1 Anden Frivillige opgave

1.1

Beregn ordenen af elementet $\bar{4}$ i den multiplikative gruppe $(\mathbb{Z}/9\mathbb{Z})^{\times}$ og angiv et andet element \bar{a} i $(\mathbb{Z}/9\mathbb{Z})^{\times}$ af samme orden som $\bar{4}$.

Da det er under multiplikation vil vi se hvor mange gange 4 skal multipliceres med sig selv før den modulo 9 giver identitetselementet. Vi vil egentlig løse ligningen $4^x \mod 9 = 1$, hvor 1 er identitetselementet.

Dette giver os at elementet $\bar{4}$ har ordenen 3. Ligeledes har elementet $\bar{7}$ ordenen 3, da $7^3 \mod 9 = 1$, mens de forrige potenser af 7 ikke opfylder ligningen.

1.2

Lad $\psi: C_{15} \to C_{10}$ være en ikke-triviel gruppehomomorfi. Vis, at kernen for ψ har orden 3, og at billedet for ψ har orden 5. Vis, at der findes en sådan homomorfi.

lol

1.3

Lad G være en abelsk gruppe. Vis, at $\{g \in G \mid |g| < \infty\}$ er en undergruppe af G. Giv et eksempel hvor dette sæt ikke er en undergruppe når G er ikkeabelsk.

Vi kalder $\{g \in G \mid |g| < \infty\}$ for H.

Da H er endelig er det nok at se om H er lukket under multiplikation og den ikke er tom.