Matemática Discreta - TW Universidade Federal de Minas Gerais - UFMG Belo Horizonte - 31/05/2023

Trabalho Prático - Fractal

Guilherme Mota Bromonschenkel Lima - 2019027571

Introdução

Um fractal é uma forma ou padrão geométrico com semelhança em diferentes escalas ou ampliações. Ou seja, quando um fractal é ampliado, é possível ver os mesmos padrões repetidos em escalas cada vez menores, isso mostra a característica recursiva da estrutura de um fractal. Vale ressaltar que os fractais são encontrados em muitos objetos naturais e artificiais *(como flocos de neve)* e também têm sido usados em diversas áreas, como matemática, física, etc.

Especificação

Esse projeto consiste na implementação de algoritmos que construam 3 tipos de fractais. Esses tipos são definidos a partir das regras propostas no enunciado do trabalho prático.

I. Floco de neve onda senoidal 2 de von Koch

Nº de matrícula = 2019027571 / Soma dos algarismos = 2+0+1+9+0+2+7+5+7+1=34 Resto da divisão por 4=34 % 4=2

Axioma: F

 $\theta = \frac{\pi}{3}$

Regras: $F \rightarrow F-F+F+FF-F-F+F$

II. Preenchimento de espaço de Peano

Nº de matrícula = 2019027571

Par ou Ímpar = Ímpar

Axioma: X

 $\theta = \frac{\pi}{2}$

Regras:

 $X \rightarrow XFYFX+F+YFXFY-F-XFYFX$

 $Y \rightarrow YFXFY-F-XFYFX+F+YFXFY$

III. Fractal de criação própria

Um fractal que gere uma cadeia de polígonos simples que tenha pelo menos duas regras como as curvas de preenchimento de espaço de Peano e Hilbert.

Axioma:

X

 $\theta = \frac{\pi}{2}$

Regras:

 $X \rightarrow F+FY+X$

 $Y \rightarrow -F+FY$

Projeto

Nesse projeto foi utilizada a linguagem de programação C para criar o algoritmo que fizesse a construção de fractais usando um L-sistema (axioma, valor de θ , regras de produção e estágios).

A aplicação consiste de alguns módulos: app (ponto de entrada para a execução da aplicação como um todo); fractal (módulo responsável pelas regras de negócio de expansão da sequência do fractal); fractal-file (módulo responsável pela organização dos nomes dos arquivos usados na geração dos fractais); shared-utils (módulo com ferramentas reutilizáveis pelos outros módulos da aplicação).

Para que o programa funcione, é necessário especificar a quantidade de estágios, o axioma e por fim quais regras serão utilizadas. Durante a execução da aplicação, os fractais resultantes são criados na pasta <u>output</u>.

Estratégias de implementação

As estratégias de implementação comuns para o algoritmo de fractais envolvem tanto uma abordagem iterativa quanto uma abordagem recursiva.

Vale ressaltar que, quando estamos falando de algoritmos de forma geral, é normal que a abordagem recursiva tenha um custo computacional de espaço mais elevado, visto que ela guarda toda a pilha de execução em memória até que a recursão seja resolvida. Entretanto, nem todas as abordagens recursivas podem ser transformadas em abordagem iterativas que sejam simples, legíveis e escaláveis.

Ou seja, o ideal é realizar uma análise do problema que precisa ser resolvido, antes mesmo de resolvê-lo, para entender qual a melhor abordagem que podemos usar para ter o algoritmo mais legível, performático e escalável possível.

Para o caso das fractais, tanto a abordagem iterativa quanto a recursiva são legíveis. No entanto, no quesito de performance, a abordagem iterativa ganha destaque. Por fim, vale ressaltar que as duas abordagens devem ser combinadas com estratégias "inteligentes" para garantir a escala do algoritmo.

Portanto, essa implementação foi feita usando a abordagem iterativa junto de uma estratégia baseada na leitura/escrita de arquivos para o processamento sob demanda de cada estágio (com isso, temos um algoritmo legível, performático e escalável).

Ou seja, durante o processamento de cada estágio, fazemos a leitura do estágio passado para gerar então o resultado do estágio seguinte. Com isso, somos capazes de processar as informações sob demanda e em pedaços pequenos, gerando um baixo consumo de memória para a nossa aplicação.

No fim, é possível notar os seguintes beneficios nessa abordagem/estratégia:

- Processamento escalável de fractais grandes (já que processamos os dados sob demanda, evitamos um uso de memória elevado);
- Código mais simples e estável (já que os dados são trabalhados em arquivos, não é necessário fazer muitas operações de gestão de memória para alocação de variáveis).

Equações de Recorrência

Pelo fato das funções geradoras das fractais terem uma característica recursiva, podemos usar equações de recorrência para determinar a quantidade de segmentos e símbolos presentes em cada função.

Para encontrar as equações de recorrência, foram feitas análises através dos 3 primeiros estágios de cada fractal. Com isso, foi possível perceber um comportamento padrão na quantidade de símbolos/segmentos em cada estágio de forma recursiva.

Portanto, podemos considerar:

- \rightarrow Quantidade de segmentos: F(n)
- \rightarrow Quantidade de símbolos: S(n)

(I) Floco de neve onda senoidal 2 de von Koch

Quantidade de símbolos -, +

$$C(1) = 6$$

$$C(n) = C(n - 1) + 6 * 8^{n-1}$$

Quantidade de símbolos F

$$F(n) = 8^n$$

$$F(n) = 8^n$$

$$S(n) = C(n) + F(n)$$

$$S(n) = C(n-1) + 6 * 8^{n-1} + 8^n$$

(II) Preenchimento de espaço de Peano

Quantidade de símbolos -, +

$$C(1) = 4$$

$$C(n) = C(n-1) * 9 + 4$$

Quantidade de símbolos F

$$F(1) = 8$$

$$F(n) = F(n-1) * 9 + 8$$

Quantidade de símbolos Y

$$Y(1) = 4$$

$$Y(n) = Y(n-1) * 9 + 4$$

Quantidade de símbolos X

$$X(1) = 5$$

$$X(n) = X(n-1) * 9 - 4$$

$$F(n) = F(n-1) * 9 + 8$$

Para o caso da equação de recorrência de quantidade de símbolos, podemos ter os seguintes casos:

→ Todos os símbolos (símbolos F, -, +, X e Y):

$$S(n) = C(n) + F(n) + Y(n) + X(n)$$

$$S(n) = C(n-1) * 9 + 4 + F(n-1) * 9 + 8 + Y(n-1) * 9 + 4 + X(n-1) * 9 - 4$$

$$S(n) = C(n-1) * 9 + F(n-1) * 9 + Y(n-1) * 9 + X(n-1) * 9 + 12$$

→ Sem os símbolos F (símbolos -, +, X e Y):

$$S(n) = C(n) + Y(n) + X(n)$$

$$S(n) = C(n-1) * 9 + 4 + Y(n-1) * 9 + 4 + X(n-1) * 9 - 4$$

$$S(n) = C(n-1) * 9 + Y(n-1) * 9 + X(n-1) * 9 + 4$$

(III) Fractal de criação própria

Quantidade de símbolos -, +

$$C(1) = 2$$

$$C(n) = C(n-1) + 2 * (n-1) + 2$$

Quantidade de símbolos F

$$F(1) = 2$$

$$F(n) = F(n-1) + 2 * (n-1) + 2$$

Quantidade de símbolos Y

$$Y(1) = 1$$

$$Y(n) = (n-1) + 1$$

Quantidade de símbolos X

$$X(n) = 1$$

$$F(n) = F(n-1) + 2 * (n-1) + 2$$

Para o caso da equação de recorrência de quantidade de símbolos, podemos ter os seguintes casos:

→ Todos os símbolos (símbolos F, -, +, X e Y):

$$S(n) = C(n) + F(n) + Y(n) + X(n)$$

$$S(n) = C(n-1) + 2 * (n-1) + 2 + F(n-1) + 2 * (n-1) + 2 + (n-1) + 1 + 1$$

$$S(n) = C(n-1) + F(n-1) + 5n + 1$$

→ Sem os símbolos F (símbolos -, +, X e Y):

$$S(n) = C(n) + Y(n) + X(n)$$

$$S(n) = C(n-1) + 2 * (n-1) + 2 + (n-1) + 1 + 1$$

$$S(n) = C(n-1) + 3n + 1$$

Complexidade dos Algoritmos

Com base nas equações de recorrência mostradas anteriormente, é possível determinarmos a complexidade dos algoritmos recursivos de cada fractal:

(I) Floco de neve onda senoidal 2 de von Koch: $O(n \log n)$

(II) Preenchimento de espaço de Peano: O(n)

(III) Fractal de criação própria: O(n)

Desenho de Fractais

O desenho de fractais se trata de um desenho de linhas de acordo com o L-sistema que definimos para as fractais. Nesse sentido, alguns softwares que podem ser utilizadas para esse desenho são:

- <u>SDL</u>: é uma biblioteca multiplataforma usada para criar aplicativos de mídia interativa, como jogos, em C e C++. Ele fornece uma API simples e de baixo nível para acesso a recursos de hardware, como gráficos, áudio, entrada de usuário e rede. No caso dos fractais, usamos esse a parte de renderização de gráficos 2D.
- GGPlot: é uma biblioteca de visualização de dados popular e de código aberto, originalmente criada para a linguagem de programação R. Ele fornece uma abordagem declarativa para a criação de gráficos, permitindo aos usuários especificar visualizações complexas por meio de camadas estéticas e estatísticas.
- <u>Seaborn</u>: é uma biblioteca de visualização de dados em Python construída sobre o matplotlib. Ele fornece uma interface de alto nível para criar gráficos estatísticos atraentes e informativos. O Seaborn simplifica a criação de gráficos complexos, oferecendo uma variedade de estilos visuais predefinidos e funções fáceis de usar para aprimorar a aparência dos gráficos.

Além disso, existem também aplicações web com regras de negócio direcionadas para realizar o desenho de fractais definidas em L-sistemas (por exemplo o Online Math Tools - L system generator), usando bibliotecas gráficas web nos fundos dos panos.

Abaixo é possível visualizar os quatro primeiro estágios do *(III) Fractal de criação própria* mostrado na Especificação deste documento:

Figura 1: Quatro primeiros estágios do fractal de criação própria.