Дифференцируемость ФНП

1 Частная производная

1.1 Определение частной производной

$$\vec{x^0} = (x_1^0, \dots, x_n^0)$$

Определение 1.1 Рассмотрим $f(x_1,...,x_n)$, тогда

$$\Delta_i f\left(\vec{x^0}\right) = f\left(\vec{x^0} + \Delta \vec{x_i^0}\right) - f\left(\vec{x^0}\right)$$
, где $\Delta \vec{x_i^0} = \{0, \dots, \Delta x_i, \dots, 0\}$

$$\frac{\partial f}{\partial x_i} = \lim_{\Delta x_i \to 0} \frac{\Delta_i f\left(\vec{x^0}\right)}{\Delta x_i}, \ \forall i \in (1, \dots, n)$$

1.2 Определение дифференцируемости в точке

Определение 1.2 $f(\vec{x})$ дифференцируема в $\vec{x^0}$, если

$$\exists A_i, \ \forall i \in (1,\ldots,n): \Delta f\left(\vec{x^0}\right) = <\vec{A}, \vec{\Delta x}>, \|\vec{\Delta x}\| \rightarrow 0,$$
, где $\Delta f\left(\vec{x^0}\right) = f\left(\vec{x^0} + \Delta \vec{x}\right) - f\left(x^0\right)$

2 Необходимое условие дифференцируемости

Теорема 2.1 Если функция дифференцируема в $\vec{x^0}$, то $\exists \forall \frac{\partial f}{\partial x_i} \left(\vec{x^0} \right), \, \forall i \in (1,\dots,n)$

Доказательство 2.1 Будет позже

3 Достаточное условие дифференцируемости

Теорема 3.1 Если $\exists \forall \frac{\partial f}{\partial x_i}, \forall i \in (1,\dots,n)$ и они непрерывны в $\vec{x^0}$, то $f(\vec{x})$ дифференцируема в $\vec{x^0}$ Доказательство 3.1 Будет позже