15 up Sony boards

ex Δ(u'v')	Δ(u'v') 0.008

3. Emitter configuration			
_	Red	Green	Blue
Number of emitters	.6	6	3
Emitter sequence	2, 4, 7, 9,	1, 5, 6, 10,	3, 8, 13
•	12, 14	11, 15	
Emitter type	Lw	eon side emit	ting

Electrical	specification	n.			Electrical specifications defined at 350mA for red and 700mA for green and blue a
	-	Red	Green	Blue	at 25°C junction temperature
Forward v	roltage				
Min	v	14:3-	17:8	8.5	
Max	V	19.3-	23.3	13	
		ъ. 1	C	Blue	
-		Red	Green	Blue	
Dynamic 1					
Min	Ohm	N/A	3.3	N/A	
Thermal	specification				
		Red	Green	Blue	
Thermal r	esistance, junc	tion to board			
Max	C°/W	3.9	3.2	6.3	

6. Packaging			
Refer to Packaging Specification sheet		5	
Standard Packing Increment (SPI)	40		
One packaging increment will contain not more than one grade			

Max Ratings				701	•
		Red	Green	Blue	
DC Forward current	mA	385	1000	1000	
Peak Pulsed Forward current	mA	550	1000	1000	
Aluminum core PWB temperature	°C	,	-40 to 80	1	Using max forward current of 700mA for Green and Blue
Storage Temperature	°C		-40 to 120	1	

Date

1/30/2005

All values are given at junction temperature 25°C

	TOLERACES AND EST THEORY OF THE TOLERACES AND EST TOLERACES AND	ENGINCER-CHCC-ER	26-07-2004 DATE	(L)	(QL-F		PART LXOL-FGBA-E
DE PARTUASS HAMESS PEU DATE	xx, +02-	SUPERSCRES EDC	DATE	212€	;) SCALE	SHEET OF	Rev A DOEUMENT HUMBER

Date

1/30/2005

All values are given at junction temperature 25°C

8. Testing specifications Photometric characteristics

		Red	Green	Blue
8.1 Test conditions				
Junction temperature	°C	25	25	25
Forward current	mA	350	700	700
Pulse length	ms	20	20	20

8.2 Test setup

Integrating sphere	Labsphere Coated
sphere diameter	in 6
Aperture	mm 15
Spectrometer	
Model	Instrument Systems CAS140B-15
Spectral Resolution	nm 2.5
mana	nm 200 700

0.4nm/25mum pixel data interval

8.3 Measurement procedure

Light source characteristics are determined by measuring optical properties of individual emitters Liight output of each LED is collected by inserting the lens into the integrating sphere.

8.3.1. Light source fluxes per colour

Flux values per color are determined as a sum of fluxes of the individual emitters for this color

8.3.2 Chromaticity Coordinates and Dominant wavelength per colour

Tristimulus values per color are determined as a sum of respective tristimulus values X, Y and Z of the individual emitters for this color

Red	$XR = \Sigma X(Red LEDs)$	$YR = \Sigma Y(Red LEDs)$	$ZR = \Sigma Z(Red LEDs)$
Green	$XG = \Sigma X(Green LEDs)$	$YG = \Sigma Y(Green LEDs)$	$ZG = \Sigma Z(Green LEDs)$
Blue	$XB = \sum X(Blue LEDs)$	$VB = \Sigma V(Blue LEDs)$	$ZB = \Sigma Z/Blue I EDs)$

CIE1931 color space

8.3.2.a Chromaticity Coordinates per color

8.3.2.a Chromat	y Coordinates per color	
Red	Cx XR/(XR+YR+ZR)	***********
Green	Cx XG/(XG+YG+ZG)	
Blue	Cx XB/(XB+YB+ZB)	
Red	Cy YR/(XR+YR+ZR)	
Green	Cy YG/(XG+YG+ZG)	
Blue	Cy YB/(XB+YB+ZB)	

8.3.2.b Dominant wavelength per color

Dominant wavelength for each color is calculated from Cx and Cy values for this color

Equal energy (E) color point (x,y)=(0.333, 0.333) is used as a reference white point for this calculation

8.3.3 Light source White Point

The light source white point is calculated from the tristimulus values of each colour.

2227 2227 2227	POMIT NO COMPANDATOR MICH MICH CADE	mundo varado di dudii del	out.
LS tristimulus values	X = XR + XG + XB	Y = YR + YG + YB	Z = ZB + ZG + ZB
LS_Cx	X/(X+Y+Z)		
LS Cy	Y/(X+Y+Z)		

Color grade and sub-grade is determined from this white point.

8.3.4 Light source Color Uniformity

The light source color uniformity is calculated from the tristimulus values X, Y, and Z of the individual emitters

|--|

Date 1/30/2005

Transfer matrix T(I,J)

		J														
	_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
I	1	0.842200	0.811055	0.755698	0.687081	0.615854	0.549665	0.492561	0.445751	0.408741	0.380273	0.358917	0.343373	0.332592	0.325806	0.322520
1	2	0.811055	0.786991	0.742567	0.684582	0.620989	0.558835	0.502929	0.455616	0.417341	0.387436	0.364774	0.348177	0.336624	0.329338	0.325806
	3	0.755698	0.742567	0.715875	0.676474	0.627563	0.574253	0.521891	0.474520	0.434312	0.401842	0.376696	0.358025	0.344923	0.336624	0.332592
1	4	0.687081	0.684582	0.676474	0.658856	0.629739	0.590619	0.545843	0.500586	0.459021	0.423571	0.395093	0.373442	0.358025	0.348177	0.343373
	5	0.615854	0.620989	0.627563	0.629739	0.621912	0.601329	0.569315	0.530345	0.489845	0.452272	0.420318	0.395093	0.376696	0.364774	0.358917
	6	0.549665	0.558835	0.574253	0.590619	0.601329	0.600607	0.585830	0.558574	0.523595	0.486592	0.452272	0.423571	0.401842	0.387436	0.380273
	7	0.492561	0.502929	0.521891	0.545843	0.569315	0.585830	0.589867	0.579081	0.555320	0.523595	0.489845	0.459021	0.434312	0.417341	0.408741
*	8	0.445751	0.455616	0.474520	0.500586	0.530345	0.558574	0.579081	0.586613	0.579081	0.558574	0.530345	0.500586	0.474520	0.455616	0.445751
	9	0.408741	0.417341	0.434312	0.459021	0.489845	0.523595	0.555320	0.579081	0.589867	0.585830	0.569315	0.545843	0.521891	0.502929	0.492561
	10	0.380273	0.387436	0.401842	0.423571	0.452272	0.486592	0.523595	0.558574	0.585830	0.600607	0.601329	0.590619	0.574253	0.558835	0.549665
	11	0.358917	0.364774	0.376696	0.395093	0.420318	0.452272	0.489845	0.530345	0.569315	0.601329	0.621912	0.629739	0.627563	0.620989	0.615854
	12	0.343373	0.348177	0.358025	0.373442	0.395093	0.423571	0.459021	0.500586	0.545843	0.590619	0.629739	0.658856	0.676474	0.684582	0.687081
	13	0.332592	0.336624	0.344923	0.358025	0.376696	0.401842	0.434312	0.474520	0.521891	0.574253	0.627563	0.676474	0.715875	0.742567	0.755698
	14	0.325806	0.329338	0.336624	0.348177	0.364774	0.387436	0.417341	0.455616	0.502929	0.558835	0.620989	0.684582	0.742567	0.786991	0.811055
	15	0.322520	0.325806	0.332592	0.343373	0.358917	0.380273	0.408741	0.445751	0.492561	0.549665	0.615854	0.687081	0.755698	0.811055	0.842200

Date

1/30/2005

Who	Rev#	Date	Comments
Y. Martynov	1	3/14/2004	Created based on Trial00 design freeze
Y. Martynov	2	3/19/2004	Corrected x-y for Green
Y. Martynov	3	4/16/2004	Replaced Photometric by radiometric flux spec on Blue; added color uniformity spec
TW. Tan	4	4/19/2004	Changed format
Y. Martynov	5	4/20/2004	Added mW for Blue, tentative Min/Max x-y for primaries
Y. Martynov	6	4/23/2004	Spec review with the customer
Y. Martynov	7	5/13/2005	Increased min Blue radiometric flux; Spec for Trial 2B
Y. Martynov	8	5/18/2005	Blue wavelength to dominant, added WP grade definition
Y. Martynov	9	5/25/2005	Thermal resistance, Grade names
Y. Martynov	10	5/27/2004	7 grades, connector part #, drawing, removed typical Ldom, Maximum thermal resistance
Y. Martynov	11	5/28/2004	Corrected x-y for all colors based on Tr002A, added test spec
Y. Martynov	12	6/7/2006	Typ->Nom, coordinates for grade corners corrected x-y for red again
Y. Martynov	13	6/7/2006	Drawing update
Y. Martynov	14	6/21/2004	Corrected error Blue x-y, update after customer feedback, FWHM for Green, drawing update
Y. Martynov	15	6/23/2004	Grade split + packaging explanation, final mechanical drawing, corrected flux to agree with 25up
Y. Martynov	16	7/7/2004	Higher Max Vf on Green, Min dyn. resistance spec, Green flux grades, testing spec with camera
Y. Martynov	17	7/8/2004	Updated Red flux and corrected the grade structure to reflect possible effects of burn-in
Y. Martynov	18	7/27/2004	Updated mechanical drawing to reflect agreement on warp & placement
Y. Martynov	19	1/12/2005	Modified Blue flux Min and Max and Grade structure
Y. Martynov	20		Skipped
Y. Martynov	21	1/30/2005	Abandoned L3 test and added new color uniformity specification, LXQL-FGBB part number

Date

1/30/2005

All values are given at junction temperature 25°C

1. Dimensions

1.1 Drawing

See Mechanical Drawing sheet

1.2 Connector

I JAE II JAE

AE FI-S5-3P-HFE AE FI-S6-3P-HFE

	,	١
_		ļ

2. Photometric specification Green Blue 2.1 Total Flux Driving condition 350 700 700 mΑ lm mW 175 325 min 900 max lm mW 310 500 1300

All photometric specifications defined at 350mA for red and 700mA for green and blue Junction temperature 25°C As per Lumileds' tester measurement tolerance.

Lumileds and Sony will establish a Joint Calibration Program to maintain tester accuracy

Photometric for Red and Green, Radiometric for blue

As actual effect of production burn-in are unclear the flux numbers for Red may
be updated based on the actual results.

Light sources will be marked according to their Green luminous flux grade measured at 700 mA Green

		S	M	\mathbf{L}	X
2.1.a G	reen Flux Grade	e Limits			
min	lm	325	365	405	450
max	lm	365	405	450	500

2.2 Wa	2 Wavelength						
Min Max	nm	620	523	445			
Max	nm	631	537	465			

 2.3 Spectral Width (Full Width at Half Maximum)

 Nom
 nm
 25
 40
 30

 Max
 nm
 40
 50
 40

2.4 Temperature coefficient of dominant wavelength
Nom nm/C° 0.05 0.06 0.04

Dominant wavelength (CIE 1931) for R, G and B
Equal energy (E) color point (x,y)=(0.333, 0.333) is used
as a reference white point to determine dominant wavelength

Full spectral width at half peak

2.5 Chr	omaticity coor	linates		
Min	x	0.685	0.14	0.13
Max	x	0.715	0.24	0.17
Min	y	0.285	0.685	0.005
Max	y	0.31	0.75	0.055

2.6 White color point characteristics

Light sources will be marked according to their white point grade and sub-grade measured at 350 mA Red and at 700 mA Green and Blue

Grades may be added and become inactive every 6 months Such change will be agreed upon in advance