WEINMAN #1: FRAMING STATION ANALYSIS

DOES THE FRAMING STATION PRODUCE 2000 BD FT PER HOUR, AFTER REMOVING BOTTLENECKS?

Results....

The Current Process Present at the Framing Station

Assumptions:

- Remove bottlenecks before and after the framing station
- Results are based on the framing station running without unexpected stops for a 10-hour shift

Results (per 10-hour shift):

- 142 wall panels produced
- Avg Bd ft per wall panel: 131.6 (06/21 – 06/24 on ShopNet)
- 142 * 131.6 = 18,687.2 Bd ft
- → 1,868.7 Bd ft/ hr

Process Conditions:

- Requires ≈95 ft in length
- Requires framer to climb over panel components
 - No excess storage

Proposed Framing Station Process I

Results (per 10-hour shift):

- 150 wall panels produced
- 150 * 131.6 = 19,740 Bd ft → 1,974 Bd ft/ hr

Changes:

- Rollers from CB station to framing station 44ft → 24ft (any comb. of rollers)
- Redesign Sub-CB station to account for less space
- Requires ≈72 ft in length
- Storage increase

Proposed Framing Station Process II

Results (per 10-hour shift):

- 152 wall panels produced
- -152*131.6 = 20,003.2 Bd ft
 - → 2,000 Bd ft/ hr

Changes:

- Rollers from CB station to framing station 44ft → 27ft (6ft roller | 3ft gap | 18ft roller)
- Framer pathing, see video to the right
- Redesign Sub-CB station to account for less space
- Requires ≈75 ft in length
- Storage increase

Proposed Framing Station Process III

Results (per 10-hour shift):

- 148 wall panels produced
- 148 * 131.6 = 19,476 Bd ft
 - → 1,950 Bd ft/ hr

Changes:

- Rollers from CB station to framing station 44ft →
 24ft (any comb. of rollers)
- Framer pathing, see video to the right
- CB station is pushed up to align with moved queue
- Requires ≈72 ft in length
- Storage increase

Storage Option I

452 ft^2 in additional Storage

Storage Option II

546 ft^2 in additional Storage

Storage Option III

665 ft^2 in additional Storage

Proposed Framing Station Process III

Process	Bd ft per hr.	Length (ft)	Amount of Change Required
Current	1860	95 ft	None
Option I	1975	72 ft	 Reduce length between CB and Framing station 44ft → 24ft Redesign Sub-CB Station (optional) Framer climbs over component
Option 2	2000	75 ft	 Reduce length between CB and Framing station 44ft → 27ft (6-8 ft table required) Redesign Sub-CB Station (optional) Changed framer pathing (Training)
Option 3	1950	72 ft	 Reduce length between CB and Framing station 44ft → 24ft Redesign Sub-CB Station (optional) Changed framer pathing and CB drop location (Training)

Storage Options	Extra Storage (ft^2)
Current	0 ft^2
Option I	452 ft^2
Option II	546 ft^2
Option III	665 ft^2