Obliczenia naukowe - lab1

Jakub Musiał 268442

Październik 2023

Zadanie 1.1 - Epsilon Maszunowy

Problem

Napisać program w języku Julia wyznaczający iteracyjnie wartości ϵ_{mach} takich, że:

$$\begin{cases}
\epsilon_{mach} > 0 \\
fl(1.0 + \epsilon_{mach}) > 1.0 \\
fl(1.0 + \epsilon_{mach}) = 1 + \epsilon_{mach}
\end{cases}$$
(1)

dla wszystkich typów zmiennopozycyjnych: Float16, Float32, Float64. Można zauważyć, że ϵ_{mach} jest odległością od 1 najmniejszej w zadanej arytmetyce liczby, której dodanie do 1 skutkuje zmianą przechowywanej wartości.

Rozwiązanie

Liczbę maszynową ϵ_{mach} można otrzymać poprzez iteracyjne sprawdzanie kolejnych (co raz mniejszych) potęg liczby 2, zaczynając od $2^0 = 1$, dopóki ograniczenia (1) na wartość liczby ϵ_{mach} są spełnione.

Programy z rozwiązaniem:

- ex1/mach_eps.jl
- ex1/mach_eps.c

Wyniki i obserwacje

Na podstawie *tabeli 1* możemy zauważyć, że wyniki otrzymane iteracyjnie pokrywają się z tymi zwróconymi przez funkcję eps, jak i z tymi zdefiniowanymi w standardzie języka C (wyłącznie w precyzji pojedynczej i podwójnej, jako że w języku C nie ma odpowiednika Float16).

Precyzja	Obliczone ϵ_{mach}	eps	float.h
Float16	0.000977	0.000977	brak
Float32	1.1920929e - 7	1.1920929e - 7	1.192093e - 07
Float64	2.220446049250313e - 16	2.220446049250313e - 16	2.220446e - 16

Table 1: Wartości liczby ϵ_{mach} dla poszczególnych precyzji.

Związek liczby ϵ_{mach} z precyzją arytmetyki:

Precyzja arytmetyki ϵ jest określona wzorem:

$$\epsilon = \frac{1}{2}\beta^{1-t}$$

Przy czym β jest podstawą systemu, a t jest liczbą cyfr mantysy. Wiedząc, że $\beta=2$, możemy przekształcić powyższy wzór:

$$\epsilon = \frac{1}{2} \cdot 2^{1-t} = 2^{-t}$$

Możemy zatem wyznaczyć wartości precyzji arytmetyk zmiennopozycyjnych.

Precyzja	t	$\epsilon = fl(2^{-t})$	$epsilon_{mach}$
Float16	10	0.000977	0.000977
Float32	23	1.1920929e - 7	1.1920929e - 7
Float64	52	2.220446049250313e - 16	2.220446049250313e - 16

Table 2: Porównanie wartości ϵ_{mach} oraz precyzji arytmetyki

Na podstawie powyższej tabeli możemy stwierdzić, że $\epsilon = \epsilon_{mach}$.

Zadanie 1.2 - Maszynowe eta

Problem

Napisać program w języku Julia wyznaczający iteracyjnie wartości $\eta_{mach} > 0$ dla wszystkich typów zmiennopozycyjnych: Float16, Float32, Float64.

Można zauważyć, że η_{mach} jest najmniejszą nieujemną liczbą, którą da się zapisać w zadanej precyzji (nie wpada w przedział zera maszynowego).

Rozwiązanie

Liczbę maszynową η_{mach} można otrzymać poprzez iteracyjne sprawdzanie kolejnych (co raz mniejszych) potęg liczby 2, zaczynając od $2^0 = 1$, dopóki wyliczona wartość $\eta_{mach} > 0$.

Program z rozwiązaniem: ex1/mach_eta.jl

Wyniki i obserwacje

Na podstawie *tabeli 3* możemy zauważyć, że wyniki otrzymane iteracyjnie pokrywają się z tymi zwróconymi przez funkcję wbudowaną nextfloat(0.0)

Precyzja	Obliczone η_{mach}	nextfloat(0.0)
Float16	6.0e - 8	6.0e - 8
Float32	1.0e - 45	1.0e - 45
Float64	5.0e - 324	5.0e - 324

Table 3: Wartości liczby η_{mach} dla poszczególnych precyzji.

Zauważmy, że liczba η_{mach} w zapisie bitowym ma następującą postać:

$$\eta_{mach}(precyzja): 0 \quad \underbrace{0...0}_{cecha} \quad \underbrace{0...01}_{mantysa}$$

Jest to zatem liczba nieznormalizowana, ponieważ cecha liczby η_{mach} to same zera

Związek liczby η_{mach} z wartościa MIN_{sub} :

Wiemy, że MIN_{sub} jest namniejsza liczbą nieznormalizowaną w zadanej arytmetyce i jest określona wzorem:

$$MIN_{sub} = 2^{1-t} \cdot 2^{c_{min}} = 2^{1-t+c_{min}}$$

Zatem, wiedząc, że $c_{min} = -2^{d-1} + 2$ gdzie $d \equiv$ liczba bitów przeznaczonych na zapis cechy w standardzie IEEE 754, możemy wyznaczyć wartości minimalne w postaci nieznormalizowanej dla zadanych precyzji.

Precyzja	t	d	c_{min}	MIN_{sub}	η_{mach}
Float16	10	5	-14	$fl(2^{-24}) = 6.0e - 8$	6.0e - 8
Float32	23	8	-126	$fl(2^{-149}) = 1.0e - 45$	1.0e - 45
Float64	52	11	-1022	$fl(2^{-1074}) = 5.0e - 324$	5.0e - 324

Table 4: Porównanie wartości MIN_{sub} oraz η_{mach}

Na podstawie powyższej tabeli możemy stwierdzić, że $MIN_{sub}=\eta_{mach}.$

Związek wartości MIN_{nor} z funkcją floatmin(): Wiemy, że wartość MIN_{nor} możemy uzyscać ze wzoru:

$$MIN_{nor} = 2^{c_{min}}$$

Jak powyżej obliczamy $c_{min} = -2^{d-1} + 2$.

Zatem porównajmy zadany wzór z wartościami zwracanymi przez funkcję floatmin(). Z

Precyzja	d	c_{min}	MIN_{nor}	floatmin
Float16	5	-14	6.104e - 5	6.104e - 5
Float32	8	-126	1.1754944e - 38	1.1754944e - 38
Float64	11	-1074	2.2250738585072014e - 308	2.2250738585072014e - 308

Table 5: Porównanie wartości MIN_{nor} oraz funkcji floatmin()

powyższej tabeli wynika, że funkcja wbudowana floatmin() języka Julia zwraca wartości MIN_{nor} dla zadanej precyzji.

Zadanie 1.3 - Maximum float

Problem

Napisać program w języku Julia wyznaczający iteracyjnie wartości fl_{max} - największej liczby, którą da się zapisać w arytmetyce zmiennopozycyjnej - dla wszystkich typów zmiennopozycyjnych: Float16, Float32, Float64.

Rozwiązanie

Liczbę fl_{max} można otrzymać poprzez iteracyjne sprawdzanie kolejnych (co raz większych) potęg liczby 2, zaczynając od $2^0 = 1$, dopóki wyliczona wartość $fl_{max} < \infty$, a następnie dodając coraz mniejsze potęgi liczby 2, zaczynając od $2^{i_{max}-1}$, ponownie dopóki wyliczona wartość $fl_{max} < \infty$

Programy z rozwiązaniem:

- ex1/max_float.jl
- ex1/max_float.c

Wyniki i obserwacje

Na podstawie *tabeli 5* możemy zauważyć, że wyniki otrzymane iteracyjnie pokrywają się z tymi zwróconymi przez funkcję wbudowaną nextfloat(0.0), jak i z tymi zdefiniowanymi w standardzie języka C (podobnie jak w zadaniu 1.1 wyłącznie w precyzji pojedynczej i podwójnej, jako że w języku C nie ma odpowiednika Float16).

Precyzja	Obliczone fl_{max}	floatmax	float.h
Float16	6.55e4	6.55e4	brak
Float32	3.4028235e38	3.4028235e38	3.402823e + 38
Float64	1.7976931348623157e308	1.7976931348623157e308	1.797693e + 308

Table 6: Wartości liczby fl_{max} dla poszczególnych precyzji.

Zauważmy, że liczba fl_{max} w zapisie bitowym ma następującą postać:

$$fl_{max}(precyzja): 0$$
 $\underbrace{1...10}_{cecha}$ $\underbrace{1...1}_{mantysa}$

Zadanie 2 - Kahan machine epsilon

Problem

Sprawdzić poprawność wzoru Kahana na oblicznanie wartości ϵ_{mach} dla wszystkich typów zmiennopozycyjnych: Float16, Float32, Float64.

Rozwiązanie

Wzór Kahana:

$$\epsilon_{kahan} = 3 \cdot \left(\frac{4}{3} - 1\right) - 1$$

Program z rozwiązaniem: ex2.jl

Wyniki i obserwacje

Precyzja	ϵ_{kahan}	ϵ_{mach}
Float16	-0.000977	0.000977
Float32	1.1920929e - 7	1.1920929e - 7
Float64	-2.220446049250313e - 16	2.220446049250313e - 16

Table 7: Wartości liczby ϵ_{kahan} dla poszczególnych precyzji.

Na podstawie wyników w tabeli 7 możemy zauważyć, że wartości otrzymywane z wzoru Kahana są równe wartościom ϵ_{mach} co do wartości bezwzględnej, zatem, aby poprawić ten wzór należałoby nałożyć moduł na zwrócony wynik:

$$\epsilon_{correct \, kahan} = |3 \cdot (\frac{4}{3} - 1) - 1|$$

Zadanie 3 - Rozmieszczenie liczb w arytmetyce zmiennopozycyjnej w podwójnej precyzji

Problem

Sprawdzić w języku Julia, czy liczby są równomiernie rozmieszczone w arytmetyce Float64 w przedziałach: $[\frac{1}{2}, 1]$, [1, 2] oraz [2, 4]

Rozwiązanie

Sprawdzenie wartości $x = 1 + k \cdot \delta$ dla $k \in \{1, 2, ..., 2^{52} - 1\}$

Program z rozwiązaniem: ex3.jl

Wyniki i obserwacje

Przedział [1,2]

Dla zadanej wartości $\delta = 2^{-52}$ uzyskujemy poniższe wartości:

Wartość	Postać binarna (znak bitu, cecha, mantysa)
1.0000000000000000000000000000000000000	0 011 0001
1.000000000000000004	0 011 0010
1.000000000000000007	0 011 0011
:	:
1.999999999999993	0 011 1101
1.999999999999999	0 011 1110
1.999999999999998	0 011 1111

Table 8: Rozkład liczb podwójnej precyzji w przedziale [1, 2]

W tabeli 8 możemy zauważyć, że dodanie $\delta=2^{-52}$ do liczby x z przedziału [1,2] powoduje dodanie wartości binarnej 1 do m_x (mantysy liczby x). Zatem możemy stwierdzić, że liczby w tym przedziałe są równomiernie rozmieszczone z krokiem 2^{-52} .

Przedział $[\frac{1}{2}, 1]$

Wiemy, że liczb w przedziałe $[\frac{1}{2},1]$ jest tyle samo, co w przedziałe [1,2], ponieważ liczby w zadanym przedziałe $[2^i,2^{i+1}]$ mają tę samą cechę, a możliwych wartości mantysy jest $2^t=2^{52}$. Zauważmy także, że dla i=j-1 $(i,j\equiv$ wartości cechy) liczby reprezentowane przez tę samą mantysę z cechą i są dwukrotnie mniejsze od tych z cechą j, czyli $x_i=2^{-1}\cdot x_j$. Stąd możemy założyć, że dla przedziału $[\frac{1}{2},1]$ powinniśmy przyjąć krok $\delta=2^{-52-1}=2^{-53}$

Wartość	Postać binarna (znak bitu, cecha, mantysa)
0.50000000000000001	0 0110 0001
0.500000000000000002	0 0110 0010
0.50000000000000003	0 0110 0011
:	<u>:</u>
0.999999999999997	0 0110 1101
0.999999999999998	0 0110 1110
0.999999999999999	0 0110 1111

Table 9: Rozkład liczb podwójnej precyzji w przedziale $\left[\frac{1}{2},1\right]$

Na podstawie uzyskanych wyników powtórzonego eksperymentu dla przedziału $[\frac{1}{2}, 1]$, możemy stwierdzić, że nasze założenie było poprawne, a liczby w zadanym przedziałe są rozmieszczone równolegle z krokiem $\delta = 2^{-53}$.

Przedział [2,4]

Przeprowadziwszy rozumowanie analogiczne do tego dla przedziału $[\frac{1}{2}, 1]$, możemy przyjąć, że dla przedziału [2, 4] powinniśmy sprawdzić rozmieszczenie liczb z krokiem $\delta = 2^{-51}$.

Wartość	Postać binarna (znak bitu, cecha, mantysa)
2.000000000000000004	0 100 0001
2.0000000000000001	0 100 0010
2.00000000000000013	0 100 0011
:	;
3.9999999999999996	0 100 1101
3.999999999999999	0 100 1110
3.999999999999987	0 100 1111

Table 10: Rozkład liczb podwójnej precyzji w przedziale [2, 4]

Tutaj również możemy zauważyć, że liczby z zadanego przedziału są równolegle rozmieszczone dla założonej δ , która jest tutaj równa 2^{-51} .

Ogólne spostrzerzenie

Możemy zauważyć, że w arytmetyce zmiennopozycyjnej liczby w przedziałach $[2^i,2^{i+1}]$ są równomiernie rozmieszczone z krokiem $\delta=2^{-t+i}$, gdzie $t\equiv$ liczba bitów mantysy. Z tego wynika fakt, że liczby w przedziałach $[2^i,2^{i+1}]$ oraz $[2^j,2^{j+1}]$ mają inne rozmieszczenie dla $i\neq j$. Dokładniej - im wieksza jest wartość i, tym "rzadziej" rozmieszczone są liczby w przedziałe $[2^i,2^{i+1}]$.

Zadanie 4 - Liczby odwrotne

Problem

a. Znaleźć w języku Julia liczbę zmiennopozycyjną x w precyzji Float64 taką, że:

$$\begin{cases} x\epsilon(1,2) \\ x \cdot \frac{1}{x} \neq 1 \iff fl(x \cdot fl(\frac{1}{x})) \neq 1 \end{cases}$$
 (2)

b. Znaleźć najmniejszą liczbę x spełniającą (2)

Rozwiązanie

Zaczynając od x = nextfloat(1) (ponieważ x > 1) sprawdzać kolejne liczby zmienno-przecinkowe (przypisując $x \leftarrow \text{nextfloat(x)}$), dopóki $x < 2 \land x \cdot \frac{1}{x} = 1$.

Taki algorytm znajdzie najmniejszą liczbę x spełniającą warunki (2).

Program z rozwiązaniem: ex4. jl

Wyniki i obserwacje

Najmniejszą liczbą spełniającą warunki zadania jest x = 1.000000057228997.

Możemy zauważyć, że dokładność obliczeń (precyzja arytmetyki) ma znaczący wpływ na uzyskiwane wyniki, dlatego należy mieć to na uwadze, implementująć algorytmy, by uniknąć lub zminimalizować wystąpienia takich błędów i ich kumulowania się

Zadanie 5 - Iloczyn skalarny

Problem

Zaimplementować w języku Julia algorytm obliczania iloczynu skalarnego dwóch wektorów, sumując przemnożone elementy na cztery sposoby: w przód, w tył, od największego do najmniejszego oraz od najmniejszego do najwięszego Algorytmy należy przetestować dla precyzji Float32 oraz Float32.

Rozwiązanie

Program z rozwiązaniem: ex5.jl

Wyniki i obserwacje

Znając rzeczywistą wartość iloczynu skalarnego zadanych wektorów x oraz y:

$$S_{true} = 1.0065710699999998e - 11$$

Możemy obliczyć błąd względny uzyskanych wyników w
g wzoru: $\delta = \frac{|S - S_{true}|}{S_{true}}$

Algorytm	S	δ
W przód	-0.4999443	4.966805766328285e10
W tył	-0.4543457	4.5137965582009605e10
Od najwięszych	-0.5	4.967359135506108e10
Od najmniejszych	-0.5	4.967359135506108e10

Table 11: Wartości iloczynu skalarnego wraz z błędem względnym w precyzji Float32

Algorytm	S	δ
W przód	1.0251881368296672e - 10	9.184955313981629
W tył	-1.5643308870494366e - 10	16.54118664516592
Od najwięszych	0.0	1.0
Od najmniejszych	0.0	1.0

Table 12: Wartości iloczynu skalarnego wraz z błędem względnym w precyzji Float64

Na podsawie wyników z tabeli~12 możemy stwerdzić, że kolejność sumowania elementów w arytmetyce zmiennopozycyjnej może mieć duże znaczenie dla otrzymanego wyniku. Dodatkowo zauważmy, że wektory x oraz y są do siebie prawie prostopadłe - ich iloczyn skalarny jest bliski 0. Zatem biorąc pod uwagę fakt, że otrzymane błędy sięgały nawet $\sim 1600\%$, możemy stwirdzić, że oblicznia bliskie 0 mogą generować duże błędy.

Zadanie 6 - Równoważne wunkcje

Problem

Wyznaczyć wartości zadanych funkcji:

- $f(x) = \sqrt{x^2 + 1} 1$
- $g(x) = x^2/(\sqrt{x^2+1}+1)$

W arytmetyce zmiennopozycyjnej w podwójnej precyzji dla $x=8^i:i\in\mathbb{N}^+$

Rozwiązanie

Program z rozwiązaniem: ex6.jl

Wyniki i obserwacje

Eksperyment przeprowadziłem dla $i \in \{1, 2, ..., 16\}$.

Exponent: i	f(x)	g(x)
1	0.0077822185373186414	0.0077822185373187065
2	0.00012206286282867573	0.00012206286282875901
3	1.9073468138230965e - 6	1.907346813826566e - 6
4	2.9802321943606103e - 8	2.9802321943606116e - 8
5	4.656612873077393e - 10	4.6566128719931904e - 10
6	7.275957614183426e - 12	7.275957614156956e - 12
7	1.1368683772161603e - 13	1.1368683772160957e - 13
8	1.7763568394002505e - 15	1.7763568394002489e - 15
9	0.0	2.7755575615628914e - 17
10	0.0	4.336808689942018e - 19
11	0.0	6.776263578034403e - 21
12	0.0	1.0587911840678754e - 22
13	0.0	1.6543612251060553e - 24
14	0.0	2.5849394142282115e - 26
15	0.0	4.0389678347315804e - 28
16	0.0	6.310887241768095e - 30

Table 13: Wartości równoważnych funkcji f oraz q

Na podstawie powyższej tabeli możemy stwierdzić, że mimo matematycznej równoważności funkcji f i g, nie są one równoznaczne w arytmetyce zmiennopozycyjnej.

W tym przypadku bardziej wiarygodne wyniki zwraca funkcja g. Niedokładność funkcji f może wynikać z tego, że wykonuje ona operację odejmowania bliskich siebie wartości.

Zadanie 7 - Przybliżenie pochodnej

Problem

Wyznaczyć w języku Julia przybliżone wartości pochodnej funkcji $f(x) = \sin x + \cos 3x$, korzystając z wzoru:

$$f'(x_0) \approx \tilde{f}'(x) = \frac{f(x_0+h)-f(x_0)}{h}$$

Dla
$$x_0=1 \wedge h=2^{-n}: n \; \epsilon \; \{0,1,...,54\}$$

Rozwiązanie

Program z rozwiązaniem: ex7. jl

Wyniki i obserwacje

Wiedząc, że $f'(x0) = \cos(x_0) - 3 \cdot \sin(3x_0)$ możemy porównać otrzymane przybliżenia pochodnej funkcji f z jej rzeczywistą wartością oraz obliczyć błąd bezwzględny tych przybliżeń.

Figure 1: Przybliżenie pochodniej funkcji f

Na podstawie wykresu 1 mozemy zauważyć, że na początku zmniejszanie wartości h powoduje bardzo szybki wzrost dokładności przybliżenia, jednak od pewnego momentu przybliżenie to przestaje być bardziej dokładne, a nawet zaczyna być coraz mniej, co wynika z tego, że $h \approx 0 \Rightarrow fl(1+h) = 1$.

Można to zauważyć także na wykresie 2, który bardzo dobrze pokazuje spadek dokładności przybliżenie pochodnej funkcji f dla bardzo małych wartości h.

Figure 2: Błąd bezwzględny przybliżenia pochodnej funkcji f