Notes taken during class on day 5 (raw and unpolished)

Check

https://github.com/gboeing/osmnx-examples

Basic concepts on networks

Introduce nodes $z \in Z$ (interesctions)

and arcs $a \in A$

an arc a = xy where x is the origin and y is the destination.

A network can be described by a list of arcs

The basic data of the problem will be $c_a = \cos t$ of going through a.

1.1 The shortest path problem

Consider a source $s \in Z$ and a target $t \in Z$

We are looking for the path with lowest cost from s to t.

A path is a sequence z_k of nodes such that $z_0 = s$, $z_K = t$, and $z_k z_{k+1} \in A$.

Thus we are looking for

$$\min_{z_k \text{ path from } s \text{ to } t} \sum_{k=0}^{K-1} c_{z_k z_{k+1}}.$$

Solution via linear programming

$$\min_{z_k \text{ path from } s \text{ to } t} \sum_{k=0}^{K-1} c_{z_k z_{k+1}}.$$

Introduce $\mu_a \in \{0, 1\} = \text{dummy variable for "the path goes through arc a"}$.

What is the condition on μ so that it is associated with a path?

$$\sum_{x:xz\in A} \mu_{xz} = \sum_{y:zy\in A} \mu_{zy} \text{ if } z \neq s, t$$

$$\sum_{x:xz\in A} \mu_{xz} = \sum_{y:zy\in A} \mu_{zy} - 1 \text{ if } z = s$$

$$\sum_{x:xz\in A} \mu_{xz} = \sum_{y:zy\in A} \mu_{zy} + 1 \text{ if } z = t$$
Introduce $q_z^{s,t} = 0$ if $z \neq s, t, 1$ if $z = t$ and -1 if $z = s$

and reformulate as

 $\sum_{x:xz\in A}\mu_{xz}-\sum_{y:zy\in A}\mu_{zy}=q_z^{s,t}$ The problem reformulates as

$$\begin{aligned} \min_{\mu \in \{0,1\}^A} & & \sum_{a \in A} \mu_a c_a \\ s.t. & & \sum_{x: xz \in A} \mu_{xz} - \sum_{y: zy \in A} \mu_{zy} = q_z^{s,t} \end{aligned}$$

which is equivalent to

$$\begin{split} \min_{\mu \geq 0} & & \sum_{a \in A} \mu_a c_a \\ s.t. & & \sum_{x: xz \in A} \mu_{xz} - \sum_{y: zy \in A} \mu_{zy} = q_z^{s,t} \end{split}$$

Example.

Two integral solutions

$$\mu^{u} = \begin{array}{ccc} \text{su} & 1 & & \text{su} & 0 \\ \text{ut} & 1 & & \text{and} & \mu^{d} = \begin{array}{ccc} \text{ut} & 0 \\ \text{sd} & 0 & & \text{sd} & 1 \\ \text{dt} & 0 & & & \text{dt} & 1 \end{array}$$

and many real solutions

$$\theta \mu^u + (1 - \theta) \mu^d = egin{array}{ccc} & \mathrm{su} & \theta \\ & \mathrm{ut} & \theta \\ & \mathrm{sd} & 1 - \theta \\ & \mathrm{dt} & 1 - \theta \end{array}$$

Reexpress

$$\begin{aligned} & \min_{\mu \geq 0} & & & \sum_{a \in A} \mu_a c_a \\ & s.t. & & & \sum_{x: xz \in A} \mu_{xz} - \sum_{y: zy \in A} \mu_{zy} = q_z^{s,t} \end{aligned}$$

in a matrix way ie

$$\min_{\mu \ge 0} \qquad \mu^\top c$$

$$s.t. \qquad \nabla^\top \mu = q_z^{s,t} \ [p_z]$$

thus $\left(\nabla^{\top}\right)_{z,a} = \nabla_{a,z} = 1$ if arc a arrives at z, = -1 if it leaves z, and 0 otherwise.

The dual

$$\begin{aligned} \max_{p_z} & & \sum p_z q_z^{s,t} \\ s.t. & & & (\nabla p)_a \leq c_a \ [\mu_a \geq 0] \end{aligned}$$

we have $(\nabla p)_{xy} = p_y - p_x$. The constraint expresses $p_y - p_x \le c_{xy}$ By complementary slackness $\mu_{xy} > 0 \implies p_y - p_x = c_{xy}$

1.3 Solution via dynamic programming

Bellman-Ford algorithm (dynamic programming).

For $k \in \{0, 1, ...\}$, let us introduce p_z^k =minimal cost of going from s to z in k steps.

$$p_z^0 = 0 \text{ if } z = s$$

= $+\infty \text{ if } z \neq s$

$$p_z^{k+1} = \min \left\{ p_z^k, \min_{x: xz \in A} \left\{ p_x^k + c_{xz} \right\} \right\}$$

This algorithm has the form

$$p^{k+1} = T\left(p^k\right)$$

where

$$T_{z}\left(p\right) = \min \left\{p_{z}, \min_{x:xz \in A} \left\{p_{x} + c_{xz}\right\}\right\}$$

Properties of T:

- Order preserving: if $p \leq p'$, then $T(p) \leq T(p')$
- p is a fixed point of T if and only if

$$p_z = \min \left\{ p_z, \min_{x: xz \in A} \left\{ p_x + c_{xz} \right\} \right\}$$

that is iff

$$p_z \le \min_{x: xz \in A} \left\{ p_x + c_{xz} \right\}$$

that is

$$\begin{array}{ccc} p_z - p_x & \leq & c_{xz} \forall x : xz \in A \\ p_0 & = & 0 \end{array}$$

further $p_z - p_x = c_{xz}$ if xz is part of the optimal path.

ASSIGNMENT: Implement the algorithm and recover the lentgh of the path between NYU Paris and Sciences Po. Caution: take the 'walk' network, and criterion=length.

2 Nonlinear shortest path

Now the problem is to arrive at destination t as soon as possible, leaving from s at time 0.

The duration of the travel though a is assumed to depend on the departure time.

 p_x is now interpreted as a TIME.

More specifically, if a = xy and if passenger wants to arrive at node y at time p_y , then she needs to leave at time p_x where

$$p_x = C_{xy} \left(p_y \right)$$

and we have $p_x = C_{xy}(p_y) < p_y$. Before, we had simply

$$C_{xy}(p_y) = p_y - \frac{l_{xy}}{v_{xy}} = p_y - c_{xy}.$$

Problem. The "equilibrium flow problem" G+Samuelson+Vernet (2020). Look for a path from s to t. $\mu_a \geq 0$ and schedule p_z such that

(1) conservation of mass holds

$$\nabla^{\top}\mu = q^{st}$$

(2) rationality holds: for any arc xy, one has

$$p_x \ge C_{xy} \left(p_y \right)$$

[Generalization of $p_y - p_x \le c_{xy}$ ie. $p_y - c_{xy} \le p_x$]

Interpretation: if we use direct arc xy, then we need to leave at $C_{xy}(p_y)$ to arrive at y at time p_y ; if there is a shortcut though an intermediate arc, then we can afford to leave later

(3) if $\mu_{xy} > 0$ then $p_x = C_{xy}(p_y)$

[In that case, there is no shortcut, we need to go through arc xy, and we need to leave at time $p_x = C_{xy}(p_y)$]

2.1 Reformulation of classical problems as EQF problem

2.1.1 Matching with TU

$$\max_{\mu \geq 0} \qquad \sum_{xy} \mu_{xy} \Phi_{xy}$$

$$\sum_{y} \mu_{xy} = n_x$$

$$\sum_{x} \mu_{xy} = m_y$$

$$\min_{u,v} \qquad \sum_{x} n_x u_x + \sum_{y} m_y v_y$$
s.t.
$$u_x + v_y \ge \Phi_{xy}$$

Complementary slackness: μ, u, v is a solution iff

(1) μ is primal feasible

$$-\sum_{y} \mu_{xy} = -n_x = q_x$$
$$\sum \mu_{xy} = m_y = q_y$$

which reformulates as $\nabla^{\top} \mu = q$ where q = (-n, m) and ∇ is defined on the network.

 $Z = X \cup Y$, $A = X \times Y$. [bipartite network]

(2) (u, v) is dual feasible

$$u_x + v_y \ge \Phi_{xy}$$

(3) Complementary slackness:

$$\mu_{xy} > 0 \implies u_x + v_y = \Phi_{xy}$$

Change signs: $p_x = u_x$ and $p_y = -v_y$ and we have

$$\begin{array}{ccc} p_y - p_x & \leq & -\Phi_{xy} \\ p_x & \geq & \Phi_{xy} + p_y =: C_{xy} \left(p_y \right) \end{array}$$

2.1.2 Matching with ITU

 $u_x + v_y \ge \Phi_{xy}$ was replaced by $D_{xy}(u_x, v_y) \ge 0$ [distance to the feasible utility set is nonnegative]. Define $p_x = u_x$ and $p_y = -v_y$, and we define $C_{xy}(p_y)$ by the implicit equation

$$D_{xy}\left(C_{xy}\left(p_{y}\right),-p_{y}\right)=0$$

Hedonic models (supply and demand)

x=supply side $U_{xz}(p_z)$ = producer's utility of choosing z if price is p_z (increasing

y=demand side $V_{zy}\left(p_{z}\right)$ =consumer's surplus of choosing z if price is p_{z} (increasing in p_z)

There are n_x producers of type x and m_y consumers of type y. Both n and m are exogenous.

Let l_z be the quantity of z produced (and consumed) at equilibrium. l_z (and p_z) is endogenous.

Consider u_x =the indirect utility of producer x and v_y =indirect surplus of consumer y.

$$u_x \ge U_{xz}(p_z)$$
 for all x and z
 $v_z \ge V_{zy}(p_z)$ for all y and z

Consider a network with nodes $X \cup Z \cup Y$ and $A = (X \times Z) \cup (Z \times Y)$.

$$p_x = u_x$$

$$p_z = p_z$$

$$p_y = -v_y$$

Consider
$$C_{xz}(.) = U_{xz}(.)$$
 and $C_{zy}(p_y) = V_{zy}^{-1}(-p_y)$ [indeed, $-p_y \ge V_{zy}(p_z)$ iff $V_{zy}^{-1}(-p_y) \le p_z$]

[indeed,
$$-p_y \ge V_{zy}(p_z)$$
 iff $V_{zy}^{-1}(-p_y) \le p_z$]

$$q_x=-n_x,\,q_y=m_y\,\,q_z=0$$

2.1.4 Dynamic programming problems – already covered

Scheduling problem.

2.2 Regularized EQF problem and gross substitutes

The regularized problem 2.2.1

$$\left\{ \begin{array}{l} \nabla^{\top} \mu = q \\ \mu_{xy} = \exp\left(\frac{C_{xy}(p_y) - p_x}{T}\right) \forall xy \in A \end{array} \right.$$

Plug in the form for μ into the first equation

$$\sum_{x:xz\in A} \exp\left(\frac{C_{xz}(p_z) - p_x}{T}\right) - \sum_{y:zy\in A} \exp\left(\frac{C_{zy}(p_y) - p_z}{T}\right) = q_z$$

which is of the form e(p) = q, where

$$e_{z}\left(p\right) = \sum_{x:xz \in A} \exp\left(\frac{C_{xz}\left(p_{z}\right) - p_{x}}{T}\right) - \sum_{y:zy \in A} \exp\left(\frac{C_{zy}\left(p_{y}\right) - p_{z}}{T}\right)$$

satisfies Gross Substitutes.

2.2.2 The gravity model in trade

Particular case: $C_{xz}(p_z) = \Phi_{xy} + p_z$ and a bipartite network, T=1 then setting $A_x=e^{-p_x}$ and $B_y=e^{p_y}$, then

$$\sum_{y} e^{\Phi_{xy}} A_x B_y = n_x$$

$$\sum_{x} e^{\Phi_{xy}} A_x B_y = m_y$$

which is the gravity model of international trade.

2.3 Computation of the scheduling problem using dynamic programming

Left as an exercise.