Q0: Sampling and Distribution

You are studying the population of a specific type of marine algae in different locations. Assume the algal density is normally distributed. You take samples from two locations (Location A and Location B) to compare the algae populations. Generate synthetic data to represent the algal density (individuals per square meter) at these two locations. Assume a mean density of 200 and 220 individuals/m^2 with a common standard deviation of 20 individuals/m^2 for both locations, with 50 samples from each location.

```
#Location A
LA <- rnorm(50, mean = 200, sd = 20)

#Location B
LB <- rnorm(50, mean = 220, sd = 20)
```

Q1: Data Cleaning

Check your dataset for any outliers.

```
library(ggplot2)
library(patchwork)

Q1 <- summary(LA)[2]
Q3 <- summary(LA)[5]

bound <- (Q3-Q1)*1.5

Low.bound <- summary(LA)[2] - bound
Up.bound <- summary(LA)[5] + bound

ggplot() +
    geom_histogram(aes(x = LA, y = after_stat(count / sum(count))), bins = 20, alpha = 0.4) +
    geom_segment(aes(x = Low.bound, y = 0, xend = Low.bound, yend = .10), color="red", linewidth = 1) +
    geom_segment(aes(x = Up.bound, y = 0, xend = Up.bound, yend = .10), color="red", linewidth = 1)</pre>
```



```
ggplot() +
  geom_boxplot(aes(x = LA), outlier.color = "red")
```


Data positioned above/below the upper/lower bounds of the interquartile range can be considered outliers.

Q2: Visualization and Kernel Density Estimation (KDE)

Plot a Kernel Density Estimation (geom_density plot) to visualize the distribution of algal densities at both locations.

```
ggplot() +
  geom_density(aes(x = LA, fill = "red"), linewidth = 0.5, alpha = 0.5) +
  geom_density(aes(x = LB, fill = "blue"), linewidth = 0.5, alpha = 0.5) +
  scale_color_manual(labels = c("A", "B"), values = c("red", "blue")) +
  theme( axis.title.y = element_text(size = 16)) +
  labs(
    color = "Location",
    x = "",
    y = "Density")
```


Q3: Binomial Distribution

Suppose in a new survey, at each location, you take 10 random samples and in each sample, you identify whether a particular species of marine algae is present or not. Assume the probability of finding this species in a sample is 0.7 at Location A and 0.5 at Location B.

Simulate this scenario using a binomial distribution, and compare the probability of finding the species in at least 7 out of 10 samples at both locations.

```
#Location A
LA_binom <- dbinom(x = 7, size = 10, prob = 0.7)
LA_binom</pre>
```

```
## [1] 0.2668279
```

```
#Location B
LB_binom <- dbinom(x = 7, size = 10, prob = 0.5)
LB_binom</pre>
```

```
## [1] 0.1171875
```

```
#comparison
((LA_binom - LB_binom)/LB_binom)*100
```

```
## [1] 127.6932
```

The probability of the marine algae species being present in at least 7 out of 10 samples in Location A is 0.2668279; in Location B, it is 0.1171875. Thus, the probability of finding the species in at least 7 out of 10 samples at Location A is 127.7% higher than the probability at Location B.

Q4: Poisson Distribution

Imagine a scenario where you are studying the occurrences of a particular rare marine event, such as the sighting of a rare marine species, over a set period at a specified location. Assume the average rate of occurrence is 3 per month.

Utilize a Poisson distribution to calculate the probability of observing exactly 5 occurrences in a month, and the probability of observing 3 or fewer occurrences in a month.

```
#setting x-axis equal to number of days in a month
x_axis <- 0:30

p_x <- dpois(x_axis, 3)

names(p_x) = x_axis
p_x</pre>
```

```
##
                                         2
                                                       3
                                                                                  5
## 4.978707e-02 1.493612e-01 2.240418e-01 2.240418e-01 1.680314e-01 1.008188e-01
                                                       9
                                         8
##
  5.040941e-02 2.160403e-02 8.101512e-03 2.700504e-03 8.101512e-04 2.209503e-04
##
             12
                           13
                                        14
                                                      15
                                                                                 17
## 5.523758e-05 1.274713e-05 2.731529e-06 5.463057e-07 1.024323e-07 1.807629e-08
                           19
                                        20
                                                      21
                                                                   22
##
             18
                                                                                 23
##
  3.012715e-09 4.756919e-10 7.135379e-11 1.019340e-11 1.390009e-12 1.813055e-13
##
             24
                           25
                                        26
                                                      27
## 2.266319e-14 2.719583e-15 3.137980e-16 3.486644e-17 3.735690e-18 3.864507e-19
##
             30
## 3.864507e-20
```

```
#probability of observing exactly 5 occurrences in a month
p_x["5"]
```

```
## 5
## 0.1008188
```

```
#probability of observing 3 or fewer occurrences in a month sum(p_x[1:4])
```

Q5:

consider the following two lists.

```
list1 <- c(44.40, 47.70, 65.59, 50.71, 51.29, 67.15, 54.61, 37.35, 43.13, 45.54, 62.24, 53.60, 5
4.01, 51.11,
           44.44, 67.87, 54.98, 30.33, 57.01, 45.27, 39.32, 47.82, 39.74, 42.71, 43.75, 33.13, 5
8.38, 51.53,
           38.62, 62.54, 54.26, 47.05, 58.95, 58.78, 58.22, 56.89, 55.54, 49.38, 46.94, 46.20, 4
3.05, 47.92,
           37.35, 71.69, 62.08, 38.77, 45.97, 45.33, 57.80, 49.17, 52.53, 49.71, 49.57, 63.69, 4
7.74, 65.16,
           34.51, 55.85, 51.24, 52.16, 53.80, 44.98, 46.67, 39.81, 39.28, 53.04, 54.48, 50.53, 5
9.22, 70.50,
           45.09, 26.91, 60.06, 42.91, 43.12, 60.26, 47.15, 37.79, 51.81, 48.61, 50.06, 53.85, 4
6.29, 56.44,
           47.80, 53.32, 60.97, 54.35, 46.74, 61.49, 59.94, 55.48, 52.39, 43.72, 63.61, 44.00, 7
1.87, 65.33,
           47.64, 39.74)
list2 <- c(44.34, 48.85, 41.30, 39.79, 30.73, 44.32, 33.23, 19.98, 39.30, 58.78, 36.37, 54.12, 2
0.73, 44.17,
           52.79, 49.52, 46.59, 35.39, 32.25, 29.64, 46.76, 30.79, 37.64, 41.16, 72.66, 35.22, 4
8.53, 46.17,
           30.57, 43.93, 66.67, 51.77, 45.62, 38.66, 14.20, 61.97, 23.09, 56.10, 73.64, 23.34, 5
5.53, 41.07,
           21.42, 22.28, 20.98, 37.04, 23.07, 55.32, 76.50, 25.69, 56.82, 56.54, 49.98, 29.87, 4
3.21, 40.79,
           53.44, 39.41, 59.65, 39.38, 60.79, 29.26, 26.10, 93.62, 38.75, 49.47, 54.55, 37.74, 5
2.75, 50.53,
           41.77, 45.98, 44.49, 76.93, 33.88, 28.56, 45.57, 49.66, 51.55, 38.12, 29.05, 63.95, 3
9.76, 32.02,
           41.46, 42.04, 61.65, 46.27, 56.31, 37.51, 48.22, 40.13, 46.42, 31.57, 25.34, 74.96, 5
4.01, 26.23,
           35.83, 27.22)
```

These list were generated using the following code

set.seed(123) # Setting a seed for reproducibility list1 <- round(rnorm(100, mean = 50, sd = 10), 2) # Generating 100 values from a normal distribution list2 <- round(rnorm(100, mean = 45, sd = 15), 2) # Generating 100 values from another normal distribution

Compare the distributions of these two lists to determine if they originate from the same distribution or from different distributions.

1. Use geom_density to create a density plot for each list on the same graph. Use different colors to distinguish between the two lists:

```
ggplot() +
  geom_density(aes(x = list1, fill = "red"), linewidth = 0.5, alpha = 0.5) +
  geom_density(aes(x = list2, fill = "blue"), linewidth = 0.5, alpha = 0.5) +
  scale_color_manual(labels = c("1", "2"), values = c("red", "blue")) +
  theme( axis.title.y = element_text(size = 16)) +
  labs(
    color = "List",
    x = "",
    y = "Density")
```


Examine the plot you have generated. Do you think list1 and list2 come from the same distribution or different distributions? Why? Write down your observations and reasoning.

Write your answer below

Yes, list1 and list2 both come from a normal/Gaussian distribution, BUT they have different parameters; list1 has a mean of 50 and a sd of 10, but list2 has a mean of 45 and a sd of 15. Additionally, they both appear fairly symmetric and bell-shaped, substantiating that they both likely came from the same type of distribution (normal).