OBSTOJ MATRIČNE NORME POLJUBNO BLIZU SPEKTRALNEGA RADIJA

Trditev 0.1. (1) Za vsako matrično normo $\|\cdot\|$ velja $\rho(R) \leq \|R\|$. (2) Za vsak $\epsilon > 0$ obstaja matrična norma $\|\cdot\|_*$ za katero velja $\|R\|_* \leq \rho(R) + \epsilon$.

Dokaz. Dokažimo najprej (1). Naj bo v lastni vektor pripadajoč lastni vrednosti λ . Potem je $|\lambda| = \frac{\|Rv\|}{\|v\|} \le \|R\|$. Torej je $\rho(R) \le \|R\|$.

Dokažimo še (2). Naj bo $J=\bigoplus_{i=1}^k J_{n_i}(\lambda_i)$ Jordanova forma matrike A, kjer so $J_{n_i}(\lambda_i)=\lambda I_{n-1}+E_{n_i}$ Jordanove kletke matrike A, pri čemer je $E_{n_i}\in\mathbb{R}^{n_i\times n_i}$ matrika z 1 na prvi naddiagonali in 0 drugod. Obstaja torej obrnljiva matrika S, da je $S^{-1}AS=J$. Naj bo $D_\epsilon=\mathrm{diag}(1,\epsilon,\ldots,\epsilon^{n-1})$ diagonalna matrika. Krajši račun pokaže, da je $D_\epsilon^{-1}JD_\epsilon=\bigoplus_{i=1}^k J_{n_i}(\lambda_i,\epsilon)$, kjer je $J_{n_i}(\lambda_i)=\lambda I_{n-1}+\epsilon E_{n_i}$. Torej smo v vseh Jordanovih kletkah 1 na naddiagonali spremenili v ϵ . Zato je $\|D_\epsilon^{-1}JD_\epsilon\|_\infty=\rho(R)+\epsilon$. Definiramo vektorsko normo $\|x\|_*:=\|(SD_\epsilon)^{-1}x\|_\infty$. Krajši račun pokaže, da porojena matrična norma zadošča $\|R\|_*\leq \|D_\epsilon^{-1}JD_\epsilon\|_\infty$.

1