HRNN Example

In the following example, there are 5 processes given. Their arrival time and Burst Time are given in the table.

Process ID	Arrival Time	Burst Time	
0	0	5	
1	3		
2	4 /	.4	
3	6	1	
4	8	2	

At time 0, The Process P0 arrives with the CPU burst time of 3 units. Since it is the only process arrived till now hence this will get scheduled immediately.

P0 is executed for 3 units, meanwhile, only one process P1 arrives at time 3. This will get scheduled immediately since the OS doesn't have a choice.

P1 is executed for 5 units. Meanwhile, all the processes get available. We have to calculate the Response Ratio for all the remaining jobs.

1. RR (P2) =
$$((8-4) +4)/4 = 2$$

2. RR (P3) =
$$(2+1)/1 = 3$$

3. RR (P4) =
$$(0+2)/2 = 1$$

Since, the Response ratio of P3 is higher hence P3 will be scheduled first.

P3 is scheduled for 1 unit. The next available processes are P2 and P4. Let's calculate their Response ratio.

1. RR (P2) =
$$(5+4)/4 = 2.25$$

2. RR (P4) =
$$(1+2)/2 = 1.5$$

The response ratio of P2 is higher hence P2 will be scheduled.

Now, the only available process is P4 with the burst time of 2 units, since there is no other process available hence this will be scheduled.

Process ID	Arrival Time	Burst Time	Completion Time	Turn Around Time	Waiting Time
0	0	3	3	3	0
1	2	5	8	6	1
2	4	4	13	9	5
3	6	1	9	3	2
4	8	2	15	7	5

Average Waiting Time = 13/5