

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of
The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 07189659 A

(43) Date of publication of application: 28.07.95

(51) Int. Cl

F01N 3/08
F02D 41/02

(21) Application number: 05334325

(22) Date of filing: 28.12.93

(71) Applicant: TOYOTA MOTOR CORP

(72) Inventor: KABANO KAZUYUKI
HARADA ATSUSHI
SHIBAGAKI NOBUYUKI

(54) EXHAUST EMISSION CONTROL DEVICE OF INTERNAL COMBUSTION ENGINE

(57) Abstract:

PURPOSE: To allow discharge of NO_x to the atmosphere by temporarily switching an air-fuel ratio of exhaust gas to a theoretical air-fuel ratio or a rich condition, when an estimated quantity of NO_x adsorbed in NO_x adsorbent arranged inside an exhaust passage becomes larger than an allowable quantity.

CONSTITUTION: A casing 17 having NO_x adsorbent 18 contained is connected on the way of an exhaust pipe 16 connected to an exhaust port 8, and the adsorbent 18 is forced to perform absorbing/discharging action for NO_x in such a way as absorbing NO_x contained in the exhaust gas when the air-fuel ratio of fed-in exhaust gas is lean, and discharging NO_x when the oxygen concentration in the fed-in exhaust gas is decreased. In this case, the NO_x quantity adsorbed in the NO_x adsorbent 18 is estimated, and the operation is controlled in such a way that the air-fuel ratio of the fed-in exhaust gas is temporarily switched from a lean condition to a theoretical air-fuel ratio or a rich condition when the estimated NO_x quantity increases beyond an allowable quantity, and then the allowable

value is set smaller as the estimated NO_x adsorbed volume is decreased in a control unit 30.

COPYRIGHT: (C)1995,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-189659

(43)公開日 平成7年(1995)7月28日

(51) Int.Cl.⁶
F 01 N 3/08

識別記号 A
B
F 02 D 41/02 330 H

F I

技術表示箇所

審査請求 未請求 請求項の数1 O.L. (全10頁)

(21)出願番号 特願平5-334325

(22)出願日 平成5年(1993)12月28日

(71)出願人 000003207

トヨタ自動車株式会社

愛知県豊田市トヨタ町1番地

(72)発明者 蒲野 和幸

愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

(72)発明者 原田 淳

愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

(72)発明者 柴垣 信之

愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

(74)代理人 弁理士 宇井 正一 (外4名)

(54)【発明の名称】 内燃機関の排気浄化装置

(57)【要約】

【目的】 NO_x 吸収剤のNO_x 吸収能力が低下しても NO_x 吸収剤が飽和する前にNO_x 吸収剤からNO_x を放出させる。

【構成】 流入する排気ガスの空燃比がリーンのときにはNO_x を吸収し、流入する排気ガスの空燃比が理論空燃比又はリッチのときには吸収したNO_x を放出するNO_x 吸収剤18を機関排気通路内に配置する。NO_x 吸収剤に吸収されたNO_x 量を推定し、推定されたNO_x 量が許容量を越えたときに混合気を一時的にリッチにする。NO_x 吸収剤のNO_x 吸収能力を推定し、推定したNO_x 吸収能力が低下するほど許容量を小さくする。

16-排気管
18-NO_x 吸収剤

1

【特許請求の範囲】

【請求項1】 流入する排気ガスの空燃比がリーンのときにはNO_xを吸収し、流入する排気ガスの空燃比が理論空燃比又はリッチのときには吸収したNO_xを放出するNO_x吸收剤を機関排気通路内に配置した内燃機関において、NO_x吸收剤に吸収されたNO_x量を推定するNO_x量推定手段と、該NO_x量推定手段により推定されたNO_x量が許容量を越えたときにNO_x吸收剤に流入する排気ガスの空燃比をリーンから理論空燃比又はリッチに一時的に切換えることを許可する空燃比切換許可手段と、NO_x吸收剤のNO_x吸收容量を推定するNO_x吸收容量推定手段とを具備し、該NO_x吸收容量推定手段により推定されたNO_x吸收容量が減少するほど上記許容値を小さくするようにした内燃機関の排気浄化装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は内燃機関の排気浄化装置に関する。

【0002】

【従来の技術】 流入する排気ガスの空燃比がリーンのときにはNO_xを吸収し、流入する排気ガスの空燃比が理論空燃比又はリッチのときには吸収したNO_xを放出するNO_x吸收剤を機関排気通路内に配置し、NO_x吸收剤に吸収されたNO_x量を推定すると共に推定されたNO_x量が許容量を越えたときにNO_x吸收剤に流入する排気ガスの空燃比をリーンから理論空燃比又はリッチに一時的に切換えてNO_x吸收剤からNO_xを放出させ、次いでNO_x吸收剤に流入する排気ガスの空燃比を再びリーンに戻すようにした内燃機関が本出願人により既に提案されている（国際出願PCT/JP93/00778号参照）。

【0003】

【発明が解決しようとする課題】 ところが燃料および機関の潤滑油内にはイオウが含まれており、このイオウはSO₂の形でNO_xと共にNO_x吸收剤に吸収される。しかしながらこのSO₂はNO_x吸收剤の温度が高くかつNO_x吸收剤に流入する排気ガスがリッチにされないとNO_x吸收剤から放出されず、従ってNO_x吸收剤からNO_xを放出すべくNO_x吸收剤に流入する排気ガスの空燃比がリッチにされてもこのときNO_x吸收剤の温度がさほど高くない場合にはNO_xのみが放出されてSO₂が放出されないことになる。従ってSO₂はNO_x吸收剤に徐々に蓄積され、SO₂の蓄積量が増大することに伴なってNO_x吸收剤のNO_x吸收容量が減少することになる。

【0004】 ところでNO_x吸收剤からNO_xを放出させるために例えば混合気の空燃比をリッチにする場合を考えるとこの場合には吸収されているNO_xを放出させるのに必要な時間だけ混合気をリッチにさせる必要がある

2

る。従ってNO_x吸收剤に吸収されているNO_x量が少ない場合には混合気をリッチにする時間を短かくしなければならないが短かくするといつても実際には限度があり、従って吸収されているNO_x量が少ないと混合気をリッチにするとリッチ時間を必要以上に長くしなければならないために燃料消費量が増大してしまう。従ってNO_x吸收剤からのNO_x放出作用は或る程度以上のNO_xが吸収されているときに行なうことが好ましいことになる。前述の内燃機関ではNO_xの放出作用を行うための吸収NO_x量に対する許容値は或る程度以上のNO_x量に設定されており、従ってこの点からみると前述の内燃機関は好ましいことになる。

【0005】 しかしながら前述の内燃機関ではNO_x吸收剤のNO_x吸收容量を考慮して許容値が定められていない。従ってNO_x吸收剤のNO_x吸收容量が減少した場合にはNO_xの吸収容量が飽和してもNO_xの放出作用が行われず、斯くてNO_x吸收剤により吸収しえないNO_xが大気中に放出されるという問題を生ずる。また、NO_x吸收量が許容値を越えたという判定に加えて他の予め定められた条件が全て成立したときにNO_xを放出すべく混合気の空燃比をリッチにすることによってNO_x放出システムの場合においてもNO_x吸收剤のNO_x吸收容量を考慮して許容値が定められていない場合には実際にはNO_x吸收量が飽和しておりかつ他の全ての条件も成立しているにもかかわらずNO_x吸收量が許容値を越えていないと判断されるためにNO_xの放出作用が行われず、斯くてNO_x吸收剤により吸収しえないNO_xが大気中に放出されるという問題を生ずる。

【0006】

【課題を解決するための手段】 上記問題点を解決するために本発明によれば、流入する排気ガスの空燃比がリーンのときにはNO_xを吸収し、流入する排気ガスの空燃比が理論空燃比又はリッチのときには吸収したNO_xを放出するNO_x吸收剤を機関排気通路内に配置した内燃機関において、NO_x吸收剤に吸収されたNO_x量を推定するNO_x量推定手段と、NO_x量推定手段により推定されたNO_x量が許容量を越えたときにNO_x吸收剤に流入する排気ガスの空燃比をリーンから理論空燃比又はリッチに一時的に切換えることを許可する空燃比切換許可手段と、NO_x吸收剤のNO_x吸收容量を推定するNO_x吸收容量推定手段とを具備し、NO_x吸收容量推定手段により推定されたNO_x吸收容量が減少するほど許容値を小さくするようにしている。

【0007】

【作用】 NO_x吸收剤のNO_x吸收容量が減少するほど許容値が小さくされるのでNO_x吸收容量にかかわらずにNO_x吸收容量が飽和する前にNO_xを放出するための空燃比の切換許可が出される。

【0008】

【実施例】 図1を参照すると、1は機関本体、2はビス

トン、3は燃焼室、4は点火栓、5は吸気弁、6は吸気ポート、7は排気弁、8は排気ポートを夫々示す。吸気ポート6は対応する枝管9を介してサージタンク10に連結され、各枝管9には夫々吸気ポート6内に向けて燃料を噴射する燃料噴射弁11が取付けられる。サージタンク10は吸気ダクト12を介してエアクリーナ13に連結され、吸気ダクト12内にはスロットル弁14が配置される。一方、排気ポート8は排気マニホールド15およびおよび排気管16を介してNO_x吸收剤18を内蔵したケーシング17に接続される。

【0009】電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって相互に接続されたROM(リードオンリーメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。サージタンク10内にはサージタンク10内の絶対圧に比例した出力電圧を発生する圧力センサ19が配置され、この圧力センサ19の出力電圧はAD変換器37を介して入力ポート35に入力される。スロットル弁14にはスロットル開度がアイドリング開度になったときにオンとなるスロットルスイッチ20が取付けられ、このスロットルスイッチ20の出力信号は入力ポート35に入力される。排気マニホールド15内には空燃比センサ21が配置され、この空燃比センサ21の出力電圧はAD変換器38を介して入力ポート35に入力される。また、入力ポート35には機関回転数を表わす出力パルスを発生する回転数センサ22が接続される。一方、出力ポート36は対応する駆動回路39を介して夫々点火栓4および燃料噴射弁11に接続される。

【0010】図1に示す内燃機関では例えば次式に基いて燃料噴射時間TAUが算出される。

$$TAU = f \cdot TP \cdot K \cdot FAF$$

ここでfは係数、TPは基本燃料噴射時間、Kは補正係数、FAFはフィードバック補正係数を夫々示す。基本燃料噴射時間TPは機関シリンダ内に供給される混合気の空燃比を理論空燃比とするのに必要な燃料噴射時間を示している。この基本燃料噴射時間TPは予め実験により求められ、サージタンク10内の絶対圧PMおよび機関回転数Nの関数として図2に示すようなマップの形で予めROM32内に記憶されている。補正係数Kは機関シリンダ内に供給される混合気の空燃比を制御するための係数であってK=1.0であれば機関シリンダ内に供給される混合気は理論空燃比となる。これに対してK<1.0になれば機関シリンダ内に供給される混合気の空燃比は理論空燃比よりも大きくなり、即ちリーンとなり、K>1.0になれば機関シリンダ内に供給される混合気の空燃比は理論空燃比よりも小さくなる、即ちリッチとなる。

【0011】フィードバック補正係数FAFはK=1.0のとき、即ち機関シリンダ内に供給される混合気の空

燃比を理論空燃比とすべきときに空燃比センサ21の出力信号に基いて空燃比を理論空燃比に正確に一致させるための係数である。このフィードバック補正係数FAFはほぼ1.0を中心として上下動しており、このFAFは混合気がリッチになると減少し、混合気がリーンになると増大する。なお、K<1.0又はK>1.0のときはFAFは1.0に固定される。

【0012】機関シリンダ内に供給すべき混合気の目標空燃比、即ち補正係数Kの値は機関の運転状態に応じて変化せしめられ、本発明による実施例では基本的に図3に示されるようにサージタンク10内の絶対圧PMおよび機関回転数Nの関数として予め定められている。即ち、図3に示されるように実線Rよりも低負荷側の低負荷運転領域ではK<1.0、即ち混合気がリーンとされ、実線Rと実線Sの間の高負荷運転領域ではK=1.0、即ち混合気がリーンとされ、実線Sよりも高負荷側の全負荷運転領域ではK>1.0、即ち混合気がリッチとされる。

【0013】図4は燃焼室3から排出される排気ガス中の代表的な成分の濃度を概略的に示している。図4からわかるように燃焼室3から排出される排気ガス中の未燃HC、COの濃度は燃焼室3内に供給される混合気の空燃比がリッチになるほど増大し、燃焼室3から排出される排気ガス中の酸素O₂の濃度は燃焼室3内に供給される混合気の空燃比がリーンになるほど増大する。

【0014】ケーシング17内に収容されているNO_x吸收剤18は例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少くとも一つと、白金Ptのような貴金属などが担持されている。機関吸気通路およびNO_x吸收剤18上流の排気通路内に供給された空気および燃料(炭化水素)の比をNO_x吸收剤18への流入排気ガスの空燃比と称するとこのNO_x吸收剤18は流入排気ガスの空燃比がリーンのときにはNO_xを吸収し、流入排気ガス中の酸素濃度が低下すると吸収したNO_xを放出するNO_xの吸放出作用を行う。なお、NO_x吸收剤18上流の排気通路内に燃料(炭化水素)あるいは空気が供給されない場合には流入排気ガスの空燃比は燃焼室3内に供給される混合気の空燃比に一致し、従ってこの場合にはNO_x吸收剤18は燃焼室3内に供給される混合気の空燃比がリーンのときにはNO_xを吸収し、燃焼室3内に供給される混合気中の酸素濃度が低下すると吸収したNO_xを放出することになる。

【0015】上述のNO_x吸收剤18を機関排気通路内に配置すればこのNO_x吸收剤18は実際にNO_xの吸放出作用を行なうがこの吸放出作用の詳細なメカニズムについては明らかでない部分もある。しかしながらこの吸

放出作用は図5に示すようなメカニズムで行われているものと考えられる。次にこのメカニズムについて担体上に白金PtおよびバリウムBaを担持させた場合を例にとって説明するが他の貴金属、アルカリ金属、アルカリ土類、希土類を用いても同様なメカニズムとなる。

【0016】即ち、流入排気ガスがかなりリーンになると流入排気ガス中の酸素濃度が大巾に増大し、図5(A)に示されるようにこれら酸素O₂がO₂⁻又はO²⁻の形で白金Ptの表面に付着する。一方、流入排気ガス中のNOは白金Ptの表面上でO₂⁻又はO²⁻と反応し、NO₂となる(2NO+O₂→2NO₂)。次いで生成されたNO₂の一部は白金Pt上で酸化されつつ吸収剤内に吸収されて酸化バリウムBaOと結合しながら図5(A)に示されるように硝酸イオンNO₃⁻の形で吸収剤内に拡散する。このようにしてNO₂がNO₃⁻吸収剤18内に吸収される。

【0017】流入排気ガス中の酸素濃度が高い限り白金Ptの表面でNO₂が生成され、吸収剤のNO₃⁻吸収能力が飽和しない限りNO₂が吸収剤内に吸収されて硝酸イオンNO₃⁻が生成される。これに対して流入排気ガス中の酸素濃度が低下してNO₂の生成量が低下すると反応が逆方向(NO₃⁻→NO₂)に進み、斯くて吸収剤内の硝酸イオンNO₃⁻がNO₂の形で吸収剤から放出される。即ち、流入排気ガス中の酸素濃度が低下するとNO₃⁻吸収剤18からNO₂が放出されることになる。図4に示されるように流入排気ガスのリーンの度合が低くなれば流入排気ガス中の酸素濃度が低下し、従つて流入排気ガスのリーンの度合を低くすればたとえ流入排気ガスの空燃比がリーンであってもNO₃⁻吸収剤18からNO₂が放出されることになる。

【0018】一方、このとき燃焼室3内に供給される混合気がリッチにされて流入排気ガスの空燃比がリッチになると図4に示されるように機関からは多量の未燃HC, COが排出され、これら未燃HC, COは白金Pt上の酸素O₂⁻又はO²⁻と反応して酸化せしめられる。また、流入排気ガスの空燃比が極度に低下するために吸収剤からNO₃⁻が放出され、このNO₃⁻は図5(B)に示されるように未燃HC, COと反応して還元せしめられる。このようにして白金Ptの表面上にNO₃⁻が存在しなくなると吸収剤から次から次へとNO₂が放出される。従つて流入排気ガスの空燃比をリッチにすると短時間のうちにNO₃⁻吸収剤18からNO₂が放出されることになる。

【0019】即ち、流入排気ガスの空燃比をリッチにするとまず始めに未燃HC, COが白金Pt上のO₂⁻又はO²⁻とただちに反応して酸化せしめられ、次いで白金Pt上のO₂⁻又はO²⁻が消費されてもまだ未燃HC, COが残っていればこの未燃HC, COによって吸収剤から放出されたNO₃⁻および機関から放出されたNO₃⁻が還元せしめられる。従つて流入排気ガスの空燃比をリ

ッチにすれば短時間のうちにNO₃⁻吸収剤18に吸収されているNO₃⁻が放出され、しかもこの放出されたNO₃⁻が還元されるために大気中にNO₂が排出されるのを阻止することができることになる。また、NO₃⁻吸収剤18は還元触媒の機能を有しているので流入排気ガスの空燃比を理論空燃比にしてもNO₃⁻吸収剤18から放出されたNO₃⁻が還元せしめられる。しかしながら流入排気ガスの空燃比を理論空燃比にした場合にはNO₃⁻吸収剤18からNO₂が徐々にしか放出されないためにNO₃⁻吸収剤18に吸収されている全NO₃⁻を放出させるには若干長い時間を要する。

【0020】上述したようにリーン混合気が燃焼せしめられるとNO₃⁻がNO₃⁻吸収剤18に吸収される。しかしながらNO₃⁻吸収剤18のNO₃⁻吸収能力には限度があり、NO₃⁻吸収剤18のNO₃⁻吸収能力が飽和すればNO₃⁻吸収剤18はもはやNO₃⁻を吸収しえなくなる。従つてNO₃⁻吸収剤18のNO₃⁻吸収能力が飽和する前にNO₃⁻吸収剤18からNO₂を放出させる必要があり、そのためにはNO₃⁻吸収剤18にどの程度のNO₃⁻が吸収されているかを推定する必要がある。次にこのNO₃⁻吸収量の推定方法について説明する。

【0021】リーン混合気が燃焼せしめられているときには機関負荷が高くなるほど単位時間当たり機関から排出されるNO₃⁻量が増大するために単位時間当たりNO₃⁻吸収剤18に吸収されるNO₃⁻量が増大し、また機関回転数が高くなるほど単位時間当たり機関から排出されるNO₃⁻量が増大するために単位時間当たりNO₃⁻吸収剤18に吸収されるNO₃⁻量が増大する。従つて単位時間当たりNO₃⁻吸収剤18に吸収されるNO₃⁻量は機関負荷と機関回転数の関数となる。この場合、機関負荷はサージタンク10内の絶対圧でもって代表することができるので単位時間当たりNO₃⁻吸収剤18に吸収されるNO₃⁻量はサージタンク10内の絶対圧PMと機関回転数Nの関数となる。従つて本発明による実施例では単位時間当たりNO₃⁻吸収剤18に吸収されるNO₃⁻量NOXAを絶対圧PMおよび機関回転数Nの関数として予め実験により求め、このNO₃⁻量NOXAがPMおよびNの関数として図6(A)に示すマップの形で予めROM32内に記憶されている。

【0022】一方、機関シリンダ内に供給される混合気の空燃比が理論空燃比又はリッチになるとNO₃⁻吸収剤18からNO₂が放出されるがこのときのNO₂放出量は主に排気ガス量と空燃比の影響を受ける。即ち、排気ガス量が増大するほど単位時間当たりNO₃⁻吸収剤18から放出されるNO₃⁻量が増大し、空燃比がリッチとなるほど単位時間当たりNO₃⁻吸収剤18から放出されるNO₃⁻量が増大する。この場合、排気ガス量、即ち吸入空気量は機関回転数Nとサージタンク10内の絶対圧PMとの積でもって代表することができ、従つて図6(B)に示されるように単位時間当たりNO₃⁻吸収剤18から放出

されるNO_x量NOXDはN・PMが大きくなるほど増大する。また、空燃比は補正係数Kの値に対応しているので図6(C)に示されるように単位時間当りNO_x吸収剤18から放出されるNO_x量NOXDはKの値が大きくなるほど増大する。この単位時間当りNO_x吸収剤18から放出されるNO_x量NOXDはN・PMとKの関数として図7(A)に示すマップの形で求めROM32内に記憶されている。

【0023】また、NO_x吸収剤18の温度が高くなると吸収剤内の硝酸イオンNO₃⁻が分解しやすくなるのでNO_x吸収剤18からのNO_x放出率が増大する。この場合、NO_x吸収剤18の温度はほぼ排気ガスに比例するので図7(B)に示されるようにNO_x放出率Kfは排気ガス温Tが高くなるほど大きくなる。従ってNO_x放出率Kfを考慮に入れた場合には単位時間当りNO_x吸収剤18から放出されるNO_x量は図7(A)に示されるNOXDとNO_x放出率Kfとの積で表わされることになる。なお、本発明による実施例では排気ガス温Tはサージタンク10内の絶対圧PMおよび機関回転数Nの関数として図7(C)に示すマップの形で求めROM32内に記憶されている。

【0024】上述したようにリーン混合気が燃焼せしめられたときには単位時間当りのNO_x吸収量がNOXAで表わされ、理論空燃比の混合気又はリッチ混合気が燃焼せしめられたときには単位時間当りのNO_x放出量はKf・NOXDで表わされるのでNO_x吸収剤18に吸収されていると推定されるNO_x量ΣNOXは次式で表わされることになる。

【0025】

$$\Sigma NOX = \Sigma NOX + NOXA - K_f \cdot NOXD$$

前述したように本発明による実施例では基本的には図3において実線R、Sにより区別けされる補正係数Kの値に従って空燃比が制御される。従って図3の実線Rよりも低負荷側の領域ではリーン混合気(K<1.0)が燃焼せしめられるのでNO_xがNO_x吸収剤18に吸収され、図3の実線Rよりも高負荷側の領域では理論空燃比の混合気(K=1.0)又はリッチ混合気(K>1.0)が燃焼せしめられるのでNO_x吸収剤18からNO_xが放出されることになる。従って図3の実線Rを境にして低負荷運転と高負荷運転が交互に繰返されるとNO_x吸収剤18のNO_x吸収能力は飽和しないことになるが実際には低負荷運転される機会が多く、従ってNO_x吸収剤18のNO_x吸収能力は飽和してしまうことになる。従ってこの場合にはNO_x吸収剤18のNO_x吸収能力が飽和する前にNO_x吸収剤18からNO_xを放出させることが必要となる。

【0026】ところが排気ガス中にはSO_xが含まれており、NO_x吸収剤18にはNO_xばかりでなくSO_xも吸収される。このNO_x吸収剤18へのSO_xの吸収メカニズムはNO_xの吸収メカニズムと同じであると考

えられる。即ち、NO_xの吸収メカニズムを説明したときと同様に担体上に白金PtおよびパリウムBaを担持させた場合を例にとって説明すると、前述したように流入排気ガスの空燃比がリーンのときには酸素O₂がO₂⁻の形で白金Ptの表面に付着しており、流入排気ガス中のSO₂は白金Ptの表面でO₂⁻と反応してSO₄²⁻となる。ついで生成されたSO₄²⁻は白金Pt上で更に酸化されつつ吸収剤内に吸収されて酸化パリウムBaOと結合しながら、硫酸イオンSO₄²⁻の形で吸収剤内に拡散する。次いでこの硫酸イオンSO₄²⁻はパリウムイオンBa²⁺と結合して硫酸塩BaSO₄を生成する。吸収剤内におけるこの硫酸塩BaSO₄の量が増大するとNO_x吸収剤18のNO_x吸収能力が低下する。従ってNO_x吸収剤18のNO_x吸収能力が飽和する前にNO_x吸収剤18からNO_xを放出させるためはNO_x吸収剤18のNO_x吸収能力を推定する必要がある。

【0027】ところで機関から単位時間当り排出される排気ガス中に含まれるSO_x量は燃料噴射量TAUが増大すればそれに伴なって増大し、機関回転数Nが高くなればそれに伴なって増大する。従ってNO_x吸収剤18に単位時間当り吸収される吸収SO_x量SOXAは次式で表わされることになる。

$$SOXA = k_1 \cdot TAU \cdot N \quad (k_1 \text{ は定数})$$

一方、NO_x吸収剤18の温度がNO_x吸収剤18により定まる一定温度T₀、例えば500°Cよりも高くなると硫酸塩BaSO₄が分解し、このときNO_x吸収剤18に流入する排気ガスの空燃比がリッチになるとNO_x吸収剤18からSO_xが放出される。この場合、排気ガスの空燃比のリッチの度合を一定としたときのSO_x放出率f(T)は図8(A)に示されるようにNO_x吸収剤18の温度Tが高くなるほど高くなり、またNO_x吸収剤18の温度を一定としたときのSO_x放出率f(K)は補正係数Kが大きくなるほど、即ち排気ガスの空燃比がリッチになるほど高くなる。従ってNO_x吸収剤18から単位時間当り放出されるSO_x量SOXDは次式で表わされることになる。

$$SOXD = k_2 \cdot f(T) \cdot f(K)$$

従ってNO_x吸収剤18に吸収されていると推定されるSO_x量ΣSOXは次式で表わされることになる。

$$\Sigma SOX = \Sigma SOX + SOXA - SOXD$$

ところで本発明による実施例ではNO_x吸収剤18のNO_x吸収能力が飽和する以前においてNO_x吸収剤18のNO_x吸収能力が許容値MAXを越えたときにNO_xの放出作用が行われる。NO_x吸収剤18にSO_xが全く吸収されていないときのNO_x吸収剤18のNO_x吸収能力をMAX₀とするとSO_x量ΣSOXのSO_xが吸収されたときのNO_x吸収剤18のNO_x吸収能力は(MAX₀ - ΣSOX)となる。本発明による実施例ではNO_x吸収剤18のNO_x吸収能力がNO_x吸収能力(MAX₀ - ΣSOX)よりも一定値αだけ低いNO_x

吸収能力のときを許容量MAXであると定めてあり、従って許容量MAXは次式で表わされることになる。

【0029】 $MAX = MAX_0 - \Sigma SOX - \alpha$

図9はこの許容量MAXの変化とNO_x放出作用との関係を示している。図9に示されるようにリーン混合気($K < 1.0$)が燃焼せしめられているときにはNO_x吸収剤18に吸収されていると推定されるNO_x量 ΣNOX およびSO_x量 ΣSOX は共に上昇し、SO_x量 ΣSOX が上昇するにつれて許容量MAXが減少せしめられる。NO_x量 ΣNOX が許容量MAXを越えると混合気は一時的にリッチ($K > 1.0$)にされ、このときNO_xの放出作用が行われるためにNO_x量 ΣNOX は急激に低下する。一方このときNO_x吸収剤18の温度T、即ち排気ガスの温度Tはさほど上昇しないので($T < T_0$)NO_xの放出作用は行われない。次いで例えば機関全負荷運転($K > 1.0$)が行われてNO_x吸収剤18の温度T、即ち排気ガス温Tが上昇すると($T > T_0$)NO_xの放出作用と共にSO_xの放出作用が行われ、斯くてSO_x量 ΣSOX が急激に低下する。

【0030】 図10から図12は空燃比を制御するためのルーチンを示しており、このルーチンは一定時間毎の割込みによって実行される。図10から図12を参照するとまず初めにステップ100において図2に示すマップから基本燃料噴射時間TPが算出される。次いでステップ101ではNO_x吸収剤18に吸収されていると推定されるNO_x量 ΣNOX が許容量MAXよりも大きくなつたか否かが判別される。 $\Sigma NOX \leq MAX$ のときはステップ103に進んでNO_xを放出すべきことを示すNO_x放出フラグがセットされているか否かが判別される。NO_x放出フラグがセットされていないときにはステップ104に進んで図3に示す関係から補正係数Kが算出される。

【0031】 次いでステップ105では補正係数Kが1.0よりも小さいか否かが判別される。K<1.0のとき、即ちリーン混合気を燃焼すべき運転状態のときはステップ106に進んで図6(A)に示すマップから単位時間当りのNO_x吸収量NOXAが算出される。次いでステップ107ではNO_x放出量NOXDが零とされ、次いでステップ108においてフィードバック補正係数FAFが1.0に固定される。次いでステップ117において次式に基き燃料噴射時間TAUが算出される。

【0032】 $TAU = f \cdot TP \cdot K \cdot FAF$

一方、ステップ105においてK≥1.0であると判別されたときにはステップ112に進んで図7(A)に示すマップから単位時間当りのNO_x放出量NOXDが算出される。次いでステップ113では図7(B)に示す関係と図7(C)に示すマップからNO_x放出率Kfが算出され、次いでステップ114では単位時間当りのNO_x吸収量NOXAが零とされる。次いでステップ11

5では補正係数Kが1.0よりも大きいか否かが判別される。K>1.0のとき、即ちリッチ混合気を燃焼すべき運転状態のときにはステップ108を経てステップ117に進む。

【0033】 これに対してK=1.0のとき、即ち理論空燃比の混合気を燃焼すべきときにはステップ116に進んで空燃比センサ21の出力信号に基きフィードバック補正係数FAFが算出され、次いでステップ117に進む。ステップ116では空燃比センサ21によって空燃比がリッチになったことが検出されるとFAFは減少せしめられ、空燃比がリーンになったことが検出されるとFAFは増大せしめられるので空燃比は理論空燃比に維持されることになる。

【0034】 ステップ117に続くステップ118では次式に基いてNO_x吸収剤18に吸収されているNO_x量 ΣNOX が算出される。

$$\Sigma NOX = \Sigma NOX + NOXA - K_f \cdot NOXD$$

次いでステップ119ではNO_x量 ΣNOX が負になつたか否かが判別され、 $\Sigma NOX < 0$ になったときにはステップ120に進んで ΣNOX が零とされ、次いでステップ121に進む。ステップ121では補正係数Kが1.0よりも大きいか否かが判別される。K>1.0のとき、即ちリッチ混合気を燃焼すべきときにはステップ122に進んで図7(C)に示すマップから求められた排気ガス温Tが一定値T₀(図8(A))よりも高いか否かが判別される。T>T₀のときにはステップ123に進んで図8(A)に示す関係からf(T)が算出され、次いでステップ124に進んで図8(B)に示す関係からf(K)が算出される。次いでステップ125では単位時間当りのSO_x放出量SOXD($= k_2 \cdot f(T) \cdot f(K)$)が算出され、次いでステップ126ではSO_x放出量SOXAが零とされる。次いでステップ129に進む。

【0035】 一方、ステップ121においてK≤1.0と判断されたとき、又はステップ122においてT≤T₀と判断されたときにはステップ127に進んで単位時間当り吸収されるSO_x吸収量SOXA($= k_1 \cdot TAU \cdot N$)が算出される。次いでステップ128においてSO_x放出量SOXDが零とされ、次いでステップ129に進む。ステップ129では次式に基いてSO_x量 ΣSOX が算出される。

【0036】

$$\Sigma SOX = \Sigma SOX + SOXA - SOXD$$

次いでステップ130ではSO_x量 ΣSOX が負になつたか否かが判別され、 $\Sigma SOX < 0$ になったときにはステップ131において ΣSOX を零にした後ステップ132に進む。ステップ132では次式に基いて許容量MAXが算出される。

【0037】 $MAX = MAX_0 - \Sigma SOX - \alpha$

一方、ステップ101において $\Sigma NOX > MAX$ である

11

と判別されたときにはステップ102に進んでNO_x放出フラグがセットされる。次いでステップ103からステップ109に進んで補正係数Kが一定値KKとされる。この一定値KKは混合気の空燃比が1.1から1.3程度のリッチ混合気となる1.1から1.3程度の値である。次いでステップ110ではNO_x量ΣNOXが零又は負になったか否かが判別される。ΣNOX>0のときにはステップ112にジャンプする。これに対してΣNOX≤0になるとステップ111に進んでNO_x放出フラグがリセットされ、次いでステップ112に進む。従ってΣNOX>MAXになるとΣNOX≤0となるまで混合気がリッチ(K=KK)とされる。

【0038】なお、これまで述べた実施例ではΣNOX>MAXとなったらただちにNO_xの放出作用を行うようしているがΣNOX>MAXとなりかつ他の予め定められた条件が全て成立したときにNO_x放出のための空燃比の切換許可を出すようにしてもよい。

【0039】

【発明の効果】NO_x吸収剤のNO_x吸収能力が低下した場合であってもNO_x吸収剤が飽和する前にNO_x吸

10

12

取剤からNO_xを放出するための空燃比の切換許可を出すことができる。

【図面の簡単な説明】

【図1】内燃機関の全体図である。

【図2】基本燃料噴射時間のマップを示す図である。

【図3】補正係数Kを示す図である。

【図4】機関から排出される排気ガス中の未燃HC、COおよび酸素の濃度を概略的に示す線図である。

【図5】NO_xの吸放出作用を説明するための図である。

【図6】NO_x吸収量NOXA等を示す図である。

【図7】NO_x吸収量NOXD等を示す図である。

【図8】SO_x放出率を示す図である。

【図9】空燃比制御のタイムチャートである。

【図10】空燃比制御を示すフローチャートである。

【図11】空燃比制御を示すフローチャートである。

【図12】空燃比制御を示すフローチャートである。

【符号の説明】

16…排気管

18…NO_x吸収剤

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図12】

【図10】

【図11】

