- 2018-2019 -

Math. - ES 1 - S1 - Algèbre

mardi 9 janvier 2019 - Durée 2 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

EXERCICE

Dans $\mathbb{R}[X]$, on définit

$$\forall P, Q \in \mathbb{R}[X], \quad (P|Q) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(e^{it}) Q(e^{-it}) dt$$

- 1. Montrer que pour tout $P, Q \in \mathbb{R}[X], (P|Q) \in \mathbb{R}$.
- **2.** Montrer que $(\cdot|\cdot)$ est un produit scalaire sur $\mathbb{R}[X]$.
- **3.** Montrer que $(X^n)_{n\in\mathbb{N}}$ est une base orthonormée de $\mathbb{R}[X]$ pour ce produit scalaire.

PROBLEME

Notations

Dans tout le problème, n désigne un entier naturel supérieur ou égal à 2.

On note $\mathcal{M}_n(\mathbb{R})$ (respectivement $\mathcal{M}_n(\mathbb{C})$) l'ensemble des matrices carrées d'ordre n à coefficients réels (respectivement complexes), I_n la matrice unité et O_n la matrice nulle de $\mathcal{M}_n(\mathbb{R})$ (respectivement de $\mathcal{M}_n(\mathbb{C})$). Si $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ (ou $\mathcal{M}_n(\mathbb{C})$), on note $\det(A)$ le déterminant de A et $\operatorname{tr}(A)$ la trace de A, égale à

la somme de ses éléments diagonaux : $tr(A) = \sum_{i=1}^{n} a_{i,i}$.

Si $A \in \mathscr{M}_n(\mathbb{R})$ (ou $\mathscr{M}_n(\mathbb{C})$), le polynôme caractéristique de A est $\chi_A = \det(XI_n - A)$.

Partie 1 : réduction des matrices carrées réelles d'ordre 2

Soit A une matrice carrée réelle de taille 2, c'est à dire $A \in \mathcal{M}_2(\mathbb{R})$.

1. Généralités

- **a.** Montrer que $\chi_A = X^2 \operatorname{tr}(A)X + \operatorname{det}(A)$.
- **b.** Montrer que A est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$ si et seulement si

$$\operatorname{tr}(A)^2 - 4\operatorname{det}(A) \neq 0$$
 ou $\exists \lambda_0 \in \mathbb{C}, A = \lambda_0 I_2$

c. Montrer que A est diagonalisable dans $\mathscr{M}_2(\mathbb{R})$ si et seulement si

$$\operatorname{tr}(A)^2 - 4\operatorname{det}(A) > 0$$
 ou $\exists \lambda_0 \in \mathbb{R}, \ A = \lambda_0 I_2$

2. Applications

Soit $(u_k)_{k\in\mathbb{N}}$ et $(v_k)_{k\in\mathbb{N}}$ deux suites réelles définies par

$$\begin{cases} u_0 = 1 \\ v_0 = 2 \end{cases} \quad \text{et} \quad \forall k \in \mathbb{N}, \begin{cases} u_{k+1} = 4u_k - 2v_k \\ v_{k+1} = u_k + v_k \end{cases} \quad (\star)$$

On pose, pour $k \in \mathbb{N}$, $X_k = \begin{pmatrix} u_k \\ v_k \end{pmatrix}$.

- **a.** Trouver une matrice A dans $M_2(\mathbb{R})$ telle que, pour tout entier naturel $k, X_{k+1} = AX_k$.
- **b.** Soit k dans \mathbb{N} . Exprimer X_k en fonction de A, X_0 et k.
- c. Prouver que A est diagonalisable puis déterminer une matrice P de $\mathcal{M}_2(\mathbb{R})$, inversible telle que

$$P^{-1}AP = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} = D$$

- **d.** Soit k dans \mathbb{N} . Exprimer les coefficients de A^k en fonction de k.
- e. En déduire l'expression de u_k et v_k en fonction de k.
- **f.** Proposer un programme Python qui permette de calculer et d'afficher directement les 10 premiers termes des suites $(u_k)_{k\in\mathbb{N}}$ et $(v_k)_{k\in\mathbb{N}}$ à partir des relations (\star) définissant ces suites.

Partie 2 : réduction des matrices carrées d'ordre 3

On définit la matrice J par

$$J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

- 1. Calculer J^2 et J^3 . Soit $k \in \mathbb{N}$. Préciser J^k en fonction de k.
- 2. On note j le nombre complexe égal à $e^{\frac{2i\pi}{3}}$. Rappeler sans justification la valeur de $1+j+j^2$.
- 3. Déterminer le polynôme caractéristique de J ainsi que ses valeurs propres.
- **4.** Déterminer une matrice inversible P de $\mathcal{M}_3(\mathbb{C})$ telle que :

$$J = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & \overline{j} \end{pmatrix} P^{-1}$$

5. Soient trois nombres complexes a, b et c. On pose

$$A(a,b,c) = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$

- **a.** Exprimer A(a, b, c) en fonction de a, b, c et des matrices I_3 , J et J^2 .
- **b.** En déduire que A(a, b, c) est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$ dans une base indépendante du choix des valeurs des complexes a, b et c.
- **c.** Préciser les valeurs propres de la matrice A(a, b, c).
- **d.** Exprimer le déterminant de A(a, b, c) en fonction de a, b, c et du nombre complexe j sous la forme d'un produit.
- **6.** On pose $E = \{ A(a, b, c) , (a, b, c) \in \mathbb{C}^3 \}.$
 - **a.** Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{C})$.
 - **b.** Donner la dimension de E en justifiant avec soin.

Fin de l'énoncé d'algèbre