Национальный исследовательский университет ИТМО Факультет систем управления и робототехники

Задача №1 «Математическое моделирование двухмассового механизма» по дисциплине «Системы управления в электроприводе» Вариант №14

Подготовили: Марухленко Д.С

Группа: R34352

Преподаватель: Демидова Г.Л.

1 Цель работы

- Реализовать двухмассовую модель механизма в уравнениях состояния в среде MATLAB
- Снять на математической модели реакцию механизма на скачок момента M, величиной $0.1 M_{\text{ном}}$. Вывести графики $\omega_1(t),\,\omega_2(t),\,M_{12}(t)$.
- Сравнить параметры полученных кривых с расчетными. Сделать выводы о результате сравнения расчетных характеристик с экспериментальными.

2 Данные варианта

- Nππ: 14
- $\omega_{0\text{HOM}}$: 706 (1/c)
- M_{ном}: 13.7 (H_м)
- $M_{\rm H}$: 24.7 (H_M)
- J_1 : 0.008 (KГМ²)
- J_2 : 0.0025 (KГМ²)
- C_{12} : 300
- *T*₉: 50 (мс)
- $T_{\rm np}$: 10 (мс)
- $K_{\rm np}$: 15
- M_{c1}: 10 (H_M)
- M_{c2}: 3.7 (H_M)

3 Марериалы работы

3.1 Моделирвоание MATLAB

Соберем схему моделирования двухвассововй системы с заданными параметрами в среде $Matlab\ Simulink$.

Рис. 1: Схема моделирования двухмассовой системы

Проведем моделирование системы и снимем необходимые графики.

Рис. 2: График зависимости $\omega_1(t)$

Рис. 3: График зависимости $\omega_2(t)$

Рис. 4: График зависимости $M_{12}(t)$

0.1

3.2 Проверка рассчетных параметров

Для сравнения параметров с расчетными воспользуемся следующими формулами:

$$\Omega_0 = \sqrt{\frac{c_{12}(J_1 + J_2)}{J_1 J_2}} = 396.8627; \quad \gamma = \frac{J_1 + J_2}{J_1} = 1.3125$$

$$\varepsilon_{cp} = \frac{M}{J_1 + J_2} = 130.4762$$

$$\omega_1 = \varepsilon_{cp} t + \frac{\varepsilon_{cp}}{\Omega_0} (\gamma - 1) \sin(\Omega_0 t) = 130.5t + 0.1027 \sin(396.9t)$$

$$\omega_1 = \varepsilon_{cp} t - \frac{\varepsilon_{cp}}{\Omega_0} \sin(\Omega_0 t) = 130.5t - 0.3288 \sin(396.9t)$$

$$M_{12} = J_2 \frac{d\omega_2}{dt} = 0.3262 - 0.3262 * \cos(396.9t)$$

Построим графики полученных величин.

14 12 10 8 3 6 4 2 0 0 0.02 0.04 0.06 0.08 0.1 Time, s

Рис. 5: Расчетный график $\omega_1(t)$

Рис. 6: Расчетный график $\omega_2(t)$

Рис. 7: Расчетный график $M_{12}(t)$

Сравним их на одном графике:

Рис. 8: Сравнительный график $\omega_1(t)$

Рис. 9: Сравнительный график $\omega_2(t)$

Рис. 10: Сравнительный график $M_{12}(t)$

3.3 Проверка резонансных частот

$$\omega_{c1}=rac{\Omega_0}{\sqrt{\gamma}}=346.4102 ({
m pag/c})$$
 $\omega_{c2}=\Omega_0=396.8627 ({
m pag/c})$

Рис. 11: ЛАЧХ и ФЧХ ω_1

Рис. 12: ЛАЧХ и ФЧХ ω_2

4 Вывод

В ходе работы было установлено, что теоретическое описание поведения величин ω_1 , ω_2 , M_{12} , а так же рассчитанные резонансные частоты полностью совпадают с результатами моделирования двухмассовой механической системы.