

		Preend	chido	pelo Alun	0	
Nome						Matrícula
Assinatura						Data
Disciplina (Código: Nome) Matemática Básica				Curso		Campus
Professor (a) Wagner da Silva Zanco				Período		Turno
	-	Preench	ido pe	elo Profes	sor	•
Nota	Nota por extenso	Visto Professor (a)		revista	Nota por extenso	Visto Professor (a)
	1	\$	SIMUL	.ADO	1	-1

1) Determine os zeros das funções. (1,5 ponto)

a)
$$f(x) = \frac{x}{2} + 4$$

b) $f(x) = x^2 - 3x + 2$

b)
$$f(x) = x^2 - 3x + 2$$

2) Seja
$$f(x) = x^2 + 2x + 1$$
 e $g(x) = -2x - 1$, determine $f(g(x))$ e $g(f(x))$.

3) Dado o gráfico da função $f: \mathbb{R}_+ \to \mathbb{R}_+$, determine se função f é injetora e sobrejetora.

4) Dada a função $f(x) = \frac{3x+2}{2x}$, calcule $f^{-1}(2)$. (1,5 ponto)

5) Nas funções bijetoras abaixo, de $\mathbb R$ em $\mathbb R$, obtenha a função inversa.

$$a) f(x) = 2x + 3$$

b)
$$g(x) \frac{4x-1}{3}$$