

Modeling Turbulence closures Table 2. Turbulence closures used in this study. Model Description Type **RANS** $k-\varepsilon$ 2-equation RNG $k-\varepsilon$ 2-equation SST $k-\omega$ $k-\omega$ T-SST 4-equation transition SST **RSM** 7-equation stress-ω RSM SAS SST $k-\omega$ based SAS Hybrid DES Realizable $k-\varepsilon$ Realizable $k-\varepsilon$ based DES DES SST $k-\omega$ SST $k-\omega$ based DES LES LES Germano's dynamic SGS Chap 7 By E. Amani

Grid

Near-wall region:

Based on $y^+ < 1$

Core region (Menter 2014):

- **Using precursor RANS simulation**
- Approximation of integral length scale

$$L = \frac{k^{1.5}}{\varepsilon} = \frac{k^{0.5}}{C_{\mu}\omega}; C_{\mu} = 0.09$$
 $\Delta = (V_{\text{cell}})^{1/3}$

- Based on 80% k_{res} and Kolmogorov spectrum: $\frac{L}{\Delta} > 4.8$
- Plotting contours of and refining where $L/\Delta < 4.8$

	l/l_0	l_0 / Δ
k(l) = 0.1k (10%)	6.10	0.33
k(1) = 0.5k (50%)	1.6	1.25
k(1) = 0.8k (80%)	0.42	4.8
k(l) = 0.9k (90%)	0.16	12.5

Chap 7

By E. Amani

LES quality criteria

Pope criterion - filter width

$$M = \frac{k_{\rm res}}{k_{\rm res} + k_{\rm modeled}}$$

$$k_{\rm sgs} = \left(\frac{\mu_{\rm sgs}}{\rho \Delta C_{\rm DS}}\right)^2$$

Chap 7

By E. Amani

5

