

Overview lecture:

Computational analysis of protein-protein interactions

in cell function and disease

EMBO Practical course Bangalore, India

Group leader

Decoding Living Systems

The Korcsmaros group

The Table of Contents

- Protein-protein interactions from a computational and systems biology point of view
- Signalling pathways and networks
 - Integration of interaction data
 - Signal flow regulation on the PPI-level
- Applications
 - Network medicine
 - Network pharmacology

Experimentally found interactions

- Small-scale (precise, can be directed, should be collected)
- Large-scale (limited structural details, generally undirected, found in data repositories)
- HuRI (http://interactome.baderlab.org)
- BioGRID (http://thebiogrid.org)
- STRING (https://string-db.org)
- IntAct (http://www.ebi.ac.uk/intact)
- DroID, WI8, etc.

Human Interactome

Coverage of human PPIs on major public repositories

Predicted interactions

- Homology/orthology-based (interologs)
- Domain-motifs based (directed)
- Domain-domain based (interaction & direction)

Experimentally found interactions

- Small-scale (precise, can be directed, should be collected)
- Large-scale (limited structural details, generally undirected, found in data repositories)
- HuRI (http://interactome.baderlab.org)
- BioGRID (http://thebiogrid.org)
- STRING (https://string-db.org)
- IntAct (http://www.ebi.ac.uk/intact)
- DroID, WI8, etc.

Human Interactome

Coverage of human PPIs on major public repositories

Predicted interactions

- Homology/orthology-based (interologs)
- Domain-motifs based (directed)
- **Domain-domain based** (interaction & direction)

Domain-domain interaction data (eg., DOMINE)

Protein-domain composition data (eg., PFAM)

Possible domain pairs

Predicted PPI based on domain-domain interaction

Experimentally found interactions

- Small-scale (precise, can be directed, should be collected)
- Large-scale (limited structural details, generally undirected, found in data repositories)
- HuRI (http://interactome.baderlab.org)
- BioGRID (http://thebiogrid.org)
- STRING (https://string-db.org)
- IntAct (http://www.ebi.ac.uk/intact)
- DroID, WI8, etc.

Human Interactome

Coverage of human PPIs on major public repositories

Predicted interactions

- Homology/orthology-based (interologs)
- Domain-motifs based (directed)
- Domain-domain based (interaction & <u>direction</u>)

Domain composition as training set (eg., PFAM)

Liu et al., MCP (2009) and Rhodes et al., Nature Biotechnology (2005)

Experimentally found interactions

- Small-scale (precise, can be directed, should be collected)
- Large-scale (limited structural details, generally undirected, found in data repositories)
- HuRI (http://interactome.baderlab.org)
- BioGRID (http://thebiogrid.org)
- STRING (https://string-db.org)
- IntAct (http://www.ebi.ac.uk/intact)
- DroID, WI8, etc.

Human Interactome

Coverage of human PPIs on major public repositories

Predicted interactions

- Homology/orthology-based (interologs)
- Domain-motifs based (directed)
- Domain-domain based (interaction & <u>direction</u>)

$$F(\bullet \to \bullet) = \frac{\Pr(\bullet \to \bullet) - \Pr(\bullet \to \bullet)}{\Pr(\bullet) \times \Pr(\bullet)}$$

Liu et al., MCP (2009) and Rhodes et al., Nature Biotechnology (2005)

Domain

set

as training

(eg., PFAM)

Experimentally found interactions

- Small-scale (precise, can be directed, should be collected)
- Large-scale (limited structural details, generally undirected, found in data repositories)
- HuRI (http://interactome.baderlab.org)
- BioGRID (http://thebiogrid.org)
- STRING (https://string-db.org)
- IntAct (http://www.ebi.ac.uk/intact)
- DroID, WI8, etc.

Human Interactome

Coverage of human PPIs on major public repositories

Predicted interactions

- Homology/orthology-based (tomorrow)
- Domain-motifs based (directed)
- **Domain-domain based** (interaction & direction)

$$F(d_{mn}) = \frac{\Pr(d_m \to d_n) - \Pr(d_n \to d_m)}{\Pr(d_m) \times \Pr(d_n)}$$

Liu et al., MCP (2009) and Rhodes et al., Nature Biotechnology (2005)

Regulation of protein-protein interactions

Kinases, phosphatases, ubiquitin-ligases, peptidases, etc.

- Reversible or irreversible modulation of specific proteins
- Priming, activation, temporal de-activation, cleavage, destruction, etc.

Resources of post-translational modifications (PTMs)

- NetworKIN (http://networkin.info)
- Phosphosite (http://phosphosite.org)
- dbPTM (<u>http://dbptm.mbc.nctu.edu.tw</u>)
- ELM server (http://elm.eu.org)

Specificity?

PPRRRPESAPA

ERK1	Sequence	Start	End	Subse
	NCF1_HUMAN	363	368	TQRSKPQPAY
TG_B_RI	POLG_HCVJA	2323	2328	LPSTKAPPI
	FAK1_MOUSE	750	755	SGGSDEAPPI
	DYN1_HUMAN	833	838	FFPPPQV
	P85A_HUMAN	3(8	313	RQPARAL PE
	P85A_HUMAN	305	310	WNERQPAPAI
	RPGF1_HUMAN	284	289	VVDNSPP <u>PAI</u>
	PTN22_MOUSE	614	619	RTDDEIPPP
	NEF_HV1BR	72	77	EVGFPVT <u>PQ</u>
345 input sequences	PAK1_RAT	13	18	LDVQDKPPAI
мм. тротория рад г. ф ф 4 ф ф 1 о - 0 и 4 и Ф г. С	SOS1_HUMAN	1152	1157	DEVPVPP
www.p.capitoake.org				

Target motifs

Dinkel et al., Nucleic Acids Res. (2012); Bhattacharyya et al., Annu. Rev. Biochem. (2006)

Spatial localisation of protein-protein interactions The ComPPI resource

Signalling pathways and networks

Signalling pathways and networks

Integration of interaction data

Embedding pathways into interaction networks

Research approaches

Biochemistry

Genetics

Cell biology

Bioinformatics

Network biology

Legends:

Types of networks:

Legends:

Types of networks:

SignaLink 2.0

A signalling pathway resource with a multi-layered regulatory network

Main developer:

Saez-Rodriguez group

OmniPath: gateway and guide for literature curated signalling pathway resources in human

OmniPathDB and pyPath http://omnipathdb.org

Turei *et al, Nature Methods*, 2016 (cover story)

Main developer:

Saez-Rodriguez group

OmniPath2

OmniPathDB and pyPath http://omnipathdb.org

OmniPathR

OmniPath-CytoscapeApp

Signalling pathways and networks

Regulation of the signalling flow on the PPI-level

How cross-talks and signalling flow are regulated?

The concept of critical node proteins (CNPs)

Based on Taniguchi et al., Nat. Rev. Mol. Cell Biol, 2006

2016

Standard Deviations in topological b) properties within paralog groups

Example 1: The SMAD2/3 critical node

Example 2: The MEK3/6 and p38 critical nodes

Network medicine

Network medicine – a promising history

- "Network medicine" (Barabasi, 2007)
- "Systems medicine is finally coming of age" (Lemberger, 2007)
- Network as the target (Pawson and Linding, 2008)
- "Think globally, act locally" (Barabasi, Loscalzo, 2011)
- Nowadays considered as a resource for
 - biomarker discovery
 - drug target prediction
 - drug side-effect analysis
 - drug repurposing
 - suggestingnew therapies
 - patient-stratification

Which genes are mutated, which ones have differential expression in cancer?

Are there hidden 'bad guys' among the interactors of these cancer-related proteins?

Resources & Methods

- Cancer Gene Census: Known driver cancer genes in 4 different cancer types separately: colorectal carcinoma, breast carcinoma (include all types), non-small cell lung carcinoma, hepatocellular carcinoma
- Gene Expression Omnibus: Affymetrix HGU 133 plus2 microarray data from 4 different cancer types separately.
- Network resources separately:
 3 signalling networks:
 SignaLink2, Cui. et al Mol. Syst. Biol. 2007,
 Reactome
 2 protein-protein interaction networks
 (Biogrid+DIP+IntAct, HPRD)

> Tissue- and cancer-specific networks based on expression data

First neighbours act like glue in the colorectal carcinoma network

*Exact test with sampling on same network

First neighbours act like glue in the colorectal carcinoma network

*Exact test with sampling on same network

Interactors of cancer-related proteins have key influence on

carcinogenesis and increase the drug target space

Compounds

Drugs

105

Proteins

0%

First neighbour

protein (DE FN)

Modos *et al*, Nature Partner Journal (npj) Systems Biology and Applications, 2017

Conclusions of the first neighbour analysis

- First neighbours of cancer-related proteins are at least as important as cancer-related proteins themselves.
- Complementary strategy in cancer to rewire signalling networks:
 - Mutations directly affecting the more central proteins
 - Differential expression affecting the first neighbours of central proteins
- Drug repurpose potential for some non-oncology drugs
- Cancer mimicking strategy by targeting influencer proteins
 (2nd neighbours of a cancer-related protein)

Protein-protein interactions in

Network pharmacology

Network-based drug target options

Network-based drug target options in signalling networks

Drug design strategies

having flexible networks
with large dissipation

[choke point targeting] ...

specific, high centrality node

The network influence strategy:

for differentiated cells having rigid networks with small dissipation

[central node hit causes overload: side effects & toxicity]

- multiple targets
- allo-network drugs

Multi-target drugs

Allo-network drugs

hit of intra-cellular paths

Allo-network drugs in action

Drug A: EGFR kinase-inhibitor erlotinib

Drug B: doxorubicin (chemotherapy drug)

Allo-network drugs in action

Allo-network drugs in action

Would you like to know more?

Computational analysis of protein-protein interactions in cell function and disease

01 - 06 December 2019 | Bangalore, India

Thank you!

https://github.com/korcsmarosgroup/

Tamas.Korcsmaros@earlham.ac.uk