Exercises in Physics Assignment # 11

Date Given: June 23, 2022 Date Due: June 30, 2022

P1. (2 points) For the force $\mathbf{F} = \mathbf{r}$, define the potential energy (if exists). Compute the work done by this force along the helical path $\mathbf{r}(t) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, where $x(t) = a\cos t$, $y(t) = a\sin t$, z(t) = bt, when the parameter t is changing from t = 0 (start point) to $t = 2\pi$ (end point).

Solution: Here we have $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, and therefore $F_x = x, F_y = y, F_z = z$. The conditions

$$\left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}\right) = 0, \quad \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}\right) = 0, \quad \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) = 0.$$

are satisfied, the force is conservative and there exists a potential function V such that $F_x = -\frac{\partial V}{\partial x}$, $F_y = -\frac{\partial V}{\partial y}$, $F_z = -\frac{\partial V}{\partial z}$. Since

$$dV = \frac{\partial V}{\partial x}dx + \frac{\partial V}{\partial y}dy + \frac{\partial V}{\partial z}dz = -F_x dx - F_y dy - F_z dz = -x dx - y dy - z dz$$

we have

$$V(x, y, z) = \int dV + \text{const} = -\int x dx - \int y dy - \int z dz + \text{const} = -\frac{1}{2}(x^2 + y^2 + z^2) + \text{const}$$

Therefore the work done along the given helical path is

$$\begin{split} V(P_{\text{start}}) - V(P_{\text{end}}) &= V(x(0), y(0), z(0)) - V(x(2\pi), y(2\pi), z(2\pi)) = \\ & \left(-\frac{1}{2}a^2 + \text{const} \right) - \left(-\frac{1}{2}(a^2 + 4\pi^2b^2) + \text{const} \right) = \boxed{2\pi^2b^2} \end{split}$$

Alternatively, we can define the work by computing line integral. Here, $\mathbf{F} = a \cos t \mathbf{i} + a \sin t \mathbf{j} + b t \mathbf{k}$. Since $\mathbf{r}(t) = a \cos t \mathbf{i} + a \sin t \mathbf{j} + b t \mathbf{k}$, we get $d\mathbf{r}/dt = -a \sin t \mathbf{i} + a \cos t \mathbf{j} + b \mathbf{k}$. So, the work done by the force \mathbf{F} along this helical path can be calculated as

$$\int_{P_{\text{start}}}^{P_{\text{end}}} \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{r} = \int_{0}^{2\pi} \boldsymbol{F}(\boldsymbol{r}(t)) \cdot \frac{\mathrm{d}\boldsymbol{r}(t)}{\mathrm{d}t} \, \mathrm{d}t = \int_{0}^{2\pi} \left(x(t) \frac{\mathrm{d}x(t)}{\mathrm{d}t} + y(t) \frac{\mathrm{d}y(t)}{\mathrm{d}t} + z(t) \frac{\mathrm{d}z(t)}{\mathrm{d}t} \right) \mathrm{d}t = \int_{0}^{2\pi} \left(-a^2 \sin t \cos t + a^2 \sin t \cos t + b^2 t \right) \mathrm{d}t = b^2 \int_{0}^{2\pi} t \, \mathrm{d}t = 2\pi^2 b^2.$$

P2. (2 points) For the force $F = \mathbf{k} \times \mathbf{r}$, define the potential energy (if exists). Compute the work done by this force along the helical path $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, where $x(t) = a\cos t$, $y(t) = a\sin t$, z(t) = bt, when the parameter t is changing from t = 0 (start point) to $t = 2\pi$ (end point).

Solution: Here we have $\mathbf{F} = \mathbf{k} \times \mathbf{r} = -y\mathbf{i} + x\mathbf{j}$, and therefore $F_x = -y, F_y = x, F_z = 0$. The conditions

$$\left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}\right) = 0, \quad \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}\right) = 0, \quad \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) = 0.$$

are not satisfied because $\frac{\partial F_y}{\partial x} = 1 \neq \frac{\partial F_x}{\partial y} = -1$. Therefore the force F is not conservative, and potential function does not exist.

Exercises in Physics 2 of 3

Since potential function does not exist, we can only define the work by computing line integral. Since $x(t) = a \cos t$, $y(t) = a \sin t$, we have $\mathbf{F} = -y(t)\mathbf{i} + x(t)\mathbf{j} = -a \sin t\mathbf{i} + a \cos t\mathbf{j}$. Next, since $\mathbf{r}(t) = a \cos t\mathbf{i} + a \sin t\mathbf{j} + bt\mathbf{k}$, we have $d\mathbf{r}/dt = -a \sin t\mathbf{i} + a \cos t\mathbf{j} + b\mathbf{k}$. The work done by the force \mathbf{F} along the given helical path is calculated as

$$\int_{P_{\text{start}}}^{P_{\text{end}}} \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{r} = \int_{0}^{2\pi} \boldsymbol{F}(\boldsymbol{r}(t)) \cdot \frac{\mathrm{d}\boldsymbol{r}(t)}{\mathrm{d}t} \, \mathrm{d}t = \int_{0}^{2\pi} \left(-y(t) \frac{\mathrm{d}x(t)}{\mathrm{d}t} + x(t) \frac{\mathrm{d}y(t)}{\mathrm{d}t} + 0 \frac{\mathrm{d}z(t)}{\mathrm{d}t} \right) \mathrm{d}t = \int_{0}^{2\pi} \left(a^2 \sin^2 t + a^2 \cos^2 t \right) \mathrm{d}t = a^2 \int_{0}^{2\pi} \mathrm{d}t = 2\pi a^2$$

P3. (2 points) The 10 kg collar slides on the smooth vertical rod and has a velocity $v_1 = 2 \text{ m/s}$ in position A where each spring is stretched 0.1 m. Calculate the velocity v_2 of the collar as it passes point B.

Figure 1: Illustration to Problem 3.

Solution: All the active forces in this problem are conservative (potential), and hence the total energy is conserved. Therefore we can write

$$T_A + V_A = T_B + V_B.$$

At point A we have $T_B = \frac{1}{2}mv_A^2$, where $m = 10\,\mathrm{kg}$ and $v_A = 2\,\mathrm{m/s}$. The potential energy has two sources, the gravity force and the elastic forces of the two springs, that is $V_A = V_{A,g} + V_{A,e1} + V_{A,e2}$. Let us set the reference frame (datum) at point A, with the vertical axis pointing from A to B. Then the potential energy due to gravity $V_{A,g} = 0$. The potential energy due to elasticity of the 1-st spring $V_{A,e1} = \frac{1}{2}k(l_A - l_0)^2$, where $k = 800\,\mathrm{N/m}$, $l_A = 0.4\,\mathrm{m}$ is the length of the spring at state A, and $l_0 = 0.4 - 0.1 = 0.3\,\mathrm{m}$. Similarly, due to symmetry of the springs, $V_{A,e2} = \frac{1}{2}k(l_A - l_0)^2$.

At point B we have $T_B = \frac{1}{2}mv_B^2$, where v_B is to be established. The potential energy $V_B = V_{B,g} + V_{B,e1} + V_{B,e2}$. The potential energy due to gravity $V_{B,g} = -mgh$, where $h = 0.3 \,\mathrm{m}$ and $g = 9.81 \,\mathrm{m/s^2}$. The potential energy due to elasticity of the 1st spring $V_{B,e1} = \frac{1}{2}k(l_B - l_0)^2$, where $l_B = \sqrt{0.4^2 + 0.3^2} = 0.5 \,\mathrm{m}$ is the length of the spring at state B. Similarly, due to symmetry of the springs, $V_{B,e2} = \frac{1}{2}k(l_B - l_0)^2$.

Now, from the energy conservation equation we obtain

$$\frac{1}{2}mv_A^2 + \frac{1}{2}k(l_A - l_0)^2 + \frac{1}{2}k(l_A - l_0)^2 = \frac{1}{2}mv_B^2 + \frac{1}{2}k(l_B - l_0)^2 + \frac{1}{2}k(l_B - l_0)^2 - mgh \implies v_B = \sqrt{v_A^2 + 2gh + 2\frac{k}{m}\left\{(l_A - l_0)^2 - (l_B - l_0)^2\right\}} \approx 2.25522 \,\text{m/s}.$$

P4. (2 points) The collar has a mass of $2 \,\mathrm{kg}$ and is attached to the light spring, which has a stiffness of $30 \,\mathrm{N/m}$ and an unstretched length of $1.5 \,\mathrm{m}$. The collar is released from rest at A and slides up the smooth rod under the action of constant $50 \,\mathrm{N}$ force. Calculate the velocity v of the collar as it passes position B.

Exercises in Physics 3 of 3

Figure 2: Illustration to Problem 4.

Solution: All the active forces in this problem are conservative¹ (potential), and hence the total energy is conserved. Therefore we can write

$$T_A + V_A = T_B + V_B.$$

At point A the system is at rest and therefore $T_A=0$. The potential energy has three sources, the gravity force, the elastic force of the spring, and the constant force driving the collar, that is $V_A=V_{A,g}+V_{A,e}+V_{A,c}$. Let us set the reference frame (datum) at point A, with the vertical axis pointing from A to B. Then the potential energy due to gravity $V_{A,g}=0$, and the potential of the constant force $V_{A,c}=0$. The potential energy due to elasticity of the spring $V_{A,e}=\frac{1}{2}k(l_A-l_0)^2$, where $k=30\,\mathrm{N/m},\,l_A=2\,\mathrm{m}$ is the length of the spring at state A, and $l_0=1.5\,\mathrm{m}$.

At point B we have $T_B = \frac{1}{2}mv_B^2$, where m = 2 kg and v_B is to be established. The potential energy $V_B = V_{B,g} + V_{B,e} + V_{B,c}$. The potential energy due to gravity $V_{B,g} = mgh$, where h = 1.5 m, and g = 9.81 m/s². The potential energy of the constant force $V_{B,c} = -Ph\cos 30^\circ$, where P = 50 N. The potential energy due to elasticity of the spring $V_{B,e} = \frac{1}{2}k(l_B - l_0)^2$, where $l_B = \sqrt{2^2 + 1.5^2} = 2.5$ m is the length of the spring at state B.

Now, from the energy conservation equation we obtain

$$\frac{1}{2}k(l_A - l_0)^2 = \frac{1}{2}mv_B^2 + \frac{1}{2}k(l_B - l_0)^2 + mgh - Ph\cos 30^\circ \implies$$

$$v_B = \sqrt{2\frac{P}{m}h\cos 30^\circ - 2gh + \frac{k}{m}\left\{(l_A - l_0)^2 - (l_B - l_0)^2\right\}} \approx 4.92665 \,\text{m/s}.$$

¹If we did not know that the constant driving force is potential we could write the work-energy equation as $(T_B + V_B) - (T_A + V_A) = U_{A-B}$, where the potential energy has two sources (gravity and elasticity) and then compute the work done by the driving force as $U_{A-B} = Ph \cos 30^{\circ}$.