CONTINUOUS REAL-VALUED FUNCTIONS

ARDEN RASMUSSEN

1. Basic Properties

Suppose that $f, g: \Omega \to \mathbb{R}$ are continuous. Show that the following functions are also continuous:

- (a) f + g and f g
- (b) $f \cdot g$
- (c) $c \cdot f$, where c is some constant
- (d) f/g, provided $g \neq 0$

1.a.

Proof. Let $\varepsilon > 0$. We assume $f, g: \Omega \to \mathbb{R}$ are continuous. Assume that the sequence $x_n \to x_*$. Let $N_f, N_g \in \mathbb{N}$ such that

$$n > N_f \implies |f(x_n) - f(x_*)| < \frac{\varepsilon}{2}$$

 $n > N_g \implies |g(x_n) - g(x_*)| < \frac{\varepsilon}{2}$

Take $N = max(N_f, N_g)$. Thus when n > N both of the previous statements are true. Consider

$$|(f+g)(x_n) - (f+g)(x_*)|$$

$$= |f(x_n) + g(x_n) - f(x_*) - g(x_*)|$$

$$= |(f(x_n) - f(x_*)) + (g(x_n) - g(x_*))|$$

$$\leq |f(x_n) - f(x_*)| + |g(x_n) - g(x_*)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \quad \text{when } n > N$$

$$= \varepsilon$$

Date: October 20, 2018.

Now we can conclude that $(f+g)(x_n) \to (f+g)(x_*)$ and thus f+g must be continuous. Now consider

$$|(f - g)(x_n) - (f - g)(x_*)|$$

$$= |f(x_n) - g(x_n) - f(x_*) + g(x_*)|$$

$$= |(f(x_n) - f(x_*)) + (g(x_*) - g(x_n))|$$

$$\leq |f(x_n) - f(x_*)| + |g(x_*) - g(x_n)|$$

$$= |f(x_n) - f(x_*)| + |g(x_n) - g(x_*)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \quad \text{when } n > N$$

$$= \varepsilon$$

We can see that $(f-g)(x_n) \to (f-g)(x_*)$ and thus f-g must be continuous.

1.b.

Proof. Let $\varepsilon > 0$. We define M such that

$$M = \max(\{|f(x_*)|, |g(x_*)|, 1\})$$

Let $N \in \mathbb{N}$ such that

$$n > N \implies \begin{cases} |f(x_n) - f(x_*)| < \frac{\varepsilon}{3M} \\ |g(x_n) - g(x_*)| < \frac{\varepsilon}{3M} \end{cases}$$

Consider

$$\begin{split} &|(f \cdot g)(x_n) - (f \cdot g)(x_*)| \\ &= |f(x_n)g(x_n) - f(x_*)g(x_*)| \\ &= |f(x_n)g(x_n) - f(x_n)g(x_*) + f(x_n)g(x_*) - f(x_*)g(x_*)| \\ &= |f(x_n)(g(x_n) - g(x_*)) + g(x_*)(f(x_n) - f(x_*))| \\ &\leq |f(x_n)(g(x_n) - g(x_*))| + |g(x_*)(f(x_n) - f(x_*))| \\ &= |f(x_n)||g(x_n) - g(x_*)| + |g(x_*)||f(x_n) - f(x_*)| \\ &\mathrm{Since}\ |g(x_*)| \leq M\ \mathrm{and}\ |f(x_n)| < M + \frac{\varepsilon}{3M} \\ &< \left(M + \frac{\varepsilon}{3M}\right)|g(x_n) - g(x_*)| + M|f(x_n) - f(x_*)| \\ &< \left(M + \frac{\varepsilon}{3M}\right)\frac{\varepsilon}{3M} + M\frac{\varepsilon}{3M}\ \mathrm{when}\ n > N \\ &= \frac{\varepsilon}{3} + \frac{\varepsilon^2}{9M^2} + \frac{varepsilon}{3} \\ &\mathrm{Since}\ M \geq 1\ \mathrm{then}\ \mathrm{we}\ \mathrm{know} \\ &= \varepsilon \end{split}$$

2. Composition

Suppose $f:U\to\mathbb{R}$ and $g:V\to\mathbb{R}$ are continuous, and that $f(U)\subset V$. Show that $g\circ f:U\to\mathbb{R}$ is continuous.

3. Examples

- (a) Show that all polynomial functions are continuous
- (b) Show that $f:(0,\infty)\to\mathbb{R}$ given by $f(x)=\frac{1}{x}$ is continuous.

4. Non-Example

Let $\sigma: \mathbb{R} \to \mathbb{R}$ is given by

$$\sigma(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

Show that σ is not continuous.

5. The Square Root Function

Consider the square root function $f:[0,\infty)\to\mathbb{R}$ given by $f(x)=\sqrt{x}$.

(a) Show that the square root function is *strictly increasing*, meaning that

$$a < b \implies \sqrt{a} < \sqrt{b}$$

(b) Show that the square root function is continuous.

6. Intermediate Value Theorem

Suppose that $f:[a,b] \to \mathbb{R}$ is continuous and that y_* is between f(a) and f(b). Prove that there exists $x_* \in [a,b]$ such that $f(x_*) = y_*$.

7. $\varepsilon - \delta$ Criterion for Continuity

Show that the following are equivalent:

- (a) $f: \Omega \to \mathbb{R}$ is continuous at $x_* \in \Omega$.
- (b) For each $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x \in \Omega$ we have

$$|x - x_*| < \delta \implies |f(x) - f(x_*)| < \varepsilon$$

Then illustrate the second condition with a picture.

8. Example

Show directly that the function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ satisfies condition (b) above at $x_* = 2$.

9. Examples

- (a) Show that $f:[0,1]\to\mathbb{R}$ given by $f(x)=x^2$ is uniformly continuous. (b) Show that $f:[1,\infty)\to\mathbb{R}$ given by $f(x)=\frac{1}{x}$ is uniformly continuous. (c) Show that $f:(0,\infty)\to\mathbb{R}$ given by $f(x)=\frac{1}{x}$ is not uniformly continuous.