

СУЧАСНІ СИСТЕМИ ТЕХНОЛОГІЙ У МАШИНОБУДУВАННІ

Збірник наукових праць, присвячений 90-річчю з дня народження професора Одеського національного політехнічного університету (ОНПУ) Якимова О.В.

УДК 62-65: 621.382.82 С 91

Рекомендовано до друку Вченою радою Одеського національного політехнічного університету (ОНПУ). Протокол № 6 від 24.03.2015 р.

Редакційна колегія:

Відповідальний редактор: Ф. В. Новіков, докт. техн. наук, проф.

Заступник відповідального редактора: В. П. Ларшин, докт. техн. наук, проф.

Відповідальний секретар: В. Б. Наддачин, канд. техн. наук, доц.

Члени редколегії:

- О. Ф. Дащенко, докт. техн. наук, проф.;
- О. Г. Дерев'янченко, докт. техн. наук, проф.;
- В. В. Коломієць, докт. техн. наук, проф.;
- В. І. Лавріненко, докт. техн. наук, проф.;
- В. Г. Лебедєв, докт. техн. наук, проф.;
- В. І. Марчук, докт. техн. наук, проф.;
- О. А. Оргіян, докт. техн. наук, проф.;
- Ю. А. Сизий, докт. техн. наук, проф.;
- А. В. Усов, докт. техн. наук, проф.

С 91 Сучасні системи технологій у машинобудуванні. Збірник наукових праць, присвячений 90-річчю з дня народження професора Одеського національного політехнічного університету (ОНПУ) Якимова О. В. – Д : ЛІРА. – 2015. – 274 с.

ISBN 978-966-383-600-3

Представлено наукові праці, у яких розглянуті питання технології машинобудування, механічної та фізико-технічної обробки матеріалів, проблеми створення й ефективного застосування прогресивних інструментів і обладнання, сучасних систем технологій у машинобудуванні. Значна увага приділена абразивній обробці й особливо високоефективному шліфуванню кругами з переривчастою робочою поверхнею, розробленому професором Якимовим О.В.

Для фахівців в області машинобудування, науково-технічних працівників і студентів.

УДК 62-65: 621.382.82

445413 ISBN 978-966-383-600-3

© Одеський національний політехнічний університет, 2015

3MICT

К 90-летию со дня рождения Якимова Александра Васильевича	3
Якимов А.В., Якимов А.А., Дмитриева С.Ю. Повышение качества	3
поверхности при шлифовании зубчатых колес на станках МААГ	29
Якимов А.А., Якимова О.А., Дмитриева С.Ю., Якимов П.А. Причины	
возникновения шлифовочных трещин	33
Якимов А.В., Новиков Ф.В., Новиков Г.В. Физическая сущность	00
и технологические возможности прерывистого шлифования	38
Якимов П.А., Якимова О.А., Павлышко А.В., Дмитриева С.Ю.	50
О природе шлифовочных трещин	43
Лищенко Н.В., Ларшин В.П. Влияние принудительного охлаждения	15
на температуру шлифования	48
Лищенко Н.В., Ларшин В.П. Температура шлифования при	10
импульсном тепловом потоке на поверхности	54
Марчук В.І., Лукьянчук Ю.А. Умови підвищення якості та	5 1
ефективності безцентрового шліфування тіл кочення роликопідшипників	
в умовах переналагоджувального виробництва	60
Сизый Ю.А., Ушаков А.Н., Новиков Д.Ф. Анализ предельных	00
технологических возможностей круглошлифовального станка 3М151	
при врезном шлифовании	68
Тищенко Л.Н., Коломиец В.В., Любичева К.М., Фадеев В.А.,	00
Шабалин Д.В., Vijay Kumar. Работоспособность инструментов	
из ПСТМ при прерывистой обработке закаленных сталей	75
Лебедев В.Г., Клименко Н.Н. Некоторые особенности шлифования	75
деталей оборудования атомной энергетики	78
Лавриненко В.И., Лещук И.В., Девицкий А.А., Смоквина В.В.,	70
Скрябин В.А., Солод В.Ю. Разработка и применение специальных кругов	
из СТМ для шлифования инструментальных и композиционных	
материалов	85
Жовтобрюх В.А. Разработка и внедрение эффективных технологических	03
процессов механической обработки	92
	92
Усов А.В. Влияние термомеханических явлений на трещинообразование при шлифовании материалов и сплавов, склонных к этому виду дефектов	105
	103
Тихенко В.Н. Энергосберегающий гидропривод подачи стола	119
шлифовальных станков	119
Федорович В.А., Пыжов И.Н. Расчет рациональных характеристик	122
алмазных кругов на этапах их изготовления и эксплуатации	122
Гуцаленко Ю.Г. Взаимосвязь параметров режущего рельефа алмазного	
круга с шероховатостью и производительностью обработки при	100
устойчивом шлифовании	128
Степанов М.С., Иванова М.С. Роль фактора технологической	
наследственности в формировании шероховатости поверхности при	
обработке отверстий комбинированным осевым инструментом	133

Пермяков А.А., Пациора А.П., Чикина Н.А. Реакция смазочного слоя	
на направляющих опорах инструмента для обработки глубоких	
отверстий большого диаметра по схеме BTA(STS)	13
Шелковой А.Н., Семченко М.С. Повышение эффективности	
проектирования компоновок металлорежущих станков с применением	
системы имитационного моделирования	14:
Воронько В.В. Применение автоматизированной сборки при	
изготовлении планера самолета	153
Кремнев Г.П., Дикаева В.Н. Методы повышения стойкости лезвийных	
инструментов	160
Новиков Ф.В., Гершиков И.В. Аналитическое определение	
температуры резания для различных схем шлифования	164
Новиков Г.В., Иванов И. Е. Выбор оптимального метода механической	
обработки из условия прочности режущего инструмента	169
Андилахай А.А. Физические закономерности процесса абразивной	
обработки мелких деталей затопленными струями	174
Шкурупий В.Г. Классификация финишных способов обработки металлов	180
Кленов О.С., Новиков Д.Ф. Условия эффективного применения	
современных режущих инструментов на машиностроительных	
предприятиях	188
Тришевський О.І., Салтавець М.В. Визначення зусиль на валки при	
гарячої прокатці штаби	192
Брижан Т.М. Теоретический анализ условий повышения точности	
обработки отверстий осевыми многолезвийными инструментами	199
Лищенко Н.В., Ларшин В.П. Температура при шлифовании	
прерывистыми и высокопористыми кругами	208
Лищенко Н. В., Сабиров Ф.С., Ларшин В.П. Измерение и спектральный	
анализ шероховатости и волнистости обработанной поверхности	215
Стрельчук Р.М. Структурная модель процесса резания и принципы	
его управления	222
Рябенков И.А. Эффективность применения прерывистого шлифования	226
Марчук В.І., Равенець Л.М. До моделювання процесу безцентрового	
шліфування доріжок кочення внутрішніх кілець роликопідшипників	231
Марчук I.B. Моделювання процесу безцентрового шліфування	
поверхонь обертання кілець підшипників	237
Дитиненко С.А., Минчев Р.М. Повышение качества обработки при	
алмазном шлифовании твердосплавных изделий	244
Хавин Г.Л. Выбор геометрических параметров спиральных сверл при	
обработке отверстий в композитах	250
Савченко Н.Ф., Третьяк В.В. К разработке высокобезопасных	
импульсных устройств повышенной энергоемкости	255
Петков А.А. Влияние индуктивности емкостного накопителя генератора	
на форму импульса магнитного поля	259

Дерев'янченко О.Г., Криницин Д.О., Фроленкова О.В., Усік А.М.	
Питання модифікації методу багатопараметричного прогнозування	262
залишкового ресурсу інструментів	
Лебедев В.Г. Применение аустенитных сталей для изготовления деталей	
оборудования атомных электростанций	266