Lecture 5-6 WIRELESS NETWORKS

Reference

"INTRODUCTION TO WIRELESS AND MOBILE SYSTEMS", DHARMA ARAWAL"

IT412 - Mobile Computing - Introduction © Assoc. Prof. Naha AHkal 2018 2019

1

Contents

- 1. Introduction to satellite systems
- 2. Characteristics of satellite systems
- 3. GPS, Wireless LAN
- 4. Overview of IEEE802.11
- 5. Location managment

IT412 - Mobile Computing - Introduction © Assoc Prof Nohe A-Hitel 2018 2019

2

3. Overview of Wireless Networks

CDMA: two-sender interference

IEEE 802.11 Wireless LAN

802.11b

- = 2.4-5 GHz unlicensed spectrum
- up to 11 Mbps
- direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code

- 802.11a
 - 5-6 GHz range
 - up to 54 Mbps
- 802.11g
 - 2.4-5 GHz range
 - up to 54 Mbps
- 802.11n: multiple antennae
 - 2.4-5 GHz range
 - up to 200 Mbps
- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

continued

802.11 LAN architecture

- wireless host communicates with base station
 - o base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - o wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802.11: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication will typically run DHCP to get IP address in AP's subnet

802.11: passive/active scanning

Passive Scanning:

- (1) beacon frames sent from APs
- (2) association Request frame sent. H1 to selected AP
- (3) association Response frame sent: H1 to selected AP

Active Scanning.

- (1) Probe Request frame broadcast from H1
- (2) Probes response frame sent from APs
- (3) Association Request frame sent. H1 to selected AP
- (4) Association Response frame sent H1 to selected AP

IEEE 802.11: multiple access

- avoid collisions: 2* nodes transmitting at same time.
- 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for DIFS then transmit entire frame (no CD)

2 if sense channel busy then

start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat 2

802.11 receiver

- if frame received OK

return ACK after SIFS (ACK needed due to hidden terminal problem)

6: Wireless and Mobile Networks

Avoiding collisions (more)

idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

C: Wireless and Mobile Networks

6-12

Collision Avoidance: RTS-CTS exchange

802.11: mobility within same subnet

- H1 remains in same IP subnet: IP address can remain same
- switch: which AP is associated with H1?
 - self-learning (Ch. 5): switch will see frame from H1 and "remember" which switch port can be used to reach H1

6: Wireless and Mobile Networks

802.11: advanced capabilities

Rate Adaptation

 base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies

- SNR decreases, BER increase as node moves away from base station
- When BER becomes too high, switch to lower transmission rate but with lower BER

6: Wireless and Mobile Networks

6-18

802.11: advanced capabilities

Power Management

- node-to-AP: "I am going to sleep until next beacon frame"
 - OAP knows not to transmit frames to this node
 - onode wakes up before next beacon frame
- beacon frame: contains list of mobiles with AP-tomobile frames waiting to be sent
 - onode will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame

6: Wireless and Mobile Networks

802.15: personal area network

6: Wireless and Mobile Network

- less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- ad hoc: no infrastructure
- master/slaves:
 - slaves request permission to send (to master)
 - master grants requests
- 802.15: evolved from Bluetooth specification
 - = 2.4-2.5 GHz radio band
 - up to 721 kbps

Parked device (inactive)

0-20

6-21

802.16: WiMAX

like 802.11 & cellular: base station model

- transmissions to/from base station by hosts with omnidirectional antenna
- base station-to-base station backhaul with point-to-point antenna
- -unlike 802.11:
 - range ~ 6 miles ("city rather than coffee shop")
 - ~14 Mbps

Components of cellular network architecture

Cellular networks: the first hop

Cellular standards: brief survey

2G systems: voice channels

- IS-136 TDMA: combined FDMA/TDMA (north america)
- GSM (global system for mobile communications): combined FDMA/TDMA
 - most widely deployed
- IS-95 CDMA: code division multiple access

6: Wireless and Mobile Networks

6-24

Cellular standards: brief survey

2.5 G systems: voice and data channels

- for those who can't wait for 3G service: 2G extensions
- general packet radio service (GPRS)
 - evolved from GSM
 - data sent on multiple channels (if available)
- enhanced data rates for global evolution (EDGE)
 - also evolved from GSM, using enhanced modulation
 - = data rates up to 384K
- CDMA-2000 (phase 1)
 - data rates up to 144K
 - evolved from IS-95

6: Wireless and Mobile Networks

Cellular standards: brief survey

3G systems: voice/data

- Universal Mobile Telecommunications Service (UMTS)
 - data service: High Speed Uplink/Downlink packet Access (HSDPA/HSUPA): 3 Mbps
- CDMA-2000: CDMA in TDMA slots
 - data service: 1xEvlution Data Optimized (1xEVDO) up to 14 Mbps

..... more (and more interesting) cellular topics due to mobility (stay tuned for details)

6: Wireless and Hobite Networks

6-26

Cellular standards: brief survey

3G systems: voice/data

- Universal Mobile Telecommunications Service (UMTS)
 - data service: High Speed Uplink/Downlink packet Access (HSDPA/HSUPA): 3 Mbps
- CDMA-2000: CDMA in TDMA slots
 - data service: 1xEvlution Data Optimized (1xEVDO) up to 14 Mbps

.... more (and more interesting) cellular topics due to mobility (stay tuned for details)

6: Wireless and Mobile Networks

Characteristics of selected wireless link standards

Elements of a wireless network

Elements of a wireless network

ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

6: Wireless and Mobile Networks

6-29

Wireless network taxonomy

	single hop	multiple hops
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: mesh net
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET, VANET

Wireless Link Characteristics (1)

Differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times

.... make communication across (even a point to point) wireless link much more difficultives

9-31

Wireless Link Characteristics (2)

- SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
- SNR versus BER tradeoffs
 - given physical layer: increase power -> increase SNR->decrease BER
 - given SNR: choose physical layer that meets BER requirement, giving highest thruput
 - SNR may change with
 mobility: dynamically adapt
 physical layer (modulation
 technique, rate)
 Wireless and Mobile Networks

· · · · · · QAM258 (8 Mbps)

- - QAM16 (4 Mbps)

- BPSK (1 Mbps)

Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B. Ahear each other
- B. C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:

- B. Ahear each other
- B. C hear each other
- A, C can not hear each other interfering at B

6: Wireless and Mobile Networks

6-33

Code Division Multiple Access (CDMA)

- used in several wireless broadcast channels (cellular, satellite, etc) standards
- unique "code" assigned to each user; i.e., code set partitioning
- all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
- encoded signal = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence
- allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")

6: Wireless and Mobile Networks

CDMA Encode/Decode

6: Wireless and Mobile Networks

6-35

Thanks- Questions !