CENG 506 Deep Learning

Lecture 12 – Generative Models

Supervised Learning

Data: (x, y) x is data, y is label

Goal:

Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Classification

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

K-means clustering

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Principal Component Analysis (Dimensionality reduction)

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Autoencoders (Feature learning)

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

1-d density estimation

2-d density estimation

Generative Models

Given training data, generate new samples from same distribution. This addresses density estimation.

Generative model is the opposite of discriminative model which learns p(y|x), for instance classification boundaries.

Why Generative Models?

 Realistic samples for artwork, super-resolution, colorization, etc.

 Generative models of time-series data can be used for simulation/planning.

Generative Models

Two main streams in density estimation:

- 1) Explicit density estimation: explicitly define and solve for $p_{model}(x)$
- Implicit density estimation: learn model that can sample from p_{model}(x) without explicitly defining it

Generative Adversarial Networks (GANs)

- GANs: An implicit way. We just want ability to sample.
- We take game-theoretic approach: learn to generate from training distribution through 2-player game

Some Background: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

Some Background: Autoencoders

- Q. How to learn this feature representation?
- A. Train such that features can be used to reconstruct original data ("Autoencoding" encoding itself)

Some Background: Autoencoders

Generative Adversarial Networks (GANs)

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g random noise. Learn transformation to training distribution.

Q: What can we use to represent this complex transformation?

A: A neural network!

Output: Sample from training distribution

Input: Random noise

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Train Generator network and Discriminator network jointly in minimax game.

Minimax objective function:

x: real data

G(z): generated fake data

Discriminator outputs between (0,1)

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
 Discriminator Discriminator output for G(z) output for x

- Discriminator (θ_d) wants to **maximize objective** such that D(x) is close to 1 (real) and D(G(z)) is close to 0 (fake)
- Generator (θ_g) wants to **minimize objective** such that D(G(z)) is close to 1 (discriminator is fooled into thinking generated G(z) is real)
- Note: max value of log D(x) is zero when D(x)=1, min value of log D(x) is –inf when D(x)=0.

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Instead: Gradient ascent on generator, different

$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

Putting it together: GAN training algorithm

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by ascending its stochastic gradient (improved objective):

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))$$

end for

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

GAN Results

Generated samples

Nearest neighbor from training set for the column before (first 5 columns are generated samples)

GAN Results

Generated samples (CIFAR-10)

Results not so good as of 2014

Nearest neighbor from training set for the right-most column

GANs: Convolutional Architectures

Generator is an upsampling network with fractionallystrided convolutions

Discriminator is a convolutional network

GANs: Convolutional Architectures

Samples from the model look amazing!

GANs: Interpretable Vector Math

GANs: Interpretable Vector Math

Glasses man No glasses man No glasses woman Woman with glasses

Many GAN applications

Better training and generation

(d) Conference room. LSGAN. Mao et al. 2017.

BEGAN, Bertholet et al. 2017.

Source->Target domain transfer

horse → zebra

CycleGAN. Zhu et al. 2017.

Many GAN applications

Pix2pix. Isola 2017. Many examples at https://phillipi.github.io/pix2pix/

MedGAN. Armanious et al. 2019

Many GAN applications

T. Karras, T. Aila, S. Laine, J. Lehtinen, "Progressive Growing of GANs for Improved Quality, Stability, and Variation", ICLR 2018. Video: https://www.youtube.com/watch?v=XOxxPcy5Gr4

"The GAN Zoo"

- GAN Generative Adversarial Networks
- . 3D-GAN Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
- acGAN Face Aging With Conditional Generative Adversarial Networks
- · AC-GAN Conditional Image Synthesis With Auxiliary Classifier GANs
- AdaGAN AdaGAN: Boosting Generative Models
- · AEGAN Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
- · AffGAN Amortised MAP Inference for Image Super-resolution
- · AL-CGAN Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
- · ALI Adversarially Learned Inference
- AM-GAN Generative Adversarial Nets with Labeled Data by Activation Maximization
- · AnoGAN Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
- ArtGAN ArtGAN: Artwork Synthesis with Conditional Categorial GANs
- . b-GAN b-GAN: Unified Framework of Generative Adversarial Networks
- Bayesian GAN Deep and Hierarchical Implicit Models
- BEGAN BEGAN: Boundary Equilibrium Generative Adversarial Networks
- BiGAN Adversarial Feature Learning
- BS-GAN Boundary-Seeking Generative Adversarial Networks
- CGAN Conditional Generative Adversarial Nets
- CaloGAN CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters
 with Generative Adversarial Networks
- · CCGAN Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
- CatGAN Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
- CoGAN Coupled Generative Adversarial Networks

- · Context-RNN-GAN Contextual RNN-GANs for Abstract Reasoning Diagram Generation
- C-RNN-GAN C-RNN-GAN: Continuous recurrent neural networks with adversarial training
- CS-GAN Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
- CVAE-GAN CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
- . CycleGAN Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
- . DTN Unsupervised Cross-Domain Image Generation
- . DCGAN Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
- . DiscoGAN Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
- . DR-GAN Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
- DualGAN DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
- · EBGAN Energy-based Generative Adversarial Network
- f-GAN f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
- FF-GAN Towards Large-Pose Face Frontalization in the Wild
- . GAWWN Learning What and Where to Draw
- · GeneGAN GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
- . Geometric GAN Geometric GAN
- . GoGAN Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
- . GP-GAN GP-GAN: Towards Realistic High-Resolution Image Blending
- IAN Neural Photo Editing with Introspective Adversarial Networks
- . iGAN Generative Visual Manipulation on the Natural Image Manifold
- . IcGAN Invertible Conditional GANs for image editing
- ID-CGAN Image De-raining Using a Conditional Generative Adversarial Network
- . Improved GAN Improved Techniques for Training GANs
- InfoGAN InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
- LAGAN Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis
- · LAPGAN Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

Controllable GANs

Generative models are great! But...

Is the ability to sample photorealistic images all we want?

^{*} StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN, Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila, CVPR2020.

Controllable GANs

Goal: A generative model for 3D-aware image synthesis which allows us to

- Control individual objects wrt. their pose, size, and position in 3D
- Control camera viewpoint in 3D
- Train from collections of unposed images

Generative Radiance Fields* (for 3D-Aware Image Synthesis)

Sample camera matrix \mathbf{K} , camera pose $\boldsymbol{\xi} \sim p_{\boldsymbol{\xi}}$, and patch sampling pattern $\boldsymbol{\nu} \sim p_{\boldsymbol{\nu}}$. Sample latent shape and appearance codes \mathbf{z}_s , \mathbf{z}_a and pass them to g_{θ} .

^{*} Schwarz, Liao, Niemeyer, Geiger: GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. NeurIPS, 2020

Generative Radiance Fields* (for 3D-Aware Image Synthesis)

Generator/discriminator for image patches of size 32x32 pixels. Patches sampled at random scale using dilation. Results on synthetic Carla dataset at 256x256 pixels:

Shape

Appearance

Watch last 30 seconds of https://www.youtube.com/watch?v=akQf7WaCOHo

^{*} Schwarz, Liao, Niemeyer, Geiger: GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. NeurIPS, 2020

GANs: Summary

Don't work with an explicit density function. Take game-theoretic approach: learn to generate from training distribution through 2-player game.

Pros:

- Beautiful, state-of-the-art samples!

Cons:

- Trickier / more unstable to train

Active areas of research:

- Better loss functions, more stable training
- GANs for all kinds of applications
- Controllable GANs
- Multi-object scene GANs