Mathematik II für Studierende der Informatik (Analysis und Lineare Algebra)

Thomas Andreae, Stefan Geschke, Mathias Schacht, Fabian Schulenburg

Sommersemester 2014 Blatt 1

B: Hausaufgaben zum 10. April 2014

- **3.** Die Folge (a_n) sei definiert durch $a_n = \frac{4n-1}{n+5}$. Es sei a=4.
 - a) Berechnen Sie zunächst $|a_n a|$, d.h. den Abstand des Folgenglieds a_n von a = 4.
 - b) Zeigen Sie sodann durch direktes Zurückführen auf die Definition der Konvergenz (Skript, Seite 9), dass $(a_n) \to a$ gilt.
 - c) Man gebe zu $\varepsilon = \frac{1}{10}$, $\varepsilon = \frac{1}{100}$ sowie $\varepsilon = \frac{1}{1000}$ ein jeweils möglichst kleines $N \in \mathbb{N}$ an, so dass $|a_n a| < \varepsilon$ für alle $n \ge N$ gilt.

a)
$$|a_n-a|=\left|\frac{4n-1}{n+5}-4\right|=\left|\frac{-21}{n+5}\right|=\frac{21}{n+5}$$

b) Gegeben sei E>O. Mita) erhält man

(*)
$$|a_{N}-a|<\varepsilon \Leftrightarrow \frac{21}{n+5}<\varepsilon \Leftrightarrow \frac{21}{\varepsilon}-5.$$

Wählt man $N > \frac{21}{\varepsilon} - 5$; so gilt demnach $|a_n - a| < \varepsilon$ für alle N > N. Dies Zeigt $(a_n) \rightarrow a$.

c) Für
$$E = \frac{1}{10}$$
 gilt $\frac{21}{E} - 5 = 205$. Wegen (*) ist also $N = 206$ die kleinstmögliche Wahl von N_i so dass $|a_n - a| < E$ für alle $n \ge N$ gilt.

4. Die Folge (a_n) sei rekursiv definiert durch

$$a_1=rac{5}{3};$$
 $a_{n+1}=\left(rac{a_n}{2}
ight)^2+1.$

Weisen Sie die Konvergenz der Folge mit Hilfe des Satzes über monotone, beschränkte Folgen nach.

Hinweis: Man beginne mit dem Nachweis, dass (a_n) beschränkt ist. Man zeige die Beschränktheit, indem man durch vollständige Induktion beweist, dass $1 \le a_n < 2$ für alle $n \in \mathbb{N}$ gilt. Zum Nachweis der Monotonie zeige man anschließend $a_{n+1} \ge a_n$ für alle $n \in \mathbb{N}$.

Nachweis von 1 ≤ an < 2 durch vollst. Ind .:

(I) <u>Induktionsamfang</u>: Wegen $a_n = \frac{5}{3}$ gilt die Behamptung für n = 1.

(II) Industrions schritt: Fire ein n > 1 gelte $1 \le a_n < 2$. Es folgt $\frac{1}{2} \le \frac{2\pi}{2} < 1$, woraus man durch quadrieren $\frac{1}{4} \le (\frac{a_n}{2})^2 < 1$ eshalt. Es folgt $\frac{1}{4} \le (\frac{a_n}{2})^2 + 1 < 2$, also $1 \le a_{n+n} < 2$.

Dannit ist die Beschränktheit der Folge (an)
gebeigt. Die Monotonie ergibt sich aus
an+12an (=> (2n-1)20.

Ans dem Sate über monotone, beschränkte Folgen erhält man die Konvergenz von (an).