

# UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CENTRO MULTIDISCIPLINAR DE PAU DOS FERROS DEPARTAMENTO DE ENGENHARIAS E TECNOLOGIA

#### LABORATÓRIO DE CIRCUITOS DIGITAIS

### Verilog – Abordagem por Fluxo de Dados (Parte 2)

Prof.: Pedro Thiago Valério de Souza UFERSA – Campus Pau dos Ferros pedro.souza@ufersa.edu.br

#### Operações Aritméticas:

| Operador | Operação Realizada          | Exemplo:<br>a = 11<br>b = 5 |
|----------|-----------------------------|-----------------------------|
| +        | Soma                        | a + b = 16                  |
| -        | Subtração                   | a - b = 6                   |
| *        | Multiplicação               | a*b = 55                    |
| 1        | Divisão                     | <i>a</i> / <i>b</i> = 2     |
| %        | Resto da divisão $a\%b = 1$ |                             |
| **       | Exponenciação               | b**2 = 25                   |

- O bit de Carry-out é gerado automaticamente;
  - Se somar dois números de 4 bits, o 5<sup>a</sup> bit resultante da soma é o carry-out;

#### Exemplos:

```
assign x = a + b;
assign y = a - b;
assign w = a * b;
assign z = a / b;
```

- Operações de Concatenação e Replicação:
  - Servem para juntar os operandos e formar um novo vetor;

| Operador | Operação Realizada | Exemplo:<br>a = 3'b011<br>b = 2'b01 |
|----------|--------------------|-------------------------------------|
| {}       | Concatenação       | $\{a,b\} = 5'b01101$                |
| {{ }}    | Replicação         | ${3{b}} = 6'b010101$                |

Exemplos:

```
assign x = {a, b};
assign y = {2{a}};
```

#### Projeto 07 – Somador de 4-bits (revisto)

Projete um somador de 4-bits em Verilog. Desta vez, implemente o somador utilizando fluxo de dados juntamente com as operações aritméticas.



#### Operações de Deslocamento:

- Deslocamentos à esquerda (lógico ou aritméticos): Posições vagas são preenchidas com zero;
- Deslocamentos à direita:
  - Lógico: Posições vagas são preenchidas com zero;
  - Aritmético (unsigned): Posições vagas são preenchidas com zero;
  - Aritmético (signed): Posições vagas são preenchidas com o MSB.
- Bits deslocados são perdidos.

| Operador | Operação<br>Realizada                     | Exemplo:<br>a = 4'b0110<br>b = 4'b1011 |
|----------|-------------------------------------------|----------------------------------------|
| <<       | Deslocamento à esquerda lógico            | a<<1 = 4'b1100                         |
| >>       | Deslocamento à direita lógico a>>1 = 4'b0 |                                        |
| <<<      | Deslocamento à esquerda aritmético        | a <<<1 = 4'b0100                       |
| >>>      | Deslocamento à direita aritmético         | b>>>1 = 4'b1101                        |

#### Projeto 08 – Deslocadores barrel em Verilog

Projete um deslocador *barrel* em Verilog. O deslocador em questão possui uma entrada *A*, de 8 *bits*, que indica o dado a ser deslocador e uma entrada *sh*, de 3 *bits*, que indica quantos deslocamentos devem ser dados ao número *A*. A saída é apresentada em *B*, também de 8 *bits*.



#### Operações Relacionais:

São utilizados para comparar dois operandos;

Como resultado tem-se 0, quando a relação é falsa ou 1, quando a relação é

verdadeira;

| Operador | Operação Realizada | Exemplo:<br>a = 4'b0110<br>b = 4'b0011<br>c = 4'b0011 |
|----------|--------------------|-------------------------------------------------------|
| >        | Maior que          | a > b = 1'b1                                          |
| <        | Menor que          | a < b = 1'b0                                          |
| ==       | Igual a            | a==b=1'b0                                             |
| >=       | Maior ou igual que | a >= b = 1'b1<br>a >= c = 1'b1                        |
| <=       | Menor ou igual que | $a \le b = 1$ 'b0                                     |
| !=       | Diferente          | a != b = 1'b1                                         |

#### Projeto 09 – Comparadores de magnitude (revisitado)

Projete, utilizando o Verilog, um circuito que se comporte como um comparador de magnitude de 4 *bits*. O circuito possui duas entradas, denominadas de *A* e *B*, ambas de 4 *bits*. O circuito possui três saídas, denominas de *AeqB*, *AgtB* e *AltB*, que indicam quando, respectivamente, *A*=*B*, *A*>*B* e *A*<*B*. No seu projeto, utilize os operadores relacionais.



#### Atribuição Condicional:

Corresponde a um ternário em C;

```
assign x = (condição) ? (verdadeiro) : (falso);
```

Exemplo:

```
assign x = sel ? 4'b0010 : 4'b1100;
   //Verifica sel.
   //Se sel = 1 (verdadeiro), então x = 4'b0010.
   //Se sel = 0 (falso), então x = 4'b1100.
```

#### Projeto 10 – Multiplexador 2x1 de 4-bits

Descreva o circuito correspondente a um multiplexador 2x1 em Verilog utilizando a abordagem por fluxo de dados e utilizando atribuição condicional.



#### Projeto 11 – Unidade Lógico-Aritmética em Verilog

Implemente, em FPGA e utilizando o Verilog, uma unidade lógico-aritmética de 4-bits que possua a tabela de operação apresentada ao lado.

| Seleção |   | Oporação |                        |
|---------|---|----------|------------------------|
| X       | У | Z        | Operação               |
| 0       | 0 | 0        | S = A + B              |
| 0       | 0 | 1        | S = A - B              |
| 0       | 1 | 0        | $S = A \ll B$          |
| 0       | 1 | 1        | $S = A \gg B$          |
| 1       | 0 | 0        | S = A and $B$          |
| 1       | 0 | 1        | S = A  or  B           |
| 1       | 1 | 0        | $S = A \mathbf{xor} B$ |
| 1       | 1 | 1        | $S = \mathbf{not} A$   |

#### Projeto 11 – Unidade Lógico-Aritmética em Verilog



Prioridade dos Operadores:



### Referências

- PIMENTA, TALES CLEBER Circuitos Digitais Análise e Síntese Lógica: Aplicações em FPGA. Elsevier, 2017.
- Altera's Verilog HDL Basics (<a href="https://www.youtube.com/watch?v=PJGvZSIsLKs">https://www.youtube.com/watch?v=PJGvZSIsLKs</a>)
- VAHID, FRANK Sistemas Digitais Projeto, Otimização e HDLs. Bookman, 2008.