Real-time haze removal and object detection for vehicle surveillance

Dataset Description

Supervisor: Dr. B. Prabavathy UG Students: Sarika Esackimuthu, Vikash Anand S

Department of CSE,

Sri Sivasubramaniya Nadar college of Engineering Final year project, May 2024

Introduction

Reduced visibility due to haze in adverse weather conditions is a major cause for road accidents.

Objective: To propose a system, C-Thru that removes the haze and improves visibility for the drivers in real-time.

Highlights of C-Thru system

- Reduces the presence of haze in every frame of a video.
- Detects vehicles and other barriers present on the road.

Challenges in existing work:

- High quality output comes at a heavy processing complexity cost. Light weight models produce low quality output.
- Loss of colour in images after dehazing.

Proposed System for Dehazing and Object Detection

Figure 1. C-Thru Architecture

RESIDE (REalistic Single Image DEhazing)

- A large-scale benchmark consisting of both synthetic and real-world hazy images.
- Used to evaluate PSNR and SSIM of the dehazing module.

Table 1. RESIDE

Synthetic outdoor	Synthetic Indoor	Real Outdoor
72,135	14,490	9,129

Nulmages

- A total of 93,000 images with instance masks and 2d boxes for 800k foreground objects on roadsides.
- Used to train the object detection module.

DAWN

- A collection of 1000 images from real-traffic environments, divided into four sets of weather conditions: fog, snow, rain and sandstorms.
- Is annotated with object bounding boxes for autonomous driving and video surveillance scenarios.
- Used to analyse the mAP50 performance of the object detection module.

Performance Analysis of C-Thru

Impact on haze density

This is a score representing the predicted density of haze in an image. The value ranges between 0 and 1.

Table 2. EDN-GTM Haze density

Video	Before	After	Reduction(%)
1	0.543	0.492	9.3
2	0.735	0.628	14.5
3	0.612	0.547	10.6
4	0.549	0.461	16.2

Table 3. C-Thru(Proposed System) Haze density

Video	Before	After	Reduction (%)
1	0.543	0.454	16
2	0.735	0.471	35.85
3	0.612	0.418	31.65
4	0.549	0.4	27.05

Impact on latency

This is an important metric to consider for real-time applications. The proposed system gives good frame rate.

Table 4. EDN-GTM performance (in fps)

Video Resolution	Intel Core i5	Intel Core i7
1280 x 720	1.8	3.2
854 × 480	3.9	5.9
640×360	7.8	11.5
426×240	10.5	14.2
	1280 x 720 854 x 480 640 x 360	854 x 480 3.9 640 x 360 7.8

Table 5. C-Thru (Proposed system) performance (in fps)

Video Resolution	Intel Core i5	Intel Core i7
1280 x 720	7.5	16.1
854 x 480	13.35	21.4
640 × 360	24.9	31.2
426×240	36.39	61.62
	1280 x 720 854 x 480 640 x 360	854 x 480 13.35 640 x 360 24.9

Impact on PSNR and SSIM

- Peak Signal to Noise Ratio (PSNR): This ratio is used as a quality measurement between the original and processed image. The higher the PSNR, better the quality of the output image
- Structural Similarity Index (SSIM): It is an image quality metric that shows the similarity between the original and processed

Table 6. Evaluation on RESIDE dataset.

Models	PSNR	SSIM	
Deep Learning			
MFID-NET	34.21	0.9844	
MA-MFC Net	33.6	0.9869	
DehazeFormer	32.36	0.9736	
LD-Net	26.98	0.9477	
EDN-GTM	23.46	0.8198	
C2PNET	20.09	0.8281	
MSBDN	24.36	0.749	
Unsupervised			
Depth Aware Unpaired Video Dehaze	21.96	0.909	
CycleGAN	21.18	0.77	
GAN and self supervised	15.62	0.781	
Prior Based			
DCP	19.37	0.8431	
C-Thru	20.29	0.857	

Impact on mAP50

Images from the DAWN dataset were used to evaluate the object detection module in terms of the mAP50 metric.

Evaluation using mAP50 metric

Method	Before dehazing	After dehazing
DCP	0.734	0.752
EDN-GTM	0.734	0.745
MSBDN	0.734	0.755
C2PNET	0.734	0.753
C-Thru	0.734	0.761

Dehazed and object detected

A Hazy image taken from the Real Outdoor subdivision of the RESIDE dataset and the corresponding output image from our proposed system.

Figure 2. Input frame

Figure 3. Output frame from C-Thru system

Inferences

- The proposed C-Thru system shows a better haze density reduction percentage as compared to the other machine learning based models.
- It shows 0.19% improvement in PSNR and 8.34% improvement in SSIM than the other prior based models.
- It reaches upto 60 fps for videos of 240p resolution and provides real-time support upto 480p.

Future Scope

- The sky segmentation algorithm is not perfect. It fails in creating a perfect mask at areas close to the horizon.
- The system cannot handle HD and Full-HD videos in real-time speeds.