الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: 2017

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة: الرياضيات المدة: 04 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول الموضوع الأول

التمرين الأوّل: (04 نقاط)

. C(1;1;3) و B(0;-2;2)، A(2;2;0) نعتبر النقط $\left(O;\vec{i},\vec{j},\vec{k}\right)$ و B(0;-2;2) و الفضاء منسوب إلى المعلم المتعامد والمتجانس

- . (BC) اكتب معادلة ديكارتية للمستوي (P) الذي يشمل النقطة A ويعامد المستقيم (1
- . x+2y-z=0 : هي (P') المستوي المحوري للقطعة $\begin{bmatrix} AB \end{bmatrix}$ ، تحقق أن معادلة ((P') هي (2
 - . بيّن أنّ المستويين (P) و (P') يتقاطعان وفق مستقيم (Δ) ، يطلب إيجاد تمثيل وسيطي له .
- (ABC) و (Δ) هي نقطة تقاطع (Δ) و (Δ) بيّن أنّ النقطة Δ 0 مرجح الجملة المثقلة (Δ 1,(B1),(C2,-12) هي نقطة تقاطع (Δ 3 مرجح الجملة المثقلة (Δ 4 من الفضاء التي تحقق: Δ 4 من الفضاء التي تحقق: Δ 4 من الفضاء التي تحقق: Δ 5 مجموعة النقط (Δ 6 من الفضاء التي تحقق: Δ 7 من الفضاء التي تحقق: Δ 8 من الفضاء التي تحقق: Δ 9 من الفضاء القط الفضاء التي تحقق: Δ 9 من الفضاء التي تحقق: Δ 9 من الفضاء التي تحقق: Δ 9 من الفضاء القط الفضاء القط الفضاء القط الفضاء الفضاء القط الفضاء القط الفضاء الفضاء القط الفضاء القط الفضاء القط الفضاء الفضاء الفضاء القط الفضاء الفضاء الفضاء القط الفضاء القط الفضاء الفضاء الفضاء الفضاء القط الفضاء القط الفضاء القط الفضاء الفضاء الفضاء القط الفضاء الفضاء القط الفضاء الفضاء الفضاء القط الفضاء الفضاء القط الفضاء القط الفضاء الفضاء الفضاء القط الفضاء الفضاء الفضاء القط الفضاء الفضا

التمرين الثاني: (04 نقاط)

نعتبر الدالة العددية f المعرّفة على المجال $[-\infty;1]$ ب $[-\infty;1]$ ب المستوي المستوي ألم المعادلة [x,y] المستقيم ذا المعادلة [x,y] المستقيم ذا المعادلة [x,y] المستقيم ألم المتعامد المتجانس [x,y] المستقيم ألم المعادلة [x,y]

- $u_0=-1$ المتتالية العددية المعرّفة بحدها الأول u_0 حيث . $u_{n+1}=f(u_n)$ ، $u_{n+1}=f(u_n)$ ، $u_{n+1}=f(u_n)$
 - اعد رسم الشكل المقابل ثم مثّل على حامل محور الفواصل المحود u_1 ، u_2 ، u_1 ، u_0 ، الحدود u_1 ، u_0 ، u_2 ، u_1 ، u_0 ثم ضع تخميناً حول اتجاه تغيّر المتتالية (u_n) وتقاربها.
 - . $u_n < 1$ ، n عدد طبیعی (2) برهن بالتراجع أنّ: من أجل كل عدد طبيعي
 - ادرس اتجاه تغيّر المتتالية (u_n) ثم استنتج انّها متقارية.
- $v_n = \frac{2}{1-u_n}$ ، n عدد طبیعی المعرّفة کما یلي: من أجل کل عدد (v_n) المعرّفة کما المعرّفة کما بناند (4
- . n بدلالة v_n بدلالة v_n بدلالة v_n بدلالة v_n بدلالة عين عبارة حدها العام
 - $\lim_{n\to +\infty} u_n$ واحسب والحد العام العام u_n بدلالة واحسب عبارة الحد العام بدلالة

التمرين الثالث: (05 نقاط)

 $(O; \overrightarrow{u}, \overrightarrow{v})$ المستوي المركب منسوب إلى المعلم المتعامد والمتجانس

. $z_{\scriptscriptstyle C}=-i$ و $z_{\scriptscriptstyle B}=2+i$ ، $z_{\scriptscriptstyle A}=-1$: نعتبر النقط B ، A و B ، A

- . ABC على الشكل الأسي ثم استنتج طبيعة المثلث (1 $z_B z_C$ على الشكل الأسي ثم استنتج طبيعة المثلث (1
 - A الني مركزه C ويحول B الني العبارة المركبة للتشابه المباشر C الذي مركزه
 - . S بالتشابه D بعتبر النقطة D بالنسبة الى D والنقطة D صورة D بالتشابه D
 - . E عين z_E لاحقة z_E ثم تحقق أن $z_E=1-2i$ عين z_D لاحقة
 - ب) حدّد طبيعة الرباعي ADEB.
- (B مجموعة النقط M من المستوي ذات اللاحقة M من المستوي ذات اللاحقة M

.
$$\arg(z-z_A) - \arg(z-z_B) = \frac{\pi}{2} + 2k\pi$$
 ; $k \in \mathbb{Z}$ حيث

تحقق أنّ النقطة C تنتمى الى (Γ) ، ثم حدّد طبيعة المجموعة C وأنشئها.

التمرين الرابع: (07 نقاط)

- انيا. النتيجتين بيانيا. $\lim_{x \stackrel{>}{\longrightarrow} 2} f(x)$ ، $\lim_{x \stackrel{<}{\longrightarrow} 1} f(x)$: احسب النهايتين بيانيا ، أ
 - $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ احسب (پ
- . f الدالة من أجل كل x من $f'(x) = -2 \frac{2}{(x-1)(x-2)}$ ، D_f من x من أجل كل أبل كل أبل
 - . f(3-x)+f(x)=0 و $(3-x)\in D_f$ ، D_f من x عدد حقیقي x عدد حقیقي (x عدد حقیقي (x عدد حقیقي x عدد حقیقي x عدد حقیقي x عدد حقیقي x من x عدد حقیقي x عدد حقیقي x من x من x عدد حقیقي x من x من
 - ب استنتج أنّ $\left(C_{f}
 ight)$ يقبل مركز تناظر يُطلب تعيين إحداثييه.
- لأبت أنّ المعادلة f(x)=0 تقبل حلا وحيدا α على المجال α على المعادلة β وحيدا β يطلب تعيين حصر له.
- . (Δ) بيّن أنّ المستقيم (Δ) ذا المعادلة: y=-2x+3 مقارب مائل لـ (C_f) ، ثم ادرس وضعية (Δ) بالنسبة لـ (Δ)
 - $oldsymbol{\cdot}ig(C_fig)$ و (Δ) و ($oldsymbol{6}$
 - .]2; + ∞ [على $x \mapsto ln\left(\frac{x-1}{x-2}\right)$ أصلية للدالة $h: x \mapsto (x-1)ln(x-1) (x-2)ln(x-2)$ على]7

ثم احسب بدلالة etaمساحة الحيّز المستوي المُحدد بالمنحنى $\left(C_{f}
ight)$ والمستقيمات التي معادلاتها:

x = 3 y = -2x + 3

انتهى الموضوع الأول

الموضوع الثانى

التمرين الأوّل: (04 نقاط)

 $\left(O;\vec{i},\vec{j},\vec{k}\right)$ الفضاء منسوب إلى المعلم المتعامد والمتجانس

. D(4;7;0) ، C(0;5;2) ، B(-1;2;-3) ، A(1;1;0) نعتبر النقط

- بيّن أن النقط $B \cdot A$ و C تعين مستو.
- $\cdot(AC)$ و (AB) و أثبت أنّ المستقيم (CD) عمودي على كل من المستقيمين (AB) و
- . (ABC) عادلة ديكارتية للمستوي (ABC)، ثم احسب المسافة بين النقطة D والمستوي ب
 - 3) أ) حدّد طبيعة المثلث ABC.
 - ب) احسب حجم رباعي الوجوه ABCD

التمرين الثانى: (04 نقاط)

- $.4^{5k}\equiv 1[11]$ ، k عدد طبیعی (1
- .11 على العدد 4^n على القسمة الإقليدية للعدد 4^n على (2
- . 11يقبل القسمة على 11 يقبل العدد $(2 \times 2017^{5n+3} + 3 \times 1438^{10n} + 1)$ يقبل العدد (3 عدد طبيعي العدد العدد (3 بيّن أنّ: من أجل كل عدد طبيعي العدد (3 بيّن أنّ
 - . 11عيّن قيم العدد الطبيعي n التي يكون من أجلها العدد ($2 \times 2017^{5n+2} + n 3$) قابلا للقسمة على (4

التمربن الثالث: (05 نقاط)

المستوي المركب منسوب إلى المعلم المتعامد و المتجانس $(O; \vec{u}, \vec{v})$.

 $z_D=\overline{z}_C$ و $z_C=rac{1}{2}(1-i)$ ، $z_B=\overline{z}_A$ ، $z_A=1+i$: و التي لواحقها C ، B ، A و التي لواحقها

- \cdot اكتب z_A و z_B على الشكل الأسي ثم استنتج الشكل الأسي للعددين z_B و z_A
 - . $(z_A)^n = (z_B)^n$ عيّن قيم العدد الطبيعي n التي تحقق:
 - A الذي يحول D إلى A ويحول D إلى A إلى A الذي يحول A إلى A ويحول A
 - . ADCB ثمّ استنتج طبيعة الرباعي $\frac{z_C-z_B}{z_D-z_A}$ ثمّ استنتج طبيعة الرباعي (ب
 - $\{(A;2),(B;2),(C;-1),(D;-1)\}$ مرجح الجملة مرجح الجملة عبد الجملة عبد الجملة عبد الجملة النقطة عبد الجملة عبد الجملة عبد الجملة النقطة عبد النقطة عبد النقطة النقطة عبد النقطة النقط
- $2\overline{MA} + 2\overline{MB} \overline{MC} \overline{MD} = \sqrt{5}$ لتكن (1) مجموعة النقط M من المستوي بحيث: (1) لتكن (1) مجموعة النقط 10 ثم حدد طبيعة المجموعة (10 وعناصرها المميزة وأنشئها.

التمرين الرابع: (07 نقاط)

- gنعتبر الدالة العددية g المعرّفة على \mathbb{R} كما يلي: الدالة العددية (I
 - 1) ادرس اتجاه تغير الدالة و.
- ية العدد $\alpha\in]-1,48\,;-1,47$ عين أنّ المعادلة g(x)=0 تقبل حلا وحيدا $\alpha\in]-1,48\,;-1,47$ عين أنّ المعادلة g(x)=0 عبين أنّ المعادلة g(x)=0 عبين أنّ المعادلة g(x)=0 عبين أنّ المعادلة وحيدا وحيدا عبين أنّ المعادلة وحيدا وحيد
 - $f(x) = \frac{x^3 6}{x^2 + 2}$ نعتبر الدالة العددية f المعرّفة على $\mathbb R$ كما يلي: (II

 $\left(\mathrm{O}\,;ec{i}\,,ec{j}
ight)$ سنجانس وليكن رامتعامد والمتجانس المستوي المستوي المنسوب إلى المعلم المتعامد والمتجانس المستوي

 $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ احسب (أ (1

$$f'(x) = \frac{x g(x)}{(x^2 + 2)^2}$$
 ، x عدد حقیقی عدد کل عدد بین أنّ من أجل کل عدد حقیقی

ثم ادرس اتجاه تغير الدالة f وشكّل جدول تغيراتها.

- $\cdot \left(C_f
 ight)$ بيّن أنّ المستقيم y=x ذا المعادلة y=x مقارب مائل للمنحنى (1 (2
 - . (Δ) ادرس وضعية المنحنى (C_f) بالنسبة إلى المستقيم
 - $f(\alpha)$ بيّن أنّ $f(\alpha) = \frac{3}{2}$ ثم استنتج حصرا للعدد (3
 - $\cdot \left(C_f
 ight)$ ارسم المستقيم ($\Delta
 ight)$ والمنحنى (4
- نرمز بS الى مساحة الحيز المستوي المحدد بالمنحني (C_f) والمستقيمات التي معادلاتها (x=0) نرمز بx=0 ، x=0

$$\frac{3}{2}\alpha^2 \le S \le -3\alpha$$
 : ثم بيّن أنّ : من أجل كل $3 \le f(\alpha)$ ، $x \in [\alpha; 0]$ ثم بيّن أنّ : من أجل كل

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة	

_		
		الموضوع الأول
		التمرين الأوّل: (04 نقاط)
0.50	0.50	x+3y+z-8=0:(P) معادلة المستوي (1
01	01	. $x+2y-z=0$: هي (P') هي (2
	0.25	و (P') و نقاطعان وفق مستقيم (Δ) لأن الشعاعين الناظمين لكل من (P) و غير (P') غير
		مرتبطين خطيا
0.75		$\int x = 5t - 16$
	0.50	$\left\{ egin{aligned} y = -2t + 8 & / t \in \mathbb{R} : (\Delta) \end{aligned} ight.$ التمثيل الوسيطي للمستقيم
		z = t
	0.50	$G\left(1;rac{6}{5};rac{17}{5} ight):G$ إحداثيات (4
		5, 5, 5
	0.25	(1) لأنها مرجح للنقط الثلاث $C;B;A$ لأنها مرجح للنقط الثلاث $G\in(\mathrm{ABC})$
	0.25	(2) لأن إحداثيات G تحقق جملة التمثيل الوسيطي لـ $G\in(\Delta)$
1.75		$\{G\}$ = (ABC) \cap (Δ) نجد (2) نجد (1)
		مجموعة النقط:
	0.50	$MG = OA$ تكافئ $\left\ \overrightarrow{MA} + \overrightarrow{MB} - 12 \overrightarrow{MC} \right\ = 10 \left\ \overrightarrow{OA} \right\ $
	0.25	$O\!A$ سطح کرة مرکزها G ونصف قطرها (E)
	T	التمرين الثاني: (04 نقاط)
	0.50	رسم الشكل المقابل وتمثيل الحدود u_1 ، u_2 ، u_2 ، u_1 ، u_2 ، u_3 صمرزاً خطوط التمثيل (1
		1
0.75		
0172		
		-1 / 1
	·	u_0 u_1 u_2u_3
	0.25	التخمين : المتتالية (u_n) متزايدة تماما ومتقاربة
		التحمين : المتناتية (u_n) مترايده تماما ومتعاربة

الصفحة 1 من 8

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

$n \rightarrow +\infty$	
0.50 . نجد $u_{n+1} - u_n = \frac{(1-u_n)^2}{2-u_n}$. نجد $u_{n+1} - u_n = \frac{(1-u_n)^2}{2-u_n}$. نجد $u_{n+1} - u_n = \frac{(1-u_n)^2}{2-u_n}$. نجد u_n متزایدة تماما ومحدودة فهي متقاربة . u_n متزایدة تماما ومحدودة فهي متقاربة . $u_n = 0.50$. $u_{n+1} - u_n = 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2$	
0.75 . نجد $u_{n+1} - u_n = \frac{(x - x_n)}{2 - u_n}$. نجد $u_{n+1} - u_n = \frac{(x - x_n)}{2 - u_n}$. $u_{n+1} - $	2) البرهان بالترا
$v_{n+1} - v_n = 2:2$ المنطقة المسلمة المسلم	3) اتجاه التغير
$v_n = 2n + 1$: المثلث $v_n = 2n + 1$: $v_n = 2n + 1$: المثلث $u_n = 1 - \frac{2}{2n + 1}$: n المثلث $u_n = 1$:	(u_n) تقارب تقارب
$u_n = 1 - \frac{2}{2n+1} : n$ المثلث $u_n = 1$	1) المتت
$u_n = 1 - \frac{1}{2n+1} : n$ بد لالة $u_n = 1$ بد لالة $u_n = 1$ بي المثلث $u_n = 1$ ب	عبارة
(2.50) (الأسي: $\frac{z_A - z_C}{z_B - z_C} = \frac{1}{2}e^{i\frac{\pi}{2}}$ (الأسي: ABC قائم في C لان C قائم في C لان C قائم في C المثلث ABC ال	ب د (ب
0.50 $\frac{z_A-z_C}{z_B-z_C}=\frac{1}{2}e^{i\frac{\pi}{2}}:$ الاسي: ABC قائم في C لان C قائم في C لان C قائم في C المثلث ABC المثلث	النهاي
$(\overrightarrow{CB};\overrightarrow{CA}) = \frac{\pi}{2}$ لان C قائم في ABC قائم في ABC المثلث ABC المثلث	التمرين الثالث:
$(CB;CA) = \frac{1}{2}$ لان ABC قائم في ABC المثلث ABC المثلث ABC	1) الشكل
$z'=rac{1}{2}i\;z-rac{1}{2}-i\;:\;S$ וلمركبة للتشابه المباشر	طبيعة
	2) العبارة
$z_D = -2 - 3i$: D حقة	3) أ) لاح
$z_E = 1 - 2i$ حقق أن: $z_E = 1 - 2i$	الت
اعي $ADEB$ معين .	•
$\operatorname{arg}\left(rac{z_C-z_A}{z_C-z_B} ight)=rac{\pi}{2}:(\Gamma)$ تنتمي الى C تنتمي الى أنّ النقطة C	4) التحقق
المجموعة (Γ) :	***
$(\overrightarrow{MB}; \overrightarrow{MA}) = \frac{\pi}{2} + 2\pi k / k \in \mathbb{Z}$ معناه $\arg\left(\frac{z - z_A}{z - z_B}\right)$	$=\frac{\pi}{2}$
0.50 هي نصف الدائرة المفتوحة التي حداها النقطتين A و B وتشمل النقطة C .	(Γ)
.(Γ)	إنشاء
0.50 B B C C	

الصفحة 2 من 8

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
لمجموع	مجزأة ا	
		التمرين الرابع :(07 نقاط)
	2×0.25	$\lim_{x \to 2} f(x) = +\infty \lim_{x \to 1} f(x) = -\infty (1)$
1.25	0.25	$x\!=\!1\;;\;x\!=\!2\;:$ وجود مستقیمین مقاربین معادلتیهما
	2×0.25	$\lim_{x \to +\infty} f(x) = -\infty \lim_{x \to -\infty} f(x) = +\infty (\neg)$
	0.50	، $f'(x) = -2 - \frac{2}{(x-1)(x-2)}$ ، D_f من أجل كل x من أجل كل (2)
		جدول تغیرات الدالة f .
01	0.50	$x \to \infty$ 1 2 $+\infty$
	0.30	$f'(x)$ $ +\infty$ $+\infty$
	0.25	$-\infty$ $-\infty$ $(3-x)\in D_f$ ، D_f من أجل كل عدد حقيقي x من $(3-x)$
01	0.23	f(3-x)+f(x)=0 من أجل كل عدد حقيقي x من $f(3-x)+f(x)=0$ من أجل كل عدد حقيقي x
	0.25	
	0.25	$A(rac{3}{2};0)$ يقبل مركز تناظر إحداثياته: $A(rac{3}{2};0)$
	0.50	$[0,45;0,46]$ تقبل حلا وحيدا α على المجال $f(x)=0$ ثقبل (4
01	0.25	f(lpha)=0 استنتج أنّها تقبل حلا أخر eta :لدينا $f(lpha)=0$ الدينا استنتج أنّها تقبل حلا أخر
	0.25	eta $=$ $3-lpha$ $=$ $2.54 \leq eta \leq 2.55:eta$ حصر
	0.50	(C_f) مقارب مائل لـ (C_f) مقارب مائل الـ (Δ
		$\lim_{x \to +\infty} [f(x) - (-2x + 3)] = 0; \lim_{x \to -\infty} [f(x) - (-2x + 3)] = 0$
01		$x o +\infty$ وضعية (C_f) بالنسبة لـ (C_f)
	0.50	(Δ) يقع تحت (Δ) .
	0.50	$(\Delta^{'})$ لما $x{>}2$ يقع فوق ا
		$.ig(C_fig)$ و (Δ) و (δ
	0.25	(C_f)
0.75	0.50	(Δ)

الصفحة 3 من 8

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

العلامة		الإجابة المودجية لموضوع الحبار مادة . الرياضيات السعبة . تقني رياضي البخالوريا دورة. 101
المجموع	مجزأة	
01	0.50	$h: x\mapsto (x-1)ln(x-1)-(x-2)ln(x-2)$ أصلية للدالة $h: x\mapsto (x-1)ln(x-1)-(x-2)ln(x-2)$ على $ln\left(\frac{x-1}{x-2}\right)$
	0.50	$S=\int\limits_{eta}^{3}2\ln(rac{x-1}{x-2})dx=2h(3)-2h(eta)$: حساب بدلالة eta المساحة
2		

الصفحة 4 من 8

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة	

	الموضـــوع الثاني		
		الأوّل: (04 نقاط)	التمرين
0.75	0.75	اثبات أن النقط B ، A و C تعين مستو	(1
	0.50	$\left\{ egin{align*} \overrightarrow{CD}.\overrightarrow{AB} = 0 \ \overrightarrow{CD}.\overrightarrow{AC} = 0 \end{array} ight. ight.$ يکفي اثبات $\left\{ (CD) \perp (AB) \ (CD) \perp (AC) \right\}$	(2
1.75		$\left(\overrightarrow{CD}.\overrightarrow{AC} = 0\right) = \left((CD) \perp (AC)\right)$	(2
	0.75	2x+y-z-3=0: (ABC) معادلة المستوي	ب) (ب
	0.50	$d\left(D;(ABC)\right)=2\sqrt{6}$ حساب المسافة	•
1.50	0.50	$\overrightarrow{AB}\overrightarrow{AC}=0$ أ المثلث \overrightarrow{ABC} قائم في النقطة A لأن A	(3
	01	$V_{ABCD}=14u.v$: $ABCD$ ججم رباعي الوجوه (د	÷
	T	الثاني: (04 نقاط)	التمرين
01	01	$4^{5k}\equiv 1$ اثبات ان: من أجل كل عدد طبيعي k ، k عدد البيعي k	(1
01	01	الاستنتاج	(2
		$4^{5k} \equiv 1[11] \; ; \; 4^{5k+1} \equiv 4[11] \; ; \; 4^{5k+2} \equiv 5[11]4^{5k+3} \equiv 9[11] \; ; \; 4^{5k+4} \equiv 3[11]$	
01	01	$(2 \times 2017^{5n+3} + 3 \times 1438^{10n} + 1) \equiv 0$ اثبات أنّ: من أجل كل عدد طبيعي n ، n	(3
01	01	$n = 11k + 6$ $/ k \in \mathbb{N}$ معناه $(2 \times 2017^{5n+2} + n - 3) \equiv 0[11]$	(4
		الثالث: (05 نقاط)	التمرين
	2×0.25	$Z_C=rac{\sqrt{2}}{2}e^{-irac{\pi}{4}}$ و $Z_A=\sqrt{2}e^{irac{\pi}{4}}$ اکتب (أ	(1
1.50	2×0.25	$z_D=\overline{z}_C=rac{\sqrt{2}}{2}e^{irac{\pi}{4}}$ و $z_B=\overline{z}_A=\sqrt{2}e^{-irac{\pi}{4}}$ استنتاج الشكل الأسي	
		$(z_A)^n = (z_B)^n$ التي تحقق: n التي تحقق: $(z_A)^n = (z_B)^n$	
	0.50	$n=4k$ $/k \in \mathbb{N}$ معناه $(z_A)^n = (z_B)^n$	
	0.50	مرکز التحاکي h هو O ونسبته 2	(2
1.50	0.25	$\left \frac{z_C - z_B}{z_D - z_A}\right = 1 (-1)$	
3	0.75	$egin{cases} \overrightarrow{AB}{=}2\overrightarrow{DC} \ N$ الرباعي $ADCB$ شبه منحرف متساوي الساقين لأن $NDCB$ الرباعي	
0.50	0.50	$z_G = \frac{3}{2}$	(3

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

امة	العلا	عناصر الإجابة
المجموع	مجزأة	
	0.50	$2(z_B - z_A) - (z_C - z_A) - (z_D - z_A) = 1 - 2i$ كُن $A \in (\Gamma)$ (4
	0.50	$\dfrac{\sqrt{5}}{2}$ المجموعة (Γ) هي مجموعة نقط دائرة مركزها G ونصف قطرها الشراء (Γ)
1.50	0.50	(Γ) A O C B -1
		التمرين الرابع: (07 نقاط)
0.50	0.25 0.25	$g'(x)=3x^2+6$ دراسة اتجاه التغير: g تقبل الاشتقاق على $\mathbb R$ ولدينا g دراسة اتجاه التغير: g متزايدة تماما على $\mathbb R$ لأن g
	0.50	$lpha\in\left]-1,48;-1,47 ight[$ اثبات أنّ المعادلة $g(x)=0$ تقبل حلا وحيدا $lpha$ حيث (2
01	0.50	$g(x)$ إشارة $g(x)$ x $-\infty$ α $+\infty$ $g(x)$ $ \phi$ $+$
	0.50	$\lim_{x \to +\infty} f(x) = +\infty \lim_{x \to -\infty} f(x) = -\infty (i (1)(\Pi))$
1.75	0.50	$f'(x) = \frac{x g(x)}{(x^2 + 2)^2}$ ، x عدد حقیقی عدد عقیقی (ب
2	0.25	x اتجاه تغیر الدالة:
		$[0;+\infty[$ و $]-\infty;lpha$ ا ومتزايدة تماما على المجالين $[lpha;0]$ ومتزايدة تماما الدالة ومتناقصة تماما على

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة ا	
	0.50	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0.50	$\lim_{ x \to +\infty} \left[f(x) - x \right] = \lim_{\substack{-2(x+3) \\ x \to +\infty}} \frac{-2(x+3)}{x^2 + 2} = 0 (i)$
01	0.50	(Δ) بالنسبة الى (C_f) بالنسبة الى x $-\infty$ -3 $+\infty$ $f(x)$ - x $+$ 0 $-\infty$ -3 $+\infty$ $f(x)$ - x $+$ 0 $-\infty$; -3 -3 -3 -3 -3 -3 -3 -3
		$x\in$] $-3;+\infty$ [لما (Δ) تحت (C_f) $(C_f)\cap (\Delta)=\{\mathrm{I}(-3;-3)\}$
0.1	0.50	$f(lpha) = rac{3}{2}lpha$ بیان اُنّ (3
01	0.50	$\cdot f\left(lpha ight)$ استنتاج حصرا للعدد $-2,22 < f\left(lpha ight) < -2,21$
	0.25	(C_f) والمنحنى (Δ) والمنحنى (Δ) والمنحنى (Δ) رسم المستقيم (Δ) رسم المستقيم (Δ)
0.75		-4 -3 -2 -1 1 2 3 4
S	0.50	
	0.25	3
	0.23	$3 \over 2$ $\alpha^2 \le S \le -3\alpha$: ثبات أنّ : من أجل كل α $\alpha^2 \le S \le -3\alpha$ ثم بيان أنّ : α α α أثبات أنّ : α أثبات أنّ : α α أثبات أنّ : α أثبات أنّ : α أثبات أنّ : α أثبات ألدالة α أثبات الدالة α

الصفحة 7 من 8

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

ـة	العلاه	عناصر الإجابة
لمجموع	مجزأة ا	
01	0.75	$f(0) \le f(x) \le f(\alpha)$ فان $\alpha \le x \le 0$ إذا كان $\alpha \le x \le 0$ فان $\alpha \le x \le 0$ إذا كان $\alpha \le x \le 0$ أي