4. Exercise Sheet – Brain-Inspired Computing (WS 15/16)

Due date 9.11.16.

4.1 The high-conductance state in LIF neurons (50 Points)

Consider the Leaky Integrate-and-Fire neuron model with exponential synapse kernels, as given in the lecture.

The neuron parameters are as follows:

$$\begin{split} E_{\rm leak/rest} &= -50\,\mathrm{mV} & \text{(leak potential)}, \\ C_m &= 1\,\mathrm{nF} & \text{(membrane capacitance)}, \\ \vartheta &= -40\,\mathrm{mV} & \text{(spike threshold)}, \\ \varrho &= -50\,\mathrm{mV} & \text{(reset potential)}, \\ \tau_{\rm syn} &= 5\,\mathrm{ms} & \text{(synaptic time constant)}, \end{split}$$

CUBA COBA
$$\tau_m^{\rm curr} = 1 \, {\rm ms} \qquad \tau_m^{\rm cond} = 20 \, {\rm ms} \qquad ({\rm membrane \ time \ constant}),$$

$$w_{\rm syn}^{\rm curr} = 0.01 \, {\rm \mu A} \quad w_{\rm syn}^{\rm cond} = 0.1 \, {\rm nS} \qquad ({\rm synaptic \ weight}),$$

$$E_{\rm rev}^{\rm inh} = -100 \, {\rm mV} \qquad ({\rm inhibitory \ reversal \ potential}),$$

$$E_{\rm rev}^{\rm exc} = 0 \, {\rm mV} \qquad ({\rm excitatory \ reversal \ potential}).$$

a) Show that you can reformulate the COBA LIF ODE as

$$\tau_{\text{eff}}\dot{u} = U_{\text{eff}} - u$$
 .

Provide expressions for τ_{eff} and U_{eff} .

b) The effective time constant calculated in a) depends on the total synaptic conductance $g^{\rm syn}$, which is, in general, a function of time. However, in the limit of large Poisson input firing rates, it can be replaced by its average value $\langle g^{\rm syn} \rangle = \nu_{\rm input} \int_0^\infty \varepsilon(t) dt$, where ε represents the synaptic kernel.

Assume that the neuron receives synaptic input with inhibitory and excitatory rate $\nu = \nu_{\rm inh} = \nu_{\rm exc}$.

Given the parameters above, what is the input rate ν_{HC} needed for the conductance-based model to reach the same (effective) membrane time constant as the current-based one?

- c) Simulate a COBA neuron with the above parameters and the Poisson stimulus rates calculated in b) and plot the distribution of
 - its free membrane potential (no spiking, i.e. $\vartheta \to \infty$),
 - its total synaptic conductance.

Fit a Gaussian to the two histograms. Compare the simulated $\langle g^{\rm syn} \rangle$ to the one you found in b). Why is a Gaussian fit appropriate? And why is $\langle u \rangle = E_{\rm l}$?

4.2 *f-I* curves (50 Points)

The solution of the LIF equations and the resulting activation function were given in the lecture. The firing rate of a neuron as a function of its input – in this case I^{ext} – is also called an f-I curve.

- a) Find the asymptotic behavior of $\nu(I^{\text{ext}})$ as $I^{\text{ext}} \to \infty$ in the limit of $\tau_{\text{ref}} \to 0$.
- b) Plot the f-I curves for $\tau_{\rm ref} = 5\,{\rm ms}$ and $\tau_{\rm ref} = 0\,{\rm ms}$, as well as their associated asymptotes. Verify your results with PyNN simulations. Use the parameters from Ex.1.