

Malířův algoritmus

© 1995-2019 Josef Pelikán CGG MFF UK Praha

pepca@cgg.mff.cuni.cz
https://cgg.mff.cuni.cz/~pepca/

Malířův algoritmus

Kreslení do bufferu

video-RAM, GPU, rastrová tiskárna s bufferem

Vyplňování ploch

Ize i stínovat

Kreslení odzadu dopředu

- překreslování dříve nakreslených objektů
- kreslení poloprůhledných objektů na GPU
- → Určení správného pořadí ploch

Zjednodušené varianty

Explicitní pořadí kreslení

- např. u grafu funkce dvou proměnných: z = f(x,y)

Hloubkové třídění ("depth-sort")

- setřídění objektů podle souřadnice z (střed, těžiště)
- dobře funguje při velkém množství malých objektů
- nesprávná kresba velkých ploch (velká stolní deska s malými předměty)

Korektní algoritmus

Scéna je složena z rovinných plošek (stěn)

 stěny mohou mít společné body pouze na obvodu (nesmějí se prosekávat)

1. fáze: třídění

Stěny setřídíme podle minimální souřadnice z vzestupně – tj. odzadu dopředu – vytvoříme tak vstupní seznam S

2. fáze: kontrola pořadí

Ze začátku seznamu **S** vezmeme stěnu **P** – **kandidáta** pro kresbu.

Proti **P** musíme otestovat ostatní stěny, které s ní mohou kolidovat.

 právě testovanou stěnu označíme **Q**_[i]

2.a fáze: "minimax test"

Nejprve provedeme
nejjednodušší test –
v průmětu porovnáme
obdélníky opsané oběma
stěnám

- jestliže nemají společný bod, testování Q končí (pass)
- jinak pokračujeme dalším testem P a Q

2.b fáze: P versus rovina Q

Testujeme, zda stěna P neleží celá **za rovinou** stěny **Q**

- v kladném případě testování **Q** končí (pass)
- jinak pokračujeme dalším testem P a Q

$$\mathbf{a} \cdot \mathbf{x} + \mathbf{b} \cdot \mathbf{y} + \mathbf{c} \cdot \mathbf{z} + \mathbf{d} < \mathbf{0}$$

2.c fáze: Q versus rovina P

Test, zda stěna **Q** neleží celá **před rovinou** stěny **P**

- v kladném případě testování **Q** končí (pass)
- jinak pokračujeme dalším testem P a Q

$$\mathbf{a} \cdot x + \mathbf{b} \cdot y + \mathbf{c} \cdot z + \mathbf{d} > 0$$

2.d fáze: úplný test v průmětu

Pokud předchozí testy neuspěly, musíme provést **úplný test** stěn P a Q v průmětu

Je potřeba zjistit, zda není některá část **Q** překrytá stěnou **P**

 v takovém případě by nešlo nakreslit P před Q!

2.d fáze: úplný test v průmětu

Testujeme proti sobě **všechny hrany P** a **Q**

- najdeme-li průsečíky, porovnáme v nich souřadnice z
- je-li vždy P za Q, test Q končí úspěšně (pass)
- v opačném případě nelze P nakreslit jako první!

2.d fáze: úplný test v průmětu

Neexistuje-li průsečík hran P a Q, je třeba ještě zkontrolovat, zda neleží stěna P celá uvnitř Q nebo naopak

 to by se opět musely testovat souřadnice z

2. fáze: změna pořadí

Jestliže nelze z nějakého důvodu nakreslit P před Q, zkusíme přesunout stěnu **Q na začátek seznamu S** (ještě před **P**)

- pro Q budeme opět provádět všechny testy 2. fáze (jak jsme je popsali se stěnou P)
- testy nového kandidáta Q proti P už byly z velké části provedeny,
 stačí pouze doplnit obrácené testy 2.b a 2.c

$$P \not \to Q_1 \to Q_2 \to Q_3 \to 5$$

$$Q_1 \to P \to Q_2 \to Q_3 \to 5$$

Kvůli možnosti **zacyklení** se musí každý kandidát označit zvláštním příznakem

2. fáze: zacyklení

Jestliže je testován některý kandidát podruhé, došlo k **zacyklení**

Cyklus lze odstranit rozdělením některé stěny

správné pořadí: A₁, B, C, A₂

Literatura

J. Foley, A. van Dam, S. Feiner, J. Hughes: *Computer Graphics, Principles and Practice*, 672-675

Jiří Žára a kol.: *Počítačová grafika, principy a algoritmy,* 302-304