

FORESEE LPDDR4

NCLD4C1MA256M32 NCLD4C2MA512M32 NCLD4C2MA768M32 NCLD4C2MA001G32

Datasheet

Version: B2

2017.08.01

LONGSYS ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Longsys Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other-wise.

Longsys products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

For updates or additional information about Longsys products, contact your nearest Longsys office.

All brand names, trademarks and registered trademarks belong to their respective owners.

© 2015 Shenzhen Longsys Electronics Co., Ltd. All rights reserved.

Revision History

Revision Number	Description	Revision Date
В0	Initial release.	2017.06
B1	Add die information	2017.07
B2	Modification 2 place discrption	2017.08

Table of content

Features	5
Options	5
Table 1: Key Timing Parameters	6
SDRAM Addressing	6
Table 2: Device Addressing	6
LPDDR4 Part Number Decode	7
Package Block Diagrams	8
Single-Die, Dual-Channel Package Block Diagram	8
Dual-Die, Dual-Channel Package Block Diagram	9
3-die,Dual-Channel Package Block Diagram	10
Quad-Die, Dual-Channel Package Block Diagram	11
Ball Assignments and Descriptions	12
200-Ball Dual-Channel Discrete VFBGA	12
Ball/Pad Descriptions	13
Package Dimensions	14
I _{DD} Specification Parameters and Operating Conditions	15
Absolute Maximum DC Ratings	16
Recommended DC Operating Conditions	16
Initialization Timing Parameters	18
AC Timing	18
Clock Timing	18
Read Output Timing	19
Write Timing	20

Features

- Ultra-low-voltage core and I/O power supplies
 - VDD1 = 1.70-1.95V; 1.8V nominal
 - VDD2/VDDQ = 1.06-1.17V; 1.10V nominal
- Frequency range
 - up to 1600 -10 MHz (data rate range: 3200-20 Mb/s/pin)
- 16n prefetch DDR architecture
- 2-channel partitioned architecture for low RD/WR energy and low average latency
- 8 internal banks per channel for concurrent opera- tion
- Single-data-rate CMD/ADR entry
- Bidirectional/differential data strobe per byte lane
- Programmable READ and WRITE latencies (RL/WL)
- Programmable and on-the-fly burst lengths (BL =16, 32)
- Directed per-bank refresh for concurrent bank operation and ease of command scheduling
- Up to 12.8 GB/s per die (2 channels x 6.4 GB/s)
- On-chip temperature sensor to control self refresh rate
- Partial-array self refresh (PASR)
- Selectable output drive strength (DS)
- Clock-stop capability
- RoHS-compliant, "green" packaging
- Programmable VSSQ (ODT) termination

Options

- VDD1/VDD2: 1.8V/1.1V
- Array configuration
 - 256 Meg x 32 (2 channels x16 I/O)
 - 512 Meg x 32 (2 channels x16 I/O)
 - 768 Meg x 32 (2 channels x16 I/O)
 - 1024 Meg x 32 (2 channels x8 I/O x 2)
- Device configuration
 - 256M16 x 2 channel x 1 die
 - 256M16 x 2 channel x 2 die
 - 256M16 x 2 channel x 3 die
 - 512M8 x 2 channel x 4 die
- FBGA "green" package
 - 200-ball VFBGA (10mm x 14.5mm x 0.95mm)
- Speed grade, cycle time
 - 625ps @ RL = 28/32 (x16 device)
 - 625ps @ RL = 32/36 (x8 device)
- Operating temperature range
 - -30°C to +85°C

Revision

- B1

Table 1: Key Timing Parameters

					WRITE Latency		READ Latency	
Part Number	Array configuration	Device Type	Clock Rate (MHz)	Data Rate (Mb/s/pin)	Set A	Set B	DBI Disabled	DBI Enabled
NCLD4C1MA256M32	256Mb x 32							
NCLD4C2MA512M32	512Mb x 32	x16 device	1600	3200	14	26	28	32
NCLD4C2MA768M32	768Mb x 32							
NCLD4C2MA001G32	1024Mb x 32	x8 device	1600	3200	14	26	32	36

SDRAM Addressing

The table below shows the addressing for the 8Gb die density. Where applicable, a distinction is made between per-channel and per-die parameters. All bank, row, and column addresses are shown per-channel.

Table 2: Device Addressing

Configuration	256M32 (8Gb)	512M32	768M32	1024M32	
Die per package	1	2	3	4	
Device density	8Gb	8Gb	8Gb	8Gb	
(per die)	OGD	OGD	000	OGD	
Device density	4Gb	8Gb	12Ch	16Ch	
(per channel)	4GD	9GD	12Gb	16Gb	
	32Mb x 16 DQ x 8	32Mb x 16 DQ x 8	64Mb x8 DQ x 8banks x 2 channels	64Mb x 8 DQ x 8	
Configuration	banks x 2channels	banks x 2channels	x 2 ranks + 32Mb x	•	
	x 1 rank	x 2 ranks	16 DQ x 2 channels x 1rank		
Number of		2		2	
channels (per die)	2	2	2	2	
Number of ranks	4	2	1/1600\/2/000\	2	
per channel	1	2	1(16DQ)/2(8DQ)	2	
Number of banks (per channel)	8	8	8	8	

Array pr (bits)(pe	efetch r channel)	256	256	192	128
Number of rows (per bank)		32,768	32,768	65536(8DQ)/32768 (16DQ)	65,536
	of columns	64	64	32(8DQ)/64(16DQ)	32
Page size (bytes)		2048	2048	1024(8DQ)/2048 (16DQ)	1024
Channel density (bits per channel)		4,294,967,296	8,589,934,592	12,884,901,888	17,179,869,184
Total density (bits per die)		8,589,934,592	8,589,934,592	8,589,934,592	8,589,934,592
Bank address		BA[2:0]	BA[2:0]	BA[2:0]	BA[2:0]
v16	Row	R[14:0]	R[14:0]	R[14:0]	_
x16 Column		C[9:0]	C[9:0]	C[9:0]	_
Row			_	R[15:0]	R[15:0]
x8 Column			_	C[9:0]	C[9:0]
Burst sta	arting	64-bit	64-bit	64-bit	64-bit

Notes:

- 1. The lower two column addresses (C0-C1) are assumed to be zero and are not transmitted on the CA bus.
- 2. Row and column address values on the CA bus that are not used for a particular density are "Don't Care."
- 3. Refer to Byte Mode section for further information about 1024M32 (32Gb) configuration.

LPDDR4 Part Number Decode

Package Block Diagrams

Single-Die, Dual-Channel Package Block Diagram

Dual-Die, Dual-Channel Package Block Diagram

Note:

1. ODT_CA for Rank 0 of each channel is wired to the respective ODT ball. ODT_CA for Rank 1 of each channel is wired to V_{SS} in the package.

3-die, Dual-Channel Package Block Diagram

Quad-Die, Dual-Channel Package Block Diagram

Note:

1. ODT_CA for Rank 0 of each channel is wired to the respective ODT ball. ODT_CA for Rank 1 of each channel is wired to V_{SS} in the package.

Ball Assignments and Descriptions

200-Ball Dual-Channel Discrete VFBGA

	1	2	3	4	5	6	7	8
Α	DNU	DNU	VSS	VDD2	ZQ0			ZQ1
В	DNU	DQ0_A	VDDQ	DQ7_A	VDDQ			VDDQ
C	VSS	DQ1_A	DMI0_A	DQ6_A	VSS			VSS
D	VDDQ	VSS	DQS0_T_A	VSS	VDDQ			VDDQ
E	VSS	DQ2_A	DQS0_C_ A	DQ5_A	VSS			VSS
F	VDD1	DQ3_A	VDDQ	DQ4_A	VDD2			VDD2
G	VSS	ODT_CA_ A	VSS	VDD1	VSS			VSS
Н	VDD2	CA0_A	CS1_A	CS0_A	VDD2			VDD2
J	VSS	CA1_A	VSS	CKE0_A	CKE1_A			CK_t_A
К	VDD2	VSS	VDD2	VSS	CS2_A			CKE2_A
L M						•		
N	VDD2	VSS	VDD2	VSS	CS2_B			CKE2_B
Р	VSS	CA1_B	vss	CKE0_B	CKE1_B			CK_T_B
R	VDD2	CA0_B	CS1_B	CS0_B	VDD2			VDD2
Т	VSS	ODT_CA_ B	vss	VDD1	VSS			VSS
U	VDD1	DQ3_B	VDDQ	DQ4_B	VDD2			VDD2
٧	VS S	DQ2_B	DQS0_C_ B	DQ5_B	VSS			VSS
w	VDDQ	VSS	DQS0_T_B	VSS	VDDQ			VDDQ
Υ	VSS	DQ1_B	DMI0_B	DQ6_B	VSS			VSS
AA	DNU	DQ0_B	VDDQ	DQ7_B	VDDQ			VDDQ
АВ	DNU	DNU	VSS	VDD2	VSS			VSS

8	9	10	11	12
ZQ1	VDD2	VSS	DNU	DNU
VDDQ	DQ15_A	VDDQ	DQ8_A	DNU
VSS	DQ14_A	DMI1_A	DQ9_A	VSS
VDDQ	vss	DQS1_T_A	vss	VDDQ
VSS	DQ13_A	DQS1_C_ A	DQ10_A	VSS
VDD2	DQ12_A	VDDQ	DQ11_A	VDD1
VSS	VDD1	VSS	ZQ2	VSS
VDD2	CA2_A	CA3_A	CA4_A	VDD2
CK_t_A	CK_c_A	VSS	CA5_A	VSS
CKE2_A	VSS	VDD2	vss	VDD2

CKE2_B	VSS	VDD2	VSS	VDD2
CK_T_B	CK_C_B	VSS	CA5_B	VSS
VDD2	CA2_B	CA3_B	CA4_B	VDD2
VSS	VDD1	VSS	RESET_N	VSS
VDD2	DQ12_B	VDDQ	DQ11_B	VDD1
VSS	DQ13_B	DQS1_C_ B	DQ10_B	VSS
VDDQ	vss	DQS1_T_B	vss	VDDQ
VSS	DQ14_B	DMI1_B	DQ9_B	VSS
VDDQ	DQ15_B	VDDQ	DQ8_B	DNU
VSS	VDD2	VSS	DNU	DNU

Ball/Pad Descriptions

Symbol	Туре	Description
CK_t_A, CK_c_A,CK_t_B,	Input	Clock: CK_t and CK_c are differential clock inputs. All
CK_c_B		address, command and control input signals are sampled on
		positive edge of CK_t and the negative edge of CK_c. AC
		timings for CA parameters are referenced to clock. Each
		channel (A, B) has its own clock pair.
CKE0_A, CKE1_A,CKE0_B,	Input	Clock enable: CKE HIGH activates and CKE LOW deactivates
CKE1_B		the internal clock signals, input buffers, and output drivers.
		Power-saving modes are entered and exited via CKE
		transitions. CKE is sampled at the rising edge of CK.
CS0_A, CS1_A, CS0_B,CS1_B	Input	Chip select: Each channel (A, B) has its own CS signals.
CA[5:0]_A, CA[5:0]_B	Input	Command/address inputs: Provide the command and
		address inputs according to the command truth table. Each
		channel (A, B) has its own CA signals.
ODT_CA_A, ODT_CA_B	Input	CA ODT Control: The ODT_CA pin is used in conjunction with
		the mode register to turn on/off the on-die termination for
		CA pins. It is bonded to V_{DD2} within the package,or at the
		package ball, for the terminating rank, and the non-
		terminating ranks are bonded to V_{SS} (or left floating with a
		weak pull-down on the DRAM die). The terminating rank is
		the DRAM that terminates the CA bus for all die on the same
		channel.
DQ[15:0]_A, DQ[15:0]_B	I/O	Data input/output: Bidirectional data bus.
DQS[1:0]_t_A,DQS[1:0]_c_A,	I/O	Data strobe: DQS_t and DQS_c are bi-directional differential
DQS[1:0]_t_B,DQS[1:0]_c_B		output clock signals used to strobe data during a READ or
		WRITE. The data strobe is generated by the DRAM for a
		READ and is edge-aligned with data. The data strobe is
		generated by the SoC memory controller for a WRITE and is
		trained to precede data. Each byte of data has a data strobe
		signal pair. Each channel (A, B) has its own DQS_t and
		DQS_c strobes.
DMI[1:0]_A,DMI[1:0]_B	I/O	Data Mask/Data Bus Inversion: DMI is a dual use bi-
		directional signal used to indicate data to be masked, and
		data which is inverted on the bus. For data bus inversion
		(DBI),the DMI signal is driven HIGH when the data on the
		data bus is inverted, or driven LOW when the data is in its
		normal state. DBI can be disabled via a mode register
		setting. For data mask, the DMI signal is used in combination
		with the data lines to indicate data to be masked in a MASK
		WRITE command (see the Data Mask (DM) and Data Bus
		Inversion (DBI) sections for details). The data mask function
		can be disabled via a mode register setting. Each byte of

		data has a DMI signal. Each channel has its Own DMI
		signals.
ZQ0, ZQ1	Reference	ZQ Calibration Reference: Used to calibrate the output drive
		strength and the termination resistance. There is one ZQ pin
		per die. The ZQ pin shall be connected to V_{DDQ} through a
		$240\Omega \pm 1\%$ resistor.
V _{DDQ} , V _{DD1} , V _{DD2}	Supply	Power supplies: Isolated on the die for improved noise
		immunity.
V _{SS}	Supply	Ground Reference: Power supply ground reference.
RESET_n	Input	RESET: When asserted LOW, the RESET pin resets both
		channels of the die.
DNU	-	Do not use: Must be grounded or left floating.
NC	-	No connect: Not internally connected.

Package Dimensions

Notes:

- 1. All dimensions are in millimeters.
- 2. The package height does not include room temperature warpage.

\mathbf{I}_{DD} Specification Parameters and Operating Conditions

Single Die Parameter

Parameter/Condition	Symbol	PowerSu pply	Current	No tes
Operating one bank active-precharge current:	I_{DD01}	V _{DD1}	7mA	tes
tCK=tCK(MIN);tRC=tRC(MIN); CKE is HIGH; CS is LOW between valid	I_{DD02}	V _{DD2}	80mA	
commands;CA bus inputs are switching; Data bus inputs are	*DD02	♥ 002	1.5mA	
stable;ODT is disabled	I_{DD0Q}	V_{DDQ}	1.5111A	2
Idle power-down standby current: ^t CK = ^t CK (MIN); CKE is LOW; CS is	I _{DD2P1}	V _{DD1}	2mA	
LOW; All banks are idle; CA bus inputs are switching; Data bus inputs	I _{DD2P2}	V_{DD2}	3.5mA	
are stable; ODT is disabled	I_{DD2PQ}	V_{DDQ}	1.5mA	2
Idle power-down standby current with clock stop: $CK_t = LOW$, $CK_c = LOW$	I _{DD2PS1}	V_{DD1}	2mA	
HIGH; CKE is LOW; CS is LOW; All banks are idle; CA bus inputs are	I _{DD2PS2}	V_{DD2}	3.5mA	
stable; Data bus inputs are stable; ODT is disabled	I_{DD2PSQ}	V_{DDQ}	1.5mA	2
Idle non-power-down standby current: ${}^{t}CK = {}^{t}CK$ (MIN); CKE is HIGH;	I _{DD2N1}	V_{DD1}	2mA	
CS is LOW; All banks are idle; CA bus inputs are switching; Data bus	I _{DD2N2}	V_{DD2}	45mA	
inputs are stable; ODT is disabled	I_{DD2NQ}	V_{DDQ}	1.5mA	2
Idle non-power-down standby current with clock stopped:CK_t =	I _{DD2NS1}	V_{DD1}	2mA	
LOW; CK_c = HIGH; CKE is HIGH; CS is LOW; All banks are idle; CA		V_{DD2}	25mA	
bus inputs are stable; Data bus inputs are stable; ODT is disabled	I _{DD2NSQ}	V_{DDQ}	1.5mA	2
Active power-down standby current: ^t CK = ^t CK (MIN); CKE is LOW; CS		V _{DD1}	2mA	
is LOW; One bank is active; CA bus inputs are switching; Data bus	I_{DD3P2}	V_{DD2}	10mA	
inputs are stable; ODT is disabled	I_{DD3PQ}	V_{DDQ}	1.5mA	2
Active power-down standby current with clock stop: CK_t = LOW,	I _{DD3PS1}	V_{DD1}	2mA	
CK_c = HIGH; CKE is LOW; CS is LOW; One bank is active; CA bus	I _{DD3PS2}	V_{DD2}	10mA	
inputs are stable; Data bus inputs are stable; ODT is disabled	I _{DD3PSQ}	V_{DDQ}	1.5mA	3
Active non-power-down standby current: ${}^{t}CK = {}^{t}CK$ (MIN);CKE is	I_{DD3N1}	V_{DD1}	4mA	
HIGH; CS is LOW; One bank is active; CA bus inputs are switching;	I_{DD3N2}	V_{DD2}	57mA	
Data bus inputs are stable; ODT is disabled	I_{DD3NQ}	V_{DDQ}	1.5mA	3
Active non-power-down standby current with clock stopped: $CK_t =$	I _{DD3NS1}	V_{DD1}	4mA	
LOW, CK_c = HIGH; CKE is HIGH; CS is LOW; One bank is active; CA	I_{DD3NS2}	V_{DD2}	40mA	
bus inputs are stable; Data bus inputs are stable; ODT is disabled	I_{DD3NSQ}	V_{DDQ}	1.5mA	3
Operating burst READ current: ${}^{t}CK = {}^{t}CK$ (MIN); CS is LOW between	I_{DD4R1}	V _{DD1}	5mA	
valid commands; One bank is active; $BL = 16$ or 32; $RL = RL(MIN)$;	I_{DD4R2}	V_{DD2}	450mA	
CA bus inputs are switching; 50% data change each bursttransfer; ODT is disabled	I_{DD4RQ}	V_{DDQ}	270mA	4
Operating burst WRITE current: ^t CK = ^t CK (MIN); CS is LOW between	I_{DD4W1}	V_{DD1}	5mA	
valid commands; One bank is active; $BL = 16$ or 32; $WL = WL(MIN)$;	I _{DD4W2}	V_{DD2}	350mA	
CA bus inputs are switching; 50% data change each burst transfer; ODT is disabled	I _{DD4WQ}	V_{DDQ}	100mA	3
	I _{DD51}	V_{DD1}	20mA	

All-bank REFRESH burst current: ^t CK = ^t CK (MIN); CKE is	I_{DD52}	V_{DD2}	170mA	
HIGHbetween valid commands; ^t RC = ^t RFCab (MIN); Burst refresh; CA	T	V_{DDQ}	1.5mA	3
bus inputs are switching; Data bus inputs are stable; ODT is disabled	$ m I_{DD5Q}$	V DDQ)
All-bank REFRESH average current: tCK = tCK (MIN); CKE is High	I_{DD5AB1}	V_{DD1}	4mA	
between valid commands tRC = tREFI; CA bus inputs are switching;	I_{DD5AB2}	V_{DD2}	60mA	
Data bus inputs are stable; ODT is disabled	I_{DD5ABQ}	V_{DDQ}	1.5mA	3
Per-bank REFRESH average current: ${}^{t}CK = {}^{t}CK$ (MIN); CKE is High	I_{DD5PB1}	V_{DD1}	4mA	
between valid commands tRC = tREFI; CA bus inputs are switching;	I _{DD5PB2}	V_{DD2}	60mA	
Data bus inputs are stable; ODT is disabled	I_{DD5PBQ}	V_{DDQ}	1.5mA	3
Power-down self refresh current: CK_t = LOW, CK_c = HIGH; CKE is	I_{DD61}	V_{DD1}	0.4mA	5,6
LOW; CA bus inputs are stable; Data bus inputs are stable; Maximum	I_{DD62}	V_{DD2}	0.7mA	5,6
1x self refresh rate; ODT is disabled(25℃)	т	V	0.1mA	3,5
	${ m I}_{ m DD6Q}$	V_{DDQ}		,6

Notes:

- 1. ODT disabled: MR11[2:0] = 000b.
- 2. I_{DD} current specifications are tested after the device is properly initialized.
- 3. Measured currents are the summation of V_{DDQ} and V_{DD2} .
- 4. Guaranteed by design with output load = 5pF and $R_{ON} = 40$ ohm.
- 5. The 1x self refresh rate is the rate at which the device is refreshed internally during self refresh before going into the elevated temperature range.
- 6. This is the general definition that applies to full-array self refresh.
- 7. For all I_{DD} measurements, $V_{IHCKE} = 0.8 \times V_{DD2}$; $V_{ILCKE} = 0.2 \times V_{DD2}$.

Absolute Maximum DC Ratings

Parameter	Symbol	Min	Max	Unit	Notes
V_{DD1} supply voltage relative to V_{SS}	V_{DD1}	-0.4	2.1	٧	1
V_{DD2} supply voltage relative to V_{SS}	V_{DD2}	-0.4	1.5	٧	1
V_{DDQ} supply voltage relative to V_{SS}	V_{DDQ}	-0.4	1.5	٧	1
Voltage on any ball relative to V _{SS}	V _{IN} , V _{OUT}	-0.4	1.5	٧	
Storage temperature	T _{STG}	-55	125	$^{\circ}\!\mathbb{C}$	2

Notes:

- 1. For information about relationships between power supplies, see the Voltage Ramp and Device Initialization section.
- 2. Storage temperature is the case surface temperature on the center/top side of the device. For measurement conditions, refer to the JESD51-2 standard.

Recommended DC Operating Conditions

Symbol	Min	Тур	Max	DRAM	Unit	Notes
V_{DD1}	1.7	1.8	1.95	Core 1 power	V	1,2
V_{DD2}	1.06	1.1	1.17	Core 2 power/Input buffer	V	1,2,3
				power		
V_{DDQ}	1.06	1.1	1.17	I/O buffer power	V	2,3

Notas:

- 1. VDD1 uses significantly less power than VDD2.
- 2. The voltage range is for DC voltage only. DC voltage is the voltage supplied at the DRAM and is inclusive of all noise up to 20 MHz at the DRAM package ball.
- 3. The voltage noise tolerance from DC to 20 MHz exceeding a peak-to-peak tolerance of 45mV at the DRAM ball is not included in the TdIVW.

Symbol	Parameter	Min	Тур	Max	Unit	Notes
V _{REF(CA),max_r0}	V _{REF(CA)} range-0 MAX operating point	30%	-	-	V _{DD2}	1,11
V _{REF(CA),min_r0}	V _{REF(CA)} range-0 MIN operating point			10%	V _{DD2}	1,11
V _{REF(CA),max_r1}	$V_{\text{REF(CA)}}$ range-1 MAX operating point	42%			V _{DD2}	1,11
V _{REF(CA),min_r1}	$V_{\text{REF(CA)}}$ range-1 MIN operating point			22%	V _{DD2}	1,11
V _{REF(CA),step}	V _{REF(CA)} step size	0.30%	0.40%	0.50%	V_{DD2}	2
V _{REF(CA),set_tol}	V _{REF(CA)} set tolerance	- 1.00%	0.00%	1.00%	V_{DD2}	3,4,6
		- 0.10%	0.00%	0.10%	V_{DD2}	3,5,7
tVREF_TIME-SHORT	V _{REF(CA)} step time			100	ns	8
tVREF_TIME-MIDDLE				200	ns	12
tVREF_TIME-LONG				500	ns	9
tV _{REF_time_weak}				1	ms	13,14
V _{REF(CA)_val_tol}	V _{REF(CA)} valid tolerance	- 0.10%	0.00%	0.10%	V_{DD2}	10

Notes:

- 1. $V_{REF(CA)}$ DC voltage referenced to $V_{DD2(DC)}$.
- 2. $V_{REF(CA)}$ step size increment/decrement range. $V_{REF(CA)}$ at DC level.
- 3. $V_{REF(CA)}$, $new = V_{REF(CA)}$, old + n × $V_{REF(CA)}$, step; n = number of steps; if increment, use "+"; if decrement, use "-".
- 4. The minimum value of $V_{REF(CA)}$ setting tolerance = $V_{REF(CA),new}$ 1.0% × V_{DD2} . The maximum value of $V_{REF(CA)}$ setting tolerance = $V_{REF(CA),new}$ + 1.0% × V_{DD2} . For n > 4.
- 5. The minimum value of $V_{REF(CA)}$ setting tolerance = $V_{REF(CA),new}$ 0.10% × V_{DD2} . The maximum value of $V_{REF(CA)}$ setting tolerance = $V_{REF(CA),new}$ + 0.10% × V_{DD2} . For n < 4.
- 6. Measured by recording the minimum and maximum values of the $V_{REF(CA)}$ output over the range, drawing a straight line between those points and comparing all other $V_{REF(CA)}$ output settings to that line.
- 7. Measured by recording the minimum and maximum values of the $V_{REF(CA)}$ output across four consecutive steps (n = 4), drawing a straight line between those points and comparing all other $V_{REF(CA)}$ output settings to that line.
- 8. Time from MRW command to increment or decrement one step size for $V_{REF(CA)}$.
- 9. Time from MRW command to increment or decrement $V_{REF,min}$ to $V_{REF,max}$ or $V_{REF,max}$ to $V_{REF,min}$ change across the V_{REF} range in V_{REF} voltage.
- 10. Only applicable for DRAM component level test/characterization purposes. Not applicable for normal mode of operation. V_{REF} valid is to qualify the step times which will be characterized at the component level.
- 11. DRAM range-0 or range-1 set by MR12 OP[6].
- 12. Time from MRW command to increment or decrement more than one step size up to a full range of VREF voltage within the same $V_{REF(CA)}$ range.

- 13. Applies when VRCG high current mode is not enabled, specified by MR13 [OP3] = 0b.
- 14. ${}^tV_{REF}$ _time_weak covers all V_{REF} _CA) range and value change conditions are applied to ${}^tV_{REF}$ _TIME-SHORT/MIDDLE/LONG.

Initialization Timing Parameters

Parameter	Min	Max	Unit	Comment
tINIT0	-	20	ms	Maximum voltage ramp time
tINIT1	200	-	μS	Minimum RESET_n LOW time after completion of voltage ramp
tINIT2	10	-	ns	Minimum CKE LOW time before RESET_n goes HIGH
tINIT3	2	-	ms	Minimum CKE LOW time after RESET_n goes HIGH
tINIT4	5	-	tCK	Minimum stable clock before first CKE HIGH
tINIT5	2	-	μS	Minimum idle time before first MRW/MRR command
tCKb	Note 1, 2	Note 1, 2	ns	Clock cycle time during boot

Notes:

- 1. Minimum tCKb guaranteed by DRAM test is 18ns.
- 2. The system may boot at a higher frequency than dictated by minimum tCKb. The higher boot frequency is system dependent.

AC Timing

Clock Timing

		Min/		Data	a Rate			
Parameter	Symbol	Max	1600	2133	2667	3200	Unit	
Average electropied	tCV(nva)	Min	1250	937	750	625	ps	
Average clock period	^t CK(avg)	Max	100	100	100	100	ns	
Average HIGH pulse width	^t CH(avg)	Min		0	.46		tCK(a	
Average High pulse width	*Cri(avg)	Max		0	.54		vg)	
Average LOW pulse width	tCl (ava)	Min		0	.46		tCK(a	
Average LOW pulse width	^t CL(avg)	Max		0	.54		vg)	
Absolute clock period	^t CK(abs)	Min	tCK(avg)min + tJIT(per)min					
Absolute clock HIGH pulse	^t CH(abs)	Min			tCK(a			
width	CH(abs)	Max		0	.57		vg)	
Absolute clock LOW pulse	tCl (aba)	Min	0.43				tCK(a	
width	^t CL(abs)	Max		0	.57		vg)	
Clast paried iittar	tJIT(per)a	Min	- 70	TBD	TBD	-40	20	
Clock period jitter	llowed	Max	70	TBD	TBD	40	ps	
Maximum clock jitter between	tIIT(cc)all							
two consecutiveclock cycles	tJIT(cc)all owed	max	140	TBD	TBD	80	ps	
(includes clockperiod jitter)	oweu							

Read Output Timing

Parameter		Min/	n/ Data Rate						
	Symbol	Max	1600	Unit					
DQS output access time from		Min							
CK_t/CK_c	^t DQSCK	Max			500		ps		
DQS output access time from	tDQSCK_			ps/mV					
CK_t/CK_c - voltage variation	VOLT	Max		7					
DQS output access time from CK_t/CK_c-temperature variation	^t DQSCK_ TEMP	Max		4					
CK to DQS rank to rank	tDQSCK_r	N4			1.0				
variation	ank2rank	Max			1.0		ns		
DQS_t, DQS_c to DQ skew total, per group, per access (DBI Disabled)	^t DQSQ	Max		C	0.18		UI		
DQ output hold time total from DQS_t, DQS_c (DBI Disabled)	tQH	Min		ps					
Data output valid window time total, per pin (DBI-Disabled)	^t QW_total	Min	0.75 0.73			0.68	UI		
DQS_t, DQS_c to DQ skew total, per group, per access (DBI-Enabled)	^t DQSQ_D BI	Max		UI					
DQ output hold time total from DQS_t, DQS_c (DBI-Enabled)	^t QH_DBI	Min			ps				
Data output valid window time total, per pin (DBI-Enabled)	^t QW_total _DBI	Min	0.75 0.73		0.68	UI			
DQS_t, DQS_c differential output LOW time (DBI-Disabled)	^t QSL	Min		^t CK(avg)					
DQS_t, DQS_c differential output HIGH time (DBI-Disabled)	^t QSH	Min		^t CK(avg)					
DQS_t, DQS_c differential output LOW time (DBI-Enabled)	^t QSL-DBI	Min		^t CK(avg)					
DQS_t, DQS_c differential output HIGH time (DBI-Enabled)	^t QSH-DBI	Min		^t CK(avg)					
Read preamble	^t RPRE	Min		,	1.8		tCK(avg)		

Rev B2 NCLD4CXMAXXXX32

Read postamble	^t RPST	Min	0.4 (or 1.4 if extra postamble is programmed in MR)	tCK(avg)	
DQS Low-Z from clock	tLZ(DQS)	Min	(RL x ^t CK)+ ^t DQSCK(Min) - (^t RPRE(Max) x ^t CK) - 200ps	ps	
DQ Low-Z from clock	tLZ(DQ)	Min	(RL x ^t CK) + ^t DQSCK(Min) - 200ps	ps	
DQS High-Z from clock		Min	$(RL \times {}^{t}CK) + {}^{t}DQSCK(Max) + (BL/2 \times {}^{t}CK) +$	nc	
	tHZ(DQS)	141111	(tRPST(Max) xtCK) - 100ps	ps	
DQ High-Z from clock	High-Z from clock $^{t}HZ(DO)$ Min $^{t}HZ(DO)$ Min $^{t}HZ(DO)$ Min $^{t}HZ(DO)$ (RL x $^{t}CK)$ + $^{t}DQSCK(Max)$ + $^{t}DQSQ(Max)$ + $^{t}BL/2$ x		no		
	tHZ(DQ)	1411[1	tCK) -100ps	ps	

Write Timing

		Min/	n/ Data Rate					
Parameter	Symbol	Max	1600	2133	2667	3200	Unit	
Rx timing window total at	TdIVW_t	Max		0.22 0.25		0.25	LIT	
VdIVW voltage levels	otal	Мах		0.22		0.25	UI	
Rx timing window 1-bit toggle	TdIVW_1-	Max		7	BD		UI	
(at VdIVW voltage levels)	bit	Max		I	БО		01	
DQ and DMI input pulse width	TdIPW	Min		0	.45		UI	
(at V _{CENT_DQ})	TUIPVV	MIII		0	.43		01	
DQ-to-DQS offset	^t DQS2DQ	Min		2	200		ne	
DQ-to-DQ3 onset	DQ32DQ	Max		8	300		ps	
DQ-to-DQ offset	^t DQDQ	Max		30				
DQ-to-DQS offset emperature	tDQS2DQ	Max	0.6				ps/°C	
variation	_temp	Max	0.0				ps/ C	
DQ-to-DQS offset voltage	tDQS2DQ	Max	33				ps/50mV	
variation	_volt	Mux					p3/30111V	
WRITE command to first DQS	^t DQSS	Min		0	.75		tCK(avg)	
transition	DQSS	Max		1	.25		tck(avg)	
DQS input HIGH-level width	^t DQSH	-		(0.4		tCK(avg)	
DQS input LOW-level width	^t DQSL	Min		(0.4		tCK(avg)	
DQS falling edge to CK setup	^t DSS	Min	0.3			tCK(avg)		
time	255	1*1111	0.2				ick(avg)	
DQS falling edge from CK hold	^t DSH	Min	0.2			tCK(avg)		
time	DSH	1,1111	0.2				ccit(avg)	
Write postamble	tWPST	Min	0.4 (or 1.4 if extra postamble is programmed in MR)				tCK(avg)	
Write preamble	tWPRE	Min		·	1.8		tCK(avg)	