# **Gene Quantification**

Bulk RNAseq course 2024

Duy Dao <a href="mailto:khuongduying@gmail.com">khuongduying@gmail.com</a>

## RNA-SEQ: STEP IN QUANTIFICATION

**Definition**: Measuring the abundance of transcripts for each gene in a sample

# **Key Processes:**

- Read Alignment or Alignment-Free Mapping
- Assigning Reads to Genes
- Counting Reads per Gene



#### **Quantification - Read Count**



Count how many reads have mapped to each gene.

→Using the **featureCounts** tool to get the gene counts

**Input**: BAM + GTF

Output: Number of reads (counts) associated with each feature of interest (genes, exons, transcript, etc.).

## **Counting reads with featureCounts**

- Accurate, fast and is relatively easy to use
- Counts reads that map to a single location (uniquely mapping) and follows the scheme in the figure below for assigning reads to a gene/exon.



## **GTF**

## Counting reads using featureCounts



- A read is said to overlap a feature if at least one read base is found to overlap the feature.
- For paired-end data, a fragment (or template) is said to overlap a feature if any of the two reads from that fragment is found to overlap the feature.
- If strandedness is specified, then in addition to considering the genomic coordinates it will also take the strand into account for counting.

## **Counting reads using featureCounts**

| jene     |        | Location   | St      | rand   | Length    | 1        |         | C        | Count    |          |         |           |         |                |           |
|----------|--------|------------|---------|--------|-----------|----------|---------|----------|----------|----------|---------|-----------|---------|----------------|-----------|
| # Progr  | am:fea | tureCounts | v2.0.2: | Comman | d:"featur | eCounts' | "-p" ". | a" "/mnt | /d4t/DAT | A/PROJEC | T/RNA < | seg/sacCe | r2/ref/ | annotation/sac | Cer3.ensG |
| Geneid   |        | Start      | End     | Strand |           |          |         |          |          | WT_E_2   |         |           | / /     |                |           |
| YDL248W  |        |            | 2953    | +      | 1152      | 164      | 132     | 148      | 337      | 94       | 378     | 2         |         |                |           |
| YDL247W  |        | chrIV      | 3762    | 3836   | +         | 75       | 0       | 0        | 3        | 0        | 0       | 6         |         |                |           |
| YDL247W  |        |            | 7814    | +      | 1830      | 0        | 0       | 1        | 0        | 0        | 4       |           |         |                |           |
| YDL246C  |        |            | 9756    | 5      | 1074      | 0        | 0       | 2        | 0        | 0        | 6       |           |         |                |           |
| /DL245C  | chrIV  |            | 13360   | -      | 1704      | 14       | 2       | 6        | 38       | 6        | 12      |           |         |                |           |
| /DL244W  |        |            | 17226   | +      | 1023      | 14       | 6       | 6        | 39       | 19       | 27      |           |         |                |           |
| /DL243C  |        |            | 18566   | -      | 990       | 115      | 94      | 100      | 292      | 142      | 215     |           |         |                |           |
| /DL242W  |        |            | 19312   | +      | 354       | 5        | 13      | 9        | 16       | 4        | 26      |           |         |                |           |
| /DL241W  |        |            | 21006   | +      | 372       | 89       | 46      | 60       | 16       | 2        | 13      |           |         |                |           |
| /DL240C  | - A    | chrIV      | 22471   | 22608  | -         | 138      | 5       | 1        | 1        | 1        | 2       | 2         |         |                |           |
| /DL240W  | chrIV  |            | 25876   | +      | 3054      | 191      | 166     | 245      | 112      | 27       | 200     |           |         |                |           |
| DL2390   | chrIV  |            | 28775   | 5      | 2373      | 82       | 146     | 128      | 409      | 136      | 506     |           |         |                |           |
| DL238C   | chrIV  | 28985      | 30454   | -      | 1470      | 101      | 79      | 92       | 555      | 91       | 346     |           |         |                |           |
| /DL237W  | chrIV  | 30657      | 31829   | +      | 1173      | 553      | 381     | 536      | 827      | 322      | 1330    |           |         |                |           |
| /DL236W  |        |            | 33234   | +      | 939       | 1886     | 1855    | 1661     | 3095     | 459      | 1820    |           |         |                |           |
| /DL235C  | chrIV  | 33415      | 33918   | -      | 504       | 1306     | 1405    | 900      | 1364     | 385      | 965     |           |         |                |           |
| /DL234C  |        |            | 36477   | -      | 2241      | 648      | 601     | 881      | 2822     | 1148     | 2386    |           |         |                |           |
| /DL233W  | chrIV  | 36797      | 38173   | +      | 1377      | 132      | 158     | 147      | 391      | 193      | 463     |           |         |                |           |
| /DL232W  | chrIV  | 38487      | 38597   | +      | 111       | 545      | 533     | 443      | 353      | 153      | 429     |           |         |                |           |
| YDL2310  | chrIV  | 38867      | 42244   |        | 3378      | 681      | 565     | 552      | 586      | 139      | 451     |           |         |                |           |
| /DL230W  | chrIV  | 42700      | 43707   | +      | 1008      | 398      | 429     | 411      | 590      | 460      | 1119    |           |         |                |           |
| /DL229W  | chrIV  | 44065      | 45906   | +      | 1842      | 6625     | 4502    | 4656     | 2168     | 124      | 744     |           |         |                |           |
| DL2280   | chrIV  | 45277      | 45918   | -      | 642       | 31       | 28      | 34       | 12       | 1        | 1       |           |         |                |           |
| YDL227C  | chrIV  | 46271      | 48031   | -      | 1761      | 1006     | 837     | 556      | 97       | 8        | 102     |           |         |                |           |
| YDL226C  | chrIV  | 51115      | 52173   | -      | 1059      | 1264     | 1219    | 1326     | 1657     | 603      | 1801    |           |         |                |           |
| YDL225W  | chrIV  | 52445      | 54100   | +      | 1656      | 1116     | 1061    | 1044     | 1430     | 366      | 1444    |           |         |                |           |
| YDL224C  | chrIV  | 54397      | 56346   | -      | 1950      | 310      | 174     | 264      | 272      | 183      | 584     |           |         |                |           |
| YDL223C  | chrIV  | 57265      | 60405   | -      | 3141      | 124      | 104     | 92       | 1487     | 845      | 3016    |           |         |                |           |
| YDL222C  | chrIV  | 60872      | 61801   | -      | 930       | 17       | 15      | 51       | 101      | 303      | 1036    |           |         |                |           |
| YDL221W  | chrIV  | 62011      | 62562   | +      | 552       | 27       | 28      | 13       | 35       | 24       | 39      |           |         |                |           |
| YDL220C  | chrIV  | 62244      | 65018   | -      | 2775      | 63       | 34      | 64       | 110      | 36       | 107     |           |         |                |           |
| YDL219W  | chrIV  | ;chrIV     | 65242;6 | 5378   | 65306;6   | 5765     | +;+     | 453      | 697      | 834      | 610     | 512       | 189     | 509            |           |
| /DL218W  |        |            | 67446   | +      | 954       | 28       | 21      | 16       | 51       | 32       | 84      |           |         |                |           |
| YDL217C  | chrIV  | 67983      | 68606   | -      | 624       | 287      | 247     | 295      | 392      | 91       | 344     |           |         |                |           |
| VDI 2160 | cheTV  | 69007      | 78310   | 42     | 1272      | 170      | 127     | 203      | 215      | 13/      | 100     |           |         |                |           |

#### **Output: Raw counts**

These are the "raw" counts will be used in statistical programs downstream for differential gene expression.

## **Counting reads using featureCounts**

|         | gene      |        |        | Co     | unt    |        |        |
|---------|-----------|--------|--------|--------|--------|--------|--------|
| Geneid  | gene_name | WT_C_2 | WT_C_1 | WT_E_1 | WT_C_3 | WT_E_2 | WT_E_3 |
| YDL246C | SOR2      | 0      | 0      | 0      | 2      | 0      | 6      |
| YDL243C | AAD4      | 104    | 109    | 275    | 109    | 328    | 206    |
| YDR387C | CIN10     | 263    | 274    | 747    | 492    | 695    | 810    |
| YDL094C | NA        | 7      | 4      | 8      | 1      | 8      | 3      |
| YDR438W | THI74     | 72     | 102    | 140    | 126    | 144    | 161    |
| YDR523C | SPS1      | 39     | 30     | 27     | 61     | 31     | 12     |
| YDR542W | PAU10     | 0      | 1      | 0      | 1      | 0      | 0      |
| YDR492W | IZH1      | 420    | 619    | 2850   | 338    | 1651   | 749    |
| YDR018C | NA        | 21     | 19     | 160    | 50     | 359    | 455    |
| YDL189W | RBS1      | 380    | 405    | 376    | 518    | 408    | 515    |
| YDR508C | GNP1      | 1661   | 2365   | 767    | 2126   | 972    | 1417   |
| YDR462W | MRPL28    | 307    | 304    | 850    | 360    | 1081   | 700    |
| YDR175C | RSM24     | 528    | 577    | 1456   | 617    | 1304   | 903    |
| YDR186C | SND1      | 730    | 868    | 2061   | 681    | 1658   | 1643   |
| YDR150W | NUM1      | 474    | 420    | 772    | 535    | 831    | 724    |
| YDR243C | PRP28     | 189    | 176    | 282    | 192    | 147    | 232    |
| YDL182W | LYS20     | 2163   | 2953   | 500    | 3361   | 318    | 710    |
| YDR362C | TFC6      | 323    | 360    | 558    | 350    | 536    | 461    |
| YDR232W | HEM1      | 616    | 579    | 845    | 642    | 542    | 452    |
| YDR158W | HOM2      | 12602  | 14504  | 4521   | 14868  | 4053   | 5727   |
| YDR439W | LRS4      | 93     | 136    | 163    | 113    | 197    | 202    |
| YDL206W | NA        | 177    | 215    | 369    | 315    | 633    | 653    |
| YDR125C | ECM18     | 82     | 87     | 111    | 93     | 145    | 228    |
| YDR338C | NA        | 204    | 245    | 226    | 259    | 289    | 265    |
| YDR526C | NA        | 0      | 2      | 0      | 4      | 1      | 0      |
| YDR533C | HSP31     | 3469   | 3665   | 24999  | 1677   | 30821  | 22425  |
| YDR272W | GL02      | 1591   | 1329   | 5826   | 1413   | 6536   | 7377   |
| YDR197W | CBS2      | 329    | 393    | 573    | 380    | 732    | 648    |
| YDR512C | EMI1      | 783    | 588    | 2009   | 670    | 2625   | 2619   |

#### A table of counts

Don't need information about the genomic coordinates, length

→ Cleaning up the featureCounts matrix

## **Final output:**

A count matrix, with genes as rows and samples are columns

## **Normalization**

Sequencing depth: Accounting for sequencing depth is necessary for comparison of gene expression between samples.



In the example below, each gene appears to have doubled in expression in Sample A relative to Sample B, however this is a consequence of Sample A having double the sequencing depth.

## **Normalization**

Gene length: Accounting for gene length is necessary for comparing expression between different genes within the same sample.

# **Sample A Reads**



In the example, Gene X and Gene Y have similar levels of expression, but the number of reads mapped to Gene X would be many more than the number mapped to Gene Y because Gene X is longer.

## **Normalization**

**RNA composition:** A few highly differentially expressed genes between samples, differences in the number of genes expressed between samples, or presence of contamination can skew some types of normalization methods.

