10-3 Concurrent Lines

When two or more lines intersect in one point, the lines are said to be **concurrent**. For example, as you saw in Exercise 15, page 378, the bisectors of the angles of a triangle are concurrent.

Theorem 10-1

The bisectors of the angles of a triangle intersect in a point that is equidistant from the three sides of the triangle.

Given: $\triangle ABC$; the bisectors of $\angle A$, $\angle B$, and $\angle C$

Prove: The angle bisectors intersect in a point; that point is

equidistant from \overline{AB} , \overline{BC} , and \overline{AC} .

Proof:

The bisectors of $\angle A$ and $\angle B$ intersect at some point I. We will show that point I also lies on the bisector of $\angle C$ and that I is equidistant from \overline{AB} , \overline{BC} , and \overline{AC} .

Draw perpendiculars from I intersecting \overline{AB} , \overline{BC} , and \overline{AC} at R, S, and T, respectively. Since any point on the bisector of an angle is equidistant from the sides of the angle (Theorem 4-7, page 154), IT = IR and IR = IS. Thus IT = IS. Since any point equidistant from the sides of an angle is on the bisector of the angle (Theorem 4-8, page 154), I is on the bisector of $\angle C$. Since IR = IS = IT, point I is equidistant from \overline{AB} , \overline{BC} , and \overline{AC} .

In Exercises 14–16, page 384, you discovered three other sets of concurrent lines related to triangles: the perpendicular bisectors of the sides, the lines containing the altitudes, and the medians. As you can see in the diagrams below, concurrent lines may intersect in a point outside the triangle. The intersection point may also lie on the triangle (see Classroom Exercise 4, page 388).

Perpendicular bisectors

Lines containing altitudes