CLAIMES

1. A substituted azole compounds of formula (I):

wherein: X_1 is selected from CH or N; X_2 is selected from O, S or NR₇; X_3 is selected from O, S or NR₈;

 A_1 is selected from N or CR_9 ; A_2 is selected from N or CR_{10} ; A_3 is selected from N or CR_{11} ; and if selected from N, only one of A_1 , A_2 or A_3 is selected from N;

 R_1 , R_2 may be the same or different, selected from H, C_1 - C_{12} alkyl or C_1 - C_{12} haloalkyl;

R₃ is selected from H, halo, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl or C₁-C₁₂alkoxy;

 R_7 is selected from H or C_1 - C_{12} alkyl;

 R_8 is selected from H, C_1 - C_{12} alkyl; C_1 - C_{12} haloalkyl; C_1 - C_{12} alkoxycarbonyl or C_1 - C_{12} alkoxycarbonyl C_1 - C_{12} alkyl;

 R_4 , R_5 , R_6 , R_9 , R_{10} and R_{11} may be the same or different, selected from H, halo, NO₂, CN, CONH₂, CH₂CONH₂, CH₂CN, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂alkylsulfonyl, C₁-C₁₂alkylcarbonyl, C₁-C₁₂alkoxyC₁-C₁₂alkyl, C₁-C₁₂alkoxycarbonyl, C₁-C₁₂alkoxycarbonylC₁-C₁₂alkyl, groups may be substituted by any other groups: aminoC₁-C₁₂alkyl, aryl, heteroaryl; aroxyl, arylC₁-C₁₂alkyl, arylC₁-C₁₂alkoxy, heteroarylC₁-C₁₂alkyl or heteroarylC₁-C₁₂alkoxy;

and stereoisomer.

2. The substituted azole compounds according to the claim 1, characterized in that wherein general formula (I):

 X_1 is selected from CH or N; X_2 is selected from O, S or NR₇; X_3 is selected from O, S or NR₈;

 A_1 is selected from N or CR_9 , A_2 is selected from N or CR_{10} , A_3 is selected from N or CR_{11} , and if selected from N, only one of A_1 , A_2 or A_3 is selected from N;

 R_1 , R_2 may be the same or different, selected from H, C_1 - C_6 alkyl or C_1 - C_6 haloalkyl;

R₃ is selected from H, halo, C₁-C₆alkyl, C₁-C₆haloalkyl or C₁-C₆alkoxy;

 R_7 is selected from H or C_1 - C_6 alkyl;

 R_8 is selected from H, C_1 - C_6 alkyl; C_1 - C_6 haloalkyl; C_1 - C_6 alkoxycarbonyl or C_1 - C_6 alkoxycarbonyl C_1 - C_6 alkyl;

R₄, R₅, R₆, R₉, R₁₀ and R₁₁ may be the same or different, selected from H, halo,

NO₂, CN, CONH₂, CH₂CONH₂, CH₂CN, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₁-C₆alkylsulfonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkoxyC₁-C₆alkyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkoxycarbonylC₁-C₆alkyl, groups may be substituted by any other groups: aminoC₁-C₆alkyl, aryl, heteroaryl; aroxyl, arylC₁-C₆alkyl, arylC₁-C₆alkoxy, heteroarylC₁-C₆alkyl or heteroarylC₁-C₆alkoxy.

3. The substituted azole compounds according to the claim 2, characterized in that wherein general formula (I):

 X_1 is selected from CH or N; X_2 is selected from O or NH; X_3 is selected from O, S or NR₈;

 A_1 is selected from N or CR_9 , A_2 is selected from N or CR_{10} , A_3 is selected from N or CR_{11} , and if selected from N, only one of A_1 , A_2 or A_3 is selected from N;

 R_1 , R_2 is CH_3 ;

R₃ is selected from H or CH₃;

 R_8 is selected from H, C_1 - C_6 alkyl; C_1 - C_6 haloalkyl; C_1 - C_3 alkoxycarbonyl or C_1 - C_6 alkoxycarbonyl C_1 - C_3 alkyl

 R_4 , R_5 , R_6 , R_9 , R_{10} and R_{11} may be the same or different, selected from H, halo, NO₂, CN, CONH₂, CH₂CONH₂, CH₂CN, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₁-C₆alkylsulfonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkoxyC₁-C₆alkyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkoxycarbonylC₁-C₆alkyl, C₁-C₆haloalkoxyC₁-C₆alkyl, groups may be substituted by any other groups: aminoC₁-C₃alkyl,phenyl, phenoxy, benzyl or benzyloxy.

4. The substituted azole compounds according to the claim 3, characterized in that wherein general formula (I):

 X_1 is selected from CH or N; X_2 is selected from O or NH; X_3 is selected from O or NR₈;

 A_1 is selected from N or CR_9 , A_2 is selected from N or CR_{10} , A_3 is selected from N or CR_{11} , and if selected from N, only one of A_1 , A_2 or A_3 is selected from N;

 R_1 , R_2 is CH_3 ;

R₃ is H;

 R_8 is selected from H, C_1 - C_3 alkyl; C_1 - C_3 haloalkyl; C_1 - C_3 alkoxycarbonyl or C_1 - C_3 alkoxycarbonyl C_1 - C_3 alkyl

 R_4 , R_5 , R_6 , R_9 , R_{10} and R_{11} may be the same or different, selected from H, Cl, Br, F, NO₂, CN, CH₂CN, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₁-C₆alkylsulfonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkoxycarbonylC₁-C₆alkyl, C₁-C₆alkoxyC₁-C₃alkyl, C₁-C₃haloalkoxyC₁-C₃alkyl, substituted aminoC₁-C₃alkyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy.

5. The substituted azole compounds according to the claim 4, characterized in that wherein general formula (I):

X₁ is selected from CH or N; X₂ is selected from O or NH; X₃ is selected from O

or NR₈;

 A_1 is selected from N or CR_9 , A_2 is selected from N or CR_{10} , A_3 is selected from N or CR_{11} , and if selected from N, only one of A_1 , A_2 or A_3 is selected from N;

 R_1 , R_2 is CH_3 ;

 R_3 is H;

 R_8 is selected from H, C_1 - C_3 alkyl; C_1 - C_3 haloalkyl; C_1 - C_3 alkoxycarbonyl or C_1 - C_3 alkoxycarbonyl C_1 - C_3 alkyl;

 R_4 , R_5 , R_6 , R_9 , R_{10} and R_{11} may be the same or different, selected from H, Cl, Br, F, NO₂, CN, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxycarbonyl C_1 - C_6 alkoxycarbonyl C_1 - C_6 alkoxy C_1 - C_6 alkyl, phenyl or halophenyl, phenoxy or halophenoxy.

6. The preparation of substitute azole compounds according to claim 1, characterized in that wherein general formula (I) can be prepared by reaction of azole compounds containing hydroxyl group having general formula (III) with halomethylbenzene having general formula (IV) at the present of base:

wherein: R is leaving group, such as Cl or Br. substituted azole compounds and its preparation method and use thereof.

- 7. A composition of fungicides and insecticides comprises the substituted azole compounds having general formula (I) as an active ingredient, wherein the weight percentage of the active ingredient in the composition is from 0.1% to 99%.
- 8. According to the claim 1, application of the substituted azole compounds for controlling fungi and insects in plant.
- 9. According to the claim 7, application of the fungicidal and insecticidal composition for controlling fungi and insects in plant.