PROBABILITY AND STATISTICS - PROBLEM SET 8

- 1. Compute the moment generating function of the discrete random variable X with pmf $f(x) = \frac{1}{2^x}$, x = 1, 2, ...
- 2. If 0 and <math>q = 1 p, find the mgf of the random variable X with pmf $f(x) = p^{x-1}q$, x = 1, 2, ..., and hence find E[X] and V[X].
- 3. Show that if X and Y are independent Poisson variate with means λ and μ respectively, then X+Y is a Poisson variate with mean $\lambda+\mu$.
- 4. Show that if $X_i \sim N(\mu_i, \sigma_i^2)$, $i=1,\ldots,n$ are n independent normal variates, and α_i , $i=1,\ldots,n$ are constants, then $X=\sum_{i=1}^n \alpha_i X_i \sim N(\mu,\sigma^2)$ where $\mu=\sum_{i=1}^n \alpha_i \mu_i$ and $\sigma=\sqrt{\sum_{i=1}^n \alpha_i^2 \sigma_i^2}$.
- 5. Show that if $Z_i \in N(0,1)$, $i=1,\ldots,n$ are n independent standard normal variates, then $\sum_{i=1}^n Z_i^2 \sim \chi_n^2$.