An inspection-based compositional approach to the quantitative evaluation of assembly lines

Marco Biagi¹ Laura Carnevali¹ **Tommaso Papini**¹ Kumiko Tadano² Enrico Vicario¹

¹Department of Information Engineering, University of Florence, Italy ²Data Science Research Labs, NEC Corporation, Kawasaki, Japan

IMT Lucca, 31st October 2017

- Assembly line analysis
 - for transient measures evaluation
- subsequent to an inspection at steady-state
- subject to ambiguity
 - on the logical state
 - and on the remaining times

Why analyse assembly lines?

- Maximize throughput and efficiency
 - speeding-up/slowing-down workstations in order to balance throughput
 - ▶ identify bottlenecks and focus resources on them
- ► Minimize resources and energy consumption
 - lower power consumption before bottlenecks
- Adapt production during runtime
 - Industrie 4.0
 - e.g. schedule personnel/resources in a tactic perspective

- Analysis of assembly lines
 - Assembly lines

Assembly line

N sequential workstations WS_1, \ldots, WS_N

- with transfer blocking
- and no buffering capacity

Workstation WSk can be in one of three states

- ▶ producing: ₩Sk is working on a product
- ► done: ₩Sk is done working on a product
- ▶ idling: WSk is waiting for a new product

- Analysis of assembly lines
 - Assembly lines

Workstation

Each workstation WSk

- has no internal parallelism
 - at most one item being processed in each workstation
- can implement complex workflows
 - sequential/alternative/cyclic phases with random choices
- and has GEN phases' durations

The last phase has no duration and encodes the done state

- Analysis of assembly lines
 - Assembly lines

Underlying stochastic process

The underlying stochastic process of each isolated workstation is a Semi Markov Process (SMP)

- due to GEN durations
- and the absence of internal parallelism

The whole assembly line finds a renewal in any case where

- every done station is in a queue before a bottleneck
- and everything else is idling

- Analysis of assembly lines

Inspection

Inspection with partial observability

The assembly line can be inspected by external observers

- ▶ the line can be considered at steady-state at inspection
- there can be ambiguity about the current phase

An observation is a tuple $\omega = \langle \omega_0, \omega_1, \dots, \omega_N \rangle$

- $ightharpoonup \omega_0$ indicates if a new product is ready to enter the line or not
- $\omega_k = \langle \sigma_k, \phi_k \rangle$ refers to WS_k
 - σ_k indicates if WS_k is idle/producing/done
 - $lackbox{} \phi_{\it k}$ identifies the set of possible current phases

Two kinds of uncertainty

- about the actual current phase
 - discrete
- about the remaining time in the current phase
 - continuous

- Analysis of assembly lines
- Performance measures

Performance measures

Time To Done

The remaining time until workstation k, according to observation ω , reaches the *done* state

- Analysis of assembly lines
- Performance measures

Performance measures

Time To Idle

The remaining time until workstation k, according to observation ω , reaches the idling state

- Analysis of assembly lines
- Performance measures

Performance measures

Time To Start Next

The remaining time until workstation k, according to observation ω , starts the production of a new product

- Modelling and solution technique

Evaluation of performance measures

Time To Done

$$\mathsf{TTD}(k,\omega) := \left\{ \begin{array}{ll} \displaystyle \sum_{\gamma \in \phi_k} P_{k,\gamma,\omega} \cdot (R(k,\gamma) + Z(k,\gamma)), & \text{ if } \sigma_k = \textit{producing} \\ \\ \mathsf{TTD}(k-1,\omega) + V(k), & \text{ if } \sigma_k = \textit{idling} \\ \\ 0, & \text{ if } \sigma_k = \textit{done} \end{array} \right.$$

- $ightharpoonup P_{k,\gamma,\omega}$ steady-state probability that WS_k is in phase γ according to ω
- ▶ $R(k, \gamma)$ remaining time in phase γ of WS_k
- ▶ $Z(k, \gamma)$ execution time of phases of WS_k that follow γ
- V(k) production time of WS_k

Backward recursive evaluation

- Modelling and solution technique

Evaluation of performance measures

Time To Idle

$$\mathsf{TTI}(k,\omega) := \left\{ \begin{array}{ll} \max\{\mathsf{TTD}(k,\omega),\mathsf{TTI}(k+1,\omega)\}, & \text{if } \sigma_k \in \{\textit{producing},\textit{done}\} \\ 0, & \text{if } \sigma_k = \textit{idling} \end{array} \right.$$

- ► $\mathsf{TTI}(k, \omega) = \mathsf{max}\{\mathsf{TTD}(k, \omega), \dots, \mathsf{TTD}(k + n, \omega)\}$
 - ▶ $\forall S_i$ producing/done $\forall j \in [k, k+n]$
 - either WS_{k+n} last workstation or WS_{k+n+1} idling
- ▶ ₩S_K becomes idle when the bottleneck finishes its production

Forward recursive evaluation

- Modelling and solution technique
- Evaluation of performance measures

Time To Start Next

$$\mathsf{TTSN}(k,\omega) := \mathsf{max}\{\mathsf{TTI}(k,\omega),\mathsf{TTD}(k-1,\omega)\}$$

Forward and backward recursive evaluation

Disambiguation of phases

Disambiguation of observed phases

Resolve observed (producing) phases' ambiguity

• steady-state probability that WS_k is in phase γ according to ω

Given observation ϕ_k for workstation WS_k

- we compute probability $P_{k,\gamma,\omega}$
- that it was actually γ that produced ϕ_k

$$extstyle{P_{k,\gamma,\omega}} = rac{ ilde{\pi}(\gamma)}{\displaystyle\sum_{\gamma' \in \phi_k} ilde{\pi}(\gamma')}$$

• $\tilde{\pi}(\gamma)$ steady-state probability of phase γ in an isolated model of \mathtt{WS}_k

- Modelling and solution technique
- Disambiguation of phases

Isolated workstation model

The isolated workstation model represents a workstation repeatedly processing a product

- one product being processed
- after its production, it's moved back to the entry point of the workstation

It can be used for two reasons

- steady-state probabilities of producing phases are independent
- the inspection is at steady-state
 - arrivals and productions can be considerer in equilibrium

- Modelling and solution technique

Remaining time

Remaining time

Evaluation of $F_{R(k,\gamma)}(t) = \text{CDF of } R(k,\gamma)$

▶ $R(k, \gamma)$ remaining time in phase γ of WS_k

Problem!

- remaining times of enabled GEN transitions are dependent
- joint probabilities don't allow for a compositional approach

1/3 Immediate approximation

- lacktriangleright assume that phase γ is inspected at its ending
 - $\tilde{F}_{R(k,\gamma)}(t) = 1 \quad \forall t$
- represents an upper bound
- 2/3 Newly enabled approximation
 - lacktriangleright assume that phase γ is inspected at its beginning
 - $\tilde{F}_{R(k,\gamma)}(t) = F_{\gamma}(t)$
 - $F_{\gamma}(t)$ original CDF of the duration of γ
 - represents a lower bound

- Modelling and solution technique

Remaining time

Remaining time

3/3 Independent remaining times approximation

- consider the remaining times of ongoing phases as independent
- represents a (better) lower bound

Theorem: positive correlation & stochastic order

If \hat{R} is an independent version of vector R of positively correlated remaining times of ongoing phases, then $\hat{R} \ge_{st} R$

Steady-state distribution of $\hat{R}(k, \gamma)$ computed according to the Key Renewal Theorem¹

$$\tilde{F}_{R(k,\gamma)}(t) = \frac{1}{\mu} \int_0^t [1 - F_{\gamma}(s)] ds$$

μ expected value of F_γ(t)

¹Serfozo, R., 2009. Basics of applied stochastic processes. Springer Science & Business Media.

- Modelling and solution technique
- Execution and production time

Execution and production time

Evaluation of $F_{Z(k,\gamma)}(t)$ and $F_{V(k)}$

- $ightharpoonup Z(k,\gamma)$ execution time of phases of WS_k that follow γ
- \triangleright V(k) production time of WS_k

CDFs of $Z(k, \gamma)$ and V(k) are computed as transient probabilities

- ▶ $F_{Z(k,\gamma)}$ transient probability from phase after γ to final phase of WS_k
- $ightharpoonup F_{V(k)}$ transient probability from first phase to final phase of WS_k

Upper/lower bounds for TTD, TTI and TTSN can be evaluated

convolution and max operations maintain stochastic order

Models and analyses implemented through the Oris tool²³ APIs

- modelled through PO-sTPN
 - Partially Observable stochastic Time Petri Nets
 - workstations are state machine PNs and 1-safe

Experiments performed on a

- single core of an Intel Core i5-6600K processor
- with 16GB of RAM

²http://www.oris-tool.org/

³L. Carnevali, L. Ridi, and E. Vicario, "A Framework for Simulation and Symbolic State Space Analysis of Non-Markovian Models", inInternational Conference on Computer Safety, Reliability, and Security (SAFECOMP), Lecture Notes in Computer Science, pp. 409-422, Springer Berlin Heidelberg, 2011.

Case study assembly lines

Sequential, alternative and cyclic workstations

arrival

Simple assembly line

- two sequential workstations
- both in phase p₁ at inspection

Complex assembly line

- three repetitions
- of sequential/alternative/cyclic ws
- all observed in producing

completion

Simple assembly line

Simple assembly line TTIdle

TTIdle computed in

- 45 min for simulation
- 0.18 s for bounds

Due to steady-state probabilities

- steady-state probability of 0.208
- > 79.2% of runs are discarded

Simple assembly line

Simple assembly line

TTDone, TTIdle, TTStartNext

TTD, TTI and TTSN computed in

- ▶ 41/45/42 min for simulation
- ▶ 0.15/0.18/0.10 s for bounds

Very good approximation results

especially for independent remaining times

Feasible approach

- very fast bounds evaluation
- compared to simulation

Complex assembly line

TTIdle computed in

▶ 0.123 s for bounds

Simulation would be too computationally expensive

Complex assembly line

Complex assembly line

TTDone, TTIdle, TTStartNext

TTD, TTI and TTSN computed in

▶ 0.126/0.123/0.75 s for bounds

Scalable solution

- in a complex scenario
- simulation would be infeasible

Summary

We have proposed a compositional approach

- for analysis of assembly lines
 - with transfer blocking and no buffer capacity
- after inspection
 - subject to discrete/continuous ambiguity

Leveraging the positive correlation among remaining times

- we have derived stochastic bounds of performance measures
- with good and scalable results

Future directions

- introduce buffer capacity
- derive additional performance measures
 - e.g. time to complete the production of a certain product
 - or of the next N products