Đoàn Ngọc Nam 52000084

Lab 01 homework

1. Identify the efficiency

a. Solution:

- $n \rightarrow T(n)$
- Basic: A[i] == A[j]
- Worst case: Have no couple items same
- $T(n) = (n-1) + (n-2) + \dots + 1 = \frac{(n-1)n}{2}$
- $T(n) \in \Theta(n^2)$

a. Solution:

- $n \to T(n)$
- Basic: A[i] > max
- Worst case: No
- $T(n) = (n-1) + (n-2) + \dots + 1 = \frac{(n-1)n}{2}$
- $T(n) \in \Theta(n^2)$

b. Solution:

- $n \rightarrow T(n)$
- $Basic: i \ge 1$
- Worst case: No
- Loop $\log_3 n$ times in while, each of that, loop n times in for $=> T(n) = \log_3 n(n)$
- $T(n) \in \Theta(nlog(n))$

c. Solution:

- $n \to T(n)$
- $Basic: A[i] == A[j]^2$
- Worst case: There is no items is square of another
- $T(n) = (n-1) + (n-2) + \dots + 1 = \frac{(n-1)n}{2}$
- $T(n) \in \Theta(n^2)$

d. Solution:

- $k \to T(k)$
- Basic: i < k
- Worst case: No
- $T(k) = 1 + 1 + \dots + 1 = k + 1$
- $T(k) \in \Theta(k)$

e. Solution:

- $k \to T(k)$
- Basic: k = 1
- Worst case: No
- T(k) = T(k-1) + 2
- T(k-1) = T(k-1-1) + 2
- ..
- T(1) = T(0) + 2 = 2
- T(k) = 2k
- $T(k) \in \Theta(k)$

h. Solution:

- $k \to T(k)$
- Basic: k = 0
- Worst case: No
- T(k) = 2T(k-1)
- T(k-1) = 2T(k-1-1)
- ..
- T(1) = 2T(0) = 2

...

k. Solution:

- $k \to T(k)$
- Basic: i < k
- Worst case: No
- $T(k) = 1 + 1 + \dots + 1 = k + 1$
- $T(k) \in \Theta(k)$

I. Solution:

- $n \to T(n)$
- Basic: i < n and A[i]! = k
- Worst case: There is no items equal k
- T(n) = n
- $T(n) \in \Theta(n)$

n. Solution:

- $n \rightarrow T(n)$
- Basic: all is swapped
- Worst case: Array is gradualy reduce
- T(n) = n * n
- $T(n) \in \Theta(n^2)$

o. Solution:

- $n \to T(n)$
- Basic: A[i] == A[j]
- Worst case: There is no same 2 items
- $T(n) = (n-1) + (n-2) + \dots + 1 = \frac{(n-1)n}{2}$
- $T(n) \in \Theta(n^2)$

p. Solution:

- $n \to T(n)$
- Basic: j > 0 and A[j] > x
- Worst case: Array is gradualy reduce
- $T(n) = 1 1 + 2 + 3 + \dots + n = \frac{(n-1)(n+2)}{2} = \frac{n^2 + n}{2} 1$
- $T(n) \in \Theta(n^2)$

2. Define statement

a.
$$32n^2 + 17n + 32 \in O(n)$$
: False

b.
$$32n^2 + 17n + 32 \in O(n^3)$$
: False

c.
$$32n^2 + 17n + 32 \in \Omega(n^3)$$
: False

d.
$$32n^2 + 17n + 32 \in \Omega(n)$$
: True

• Prove:

Because of that $32n^2 + 17n + 32 > c * n$ with all $n > n_0$ (c is constant)

e.
$$2^{n+1} \in O(2^n)$$
: True

f. $2^{2n}=2^n2^n\in O(2^n)$: False g. If $f(n)\in O(g(n))$ and $g(n)\in O(f(n))$ then f(n)=g(n)