

ICN2037

(16 路双缓存恒流输出 LED 驱动芯片)

概述

ICN2037 是一款专为 LED 显示屏设计的驱动 IC, 采用 16 路恒流灌电流输出。ICN2037 集成了"Noise Free™"技术,具有极佳的抗干扰特性,使恒流及低灰效果不受 PCB 板的影响。并可选用不同的外挂电阻对输出级电流大小进行调节,精确控制 LED 的发光亮度。同时通过电流精确控制技术,可使片间误差低于±2.5%,通道间误差低于±3.0%。

ICN2037 集成了双缓存寄存器,在显示寄存器中 16bit 数据同时,还可以再继续存入 16bit 串行数据,相比通用恒流源芯片,刷新率可以提高 50%以上。

特性

- ◆ 16 路恒流灌电流输出
- ◆ 输出电流范围:3~45mA@V₀=5V3~30mA@V₀=3.3V
- ◆ 电流精度

通道之间: ±1.8%(典型值) ±3.0%(最大值) 芯片之间: ±1.5%(典型值) ±2.5%(最大值)

- ♦ 快速输出电流响应 OE (最小值): 60ns@V₁₀=5V
- ♦ I/0 施密特触发器输入
- ◇ 最大数据传输频率: 30MHz
- ◇ 芯片工作电压: V_D=3.3~6V
- ◇ 工作温度范围: -40~85°C
- ◇ 具有改善灯珠损坏功能
- ◇ 具有消隐功能
- ◆ 具有极佳的抗干扰能力和低灰度效果
- ◇ 改善因灯珠损坏产生的毛毛虫现象
- ◆ 集成双缓存,刷新率比通用恒流芯片提高 50%以上

封装

Shrink SOP

AP: SSOP24-P-150-0.635

ICN2037

引脚说明

SSOP24-P-150-0.635

	ICN2037 (SSOP24)							
Pin No.	Pin 名称	功能						
1	GND	接地端						
2	SIN	串行数据输入端						
3	CLK	时钟信号输入端,上升沿采样数据						
4	LE	锁存信号输入端						
		LE 高电平时,数据传入锁存器;LE 低电平时,数据被锁存						
5~20	OUT0 ~ OUT15	恒流灌电流输出端						
	使能信号输入端							
21	ŌĒ	ŌE 高电平时,关断ŌUTO~ŌUT15						
	OE 低电平时,打开 OUTO ~ OUT15 22 \$000 串行数据输出端							
22								
23	R-EXT	EXT 外挂电阻输入端,可调节输出端恒流值						
24	<u> </u>							

ICN2037 框图

1/0 等效电路

时序图

Note 1: 当 LE 引脚设定为 L,锁存电路保持数据;当 LE 引脚设定为 H,则锁存电路不保持数据,数据直接输出。

当 \overline{OE} (GCLK)引脚为 L 时, $\overline{OUT0}$ 到 $\overline{OUT15}$ 输出引脚将变为 ON 和 OFF 以响应数据,设定 \overline{OE} (GCLK)引脚为 H,不论数据如何,所有输出引脚将为 OFF。当 \overline{OE} (GCLK)引脚为 L 时,可以传送数据并 latch 数据

ICN2037 提高刷新率的原理

通用恒流源驱动芯片数据传送及数据显示时序图

通用恒流芯片数据传输及数据显示利用率低的原因:

- 1. 当显示一个高位数据的时候,数据显示时间可能会远大于数据传输时间,在数据显示多余的时间内不能进行数据传输。
- 2. 当显示一个低位数据的时候,数据显示时间可能会远小于数据传输时间,在数据传输多余的时间内不能进行数据显示。

ICN2037 数据传送及数据显示时序图

ICN2037 数据传送及数据显示时序见上图所示,data(A)和 data(C)为高位数据,data(B)和 data(D)高低位数据。将显示数据高低位按时间进行组合,使显示高位数据多余时间可以利用起来进行数据传送,或者说利用传数据的时间来进行高位的显示,将传数据和显示数据完美的配合起来,可以有效的提高显示刷新率,基本步骤如下:

- 1. 当 data(A)传送完成后,在 LE 上产生一个 latch 信号,锁存 data(A)
- 2. 完成 data(A) 锁存后, \overline{OE} 由 1~>0, 寄存 data(A)并显示 data(A)
- 3. 在显示 data(A)的同时,对 data(B)进行传送
- 4. data(B)传送完成后,由 LE 产生 latch 信号,锁存 data(B),并接着传送 data(C)
- 5. 完成 data(A)的显示后,寄存 data(B)并显示 data(B)
- 6. 完成 data(C)的传送,完成 data(B)的显示
- 7. 寄存 data(C)和传送 data(D), (同步骤 1)

真值表

CLK	LE	ŌĒ	SIN	OUTO ··· OUT7 ··· OUT15	SOUT
<u></u>	Н	L	D _n	$D_n \cdots D_{n-7} \cdots D_{n-15}$	D _{n-15}
	L	L	D _{n+1}	无变化	D _{n-14}
	Н	L	D _{n+2}	$D_{n+2} \cdots D_{n-5} \cdots D_{n-13}$	D _{n-13}
7	×	L	D _{n+3}	$D_{n+2} \cdots D_{n-5} \cdots D_{n-13}$	D _{n-13}
Ŧ	×	Н	D _{n+3}	0FF	D _{n-13}

最大工作范围 (Ta=25℃)

特性	符号	额定值	单位
电源电压	V_{DD}	0~7.0	٧
输出电流	10	45	mA
输入电压	V _{IN}	-0. 4 [~] V _{DD} +0. 4	٧
输出耐受电压	V _{OUT}	11V	
时钟频率	Fclk	30	MHz
接地端电流	I GND	+1000	mA
消耗功耗 (印刷电路板上, 25℃) DN -typ	e P _D	3. 19	W
热阻抗 DN-typ	$R_{th(j-a)}$	39. 15	°C/W
工作温度	Topr	-40 ~ 85	°C
存储温度	T_{stg}	−55 [~] 150	°C

直流特性 (T₌=-40°C~85°C, 如不另外说明)

特性	符号	测试条件	最小值	典型值	最大值	单位
电源电压	$V_{ exttt{DD}}$	-	3. 3	5	6. 0	٧
ON 时的输出电压	V _{o (on)}	OUTn	0.6	-	4	٧
高电平逻辑输入电压	V _{IH}	ı	0. 7*V _{DD}	1	$V_{ extsf{DD}}$	٧
低电平逻辑输入电压	VıL	-	GND	-	0. 3*V _{DD}	٧
SOUT 高电平输出电流	I _{OH}	V _{DD} =5V	-	-	-1	mA
SOUT 低电平输出电流	I _{OL}	V _{DD} =5V	_	-	1	mA
恒流输出	I ₀	OUTn	0. 5	_	45	mA

动态特性 (V₀=4.5~5.5V, T₄=-40°C~85°C, 如不另外说明)

特性	符号	测试电路	测试条件	最小值	典型值	最大值	单位
串行数据传输频率	Fclk	6	-	_	-	30	MHz
时钟脉冲宽度	t _{wCLK}	6	SCK=H 或者 L	20	-	_	ns
锁存脉冲宽度	$t_{\scriptscriptstyle{wLE}}$	6	LE=H	20	-	1	ns
使能脉冲宽度	t _{woe}	6		60	_	-	ns
保持时间	t _{HOLD1}	6	ı	5	-	-/	ns
木行中リ □	t _{HOLD2}	6	ı	5	-	-	ns
建立时间	t _{SETUP1}	6	1	5	-		ns
连亚印门	t _{SETUP2}	6	-	5	-	-	ns
最大时钟上升时间	t _r	6		_	_	500	ns
最大时钟下降时间	t _f	6		-	_	500	ns

电气特性 (V₀=4.5~5.5V, T₄=25°C, 如不另外说明)

特性	符号	测试 电路	测试条件	最小值	典型值	最大值	单位
高电平逻辑输出电压	V_{OH}	1	I _{OH} =-1mA, SOUT	V _{DD} -0. 4	-	$V_{ exttt{DD}}$	٧
低电平逻辑输出电压	V _{OL}	1	I _{OH} =+1mA, SOUT	-	_	0.4	٧
高电平逻辑输入电流	LiH	2	$V_{IN}=V_{DD}$, $\overline{\rm OE}$, SIN, CLK	-	-	1	μА
低电平逻辑输入电流	I _{IL}	3	V _{IN} =GND, LE, SIN, CLK	_	1	-1	μΑ
	I DD1	4	Rext=未接, OUT off	_	2. 5	5. 0	mA
	I DD2	4	Rext=1.24K Ω , OUT off	_	4. 5	7. 0	mA
电源电流	I _{DD3}	4	Rext=620 Ω , OUT off	_	6. 0	9. 0	mA
	I _{DD4}	4	Rext=1.24K Ω , OUT on	_	5. 2	8. 5	mA
	I _{DD5}	4	Rext=620 Ω , OUT on	_	6. 5	9.5	mA
	I ₀₁	5	$V_{DD}=5.0V, V_0=1.0V,$	_	15	_	mA
恒流输出	01	7	R _{EXT} =1. 23k Ω		2		IIIA
リュッル・オリンコ	102	5	$V_{DD}=5.0V$, $V_0=1.0V$,	_	30	_	mA
\mathbb{R}/\mathbb{A}	1 02	3	R _{EXT} =615 Ω		30		IIIA
			$V_{DD}=5.0V$, $V_0=1.0V$,				
恒流误差	Δ Ιο	5	$R_{EXT}=1.23k\Omega$,	_	±0.27	±0.46	mA
			OUT0 OUT15				
			$V_{DD}=4.5^{5}.5V, V_{0}=1.0V,$				
恒流电源电压调节	$%V_{DD}$	5	$R_{EXT}=1.24k \Omega$,	_	±0.2	_	%/V
			OUT0 OUT15				
			$V_{DD}=5.0V$, $V_0=1.0^3.0V$,				
恒流输出电压调节	$%V_{\text{out}}$	5	$R_{EXT}=1.24k \Omega$,	_	±0.1		%/V
			OUT0~OUT15				
上拉电阻	Rup	3	ŌĒ	250	500	800	kΩ
下拉电阻	R _{DOWN}	2	LE	250	500	800	kΩ

开关特性 (T₄=25°C, Vω=5.0V, 如不另外说明)

特性		符号	测试 电路	测试条件	最 小 值	典 型 值	最大值	单 位
/±t&	OE - OUTO	t _{pLH3}	6	LE=H	-	32	36	
传输 延迟时间	OE – OUT 1	t _{pHL3}	6	LE=H	-	45	49	ns
延迟时间	CLK-SOUT	t _{pHL}	6	-	-	32	35	
输出端上升时间		t _{or}	6	电压波形的 10 [~] 90%	-	30	35	ns
输出端下降时间		t _{of}	6	电压波形的 90~10%	-	45	50	ns

测试电路

测试电路 1: 高电平逻辑输入电压/低电平逻辑输入电压

测试电路 2: 高电平逻辑输入电流/下拉电阻

测试电路 3: 低电平逻辑输入电流/上拉电阻

测试电路 4: 电源电流

测试电路 5: 恒流输出/输出 0FF 漏电流/恒流误差 恒流电源电压调节/恒流输出电压调节

测试电路 6: 开关特性

时序图

1. CLK, SIN, SOUT

2. CLK, SIN, LE, $\overline{\rm OE}$, $\overline{\rm OUT0}$

3. OUT0

应用信息

ICN2037采用了精确电流驱动控制技术,同一芯片的不同通道间,不同芯片之间的电流差异极小。

- 1) 通道间电流差异<±3.0%, 芯片间的电流差异<±2.5%。
- 2) 具有不受负载端电压影响的电流输出特性,如下图所示。输出电流将不随LED 顺向电压V_F的变化而变化。

恒流输出设定

ICN2037 通过外接电阻 Rext 来调节输出电流 (lout), 计算公式为:

封装尺寸

SS0P24-P-150-0. 635

SSOP24 (150mil) PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In	Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A		1.750		0.069	
A1	0.100	0. 250	0.004	0.010	
A2	1.250		0.049		
b	0. 203	0.305	0.008	0.012	
c	0.102	0. 254	0.004	0.010	
D	8.450	8.850	0. 333	0.348	
E1	3.800	4.000	0.150	0. 157	
E	5.800	6. 200	0. 228	0.244	
e	0.635	(BSC)	0.025	(BSC)	
L	0.400	1. 270	0.016	0.050	
θ	0°	8°	0°	8°	

产品订购信息

产品编号	封装 (无铅环保)	重量(g)
ICN2037AP	SS0P24-P-150-0. 635	0. 13

- □ 北京集创北方科技股份有限公司保留说明书的更改权,恕不另行通知!
- ⑤ 任何半导体产品在特定条件下都有一定的失效或发生故障的可能,用户有责任在使用Chipone产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险及可能造成人身伤害或财产损失情况的发生!

集智创芯, 我公司将竭诚为客户提供更优秀的产品!