V/V	e1	e2	e3	e4	e5	e6	e7	е8	е9	e10	e11	e12
e1	0	1		3		4	2	2				
e2	1	0		3	2					4		
e3			0		3		3				4	
e4	3	3		0	2	2	1	1		4	4	3
e5		2	3	2	0	2		2	2		1	4
e6	4			2	2	0		1	1	3	4	
e7	2		3	1			0	3	1	2		4
e8	2			1	2	1	3	0	4	3	4	2
e9					2	1	1	4	0			1
e10		4		4		3	2	3		0		
e11			4	4	1	4		4			0	
e12				3	4		4	2	1			0

- 1. $l(x1)=0^+$; $l(xi)=\infty$, для всех $i \neq 1$, p=x1. Результаты итерации запишем в таблицу.
- 2. $\Gamma p = \{x2, x4, x6, x7, x8\}$ все пометки временные, уточним их:

$$l(x2)=min[\infty,0^++1]=1;$$

$$1(x4)=\min[\infty,0^{+}+3]=3;$$

$$l(x6)=min[\infty, 0^++4]=4;$$

$$l(x7)=min[\infty, 0^++2]=2;$$

$$1(x8)=\min[\infty, 0^++2]=2;$$

- 3. l(xi *) = min[l(xi)] = l(x2) = 1.
- 4. x^2 получает постоянную пометку $l(x^2) = 1^+$, $p=x^2$.
- 5. Не все вершины имеют постоянные пометки, поэтому $\Gamma p = \{x4, x5, x10\}$ временные пометки имеют вершины x4, x5, x10, yточняем их:

$$1(x4)=min[3,1^++3]=3;$$

$$1(x5)=min[\infty,1^++2]=3;$$

$$1(x10)=\min[\infty, 1^++4]=5;$$

- 6. l(xi *) = min[l(xi)] = l(x7) = 2.
- 7. $l(x7) = 2^+, p=x2.$
- 8. Не все вершины имеют постоянные пометки, поэтому Γ р = $\{x1,x3,x4,x8,x9,x10,x12\}$ временные пометки имеют вершины x3,x4,x8,x9,x10,x12, уточняем их:

$$l(x3)=min[\infty, 2^++3]=5;$$

$$1(x4)=min[3, 2^++1]=3;$$

$$l(x8)=min[2, 2^++3]=2;$$

$$l(x9)=min[\infty, 2^++1]=3;$$

$$1(x10)=min[5, 2^++2]=4;$$

$$1(x12)=\min[\infty, 2^++4]=6;$$

9.
$$l(xi *) = min[l(xi)] = l(x8) = 2$$
.

$$10.1(x8) = 2^+, p=x8.$$

```
x7,x9,x10,x11,x12} — временные пометки имеют вершины x4,x5,x6,
   х9,х10,х11,х12, уточняем их:
   1(x4)=\min[3, 2^{+}+1]=3;
   l(x5)=min[3, 2^{+}+2]=3;
   1(x6)=\min[4, 2^{+}+1]=3;
   l(x9)=min[3, 2^{+}+4]=3;
   l(x10)=min[4, 2^{+}+3]=4;
   l(x11)=\min[\infty, 2^{+}+4]=6;
   1(x12)=\min[6, 2^{+}+2]=4;
11.l(xi *) = min[l(xi)] = l(x4) = 3.
12.1(x4) = 3^+, p=x4.
   Не все вершины имеют постоянные пометки, поэтому Гр
   =\{x1,x2,x5,x6,x7,x8,x10,x11,x12\} – временные пометки имеют вершины
   х5,х6,х10,х11,х12, уточняем их:
   l(x5)=min[3, 3^{+}+2]=3;
   l(x6)=min[3, 3^{+}+2]=3;
   l(x10)=min[4, 3^++4]=4;
   l(x11)=min[6, 3^{+}+4]=6;
   1(x12)=\min[4, 3^{+}+3]=4;
13.l(xi *) = min[l(xi)] = l(x5) = 3.
14.1(x5) = 3^+, p=x5.
   x6,x8, x9,x11,x12} - временные пометки имеют вершины x3,
   х6,х9,х11,х12 уточняем их:
   l(x3)=min[5, 3^{+}+3]=5;
   1(x6)=\min[3, 3^{+}+2]=3;
   l(x9)=min[3, 3^{+}+2]=3;
   1(x11)=\min[6, 3^{+}+1]=4;
   1(x12)=\min[4, 3^{+}+4]=4;
15.l(xi *) = min[l(xi)] = l(x6) = 3.
16.1(x6) = 3^+, p=x6.
17. Не все вершины имеют постоянные пометки, поэтому \Gamma p = \{x1, x4, x5,
  уточняем ее:
   l(x9)=min[3, 3+1]=3;
   1(x10)=\min[4, 3^{+}+3]=4;
   1(x11)=\min[4, 3^{+}+4]=4;
18.l(xi *) = min[l(xi)] = l(x9) = 3.
```

Не все вершины имеют постоянные пометки, поэтому $\Gamma p = \{x4, x5, x6,$

$$19.1(x9) = 3+$$
, p=x9.

- 20.Не все вершины имеют постоянные пометки, поэтому $\Gamma p = \{x5, x6, x7, x8, x12\}$ временную пометку имеет вершина x12 уточняем ее: $1(x12)=\min[4, 3^++1]=4$;
- 21.l(xi *) = min[l(xi)] = l(x10) = 4.
- $22.1(x10) = 4^+$, p=x10.
- 23.l(xi *) = min[l(xi)] = l(x11) = 4.
- $24.1(x11) = 4^+, p=x11.$
- 25.Не все вершины имеют постоянные пометки, поэтому Γ р ={x3,x4,x5,x6,x8} временную пометку имеет вершина x3 уточняем ее: $1(x3)=\min[5, 4^++4]=5;$
- 26.l(xi *) = min[l(xi)] = l(x12) = 4.
- $27.1(x12) = 4^+, p=x12.$
- 28.1(xi *) = min[1(xi)] = 1(x3) = 5.
- $29.1(x3) = 5^+, p=x3.$
- 30.Все пометки постоянные

	1	2	3	4	5	6	7	8	9	10	11	12
x1	0+											
x2	∞	1+										
х3	∞	∞	∞	5	5	5	5	5	5	5	5	5 ⁺
x4	∞	3	3	3	3+							
x5	∞	∞	3	3	3	3+						
x6	∞	4	4	4	3	3	3 ⁺					
x7	∞	2	2+									
x8	∞	2	2	2+								
х9	∞	∞	∞	3	3	3	3	3+				
x10	∞	∞	5	4	4	4	4	4	4+			
x11	8	8	8	8	6	6	4	4	4	4+		
x12	8	8	8	6	4	4	4	4	4	4	4+	