Lecture C3. Discrete Time Markov Chain 3

Reinforcement Learning Study

2021-01-11

차례

Example 1											 										1
Example 2											 										2
Example 3											 										3
Example 4											 										4

Example 1

Trainsition Matrix:

$$P = \left(\begin{array}{ccc} 1/2 & 1/2 & 0\\ 1/2 & 1/4 & 1/4\\ 0 & 1/3 & 2/3 \end{array}\right)$$

Trainsition Diagram:

그림 1: Example 1 Trainsition Diagram

Remark

- A state i is said to be recurrent if, starting from i, the probability of getting back to i is 1
- A state i is said to be trainsient if, starting from i, the probability of getting back to i is less than 1 recurrent state : $\{1,2,3\}$, All states communicate, all states recurrent

Example 2

Trainsition Matrix:

$$P = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 0 & 1 \end{array}\right)$$

Trainsition Diagram:

그림 2: Example 2 Trainsition Diagram

Remark

- A state i is said to be recurrent if, starting from i, the probability of getting back to i is 1
- A state i is said to be trainsient if, starting from i, the probability of getting back to i is less than 1
- A state i is said to be abosrbing state, as a special case of reccurent state, if $P_i i=1$ (You can naver leave the state i if you get there)

recurrent state: {1,3}

trainsient state : {2}

abosrbing state: {1,3}

Example 3

Trainsition Matrix:

$$P = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1/3 & 1/2 & 1/6 \\ 0 & 0 & 1 \end{array}\right)$$

Trainsition Diagram:

그림 3: Example 3 Trainsition Diagram

Remark

- ullet A state i is said to be recurrent if, starting from i, the probability of getting back to i is 1
- A state i is said to be trainsient if, starting from i, the probability of getting back to i is less than 1
- A state i is said to be abosrbing state, as a special case of reccurent state, if $P_i i=1$ (You can naver leave the state i if you get there)

recurrent state : {1,3}

trainsient state : {2}

abosrbing state : {1,3}

Example 4

Trainsition Matrix:

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Trainsition Diagram:

그림 4: Example 4 Trainsition Diagram

Remark

- A state i is said to be recurrent if, starting from i, the probability of getting back to i is 1
- A state i is said to be trainsient if, starting from i, the probability of getting back to i is less than 1
- A state i is said to be abosrbing state, as a special case of reccurent state, if $P_i i=1$ (You can naver leave the state i if you get there)

recurrent state: {1,2}

trainsient state: {3}

abosrbing state: {4}

"Done, Lecture C2. Discrete Time Markov Chain2 "

[1] "Done, Lecture C2. Discrete Time Markov Chain2 "