

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUCAÇÃO PLANO DE ENSINO

Nome do Componente Curricular em português:		Código: BCC 362		
Sistemas Distribuídos				
Nama da Campananta Cumiau	lan am in alâa.			
Nome do Componente Curricul Distributed Systems	iar em ingles:			
Nome e sigla do departamento:		Unidade acadêmica:		
Departamento de Computação - DECOM		ICEB		
Nome do docente:				
Joubert de Castro Lima				
Carga horária semestral	Carga horária semanal teórica	Carga horária semanal prática		
60 horas	04 horas/aula	00 horas/aula		
Data de aprovação na assemble	ia departamental: 07/12/2020			
Ementa:				
Conseite de sistemes distribuíd				
Conceito de sistemas distribuídos;				
Arquitetura de sistemas distribuídos; Processos;				
Comunicação entre processos;				
Nomeação;				
Sincronização;				
Consistência e replicação;				
Tolerância a falhas;				
Segurança;				
Planejamento e gerenciamento	de capacidade;			
Plataformas distribuídas;				
Aplicações distribuídas.				

- Conteúdo programático:
 - 1 Apresentação do curso: programa, objetivos, bibliografia;
 - 2 <u>Divulgação dos trabalhos (http://hpclab.net.br, link ensino);</u>

Introdução aos sistemas distribuídos: arquiteturas, exemplos, evolução e os

- 3 desafios ainda em aberto
- 4 Processos
- 5 Virtualização
- 6 Comunicação em Sistemas Distribuídos
- 7 Nomeação e localização
- 8 Sincronização em Sistemas Distribuídos
- 9 Replicação e os problemas de consistência em Sistemas Distribuídos

- 10 Tolerância a falhas e recuperação em Sistemas Distribuídos
- 11 Segurança
- 12 Planejamento e gerenciamento de capacidade para Sistemas Distribuídos. Exemplos de plataformas distribuídas: funcionalidade, justificativa e arquitetura
- 13 adotada

Exemplos de aplicações distribuídas (Roteamento, Ordenação, problemas em Grafos, Recuperação de Informação, Mineração de Dados, Banco de Dados,

14 entre outros)

Objetivos:

Ensinar as diversas transparências de um sistema distribuído. Ensinar algoritmos e aplicações distribuídas. Apresentar plataformas distribuídas.

Metodologia:

Aulas expositivas usando Google Meet.

Aulas práticas usando Google Meet, ambientes de programação (IDEs) e plataformas para computação em nuvem, tais como Google Cloud Platform ou Amazon AWS.

Há um ou dois revisionais antes da entrega de cada Trabalho prático/teórico. Os revisionais são atividades assíncronas em que o aluno deve usar do conhecimento obtido nas atividades síncronas para construir o Trabalho a ser entregue. Há componentes nos revisionais, tais como listas de exercícios e os enunciados dos Trabalhos, como norteadores dos estudos. Cada revisional considera uma parte do conteúdo programático.

Trabalhos práticos/teóricos com entregas na forma de seminários e feitos em plataformas para computação em nuvem, tais como Google Cloud Platform ou Amazon AWS. Os alunos possuem acesso gratuito a tais plataformas. Todo o conteúdo dos trabalhos está em: http://hpclab.net.br/bcc-362/. As apresentações ocorrerão em grupos de até 3 alunos e via Google Meet (aberto aos demais alunos). A IDE de programação e o Trabalho funcionando corretamente são imprescindíveis.

O exame especial será feito de forma oral, individual e usando Google Meet. Todo o conteúdo da disciplina fará parte das perguntas ao aluno.

Atividades avaliativas:

3 entregas de trabalhos práticos/teóricos (100% da nota). Haverá avaliação da teoria e dos aspectos de engenharia, ou seja, aspectos relacionados ao como construir as 3 entregas propostas.

Trabalho 1-33% da nota. Nesta tarefa, o grupo apresenta aspectos práticos/teóricos do Trabalho 1. Como são vários grupos numa turma, o formato adotado é de seminário entre os alunos, onde todos apresentam e debatem.

Trabalho 2-33% da nota. Nesta tarefa, o grupo apresenta aspectos práticos/teóricos do Trabalho 2. Como são vários grupos numa turma, o formato adotado é de seminário entre os alunos, onde todos apresentam e debatem.

Trabalho 3-34% da nota. Nesta tarefa, o grupo apresenta aspectos práticos/teóricos do Trabalho 3. Como são vários grupos numa turma, o formato adotado é de seminário entre os alunos, onde todos apresentam e debatem.

1 exame como substituição de 100% da nota obtida no semestre, conforme norma da UFOP.

Cronograma:

Cada aula representa duas aulas			
consecutivas e d	"número da atividade"		
representa o conteúdo descriminado no			
item "Conteúdo Programático"			
ata	Atividado		

item "Conteúdo Programático"				
Data	Atividade			
19/01/2021	1;2;3 (síncrona)			
21/01/2021	3;4 (síncrona)			
26/01/2021	5;6 (síncrona)			
28/01/2021	6; (síncrona)			
02/02/2021	6; (assíncrona)			
04/02/2021	7; (síncrona)			
09/02/2021	Revisional (assíncrona)			
11/02/2020	Trabalho 1 (síncrona)			
18/02/2021	Trabalho 1 (síncrona)			
23/02/2021	Trabalho 1 (síncrona)			
25/02/2021	8; (síncrona)			
02/03/2021	8; (assíncrona)			
05/03/2021	9; (síncrona)			
09/03/2021	9;10; (síncrona)			
11/03/2021	10;11; (síncrona)			
16/03/2021	Revisional (assíncrona)			
18/03/2021	Trabalho 2 (síncrona)			
23/03/2021	Trabalho 2 (síncrona)			
25/03/2021	Trabalho 2 (síncrona)			
30/03/2021	12;13 (síncrona)			
06/04/2021	13;14 (síncrona)			
08/04/2021	14 (síncrona)			
13/04/2021	Revisional (assíncrona)			
15/04/2021	Trabalho 3 (síncrona)			

20/04/2021	Trabalho 3 (síncrona)
22/04/2021	Trabalho 3 (síncrona)
27/04/2021	Exame Especial (síncrona)

Bibliografia básica:

TANENBAUM, Andrew S.; STEEN, Maarten Van. Sistemas distribuídos: princípios e paradigmas. 2. ed. São Paulo: Pearson Prentice Hall, 2007. Disponível online em MinhaUFOP/BibliotecaDigital/BVirtualPearson - https://plataforma.bvirtual.com.br/Acervo/Publicacao/411#

DOLLIMORE, Jean; KINDBERG, Tim; TORTELLO, João; CARISSIMI, Alexandre; COULOURIS, George. Sistemas distribuídos: conceitos e projeto. 5. ed. Porto Alegre: Bookman, 2013. Disponível online em MinhaUFOP/BibliotecaDigital/MinhaBiblioteca - https://integrada.minhabiblioteca.com.br/#/books/9788582600542/cfi/0!/4/2@100:0.00

FIGUEIREDO. Daniel Ratton. UFRJ, 2020. Material de sistemas distribuídos. Disponível em: https://www.cos.ufrj.br/~daniel/sd/. Acesso em: 07/12/2020.

Bibliografia complementar:

KLEPPMANN, Martin. Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems. 1. ed. São Paulo: Oreilly & Assoc, 2015.

VERAS, Manoel. Computação em Nuvem. 1 ed. Brasport. 2015. Disponível online em MinhaUFOP/BibliotecaDigital/BVirtualPearson - https://plataforma.bvirtual.com.br/Acervo/Publicacao/160695

SANTOS, Ricardo Ribeiro dos. FACOM – UFMS, 2020. Material de Sistemas Distribuídos. Disponível em: https://www.facom.ufms.br/~ricardo/Courses/DisSys/Material/. Acesso em: 07/12/2020.

RODRIGUEZ, Noemi. PUC -RJ, 2020. Material de Sistemas Distribuídos. Disponível em: http://www.inf.puc-rio.br/~noemi/sd-19/. Acesso em: 07/12/2020.

FERNANDEZ, Marcial Porto. UECE, 2020. Material de Sistemas Distribuídos. Disponível em: http://marcial.larces.uece.br/cursos/sistemas-distribuidos-2018-1. Acesso em: 07/12/2020.