

免责声明! SUI-201 直流电量变送器分为康铜丝和分流器两种采集方式,使用超过 10A 电量量程的为分流器采样,在使用中请勿连错接线,大于36V电压,注意用电安全。使用时请严格按照接线图接线,若违规操作,出现人生安全,本公司概不负责,请悉知!!!

一、 功能说明

SUI-201 是一款高精度直流电流、电压、功率隔离变送器,可实时测量直流电流、电压、有功功率、累计电量、频率、功率因数等参数,提供标准通信接口(TTL 异步串口),可选的标准协议(Modbus 协议)及自定义协议。其中电流和电压的变送精度可达 0.2 级的超高精度。

二、 变送器技术指标

工作温度: -40℃ ~85℃ (含屏-20-50℃);

供电电压: 直流 5V±0.2V; 采集方式: 全隔离采集; 分辨率: 1mV/1mA; 工作电流: 30mA;

最大测量电流: □1A □3A □5A □10A □20A □30A

变送精度: 电流及电压 0.2 级,功率及电量 0.5 级;

通信接口: 3.3V TTL 串行接口(兼容 5V);

通信协议: Modbus-RTU 或自定义简易协议智能识别;

采样频率: 1-20HZ,默认 2HZ,可设置; 最大功耗: <0.2W(含屏<0.8W);

产品重量: 1-10A 量程: 18.5g±2g 含屏 50g±2g, >10A 因分流器而定

产品等级:工业级;

尺寸大小: 长 x 宽 x 高: 74.2 x 29.5 x 18 mm; 含屏尺寸: 长 x 宽 x 高: 75 x 44 x 28 mm;

质保时间:2年

三、 产品图解

产品采用全隔离采集方案,实现高低压完全隔离,大大增强了安全性及可靠性。

注: 1、M3 定位孔

- 2、变压器 3、2.0 寸及 2.2 寸彩屏接口 4、电量清零按钮接口
- 5、交流电接入接出端子 6、采样电阻

6、采样电阻 7、供电及通信接口

四、 接口说明

变送器通过隔离方式采集电流、电压,待测端与系统供电完全隔离。变送器供必须采用 5V 直流电源供电,最高不得超过 5.2V。通信接口采用 3.3V TTL 异步串行接口,同时可兼容 5V 的 TTL 接口。 累计电量清零按钮可焊接一个按钮用于电量清零(长按 6 秒)。2.4 寸彩屏接口可外接配套全彩屏,可显示电流电压值,功率,累计电量。外挂电流分流器版本接线图详见章节十二、外挂电流分流器接线说明。板载采样电阻版本接线如下图:

- ◆ 全隔离采集
- ◆ 0.2 级高精度
- ◆ 内置防雷保护
- ◆ TTL 3.3V 接口,兼容 5V
- ◆ 低功耗设计 30mA 工作电流
- ◆ 双通信协议智能识别
- ◆ 支持标准 Modbus-RTU 协议

Rev 1.2

五、 通讯端口说明

通讯端口为 3.3V TTL 电平 (兼容 5V)的 Uart(异步串行)接口。数据位:8位,校验位:无,停止位:1位,波特率:共支持 6 种波特率,在 Modbus 寄存器中以编号形式给出。对应关系如下: 1:4800,2:9600(默认),3:19200,4:38400,5:57600,6:115200。例如需要修改波特率为 9600,只需要向波特率寄存器写入 2 即可。

六、 通讯协议支持说明

SUI-201 支持自定义简易协议和 Modbus 双协议自动识别,无需软件或硬件设置。自定义简易协议详见章节:

自定义简易协议说明(使用 Modbus 协议的可跳过), Modbus 协议详见章节: Modbus-RTU 从机协议说明 (使用自定义简易协议的可跳过)。

七、 调试指令

SUI-201 提供一条调试指令,方便调试使用。通过串口向 SUI-201 发送字符串">>GetVal"(不包含引号), SUI-201 收到指令后会以字符串形式返回当前的测量值。由于是以明文形式显示,可很大程度上方便调试。返回的字符串格式如下:

八、 自定义简易协议说明(使用 Modbus 协议的可跳过)

1、 帧格式说明

帧格式举例:

ı	0x55 0x55	0x01	0xF1	0x00 0x01	0x00	0x9D
ı	帧头(2字节)	地址码(1字节)	功能码(1字节)	数据长度(2字节)	数据(长度不固定)	校验和(1字节)
	帧头	固定两个	字节,地址 1	个字节可修	改,默认为 1(同时使用
	Modbus	的用户注意	,修改此地址	:会同时修改	Modbus 的地	业),功能码
	1 字节。	数据长度 2	字节,范围(OxFF~OxFFFF,	需要与实际数	ឬ据的长度
	匹配。校	验和是从帧	〔头开始(包括	舌帧头)相加直	到校验字节之	前,然后
	取低8位	:得到的。				

2、 具体功能码说明

(1) 功能码列表:

功能码	0x01	0x02	0x03	0xF1	0xF2	0xF3
功能	全部测量值请求 (电压、 电流、功率、电量)	主要测量值请求 (电压、电流、功率)	部分测量值请求 (电压、电流)	修改波 特率	修改通 讯地址	累积电 量清零

(2) 全部测量值请求命令(0x01):

变送器接收到此命令将会返回当前测量的电压、电流、功率和电量。 具体示例如下,下划线为数据部分开始:

命令发送: 55 55 01 01 00 00 AC

命令返回: 55 55 01 01 00 10 <u>00</u> 00 23 01 00 00 29 40 00 01 71 A8 00 52 RD F3 65

返回帧解析

- 2		<i>ν</i> ι•					
	55 55	帧头(两个字节)	固定为 0x55 0x55				
	01	通讯地址(1字节)	0~247 可修改,注意,这个地址也是 Modbus 地址,不使用 Modbus 协议则无需关心				
	01	功能码(1字节)	01 表示主要测量数据请求指令				
	00 10	数据长度(2字节)	数据部分的长度(此处表示 16 字节)				
	00F3	数据部分(此处长度 12 字节)	具体含义见下方数据解析部分				
	65	校验字节(1字节)	从帧头开始(包括帧头)到校验字节之前的所有字节的数值之 和取低 8 位				

数据部分解析:

>>< 4 H H	24 741 DI-		
返回数据	合成后数据	功能	说明
00 00 23	0x00002301	电压测量值	有符号整型,高字节在前,单位毫伏(mV),除 1000 即可换算成伏(V)
01	0x00002301	(4字节)	此处: 00 00 23 01 mV = 8961mV = 8.961V
00 00 29	0x00002940		有符号整型高字节在前,单位毫安(mA),除 1000 即可换算成安(A)
40	OXOOOOL540	(4 字节)	此处: 00 00 29 40mA = 10560 mA = 10.56 A
00 01 71	0x000171A8		有符号整型,高字节在前,单位毫瓦(mW),除 1000 即可换算成瓦(W)
A8	000017170	(4 字节)	此处: 00 01 71 A8 mW = 94632 mW = 94.632 W
00 52 BD F3	0x0052BDF 3		有符号整型,高字节在前,单位毫瓦(mWh),除 1000 才能得到实际值 此处: 00 52 BD F3 mW =5422579 /1000mWh = 5422.579 mWh

(3) 主要测量数据请求命令(0x02):

变送器接收到此命令将会返回当前测量的电压值、电流值、功率 频率。具体示例如下:

命令发送: 55 55 01 02 00 00 AD

命令返回: 55 55 01 02 00 0C 00 00 22 F9 00 00 29 40 00 01 71 56 05 帧解析:同上,略。数据部分解析(数据部分从帧中第 7 字节开始): (4) 部分测量值请求(0x03):

变送器接收到此命令将会返回当前测量的电压值、电流值。具体示例如下:

命令发送: 55 55 01 03 00 00 AE

命令返回: 55 55 01 03 00 08 00 00 23 00 00 00 29 44 46

帧解析:同上,略。数据部分解析(数据部分从帧中第7字节开始):

(5) 波特率修改命令(0xF1)

通过此命令码发送波特率的代码可修改波特率,波特率对应码见章节:通讯端口说明。

☞ 示例1:(修改为9600)

命令发送: 55 55 01 F1 00 01 02 9F

	55 55	01	F1	00 01	02	9F
	帧头	地址	功能码	数据长度	数据 (波特率代码)	校验和
11	n 1 1-1					

修改成功返回:55 55 01 F1 00 01 <u>02</u> 9F

修改失败返回: 55 55 01 F1 00 01 00 9D

☞ 示例 2: (修改为 115200)命令发送: 55 55 01 F1 00 01 <u>06</u> A3

55 55	01	F1	00 01	06	A3	
帧头	地址	功能码	数据长度	数据 (波特率代码)	校验和	

修改成功返回: 55 55 01 F1 00 01 <u>06</u> A3 修改失败返回: 55 55 01 F1 00 01 <u>00</u> 9D

(6) 修改通讯地址命令(0xF2)

-	示例1	:修改通	讯地址》	为 01,命令为	対送: 55 55 01 F2	2 00 01 <u>01</u> 9	9F
	55 55	01	F2	00 01	01	9F	ì
	市市公	Hhttl	Th台约和	粉セレウ	米/ttl2 (今C+H-t-LZD)	拉砂和	1

修改成功返回: 55 55 01 F2 00 01 <u>01</u> 9F 修改失败返回: 55 55 01 F2 00 01 00 9E

示例 2: 修改通讯地址为 02,命令发送: 55 55 01 F2 00 01 <u>02</u> A0

	12 17 41 -	.,	4 - 7 - 1 - 2		
55 55	01	F2	00 01	02	A0
帧头	地址	功能码	数据长度	数据 (新地址码)	校验和

修改成功返回: 55 55 01 F2 00 01 <u>02</u> A0 修改失败返回: 55 55 01 F2 00 01 <u>00</u> 9E

(7) 累计电量清零命令(0xF3)

累计电量清零需要通过此命令码发送固定值 0x12,0x34 清零。成功返回 1,失败返回 0

示例:命令发送: 55 55 01 F3 00 02 12 34 E6

55 55	01	F3	00 02	12 34	E6
帧头	地址	功能码	数据长度	数据 (新地址码)	校验和

成功返回: 55 55 01 F3 00 01 <u>01</u> A0 失败返回: 55 55 01 F3 00 01 00 9F

九、 Modbus-RTU 从机协议说明 (使用自定义简易协议的可跳过)

1、 Modbus 功能码说明:

功能码(十六进制)	功能码(10 进制)	功能说明	备注
0x03	3	读保持寄存器(读多个寄存器)	具有可读属性的寄存器均可用
0x06	6	写单个寄存器	具有可写属性的单个寄存器均可用
0x10	16	写多个寄存器	具有可写属性的寄存器均可用

2、 Modbus 寄存器列表:

寄存器功能	寄存器 十进制表 示	起始地址 十六进制表 示	寄存 器长 度	读写支持	操作码支持 (十进制表示)	范围	默认值
电压测量值	3000	0x0BB8	2	只读	03		
电流测量值	3002	0x0BBA	2	只读	03		
功率	3004	0x0BBC	2	只读	03		
累计电量	3006	0x0BBE	2	只读	03		
波特率	3100	0x0C1C	1	读写	03/06/16	1~6	2
Modbus 地址	3105	0x0C21	1	读写	03/06/16	1~247	1
电量清零	3110	0x0C26	1	读写	03/06/16		
电量单位	3200	0x0C80	1	读写	03/06/16	0~3	0
系统采样频率	3201	0x0C81	1	读写	03/06/16	1-50HZ	2
电量累积模式	3202	0x0C82	1	读写	03/06/16	0~3	0
电压档位模式	3203	0x0C83	1	读写	03/06/16	0~2	0
库仑计修正电压	3204	0x0C84	1	读写	03/06/16		0
产品型号编码	3900	0x0F3C	5	只读	03	固定为 "19080201"	"19080201 "

3、 寄存器说明:

电压测量值寄存器	有符号整型,两个寄存器长度,共 4 个字节,高字节在前,单位毫伏(mV),除 1000 即可换算成伏(V)
电流测量值寄存器	有符号整型,,两个寄存器长度,共4个字节,高字节在前,单位毫安(mA),除1000 即可换算成安(A)

功率寄存器	有符号整型,,两个寄存器长度,共4个字节,高字节在前,单位毫瓦(mW),除1000
功率可付益	即可换算成瓦(W)
男 山山县安方99	有符号整型,,两个寄存器长度,共4个字节,高字节在前,
累计电量寄存器	实际累积电量 W=返回值÷10 W·h = 返回值÷10000 kW·h
波特率寄存器	写入波特率的代码可修改波特率,波特率对应码见章节: 通讯端口说明
Modbus 地址寄存器	写入新的地址可修改该节点的地址,也可读取查询
电量清零寄存器	向该寄存器中写入固定值 0x1234 可清零累计电量
中县英位李左照	1 个寄存器长度,共 2 个字节,高字节在前,选择电量单位,详情见章节:参数设
电量单位寄存器	置说明
系统采样频率	1 个寄存器长度,共 2 个字节,高字节在前,选择采样频率, 范围 1-50HZ, 默认
寄存器	值为 2,可修改
电量累积模式	1 个寄存器长度,共 2 个字节,高字节在前,选择电量累积模式,模式以电流为
寄存器	准。详情见章节:参数设置说明
电压档位模式	1 个寄存器长度,共 2 个字节,高字节在前,选择电压档位,范围 0-2, 详情见章
寄存器	节:参数设置说明
库仑计修正电压	两人家有限长度 世 4 人会共享会共东部 详续用会共,会新济罕说明
寄存器	一两个寄存器长度,共4个字节,高字节在前,详情见章节:参数设置说明
型号编码寄存器	固定的字符串,可用于区分不同的产品

4、 寄存器读写示例

测量值寄存器:读取电压、电流、功率和累积电量。<u>注意!!!</u>:返回的数据是 32 位的有符号整形,寄存器的个数为 2 的倍数,即读 1 个测量值时,寄存器个数的值为: 1*2=2。

读取电压示例:

主机发送: 01 03 08 88 00 02 46 0A

	土小次之: 01 03 0B B0 00 <u>62</u> 10 07						
01	03	0B B8	00 02	46 0A			
地址	功能码	寄存器起始地址	寄存器个数	CRC16 校验			
从机返回: 01 03 04 FF FF FF F5 7B A0							
01	03 04 FF FF F5		FF FF FF F5	7B A0			
July-July L	THAKTO	<u></u>	3 3	CDC1C +÷iA			

结果: FF FF FF F5 转为十进制为 -11 (有符号),所以实际的电压为: -11 * 1000 =-11000mV=-11V

· 读取功率、累积电量示例:

主机发送: 01 03 0B BC 00 04 87 C9

上/6次元: 01 00 01 10 00 <u>01</u> 0; 00						
01	03	OB BC	00 04	87 C9		
地址	功能码	寄存器起始地址	寄存器个数	CRC16 校验		
从机返回: 01 03 08 FF FF C3 DB 01 B3 4E FE E4 C7						
01	03	08	FF FF C3 DB 01 B3 4	E E4 C7		
			FE			
地址	功能码	字节数	功率、累积电量	CRC16 校验		

结果: FF FF C3 DB 转为十进制为 -15397 (有符号), 所以实际的功率为: -15397 mW=-15.397W

01 B3 4E FE 转为十进制为 28,528,382, 所以累积电量为: 2852.8382mWh

参数设置寄存器:读取或设置电量单位、系统采样频率、电量累积模式、电压档位模式和库仑计修正电压。

☞ 修改采样频率示例(修改为 2HZ)

主机发送: 01 10 0C 81 00 01 02 00 02 F5 80

	UI	10	00.81	00 0 1	02	00 02	F5 80
	地址	功能码	寄存器地址	寄存器个数	写入的字节 数	数据 (采样频率)	CRC16 校验
☞ 从机返回: 01 10 0C 81 00 01 52 B1							
	01		10	0C 81	00	01	52 B1
	坳	Ŀ "Ţ	前能码	寄存器地址	寄存器	个数	CRC16 校验

波特率寄存器:十六位无符号整型(1:4800,2:9600(默认),3:19200,4:38400,5:57600,6:115200)。以波特率的编码表示,可读可写,写操作成功后新的波特率立即生效并且掉电不会丢失。

☞ 波特率修改示例(修改为9600):

主机发送: 01 10 0C 1C 00 01 02 00 02 E9 CD

_ 主机及运.0110001000010200021900								
01	10	0C 1C	00 01	02	00 02		E9 CD	
地址	功能码	寄存器地域	寄存器个数	写入的字节 数	数据 (波特率代	码)	CRC16 校验	
从机返回: 01 10 0C 1C 00 01 C3 5F								
01	01 10		0C 1C	00	00 01		E9 CD	
地址 功能码		寄存器地址	寄存器	肾个数		CRC16 校验		

Modbus 地址寄存器: 范围 1~247,248~255 保留(不要使用),掉电不丢失。

Modbus 地址修改示例(修改地址为 1)

主机发送:01 10 0C 21 00 01 02 00 01 AD 21

01	10	0C 21	00 01	02	00 01	AD 21
地址	功能码	寄存器地址	寄存器个 数	写入的字节 数	数据(Modbu 地址)	JS CRC16 校验
从机	从机返回:01100C2100015293					
01		10	0C 21	(00 01	52 93
地均	Ŀ Ţ	力能码	寄存器地址寄存器		P器个数	CRC16 校验

十、 参数设置说明

I V SWW.	E 90-71			
电量单位	范围 0-4, 0:wh 1:mwh 2:Ah 3:mAh 最大值分别为: 21 万 Kwh、21 万 wh、			
	21 万 KAh、21 万 Ah			
电量累积	0: 仅正方向累积 1:仅负方向累积 2:正方向正累积反方向负累积 3:双向累			
	积(不分正负全部累积)			
电压档位	范围 0-2, 0: 自动挡 1: 60V 档 2: 400V 档。			
	注意: 当设置电压档位为 2 时 (即 400V 档),此档位只能测大于 5V 的电压,			
	否则显示的电压值为 0			
库仑计修正电压	输入电池的额定电压进行修正			

十一、 产品安装及尺寸

产品设有 4 个 M3 定位孔,可方便的安装和固定。具体尺寸见下图:

配套屏幕尺寸图

十二、 外挂电流分流器接线说明

这里主要说明 50A 分流器的接线方式,其他分流器接线方式参考本接线图。

说明:分流器的接线方向直接影响电流流向,若按下图分流器接法,采集到的电流为正。若电流流过分流器的方向与本图相反,则采集到的电流为负。本模块支持负电流采集,不会损坏本模块。

50A 分流器接线示意图:

十三、 注意事项

- 变送器供电电压 DC5(±0.2) V,要求电压稳定,请不要高于5.2V;
- ▶ 请严格按照接线说明接线;
- ▶ 输入采集电压和电流不可超出规定采样范围;
- 此产品仅为电流电压功率表头,并非调压器,自身不支持 电压电流调节;
- 此产品为 TTL 串口通信,接 PLC 通信的话需要用 TTL 转 485 模块。

勘误:

V1.0 版本中,采样频率描述错误,正确的应为 1~20Hz,而非 1~50Hz。V1.1 版本中已修正; V1.1 及之前版本中,关于自动输出的描述错误, SUI-201 目前无自动输出功能,后续版本中已经删除;

文档版本说明:

- V1.0 初始版本; V1.1 修正了采样频率描述的错误。 V1.2 修改了 Modbus 示例中的错误, 删除了自动输出相关的描述,统一了表格中字体的大小。
- V1.3 修改外置分流器接线方式。