

Instituto Federal de Educação, Ciência e Tecnologia da Bahia - IFBA Departamento de Informática Integrado / Análise e Desenvolvimento de Sistemas / Licenciatura em Computação

Modelo Lógico (Representação, Domínios de atributos e chaves)

André L. R. Madureira <andre.madureira@ifba.edu.br>
Doutorando em Ciência da Computação (UFBA)
Mestre em Ciência da Computação (UFBA)
Engenheiro da Computação (UFBA)

Modelo Lógico

 Existem vários modelos, porém o mais usado é o modelo relacional, baseado em tabelas

	Tabela de Clientes						
ID	Nome	CPF	ID Conta				
1	Julia	111.222.333-44	2				
2	Carlos	555.666.777-88	1				
3	Amanda	123.456.789-00	3				

	Tabela de Contas						
ID	<u>Agência</u>	<u>Número</u>					
1	3460	71542					
2	5421	65321					
3	7410	02145					

Modelo Relacional

- No modelo relacional, dados são armazenados no formato de tabelas (relações)
- Cada atributo é uma coluna e cada instância é uma linha

Não podemos ter instâncias exatamente iguais (todos os

atributos idênticos)

	Tabela de Clientes							
ID	<u>Nome</u>	CPF	ID Conta					
1	Julia	111.222.333-44	2					
2	Carlos	555.666.777-88	1					
3	Amanda	123.456.789-00	3					

Representação com Diagrama de Esquemas

- Representar todos os atributos e instâncias em uma tabela ocupa muito espaço
 - Solução: descrever apenas o esquema da tabela usando o diagrama de esquemas

Representação semelhante à UML

- Outra forma de representar o esquema de tabelas é usando a notação da ferramenta brModelo
 - Notação semelhante ao diagrama de classes UML

Problema: Descrever o esquema da tabela de forma gráfica ocupa

muito espaço

- Solução: descrever o esquema usando notação matemática
 - Ex: Clientes(id, nome, cpf, id_conta)
 Contas(id, agencia, numero)

- Sintaxe: $R(A_1, A_2, ..., A_n)$
 - o R é o nome da relação
 - A_i é o nome do atributo
 - o **n** é o grau ou aridade da relação
 - dom(A_i) é o domínio do atributo A_i
- Ex: Contas(id, agencia, numero)
 - A relação Contas tem atributos id, agencia e numero
 - A relação Contas tem grau 3

- Ex: Clientes(id, nome, cpf, id_conta)
 - A relação Clientes tem atributos id, nome, cpf e id_conta
 - A relação Clientes tem aridade 4
 - dom(id) = INT
 - o dom(nome) = VARCHAR(50)
 - o dom(cpf) = VARCHAR(11)
 - o dom(id_conta) = INT

- Uma relação R possui estados r(R) que representam os dados armazenados em nessa relação, em um determinado instante de tempo
- $r(R) = \{t_1, t_2, ..., t_m\}$ onde $t_k = \langle v_1, v_2, ..., v_n \rangle$ é uma tupla
 - v_i são os valores de cada atributo A_i da tupla t
 - \circ $v_i \in dom(A_i)$
- Ex: Seja R = Clientes(id, nome, cpf, id_conta)
 - \circ t₁ = <1, 'Julia', 111.222.333-44, 2>
 - \circ t₂ = <2, 'Carlos', 555.666.777-88, 1>
 - $t_3 = <3$, 'Amanda', 123.456.789-00, 3>

Clientes							
ID	Nome	CPF	ID Conta				
1	Julia	111.222.333-44	2				
2	Carlos	555.666.777-88	1				
3	Amanda	123.456.789-00	3				

- Podemos acessar o valor de cada atributo de uma tupla usando a notação
 t[A_i] ou t.A_i
- Ex: Seja R = Clientes(id, nome, cpf, id_conta) e r(R)={t₁, t₂}
 - \circ t₁ = <1, 'Julia', 111.222.333-44, 2>
 - \circ t₂ = <2, 'Carlos', 555.666.777-88, 1>
- Podemos acessar os valores dos atributos de t_i.
 - \circ t₁[nome] = <'Julia'>
 - \circ t₁.nome = <'Julia'>
 - o t₂[cpf, id_conta]= <555.666.777-88, 1>

Exercício - Representação matemática

- Seja um sistema de livraria online, com as seguintes relações:
 - \circ R₁ = Clientes(id, nome, cpf, endereco)
 - R₂ = Livros(id, titulo, autor, editora, genero)
- Forneça exemplos de tuplas de cada uma das relações acima
- Explique porque n\u00e3o \u00e9 poss\u00edvel inserir duas tuplas id\u00e9nticas.
 Forne\u00e7a exemplos.

Tipo de Dados de Atributos

- Define que valores de dados um atributo pode assumir (domínio do atributo)
- Cada sistema de gerenciamento de banco de dados (SGBD) fornece suporte a tipos de dados diferentes
 - o int, smallint, bigint
 - o float, double
 - boolean
 - date, datetime, time
 - varchar(n), text

INT ou INTEGER

Inteiro de tamanho normal (4 bytes)

- Um inteiro COM sinal pertence ao intervalo:
 - $[-2^{31}, +2^{31}-1] = [-2147483648, +2147483647]$

- Um inteiro SEM sinal pertence ao intervalo:
 - \blacksquare [0, 2³²] = [0, 4294967295]

INT ou INTEGER

- Podemos ter números inteiros de tamanho maior ou menor que 4 bytes, de acordo com o que for necessário para a aplicação
 - TINYINT (1B), SMALLINT (2B), INT (4B), BIGINT (8B)

INT ou INTEGER

- Cálculo do intervalo de valores de um inteiro de tamanho N bytes:
 - Se o inteiro possui sinal (+/-):
 - \blacksquare [-2^{N*8}/2, +2^{N*8}/2 1]
 - Se o inteiro não possui sinal (+/-):
 - \blacksquare [0, +2 N*8]

FLOAT, DOUBLE e NUMERIC(p,d)

- Computadores não conseguem armazenar um conjunto de valores infinitos com exatidão, pois eles são sistemas binários
 - Porém números fracionários são infinitos
- Problema: ao fazer operações com números fracionários, podemos ter erros de aproximação
 - Solução: minimizar erros de aproximação definindo uma precisão para o número fracionário
 - Precisão simples (*FLOAT*) ou dupla (*DOUBLE*)

FLOAT, DOUBLE e NUMERIC(p,d)

- Float: Número decimal de precisão simples (32 bits)
- **Double**: Número de decimal de precisão dupla (64 bits)
- Numeric(p,d): número decimal de ponto fixo com p dígitos (incluindo a parte inteira e fracionária) e d casas decimais (algarismos da parte fracionária)
 - **Ex**: numeric(3,1) permite armazenar os números:
 - **44,2**
 - **1**,8

BOOLEAN

- BOOLEAN: Valores booleanos que podem ser representado por true/false ou 1/0
 - Ex: Aprovação ou reprovação em uma disciplina

```
create table disciplina (
nome_aluno varchar(20),
nota double,
aprovado_reprovado boolean
);
```

DATE e TIME

- DATE: Data, representada no formato 'AAAA-MM-DD'
 - A faixa suportada é entre '1000-01-01' e '9999-12-31'
 - Ex: armazenar data de nascimento de uma pessoa

- TIME: Tempo, representado no formato 'HH:MM:SS'
 - A faixa suportada é entre '-838:59:59' e '838:59:59'.
 - Ex: armazenar o horário de chegada e saída no IFBA

DATETIME

- DATETIME: Combinação de DATE e TIME, no formato 'AAAA-MM-DD HH:MM:SS'
 - A faixa suportada é entre '1000-01-01 00:00:00' e
 '9999-12-31 23:59:59'
 - Ex: armazenar o dia e horário que um funcionário chegou para trabalhar

VARCHAR, TEXT e LONGTEXT

- VARCHAR (M): Uma string de tamanho variável de 1 a M caracteres
 - Se o valor M especificado for maior que 255, o tipo do atributo é convertido para TEXT

TEXT: String com tamanho máximo de 65535 caracteres

LONGTEXT: String com máximo de 4,294,967,295 caracteres

Chave em Banco de Dados

- É um ou mais atributos de uma tabela que identificam um registro ou conjunto de registros de forma exclusiva
 - Chave candidata
 - Chave primária
 - Chave primária surrogada
 - Chave estrangeira

Chave Candidata

- São atributos determinantes que PODEM identificar registros de uma tabela de forma exclusiva
 - Não pode ter valores repetidos ou nulos (restrição de integridade de entidade)
 - Funcionários diferentes possuem
 CPFs e RGs distintos
 - CPF e RG identificam cada funcionário de forma exclusiva

Chave Primária (*Primary Key ou PK*)

 É uma chave candidata ESCOLHIDA pelo projetista do banco de dados para identificar os registros

Funcionario

Funcionario

P opf: INT
rg: INT
nome: VARCHAR(50)
idade: INT
data_nascimento: DATE
tel1: INT
tel2: INT

Representação no modelo E-R: círculo preenchido

Representação no modelo lógico: atributo <u>sublinhado</u>, ou com chave preta ao lado

Chave Primária Surrogada

- Não possui significado para aplicação ou usuário
- Serve apenas para garantir a exclusividade dos registros
- Normalmente esse atributo é escondido do usuário

Tabela de Clientes						
ID	<u>Nome</u>	CPF	ID Conta			
1	Julia	111.222.333-44	2			
2	Carlos	555.666.777-88	1			
3	Amanda	123.456.789-00	3			

	Tabela de Contas							
ID <u>Agência</u> <u>Número</u>								
1	3460	71542						
2	5421	65321						
3	7410	02145						

- É um atributo de uma tabela que estabelece um relacionamento com a chave primária de outra tabela
- Permite buscar dados armazenados em múltiplas tabelas

Tabela de Clientes FK					PK Tabela de Contas			
ID	<u>Nome</u>	<u>CPF</u>	ID Conta		ID	<u>Agência</u>	<u>Número</u>	
1	Julia	111.222.333-44	2	7	1	3460	71542	
2	Carlos	555.666.777-88	1	>>	2	5421	65321	
3	Amanda	123.456.789-00	3	\rightarrow	3	7410	02145	

Representação no modelo lógico: atributo com chave prata ou verde ao lado

O atributo "Cliente.id_conta" é uma chave estrangeira que referencia o atributo "Contas.id"

Também podemos dizer que "Cliente.id_conta" refere-se ao atributo "Contas.id"

Isto é, há **restrição de integridade referencial** de
Clientes para Contas

Uma chave estrangeira pode se referir a um atributo de sua mesma tabela

Ex: cpf_supervisor em Funcionário se refere a um cpf da mesma tabela Funcionário

FUNCIONARIO

Pnome	Minicial	Unome	Cpf	Datanasc	Endereco		Salario	Cpf_supervisor	Dnr
João	В	Silva	12345678966	09-01-1965	Rua das Flores, 751, São Paulo, SP	М	20.000	33344555587	5
Fernando	T	Wong	33344555587	0s-12-1955	Rua da Lapa, 34, São Paulo, SP	М	40.000	88866555576	5
Alice	J	Zelaya	99988777767	19-01-1968	Rua Souza Lima, 35, Curitiba, PR	F	25.000	98765432168	4
Jennifer	S	Souza	98765432168	20-06-1941	Av. Arthur de Lima, 54, Santo Andre, SP	F	43.000	88866555576	4
Ronaldo	K	Lima	66688444476	15-09-1962	Rua Rebouças, 65. Piracicaba, SP	М	38.000	33344555587	5
Joice	Α	Leite	45345345376	31-07-1972	Av. Lucas Obes, 74, São Paulo, SP	F	25.000	33344555587	5
André	V	Pereira	98798798733	29-03-1969	Rua Timbira, 35, São Paulo, SP	М	25.000	98765432168	4
Jorge	E	Brito	88866555576	10-11-1937	Rua do Horto, 35, São Paulo, SP	M	55.000	NULL	1

Chaves estrangeiras podem conter o valor NULL

FUNCIONARIO

Pnome	Minicial	Unome	Cpf	Datanasc	Endereco S Rua das Flores, 751, São Paulo, SP N		Salario	Cpf_supervisor	Dnr
João	В	Silva	12345678966	09-01-1965			30.000	33344555587	5
Fernando	T	Wong	33344555587	08-12-1955	Rua da Lapa, 34, São Paulo, SP	М	40.000	88866555576	5
Alice	J	Zelaya	99988777767	19-01-1968	Rua Souza Lima, 35, Curitiba, PR	F	25.000	98765432168	4
Jennifer	S	Souza	98765432168	20-06-1941	Av. Arthur de Lima, 54, Santo André, SP	F	43.000	88866555576	4
Ronaldo	K	Lima	66688444476	15-09-1962	Rua Rebouças, 65, Piracicaba, SP	М	38.000	33344555587	5
Joice	А	Leite	45345345376	31-07-1972	Av. Lucas Obes, 74, São Paulo, SP	F	25.000	33344555587	5
André	V	Pereira	98798798733	29-03-1969	Rua Timbira, 35, São Paulo, SP	М	25.000	98765432168	4
Jorge	E	Brito	88866555576	10-11-1937	Rua do Morto, 35, São Paulo, SP	M	55.000	NULL	1

Exercício - Chaves

- Escolha um dos sistemas descritos no link abaixo:
 - https://github.com/andre-romano/tutorial_php/tree/master/pr ojetos
- Quais são as chaves primárias e estrangeiras das tabelas do sistema?
- Porque n\u00e3o podemos ter valores NULL nas chaves prim\u00e1rias?

Referencial Bibliográfico

 KORTH, H.; SILBERSCHATZ, A.; SUDARSHAN, S.
 Sistemas de bancos de dados. 5. ed. Rio de Janeiro: Ed. Campus, 2006.

 DATE, C. J. Introdução a sistemas de bancos de dados. Rio de Janeiro: Ed. Campus, 2004. Tradução da 8ª edição americana.