Exercise 5. Show that is \mathscr{A} is a basis for a topology on X, then the topology generated by \mathscr{A} equals the intersection of all topologies on X that contain \mathscr{A} . Prove the same if \mathscr{A} is a subbasis.

Proof. Let $\tau(\mathscr{A})$ be the topology generated by the basis \mathscr{A} , and let T be the intersection of all topologies containing \mathscr{A} . As a topology containing \mathscr{A} , $\tau(\mathscr{A})$ contains T. Conversely, a topology T' containing A must contain all unions of elements of \mathscr{A} ; $\tau(\mathscr{A})$ is the set of such unions, so $\tau(\mathscr{A}) \subset T'$. This is true for all topologies $T' \in T$, so $\tau(\mathscr{A}) \subset T$.

If \mathscr{A} is a subbasis of X, let $\sigma(\mathscr{A})$ be the topology generated by \mathscr{A} , and let S be the intersection of all topologies containing \mathscr{A} . As in the previous case, $\mathscr{A} \subset \sigma(\mathscr{A})$, so $S \subset \sigma(\mathscr{A})$. Conversely, a topology S' containing \mathscr{A} must contain all finite intersections $(I_{\alpha})_{\alpha \in J}$ of elements of \mathscr{A} , and all unions of its elements; therefore it must contain all $\cup_{\beta \in K} I_{\beta}$, for all $K \subset J$. The set of all such unions is $\sigma(\mathscr{A})$, so $\sigma(\mathscr{A}) \subset S'$. This inclusion is true for all S', so $\sigma(\mathscr{A}) \subset S$.