Particle spectrograph

Wave operator and propagator

								1								
$\tau_{1}^{"-2}\alpha$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$	$f_{1^-}^{\#2}$	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$	
$t_{1}^{\#^{\perp}}$	0	0	0	0	0	0	0	$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0	
σ_{1}^{*2}	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	$\omega_{1^{-}}^{\#2}{}_{lpha}$ f	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t1</u> 3	0	$i\sqrt{2}kt_1$	t" C#"
$\sigma_{1}^{\#^{\perp}}{}_{lpha}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$	$\omega_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	9 <u>1</u> 7	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}ikt_1\left -\frac{1}{3}\right $	1#7
$ au_1^{"+} \alpha eta$	$\frac{i\sqrt{2} k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0	$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}\overline{l}k(t_1+t_2)$	$\frac{1}{3}k^{2}(t_{1}+t_{2})$	0	0	0	0	
$\sigma_1'' \dot{\div}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0	
$\sigma_1^{''\dot{\mp}} _{lphaeta}$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0	$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0	
	$\sigma_{1}^{\#1} + \alpha \beta$	$J_1^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$		$o_1^{\#1} + \alpha \beta$	$\nu_1^{\#2} + \alpha \beta$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1^-}^{\#1} +^\alpha$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{#2} +^{\alpha}$	

$\omega_{0^+}^{#1} f_{0^+}^{#1} f_{0^+}^{#2} $	0 0 0 0	0 0 0 0	0 0 0 0	$0 0 0 k^2 r_2 + t_2$	$\sigma_{0^{+}}^{\#1}$ $\tau_{0^{+}}^{\#1}$ $\tau_{0^{+}}^{\#2}$		0 0	0 0		#1 0- 0 0		$\frac{1}{1} + \alpha \beta$	<u>t</u> 1 2	$f_{2}^{\#1}\alpha\beta$ $-\frac{ikt_{1}}{\sqrt{2}}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
3	$\omega_{0}^{\#1}$ †	$f_{0}^{#1}$ †	$f_0^{#2} +$	$\omega_{0}^{\#1} \dagger$	σ_{0}^{+1}					$\frac{1}{2^{+t}2}$		$^{\frac{1}{\epsilon}} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0 <u>t</u> 1 2
Source constraints/dalide denerators	SO(3) irreps Multiplicities	$\tau_0^{\#2} == 0$ 1	$\tau_{0+}^{\#1} == 0$ 1	$\sigma_{0}^{\#1} == 0$ 1	$\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#1}{}^{\alpha} == 0$ 3	$\tau_{1}^{\#1}{}^{\alpha} == 0 $ 3	$\sigma_{1}^{\#1}\alpha = \sigma_{1}^{\#2}\alpha $ 3	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0 3$	$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$ 5	Total constraints: 20	$\sigma_{2}^{\#1}{}_{lphaeta}$ $ au_{2}^{\#1}{}_{lphaeta}$ $\sigma_{2}^{\#1}{}_{lphaeta\chi}$	$\sigma_{2}^{\#1} + \alpha \beta \left(\frac{2}{(1+2k^2)^2 t_1} \right) - \frac{2i\sqrt{2}k}{(1+2k^2)^2 t_1} = 0$	$\tau_{2}^{\#1} + \alpha \beta \frac{2i\sqrt{2}k}{(1+2k^2)^2 t_1} \frac{4k^2}{(1+2k^2)^2 t_1} = 0$	$\sigma_{2}^{\#1} + ^{\alpha\beta\chi}$ 0 0 $\frac{2}{t_1}$	2

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $-\frac{t_2}{r_2} > 0$
Spin: 0
Parity: Odd

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$