W

What is claimed is:

CLAIMS

a later time;

1	1. A method for accessing a computer memory array, the method comprising	
2	receiving a set of initial address bits from a memory manager, said initial	
3	address bits corresponding to a memory location defined in a first format; and	
4	translating said set of initial address bits to a set of translated address bits	
5	said translated address bits corresponding to a memory location defined in a second	
6	format.	
10 20 20	2. The method of claim 1, further comprising: receiving a set of row address bits from said memory manager at a first	

time; receiving a set of initial column address bits from said memory manager at

translating said set of initial column address bits to a set of translated column address bits; and

simultaneously using said set of row address bits and said set of translated column address bits to access a desired memory location in the memory array;

wherein said desired memory location in the memory array has a row address corresponding to the value of said set of row address bits and a column address corresponding to the value of said set of translated column address bits.

11

12

1	3.	The method of claim 2, wherein:	
2		a first subset of said initial address bits is used to generate said translated	
3	column address bits; and		
4		a second subset of initial address bits is used to identify a specific location	
5	within a men	nory array column corresponding to said translated column address bits.	
1	4.	The method of claim 3, wherein:	
2		said memory manager processes memory address information in	
3	accordance with a first memory page structure; and		
4		the memory array is configured in accordance with a second memory page	
5□	structure;		
·⊔ 6: <u>□</u>		wherein a memory page structure is defined by the number of columns	
7 . =	included in a given row, and the number of storage locations located at each column in		
59997 79997 8599	w.		
1=	5.	The method of claim 4, wherein:	
2,5		said first memory page structure and said second memory page structure	
3H	contain an unequal number of columns; and		
15 27 35 35 44		said first and second memory page structures contain an equal number of	
5	storage locat	ions.	

1	6. A method for decoding a memory array address for an embedded DRAM	
2	(eDRAM) device, the eDRAM device configured for operation with an SDRAM memory	
3	manager, the method comprising:	
4	receiving a set of row address bits from the memory manager at a first	
5	time;	
6	receiving a set of initial column address bits from the memory manager at	
7	a later time;	
8	translating said set of initial column address bits to a set of translated	
9	column address bits; and	
10	simultaneously using said set of row address bits and said set of translated	
11	column address bits to access a desired memory location in the eDRAM device;	
11 0 120 120	wherein said desired memory location in the eDRAM device has a row	
13 <mark>5</mark>	address corresponding to the value of said set of row address bits and a column address	
142	corresponding to the value of said set of translated column address bits.	
1	7. The method of claim 6, wherein:	
2 1	a first subset of said initial address bits is used to generate said translated	
311	column address bits; and	
	a second subset of initial address bits is used to identify a specific location	
5	within an eDRAM column corresponding to said translated column address bits.	

1	8. The method of claim 7, wherein:		
2	the SDRAM memory manager processes memory address information in		
3	accordance with a first memory page structure; and		
4	the eDRAM device is configured in accordance with a second memory		
5	page structure;		
6	wherein a memory page structure is defined by the number of columns		
7	included in a given row, and the number of storage locations located at each column in		
8	said given row.		
1	9. The method of claim 8, wherein:		
2 🚍	said first memory page structure and said second memory page structure		
3 <u>:</u>	contain an unequal number of columns; and		
4	said first and second memory page structures contain an equal number of		
20 30 40 50 10 20 30 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40	storage locations.		
of the same			
1 3	10. An apparatus for decoding a memory array address for an embedded		
2 ^M	DRAM (eDRAM) device, the eDRAM device configured for operation with an SDRAM		
3 <u>D</u>	memory manager, the apparatus comprising:		
4	a register for receiving a set of row address bits from the memory manager		
5	at a first time;		
6	a counter for receiving a set of initial column address bits from the		
7	memory manager at a later time; and		
8	a broadside address register for simultaneously receiving a first subset of		
9	said set of initial column address bits and said row address bits;		
10	wherein said first subset of said set of initial column address bits defines a		
11	translated column address for the eDRAM device.		

1	11. The apparatus of claim 10, further comprising.		
2	a multiplexing device for receiving a second subset of said set of initial		
3	column address bits;		
4	wherein said second subset of said set of initial column address bits		
5	corresponds to a specific storage location segment within said translated column address		
1	12. The apparatus of claim 11, wherein the eDRAM device includes a first		
2	eDRAM module coupled with a second eDRAM module.		
1	13. The apparatus of claim 12, further comprising:		
2 💆	steering logic for determining in which of said first and second eDRAM		
	modules said specific storage location segment is contained.		
111	14. The apparatus of claim 13, wherein an input to said steering logic		
2[]	comprises a third subset of said set of initial column address bits.		
	15. A computer memory system, comprising:		
2.0	an SDRAM memory controller;		
3 = 1	an embedded DRAM (eDRAM) device integrated with said SDRAM		
4	memory controller; and		
5	an address decoding apparatus for translating a memory address generate		
6	by said SDRAM memory controller to a translated memory address in said eDRAM		
7	device.		

1	16.	The computer memory system of claim 15, wherein said address decoding	
2	apparatus further comprises:		
3		a register for receiving a set of row address bits from the memory	
4	controller at a first time;		
5		a counter for receiving a set of initial column address bits from the	
6	memory controller at a later time; and		
7		a broadside address register for simultaneously receiving a first subset of	
8	said set of initial column address bits and said row address bits;		
9		wherein said first subset of said set of initial column address bits defines a	
10	translated column address for the eDRAM device.		
10 10 10 10 10 10 10 10 10 10 10	18.	The computer memory system of claim 16, further comprising: a multiplexing device for receiving a second subset of said set of initial ess bits; wherein said second subset of said set of initial column address bits to a specific storage location segment within said translated column address. The computer memory system of claim 17, wherein the eDRAM device est eDRAM module coupled with a second eDRAM module.	
1 2	19.	The computer memory system of claim 18, further comprising: steering logic for determining in which of said first and second eDRAM	
3	modules said	I specific storage location segment is contained.	
1	20.	The computer memory system of claim 19, wherein an input to said	

steering logic comprises a third subset of said set of initial column address bits.

FIS920010247US1 14

2

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
10 11	The first days don't will fall the form that the first fall the fi

1

21. A method of translating initial column storage locations defined in a first memory array structure to corresponding storage locations in a second memory array structure, the first memory array structure having X columns associated therewith and capable of storing an M-bit data word at each memory address therein, the second memory array structure having Y columns associated therewith and capable of storing an N-bit data word at each memory address therein, wherein XM = YN, X > Y, and M < N, the method comprising:

dividing the N-bit data word in each column associated with the second memory array structure into N/M word slices, each of said word slices serving as an M-bit storage location; and

assigning each initial column storage location to one of said word slices.