Ensembles ordonnés

Christophe Antonini¹, Olivier Teytaud², Pierre Borgnat³, Annie Chateau⁴, and Edouard Lebeau⁵

¹Enseignant en CPGE, Institut Stanislas, Cannes ²Chargé de rechercher INRIA, Université d'Orsay, Orsay ³Chargé de recherche CNRS, ENS Lyon, Lyon ⁴Maitre de conférence, Université Montpellier-2, Montpellier ⁵Enseignant en CPGE, Lycée Henri Poincaré, Nancy

22 septembre 2021

Généralités sur les ensembles ordonnés.

1 Ensembles ordonnés

Soit E un ensemble. Un **ordre** (partiel) sur E est une relation \leq telle que pour tout $(x,y,z) \in E^3$:

- $\bullet x \leq x$
- $\bullet (x \le y \land y \le x) \to x = y$
- $\bullet (x \le y \land y \le z) \to x \le z$

Ces trois propriétés sont respectivement la réflexivité, la symétrie et la transitivité.

E équipé d'un tel ordre est appelé « ensemble partiellement ordonné».

Un ordre \leq donne naissance à une relation d'inégalité stricte < par : $x < y \iff (x \leq y \land x \neq y)$. On définit aussi :

- $\bullet x \ge y \iff y \le x$
- $\bullet x \not\leq y \iff \neg(x \leq y)$
- • $x \parallel y \iff x \not\leq y \land y \not\leq x \ (x \text{ et } y \text{ ne sont pas comparables})$

Soit F un sous-ensemble de E, E étant muni d'un ordre partiel \leq_E ; on définit l'ordre partiel \leq_E induit sur F par $x \leq_F y \iff x \leq_E y$.

Un ensemble E muni d'un ordre partiel E est dit **totalement ordonné** si et seulement si $\forall (x,y) \in E^2 x \leq y \vee y \leq x$. Un ensemble totalement ordonné est aussi appelé une **chaîne**. Un ensemble tel que $x \leq y \to x = y$ est appelé une **antichaîne**.

Une chaîne C est dîte maximale si et seulement si quel que soit l'élément x, l'ensemble $C \cup \{x\}$ n'est pas une chaîne.

Une antichaı̂ne C est dîte maximale si et seulement si quel que soit l'élément x, l'ensemble $C \cup \{x\}$ n'est pas une antichaı̂ne.

On note n la chaîne [0, n[.

Dans la suite du texte \leq désigne une relation d'ordre partiel.

Etant donné \leq , on définit la **relation de couverture** \prec par $x \prec y$ (y couvre x ou x est couvert par y) si et seulement si $x < y \land \forall z (x \leq z < y \rightarrow z = x)$. Ceci signifie qu'il n'y a pas de z tel que x < y < z.

Si E est fini, la relation de couverture détermine la relation d'ordre partiel (et réciproquement).

On définit maintenant le **diagramme de Hasse** pour un ensemble fini partiellement ordonné. A chaque élément de E on associe un point du plan, et on trace une ligne de x à y si $x \prec y$. On veille à ce que ces lignes n'intersectent pas les autres points, et on veille à ce que $x \prec y$ implique que l'ordonnée du point associé à x soit inférieure à l'ordonnée du point associé à y.

Une application $\phi: E \to F$ est dîte :

- •monotone si $x \leq y \to \phi(x) \leq \phi(y)$.
- •un morphisme si $x \leq y \iff \phi(x) \leq \phi(y)$.
- •un isomorphisme d'ordre si c'est un morphisme bijectif.

Quand ϕ est un morphisme, on écrit $\phi: E \hookrightarrow F$.

Quand ϕ est un isomorphisme on écrit $E \cong F$; E et F sont isomorphes.

Soit ϕ bijective de E dans F : alors les trois énoncés suivants sont équivalents :

- \bullet ϕ est un isomorphisme d'ordre
- $\bullet x < y$ dans E si et seulement si $\phi(x) < \phi(y)$ dans F
- • $x \prec y$ dans P si et seulement si $\phi(x) \prec \phi(y)$

Deux ensembles finis ordonnés sont isomorphes si et seulement si ils ont un diagramme de Hasse commun.

Le **dual** d'un ensemble ordonné est le même ensemble mais muni de l'ordre \leq^{δ} tel que $x \leq^{\delta} y$ si et seulement si $y \leq x$. Le dual d'un énoncé ψ et l'énoncé ψ^{δ} obtenu en remplaçant \leq par \geq et réciproquement.

Un énoncé est vrai pour tous les ensembles ordonnés si et seulement si son dual est vrai pour tous les ensembles ordonées.

Soit F sous-ensemble de E tel que $F \subset E$, avec E ordonné. F est un **idéal d'ordre** si et seulement si $x \in F \land y \leq x \rightarrow y \in F$. F est un **filtre d'ordre** si et seulement si $(x \in F \land x \leq y) \rightarrow y \in F$. F est un filtre d'ordre si et seulement si le complémentaire de F est un idéal d'ordre.

On définit $\downarrow F$ par l'ensemble des x tel que pour un certain y dans F on a $x \leq y$. Par définition $\downarrow x$

est égal à $\downarrow x$. $\downarrow F$ se lit « section initiale engendrée par F».

On définit $\uparrow F$ par l'ensemble des x tel que pour un certain y dans F on a $y \le x$. Par définition $\uparrow x$ est égal à $\uparrow x$. $\uparrow F$ se lit « section initiale engendrée par F».

 $\downarrow F$ est donc le plus petit idéal d'ordre contenant F, et $\uparrow F$ est le plus petit filtre d'ordre contenant F.

On note O(E) l'ensemble des idéaux d'ordre de l'ensemble ordonné E; il est lui-même ordonné. Les trois énoncés suivants sont équivalents :

- $\bullet x \leq y$
- $\bullet \downarrow x \subset \downarrow y$
- $\bullet(\forall F \in O(E))y \in F \to x \in F$

x est **maximal** si et seulement si $x \leq y \rightarrow x = y$

x est le **maximum** de E si et seulement si pour tout y on a $y \le x$. On écrit x = maxQ.

Les notions de **minimal** et d'**élément minimum** sont définies de manière duale, en renversant l'ordre.

L'élément maximum d'un ensemble est généralement noté \top , et l'élément minimum est généralement noté \bot .

Lorsque l'ensemble est fini, l'ensemble des éléments maximaux et l'ensemble des éléments minimaux sont des anti-chaînes maximales.

Lorsqu'une chaîne $\{x_1 < x_2 < ... < x_n\}$ est maximale, alors $\forall i \ x_i \prec x_{i+1}$.

On appelle généralement :

- •graphe de la relation le graphe dans lequel on supprime les réflexivités.
- •graphe de compatibilité l'ensemble des (x, y) avec x comparable à y.
- •graphe de Hasse (ne pas confondre avec diagramme de Hasse) l'ensemble des (x, y) tels que $x \prec y$.
- •graphe de couverture l'ensemble des x, y tels que $x \prec y$ ou $y \prec x$.

On note dans la suite E_{\perp} l'ensemble ordonné constitué de l'ensemble E auquel on ajoute une constante \perp inférieure à tous les éléments de E. S'il y avait une relation d'ordre sur E, la relation sur E_{\perp} contient cette relation. S'il n'y en avait pas, on obtient ce que l'on appelle un ordre plat.

L'union disjointe $E \dot{\cup} F$ de deux ensembles ordonnés disjoints E et F est l'ensemble union de E et F avec $x \leq_{E \dot{\cup} F} y \iff (x \leq_E y \lor x \leq_F y)$.

La **somme linéaire** $E \oplus F$ de deux ensembles ordonnés disjoints E et F est l'ensemble réunion de E et F muni de la relation $x \leq_{E \oplus F} \iff (x \leq_E y \lor x \leq_F y \lor (x \in E \land y \in F))$.

On note $P \oplus_{\perp} Q$ la somme séparée de P et Q, égale à $(P \dot{\cup} Q)_{\perp}$.

On note $P \oplus_{\vee} Q$ la **somme coalescente** de P et Q, obtenue en considérant $P \dot{\cup} Q$ et en identifiant les deux éléments \bot .

Le **produit** de $P_1, ..., P_n$ est défini sur l'ensemble produit cartésien par $(x_1, ..., x_n) \leq_{P_1 \times P_2 \times ... \times P_n} (y_1, ..., y_n) \iff \forall i \ x_i \leq_{P_i} y_i.$

Soit $X = \{1, 2, ..., n\}$, et soit $\phi : P(X) \to \{0, 1\}^n$ défini par $\phi(A) = (\epsilon_1, ..., \epsilon_n)$ avec $\epsilon_i = 1$ si $i \in A$ et $\epsilon_i = 0$ sinon. Alors ϕ est un isomorphisme d'ordre.

L'ensemble Y^X des applications d'un ensemble X vers un ensemble ordonné Y sont naturellement ordonnées par $f \leq g \iff \forall x \ f(x) \leq g(x)$. Si X est lui-même ordonné, on peut considérer simplement l'ensemble des applications monotones, que l'on note $Y^{< X>}$.

On peut aussi considérer des fonctions au lieu de considérer des applications; on considère alors que $f \leq g$ si et seulement si pour tout élément x du domaine de définition de f on a $f(x) \leq g(x)$. Pour ordonner l'ensemble des fonctions de X dans Y on ajoute un élément \bot dans Y inférieur à tous les éléments, et en remplaçant une fonction par l'application qui lui est égale sur son domaine

de définition et qui est égale à \bot en dehors de ce domaine. Cette fonction qui à une fonction de X dans Y associe une application de X dans Y_\bot est un isomorphisme d'ordre.

Références