Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	al fields	Multiplicities
$ \tau_{0}^{\#2} == 0 $	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0}^{\#1} - 2ik\sigma_{0}^{\#1} = 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1}^{\#2}{}^{\alpha} + 2ik \ \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#1}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha} = =$	
	$\partial_{\chi}\partial^{\alpha} \iota^{\chi\beta} + \partial_{\chi}\partial^{\beta} \iota^{\alpha\chi} + \partial_{\chi}\partial^{\chi} \iota^{\beta\alpha} +$	
	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\chi\beta}$	
$\sigma_{1}^{\#1}\alpha\beta == \sigma_{1}^{\#2}\alpha\beta$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} +$	3
	$2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} = =$	
	$3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha}$	
$\sigma_{2^{-1}}^{\#1}\alpha\beta\chi == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{eta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta \epsilon}{}_{\delta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\beta \delta \epsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} ==$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta \epsilon}$	
	$3 \eta^{eta\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial_\delta \sigma^{\alpha\delta\epsilon} +$	
	$3~\eta^{lpha\chi}~\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{eta\delta}{}_{\delta}$	
$\tau_{2}^{\#1}\alpha\beta==0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} t^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} t^{\chi}_{\chi} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} ==$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$2 n^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$	
Total constraints/gauge generators:		24

 $-\frac{2}{3}\bar{l}kt_3$ $\frac{1}{3}\bar{l}\sqrt{2}kt_3$

0 0

 $\mathcal{A}_{2^{-}}^{\#1} +^{\alpha\beta\chi}$

 $-i\sqrt{2} kt_3$ 0

 $-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$

 $\mathcal{A}_2^{\#1} +^{\alpha\beta}$ $f_2^{\#1} +^{\alpha\beta}$

 t_3

 $\frac{1}{(1+2\,k^2)^2\,t_3}$

 $\frac{i\sqrt{2}k}{(1+2k^2)^2t_3} \frac{2k^2}{(1+2k^2)^2t_3}$

 $f_{0+}^{\#1} \dagger i \sqrt{2} kt_3 2k^2t_3$

 $\sigma_{2^{+}\alpha\beta}^{\#1} \ \tau_{2^{+}\alpha\beta}^{\#1} \ \sigma_{2^{-}\alpha\beta\chi}^{\#1}$

 $\begin{array}{c}
0\\
0\\
\frac{1}{6}(-9k^2r_3+4t_3)\\
-\frac{\sqrt{2}t_3}{3}\\
0\\
\frac{2ikt_3}{3}
\end{array}$

 $\mathcal{A}_{1}^{\#1} + \alpha \beta$ $\mathcal{A}_{1}^{\#2} + \alpha \beta$ $f_{1}^{\#1} + \alpha \beta$ $\mathcal{A}_{1}^{\#1} + \alpha$ $\mathcal{A}_{1}^{\#2} + \alpha$ $f_{1}^{\#1} + \alpha$ $f_{1}^{\#2} + \alpha$

0 0 0

 $\sigma_{1}^{\#_{1}} \, \dag^{\alpha}$

 $\tau_1^{\#1} + ^{lphaeta}$

 $\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$ $\frac{9k^2r_3-4t_3}{3(k+2k^3)^2r_3t_3}$

 $\sigma_{1}^{\#2} + \alpha$ $\tau_{1}^{\#1} + \alpha$ $\tau_{1}^{\#2} + \alpha$

	Source	80(3)	$\tau_{0}^{\#2} == 0$	$ au_{0}^{\#1} - 2i$	$\tau_1^{\#2\alpha}$ +	$\tau_1^{\#1}{}^{\alpha}=$	$t_1^{\#1}\alpha\beta$	
Ма	ıssi	ve	an	d n	nas	sles	SS S	pec

ctra

	Massive particle			
?	Pole residue:	$-\frac{1}{r_2} > 0$		
$J^P = 0^-$	Polarisations:	1		
k^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$		
?	Spin:	0		
	Parity:	Odd		
	Parity:	Odd		

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$