TP 2 : influence de la température sur un micro-ordinateur

Groupe 10, MP*

12 mars 2023

1 Objectifs

On cherche à étudier l'influence de la quantité de calculs et de la température sur la consommation électrique d'un micro-ordinateur procédant à divers calculs. L'objectif est de déterminer la fonction f de la température extérieure T_{ext} et de la quantité de calculs K donnant $I = f(T_{ext}, K)$.

2 Matériel

- Raspberry Pi
- Alimentation continue
- Carte SYSAM
- Moyens d'influencer la température : étuve, sèche-cheveux, bac à glace...

3 Manipulations

3.1 Séance 1

Après une prise en main du Raspberry Pi et la réalisation du montage de mesure de sa consommation, on a réalisé mesures en intensité efficace (la tension est constante à $U=5{,}00$ V). Les valeurs vont de $I_{min}=200$ mA au repos (sans calculs autre que ceux réalisés par le système d'exploitation), à $I_{max}=600$ mA aux alentours de 4000 kcps (trois fenêtres à 1300 kcps).

3.2 Séance 2

Le chauffage du micro-ordinateur à l'aide d'un sèche-cheveux entraîne, pour la même quantité de calculs (1000 kcps) une augmentation l'intensité efficace, donc de la puissance consommée : de 392 mA à température ambiante, le courant passe à 458 mA après un chauffage d'une trentaine de secondes, pour redescendre à 424 mA après deux minutes de refroidissement à l'air libre.

3.3 Séance 3

Il s'agit essentiellement de la même manipulation que la séance 2, mais avec un appareil de chauffage plus perfectionné (étuve). On cherche à obtenir un résultat plus quantitatif que celui de la séance 2, qui n'était que qualitatif. Les mesures donnent au repos, pour 1000 kcps, les résultats suivants : on donne ici l'intensité moyenne consommée I, en mA, en fonction de T (en °C) et de K (en kcps).

$\mathbf{K} \setminus \mathbf{T}$	31	35	41	46	56
0	268	268	267	274	
1000	304	310		310	310

On en déduit le tableau des valeurs de puissances (en W) correspondant en multiplitant la valeur de I par la tension U=5 V.

$\mathbf{K} \setminus \mathbf{T}$	31	35	41	46	56
0	1,34	1,34	1,35	1,37	
1000	1,52	1,55		1,55	1,55

<u>Commentaires</u>: On trouve dans des tests d'évaluation des performances de ce modèle de micro-ordinateur que le courant maximal est de 720 mA^{1} .

^{1.} Alex Eames, *How Much Power Does Raspberry Pi3B Use?*, https://raspi.tv/2016/how-much-power-does-raspberry-pi3b-use-how-fast-is-it-compared-to-pi2b