Math 450B Homework 4

Dr. Fuller Due February 20

- 1. If $f, g : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ are differentiable on an open set U, and $\alpha, \beta \in \mathbb{R}$, prove that $\alpha f + \beta g : U \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable and $D(\alpha f + \beta g)(\mathbf{a}) = \alpha Df(\mathbf{a}) + \beta Dg(\mathbf{a})$.
- 2. If $f: U \subseteq \mathbf{R}^n \to \mathbf{R}^m$ is a constant function, prove that $Df(\mathbf{a}) = 0$ for all $\mathbf{a} \in U$.
- 3. Let $f: A \subset \mathbf{R}^2 \to \mathbf{R}$ be f(x,y) = 0, where $A = \{(x,y): 0 \le x \le 1, y = 0\}$. Prove that the derivative of f is not unique on A.
- 4. Let $f: \mathbf{R}^2 \to \mathbf{R}$ be $f(x,y) = \sqrt{|xy|}$. Prove that f is not differentiable at (0,0).
- 5. Let $f : \mathbf{R}^n \to \mathbf{R}^m$ and suppose there is a constant M such that $||f(\mathbf{x})|| \le M||\mathbf{x}||^2$ for all $\mathbf{x} \in \mathbf{R}^n$. Prove that f is differentiable at $\mathbf{0}$ and $Df(\mathbf{0}) = 0$.
- 6. Let $f: \mathbf{R}^n \to \mathbf{R}^m$ and suppose there is a constant M such that $||f(\mathbf{x})|| \le M||\mathbf{x}||^2$ for all $\mathbf{x} \in \mathbf{R}^n$. Let g(x) = T(x) + f(x), where $T: \mathbf{R}^n \to \mathbf{R}^m$ is a linear transformation. Prove that g is differentiable at $\mathbf{0}$ and $Dg(\mathbf{0}) = T$.
- 7. For the following functions, compute the matrix of Df with respect to the standard bases.
 - (a) $f: \mathbf{R}^3 \to \mathbf{R}^2$, $f(x, y, z) = (x^4 y, xe^z)$
 - (b) $f: \mathbf{R}^3 \to \mathbf{R}$, $f(x, y, z) = e^{x^2 + y^2 + z^2}$