Total No.	of	Questions	:	12]
-----------	----	-----------	---	-------------

SEAT No.:

P3572

[5560]-516

[Total No. of Pages: 3

T.E.(Automobile & Mechanical)

NUMERICAL METHODS AND OPTIMIZATION

(2015 Course) (Semester - II) (302047)

Time : 2½ *Hours*]

[Max. Marks: 70

Instructions to the candidates:

- Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8, Q9 or Q10, Q11 or Q12.
- *2*) Neat diagrams must be drawn wherever necessary.
- Figures to the right indicate full marks. 3)
- Use of calculator is allowed. *4*)
- Assume suitable data if necessary. 5)
- Q1) Explain the convergence and divergence of Successive Iterative method with graphical representation. [6]

OR

- Q2) Solve by Bisection method $x^3 4x + 1 = 0$ correct up to two decimal places. [6]
- Q3) Solve the following equation by Gauss Elimination method, **[6]** 2x + 3y - z = 5, 4x + 4y - 3z = 3, 2x - 3y + 2z = 2
- Q4) Solve the following simultaneous equations using Tridiagonal Matrix Algorithm (TDMA),

$$5x_1 - x_2 = 5.5$$

 $-x_1 + 5x_2 - x_3 = 5$
 $-x_2 + 5x_3 - x_4 = 11.5$
 $-x_3 + 5x_4 = 16.5$

Rolling of the state of the sta Q5) Solve the following problem of LPP graphically,

[8]

Maximize
$$Z = 2x_1 + 5x_2$$

Subject to, $x_1 + 4x_2 \le 24$
 $3x_1 + x_2 \le 21$
 $x_1 + x_2 \le 9$
 $x_1, x_2 \ge 0$

OR

- Q6) Write a short note on Simulated Annealing with flowchart and applications in detail.[8]
- **Q7**) a) Solve the second order differential equation $y'' = xy'^2 y^2$ for x = 0.2 correct to 4 decimal places. Initial conditions are x = 0, y = 1, y' = 0, by Runge Kutta 2nd order, Increment in x = 0.1. [10]
 - b) Solve the equation $u_{xx} + u_{yy} = 0$ for the square mesh with the boundary values as shown below: [8]

- **Q8)** a) Solve the boundary value problem $u_t = u_{xx}$ subjected u(0,t) = u(1,t) = 0 $u(x,0) = \sin \pi x$, $0 \le x \le 1$, using Bender Schmidt method taking h = 0.2 and k = 0.02.
 - b) Draw flow chart for Solution of Ordinary Differential Equation by Runge Kutta 4th order. [8]
- **Q9)** a) It is known that the curve $y = ax^b$ fits the data given below. Find the best values of a and b. [8]

X	1	2	3	4	5	6
у	1200	900	600	200	110	50

b) From the following data, find y at x = 43

 x
 40
 50
 60
 70
 80
 90

 y
 184
 204
 226
 250
 276
 304

OR

[8]

- Draw the flowchart for fitting second degree curve using Least Square *Q10*)a) Technique.
 - Following data gives values of y corresponding to the values of x. Find b) value of x when y = 3.5 by applying Langrange's interpolation.

X	1	2	5	7
Y	1	12	117	317

- Find double integration of f(x,y) = 1/(x + y) for x = 2 to 3.2 and y = 1 to *Q11*)a) 2.8 taking no of steps in both x and y as nx = ny = 3. Use Trapezoidal rule. [8]
 - The table below gives the velocity v of a moving particle at time t seconds. b)

[8]

T	0	2	4	6	8	10	12
∇	4	6	16	34	60	94	136

Find the distance covered by the particle in 12 seconds using Simpson's 1/3rd rule.

Draw flow chart for Simpson's 3/8th rule. *Q12*)a)

[8]

arate two $\sin 2x dx$ by using Gauss quadrate two b) point formula.

