Course	Thing	Explanation	Date	Important	Index
MA1521	Precise Definition of limit	$\forall \epsilon$ >0, $\exists \delta \epsilon$ >0 st f(x)-L < ϵ whenever 0< x-a < $\delta \epsilon$	18/08/2021	Important	43
MA1521	Composite limit	$\lim[x \rightarrow a]f(g(x)) = f(\lim[x \rightarrow a]g(x)).$	18/08/2021		44
MA1521	Continuous functions	A function is continuous on an interval if it is continuous at every number in the interval.	18/08/2021		45
MA1521	Limit laws	Preserved under addition, multiplication, division, exponentiation	18/08/2021		46
MA1521	Prove continuous	$\lim[h\to 0]f(x+h) = f(x)$	25/08/2021		86
MA1521	Prove differentiable	$\lim_{h\to 0} (f(x+h)-f(x))/h$	25/08/2021		87
		If f continuous in interval, then it contains an absolute max and min value; so there are numbers in the interval and the function is between the max	20/03/2021		
MA1521	Extreme Value Theorem	and min for every other in the interval	27/08/2021	Important	99
MA1521	First Derivative Theorem	f'(x) = 0 at the max or min value	27/08/2021		100
MA1521	Rolle's theorem	If f continuous and differentiable and $f(a) = f(b)$, then $\exists c$ such that $f^{-1}(c) = 0$	01/09/2021	Important	135
MA1521	Mean Value Theorem	If f continuous and differentiable, then $\exists c f^{-1}(c) = (f(b)-f(a))/(b-a)$	01/09/2021	Important	136
MA1521	Cauchy Mean Value Theorem	if f and g continuous and differentiable, then $\exists c f^{-1}(c)/g(c) = (f(b)-f(a))/(g(b)-g(a))$	01/09/2021		137
MA1521	Riemann Sum	$\sum f(c)(\text{size of interval})$	03/09/2021		137
		Instead of comparing by inequality, you can take the quotient of the two limits to be tested; If the new limit is not zero or ∞ , then the two smaller limits are both convergent or both divergent; $\lim \sum f(x) = \lim (f(x) / g(x)) \Rightarrow \text{if zero or } \infty, \text{ then}$			
MA1521	Limit comparison test	nature of $f(x)$ is the nature of $g(x)$	06/10/2021		262
MA1521	Comparison test	$\lim \sum f(x) \Rightarrow$ compare the size of $f(x)$ vs $g(x) \Rightarrow$ can corrale the $f(x)$ using the nature of $g(x)$	06/10/2021		263
MA1521	Absolute convergence	$\sum f(x) \Rightarrow \sum f(x)$	06/10/2021		264
MA1521	Conditionally convergent	lim of odd terms = lim of even terms = lim	06/10/2021		266
	, c	If the terms > 0 and have upper bound, then limit is the upper bound; If the terms < 0 and have lower bound, then limit is lower bound			267
MA1521	Monotonic sequence theorem	$\sum f(x) \approx [f(x)]dx \Rightarrow \text{ the integral to } \infty \text{ will decide}$	06/10/2021		207
MA1521	Integral test	whether the sum is convergent or divergent	06/10/2021		268
		lim a□-₁/a□ = L; L < 1 ⇒ absolutely convergent; L > 1 or infinite ⇒ divergent;			
MA1521	Ratio test	L = 1 ⇒ inconclusive	06/10/2021		269
MA1521	Root test	lim(°√a□) = L; L < 1 ⇒ absolutely convergent; L > 1 or infinite ⇒ divergent; L = 1 ⇒ inconclusive	06/10/2021		270
		$\Sigma \subset (x - a)^k$ is a representation about the center a; Radius of convergence = $R = \lim_{C \to a} C \to a $ = $\lim_{C \to a} C \to a $ $ x - a < R \to a$ convergent;			
MA1521	Power series	Can differentiate the power series	08/10/2021	Important	310
MA1521	Radius of convergence	Radius of convergence is the reciprocal of the limits gotten through Ratio and Root test	08/10/2021	Important	311
MA1521	Open/closed region	Closed region contains all boundary points; Open region contains only interior points	08/10/2021		312
MA1521	Derivative of inverse function	$f^{-1}(x)' = 1 / f'(f^{-1}(x))$	09/10/2021	Important	331
MASOA	Tring identifies	sec ² x = 1 + tan ² x; csc ² x = 1 + cot ² x; csc ² x = 2cos ² x - 1 = 1 - 2sin ² x; sinAcosB = ½[sin(A-B)+sin(A+B)]; sinAsinB = ½[cos(A-B)-cos(A+B)]; cosAcosB = ½[cos(A-B)+cos(A+B)]; (tanx)' = sec ² x; (cotx)' = -cotxcscx; (secx)' = tanxsecx; (secx)' = -cotxcscx; (sin ⁻¹ x)' = 1/√(1-x ²); (cos ⁻¹ x)' = -1/√(1-x ²); (tan ⁻¹ x)' = 1/(1+x ²); (sec ⁻¹ x)' = -1/(x √(x ² -1)); (sec ⁻¹ x)' = -1/(x √(x ² -1)); [sec ⁻¹ x)' = -1/(x √(x ² -1)); [csc(x)dx = ln(csc(x) + cot(x)); [cot(x)dx = ln(sec(x) + tan(x)); [1/(a ² -x ²)dx = ln(x+x/a-x)/2a; [1/√(a ² -x ²)dx = sin ⁻¹ (x/a);	00/40/2004	Important	220
MA1521	Trigo identities	$\int 1/\sqrt{(x^2 \pm a^2)} dx = \ln(x + \sqrt{(x^2 \pm a^2)});$	09/10/2021	Important	332
		\exists c s.t. $f(c) = \int f(x)dx / (b-a)$; There is a value $f(c)$ that equals to the average y of			