[Aula 03] Linguagens regulares – Autômato finito determinístico (AFD)

Prof. João F. Mari joaof.mari@ufv.br

[AULA 03] LR - Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

BIBLIOGRAFIA

- MENEZES, P. B. Linguagens formais e autômatos,
 6. ed., Bookman, 2011.
 - Capítulo 2.
 - + Slides disponibilizados pelo autor do livro.

ROTEIRO

- Linguagens regulares
 - Hierarquia de Chomsky
- Autômato finito
 - Autômato finito determinístico (AFD)
 - [EX] aa ou bb como subpalavra
 - Função programa estendida, computação
 - [EX] Função programa estendida, computação
 - Linguagem aceita e rejeitada
 - Autômatos finitos equivalentes
 - Linguagem regular linguagem do tipo 3
 - [EX] Linguagem vazia e todas as palavras
 - [EX] Número par de cada símbolo
 - Algoritmo de reconhecimento AFD

Prof. João Fernando Mari (joaof.mari@ufv.br)

-

[AULA 03] LR – Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Linguagens regulares

- <u>Linguagens Regulares</u> ou <u>Tipo 3</u>:
 - Formalismos:
 - Autômato Finito:
 - Formalismo operacional ou reconhecedor
 - Basicamente, um sistema de estados finitos (máquina de estados finitos)
 - Expressão Regular:
 - Formalismo denotacional ou gerador;
 - Conjuntos (linguagens) básicos + concatenação e união.
 - Gramática Regular:
 - Formalismo axiomático ou gerador;
 - Gramática com restrições da forma das regras de produção.

Hierarquia de Chomsky

Prof. João Fernando Mari (joaof.mari@ufv.br)

.

[AULA 03] LR – Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Linguagens Regulares

- Hierarquia de Chomsky:
 - Classe de linguagens mais simples.
 - Algoritmos de reconhecimento, geração ou conversão entre formalismos:
 - Pouca complexidade;
 - Grande eficiência;
 - Fácil implementação.

- Fortes limitações de expressividade:
 - -[EX]
 - Duplo balanceamento não é regular.
 - Linguagens de programação em geral são <u>não regulares</u>.

Linguagens Regulares

- Complexidade de algoritmos autômatos finitos:
 - Classe de algoritmos mais eficientes;
 - Tempo de processamento.
 - Qualquer autômato finito é igualmente eficiente.
 - Qualquer solução é ótima:
 - A menos de eventual redundância de estados.
 - Redundância de estados não influi no tempo:
 - Pode ser facilmente eliminada: Autômato Finito Mínimo.

Prof. João Fernando Mari (joaof.mari@ufv.br)

Ę

[AULA 03] LR – Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Linguagens Regulares

- Importantes propriedades podem ser usadas para:
 - Construir novas linguagens regulares a partir de linguagens regulares conhecidas
 - Provar propriedades.
 - Construir algoritmos.
- Se um problema tiver uma solução regular
 - Considerar preferencialmente a qualquer outra não regular;
 - Eficiência e simplicidade dos algoritmos.

Linguagens Regulares

- Universo de aplicações das linguagens regulares:
 - Muito grande.
 - Constantemente ampliado.
- Exemplo típico e simples:
 - Análise léxica.
 - Compiladores e Interpretadores de linguagens de programação.
- Exemplos mais recentes:
 - Sistemas de animação;
 - Hipertextos;
 - Hipermídias.

Prof. João Fernando Mari (joaof.mari@ufv.br)

SIN 131 – Introdução à Teoria da Computação (PER 3)

[AULA 03] LR – Autômato Finito Determinístico

AUTÔMATO FINITO

Autômato finito

- Autômato Finito: sistema de estados finitos
 - Número finito e predefinido de estados;
 - Modelo computacional comum em diversos estudos teóricoformais:
 - Linguagens Formais;
 - Compiladores;
 - Modelos para Concorrência.

Prof. João Fernando Mari (joaof.mari@ufv.br)

11

[AULA 03] LR – Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Linguagens regulares

Autômato finito

- Formalismo operacional/reconhecedor.
- Tipos de Autômatos Finitos:
 - Autômato Finito Determinístico (AFD)
 - Dependendo do estado corrente e do símbolo lido pode assumir um único estado.
 - Autômato Finito Não Determinístico (AFN)
 - Dependendo do estado corrente e do símbolo lido pode assumir um conjunto de estados alternativos.
 - Autômato Finito com Movimentos Vazios (AFN-vazio)
 - Dependendo do estado corrente e sem ler qualquer símbolo.
 - Pode assumir <u>um conjunto de estados:</u>
 - Portanto é não determinístico.

Linguagens regulares

Autômato finito

 AFD, AFN e AFN-vazio são equivalentes em termos de poder computacional.

Prof. João Fernando Mari (joaof.mari@ufv.br)

13

[AULA 03] LR – Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

AUTÔMATO FINITO DETERMINÍSTICO (AFD)

Linguagens regulares >> Autômato Finito

Autômato Finito Determinístico (AFD)

- Máquina constituída por:
 - Fita: dispositivo de entrada
 - contém informação (palavra) a ser processada.
 - Unidade de Controle: reflete o estado corrente da máquina
 - Possui unidade de leitura (cabeça da fita);
 - Acessa uma célula da fita de cada vez:
 - Movimenta-se exclusivamente para a direita.
 - Programa, Função Programa ou Função de Transição
 - Comanda as leituras;
 - Define o estado da máquina.

Prof. João Fernando Mari (joaof.mari@ufv.br)

15

[AULA 03] LR – Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Linguagens regulares >> Autômato Finito

Autômato Finito Determinístico (AFD)

- Fita é finita
 - Dividida em células e cada célula armazena um símbolo
 - Símbolos pertencem a um alfabeto de entrada
 - Não é possível gravar sobre a fita (não existe memória auxiliar)
 - A palavra a ser processada ocupa toda a fita
- Unidade de Controle
 - Número finito e predefinido de estados

- Leitura
 - Lê o símbolo de uma célula de cada vez
 - Move a cabeça da fita uma célula para a direita
 - Posição inicial da cabeça célula mais à esquerda da fita
- Função Programa
 - Função Parcial
 - Dependendo do estado corrente e do símbolo lido determina o novo estado do autômato.

Autômato Finito Determinístico (AFD)

$$M = (\Sigma, Q, \delta, q_0, F)$$

- Σ: Alfabeto (de símbolos) de entrada;
- Q: Um conjunto de estados possíveis do autômato (finito);
- δ: Programa ou Função de Transição (função parcial);

$$\delta: Q \times \Sigma \rightarrow Q$$

- Transição do autômato: $\delta(p, a) = q$;
- q₀: Estado inicial (é um elemento distinguido de Q);
- F: Conjunto de estados finais (é um subconjunto de Q).

Prof. João Fernando Mari (joaof.mari@ufv.br)

17

[AULA 03] LR – Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Linguagens regulares >> Autômato Finito

Autômato Finito Determinístico (AFD)

Autômato finito como um diagrama: δ(p, a) = q

Linguagens regulares >> Autômato Finito

Autômato Finito Determinístico (AFD)

Estados iniciais e finais:

Transições paralelas: δ(p, a) = q e δ(p, b) = q

Prof. João Fernando Mari (joaof.mari@ufv.br)

10

[AULA 03] LR – Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Linguagens regulares >> Autômato Finito

Autômato Finito Determinístico (AFD)

• Função programa como uma tabela de dupla entrada:

$$\delta(p, a) = q$$

Autômato Finito Determinístico (AFD)

- Computação de um autômato finito:
 - Sucessiva aplicação da função programa...
 - para cada símbolo da entrada (da esquerda para a direita)...
 - até ocorrer uma condição de parada.
- Lembre-se que um autômato finito:
 - Não possui memória de trabalho;
 - Para armazenar as informações passadas deve-se usar o conceito de estado;

Prof. João Fernando Mari (joaof.mari@ufv.br)

21

[AULA 03] LR – Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Linguagens regulares >> Autômato Finito >> Autômato Finito Determinístico (AFD)

[EX] aa ou bb como subpalavra

L₁ = { w | w possui aa ou bb como subpalavra }

Autômato finito:

$$M_1 = (\{ a, b \}, \{ q_0, q_1, q_2, q_f \}, \delta_1, q_0, \{ q_f \})$$

[EX] aa ou bb como subpalavra

- Qual a informação memorizada por q₁?
 - símbolo anterior é a.
- Qual a informação memorizada por q₂?
 - símbolo anterior é b.
- Qual a informação memorizada por q₀?
 ???

- Qual a informação memorizada por q_f?
 - Após identificar aa ou bb q_f (final) varre o sufixo da entrada.

Prof. João Fernando Mari (joaof.mari@ufv.br)

23

[AULA 03] LR – Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Linguagens regulares >> Autômato Finito >> Autômato Finito Determinístico (AFD)

[EX] aa ou bb como subpalavra

Autômato Finito Determinístico (AFD)

- O Autômato Finito sempre para!
- Como?
 - Qualquer palavra é finita.
 - Um novo símbolo é lido a cada aplicação da função programa.
 - Não existe a possibilidade de ciclo (loop) infinito.
- Parada do processamento:
 - Aceita a entrada:
 - Após processar o último símbolo, assume um estado final.
 - Rejeita a entrada (duas possibilidades):
 - Após processar o último símbolo, assume um estado não-final;
 - Programa indefinido para argumento (estado e símbolo).

Prof. João Fernando Mari (joaof.mari@ufv.br)

25

[AULA 03] LR – Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Linguagens regulares >> Autômato Finito >> Autômato Finito Determinístico (AFD)

Função Programa Estendida, Computação

• $M = (\Sigma, Q, \delta, q0, F)$ autômato finito determinístico.

$$\delta^*: Q \times \Sigma^* \to Q$$

- É δ: Q × Σ → Q estendida para palavras indutivamente definida
 - $-\delta^*(q, \epsilon) = q$
 - $-\delta^*(q, aw) = \delta^*(\delta(q, a), w)$
- Observe:
 - Sucessiva aplicação da função programa para cada símbolo da palavra a partir de um dado estado.
 - Se a entrada for vazia, fica parado.
 - Aceita/rejeita: função programa estendida a partir do estado inicial.
- Objetivando simplificar a notação:
 - $-\delta$ e a sua extensão δ^* podem ser ambas denotadas por δ .

[EX] Função programa estendida

• $\delta^*(q_0, abaa) = função estendida sobre abaa$

• $\delta^*(\delta(q_0, a), baa) = processa$

• $\delta^*(q_1, baa)$ = função estendida sobre baa abaa

• $\delta^*(\delta(q_1, b), aa) = processa baa$

• $\delta^*(q_2, aa)$ = função estendida sobre aa

• $\delta^*(\delta(q_2, a), a) = processa aa$

• $\delta^*(q_1, a)$ = função estendida sobre a

• $\delta^*(\delta(q_1, a), \epsilon)$ = processa a

• $\delta^*(q_f, \epsilon)$ = q_f função estendida sobre ϵ : fim da indução;

ACEITA

a q₀
b

q₁
a q₂
b

Prof. João Fernando Mari (joaof.mari@ufv.br)

27

[AULA 03] LR – Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Linguagens regulares >> Autômato Finito >> Autômato Finito Determinístico (AFD)

Linguagem Aceita, Linguagem Rejeitada

- $M = (\Sigma, Q, \delta, q0, F)$ autômato finito determinístico.
- Linguagem Aceita ou Linguagem Reconhecida por M

$$L(M) = ACEITA(M) = \{ w \mid \delta^*(q0, w) \in F \}$$

Linguagem Rejeitada por M:

REJEITA(M) = { w | $\delta^*(q0, w) \notin F$ ou $\delta^*(q0, w)$ é indefinida }

- Supondo que Σ* é o conjunto universo:
 - ACEITA(M) \cap REJEITA(M) = ∅
 - ACEITA(M) U REJEITA(M) = Σ^*
 - ~ACEITA(M) = REJEITA(M)
 - ~REJEITA(M) = ACEITA(M)

Linguagem Aceita, Linguagem Rejeitada

• Cada autômato finito M sobre Σ induz uma partição de Σ^* em duas classes de equivalência.

Prof. João Fernando Mari (joaof.mari@ufv.br)

2

[AULA 03] LR – Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Linguagens regulares >> Autômato Finito >> Autômato Finito Determinístico (AFD)

Autômatos Finitos Equivalentes

- Diferentes autômatos finitos podem aceitar uma mesma linguagem.
- M₁ e M₂ são Autômatos Finitos Equivalentes se e somente se:

$$ACEITA(M_1) = ACEITA(M_2)$$

Linguagem Regular, Linguagem Tipo 3

- L é uma Linguagem Regular ou Linguagem Tipo 3:
 - existe pelo menos um autômato finito determinístico que aceita L.

Prof. João Fernando Mari (joaof.mari@ufv.br)

31

[AULA 03] LR – Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Linguagens regulares >> Autômato Finito >> Autômato Finito Determinístico (AFD)

[EX] Linguagem vazia e todas as palavras

Linguagens sobre o alfabeto { a, b }

$$L_2 = \emptyset$$
 e $L_3 = \Sigma^*$

- Qual a diferença entre δ_2 e δ_3 ?
- O que, exatamente, diferencia M₂ de M₃?

Prof. João Fernando Mari (joaof.mari@ufv.br)

[EX] Número par de cada símbolo

• L4 = { w | w possui um número par de a e um número par de b }

Prof. João Fernando Mari (joaof.mari@ufv.br)

33

[AULA 03] LR – Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

Linguagens regulares >> Autômato Finito >> Autômato Finito Determinístico (AFD)

[EX] Número par de cada símbolo

- Para pensar:
 - Como seria para aceitar um número ímpar de cada símbolo?

Algoritmo de reconhecimento AFD

<u>Início</u>

```
Estado Atual ← Estado Inicial;

PARA I variar do Símbolo inicial da fita até o símbolo final FAÇA

SE Existe δ (Estado Atual, I) ENTÃO

Estado Atual ← δ (Estado Atual, I);

SENÃO

REJEITA;

SE Estado Atual é estado final ENTÃO

ACEITA;

SENÃO

REJEITA;
```

Prof. João Fernando Mari (joaof.mari@ufv.br)

35

[AULA 03] LR – Autômato Finito Determinístico

SIN 131 – Introdução à Teoria da Computação (PER 3)

DESAFIO

Fim

- PROBLEMA: Um Homem quer atravessar um rio levando consigo um Lobo, uma Cabra e um Repolho e no bote só cabem ele e mais um dos outros três.
 - Não podem ficar sozinhos (sem o Homem) em nenhuma das margens: a Cabra com o Repolho e o Lobo com a Cabra. Os motivos são óbvios!
- Exemplos de possíveis estados do sistema:
 - <HLCR-0> todos na margem esquerda
 - <L-HCR> lobo na margem esquerda, cabra e repolho na direita
- Entradas do sistema:
 - h homem atravessa o rio sozinho
 - I homem atravessa o rio com o lobo
 - c homem atravessa o rio com a cabra
 - r homem atravessa o rio com o repolho

[FIM]

- FIM:
 - [AULA 03] LINGUAGENS REGULARES Autômato Finito Determinístico
- Próxima aula:
 - [AULA 04] LINGUAGENS REGULARES Autômato Finito Não Determinístico

Prof. João Fernando Mari (joaof.mari@ufv.br)