

J1017 U.S. PRO
10/008796
11/13/01

Europäisches Patentamt
European Patent Office
Offic européen des brevets

(11) Veröffentlichungsnummer:

0 023 662
A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 80104288.8

(51) Int. Cl.³: **G 03 F 7/08**

(22) Anmeldetag: 21.07.80

(30) Priorität: 01.08.79 DE 2931297

(71) Anmelder: SIEMENS AKTIENGESELLSCHAFT Berlin und München, Postfach 22 02 61, D-8000 München 22 (DE)

(43) Veröffentlichungstag der Anmeldung: 11.02.81
Patentblatt 81/6

(72) Erfinder: Ahne, Hellmut, Dr., Heidestrasse 6, D-8551 Röttenbach (DE)
Erfinder: Rubner, Roland, Dr., Buchenring 15, D-8551 Röttenbach (DE)
Erfinder: Kühn, Eberhard, Bergstrasse 32, D-8551 Hemhofen (DE)

(84) Benannte Vertragsstaaten: AT BE CH DE FR GB IT LI NL SE

(54) Wärmebeständige Positivresists und Verfahren zur Herstellung wärmebeständiger Reliefstrukturen.

(57) Die Erfindung betrifft wärmebeständige Positivresists auf der Basis von Vorstufen hochwärmebeständiger Polymerer und lichtempfindlicher Diazochinonen sowie ein Verfahren zur Herstellung wärmebeständiger Reliefstrukturen aus derartigen Positivresists. Die Positivresists der genannten Art sollen derart ausgestaltet werden, daß sie sowohl wärmebeständig als auch lagerfähig und gut verarbeitbar sind. Die Erfindung sieht dazu die Verwendung von oligomeren und/oder polymeren Vorstufen von Polyoxazolen in Form von Polykondensationsprodukten aus aromatischen und/oder heterocyclischen Dihydroxydiaminoverbindungen und Dicarbonsäurechloriden oder -estern vor. Die erfindungsgemäßen Positivresists eignen sich insbesondere für Anwendungen in der Mikroelektronik.

EP 0 023 662 A1

SIEMENS AKTIENGESELLSCHAFT
Berlin und München

Unser Zeichen
VPA 79 P 7535 EUR.

5 Wärmebeständige Positivresists und Verfahren zur Herstellung wärmebeständiger Reliefstrukturen

- Die Erfindung betrifft wärmebeständige Positivresists auf der Basis von Vorstufen hochwärmebeständiger Polymerer und lichtempfindlichen Diazochinonen sowie ein Verfahren zur Herstellung wärmebeständiger Reliefstrukturen aus derartigen Positivresists.
- Wärme- bzw. hochwärmebeständige Photoresists werden insbesondere für die modernen Verfahren der Strukturierung und Dotierung von Halbleitern, d.h. für Trockenätzprozesse, wie Plasmaätzen oder reaktives Ionenätzen, und für Ionenimplantation, benötigt. Die Resistmaterialien bzw. die entsprechenden Reliefstrukturen dürfen sich dabei bei den hohen Temperaturen nicht zersetzen, und es dürfen sich auch keine Abweichungen in den Abmessungen der Reliefstrukturen, beispielsweise durch Erweichung oder Verzerrung, ergeben.

- 2 - VPA 79 P 7535 EUR

- Herkömmliche Positivresists, wie diejenigen auf der Basis von Novolaken, entsprechen den erhöhten thermischen Anforderungen nur zum Teil, d.h. sie besitzen eine begrenzte Wärmeformbeständigkeit. Damit wird aber
- 5 die Verfahrenssicherheit beeinträchtigt und die Verfahrensvorteile, wie Kantensteilheit, Feinstrukturierung, hohe Ätz- und Dotierungsrate, werden nachteilig beeinflußt.
- 10 Aus den deutschen Patentschriften 23 08 830, 24 37 348, 24 37 368, 24 37 369, 24 37 383, 24 37 397, 24 37 413 und 24 37 422 sind wärmebeständige Negativresists bekannt. Diese negativ arbeitenden Photoresists eignen sich zwar in hervorragender Weise zur Herstellung hochwärmebeständiger Reliefstrukturen, sie unterliegen aber
- 15 den Nachteilen, die den Negativresists eigen sind. Im Vergleich zu Negativresists zeichnen sich nämlich Positivresists insbesondere durch hohes Auflösungsvermögen, kurze Belichtungszeiten, die Verwendbarkeit
- 20 wäßrig-alkalischer Entwickler, was ökologisch und wirtschaftlich von Bedeutung ist, und durch die Tatsache aus, daß die Anwesenheit von Sauerstoff keinen Einfluß auf die Belichtungszeit hat.
- 25 Aus der deutschen Offenlegungsschrift 26 31 535 ist ein wärmebeständiger Positivresist bekannt, der ein lichtempfindliches o-Chinondiazid (o-Diazochinon) oder o-Naphthochinondiazid (o-Diazonaphthochinon) und eine Polyamidocarbonsäure in Form eines Polykondensations-
- 30 produktes aus einem aromatischen Dianhydrid und einer aromatischen Diaminoverbindung umfaßt; die Polyamido-carbonsäure, in der genannten Offenlegungsschrift als "Polyamicsäure" bezeichnet, stellt dabei eine Polymer-Vorstufe dar und zwar die (polymere) Vorstufe eines
- 35 Polyimids.

Es hat sich nun aber gezeigt, daß die bekannte Positiv-resist-Zusammensetzung nur begrenzt lagerfähig ist, weil die Diazochinone in Gegenwart von Säuren nur eine sehr begrenzte Lagerstabilität aufweisen. Darüber hinaus ist auch die Stabilität des genannten Photoresists gegenüber alkalischen Ätzlösungen ungenügend. Ferner sind die Löslichkeitsunterschiede zwischen den belichteten und unbelichteten Teilen des Photoresists relativ gering.

10

Aufgabe der Erfindung ist es, Vorstufen von Polymeren enthaltende Positivresists der eingangs genannten Art anzugeben, die sowohl wärmebeständig als auch lagerfähig und gut verarbeitbar sind.

15

Dies wird erfindungsgemäß dadurch erreicht, daß die Positivresists oligomere und/oder polymere Vorstufen von Polyoxyazolen in Form von Polykondensationsprodukten aus aromatischen und/oder heterocyclischen Dihydroxy-diaminoverbindungen und Dicarbonsäurechloriden oder -estern enthalten.

Die erfindungsgemäßen Positivresists sind bis zu Temperaturen von 550°C beständig. Sie werden somit auch den erhöhten Anforderungen gerecht, die bei modernen Trockenätztechniken und Ionenimplantationsverfahren gestellt werden. Diese Positivresists sind weiter für alkalische Naßätzprozesse einsetzbar. Sie können ferner sowohl in Form einer Resistlösung als auch als Trocken-resist eingesetzt werden, d.h. unter Verwendung eines Trägermaterials, beispielsweise in Form einer Folie. Die Resist eignen sich insbesondere für Anwendungen in der Mikroelektronik (Herstellung feinstrukturierter Muster).

- 4 - VPA 79 P 7535 EUR

Den erfindungsgemäßen Positivresists können die bei Positivresists üblichen Zusätze, wie Stabilisatoren, Farbstoffe bzw. Sensibilisatoren und Haftvermittler, zugegeben werden.

5

Die in den erfindungsgemäßen Positivresists enthaltenen Vorstufen von Polyoxazolen sind Polyamidoalkohole, vorzugsweise Polyamidophenole. Diese Vorstufen weisen bevorzugt folgende Struktur auf:

10

15

20

wobei n eine Zahl von 2 bis etwa 100 und m=0 oder 1 ist.
Die Gruppierung R kann folgende Bedeutung haben:

25

30

35

Dabei ist $m = 0$ oder 1 und X bedeutet:

Für die weiteren Reste gilt:

$Z = H$ oder Alkyl mit 1 bis 6 Kohlenstoffatomen,

$Z^1 = \text{Alkyl mit 1 bis 10 Kohlenstoffatomen oder Aryl, und}$

$Z^2 = \text{Aryl oder Heteroaryl.}$

Dabei gilt: $q = 2$ bis 14 und $r = 2$ bis 18 ; Z^1 und Z^2
25 sind wie vorstehend definiert.

Die Gruppierung R^1 kann folgende Bedeutung haben, wobei
H-Atome auch durch Cl oder Br substituiert sein können:

$-(\text{CH}_2)_q-$, $-(\text{CF}_2)_r-$,

und

Dabei gilt: $m = 0$ oder 1 ;

$q = 2$ bis 14 ;

$r = 2$ bis 18 .

10 X hat die vorstehend angegebene Bedeutung.

Die oligomeren bzw. polymeren Polyoxazol-Vorstufen werden, wie bereits ausgeführt, aus aromatischen oder heterocyclischen hydroxylgruppenhaltigen Diaminen und
 15 Dicarbonsäurechloriden oder -estern hergestellt. Vor-
zugsweise werden aromatische Diamine und aromatische
Dicarbonsäurederivate eingesetzt, wobei Diamine mit
phenolischen OH-Gruppen bevorzugt werden (Diamino-
diphenole). Besonders geeignete Diaminodiphenole sind
 20 3.3'-Dihydroxybenzidin und 3.3'-Dihydroxy-4.4'-diamino-
diphenyläther, besonders geeignete Carbonsäurederivate
Isophthalsäuredichlorid und Terephthalsäuredichlorid.

Die Polyoxazol-Vorstufen können durch eine thermische
 25 Behandlung relativ einfach in hochwärmestabile Poly-
oxazole überführt werden. Die Polyoxazole sind in Luft
und Stickstoff bis zu Temperaturen von etwa 550°C
beständig und weisen eine ausgezeichnete chemische
Resistenz gegenüber Lösungsmitteln, Säuren und insbe-
 30 sondere Laugen auf.

Lichtempfindliche Diazochinone (α -Chinon- und
 α -Naphthochinondiazide) sind beispielsweise aus folgen-
den US-Patentschriften bekannt: 2 767 092, 2 772 972,
 35 2 797 213, 3 046 118, 3 106 465, 3 148 983 und

- 8 - VPA 79 P 7535 EUR

3 669 658 (vgl. dazu auch: W.S. DeForest
 "Photoresist", McGraw-Hill Book Company, New York,
 1975, S. 48 bis 55).

- 5 Bei den erfindungsgemäßen Positivresists finden besonders bevorzugt solche Diazochinone Verwendung, die in wäßrigen alkalischen Lösungen unlöslich sind, d.h. stark hydrophobe Eigenschaften aufweisen, und die nach der Belichtung in wäßrigen alkalischen Entwicklern sehr 10 stark löslich sind. Die Diazochinone sollen darüber hinaus gut verträglich mit der oligomeren bzw. polymeren Polyoxazol-Vorstufe sein und insbesondere nicht aus der Resistzusammensetzung auskristallisieren. Zu den 15 besonders bevorzugten Diazochinonen mit den genannten Eigenschaften zählen beispielsweise folgende Verbindungen:

N-Dehydroabietyl-6-diazo-5(6)-oxo-1-naphthalinsulfonamid

und der Bis-naphthochinon-(1.2)-diazid-(2)-5-sulfonsäureester von $\beta.\beta'$ -Bis-(4-hydroxyphenyl)-propan

Weitere Verbindungen sind beispielsweise:

N-Dehydroabietyl-3-diazo-4(3)-oxo-1-naphthalinsulfonamid,

N-Dehydroabietyl-5.6.7.8-tetrahydro-4-diazo-3(4)-oxo-

5 2-naphthalinsulfonamid und

N-Dextropimaryl-3-diazo-4-oxo-1.5-cyclohexadien-1-sulfonamid.

Zur Herstellung wärmebeständiger Reliefstrukturen wird
10 ein erfindungsgemäßer Positivresist in Form einer Schicht oder Folie auf ein Substrat aufgebracht und mit aktinischem Licht durch eine Maske belichtet oder durch Führen eines Licht-, Elektronen- oder Ionenstrahls bestrahlt. Anschließend werden die belichteten bzw.
15 bestrahlten Schicht- oder Folienteile herausgelöst oder abgezogen und die dabei erhaltenen Reliefstrukturen werden dann getempert.

Der Photoresist kann vorteilhaft in einem organischen
20 Lösungsmittel gelöst auf das Substrat aufgebracht werden. Zur Herstellung dieser Resistlösung kann das Diazochinon mit einer Lösung der oligomeren oder polymeren Vorstufe in N-Methylpyrrolidon, Dimethylformamid, Dimethylacetamid oder einem ähnlichen Lösungsmittel als
25 Festsubstanz oder auch als Lösung in einem der genannten Lösungsmittel vermischt werden. Vorzugsweise wird als Lösungsmittel N-Methylpyrrolidon verwendet. Das Gewichtsverhältnis von Oligomer bzw. Prepolymer zu Diazochinon beträgt dabei im allgemeinen 1:20 bis 20:1,
30 vorzugsweise 1:10 bis 10:1.

Die Konzentration der Resistlösung kann so eingestellt werden, daß mit bekannten Beschichtungsverfahren, wie Schleudern, Tauchen, Sprühen, Bürsten oder Rollen,
35 Schichtstärken von 0,01 µm bis einige 100 µm erzeugt

- 10 - VPA 79 P 7535 EUR

werden können. Es hat sich gezeigt, daß beispielsweise beim Schleuderbeschichten 300 bis 10 000 Umdrehungen pro Minute für die Dauer von 1 bis 100 s geeignet sind, um eine gleichmäßige und gute Oberflächenqualität zu erzielen. Die auf das Substrat, das vorzugsweise aus Glas, Metall, Kunststoff oder halbleitendem Material besteht, aufgebrachte Photoresistschicht kann bei Raumtemperatur oder bei erhöhter Temperatur, vorzugsweise bei einer Temperatur von 50 bis 120°C, vom Lösungsmittel befreit werden; dabei kann auch im Vakuum gearbeitet werden.

Zur Erzielung eines ausreichenden Löslichkeitsunterschiedes zwischen den bestrahlten und den nicht bestrahlten Schicht- bzw. Folienteilen genügen bei den erfindungsgemäßen Positivresists - bei der Verwendung einer 500 W-Quecksilberhochstdrucklampe - in Abhängigkeit von der verwendeten Resistzusammensetzung und der Schichtstärke Belichtungszeiten zwischen 1 und 600 s.

Nach dem Belichten werden die belichteten Teile der Schicht bzw. Folie mit einem wäßrig-alkalischen Entwickler herausgelöst. Der Entwickler kann Alkalimetallsalze von starken und schwachen Säuren, wie Natriumcarbonat und Natriumphosphat, aber auch Natriumhydroxid und organische Basen, wie Piperidin und Triäthanolamin, sowie oberflächenaktive Stoffe enthalten. Im allgemeinen enthält der Entwickler etwa 0,01 bis 25 % einer vorzugsweise organischen Base. Die Entwicklungszeit wird empirisch ermittelt und beträgt etwa 5 bis 190 s bei Raumtemperatur.

Mittels der erfindungsgemäßen Positivresists werden konturenscharfe Bilder, d.h. Reliefstrukturen, erhalten, die durch Temperung in hochwärmebeständige,

- 11 - VPA 79 P 7535 EUR

gegenüber Säuren und insbesondere Laugen äußerst resistente Polymere umgewandelt werden. Im allgemeinen können Temperaturen von 220 bis 500°C gewählt werden, vorzugsweise wird bei Temperaturen von 300 bis 400°C

- 5 getempert. Die Temperzeit beträgt im allgemeinen eine halbe Stunde, wobei keine Verfärbung, sowohl unter Stickstoff als auch an Luft, zu beobachten ist. Die Kantenschärfe und die Maßgenauigkeit der Reliefstrukturen werden durch die Temperung praktisch nicht beein-
10 trägt. Darüber hinaus bleibt die gute Oberflächenqualität der Reliefstrukturen trotz eines beim Temperiern eintretenden Schichtstärkenverlustes erhalten.

Besonders bemerkenswert ist die Resistenz der erfin-
15 dungsgemäßen Photoresists gegen alkalisches Ätzen. Auf diese Weise können Strukturen auf Metallsubstrate übertragen werden oder durch Lösen einer metallischen Trägerfolie, die vorzugsweise aus Aluminium besteht, Folien bzw. strukturierte Folien hergestellt werden.

- 20 Die nach dem erfindungsgemäßen Verfahren hergestellten Reliefstrukturen können zur Herstellung von Passivierungsschichten auf Halbleiterbauelementen, von Dün- und Dickfilmschaltungen, von Lötschutzschichten auf
25 Mehrlagenschaltungen, von Isolierschichten als Bestandteil von Schichtschaltungen und von miniaturisierten Isolierschichten auf elektrisch leitenden und/ oder halbleitenden und/oder isolierenden Basismaterialien, insbesondere im Bereich der Mikroelektronik oder allge-
30 mein für die Feinstrukturierung von Substraten, Anwen- dung finden. Vorzugsweise dienen die hochwärmeständi- gen Reliefstrukturen als Masken für Naß- und Trocken- ätzprozesse, stromlose oder galvanische Metallabschei- dung und Aufdampfverfahren sowie als Masken für die
35 Ionenimplantation, darüber hinaus als Isolier- und

- 12 - VPA 79 P 7535 EUR

Schutzschichten in der Elektrotechnik. Diese Reliefstrukturen können ferner vorteilhaft als Orientierungsschichten, beispielsweise in Flüssigkristalldisplays, sowie zur Rasterung von Oberflächen, beispielsweise bei
5 Röntgenschirmen, insbesondere Röntgenbildverstärkern, verwendet werden.

Anhand von Ausführungsbeispielen soll die Erfindung noch näher erläutert werden.

10

Beispiel 1

Durch Vermischen der einzelnen Bestandteile wird eine Photoresistlösung folgender Zusammensetzung hergestellt:
15 17 Gewichtsteile einer Polybenzoxazol-Vorstufe, hergestellt aus 3,3'-Dihydroxybenzidin und Isophthalsäurechlorid (vgl.: "Polymer Letters", Vol. 2, 1964, Seite 655), 17 Gewichtsteile des Bis-naphthochinon-(1,2)-diazid-(2)-5-sulfonsäureesters von β,β -Bis-(4-hydroxyphenyl)-propan und 200 Gewichtsteile N-Methylpyrrolidon.
20

Die fertige Lösung wird durch ein 0,8 μm -Filter filtriert und auf eine Aluminiumfolie geschleudert. Bei 500 Umdrehungen/min wird eine Schichtstärke von
25 1,5 μm erhalten. Die Trockenzeit beträgt 90 min bei einer Temperatur von 60°C im Vakuum. Mit einer 500 W-Quecksilberhochstdrucklampe wird dann 5 s lang durch eine Kontaktmaske belichtet und danach 45 s mit einer 5 %igen Natriumphosphatlösung sprühentwickelt.
30 Es werden kantenscharfe Strukturen von ca. 2 μm erhalten, die beim Temperiern in Luft bei einer Temperatur von 300°C während 30 Minuten keine Farbänderung oder Beeinträchtigung der Dimensionsgenauigkeit erfahren. Nach dem Temperiern beträgt die Schichtdicke 1,3 μm , sie sinkt
35 bei weiterem halbstündigen Temperiern bei 400°C auf

- 13 - VPA 79 P 7535 EUR

0,8 μ m, ohne daß sich die Strukturen verändern. Auch durch 14stündiges Tempern bei 350°C wird die Qualität der Reliefstrukturen nicht beeinträchtigt. Die Haftung der Reliefstrukturen auf der Unterlage ist hervor-

5 ragend.

Beispiel 2

- Eine Lösung von 20 Gewichtsteilen der Polybenzoxazol-
- 10 Vorstufe gemäß Beispiel 1 und 8 Gewichtsteilen des Bis-naphthochinon-(1.2)-diazid-(2)-5-sulfonsäureesters von β,β -Bis-(4-hydroxyphenyl)-propan in 80 Volumen- teilen N-Methylpyrrolidon wird filtriert und dann bei 2000 Umdrehungen/min auf eine mit Hexamethyldisilazan
- 15 beschichtete Aluminiumfolie geschleudert. Nach 2stündigem Trocknen im Vakuum bei 60°C beträgt die Schichtstärke 13 μ m. Mit einer 500 W-Quecksilberhöchstdrucklampe wird dann 6 Minuten durch eine Kontaktmaske belichtet. Nach einer Entwicklungszeit von 2 Minuten
- 20 mit einer 10 %igen wäßrigen Natriumphosphatlösung werden konturenscharfe Reliefbilder erhalten.

Beispiel 3

- 25 Eine Lösung von 2 Gewichtsteilen der in Beispiel 1 beschriebenen Polymer-Vorstufe und 0,4 Gewichtsteilen des Diazonaphthochinons nach Beispiel 1 in 20 Volumen- teilen N-Methylpyrrolidon wird bei 2000 Umdrehungen/min auf eine Aluminiumfolie geschleudert. Nach dem Trocknen
- 30 im Vakuum (90 Minuten bei 60°C) werden 1,5 μ m starke Schichten erhalten. Nach einer Belichtung von 10 s mit einer 500 W-Quecksilberhöchstdrucklampe durch eine Kontaktmaske und anschließendem Entwickeln mit einer 2,5 %igen Natriumphosphatlösung (Dauer: 15 s) werden
- 35 hochauflöste ($\leq 2,5 \mu$ m), kantenscharfe Relief-

strukturen erhalten.

Beispiel 4

- 5 Die Photoresistlösung nach Beispiel 3 wird auf einen mit Hexamethyldisilazan beschichteten Siliziumwafer zu einem 3,6 μm starken Film geschleudert. Nach einer Belichtung von 6 s durch eine Testmaske mit einer 10 500 W-Quecksilberhochstdrucklampe und nach einer Entwicklung von 15 s mit einer 2,5 %igen Natriumphosphatlösung werden konturenscharfe Reliefstrukturen mit einer Auflösung von 2 bis 2,5 μm erhalten. Nach ein- 15 stündigem Tempern bei 300°C sinkt die Schichtstärke auf 2,5 μm und nach weiterem halbstündigen Erhitzen bei 400°C auf 2,2 μm . Auflösung, Haftung und Farbe der Reliefstrukturen werden durch die Temperung nicht beeinflußt.

Beispiel 5

- 20 Die in Beispiel 2 beschriebene Resistlösung wird bei 1000 Umdrehungen/min zu 22 μm starken Filmen auf Aluminium geschleudert, 25 Minuten bildmäßig mit einer 25 500 W-Quecksilberhochstdrucklampe belichtet und dann 4 Minuten mit einer 10 %igen Natriumphosphatlösung entwickelt. Nach 4 bis 6 Minuten kann die strukturierte Folie vom Substrat entfernt werden.

Beispiel 6

- 30 Eine gemäß Beispiel 1 hergestellte Photoresistlösung wird bei 500 Umdrehungen/min zu einem 1,5 μm starken Film auf eine Aluminiumfolie geschleudert, getrocknet, 35 5 s lang durch eine Kontaktmaske mit einer 500 W-Quecksilberhochstdrucklampe belichtet und danach 45 s lang

- 15 - VPA 79 P 7535 EUR

mit einer 5 %igen Natriumphosphatlösung entwickelt. Die entsprechend Beispiel 1 getemperte Aluminiumfolie mit der Polybenzoxazol-Reliefstruktur wird bei Raumtemperatur für 2 Minuten in eine 5 %ige Natriumhydroxidlösung 5 gelegt. Während dabei die Aluminiumunterlage angeätzt wird, zeigt die Polybenzoxazol-Reliefstruktur keine Beeinträchtigung der Oberflächenqualität und der Haftung.

10 Beispiel 7

Wird die in Beispiel 6 beschriebene Reliefstruktur auf Aluminium für 2 Minuten in ein Säurebad aus 800 Volumenteilen konz. Phosphorsäure, 50 Volumenteile konz. 15 Salpetersäure, 50 Volumenteile konz. Essigsäure und 100 Volumenteilen entionisiertem Wasser gelegt, so lassen sich in das Aluminium 8 μm tiefe Strukturen übertragen.

20 Beispiel 8

Eine Positivresistlösung aus 2 Gewichtsteilen der in Beispiel 1 beschriebenen Polybenzoxazol-Vorstufe und 0,6 Gewichtsteilen N-Dehydroabietyl-6-diazo-5(6)-oxo-25 1-naphthalinsulfonamid in 20 Volumteilen N-Methylpyrrolidon wird bei 1000 Umdrehungen/min auf eine mit Hexamethyldisilazan vorbehandelte Aluminiumfolie geschleudert und danach 1 Stunde bei 60°C im Vakuum getrocknet. Nach einer Belichtung von 2 s mit einer 30 500 W-Quecksilberhochstdrucklampe durch eine Maske werden nach einer Tauchentwicklung von 30 s mit einer 2,5 %igen wäßrigen Natriumphosphatlösung kantenscharfe Reliefstrukturen erhalten. Die Auflösung beträgt bei einer Schichtstärke von 1,6 μm etwa 1,8 μm .

35

12 Patentansprüche

Patentansprüche

1. Wärmebeständige Positivresists auf der Basis von Vorstufen hochwärmebeständiger Polymerer und licht-
5 empfindlichen Diazochinonen, dadurch gekennzeichnet, daß sie oligomere und/ oder polymere Vorstufen von Polyoxazolen in Form von Polykondensationsprodukten aus aromatischen und/oder heterocyclischen Dihydroxydiaminoverbindungen und
10 Dicarbonsäurechloriden oder -estern enthalten.
2. Positivresistsnach Anspruch 1, dadurch gekennzeichnet, daß die Polymer-Vor-
stufe ein Kondensationsprodukt aus 3.3'-Dihydroxy-
15 benzidin und Isophthalsäuredichlorid ist.
3. Positivresists nach Anspruch 1, dadurch gekennzeichnet, daß die Polymer-Vor-
stufe ein Kondensationsprodukt aus 3.3'-Dihydroxy-
20 4.4'-diaminodiphenyläther und Terephthalsäuredichlorid ist.
4. Positivresists nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß das
25 Diazochinon der Bis-naphthochinon-(1.2)-diazid-(2)-5-sulfonsäureester von $\beta.\beta$ -Bis-(4-hydroxyphenyl)-propan ist.
5. Positivresists nach einem der Ansprüche 1 bis 3,
30 dadurch gekennzeichnet, daß das Diazochinon N-Dehydroabietyl-6-diazo-5(6)-oxo-1-naphthalinsulfonamid ist.

6. Positivresists nach einem der Ansprüche 1 bis 5, durch gekennzeichnet, daß das Gewichtsverhältnis von Polymer-Vorstufe zu Diazochinon zwischen 1:20 und 20:1, vorzugsweise zwischen 1:10 und 5 10:1, beträgt.

7. Verfahren zur Herstellung wärmebeständiger Reliefstrukturen, durch gekennzeichnet, daß ein Positivresist nach einem der Ansprüche 1 bis 6 in Form einer Schicht oder Folie auf ein Substrat aufgebracht und mit aktinischem Licht durch eine Maske belichtet oder durch Führen eines Licht-, Elektronen- oder Ionenstrahls bestrahlt wird, daß die belichteten bzw. bestrahlten Schicht- oder Folienteile herausgelöst oder abgezogen und die dabei erhaltenen Reliefstrukturen getempert werden.

8. Verfahren nach Anspruch 7, durch gekennzeichnet, daß der Positivresist in einem organischen Lösungsmittel gelöst auf das Substrat aufgebracht wird.

9. Verfahren nach Anspruch 8, durch gekennzeichnet, daß als Lösungsmittel N-Methylpyrrolidon verwendet wird.

10. Verfahren nach einem der Ansprüche 7 bis 9, durch gekennzeichnet, daß ein Substrat aus Glas, Metall, insbesondere Aluminium, Kunststoff oder halbleitendem Material verwendet wird.

11. Verfahren nach einem oder mehreren der Ansprüche 7 bis 10, durch gekennzeichnet, daß die Reliefstrukturen auf eine Temperatur oberhalb 35 200°C, vorzugsweise auf 300 bis 350°C, erhitzt werden.

0023662

- 18 - VPA 79 P 7535 EUR

12. Verfahren nach einem oder mehreren der Ansprüche 7 bis 11, dadurch gekennzeichnet, daß die getemperte Reliefstruktur vom Substrat abgelöst und gegebenenfalls auf ein anderes Substrat übertragen wird.

EINSCHLÄGIGE DOKUMENTE			KLASSIFIKATION DER ANMELDUNG (Int. Cl.)
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	betrifft Anspruch	
D	<p><u>DE - A - 2 631 535 (GAF)</u></p> <p>* Ansprüche *</p> <p>---</p> <p><u>GB - A - 1 070 242 (E.I. DU PONT)</u></p> <p>* Seite 4, Zeilen 20-50; Ansprüche *</p> <p>-----</p>	1	G 03 F 7/08
			RECHERCHIERTE SACHGEBIETE (Int. Cl.)
			G 03 F 7/08 C 08 G 73/22
			KATEGORIE DER GENANNTEN DOKUMENTE
			X: von besonderer Bedeutung A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischenliteratur T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: kollidierende Anmeldung D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument &: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument
<p> Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt.</p>			
Recherchenort	Abschlußdatum der Recherche	Prüfer	
Den Haag	05-11-1980	RASSCHAERT	