Q1 Team Name

0 Points

Enigma

Q2 Commands

10 Points

List the commands used in the game to reach the ciphertext

go

enter

pluck

back

give

back

back

thrnxxtzy

read

Q3 Analysis

50 Points

Give a detailed analysis of how you figured out the password? (Explain in less than 500 words)

T In this question, we have a multiplicative group,

 $(Z_p,*)$

where p is prime and * is binary operation(modulo multiplication) in g, and we have tuples of the form

 $(r, password * g^r)$

 $Prime\ p = 455470209427676832372575348833$

The given pairs are:

(429, 431955503618234519808008749742)

(1973, 176325509039323911968355873643)

(7596, 98486971404861992487294722613)

Mathematical expression behind this: $h = g^{r_i} * password$ (will run i from 1 to 3). Given pairs can be expressed rs:

$$\begin{array}{l} g^{429}*password = \\ 431955503618234519808008749742 = h1 \dots (1) \\ g^{1973}*password = \\ 176325509039323911968355873643 = h2 \dots (2) \\ g^{7596}*password = \\ 98486971404861992487294722613 = h3 \dots (3) \end{array}$$

Using these equations we get:

Dividing (2) by (1),
$$g^{1973-429}=g^{1544}=\frac{h2}{h1} mod\ p=b1(let)$$
 Dividing (3) by (2),
$$g^{7596-1973}=g^{5623}=\frac{h3}{h2} mod\ p=b2(let)$$
 Dividing (3) by (1),
$$g^{7596-429}=g^{7167}=\frac{h3}{h1} mod\ p=b3(let)$$

Algorithm:

- 1. initialize q=1 mod p
- 2. for (i=n-1;i>=0;i--)

$$if(m_i == 1) \ set \ q = q * g \ mod \ p$$
 3. $q = q^2 mod \ p$ 4. return q

Following computation helps to find g.

1.
$$c1 = \frac{b2}{(b1)^3} = g^{5623 - 3 \times 1544} = g^{991}$$

2.
$$c2 = \frac{b3}{(c1)^7} = g^{7167 - 7 \times 991} = g^{230}$$

3.
$$c3 = \frac{c1}{(c2)^4} = g^{991-4 \times 230} = g^{71}$$

4.
$$c4 = \frac{c2}{(c3)^3} = g^{230-3 \times 71} = g^{17}$$

5.
$$c5 = \frac{c1}{(c3)^{14}} = g^{991-14 \times 71} = g^{-3}$$

6.
$$c6 = c4 * (c5)^5 = g^{17+5h(-3)} = g^2$$

7.
$$c7 = c5 * (c6)^2 = g^{-3+4} = g$$

Hence c7 = g. Modular reduction has been done after each step of the computation.

Now from given equation we can write

$$password = h_i \cdot (q^{r_i})^{-1} \mod p$$

For i = 1,

password = 431955503618234519808008749742 $*(g)^{429}$ mod p

Now, we perform the computation using the GP-PRRI calculator[**GP**]. Other freely available number theoretic libraries are NTL, GMP library. We put the command to find g and password.

p = 455470209427676832372575348833;

```
h1 = 431955503618234519808008749742;
h2 = 176325509039323911968355873643;
h3 = 98486971404861992487294722613;
b1 = Mod(h2/h1,p);
b2 = Mod(h3/h2,p);
b3 = Mod(h3/h1,p);
c1 = Mod(b2/(b1^3),p);
c2 = Mod(b3/(c1^7),p);
c3 = Mod(c1/(c2^4),p);
c4=Mod(c2/(c3^3),p);
c5=Mod(c1/(c3^14),p);
c6=Mod(c4*c5\^5,p);
c7=Mod(c6^2*c5,p);
g=c7;
t=Mod(g^429,p);
password=Mod(h1/q,p);
At the end of the computation, we got
g = 52565085417963311027694339;
password: 134721542097659029845273957;
```

Q4 Password

10 Points

What was the final command used to clear this level?

134721542097659029845273957

Q5 Codes

0 Points

Upload any code that you have used to solve this level

No files uploaded

Assignment 3

GRADED

GROUP

Gajender Sharma

Kajal Sethi

Pranshu Sahijwani

View or edit group

TOTAL POINTS

70 / 70 pts

QUESTION 1

Team Name 0 / 0 pts

QUESTION 2

Commands 10 / 10 pts

QUESTION 3

Analysis

QUESTION 4
Password

10 / 10 pts

QUESTION 5
Codes

0 / 0 pts