BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

- **Q.1.** Assume that the alcohol content (in percentage) in a cough syrup taken from any particular brand is normally distributed with the true standard deviation 0.75.
 - (a) Compute a 95% CI for the true average alcohol content of a certain brand if the average content for 20 specimens from the brand was 4.85.
 - (b) Compute a 98% CI for the true average alcohol content of a another brand based on 16 specimens with a sample average alcohol content of 4.56.
 - (c) How large a sample size is necessary if the width of the 95% interval is to be 0.40?
 - (d) What sample size is necessary to estimate the true average alcohol content to within 0.2 with 99%confidence?
- **Sol.1.** Given that population is normally distributed with $\sigma = 0.75$.
 - (a) A 95% CI for mean of a normal population is given by:

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Given that 1- α = 0.95, α = 0.05, n = 20, \bar{x} = 4.85

Desired 95% CI is: $4.85 \pm z_{0.025} \frac{0.75}{\sqrt{20}} = 4.85 \pm 0.33 = (4.52, 5.18)$

(b) Given that α =0.02, n=16, \bar{x} =4.56

Desired 98% CI is: $4.56 \pm z_{0.01} \frac{0.75}{\sqrt{16}} = (4.12, 5.00)$

(c) Width of $100(1-\alpha)\%$ interval is given by:

$$w = 2z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Therefore,
$$n = \left[\frac{2(1.96)(0.75)}{0.40}\right]^2 = 54.02 \approx 55$$

(d) Now, given that the true average alcohol content must lie within the interval (-0.2, 0.2). Width=2(0.2)= 0.4

Therefore,
$$n = \left[\frac{2(2.58)(0.75)}{0.40}\right]^2 = 93.61 \approx 94$$

Q.2. A random sample of n=15 light bulbs of a certain type yielded the following observations on lifetime (in years):

- (a) Assume that the lifetime distribution is exponential. Obtain a 95% CI for expected (true average) lifetime.
- (b) What is a 95% CI for the standard deviation of the lifetime distribution?
- **Sol.2.** We know that $h(X_1, X_2, ..., X_n; \lambda) = 2\lambda \sum X_i$ has a chi-squared distribution with 2n degrees of freedom.

The relevant number of df here is 2(15)=30. The $\nu=30$ row of chi-squared distribution table shows

that 46.979 captures upper-tail area 0.025 and 16.791 captures lower-tail area 0.025.

Thus for n=15:

$$P(16.791 < 2\lambda \sum X_i < 46.979) = 0.95$$

Desired 95% CI for $\mu = \frac{1}{\lambda}$ is:

$$\left(\frac{2\sum x_i}{46.979}, \frac{2\sum x_i}{16.791}\right)$$

Here
$$\sum x_i$$
=63.2

Therefore, desired interval is (2.69,7.53).

(b) We know theta when X has an exponential distribution, then $V(X) = \frac{1}{\lambda^2}$. So, the standard deviation is $\frac{1}{\lambda}$ which is same as the mean.

Thus the interval calculated in part'a' is also a 95% CI for the standard deviation of the lifetime distribution.

- Q.3. A company manufactures taps. Out of 143 manufactured taps, 10 are found to be defective. Calculate a lower confidence bound at the 95% confidence level for the true proportion of such taps that are defective. Also, interpret the 95% confidence level.
- **Sol.3.** Here, α =0.05, n=143

For One sided bound,we need z_{α} = $z_{0.05}$ =1.645 Sample proportion of defective taps= $\frac{10}{143}$ = 0.07

Desired 95% lower confidence bound for the true proportion of defective taps:

$$\frac{\hat{p} + \frac{z_{\alpha}^{2}}{2n}}{1 + \frac{z_{\alpha}^{2}}{n}} - z_{\alpha} \quad \frac{\sqrt{\frac{\hat{p}\hat{q}}{n} + \frac{z_{\alpha}^{2}}{4n^{2}}}}{1 + \frac{z_{\alpha}^{2}}{n}}$$

$$= \frac{.07 + \frac{1.645^2}{2(143)}}{1 + \frac{1.645^2}{143}} - 1.645 \frac{\sqrt{\frac{(0.07)(.93)}{143} + \frac{1.645^2}{4(143)^2}}}{1 + \frac{1.645^2}{143}}$$

$$= 0.078 - 0.036 = 0.042$$

We are 95% confident that more than 4.2% of all manufactured taps are defective.

- Q.4. In a survey of 2003 adults, 25% said they believed in God.
 - (a) Calculate and interpret a confidence interval at the 99% confidence level for the proportion of all adults who believe in God.
 - (b) What sample size would be required for the width of a 99% CI to be almost .05 irrespective of the value of p?

2

Sol.4. With such a large sample size, we use simplified CI formula that is given by:

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

Using, \hat{p} =0.25, n=2003, and $z_{\alpha/2} = z_{0.005}$ =2.576

Desired 99% CI for p is:

$$0.25 \pm 2.576 \sqrt{\frac{(0.25)(0.75)}{2003}}$$

$$= 0.25 \pm 0.025 =$$

$$(0.225, 0.275)$$

(b) Here, $\hat{p} = \hat{q} = 0.5$ Therefore,

$$n = \frac{4z^2\hat{p}\hat{q}}{w^2}$$

$$4(2.576)^2(0.5)(0.5)$$

$$n = \frac{4(2.576)^2(0.5)(0.5)}{0.05^2} = 2654.31 \approx 2655$$

So, a sample of atleast 2655 is required.

- Q.5. Let X_1, X_2, \ldots, X_n be a random sample from a continuous probability distribution having median $\tilde{\mu}$. Show that
 - (a) $P\left[\min X_i < \tilde{\mu} < \max X_i\right] = 1 \frac{1}{2^{n-1}}$, so that $(\min X_i, \max X_i)$ is a $100(1-\alpha)\%$ confidence interval for $\tilde{\mu}$ with $\alpha = 1/2^{n-1}$.
 - (b) For each of six normal male infants, the amount of the amino acid alanine (mg/100 mL) was determined while the infants were on an isoleucine-free diet, resulting in the following data:

Compute a $100(1-\frac{1}{25})\%$ CI for the true median amount of alanine for infants on such a diet.

- (c). Let $X_{(2)}$ denote the second smallest of the x_i s and $X_{(n-1)}$ denote the second largest of the x_i s. What is the confidence coefficient of the interval $(X_{(2)}, X_{(n-1)})$ for $\tilde{\mu}$?
- Sol.5. (a) $\tilde{\mu}$ is the median, therefore

$$\mathrm{P}\left[X_i \leq \tilde{\mu}\right] = \mathrm{P}\left[X_i \geq \tilde{\mu}\right] = \frac{1}{2}, \, \text{for all } i = 1..n.$$

Furthermore,

$$\begin{split} \mathrm{P}\left[\min X_{i} \leq \tilde{\mu} \leq \max X_{i}\right] &= 1 - \mathrm{P}\left[\left(\tilde{\mu} < \min X_{i}\right) or\left(\tilde{\mu} > \max X_{i}\right)\right] \\ &= 1 - \mathrm{P}\left[\tilde{\mu} < \min X_{i}\right] - \mathrm{P}\left[\tilde{\mu} > \max X_{i}\right] \\ &= 1 - \mathrm{P}\left[\tilde{\mu} < X_{1}\right] ... \mathrm{P}\left[\tilde{\mu} < X_{n}\right] - \mathrm{P}\left[\tilde{\mu} > X_{1}\right] ... \mathrm{P}\left[\tilde{\mu} > X_{n}\right] \\ &= 1 - \frac{1}{2^{n}} - \frac{1}{2^{n}} = 1 - \frac{1}{2^{n-1}}. \end{split}$$

(b) We have,

$$\min x_i = 1.44, \ \max x_i = 3.54 \ \text{and} \ n = 6.$$

Therefore (from (a) part) (1.44, 3.54) is a $100(1-\frac{1}{2^5})\%$ confidence interval for $\tilde{\mu}$.

(c) We have

$$P[X_{(2)} \le \tilde{\mu} \le X_{(n-1)}] = 1 - P[\tilde{\mu} < X_{(2)}] - P[\tilde{\mu} > X_{(n-1)}]$$

where,

$$\begin{split} & \text{P}\left[\tilde{\mu} < X_{(2)}\right] &= \text{P}\left[\text{at most one } X_i \text{ is below } \tilde{\mu}\right] = \frac{1}{2^n} + \binom{n}{1} \frac{1}{2} \frac{1}{2^{n-1}} = \frac{1}{2^n} (1+n) \\ & \text{P}\left[\tilde{\mu} > X_{(n-1)}\right] &= \text{P}\left[\text{at most one } X_i \text{ is above } \tilde{\mu}\right] = \frac{1}{2^n} (1+n) \end{split}$$

Hence,

$$P[X_{(2)} \le \tilde{\mu} \le X_{(n-1)}] = 1 - \frac{1}{2^{n-1}}(1+n).$$

Therefore, $(X_{(2)}, X_{(n-1)})$ is a $100(1 - \frac{1}{2^{n-1}}(1+n))\%$ confidence interval for $\tilde{\mu}$.

- Q.6. Let X_1, X_2, \ldots, X_n be a random sample from a uniform distribution on the interval $[0, \theta]$, and let $U = \frac{1}{\theta} \max X_i$.
 - (a) Show that the rv U has density function

$$f_U(x) = \begin{cases} nx^{n-1} & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}.$$

(b) Verify that

$$P\left[\left(\frac{\alpha}{2}\right)^{1/n} \le U \le \left(1 - \frac{\alpha}{2}\right)^{1/n}\right] = 1 - \alpha,$$

and

$$P\left[\alpha^{1/n} \le U \le 1\right] = 1 - \alpha.$$

Use above identities to obtain two $100(1 - \alpha)\%$ CI for θ .

- (c) If the waiting time for a bus during morning hours is uniformly distributed and observed waiting times are $x_1 = 4.2$, $x_1 = 3.5$, $x_3 = 1.7$, $x_4 = 1.2$, and $x_5 = 2.4$, derive a 95% CI for θ by using both intervals.
- Sol.6. (a) The CDF for U is given as

$$F_U(x) = P[U \le x] = P[\max X_i \le x\theta]$$

= $P[X_1 \le x\theta] \dots P[X_n \le x\theta]$
= x^n

Therefore,

$$f_U(x) = F'_U(x) = \begin{cases} nx^{n-1} & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$
.

(b) Integrating $f_U(x)$ between $\left(\frac{\alpha}{2}\right)^{1/n}$ and $\left(1-\frac{\alpha}{2}\right)^{1/n}$, one obtain

$$P\left[\left(\frac{\alpha}{2}\right)^{1/n} \le U \le \left(1 - \frac{\alpha}{2}\right)^{1/n}\right] = \int_{\left(\frac{\alpha}{2}\right)^{1/n}}^{\left(1 - \frac{\alpha}{2}\right)^{1/n}} f_U(x) dx = \left(1 - \frac{\alpha}{2}\right) - \frac{\alpha}{2} = (1 - \alpha)$$

i.e.,

$$P\left[\left(\frac{\alpha}{2}\right)^{1/n} \le \frac{1}{\theta} \max X_i \le \left(1 - \frac{\alpha}{2}\right)^{1/n}\right] = 1 - \alpha$$

or

$$P\left[\frac{\max X_i}{\left(1 - \frac{\alpha}{2}\right)^{1/n}} \le \theta \le \frac{\max X_i}{\left(\frac{\alpha}{2}\right)^{1/n}}\right] = 1 - \alpha \tag{6(a)}$$

Which implies that $\left[\frac{\max X_i}{\left(1-\frac{\alpha}{2}\right)^{1/n}}, \frac{\max X_i}{\left(\frac{\alpha}{2}\right)^{1/n}}\right]$ is an $100(1-\alpha)\%$ CI for θ .

Again, integrating $f_U(x)$ between $\alpha^{1/n}$ and 1, we get

$$P\left[\alpha^{1/n} \le U \le 1\right] = 1 - \alpha$$

or, equivalently

$$P\left[\max X_i \le \theta \le \frac{1}{\alpha^{1/n}} \max X_i\right] = 1 - \alpha. \tag{6(b)}$$

The last equation gives a second $100(1-\alpha)\%$ CI for θ , as $\left[\max X_i, \frac{1}{\alpha^{1/n}}\max X_i\right]$.

- (c) For the given data min $X_i = 1.2$, max $X_i = 4.2$ and n = 5. Therefore 95% (i.e., $\alpha = 0.05$) CIs for θ from (6(a)) and (6(b)) are evaluated [4.24, 8.78] and [4.2, 7.646], respectively.
- **Q.7.** Find the probability that a random sample of 25 observations, from a normal population with variance $\sigma^2 = 6$, will have a sample variance $S^2 > 9.1$.
- Sol.7. We want to evaluate $P[S^2 > 9.1]$. We know that the rv

$$X = \frac{(n-1)S^2}{\sigma^2}$$

has chi-squared distribution with df $\nu = (n-1) = 24$. Thus

$$P(S^2 > 9.1) = P(\frac{24}{6}S^2 > \frac{24}{6}9.1) = P(\frac{24}{6}S^2 > 36.4).$$

From table $\chi^2_{0.05,24} \approx 36.4$, therefore $P(S^2 > 9.1) = 0.05$.