LLM-powered Data Extraction

A GPT-powered way to process data in 2025

Goal

Automated end-to-end system that extracts key Red Bull-related entities (athletes, teams, disciplines, and events) from web articles and generates tags from multimedia content, empowering data-driven marketing and media impact assessments.

Approach

Project Process

4 driving factors behind the solution

Adaptability

Scale & Model innovations

Performance

How to measure accuracy

Cost

Scale vs. Performance

UX

Wrap Solution for ease-of-use

Resulting Architecture

Adaptability

Performance

Tech Stack

Pre- & post-processing: Python
LLM-Interaction: OpenAl's Responses API
Front-end: Streamlit

Cost

UX

Model

GPT-4 Family
[0,n] reruns to leverage model randomness

Other possible approaches?

Local models: not as scalable & limited performance.

Why OpenAl's Responses API?

Optimized for fast, structured, one-shot extractions.

How is prompt quality ensured?

 Structured best-practice prompting, interactively constructed using eval. Framework.

How are model updates handled?

Modular setup for A/B testing and easy model switching.

How are cost and quality controlled?

 Model, temperature, and rerun count are adjustable per use case

Resulting Architecture

Adaptability

Performance

Transform ISON into TYT

Transform JSON into TXT
Clean data (remove noisy data)

Cost

UX

Tags

Main Entities
Actions, activities
Setting, environment
Brands, Logos

Why provide .txt instead of .json?

Reduces tokens

Why provide only text body to model?

 Reduces context and decreases risk of bias induction into model

What's the difference between image quality modes?

- Low: faster, fewer details, 80 tokens per image
- High: slower, more details, #tokens depending on img size

Which other approaches could we have taken for the generation of tags?

- Process images with locally running models
- Use other API's (e.g. AWS)
- Use custom-fine tuned models either locally or cloud-based

Cost Considerations

G	PT	-4	.1

•••• • • Intelligence Intelligence 44444 Speed T Q X T 2 R Input Input TRE T R R Output Output \otimes Reasoning tokens Reasoning tokens PRICING PER 1M TOKENS PRICING PER 1M TOKENS \$2.00 Input \$0.10 Input Cached Input Cached Input \$0.03 \$0.50 Output \$8.00 Output \$0.40 CONTEXT CONTEXT 1,047,576 1,047,576 Window Window Max Output Tokens Max Output Tokens 32,768 Jun 01, 2024 Knowledge Cutoff Jun 01, 2024 Knowledge Cutoff

4.1 nano

4.1 mini

Intelligence		Intelligence
Speed	++++	Speed
Input	⊕ 🛭 🗷	Input
Output	T X X	Output
Reasoning tokens	\otimes	Reasoning tokens
PRICING	PER 1M TOKENS	PRICING
Input	\$0.40	Input
Cached Input	\$0.10	Cached Input
Output	\$1.60	Output
CONTEXT		CONTEXT
Window	1,047,576	Window
Max Output Tokens	32,768	Max Output Tokens
Knowledge Cutoff	Jun 01, 2024	Knowledge Cutoff

40 mini

+++

T Q

T R

PER 1M TOKEN

128,00

Oct 01, 2023

Knowledge Cutoff

Intelligence

• •	Intelligence	• • •
44	Speed	+++
	Input	T 2 R
N N	Output	T R R
(X)	Reasoning tokens	(X)
TOKENS	PRICING	PER 1M TOKENS
\$0.15	Input	\$2.50
\$0.08	Cached Input	\$1.25
\$0.60	Output	\$10.00
	CONTEXT	
128,000	Window	128,000
16,384	Max Output Tokens	16,384

Oct 01, 2023

GPT-40

Evaluation Framework

Evaluation Framework

How performance is measured and prompts are engineered

How large is each sample?

Minimal sample: 1 file

Small sample: 5 files

► Full Sample: 500 files

How are models compared?

Run evaluation for both models and compare results.

When can a test be considered successful?

Accuracy > Threshold based on cost & performance requirements

Evaluation Framework

Test Accuracy

Accuracy =
$$\frac{1}{E \times S} \sum_{e=1}^{E} \sum_{s=1}^{S} Allocated Points_{e,s}$$

1 pt: All entities are recognized

0.5 pts: Most important entities are recognized

O pts: Important entities not recognized

E=# of entities to be tested (3 or 4 depending on tag/entity)

S = Sample size

Prompts

Entity Extraction

Prompt

Goal:

Extract from the provided article the following entities:

- 1. AthletesAndTeams: List all athletes and teams affiliated with Red Bull. List any aliases or variations of the team names and correct any spelling mistakes. If someone is known by a nickname, use nickname instead of name.
- 2. Disciplines: Capture every mention of competitive sports & e-sports disciplines. Consider both full names and common abbreviations.
- 3. Events: Identify any formally named tournaments, championships, or events (e.g.: "League of Legends World Championship").

Additional Instructions:

- Translate all Discipline- and Event names to English
- Search entire text (including background or historical references) for all explicit and implicit references to the above categories.
- Return exactly one JSON object containing the keys "AthletesAndTeams", "Disciplines", and "Events". If any of categories not mentioned, provide empty array for that key.
- Do only include mentions from the article, not from the instruction.

```
Output single JSON object with these exact keys, no extra text or different formatting should be returned:
{
"AthletesAndTeams": [],
"Disciplines": [],
"Events": []
}
Article:
<<<EXTRACTED ARTICLE>>>
```

Consolidation Prompt

From web-article extractions below, make sure all entries English, no duplicates, names spelled correctly. Return single JSON object with same keys as inputs.

Extractions:
<<<EXTRACTIONS>>>

Tag Extraction

Prompt

```
Describe these images with a set of tags so that they can then be used when creating content. Identify:
```

- Main subjects, objects, people:
 - individuals (names if possible)
 - cars, planes, skis etc. with model, livery, specs
- Technical components (e.g.: front suspension) be
 precise (propellor airplane, jet plane)
- Depicted Actions, activities
- Setting, environment
- brands, logos, flags

```
Return only a JSON array of tags with no additional text: ["tag1", "tag2", "tag3"]
```

Consolidation Prompt

Review this image and analyze the provided tags from previous model runs.

Create a final, consolidated list of accurate tags by:

- 1. Keeping only tags that actually appear in the image
- 2. Removing duplicates or near-duplicates
- 3. Ensuring consistent naming (e.g., choose either 'Formula 1' or 'F1', not both)
- 4. Adding any important missing tags

Return only a JSON array of finalized tags with no additional text:

["tag1", "tag2", "tag3"]

Result

Back-End

Front-End

Further Enhancements

What future versions of the project could incorporate

Confidence Scores

Let model return confidence scores for extracted entities and tags

Semantic Validation

Verify extracted entities & tags against domainspecific knowledge base

Fine-tune

Tune model to align with language & terms commonly used in company to derive better entities & tags

Feedback mechanism

Integrate user feedback as proposals for prompt adjustments