

IEL – protokol k projektu

Jan Schoř xschorj00

13. prosince 2024

Obsah

1	Příklad 1	2
2	Příklad 2	3
3	Příklad 3	5
4	Příklad 4	7
5	Příklad 5	8
6	Shrnutí výsledků	9

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu postupného zjednodušování obvodu.

s	k.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
	F	125	65	510	500	550	250	300	800	330	250

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu Théveninovy věty.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
F	130	180	350	600	195	650	80
	R ₁	R_2			R ₅		

Zjednodušíme rezistory R_1 a R_2 do jednoho rezistory R_{12} .

$$R_{12} = R_1 + R_2$$

To stejné uděláme pro rezistory R_3 a R_4 .

$$R_{34} = \frac{R_3 \cdot R_4}{R_3 + R_4}$$

Zjednodušený obvod potom bude vypadat takhle:

Na zjednodušeném obvodu již není samotný rezistor R_4 , u kterého potřebujeme zjistit napětí a proud. Místo toho zjistíme tyto hodnoty na rezistoru R_{34} a z nich poté odvodíme požadované výsledky pro R_4 .

Jako další krok odpojíme zátěž a zkratujeme zdroje napětí, abychom mohli vypočítat vnitřní odpor skutečného zdroje napětí. Určíme si takto 2 body A a B, mezi kterými byl rezistor R_{34} .

Vnitřní odpor R_i je tedy roven celkovému odporu rezistorů R_{12} a R_5 . Použijeme tedy vzoreček pro paralelní zapojení rezistorů.

$$R_i = \frac{R_{12} \cdot R_5}{R_{12} + R_5}$$

Nyní si vytvořím obvod bez rezistoru R_{34} a pomocí II. K. Z. vypočítám celkový proud protékající tímto obvodem. Pojmenuji si ho jako proud I_x

$$0 = I_x \cdot R_{12} + I_x \cdot R_5 + U_2 - U_1$$

$$0 = I_x(R_5 + R_{12}) + U_2 - U_1$$

$$I_x = \frac{U_1 - U_2}{R_5 + R_{12}}$$

Nyní si podle II. K. Z. vypočítáme napětí ve smičce a získáme tak napětí U_i mezi body A a B.

$$0 = U_i - U_i - I_x \cdot R_{12}$$
$$U_i = U_1 + R_{12} \cdot I_x$$

Obvod si nyní dokážeme překreslit na jeho variantu se skutečným zdrojem a zátěží.

Z tohoto obvodu nyní dokážeme dopočítat proud a napětí na rezistoru R_{34} .

$$I_{R34} = \frac{U_i}{R_i + R_{34}}$$

$$U_{R34} = R_{34} \cdot I_{R34}$$

Nyní se vrátíme k obvodu před zjednodušením. Jelikož jsou rezistory R_3 a R_4 zapojeny paralelně, napětí na nich bude stejné jako na rezistoru R_{34} . Jediné, co je tedy třeba dopočítat, je proud na R_4 , který vypočítáme pomocí vzorečku.

$$U_{R4} = U_{R34} I_{R4} = \frac{U_{R34}}{R_4}$$

Po dosazení hodnot vypočítáme konkrétní hodnoty U_{R4} I_{R4} .

$$U_{R4} = 118.0477 \,\mathrm{V}$$

 $I_{R4} = 181.6119 \,\mathrm{mA}$

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu uzlových napětí (U_A, U_B, U_C) .

		102 1	102	· ·		·		11/ 1/	0 /
sk.	U_1 [V]	U_2 [V]	I[A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
A	120	50	0.7	53	49	65	39	32	48

Tvorba rovnice pro každý uzel (A, B, C) podle I. K. Z.:

$$\begin{split} A: \quad & \frac{U_1 - U_A}{R_1} - \frac{U_A + U_2 - U_B}{R_3} + \frac{U_B - U_A}{R_4} - \frac{U_A}{R_2} = 0 \\ B: \quad & \frac{U_A + U_2 - U_B}{R_3} + I - \frac{U_B - U_C}{R_6} - \frac{U_B - U_A}{R_4} = 0 \\ C: \quad & \frac{U_B - U_C}{R_6} - I - \frac{U_C}{R_5} = 0 \end{split}$$

Úprava rovnic pro dosazení do matice:

$$A: -(\frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_2})U_A + (\frac{1}{R_3} + \frac{1}{R_4})U_B + 0U_C = \frac{U_2}{R_3} - \frac{U_1}{R_1}$$

$$B: (\frac{1}{R_3} + \frac{1}{R_4})U_A - (\frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_6})U_B + \frac{1}{R_6}U_C = -I - \frac{U_2}{R_3}$$

$$C: 0U_A + \frac{1}{R_6}U_B - (\frac{1}{R_5} + \frac{1}{R_6})U_C = I$$

Maticový tvar rovnic:

$$\begin{bmatrix} -\left(\frac{1}{R_{1}} + \frac{1}{R_{3}} + \frac{1}{R_{4}} + \frac{1}{R_{2}}\right) & \frac{1}{R_{3}} + \frac{1}{R_{4}} & 0\\ \frac{1}{R_{3}} + \frac{1}{R_{4}} & -\left(\frac{1}{R_{3}} + \frac{1}{R_{4}} + \frac{1}{R_{6}}\right) & \frac{1}{R_{6}}\\ 0 & \frac{1}{R_{6}} & -\left(\frac{1}{R_{5}} + \frac{1}{R_{6}}\right) \end{bmatrix} \begin{bmatrix} U_{A} \\ U_{B} \\ U_{C} \end{bmatrix} = \begin{bmatrix} \frac{U_{2}}{R_{3}} - \frac{U_{1}}{R_{1}} \\ -I - \frac{U_{2}}{R_{3}} \\ I \end{bmatrix}$$

Po dosazení hodnot získáme výsledek U_A, U_B, U_C :

$$\begin{split} U_A &= 49.2546 \, \mathrm{V} \\ U_B &= 59.9700 \, \mathrm{V} \\ U_C &= 10.5480 \, \mathrm{V} \end{split}$$

Napětí mezi uzlem U_A a stanoveným referenčním uzlem je rovno napětí na rezistoru R_2 .

Pomocí Ohmova zákona dokážeme vypočítat proud ${\cal I}_{R2}\!:$

$$\begin{split} I_{R2} &= \frac{U_A}{R_2} \\ I_{R2} &= 1.0052 \, \mathrm{A} \\ U_{R2} &= U_A = 49.2546 \, \mathrm{V} \end{split}$$

Pro napájecí napětí platí: $u_1=U_1\cdot\sin(2\pi ft),\,u_2=U_2\cdot\sin(2\pi ft).$ Ve vztahu pro napětí $u_{L_1}=U_{L_1}\cdot\sin(2\pi ft+\varphi_{L_1})$ určete $|U_{L_1}|$ a φ_{L_1} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$L_1 [mH]$	$L_2 [mH]$	C_1 [μ F]	C_2 [µF]	f [Hz]
F	2	3	12	10	170	80	150	90	65

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U[V]	L [H]	$R [\Omega]$	$i_L(0)$ [A]
	F	25	10	50	8
	F	}			
			٦.		
t = 0 s					
s	70		Υ		
5 \	8		ವ್ಮ		
			200		
$u \mid \pm$	\perp		Γ		
(\equiv				
¥					

Shrnutí výsledků

Příklad	Skupina	Výsledky	
1	F	$U_{R3} = I_{R3} =$	
2	F	$U_{R4} = I_{R4} =$	
3	A	$U_{R2} = I_{R2} =$	
4	F	$ U_{L_1} = \varphi_{L_1} =$:
5	F	$i_L =$	