

- The overall system cost is high
- A large sized PCB is required for assembling all the components
- Overall product design requires more time
- Physical size of the product is big
- A discrete components are used, the system is not reliable

- As the peripherals are integrated into a single chip, the overall system cost is very less
- The product is of small size compared to micro processor based system
- The system design now requires very little efforts
- As the peripherals are integrated with a microprocessor the system is more reliable
- Though microcontroller may have on chip ROM,RAM and I/O ports, addition ROM, RAM I/O ports may be interfaced externally if required
- On chip ROM provide a software security

- meeting the computing needs of the task efficiently and cost effectively
 - speed, the amount of ROM and RAM, the number of I/O ports and timers, size, packaging, power consumption
 - easy to upgrade
 - cost per unit
 - Noise of environment
- availability of software development tools
 - assemblers, debuggers, C compilers, emulator, simulator, technical support
- wide availability and reliable sources of the microcontrollers

Comparison of the 8051 Family Members

- ROM type
 - 8031 no ROM
 - 80xx mask ROM
 - 87xx *EPROM*
 - 89xx Flash EEPROM
- 89xx
 - **8951**
 - 8952
 - 8953
 - **8955**
 - 898252
 - 891051
 - *892051*
- Example (AT89C51,AT89LV51)
 - AT=ATMEL(Manufacture)
 - C = CMOS technology
 - LV= Low Power(3.0v)

Comparison some of the 8051 Family Members

	ROM	RAM	Timer
8051	4k	128	2
8031	-	128	2
8751	4k eprom	128	2
8052	8krom	256	3
8032	-	256	3
8752	8k eprom	256	3

- 4K bytes internal ROM
- 128 bytes internal RAM
- Four 8-bit I/O ports (P0 P3).
- Two 16-bit timers/counters
- One serial interface
- 64k external memory for code
- 64k external memory for data Microcontroller
- 210 bit addressable

The basic 8051 Core

- 8-bit CPU optimized for control applications
- Capability for single bit Boolean operations.
- Supports up to 64K of program memory.
- Supports up to 64K of data memory.
- 4 K bytes of on-chip program memory.
 - Newer devices provide more.
- 128 or 256 bytes of on-chip data RAM
- Four 8 bit ports.
- Two 16-bit timer/counters
- UART
- Interrupts
- On-chip clock oscillator

Block Diagram

8051 Internal Block Diagram

8051 Schematic Pin out

Port 0 with Pull-Up Resistors

One of the most useful features of the 8051 is that it contains four I/O ports (P0 - P3)

Each port can be used as input or output (bi-direction)

- Port 0
 pins 32-39 (P0.0 ~ P0.7)
 - 8-bit R/W GeneralPurpose I/O
 - Or acts as a multiplexed low byte address and data bus for external memory design

P0.7	32	- AD7
P0.6 P0.5 P0.4	34 35 36	AD6AD5AD4
P0.3 P0.2	37 38	- AD3 - AD2
P0.1 P0.0	39	- AD1 - AD0

- Port 1 (pins 1-8) (P1.0 ~ P1.7)
 - Only 8-bit R/W -General Purpose I/O

P1.7	8
P1.7	7
P1.5	6
P1.4	5
P1.3	4
P1.2	3
P1.1	2
P1.0	
125.5 (25.502.55)	

- *Port 2*
- (pins 21-28 (P2.0 ~ P2.7)
 - 8-bit R/W -General PurposeI/O
 - Or high byte of the address bus for external memory design

P2.7	28	A 15
	27	A15
P2.6	26	A14
P2.5	25	A13
P2.4	24	A12
P2.3	23	A11
P2.2	22	A10
P2.1		A9
P2.0	21	A8

Port 3 (pins 10-17 (P3.0 ~ P3.7)

- General Purpose I/O
- if not using any of the internal peripherals
 (timers) or external interrupts.

RD - WR - T1 - T0 - INT1 - TVD	17 16 15 14 13 12	P3.7 P3.6 P3.5 P3.4 P3.3 P3.2
INTO –	12	P3.2
TXD –	11	P3.1
RXD –	10	P3.0

Port 3 Alternate Functions

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INT0 (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	RD (external data memory read strobe)

- ALE Address latch enable to select valid address
- EA/V_{pp} External access enable
 - EA-0 execute program in external memory
 - EA-1 execute program in internal memory

Vpp it receives 21 V for on chip EPROM

PSEN Program store enable

store to read the external program memory

A	
В	
R0	DPTR
R1	21110
R2	PC
R3	
R4	
R5	
R6	
R7	

DPH DPL

PC

Some 8051 16-bit Register

Some 8-bitt Registers of the 8051

Parallel I/O Ports

- Each port can be input or output
- Direction is set in Special Function Registers

Figure 6.4 8XC51FX port bit latches and I/O buffers. (a) Port 0 bit. (b) Port 1 bit. (c) Port 2 bit. (d) Port 3 bit. (Redrawn with permission of Intel.)

DPTR

• The data pointer consists of a high byte(DPH) and a low byte (DPL). Its function is to hold a 16 bit address. It may be manipulated as a 16 bit data register or two independent 8 bit register. It serves as a base register in indirect jumps, lookup table instructions and external data transfer.

CY	AC	F0	RS1	RS0	OV	P

RS0	RS1	BANK SELECTION
0	0	00H – 07H BANK0
0	1	08H – 0FH BANK 1
1	0	10H – 17H BANK2
1	1	18H – 1FH BANK 3

SJCET

The register used to access the stack is called SP (stack pointer) register.

The stack pointer in the 8051 is only 8 bits wide, which means that it can take value 00 to FFH. When 8051 powered up, the SP register contains value 07.

7FH	
	Scratch pad RAM
30H	
2FH	Bit-Addressable RAM
20H	
1FH 18H	Register Bank 3
17H 10H	Register Bank 2
0FH 08H	Stack) Register Bank 1(
07Н 00Н	Register Bank 0

Memory Organization

- The 8051 memory organization is rather complex.
- The 8051 has separate address spaces for Program Memory, Data Memory, and external RAM.
- This is refereed to as a Harvard architecture.
 - The early Mark I (1944) computer developed at Harvard was of this type of architecture.
 - Von Neumann at Princeton pointed out that it was not necessary to put instructions and data in separate memories.
 - Most machines have been Princeton architecture.
 - Recently Harvard architecture has been employed to help alleviate the memory bottleneck.

Both program memory and external data memory are 8 bits wide and use 16 bits of address. The internal data memory is accessed using an 8-bit address.

Since the same address can refer to different locations the specific location is determined by the type of instruction.

- May consist of internal or external program memory. The amount of internal program memory varies depending on the device.
 - 4K bytes typical in older devices.
 - The Silicon Labs C8051F310 contains 16K of flash memory for programs.
 - The Silicon Labs C8051F020 which is on the University Daughter Card (UDC) contains 4K bytes of program memory.
- The MOVC instruction can be use to read code memory.
- To reference code memory I will use the notation:

CM = CM(0,...,FFFFH) = CM(0,...,FFFFH; 7,...,0)

• This notation can be used to specify particular bits and bytes of code memory.

For example CM(1234H) refers to the byte of code memory at address 1234H. CM(1234H;7) refers to the most significant bit in that address.

Figure 1.4 Program Memory Organization (Read Only)

MOVC A,@A + DPTR ;A
$$\leftarrow$$
 CM(A+DPTR)
MOVC A,@A + PC ;A \leftarrow CM(A+PC)

CM
$$PC = PC(15..0)$$

 $DPTR = DPTR(15..0)$

External Memory

Supports up to 64K bytes external memory.

- XM(0000,...,FFFF)
 - = XM(0000,...,FFFFF; 7,...,0)
- Accessed by using the MOVX instruction.
- On the original using external memory reduces number of available I/O ports.
- On some new devices this is not the case.
 - For example in C8051F020 64K bytes of external memory has been included in the chip.
 - The 4 standard 8051 ports are available and three additional ports have been added.

```
MOVX A,@DPTR ;A \leftarrow XM(DPTR)
```

MOVX A,@Rn ;A \leftarrow XM(P2|Rn)

MOVX @DPTR,A ; $XM(DPTR) \leftarrow A$

MOVX @Rn,A $;XM(P2|Rn) \leftarrow A$

Data Memory

The original 8051 had 128 bytes of on-chip data RAM.

- This memory includes 4 banks of general purpose registers at DM(00..1F)
- Only one bank can be active at a time.
- If all four banks are used, DM(20..7F) is available for program data.
- DM(20..2F) is bit addressable as BADM(00..7F).
- DM(80,...,FF) contains the special function registers such as I/O ports, timers, UART, etc.
 - Some of these are bit addressable using BADM(80..FF)
- On newer versions of the 8051, DM(80,...,FF) is also use as data memory. Thus, the special functions registers and data memory occupy the same address space. Which is accessed is determined by the instruction being used.

	Byte Address		Bit Address						
	7F								
					_				
					Gen Purp				
					RA				
	30								
В	2F	7F	7E	7D	7C	7B	7A	79	78
i	2E	77	76	75	74	73	72	71	70
t	2D	6F	6E	6D	6C	6B	6A	69	68
	2C	67	66	65	64	63	62	61	60
Α	2B	5F	5E	5D	5C	5B	5A	59	58
d	2A	57	56	55	54	53	52	51	50
d	29	4F	4E	4D	4C	4 B	4A	49	48
r	28	47	46	45	44	43	42	41	40
е	27	3F	3E	3D	3C	3B	ЗА	39	38
s	26	37	36	35	34	33	32	31	30
s	25	2F	2E	2D	2C	2B	2A	29	28
а	24	27	26	25	24	23	22	21	20
b	23	1F	1E	1D	1C	1B	1A	19	18
1	22	17	16	15	14	13	12	11	10
е	21	0F	0E	0D	0C	0B	0A	09	08
	20	07	06	05	04	03	02	01	00
	1F				Ban	k 3			
	18				Dan	ik 5			
	17	Pont 2							
	10	Bank 2							
	0F				Ran	k 1			
	08	Bank 1							
	07		Defa	ılt Rec	nister F	Rank f	or R0	– R7	
	00		Default Register Bank for R0 – R7						

Byte Address	Bit Address								
FF									
F0	F7	F6	F5	F4	F3	F2	F1	F0	В
E0	E7	E6	E5	E4	E3	E2	E1	E0	ACC
D0	D7	D6	D5	D4	D3	D2	-	D0	PSW
B8	-	-	-	BC	BB	BA	В9	В8	IP
			5.5	- ·			5.4		
B0	В7	B6	B5	B4	В3	B2	B1	В0	P3
4.0	^ -			4.0	۸۵	^ ^	40	4.0	
A8	AF	-	-	AC	AB	AA	A9	A8	ΙE
A0	A7	A6	A5	A4	А3	A2	A1	A0	P2
AU	Ai	Ao	AS	A4	AS	AZ	АТ	AU	F2
99			Not	bit-ad	dresss	ahle			SBUF
98	9F	96	95	94	93	92	91	90	SCON
	-								
90	97	96	95	94	93	92	91	90	P1
								•	
8D			Not	bit-ad	dressa	able			TH1
8C			Not	bit-ad	dressa	able			TH0
8B			Not	bit-ad	dressa	able			TL1
8A			Not	bit-ad	dressa	able			TL0
89			Not	bit-ad	dressa	able			TMOD
88	8F	8E	8D	8C	8B	8A	89	88	TCON
87			Not	bit-ad	dressa	able			PCON
83		Not bit-addressable							DPH
82	Not bit-addressable						DPL		
81				bit-ad					SP
80	87	86	85	84	83	82	81	80	P0

Data Memory (DM)

Table 1

Symbol	Name	Address
*ACC	Accumulator	0E0H
*B	B Register	0F0H
*PSW	Program Status Word	0D0H
SP	Stack Pointer	81H
DPTR	Data Pointer 2 Bytes	
DPL	Low Byte	82H
DPH	High Byte	83H
*P0	Port 0	80H
*P1	Port 1	90H
*P2	Port 2	0A0H
*P3	Port 3	овон
*IP	Interrupt Priority Control	0B8H
*IE	Interrupt Enable Control	0A8H
TMOD	Timer/Counter Mode Control	89H
*TCON	Timer/Counter Control	88H
*+T2CON	Timer/Counter 2 Control	0C8H
TH0	Timer/Counter 0 High Byte	8CH
TL0	Timer/Counter 0 Low Byte	BAH
TH1	Timer/Counter 1 High Byte	8DH
TL1	Timer/Counter 1 Low Byte	8BH
+TH2	Timer/Counter 2 High Byte	0CDH
+TL2	Timer/Counter 2 Low Byte	0CCH
+RCAP2H	T/C 2 Capture Reg. High Byte	0CBH
+RCAP2L	T/C 2 Capture Reg. Low Byte	0CAH
*SCON	Serial Control	98H
SBUF	Serial Data Buffer	99H
PCON	Power Control	87H

^{* =} Bit addressable + = 8052 only

Timer/Counter Mode Control Register TMOD

A timer is a counter that is increased with every time an instruction is executed e.g. 8051 with 12MHz increases a counter every 1.000 µs

GATE	T/C	M1	M0	GATE	T/C	M1	M0
Timer/Counter1			Timer/Counter0				

General 8051 has 3 timer:

− 2 16-bit timer

1 16-bit timer with extra-functionality (introduced with the 8052)

Timer/Counter Control Register TCON

TF1	TR1	TF0	TR0	IE1	IT1	IE0	тто
-----	-----	-----	-----	-----	-----	-----	-----

Uses of Timers & Counters

- Interval Timing
- Periodic event timing
- Time base for measurements
- Event Counting
- -Baud Rate Generation

8051 Timers

- 2 timers (Timer 0 and Timer 1)
- 16-bit timers (65,535) max
- Flag is set when the timer overflows
- -Timers can be based on internal clock (OSC/6) or from external source (counter mode).
- TMOD Timer/Counter mode register
- TCON Timer/Counter control register

- Gate: When set, timer only runs while INT(0,1) is high.
 - C/T: Counter/Timer select bit.
 - M1: Mode bit 1.
 - M0: Mode bit 0.

M1	M0	MODE
0	0	13-bit timer mode
0	1	16-bit timer mode
1	0	8-bit auto-reload mode
1	1	split mode
	ı	

- TF: Overflow flag
 - Set by hardware on Timer/Counter overflow
 - Cleared by hardware when processor vectors to interrupt routine
- TR: Run control bit
 - Set/Cleared by software to turn Timer/Counter on/off
- IE: Interrupt Edge flag
 - Set by hardware when external interrupt edge detected
 - Cleared when interrupt processed
- IT: Interrupt Type control bit
 - Set/Cleared by software to specify falling edge/low level triggered external interrupts
 - TF1: Timer 1 overflow flag. TR1: Timer 1 run control bit.
 - TF0: Timer 0 overflag. TR0: Timer 0 run control bit.
 - IE1: External interrupt 1 edge flag. IT1: External interrupt 1 type flag.
 - IE0: External interrupt 0 edge flag. IT0: External interrupt 0 type flag.

External clock

Timer Modes

- 0: 13 bit timer

- 1: 16-bit timer

- 2: 8-Bit auto reload

-3: Split timer mode

Mode 0: 13-Bit Timer

- Lower byte (TL0/TL1) + 5 bits of upper bytes (TH0/TH1).
- Backward compatible to the 8048
- Not generally used

Mode 1: 16-bit

- All 16 bits of the timer (TH0/TL0, TH1,TL1) are used.
- Maximum count is 65,536
- -At 12Mhz, maximum interval is 65536 microseconds or 65.536 milliseconds
- TF0 must be reset after each overflow
- THx / TLx must be manually reloaded after each overflow.

Mode 2: 8-bit Auto Reload

- Only the lower byte (TLx) is used for counting.
- Upper byte (THx) holds the value to reload into TLx after an overflow.
- TFx must be manually cleared.
- Maximum count is 256
- Maximum interval is 256 Microseconds or .256 milliseconds

Mode 3- Split Timer

- Splits Timer 0 into two 8-bit timers
- TL0 sets TF0
- TH0 sets TF1
- Timer 1 is available for other 3 modes, but the TF1 is not available.

Timer Delay = Delay Value × Timer Clock Cycle Duration

Delay Value = how many counts before register(s) roll over

Timer Clock Cycle Duration = 6/oscillator frequency

Delay Value = Maximum Register Count - Timer Reload Value

Maximum Register Count = 65535