Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Группа <u>Р3117</u>	Работа выполнена
Студент <u>Игнатова Г.Г.</u>	Отчет принят
Преподаватель Рудель А.Е.	К работе допущен

Рабочий протокол и отчет по лабораторной работе №1.01

Исследование распределения случайной величины

1. Цель работы.

Исследовать распределение случайной величины с помощью эксперимента и сравнить с теоретическим распределением случайной величины.

2. Задачи, решаемые при выполнении работы.

- 1. Провести многократные измерения определенного интервала времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования.

Интервал времени между запуском и остановкой секундомера.

4. Метод экспериментального исследования.

Многократные прямые измерения определённой величины человеком.

5. Рабочие формулы и исходные данные.

1. Плотность вероятности:

$$\rho\left(t\right) = \lim_{\substack{N \to \infty \\ \Delta t \to 0}} \frac{\Delta N}{N\Delta t} = \frac{1}{N} \frac{dN}{dt}$$

N – полное количество измерений;

 ΔN – количество результатов, попавших в интервал [t; $t + \Delta t$];

 $\frac{\Delta N}{N}$ — доля результатов, попавших в указанный интервал;

t – время одного замера.

2. Функция Гаусса:

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right)$$

 σ – среднеквадратичное отклонение;

(t) – среднеарифметическое всех результатов измерений.

3. Среднеарифметическое результатов измерений:

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^N t_i$$

4. Выборочное среднеквадратичное отклонение:

$$\sigma_N = \sqrt{\frac{1}{(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle)^2}$$

5. Максимальная плотность вероятности:

$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}}$$

6. Соотношение для вероятности попадания результата измерения в интервал $[t_1; t_2]$:

$$P\left(t_{1} < t < t_{2}
ight) = \int\limits_{t_{1}}^{t_{2}}
ho(t)dt pprox rac{N_{12}}{N}$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Электронный	[0,01; 60] c	0.005 c
2	Секундомер	Механический	[0,2; 60] c	0,1 c

7. Схема установки.

В работе используются идущие механические часы и цифровой секундомер. Первый прибор задаёт интервал времени, который многократно измеряется вторым.

8. Результаты прямых измерений и их обработки.

Таблица 1. Результаты прямых измерений (Приложение 1)

Примеры расчетов:

$$\langle t \rangle_{50} = \frac{1}{50} (10,99 + 10,90 + \dots + 11,14) = 11,088(c)$$

 $t_1 - \langle t \rangle_{50} = 10,99 - 11,088 = -0,098(c)$
 $(t_1 - \langle t \rangle_{50})^2 = (-0,098)^2 = 0,010(c^2)$

$$\begin{split} &\sum_{i=1}^{N}(t_i-\langle t\rangle_N)=(-0.098)+(-0.188)+\cdots+0.052=-0.171^*10^{-12}\text{ (c)}\\ &\sigma_N=\sqrt{\frac{1}{49}\sum_{i=1}^{50}(t_i-11.088)^2}=0.164\text{ (c)}\\ &\rho_{max}=\frac{1}{0.164\sqrt{2\pi}}=2.43\text{ (c}^{-1}) \end{split}$$

9. Расчет результатов косвенных измерений.

Таблица 2. Данные для построения гистограммы (Приложение 2)

$$t_{min} = 10,77$$

 $t_{max} = 11,44$

Количество интервалов: $m = \sqrt{N} = 7$

$$\rho(10,82) = \frac{1}{0,164\sqrt{2\Pi}} exp\left(-\frac{(10,82-11,09)^2}{2*0,164^2}\right)$$

Таблица 3. Стандартные доверительные интервалы *(Приложение 3)* Примеры расчетов:

$$\begin{split} \langle t \rangle_{\text{N}} + \sigma_{\text{N}} &= 11,088 + 0,164 = 11,252 \text{ (c)} \\ \langle t \rangle_{\text{N}} - \sigma_{\text{N}} &= 11,088 - 0,164 = 10,924 \text{ (c)} \\ \langle t \rangle_{\text{N}} + 2\sigma_{\text{N}} &= 11,088 + 2*0,164 = 11,416 \text{ (c)} \\ \langle t \rangle_{\text{N}} - 2\sigma_{\text{N}} &= 11,088 - 2*0,164 = 10,76 \text{ (c)} \\ \langle t \rangle_{\text{N}} + 3\sigma_{\text{N}} &= 11,088 + 3*0,164 = 11,58 \text{ (c)} \\ \langle t \rangle_{\text{N}} - 3\sigma_{\text{N}} &= 11,088 - 3*0,164 = 10,596 \text{ (c)} \\ \sigma_{\text{N}} : \frac{\Delta \text{N}}{\text{N}} = \frac{37}{50} = 0,74 \\ 2\sigma_{\text{N}} : \frac{\Delta \text{N}}{\text{N}} = \frac{48}{50} = 0,96 \\ 3\sigma_{\text{N}} : \frac{\Delta \text{N}}{\text{N}} = \frac{50}{50} = 1 \end{split}$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle)^2} = 0.0232$$
 (c)

Доверительная вероятность: α=0,95, N=50

Табличное значение коэффициента Стьюдента: 2,0086

Доверительный интервал: $\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} = 2,0086 * 0,023 = 0,047(c)$

11. Графики (Приложение 4).

График 1. Распределение значений случайной величины.

12. Окончательные результаты.

 $t = (11,088 \pm 0,329)c$ при α =0,95

13. Выводы и анализ результатов работы.

Во время эксперимента было исследовано распределение случайной величины. Были вычислены среднее значение и дисперсия полученной выборки. С помощью гистограммы распределения результатов нами был наглядно изучен закон распределения случайной величины. Но из-за довольно малого числа опытов гистограмма и график совпадают не до конца.

14. Дополнительные задания.

- 1. Являются ли, по вашему мнению, случайными следующие физические величины:
- плотность алмаза при 20∘С
- напряжение сети
- сопротивление резистора, взятого наугад из партии с одним и тем же номинальным сопротивлением
- число молекул в 1см3 при нормальных условиях?

Приведите другие примеры случайных и неслучайных физических величин.

2. Изучая распределение ЭДС партии электрических батареек, студент использовал цифровой вольтметр. После нескольких измерений получились такие результаты (в вольтах): 1,50; 1,49; 1,50; 1,50; 1,49. Имеет ли смысл продолжать измерения? Что бы вы изменили в методике этого эксперимента? 3. При обработке результатов измерений емкости партии конденсаторов получено: $\langle C \rangle$ = 1,1 мкФ, σ = 0,1 мкФ. Если взять коробку со 100 конденсаторами из этой партии, то сколько среди них можно ожидать конденсаторов с емкостью меньше 1 мкФ? больше 1,3 мкФ?

15. Выполнение дополнительных заданий.

- 1. Нет, для конкретного алмаза. Да, если это случайные алмазы.
 - Да, так как напряжение в сети может изменяться.
 - Да, так как фактическое сопротивление не всегда равно номинальному, а резистор взят случайно.
 - Да, так как движение молекул хаотично.
- 2. Смысла продолжать измерения нет. Необходим более точный прибор.

3.
$$N_{<1\text{MK}\Phi} = \frac{N-0,68N}{2} = 0,16N = 16$$
 ; $N_{>1,3\text{MK}\Phi} = \frac{N-0,96N}{2} = 0,02N = 2$ (1,1 ± σ)

16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Приложение 1

t_i , c	$t_i - \langle t \rangle_N, c$	$(t_i - \langle t \rangle_N)^2, c^2$
10,99	-0,098	0,010
10,90	-0,188	0,035
10,93	-0,158	0,025
11,27	0,182	0,033
11,20	0,112	0,013
11,37	0,282	0,080
10,92	-0,168	0,028
11,44	0,352	0,124
11,17	0,082	0,007
11,21	0,122	0,015
10,93	-0,158	0,025
11,05	-0,038	0,001
11,41	0,322	0,104
11,19	0,102	0,010
11,04	-0,048	0,002
11,09	0,002	0,000
10,87	-0,218	0,048
11,28	0,192	0,037
11,34	0,252	0,064
11,12	0,032	0,001
10,99	-0,098	0,010
11,23	0,142	0,020
10,93	-0,158	0,025
11,23	0,142	0,020
11,01	-0,078	0,006

11,42	0,332	0,110
11,26	0,172	0,030
11,10	0,012	0,000
11,07	-0,018	0,000
11,24	0,152	0,023
11,10	0,012	0,000
10,94	-0,148	0,022
10,94	-0,148	0,022
11,13	0,042	0,002
10,77	-0,318	0,101
10,91	-0,178	0,032
10,99	-0,098	0,010
11,17	0,082	0,007
11,10	0,012	0,000
11,12	0,032	0,001
10,83	-0,258	0,067
11,00	-0,088	0,008
10,98	-0,108	0,012
11,25	0,162	0,026
10,98	-0,108	0,012
11,02	-0,068	0,005
10,95	-0,138	0,019
10,82	-0,268	0,072
11,08	-0,008	0,000
11,14	0,052	0,003
$\langle t \rangle_N = 11,088$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = -0.1705 \times 10^{-12}$	$\sigma_{\rm N} = = 0.164 \text{ (c)}$ $\rho_{\rm max} = 2.43 \text{ (c}^{-1})$

Приложение 2

Границы интервалов, с	ΔΝ	$\frac{\Delta N}{N\Delta t}$, C^{-1}	t, c	ho, c ⁻¹
≥10,77	3	0,6	10,818	0,626
<10,87		,,,	. 0,0 . 0	
≥10,87	10	2	10,914	1,379
<10,96	10	_	10,014	1,070
≥10,96	10	2	11,009	2,162
<11,06	10	2	11,000	2,102
≥11,06	10	2	11,105	2,415
<11,15	10	_	11,100	2,410
≥11,15	8	1,6	11,201	1,922
<11,25	O	1,0	11,201	1,522
≥11,25	5	1	11,296	1,089
<11,34	0	'	11,200	1,000
≥11,34	4	0,8	11,392	0,44
<11,44	т	0,0	11,002	3 ,

Приложение 3

	Интервал, с		ΔΝ	ΔΝ	Р
	ОТ	до		N	·
$\langle t \rangle_{\rm N} \pm \sigma_{\rm N}$	10,924	11,252	37	0,74	0,683
$\langle t \rangle_{\rm N} \pm 2\sigma_{\rm N}$	10,760	11,416	48	0,96	0,954
$\langle t \rangle_{\rm N} \pm 3\sigma_{\rm N}$	10,596	11,580	50	1	0,997