Theorem 1 (Residue theorem). Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m . If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G, then

$$\frac{1}{2\pi i} \int\limits_{\gamma} f \Big(x^{\mathbf{N} \in \mathbb{C}^{N \times 10}} \Big) = \sum_{k=1}^m n(\gamma; a_k) \operatorname{Res}(f; a_k) \,.$$

Theorem 2 (Maximum modulus). Let G be a bounded open set in \mathbb{C} and suppose that f is a continuous function on G^- which is analytic in G. Then

$$\max\{\,|f(z)|:z\in G^-\,\}=\max\{\,|f(z)|:z\in\partial G\,\}\,.$$

First some large operators both in text: $\iiint\limits_Q f(x,y,z)\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z \text{ and }\prod_{\gamma\in\Gamma_{\bar{C}}}\partial(\tilde{X}_\gamma);$ and also on display

$$\iiint\limits_{Q} f(w,x,y,z)\,\mathrm{d} w\,\mathrm{d} x\,\mathrm{d} y\,\mathrm{d} z \leq \oint_{\partial Q} f'\left(\max\left\{\frac{\|w\|}{|w^2+x^2|};\frac{\|z\|}{|y^2+z^2|};\frac{\|w\oplus z\|}{|x\oplus y|}\right\}\right).$$