1 Лекция №2

Условная оптимизация

Условная оптимизация с ограничениями-равенствами. Функция Лагранжа

def: Задачей условной оптимизации с ограничениями-равенствами называется следующая задача: $f_1 \to extr; \ f_i(x) = 0 (i=\overline{1,m}), (m< n), \ \text{где} \ f_i(x) : R^n \to R(i=\overline{0,m})$ и $\forall f_i(x)$ - дифференцируема.

Теорема 1. необходимое условие экстремума I порядка.

If $\mathbf{r}.x^* = (x_1^*, ..., x_n^*) \in locextr f_0 \Rightarrow$ then \exists вектор множителей Лагранжа $\lambda^* = (\lambda_1^*, ..., \lambda_m^*) \in \mathbb{R}^m$ (λ) ($\lambda^* \neq 0$) такой, что для функции Лагранжа:

$$\mathcal{L}(x_1, ..., x_n; \lambda_1, ..., \lambda_m) = f_0(x_1, ..., x_n) + \sum_{i=1}^m \lambda_i f_i(x_1, ..., x_n)$$
(1)

выполняется условия стационарности:

$$\frac{\partial \mathcal{L}(x^*, \lambda^*)}{\partial x_j} = \frac{\partial f_1(x^*)}{\partial x_j} + \sum_{i=1}^m \lambda_i \frac{\partial f_i(x^*)}{\partial x_j} = 0 \quad (j = \overline{1, n})$$

$$\frac{\partial \mathcal{L}(x^*, \lambda^*)}{\partial \lambda_i} = f_i(x^*) = 0 \quad (i = \overline{1, m})$$
(2)

т.е. 've систему n+m уравнений для нахождения n+m неизвестных $\{x_1^*,...,x_n^*;\lambda_1^*,...,\lambda_m^*\}$

Теорема 2. необходимое условия экстремума II порядка.

Іf т. $x^* = (x_1^*, ..., x_n^*) \in locmin f_0$ (условие регулярности) и векторы $f_1'(x^*), ..., f_m'(x^*)$ - линейно независимы \Rightarrow then \exists вектор множителей Лагранжа $\lambda^* = (\lambda_1^*, ..., \lambda_m^*) \in R^m(\lambda^* \neq 0)$ такой, что для функции Лагранжа

$$\mathcal{L}(x,\lambda) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

выполняются условия:

- 1. стационарности (2)
- 2. неотрицательной определенности матрицы вторых производных: (3) $(\mathcal{L}''(x^*, \lambda^*)h, h) \ge 0 \ \forall h \in \{(f_i'(x^*), h) = 0 (i = \overline{1, m})\}$

Rem: Для т. $x^* \in locmax f_0$ need $\mathcal{L}(x,\lambda) = -f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$

Теорема 3. достаточное условие экстремума II порядка.

Іf в т. $x^*=(x_1^*,...,x_n^*)$ векторы $f_1'(x^*),...,f_m'(x^*)$ - линейно независимы и \exists вектор множителей Лагранжа $\lambda^*=(\lambda_1^*,...,\lambda_m^*)\in R^m(\lambda^*\neq 0)$ такой, что для функции Лагранжа

$$\mathcal{L}(x,\lambda) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

в т. x^* выполняются условия:

- 1. стационарности (2)
- 2. положительной определенности матрицы вторых производных: $(\mathcal{L}(x^*,\lambda^*)h,h)>0 \ \forall h\in \{(f_i'(x^*),h)=0 (i=\overline{1,m}),(h\neq 0)\}\Rightarrow \Rightarrow \text{then т. } x^*\in locminf_0$

Rem: Для т. $x^* \in locmax f_0$ need $\mathcal{L}(x,\lambda) = -f_0(x) + \sum_{i=1}^m \lambda_i f_i$

Частный случай

 $z=f(x,y) o \exp^{-\alpha}$ ехtr; при $\varphi(x,y)=0\Rightarrow$ функция Лагранжа 've вид: $\mathcal{L}(x,y,\lambda)=f(x,y)+\lambda \varphi(x,y)$

Условия стационарности(необх. усл. І порядка)(2):

$$\begin{cases} \mathcal{L}'_x(x^*, y^*, \lambda^*) = f'_x(x^*, y^*) + \lambda \varphi'_x(x^*, y^*) = 0\\ \mathcal{L}'_y(x^*, y^*, \lambda^*) = f'_y(x^*, y^*) + \lambda \varphi'_y(x^*, y^*) = 0\\ \mathcal{L}'_\lambda(x^*, y^*, \lambda^*) = \varphi'(x^*, y^*) = 0 \end{cases}$$

- \Rightarrow система трех уравнений с тремя неизвестными
- \Rightarrow находим стационарные точки (x^*, y^*, λ^*)

Вычисляется в каждой из get-х стационарных точек (x^*, y^*, λ^*) определитель:

$$\Delta = - egin{bmatrix} 0 & arphi_x' & arphi_y' \ arphi_x' & \mathcal{L}_{xx}'' & \mathcal{L}_{xy}'' \ arphi_y' & \mathcal{L}_{yx}'' & \mathcal{L}_{yy}'' \end{bmatrix}$$

if $\Delta > 0 \Rightarrow$ then $\mathbf{T}.(x^*, y^*, \lambda^*) \in \text{locmin z}$ if $\Delta < 0 \Rightarrow$ then $\mathbf{T}.(x^*, y^*, \lambda^*) \in \text{locmax z}$

Условная оптимизация с ограничениями-равенствами и неравенствами. Математическое программирование

def: Задачей условной оптимизации с ограничениями-равенствами и ограниченияминеравентсвами называется следующая задача:

$$(4)f_0(x) \to min; (5)f_i(x) \le 0 \ (i = \overline{1,p}), (6)f_i(x) = 0 \ (i = \overline{p+1,m}),$$
где $f_i(x): R^n \to R(i = \overline{0,m})$

def: Эта задача называется задачей математического программирования (ЗМП) **Rem:**

- 1) Обычно в ЗМП присутствуют условия неотрицательности переменных $x_i \ge (i = 1, n)$ эти условия записываются в системе неравенств (5) в виде: $-x_i \le 0 (i = 1, n)$
- 2) Каждое ограничение-равенство (6) можно заменить двумя неравенствами:

$$f_i(x) = 0 \Leftrightarrow \begin{cases} f_i(x) \le 0 \\ -f_i(x) \le 0 \end{cases} \quad (i = \overline{p+1, m})$$

В силу этих замечаний ЗМП можно записать в виде:

$$f_0(x) o min$$
 $f_i(x) \le 0 \ (i = \overline{1,m}) \ (8)$ где $x = (x_1,...,x_n)$
Для ЗМП составляется функция Лагранжа

$$\mathcal{L}(x_1, ..., x_n; \lambda_1, ..., \lambda_m) = f_0(x_1, ..., x_n) + \sum_{i=1}^m \lambda_i f_i(x_1, ..., x_n)$$

С помощью функции Лагранжа выписываются необходимые и достаточные условия экстремума тип (2)-(3). Однако, проверка выполнения этих условий становится еще более сложной. При этом требуется решать систему, вообще говоря, нелинейных уравнений и неравенств. Для этого применяются итерационные численные методы, формирующие последовательность точек, сходящуюся к точке экстремума. Однако, эта точка может оказаться точкой локального(а не глобального) экстремума. Это объясняется тем, что ЗМП в такой общей постановке, без каких-либо предположений относительной функций $f_i(x)$, является многоэкстремальной задачей. Не существует универсальных методов решения таких задач. Содержательная теория построена лишь для отдельных классов ЗМП, в частности, задач оптимизации выпуклых функций на выпуклом множестве решений систем ограничений-неравенств. Такие задачи, называемые задачами выпуклого программирования(ЗВП), являются, как будет показано ниже, одноэкстремальными задачами.