UNIDAD 8. COMPROBACIÓN DE CABLES DE PAR TRENZADO Y COAXIAL

IMPLANTACIÓN DE LOS ELEMENTOS DE LA RED LOCAL

CONTENIDOS

- 8.0. Introducción
- 8.1. Categorías de Herramientas de Comprobación de Cableado
- 8.2. Analizadores o Comprobadores de Cable
 - 8.2.1. Características
 - 8.2.2. Procedimiento de Comprobación de Cables de Par Trenzado
 - 8.2.3. Procedimiento de Comprobación de Cables Coaxiales
 - 8.2.4. Procedimiento de Detección de Alimentación por Ethernet
 - 8.2.5. Procedimiento de Localización de Cables Utilizando Tonos

8.0 INTRODUCCIÓN

Unidad 8. COMPROBACIÓN DE CABLES DE PAR TRENZADO

8.0 INTRODUCCIÓN

- La certificación de una instalación permite determinar...
 - Es adecuada para las necesidades de comunicación
 - Todas las conexiones se han realizado correctamente
 - No hay cables mal instalados.
 - La capacidad máxima de transmisión o la velocidad entre enlaces
- Se llevan a cabo por medio de comprobadores de red => aparatos que miden los parámetros más importantes del cableado
 - Diafonía
 - Atenuación
 - Longitud

8.1. CATEGORÍAS DE HERRAMIENTAS DE COMPROBACIÓN DE CABLEADO

Unidad 8. COMPROBACIÓN DE CABLES DE PAR TRENZADO

8.1. CATEGORÍAS DE HERRAMIENTAS DE COMPROBACIÓN DE CABLEADO

- Podemos distinguir 3 tipos:
 - Comprobadores de Continuidad. (Voltímetros, Multímetros, etc..) Sencillos y baratos.
 - Comprobadores de cableado. Más avanzados, permiten medir diafonía, atenuación y ruido. He incluso pueden monitorizar el tráfico de red.
 - Reflector de Dominio del Tiempo (Time Domain Reflector o TDR). Detectan nudos, empalmes, curvatura. Para fibra óptica se llaman OTDR

- Se utiliza el comprobador en un extremo y una sonda o unidad remota en otra.
- Los TDR usan una prueba de reflectometría para determinar la localización del fallo en metros. Los normales NO.
 - Se envía una pequeña señal que rebota en la anomalía.
 Se mide el tiempo que tarda y con ello la distancia a la que se encuentra

- Sus parámetros más importantes son:
 - Continuidad. Si hay rotura en el cable
 - Mapeado de Hilos. Si estan montados correctamente o existen cortocircuitos
 - Resistencia. Valor alto provoca una atenuación alta
 - Longitud del cable. No debe exceder la del estandar

- Atenuación o pérdida por inserción. Se mide en decibelios (dB).
 - Atenuación = Energía de la Señal de Entrada / Salida
 - Es deseable que sea lo más próximo a 1 dB.
 - Un valor elevado puede ser debido a:
 - Longitud del cable excesiva
 - Los conectores no se han montado correctamente
 - La temperatura es elevada

- Diafonía (Crosstalk). Influencia del campo magnético de un cable sobre otro.
 - Valores elevados se deben a:
 - La pantalla protectira se ha deteriorado o es de mala calidad
 - El trenzado no se ha mantenido al máximo en los conectores

- Diafonía del extremo cercano (Near End CrossTalk o NEXT).
 - Diferencia entre la cantidad de señal de un cable y la cantidad de señal que se acopla en otro cable y que vuelve en sentido contrario al de circulación de la señal original.
 - Se mide en decibelios.
 - Siempre se desea que sea alto
 - Para controlar este valor hay que mantener los cables trenzados hasta el máximo en los conectores.

- Diafonía del extremo lejano (Far End CrossTalk o FEXT).
 - Diferencia entre la cantidad de señal de un cable y la cantidad de señal que se acopla en otro cable va en e mismo sentido de circulación de la señal original.
 - Se mide en decibelios.
 - Siempre se desea que sea alto
 - Está asociado a problemas de atenuación y diafonía

- Ratio de atenuación a diafonía (Attenuation to Crosstalk Ratio o ACR)
 - Diferencia entre el valor de NEXT y el valor de atenuación de la línea.
 - Establece si la señal es más fuerte que la del ruido de fondo.
 - Se mide en decibelios.
 - Siempre se desea que sea alto
 - Un valor incorrecto se asocia a un exceso de atenuación o NEXT

- Pérdida por retorno (Return Loss)
 - Existe diferencias de impedancia en el cable (resistencia), lo que provoca rebotes que vuelven al extremo de origen
 - Se mide en decibelios
 - Un valor alto es negativo
 - Se debe principalmente:
 - Destrenzado en los conectores o no se mantiene la pantalla protectora hasta el final

8.2.2 PROCEDIMIENTO DE COMPROBACIÓN DE CABLES DE PAR TRENZADO

- Inspección por medio de herramientas (vistas anteriormente)
- Inspección visual
 - El conector está en buenas condiciones
 - El cable está en buenas condiciones
 - Los cables llegan hasta el fondo del conector y hacen contacto con los terminales
 - El cable se ha engastado completamente y no puede salir del conector
 - Los terminales del conector no presentan deficiencias, suciedad o corrosión
 - El orden del montaje de los cables y terminales es correcto

8.2.2 PROCEDIMIENTO DE COMPROBACIÓN DE CABLES DE PAR TRENZADO

- Principales problemas
 - Circuito Abierto
 - Cortocircuito
 - Hilos Cruzados
 - Pares Cruzados
 - Par dividido

8.2.2.6 DETECCIÓN DE VOLTAJES TELEFÓNICOS

- La línea de telefono tiene un voltaje -40V sin conversación
- En conversación toma valores positivos
- Para comprobar si hay línea suele utilizarse un multímetro.

8.2.2.7 DERIVACIÓN EN PUENTE

- Se trata de una conexión que se realiza para resolver problemas en los enlaces de forma rápida y económica
- Un cable viejo se desconecta del extremo y se realiza un empalme con el nuevo

8.2.2.8 DETECCIÓN DE PUERTOS ETHERNET

- En ocasiones un puerto de red puede estropearse.
- Crea tremendos errores de cabeza porque todo aparentemente funciona bien salvo que no tenemos conexión a la red
- Existen muchos comprobadores de cableado que son capaces de detectar la señal Ethernet que circula por un cable.

8.2.3 PROCEDIMIENTO DE COMPROBACIÓN DE CABLES COAXIALES

- Similar a los métodos utilizados para par trenzado.
- Además de los parámetros habituales, continuidad, atenuación, etc. Se tienen en cuenta un factor muy importante: la impedancia.

8.2.4. PROCEDIMIENTO DE DETECCIÓN DE ALIMENTACIÓN POR ETHERNET

- Equipos con dificil acceso a la red eléctrica puedes ser alimentados por medio de Poe (Power over Ethernet) (IEEE 802.3af)
- Funciona sobre cables de categoría 5e o superior.

8.2.5. PROCEDIMIENTO DE LOCALIZACIÓN DE CABLES UTILIZANDO TONOS

- Cuando hay una gran densidad de cableado no etiquetado, es dificil determinar un cable concreto.
- Un solución consiste en introducir pequeños tonos en el cable y utilizando un sonda auxiliar es posible detectar el cable dentro de la «maraña».