1N-02

パーソナライズド連合学習手法の比較と分析

松田 光司 † 佐々木 勇和‡ 肖川§ 鬼塚 真 ¶ 大阪大学† 大阪大学‡ 大阪大学 § 大阪大学¶

1 はじめに

連合学習はサーバと複数のクライアントがデータを 共有することなく、協調して機械学習モデルを構築す る分散型の機械学習手法である.連合学習における課 題の一つとして、データの不均一性の問題がある. 各 クライアントが持つデータの分布は異なるため、各ク ライアントに対して最適な単一のグローバルモデル を学習することは困難である. データの不均一性に対 処するために、クライアント毎に最適なモデルを作成 する,パーソナライズド連合学習手法が多く考案され ている.しかし、これらの手法の網羅的な比較及び分 析は行われていない. そこで, 本稿では4つのデータ セットを用いて、パーソナライズド連合学習手法の比 較と分析を行い、手法の特性を明らかにする.

2 連合学習手法

本稿の実験で比較する手法について説明する. 非 パーソナライズド連合手法として FedAvg [1] と Fedprox [2], パーソナライズド連合手法として HypCluster [3], MAPPER [3], FML [4], FedMe [5], LG-FedAvg [6], FedPer [7], FedRep [8], Ditto [9] および pFedMe [10] を用いる.

非パーソナライズド連合学習手法: FedAvg [1] は連 合学習の代表的な手法であり、サーバが一つのモデル を作成する. サーバは各クライアントが学習したモデ ルを受け取り、平均化して1つのモデルに集約する. Fedprox [2] は FedAvg を拡張した手法であり、各クライ アントの学習の損失関数に近接項を追加することで, モデルパラメータの発散を防ぐ.

パーソナライズド連合学習手法: HypCluster [3] は サーバが複数のモデルを作成する. クライアントは自 身のデータを用いて最も損失が小さいモデルを選択 し、そのモデルを学習する、MAPPER [3] はサーバと 各クライアントがそれぞれモデルを作成する. 各クラ イアントは自身のモデルとサーバのモデルを加重平均 し補間モデルを作成し、補間モデルを最適化するよう に自身のモデル、サーバのモデル、および加重平均の 比率を学習する.

FML [4] と FedMe [5] はサーバと各クライアントがそ れぞれモデルを作成する. FML は各クライアントは自 身のモデルとサーバのモデルを深層相互学習によって 学習する. 推論時はサーバのモデルを用いることもで きるが、本稿では各クライアントが作成したモデルを 用いる. FedMe は各クライアントが自身のモデルと他 クライアントのモデルを交換し、互いのモデルを深層 相互学習によって学習する.

LG-FedAvg [6], FedPer [7], および FedRep [8] はサー バがモデルの一部分を作成し、各クライアントがモデ ルの残りの部分を作成する. LG-FedAvg はサーバがモ デルの出力側, クライアントがモデルの入力側の一部 を作成するのに対し、FedPer と FedRep はサーバがモ デルの入力側、クライアントがモデルの出力側の一部 を作成する. また, LG-FedAvg と FedPer がモデルの出 力側と入力側を同時に学習するのに対し、FedRep はモ デルの出力側と入力側の片方のモデルパラメータを固 定し、それらを交互に学習する.推論時には、各クラ イアントは自身のモデルの一部とサーバのモデルの一 部を結合したものを用いる.

Ditto [9] と pFedMe [10] はサーバと各クライアントが それぞれモデルを作成する. 各クライアントとサーバ のモデルパラメータが離れすぎないように学習する. Ditto はサーバとクライアントのモデルパラメータの 差分を各クライアントのモデルに加算するのに対し, pFedMe ではモロー包絡を用いてサーバのモデルと離 れすぎないような正則化項を損失関数自体に組み込ん でいる.

3 評価実験

実験では各手法の精度検証を行う. Pytorch を用い て単一の GPU マシンで仮想的にクライアントとサー バを作成する.

実験設定: データセットとして, Federated EMNIST-62 (FEMNIST), MNIST, CIFAR-10, Shakespeare の 4つ を用いる. FEMNIST と MNIST では CNN を用いて, CIFAR-10 では VGG を用いて多クラス分類を行う. Shakespeare では LSTM を用いて次文字予測を行う. 全 てのデータセットでクライアント数は20とし,クライ アントが保持するデータを変えて5回実験を行なった.

比較手法として、2章で説明した手法に加えて、各 クライアントが自身のデータのみを使用して学習する Local Data Only も比較する. また, FedAvg, FedProx, HypCluster, FedMe はモデル構築後, それぞれのデータ で fine-tuning する.

実験結果: 実験結果を表1にテストデータに対する 精度の平均と標準偏差を表している.

A performance comparison and analysis of Personalized Federated Learning methods

[†] Koji Matsuda, Osaka University † Yuya Sasaki, Osaka University

[§] Chuan Xiao, Osaka University

[¶] Makoto Onizuka, Osaka University

表 1 実験結果

	FEMNIST	MNIST	CIFAR-10	Shakespeare
Local Data Only	64.71 ± 2.94	97.00 ± 0.99	73.17 ± 1.55	24.77 ± 1.95
FedAvg	77.25 ± 3.99	99.07 ± 0.04	89.59 ± 0.94	42.53 ± 2.19
$\operatorname{FedProx}$	76.96 ± 3.42	98.79 ± 0.06	89.76 ± 0.62	45.17 ± 2.83
HypCluster	76.29 ± 3.15	98.95 ± 0.11	88.54 ± 1.42	41.10 ± 3.29
MAPPER	60.95 ± 3.04	97.00 ± 0.47	61.29 ± 4.19	36.77 ± 1.58
FML	67.91 ± 2.53	98.16 ± 0.17	79.89 ± 1.44	28.73 ± 1.78
FedMe	78.06 ± 3.00	99.03 ± 0.14	90.96 ± 0.84	45.83 ± 2.48
pFedMe	72.92 ± 3.54	98.96 ± 0.05	79.46 ± 2.08	40.33 ± 2.27
$LG ext{-}FedAvg$	65.14 ± 3.12	97.80 ± 0.16	78.53 ± 1.57	23.17 ± 1.93
FedPer	65.96 ± 2.81	99.06 ± 0.04	90.00 ± 0.83	30.83 ± 3.32
FedRep	66.04 ± 2.20	98.90 ± 0.09	88.96 ± 0.48	31.71 ± 2.29
Ditto	75.68 ± 3.63	99.13 ± 0.05	90.41 ± 0.67	49.33 ± 1.85

表1より,まず多くの連合学習手法は local より精度 が高い.各クライアントの持つデータのみの学習では 過学習を起こすため,連合学習手法の有効性がわかる.

全手法の中では FEMNIST と CIFAR-10 に対しては FedMe が、MNIST と Shakespeare に対しては Ditto がそ れぞれ最も精度が高い.特に、FedMeでは他の2つの データセットに対しても Ditto と同等程度,あるいは 2 番目に精度が高いことからデータセットに対して堅牢 であることがわかる. FedPer と FedRep は、MNIST と CIFAR-10 に対しては最も精度が高い手法と同等程度の 精度であり、FEMNIST と Shakespeare に対しては Local Data Only と同等程度の精度である. これは、FedPer と FedRep ではモデルの出力側は各クライアント上の データでのみ学習するため, 各クライアントが保持す るデータ数が小さい FEMNIST と Shakespeare では過学 習を起こしてしまうためである. FedAvg と Fedprox で は学習後に fine-tuning しており、全てのデータセット に対して最も精度が高い手法と同等程度の精度であ る. このことから、単純な連合学習手法と fine-tuning を組み合わせることで十分にデータの不均一性に対処 できることがわかる.

謝辞本研究は JSPS 科学研究費 JP17H06099 および JP20H00584 の支援によって行われた. 実験には産総 研の AI 橋渡しクラウド (ABCI) を利用した.

参考文献

- Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communicationefficient learning of deep networks from decentralized data. In AISTATS, pp. 1273–1282, 2017.
- [2] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated optimization in heterogeneous networks. In *MLSys*, Vol. 2, pp. 429–450, 2020.
- [3] Yishay Mansour, Mehryar Mohri, Jae Ro, and

Ananda Theertha Suresh. Three approaches for personalization with applications to federated learning. arXiv, 2020.

- [4] Tao Shen, Jie Zhang, Xinkang Jia, Fengda Zhang, Gang Huang, Pan Zhou, Kun Kuang, Fei Wu, and Chao Wu. Federated mutual learning. arXiv, 2020.
- [5] Koji Matsuda, Yuya Sasaki, Chuan Xiao, and Makoto Onizuka. Fedme: Federated learning via model exchange. arXiv preprint arXiv:2110.07868, 2021.
- [6] Paul Pu Liang, Terrance Liu, Liu Ziyin, Ruslan Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with local and global representations. arXiv preprint arXiv:2001.01523, 2020.
- [7] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Federated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.
- [8] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared representations for personalized federated learning. In *ICML*, pp. 2089– 2099, 2021.
- [9] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning through personalization. In *ICML*, pp. 6357–6368, 2021
- [10] Canh T. Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau envelopes. In NIPS, pp. 21394–21405, 2020.