Deep Dive: LLM Integration & Parameter Analysis

Agent-Based Epidemic Simulation Code Walkthrough

Detailed Explanation of LLM Integration and Key Parameters Youming Yeh • 2025-02-16

Overview of Simulation Configuration

• Time & Iterations:

- TICKS_PER_DAY = 288 (5-minute intervals)
- NUM_DAYS = 120 simulation days

• Information Sharing:

INFORMATION_PROB = 0.1:10% chance for agents to share news

• LLM Inference:

• LLM_INFERENCE_PROB = 0.1:10% chance to trigger LLM calls for reflection or planning

• Epidemic Transmission Parameters:

- \circ ALPHA = 0.1 : Base transmission rate (S → E)
- BETA = 0.4 : Chance E becomes asymptomatic infected (IA)
- ∘ GAMMA = 0.3 : Chance IA becomes seriously infected (IS)
- THETA = 0.4 : Chance IS becomes critically infected (IC)
- PHI = 0.1 : Death rate in IC
- OMEGA = 0.1 : Recovery to immunity (M) probability

• Time in Each State:

Fixed durations (5 days for E, IA, IS, IC, R)

Behavioral and Contact Parameters

• Behavior Multipliers:

- o wearing_mask : 0.1 (reduces exposure)
- maintaining_social_distance: 0.3
- self_isolating: 0 (no exposure)

Location Contact Rates:

Home: 1, Bus: 5, Workplace: 3, Market: 4, School: 2, Terminal: 3

• Exposure Calculation:

Combined effects of both agents' behaviors and location-specific contact rates

Data Models for Cognitive Simulation

- Memory Model:
 - Attributes: description , day , importance
- Behavior Model:
 - Booleans: wearing_mask, maintaining_social_distance, self_isolating
- Belief & Beliefs:
 - Belief: description, sentiment
 - Beliefs: A list of Belief objects
- News Model:
 - headline string

LLM Integration Functions

- 1. Generate Beliefs (Reflection)
 - Function: generate_beliefs(memories, persona)
 - Process:
 - Serializes recent memories (JSON)
 - Constructs a prompt including:
 - Agent's persona (demographics, personality, health, behavior)
 - JSON data of recent memories
 - Calls LLM (using ollama.chat) with model "llama3.2:1b"
 - Expects a JSON response strictly matching the Beliefs schema

LLM Integration Functions (Cont.)

2. Generate Behavior (Planning)

- Function: generate_behavior(beliefs, persona)
- Process:
 - Serializes current beliefs (JSON)
 - Constructs a prompt that asks:
 - "Based on your current beliefs and epidemic context, decide daily behavior (mask, distancing, isolation)"
 - Returns behavior plan in JSON per the Behavior schema

LLM for News Generation

- **Function:** generate_news(information)
- Purpose:
 - Generate a concise news headline based on epidemic stats (new infections, deaths, etc.)
- Mechanism:
 - Constructs a prompt with public health context
 - Calls the LLM and expects a JSON with a single key: headline
- Integration:
 - Headlines are spread to a subset of agents (10% daily), influencing their memories

Agent Class: Cognitive & Epidemic Dynamics

Initialization:

- Each agent is instantiated with:
 - ID, age, gender, home, destination, routine, network neighbors, and a detailed persona string

Memory & Reflection:

- Daily interactions are summarized and stored as memories
- o reflect(day):
 - Filters recent memories (last day)
 - With probability LLM_INFERENCE_PROB , calls generate_beliefs
 - Updates internal belief list

• Behavior Planning:

- o plan():
 - With probability LLM_INFERENCE_PROB, calls generate_behavior based on current beliefs
 - Updates daily behavior which affects future interactions

• State Update:

- Uses epidemic parameters (ALPHA, BETA, GAMMA, THETA, PHI, OMEGA) to update health state
- Exposure is recalculated each tick based on interactions and behavior multipliers

Social Network & Information Flow

Network Construction:

- Uses networkx to build strong ties (home, workplace) and weak ties (random friendships)
- Stores network in SQLite for persistence

• Information Sharing:

- Agents share news with neighbors based on INFORMATION_PROB
- Received news becomes part of their memories, influencing subsequent LLM reflection

• Interaction Dynamics:

- Agents are grouped by location each tick (Home, Bus, Workplace, etc.)
- Pairwise interactions adjust exposure and potential infection events

Main Simulation Loop

Daily Cycle:

- For each tick, agents interact based on current location (adjusted by behavior)
- End-of-day: each agent summarizes interactions into a memory
- News is generated (with LLM) and shared among agents
- Agents reflect and plan via LLM calls
- Health state updates occur based on cumulative exposure and transition probabilities

• Data Tracking:

- Overall statistics computed (Susceptible, Exposed, Infected, etc.)
- Network visualization at simulation end

Summary & Research Implications

• LLM Integration:

- Dual-step process: Reflection (memories → beliefs) and Planning (beliefs → behavior)
- Provides a cognitive layer that adapts based on both internal and external (news) factors

Parameter Synergy:

- Epidemic transmission parameters (ALPHA, BETA, etc.) combined with behavioral modifiers (mask, distancing)
- Social network dynamics and information sharing amplify adaptive behavior

• Research Applications:

- Enables exploration of human-like decision making in epidemic spread
- Offers insights for designing targeted public health interventions

Questions & Discussion

• LLM Refinement:

- How can the reflection and planning prompts be optimized?
- What additional context could improve belief generation accuracy?

• Parameter Sensitivity:

- Which parameters most significantly affect epidemic outcomes?
- Ideas for calibration using real-world data?