CS112: Theory of Computation (LFA)

Lecture2: Finite automata

Dumitru Bogdan

Faculty of Computer Science University of Bucharest

February 23, 2022

Table of contents

- 1. Context setup
- 2. Finite Automata
- 3. Computation
- 4. Designing finite automata
- 5. Closure under regular operations
- 6. Separating words problem

Section 1

Corresponding to Sipser 1.1

• The theory of computation begins with a question: What is a computer?

- The theory of computation begins with a question: What is a computer?
- Silly question, as everyone know what a computer is

- The theory of computation begins with a question: What is a computer?
- Silly question, as everyone know what a computer is
- But these real computers are quite complicated so it is hard to make a mathematical theory on them

- The theory of computation begins with a question: What is a computer?
- Silly question, as everyone know what a computer is
- But these real computers are quite complicated so it is hard to make a mathematical theory on them
- Instead, we use an idealized computer called a computational model

- The theory of computation begins with a question: What is a computer?
- Silly question, as everyone know what a computer is
- But these real computers are quite complicated so it is hard to make a mathematical theory on them
- Instead, we use an idealized computer called a computational model
- As with any model in science, a computational model may be accurate in some ways but perhaps not in others

- The theory of computation begins with a question: What is a computer?
- Silly question, as everyone know what a computer is
- But these real computers are quite complicated so it is hard to make a mathematical theory on them
- Instead, we use an idealized computer called a computational model
- As with any model in science, a computational model may be accurate in some ways but perhaps not in others
- We will use several different computational models, depending on the features we want to focus on

- The theory of computation begins with a question: What is a computer?
- Silly question, as everyone know what a computer is
- But these real computers are quite complicated so it is hard to make a mathematical theory on them
- Instead, we use an idealized computer called a computational model
- As with any model in science, a computational model may be accurate in some ways but perhaps not in others
- We will use several different computational models, depending on the features we want to focus on
- We begin with the simplest model **finite automata**

Section 2

Finite Automata

What is a FA

- Finite automata are good models for computers with an extremely limited amount of memory.
- What can a computer do with such a small memory? A lot
- Let us take a real-world example: automatic door

Imagine a supermarket automatic door. It has two pads or sensors, one in front and one in the back.

Imagine a supermarket automatic door. It has two pads or sensors, one in front and one in the back.

The controller is either of two states: *open* or *closed* There are four input conditions: *front*, *rear*, *both* and *neither*.

Imagine a supermarket automatic door. It has two pads or sensors, one in front and one in the back.

The controller is either of two states: *open* or *closed* There are four input conditions: *front*, rear, both and neither.

The controller moves from state to state, based on input it receives.

input signal

state NEITHER FRONT REAR BOTH

CLOSED CLOSED OPEN CLOSED CLOSED

OPEN CLOSED OPEN OPEN OPEN

Figure: State transition table for an automatic door controller

Figure: State diagram for an automatic door controller

- This controller is a computer that has just a single bit of memory, capable of recording which of the two states the controller is in.
- More complicated controllers with more memory: elevator controller, coffee machine, etc
 ...

• Finite automata and their probabilistic counterpart Markov chains are useful tools when we are attempting to recognize patterns in data.

- Finite automata and their probabilistic counterpart Markov chains are useful tools when we are attempting to recognize patterns in data.
- We will now take a closer look at finite automata from a mathematical perspective.

- Finite automata and their probabilistic counterpart Markov chains are useful tools when we are attempting to recognize patterns in data.
- We will now take a closer look at finite automata from a mathematical perspective.
- We will develop a precise definition of a finite automaton, terminology for describing and manipulating finite automata

- Finite automata and their probabilistic counterpart Markov chains are useful tools when we are attempting to recognize patterns in data.
- We will now take a closer look at finite automata from a mathematical perspective.
- We will develop a precise definition of a finite automaton, terminology for describing and manipulating finite automata
- Next we touch theoretical results that describe their power and limitations.

Figure: A finite automaton called M_1 that has three states

If we feed feed the input string 1101 into the machine M_1 the processing proceeds as follows:

- 1. Start in state q_1
- 2. Read 1, follow transition from q_1 to q_2
- 3. Read 1, follow transition from q_2 to q_2
- 4. Read 0, follow transition from q_2 to q_3
- 5. Read 1, follow transition from q_3 to q_2
- 6. Accept because M_1 is in an accept state q_2 at the end of the input

Definition

A finite automaton is 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where:

- 1. Q is a finite set called the states
- 2. Σ is a finite set called the alphabet
- 3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- 4. $q_0 \in Q$ is the start state
- 5. $F \subseteq Q$ is the set of accept states

We can describe M_1 formally as $M_1 = (Q, \Sigma, \delta, q_0, F)$ where:

- 1. $Q = \{q_1, q_2, q_3\}$
- 2. $\Sigma = \{0, 1\}$
- 3. δ is described

	0	1
q_1	q_1	q_2
q_2	q 3	q 2
q_3	q_3	q_2

- 4. q_1 is the start state
- 5. $F = \{q_2\}$

Definition

If A is the set of all strings that machine M accepts, we say that A is the language of machine M and write L(M) = A

Definition

If A is the set of all strings that machine M accepts, we say that A is the language of machine M and write L(M) = A

We say that M recognizes A or that M accepts A. Because the term accept has different meanings when we refer to machines accepting strings and machines accepting languages, we prefer the term recognize for languages in order to avoid confusion.

Examples

Figure: A finite automaton called M_2

In formal description M_2 is $(\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$ where transition function is:

$$\begin{array}{c|cc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

Examples

Figure: A finite automaton called M₄

 M_4 operates on alphabet $\Sigma = \{a, b\}$ and accepts all strings that start and end with a or that start and end with b.

Examples

Figure: A finite automaton called M_5

Machine M_5 has alphabet $\Sigma = \{< RESET >, 0, 1, 2\}$ and keeps a running count of the sum of the numerical input symbols it reads, modulo 3. Every time it receives the < RESET > symbol, it resets the count to 0. It accepts if the sum is 0 modulo 3, or in other words, if the sum is a multiple of 3.

Experiment

Remark

A good way to begin understanding any machine is to try it on some sample input strings. When you do these "experiments" to see how the machine is working, its method of functioning often becomes apparent.

Section 3

Computation

Now we formalise finite automaton's computation as follows:

Now we formalise finite automaton's computation as follows:

Let $M = (Q, \Sigma, \delta, q_o, F)$ be a finite automaton and let $w = w_1 w_2 \dots w_n$ be a string where eacg w_i is a member of Σ .

Formal Definition

Now we formalise finite automaton's computation as follows:

Let $M = (Q, \Sigma, \delta, q_o, F)$ be a finite automaton and let $w = w_1 w_2 \dots w_n$ be a string where eacg w_i is a member of Σ .

Definition

Then *M* accepts *w* if a sequence of states r_0, r_1, \ldots, r_n in *Q* exists with three conditions:

- 1. $r_0 = q_0$
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, ..., n-1
- 3. $r_n \in F$

Formal Definition

Now we formalise finite automaton's computation as follows:

Let $M = (Q, \Sigma, \delta, q_o, F)$ be a finite automaton and let $w = w_1 w_2 \dots w_n$ be a string where eacg w_i is a member of Σ .

Definition

Then M accepts w if a sequence of states r_0, r_1, \ldots, r_n in Q exists with three conditions:

- 1. $r_0 = q_0$
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, ..., n-1
- 3. $r_n \in F$

Definition

A language is called a regular language if some finite automaton recognizes it.

Let's take:

$$w = 10 < RESET > 22 < RESET > 012$$

Then M_5 accepts w according to the formal definition because it exists:

$$q_0,\,q_1,\,q_1,\,q_0,\,q_2,\,q_1,\,q_0,\,q_0,\,q_1,\,q_0$$

which satisfies the three conditions. The language is:

$$L(M_5) = \{w | \text{the sum of the symbols in } w \text{ modulo 3, except that } < RESET > \text{resets the count} \}$$

As M_5 recognizes this language, it is a regular language.

Approach

• Automaton design is a creative process, so there is no general recipe.

Approach

- Automaton design is a creative process, so there is no general recipe.
- One recommended approach is to put yourself in the place of the machine you are trying to design

Approach

- Automaton design is a creative process, so there is no general recipe.
- One recommended approach is to put yourself in the place of the machine you are trying to design
- Pretending that you are the machine is a psychological trick that helps engage your whole mind in the design process.

Section 5

Closure under regular operations

Regular operations

- Up until now we we introduced and defined finite automata and regular languages.
- Now we investigate some of their proprieties
- We define three operations on languages, called the regular operations and use them to study properties of the regular languages

Regular operations

Definition

Let A and B be languages. We define the regular operations **union**, **concatenation**, and **star** as follows:

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}$
- Star: $A^* = \{x_1x_2 \dots x_k | k \geq 0 \text{ and each } x_i \in A\}$

Regular operations

Definition

Let A and B be languages. We define the regular operations **union**, **concatenation**, and **star** as follows:

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}$
- Star: $A^* = \{x_1x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}$

empty string

empty string ϵ is always a member of A^* , no matter what A is.

```
Let \Sigma be \{a, b, \dots, z\}. If A = \{good, bad\} and B = \{boy, girl\} then:
```

```
A \cup B = \{good, bad, boy, girl\}

A \circ B = \{goodboy, goodgirl, badboy, badgirl\}

A^* = \{\epsilon, good, bad, goodgood, goodbad,

badgood, badbad, goodgoodgood, goodgoodbad,

goodbadgood, goodbadbad, \dots \}
```

Closure under regular operations

• Generally speaking, a collection of objects is closed under some operation if applying that operation to members of the collection returns an object still in the collection.

Closure under regular operations

- Generally speaking, a collection of objects is closed under some operation if applying that operation to members of the collection returns an object still in the collection.
- Next we show that the collection of regular languages is closed under all three of the regular operations

Theorem

The class of regular languages is closed under the union operation, meaning that if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof idea:

• Because A_1 and A_2 are regular, we know that some finite automaton M_1 recognizes A_1 and some finite automaton M_2 recognizes A_2

- Because A_1 and A_2 are regular, we know that some finite automaton M_1 recognizes A_1 and some finite automaton M_2 recognizes A_2
- To prove $A_1 \cup A_2$ is regular we need a finite automaton called M that recognize $A_1 \cup A_2$. This is a proof by **construction**

- Because A_1 and A_2 are regular, we know that some finite automaton M_1 recognizes A_1 and some finite automaton M_2 recognizes A_2
- To prove $A_1 \cup A_2$ is regular we need a finite automaton called M that recognize $A_1 \cup A_2$. This is a proof by **construction**
- This FA M must accept an input string if either M_1 or M_2 accepts it. So we simulate somehow M_1 and M_2

- Because A_1 and A_2 are regular, we know that some finite automaton M_1 recognizes A_1 and some finite automaton M_2 recognizes A_2
- To prove $A_1 \cup A_2$ is regular we need a finite automaton called M that recognize $A_1 \cup A_2$. This is a proof by **construction**
- This FA M must accept an input string if either M_1 or M_2 accepts it. So we simulate somehow M_1 and M_2
- Cannot be done in sequential order because once a symbol has been read then it is gone

- Because A_1 and A_2 are regular, we know that some finite automaton M_1 recognizes A_1 and some finite automaton M_2 recognizes A_2
- To prove $A_1 \cup A_2$ is regular we need a finite automaton called M that recognize $A_1 \cup A_2$. This is a proof by **construction**
- This FA M must accept an input string if either M_1 or M_2 accepts it. So we simulate somehow M_1 and M_2
- Cannot be done in sequential order because once a symbol has been read then it is gone
- So we simulate M_1 and M_2 simultaneously by remembering the pair of states

- Because A_1 and A_2 are regular, we know that some finite automaton M_1 recognizes A_1 and some finite automaton M_2 recognizes A_2
- To prove $A_1 \cup A_2$ is regular we need a finite automaton called M that recognize $A_1 \cup A_2$. This is a proof by **construction**
- This FA M must accept an input string if either M_1 or M_2 accepts it. So we simulate somehow M_1 and M_2
- Cannot be done in sequential order because once a symbol has been read then it is gone
- So we simulate M_1 and M_2 simultaneously by remembering the pair of states
- If size (i.e., number of states) of M_1 is k_1 and size of M_2 is k_2 then we have $k_1 \times k_2$ pairs

Theorem

The class of regular languages is closed under the union operation, meaning that if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof.

Without the loss of generality we assume that M_1 and M_2 have the same alphabet. Let M_1 recognize A_1 where $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and let M_2 recognize A_2 where

$$M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$$
 We construct M to recognize $A_1\cup A_2$ where $M=(Q,\Sigma,\delta,q_0,F)$

- $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2)\}$
- Σ is the same alphabet as for M_1 and M_2 .
- $\delta((r_1, r_2), a) = (\delta(r_1, a), \delta(r_2, a))$
- $q_0 = (q_1, q_2)$
- $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Theorem

The class of regular languages is closed under the concatenation operation, meaning that if A_1 and A_2 are regular languages, so is $A_1 \circ A_2$.

Proof idea:

ullet we can start with finite automata M_1 and M_2 recognizing the regular languages A_1 and A_2

- ullet we can start with finite automata M_1 and M_2 recognizing the regular languages A_1 and A_2
- We must construct M such that it accept first piece as M_1 does and next the last part of the input as M_2 does. However we do not know where to break the input

- ullet we can start with finite automata M_1 and M_2 recognizing the regular languages A_1 and A_2
- We must construct M such that it accept first piece as M_1 does and next the last part of the input as M_2 does. However we do not know where to break the input To tackle this problem we need a new technique called **nondeterminism**

Section 6

Separating words problem

Informal description

In theoretical computer science, **the separating words problem** is the problem of finding the smallest deterministic finite automaton that behaves differently on two given strings, meaning that it accepts one of the two strings and rejects the other string. **It is an open problem** how large such an automaton must be, in the worst case, as a function of the length of the input strings

• The two strings 0010 and 1000 may be distinguished from each other by a three-state automaton in which the transitions from the start state go to two different states, both of which are terminal

- The two strings 0010 and 1000 may be distinguished from each other by a three-state automaton in which the transitions from the start state go to two different states, both of which are terminal
- If one of the two terminal states is accepting and the other is rejecting, then the automaton will accept only one of the strings 0010 and 1000

- The two strings 0010 and 1000 may be distinguished from each other by a three-state automaton in which the transitions from the start state go to two different states, both of which are terminal
- If one of the two terminal states is accepting and the other is rejecting, then the automaton will accept only one of the strings 0010 and 1000
- These two strings cannot be distinguished by any automaton with fewer than three states

History and bounds

• Goralčík, P.; Koubek, V. (1986), "On discerning words by automata"

History and bounds

- Goralčík, P.; Koubek, V. (1986), "On discerning words by automata"
- Robson (1989) proved the upper bound: $O(n^{2/5}log^{3/5}(n))$

History and bounds

- Goralčík, P.; Koubek, V. (1986), "On discerning words by automata"
- Robson (1989) proved the upper bound: $O(n^{2/5}log^{3/5}(n))$
- Chase (2020) proved the upper bound: $O(n^{1/3}log^7(n))$

Try it

• Give it a try!

Try it

- Give it a try!
- Start with simple cases

Try it

- Give it a try!
- Start with simple cases
- Write a presentation about it