МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт компьютерных наук Кафедра автоматизированных систем управления

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине «Машинное обучение» «Классификация данных»

Студенты М-РИТ-25	РИТ-25 Кисс (подпись, дата) Крас	
Руководитель	(полпись, лата)	Сараев П.В.

Цель работы

Изучение алгоритмов построения классификаторов, оценки качества классификации и средств классификации данных в языке Python.

Ход работы

Исходный код программы в приложении 1.

1. Вычисление различных величин с помощью средств языка Python

Рисунок 1 – Вывод в консоль описательной статистики по всем данным

2. Сводная информация об обучающем множестве

Количест	во строк в обучаю	щем множестве: 120		
Количест	во объектов в каж	дом классе:		
setosa	1: 40			
versio	color: 40			
virgir	nica: 40			
Описател	ьная статистика о	бучающего множеств	a:	
5	sepal length (cm)	sepal width (cm)	petal length (cm)	١
count	120.000000	120.000000	120.00000	
mean	5.841667	3.048333	3.77000	
std	0.840926	0.448524	1.76852	
min	4.300000	2.000000	1.10000	
25%	5.100000	2.800000	1.60000	
50%	5.750000	3.000000	4.25000	
75%	6.400000	3.325000	5.10000	
max	7.900000	4.400000	6.90000	
ŗ	etal width (cm)			
count	120.000000			
mean	1.205000			
std	0.762663			
min	0.100000			
25%	0.300000			
50%	1.300000			
75%	1.800000			
max	2.500000			

Рисунок 2 — Вывод в консоль описательной статистики по обучающему множеству

3. НАИВНЫЙ БАЙЕСОВСКИЙ КЛАССИФИКАТОР:

РЕЗУЛЬТАТЫ ДЛЯ 4 ПАРАМЕТРОВ:

Точность классификации: 0.967

Уровень ошибки: 0.033

По классам:

setosa:

Точность (Precision): 1.000

Чувствительность (Recall): 1.000 Специфичность (Specificity): 1.000

versicolor:

Точность (Precision): 1.000

Чувствительность (Recall): 0.900

```
Специфичность (Specificity): 1.000
 virginica:
  Точность (Precision): 0.909
  Чувствительность (Recall): 1.000
  Специфичность (Specificity): 0.950
Матрица ошибок:
[[10 \ 0 \ 0]]
[0\ 9\ 1]
[0 0 10]]
Наивный Байес (4 параметра) - ОБУЧАЮЩЕЕ МНОЖЕСТВО:
Точность классификации: 0.958
Уровень ошибки: 0.042
По классам:
 setosa:
  Точность (Precision): 1.000
  Чувствительность (Recall): 1.000
  Специфичность (Specificity): 1.000
 versicolor:
  Точность (Precision): 0.927
  Чувствительность (Recall): 0.950
  Специфичность (Specificity): 0.963
 virginica:
  Точность (Precision): 0.949
  Чувствительность (Recall): 0.925
  Специфичность (Specificity): 0.975
Матрица ошибок:
[[40 \ 0 \ 0]]
[0382]
[0 3 37]]
РЕЗУЛЬТАТЫ ДЛЯ 2 ПАРАМЕТРОВ (sepal length и width):
Точность классификации: 0.700
Уровень ошибки: 0.300
По классам:
```

setosa:

Точность (Precision): 1.000

Чувствительность (Recall): 1.000

Специфичность (Specificity): 1.000

versicolor:

Точность (Precision): 0.556

Чувствительность (Recall): 0.500

Специфичность (Specificity): 0.800

virginica:

Точность (Precision): 0.545

Чувствительность (Recall): 0.600 Специфичность (Specificity): 0.750

Матрица ошибок:

[[10 0 0]

[0 5 5]

[0 4 6]]

Наивный Байес (2 параметра) - ОБУЧАЮЩЕЕ МНОЖЕСТВО:

Точность классификации: 0.808

Уровень ошибки: 0.192

По классам:

setosa:

Точность (Precision): 0.976

Чувствительность (Recall): 1.000

Специфичность (Specificity): 0.988

versicolor:

Точность (Precision): 0.696

Чувствительность (Recall): 0.800

Специфичность (Specificity): 0.825

virginica:

Точность (Precision): 0.758

Чувствительность (Recall): 0.625

Специфичность (Specificity): 0.900

Матрица ошибок:

[[40 0 0]

[0328]

[1 14 25]]

4. ДЕРЕВЬЯ РЕШЕНИЙ:

РЕЗУЛЬТАТЫ ДЛЯ 4 ПАРАМЕТРОВ:

Точность классификации: 0.933

Уровень ошибки: 0.067

По классам:

setosa:

Точность (Precision): 1.000

Чувствительность (Recall): 1.000 Специфичность (Specificity): 1.000

versicolor:

Точность (Precision): 0.900

Чувствительность (Recall): 0.900 Специфичность (Specificity): 0.950

virginica:

Точность (Precision): 0.900

Чувствительность (Recall): 0.900 Специфичность (Specificity): 0.950

Матрица ошибок:

 $[[10 \ 0 \ 0]]$

[0 9 1]

[0 1 9]]

Дерево решений (4 параметра) - ОБУЧАЮЩЕЕ МНОЖЕСТВО:

Точность классификации: 1.000

Уровень ошибки: 0.000

По классам:

setosa:

Точность (Precision): 1.000

Чувствительность (Recall): 1.000

Специфичность (Specificity): 1.000

versicolor:

Точность (Precision): 1.000

Чувствительность (Recall): 1.000

Специфичность (Specificity): 1.000

virginica:

Точность (Precision): 1.000

Чувствительность (Recall): 1.000

Специфичность (Specificity): 1.000

Матрица ошибок:

[[40 0 0]

[0400]

 $[0 \ 0 \ 40]]$

Глубина дерева (4 параметра): 5

Количество листьев (4 параметра): 8

РЕЗУЛЬТАТЫ ДЛЯ 2 ПАРАМЕТРОВ:

Точность классификации: 0.567

Уровень ошибки: 0.433

По классам:

setosa:

Точность (Precision): 0.909

Чувствительность (Recall): 1.000 Специфичность (Specificity): 0.950

versicolor:

Точность (Precision): 0.286

Чувствительность (Recall): 0.200 Специфичность (Specificity): 0.750

virginica:

Точность (Precision): 0.417

Чувствительность (Recall): 0.500 Специфичность (Specificity): 0.650

Матрица ошибок:

[[10 0 0]

[1 2 7]

[0 5 5]]

Дерево решений (2 параметра) - ОБУЧАЮЩЕЕ МНОЖЕСТВО:

Точность классификации: 0.950

Уровень ошибки: 0.050

По классам:

setosa:

Точность (Precision): 1.000

Чувствительность (Recall): 1.000

Специфичность (Specificity): 1.000

versicolor:

Точность (Precision): 0.870

Чувствительность (Recall): 1.000 Специфичность (Specificity): 0.925

virginica:

Точность (Precision): 1.000

Чувствительность (Recall): 0.850 Специфичность (Specificity): 1.000

Матрица ошибок:

[[40 0 0]

[0400]

[0 6 34]]

Глубина дерева (2 параметра): 11

Количество листьев (2 параметра): 33

Рисунок 3 — Графическое сравнение результатов для двух параметров для тестового множества

5. МЕТОД ОПОРНЫХ ВЕКТОРОВ (SVM)

РЕЗУЛЬТАТЫ ДЛЯ 4 ПАРАМЕТРОВ:

Точность классификации: 0.967

Уровень ошибки: 0.033

По классам:

setosa:

Точность (Precision): 1.000

Чувствительность (Recall): 1.000

Специфичность (Specificity): 1.000

versicolor:

Точность (Precision): 1.000

Чувствительность (Recall): 0.900

Специфичность (Specificity): 1.000

virginica:

Точность (Precision): 0.909

Чувствительность (Recall): 1.000

Специфичность (Specificity): 0.950

Матрица ошибок:

[[10 0 0]

[0 9 1]

[0 0 10]]

SVM (4 параметра) - ОБУЧАЮЩЕЕ МНОЖЕСТВО:

Точность классификации: 0.983

Уровень ошибки: 0.017

По классам:

setosa:

Точность (Precision): 1.000

Чувствительность (Recall): 1.000

Специфичность (Specificity): 1.000

versicolor:

Точность (Precision): 0.975

Чувствительность (Recall): 0.975

Специфичность (Specificity): 0.988

virginica:

Точность (Precision): 0.975

Чувствительность (Recall): 0.975

Специфичность (Specificity): 0.988

Матрица ошибок: [[40 0 0] [0391] [0 1 39]] РЕЗУЛЬТАТЫ ДЛЯ 2 ПАРАМЕТРОВ: Точность классификации: 0.700 Уровень ошибки: 0.300 По классам: setosa: Точность (Precision): 1.000 Чувствительность (Recall): 1.000 Специфичность (Specificity): 1.000 versicolor: Точность (Precision): 0.556 Чувствительность (Recall): 0.500 Специфичность (Specificity): 0.800 virginica: Точность (Precision): 0.545 Чувствительность (Recall): 0.600 Специфичность (Specificity): 0.750 Матрица ошибок: [[10 0 0] $[0\ 5\ 5]$ [0 4 6]] SVM (2 параметра) - ОБУЧАЮЩЕЕ МНОЖЕСТВО: Точность классификации: 0.817 Уровень ошибки: 0.183 По классам: setosa: Точность (Precision): 0.976 Чувствительность (Recall): 1.000 Специфичность (Specificity): 0.988 versicolor:

Точность (Precision): 0.702

Чувствительность (Recall): 0.825 Специфичность (Specificity): 0.825

virginica:

Точность (Precision): 0.781

Чувствительность (Recall): 0.625 Специфичность (Specificity): 0.912

Матрица ошибок:

[[40 0 0]

[0337]

[1 14 25]]

6. СРАВНЕНИЕ РЕЗУЛЬТАТОВ.

Рисунок 4 – Сравнение методов

Заключение

Лучший метод для 4 параметров: Наивный Байес (точность: 0.967). Лучший метод для 2 параметров: Наивный Байес (точность: 0.700). Использование 4 параметров дает лучшую точность классификации.