

PATENT
P56964IN THE CLAIMS

Please amend claims 1 through 9 and 11 through 20 as follows:

1 1. (Currently amended) An organic electroluminescent display, comprising:

2 a plurality of anode electrodes of R, G and B for red, green and blue unit pixels disposed
3 on a substrate and with the anode electrodes separated from each other and with an anode
4 electrode for at least one unit pixel of the red, green and blue unit pixels having a thickness
5 different from thicknesses of anode electrodes of other unit pixels of the red, green and blue unit
6 pixels;

7 organic thin-film layers of ~~for the R, G and B~~ red, green and blue unit pixels disposed
8 on the anode electrodes; and

9 a cathode electrode disposed over an entire surface of the substrate[[,]] wherein an anode
10 electrode of at least one unit pixel of the R, G and B unit pixels has a thickness different from
11 thicknesses of anode electrodes of other unit pixels to the R, G and B unit pixels.

1 2. (Currently amended) The organic electroluminescent display according to claim 1,
2 wherein the anode electrode of the ~~R~~ red unit pixel is thicker than the anode electrodes ~~of~~ for
3 the other unit pixels.

1 3. (Currently Amended) The organic electroluminescent display according to claim
2 1, wherein the anode electrode of each of the unit pixels includes a first film having a high
3 reflectivity and a second film for adjusting a work function, and wherein the second film of said
4 at least one unit pixel of the ~~R, G and B~~ red, green and blue unit pixels has a thickness different

PATENT
P56964

5 from thicknesses of the second films of the other unit pixels of the ~~R, G and B~~ red, green and
6 blue unit pixel.

1 4. (Currently Amended) The organic electroluminescent display according to claim
2 3, wherein the second film of the [[R]] red unit pixel is thicker than the second films of the
3 other unit pixels.

1 5. (Currently Amended) The organic electroluminescent display according to claim
2 3, wherein a thickness of the second film of the R unit pixel is in a range of one of 250 to 450Å
3 and 700 to 750Å, and thicknesses of the second films of the [[G]] green and [[B]] blue unit
4 pixels are in a range of 50 to 150Å.

1 6. (Currently Amended) The organic electroluminescent display according to claim
2 3, wherein a thickness of the second film of the [[R]] red unit pixel is in a range of one of 250
3 to 450Å and 700 to 750Å, a thickness of the second film of the [[G]] green unit pixel is in a
4 range of 200 to 300Å, and a thickness of the second film of the [[B]] blue unit pixel is in a
5 range of 50 to 150Å.

1 7. (Currently Amended) The organic electroluminescent display according to claim
2 3, wherein a thickness of the second film of the [[R]] red unit pixel is substantially 375Å, a
3 thickness of the second film of the [[G]] green unit pixel is substantially 250Å, and a thickness
4 of the second film of the [[B]] blue unit pixel is substantially 125Å, whereby maximum
5 efficiency is obtained in the ~~R, G and B~~ red, green and blue unit pixels.

PATENT
P56964

1 8. (Currently Amended) The organic electroluminescent display according to claim
2 3, wherein a thickness of the second film of the [[R]] red unit pixel is substantially 750Å, a
3 thickness of the second film of the [[G]] green unit pixel is substantially 250Å, and a thickness
4 of the second film of the [[B]] blue unit pixel is substantially 125Å, whereby maximum color
5 reproduction is obtained in the R, G and B red, green and blue unit pixels.

1 9. (Currently amended) The A method for fabricating an organic electroluminescent
2 display according to claim 1, wherein comprised of making the first film of each of the unit
3 pixels comprised of one from a material selected from a group comprised of Al, Ag and an
4 allow film thereof, and making the second film comprises from one of ITO and IZO.

1 10. (Original) An organic electroluminescent display comprising:
2 a plurality of pixels, each including at least an anode electrode;
3 wherein anode electrodes of adjacent pixels have different thicknesses relative to each
4 other.

1 11. (Currently amended) The A method for fabricating an organic electroluminescent
2 display according to claim 10, wherein comprised of making the anode electrode of each of the
3 pixels includes to include a first film having a high reflectivity and a second film for adjusting
4 a work function, and wherein making the second films of the anode electrodes of adjacent pixels
5 have to have different thicknesses relative to each other.

PATENT
P56964

1 12. (Currently Amended) A method for fabricating an organic electroluminescent
2 display, comprising the steps of:

3 disposing first anodes of R, G and B red, green and blue unit pixels on a substrate;
4 forming an anode electrode of the [[R]] red unit pixel by disposing a second anode of
5 the R unit pixel on the first anode of the [[R]] red unit pixel;

6 forming anode electrodes of the [[G]] green and [[B]] blue unit pixels by disposing
7 second anodes of the [[G]] green and [[B]] blue unit pixels on the first anodes of the [[G]] green
8 and [[B]] blue unit pixels, respectively;

9 disposing respective organic thin-film layers on the anode electrodes of the R, G and B
10 red, green and blue unit pixels; and

11 disposing a cathode electrode over an entire surface of the substrate,
12 wherein the second anode of at least one unit pixel of the R, G and B red, green and blue
13 unit pixels has a thickness different from thicknesses of the second anodes of other unit pixels
14 of the R, G and B red, green and blue unit pixels.

1 13. (Currently Amended) The method according to claim 12, wherein the second film
2 of the [[R]] red unit pixel is thicker than the second films of the other unit pixels of the R, G
3 and B red, green and blue unit pixels.

1 14. (Currently Amended) The method according to claim 12, wherein a thickness of
2 the second film of the [[R]] red unit pixel is in a range of one of 250 to 450Å and 700 to 750Å,
3 a thickness of the second film of the [[G]] green unit pixel is in a range of one of 50 to 150Å
4 and 200 to 300Å, and a thickness of the second film of the B unit pixel is in a range of 50 to

PATENT
P56964

5 150Å.

1 15. (Currently Amended) A method for fabricating an organic electroluminescent
2 display, comprising the steps of:

3 disposing sequentially a first anode electrode material and a second anode electrode
4 material of ~~R, G and B~~ red, green and blue unit pixels on a substrate;

5 etching the first and second anode electrode materials to form anode electrodes of the
6 ~~R, G and B~~ red, green and blue unit pixels, each including a first anode and a second anode;

7 disposing respective organic thin-film layers on the anode electrodes of the ~~R, G and B~~
8 red, green and blue unit pixels; and

9 disposing a cathode electrode over an entire surface of the substrate,
10 wherein a second anode of at least one unit pixel of the ~~R, G and B~~ red, green and blue
11 unit pixels has a thickness different from thicknesses of second anodes of the other unit pixels
12 of the ~~R, G and B~~ red, green and blue unit pixels.

1 16. (Currently Amended) The method according to claim 15, wherein the second film
2 of the [[R]] red unit pixel is thicker than the second films of the other unit pixels.

1 17. (Currently Amended) The method according to claim 15, wherein a thickness of
2 the second film of the [[R]] red unit pixel is in a range of one of 250 to 450Å and 700 to 750Å,
3 a thickness of the second film of the [[G]] green unit pixel is in a range of one of 50 to 150Å
4 and 200 to 300Å, and a thickness of the second film of the [[B]] blue unit pixel is in a range of
5 50 to 150Å.

PATENT
P56964

1 18. (Currently Amended) A method for fabricating an organic electroluminescent
2 display, comprising the steps of:

3 disposing first anodes of ~~R, G and B~~ red, green and blue unit pixels on a substrate;
4 disposing a second anode electrode material over an entire surface of the substrate;
5 etching the second anode electrode material to form respective second anodes on the first
6 anodes of the R, G and B unit pixels, thereby forming respective anode electrodes of the ~~R, G~~
7 and B red, green and blue unit pixels;

8 disposing organic thin-film layers on the respective anode electrodes of the ~~R, G and B~~
9 red, green and blue unit pixels; and

10 disposing a cathode electrode over an entire surface of the substrate;
11 wherein a second anode of at least one unit pixel of the ~~R, G and B~~ red, green and blue
12 unit pixels has a thickness different from thicknesses of second anodes of the other unit pixels
13 of the ~~R, G and B~~ red, green and blue unit pixels.

1 19. (Currently Amended) The method according to claim 18, wherein the second film
2 of the [[R]] red unit pixel is thicker than the second films of the other unit pixels.

1 20. (Currently Amended) The method according to claim 18, wherein a thickness of
2 the second film of the [[R]] red unit pixel is in a range of one of 250 to 450Å and 700 to 750Å,
3 a thickness of the second film of the [[G]] green unit pixel is in a range of one of 50 to 150Å
4 and 200 to 300Å, and a thickness of the second film of the [[B]] blue unit pixel is in a range of
5 50 to 150Å.