This notebook takes a list of parameters & their negative log likelihoods, and interpolates to give a smooth sampling. It then uses the Metropolis algorithm to sample parameter sets in proportion to their likelihood.

SetDirectory to point to the data file, and Evaluate Initialisation

The data

The data are supplied as a list of the form $\{N_0, r, K, M, T, -\log(L)\}$

Interpolation on a log scale

The parameter grid is evenly spaced on a log scale, and so the interpolation is also on a log scale. (Interpolating on the original scale causes problems, because the parameters are then unevenly spaced). The interpolation passes through every data point, and fills in-between using a cubic curve. Because M=0 is included, the transformation is IM = log[M + 0.5], M = Exp[IM] - 0.5

Note: this uses natural logs

This transforms to a (natural) log scale, and interpolates. The error message arises because there are only three generation times, and so thhe interpolation uses a quadratic rather than a cubic.

This fixes M=4, T=2 and finds the MLE for $\{\log[N_0], \log[r], \log[K]\}$, starting the search somewhere plausible $\{80, 0.1, K=800\}$, and setting bounds on the search domain:

Out[•]=

5669.36

```
In[29]:= fmb =
         FindMinimum[intB[ln, lr, lk, Log[4+0.5], 2], {ln, Log[80], Log[20], Log[320]},
           {lr, Log[0.1], Log[0.025], Log[0.4]}, {lk, Log[800], Log[250], Log[4000]}]
        . The line search decreased the step size to within the tolerance specified by AccuracyGoal
             and PrecisionGoal but was unable to find a sufficient decrease in the function. You may need more than
             MachinePrecision digits of working precision to meet these tolerances.
Out[29]=
        \{5666.39, \{ln \rightarrow 4.08265, lr \rightarrow -2.12234, lk \rightarrow 7.23995\}\}\
        This also allows M to vary, which slightly increases the likelihood:
 In[30]:= fmb1 = FindMinimum[intB[ln, lr, lk, lm, 2],
           {ln, Log[80], Log[20], Log[320]}, {lr, Log[0.1], Log[0.025], Log[0.4]},
           {lk, Log[800], Log[250], Log[4000]}, {lm, Log[4+0.5], Log[0.5], Log[8+0.5]}]
        · FindMinimum: The line search decreased the step size to within the tolerance specified by AccuracyGoal
             and PrecisionGoal but was unable to find a sufficient decrease in the function. You may need more than
             MachinePrecision digits of working precision to meet these tolerances.
Out[30]=
        \{5662.62, \{ln \rightarrow 3.9973, lr \rightarrow -2.0709, lk \rightarrow 7.19375, lm \rightarrow 1.32586\}\}
        These are the MLE on the original scale, allowing M to vary, or fixing it at 4:
        Exp[{ln, lr, lk, lm} /. fmb1[2]] + {0, 0, 0, 0.5}
 In[ • ]:=
Out[ • ]=
        {54.4509, 0.126072, 1331.09, 4.26541}
       Exp[{ln, lr, lk} /. fmb[[2]]]
 In[o]:=
Out[ • ]=
        {59.3027, 0.119751, 1394.02}
        The minimum in the data is only slightly higher than the MLE, which seems reasonable:
        intB[Log[80], Log[0.1], Log[2000], Log[4+0.5], 2]
 In[o]:=
```

The left plot fixes T=2, M=3.26, r=0.1202, the right plot fixes N_0 = 55.6, K = 1335. Contours are spaced at unit intervals. For 2 degrees of freedom, a loss of log(L) of 3 corresponds to $\chi_2^2 = 6$, or P=5%; thus, three contours down give the 3-unit support limits, corresponding to 95% confidence intervals.

Out[240]=

Optimising N_0 , r for given K

If we optimise N_0 and r for given K, we get a smooth function with a definite minimum

TableForm[fmtb, TableDepth → 2]

```
Out[ • ]//TableForm=
          250.
                            5757.92
                                              \{ln \rightarrow 5.26271, lr \rightarrow -0.916291\}
                                              \{ln \rightarrow 4.2954, lr \rightarrow -1.75283\}
                            5722.78
          329.877
          435.275
                            5699.43
                                              \{ln \rightarrow 4.12883, lr \rightarrow -1.76095\}
                                              \{ln \rightarrow 4.04163, lr \rightarrow -1.80412\}
          574.349
                            5683.25
          757.858
                                              \{ln \rightarrow 4.00897, lr \rightarrow -1.875\}
                            5673.21
                                              \{ln \rightarrow 4.01932, lr \rightarrow -1.97126\}
          1000.
                            5668.08
                                              \{\, ln \rightarrow \textbf{4.07061, lr} \rightarrow -\, \textbf{2.09685} \,\}
          1319.51
                            5666.43
          1741.1
                            5666.89
                                              \{ln \rightarrow 4.13516, lr \rightarrow -2.22506\}
          2297.4
                            5668.36
                                              \{ln \rightarrow 4.15695, lr \rightarrow -2.30259\}
                                              \{ln \rightarrow 4.10421, lr \rightarrow -2.30259\}
          3031.43
                            5670.36
          4000.
                            5672.12
                                              \{ln \rightarrow 4.05919, lr \rightarrow -2.30259\}
```

MLE for three values of T

Note: this uses natural logs

These are -log(L) and the MLE for the three values of T. T=2 seems most likely; the choice of T makes little difference to the estimates.

```
In[•]:= TableForm[Prepend[
         {tvalues[#]], fm[#][1]], Exp[ln], Exp[lr], Exp[lk], Exp[lm] - 0.5} /. fm[#][2]] &/@
           {1, 2, 3},
         {"T", "-log(L)", "N<sub>0</sub>", "r", "K", "M"}]]
Out[•]//TableForm=
                   -log(L)
       Τ
                              Nο
       1.33333
                  5665.23
                               55.4199
                                           0.102179
                                                        4000.
                                                                    3.23059
                  5663.39
                                                                    3.26502
       1.66667
                              55.5942
                                           0.120153
                                                        1335.05
                  5662.62
                              54.4509
                                           0.126072
                                                        1331.09
                                                                    3.26541
```

Generating 5×10^5 random values, for T=2; burn-in of 10^4

```
\label{eq:burn} $\inf[106]:=$ burn = 10^4$; run = 5 \times 10^5$; $$ Timing[xl = Drop[randomWalk[burn + run, 1.05, 3], burn]$;] $$ Out[107]=$ $$ \{483.009, Null\}$$ The file contains <math>5 \times 10^5 values of \{N_0, r, K, M, -\log(L)\}: $$ Export["random values 23 Sept 2023.csv", Flatten/@xl]$;
```

In[109]:=

ListLinePlot[Mean /@ Partition[Last /@ xl, 1000]]

Out[109]=

Distribution of the parameters (T=2)

Posterior distribution (points) superimposed on contours of log likelihood (spacing 1). Left: N_0 vs K. right: r vs.M. Contours on the left plot fixes T=2, M=3.26, r=0.1202; the right plot fixes N_0 = 55.6, K = 1335. Note that these distributions are not quite the same: the posterior distribution averages over the posterior distribution of the other two parameters, whereas the contours show the log likelihood with the other two parameters fixed at their MLE.

Out[214]=

These are the posterior distributions of the 4 parameters, for T=2:

Out[135]=

These are the mean and the 95% limits of the posterior distribution:

Out[136]//TableForm=

mean	95% limits
55.3948	{39.1577, 79.1246}
0.124778	{0.0922092, 0.175655}
1370.91	{949.594, 2168.92}
3.25047	{2.76906, 3.7712}
	55.3948 0.124778 1370.91

Some checks

The mean of the random walk (top) is close to the MLE (bottom)

Out[138]//TableForm=

N_{Θ}	r	K	М
55.3948	0.124778	1370.91	3.25047
55,5942	0.120153	1335.05	3,26502

The minimum -log(L) achieved in the random walk (top) is slightly better than the estimated MLE from interpolation. -2log(L) should follow a χ_4^2 distribution. The mean -2log(L) in the random walk is 3.97 above this, about the same as the predicted 4 (the # of parameters), and the variance is also close to the predicted 8

Out[140]//TableForm=

5662.62 3.97153 8.24493 5663.39 4 8 In[141]:= Histogram[xl[All, -1]]

There is no suggestion of a systematic change in -log(L) over the random walk. This plots the means of every 1000 points:

In[144]:= ListLinePlot[Mean /@ Partition[xl[All, -1], 1000]]

Definitions

```
SetDirectory["/Users/NickBarton/Manuscripts/Skerries/"];
In[1]:=
     (* set this directory to point to the data file *)
     data::usage =
        "data stores an array where each row gives the 5 parameters, followed by
          the negative log likelihood, in the form {NO,r,K,M,T,-log(L)}";
         Map[StringSplit, Import["SEQSNPTM004_RESULTS Aug23.txt", "CSV"], {2}], 1];
     data = Map[ToExpression, Drop[data, 1], {2}];
```

```
In[5]:=
      tvalues::usage = "tvalues lists the three values of t";
      tvalues = Union[data[All, 5]];
```

```
intC::usage =
In[7]:=
         "intC[t] stores an interpolation on log[No],log[r],log[K],log[M+0.5],
            given t (which must be one tvalues)";
       intC[t_] := intC[t] =
          Interpolation[Cases[data, {_, _, _, _, t, _}] /.
             \{n_{r}, r_{k}, M_{r}, L_{s} \leftrightarrow \{Log[n], Log[r], Log[k], Log[0.5 + M], L\}\};
       intD::usage =
         "intD[t] gives an interpolation on log[N_0], log[r], log[K], log[M+0.5], given
            t (which must be one tvalues). Returns \infty if the arguments lie
            outside the range of the interpolation, as given by intC[t][[1]].";
       intD[t_][x_List] := If[withinQ[intC[t][1]]][x], intC[t]@@x, \infty];
In[71]:=
       withinQ::usage = "withinQ[\{\{x_{1,0},x_{1,1}\},...\}][\{x_1,...\}]
            checks whether the point is within a rectabgular domain";
       withinQ[xl_List] := And @@ MapThread[#2[1]] \leq #1 \leq #2[2] &, {x, xl}];
       fm::usage =
In[9]:=
         "fm[j] gives minimises wrt log[N_0], log[r], log[K], log[M+0.5]; j=1,2,3
            corresponds to t=1.333, 1.667, 2";
       fm[j_] := fm[j] = Module[{t = Union[data[All, 5]][j]}},
            FindMinimum[intC[t][ln, lr, lk, lm], {ln, Log[100], Log[20], Log[320]},
             {lr, Log[0.1], Log[0.025], Log[0.4]}, {lk, Log[2000], Log[250], Log[4000]},
             \{lm, Log[4+0.5], Log[0+0.5], Log[8+0.5]\}\}\}
       randomWalk::usage =
In[87]:=
         "randomWalk[n,\lambda,j] makes n random draws from the posterior distribution;
            j=1,2,3 corresponds to the three values of T. If a trial is
            rejected, the step is decreased by a factor \lambda, and vice versa.";
       randomWalk[n_Integer, \lambda_, j: (1 | 2 | 3)] :=
         Module[\{\delta = 0.1, x, L, xL, L1, dx, \tau = tvalues[j]\},
          x = Mean /@intC[\tau][1]; L = intD[\tau][x]; xL = {{x, L}};
          Do [dx = \delta RandomReal[\{-1, 1\}, 4];
           L1 = intD[\tau][x + dx];
           If[Exp[L - L1] > Random[],
             x = x + dx; \delta = \delta * \lambda; L = L1,
             \delta = \delta / \lambda];
           AppendTo[xL, {x, L}], {n}];
          xL];
       limits::usage = "limits[\{x_1,...\},P] gives the parameter range
In[13]:=
            that includes a fraction 1-P, with P/2 on each side.";
       limits[x_List, p_] := Module[{k = Round[Length[x] (p / 2)]}, Sort[x][{k, -k}]];
```