ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Combinational-Circuit Building Blocks Assigned Date: Eighth Week Due Date: Monday, Oct. 17, 2016

Shannon's expansion using A

P1. (10 points)

Consider the following logic function:

$$f(A,B,C) = A'BC' + A'BC + AB'C + ABC$$

- a) (5 points) Show the Shannon's expansion of function F using variable A.
- b) (5 points) Implement the circuit for function *F* using one 2-to-1 multiplexer and a minimal number of other logic gates.

Solution:

a)

$$f(A,B,C) = A' \cdot f(0,B,C) + A \cdot f(1,B,C)$$
$$= A'(BC' + BC) + A(B'C + BC)$$
$$= A'B + AC$$

b)

P2. (20 points)

Consider the following truth table for the function f(a,b,c,d).

а	b	С	d	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Combinational-Circuit Building Blocks Assigned Date: Eighth Week Due Date: Monday, Oct. 17, 2016

1	1	0	0	1
1	1	-	1	0
<u>+</u>	1	0	1	1
1	1	1	0	1
1	1	1	1	1

- a) (10 points) Implement f using one 4-to-16 decoder and a minimal number of gates.
- b) (10 points) Implement f using one 8-to-1 multiplexer and a minimal number of gates.

ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Combinational-Circuit Building Blocks Assigned Date: Eighth Week Due Date: Monday, Oct. 17, 2016

P3. (10 points)

Show how to construct a 4-to-16 decoder using five 2-to-4 decoders. Assume each 2-to-4 decoder has an ENABLE input (which enables each decoder).

ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Combinational-Circuit Building Blocks Assigned Date: Eighth Week Due Date: Monday, Oct. 17, 2016

P4. (10 points)

Implement the circuit for an 8-to-1 multiplexer using a 3-to-8 decoder and other necessary gates. The circuit should have control inputs $s_2s_1s_0$, data inputs $w_7w_6w_5w_4w_3w_2w_1w_0$, and an output f.

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Combinational-Circuit Building Blocks Assigned Date: Eighth Week Due Date: Monday, Oct. 17, 2016

P5. (20 points)

Design a 4-to-2 priority encoder with the same inputs and outputs as in Figure 4.20 in the textbook, but with the following priority order: $w_3 < w_2 < w_1 < w_0$

- a) (10 points) Show the truth table of this encoder.
- b) (10 points) Derive the minimal POS expression for y_1 , y_0 , and z, respectively.

Solution:

a)

w_3	w_2	w_1	w_0	y_1	y_0	Z
0	0	0	0	d	d	0
X	X	X	1	0	0	1
X	X	1	0	0	1	1
X	1	0	0	1	0	1
1	0	0	0	1	1	1

b)

$$y_1 = w_1' w_0'$$

$$z = w_3 + w_2 + w_1 + w_0$$

$$y_0 = (w_2' + w_1)w_0'$$

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Combinational-Circuit Building Blocks Assigned Date: Eighth Week Due Date: Monday, Oct. 17, 2016

P6. (10 points)

Complete the following timing diagram for a gated SR-latch. Assume there's no gate delay.

P7. (20 points)

A full-adder (FA) has the following truth table:

х	У	c_{in}	S	c_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- a) (10 points) Implement the circuit for output *s* by using one 4-to-1 multiplexer and a minimal number of gates.
- b) (10 points) Implement the circuit for output c_{out} by using one 4-to-1 multiplexer. Please use x and y as control inputs s_1 and s_0 for the multiplexer.

ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Combinational-Circuit Building Blocks Assigned Date: Eighth Week Due Date: Monday, Oct. 17, 2016

