ЛАБОРАТОРНА РОБОТА № 4

ДОСЛІДЖЕННЯ МЕТОДІВ НЕКОНТРОЬОВАНОГО НАВЧАННЯ

Mema: ввикористовуючи спеціалізовані бібліотеки та мову програмування Руthon дослідити методи неконтрольованої класифікації даних у машинному навчанні.

Хід роботи:

Завдання 1: Кластеризація даних за допомогою методу к-середніх

Результат:

Код:

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import metrics

X = np.loadtxt('data_clustering.txt', delimiter = ',')
num_clusters = 5
```

```
plt.figure()
plt.scatter(X[:, 0], X[:, 1], marker = 'o', facecolors = 'none', edgecolor = 'black', s = 80)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
plt.title('Bxiднi данi')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.show()
```

```
kmeans = KMeans(init = 'k-means++', n_clusters = num_clusters, n_init = 10)
kmeans.fit(X)
```

step_size = 0.01

```
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
x_vals, y_vals = np.meshgrid(np.arange(x_min, x_max, step_size), np.arange(y_min, y_max, step_size))
output = kmeans.predict(np.c_[x_vals.ravel(), y_vals.ravel()])
```

```
output = output.reshape(x_vals.shape)
plt.figure()
plt.clf()
plt.imshow(output, interpolation = 'nearest', extent = (x_vals.min(), x_vals.max(), y_vals.min(), y_vals.max()),
cmap = plt.cm.Paired, aspect = 'auto', origin = 'lower')
plt.scatter(X[:, 0], X[:, 1], marker = 'o', facecolors = 'none', edgecolors = 'black', s = 80)
```

						11116 4 00	101 00 (200 HD04
					ЖИТОМИРСЬКА ПОЛІТЕХ	HIKA 22	121.23.0)00-JIP04
Змн.	Арк.	№ докум.	Підпис	Дата				
Розр	0 б.	Фещенко Д.М.			n ·	Лim.	Арк.	Аркушів
Пере	вір.	Пулеко І.В.					1	
Керівник Н. контр. Затверд.					Звіт з лабораторної роботи 4	ФІКТ Гр. ПІ-59(2)		
							-	

```
cluster_centers = kmeans.cluster_centers_
plt.scatter(cluster_centers[:, 0], cluster_centers[:, 1], marker = 'o', s = 210, linewidth = 4, color = 'black',
zorder = 12, facecolors = 'none')

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1

y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

plt.title('Mexi knactepib')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.show()
```


Рис. 1.1. Графік розподілу даних

		Фещенко Д.М.		
			·	
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 1.2. Графік відображення результату кластеризації

Хід роботи:

Завдання 2: Кластеризація К-середніх для набору даних Iris

Результат:

Код:

```
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.cluster import KMeans
iris = load iris()
X = iris['data']
y = iris['target']
num_clusters = 3
kmeans = KMeans(n_clusters = num_clusters)
kmeans.fit(X)
y_pred = kmeans.predict(X)
centers = kmeans.cluster_centers
for i in range(X.shape[1] - 1):
   for j in range(i + 1, X.shape[1]):
       plt.scatter(X[:, i], X[:, j], c = y_pred, s = 50, cmap = 'viridis')
       plt.scatter(centers[:, i], centers[:, j], c = 'red', s = 150)
       plt.figure()
        plt.show()
```

		Фещенко Д.М.			
					ЖИТОМИРСЬКА ПОЛІТЕХНІКА 22.121.23.000-ЛР04
Змн.	Арк.	№ докум.	Підпис	Лата	

		Фещенко Д.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 2.1. Графік результату кластеризації

Хід роботи:

		Фещенко Д.М.			
					ЖИТОМИРСЬКА ПОЛІТЕХНІКА 22.121.23.000-ЛР04
Змн.	Арк.	№ докум.	Підпис	Дата	

Завдання 3: Оцінка кількості кластерів з використанням методу зсуву середнього

Результат:

Код:

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import MeanShift, estimate_bandwidth
from itertools import cycle
X = np.loadtxt('data_clustering.txt', delimiter=',')
bandwidth_X = estimate_bandwidth(X, quantile=0.1, n_samples=len(X))
meanshift_model = MeanShift(bandwidth=bandwidth_X, bin_seeding=True)
meanshift_model.fit(X)
cluster_centers = meanshift_model.cluster_centers_
print('Centers of cluster:', cluster_centers)
labels = meanshift_model.labels_
num_clusters = len(labels)
print('Number of clusters in input data:', num_clusters)
plt.figure()
markers = 'o*xvs'
for i, marker in zip(range(num_clusters), markers):
    plt.scatter(X[labels == i, 0], X[labels == i, 1], marker=marker, color='black')
    cluster_center = cluster_centers[i]
    plt.plot(cluster_center[0], cluster_center[1], marker='o', markerfacecolor='black', markeredgecolor='black',
markersize=15)
plt.title('Кластери')
plt.show()
```

		Фещенко Д.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 3.1. Результат використання методу зсуву середнього

Хід роботи:

Завдання 4: Знаходження підгруп на фондовому ринку з використанням моделі поширення подібності

Результат:

№ докум.

Підпис

Дата

Код:

Арк.

```
import datetime
```

imp fro	ort mat m sklea	cplotlib.pyplot a arn import covari inance as yf	ter		
		Фещенко Д.М.			Арк.
				ЖИТОМИРСЬКА ПОЛІТЕХНІКА 22.121.23.000-ЛР04	-

```
input_file = 'company_symbol_mapping.json'
with open(input_file, 'r') as f:
   company_symbols_map = json.loads(f.read())
symbols, names = np.array(list(company_symbols_map.items())).T
start_date = datetime.datetime(2003, 7, 3)
end_date = datetime.datetime(2007, 5, 4)
quotes = []
for symbol in symbols:
   try:
       quote = yf.download(symbols[1],start = start_date, end = end_date, progress = False)
       quotes.append(quote)
opening_quotes = np.array([quote['Open'] for quote in quotes]).astype(np.float)
closing_quotes = np.array([quote['Close'] for quote in quotes]).astype(np.float)
quotes_diff = closing_quotes - opening_quotes
X = quotes_diff.copy().T
X /= X.std(axis = 0)
edge_model = covariance.GraphicalLassoCV()
with np.errstate(invalid = 'ignore'):
```

```
_, labels = cluster.affinity_propagation(edge_model.covariance_)
num_labels = labels.max()
for i in range(num_labels + 1):
    print('Cluster', i + 1, '==>', ', '.join(names[labels == i]))
```

edge_model.fit(X)

Рис. 1.4. Результат знаходження підгруп (3 кластери)

Висновок: на цій лабораторній роботі ми ввикористовуючи спеціалізовані бібліотеки та мову програмування Python дослідили методи неконтрольованої класифікації даних у машинному навчанні.

		Фещенко Д.М.			
					ЖИТОМИРСЬКА ПОЛІТЕХНІКА 22.121.23.000-ЛР04
Змн.	Арк.	№ докум.	Підпис	Дата	

Арк. 8