#### **CLAIMS**

## 1. A compound of the formula



wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>4</sup>, R<sup>5</sup> and R<sup>6</sup> each represent hydrogen or a hydroxyl protecting group, independently selected at each location.

- 2. The compound of claim 1 wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>4</sup>, R<sup>5</sup> and R<sup>6</sup> each represent a hydroxyl protecting group.
- 3. The compound of claim 1 wherein each of R<sup>1</sup>, R<sup>2</sup>, R<sup>4</sup>, R<sup>5</sup> and R<sup>6</sup> is, independently at each location, formyl, acetyl, dichloroacetyl, propionyl, isopropionyl, pivalyl, trimethylsilyl, triethylsilyl, triisopropylsilyl, dimethylisopropylsilyl, diethylisopropylsilyl, tert-butyldimethylsilyl, methyldiphenylsilyl, dimethylphenylsilyl, tert-butyldiphenylsilyl, triphenylsilyl, trichloroethoxycarbonyl, benzyl, paranitrobenzyl, para-methoxybenzyl, benzoyl, t-butyloxycarbonyl, benzyloxycarbonyl, methoxymethyl, methoxyethyl, ethoxyethyl, para-methoxyphenyl, tetrahydropyranyl, tetrahydrofuranyl, alkylsulfonyl or arylsulfonyl.
- 4. The compound of claim 1 wherein R<sup>1</sup> is acetyl, R<sup>2</sup> is acetyl, R<sup>4</sup> is a hydroxyl protecting group, R<sup>5</sup> is acetyl, and R<sup>6</sup> is benzoyl.

#### 5. A method comprising reacting a compound of the formula

by a Mitsunobu displacement reaction using an azide compound, so as to provide a compound of the formula

wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>4</sup>, R<sup>5</sup> and R<sup>6</sup> each represent hydrogen or a hydroxyl protecting group, independently selected at each location.

6. The method of claim 5 wherein the azide compound is diphenylphosphoryl azide or triphenylphosphine/ammonia with the organic base is DBU or DEAD.

7. A process comprising oxidizing a compound of the formula

$$R^{1}O$$
  $R^{6}O$   $R^{5}O$   $R^{5}O$   $R^{5}O$ 

to provide a compound of the formula

wherein  $R^1$ ,  $R^2$ ,  $R^4$ ,  $R^5$  and  $R^6$  each represent a hydroxyl protecting group, independently selected at each location.

8. The process of claim 7 wherein the azide is converted to a carbonyl compound by using an alkoxide in THF, most preferably either LiOMe or NaOMe followed by acidic hydrolysis.

#### 9. A compound of the formula



wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>4</sup>, R<sup>5</sup> and R<sup>6</sup> each represent hydrogen or a hydroxyl protecting group, independently selected at each location.

- 10. The compound of claim 9 wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>5</sup> and R<sup>6</sup> each represent a hydroxyl protecting group, and R<sup>4</sup> is hydrogen.
- 11. The compound of claim 9 wherein each of R<sup>1</sup>, R<sup>2</sup>, R<sup>5</sup> and R<sup>6</sup> is, independently at each location, formyl, acetyl, dichloroacetyl, propionyl, isopropionyl, pivalyl, trimethylsilyl, triethylsilyl, triisopropylsilyl, dimethylisopropylsilyl, diethylisopropylsilyl, tert-butyldimethylsilyl, methyldiphenylsilyl, dimethylphenylsilyl, tert-butyldiphenylsilyl, trichloroethoxycarbonyl, benzyl, paranitrobenzyl, para-methoxybenzyl, benzoyl, t-butyloxycarbonyl, benzyloxycarbonyl, methoxymethyl, methoxyethyl, ethoxyethyl, para-methoxyphenyl, tetrahydropyranyl, tetrahydrofuranyl, alkylsulfonyl or arylsulfonyl.
- 12. The compound of claim 9 wherein  $R^1$  is acetyl,  $R^2$  is acetyl,  $R^4$  is hydrogen,  $R^5$  is acetyl, and  $R^6$  is benzoyl.

#### 13. A process comprising bromination of a compound of the formula

$$R^{1}O$$
  $R^{6}O$   $R^{5}$   $R^{5}$ 

to provide a compound of the formula

$$R^{1}O$$
  $R^{1}O$   $R^{6}O$   $R^{5}$   $R^{5}$ 

wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>4</sup>, R<sup>5</sup> and R<sup>6</sup> each represent hydrogen or a hydroxyl protecting group, independently selected at each location.

14. The process of claim 13 wherein the bromination comprises use of a brominating agent.

#### 15. The process of claim 13 wherein the compound of the formula

is in admixture with a compound of formula

$$R^{1}O$$
  $R^{1}O$   $R^{2}O$   $R^{2}O$   $R^{2}O$   $R^{2}O$   $R^{3}O$   $R^{5}O$   $R^{5}O$ 

wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>4</sup>, R<sup>5</sup> and R<sup>6</sup> each represent hydrogen or a hydroxyl protecting group, independently selected at each location.

# 16. A process comprising oxidation of a compound of the formula



to provide a compound of the formula



wherein  $R^1$ ,  $R^2$ ,  $R^4$ ,  $R^5$  and  $R^6$  each represent hydrogen or a hydroxyl protecting group, independently selected at each location.

- 17. The process of claim 16 wherein a bromide is converted to an azide and the azide is converted to a carbonyl.
  - 18. A process comprising oxidation of a compound of the formula



with oxidation conditions comprising  $MnO_2$  or DCC/DMSO, to provide a compound of the formula

$$R^{1}O$$
  $R^{1}O$   $R^{2}O$   $R^{2}O$   $R^{2}O$   $R^{2}O$   $R^{3}O$   $R^{5}O$ 

wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>4</sup>, R<sup>5</sup> and R<sup>6</sup> each represent hydrogen or a hydroxyl protecting group, independently selected at each location.

#### 19. A compound of the formula



wherein  $R^2$  and  $R^4$  are identical and selected from triethylsilyl, dichloroacetyl, benzyloxycarbonyl, and 2,2,2-trichloroethoxycarbonyl.

## 20. A process comprising coupling a compound of formula

where  $R^{14}$  is selected from -SPh, -OAc, -OMe, -OEE, -O-t-BOC, or -OC(O)CH2CI, with a compound of formula



wherein R<sup>2</sup> and R<sup>4</sup> are identical and selected from triethylsilyl, dichloroacetyl, benzyloxycarbonyl, and 2,2,2-trichloroethoxycarbonyl,

## to provide a compound of formula

# 21. A compound of formula

wherein  $R^2$  and  $R^4$  are identical and selected from triethylsilyl, dichloroacetyl, benzyloxycarbonyl, and 2,2,2-trichloroethoxycarbonyl.

## 22. A process comprising coupling a compound of formula

wherein R<sup>16</sup> is acetyl or ethoxyethyl, with a compound of formula



wherein  $R^2$  and  $R^4$  are identical and selected from triethylsilyl, dichloroacetyl, benzyloxycarbonyl, and 2,2,2-trichloroethoxycarbonyl,

to provide a compound of formula

## 23. A compound of formula

wherein  $R^2$  and  $R^4$  are identical and selected from triethylsilyl, dichloroacetyl, benzyloxycarbonyl, and 2,2,2-trichloroethoxycarbonyl, and  $R^{16}$  is acetyl or ethoxyethyl.

# 24. A compound of the formula



wherein R<sup>4</sup> is selected from triethylsilyl, dichloroacetyl, benzyloxycarbonyl, and 2,2,2-trichloroethoxycarbonyl.

## 25. A process comprising coupling a compound of formula

where  $\mathsf{R}^{14}$  is selected from –SPh, -OAc, -OMe, -OEE, -O-t-BOC, or -OC(O)CH2CI, with a compound of formula



wherein R<sup>4</sup> is selected from triethylsilyl, dichloroacetyl, benzyloxycarbonyl, and 2,2,2-trichloroethoxycarbonyl,

## to provide a compound of formula

# 26. A compound of formula

wherein  $R^4$  is selected from triethylsilyl, dichloroacetyl, benzyloxycarbonyl, and 2,2,2-trichloroethoxycarbonyl, and  $R^{14}$  is selected from –SPh, -OAc, -OMe, -OEE, -O-t-BOC, or -OC(O)CH<sub>2</sub>Cl.

## 27. A process comprising coupling a compound of formula

# with a compound of formula



wherein  $R^4$  is selected from triethylsilyl, dichloroacetyl, benzyloxycarbonyl, and 2,2,2-trichloroethoxycarbonyl, and  $R^{16}$  is selected from acetyl and ethoxyethyl, to provide a compound of formula



## 28. A compound of the formula

wherein R<sup>4</sup> is selected from triethylsilyl, dichloroacetyl, benzyloxycarbonyl, and 2,2,2-trichloroethoxycarbonyl, and R<sup>16</sup> is selected from acetyl and ethoxyethyl.

## 29. A compound of the formula

wherein R<sup>10</sup> and R<sup>11</sup> are independently selected from alkyl groups.

## 30. A process comprising coupling a compound of formula

where  $R^{14}$  is selected from –SPh, -OAc, -OMe, -OEE, -O-t-BOC, or -OC(O)CH $_2$ CI, with a compound of formula



wherein R<sup>10</sup> and R<sup>11</sup> are independently selected from alkyl groups,

## to provide a compound of formula

# 31. A compound of the formula

wherein  $R^4$  is hydrogen or a hydroxyl protecting group,  $R^{10}$  and  $R^{11}$  are independently selected from alkyl groups, and  $R^{14}$  is selected from –SPh, -OAc, -OMe, -OEE, -O-t-BOC, or -OC(O)CH<sub>2</sub>CI.

# 32. A process comprising coupling a compound of formula

wherein R<sup>16</sup> is acetyl or ethoxyethyl, with a compound of formula



wherein R<sup>10</sup> and R<sup>11</sup> are independently selected from alkyl groups, to provide a compound of formula



#### 33. A compound of formula

wherein  $R^4$  is hydrogen or a hydroxyl protecting group,  $R^{10}$  and  $R^{11}$  are independently selected from alkyl groups, and  $R^{16}$  is acetyl or ethoxyethyl.

34. A process comprising reacting an imine of formula Ph-CH=N-R<sup>13</sup> wherein R<sup>13</sup> represents hydrogen or an amine protecting group, with a C13 acetate ester of Baccatin or a derivative or analog thereof of formulae

wherein X is a halide, to provide a coupled product of formula

## 35. A process comprising treating a starting compound of the formula

wherein R<sup>13</sup> represents hydrogen or an amine protecting group, under diazotiation conditions, to provide a product compound of the formula

# 36. The process of claim 35 wherein the starting compound is

where  $\ensuremath{\mathsf{R}}^4$  is hydrogen or a hydroxyl protecting group, and the product compound is

- 37. The process of claims 35 and 36 wherein the diazotiation conditions comprise tosyl azide and at least base selected from triethylamine and diazobicycloundecane.
  - 38. A process comprising treating a compound of the formula

where R<sup>13</sup> is hydrogen or an amine protecting group, under conditions that convert a diazo group to an acetate group, to provide a compound of the formula

#### 39. A process comprising treating a compound of the formula

where R<sup>13</sup> is hydrogen or an amine protecting group, under hydrolysis conditions that (a) convert an acetate group to a hydroxyl group, or (b) convert an acetate group to an ethoxyethyl group and then the ethoxyethyl group to a hydroxyl group, and provide a compound of the formula

## 40. A process comprising treating a compound of the formula

where  $R^{13}$  is an amine protecting group, under conditions that remove an amine protecting group and provide a compound of the formula

41. A process comprising treating a compound of the formula

under conditions that introduce a benzoyl group and provide a compound of the formula

42. The process of claims 34-41 wherein PG is PMP or t-BOC.

43. The process of claims 34-41 wherein BAC is



wherein R<sup>4</sup> is a hydroxyl protecting group.

- 44. The process of claim 42 wherein R<sup>4</sup> is selected from triethylsilyl, dichloroacetyl, benzyloxycarbonyl, and 2,2,2-trichloroethoxycarbonyl
  - 45. The process of claims 34-41 wherein BAC is



wherein R<sup>6</sup> and R<sup>7</sup> represent alkyl groups.

## 46. A process comprising exposing a compound of the formula

to oxidation conditions, to provide the corresponding ketone of the formula

$$\begin{array}{c} \mathsf{PMP} \\ \mathsf{NH} \\ \mathsf{OAc} \\ \\ \mathsf{OAc} \\ \\ \mathsf{R}^{7}\mathsf{O} \\ \\ \mathsf{R}^{6}\mathsf{O} \\ \\ \mathsf{R}^{5} \\ \\ \\ \mathsf{R}^{5} \\ \end{array}$$

wherein R<sup>2</sup> is a hydroxyl protecting group, R<sup>4</sup> is a hydroxyl protecting group, R<sup>5</sup> is a hydroxyl protecting, R<sup>6</sup> is a hydroxyl protecting group.

- 47. The process of claim 46 wherein  $R^2$  is acetyl,  $R^4$  is a hydroxyl protecting group,  $R^5$  is acetyl, and  $R^6$  benzoyl.
- 48. The process of claim 46 wherein the oxidation conditions comprise PDC or CrO<sub>3</sub>/H<sup>+</sup>.

49. A process comprising enolate oxidation of a starting compound of the formula

to provide a product compound of the formula

wherein  $R^2$  is a hydroxyl protecting group,  $R^4$  is hydrogen or a hydroxyl protecting group,  $R^5$  is a hydroxyl protecting group,  $R^6$  is a hydroxyl protecting group, and  $R^7$  is hydrogen or a hydroxyl protecting group.

50. The process of claim 49 wherein  $R^2$  is acetyl,  $R^4$  is hydrogen,  $R^5$  is acetyl,  $R^6$  is benzoyl and  $R^7$  is hydrogen.

- 51. The process of claim 49 wherein the starting compound is exposing to oxidizing conditions comprising potassium hexamethyldisilazide and a molybdenum compound.
  - 52. A process comprising coupling a beta lactam of the formula



with a baccatin compound of the formula



wherein  $R^2$  and  $R^4$  are both TES or are both dichloroacetyl, or  $R^2$  is acetyl and  $R^4$  is TES or dichloroacetyl.

- 53. The process of claim 52 wherein the beta lactam is coupled to the baccatin compound in the presence of base.
  - 54. The process of claim 52 wherein the base is sodium hydride.









wherein  $\mathsf{R}^{\mathsf{10}}$  and  $\mathsf{R}^{\mathsf{11}}$  are alkyl groups, independently selected at each occurrence.



wherein  $\mathsf{R}^{\mathsf{10}}$  and  $\mathsf{R}^{\mathsf{11}}$  are alkyl groups, independently selected at each occurrence.