NOTES 12: μ OCAML COMPILER

Cameron Moy

Tuesday July 10th

1 λ syntax and semantics

Here is a grammar for the λ calculus.

$$T \rightarrow T \ T \ \mid \ \lambda X.T \ \mid \ X$$

$$X \rightarrow a \ \mid \ b \mid \ \dots \ \mid \ z \ \mid aa \ \mid \ \dots$$

And here are the semantics.

$$(\alpha) \frac{(\lambda x.t) \Rightarrow_r (\lambda y.t[x \mapsto y])}{(\lambda x.t_1) \ t_2 \Rightarrow_r t_1[x \mapsto t_2])}$$

$$(3) \frac{t_1 \Rightarrow_r t'_1}{t_1 \ t_2 \Rightarrow_r t'_1 \ t_2} (4) \frac{t_2 \Rightarrow_r t'_2}{t_1 \ t_2 \Rightarrow_r t_1 \ t'_2} (5) \frac{t \Rightarrow_r t'}{(\lambda x.t) \Rightarrow_r (\lambda x.t')}$$

The semantics define a reduction relation, not a function, $\Rightarrow_r: T \to T$. This style of semantics is called small-step. The fact \Rightarrow_r is a relation means our semantics are now non-determinstic.

Rule (α) is α -conversion. Rule (β) is β -reduction. Rules (3) through (5) don't actually do anything, but allow us to apply the others in any sub-expression. Rules that do the work, like (α) and (β) , are called computation rules. Rules

that allow computation to happen in sub-expressions, like (3) through (5), are called congruence rules.

Example. Reduce $(\lambda x.x \ (\lambda y.x \ y)) \ y$ to normal form.

Proof. We could do this proof as a series of trees, but this is a lot of writing. Typically we just show the series of \Rightarrow_r directly, underlining the redex.

$$(\lambda x. \underline{(\lambda y. x \ y)} \ x) \ y \Rightarrow_r^{\alpha} \underline{(\lambda x. (\lambda z. x \ z) \ x) \ y}$$
$$\Rightarrow_r^{\beta} \underline{(\lambda z. y \ z) \ y}$$
$$\Rightarrow_r^{\beta} y \ y$$

Since \Rightarrow_r is a relation (and hence non-deterministic), there is actually another way to do this proof.

Proof.

$$(\lambda x. \underline{(\lambda y.x \ y) \ x}) \ y \Rightarrow_r^\beta \underline{(\lambda x.x \ x) \ y}$$
$$\Rightarrow_r^\beta y \ y$$

Notice that we get the exact same answer. This is actually a guarantee.

Theorem (Church-Rosser). If $t \Rightarrow_r^* u$ and $t \Rightarrow_r^* v$ (where \Rightarrow_r^* is an arbitrary series of \Rightarrow_r steps) and u and v are normal forms, then u = v.

This property is known as confluence and tells us that terms in our calculus have a unique normal form, no matter what reduction strategy you take.

2 Reduction strategies

This is all well-and-good, but non-determinism is bad. If we want to write a λ calculus interpreter we need to define a deterministic strategy. We can describe such a strategy informally.

- 1. The call-by-value strategy requires that an argument must be evaluated before a β reduction can happen.
- 2. The call-by-name strategy states that β reductions happen without evaluating the argument at all.

However, we can use our other style of semantics, big-step semantics, to formally describe a deterministic reduction strategy. Here is such a CBV semantics.

$$(1) \overline{\quad (\text{fun } x \rightarrow t) \Downarrow_{v} (\text{fun } x \rightarrow t)}$$

$$(2) \overline{\quad t_{1} \Downarrow_{v} (\text{fun } x \rightarrow t_{12}) \quad t_{2} \Downarrow_{v} v_{2} \quad t_{12}[x \mapsto v_{2}] \Downarrow_{v} v}$$

3 It was λ the whole time

Pause for a moment. Doesn't this look familiar?

You should have realized by now that last week we implemented a CBV λ calculus interpreter. We just called it "NanOCaml". Our syntax had fun instead of λ , an -> instead of ., and extra parentheses (to make parsing easier), but really that's it!