Generación de números aleatorios

Carlos Javier Uribe Martes

Ingeniería Industrial Universidad de la Costa

Febrero 11, 2020

Contenido

- Propiedades de los números aleatorios
- Z Técnicas de generación de números aleatorios
- Pruebas estadísticas para números aleatorios
 - Pruebas de uniformidad
 - Pruebas de independencia

Introducción

Para desarrollar un modelo de simulación el ingrediente fundamental es la generación de una secuencia de números aleatorios R_1, R_2, \ldots, R_n [1].

Propiedades de los números aleatorios

■ Cada número aleatorio R_i debe ser una muestra independiente obtenida de una distribución uniforme continua entre cero y uno [1].

Propiedades de la distribución uniforme [0,1]

$$f(x) = \left\{ \begin{array}{ll} 1, & 0 \leq x \leq 1 \\ 0, & \text{de lo contrario} \end{array} \right. ; \quad E(R) = \tfrac{1}{2}; \quad V(R) = \tfrac{1}{12}$$

Figura: Función de densidad de probabilidad

Figura: Función de probabilidad acumulada

Generación de números pseudo-aleatorios

- Generar números aleatorios a través de un algoritmo remueve la verdadera aleatoriedad, toda vez que el patrón puede ser repetido [1].
- Se busca generar una secuencia de números que *imite* las propiedades de los números aleatorios [1].

Técnicas para generación de números aleatorios

- Una técnica adecuada debe tener las siguientes características:
 - Eficiencia [3].
 - Periodo máximo [3].
 - Secuencia reproducible [3].
 - Portabilidad [2].

Cuadrados medios de Von Neumann y Metropolis

- II Seleccione una semilla X_0 con D dígitos (D > 3).
- 2 Sea Y_0 el resultado de elevar X_0 al cuadrado, defina X_1 igual a los D dígitos del centro de Y_0 y sea $R_1 = 0.X_1$.
- 3 Sea Y_i el resultado de elevar X_i al cuadrado, defina X_{i+1} igual a los D dígitos del centro de Y_i y sea $R_{i+1} = 0.X_{i+1}$.

Generador congruencial lineal

Utiliza la siguiente relación recursiva

$$X_{i+1} = (aX_i + c) \mod m, \quad i = 0, 1, 2, \dots$$

- El valor inicial X_0 es llamado semilla, a es el multiplicador, c es el incremento y m el módulo, todos enteros no negativos.
- Para obtener R_i emplee:

$$R_i = \frac{X_i}{m}, \quad i = 1, 2, \dots$$

Generador congruencial lineal

- Los valores de a, c, m y X_0 afectan directamente las propiedades estadísticas y el periodo de la secuencia generada [1].
- Deben satisfacerse las siguientes relaciones:
 - $\blacksquare a < m$
 - c < m
 - m > 0
 - $\blacksquare X_0 < m$
- La secuencia se repetirá con periodo $p \le m$, por lo que el generador alcanza el periodo máximo cuando p=m

Generador congruencial multiplicativo

- Si el incremento c = 0, se denomina *método congruencial* multiplicativo.
- No alcanza el periodo máximo ya que la secuencia no contendrá $X_i = 0$, sin embargo pueden llegar a alcanzar el periodo m-1 si se seleccionan m y a en forma adecuada [3]:
 - m ha de ser un número primo.
 - \blacksquare a ha de ser raíz primitiva de m, es decir,

$$a^n \mod m \neq 1 \quad n = 1, \dots, m-2$$

Generador congruencial multiplicativo

 La siguiente tabla indica los parámetros evaluados por Fishman y Moore (1986) que tienen buen comportamiento [3].

Parámetros	Fishman y Moore
a	48.271
m	$2^{31} - 1$

Generador congrencial mixto

- Si el incremento $c \neq 0$, se denomina *método congruencial mixto*.
- Las siguientes condiciones aseguran que el generador congruencial mixto tendrá periodo máximo [2, 3]:
 - \blacksquare El único entero positivo que divide a m y a c es 1, es decir, son primos entre sí.
 - 2 Si q es un número primo que divide a m, entonces q también divide a a-1.
 - Si 4 divide a m, entonces 4 también divide a a-1.

Generadores congrenciales mixtos

 La siguiente tabla indica los generadores congruenciales lineales mixtos propuestos por Coveyou y MacPherson (1967) y por Kobayashi (1978) [3].

Parámetros	Kobayashi	Coveyou y MacPherson
a	314.159.269	5^{15}
С	453.806.245	
m	2^{31}	2^{35}

Métodos congruenciales NO lineales

■ Algoritmo congruencial cuadrático: Emplea la relación recursiva:

$$X_{i+1} = (aX_i^2 + bX_i + c) \mod m, \quad i = 0, 1, 2, \dots$$

■ Algoritmo de Blum, Blum y Shub: Es similar al algoritmo congruencial cuadrático, con a=1,b=0,c=0, entonces la relación recursiva es:

$$X_{i+1} = X_i^2 \mod m, \quad i = 0, 1, 2, \dots$$

Combinación de generadores congruenciales lineales

 Una manera de conseguir secuencias aleatorias con periodos más largos es combinar dos o más generadores congruenciales multiplicativos.

Generador de Wichmann-Hill

- Consiste en tres generadores congruenciales lineales con módulos primos. Cada uno es utilizado para producir un aleatorio entre 0 y 1.
- Estos tres resultados se suman, módulo 1, para obtener el resultado final.
 - $x_i = 171x_{i-1} \mod 30269$
 - $y_i = 172y_{i-1} \mod 30307$
 - $z_i = 170z_{i-1} \mod 30323$

MRG32k3a de L'Ecuyer

- Consiste en dos generadores congruenciales recursivos de tercer orden.
- Estos se combinan para obtener un nuevo aleatorio en cada iteración.

$$y_i = (527612y_{i-1} - 1370589y_{i-3}) \mod (2^{32} - 22853)$$

$$z_i = (x_i - y_i) \mod (2^{32} - 209)$$

$$r_i = \frac{z_i}{2^{32} - 209}$$

Pruebas para números aleatorios

- Para verificar si las propiedades deseadas de un conjunto de números aleatorios diferentes tipos de pruebas pueden desarrollarse.
- Para cada prueba debe definirse un nivel de significancia α , el cual representa la probabilidad de rechazar la hipótesis nula cuando ésta es cierta:

$$\alpha = P(\text{rechazar } H_0|H_0 \text{ es cierta})$$

Prueba de medias

■ Busca comprobar que el valor esperado de los números en la secuencia R_i sea igual a 0.5 mediante las siguientes hipótesis:

$$H_0: \mu_{R_i} = 0.5$$

$$H_1: \ \mu_{R_i} \neq 0.5$$

Prueba de medias

 $lue{1}$ Determine el promedio de los n números aletorios de la secuencia:

$$\bar{R} = \frac{1}{n} \sum_{i=1}^{n} R_i$$

Calcule los límites de aceptación inferior y superior:

$$LI_{ar{R}} = rac{1}{2} - z_{lpha/2} \left(rac{1}{\sqrt{12n}}
ight)$$
 $LS_{ar{R}} = rac{1}{2} + z_{lpha/2} \left(rac{1}{\sqrt{12n}}
ight)$

3 Si el valor de \bar{R} está dentro de los límites de aceptación no hay evidencia suficiente para rechazar H_0 con un nivel de confianza 1- α .

Prueba de varianza

■ Busca determinar si la varianza de la secuencia aleatoria generada es igual a 1/12 mediante las siguientes hipótesis:

$$H_0: \ \sigma_{R_i}^2 = rac{1}{12}$$
 $H_1: \ \sigma_{R_i}^2
eq rac{1}{12}$

Prueba de varianza

f I Determine la varianza muestral de la secuencia R_1,R_2,\ldots,R_n :

$$V(R) = \frac{\sum_{i=1}^{n} (R_i - \bar{R})^2}{n - 1}$$

Calcule los límites de aceptación inferior y superior mediante:

$$LI_{V(R)} = \frac{\chi_{\frac{\alpha}{2}, n-1}^2}{12(n-1)}$$

$$LS_{V(R)} = \frac{\chi_{\frac{(1-\alpha)}{2}, n-1}^2}{12(n-1)}$$

3 Si el valor de V(R) está dentro de los límites de aceptación no hay evidencia suficiente para rechazar H_0 con un nivel de confianza 1- α .

■ Trata de determinar si el conjunto de números generados se distribuye de acuerdo con la distribución uniforme [0,1] para lo cual formula las siguientes hipótesis:

$$H_0: R_i \sim U[0,1]$$

 $H_1: R_i \not\sim U[0,1]$

Prueba chi-cuadrado

■ Para la distribución uniforme, la frecuencia esperada en cada clase, E_i está dada por:

$$E_i = \frac{N}{n}$$

para n clases igualmente espaciadas, donde N es el número total de observaciones.

Utiliza el estadístico de prueba:

$$\chi_0^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

donde O_i es la frecuencia observada en la i-ésima clase.

Prueba chi-cuadrado

- La distribución muestral de χ^2_0 es aproximadamente chi-cuadrado con n-1 grados de libertad.
- Si el estadístico de prueba χ_0^2 es menor que el valor $\chi_{\alpha,n-1}^2$ no hay evidencia suficiente para rechazar H_0 con un nivel de confianza 1- α .

Prueba Kolmogorov-Smirnov

- Contrasta la función de densidad acumulada F(x) de la distribución teórica con la función de densidad empírica $S_N(x)$ de la muestra de N obsevaciones.
- Se basa en la mayor desviación absoluta entre F(x) y $S_N(x)$ en el rango de la variable aleatoria, utilizando el estadístico de prueba:

$$D = max|F(x) - S_N(x)|$$

Prueba Kolmogorov-Smirnov

- I Ordene los datos de menor a mayor. Sea $R_{(i)}$ la i-ésima menor observación.
- 2 Determine los valores:

$$D^{+} = \max_{1 \le i \le N} \left\{ \frac{i}{N} - R_{(i)} \right\}$$
$$D^{-} = \max_{1 \le i \le N} \left\{ R_{(i)} - \frac{i-1}{N} \right\}$$

- Calcule $D = max(D^+, D^-)$.
- f 4 Identifique el valor crítico D_lpha correspondiente a lpha y N.
- **S**i $D \le D_{\alpha}$ se concluye que no hay evidencia suficiente para rechazar H_0 con un nivel de confianza $1-\alpha$.

Pruebas de independencia

En su mayoría buscan probar la independencia de los números de un conjunto R_i mediante las hipótesis:

 H_0 : los números del conjunto R_i son independientes

 H_1 : los números del conjunto R_i no son independientes

Prueba de corridas arriba y abajo

- Determine una secuencia de unos y ceros así: si $R_{i+1} \leq R_i$ asigne un cero a la secuencia, de lo contrario asigne un uno.
- 2 Defina C_0 como el número de corridas en la secuencia (una corrida es cualquier cantidad de unos o ceros consecutivos).
- 3 Determine el estadístico de prueba mediante las ecuaciones:

$$\mu_{C_0} = \frac{2n-1}{3}$$

$$\sigma_{C_0}^2 = \frac{16n-29}{90}$$

$$Z_0 = \left| \frac{C_0 - \mu_{C_0}}{\sigma_{C_0}} \right|$$

4 Si el estadístico Z_0 es mayor que el valor crítico de $Z_{\alpha/2}$, se concluye que los números del conjunto R_i no son independientes.

Prueba de corridas arriba y abajo de la media

- Determine una secuencia de unos y ceros así: si $R_i \le 0.5$ asigne un cero a la secuencia, de lo contrario asigne un uno.
- Defina C_0 como el número de corridas en la secuencia, n_0 el número de ceros de ceros y n_1 el número de unos.
- 3 Determine el estadístico de prueba mediante las ecuaciones:

$$\mu_{C_0} = \frac{2n_0n_1}{n} + 0.5$$

$$\sigma_{C_0}^2 = \frac{2n_0n_1(2n_0n_1 - n)}{n^2(n - 1)}$$

$$Z_0 = \frac{C_0 - \mu_{C_0}}{\sigma_{C_0}}$$

4 Si el estadístico Z_0 está fuera del intervalo $\left[-Z_{\alpha/2},Z_{\alpha/2}\right]$ se concluye que los números del conjunto R_i no son independientes.

Prueba de autocorrelación

- Prueba la correlación entre los números generados y compara la correlación muestral con la correlación esperada de cero.
- Requiere el cálculo de la autocorrelación entre cada m números (siendo conocida m como lag o retraso), empezando con el i-ésimo número de la secuencia.
- La autocorrelación ρ_{im} entre los siguientes números será de interés $R_i,\ R_{i+m},R_{i+2m},\ldots,R_{i+(M+1)m}.$ Donde el valor de M es el entero más grande tal que $i+(M+1)m\leq N$,

Prueba de autocorrelación

Una autocorrelación diferente de cero implica una falta de independencia en los datos. La siguiente prueba con dos colas es adecuada:

$$H_0: \rho_{im} = 0$$
$$H_1: \rho_{im} \neq 0$$

■ Para valores grandes de M, la distribución del estimador de ρ_{im} , denotado $\hat{\rho}_{im}$, es aproximadamente normal si los valores R_i , $R_{i+m}, R_{i+2m}, \ldots, R_{i+(M+1)m}$ no están correlacionados.

Prueba de autocorrelación

El estadístico:

$$Z_0 = \frac{\hat{\rho}_{im}}{\sigma_{\hat{\rho}_{im}}}$$

está normalmente distribuido con media 0 y varianza 1, bajo el supuesto de independencia y para valores grandes de M.

Donde

$$\hat{\rho}_{im} = \frac{1}{M+1} \left[\sum_{k=0}^{M} R_{i+km} R_{i+(k+1)m} \right] - 0.25$$

$$\sigma_{\hat{\rho}_{im}} = \frac{\sqrt{13M+7}}{12(M+1)}$$

■ No rechace H_0 si $-z_{\alpha/2} \le Z_0 \le z_{\alpha/2}$ donde $z_{\alpha/2}$ se puede obtener de la tabla de probabilidades para la distribución chi-cuadrado.

Referencias

- Banks, J., Carson II, J. S., Nelson, B. L. y Nicol, D. M. *Discrete-Event System Simulation*. Fifth (Pearson, 2014).
- Law, A. M. Simulation modeling and analysis. Fifth (McGraw-Hill, 2015).
- Pazos Arias, J. J., Suárez González, A. y Díaz Redondo, R. *Teoría de colas y simulación de eventos discretos.* (Prentice Hall, 2003).

