Wärme- und Stoffübertragung I

Wärmeleitung in einer mehrschichtigen ebenen Wand

Prof. Dr.-Ing. Reinhold Kneer Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Lernziele

- Temperaturprofil mehrschichtige Wand
- Betrachtung eines beispielhaften Temperaturprofils einer mehrschichtigen Wand unter stationären Bedingungen

- Thermische Widerstände in mehrschichtiger Wand
- Zusammenfassen der in Reihe geschalteten thermischen Widerstände zur Definition des Gesamtwiderstands

Mehrschichtige Wand – Beispiel: Außenwand

Mehrschichtige Wand – Beispiel: Battery stack

https://www.crtech.com/applications/flow-battery

Temperaturprofil in einer mehrschichtigen Wand

Bedingungen: Stationär Ein limensionaler Wärmetransport **Kor stante Materialeigenschaften** Konstante Querschnittsfläche Westalb treten Unstetigkeiten auf? $Q = -\lambda \cdot \lambda \cdot \frac{dT}{dx}$ Konstant

Temperaturprofil in einer mehrschichtigen Wand

Bedingungen:

- Stationär
- Eindimensionaler Wärmetransport
- Konstante Materialeigenschaften
- Konstante Querschnittsfläche

Weshalb treten Unstetigkeiten auf?

$$\lambda \uparrow \longrightarrow \frac{\mathrm{d}T}{\mathrm{d}x}$$

$$\lambda \downarrow \qquad \qquad \frac{dT}{dx} \uparrow$$

Beispiel:

- 1 Kalksandstein
- 2 Isolierung
- 3 Ziegel

 $\lambda_1 > \lambda_2, \quad \lambda_3 \gg \lambda_1, \lambda_2$

Fragestellung:

Wie kann der Wärmestrom bestimmt werden, wenn nur die Temperaturen T_1 und T_4 bekannt sind?

1. Wärmestrom Schicht 1:

$$\dot{Q} = \lambda_1 \cdot \frac{A}{\delta_1} (T_1 - T_2)$$

2. Wärmestrom Schicht 2:

$$\dot{Q} = \lambda_2 \cdot \frac{A}{\delta_2} (T_2 - T_3)$$

3. Wärmestrom Schicht 3:

$$(\dot{Q} = \lambda_3 \cdot \frac{A}{\delta_3} (T_3 - \underline{T_4})$$

Im stationären Zustand ohne Quellen und Senken gilt:

$$\dot{Q} = \dot{Q} = \dot{Q}$$

Fragestellung:

Wie kann der Wärmestrom bestimmt werden, wenn nur die Temperaturen T_1 und T_4 bekannt sind?

Umstellen von Gleichung $\boxed{2}$. und $\boxed{3}$. nach den unbekannten Temperaturen T_2 und T_3

Aus Gleichung 2.:

$$T_2 = \frac{\dot{Q}}{\lambda_2 \cdot \frac{A}{\delta_2}} + T_3$$

Aus Gleichung 3.:

$$T_3 = \frac{\dot{Q}}{\lambda_3 \cdot \frac{A}{\delta_3}} + T_4$$

Zum Eliminieren von T_3 , Einsetzen von 3. in 2.

$$T_2 = \frac{\dot{Q}}{\lambda_2 \cdot \frac{A}{\delta_2}} + \frac{\dot{Q}}{\lambda_3 \cdot \frac{A}{\delta_3}} + T_4$$

Zum Eliminieren von T_2 , Einsetzen von $\boxed{4}$. in $\boxed{1}$.

$$\dot{Q} = \lambda_1 \cdot \frac{A}{\delta_1} \left[\underbrace{T_1}_{\lambda_2} - \frac{\dot{Q}}{\lambda_2} - \frac{\dot{Q}}{\lambda_3} - \underbrace{T_4}_{\lambda_3} \right]$$

Fragestellung:

Wie kann der Wärmestrom bestimmt werden, wenn nur die Temperaturen T_1 und T_4 bekannte Größen sind?

Umstellen von Gleichung $\boxed{2}$. und $\boxed{3}$. nach den unbekannten Temperaturen T_2 und T_3

ausklammern
$$\dot{Q} = \lambda_1 \cdot \frac{A}{\delta_1} \left[T_1 - \frac{\dot{Q}}{\lambda_2 \frac{A}{\delta_2}} - \frac{\dot{Q}}{\lambda_3 \frac{A}{\delta_3}} - T_4 \right]$$

$$\dot{Q}\left[\frac{1}{\lambda_1 \cdot \frac{A}{\delta_1}} + \frac{1}{\lambda_2 \frac{A}{\delta_2}} + \frac{1}{\lambda_3 \frac{A}{\delta_3}}\right] = [T_1 - T_4]$$

$$\dot{Q} = \frac{A}{\frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \frac{\delta_3}{\lambda_3}} (T_1 - T_4)$$

Fragestellung:

Wie kann der Wärmestrom bestimmt werden, wenn nur die Temperaturen T₁ und T₄ bekannte Größen sind?

$$Strom = \frac{Potential differenz}{Widerstand}$$

Umstellen von Gleichung 2. und 3. nach den unbekannten Temperaturen T_2 und T_3

$$\dot{Q}\left[\frac{1}{\lambda_1 \cdot \frac{A}{\delta_1}} + \frac{1}{\lambda_2 \frac{A}{\delta_2}} + \frac{1}{\lambda_3 \frac{A}{\delta_3}}\right] = [T_1 - T_4]$$

Definition thermische Widerstände

$$Strom = \frac{Potential differenz}{Widerstand}$$

$$\dot{Q} = \frac{1}{W_{L,ges}} \left(T_1 - T_{n+1} \right)$$

Ersatzschaltbild Reihenschaltung der Wärmeleitwiderstände

$$W_{L,ges} = \sum_{i=1}^{n} W_{L_i} + \sum_{i=1}^{n} \frac{\delta_i}{\underline{A}_i \lambda_i}$$

Analogie zur Elektrotechnik

Wärmestrom kann in Analogie zum elektrischen Strom betrachtet werden!

$$\dot{Q} \equiv I$$

$$\dot{\mathbf{Q}} = \mathbf{I} = \frac{\mathbf{Potential differenz}}{\mathbf{Wider stand}}$$

Elektrische Schaltung

$$R = \sum_{i=1}^{n} R_i$$

$$I=rac{U}{R}$$

Mehrschichtige Wand

$$W_{L,ges} = \sum_{i=1}^{n} W_{L_i} = \sum_{i=1}^{n} \left(\frac{\delta_i}{A_i \lambda_i} \right)$$

Verständnisfragen

Was für ein Temperaturprofil stellt sich in einer ebenen Wand ohne Wärmequellen und – senken im stationären Zustand ein?

Unter welchen Voraussetzungen kann davon ausgegangen werden, dass der Wärmestrom in allen Schichten konstant bleibt?

Wie ist der thermische Widerstand einer ebenen Wand definiert? Wie kann der thermische Widerstand für eine Wand aus n Schichten berechnet werden.

