Multiple Regression Part 6: Influence and Outliers

STAT 705: Regression and Analysis of Variance

Extreme Observations

- An 'observation' is one row in the data set
 - Includes the measured Y and all the X's for the subject
 - We call this a 'data point'
- Ways in which an observation can be extreme
 - The combination of X's may be unusual
 - The value of Y, given the X's, may be unusual
 - Both the X's and the Y may be unusual
- Classify rows according to how they affect the model
 - Leverage, Outlier, Influence

Leverage

- A data point has high leverage if its combination of values for the X's is unusual in relation to all the other rows in the data
- If there is only one X variable, points with high leverage appear separated (to the right or the left) of the other points.
- The Y value is not used in calculating leverage
- The point may or may not seem to follow the least squares line

Outliers

- Are observations that have unusually large or small Y values, in relation to the values of the X's that are recorded for subject
- Measured by the residuals
 - Large positive or large negative
 - Ordinary residuals may have large variance (estimated by MSE)
 - 'Large' residuals are large <u>relative to</u> <u>the MSE</u>

Studentized Residuals

- By assumption, $\varepsilon_i \sim N(0,\sigma^2)$
- Error variance (σ^2) is estimated by MSE
- 'Standardize' the residuals
 - Subtract the mean and divide by standard deviation
 - These are not independent, so distribution is not known
- 'Studentize' the residuals
 - Divide the standardized residuals by square root of (1 leverage)
 - These follow an approximate t distribution

Identifying Outliers

From the theory of normal probability distributions

- Approximately 95% of observations should fall within 2 std. dev. of the mean
 - Observations that fall outside 2 std. dev. are potential outliers
- Approximately 99.7% of observations should fall with 3 std. dev. of the mean
 - Observations that fall outside 3 std. dev. are extreme outliers
- Studentized residuals have mean 0 and std. dev. 1
 - Potential outliers have studentized residual > 2 or < -2
 - Extreme outliers have studentized residual > 3 or < -3

Influence

- The influence of a point is a measure of how much the fitted model would change if the point was removed from the data set
- The influence can be measured as change in
 - the fitted values
 - estimates for the individual coefficients
- A point can be influential because
 - it has high leverage
 - it is an outlier
 - both high leverage and outlier

Visualize Influence

The point marked with a red star is influential

If we exclude this point

$$Y = 1.17 + 1.27X$$

$$R^2 = 91.3\%$$

If we include this point

•
$$R^2 = 0.7\%$$

$$RMSE = 3.55$$

Identifying Influential Points

- Approach: "Leave one out"
 - Omit a single observation, re-fit the model and evaluate how inference changes
- Criteria for evaluating change in inference:
 - DFFITS Influence on Single Fitted Values
 - Cook's distance Influence on all Fitted Values
 - DFBETAS Influence on Regression Coefficients
- All of these can be generated in SAS

```
proc reg data=fat;
    model bodyfat = triceps midarm /influence r;
run;
```

Influence: SAS Output

This is the body fat data.

This table is generated by the 'influence' option on the model statement.

Each observation (row) in the data has a value for each measure.

(Some columns have been deleted.)

Output Statistics								
Obs	Residual	Cook's D	RStudent	Hat Diag H	DFFITS	DFBETAS		
						Intercep	t triceps	midarm
1	-1.8481	0.048	-0.8084	0.1785	-0.3768	-0.0142	0.3087	-0.2152
2	3.4606	0.039	1.4734	0.0538	0.3514	0.0058	-0.0755	0.0837
3	-2.8462	0.478	-1.5271	0.3988	-1.2439	1.0563	0.0525	-1.0572
19	-3.0128	0.036	-1.2703	0.0648	-0.3343	-0.1127	0.1537	-0.0321
20	0.9583	0.003	0.3839	0.0501	0.0881	0.0140	-0.0006	-0.0024
Studenti			zed	d		— , Г	DFBETAS	
Cook's D		Residua	als Le	verage	DFFIT:	S	or β_0 , β_1 , and β_2	

Evaluate Each Observation

- Studentized residuals: Values > 2 or < -2
 - Unusual Y value for the observed X's
 - Values > 3 or < -3 are extreme outliers
- Leverage: Values > $\frac{2}{n}$ · (# parameters)
 - Unusual combination of X values
- DFBETAS: Values > $\frac{2}{\sqrt{n}}$
 - Observation influences the specific parameter estimate

Cook's D

- Results for Cook's distance are shown in a graph
- Taller points above the horizontal line are more influential
- Before analyzing these data, we should make sure there are no errors in observation 3

What You Should Know

- How to generate influence measures in SAS
- Identify influential observations & outliers

Notes:

- These techniques simply identify unusual points in the data.
- We do NOT automatically remove influential points.
- First make sure there are no errors in the data.
- Then determine if there are any unusual conditions under which the observation was collected (that might explain why this point is different).
- Ultimately, it is the experience and knowledge of the researcher that dictates whether to keep or remove a data point.

