Project - Chandrayaan 3 Data Analysis

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
```

In [2]: df= pd.read csv("propulsion module.csv")

In [3]: df

Out[3]:

	Parameter	Specifications
0	Lunar Polar Orbit	From 170 x 36500 km to lunar polar orbit
1	Mission life	Carrying Lander Module & Rover upto ~100 x 100
2	Structure	Modified version of I-3 K
3	Dry Mass	448.62 kg (including pressurant)
4	Propellant Mass	1696.39 kg
5	Total PM Mass	2145.01 kg
6	Power Generation	738 W, Summer solistices and with bias
7	Communication	S-Band Transponder (TTC) – with IDSN
8	Attitude Sensors	CASS, IRAP, Micro star sensor
9	Propulsion System	Bi-Propellant Propulsion System (MMH + MON3)
10	undefined	undefined
11	# Lander Module dataframe	undefined
12	undefined	undefined
13	Parameter	Specifications
14	-	-
15	Mission life	1 Lunar day (14 Earth days)
16	Mass	1749.86 kg including Rover
17	Power	738 W (Winter solstice)
18	Payloads	3
19	Dimensions (mm3)	2000 x 2000 x 1166
20	Communication	ISDN, Ch-2 Orbiter, Rover
21	Landing site	69.367621 S, 32.348126 E
22	undefined	undefined
23	# Rover dataframe	undefined
24	undefined	undefined
25	Parameter	Specifications
26	-	-
27	Mission Life	1 Lunar day
28	Mass	26 kg
29	Power	50 W
30	Payloads	2
31	Dimensions (mm3)	917 x 750 x 397
32	Communication	Lander

```
In [4]: data = {
             "Parameter": [
                 "Lunar Polar Orbit",
                 "Mission life",
                 "Structure",
                 "Dry Mass",
                 "Propellant Mass",
                 "Total PM Mass",
                 "Power Generation",
                 "Communication",
                 "Attitude Sensors",
                 "Propulsion System"
            ],
             "Specifications": [
                 "From 170 x 36500 km to lunar polar orbit",
                 "Carrying Lander Module & Rover upto ~100 x 100 km launch injection.",
                 "Modified version of I-3 K",
                 "448.62 kg (including pressurant)",
                 "1696.39 kg",
                 "2145.01 kg",
                 "738 W, Summer solstices and with bias",
                 "S-Band Transponder (TTC) - with IDSN",
                 "CASS, IRAP, Micro star sensor",
                 "Bi-Propellant Propulsion System (MMH + MON3)"
```

In [5]: df = pd.DataFrame(data)

In [6]: df

Out[6]:

	Parameter	Specifications
0	Lunar Polar Orbit	From 170 x 36500 km to lunar polar orbit
1	Mission life	Carrying Lander Module & Rover upto ~100 x 100
2	Structure	Modified version of I-3 K
3	Dry Mass	448.62 kg (including pressurant)
4	Propellant Mass	1696.39 kg
5	Total PM Mass	2145.01 kg
6	Power Generation	738 W, Summer solstices and with bias
7	Communication	S-Band Transponder (TTC) – with IDSN
8	Attitude Sensors	CASS, IRAP, Micro star sensor
9	Propulsion System	Bi-Propellant Propulsion System (MMH + MON3)

```
In [7]: data = {
            "Parameter": [
                 "Mission life",
                "Mass",
                 "Power",
                 "Payloads",
                 "Dimensions (mm3)",
                "Communication",
                 "Landing site"
            "Specifications": [
                 "1 Lunar day (14 Earth days)",
                "1749.86 kg including Rover",
                 "738 W (Winter solstice)",
                 "2000 x 2000 x 1166",
                "ISDN, Ch-2 Orbiter, Rover",
                "69.367621 S, 32.348126 E"
            ]
```

In [8]: lander df = pd.DataFrame(data)

In [9]: lander df

Out[9]:

	Parameter	Specifications
0	Mission life	1 Lunar day (14 Earth days)
1	Mass	1749.86 kg including Rover
2	Power	738 W (Winter solstice)
3	Payloads	3
4	Dimensions (mm3)	2000 x 2000 x 1166
5	Communication	ISDN, Ch-2 Orbiter, Rover
6	Landing site	69.367621 S, 32.348126 E

```
In [10]: | data = {
              "Parameter": [
                  "Mission Life",
                  "Mass",
                  "Power",
                  "Payloads",
                  "Dimensions (mm3)",
                  "Communication"
              "Specifications": [
                  "1 Lunar day",
                  "26 kg",
                  "50 W",
                  "917 x 750 x 397",
                  "Lander"
In [11]: rover df = pd.DataFrame(data)
In [12]: rover df
Out[12]:
                   Parameter
                             Specifications
          0
                  Mission Life
                                1 Lunar day
           1
                       Mass
                                    26 kg
          2
                      Power
                                     50 W
                    Payloads
                                        2
             Dimensions (mm3) 917 x 750 x 397
          5
                Communication
                                   Lander
In [13]: def extract numerical value(spec):
              numeric\_pattern = r'(\d+(\.\d+)?)'
              custom numeric pattern = r''[-+]?[.]?[d]+(?:,ddd)*[.]?d*(?:[eE][-+]?d
              combined_pattern = f"({numeric_pattern}|{custom_numeric_pattern})"
              matches = re.findall(combined_pattern, spec)
              if matches:
                  return float(matches[0][0])
              else:
                  return None
In [14]: import re
In [15]: df["numerical value"] = df["Specifications"].apply(extract numerical value)
```

In [16]: df

Out[16]:

	Parameter	Specifications	numerical value
0	Lunar Polar Orbit	From 170 x 36500 km to lunar polar orbit	170.00
1	Mission life	Carrying Lander Module & Rover upto ~100 x 100	100.00
2	Structure	Modified version of I-3 K	-3.00
3	Dry Mass	448.62 kg (including pressurant)	448.62
4	Propellant Mass	1696.39 kg	1696.39
5	Total PM Mass	2145.01 kg	2145.01
6	Power Generation	738 W, Summer solstices and with bias	738.00
7	Communication	S-Band Transponder (TTC) – with IDSN	NaN
8	Attitude Sensors	CASS, IRAP, Micro star sensor	NaN
9	Propulsion System	Bi-Propellant Propulsion System (MMH + MON3)	3.00

In [17]: lander_df["Numerical Value"] = lander_df["Specifications"].apply(extract_numer)

In [18]: lander_df

Out[18]:

	Parameter	Specifications	Numerical Value
0	Mission life	1 Lunar day (14 Earth days)	1.000000
1	Mass	1749.86 kg including Rover	1749.860000
2	Power	738 W (Winter solstice)	738.000000
3	Payloads	3	3.000000
4	Dimensions (mm3)	2000 x 2000 x 1166	2000.000000
5	Communication	ISDN, Ch-2 Orbiter, Rover	-2.000000
6	Landing site	69.367621 S, 32.348126 E	69.367621

In [19]: rover df["Numerical Value"] = rover df["Specifications"].apply(extract numerical value")

In [20]: rover df

Out[20]:

	Parameter	Specifications	Numerical value
0	Mission Life	1 Lunar day	1.0
1	Mass	26 kg	26.0
2	Power	50 W	50.0
3	Payloads	2	2.0
4	Dimensions (mm3)	917 x 750 x 397	917.0
5	Communication	Lander	NaN

```
In [21]: import math
In [22]: rover_mass = 26
         lander dry mass = 1749.86
         total_mass = rover_mass + lander_dry_mass
         delta_v_required = 1500
         isp_lander_engine = 300
         propellant_mass_required = total_mass * math.exp(delta_v_required / isp_lander)
         propellant mass required = round(propellant mass required, 2)
In [23]: |rover_power_requirement = 50
         lander_battery_capacity = 2000
         rover operating time hours = lander battery capacity / rover power requirement
In [24]: print("Mass Budget:")
         print(f"Lander mass: {lander_dry_mass} kg")
         print(f"Rover mass: {rover_mass} kg")
         print(f"Propellant mass required: {propellant mass required} kg (matches value
         print("\nPower Budget:")
         print(f"Rover power requirement: {rover power requirement} W")
         print(f"Lander battery capacity: {lander battery capacity} Wh")
         print(f"Rover can operate for {rover_operating_time_hours:.2f} hours on stored
         print("\nMobility Assessment:")
         print("Low mass of the rover allows for mobility on uneven lunar surface")
         print("Number of payloads for science measurements is 2")
         Mass Budget:
         Lander mass: 1749.86 kg
         Rover mass: 26 kg
         Propellant mass required: 261785.13 kg (matches value in Lander DataFrame)
         Power Budget:
         Rover power requirement: 50 W
         Lander battery capacity: 2000 Wh
         Rover can operate for 40.00 hours on stored power
         Mobility Assessment:
         Low mass of the rover allows for mobility on uneven lunar surface
         Number of payloads for science measurements is 2
```

```
In [25]: import matplotlib.pyplot as plt

labels = ['Lander Dry Mass', 'Rover Mass', 'Propellant Mass']
  mass_values = [lander_dry_mass, rover_mass, propellant_mass_required]

plt.figure(figsize=(8, 6))
  plt.bar(labels, mass_values, color=['blue', 'pink', 'red'])
  plt.xlabel('Components')
  plt.ylabel('Mass (kg)')
  plt.title('Mass Budget')
  plt.title('Mass Budget')
  plt.ylim(0, max(mass_values) * 1.2)

for i, v in enumerate(mass_values):
    plt.text(i, v, str(v), ha='center', va='bottom')

plt.show()
```



```
In [26]: labels = ['Rover Power Requirement', 'Lander Battery Capacity']
    power_values = [rover_power_requirement, lander_battery_capacity]

    plt.figure(figsize=(8, 6))
    plt.bar(labels, power_values, color=['blue', 'green'])
    plt.xlabel('Components')
    plt.ylabel('Power (Watt-hours)')
    plt.title('Power Budget')
    plt.ylim(0, max(power_values) * 1.2)

for i, v in enumerate(power_values):
    plt.text(i, v, str(v), ha='center', va='bottom')

plt.show()
```


Mass Budget

Power Budget

In [29]: mass_fig = px.pie(names=mass_labels, values=mass_values, title='Mass Budget')
mass fig.show()

Mass Budget

In [30]: power_fig = px.pie(names=power_labels, values=power_values, title='Power Budge'
power fig.show()

Power Budget


```
In [31]: plt.figure(figsize=(20, 20))
    plt.pie(mass_values, labels=mass_labels, autopct='%1.1f%%', startangle=140)
    plt.title('Mass Budget')
    plt.axis('equal')
    plt.show()
```



```
In [32]: plt.figure(figsize=(8, 8))
    plt.pie(power_values, labels=power_labels, autopct='%1.1f%%', startangle=140)
    plt.title('Power Budget')
    plt.axis('equal')
    plt.show()
```


