#### review

# Alignment algorithms



Short read

Sensitive global aligners

Whole genome

## SAM and BAM alignment format

- **SAM** stands for **S**equence **A**lignment/**M**ap format that is a generic alignment format for storing read alignments against reference sequence.
- The **BAM** format, the binary representation of SAM, contains exactly the same information as SAM,
- The SAM/BAM, together with SAMtools, separates the alignment step from downstream analyses, enabling a generic and modular approach to the analysis of genomic sequencing data.

Table. file size of two example files

| File type | Storage usage |  |
|-----------|---------------|--|
| SAM       | 313 M         |  |
| BAM       | 97 M          |  |

## Outline

- Overview of genomic variants
- Data for variant discovery
- Bioinformatics of variant discovery
- the methods for variant (SNP) validation

# Genomic variants (ploymorphism)



- 3. genomic structural variation
- copy number variation (presence-absence variation)
- other re-arrangements

## Genomic variants - SNPs

- SNP is a single nucleotide polymorphism.
- Frequencies of SNPs are depended on species. For example, millions of SNPs have been discovered in human.
- Most SNPs are bi-allelic. (mutation rate per site is about 10<sup>-8</sup>)
- Most have no effects on cell function but some could have important phenotypic consequence.

# **Applications of SNPs**

- Genetic markers to map the genetic controlling of traits (quality traits, quantitative traits, gene expression, etc)
- Genetic markers to construct genetic maps
- 3. Markers to construct phylogenetic trees





# Next-Generation Sequencing to generate data for variant discovery



GATCTGCGTCATACGGAAT
GATCTGCGTGATACGGAAT
GATCTGCGTGATACGGAAT
GATCTGCGTGATACGGAAT
GATCTGCGTGATACGGAAT
GATCTGCGTGATACGGAAT
GATCTGCGTCATACGGAAT
GATCTGCGTCATACGGAAT
GATCTGCGTCATACGGAAT
GATCTGCGTCATACGGAAT



# Approaches for data generation

- Whole genome sequencing (WGS): high genome coverage but costly for large genomes
- Exome-capture sequencing: target on genic regions but still expensive to perform large number of samples
- RNA sequencing (RNA-Seq): obtain data on genic regions and provide expression information
- Genotyping-By-Sequencing (GBS): cost-efficient and high-throughput approach

## Data to variant (SNP) discovery

Data: sequencing reads

- Reference-based approach
  - 1. Alignment-based SNP discovery (standard)
  - 2. Assembly-based SNP discovery

Reference-free approach
 Usually used in the sequencing projects with sequencing data from multiple individuals

# Alignment-based SNP discovery

```
...GATCTGCGTCATACGGAAT... (reference)
 GATCTGCGTGATACGGAAT
 GATCTGCGTCATACGGAAT
 GATCTGCGTGATACGGAAT
 GATCTGCGTGATACGGAAT
 GATCTGCGTGATACGGAAT
                          reads
 GATCTGCGTCATACGGAAT
 GATCTGCGTCATACGGAAT
 GATCTGCGTGATACGGAAT
 GATCTGCGTCATACGGAAT
-----C/G-----
```

# Alignment-based SNP discovery, cont.

#### **General procedure**

- Reads cleanup (adaptor, quality trimming, e.g., trimmomatic)
- Reads aligned to the reference genome with aligners
  - 1. BWA, Bowtie (DNA-Seq reads)
  - 2. GSNAP, Tophat (RNA-Seg reads)
- Post-alignment filtering and convert SAM (alignment file) to BAM
- SNP calling with software packages: Samtools, GATK, VarScan2
- Use population information or some criteria to filter SNP sets

an example of the alignment of a RNA-Seq read using GSNAP

```
HISEQ:163:C4YWTACXX:1:1101:8654:2286
                  chromosome 1
                              40
                16
                          1765703
MD:Z:73C27 NH:i:1
           HT:1:1
                NM: i:1
                              X2:i:0
                     SM: i:40
                          XO:i:40
                                   XO:7:UU
  XS: A: -
       PG:7:A
```

## Interpretation of the BWA alignment

### SAM output:

CIGAR: 64M1D20M

NM: edit distance

**edit distance** is a way to quantify the dissimilarity of two strings (e.g., words) by counting the minimum number of edits (substitution, insertion, and deletion) required to transform one string into the other.

```
fact -> fit (2)

AACCT -> AAACT (1)

AACCT -> ACCTA (?)
```

## Polymorphism based on Alignment + reference genome

## SAM output (BWA):

## mapping position and CIGAR determine the alignment

# Alignment-based SNP discovery: GATK (1)

- The Genome Analysis Toolkit (GATK) is a software package developed at the Broad Institute to primarily focus on variant discovery and genotyping.
- Input data: BAM files and reference genome
- Required tools: Picard and Samtools
- Code example:

```
java -jar GenomeAnalysisTK.jar \
   -T UnifiedGenotyper \
   -R your_reference \
   -I your_bam \
   -glm BOTH

### BOTH = SNP + INDEL
```

# **GATK (2)**

isolate 1

GT:AD:DP:GQ:MLPSAC:MLPSAF:PL | 1:0,10:10:99:1:1.00:404,0 | 0:28,0:28:99:0:0.00:0,1215

#### VCF (Variant Call Format) output

https://samtools.github.io/hts-specs/VCFv4.2.pdf

|        |       |    |     |     |        |        |      |                              |                           | <u> </u>                   |
|--------|-------|----|-----|-----|--------|--------|------|------------------------------|---------------------------|----------------------------|
| #CHROM | POS   | ID | REF | ALT | QUAL   | FILTER | INFO | FORMAT                       | DH10B                     | MG1655                     |
| ref1   | 89089 |    | С   | Α   | 782.76 |        |      | GT:AD:DP:GQ:MLPSAC:MLPSAF:PL | 1:0,18:18:99:1:1.00:781,0 | 0:27,0:27:99:0:0.00:0,1149 |
| ref1   | 89103 |    | G   | С   | 690.76 |        |      | GT:AD:DP:GQ:MLPSAC:MLPSAF:PL | 1:0,16:16:99:1:1.00:689,0 | 0:29,0:29:99:0:0.00:0,1253 |
| ref1   | 89143 |    | А   | G   | 448.76 |        |      | GT:AD:DP:GQ:MLPSAC:MLPSAF:PL | 1:0,11:11:99:1:1.00:447,0 | 0:27,0:27:99:0:0.00:0,1165 |

GT: AD : DP: GQ: MLPSAC: MLPSAF: PL 1 : 0,18: 18: 99: 1 : 1.00 : 781,0

GT=Genotype (0 or 1)

ref1

89145

AD=Allelic depths for the ref and alt alleles

405.76

DP=Approximate read depth

GQ=Genotype Quality

MLPSAC=Maximum likelihood expectation (MLE) for the alternate allele count MLPSAF=Maximum likelihood expectation (MLE) for the alternate allele fraction PL=Normalized, Phred-scaled likelihoods for genotypes

$$Prob(0) = 10^{-781/10} = 7.9e-79$$
  $Prob(1) = 10^{-0/10} = 1$ 

isolate 2

# **GATK (3)**

GATK can be used to filter SNPs.

```
java GenomeAnalysisTK.jar \
   -T SelectVariants \
   -R your_reference \
   --variant your_vcf \
   -select 'DP >= 3.0' \
   --restrictAllelesTo BIALLELIC \
   --selectTypeToInclude SNP
```

 Filter variants based on the experimental purpose and genetic features

## Falsely discovered SNPs

Can you think about what could result in falsely discovered SNPs using alignment-based SNP methods?

# Alignment-based SNP discovery: alignment issues

- Misalignments
- Genome duplications
- Highly divergent regions

#### **Examples:**



Widespread RNA and DNA Sequence Differences in the Human **Transcriptome** 

Mingyao Li et al. Science 333, 53 (2011); DOI: 10.1126/science.1207018

The misalignments of RNA-Seq data or DNA-Seq data led to this discovery

Comment on "Widespread RNA and DNA Sequence Differences in the **Human Transcriptome**"

Claudia L. Kleinman and Jacek Majewski

Science 335, 1302 (2012); DOI: 10.1126/science.1209658



# Assembly-based SNP discovery

- Cortex (Iqbal et al., 2012 Nature Genetics)
   de novo assembly and graphic comparison for variant discovery
- Fermi (Li H, 2012 Bioinformatics)
   de novo assembly to unitigs\* and then alignment to the reference genome for variant discovery
   (Conceptually, unitigs are confident contigs)
- Discovar (Neil et al., 2014 Nature Genetics)
  Region de novo assembly to contigs and then alignment to the reference genome for variant discovery

Table 2 Estimated sensitivity and specificity of variant call sets

|              |                     | Percent false<br>negatives |                                                | Percent false positives |                     |                 |  |
|--------------|---------------------|----------------------------|------------------------------------------------|-------------------------|---------------------|-----------------|--|
| Call set     | Read<br>length (bp) |                            | Number of heterozygous/<br>homozygous variants | Heterozygous variants   | Homozygous variants | All variants    |  |
| GATK-250     | 250                 | $12.3 \pm 1.8$             | 1.54                                           | $1.82 \pm 0.45$         | $0.74 \pm 0.72$     | $1.39 \pm 0.39$ |  |
| Cortex-250   | 250                 | $39.3 \pm 2.6$             | 1.39                                           | $0.33 \pm 0.18$         | $3.46 \pm 0.61$     | $1.64 \pm 0.28$ |  |
| DISCOVAR-250 | 250                 | $06.0 \pm 1.2$             | 1.57                                           | $1.44 \pm 0.23$         | $1.94 \pm 0.40$     | $1.63\pm0.21$   |  |

#### Variant annotation

#### **Gene coding regions**

- Synonymous: changes that do not alter the encoded amino acid
- Non-synonymous
- 1. Missense: changes that alter encoded amino acid
- 2. Nonsense: changes that produce a stop codon from an amino acid codon, resulting in a shortened protein
- Frameshift (caused by insertion/deletion)

#### **Splicing sites**

Of an intron, a donor site (5' end of the intron) and an acceptor site (3' end of the intron) are required for splicing.

# Variant annotation - SnpEff

SnpEff is a variant annotation and effect prediction tool. It annotates and predicts the effects of variants on genes.

#### Input data:

- Genome annotation database
- Variant data: VCF file

#### **Running:**

java -jar snpEff.jar GRCh37.75 my.vcf

| Effect                | Dotailed offect lie               | t from SnnEff    |
|-----------------------|-----------------------------------|------------------|
| INTERGENIC            | Detailed effect lis               | t IIOIII SIIPLII |
| UPSTREAM              | FRAME_SHIFT                       |                  |
| UTR_5_PRIME           | CODON_CHANGE                      |                  |
| UTR_5_DELETED         | CODON_INSERTION                   |                  |
| START_GAINED          | CODON_CHANGE_PLUS_CODON_INSERTION |                  |
| SPLICE_SITE_ACCEPTOR  | CODON_DELETION                    |                  |
| SPLICE_SITE_DONOR     | CODON_CHANGE_PLUS_CODON_DELETION  |                  |
| START_LOST            | STOP_GAINED                       |                  |
| SYNONYMOUS_START      | SYNONYMOUS_STOP                   |                  |
| CDS                   | STOP_LOST                         |                  |
| GENE                  | INTRON                            |                  |
| TRANSCRIPT            | UTR_3_PRIME                       |                  |
| EXON                  | UTR_3_DELETED                     |                  |
| EXON_DELETED          | DOWNSTREAM                        |                  |
| NON_SYNONYMOUS_CODING | INTRON_CONSERVED                  |                  |
| SYNONYMOUS_CODING     | INTERGENIC_CONSERVED              |                  |

# SNP genotyping

## Large-scale (thousands to approximate 1 million)

- Illumina Beadchip (beads hybridization based)
- Affymetrix SNP array (microarray-hybridization-based)

#### Medium-scale (hundreds of markers)

- Fluidigm (Microfluidic-based)
- Sequenom iPLEX (mass spectrometry method)

#### **Small-scale**

- High Resolution Melt (HRM (melting))
- KASP
- Taqman

#### **SNP** validation

- Cross-checking using different datasets or platforms
- Genetic mapping of SNPs
- Expectation from certain genome materials (e.g., bacterial genome and inbred lines)

# Summary

- The strategy to generate data for SNP discovery is depended on experimental purpose, genetic features of the population, timetable, and budget.
- A standard approach for SNP discovery is through mapping reads to the reference sequences, thereby identifying variants between reads and reference. The most popular method is GATK.
- More flexible and cost-efficient SNP validation approaches need to be developed to leverage variant discovery.