Popravni kolokvij / pisni izpit iz Fizike II 4. 9. 2003

- 1. Čist germanijev kristal z energijsko špranjo $0.72~{\rm eV}$ ima temperaturo $300~{\rm K}$. Kolikšna je gostota elektronskih stanj in kolikšno je število elektronov v tankem energijskem območju širine $0.001~{\rm eV}$ pri energiji $0.1~{\rm eV}$ nad spodnjim robom prevodnega pasu? Kolikšna je električna prevodnost kristala? Efektivna masa elektronov in vrzeli je enaka elektronski masi, gibljivost elektronov je $0.39~{\rm m}^2/{\rm Vs}$, vrzeli pa $0.18~{\rm m}^2/{\rm Vs}$.
- 2. Na aluminijasto ploščico debeline 15 nm vpada curek delcev α neznane energije. Presek curka je 2 cm², gostota toka v curku pa je $10^{17}/\text{m}^2\text{s}$. Kolikšna je kinetična energija vpadnih delcev α , če v času 1 sekunde naštejemo 10^5 sipanih delcev med kotoma $\theta=42^\circ$ in $\theta=43^\circ$? Upoštevaj le coulombsko sipanje delcev α na jedrih aluminija. Aluminij $^{27}_{13}\text{Al}$ ima gostoto 2700 kg/m^3 .
- 3. S spektrometrom, ki zaznava samo fotone z energijami med $12\,\mathrm{eV}$ in $13.3\,\mathrm{eV}$, opazujemo črte vodikovega spektra z nebesnega telesa, ki se giblje naravnost proti Zemlji s hitrostjo $1.1\cdot10^7\,\mathrm{m/s}$. Določi valovne dolžine tistih črt vodikovega spektra, ki jih vidimo s takšnim spektrometrom!
- 4. Valovna funkcija linearnega harmonskega oscilatorja v nekem kvantnem stanju je podana s

$$\psi(x) = A\left(Bx^2 + \sqrt{B}x - 1\right) \cdot \exp\left[-\frac{B}{4}x^2\right],$$

kjer je $B = 2m\omega/\hbar$. Določi pričakovano vrednost energije v tem stanju!