

Topologia

Por favor considere a natureza antes de imprimir este material. Economize papel. Respeite a natureza.

Topologia Geral

Régis da Silva Santos

UFMT 2009

Prefácio

Esta apostila foi criada a partir de notas de aula do curso optativo de Topologia Geral em 2009.

É permitida a reprodução total ou parcial desta apostila desde que indicada a autoria.

Esta apostila foi criada para uso pessoal, portanto, adaptada para tal fim, podendo posteriormente ser adaptada para uso coletivo. E está sujeito a conter erros, portanto, são aceitas sugestões e críticas construtivas para melhoria do mesmo.

Referências: [1], [2], [3], [4], [5], [6], [7].

Impressão: 2012.

 $\label{eq:registarian} \emph{R\'egis da Silva Santos}$ Universidade Federal de Mato Grosso, 2012.

Sumário

1	Idéi	as Topológicas Elementares	1
	1.1	Topologia do Espaço Euclidiano	1
2	Esp	aços Métricos	5
	2.1	Espaços Vetoriais Normados	7
	2.2	Exercícios Propostos	
3	Top	ologia dos Espaços Métricos	13
	3.1	Abertos em (M,d)	13
	3.2	Interior de Conjuntos	
	3.3	Conjuntos Fechados	18
	3.4	Exercícios Propostos	20
	3.5	Pontos de Acumulação	20
	3.6		23
	3.7	Fronteira de um Conjunto	24
	3.8		25
4	Esp	aços Topológicos	27
	4.1	A Topologia Discreta	28
	4.2	A Topologia Caótica (ou trivial)	28
	4.3		29
	4.4		29
	4.5		29
	4.6	·	31
	4.7		33

Topologia Geral

Régis © 2009

SUMÁRIO

	4.8	Subespaço Topológico							
		4.8.1 Topologia Produto (Tychonoff)	35						
	4.9	Exercícios Propostos	36						
5	Fun	ções Contínuas em Espaços Topológicos	39						
	5.1	Sequências em Espaços Topológicos	43						
	5.2	Continuidade Sequencial em um Ponto	44						
	5.3	Topologia inicial							
	5.4	Funções Abertas e Funções Fechadas	45						
	5.5	Homeomorfismo	46						
	5.6	Axiomas de Separação	49						
	5.7	Espaços de Hausdorff	50						
	5.8	Exercícios Propostos							
6	Con	apacidade	57						
	6.1	Compactificação	60						
	6.2	Topologia Produto e Compacidade							
	6.3	Compacidade em Espaços Métricos							
	6.4	Exercícios Propostos							
7	Con	exidade	65						
	7.1	Espaços Conexos	65						
	7.2	Conexidade por Caminhos							
8	Ext	ensão de Corpos	71						
	8.1	Automorfismo de Corpos	80						
	8.2	Automorfismos e Corpos Fixos							
9	от	eorema Fundamental da Teoria de Galois Infinita	87						
10	10 Solução de Alguns Exercícios								

CAPÍTULO 1

Idéias Topológicas Elementares

1.1 Topologia do Espaço Euclidiano

Definição 1.1 Dado $n \in \mathbb{N}(n > 0)$, o espaço euclidiano n-dimensional é $\mathbb{R}^n := \underbrace{\mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R}}_{n \text{ vezes}}$.

Para n=1 temos a reta.

Para n=2 temos o plano cartesiano $\mathbb{R}^2=\mathbb{R}\times\mathbb{R}$.

Para n=3 temos o espaço tridimensional.

Em $n = 2, \mathbb{R}^2 = \{(a, b); a, b \in \mathbb{R}\}.$

Em geral, $\mathbb{R}^n = \{(x_1, \dots, x_n); x_1, \dots, x_n \in \mathbb{R}\}$, onde x_1, \dots, x_n são as coordenadas do *vetor* $\vec{x} = (x_1, \dots, x_n)$.

Igualdade:

Suponha $\vec{x} = (x_1, ..., x_n)$ e $\vec{y} = (y_1, ..., y_n)$.

$$\vec{x} = \vec{y} \Leftrightarrow x_1 = y_1, \dots, x_n = y_n.$$

Operações em \mathbb{R}^n

• Soma: $(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$

CAPÍTULO 1. IDÉIAS TOPOLÓGICAS ELEMENTARES

• Multiplicação por escalar: Dado $\alpha \in \mathbb{R}, \vec{x} = (x_1, \dots, x_n)$, define-se $\alpha \vec{x} = (\alpha x_1, \dots, \alpha x_n)$

Obs: $(\mathbb{R}, +)$ é grupo abeliano. A soma é associativa, admite neutro $\vec{0} = (0, \dots, 0)$ e existe o oposto de $\vec{x}, \forall \vec{x} \in \mathbb{R}^n$. Abeliano a soma é comutativa.

Com estas operações, \mathbb{R}^n é um *espaço vetorial* de dimensão n, com base canônica formada pelos vetores canônicos $e_j = (0, \dots, 0, 1, 0, \dots, 0)$.

Produto interno

Definição 1.2 Sejam $\vec{x} = (x_1, \dots, x_n)$ e $\vec{y} = (y_1, \dots, y_n)$ em \mathbb{R}^n . Definimos produto interno de x por y como sendo o número

$$\langle x, y \rangle = x_1 y_1 + \ldots + x_n y_n = \sum_{i=1}^n x_i y_i$$

O produto interno é uma função dada por

$$\langle \quad , \quad \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

$$(x,y) \quad \mapsto \langle x,y \rangle$$

Definição 1.3 A norma euclidiana de um vetor $\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ é definida por $||x|| = \sqrt{x_1^2 + \dots + x_n^2}$.

Caso $n=1, \, \|x\|=|x|,$ onde |x| é o módulo de um número real. A norma euclidiana é uma função dada por

$$\| \quad \| : \mathbb{R}^n \to \mathbb{R}$$
$$\vec{x} \quad \mapsto \|\vec{x}\|$$

Propriedades do produto interno

- i) $\langle x, x \rangle = \|x\|^2, \forall x \in \mathbb{R}^n$.
- ii) $\langle x, y \rangle = \langle y, x \rangle, \forall x, y \in \mathbb{R}^n$ (comutatividade).
- iii) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle, \forall \alpha, \beta \in \mathbb{R}, \forall x, y, z \in \mathbb{R}^n.$

Definição 1.4 Os vetores $x, y \in \mathbb{R}^n$ são ortogonais quando $\langle x, y \rangle = 0$.

1.1. TOPOLOGIA DO ESPAÇO EUCLIDIANO

Lembrando que $\cos\theta = \frac{\langle x,y\rangle}{\|x\| \|y\|}$. A partir da Fig. 1.1, $0 \leqslant \theta \leqslant \pi$. $\cos\theta = 0 \Leftrightarrow \theta = \pi/2 \Leftrightarrow \langle \vec{x}, \vec{y} \rangle = 0$.

Figura 1.1: Vetores ortogonais.

Projeção

A partir da Fig. 1.2, temos que

$$\langle x - \alpha y, y \rangle = 0$$

$$\Rightarrow \langle x, y \rangle - \alpha \langle y, y \rangle = 0$$

$$\Rightarrow \langle x, y \rangle = \alpha \|y\|^{2}$$

$$\alpha = \frac{\langle x, y \rangle}{\|y\|^{2}}$$

$$\alpha = \frac{\langle x, y \rangle}{\|y\|^{2}}$$
(1.1)

Figura 1.2: Projeção de x sobre y.

Lembrando, ||x|| > 0 e $||x|| = 0 \Leftrightarrow \vec{x} = \vec{0}$.

Régis \odot 2009 Topologia Geral **3**

CAPÍTULO 1. IDÉIAS TOPOLÓGICAS ELEMENTARES

$_{\scriptscriptstyle \rm teo01}$ — Teorema 1.5 (desigual dade de Cauchy-Schwarz)

Para todo $x, y \in \mathbb{R}^n, ||\langle x, y \rangle|| \leq ||x|| ||y||.$

Demonstração:

Seja $t \in \mathbb{R}$.

$$\begin{split} & \|x - ty\|^2 \geqslant 0 \\ \Rightarrow & \langle x - ty, x - ty \rangle \geqslant 0 \\ \Rightarrow & \|x\|^2 + t^2 \|y\|^2 - 2 \langle x, y \rangle t \geqslant 0 \text{ (eq. do } 2^\circ \text{ grau)} \\ \Rightarrow & 4 \langle x, y \rangle^2 - 4 \|x\|^2 \|y\|^2 \leqslant 0(\Delta) \\ \Rightarrow & \langle x, y \rangle^2 \leqslant \|x\|^2 \|y\|^2 \\ \Rightarrow & \|\langle x, y \rangle\| \leqslant \|x\| \|y\| \end{split}$$

CAPÍTULO 2

Espaços Métricos

Definição 2.1 (Distância) A distância entre $x, y \in \mathbb{R}^n$ é definida por d(x,y) = ||x - y||.

Propriedades

- i) $d(x,y) = 0 \Leftrightarrow x = y$.
- ii) Se $x \neq y$, então d(x, y) > 0.
- iii) d(x,y) = d(y,x). (simetria)
- iv) $d(x,z) \le d(x,y) + d(y,z)$.

Definição 2.2 (bola aberta) A bola aberta de centro $a \in \mathbb{R}^n$ e raio r > 0 é o conjunto $B_r(a) := \{x \in \mathbb{R}^n : d(x, a) < r\}.$

São os pontos $x \in \mathbb{R}^n$ cuja distância de x para a seja menor que r (d(x, a) = ||x - a||). $\operatorname{Em} \mathbb{R}, B_r(a) = (a - r, a + r).$

Definição 2.3 (esfera) A esfera n-dimensional é definida como o conjunto $S_r[a] := \{ x \in \mathbb{R}^n : d(x, a) = r \}.$

Para $n=1, S_r[a]=\{a-r,a+r\}.$ Para $n=2, S_r[a]$ é uma circunferência; em particular S^1 é uma esfera em \mathbb{R}^2 com centro $\vec{0}$ e raio unitário.

CAPÍTULO 2. ESPAÇOS MÉTRICOS

Figura 2.1: Circunferência.

Para $n = 3, S^2$ é a esfera em \mathbb{R}^3 . Note que S^n é a esfera n-dimensional e $S^n \subset \mathbb{R}^{n+1}$.

Definição 2.4 (bola fechada) A bola fechada de centro $a \in \mathbb{R}^n$ e raio r > 0 é o conjunto $B_r[a] := \{x \in \mathbb{R}^n : d(x, a) \leqslant r\}.$

Vamos definir norma sobre um espaço vetorial real arbitrário V.

Exemplos:

- $V = \mathbb{R}^n$
- $M_{m \times n}(\mathbb{R})$
- $M_{n\times n}(\mathbb{R})$
- $P_n(\mathbb{R}) = \{ \text{polinômios de grau} \leq n \text{ com coeficientes reais} \}$
- $P = P(\mathbb{R}) = \{\text{polinômios com coeficientes reais}\}$
- $\mathscr{C}[0,1] = \{f : [0,1] \to \mathbb{R}; f \text{ continuas}\}\$

Lembrando da Álgebra Linear, existe isomorfismo (transformação linear bijetora) entre $\mathbb{R}^{n+1} \cong P_n$ e $\mathbb{R}^{n^2} \cong M_n(\mathbb{R})$.

Operações em $\mathscr{C}[0,1]$

6

Soma: $f(x) + g(x) := (f + g)(x), \forall x \in [0, 1].$

$$\mathscr{F}:\mathscr{C}[0,1]\times\mathscr{C}[0,1]\to\mathscr{C}[0,1]$$

$$(f,a)\mapsto f+a$$

Multiplicação por escalar: $(\alpha f)(x) := \alpha f(x), \forall x \in [0,1].$

$$\mathscr{G}: \mathbb{R} \times \mathscr{C}[0,1] \to \mathscr{C}[0,1]$$
$$(\alpha, f) \mapsto \alpha f$$

Obs: $D(0,1) = \{ f \in \mathcal{C}[0,1]; f \text{ derivável em } [0,1] \}.$ D(0,1) é subespaço vetorial de $\mathcal{C}[0,1]$.

Exemplo 2.1 Seja p um número primo fixado.

$$l_p = \left\{ (x_n) \text{ sequências reais } : \sum_{n=1}^{\infty} |x_n|^p < \infty \right\}$$

Operações

Soma: $(x_n) + (y_n) = (x_n + y_n)$

Multiplicação por escalar: $\alpha(x_n) = (\alpha x_n), \forall \alpha \in \mathbb{R}$

Exemplo 2.2 Se $p = 2, x_n = \frac{1}{n}, \forall n \in \mathbb{N}^*.$

$$\Rightarrow (x_n) \in l_2$$
, pois $\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$.

Exemplo 2.3 $\mathbb{R}^{\infty} = \{(x_n) = (x_1, x_2, \ldots); x_i \in \mathbb{R}, \forall i\}.$

Exemplo 2.4 $\mathbb{R}(0,1) = \left\{ f: [0,1] \to \mathbb{R}; f \text{ \'e Riemann-integr\'avel e } \int_0^1 |f(x)| dx < \infty \right\}.$

Obs: $\mathbb{R}(0,1)\not\subset\mathscr{C}[0,1]$, por exemplo, é possível calcular a área de funções descontínuas.

2.1 Espaços Vetoriais Normados

Definição 2.5 Seja V um espaço vetorial real. Uma norma em V é uma função $\| \quad \|: V \to \mathbb{R}$ que satisfaz, $\forall x \in V, \forall \alpha \in \mathbb{R}$, as seguintes condições.

- i) ||x|| > 0 (positividade)
- ii) $||x|| = 0 \Leftrightarrow x = 0$ (não-degeneralidade)
- iii) $\|\alpha x\| = |\alpha| \|x\|$ (homogeneidade)
- iv) $||x + y|| \le ||x|| + ||y||$ (designaldade triangular)

Régis © 2009

Exemplo 2.5 $V = \mathbb{R}^n, ||x|| = \sqrt{x_1^2 + \ldots + x_n^2}, x = (x_1, \ldots, x_n)$ é norma em \mathbb{R}^n (norma euclidiana).

Definição 2.6 Se V admite uma norma $\| \ \| : V \to \mathbb{R}$, então $(V, \| \ \|)$ é dito um espaço vetorial normado.

Exemplo 2.6 \mathbb{R}^n com a norma euclidiana é um espaço vetorial normado.

Outras normas em \mathbb{R}^n

Seja

8

$$\| \quad \|_s : \mathbb{R}^n \quad \to \quad \mathbb{R}$$

$$\vec{x} = (x_1, \dots, x_n) \quad \mapsto \quad \|\vec{x}\|_s = |x_1| + \dots + |x_n|$$

Com esta "nova" norma, a forma geométrica das bolas em \mathbb{R}^n é outra.

As definições de bola aberta, fechada e esfera, são feitas do mesmo modo já visto, utilizando a mesma norma.

Por exemplo, a bola aberta de centro a e raio r > 0 é definida como $B_r(a) = \{x \in \mathbb{R}^n : \|x - a\|_s < r\}.$

Exemplo 2.7 $n = 2, \| \|_s, B_0[1].$

Figura 2.2: Losango.

Exemplo 2.8 Seja a norma do máximo

$$\| \quad \|_n : \mathbb{R}^n \quad \to \quad \mathbb{R}$$

$$\vec{x} = (x_1, \dots, x_n) \quad \mapsto \quad \|\vec{x}\|_n = \max_{1 \le i \le n} \{|x_i|\}$$

Figura 2.3: $B_0[1]$ na norma do máximo.

2.2 Exercícios Propostos

2.1 Prove que l_p é espaço vetorial. Dica: Verifique que $(a+b)^p \leq 2^p(a^p+b^p), \forall a,b \in \mathbb{R}_+, p \geq 0$.

2.2 Prove que $\| \ \|_s$ é uma norma.

Solução:

Resolveremos apenas a desigualdade triangular.

Sejam $\vec{x} = (x_1, \dots, x_n), \vec{y} = (y_1, \dots, y_n)$ em \mathbb{R}^n . Então,

$$\begin{aligned} \|\vec{x} + \vec{y}\|_s &= \|(x_1 + y_1, \dots, x_n + y_n)\|_s \\ &= |x_1 + y_1| + |x_2 + y_2| + \dots + |x_n + y_n| \\ &\leqslant |x_1| + |y_1| + |x_2| + |y_2| + \dots + |x_n| + |y_n| \\ &= \|x\|_s + \|y\|_s \\ \|\vec{x} + \vec{y}\|_s &\leqslant \|x\|_s + \|y\|_s \end{aligned}$$

2.3 Verifique que a função $\| \ \|_n$ é uma norma em \mathbb{R}^n .

Uma norma no espaço vetorial $\mathscr{C}[0,1] = \{f : [0,1] \to \mathbb{R}; f \text{ contínua}\}.$

Exemplo 2.9 Seja

$$\begin{array}{ccc} \| & \|_{\infty} \, : \mathscr{C}[0,1] \to \mathbb{R} \\ & f & \mapsto \|f\|_{\infty} := \sup_{x \in [0,1]} \big\{ |f(x)| \big\} \end{array}$$

Régis © 2009

CAPÍTULO 2. ESPAÇOS MÉTRICOS

Esta norma está bem definida porque f é contínua sobre o compacto [0,1].

Solução:

A aplicação $\| \ \|_{\infty}$ é de fato uma norma em $\mathscr{C}[0,1].$ Provemos a desigualdade triangular.

$$\begin{split} &\|f+g\|_{\infty} = \sup_{x \in [0,1]} \left\{ |(f+g)(x)| \right\} = \sup_{x \in [0,1]} \left\{ |f(x)+g(x)| \right\} \leqslant \sup_{x \in [0,1]} \left\{ |f(x)| + |g(x)| \right\} \\ & \leqslant \sup_{x \in [0,1]} \left\{ |f(x)| \right\} + \sup_{x \in [0,1]} \left\{ |g(x)| \right\} = \|f\|_{\infty} + \|g\|_{\infty} \end{split}$$

$$\textbf{Obs:} \ \ D[0,1] \subset \mathscr{C}[0,1] \subset M_b[0,1] \subset \mathscr{F}[0,1]$$
 deriváveis contínuas limitadas todas funções

Definição 2.7 Seja M um conjunto não-vazio. Uma função $d: M \times M \to \mathbb{R}$ é uma *métrica* em M (ou função distância) quando satisfaz, $\forall x, y, z \in M$, as condições:

- i) $d(x,y) \geqslant 0$;
- ii) $d(x,y) = 0 \Leftrightarrow x = y;$
- iii) d(x,y) = d(y,x);
- iv) $d(x, z) \le d(x, y) + d(y, z)$.

Exemplo 2.10 Sejam $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$

$$d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

 $(x,y) \mapsto d(x,y) = ||x-y|| = \sqrt{(x_1 + y_1)^2 + \dots + (x_n - y_n)^2}$

A métrica d é "induzida" pela norma.

Definição 2.8 Um espaço métrico é um conjunto não-vazio no qual esteja definida uma métrica $d: M \times M \to \mathbb{R}$.

Notação: (M, d).

Obs: V espaço vetorial normado $\Rightarrow V$ é espaço métrico com a métrica definida por

$$\begin{aligned} d : V \times V &\to \mathbb{R} \\ (x, y) &\mapsto \|x - y\| = d(x, y) \end{aligned}$$

© Exemplo 2.11 1 Seja $M \neq \emptyset.$ Então Madmite a métrica discreta ou métrica zero-um

$$d: M \times M \to \mathbb{R}$$

$$(x,y) \quad \mapsto d(x,y) = \begin{cases} 0, \text{ se } x = y \\ 1, \text{ se } x \neq y \end{cases}$$

Prove como exercício.

©Exemplo 2.12 A métrica dos sinais ou word métrica é

 $M = \{8 - \text{uplas de números0 ou 1}\}.$

Exemplo, $x = \{0, 1, 1, 0, 1, 0, 0, 1\} \in M$;

Exemplo, $y = \{1, 0, 0, 1, 0, 0, 0, 0\} \in M$.

Define d(x, y) = número de posições (ou entradas) com valores diferentes.

Exemplo, com $x \in y$ dados acima, d(x, y) = 6. $0 \le d(x, y) \le 8$.

$$d(x,y) = \sum_{i=1}^{8} |x_i - y_i|$$

como exercício, mostre que d é métrica.

©Exemplo 2.13 Seja $M = \mathscr{C}[0,1]$.

$$d: M \times M \to \mathbb{R}$$

$$(f,g) \mapsto \int_0^1 |f(x) - g(x)| dx$$

d é a área entre duas funções.

Mostre que d é métrica.

Dica: use $\int_0^1 |f(x)| dx = 0 \Rightarrow f \equiv 0, f$ contínua.

 $^{^{1}\}mathrm{O}$ símbolo © significa que tem uma parte como exercício.

Figura 2.4: Área entre as duas funções.

©Exemplo 2.14 Seja $M = \mathscr{C}[0,1]$.

$$\begin{array}{ccc} d \ : M \times M \to \mathbb{R} \\ & (f,g) & \mapsto \sup_{x \in [0,1]} \left\{ |f(x) - g(x)| \right\} \end{array}$$

Prove que d é métrica.

Figura 2.5: Maior diferença entre as imagens das funções.

Exemplo 2.15 Seja M = R, d(x, y) = |x - y|.

Exemplo 2.16 Seja
$$M = \mathbb{R}^n, d_s(x, y) = \sum_{i=1}^n |x_i - y_i|; \text{ para } x = (x_1, \dots, x_n) \text{ e}$$

 $y = (y_1, \dots, y_n).$

Exemplo 2.17 Seja
$$M = \mathbb{R}^n, d_m(x, y) = \max_{1 \le i \le n} \{|x_i - y_i|\}; \text{ para } x = (x_1, \dots, x_n)$$
 e $y = (y_1, \dots, y_n).$

12 Topologia Geral Régis © 2009

CAPÍTULO 3

Topologia dos Espaços Métricos

3.1 Abertos em (M, d)

Definição 3.1 Seja (M,d) um espaço métrico. Definimos a *bola aberta* de centro $a \in M$ e raio $\varepsilon > 0$ como $B_{\varepsilon}(a) = \{x \in M : d(x,a) < \varepsilon\}.$

Definição 3.2 Um conjunto $A\subset M$ é *aberto* se para cada $a\in A,\exists \varepsilon>0$ tal que $B_{\varepsilon}\left(a\right)\subset A.$

Figura 3.1:

CAPÍTULO 3. TOPOLOGIA DOS ESPAÇOS MÉTRICOS

Teorema 3.3 A bola aberta é um conjunto aberto.

Demonstração:

teo02

Seja $B=B_{\varepsilon}\left(a\right)$. Devemos mostrar que dado $x\in B, \exists \delta>0$ tal que $B_{\delta}(x)\subset B.$

Figura 3.2: Bola aberta.

Seja
$$\delta = \frac{\varepsilon - d(x, a)}{2}$$
.

$$d(y,a) \leq \underbrace{\frac{d(y,x)}{<\delta}}_{<\delta} + d(x,a)$$

$$= \frac{\varepsilon - d(x,a)}{2} + d(x,a)$$

$$= \frac{\varepsilon - d(x,a) + 2d(x,a)}{2}$$

$$= \frac{\varepsilon}{2} + \frac{d(x,a)}{2}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\Rightarrow d(y,a) < \varepsilon$$

$$\Rightarrow y \in B$$

Proposição 3.4 Seja (M, d) espaço métrico.

- i) Seja Λ um conjunto de índices com \mathscr{A}_{λ} aberto, $\forall \lambda \in \Lambda$. Então, $\bigcup_{\lambda \in \Lambda} \mathscr{A}_{\lambda}$ é aberto. $(\mathcal{A}_{\lambda} \subset M)$.
- ii) Se $\mathscr{A}_1, \ldots, \mathscr{A}_n$ são abertos de M, então $\mathscr{A}_1 \cap \ldots \cap \mathscr{A}_n$ é aberto.

A união arbitrária de abertos é aberto e a interseção finita de abertos é aberto.

Demonstração:

- i) Sejam $A = \bigcup_{i=1}^{n} \mathscr{A}$ e $a \in A$. Devemos mostrar que $\exists \varepsilon > 0$ tal que $B_{\varepsilon}(a) \subset A$. $a \in A \Rightarrow \exists \lambda_0 \in A \text{ tal que } a \in A_{\lambda_0}, \text{ que \'e aberto.}$ Logo, $\exists \varepsilon > 0$ tal que $B_{\varepsilon}(a) \subset A_{\lambda_0} \subset A$; $\Rightarrow B_{\varepsilon}(a) \subset A$.
 - Portanto, A é aberto.
- ii) Sejam $A = A_1 \cap \ldots \cap A_n$ e $a \in A$.

Note que $a \in A_i, \forall i$.

Como A_1, \ldots, A_n é aberto, existem $\varepsilon_1, \ldots, \varepsilon_n > 0$ tal que $B_{\varepsilon_i}(a) \subset A_i, i = 1, \dots, n.$

Tome $\varepsilon = \min_{1 \leq i \leq n} \{\varepsilon_i\}.$

$$\Rightarrow B_{\varepsilon}(a) \subset B_{\varepsilon_i}(a) \subset A_i, i = 1, \dots, n.$$

$$\Rightarrow B_{\varepsilon}(a) \subset \bigcap_{i=1}^{n} A_i = A.$$

Portanto, A é aberto.

②Exemplo 3.1 Sejam $M = \mathbb{R}$ com métrica usual (d(x,y) = |x-y|) e $a < b; a, b \in$

$$\frac{x-\varepsilon}{a}$$
 $\xrightarrow{(x+\varepsilon)}$

Figura 3.3:

 $I = (a,b) = \{x \in \mathbb{R} : a < x < b\}$ é aberto de $\mathbb{R}.$ Dado $x \in I$, tome $\varepsilon = \min\left\{\frac{|x-a|}{2}, \frac{|x-b|}{2}\right\}$, então $B_{\varepsilon}(x) = (x - \varepsilon, x + \varepsilon) \subset I$. Mostre que esta última afirmação é verdadeira.

Régis © 2009

Topologia Geral

15

CAPÍTULO 3. TOPOLOGIA DOS ESPAÇOS MÉTRICOS

Exemplo 3.2 Sejam $M = \mathbb{R}$ (métrica usual) e $A_n = \left(-\frac{1}{n}, \frac{1}{n}\right), n > 0$ natural.

Cada A_n é aberto, pelo exemplo anterior. Mas $\bigcap A_n = \{0\}$.

De fato, se $x \in A_n, \forall n \geqslant 1$ e $x \neq 0$, pela propriedade arquimediana dos reais, existe $m > 0 \in \mathbb{N}$ tal que $\frac{1}{m} < x; \Rightarrow x \notin (^{-1}/_m, ^1/_m) = A_m$.

Mas $\{0\}$ não é aberto em (\mathbb{R}^+)

Mas $\{0\}$ não é aberto em $(\mathbb{R}, | |)$.

De fato, dado $\varepsilon>0$ qualquer, $B_{\varepsilon}\left(0\right)=\left(-\varepsilon,\varepsilon\right)$ sempre contém um número real não-nulo.

$$\Rightarrow B_{\varepsilon}(0) \not\subset \{0\}, \forall \varepsilon > 0.$$

Exemplo 3.3 Seja $A = \{x_1, x_2, x_3, \ldots\} \subset \mathbb{R}$ (métrica usual). A é aberto?

Não! Utilize o argumento do exemplo anterior. Em particular, todo subconjunto finito de \mathbb{R} não é aberto.

Exemplo 3.4 Seja $A = \{(x, y) \in \mathbb{R}^2 : 1 < x < 2\}$. A é aberto.

Figura 3.4:

Exemplo 3.5 Seja (M, d) métrica discreta.

$$d(x,y) = \begin{cases} 0 & \text{, se } x = y \\ 1 & \text{, se } x \neq y \end{cases}$$

Seja $x \in M$ e $\varepsilon > 0$.

$$\varepsilon > 1 \Rightarrow B_{\varepsilon}(x) = \{ y \in M : d(x, y) < \varepsilon \} = M$$

$$0 < \varepsilon < 1 \Rightarrow B_{\varepsilon}(x) = \{ y \in M : d(x, y) < \varepsilon \} = \{ x \}$$

Então, dado $A \subset M$ e $x \in A$, tome $\varepsilon = 1/2$.

Então, $B_{1/2}(n) = \{x\} \subset A, \forall x \in A \Rightarrow A \text{ aberto. Isto vale } \forall A \subset M.$

Obs: Num espaço métrico qualquer (M, d), \emptyset e M são abertos.

©Exemplo 3.6 Sejam $A, B \subset \mathbb{R}^n$ abertos. $A+B = \{a+b; a \in A, b \in B\}$ é aberto. Prove.

3.2 Interior de Conjuntos

Definição 3.5 Sejam (M,d) um espaço métrico e $A\subset M$. Um ponto $x\in A$ é dito um *ponto interior* de A se existe aberto $\mathcal{U}\in M$ tal que $x\in \mathcal{U}$ e $\mathcal{U}\subset A$.

Notação: $\overset{\circ}{A}$ ou intA.

Chama-se ε -caracterização de ponto interior: $x\in \mathrm{int}\mathbf{A}\Leftrightarrow \exists \varepsilon>0$ tal que $B_\varepsilon(x)\subset A$.

Lema 3.6 $intA = \bigcup_{\mathcal{U} \subseteq A} \mathcal{U}, \mathcal{U} \ aberto \ de \ M.$

Demonstração:

Seja $x \in \text{intA}$.

lem01

$$\Rightarrow \exists \varepsilon > 0 \text{ tal que } B_{\varepsilon}(x) \subset A$$

$$\Rightarrow B_{\varepsilon}(x) \subset \bigcup_{\mathcal{U} \subseteq A} \mathcal{U}$$

$$\Rightarrow x \in \bigcup_{\mathcal{U} \subseteq A} \mathcal{U}$$

$$\Rightarrow \text{intA} \subset \bigcup_{\mathcal{U} \subseteq A} \mathcal{U}$$

Faça a volta como exercício.

cor01 Corolário 3.7 Sejam A, B conjuntos.

- i) intA é aberto;
- ii) intA é o maior conjunto aberto de M contido em A, isto é, se B é aberto de M e $B \subset A$, então $B \subseteq \text{intA}$.

Demonstração:

- i) Pelo Lema anterior, intA é união de abertos e, portanto, é aberto.
- ii) Baberto de Me
 $B\subseteq A,$ então $B\subseteq \bigcup_{\mathcal{U}\subseteq A}\mathcal{U}=\mathrm{int}\mathbf{A}.$

CAPÍTULO 3. TOPOLOGIA DOS ESPAÇOS MÉTRICOS

Lema 3.8 intA = $A \Leftrightarrow A \notin aberto$.

Demonstração:

- \Rightarrow) intA = A \Rightarrow A aberto pelo item (i) do Cor. anterior.
- $\Leftarrow)$ Claro que int
A $\subset A,$ por definição. Aaberto
 $\Rightarrow A\subset \bigcup_{\mathcal{U}\subseteq A}\mathcal{U}=\mathrm{intA},\mathcal{U}$

aberto.

Obs: Se $A, B \subset (M, d)$, intA \cup B = intA \cup intB? Não. Contra-exemplo, A = [1, 3], B = [3, 4].

$$A \cup B = [1, 4] \Rightarrow \text{int}(A \cup B) = (1, 4)$$

int $A \cup \text{int}B = (1, 3) \cup (3, 4) \neq (1, 4)$

Exemplo 3.7 Sejam (M, d) e $x \in M, r > 0 \in \mathbb{R}$. $B_{[x]} = \{y \in M : d(x, y) \leq r\}$ e $B_{(x)} = \{y \in M : d(x, y) < r\}$. $B_{(x)} = \inf(B_{r}[x])$?

Solução:

Não. Contra-exemplo, (M,d) métrica discreta. $M = \{a,b\}, a \neq b, r = 1$. $B_1(a) = \{a\}, B_1[a] = M$. M é aberto = $\operatorname{int}(B_1[a])$ $\{a\} = B_1(a) \subsetneq M$.

3.3 Conjuntos Fechados

Definição 3.9 Seja (M,d) espaço métrico. Um subconjunto $F\subset (M,d)$ é fechado quando F^c (complementar de F) é aberto.

$$F^c = \{x \in M; x \notin F\}$$

proposição 3.10 Seja (M,d) espaço métrico.

- i) Sejam $F_{\lambda}, \lambda \in \Lambda$, fechados de M. Então, $\bigcap_{\lambda \in \Lambda} F_{\lambda}$ é fechado.
- ii) Se F₁,..., F_n são fechados de M, então F₁ ∪ ... ∪ F_n é fechado.
 A interseção arbitrária de fechados é fechado e a união finita de fechados é fechado.
- iii) ∅ e M são fechados.

Demonstração:

- i) F_{λ} fechado, $\forall \lambda \in \Lambda$.
 - $\Rightarrow F_{\lambda}^{c}$ é aberto, $\forall \lambda \in \Lambda$.
 - $\Rightarrow \bigcup_{\lambda \in \Lambda} F_{\lambda}^c$ é aberto.

Mas
$$\bigcup_{\lambda \in \Lambda} F_{\lambda}^{c} = \left(\bigcap_{\lambda \in \Lambda} F_{\lambda}\right)^{c}$$
 (exercício)

- $\Rightarrow \left(\bigcap_{\lambda \in \Lambda} F_{\lambda}\right)^{c}$ é aberto.
- $\Rightarrow \bigcap_{\lambda \in \Lambda} F_{\lambda}$ é fechado.
- ii) F_i fechado, $\forall i = 1, \ldots, n$.
 - $\Rightarrow F_i^c$ é aberto.

$$\Rightarrow \bigcap_{i=1}^n F_i^c$$
é aberto = $\left(\bigcup_{i=1}^n F_i\right)^c$

- $\Rightarrow F_1 \cup \ldots \cup F_n$ é fechado.
- iii) $\emptyset^c=M$ e Mé aberto, então \emptyset é fechado. E $M^c=\emptyset,$ que é aberto, então Mé fechado.

Exemplo 3.8 $S = \{x_1, x_2, \ldots\} \subset \mathbb{R}$ é fechado?

Solução:

Não. Seja $S=\{1,\frac{1}{2},\frac{1}{3},\ldots,\frac{1}{4},\ldots\}$. S não é fechado.

$$0 \in S^c \in B_{\varepsilon}(0) \cap S \neq \emptyset, \forall \varepsilon > 0.$$

$$\Rightarrow \nexists \varepsilon > 0 \text{ tal que } B_{\varepsilon}(0) \subset S^c.$$

Logo, S^c não é aberto. Portanto, S não é fechado.

Exemplo 3.9 Seja (M, d) com métrica discreta.

$$B \subset M \Rightarrow B$$
 é aberto.

Mas $B^c \subset M \Rightarrow B^c$ é aberto $\Rightarrow B$ é fechado.

Régis © 2009

Topologia Geral

19

3.4 Exercícios Propostos

- 1. Mostre que $F = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 1 \le y \le 2\}$ é fechado.
- 2. Mostre que em $(M,d), B_{\varepsilon}[x]$ é fechado.

3.5 Pontos de Acumulação

Definição 3.11 Sejam (M,d) espaço métrico e $A\subset M$ conjunto. Um ponto $x\in M$ é chamado de um *ponto de acumulação* de A quando todo aberto $\mathcal U$ de M que contém x, também contenha algum ponto de A diferente de x.

Figura 3.5: x é ponto de acumulação. Figura 3.6: x é ponto de acumulação.

Lema 3.12 (ε -caracterização de p.a.) Seja $A \subset (M,d)$ espaço métrico. $x \in M$ é p.a. de A se, e somente se, $\forall \varepsilon > 0$, $(B_{\varepsilon}(x) \setminus \{x\}) \cap A \neq \emptyset$.

Demonstração:

 $\Rightarrow)$ Suponha $x\in M,$ x é p.a. de A. Seja $\varepsilon>0.$ Temos que $B_{\varepsilon}\left(x\right)$ é aberto de M e $x\in B_{\varepsilon}\left(x\right).$

Tomando $\mathcal{U} = B_{\varepsilon}(x)$, temos que $\mathcal{U} \cap A \supseteq \{x\}$.

- $\therefore (B_{\varepsilon}(x) \setminus \{x\}) \cap A \neq \emptyset.$
- © ←) Exercício.

Exemplo 3.10 Seja $A = \{x_0\}, x_0 \in \mathbb{R}$. $A \in \text{p.a.}$?

Solução:

 $\overline{\text{N\~{a}o. Seja}}\ x \in \mathbb{R}$. Então x não é p.a. de A.

Tome
$$\varepsilon = \frac{|x - x_0|}{2}$$
, então $B_{\varepsilon}(x) \cap \{x_0\} = \emptyset$. $\Rightarrow x$ não é p.a. de A .

Exemplo 3.11 Seja $A=(0,1]\subset\mathbb{R}.$ Qual é o conjunto {p.a. de A} dos pontos de acumulação de A?

Figura 3.7:

Solução:

$$\overline{\text{Afirmação:}} \underbrace{\{\text{p.a. de } A\}}_{A'} = [0, 1].$$

De fato, $A \subset A'$. Seja $y \in A$ e $\varepsilon > 0$. Devemos mostrar que $(B_{\varepsilon}(y) \setminus \{y\}) \cap A \neq \emptyset$. Isto é claro, pois entre $y - \varepsilon$ e $y + \varepsilon$ existe ao menos um número racional diferente de $y \notin \{0,1\}$ e que esteja em A.

 $0 \in A'$. De fato, pois $B_{\varepsilon}(0) \cap (0,1] \neq \emptyset, \forall \varepsilon > 0$.

Figura 3.8:

Temos, então que $[0,1] \subset A'$.

Queremos verificar agora que $A' \subset [0,1]$ basta tomar $y \notin [0,1]$ e mostrar que $\exists \varepsilon > 0$ tal que $(B_{\varepsilon}(y) \setminus \{y\}) \cap A = \emptyset$.

Figura 3.9:

Tome
$$\varepsilon = \frac{\min\{|y-0|,|y-1|\}}{2} \Rightarrow B_{\varepsilon}(y) \cap A = \emptyset.$$
 Conclusão: $A' = [0,1].$

Teorema 3.13 Sejam (M,d) espaço métrico e $A \subset M, A \neq \emptyset$. A é fechado se, e somente se, A contém todos os seus pontos de acumulação.

Demonstração:

teo03

 \Rightarrow) A fechado $\Rightarrow M \setminus A$ é aberto.

Seja $y\in M\backslash A$. Como $M\backslash A$ é aberto, $\exists \varepsilon>0$ tal que $B_{\varepsilon}(y)\subset M\backslash A\Rightarrow B_{\varepsilon}(y)\cap A=\emptyset$.

 $\Rightarrow y$ não é p.a. de A.

 \Leftarrow) Suponha $A\supset \{\text{p.a. de }A\}.$ Devemos mostrar que $M\backslash A$ é aberto. Seja $y\in M\backslash A.\Rightarrow y\notin A.$

 $\Rightarrow y$ não é p.a. de A.

Régis © 2009

CAPÍTULO 3. TOPOLOGIA DOS ESPAÇOS MÉTRICOS

$$\Rightarrow \exists \varepsilon > 0 \text{ tal que } (B_{\varepsilon}(y) \setminus \{y\}) \cap A = \emptyset$$

 $\Rightarrow B_{\varepsilon}(y) \subset M \setminus A \Rightarrow M \setminus A \text{ \'e aberto.} \Rightarrow A \text{ fechado.}$
Obs: Um conjunto não precisa ter p.a..

Exemplo 3.12 $A = \{x_0\} \subset \mathbb{R}$. $x_0 \in A$, mas não é p.a. de A. Isto não contradiz o teorema, pois $\emptyset \subset A$.

Exemplo 3.13 Seja $A = \mathbb{N} \subset \mathbb{R}$. A é fechado e {p.a. de A} = \emptyset .

Exemplo 3.14 Sejam (M, d) espaço métrico discreto e $A \subset M$.

Então, {p.a. de A} = \emptyset .

De fato, se
$$y \in A$$
, tome $\varepsilon = \frac{1}{2}$.
Então, $B_{1/2}(y) = \{x \in M : d(x,y) < 1/2\} = \{y\}$
 $B_{1/2}(y) = \emptyset \Rightarrow (B_{1/2}(y) \setminus \{y\}) \cap A = \emptyset$.
 $\Rightarrow y$ não é p.a. de A .

Obs: Se A não tem pontos de acumulação, então A é fechado.

Exemplo 3.15 Sejam $A = \{1, \frac{1}{2}, \frac{1}{3}, ...\}$ e $B = \{0, \frac{1}{2}, \frac{1}{3}, ...\}$. Note que A não é fechado, pois, 0 é p.a. de A e $0 \notin A$.

Dado $\varepsilon > 0$, pela propriedade arquimediana dos reais, $\exists n \in \mathbb{N}$ tal que $0 < 1/n < \varepsilon$, então $(B_{\varepsilon}(0) \setminus \{0\}) \cap A \neq \emptyset$.

Logo, Anão é fechado. EB é fechado {p.a. de $B\} = \{0\} \in B.$

Exemplo 3.16
$$A = \{x \in \mathbb{R} : 0 \le x \le 1\} \cup \{2\}.$$
 {p.a. de $A\} = [0, 1] \Rightarrow A$ é fechado.

Exemplo 3.17 Seja (x_n) uma sequência limitada, $x_n \in \mathbb{R}$. $A = \{x_1, \ldots, x_n, \ldots\}$ tem pontos de acumulação?

Solução:

Não (em geral).

$$(x_n) = (-1)^n \Rightarrow A = \{-1, 1\}$$
 não tem p.a.

Por outro lado, se (x_n) é sequência limitada que possui infinitos termos distintos, então $A=\{x_1,\ldots,x_n,\ldots\}$ contém ao menos um p.a., pois pelo Teorema de Bolzano-Weierstrass (x_n) admite uma subsequência convergente $(x_{n_k})\subset (x_n)$ e o limite desta sequência será um p.a. de A, mas não necessariamente pertence a A. \Box

Exemplo 3.18 Sejam $(M,d), x_0 \in M, B_{\varepsilon}(x_0) = \{x \in M : d(x,x_0) < \varepsilon\}$ e $B_{\varepsilon}[x_0] = \{x \in M : d(x,x_0) \leq \varepsilon\}.$ $y \in B_{\varepsilon}[x_0]$ implica y é p.a. de $B_{\varepsilon}(x_0)$?

Solução:

Não. Pois vimos que em (M, d) discreto, nenhum conjunto tem p.a.

3.6 Fecho de um conjunto

Definição 3.14 Seja (M,d) um espaço métrico. O fecho de $A\subset M$ é o menor fechado de M que contém A, isto é, é a interseção de todos os fechados de M que contém A.

Notação: \overline{A} = fecho de A.

$$\overline{A} = \bigcap_{F\supset A} F, F$$
 fechado de M .

Obs:

- \overline{A} é fechado;
- $A \text{ fechado} \Leftrightarrow A = \overline{A}$.

Exemplo 3.19 $\overline{(0,1)}^{\mathbb{R}} = [0,1]$

Exemplo 3.20 $A=\mathbb{Q}_{[0,1]}=\{x\in[0,1];x\in\mathbb{Q}\}\Rightarrow\overline{A}^{\mathbb{R}}=[0,1]$

Solução:

$$\begin{array}{l} \overline{\mathbb{Q}_{[0,1]}} \text{ n\~ao \'e aberto!} \\ x = \frac{m}{n} \in \mathbb{Q}_{[0,1]} \text{ e } \varepsilon > 0 \\ \Rightarrow B_{\varepsilon}(x) \cap \mathbb{Q}_{[0,1]} \text{ possui um irracional} \end{array}$$

$$\Rightarrow B_{\varepsilon}^{n}(x) \cap \mathbb{Q}_{[0,1]} \text{ possui um irracional} \\ \Rightarrow B_{\varepsilon}(x) \not\subset \mathbb{Q}_{[0,1]}.$$

Exemplo 3.21 $\overline{\{1, \frac{1}{2}, \frac{1}{3}, \ldots\}}^{\mathbb{R}} = \{0, 1, \frac{1}{2}, \ldots\}$

Exemplo 3.22 $[0,1] \cup \{2\}^{\mathbb{R}} = [0,1] \cup \{2\}$

Exemplo 3.23 $A, B \subset \mathbb{R}, \overline{A \cap B} = \overline{A} \cap \overline{B}$?

Solução:

Não. Contra-exemplo.

Sejam
$$A = (0, 1), B = (1, 2).$$

$$A \cap B = \emptyset \Rightarrow \overline{A \cap B} = \emptyset \text{ e } \overline{A} \cap \overline{B} = [0, 1] \cap [1, 2] = \{1\}.$$

Proposição 3.15 Seja
$$(M,d)$$
 espaço métrico. Então, $\overline{A} = \underbrace{A \cup \{p.a.\ de\ A\}}_{B}$.

Demonstração:

Seja F fechado, que contém A. Como F é fechado, temos que F contém seus pontos de acumulação.

Em particular, F contém os pontos de acumulação de A (pois $A \subset F$).

Logo, $A \subset B \subset F$. Basta agora mostrar que B é fechado. (Dado $y \in$ $\{p.a. de B\}, mostrar que y \in B.$

Seja $y \in \{\text{p.a. de } B\}$. Então $\forall \varepsilon > 0, \exists z \in B \text{ tal que } z \neq y \text{ e } z \in B_{\varepsilon}(y)$.

Temos duas possibilidades:

- 1) $z \in A$. Neste caso, $B_{\varepsilon}(y)$ contém um ponto de A e diferente de y.
- 2) z é p.a. de A.

$$\mathrm{Ent}\tilde{\mathrm{ao}},\,\delta=\min\left\{\frac{\varepsilon-d(z,y)}{2},\frac{d(z,y)}{2}\right\}\Rightarrow B_{\delta}(z)\subset B_{\varepsilon}\left(y\right).$$

Como z é p.a. de A, temos que $B_{\delta}(z)$ contém algum ponto de A diferente de z(e diferente de y, devido a definição de δ).

Implica $B_{\varepsilon}(y)$ contém algum ponto de A diferente de y.

Logo, y é p.a. de A.

Portanto, $y \in B$.

Conclusão: pontos de acumulação de B estão em B, então B é fechado.

3.7 Fronteira de um Conjunto

Definição 3.16 Seja (M,d) espaço métrico e $A \subset M$. A fronteira de A é definida como $\partial A = \overline{A} \cap \overline{A^c} \ (A^c = M \backslash A).$

Exemplo 3.24 Seja
$$\mathbb{Q} \subset \mathbb{R}, \overline{\mathbb{Q}} = \mathbb{R}$$
.

$$\begin{array}{c} \mathbf{Exemplo} \ \mathbf{3.24} \ \operatorname{Seja} \ \mathbb{Q} \subset \mathbb{R}, \overline{\mathbb{Q}} = \mathbb{R}. \\ \overline{\mathbb{Q}} = \mathbb{Q} \cup \underbrace{\left\{ \text{p.a. de } \mathbb{Q} \right\}}_{\text{irracionais}} = \mathbb{R} \\ \overline{\mathbb{Q}^c} = \mathbb{R} \quad \underline{} \end{array}$$

$$\mathbb{Q}^c = \mathbb{R}
\Rightarrow \partial \mathbb{Q} = \overline{\mathbb{Q}} \cap \overline{\mathbb{Q}^c} = \mathbb{R} \cap \mathbb{R} = \mathbb{R}$$

Exemplo 3.25
$$\partial_{\mathbb{R}^n} (0,1) = S^{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}.$$

Proposição 3.17 Seja $A \subset (M,d)$ espaço métrico. Então, $x \in \partial A$ se, e somente se, $\forall \varepsilon > 0, B_{\varepsilon}(x) \cap A \neq \emptyset$ e $B_{\varepsilon}(x) \cap A^{c} \neq \emptyset$.

Demonstração:

 \Rightarrow) $x \in \partial A \Rightarrow x \in \overline{A} \in X \in \overline{A^c}$.

Dois casos:

- 1) $x \in A$. Neste caso, $B_{\varepsilon}(x) \cap A \supset \{x\}, \forall \varepsilon > 0$. Como $x \in \overline{A^c}$, temos que $x \notin p.a$. de A^c . $\Rightarrow B_{\varepsilon}(x) \cap A^c \neq \emptyset$. (Note que $x \notin A^c$)
- 2) $x \in A^c \odot$. Exercício, análogo.

⊕ Exercício, análogo.

Exemplo 3.26 Sejam A = [1,2] e B = [0,3]. $\partial A = \{1,2\}$, pois $\overline{A} = [1,2]$. $A^c = (-\infty,1) \cup (2,+\infty)$ $\Rightarrow \overline{A^c} = (-\infty,1] \cup [2,+\infty)$ $\Rightarrow \overline{A} \cap \overline{A^c} = [1,2] \cap ((-\infty,1] \cup [2,+\infty)) = \{1,2\}$. Ainda, $\partial B = \{0,3\}$. Note que $A \supset B$, mas $\partial A \cap \partial B = \emptyset$. $A \supset B \not\Rightarrow \partial A \supset \partial B$.

3.8 Exercícios Propostos

- **3.1** Seja (M,d) um espaço métrico. Defina conjunto aberto e conjunto fechado em M. Demonstre que \emptyset e M são ao mesmo tempo abertos e fechados em M. Demonstre que a bola aberta é um conjunto aberto em M. Demonstre que a união arbitrária de abertos de M é um aberto de M e a interseção finita de abertos de M é um aberto de M. Faça a afirmação correspondente a fechados de M e demonstre-a.
- ${\bf 3.2}\,$ Seja Mum conjunto não vazio. Mostre que a aplicação $d:M\times M\to \mathbb{R}$ dada por

$$d(x,y) = \begin{cases} 1 & \text{, se } x \neq y \\ 0 & \text{, se } x = y \end{cases}$$

é uma métrica em M. A aplicação d é denominada de métrica discreta e o conjunto não vazio M munido com a métrica discreta é denominado de espaço métrico discreto. Considere (M,d) o espaço métrico discreto. Dado $x \in M$, mostre que uma bola aberta qualquer com centro x é igual a $\{x\}$ ou a M. Utilize este fato para mostrar que todo subconjunto de M é ao mesmo tempo aberto e fechado e o que o interior de uma bola fechada em M não precisa ser a bola aberta de M.

Régis © 2009

 ${\bf 3.3}$ Seja d uma métrica no conjunto não vazio M. Mostre que as novas funções $d_1, d_2: M \times M \to \mathbb{R}$ definidas, respectivamente por

$$d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$$
 e $d_2(x,y) = \min\{1, d(x,y)\}$

para todos $x, y \in M$, também são métricas em M. Note que $0 \le d_1(x, y) \le 1$, para todos $x, y \in M$. Por este motivo d_1 é denominada métrica limitada.

Suponha que M é munido da norma $\| \|$, isto é, $(M, \| \|)$ é um espaço vetorial normado. Mostre que a aplicação $d: M \times M \to \mathbb{R}$, dada por d(x,y) = ||x-y|| é uma métrica em M. Isso que dizer a métrica d provém da norma | | | Contudo, nem toda métrica provém de uma norma. De fato, vamos supor que (M,d) é um espaço métrico discreto e ao mesmo tempo M é espaço vetorial com a norma $\| \|$, tal que $d(x;y) = \|x-y\|$. Observe que para $x \neq 0$, temos $d(0,x)=1=d(0,\lambda x)$, para todo $\lambda>0$ real. Utilizando este fato conclua o absurdo: $1 = \lambda$, para todo λ real positivo. Portanto, a métrica discreta não provem de uma norma.

- **3.4** Considere o espaço euclidiano \mathbb{R}^n (munido da norma euclidiana usual). Sejam $A,B\subset\mathbb{R}^n$ abertos. Demonstre que $A+B=\{a+b|a,b\in\mathbb{R}^n\}$ é também aberto de \mathbb{R}^n . Demonstre que: o intervalo $(a,b)\subset\mathbb{R}$ é um aberto de \mathbb{R} ; o conjunto $\{(x,y)\in\mathbb{R}^n\}$ $\mathbb{R}^2 | 1 < x < 2 \}$ é um aberto do \mathbb{R}^2 ; o conjunto $\{(x,y) \in \mathbb{R}^2 | 0 \le x \le 1 \text{ e } 1 \le y \le 2 \}$ é um fechado de \mathbb{R}^2 .
- **3.5** Demonstre que a norma euclidiana $\| \| : \mathbb{R}^n \to \mathbb{R}, \|x\| = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$, onde $x=(x_1,\ldots,x_n)$, de fato satisfaz os axiomas da definição de norma. Faça o mesmo para as normas da soma $\|x\|_1 = \sum_{i=1}^n |x_i|$ e do máximo

 $\|x\|_{\infty} = \max_{i} \{|x_{i}|\}$. Mostre que para todo $x \in \mathbb{R}^{n}$, $\|x\|_{\infty} \leqslant \|x\| \leqslant \sqrt{n} \|x\|_{\infty}$ e que $\|x\| \leqslant \|x\|_{1} \leqslant n \|x\|$. No espaço das funções contínuas $M = \mathcal{C}[0,1] = \{f : [0,1] \to \mathbb{R} | f \text{ \'e contínua} \}$, mostre que as aplicações

 $n_1, n_2: M \to \mathbb{R}, n_1(f) = \int_a^b |f(x)| dx$ e $n_2(f) = \sup\{|f(x)|; x \in [0, 1]\}$ são normas em M. Escreva as métricas correspondentes e interprete geometricamente o que significa a distância entre duas funções nestas normas.

CAPÍTULO 4

Espaços Topológicos

Definição 4.1 Seja X um conjunto. Uma topologia sobre X é uma coleção τ de subconjuntos de X que satisfaz as seguintes condições:

- i) \emptyset e X estão em τ ;
- ii) Se $\mathcal{U}_1, \ldots, \mathcal{U}_n$ estão em τ , então $\mathcal{U}_1 \cap \ldots \cap \mathcal{U}_n$ está em τ ;
- iii) Se $\mathcal{U}_i \in \tau, \forall i \in I$, então $\bigcup_{i \in I} \mathcal{U}_i \in \tau$.

Obs: Se τ é uma topologia em X, então o par (X,τ) é chamado de um espaço topológico .

Os conjuntos $\mathcal{U} \in \tau$ são chamados de *abertos*.

Exemplo 4.1 No caso de X=(M,d) espaço métrico, a topologia é $\tau=\{\text{abertos de }M\text{ na métrica }d\}.$

Obs: $\tau \subset \mathscr{P}(X) = \text{conjunto das partes de } X$.

$$\mathscr{P}(X) = \{A: A \subset X\} = \{\text{subconjuntos de } X\}$$

Exemplo 4.2 Seja $X = \{a, b, c\}.$

$$\mathscr{P}(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\$$

Possíveis topologias de $X = \{a, b, c\}$:

CAPÍTULO 4. ESPAÇOS TOPOLÓGICOS

- 1) $\tau_0 = \mathscr{P}(X)$
- 2) $\tau_1 = \{\emptyset, X\}$
- 3) $\tau_2 = \{\emptyset, X, \{a\}\}$
- 4) $\tau_3 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}\$
- 5) $\tau_4 = \{\emptyset, X, \{a\}, \{b\}\}$

Note que $\tau_0, \tau_1, \tau_2, \tau_3$ são topologias de X. τ_4 não é topologia de X, pois $\{a\} \cup \{B\} = \{a,b\} \notin \tau_4$.

Observações:

- i) No exemplo, (X, τ_i) , i = 0, 1, 2, 3 são espaços topológicos distintos.
- ii) As vezes a topologia τ não é citada. Por exemplo, quando houver perigo de confusão escreve-se "X é um espaço topológico".
- iii) Um espaço métrico (M,d) é um espaço topológico e neste caso diz-se que a topologia é "gerada pela métrica".

4.1 A Topologia Discreta

Vimos o exemplo $X=\{a,b,c\}$, que é um espaço topológico para $\tau_0=\mathscr{P}(X)$. Em geral, se X é um conjunto qualquer, então $\tau_0=\mathscr{P}(X)$ é sempre uma topologia de X e é chamada a topologia discreta de X, para o qual todo subconjunto de X é um aberto.

 $(X, \tau_0) :=$ espaço topológico discreto

Obs: Todo conjunto X pode ser considerado como espaço topológico discreto.

4.2 A Topologia Caótica (ou trivial)

Se X é um conjunto, então $\tau_1 = \{\emptyset, X\}$ é sempre uma topologia de X. O espaço topológico (X, τ_1) é dito espaço topológico trivial.

©Exemplo 4.3 Seja X um conjunto. Suponha que τ e τ' são topologias de X.

- a) $\tau \cup \tau'$ é topologia de X?
- b) $\tau \cap \tau'$ é topologia de X?

4.3 A Topologia Cofinita

Seja X um conjunto. $\tau_{\text{cof}} = \{ \mathcal{U} \subset X : \mathcal{U}^c = X \setminus \mathcal{U} \text{ \'e finito ou \'e igual a } X \}$. Então τ_{cof} \'e topologia sobre X, chamada topologia cofinita (ou topologia do complemento finito).

De fato,

- i) $X^c = \emptyset$ e $\emptyset^c = X \Rightarrow \emptyset, X \in \tau_{cof}$;
- ii) Seja $\{A_i \in \tau_{\mathrm{cof}}; i \in I\}.$ Então $\bigcup_{i \in I} A_i \in \tau_{\mathrm{cof}}.$

De fato,
$$\left(\bigcup_{i\in I} A_i\right)^c = \bigcap_{i\in I} A_i^c$$
.

Como cada A_i^c é finito, esta interseção é finita ou é igual ao próprio X.

iii) Se $A_1, \ldots, A_n \in \tau_{\text{cof}}$, então $A_1 \cap \ldots \cap A_n \in \tau_{\text{cof}}$, pois $\left(\bigcap_{i=1}^n A_i\right)^c = \bigcup_{i=1}^n A_i^c$ é finita ou igual a X (pois cada A_i^c é finito ou igual a X).

Obs: Se X é finito, então $\tau_{\text{cof}} = \tau_0$.

Exemplo 4.4 Seja $X = \mathbb{R}$ com topologia τ_{cof} .

 $I=(-\infty,1)$ não é aberto, pois $I^c=[1,\infty)$ não é finito.

I = (a, b) não é aberto.

4.4 Topologia do Complemento Enumerável

©Exemplo 4.5 Seja X um conjunto e $\tau = \{ \mathcal{U} \subset X : X \setminus \mathcal{U} \text{ \'e enumer\'avel ou \'e igual a } X \}$. Mostre que (X, τ) \'e espaço topológico.

Definição 4.2 Sejam τ e τ' topologias no conjunto X. Dizemos que τ' é mais fina do que τ quando $\tau \supset \tau'$. (Todo aberto segundo τ' é necessariamente aberto segundo τ . τ' é menos fina que τ' .)

Obs: Duas topologias de X não precisam ser comparáveis (relação de inclusão). Exemplo, $\tau = \{X, \emptyset, \{a\}\}; \tau' = \{X, \emptyset, \{b\}\}; \tau \not\subset \tau', \tau' \not\subset \tau$.

4.5 Conjuntos Fechados

Definição 4.3 Seja X um espaço topológico. Um subconjunto $F \subset X$ é chamado de *fechado* quando seu complementar $X \setminus F(F^c)$ é aberto (na topologia de X).

29

Régis © 2009 Topologia Geral

CAPÍTULO 4. ESPAÇOS TOPOLÓGICOS

Exemplo 4.6 Seja $X = \{a, b, c, d, e\}$.

 $\tau=\{\emptyset,X,\{a\},\{c,d\},\{a,c,d\},\{b,c,d,e\}\}\Rightarrow(X,\tau)$ é espaço topológico. Então os fechados de (X,τ) são $\emptyset,X,\{b,c,d,e\},\{a,b,c\},\{b,c\},\{a\}.$

- i) $\{b, c, d, e\}$ é aberto e fechado ao mesmo tempo.
- ii) $\{a,b\}$ não é aberto e nem fechado.

Obs: Num espaço topológico um subconjunto não precisa ser aberto ou fechado mas pode ser aberto e fechado.

Teorema 4.4 Seja (X, τ) um espaço topológico. Então

i) ∅ e X são fechados;

teo04

- ii) Se F_j é fechado, $\forall j \in J = conjunto$ de índices, então $\bigcap_{j \in J} F_j$ é fechado;
- iii) Se F_1, \ldots, F_n são fechados, então $F_1 \cup \ldots \cup F_n$ é fechado.

Demonstração:

$$\odot$$
 Exercício. (Veja o caso $X = (M, d)$).

Fecho de um conjunto

Definição 4.5 Seja (X, τ) um espaço topológico. O *fecho* de $A \subset X$, representado por \bar{A} , é definido como a interseção de todos os fechados que contém A, isto é, $\bar{A} = \bigcap F, F \supset A, F$ fechado.

Obs: \bar{A} é fechado, é o "menor" fechado que contém A, isto é, F fechado e $F\supset A$, então $A\subset \bar{A}\subset F$.

E ainda, A fechado $\Leftrightarrow A = \bar{A}$.

Exemplo 4.7 Seja $X = \{a, b, c, d, e\}$.

$$\tau = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$$
 Os fechados são $X, \emptyset, \{a\}, \{b, e\}, \{a, b, e\}, \{b, c, d, e\}.$

$$\Rightarrow \{\bar{b}\} = \{b, e\}$$
$$\{\bar{z}a, c\} = X$$
$$\{\bar{z}b, c\} = \{b, c, d, e\}$$
$$\{\bar{a}\} = \{a\}$$

30 Topologia Geral Régis © 2009

31

Interior

Definição 4.6 Seja (X, τ) espaço topológico e seja $p \in A$, onde $A \subset X$. Dizemos que p é ponto interior de A se $\exists \mathcal{U} \in \tau$ tal que $p \in \mathcal{U} \subset A$. $(\mathcal{U}$ é a vizinhança de p).

Obs: A classe de todas as vizinhanças de p é chamada de um sistema de vizinhanças de p.

Exemplo 4.8 Seja (M,d) espaço métrico. $p \in M, \mathcal{U} = B_{\varepsilon}(p)$. O interior de $A \subset X$ é o conjunto dos pontos interiores de A. Notação: intA ou $\overset{\circ}{A}$.

proposição 4.7 Seja (X, τ) espaço topológico.

i) intA =
$$\bigcup \mathcal{U}, \mathcal{U} \subset A, \mathcal{U} \in \tau;$$

ii) intA é o "maior" aberto contido em A, isto é, $\mathcal{U} \subset A$ e \mathcal{U} aberto $\Rightarrow \mathcal{U} \subset \overset{\circ}{A} \subset A$.

Demonstração:

Ver o caso (M, d) e generalizar.

Definição 4.8 (Fronteira) Sejam (X, τ) espaço topológico e $A \subset X$. A fronteira de A é $\partial A := \overline{A} \cap \overline{A^c}$.

©Exemplo 4.9 Sejam (X, τ) espaço topológico e $A \subset X$.

- 1. $x \in \bar{A} \Leftrightarrow \text{todo aberto contendo } x \text{ tem a mesma interseção não-vazia com } A$.
- 2. $x \in \partial A \Leftrightarrow$ todo aberto contendo x tem interseção não-vazia com A e A^c .

4.6 Bases

Se (M,d) é espaço métrico, um aberto $A\subset M$ é uma união de bolas abertas de M. Dado $a\in A, \exists \varepsilon_a>0$ tal que $B_{\varepsilon_a}(a)\subset A$, então $A=\bigcup_{\alpha}B_{\varepsilon_a}(a)$.

Em geral, é difícil descrever explicitamente os abertos de uma topologia. A idéia de base é encontrar uma coleção menor de subconjuntos de X e definir a topologia em termos desta coleção.

Definição 4.9 Seja X um conjunto. Uma base para uma topologia sobre X é uma coleção \mathcal{B} de subconjuntos de X, chamadas de abertos básicos , tais que

i) $\forall x \in X, \exists B \in \mathscr{B} \text{ tal que } x \in B;$

Régis © 2009 Topologia Geral

CAPÍTULO 4. ESPAÇOS TOPOLÓGICOS

ii) Se $x \in B_1 \cap B_2, B_1, B_2 \in \mathcal{B}$, então $\exists B_3 \in \mathcal{B}$ tal que $x \in B_3$ e $B_3 \subset B_1 \cap B_2$.

Exemplo 4.10 Seja $X = \mathbb{R}^2$, $\mathscr{B} = \{\text{"regiões circulares"}, isto é, interiores de círculos de <math>\mathbb{R}^2\}$.

Obs: Se \mathcal{B} é uma base para uma topologia sobre X, então a topologia τ gerada por \mathcal{B} é descrita: $\mathcal{U} \in \tau$ se para cada $x \in \mathcal{U}, \exists B \in \mathcal{B}$ tal que $x \in B$ e $B \subset \mathcal{U}$.

$$\tau = \{ \mathcal{U} \subset X : \text{ para cada } x \in \mathcal{U}, \exists B \in \mathcal{B} \text{ tal que } x \in B \text{ e } B \subset \mathcal{U} \}$$
 (4.1)

 τ é topologia de X:

- i) \emptyset e X estão em τ ;
- ii) Seja $U_i, i \in I, U_i \in \tau, \forall i \in I$.

Então
$$\mathcal{U} = \bigcup_{i \in I} \mathcal{U}_i$$
 está em τ .

De fato, se $x \in \mathcal{U}$, então $x \in \mathcal{U}_{i_0}$ para algum $i_0 \in I$.

Como \mathcal{U}_{i_0} é aberto, existe $B \in \mathcal{B}$ tal que $x \in B \subset \mathcal{U}_{i_0} \subset \bigcup \mathcal{U}_i = \mathcal{U} \Rightarrow \mathcal{U} \in \tau$.

iii) Sejam \mathcal{U}_1 e \mathcal{U}_2 abertos de τ . Então, $\mathcal{U}_1 \cap \mathcal{U}_2$ está em τ . De fato, se $x \in \mathcal{U}_1 \cap \mathcal{U}_2$, então $x \in \mathcal{U}_1 \Rightarrow \exists B_1 \in \mathcal{B}$ tal que $x \in B_1$ e $x \in \mathcal{U}_2 \Rightarrow \exists B_2 \in \mathcal{B}$ tal que $x \in B_2 \Rightarrow x \in B_1 \cap B_2$.

$$\overset{def.base}{\Rightarrow} \exists B_3 \in \mathscr{B}$$
tal que $x \in B_3$ e $B_3 \subset B_1 \cap B_2$

$$\Rightarrow x \in B_3 \subset B_1 \cap B_2 \subset \mathcal{U}_1 \cap \mathcal{U}_2$$

 $\Rightarrow \mathcal{U}_1 \cap \mathcal{U}_2$ aberto (pela definição).

Teorema 4.10 Seja (X, τ) espaço topológico. Uma coleção $\mathcal B$ de abertos de τ é uma base para a topologia τ de X se, e somente se, dado

$$\mathcal{U} \in \tau, \exists B_i \in \mathscr{B}(i \in I) \ tal \ que \ \mathcal{U} = \bigcup_{i \in I} B_i$$
 (4.2)

Demonstração:

 \Rightarrow) Por hipótese \mathscr{B} é base para τ . Seja $\mathcal{U} \in \tau$. Dado $u \in \mathcal{U}$, pela Eq. 4.1, $\exists B_u \in \mathscr{B}$ tal que $u \in B_u \subset \mathcal{U}$.

Portanto,
$$\mathcal{U} = \bigcup_{u \in \mathcal{U}} B_u$$
.

 \Leftarrow) Por hipótese, vale a Eq. 4.2. Devemos verificar que $\mathcal B$ é base.

i)
$$x \in X, \mathcal{U} = X$$
 é aberto de $\tau. \Rightarrow X = \bigcup_{B \in \mathscr{B}} B \Rightarrow x \in B$, algum $B \subset X$.

teo05

ii) $x \in B_1 \cap B_2$, B_1 e B_2 em \mathscr{B} . B_1 e B_2 são abertos $\Rightarrow B_1 \cap B_2$ aberto. Tome $B_3 = B_1 \cap B_2$.

Exemplo 4.11 Seja $X = \mathbb{R}^2$ com a topologia usual.

 $\mathscr{B} = \{ \text{triângulos equiláteros abertos de } \mathbb{R}^2 \}.$

Dado $\mathcal{U} \subset \mathbb{R}^2$, \mathcal{U} aberto e $p \in \mathcal{U}$ existe $B_{\varepsilon}(p) \subset \mathcal{U}$.

Pode-se "inscrever" um triângulo equilátero aberto Δ na $B_{\varepsilon}(p)$.

Logo, dado um aberto \mathcal{U} de \mathbb{R}^2 , $\exists \Delta \in \mathscr{B}$ tal que $p \in \Delta \subset \mathcal{U}$.

Exemplo 4.12 Seja $X = \mathbb{R}$ topologia usual (d(x, y) = |x - y|).

 $\mathscr{B} = \{(a,b) : a < b; a,b \in \mathbb{R}\}$ é base para a topologia usual de \mathbb{R} .

De fato, dado $\mathcal{U} \subset \mathbb{R}$, \mathcal{U} aberto e $x \in \mathcal{U}$, temos que $\exists \varepsilon > 0$ tal que $\underbrace{(x - \varepsilon, x + \varepsilon)}$

 $\mathcal{U} \in I \in \mathcal{B}$.

Equivalentemente, todo aberto de \mathcal{U} é união de intervalos abertos.

4.7 Sub-bases

Definição 4.11 Seja (X, τ) espaço topológico. Uma coleção $\mathcal L$ de abertos de τ é uma sub-base para τ quando o conjunto $\mathcal B = \{ \text{interse}$ ções finitas de conjuntos de $\mathcal L \}$ forma uma base para τ .

Exemplo 4.13 Seja $X = \mathbb{R}$ com a topologia usual.

 $\mathscr{L} = \{(-\infty, x), (y, +\infty); x, y \in \mathbb{R}\}$. Então, \mathscr{L} é uma sub-base para a topologia usual de \mathbb{R} . De fato, todo intervalo aberto $(a, b) \subset \mathbb{R}(a < b)$ é da forma $(a, b) = (-\infty, b) \cap (a, +\infty)$.

Então, todo aberto básico de $\mathscr{B} = \{(a,b) : a < b; a,b \in \mathbb{R}\}$ é interseção finita de conjuntos, e \mathscr{B} gera a topologia usual de \mathbb{R} .

Teorema 4.12 Seja $X = \emptyset$. Uma coleção qualquer $\mathscr{A} \subset \mathscr{P}(X) = \{partes \ de \ X\}$ é sub-base para uma topologia τ em X.

Demonstração:

teo06

Seja $\mathscr{B} = \{ \text{interseções finitas de conjuntos de } \mathscr{A} \}. \ X \in \mathscr{B}.$ Se $B_1, B_2 \in \mathscr{B}$, então

$$B_1 = A_1 \cap \ldots \cap A_n, A_i \in \mathscr{A}, i = 1, \ldots, n$$

$$B_2 = A'_1 \cap \ldots \cap A'_m, A'_i \in \mathscr{A}, j = 1, \ldots, m$$

 $\Rightarrow B_1 \cap B_2 = A_1 \cap \ldots \cap A_n \cap A'_1 \cap \ldots \cap A'_m \Rightarrow B_1 \cap B_2 \in \mathscr{B}.$

Logo, \mathscr{B} é base para uma topologia τ de X.

Régis © 2009

Topologia Geral

33

Exemplo 4.14 Seja $X = \{a, b, c, d\}$. Dado $\mathscr{A} = \{\{a, b\}, \{b, c\}, \{d\}\}, \mathscr{B} = \{\text{interse}\tilde{\varsigma}\text{oes finitas de conjuntos de }\mathscr{A}\} = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}, \{d\}\} \mathscr{B}$ gera topologia para o qual \mathscr{A} é sub-base.

4.8 Subespaço Topológico

Teorema 4.13 Sejam (X, τ) espaço topológico e $A \subset X$. A coleção $\tau_A = \{A \cap \mathcal{U}; \mathcal{U} \in \tau\}$ é uma topologia para A. O par (A, τ_A) é chamado de subespaço topológico de (X, τ) , $(\tau_A$ é a topologia relativa ou induzida por τ).

Demonstração:

- i) A e \emptyset estão em τ_A pois $A=A\cap X,\, X$ é aberto de $X.\,\,\emptyset=A\cap\emptyset,\,\emptyset$ é aberto de X.
- ii) Sejam $A \cap \mathcal{U}_1, \dots, A \cap \mathcal{U}_n$ em τ_A . Então

$$\bigcap_{i=1}^{n} (A \cap \mathcal{U}_i) = A \cap \underbrace{\left(\bigcap_{i=1}^{n} \mathcal{U}_i\right)}_{C\tau}; \mathcal{U}_i \in \tau, i = 1, \dots, n \Rightarrow \bigcap_{i=1}^{n} \mathcal{U}_i \in \tau$$

iii) Sejam $A \cap \mathcal{U}_i, i \in I$ (conjunto de índices) e $\mathcal{U}_i \in \tau, \forall i$.

Então,
$$\bigcup_{i \in I} A \cap \mathcal{U}_i = \bigcup_{i \in I} (\mathcal{U}_i \cap A) = \underbrace{\left(\bigcup_{i \in I} \mathcal{U}_i\right)}_{\in \tau} \cap A \Rightarrow \bigcup_{i \in I} (A \cap \mathcal{U}_i) \in \tau_A.$$

Lema 4.14 Se \mathscr{B} é base da topologia τ de X, então, para $A \subset X$, $\mathscr{B}_A = \{B \cap A; B \in \mathscr{B}\}$ é uma base para a topologia τ_A de A.

Demonstração:

- i) Seja $x\in A\subset X\Rightarrow \exists B\in \mathscr{B}$ tal que $x\in B\Rightarrow x\in A\cap B$ $\Rightarrow A=\bigcup_{b\in \mathscr{B}}(B\cap A).$
- ii) Seja $x \in (B_1 \cap A) \cap (B_2 \cap A) \Rightarrow x \in B_1 \cap B_2$. \mathscr{B} é base de $\tau \Rightarrow \exists B_2$ tal que $x \in B_3 \subset B_1 \cap B_2 \Rightarrow x \in A \cap B_3$ e $A \cap B_3 \subset (A \cap B_1) \cap (A \cap B_2)$.

Régis © 2009

Exemplo 4.15 Seja (M,d) espaço métrico e $N\subset M$. Então (N,d') é "subespaço métrico" $d'=d|_{n\times n}\,(d:M\times M\to\mathbb{R}).$

4.8.1 Topologia Produto (Tychonoff)

Definição 4.15 Sejam X, Y conjuntos $X \times Y = \{(x, y) : x \in X, y \in Y\}$.

Teorema 4.16 Se (X, τ_1) e (Y, τ_2) espaços topológicos, então $\mathcal{B} = \{A_1 \times A_2 : A_1 \in \tau_1, A_2 \in \tau_2\}$ é uma base para uma topologia em $X \times Y$ (chamada topologia produto ou de Tychonoff).

Demonstração:

teo08

teo09

i) $X \in \tau_1, Y \in \tau_2 \Rightarrow X \times Y \in \mathcal{B}$.

ii) Sejam
$$A_1 \times A_2$$
 e $A_1' \times A_2'$ em \mathscr{B} . Então
$$(A_1 \times A_2) \cap (A_1' \times A_2') = \underbrace{(A_1 \times A_1')}_{\in \tau_1} \times \underbrace{(A_2 \times A_2')}_{\in \tau_2} \in \mathscr{B}.$$

Portanto, $\mathcal B$ gera uma topologia em $X\times Y.$ Observações:

i) \mathcal{B} pode não ser fechado para união.

ii) Pode-se definir a topologia de Tychonoff num produto cartesiano arbitrário $\prod_{i\in I} X_i \text{ de espaços topológicos (a definir)}.$

Teorema 4.17 Sejam \mathcal{B} base para topologia de X e \mathcal{C} base para topologia de Y. Então $\mathcal{D} = \{B \times C : B \in \mathcal{B} \ e \ c \in \mathcal{C}\}$ é base para a topologia produto de $X \times Y$.

Demonstração:

Lembre-se que $\tau = \{ \mathcal{U} \subset X \times Y : \forall a \in \mathcal{U}, \exists d \in \mathcal{D} \text{ tal que } a \in D \subset \mathcal{U} \}.$ Seja $(x, y) \in W \subset X \times Y, W$ é aberto.

 $\Rightarrow \exists \mathcal{U} \times \mathcal{V}, \, \mathcal{U}$ aberto de $X, \, \mathcal{V}$ aberto de Y tal que $(x,y) \in \mathcal{U} \times \mathcal{V} \subset W$.

Como \mathscr{B} é base para a topologia de X e \mathscr{C} é base para a topologia de Y, existem $B \in \mathscr{B}$ e $C \in \mathscr{C}$ tais que $(x,y) \in B \times C \subset \mathcal{U} \times \mathcal{V} \subset W$.

Portanto, \mathcal{D} é base para a topologia de $X \times Y$.

Régis © 2009

4.9 Exercícios Propostos

- **4.1** Defina topologia sobre um conjunto. Defina espaço topológico. Considere o conjunto $X = \{a, b, c\}$. Classifique todas as topologias possíveis sobre X, isto é, liste todos os subconjuntos do conjunto das partes de X e verifique quais deles são topologia.
- **4.2** Dado um conjunto X, mostre que $\tau = \{U \subset X | X \setminus U$ é enumerável $\}$ é uma topologia sobre X (chamada topologia do complemento enumerável). Verifique se X é enumerável, então a topologia do complemento enumerável sobre X é a topologia discreta sobre X.
- **4.3** Seja $\tau^r = \{\mathbb{R}, \emptyset, (q, \infty); q \in \mathbb{Q}\}$. Aqui, fixado $q \in \mathbb{Q}$, o conjunto (q, ∞) é o intervalo aberto infinito $\{x \in \mathbb{R} | x > q\}$. Mostre que τ^r não forma uma topologia sobre \mathbb{R} .
- **4.4** Seja $f: X \to Y$ uma função de um conjunto X num espaço topológico (Y, τ) . Mostre que $T = \{f^{-1}(U) | U \in \tau\}$ é uma topologia sobre X.
- **4.5** Seja τ a classe de subconjuntos de $\mathbb N$ formada de \emptyset e de todos os subconjuntos de $\mathbb N$ da forma $E_n = \{n, n+1, n+2\}$ com $n \in \mathbb N$. Mostre que τ é uma topologia em $\mathbb N$. Indique os abertos que contêm o inteiro positivo 6. Determine os fechados segundo esta topologia. Determine o fecho dos conjuntos $\{7, 24, 47, 85\}$ e $\{3, 6, 9, 12\}$. Determine os subconjuntos de $\mathbb N$ que são densos em $\mathbb N$ (neste caso, um subconjunto é denso se o seu fecho é $\mathbb N$).
- **4.6** Mostre que se A é um subconjunto de um espaço topológico X, então o fecho de A é a união do interior com a fronteira. Mostre também que o interior de A é $A \setminus \partial A$ e que $X = \operatorname{int}(A) \cup \partial A \cup \operatorname{int}(X \setminus A)$.
- **4.7** Seja X um espaço topológico. Lembramos que uma vizinhança de um ponto $p \in X$ é um subconjunto $V_p \subset X$ para o qual existe um aberto \mathcal{U} de X tal que $p \in \mathcal{U} \subset V_p$. O sistema de vizinhanças de p é a coleção \mathcal{V}_x de todos os subconjuntos de X que são vizinhança de p. Por exemplo, no conjunto $X = \{a, b, c, d, e\}$, considere a topologia $\tau = \{X,\emptyset,\{a\},\{a,b\},\{a,c,d\},\{a,b,c,d\},\{a,b,e\}\}$. Encontre \mathcal{V}_e e \mathcal{V}_c . Voltando ao caso geral, demonstre que
- (1) Se $V \subset \mathcal{V}_x$, então $x \in V$.
- (2) Se $V_1, V_2 \in \mathcal{V}_x$, então $V_1 \cap V_2 \in \mathcal{V}_x$.
- (3) Se $V \in \mathcal{V}_x$, então existe um $U \in \mathcal{V}_x$ tal que $V \in \mathcal{V}_y$, para todo $y \in U$.
- (4) Se $V \in \mathcal{V}_x$ e $V \subset U$, então $U \in \mathcal{V}_x$.

Finalmente, mostre que

- * Um subconjunto G de X é aberto se, e somente se, G contém uma vizinhança de cada um de seus pontos. A condição * acima pode ser utilizada como definição de aberto: Seja X um conjunto e uma coleção não vazia \mathcal{V}_x de subconjuntos de X para a qual cada $x \in X$ satisfaz os itens (1) a (4) acima. Defina aberto em X como na *. Resulta em X uma topologia para a qual todo o sistema de vizinhanças de cada $x \in X$ é exatamente \mathcal{V}_x .
- **4.8** Defina base e sub-base de um espaço topológico. Mostre que a partir de qualquer subconjunto $\mathcal A$ das partes de um conjunto X pode-se obter uma topologia de X para a qual a sub-base é $\mathcal A$. No conjunto $X=\{1,2,3,4,5\}$ considere $\mathcal A=\{\{1\},\{1,2,3\},\{3,4\}\}$. Determine a topologia gerada por $\mathcal A$ (descreva a base e os abertos). Mostre que a coleção de todos os intervalos abertos (a,b), com a< b números reais é uma base para a topologia usual de $\mathbb R$. Mostre ainda que a coleção de todos os intervalos do tipo $(-\infty,b)$ e (a,∞) é uma sub-base para a topologia usual de $\mathbb R$.
- **4.9** No exercício (4.5) acima, mostre que a coleção de todos os subconjuntos de \mathbb{N} que contém algum E_n é uma base para uma topologia de \mathbb{N} .
- **4.10** Determine a menor sub-base para a topologia cofinita τ em qualquer conjunto não vazio X.

A TOPOLOGIA DE ZARISKI

Veremos agora uma topologia muito útil para a Álgebra, em particular no estudo de anéis comutativos, a topologia de Zariski. Iniciamos recordando alguns conceitos algébricos fundamentais.

Seja R um anel comutativo com unidade. Denotamos por 0 o elemento neutro da soma e por 1 o elemento neutro do produto de R. Um ideal de R é um subconjunto $I \subset R$, fechado para a soma e que contém todos os produtos do tipo ar, com $a \in I$ e $r \in R$. Um ideal primo de R é um ideal P de R para o qual a pertinência $ab \in P$ implica $a \in P$ ou $b \in P$, para todos $a,b \in R$. O ideal gerado por $a \in R$ é o conjunto $a \in R$ implica $a \in R$ in $a \in R$

Dados dois ideais I e J de R, verifique que o produto IJ definido por $\{\sum ab|a\in I,b\in J\}$ (somas finitas de produtos de elementos de I e de J) é também um ideal de R. Dada uma família $\{I_{\alpha}|\alpha\in\Gamma\}$ de ideais de R, defina $\sum_{\alpha}I_{\alpha}$ como o conjunto

Régis © 2009 Topologia Geral **37**

CAPÍTULO 4. ESPAÇOS TOPOLÓGICOS

de todas as somas finitas de elementos $x_{\alpha} \in I_{\alpha}$ e mostre que $\sum_{\alpha} I_{\alpha}$ é um ideal de R. Todas estas definições e resultados serão utilizados abaixo.

A topologia de Zariski será introduzida no $\it espectro\ primo$ do anel R, que é definido como

$$\operatorname{Spec}(R) = \{ P \subset R | P \text{ \'e ideal primo de } R \},$$

isto é, o conjunto de todos os ideais primos de R. Determine o espectro primo dos anéis $\mathbb{Z}, \mathbb{R} \in \mathbb{C}[X]$. Dado um ideal I de R, defina

$$V(I) = \{ P \in \operatorname{Spec}(R) | P \supseteq I \}.$$

Conclua que $V(\{0\}) = \operatorname{Spec}(R)$ e $V(\{1\}) = \emptyset$. Dado um inteiro positivo m, determine V(mI) em $\operatorname{Spec}(\mathbb{Z})$. Mostre que

- (a) $V(I) \cup V(J) = V(IJ)$, para quaisquer ideais I, J de R.
- (b) $\bigcap_{\alpha\in\Gamma}V(I_\alpha)=V\left(\sum_{\alpha\in\Gamma}I_\alpha\right) \text{ (lembre que soma e produto de ideais continua sendo ideal)}.$

Assim, os fechados para a topologia de Zariski sobre $\operatorname{Spec}(R)$ são definidos pelos conjuntos V(I), onde I é um ideal de R. Os abertos desta topologia são os conjuntos do tipo $D(I) = \operatorname{Spec}(R) \backslash V(I)$, isto é, o complementar de V(I) em $\operatorname{Spec}(R)$. Demonstre que a coleção $\mathcal{B} = \{D(I) | I$ é um ideal principal de $R\}$ é uma base para a topologia de Zariski sobre $\operatorname{Spec}(R)$.

CAPÍTULO 5

Funções Contínuas em Espaços Topológicos

Definição 5.1 Sejam X e Y espaços topológicos e $f:X\to Y$ função. Dizemos que f é contínua se para todo aberto V de Y, $f^{-1}(V)$ for aberto de X.

$$f^{-1}(V) = \{ x \in X : f(x) \in V \}$$

 $f^{-1}(V)$ é a imagem inversa de V por f.

Em termos das topologias: $f:(X,\tau_1)\to (Y,\tau_2)$.

$$f \text{ continua } \Leftrightarrow \forall v \in \tau_2, f^{-1}(V) \in \tau_1.$$
 (5.1)

Obs: Sendo \mathscr{B}' base de τ' e \mathscr{B} base de τ , para que $f:X\to Y$ seja contínua basta que a Eq. (5.1) seja válida para os abertos básicos, ou seja, $\forall B' \in$ $\tau', f^{-1}(B') \in \tau.$

De fato,
$$V \in \tau' \Rightarrow V = \bigcup_{i \in I} B_i' \Rightarrow f^{-1}(V) = f^{-1}\left(\bigcup_{i \in I} B_i'\right) = \bigcup_{i \in I} f^{-1}(B_i')$$
 que é aberto, desde que $f^{-1}(B_i')$ seja aberto.

Exemplo 5.1 Sejam (X, τ_0) espaço topológico discreto e (Y, τ) espaço topológico qualquer $f:(X,\tau_0)\to (Y,\tau)$ é contínua, pois $f^{-1}(V)\in \tau_0, \forall V\in \tau$. (Todo subconjunto de (X, τ_0) é aberto).

Exemplo 5.2 Sejam $X = \{a, b, c, d\}$ e $Y = \{x, y, z, w\}$. $\Rightarrow f$ é contínua.

CAPÍTULO 5. FUNÇÕES CONTÍNUAS EM ESPAÇOS TOPOLÓGICOS

Figura 5.1:

Teorema 5.2 Sejam (X, d_1) e (Y, d_2) espaços métricos. $f: X \to Y$ contínuas (topologias geradas pelas métricas) se, e somente se, $\forall x \in X, \forall \varepsilon > 0, \exists \delta = \delta_{\varepsilon}(x)$ tal que $d_1(x, y) < \delta \Rightarrow d_2(f(x), f(y)) < \varepsilon(*)$.

Demonstração:

- \Rightarrow) f é contínua. Seja $x \in X$ e $\varepsilon > 0$. f é contínua $\Rightarrow f^{-1}(B_{\varepsilon}(f(x)))$ é aberto de X e contém x. $\Rightarrow \exists B_{\delta}(x) \subset f^{-1}(B_{\varepsilon}(f(x)))$. Assim, se $y \in B_{\delta}(x)$, tem-se $f(y) \in B_{\varepsilon}(f(x))$. Logo, $d_1(x,y) < \delta \Rightarrow d_2(f(x),f(y)) < \varepsilon$.
- \Leftarrow) Suponha (*). Seja V aberto de Y e $x \in f^{-1}(V)$. Mas $f(x) \in V$ aberto $\Rightarrow \exists B_{\varepsilon} (f(x)) \subset V$. (*) $\Rightarrow \exists B_{\delta}(x)$ tal que $f(B_{\delta}(x)) \subset B_{\varepsilon} (f(x)) \Rightarrow f^{-1}(V)$ aberto de X.
- **Teorema 5.3** Sejam (X,τ) e (Y,τ') espaços topológicos, e $f:X\to Y$ função. São equivalentes.
 - i) f é contínua;
 - $ii) \ \forall A \subset X, f(\bar{A}) \subset \overline{f(A)};$
 - iii) \forall fechado $B \subset Y, f^{-1}(B)$ é fechado em X.

Demonstração:

- $(i) \Rightarrow (ii)$ Suponha f contínua e seja $A \subset X$. Dado $x \in \overline{A}$, isto é, $f(x) \in f(\overline{A})$. Devemos mostrar que $f(x) \in \overline{z}f(A)$.
- Tome V aberto de Y tal que $f(x) \in V$. Como f é contínua, $f^{-1}(V)$ é aberto de X e $x \in f^{-1}(V)$ e $f^{-1}(V)$ contém ao menos um ponto $\underline{y} \in A$, isto é, $y \in f^{-1}(V) \cap A$. $\Rightarrow V \cap f(A) \neq \emptyset$, pois $f(y) \in V \cap f(A) \Rightarrow f(x) \in \overline{f(A)}$.

teo11

 $(ii)\Rightarrow (iii)$ SejamBfechado em Ye $A=f^{-1}(B).$ Devemos mostrar que Aé fechado. Basta provar que $\bar{A}\subset A.$

Seja
$$x \in \bar{A}$$
. Então $f(x) \in f(\bar{A}) \subset \overline{f(A)} = \bar{B} = B$, pois B é fechado. $\Rightarrow x \in f^{-1}(B) = A$.

Observação:

$$A = f^{-1}(B) = \{x \in X : f(x) \in B\}$$
$$f(A) = f(f^{-1}(B)) \subset B$$
$$f(x) \in B \Rightarrow x \in f^{-1}(B) = A$$

 $(iii) \Rightarrow (i)$ Seja $V \subset Y, \, V$ aberto e seja $B = Y \backslash V = V^c$ (complementar de V em Y).

Então B é fechado em Y. Logo, da hipótese, $f^{-1}(B)$ é fechado em X. Note que $f^{-1}(V) = f^{-1}(B^c) = f^{-1}(Y \backslash B) = \underbrace{f^{-1}(Y)}_{X} \backslash f^{-1}(B)$

$$\Rightarrow f^{-1}(V)$$
 aberto. Portanto, f é contínua.

Teorema 5.4 Sejam X, Y, Z espaços topológicos.

- i) Se $f: X \to Y$ é função constante, então f é contínua.
- ii) Se $A \subset X$ é subespaço topológico de X, então a inclusão $i: A \hookrightarrow X$ tal que $a \mapsto i(a) = a$. i é contínua.
- iii) Se $f: X \to Y$ e $g: Y \to Z$ contínuas, então $g \circ f$ é contínua.
- iv) Se $f: X \to Y$ contínua e $A \subset X$ subespaço topológico, então $h = f|_A: A \to Y$ tal que $h(a) = f(a), \forall a \in A$ (restrição).

Demonstração:

teo12

i) Seja $p \in Y$ tal que $f(x) = p, \forall x \in X$. Seja $V \subset Y, V$ aberto.

Se
$$p \in V \Rightarrow f^{-1}(V) = X$$
.

Se
$$p \notin V \Rightarrow f^{-1}(V) = \emptyset$$
.

Em qualquer caso, $f^{-1}(V)$ é aberto de X, para todo aberto V de Y. Portanto, f é contínua.

ii) Seja $\mathcal{U} \subset X$, \mathcal{U} aberto. Devemos mostrar que $i^{-1}(\mathcal{U})$ é aberto de X. Note que $i^{-1}(\mathcal{U}) = \mathcal{U} \cap A$ é aberto de A, pela definição da topologia de A.

Portanto, i é contínua.

CAPÍTULO 5. FUNÇÕES CONTÍNUAS EM ESPAÇOS TOPOLÓGICOS

iii) Seja $X \xrightarrow{f} Y \xrightarrow{g} Z$, f,g contínua. Seja $W \subset Z$, W aberto. Devemos mostrar que $(g \circ f)^{-1}(W)$ é aberto de X.

Como g é contínua, $g^{-1}(W)$ é aberto de Y. Como f é contínua e $g^{-1}(W)$ é aberto de Y, temos $f^{-1}(g^{-1}(W))$ é aberto de X.

Como $f^{-1}(g^{-1}(W)) = (g \circ f)^{-1}(W) \Rightarrow (g \circ f)^{-1}(W)$ é aberto de X.

Portanto, $g\circ f$ é contínua.

iv) Seja $V \subset Y, V$ aberto. Devemos mostrar que $h^{-1}(V)$ é aberto de A. Mas $h^{-1}(V) = f^{-1}(V) \cap A \Rightarrow h^{-1}(V)$ aberto de A (pela definição da topologia de A).

Uma outra forma de demonstrar é fazendo $h=f\circ i, A\overset{i}{\hookrightarrow} X\overset{f}{\to} Y$ e i e f são contínuas $\Rightarrow h$ é contínua.

Teorema 5.5 Seja X um espaço topológico tal que $X = A \cup B$. Tome Y espaço topológico e $f: A \to Y$ e $g: B \to Y$ contínuas tais que $f(x) = g(x), \forall x \in A \cap B$ (A e B subespaços topológicos de X).

 $Ent\~ao$, a função $h: X \to Y$ é contínua.

$$h(x) = \begin{cases} f(x), & x \in A \\ g(x), & x \in B \end{cases}$$

Demonstração:

teo13

teo14

Seja $F \subset Y$, F fechado. Então

$$h^{-1}(F) = f^{-1}(F) \cup g^{-1}(F)$$

é fechado, pois $f^{-1}(F), g^{-1}(F)$ são fechados.

Definição 5.6 Sejam X,Y espaços topológicos e $f:X\to Y$ função. Dizemos que f é contínua em $p\in X$ quando dado $V\subset Y,V$ aberto, tal que $f(p)\in V$, existe $\mathcal{U}\subset X,\mathcal{U}$ aberto, tal que $p\in \mathcal{U}$ e $\mathcal{U}\subset f^{-1}(V)$.

Teorema 5.7 Sejam X, Y espaços topológicos. Então $f: X \to Y$ é contínua se, e somente se, f é contínua em $p, \forall p \in X$.

Demonstração:

 \Rightarrow) Fixe $p \in X$ e tome $V \subset Y$, V aberto, tal que $f(p) \in V$. f é contínua, então $f^{-1}(V)$ é aberto de X e $p \in \mathcal{U} = f^{-1}(V)$.

 \Leftarrow) Seja $V \subset Y$, V aberto. Mostrar que $f^{-1}(V)$ é aberto. Tome $x \in f^{-1}(V)$. Então $f(x) \in V$, que é aberto.

Por hipótese, $\exists \mathcal{U} \subset X$ aberto tal que $x \in \mathcal{U} \subset f^{-1}(V)$.

Portanto, $f^{-1}(V)$ é aberto.

5.1 Sequências em Espaços Topológicos

Definição 5.8 Seja X um espaço topológico. Uma sequência em X é uma função

$$s: \mathbb{N} \to X$$
$$n \mapsto s(n) := x_n$$

Notação: $(x_n) = (x_1, x_2, ..., x_n, ...).$

Definição 5.9 Dizemos que a sequência (x_n) em X converge para $x \in X$ quando $\forall \mathcal{U} \subset X, X$ aberto, tal que $x \in \mathcal{U}, \exists n_0 \in \mathbb{N}$ tal que $x_n \in \mathcal{U}, \forall n \geqslant n_0$.

Exemplo 5.3 $X = \mathbb{R}$, (x_n) de \mathbb{R} , (x_n) converge para $x \in \mathbb{R}$ quando, dado $\varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ tal que $n \ge n_0 \Rightarrow |x_n - x| < \varepsilon$.

$$(x_n \in (x - \varepsilon, x + \varepsilon), \forall n \geqslant n_0)$$

Notação: $(x_n) \to x$

Exemplo 5.4 Seja $x = \emptyset$ com topologia $\tau = {\emptyset, X}$. Seja (x_n) uma sequência em X, então X é o único aberto de X que contém todos os pontos de X.

Logo, se $x \in X$, pela definição de convergência de sequência, temos $(x_n) \to x$.

Exemplo 5.5 Seja X com a topologia discreta, isto é, $\tau = \mathcal{P}(X)$.

Tome (x_n) uma sequência em X e fixe $x \in X$.

Como τ é discreto, qualquer $A \subset X$ é aberto.

Em particular, $\{x\}$ é aberto e é claro que $x \in \{x\}$. Assim, se a sequência (x_n) converge para x, então $\exists n_0 \in \mathbb{N}$ tal que $x_n \in \{x\}, \forall n > n_0$.

$$\Rightarrow x_n = x, \forall n > n_0 \Rightarrow (x_n) = (x_1, x_2, \dots, x_{n_0}, x, x, x, \dots)$$

Exemplo 5.6 Seja $(X, \tau), \mathcal{U} \in \tau$ se, e somente se, \mathcal{U} em X é enumerável ou $\mathcal{U} = \emptyset$.

Seja $(x_n) = (x_1, x_2, ...)$ sequência em (X, τ) e suponha $(x_n) \to x \in X$.

Seja $A = \{x_j : x_j \neq x\} \Rightarrow A$ é enumerável $\Rightarrow A^c$ é aberto e $x \in A^c$.

 $\Rightarrow \exists n_0 \in \mathbb{N} \text{ tal que } x_n \in A^c, \forall n > n_0.$

Assim, $x_n = x, \forall n > n_0. \Rightarrow (x_n) = (x_1, x_2, \dots, x_{n_0}, x, x, x, \dots).$

5.2 Continuidade Sequencial em um Ponto

Definição 5.10 Sejam X,Y espaços topológicos. Uma função $f:X\to Y$ é sequencialmente contínua em $x\in X$ quando $\forall (x_n)\subset X$ tal que $x_n\to x$, valer $f(x_n)\to f(x)$.

Teorema 5.11 Seja $f: X \to Y$ contínua em $x \in X$. Então, f é sequencialmente contínua em x.

Demonstração:

teo15

teo16

Seja (x_n) sequência em X tal que $x_n \to x$.

Devemos provar que $f(x_n) \to f(x)$.

Seja $V \subset Y, V$ aberto tal que $f(x) \in V$. Como f é contínua em x, temos que $\exists \mathcal{U} \subset X, \mathcal{U}$ aberto, tal que $x \in \mathcal{U} \subset f^{-1}(V)$.

Como $x_n \to x, \exists n_0 \in \mathbb{N}$ tal que $x_n \in \mathcal{U}, \forall n \geqslant n_0$.

Então, $f(x_n) \in f(\mathcal{U}) \subset V, \forall n \geq n_0$.

Portanto, $f(x_n) \to f(x)$.

Teorema 5.12 Se (X,d) é espaço métrico e Y é espaço topológico, então $f: X \to Y$ é contínua em $x \in X$ se, e somente se, f é sequência contínua em x.

Demonstração:

 \Rightarrow) Teorema anterior.

 \Leftarrow) ver [?].

Em particular, o teorema vale para funções reais na topologia usual.

A recíproca do teorema (5.11) não vale, em geral, para espaços topológicos.

Exemplo 5.7 $X = \mathbb{R}$ com topologia $\tau = \{A \subset \mathbb{R}/A^c \text{ enumerável}\}$ (ou $A = \emptyset$). Com esta topologia, vimos que uma sequência $(x_n) \subset \mathbb{R}$ converge para x se, e somente se, $(x_n) = (x_1, \ldots, x_{n_0}, x, x, x, \ldots)$.

Logo, se (\mathbb{R}, τ^*) , τ^* é uma topologia qualquer em \mathbb{R} , $f(\mathbb{R}, \tau) \to (\mathbb{R}, \tau^*)$ e $(x_n) \to x$ em (\mathbb{R}, τ) , tem-se

$$(f(x_n)) = (f(x_1), f(x_2), \dots, f(x_{n_0}), f(x), f(x), \dots)$$

que converge em $(\mathbb{R}, \tau^*), \forall f$.

Por outro lado, $f:(\mathbb{R},\tau)\to(\mathbb{R},\text{top. usual})$ e $f(a)=a, \forall a$ não é contínua, pois $f^{-1}((a_0,b_0))=(a_0,b_0)$ não é aberto em τ .

5.3 Topologia inicial

Questão: Seja $X \neq \emptyset$ e (Y, τ') um espaço topológico. Existe topologia τ em X tal que $f:(x,\tau) \to (Y,\tau')$ é contínua.

- 1) τ é topologia discreta.
- 2) Topologia inicial: Seja $\mathscr{C} = \{f^{-1}(V) : V \text{ aberto em } Y\}.$

 ${\mathscr C}$ é sub-base para uma topologia em Xtal que f é contínua.

5.4 Funções Abertas e Funções Fechadas

Definição 5.13 Sejam (X, τ) e (Y, τ') espaços topológicos. Uma função $f: X \to Y$ é *aberta* quando $f(\mathcal{U}) \in \tau', \forall \mathcal{U} \in \tau$ (f aplica abertos de X em abertos de Y). Analogamente, f é f echada se aplica fechados de X em fechados de Y.

Obs: $f: X \to Y$ aberto não implica que f é contínua.

Exemplo 5.8

$$id: (X, \tau_1) \to (X, \tau_2)$$
$$x \mapsto x$$

Se $\tau_1 \subset \tau_2$, então id é aberta, pois todo aberto de τ_1 é aberto de τ_2 . Se $\exists V \in \tau_2$, e $V \notin \tau_1$, então id não é contínua, pois id⁻¹ $(V) = V \notin \tau_1$.

Exemplo 5.9 $X = \{a, b\}$, topologia discreta.

$$f: X \to \mathbb{R}$$
 top. usual
$$\begin{array}{c} a & \mapsto 0 \\ b & \mapsto 1 \end{array}$$

f é contínua, pois toda função sobre um espaço topológico discreto é contínua. Fechados de X: $\{a\} \to \{0\}, \{b\} \to \{1\}, \{X\} \to \{0,1\}$.

 $\Rightarrow f$ fechada e não aberta, pois $f(\{a\})$ é fechado.

5.5 Homeomorfismo

Definição 5.14 Sejam (X,τ) e (Y,τ') espaços topológicos. Uma função $f:X\to Y$ é homeomorfismo quando f é bijetora e f, f^{-1} são contínuas.

Notação: $X \stackrel{f}{\cong} Y$ (X é homeomorfo a Y).

Obs: $f: X \to Y$ bijeção contínua não implica que f é homeomorfismo. (f^{-1} pode não ser contínua).

Exemplo 5.10 Sejam $S^{1\ 1}$ e $[0,2\pi)$ com topologia usual (induzida pela topologia usual de \mathbb{R}^2). Seja

$$f : [0, 2\pi) \to S^1$$
$$t \mapsto (\cos t, \, \text{sen} t)$$

f é contínua, bijeção. $\Rightarrow \exists f^{-1}: S^1 \to [0, 2\pi), \text{ mas } f^{-1} \text{ não é contínua.}$

Figura 5.2:

 $\mathbf{Obs} \colon$ A "relação de homeomorfismo" é de equivalência na família dos espaços topológicos.

- i) $(X,\tau) \stackrel{\mathrm{id}}{\cong} (X,\tau)$ (reflexividade)
- ii) $(X,\tau)\stackrel{f}{\cong}(Y,\tau')\Rightarrow (Y,\tau')\stackrel{f^{-1}}{\cong}(X,\tau)$ (simetria)
- iii) $(X,\tau) \stackrel{f}{\cong} (Y,\tau') \stackrel{g}{\cong} (Z,\tau'') \Rightarrow (X,\tau) \stackrel{g \circ f}{\cong} (Z,\tau'')$

Obs: Composição de bijeção é bijeção. Composição de contínua é contínua.

 $^{{}^{1}}S^{1}$, veja pág. 5

Exemplo 5.11 $\mathbb{R} \cong (a, b)$. Seja

$$\begin{split} f \ : (a,b) \rightarrow (-1,1) \\ t \qquad & \mapsto f(t) = \frac{2t - (b+a)}{b-a} \end{split}$$

fé bijeção contínua. E $f^{-1}(y)=\frac{(b-a)y+(a+b)}{2}$ que também é contínua. $\Rightarrow (a,b)\cong (-1,1).$

Exemplo 5.12 Seja

$$g: \mathbb{R} \to (-1,1)$$
$$t \mapsto \frac{t}{1+|t|}$$

$$\begin{split} g & \in \text{bijeção contínua e } f^{-1}(y) = \frac{y}{1-|y|}. \\ & \Rightarrow \mathbb{R} \cong (-1,1). \text{ Por simetria, } \Rightarrow (-1,1) \overset{g^{-1}}{\cong} \mathbb{R}. \\ & \text{Mas } (a,b) \overset{f}{\cong} (-1,1) \overset{g^{-1}}{\cong} \mathbb{R} \Rightarrow (a,b) \overset{g \circ f}{\cong} \mathbb{R}. \end{split}$$

Exemplo 5.13 (Projeção Estereográfica) Seja $S^2 \subset \mathbb{R}^3$ com topologia usual.

$$\phi: S^2 \setminus \{p\} \to \mathbb{R}^2$$
$$x \mapsto \phi(x)$$

 $\phi(x)=$ interseção da reta r_x com o plano. ϕ é homeomorfismo (Fig. 5.3).

Lema 5.15 Sejam X, Y espaços topológicos e $f: X \to Y$ função bijetiva, são equivalentes:

- i) f aberta;
- ii) f fechada.

Régis © 2009

Figura 5.3: Projeção estereográfica.

Demonstração:

 $(i) \Rightarrow (ii)$ Seja $F \subset X$, F fechado.

 $\Rightarrow X \backslash F$ é aberto.

f aberto $\Rightarrow f(X \setminus F)$ aberto. Mas $f(X \setminus F) = f(x) \setminus f(F)$ aberto.

Como f é bijeção, então f(x)=y, ou seja, $Y\backslash f(F)$ é aberto $\Rightarrow f(F)$ é fechado.

- $(ii) \Rightarrow (i)$ Seja $\mathcal{U} \subset X$, \mathcal{U} aberto.
- $\Rightarrow X \backslash \mathcal{U}$ é fechado.

f fechado $\Rightarrow f(X \setminus \mathcal{U})$ é fechado.

Mas $f(X \setminus \mathcal{U}) = f(x) \setminus f(\mathcal{U}) = Y \setminus f(\mathcal{U})$

 $\Rightarrow Y \setminus f(\mathcal{U})$ é fechado, $\Rightarrow f(\mathcal{U})$ é aberto.

Teorema 5.16 Seja $f: X \to Y$ bijetiva (X, Y espaços topológicos). São equivalentes:

i) f é homeomorfismo;

teo17

- ii) f é contínua e aberta;
- iii) f é contínua e fechada.

Demonstração:

 $(i) \Rightarrow (ii)$ f homeomorfismo \Rightarrow f contínua.

Sejam $\mathcal{U} \subset X$, \mathcal{U} aberto e $g = f^{-1}$, que é contínua, pois f é homeomorfismo.

$$\Rightarrow g^{-1}(\mathcal{U}) \text{ \'e aberto. E } g^{-1}(\mathcal{U}) = f(\mathcal{U}). \text{ De fato,}$$

$$x \in g^{-1}(\mathcal{U}) \Leftrightarrow g(x) = f^{-1}(x) \in \mathcal{U} \Leftrightarrow x \in f(\mathcal{U})$$

$$x \in g^{-1}(\mathcal{U}) \Leftrightarrow g(x) = f^{-1}(x) \in \mathcal{U} \Leftrightarrow x \in f(\mathcal{U})$$

 $\Rightarrow f(\mathcal{U})$ é aberta. $\Rightarrow f$ é aberta.

 $(ii) \Rightarrow (i)$ Basta mostrar que f^{-1} é contínua. Seja \mathcal{U} aberto de X. Temos que $f(\mathcal{U})$ é aberto, pois f é aberta, por hipótese, mas $f(\mathcal{U}) = g^{-1}(\mathcal{U}) \Rightarrow g$ é contínua $(g = f^{-1})$.

$$(ii) \Leftrightarrow (iii)$$
 segue diretamente do lema.

Corolário 5.17 Seja $f: X \to Y$ homeomorfismo.

- i) $A \cong f(A), \forall A \subset X;$
- ii) $X \setminus A \cong Y \setminus f(A), \forall A \subset X$.

Demonstração:

© Exercício.

5.6 Axiomas de Separação

Definição 5.18 Seja (X, τ) espaço topológico. Dizemos que X é um espaço de Fréchet (espaço T_1) quando $\forall x, y \in X; x \neq y, \exists \mathcal{U} \in \tau$ tal que $x \in \mathcal{U}$ e $y \notin \mathcal{U}$.

Figura 5.4: Exemplo de espaço de Fréchet.

Teorema 5.19 $(X,\tau) \notin T_1 \Leftrightarrow \{x\} \text{ fechado, } \forall x \in X.$

Demonstração:

teo18

 \Rightarrow) Sejam X espaço T_1 e $x \in X$.

Seja $y \in X \setminus \{x\}$. Então, \exists aberto $\mathcal{U}_y \subset X$ tal que $y \in \mathcal{U}_y$ e $x \notin \mathcal{U}_y$.

$$\Rightarrow X \setminus \{x\} = \bigcup_{y \in \{x\}^c} \mathcal{U}_y \Rightarrow X \setminus \{x\}$$
 é aberto. $\Rightarrow \{x\}$ é fechado.

 $\Leftarrow)$ Sejam $x,y\in X, x\neq y.$ Por hipótese, $\{x\}$ e $\{y\}$ são fechados.

 $\Rightarrow X \setminus \{x\} \in X \setminus \{y\}$ são abertos.

Assim,
$$x \in X \setminus \{y\}$$
 e $y \notin \mathcal{U} \Rightarrow X$ é T_1 .

Régis © 2009

CAPÍTULO 5. FUNÇÕES CONTÍNUAS EM ESPAÇOS TOPOLÓGICOS

Exemplo 5.14 $X = \mathbb{R}$, topologia usual.

Figura 5.5:

Sejam $x, y \in \mathbb{R}, x \neq y$. Podemos assumir x < y. Tome $\varepsilon = \frac{y - x}{2}$. $\Rightarrow x \in \mathcal{U} = (x - \varepsilon, x + \varepsilon)$ e $y \notin \mathcal{U}$. $\Rightarrow \mathbb{R}$ (usual) é T_1 .

Exemplo 5.15 Seja (X, d) espaço métrico. Então, (X, d) é T_1 .

De fato, $x, y \in X, x \neq y$. Tome $\mathcal{U} = B_r(x), r = \frac{d(x, y)}{2}$.

 $\Rightarrow x \in \mathcal{U}$ aberto e $y \notin \mathcal{U}$.

Suponha $y \in \mathcal{U}$, então $0 < d(x,y) < r = \frac{d(x,y)}{2}$.

 $\Rightarrow 2\underbrace{d(x,y)}_{>0} < \underbrace{d(x,y)}_{>0}$. Absurdo.

Exemplo 5.16 Seja $X = \{a, b\}, \tau = \{\emptyset, X, \{a\}\}.$ $a \neq b$ implica que o único aberto de X que contém b é X.

Mas X também contém a. Portanto, X não é T_1 .

Usando o Teo. (5.19), X não é T_1 , pois $\{a\}$ não é fechado, pois $\{a\}^c = \{b\}$ não é aberto

Exemplo 5.17 Seja (X, τ) (topologia discreta) é T_1 , pois $\{x\}$ é fechado, $\forall x \in X$.

Obs: (X, τ) é $T_1 \Leftrightarrow \tau_{\text{cof}} \subset \tau$. De fato,

$$\Rightarrow$$
) $A \in \tau_{cof}, A \neq \emptyset \Rightarrow A^c = \{a_1, \dots, a_n\} = \bigcup_{i=1}^n \{a_i\}.$

Por hipótese, X é $T_1 \Rightarrow \{a_i\}$ fechado

- $\Rightarrow A^c$ fechado de $\tau \Rightarrow A$ aberto de τ .
- $\Rightarrow \tau_{\rm cof} \subset \tau$.
- ⊕ ←) Exercício.

5.7 Espaços de Hausdorff

Definição 5.20 (X, τ) é espaço de Hausdorff, ou espaço T_2 , quando $\forall x, y \in X, x \neq y \Rightarrow \exists \mathcal{U}, \mathcal{V} \in \tau$ tal que $x \in \mathcal{U}, y \in \mathcal{V}$ e $\mathcal{U} \cap \mathcal{V} = \emptyset$.

Figura 5.6: Exemplo de espaço de Hausdorff.

Obs: $T_2 \Rightarrow T_1$.

 $T_1 \not\Rightarrow T_2$. De fato, (X, τ_{cof}) é T_1 pela observação anterior; mas não é Hausdorff, pois: por exemplo, $X = (\mathbb{R}, \tau_{\text{cof}})$.

Afirmação: $\mathcal{U} \cap \mathcal{V} \neq \emptyset, \forall \mathcal{U}, \mathcal{V} \in \tau_{cof}, \mathcal{U} \neq \emptyset, \mathcal{V} \neq \emptyset.$

 $\overline{\mathcal{U} \text{ aberto}} \Rightarrow F_1 = \mathbb{R} \backslash \mathcal{U} \text{ \'e finito e}$

 \mathcal{V} aberto $\Rightarrow F_2 = \mathbb{R} \backslash \mathcal{V}$ é finito

 $\Rightarrow \mathcal{U} = \mathbb{R} \backslash F_1 \in V = \mathbb{R} \backslash F_2.$

 $\mathcal{U} \cap \mathcal{V} = (\mathbb{R} \backslash F_1) \cap (\mathbb{R} \backslash F_2) = \mathbb{R} \backslash (F_1 \cup F_2)$ não vazio.

Exemplo 5.18 \mathbb{R} com topologia usual é Hausdorff.

Figura 5.7:

$$a, b \in \mathbb{R}, a \neq b$$
. Supor $a < b$. Tome $\varepsilon = \frac{b-a}{3}$ e $\delta = \frac{b-a}{3}$.
 $\Rightarrow a \in \mathcal{U} = (a-\varepsilon, a+\varepsilon), b \in \mathcal{V} = (b-\delta, b+\delta), \mathcal{U} \cap \mathcal{V} = \emptyset$ e \mathcal{U}, \mathcal{V} abertos.

Exemplo 5.19 (X, d) espaço métrico é Hausdorff.

Sejam $a, b \in X, a \neq b$. Tome $\mathcal{U} = B_{\varepsilon/3}(a)$ e $\mathcal{V} = B_{\varepsilon/3}(b)$, onde $\varepsilon = d(a, b) > 0$. $\mathcal{U} \cap \mathcal{V} = \emptyset$. Se $z \in \mathcal{U} \cap \mathcal{V}$, então

$$\underbrace{d(a,b)}_{=\varepsilon} \leqslant \underbrace{d(a,z)}_{<\frac{\varepsilon}{3}} + \underbrace{d(z,b)}_{<\frac{\varepsilon}{3}} = \frac{2}{3}\varepsilon$$

 $\Rightarrow \varepsilon < \frac{2}{3}\varepsilon$. Absurdo.

Exemplo 5.20 (X,τ) topologia discreta. Então, (X,τ) é Hausdorff.

 $x, y \in X, x \neq y.\mathcal{U} = \{x\}$ aberto e $\mathcal{V} = \mathcal{U}^c$.

 $\mathcal{U} \cap \mathcal{V} = \emptyset, x \in \mathcal{U}, y \in \mathcal{V}, \mathcal{U} \in \mathcal{V}$ abertos.

CAPÍTULO 5. FUNÇÕES CONTÍNUAS EM ESPAÇOS TOPOLÓGICOS

teo19 Teorema 5.21

- i) Se X é Hausdorff e $A \subset X$ subespaço topológico, então A é Hausdorff;
- ii) Se $f: X \to Y$ é contínua e injetiva, então Y Hausdorff implica X Hausdorff;
- iii) Se X, Y são Hausdorff, então $X \times Y$ é Hausdorff;
- iv) Se X é Hausdorff e $f: X \to Y$ bijeção fechada, então Y é Hausdorff.

Demonstração:

- i) Sejam $a, b \in A, a \neq b$. Em particular, $a \in X, b \in X$ e X é T_2 . Então, $\exists \mathcal{U}, \mathcal{V}$ abertos de X tal que $a \in \mathcal{U}, b \in \mathcal{V}$ e $\mathcal{U} \cap \mathcal{V} = \emptyset$. Então, $\mathcal{U}_1 = \mathcal{U} \cap A$ e $\mathcal{U}_2 = \mathcal{V} \cap A$. Temos que $\mathcal{U}_1, \mathcal{U}_2$ são abertos de A e $a \in \mathcal{U}_1, b \in \mathcal{U}_2, \mathcal{U}_1 \cap \mathcal{U}_2 = (\mathcal{U} \cap A) \cap (\mathcal{V} \cap A) = (\mathcal{U} \cup \mathcal{V}) \cap A = \emptyset$.
- ii) Sejam $a, b \in X, a \neq b$. f injetiva $\Rightarrow f(a) \neq f(b)$. Como $Y \in T_2, \exists \mathcal{U}, \mathcal{V}$ abertos de Y tais que $f(a) \in \mathcal{U}, f(b) \in \mathcal{V}$ e $\mathcal{U} \cap \mathcal{V} = \emptyset$. Como f é contínua, $f^{-1}(\mathcal{U})$ e $f^{-1}(\mathcal{V})$ são abertos de X. Ainda, $a \in f^{-1}(\mathcal{U}), b \in f^{-1}(\mathcal{V}) \Rightarrow f^{-1}(\mathcal{U}) \cap f^{-1}(\mathcal{V}) = f^{-1}(\mathcal{U} \cap \mathcal{V}) = \emptyset$ $\Rightarrow X \in T_2$.
- iii) © Exercício.
- iv) © Exercício.

Teorema 5.22 Se X é Hausdorff, então toda sequência convergente em X tem único limite.

Demonstração:

Suponha $(X_n) \subset X, x_n \to a, x_n \to b; a, b \in X, a \neq b$. Como $X \in T_2, \exists \mathcal{U}, \mathcal{V} \subset X$, abertos, tais que $a \in \mathcal{U}, b \in \mathcal{V}, \mathcal{U} \cap \mathcal{V} = \emptyset$. Como $x_n \to a, \exists n_0 \in \mathbb{N}$ tal que $x_n \in \mathcal{U}, \forall n \geqslant n_0$. Como $\mathcal{U} \cap \mathcal{V} = \emptyset$, temos que $x_n \notin \mathcal{V}, \forall n \geqslant n_0$. Como $b \in \mathcal{V}, x_n \notin \mathcal{V}, \forall n \geqslant n_0$, logo x_n não converge pra b. Absurdo.

Exemplo 5.21 Se $f: X \to Y$ é homeomorfismo, então X é T_2 se, e somente se, Y é T_2 .

Figura 5.8:

5.8 Exercícios Propostos

Continuidade, Continuidade num Ponto, Funções Abertas, Funções Fechadas, Homeomorfismos

- **5.1** Defina função contínua entre dois espaçoos topológicos. Enuncie e demonstre um teorema que reduz a verificação da continuidade aos abertos básicos.
- **5.2** Mostre que se (X,τ) é o espaço topológico discreto então qualquer função $f:X\to Y$ (onde Y é outro espaço topológico qualquer) é função contínua. E se X for espaço topológico qualquer e Y for indiscreto (\emptyset e Y forem os únicos abertos) que funções entre estes dois espaços são contínuas?
- **5.3** Mostre que se (X, d_1) e (Y, d_2) são espaços métricos, então uma função $f: X \to Y$ é contínua se, e somente se, para todo $x \in X$ e $\varepsilon > 0$, existe $\delta > 0$ tal que $d_1(x,y) < \delta$ implica $d_2(f(x), f(y)) < \varepsilon$.
- **5.4** Seja X um espaço topológico e seja $\{A_i\}$ uma coleção de subconjuntos de X tal que $X = \bigcup_{i \in I} A_i$, onde I é um conjunto de índices. Suponha que a restrição de f a cada conjunto A_i é contínua. Mostre que se a coleção $\{A_i\}$ é finita e cada A_i é fechado, então f é contínua. Encontre um exemplo onde a coleção $\{A_i\}$ é enumerável e cada A_i é fechado, mas que f não seja contínua.
- **5.5** Defina continuidade num ponto. Dados X e Y espaços topológicos, mostre que $f: X \to Y$ é contínua se, e somente se, é contínua em cada ponto de X.
- **5.6** Considere o conjunto $X=\{1,2,3,4\}$ munido da topologia $\tau=\{X,\emptyset,\{1\},\{2\},\{1,2\},\{2,3,4\}\}$. Considere a função $f:X\to X$, tal que

Régis © 2009

CAPÍTULO 5. FUNÇÕES CONTÍNUAS EM ESPAÇOS TOPOLÓGICOS

f(1)=f(3)=2, f(2)=4e f(4)=3. Mostre que fnão é contínua em 3 mas é contínua em 4.

- **5.7** Defina função sequencialmente contínua num ponto. Mostre que se $f: X \to Y$ é contínua num ponto $p \in X$, então f é sequencialmente contínua em p. Construa um contra-exemplo para a recíproca.
- **5.8** Dê um exemplo de uma função $f: \mathbb{R} \to \mathbb{R}$ que seja contínua e fechada, mas não aberta. Mostre que a função $f: (0, \infty) \to [-1, 1]$ é contínua, mas nem aberta nem fechada (topologia usual).
- **5.9** Neste exercícios sempre supomos topologia usual. Mostre que o intervalo (a,b) é homeomorfo ao intervalo (-1,1) (faça todos os detalhes). Mostre que S^1 é homeomorfo ao quadrado

$$A = \{(x, y) \in \mathbb{R}^2 | \max\{|x|, |y|\} = 1\}$$

- **5.10** Seja (X, τ) um espaço topológico e seja $G(X) = \{f: X \to X | f \text{\'e} \text{ homeomorfismo}\}$. Mostre que G(X) é um grupo com a operação de composição de funções. É G grupo abeliano?
- **5.11** Seja E um espaço vetorial normado. Mostre que as translações $T_a: E \to E$ definidas por $T_a(v) = v + a, a \in E$ fixado, são homeomorfismos. Mostre que as homotetias $h_{\lambda}: E \to E$ definidas por $h_{\lambda}(v) = \lambda v, (\lambda \in \mathbb{R}*)$ são homeomorfismos.

Axiomas de Separação

- **5.12** Defina espaço T_1 (de Frechét). Mostre que um espaço topológico é T_1 se, e somente se, todo subconjunto unitário $\{p\}$ de X é fechado. Mostre que se X é T_1 , então todo subespaço de X é também T_1 .
- **5.13** Defina espaço T_2 (espaços de Hausdorff).
- 5.14 Mostre que todo espaço métrico é de Hausdorff.
- ${\bf 5.15}\,$ Mostre que se X é Hausdorff, então toda sequência convergente em X tem único limite.
- **5.16** Sejam X um espaço topológico e Y um espaço topológico Hausdorff. Demonstre que se $f,g:X\to Y$ são funções contínuas então o conjunto $\{x\in X|f(x)=g(x)\}$ é fechado.

- ${\bf 5.17}$ Mostre que $\mathbb R$ com a topologia usual é Hausdorff, mas $\mathbb R$ com a topologia cofinita não é Hausdorff.
- ${\bf 5.18}\,$ Mostre que T_2 implica T_1 mas a recíproca é falsa.
- ${\bf 5.19}$ Seja $f:X\to Y$ um homeomorfismo de espaços topológicos e X Hausdorff. Mostre que Y é Hausdorff.

CAPÍTULO 6

Compacidade

Definição 6.1 Seja (X, τ) espaço topológico e $A \subset X$. Uma cobertura aberta (respectivamente, fechada) de A é uma coleção $\{\mathcal{U}_i\}_{i\in I}$ de abertos (respectivamente, fechados) $\mathcal{U}_i \subset X$ tal que $A \subset \bigcup_{i \in I} \mathcal{U}_i$.

Exemplo 6.1 Seja $X = \mathbb{R}^2$, topologia usual.

$$\mathcal{U}_{(m,n)} = B_1((m,n)); m,n \in \mathbb{Z}. \quad \mathbb{R}^2 \subset \bigcup \mathcal{U}_{(m,n)}; (m,n) \in \mathbb{Z} \times \mathbb{Z}.$$

 $\Rightarrow \mathcal{U}_{(m,n)}; m, n \in \mathbb{Z}$ é cobertura aberta para \mathbb{R}^2 .

Exemplo 6.2
$$\mathbb{R} \subset \bigcup_{n \in \mathbb{R}} (-n, n)$$
, exemplo: $\sqrt{2} \in \mathbb{R}, \sqrt{2} \in (-2, 2)$.

Da Análise Real, $A \subset \mathbb{R}$, diz-se que A é compacto quando A é limitado e fechado.

A é limitado quando $\exists \varepsilon > 0$ tal que $A \subset (-\varepsilon, \varepsilon)$.

Teorema 6.2 (de Borel-Lebesgue) Se $\{I_j\}_{j\in J}$ é uma família de intervalos abertos tais que $[a,b]\subset\bigcup_{j\in J}I_j$, então existe um número finito de intervalos I_{j_1},\ldots,I_{j_n} tal que $[a,b]\subset I_{j_1}\cup\ldots\cup I_{j_n}$.

Régis © 2009

teo21

Topologia Geral

Demonstração:

Seja $X = \{x \in [a,b] : [a,x] \subset I_{j_1} \cup \ldots \cup I_{j_k}, \text{ para alguns } I_{j_1},\ldots,I_{j_k} \text{ em } \{I_j\}\}.$

A demonstração consiste em verificar que X = [a, b].

Afirmação: X é um intervalo.

De fato, $a \in X$ e dado $x \in X$, então $a < x' < x \Rightarrow x' \in X$.

 $X \in \text{intervalo} \Rightarrow X = [a, c) \text{ ou } [a, c], c = \sup X.$

Resta verificar que $c \in X$ e c = b.

Afirmação: $c \in X$.

De fato, seja $x \in I_{j_0}$ tal que $a \leq x < c \Rightarrow [a, x] \subset I_{j_1} \cup \ldots \cup I_{j_k}$ e

 $[a,c] \subset I_{j_1} \cup \ldots \cup I_{j_k} \cup I_{j_0} \Rightarrow c \in X.$

c = b. De fato, como $c = \sup X$, suponha c < b.

Então, $\varepsilon > 0, c + \varepsilon < b$ e $[c, c + \varepsilon] \subset I_{j_0}$.

 $\Rightarrow [a, c + \varepsilon] \subset I_{j_1} \cup \ldots \cup I_{j_k} \cup I_{j_0}$

 $\Rightarrow c + \varepsilon \in X$. Contradição.

Portanto, c = b e X = [a, b].

Definição 6.3 Uma subcobertura (aberta) de $\{\mathcal{U}_i\}$ é uma subcoleção $\{\mathcal{V}_i\} \subset \{\mathcal{U}_i\}$.

Definição 6.4 O espaço topológico (X, τ) é *compacto* quando dada uma cobertura aberta $\{\mathcal{U}_i\}_{i\in I}$ de X, existe uma subcobertura finita $\mathcal{U}_1, \ldots, \mathcal{U}_n$ de $\{\mathcal{U}_i\}_{i\in I}$, isto é, existem $\mathcal{U}_1, \ldots, \mathcal{U}_n \in \{\mathcal{U}_i\}_{i\in I}$ tal que $X \subset \mathcal{U}_1 \cup \ldots \cup \mathcal{U}_n$.

Teorema 6.5 Sejam X, Y espaços topológicos $ef: X \to Y$ uma função contínua. Se $A \subset X$ e A é compacto, então f(A) é compacto.

Demonstração:

 $A \subset X, A$ é compacto. Devemos mostrar que f(A) é compacto.

Tome $\{\mathcal{U}_i\}_{i\in I}\subset Y, \mathcal{U}_i$ aberto, tal que $f(A)\subset\bigcup_{i\in I}\mathcal{U}_i$.

$$\Rightarrow A \subset f^{-1}(f(A)) \subset f^{-1}\left(\bigcup_{i \in I} \mathcal{U}_i\right) = \bigcup_{i \in I} f^{-1}(\mathcal{U}_i)$$

f contínua $\Rightarrow f^{-1}((\mathcal{U}_i))$ aberto, pois \mathcal{U}_i aberto de Y. $\Rightarrow \bigcup_{i \in I} f^{-1}(\mathcal{U}_i)$ é aberto.

Então $\{f^{-1}(\mathcal{U}_i)\}_{i\in I}$ é cobertura aberta do compacto A.

$$\Rightarrow A \subset f^{-1}(\mathcal{U}_1) \cup \ldots \cup f^{-1}(\mathcal{U}_n)$$

$$\Rightarrow f(A) \subset f\left(f^{-1}(\mathcal{U}_1) \cup \ldots \cup f^{-1}(\mathcal{U}_n)\right) \subset \mathcal{U}_1 \cup \ldots \cup \mathcal{U}_n$$

 $\Rightarrow \{\mathcal{U}_1, \dots, \mathcal{U}_n\}$ é subcobertura finita para f(A).

 $\Rightarrow f(A)$ é compacto.

Obs: $A \subset X$ é *compacto* quando toda cobertura aberta $\{\mathcal{U}_i\}$ de A admite subcobertura finita (\mathcal{U}_i são abertos de X).

teo22

Exemplo 6.3 $[a,b] \subset \mathbb{R}, [a,b]$ é compacto.

Exemplo 6.4 Sejam (X, τ) espaço topológico e $A \subset X, A$ finito. Então, A é compacto. De fato, $A = \{a_1, \ldots, a_n\}$. Seja $\{\mathcal{U}_i\} \subset \tau$ tal que $A \subset \bigcup_{i \in I} \mathcal{U}_i$. Temos que $\exists \mathcal{U}_1, \ldots, \mathcal{U}_n \in \{\mathcal{U}_i\}$ tal que $a_1 \in \mathcal{U}_1, \ldots, a_n \in \mathcal{U}_n \Rightarrow A \subset \mathcal{U}_1 \cup \ldots \cup \mathcal{U}_n$.

Exemplo 6.5 Seja (X, τ) espaço topológico, τ topologia discreta. Se $A \subset X$ e A infinito, pode A ser compacto?

Solução:

Não. $A = \bigcup_{a \in A} \left\{a\right\}, \, \left\{a\right\}$ é aberto, $\forall a.$

 \Rightarrow $\{\{a\}, a \in A\}$ é cobertura aberta de A, que não admite subcobertura, caso contrário, $A \subset \{a_1\} \cup \ldots \cup \{a_n\} \Rightarrow A$ finito. Absurdo.

Exemplo 6.6 Sejam X compacto e $A \subset X$. A é compacto?

Solução:

teo23

teo24

Não. Exemplo, $(a,b) \subset [a,b], \mathbb{R}$. (a,b) não é compacto e [a,b] é compacto. \square

Teorema 6.6 Seja (X,τ) um espaço topológico compacto. Se $A\subset C$ e A é fechado, então A é compacto.

Demonstração:

Seja $\{\mathcal{U}_i\}$ cobertura aberta de $A. \Rightarrow A \subset \bigcup \mathcal{U}_i$.

 $A \text{ fechado} \Rightarrow A^c \text{ \'e aberto.} \Rightarrow X = A \cup A^c \subset \bigcup \mathcal{U}_i \cup A^c.$

 $\Rightarrow \bigcup \mathcal{U}_i \cup A^c$ é cobertura aberta do compacto X.

 $\Rightarrow X \subset \mathcal{U}_1 \cup \ldots \cup \mathcal{U}_n \subset A^c.$

Mas $A \subset X \Rightarrow A \subset \mathcal{U}_1 \cup \ldots \cup \mathcal{U}_n$. Portanto, A é compacto.

Exemplo 6.7 $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}\} \Rightarrow (X, \tau)$ é espaço topológico. $A = \{a\} \Rightarrow A$ é compacto (finito).

Mas A não é fechado, pois $A^c = \{a, b\}$ não aberto.

Teorema 6.7 Se (X, τ) é espaço topológico de Hausdorff, e $A \subset X$, A compacto, então A é fechado.

Demonstração:

Seja $A \subset X$, X Hausdorff e A compacto. Provar que A é fechado.

Se $A = \emptyset$ ou A = X, então A é fechado.

Supor $A \neq X$ e $A \neq \emptyset$. Seja $x \in A^c$. Para todo $a \in A$, existe \mathcal{V}_a aberto tal que $a \in \mathcal{V}_a$ e \mathcal{U}_a aberto tal que $a \in \mathcal{U}_a$ e $\mathcal{U}_a \cap \mathcal{U}_a = \emptyset$. (*)

Régis © 2009

CAPÍTULO 6. COMPACIDADE

Mas $\{\mathcal{V}_a; a \in A\}$ é cobertura aberta de A e A é compacto $\Rightarrow \exists \mathcal{V}_{a1}, \dots, \mathcal{V}_{an}$ tal que $x \in \mathcal{U}_{a_i} \cap \mathcal{V}_{a_i} = \emptyset$.

Tome
$$\mathcal{U} = \mathcal{U}_{a_1} \cap \ldots \cap \mathcal{U}_{a_n} \Rightarrow \mathcal{U}$$
 aberto e $\mathcal{U} \cap \mathcal{V}_{a_i} = \emptyset, \forall i$.
 $\Rightarrow \mathcal{U} \subset A^c \text{ e } x \in \mathcal{U}.$ Portanto, A^c é aberto.

Exemplo 6.8 No exemplo anterior X não é Hausdorff.

```
b \in X \Rightarrow abertos que contém b = \{X, \{b, c\}\}\

c \in X \Rightarrow abertos que contém c = \{X, \{b, c\}\}\

\Rightarrow \nexists \mathcal{U}, \mathcal{V} \in \tau tal que b \in \mathcal{U}, c \in \mathcal{V} : \mathcal{U} \cap \mathcal{V} = \emptyset.
```

Proposição 6.8 Se X é compacto, Y é Hausdorff e $f: X \to Y$ é contínua, então f é fechada.

Demonstração:

 $F \subset X, F$ fechado. Como X é compacto, e F é fechado, então F é compacto. f contínua $\Rightarrow f(F)$ compacto. Logo, f(F) é compacto contido em Y, que é Hausdorff, então f(F) é fechado (teorema (6.7)).

6.1 Compactificação

Definição 6.9 Sejam X, Y espaços topológicos. Um $mergulho\ X \xrightarrow{f} Y$ é uma função tal que $X \cong f(X)$ (X é homeomorfo a um subespaço topológico de Y). Se Y é compacto, diz-se que Y é uma compactificação de X.

Exemplo 6.9 Seja Π o plano xy.

$$f: \Pi \to S$$
$$p \mapsto p'$$

Definição 6.10 Seja (X, τ) espaço topológico. A compactificação de Alexandrov de (X, τ) é o par $(X_{\infty}, \tau_{\infty})$ definido como:

- i) $X_{\infty} = X \cup \{\infty\}$, $\infty =$ "ponto no infinito" distinto de todo $x \in X$.
- ii) $\tau_{\infty} = \tau \cup \{X_{\infty} \setminus F : F \text{ fechado e compacto de } X\}.$

Teorema 6.11 $(X_{\infty}, \tau_{\infty})$ é espaço topológico e é compactificação de (X, τ) .

Obs:
$$X \stackrel{\cong}{\hookrightarrow} X \subset X_{\infty}$$
.

teo25

Figura 6.1: Projeção estereográfica: $x = \Pi \cong f(x) = S \setminus (0, 0, 2)$.

6.2 Topologia Produto e Compacidade

Definição 6.12 Sejam (X, τ_1) e (X, τ_2) espaços topológicos. $X \times Y$ tem topologia produto $\{u \times v : u \in \tau_1, v \in \tau_2\}$.

Projeções: As projeções canônicas p_1 e p_2 são definidas por

$$p_1: X \times Y \to Y$$
 $p_2: X \times Y \to Y$ $(x, y) \mapsto x$ $(x, y) \mapsto y$

Proposição 6.13 p_1 e p_2 são contínuas em $X \times Y$. (Topologia produto torna as projeções contínuas).

Demonstração:

Seja $\mathcal{U} \in X, \mathcal{U}$ aberto.

$$\Rightarrow p_1^{-1}(\mathcal{U}) = \mathcal{U} \times Y$$
 é aberto de $X \times Y$. $\Rightarrow p_1$ é contínua.

 \odot Como exercício, mostre que p_2 é contínua.

Exemplo 6.10 $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R}$ tem topologia produto, induzida pela topologia usual de \mathbb{R} .

Exemplo 6.11 $S^1 \times S^1, S^1$ topologia induzida pela topologia usual de \mathbb{R}^2 .

proposição 6.14 Sejam $(X, \tau_1), (Y, \tau_2)(Z, \tau_3)$ espaços topológicos.

$$f_1: X \to Y$$

 $f_2: Y \to Z$ $f: X \to Y \times Z$
 $x \mapsto (f_1(x), f_2(x))$

 $Ent\~ao,\ f\ \'e\ contínua\ se,\ e\ somente\ se,\ f_1\ e\ f_2\ s\~ao\ contínuas.$

Régis $\ \, \odot \, \, 2009$ Topologia Geral **61**

Figura 6.2: Toro

Demonstração:

 $(\Rightarrow)~p_1:Y\times Z\to Y$ e $p_2:Y\times Z\to Z$ são projeções e note que $f_1=p_1\circ f$ e $f_2=p_2\circ f.$

Logo, f contínua $\Rightarrow f_1$ e f_2 contínuas.

$$(\Leftarrow)$$
 Seja $\mathcal{U} \times \mathcal{V}$ aberto básico de $Y \times Z$. Note que $f^{-1}(\mathcal{U} \times \mathcal{V}) = f_1^{-1}(\mathcal{U}) \times f_2^{-1}(\mathcal{V})$ é aberto. Portanto, f é contínua.

6.3 Compacidade em Espaços Métricos

Proposição 6.15 Seja (M,d) espaço métrico. $A\subset M,\ A$ compacto $\Rightarrow A$ é limitado e fechado.

Demonstração:

 \bullet A é limitado.

$$\forall x_0 \in M, \overbrace{B_1(x_0) \cup B_2(x_0) \cup B_3(x_0) \cup \ldots}^{\mathscr{C}} \Rightarrow \mathscr{C} \text{ \'e cobertura aberta de } A.$$

$$A \text{ compacto } \Rightarrow \mathscr{C} \text{ admite subcobertura finita, ou seja,}$$

$$A \subset B_{i_1}(x_0) \cup B_{i_2}(x_0) \cup \ldots \cup B_{i_m}(x_0) = B_{i_m}(x_0), 1 \leqslant i_1 \leqslant i_2 \leqslant i_m.$$

 \bullet A é limitado.

A é fechado: $\bar{A} \subset A$.

Seja $x \in \overline{A}$ e suponha $x \neq A$. Dado $y \in A, \exists \varepsilon > 0$ tal que $d(x,y) = 2\varepsilon$

 $\Rightarrow A$ tem cobertura aberta $\{B_{\varepsilon}(y): y \in A\}.$

 $A \text{ compacto} \Rightarrow A \subset B_{\varepsilon_1}(y) \cup \ldots \cup [\varepsilon_n]y$

 $\Rightarrow B_{\varepsilon_i}(x) \cap B_{\varepsilon_i}(y) = \emptyset, \forall i = 1, \dots, n.$

O que contradiz o fato de $x \in \bar{A}$.

Obs: A recíproca não vale em geral.

Seja (M,d) espaço métrico discreto. Suponha $A\subset M$ e A infinito. A é fechado (sempre) mas, A é ilimitado, pois $A\subset B_2(x), \forall x\in M$.

Se $r < 1 \Rightarrow A \not\subset B_r(x), \forall x \in M$, pois, se $x, y \in A$, com $x \neq y \Rightarrow d(x, y) = 1$.

Figura 6.3:

Se $r > 1 \Rightarrow B_r(x) = \{x\}$ ou é M.

Teorema 6.16 (Heine-Borel) Seja $A \subset \mathbb{R}^n$. Então A é fechado e limitado se, e somente se, A é compacto.

Demonstração:

 (\Rightarrow) Seja $A\subset\mathbb{R}^n$ fechado e limitado. A limitado

$$\Rightarrow \exists k > 0 \text{ tal que } ||x|| \leqslant k, \forall x \in A \Rightarrow A \subset [-k, k]^n = [-k, k] \times \ldots \times [-k, k].$$

Pelo Teo. (6.2) de Borel-Lebesgue, [-k,k] é compacto. O Teo. de Tychonoff diz que $[-k,k]^n$ é compacto.

Como A é fechado e $A \subset [-k,k]^n$ compacto, então A é compacto.

$$(\Leftarrow)$$
 A compacto e \mathbb{R}^n Hausdorff $\Rightarrow A$ fechado.

Teorema 6.17 (Tychonoff) O produto cartesiano (arbitrário) de espaços topológicos compacto é compacto.

Demonstração:

teo 27

Vamos mostrar somente que X,Ysão compactos se, e somente se, $X\times Y$ é compacto.

 (\Leftarrow) Seja $X \times Y$ compacto. Sabemos que a projeção

$$p_1: X \times Y \to X$$

 $(x,y) \mapsto x$

é contínua $\Rightarrow X = \operatorname{Im} p_1$ é compacto. Considerando o mesmo argumento para

$$p_2: X \times Y \to Y$$
 $(x,y) \mapsto y$

temos Y compacto.

 (\Rightarrow) Seja $\mathscr{A}=\{W_j; j\in J\}$ cobertura aberta de $X\times Y.\ W_j=\bigcup_{{}^{\!\!\!L}}W_{j,k}\cup V_{j,k}.$ $U_{j,k}$ abertos de X e $V_{j,k}$ abertos de Y.

Para $x \in X, \{x\} \times Y \cong Y$ que é compacto \Rightarrow existem $U_1 \times V_1, \dots, U_n \times V_n$ tal

que $\{x\} \times Y \subset (U_1 \times V_1) \cup \ldots \cup (U_n \times V_n), n = n(x).$ Seja $\mathcal{U}_x = \bigcap_{i=1}^{n(x)} U_i \Rightarrow \{\mathcal{U}_x; x \in X\}$ é cobertura de X, que é compacto $\Rightarrow X \subset \mathcal{U}_{x_1} \cup \ldots \cup \mathcal{U}_{x_m} \Rightarrow \{\mathcal{U}_{x_i} \times V_{k_i} : i = 1, \ldots, m \text{ e } k_i = 1, \ldots, n(x)\} \text{ \'e cobertura}$ finita para $X \times Y$.

Exercícios Propostos 6.4

- 6.1 Defina cobertura, cobertura aberta e cobertura fechada de um espaço topológico. Defina espaço topológico compacto.
- **6.2** Mostre que se A é um subconjunto finito do espaço topológico X, então A é compacto.
- 6.3 Demonstre que um subconjunto fechado de um espaço topológico compacto é compacto.
- **6.4** Sejam A_1, \ldots, A_n subconjuntos compactos de um espaço topológico X. Mostre que a união $A_1 \cup \ldots \cup A_n$ é compacto.
- 6.5 Mostre que se A é um subconjunto compacto de um espaço de Hausdorff X, então A é fechado.
- 6.6 Sejam A e B subconjuntos compactos disjuntos de um espaço de Hausdorff X. Demonstre que existem dois abertos disjuntos $G \in H$ tais que $A \subset F \in B \subset H$.

CAPÍTULO 7

Conexidade

Espaços Conexos 7.1

Definição 7.1 Seja (X,τ) espaço topológico. Dizemos que X é conexo quando não existem abertos $A, B \in \tau$ tal que

- i) $X = A \cup B$;
- ii) $A \cap B = \emptyset$;
- iii) $A \neq \emptyset, B \neq \emptyset$.

Obs: A definição de conexo para $D \subset X$ refere-se a topologia induzida por X.

Exemplo 7.1 $\{x\}$ e \emptyset são sempre conexos.

Exemplo 7.2 \mathbb{R} topologia usual e \mathbb{Q} é conexo em \mathbb{R} ?

Solução:

Não. Pois
$$\mathbb{Q} = \underbrace{\left[\mathbb{Q} \cap \left(-\infty, \sqrt{2}\right)\right]}_{A} \cup \underbrace{\left[\left(\sqrt{2}, \infty\right) \cap \mathbb{Q}\right]}_{B}.$$

$$\mathbb{Q} = A \cup B; A \neq \emptyset \text{ e } B \neq \emptyset; A \cap B = \emptyset.$$

A,Bsão abertos de $\mathbb Q,$ pois, são interseções de abertos de $\mathbb R$ interseção com $\mathbb Q.$ Logo, $\left(-\infty\sqrt{2}\right)$ e $\left(\sqrt{2},\infty\right)$ são abertos de \mathbb{R} . **Exemplo 7.3** Seja (X, τ) , τ topologia discreta.

Se
$$X = \{x\}$$
, por $(i), X$ é conexo.

Se
$$x, y \in X, x \neq y$$
, então $X = \underbrace{\{x\}}_A \cup \underbrace{\{x\}^c}_B$.
 $A \neq \emptyset, B \neq \emptyset; A \cap B = \emptyset; A, B \text{ abertos.}$

 $\Rightarrow X$ não é conexo (A, B separam X).

Exemplo 7.4 Seja (X, τ_{cof}) . $\tau_{cof} = \{A \subset X : A^c = \text{ finito ou } A = \emptyset\}$.

Solução:

Supor X infinito. Se $A, B \in \tau_{cof}, A \neq \emptyset$ e $B \neq \emptyset$, então $A \cap B \neq \emptyset$.

Seja $(A \cap B)^c = A^c \cup B^c$ que é finito, pois, A^c e B^c são finitos.

Suponha $(A \cap B)^c = \emptyset \Rightarrow A \cap B = X$ que é finito. Contradição.

Portanto, $A \cap B \neq \emptyset$. Logo, (X, τ_{cof}) é conexo.

Exemplo 7.5 Seja $I \subset \mathbb{R}$ (usual), I = intervalo. Então I é conexo.

 $\overline{\text{Suponha}}\ I = A \cup B, A \cap B = \emptyset, A \neq \emptyset, B \neq \emptyset.$ A, B abertos na topologia usual de \mathbb{R} . Tome $a \in A$ e $b \in B$ e assim a < b.

Figura 7.1:

Seja $S = \inf\{x \in B : a < x\}$. Dado $\varepsilon > 0, (S, S + \varepsilon) \cap B \neq \emptyset$.

E ainda, $(S-\varepsilon,S)\cap A\neq\emptyset\Rightarrow (S-\varepsilon,S+\varepsilon)\cap A\neq\emptyset$ e $(S-\varepsilon,S+\varepsilon)\cap B\neq\emptyset\Rightarrow S\notin A$ e $s \notin B \Rightarrow s \notin A \cup B$ mas $s \in I$, pois a < s < b. Contradição.

Teorema 7.2 Todo subconjunto conexo $S \subset \mathbb{R}$ é um intervalo $(S \neq \emptyset)$ e $S \neq \{x\}$).

Demonstração:

Se S não é intervalo, então $\exists x,y \in S,z \notin S$ tal que $x < z < y \Rightarrow \underbrace{(-\infty,z) \cap S}_A$ e

$$\underbrace{(z,\infty)\cap S}_B$$
. A e B separam S.

teo28

Teorema 7.3 São equivalentes:

- i) X é conexo;
- ii) Os únicos subconjuntos de X que são ao mesmo tempo abertos e fechados são \emptyset e X.

Demonstração:

- $(i) \Rightarrow (ii)$ Suponha que $A \subset X, \emptyset \neq A, A \neq X$ e A seja aberto e fechado ao mesmo tempo. Então, $X = A \cup A^c \Rightarrow X$ desconexo. (**Obs**: $A \neq X \Rightarrow A^c \neq \emptyset$).
- $(ii)\Rightarrow (i)$ Suponha X desconexo, então $\exists A,B$ abertos, $A\neq\emptyset, B\neq\emptyset, A\cap B=\emptyset$ e $X=A\cup B.$

Então, $B^c = A$ aberto $\Rightarrow B$ fechado. Logo, B é aberto e fechado. Contradição.

Teorema 7.4 Sejam (X, τ) espaço topológico e $\{A_i; i \in I\}$ coleção de subconjuntos conexos de X. Se $\bigcap_{i \in I} A_i \neq \emptyset$, então $\bigcup_{i \in I} A_i$ é conexo.

Demonstração:

teo30

Suponha que $C = \bigcup A_i$ e C desconexo $\Rightarrow \exists A, B \in \tau, A \neq \emptyset, B \neq \emptyset, A \cap B = \emptyset$ e $C = A \cup B$. Seja $p \in \bigcap A_i$. Então $p \in A$ ou $p \in B$. Supor $p \in A$. Como $p \in A_i, \forall i$ e A_i é conexo, tem-se $A_i \subset A, \forall i \in I \Rightarrow \bigcup A_i \subset A$, contradizendo $B \neq \emptyset$.

Exemplo 7.6 Seja $S_r^1=\{(x,y)\in\mathbb{R}^2:(x-r)^2+y^2=r^2\}$ (esfera de raio r e centro (r,0)).

Note que $p = (0,0) \in \bigcap S_r^1$. Cada S_r^1 é conexa $\Rightarrow \bigcup S_r^1$ é conexa.

Figura 7.2: Circunferências.

CAPÍTULO 7. CONEXIDADE

Teorema 7.5 Sejam X e Y espaços topológicos conexos. Então $X \times Y$ é conexo.

Obs: O teorema vale para um número arbitrário de conexos.

Demonstração:

teo31

teo32

cor03

Dado $(x,y) \in X \times Y$ são conexos os conjuntos $\{x\} \times Y$ e $X \times \{y\}$ (pois $\{x\} \times Y \cong Y$ e $X \times \{y\} \cong X$) e $(x,y) \in (\{x\} \times Y) \cap (X \times \{y\})$.

Sendo $T_x = (\{x\} \times Y) \cup (X \times \{y\})$ temos $X \times Y = \bigcup_{x \in X} T_x$. Pelo teorema anterior

$$T_x$$
 é conexo e $\bigcap_{x \in X} T_x \neq \emptyset$.

Exemplo 7.7 $T^2 = S^1 \times S^1$, conexo pois, S^1 é conexo.

Figura 7.3:

Teorema 7.6 Seja X conexo e $f: X \to Y$ contínua $(X, Y \ espaços \ topológicos),$ então f(X) é conexo.

Demonstração:

Sejam $f: X \to Y, Y = f(x)$, f contínua, X conexo. Suponha $Y = A \cup B$, A, B abertos de $Y, A \neq \emptyset, B \neq \emptyset, A \cap B = \emptyset$. f contínua $\Rightarrow X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$. $f^{-1}(A), f^{-1}(B)$ abertos (f contínua), $f^{-1}(A) \neq \emptyset, f^{-1}(B) \neq \emptyset$ e $f^{-1}(A) \cap f^{-1}(B) = \emptyset \Rightarrow X$ desconexo. Contradição. Portanto, Y é conexo.

Exemplo 7.8 $S^1 = f([0, 2\pi])$

$$\begin{split} f \ : [0, 2\pi] \to S^1 \\ t & \mapsto f(t) = (\cos t, \, \text{sen} t) \end{split}$$

Régis © 2009

 S^1 é conexo.

Corolário 7.7 $X \stackrel{\varphi}{\cong} Y$, X conexo $\Leftrightarrow Y$ conexo.

7.2 Conexidade por Caminhos

Definição 7.8 Um espaço topológico é *conexo por caminhos* se dados $a, b \in X$, existe caminho contínuo $\alpha: I \to X, I = (0, 1), \alpha(0) = a$ e $\alpha(1) = b$.

Exemplo 7.9 Seja V espaço vetorial normado e $a, b \in V$.

Tome $\alpha: [0,1] \to V, \alpha(t) = (1-t)a + tb \Rightarrow \alpha$ contínua, $\alpha(0) = a, \alpha(1) = b \Rightarrow V$ conexo por caminhos. α é o segmento de reta ligando a a b.

Proposição 7.9 Seja X conexo por caminhos $ef: X \to Y$ contínua e sobrejetiva, então Y \acute{e} conexo por caminhos.

Demonstração:

Sejam Y_1, Y_2 em Y, f sobrejetiva $\Rightarrow \exists x_1, x_2 \in X$ tal que $f(x_1) = y_1$ e $f(x_2) = y_2$.

 $X \text{ conexo} \Rightarrow \alpha : [0,1] \to X \text{ tal que } \alpha(0) = x_1 \text{ e } \alpha(1) = x_2, \text{ defina}$ $\beta = f \circ \alpha : [0,1] \to Y \text{ e } \beta(0) = y_1, \beta(1) = y_2 \Rightarrow Y \text{ conexo por caminhos.}$

CAPÍTULO 8

Extensão de Corpos

Definição 8.1 Um conjunto A, não vazio, munido de duas operações

$$\begin{array}{ccc} + : A \times A \rightarrow A & & \cdot : A \times A \rightarrow A \\ (a,b) & \mapsto a+b & & (a,b) & \mapsto a.b \end{array}$$

é chamado um anel quando

- i) (A, +) for grupo abeliano;
- ii) $(ab)c = a(bc), \forall a, b, c \in A;$
- iii) a(b+c) = ab + ac e $(a+b)c = ac + bc, \forall a,b,c \in A$.

Então, $(A,+,\cdot)$ é anel.

Se $\exists 1 \in A$ tal que $1.a = a.1 = a, \forall a \in A$, então A é dito anel com unidade.

Se $ab=ba, \forall a,b\in A,$ então $(A,+,\cdot)$ é anel comutativo.

Um domínio é um anel comutativo com unidade e $ab=0 \Rightarrow a=0$ ou $b=0, \forall a,b\in A.$

Exemplo 8.1 $M_n(\mathbb{R})$ é anel com unidade, mas não comutativo.

CAPÍTULO 8. EXTENSÃO DE CORPOS

Exemplo 8.2 $(\mathbb{Z}, +, \cdot)$ é domínio.

Exemplo 8.3 $\mathbb{Z}/4\mathbb{Z}$ tem divisor de zero.

Exemplo 8.4 $n\mathbb{Z}, n \geqslant 1$ é anel sem unidade, mas é comutativo.

Definição 8.2 Um corpo F é um anel comutativo tal que $\forall a \neq 0, \exists a^{-1} \in F$ tal que $a.a^{-1} = a^{-1}.a = 1$. (Todo elemento não nulo admite inverso multiplicativo).

Exemplo 8.5 $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ são corpos.

Exemplo 8.6
$$\mathbb{R}(x) = \left\{ \frac{f(x)}{g(x)}; f(x), g(x) \in \mathbb{R}[x] \in g(x) \neq 0 \right\}$$

$$\mathbb{R}[x] = \left\{ \sum_{i=1}^{n} a_i x^i; a_i \in \mathbb{R} \in n \in \mathbb{N} \right\}$$
Obs: $F \text{ corpo} \Leftrightarrow F(x) \text{ corpo}.$

Exemplo 8.7 Seja
$$F$$
 corpo. $F\left((x)\right) = \left\{\sum_{n=0}^{\infty} a_i x^i; a_i \in F \text{ e } n \in \mathbb{Z}\right\}.$

 $f(x) = a_0 + a_1 x + a_2 x^2 + \dots$ e $g(x) = a_{-n} x^{-n} + \dots + a_0 + a_1 x + \dots$ são exemplos de *séries formais*, isto é, polinômios que tem um número finito de elementos negativos.

F((x)) é o corpo das séries formais de Laurent .

Exemplo 8.8 Anel $F[x_1,\ldots,x_n]$

= {polinômios nas n variáveis x_1, \ldots, x_n com coeficientes em F }.

Caso particular:

$$\mathbb{Q}[x,y]: p(x,y) = 3x + \frac{2}{3}xy + 5x^5y^7 + \frac{1}{7}y.$$

Exemplo 8.9 Corpo de frações de $\mathbb{Q}[x,y]$.

$$\mathbb{Q}(x,y) = \left\{ \frac{f(x,y)}{g(x,y)}; f(x,y), g(x,y) \in \mathbb{Q}[x,y]; g(x,y) \neq 0 \right\}$$

Exemplo 8.10 Sejam p primo e $(F_p, \mp, \bar{\cdot})$. $F_p = \mathbb{Z}/p_{\mathbb{Z}}$.

$$\begin{array}{ccc} \mp : F_p \times F_p \to F_p & & \cdot : F_p \times F_p \to F_p \\ (\bar{a}, \bar{b}) & \mapsto \overline{a + b} & & (\bar{a}, \bar{b}) & \mapsto \overline{a.b} \end{array}$$

Portanto, $(F_p, \mp, \bar{\cdot})$ é corpo.

Exemplo 8.11 $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2}; a, b \in \mathbb{Q}\}.$

Definição 8.3 Dizemos que K/F é uma extensão de corpos (o corpo K é uma extensão do corpo F) quando $F \subset K$.

Exemplo 8.12 \mathbb{C}/\mathbb{Q} ; \mathbb{C}/\mathbb{R} ; \mathbb{R}/\mathbb{Q} .

Obs: Se $F \subset K$ é extensão de corpos, então K é um F-espaço vetorial. (K é um espaço vetorial sobre F).

Multiplicação por escalar:

$$: F \times K \to K$$
$$(\alpha, a) \mapsto \alpha a$$

Exemplo 8.13 \mathbb{C} é um \mathbb{R} espaço vetorial.

Dado $a+bi \in \mathbb{C}, a+bi=a.1+b.i \Rightarrow \{1,i\}$ é \mathbb{R} -base para \mathbb{C} . ($\{1,i\}$ é base para o espaço vetorial \mathbb{C} sobre \mathbb{R}).

No exemplo, $\mathbb C$ tem dimensão 2 sobre $\mathbb R$. Notação: $[\mathbb C:\mathbb R]=2$.

Em geral, a dimensão de K sobre F (como F-espaço vetorial) é denotado por [K:F] e é chamada o grau da extensão de corpos K/F.

Exemplo 8.14 \mathbb{C}/\mathbb{R} é extensão de grau 2. ($[\mathbb{C}:\mathbb{R}]=2$).

Caso $[K:F]=n<\infty,$ então dizemos que K/F é extensão (de corpos) finita (infinita, caso contrário).

Exemplo 8.15 $[\mathbb{R} : \mathbb{Q}] = \infty$, $[\mathbb{C} : \mathbb{Q}] = \infty$.

Exemplo 8.16 Seja $a \in \mathbb{C}$.

$$\mathbb{Q}(a) = \left\{ \frac{\sum \alpha_i a^i}{\sum \beta_j a^j}; \alpha_i, \beta_j \in \mathbb{Q}, \sum \beta_j a^j \neq 0 \right\}$$

Exemplo 8.17 Seja $\mathbb{Q}(\sqrt{2})$. A extensão $\mathbb{Q} \subset \mathbb{Q}(a)$ pode ou não ser finita.

$$[\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2, \text{ pois, } \mathbb{Q}(\sqrt{2}) = \{a.1 + b\sqrt{2}; a, b \in \mathbb{Q}\}.$$

Então, $\{1, \sqrt{2}\}$ é \mathbb{Q} -base para $\mathbb{Q}(\sqrt{2})$.

 $\{1, \sqrt{2}\}\ \text{\'e L.I., pois }\alpha.1 + \beta\sqrt{2} = 0 \Leftrightarrow \alpha = \beta = 0, \alpha, \beta \in \mathbb{Q}.$

Exemplo 8.18 $[\mathbb{Q}(\pi):\mathbb{Q}]=\infty$.

CAPÍTULO 8. EXTENSÃO DE CORPOS

Definição 8.4 Seja $F \subset K$ extensão de corpos e $a \in K$. $F[a] := \bigcap R$, R subanel de K tal que $F \subset R$ e $a \in R$. $F(a) := \bigcap L$, L subcorpo de K tal que $F \subset L$ e $a \in L$.

Figura 8.1: Extensão de corpos.

Exemplo 8.19 F(a) é subcorpo de K e F[a] é subanel de K.

Solução:

 $\overline{\text{Afirmação:}} F[a]$ é subanel de K.

- i) Sejam $x, y \in F[a] \Rightarrow x, y \in \bigcap R$, R subanel de K tal que $F \subset R$ e $a \in R$. $\Rightarrow x, y \in R_i \Rightarrow x y \in R_i \Rightarrow x y \in F[a]$.
- ii) Seja $x, y \in F[a] \Rightarrow x.y \in F[a]$ (analogamente).

F(a) é subcorpo de K.

- i) F(a) é subanel de K;
- ii) $a \in F(a), \exists a^{-1} \in F(a).$

Exemplo 8.20 F[a] é o menor subanel de K que contém $a \in F$. (F[a] está contido em todo subanel de K que contém $a \in F$). Análogo para F(a).

 $_{lem06}$ Lema 8.5

1.
$$F[a] = \{f(a)/f(x) \in F[x]\};$$

2.
$$F(a) = \left\{ \frac{f(a)}{g(a)}; f(x), g(x) \in F[x], g(a) \neq 0 \right\}.$$

Demonstração:

Mostraremos apenas o item 1, o outro fica como exercício. Seja

$$\varphi: F[x] \to K$$

$$f(x) \mapsto f(a)$$

$$\varphi(f(x)+g(x))=\varphi((f+g)(x))=(f+g)(a)=f(a)+g(a)=\varphi(f(x))+\varphi(g(x))\\ \varphi(f(x).g(x))=\varphi((f.g)(x))=(f.g)(a)=f(a).g(a)=\varphi(f(x)).\varphi(g(x))\\ \text{Portanto, }\varphi \text{ \'e homomorfirmo de an\'eis.}$$

Note que $\operatorname{Im}(\varphi) = \{f(a)/f(x) \in F[x]\}$. Mostrar que $\operatorname{Im}(\varphi) = F[a]$.

Como φ é homomorfismo de anéis, temos $\operatorname{Im}(\varphi)$ é subanel de K e $\operatorname{Im}(\varphi)$ contém a e contém F. Como F[a] é o menor subanel de K com esta propriedade, temos $\operatorname{Im}(\varphi) \supseteq F[a]$.

Agora, seja $f(a) \in \text{Im}(\varphi)$.

$$f(a) = \varphi(f(x)), f(x) = \sum \alpha_i x^i$$

$$\Rightarrow f(a) = \underbrace{\sum \alpha_i x^i}_{\in \mathbb{R}} \in F[a], \forall R$$
 subanel de K que contém $a \in F$.

Exemplo 8.21 Seja $\mathbb{Q}[\sqrt{2}] = \{f(\sqrt{2}); f(x) \in \mathbb{Q}[x]\}$. Defina

$$\varphi: \mathbb{Q}[x] \to \mathbb{R}$$

$$f(x) \mapsto f(\sqrt{2})$$

- (i) φ é homomorfismo;
- (ii) $\operatorname{Im}(\varphi) = \{ f(\sqrt{2}); f(x) \in \mathbb{Q}[x] \}$. Mostrar que $\operatorname{Im}(\varphi) = \mathbb{Q}[\sqrt{2}]$.

Lembrete: F corpo $\Rightarrow F[x]$ domínio de ideais principais $\Rightarrow F[x]$ euclidiano. Dados $f(x), g(x) \in F[x], \exists q(x), r(x) \in F[x]$ tal que f(x) = q(x)g(x) + r(x) com r(x) = 0 ou $\partial r(x) < \partial g(x)$.

CAPÍTULO 8. EXTENSÃO DE CORPOS

Dado $f(x) \in \mathbb{Q}[x]$, existem q(x), r(x) tal que $f(x) = (x^2 - 2)q(x) + r(x)$ com r(x) = 0 ou $\partial r(x) < 2$

 $\Rightarrow r(x) = a + bx$, para algum $a, b \in \mathbb{Q}$

$$\Rightarrow f(\sqrt{2}) = ((\sqrt{2})^2 - 2)q(\sqrt{2}) + r(\sqrt{2}) = r(\sqrt{2}) = a + b\sqrt{2}$$

 $\Rightarrow \mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2}; a, b \in \mathbb{Q}\}.$

Exemplo 8.22 No Lema (8.5) F[a] = F(a) (quando a for algébrico). Em particular $\mathbb{Q}[\sqrt{2}] = \mathbb{Q}(\sqrt{2})$.

Exemplo 8.23 $\mathbb{R}(i) = \mathbb{R}[i]$.

Obs: $\mathbb{Q}[\pi] \simeq \mathbb{Q}[x] \neq \mathbb{Q}(x)$.

Definição 8.6 Seja K/F extensão de corpos.

- 1. $\alpha \in K$ é algébrico sobre F se $\exists f(x) \in F[x]$ tal que $f(\alpha) = 0$. Caso contrário, diz-se que α é transcedente.
- 2. Se $\alpha \in K$ é algébrico sobre F para todo $\alpha \in K$, então dizemos que K/F é extensão algébrica.

Exemplo 8.24 Seja $\sqrt{p} \in \mathbb{C}$, p primo. Então \sqrt{p} é algébrico sobre \mathbb{Q} , pois $f(\sqrt{p}) = 0$ para $f(x) = x^2 - p$.

Exemplo 8.25 $e \in \pi$ são transcedentes sobre Q.

Definição 8.7 Se $a \in K$ é algébrico sobre F o polinômio mônico de menor grau $p_a(x) \in F[x]$ tal que $p_a(a) = 0$ é chamado de polinômio minimal de a sobre F. $p_a(x) = \min\{a, F\}$.

Exemplo 8.26 $\xi = e^{\frac{2\pi}{n}i} = \cos\frac{2\pi}{n} + i \sin\frac{2\pi}{n}$ em \mathbb{C} é algébrico sobre \mathbb{Q} . Pois $f(x) = x^n - 1$, então $f\left(e^{\frac{2\pi}{n}i}\right) = e^{2\pi i} - 1 = \cos 2\pi + i \sin 2\pi - 1 = 0$. $\therefore p_{\xi}(x) = x^n - 1$.

Exemplo 8.27 Sejam $F \subset K$ e $a \in K$ algébrico sobre F, então F(a)/F é extensão algébrica.

Teorema 8.8 Seja K/F extensão de corpos e $\alpha \in K$ algébrico sobre F.

- (i) $p_a(x) = \min\{\alpha, F\}$ é irredutível;
- (ii) Se $g(x) \in F[x]$ e $g(\alpha) = 0$, então $p_{\alpha}(x)$ divide g(x);

teo33

(iii) Seja $n = \partial p_{\alpha}(x)$. Então $\{1, \alpha, \dots, \alpha^{n-1}\}$ é base de $F(\alpha)$ sobre F.

Demonstração:

- (i) © Exercício.
- (ii) $g(x) = p_{\alpha}(x).q(x) + r(x)$ com r(x) = 0 ou $\partial r(x) < \partial p_{\alpha}(x)$. Como $g(\alpha) = 0$, então $r(\alpha) = 0 \Rightarrow r(x) = 0$, pois, $p_{\alpha}(x)$ é o polinômio de menor grau que anula α .

Portanto, $g(x) = p_{\alpha}(x).q(x)$, isto é, $p_{\alpha}(x)$ divide g(x).

(iii) © Exercício.

Exemplo 8.28 Seja $\sqrt{p} \in \mathbb{R}$, p primo. $p(x) = x^2 - p$. $\mathbb{Q}(\sqrt{p})/\mathbb{Q}$. $\mathbb{Q}(\sqrt{p})$ tem base $\{1, \sqrt{p}\}$ sobre \mathbb{Q} . $[\mathbb{Q}(\sqrt{p}):\mathbb{Q}] = 2$. $[\mathbb{Q}(\sqrt[3]{p}):\mathbb{Q}] = 3$, $\mathbb{Q}(\sqrt[3]{p})$ (tome $p(x) = x^3 - p$ e $p(\sqrt[3]{p}) = 0$) tem base $\{1, \sqrt[3]{p}, (\sqrt[3]{p})^2\}$.

Obs: $F \subset K$ extensão de corpos e $\alpha_1, \ldots, \alpha_n \in K$.

- 1. $(...((F[\alpha_1])[\alpha_2])...[\alpha_n]):=F[\alpha_1,...,\alpha_n]=\{f(\alpha_1,...,\alpha_n)/f(\alpha_1,...,\alpha_n)\in F[\alpha_1,...,\alpha_n]\}.$
- $2. \quad ((F(\alpha_1))(\alpha_2))...(\alpha_n) := F(\alpha_1,...,\alpha_n) = \left\{ \frac{f(\alpha_1,...,\alpha_n)}{g(\alpha_1,...,\alpha_n)} ; f(x_1,...,x_n), g(x_1,...,x_n) \in F(x_1,...,x_n), g(x_1,...,x_n) \neq 0 \right\}$

Obs: Da Álgebra Linear: Sejam $F\subset K\subset L$ extensão de corpos, então [L:F]=[L:K].[K:F].

Exemplo 8.29 $\mathbb{Q} \subset \mathbb{Q}[\sqrt{2}] \subset \mathbb{R}$.

Figura 8.2:

CAPÍTULO 8. EXTENSÃO DE CORPOS

Obs:
$$[\mathbb{R}:\mathbb{Q}] > [\mathbb{Q}(\alpha_p):\mathbb{Q}]$$
, onde $\partial p_{\alpha_p} = p$.

Exemplo 8.30 Seja $\alpha_p = \sqrt[p]{2}$. Tome $p(x) = x^p - 2$ e $p(\alpha_p) = 0$.

$$\left[\mathbb{Q}\left(\sqrt{2},i\right):\mathbb{Q}\right] = \overbrace{\left[\mathbb{Q}\left(\sqrt{2},i\right):\mathbb{Q}\left(\sqrt{2}\right)\right]}^{2}\overbrace{\left[\mathbb{Q}\left(\sqrt{2}\right):\mathbb{Q}\right]}^{2}$$

$$p_i(x) = x^2 + 1 \in \left(\mathbb{Q}\left(\sqrt{2}\right)\right)[x] \Rightarrow p_i(x) = \min\left(i, \mathbb{Q}\left(\sqrt{2}\right)\right)$$

Obs: $[\mathbb{R} : \mathbb{Q}] = [\mathbb{R} : \mathbb{Q}(e)][\mathbb{Q}(e) : \mathbb{Q}].$

 $_{
m teo 34}$ Teorema 8.9

(i) Se K/F é finita, então K/F é algébrica;

(ii) Se K/F é algébrica, K/F não precisa ser finita;

(iii) K/F é algébrica e finitamente gerada se, e somente se, K/F é finita. K/F é finitamente gerada sobre F, se existem $\alpha_1, \ldots, \alpha_n \in K$ tal que $K = F(\alpha_1, \ldots, \alpha_n)$.

Demonstração:

(i) Seja n = [K : F] e seja $\alpha \in K$. Então $\{1, \alpha, \alpha^2, \dots, \alpha^n\}$ é L.D. sobre F, pois, n+1 vetores $\Rightarrow \exists a_0, \dots, a_n \in F$ (nem todos nulos) tal que $a_0 + \dots + a_n x^n = 0 \Rightarrow \alpha$ é raiz de $p(x) = \sum a_i x^i$.

Portanto, K/F é algébrica.

(ii) $F=\mathbb{Q}, K=\{\alpha\in\mathbb{C}: \alpha \text{ algébrico sobre }\mathbb{Q}\}\Rightarrow K/\mathbb{Q}$ algébrico.

$$[K:\mathbb{Q}]>[\underbrace{\mathbb{Q}(\alpha_p):\mathbb{Q}}_p], \forall p$$
primo

 $\Rightarrow [K:\mathbb{Q}]$ é infinita, isto é, $[K:\mathbb{Q}] = \infty$.

Obs: Os números primos são infinitos.

(iii) $\alpha_i, p_i(x) = \sum a_{ij}x^j, p_i(\alpha_j) = 0.$

Tome $\{\alpha_i^j\}_{i,j}$ é base de K sobre F.

Definição 8.10 Sejam K/F extensão de corpos e L_1, L_2 corpos tais que $F \subset L_1 \subset K$ e $F \subset L_2 \subset K$. O composto de L_1, L_2 é o menor subcorpo de K que contém $L_1 \cup L_2$. Notação: L_1L_2 .

Teorema 8.11 (Kronecker) Seja F um corpo e $f(x) \in F[x]$. Se f não é constante, então existe uma extensão K/F e $\alpha \in K$ tal que $f(\alpha) = 0$.

Demonstração:

Sabemos que $f(x) = p_1(x)....p_r(x)$, $p_i(x)$ irredutível, $p_i(x) \in F[x]$.

Tome p(x) na decomposição de f como produto de polinômios irredutíveis. Basta mostrar que $\exists K/F$ e $\alpha \in K$ tal que $p(\alpha) = 0$.

Como p(x) é irredutível, o ideal I=(p(x)) (ideal de F[x] gerado por p(x)) é um ideal maximal, então F[x]/I é corpo.

Fixe $a, b \in \tilde{F}_k$. Forme $L = F(a, b) \Rightarrow L$ é corpo e $L \subset \tilde{F}_k \Rightarrow a + b \in L \subset \tilde{F}_k$ e $b^{-1} \in L \subset \tilde{F}_k$.

 $_{\text{cor04}}$ Corolário 8.12 $\tilde{\mathbb{Q}_{\mathbb{C}}} = \{a \in \mathbb{C}/a \text{ algébrico } s/\mathbb{Q}\}$ é corpo.

Definição 8.13 Um corpo F é algebricamente fechado quando todo polinômio não constante em F[x] tem uma raiz em F.

Teorema 8.14 (Fundamental da Álgebra) Todo polinômio não constante em $\mathbb{C}[x]$ tem uma raiz em \mathbb{C} (\mathbb{C} é algebricamente fechado).

Teorema 8.15 Um corpo F é algebricamente fechado se, e somente se, qualquer polinômio não constante em F[x] fatora-se como produto de polinômios em F[x] de grau 1 (fatores lineares).

Demonstração:

 (\Rightarrow) Seja f(x) polinômio não constante em F[x]. F é algebricamente fechado $\Rightarrow \exists \alpha \in F$ tal que $f(\alpha) = 0 \Rightarrow x - \alpha/f(x)$; $f(x) = (x - \alpha)g(x)$, para algum $g(x) \in K[x]$. Se g(x) constante, ok.

Se g(x) não constante, então $\exists \beta \in F$ tal que $g(\beta) = 0 \Rightarrow x - \beta/g(x) \Rightarrow f(x) = (x - \alpha)(x - \beta)h(x)$, para algum $h(x) \in K[x]$. Se h(x) não constante, segue-se o processo, até decompor f como produto de fatores lineares. Note que grau p(x) finito.

 (\Leftarrow) Imediata.

CAPÍTULO 8. EXTENSÃO DE CORPOS

corolário 8.16 Um corpo F algebricamente fechado não possui extensões algébricas própria.

Demonstração:

Se K/F é extensão algébrica de F e $\alpha \in K \Rightarrow \min(\alpha, F)$ é irredutível mônico $\Rightarrow \min(\alpha, F) = x - \alpha$, pois, F algebricamente fechado (teorema anterior) $\Rightarrow \alpha \in F \Rightarrow K \subset F \Rightarrow K = F$.

Teorema 8.17 Todo corpo admite um fecho algébrico, isto é, dado um corpo F, existe uma extensão algébrica \tilde{F}/F tal que \tilde{F} é algebricamente fechado. Ainda, o fecho algébrico é único, a menos de isomorfismo.

Demonstração:

Usa o Lema de Zorn. Ver livro *Teoria Ingênua dos Conjuntos* de Halmos.

Teorema 8.18 (TFA) \mathbb{C} é algebricamente fechado.

Demonstração:

teo39

Seja $f(z) \in \mathbb{C}[z]$ e suponha que f não tem raiz em $\mathbb{C} \Rightarrow$ a função $g(z) = \frac{1}{f(z)}$ é inteira (analítica em todo o plano).

 $\lim_{|z|\to\infty}|f(z)|=\infty\Rightarrow\lim_{|z|\to\infty}|g(z)|=0\Rightarrow g(z)\text{ limitada no plano }\overset{\mathrm{T.\ Lioville}}{\Longrightarrow}\frac{1}{f}$ constante $\Rightarrow f$ constante.

8.1 Automorfismo de Corpos

Fixamos F corpo e \tilde{F} = fecho algébrico de F.

Definição 8.19 Seja K/F extensão algébrica. Dizemos que os elementos $\alpha, \beta \in K$ são F-conjugados quando $\min(\alpha, F) = \min(\beta, F)$.

Exemplo 8.31
$$\mathbb{C}/\mathbb{R}$$
, $\alpha = i$ e $\beta = -i$, $p(x) = x^2 + 1$. $\min(i, \mathbb{C}) = \min(-i, \mathbb{C}) = p(x) = x^2 + 1$.

Teorema 8.20 Sejam F corpo e α, β algébrico sobre F. Sejam $n = \partial \min(\alpha, F)$ e $\psi_{\alpha,\beta} : F(\alpha) \to F(\beta)$ dada por

$$\psi_{\alpha,\beta}(c_0 + c_1\alpha + \dots + c_{n-1}\alpha^{n-1}) = c_0 + c_1\beta + \dots + c_{n-1}\beta^{n-1}$$

Então, $\psi_{\alpha,\beta}$ é isomorfismo se, e somente se, α e β são conjugados.

teo40

¹Pelo teorema, p(x) irredutível sobre $F \Rightarrow p(x)$ linear.

Demonstração:

$$(\Rightarrow)$$
 Seja min $(\alpha, F) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n (a_n = 1).$

$$\Rightarrow a_0 + a_1 \alpha + \ldots + a_n \alpha^n = 0$$

$$\Rightarrow 0 = \psi_{\alpha,\beta}(0) = \psi(a_0 + a_1\alpha + \dots + a_n\alpha^n) = a_0 + a_1\beta + \dots + a_n\beta^n$$

$$\Rightarrow \beta$$
 é raiz do $\min(\alpha, F) \Rightarrow \min(\beta, F) / \min(\alpha, F)$.

O mesmo argumento só que com $\psi_{\alpha,\beta}^{-1}$, teremos $\min(\alpha,F)/\min(\beta,F) \Rightarrow \min(\beta,F) = \min(\alpha,F)$.

$$(\Leftarrow) \min(\alpha, F) = \min(\beta, F) = p(x)$$
. Defina

$$: F[x]/I = (p(x)) \to F(\alpha)$$
$$f(x) + I \mapsto f(\alpha)$$

Exemplo 8.32 $\min(\sqrt{2}, \mathbb{Q}(\sqrt{2})) = x^2 - 2$. As raizes são $\sqrt{2}$ e $-\sqrt{2}$.

$$\psi_{\sqrt{2},-\sqrt{2}}: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$$
$$a + b\sqrt{2} \mapsto a - b\sqrt{2} = a + b(-\sqrt{2})$$

é isomorfismo, pois $\sqrt{2}$ e $-\sqrt{2}$ são conjugados.

Corolário 8.21 Seja $f(x) \in \mathbb{R}[x]$. Se f(a+bi)=0 para $a+bi \in \mathbb{C}$, então $f(a-bi)=0, a,b \in \mathbb{R}$.

Demonstração:

$$\mathbb{C} = \mathbb{R}(i)$$
 e $\min(i, \mathbb{R}) = \min(-i, \mathbb{R}) = x^2 + 1 \Rightarrow i$ e $-i$ são conjugados \Rightarrow

$$\psi_{i,-i}: \mathbb{C} \to \mathbb{C}$$

$$a+bi \mapsto a-bi$$

é isomorfismo. Assim, se $f(a+bi) = a_0 + a_1(a+bi) + \ldots + a_n(a+b_i)^n = 0$ $\Rightarrow 0 = \psi_{i,-i}(a_0 + a_1(a+bi) + \ldots + a_n(a+b_1)^n) = a_0 + a_1(a-b_i) + \ldots + a_n(a-b_i)^n \Rightarrow a - bi$ é raiz de f.

8.2 Automorfismos e Corpos Fixos

Definição 8.22 F corpo e $\sigma: F \to F$ isomorfismo. σ é chamado automorfismo de F.

$$\operatorname{Aut}(K) := \{ \varphi : K \to K/\varphi \text{ automorfismo} \}$$

Sabemos que Aut(K) é grupo com operação de composição com neutro = id_k .

Definição 8.23 Seja K/F extensão de corpos e $\sigma: K \to K$ automorfismo de K.

- i) σ fixo $a \in K$ se $\sigma(a) = a$;
- ii) σ fixa F se $\sigma(a) = a, \forall a \in F$.

no caso (ii), σ é dito um F-automorfismo de K.

Teorema 8.24 Seja K/F extensão de corpos. O conjunto $G(K/F) := \{G \in \operatorname{Aut}(K)/G|_F = id_F\} = \{G \in \operatorname{Aut}(K); G(a) = a, \forall a \in F\}$ um subgrupo de $\operatorname{Aut}(K)$.

Demonstração:

$$id_K \in G(K/F).$$

$$\sigma, \tau \in G(K/F) \Rightarrow \sigma(\tau(a)) = \sigma(a) = a, \forall a \in F$$

$$\Rightarrow \sigma \circ \tau \in G(K/F).$$

$$\sigma \in G(K/F) \Rightarrow \sigma(a) = a, \forall a \in F \Rightarrow a = G^{-1}(a), \forall a \in F$$

$$\Rightarrow G^{-1} \in G(K/F).$$

Teorema 8.25 Seja $S = \{\sigma_i; i \in I\} \subset \operatorname{Aut}(K)$. Então $\mathcal{F}(S) = \{a \in K; \sigma_i(a) = a, \forall i \in I\} \text{ \'e subcorpo de } K \text{ (chamado o corpo fixo de } S).$

Demonstração:

$$0 \in \mathcal{F}(s)$$
, pois $\sigma_i(0) = 0$, $\forall i \in I$. Também $1 \in \mathcal{F}(s)$, pois, $\sigma_i(1) = 1$, $\forall i \in I$. Sejam $a, b \in J(s) \Rightarrow \sigma_i(a \pm b) = \sigma_i(a) \pm \sigma_i(b) = a \pm b \Rightarrow a \pm b \in \mathcal{F}(s)$. $a, b \in \mathcal{F}(s) \Rightarrow \sigma_i(a.b) = \sigma_i(a).\sigma_i(b) = a.b \Rightarrow a.b \in \mathcal{F}(s)$. Se $a \neq 0 \in \mathcal{F}(s) \Rightarrow \sigma_i(a^{-1}) = [\sigma_i(a)]^{-1} = a^{-1} \Rightarrow a^{-1} \in \mathcal{F}(s)$.

Exemplo 8.33
$$\sigma = \psi_{\sqrt{2}, -\sqrt{2}} : \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$$

 $S = \{\sigma\}, \mathcal{F}(\sigma) = \{x \in \mathbb{Q}(\sqrt{2}); \sigma(x) = x\}$
 $a + b\sqrt{2} \in \mathcal{F}(\sigma) \Leftrightarrow \sigma(a + b\sqrt{2}) = a + b\sqrt{2} = a - b\sqrt{2} \Leftrightarrow b = 0$
 $\Leftrightarrow a + b\sqrt{2} \in \mathbb{Q} \Rightarrow \mathcal{F}(\sigma) = \mathbb{Q}.$

Obs:
$$G(K/F) \leq \operatorname{Aut}(K)$$
.
 $F \subseteq J(G(K/F)) = \{a \in K; \sigma(a) = a, \forall \sigma \in G(K/F)\}.$

Exemplo 8.34
$$F = \mathbb{Q}$$
. Sabemos que $[K : F] = 4$.

$$K = \mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2})(\sqrt{3}).$$

$$K = \mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2})(\sqrt{3}).$$

$$[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = \underbrace{[\mathbb{Q}(\sqrt{2}, \sqrt{3}); \mathbb{Q}(\sqrt{3})]}_{2} \cdot \underbrace{[\mathbb{Q}(\sqrt{2}); \mathbb{Q}]}_{2}$$

base de K como F - E e $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}.$

G(K/F); $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$; $F = \mathbb{Q}$. Possui 4 automorfismos: $id: K \to K \Rightarrow id \in G(K/F).$

$$\sigma_1 = \psi_{\sqrt{2}, -\sqrt{2}} : K \to K$$

$$1 \mapsto 1$$

$$\sqrt{2} \mapsto -\sqrt{2}$$

$$\sqrt{3} \mapsto \sqrt{3}$$

$$\sqrt{6} \mapsto -\sqrt{6}$$

$$\sigma_2 = \psi_{\sqrt{3}, -\sqrt{3}} : K \to K$$

$$1 \mapsto 1$$

$$\sqrt{2} \mapsto \sqrt{2}$$

$$\sqrt{3} \mapsto \sqrt{3}$$

$$\sqrt{6} \mapsto -\sqrt{6}$$

$$\begin{split} \sigma_3 &= \psi_{\sqrt{2},-\sqrt{2}} \circ \psi_{\sqrt{3},-\sqrt{3}} : K &\to K \\ 1 &\mapsto 1 \\ \sqrt{2} &\mapsto -\sqrt{2} \\ \sqrt{3} &\mapsto -\sqrt{3} \\ \sqrt{6} &\mapsto \sqrt{6} \end{split}$$

$$\Rightarrow \{id, \sigma_1, \sigma_2, \sigma_3\} = G(K/F)$$

Tábua

	id	σ_1	σ_2	σ_3
id	id	σ_1	σ_2	σ_3
σ_1	σ_1	id	σ_3	σ_2
σ_2	σ_2	σ_3	id	σ_1
σ_3	σ_3	σ_2	σ_1	id

Teorema 8.26 Seja K/F extensão finita de corpos e $\sigma: F \to F'$ isomorfismo de corpos. O número de extensões de σ para um isomorfismo

Demonstração:

K/F finita $\Rightarrow K/F$ finitamente gerada $\Rightarrow K = F(\alpha_1, \dots, \alpha_n); \alpha_1, \dots, \alpha_n \in K$. Seja $p_i(x) = \min(\alpha_i, F) = a_{i_0} + \ldots + a_{i_n} x^{n_i}$.

Assim, se τ é uma extensão de σ a K, ... incompleto.

teo43

Obs: K/F algébrica. Dado $\alpha \in K$, α é algébrico sobre F $\Rightarrow \exists p(x) = \min(\alpha, F) = c_0 + c_1 x + c_2 x^2 + \ldots + c_n x^n$.

Seja $\beta \in \tilde{F}$ tal que $q(\beta) = 0$, onde $q(x) = \sigma(c_0) + \sigma(c_1)x + \ldots + \sigma(c_n)x^n$, σ

isomorfismo e p(x) irredutível, q(x) irredutível em $F[x] \Rightarrow F[\alpha] \stackrel{\varphi}{\cong} F'[\beta]$ e $\varphi|_F = \sigma$. Notação: K/F finita. Índice de $K/F = \{\tau_i : K \to \tau(K) \subset \tilde{F}\}$.

Obs: Se $p \notin K$, então $\sigma \in Aut(K)$.

Exemplo 8.35 $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ é o corpo de decomposição da família $\{x^2-2, x^2-3\} \subset \mathbb{Q}[x]$.

Definição 8.27 Sejam $F \subset \tilde{F}$ e $\{f_i(x); i \in I \text{ conjunto de índices família de polinômios}\}$ e F[x]. Um corpo $K \subset \tilde{F}$ é o corpo de decomposição de $\{f_i(x); i \in I\}$ sobre F quando K é o menor subcorpo de \tilde{F} que contenha todas as raizes de todos os $f_i(x), i \in I$. Um corpo $K \subset \tilde{F}$ é um corpo de decomposição sobre F quando for o corpo de decomposição de alguma família de polinômios de F[x].

Exemplo 8.36 $\mathbb{Q}(\sqrt[3]{2})$ é corpo de decomposição de $x^3 - 2 \in \mathbb{Q}[x]$?

Solução:

Não, pois $\sqrt[3]{2} = \left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)\sqrt[3]{2}$ é uma raiz de $x^3 - 2$ e não pertence a $\mathbb{Q}(\sqrt[3]{2})$. Assim, o corpo de decomposição será $K = \mathbb{Q}(\sqrt[3]{2}, \xi)$ raizes $\sqrt[3]{2}, \xi\sqrt[3]{2}, \xi^2\sqrt[3]{2}$.

$$z_0 = \sqrt[3]{2} \left(\cos \frac{2\pi}{3} + i \operatorname{sen} \frac{2\pi}{3} \right) = \sqrt[3]{2} \xi$$
$$z_n = \sqrt[n]{|r|} \left(\cos \frac{\varsigma}{n} + i \operatorname{sen} \frac{\varsigma}{n} \right)$$

Teorema 8.28 Seja K/F algébrica $F \subset K \subset \tilde{F}$. K é um corpo de decomposição sobre F se, e somente se, todo F-automorfismo $\sigma : \tilde{F} \to \tilde{F}$ induz F-automorfismo $\sigma|_K : K \to K$ (F-automorfismo, se os elementos de F são fixos pelo isomorfismo).

Demonstração:

(\Rightarrow) Suponha K é um corpo de decomposição sobre F da família $\{f_i(x); i \in I\}$ e $\sigma: \tilde{F} \to \tilde{F}$ automorfismo tal que $\sigma|_F = id_F$. (F-automorfismo de \tilde{F}).

Seja $C = \{\alpha_i; j \in I\} = \{\text{todas raizes de } f_i, \forall i \in I\}.$

Seja $S = \bigcup F(\alpha_1, \dots, \alpha_n); \alpha_1, \dots, \alpha_n \in C$. Então S é corpo e $S \subset \tilde{F}$, com

 $\alpha_i \in S$, temos S = K é corpo de decomposição de $\{F_i(x); i \in I\}$.

84 Topologia Geral Régis © 2009

Temos $\sigma(\alpha_i)$ é raiz de $\min(\alpha_i, F) \Rightarrow \min(\alpha_i, F)$; $f_i(x)$, tal que $f_i(\alpha_i) = 0 \Rightarrow$ $\sigma(\alpha_i) \in K$, K é corpo de decomposição de $\{f_i(x); i \in I\} \Rightarrow \sigma(k) \subset K$, pois σ é completamente determinado por $\sigma(\alpha_i), j \in J$.

 (\Leftarrow) Imediata.

Definição 8.29 Seja K/F extensão de corpos. Dizemos que o polinômio f(x) em F[x] fatora-se em K se ele fatora-se em um produto de fatores lineares K[x].

Exemplo 8.37 $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ é tal que o polinômio $p(x) = x^4 - 5x^2 + 6 \in \mathbb{Q}[x]$ fatora-se em K, pois $p(x) = \left(x + \sqrt{2}\right)\left(x - \sqrt{2}\right)\left(x + \sqrt{3}\right)\left(x - \sqrt{3}\right)$.

Obs: Se $K \subset \tilde{F}$ é corpo de decomposição, então todo polinômio em F[x] que tem alguma raiz em K fatora-se em K.

De fato, pelo Teo. 8.28, todo $F\text{-automorfismo}\ \sigma:\,\tilde{F}\ \to\ \tilde{F}$ induz um Fautomorfismo $\sigma|_K:K\to K.$ Da demonstração do teorema (recíproca), K é corpo de fatoração de $\{g_k(x)/g_k(x) \text{ irredutível sobre } F[x] \text{ e tem uma raiz em } K\}$ \Rightarrow todo polinômio de F[x] que tem raiz em K fatora-se em K[x].

Corolário 8.30 Seja $F \subset K \subset \tilde{F}$ e K um corpo de fatoração sobre F. Se σ : cor07 $K \to \sigma(K) \subset \tilde{F}$ é isomorfismo; que fixa F, então $\sigma(K) = K$, isto é, $\sigma \in G(K/F)$. K/F é normal.

CAPÍTULO 9

O Teorema Fundamental da Teoria de Galois Infinita

Revisão: K/F extensão de corpos. $G(K/F) = \{ \sigma \in \operatorname{Aut}(K) : \sigma(a) = a, \forall a \in F \}.$

_{teo45} Teorema 9.1 (Extensão de isomorfismo) São equivalentes:

- i) $\sigma(k) = k, \forall \sigma : K \to \sigma(K)$ que estende τ .
- ii) K é um corpo de decomposição de um conjunto de polinômios $\{f_i(x)\}_{i\in I}\subset F[x]$.

Definição 9.2 Sejam K/F algébrica e car(F) = 0. Se K/F satisfaz uma das condições acima (e portanto as duas) dizemos que K/F é normal ou "galoisiana".

Revisão: Observação:

- $S \subset G(K/F)$, vimos que $F \subset \mathcal{F}(s) \subset K$. $\mathcal{F}s = \{x \in K : \sigma(x) = x, \forall \sigma \in S\}$, corpo fixo de S.
- K/F galoisiana, |G(K/F)| = [K : F].

Teorema 9.3 (Fundamental da Teoria de Galois Finita) Seja K/F extensão de corpos finita. Suponha que K/F é galoisiana. Existe uma correspondência bijetiva (correspondência de Galois) entre os conjuntos:

Régis © 2009

CAPÍTULO 9. O TEOREMA FUNDAMENTAL DA TEORIA DE GALOIS INFINITA

Figura 9.1:

 $\{L\ corpos: F\subseteq L\subseteq K\} \overset{\varphi}{\leftrightarrow} \{H: H\leqslant G=G(K/F)\}\ e\ que\ inverte\ a\ inclus\~ao.$

$$G(K/L) \leqslant (K/F) \qquad \qquad L \stackrel{\varphi}{\to} G(K/L)$$

$$\sigma : K \to K \text{ Aut} \qquad \qquad \qquad \mathcal{F}(H) \stackrel{\varphi^{-1}}{\leftarrow} H$$

$$\Rightarrow \sigma(a) = a, \forall a \in F$$

$$\Rightarrow \sigma \in G(K/F)$$

Finalmente, $H \leq G \Leftrightarrow L/F$ galoisiana $L = \mathcal{F}(H)$, neste caso (G : H) = [L : F].

Nosso objetivo é estudar a *Topologia de Krull* que permite demonstrar uma versão do Teorema Fundamental da Teoria de Galois para extensões de corpos galoisianas não finita.

Definição 9.4 Seja K/F extensão galoisiana (não necessariamente finita).

Sejam

```
\label{eq:definition} \begin{split} \mathscr{A} &= \{L: F \subseteq L \subseteq K \text{ tal que } [L:F] < \infty \text{ e } L/F \text{ galoisiana} \} \text{ e } \\ \mathscr{B} &= \{N \subseteq G = G(K/F): N = G(K/L), \text{ algum } L \in \mathscr{A} \} \\ \text{Dado } \sigma \in G(K/F) \text{ e } N \in \mathscr{B}. \text{ Então } \sigma N = \{\sigma \circ \tau : \tau \in N \}. \\ \text{Note que } \sigma N \subset G(K/F) \text{ e } \sigma N \in \{\omega N : \omega \in G(K/F) \}. \end{split}
```

Definição 9.5 Dizemos que $X\subseteq G(K/F)$ é um "aberto" quando $X=\emptyset$ ou $X=\bigcup \sigma_j N_j$, para certos $\sigma_j\in G$ e $N_j\in \mathscr{B}$.

Teorema 9.6 $\emptyset \cup \{X; X \ acima\}$ formam uma topologia em G(K/F), chamada topologia de Krull.

Demonstração:

Ø é aberto por definição.

G(K/F) é aberto, pois G(K/F)=idG(K/F). Seja $X_{\lambda}=\bigcup_{j}\sigma_{j_{\lambda}}N_{j_{\lambda}}.$

$$\Rightarrow \bigcup_{\lambda \in I} X_{\lambda} = \bigcup_{\lambda} \left(\bigcup_{j} \sigma_{j_{\lambda}} N_{j_{\lambda}} \right) = \bigcup_{j,\lambda} \sigma_{j_{\lambda}} N_{j_{\lambda}} \text{ \'e aberto}.$$

O problema é mostrar que $\sigma_1 N_1 \cap \sigma_2 N_2$ é aberto. Para isto precisaremos de 4 lemas:

Lema 9.7 Seja K/F galoisiana e $\alpha_1, \ldots, \alpha_n \in K$. Então existe $L \in \mathscr{A}$ tal que $\alpha_1, \ldots, \alpha_n \in L$.

Demonstração:

L:= corpo de decomposição de $\{f_j(x):f_j(x)=\min(\alpha_j,F)\}\$ $\Rightarrow L\in\mathscr{A}.$ Pois L/F galoisiana (L é corpo de decomposição) e L=F ($\alpha:\alpha$ -raízes de $F_i,\forall i=1,\ldots,n$).

 $\Rightarrow L/F \text{ finita. } \Rightarrow L \in \mathscr{A}.$

Lema 9.8 Seja $N \in \mathcal{B}$ e N = G(K/L), algum $L \in \mathcal{A}$. Então $L = \mathcal{F}(n)$ e $N \triangleleft G(K/F)$. Ainda $G/N = G(K/F)/G(K/L) \cong G(L/F)$.

Demonstração:

K/F é galoisiana $\Rightarrow L = \mathcal{F}(N), \mathcal{F}(G(K/L)) = L$. Seja

$$\begin{array}{ccc} f \ : G(K/F) \to G(L/F) \\ \sigma & \mapsto \ \sigma|_L \end{array}$$

L/Fnormal e $\sigma|_F=id\Rightarrow f$ está bem definida. Pelo Teo. 9.1, dado $\tau:L\to L$ automorfismo tal que $\tau|_F=id\Rightarrow \tau$ se estende a $\sigma:K\to K$ tal que $\sigma|_L=\tau\Rightarrow f(\sigma)=\tau\Rightarrow f$ sobrejetiva.

$$G(K/F) \xrightarrow{f} G(L/F), f \text{ sobrejetiva} \Rightarrow G(K/F)/\ker f \cong G(L/F).$$

$$\vdash \ker f = G(K/L).$$

$$\sigma \in \ker f \Leftrightarrow \underbrace{f(\sigma)}_{\sigma/L} = id_L \text{ e } \sigma \in G(K/F) \Leftrightarrow \sigma \in G(K/L).$$

 $_{
m lem09}$ Lema 9.9 Vale

$$(a) \bigcap_{N \in \mathscr{B}} N = \{id\}$$

$$(b) \bigcap_{N \in \mathscr{B}} \sigma N = \{\sigma\}$$

CAPÍTULO 9. O TEOREMA FUNDAMENTAL DA TEORIA DE GALOIS INFINITA

Demonstração:

(a) $\sigma \in \bigcap N$ e $a \in K$, então pelo Lema 9.7, $\exists L \in \mathscr{A}$ tal que $a \in L$ e L/F finita.

Tome $N_0 = G(K/L) \in \mathcal{B}$ e como $\sigma \in \bigcap N$, temos $\sigma \in N_0 \Rightarrow \sigma(a) = a$.

Isto vale $\forall a \in K \Rightarrow \sigma = id_k$.

(b) $\tau \in \sigma N, \forall N \in \mathscr{B}$

$$\Rightarrow \sigma^{-1} \circ \tau \in N, \forall N \in \mathcal{B} \Rightarrow \sigma^{-1} \circ \tau \in \bigcap N = \{id\} \Rightarrow \sigma = \tau.$$

Lema 9.10 Se $N_1, N_2 \in \mathcal{B}$, então $N_1 \cap N_2 \in \mathcal{B}$.

Demonstração:

 $N_1 = G(K/L_1), [L_1 : F] < \infty; N_2 = G(K/L_2), [L_2 : F] < \infty \ e \ L_1/F, L_2/F$ galoisiana $(L_1L_2$ é o menor subcorpo de K que contém L_1 e L_2 , L_1L_2 é normal e finita.) $\Rightarrow L_1L_2 \in \mathscr{B}$.

Vamos mostrar que $N_1 \cap N_2 = G(K/L_1L_2)$.

Seja $\sigma \in N_1 \cap N_2 \Rightarrow \sigma|_{L_1} = id_{L_1} \in \sigma|_{L_2} = id_{L_2}.$

Como
$$L_1L_2 = \left\{ \sum x_i y_i; x_i \in L_1, y_i \in L_2 \right\}$$

$$\Rightarrow \sigma \left(\sum x_i y_i \right) = \sum \sigma(x_i)\sigma(y_i) = \sum x_i y_i$$

$$\Rightarrow \sigma|_{L_1L_2} = id_{L_1L_2} \Rightarrow \sigma \in G(K/L_1L_2).$$
Se $\sigma \in G(K/L_1L_2) \Rightarrow \sigma|_{L_1L_2} = id_{L_1L_2}$

$$\Rightarrow \sigma|_{L_1} = id_{L_1} \text{ e } \sigma|_{L_2} = id_{L_2}$$

$$\Rightarrow \sigma \in G(K/L_1) \cap G(K/L_2) = N_1 \cap N_2.$$

$$\Rightarrow \sigma\left(\sum x_i y_i\right) = \sum \sigma(x_i)\sigma(y_i) = \sum x_i y_i$$

$$\Rightarrow \sigma|_{L_1L_2} = id_{L_1L_2} \Rightarrow \sigma \in G(K/L_1L_2).$$

Se
$$\sigma \in G(K/L_1L_2) \Rightarrow \sigma|_{L_1L_2} = id_{L_1}$$

continuação do último Teorema 9.6:

Dados $\sigma_1, \sigma_2 \in G(K/F)$ e $N_1, N_2 \in \mathcal{B}$, tem-se $\sigma_1 N_1 \cap \sigma_2 N_2$ é aberto.

$$N_1 = G(K/L_1), L_1/F$$
 galoisiana $[L_1:F] < \infty$

$$N_2 = G(K/L_2), L_2/F$$
 galoisiana $[L_2:F] < \infty$

Seja $\tau \in \sigma_1 N_1 \cap \sigma_2 N_2$. Então $\sigma_1 N_1 \cap \sigma_2 N_2 = \tau N_1 \cap \tau N_2 = \tau (N_1 \cap N_2)$ e pelo Lema 9.10, $N_1 \cap N_2 \in \mathcal{B} \Rightarrow \sigma_1 N_1 \cap \sigma_2 N_2 \subseteq \tau(N_1 \cap N_2)$ e a outra inclusão é direta. $\Rightarrow \sigma_1 N_1 \cap \sigma_2 N_2 = \tau(N_1 \cap N_2)$ é aberto.

Obs: Cada conjunto da topologia de Krull é uma união do tipo $| \int \sigma_i N_i$

 $\Rightarrow \{\sigma N : \sigma \in G, N \in \mathcal{B}\}$ é base para topologia de Krull.

Obs:
$$N \in \mathcal{B} \Rightarrow N = G(K/L), [L:F] < \infty, L/F$$
 galoisiana

$$\Rightarrow$$
 $(G:N) = |G/N| = |G(L/F)| < \infty.$

Fixado $\sigma \in G, G \setminus \sigma N$ será união finita de classes de N.

 $\Rightarrow G \setminus \sigma N$ é aberto $\Rightarrow \sigma N$ é fechado.

Obs: $\sigma N \in clopen$ (closed + open) "fechaberto" (fechado + aberto).

Teorema 9.11 Seja K/F galoisiana munido com a topologia de Krull, G(K/F) é um espaço topológico

- i) Hausdorff;
- *ii)* totalmente desconexo¹;
- iii) compacto.

Um espaço topológico que satisfaz (i), (ii), (iii) é chamado de booleano (Boole).

Demonstração:

(i) G é Hausdorff.

Seja
$$\sigma,\tau\in G=G(K/F)$$
tal que $\sigma\neq\tau.$ Lema $9.9\Rightarrow\bigcap_{N\in\mathscr{B}}\sigma N=\{\sigma\}.$

 $\Rightarrow \exists N \in \mathscr{B}$ tal que $\tau \notin \sigma N \Rightarrow \sigma \in \sigma N$ e $\tau \in G \backslash \sigma N$ são abertos disjuntos que separam τ e $\sigma \Rightarrow G$ é Hausdorff.

(ii) G é totalmente desconexo.

Seja
$$X\subseteq G$$
 e $\sigma,\tau\in X$ tal que $\sigma\neq\tau$. Lema $9.9\Rightarrow\bigcap_{N\in\mathscr{B}}\sigma N=\{\sigma\}.$

$$\Rightarrow \exists N \in \mathscr{B}$$
 tal que $\tau \notin \sigma N \Rightarrow \sigma N$ aberto e $\tau \notin \sigma N$

 $\Rightarrow X = (\sigma N \cap X) \cup ((G \backslash \sigma N) \cap X)$ é união disjunta de abertos não-vazios de X.

(iii) G é compacto. ("idéia")

Pelo Lema 9.8 $\forall N \in \mathcal{B}$ tem-se $|G/N| < \infty$ (número finito de classes). Considere cada G/N com a topologia discreta e seja $P = \prod_{N \in \mathcal{B}} G/N \Rightarrow P$ é espaço

topológico com a topologia produto.

G/N Hausdorff $\Rightarrow P$ Hausdorff.

G/N compacto $\Rightarrow P$ compacto (Teo. Tychonoff). Seja

$$\begin{array}{c} f : G \to P \\ \\ \sigma \mapsto \prod_{N \in \mathscr{B}} \sigma N \end{array}$$

¹Os únicos conjuntos conexos são os pontos.

CAPÍTULO 9. O TEOREMA FUNDAMENTAL DA TEORIA DE GALOIS INFINITA

 $\Rightarrow f$ é homomorfismo de grupos. E é injetiva, pois $\sigma \in \ker f \Leftrightarrow$

$$\Leftrightarrow \sigma N = N, \forall N \in \mathscr{B} \Leftrightarrow \sigma \in \bigcap_{N \in \mathscr{B}} N = \{id\}.$$

Falta mostrar que f é fechado em P. Mas não faremos, pois necessita da teoria de limites inversos e limites discretos. E P é Hausdorff e compacto \Rightarrow Im f é compacto e $G \cong$ Im $f \Rightarrow G$ compacto (continuidade de f não faremos).

Teorema 9.12 Seja $H \leq G(K/F)$ e $H' = G(K/\mathcal{F}(H))$. Então $H' = \overline{H}$ (fecho de H na topologia de Krull).

Demonstração:

teo49

 $H \subseteq H'$, pois $\sigma \in H$, tem-se $\sigma(a) = a, \forall a \in \mathcal{F}(H) \Rightarrow \sigma \in H'$. Resta mostrar que H' é fechado e $H' \subset \overline{H}$.

• H' é fechado. De fato, seja $\sigma \in G \backslash H'$. Então, $\exists \alpha \in \mathcal{F}(H)$ tal que $\sigma(\alpha) \neq \alpha$. Tome $L \in \mathscr{A}$ tal que $\alpha \in L$ (Lema 9.7) e seja $N = G(K/L) \in \mathscr{B}$.

Temos que $\forall \tau \in N, \tau(\alpha) = \alpha \Rightarrow \sigma(\tau(\alpha)) = \sigma(\alpha) \neq \alpha.$

- $\Rightarrow \sigma \circ \tau \not\in H', \forall \tau \in N \Rightarrow \sigma N \cap H' = \emptyset, \sigma N \text{ \'e aberto e cont\'em } \sigma.$
- $\Rightarrow G \backslash H' \Rightarrow H'$ fechado.
- $H' \subset \overline{H}$. De fato, seja $L = \mathcal{F}(H)$ e seja $\sigma \in H', N \in \mathcal{B}$. Provar que $\sigma N \cap H \neq \emptyset, \forall \sigma \in H, \forall N$. Seja $E = \mathcal{F}(N) \in \mathcal{A}$ e $H_0 = \{\rho|_E : \rho \in H\} \Rightarrow H_0 \leqslant G(E/F)$

$$\Rightarrow \mathcal{F}(H_0) = \mathcal{F}(H) \cap E = L \cap E \overset{\mathrm{T.F. \ Galois \ finito}}{\Longrightarrow} H_0 = G(E, E \cap L).$$

Agora $\sigma \in H' \Rightarrow \left. \sigma \right|_L = id \Rightarrow \left. \sigma \right|_E = id$

$$\Rightarrow \exists \rho \in {\cal H} \text{ tal que } \rho|_E = \sigma|_E \Rightarrow \sigma^{-1} \circ \rho \in {\cal N} = G(K/E)$$

$$\Rightarrow \rho \in \sigma N \cap H \Rightarrow \sigma N \cap H \neq \emptyset.$$

Teorema 9.13 (Fundamental da Teoria de Galois Infinita) Seja K/F galoisiana e G = G(K/F) munido com a topologia de Krull. A correspondência $\{H \leqslant G(K/F), H \text{ fechado na topologia de } G\} \mapsto \{L \text{ corpo} : F \subseteq L \subseteq K\}$

$$L \overset{\varphi}{\mapsto} G(K/L)$$

$$\mathcal{F}(H) \stackrel{\psi}{\leftarrow} H$$

é uma bijeção que inverte a inclusão. E ainda:

- 1. $L \leftrightarrow H$, então $(G:H) < \infty \Leftrightarrow [L:F] < \infty \Leftrightarrow H$ aberto;
- 2. $H \leq G \Leftrightarrow L/F$ galoisiana, $G(L/F) \cong G/H$.

Demonstração:

- (i) Mostremos que ψ está bem definida.
 - Vimos que dado $H \subset G = G(K/F)$ o corpo fixo $\mathcal{F}(H) = \{x \in K : \sigma(x) = x, \forall \sigma \in H\}$ é de fato um corpo contido em K e que contém F.
- (ii) Mostremos que φ está bem definida. K/F galoisiana $\Rightarrow L/F$ galoisiana. Mas $\varphi(L) = G(K/L)$ que é subgrupo de G(K/F), pois σ fixa $L \Rightarrow \sigma$ fixa F, e G(K/L) é fechado de G (Teo. 9.12).
- (iii) Bijeção: $\varphi(\psi(H)) = H, \psi(\varphi(L)) = L.$ $\varphi(\psi(H)) = \varphi(\mathcal{F}(H)) = G(K/\mathcal{F}(H)) = H, (H \text{ fechado} + \text{teorema}).$ $\psi(\varphi(L)) = \psi(G(K/L)) = \mathcal{F}(G(K/L)) = L, (K/L \text{ galoisiana}).$
- (iv) $F \subset L_1 \subset L_2 \subset K$. Mostrar que $G(K/L_1) \supset G(K/L_2)$, $(\varphi(L_1) \supset \varphi(L_2))$. Seja $\sigma \in G(K/L_2)$. $\Rightarrow \sigma(x) = x, \forall x \in L_2 \supset L_1$. $\Rightarrow \sigma(x) = x, \forall x \in L_1 \Rightarrow \sigma \in G(K/L_1) \Rightarrow G(K/L_2) \subset G(K/L_1)$.
- (v) Mostrar que $H_1 \subset H_2 \Rightarrow \psi(H_1) \supset \psi(H_2)$, ou seja, $\mathcal{F}(H_1) \supset \mathcal{F}(H_2)$. Seja $x \in \mathcal{F}(H_2)$. $\Rightarrow \sigma(x) = x, \forall \sigma \in H_2 \supset H_1$. $\Rightarrow \sigma(x) = x, \forall \sigma \in H_1 \Rightarrow \mathcal{F}(H_1) \supset \mathcal{F}(H_2)$.

Resta provar que se $L \leftrightarrow H$, então $(G:H) < \infty \Leftrightarrow [L:F] < \infty \Leftrightarrow H$ aberto.

- (i) Mostrar que $(G:H) < \infty \Leftrightarrow [L:F] < \infty$.
- (ii) Mostrar que $(G:H) < \infty H$ aberto. $(G:H) < \infty \Rightarrow G \backslash H$ é união finita de classes de H em $G, G \backslash H = \sigma_1 H \cup \ldots \cup \sigma_n H$ é fechado $\Rightarrow H$ aberto.
- (iii) Mostrar que H aberto \Rightarrow $[L:F] < \infty$. H aberto $\Rightarrow \exists N \in \mathcal{B}$ tal que $id \in N$. Seja $E = \mathcal{F}(N)$, temos $N \subset H \Rightarrow L \subseteq E, [E:F] < \infty \Rightarrow [L:F] < \infty$. Não faremos: (G:H) = [L:F].

Exemplo 9.1 Sejam K/F galoisiana e $[K:F] < \infty$. Então a topologia de Krull em G(K/F) é discreta, pois todo subgrupo de G(K/F) é fechado (e aberto, pois é união finita de classes).

Logo, o T.F.T.G. finita é um caso particular do teorema anterior.

Exemplo 9.2 $\mathbb{Q}(2)$ é fecho quadrático de \mathbb{Q} . $[\mathbb{Q}(2):\mathbb{Q}] = \infty$.

Régis © 2009 Topologia Geral **93**

Solução de Alguns Exercícios

1 (3.1) Seja (M,d) um espaço métrico. Defina conjunto aberto e conjunto fechado em M. Demonstre que \emptyset e M são ao mesmo tempo abertos e fechados em M. Demonstre que a bola aberta é um conjunto aberto em M. Demonstre que a união arbitrária de abertos de M é um aberto de M e a interseção finita de abertos de M é um aberto de M. Faça a afirmação correspondente a fechados de M e demonstre-a.

Solução:

- i) Um conjunto $A \subset M$ é aberto se para cada $a \in A, \exists \varepsilon > 0$ tal que $B_{\varepsilon}(a) \subset A$. Um conjunto $F \subset M$ é fechado se seu complementar F^c é aberto.
- ii) \emptyset é aberto. De fato, como o conjunto vazio \emptyset não possui elemento algum, não pode existir no conjunto vazio elemento que não esteja no seu interior. Logo \emptyset é aberto.

M é aberto, pois todos seus pontos são interiores.

Agora, $\emptyset^c = M$ e M é aberto, então \emptyset é fechado.

E $M^c = \emptyset$, que é aberto, então M é fechado.

iii) A bola aberta é um conjunto aberto em M. De fato, seja $B=B_{\varepsilon}(a)$. Devemos mostrar que dado $x\in B, \exists \delta>0$ tal que $B_{\delta}(x)\subset B$.

Seja
$$\delta = \frac{\varepsilon - d(x, a)}{2}$$
.

$$d(y,a) \leq \underbrace{\frac{d(y,x)}{<\delta}}_{<\delta} + d(x,a)$$

$$= \frac{\varepsilon - d(x,a)}{2} + d(x,a)$$

$$= \frac{\varepsilon - d(x,a) + 2d(x,a)}{2}$$

$$= \frac{\varepsilon}{2} + \frac{d(x,a)}{2}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\Rightarrow d(y,a) < \varepsilon$$

$$\Rightarrow y \in B$$

- iv) $\bigcup_{\lambda \in \Lambda} \mathscr{A}_{\lambda}$ é aberto e $\mathscr{A}_1 \cap \ldots \cap \mathscr{A}_n$ é aberto.
 - Sejam $A=\bigcup_{\lambda\in\Lambda}\mathscr{A}$ e $a\in A$. Devemos mostrar que $\exists \varepsilon>0$ tal que $B_{\varepsilon}(a)\subset A$. $a \in A \Rightarrow \exists \lambda_0 \in A$ tal que $a \in A_{\lambda_0}$, que é aberto. Logo, $\exists \varepsilon > 0$ tal que $B_{\varepsilon}(a) \subset A_{\lambda_0} \subset A$; $\Rightarrow B_{\varepsilon}(a) \subset A$.
 - Portanto, A é aberto. • Sejam $A = A_1 \cap \ldots \cap A_n$ e $a \in A$.

Note que $a \in A_i, \forall i$.

Como A_1, \ldots, A_n é aberto, existem $\varepsilon_1, \ldots, \varepsilon_n > 0$ tal que $B_{\varepsilon_i}(a) \subset A_i, i =$

Tome $\varepsilon = \min_{1 \leqslant i \leqslant n} \{ \varepsilon_i \}.$

 $\Rightarrow B_{\varepsilon}(a) \subset B_{\varepsilon_i}(a) \subset A_i, i = 1, \dots, n.$

$$\Rightarrow B_{\varepsilon}(a) \subset \bigcap_{i=1}^{n} A_{i} = A.$$
 Portanto, $A \not\in aberto.$

- v) Seja (M, d) espaço métrico.
 - Sejam $F_{\lambda}, \lambda \in \Lambda$, fechados de M. Então, $\bigcap F_{\lambda}$ é fechado.

• Se F_1, \ldots, F_n são fechados de M, então $F_1 \cup \ldots \cup F_n$ é fechado. A intersecção arbitrária de fechados é fechado e a união finita de fechados é fechado.

De fato,

•
$$F_{\lambda}$$
 fechado, $\forall \lambda \in \Lambda$.

$$\Rightarrow F_{\lambda}^c$$
 é aberto, $\forall \lambda \in \Lambda$.

$$\Rightarrow \bigcup_{\lambda \in \Lambda} F_{\lambda}^c$$
é aberto.

$$\operatorname{Mas} \bigcup_{\lambda \in \Lambda} F_{\lambda}^{c} = \left(\bigcap_{\lambda \in \Lambda} F_{\lambda}\right)^{c} \Rightarrow \left(\bigcap_{\lambda \in \Lambda} F_{\lambda}\right)^{c} \text{ \'e aberto.}$$

$$\Rightarrow \bigcap_{\lambda \in \Lambda} F_{\lambda}$$
é fechado.

•
$$F_i$$
 fechado, $\forall i = 1, \ldots, n$.

$$\Rightarrow F_i^c$$
 é aberto.

$$\Rightarrow \bigcap_{i=1}^{n} F_i^c$$
 é aberto $= \left(\bigcup_{i=1}^{n} F_i\right)^c$

$$\Rightarrow F_1 \cup \ldots \cup F_n$$
 é fechado.

 ${\bf 2}$ (3.2) Seja Mum conjunto não vazio. Mostre que a aplicação $d:M\times M\to \mathbb{R}$ dada por

$$d(x,y) = \begin{cases} 1 & \text{, se } x \neq y \\ 0 & \text{, se } x = y \end{cases}$$

é uma métrica em M. A aplicação d é denominada de métrica discreta e o conjunto não vazio M munido com a métrica e denominado de espaço etrico ediscreto. Considere e0, e0 o espaço métrico e1 discreto. Dado e2 de e3, mostre que uma bola aberta qualquer com centro e4 e5 igual a e4, ou a e6. Utilize este fato para mostrar que todo subconjunto de e6 ao mesmo tempo aberto e6 fechado e7 que o interior de uma bola fechada em e8 não precisa ser a bola aberta de e9.

Solução:

i) Sejam
$$x, y, z \in M$$
.

(i) Por definição, se
$$x \neq y \Rightarrow d(x,y) = 1 > 0$$
.

CAPÍTULO 10. SOLUÇÃO DE ALGUNS EXERCÍCIOS

- (ii) Por definição, se $x = y \Leftrightarrow d(x, y) = 0$.
- (iii) se $x \neq y \Rightarrow d(x, y) = 1 = d(y, x)$;
 - se $x = y \Rightarrow d(x, y) = 0 = d(y, x)$.
- (iv) se $x \neq y \Rightarrow d(x, y) + d(y, z) = 1 + 1 = 2 > 1 = d(x, z);$
 - se $x = y \Rightarrow d(x, y) + d(y, z) = 0 + 0 = 0 = d(x, z)$.

Portanto, $d(x, y) + d(y, z) \ge d(x, z), \forall x, y, z \in M$.

ii) Seja $x \in M$ e $\varepsilon > 0$.

$$\varepsilon > 1 \Rightarrow B_{\varepsilon}(x) = \{ y \in M : d(x, y) < \varepsilon \} = M$$

$$0<\varepsilon<1\Rightarrow B_\varepsilon(x)=\{y\in M: d(x,y)<\varepsilon\}=\{x\}$$

Então, dado $A \subset M$ e $x \in A$, tome $\varepsilon = 1/2$.

Então, $B_{1/2}(n) = \{x\} \subset A, \forall x \in A \Rightarrow A \text{ aberto.}$

s novas funções

3 (3.3) Seja d uma métrica no conjunto não vazio M. Mostre que as novas funções $d_1, d_2: M \times M \to \mathbb{R}$ definidas, respectivamente por

$$d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$$
 e $d_2(x,y) = \min\{1, d(x,y)\}$

para todos $x, y \in M$, também são métricas em M. Note que $0 \le d_1(x, y) \le 1$, para todos $x, y \in M$. Por este motivo d_1 é denominada métrica limitada.

Suponha que M é munido da norma $\| \ \|$, isto é, $(M,\| \ \|)$ é um espaço vetorial normado. Mostre que a aplicação $d:M\times M\to \mathbb{R}$, dada por $d(x,y)=\|x-y\|$ é uma métrica em M. Isso que dizer a métrica d provém da norma $\| \ \|$. Contudo, nem toda métrica provém de uma norma. De fato, vamos supor que (M,d) é um espaço métrico discreto e ao mesmo tempo M é espaço vetorial com a norma $\| \ \|$, tal que $d(x;y)=\|x-y\|$. Observe que para $x\neq 0$, temos $d(0,x)=1=d(0,\lambda x)$, para todo $\lambda>0$ real. Utilizando este fato conclua o absurdo: $1=\lambda$, para todo λ real positivo. Portanto, a métrica discreta não provem de uma norma.

Solução:

- d_1 é métrica em M. De fato,
 - (i) d é métrica $\Rightarrow d(x,y) \geqslant 0$. Logo, $\frac{d(x,y)}{1+d(x,y)} \geqslant 0$.
 - (ii) d é métrica $\Rightarrow d(x,y) = 0 \Leftrightarrow x = y$.

Supondo
$$d_1(x,y) = 0 \Leftrightarrow \frac{d(x,y)}{1 + d(x,y)} = 0 \Leftrightarrow d(x,y) = 0 \Leftrightarrow x = y.$$

Régis © 2009

98

(iii) Seja
$$d(x,y)=d(y,x)$$
, pois, d é métrica.
Então, $d_1(x,y)=\frac{d(x,y)}{1+d(x,y)}=\frac{d(y,x)}{1+d(y,x)}=d_1(y,x)$
 $\Rightarrow d_1(x,y)=d_1(y,x)$

(iv) Seja $x, y, z \in M$. Então,

$$\frac{d(x,z)}{1+d(x,z)+d(z,y)} \leqslant \frac{d(x,z)}{1+d(x,z)} = d_1(x,z) \text{ e}$$

$$\frac{d(z,y)}{1+d(x,z)+d(z,y)} \leqslant \frac{d(z,y)}{1+d(z,y)} = d_1(z,y)$$

Como d é métrica, $d(x, y) \leq d(x, z) + d(z, y)$. Logo,

$$d_1(x,y) = \frac{d(x,y)}{1+d(x,y)} \leqslant \frac{d(x,z)+d(z,y)}{1+d(x,z)+d(z,y)} =$$

$$= \frac{d(x,z)}{1+d(x,z)+d(z,y)} + \frac{d(z,y)}{1+d(x,z)+d(z,y)} \leqslant d_1(x,z) + d_1(z,y)$$

$$\Rightarrow d_1(x,y) \leqslant d_1(x,z) + d_1(z,y)$$

Portanto, d_1 é métrica.

- d_2 é métrica em M. De fato, seja $x, y, z \in M$.
 - (i) Como d é uma métrica, $d(a,b) \ge 0$. Logo, $d_2(a,b)$, que é 1 ou d(a,b), é também ≥ 0 .
 - (ii) Se a = b, então $d_2(a, b) = \min\{1, d(a, b)\} = \min\{1, 0\} = 0$.
 - (iii) Por definição, $d_2(x,y) = d(x,y)$ ou $d_2(x,y) = 1$. Suponhamos $d_2(x,y) = d(x,y)$, então d(x,y) < 1. Como d é uma métrica, d(x,y) = d(y,x) < 1. Portanto, $d_2(y,x) = d(y,x) = d(x,y) = d_2(x,y)$. Por outro lado, suponhamos $d_2(x,y) = 1$; então, $d(x,y) \ge 1$. Logo, $d(y,x) = d(x,y) \ge 1$. Portanto, $d_2(x,y) = 1 = d_2(y,x)$.
 - (iv) Observe que $d_2(x,y)=\min\{1,d(x,y)\}\leqslant 1$. Logo, se $d_2(x,z)=1$ ou $d_2(z,y)=1$, então a desigualdade triangular fica ok. Mas, se $d_2(x,z)<1$ e $d_2(z,y)<1$, então $d_2(x,z)=d(x,z)$ e $d_2(z,y)=d(z,y)$. Portanto,

$$d_2(x,y) = \min\{1, d(x,y)\} \le d(x,y) \le d(x,z) + d(z,y) = d_2(x,z) + d_2(z,y) \Rightarrow d_2(x,y) \le d_2(x,z) + d_2(z,y)$$

Assim, a desigual dade triangular vale em todos os casos. Portanto, d_2 é métrica.

CAPÍTULO 10. SOLUÇÃO DE ALGUNS EXERCÍCIOS

- Mostremos que a aplicação $d: M \times M \to \mathbb{R}$ dada por $d(x,y) = \|x-y\|$ é uma métrica em M.
 - (i) $d(x,y) = ||x y|| \ge 0$, pois, $||x|| \ge 0$.
 - (ii) $d(x,y) = 0 \Leftrightarrow ||x y|| = 0 \Leftrightarrow x y = 0 \Leftrightarrow x = y$.
 - (iii) Note que $\|kx\| = |k| \, \|x\|$, pois $(M, \| \ \|)$ é um espaço vetorial normado. Então,

$$d(x,y) = ||x - y|| = ||(-1)(y - x)|| = |-1| ||y - x|| = ||y - x|| = d(y,x)$$

(iv) Note que $\|x+y\| \leqslant \|x\| + \|y\|$, pois $(M,\|\ \|)$ é um espaço vetorial normado. Então, se $a,b,c \in (M,\|\ \|)$, substituindo x=a-b e y=b-c, temos

$$\|a-c\| = \|(a-b) + (b-c)\| = \|x+y\| \leqslant \|x\| + \|y\| = \|a-b\| + \|b-c\|$$
ou seja,

$$d(a,c) \leqslant d(a,b) + d(b,c)$$

Portanto, d é métrica.

Vamos concluir o absurdo: $1 = \lambda$, para todo λ real positivo.

Para $x \neq 0$, temos $d(0,x) = 1 = d(0,\lambda x)$, para todo $\lambda > 0$ real.

 $Como \ d(x,y) = ||x - y||$

$$\Rightarrow d(0,x) = \|0 - x\| = \|-x\| = |-1| \|x\| = \|x\| = 1 \text{ e}$$

$$d(0,\lambda x) = \|0 - \lambda x\| = \|-\lambda x\| = |-\lambda| \|x\| = |-1| |\lambda| \|x\| = \lambda \|x\| = 1$$

Portanto, $d(0,x)=1=d(0,\lambda x)=\lambda \Rightarrow \lambda=1$, para todo λ real positivo. Logo, a métrica discreta não provém de uma norma.

4 (3.4) Considere o espaço euclidiano \mathbb{R}^n (munido da norma euclidiana usual). Sejam $A, B \subset \mathbb{R}^n$ abertos. Demonstre que $A+B=\{a+b|a,b\in\mathbb{R}^n\}$ é também aberto de \mathbb{R}^n . Demonstre que: o intervalo $(a,b)\subset\mathbb{R}$ é um aberto de \mathbb{R} ; o conjunto $\{(x,y)\in\mathbb{R}^2|1< x<2\}$ é um aberto do \mathbb{R}^2 ; o conjunto $\{(x,y)\in\mathbb{R}^2|0\leqslant x\leqslant1$ e $1\leqslant y\leqslant2\}$ é um fechado de \mathbb{R}^2 .

Solução:

Para mostrar que $A + B = \{a + b : a, b \in \mathbb{R}^n\}$ é um aberto de \mathbb{R}^n , devemos

- 1) Dado $a \in A$, provar que $\mathcal{U}_a = a + B = \{a + b; b \in B\}$ é aberto.
- 2) Notar que $A+B=\bigcup_a (a+B)$ e usar o fato de que a união arbitrária de abertos é aberto.

Seja
$$x \in \mathcal{U}_a \Rightarrow x = a + b, b \in B$$
.

$$B \text{ aberto} \Rightarrow \exists \varepsilon > 0 \text{ tal que } B_{\varepsilon}(b) \subset B.$$

Afirmação:
$$B_{\varepsilon}(x) \subset \mathcal{U}_a = a + B$$
.

De fato,
$$y \in B_{\varepsilon}(x) \Rightarrow y = a + (y - a)$$

$$\Rightarrow \|(y-a)-b\| = \|y-(a+b)\| = \|y-x\| < \varepsilon \Rightarrow y-a \in B \Rightarrow y \in a+B$$

Para mostrar que o intervalo $(a,b) \subset \mathbb{R}$ é um aberto de \mathbb{R} . Façamos:

Dado
$$x \in (a, b)$$
, devemos obter $\varepsilon > 0$ tal que $B_{\varepsilon}(x) = (x - \varepsilon, x + \varepsilon) \subset (a, b)$.

Tomando
$$\varepsilon = \min\left\{\frac{|x-a|}{2}, \frac{|x-b|}{2}\right\}$$
, concluimos que $(x-\varepsilon, x+\varepsilon) \subset (a,b)$.

Para mostrar que o conjunto $\{(x,y)\in\mathbb{R}^2:0\leqslant x\leqslant 1$ e $1\leqslant y\leqslant 2\}$ é um fechado de \mathbb{R}^2 . Façamos F^c aberto:

Figura 10.1:

Tome
$$P = (x_0, y_0) \in F^c, x \in A_1$$
. Escolha $\varepsilon = \min \left\{ \frac{|x_0|}{2}, \frac{|x_0 - 1|}{2}, \frac{|y_0|}{2}, \frac{|y_0 - 1|}{2} \right\}$.

Note que
$$B_{\varepsilon}(P) \subset F^c$$
.

Analogamente, sendo
$$(x_0,y_0)\in A_2,A_3$$
 ou A_4 , obtém-se $\varepsilon>0$ tal que $B_\varepsilon(P)\subset F^c\Rightarrow F^c$ aberto. \square

5 (4.1) Defina topologia sobre um conjunto. Defina espaço topológico. Considere o conjunto $X = \{a, b, c\}$. Classifique todas as topologias possíveis sobre X, isto é, liste todos os subconjuntos do conjunto das partes de X e verifique quais deles são topologia.

Solução:

Cada topologia τ em X é da forma $\tau = \{X, \emptyset, A, B\}$, onde A e B correspondem ao caso I ou II do problema precedente.

Precedente: Seja τ a topologia num conjunto X, consistindo em quatro conjuntos, isto é, $\tau = \{X, \emptyset, A, B\}$ onde A e B são subconjuntos próprios, distintos, não-vazios de X. Que condições devem A e B satisfazer?

Com $A \cap B$ deve também pertencer a τ , há duas possibilidades:

- (i) $A \cap B = \emptyset$. Então $A \cup B$ não pode ser A ou B; logo, $A \cup B = X$. Assim, a classe $\{A, B\}$ é partição de X.
- (ii) $A \cap B = A$ ou $A \cap B = B$.

Em qualquer caso, um dos conjuntos é subconjunto do outro e os membros de τ são totalmente ordenados pela inclusão: $\emptyset \subset A \subset B \subset X$ ou $\emptyset \subset B \subset A \subset X$.

(i) $\{A, B\}$ é uma partição de X.

As topologias nesse caso são as seguintes:

$$\tau_1 = \{X, \emptyset, \{a\}, \{b, c\}\}, \tau_2 = \{X, \emptyset, \{b\}, \{a, c\}\} \in \tau_3 = \{X, \emptyset, \{c\}, \{a, b\}\}.$$

(ii) Os membros de τ são totalmente ordenados por inclusão. As topologias nesse caso são as seguintes:

$$\tau_4 = \{X, \emptyset, \{a\}, \{a, b\}\}, \tau_5 = \{X, \emptyset, \{b\}, \{a, b\}\}, \tau_6 = \{X, \emptyset, \{a\}, \{a, c\}\}\}$$
$$\tau_7 = \{X, \emptyset, \{c\}, \{a, c\}\}, \tau_8 = \{X, \emptyset, \{b\}, \{b, c\}\}, \tau_9 = \{X, \emptyset, \{c\}, \{b, c\}\}$$

As topologias com 3 membros são:

$$\tau_{10} = \{X, \emptyset, \{a\}\}, \tau_{11} = \{X, \emptyset, \{b\}\}, \tau_{12} = \{X, \emptyset, \{c\}\}\}$$

6 (4.3) Seja $\tau^r = \{\mathbb{R}, \emptyset, (q, \infty); q \in \mathbb{Q}\}$. Aqui, fixado $q \in \mathbb{Q}$, o conjunto (q, ∞) é o intervalo aberto infinito $\{x \in \mathbb{R} | x > q\}$. Mostre que τ^r não forma uma topologia sobre \mathbb{R} .

Solução:

Seja $A = \bigcup \{(q, \infty); q \in \mathbb{Q}, q > \sqrt{2}\} = (\sqrt{2}, \infty)$ que é a união de membros de τ^r , mas $A \notin \tau^r$, pois $\sqrt{2}$ é irracional. Logo, τ^r não satisfaz a condição que a união de um número qualquer de conjuntos de τ^r pertence a τ^r , não sendo, portanto, uma topologia de \mathbb{R} .

$$A_q = (q, \infty) \Rightarrow A = \cup \{A_q; q \in \mathbb{Q}, q > \sqrt{2}\} = (\sqrt{2}, \infty)$$

7 (4.4) Seja $f: X \to Y$ uma função de um conjunto X num espaço topológico (Y,τ) . Mostre que $T=\{f^{-1}(U)|U\in\tau\}$ é uma topologia sobre X.

Como τ é uma topologia, $Y, \emptyset \in \tau$, mas $X = f^{-1}(Y)$ e $\emptyset = f^{-1}(\emptyset)$ de modo que $X, \emptyset \in T$ e T satisfaz [01].

[02] Seja $\{B_i\}$ uma classe de conjuntos em T. Por definição, existe $\mathcal{U}_i \in \tau$, para

o qual
$$B_i = f^{-1}(\mathcal{U}_i)$$
. Mas $\bigcup_{i \in I} B_i = \bigcup_{i \in I} f^{-1}((\mathcal{U}_i)) = f^{-1}\left(\bigcup_{i \in I} \mathcal{U}_i\right)$.

Como τ é uma topologia, $\bigcup \mathcal{U}_i \in \tau$, de modo que $\bigcup B_i \in T$, e satisfaz [02].

[03] Sejam $B_1, B_2 \in T$. Então, $\exists \mathcal{U}_1, \mathcal{U}_2 \in \tau$ tal que $B_1 = f^{-1}(\mathcal{U}_1)$ e $B_2 = f^{-1}(\mathcal{U}_2)$.

Mas $B_1 \cap B_2 = f^{-1}(\mathcal{U}_1) \cap f^{-1}(\mathcal{U}_2) = f^{-1}(\mathcal{U}_1 \cap \mathcal{U}_2) \in \mathcal{U}_1 \cap \mathcal{U}_2 \in \tau$, pois, τ é topologia.

Assim, $B_1 \cap B_2 \in T$ e [03] é também satisfeita.

Portanto, T é topologia sobre X.

8 (4.5) Seja τ a classe de subconjuntos de $\mathbb N$ formada de \emptyset e de todos os subconjuntos de \mathbb{N} da forma $E_n = \{n, n+1, n+2\}$ com $n \in \mathbb{N}$. Mostre que τ é uma topologia em N. Indique os abertos que contêm o inteiro positivo 6. Determine os fechados segundo esta topologia. Determine o fecho dos conjuntos {7, 24, 47, 85} e $\{3,6,9,12\}$. Determine os subconjuntos de $\mathbb N$ que são densos em $\mathbb N$ (neste caso, um subconjunto é denso se o seu fecho é N).

Solução:

- 1. τ é topologia em \mathbb{N} .
 - (1) Como \emptyset e $E_1 = \{1, 2, 3, \ldots\}$ pertencem a τ , τ satisfaz [1];
 - (2) Seja, agora, τ uma subclasse de $\tau \setminus \{\mathbb{N}, \emptyset\}$, isto é, $\tau = \{E_n; n \in I\}$, onde I \acute{e} um conjunto de inteiros positivos. Note que I contém um menor inteiro positivo $n_0 \in \{E_n; n \in I\} = \{n_0, n_0 + 1, n_0 + 2, \ldots\} = E_{n_0}$ que pertence a τ . Logo, τ satisfaz [2];
 - (3) τ é totalmente ordenado pela inclusão, isto é, $E_1 \supset E_2 \supset E_3 \supset \ldots \supset \ldots$ implica que a interseção finita de conjuntos quaisquer de τ pertence a T. Portanto, τ é topologia de \mathbb{N} .
- 2. Como os abertos não-vazios são da forma $E_n = \{n, n+1, n+2, \ldots\}$ com $n \in \mathbb{N}$, os abertos que contém 6 são os seguintes:

$$E_1 = \mathbb{N} = \{1, 2, 3, \ldots\}$$
 $E_4 = \{4, 5, 6, \ldots\}$
 $E_2 = \{2, 3, 4, \ldots\}$ $E_5 = \{5, 6, 7, \ldots\}$
 $E_3 = \{3, 4, 5, \ldots\}$ $E_6 = \{6, 7, 8, \ldots\}$

3. Fechados: Um conjunto é fechado se, e somente se, seu complementar é aberto. Então, os subconjuntos fechados de W são:

$$\mathbb{N}, \emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}, \dots, \{1, 2, 3, \dots, n\}, \dots$$

4. Fecho: O fecho de um conjunto é o menor conjunto fechado. Então:

$$\overline{\{7,24,47,85\}} = \{1,2,3,\dots,84,85\}
\overline{\{3,6,9,12\}} = \{1,2,3,\dots,11,12\}
\overline{\{3,6,9,12,\dots\}} = \{1,2,3,\dots\} = \mathbb{N}$$

5. Densos: Se um subconjunto B de \mathbb{N} é infinito, ou não cotado, então $\overline{B} = \mathbb{N}$, isto é, B é denso em \mathbb{N} . Se B é finito, então seu fecho não é \mathbb{N} , isto é, B não é denso em \mathbb{N} .

Ex: $\{3, 6, 9, 12, \ldots\}$ é denso em \mathbb{N} , pois, $\overline{\{3, 6, 9, 12\}} = \{1, 2, 3, \ldots\} = \mathbb{N}$.

9 (4.6) Mostre que se A é um subconjunto de um espaço topológico X, então o fecho de A é a união do interior com a fronteira. Mostre também que o interior de A é $A \setminus \partial A$ e que $X = \operatorname{int}(A) \cup \partial A \cup \operatorname{int}(X \setminus A)$.

Solução:

• $\overline{A} = \operatorname{int}(A) \cup \partial(A)$.

 $X=\operatorname{int}(A)\cup\partial(A)\cup\operatorname{ext}(A), (\operatorname{int}(A)\cup\partial(A))^c=\operatorname{ext}(A),$ basta mostrar que $(\overline{A})^c=\operatorname{ext}(A).$

Seja $a \in \text{ext}(A)$, então, existe um aberto G tal que $a \in G \subset A^c \Rightarrow G \cap A = \emptyset$.

Então, a não é ponto limite de A, isto é, $a \notin A'$ (pontos de acumulação de A) e $a \notin A$. Logo, $a \notin A' \cup A = \overline{A} \Rightarrow a \in (\overline{A})^c \Rightarrow \operatorname{ext}(A) \subset (\overline{A})^c$.

Agora, seja $a \in (\overline{A})^c = (A \cup A')^c$. Assim, $a \notin A'$, e, portanto, existe um aberto G tal que $a \in G$, e $(G \setminus \{a\}) \cap A = \emptyset$. Mas, também, $a \notin A$, de modo que $G \cap A = \emptyset$ e $a \in G \subset A^c$. Assim, $a \in \text{ext}(A) \Rightarrow (\overline{A})^c \subset \text{ext}(A)$.

$$\therefore (\overline{A})^c = \operatorname{ext}(A) \Leftrightarrow \overline{A} = \operatorname{int}(A) \cup \partial(A)$$

O exterior de A, ext(A), é o interior do complementar de A, isto é, int (A^c) . Fronteira de A, $\partial(A)$, é o conjunto dos pontos que não pertencem ao interior nem ao exterior de A.

Note que $X = \operatorname{int}(A) \cup \partial(A) \cup \operatorname{ext}(A)$ e $\operatorname{ext}(A) = (\operatorname{int}(A) \cup \partial(A))^c$

$$\Rightarrow X = \operatorname{int}(A) \cup \partial(A) \cup (\operatorname{int}(A) \cup \partial(A))^c = \operatorname{int}(A) \cup \partial(A) \cup (\overline{A})^c.$$

Devemos mostrar que $(\overline{A})^c = \operatorname{int}(X \setminus A)$.

De fato, seja $a \in (\overline{A})^c$. Então, $a \notin \overline{A} \Rightarrow a \notin A \Rightarrow a \in \operatorname{int}(X \setminus A) \Rightarrow (\overline{A})^c \subset \operatorname{int}(X \setminus a)$.

Agora, se $a \in \text{int}(X \backslash A) \Rightarrow \exists G$, aberto, $G \subset X \backslash A$ tal que $a \in G \subset X \backslash A \Rightarrow a \in X \backslash A \Rightarrow a \in (\overline{A})^c$.

$$\therefore X = \operatorname{int}(A) \cup \partial(A) \cup \operatorname{int}(X \setminus A)$$

- $int(A) = A \setminus \partial A$.
 - C) Seja $a \in \text{int}(A)$, então existe um aberto G tal que $a \in G \subset A \Rightarrow a \in A \Rightarrow a \in A \setminus \partial A$.
 - ⊃) Seja $a \in A \backslash \partial A \Rightarrow a \in A$ e $a \notin \partial A$, então existe um aberto G tal que $a \in G \subset A \Rightarrow a \in \text{int}(A)$.

$$\therefore$$
 int(A) = $A \setminus \partial A$

Continuidade, Continuidade num Ponto, Funções Abertas, Funções Fechadas, Homeomorfismos

10 (5.2) Mostre que se (X,τ) é o espaço topológico discreto então qualquer função $f:X\to Y$ (onde Y é outro espaço topológico qualquer) é função contínua. E se X for espaço topológico qualquer e Y for indiscreto (\emptyset e Y forem os únicos abertos) que funções entre estes dois espaços são contínuas?

Solução:

Considere o espaço topológico (Y,τ) e um espaço discreto (X,σ) . Então toda função $f:X\to Y$ é contínua em relação a τ e σ , pois, se H é um aberto de Y, sua inversa $f^{-1}(H)$ é aberto de X, já que todo subconjunto de um espaço discreto é aberto.

Seja $f: X \to Y$ uma função. Se (Y, τ') é um espaço indiscreto, vamos provar que $f: (X, \tau) \to (T, \tau')$ é contínua para qualquer τ .

Devemos mostrar que a imagem inversa de todo aberto de Y é um aberto de X. Como (Y,τ') é um espaço indiscreto, Y e \emptyset são os únicos abertos de Y. Mas $f^{-1}[Y] = X, f^{-1}[\emptyset] = \emptyset$ e X e \emptyset pertencem a qualquer topologia τ em X. Logo, f é contínua para qualquer τ .

Régis © 2009

11 (5.3) Mostre que se (X, d_1) e (Y, d_2) são espaços métricos, então uma função $f: X \to Y$ é contínua se, e somente se, para todo $x \in X$ e $\varepsilon > 0$, existe $\delta > 0$ tal que $d_1(x,y) < \delta$ implica $d_2(f(x), f(y)) < \varepsilon$.

Solução:

- \Rightarrow) Seja f contínua. $x \in X$ e $\varepsilon > 0$. f contínua $\Rightarrow f^{-1}(B_{\varepsilon}(f(x)))$ é aberto de X e contém $x \Rightarrow \exists B_{\delta}(x) \subset f^{-1}(B_{\varepsilon}(f(x)))$. Assim, se $y \in B_{\delta}(x)$, tem-se $f(y) \in B_{\varepsilon}(f(x))$. Logo, $d_1(x,y) < \delta \Rightarrow d_2(f(x),f(y)) < \varepsilon$.
- \Leftarrow) Suponha que a implicação contrária é válida. Seja V aberto de Y e $x \in f^{-1}(V)$. Mas $f(x) \in V$ aberto $\Rightarrow \exists B_{\varepsilon}(f(x)) \subset V \Rightarrow \exists B_{\delta}(x)$ tal que $f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x)) \Rightarrow f^{-1}(V)$ aberto de X. Logo, f é contínua.
- 12 (5.5) Defina continuidade num ponto. Dados X e Y espaços topológicos, mostre que $f:X\to Y$ é contínua se, e somente se, é contínua em cada ponto de X.

Solução:

Sejam X, Y espaços topológicos e $f: X \to Y$ função. Dizemos que f é contínua em $p \in X$ quando dado $V \subset Y, V$ aberto tal que $f(p) \in V$, existe $\mathcal{U} \subset X, \mathcal{U}$ aberto tal que $p \in \mathcal{U}$ e $\mathcal{U} \subset f^{-1}(V)$.

Agora, mostremos que $f:X\to Y$ é contínua se, e somente se, é contínua em cada ponto de X. Suponha f contínua e seja $H\subset Y$ um aberto contendo f(p). Então, $p\in f^{-1}(H)$, e $f^{-1}(H)$ é aberto. Logo, f é contínua em p.

Suponha, agora, f contínua em cada ponto de $p \in X$ e seja $H \subset Y$ aberto. Para todo $p \in f^{-1}(H)$ existe um aberto $G_p \subset X$ tal que $p \in G_p \subset f^{-1}(H)$. Logo, $f^{-1}(H) = \bigcup \{G_p; p \in f^{-1}(H)\}$, união de abertos. Consequentemente, $f^{-1}(H)$ é aberto e, assim, f é contínua.

13 (5.6) Considere o conjunto $X=\{1,2,3,4\}$ munido da topologia $\tau=\{X,\emptyset,\{1\},\{2\},\{1,2\},\{2,3,4\}\}\}$. Considere a função $f:X\to X$, tal que f(1)=f(3)=2,f(2)=4 e f(4)=3. Mostre que f não é contínua em 3 mas é contínua em 4.

Solução:

- i) Mostrar que f não é contínua em 3. Note que $\{1,2\}$ é um aberto contendo f(3) = 2 e que $f^{-1}(\{1,2\}) = \{1,3\}$. Logo, f não é contínua em 3, pois não existe nenhum aberto contendo 3 que esteja contido em $\{1,3\}$.
- ii) Mostrar que f é contínua em 4. Os únicos abertos contendo f(4)=3 são $\{2,3,4\}$ e X. Observe que $f^{-1}(\{2,3,4\})=X$ e f(X)=X. Logo, f é contínua em 4, pois a inversa de cada aberto contendo f(4) é um aberto contendo 4.

14 (5.7) Defina função sequencialmente contínua num ponto. Mostre que se $f: X \to Y$ é contínua num ponto $p \in X$, então f é sequencialmente contínua em p. Construa um contra-exemplo para a recíproca.

Solução:

Contra-exemplo para a recíproca do teorema: Seja $X = \mathbb{R}$ com a topologia $\tau = \{A \subset \mathbb{R}; A^c \text{ enumerável ou } A = \emptyset\}$. Nesta topologia uma sequência $(x_n) \subset \mathbb{R}$ converge para x se, e somente se, $(x_n) = (x_1, \ldots, x_{n_0}, x, \ldots, x, \ldots)$. Logo, se (\mathbb{R}, τ^*) , $\tau^* = \text{topologia qualquer em } \mathbb{R}$, $f: (\mathbb{R}, \tau) \to (\mathbb{R}, \tau^*)$ e $x_n \to x$ em (\mathbb{R}, τ) , tem-se $(f(x_n)) = (f(x_1), f(x_2), \ldots, f(x_0), f(x), \ldots, f(x), \ldots)$ que converge em $(\mathbb{R}, \tau^*), \forall f$. Por outro lado, $f: (\mathbb{R}, \tau) \to (\mathbb{R}, \text{top. usual})$ e $f(a) = a, \forall a$ não é contínua, pois $f^{-1}((a_0, b_0)) = (a_0, b_0)$ não é aberto em τ .

15 (5.8) Dê um exemplo de uma função $f: \mathbb{R} \to \mathbb{R}$ que seja contínua e fechada, mas não aberta. Mostre que a função $f: (0, \infty) \to [-1, 1]$ é contínua, mas nem aberta nem fechada (topologia usual).

Solução:

Seja f uma função constante $f(x) = \sqrt{2}$ para todo $x \in \mathbb{R}$. Então, $f(A) = \{\sqrt{2}\}$ para qualquer $A \subset \mathbb{R}$. Logo, f é uma função fechada e é uma função não aberta. Além disso, f é contínua.

16 (5.9) Neste exercícios sempre supomos topologia usual. Mostre que o intervalo (a,b) é homeomorfo ao intervalo (-1,1) (faça todos os detalhes). Mostre que S^1 é o homeomorfo ao quadrado

$$A = \{(x, y) \in \mathbb{R}^2 | \max\{|x|, |y|\} = 1\}$$

Solução:

Uma função f é dita bicontínua ou topológica se f é aberta e contínua. Assim, $f: X \to Y$ é um homeomorfismo se, e somente se, f é bicontínua e bijetiva.

Régis © 2009

Seja X=(-1,1). A função $f:X\to\mathbb{R}$ definida por $f(x)=\operatorname{tg}\left(\frac{\pi x}{2}\right)$ é bijetiva e contínua. Além disso, a inversa f^{-1} é também contínua. Logo, a reta real \mathbb{R} e o intervalo aberto (-1,1) são homeomorfos.

Mostrar que $(a,b)\cong (-1,1)$. Seja $f:(a,b)\to (-1,1)$ dada por $f(x)=\frac{2x-(b+a)}{b-a}$. Verificar que f é bijetiva, contínua e sua inversa é $f^{-1}(x)=\frac{(b-a)x+(a+b)}{2}$ é contínua.

e continua. Mostrar que $S^1 \cong A$. Definamos $f: S^1 \to A$ levando o arco ab de S^1 no segmento \overline{uv} de A, o arco bc de S^1 no segmento \overline{vw} de A, o arco cd de S^1 no segmento \overline{wz} de A e o arco da de S^1 no segmento \overline{zu} de A, isto é, $f(x,y) = \left(\frac{x}{m}, \frac{y}{m}\right)$ e $f^{-1}(x,y) = \left(\frac{x}{r}, \frac{y}{r}\right)$, onde $m = \max\{|x|, |y|\}$ e $r = \sqrt{x^2 + y^2}$; obviamente f e f^{-1} são bijetoras e contínuas. Logo f é um homeomorfismo.

Figura 10.2:

17 (5.10) Seja (X, τ) um espaço topológico e seja $G(X) = \{f: X \to X | f \text{\'e} \text{ homeomorfismo}\}$. Mostre que G(X) é um grupo com a operação de composição de funções. É G grupo abeliano?

Solução: Sejam $f, g, h \in G(X)$.

- i) $f \circ (g \circ h) = (f \circ g) \circ h$;
- ii) O elemento neutro é id_x . De fato, seja $f \in G(X)$, então $f \circ id_x = f(id_x) = f, \forall f \in G(X)$;
- iii) Dado $f \in G(X), \exists f^{-1} \in G(X)$ tal que $f \circ f^{-1} = f^{-1} \circ f = id_x$. Portanto, $(G(X), \circ)$ é um grupo;
- iv) G não é abeliano.

Régis \odot 2009

Axiomas de Separação

18 (5.14) Mostre que todo espaço métrico é de Hausdorff.

Solução:

Sejam $a, b \in X, a \neq b$. Tomemos $U = B\varepsilon_{/3}(a)$ e $V = B\varepsilon_{/3}(b)$, onde $\varepsilon = d(a, b) > 0$, pois $a \neq b$.

Afirmação: $U \cap V = \emptyset$.

Suponha $U \cap V \neq \emptyset \Rightarrow \exists z \in U \cap V$, então $d(a,b) \leqslant d(a,z) + d(z,b) \Rightarrow \varepsilon < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \frac{2\varepsilon}{3}$. Absurdo. Portanto, $U \cap V = \emptyset$.

19 (5.15) Mostre que se X é Hausdorff, então toda sequência convergente em X tem único limite.

Solução:

 $\overline{\text{Suponha}}(X_n) \subset X, x_n \to a, x_n \to b; a, b \in X, a \neq b.$

Como $X \in T_2, \exists \mathcal{U}, \mathcal{V} \subset X$, abertos, tais que $a \in \mathcal{U}, b \in \mathcal{V}, \mathcal{U} \cap \mathcal{V} = \emptyset$.

Como $x_n \to a, \exists n_0 \in \mathbb{N} \text{ tal que } x_n \in \mathcal{U}, \forall n \geqslant n_0.$

Como $\mathcal{U} \cap \mathcal{V} = \emptyset$, temos que $x_n \notin \mathcal{V}, \forall n \geqslant n_0$.

Como $b \in \mathcal{V}, x_n \notin \mathcal{V}, \forall n \geqslant n_0$, logo x_n não converge pra b. Absurdo.

20 (5.17) Mostre que \mathbb{R} com a topologia usual é Hausdorff, mas \mathbb{R} com a topologia cofinita não é Hausdorff.

Solução

Sejam $a, b \in \mathbb{R}; a \neq b$. Suponha a < b. Tomemos $\varepsilon = \frac{b-a}{3}$ e $\delta = \frac{b-a}{3} \Rightarrow a \in U = (a-\varepsilon, a+\varepsilon)$ e $b \in V = (b-\delta, b+\delta)$ e $U \cap V = \emptyset$ e U, V abertos de \mathbb{R} .

Figura 10.3:

Agora, mostremos que \mathbb{R} com a topologia cofinita não é Hausdorff. Sejam, U,V conjuntos abertos não-vazios da τ_{cof} . U e V são infinitos, pois são complementares de conjuntos finitos. Se $U \cap V = \emptyset$, então U, infinito, estaria contido no complemento finito de V. Logo, U e V não são disjuntos. Consequentemente, nenhum par de pontos distintos de \mathbb{R} pertencem a conjuntos abertos disjuntos da τ_{cof} . Assim, $(\mathbb{R}, \tau_{\text{cof}})$ não é T_2 .

21 (5.18) Mostre que T_2 implica T_1 mas a recíproca é falsa.

Solução:

A implicação é trivial. Mas para a recíproca note que (X, τ_{cof}) é T_1 , mas como vimos no exercício anterior (X, τ_{cof}) não é T_2 .

Obs: (X, τ) é T_1 se, e somente se, τ contém a topologia cofinita em X.

Compacidade

22 (6.2) Mostre que se A é um subconjunto finito do espaço topológico X, então A é compacto.

Solução:

De fato,
$$A = \{a_1, \ldots, a_n\}$$
. Seja $\{\mathcal{U}_i\}_{i \in I} \subset \tau$ tal que $A \subset \bigcup_{i \in I} \mathcal{U}_i$. Temos que $\exists \mathcal{U}_1, \ldots, \mathcal{U}_n \in \{\mathcal{U}_i\}_{i \in I}$ tal que $a_1 \in \mathcal{U}_1, \ldots, a_n \in \mathcal{U}_n \Rightarrow A \subset \mathcal{U}_1 \cup \ldots \cup \mathcal{U}_n$. Portanto, A é compacto.

23 (6.3) Demonstre que um subconjunto fechado de um espaço topológico compacto é compacto.

Solução:

Seja $\{\mathcal{U}_i\}$ cobertura aberta de $A. \Rightarrow A \subset \bigcup \mathcal{U}_i$.

Afechado $\Rightarrow A^c$ é aberto. $\Rightarrow X = A \cup A^c \subset \bigcup \mathcal{U}_i \cup A^c.$

 $\Rightarrow \bigcup \mathcal{U}_i \cup A^c$ é cobertura aberta do compacto X.

 $\Rightarrow X \subset \mathcal{U}_1 \cup \ldots \cup \mathcal{U}_n \subset A^c$.

Mas $A \subset X \Rightarrow A \subset \mathcal{U}_1 \cup \ldots \cup \mathcal{U}_n$. Portanto, A é compacto.

24 (6.4) Sejam A_1, \ldots, A_n subconjuntos compactos de um espaço topológico X. Mostre que a união $A_1 \cup \ldots \cup A_n$ é compacto.

Solução:

Seja $\{U_i\}_{i\in I}$ uma cobertura aberta de X. $A_1,\ldots,A_n\subset X$ compactos. Então, toda cobertura aberta $\{U_i\}_{i\in I}$ de A_1,\ldots,A_n admite subcobertura finita. Logo, $A_1\subset U_1\cup\ldots\cup U_n$ e $A_2\subset U_1\cup\ldots\cup U_m$. Tome $\max\{m,n\}$ e teremos $A_1\cup A_2\subset U_1\cup\ldots\cup U_p$, p máximo de m e n. Portanto, $A_1\cup A_2$ é compacto.

Fazendo indução sobre n teremos que $A_1 \cup \ldots \cup A_n$ é compacto.

25 (6.5) Mostre que se A é um subconjunto compacto de um espaço de Hausdorff X, então A é fechado.

Solução:

Vamos provar que A^c é aberto. Seja $p \in A^c$, isto é, $p \notin A$. Então, existe¹ um aberto G_p tal que $p \in G_p \subset A^c$. Logo, $A^c = \bigcup \{G_p; p \in A^c\}$. Assim, A^c é aberto, pois é união de abertos, ou seja, A é fechado.

26 (6.6) Sejam A e B subconjuntos compactos disjuntos de um espaço de Hausdorff X. Demonstre que existem dois abertos disjuntos G e H tais que $A \subset F$ e $B \subset H$.

Solução:

Seja $a \in A$. Então, $a \notin B$, pois A e B são disjuntos. Por hipótese, B é compacto; logo, existem 2 conjuntos abertos G_a , $\{G_a; a \in A\}$ é cobertura aberta de A. Como A é compacto, podemos escolher um número finito de abertos, G_{a_1}, \ldots, G_{a_m} , tais qu $A \subset G_{a_1} \cup \ldots \cup G_{a_m}$. Além disso, $B \subset H_{a_1} \cap \ldots \cap H_{a_m}$, pois B é subconjunto de cada um individualmente.

Seja, agora, $G = G_{a_1} \cup \ldots \cup G_{a_m}$ e $H = H_{a_1} \cap \ldots \cap H_{a_m}$. Observe, conforme acima, que $A \subset G$ e $B \subset H$. Além disso, G e H são abertos, pois são a união e interseção finita, respectivamente, de abertos. Basta mostrar que G e H são disjuntos. Observemos que, para cada $i, G_{a_i} \cap H_{a_i} = \emptyset \Rightarrow G_{a_i} \cap H = \emptyset$. Logo, pela lei distributiva, $G \cap H = (G_{a_1} \cup \ldots \cup G_{a_m}) \cap H = (G_{a_1} \cap H) \cup \ldots \cup (G_{a_m} \cap H) = \emptyset \cup \ldots \cup \emptyset = \emptyset$.

Régis \odot 2009 Topologia Geral 111

 $^{^1}A$ subconjunto compacto de um espaço $T_2.$ Se $p\notin A,$ então existe um aberto G tal que $p\in G\subset A^c.$

 $^{^2}A$ subconjunto compacto de um espaço T_1 . E suponhamos $p \in X \backslash A$. Então, existem abertos G e H tais que $p \in G, A \subset H, G \cap H = \emptyset$.

Referências Bibliográficas

- [1] G. Bredon. Topology and geometry, volume 139. Springer, 1993.
- [2] H. Domingues and G. Iezzi. $\acute{A}lgebra\ moderna.$ Atual, 2003.
- [3] N. Kühlkamp. Introdução à topologia geral. 2002.
- [4] E. Lima. Elementos de topologia geral. Ao Livro Técnico, 1970.
- [5] E. Lima. Espaços métricos, impa. Rio de Janeiro, 1977.
- [6] S. Lipschutz. Topologia geral. McGraw-Hill, 1965.
- [7] J. Munkres Font. Topology: a first course. 1975.

Índice Remissivo

A	Distância, 5		
Abertos básicos, 31	Domínio, 71		
Algébrico, 76			
Anel, 71	E		
Automorfismo, 82	Esfera, 5		
	Espaço(s)		
В	booleano, 91		
Base, 31	conexos, 65		
Bola	de Fréchet, 49		
aberta, 5, 13	euclidiano, 1		
fechada, 6	Hausdorff, 50		
	métrico(s), 5, 10		
C	topológico(s), 27		
Cobertura	vetorial		
aberta, 57	normado, 8		
Compacidade, 57	Espectro primo, 38		
Compactificação, 60	Extensão		
de Alexandrov, 60	de corpos, 73		
Compacto, 58	finita, 73		
Conexidade, 65	de isomorfismo, 87		
por caminhos, 69	galoisiana, <i>veja</i> Extensão normal		
Conjunto(s)	normal, 87		
aberto(s), 13	15		
fechado(s), 18, 29	F		
Corpo, 72	Fecho, 23, 30		
algebricamente fechado, 79	Fronteira, 24, 31		
Ъ	Função		
D	aberta, 45		
Desigualdade de Cauchy-Schwarz, 4	contínua, 39		

. 1	1 H . D 1 60
sequencialmente contínua, 44	de Heine-Borel, 63
\mathbf{G}	de Tychonoff, 63 fundamental da álgebra, 79
Grau da extensão, 73	fundamental da teoria de Galois fi-
Grad de Greensde, 10	nita, 87
Н	fundamental da teoria de Galois in-
Homeomorfismo, 46	finita, 92
	Topologia, 27
I	cofinita, 29
Ideal, 37	de Krull, 88
Interior, 31	de Tychonoff, 35
N.f.	de Zariski, 37
M	discreta, 28
Métrica, 10	inicial, 45
discreta, 11	mais fina, 29
zero-um, 11 Mergulho, 60	produto, 35, 61
Weiguino, oo	Transcedente, 76
N	
Norma, 7	V
euclidiana, 2	Vetor(es)
	ortogonais, 2
P	Vizinhança, 36
Polinômio(s)	
minimal, 76	
Ponto(s)	
de acumulação, 20	
interior, 17, 31	
Produto interno, 2	
Projeção	
estereográfica, 47	
S	
Série(s)	
formais de Laurent, 72	
Sequência, 43	
convergente, 43	
Subcobertura, 58	
Subespaço(s)	
topológico(s), 34	
. , ,	
T	
Teorema	

de Borel-Lebesgue, $57\,$