CPSC-354 Report

Mitchell Toney Chapman University

October 12, 2025

Abstract

Contents

1	I Introduction				
2	We	ek by Week	2		
	2.1	Week 1: HW1	2		
	2.2	Week 2: HW2	2		
	2.3	Week 3: HW3	4		
		2.3.1 Exercise 5	4		
		2.3.2 Semantic question	5		
	2.4	Week 4: HW4	6		
		2.4.1 HW4.1: Termination Proof for GCD	6		
		2.4.2 HW4.2: Termination Proof for Merge Sort	6		
	2.5	Week 5: HW5	7		
		2.5.1 Lambda Calculus Workout Evaluation (Corrected)	7		
	2.6	Week 6: HW6	7		
		2.6.1 Fixed Point Combinator Exercise	7		
	2.7	Week 7: Parse Trees Exercise	9		
		2.7.1 String: 2+1	9		
		2.7.2 String: $1 + 2 * 3$	9		
		2.7.3 String: $1 + (2 * 3)$	10		
		2.7.4 String: $(1+2)*3$	11		
		2.7.5 String: $1 + 2 * 3 + 4 * 5 + 6$	12		
3	Essa	ay	12		
4	Evidence of Participation 12				
5	Conclusion				

1 Introduction

2 Week by Week

2.1 Week 1: HW1

The MU puzzle is a puzzle created by Douglas Hofstadter. It consists of four rules that can be applied to a string MI.

1.
$$xI \rightarrow xIU$$

2.
$$Mx \rightarrow Mxx$$

3.
$$xIIIy \rightarrow xUy$$

4.
$$xUUy \rightarrow xy$$

When first approaching this puzzle, the first strategy that came to mind was to take advantage of rule number 2 to keep duplicating the I's until there is a multiple of three, then using rules 3 and 4 to get rid of the I's and leave a remaining U.

The issue with this is that $2^n \mod 3$ will never equal 0, it infinitely cycles between equaling 1 and 2, and without being able to get rid of all the I's, which would require them being a multiple of 3, you will never be able to get MU.

Thus, the puzzle is not solvable.

2.2 Week 2: HW2

1.
$$A = \emptyset$$
, $R = \emptyset$

$$2. \quad A = \{a\}, \ R = \emptyset$$

3.
$$A = \{a\}, R = \{(a, a)\}$$

4.
$$A = \{a, b, c\}, R = \{(a, b), (a, c)\}$$

5.
$$A = \{a, b\}, R = \{(a, a), (a, b)\}$$

6.
$$A = \{a, b, c\}, R = \{(a, b), (b, b), (a, c)\}$$

7.
$$A = \{a, b, c\}, R = \{(a, b), (b, b), (a, c), (c, c)\}$$

#	Terminating	Confluent	Unique NFs
1	Yes	Yes	Yes
2	Yes	Yes	Yes
3	No	Yes	No
4	Yes	No	No
5	No	Yes	Yes
6	No	No	No
7	No	No	No

Confluent True, Terminating True, Unique NFs True

Confluent True, Terminating False, Unique NFs True

Confluent False, Terminating True, Unique NFs True

Confluent False, Terminating False, Unique NFs True

Confluent True, Terminating True, Unique NFs False

Confluent True, Terminating False, Unique NFs False

Confluent False, Terminating True, Unique NFs False

Confluent False, Terminating False, Unique NFs False

$$A = \{a, b, c\}, \ R = \{(a, b), (a, c), (b, b), (c, c)\}$$

2.3 Week 3: HW3

2.3.1 Exercise 5

Consider rewrite rules:

$$\begin{array}{c} ab \rightarrow ba \\ ba \rightarrow ab \\ aa \rightarrow \\ b \rightarrow \end{array}$$

Example Reductions

Reducing abba:

$$abba o baba$$
 (using $ab o ba$)
 $baba o bbaa$ (using $ba o ab$)
 $bbaa o baa$ (using $b o \varepsilon$)
 $baa o aba$ (using $ba o ab$)
 $aba o baa$ (using $ab o ba$)

There is an infinite loop between aba and baa.

Reducing bababa:

$$bababa o ababab o (using ba o ab)$$

 $ababab o baabab o (using ab o ba)$
 $baabab o ababab o (using ba o ab)$

This is an infinite loop between ababab and baabab.

Why the ARS is not terminating The ARS is not terminating because the rules $ab \to ba$ and $ba \to ab$ create infinite cycles. These rules allow us to swap adjacent a and b characters indefinitely, leading to non-terminating reduction sequences.

Non-equivalent strings Two strings that are not equivalent: a and aa.

The string a cannot be reduced further, while as reduces to nothing using the rule $aa \rightarrow$. Since nothing $\neq a$, these strings are in different equivalence classes.

Equivalence classes The equivalence relation \leftrightarrow^* has infinitely many equivalence classes. Each equivalence class can be characterized by the number of a's modulo 2 and the number of b's modulo 1.

The equivalence classes are:

- $[\varepsilon]$: strings with even number of a's and no b's
- [a]: strings with odd number of a's and no b's
- [b]: strings with any number of a's and at least one b

The normal forms are: ε , a, and b.

Modifying the ARS to be terminating To make the ARS terminating without changing equivalence classes, we can remove the symmetric rules and keep only one direction:

$$ba \to ab$$

$$aa \to \varepsilon$$

$$b \to \varepsilon$$

This eliminates the infinite cycles while preserving the same equivalence relation.

2.3.2 Semantic question

Parity of a's: "Does this string contain an odd number of a's?" Answer: Yes if the normal form is a, No if the normal form is ε .

Exercise 5b

Consider rewrite rules:

$$\begin{array}{c} ab \rightarrow ba \\ ba \rightarrow ab \\ aa \rightarrow a \\ b \rightarrow \end{array}$$

Reducing abba:

$$abba o baba$$
 $baba o abba$

Reducing bababa:

$$bababa o ababab$$
 $ababab o bababa$

Why not terminating. The symmetric swaps $ab \leftrightarrow ba$ allow infinite rewriting.

Non-equivalent strings. a and ε are not equivalent.

Equivalence classes. Exactly two: $[\varepsilon]$ (no a's; all b's delete) and [a] (at least one a; since $aa \sim a$). Normal forms (under a terminating orientation): ε and a.

Terminating variant.

$$\begin{array}{c} ba \rightarrow ab \\ aa \rightarrow a \\ b \rightarrow \end{array}$$

This gives a complete semantics to the ARS: it computes the invariant for any input string.

2.4 Week 4: HW4

2.4.1 HW4.1: Termination Proof for GCD

Consider the following algorithm:

```
while b != 0:
    temp = b
    b = a mod b
    a = temp
return a
```

Assume: Work over integers with Euclidean division: inputs $a \in \mathbb{Z}$, $b \in \mathbb{N}$; if $b \neq 0$ then $0 \leq a \mod b < b$.

Model: States $A = \mathbb{Z} \times \mathbb{N}$. One step $(a, b) \to (a', b')$ is one loop iteration.

Measure: $\phi: A \to \mathbb{N}, \ \phi(a,b) = b.$

Show: $(a,b) \rightarrow (a',b') \Rightarrow \phi(a',b') < \phi(a,b)$.

If $b \neq 0$, the update sets $b' = a \mod b$ with $0 \leq b' < b$; hence $\phi(a', b') = b' < b = \phi(a, b)$.

 ϕ strictly decreases in \mathbb{N} , so there is no infinite \rightarrow -chain; eventually b=0 and the loop stops. Thus the algorithm terminates under the stated conditions.

2.4.2 HW4.2: Termination Proof for Merge Sort

Consider the following fragment of an implementation of merge sort:

```
function merge_sort(arr, left, right):
    if left >= right:
        return
    mid = (left + right) / 2
    merge_sort(arr, left, mid)
    merge_sort(arr, mid+1, right)
    merge(arr, left, mid, right)
Prove that
\phi(\text{left}, \text{right}) = \text{right} - \text{left} + 1
is a measure function for merge sort.
Show: For
merge_sort(arr, left, right):
  if left >= right: return
    mid = floor((left + right)/2)
  merge_sort(arr, left, mid)
  merge_sort(arr, mid+1, right)
  merge(arr, left, mid, right)
```

the function $\phi(\text{left}, \text{right}) = \text{right} - \text{left} + 1$ is a strictly decreasing measure, hence merge_sort terminates.

Assume: left,right $\in \mathbb{Z}$ with $0 \le \text{left} \le \text{right} < |arr|$. Division for mid is integer. If left $\le \text{right}$, then left $\le \text{mid} < \text{right}$. merge makes no recursive calls.

Model: States are intervals $A = \{(l, r) \in \mathbb{Z}^2 \mid l \leq r\}$. A "step" is a recursive edge from (l, r) (with l < r) to each child (l, mid) and (mid + 1, r).

```
Measure: \phi: A \to \mathbb{N}, \quad \phi(l,r) = r - l + 1.
```

Let l < r and mid = $\lfloor (l+r)/2 \rfloor$ so $l \le \text{mid} < r$.

First child: $\phi(l, \text{mid}) = \text{mid} - l + 1 \le (r - 1) - l + 1 = r - l = \phi(l, r) - 1 < \phi(l, r)$.

Second child: $\phi(\text{mid} + 1, r) = r - \text{mid} \le r - l = \phi(l, r) - 1 < \phi(l, r)$.

Every recursive edge strictly decreases ϕ in \mathbb{N} , which is well-founded. Thus no infinite recursion is possible; the calls bottom out at states with $\phi \in \{0,1\}$ (i.e., left \geq right), where the function returns. Therefore $\phi(\text{left}, \text{right}) = \text{right} - \text{left} + 1$ is a valid measure and merge_sort terminates under the stated conditions.

2.5 Week 5: HW5

2.5.1 Lambda Calculus Workout Evaluation (Corrected)

Evaluate: $(\lambda f.\lambda x. f(f x))(\lambda g.\lambda y. g(g(g y)))$

Use α -renaming to avoid capture.

$$\begin{split} (\lambda f.\lambda x.\,f(f\,x))(\lambda g.\lambda y.\,g(g(g\,y))) &\to \lambda x.\,(\lambda g.\lambda y.\,g(g(g\,y))) \left((\lambda g.\lambda y.\,g(g(g\,y)))\,x\right) \\ (\lambda g.\lambda y.\,g(g(g\,y)))\,x &\to \lambda y.\,x(x(x\,y)) \quad (\alpha\text{-rename inner }y) \\ &\Rightarrow \, \lambda x.\,(\lambda g.\lambda y.\,g(g(g\,y)))\,(\lambda y.\,x(x(x\,y))) &\to \lambda x.\lambda y.\,x^9y. \end{split}$$

Hence the normal form is $\lambda f.\lambda x. f^9x$ (Church numeral 9).

2.6 Week 6: HW6

2.6.1 Fixed Point Combinator Exercise

Compute fact 3 following the computation rules for fix, let, and let rec:

Given:

$$E_0 \ = \ \operatorname{let} \ \operatorname{rec} \ \operatorname{fact} = \lambda n. \ \operatorname{if} \ n = 0 \ \operatorname{then} \ 1 \ \operatorname{else} \ n * \operatorname{fact} (n-1) \ \operatorname{in} \ \operatorname{fact} \ 3$$

Abbreviations:

$$\mathsf{F} \stackrel{\mathrm{def}}{=} \lambda f. \, \lambda n. \, \text{if } n = 0 \, \text{then } 1 \, \text{else } n * f \, (n-1)$$

$$\mathsf{FACT} \stackrel{\mathrm{def}}{=} \, \mathsf{fix} \, \mathsf{F}$$

Computation:

$$E_0 \xrightarrow{\text{def of let rec}} \text{ let fact} = \text{fix}(\lambda f.\lambda n.\text{if } n = 0 \text{ then } 1 \text{ else } n*f (n-1)) \text{ in fact } 3 \xrightarrow{\text{def of let}} (\lambda \text{fact. fact } 3) \text{ fix}(\lambda f.\lambda n.\text{if } n = 0 \text{ then } 1 \text{ else } n*f (n-1))$$

$$\xrightarrow{\beta} (\text{fix}(\lambda f.\lambda n.\text{if } n = 0 \text{ then } 1 \text{ else } n*f (n-1))) 3$$

$$\equiv \text{FACT } 3$$

$$\xrightarrow{\text{def of fix}} (\text{F FACT}) 3$$

$$\xrightarrow{\beta} (\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n*\text{FACT } (n-1)) 3$$

$$\xrightarrow{\beta} \text{ if } 3 = 0 \text{ then } 1 \text{ else } 3*\text{FACT } (3-1)$$

$$\xrightarrow{\text{arith}} 3*\text{FACT } 2$$

$$\xrightarrow{\text{def of fix}} 3*(\text{FFACT}) 2$$

$$\xrightarrow{\beta} 3*(\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n*\text{FACT } (n-1)) 2$$

$$\xrightarrow{\beta} 3*\text{ if } 2 = 0 \text{ then } 1 \text{ else } 2*\text{FACT } (2-1)$$

$$\xrightarrow{\text{arith}} 3*(2*\text{FACT } 1)$$

$$\xrightarrow{\text{def of iif}} 3*(2*\text{FACT } 1)$$

$$\xrightarrow{\beta} 3*(2*\text{ if } n = 0 \text{ then } 1 \text{ else } n*\text{FACT } (n-1)) 1)$$

$$\xrightarrow{\beta} 3*(2*\text{ if } 1 = 0 \text{ then } 1 \text{ else } 1*\text{FACT } (1-1))$$

$$\xrightarrow{\text{def of iif}} 3*(2*(1*\text{FACT } 0))$$

$$\xrightarrow{\text{arith}} 3*(2*(1*\text{FACT } 0))$$

$$\xrightarrow{\beta} 3*(2*(1*\text{FACT } 0))$$

$$\xrightarrow{\beta} 3*(2*(1*\text{ if } n = 0 \text{ then } 1 \text{ else } n*\text{FACT } (n-1)) 0))$$

$$\xrightarrow{\beta} 3*(2*(1*\text{ if } n = 0 \text{ then } 1 \text{ else } n*\text{FACT } (n-1)))$$

$$\xrightarrow{\text{def of iif}} 3*(2*(1*\text{ if } n = 0 \text{ then } 1 \text{ else } n*\text{FACT } (n-1)) 0))$$

$$\xrightarrow{\beta} 3*(2*(1*\text{ if } n = 0 \text{ then } 1 \text{ else } n*\text{FACT } (n-1)))$$

$$\xrightarrow{\text{def of iif}} 3*(2*(1*\text{ if } n = 0 \text{ then } 1 \text{ else } n*\text{FACT } (n-1)) 0))$$

$$\xrightarrow{\beta} 3*(2*(1*\text{ if } n = 0 \text{ then } 1 \text{ else } n*\text{FACT } (n-1)))$$

$$\xrightarrow{\text{def of iif}} 3*(2*(1*\text{ if } n = 0 \text{ then } 1 \text{ else } n*\text{FACT } (n-1)))$$

$$\xrightarrow{\text{def of iif}} 3*(2*(1*\text{ if } 0 = 0 \text{ then } 1 \text{ else } n*\text{FACT } (n-1)))$$

Result: fact 3 = 6

2.7 Week 7: Parse Trees Exercise

2.7.1 String: 2+1

2.7.2 String: 1 + 2 * 3

2.7.3 String: 1 + (2 * 3)

2.7.4 String: (1+2)*3

2.7.5 String: 1 + 2 * 3 + 4 * 5 + 6

- 3 Essay
- 4 Evidence of Participation
- 5 Conclusion

References

[BLA] Author, Title, Publisher, Year.