Vorlesung Wahrscheinlichkeitstheorie mit Martingalen

Wintersemester 2018/2019

Vorlesung: Prof. Dr. Martin Keller-Ressel Mitschrift: Willi Sontopski

10. Oktober 2018

Inhaltsverzeichnis

0	Einführung		•	 •			 •	•	•	•	2
1	Bedingter Erwartungswert										3
1.1	Bedingter Erwartungswert als L_2 -Projektion										3

0 Einführung

- Voraussetzung für viele weitere VL im Schwerpunkt Stochastik
- \bullet zunehmend stochastische Systeme / stochastische Prozesse \to Modellierung von zeitabhängigen und zufälligen Vorgängen
- wichtig im naturwissenschaftlicher, wirtschaftwissenschaftlicher und sozialwissenschaftlicher Modellierung
 - Schwimmbewegung eines Einzellers
 - Bildung und Rückbildung von sozialen Netzwerken
 - zeitlicher Verlauf eines Wechselkurses (EUR / GBP)

Zentrale Frage: Abhängigkeitsstruktur (ist "morgen" von "heute" unabhängig?)

- unabhängige gleichverteilte Zufallsvariablen
- Markov-Prozesse
- Martingale

Was ist ein Martingal?

- \bullet "faires SPiel" zwischen Personen A und B bei dem keine Strategie einen systematischen Vorteil bringt
- Ein Vorgang, bei dem die beste Voraussage (Punktschätzung) der heutige Wert ist.
- "neutraler stochastischer Prozess" ohne systematischen Trend zum Auf- oder Abstieg

Weitere Themen:

- charakteristische Funktionen: Fourier-Transformation einer Wahrscheinlichkeitsverteilung
 - Wichtiges analytisches Werkzeug in der W-Theorie
- Zentrale Grenzwertsätze: Aussagen über Konvergenz von Summen unabhängiger Zufallsvariablen zur Normalverteilung
- Brown'sche Bewegung und evtl. Lévy-Prozesse

1 Bedingter Erwartungswert

1.1 Bedingter Erwartungswert als L_2 -Projektion

Betrachte den Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$.

Für Zufallsvariable $X: \Omega \to \mathbb{R}$ und $p \in [1, \infty)$ definiere die L_p -Norm

$$||X||_p := \mathbb{E}[|X|^p] = \left(\int_{\Omega} |X(\omega)|^p d\mathbb{P}(\omega)\right)^{\frac{1}{p}}$$

und die Räume

$$\mathcal{L}_p(\Omega, \mathcal{A}, \mathbb{P}) := \left\{ X : \Omega \to \mathbb{R} \middle| X \text{ ist } \mathcal{A}\text{-messbar und } \|X\|_p < \infty \right\}$$

. Aufgrund der Minkowski-Ungleichung

$$||X + Y||_p \le ||_p + ||Y||_p$$

und der Homogenität

$$||c \cdot X||_p = c \cdot ||X||_p \qquad \forall c \ge 0$$

ist $\mathcal{L}_p(\Omega, \mathcal{A}, \mathbb{P})$ Vektorraum mit Halbnorm $\|\cdot\|_p$. Es fehlt die Definitheit.

Wir identifizieren Zufallsvariablen X, X, welche \mathbb{P} -fast sicher übereinstimmen, d. h. $\mathbb{P}[X \neq \tilde{X}] = 0$. Formal betrachten wir den Unterraum

$$\mathcal{N} := \{ N : \Omega \to \mathbb{R} : N = 0 \text{ } \mathbb{P}\text{-fast sicher} \}$$

und bilden den Quotientenraum

$$L_p(\Omega, \mathcal{A}, \mathbb{P}) := \mathcal{L}_P(\Omega, \mathcal{A}, \mathbb{P}) / \mathcal{N} = \{ [X + \mathcal{N}] : X \in \mathcal{L}_p(\Omega, \mathcal{A}, \mathbb{P}) \}.$$

Wir schreiben auch kurz $L_p(\mathcal{A})$ oder $L_p(\mathbb{P})$, wenn wir Abhängigkeit von \mathcal{A} oder \mathbb{P} betonen wollen.

Aus der Maßtheorie ist bekannt:

Theorem 1.1.1 Sei $p \in [1, \infty)$. Dann ist $L_p(\Omega, \mathcal{A}, \mathbb{P})$ mit Norm $\|\cdot\|_p$ ein Banachraum.

Für p=2 ist $L_2(\Omega, \mathcal{A}, \mathbb{P})$ ein Hilbertraum mit Skalarprodukt

$$\langle X, Y \rangle := \mathbb{E}[X \cdot Y] = \int_{\Omega} X(\omega) \cdot Y(\omega) \, d\mathbb{P}(\omega)$$

Bemerkung. Zwei Zufallsvariablen $X, Y \in L_2$ heißen **orthogonal** : $\Leftrightarrow \langle X, Y \rangle = 0$.

Proposition 1.1.2 Sei $\mathcal{F} \subseteq \mathcal{A}$ eine Unter- σ -Algebra von \mathcal{A} und $p \in [1, \infty)$. Dann ist $L_p(\Omega, \mathcal{F}, \mathbb{P})$ ein abgeschlossener Unterraum von $L_p(\Omega, \mathcal{A}, \mathbb{P})$.

Beweis. RobertToDo □

Definition. (Bedingte Erwartung in L_2)

Sei $\mathcal{F} \subseteq \mathcal{A}$ eine Unter- σ -Algebra von \mathcal{A} .

Jedes $X \in L_2(\Omega, \mathcal{A}, \mathbb{P})$ hat eine eindeutige Orthogonalprojektion Y auf $L_2(\Omega, \mathcal{F}, \mathbb{P})$. Diese heißt **bedingte Erwartung** von X bzgl. \mathcal{F} und wir schreiben $\mathbb{E}[X \mid \mathcal{F}] := Y$.

Die bedingte Erwartung ist also eine Zufallsgröße und nur bis auf \mathbb{P} -Nullmengen eindeutig bestimmt.

Bemerkung. Als Orthogonalprojektion gilt

$$||X - \mathbb{E}[X \mid \mathcal{F}]||_2 = \inf \{||X - Y||_2 : Y \in L_2(\Omega, \mathcal{F}, \mathbb{P})\}.$$

Interpretation: $\mathbb{E}[X \mid \mathcal{F}]$ ist die beste Näherung für X durch Zufallsvariablen $Y \in L_2(\Omega, \mathcal{F}, \mathbb{P})$.

Proposition 1.1.3 Y ist die Orthogonalprojektion von X auf $L_2(\Omega, \mathcal{F}, \mathbb{P})$ $\iff \forall F \in \mathcal{F} \in L_2(\mathcal{F}) : \langle X - Y, F \rangle = 0$

Beweis. RobertToDo \Box

Proposition 1.1.4 (Eigenschaften der bedingten Erwartung)

Seien $X, Y \in L_2(\Omega, \mathcal{A}, \mathbb{P})$ und $\mathcal{F} \subseteq \mathcal{A}$ Unter- σ -Algebra von \mathcal{A} . Dann gilt:

- (a) $X \in L_2(\mathcal{F}) \Longrightarrow \mathbb{E}[X \mid \mathcal{F}] = X$
- (b) $\mathbb{E}[a \cdot X + b \cdot Y \mid \mathcal{F}] = a \cdot \mathbb{E}[X \mid \mathcal{F}] + b \cdot \mathbb{E}[Y \mid \mathcal{F}] \ \forall a, b \in \mathbb{R}$ "Linearität"
- (c) $\langle \mathbb{E}[X \mid \mathcal{F}], Y \rangle = \langle X, \mathbb{E}[Y \mid \mathcal{F}] \rangle = \langle \mathbb{E}[X \mid \mathcal{F}], \mathbb{E}[Y \mid \mathcal{F}] \rangle$ "Symmetrie"

(d) Für jede Unter- σ -Algebra $\mathcal{H} \subseteq \mathcal{F}$ von \mathcal{F} gilt die **Turmregel** / **tower law**:

$$\mathbb{E}[\mathbb{E}[X \mid \mathcal{F}] \mid \mathcal{H}] = \mathbb{E}[X \mid \mathcal{H}] \tag{1.1}$$

- (e) $\mathbb{E}[Z \cdot X \mid \mathcal{F}] = Z \cdot \mathbb{E}[X \mid \mathcal{F}]$ $\forall Z$ beschränkt und \mathcal{F} -messbar "Pull-out-property"
- (f) $X \leq Y \Longrightarrow \mathbb{E}[X \mid \mathcal{F}] \leq \mathbb{E}[Y \mid \mathcal{F}]$ "Monotonie"
- (g) $|\mathbb{E}[X \mid \mathcal{F}]| \leq \mathbb{E}[|X| \mid \mathcal{F}]$ "Dreiecksungleichung"

Beweis. Zu (a): Folgt direkt aus der Definition.

Zu (b): Folgt aus Proposition 1.1.3:

$$\overset{\text{Prop 1.1.3}}{\Longrightarrow} \left\langle X - \mathbb{E}[X \mid \mathcal{F}], F \right\rangle = 0 \\
 & \times Y - \mathbb{E}[Y \mid \mathcal{F}], F \right\rangle = 0 \\
 & \Longrightarrow a \cdot \left\langle X - \mathbb{E}[X \mid \mathcal{F}], F \right\rangle + b \cdot \left\langle Y - \mathbb{E}[Y \mid \mathcal{F}], F \right\rangle = 0 \qquad \forall F \in L_2(\Omega, \mathcal{F}, \mathbb{P}) \\
 & \overset{\text{Bilin}}{\Longrightarrow} \left\langle a \cdot X + b \cdot Y - \left(a \cdot \mathbb{E}[X \mid \mathcal{F}] + b \cdot \mathbb{E}[Y \mid \mathcal{F}] \right), F \right\rangle = 0 \qquad \forall F \in L_2(\Omega, \mathcal{F}, \mathbb{P}) \\
 & \overset{\text{Prop 1.1.3}}{\Longrightarrow} \mathbb{E}[a \cdot X + b \cdot Y \mid \mathcal{F}] = a \cdot \mathbb{E}[X \mid \mathcal{F}] + b \cdot \mathbb{E}[Y \mid \mathcal{F}]$$

Zu (c): Aus Proposition 1.1.3 folgt wieder

$$\langle X - \mathbb{E}[X \mid \mathcal{F}], \mathbb{E}[Y \mid \mathcal{F}] \rangle = 0$$
 (1.2)

$$\langle Y - \mathbb{E}[Y \mid \mathcal{F}], \mathbb{E}[X \mid \mathcal{F}] \rangle = 0$$
 (1.3)

und damit

$$\begin{split} \langle X, \mathbb{E}[Y \mid \mathcal{F}] \rangle &= \langle \mathbb{E}[X \mid \mathcal{F}] + (X - \mathbb{E}[X \mid \mathcal{F}]), \mathbb{E}[Y \mid \mathcal{F}] \rangle \\ &\stackrel{1.2}{=} \langle \mathbb{E}[X \mid \mathcal{F}], \mathbb{E}[Y \mid \mathcal{F}] \rangle \\ &= \langle \mathbb{E}[X \mid \mathcal{F}], Y + (\mathbb{E}[Y \mid \mathcal{F}] - Y) \rangle \\ &\stackrel{1.3}{=} \langle \mathbb{E}[X \mid \mathcal{F}], Y \rangle. \end{split}$$

Zu (d): Aus Proposition 1.3 folgt wieder:

$$\overset{\text{Prop 1.1.3}}{\Longrightarrow} \langle X - \mathbb{E}[X \mid \mathcal{F}], F \rangle \qquad \forall F \in L_{2}(\mathcal{F}) \supseteq L_{2}(\mathcal{H})$$

$$\Longrightarrow \langle \mathbb{E}[X \mid \mathcal{F}], Y + (\mathbb{E}[Y \mid \mathcal{F} - Y)] \rangle = 0 \qquad \forall H \in L_{2}(\mathcal{H})$$

$$\Longrightarrow \langle X - \mathbb{E}[\mathbb{E}[X \mid \mathcal{F}] \mid \mathcal{H}], H \rangle = 0 \qquad \forall H \in L_{2}(\mathcal{H})$$

$$\overset{\text{Prop 1.1.3}}{\Longrightarrow} \mathbb{E}[X \mid \mathcal{H}] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{F}] \mid \mathcal{H}]$$

Zu (e):

$$\langle X \cdot Z - \mathbb{E}[X \mid \mathcal{F}] \cdot Z, F \rangle = \mathbb{E} \Big[\big(X \cdot Z - \mathbb{E}[X \mid \mathcal{F}] \cdot Z \big) \mid \mathcal{F} \Big]$$

$$= \big\langle X - \mathbb{E}[X \mid \mathcal{F}], Z \cdot F \big\rangle = 0 \qquad \forall F \in L_2(\mathcal{F}) \text{ da auch } Z \cdot F \in L_2(\mathcal{F})$$

$$\Longrightarrow \mathbb{E}[X \cdot Z \mid \mathcal{F}] = Z \cdot \mathbb{E}[X \mid \mathcal{F}] = Z \cdot \mathbb{E}[X \mid \mathcal{F}]$$

Zu (f): Sei $X \geq 0$. Setze

$$A := \{ \omega \in \Omega : \mathbb{E}[X \mid \mathcal{F}](\omega) < 0 \} \in \mathcal{F}.$$

Außerdem ist gilt für die Indikatorfunktion $\mathbb{1}_A \in L_2(\mathcal{F})$. Einerseits gilt

$$\mathbb{E}[X \cdot \mathbb{1}_A \mid \mathcal{F}] \ge 0 \text{ weil } X \ge 0$$

und andererseits

$$\mathbb{E}[X \cdot \mathbb{1}_{A}] = \mathbb{E}\left[\mathbb{E}[X \mid \mathcal{F}] \cdot \mathbb{1}_{A}\right]$$

$$= \mathbb{E}\left[\mathbb{E}[X \mid \mathcal{F}] \cdot \mathbb{1}_{\left\{\mathbb{E}[X \mid \mathcal{F}] < 0\right\}}\right]$$

$$= \int_{\left\{\mathbb{E}[X \mid \mathcal{F}] < 0\right\}} \mathbb{E}[X \mid \mathcal{F}] d\mathbb{P} \leq 0$$

$$\Longrightarrow \mathbb{E}[X \cdot \mathbb{1}_{A}] = 0$$

$$\Longrightarrow \int_{\left\{\mathbb{E}[X \mid \mathcal{F}] < 0\right\}} \mathbb{E}[X \mid \mathcal{F}] d\mathbb{P} = 0$$

$$\Longrightarrow \mathbb{P}(\mathbb{E}[X \mid \mathcal{F}] < 0) = 0$$

$$\Longrightarrow \mathbb{E}[X \mid \mathcal{F}] \geq 0 \text{ fast sicher}$$

Allgemeine Aussage folgt mit $\tilde{X} := Y - X$ und aus der Linearität.

Zu (g):

$$\begin{split} \pm X &\leq |X| \stackrel{6.}{\Longrightarrow} \pm \mathbb{E}\big[X \mid \mathcal{F}] \leq \mathbb{E}[|X| \mid \mathcal{F}\big] \\ &\Longrightarrow \Big| \mathbb{E}[X \mid \mathcal{F}] \Big| \leq \mathbb{E}\Big[|X| \mid \mathcal{F}\Big] \end{split}$$

Bedingte Erwartung in L_1

Prinzip: stetige Fortsetzung.

Proposition 1.1.6 Sei $\mathcal{F} \subseteq \mathcal{A}$ eine Unter- σ -Algebra von \mathcal{A} . Die bedingte Erwartung hat eine eindeutige stetige Fortsetzung von $L_2(\Omega, \mathcal{F}, \mathbb{P})$ auf $L_1(\Omega, \mathcal{A}, \mathbb{P})$. Diese bezeichnen wir ebenfalls mit $\mathbb{E}[\cdot \mid \mathcal{F}]$.

Beweis. Existenz:

Sei $X \in L_1$. Dann existiert eine Approximationsfolge $(X_n)_{n \in \mathbb{N}} \subseteq L_2$ mit $\mathbb{E}[|X_n - X|] \xrightarrow{n \to \infty} 0$, in Zeichen $X_n \xrightarrow{L_1} X$. Wähle z. B.

$$X_n := \begin{cases} X, & \text{falls } |X| \le n \\ n, & \text{falls } X > n \\ -n, & \text{falls } X < -n \end{cases}$$

Mit dominanter Konvergenz gilt

$$\lim_{n \to \infty} \mathbb{E}[X_n - X|] = \mathbb{E}\left[\lim_{n \to \infty} |X_n - X|\right] = 0.$$

Mit Kontraktionseigenschaft gilt:

$$\mathbb{E}\Big[\big|\mathbb{E}[X_m\mid\mathcal{F}] - \mathbb{E}[X_n\mid\mathcal{F}]\big|\Big] \leq \mathbb{E}\Big[\mathbb{E}\big[|X-M-X_n|\mid\mathcal{F}\big] \stackrel{Turm}{=} \mathbb{E}\big[|X_n-X_n|\big] \stackrel{m,n\to\infty}{\longrightarrow} 0$$

$$\Longrightarrow (\mathbb{E}[X_n\mid\mathcal{F}])_{n\in\mathbb{N}} \text{ ist Cauchy-Folge in } L_2(\Omega,\mathcal{A},\mathbb{P})$$

$$\Longrightarrow \exists Z \in L_1(\Omega,\mathcal{A},\mathbb{P}) \text{ mit } \mathbb{E}[X_n\mid\mathcal{F}] \stackrel{L_1}{\longrightarrow} Z =: \mathbb{E}[X\mid\mathcal{F}]$$

Eindeutigkeit: Sei $(\tilde{X}_n)_{n\in\mathbb{N}}$ eine weitere Approximationsfolge für X, d. h. es gilt auch

$$\mathbb{E}[|\tilde{X}_n - X|] \stackrel{n \to \infty}{\longrightarrow} 0.$$

Dann gilt:

$$||Z - \mathbb{E}[\tilde{X}_{n} \mid \mathcal{F}]||_{1} = ||Z - \mathbb{E}[X_{n} \mid \mathcal{F}] + \mathbb{E}[X_{n} \mid \mathcal{F}] - \mathbb{E}[\tilde{X}_{n} \mid \mathcal{F}]||_{1}$$

$$\leq ||Z - \mathbb{E}[X_{n} \mid \mathcal{F}]||_{1} + ||\mathbb{E}[X_{n} \mid \mathcal{F}] - \mathbb{E}[\tilde{X}_{n} \mid \mathcal{F}]||_{1}$$

$$= \mathbb{E}[|\mathbb{E}[X_{n} \mid \mathcal{F} - \mathbb{E}[\tilde{X}_{n} \mid \mathcal{F}]||_{1}$$

$$\leq ||Z - \mathbb{E}[X_{n} \mid \mathcal{F}]||_{1} + ||X_{n} - \tilde{X}_{n}||_{1}$$

$$\leq ||Z - \mathbb{E}[X_{n} \mid \mathcal{F}]||_{1} + ||X - X_{n}||_{1} + ||X - \tilde{X}_{n}||_{1}$$

$$\stackrel{n \to \infty}{\longrightarrow} 0$$

$$\implies \mathbb{E}[\tilde{X}_{n} \mid \mathcal{F}] \xrightarrow{L_{1}} Z$$

Also ist der Limes unabhängig von der Approximationsfolge.

Korollar 1.1.7 Alle Eigenschaften aus Proposition 1.1.4 (außer Symmetrie) gelten weiterhin für alle $X, Y \in L_1(\Omega, \mathcal{A}, \mathbb{P})$.

Beweis. Beweis durch Approximation.

Theorem 1.1.8 Sei \mathcal{F} Unter- σ -Algebra von \mathcal{A} und seien

$$X \in L_1(\Omega, \mathcal{A}, \mathbb{P}), \qquad Y \in L_1(\Omega, \mathcal{F}, \mathbb{P}).$$

Dann sind äquivalent:

(a) $Y = \mathbb{E}[X \mid \mathcal{F}]$ fast sicher

(b)
$$\mathbb{E}[X \cdot \mathbb{1}_F] = \mathbb{E}[Y \cdot \mathbb{1}_F] \quad \forall F \in \mathcal{F}$$

(Beachte $X, Y \in L_2 \Longrightarrow \langle X - Y, \mathbb{1}_F \rangle = 0$)

Beweis. Zeige $(a) \Longrightarrow (b)$:

Sei $(X_n)_{n\in\mathbb{N}}\subseteq L_2(\mathcal{A})$ eine Approximationsfolge für X, d.h. $X_n\xrightarrow{L_1}X$. Mit Proposition 1.1.6 folgt:

$$\mathbb{E}[X_n \mid \mathcal{F}] \xrightarrow{L_1} \mathbb{E}[X \mid \mathcal{F}] = Y$$

$$\mathbb{E}[(X - Y) \cdot \mathbb{1}_F] = \lim_{n \to \infty} \mathbb{E}[(X_n - \mathbb{E}[X_n \mid \mathcal{F}]), \mathbb{1}_F]$$

$$= \lim_{n \to \infty} \langle X_n - \mathbb{E}[X_n \mid \mathcal{F}], \mathbb{1}_F \rangle$$

$$\stackrel{\text{Prop 1.1.3}}{=} 0 \quad \forall F \in \mathcal{F}$$

 $Zeige (b) \Longrightarrow (a)$:

$$F^+ := \{ \mathbb{E}[X \mid \mathcal{F}] - Y > 0 \} \in \mathcal{F}$$

$$F^- := \{ -(\mathbb{E}[X \mid \mathcal{F}] - Y) > 0 \} \in \mathcal{F}.$$

Dann gilt:

$$0 \leq \mathbb{E}\left[\underbrace{\left(\mathbb{E}[X\mid\mathcal{F}] - Y\right) \cdot \mathbb{1}_{F^{+}}}_{\geq 0}\right] = \mathbb{E}\left[\mathbb{E}[X\mid\mathcal{F}] \cdot \mathbb{1}_{F^{+}}\right] - \mathbb{E}\left[Y \cdot \mathbb{1}_{F^{+}}\right]$$

$$\stackrel{\text{Pull-out}}{\stackrel{\text{Turm}}{=}} \mathbb{E}[X \cdot \mathbb{1}_{F^{+}}] - \mathbb{E}[Y \cdot \mathbb{1}_{F^{+}}]$$

$$\stackrel{\text{(b)}}{=} 0$$

$$\Longrightarrow \mathbb{P}(F^{+}) = 0$$

Analog erhält man $\mathbb{P}(F^-) = 0$. Also folgt insgesamt $\mathbb{E}[X \mid \mathcal{F}] = Y$ fast sicher.

Bemerkung. Die "unbedingte Erwartung" $\mathbb{E}[X]$ können wir als Spezialfall der bedingten Erwartung $\mathbb{E}[X \mid \mathcal{F}]$ für die triviale σ -Algebra $\mathcal{F} := \{\emptyset, \Omega\} \subseteq \mathcal{A}$ auffassen. Denn es gilt:

$$\begin{split} \mathbb{E}[X \cdot \mathbb{1}_{\Omega}] &= \mathbb{E}[X] = \mathbb{E}\big[\mathbb{E}[X] \cdot \mathbb{1}_{\Omega}\big] \\ \mathbb{E}[X \cdot \mathbb{1}_{\Omega}] &= 0 = \mathbb{E}\big[\mathbb{E}[X] \cdot \mathbb{1}_{\emptyset}\big] \\ &\stackrel{\mathrm{Thm}}{\Longrightarrow} \mathbb{1}^{.8} \; \mathbb{E}[X] = \mathbb{E}[X \mid \mathcal{F}], \; \mathrm{da} \; \mathcal{F} \; \mathrm{trivial}. \end{split}$$

Bedingter Erwartungungswert + Unabhängigkeit

Definition. Sei $X: \Omega \to \mathbb{R}$ eine Zufallsvariable auf $(\Omega, \mathcal{A}, \mathbb{P})$ und $\mathcal{F} \subseteq \mathcal{A}$ Unter- σ -Algebra von \mathcal{A} . Dann heißt X unabhängig von \mathcal{F} , in Zeichen $X \perp \!\!\!\!\perp \mathcal{F}$

$$:\iff \mathbb{E}[f(X)\cdot \mathbb{1}_A] = \mathbb{E}[f(X)]\cdot \mathbb{P}(A) \qquad \forall A\in \mathcal{F} \text{ und } f: \mathbb{R} \to \mathbb{R} \text{ beschränkt, Borel-messbar}$$

$$\tag{1.4}$$

X heißt **unabhängig** von einer Zufallsvariablen Y, in Zeichen $X \perp \!\!\! \perp \!\!\! Y$ wenn eine der folgenden äquivalenten Bedingungen gilt:

- (a) $X \coprod \sigma(Y)$
- (b) $\mathbb{E}[f(X) \cdot g(Y)] = \mathbb{E}[f(X)] \cdot \mathbb{E}[g(Y)] \quad \forall f, g \in B_b(\mathbb{R})$

Theorem 1.1.9 Sei $X \in L_1(\Omega, \mathcal{A}, \mathbb{P})$ unabhängig von \mathcal{F} . Dann gilt:

$$\mathbb{E}[X \mid \mathcal{F}] = \mathbb{E}[X]$$

Beweis. Wegen $X \perp \!\!\! \perp \mathcal{F}$ gilt:

$$\forall F \in \mathcal{F} : \mathbb{E}[X \cdot \mathbb{1}_X] \stackrel{1.4}{=} \mathbb{E}[X] \cdot \mathbb{P}(F) = \mathbb{E}[\mathbb{E}[X] \cdot \mathbb{1}_F]$$

$$\stackrel{\text{Thm 1.8}}{\Longrightarrow} \mathbb{E}[X] = \mathbb{E}[X \mid \mathcal{F}]$$

Bemerkung. Merke die beiden Extremfälle:

- Wenn X \mathcal{F} -messbar ist, dann ist $\mathbb{E}[X \mid \mathcal{F}] = X$. Die bedingte Erwartung verändert also X nicht.
- Wenn X von \mathcal{F} unabhängig ist, dann ist $\mathbb{E}[X \mid \mathcal{F}] = \mathbb{E}[X]$. Die bedingte Erwartung reduziert X auf den unbedingten Erwartungswert $\mathbb{E}[X]$.