Maestría en Computo Estadístico Álgebra Matricial

Tarea 1

30 de agosto de 2020Enrique Santibáñez Cortés Repositorio de Git: Tarea 1, IE.

1. Si A es una matriz $m \times n$ dada por bloques de vectores columna como

$$(a_1 \ a_2 \ \cdots a_n)$$

y B es una matriz $n \times p$ dada por bloques de vectores renglón como

$$\left(\begin{array}{c} v_1 \\ v_2 \\ \vdots \\ v_n \end{array}\right)$$

Demuestre que

$$AB = \sum_{i=1}^{n} a_i v_i.$$

2. Sean A y B matrices cuadradas del mismo orden. Demuestre que $(A - B)(A + B) = A^2 - B^2$ si y solo si AB = BA.

RESPUESTA

Primera implicación:

$$(A-B)(A+B) = AA - BA + AB - BB =$$

3. Sean A y B matrices $n \times n$, $A \neq 0$, $B \neq 0$, tales que AB = BA. Demuestre que $A^pB^p = B^pA^p$ para cualesquiera $p, q \in \mathbb{N}$.

RESPUESTA

Multiplicado por A^{p-1} por la izquierda y B^{q-1} por la derecha tenemos que:

$$A^{p-1}(AB)B^{q-1} = A^{p-1}(BA)B^{q-1} \qquad \blacksquare.$$

4. Se dice que una matriz cuadrada A es antisimétrica si $A = -A^t$. Demuestre que $A - A^t$ es antisimétrica.

RESPUESTA

Considerando las propiedades de la transpuesta:

$$-(A - A^t)^t = -(A - A^t) = A - A^t$$
 .

- 5. Demuestre que dada cualquier matriz cuadrada A, esta se puede escribir como la suma de una matriz simétrica y una matriz antisimétrica.
- 6. Se dice que una matriz cuadrada P es idempotente si $P^2 = P$. Si

$$A = \left(\begin{array}{cc} I & P \\ 0 & P \end{array}\right)$$

1

y si P es idempotente, encuentre A^{500} .

RESPUESTA

$$A^2 = \left(\begin{array}{cc} I & P \\ 0 & P \end{array}\right) \left(\begin{array}{cc} I & P \\ 0 & P \end{array}\right) = \left(\begin{array}{cc} I^2 + 0 & IP + P^2 \\ 0 + 0 & 0 + P^2 \end{array}\right) = \left(\begin{array}{cc} I & 2P \\ 0 & P \end{array}\right).$$

$$A^3 = \left(\begin{array}{cc} I & 2P \\ 0 & P \end{array}\right) \left(\begin{array}{cc} I & P \\ 0 & P \end{array}\right) = \left(\begin{array}{cc} I^2 + 0 & IP + 2P^2 \\ 0 + 0 & 0 + P^2 \end{array}\right) = \left(\begin{array}{cc} I & 3P \\ 0 & P \end{array}\right).$$

Por lo tanto

$$A^{500} = \left(\begin{array}{cc} I & 500P \\ 0 & P \end{array}\right) \blacksquare.$$

7. Sean A y B matrices de tamaño $m \times n$. Demuestre que $\operatorname{tr}(AB^t) = \operatorname{tr}(A^tB)$.

RESPUESTA

Utilizando la propiedad de la traza de una matriz:

$$\operatorname{tr}(A) = \operatorname{tr}(A^t).$$

Y si Entonces,

$$\operatorname{tr}(AB^t) = \operatorname{tr}($$

8. Encuentre matrices A, B y C tales que $tr(ABC) \neq tr(BAC)$.

RESPUESTA

Por convicción definamos a $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, y ahora sea $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$ y $C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$ por lo que tenemos que:

$$AB = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} b_{21} & b_{22} \\ b_{11} & b_{12} \end{pmatrix}, \quad BA = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} b_{12} & b_{11} \\ b_{22} & b_{21} \end{pmatrix}.$$

Observemos que la primera multiplicación representa a un cambio de renglones y la segunda a un cambio de columnas. Ahora multipliquemos lo anterior por la matriz C pero solo concentrarnos en los resultados de la diagonal.

$$ABC = \left(\begin{array}{cc} b_{21} & b_{22} \\ b_{11} & b_{12} \end{array}\right) \left(\begin{array}{cc} c_{11} & c_{12} \\ c_{21} & c_{22} \end{array}\right) = \left(\begin{array}{cc} b_{21}c_{11} + b_{22}c_{21} & \gamma_1 \\ \gamma_2 & b_{11}c_{12} + b_{12}c_{22} \end{array}\right),$$

$$BAC = \begin{pmatrix} b_{12} & b_{11} \\ b_{22} & b_{21} \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} b_{12}c_{11} + b_{11}c_{21} & \gamma_3 \\ \gamma_4 & b_{12}c_{12} + b_{21}c_{22} \end{pmatrix},$$

donde γ_i no son relevantes para este problema. Ahora calculemos la traza de ese producto de matrices:

$$\operatorname{tr}(ABC) = b_{21}c_{11} + b_{22}c_{21} + b_{11}c_{12} + b_{12}c_{22} \quad \text{y} \quad \operatorname{tr}(BAC) = b_{12}c_{11} + b_{11}c_{21} + b_{12}c_{12} + b_{21}c_{22}.$$

De lo anterior podemos observar que si $\operatorname{tr}(ABC) \neq \operatorname{tr}(BAC)$,

$$b_{21}c_{11} + b_{22}c_{21} + b_{11}c_{12} + b_{12}c_{22} \neq b_{12}c_{11} + b_{11}c_{21} + b_{12}c_{12} + b_{21}c_{22}$$

$$b_{21}c_{11} + b_{22}c_{21} + b_{11}c_{12} + b_{12}c_{22} - b_{12}c_{11} - b_{11}c_{21} - b_{12}c_{12} - b_{21}c_{22} \neq 0$$

$$c_{11}(b_{21} - b_{12}) + c_{21}(b_{22} - b_{11}) + c_{12}(b_{11} - b_{12}) + c_{22}(b_{12} - b_{21}) \neq 0$$

$$(b_{21} - b_{12})(c_{11} - c_{22}) + (b_{22} - b_{11})(c_{21} - c_{12}) \neq 0.$$

De lo anterior podemos observar que si $c_{ij} > 0$ y $b_{ij} > 0$ para i = 1, 2, j = 1, 2. Y además considerando las siguientes desigualdades:

$$c_{11} > c_{22}$$
 , $b_{21} > b_{12}$
 $c_{21} > c_{12}$, $b_{22} > b_{11}$

Obtenemos un conjunto de matriz que cumplirán que $tr(ABC) \neq tr(BAC)$

9. Sea L una matriz triangular inferior $n \times n$. Demuestre que $L = L_1 L_2 \cdots L_n$ donde L_i es la matriz $n \times n$ que se obtiene reemplazando la i-ésima columna de I_n por la i-ésima columna de L. Demuestre un resultado análogo para matrices triangulares superiores.

RESPUESTA

Considerando que L_i se puede interpretar como la matriz elemetenal por un escalar.

10. Sea $A = (a_{ij})$ una matriz cuadrada de tamaño n, triangular superior tal que $a_{ii} = 0$ para $i = 1, \dots, n$. Demuestre que para $i = 1, \dots, n$ y $j = 1, \dots, \min(n, i+p-1)$ se cumple que $b_{ij} = 0$ donde $A^p = (b_{ij})$ y p es un entero positivo.

RESPUESTA

Sea $A = (a_{ij})$ una matriz cuadrada de tamaño n, triangular superior tal que $a_{ii} = 0$ para $i = 1, \dots, n$:

$$A = \begin{bmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & 0 & a_{23} & \cdots & a_{2n} \\ 0 & 0 & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

Entonces veamos que

$$A^{2} = \begin{bmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & 0 & a_{23} & \cdots & a_{2n} \\ 0 & 0 & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & 0 & a_{23} & \cdots & a_{2n} \\ 0 & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0a_{12} + \sum_{j=2}^{n} a_{1j}0 & a_{13} & \cdots & a_{1n} \\ 0 & 0 & a_{23} & \cdots & a_{2n} \\ 0 & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$