并行口 I/0 扩展芯片 CH351

手册 (三): 并口 I/0 扩展 版本: 1B http://wch.cn

1、应用框图

2、封装

有关 PCI 双串口或者打印口的应用说明和引脚图请分别参考手册 CH351DS1. PDF 或 CH351DS2. PDF。

3、引脚

引脚号	引脚名称	类型	引脚说明
17, 53	VCC	电源	正电源端

52, 10, 50, 51	GND, GNDO	电源	公共接地端		
41-48	D7 \sim D0	三态双向	8 位并行数据输入及输出,内置上拉,接单片机数据总线		
9, 8, 14	A2 \sim A0	输入	3 位地址输入,内置微弱上拉,接单片机地址总线		
37	RD#	输入	读选通信号输入,低有效,内置上拉,接单片机读控制		
38	WR#	输入	写选通信号输入,低有效,内置上拉,接单片机写控制		
39	CS#	输入	片选控制输入,低电平有效,内置上拉电阻		
12	INT#	开漏输出	中断请求信号输出,低电平有效		
40	RST#	输入	复位控制输入,低电平有效,内置上拉电阻		
32-25	X0∼X7	三态输出 及输入	第一组扩展 GP10 通用输入输出引脚,内置微弱上拉电阻		
23-18, 16-15	X8∼X15	三态输出 及输入	第二组扩展 GP10 通用输入输出引脚,内置微弱上拉电阻		
7-1, 64	X16∼X23	三态输出 及输入	第三组扩展 GP10 通用输入输出引脚,内置微弱上拉电阻		
61–54	X24~X31	三态输出 及输入	第四组扩展 GP10 通用输入输出引脚,内置微弱上拉电阻		
11, 13, 24, 33–36, 49, 62, 63	NC.	保留引脚	禁止连接		

4、功能说明

4.1. 并口操作

CH351 芯片提供了通用的 8 位被动并行接口。其信号线包括: 8 位双向数据总线 D7 \sim D0、3 位地址输入引脚 A2 \sim A0、读选通输入引脚 RD#、写选通输入引脚 WR#、片选输入引脚 CS#。通过被动并行接口,CH351 芯片可以很方便地挂接到各种 8 位、16 位甚至 32 位单片机、DSP、MCU 的系统总线上,并且可以与多个外围器件共存。

CH351 芯片的 CS#由地址译码电路驱动,用于当单片机具有多个外围器件时进行设备选择。

对于类似 Intel 并口时序的单片机,CH351 芯片的 RD#引脚和 WR#引脚可以分别连接到单片机的读选通输出引脚和写选通输出引脚。对于类似 Motorola 并口时序的单片机,CH351 芯片的 RD#引脚应该接低电平,并且 WR#引脚连接到单片机的读写方向输出引脚 R/-W。

	「我另外自然下門共區級(我)							
CS#	WR#	RD#	A2-A0	D7-D0	对 CH351 芯片的实际操作			
1	Χ	Χ	XXX	X/Z	未选中 CH351,不进行任何操作			
0	1	1	XXX	X/Z	虽然选中但无操作,不进行任何操作			
0	0	1/X	100	输入	写入 CH351 的第一组 GP10 的方向控制寄存器			
0	0	1/X	000	输入	写入 CH351 的第一组 GP10 的内部输出数据寄存器			
0	0	1/X	101	输入	写入 CH351 的第二组 GP10 的方向控制寄存器			
0	0	1/X	001	输入	写入 CH351 的第二组 GP10 的内部输出数据寄存器			
0	0	1/X	110	输入	写入 CH351 的第三组 GP10 的方向控制寄存器			
0	0	1/X	010	输入	写入 CH351 的第三组 GP10 的内部输出数据寄存器			
0	0	1/X	111	输入	写入 CH351 的第四组 GP10 的方向控制寄存器			
0	0	1/X	011	输入	写入 CH351 的第四组 GP10 的内部输出数据寄存器			
0	1	0	X00	输出	将 CH351 的第一组 GP10 的引脚输入状态读出			
0	1	0	X01	输出	将 CH351 的第二组 GP10 的引脚输入状态读出			
0	1	0	X10	输出	将 CH351 的第三组 GP10 的引脚输入状态读出			
0	1	0	X11	输出	将 CH351 的第四组 GP10 的引脚输入状态读出			

4.2. 扩展 GPIO

由于单次并口操作只能对应 8 个 GPIO 通用输入输出引脚,所以 32 个 GPIO 被分为 4 组。在 CH351 芯片内部,每个 GPIO 引脚都分别对应有一个方向控制位和一个内部输出数据位。

方向控制位在被 RST#引脚复位后默认为 0,表示该 GP10 引脚为输入引脚,如果被设置为 1 则表示该 GP10 引脚为输出引脚。

内部输出数据位在被 RST#引脚复位后默认为 1,对应输出高电平,如果设置为 0 则对应输出低电平,而该 GP10 引脚是否能够输出则由方向控制位决定。仅在其方向控制位被设置为输出时,内部输出数据位所对应的高或低电平才会输出到 GP10 引脚上,否则仅是内部位。

CH351 芯片的扩展 GP10 引脚输入能够兼容 CMOS 电平和 TTL 电平,并且输入引脚都内置了微弱上拉电阻:输出都是 CMOS 电平,兼容 TTL 电平,并且具有低电平 10mA 高电平 5mA 的驱动能力。

4.3. 中断和复位

CH351 芯片提供了一个低电平有效的中断请求输出引脚 INT#(需要外接上拉电阻),可以连接到单片机的中断输入引脚或普通输入引脚。CH351 将在任何一个其方向控制位为 0 的 GP10 检测到低电平输入时产生中断请求。例如:X4 其方向设置为输出,则 X4 的任何状态都不影响 INT#; X6 其方向设置为输入,如果 X6 状态为高电平则不影响 INT#; X8 其方向设置为输入,则当 X8 状态为低电平时产生 INT#有效。

CH351 芯片的复位引脚 RST#用于使 CH351 恢复到默认状态。当 RST#输入为低电平时,X0~X31 引脚的内部输出数据位全部恢复为 1 的状态,并且 X0~X31 的方向控制位全部恢复为 0 即输入状态。

5、参数

5.1. 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	$^{\circ}$ C
TS	储存时的环境温度	-55	125	$^{\circ}\!\mathbb{C}$
VCC	电源电压(VCC 接电源,GND 接地)	-0. 5	6. 0	٧
V10	输入或者输出引脚上的电压	-0. 5	VCC+0. 5	٧
Igpio	单个 GP10 引脚的连续驱动电流	0	16	mA
Imax	所有 GP10 引脚的连续驱动电流的总和	0	120	mA

5. 2. 电气参数 (测试条件: TA=25℃, VCC=5V, 如果 VCC=3. 3V 则表中电流降为约 40%)

名称	参数说明	最小值	典型值	最大值	单位
VCC	电源电压	2. 7	5	5. 3	V
ICC	工作时的电源电流	0. 01	0. 1	100	mA
VIL	低电平输入电压	-0. 5		0.8	V
VIH	高电平输入电压	2. 0		VCC+0. 5	V
VOL	低电平输出电压(8mA 吸入电流)			0. 5	V
VOH	高电平输出电压(3mA 输出电流)	VCC-0. 5			V
IWU	带微弱上拉电阻的输入端的输入电流	2	8	20	uA
IUP	带上拉电阻的输入端的输入电流	5	10	250	uA

5.3. 时序参数 (测试条件: TA=25℃, VCC=5V, 括号中参数 VCC=3.3V, 参考下面附图)

(RD 是指 RD#信号有效并且 CS#信号有效,WR#=1&RD#=CS#=0 执行读操作) (WR 是指 WR#信号有效并且 CS#信号有效,WR#=CS#=0 执行写操作)

名称	参数说明	最小值	典型值	最大值	单位
TWW	有效的写选通脉冲 WR 的宽度	25 (40)			nS
TRW	有效的读选通脉冲 RD 的宽度	25 (40)			nS
TWS	读选通或写选通脉冲的间隔宽度	25 (40)			nS
TAS	RD 或 WR 前的地址输入建立时间	2			nS
TAH	RD 或 WR 后的地址输入保持时间	3			nS
TIS	写选通 WR 前的数据输入建立时间	5			nS
TIH	写选通 WR 后的数据输入保持时间	5			nS
TON	读选通 RD 有效到数据输出有效		15 (22)	22 (33)	nS
T0F	读选通 RD 无效到数据输出无效			18 (25)	nS

6、应用

6.1. 并行口 1/0 扩展

将 CH351 芯片挂在 8 位单片机系统总线上,可以直接扩展出 32 个能够独立设置为输入或者输出方向的通用 I/0 引脚,电路精简,操作方便。