.be/oh1MA8axvtI [duration: 00:12:55]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [ctft] Section: Fourier Transform of Periodic Functions
- ♦ 00:25: [ctft] Fourier Transform of Periodic Functions
- ♦ 03:21: [ctft] Fourier Transform of Periodic Functions (Continued)
- ♦ 05:08: [ctft] Example 6.20
- ♦ 07:03: [ctft] Example 6.21
- ♦ 10:00: [ctft] Example 6.24

G.2.1.28 CT Fourier Transform — Fourier Transform and Frequency Spectra of Functions

The following is a link to the full video:

```
https://youtu.be/1JI9Qs3vbJA [duration: 00:19:03]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [ctft] Section: Fourier Transform and Frequency Spectra of Functions
- ♦ 00:21: [ctft] The Frequency-Domain Perspective on Functions
- ♦ 02:25: [ctft] Fourier Transform and Frequency Spectra
- ♦ 04:40: [ctft] Fourier Transform and Frequency Spectra (Continued 1)
- ♦ 05:55: [ctft] Fourier Transform and Frequency Spectra (Continued 2)
- ♦ 08:26: [ctft] Example 6.30
- ♦ 13:31: [ctft] Frequency Spectra of Real Functions
- ♦ 15:03: [ctft] Bandwidth

G.2.1.29 CT Fourier Transform — Fourier Transform and LTI Systems

The following is a link to the full video:

```
https://youtu.be/zf9uo2wk8pw [duration: 00:15:42]
```

- ♦ 00:00: [ctft] Section: Fourier Transform and LTI Systems
- ♦ 00:35: [ctft] Frequency Response of LTI Systems
- ♦ 02:35: [ctft] Frequency Response of LTI Systems (Continued 1)
- ♦ 04:08: [ctft] Frequency Response of LTI Systems (Continued 2)
- ♦ 04:53: [ctft] Block Diagram Representations of LTI Systems
- ♦ 05:49: [ctft] Interconnection of LTI Systems

```
07:37: [ctft] LTI Systems and Differential Equations
09:19: [ctft] Example 6.34
12:44: [ctft] Example 6.35
```

G.2.1.30 CT Fourier Transform — Application: Filtering

The following is a link to the full video:

```
https://youtu.be/tfEhqrCDeJ0 [duration: 00:06:26]
The following are links to particular offsets within the video:
```

```
♦ 00:00: [ctft] Section: Application: Filtering
```

♦ 00:19: [ctft] Filtering

♦ 01:31: [ctft] Ideal Lowpass Filter

♦ 01:33: [ctft] Ideal Highpass Filter

♦ 01:35: [ctft] Ideal Bandpass Filter

♦ 01:48: [ctft] Example 6.38

G.2.1.31 CT Fourier Transform — Application: Circuit Analysis

The following is a link to the full video:

```
https://youtu.be/LTs-04k90pQ [duration: 00:17:50]
```

The following are links to particular offsets within the video:

```
♦ 00:00: [ctft] Section: Application: Circuit Analysis
```

♦ 00:19: [ctft] Electronic Circuits

♦ 02:00: [ctft] Resistors

♦ 03:05: [ctft] Inductors

♦ 04:24: [ctft] Capacitors

♦ 05:52: [ctft] Circuit Analysis with the Fourier Transform

♦ 07:46: [ctft] Example 6.40

G.2.1.32 CT Fourier Transform — Application: Amplitude Modulation

The following is a link to the full video:

```
https://youtu.be/Ua_H10iZL-c [duration: 00:28:55]
```

The following are links to particular offsets within the video:

```
♦ 00:00: [ctft] Section: Application: Amplitude Modulation (AM)
```

♦ 00:46: [ctft] Motivation for Amplitude Modulation (AM)

♦ 04:16: [ctft] Trivial Amplitude Modulation (AM) System

♦ 09:21: [ctft] Trivial Amplitude Modulation (AM) System: Example

♦ 10:06: [ctft] Double-Sideband Suppressed-Carrier (DSB-SC) AM

♦ 12:58: [ctft] Example: Analysis of DSB-SC AM — Transmitter

♦ 16:14: [ctft] Example: Analysis of DSB-SC AM — Receiver

♦ 21:13: [ctft] Example: Analysis of DSB-SC AM — Complete System

♦ 24:19: [ctft] Example: Analysis of DSB-SC AM — Spectra

♦ 26:46: [ctft] Single-Sideband Suppressed-Carrier (SSB-SC) AM

♦ 27:48: [ctft] SSB-SC AM: Example

G.2.1.33 CT Fourier Transform — Application: Sampling and Interpolation

The following is a link to the full video:

```
♦ https://youtu.be/GkOrtV2BkZ8 [duration: 00:33:16]
```

- ♦ 00:00: [ctft] Section: Application: Sampling and Interpolation
- ♦ 00:31: [ctft] Sampling and Interpolation

02:19: [ctft] Periodic Sampling
03:35: [ctft] Invertibility of Sampling
06:49: [ctft] Model of Sampling: Various Signals
10:41: [ctft] Model of Sampling: Invertibility of Sampling Revisited
13:12: [ctft] Model of Sampling: Characterization
15:15: [ctft] Analysis of Sampling — Multiplication by a Periodic Impulse Train (Part 1)
16:37: [ctft] Analysis of Sampling — Fourier Series for a Periodic Impulse Train
18:59: [ctft] Analysis of Sampling — Multiplication by a Periodic Impulse Train (Part 2)
20:15: [ctft] Model of Sampling: Aliasing
22:34: [ctft] Model of Sampling: Aliasing (Continued)
26:38: [ctft] Model of Interpolation
28:43: [ctft] Sampling Theorem
30:33: [ctft] Example 6.41

G.2.1.34 Partial Fraction Expansions (PFEs)

The following is a link to the full video:

```
https://youtu.be/wgTXbvhSgnk [duration: 00:12:49]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [pfe] Unit: Partial Fraction Expansions (PFEs)
- ♦ 00:10: [pfe] Motivation for PFEs
- ♦ 00:55: [pfe] Strictly-Proper Rational Functions
- ♦ 01:53: [pfe] Partial Fraction Expansions (PFEs) [CT and DT Contexts]
- ♦ 03:28: [pfe] Simple-Pole Case [CT and DT Contexts]
- ♦ 04:39: [pfe] Example B.1
- ♦ 07:13: [pfe] Repeated-Pole Case [CT and DT Contexts]
- ♦ 09:24: [pfe] Example B.2

G.2.1.35 Laplace Transform — Introduction

The following is a link to the full video:

```
https://youtu.be/uVCVrZOIl9s [duration: 00:02:49]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [lt] Unit: Laplace Transform (LT)
- ♦ 00:32: [lt] Motivation Behind the Laplace Transform
- ♦ 01:35: [lt] Motivation Behind the Laplace Transform (Continued)

G.2.1.36 Laplace Transform — Laplace Transform

The following is a link to the full video:

```
♦ https://youtu.be/U0eBiWrAfDs [duration: 00:18:20]
```

- ♦ 00:00: [It] Section: Laplace Transform
- ♦ 00:15: [lt] (Bilateral) Laplace Transform
- ♦ 02:07: [lt] Bilateral and Unilateral Laplace Transforms
- ♦ 03:18: [lt] Relationship Between Laplace and Fourier Transforms
- ♦ 06:22: [lt] Derivation: LT FT Relationship (Special Case)
- ♦ 07:40: [It] Derivation: LT FT Relationship (General Case)
- ♦ 08:54: [lt] Laplace Transform Examples
- ♦ 09:08: [lt] Example 7.3
- ♦ 13:36: [lt] Example 7.4

G.2.1.37 Laplace Transform — Region of Convergence

```
The following is a link to the full video:
```

```
https://youtu.be/DoaZUx550Yw [duration: 00:23:29]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [lt] Section: Region of Convergence (ROC)
- ♦ 00:26: [lt] Left-Half Plane (LHP)
- ♦ 01:21: [lt] Right-Half Plane (RHP)
- ♦ 02:08: [lt] Intersection of Sets
- ♦ 02:49: [lt] Adding a Scalar to a Set
- ♦ 03:45: [lt] Multiplying a Set by a Scalar
- ♦ 05:22: [lt] Region of Convergence (ROC)
- ♦ 06:06: [lt] ROC Property 1: General Form
- ♦ 07:23: [lt] ROC Property 2: Rational Laplace Transforms
- ♦ 08:38: [lt] ROC Property 3: Finite-Duration Functions
- ♦ 09:38: [lt] ROC Property 4: Right-Sided Functions
- ♦ 10:56: [lt] ROC Property 5: Left-Sided Functions
- ♦ 12:13: [lt] ROC Property 6: Two-Sided Functions
- ♦ 13:17: [lt] ROC Property 7: More on Rational Laplace Transforms
- ♦ 15:20: [lt] General Form of the ROC
- ♦ 17:11: [lt] Example 7.7

G.2.1.38 Laplace Transform — Properties of the Laplace Transform

The following is a link to the full video:

```
https://youtu.be/qld0TLDFaxc [duration: 01:00:16]
```

- ♦ 00:00: [lt] Section: Properties of the Laplace Transform
- ♦ 00:21: [lt] Properties of the Laplace Transform
- ♦ 00:39: [lt] Laplace Transform Pairs
- ♦ 02:34: [lt] Linearity
- ♦ 05:00: [lt] Example 7.8
- ♦ 09:57: [lt] Example 7.9
- ♦ 14:41: [lt] Time-Domain Shifting
- ♦ 15:42: [lt] Example 7.10
- ♦ 17:16: [lt] Laplace-Domain Shifting
- ♦ 18:56: [lt] Example 7.11
- ♦ 22:37: [lt] Time-Domain/Laplace-Domain Scaling
- ♦ 28:13: [lt] Conjugation
- ♦ 29:14: [lt] Example 7.13
- ♦ 33:07: [lt] Time-Domain Convolution
- ♦ 35:22: [lt] Example 7.14
- ♦ 37:48: [lt] Time-Domain Differentiation
- ♦ 40:16: [lt] Example 7.15
- ♦ 41:43: [lt] Laplace-Domain Differentiation
- ♦ 42:37: [lt] Example 7.16
- ♦ 44:29: [lt] Time-Domain Integration
- ♦ 46:56: [lt] Example 7.17
- ♦ 49:13: [lt] Initial Value Theorem
- ♦ 51:23: [lt] Final Value Theorem
- ♦ 53:36: [lt] Example 7.18
- ♦ 55:26: [lt] More Laplace Transform Examples

♦ **55:42**: [lt] Example 7.19

G.2.1.39 Laplace Transform — Determination of Inverse Laplace Transform

The following is a link to the full video:

```
♦ https://youtu.be/yW0nCwrwaCQ [duration: 00:20:17]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [It] Section: Determination of Inverse Laplace Transform
- ♦ 00:10: [lt] Finding Inverse Laplace Transform
- ♦ 01:18: [lt] Example 7.27
- ♦ 09:55: [lt] Example 7.28

G.2.1.40 Laplace Transform — Laplace Transform and LTI Systems

The following is a link to the full video:

```
♦ https://youtu.be/MWZV3c6TzJI [duration: 00:33:11]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [lt] Section: Laplace Transform and LTI Systems
- ♦ 00:37: [lt] System Function of LTI Systems
- ♦ 03:08: [It] Block Diagram Representations of LTI Systems
- ♦ 03:58: [lt] Interconnection of LTI Systems
- ♦ 05:47: [lt] Causality
- ♦ 09:14: [lt] Example 7.31
- ♦ 12:31: [lt] BIBO Stability
- ♦ 15:22: [lt] Example 7.32
- ♦ 17:24: [lt] Example 7.33
- ♦ 19:24: [lt] Example 7.34
- ♦ 23:38: [lt] Invertibility
- ♦ 26:01: [lt] Example 7.35
- ♦ 27:53: [lt] LTI Systems and Differential Equations
- ♦ 29:51: [lt] Example 7.36
- ♦ 31:39: [lt] Example 7.37

G.2.1.41 Laplace Transform — Application: Circuit Analysis

The following is a link to the full video:

```
https://youtu.be/cf8JIy83DdQ [duration: 00:15:42]
```

The following are links to particular offsets within the video:

- ♦ 00:00: [It] Section: Application: Circuit Analysis
- ♦ 00:12: [lt] Electronic Circuits
- ♦ 01:15: [lt] Resistors
- ♦ 01:17: [lt] Inductors
- ♦ 01:19: [lt] Capacitors
- ♦ 01:24: [lt] Circuit Analysis With the Laplace Transform
- ♦ 03:25: [lt] Example 7.38

G.2.1.42 Laplace Transform — Application: Design and Analysis of Control Systems

The following is a link to the full video:

```
https://youtu.be/SqK69mQdqiw[duration: 00:29:03]
```

- ♦ 00:00: [It] Section: Application: Design and Analysis of Control Systems
- ♦ 00:13: [lt] Control Systems

```
◇ 02:35: [lt] Feedback Control Systems
◇ 05:27: [lt] Stability Analysis of Feedback Systems
◇ 07:40: [lt] Example 7.40 — Stabilization Example: Unstable Plant
◇ 08:52: [lt] Example 7.40 — Stabilization Example: Using Pole-Zero Cancellation
◇ 11:04: [lt] Example 7.40 — Stabilization Example: Using Feedback (1)
◇ 13:42: [lt] Example 7.40 — Stabilization Example: Using Feedback (2)
◇ 17:04: [lt] Example 7.40 — Stabilization Example: Using Feedback (3)
◇ 17:55: [lt] Example 7.40 — Remarks on Stabilization Via Pole-Zero Cancellation
◇ 20:12: [lt] Exercise 7.30
```

G.2.1.43 Laplace Transform — Unilateral Laplace Transform

The following is a link to the full video:

https://youtu.be/ac6Nbs6hf7M [duration: 00:20:52]

- ♦ 00:00: [lt] Section: Unilateral Laplace Transform
- ♦ 00:32: [lt] Unilateral Laplace Transform
- ♦ 03:15: [lt] Inversion of the Unilateral Laplace Transform
- ♦ 05:40: [lt] Unilateral Versus Bilateral Laplace Transform
- ♦ 07:39: [lt] Properties of the Unilateral Laplace Transform
- ♦ 09:14: [lt] Unilateral Laplace Transform Pairs
- ♦ 10:21: [lt] Solving Differential Equations Using the Unilateral Laplace Transform
- ♦ 11:31: [lt] Example 7.42
- ♦ 14:25: [lt] Example 7.43

Bibliography

- [1] S. Attaway. *MATLAB* A Practical Introduction to Programming and Problem Solving. Butterworth-Heinemann, Cambridge, MA, USA, 5th edition, 2019.
- [2] S. J. Chapman. MATLAB Programming for Engineers. Cengage Learning, Boston, MA, USA, 5th edition, 2016.
- [3] D. M. Etter, D. C. Kuncicky, and D. Hull. *Introduction to MATLAB* 6. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2004.
- [4] A. Gilat. MATLAB An Introduction with Applications. John Wiley & Sons, Hoboken, NJ, USA, 6th edition, 2017.
- [5] B. D. Hahn and D. T. Valentine. *Essential MATLAB for Engineers and Scientists*. Butterworth-Heinemann, Burlington, MA, USA, 3rd edition, 2007.
- [6] D. Hanselman and B. Littlefield. *Mastering MATLAB 6: A Comprehensive Tutorial and Reference*. Prentice Hall, Upper Saddle River, NJ, USA, 2001.
- [7] S. Haykin and B. Van Veen. *Signals and Systems*. John Wiley & Sons, Hoboken, NJ, USA, 2nd (Just Ask!) edition, 2005.
- [8] L. B. Jackson. Signals, Systems, and Transforms. Addison Wesley, Menlo Park, CA, USA, 1991.
- [9] B. P. Lathi. *Linear Systems and Signals*. Oxford University Press, New York, NY, USA, 2nd edition, 2005.
- [10] H. Moore. MATLAB for Engineers. Pearson, Boston, MA, USA, 3rd edition, 2012.
- [11] P. V. O'Neil. *Advanced Engineering Mathematics*. Wadsworth Publishing Company, Belmont, CA, USA, 2nd edition, 1987.
- [12] A. V. Oppenheim and R. W. Schafer. *Discrete-Time Signal Processing*. Pearson, Upper Saddle River, NJ, USA, 3rd edition, 2010.
- [13] A. V. Oppenheim and A. S. Willsky. *Signals & Systems*. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 1997.
- [14] C. L. Phillips, J. M. Parr, and E. A. Riskin. *Signals, Systems, and Transforms*. Prentice Hall, Boston, MA, USA, 5th edition, 2014.
- [15] M. J. Roberts. *Signals and Systems: Analysis Using Transform Methods and MATLAB*. McGraw-Hill, New York, NY, USA, 2nd edition, 2012.
- [16] J. Sizemore and J. P. Mueller. MATLAB for Dummies. John Wiley & Sons, Hoboken, NJ, USA, 2015.
- [17] M. Unser. A note on BIBO stability. IEEE Trans. on Signal Processing, 68:5904–5913, September 2020.

696 BIBLIOGRAPHY

Index

Symbols	causal
<i>N</i> -periodic	ceiling function42
<i>T</i> -periodic	Chebyshev filter
a-fold downsampling	circle
<i>a</i> -fold upsampling	codomain 8
nth-order zero 605	combined trigonometric form
mii order zero	complementary equation624
A	complex exponential form115, 401
	complex exponential function
accumulation property	complex exponential sequence
additive	complex function
additive identity	complex modulation property536
aliasing	complex number593
allpass 195, 491	complex polynomial function
Amplitude scaling	complex rational function
Amplitude shifting	complex sinusoidal function35
analog	complex sinusoidal sequence
analytic	conjugate
analytic at a point	conjugate symmetric
angular frequency	conjugation property453, 538
annulus522, 602	continuous
anticausal31, 338	continuous at a point
aperiodic	continuous time
argument593	continuous-time (CT) signals
average power	continuous-time system
	convolution
В	convolution property
bandlimited	convolution property
bandlimited interpolation	D
bandwidth	De Moivre's theorem
Bessel filter	
BIBO stable	delta function
binary	delta sequence
binomial coefficient	derivative
bounded	DFT analysis equation
Butterworth filter	DFT synthesis equation
	differencing property
C	differentiable
	differentiable at a point
capacitor	digital
cardinal sine function	dilation
Cartesian form	Dirac delta function
cascade	discrete Fourier transform (DFT)
Cauchy-Riemann equations 604	discrete time 1

698 INDEX

discrete-time (DT) signals 10 discrete-time system 4 disk 522, 602	generalized function
domain	greatest common divisor (GCD)
Downsampling	Н
downsampling factor	harmonic components
downsampling property	harmonically-related
	Heaviside function
E	homogeneous
eigenfunction	hybrid system
eigensequence	
eigenvalue	1
energy	ideal bandpass filter
energy signal	ideal continuous-to-discrete-time (C/D) converter 217
energy-density spectrum	ideal discrete-to-continuous-time (D/C) converter 219
equalization	ideal highpass filter
equalizer	ideal lowpass filter
equivalence property	imaginary part
Euler's relation	impulse response
even	incrementally linear
even part	indicator function
exterior of a circle	inductor
exterior of a chere	initial-value theorem
F	intersection
factorial	inverse
	inverse DFT
filter	inverse Laplace transform
filtering	inverse unilateral Laplace transform
final-value theorem	inverse unilateral z transform
finite duration	inverse z transform
first harmonic components	invertible
floor function	isolated singularity
Fourier series	isolated shigularity005
Fourier series analysis equation	L
Fourier series synthesis equation	
Fourier transform	Laplace transform
Fourier transform analysis equation	Laplace transform pair
Fourier transform pair	least common multiple
Fourier transform synthesis equation	least common multiple (LCM)
Fourier-series analysis equation	left sided
Fourier-series synthesis equation	left-half plane
frequency	line spectra
frequency response	linear
frequency spectrum	linear phase
frequency-domain differentiation property	linear time-invariant (LTI)
frequency-domain shifting property452	linearity property
function	М
fundamental frequency	
fundamental period	machine epsilon
G	magnitude593
	magnitude distortion
generalized derivative	magnitude response
generalized Fourier transform 157 443	magnitude spectrum 136 187 425 482

INDEX 699

mapping	repeated zero
memory	resistor
memoryless	right sided
method of undetermined coefficients	right-half plane
modulation property452	C
multi-dimensional	<u>s</u>
multi-input4	sampling frequency217
multi-output 4	sampling period
multiplication property	sampling theorem
multiplicative identity	scaling property44
N	sequence
<u></u>	series51, 352
nonhomogeneous	shift invariant (SI)
normalized sinc function41	shift varying 57, 358
Nyquist condition	sifting property44
Nyquist frequency	signal
Nyquist rate	signed frequency16
	signum function
0	simple
odd	simple zero
odd part	sinc function
one dimensional	single input4
one-dimensional	single output4
open annulus	singularity
open disk	step response
•	strictly proper
<u>P</u>	superposition
parallel	symbolic object
Parseval's relation	system
period	system function
periodic	system operator
periodic convolution	•
periodic sampling	Т
phase delay	Time compression/expansion23
phase distortion	time expansion
phase response	time invariant (TI)
phase spectrum	time limited
polar form	Time reversal
power signal32	time reversal
principal argument	Time scaling
1 1 0	Time shifting
R	time varying
rational number	time-domain convolution property
real exponential function	time-domain shifting property451
real exponential sequence	time-expansion property540
real part	time-reversal property
real sinusoidal function	time-shifting property
real sinusoidal sequence	transfer function
rectangular function	translation
reflection	translation property
remainder function	triangle inequality
repeated	triangular function
	auzudi 1000000

700 INDEX

trigonometric form
U
unary
unilateral Laplace transform
unilateral z transform
unit rectangular pulse
unit triangular pulse function
unit-impulse function
unit-impulse sequence
unit-rectangular pulse function
unit-step function
unit-step sequence
unwrapped phase
Upsampling
upsampling factor
upsampling property
z
z transform515
z-domain differentiation property545
zero
zero phase