

CHAPTER

알고리즘 효율성 분석

학습 내용

- 2.1 효율성 분석의 기초
- 2.2 점근적 성능 분석 방법
- 2.3 복잡도 분석 예: 반복 알고리즘
- 2.4 복잡도 분석 예: 순환 알고리즘

좋은 알고리즘은?

- 시간 효율성(Time efficiency)
- 공간 효율성(Space efficiency)

CPU 시간이나 메모리와 같은 컴퓨터의 자원들을 적게 사용하는 것이 좋은 알고리즘이지요.

그 중에서도 보통 실행시간이 가장 중요하게 생각되어 알고리즘의 효율성 평가의 기준이 되지요.

어떤 알고리즘이 좋은 알고리즘인가요?

물론 임베디드 시스템과 같이 제한적인 하드웨어에서 실행해야 하는 경우 메모리 사용량도 매우 중요합니다.

2.1 효율성 분석의 기초

• 실제 실행시간 측정 방법 (파이썬)

```
# time 모듈 불러오기

# time 모듈 불러오기

# 현재 시각을 start에 저장(시작 시각)

# 실행시간을 측정하려는 알고리즘 함수 호출

# 현재 시각을 end에 저장(종료 시각)

# 한재 시각을 end에 저장(종료 시각)

# 실제 실행시간(종료-시작)을 출력
```

- 문제점은?
 - 반드시 구현?
 - 같은 조건의 실행시간?
 - 소프트웨어 환경, 사용한 언어?
 - 모든 데이터에 대해?
- 절대적인 시간 측정 → 이론적인 복잡도 분석

알고리즘 복잡도 분석에서 중요한 점

- 알고리즘에서 입력의 크기는 무엇인가?
- 복잡도에 영향을 미치는 가장 핵심적인 <u>기본 연산</u>은 무 엇인가?
- 입력의 크기가 증가함에 따라 처리시간은 <u>어떤 형태로</u> <u>증가</u>하는가?
- <u>입력의 특성에 따라 알고리즘 효율성</u>에는 어떤 차이가 있는가?

입력의 크기

- 알고리즘의 효율성은 입력 크기의 함수 형태로 표현
- 무엇이 입력의 크기를 나타내는지를 먼저 명확히 결정
- 예
 - 리스트에서 어떤 값을 찾는 문제
 - x의 n 거듭제곱
 - 다항식의 연산
 - Row x Col 의 행렬 연산
 - 그래프 연산 : 인접 행렬 표현 / 인접 리스트 표현

실행시간 측정의 단위(기본 연산)

3행: +와 대입 연산 한번씩

미이

2행에 의해 n번 반복(대입n번, 덧셈n번)

- 기본 연산(basic operation)
 - 알고리즘에서 가장 중요한 연산
 - 이 연산이 실행되는 횟수 만을 계산
 - 예) 다중 루프의 경우 가장 안쪽 루프에 있는 연산

		내업		
• nol 74	드제고 ^{알고리즘 A}	알고리즘 B	알고리즘 C	
• n의 거듭제곱 (n*n) (n+n+···+n) (1+···+1+1+···+1+···+1+···+1				
	알고리즘 A	알고리즘 B	알고리즘 C	
유사코드	sum ← n * n	1. sum ← 0	1. sum ← 0	
		 for i←1 to n do sum ← sum + n ☐ 댓셈과 대입 	2. for i←1 to n do	
			3. for j←1 to n do	
			4. sum ← sum + 1	
	대입 연산: 1	대입 연산: $n+2$	대입 연산: $n^2 + n + 2$	
전체 연산 횟수	곱셈 연산: 1	덧셈 연산: <i>n</i>	덧셈 연산: n^2	
	전체 횟수: 2	전체 횟수: $2n+1$	전체 횟수: $2n^2 + n + 2$	

복잡도 함수와 증가 속도

• 복잡도 함수

$$T_A(n) = 2$$
, $T_B(n) = 2n$, $T_C(n) = 2n^2$

• n이 작은 경우: 예 n=1

$$T_A(1) = 2$$
, $T_B(1) = 2$, $T_C(1) = 2$

• n이 충분히 큰 경우에만 관심 있음

최선, 최악, 평균적인 효율성

• 입력의 종류 또는 구성에 따라 다른 특성의 실행시간

- 최선의 경우(best case): 실행시간이 가장 적은 경우를 말하는데, 알고리즘 분석에서는 큰 의미가 없다.
- 평균적인 경우(average case): 알고리즘의 모든 입력을 고려하고 각 입력이 발생할 확률을 고려한 평균적인 실행시간을 의미하는데 정확히 계산하기가 어렵다.
- 최악의 경우(worst case): 입력의 구성이 알고리즘의 실행시간을 가장 많이 요구하는 경우를 말하는데, 가장 중요하게 사용된다.

예) 순차 탐색


```
# 순차 탐색. A는 리스트, key는 탐색키
01
    def sequential_search(A, key):
                                  # i: 0, 1, ... len(A)-1
02
       for i in range(len(A)) :
03
                                     # 탐색 성공하면 (비교 연산, 기본 연산임)
         if A[i] == key:
04
            return i
                                      # 인덱스 반화
                                      # 탐색에 실패하면 -1 반화
05
       return -1
                               1
    최선
                  리스트 A:
                          32
                               14
                                                             26
                                                                  29
                                        17
                                            23
                                                 9
                                                     11
                  Key=32
                      key 발견 (0 반환)
                       비교 횟수 = 1
• 최악
                  리스트 A:
                          32
                               14
                                   5
                                       17
                                            23
                                                9
                                                    11
                                                         4
                                                             26
                                                                 29
                  Key=29
                                                             key 발견 (9 반환)
                                                             비교 횟수 = 10
```

• 평균: 가정이 필요 리스트내의 모든 숫자가 균일하게 탐색된다고 가정

$$T_{avg}(n) = \frac{1+2+\dots+n}{n} = \frac{n(n+1)/2}{n} = \frac{n+1}{2}$$

자율주행 자동차, 항공 관제 업무에 사용되는 알고리즘은 아무리 불리한 입력이 입력되도 일정한 시간 안에 반드시 계산을 마쳐야 중대한 사고 X

2.2 점근적 성능 분석 방법

- 차수가 가장 큰 항이 절대적인 영향
 - 9: $T(n) = n^2 + n + 1$
 - n=1일때 : $T(n) = 1 + 1 + 1 = 3 (n^2)$ 하이 33.3%)
 - n=10일때 : $T(n) = 100 + 10 + 1 = 111 (n^2 항이 90\%)$
 - n=100일때 : $T(n) = 10000 + 100 + 1 = 10101 (n^2 항이 99\%)$
 - n=1,000일때 : T(n)=10000000+10000+1=10010011 (n^2 항이 99.9%)

점근적 표기(asymptotic notation)

- n 이 무한대로 커질 때의 복잡도를 간단히 표현 - 복잡도 함수를 최고차항만을 계수 없이 취해 단순화 함
- 빅오 : 복잡도 함수의 상한

$$3n^2 + 4n \in O(n^2)$$
, $2n - 3 \in O(n^2)$, $2n(n+1) \in O(n^2)$
 $3n^2 + 4n \notin O(n)$, $0.000001n^3 \notin O(n^2)$, $1000^n \notin O(n!)$

• 빅오메가 : 하한

$$2n^3 + 3n \in \Omega(n^2)$$
, $2n(n+1) \in \Omega(n^2)$, $100000n + 8 \notin \Omega(n^2)$

• 빅세타 : 상한인 동시에 하한

$$2n^3 + 3n \in \Theta(n^3)$$
, $2n^3 + 3n \notin \Theta(n^2)$, $2n^3 + 3n \notin \Theta(n^4)$

Ω(빅오메가): 최선의 경우, best case

⊖(빅세타): 평균적인 경우, average case

O(빅오): 최악의 경우, worst case

병렬화로 실행속도 👚

다단계 알고리즘의 복잡도

만약 $f_1(n) \in O(g_1(n))$ 이고 $f_2(n) \in O(g_2(n))$ 이면 다음이 성립한다.

$$f_1(n)+f_2(n) \in O(\max\{g_1(n), g_2(n)\})$$

이것은 Ω -표기와 Θ -표기에서도 동일하게 적용된다.

- 증명? 심화학습
- 예) 리스트의 중복 항목 검사

알고리즘 A : 리스트의 각 항목을 다른 모든 항목과 비교하여 같은 항목이 있으면 True 모두 다르면 False

- 알고리즘 A: 이중 루프 사용 O(n^2)
- 알고리즘 B: 2-단계 알고리즘→ 정렬 + 단일 루프

리스트의 중복 항목 탐색

중복된 항목 없음

```
32 14 5 17 23 9 11 14 26 29
중복된 항목 있음(14)
```

```
def unique_elements(A): # 리스트 A 입력
01
02
      n = len(A)
                          # 입력의 크기 = 리스트의 크기
                        # i : 0, 1, ... n-2
03
     for i in range(n-1) :
       for j in range(i+1,n): # j: i+1, i+2, ... n-1
04
                         # 기본 연산
          if A[i] == A[j] :
05
            return False # 같은 항목이 있으면 False 반환
96
      return True
                            # 같은 항목이 없으면 True 반환
07
```

- 입력의 크기?
- 기본 연산?
- 최선/최악/평균의 복잡도?

- 2단계 알고리즘
- 알고리즘 B: 2-단계 알고리즘→ 정렬 + 단일 루프

[그림 2.8] 2-단계 알고리즘: 리스트를 먼저 정렬하고, 인접 항목들만을 비교

- 복잡도 계산
 - 1단계: O(nlogn) 정렬(효율적인 정렬알고리즘 사용)
 - 2단계: O(n)
 - 전체: $O(\max\{n\log_2 n, n\}) = O(n\log_2 n)$

점근적 성능 클래스들

O(1): 상수형

O(logn): 로그형

O(n): 선형

 $O(n\log n)$: 선형로그형

O(n2): 2차형

O(n³): 3차형

 $O(2^n)$: 지수형

O(n!): 팩토리얼형

2.3 복잡도 분석 예: 반복 알고리즘

- (1) 입력의 크기를 나타내는 파라미터를 결정한다.
- (2) 기본 연산을 찾는다. 보통 반복 루프의 가장 안쪽에 있다.
- (3) 연산의 횟수가 입력 크기에 의해서만 결정되는지 살핀다. 만약 입력의 종류에 따라서도 다 를 수 있다면 최선, 최악, 평균의 경우에 대해 독립적으로 복잡도를 분석해야 한다.
- (4) 기본 연산의 전체 실행 횟수를 구하는 복잡도 함수 T(n)을 구한다.
- (5) 알려진 공식 등을 이용해 T(n)을 풀고, 증가 속도를 계산한다.

자연수의 제곱 계산


```
def compute_square_B(n) : 01
    def compute_square_A(n) : 01
01
                                                                     def compute_square_C(n) :
02
       return <u>n*n</u>
                                02
                                       sum = 0
                                                                02
                                                                        sum = 0
                                03
                                       for i in range(n) :
                                                                        for i in range(n) :
                                                                03
                                04
                                          sum = sum + n
                                                                04
                                                                          for j in range(n) :
                                05
                                        return sum
                                                                05
                                                                               sum = sum + 1
                                                                06
                                                                        return sum
       O(1)
                                                                                O(n^2)
                                          O(n)
```

리스트의 중복 항목 탐색

중복된 항목 없음


```
def unique_elements(A) :
                         # 리스트 A 입력
01
                           # 입력의 크기 = 리스트의 크기
02
      n = len(A)
                        # i : 0, 1, ... n-2
03
     for i in range(n-1) :
       for j in range(i+1,n): # j: i+1, i+2, ... n-1
04
          if A[i] == A[j] :
                         # 기본 연산
05
                          # 같은 항목이 있으면 False 반환
            return False
96
07
      return True
                             # 같은 항목이 없으면 True 반환
```

- 입력의 크기? 전체 리스트 항목수
- 기본 연산? 5행 A[i] == A[j]
- 최선/최악/평균의 복잡도?
 - 최선:A[0] == A[1] 같다면 한번만 처리되고 종료 O(1)
 - 최악: O(n^2)
 - 만약 2-단계 알고리즘(정렬 + 단일 루프) \rightarrow $O(n \log_2 n)$

• 최악의 경우?

$$C_{worst}(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1$$

$$= \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1] = \sum_{i=0}^{n-2} (n-1-i)$$

$$= \sum_{i=0}^{n-2} (n-1) - \sum_{i=0}^{n-2} i$$

$$= (n-1) \sum_{i=0}^{n-2} 1 - \frac{(n-2)(n-1)}{2}$$

$$= (n-1)^2 - \frac{(n-2)(n-1)}{2} = \frac{n(n-1)}{2} \in O(n^2)$$

$$\sum_{i=1}^{n} (k+i) = k \sum_{i=1}^{n} 1 + \sum_{i=1}^{n} i$$

자연수의 2진수 변환시 비트 수 (반복 구조)


```
01  def binary_digits(n) :
02    count = 1
03    while n > 1 :
04        count = count + 1
05        n = n // 2
06    return count
```

- 입력의 크기? n
- 기본 연산? n // 2
- 최선/최악/평균의 복잡도? → 동일
- 복잡도: O(log₂n) n = 2^k
 2^k → 2^{k-1} → 2^{k-2} → ··· → 2¹ → 2⁰
 총 3번 나누기 6(13/2) → 3(6/2) → 1(3/2)

2.4 복잡도 분석 예: 순환 알고리즘

- (1) 입력의 크기를 나타내는 파라미터를 결정한다.
- (2) 기본 연산을 찾는다.
- (3) 연산의 횟수가 입력 크기에 의해서만 결정되는지 살핀다.
- (4) 기본 연산의 실행 횟수를 구하기 위한 순환 관계식(recurrence relation) T(n)을 구한다. 이때, 초기 조건도 찾아야 한다.
- (5) 순환 관계식(점화식)을 풀거나 증가 속도(order of growth)를 계산한다.

시간 복잡도 분석: 순환 알고리즘

- 순환 알고리즘
 - 알고리즘이나 함수가 수행 도중에 자기 자신을 다시 호출하여 문제를 해결하는 기법
 - 정의자체가 순환적으로 되어 있는 경우에 적합

$$-$$
 팩토리얼 구하기 $n! = \begin{cases} 1 & n=1 \\ n*(n-1)! & n>1 \end{cases}$

$$- 피보나치 수열 \qquad fib(n) = \begin{cases} 0 & if \quad n=0 \\ 1 & if \quad n=1 \\ fib(n-2) + fib(n-1) & otherwise \end{cases}$$

- 이항 계수, 하노이의 탑, 이진 탐색, ...

팩토리얼 구하기

• 순환적인 함수 호출 순서

return 0

```
factorial(3) = 3 * factorial(2)
       = 3 * 2 * factorial(1)
       = 3 * 2 * 1
                    n=3
       = 3 * 2
       = 6
```

```
n! = \begin{cases} 1 & n=1 \\ n*(n-1)! & n>1 \end{cases}
```

```
def factorial(n) :
                                              ⑤ 6반환
                      if n == 1 : return 1
                      else : return n * factorial(n - 1) -
                          def factorial(n) : ←
                   n=2
                                                      ④ 2반환
                             if n == 1 : return 1
                             else : return n * factorial(n - 1) -
                                 def factorial(n) : ←
                           n=1
                                                          ③ 1반환
이 과정을 한번 더
                                     if n == 1 : return 1
반복함. n==0 일 때
                                     else : return n * factorial(n - 1)
```

팩토리얼: 순환과 반복

• n의 팩토리얼 구하기

순환 구조		반복 구조
n! = n*(n-1)!	\leftrightarrow	$n! = n*(n-1)*(n-2)*\cdots*1$

수행시간과 기억공간의 비효율

- 순환(recursion): *O*(*n*)
 - 순환적인 문제에서는 자연스러운 방법
 - 함수 호출의 오버헤드
- 반복(iteration): *O(n)*
 - for나 while문 이용. 수행속도가 빠름.
 - 순환적인 문제에서는 프로그램 작성이 어려울 수도 있음.
- 대부분의 순환은 반복으로 바꾸어 작성할 수 있음

순환이 더 빠른 예: 거듭제곱 계산

• 방법 1: 반복 구조

```
def power_iter(x, n): # 반복으로 xn을 구하는 함수
result = 1.0
for i in range(n): # 루브: n번 반복
result = result * x
return result
```

내부 반복문 : O(n)

순환적인 거듭제곱 함수

• 방법 2: 순환 구조

```
if n = 0
then return 1;
else if n이 짝수
then return power(x2, n/2);
else if n이 홀수
then return x*power(x2, (n-1)/2);
```

```
power(x, n) = power(x^2, n / 2)

= (x^2)^{n/2}

= x^{2(n/2)}

= x^n

power(x, n) = x \cdot power(x^2, (n-1) / 2)

= x \cdot (x^2)^{(n-1)/2}

= x \cdot x^{n-1}

= x^n
```

```
def power(x, n) :
    if n == 0 : return 1
    elif (n % 2) == 0 : # n이 짝수
        return power(x*x, n//2) # 정수의 나눗셈 (2.3절 참조)
    else :
        return x * power(x*x, (n-1)//2) # n이 홀수
```

복잡도 분석

- 순환적인 방법의 시간 복잡도
 - n이 2의 제곱이라면 문제의 크기가 절반씩 줄어든다.

$$2^n \to 2^{n-1} \to \cdots \times 2^2 \to 2^1 \to 2^0$$

- 시간 복잡도
 - 순환적인 함수: $O(log_2n)$
 - 반복적인 함수: **0**(**n**)

n을 2의 거듭제곱인 $2^k \rightarrow 2^{k-1} \rightarrow 2^{k-2} \rightarrow 2^0$ $n=2^k$ 양변에 log취하면 $log2^n=k$ 1번의 순환 호출이 일어날때마다 1번의 곱셈과 1번의 나눗셈이 일어나므로 전체 연산 개수는 $log2^n=k$ 에 비례

빅오 표기법의 종류

0(1): 상수형

O(logn): 로그형

O(n): 선형

 $O(n\log n)$: 선형로그형

 $O(n^2)$: 2차형

 $O(n^3)$: 3차형

 $O(2^n)$: 지수형

O(n!): 팩토리얼형

순환이 느린 예: 피보나치 수열

- 순환 호출을 사용하면 비효율적인 예
- 피보나치 수열: 0,1,1,2,3,5,8,13,21,...

$$fib(n) \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ fib(n-2) + fib(n-1) & otherwise \end{cases}$$

• 순환적인 구현

```
      def fib(n):
      # 순환으로 구현한 피보나치 수열

      if n == 0: return 0
      # 종료조건

      elif n == 1: return 1
      # 종료조건

      else:
      return fib(n - 1) + fib(n - 2)
      # 순환호출
```

순환적인 피보나치의 비효율성

- 같은 항이 중복해서 계산됨!
 - n이 커지면 더욱 심각

• 시간 복잡도: *O*(2ⁿ)

반복적인 피보나치 수열


```
def fib_iter(n) : # 반복으로 구현한 피보나치 수열
if (n < 2): return n

last = 0
current = 1
for i in range(2, n+1) : # 반복 루프
tmp = current
current += last
last = tmp
return current
```

• 시간 복잡도: **0**(**n**)

하노이 탑 문제

64개의 원판을 모두 C로 옮겨야 합니다. 이동 횟수는 최소로 해야 하고요.

소중한 것이니 반드시 한 번에 차나씩만 옮길 수 있어요.

작은 판 위에 큰판이 올라가면 절대 안되요.

B를 임시 막대로 사용하면 됩니다.

n=3인 경우의 해답

https://www.mathplayground.com/logic_tower_of_hanoi.html

일반적인 경우에는?

구현

- 어떻게 n-1개의 원판을 A에서 B로, 또 B에서 C로 이동하는가?
 - _ 순환을 이용

```
      def hanoi_tower(n, fr, tmp, to) :
      # Hanoi Tower 순환 함수

      if (n == 1) :
      # 종료 조건

      print("원판 1: %s --> %s" % (fr, to))
      # 가장 작은 원판을 옮김

      else :
      hanoi_tower(n - 1, fr, to, tmp)
      # n-1개를 to를 이용해 tmp로

      print("원판 %d: %s --> %s" % (n,fr,to))
      # 하나의 원판을 옮김

      hanoi_tower(n - 1, tmp, fr, to)
      # n-1개를 fr을 이용해 to로
```

```
hanoi_tower(4, 'A', 'B', 'C') # 4개의 원판이 있는 경우
```

하노이탑(n=3) 실행 결과

• 복잡도 함수의 순환 관계식

$$- T(n) = T(n-1) + 1 + T(n-1)$$

$$- T(1) = 1$$

- 연속 대치법에 의한 풀이

$$T(n) = 2T(n-1)+1$$

$$= 2[2T(n-2)+1]+1 = 2^{2}T(n-2)+2+1$$

$$= 2^{n}-1$$

- 복잡도: $O(2^n)$

자연수의 2진수 변환시 비트 수 (순환 구조)

• 복잡도 순환 관계식

$$T(n) = T([n/2]) + 1$$
 for $n > 1$

$$n = 2^k$$
$$O(\log_2 n)$$

$$T(2^{k}) = T(2^{k-1})+1$$

 $= [T(2^{k-2})+1]+1 = T(2^{k-2})+2$
 $= [T(2^{k-3})+1]+1 = T(2^{k-3})+3$
...
 $= T(2^{k-k})+k$
 $= T(2^{0})+k$
 $= T(1)+k$
 $= k$