a $\Delta(H) = N(d, H)$ Christien Druppi
Math 582, Prof. A.O. Petters
Due April 2, 2014. Hw#6

From the BSM formula, $C(S,t) = N(d_1)S - N(d_2)Ke^{-r(T-t)}$ where $d_1 = \frac{1}{\sigma \sqrt{T-t}} \left[ln(S/k) + (r + \frac{\sigma^2}{2})(T-t) \right]$ and $d_2 = d_1 - \sigma \sqrt{T-t}$

 \mathbb{R}_{j} det, $\Delta := \frac{\partial C}{\partial S}$.

Taking partial derivatives,

35 = 3 [N(d) S] - 35 [N(d) Re-(T-t)]

= N(d,) 3= (s] = N(d,)

: A=N(d,)

(see reverse for (b) and (c))

Rocall
$$C(S,t) = N(d_1)S - N(d_2)ke^{-r/t-t}$$

with $d_1 = \frac{1}{\sqrt{T-t}} \left[\ln(\frac{S}{h}) + (r + \frac{c^2}{2})(t-t) \right]$

Then
$$d_r = \frac{1}{-\sqrt{\tau}} \left[\ln(5/ic) + (r + \frac{\pi^2}{2}) \tau \right]$$

A firm sells 1,000 European Calls (in round 64) on a non dividend-paying stock with
$$S=$60$$
, $N=$60$, $O=0.15$, $N=140/365$ and $N=140/365$

Ta
$$C = N(d_1)S - N(d_2) Ke^{-rE}$$

where $cl_1 = \frac{1}{\sigma \sqrt{r}} \left[\ln \left(\frac{s}{u} \right) + \left(\frac{r}{\tau} + \frac{\sigma^2}{2} \right) \mathcal{E} \right]$
and $cl_2 = cl_1 - \sigma \sqrt{r}$
 $cl_3 = \frac{1}{0.15 \sqrt{140}/365} \left[1 + \left(\frac{0.03}{25} + \frac{0.0225}{25} \right) \frac{140}{365} \right]$
 $cl_4 = \frac{1}{0.1703}$
 $cl_5 = \frac{1}{365}$
 $cl_5 = \frac{1}{365}$

= 0.0774 ... N(d,) = 0.5676

and N(dr) = 0.5309

Hence $C = 0.5676.60 - 0.5309.60.e^{-0.03.\frac{140}{365}}$ $= \left[C = $2.57\right]$

See reverse
for (b) and

(b) Fill in days 1, 139 and 140, Was the call exocised?

t	54)	△ (+)	Funds borrowed to add shaves (or veceived from selling shores) at t	Amount owed at t (with interest)
0	60.00	0.568	3,405,710.33	3,405,710,32
1	60.12	0.576	49478,76	3,455,469
:	:	i		:
138	56.12	0.00	0	257,300
139	55.86	0.00	0	257,321,10
140	55.64	0.00	0	257,342,30

since K7 S at expiration, so the firm would not have been exercised would not have been assigned on their short calls

[C] [Yes] the firm made a profit of: \$310,000 - \$257,342,30 = [\$52.657.70] on day 140, or \$52,055.25 on day 0.