发件人: Yulin Wu yw4923@nyu.edu

土赳

日期: 2020年9月9日 下午7:04

收件人:

Decision Tree

2020年9月8日 星期二 下午3:32

conditional: $\sum_{(t=1)}^T \alpha_t(x) g_t(x)$, alpha_t 和 x 有关系, 那么使用非线性gt的combination就行

learning: 原本不知道有哪些小g,我们要学习这些小g

bagging: 用bootstrap将我们的数据变成不一样的副本,最后再uniform地合起来

adaboost: 放大错误集的权重, 且同时learn alpha(不同的票数)

Decision Tree: 决策树

决策树是一个集成模型。

gt(x)就是我们之前常说的基础模型, $g_t(x) = 0$ (No) or 1 (yes).

q_t(x)是权重, conditional: 给定了x = [quitting time, has a date, deadline] 的情况。

将树拆分:

cart: bi-branching by purifying

two simple choices

- C = 2 (binary tree)
- $g_t(\mathbf{x}) = E_{in}$ -optimal constant
 - binary/multiclass classification (0/1 error): majority of $\{y_n\}$
- regression (squared error): average of {y_n}

好滴,现在还要决定termination criteria and branching criteria

branching criteria:

more simple choices

- simple internal node for C = 2: $\{1, 2\}$ -output decision stump
- 'assisr' sub-tree: branch by purifying

| D_c with h|是资料的权重,如:资料的大小比较大的话,这个资料更重要

termination criteria:

forced' to terminate when • all y_n the same: impurity = $0 \Longrightarrow g_l(\mathbf{x}) = y_n$ • all \mathbf{x}_n the same: no decision stumps

regularization (剪枝)

当数据缺失的时候, 可以使用替代的feature

优缺点

已使用 OneNote 创建。

but enumerate all possible G is computationally complicated so 使用后置剪枝: 先fit出最好的G,再摘掉一片叶子,再摘掉第二片叶子。。。