Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: markspencer

Timestamp: [year=2008; month=8; day=1; hr=11; min=40; sec=10; ms=771;]

Reviewer Comments:

E310	Invalid	sequence	type	in	<212>	in	SEQID:	(1)
E310	Invalid	sequence	type	in	<212>	in	SEQID:	(3)
E310	Invalid	sequence	type	in	<212>	in	SEQID:	(4)
E310	Invalid	sequence	type	in	<212>	in	SEQID:	(5)
E310	Invalid	sequence	type	in	<212>	in	SEQID:	(6)
E310	Invalid	sequence	type	in	<212>	in	SEQID:	(7)
E310	Invalid	sequence	type	in	<212>	in	SEQID:	(8)
E310	Invalid	sequence	type	in	<212>	in	SEQID:	(10)
E310	Invalid	sequence	type	in	<212>	in	SEQID:	(11)
E310	Invalid	sequence	type	in	<212>	in	SEQID:	(12)
E310	Invalid	sequence	type	in	<212>	in	SEQID:	(13)
E310	Invalid	sequence	type	in	<212>	in	SEQID:	(14)
E310	Invalid	sequence	type	in	<212>	in	SEQID:	(15)
E310	Invalid	sequence	type	in	<212>	in	SEQID:	(9)

Numeric identifier <212> can only be DNA, RNA, or PRT. Please make all necessary changes.

W402	Undefined	organism	found	in	<213>	in	SEQ	ID	(4)
W402	Undefined	organism	found	in	<213>	in	SEQ	ID	(5)
W402	Undefined	organism	found	in	<213>	in	SEQ	ID	(6)
W402	Undefined	organism	found	in	<213>	in	SEQ	ID	(7)
W402	Undefined	organism	found	in	<213>	in	SEQ	ID	(8)
W402	Undefined	organism	found	in	<213>	in	SEQ	ID	(9)
W402	Undefined	organism	found	in	<213>	in	SEQ	ID	(10)
W402	Undefined	organism	found	in	<213>	in	SEQ	ID	(11)
W402	Undefined	organism	found	in	<213>	in	SEQ	ID	(12)
W402	Undefined	organism	found	in	<213>	in	SEQ	ID	(13)

	Undefined	organism	found	in	<213>	in	SEQ	ID	(14)
	Undefined	organism	found	in	<213>	in	SEQ	ID	(15)
	Undefined	organism	found	in	<213>	in	SEQ	ID	(16)
4									
643									
ADN									
Séquence	artificiel	lle							
Séquence	promotrice	e du vecte	eur pE(ЭT					
	ADN Séquence	Undefined Undefined 4 643 ADN Séquence artificie	Undefined organism Undefined organism 4 643 ADN Séquence artificielle	Undefined organism found Undefined organism found 4 643 ADN Séquence artificielle	Undefined organism found in Undefined organism found in 4 643 ADN	Undefined organism found in <213> Undefined organism found in <213> 4 643 ADN Séquence artificielle	Undefined organism found in <213> in Undefined organism found in <213> in 4 643 ADN Séquence artificielle	Undefined organism found in <213> in SEQ Undefined organism found in <213> in SEQ 4 643 ADN Séquence artificielle	643 ADN Séquence artificielle

A sequence listing must be in English only.

Validated By CRFValidator v 1.0.3

Application No: 10586348 Version No: 2.0

Input Set:

Output Set:

Started: 2008-07-31 12:18:54.746

Finished: 2008-07-31 12:18:56.649

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 903 ms

Total Warnings: 13

Total Errors: 14

No. of SeqIDs Defined: 16

Actual SeqID Count: 16

Error code	Error Description
E 310	Invalid sequence type in <212> in SEQID: (1)
E 310	Invalid sequence type in <212> in SEQID: (3)
E 310	Invalid sequence type in <212> in SEQID: (4)
W 402	Undefined organism found in <213> in SEQ ID (4)
E 310	Invalid sequence type in <212> in SEQID: (5)
W 402	Undefined organism found in <213> in SEQ ID (5)
E 310	Invalid sequence type in <212> in SEQID: (6)
W 402	Undefined organism found in <213> in SEQ ID (6)
E 310	Invalid sequence type in <212> in SEQID: (7)
W 402	Undefined organism found in <213> in SEQ ID (7)
E 310	Invalid sequence type in <212> in SEQID: (8)
W 402	Undefined organism found in <213> in SEQ ID (8)
E 310	Invalid sequence type in <212> in SEQID: (9)
W 402	Undefined organism found in <213> in SEQ ID (9)
E 310	Invalid sequence type in <212> in SEQID: (10)
W 402	Undefined organism found in <213> in SEQ ID (10)
E 310	Invalid sequence type in <212> in SEQID: (11)
W 402	Undefined organism found in <213> in SEQ ID (11)
E 310	Invalid sequence type in <212> in SEQID: (12)
W 402	Undefined organism found in <213> in SEQ ID (12)

Input Set:

Output Set:

Started: 2008-07-31 12:18:54.746 **Finished:** 2008-07-31 12:18:56.649

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 903 ms

Total Warnings: 13

Total Errors: 14

No. of SeqIDs Defined: 16

Actual SeqID Count: 16

Error code		Error Description							
E	310	Invalid sequence type in <212> in SEQID: (13)							
W	402	Undefined organism found in <213> in SEQ ID (13)							
E	310	Invalid sequence type in <212> in SEQID: (14)							
W	402	Undefined organism found in <213> in SEQ ID (14)							
E	310	Invalid sequence type in <212> in SEQID: (15)							
W	402	Undefined organism found in <213> in SEQ ID (15)							
W	402	Undefined organism found in <213> in SEQ ID (16)							

LISTE DE SEQUENCES

<110> INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE

<120> PROCEDE DE SURPRODUCTION D'UNE PROTEINE DETERMINEE PAR DES SOUCHES MONOCARYOTIQUES DE P. CINNABARINUS

- <130> WOB 03 DH INR ORUS
- <140> 10586348
- <141> 2008-07-31
- <160> 16
- <170> PatentIn version 3.1
- <210> 1
- <211> 3331
- <212> ADN
- <213> Pycnoporus cinnabarinus
- <400> 1

ctgcagacat	ctggagcgcc	tgtctttccc	ctagtataaa	tgatgtctgt	ccgcaggtcc	60
ttgaagaccg	ctcgagtccc	acttgagttt	taggtaggac	ctgtccacca	aacccctctt	120
tctgatcatg	tcgaggttcc	agtccctctt	cttcttcgtc	ctcgtctccc	tcaccgctgt	180
ggccaacgca	gccatagggc	ctgtggcgga	cctgaccctt	accaatgccc	aggtcagccc	240
cgatggcttc	gctcgcgagg	ccgtcgtggt	gaacggtatc	acccctgccc	ctctcatcac	300
aggcaataag	gtatgtatat	gctgctcgtc	cctcagagct	acatacatct	gatccacaat	360
cgtttagggc	gatcgattcc	agctcaatgt	catcgaccag	ttgacaaatc	ataccatgtt	420
gaaaacatct	agtattgtaa	gggttcagtt	tttcccgact	accatgttat	tgaccatcac	480
cactcgtagc	attggcacgg	cttcttccag	caaggcacga	actgggccga	tggtcccgcg	540
ttcgtgaacc	agtgtcccat	cgcttcgggc	cactcgttct	tgtatgactt	tcaagttccc	600
gaccaagcag	gtacgaattc	cgtacacgtt	tcattgcgtc	gcaactaaac	ctcctcttac	660
tagggacttt	ctggtaccat	agccatctct	ccacgcaata	ctgcgatggt	ttgagggggc	720
ctttcgtcgt	ctacgacccc	aacgatcctc	acgctagcct	gtatgacatt	gataacggtg	780
agcagatcat	ggtatcgcaa	tattgcgtcc	acttatgctt	cctggcatcc	agacgacact	840
gtcattacgc	tggctgattg	gtatcacgtt	gctgccaagc	teggaeeteg	cttcccgtac	900
gtgtcaaatg	tctacgagag	atctcacata	tacgactaga	ctcacttcgc	tgattacaga	960
tttggctccg	attcaaccct	tatcaatgga	cttggtcgaa	ccactggcat	agcaccgtcc	1020
gacttggcag	ttatcaaggt	cacgcagggc	aagcggtaag	tatggatggt	catcactgca	1080

cattggctct	gatacatggc	cttgtttcca	cagctaccgc	ttccgcttgg	tgtcgctttc	1140
ttgcgatccg	aaccatacat	tcagcattga	taatcacaca	atgactataa	ttgaggcgga	1200
ctcgatcaac	actcaacccc	tagaggttga	ttcaatccag	atttttgccg	cgcagcgcta	1260
ctccttcgtg	gtaggtcgta	ggctcctgtc	atcaagtttg	cagacattct	tagatacacc	1320
tttttcaatg	cagctggatg	ctagccagcc	ggtggataac	tactggatcc	gcgcaaaccc	1380
tgccttcgga	aacacaggtt	ttgctggtgg	aatcaattct	gccatcctgc	gttatgatgg	1440
cgcacccgag	atcgagccta	cgtctgtcca	gactactcct	acgaagcctc	tgaacgaggt	1500
cgacttgcat	cctctctcgc	ctatgcctgt	ggtacgtgtc	tcaaagaacc	tcgatcacta	1560
agtgcatgtc	aactcatatg	gtgcatgaca	gcctggcagc	cccgagcccg	gaggtgtcga	1620
caagcctctg	aacttggtct	tcaacttcgt	gagtactggc	gcgcttccgt	agcacacgtt	1680
cgaacaaagc	ctgataccat	gcagaacggc	accaacttct	tcatcaacga	ccacaccttt	1740
gtcccgccgt	ctgtcccagt	cttgctacaa	atcctcagtg	gggcgcaggc	ggctcaggac	1800
ctggtcccgg	agggcagcgt	gttcgttctt	cccagcaact	cgtccattga	gatateette	1860
cctgccactg	ccaatgcccc	tggattcccc	cateegttee	acttgcacgg	tgtacgtctg	1920
ccttcccctc	gtctaaaggc	ggagtcgata	tctgactccc	atcacagcac	gccttcgctg	1980
tegteeggag	cgccgggagc	agcgtctaca	actacgacaa	cccgatcttc	cgcgacgtcg	2040
tcagcaccgg	ccagcccggc	gacaacgtca	cgattcgctt	cgagaccaat	aacccaggcc	2100
cgtggttcct	ccactgccac	attgacttcc	acctcgacgc	aggctttgct	gtagtcatgg	2160
ccgaggacac	tccggacacc	aaggccgcga	accctgttcc	tcaggcgtgg	teggaettgt	2220
gccccatcta	tgatgcactt	gaccccagcg	acctctgagc	gggattgtta	ctgtgacctg	2280
gtgtggggg	aacatgtcga	gggctttcat	cgatcaggga	ctttcaaggt	tggcataata	2340
tacctcacgg	cctggatgac	tcggacagcg	tgtgggcgtg	ggtgtaactc	tgcttgatgt	2400
tgaaaaaagg	attttatgta	gaacaattta	tgagcaatca	gcaatcaata	ggattgtgtc	2460
ggtttcgacg	aaatgtcttg	tctccctgac	attacttttg	gtgcgagaaa	tgggtccatg	2520
atacacatca	ttgagctctc	aataccaaga	aggattaccc	atgtcaatac	ccaagatcat	2580
gtcttcgctg	tccgcaatgg	tctcatgttg	cgttgagcag	atcgcagtac	gttgaaaagc	2640
gattagtatt	acatgcaaca	tgcaacattt	ggaagggggc	atgcagaggt	tcagctcgcg	2700
tcagtcggcc	aagtagcgac	ctttgccgca	ctgcctgtta	acctgaacgt	atgcttcaga	2760

actccgtcgg	tatcgagagc	gatcgtgtac	gttccgggat	agatccattg	atccccgctc	2820
tggtcggcgc	gtgcgatggc	cccgagcgtc	accggcagct	tcgcgatcgc	gcttttccta	2880
ggggcgaggc	cgtgtacccg	cgtgtacgag	acgagctgct	tgttcgggtg	gggcgaaggc	2940
ccgaaggagc	cactcacgaa	gagcaatgcg	acgtaatccg	aggtagcctt	gcccgtgtta	3000
gtcacacgca	cggagaacgt	gtcgagcggc	gcgaggtcga	ggaaggcggc	gctcttctga	3060
ccgcgctgta	cgaggtcgga	aatcgaatac	gtcgatggcg	gtcctccaaa	gtccgtgacg	3120
ttggtcgcat	cggccgccgc	gcctggagct	gcccaagaga	aatcgaaggt	ggtgaagtgc	3180
agtccaaagc	caaattcgta	gaccggcgtg	ccggtgtacc	acttgtatgt	acgccccggg	3240
ttcgacgcgc	ttgggcgaag	ggtcatgtca	gtcatcggaa	cctgatcagc	gtagatggct	3300
gggtattggg	tgatgggcag	gcgtcctgca	g			3331

<210> 2

<211> 518

<212> PRT

<213> Pycnoporus cinnabarinus

<400> 2

Met Ser Arg Phe Gln Ser Leu Phe Phe Phe Val Leu Val Ser Leu Thr 1 5 10 15

Ala Val Ala As
n Ala Ala Ile Gly Pro Val Ala Asp Leu Thr Leu Thr 20 $\,$ 25
 $\,$ 30

Asn Ala Gln Val Ser Pro Asp Gly Phe Ala Arg Glu Ala Val Val 35 40 45

Asn Gly Ile Thr Pro Ala Pro Leu Ile Thr Gly Asn Lys Gly Asp Arg 50 55 60

Phe Gln Leu Asn Val Ile Asp Gln Leu Thr Asn His Thr Met Leu Lys 65 70 75 80

Thr Ser Ser Ile His Trp His Gly Phe Phe Gln Gln Gly Thr Asn Trp

85 90 95

Ala Asp Gly Pro Ala Phe Val Asn Gln Cys Pro Ile Ala Ser Gly His 100 105 110

Ser Phe Leu Tyr Asp Phe Gln Val Pro Asp Gln Ala Gly Thr Phe Trp

115 120 125

Tyr His Ser His Leu Ser Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro 130 135 140 Phe Val Val Tyr Asp Pro Asn Asp Pro His Ala Ser Leu Tyr Asp Ile 150 155 Asp Asp Asp Thr Val Ile Thr Leu Ala Asp Trp Tyr His Val Ala 165 170 175 Ala Lys Leu Gly Pro Arg Phe Pro Phe Gly Ser Asp Ser Thr Leu Ile 180 185 Asn Gly Leu Gly Arg Thr Thr Gly Ile Ala Pro Ser Asp Leu Ala Val 195 200 205 Ile Lys Val Thr Gln Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser Leu 210 215 220 Ser Cys Asp Pro Asn His Thr Phe Ser Ile Asp Asn His Thr Met Thr 225 230 235 240 Ile Ile Glu Ala Asp Ser Ile Asn Thr Gln Pro Leu Glu Val Asp Ser 245 250 Ile Gln Ile Phe Ala Ala Gln Arg Tyr Ser Phe Val Leu Asp Ala Ser 265 260 270 Gln Pro Val Asp Asn Tyr Trp Ile Arg Ala Asn Pro Ala Phe Gly Asn 275 280 285 Thr Gly Phe Ala Gly Gly Ile Asn Ser Ala Ile Leu Arg Tyr Asp Gly 290 295 Ala Pro Glu Ile Glu Pro Thr Ser Val Gln Thr Thr Pro Thr Lys Pro 305 310 315 320 Leu Asn Glu Val Asp Leu His Pro Leu Ser Pro Met Pro Val Pro Gly 325 330

Ser Pro Glu Pro Gly Gly Val Asp Lys Pro Leu Asn Leu Val Phe Asn

345

350

340

Phe	Asn	Gly 355	Thr	Asn	Phe	Phe	Ile 360	Asn	Asp	His	Thr	Phe 365	Val	Pro	Pro
Ser	Val 370	Pro	Val	Leu	Leu	Gln 375	Ile	Leu	Ser	Gly	Ala 380	Gln	Ala	Ala	Gln
Asp 385	Leu	Val	Pro	Glu	Gly 390	Ser	Val	Phe	Val	Leu 395	Pro	Ser	Asn	Ser	Ser 400
Ile	Glu	Ile	Ser	Phe 405	Pro	Ala	Thr	Ala	Asn 410	Ala	Pro	Gly	Phe	Pro 415	His
Pro	Phe	His	Leu 420	His	Gly	His	Ala	Phe 425	Ala	Val	Val	Arg	Ser 430	Ala	Gly
Ser	Ser	Val 435	Tyr	Asn	Tyr	Asp	Asn 440	Pro	Ile	Phe	Arg	Asp 445	Val	Val	Ser
Thr	Gly 450	Gln	Pro	Gly	Asp	Asn 455	Val	Thr	Ile	Arg	Phe 460	Glu	Thr	Asn	Asn
Pro 465	Gly	Pro	Trp	Phe	Leu 470	His	Суз	His	Ile	Asp 475	Phe	His	Leu	Asp	Ala 480
Gly	Phe	Ala	Val	Val 485	Met	Ala	Glu	Asp	Thr 490	Pro	Asp	Thr	Lys	Ala 495	Ala
Asn	Pro	Val	Pro 500	Gln	Ala	Trp	Ser	Asp 505	Leu	Суз	Pro	Ile	Tyr 510	Asp	Ala
Leu	Asp	Pro 515	Ser	Asp	Leu										
<210> 3 <211> 2527 <212> ADN <213> Pycnoporus cinnabarinus															
<400> 3 agatctccga accagaaatg cgattgcgtt caggcccaat taagaataaa gctgcgtcag															
ggca	agcga	acg t	tatct	tgat	EC Ca	atcat	tgad	c tca	accgo	gcat	cggd	egtea	aac a	accaa	aagcaa

gctcgtccca cccataggcg tgcaccggcc ggcgtgcgcc attgaggtac atgagcgggg 180

cgaaagtccg	ccattggtag	ccctgtcgtg	gacgcgcggc	gatgaaacgt	ttcccaccat	240
tgggaagaaa	cgtctgcggc	ccatcatccc	ttcaccggat	gacaaggcgg	cgtcgcgcct	300
ttgccgcaga	ggccggcggg	cgacatgcac	agcgaaggtc	cgttgcggat	gggaagcagg	360
caatcagtgg	gtgtcctacg	ccgccacgat	ggtcggggag	cgtaggcgcc	ctcccataag	420
gcggcaagca	tcatgatgct	ctccgattcg	ggaagcctgg	tgcgatgctg	gagagactct	480
ctccgagaga	ccagtgtgcg	caacgttcct	ggcctggaag	actttaaagt	gagtgtagaa	540
gggcgagcag	aggacgatca	tcggattgca	ggaaccatcg	gcatcctcag	cctgggaagg	600
atggctcttg	gtagacattc	gcggaaggtg	tcctagatgt	gagegggett	cttggatgat	660
catgtcgtaa	ctttttctga	cctcgtcggt	ggtacgcatg	gcaggattga	gcattacggt	720
atgcctccca	ttcataaacg	ataacccctt	ccttcaggtt	ggtcatctcc	atagagcggc	780
acgctctcaa	ggcctaggct	attcacacct	ccttcgcaac	atccctattc	acggtgtctg	840
taaggaacga	cttgtcatgg	gatcacatga	agtgcagcat	actgttcgcc	ggtctcgcag	900
tacagacgct	agtacgggaa	gtcgacatcc	aagcgttcag	tcaccacatg	gcaaaaaagc	960
tgcaccatac	tctttatggt	gagttgttcg	tgagtggtat	acagtcattc	atgagggaat	1020
gcccaccgga	tagggtgtgg	cggccgcaat	attcatcgcc	tggcaatagt	cgatgtgcgt	1080
ccttgttcaa	tgaatatcat	gggtcacatg	tggagacggt	taaacagcgt	tgactgtgaa	1140
tccctggtgt	gtgttgggcc	gaacaggtac	gttgcaggaa	caccaatatc	tcttcggcag	1200
cccagttctt	tgcgagcggc	acaggcaggc	atcgcgcaac	agatcccagc	catccggcct	1260
ctgacattcg	ggatacctga	agcccttcag	gtacggagcg	aagaggtggg	ctctctgcag	1320
cgattggcgg	acggatagct	gtatttcctc	tctcaccatt	gggaagatgt	gaaaggctcc	1380
atcatatagc	ggctcaactc	tacctcgaat	gtccaaacac	ggcgggaata	cttatttatg	1440
tggacaaggc	cgagctatga	tagcttgctc	ccgaagttgg	taagtcccgc	aatctgcggt	1500
tcaggcaaca	gtctcggaaa	aataagaaga	atattgtagg	tgcgtgtagg	cgtatcgccc	1560
aaatgcgcac	acacggaggc	tttaggagat	gaagcgcccg	tgagcggtaa	gggagttggt	1620
tcaccgccgc	cccgaccgac	tctctctt	tcccagcatc	atgtctcggc	gcaaacttta	1680
ccctctattg	accaactcca	cgagaaagca	ggaacagctt	ccttgtctct	catgacgtcc	1740
gcaatccaga	cccttagccg	gttcgttact	catcgttatc	cctgccgcca	tggtagtgga	1800
gtcagcctgg	ccagtgcgta	gtcccgtctc	tcttgctgca	ctagagaagc	cccatgagac	1860

agcgttttt	gctttatttc	tgctgtttct	atagacacca	taggggcaaa	cgatcctgca	1920
cgcccagagg	tattgggctc	gtcagattcc	cagtttttct	cctcggtctg	aatcggctgc	1980
acggcagata	aatcggccgg	aaatgctata	gcccttcata	gcccgctatg	agagtcgcaa	2040
aaggcttgtc	agtcaggtcg	gtcgagtggc	tctcacgaag	agcgtcaact	tcgcgcgaca	2100
geegeettte	agggcaagat	agatectece	atcatcccct	actgcgctca	gcgccggtac	2160
cgaacaattg	acttaccgac	atcctccggg	acgcgcaaat	gctgttcgac	ggaacgtaat	2220
_	ccgcctcttt	-				2280
	agaccagtct					2340
	ggtcactctg					2400
	gagegeetgt					2460 2520
gatcatg	gagtcccact	cyayiiiag	graggacerg	CCCaccadac	CCCCCCCCCC	2527
garcary						4941

<210> 4

<211> 643

<212> ADN

<213> Séquence artificielle

<220>

<223> Séquence promotrice du vecteur pEGT

<400> 4

cgaccgageg cgcgccaccc agectatece gegegggteg ggacccaaaa taagegggee 60 ccgccgcgcc ccgtcgggcg agcgggtgta tctacgaacg gaactgggag gcgactcgga 120 agagtttggt tagaaagggg aacaccatcg cggacggccc agtgctctgg dcagctgagc 180 gtgcattgtg ttcaattctg acctgtggca tgtaaggaac gtgctcggga tcggagggtg 300 gcgcgagagc ctcttcggtg tgagattagt aactgtactg cgaagccgcg gaggggttag gatgagaggt agacagggtc gcagcccagg tgcgagaagg actgcgaagg actgttcttc 360 gaccgcgcac ctgcaattgc gcgcatggat agaatagagc gtcgccctcg agggggactc 420 480 gaccaggget ggtggtggeg eeegaeggga etggetggge atttgeagat ggegegeagt ccaggccgcc gccgatgtgt tcatcccgtt ttgtcagtat cgatcggatc tttcgggcgt 540 gggtataaaa gegegeegee egeegtetee etetttetee ageaeteeea teeagageae 600 643 ttccctctcc catcgcatcc catcacacaa taatgcccat cac

<210> 5

<211> 1033

<212> ADN

<213> Séquence artificielle

<220>

<223> Séquence promotrice du vecteur pESC

<400> 5

agetteteeg geeeegaate gaacggeagg atgtgtggge gtgteeaata ttgeeatgaa 60 aatctgtcag aagtgagccc tctcgtcacc ctgtacagct tcgctgagtt gaaaagcagg 120 gttcatcttg ggctcactga tgcactgagc tcgaccggag aactaaatga ccagccggag 180 tgttcactaa cttaacgccg ggtattcagg gcagcttctc tatgttgcgc ctacgacgta 240 300 gatcaccgcc catgaacggg ggaaacgggg aggggtgcgt ttggtacgtc tttacgtctg 360 gctatgttgt attgaccagc gtctgcagaa gatgggcacg acgatgcgcc gagccggcca 420 gtgtcgtcgg atgtccactg ttgaggccat ccttttgcta gacagacgga agagctttgg 480 aggtgcgatt cctctacgaa tgggaagggg cttagatgga gagtgacacg tctgagctcc ccaacacgcc ttcgccgagg gtgcgtctcc gcggacattc acctcagttc attgttctga 540 600 cctgcctaat tgtatagacc ggccaacaac cttgctgacg cccatcataa cagtgccctg cacagageet teccaeteag teggegeete eeteaateaa teccaetaae tegeeggete 660 tgccccttcg ccgctcgaca cgtcgcttgg aagagcccgg gcacgggcgt ccgctccccc 720 780 cttccctccg cgtcgtcatg cacgcagcgt taatgttgct gcaggcgagc cgtaagtata 840 ttcaaaggcg tagcgaatga atagcaggcg cgcggggacc tggcacgcgc ggcatgaaca tgcagacttg ggtgacgata acttgaactc agacgcggcg aatgaatatc caaacgcgcg 900 ggaagaaaat aatttacggg agcctcccca ggtataaaag cccctcaccc gctcactctt 960 tctccagtcg aacaccccag ttcaactacc cagcccttcc ttccttcgct atccttcytt 1020 1033 acaacctgct cgc

<220>

<223> Amorce PCR

<400> 6

caytggcayg grttcttcc

<210> 6

<211> 19

<212> ADN

<213> Séquence artificielle

```
<210> 7
<211> 20
<212> ADN
<213> Séquence artificielle
<220>
<223> Amorce PCR
<400> 7
                                                                    20
gagrtggaag tcratgtgrc
<210> 8
<211> 20
<212> ADN
<213> Séquence artificielle
<220>
<223> Amorce PCR
<400> 8
                                                                    20
ggataactac tggatccgcg
<210> 9
<211> 19
<212> ADN
<213> Séquence artificielle
<220>
<223> Amorce PCR
<400> 9
cgcagtattg cgtggagag
                                                                    19
<210> 10
<211> 19
<212> ADN
<213> Séquence artificielle
<220>
<223> Amorce PCR
<400> 10
                                                                    19
gacatctgga gcgcctgtc
<210> 11
<211> 27
<212> ADN
<213> Séquence artificielle
<220>
<223> Amorce PCR
```

atcgaaggtt ccgatgactg acatgac

<210> 12

<211> 5122

<212> ADN

<213> Séquence artificielle

<220>

<223> Séquence du vecteur pEGT

<400> 12

catgggatat cgcatgcctg cagagctcta gagtcgacgg gcccggtacc gcggccgcct taagacgcgt ggatccgcag gtgaacgcgc ctatcggtgg gatattcggg cgacgggagc 120 180 ctcggcaatc tgagcctcgt tactgcctag caaattcgga atcccttcga tgtcataggg tcgcggacaa gtgatcgtct tgctacatac tccaaggtgt tgactcattc cctcgataat 240 gaacattgtt gttgttgttt gttctctatc cgctcagtca cgcgacccca cacgtgcatg 300 gttgaacttc gccacgcaac aaccgcatga cgacatggcg aacctaagta aaggctgagt 360 cgtggactaa agcactccac tttacggcga ggatgccagt ctacgtcatg aatgaagcct 420 480 caggtcccga agtaaggggg tacaaaagga gggtgaaagg tggacgtttt cttaccatcc ttccacctcc cagaccacca tgccgggaat tcccagcttg ctcaaaaagg ttctgcccgt 540 acgcccgcga aattccttcg aggtggcccc tatcgcatac atgcacgact tcaaaacatc 600 cattctatca ttttgggatc gtacaattat tagacatgtt gtacaacgtt acattccttt 660 cttcttttac tctccggccc agtctatgta gaggtaaagt acaagcgtcc aaaggatcag 780 gcacttagag egegeegtet tgettegeeg ettagagege geegteetge ttegeegegt agacgagcag gtcgcagaca cggcgggagt agccccactc gttgtcgtac caggcaatga 840 getteaegaa getettgetg ategegatge eggggatega teeaegegte ttaaggegge 900 960 egeggtacee ceteggacee gtegggeege gteggacegg eggtgttggt eggegteggt cagtectget ceteggecae gaagtgeaeg cagttgeegg cegggtegeg cagggegaae 1020 tecegeeeee aeggetgete geegateteg gteatggeeg geeeggagge gteeeggaag 1080 1140 ttegtggaea egaeeteega eeaeteggeg taeagetegt eeaggeegeg eaeeeaeaee caggccaggg tgttgtccgg caccacctgg tcctggaccg cgctgatgaa cagggtcacg 1200 tcgtcccgga ccacaccggc gaagtcgtcc tcc