Assignment -2

Assignment Date	27 September 2022	
Team ID	PNT2022TMID30074	
Project Name	DemandEst- Al Powered Food Demand Forecaster	
Student Name	JANANI.S	
Student Roll Number	610819205016	
Maximum Marks	2 Marks	

Question-1. Download dataset

Solution:

owNumb	Customer	Surname	CreditSco	Geograph	Gender	Age	Tenure	Balance	NumOfPrcH	asCrCard Is	ActiveM	Estimated Exi	ted
1	15634602	Hargrave	619	France	Female	4:	2 2	0	1	1	1	101348.9	1
2	15647311	Hill	608	Spain	Female	4:	1 1	83807.86	1	0	1	112542.6	0
3	15619304	Onio	502	France	Female	4:	2 8	159660.8	3	1	0	113931.6	1
4	15701354	Boni	699	France	Female	35	9 1	0	2	0	0	93826.63	0
5	15737888	Mitchell	850	Spain	Female	4:	3 2	125510.8	1	1	1	79084.1	0
6	15574012	Chu	645	Spain	Male	4	1 8	113755.8	2	1	0	149756.7	1
7	15592531	Bartlett	822	France	Male	- 50) 7	0	2	1	1	10062.8	0
8	15656148	Obinna	376	Germany	Female	25	9 4	115046.7	4	1	0	119346.9	1
9	15792365	He	501	France	Male	4	1 4	142051.1	2	0	1	74940.5	0
10	15592389	H?	684	France	Male	2	7 2	134603.9	1	1	1	71725.73	0
11	15767821	Bearce	528	France	Male	3:	1 6	102016.7	2	0	0	80181.12	0
12	15737173	Andrews	497	Spain	Male	24	1 3	0	2	1	0	76390.01	0
13	15632264	Kay	476	France	Female	34	1 10	0	2	1	0	26260.98	0
14	15691483	Chin	549	France	Female	25	5 5	0	2	0	0	190857.8	0
15	15600882	Scott	635	Spain	Female	35	5 7	0	2	1	1	65951.65	0
16	15643966	Goforth	616	Germany	Male	4	5 3	143129.4	2	0	1	64327.26	0
17	15737452	Romeo	653	Germany	Male	58	3 1	132602.9	1	1	0	5097.67	1
18	15788218	Henderso	549	Spain	Female	24	1 9	0	2	1	1	14406.41	0
19	15661507	Muldrow	587	Spain	Male	45	5 6	0	1	0	0	158684.8	0
20	15568982	Нао	726	France	Female	24	1 6	0	2	1	1	54724.03	0
21	15577657	McDonald	732	France	Male	4:	1 8	0	2	1	1	170886.2	0
22	15597945	Dellucci	636	Spain	Female	3:	2 8	0	2	1	0	138555.5	0
23	15699309	Gerasimo	510	Spain	Female	3	3 4	0	1	1	0	118913.5	1
24	15725737	Mosman	669	France	Male	4	5 3	0	2	0	1	8487.75	0
25	15625047	Yen	846	France	Female	38	3 5	0	1	1	1	187616.2	0
26	15738191	Maclean	577	France	Male	2.	5 3	0	2	0	1	124508.3	0
27	15736816	Young	756	Germany	Male	30	5 2	136815.6	1	1	1	170042	0
28	15700772	Nebechi	571	France	Male	4	1 9	0	2	0	0	38433.35	0
29	15728693	McWillian	574	Germany	Female	4	3 3	141349.4	1	1	1	100187.4	0
30	15656300	Lucciano	411	France	Male	25	9 0	59697.17	2	1	1	53483.21	0
31	15589475	Azikiwe	591	Spain	Female	35	9 3	0	3	1	0	140469.4	1
32	15706552	Odinakac	533	France	Male	30	5 7	85311.7	1	0	1	156731.9	0
33	15750181	Sanderso	r 553	Germany	Male	4:	1 9	110112.5	2	0	0	81898.81	0
34	15659428	Maggard	520	Spain	Female	4:	2 6	0	2	1	1	34410.55	0
35	15732963	Clements	722	Spain	Female	2:	9 9	0	2	1	1	142033.1	0
36	15794171	Lombardo	475	France	Female	4.	5 0	134264	1	1	0	27822.99	1
37	15788448	Watson	490	Spain	Male	3:	1 3	145260.2	1	0	1	114066.8	0
38	15729599	Lorenzo	804	Spain	Male	3:	3 7	76548.6	1	0	1	98453.45	0
39	15717426	Armstron	§ 850	France	Male	30	5 7	0	1	1	1	40812.9	0
40	15585768	Cameron	582	Germany	Male	4:	1 6	70349.48	2	0	1	178074	0

Question-2. Load the dataset

Solution:

import numpy as np import
pandas as pd import seaborn as
sns import
matplotlib.pyplot as plt import
sklearn
data = pd.read_csv(r'Churn_Modelling.csv') df.head

	a method									CreditScore	deography	denuer.	3
0	1 15634602 Ha			CONTRACTOR CONTRACTOR CONTRACTOR		619							
1		2 1564		Hill		608							
2		3 1561		Onio		502							
3		4 1570					Franc						
4		5 1573	7888	Mitchell		850	Spai	n i	Female	43			
7.70				•••		• • • •			0.000				
9995	999	96 1560	6229	Obijiaku		771	Franc	e	Male	39			
9996	999			Johnstone			Franc						
9997	999	98 1558	4532	Liu		709	Franc	e I	Female	36			
9998	999	99 1568	2355	Sabbatini		772	German	y	Male	42			
9999	1000	90 1562	8319	Walker		792	Franc	e l	Female	28			
	Tenure	Balance	Num(OfProducts	HasCrCar	d]	IsActiveM	embe	er \				
0	2	0.00		1		1			1				
1	1	83807.86		1		0			1				
2	8	159660.80		3		1			0				
3	1	0.00		2		0			0				
4	2	125510.82		1		1			1				
	* * *				0.505	*3		*					
9995	5	0.00		2		1			0				
9996		57369.61		1		1			1				
9997	7			1		0			1				
9998	3	75075.31		2		1			0				
9999	4	130142.79		1		1			0				
	Estimate	edSalary	Exited	d									
0	16	91348.88	3	L									
1	11	12542.58	(3									
2	11	13931.57	1	L									
3	9	93826.63	(9									
4	-	79084.10	(9									
		2.4.4											
9995	9	96270.64	6	3									
9996	16	91699.77	(3									
9997	112	12085.58	1	L									
9998	9	2888.52	2	L									
9999		38190.78	(9									

Question-3. Perform Below Visualizations.

3.1 Univariate Analysis

Solution:

sns.displot(data['CreditScore'])

sns.histplot(data['CreditScore'])

sns.boxplot(x = data['CreditScore'])

sns.distplot(data['Age'])

sns.histplot(data['Age'])

sns.boxplot(data['Age'])

3.2 Bivariate Analysis

Solution:

plt.figure(figsize=(7,7))
sns.lineplot(data = data, x = 'Tenure', y = 'CreditScore')

plt.figure(figsize=(10,10))

sns.barplot(data = data, x = 'CreditScore', y = 'EstimatedSalary')

plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'Tenure')

plt.figure(figsize=(10,10))

sns.lineplot(data['Age'], data['EstimatedSalary'])

plt.figure(figsize=(17,17))
sns.barplot(data['Age'], data['EstimatedSalary'])

sns.scatterplot(data = data, x = 'CreditScore', y = 'Age')

3.3 Multivariate Analysis

Solution: sns.scatterplot(data = data, x = 'CreditScore', y = 'Balance', hue = 'Gender')

sns.scatterplot(data['Tenure'], data['CreditScore'], hue = data['Gender'])

sns.scatterplot(data['Age'], data['Balance'], hue = data['Gender'])

sns.pairplot(data)

Question-4. Perform descriptive statistics on the dataset.

Solution: data.mean(numeric_only

= True)

000	RowNumber	5.000500e+03	
	CustomerId	1.569094e+07	
	CreditScore	6.505288e+02	
	Age	3.892180e+01	
	Tenure	5.012800e+00	
	Balance	7.648589e+04	
	NumOfProducts	1.530200e+00	
	HasCrCard	7.055000e-01	
	IsActiveMember	5.151000e-01	
	EstimatedSalary	1.000902e+05	
	Exited	2.037000e-01	
	dtype: float64		

data.median(numeric_only = True)

```
        RowNumber
        5.000500e+03

        CustomerId
        1.569074e+07

        CreditScore
        6.520000e+02

        Age
        3.700000e+01

        Tenure
        5.00000e+00

        Balance
        9.719854e+04

        NumOfProducts
        1.000000e+00

        HasCrCard
        1.000000e+00

        IsActiveMember
        1.000000e+0

        EstimatedSalary
        1.001939e+05

        Exited
        0.000000e+00
```

data['CreditScore'].mode()

```
0 850
dtype: int64
```

data['EstimatedSalary'].mode()

```
0 24924.92
dtype: float64
```

data['HasCrCard'].unique()

```
array([1, 0])
```

data['Tenure'].unique()

```
array([ 2, 1, 8, 7, 4, 6, 3, 10, 5, 9, 0])
```

data.std(numeric_only=True)

RowNumber	2886.895680
CustomerId	71936.186123
CreditScore	96.653299
Age	10.487806
Tenure	2.892174
Balance	62397.405202
NumOfProducts	0.581654
HasCrCard	0.455840
IsActiveMember	0.499797
EstimatedSalary	57510.492818
Exited	0.402769

dtype: float64

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0,515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1,000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

data['Tenure'].value_counts()

2 1048

1 1035

7 1028

8 1025

5 1012

3 1009

4 989

9 984

6 967

10 490

0 413

Name: Tenure, dtype: int64

Question-5. Handle the Missing values.

Solution: data.isnull().any()

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtype: bool	

data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

Question-6. Find the outliers and replace the outliers

Solution: sns.boxplot(data['CreditScore']) #Outlier detection

- box plot

fig, ax = plt.subplots(figsize = (5,3)) #Outlier detection - Scatter plot ax.scatter(data['Balance'], data['Exited'])

x-axis label
ax.set_xlabel('Balance')

y-axis label ax.set_ylabel('Exited')
plt.show()

sns.boxplot(x=data['Balance'])

from scipy import stats #Outlier detection - zscore zscore
= np.abs(stats.zscore(data['CreditScore'])) print(zscore)
print('No. of Outliers : ', np.shape(np.where(zscore>3)))

```
0.332952
1
        0.447540
        1.551761
2
3
        0.500422
4
        2.073415
9995
        1.250458
9996
        1.405920
        0.604594
9997
9998
        1.260876
9999
        1.469219
Name: CreditScore, Length: 10000, dtype: float64
No. of Outliers : (1, 0)
```

q = data.quantile([0.75,0.25]) q

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0.75	7500.25	15753233.75	2238.25	718.0	1.0	1.0	44.0	7.0	127644.24	2.0	1.0	1.0	149388.2475	0.0
0.25	2500.75	15628528.25	773.75	584.0	0.0	0.0	32.0	3.0	0.00	1.0	0.0	0.0	51002.1100	0.0

iqr = q.iloc[0] - q.iloc[1] iqr

RowNumber	4999.5000
CustomerId	124705.5000
Surname	1464.5000
CreditScore	134.0000
Geography	1.0000
Gender	1.0000
Age	12.0000
Tenure	4.0000
Balance	127644.2400
NumOfProducts	1.0000
HasCrCard	1.0000
IsActiveMember	1.0000
EstimatedSalary	98386.1375
Exited	0.0000

dtype: float64

u = q.iloc[0] + (1.5*iqr) u

RowNumber 1.499950e+04 CustomerId 1.594029e+07 Surname 4.435000e+03 CreditScore 9.190000e+02 2.500000e+00 Geography 2.500000e+00 Gender Age 6.200000e+01 Tenure 1.300000e+01 Balance NumOfProducts 3.191106e+05 3.500000e+00 HasCrCard 2.500000e+00 IsActiveMember 2.500000e+00 2.969675e+05 EstimatedSalary Exited 0.000000e+00

dtype: float64

I = q.iloc[1] - (1.5*iqr)

ı

RowNumber	-4.998500e+03
CustomerId	1.544147e+07
Surname	-1.423000e+03
CreditScore	3.830000e+02
Geography	-1.500000e+00
Gender	-1.500000e+00
Age	1.400000e+01
Tenure	-3.000000e+00
Balance	-1.914664e+05
NumOfProducts	-5.000000e-01
HasCrCard	-1.500000e+00
IsActiveMember	-1.500000e+00
EstimatedSalary	-9.657710e+04
Exited	0.000000e+00
dtype: float64	

```
Q1 = data['EstimatedSalary'].quantile(0.25) #Outlier detection - IQR Q3 = data['EstimatedSalary'].quantile(0.75) iqr = Q3 - Q1 print(iqr) upper=Q3 + 1.5 * iqr lower=Q1 - 1.5 * iqr count = np.size(np.where(data['EstimatedSalary'] > upper)) count = count + np.size(np.where(data['EstimatedSalary'] < lower)) print('No. of outliers : ', count)

98386.1375
No. of outliers : 0
```

data['CreditScore'] = np.where(np.logical_or(data['CreditScore']>900, data['CreditScore']<383), 65 0, data['CreditScore']) sns.boxplot(data['CreditScore'])


```
upper = data.Age.mean() + (3 * data.Age.std()) #Outlier detection - 3 sigma lower
= data.Age.mean() - (3 * data.Age.std()) columns = data[ (
data['Age'] > upper ) | ( data['Age'] < lower ) ]
print('Upper range : ', upper) print('Lower range : ', lower) print('No.
of Outliers : ', len(columns))</pre>
```

Upper range : 70.38521935511383 Lower range : 7.458380644886169 No. of Outliers : 133

columns = ['EstimatedSalary', 'Age', 'Balance', 'NumOfProducts', 'Tenure', 'CreditScore'] #After outlier removal

```
for i in columns:
Q1 = data[i].quantile(0.25)
Q3 = data[i].quantile(0.75)
iqr = Q3 - Q1 upper=Q3 + 1.5
* iqr lower=Q1 - 1.5 *
iqr
```

```
count = np.size(np.where(data[i] > upper)) count
= count + np.size(np.where(data[i] < lower))
print('No. of outliers in ', i, ':', count)

No. of outliers in EstimatedSalary : 0
No. of outliers in Age : 0
No. of outliers in Balance : 0
No. of outliers in NumOfProducts : 0
No. of outliers in Tenure : 0
No. of outliers in CreditScore : 0</pre>
```

Question-7. Check for Categorical columns and perform encoding

Solution:

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
le = LabelEncoder() oneh = OneHotEncoder() data['Surname'] =
le.fit_transform(data['Surname']) data['Gender'] = le.fit_transform(data['Gender'])
data['Geography'] = le.fit_transform(data['Geography']) data.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10	0

Question-8. Split the data into dependent and independent variables split the data in X and Y

Solution:

```
x # independent values (
inputs) x = data.iloc[:, 0:13]
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10
		1877	m	889	2000	875	77.5%	1810	1777	1255	5550	188	27
9995	9996	15606229	1999	771	0	1	39	5	0.00	2	1	0	96270.64
9996	9997	15569892	1336	516	0	1	35	10	57369.61	1	1	1	101699.77
9997	9998	15584532	1570	709	0	0	36	7	0.00	1	0	1	42085.58
9998	9999	15682355	2345	772	1	1	42	3	75075.31	2	1	0	92888.52
9999	10000	15628319	2751	792	0	0	28	4	130142.79	1	1	0	38190.78

10000 rows x 13 columns

dependent values

9997 1 9998 1 9999 0

Name: Exited, Length: 10000, dtype: int64

Question-9. Scale the independent variables

Solution:

from sklearn.preprocessing import StandardScaler, MinMaxScaler sc = StandardScaler() x_scaled = sc.fit_transform(x) x_scaled

```
array([[-1.73187761, -0.78321342, -0.46418322, ..., 0.64609167, 0.97024255, 0.02188649],
[-1.7315312, -0.60653412, -0.3909112, ..., -1.54776799, 0.97024255, 0.21653375],
[-1.73118479, -0.99588476, 0.62898807, ..., 0.64609167, -1.03067011, 0.2406869],
...,
[1.73118479, -1.47928179, 0.07353887, ..., -1.54776799, 0.97024255, -1.00864308],
[1.7315312, -0.11935577, 0.98943914, ..., 0.64609167, -1.03067011, -0.12523071],
[1.73187761, -0.87055909, 1.4692527, ..., 0.64609167, -1.03067011, -1.07636976]])
```

Question-10. Split x and y into Training and Testing

Solution:

from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0)

x_train

```
array([[ 0.92889885, -0.79703192, -1.47580983, ..., 0.64609167, 0.97024255, -0.77021814],
[ 1.39655257, 0.71431365, -1.58808148, ..., 0.64609167, -1.03067011, -1.39576675],
[ -0.4532777, 0.96344969, -0.24082173, ..., -1.54776799, 0.97024255, -1.49965629],
...,
[ -0.60119484, -1.62052514, -0.36136603, ..., 0.64609167, -1.03067011, 1.41441489],
[ 1.67853045, -0.37403866, 0.72589622, ..., 0.64609167, 0.97024255, 0.84614739],
[ -0.78548505, -1.36411841, 1.3829808, ..., 0.64609167, -1.03067011, 0.32630495]])
```

x_train.shape

(7000, 13)

```
x_test
```

```
array([[ 1.52229946, -1.04525042, 1.39834429, ..., 0.64609167, 0.97024255, 1.61304597],

[-1.42080128, -0.50381294, -0.78208925, ..., 0.64609167, -1.03067011, 0.49753166],

[-0.90118604, -0.7932923, 0.41271742, ..., 0.64609167, 0.97024255, -0.4235611 ],

...,

[ 1.49216178, -0.14646448, 0.6868966, ..., 0.64609167, 0.97024255, 1.17045451],

[ 1.1758893, -1.29228727, -1.38481071, ..., 0.64609167, 0.97024255, -0.50846777],

[ 0.08088677, -1.38538833, 1.11707427, ..., 0.64609167, 0.97024255, -1.15342685]])
```

x_test.shape

(3000, 13)

y_train

```
7681
      1
9031
     0
      0
3691
202
      1
5625
      0
      ٠.
9225
     0
4859
     0
3264
      0
9845
       0
2732
       1
Name: Exited, Length: 7000, dtype: int64
```

y_test

```
9394
        0
898
       1
2398
      0
5906
       0
2343
       0
       ....
4004
       0
7375
       0
9307
       0
8394
       0
5233
       1
Name: Exited, Length: 3000, dtype: int64
```