# Homework 2

1)

a.

i. 
$$Y = -5x^4 + 11x^2 - 2$$

Roots:

-1.4142

1.4142

-0.4472

0.4472

# Graph:



ii.  $W = x^3 - 4x + 1$ 

Roots:

-2.1149 (this is out of bounds of what we want)

1.8608 (this is out of bounds of what we want)

0.2541

# Graph:



iii. 
$$Z = x^5 - 0.5$$

Roots:

-0.7043 + 0.5117i

-0.7043 - 0.5117i

0.2690 + 0.8279i

0.2690 - 0.8279i

0.8706

# Graph:



|                                                             | i. $Y = -5x^4 + 11x^2 - 2$ , $a = -1.5$ , $b = 1.5$ , $m = 0$<br>bisection) $X = \frac{a+b}{2} = -\frac{1.5+1.5}{2} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ets — 5 squares<br>ets — 5 squares<br>ets — filler          | $J+eretion() = f(x) - f(a) = \left(-s(0)^4 + 11(0)^2 - 2\right) \left(-s(-1/5)^4 + 11(-1/5)^2 - 2\right)$ $= (-2)(-2, 5625)$ $= 5,125$ $5,125 > 0$ $G = X = 0$ $M = h + 1 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3-0236 — 100 SHEI<br>3-0237 — 200 SHEI<br>3-0137 — 200 SHEI | Iterction 2) $X = \frac{a+b}{2} =$ |
| COMET                                                       | Felse position) $a=-1.5, b=1.5, h=0$<br>frenction 1) X = (a.f(b)-b.f(c))<br>(f(b)-f(a))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                             | $= \frac{(+1.5)(-5(1.5)^{4} + 11(1.5)^{2} - 2) - (1.5)(-5(-1.5)^{4} + 11(-1.5)^{2} - 2)}{(-5(1.5)^{4} + 11(1.5)^{2} - 2) - (-5(-1.5)^{4} + 11(1.5)^{2} - 2)}$ $= \frac{3}{1.5} + \frac{1}{1.5} + \frac{3}{1.5} + \frac{11}{1.5} + \frac{11}{$                                                                                         |
|                                                             | This method Brecks right here, because It is evaluable X with a zero in the denominator so the value is undefined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                             | Newton's retrad) a=-1.8, b=1.5  Iteration 1) shoose a Xo between -1.5,1.5. Xo=1  Thest whether the "uptid quess is a root  [F(x)] < epsolon  F hot then Plug X into a quesson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                             | $ \begin{array}{lll} \text{If wot then } P(u_9 \times \text{into } (q_0) + 100 \\ X_n = X = \frac{F(X)}{F(X)} = 1 - \left(-\frac{5}{5}(1)^4 + \frac{11}{11}(1)^2 - 2\right) \\ = 1 - 4 = -1 \\ \hline \text{Iteretion } 2)  F(X)  = 4 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                             | $X_{L} = -1 - \left(\frac{-5(-1)^{2} + 1(-1)^{2} - 2}{20(-1)^{2} + 1(2(-1))}\right) = -1 - \left(\frac{4}{-2}\right) = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|                                                                                        | ii. $W = x^3 - 4x + 1$ , $a = -1.5$ , $b = 1.5$ , $b = 0$<br>b = 1<br>b = 1                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| – 5 SQUARES<br>– 5 SQUARES<br>– 5 SQUARES<br>– FILLER                                  | $4(x) + (a) = (0)^{2} - 4(0) + 1 \cdot ((-1,5)^{2} - 4(+1,5) + 1)$ $= (1)(3:625) = 3.625$ $3:625 > 0$ $a = x = 0$ $h = h + 1 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3-0235 — 50 SHEETS - 3-0236 — 100 SHEETS - 3-0237 — 200 SHEETS - 3-0137 — 200 SHEETS - | $F(x) = ((0.75)^{3} - 4(0.75) + 1)((0)^{3} - 4(0) + 1)$ $= -1.58$ $= -1.58 < 0$ $= x = 0.75$ $h = h + 1 = R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| COMET                                                                                  | $f_{else} = Position = (a.f.b) - b.f.co)$ $f_{else} = (a.f.b) - b.f.co)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                        | $ = \frac{(f(b) - f(a))}{(f(b) - f(a))} - \frac{(f(b) - f(a))}{(f(a) - f(a))} - \frac{(f(a) - f(a))}{(f(a) - f(a))} + \frac$ |
|                                                                                        | $ \begin{array}{lll}                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| , a                                                                                    | = -1.86 (3.625) = -6.72 $-6.72 < 0$ $6 = x = 0.089$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|                                                                                         | Newton's method)  Iteration 1) choose to bother -d, 5, 1,5 o $X_0 = 1$ $ f(x)  = 2$ $ X_0 = X - \left(\frac{f(x)}{f'(x)}\right)  = 1 - \left(\frac{-2}{-1}\right)  = -1$ |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EETS — 5 SQUARES<br>EETS — 5 SQUARES<br>EETS — FILLER                                   | Frenchion 2) $ f(x)  = 4$<br>$X_1 = -Y - \left(\frac{1}{-1}\right) = 3$                                                                                                  |
| 3-0236 — 100 SHEETS — 3-0237 — 200 SHEETS — 3-0237 — 200 SHEETS — 3-0137 — 200 SHEETS — |                                                                                                                                                                          |
| COMET                                                                                   |                                                                                                                                                                          |
| $\wedge$                                                                                |                                                                                                                                                                          |
|                                                                                         |                                                                                                                                                                          |
|                                                                                         |                                                                                                                                                                          |
|                                                                                         |                                                                                                                                                                          |
|                                                                                         |                                                                                                                                                                          |
|                                                                                         |                                                                                                                                                                          |

| <u> </u>                                        | (iii) $Z = X^5 - 0.5$ $a = -1.5$ , $b = 1.5$<br>bisection 1) $X = a + b = 0$                                                                                         |  |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SQUARES<br>SQUARES<br>FILLER                    | f(x).f(=)=(=0,5)(-8,09)<br>=4,05<br>4.05>0                                                                                                                           |  |
| 9 9 9                                           | 3 = 2 = 0<br>3 = 2 = 0.75<br>3 = 0.75<br>3 = 0.75<br>3 = 0.75                                                                                                        |  |
| 6 — 100 SHEET<br>7 — 200 SHEET<br>7 — 200 SHEET | 0.13 >0<br>0.2x = 0.75                                                                                                                                               |  |
| 3-0236<br>3-0237<br>3-0137                      | Fulse position $X = \frac{1.5}{9 \cdot f(6) - b \cdot f(6)} = \frac{(-1.5)(.7.09) - (1.5)(-8.09)}{(7.09) - (-5.09)}$                                                 |  |
| COMET                                           | f(x)f(0) = (49)(-8.09)<br>4.04 > 0                                                                                                                                   |  |
| <u></u>                                         | Freedow 2) X = (0.099)(7.09) - (1.5)(49) = 1.44 $= (7.09) - (-0.49) = 7.58$ $= 0.19$                                                                                 |  |
|                                                 | F(x)F(=1=(-0.50)(-0.80)<br>= 0.25<br>0.25 > 0                                                                                                                        |  |
|                                                 | Newton's merned) $a = -1.5$ , 1,5                                                                                                                                    |  |
|                                                 | Iteration 1) $X_0 = 1$<br>$ f(x)  < \frac{e}{e}$ Ps alon, $z = 1 - 0.5 = 0.5$<br>$X_0 = x - \left(\frac{f(x)}{f(x)}\right) = 1 - \left(\frac{0.5}{4}\right) = 0.675$ |  |
|                                                 | It exists 2) $ F(x)  = 0.512 - 6.5 = 0.012$<br>$X_{H} = 0.875 - (0.012) = 0.669$                                                                                     |  |
|                                                 |                                                                                                                                                                      |  |
|                                                 |                                                                                                                                                                      |  |
|                                                 |                                                                                                                                                                      |  |
|                                                 |                                                                                                                                                                      |  |

b.

#### i. Bisection:

```
n a
        f(a)
              b
                   f(b)
                         Χ
                              f(x)
1 -1.50 -2.56 1.50 -2.56 0.00 -2.00
2 0.00 -2.00 1.50 -2.56 0.75 2.61
3 0.00 -2.00 0.75 2.61 0.38 -0.55
4 0.38 -0.55 0.75 2.61 0.56 0.98
5 0.38 -0.55 0.56 0.98 0.47 0.18
6 0.38 -0.55 0.47 0.18 0.42 -0.20
7 0.42 -0.20 0.47 0.18 0.45 -0.02
8 0.45 -0.02 0.47 0.18 0.46 0.08
9 0.45 -0.02 0.46 0.08 0.45 0.03
10 0.45 -0.02 0.45 0.03 0.45 0.01
```

Compared to my handwritten iterations, this matches up.

### False Position:

n a 
$$f(a)$$
 b  $f(b)$  x  $f(x)$ 

This didn't output anything, so this matches up as well.

## Newton's Method:

n x f(x)

1 1.00 4.00

2 -1.00 4.00

3 1.00 4.00

4 -1.00 4.00

5 1.00 4.00

6 -1.00 4.00

7 1.00 4.00

8 -1.00 4.00

9 1.00 4.00

10 -1.00 4.00

11 1.00 4.00

12 -1.00 4.00

Continue...

This matches with my handwritten calculations.

### ii. Bisection:

This matches my calculations

## False position:

This matches my calculations

#### Newton's method:

n x f(x) 1 1.00 -2.00 2 -1.00 4.00 3 3.00 16.00 4 2.30 4.02 5 1.97 0.75 6 1.87 0.06

These match my calculations, if you count the original guess as an iteration.

#### iii. Bisection:

f(a) f(b) n a b f(x) 1 -1.50 -8.09 1.50 7.09 0.00 -0.50 2 0.00 -0.50 1.50 7.09 0.75 -0.26 3 0.75 -0.26 1.50 7.09 1.13 1.30 4 0.75 -0.26 1.13 1.30 0.94 0.22 5 0.75 -0.26 0.94 0.22 0.84 -0.07 6 0.84 -0.07 0.94 0.22 0.89 0.06 7 0.84 -0.07 0.89 0.06 0.87 -0.01 Matches my calculations.

### False position:

n a f(a) b f(b) f(x) Х 1 -1.50 -8.09 1.50 7.09 0.10 -0.50 2 0.10 -0.50 1.50 7.09 0.19 -0.50 3 0.19 -0.50 1.50 7.09 0.28 -0.50 4 0.28 -0.50 1.50 7.09 0.36 -0.49 5 0.36 -0.49 1.50 7.09 0.43 -0.48 6 0.43 -0.48 1.50 7.09 0.50 -0.47 7 0.50 -0.47 1.50 7.09 0.56 -0.448 0.56 -0.44 1.50 7.09 0.62 -0.41 9 0.62 -0.41 1.50 7.09 0.67 -0.37 10 0.67 -0.37 1.50 7.09 0.71 -0.32 11 0.71 -0.32 1.50 7.09 0.74 -0.28 12 0.74 -0.28 1.50 7.09 0.77 -0.23 13 0.77 -0.23 1.50 7.09 0.79 -0.19 14 0.79 -0.19 1.50 7.09 0.81 -0.15 15 0.81 -0.15 1.50 7.09 0.83 -0.12 16 0.83 -0.12 1.50 7.09 0.84 -0.09 17 0.84 -0.09 1.50 7.09 0.84 -0.07 18 0.84 -0.07 1.50 7.09 0.85 -0.05 19 0.85 -0.05 1.50 7.09 0.86 -0.04 20 0.86 -0.04 1.50 7.09 0.86 -0.03 21 0.86 -0.03 1.50 7.09 0.86 -0.02 22 0.86 -0.02 1.50 7.09 0.86 -0.02 Matches my calculations.

## Newton's method:

Matches my calculations.

n x f(x) 1 1.00 0.50 2 0.90 0.09 Bisection.m:

```
function [root, numlter] = bisection(f, a, b, ep)
                    %fprintf('n a f(a) b f(b) x f(x)n');
                   n = 1;
                   x = (a + b)/2;
                   while (abs(f(x)) > ep)
                     x = (a + b)/2;
                      %fprintf('%d %4.2f %4.2f %4.2f %4.2f %4.2f\n', n,a, f(a), b, f(b), x,
                   f(x));
                      if(f(x)*f(a) > 0)
                        a = x;
                      else
                        b = x;
                      end
                      n = n + 1;
                    end
                    root = x;
                    numlter = n;
falsePosition.m:
                   function [root, numlter] = falsePosition(f, a, b, ep)
                    %fprintf('n a f(a) b f(b) x f(x)\n');
                    n = 1;
                   x = (a*f(b)-b*f(a))/(f(b)-f(a));
                   while (abs(f(x)) > ep)
                     x = (a*f(b)-b*f(a))/(f(b)-f(a));
                      %fprintf('%d %4.2f %4.2f %4.2f %4.2f %4.2f\n', n,a, f(a), b, f(b), x,
                   f(x));
                      if(f(x)*f(a) > 0)
                        a = x;
                      else
                        b = x;
                      end
                      n = n + 1;
                    end
                    root = x;
                    numlter = n;
```

### newtonsMethod.m:

```
function [root, numlter] = newtonsMethod(f, x0, ep)

%fprintf('n x f(x)\n');

syms x;

fprime = matlabFunction(diff(f,x));

n = 1;

while(abs(f(x0)) > ep)

%fprintf('%d %4.2f %4.2f\n', n, x0, f(x0));

x = x0 - (f(x0)/fprime(x0));

x0 = x;

n = n + 1;

end

root = x0;

numlter = n;
```

- b. I observed that for the first equation, bisection was the only one that actually converged. False position had an issue when plugging in a zero in the denominator for the first function evaluation and gave NaN. Newton's method seemed to be stuck in a never ending loop moving back and forth between two points.
  - For the second equation, false positioning seemed to have the best performance while the other two lagged behind just slightly. The overall efficiency of these was roughly about the same.

For the third equation, Newton's method was by far the fastest with only two iterations, while false positioning had the worst performance with over 20.

Over all, it seems that the Newton's method is the quickest overall, but the bisection is the most reliable.

2) a. Equation:  $f = @(x) 1 - ((20.^2) / (9.81 * (3*x + (x.^2)/2).^3))*(3 + x)$ 

Bisection: [root numiter] = bisection(f,0.5,2.5,0.01);

False Position: [root numiter] = falsePosition(f,0.5,2.5,0.01)

b. Bisection Root: 1.5156

Number of Iterations: 8

False Position: Root: 1.5185

Number of Iterations: 84

It looks like the Bisection method works much better than the False Position on this equation. The solution to this problem describes the critical depth x for a channel that allows for the flow with those parameters. So the Channel must be a depth of around 1.51 meters.

- c. I actually did run this through Newton's method and it decreased the amount of iterations. I do think using Newton's method is a better idea with this problem. This is because it should run slightly faster than the alternatives, according to my previous tests.
- 3) It seems that the code that I wrote for Newton's method is not robust enough to take into account the boundaries that were set in this problem. With this starting x, my function seems to converge only on the root 0.4685 instead of 18.89 that is within the bounds given. If I change my starting condition to something like 16.8 it will converge directly to the wanted 18.89 number. This is because Newton's method works by finding the derivative of the function at the initially given point and depending on that initial guess, is whether the function converges towards the number you want. When I ran the code, it only took 6 iterations.
- 4) a.  $f = @(x) (4*acos((2-x)/2) (2-x)*sqrt(4*x-x.^2))*5 8.5$ [root numlter] = newtonsMethod(f,1,0.01)

Root: 0.7720 meters

Iterations: 3

- b. I chose to use Newton's method because it seems to be the fastest method so far with the most accurate results. I chose an initial condition at random, but I figured there would only be positive height so I kept my bounds positive. My stopping criteria was within 1% precision because the given numbers only had a precision of 1 decimal place. If I had any more precision it wouldn't really mean anything. The performance seemed to be good with only 3 iterations.
- 5) a. OMITED
  - b.  $f = @(theta) 20*tand(theta)*35 ((9.81/(800*cosd(theta).^2))*35.^2) + 2 1$ [root numlter] = bisection(f,0,90,0.1)

Root: 1.15 or 88.77 degrees

c. I chose the bisection method this time because the other methods failed to work. These methods failed because of the equation and how there was a tangent and a cosine in the denominator. I also gave the boundaries of 0 and 90 because those are the maximum angles at which the initial velocity could have been in the direction of. The stopping criteria I picked was again based on the values given. The performance of this method was probably not the best possible, but it was the only method that worked out of the three.