测度与积分

李岳恒

November 10, 2021

Contents

	Lebesgue Measure																				
	0.1.2	环、半	环和σ	-代	数	•		٠	•			٠	•	•		•	•		٠	٠	4
		集合运																			
0.1	1 Measuring Sets											Ç									
0.0	黎曼积	分的局際	艮性																		

0.0 黎曼积分的局限性

Theorem 1. Let $f_n, f \in C([0,1])$. If $f_n \Rightarrow f$ on [0,1], then

$$\lim_{n \to \infty} \int_0^1 f_n = \int_0^1 f$$

Uniform convergence is a sufficient condition for interchanging \lim and \int , but not necessary.

Example 1. $f_n(x) := x^n, f := \chi_{\{1\}}.$

Sometimes, the point-wise limit of a sequence of Riemannian integrable functions is not Riemannian integrable. e.g. the Dirichlet function is the point-wise limit of a sequence of Riemannian integrable functions.

0.1 Measuring Sets

0.1.1 集合运算

Definition 1. Symmetric difference $A\Delta B := (B \setminus A) \cup (A \setminus B)$.

Proposition 1. Properties of symmetric difference.

- $(A\Delta B)\Delta C = A\Delta (B\Delta C)$
- $(A\Delta B) \cap C = (A \cap C)\Delta(B \cap C)$

4 CONTENTS

Definition 2. Upper and Lower Limits

$$\limsup_{k\to\infty}A_k:=\bigcap_{k\in\mathbb{N}}\bigcup_{j\geq k}A_j$$

$$\liminf_{k \to \infty} A_k := \bigcup_{k \in \mathbb{N}} \bigcap_{j \ge k} A_j$$

Proposition 2. Properties of upper and lower limits.

- The upper and lower limits exist.
- $\limsup A_k = \{\omega : \omega \text{ lies in infinite many } A_k.\}$
- $\liminf A_k = \{\omega : \omega \text{ does not lie in at most finite } A_k\}$

0.1.2 环、半环和 σ -代数

我们用集合的交和对称差两种运算在集合族上构造一个环.

Definition 3. 称一个集族统为环,若其对集合交和对称差两种运算封闭.

Remark 1. 根据命题1, 究确实是一个环.

Remark 2. 由于 $A \cup B = (A\Delta B)\Delta(A \cap B)$ 及 $A \setminus B = (A\Delta B) \cap A$,环对于集合的并和减法封闭.

Definition 4. 称一个集族 $\mathfrak S$ 为半环,若其包含空集,对交封闭,且仍取 $A_1\subset A,A_1,A\in \mathfrak S$.存在着分解

$$A = \bigcup_{k=1}^{n} A_k \quad A_k \in \mathfrak{S}$$

半环的有限分解性质可以加强:

Lemma 1. 设 \mathfrak{S} 为半环,若 $A_1,\ldots,A_n,A\in\mathfrak{S}$,且诸 A_k 为A两两不交的子集,则可以向 $\{A_k\}$ 中添加 \mathfrak{S} 中的集合 A_{n+1},\ldots,A_s 使得

$$A = \bigcup_{k=1}^{s} A_k$$

Proof. 使用归纳法:n = 1时命题显然成立.下考虑n + 1时情形.

Definition 5. σ -algebra. Given a set X, $A \subset P(X)$ is a σ -algebra if

- $\emptyset \in \mathcal{A}$
- $A \in \mathcal{A} \to A^c \in \mathcal{A}$
- A is closed under countable union.

Chapter 1

Lebesgue Measure

1.1 Measure

Definition 6. A measure is a set function $\mu : \mathcal{P}(X) \to [0, \infty]$ satisfying

 $\bullet \ \mu(\phi) = 0$

•