실증적AI개발프로젝트

멘토 교수: 옥수열 교수님

실내 AR 내비게이션

QR 기반 위치 인식과 경량화된 VIO 알고리즘을 이용한 실내 AR 내비게이션 개발

최적해

이예진(팀장) | 서도윤 | 이시우

목차

01 아이템 개요 및 목표

04 개발 일정

02 프로젝트 목적

05 역할 분담

03 구체화 방안

06 3주차 보고 및 4-5주차 계획

아인템개요및목표

서비스를 한 문장으로 설명

01 아이템 개요 및목표

QR+VIO+AR 기술을 활용한 인터랙티브 실내 내비게이션

프로젝트 목적

2-1. 개발 배경 및 필요성 2-2. 목표 2-1. 개발 배경 및 필요성

(1) 개발 배경

• 실외와 실내 내비게이션의 차이

· 왜 실내 내비게이션에 AR을 접목하였는가?

2-1. 개발 배경 및 필요성

(2) 필요성

- 실내 내비게이션 기술의 현황과 한계
 - ㅇ 비콘
 - SLAM
 - VIO

2-1. 개발 배경 및 필요성

(3) 기존 서비스와 차이점

기존 상용화된 AR 실내 내비게이션과의 차이점

- QR 기반 위치 초기화
- 경량 VIO + QR 보정
- 2D 노드맵 + A*

2-1. 목표

(1) 최종목표

- 복잡한 실내 공간에서 실시간 AR 기반 길찾기 서비스 제공
- QR 기반 위치 인식 + 경량화된 VIO + Unity 3D AR 구현

2-1. 목표

(2) 단계별 목표

- QR기반 AR 실내 내비게이션 완성
- 장소: 동아대 공대 5호관 6층 실용화 대상: 벡스코
- 목적: 알고리즘 안정성 테스트, 등 실내 전시장 UI/UX 피드백 수집, AR 길안내 정확도 검증

2-2. 차별성

(2) A* (A-star) 알고리즘?

A* 알고리즘: 최단 경로 탐색 알고리즘

다익스트라 (Dijkstra) 알고리즘

휴리스틱 (heuristic) 함수

더 빠르고 효율적인 경로 탐색

모든 경로의 비용 고려

2-2. 차별성

(3) VIO 알고리즘

구체화방안

3-1. 시스템 구조 설계 3-2. 구체화 계획 3-3. 역할 분담 및 진행 현황

3-1. 시스템 구조 설계

(1) 시스템 구조 설계

3-2. 구체화 계획

(1) 전체 시스템 구성 요약

QR 인식 및 좌표 추정

2D 맵 & 노드 모델링 3 A* 경로 탐색

4 AR 시각화

VIO 경량화

6 UI/UX 시스템 통합 3-3. 역할 분담

(1) 역할별 구현 흐름 예시

- A [QR 인식] → [좌표 추출] → [Unity에 마귀 출력] → [VIO 초기화]
- B [맵 구성(JSON)] → [A* 알고리즘 적용] → [최단 경로 추출]

[목적지 선택 UI] → [경로 시각화] → [AR 내비게이션 진행]

개발일정

개발 일정

04 개발 일정(A)

작업 항목/ 기능	3월	4월	5월	6월	7월	8월	9월
QR 코드 인식 구현							
QR-Unity 좌표 매핑/ 인식 정확도 향상							
AR Foundation 연동/ VIO 기본 적용							
QR -> VIO 연동 테스트/ 드리프트 대응 로직							
VIO 최적화 / QR 리셋 로직 적용							
실내 이동 테스트/ 최종 위치 인식							
통합 테스트/보완							

04개발 일정(B)

작업 항목/ 기능	3월	4월	5월	6월	7월	8월	9월
2D 맵 수작업 모델링/ 평면도 분석							
격자/그래프 구조 확정 JSON 구조 설계							
A* 알고리즘 개발 및 테스트 (Python)							
A* Unity C# 이식/ 장애물 반영							
맵-경로 연동 테스트/ 디버깅							
QR-경로 연동							
통합 테스트/보완							

04개발 일정(C)

작업 항목/ 기능	3월	4월	5월	6월	7월	8월	9월
AR 시각화 프로토타입/ 화살표 배치							
UI 초기 스케치 및 목적지 선 택 화면 개발							
AR 이동경로 애니메이션 효과 추가							
전체 경로 + 방향 안내 연동 테스트							
UX 피드백 반영 및 AR 이펙트 향상							
탐색 시작-종료 흐름 통합							
통합 테스트/보완							

역할분담

역할 분담

05역할분담

컴퓨터 비전 & 위치 인식 **이예진** (팀장)

> QR 인식, 위치 추정, VIO 실험

UX & AR 시각화 통합 **서도윤**

경로 시각화, UI 설계, 시스템 통합

맵 & 경로 알고리즘 **이시우**

맵 모델링, A* 경로 탐색

활동 보고 및 계획

3주차 활동 보고 및 4-5주차 활동 계획

06활동보고및계획

- ZXingNet → QR코드 인식 기능 구현
- 동아대 6층 평면도

*디스이즈의 S06 6층 평면도

THANK YOU

QR 기반 위치 인식과 경량화된 VIO 알고리즘을 이용한 실내 AR 내비게이션 개발

최적해

이예진(팀장) | 서도윤 | 이시우

Appendix 06구글 시스템과의 차별점

위치 인식	VPS: 카메라 이미지 + 대규모 이미지 DB 매칭	QR 기반 초기화 + 경량 VIO
지도 형태	Street View 수준의 실내 이미지 + 좌표 DB	2D 노드 기반 실내 평면도
AR 구현	ARCore 기반, 경로 안내 자동 렌더링	Unity 기반 직접 구현 가능 (유연성 높음)
의존성	클라우드 서버, Google 이미지 DB, 고성능 연 산 필요	오프라인 동작 가능 (QR만 배치하면 OK)
설치 난이 도	높은 사전 매핑 필요 (구글이 직접 수집해야 함)	QR 설치만 하면 누구나 빠르게 적용 가능
이식성	특정 건물에만 적용 (스케일 제한)	다양한 공간에 빠르게 확장 가능

Appendix 06네이버 시스템과의 차별점

초기 위치 인 식	이미지 매칭 기반 Visual Localization	QR 코드 기반 명시적 초기화
지도 종류	로봇 기반 고정밀 지도 (3D/메쉬 기 반)	경량 2D 노드 맵
위치 추적 방 식	Visual + Sensor Fusion (고정밀)	경량 VIO (Visual + IMU, 상대 위치)
정확도 보정	고정밀 지도와 이미지 매칭으로 정기 적 보정	QR로 초기 정렬, 이후 상대 추정
하드웨어 의 존성	사전 매핑 필요, 고성능 장치 우선	스마트폰만으로 동작 가능
운영 유연성	고정된 공간에 최적화됨	QR 위치만 셋업하면 다양한 공간에 빠르게 적용 가능
컴퓨팅 요구	상대적으로 높음 (비전 매칭, 정밀 지 도 활용)	낮음 (경량 연산 + QR 리셋)
확장성/이식 성	새로운 공간 추가 시 지도 제작 필요	2D 노드 맵 + QR 코드만 있으면 이식 쉬움

Appendix

Appendix

$$A \cdot \delta x = b$$

$$A = L \cdot L^T$$

$$L \cdot y = b \rightarrow y$$

$$L^T \cdot \delta x = y \rightarrow$$
 최종 δx 계산

$$x_{
m new} = x_{
m old} + \delta x$$