WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI PRZY POMOCY WAHADŁA TORSYJNEGO

1. Opis teoretyczny do ćwiczenia

zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE.

2. Opis układu pomiarowego

Obiektem badań jest pręt o długości *l* i średnicy *2r*, którego górny koniec jest sztywno zamocowany. Drugi dolny jest poddawany działaniu sił skręcających.

W dolnej części pręta zamocowane jest ramię o długości 2d, na którego końcach znajdują się gniazda do zamocowania walców (ciężarków) o znanej masie.

Taki układ jest przykładem wahadła fizycznego i nosi nazwę wahadła torsyjnego. Celem ćwiczenia jest wyznaczenie modułu skręcenia *D* pręta oraz obliczenie modułu jego sprężystości *G*, na podstawie pomiaru okresu drań wahadła w funkcji jego momentu bezwładności *J*.

3. Przeprowadzenie pomiarów

- 1. Zapoznać się z budową wahadła torsyjnego. Sprawdzić, czy wskazówka wahadła przed rozpoczęciem pomiarów znajduje się idealnie na środku tarczy (w punkcie 0°).
- 2. Wykonywanie pomiarów przy użyciu fotokomórki: wychylić wskazówkę wahadła o ustalony kąt, wyzerować fotokomórkę (wyświetli się komunikat "ready"), puścić wahadło. Komunikat "error" pojawia się, gdy fotokomórka nie zostanie odpowiednio wyzerowana, należy wtedy powtórzyć powyższe czynności. Komunikat "pomiar w trakcie" oznacza prawidłowe działanie fotokomórki, po skończonym pomiarze wyświetli się czas 15 pełnych wahnięć t_i . Zalecane jest wykonywać wszystkie pomiary wychylając igłę wahadła naprzemiennie raz w prawo, raz w lewo.

- 3. Ustalamy zakres amplitudy, dla którego spełniony jest warunek stosowania prawa Hooke'a. W tym celu należy wzbudzić przy pomocy pary sił drgania torsyjne zadając początkową amplitudę (np. 5 stopni). Mierzymy wtedy czas 15 pełnych wahnięć i obliczamy okres *T_p*. Następnie zwiększamy amplitudę (np. o 5 stopni) i wyznaczamy kolejny czas 15 pełnych wahnięć i obliczamy okres *T_n*. Początkową amplitudę drgań zwiększamy aż do momentu, gdy kolejny czas 15 pełnych wahnięć będzie się różnił od początkowego (*T_p* ≠ *T_n*). Do dalszych prób stosujemy największą z amplitud dla której czas 15 wahnięć jest równy początkowemu (*T_p* = *T_n*).
- 4. Ustalamy liczbę pełnych drgań, po wykonaniu których amplituda zmniejszy się dwa razy. W tym celu należy wzbudzić przy pomocy pary sił drgania torsyjne zadając ustaloną w punkcie 3 początkową amplitudę drgań. Wyciągnąć wnioski na temat tłumienia drgań wahadła torsyjnego.
- 5. Wprawić wahadło w drgania torsyjne z amplitudą ustaloną w punkcie 3 bez obciążania wahadła i zmierzyć czas trwania 15 okresów drgań t₁. Pomiar powtórzyć 15 razy.
- 6. Powtórzyć pomiary według punktu 4 dla wahadła obciążonego dwoma identycznymi walcami umieszczonymi symetrycznie kolejno w odległościach d = 5; 7,5; 10; 12,5; 15 cm.

4. Opracowanie wyników pomiarów

Wyznaczanie średniego okresu drgań torsyjnych i ich niepewności

Obliczenia wykonać dla wszystkich przypadków drgań.

- 1. Wyznaczyć okres drgań torsyjnych dla każdego pomiaru $\bar{T}_i = \frac{1}{k}t_i$ gdzie k ilość drgań w pojedynczym pomiarze.
- 2. Wyznaczyć wartość średnią okresów drgań torsyjnych $\overline{T}_d = \frac{1}{n} \sum_{i=1}^n T_i$ gdzie n ilość wykonanych pomiarów, d odległość obciążenia względem osi obrotu (d = 0 brak obciążenia).
- 3. Wyznaczyć niepewność standardową złożoną okresu drgań torsyjnych $u(\overline{T}_d) = \sqrt{\frac{\sum_{i=1}^n (T_i \overline{T}_d)^2}{(n-1) n} + \frac{(\Delta t)^2}{3}}$ uwzględniającą wykonanie n pomiarów oraz niepewność maksymalną pomiaru czasu w pojedynczym pomiarze Δt .

Wyznaczanie modułu skręcenia i sprężystości oraz ich niepewności

Obliczenia wykonać dla wszystkich przypadków drgań.

- 4. Wykonać wykres $\overline{T}_d^2 = f(d^2)$, gdzie $d^2 = 0$; 25; 56,25; 100; 156,25; 225 cm² i nanieść punkty pomiarowe wraz z niepewnościami wiedząc, że $u(\overline{T}_d^2) = 2 \, \overline{T}_d \cdot u(\overline{T}_d)$
- 5. Przeprowadzić aproksymację metodą najmniejszych kwadratów przez punkty pomiarowe prowadząc prostą $y = \bar{a}x + \bar{b}$, gdzie $x = d^2$, $y = \bar{T}_d^2$. Parametry prostej oraz ich niepewności wyznaczamy z

$$\overline{a} = \frac{\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i} - n \sum_{i=1}^{n} (x_{i} y_{i})}{\left(\sum_{i=1}^{n} x_{i}\right)^{2} - n \sum_{i=1}^{n} x_{i}^{2}} \qquad u(\overline{a}) = \sigma_{\overline{a}} = \sqrt{\frac{n}{n-2} \frac{\left(\sum_{i=1}^{n} y_{i}^{2} - \overline{a} \sum_{i=1}^{n} x_{i} y_{i} - \overline{b} \sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}}$$

$$\bar{b} = \frac{\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}^{2}}{\left(\sum_{i=1}^{n} x_{i}\right)^{2} - n \sum_{i=1}^{n} x_{i}^{2}} \qquad u(\bar{b}) = \sigma_{\bar{b}} = \sigma_{\bar{a}} \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}}$$

Parametry prostej zapisać na wykresie.

6. Porównując otrzymane współczynniki prostej ze współczynnikami z zależności wynikającej z rozwiązania układu równań $\bar{T}_d^2 = f(J)$ dla d = 0 i dowolnego d:

$$\overline{T}_d^2 = 4\pi^2 \frac{J}{R}$$
, gdzie $J = J_0 + 2md^2$, a m jest masą jednego z ciężarków

czyli

wyznaczyć moduł skręcenia D i moment bezwładności J_0 wahadła bez dodatkowego obciążenia.

- 7. Wyznaczyć niepewność standardową względną $u_{c,r}(D) = \sqrt{\left(\frac{u(\bar{a})}{\bar{a}}\right)^2 + \left(\frac{u(m)}{m}\right)^2}$.
- 8. Wyznaczyć niepewność standardową bezwzględną $u_c(D) = u_{c,r}(D) \cdot D$.
- 9. Wyznaczyć niepewność rozszerzoną $U(D) = 2u_c(D)$.
- 10. Wyznaczyć moduł sprężystości G korzystając ze związku $G = \frac{2l}{\pi r^4} D$.
- 11. Wyznaczyć niepewność standardową względną

$$u_{c,r}(G) = \sqrt{\left(u_{c,r}(D)\right)^2 + \left(4\frac{u(r)}{r}\right)^2 + \left(\frac{u(l)}{l}\right)^2}$$

- 12. Wyznaczyć niepewność standardową bezwzględną $u_c(G) = u_{c,r}(G) \cdot G$.
- 13. Wyznaczyć niepewność rozszerzoną $U(G) = 2u_c(G)$.

5. Podsumowanie

1. Zgodnie z regułami prezentacji wyników zestawić wyznaczone wielkości

$$(D, u_c(D), u_{c,r}(D), U(D))$$

$$(G, u_c(G), u_{c,r}(G), U(G))$$
 oraz wartości odniesienia D i G (właściwe dla stali lub aluminium).

- **2.** Przeanalizować uzyskane rezultaty:
- a) która z niepewności wnosi największy wkład do niepewności złożonej $u_c(G)$,
- b) czy spełniona jest relacja $u_{c,r}(G) < 0.12$
- c) czy spełniona jest relacja $|G_{teoria} G| < U(G)$.
- **3.** Wnioski z analizy rezultatów.
- a) Uzasadnić z jakiego materiału jest wykonany badany pręt.
- b) Wyciągnąć wnioski na temat występowania i przyczyn błędów: grubych, systematycznych i przypadkowych.
- c) Zaproponować działania zmierzające do podniesienia dokładności wykonywanych pomiarów.
- d) Wyjaśnić czy cele ćwiczenia zostały osiągnięte.

6. Przykładowe pytania

- 1. Omówić I. zasadę Newtona dla bryły sztywnej w ruchu obrotowym.
- 2. Omówić II. zasadę Newtona dla bryły sztywnej w ruchu obrotowym.
- 3. Omówić III. zasadę Newtona dla bryły sztywnej w ruchu obrotowym.
- 4. Omówić ruchu harmoniczny tłumiony.
- 5. Omówić metody wyznaczania moment bezwładności ciał sztywnych.
- 6. Omówić zasadę zachowania momentu pędu.
- 7. Omówić zasadę zachowania pędu.
- 8. Zdefiniować pojęcia: prędkość kątowa, przyspieszenie kątowe.
- 9. Zdefiniować pojęcia: moment sprężystości sprężyny, moment bezwładności ciała.
- 10. Zdefiniować pojęcie inercjalnego układu odniesienia.
- 11. Omówić drganie układów mechanicznych.
- 12. Omówić twierdzenie Steinera.
- 13. Omówić prawo Hooke'a.

Kartę pomiarów proszę drukować dwustronnie

Zespół w składzie	
cele ćwiczenia: • wyznaczenie modułu skręcenia <i>D</i> pręta, • wyznaczenie modułu sprężystości materiału <i>G</i> ,	
Wartości teoretyczne wielkości wyznaczanych lub określanych:	
Moduł sprężystości stali Moduł sprężystości aluminium	
2. Potwierdzić na stanowisku wartości parametrów i ich niepewności!	•
Wymiary pręta: długość I = 480 mm, u(I) = 1 mm;	
oraz promień r = 1,0 mm, u(r) = 0,03 mm,	
Masa każdego z ciężarków m = 61,695 g, u(m) = 0,002 g,	
3. Pomiary i uwagi do ich wykonania.	
Niepewność maksymalna pomiaru czasu Δt	
Niepewność maksymalna pomiaru położenia ciężarków $^{\Delta d}$ = 1 mm	
Pomiar okresu drgań przeprowadzany dla k =okresów drgań	

Kąt [stopnie]	10	15	20	25	30	35
t [s]						
$T = \frac{t}{15}$						
Kąt [stopnie]	40	45	50	55	60	65
t [s]						
$T = \frac{t}{15}$						

Z pomiaru wstępnego nr 1 do pomiaru wstępnego 2 przyjąć największy z kątów dla okresu drgań które jest zbliżone do okresów drgań dla pozostałych mniejszych kątów.

Liczba pełnych okresów drgań dla przyjętego kąta stopni, po których amplituda spada					
o połowę wynosi:					
bez obciążenia	z obciążeniem (na d=15 cm)				

Pomiary zasadnicze – pomiar czasu drgania m okresów

czas k = okresów drgań	Bez obciążania	Z obciążeniem rozłożonym symetrycznie względem osi obrotu					
		d = 5 cm	d = 7,5 cm	d = 10 cm	d = 12,5 cm	d = 15 cm	
t ₁							
t ₂							
t ₃							
t ₄							
t ₅							
t ₆							
t 7							
t ₈							
t9							
t ₁₀							
t ₁₁							
t ₁₂							
t13							
t ₁₄							
t15							