SAS绘图

示例SASHELP.CARS

MAKE	HORSEPOWER	LENGTH	INVOICE
Acura	265	189	\$33,337
Audi	170	179	\$23,508
BMW	225	180	\$33,873
Buick	275	193	\$34,357

直方图

```
In [1]: libname t "temp";
        ods path(prepend) t.template(update);
        SAS Connection established. Subprocess id is 19646
Out[1]:
        ods listing close;ods html5 (id=saspy_internal) file=stdout options(bitmap_mode='inline') devi
        ce=svg style=HTMLBlue; ods
        34 ! graphics on / outputfmt=png;
        NOTE: Writing HTML5(SASPY_INTERNAL) Body file: STDOUT
        35
            libname t "temp";
        36
        NOTE: Libref T was successfully assigned as follows:
              Engine:
                             V9
              Physical Name: /folders/myfolders/SASData/temp
             ods path(prepend) t.template(update);
        37
        38
        39
             ods html5 (id=saspy_internal) close;ods listing;
        40
```

```
In [2]: PROC SORT DATA = SASHELP.CARS OUT = C NODUPKEY;
BY MAKE;
RUN;
PROC PRINT DATA = C;
RUN;
```

Out[2]:

The SAS System

Obs	Make	Model	Туре	Origin	DriveTra	airMSRP	Invoice	Engines	Si £ ylinde	rsHorsep	ov MeP G_C	it y MPG_H	ig Weay ht	Wheelba	ndeength
1	Acura	MDX	SUV	Asia	All	\$36,945	\$33,337	3.5	6	265	17	23	4451	106	189
2	Audi	A4 1.8T 4dr	Sedan	Europe	Front	\$25,940	\$23,508	1.8	4	170	22	31	3252	104	179
3	BMW	X3 3.0i	SUV	Europe	All	\$37,000	\$33,873	3.0	6	225	16	23	4023	110	180
4	Buick	Rainier	SUV	USA	All	\$37,895	\$34,357	4.2	6	275	15	21	4600	113	193
5	Cadillac	Escalade	e SUV	USA	Front	\$52,795	\$48,377	5.3	8	295	14	18	5367	116	199
6	Chevrole	etSuburba 1500 LT	n SUV	USA	Front	\$42,735	\$37,422	5.3	8	295	14	18	4947	130	219
7	Chrysler	PT Cruiser 4dr	Sedan	USA	Front	\$17,985	\$16,919	2.4	4	150	22	29	3101	103	169
8	Dodge	Durango SLT	SUV	USA	All	\$32,235	\$29,472	4.7	8	230	15	21	4987	119	201
9	Ford	Excursio	n SUV	USA	All	\$41,475	\$36,494	6.8	10	310	10	13	7190	137	227

		6.8 XLT													
10	GMC	Envoy XUV SLE	SUV	USA	Front	\$31,890	\$28,922	4.2	6	275	15	19	4945	129	208
11	Honda	Civic Hybrid 4dr manual (gas/ele	Hybrid ctric)	Asia	Front	\$20,140	\$18,451	1.4	4	93	46	51	2732	103	175
12	Hummer	· H2	SUV	USA	All	\$49,995	\$45,815	6.0	8	316	10	12	6400	123	190
13	Hyundai	Santa Fe GLS	SUV	Asia	Front	\$21,589	\$20,201	2.7	6	173	20	26	3549	103	177
14	Infiniti	G35 4dr	Sedan	Asia	Rear	\$28,495	\$26,157	3.5	6	260	18	26	3336	112	187
15	Isuzu	Ascende S	er SUV	Asia	All	\$31,849	\$29,977	4.2	6	275	15	20	4967	129	208
16	Jaguar	X- Type 2.5 4dr	Sedan	Europe	All	\$29,995	\$27,355	2.5	6	192	18	26	3428	107	184
17	Jeep	Grand Cheroke Laredo	SUV	USA	Front	\$27,905	\$25,686	4.0	6	195	16	21	3790	106	181
18	Kia	Sorento LX	SUV	Asia	Front	\$19,635	\$18,630	3.5	6	192	16	19	4112	107	180
19	Land Rover	Range Rover HSE	SUV	Europe	All	\$72,250	\$65,807	4.4	8	282	12	16	5379	113	195
20	Lexus	GX 470	SUV	Asia	All	\$45,700	\$39,838	4.7	8	235	15	19	4740	110	188
21	Lincoln	Navigato Luxury	or SUV	USA	All	\$52,775	\$46,360	5.4	8	300	13	18	5969	119	206
22	MINI	Cooper	Sedan	Europe	Front	\$16,999	\$15,437	1.6	4	115	28	37	2524	97	143
23	Mazda	Tribute DX 2.0	SUV	Asia	All	\$21,087	\$19,742	2.0	4	130	22	25	3091	103	173
24	Mercede Benz	es- G500	SUV	Europe	All	\$76,870	\$71,540	5.0	8	292	13	14	5423	112	186
25	Mercury	Mountai	neeSUV	USA	Front	\$29,995	\$27,317	4.0	6	210	16	21	4374	114	190
26	Mitsubis	hiEndeavo XLS	or SUV	Asia	All	\$30,492	\$28,330	3.8	6	215	17	21	4134	109	190
27	Nissan	Pathfind Armada SE	er SUV	Asia	Front	\$33,840	\$30,815	5.6	8	305	13	19	5013	123	207
28	Oldsmot	oileAlero GX 2dr	Sedan	USA	Front	\$18,825	\$17,642	2.2	4	140	24	32	2946	107	187
29	Pontiac	Aztekt	SUV	USA	Front	\$21,595	\$19,810	3.4	6	185	19	26	3779	108	182
30	Porsche	Cayenne S	e SUV	Europe	All	\$56,665	\$49,865	4.5	8	340	14	18	4950	112	188
31	Saab	9-3 Arc Sport 4dr	Sedan	Europe	Front	\$30,860	\$29,269	2.0	4	210	20	28	3175	105	183
32	Saturn	VUE	SUV	USA	All	\$20,585	\$19,238	2.2	4	143	21	26	3381	107	181
33	Scion	xA 4dr hatch	Sedan	Asia	Front	\$12,965	\$12,340	1.5	4	108	32	38	2340	93	154

34	Subaru	Impreza 2.5 RS 4dr	Sedan	Asia	All	\$19,945	\$18,399	2.5	4	165	22	28	2965	99	174
35	Suzuki	XL-7 EX	SUV	Asia	Front	\$23,699	\$22,307	2.7	6	185	18	22	3682	110	187
36	Toyota	Prius 4dr (gas/ele	Hybrid	Asia	Front	\$20,510	\$18,926	1.5	4	110	59	51	2890	106	175
37	Volkswa	g eīo uareg V6	SUV	Europe	All	\$35,515	\$32,243	3.2	6	220	15	20	5086	112	187
38	Volvo	XC90 T6	SUV	Europe	All	\$41,250	\$38,851	2.9	6	268	15	20	4638	113	189

In [3]: PROC UNIVARIATE DATA = SASHELP.CARS;
VAR HORSEPOWER;
RUN;

Out[3]:

The SAS System

The UNIVARIATE Procedure Variable: Horsepower

			Moments
N	428	Sum Weights	428
Mean	215.885514	Sum Observations	92399
Std Deviation	71.8360316	Variance	5160.41543
Skewness	0.93033074	Kurtosis	1.55215863
Uncorrected SS	22151103	Corrected SS	2203497.39
Coeff Variation	33.2750587	Std Error Mean	3.47232565

			Basic Statistical Measures
	Location		Variability
Mean	215.8855	Std Deviation	71.83603
Median	210.0000	Variance	5160
Mode	200.0000	Range	427.00000
		Interquartile Range	90.00000

	Tests for Location: Mu0=0								
Test		Statistic		p Value					
Student's t	t	62.17318	Pr > t	<.0001					
Sign	M	214	Pr >= M	<.0001					
Signed Rank	S	45903	Pr >= S	<.0001					

Quantiles (Definition 5)	
Quantile	Level
500	100% Max

99%	477
95%	340
90%	302
75% Q3	255
50% Median	210
25% Q1	165
10%	130
5%	115
1%	103
0% Min	73

			Extreme Observations	
	Lowest	Highest		
Value	Obs	Value	Obs	
73	151	477	335	
93	150	493	263	
100	405	493	271	
103	171	493	272	
103	170	500	115	

```
In [4]: PROC UNIVARIATE DATA = SASHELP.CARS NOPRINT;
HISTOGRAM HORSEPOWER
/
MIDPOINTS = 100 TO 500 BY 20;
RUN;
```

The SAS System

The UNIVARIATE Procedure

Out[4]:

Out[5]:

The SAS System

The UNIVARIATE Procedure

The SAS System

The UNIVARIATE Procedure Fitted Normal Distribution for Horsepower

Parameters for Normal Distribution						
Parameter	Symbol	Estimate				
Mean	Mu	215.8855				
Std Dev	Sigma	71.83603				

	Goodness-of-Fit Tests for Normal Distribution								
Test		Statistic		p Value					
Kolmogorov-Smirnov	D	0.09051574	Pr > D	<0.010					
Cramer-von Mises	W-Sq	0.58980554	Pr > W-Sq	<0.005					
Anderson-Darling	A-Sq	3.68580519	Pr > A-Sq	<0.005					

	Quantiles for Normal Distribution
	Quantile

Percent	Observed	Estimated
1.0	103.000	48.7699
5.0	115.000	97.7258
10.0	130.000	123.8239
25.0	165.000	167.4328
50.0	210.000	215.8855
75.0	255.000	264.3382
90.0	302.000	307.9471
95.0	340.000	334.0453
99.0	477.000	383.0011

```
In [6]: PROC SGPLOT DATA = SASHELP.CARS(WHERE = (MAKE IN ('BMW')));
VBAR LENGTH;
TITLE 'LENGTHS OF BMW';
RUN;
QUIT;
```



```
In [7]: PROC SGPLOT DATA = SASHELP.CARS(WHERE = (MAKE IN ('BMW')));
VBAR LENGTH /GROUP = TYPE;
TITLE 'LENGTHS OF BMW BY TYPES';
RUN;
QUIT;
```


In [8]: PROC SGPLOT DATA = SASHELP.CARS(WHERE = (MAKE IN ('BMW')));
VBAR LENGTH /GROUP = TYPE GROUPDISPLAY = CLUSTER;
TITLE 'CLUSTER OF BMW BY TYPES';
RUN;
QUIT;


```
In [9]: PROC TEMPLATE;
           DEFINE STATGRAPH PIE0;
             BEGINGRAPH;
               LAYOUT REGION;
                 PIECHART CATEGORY = type /
                    DATALABELLOCATION = OUTSIDE
                    CATEGORYDIRECTION = CLOCKWISE
                 START = 180 NAME = 'pie';
DISCRETELEGEND 'pie' /
                   TITLE = 'BMW Types';
               ENDLAYOUT;
             ENDGRAPH;
           END;
         RUN;
         PROC SGRENDER
             DATA = SASHELP.CARS(WHERE = (MAKE IN ('BMW')))
             TEMPLATE = PIE0;
         RUN;
```

Out[9]:

CLUSTER OF BMW BY TYPES


```
In [10]: PROC TEMPLATE;
           DEFINE STATGRAPH PIE1;
             BEGINGRAPH;
               LAYOUT REGION;
                 PIECHART CATEGORY = type /
                   DATALABELLOCATION = INSIDE
                   DATALABELCONTENT=ALL
                   CATEGORYDIRECTION = CLOCKWISE
                   DATASKIN= SHEEN
                   START = 180 NAME = 'pie';
                 DISCRETELEGEND 'pie' /
                   TITLE = 'BMW Types';
               ENDLAYOUT;
             ENDGRAPH;
           END;
         RUN;
         PROC SGRENDER
             DATA = SASHELP.CARS(WHERE = (MAKE IN ('BMW')))
             TEMPLATE = PIE1;
         RUN;
```

Out[10]:

CLUSTER OF BMW BY TYPES


```
In [11]: PROC TEMPLATE;
           DEFINE STATGRAPH PIE2;
             BEGINGRAPH;
               LAYOUT REGION;
                 PIECHART CATEGORY = type / Group = make
                   DATALABELLOCATION = INSIDE
                   DATALABELCONTENT=ALL
                   CATEGORYDIRECTION = CLOCKWISE
                   DATASKIN= SHEEN
                   START = 180 NAME = 'pie';
                 DISCRETELEGEND 'pie' /
                   TITLE = 'Audi/BMW Types';
               ENDLAYOUT;
             ENDGRAPH;
           END;
         RUN;
         PROC SGRENDER
             DATA = SASHELP.CARS(WHERE = (MAKE IN ('Audi', 'BMW')))
             TEMPLATE = PIE2;
         RUN;
```

Out[11]:

CLUSTER OF BMW BY TYPES


```
In [12]: PROC SGSCATTER
    DATA = SASHELP.CARS(WHERE = (MAKE IN ('BMW')));
    PLOT HORSEPOWER * INVOICE
    / DATALABEL = MAKE GROUP = TYPE GRID;
    TITLE 'HORSEPOWER VS. INVOICE FOR BMW MAKERS BY TYPES';
RUN;
```



```
In [15]: PROC SGPLOT DATA = SASHELP.CARS(WHERE = (MAKE IN ('BMW')));
    VBOX HORSEPOWER
    / CATEGORY = TYPE;
    TITLE 'HORSEPOWER OF BMW BY TYPES';
RUN;
```



```
In [17]: PROC SGPANEL DATA = SASHELP.CARS(WHERE = (MAKE IN ('Audi', 'BMW')));
    PANELBY MAKE / COLUMNS = 1 NOVARNAME;
    VBOX HORSEPOWER / CATEGORY = TYPE;
    TITLE 'HORSEPOWER OF Audi/BMW BY TYPES';
RUN;
```

Out[17]:

Visualizing Longitudinal Data with Dropouts (http://blog.sina.com.cn/s/blog_58ea0d1f0101i448.html)

tumor data (http://support.sas.com/documentation/cdl/en/statug/66103/HTML/default/viewer.htm#statug_phreg_examples07.htm)

template (https://www.cnblogs.com/abble/p/11344773.html)

```
In [18]: data Tumor;
            infile datalines missover;
            input ID Time Dead Dose P1-P15;
            label ID='Subject ID';
            datalines;
                               8 10 10 10 10
          1 47 1 1.0
                      0
                         5
                            6
          2 71 1
                 1.0
                               0
                                  0
                                     0
                                        0
                                           0
                                              1
                                                 1
                                                      1 1 1 1
          3 81 0
                 1.0
                         1
                                  1
                                     1
                                        1
                                           1
                                                 1
                                                       1 1 1 1
                            1
                               1
                                              1
          4 81 0
                 1.0
                            0
                               0
                                  0
                                     0
                                        0
                                           0
                                              0
                                                 0
                                                       0 0 0 0
          5 81 0
                 1.0
                      0
                         0
                            0
                               0
                                  0
                                     0
                                        0
                                           0
                                              0
                                                 0
                                                       0 0 0 0
          6 65 1
                 1.0
                               1
                                  1
                                     1
                                        1
                                           1
          7 71 0
                 1.0
                               0
                                  0
                                     0
                                        0
                                           0
                                              0
                                                 0
                                                       0 0 0 0
                         0
                            0
          8 69 0
                 1.0
                         0
                            0
                               0
                                  0
                                     0
                                        0
                                           0
                                              0
                                                       0 0 0
          9 67 1
                 1.0
                         0
                            1
                               1
                                  2
                                     2
                                        2
                                           2
                                              3
                                                 3
                                                    3
                                                       3 3 3
         10 81 0
                 1.0
                                  0
                                     0
         11 37 1
                         9
                 1.0
                            9
         12 81 0
                 1.0
                      0
                         0
                            0
                               0
                                  0
                                     0
                                        0
                                           0
                                              0
                                                 0
                                                    0
                                                       0 0 0 0
         13 77 0
                 1.0
                         0
                                  1
                                        1
                      0
                            0
                               0
                                     1
                                           1
                                              1
                                                 1
                                                       1 1 1 1
         14 81 0
                                        0
                                           0
                                                      0 0 0 0
                 1.0
                         0
                            0
                               0
                                  0
                                     0
                                              0
         15 81 0
                 1.0
                      0
                         0
                            0
                               0
                                  0
                                     0
                                        0
                                           0
                                              0
                                                 0
                                                    0
                                                      0 0 0 0
         16 54 0
                                  2
                                     2
                                        2
                                           2
                                              2
                 2.5
                      0
                         1
                            1
                               1
         17 53 0
                 2.5
                      0
                         0
                            0
                               0
                                  0
                                     0
                                        0
                 2.5 5 13 14
         18 38 0
                 2.5 2 6 6 6 6
         19 54 0
                                    6
                                       6 6 6
         20 51 1 2.5 15 15 15 16 16 17 17 17 17 17 17
         21 47 1 2.5 13 20 20 20 20 20 20 20
         22 27 1
                 2.5 22
         23 41 1
                 2.5
                     6 13 13 13
         24 49 1 2.5
                     0
                        3 3
                              3
                                  3
                                    3
                                           3
                                        3
                                              3
         25 53 0
                 2.5
                         0
                            1
                               1 1
                                    1
                                        1
                                           1
                                              1 1 1 1
                 2.5
                            2
         26 50 1
                      0 0
                               3
                                  4
                                     6
                                        6
                                           6
                                                 6
         27 37 1 2.5
                     3 15 15
         28 49 1 2.5 2 3 3
                               3 3
                                     4
                                        4
                                           4 4
         29 46 1 2.5 4 6
                           7
                              9 9 9
                 2.5 15 26 26 26 26 26 26 26
         30 48 0
         31 54 0 10.0 12 14 15 15 15 15 15 15 15 15 15 15
         32 37 1 10.0 12 16 17
         33 53 1 10.0 3 6 6 6 6
                                       6 6 6 6 6
         34 45 1 10.0
                      4 12 15 20 20 20
         35 53 0 10.0 6 10 13 13 13 15 15 15 15 15 20
         36 49 1 10.0
                      0 2 2 2 2 2 2 2 2
         37 39 0 10.0 7
                         8
         38 27 1 10.0 17
         39 49 1 10.0 0 6 9 14 14 14 14 14 14
         40 43 1 10.0 14 18 20 20 20
         41 28 0 10.0 8
         42 34 1 10.0 11 18
         43 45 1 10.0 10 12 16 16 16 16
         44 37 1 10.0 0 1 1
         45 43 1 10.0 9 19 19 19 19
         proc print data = tumor;
```

Out[18]:

HORSEPOWER OF Audi/BMW BY TYPES

Obs	ID	Time	Dead	Dose	P1	P2	Р3	P4	P5	P6	P7	P8	Р9	P10	P11	P12	P13	P14	P15
1	1	47	1	1.0	0	5	6	8	10	10	10	10							
2	2	71	1	1.0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
3	3	81	0	1.0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4	4	81	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

5	5	81	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	6	65	1	1.0	0	0	0	1	1	1	1	1	1	1	1	1	1		
7	7	71	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	8	69	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9	9	67	1	1.0	0	0	1	1	2	2	2	2	3	3	3	3	3	3	
10	10	81	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	11	37	1	1.0	9	9	9												
12	12	81	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	13	77	0	1.0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1
14	14	81	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	15	81	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	16	54	0	2.5	0	1	1	1	2	2	2	2	2	2	2	2			
17	17	53	0	2.5	0	0	0	0	0	0	0	0	0	0	0	0		·	
18	18	38	0	2.5	5	13	14											·	
19	19	54	0	2.5	2	6	6	6	6	6	6	6	6	6	6	6			
20	20	51	1	2.5	15	15	15	16	16	17	17	17	17	17	17				
21	21	47	1	2.5	13	20	20	20	20	20	20	20							
22	22	27	1	2.5	22														
23	23	41	1	2.5	6	13	13	13											
24	24	49	1	2.5	0	3	3	3	3	3	3	3	3						
25	25	53	0	2.5	0	0	1	1	1	1	1	1	1	1	1	1			
26	26	50	1	2.5	0	0	2	3	4	6	6	6	6	6					
27	27	37	1	2.5	3	15	15												
28	28	49	1	2.5	2	3	3	3	3	4	4	4	4					·	
29	29	46	1	2.5	4	6	7	9	9	9	9								
30	30	48	0	2.5	15	26	26	26	26	26	26	26							
31	31	54	0	10.0	12	14	15	15	15	15	15	15	15	15	15	15			
32	32	37	1	10.0	12	16	17												
33	33	53	1	10.0	3	6	6	6	6	6	6	6	6	6	6	6			
34	34	45	1	10.0	4	12	15	20	20	20								·	
35	35	53	0	10.0	6	10	13	13	13	15	15	15	15	15	15	20			
36	36	49	1	10.0	0	2	2	2	2	2	2	2	2					·	
37	37	39	0	10.0	7	8	8												
38	38	27	1	10.0	17						•					•			
39	39	49	1	10.0	0	6	9	14	14	14	14	14	14						
40	40	43	1	10.0	14	18	20	20	20										
41	41	28	0	10.0	8														
42	42	34	1	10.0	11	18													
43	43	45	1	10.0	10	12	16	16	16	16	•					•			
44	44	37	1	10.0	0	1	1				•					•			
45	45	43	1	10.0	9	19	19	19	19										

```
In [19]: data tumor1;
         set tumor;
         array p[10];
         do droptime=1 to dim(p);
         if missing(p[droptime]) then leave;
         droptime =droptime-1;
         do MeasureTime =1 to dim(p);
         Npap =p[MeasureTime];
         output;
         end;
         keep ID MeasureTime Npap droptime;
         run;
         proc means data=tumor1 nway noprint;
         class DropTime MeasureTime;
         var Npap;
         output out =meanout mean=mean_Npap;
         run;
         proc template;
         define statgraph scatterplot;
         dynamic _X_ _Y_ _VMCG_ _MSIZE_ _LMCG_;
         begingraph;
         entrytitle "Figure 1. Triangle plot about (non)informative dropout.";
         layout overlay;
         scatterplot x=_X_ y=_Y_ /name="sca" markercolorgradient=_VMCG_
                                                                                markerattrs=(symbol=squarefil
         led size=_MSIZE_);
         discretelegend "sca";
         continuouslegend "sca"/ orient=vertical halign=right title=_LMCG_;
         endlayout;
         endgraph;
         end;
         run;
         ods graphics on/width=1000 height=1000;
         proc sgrender data =meanout template=scatterplot;
         dynamic _X_='MeasureTime' _Y_='DropTime' _VMCG_='mean_Npap'
         _MSIZE_='30pt' _LMCG_='Npap';
         Label MeasureTime="Measurement Time" DropTime="Dropout Time";
         run;
```


In []: