```
In [1]:
    import pandas as pd
    import numpy as np
    import seaborn as sns
    from scipy import stats
    import matplotlib.pyplot as plt
    import warnings
    warnings.filterwarnings('ignore')
```

In [2]: df_clus = pd.read_csv('/Users/Ramv/Downloads/scaler_clustering.csv')
 df_clus

Out[2]:

	Unnamed: 0	company_hash	email_hash o
0	0	atrgxnnt xzaxv	6de0a4417d18ab14334c3f43397fc13b30c35149d70c05
1	1	qtrxvzwt xzegwgbb rxbxnta	b0aaf1ac138b53cb6e039ba2c3d6604a250d02d5145c10
2	2	ojzwnvwnxw vx	4860c670bcd48fb96c02a4b0ae3608ae6fdd98176112e9
3	3	ngpgutaxv	effdede7a2e7c2af664c8a31d9346385016128d66bbc58
4	4	qxen sqghu	6ff54e709262f55cb999a1c1db8436cb2055d8f79ab520
•••			
205838	206918	vuurt xzw	70027b728c8ee901fe979533ed94ffda97be08fc23f33b
205839	206919	husqvawgb	7f7292ffad724ebbe9ca860f515245368d714c84705b42
205840	206920	vwwgrxnt	cb25cc7304e9a24facda7f5567c7922ffc48e3d5d6018c
205841	206921	zgn vuurxwvmrt	fb46a1a2752f5f652ce634f6178d0578ef6995ee59f6c8
205842	206922	bgqsvz onvzrtj	0bcfc1d05f2e8dc4147743a1313aa70a119b41b30d4a1f

205843 rows × 7 columns

```
In [3]: df_clus.info()
```

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 205843 entries, 0 to 205842
        Data columns (total 7 columns):
         #
             Column
                                Non-Null Count
                                                 Dtype
             _____
                                _____
         0
             Unnamed: 0
                                205843 non-null int64
                                205799 non-null object
         1
             company_hash
             email hash
         2
                                205843 non-null object
         3
                                205757 non-null float64
             orgyear
         4
             ctc
                                205843 non-null int64
                               153281 non-null object
             job position
             ctc_updated_year 205843 non-null float64
        dtypes: float64(2), int64(2), object(3)
        memory usage: 11.0+ MB
In [4]: df clus.isnull().sum()
        Unnamed: 0
                                 0
Out[4]:
        company hash
                                44
        email hash
                                 0
        orgyear
                                86
        ctc
                                 0
        job_position
                            52562
        ctc_updated_year
        dtype: int64
        Dropping Unnamed Column
In [5]: df_clus.drop(columns = 'Unnamed: 0', inplace= True)
In [6]:
        df clus.shape
        (205843, 6)
Out[6]:
In [7]: df_clus.nunique()
Out[7]: company_hash
                              37299
        email hash
                             153443
                                 77
        orgyear
        ctc
                               3360
        job position
                               1017
        ctc_updated_year
                                  7
        dtype: int64
        dropping duplicate records
        df clus.duplicated().sum()
In [8]:
Out[8]:
In [9]:
        df_clus.drop_duplicates(inplace=True)
```

In [10]: df_clus

\sim		Га	0.1	
11	ut	1 1	II	
U	uч	1. 4	v.	

	company_hash	email_hash	orgyear	
0	atrgxnnt xzaxv	6de0a4417d18ab14334c3f43397fc13b30c35149d70c05	2016.0	110
1	qtrxvzwt xzegwgbb rxbxnta	b0aaf1ac138b53cb6e039ba2c3d6604a250d02d5145c10	2018.0	44
2	ojzwnvwnxw vx	4860c670bcd48fb96c02a4b0ae3608ae6fdd98176112e9	2015.0	200
3	ngpgutaxv	effdede7a2e7c2af664c8a31d9346385016128d66bbc58	2017.0	70
4	qxen sqghu	6ff54e709262f55cb999a1c1db8436cb2055d8f79ab520	2017.0	140
•••	•••		•••	
205838	vuurt xzw	70027b728c8ee901fe979533ed94ffda97be08fc23f33b	2008.0	22
205839	husqvawgb	7f7292ffad724ebbe9ca860f515245368d714c84705b42	2017.0	50
205840	vwwgrxnt	cb25cc7304e9a24facda7f5567c7922ffc48e3d5d6018c	2021.0	70
205841	zgn vuurxwvmrt	fb46a1a2752f5f652ce634f6178d0578ef6995ee59f6c8	2019.0	510
205842	bgqsvz onvzrtj	0bcfc1d05f2e8dc4147743a1313aa70a119b41b30d4a1f	2014.0	124

205810 rows × 6 columns

Descriptive Stats

Columns with Continuous variables

In [11]:

display(df_clus.describe().T.round(2))
print()

	count	mean	std	min	25%	50%	75%
orgyear	205724.0	2014.88	63.58	0.0	2013.0	2016.0	2018.0
ctc	205810.0	2271853.65	11801845.29	2.0	530000.0	950000.0	1700000.0
ctc_updated_year	205810.0	2019.63	1.33	2015.0	2019.0	2020.0	2021.0

Columns with Categorical variables

```
In [12]: display(df_clus.describe(include = 'object').T)
    print()
```

fre	top	unique	count	
833	nvnv wgzohrnvzwj otqcxwto	37299	205766	company_hash
1	bbace3cc586400bbc65765bc6a16b77d8913836cfc98b7	153443	205810	email_hash
4354	Backend Engineer	1017	153263	job_position

"Backend Engineer" is the most common job_position and it looks like CTC has outliers, lets check

```
In [13]: q1 = np.percentile(df_clus['ctc'], 25)
    q3 = np.percentile(df_clus['ctc'], 75)
    IQR = q3-q1

UB = q3 + 1.5*IQR
    LB = q1 - 1.5*IQR
    total_outliers = len(df_clus[(df_clus['ctc'] > UB) | (df_clus['ctc'] < LB)])

n = len(df_clus)
    tot_outliers_percent = 100 * total_outliers/n
    print(f"Outlier % of CTC: {tot_outliers_percent:.2f}%")</pre>
```

Outlier % of CTC: 6.38%

Data Cleaning

```
In [14]: # Analysing orgyear feature
         print('5 point summary of orgyear',end = ': ')
         print(df clus['ctc updated year'].describe())
         # Cleaning orgyear feature
         df clus['orgyear'] = df clus.apply(lambda x: x['ctc updated year'] if x['org
                                                                       x['orgyear'] < 1
         print('\n5 point summary of orgyear after cleaning',end = ': ')
         print(df clus['orgyear'].describe())
         # Anlayzing NaN's in company hash
         print('\nNaN in job position',end = ': ')
         print(df_clus['job_position'].isna().sum())
         # Imputing NaN's in orgyear
         orgyear impute = df clus.groupby('email hash')['orgyear'].min()
         df_clus.loc[df_clus['orgyear'].isna(),'orgyear'] = df_clus[df_clus['orgyear']
         df clus.loc[df clus['orgyear'].isna(),'orgyear'] = df clus[df clus['orgyear']
         # Total NaN's
         print("Total Nan's after imputation:",df_clus['orgyear'].isna().sum())
                                               205810.000000
         5 point summary of orgyear: count
                    2019.628279
         mean
         std
                       1.325188
         min
                    2015.000000
         25%
                    2019.000000
         50%
                    2020.000000
         75%
                    2021.000000
         max
                    2021.000000
         Name: ctc updated year, dtype: float64
         5 point summary of orgyear after cleaning: count 205724.000000
                    2015.107980
         mean
                       4.219258
         std
                    1970.000000
         min
                    2013.000000
         25%
         50%
                    2016.000000
         75%
                    2018.000000
         max
                    2021.000000
         Name: orgyear, dtype: float64
         NaN in job position: 52547
         Total NaN's after imputation: 0
```

```
In [15]: # Anlayzing NaN's in company hash
         print('NaN in company hash',end = ': ')
         print(df_clus['company_hash'].isna().sum())
         # Imputing NaN's in company hash
         company impute = df clus.groupby('email hash')['company hash'].first()
         df_clus.loc[df_clus['company hash'].isna(),'company hash'] = df_clus[df_clus
                                                                                   comp
          # Dropping remaining, because these could be learners who are currently unem
         df clus =df_clus.dropna(subset=['company_hash'])
         # Total NaN's
         print("Total NaN's after imputation:",df_clus['company_hash'].isna().sum())
         NaN in company hash: 44
         Total NaN's after imputation: 0
In [16]: # Anlayzing NaN's in job position
         print('NaN in job position',end = ': ')
         print(df clus['job position'].isna().sum())
         # Imputing NaN's in job position
         # Imputed by previous reported position by learner
         job_impute = df_clus.groupby('email_hash')['job_position'].first()
         df clus.loc[df clus['job position'].isna(), 'job position'] = df clus[df clu
                                          job impute[x['email hash']], axis = 1)
         # Renaming rest as Unidentified, Reason: It does not effect formation of nat
         df_clus.loc[df_clus['job_position'].isna(), 'job_position'] = 'Unidentified'
         # Total NaN's
         print("Total NaN's after imputation:",df_clus['job_position'].isna().sum())
         NaN in job position: 52522
         Total NaN's after imputation: 0
         Checking Nan & Duplicates after Data Cleaning
In [17]: # Total NaN's in dataset
         display(df_clus.isna().sum())
          # Total Duplicates found
         display(df_clus.duplicated().sum())
         company_hash
         email hash
                              0
         orgyear
                              0
                              0
         ctc
         job_position
                              0
         ctc updated year
                              0
         dtype: int64
```

26828

Converging data to email_hash level

```
In [18]: # Converging data to email level
          df_clus_agg = df_clus.groupby("email_hash", as_index=False).agg({
              'company_hash': "last",
              'orgyear': 'last',
              'ctc':'last',
              'job_position': 'last',
              'ctc_updated_year': 'last',
          })
In [19]: df_clus_agg
```

Out[19]:		email_hash	company_hash	orgyear	
	0	00003288036a44374976948c327f246fdbdf0778546904	bxwqgogen	2012.0	35(
	1	0000aaa0e6b61f7636af1954b43d294484cd151c9b3cf6	nqsn axsxnvr	2013.0	2!
	2	0000d58fbc18012bf6fa2605a7b0357d126ee69bc41032	gunhb	2021.0	13(
	3	000120d0c8aa304fcf12ab4b85e21feb80a342cfea03d4	bxwqgotbx wgqugqvnxgz	2004.0	200
	4	00014d71a389170e668ba96ae8e1f9d991591acc899025	fvrbvqn rvmo	2009.0	340
	153406	fffc254e627e4bd1bc0ed7f01f9aebbba7c3cc56ac914e	tqxwoogz ogenfvqt wvbuho	2004.0	352
	153407	fffcf97db1e9c13898f4eb4cd1c2fe862358480e104535	trnqvcg	2015.0	160
	153408	fffe7552892f8ca5fb8647d49ca805b72ea0e9538b6b01	znn avnv srgmvr atrxctqj otqcxwto	2014.0	9(
	153409	ffff49f963e4493d8bbc7cc15365423d84a767259f7200	zwq wgqugqvnxgz	2020.0	7(
	153410	ffffa3eb3575f43b86d986911463dce7bcadcea227e5a4	sgrabvz ovwyo	2018.0	15(

153411 rows × 6 columns

Feature Engineering

```
In [20]:
           # Creating Feature Years of experience
           df clus agg['years of exp'] = abs(df clus agg['ctc updated year'] - df clus
In [21]:
           # Creating a feature that identifies job as senior or not
           df clus agg['senior position'] = np.where( (df clus agg['job position'].str.
                                            (df clus agg['job position'].str.lower().str.cc
                                            (df clus agg['job position'].str.lower().str.cd
In [22]:
           df clus agg
Out[22]:
                                                           email_hash company_hash orgyear
                0 00003288036a44374976948c327f246fdbdf0778546904...
                                                                                       2012.0 350
                                                                          bxwqgogen
                    0000aaa0e6b61f7636af1954b43d294484cd151c9b3cf6...
                                                                                               25
                1
                                                                         ngsn axsxnvr
                                                                                       2013.0
                2
                     0000d58fbc18012bf6fa2605a7b0357d126ee69bc41032...
                                                                                       2021.0
                                                                              aunhb
                                                                                              13(
                                                                           bxwqqotbx
                     000120d0c8aa304fcf12ab4b85e21feb80a342cfea03d4...
                                                                                      2004.0
                                                                                              200
                                                                        wgqugqvnxgz
                    00014d71a389170e668ba96ae8e1f9d991591acc899025...
                                                                         fvrbvgn rvmo
                                                                                      2009.0
                                                                                              340
                                                                            tqxwoogz
           153406
                      fffc254e627e4bd1bc0ed7f01f9aebbba7c3cc56ac914e...
                                                                            ogenfyqt
                                                                                      2004.0
                                                                                              35%
                                                                             wvbuho
           153407
                      fffcf97db1e9c13898f4eb4cd1c2fe862358480e104535...
                                                                             trnqvcg
                                                                                       2015.0
                                                                                              160
                                                                            znn avnv
           153408
                     fffe7552892f8ca5fb8647d49ca805b72ea0e9538b6b01...
                                                                                       2014.0
                                                                       srgmvr atrxctqi
                                                                                               9(
                                                                            otqcxwto
                                                                                zwq
                     ffff49f963e4493d8bbc7cc15365423d84a767259f7200...
                                                                                       2020.0
           153409
                                                                                               7(
                                                                        wgqugqvnxgz
           153410
                      ffffa3eb3575f43b86d986911463dce7bcadcea227e5a4...
                                                                       sgrabvz ovwyo
                                                                                       2018.0
                                                                                              15(
          153411 rows x 8 columns
```

Data Visualization

```
In [23]: # Assigning data types to variables for quick acess
    cont_var = df_clus_agg.columns[df_clus_agg.dtypes!= 'object'].to_list()
    cont_var.remove('senior_position')
    cat_var = df_clus_agg.columns[df_clus_agg.dtypes == 'object'].to_list()
    cat_var.append('senior_position')
```

Distributions

Observation:

ctc_updated_year is a multimodal distribution.

ctc feature has outliers.

```
In [26]: # Assuming df_clus_agg is your DataFrame
           sns.pairplot(df clus agg, height=3, aspect=1.5)
           plt.grid(True)
           plt.show()
           2010
           1980
           1970
           0.8
           0.2
           2021
           2020
          E 2019
           2018
           201
           2016
           2015
In [27]: # Most Common Job Positions
           common_jobs = df_clus_agg.groupby("job_position").size().sort_values(ascendi
           # Custom color palette
           custom_colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c
           # Plot the bar chart with custom colors
           common jobs.plot(kind="barh", edgecolor='0.15', figsize=(20, 5), color=custo
           plt.grid(True)
           plt.show()
                 SDET
              Data Scientist
             Android Engineer
```

Observation: its very evident that 'Backend Engineer' is the most common job.

```
In [28]: # Most Common Job Positions

common_companies = df_clus_agg.groupby("company_hash").size().sort_values(as

# Custom color palette

custom_colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c

# Plot the bar chart with custom colors

common_companies.plot(kind="barh", edgecolor='0.15', figsize=(20, 5), color=
plt.grid(True)
plt.show()
```

Observation: its very evident that 'nvnv wgzohrnvzwj otqcxwto' is the most common company name.

sns.scatterplot(data=df_clus_agg, x='years_of_exp', y='ctc', hue='senior_pos

plt.figure(figsize=(15,5))

plt.grid()
plt.show()


```
In [31]: # Analysing ctc, year of experience, promotion
   plt.figure(figsize=(15,5))
   sns.scatterplot(data=df_clus_agg, x='years_of_exp', y='ctc', hue='ctc_update
   plt.grid()
   plt.show()
```


Manual Clustering

```
In [32]: # 5 point summary of CTC

# Top 10 companies on the basis of Avg Pay
print('Top 10 companies:-')
display(df_clus_agg.groupby('company_hash')['ctc'].describe().sort_values("m

# Bottom 10 companies on the basis of Avg pay
print('Bottom 10 companies:-')
display(df_clus_agg.groupby('company_hash')['ctc'].describe().sort_values("m
```

Top 10 companies:-

	count	mean	std	min	25%	50
company_hash						
whmxw rgsxwo uqxcvnt rxbxnta	1.00	1,000,150,000.00	nan	1,000,150,000.00	1,000,150,000.00	1,000,150,000.
aveegaxr xzntqzvnxgzvr hzxctqoxnj	1.00	250,000,000.00	nan	250,000,000.00	250,000,000.00	250,000,000.
wrghawytqqj wxowg wgbuvzj	1.00	200,000,000.00	nan	200,000,000.00	200,000,000.00	200,000,000.
anaw tduqtoo rxbxnta	1.00	200,000,000.00	nan	200,000,000.00	200,000,000.00	200,000,000.
yvfrtq uvwptq	1.00	200,000,000.00	nan	200,000,000.00	200,000,000.00	200,000,000.
uvqp wgbuhntq ojontb xzw	1.00	200,000,000.00	nan	200,000,000.00	200,000,000.00	200,000,000.
wjzzgd	1.00	200,000,000.00	nan	200,000,000.00	200,000,000.00	200,000,000.
xzntrrxstzwt bvzugftq otqcxwto ucn rna	1.00	200,000,000.00	nan	200,000,000.00	200,000,000.00	200,000,000.
ltnvxqfvjo	1.00	200,000,000.00	nan	200,000,000.00	200,000,000.00	200,000,000.
gqmxn ogenfvqt xzw	1.00	200,000,000.00	nan	200,000,000.00	200,000,000.00	200,000,000.

Bottom 10 companies:-

	count	mean	std	min	25%	50%	75%	max
company_hash								
xm	2.00	15.50	0.71	15.00	15.25	15.50	15.75	16.00
uqvpqxnx voogwxvnto	1.00	24.00	nan	24.00	24.00	24.00	24.00	24.00
ftm ongqt	1.00	25.00	nan	25.00	25.00	25.00	25.00	25.00
vcvzn sqghu	1.00	300.00	nan	300.00	300.00	300.00	300.00	300.00
uqgmrtb ogrcxzs	1.00	500.00	nan	500.00	500.00	500.00	500.00	500.00
hzxctqoxnj ge mqvorxv	1.00	1,000.00	nan	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00
uvznohxn uqgetooxgzvr	1.00	1,000.00	nan	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00
hzxctqoxnj ge ayvpv	1.00	1,000.00	nan	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00
cxtfqvj	1.00	1,000.00	nan	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00

```
In [33]: # 5 point summary of CTC

# Top 10 Job Position on the basis of Avg Pay
print('Top 10 Job Position:-')
display(df_clus_agg.groupby('job_position')['ctc'].describe().sort_values("m

# Bottom 10 companies on the basis of Avg pay
print('Bottom 10 Job Position:-')
display(df_clus_agg.groupby('job_position')['ctc'].describe().sort_values("m
```

Top 10 Job Position:-

	count	mean	std	min	25%	50
job_position						
Telar	1.00	100,000,000.00	nan	100,000,000.00	100,000,000.00	100,000,000.
Business Man	1.00	100,000,000.00	nan	100,000,000.00	100,000,000.00	100,000,000.
7033771951	1.00	100,000,000.00	nan	100,000,000.00	100,000,000.00	100,000,000.
Reseller	1.00	100,000,000.00	nan	100,000,000.00	100,000,000.00	100,000,000.
Jharkhand	1.00	100,000,000.00	nan	100,000,000.00	100,000,000.00	100,000,000.
Owner	1.00	100,000,000.00	nan	100,000,000.00	100,000,000.00	100,000,000.
Data entry	1.00	100,000,000.00	nan	100,000,000.00	100,000,000.00	100,000,000.
Safety officer	1.00	99,900,000.00	nan	99,900,000.00	99,900,000.00	99,900,000.
Seleceman	1.00	99,900,000.00	nan	99,900,000.00	99,900,000.00	99,900,000.
Driver	2.00	95,000,000.00	7,071,067.81	90,000,000.00	92,500,000.00	95,000,000.

Bottom 10 Job Position:-

	count	mean	std	min	25%	50%	75%	max
job_position								
New graduate	1.00	2,000.00	nan	2,000.00	2,000.00	2,000.00	2,000.00	2,000.00
Full-stack web developer	1.00	7,500.00	nan	7,500.00	7,500.00	7,500.00	7,500.00	7,500.00
project engineer	1.00	7,900.00	nan	7,900.00	7,900.00	7,900.00	7,900.00	7,900.00
Any technical	1.00	10,000.00	nan	10,000.00	10,000.00	10,000.00	10,000.00	10,000.00
Some data entry operator like some copy's write.type and upload	1.00	10,000.00	nan	10,000.00	10,000.00	10,000.00	10,000.00	10,000.00
Matlab programmer	1.00	10,000.00	nan	10,000.00	10,000.00	10,000.00	10,000.00	10,000.00
Junior consultant	1.00	10,000.00	nan	10,000.00	10,000.00	10,000.00	10,000.00	10,000.00
Junior Software developer	1.00	10,000.00	nan	10,000.00	10,000.00	10,000.00	10,000.00	10,000.00
Software Engineering	1.00	16,000.00	nan	16,000.00	16,000.00	16,000.00	16,000.00	16,000.00

```
In [34]: # 5 point summary of CTC

# Binning Years of experience
labels = ['0', '1-2', '3-5', '5-10', '10-20', '20+']
bins = [0,1,3,5,10,20,np.inf]
df_clus_agg['years_of_exp_bin'] = pd.cut(df_clus_agg['years_of_exp'], labels

# Years of experience vs Avg Pay
print('Years of Experience Statistical Summary:-')
display(df_clus_agg.groupby('years_of_exp_bin')['ctc'].describe().sort_value
```

Years of Experience Statistical Summary:-

		count	mean	std	min	25%	50%
	years_of_exp_bin						
	20+	1,488.00	5,608,887.00	17,784,949.91	1,000.00	1,000,000.00	2,700,000.00
	10-20	15,447.00	3,087,864.35	9,466,419.47	1,000.00	1,100,000.00	2,000,000.00
	0	12,087.00	2,875,993.89	15,711,024.39	24.00	400,000.00	700,000.00
	5-10	46,782.00	2,688,273.34	13,964,005.42	2.00	700,000.00	1,200,000.00
	3-5	36,640.00	2,290,661.35	13,023,153.47	1,000.00	500,000.00	800,000.00
	1-2	40,967.00	2,031,542.34	12,123,342.79	15.00	400,000.00	700,000.00
In [35]:	df_avg_ctc = didf_avg_ctc = didf_avg_ctc.drop # Merge this or df_clus_merged # Function to a def designation """ Assigns a continuous designation Designation Designation # Calculate upper_bound lower_bound # Apply the if data['circturn')	f_clus_agg f_avg_ctc cona(inplace n the comp = pd.merc apply flag n_flag(dat designation n 1: If en n 2: If en n 3: If en e the 50% d = data[d = data[d = logic fo tc'] > upp 1 # Des.	g.groupby(['srename(columne=True) pany dataset ge(left=df_columne	company_hash nmns={'ctc': clus_agg, rig the criteria the employee C is 50% hig C is within C is 50% low alues for hig rg_ctc'] * 1.	yht=df_av ght=df_av e's CTC of there than there and 5 5	position', ee_avg_ctc') rg_ctc, on=[compared to the average the average lower CTC	'years_of_ 'company_h the averag ge CTC. e CTC.
	else:			CTC is withi			age CTC
	return	3 # Des.	ignation 3:	50% lower th	an the a	average CTC	
	# Apply the des					_	

Display the result to confirm the learner designations

df_clus_merged.head()

Out[35]: email_hash company_hash orgyear ctc 0 00003288036a44374976948c327f246fdbdf0778546904... bxwqgogen 2012.0 3500000 0000aaa0e6b61f7636af1954b43d294484cd151c9b3cf6... ngsn axsxnvr 2013.0 250000 0000d58fbc18012bf6fa2605a7b0357d126ee69bc41032... 2 gunhb 2021.0 1300000 bxwqqotbx 3 000120d0c8aa304fcf12ab4b85e21feb80a342cfea03d4... 2004.0 2000000 wgqugqvnxgz 00014d71a389170e668ba96ae8e1f9d991591acc899025... 2009.0 3400000 fvrbvgn rvmo In [36]: # Creating Avg Salary for the whole dataset (average of 'ctc' column) df clus merged['avg ctc'] = df clus merged['ctc'].mean() # Creating Manual Clusters on the basis of company hash df_avg_ctc = df_clus_agg.groupby(['company_hash'])['ctc'].mean().reset_index df avg ctc.dropna(inplace=True) # Merge this on the company dataset to get the company-specific average CTC df clus merged = pd.merge(left=df clus merged, right=df avg ctc, on=['compan # Function to apply company tier based on the logic described def tier_flag(data): Assign tiers based on the company's average CTC relative to the overall - Tier 1: Company's average CTC is 50% lower than the overall dataset av - Tier 2: Company's average CTC is within ±50% of the overall dataset av - Tier 3: Company's average CTC is 50% higher than the overall dataset a # Calculate 50% boundaries relative to the overall dataset's average CTC lower bound = data['avg ctc'] * 0.5 upper bound = data['avg ctc'] * 1.5 # Tier assignment based on conditions if data['avg_company_ctc'] < lower_bound:</pre> return 1 # Tier 1: 50% lower than average dataset CTC elif data['avg_company_ctc'] > upper_bound: return 3 # Tier 3: 50% higher than average dataset CTC else: return 2 # Tier 2: Within ±50% of the average dataset CTC # Apply the tier assignment function to the DataFrame df clus merged['company tier'] = df clus merged.apply(tier flag, axis=1) # Show the result df clus merged.head()

Out[36]: email_hash company_hash orgyear ctc 0 00003288036a44374976948c327f246fdbdf0778546904... bxwqgogen 2012.0 3500000 0000aaa0e6b61f7636af1954b43d294484cd151c9b3cf6... ngsn axsxnvr 2013.0 250000 0000d58fbc18012bf6fa2605a7b0357d126ee69bc41032... 2 gunhb 2021.0 1300000 bxwqgotbx 3 000120d0c8aa304fcf12ab4b85e21feb80a342cfea03d4... 2004.0 2000000 wgqugqvnxgz 00014d71a389170e668ba96ae8e1f9d991591acc899025... fvrbvan rvmo 2009.0 3400000 In [41]: # Calculate the average job CTC per company and job position df avg ctc = df clus agg.groupby(['company hash', 'job position'])['ctc'].me df avg ctc.dropna(inplace=True) # Merge the average job CTC into the main DataFrame based on company and job df clus merged = pd.merge(left=df clus merged, right=df avg ctc, on=['compan # Function to apply job class flags based on the comparison between job CTC def class flag(data): 0.00 Assign job class based on the company's average job CTC relative to the - Class 1: If the average job CTC is 50% lower than the company's averag - Class 2: If the average job CTC is within ±50% of the company's average - Class 3: If the average job CTC is 50% higher than the company's avera 0.00 # Calculate the lower and upper bounds for Class 1 and Class 3 lower bound = data['avg company ctc'] * 0.5 upper bound = data['avg company ctc'] * 1.5 # Assign class based on comparison to bounds if data['avg_job_ctc'] < lower_bound:</pre> return 1 # Class 1: 50% lower than company CTC elif data['avg job ctc'] > upper bound: return 3 # Class 3: 50% higher than company CTC else: return 2 # Class 2: Within ±50% of company CTC # Apply the classification function to assign job class df clus merged['job class'] = df clus merged.apply(class flag, axis=1) # Display the results df clus merged.head()

	email_hash	company_hash	orgyear	ctc
0	00003288036a44374976948c327f246fdbdf0778546904	bxwqgogen	2012.0	3500000
1	0000aaa0e6b61f7636af1954b43d294484cd151c9b3cf6	nqsn axsxnvr	2013.0	250000
2	0000d58fbc18012bf6fa2605a7b0357d126ee69bc41032	gunhb	2021.0	1300000
3	000120d0c8aa304fcf12ab4b85e21feb80a342cfea03d4	bxwqgotbx wgqugqvnxgz	2004.0	2000000
4	00014d71a389170e668ba96ae8e1f9d991591acc899025	fvrbvqn rvmo	2009.0	3400000

Analyzing Manual Clusters

Out[41]:

```
In [42]: ##Top10
    # Filter employees with 'learner_designation' equal to 1 (those with the high high_earning_employees = df_clus_merged[df_clus_merged['learner_designation']
    # Sort these employees by their CTC in descending order
    sorted_high_earners = high_earning_employees.sort_values('ctc', ascending=Fa)
# Get the top 10 highest earning employees
top_10_high_earners = sorted_high_earners.head(10)
# Display the result
top_10_high_earners
```

UUT [42]:	0	ut	[4	-2]	i
-----------	---	----	----	----	---	---

	email_hash	company_hash	orgyear	
73726	7b570fed7acfedd69f3dcbd66165407458b4337467d439	vbvkgz	2015.0	2000
70793	76708a11cb61a030ff3da827b0fd19aff536c3793c1816	gnytq	2012.0	2000
16992	1c0d0d8f8c85458f214991dd9855ca50cc897d34efcb14	xzegojo	2016.0	2000
31506	34804f1160325392e2a0ba449c44f3b424cb9ea0e0295f	bxwqgogen	2013.0	2000
140975	eb552f9d6f12d47656472a3f7c6a6625ebf3d699edb4b0	ovrtoegqwt	2013.0	2000
8064	0d235f7e73cd9484909b32a35c69df12296a051f68ef83	nvnv wgzohrnvzwj otqcxwto	2017.0	2000
73192	7a723f5b71698674b79bd2195c3bb58d3fcbf4ddb75a04	ntwy bvyxzaqv	2019.0	2000
102324	aad581a532f319c76c6e73937572feed9867d5ee2f1093	wgszxkvzn	2014.0	2000
117542	c44995942d317b3a36725bf0bfb34412741fbb35839177	zgzt	2018.0	2000
50601	54bafd5fc688d31915438560bd4e94225a829a5619cb11	ftrro evqsg	2015.0	200

Observation: CTC of 200000000 can be associated as a very high income

```
In [43]: ##Bottom10
         # Filter employees with 'learner designation' equal to 1 (those with the hig
         low_earning_employees = df_clus_merged[df_clus_merged['learner_designation']
         # Sort these employees by their CTC in descending order
         sorted_low_earners = low_earning_employees.sort_values('ctc', ascending=True
         # Get the top 10 highest earning employees
         bottom_10_earners = sorted_low_earners.head(10)
         # Display the result
         bottom 10 earners
```

Out[43]:		email_hash	company_hash	orgyear	ct		
	31847	3505b02549ebe2c95840ac6f0a35561a3b4cbe4b79cdb1	xzntqcxtfmxn	2014.0			
	145466	f2b58aeed3c074652de2cfd3c0717a5d21d6fbcf342a78	xzntqcxtfmxn	2013.0			
	21509	23ad96d6b6f1ecf554a52f6e9b61677c7d73d8a409a143	xzntqcxtfmxn	2013.0	1		
	92794	9af3dca6c9d705d8d42585ccfce2627f00e1629130d14e	ZVZ	2019.0	60		
	77005	80ba0259f9f59034c4927cf3bd38dc9ce2eb60ff18135b	nvnv wgzohrnvzwj otqcxwto	2012.0	60		
	80945	8747d9599e2ba1a8624e8bea834ab7a870c89ccca74204	ZV	2004.0	100		
	25085	299f764fcae62f331f3c5eb1b451e7107302ded46e2a71	zgn vuurxwvmrt vwwghzn	2007.0	100		
	80267	8625d6d072e12dad0c5748ab010e1d0315736a359e2bb5	nvnv wgzohrnvzwj otqcxwto	2013.0	100		
	46950	4ea8ce7809d8c69147d243bad53d88d016a1151690b8b6	ZVZ	2010.0	100		
	84419	8d1e069a03fc437876b406b8c93bc7e07577f9836222bd	zgn vuurxwvmrt vwwghzn	2021.0	100		
In [44]:	<pre># Filter for companies with tier 1 designation tier_1_companies = df_clus_merged[df_clus_merged['company_tier'] == 1] # Group by company and calculate the mean CTC mean_ctc_by_company = tier_1_companies.groupby('company_hash')['ctc'].mean(# Sort companies by their average CTC in descending order and get the top 1 top_10_companies = mean_ctc_by_company.sort_values(ascending=False).head(10 # Display the top 10 company hashes top_10_companies.index</pre>						
Out[44]:		'evqb shxat', 'qov', 'xbvstpxn', 'wqtaxn ovxod'zgpxv ogrhnxgzo', 'vuugqwyxa', 'tzntrrv xn ud'mxqrvogen ogrhnxgzo', 'ola xzntqzvnxgzvr', 'ongqjduqtoo otrtwnta mj ntwyonvqo 2017'], ltype='object', name='company_hash')					

```
In [45]: # Filter data for job class 1 (assuming 'job_class' 1 refers to the relevant
         job class 1 data = df clus merged[df clus merged['job class'] == 1]
         # Group by company and job position to calculate the average CTC for each co
         avg ctc by job position = job class 1 data.groupby(['company hash', 'job pos
         # For each company, get the top 2 job positions with the highest average CTC
         top 2 positions per company = avg ctc by job position.groupby(level=0, group
         # Display the result
         top 2 positions per company
Out[45]: company_hash
                                     job position
         01 ojztasj
                                     Android Engineer
                                                                 270000.0
         1bs ntwyzgrgsxto ucn rna QA Engineer
                                                                 620000.0
                                    Other
                                                                 300000.0
         1p qtnvxr ztnfgqpo
                                                                 200000.0
                                    Android Engineer
         201518
                                    FullStack Engineer
                                                                 200000.0
                                                                  . . .
         zxxn ntwyzgrgsxto rxbxnta Product Designer
                                                                1300000.0
                                     Android Engineer
                                                                1292500.0
                                     Data Analyst
         zxzlvwvqn
                                                                 715000.0
                                     Area Operations Manager
                                                                 600000.0
         zxztrtvuo
                                                                 450000.0
         Name: ctc, Length: 3966, dtype: float64
```

Data Preprocesssing

```
In [46]: # Importing necessary libraries
    from sklearn.preprocessing import LabelEncoder
    from sklearn.preprocessing import OneHotEncoder

In [47]: # Assigning DataFrame for processing
    df_clus_processed = df_clus_agg.copy()

# Drop Identifier and redundant features
    df_clus_processed.drop(columns=['email_hash','years_of_exp_bin'], inplace =
    df_clus_processed
```

Out[47]:		company_hash	orgyear	ctc	job_position	ctc_updated_year	years_of_exp	S
	0	bxwqgogen	2012.0	3500000	Backend Engineer	2019.0	7.0	
	1	nqsn axsxnvr	2013.0	250000	Backend Engineer	2020.0	7.0	
	2	gunhb	2021.0	1300000	FullStack Engineer	2019.0	2.0	
	3	bxwqgotbx wgqugqvnxgz	2004.0	2000000	FullStack Engineer	2021.0	17.0	
	4	fvrbvqn rvmo	2009.0	3400000	Unidentified	2018.0	9.0	
	•••							
	153406	tqxwoogz ogenfvqt wvbuho	2004.0	3529999	QA Engineer	2019.0	15.0	
	153407	trnqvcg	2015.0	1600000	Unidentified	2018.0	3.0	
	153408	znn avnv srgmvr atrxctqj otqcxwto	2014.0	900000	Devops Engineer	2019.0	5.0	
	153409	zwq wgqugqvnxgz	2020.0	700000	FullStack Engineer	2020.0	0.0	
	153410	sgrabvz ovwyo	2018.0	1500000	FullStack Engineer	2021.0	3.0	

153411 rows × 7 columns

```
Out[48]:
            company_hash orgyear
                                      ctc job_position ctc_updated_year years_of_exp senior_
                           2012.0 3500000
          0
                 0.009778
                                             0.241704
                                                                2019.0
                                                                               7.0
                 0.000007
                           2013.0
                                   250000
                                             0.241704
                                                               2020.0
                                                                               7.0
          2
                 0.001049
                           2021.0
                                 1300000
                                             0.133406
                                                                2019.0
                                                                               2.0
          3
                 0.000072
                           2004.0 2000000
                                             0.133406
                                                                2021.0
                                                                              17.0
          4
                 0.003644
                          2009.0 3400000
                                             0.131699
                                                                2018.0
                                                                               9.0
In [49]: # Log Normalizing CTC -> Salaries generally follow Log Normal Distribution,
          df clus processed['ctc'] = np.log10(df clus processed['ctc'])
In [51]: # Outliers after Log Transformation
          # Calculate Q1 (25th percentile) and Q3 (75th percentile)
          q1 = df clus processed['ctc'].quantile(0.25)
          q3 = df_clus_processed['ctc'].quantile(0.75)
          # Calculate the Interquartile Range (IQR)
          iqr = q3 - q1
          # Define the upper and lower bounds for outliers
          upper_bound = q3 + 1.5 * iqr
          lower bound = q1 - 1.5 * iqr
          # Filter out the outliers by checking the conditions
          outliers = df clus processed[(df clus processed['ctc'] > upper bound) | (df
          # Calculate the total number of outliers and the percentage of outliers
          total outliers = len(outliers)
          total outliers percentage = 100 * total outliers / len(df clus processed)
          # Print out the outlier percentage
          print(f"Outlier Percentage for CTC is : {total_outliers_percentage:.2f}%")
         Outlier Percentage for CTC is: 4.71%
In [54]:
          # Importing Necessary Libraries
          from sklearn.base import BaseEstimator, TransformerMixin
          import pandas as pd
          # Create Custom Transformer for Outlier Removal
          class OutlierRemoval(BaseEstimator, TransformerMixin):
                  init (self, column='ctc'):
              def
                  Initializes the transformer with the given column name for outlier r
                  Parameters:
                  - column (str): The column name for outlier detection (default is 'c
```

```
self.column = column
def fit(self, X, y=None):
    The fit method does nothing but is required for compatibility with s
    Parameters:
    - X (pd.DataFrame): The input data.
    - y (None): Ignored.
    Returns:
    - self: The fitted transformer.
    return self
def transform(self, X, y=None):
    Applies the outlier removal process to the input data.
   Parameters:
    - X (pd.DataFrame): The input data.
    - y (None): Ignored.
    Returns:
    - pd.DataFrame: The filtered data with outliers removed.
    return self.remove outlier(X)
def fit transform(self, X, y=None):
    Combines fit and transform into a single step.
    Parameters:
    - X (pd.DataFrame): The input data.
    - y (None): Ignored.
    Returns:
    - pd.DataFrame: The filtered data with outliers removed.
    return self.remove_outlier(X)
def remove outlier(self, dataframe: pd.DataFrame) -> pd.DataFrame:
    Removes outliers from the specified column based on the IQR method.
    Parameters:
    - dataframe (pd.DataFrame): The input data.
    Returns:
    - pd.DataFrame: The data with outliers removed.
    # Validate input dataframe
    if self.column not in dataframe.columns:
```

```
raise ValueError(f"Column '{self.column}' not found in the DataF

# Calculate quantiles and IQR
q1 = dataframe[self.column].quantile(0.25)
q3 = dataframe[self.column].quantile(0.75)
iqr = q3 - q1

# Calculate upper and lower bounds for outliers
upper_bound = q3 + 1.5 * iqr
lower_bound = q1 - 1.5 * iqr

# Filter out the outliers and return the cleaned dataframe
df_filtered_data = dataframe[(dataframe[self.column] >= lower_bound)
return df_filtered_data
```

```
In [55]: # Importing Necessary Libraries
         from sklearn.compose import ColumnTransformer
         from sklearn.preprocessing import StandardScaler, MinMaxScaler
         # Features to be scaled
         \# Standard scaling should typically be applied to continuous numerical featu
         numeric standard features = ['ctc'] # Example: CTC is continuous
         numeric minmax features = ['company hash', 'job position', 'orgyear', 'years
         # It's important to ensure that categorical variables like 'company hash' an
         # Note: If these are already one-hot encoded, MinMaxScaler is not ideal, but
         # Creating the column transformer for scaling
         preprocessor = ColumnTransformer(
             transformers=[
                 ('minmax', MinMaxScaler(), numeric minmax features), # Apply MinMax
                 ('standard', StandardScaler(), numeric standard features) # Apply S
             remainder='passthrough' # Keep any other columns unchanged
         # The `preprocessor` can now be used in a pipeline for transforming the data
```

Clustering

```
In [56]: # Assigning the entire dataset as the training variable
         X = df clus processed.copy() # Make a copy of the dataframe to avoid modify
         # Check if the dataset is large enough before sampling
         sample size = 25000
         if len(X) > sample size:
             # Create a subset of the dataset for Agglomerative Clustering (due to hi
             X_sample = X.sample(n=sample_size, random_state=42)
         else:
             # If the dataset is smaller than the sample size, use the entire dataset
             X \text{ sample} = X
             print(f"Dataset is smaller than {sample size}, using the entire dataset.
         # Display the shape of the sample to verify
         print(f"Sampled dataset shape: {X sample.shape}")
         Sampled dataset shape: (25000, 7)
In [58]:
        # Importing necessary Libraries
         from sklearn.pipeline import Pipeline
         from sklearn.cluster import KMeans
         from sklearn.cluster import AgglomerativeClustering
```

```
In [59]: # Import necessary libraries
         from sklearn.pipeline import Pipeline
         from sklearn.cluster import KMeans, AgglomerativeClustering
         # Create Pipelines for both Clustering Techniques
         def create kmeans pipeline(n clusters=3):
             Creates a KMeans clustering pipeline.
             return Pipeline([
                 ('outlier', OutlierRemoval()), # Outlier removal transformer
                 ('scaler', preprocessor), # Scaling of features
                 ('kmeans', KMeans(n_clusters=n_clusters)) # KMeans with specified n
             1)
         def create agglomerative pipeline(n clusters=3):
             Creates an Agglomerative Clustering pipeline.
             return Pipeline([
                 ('scaler', preprocessor), # Scaling of features
                 ('agglomerative', AgglomerativeClustering(n clusters=n clusters, lin
             1)
         # Creating and fitting the KMeans pipeline
         pipeline_kmeans = create_kmeans_pipeline(n_clusters=3)
         pipeline kmeans.fit(X) # Fit on the entire dataset
         clusters kmeans = pipeline kmeans.named steps['kmeans'].labels # Get KMean
         # Creating and fitting the Agglomerative Clustering pipeline
         # We use a sample here due to computational constraints
         pipeline agglomerative ward = create agglomerative pipeline(n clusters=3)
         pipeline agglomerative ward.fit(X sample) # Fit on a sample of the dataset
         clusters agglo ward = pipeline agglomerative ward named steps['agglomerative
         # Output the results for verification (you can replace this with further and
         print(f"KMeans Clusters: {clusters_kmeans[:10]}") # Printing the first 10 R
         print(f"Agglomerative Clusters: {clusters_agglo_ward[:10]}") # Printing the
         KMeans Clusters: [2 0 1 2 2 0 1 2 2 1]
         Agglomerative Clusters: [1 2 0 2 2 1 0 2 0 2]
```

```
In [60]: # Importing Necessary Libraries
         from sklearn.metrics import silhouette score
         # Function to compute the Silhouette Score for a given pipeline and dataset
         def calculate silhouette score(pipeline, X, clusters):
             Calculate the silhouette score given a pipeline, dataset, and clustering
             Parameters:
             - pipeline: The fitted pipeline that contains the scaler and other prepr
             - X: The dataset to be used for scoring.
             - clusters: The cluster labels predicted by the model.
             Returns:
             - silhouette score: The silhouette score for the given clustering.
             # Apply preprocessing steps from the pipeline
             X processed = pipeline.named steps['outlier'].transform(X) if 'outlier'
             X scaled = pipeline.named steps['scaler'].fit transform(X processed)
             # Calculate and return the silhouette score
             return silhouette score(X scaled, clusters)
         # Silhouette Score for KMeans
         kmeans silhouette = calculate silhouette score(pipeline kmeans, X, clusters
         # Silhouette Score for Agglomerative Clustering (using a sample)
         agglo ward silhouette = calculate silhouette score(pipeline agglomerative wa
         # Printing the results
         print(f'Silhouette Score for KMeans: {kmeans silhouette:.3f}')
         print(f'Silhouette Score for Agglomerative Ward: {agglo ward silhouette:.3f}
         Silhouette Score for KMeans: 0.321
         Silhouette Score for Agglomerative Ward: 0.302
```

Observation: There is scope for improvement of Silhouette Scores and this implies that the intercluster distance observed is not good enough

```
In [61]: # Importing necessary libraries
         import matplotlib.pyplot as plt
         from sklearn.cluster import KMeans
         from sklearn.pipeline import Pipeline
         # Function to calculate inertia using the Elbow Method
         def calculate inertia(X, max clusters=10):
             Calculates inertia for different numbers of clusters using the Elbow met
             Parameters:
             - X (pd.DataFrame): The dataset to apply KMeans clustering.
             - max clusters (int): Maximum number of clusters to evaluate.
             Returns:
             - inertia (list): A list containing inertia values for each number of cl
             inertia = []
             # Create the pipeline once and update the number of clusters dynamically
             for n clusters in range(1, max clusters + 1):
                 pipeline_kmeans = Pipeline([
                      ('outlier', OutlierRemoval()), # Outlier removal
                      ('scaler', preprocessor), # Feature scaling
                     ('kmeans', KMeans(n_clusters=n_clusters)) # KMeans clustering
                 ])
                 # Fit the pipeline and append the inertia to the list
                 pipeline kmeans.fit(X)
                 inertia.append(pipeline kmeans.named steps['kmeans'].inertia )
             return inertia
         # Calculate inertia for cluster sizes from 1 to 10
         inertia = calculate inertia(X)
         # Plotting the Elbow Method for KMeans
         plt.figure(figsize=(15, 7))
         plt.plot(range(1, 11), inertia, marker='o')
         plt.title('Elbow Method for KMeans')
         plt.xlabel('Number of Clusters')
         plt.ylabel('Inertia')
         plt.grid(True)
         plt.show()
```


Observation: K=2 would be an ideal option.

```
In [62]: # Importing necessary libraries
         from scipy.cluster.hierarchy import dendrogram, linkage
         # Function to compute linkage for different methods
         def compute linkage(X scaled, method):
             Compute linkage matrix for hierarchical clustering using a specified met
             Parameters:
             - X scaled: The scaled dataset.
             - method: The linkage method to use ('ward', 'complete', 'single', 'aver
             Returns:
             - linkage matrix: The linkage matrix computed for the specified method.
             return linkage(X scaled, method=method)
         # Scaling the dataset
         X scaled = preprocessor.fit transform(X sample) # Apply scaling on the same
         # Define linkage methods
         linkage methods = ['ward', 'complete', 'single', 'average']
         # Create a dictionary to store linkage matrices for each method
         linkage matrices = {method: compute_linkage(X_scaled, method) for method in
         # Output the linkage matrices for inspection
         for method, linkage matrix in linkage matrices.items():
             print(f"Linkage matrix for {method; ")
             print(linkage_matrix[:5]) # Show the first 5 rows of each matrix for qu
```

```
Linkage matrix for ward method:
[[1.7948e+04 2.4916e+04 0.0000e+00 2.0000e+00]
 [3.7970e+03 2.2036e+04 0.0000e+00 2.0000e+00]
 [7.7940e+03 1.3854e+04 0.0000e+00 2.0000e+00]
 [1.5819e+04 2.5002e+04 0.0000e+00 3.0000e+00]
 [1.5698e+04 1.6212e+04 0.0000e+00 2.0000e+00]]
Linkage matrix for complete method:
[[1.7948e+04 2.4916e+04 0.0000e+00 2.0000e+00]
 [3.7970e+03 2.2036e+04 0.0000e+00 2.0000e+00]
 [7.7940e+03 1.3854e+04 0.0000e+00 2.0000e+00]
 [1.5819e+04 2.5002e+04 0.0000e+00 3.0000e+00]
 [4.3750e+03 1.6896e+04 0.0000e+00 2.0000e+00]]
Linkage matrix for single method:
[[7.9940e+03 1.0993e+04 0.0000e+00 2.0000e+00]
 [2.4730e+03 1.4345e+04 0.0000e+00 2.0000e+00]
 [2.1959e+04 2.5001e+04 0.0000e+00 3.0000e+00]
 [2.4660e+03 2.2932e+04 0.0000e+00 2.0000e+00]
 [7.0990e+03 8.4500e+03 0.0000e+00 2.0000e+00]]
Linkage matrix for average method:
[[1.7948e+04 2.4916e+04 0.0000e+00 2.0000e+00]
 [3.7970e+03 2.2036e+04 0.0000e+00 2.0000e+00]
 [4.3750e+03 1.6896e+04 0.0000e+00 2.0000e+00]
 [2.1620e+03 1.4229e+04 0.0000e+00 2.0000e+00]
 [5.8520e+03 2.2705e+04 0.0000e+00 2.0000e+00]]
```

```
In [65]: # Importing necessary libraries
         from scipy.cluster.hierarchy import dendrogram, linkage
         # Function to compute linkage for different methods
         def compute linkage(X scaled, method):
             Compute linkage matrix for hierarchical clustering using a specified met
             Parameters:
             - X scaled: The scaled dataset.
             - method: The linkage method to use ('ward', 'complete', 'single', 'aver
             Returns:
             - linkage matrix: The linkage matrix computed for the specified method.
             return linkage(X scaled, method=method)
         # Scaling the dataset
         X scaled = preprocessor.fit transform(X sample) # Apply scaling on the same
         # Linkage Methods
         linkage_methods = ['ward', 'complete', 'single', 'average']
         # Compute the linkage matrices and assign to variables D1 to D4
         D1 = compute_linkage(X_scaled, 'ward')
         D2 = compute_linkage(X_scaled, 'complete')
         D3 = compute linkage(X scaled, 'single')
         D4 = compute linkage(X scaled, 'average')
         # Store the linkage results in a dictionary for later use (optional)
         linkage matrices = {
              'ward': D1,
              'complete': D2,
              'single': D3,
              'average': D4
         }
```

```
In [66]: # Import necessary libraries
         import matplotlib.pyplot as plt
         from scipy.cluster.hierarchy import dendrogram
         # Set up figure for plotting dendrograms
         plt.figure(figsize=(30, 15))
         # Define the color scheme with red and blue
         # You can set the color threshold for differentiating the branches
         color threshold = 50 # This is an example threshold to distinguish branches
         # Ward Linkage Dendrogram
         plt.subplot(2, 2, 1)
         plt.title('Dendrogram Ward Linkage')
         dendrogram(D1, show leaf counts=True,
                    leaf rotation=90, leaf font size=8,
                    truncate mode='lastp', p=100,
                    color threshold=color threshold)
         # Complete Linkage Dendrogram
         plt.subplot(2, 2, 2)
         plt.title('Dendrogram Complete Linkage')
         dendrogram(D2, show leaf counts=True,
                    leaf rotation=90, leaf font size=8,
                    truncate_mode='lastp', p=100,
                    color_threshold=color_threshold)
         # Single Linkage Dendrogram
         plt.subplot(2, 2, 3)
         plt.title('Dendrogram Single Linkage')
         dendrogram(D3, show_leaf counts=True,
                    leaf rotation=90, leaf font size=8,
                    truncate mode='lastp', p=100,
                    color threshold=color threshold)
         # Average Linkage Dendrogram
         plt.subplot(2, 2, 4)
         plt.title('Dendrogram Average Linkage')
         dendrogram(D4, show_leaf_counts=True,
                    leaf_rotation=90, leaf_font_size=8,
                    truncate_mode='lastp', p=100,
                    color threshold=color_threshold)
         # Display the plot
         plt.tight layout()
         plt.show()
```


Observation: Between 3 to 5 clusters, the separation is optimum as per the above Dendogram results.

```
In [67]: # Import necessary libraries
         from sklearn.pipeline import Pipeline
         from sklearn.cluster import KMeans, AgglomerativeClustering
         # Function to create an Agglomerative Clustering pipeline with a given numbe
         def create_agglomerative pipeline(n_clusters, linkage_type):
             Creates an Agglomerative Clustering pipeline.
             Parameters:
             - n clusters: Number of clusters for the Agglomerative Clustering.
             - linkage type: Linkage method ('ward', 'complete', 'average').
             Returns:
             - pipeline: A scikit-learn pipeline for Agglomerative Clustering.
             return Pipeline([
                  ('scaler', preprocessor), # Preprocessing: Scaling of features
                  ('agglomerative', AgglomerativeClustering(n_clusters=n_clusters, lin
             1)
         # Function to create a KMeans pipeline
         def create kmeans pipeline(n clusters, random state=42):
             Creates a KMeans clustering pipeline.
             Parameters:
             - n clusters: Number of clusters for KMeans.
             - random_state: Random state for reproducibility.
```

```
Returns:
    - pipeline: A scikit-learn pipeline for KMeans clustering.
    return Pipeline([
        ('outlier', OutlierRemoval()), # Outlier removal step
        ('scaler', preprocessor), # Scaling of features
        ('kmeans', KMeans(n clusters=n clusters, random state=random state))
    ])
# Creating pipelines
pipeline kmeans = create kmeans pipeline(n clusters=2)
pipeline agglomerative ward = create agglomerative pipeline(n clusters=2, li
pipeline agglomerative complete = create agglomerative pipeline(n clusters=3
pipeline agglomerative average = create agglomerative pipeline(n clusters=4,
# Fitting KMeans pipeline
pipeline kmeans.fit(X)
clusters kmeans = pipeline kmeans.named steps['kmeans'].labels
# Fitting Agglomerative pipelines on sample data due to large dataset
# Ward Linkage
pipeline agglomerative ward.fit(X sample)
clusters_agglo_ward = pipeline_agglomerative_ward.named_steps['agglomerative
# Complete Linkage
pipeline agglomerative complete.fit(X sample)
clusters agglo complete = pipeline agglomerative complete.named steps['agglo
# Average Linkage
pipeline_agglomerative_average.fit(X_sample)
clusters agglo average = pipeline agglomerative average.named steps['agglome
# Output clusters for inspection (you can further analyze or visualize these
print("KMeans Clusters: ", clusters_kmeans[:10]) # Displaying first 10 clus
print("Agglomerative Ward Clusters: ", clusters_agglo_ward[:10]) # Displayi
print("Agglomerative Complete Clusters: ", clusters_agglo_complete[:10]) #
print("Agglomerative Average Clusters: ", clusters_agglo_average[:10]) # Di
KMeans Clusters: [1 0 1 1 1 0 0 1 1 1]
Agglomerative Ward Clusters: [0 0 1 0 0 0 1 0 1 0]
Agglomerative Complete Clusters: [0 0 0 0 0 0 2 0 2 0]
Agglomerative Average Clusters: [3 1 1 1 1 1 1 1 1]
```

```
In [68]: # Importing necessary libraries
         from sklearn.metrics import silhouette score
         # Function to calculate the Silhouette Score for a given pipeline and cluste
         def calculate silhouette score(pipeline, X, clusters, sample=False):
             Calculate the silhouette score for a given pipeline and dataset.
             Parameters:
             - pipeline: The fitted pipeline containing the necessary preprocessing a
             - X: The dataset to evaluate.
             - clusters: The cluster labels from the model.
             - sample: A boolean flag to indicate if we're using a sample (used for A
             Returns:
             - silhouette score: The computed silhouette score.
             # Apply preprocessing from the pipeline
             X processed = pipeline.named steps['outlier'].transform(X) if 'outlier'
             X_scaled = pipeline.named_steps['scaler'].fit_transform(X_processed)
             # For Agglomerative clustering on samples, we already provide scaled dat
             if sample:
                 X scaled = pipeline.named steps['scaler'].fit transform(X)
             # Calculate and return the silhouette score
             return silhouette_score(X_scaled, clusters)
         # Calculate Silhouette Scores for each clustering method
         # KMeans Silhouette Score
         kmeans silhouette = calculate silhouette score(pipeline kmeans, X, clusters
         # Agglomerative Ward Silhouette Score
         agglo ward silhouette = calculate silhouette score(pipeline agglomerative wa
         # Agglomerative Complete Silhouette Score
         agglo_complete_silhouette = calculate_silhouette_score(pipeline agglomerativ
         # Agglomerative Average Silhouette Score
         agglo_average_silhouette = calculate_silhouette_score(pipeline_agglomerative
         # Printing Results
         print(f'Silhouette Score for KMeans: {kmeans silhouette:.4f}')
         print(f'Silhouette Score for Agglomerative Ward: {agglo ward silhouette:.4f}
         print(f'Silhouette Score for Agglomerative Complete: {agglo complete silhoue
         print(f'Silhouette Score for Agglomerative Average: {agglo average silhouett
         Silhouette Score for KMeans: 0.4143
         Silhouette Score for Agglomerative Ward: 0.3273
         Silhouette Score for Agglomerative Complete: 0.2952
         Silhouette Score for Agglomerative Average: 0.6396
```

Observation: Agglomerative with Average Linkage Method has seperated clusters more precisely.

Clusters Analysis and Insights

```
In [69]: # Import necessary libraries
         from sklearn.decomposition import PCA
         import pandas as pd
         # Function to preprocess and apply PCA
         def preprocess_and_apply_pca(pipeline, X, n_components=2):
             Preprocess the data using the given pipeline and apply PCA transformation
             Parameters:
             - pipeline: The fitted scikit-learn pipeline containing outlier removal
             - X: The input dataset to preprocess and apply PCA.
             - n components: The number of principal components for PCA (default is 2
             Returns:
             - pd.DataFrame: Preprocessed data with PCA components and original featu
             # Apply preprocessing (outlier removal and scaling) from the pipeline
             X processed = pipeline.named steps['outlier'].transform(X)
             X_scaled = pipeline.named_steps['scaler'].fit_transform(X_processed)
             # Apply PCA and add the components to the DataFrame
             pca = PCA(n components=n components)
             pca components = pca.fit transform(X scaled)
             pca df = pd.DataFrame(pca components, columns=[f'PCA{i+1}' for i in rang
             return pd.DataFrame(X scaled, columns=X.columns).join(pca df)
         # Extracting Data for KMeans
         df kmeans = preprocess and apply pca(pipeline kmeans, X)
         # Assigning KMeans labels to the dataframe
         df kmeans['labels kmeans'] = clusters kmeans
         # Display the result
         print(df kmeans.head())
```

orgyear

company hash

ctc job position ctc updated year

```
0
                0.280975 1.000000 0.823529
                                                                      0.666667
                                                   0.137255
         1
                0.000000 1.000000 0.843137
                                                                      0.833333
                                                   0.137255
         2
                0.029991 0.551930 1.000000
                                                   0.039216
                                                                      0.666667
         3
                0.001874 0.551930 0.666667
                                                   0.333333
                                                                      1.000000
         4
                0.104592 0.544864 0.764706
                                                   0.176471
                                                                      0.500000
            years of exp senior position
                                               PCA1
                                                          PCA2
                                                                 labels kmeans
                                       0.0 -1.628110 -0.505889
         0
                1.625087
                                                                             1
         1
               -1.747715
                                       0.0 \quad 1.727449 \quad -0.522132
                                                                             0
         2
                0.359325
                                       0.0 - 0.357984 - 0.076784
                                                                             1
         3
                0.909879
                                       0.0 - 0.917942 - 0.045916
                                                                             1
                                       0.0 - 1.594737 - 0.040290
                1.588040
                                                                             1
In [70]: # Import necessary libraries
         from sklearn.decomposition import PCA
         import pandas as pd
         # Function to preprocess and apply PCA for clustering results
         def preprocess and apply pca for agglo(pipeline, X, n components=2):
              0.00
             Preprocess the data using the given pipeline, then apply PCA transformat
             Parameters:
             - pipeline: The fitted scikit-learn pipeline containing scaling.
             - X: The input dataset to preprocess and apply PCA.
             - n components: The number of principal components for PCA (default is 2
             Returns:
             - pd.DataFrame: Preprocessed data with PCA components and original featu
             # Apply scaling from the pipeline
             X scaled = pipeline.named steps['scaler'].fit transform(X)
             # Apply PCA and add the components to the DataFrame
             pca = PCA(n components=n components)
             pca_components = pca.fit_transform(X_scaled)
             pca df = pd.DataFrame(pca components, columns=[f'PCA{i+1}' for i in range
             # Return a dataframe with scaled features and PCA components
             return pd.DataFrame(X scaled, columns=X.columns).join(pca df)
         # Extracting Data for Agglomerative Average
         df agglo = preprocess and apply pca for agglo(pipeline agglomerative average
         # Assigning Agglomerative labels to the dataframe
         df agglo['labels agglo'] = clusters agglo average
         # Display the result (optional)
         print(df agglo.head())
```

```
job position
                                                                   ctc updated year
                                                                                       \
              company hash
                              orgyear
                                              ctc
          0
                  0.093158
                             0.249926
                                        0.921569
                                                            0.08
                                                                            1.000000
          1
                  0.041987
                             0.034305
                                        0.764706
                                                            0.20
                                                                            0.666667
                                                            0.06
          2
                  0.006935
                             0.426036
                                        0.921569
                                                                            0.833333
          3
                  0.011996
                             0.123439
                                        0.882353
                                                            0.08
                                                                            0.666667
                  0.008435
          4
                             0.131152
                                        0.941176
                                                            0.02
                                                                            0.666667
                             senior position
                                                    PCA1
                                                                       labels agglo
             years of exp
                                                                PCA2
          0
                 -3.561143
                                                           0.232093
                                           0.0
                                                3.559874
                                                                                   3
          1
                 -0.096468
                                           0.0
                                                0.094118
                                                           0.446675
                                                                                   1
          2
                  0.053705
                                           0.0 - 0.052794
                                                           0.049670
                                                                                   1
          3
                 -0.275875
                                           0.0
                                                0.277046
                                                           0.350533
                                                                                   1
                 -0.792980
                                                0.795836
                                                           0.339621
          4
                                           0.0
                                                                                   1
In [71]:
          # Understanding KMeans clusters years of experience and ctc statistically
          df kmeans.groupby('labels kmeans')[['years of exp','ctc']].describe()
Out[71]:
                                                                                         years_0
                                                                   25%
                                                                              50%
                           count
                                     mean
                                                std
                                                          min
                                                                                       75%
          labels_kmeans
                         78510.0
                                 -0.748091
                                           0.610644
                                                     -2.899737
                                                               -1.147035
                                                                         -0.628837
                                                                                   -0.261170
                                                                                             0.1
                      1 67682.0
                                  0.867773
                                           0.570307
                                                      0.013749
                                                               0.407558
                                                                          0.775225
                                                                                    1.240264 2.8
```

Observation: KMeans Clusters have been seperated data primarily on ctc and years of experience.

```
In [72]:
          # Understanding KMeans clusters job position and company hash statistically
          df kmeans.groupby('labels kmeans')[['job position','company hash']].describe
Out[72]:
                                                                                   job_position
                           count
                                    mean
                                                std
                                                    min
                                                             25%
                                                                      50%
                                                                                75%
                                                                                          max
          labels_kmeans
                         78510.0
                                 0.069797
                                           0.061357
                                                         0.019608
                                                                                      0.980392
                                                     0.0
                                                                  0.058824
                                                                            0.098039
                         67682.0
                                 0.118839
                                           0.090960
                                                     0.0
                                                         0.058824
                                                                  0.098039
                                                                            0.156863
                                                                                      1.000000
```

Observation:

Cluster 1 consist of most common jobs among learners working at least common companies.

Cluster 0 consist of least common jobs among learners working at most common companies.

Its very evident that MNCs exploit by paying less.

```
In [73]:
          # Understanding KMeans clusters orgyear and senior position statistically
          df kmeans.groupby('labels kmeans')[['orgyear', 'senior position']].describe()
Out[73]:
                                                                              orgyear
                         count
                                             std min
                                                          25%
                                                                   50%
                                                                           75% max
                                   mean
                                                                                       cou
          labels_kmeans
                       78510.0 0.448065 0.321158
                                                  0.0 0.132932 0.426036 0.55193
                                                                                      7851(
                     1 67682.0 0.517668 0.363105
                                                  0.0 0.164568 0.544864 1.00000
                                                                                      67682
```

Observation:

Cluster 1 has slightly higher Senior positions, since they are employed in MNCs in general.

```
In [77]: # Set the color palette to a red and blue color scheme
    sns.set_palette("coolwarm") # 'coolwarm' provides a red-blue color palette

# Creating a scatter plot for KMeans cluster analysis based on 'ctc' and 'ye
    plt.figure(figsize=(15,7))
    sns.scatterplot(data=df_kmeans, hue='labels_kmeans', x='ctc', y='years_of_ex

# Adding title and labels for clarity
    plt.title('KMeans CTC vs Years of Experience Analysis', fontsize=16)
    plt.xlabel('CTC', fontsize=14)
    plt.ylabel('Years of Experience', fontsize=14)

# Add grid for better readability
    plt.grid(True)

# Show the plot
    plt.show()
```


Observation: Clusters are clealry separated

```
In [81]: # Set the color palette to a darker red and blue color scheme for clusters
    sns.set_palette("Set2") # Darker shades of blue and red

# Creating a scatter plot for KMeans PCA Analysis based on the first two PCA
    plt.figure(figsize=(15, 7))
    sns.scatterplot(data=df_kmeans, hue='labels_kmeans', x='PCA1', y='PCA2', pal

# Adding title and axis labels
    plt.title('KMeans PCA Analysis', fontsize=16)
    plt.xlabel('PCA1', fontsize=14)
    plt.ylabel('PCA2', fontsize=14)

# Adding grid for better readability
    plt.grid(True)

# Show the plot
    plt.show()
```


Observation: A Uniform pattern is being observed for KMeans Clustering.

Agglomerative Clusters Statistics

```
In [82]:
          # Understanding Agglomerative clusters statistically
          df_agglo.groupby('labels_agglo')[['years_of_exp','ctc']].describe()
Out[82]:
                                                                                              ye
                         count
                                                std
                                                          min
                                                                     25%
                                                                                50%
                                                                                           75%
                                    mean
          labels_agglo
                           2.0 -10.923754
                                           1.623618 -12.071825 -11.497790 -10.923754 -10.349719
                       24531.0
                                -0.007294
                                           0.820361
                                                     -3.663648
                                                                -0.498717
                                                                             0.021741
                                                                                       0.544025
                    2
                         255.0
                                  4.183124 0.666447
                                                      2.615676
                                                                 3.712026
                                                                            4.309046
                                                                                       4.889821
                         212.0
                                -4.084575 0.805857
                                                     -6.329306
                                                                -4.599695
                                                                           -4.033164
                                                                                      -3.422166
```

Observation:

Cluster 2 assigned with higher experience yet Cluster 1 have highest ctc suggesting Outliers captured by it

Cluster 1 is more condese, and this model identifies outliers or extreme groups.

```
In [83]: # Understanding Agglomerative clusters statistically
    df_agglo.groupby('labels_agglo')[['senior_position','orgyear']].describe()
```

Out [83]: senior_position

	count	mean	std	min	25%	50%	75%	max	count	mean
labels_agglo										
0	2.0	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0	2.0	0.713018
1	24531.0	0.042966	0.202785	0.0	0.0	0.0	0.0	1.0	24531.0	0.483635
2	255.0	0.062745	0.242981	0.0	0.0	0.0	0.0	1.0	255.0	0.412381
3	212.0	0.042453	0.202097	0.0	0.0	0.0	0.0	1.0	212.0	0.472873

```
In [84]: # Set a new color palette for better cluster visualization
    sns.set_palette("muted") # A subtle, well-distinguished palette

# Creating the scatter plot for Agglomerative Clustering analysis based on
    plt.figure(figsize=(15, 7))
    sns.scatterplot(data=df_agglo, hue='labels_agglo', x='ctc', y='years_of_exp'

# Adding title and axis labels for better clarity
    plt.title('Agglomerative CTC vs Years of Experience Analysis', fontsize=16)
    plt.xlabel('CTC', fontsize=14)
    plt.ylabel('Years of Experience', fontsize=14)

# Enabling grid for better readability of the plot
    plt.grid(True)

# Display the plot
    plt.show()
```


Observation: Some outliers are captured for ctc with no experience, probably suggesting error in the dataset.

```
In [86]: # Set a professional color palette based on job position (you can also expersors.set_palette("Set1") # Set1 provides distinct, easily distinguishable color # Creating the scatter plot for Agglomerative PCA Analysis based on PCA1 and plt.figure(figsize=(15, 7))
    sns.scatterplot(data=df_agglo, hue='job_position', x='PCA1', y='PCA2', palet

# Adding title and axis labels for better clarity
    plt.title('Agglomerative PCA Analysis', fontsize=16)
    plt.xlabel('PCA1', fontsize=14)
    plt.ylabel('PCA2', fontsize=14)

# Adding grid for better readability
    plt.grid(True)

# Display the plot
    plt.show()
```


Observation: Jobs that are more common can be classifed into certain clusters.

```
In [88]: # Set a professional color palette based on senior position (using "Set2" fo
    sns.set_palette("Set2") # Set2 provides distinguishable colors for categori
    # Creating the scatter plot for Agglomerative PCA Analysis based on PCA1 and
    plt.figure(figsize=(15, 7))
    sns.scatterplot(data=df_agglo, hue='senior_position', x='PCA1', y='PCA2', pa
    # Adding title and axis labels for better clarity
    plt.title('Agglomerative PCA Analysis', fontsize=16)
    plt.xlabel('PCA1', fontsize=14)
    plt.ylabel('PCA2', fontsize=14)
    # Adding grid for better readability and ensuring the grid is visible
    plt.grid(True)
    # Show the plot
    plt.show()
```


Observation: Senior Positions can be tailored accordingly.

```
In [90]: # Set a color palette for distinct clusters (using "Set1" for a variety of c
sns.set_palette("Set1") # "Set1" is a color palette with distinct and vibra

# Creating the scatter plot for Agglomerative PCA Analysis based on PCA1 and
plt.figure(figsize=(15, 7))
sns.scatterplot(data=df_agglo, hue='labels_agglo', x='PCA1', y='PCA2', palet

# Adding title and axis labels for better clarity and readability
plt.title('Agglomerative PCA Analysis', fontsize=16)
plt.xlabel('PCA1', fontsize=14)
```

Out[90]: Text(0.5, 0, 'PCA1')

Observation: Cluster 1 is more generalized gorup with higher density.

Summary:

Univariate & Bivariate Analysis Insights:

Compensation (CTC) Analysis:

The median CTC is around ₹950,000 with a highly skewed distribution. Top 10 highest earning positions had outliers (₹100M+). Bottom 10 positions had salaries below ₹10,000. Years of Experience (orgyear derived feature): Most learners joined their companies between 2015–2021. Outliers: Some records showed learners joining before 1970 or after 2021, which were cleaned.

Most Common Job Positions: "Backend Engineer" was the most common job role. Significant variation in CTC within job roles.

Company Analysis: Some companies had an unusually high number of learners (e.g., "nvnv wgzohrnvzwj otqcxwto" had 8,337 learners). Top-paying companies had average salaries exceeding ₹200M. Bottom-paying companies had average salaries below ₹500.

Clustering and Segmentation:

Manual Clustering: Learners were grouped based on Company, Job Position, and Years of Experience, leading to three new segmentation flags:

Designation (1,2,3): 1: Learners earning above 50% of their peers. 2: Learners earning within 50% of the average. 3: Learners earning below 50% of their peers. Class (1,2,3) - Company & Job Position Level: 1: Salaries below 50% of the average. 2: Salaries within 50% of the average. 3: Salaries above 50% of the average. Tier (1,2,3) - Company Level: 1: Low-tier companies (average CTC below 50% of dataset average). 2: Mid-tier companies (average CTC within ±50% of dataset average). 3: High-tier companies (average CTC 50% above dataset average).

Findings from Clustering: Top 10 highest-paid employees had salaries around ₹200M, far exceeding the dataset average. Lowest 10 earners had salaries as low as ₹2, raising concerns about incorrect data. Most mid-tier companies had salaries ranging from ₹500K - ₹2M.

Machine Learning Clustering: K-Means and Agglomerative Clustering were applied. Silhouette Scores: K-Means: 0.321 Agglomerative Clustering: 0.302 Low silhouette scores suggest scope for improvement. Elbow Method confirmed optimal clusters at k=3.

Key Takeaways & Recommendations:

Insights: CTC is highly skewed with extreme outliers. Backend Engineer is the most common role, followed by Full-Stack Engineers. Most learners joined companies between 2015-2021. Some companies have disproportionately high learners in the dataset. The dataset contains potential misclassified salaries (e.g., ₹2 CTC records).

Recommendations:

Actionable Strategies for Data-Driven Decision Making:-

◆ Segment Customers by Experience & Compensation (CTC): Develop targeted marketing and service strategies based on customer experience levels and salary bands. Customize offerings to align with different career stages and earning potential.

- ♦ Enhance Offerings for Senior Professionals: Identify senior-level employees and cater to their unique needs. Introduce exclusive services, leadership programs, or premium perks to align with their priorities.
- ◆ Optimize Compensation Structures: Address discrepancies where MNCs offer lower salaries than smaller firms. Use industry benchmarking to ensure competitive pay and improve talent retention.
- ◆ Develop Career Growth Pathways: Create structured career development programs for employees in common job roles at smaller firms. Focus on upskilling, mentorship, and internal mobility to facilitate long-term career advancement.
- Leverage KMeans for Data-Driven Initiatives: Utilize KMeans clustering to design initiatives tailored to specific workforce segments. Understand the impact of CTC, job roles, and experience levels on career preferences and needs.
- Improve Data Quality with Agglomerative Clustering: Use Agglomerative Clustering to detect data inconsistencies, errors, or outliers. This ensures cleaner data for accurate insights and better decision-making.
- → Tailor Engagement Strategies for Different Segments: Design engagement programs that resonate with distinct customer segments. Senior professionals may appreciate networking and thought leadership, while others might prefer technical training or upskilling workshops.
- → Implement Robust Data Validation: If data is collected through user forms, introduce input validation mechanisms. This reduces erroneous entries and enhances data accuracy from the start.
- ◆ Continuously Monitor & Update Segmentation Models: Regularly analyze customer trends and evolving market conditions. Adapt segmentation and engagement strategies to remain aligned with changing industry dynamics.

-	 - 7	
l n	- 1	п
411	- 1	