

Numerical Analysis Lecture Milestone

Lecture Plan

☐ Weekly Plan

Week	Subject	
1	Introduction to the Lecture	
2	Numerical accuracy (1)	수치오차
3	Numerical accuracy (2)	수치오차
4	Nonlinear algebraic equation (1)	비선형 대수방정식
5	Nonlinear algebraic equation (2)	비선형 대수방정식
6	Roots of polynimial equations	다항식의 근
7	Linear algebraic equation (1)	선형 대수방정식
8	Midterm exam	
9	Linear algebraic equation (2)/Optimization	선형 대수방정식 / 최적화 기법
10	Curve-fitting Techniques (1): least Square Regression	최소 자승법
11	Curve-fitting Techniques (2): Interpolation	보간법
12	Numerical integration (1)	수치 적분
13	Numerical integration (2)	Gauss 적분법
14	Numerical methods for ordinary differential equations (1)	상미분방정식 수치해법
15	Numerical methods for ordinary differential equations (2)	상미분방정식 수치해법
16	Final Exam	

Lecture Plan

☐ Lecture Materials

Lecture Notes

References

Numerical Methods for Engineers

Program

Matlab

Prerequisite and Online Materials

□ Prerequisite

Engineering Mathematics : Ordinary Differential Equations, Vector and Matrix Matlab

□ Online Materials

Matlab Onramp Simulink Onramp

End of Lecture

