MAT300 CURVES AND SURFACES

Julia Sánchez Sanz

DigiPen Institute of Technology Europe julia.sanchez@digipen.edu

Spring 2020

Lagrange interpolation

- Lagrange interpolation
 - The line and P_1
 - Generalization to P_n
 - Recursive generation of Lagrange polynomials
 - Interpolation of surfaces

The simplest example: a line

We want a line through $P_0 = (x_0, y_0)$ and $P_1 = (x_1, y_1)$ having $x_0 \neq x_1$

How can we construct it? We can define two polynomials of degree 1

$$L_0^1(x) = \frac{x - x_1}{x_0 - x_1}, \qquad L_1^1(x) = \frac{x - x_0}{x_1 - x_0}$$

How are these polynomials?

•
$$L_0^1(x_0) = \frac{x_0 - x_1}{x_0 - x_1} = 1$$
 and $L_0^1(x_1) = \frac{x_1 - x_1}{x_0 - x_1} = 0$

•
$$L_1^1(x_0) = \frac{x_0 - x_0}{x_1 - x_0} = 0$$
 and $L_1^1(x_1) = \frac{x_1 - x_0}{x_1 - x_0} = 1$

if I multiply L_0^1 by y_0 and L_1^1 by y_1 I obtain

•
$$y_0L_0^1(x_0) = y_0\frac{x_0-x_1}{x_0-x_1} = y_0$$
 and $y_0L_0^1(x_1) = y_0\frac{x_1-x_1}{x_0-x_1} = 0$

•
$$y_1 L_1^1(x_0) = y_1 \frac{x_0 - x_0}{x_1 - x_0} = 0$$
 and $y_1 L_1^1(x_1) = y_1 \frac{x_1 - x_0}{x_1 - x_0} = y_1$

finally I sum them to obtain the interpolant polynomial

$$p(x) = y_0 L_0^1(x) + y_1 L_1^1(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}$$
(1)

The Lagrange basis for P_1

The polynomials L_0^1 and L_1^1 are the Lagrange polynomials of degree 1 for the nodes x_0 and x_1 with $x_0 \neq x_1$.

$$\{L_0^1, L_1^1\}$$
 is a basis for P_1

$$L_0^1(x) = \frac{x - x_1}{x_0 - x_1}$$
 therefore $T(L_0^1(x)) = \begin{pmatrix} -\frac{x_1}{x_0 - x_1} \\ \frac{1}{x_0 - x_1} \end{pmatrix}$

$$L_1^1(x) = \frac{x - x_0}{x_1 - x_0}$$
 therefore $T(L_1^1(x)) = \begin{pmatrix} -\frac{x_0}{x_1 - x_0} \\ \frac{1}{x_1 - x_0} \end{pmatrix}$

$$\det \begin{pmatrix} -\frac{x_1}{x_0 - x_1} & -\frac{x_0}{x_1 - x_0} \\ \frac{1}{x_0 - x_1} & \frac{1}{x_1 - x_0} \end{pmatrix} = \frac{1}{(x_1 - x_0)^2} \det \begin{pmatrix} x_1 & -x_0 \\ -1 & 1 \end{pmatrix} = \frac{1}{x_1 - x_0} \neq 0$$

as the vectors are linearly independent, inverting the isomorphism L^1_0 and L^1_1 are also linearly independent.

$$|\{L_0^1, L_1^1\}| = 2 = \dim(P_1)$$

So it is proved that it is a basis.

Every polynomial in P_1 can be expressed as $p(x) = y_0 L_0^1(x) + y_1 L_1^1(x)$

The vector of coordinates of p(x) in the Lagrange basis is $(y_0, y_1)_{LB}$

To recover the original polynomial (in the standard basis) we do

$$p(x) = (1 x) \begin{pmatrix} -\frac{x_1}{x_0 - x_1} & -\frac{x_0}{x_1 - x_0} \\ \frac{1}{x_0 - x_1} & \frac{1}{x_1 - x_0} \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}$$

Lagrange versus RREF

When solving an interpolation problem by constructing a linear system of equations, the expression for the polynomial is not explicitly given. We have to apply Gauss-Jordan to obtain the RREF to get the explicit expression for ploting the solution curve (increase time of computation and decreaces accuracy).

When we use Lagrange polynomials $p(x) = y_0 L_0^1(x) + y_1 L_1^1(x)$ is already a explicit expression, so we only need to substitute values of x to obtain the solution curve.

Lagrange polynomials in P_n

Definition

Given x_0, x_1, \ldots, x_n with $x_i \neq x_j$ for $i \neq j$, the i-th Lagrange polynomial of degree n is

$$L_i^n(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}, \qquad i = 0, 1, \dots, n$$
 (2)

Theorem

$$L_i^n(x_i) = 1$$
 and $L_i^n(x_j) = 0$ for $j \neq i$

Example: $x_0 = -2$, $x_1 = -1$, $x_2 = 1$ and $x_3 = 4$. Compute the Lagrange polynomials and verify the theorem.

Lagrange basis

Theorem

$$BL = \{L_0^n, L_1^n, \ldots, L_n^n\}$$
 is a basis for P_n .

We have $|BL| = n + 1 = \dim(P_n)$ so we only need to prove linearly independence or spanning.

Let
$$p(x) = a_0 + a_1 x + ... + a_n x^n \in P_n$$

I take $x_0, x_1, \ldots x_n$ distinct and evaluate p

I obatian
$$p(x_0) = y_0, p(x_1) = y_1, ..., p(x_n) = y_n$$

So p is the unique polynomial of degree at most n through (x_0, y_0) , (x_1, y_1) , ..., (x_n, y_n) .

I construct
$$q(x) = y_0 L_0^n(x) + y_1 L_1^n(x) + ... + y_n L_n^n(x)$$

through linear combination of the Lagrange polynomials.

We know that
$$L_i^n(x_i) = 1$$
 and $L_i^n(x_i) = 0$ for $j \neq i$ therefore

$$q(x_0) = y_0 L_0^n(x_0) + y_1 L_1^n(x_0) + \ldots + y_n L_n^n(x_0) = y_0 \text{ through } (x_0, y_0)$$

$$q(x_1) = y_0 L_0^n(x_1) + y_1 L_1^n(x_1) + \ldots + y_n L_n^n(x_1) = y_1 \text{ through } (x_1, y_1)$$

:

$$q(x_n) = y_0 L_0^n(x_n) + y_1 L_1^n(x_n) + \ldots + y_n L_n^n(x_n) = y_n \text{ through } (x_n, y_n)$$

q has also degree at most n and passes through (x_0, y_0) , (x_1, y_1) , ..., (x_n, y_n) , so q = p. As we can express every $p \in P_n$ as linear combination of BL we have $P_n = span(BL)$ so BL is a basis for P_n .

Interpolant polynomial in Lagrange basis

Definition

Given n+1 points (x_i, y_i) for $i=0,1,\ldots,n$ with $x_i \neq x_j$ for $i \neq j$, the Lagrange interpolnat polynomial of degree at most n is given as

$$p(x) = \sum_{i=0}^{n} y_i L_i^n(x)$$
 (3)

The vector of coordinates of p in the Lagrange basis is $(y_0, y_1, \ldots, y_n)_{BL}$.

Example: Use the Lagrange basis to obtain the interpolant polynomial through (-2,1), (-1,3), (1,0) and (4,-2). Give the vector of coordinates of the polynomial in the Lagrange and in the standard basis.

The geometry of the previous example

The geometry of the previous example

Lagrange interpolation is faster than RREF

Motivation

Let (x_0, y_0) , (x_1, y_1) , ..., (x_n, y_n) be points with $x_{i-1} < x_i$ for i = 1, ..., n and let $p(x) = \sum_{i=0}^{n} y_i L_i^n(x)$ its Lagrange interpolant polynomial.

Now we introduce another point (x_{n+1}, y_{n+1}) with $x_n < x_{n+1}$

How do we construct the new interpolant polynomial? we want to use the previous work and save computational cost, therefore a good idea is to construct the polynomials through recursion.

Notation: we denote with $p_{m_0,m_1,...,m_k}$ the Lagrange interpolant polynomial of degree at most k through the nodes (x_{m_0},y_{m_0}) , (x_{m_1},y_{m_1}) , ..., (x_{m_k},y_{m_k})

Example: $p_{0,2,3,5}$ is the Lagrange interpolant polynomial through (x_0, y_0) , (x_2, y_2) , (x_3, y_3) and (x_5, y_5) .

Neville's method

Lagrange polynomials can be generated recursively in the following way

Nodes
$$p_i \in P_0$$

 x_0 $p_0(x) = y_0$
 x_1 $p_1(x) = y_1$
 x_2 $p_2(x) = y_2$
 x_3 $p_3(x) = y_3$
 x_4 $p_4(x) = y_4$

In P_0 there is a unique Lagrange polynomial $L_0^0(x) = 1$.

So the interpolant polynomials are $p_i(x) = y_i L_0^0(x) = y_i$

We use previous information for computing interpolant polynomials in P_1

Nodes
$$p_i \in P_0$$
 $p_{i,i+1} \in P_1$

$$x_0 \quad p_0(x) = y_0 \quad p_{0,1}(x) = \frac{(x-x_0)p_1(x)-(x-x_1)p_0(x)}{x_1-x_0}$$

$$x_1 \quad p_1(x) = y_1 \quad p_{1,2}(x) = \frac{(x-x_1)p_2(x)-(x-x_2)p_1(x)}{x_2-x_1}$$

$$x_2 \quad p_2(x) = y_2 \quad p_{2,3}(x) = \frac{(x-x_2)p_3(x)-(x-x_3)p_2(x)}{x_3-x_2}$$

$$x_3 \quad p_3(x) = y_3 \quad p_{3,4}(x) = \frac{(x-x_3)p_4(x)-(x-x_4)p_3(x)}{x_4-x_3}$$

$$x_4 \quad p_4(x) = y_4$$

We obtain Lagrange interpolant polynomials of degree 1 through the nodes (x_i, y_i) and (x_{i+1}, y_{i+1}) .

We use previous information for computing interpolant polynomials in P_2

Nodes
$$p_i \in P_0$$
 $p_{i,i+1} \in P_1$ $p_{i,i+1,i+2} \in P_2$
 x_0 p_0
 x_1 p_1 $p_{0,1,2}(x) = \frac{(x-x_0)p_{1,2}(x)-(x-x_2)p_{0,1}(x)}{x_2-x_0}$
 x_2 p_2 $p_{1,2,3}(x) = \frac{(x-x_1)p_{2,3}(x)-(x-x_3)p_{1,2}(x)}{x_3-x_1}$
 x_3 p_3 $p_{2,3,4}(x) = \frac{(x-x_2)p_{3,4}(x)-(x-x_4)p_{2,3}(x)}{x_4-x_2}$
 x_4 p_4

We obtain Lagrange interpolant polynomials of degree 2 through the nodes (x_i, y_i) , (x_{i+1}, y_{i+1}) and (x_{i+2}, y_{i+2}) .

We use previous information for computing interpolant polynomials in P_3

We obtain Lagrange interpolant polynomials of degree 3 through the nodes (x_i, y_i) , (x_{i+1}, y_{i+1}) , (x_{i+2}, y_{i+2}) and (x_{i+3}, y_{i+3}) .

Finally we obtain the interpolant polynomial in P_4

where

$$p_{0,1,2,3,4}(x) = \frac{(x-x_0)p_{1,2,3,4}(x) - (x-x_4)p_{0,1,2,3}(x)}{x_4 - x_0}$$

What happens if we add an extra node?

We can use the previous information and continue the process

Nodes
$$P_0$$
 P_1 P_2 P_3 P_4 P_5
 X_0 p_0
 $p_{0,1}$
 X_1 p_1 $p_{0,1,2}$
 $p_{1,2}$ $p_{0,1,2,3}$
 x_2 p_2 $p_{1,2,3}$ $p_{0,1,2,3,4}$
 $p_{2,3}$ $p_{1,2,3,4}$ $p_{1,2,3,4,5}$
 p_{3} $p_{2,3,4}$ $p_{2,3,4,5}$
 $p_{3,4}$ $p_{2,3,4,5}$
 p_{4} p_{4} $p_{3,4,5}$
 $p_{4,5}$
 p_{5}

Observations

- Neville's method is good if we use a regular mesh in [0, n], but not for regular mesh in [0, 1] or Chebyshev due to displacement of nodes.
- We have to repeat the method for every output node.
- For computing polynomial curves, the idea is the same as the explained in the last lecture, but using Lagrange basis.

Example: Use Neville's method to obtain the Lagrange interpolant polynomial through (-2,1), (-1,3), (1,0) and (4,-2)

Interpolation of Surfaces using Lagrange polynomials

Consider a rectangular region $[a,b] imes [c,d] \in \mathbb{R}^2$

Consider a grid of $(m+1) \times (n+1)$ nodes in that region

We can use Lagrange interpolation to construct a surface through (x_i, y_j, z_{ij}) for i = 0, 1, ..., m and j = 0, 1, ..., n.

The surface will be of the form $\sigma: [a,b] \times [c,d] \in \mathbb{R}^2 \to \mathbb{R}$ with $\sigma(x,y)$ an interpolant polynomial in two variables.

How do we compute it?

Fixing y-coordinate

If we fix the y-component to a certain y_j for $j=0,1,\ldots n$, then σ restricted to y_j will be like $\hat{\sigma}_{y_j}:[a,b]\in\mathbb{R}\to\mathbb{R}$ with $\hat{\sigma}_{y_j}(x)$ an interpolant polynomial through the nodes (x_i,y_j,z_{ij}) . The result will be a curve for each y_j and can be computed with Lagrange interpolant polynomials as follows

$$\hat{\sigma}_{y_j}(x) = \sum_{i=0}^m z_{ij} L_i^m(x)$$

Fixing x-coordinate

If we fix the x-component to a certain x_i for $i=0,1,\ldots m$, then σ restricted to x_i will be like $\hat{\sigma}_{x_i}:[c,d]\in\mathbb{R}\to\mathbb{R}$ with $\hat{\sigma}_{x_i}(y)$ an interpolant polynomial through the nodes (x_i,y_j,z_{ij}) . The result will be a curve for each x_i and can be computed with Lagrange interpolant polynomials as follows

$$\hat{\sigma}_{x_i}(y) = \sum_{j=0}^n z_{ij} L_j^n(y)$$

Merging the curves into a surface

the functions $\hat{\sigma}_{x_i}$ determine

how the nodes move along the y-axis for the function $\hat{\sigma}_{y_j}$ and viceversa, i.e.

$$\sigma(x,y) = \sum_{i=0}^{m} \hat{\sigma}_{x_{i}}(y) L_{i}^{m}(x) = \sum_{i=0}^{m} \sum_{i=0}^{n} z_{ij} L_{j}^{n}(y) L_{i}^{m}(x)$$

$$\hat{\sigma}_{x_i}(y_j) = z_{ij}$$

Evalutating

$$\sigma(x,y) = \sum_{i=0}^{m} \sum_{j=0}^{n} z_{ij} L_j^n(y) L_i^m(x)$$

at a bigger mesh of nodes we obtain

Tensor product spaces

To which polynomial vector space belongs the interpolant surface?

Definition

Let V and W be vector spaces with $\dim(V) = m + 1$ and $\dim(W) = n + 1.$

The tensor product $V \otimes W$ is the vector space with basis

$$B = \{v_i \times w_i, \text{ for } i = 0, 1, \dots, m, j = 0, 1, \dots n\}$$

being $B_1 = \{v_i, i = 0, 1, ..., m\}$ and $B_2 = \{w_i, j = 0, 1, ..., n\}$ respective bases for V and W.

$$\dim(V \otimes W) = \dim(V) \times \dim(W) = (m+1)(n+1)$$

So $\sigma \in P_m \times P_n$ which basis is $\{1, x, y, x^2, y^2, xy, \dots, x^m y^n\}$