Positive Polynomials and Sums

Jasper Ty

What is this?

These are notes I am taking for the class "Positive Polynomials and Sums" at Drexel University, taught by Hugo Woerdeman.

Contents

I	Con	es of Hermitian matrices and trigonometric polynomials]	I
	I.I	Cones	. :	Ι
	1.2	The cone PSD_n	. 2	2
	1.3	Trigonometric polynomials	. 2	2

Cones of Hermitian matrices and trigonometric polynomials

I.I Cones

Definition 1.1.1. Let \mathcal{H} be a real Hilbert space.

A **cone** $\mathscr{C} \subseteq \mathscr{H}$ is a nonempty subset of \mathscr{H} such that

- (i) $\mathscr{C} + \mathscr{C} \subseteq \mathscr{C}$, (ii) $\alpha\mathscr{C} \subseteq \mathscr{C}$ for all $\alpha > 0$.

Namely, a cone & is a set closed under taking conical combinations.

Proposition 1.1.2. The set of all cones of a Hilbert space \mathcal{H} forms a lattice, with join and meet given by sum and intersection respectively.

Proof. Let
$$\mathcal{C}_1$$
 and \mathcal{C}_2 be cones in \mathcal{H} .
 Let $x, y \in \mathcal{C}_1 \cap \mathcal{C}_2$. Then $x + y \in \mathcal{C}_1 + \mathcal{C}_1$

Definition 1.1.3. Let $\mathscr C$ be a cone.

The dual cone \mathscr{C}^* of \mathscr{C} is

$$\mathscr{C}^* \coloneqq \Big\{ L \in \mathscr{H} : \langle L, K \rangle \geq 0 \text{ for all } K \in \mathscr{C} \Big\}.$$

We say that \mathscr{C} is **self-dual** if $\mathscr{C}^* = \mathscr{C}$.

Proposition 1.1.4. Let \mathscr{C} be a cone.

- (i) \mathscr{C}^* is a cone
- (ii) $\mathscr{C}^{**} = \overline{\mathscr{C}}$.
- **Definition 1.1.5.** A extreme ray of a cone \mathscr{C} is
- **1.2** The cone PSD_n

Definition 1.2.1. Let Mat_n be the Hilbert space over \mathbb{C} consisting of $n \times n$ complex matrices, with inner product given by

$$\langle A, B \rangle_{\text{Mat}_n} := \text{tr}(AB^*)$$

Let Herm_n be the *real* Hilbert space consisting of Hermitian matrices.

Namely, $\operatorname{Herm}_n := \mathbb{R}$. Mat_n .

It's a neat fact that $\operatorname{Herm}_n \oplus i \operatorname{Herm}_n = \operatorname{Mat}_n$.

Definition 1.2.2. The **cone of positive semidefinite matrices** PSD_n is the subset of $Herm_n$ consisting of positive semidefinite matrices.

1.3 Trigonometric polynomials

Definition 1.3.1. Let $\mathbb F$ be a field and let X be any set. We denote the $\mathbb F$ -vector space with basis X by $\mathbb F.X$.

Moreover, if $M \in PSD_{|X|}$

Definition 1.3.2. Let \mathbf{x}_d denote a column vector of variables

$$\mathbf{x}_d = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}$$