CLASSIFICATION ASSIGNMENT

Problem Statement or Requirement: A requirement from the Hospital, Management asked us to create a predictive model which will predict the Chronic Kidney Disease (CKD) based on the several parameters. The Client has provided the dataset of the same.

- 1.) Identify your problem statement. **Supervised Classification**
- 2.) Tell basic info about the dataset (Total number of rows, columns). 399 rows × 28 columns
- 3.) Mention the pre-processing method if you're doing any (like converting string to number nominal data) **Using get_dummies converting string to number**
- 4.) Develop a good model with good evaluation metric. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model. **Decision Tree**
- 5.) All the research values of each algorithm should be documented. (You can make tabulation or screenshot of the results).
- 6.) Mention your final model, justify why u have chosen the same. **Decision tree because it is a good model with 0.99 accuracy.**

5. EVALUATION METRICS O/P:

SVC:

[[44 1] [1 74]]			54	
	precision	recall	f1-score	support
0	0.98	0.98	0.98	45
1	0.99	0.99	0.99	75
accuracy			0.98	120
macro avg	0.98	0.98	0.98	120
weighted avg	0.98	0.98	0.98	120

Random Forest:

[[44 1] [1 74]]				
	precision	recall	f1-score	support
0	0.98	0.98	0.98	45
1	0.99	0.99	0.99	75
accuracy			0.98	120
macro avg	0.98	0.98	0.98	120
weighted avg	0.98	0.98	0.98	120

Decision Tree:

[[45 1] [0 74]]	precision	nocall	f1-score	support
	bijectstou	recarr	11-20016	support
0	1.00	0.98	0.99	46
1	0.99	1.00	0.99	74
			0.00	120
accuracy			0.99	120
macro avg	0.99	0.99	0.99	120
weighted avg	0.99	0.99	0.99	120

Logistic Regression:

[[43 0] [2 75]]				
	precision	recall	f1-score	support
0	0.96	1.00	0.98	43
1	1.00	0.97	0.99	77
accuracy			0.98	120
macro avg	0.98	0.99	0.98	120
weighted avg	0.98	0.98	0.98	120