Data Mining Association Rules: Advanced Concepts and Algorithms

Lecture Notes for Chapter 7

Introduction to Data Mining
by
Tan, Steinbach, Kumar

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

1

Continuous and Categorical Attributes

How to apply association analysis formulation to variables other than asymmetric binary variables?

Session Id	Country	Session Length (sec)	Number of Web Pages viewed	Gender	Browser Type	Buy
1	USA	982	8	Male	ΙE	No
2	China	811	10	Female	Netscape	No
3	USA	2125	45	Female	Mozilla	Yes
4	Germany	596	4	Male	ΙE	Yes
5	Australia	123	9	Male	Mozilla	No

Example of Association Rule:

 $\{\text{Number of Pages} \in [5,10) \land (\text{Browser=Mozilla})\} \rightarrow \{\text{Buy = No}\}$

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 (#)

Handling Categorical Attributes

- Transform categorical attribute into asymmetric binary variables
- Introduce a new "item" for each distinct attributevalue pair
 - Example: replace Browser Type attribute with
 - ◆ Browser Type = Internet Explorer
 - ◆ Browser Type = Mozilla
 - ◆ Browser Type = Mozilla

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

/#\

Handling Categorical Attributes

- Potential Issues
 - What if attribute has many possible values
 - Example: attribute country has more than 200 possible values
 - Many of the attribute values may have very low support
 - Potential solution: Aggregate the low-support attribute values
 - What if distribution of attribute values is highly skewed
 - ◆ Example: 95% of the visitors have Buy = No
 - Most of the items will be associated with (Buy=No) item
 - Potential solution: drop the highly frequent items

© Tan.Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Handling Continuous Attributes

- Different kinds of rules:
 - Age∈[21,35) ∧ Salary∈[70k,120k) → Buy
 - Salary∈[70k,120k) ∧ Buy → Age: μ =28, σ =4
- Different methods:
 - Discretization-based
 - Statistics-based
 - Non-discretization based
 - minApriori

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

(#)

Handling Continuous Attributes

- Use discretization
- Unsupervised:
 - Equal-width binning
 - Equal-depth binning

bin₁

Clustering

bin₃

• Supervised:

Attribute values, v

Class	V ₁	V ₂	V ₃	V ₄	V ₅	V ₆	V ₇	V ₈	V 9
Anomalous	0	0	20	10	20	0	0	0	0
Normal	150	100	0	0	0	100	100	150	100

bin₂

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Discretization Issues

Size of the discretized intervals affect support & confidence

```
{Refund = No, (Income = $51,250)} \rightarrow {Cheat = No} {Refund = No, (60K \leq Income \leq 80K)} \rightarrow {Cheat = No} {Refund = No, (0K \leq Income \leq 1B)} \rightarrow {Cheat = No}
```

- If intervals too small
 - may not have enough support
- If intervals too large
 - may not have enough confidence
- Potential solution: use all possible intervals

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

/#\

Discretization Issues

- Execution time
 - If intervals contain n values, there are on average O(n²) possible ranges

Too many rules

```
{Refund = No, (Income = $51,250)} \rightarrow {Cheat = No} 
{Refund = No, (51K \leq Income \leq 52K)} \rightarrow {Cheat = No} 
{Refund = No, (50K \leq Income \leq 60K)} \rightarrow {Cheat = No}
```

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Approach by Srikant & Agrawal

- Preprocess the data
 - Discretize attribute using equi-depth partitioning
 - ◆ Use partial completeness measure to determine number of partitions
 - Merge adjacent intervals as long as support is less than max-support
- Apply existing association rule mining algorithms
- Determine interesting rules in the output

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

(#)

Approach by Srikant & Agrawal

Discretization will lose information

- Use partial completeness measure to determine how much information is lost
 - C: frequent itemsets obtained by considering all ranges of attribute values P: frequent itemsets obtained by considering all ranges over the partitions

P is K-complete w.r.t C if P \subseteq C,and \forall X \in C, \exists X' \in P such that:

1. X' is a generalization of X and support (X') \leq K \times support(X) (K \geq 1)

2. \forall Y \subseteq X, \exists Y' \subseteq X' such that support (Y') \leq K \times support(Y)

Given K (partial completeness level), can determine number of intervals (N)

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Interestingness Measure

{Refund = No, (Income = \$51,250)} \rightarrow {Cheat = No} {Refund = No, (51K \leq Income \leq 52K)} \rightarrow {Cheat = No} {Refund = No, (50K \leq Income \leq 60K)} \rightarrow {Cheat = No}

 Given an itemset: Z = {z₁, z₂, ..., z_k} and its generalization Z' = {z₁', z₂', ..., z_k'}

P(Z): support of Z

 $E_{Z'}(Z)$: expected support of Z based on Z'

$$E_{z}(Z) = \frac{P(z_1)}{P(z_1')} \times \frac{P(z_2)}{P(z_2')} \times \cdots \times \frac{P(z_k)}{P(z_k')} \times P(Z')$$

- Z is R-interesting w.r.t. Z' if P(Z) ≥ $R \times E_{z'}(Z)$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

/#\

Interestingness Measure

For S: X → Y, and its generalization S': X' → Y'

P(Y|X): confidence of $X \to Y$

P(Y'|X'): confidence of $X' \rightarrow Y'$

 $E_{S'}(Y|X)$: expected support of Z based on Z'

$$E(Y \mid X) = \frac{P(y_{1})}{P(y_{1}')} \times \frac{P(y_{2})}{P(y_{2}')} \times \dots \times \frac{P(y_{k})}{P(y_{k}')} \times P(Y' \mid X')$$

- Rule S is R-interesting w.r.t its ancestor rule S' if
 - Support, $P(S) \ge R \times E_{s'}(S)$ or
 - Confidence, $P(Y|X) \ge R \times E_{s'}(Y|X)$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Statistics-based Methods

• Example:

Browser=Mozilla \land Buy=Yes \rightarrow Age: μ =23

- Rule consequent consists of a continuous variable, characterized by their statistics
 - mean, median, standard deviation, etc.
- Approach:
 - Withhold the target variable from the rest of the data
 - Apply existing frequent itemset generation on the rest of the data
 - For each frequent itemset, compute the descriptive statistics for the corresponding target variable
 - Frequent itemset becomes a rule by introducing the target variable as rule consequent
 - Apply statistical test to determine interestingness of the rule

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

/#\

Statistics-based Methods

- How to determine whether an association rule interesting?
 - Compare the statistics for segment of population covered by the rule vs segment of population not covered by the rule:

$$A \Rightarrow B: \mu$$
 versus $\overline{A} \Rightarrow B: \mu'$

- Statistical hypothesis testing:
 - Null hypothesis: H0: μ ' = μ + Δ
 - Alternative hypothesis: H1: μ ' > μ + Δ
- $Z = \frac{\mu' \mu \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$
- ◆ Z has zero mean and variance 1 under null hypothesis

Statistics-based Methods

Example:

r: Browser=Mozilla \land Buy=Yes \rightarrow Age: μ =23

- Rule is interesting if difference between μ and μ' is greater than 5 years (i.e., Δ = 5)
- For r, suppose n1 = 50, s1 = 3.5
- For r' (complement): n2 = 250, s2 = 6.5

$$Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{30 - 23 - 5}{\sqrt{\frac{3.5^2}{50} + \frac{6.5^2}{250}}} = 3.11$$

- For 1-sided test at 95% confidence level, critical Z-value for rejecting null hypothesis is 1.64.
- Since Z is greater than 1.64, r is an interesting rule

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

/#\

Min-Apriori (Han et al)

Document-term matrix:

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

Example:

W1 and W2 tends to appear together in the same document

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Min-Apriori

- Data contains only continuous attributes of the same "type"
 - e.g., frequency of words in a document

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

- Potential solution:
 - Convert into 0/1 matrix and then apply existing algorithms
 - lose word frequency information
 - Discretization does not apply as users want association among words not ranges of words

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

/#\

Min-Apriori

- How to determine the support of a word?
 - If we simply sum up its frequency, support count will be greater than total number of documents!
 - Normalize the word vectors e.g., using L₁ norm
 - Each word has a support equals to 1.0

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

Normalize

	TID	W1	W2	W3	W4	W5
	D1	0.40	0.33	0.00	0.00	0.17
•	D2	0.00	0.00	0.33	1.00	0.33
	D3	0.40	0.50	0.00	0.00	0.00
	D4	0.00	0.00	0.33	0.00	0.17
	D5	0.20	0.17	0.33	0.00	0.33

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Min-Apriori

• New definition of support:

$$\sup(C) = \sum_{i \in T} \min_{j \in C} D(i, j)$$

TID	W1	W2	W3	W4	W5
					0.17
D2	0.00	0.00	0.33	1.00	0.33
D3	0.40	0.50	0.00	0.00	0.00
D4	0.00	0.00	0.33	0.00	0.17
D5	0.20	0.17	0.33	0.00	0.33

Example:

Sup(W1,W2,W3) = 0 + 0 + 0 + 0 + 0.17 = 0.17

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

/#\

Anti-monotone property of Support

TID	W1	W2	W3	W4	W5
D1	0.40	0.33	0.00	0.00	0.17
D2	0.00	0.00	0.33	1.00	0.33
D3	0.40	0.50	0.33 0.00	0.00	0.00
D4	0.00	0.00	0.33	0.00	0.17
D5	0.20	0.17	0.33	0.00	0.33

Example:

Sup(W1) =
$$0.4 + 0 + 0.4 + 0 + 0.2 = 1$$

Sup(W1, W2) = $0.33 + 0 + 0.4 + 0 + 0.17 = 0.9$
Sup(W1, W2, W3) = $0 + 0 + 0 + 0 + 0.17 = 0.17$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Multi-level Association Rules

- Why should we incorporate concept hierarchy?
 - Rules at lower levels may not have enough support to appear in any frequent itemsets
 - Rules at lower levels of the hierarchy are overly specific
 - ◆ e.g., skim milk → white bread, 2% milk → wheat bread, skim milk → wheat bread, etc.
 are indicative of association between milk and bread

Multi-level Association Rules

- How do support and confidence vary as we traverse the concept hierarchy?
 - If X is the parent item for both X1 and X2, then $\sigma(X) \le \sigma(X1) + \sigma(X2)$
 - If σ(X1 ∪ Y1) ≥ minsup,
 and X is parent of X1, Y is parent of Y1

then $\sigma(X \cup Y1) \ge \text{minsup}, \ \sigma(X1 \cup Y) \ge \text{minsup}$ $\sigma(X \cup Y) \ge \text{minsup}$

conf(X1 ⇒ Y1) ≥ minconf,

 $conf(X1 \Rightarrow Y) \ge minconf$

© Tan,Steinbach, Kumar

then

If

Introduction to Data Mining

4/18/2004

/#\

Multi-level Association Rules

- Approach 1:
 - Extend current association rule formulation by augmenting each transaction with higher level items

Original Transaction: {skim milk, wheat bread}

Augmented Transaction:

{skim milk, wheat bread, milk, bread, food}

- Issues:
 - Items that reside at higher levels have much higher support counts
 - if support threshold is low, too many frequent patterns involving items from the higher levels
 - Increased dimensionality of the data

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Multi-level Association Rules

• Approach 2:

- Generate frequent patterns at highest level first
- Then, generate frequent patterns at the next highest level, and so on

• Issues:

 I/O requirements will increase dramatically because we need to perform more passes over the data

4/18/2004

May miss some potentially interesting cross-level association patterns

© Tan,Steinbach, Kumar Introduction to Data Mining