

PISO GERADOR DE ENERGIA NAS ESTRADAS

Usar o peso e movimento dos carros para gerar energia elétrica — pode alimentar postes de luz, sensores, câmeras, sinais de trânsito ou até recarregar veículos elétricos em alguns pontos.

COMO FUNCIONARIA:

Materiais piezoelétricos ou sistemas eletromecânicos são embutidos no asfalto ou em placas específicas.

O movimento dos veículos aciona esses sistemas, gerando eletricidade.

A energia gerada pode ser armazenada em baterias ou usada diretamente.

DESAFIOS:

o custo dos materiais piezoelétricos ainda é alto comparado ao retorno de energia.

a durabilidade da estrada = muito peso + impacto constante. Tem que ser resistente mesmo.

a manutenção Se der ruim, precisa parar o tráfego? Isso já é um perrengue.

a eficiência a quantidade de energia por veículo é pequena, então precisa de

MUITOS CARROS PARA COMPENSAR

POSSÍVEIS SOLUÇÕES E IDEIAS DE TRANSIÇÃO:

1-Começar com trechos específicos:

Pedágios, lombadas, entradas de shoppings ou estacionamentos com fluxo constante e mais lento (menos impacto destrutivo).

Nesses lugares, a energia pode alimentar o próprio sistema do pedágio ou câmeras.

4 Materiais alternativos mais baratos:

Pesquisar polímeros condutores mais simples que ainda entreguem piezeletricidade básica.

Usar isso com uma engenharia "menos sensível" e mais robusta.

2. Usar módulos removíveis ou pré-fabricados:

Tipo placas encaixadas, não diretamente no asfalto.

Facilita manutenção e reposição.

5 Reuso de energia localmente:

Nada de jogar na rede elétrica, usa ali mesmo: iluminação pública, sensores de tráfego, placas solares combinadas com piezo.

3. Parceria público-privada:

Empresas de tecnologia investem, governos cedem espaço/testes

Um modelo de co-desenvolvimento, dividindo riscos e lucros.

IDEIA QUE ENCAIXA COM A TUA VISÃO:

Instalar módulos piezo em faixas de frenagem, pontos de ônibus, ou semáforos onde o carro naturalmente reduz a velocidade, o impacto é menor e o fluxo é constante. Isso aumenta a durabilidade e melhora o aproveitamento da energia gerada

VIABILIDADE DE MATERIAIS:

Resumão do ranking de viabilidade:

MATERIAL	CUSTO	RESISTÊNCIA	EFICIÊNCIA	VIÁVEL PRA ESTRADA?
Quartzo	Alto	Baixa	Alta	
Cerâmica (PZT)	Médio/Alto	Média	Alta	(comproteção)
PVDF (polímero)	Baixo	Alta	Média	
Compostos novos	Médio	Alta	Média/Alta	(em breve)

CUSTOS ESTIMADOS

em reais

MÓDULO PIEZOELÉCTRICO (PVDF ENCAPSULADO) – 3 M²

R\$6.000 A 10.000

R\$1.000 A 2.000

SISTEMA DE CAPTAÇÃO E CIRCUITOS (ELETRÔNICA)

R\$2.000 A 4.000

INSTALAÇÃO (CORTE DE ASFALTO, ENCAIXE, MÃO DE OBRA)

R\$3.000 A 5.000

TOTAL ESTIMADO POR FAIXA DE 1X3M

R\$12.000 A 21.000

HALL

ENERGIA GERADA:

Um carro médio gera cerca de 2 a 10 watts por passagem, dependendo da velocidade e do tipo de sistema.

SUPONHA:

- ☐ faixa = 1 metro de largura, 3 metros de comprimento.
- 5.000 carros por dia (bem comum em áreas urbanas movimentadas).
- ☐ Eficiência prática: 50% (perdas nos sistemas).

CAUCULO RÁPIDO:

Energia por dia ≈ 5.000 carros × 5 W × 1 segundo (tempo da pressão)

⇒ 25.000 watt-segundos ⇒ 6,94 Wh por dia
 ⇒ ~2,5 kWh por ano

Isso parece pouco, né? Mas se multiplicar por 100 módulos, aí já vira 250 kWh/ano o suficiente para manter iluminação pública de uma rua por vários meses.

ONDE VALE A PENA?

- ☐ Quando a energia é utilizada localmente: postes, sensores, iluminação inteligente.
- ☐ Evita custos de infraestrutura elétrica convencional.
- □ Pode ter retorno em 3 a 5 anos, dependendo do uso.

FREQUÊNCIA DE MANUTENÇÃO: ESTIMATIVA REALISTA

Tipos de manutenção e frequência:

INSPEÇÃO VISUAL E ELÉTRICA	FREQUÊNCIA SUGERIDA	O QUE ENVOLVE
Limpeza externa	A cada 6 meses	Checar integridade das placas e tensão gerada
Verificação de conexões	rificação de conexões A cada 3 meses	
Substituição de módulo danificado	Anual	Checar fiação, circuitos, baterias
Atualização do sistema eletrônico	3 a 5 anos	Trocar placa ou unidade que falhar
Inspeção visual e elétrica	5+ anos	Se o circuito de captação for atualizado

DICA:

Instalações perto de semáforos ou pedágios sofrem menos impacto violento, então duram mais tempo. Já em avenidas com tráfego rápido e pesado, talvez o ciclo caia para 2–3 anos de troca de módulo.

TECNOTREK

MUITO OBRIGADO!!!

