

现代控制理论

第一章 绪论

第二章 系统的状态空间模型

第三章 状态空间方程的解

第四章 系统的稳定性

第五章 能控性与能观性

第六章 传递函数的状态空间实现

第七章 状态反馈与状态观测器

第八章 最优性原理与动态规划

第九章 极小值原理

第十章 二次型指标的线性最优控制

中国科学技术大学自动化系

2020.2.-6.

本课程的篇章结构

建模	直接获取	第2章 系统的状态空间模型
	模型转换	第2章 系统的状态空间模型 第6章 传递函数的状态空间实现
分析	定量分析	第3章 状态空间状态方程的解
	定性分析	第4章 系统的稳定性 第5章 能控性和能观性
设计	常规控制	第7章 状态反馈和状态观测器
	最优控制	第8章 最优性原理与动态规划 第9章 极小值原理 第10章 二次型指标的最优线性系统

第八章 最优性原理与动态规划

§ 8.1 最优控制问题

【例8-1】1969年7月21日美国航天员尼尔·奥尔登·阿姆斯特朗(Neil Alden Armstrong)与同伴巴兹·奥尔德林驾驭由阿波罗11号飞船分离出来的"鹰"号登月舱,踏上了荒芜的月面,实现了人类的首次登月。

最优控制的任务是: 寻求发动机推力的变化规律, 在安全完成任务的前提下, 使登月仓的整个软着陆过程 消耗的燃料最少。

问题:

如何选择发动机推力的变化规律

u(t)

使燃料消耗最少

最优的概念与描述

最高、最快、最重、最贵......

最值、最发达、最先进......

最美、最棒、最舒服……

如何用数学描述?

最优的概念与描述

末值型性能指标 —— 迈耶尔问题

$$J = \varphi[x(t_f), t_f]$$

积分型性能指标 —— 拉格朗日问题

$$J = \int_{t_0}^{t_f} L[\mathbf{x}(t), \mathbf{u}(t), t] dt$$

复合型性能指标 —— 波尔扎问题

$$J = \varphi[\mathbf{x}(t_f), t_f] + \int_{t_0}^{t_f} L[\mathbf{x}(t), \mathbf{u}(t), t] dt$$

登月舱软着陆的最优控制问题的数学描述

软着陆过程登月仓应满足的动力学方程:

$$\dot{h}(t) = v(t)$$
; $\dot{v}(t) = \frac{u(t)}{m(t)} - g$; $\dot{m}(t) = -k \cdot u(t)$

软着陆的初始条件:

初始时刻 t_0 、高度 $h(t_0)$ 、速度 $v(t_0)$ 、质量 $m(t_0)$

软着陆的完成条件:

末态时刻 t_f 自由、 $h(t_f)=0$ 、速度 $v(t_f)=0$

发动机推力的变化应在其能力允许的范围之内

$$u_{\min} \leq u(t) \leq u_{\max}$$

燃料消耗最少的含义:

$$m(t_f)$$
最大。

最优控制问题的提法

运动方程(系统的数学模型)微分方程或差分方程 $\dot{x}(t) = f[x(t), u(t), t]$

边界条件(初始条件和目标)目标集多是等式约束 *(t)= x = v([x(t)] +]= 0

$$\mathbf{x}(t_0) = \mathbf{x}_0, \qquad \psi[\mathbf{x}(t_f), t_f] = \mathbf{0}$$

控制约束(容许控制)通常是不等式约束 $g[x(t),u(t),t] \geq 0$

性能指标 (最优的含义) 一般含有末值项和过程项

$$J = \varphi[\mathbf{x}(t_f), t_f] + \int_{t_0}^{t_f} L[\mathbf{x}(t), \mathbf{u}(t), t] dt$$

最优控制问题的提法

运动方程(系统的数学模型)微分方程或差分方程 x[k+1] = f(x[k], u[k], k)

边界条件(初始条件和目标)目标集多是等式约束 $x[k_0] = x_0$ $\psi(x[k_f],k_f) = 0$

控制约束 (容许控制) 通常是不等式约束 $g(x[k],u[k],k) \ge 0$

性能指标(最优的含义)一般含有末值项和过程项

$$J = \varphi(\mathbf{x}[k_f], k_f) + \sum_{k=0}^{k_f - 1} L(\mathbf{x}[k], \mathbf{u}[k], k)$$

最常见的最优控制

1. 最少时间控制

$$J = \int_{t_0}^{t_f} dt = t_f - t_0$$

2. 最少燃料控制

$$J = \int_{t_0}^{t_f} \sum_{j=1}^{m} \left| u_j(t) \right| dt$$

3. 最少能量控制

$$J = \int_{t_0}^{t_f} u^T(t)u(t)dt$$

§ 8.2 多阶段决策问题及最优性原理

8. 2. 1 多阶段决策问题

【例8.2】如图,求从A到E的最短路径

8. 2. 2 最优性原理

穷举法: 18条可能的路线,72次加法,比较17次

动态规划法: 逆序计算法, 最优性原理

最优性原理(多级决策过程的最优策略)

不论初始状态和初始决策如何,当把其中的任何一级及其状态再作为初始状态时, 其余的决策对此必定也是一个最优策略。

---- Richard Ernest Bellman

理查德·贝尔曼 (Richard Ernest Bellman)

贝尔曼(1920.8.26.-1984.3.19.) 美国 数学家,美国国家科学院院士,动态规划理论的创 始人。贝尔曼先后在布鲁克林学院和威斯康星大学 学习数学。随后他在洛斯·阿拉莫斯为一个理论物理 部门的团体工作。于1946年获得普林斯顿大学博 士学位。贝尔曼曾是南加州大学教授,美国艺术与 科学研究院(1975年)以及美国国家工程院院士 (1977年)。由于在决策过程和控制系统理论方 面的贡献,特别是动态规划的发展和应用,他在 1979年被授予电气电子工程师协会奖。

动态规划法求解过程

$$f_4(D_1) = d(D_1 \rightarrow E) + f_5(E) = 5 + 0 = 5$$

$$f_4(D_2) = d(D_2 \rightarrow E) + f_5(E) = 2 + 0 = 2$$

$$\begin{split} f_3(C_1) &= \min \begin{cases} (C_1, D_1) + f_4(D_1) \\ (C_1, D_2) + f_4(D_2) \end{cases} \\ &= \min \begin{cases} 3+5 \\ 9+2 \end{cases} = \min \begin{cases} 8 \\ 11 \end{cases} = 8 \quad 最优决策C_1 \to D_1 \end{split}$$

$$\begin{split} f_3(C_2) &= \min \left\{ \begin{matrix} (C_2, D_1) + f_4(D_1) \\ (C_2, D_2) + f_4(D_2) \end{matrix} \right\} \\ &= \min \left\{ \begin{matrix} 6+5 \\ 5+2 \end{matrix} \right\} = \min \left\{ \begin{matrix} 11 \\ 7 \end{matrix} \right\} = 7 \quad 最优决策C_2 \to D_2 \end{split}$$

$$f_{2}(B_{1}) = \min \begin{cases} (B_{1}, C_{1}) + f_{3}(C_{1}) \\ (B_{1}, C_{2}) + f_{3}(C_{2}) \\ (B_{1}, C_{3}) + f_{3}(C_{3}) \end{cases} = \min \begin{cases} 12 + 8 \\ 14 + 7 \\ 10 + 12 \end{cases} = \min \begin{cases} 20 \\ 21 \\ 22 \end{cases} = 20$$

最优决策 $B_1 \rightarrow C_1$

$$f_{2}(B_{2}) = \min \begin{cases} (B_{2}, C_{1}) + f_{3}(C_{1}) \\ (B_{2}, C_{2}) + f_{3}(C_{2}) \\ (B_{2}, C_{3}) + f_{3}(C_{3}) \end{cases} = \min \begin{cases} 6 + 8 \\ 10 + 7 \\ 4 + 12 \end{cases} = \min \begin{cases} 14 \\ 17 \\ 16 \end{cases} = 14$$

最优决策 $B_2 \rightarrow C_1$

$$f_{2}(B_{1})=20$$

$$f_{3}(C_{1})=8$$

$$\frac{12}{4}$$

$$f_{3}(C_{2})=7$$

$$\frac{1}{4}$$

$$\frac{1}{3}$$

$$\frac{1}{4}$$

$$\frac{1}{3}$$

$$\frac{1}{4}$$

$$\frac$$

最优决策 $B_3 \rightarrow C_2$

最优决策 $A \rightarrow B_2$

状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态 从A (A_1, B_2) B_2 (B_2, C_1) C_1 (C_1, D_1) D_1 (D_1, E) E 从A到E的最短路径为19,路线为A \to B $_2\to C_1\to D_1\to E$

从A到E的最短路径为19,路线为A \rightarrow B₂ \rightarrow C₁ \rightarrow D₁ \rightarrow E

穷 举 法: 18条可能的路线,72次加法,比较17次

动态规划法: 20次加法, 比较11次

§8.3 离散动态规划

8.3.1 离散时间最优控制问题

运动方程(系统的数学模型)微分方程或差分方程 x[k+1] = f(x[k], u[k], k)

边界条件(初始条件和目标)目标集多是等式约束 $x[k_0] = x_0$ $\psi(x[k_f], k_f) = 0$

控制约束 (容许控制) 通常是不等式约束 $g(x[k],u[k],k) \ge 0$

性能指标(最优的含义)一般含有末值项和过程项

$$J = \varphi(\mathbf{x}[k_f], k_f) + \sum_{k=0}^{k_f - 1} L(\mathbf{x}[k], \mathbf{u}[k], k)$$

【例 8.3】已知离散系统方程

$$x[k+1] = 2x[k] + u[k], x[0] = 1$$

及代价函数

$$J = x^{2}[3] + \sum_{k=0}^{2} (x^{2}[k] + u^{2}[k])$$

系统的状态 x[k] 和控制 u[k] 均不受约束。试求最优控制序列 $\{u^*[k], k=0,1,2\}$

使代价函数最小。

3级最优决策问题,依最优性原理,保证后段决策最优

状态方程及初态

$$x[k+1] = 2x[k] + u[k], x[0] = 1$$

代价函数

$$J = x^{2}[3] + \sum_{k=0}^{2} (x^{2}[k] + u^{2}[k])$$

后段代价函数

$$J_3 = x^2[3]$$

$$J_2 = x^2[2] + u^2[2] + J_3$$

$$J_1 = x^2[1] + u^2[1] + J_2$$

$$J_0 = J = x^2[0] + u^2[0] + J_1$$

注意到x[k+1]仅与x[k]及u[k]有关,于是可依次得到

$$J_2 = x^2[2] + u^2[2] + x^2[3] = x^2[2] + u^2[2] + (2x[2] + u[2])^2$$

$$J_2 = x^2[2] + u^2[2] + x^2[3] = x^2[2] + u^2[2] + (2x[2] + u[2])^2$$

为使 Jo 达到最优, 注意到控制无约束, 立即有

$$\frac{\partial J_2}{\partial u[2]} = 2u[2] + 2(2x[2] + u[2]) = 0$$

于是

$$u^*[2] = -x[2]$$

$$J_2^* = x^2[2] + (u^*[2])^2 + (2x[2] + u^*[2])^2 = 3x^2[2]$$

以此为基点再考查

$$J_1 = x^2[1] + u^2[1] + 3x^2[2] = x^2[1] + u^2[1] + 3(2x[1] + u[1])^2$$

同样

$$\frac{\partial J_1}{\partial u[1]} = 2u[1] + 6(2x[1] + u[1]) = 0 \qquad \longrightarrow \qquad u^*[1] = -1.5x[1]$$

$$J_1^* = x^2[1] + (u^*[1])^2 + 3(2x[1] + u^*[1])^2 = 4x^2[1]$$

循此法再继续做下去,注意到系统的初始条件 x[0]=1

$$J_0 = x^2[0] + u^2[0] + J_1 = x^2[0] + u^2[0] + 4x^2[1]$$

$$J = J_0 = x^2[0] + u^2[0] + 4(2x[0] + u[0])^2$$

$$\frac{\partial J^*}{\partial u[0]} = 2u[0] + 8(2x[0] + u[0]) = 0$$

$$u^*[0] = -1.6x[0] \qquad x[0] = 1 \qquad u^*[0] = -1.6$$

这就是最初的最优控制,同时最终的代价函数是

$$J = x^{2}[0] + u^{2}[0] + 4(2x[0] + u[0])^{2} = 4.2$$

将前面得到最优控制关系代入系统的状态方程

$$x[k+1] = 2x[k] + u[k], \quad x[0] = 1$$

 $u^*[2] = -x[2] \qquad u^*[1] = -1.5x[1] \qquad u^*[0] = -1.6x[0] = -1.6$

可依次得到

$$x^*[1] = 2x[0] + u^*[0] = 0.4,$$
 $u^*[1] = -1.5x^*[1] = -0.6$
 $x^*[2] = 2x[1] + u^*[1] = 0.2,$ $u^*[2] = -x^*[2] = -0.2$
 $x^*[3] = 2x[2] + u^*[2] = 0.2$

得到本例题要求的最优控制序列、最优轨线和最优的代价函数是:

$$u^* = \{-1.6, -0.6, -0.2\}, \qquad x^* = \{1, 0.4, 0.2, 0.2\}, \qquad J^* = 4.2$$

将前面得到最优控制关系代入系统的状态方程

$$x[k+1] = 2x[k] + u[k], \quad x[0] = 1$$

 $u^*[2] = -x[2] \qquad u^*[1] = -1.5x[1] \qquad u^*[0] = -1.6x[0] = -1.6$

可依次得到

$$x^*[1] = 2x[0] + u^*[0] = 0.4,$$
 $u^*[1] = -1.5x^*[1] = -0.6$
 $x^*[2] = 2x[1] + u^*[1] = 0.2,$ $u^*[2] = -x^*[2] = -0.2$
 $x^*[3] = 2x[2] + u^*[2] = 0.2$

得到本例题要求的最优控制序列、最优轨线和最优的代价函数是:

$$u^* = \{-1.6, -0.6, -0.2\}, \qquad x^* = \{1, 0.4, 0.2, 0.2\}, \qquad J^* = 4.2$$

§8.4 连续动态规划

(自学)

习题

4-1, 4-4, 4-7