Type Ia Supernova Remnants, Circumstellar Interaction, and Supernova Progenitors

Carles Badenes, Travis Court
(University of Pittsburgh/PITT PACC)
Herman Lee (U. Kyoto)
Dan Patnaude.(SAO/CfA)

This Talk in a Nutshell

X-ray spectra of SNRs constrain SN la explosion physics & progenitor properties:

- ⁵⁶Ni mass ⇔ brightness [Badenes+
 06,08; Krause+ 08; Rest+ 08].
- WD mass ⇔ Ch/sub-Ch explosions [Yamaguchi+ 15].
- Pre-SN mass loss rate

 ⇔ WD
 accretion mode [Badenes+ 07,
 Williams+ 11, Yamaguchi+ 14].

We are working on a new model grid to map the parameter space for CSM interaction in Type Ia SNRs

This Talk in a Nutshell

X-ray spectra of SNRs constrain SN la explosion physics & progenitor properties:

- ⁵⁶Ni mass ⇔ brightness [Badenes+
 06,08; Krause+ 08; Rest+ 08].
- WD mass ⇔ Ch/sub-Ch explosions [Yamaguchi+ 15].
- Pre-SN mass loss rate

 ⇔ WD
 accretion mode [Badenes+ 07,
 Williams+ 11, Yamaguchi+ 14].

We are working on a new model grid to map the parameter space for CSM interaction in Type Ia SNRs

This Talk in a Nutshell

X-ray spectra of SNRs constrain SN la explosion physics & progenitor properties:

- ⁵⁶Ni mass ⇔ brightness [Badenes+ 06,08; Krause+ 08; Rest+ 08].
- WD mass ⇔ Ch/sub-Ch explosions [Yamaguchi+ 15].
- Pre-SN mass loss rate

 ⇔ WD
 accretion mode [Badenes+ 07,
 Williams+ 11, Yamaguchi+ 14].

We are working on a new model grid to map the parameter space for CSM interaction in Type Ia SNRs

Yamaguchi+ 14

Circmustellar Interaction in SNRs

- AM structure ⇒ progenitor mass-loss. Modified circumstellar medium (CSM) vs. undisturbed interstellar medium (ISM)
- SNe ⇒ Follow-up (radio/X-ray) probes to ~ 100 AU.
- SNRs ⇒ spatial (and temporal) scales relevant for stellar evolution of SN progenitors (t≤τ_{KH}). Probe dynamical interaction!

Circmustellar Interaction in SNRs

- X-ray spectra ⇒ constrain AM structure. NEI plasma: ionization timescale (n_et) [Badenes+ 07].
- High n_et ⇒ high centroid energy and line flux.

CSM Interaction in SNRs: Fe K

- Use Fe Kα line blend at ~6.5 keV as an AM density diagnostic.
- All SNe (la and CC) eject some Fe ⇒ innermost layers.
- Large $n_e t$ required to fully ionize Fe \Rightarrow large dynamic range in $\rho_{\Delta M}$.
- Bulk properties (n_et ⇔ line centroids, ages, radii)
 ⇔ progenitor mass loss.

SNRs in Bulk

- Require Fe Kα centroid: **25 SNRs** (*Suzaku, Chandra, XMM*) [Yamaguchi+ 14, Borkowski+
 13, Maggi+ 16, M-R+ 18].
- Bulk properties: Fe Kα centroid, Fe Kα luminosity, radius, age.
- A pattern emerges: **la SNRs below ~6.55 keV (Fe**⁺²¹), **CC SNRs above** [Yamaguchi+ 14, but see Maggi & Acero 17].
- CC/la SNRs have similar ages/radii, but very different n_et ⇔ different AM densities!

Models

• HD+NEI Models required to draw quantitative conclusions on progenitor mass loss!

Models: Uniform AM

- HD+NEI Models required to draw quantitative conclusions on progenitor mass loss!
- Uniform AM models work remarkably well for most SN

a [Badenes+07, Yamaguchi+ 14, M-

Models: Uniform AM

- HD+NEI Models required to draw quantitative conclusions on progenitor mass loss!
- Uniform AM models work remarkably well for most SN la [Badenes+07, Yamaguchi+ 14, M-R+ 18].
- Exceptions: N103B, RCW 86, Kepler, ... [Badenes+ 07, Patnaude+ 12, Williams+ 11,14, Broersen+ 14].

Most Type Ia SNRs show no evidence for strongly modified AM on ~pc scales

Models: Outflows

- Fast outflows: large cavities, consistent with RCW 86 [Badenes+ 07, Williams+ 11, Broersen+ 14].
- Slow outflows: dense CSM, ruled out [Badenes+ 07, Patnaude & Badenes 17].
- Intermediate cases?

Models: CE cocoons

- Post-CE PN models [García-Segura+ 18].
- Models with short delays (SN ≤1000 yr after CE) do not work.
 Longer delays might be OK.

Looking Forward

- Explore parameter
 space for AM interaction
 in Type Ia SNRs [Travis
 Court PhD, in progress].
- Part of a large effort:
 CR-modified dynamics
 [Lee+ 14], CC SNR models.
 [Patnaude+15,17, Jacovich+21].
- **XRISM**: velocity vs. n_et for Tycho and SN1006 ⇔ discriminate Ch and sub-Ch explosions.

Looking Forward

- Explore parameter
 space for AM interaction
 in Type Ia SNRs [Travis
 Court PhD, in progress].
- Part of a large effort:
 CR-modified dynamics
 [Lee+ 14], CC SNR models.
 [Patnaude+15,17, Jacovich+21].
- XRISM: velocity vs. n_et for Tycho and SN1006 ⇔ discriminate Ch and sub-Ch explosions.

Age: 1000 yr Element: Si

A Step Back

- SN Ia AM density estimates from radio/X-ray SNe (~10d, ~0.01 pc) and SNRs (~500 yr, ~several pc) are consistent with the warm phase of the ISM [Badenes+ 07, Chomiuk+ 12, 16, Perez-Torres+ 14, Raymond+ 07, Slane+ 14, Borkowski+ 14]. ⇒ 'clean' mergers (DD)?
- Mild CSM interaction allowed, maybe small (~0.5 pc) cavities [Patnaude+ 12, Slane+ 14], but not large ones (except for RCW86!).

A Step Back

- SN Ia AM density estimates from radio/X-ray SNe (~10d, ~0.01 pc) and SNRs (~500 yr, ~several pc) are consistent with the warm phase of the ISM [Badenes+ 07, Chomiuk+ 12, 16, Perez-Torres+ 14, Raymond+ 07, Slane+ 14, Borkowski+ 14]. ⇒ 'clean' mergers (DD)?
- Mild CSM interaction allowed, maybe small (~0.5 pc) cavities [Patnaude+ 12, Slane+ 14], but not large ones (except for RCW86!).

