

DESCRIPTION

The General Instrument Master Tone Generator is a digital tone generator which produces, from e single input frequency, a full octave of twelve frequencies on twelve separate output terminals.

The M.T.G. consists of twelve divider circuits which divide the input by an exact integer to produce a chromatic scale of twelve notes. When used in conjunction with an oscillator and frequency dividers, a system may be configured which generates all the frequencies required by an electronic music synthesizer.

FEATURES

- Wide Input Frequency Range 100kHz to 2.5MHz
- Zener Protected Input
- Low Impedance Push-Pull Outputs
- Full Musical Scale in One Chip

PACKAGE INFORMATION 16 LEAD DIP (PLASTIC)

$\underline{\text{PIN}}$	FUNCTION	$\underline{\text{PIN}}$	FUNCTION	
1 2 3 4 5 6 7	Vss INPUT f _o ÷ 451 ÷ 379 ÷ 319 ÷ 301 · 253	9 10 11 12 13 14 15	VGG VDD ÷ 268 ÷ 284 ÷ 338 ÷ 358 ÷ 402	16 15 14 13 12 11 10 9
8	÷ 239	16	÷ 426	TOP VIEW

BLOCK DIAGRAM

MAXIMUM GUARANTEED RATINGS (Note 1)

All Pin Voltages with Respect to Vss	-30V to $+0.3V$
Storage Temperature	-55° C to+150° C
Operating Temperature	0° C to+70° C

D. C. ELECTRICAL CHARACTERISTICS

Standard Conditions (Unless otherwise specified)

VDD = -12 ± 1V; VGG = -27.5 ± 1.5V and Vss = GND

CHARACTERISTICS	MIN.	TYP	MAX.	UNITS	CONDITIONS
Input Leakage Input Positive Level Input Negative Level Output on Impedance to VDD Output on Impedance to Vss VGG Power Consumption VDD Power Consumption	+0.3 -10.0		10 -2 -20 3500 3500 4 20	μA V V Ohms Ohms mA mA	at 27V See Note 2

A.C. ELECTRICAL CHARACTERISTICS

Standard Conditions (Unless otherwise specified) V_{DD} = -12 \pm V ; V_{GG} = -27.5 \pm 1.5 V and V_{SS} = GND

CHARACTERISTICS		MIN.	TYP.	MAX.	UNITS	CONDITIONS
Input Frequency Input Capacitance Input Positive Level Width Input Negative Level Width	fo tp tn	0.1	5	2.5 10	MHz pF	1MHz
Output Rise Time Output Fall Time	tr t _f		1 1		μS μS	no load no load

- Note 1 Stresses above those listed under "Maximum Guaranted-Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied.
- Note 2 Output Impedance measurements are made with 1.0V across the device to be measu red with 20K2 load to -6V.

TIMING EXAMPLES

n = THE DIVISION NUMBER

TYPICAL APPLICATION

PACKAGE -16 LEAD DIP

GENERAL INSTRUMENT CORPORATION MICROELECTRONICS

EASTERN AREA SALES HEADQUARTERS, 600 W.John St., Hicksville, N.Y. 11802, (516) 733-3107 CENTRAL AREA SALES HEADQUARTERS, 3101 West Pratt Bivd., Chicago, III. 60645, (312) 388-9200 WESTERN AREA SALES HEADQUARTERS, 7120 Havenhurst Ave., Van Nuys, Caiff. 91406, (213) 781-0489

EUROPEAN SALES HEADQUARTERS GENERAL INSTRUMENT MICROELECTRONICS LTD., 57/61 Mortimer St., London, W1N 7TD, England.Tel: 01-636 2022

GEMERAL INSTRUMENT CANADA LTD., 61 Industry St., Toronto 337, Ontario, Canada, Tel: (416) 763-4133
GEMERAL INSTRUMENT INTERNATIONAL CORP., Fukida Building No. 17, Shiba Fukida-cho, Minato-ku,
Tokyo 105, Japan, Tel: (03) 437-0761

GENERAL INSTRUMENT EUROPE S.P.A., Piezza Amendola 9, 20149 Milano, Italy. Tel: 469-7751
GENERAL INSTRUMENT FRANCE, 11-13 Rue Gandon, 75 Paris 13ema, France, Tel: 588-74-31
GENERAL INSTRUMENT DEUTSCHLAND GmbH, Neumarkter Strasse 61(8) Munich 80, West Germany, Tel: 452239/450181