Wyznaczanie zespolonych zer wielomianów metodą iterowanego dzielenia i metodą Newtona.

Tomasz Chwiej

10 kwietnia 2018

1 Wstęp

Dany jest wielomian zespolony, którego zera chcemy znaleźć:

$$f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z^1 + a_0 = 0$$
(1)

Jeśli podzielimy wielomian przez wyraz $(z - z_j)$ to otrzymamy:

$$f(z) = (z - z_i)(b_{n-1}z^{n-1} + b_{n-2}z^{n-2} + \dots + b_0) + R_i$$
(2)

Współczynniki nowego wielomianu $\{b_{n-1},b_{n-2},\ldots,b_0\}$ oraz reszty dzielenia R_j wyznaczamy rekurencyjnie

$$b_n = 0 (3)$$

$$b_k = a_{k+1} + z_j b_{k+1}, \ k = n - 1, n - 2, \dots, 0$$

$$\tag{4}$$

$$R_j = a_0 + z_j b_0 (5)$$

Powtarzając jeszcze raz operację dzielenia otrzymamy

$$f(z) = (z - z_j)^2 (c_{n-2}z^{n-2} + c_{n-3}z^{n-3} + \dots + c_0) + (z - z_j)R_j' + R_j$$
(6)

gdzie: współczynniki $\{c_{n-2},c_{n-3},\ldots,c_{0}\}$ oraz $R_{j}^{'}$ obliczamy podobnie

$$c_{n-1} = 0 (7)$$

$$c_k = b_{k+1} + z_j c_{k+1}, \ k = n-2, n-2, \dots, 0$$
 (8)

$$R_j' = b_0 + z_j c_0 \tag{9}$$

Mając R_j oraz R_j^\prime obliczamy kolejne przybliżenie zera wielomianu

$$z_{j+1} = z_j - \frac{R_j}{R_i'} \tag{10}$$

2 Zadania do wykonania

1. Obliczenia prowadzimy używająć liczb zespolonych. W tym celu należy do kodu dołączyć plik nagłówkowy

#include<complex.h>

Deklaracja użycia zmiennej zespolonej z inicjalizacją w C

double complex z = 89.0 + 68.I

Tworzenie i wypełnanie elementów tablic - analogicznie. Współczynnki wielomianów zapisujemy w wektorach: \vec{a} , \vec{b} , \vec{c} indeksowanych od 0 - tak będzie wygodniej.

2. Będziemy poszukiwać zer wielomianu 4 stopnia o współczynnikach:

$$a_0 = 16 + 8I ag{11}$$

$$a_1 = -20 + 14I (12)$$

$$a_2 = 4 - 8I ag{13}$$

$$a_3 = -4 + I \tag{14}$$

$$a_4 = 1 + 0I \tag{15}$$

Dokładne położenia zer (do testów programu): $z_1 = I$, $z_2 = 1 + I$, $z_3 = -1 - 3I$, $z_4 = 4$.

3. Proszę zaimplementować metodę iterowanego dzielenia do znalezienia zer wielomianu. Przydatny może być poniższy pseudokod

```
\begin{array}{ll} inic jalizac ja: & \vec{a}=\dots\\ & z_0=\dots\\ & for (l=n;l>=1;l--) \{\\ & z_j=z_0\\ & for (j=1;j<=IT\_MAX;j++) \{\\ & R_j=\dots\\ & R'_j=\dots\\ & z_j=\dots\\ \}\\ & \vec{a}=\vec{b} \quad (\text{deflacja wielomianu czynnikiem liniowym})\\ \} \end{array}
```

gdzie:

- \bullet z_0 punkt startowy (może być taki sam dla wszystkich zer)
- \bullet l określa numer wyznaczanego zera, po jego znalezieniu obniżamy stopień wielomianu o 1 (przepisanie wektora \vec{b} do $\vec{a})$
- j licznik petli iteracyjnej,
- IT_MAX ograniczenie na maksymalną liczbę iteracji dla pojedynczego zera.
- 4. Proszę wyznaczyć iteracyjnie wszystkie zera wielomianu o współczynnikach (12)-(15) przyjmując $IT_MAX = 20$ oraz $z_0 = 0 + 0I$. Obliczenia proszę powtórzyć dla $z_0 = -10 10I$. Dla każdego z_0 oraz l i j do pliku proszę zapisać aktualną wartość z_j .
- 5. Dla każdej wartości z_0 proszę sporządzić jeden rysunek przedstawiający kolejne przybliżenia z_j (dla każdego zera) na płaszczyźnie zespolonej (tj. w układzie x-y, $x = Re\{z\}$ oraz $y = Im\{z\}$).
- 6. W sprawozdaniu proszę przeanalizować wpływ z_0 na kolejność znajdowanych zer oraz liczbę iteracji potrzebnych do wyznaczenia zer.

3 Uwagi

- 1. Do wyznaczenia R_j można wykorzystać funkcję (należy ją sobie utworzyć), do której przekazujemy: \vec{a} , \vec{b} , z_j , l (aktualny stopień wielomianu o współczynnikach \vec{a} uwzględniający deflację). Funkcja ta oprócz zwracania R_j powinna też obliczyć współczynniki \vec{b} .
- 2. Do wyznaczenia R_j' można wykorzystać tę samą funkcję co dla R_j , ale przekazujemy do niej: \vec{b} , \vec{c} , z_j , l-1 (aktualny stopień wielomianu o współczynniki \vec{b})