点集拓扑作业(3)

Problem 1 记 $\mathcal{C} = \{(a,b)|a,b \in \mathbb{R}\}$. 证明: \mathcal{C} 生成的拓扑是 \mathbb{R} 上的标准拓扑.

记 $\mathcal{T}=\{U\subseteq\mathbb{R}|\forall x\in U,\exists\delta>0,(x-\delta,x+\delta)\in U\}$ 是 \mathbb{R} 的标准拓扑, $\mathcal{T}_1=\left\{\bigcup_{U\in\mathcal{U}}U\middle|U\subseteq\mathcal{C}\right\}$. 只需要证明 $\mathcal{T}\subseteq\mathcal{T}_1$ 且 $\mathcal{T}_1\subseteq\mathcal{T}$. 对于前者, $\forall V\in\mathcal{T},\exists\delta_x>0,(x-\delta_x,x+\delta_x)\in V$. 于是 $V=\bigcup_{x\in V}\{x\}\subseteq\bigcup_{x\in V}(x-\delta_x,x+\delta_x)\subseteq V$, 所以 $V=\bigcup_{x\in V}(x-\delta_x,x+\delta_x)\in\mathcal{T}_1$. 对于后者, $\forall W=\bigcup_{\alpha\in J}U_{\alpha}\ (\forall\alpha\in J,U_{\alpha}\in\mathcal{C}), \forall w\in W,\exists\alpha_0,w\in U_{\alpha_0}=(x,y),$ 取 $\delta=\frac{1}{2}\min\{w-x,y-w\}$ 满足条件. 于是 $W\in\mathcal{T}$. 综上, 命题成立.

Problem 2 X 是非空集合, 子集族 $\mathcal{T}=\{U|X\setminus U \text{ is infinite set or } \phi \text{ or } X\}$. 试问 \mathcal{T} 是 X 上的拓扑吗?

不是, 反例如下: $X=\mathbb{N}, E=\mathbb{N}\setminus\{0\}, F=\mathbb{N}\setminus\{1\}$. 注意到 $E,F\in\mathcal{T}$ 但 $\mathbb{N}\setminus(E\cap F)=\{0,1\}, E\cap F\notin\mathcal{T}$.

Problem 3 列举两元集合上的所有拓扑.

设 $X = \{a, b\}, a \neq b$. 则 $\{\phi, X\}, \{\phi, \{a\}, X\}, \{\phi, \{b\}, X\}, \mathscr{P}(X)$ 都是它的拓扑.

Problem 4 证明 \mathbb{R}_f 的拓扑与 \mathbb{R}_K 的拓扑不可比较.

对于 $0 \in (-1,1) \backslash K \in \mathbb{R}_K$,如果 $\exists [a,b) \in \mathscr{B}'$,使得 $0 \in [a,b) \subseteq (-1,1) \backslash K$,则 $b > 0, a \geq 0. \exists N \in \mathbb{N}_+, \frac{1}{N} \in (0,b) \subseteq [a,b) \subseteq (-1,1) \backslash K$. 矛盾! 所以 $(-1,1) \backslash K \notin \mathbb{R}_f$. 对于 $x \in [x,y) \in \mathbb{R}_f$,如果 $\exists M = (a,b)$ 或 $(a,b) \backslash K$,使得 $x \in M \subseteq [x,y)$,则 a < x,于是 $\exists a < z < x, z \in M \subseteq [x,y)$,矛盾! 所以 $[x,y) \notin \mathbb{R}_f$. 所以二者不可比较.