Комплексные числа

Введение

Понятие числа проделало громадный путь развития.

Целые числа – дроби и пропорции, нуль и отрицательные числа, открытие иррациональных чисел и далее – каждый шаг потребовал столетий (в ряде случаев и тысячелетий) и знаменовал рубежи развития человеческой мысли.

На развитие понятия числа можно посмотреть и с конструктивной точки зрения.

Необходимость новых конструкций:

x + a = b — потребовались отрицательные числа, если a > b

ax = b — потребовались рациональные числа, если b не делится на a

 $x^{n} = b$ — потребовались иррациональные числа, чтобы решать такие уравнения.

Корни квадратного уравнения — иногда их невозможно найти, если говорить только о вещественных числах. В XVI в Италии математики Ферро, Тарталья, Кардано, Феррари, Бомбелли нашли общими усилиями формулы для решения любых уравнений третьей и четвертой степеней. Но их результаты и привели к конструкции новых чисел, которые теперь называются комплексными числами.

С конца XVIII века математика стала немыслима без комплексных чисел.

Определение комплексного числа.

В XVI– XVII веках числа стали отождествлять с точками на прямой, появилась координатная ось, начало отсчета, единичный отрезок, и было установлено взаимно однозначное соответствие между точками на прямой и вещественными числами.

Попробуем теперь каждой точке плоскости с координатами (x, y) сопоставлять число z, которое мы назовем *комплексным числом* (так у него две составляющие части), и пока будем также обозначать (x, y).

Множество вещественных чисел является частью множества комплексных чисел. Вещественные числа как часть комплексных чисел мы будем обозначать (x,0), а множество комплексных чисел будем обозначать буквой $C: R \subset C$.

Вводя комплексные числа, нужно определить арифметические действия над ними, причем так, чтобы не возникло противоречий с действиями над вещественными числами.

Определение.

Комплексными числами называются упорядоченные пары чисел, для которых понятия равенства, суммы, произведения и отождествления с вещественными числами вводятся следующим образом:

Пусть $z_1 = (x_1, y_1), z_2 = (x_2, y_2)$. По определению,

- 1. $z_1 = z_2 \Leftrightarrow \begin{cases} x_1 = x_2, \\ y_1 = y_2. \end{cases}$ Равенство двух чисел.
- 2. $z_1 + z_2 = (x_1 + x_2, y_1 + y_2)$. Сложение двух чисел.
- 3. $z_1 \cdot z_2 = (x_1 \cdot x_2 y_1 \cdot y_2, x_1 \cdot y_2 + x_2 \cdot y_1)$. Умножение двух чисел.
- 4. Вещественное число a = (a, 0). В частности, число 0 = (0, 0).
- 5. $-z = -1 \cdot z = (-x, -y)$

Все определения формулируются в терминах вещественных чисел и действиях над ними.

Проверим, что мы не получили противоречия с действиями над вещественными числами.

Если a = b, то (a,0) = (b,0) — нет противоречия; a + b = (a + b,0) — нет противоречия.

 $a \cdot b = (a \cdot b, 0)$, по определению; с другой стороны, $a \cdot b = (a, 0) \cdot (b, 0) = (a \cdot b - 0 \cdot 0, a \cdot 0 + b \cdot 0) = (a \cdot b, 0)$ — нет противоречия.

Заметим также, что если комплексное число z умножить на вещественное число m, то получим: $m \cdot z = (m,0) \cdot (x,y) = (mx-0 \cdot y, my+x \cdot 0) = (mx, my)$, т.е. обе компоненты числа z нужно умножить на вещественное число m.

В частности, если m — натуральное число, то $m \cdot z = (mx, my) = (x, y) + (x, y) + (x, y) + ... + (x, y)$.

Справа стоит m слагаемых — опять нет противоречий с тем, что нам известно о вещественных числах.

Действия над комплексными числами.

Из определения следует, что:

- 1. $z_1 + z_2 = z_2 + z_1$ (коммутативность сложения).
- 2. $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$ (ассоциативность сложения).

Эти свойства следуют из коммутативности и ассоциативности сложения вещественных чисел.

- 3. z + 0 = z.
- 4. z + (-z) = (x, y) + (-x, -y) = (0, 0), т.е. для каждого числа z есть противоположное число (-z).
- 5. $z_1 \cdot z_2 = z_2 \cdot z_1$ (коммутативность умножения)
- 6. $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$ (ассоциативность умножения)
- 7. $\frac{(z_1+z_2)\cdot z_3=z_1\cdot z_3+z_2z_3}{z_1\cdot (z_2+z_3)=z_1\cdot z_2+z_1z_3}$ дистрибутивность.

Докажем первое равенство в 7:

Пусть
$$z_1 = (x_1, y_1); z_2 = (x_2, y_2); z_3 = (x_3, y_3)$$
. Тогда

$$(z_1 + z_2) \cdot z_3 = ((x_1 + x_2)x_3 - (y_1 + y_2)y_3, (x_1 + x_2)y_3 + (y_1 + y_2)x_3) = (x_1x_3 + x_2x_3 - y_1y_3 - y_2y_3, x_1y_3 + x_2y_3 + y_1x_3 + y_2x_3).$$

С другой стороны,
$$z_1 \cdot z_3 + z_2 z_3 = (x_1 x_3 - y_1 y_3, x_1 y_3 + y_1 x_3) + (x_2 x_3 - y_2 y_3, x_2 y_3 + y_2 x_3) = (x_1 x_3 + x_2 x_3 - y_1 y_3 - y_2 y_3, x_1 y_3 + x_2 y_3 + y_1 x_3 + y_2 x_3).$$

Получили одинаковые выражения.

- 8. $z \cdot 1 = z$.
- 9. У каждого комплексного числа, не равного 0, есть обратное (см. ниже).

Определение. Множества чисел, удовлетворяющих свойствам 1-9, образуют поле.

Таким образом, вещественные числа образуют поле.

Комплексные числа образуют поле.

Обозначим число (0,1) = i. Тогда числа $(0, y) = y \cdot (0,1) = yi$.

Умножим теперь $i \cdot i = (0,1) \cdot (0,1) = -1$, т.е. $i^2 = -1$, поэтому число i называется мнимой единицей.

Число z = (x, y) = (x, 0) + (0, y) = x + yi.

В дальнейшем мы будем комплексные числа z обозначать x + yi.

Вещественные числа (x,0) будем обозначать просто x.

Определение. Числа z = (x, y) и $\overline{z} = (x, -y)$ называются сопряженными числами.

Или, что-то же, числа z = x + yi и $\overline{z} = x - yi$ называются сопряженными числами.

Свойства комплексного сопряжения

- $1.\bar{z} = z$
- $2.z = \overline{z} \Rightarrow z \in R$
- $3.\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $4. z_1 \cdot z_2 = z_1 \cdot z_2$

Вычислим $z \cdot \overline{z} = (x + yi) \cdot (x - yi) = x \cdot x + y \cdot y + (x(-y) + y \cdot x)i) = x^2 + y^2$.

Итак.

 $z \cdot \overline{z} = x^2 + y^2$ — неотрицательное число, причем $z \cdot \overline{z} = 0 \Leftrightarrow x = 0, y = 0$.

Определение. Если z = x + yi, то x—вещественная часть числа z (обозначается $Re\ z$), y-мнимая часть числа z (обозначается $Im\ z$).

Замечание: x = Re z и y = Im z - вещественные числа.

Вычитание и деление комплексных чисел.

Теорема 1. Пусть α и β –два комплексных числа. Тогда существует единственное комплексное число z, такое что $\alpha + z = \beta : z = (-\alpha) + \beta$.

Доказательство:

- 1) Tyctb $\alpha + z = \beta$, $z = (-\alpha) + \beta \Rightarrow \alpha + z = \alpha + (-\alpha) + \beta = \beta$;
- 2) Если $\alpha + z = \beta$, то $(-\alpha) + \alpha + z = (-\alpha) + \beta \Rightarrow z = -\alpha + \beta$.

Это число будем обозначать: $z = \beta - \alpha$ и называть разностью чисел α и β .

Теорема 2. α и β —два комплексных числа и $\alpha \neq 0$, то существует единственное число z .,

такое что $\alpha \cdot z = \beta$. Это число обозначается $\frac{\beta}{\alpha}$ или $\alpha^{-1}\beta$.

Доказательство. Пусть $\alpha=x_{_{\alpha}}+iy_{_{\alpha}}$. Рассмотрим $z=\frac{\overline{\alpha}}{x_{_{\alpha}}^2+y_{_{\alpha}}^2}\cdot\beta$. Тогда

1)
$$\alpha \cdot z = \alpha \cdot \frac{\overline{\alpha}}{x_{\alpha}^2 + y_{\alpha}^2} \cdot \beta = \frac{\alpha \cdot \overline{\alpha}}{x_{\alpha}^2 + y_{\alpha}^2} \cdot \beta = \frac{x_{\alpha}^2 + y_{\alpha}^2}{x_{\alpha}^2 + y_{\alpha}^2} \cdot \beta = \beta$$
;

2) Если

$$\alpha \cdot z = \alpha \cdot z \cdot \frac{\alpha \overline{\alpha}}{x_{\alpha}^{2} + y_{\alpha}^{2}} = \beta \cdot \frac{\alpha \overline{\alpha}}{x_{\alpha}^{2} + y_{\alpha}^{2}} \Rightarrow z \cdot \frac{\alpha \cdot \overline{\alpha}}{x_{\alpha}^{2} + y_{\alpha}^{2}} = \beta \cdot \frac{\overline{\alpha}}{x_{\alpha}^{2} + y_{\alpha}^{2}} \Rightarrow z \cdot \frac{\alpha \cdot \overline{\alpha}}{x_{\alpha}^{2} + y_{\alpha}^{2}} = \beta \cdot \frac{\overline{\alpha}}{x_{\alpha}^{2} + y_{\alpha}^{2}} \Rightarrow z = \frac{\overline{\alpha}}{x_{\alpha}^{2} + y_{\alpha}^{2}} \cdot \beta.$$

Извлечение квадратного корня

$$z = a + bi$$
, $\sqrt{z} = x + yi \Leftrightarrow a + bi = (x + yi)^2 \Leftrightarrow a = x^2 - y^2$, $b = 2xy$

Пример.

$$\sqrt{3+4i} = x + yi \Rightarrow 1+i = (x+yi)^{2} \Leftrightarrow (x^{2}-y^{2}) + (2xy)i$$

$$\begin{cases} x^{2}-y^{2} = 3, \\ 2xy = 4 \end{cases} \Rightarrow y = \frac{4}{2x} = \frac{2}{x}$$

$$x^{2} - \frac{4}{x^{2}} = 3 \Rightarrow x^{4} - 3x^{2} - 4 = 0 \Rightarrow x^{2} = \frac{3 \pm \sqrt{9+16}}{2} = \frac{3 \pm 5}{2}.$$

Число х должно быть вещественным, следовательно,

$$x^{2} = 4 \Rightarrow x = \pm 2, y = \pm \frac{4}{4} = 1 \Rightarrow \sqrt{3 + 4i} = \pm (2 + i)$$

 $x_{1} = 2 + i, x_{1} = -2 - i.$

Проверка: $(2+i)^2 = 4+4i-1=3+4i$

Вопросы

1. Как определяется комплексное число?

- 2. Покажите, что вещественные числа являются частью комплексных чисел.
- 3. Изобразите числа на комплексной плоскости: 5, -2, $\pm 1 + i\sqrt{3}$.
- 4. Какие числа находятся:
- а) в вершинах квадрата со сторонами длиной 1, параллельными осям координат, центр которого находится в начале координат;
- б) в вершинах правильного треугольника с центром в начале координат, одна из сторон которого параллельна оси ординат, а радиус описанной окружности, равен 1;
- в) в вершинах правильного шестиугольника с центром в точке $2 + i\sqrt{3}$, две стороны которого параллельны оси абсцисс, а радиус описанной окружности равен 2.
- 5. Выберите два любых комплексных числа и произведите с ними 4 действия арифметики (сложение, вычитание, умножение, деление).
- 6. Что такое сопряженное комплексное число по отношению к данному числу? Как определяется операция комплексного сопряжения и каковы свойства комплексного сопряжения?
- 7. Что такое поле? Покажите, что комплексные числа образуют поле.
- 8. Как изобразить комплексное число на плоскости?
- 9. Как извлечь квадратный корень из комплексного числа. Извлеките квадратный корень из числа z = 5-12i ?