

netivreg: Estimation of Peer Effects in Endogenous Social Networks

Pablo Estrada 1 Juan Estrada 1 Kim P. Huynh 2,1 David T. Jacho-Chávez 1 Leonardo Sánchez-Aragón 3

The views expressed in this paper are solely those of the authors and may differ from official Bank of Canada views. No responsibility for them should be attributed to the Bank of Canada.

¹Emory University, ²Bank of Canada, ³ESPOL University

Motivation

- Estimation of network effects is becoming increasingly common
 - Interest on structural coefficients: endogenous peer effects and contextual effects
 - Estimate treatment effects and spillovers under interference
- Exogenous network formation is a commonly used assumption in empirical work
- Recent methods allowing for the presence of network endogeneity require explicit structural restrictions on the network formation process

- Estimation of network effects is becoming increasingly common
 - Interest on structural coefficients: endogenous peer effects and contextual effects
 - Estimate treatment effects and spillovers under interference
- Exogenous network formation is a commonly used assumption in empirical work
- Recent methods allowing for the presence of network endogeneity require explicit structural restrictions on the network formation process
- **Research Question:** can the <u>multiplex network data structure</u> help with the treatment of identification issues?

Preview of the Results

- Propose novel instruments based on the topology of multiplex networks
- Provide new identification results for peer/contextual effects that generalize existing methods by accounting for potential endogenous network formation
- Computationally easy to implement estimator that is consistent and asymptotically normal
- Stata implementation: netivreg
- Empirical application of peer effects in coauthorship networks: positive peer effects in citations

- Contextual Effects (interference): *i*'s outcome depends on the characteristics of other units.
- Endogenous Peer Effects (multiplier).

$$y_i = \alpha + \beta \sum_{i \neq j} W_{i,j} y_j + \delta \sum_{i \neq j} W_{i,j} x_j + \gamma x_i + \varepsilon_i.$$

- Contextual Effects (interference): *i*'s outcome depends on the characteristics of other units.
- Endogenous Peer Effects (multiplier).

$$y_i = \alpha + \beta \sum_{i \neq j} W_{i,j} y_j + \delta \sum_{i \neq j} W_{i,j} x_j + \gamma x_i + \varepsilon_i.$$

Objective: identify and consistently estimate the parameters $(\alpha, \beta, \gamma, \delta)$.

Main Challenges: Observational Data

• Simultaneity of the peer effects regressors (reflection problem).

 The decision of forming a peer connection can be correlated with unobserved characteristics or there could exists common shocks (correlated effects)

ullet The network structure could induce correlation between X and arepsilon (unobserved homophily)

Data Structure and Main Idea

$$y = \alpha^0 \iota + \beta^0 Wy + \delta^0 WX \delta^0 + X \gamma^0 + \varepsilon$$
, with $\mathbb{E}\left[\varepsilon \mid W, X\right] \neq 0$ and $\mathbb{E}\left[\varepsilon \mid W_0, X\right] = 0$.

 \bullet Individuals are (quasi-) randomized into groups (for example classrooms) defining $W_0.$

- ullet Individuals are (quasi-) randomized into groups (for example classrooms) defining W_0 .
- Only the fact that two individuals share a classrooms does not necessarily generate social effects.

- ullet Individuals are (quasi-) randomized into groups (for example classrooms) defining W_0 .
- Only the fact that two individuals share a classrooms does not necessarily generate social effects.
- It is possible to observe a relevant network (for example friendship) defining W.

- ullet Individuals are (quasi-) randomized into groups (for example classrooms) defining W_0 .
- Only the fact that two individuals share a classrooms does not necessarily generate social effects.
- It is possible to observe a relevant network (for example friendship) defining W.
- This method can be used to causally estimate network friendship effects.

- 1. Monolayer Linear model and Bi-layer multiplex network data $\mathcal{M}=2$ (W and W₀).
- 2. Conditional distribution $\mathcal{F}(\varepsilon \mid X, \mathcal{M})$ is such that $\mathbb{E}[\varepsilon | W, X] \neq 0$ and $\mathbb{E}[\varepsilon | W_0, X] = 0$.
- 3. The networks generating the adjacency matrices W and W₀ are correlated in the sense that it is possible to find connections in common $(E_0 \cap E_1 \neq 0)$ and distance two paths that change edge type $((i,j) \in E_0$ and $(j,k) \in E_1)$.

Let Π be the projection coefficients from a regression of WS on W₀S, where $S = [y \ X]$.

Theorem:

Let Assumptions 1, \bullet 2, \bullet 3, and $\gamma^0(\pi_{11}\beta^0 + \pi_{12}\delta^0) + \pi_{21}\beta^0 + \pi_{22}\delta^0 \neq 0$ hold. If the matrices I, W₀, W₀² are linearly independent, then the parameters $\alpha^0, \beta^0, \gamma^0$ and δ^0 are identified.

Remark

Note that this is a generalization of the identification result in Proposition 1 of Bramoullé et al. (2009, JoE), i.e., if $W_0 = W$, one has $\Pi = I$, and the condition reduces to $\gamma^0 \beta^0 + \delta^0 \neq 0$ and the matrices I, W and W² being linearly independent.

▶ Rank Condition

$$\begin{split} \mathbf{y} &= \alpha^0 \boldsymbol{\iota} + \mathbf{W} \mathbf{S} \boldsymbol{\theta}^0 + \mathbf{X} \boldsymbol{\gamma}^0 + \boldsymbol{\varepsilon} \quad \text{for} \quad \mathbf{S} = [\mathbf{y} \quad \mathbf{X}] \quad \text{and} \quad \boldsymbol{\theta}^0 = [\beta^0 \quad \boldsymbol{\delta}^0] \\ \mathbf{y} &= \alpha^0 \boldsymbol{\iota} + \mathbf{W}_0 \mathbf{S} \boldsymbol{\theta}^* + \mathbf{X} \boldsymbol{\gamma}^0 + \mathbf{e}, \quad \text{for} \quad \boldsymbol{\theta}^* = \Pi \boldsymbol{\theta}^0. \end{split}$$

Estimation Procedure

- 1. Estimate Π by OLS (WS on W_0S).
- 2. 2SLS of $[\iota, X, W_0 y, W_0 X]$ with instrument $Z = [\iota, X, W_0^2 X, W_0 X]$. Calculate $\widehat{\theta} = \widehat{\Pi}^{-1} \widehat{\theta}^*$.
- 3. IV of $\left[\iota, X, \widehat{Wy}, \widehat{WX}\right]$ with instruments $\widehat{Z}^* = \left[\iota, X, \left[E\left(W_0y|X, W_0\right), W_0X\right]\widehat{\Pi}\right]$.

Estimator and Properties

$$\widehat{\psi}_{G3SLS} = \left(\widehat{\mathsf{Z}}^{*\top}\widehat{\mathsf{D}}\right)^{-1}\widehat{\mathsf{Z}}^{*\top}\mathsf{y},$$

$$\sqrt{n}(\widehat{\psi}_{G3SLS} - \psi) \stackrel{d}{
ightarrow} N(0, {f V_{\psi}})$$

Stata Implementation

Simulation Example

- Simulate data using an ideal experiment where $\beta_0=0.7$, $\delta_i=\gamma_i=1/3$ for $i=\{1,2,3\}$, and $\delta_4=\gamma_4=0$ Montecarlo
- Use the three stage procedure to calculate the efficient IV estimator in Stata

netivreg y-exo x1 x2 x3 x4 (edges = edges0)

Netwo	ork IV Reg	ression				Number of obs Wald chi2(10) Prob > chi2 R-squared Root MSE	= 400 = 822.20 = 0.0000 = 0.8176 = 1.194
	y_endo	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
W_y	y_endo	.7059194	.0934719	7.55	0.000	.5221476	.8896911
W_x							
	x1	.3464024	.1277675	2.71	0.007	.0952031	.5976017
	x2	.3280795	.0870187	3.77	0.000	.1569951	.4991639
	x3	.3615469	.0926147	3.90	0.000	.1794604	.5436334
	x4	.0500988	.1476019	0.34	0.734	2400962	. 3402939
х							
	x1	.3782985	.0560235	6.75	0.000	.2681526	.4884443
	x2	.3287283	.0426851	7.70	0.000	.2448066	.4126499
	х3	.3442047	.0483468	7.12	0.000	.2491518	.4392576
	x4	.0895948	.0745045	1.20	0.230	0568859	.2360756
	_cons	1.035534	.3189017	3.25	0.001	.4085523	1.662515

- Use of the APIs from Scopus and IDEAS/RePEc, Web scrapping and text mining.
- The for the American Economic Review, Econometrica, Journal of Political Economy, Quarterly Journal of Economics, The Review of Economic Studies, and The Review of Economics and Statistics between 2000 and 2018.
- Authors' information such as citation counts, gender, RePeC ranking, current affiliations, fields of expertise, advisor, job, and education history.

Data Structure

W (Coauthors)

target source source target

W_0 (Alumni) (y, X)

14 21 2.02585 0 0 0 1 15 2 27 20 20 20 20 20 20											
5 33 3.86663 0 0 1 21 1 39 aer 2000 6 38 3.555348 0 0 1 17 2 31 aer 2000 7 51 3.583519 0 0 1 20 1 48 aer 2000 8 59 3.98894 0 0 1 17 2 50 aer 2000 9 68 2.197225 0 0 1 15 2 31 aer 2000 10 76 2.197225 0 0 0 11 2 18 aer 2000 11 86 3.218876 0 0 0 24 1 32 aer 2000 12 96 4.836282 0 0 0 24 2 57 aer 2000 13 105 4.69148 0		id	lcitations	editor	diff_gender	isolated	n_pages	n_authors	n_references	journal	year
6 38 3.555348 0 0 1 17 2 31 aer 2000 7 51 3.583519 0 0 1 20 1 48 aer 2000 8 59 3.588584 0 0 1 17 2 50 aer 2000 9 68 2.197225 0 0 1 15 2 31 aer 2000 10 76 2.197225 0 0 0 11 2 18 aer 2000 11 86 3.218976 0 0 0 24 1 32 aer 2000 12 96 4.63622 0 0 0 24 2 57 aer 2000 13 105 4.691348 0 0 1 25 2 40 aer 2000 14 122 4.776685 0	4	21	2.302585	0	0	1	15	2	27	aer	2000
7 51 3.583519 0 0 0 1 20 1 48 aer 2000 8 59 3.988984 0 0 1 17 2 50 aer 2000 9 68 2.197225 0 0 1 15 2 31 aer 2000 10 76 2.197225 0 0 0 11 2 18 aer 2000 11 86 3.218876 0 0 0 24 1 32 aer 2000 12 96 4.838282 0 0 0 24 2 57 aer 2000 13 105 4.691348 0 0 1 25 2 40 aer 2000 14 122 4.770685 0 0 1 30 1 30 aer 2000	5	31	3.806663	0	0	1	21	1	39	aer	2000
8 59 3.988984 0 0 1 17 2 50 aer 2000 9 68 2.197225 0 0 1 155 2 31 aer 2000 10 76 2.197225 0 0 0 11 2 18 aer 2000 11 86 3.218876 0 0 0 24 1 32 aer 2000 12 96 4.836282 0 0 0 24 2 57 aer 2000 13 105 4.691348 0 0 1 25 2 40 aer 2000 14 122 4.770685 0 0 1 30 1 30 aer 2000	6	38	3.555348	0	0	1	17	2	31	aer	2000
9 68 2.197225 0 0 1 1 15 2 31 aer 2000 10 76 2.197225 0 0 0 11 2 18 aer 2000 11 86 3.218976 0 0 0 24 1 32 aer 2000 12 96 4.836282 0 0 0 24 2 5 7 aer 2000 13 105 4.691348 0 0 1 25 2 44 aer 2000 14 122 4.77665 0 0 1 30 1 30 aer 2000	7	51	3.583519	0	0	1	20	1	48	aer	2000
10 76 2.197225 0 0 0 111 2 18 aer 2000 11 86 3.218876 0 0 0 24 1 32 aer 2000 12 96 4.836282 0 0 0 24 2 57 aer 2000 13 105 4.691348 0 0 1 25 2 40 aer 2000 14 122 4.77665 0 0 1 30 1 30 aer 2000	8	59	3.988984	0	0	1	17	2	50	aer	2000
11 86 3.218876 0 0 0 24 1 32 aer 2000 12 96 4.836282 0 0 0 24 2 57 aer 2000 13 105 4.691348 0 0 1 25 2 40 aer 2000 14 122 4.776685 0 0 1 30 1 30 aer 2000	9	68	2.197225	0	0	1	15	2	31	aer	2000
12 96 4.836282 0 0 0 24 2 57 aer 2000 13 105 4.691348 0 0 1 25 2 40 aer 2000 14 122 4.770685 0 0 1 30 1 30 aer 2000	10	76	2.197225	0	0	9	11	2	18	aer	2000
13 105 4.691348 0 0 1 25 2 40 aer 2000 14 122 4.770685 0 0 1 30 1 30 aer 2000	11	86	3.218876	0	0	9	24	1	32	aer	2000
14 122 4.779685 0 0 1 30 1 30 aer 2000	12	96	4.836282	0	0	9	24	2	57	aer	2000
	13	105	4.691348	0	0	1	25	2	40	aer	2000
15 139 3.850147 0 0 1 16 1 49 aer 2000	14	122	4.770685	0	0	1	30	1	30	aer	2000
	15	139	3.850147	0	0	1	16	1	49	aer	2000
16 144 2.564949 0 0 0 21 2 16 aer 2000	16	144	2.564949	0	0	9	21	2	16	aer	2000
17 151 4.26268 1 0 0 21 3 36 aer 2000	17	151	4.26268	1	0	9	21	3	36	aer	2000
18 162 2.890372 0 0 1 26 1 26 aer 2000	18	162	2.890372	0	0	1	26	1	26	aer	2000

Empirical Application: Specification

$$y_{i,r,t} = \alpha + \beta \sum_{j \neq i} \mathbf{w}_{\ell;i,j,t} y_{j,r,t} + \sum_{j \neq i} \mathbf{w}_{\ell;i,j,t} \widetilde{\mathbf{x}}_{j,r,t}^{\top} \boldsymbol{\delta} + \mathbf{x}_{\ell;i,r,t}^{\top} \boldsymbol{\gamma} + \lambda_r + \lambda_t + \lambda_0 + \varepsilon_{i,r,t}$$

netivreg lcitations editor diff-gender n-pages n-authors n-references isolated
 (edges = edges0), wx(diff-gender editor) cluster(c-coauthor) first second

Peer Effects (β)

log(# Citations)

Direct Effects (γ)

Editor

Different Gender

- # Authors
- # Pages
- # References

Contextual Effects (δ)

Editor

Different Gender

Fixed Effects (λ s)

Journal

Year

Alumni Component

Step1: Projection Coefficients

$$WS = W_0S\Pi + U$$

Projection of W	on WØ					
	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
W_lcitations						
W0_lcitations	.4956186	.0321772	15.40	0.000	.4324379	.5587993
W0_diff_gender	.0127121	.5132519	0.02	0.980	9950719	1.020496
W0_editor	.0085967	.7897166	0.01	0.991	-1.542033	1.559227
W diff gender						
W0_lcitations	.137265	.0033955	40.43	0.000	.1305979	.1439321
W0_diff_gender	.1422822	.0541602	2.63	0.009	.0359371	.2486273
W0_editor	.0325262	.0833338	0.39	0.696	131102	.1961544
W editor						
W0 lcitations	.4249148	.0025367	167.51	0.000	.419934	.4298957
W0_diff_gender	.1027705	.0404624	2.54	0.011	.0233214	.1822195
W0_editor	.1367464	.0622576	2.20	0.028	.0145019	.2589909

2SLS of $[\iota, X, W_0 y, W_0 X]$ with instrument $Z = [\iota, X, W_0^2 X, W_0 X]$

2SLS Regression	on				Number of obs Wald chi2(62) Prob > chi2 R-squared Root MSE	= 729 = -1.1e+17 = 1.0000 = 0.1317 = 1.846
lcitations	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
W_y lcitations	.9496092	.5481734	1.73	0.084	126744	2.025962
X diff_gender editor n_pages n_authors n_references isolated	.2224841 .1691513 .0282953 .0747385 .0119404 2131575	.1317096 .1181452 .0048171 .0603238 .0025597	1.69 1.43 5.87 1.24 4.66	0.092 0.153 0.000 0.216 0.000 0.024	06283 .0188369 043709 .0069143	.4810994 .4011327 .0377538 .1931859 .0169665 0281109

Step3: Optimal Instrument

$$IV \text{ of } \left[\iota, X, \widehat{\textbf{Wy}}, \widehat{\textbf{WX}} \right] \text{ with instruments } \widehat{Z}^* = \left[\iota, X, \left[E\left(W_0 y | X, W_0 \right), W_0 X \right] \widehat{\Pi} \right]$$

Network IV Rep Number of clus	R-squared	= 6.5e+16 = 0.0000 = 0.1723 = 1.339				
lcitations	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
W_y lcitations	.5200772	.3616317	1.44	0.151	1899963	1.230151
X diff_gender editor n_pages n_authors n_references isolated	.218709 .1733642 .0288947 .0719403 .0119892 2230689	.1305651 .1157379 .0044187 .0597035 .0025599	1.68 1.50 6.54 1.20 4.68	0.094 0.135 0.000 0.229 0.000 0.013	0376592 0538902 .0202184 0452891 .0069628 3992083	.4750771 .4006187 .0375709 .1891696 .0170156

Conclusion

- Identification of a linear-in-means model with endogenous network.
- Computationally simple estimation that uses two-layered multiplex network structure with Stata implementation.
- Robust to different types of network endogeneity. It does not require to model unobserved heterogeneity and network formation.

Appendix

Distortions Induced by Social Effects: Consumption Examples

- If individuals care about **status** (conspicuous consumption models), the proportion of conspicuous consumption may increase with respect to other goods.
- If conspicuous consumption is considered wasteful, peer effects might have noticeable welfare consequences.
- Savings may differ from the optimal in an attempt to keeping up with the peers.

► Empirical Work

Aggregate Effects: Consumption Example

- Unanticipated tax changes to the rich might have aggregate consequences.
- If individuals who are not affected by the shock change their consumption after observing changes in consumption of the rich, the shock can spread through the network.
- Social multipliers depend on the size of the endogenous peer effects and the connectedness of the affected groups.

► Empirical Work

Angrist's (2014) Critique: Group Regressions

- **Reflection Problem:** a regression of individual outcomes on group mean outcomes is tautological.
- Correlated Effects: even the leave-one-out estimator does not provide information of human behavior. "Like students in the same school, households from the same village are similar in many ways".
- Mechanical Relationship: the coefficient on group averages in a multivariate model of endogenous peer effects does not reveal the action of social forces. He interprets the vale $1/(1-\beta)$ as approximately the ratio of the 2SLS to OLS estimands for the effect of individual covariates on outcomes (using dummy groups as instruments).

► Motivation

Angrist's (2014) Critique: Network Regressions

- Start by a saturated model $E[y_i \mid x_i] = \gamma_0 + \gamma_1 x_i$ satisfying $E[u_i \mid x_i] = 0$, for $u_i \equiv y_i \gamma_0 \gamma x_i$.
- Individuals are ordered from left to right. Each person i is connected only with the individual to her left i-1. Friends are only similar on unobservables: $u_i = \beta u_{i-1} + \varepsilon_i$.
- The outcome can be written in a linear-in-means (lmm) model form:

$$y_i = \gamma_0(1 - \beta) + \beta y_{i-1} + \gamma x - \beta \gamma x_{i-1} + \varepsilon_i$$

• Flaw in Angrist's example: let $\delta = -\beta \gamma$ to write this model exactly as a lmm. Note that $\delta + \gamma \beta = 0$ so that the outcome equation can be written as (for $\alpha = \gamma_0(1 - \beta)$)

$$y_i = \frac{\alpha}{1 - \beta} + \gamma x_i + v_i$$

Different Network Effects

Critique to Randomly Assigned Groups

- In principle, randomization of peers would guarantee identification in a monolayer linear in means model where endogenous network formation is ruled out.
- It can completely eliminate the problem of unobserved common variables.
- However, if individuals endogenously form groups (homophily), there can be a subsequent resorting. If resorting happens faster than the effects of social interactions, identification is not possible.
- Even with random peers, researchers face a classical problem of **omitted variables** when trying to estimate contextual effects $(\mathbb{E}[x_i\varepsilon_j\mid w_{i,j}=1]\neq 0)$.

Literature

Multilayers Networks in Economics

Labor Supply

 Sisters, Cousins and Neighbors networks (NST (2018, AEJ))

Education

- Friendship network in t and t-1 (GI (2013, JBES))
- Roommates, classmates, Study-mate, Friendship networks (CL (2015))
- Siblings and Classmates networks (NR (2017, JAE))

Consumption

 Coworker and Spouses networks (DFP (2020, Restud))

Publication Outcomes

 Coauthors, Alumni and Same Advisor networks (EHJS (2020))

Multilayer

Microfoundations

- The monolayer linear model of interest corresponds with the best response of a Bayesian Game of Social Interactions as proposed by Blume, Brock, Durlauf and Jayaraman (2015, JPE).
- Quadratic utility with social pressure or strategic complementarities

$$U_i\left(\omega_i,\omega_{-i}\right) = \left(\gamma x_i + z_i + \delta \sum_j c_{ij} x_j\right) \omega_i - \frac{1}{2} \omega_i^2 - \frac{\phi}{2} \left(\omega_i - \sum_j a_{ij} \omega_j\right)^2$$

- In their model endogeneity arises because an individual i, observing that he is connected to j, make an inference about the value of z_j that is dependent on x_j . Then, x_j will be correlated with ε_i in my equation of interest.
- Their critique of instrumental variable is that if individual i observe the instruments v_j , he can use it to predict z_j which will induce correlation between ε_i and the instrument.
- Our instrument is based on x_r of individuals r connected to i in a network that is independent of the individuals' utilities. Therefore x_r is not useful to predict z_i .

Positioning the Research Agenda in the Literature

Assumptions

Assumption 1

There exists a $n \times n$ adjacency matrix W_0 such that: $\mathbb{E}[v|x,W_0]=0$

Assumption 2

Let Π be the be the full-rank matrix of coefficients from the system regression

$$\begin{split} \mathbf{W}\mathbf{S} &= \mathbf{W}_0\mathbf{S}\Pi + \mathbf{U}, \\ E\left[\mathbf{U}|\mathbf{W}_0\mathbf{y}, \mathbf{W}_0, \mathbf{X}\right] &= \mathbf{O}. \end{split}$$

where $\mathbb{E}[S^{\top}w_{0;i}w_{0;i}^{\top}S] > 0$. Furthermore, the first row of Π is such that $\pi_{11}\beta + \pi_{12}\delta < 1/\lambda_{\text{max}}$, where λ_{max} is the largest eigenvalue of W_0 .

▶ Identification

Rank Condition

- Given that $\operatorname{rank}(\Pi) \leq \min\{\operatorname{rank}(E[S^\top w_{0;i}w_{0;i}^\top S]^{-1}), \operatorname{rank}(E[S^\top w_{0;i}w_i^\top S])\}$, a necessary condition for $\operatorname{rank}(\Pi) = k+1$ is that $\operatorname{rank}(E[S^\top w_{0;i}w_i^\top S]) = k+1$ which would be equivalent to the **relevance** condition in the classical Instrumental Variable literature.
- For large enough sample, this condition imposes some restriction on the matrix W_0W . This matrix contains the connections in common across the two networks in the main diagonal, and length two paths that change color in the off- diagonal.
- It cannot be zero so there have to be enough connections in common and indirect triads that change colors. This is a way to think about the correlation between the two matrices.

▶ Identification

Mote Carlo Experiments ••

Empirial Application: Data

- 1,628 articles published in the American Economic Review, Econometrica, the Journal of Political Economy, and the Quaterly Journal of Economics between 2000 and 2006. Source: RePEc, Scopus, and Journal Websites.
- Employment, education, and research interest information for 1,985 unique authors and 42 unique editors (37 of which also published papers in thee journals in this time period).
 Source: Web scrapping/text mining and Colussi (2018, ReStat).
- ullet Co-authorship $(\ell=1)$ and Alumni $(\ell=0)$ networks are constructed for all 2,027 scholars.

<u>Articles</u> i and j are connected in network W_{ℓ} if at least one of the authors of <u>article</u> i shares a professional connection of type ℓ with at least one of <u>article</u> j's authors.

► Empirical Application