Noninvasive Temperature Monitoring Using Change in Backscattered Energy for Clinically Relevant Heating Scenarios

William L. Straube, R. Martin Arthur, Jason W. Trobaugh, and Eduardo G. Moros

2007 STM Meeting

Objective of Ultrasonic Thermometry

To develop a method to produce 3D temperature maps in soft tissue during hyperthermia cancer treatment

- non-invasively, conveniently at low cost with a single view from standard equipment
- with at least 0.5°C accuracy & 1 cm³ resolution

Change in backscattered energy (CBE) as a monotonic temperature-dependent parameter

CBE single-scatterer prediction *U Med & Bio*, 20:915-922, 1994

CBE from isolated echoes in 1D *Medical Physics*, 30:1021-1029, 2003

CBE over selected regions in 2D *IEEE UFFC*, 52:1644-1652, 2005

Bovine Liver

In Vivo Studies

- > Performed on nude mice
 - attached to submerged angled tray
 bilaterally implanted HT29 tumors
 RTD thermistor in contralateral tumor
- ➤ In vitro procedure followed + from 37.0 to 45.0°C in 0.5°C steps
- for an experiment of 0.5 hours

 Mice euthanized without recovery

 Images analyzed in a manner similar to that for *in vitro* experiments

CBE with Temperature *In Vivo*

Measured CBE in mice

Predicted CBE in subwavelength scatterers

Small Animal Hyperthermia Ultrasound System

ultrasonic transducer holder mounted on the body of the applicator **SAHUS Acrylic Body applicator**

Coupling gel

Heated tumor

Animal

perature

Ultrasound Images Generated by the Terson Before Ultrasound heating with the SAHUS

Set up for Turkey breast on SAHUS

Set up for Turkey breast on SAHUS

Washington University in St. Louis

3 successive images of Turkey breast

Before heating

10 °C rise

20 °C rise

CBE images for 10 and 20 degree increase

Set up for Turkey breast on SAHUS

Spread of Averaged CBE

10 °C rise

20 °C rise

Sonotherm 1000

Ultrasound Image through Sonotherm Bolus

Unfiltered and filtered ultrasound image taken through the Sonotherm bolus

Ultrasound Hyperthermia

Summary & Conclusions

- Measured changes in backscattered energy (CBE) from 37 to 45°C in motion-compensated images were consistent with CBE in our model of single sub-wavelength scatterers and in simulations of collections of scatterers
- CBE varied nearly monotonically with temperature in *in vivo* mice just as it did in *in vitro* beef liver, turkey breast & pork muscle
- ➤ Measurement of CBE is possible in "Realistic heating scenarios" such as the SAHUS and perhaps with the Sonotherm

Future Directions for Thermometry Based on Ultrasonic CBE

- Better heating scenario to prove the effectiveness
 of CBE for identifying a heated region
 - Microwave Interstitial antenna which can effectively heat a "cylinder" of tissue
- Experimentation with Sonotherm
 - Coupling to Sonotherm heating system...
 - Completely power off Sonotherm during measurements
- >True In Vivo testing for these heating scenarios

