Группы и алгебры Ли

Группа Ли — это группа, снабжённая структурой гладкого многообразия таким образом, что групповые операции являются гладкими отображениями. Группа Ли $G \subset \operatorname{GL}_n(k)$, где $k = \mathbf{R}$ или \mathbf{C} , называется линейной группой Ли.

Векторное пространство, снабженное кососимметрической билинейной операцией $[\cdot,\cdot]$, удовлетворяющей соотношению Якоби, называется алгеброй Ли. Касательное пространство $\mathbf{T}_e G$ линейной группы Ли G можно снабдить естественной операцией [A,B]=AB-BA.

Известно, что связная группа Ли (или связная компонента G°) порождается любой своей окрестностью единицы: $G = \langle U(e) \rangle$, $e \in G$.

Если группа Ли G задаётся как множество уровня (c_1, \ldots, c_d) для гладкого отображения

$$F = (F_1, \dots, F_d) : \operatorname{Mat}_n(\mathbf{R}) \to \mathbf{R}^d$$

где $\operatorname{rk} dF = d$ всюду на G, то тогда алгебра Ли $\mathfrak{g} = T_eG = \operatorname{Lie}(G)$ есть множество решений системы линейных уравнений

$$d_e F_1(dx_{11},...,dx_{nn}) = 0, ..., d_e F_d(dx_{11},...,dx_{nn}) = 0.$$

ДГТ 5\diamond1. Построить изоморфизм групп Ли **R** с какой-нибудь подгруппой $GL_2(\mathbf{R})$.

ДГТ 5\diamond2. Представьте торы (\mathbf{R}^*) n (произведение прямых без точки), (\mathbf{C}^*) n (произведение плоскостей без точки), \mathbf{T}^n (произведение окружностей) как матричные группы Ли.

ДГТ 5 \diamond 3. Опишите алгебру Ли $\mathfrak{so}_n(\mathbf{R}) = \mathrm{Lie}(\mathrm{SO}_n(\mathbf{R}))$ (из каких матриц она состоит?).

ДГТ 5\diamond4. Докажите, что $\mathrm{SO}_{p,q}(\mathbf{R})$ является группой Ли, найдите ее размерность, опишите в матричном виде ее алгебру Ли $\mathfrak{so}_{p,q}(\mathbf{R})$ (из каких матриц она состоит?).

ДГТ 5\diamond5. Докажите, что линейная группа Ли G связна \iff G линейно связна.

Дополнительные задачи

ДГТ 5 \diamond 6. Показать, что $e^Ae^B=e^{A+B}\cdot\exp\left(\frac{1}{2}[A,B]\right)$, где $A,B\in\operatorname{Mat}_n(\mathbf{R})$.

ДГТ 5\diamond7. Доказать, что группа Ли $\mathrm{SO}_{n,1}$ состоит из двух связных компонент, причем $\mathrm{SO}_{n,1}^{\circ}$ состоит из преобразований, оставляющих на месте связную компоненту \mathbf{H}^n гиперболоида

$$\langle x, x \rangle = x_1^2 + \ldots + x_n^2 - x_{n+1}^2 = -1,$$

где (x, y) — скалярное произведение сигнатуры (n, 1) в пространстве $\mathbf{R}^{n, 1}$.

Замечание: указанная здесь связная компонента \mathbf{H}^n — не что иное, как знаменитое пространство Лобачевского (его векторная модель), а группа $\mathrm{SO}_{n,1}^\circ$ является его полной группой движений $\mathrm{Isom}\ \mathbf{H}^n$ для (римановой) метрики, заданной с помощью формулы $\cosh\rho(x,y) = -\langle x,y\rangle$.

ДГТ 5 \diamond 8. Докажите, что группа $\mathrm{GL}_n(\mathbf{R})$ не связна, а группы $\mathrm{SL}_n(\mathbf{R})$, $\mathrm{SL}_n(\mathbf{C})$ и $\mathrm{GL}_n(\mathbf{C})$ связны.