Recitation #6

Irina Espejo (iem244@nyu.edu)

Center for Data Science

DS-GA 1014: Optimization and Computational Linear Algebra for Data Science

recall: Markov chain

Markov chain

A sequence of random variables $(X_0, X_1, ...)$ is a Markov chain with state space E and transition matrix P if for all $t \ge 0$,

$$\mathbb{P}(X_{t+1} = y | X = x_0, ..., X_t = x_t) = P(x_t, y)$$

for all $x_0,...,x_t$ such that $\mathbb{P}(X_0=x_0,..,X_t=x_t)>0$ Intuitively, "if the future only depends on the present and not the past"

recall: Markov chain

Stochastic matrix

Let $P \in \mathbb{R}^{n \times n}$ be a matrix, we say P is stochastic if:

- $P_{i,j} \ge 0$ for all $1 \le i, j \le n$
- ullet $\sum_{i=1}^n P_{i,j} = 1$ for all $1 \leq j \leq n$

practice: stochastic matrix

Exercise 1

Let $A, B \in \mathbb{R}^{n \times n}$ be stochastic matrices then

- **3** A does not have $\lambda = 0$ as eigenvalue $\sqrt{\text{True}}$

practice: stochastic matrix

Exercise 2

Let $A, B \in \mathbb{R}^{n \times n}$ then be stochastic matrices then AB is also a stochastic matrix.

Hint: express the condition "sum of each column = 1" as a matrix multiplication.

recall: Markov chain

Proposition

For a Markov chain with the notation above, for all $t \ge 0$

$$x^{(t+1)} = Px^{(t)}$$
 and consequently, $x^{(t)} = P^t x^{(0)}$

and recall that the limit $t \to \infty$ is $x^{(t)} \to \mu$ for some $\mu \in \Delta_n$ (probability vector).

Perron-Frobenius Theorem

Let P be a stochastic matrix such that exists $k \ge 1$ such that all the entries of P^k are strictly positive. Then,

- ullet $\lambda=1$ is an eigenvalues of P with μ its an eigenvector.
- The eigenvalue $\lambda = 1$ has multiplicity equal to $ker(P Id) = Span(\mu)$
- For all probability vectors $x \in \Delta_n$ we have $P^t x \to \mu$ in the limit $t \to \infty$

Exercise 3

Let $A \in \mathbb{R}^{n \times n}$ be a matrix with eigenvectors $v_1, ..., v_n$ and associated eigenvalues $\lambda_1, ..., \lambda_n$. Let $x = \alpha_1 v_1 + ... + \alpha_n v_n$ be a vector in $\in \mathbb{R}^n$. Show

- **1** Let P be a linear transformation that maps the canonical basis $e_1, ..., e_n$ of \mathbb{R}^n to the eigenvector basis of $A: v_1, ..., v_n$. Write P explicitly.
- What is PDP^{-1} ? $(D = diag(\lambda_1, ..., \lambda_n))$
- **3** Simplify $(PDP^{-1})^k$ for $k \in \mathbb{N}$
- 4 If $A = PDP^{-1}$, give an interpretation of the action of A

Exercise 3

Let P be a linear transformation that maps the canonical basis $e_1,..,e_n$ of \mathbb{R}^n to the eigenvector basis of A: $v_1,..,v_n$. Write P explicitly.

Exercise 3

What is PDP^{-1} ? $(D = diag(\lambda_1, ..., \lambda_n))$ Simplify $(PDP^{-1})^k$ for $k \in \mathbb{N}$

Exercise 3

If $A = PDP^{-1}$, give an interpretation of the action of A

recall: Spectral theorem

Spectral theorem !!

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then, there exists an orthonormal basis of \mathbb{R}^n composed of eigenvectors of A

practice: Symmetric matrices

Exercise 4

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Give a vector $v \in \mathbb{R}^n$ with $\|v\| = 1$ such that $\|Av\|$ is maximized.

practice: Spectral theorem

Exercise 5

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_1, ..., \lambda_n$ and orthonormal eigenvectors $v_1, ..., v_n$.

Give an orthonormal basis of Ker(A) and Im(A) in terms of $v_1, ..., v_n$ only.

practice: Spectral theorem

practice: Spectral theorem

Exercise 6(*)

Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric matrices. Show that AB = BA if and only if A and B diagonalize in the same basis. (Does the same hold if we just assume that A, B are diagonalizable?)