

XPS UART Lite (v1.00a)

DS571 July 18, 2008 Product Specification

Introduction

The XPS Universal Asynchronous Receiver Transmitter (UART) Lite Interface connects to the PLB (Processor Local Bus) and provides the controller interface for asynchronous serial data transfer. This soft IP core is designed to interface with the PLBV46.

Features

- PLB interface is based on PLB v4.6 specification
- Supports 8-bit bus interfaces
- One transmit and one receive channel (full duplex)
- 16-character Transmit FIFO and 16-character Receive
- Configurable number of data bits in a character (5-8)
- Configurable parity bit (odd or even)
- Configurable baud rate

LogiCORE™ Facts					
C	Core Specifics				
Supported Device Family	Spartan®-3E, Automotive Spartan-3E, Spartan-3, Automotive Spartan-3, Spartan-3A, Spartan-3AN, Automotive Spartan-3A, Spartan-3A DSP, Automotive Spartan-3A DSP, Virtex®-4, QPro Virtex-4 Hi-Rel, QPro Virtex-4 Rad Tolerant, Virtex-5, Virtex-II Pro				
Version of Core	xps_uartlite v1.00a				
Resources Used					
	Min	Max			
Slices					
LUTs	Refer to the Table 9, Table 10 and Table 11				
FFs					
Block RAMs	N/A				
Pro	vided with Core				
Documentation	Product Specific	ation			
Design File Formats	VHDL				
Constraints File	N/A				
Verification	N/A				
Instantiation Template	N/A				
Design	Tool Requirement	nts			
Xilinx Implementation Tools	ISE® 9.1i or later				
Verification	ModelSim SE/EE 6.0c or later				
Simulation	ModelSim SE/EE 6.0c or later				
Synthesis	ynthesis XST 9.1i or later				
Support					
Provided by Xilinx, Inc.					

trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature, application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

^{© 2006-2008} Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered

2

Functional Description

The XPS UART Lite performs parallel to serial conversion on characters received through PLB and serial to parallel conversion on characters received from a serial peripheral.

The XPS UART Lite is capable of transmitting and receiving 8, 7, 6 or 5 bit characters, with 1 stop bit and odd, even or no parity. The XPS UART Lite can transmit and receive independently.

The device can be configured and it's status can be monitored via the internal register set. The XPS UART Lite generates an interrupt when data is present in the Receive FIFO or when the Transmit FIFO becomes empty. This interrupt can be masked by using interrupt enable/disable signal.

The device contains a 16-bit programmable baud rate generator and independent 16 word Transmit and Receive FIFOs. The FIFOs can be enabled or disabled through software control.

The XPS UART Lite modules are shown in the top-level block diagram in Figure 1.

Figure 1: Block Diagram of XPS UART Lite

The XPS UART Lite modules are described in the sections below.

PLB Interface Module: The PLB Interface Module provides the interface to the PLB and implements PLB protocol logic. PLB Interface Module is a bi-directional interface between a user IP core and the PLB bus standard. To simplify the process of attaching a XPS UART Lite to the PLB, the core make use of a portable, pre-designed bus interface called PLB Interface Module, that takes care of the bus interface signals, bus protocols, and other interfaces.

UART Lite Register Module: The Register Module includes all memory mapped registers (as shown in Figure 1). It interfaces to the PLB through the PLB Interface Module. It consists of an 8-bit status register, an 8-bit control register and a pair of 8-bit Transmit/Receive FIFOs. All registers are accessed directly from the PLB using the PLB Interface Module.

UART Control Module: The UART Control Module consists of RX module, a TX module, a parameterized baud rate generator (BRG) and a Control Unit. It incorporates the state machine for initialization and start & stop bit contol logic.

Interrupts

If interrupts are enabled, an interrupt is generated when one of the following conditions is true:

- 1. When there exists any valid character in the Receive FIFO, the interrupt stays active until the Receive FIFO is empty
- 2. When the Transmit FIFO goes from not empty to empty, such as when the last character in the Transmit FIFO is transmitted, the interrupt is only active one clock cycle

The Tx_Buffer_Empty interrupt is an edge interrupt and the Rx_Buffer_Empty is a level interrupt.

XPS UART Lite I/O Signals

The XPS UART Lite I/O signals are listed and described in Table 1.

Table 1: XPS UART Lite I/O Signal Description

Port	Signal Name	Interface	I/O	Initial State	Description
	+	Systen	n Signals		
P1	SPLB_Clk	System	ı	-	PLB clock
P2	SPLB_Rst	System	I	-	PLB reset, active high
		PLB Inter	face Signa	ls	
P3	PLB_ABus[0 : 31]	PLB	1	-	PLB address bus
P4	PLB_PAValid	PLB	I	-	PLB primary address valid
P5	PLB_masterID[0 : C_SPLB_MID_WIDTH - 1]	PLB	I	-	PLB current master identifier
P6	PLB_RNW	PLB	I	-	PLB read not write
P7	PLB_BE[0: (C_SPLB_DWIDTH/8) - 1]	PLB	I	-	PLB byte enables
P8	PLB_size[0:3]	PLB	I	-	PLB size of requested transfer
P9	PLB_type[0:2]	PLB	I	-	PLB transfer type
P10	PLB_wrDBus[0 : C_SPLB_DWIDTH - 1]	PLB	I	-	PLB write data bus
		Unused PLB I	nterface S	ignals	,
P11	PLB_UABus[0 : 31]	PLB	1	-	PLB upper address bits
P12	PLB_SAValid	PLB	I	-	PLB secondary address valid
P13	PLB_rdPrim	PLB	I	-	PLB secondary to primary read request indicator
P14	PLB_wrPrim	PLB	I	-	PLB secondary to primary write request indicator
P15	PLB_abort	PLB	I	-	PLB abort bus request
P16	PLB_busLock	PLB	Ţ	-	PLB bus lock
P17	PLB_MSize[0 : 1]	PLB	Ţ	-	PLB data bus width indicator
P18	PLB_lockErr	PLB	I	-	PLB lock error

Table 1: XPS UART Lite I/O Signal Description (Contd)

Port	Signal Name	Interface	I/O	Initial State	Description		
P19	PLB_wrBurst	PLB	I	-	PLB burst write transfer		
P20	PLB_rdBurst	PLB	I	-	PLB burst read transfer		
P21	PLB_wrPendReq	PLB	I	-	PLB pending bus write request		
P22	PLB_rdPendReq	PLB	I	-	PLB pending bus read request		
P23	PLB_wrPendPri[0 : 1]	PLB	I	-	PLB pending write request priority		
P24	PLB_rdPendPri[0 : 1]	PLB	I	-	PLB pending read request priority		
P25	PLB_reqPri[0:1]	PLB	I	-	PLB current request priority		
P26	PLB_TAttribute[0 : 15]	PLB	I	-	PLB transfer attribute		
		PLB Slave In	terface Si	gnals			
P27	SI_addrAck	PLB	0	0	Slave address acknowledge		
P28	SI_SSize[0:1]	PLB	0	0	Slave data bus size		
P29	SI_wait	PLB	0	0	Slave wait		
P30	SI_rearbitrate	PLB	0	0	Slave bus rearbitrate		
P31	SI_wrDAck	PLB	0	0	Slave write data acknowledge		
P32	SI_wrComp	PLB	0	0	Slave write transfer complete		
P33	SI_rdDBus[0 : C_SPLB_DWIDTH - 1]	PLB	0	0	Slave read data bus		
P34	SI_rdDAck	PLB	0	0	Slave read data acknowledge		
P35	SI_rdComp	PLB	0	0	Slave read transfer complete		
P36	SI_MBusy[0 : C_SPLB_NUM_MASTERS - 1]	PLB	0	0	Slave busy		
P37	SI_MWrErr[0 : C_SPLB_NUM_MASTERS - 1]	PLB	0	0	Slave write error		
P38	SI_MRdErr[0 : C_SPLB_NUM_MASTERS - 1]	PLB	0	0	Slave read error		
	Unu	sed PLB Slav	e Interfac	e Signals			
P39	SI_wrBTerm	PLB	0	0	Slave terminate write burst transfer		
P40	SI_rdWdAddr[0 : 3]	PLB	0	0	Slave read word address		
P41	SI_rdBTerm	PLB	0	0	Slave terminate read burst transfer		
P42	SI_MIRQ[0: C_SPLB_NUM_MASTERS - 1]	PLB	0	0	Master interrupt request		
	UART Lite Interface Signals						

4

Table 1: XPS UART Lite I/O Signal Description (Contd)

Port	Signal Name	Interface	I/O	Initial State	Description
P43	RX	UART Lite	I	-	Receive Data
P44	TX	UART Lite	0	0	Transmit Data
P45	Interrupt	UART Lite	0	0	UART Interrupt

XPS UART Lite Design Parameters

To allow the user to obtain a XPS UART Lite that is uniquely tailored for the system, certain features can be parameterized in the XPS UART Lite design. This allows the user to configure a design that utilizes the resources required by the system only and that operates with the best possible performance. The features that can be parameterized in the XPS UART Lite design are as shown in Table 2.

Table 2: XPS UART Lite Design Parameters

Generic	Feature/Description	Parameter Name	Allowable Values	Default Value	VHDL Type			
		System Parame	ter					
G1	Target FPGA family	C_FAMILY	spartan3e, aspartan3e, spartan3, aspartan3, spartan3a, spartan3an, aspartan3a, spartan3an, virtex4, qvirtex4, qrvirtex4, virtex5, virtex2p	virtex5	string			
G2	System clock frequency (in Hz) driving the UART Lite peripheral	C_SPLB_CLK_ FREQ_HZ	integer (ex. 100000000)	100_ 000_ 000	Integer			
	PLB Parameters							
G3	PLB Base Address	C_BASEADDR	Valid Address ^[1]	None ^[3]	std_logic_ vector			
G4	PLB High Address	C_HIGHADDR	Valid Address ^[2]	None ^[3]	std_logic_ vector			
G 5	PLB least significant address bus width	C_SPLB_AWIDTH	32	32	integer			
G6	PLB data width	C_SPLB_DWIDTH	32, 64, 128	32	integer			
G 7	Selects point-to-point or shared bus topology	C_SPLB_P2P	0 = Shared Bus Topology 1 = Point-to-Point Bus Topology ^[4]	0	integer			
G8	PLB Master ID Bus Width	C_SPLB_MID_ WIDTH	log ₂ (C_SPLB_NUM_ MASTERS) with a minimum value of 1	1	integer			
G9	Number of PLB Masters	C_SPLB_NUM_ MASTERS	1 - 16	1	integer			

Table 2: XPS UART Lite Design Parameters (Contd)

Generic	Feature/Description	Parameter Name	Allowable Values	Default Value	VHDL Type
G10	Support Bursts	C_SPLB_SUPPORT _BURSTS	0	0	integer
G11	Width of the Slave Data Bus	C_SPLB_NATIVE_ DWIDTH	32	32	integer
		UART Lite Parame	eters		
G12	Baud rate of the UART Lite in bits per second	C_BAUDRATE	integer (ex. 128000)	128_ 000 ^[5]	Integer
G13	The number of data bits in the serial frame	C_DATA_BITS	5 - 8	8	Integer
G14	Determines whether parity is used or not	C_USE_PARITY	0 = Do not use parity 1 = Use parity	1	Integer
G15	If parity is used, determines whether parity is odd or even	C_ODD_PARITY	0 = Even parity 1 = Odd parity	1	Integer

Notes:

6

- 1. The user must set the values. The C_BASEADDR must be a multiple of the range, where the range is C_HIGHADDR C_BASEADDR + 1.
- 2. C_HIGHADDR C_BASEADDR must be a power of 2 greater than equal to C_BASEADDR + 0xF.
- 3. No default value will be specified to insure that the actual value is set, i.e., if the value is not set, a compiler error will be generated.
- 4. Value of '1' is not supported in this core.
- 5. With a baud rate of 128000, the sample clock is 16 * 128000 = 2.048 MHz. With the System clock C_CLK_FREQ running at 10 MHz, the integer ratio for driving the sample clock is 4 (mod[10/2.048]). The UART Lite would then divide the System clock by 4 resulting in 2.5 MHz for the sample clock. The baud rate error is (2.5 2.048) / 2.048 => 20% which is outside the tolerance for most UARTs. The issue is that the higher the baud rate and the lower the C_CLK_FREQ, the greater the error in the generated baud rate of the UART Lite. Specifications for the baud rate error state that, within 5% of the requested rate is considered acceptable.

Allowable Parameter Combinations

The address range specified by C_BASEADDR and C_HIGHADDR must be a power of 2, and must be at least 0xF.

For example, if $C_BASEADDR = 0xE00000000$, $C_HIGHADDR$ must be at least = 0xE0000000F.

XPS UART Lite Parameter - Port Dependencies

The dependencies between the XPS UART Lite core design parameters and I/O signals are described in Table 3. In addition, when certain features are parameterized out of the design, the related logic will no longer be a part of the design. The unused input signals and related output signals are set to a specified value.

Table 3: XPS UART Lite Parameter-Port Dependencies

Generic or Port	Name Affects Depend		Depends	Relationship Description
		Design Param	neters	
G6	C_SPLB_DWIDTH	P7, P10, P33	-	Affects the number of bits in data bus
G8	C_SPLB_MID_WIDTH	P5	G9	This value is calculated as: log ₂ (C_SPLB_NUM_MASTERS) with a minimum value of 1

Table 3: XPS UART Lite Parameter-Port Dependencies (Contd)

Generic or Port	Name	Affects	Depends	Relationship Description
G9	C_SPLB_NUM_MASTERS	P36, P37, P38, P42	-	Affects the number of PLB masters
		I/O Signa	ls	
P5	PLB_masterID[0 : C_SPLB_MID_WIDTH - 1]	-	G8	Width of the PLB_mastedID varies according to C_SPLB_MID_WIDTH
P7	PLB_BE[0 : (C_SPLB_DWIDTH/8) -1]	-	G6	Width of the PLB_BE varies according to C_SPLB_DWIDTH
P10	PLB_wrDBus[0 : C_SPLB_DWIDTH - 1]	-	G6	Width of the PLB_wrDBus varies according to C_SPLB_DWIDTH
P33	SI_rdDBus[0 : C_SPLB_DWIDTH - 1]	-	G6	Width of the SI_rdDBus varies according to C_SPLB_DWIDTH
P36	SI_MBusy[0 : C_SPLB_NUM_MASTERS - 1]	-	G9	Width of the SI_MBusy varies according to C_SPLB_NUM_MASTERS
P37	SI_MWrErr[0 : C_SPLB_NUM_MASTERS - 1]	-	G9	Width of the SI_MWrErr varies according to C_SPLB_NUM_MASTERS
P38	SI_MRdErr[0 : C_SPLB_NUM_MASTERS - 1]	-	G9	Width of the SI_MRdErr varies according to C_SPLB_NUM_MASTERS
P42	SI_MIRQ[0: C_SPLB_NUM_MASTERS- 1]	-	G9	Width of the SI_MIRQ varies according to C_SPLB_NUM_MASTERS

XPS UART Lite Register Descriptions

Table 4 shows all the XPS UART Lite registers and their addresses.

Table 4: XPS UART Lite Registers

Base Address + Offset (hex)	Register Name	Access Type	Default Value (hex)	Description
C_BASEADDR + 0x0	Rx FIFO	Read	0x0	Receive Data FIFO
C_BASEADDR + 0x4	Tx FIFO	Write	0x0	Transmit Data FIFO
C_BASEADDR + 0x8	STAT_REG	Read	0x4	UART Lite Status Register
C_BASEADDR + 0xC	CTRL_REG	Write	0x0	UART Lite Control Register

Receive Data FIFO

This 16 entry deep FIFO contains data to be received by XPS UART Lite. The FIFO bit definitions are shown in Table 5. Reading of this location will result in reading the current word out from the FIFO. The Receive Data

FIFO is a read-only register. A write request is issued to Receive Data FIFO will do nothing but generate the write acknowledgement. Figure 2 shows the location for data on the PLB when C_DATA_BITS is set to 8.

Figure 2: Receive Data FIFO (C_DATA_BITS = 8)

Table 5: Receive Data FIFO Bit Definitions

Bit(s)	Name	Core Access	Reset Value	Description
0 - [31-C_DATA_BITS]	Reserved	N/A	0	Reserved
[(31-C_DATA_BITS)+1] - 31	Rx Data	Read	0	UART Receive data

Transmit Data FIFO

This 16 entry deep FIFO contains data to be output by XPS UART Lite. The FIFO bit definitions are shown in Table 6. Data to be transmitted is written into this register. This is write only location. A read request is issued to Transmit Data FIFO will generate the read acknowledgement. Figure 3 shows the location for data on the PLB when C_DATA_BITS is set to 8.

Figure 3: Transmit Data FIFO (C_DATA_BITS = 8)

Table 6: Transmit Data FIFO Bit Definitions

Bit(s)	Name	Core Access	Reset Value	Description
0 - [31-C_DATA_BITS]	Reserved	N/A	0	Reserved
[(31-C_DATA_BITS)+1] - 31	Tx Data	Write	0	UART transmit data

UART Lite Control Register (CTRL_REG)

The UART Lite Control Register contains the Enable Interrupt bit and Reset pin for Receive and Transmit Data FIFO. This is write only register. If a read request is issued to control register then the read acknowledgement. Figure 4 shows the bit assignment of the CTRL_REG. Table 7 describes this bit assignment.

Figure 4: UART Lite Control Register

Table 7: UART Lite Control Register Bit Definitions

Bit(s)	Name	Core Access	Reset Value	Description
0 - 26	Reserved	N/A	0	Reserved
27	Enable Intr	Write	'0'	Enable Interrupt for the UART Lite '0' = Disable interrupt signal '1' = Enable interrupt signal
28 - 29	Reserved	N/A	0	Reserved
30	Rst Rx FIFO	Write	'0'	Reset/Clear the Receive FIFO Writing a '1' to this bit position clears the Receive FIFO '0' = Do nothing '1' = Clear the Receive FIFO
31	Rst Tx FIFO	Write	'0'	Reset/Clear the Transmit FIFO Writing a '1' to this bit position clears the Transmit FIFO '0' = Do nothing '1' = Clear the Transmit FIFO

UART Lite Status Register (STAT_REG)

The UART Lite Status Register contains the status of the Receive and Transmit Data FIFO, if interrupts are enabled, and if there are any errors. This is read only register. A write request is issued to status register it will do

nothing but generate write acknowledgement. Bit assignment in the STAT_REG is shown in Figure 5 and described in Table 8.

Figure 5: UART Lite Status Register

Table 8: UART Lite Status Register Bit Definitions

Bit(s)	Name	Core Access	Reset Value	Description
0 - 23	Reserved	N/A	0	Reserved
24	Parity Error	Read	'0'	Indicates that a parity error has occurred since the last time the status register was read. If the UART is configured without any parity handling, this bit will always be '0'. The received character will be written into the Receive FIFO. This bit will be cleared when the status register is read '0' = No parity error has occurred '1' = A parity error has occurred
25	Frame Error	Read	'0'	Indicates that a frame error has occurred since the last time the status register was read. Frame Error is defined as detection of a stop bit with the value '0'. The receive character will be ignored and not written to the Receive FIFO. This bit will be cleared when the status register is read '0' = No Frame error has occurred '1' = A frame error has occurred
26	Overrun Error	Read	'0'	Indicates that a overrun error has occurred since the last time the status register was read. Overrun is when a new character has been received but the Receive FIFO is full. The received character will be ignored and not written into the Receive FIFO. This bit will be cleared when the status register is read '0' = No interrupt has occurred '1' = Interrupt has occurred

Table 8: UART Lite Status Register Bit Definitions (Contd)

Bit(s)	Name	Core Access	Reset Value	Description
27	Intr Enabled	Read	'0'	Indicates that interrupts is enabled '0' = Interrupt is disabled '1' = Interrupt is enabled
28	Tx FIFO Full	Read	'0'	Indicates if the Transmit FIFO is full '0' = Transmit FIFO is not full '1' = Transmit FIFO is full
29	Tx FIFO Empty	Read	'1'	Indicates if the Transmit FIFO is empty '0' = Transmit FIFO is not empty '1' = Transmit FIFO is empty
30	Rx FIFO Full	Read	'0'	Indicates if the Receive FIFO is full '0' = Receive FIFO is not full '1' = Receive FIFO is full
31	Rx FIFO Valid Data	Read	'0'	Indicates if the receive FIFO has valid data '0' = Receive FIFO is empty '1' = Receive FIFO has valid data

Design Implementation

Target Technology

The intended target technology is Virtex-4, Virtex-5 and Spartan-3 family FPGAs.

Device Utilization and Performance Benchmarks

Core Performance

Since the XPS UART Lite core will be used with other design modules in the FPGA, the utilization and timing numbers reported in this section are estimates only. When the XPS UART Lite core is combined with other designs in the system, the utilization of FPGA resources and timing of the XPS UART Lite design will vary from the results reported here.

The XPS UART Lite resource utilization for various parameter combinations measured with Virtex-4 as the target device are detailed in Table 9.

Table 9: Performance and Resource Utilization Benchmarks on Virtex-4 (xc4vlx25-10-ff668)

Para	meter Values (ot	Devic	e Resou	rces	Perfor mance				
C_SPLB_AWIDTH	C_CLK_FREQ	C_BAUDRATE	C_DATA_BITS	C_USE_PARITY	C_ODD_PARITY	Slices	Slice Flip-Fl ops	LUTs	F _{MAX} (MHz)
32	100_000_000	19_200	5	FALSE	FALSE	80	66	103	137
32	100_000_000	19_200	6	FALSE	FALSE	81	67	107	153
32	100_000_000	19_200	7	FALSE	FALSE	84	68	109	149

Table 9: Performance and Resource Utilization Benchmarks on Virtex-4 (xc4vlx25-10-ff668) (Contd)

Para	meter Values (of	Devic	e Resou	rces	Perfor mance				
C_SPLB_AWIDTH	C_CLK_FREQ	C_BAUDRATE	C_DATA_BITS	C_USE_PARITY	C_ODD_PARITY	Slices	Slice Flip-Fl ops	LUTs	F _{MAX} (MHz)
32	100_000_000	19_200	8	FALSE	FALSE	84	69	112	136
32	40_000_000	38_400	8	FALSE	FALSE	84	68	111	150
32	100_000_000	19_200	6	TRUE	FALSE	87	73	114	148
32	100_000_000	19_200	7	TRUE	FALSE	89	74	116	130

The XPS UART Lite resource utilization for various parameter combinations measured with Virtex-5 as the target device are detailed in Table 10.

Table 10: Performance and Resource Utilization Benchmarks on Virtex-5 (xc5vlx85-1-ff1153)

Paran	Parameter Values (other parameters at default value)								Perfor mance
C_SPLB_AWIDTH	C_CLK_FREQ	C_BAUDRATE	C_DATA_BITS	C_USE_PARITY	C_ODD_PARITY	Slices	Slice Flip- Flops	LUTs	f _{MAX} (MHz)
32	100_000_000	19_200	5	FALSE	FALSE	44	66	111	197
32	100_000_000	19_200	6	FALSE	FALSE	77	67	113	180
32	100_000_000	19_200	7	FALSE	FALSE	45	68	115	213
32	100_000_000	19_200	8	FALSE	FALSE	43	69	119	166
32	40_000_000	38_400	8	FALSE	FALSE	46	68	117	200
32	100_000_000	19_200	6	TRUE	FALSE	50	73	119	204
32	100_000_000	19_200	7	TRUE	FALSE	53	74	123	165

12

The XPS UART Lite resource utilization for various parameter combinations measured with Spartan-3E as the target device are detailed in Table 11.

Table 11: Performance and Resource Utilization Benchmarks on Spartan-3E (xc3s250e-4-ft256)

Para	meter Values (ot	Devic	e Reso	urces	Perfor mance				
C_SPLB_AWIDTH	C_CLK_FREQ	C_BAUDRATE	C_DATA_BITS	C_USE_PARITY	C_ODD_PARITY	Slices	Slice Flip- Flops	LUTs	f _{MAX} (MHz)
32	100_000_000	19_200	5	FALSE	FALSE	84	66	104	108
32	100_000_000	19_200	6	FALSE	FALSE	84	67	108	107
32	100_000_000	19_200	7	FALSE	FALSE	86	68	110	108
32	100_000_000	19_200	8	FALSE	FALSE	88	69	113	107
32	40_000_000	38_400	8	FALSE	FALSE	87	68	112	103
32	100_000_000	19_200	6	TRUE	FALSE	89	73	114	107
32	100_000_000	19_200	7	TRUE	FALSE	93	74	118	104

System Performance

To measure the system performance (Fmax) of this core, this core was added to a Virtex-4 system, a Virtex-5 system, and a Spartan-3A system as the Device Under Test (DUT) as shown in Figure 6, Figure 7, and Figure 8.

Because the XPS UART Lite core will be used with other design modules in the FPGA, the utilization and timing numbers reported in this section are estimates only. When this core is combined with other designs in the system, the utilization of FPGA resources and timing of the design will vary from the results reported here.

Figure 6: Virtex-4 FX System

Figure 7: Virtex-5 LX System

Figure 8: Spartan-3A System

The target FPGA was then filled with logic to drive the LUT and BRAM utilization to approximately 70% and the I/O utilization to approximately 80%. Using the default tool options and the slowest speed grade for the target FPGA, the resulting target FMax numbers are shown in Table 12.

Table 12: XPS UART Lite System Performance

Target FPGA	Target f _{MAX} (MHz)
S3A700 -4	90
V4FX60 -10	100
V5LXT50 -1	120

The target fMAX is influenced by the exact system and is provided for guidance. It is not a guaranteed value across all systems.

Reference Documents

IBM CoreConnect 128-Bit Processor Local Bus, Architectural Specification (v4.6).

Notice of Disclaimer

Xilinx is providing this design, code, or information (collectively, the "Information") to you "AS-IS" with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.

Revision History

Date	Version	Revision
4/18/07	1.0	Initial Xilinx release.
4/20/07	1.1	Added SP-3 support.
9/26/07	1.2	Added FMax Margin System Performance section.
11/27/07	1.3	Added SP3A DSP to supported devices listing.
1/14/08	1.4	Added Virtex-II Pro support.
4/21/08	1.5	Added Automotive Spartan-3E, Automotive Spartan-3A, Automotive Spartan-3, and Automotive Spartan-3A DSP support.
7/18/08	1.6	Added QPro Virtex-4 Hi-Rel and QPro Virtex-4 Rad Tolerant FPGA support.