MRT + A

Regelungstechnik Zusammenfassung

Inhalt

1	Allgemein			
2	Zu	gemeinstandsraumdarstellung (ZRD)	3	
	2.1	Allgemein	3	
	2.2	Normalformen	4	
	2.3	Transformationen		
	2.4	Steuerbarkeit (Taschenbuch S.653)		
	2.5	Beobachtbarkeit (Taschenbuch S.655)		
	2.6	Bilden der Übertragungsfunktion im Zustandsraum	.11	
	2.7	Transitionsmatrix	.12	
	2.8	Bestimmen der Ausgangsgrösse y		
	2.9	Reglerentwurf im Zustandsraum (Föllinger S. 664)		
	2.10	Zustandsbeobachter (Taschenbuch S.674)	.14	
	2.11	PI-Zustandsregler (Taschenbuch S.696)	.15	
3	Matrizen			
	3.1	Matrizenmultiplikation		
	3.2	Bilden der Adjunkte		
	3.3	Bilden der Determinanten	.16	
	3.4	Inversion einer Matrix	.16	
	3.5	Exp(Matrix)	.16	
	3.6	Rang einer Matrix		

1 Allgemein

Begriff	Erklärung
Zustandsgrössen	Grössen im Innern des Regelkreises; ändern sich beim Regelvorgang
Führungsgrösse	Sollwert w, x _s
Regeldifferenz	$X_d=X_s-X_i$
Stellbefehl	y _s ; wird aus x _d erzeugt
Stellgrösse	y; leistungsstarker Stellbefehl y _s
Objekt der Regelung	Regelgrösse x
Störgrösse	z wirkt von aussen ein; kann in äquivalente Änderung der Stellgrösse yz umgerechnet werden

Begriff	Erklärung
Regelstrecke	y _z
Messgrössenumformer	wandelt Ist-Wert der Regelgrösse in proportionales Signal um
Regler	vergleicht Soll- und Ist-Wert => x _d und erzeugt y _s
Stellglied Rückkopplung	erzeugt aus y _s leistungsstarkes Signal y die Rückkopplung (Rückführung) beeinflusst das gesamte Regelverhalten
statische Genauigkeit	Regeldifferenz in Beharrung
dynamische Genauigkeit	Abweichung der Regelgrösse x von $x_s = f(t)$ während dem Einschwingvorgang
Direktregler	Regler ohne Hilfsenergie
Steuern	open loop control
Regeln	closed loop control
MIMO	multiple input, multiple output
SISO	single input, single output
LZI	linear zeitinvariant
	Superposition möglich
	ist proportional
	Frequenz bleibt konstant
LZV	linear zeitvariant
System mit Ausgleich	$ω$ =0 liegt in der Ortskurve auf der reellen Achse, $x_d(∞)$ =0, z.B. PT ₁
dominante Zeitkonstante	liegt am nächsten beim Ursprung
Ordnung	System n-ter Ordnung => Nennerpolynom ist n-ten Grades
Bandbreite	geht bis zur Eckfrequenz (-3dB Punkt)
P-Band	$x_P = \frac{1}{K_P}$; $K_P = \tan \alpha$
LHE	linke Halbebene (des Koordinatensystems)
RHE	rechte Halbebene (des Koordinatensystems)
BIBO	bounded input, bounded output (begrenzte Signale am Eingang, begrenzte Signale am Ausgang => Endwert)
Totzeitapproximation	Padé-Approximation ("unendliche" Reihe von PT₁-Gliedern; Föllinger S.412)
Minimumphasensystem	Von allen Systemen mit derselben Betragskennlinie hat ein Minimumphasensystem die kleinste Phasenverschiebung (Totzeitglied); vgl Buch S. 194) alle Pole & Nullstellen in LHE
Nichtminimumphasensystem	Allpässe (Nullstellen in RHE, symmetrisch zu den Polen) z.B. $G(s) = \frac{1 - T \cdot s}{1 + T \cdot s}$; ist BIBO stabil

wenn:

• $x_s \approx \text{konst: Festwertregelung}$

• $x_s = f(t)$: Folgeregelung, Nachlaufregelung

2 Zustandsraumdarstellung (ZRD)

(Föllinger S.387-503)

2.1 Allgemein

- Mit der ZRD ist es möglich, nichtlineare und zeitvariante Systeme nachzubilden.
- Es kommen nie höhere Ableitungen als 1. Ordnung vor.
- aus einer DGL n. Ordnung werden n DGLs 1. Ordnung gebildet.
- Es dürfen keine Ableitungen von Eingangsgrössen enthalten sein.
- Totzeitglieder können nicht direkt dargestellt werden (nur mit Approximation).
- Anfangswerte der Speicher (Integratoren) $\underline{\mathbf{x}}(t_0)$ müssen beachtet werden.
- Hauptgleichungen:

MIMO:
$$\frac{\dot{x} = A \cdot \underline{x} + B \cdot \underline{u}}{\underline{y} = C \cdot \underline{x} + D \cdot \underline{u}}$$
SISO:
$$\frac{\dot{x} = A \cdot \underline{x} + \underline{b} \cdot \underline{u}}{\underline{y} = \mathbf{c}^{\mathsf{T}} \cdot \underline{x} + \mathbf{d} \cdot \underline{u}}$$

SISO:
$$\frac{\dot{\underline{x}} = A \cdot \underline{x} + \underline{b} \cdot \underline{u}}{\underline{y} = c^{\mathsf{T}} \cdot \underline{x} + d \cdot \underline{u}}$$

x: Zustandsgrössen (Vektor); y: Ausgangsgrössen

- $X_1 = y$; $X_2 = \dot{X}_1$; $X_3 = \dot{X}_2$; ...; $X_n = \dot{X}_{n-1}$ $X_1 = Y; X_2 = s \cdot X_1; X_3 = s \cdot X_2; X_n = s \cdot X_{n-1}$
- Strukturbild des offenen Systems

- A: Systemmatrix, Dynamikmatrix (beinhaltet die Pole des Systems)
- B: Eingangsmatrix
- C: Ausgangsmatrix
- D: Durchgangsmatrix (häufig = 0, z.B. wenn Zählergrad < Nennergrad von G(s))

2.2 Normalformen

2.2.1 Regelungsnormalform (Taschenbuch S. 644) Grundlegende Form (SISO):

$$\underline{b} = \begin{bmatrix} \dots \\ 0 \\ \frac{1}{a_n} \end{bmatrix}$$

$$\underline{c}^{T} = \left[b_{0} - \frac{b_{n} a_{0}}{a_{n}} \quad b_{1} - \frac{b_{n} a_{1}}{a_{n}} \quad \dots \quad b_{n-1} - \frac{b_{n} a_{n-1}}{a_{n}} \right]$$

$$d = \left\lceil \frac{b_n}{a_n} \right\rceil$$

Meistens gilt:

$$a_n = 1$$

$$b_n = 0$$

2.2.2 Beobachtungsnormalform (Taschenbuch S. 648)

Grundlegende Form (SISO):

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & \dots & -\frac{a_0}{a_n} \\ 1 & 0 & 0 & 0 & \dots & -\frac{a_1}{a_n} \\ 0 & 1 & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & -\frac{a_{n-1}}{a_n} \end{bmatrix}$$

$$\underline{b} = \begin{bmatrix} b_0 - b_n \frac{a_0}{a_n} \\ b_1 - b_n \frac{a_1}{a_n} \\ \vdots \\ b_{n-1} - b_n \frac{a_{n-1}}{a_n} \end{bmatrix}$$

$$\underline{c}^{T} = \begin{bmatrix} 0 & \dots & 0 & \frac{1}{a_n} \end{bmatrix}$$

$$d = \left\lfloor \frac{b_n}{a_n} \right\rfloor$$

Meistens gilt:

$$a_n = 1$$

$$b_n = 0$$

2.2.3 Jordansche Normalform (Diagonalform)

- Bevorzugte Verwendung, wenn Pole von System bekannt sind
- System ist vollständig entkoppelt, wenn alle Pole reell und einfach vorkommen
- A ist Diagonalmatrix mit λ_i : Pole

Grundlegende Form (SISO):

$$A = \begin{bmatrix} \lambda_1 & 0 & \dots & \dots \\ 0 & \lambda_2 & 0 & \dots \\ \dots & \dots & \dots & \dots \\ \dots & \dots & 0 & \lambda_n \end{bmatrix} \qquad \underline{b} = \begin{bmatrix} 1 \\ \dots \\ 1 \end{bmatrix}$$

$$\underline{\mathbf{c}}^{\mathsf{T}} = \begin{bmatrix} \mathbf{r}_{1} & \dots & \mathbf{r}_{n} \end{bmatrix} \qquad \qquad \mathbf{d} = \mathbf{r}_{0}$$

2.3 Transformationen

2.3.1 Transformation auf Regelungsnormalform (Taschenbuch S.660)

$$A_R = T_R \cdot A \cdot T_R^{-1}$$

$$b_R = T_R \cdot b$$

$$c_R^T = c^T \cdot T_R^{-1}$$

$$d_R = d$$

Ein Übertragungssystem $\dot{x} = A \cdot x + B \cdot u$ wird mit der Transformation $z = T_R \cdot x$ in die Regelungsnormalform $\dot{x}_R = A_R \cdot x_R + b_R \cdot u$ überführt.

Wobei die Transformationsmatrix T_R mit der Systemmatrix A und der letzten Zeile q_{sn}^T der inversen Steuerbarkeitsmatrix Qs^{-1} gebildet wird.

$$T_{R} = \begin{bmatrix} q_{sn}^{T} \\ q_{sn}^{T} \cdot A \\ \dots \\ q_{sn}^{T} \cdot A^{n-1} \end{bmatrix} \qquad Q_{s}^{-1} = \begin{bmatrix} q_{s1}^{T} \\ q_{s2}^{T} \\ \dots \\ q_{sn}^{T} \end{bmatrix}$$

2.3.2 Transformation auf Beobachtungsnormalform (Taschenbuch S.662)

$$A_B = T_B \cdot A \cdot T_B^{-1}$$

$$b_B = T_B \cdot b$$

$$c_B^T = c^T \cdot T_B^{-1}$$

$$d_B = d$$

Ein Übertragungssystem $\dot{x} = A \cdot x + B \cdot u$ wird mit der Transformation $z = T_B \cdot x$ in die Beobachtungsnormalform $\dot{x}_B = A_B \cdot x_B + b_B \cdot u$ überführt.

Wobei die Transformationsmatrix T_B mit der Systemmatrix A und der letzten Spalte q_{Bn} der inversen Steuerbarkeitsmatrix Q_B^{-1} gebildet wird.

$$T_R = [q_{Bn} \quad A \cdot q_{Bn} \quad \dots \quad A^{n-1} \cdot q_{Bn}] \quad Q_B^{-1} = [q_{B1} \quad q_{B2} \quad \dots \quad q_{Bn}]$$

2.3.3 Strukturbild => ZRD

- es dürfen nur I-Glieder (Integratoren) und PT₁-Glieder vorkommen.
- Glieder höherer Ordnung als 1 müssen zerlegt werden (PT₂-Glieder müssen also zerlegt werden).
- $x_i = Ausgänge der I- und PT_1-Glieder; DGL 1. Ordnung$

Beispiel:

Daraus ergeben sich folgende Gleichungen:

$$X_1 = \frac{K_1}{1 + T_1 s} X_2 \implies sX_1 = -\frac{1}{T_1} X_1 + \frac{K_1}{T_1} X_2$$

$$e = u - K_R x_1$$

$$h = eK_P + x_3$$

$$X_2 = \frac{K_2}{1 + T_2 s} h \implies \text{ineinander eingesetzt und umgeformt} \implies$$

$$\begin{split} sX_2 &= -\frac{K_2K_RK_P}{T_2}X_1 - \frac{1}{T_2}X_2 + \frac{K_2}{T_2}X_3 + \frac{K_2K_P}{T_2}U(s) \\ sX_3 &= -K_EK_RX_1 + K_EU(s) \end{split}$$

$$\begin{aligned} & \text{mit} \quad \underline{\dot{x}} = A \cdot \underline{x} + \underline{b} \cdot u \xrightarrow{\quad L \quad} s\underline{X} = A \cdot \underline{X} + \underline{b} \cdot U \\ & \text{und} \quad y = c^T \cdot \underline{x} + \underline{d} \cdot u \end{aligned}$$

$$\Rightarrow A = \begin{bmatrix} -\frac{1}{T_1} & \frac{K_1}{T_1} & 0 \\ -\frac{K_2 K_R K_P}{T_2} & -\frac{1}{T_2} & \frac{K_2}{T_2} \\ -K_F K_R & 0 & 0 \end{bmatrix} \qquad \underline{b} = \begin{bmatrix} 0 \\ \frac{K_2 K_P}{T_2} \\ K_F \end{bmatrix}$$

$$c^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \qquad d = 0$$

2.3.3.1 PT₁ mit Integrator und P-Glied

2.3.3.2 PT₂ zerlegen

G(s) =
$$\frac{K}{1 + 2dTs + T^2s^2}$$

Es gibt 2 Möglichkeiten, ein PT₂-Glied zu zerlegen:

2.3.4 DGL => ZRD

Differentialgleichungen so umformen, dass die Ableitungen alleine stehen:

Beispiel 1:

$$\dot{x}_{1} = ax_{1} + bx_{3} + pu_{2}
\dot{x}_{2} = cx_{1} + dx_{2} + ex_{3} + qu_{1}
\dot{x}_{3} = fx_{2}
y = x_{1}
\Rightarrow \begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} a & 0 & b \\ c & d & e \\ 0 & f & 0 \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 0 & p & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \end{bmatrix}
\dot{x} \qquad A \qquad \dot{x} \qquad B \qquad \dot{u}$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \qquad d = 0$$

Beispiel 2:

$$a \cdot \ddot{y} + b \cdot \dot{y} + c \cdot y = K \cdot u \qquad ; DGL 2. Ordnung$$

$$\Rightarrow x_1 = y \quad ; \quad x_2 = \dot{x}_1 = \dot{y}$$

$$a \cdot \dot{x}_2 + b \cdot x_2 + c \cdot x_1 = K \cdot u \qquad \Rightarrow \quad \dot{x}_2 = -\frac{c}{a} \cdot x_1 - \frac{b}{a} \cdot x_2 + \frac{K}{a} \cdot u$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{c}{a} & -\frac{b}{a} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{K}{a} \end{bmatrix} \cdot u$$

$$\dot{x} \qquad A \qquad x \qquad b$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 0$$

$$\downarrow c^T \qquad x \qquad x$$

Die "1" in der c^T-Matrix und der Faktor "K/a" in der b-Matrix können beliebig vertauscht werden.

2.3.5 Übertragungsfunktion G(s) => Regelungsnormalform

gegeben:
$$G(s) = \frac{b_0 + b_1 \cdot s + ... + b_n \cdot s^n}{a_0 + a_1 \cdot s + ... \cdot a_n \cdot s^n}$$
; SISO

gesucht: A, B, C, D

Lösung:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \frac{a_0}{a_n} & -\frac{a_1}{a_n} & -\frac{a_2}{a_n} & \dots & \dots & -\frac{a_{n-1}}{a_n} \end{bmatrix} \qquad \qquad \underline{b} = \begin{bmatrix} 0 \\ \dots \\ 0 \\ \frac{1}{a_n} \end{bmatrix}$$

$$\underline{c}^{\mathsf{T}} = \begin{bmatrix} b_0 - \frac{a_0}{a_n} \cdot b_n; & b_1 - \frac{a_1}{a_n} \cdot b_n; & \dots; & b_{n-1} - \frac{a_{n-1}}{a_n} \cdot b_n \end{bmatrix} \qquad \qquad d = \frac{b_n}{a_n}$$

wenn $b_n=0$ und $a_n=1$:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & 1 \\ -a_0 & -a_1 & -a_2 & \dots & \dots & -a_{n-1} \end{bmatrix} \qquad \underline{b} = \begin{bmatrix} 0 \\ \dots \\ 0 \\ 1 \end{bmatrix}$$

$$\underline{\mathbf{c}}^{\mathsf{T}} = \begin{bmatrix} \mathbf{b}_0 & \mathbf{b}_1 & \dots & \mathbf{b}_{n-1} \end{bmatrix} \qquad \qquad \mathbf{d} = \mathbf{0}$$

2.3.6 Regelungsnormalform \Leftrightarrow Beobachtungsnormalform

$$\begin{split} \boldsymbol{A}_{\text{RNF}} &= \boldsymbol{A}_{\text{BNF}}^{\text{T}}; \quad \boldsymbol{b}_{\text{RNF}} = \boldsymbol{c}_{\text{BNF}} \\ \boldsymbol{c}_{\text{RNF}} &= \boldsymbol{b}_{\text{BNF}}; \quad \boldsymbol{d}_{\text{RNF}} = \boldsymbol{d}_{\text{BNF}} \end{split}$$

X_{RNF}: Regelungsnormalform

Y_{BNF}: Beobachtungsnormalform

2.3.7 Übertragungsfunktions G(s) ⇔ Jordansche Normalform

gegeben:
$$G(s) = \frac{b_0 + b_1 \cdot s + ... + b_n \cdot s^n}{a_0 + a_1 \cdot s + ... \cdot a_n \cdot s^n}$$
; SISO

gesucht: A, B, C, D

Lösung: Partialbruchzerlegung

=> bei einfachen Polen: (System vollständig entkoppelt)

=> bei **m-fachen** Polen (System gekoppelt):

$$G(s) = \frac{r_1}{s - \lambda_1} + \frac{r_2}{(s - \lambda_1)^2} + \dots + \frac{r_m}{(s - \lambda_1)^m} + \frac{r_{m+1}}{s - \lambda_{m+1}} + \dots + \frac{r_n}{s - \lambda_n} + r_0$$

$$\underline{\mathbf{c}}^{\mathsf{T}} = \begin{bmatrix} r_1 & \dots & r_m & r_{m+1} & \dots & r_n \end{bmatrix} \qquad \qquad \mathsf{d} = r_0$$

=> bei **konjugiert-komplexen** Polen (System gekoppelt): Pole aufteilen in Real- und Imaginärteil und getrennt lösen!

2.3.8 Matrix ⇔ Jordansche Normalform

Folgende Gleichungen stehen zur Verfügung:

$$x = Vz$$

wobei
$$V = \begin{bmatrix} v_{11} & \dots & v_{1n} \\ \dots & \dots & \dots \\ v_{n1} & \dots & v_{nn} \end{bmatrix} = \begin{bmatrix} \underline{v}_1 & \underline{v}_2 & \dots & \underline{v}_n \end{bmatrix}$$
; V ist die gesuchte Matrix

Ablauf:

- 1.) $det(\lambda I A) = 0 \implies \lambda_i$
- $2.) \quad (\lambda_k I A) \cdot \underline{v}_k = 0 \qquad ; k = 1..n \qquad \Rightarrow \quad n^2 \text{ Gleichungen}$
- 3.) aus Gleichungen vik bestimmen und in Hauptgleichungen einsetzen

Beispiel:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\Rightarrow \det(\lambda I - A) = \begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda + 1 & -1 \\ 0 & 0 & \lambda + 2 \end{vmatrix} = 0 \qquad \Rightarrow \quad \lambda_1 = 0, \quad \lambda_2 = -1, \quad \lambda_3 = -2$$

$$\Rightarrow \det(\lambda I - A) = \begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda + 1 & -1 \\ 0 & 0 & \lambda + 2 \end{vmatrix} = 0 \Rightarrow \lambda_1 = 0, \quad \lambda_2 = -1, \quad \lambda_3 = -2$$

$$\Rightarrow (\lambda_k I - A) \cdot \underline{v}_k = \begin{bmatrix} \lambda_k & -1 & 0 \\ 0 & \lambda_k + 1 & -1 \\ 0 & 0 & \lambda_k + 2 \end{bmatrix} \cdot \begin{bmatrix} v_{1k} \\ v_{2k} \\ v_{3k} \end{bmatrix} ; k = 1..3 \Rightarrow 9 \text{ Gleichungen}$$

$$\Rightarrow \lambda_1 v_{11} - v_{21} = 0 ; \quad (\lambda_1 + 1) v_{21} - v_{31} = 0 ; \quad (\lambda_1 + 2) v_{31} = 0$$

$$\lambda_2 v_{12} - v_{22} = 0 ; \quad (\lambda_2 + 1) v_{22} - v_{32} = 0 ; \quad (\lambda_2 + 2) v_{32} = 0$$

$$\lambda_3 v_{13} - v_{23} = 0$$
; $(\lambda_3 + 1)v_{23} - v_{33} = 0$; $(\lambda_3 + 2)v_{33} = 0$

 $\Rightarrow \lambda_{13}$ eingesetzt ergibt:

$$v_{11}$$
 beliebig; $v_{21} = 0$; $v_{31} = 0$

$$V_{32} = 0$$
; $V_{22} = -V_{12}$

$$V_{33} = -V_{23}$$
; $V_{23} = -2V_{13}$

 \Rightarrow $v_{11} = 1$; $v_{12} = 1$; $v_{13} = 1$ beliebig wählbar, da linear voneinander abhängig!

Somit:
$$V = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & -2 \\ 0 & 0 & 2 \end{bmatrix}$$
; V wird nun in Hauptgleichungen eingesetzt

2.4 Steuerbarkeit (Taschenbuch S.653)

Sagt aus, ob ich Einfluss auf Ausgang eines Systems ausüben kann (mittels Eingang).

$$\boldsymbol{Q}_{S} = \left[\underline{\boldsymbol{b}}, \ \boldsymbol{A} \cdot \underline{\boldsymbol{b}}, \ \boldsymbol{A}^{2} \cdot \underline{\boldsymbol{b}}, \ \ldots, \ \boldsymbol{A}^{n-1} \cdot \underline{\boldsymbol{b}}\right]$$

Q_S: Steuerbarkeitsmatrix n: Anzahl Zeilen von A

Steuerbarkeit ist erfüllt, wenn linear unabhängig:

$$det(Q_S) \neq 0$$
 oder $Rang(Q_S) = n$

2.5 Beobachtbarkeit (Taschenbuch S.655)

Sagt aus, ob ich Zugriff auf Ausgang eines Systems habe.

$$Q_{B} = \begin{bmatrix} \underline{c}^{T} \\ \underline{c}^{T} \cdot A \\ \underline{c}^{T} \cdot A^{2} \\ \dots \\ \underline{c}^{T} \cdot A^{n-1} \end{bmatrix}$$

Q_B: Beobachbarkeitsmatrix (hier für SISO) n: Anzahl Zeilen von A

Beobachtbarkeit ist erfüllt, wenn linear unabhängig:

$$det(Q_B) \neq 0$$
 oder $Rang(Q_B) = n$

2.6 Bilden der Übertragungsfunktion im Zustandsraum

2.6.1 MIMO-System

Zeitbereich:

$$\underline{x}(t) = \int\limits_{t_0}^t e^{A(t-\tau)} \cdot B \cdot u(\tau) \cdot d\tau \ + e^{A(t-t_o)} \cdot x(t_o)$$
 | partikuläre Lösung; Faltung von Impulsantwort und Eingangssignal | homogene Lösung; transiente Lösung (flüchtig). | e^{A(t-t_o)} = Überführungsmatrix $\Phi(t,t_0)$ (Transitionsmatrix) | (Föllinger S.426)

Bildbereich:

$$\begin{split} \underline{X}(s) &= (sI - A)^{-1} \cdot B \cdot U(s) + (sI - A)^{-1} \cdot \underline{x}_0 \\ s \cdot \underline{X}(s) &- \underline{x}_0 = A \cdot \underline{X}(s) + B \cdot U(s) \\ (sI - A) \cdot X(s) &= I \end{split} ; \text{ mit Anfangsbedingungen}$$

2.7 Transitionsmatrix

Ist die Lösung des homogenen Systems:

$$\dot{\Phi}(t,t_0) = A \cdot \Phi(t,t_0)$$

$$\Phi(t,t_0) = e^{A(t-t_0)}$$

$$\Phi(s) = L\{e^{At}\} = (sI - A)^{-1}$$

$$\mathbf{det(sI} - \mathbf{A)} = 0$$

- **det(s**I − A) = 0 ⇒ charakteristisches Polynom (Gleichung) => Wurzeln, Pole des Systems
 - ⇒ Eigenwerte von A
 - ⇒ System ist stabil, wenn Pole von charakteristischem Polynom in linker Halbebene liegen.

2.8 Bestimmen der Ausgangsgrösse y

Zeitbereich:

$$\underline{y} = C \cdot \underline{x} = \int\limits_{t_0}^t C \cdot e^{A(t-\tau)} \cdot B \cdot u(\tau) \cdot d\tau \ + D \cdot u(t) \ + C \cdot e^{A(t-t_0)} \cdot x(t_0)$$

ohne Durchgangsmatrix und ohne homogenen Anteil ergibt sich mit $F(t) = C \cdot e^{At} \cdot B$:

$$\underline{y}(t) = \int_{t_0}^{t} F(t - \tau) \cdot \underline{u}(\tau) \cdot d\tau = F(t) * \underline{u}(t)$$
 (Faltung)

Bildbereich:

$$\underline{Y}(s) = [C \cdot (sI - A)^{-1} \cdot B + D] \cdot U(s) + C \cdot (sI - A)^{-1} \cdot X_0$$
; Allgemein

$$=> G(s) = c^{T} \cdot (sI - A)^{-1} \cdot b + d$$
; für SISO

2.9 Reglerentwurf im Zustandsraum (Föllinger S. 664)

2.9.1 Allgemein

- -R = Zustandsregler, Rückführungsmatrix; muss so gewählt werden, dass System stabil ist.
- Alle Zustandsgrössen führen über den Regler
- Systemmatrix des offenen Systems: A
- Systemmatrix des geschl. Systems (mit Vorfilter): $A B \cdot R$ (MIMO); $A \underline{b} \cdot \underline{r}^{T}$ (SISO)
- keine Rückführung der Ausgangsgrössen y
- kein Soll/Ist-Vergleich

2.9.2 Vorfilter

$$F(s) = C \cdot (sI + B \cdot R - A)^{-1} \cdot B$$
$$Y(s) = F(s) \cdot M \cdot W(s)$$

$$\mathbf{M} = \mathbf{F}(\mathbf{0})^{-1} = \left[\mathbf{C} \cdot (\mathbf{B} \cdot \mathbf{R} - \mathbf{A})^{-1} \cdot \mathbf{B}\right]^{-1}$$

2.9.3 Regler

Man kann wie folgt vorgehen:

1. Möglichkeit:

- 1.) Pole des offenen Systems (Regelstrecke) ermitteln mit **det(sI-A)=0** => Polynom; λ_i
- 2.) Pole des geschlossenen Systems vorgeben => λ_{Ri} .

3.) Polynom berechnen:
$$det[sI - (A - B \cdot R)] = \prod_{i=1}^{n} (s - \lambda_{Ri})$$

3.) Polynom berechnen:
$$\mathbf{det}[\mathbf{sI} - (\mathbf{A} - \mathbf{B} \cdot \mathbf{R})] = \prod_{i=1}^{n} (\mathbf{s} - \lambda_{Ri})$$
4.) $\mathbf{s}^{n} + \mathbf{a}_{n-1} \cdot \mathbf{R} \cdot \mathbf{s}^{n-1} + \dots + \mathbf{a}_{0} \cdot \mathbf{R} = \mathbf{s}^{n} + \mathbf{p}_{n-1} \cdot \mathbf{s}^{n-1} + \dots + \mathbf{p}_{0}$
unbekannt
bekannt
Polynom aus Determinate
Polynom aus λ_{Ri}

5.) Parameter vergleich ergibt: $a_0R = p_0$; ...; $a_{n-1}R = p_{n-1}$

2. Möglichkeit (wenn A in Regelungsnormalform):

1.) Aus A wird Polynom gebildet:

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & & 0 \\ 0 & \dots & \dots & & 0 \\ \dots & \dots & \dots & & 1 \\ -a_0 & \dots & \dots & & -a_{n-1} \end{bmatrix}$$

$$\Rightarrow s^n + a_{n-1} \cdot s^{n-1} + \dots + a_0 = 0$$

2.) im geschlossenen Kreis sieht Polynom wie folgt aus:

$$s^{n} + (a_{n-1} + r_{Rn}) \cdot s^{n-1} + ... + a_{0} = 0$$

3.) mit den vorgegebenen Polen aus dem Polynom $s^n + p_{n-1} \cdot s^{n-1} + ... + p_0 = 0$ kann durch Parametervergleich auf die Reglermatrix geschlossen werden.

$$\begin{aligned} & r_{Ri} = p_{i-1} - a_{i-1} & ; i = 1..n \\ & \Rightarrow & \underline{r}_{R}^{T} = \begin{bmatrix} p_{0} - a_{0} & p_{1} - a_{1} & \dots & p_{n-1} - a_{n-1} \end{bmatrix} \end{aligned}$$

2.10 Zustandsbeobachter (Taschenbuch S.674)

Beobachter werden eingesetzt, wenn innere Zustandsvariablen nicht messbar sind.

$$h = \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_n \end{bmatrix} = \begin{bmatrix} p_0 - a_0 \\ p_1 - a_1 \\ \vdots \\ p_{n-1} - a_{n-1} \end{bmatrix}$$

2.11 PI-Zustandsregler (Taschenbuch S.696)

PI-Zustandsregler werden eingesetzt zur Kompensation einer permanenten Last(Störung) oder bei Parameterunsicherheiten der Strecke.

Bild 12.4-10: Allgemeines Signalflussbild einer Zustandsregelung mit überlagertem PI-Regler

Regelstrecke:

$$\frac{\mathrm{d} x(t)}{\mathrm{d}t} = \dot{x}(t) = A \cdot x(t) + b \cdot u(t) + b_z \cdot z(t),$$

$$y(t) = c^{\mathrm{T}} \cdot x(t),$$

Zustandsrückführung:

$$u_{r,Z}(t) = \mathbf{r}^{\mathrm{T}} \cdot \mathbf{x}(t).$$

3 Matrizen

3.1 Matrizenmultiplikation

Gegeben:
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} B = \begin{bmatrix} k & l & m \\ n & o & p \\ q & r & s \end{bmatrix}$$

$$A*B = \begin{bmatrix} a*k+b*n+c*q & a*l+b*o+c*r & a*m+b*p+c*s \\ d*k+e*n+f*q & d*l+e*o+f*r & d*m+e*p+f*s \\ g*k+h*n+i*q & g*l+h*o+i*r & g*m+h*p+i*s \end{bmatrix}$$

3.2 Bilden der Adjunkte

Beispiel für 3x3 Matrix:

Gegeben:
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

Gesucht: Adjunkte von A

Lösung: Adj(A) =
$$\begin{bmatrix} +(ei-hf) & -(bi-hc) & +(bf-ec) \\ -(di-gf) & +(ai-gc) & -(af-dc) \\ +(dh-eg) & -(ah-gb) & +(ae-bd) \end{bmatrix}$$

3.3 Bilden der Determinanten

Für eine nur aus einem Koeffizienten bestehende 1 imes 1-Matrix A ist

$$\det A = \det \left(a_{11} \right) = a_{11}.$$

Ist A eine 2×2 -Matrix, dann ist

$$\det A = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Für eine 3 imes 3-Matrix A gilt die Formel

$$\det A = \det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$$

3.4 Inversion einer Matrix

$$A^{-1} = \frac{Adj(A)}{det(A)}$$

3.5 Exp(Matrix)

$$e^{At} \cdot e^{-At} = I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\frac{d}{dt}e^{At} = A \cdot e^{At} = e^{At} \cdot A \quad \text{(kommutativ)}$$

e^A => jedes Element der Matrix A wird "e hoch" genommen.

3.6 Rang einer Matrix

Der Rang einer Matrix gibt die Zahl der linear unabhängigen Zeilenvektoren oder Spaltenvektoren, ergibt beides das gleiche.

Bsp.

Gegeben:
$$A = \begin{bmatrix} 3 & 1 & 3 \\ 2 & 4 & 1 \\ 5 & 5 & 4 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 3 & 1 & 3 \end{bmatrix}$$

 $a_2 = \begin{bmatrix} 2 & 4 & 1 \end{bmatrix}$
 $a_3 = \begin{bmatrix} 5 & 5 & 4 \end{bmatrix}$

Durch umformen mit dem Gaussschen Eliminationsverfahren erhält man:

$$a_2 = -2a_1 + 3a_2$$
$$a_3 = -5a_1 + 3a_3$$

Also ist
$$A = \begin{bmatrix} 3 & 1 & 3 \\ 0 & 10 & -3 \\ 0 & 10 & -3 \end{bmatrix}$$

Durch erneutes umformen erhält man:

$$a_3 = -a_2 + a_3$$

$$A = \begin{bmatrix} 3 & 1 & 3 \\ 0 & 10 & -3 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow rg(A) = 2$$