2007 B – 2012 A 207395604

UNIVERSIDAD DE GUADALAJARA CENTRO UNIVERSITARIO DE CIENCIAS BIOLÓGICAS Y AGROPECUARIAS DIVISIÓN DE CIENCIAS BIOLÓGICAS Y AMBIENTALES

MORFOLOGÍA ALAR Y VELOCIDAD DE VUELO DE MURCIÉLAGOS EN EL BOSQUE LA PRIMAVERA, JALISCO

TRABAJO DE TITULACIÓN EN LA MODALIDAD DE

TESIS

QUE PARA OBTENER EL TÍTULO DE LICENCIADO EN BIOLOGÍA

PRESENTA

MARTHA ROSARIO GALLARDO GALAVIZ

LAS AGUJAS, ZAPOPAN, JULIO DE 2013

<u>Universidad de Guadalajara</u>

Centro Universitario de Ciencias Biológicas y Agropecuarias

Coordinación de Carrera de la Licenciatura en Biología

COORD-BIO-093/2012

C. MARTHA ROSARIO GALLARDO GALAVIZ PRESENTE

Manifestamos a usted, que con esta fecha, ha sido aprobado su tema de titulación en la modalidad de TESIS E INFORMES opción: Tesis, con el título "MORFOLOGÍA ALAR Y VELOCIDAD DE VUELO DE MURCIÉLAGOS EN EL BOSQUE LA PRIMAVERA, JALISCO", para obtener la Licenciatura en Biología.

Al mismo tiempo le informamos, que ha sido aceptado como director(a) de dicho trabajo a la Dra. Silvia Socorro Zalapa Hernández., y como asesor/a(s) a: Dr. Cornelio Sánchez Hernández y Dra. María de Lourdes Romero Almaraz.

Sin más por el momento, aprovechamos para enviarle un cordial saludo.

ATENTAMENTE "PIENSAYTRABAJA"

Las Agujas, Nextipac, Zapopan, Jal., 05 de junio, del 2012.

DRA. TERÉSA DE JESÚS ACEVES ESQUIVIAS PRESIDENTE DEL COMITÉ DE TITULACIÓN

M.C. VERÓNICA PALOMERA AVALOS

SECRETARIO DEL COMITÉ DE TITULACIÓN

FORMA F

Dr. Feiipe de Jesús Santoyo Rodríguez. Fresidente del Comité de Titulacion Licenciatura en Biología. CUCBA. Presente

Nos permitimos informar a usted que habiendo revisado el trabajo de titulación, modalidad "tesis e informes", opción "tesis" con el titulo: "MORFOLOGÍA ALAR Y VELOCIDAD DE VUELO DE MURCIELAGOS EN EL BOSQUE LA PRIMAVERA. JALISCO" que realizó el/la pasante Martha Rosario Gallardo Galaviz con número de código 207395604 consideramos que ha quedado debidamente concluido, por lo que ponemos a su consideración el escrito final para autorizar su impresión.

Sin otro particular quedamos de usted con un cordial saludo.

Atentamente Las agujas, Zapopan, Jal., 27 de Mayo del 2013

Directe)

Dra. Silvia S. Zapala Hemandez

Asesores:

Fema de aprobado

Dr. Comelio Sánchez Hernández

Dra. Maria de Lourdes Rómero Almaraz

Nombre completo de los Snodales asignados por el Comilé de Titulación

Dr. Sergio Guerrero Vázquez.

Dr. José Luis Navarrete Heredia.

M.C. Agustin Camacho Rodriguez.

Supl. Dra. Claudia A. Uribe Mú.

عبر 25

Este trabajo fue financiado por PROMEP como parte del proyecto "Fauna Urbana y Periurbana de Jalisco: Diversidad y Ecología." Del Cuerpo Académico de Zoología UDG-CA-51.

DEDICATORIA

A mi familia, mis papás por creer en mí, apoyando incansable e incondicionalmente cada paso, a mis hermanos por su paciencia y apoyo constante, a ellos por ser mi ejemplo de trabajo y perseverancia.

*

AGRADECIMIENTOS

De manera muy especial y con mucho cariño a mi directora Silvia Zalapa, por brindarme su apoyo constante y compartir su conocimiento, a Sergio Guerrero, por ir de la mano con éste trabajo, por su apoyo y aportaciones en todo momento.

A mis asesores y sinodales, por sus comentarios y aportaciones.

A mis amigos Faby, Fer pájaro, FerO, Uriel y Omar, por su apoyo durante las noches en campo y por las manos amigas. A Margot, Daniela y David por compartir conmigo éste logro.

A Arqui, por su incansable, incondicional y constante cariño, por formar parte de mi familia, a su familia por brindarme apoyo.

Al Bosque La Primavera, por las facilidades y apoyo para realizar este trabajo en el área natural.

Contenido

ÍN	DICE DE FIGURAS	3
ĺN	DICE DE TABLAS	4
ĺN	DICE DE ANEXOS	5
O	BJETIVOS	12
НΙ	PÓTESIS	. 12
M.	ATERIALES Y MÉTODOS	. 13
	Área de estudio	. 13
	Sitios de muestreo	. 16
	Captura de murciélagos	. 18
	Obtención de fotografías	. 18
	Velocidad	. 19
	Morfometría	. 19
Αr	álisis de datos	. 25
RE	SULTADOS	. 26
	Muestreo de murciélagos	. 26
	Vuelo	. 27
	Morfometría	. 29
	Descripciones alares por especie	. 32
	Correlación de la velocidad de vuelo con las variables morfológicas	. 36
	Correlación de la velocidad de vuelo con los grupos morfológicos y entre gremios tróficos	. 36
	Grupos morfológicos	. 36
	Correlación de la velocidad de vuelo con los grupos morfológicos	. 38
	Correlación con los gremios tróficos	. 38

Morfología alar de murciélagos

CONCLUSIONES	44
LITERATURA CITADA	45
ANEXOS	50

ÍNDICE DE FIGURAS

FIG. 1. Ubicación del área de estudio ANP Bosque La Primavera	17
FIG. 2. Ubicación de los sitios de muestreo.	17
FIG. 3. Acomodo de los individuos sobre la base de unicel para la primera secuencia de fotogracon las alas extendidas	
FIG. 3. Acomodo de los individuos sobre la base de unicel para la segunda secuencia de fotogr	
con las alas plegadas	
FIG. 4. Túnel utilizado para la prueba de vuelo de murciélagos	21
FIG. 5. Murciélago iniciando el vuelo en el momento de la prueba.	21
FIG. 6. Medidas lineales, donde AB es la longitud del antebrazo, Law es la longitud del brazo al Lhw longitud de la mano alar, Lala es el largo del ala, Aala el ancho del ala y B es la envergadur	
FIG. 7. Áreas alares, donde ½ S es el área alar, Saw es el área del brazo alar y Shw el área de la mano alar.	23
FIG. 8. Modelo NMDS a partir del que se forman cinco grupos morfológicos	37
FIG. 9. Carga alar (WL) contra relación de aspecto (AR), que muestra la formación de cinco gru morfológicos	-

ÍNDICE DE TABLAS

Tabla 1. Velocidades de vuelo reportadas en la literatura para diferentes especies de murciélagos	
Tabla 2. Medidas lineales y áreas alares obtenidas de las fotografías	!2
Tabla 3. Individuos capturados por especie y gremio trófico durante el periodo de estudio	26
Tabla 4. Especies de murciélagos en el Bosque La Primavera con prueba de vuelo. Número de individuos probados, número de pruebas exitosas y estadísticas básicas por especie	28
Tabla 5. Diferencias de la velocidad de vuelo entre murciélagos del gremio insectívoro prueba de Kruskal-Wallis H= 17.1 p= 0.04718.	19
Tabla 6. Diferencias en la velocidad de vuelo entre murciélagos del gremio frugívoro prueba de Kruskal -Wallis H= 33.12 p= 3.657E-06.	29
Tabla 7. Número de individuos considerados para el análisis morfométrico	0
Tabla 8. Diferencia entre las hembras y los machos para los índices alares	1
Tabla 9. Descripción alar por especie e imágenes alares	3
Tabla 10. Correlaciones significativas de la velocidad de vuelo con variables morfológicas 3	8
Tabla 11. Relación de las variables Masa, relación de aspecto (AR) y carga alar (WL) en insectívoros	8
Tabla 12. Relación de las variables masa, relación de aspecto (AR) y carga alar (WL) en frugivoros3	8

Morfología alar de murciélagos

ÍNDICE DE ANEXOS

Anexo 1. Diferencia en la velocidad de vuelo de hembras y machos por especie	. 50
Anexo 2. Diferencia en la velocidad de vuelo entre especies.	. 51
Anexo 3. Diferencia entre hembras y machos por variable por especie	. 5:
Anexo 4. Estadísticas básicas por variable para cada especie de murciélago	. 56
Anexo 5. Diferencias entre especies por variable.	63
Anexo 6. Correlación de las variables morfológicas con la velocidad de vuelo por especie	. 76

INTRODUCCIÓN

Tamaño y forma son características fundamentales para distinguir especies o para entender cómo funcionan los organismos (Birch 1997), en particular para murciélagos la forma y tamaño de las alas determinan la velocidad de vuelo y la maniobrabilidad, influyendo en las diferencias que existen entre los hábitos de forrajeo de las especies (Norbeng 1981; Norberg y Rayner 1987; Stockwell 2001; Crome y Richards 1988; Heller y Von Helversen 1989; Kingston et al. 2000; Rayner 1981).

En estudios de morfología de vuelo, el tamaño y la forma de las alas son descritos a partir de la "carga alar" (relación entre la masa y el área de ambas alas) y la "relación de aspecto" (relación entre la envergadura y el área del ambas ala) valores que se obtienen a partir de tres medidas básicas: masa corporal, envergadura y área alar y en base a esto se predice el modo de vuelo predominante y el rendimiento de un murciélago (Norberg 1981; Norberg y Rayner 1987; Aldrige y Rautenbach 1987; Arita y Fenton 1997; Norberg 1998). Por ejemplo, murciélagos que forrajean en zonas con vegetación densa tienen alas cortas y anchas (carga alar baja), lo que facilita un vuelo lento y gran capacidad para maniobrar, (Norberg 1987); por el contrario, para los murciélagos que forrajean en áreas abiertas, es importante mantener un bajo costo energético y una mayor velocidad de vuelo; por lo que las alas son estrechas y largas (mayor carga alar) (Rayner 1981; Aldridge 1986).

Por otro lado, la velocidad de vuelo de murciélagos está directamente relacionada con la longitud de las alas (Hayward y Davis 1964), pero también existe un efecto del tamaño corporal, ya que la velocidad de vuelo es diferente entre los murciélagos con alas morfológicamente similares cuando presentan diferencias notables en el tamaño corporal (Salcedo et al. 1995).

En general se reconoce que los murciélagos insectívoros requieren un alto grado de maniobrabilidad, los nectarívoros necesitan un vuelo estacionario y los carnívoros y frugívoros necesitan transportar cargas (Norberg y Rayner 1987); por lo que el tamaño y

la forma del ala óptima para cualquier murciélago es una combinación de diferentes fuerzas de selección (Norberg y Rayner 1987).

Por un lado, el conocimiento de la variación de la velocidad de vuelo en murciélagos nos ayuda a la comprensión de los diferentes hábitos de forrajeo y al desplazamiento que realizan para esta actividad, a la capacidad de orientación de algunos grupos, a la selección de hábitat y a sus movimientos estacionales (Kennedy y Best 1972), y por otro, ha entender como la morfología alar se relaciona con el hábitat y con conductas de forrajeo (Norberg 1981; Norberg y Rayner 1987; Stockwell 2001; Wainwright y Reilly 1994; Findley 1993), con esto además se ayudaría a responder algunas preguntas ecológicas, por ejemplo, ¿porqué ciertas especies son encontradas en ciertos hábitats? ó ¿cómo diferentes especies pueden coexistir en el mismo hábitat?

Por lo que la propuesta de este trabajo es relacionar la forma de las alas con la velocidad de vuelo de diferentes especies de murciélagos del Bosque La Primavera, aportando información sobre la velocidad de vuelo, la forma de las alas y su posible relación, esperando que puedan ser elementos que nos ayuden a entender cómo se estructura la comunidad de los murciélagos en este sitio.

ANTECEDENTES

Los primeros estudios sobre morfología alar de murciélagos se basaron en la comparación del volumen de los músculos, huesos y membranas alares, lo que permitió determinar el papel de algunas estructuras morfológicas en los modos de vuelo (Vaughan 1959; Struhsaker 1961), y dio como resultado las primeras mediciones de la relación de aspecto (Struhsaker 1961). Respecto a la velocidad de vuelo, ésta se ha comparado con diferentes variables morfológicas, por un lado se ha encontrado su relación con la carga alar, relación de aspecto e índice de punta (Findley et al. 1972; Norberg 1987); y por otro, se ha registrado su relación directa con el tamaño corporal y la longitud del antebrazo en especies como *Tadarida brasiliensis*, *Eptesicus fuscus*, *Pipistrellus hesperus* y *Lasiurus cinereus* (Hayward y Davis 1964); además se reconoce la relación entre variables morfológicas, como son el área alar, la carga alar y el tamaño corporal (Findley et al. 1972).

Norberg y Rayner (1987) establecieron las bases del análisis de la morfología alar y la velocidad de vuelo, e identificaron y modelaron algunos aspectos que posiblemente influyen en la adaptación y el desempeño del vuelo. El énfasis de este trabajo fue la clasificación de la morfología del vuelo en murciélagos en términos de teorías aerodinámicas y del comportamiento del vuelo, para lo cual seleccionaron parámetros morfológicos simples con interpretaciones funcionales claras, e incluyeron presiones selectivas para un vuelo más económico, de mayor o menor velocidad, para mantenerse en el aire y para dar la vuelta. Midieron la velocidad de vuelo en murciélagos y la compararon con la morfología de las alas, confirmando que la velocidad se correlaciona con la masa, carga alar y la proporción de la punta del ala; y que no existe relación directa entre la velocidad y la relación de aspecto.

La velocidad de vuelo se ha registrado para varias especies, pertenecientes a diferentes gremios tróficos, reportándose diferencias entre ellas, incluso para una misma especie (Tabla 1).

En México se han realizado cuatro trabajos en el estado de Colima, en donde se reporta la velocidad de vuelo de varias especies de murciélagos (Tabla 1) y su relación con algunas variables morfológicas; es el caso de *Pteronotus davyi*, *P. personatus*, *P. parnellii y Mormoops megalophylla* donde existió una correlación positiva entre la longitud del antebrazo y la velocidad promedio del vuelo (Kennedy et al. 1977 y Hopkins et al. 2003), por el contrario en *Desmodus rotundus* no (Sánchez-Hernández et al. 2006). En particular para *Carolia subrufa* no se encontró relación entre la masa corporal y la velocidad de vuelo (Akins et al. 2007).

Por otro lado se ha probado si la velocidad de vuelo es diferente entre sexos, encontrándose que no lo es en *D. rotundus* (Sánchez-Hernández et al. 2006) ni *Glossophaga soricina* (Akins et al. 2007), pero si son diferentes en *Natalus stramineus* a pesar de que su masa corporal fue similar (Akins et al. 2007).

Tabla 1. Velocidades de vuelo reportadas en la literatura para diferentes especies de murciélagos.

Especie	Velocidad de vuelo	Trabajo	
Tadarida brasiliensis	6.0 m/s	Hayward y Davies 1964	
	11.3 m/s	Svoboda y Choate 1987	
	3.9 m/s	Hixon et al. 2012	
Eptesicus fuscus	6.9 m/s (15.5 mi/h)	Hayward y Davies 1964	
Pipistrellus hesperus	2.1 m/s (4.8 mi/h)	Hayward y Davies 1964	
Lasiurus cinereus	5 m/s (11.3 mi/h)	Hayward y Davies 1964	
Myotis californicus	2.7 m/s (6.2 mi/h)	Hayward y Davies 1964	
Myotis thysanodes	3.7 m/s (8.4 mi/h)	Hayward y Davies 1964	
Pteronotus davyi	11.3 km/h (macho, n=18)	Hopkins et al. 2003	
	13.1 km/h (hembra, n= 19)		
P. personatus	12.1 km/h (macho, n= 5)	Hopkins et al. 2003	
	13.8 km/h (hembra, n=2)		
P. parnellii	17.5 km/h (macho, n=34)	Hopkins et al. 2003	
	19.1 km/h (hembra, n=9)		
M. megalophyla	17.0 km/h (macho, n= 29) 15.3	Hopkins et al. 2003	
	km/h (hembra, n=29)		
Desmodus rotundus	13.82 km/h (macho, 9.6-27.3	Sánchez-Hernández et al. 2006	
	km/h; n=18)		
	13.36 km/h (hembra, 7.2-23.4		
	km/h; n=29)		
Glossophaga soricina	4.85 m/s (macho, n=26)	Akins et al. 2007	
. 3	4.80 m/s (hembras, n=14)		

Natalus stramineus	2.84 m/s (machos, n=40)	Akins et al. 2007
	2.39 m/s (hembras, n=23)	
Carollia subrufa	3.67 m/s (machos, n=3)	Akins et al. 2007
	3.52 m/s (hembras, n=3)	
Pteronotus davyi	4.3 m/s	Hixon et al. 2012
Artibeus jamaicensis	4.2 m/s	Hixon et al. 2012
Sturnira lilium	3.2 m/s	Hixon et al. 2012
Natalus stramineus	2.8 m/s	Hixon et al. 2012

Estudios recientes muestran que cuando se compara la relación de aspecto y la carga alar de cada especie de murciélago se pueden obtener grupos morfológicamente distintos (Hodgkison et al. 2004; Hixon et al. 2012). Asimismo, se observó que estas variables incrementaron con relación a la masa corporal y a la envergadura (Hodgkison et al. 2004).

En murciélagos europeos se encontró que a pesar de que mostraron una morfología alar similar, difirieron significativamente en tamaño, y se encontraron diferencias más puntuales en la forma de las alas, en aquellos con tamaños similares, por lo que se argumenta que tanto el tamaño como la forma desempeñan un papel importante para la separación del nicho entre las especies (Dietz et al. 2006); un ejemplo son Lasiurus cinereus y Lasiurus borealis, dos especies que son morfológica y aerodinámicamente muy distintas, lo que puede explicar su coexistencia alrededor de los lagos de Canadá durante la temporada de gestación y lactancia, aún cuando ambas especies se alimentan de insectos voladores (de la Cueva 1996).

Sin embargo, se ha puntualizado que es necesario considerar un error potencial en estudios que predicen el estilo de vuelo a partir de medidas morfológicas en murciélagos, porque puede estar influenciado por el tipo de espécimen utilizado, por ejemplo, a partir de individuos preservados en museos o en fluidos, debido a que las medidas obtenidas de estos individuos podrían no ser equivalentes a las mismas medidas registradas en animales vivos. A este respecto, se realizó un trabajo donde se compararon los valores de múltiples variables como el área alar, envergadura, masa, relación de aspecto, carga alar y poder mínimo de velocidad de *Myotis lucifugus* vivos contra individuos preservados en

fluidos y con excepción del poder mínimo de velocidad, encontraron diferencias significativas entre individuos vivos y los valores reportados por Norberg y Rayner (1987), concluyendo que los valores obtenidos a partir de individuos vivos son más confiables (Bininda-Emonds y Russell 1993).

Otras propuestas para obtener la medidas morfológicas alares de murciélagos están basados en el trazo del ala derecha (Hodgkison et al. 2004; Moreno et al. 2006; Isaac y Marimuthu 1997; Hartman 1963; Vaughan et al. 2004) ó izquierda (Bininda-Emonds y Russell 1992) sobre un papel, o la toma de una fotografía digital del ala derecha y procesamiento en programas especializados (Birch 1997), en todos estos trabajos a partir del ala medida se hace la inferencia del área del ala izquierda o en su caso derecha; sin embargo, se desconoce si existe sesgo con relación a los valores morfométricos reales del ala izquierda de cada individuo y especie y en las posibles inferencias ecológicas realizadas a partir de ello.

Asimismo, hay que señalar que pueden existir diferencias en los valores de velocidad de vuelo, debido al uso de metodologías diferentes, por ejemplo, con la intención de simular condiciones naturales como minas, cuevas o túneles, se han realizado pruebas de vuelo dentro de cuartos en edificios abandonados (Hayward y Davis 1964) o se han construido túneles con Ionas de plástico (Akins et al. 2007; Sánchez-Hernández et al. 2006; Kennedy et al. 1977; Hopkins et al. 2003; Winter 1999). Además se han reportado variaciones entre individuos de una misma especie capturados al mismo tiempo, y se considera que estas variaciones deben interpretarse sólo como una variación individual, ya que no se puede atribuir a ninguna variable. De igual manera, son notorias las variaciones interespecíficas porque las diferencias en el comportamiento de vuelo no pueden ser estudiadas bajo las mismas condiciones; por ejemplo, en ocasiones se han tenido que modificar las condiciones en las que se medirá la velocidad de vuelo (distancia conocida) ó se ha permitido que los individuos se familiaricen con el entorno donde será medida la velocidad, señalando que la velocidad incrementa con la familiaridad en este (Hayward y Davis 1964).

OBJETIVOS

- Cuantificar la velocidad de vuelo de diferentes especies de murciélagos en el bosque La Primavera.
- Caracterizar la morfología alar de algunas especies de murciélagos en el bosque La Primavera.
- Relacionar la velocidad de vuelo con variables morfológicas del ala de murciélagos en el bosque La Primavera.
- Relacionar la velocidad de vuelo entre los gremios tróficos y grupos morfológicos de murciélagos en el bosque La Primavera.

HIPÓTESIS

- En el bosque La Primavera murciélagos con alas estrechas y manos más largas vuelan más rápido que aquellos con alas anchas y manos cortas.
- Los murciélagos del gremio trófico insectívoro vuelan más rápido que los del gremio trófico frugívoro.
- Los murciélagos de un mismo grupo morfológico vuelan a una velocidad similar.

MATERIALES Y MÉTODOS

Área de estudio

El bosque La primavera se ubicada en la región central del estado de Jalisco entre las coordenadas 103°28' a 103°42' de longitud oeste y 20°32' a 20°44' de latitud norte. Está situada al centro de un conjunto de cinco valles (Tala, Tesistán, Toluquilla, Atemajac y San Isidro Mazatepec) pertenecientes a los municipios de Zapopan, Tala, y Tlajomulco de Zúñiga (Fig. 1). Es el bosque más cercano a la ciudad de Guadalajara y se localiza al poniente de la misma. Está circundado por las siguientes carreteras: Guadalajara-Nogales, al norte; Tala-Ahuisculco, al oeste; Tlajomulco de Zúñiga-San Isidro Mazatepec, al sur; y Guadalajara-Barra de Navidad y Periférico poniente de la Ciudad de Guadalajara desde la Av. López Mateos hasta la Av. Vallarta, al este (SEMARNAP 2000).

El clima predominante está representado por dos tipos: en el templado subhúmedo, la precipitación media anual varía entre 700 y 800 mm, agosto es el mes más lluvioso (160–170 mm) y febrero el más seco (menos de 5 mm). La temperatura media anual es mayor de 16°C, con mayo como el mes más cálido (21–22°C) y diciembre y enero los meses más fríos (13 y 14°C). El tipo semicálido subhúmedo, con una precipitación anual de 800–1000 mm, julio es el mes con mayor precipitación (250–260 mm) y febrero el mes con menos lluvia (menos de 5 mm); la temperatura media anual fluctúa de 18°C a 22°C, y mayo es el mes que presenta las temperaturas más altas (23–24°C), y enero las temperaturas mínimas(15–16°C) (Síntesis geográfica de Jalisco 1981).

El área queda comprendida en la zona de traslape de dos provincias florísticas: Sierra Madre Occidental y Sierras Meridionales o Eje Neovolcánico Transversal. A su vez, estas provincias se localizan en la Región Mesoamericana de Montaña, formada por la confluencia entre dos grandes regiones biogeográficas: Neártica y Neotropical. De acuerdo con la clasificación de Rzedowski (1978), en el bosque La Primavera se encuentran cuatro tipos de vegetación: bosque de pino; bosque de encino-pino; bosque de encino; y bosque tropical caducifolio; así como tres comunidades vegetales, riparia,

rupícola y ruderal, que se desarrollan dentro de los diferentes tipos de vegetación antes mencionados, como a continuación se describe (CONANP, 2000).

Bosque de pino. Este tipo de vegetación es muy escaso en el bosque La Primavera. La especie dominante en esta comunidad es *Pinus oocarpa*, siguiendo en orden descendente *Pinus devoniana*, *P. douglasiana*, *P. lumholtzii* y *P. luzmariae*, los cuales se acompañan por otras especies arbóreas como: *Arbutus glandulosa*, *A. xalapensis*, *Clethra rosei* y *Quercus magnoliifolia*. El estrato herbáceo presenta principalmente gramíneas amacolladas como *Muhlenbergia robusta*, *M. watsoniana*, *Eragrostis sp.* y *Aristida jorullensis*; otras especies frecuentes son *Desmodium grahamii*, *Eryngium comosum*, *Habenaria jaliscana*, *H. novemfida* y *Bletia encifolia*.

Bosque de encino-pino. Este tipo de vegetación es el más representativo y abundante del bosque La Primavera y se presenta en todos los gradientes altitudinales del área. Quercus castanea, Q. laeta, Q. obtusata y Pinus oocarpa, están asociadas a una altitud de 1,800–1,900 msnm; Q. coccolobifolia, Q. viminea, P. oocarpa, Clethra rosei y Agarista mexicana a una altitud de 1,900–2,000 msnm; y Q. magnoliifolia, P. douglasiana y Prunus serotina var. capulí de los 2,000–2,225 msnm. Los elementos del estrato arbustivo más comunes son Calliandra anomala, Diphysa suberosa, Comarostaphylis glaucescens, Vaccinium stenophyllum y Agave guadalajarana. El estrato herbáceo comprende especies como Aristida barbata, Aristida hintonii, Dalea pectinata y Lostephane heterophylla.

Bosque de encino. Para el estrato arbóreo la especie dominante en esta comunidad es Quercus resinosa, seguida de Q. magnoliifolia, Q. castanea, Clethra rosei y Arbutus xalapensis; en el estrato arbustivo se encuentra a Comarostaphylis glaucescens y Vaccinium stenophyllum; y en el estrato herbáceo a ejemplares de Andropogon pringlei, Aristida jorullensis, Nemastylis tenuis, Sisyrinchium palmeri, Bletia roezlii y Bletia macristhomochila.

Bosque tropical caducifolio. Este tipo de vegetación tiene una baja presencia en el bosque La Primavera, en esta comunidad se observan tres estratos bien definidos. El

estrato superior está compuesto principalmente por Ficus petiolaris, F. glaucescens, F. cotinifolia, Ceiba aesculifolia, Lysiloma acapulcense, Quercus magnoliifolia y Q. resinosa. El estrato medio lo componen especies como Bursera fagaroides, B. bipinnata, B. multijuga, B. palmeri, B. penicillata y Croton cilliatoglandulifera. Las herbáceas más frecuentes en la época de lluvias son Phaseolus coccineus, Passiflora sp., Physalis jaliscensis, Cestrum nitidum, Gonolobus jaliscensis, Oplismenus burmanii, Canavallia villosa, Dahlia coccinea, Dioscorea sparciflora, Sacoila lanceolata y Spiranthes aurantiaca. Las epífitas más frecuentes son: Tillandsia achyrostachys, T. dasyliriifolia y T. usneoides.

Comunidad riparia. Las especies más comunes para el estrato arbóreo son Salix humboldtiana, Lysiloma acapulcense, Psidium guajava y Clethra rosei. El estrato medio lo componen Salix taxifolia, Kosteletskya tubiflora, Leucaena macrophylla, Myrica mexicana y Tecoma stans. Las herbáceas más frecuentes en la época de lluvias son Aster subulatus, Cyperus amabilis, C. seslerioides, Habenaria crassicornis, Oplismenus burmanii, Sporobulus macrospermus, Commelina diffusa, Heteranthera reniformis, Polygonum punctatum y Heimia salicifolia.

Comunidad rupícola. Las especies rupícolas más comunes son *Begonia gracilis,*Pitcairnia karwinskiana, Agave guadalajarana, Sedum sp., Echeveria dactylifera,

Mammillaria jaliscana, Opuntia robusta y Ficus petiolaris.

Comunidad ruderal. El establecimiento de esta comunidad se ha visto propiciado por la apertura de caminos y áreas de cultivo, que son abandonados posteriormente. Aún cuando la mayoría de las especies encontradas en este tipo de vegetación son consideradas especies indeseables o malas hierbas, cumplen una función importante en los ecosistemas alterados, dado que son pioneras y colonizadoras en el proceso de sucesión, y proporcionan néctar y polen a los insectos polinizadores. Por otra parte, su presencia contribuye tanto a evitar la erosión del suelo como a favorecer la formación del mismo. Aunque los elementos predominantes son herbáceos, suelen presentarse elementos del estrato arbóreo-arbustivo tales como: Acacia farnesiana, Acacia pennatula, Datura stramonium, Hyptis albida, Nicotiana glauca, Senecio salignus, Wigandia urens y

Verbesina greenmanii. El estrato herbáceo lo integran Bidens odorata, B. pilosa, Bouteloua repens, Brassica campestris, Cosmos bipinnatus y C. sulphureus.

Sitios de muestreo

Para la captura de los individuos se muestreo en dos sitios: 1) Cerritos Colorados, que se ubica en las coordenadas 20°40'54.70"N, 103°34'39.41"O y tiene una vegetación de pino-encino; las temperaturas durante las horas de muestreo máximas fueron 25.4 °C en mayo y las mínimas de 2.5 °C en diciembre (datos inéditos tomados con medidor de clima y viento marca Kestrel 4500); y 2) Los Guayabos, que se ubica en las coordenadas 20°38'4.40"N, 103°33'24.36"O, su principal tipo de vegetación es encino-pino con algunos elementos arbóreos tropicales como *Ficus sp., Psidium sp.* y elementos arbustivos como *Piper sp.*, la temperatura (durante las horas de muestreo) máxima registrada fue de 26.9°C en el mes de abril y la mínima de 3.6°C en el mes de enero (datos inéditos tomados con medidor de clima y viento marca Kestrel 4500) (Fig. 2).

FIG. 1. Ubicación del área de estudio ANP Bosque La Primavera.

FIG. 2. Ubicación de los sitios de muestreo.

Captura de murciélagos

Los muestreos se llevaron a cabo de noviembre 2011 a octubre 2012; se realizaron por dos noches consecutivas al mes cerca de la fase de luna nueva, se trabajó una noche por sitio. Se usaron 10 redes de niebla (12 x 3 m) en cada sitio, activas durante 5 horas a partir del ocaso, 5 redes se asociaron a cuerpos de agua y 5 a la vegetación. Las redes se revisaron a intervalos de 30 minutos, los ejemplares capturados se extrajeron con guantes de carnaza y se colocaron en bolsas de manta individuales para su procesamiento posterior.

Los individuos capturados se determinaron a nivel de especie y se tomaron los siguientes datos: antebrazo (usando un calibrador vernier Dial marca Swiss Precisión Instruments, INC), longitud total y longitud de la cola (obtenidos con una regla de metal) y peso (usando una balanza de resorte hasta 100 gr marca Pesola); la edad relativa considerando juvenil, subadulto o adulto, basados en la osificación de las falanges (Romero-Almaraz et al. 2007); sexo y condición reproductiva (para los machos se determinaron activos aquellos que presentaran testículos escrotados e inactivos aquellos en los que no se observaron escrotados, en el caso de las hembras se consideraron preñadas, aquellas a las que se pudo palpar y medir el feto; lactantes, cuando al palpar se observó salir leche de las glándulas mamarias; post-lactantes, aquellas que aún presentaban glándulas mamarias pero no se observó leche; e inactivas, cuando no presentaron ninguna de las características anteriores).

Obtención de fotografías

Las fotografías se tomaron sobre una base de unicel de 24 cm de ancho x 56 cm de largo, con dos cintas métricas pegadas a lo largo y ancho de manera permanente (una siguiendo el borde inferior a lo largo de la base y otra en el punto medio del largo, siguiendo el ancho de la base de unicel), se trazó una línea recta a lo largo de la base (dando referencia al acomodo de las alas), para mantener uniformidad y se mantuvo una

escala constante en las imágenes, se colocó una etiqueta de identificación para cada individuo (Fig. 3). A cada uno de los individuos se les tomaron dos secuencias de fotografías, para la primera, el individuo fue colocado boca abajo con las alas extendidas en línea recta perpendicular al cuerpo (procurando mantener la forma del propatagio y alineando el tercer metacarpo de cada ala a la línea trazada), sujetándolo de la parte media de cada antebrazo y ambas patas (Fig. 3). En la segunda secuencia, se plegaron las alas dejando ver con claridad el antebrazo de ambas alas (Fig. 4). Todas las fotografías fueron tomadas por la misma persona. Tomadas las fotografías los murciélagos se dejaron reposar en un ambiente cálido por una hora.

Velocidad

Para medir la velocidad de vuelo se construyó un túnel de 21 m de largo x 1.5 m de alto x 1.5 m de ancho. , Para dar forma a la estructura que sustenta al túnel se utilizaron 7 arcos hechos con tubo PVC de 1.5 pulgadas ubicados a lo largo del túnel, se recubrió a estructura con tela (tul) de color negro (Fig. 5). Al momento de la prueba se utilizaron dos cronómetros, uno a la entrada del túnel donde se liberó al murciélago (cronómetro 1), y otro al final (cronómetro 2); ambos se activaron cuando el murciélago comenzó el vuelo y se detuvieron a la salida del mismo (Fig. 6).

Morfometría

Las fotografías obtenidas en campo se procesaron en el laboratorio con el uso del programa Image-Pro v6, se obtuvieron 5 medidas lineales y 3 áreas alares, para cada una de las alas, en el caso de la envergadura sólo se obtuvo un valor por individuo, en total 17 variables (Tabla 2, Figs. 7 y 8).

FIG. 3. Acomodo de los individuos sobre la base de unicel para la primera secuencia de fotografías con las alas extendidas.

FIG. 4. Acomodo de los individuos sobre la base de unicel para la segunda secuencia de fotografías con las alas plegadas.

FIG. 5. Túnel utilizado para la prueba de vuelo de murciélagos.

FIG. 6. Murciélago iniciando el vuelo en el momento de la prueba.

Tabla 2. Medidas lineales y áreas alares obtenidas de las fotografías.

Medidas lineales		
Longitud del antebrazo (AB, izquierdo y	Longitud del codo a la muñeca.	
derecho)		
Longitud del ala (Lala, izquierda y derecha)	Longitud entre el cuerpo (inicio de la	
	membrana alar) y la punta del ala.	
Ancho del ala (Aala, izquierda y derecha)	Longitud de la muñeca a la punta del	
	quinto dedo (el punto más ancho del ala).	
Longitud del brazo del ala (Law, izquierdo y	Longitud entre el cuerpo y el quinto dedo.	
derecho)	congress chare en eucrops y en quinto dedo.	
•		
Longitud de la mano alar (Lhw, izquierda y	Longitud entre la punta del ala y el quinto	
derecha)	dedo.	
Envergadura (B)	Longitud de punta a punta de las alas	
	extendidas.	
Áreas alares		
Área alar (1/2 S, izquierda y derecha)	Área del ala, incluyendo el uropatagio	
	(cuando se presenta), y el área del cuerpo	
	entre las alas, excluyendo el área de la	
	cabeza.	
face dol harm alor /Face isociordo	,	
Área del brazo alar (Saw, izquierdo y	Área entre el cuerpo y el quinto dedo.	
derecho)		
Área de la mano alar (Shw , izquierda y	Área entre la punta del ala y el quinto	
derecha)	dedo.	

A partir de las medidas anteriores y de la multiplicación del peso por la fuerza gravitacional (9.81 m/s) se obtuvieron los siguientes índices alares, basados en la propuesta de Norberg y Rayner (1987):

Carga alar (wing loading; WL), está relacionada con la presión media que se ejerce en las alas y la capacidad de carga de las alas por centímetro cuadrado, con éste índice se puede describir el tamaño de las alas con la fórmula:

WL= Mg/S en dónde:

Mg = peso multiplicado por la aceleración gravitacional (9.81 m/s).

S = área alar (suma del área alar izquierda y derecha).

FIG. 7. Medidas lineales, donde AB es la longitud del antebrazo, Law es la longitud del brazo alar, Lhw longitud de la mano alar, Lala es el largo del ala, Aala el ancho del ala y B es la envergadura.

FIG. 8. Áreas alares, donde ½ S es el área alar, Saw es el área del brazo alar y Shw el área de la mano alar.

Relación de aspecto (aspect ratio; AR), se utiliza para evaluar el vuelo y el hábitat que usan los murciélagos, a partir de la forma de las alas, éste índice es un indicador de la anchura de las alas, dado por la fórmula:

AR: B²/S en donde:

B = envergadura.

S= área alar (suma del área alar izquierda y derecha).

Relación del largo de la punta (Tip length ratio; Ti), es la relación del largo de la mano alar (Lhw) con el largo del brazo (Law), dado por la fórmula:

Ti: Lhw/Law para cada ala, en donde=

Lhw = largo de la mano alar.

Law = longitud del brazo.

Relación del área de la punta (Tip area ratio; Ts), es la relación del área de la mano alar (Shw) con el área del brazo (Saw), dado por la fórmula:

4) Ts: Shw/Saw para cada ala, en donde=

Shw = área de la mano.

Saw = área del brazo.

Índice de forma de punta (Tip shape index; TI), se considera una medida independiente del tamaño corporal y es determinado por el tamaño relativo de la mano y el brazo del ala y es un indicador del ángulo y la forma de la punta del ala, independientemente de la longitud de la mano alar. Un bajo índice indica alas puntiagudas y un alto índice indica puntas redondeadas, dado por la fórmula:

5) TI: Ts/(Ti-Ts) para cada ala (ver fórmulas 3 y 4).

Análisis de datos

La velocidad de vuelo se calculó al dividir la distancia recorrida por el murciélago en el túnel (20 m) entre el promedio de tiempo de los dos cronómetros (en segundos), por lo que las velocidades (V) de los individuos se reportan en m/s.

Con el fin de determinar si existían diferencias entre las hembras y los machos en las variables morfológicas y velocidad del vuelo, se utilizó la prueba t y la U de Mann-Whitney. Asimismo, se obtuvieron estadísticas descriptivas (promedio, mínimo, máximo y desviación estándar) por variable para cada especie (valores obtenidos con el uso del programa SigmaPlot 11.0). Se buscaron diferencias estadísticas de las variables morfológicas y la velocidad de vuelo entre especies, mediante las pruebas: ANOVA y Kruskal-Wallis, en los casos necesarios se aplicó la prueba de Tukey para ver las diferencias entre pares de especies (valores obtenidos con el uso del programa Past v2.07).

La formación de grupos morfológicos se basó en dos métodos: 1) un análisis de ordenación de escalamiento multidimensional basado en distancias euclidianas (Non-Metric MDS Multidimensional Scaling Ordination) y 2) la propuesta de Norberg (2010) de sólo graficar WL y AR.

Se utilizó un análisis de correlación para evaluar la relación entre la morfología alar y la velocidad de vuelo por especie (Zar 1996); en el caso de la relación de la velocidad con el gremio trófico y grupo morfológico, sólo se correlacionó con los índices alares y la masa, en todos los casos se aplicó el coeficiente de correlación de Spearman.

RESULTADOS

Muestreo de murciélagos

Se trabajó durante 22 noches y se utilizaron 39,600 m²rh. Se capturaron 367 individuos pertenecientes a 18 especies, de tres familias y cuatro gremios tróficos; seis frugívoras, nueve insectívoras, dos nectarívoras y una omnívora (Tabla 2). Dentro de los frugívoros la especie con el mayor número de capturas fue *Chiroderma salvini* con 69, de los cuales 49 fueron machos y 20 hembras, mientras que la especie con el menor número de capturas fue *Sturnira ludovici* con dos machos y dos hembras. Para los insectívoros, la especie más abundante fue *Eptesicus fuscus* con 37 capturas, de las cuales 19 fueron machos y 18 hembras y por el contrario de *Lasiurus xanthinus* sólo se capturaron dos hembras. En el caso de los nectarívoros se obtuvieron dos machos de *Anoura geoffroyi* y una hembra de *Glossophaga soricina*. *Macrotus waterhoussi* fue el único omnívoro con 26 capturas de las cuales 16 fueron hembras y 10 machos (Tabla 3).

Tabla 3. Individuos capturados por especie y gremio trófico durante el periodo de estudio.

Nombre científico	Número de individuos	Sexo)
	Frugívoros		
Chiroderma salvini (Chsal)	69	20♀	49 o
Sturnira lilium (Stlil)	64	34♀	30 グ
Dermanura tolteca (Detol)	23	5♀	18 ්
Artibeus jamaicensis (Arjam)	32	11 Q	21 ඊ
Artibeus hirsutus (Arhir)	21	13♀	8ರ್
Sturnira ludovici (Stlud)	4	2♀	20"
	Insectívoros		
Eptesicus fuscus (Epfus)	37	18 ^Ç	19 ්
Myotis californicus (Mycal)	18	7♀	11 グ
Lasiurus blossevillii (Lablo)	14	₃ Q	11 O
Lasiurus cinereus (Lacin)	10		10 ೆ
Rhogeessa gracilis (Rhgra)	4	2♀	20
Nyctinomops femorosacus (Nyfem)	3		3♀
Myotis californicus (Mycal)	20	8 Q	12 グ
Tadarida brasiliensis (Tabra)	27	11 ^Q	16 <i>0</i> "
Lasiurus xanthinus (Laxan)	2	2♀	
	Nectarívoros		
Anoura geoffroyi (Angeo)	2		2 グ

Glossophaga soricina (Glsor)	1	10	
0	mnívoro		
Macrotus waterhousii (Mawat)	26	16♀	10 ೆ

Vuelo

Del total de individuos capturados, se realizó la prueba de vuelo a 298. De estas últimas se eliminaron los valores de velocidad de aquellos individuos que dieron vueltas, se cayeron o percharon dentro del túnel o que no recorrieron los 20 m, considerándose prueba de vuelo exitosa sólo aquellas en las que los individuos volaron recto hacia la salida del túnel, del total de individuos con prueba de vuelo, sólo 150 pertenecientes a 16 especies se consideraron pruebas exitosas.

No se encontró diferencia significativa en la velocidad de vuelo entre individuos adultos y subadultos (p>0.05) para ninguna de las especies, por lo que no se hicieron separaciones por categoría de edad. Las capturas de juveniles fueron bajas y solo para las especies *A. jamaicensis*, *D. tolteca*, *S. lilium* y *T. brasiliensis* (3, 1, 1, y 1 respectivamente), estos casos fueron incluidos en el análisis. No se encontraron diferencias significativas en la velocidad de vuelo entre hembras (H) y machos (M) (p>0.05), excepto en el caso de *E. fuscus* (t = 2.420, p = 0.030, gl = 14) (Anexo 1), por lo que solo para esta especie los sexos fueron analizados por separado.

A. jamaicensis y S. lilium fueron las especies que presentaron el mayor número de pruebas exitosas con 22 cada una, representando el 29.3 % del total, el menor número fue para M. thysanodes, L. xanthinus y S. ludovici con 2, 2 y 1 respectivamente (Tabla 4). La especie que registró la mayor velocidad fue A. jamaicensis con un promedio de 3.79 m/s, seguido de E. fuscusM con 3.54 m/s y de C. salvini con 3.48 m/s; contrariamente, para M. thysanodes se registró la menor velocidad con un promedio de 2.33 m/s (Tabla 3). La velocidad de vuelo fue diferente entre especies (H= 59.8, p= 2.726E-07), siendo A. jamaicensis diferente de S. lilium, E. fuscusM y M. waterhoussii; C. salvini de S. lilium y M. waterhoussii; Y E. fuscusH de S. lilium y M. waterhoussii (Anexo 2).

Tabla 4. Especies de murciélagos en el Bosque La Primavera con prueba de vuelo. Número de individuos probados, número de pruebas exitosas y estadísticas básicas por especie.

Especie Individuos Pruebas Promedio ± SD Min			Min- Max	
	probados	exitosas (n)	(m/s)	(m/s)
Arjam	28	22	3.79±0.50	3.09 - 4.71
<i>Epfus</i> H	11	6	3.54±0.45	2.8 - 4.16
Chsal	60	18	3.48±1.06	2.01 - 5.15
Arhir	18	13	3.32±0.78	2.42 - 4.8
Mycal	18	12	2.99±0.81	1.31 - 4.4
Detol	21	14	2.97±0.80	1.40 - 4.24
Lacin	10	3	2.91±0.48	2.53 - 3.46
EpfusM	16	10	2.89±0.55	2.01 - 3.72
Stlud	2	2	2.81	2.32 - 3.31
Tabra	25	5	2.76±1.38	1.48 - 4.93
Stlil	44	22	2.69±0.55	1.05 - 3.47
Mawat	23	14	2.61±0.69	1.05 - 3.51
Lablo	14	3	2.51±0.30	2.11 - 2.9
Rogra	3	3	2.41±0.3	2.2 - 2.75
Mythy	3	2	2.33	1.59 - 3.06
Laxan	2	1	2.53	

Arjam; A. jamaicensis; EpfusH: E. fuscus hembra; Chsal: C. salvini; Arhir: A. hirsutus; Mycal: M. californicus; Detol: D. tolteca; Lacin: L. cinereus; EpfusM: E. fuscus macho; Stlud: S. ludovici; Tabra: T. brasiliensis; Stlil: S. lilium; Mawat: M. waterhoussii; Lablo: L. blosevilli; Rhgra: R. gracilis; Mythy: M. thysanodes; Laxan: L. Xhantinus.

La velocidad de vuelo de las especies que integraron el gremio insectívoro (N=58) y el gremio frugívoro (N=90), fue significativamente diferente (U= 1787 p=0.001). Dentro del gremio insectívoro se encontraron diferencias significativas en la velocidad de vuelo entre especies (H=17.1, p=0.047); siendo *E. fuscus*H diferente de *E. fuscus*M, *M. waterhoussii, R. gracilis* y *T. brasiliensis* (Tabla 5). De la misma forma dentro del gremio frugívoro se encontraron diferencias significativas en la velocidad de vuelo entre especies (H=33.12, p=3.567E-06), *A. hirsutus* fue diferente de *A. jamaicensis* y S. lilium; y *A. jamaicensis* y *C. salvini* de *D. tolteca* y *S. lilium* (Tabla 6).

Tabla 5. Diferencias de la velocidad de vuelo entre murciélagos del gremio insectívoro prueba de Kruskal-Wallis H= 17.1 p= 0.04718.

	EpfusH	EpfusM	Labio	Lacin	Laxan	Mycal	Mythy	Mawat	Rhgra	Tabra
EpfusH	0	0.045	0.053	0.156	0.211	0.122	0.134	0.006	0.028	0.025
EpfusM		0	0.352	0.932	0.155	0.767	0.333	0.464	0.151	0.104
Labio			0	0.383	0.371	0.22	0.773	0.413	1	0.596
Lacin				0	0.371	0.613	0.773	0.85	0.383	0.216
Laxan					0	0.142	0.54	0.133	0.371	0.289
Mycal						0	0.523	0.157	0.17	0.163
Mythy							0	0.937	0.773	0.817
Mawat								O	0.284	0.367
Rhgra									0	0.377
Tabra										0

EpfusH: E. fuscus hembro; EpfusM: E. fuscus macho; Lablo: L. blosevilli; Laxan: L. Xhantinus; Mycal: M. colifornicus; Mythy: M. thysanodes; Mawat: M. waterhoussii; Rhgra: R. gracilis; Tabra: T. brasiliensis.

Tabla 6. Diferencias en la velocidad de vuelo entre murciélagos del gremio frugívoro prueba de Kruskal -Wallis H= 33.12 p= 3.657E-06.

	Arhir	Arjam	Chsal	Detol	Stlil	Stllud
Arhir	0	0.03016	0.1608	0.4968	0.03287	0.3502
Arjam		0	0.6402	0.002159	2.128E-07	0.05328
Chsal			0	0.02756	8.752E-05	0.1264
Detol				0	0.1397	0.9367
Stlil					0	0.9584
Stlud						0

Arhir: A. hirsutus; Arjam: A. jamaicensis; Chsal: C. salvini; Detol: D. tolteca; Still: S. lilium; Stlud: S. Iudovici.

Morfometría

Se fotografiaron 216 individuos, de 18 especies (*C. salvini, S. lilium, D. tolteca, A. jamaicensis, A. hirsutus, S. ludovici, M. californicus, L. blosevilli, L. cinereus, N. femorosacus, M. thysanodes, T. brasiliensis, L. xanthinus, R. gracilis, E. fuscus, A. geoffroyi, G. soricina, M. waterhoussii). Para el análisis se eliminaron aquellas fotografías en las que se detectó alguna irregularidad como un ala más estirada que otra, la punta de alguna de las alas caída o doblada, individuos mal acomodados o puntos importantes de las alas cubiertos por dedos, en total para el análisis se usaron las fotografías de 162 individuos correspondientes a 16 especies.*

La especie con mayor número de individuos medidos fue *S. lilium* con 40, de los cuales 21 fueron hembras y 19 machos seguido de *C. salvini* con 34 individuos, 13 hembras y 21 machos, las especies con menor número de individuos medidos fueron *N.*

femorosacus y L. xanthins con dos hembras cada uno, M. thysanodes con dos machos y S. ludovici con una hembra (Tabla 7).

Tabla 7. Número de individuos considerados para el análisis morfométrico.

especie	No. Individuos medidos	Sexo		
	Frugívoros			
Chsal	34	₁₃ Q	210	
Stlil	40	21♀	1907	
Detol	14	₃♀	110	
Arjam	8	2♀	ේ	
Arhir	11	7♀	4 ්	
Stlud	1	1♀		
	Insectivoros			
Mycal	9	3♀	රේ' 4ට්	
Lablo	6	2♀		
Lacin	5		5 0 7	
Nyfem	2	2♀		
Mythy	2		2 ් 11 ්	
Tabra	18	₈ Q	1107	
Laxan	2	₂ Q		
	Nectarívoros			
Angeo	2		20	
Glsor	1	₁ Q		
	Omnívoro			
Mawat	7	₃♀	4 ්	

Chsal: C. salvini; Stili: S. lilium; Detol: D. tolteca; Arjam: A. jamaicensis; Arhir: A. hirsutus; Stlud: S. ludovici; Mycal: M. californicus; Lablo: L. blosevillii; Lacin: L. cinereus; Nyfem: N. femorosacus; Mythy: M. thysanodes; Tabra: T. brasiliensis; Laxon: L. xanthinus; Angeo: A. geofrogy; Glsor: G. soricina; Mawat: M. waterhaussii.

No se realizaron separaciones por categoría de edades, debido a que sólo para A. jamaicensis, D. tolteca, S. lilium y T. brasiliensis se capturaron individuos juveniles (3, 1, 1 y 1 respetivamente). Se encontraron diferencias significativas entre hembras y machos solo en los casos de A. hirsutus para la variable ABD, C. salvini para las variables Masa, Aala y B, D. tolteca para la variable Masa, E. fuscus para las variables Masa y SawD, L. blosevillii para las variables Lalal, AalaD, B y LhwD, M. californicus para la variable Masa, M. waterhoussii para la variable Sawl y S. lilium para las variables Masa y AalaD (en todos los casos p<0.05)

(Anexo 3); en los índices alares se encontraron diferencias entre H y M solo en el caso de *M. californicus* para la variable TII, y de *M. waterhoussii* para las variables TII y AR (Tabla 8), a pesar de esto no se detectó diferencias en la velocidad de vuelo de H y M para estas especies (Anexo 1), por lo que los individuos de ambos sexos fueron evaluados de manera conjunta. Las estadísticas descriptivas de las variables morfométricas e índices alares para cada una de las especies se muestran en el Anexo 4.

Tabla 8. Diferencia entre las hembras y los machos para los índices alares.

Especie	Sexo	Variable	Valor de la prueba	gl	Valor de p
Arhir	Ω ₇	TID	T= 0.188	9	P= 0.855
	♂ 4	TII	U= 14.000		P= 1,000
		AR	T= 1.840	9	P= 0.099
		WL	T= 1.984	9	₽=0.079
Arjam	Ω 3	TID	T= -0.353	7	P= 0.735
	්'6	TII	T= -0.911	7	P= 0.393
		AR	T= 0.706	7	P= 0.503
		WL	T= -0.539	7	P= 0.607
Chsal	Q ₁₄	TID	U= 149.000		P= 0.884
	0'22	TII	T= -0.950	34	P= 0.349
		AR	U= 125.000		P= 0.355
		WL	T= 1.624	34	P= 0.114
Detol	♀ 3h	TID	T= -0.246	12	P= 0.810
	O 11	TII	T= 0.566	12	P= 0.582
		AR	T= -0.696	12	P= 0.499
		WL	U= 6.000		P= 0.119
Lablo	<u></u>	TID	T= -1.432	5	P= 0.212
	O'4	TII	U= 2.000		P= 0.229
		AR	T= 0.174	5	P= 0.869
		WL	T= 1.774	5	P= 0.136
Mycal	Ŷ ₇	TID	T= -0.110	15	P= 0.914
	O'10	Tii	T= 0.353	15	P=0.729
		AR	T= 1.043	15	P= 0.313
		WL	U= 12.000		P= 0.028
Mawat	Φ6	TID	T= 0.619	9	P= 0.551
	♂'s [™]	ŤII	T=-2.666	9	P= 0.026
		AR	T= -2.781	9	P= 0.018
		WL	T= -1.902	9	P= 0.090
Stlil	Ŷ 23	TID	T= -1.772	46	P= 0.083
	O'25	TII	U= 230.000	46	P= 0.239
		AŘ	T= 0.208	46	P= 0.836
		WL	T= -0.844	46	P= 0.403
Tabra	Q 11	TID	U= 59.000		P= 0.948
	♂ 11	TII	T= 0.303	20	P= 0.765
		AR	T= 0.787	20	P= 0.441
		WL	T= -0.0400	20	P= 0.968

Angeo	O 2	No se probó	
Gisor	♀1	No se probo	
Lacin	ೆ 6	No se probo	
Laxan	Q_2	No se probo	
Momeg	O'1	No se probo	
Mythy	♂ 2	No se probo	
Nyfem	\mathcal{Q}_3	No se probo	
Stlud	Q_1	No se probo	

TID = Indice de punta derecha, TII = Indice de punta izquierda, AR= Relación de aspecto, WL= Carga alar, Prueba t Student (TI, Prueba de Mann-Witney (U). Arhir: A. hirsutus; Arjam: A. jamoicensis; Chsal: C. salvini; Detal: D. tolteco, Labla: L. blosevillii; Mycal: M. californicus; Stlil: S. lilium; Tabra: T. brasiliensis; Angeo: A. geofroyi; Glsor: G. soricina; Lacin: L. cinereus; Laxan: L. xanthinus; Momeg: M. megallophylla; Mythy: M. thysanodes; Nyfem: N. femorosacus; Stlud: S. ludovici.

Las especies que presentaron la mayor carga alar fueron *A. hirsutus* (14.77 Nm²) y *A. jamaicensis* (14.47 Nm²) y la carga alar menor *M. californicus* (5.25 Nm²), *M. thysanodes* (5.32 Nm²), *M. megallophylla* (5.2 Nm²) y *R. gracilis* (5.32 Nm²), por el contrario la relación de aspecto fue mayor en *L. cinereus* (7.6 Nm²) y *T. brasiliensis* (8.3 Nm²) y menor en *M. megallophylla* 5.7 Nm²); los índices de punta fueron mayores en *M. waterhoussii* (6.2 Nm²), *S. ludovici* (6.1 Nm²), *G. soricina* (6.1 Nm²) y menores en *L. cinereus* (7.6 Nm²), *L. blosevilli* (6.9 Nm²), *L. xanthinus* (6.7 Nm²) y *T. brasiliensis* (8.3 Nm²) (Anexo 4).

La mayoría de las medidas morfométricas e índices alares fueron diferentes significativamente entre las especies, a excepción de las varaibles TID y AR que presentaron menor diferencia entre las especies (Anexo 5).

Descripciones alares por especie

De acuerdo con los datos obtenidos de las variables mormométricas consideradas, se describen las características de cada una de las especies observadas, *L. cinereus, T. brasiliensis* y *L. blosevillii* con alas estrechas y puntiagudas pero valores de áreas y largos alares variables, a *M. caifornicus, M. waterhoussii, A. jamaicensis, D. tolteca* y *C. salvini* con alas anchas pero valores variables de áreas y largos y a *A. hirsitus* y *S. lilium* con alas de anchura intermedia y con áreas y largos variables (Tabla 9).

Tabla 9. Descripción alar por especie e imágenes alares.

Sp	Descripción	Imagen
Lacin	Alas estrechas (+AR), área alar intermedia (WL), manos cortas (- TI), alas puntiagudas (-	
	Ti).	
Tabra	Alas estrechas (+AR), área alar grande (-WL), longitud de las manos de intermedia a alta (TI), alas puntiagudas (- Ti).	113

Alas estrechas (+AR),
área aiar grande (-WL),
manos cortas (-TI), alas
puntiagudas (-Ti).

Mycal

Alas anchas (-AR), área alar grande (-WL), longitud de las manos intermedia (TI), alas puntiagudas (-Ti).

Detoi

Alas anchas (-AR), área alar de intermedia a grande (WL), longitud de las manos intermedia (TI), puntas anchas y redondeadas (-Ti).

Mawat

Alas anchas (-AR), área alar grande (-WL), manos largas (+TI), alas puntiagudas (-TI).

Chsal

Alas anchas (-AR), área alar de intermedia a grande (WL), longitud de las manos de intermedia a larga (TI), puntas anchas y redondeadas (+Ti).

Arjam

Alas anchas (-AR), área alar chica (+WL), longitud de las manos intermedia (TI), puntas anchas y redondeadas (+TI).

Arhir

Ancho de las alas de intermedio a bajo (AR), área alar baja (+WL), longitud de manos intermedia (TI), puntas anchas y redondeadas (Ti).

intermedia a baja (AR), área alar de intermedia Stlil a baja (WL), longitud de manos de intermedia a alta (TI), anchas puntas

redondeadas (+Ti).

Correlación de la velocidad de vuelo con las variables morfológicas

La correlación de la velocidad de vuelo con las variables morfológicas no fue significativa, para la mayoría de las especies excepto en el caso de A. hirsutus con las variables ABI (H= 0.288, p= 0.491) y TiD (H= -0.750, p= 0.0384), D. tolteca para la variable TsI (H= -0.786 p= 0.0251), M. californicus para las variables AalaD (H= 0.718, p= 0.0110), Aalal (H= 0.955, p= 0.0000002), Shwi (H= 0.882, p= 0.0000002), Lhwi (H= 0.709, p= 0.0127), TID (H= 0.600, p= 0.0467) y Atot (H= 0.764, p= 0.00461) (Anexo 6); para el caso de los índices alares solo C. salvini se correlacionó significativamente con la WL (H= 0.747, p= 0.00680) (Anexo 6).

Correlación de la velocidad de vuelo con los grupos morfológicos y entre gremios tróficos

Grupos morfológicos

El arreglo de las especies a partir del modelo NMDS (Stress= 0) y de graficar directamente la carga alar (WL) y la relación de aspecto (AR), fue el mismo. La relación de aspecto alta de T. brasiliensis y L. cinereus las separa de las otras especies, y el resto se ordena de izquierda a derecha, con base en la carga alar; para la cual se observa una segregación clara de los insectívoros pequeños, pero no de los frugívoros, a partir de este acomodo se formaron 5 grupos morfológicos, el primero incluye a T. brasiliensis, N.

femorosacus y L. cinereus, el segundo a A. hirsutus, A. jamaicensis, S. lilium, D. tolteca, C. salvini y L. xanthinus, el tercero a L. blosevillii y L. xanthinus, el cuarto a M. waterhoussii y el quinto a M. californicus (Figs. 9 y 10).

FIG. 9. Modelo NMDS a partir del que se forman cinco grupos morfológicos.

FIG. 10. Carga alar (WL) contra relación de aspecto (AR), que muestra la formación de cinco grupos morfológicos.

Correlación de la velocidad de vuelo con los grupos morfológicos

Sólo se detectó una correlación significativa para dos grupos; para el grupo dos la correlación fue con la masa (H=0.588 p=0.00001), ABD (H=0.500 p=0.0003), B (H=0.544 p=0.00008), Atot (H=0.602 p=0.000008) y el índice TID (H=0.02 p=0.02), y para el grupo cinco con las variables Atot (H=0.764 p=0.004) e índice TID (H=0.600 p=0.04) (Tabla 10).

Tabla 10. Correlaciones significativas de la velocidad de vuelo con variables morfológicas.

Coeficiente de	Grupo1	Grupo2	Grupo 3	Grupo 4	Grupo \$
correlación	V	V	V	V	V
Masa	-1.000	0.588	0.564	0.564	0.499
	1.000	0.0000159	0.350	0.350	0.109
	2	47	5	5	11
AR	-1.000	-0.0594	0.400	0.400	-0.382
	1.000	0.690	0.517	0.517	0.233
	2	47	5	5	11
WL	-1.000	0.101	0.400	0.400	0.300
	1.000	0.498	0.517	0.517	0.353
	2	47	5	5	11

Correlación con los gremios tróficos

La velocidad de vuelo se correlacionó significativamente con la masa (H=0.574 p=0.00002) en el gremio insectívoro (Tabla 11); mientras que en el gremio frugívoro, no existió correlación significativa con ninguna de las variables (Tabla 12).

Tabla 11. Relación de las variables Masa, relación de aspecto (AR) y carga alar (WL) en insectívoros.

Coeficiente de correlación	Masa	AR	WL
Velocidad	0.574	0.00995	0.0445
	P= 0.000	P= 0.947	P= 0.765
	N= 47	N= 47	N= 47

Tabla 12. Relación de las variables masa, relación de aspecto (AR) y carga alar (WL) en frugívoros

Coeficiente	de	Masa	AR	WL
correlación				
Velocidad		-0.107	-0.143	-0.0322
		P= 0.615	P= 0.502	P= 0.879
		N= 24	N= 24	N= 24

DISCUSIÓN

Vuelo

Del total de individuos capturados no se logró hacer pruebas de vuelo para todos, especialmente en el caso de *Tadarida brasiliensis* y *Lasiurus cinereus*, en donde sólo volaron 5 y 3 individuos respectivamente. Pensamos que esto pudo deberse a las características propias de las especies, como en el caso de los Molósidos, en los que posiblemente la altura del túnel donde se realizó la prueba no fue suficiente para iniciar el vuelo, en este sentido se ha argumentado que este grupo de murciélagos necesita aventarse de una altura considerable para iniciarlo (Altringham 2001). También pudieron influir factores ambientales como la temperatura porque algunas noches se trabajó por debajo de los 10 °C (2.5 – 3.6°C temperaturas mínimas registradas); por el estrés del manejo y la poca familiaridad con el túnel o por el contrario, que el túnel no les representara una amenaza o que el manejo no le significará suficiente estrés como para escapar en el momento de sentirse libres. Por ejemplo, *Chiroderma Salvini* y *Sturnira lilium*, especies frugívoras que pueden iniciar el vuelo incluso desde el suelo (observación personal), simplemente no volaban al ser liberarlos.

Los resultados de las pruebas de vuelo no mostraron diferencias significativas entre la velocidad de las hembras y los machos, como se ha reportado en otros estudios (Findley et al. 1972; Sánchez-Hernández et al. 2006; Hopkins et al. 2003; Kennedy y Best 1972; Hixon et al. 2012) con especies diferentes; aunque para *Eptesicus fuscus* sí se encontraron diferencias entre los sexos, contrario a lo citado por Hayward y Davis (1964), quienes reportaron una velocidad de vuelo menor en cuatro individuos, sin diferenciar entre sexos (3 hembras y 2 machos). Debido a que esta especie presenta dimorfismo sexual (Williams y Findley 1979; Myer 1978), posiblemente las diferencias encontradas en nuestros valores de velocidad se deban a esa causa.

Por otra parte, se encontró que la velocidad de *E. fuscus, L. cinereus, Myotis californicus* y *Myotis thysanodes* es mayor a la reportada por Hayward y Davies (1964), mientras que para *Artibeus hirsutus, A. jamaicensis, T. brasiliensis* y *S. lilium,* los valores de

velocidad fueron similares a lo citado por Hixon et al. (2012); sin embargo, consideramos que estas diferencias podrían atribuirse a los métodos utilizados. Por ejemplo, Hayward y Davies (1964) probaron la velocidad dentro de un cuarto cerrado, lo que posiblemente disminuyó la velocidad en los organismos, a diferencia de Hixon et al. (2012) quienes simularon un túnel semejante al de este estudio.

Un caso particular es T. brasiliensis, para esta especie se han reportado varios valores de velocidad de vuelo desde 3.9 m/s (Hixon et al. 2012), 6.0 m/s (Hayward y Davies 1964), 11.6 m/s (Svoboda y Choate 1987), 26.8 m/s (96.5 km/h, Davis et al. 1962), y en este caso de 2.76 m/s. Davis et al. (1962) y Svoboda y Choate (1987), quienes reportaron la mayor velocidad, la obtuvieron a partir de una serie de fotografías del vuelo de los individuos en un espacio abierto; Hayward y Davies (1964) dentro de un cuarto completamente cerrado; Hixon et al. (2012) dentro de un túnel simulado con lonas; y en este trabajo, en un túnel de tela tul en la zona de captura. Es posible que el método de las fotografías de los murciélagos en vuelo libre (Davis et al. 1962; Svoboda y Choate 1987) muestren una velocidad más natural, porque los individuos reconocen el ambiente, el investigador no interfiere y no existe estrés por la captura y manejo de los mismos; a diferencia de los otros métodos en donde los individuos deben capturarse y manipularse, además de que coincidimos con Akins et al. (2007) y Hayward y Davies (1964), quienes consideran que probablemente los individuos aumentarían la velocidad si aumentara su familiaridad con el túnel y que las velocidades que estamos reportando no necesariamente son las que los individuos alcanzan en espacios abiertos cuando se trasladan de un sitio a otro o cuando están en busca de alimento. Mientras que diferimos con Canals et al. (2001) y Norberg (1987) quienes consideran que T. brasiliensis vuela a velocidades altas, en cualquier circunstancia.

Morfología

Se tuvieron diferencias entre el total de capturas y el número de individuos fotografiados que se incluyeron en el análisis, debido a dos factores: 1) la eliminación de fotografías de individuos que no permitieron una buena toma (individuos muy estresados

a los que no se les pudo alinear las alas); por ejemplo, *E. fuscus* se eliminó del análisis morfométrico porque de 17 organismos fotografiados sólo una fotografía podía incluirse en el análisis; 2) las hembras preñadas no se fotografiaron para no someterlas al estrés del manejo.

Para A. hirsutus, M. californicus y Dermanura tolteca se encontraron diferencias estadísticamente significativas entre las hembras y los machos para las variables antebrazo izquierdo (ABI), relación del área del brazo derecho (TiD), relación del área de la mano izquierda (TsI), ancho del ala derecha (AalaD), ancho del ala izquierda (AalaI), área de la mano izquierda (ShwI), largo de la mano izquierda (LhwI) y área total (Atot), en todos los casos las diferencias fueron sólo en una de las dos alas. A pesar de esto, es notable que en el caso de los índices alares sólo en C. salvini se encontraron diferencias en la carga alar, es probable que los individuos presenten diferentes grados de asimetría entre un ala y la otra, y que ésta se refleje tanto en las variables morfológicas como en los índices alares.

Para la masa corporal, medidas lineales, áreas alares y los índices alares (relación de aspecto, carga alar e índice de punta), se encontraron diferencias significativas entre las especies, como se esperaba y coincide con reportes previos (Hixon et al. 2012), debido a que se trabajó con murciélagos de diferentes familias, tamaños y forma de alas, lo que se atribuye a diferentes hábitos de forrajeo y conductas de vuelo.

Estudios previos han sido consistentes en reportar la relación que existe entre la velocidad de vuelo con el tamaño corporal y la longitud del antebrazo en diferentes especies (Hayward y Davis 1964; Findley et al. 1972; Kennedy et al. 1977; Hopkins et al. 2003; Hixon 2010; Sánchez-Hernández 2006), así como con los índices alares: carga alar, relación de aspecto e índice de punta (Hayward y Davis, 1964; Norberg, 1987). En este estudio, sólo en el caso de *A. hirsutus* se encontró relación del antebrazo izquierdo con la velocidad de vuelo; en *A. hirsutus* y *M. colifornicus*, con el índice de punta; y en *A. jamaicensis*, con la carga alar, a pesar de que la literatura señala una fuerte asociación entre la morfología alar, la velocidad de vuelo y el hábito de forrajeo (Vaughan 1996;

Findley et al. 1972; Stockwell 2001; Norberg y Rayner 1987; Norberg 2010), consideramos por un lado, que los individuos analizados en este trabajo probablemente volaron a una velocidad influenciada por el estrés, por lo que no se refleja la posible relación con su morfología, y por otro, que los murciélagos son capaces de desplegar diferentes velocidades más allá de las esperadas por su forma.

El análisis por gremios tróficos mostró que sólo en el caso de los murciélagos frugívoros la velocidad de vuelo estuvo relacionada con la masa, lo que difiere de lo reportado por otros autores (Vaughan, 1996; Findley et al. 1972; Stockwell, 2001; Norberg y Rayner 1987; Norberg 2010) quienes encontraron relación con la carga alar, relación de aspecto e índice de punta para diferentes especies, en nuestro caso se incluyeron especies con diferentes tallas y formas alares dentro de un mismo gremio trófico, es probable que si se hace una separación más específica de los gremios tróficos se pudiera encontrar la relación esperada.

En el caso de la formación de grupos morfológicos se obtuvo un patrón similar al presentado por Norberg (1998), Hodgkison et al. (2000) y Hixon et al. (2012) en las especies insectívoras, pero no coincidió con el resultado de las especies frugívoras porque no se obtuvo una segregación clara entre ellas, y a pesar de que se encontró una relación significativa de la velocidad de vuelo del grupo dos (formado por A. hirsutus, A. jamaicensis, S. lilium, D. tolteca, C. salvini y L. xanthinus) y cinco (formado por M. californicus) con variables relacionadas al tamaño (Anexo 7), no lo fue con los índices alares como se hubiera esperado según la literatura, por lo que coincidiendo con lo puntualizado por Birch (1997) y Bininda-Emonds y Russell (1992), consideramos posible que al no ser independientes de la masa corporal, los índices alares no estén reflejando una clara distinción de las especies con relación a la forma alar, como se ha citado en estudios anteriores.

Por otro lado, consideramos que las pocas coincidencias con los resultados reportados también pueden derivar del método utilizado para la obtención de las medidas, coincidiendo con Bininda-Emonds y Russell (1992) quienes argumentan que la

predicción del estilo de vuelo a partir de medidas morfológicas en murciélagos depende de la metodología empleada. El método tradicional de obtención de la morfometría alar está basado en el ala derecha, en algunos casos se traza su forma en un papel (Hodgkison et al. 2004; Moreno et al. 2006; Isaac y Marimuthu 1997; Hartman 1963; Bininda-Emonds y Russell 1992; Vaughan et al. 2004) y en otros a partir de fotografías digitales (Birch 1997), pero siempre infiriendo el valor de una de las alas a partir de la otra. Sin embargo, valdría preguntarse ¿Qué tan simétricas son las alas de los murciélagos?, y en caso de existir asimetría ¿si ésta influye en sus habilidades de vuelo? A pesar de que el método propuesto en este trabajo, intenta disminuir ese posible sesgo, todavía es necesario probar que tan significativo es. Proponemos abordar la relación de la forma de las alas de los murciélagos con sus habilidades de vuelo, mediante el uso de la morfometría geométrica, método que permitiría evaluar la forma real de las alas de un organismo.

CONCLUSIONES

- La velocidad de vuelo no fue diferente entre adultos y subadultos ni entre sexos.
- Artibeus jamaicensis, una especie frugívora, tuvo la mayor velocidad de vuelo; mientras que Myotis thysanodes, que es insectívoro, tuvo el valor más bajo.
- La velocidad de vuelo entre el gremio insectívoro y el gremio frugívoro fue diferente, la mayoría de las especies frugívoras volaron más rápido.
- La velocidad de vuelo entre las especies que conforman cada gremio fue diferente.
- El valor de velocidad de vuelo obtenidos para Artibeus hirsutus, A. jamaicensis, Tadarida brasiliensis y Sturnira lilium, fue similar a los reportados en la literatura.
- La velocidad de vuelo de Tadarida brasiliensis fue más baja que las reportadas en la literatura.
- Se encontraron diferentes velocidades de vuelo entre las especies del grupo morfológico uno y dos.
- Las variables morfológicas fueron diferentes entre hembras y machos, pero sólo para una de las dos alas de los individuos.
- La velocidad de vuelo por especies, por grupo morfológico y por gremio trófico se correlacionó con la variable relacionada al tamaño (masa).
- La velocidad de vuelo de Chiroderma salvini tuvo relación positiva y significativa con la carga alar.

Finalmente concluimos que: a) los murciélagos con alas anchas y manos cortas volaron más rápido que aquellos con alas estrechas y manos largas, b) La velocidad de vuelo fue diferente entre especies pertenecientes a un mismo gremio trófico, además la especie más veloz fue frugívora y la más lenta fue insectívora, y c) la velocidad entre las especies pertenecientes a un mismo grupo morfológico fue diferente. Con lo anterior rechazamos las hipótesis planteadas en el presente estudio.

LITERATURA CITADA

- AKINS, J. B., M. L. KENNEDY, G. D. SCNELL, C. SÁNCHEZ-HERNÁNDEZ, M. DE L. ROMERO-ALMARAZ, M. C. WOOTEN, Y T. L. BEST. 2007. Flight speeds of three species of Neotropical bats: Glossophaga soricina, Natalus stramineus, and Carolia subrufa. Acta Chiropterologica, 9(2):447-482.
- ALDRIDGE, H. D. J. N. 1986. Kinematics and aerodynamics of the greater horseshoe bat, Rhinolophus ferrumequinum, in horizontal flight at various flight speeds. Journal of experimental Biology, 126:479-497.
- ALDRIDGE, H. D. J. N. Y I. L. RAUTENBACH. 1987. Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology, 56:763-778.
- ALTRINGHAM, J. D. 2001. Bats: Biology and behabiour. Oxfor university Press Inc., New York
- ARITA, H., AND M. B. FENTON. 1997. Flight and echolocation in the ecology and evolution of bats. Trends in Ecology and Evolution, 12:53-58.
- BININDA-EMONDS, O. R. P. AND A. P. RUSSELL. 1992. Minimization of potencial problems associated with the morphometry of spirit-preserved bat wings. Collection Forum, 8(1):9-14.
- BININDA-EMONDS O. R. P. and A. P. Russell. 1993. Flight style in bats as predicted from wing morphometry: the effects of specimen preservation. Journal of Zoological of London, 234(2):275-287.
- BIRCH, J. M. 1997. Comparing wing shape of bats: The merits of Principal-Components analysis and Relative-Warp analysis. Journal of Mammalogy, 78(4):1187-1198.
- CANALS, M., J. IRIARTE DÍAZ, R. OLIVARES AND F. F. NOVOA. 2001. Comparación de la morfología alar de *Tadarida brasiliensis* (Chiroptera: Molossidae) y *Myotis chiloensis* (Chiroptera: Vespertilionidae), representantes de dos diferentes patrones de vuelo. Revista Chilena de Historia Natural, 74(3):699-704.

- CONANP. 2000. Programa de Manejo Área de Protección de Flora y Fauna La Primavera.

 Secretaria de Medio Ambiente y Recursos Naturales, Comisión Nacional de Áreas

 Naturales Protegidas, México, D. F. Pp 5-94.
- CROME, F. H. J., AND G. C RICHARDS. 1988. Bats and gaps: microchiropteran community structure in a Queensland rain forest. Ecology, 69(6): 1960-1969.
- Davis, R. B., C. F. Herreid, and H. L. Short. 1962. Mexican free-tailed bats in Texas. Ecology 32(4):311-346.
- DE LA CUEVA, H. 1996. La biomecánica. CICESE, Ensenada, Baja California. No. 42.
- DIETZ, C., I. DIETZ AND B. M. SIEMERS. 2006. Wing measurement variations in the five European Horseshoe bat species (Chiroptera: Rhinolophidae). Journal of Mammalogy, 87(6):1241-1251.
- FELDHAMER, G. A., L. C. DRICKAMER, S. H. VESSEY, AND J. F. MERRITT. 2004. Mammalogy: adaptation, diversity, and ecology 2nd edition McGraw-Hill. New York. 550. pp.
- FINDLEY, J. S., E. H. STUDIER AND D. E. WILSON. 1972. Morphologic properties of bat wings.

 Journal of Mammalogy, 53(3):429-444.
- FINDLEY, J. S. 1993. Bats: a community perspective. Cambridge University Press, Cambridge, United Kingdon, Pp 167.
- HARTMAN, F. 1963. Some flight mechanisms of bats. Ohio J. Sci., Vol. 63, No. 4, pp 59-65.
- HAYWARD, B. and R. Davis. 1964. Flight speeds in western bats. Journal of Mammalogy, 45(2):236-242.
- HELLER, K.-G. and Helversen, O. V. 1989. Resource partitioning of sonar frequency bands in rhinolophid bats. Oecologia, 80(2):178-186.
- HIXON S., A. BROOKS, B. MICULKA, C. RICHMOND, D. WARRENDORF, A. WHITMIRE, B. WILKINS, T. E. LACHER, JR., AND J. B. WOOLLEY. 2012. Wing morphology, flights speeds and insights into niche structure in Caribbean bats from Dominica. Chiroptera Neotropical, 18(1):1067-1073.

- HODGKISON, R. S., T. BALDING, A. ZUBAID AND T. H. Kunz. 2004. Habitat structure, Wing morphology, and the vertical stratification of Malaysian fruits bats (Megachiroptera: Pteropodidae). Journal of Tropical Ecology, 20(6):667-673.
- HOPKINS, H. L., C. SÁNCHEZ-HERNÁNDEZ, M. DE L. ROMERO-ALMARAZ, L. M. GILLEY, G. D. SCHNELL, M. L. KENNEDY. 2003. Flight speeds of four species of neotropical bats. The Southwestern Naturalist, 48(4): 711-714.
- ISAAC, S. S. AND G. MARIMUTHU. 1997. Development of wing morphology in the Indian pygmy bat *Pipistrellus mimus*. Journal of Bioscientiest, 22(2):193-202.
- KENNEDY, M. L. AND T. L. BEST. 1972. Flight speed of the gray bat, *Myotis grisescens*.

 American Midland Naturalist, 88:254~255.
- KENNEDY, M. L., P. K. PRICE, AND O. S. FULLER. 1977. Flight speeds of five species of Neotropical bats. Southwestern Naturalist, 22(3):389~406.
- KINGSTON, T., G. JONES, A. ZUBAID, AND T. H. KUNS. 2000. Resource partitioning in rhinolophoid bats revisited. Oecologia, 124(3): 332-242.
- MORENO, C. E., H. T. ARITA, AND L. SOLIS. 2006. Morphological assembly mechanisms in Neotropical bat assemblages and ensembles within a landscape. Oecologia, 149(1):133-140.
- MYERS, P. 1978. Sexual Dimorphism in Size of Vespertilionid Bats. The American Naturalist, 112(986): 701-711.
- NORBERG, U. M. 1981. Flight, morphology, and the ecological niche in some birds and bats.

 Symposia of the Zoological Society of London, 48:173-197.
- NORBERG, U. M. AND J. M. V. RAYNER. 1987. Ecological Morphology and Flight in Bats (Mammalia; Chiroptera): Wing Adaptations, Flight Performance, Foraging Strategy and Echolocation. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 316(1179):335-427.
- NORBERG, U. M. 1987. Wing form and flight mode in bats. Pp 43–56. *in* Recent advances in the study of bats Fenton, M. B., P. Racey, and J. M V. Rayner, editors. Cambridge University Press. Cambridge. Pp 470.

- NORBERG, U. M. 1998. Morphological Adaptations for flight in Bats. Pp 93-108. In: T. H. Kunz and P. A. Racey (eds), Bat Biology and Conservation. Smithsonian Institution Press.
- RAYNER, J. M. V. 1981. Flight adaptations in vertebrates. Symposia of the Zoological Society of London 48:137-172.
- ROMERO-ALMARAZ. M. DE L., C. SÁNCHEZ-HERNÁNDEZ, C. GARCÍA-ESTRADA, R. D. OWEN. 2007.

 Mamíferos pequeños: Manual de técnicas de captura, preparación y estudio. Las prensas de ciencia, México, D. F. Pp 184.
- RZEDOWSKI, J. 1978. Vegetación de México. Ed. Limusa. México. Pp 432.
- SALCEDO, H. DE LA C., M. B. FENTON, M. B. C. HICKEY AND R. W. BLAKE. 1995. Energetic consequences of flight speeds of foraging red and hoary bats (*Lasiurus borealis* and *Lasiurus cinereus*; Chiroptera: Vespertilionidae). The Journal of Experimental Biology. 198(11):2245-2251.
- SÁNCHEZ-HERNÁNDEZ, C., M. DE L. ROMERO-ALMARAZ, M. C. WOOTEN, G. D. SCHNELL, M. L. KENNEDY. 2006. Speed in flight of common vampire bats (*Desmodus rotundus*). Southwestern Naturalist, 51(3):422-425.
- SÍNTESIS GEOGRÁFICA DE JAUSCO. 1981. Instituto Nacional de Estadística, Geografía e Informática, México.
- STOCKWELL, E. F. 2001. Morphology and flight manoeuvrability in New World leaf-nosed bats (Chiroptera: Phyllostomidae). Journal of Zoology, 254(4):505-514.
- STRUHSAKER, T. T. 1961. Morphological factors regulating flight in bats. Journal of Mammalogy, 42(2):152-159.
- SVOBODA, P. L. AND J. R. CHOATE. 1987. Natural history of the Brazilian free-tailed bat in the San Luis Valley of Collorado. Journal of Mammalogy, 69(2):224-234.
- VAUGHAN, T. A. 1959. Functional morphology of three bats: *Eumops, Myotis, Myotis, Macrotus*. University of Kansas Publications, Museum of Natural History, 12:1-153.
- VAUGHAN, T. A. 1970. Flight patterns and aerodynamics. Pp. 195-216, in Biology of bats (W.A. Wimsatt, ed.). Academic Press, New York, 1:1-477.

- VAUGHAN, N., S. PARSONS, K. E. BARLOW AND M. R. GANNON. 2004. Echolocation calls and wing morphology of bats from the West Indies. Acta Chiropterologica, 6(1):75-90.
- WAINWRIGHT P. C. AND S. M. REILLY (EDS). 1994. Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago, III.
- WINTER, Y. 1999. Flight speed and body mass of nectar-feeding bats (Glossophaginae) during foraging. Journal of Experimental Biology, 202(14):1917-1930.

TESIS/CUCBA

ANEXOS

Anexo 1. Diferencia en la velocidad de vuelo de hembras y machos por especie.

N	73 14	Dif
Nombre científico	H - M	Diferencias H-M
Arjam	8 ^Q 140 ⁷	Mann-Whitney
		U≈ 46.000
		p= 0.517
Arhir	9 P 40 ⁷	Prueba t
		t= 1.246
		p= 0.239 gl= 11
Chsal	7 ♀ 11Ơ	Prueba t
		t= 0.373
		p= 0.714 gl= 16
Detol	3 P 110 ⁷	Prueba t
	3 / 110	t= 0.862
		p= 0.406 gl= 12
Epfus	6 ♀ 10♂	Prueba t
	0 / 100	t= 2.410
		p= 0.030 gl= 14
Stlil	9 P 13O	Prueba t
	, , 150	t= -0.473
		p= 0.642 gl= 20
Mycal	6 P 707	Prueba t
	0 . 70	t= 0.563
		p= 0.585 gl= 11
Mawat	7 P 707	Mann-Whitney
	7 + 70	U= 24.000
		p= 1.000
Rogra	1 ♀ 2♂	No se probo
Lablo	1 \(\sigma_2 \) \(\sigma^1 \)	No se probo
Stlud	2 φ	No se probo
Tabra	407	No se probo
Lacin	₃ ♂	No se probo
Laxan	ζ̈́Q	No se probo
Muthu	207	No se probo
Mythy	2 ්	No se probo

Anexo 2. Diferencia en la velocidad de vuelo entre especies.

0	Arhir	Arjam	Chsal	Detol	Stlil	Epfus H	Epfus M	Mycal	Mawat
Arhir	0	0.7401	0.9606	0.9343	0.322	0.9972	0.7954	0.9454	0.1753
Arjam		0	0.9998	0.06684	0.00174	0.9917	0.02461	0.07514	0.0005109
Chsa!			0	0.2456	0.01312	1	0.1156	0.2672	0.004444
Detol				0	0.9818	0.4886	1	1	0.9207
Stlil					0	0.04737	0.9986	0.9767	1
Epfus H						0	0.2813	0.5178	0.01854
Epfus M							0	1	0.9851
Mycal								0	0.9065
Mawat									0

Anexo 3. Diferencia entre hembras y machos por variable por especie.

Especie	H - M	Variable	Valor de la	gl	Valor de	Especie	H - M	Variable	Valor de la	gl	Valor de
			prueba		р				prueba		р
Arhir	₽7	Masa	t= 0.810	g1= 9	p=0.439	Arjam	Q 3	Masa	T= -0.384	7	P= 0.712
	♂ 4	ABD	t= 2.776	gl= 9	p= 0.022		O⁻6	ABD	T= 0.640	7	P= 0.542
		LalaD	t= 1.439	gl= 9	p= 0.184			ABI	T= 0.200	7	P= 0.847
		Lalai	t= 0.951	gl= 9	p= 0.366			LalaD	T= 0.138	7	P= 0.894
		AalaD	U= 12.000		p= 0.788			Lalal	T= 0.460	7	P= 0.659
		Aalal	T= -1.134	9	P= 0.286			AalaD	T= -0.118	7	P= 0.909
		В	T= 1.146	9	P= 0.281			Aalai	T= -0.374	7	P= 0.720
		SawD	T= -0.920	9	P = 0.382			В	T= 0.438	7	P= 0.675
		ShwD	T= -1.128	9	P= 0.289			SawD	t= 0.371	7	p= 0.721
		Sawl	T= -0.244	9	P= 0.813			ShwD	T= -0.139	7	p= 0.839
		Shwl	T= -0.779	9	P= 0.456			Sawl	T= 0.489	7	P= 0.640

		LawD	T= 0.813	9	P= 0.437			ShwD	T= -0.0182	7	P= 0.986
		LhwD	T= -0,600	9	P= 0.563			LawD	T= 0.322	7	P= 0.757
		Lawl	U= 9.000	-	P= 0.412			LhwD	T= -0.196	7	P= 0.850
		Lhwl	T= 0.0478	9	P= 0.963			Lawl	T= 0.412	7	P= 0.693
		TiD	T= -1.605	9	P= 0.143			Lhwl	U= 8.000	•	P= 0.905
		TsD	T= -0.523	9	P= 0.614			TiD	T= -0.508	7	P= 0.627
		Til	T= -1.838	9	P= 0.099			TsD	T= -0.473	7	P= 0.650
		TsI	T= -0.784	9	P= 0.453			Til	T= 0.229	7	P= 0.826
		Atot	T= -0.705	9	P= 0.499			TsI	T= -0.475	7	P= 0.650
Chsal	Q ₁₄	Masa	T= 3.026	34	P= 0.005	Detol	Q 3	Masa	U= 3.000		P= 0.038
	O ⁷ 22	ABD	T= 1.719	34	P= 0.095		O ⁷ 11	ABD	t= 0.547	12	P= 0.594
		ABI	T= 1.338	34	P= 0.190			ABI	T= -0.217	12	P= 0.832
		LalaD	T= 1.061	34	P= 0.296			LalaD	T= 0.0468	12	P= 0.963
		Lalai	T= 2.265	34	P= 0.030			Lalal	U= 15.000		p= 0.876
		AalaD	T= 0.634	34	P= 0.530			AalaD	T= -0.0930	12	P= 0.927
		Aalal	T= 2.442	34	P= 0.020			Aala1	T= 0.637	12	P= 0.536
		8	T= 2.384	34	P= 0.023			В	T= -0.00152	12	P= 0.999
		SawD	T= 1.919	34	P= 0.063			SawD	T= -0.396	12	P= 0.699
		ShwD	T= 0.334	34	P= 0.740			ShwD	U= 11.000		P= 0.436
		Sawl	T= 3.961	34	P= 0.001			Sawl	T= -0,260	12	P= 0.799
		Shwl	T= 2.234	34	P= 0.032			Shwl	T= 0.281	12	P= 0.784
		LawD	T= 2.169	34	P= 0.037			LawD	T= -0.850	12	P= 0.412
		lhwD	T= -0.551	34	P= 0.585			LhwD	U= 11.000		P= 0.436
		Lawl	T= 1.929	34	P= 0.062			Lawi	T = 0.0714	12	P= 0.944
		Lhwl	T= 1.840	34	P= 0.075			Lhwl	U= 16.000		P=1.000
		TiD	U= 98.000		P= 0.072			TiD	T= 0.692	12	P= 0.502
		TsD	U= 94.000		P= 0.054			TsD	T= 0.387	12	P= 0.706
		Til	T= -0.644	34	P= 0.524			Til	U= 16.000		P= 1.000
		Tsl	T= -2.015	34	P= 0.052			Tsi	U= 15.000		P= 0.876
		Atot	T= 2.761	34	P= 0.009			Atot	T= 0.344	12	P= 0.737
Epfus	Q 9	Masa	T= 3.641	15	P= 0.002	Labio	Q_3	Masa	T= 2.381	5	P= 0.063

	♂ 8	ABD	T= 0.692	15	P= 0.499		0 74	ABD	T= -0.0808	5	P= 0.939
		ABI	T= 0.268	15	P= 0.792			ABI	T= 0.462	5	P= 0.663
		LalaĐ	T= -1.383	15	P= 0.187			LalaD	T= 1.370	5	P= 0.229
		LalaI	T= -0.314	15	P= 0.758			Lalal	T= 2.854	5	P= 0.036
		AalaD	T= 1.567	15	P= 0.138			AalaD	T= 3.461	5	P= 0.018
		Aalal	T= 0.952	15	P= 0.356			Aalal	T= 1.519	5	P= 0.189
		В	T= -1.059	15	P= 0.306			В	T= 3.027	5	P= 0.029
		SawD	T= -2.548	15	P= 0.022			SawD	T= 2.264	5	P= 0.073
		ShwD	T= 0.367	15	P= 0.719			ShwD	T= 2.030	5	P= 0.098
		Sawl	T= -1.937	15	P= 0.072			Sawl	T= 1.000	5	P= 0.363
		Shwl	T= -0.374	15	P= 0.714			Shwl	T= 2.317	5	P= 0.068
		LawD	T= -1.945	15	P= 0.071			LawD	T= 0.725	5	P= 0.501
		LhwD	T = -0.450	15	P= 0.659			LhwD	T= 3.501	5	P= 0.017
		Lawl	U= 28.000		P= 0.470			Lawl	T= 1.876	5	P= 0.120
		Lhwl	T= -1.216		P= 0.243			Lhwl	T = 2.150	5	P= 0.084
		TiD	T= 0.983	15	P= 0.341			TiD	T= 1.999	5	P= 0.102
		TsD	T = 1.818	15	P= 0.089			TsD	T= -0.363	5	P= 0.731
		Til	T = -0.101	15	P = 0.921			Til	T= -0.810	5	P= 0.455
		TsI	T= 1.149	15	P= 0.269			Tsl	T= 0.772	5	P= 0.475
		Atot	T= -1.885	15	P= 0.079			Atot	T= 2.297	5	P= 0.070
Mycal	₽7	Masa	U= 14.500		P= 0.046	Mawat	Φ6	Masa	U= 7.000		P= 0.177
	O'10	ABD	T= 0.904	15	P= 0.380		♂ 5	ABD	T= 1.055	9	P= 0.319
		ABI	T= 1.457	15	P= 0.166			ABI	T= -0.192	9	P= 0.852
		LalaD	T= 0.566	15	P = 0.580			LalaD	T= 0.534	9	P= 0.607
		Lalal	T = 0.794	15	P= 0.440			Lalal	T= 1.027	9	P= 0.331
		AalaD	T= -0.320	15	P= 0.754			AalaD	U= 9.000		P= 0.329
		AalaI	T= 0.639	15	P= 0.533			Aalal	T = 0.739	9	P= 0.479
		В	T= 0.885	15	P= 0.390			В	T= -0.0294	9	P= 0.977
		SawD	T= 0.659	15	P= 0.520			SawD	T= 0.185	9	P= 0.857
		ShwD	-0.602	15	P = 0.556			ShwD	T= 1.269	9	P= 0.236
		Sawl	T= 0.290	15	P= 0.776			Sawl	T= 2.944	9	P= 0.016

		Shwi	T= 0.0838	15	P= 0.934			Shwl	T= 1.156	9	P= 0.277
		LawD	T= 1.060	15	P= 0.306			LawD	T= -0.386	9	P= 0.708
		LhwD	T= -0.666	15	P= 0.515			LhwD	T= 1.234	9	P= 0.249
		Lawl	T= 0.786	15	P= 0.444			Lawl	T= 1.2224	9	P= 0.252
		Lhwi	T= 0.226	15	P= 0.824			Lhwi	T= 0.466	9	P= 0.652
		TiD	T= -1.938	15	P= 0.072			TiD	T= 3.554	9	P= 0.006
		TsD	T= -0.869	15	P= 0.398			TsD	T= 1.362	9	P= 0.206
		Til	T= -0.722	15	P= 0.481			Til	t= -1.163	9	P= 0.275
		Tsl	T= -0.143	15	P= 0.888			Tsi	T= -2.155	9	P= 0.060
		Atot	T= -0.171	15	P= 0.867			Atot	T= 1.785	9	P= 0.108
Stlil	Q ₂₃	Masa	U= 170.500		P= 0.015	Tabra	♀ ₁₁	Masa	U= 45.000		P= 0.316
	O'25	ABD	T= -1.723	46	P= 0.092		0711	ABD	T= 0.0668	20	P= 0.947
		ABI	T= -1.245	46	P= 0.219			ABI	T= 0.951	20	P= 0.353
		LalaD	T= -1.587	46	P = 0.119			LalaD	T= 0.880	20	P= 0.389
		Lalal	T = 0.102	46	P= 0.919			Lalal	T= -0.352	20	P= 0.729
		AalaD	T= -2.028	46	P= 0.048			AalaD	T = -0.316	20	P= 0.755
		Aalal	T= -1.684	46	P= 0.099			Aalal	T= -0.568	20	P= 0.576
		В	T= -0.688	46	P= 0.495			В	T= 0.589	20	P= 0.562
		SawD	T= -0.460	46	P= 0.647			SawD	T= -0.415	20	P= 0.683
		ShwD	T= -1.642	46	P= 0.107			ShwD	T= -0.391	20	P= 0.700
		Sawl	T= -0.198	46	P= 0.844			Sawl	T= -0.444	20	P= 0.662
		Shwl	T= -0.550	46	P= 0.585			Shwl	T= -0.403	20	P= 0.692
		LawD	T= -1.036	46	P = 0.305			LawD	T= 0.159	20	P= 0.876
		LhwD	T= -1.276	46	P= 0.208			LhwD	T= 0.691	20	P= 0.498
		Lawl	T= 0.00359	46	P≃ 0.997			Lawl	T= -0.295	20	P= 0.771
		Lhwi	T= 0.403	46	P= 0.689			Lhwl	T= -0.253	20	P= 0.803
		TiD	T= -0.107	46	P= 0.915			TiD	T= 0.479	20	P= 0.637
		TsD	U= 225.000		P= 0.201			TsD	T= 0.0666	20	P= 0.948
		Tit	T= 0.428	46	P= 0.670			Til	T= 0.0220	20	P= 0.983
		Tsl	T≃ -0.766	46	P= 0.447			TsI	T= 0.135	20	P= 0.894
		Atot	T= -0.778	46	P= 0.440			Atot	T= -0.389	20	P= 0.702

No se probo									
		Lacin 🗬 6							

Anexo 4. Estadísticas básicas por variable para cada especie de murciélago.

Arhir					••••	Arjam					
	N	Prom	Min	Max	SD		N	Prom	Min	Max	SD
Masa	11	328.189	259.965	372.78	35.9409	Masa	9	338.99	264.87	412.02	45.5165
ABD	11	55.351	52.9056	58.7731	1.53114	ABD	9	54.5496	51.9661	56.7215	1.6431
ABI	11	53.8858	49.298	58.2052	2.69044	ABI	9	53.9006	51.2671	56.0891	1.71185
LalaD	11	167.494	162.043	172.703	3.78957	LalaD	9	166.956	154.235	178.084	6.72688
Lalal	11	162.672	151.141	178.351	9.19387	Lalal	9	163.939	145.879	176.164	8.35752
AalaD	11	76.6026	60.0129	82.8784	6.70551	AalaD	9	80.9858	77.1992	85.9798	2.92438
Aalal	11	76.5792	64.086	82.8243	5.80281	Aalal	9	80.3304	77.2503	85.5694	3.12347
В	11	384.539	361.614	403.052	12.4427	В	9	383.855	360.521	398.901	12.5956
SawD	11	5171.17	4489.63	6127.73	482.608	SawD	9	5449.05	4678.03	6033.11	401.725
ShwD	11	4669.88	3502.96	5548.68	609.721	ShwD	9	4878.36	4019.48	5673.6	496.418
Sawl	11	5055.07	3916.92	5959.34	680.102	Sawl	9	5452.34	4509.01	6323.57	526.587
Shwl	11	4480.75	3413.3	5330.91	594.017	Shwl	9	4739.76	4099.16	5342.81	416.388
LawD	11	63.7927	59.827	67.3274	2.61413	LawD	9	64.9435	60.1256	69.6567	3.15634
LhwD	11	98.5121	92.0574	104.994	4.24094	LhwD	9	98.4413	89.686	105.057	4.83741
Lawl	11	63.0331	57.3885	72.2034	5.10203	Lawl	9	64.0161	59.2983	68.7417	3.32049
Lhwl	11	94.5289	80.496	105.275	8.10747	Lhwl	9	95.8822	82.1318	101.758	5.59497
TiD	11	1.54538	1.40473	1.665	0.0647215	TiD	9	1.51723	1.42326	1.6285	0.071417
TsD	11	0.904711	0.657212	1.02651	0.0999395	TsD	9	0.895824	0.790144	1.00723	0.0720091
Til	11	1.50092	1.35249	1.62975	0.0837979	Til	9	1.49919	1.38506	1.62462	0.083621
Tsl	11	0.889088	0.742799	0.99053	0.0670307	Tsl	9	0.873064	0.774454	0.987811	0.0781055
TID	11	1.43177	0.879194	1.8689	0.258201	TID	9	1.45617	1.17071	1.80506	0.212146
TII	11	1.4863	1.06817	2.29413	0.304178	TII	9	1.41231	1.15146	1.91004	0.23526
Atot	11	22283.1	18236.3	25913.2	2363.27	Atot	9	23423.9	21087.4	25388.2	1538.48
AR	11	6.6903	6.06117	7.87179	0.62786	AR	9	6.29892	6.04166	6.58835	0.187015
WL	11	14.7782	0.012246	0.0168604	0.0013388	WL	9	14.471	0.0117651	0.016872	0.00170725
Chsal						Detol					
	Ν	Prom	Min	Max	SD		N	Prom	Min	Max	SD
Masa	36	222.088	166.77	294.3	25.3006	Masa	14	158.747	21.7814	127.53	215.82

ABD	36	45.0905	41.9529	49.1479	1.70755	ABD	14	39.4736	1.53947	36.9145	41.7249
AB1	36	45.0005	41.8115	48.3014	1.68228	ABI	14	39.4938	1.3444	36.6206	41.6466
LalaD	36	145.202	134.494	155.633	5.30401	LalaD	14	124.874	4.76214	116.447	132.374
Lalal	36	144.222	127.616	161.948	7.47826	Lalai	14	125.558	3.92595	116.267	129.674
AalaD	36	71.514	62.2992	76.5392	3.26692	AalaD	14	63.3462	2.35428	58.5304	66.5843
Aalal	36	71.1961	63.6057	76.056	2.86455	Aalal	14	63.2701	2.08071	59.3997	66.3477
В	36	339.06	308.539	362.549	12.0652	В	14	295.928	8.08937	284.72	308.559
SawD	36	3981.1	3254.82	4755.08	348.916	SawD	14	3216.45	325.733	2658.71	3816.7
ShwD	36	4026.79	3301.05	4656.5	311.383	ShwD	14	3099.83	232.168	2359.01	3339.5
Sawl	36	3996.1	3400.5	4792.35	366.463	Saw1	14	3209.34	233.604	2752.22	3556.04
Shwl	36	3941.96	3218.36	4799.61	325.351	Shwl	14	3092.77	216.19	2644.13	3471.38
LawD	36	52.8207	47.5452	60.7791	2.77021	LawD	14	46.0436	2.99032	39.2743	50.5312
LhwD	36	90.0221	81.8182	101.715	4.39053	LhwD	14	76.3988	3.89318	64.6932	80.7692
Lawl	36	52.3871	45.1878	61.9538	3.66086	Lawl	14	46.0759	1.59327	43.3735	49.0982
Lhwl	36	89.1034	77.9712	99.5699	4.40915	Lhwl	14	76.8147	2.66067	71.3319	80.6973
TiD	36	1.70903	1.50913	2.10871	0.126104	TiD	14	1.66582	0.137604	1.35602	1.96004
TsD	36	1.01426	0.918264	1.20871	0.0659203	TsD	14	0.969671	0.0951674	0.825472	1.17789
Til	36	1.70535	1.51726	1.92253	0.0949132	Til	14	1.66919	0.0849633	1.49742	1.76292
Tsl	36	0.989193	0.862336	1.12321	0.0640021	Tsl	14	0.967048	0.0842256	0.853172	1.18486
TID	36	1.49285	1.10115	2.31277	0.257781	TID	14	1.40902	0.199426	1.10574	1.84181
TH	36	1.41078	0.960432	1.96149	0.240524	TII	14	1.40432	0.267731	1.04466	2.04972
Atot	36	18385.7	15665.7	20660.9	1175.49	Atot	14	14397.3	887.077	12332.9	15641.2
AR	36	6.2616	5.23199	6.61283	0.219769	AR	14	6.09264	0.204699	5.77449	6.63769
WL	36	12.08	0.00992498	0.0153589	0.00114453	WL	14	11.0627	0.00167504	0.00936814	0.015662
Epfus						Lablo					
	N	Prom	Min	Max	SD		N	Prom	Min	Max	SD
Masa	17	166.77	112.815	215.82	28.7058	Masa	7	94.5964	78.48	117.72	12.8888
ABD	17	48.9451	43.6359	53.8715	2.4638	ABD	7	39.3983	37.1785	41.7591	1.69069
ABI	17	48.3617	43.8732	51.9262	2.20078	ABI	7	39.5675	38.4905	41.423	1.14326
LalaD	17	143.334	134.414	153.793	5.63306	LalaD	7	129.52	122.561	135.222	3.8149
Lalai	17	141.683	135.035	151.62	5.08601	Lalai	7	129.608	120.065	137.147	6.19543
AalaD	17	61.143	56.4718	71.8987	4.09055	AalaD	7	54.3609	53.1526	56.2571	1.21805

B 17 329.547 316.026 346.805 9.16009 B 7 299.774 285.245 312.748 9.94 SawD 17 3835.06 3401.07 4299.15 292.767 SawD 7 3051.99 2727.24 3413.57 284 ShwD 17 2587.18 2198.06 3191.34 295.794 ShwD 7 1968.87 1699.94 2180.9 157. SawI 17 2384.76 3090.42 4763.54 370.245 SawI 7 2947.8 2478.31 3394.73 288 ShwI 17 2497.06 2081.87 3028.84 254.226 ShwI 7 2093.77 1691.48 2209.66 164. LawI 17 63.1557 57.2512 68.3784 3.29397 LawD 7 50.575 45.633 52.7337 1.70 LhwI 17 74.3018 69.5054 81.0706 3.83951 LhwI 7 50.54605 75.71 3.79													
SawD 17 3835.06 3401.07 4299.15 292.767 SawD 7 3051.99 2727.24 3413.57 284. ShwD 19 2587.18 2198.06 3191.34 295.794 ShwD 7 1968.87 1699.94 2180.9 157. 284 17 2897.06 2081.87 3090.42 4763.54 370.245 Sawl 7 2947.8 2478.31 3394.73 288 Shwl 17 2497.06 2081.87 3028.84 254.226 Shwl 7 2003.17 1691.48 2209.66 164. LawD 17 63.1557 57.2512 68.3784 3.29397 LawD 7 50.7735 47.633 52.7337 1.70 Lhwl 17 76.0832 71.088 84.1477 3.82034 LhwD 7 71.572 65.4605 75.71 3.79 Lawl 17 74.3018 69.5054 81.0706 3.83951 Lhwl 7 72.3934 65.6441 75.1002 3.33	Αā	alal	17	60.83	57.0099	67.6076	3.0301	AalaI	7	54.2278	51.5737	55.6746	1.39307
ShwD	В		17	329.547	316.026	346.805	9.16009	В	7	299.774	285.245	312.748	9.94924
Sawl 17 3834.76 3090.42 4763.54 370.245 Sawl 7 2947.8 2478.31 3394.73 288 Shwl 17 2497.06 2081.87 3028.84 254.226 Shwl 7 2903.17 1691.48 2209.66 164. LawD 17 663.1557 57.2512 68.3784 3.29397 LawD 7 50.7735 47.633 52.7337 1.70 Lhwl 17 76.0832 71.088 84.1477 3.82034 LhwD 7 71.572 65.4605 75.71 3.79 Lhwl 17 63.5455 54.6409 66.9284 2.93551 Lhwl 7 70.5555 45.8539 55.6181 3.92 Lhwl 17 74.3018 69.5054 81.0706 3.83951 Lhwl 7 72.3934 65.6441 75.1002 3.33 TiD 17 1.0769 0.05273 0.89996 0.0850356 TsD 7 0.64801 0.567788 0.	Sa	wD	17	3835.06	3401.07	4299.15	292.767	SawD	7	3051.99	2727.24	3413.57	284.213
Shwl	Sh	wD	17	2587.18	2198.06	3191.34	295.794	ShwD	7	1968.87	1699.94	2180.9	157.228
LawD	Sa	wl	17	3834.76	3090.42	4763.54	370.245	Sawl	7	2947.8	2478.31	3394.73	288.38
LhwD	Sh	wl	17	2497.06	2081.87	3028.84	254.226	Shwl	7	2003.17	1691.48	2209.66	164.012
Lawl 17 63.5455 54.6409 66.9284 2.93551 Lawl 7 50.555 45.8539 55.6181 3.92	La	lwĐ	17	63.1557	57.2512	68.3784	3.29397	LawD	7	50.7735	47.633	52.7337	1.70776
Lhwl	Lh	wD	17	76.0832	71.088	84.1477	3.82034	LhwD	7	71.572	65.4605	75.71	3.79327
TiD 17 1.20792 1.04832 1.45167 0.0903167 TiD 7 1.41017 1.30261 1.49484 0.071 TsD 17 0.677064 0.572073 0.899968 0.0850356 TsD 7 0.64801 0.567788 0.726942 0.058 Til 17 1.17169 1.05808 1.32854 0.0814084 Til 7 1.43584 1.3499 1.53816 0.071 Tsl 17 0.654786 0.511247 0.765942 0.0726872 Tsl 7 0.681558 0.623781 0.746025 0.044 TiD 17 1.29443 0.906996 1.75549 0.239787 TiD 7 0.861117 0.726554 1.1357 0.14 Til 17 1.5645.1 14092.1 17207.7 917.354 Atot 7 13013.2 11565.9 14317.8 911. AR 17 6.95524 6.42839 7.39443 0.330644 AR 7 6.91824 6.64305 </td <td>La</td> <td>wl</td> <td>17</td> <td>63.5455</td> <td>54.6409</td> <td>66.9284</td> <td>2.93551</td> <td>Lawl</td> <td>7</td> <td>50.555</td> <td>45.8539</td> <td>55.6181</td> <td>3.92605</td>	La	wl	17	63.5455	54.6409	66.9284	2.93551	Lawl	7	50.555	45.8539	55.6181	3.92605
TsD 17 0.677064 0.572073 0.899968 0.0850356 TsD 7 0.64801 0.567788 0.726942 0.058 Til 17 1.17169 1.05808 1.32854 0.0814084 Til 7 1.43584 1.3499 1.53816 0.071 Tsl 17 0.654786 0.511247 0.765942 0.0726872 Tsl 7 0.681558 0.623781 0.746025 0.044 Til 17 1.29443 0.906996 1.75549 0.239787 TiD 7 0.861117 0.726554 1.1357 0.14 Till 17 1.30969 0.768515 1.99216 0.30565 Till 7 0.911851 0.775984 1.14705 0.12 Atot 17 15645.1 14092.1 17207.7 917.354 Atot 7 13013.2 11565.9 14317.8 911. AR 17 6.95524 6.42839 7.39443 0.330644 AR 7 6.91824 6.64305	Lh	ıwl	17	74.3018	69.5054	81.0706	3.83951	Lhwl	7	72.3934	65.6441	75.1002	3.33626
Til 17 1.17169 1.05808 1.32854 0.0814084 Til 7 1.43584 1.3499 1.53816 0.071 Tsl 17 0.654786 0.511247 0.765942 0.0726872 Tsl 7 0.681558 0.623781 0.746025 0.044 Til 17 1.29443 0.906996 1.75549 0.239787 TilD 7 0.861117 0.726554 1.1357 0.143 Til 17 1.30969 0.768515 1.99216 0.30565 Til 7 0.91851 0.775984 1.14705 0.123 AR 17 1.5645.1 14092.1 17207.7 917.354 Atot 7 13013.2 11565.9 14317.8 911. AR 17 6.95524 6.42839 7.39443 0.330644 AR 7 6.91824 6.64305 7.27688 0.266 WL 17 10.6859 0.00774005 0.0132423 0.0018781 WL 7 7.24707 0.00647107	Ti	D	17	1.20792	1.04832	1.45167	0.0903167	TiD	7	1.41017	1.30261	1.49484	0.0715034
Tsl 17 0.654786 0.511247 0.765942 0.0726872 Tsl 7 0.681558 0.623781 0.746025 0.044 TID 17 1.29443 0.906996 1.75549 0.239787 TID 7 0.861117 0.726554 1.1357 0.141 TII 17 1.30969 0.768515 1.99216 0.30565 TII 7 0.911851 0.775984 1.14705 0.121 Atot 17 15645.1 14092.1 17207.7 917.354 Atot 7 13013.2 11565.9 14317.8 911. AR 17 6.95524 6.42839 7.39443 0.330644 AR 7 6.91824 6.64305 7.27688 0.266 WL 17 10.6859 0.00774005 0.0132423 0.0018781 WL 7 7.24707 0.00647107 0.00822194 0.0005 Lacin M Prom Min Max SD N Prom Min Max	Ts	D	17	0.677064	0.572073	0.899968	0.0850356	TsD	7	0.64801	0.567788	0.726942	0.0588866
TID 17 1.29443 0.906996 1.75549 0.239787 TID 7 0.861117 0.726554 1.1357 0.147 TII 17 1.30969 0.768515 1.99216 0.30565 TII 7 0.911851 0.775984 1.14705 0.123 Atot 17 15645.1 14092.1 17207.7 917.354 Atot 7 13013.2 11565.9 14317.8 911. AR 17 6.95524 6.42839 7.39443 0.330644 AR 7 6.91824 6.64305 7.27688 0.266 WL 17 10.6859 0.00774005 0.0132423 0.0018781 WL 7 7.24707 0.00647107 0.00822194 0.0005 Lacin Mycal Mycal Masa 6 212.55 186.39 245.25 22.7259 Masa 17 38.6629 24.525 83.385 13.5 ABD 6 51.7523 49.3864	Ti	1	17	1.17169	1.05808	1.32854	0.0814084	Til	7	1.43584	1.3499	1.53816	0.0714517
Till 17 1.30969 0.768515 1.99216 0.30565 Till 7 0.911851 0.775984 1.14705 0.122 Atot 17 15645.1 14092.1 17207.7 917.354 Atot 7 13013.2 11565.9 14317.8 911. AR 17 6.95524 6.42839 7.39443 0.330644 AR 7 6.91824 6.64305 7.27688 0.266 WL 17 10.6859 0.00774005 0.0132423 0.0018781 WL 7 7.24707 0.00647107 0.00822194 0.0005 Lacin	Ts	sl .	17	0.654786	0.511247	0.765942	0.0726872	Tsl	7	0.681558	0.623781	0.746025	0.0442357
Atot 17 15645.1 14092.1 17207.7 917.354 Atot 7 13013.2 11565.9 14317.8 911. AR 17 6.95524 6.42839 7.39443 0.330644 AR 7 6.91824 6.64305 7.27688 0.266 WL 17 10.6859 0.00774005 0.0132423 0.0018781 WL 7 7.24707 0.00647107 0.00822194 0.0008 Lacin Mycal Mycal Mycal Mycal Masa 6 212.55 186.39 245.25 22.7259 Masa 17 38.6629 24.525 83.385 13.5 ABD 6 51.7523 49.3864 52.9811 1.24011 ABD 17 32.4272 29.6084 34.8095 1.19 ABI 6 51.6502 47.604 53.2721 2.21802 ABI 17 31.898 29.9216 34.8421 1.26	TI	D	17	1.29443	0.906996	1.75549	0.239787	TID	7	0.861117	0.726554	1.1357	0.147878
AR 17 6.95524 6.42839 7.39443 0.330644 AR 7 6.91824 6.64305 7.27688 0.266 WL 17 10.6859 0.00774005 0.0132423 0.0018781 WL 7 7.24707 0.00647107 0.00822194 0.0008 Lacin N Prom Min Max SD N Prom Min Max SI ABD 6 212.55 186.39 245.25 22.7259 Masa 17 38.6629 24.525 83.385 13.5 ABD 6 51.7523 49.3864 52.9811 1.24011 ABD 17 32.4272 29.6084 34.8095 1.19 ABI 6 51.6502 47.604 53.2721 2.21802 ABI 17 31.898 29.9216 34.8421 1.26 Lalab 6 167.885 163.454 179.783 6.01285 LalaD 17 94.8052 88.4704 104.038 3.92	TI	l	17	1.30969	0.768515	1.99216	0.30565	TII	7	0.911851	0.775984	1.14705	0.121978
WL 17 10.6859 0.00774005 0.0132423 0.0018781 WL 7 7.24707 0.00647107 0.00822194 0.0009 Lacin N Prom Min Max SD N Prom Min Max SD ABD 6 212.55 186.39 245.25 22.7259 Masa 17 38.6629 24.525 83.385 13.5 ABD 6 51.7523 49.3864 52.9811 1.24011 ABD 17 32.4272 29.6084 34.8095 1.19 ABI 6 51.6502 47.604 53.2721 2.21802 ABI 17 31.898 29.9216 34.8421 1.26 LalaD 6 167.885 163.454 179.783 6.01285 LalaD 17 94.8052 88.4704 104.038 3.92 LalaI 6 165.093 157.001 173.368 6.67369 LaiaI 17 92.9338 85.5959 98.4135 3.72	Αt	tot	17	15645.1	14092.1	17207.7	917.354	Atot	7	13013.2	11565.9	14317.8	911.378
Mycal N Prom Min Max SD N Prom Min Max SD ABD 6 212.55 186.39 245.25 22.7259 Masa 17 38.6629 24.525 83.385 13.5 ABD 6 51.7523 49.3864 52.9811 1.24011 ABD 17 32.4272 29.6084 34.8095 1.19 ABI 6 51.6502 47.604 53.2721 2.21802 ABI 17 31.898 29.9216 34.8421 1.26 LalaD 6 167.885 163.454 179.783 6.01285 LalaD 17 94.8052 88.4704 104.038 3.92 LalaI 6 165.093 157.001 173.368 6.67369 LaiaI 17 92.9338 85.5959 98.4135 3.72 AalaD 6 61.8429 56.881 69.0998 4.64766 AalaD 17 43.0263 39.1546 47.4909 <t< td=""><td>A</td><td>R</td><td>17</td><td>6.95524</td><td>6.42839</td><td>7.39443</td><td>0.330644</td><td>AR</td><td>7</td><td>6.91824</td><td>6.64305</td><td>7.27688</td><td>0.266548</td></t<>	A	R	17	6.95524	6.42839	7.39443	0.330644	AR	7	6.91824	6.64305	7.27688	0.266548
N Prom Min Max SD N N Prom Min Max SD N N N N N N N N N N N N N N N N N N		/L	17	10.6859	0.00774005	0.0132423	0.0018781	WL	7	7.24707	0.00647107	0.00822194	0.00055788
Masa 6 212.55 186.39 245.25 22.7259 Masa 17 38.6629 24.525 83.385 13.5 ABD 6 51.7523 49.3864 52.9811 1.24011 ABD 17 32.4272 29.6084 34.8095 1.19 ABI 6 51.6502 47.604 53.2721 2.21802 ABI 17 31.898 29.9216 34.8421 1.26 LalaD 6 167.885 163.454 179.783 6.01285 LalaD 17 94.8052 88.4704 104.038 3.92 LalaI 6 165.093 157.001 173.368 6.67369 LaiaI 17 92.9338 85.5959 98.4135 3.72 AalaD 6 61.8429 56.881 69.0998 4.64766 AalaD 17 43.0263 39.1546 47.4909 2.13 AalaI 6 60.863 55.2617 66.1662 3.96437 AalaI 17 42.6882 36.7527 4	Lo	ocin						Mycal					
ABD 6 51.7523 49.3864 52.9811 1.24011 ABD 17 32.4272 29.6084 34.8095 1.19 ABI 6 51.6502 47.604 53.2721 2.21802 ABI 17 31.898 29.9216 34.8421 1.26 LalaD 6 167.885 163.454 179.783 6.01285 LalaD 17 94.8052 88.4704 104.038 3.92 LalaI 6 165.093 157.001 173.368 6.67369 LaiaI 17 92.9338 85.5959 98.4135 3.72 AalaD 6 61.8429 56.881 69.0998 4.64766 AalaD 17 43.0263 39.1546 47.4909 2.13 AalaI 6 60.863 55.2617 66.1662 3.96437 AalaI 17 42.6882 36.7527 45.6071 2.10 B 6 382.659 365.965 403.499 13.4729 B 17 219.696 208.42 235.686 6.78 SawD 6 4335.16 3800.41 5147.67 478.757 SawD 17 1714.05 1520.76 1924.22 114. ShwD 6 2993.08 2547.34 3607.06 378.695 ShwD 17 1271.37 911.515 1554.4 188.			N	Prom	Min	Max	SD		N	Prom	Min	Max	SD
ABI 6 51.6502 47.604 53.2721 2.21802 ABI 17 31.898 29.9216 34.8421 1.26 LalaD 6 167.885 163.454 179.783 6.01285 LalaD 17 94.8052 88.4704 104.038 3.92 LalaI 6 165.093 157.001 173.368 6.67369 LaiaI 17 92.9338 85.5959 98.4135 3.72 AalaD 6 61.8429 56.881 69.0998 4.64766 AalaD 17 43.0263 39.1546 47.4909 2.13 AalaI 6 60.863 55.2617 66.1662 3.96437 AalaI 17 42.6882 36.7527 45.6071 2.10 B 6 382.659 365.965 403.499 13.4729 B 17 219.696 208.42 235.686 6.78 SawD 6 4335.16 3800.41 5147.67 478.757 SawD 17 1714.05 1520.76 1924.22 114. ShwD 6 2993.08 2547.34 3607.06 378.695 ShwD 17 1271.37 911.515 1554.4 188.	M	asa	6	212.55	186.39	245.25	22.7259	Masa	17	38.6629	24.525	83.385	13.5313
LalaD 6 167.885 163.454 179.783 6.01285 LalaD 17 94.8052 88.4704 104.038 3.92 Lalai 6 165.093 157.001 173.368 6.67369 Laiai 17 92.9338 85.5959 98.4135 3.72 AalaD 6 61.8429 56.881 69.0998 4.64766 AalaD 17 43.0263 39.1546 47.4909 2.13 AalaI 6 60.863 55.2617 66.1662 3.96437 AalaI 17 42.6882 36.7527 45.6071 2.10 B 6 382.659 365.965 403.499 13.4729 B 17 219.696 208.42 235.686 6.78 SawD 6 4335.16 3800.41 5147.67 478.757 SawD 17 1714.05 1520.76 1924.22 114. ShwD 6 2993.08 2547.34 3607.06 378.695 ShwD 17 1271.37 911.515 1554.4 188.			6	51.7523	49.3864	52.9811	1.24011	ABD	17	32.4272	29.6084	34.8095	1.19603
Lalai 6 165.093 157.001 173.368 6.67369 Laiai 17 92.9338 85.5959 98.4135 3.72 AalaD 6 61.8429 56.881 69.0998 4.64766 AalaD 17 43.0263 39.1546 47.4909 2.13 Aalai 6 60.863 55.2617 66.1662 3.96437 Aalai 17 42.6882 36.7527 45.6071 2.10 B 6 382.659 365.965 403.499 13.4729 B 17 219.696 208.42 235.686 6.78 SawD 6 4335.16 3800.41 5147.67 478.757 SawD 17 1714.05 1520.76 1924.22 114 ShwD 6 2993.08 2547.34 3607.06 378.695 ShwD 17 1271.37 911.515 1554.4 188	A	BI	6	51.6502	47.604	53.2721	2.21802	ABI	17	31.898	29.9216	34.8421	1.26625
AalaD 6 61.8429 56.881 69.0998 4.64766 AalaD 17 43.0263 39.1546 47.4909 2.13 Aalal 6 60.863 55.2617 66.1662 3.96437 Aalal 17 42.6882 36.7527 45.6071 2.10 B 6 382.659 365.965 403.499 13.4729 B 17 219.696 208.42 235.686 6.78 SawD 6 4335.16 3800.41 5147.67 478.757 SawD 17 1714.05 1520.76 1924.22 114. ShwD 6 2993.08 2547.34 3607.06 378.695 ShwD 17 1271.37 911.515 1554.4 188.	Lā	alaD	6	167.885	163.454	179.783	6.01285	LalaD	17	94.8052	88.4704	104.038	3.92355
Aalal 6 60.863 55.2617 66.1662 3.96437 Aalal 17 42.6882 36.7527 45.6071 2.10 B 6 382.659 365.965 403.499 13.4729 B 17 219.696 208.42 235.686 6.78 SawD 6 4335.16 3800.41 5147.67 478.757 SawD 17 1714.05 1520.76 1924.22 114 ShwD 6 2993.08 2547.34 3607.06 378.695 ShwD 17 1271.37 911.515 1554.4 188	Lä	alai	6	165.093	157.001	173.368	6.67369	Laiai	17	92.9338	85.5959	98.4135	3.72594
B 6 382.659 365.965 403.499 13.4729 B 17 219.696 208.42 235.686 6.78 SawD 6 4335.16 3800.41 5147.67 478.757 SawD 17 1714.05 1520.76 1924.22 114 ShwD 6 2993.08 2547.34 3607.06 378.695 ShwD 17 1271.37 911.515 1554.4 188.	A	alaD	6	61.8429	56.881	69.0998	4.64766	AalaD	17	43.0263	39.1546	47.4909	2.13431
SawD 6 4335.16 3800.41 5147.67 478.757 SawD 17 1714.05 1520.76 1924.22 114.75 ShwD 6 2993.08 2547.34 3607.06 378.695 ShwD 17 1271.37 911.515 1554.4 188.75	A	alai	6	60.863	55.2617	66.1662	3.96437	Aalal	17	42.6882	36.7527	45.6071	2.10126
ShwD 6 2993.08 2547.34 3607.06 378.695 ShwD 17 1271.37 911.515 1554.4 188.	В		6	382.659	365.965	403.499	13.4729	В	17	219.696	208.42	235.686	6.78494
	Sa	awD	6	4335.16	3800.41	5147.67	478.757	SawD	17	1714.05	1520.76	1924.22	114.889
Sawl 6 4472.71 3871.78 4717.31 310.099 Sawl 17 1683.04 1380.16 2177.87 201	S	hwD	6	2993.08	2547.34	3607.06	378.695	ShwD	17	1271.37	911.515	1554.4	188.724
	Sa	awl	6	4472.71	3871.78	4717.31	310.099	Sawl	17	1683.04	1380.16	2177.87	201.75

Shwl	6	2814.1	2468.2	3234.01	300.889	Shwl	17	1248.31	920.329	1460.75	139.911
LawD	6	66.3381	62.1362	69.8983	2.72271	LawD	17	40.9528	37.8232	45.1283	1.79278
LhwD	6	92.7297	88.7915	100.466	4.03222	LhwD	17	51.5648	46.6103	56.8	3.33896
Lawl	6	69.1671	64.9036	75.4666	4.03993	Lawl	17	40.3841	36.1992	43.3374	2.02997
Lhwt	6	88.6806	83.7135	94.9367	4.82502	Lhwi	17	50.3805	43.0521	54.1122	2.68281
TiD	6	1.39851	1.32984	1.46414	0.0503039	TiD	17	1.2593	1.13435	1.36283	0.0641444
TsD	6	0.692035	0.604177	0.799698	0.067713	TsD	17	0.74354	0.529279	0.932651	0.113142
Til	6	1.28496	1.11541	1.35672	0.0867639	Til	17	1.24809	1.15051	1.32651	0.0455178
Tsl	6	0.631516	0.523223	0.731862	0.0766003	TsI	17	0.748636	0.5483	0.945492	0.102749
TID	6	0.99448	0.798466	1.37637	0.199455	TID	17	1.50307	0.874742	2.31868	0.449901
TII	6	0.979681	0.677624	1.17125	0.171765	Tii	17	1.60591	0.750608	2.93616	0.585924
Atot	6	19238.7	17449.2	22825.6	1935.73	Atot	17	7386.47	5977.38	8398.85	546.386
AR	6	7.64644	7.13285	8.34183	0.489536	AR	17	6.55685	5.8715	7.29161	0.386091
WL	6	11.1788	0.00816583	0.0132118	0.00186583	WL	17	5.25886	0.00322547	0.0118127	0.00191729
Mawat						Stlil					
	N	Prom	Min	Max	SD		N	Prom	Min	Max	SD
Masa	11	141.353	107.91	171.675	19.3506	Masa	48	185.981	127.53	274.68	26.5752
ABD	11	49.623	48.5417	50.9123	0.799839	ABD	48	40.1295	36.6242	44.0789	1.54727
ABI	11	49.3049	47.3791	50.8369	1.18145	ABI	48	39.7663	35.8904	42.8572	1.84434
LalaD	11	139.108	125.52	147.025	5.84059	LalaD	48	126.742	110.528	137.157	6.71241
Lalal	11	142.444	138.057	149.084	3.27885	Lalal	48	124.756	106.69	139.984	8.11021
AalaD	11	69.2663	62.547	73.8036	3.24366	AalaD	48	62.6611	52.5495	69.4956	3.48531
Aalal	11	69.2836	65.1931	72.8661	2.613	Aalal	48	62.0288	51.0894	68.4308	3.61556
8	11	326.015	308.271	341.032	8.93257	В	48	297.345	270.231	325.652	13.7809
SawD	11	3842	3398.65	4528.66	340.803	SawD	48	2956.78	2316.4	3747.65	337.353
ShwD	11	3492.18	2805.79	3911.1	325.136	ShwD	48	3192.32	2533.06	3904.98	351.389
Sawl	11	4004.37	3429.04	4308.07	305.4	Sawl	48	2939.83	2269.51	3725.59	368.946
Shwl	11	3545.8	3342.13	3857.87	189.464	Shwl	48	3134.11	2388.2	3962.96	393.391
LawD	11	60.1879	53.6302	64.4511	3.20136	LawD	48	46.154	39.3869	51.2026	3.01669
LhwD	11	79.4786	70.4	84.9474	3.96327	LhwD	48	79.2122	68.7273	87.6852	4.73991
Lawi	11	61.8731	56.5134	65.0958	2.45773	Lawl	48	45.3764	38.2138	53.0671	3.36631
Lhwl	11	80.5344	78.5263	85.7619	2.25663	Lhwl	48	77.418	63.2952	89.2153	5.95725

TiD	11	1.32138	1.23021	1.37387	0.0438625	GiT	48	1.72106	1.38447	2.00983	0.120485
TsD	11	0.911109	0.82556	1.08872	0.0759217	TsD	48	1.08421	0.892154	1.41832	0.0957026
Til	11	1.30268	1.2437	1.39082	0.0407253	Til	48	1.71044	1.40997	2.0163	0.127522
Tsl	11	0.888274	0.803211	0.974654	0.0535237	TsI	48	1.06944	0.923876	1.23689	0.0839036
TID	11	2.31286	1.62829	3.89184	0.627611	TID	48	1.76542	1.15637	2.79419	0.409835
TII	11	2.15675	1.73954	2.51335	0.240428	Til	48	1.71101	1.14577	2.57218	0.318757
Atot	11	17013.4	14963	18410.1	970.212	Atot	48	13931	11370.7	17274.7	1430.94
AR	11	6.25757	5.94439	6.91493	0.271718	AR	48	6.3775	5.41361	7.28137	0.382755
WL	11	8.30492	0.00661562	0.0102071	0.00105136	WL	48	13.4404	0.00989959	0.0190552	0.00210196
Tabra						Angeo					
	N	Prom	Min	Max	SD		N	Prom			
Masa	22	102.782	83.385	137.34	15.6197	Masa	2	149.6025			
ABD	22	43.0091	39.7859	46.4467	1.69102	ABD	2	42.7527218			
ABI	22	42.5701	37.6603	45.8308	1.80564	ABI	2	41.3661251			
LalaD	22	128.974	122.727	137.487	3.49229	LalaD	2	134.342179			
Lalal	22	127.491	119.061	137.673	4.36653	Lalal	2	127.262592			
AalaD	22	45.4801	41.1193	48.9102	2.00095	AalaD	2	61.0010567			
Aalal	22	45.5681	38.6014	49.0575	2.38675	Aalai	2	59.158495			
В	22	290.01	277.564	301.763	7.32756	В	2	309.603165			
SawD	22	2337.16	1864.06	2929.74	311.87	SawD	2	2795.35213			
ShwD	22	1803.44	1554.49	2032.94	136.073	ShwD	2	3516.79665			
Sawl	22	2414.48	1835.5	2948.45	328.695	Sawl	2	2720.60287			
Shwl	22	1749.08	1552.4	1954.94	113.567	Shwi	2	3328.6536			
LawD	22	52.7953	46.0849	56.9531	2.49704	LawD	2	47.1626753			
LhwD	22	70.109	62.9612	77.51	3.60023	LhwD	2	86.9623436			
Lawl	22	53.2324	49.7795	56.3498	1.99428	Lawl	2	45.542704			
Lhwl	22	68.9395	63.433	74.0538	2.52642	Lhwl	2	81.666668			
TiD	22	1.33043	1.15933	1.5539	0.0871914	TiD	2	1.84359874			
TsD	22	0.783229	0.607341	1.04762	0.110557	TsD	2	1.25798298			
Til	22	1.2965	1.1944	1.39739	0.0615309	Til	2	1.79716782			
Tsl	22	0.733614	0.614354	0.879404	0.0816347	Tsl	2	1.22545588			
TID	22	1.48183	0.993768	2.97378	0.444938	TID	2	2.14984976			

TII	22	1.34632	0.853736	1.85207	0.321071	TII	2	2.14098118			
Atot	22	10154.8	8701.81	11683.2	850.328	Atot	2	13954.6438			
AR	22	8.32499	7.41556	9.61575	0.603589	AR	2	6.87220581			
WL	22	10.2115	0.00713719	0.0137053	0.00188308	WL	2	10.7241			
Glsor			Laxan			Momeg	•		Mythy		
	N	Prom		N	Prom		N	Prom		N	Prom
Masa	1	107.91	Masa	2	201.105	Masa	1	98.1	Masa	2	61.3125
ABD	1	36.8166542	ABD	2	47.2976475	ABD	1	53.95033	ABD	2	41.7611351
ABI	1	36.8848572	ABI	2	48.2921944	ABI	1	54.93592	ABI	2	41.4706669
LalaD	1	111.000954	LalaD	2	149.500595	LalaD	1	148.7371	LəlaD	2	118.704064
Lalal	1	113.909416	Lalal	2	155.262421	Lalal	1	138.3129	Lalai	2	117.718995
AalaD	1	55.5995865	AalaD	2	61.5203686	AalaD	1	58.11597	AalaD	2	56.9579735
Aalal	1	57.3072662	Aalal	2	62.1869145	Aalal	1	60.96438	Aalal	2	56.0329628
В	1	266.411133	В	2	348.197815	В	1	329.9009	В	2	272.520355
SawD	1	2333.65625	SawD	2	4175.26128	SawD	1	4736.016	SawD	2	2430.5924
ShwD	1	2614.30127	ShwD	2	2687.97258	ShwD	1	2806.784	ShwD	2	2336.36002
Sawl	1	2692.14746	Sawi	2	4405.5824	Sawl	1	4865.805	Sawl	2	2638.68573
Shwl	1	2611.71997	Shwl	2	2800.17894	Shwl	1	2497.57	Shwl	2	2279.46073
LawD	1	42.4799576	LawD	2	59.5929161	LawD	1	69.08963	LawD	2	51.1136617
LhwD	1	69.0927429	lhwD	2	83.1735196	LhwD	1	80.46936	LhwD	2	67.5318201
Lawl	1	45.3068733	Lawi	2	62.9328556	Lawl	1	69.98893	Lawi	2	50.6528815
Lhwl	1	67.1896286	Lhwl	2	85.2742174	Lhwi	1	65.11544	Lhwl	2	65.767025
TiD	1	1.62647862	TiD	2	1.39536012	TiD	1	1.16470967	TiD	2	1.321077
TsD	1	1.12025979	TsD	2	0.64522312	TsD	1	0.59264665	TsD	2	0.96218111
Til	1	1.48298975	Til	2	1.35505488	Til	1	0.9303677	Til	2	1.29844864
Tsl	1	0.97012515	Tsl	2	0.63517788	Tsl	1	0.5132902	Tsł	2	0.86481537
TID	1	2.21299512	TID	2	0.86701251	TID	1	1.03598139	TID	2	2.71323329
TH	1	1.89158146	TB	2	0.88293619	TIS	1	1.230683	TH	2	2.00126019
Atot	1	11609.1929	Atot	2	17940.0434	Atot	1	18864.845	Atot	2	11515.194
AR	1	6.11368013	AR	2	6.76189715	AR	1	5.76917562	AR	2	6.44985164
_WL	1	9.29522	WL	2	11.34129	WL	1	5.20015	WL	2	5.32327
					·						

Nyfem			Rogra			Stlud		
-	N	Prom		N	Prom		N	Prom
Masa	3	122.625	Masa	2	44.145	Masa	1	196.2
ABD	3	47.785078	ABD	2	33.4008651	ABD	1	40.5160141
ABI	3	46.5981067	ABI	2	33.524131	ABI	1	40.3341789
LalaD	3	142.982114	LalaD	2	100.776943	LalaD	1	121.740784
Lalal	3	140.140324	Lalal	2	95.9671827	Lalai	1	125.320747
AalaD	3	44.2189991	AalaD	2	45.7720462	AalaD	1	62.8561249
Aalal	3	46.0011328	AalaI	2	45.094018	Aalal	1	61.5142136
В	3	320.051905	В	2	226.221293	В	1	293.627747
SawD	3	2580.68033	SawD	2	2003.79927	SawD	1	2701.77441
ShwD	3	1819.42467	ShwD	2	1666.3426	ShwD	1	3414.91064
Sawl	3	2648.76533	Sawl	2	1776.08196	Sawl	1	2751.55396
Shwl	3	1829.23633	Shwl	2	1504.43196	Shwl	1	3427.50708
LawD	3	58.9691367	LawD	2	40.3798751	LawD	1	42.3187332
LhwD	3	76.41186	LhwD	2	57.0197941	LhwD	1	78.7339172
Lawl	3	57.39997	Lawl	2	38.3653477	Lawl	1	43.502182
Lhwl	3	75.96104	Lhwl	2	54.0916527	Lhwl	1	81.2534027
TiD	3	1.29588277	TiD	2	1.4121232	TiD	1	1.86049797
TsD	3	0.70534453	TsD	2	0.83433234	TsD	1	1.26395106
Til	3	1.32466508	Til	2	1.40982102	Til	1	1.86780062
Tsl	3	0.69202502	TsI	2	0.84838522	Tsl	1	1.24566232
TID	3	1.1964697	TID	2	1.45377307	TID	1	2.11877901
TII	3	1.10265477	TII	2	1.51169516	ווד	1	2.00222732
Atot	3	11235.927	Atot	2	8379.50697	Atot	1	14050.3965
AR	3	9.12410529	AR	2	6.12982605	AR	1	6.13628618
WL	. 3	10.95484	WL	2	5.32493	WL	1	13.96402

Anexo 5. Diferencias entre especies por variable.

Masa	F= 149.4	gl= 9	p= 9.658E-69							
	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra
Arhir	0	0.9988	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05
Arjam		0	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05
Chsal			0	1.451E-05	1	1.249E-05	1.249E-05	1.249E-05	0.03184	1.249E-05
Detol				0	2.319E-05	1.341E-05	0.6074	1.249E-05	0.5047	0.0001092
Lacin					0	1.249E-05	1.249E-05	1.249E-05	0.07721	1.249E-05
Lablo						0	0.01254	9.014E-05	1.249E-05	0.9978
Mawat							0	1.249E-05	0.001572	0.1593
Mycal								0	1.249E-05	1.32E-05
Stlil									0	1.249E-05
Tabra										0
ABD	F= 236.6	gl= 9	p= 5.204E-82			· -				
	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra
Arhir	0	0.9351	1.249E-05	1.249E-05	1.686E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05
Arjam		0	1.249E-05	1.249E-05	0.003372	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05
Chsal			0	1.249E-05	1.249E-05	1.249E-05	1.257E-05	1.249E-05	1.249E-05	0.06107
Detol				0	1.249E-05	1	1.249E-05	1.249E-05	0.9949	3.542E-05
Lacin					0	1.249E-05	0.02729	1.249E-05	1.249E-05	1.249E-05

Lablo						0	1.249E-05	1.249E-05	0.9999	0.0001915
Mawat							0	1.249E-05	1.249E-05	1.249E-05
Mycal								0	1.249E-05	1.249E-05
Stlil									0	0.002016
Tabra										0
ABI	F= 17 5.9	gl= 9	p= 2.19E-73							
	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra
Arhir	0	1	1.249E-05	1.249E-05	0.0619	1.249E-05	1.254E-05	1.249E-05	1.249E-05	1.249E-05
Arjam		0	1.249E-05	1.249E-05	0.06844	1.249E-05	1.256E-05	1.249E-05	1.249E-05	1.249E-05
Chsal			0	1.249E-05	1.249E-05	1.249E-05	2.118E-05	1.249E-05	1.249E-05	0.04684
Detol				0	1.249E-05	1	1.249E-05	1.249E-05	1	0.006612
Lacin					0	1.249E-05	0.09708	1.249E-05	1.249E-05	1.249E-05
Lablo						0	1.249E-05	1.249E-05	1	0.01765
Mawat							0	1.249E-05	1.249E-05	1.249E-05
Mycal								0	1.249E-05	1.249E-05
Stlil									0	0.01773
Tabra										0
LalaD	F= 209.1	gl= 9	p= 2.133E-78							
_	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tobra
Arhir	0	0.9999	1.249E-05	1.249E-05	0.9976	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05

Arjam		0	1.249E-05	1.249E-05	1	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05
Chsal			0	1.249E-05	1.249E-05	1.249E-05	0.07908	1.249E-05	1.249E-05	1.249E-05
Detol				0	1.249E-05	0.5487	1.268E-05	1.249E-05	0.9875	0.8726
Lacin					0	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05
Lablo						0	0.00672	1.249E-05	0.9923	1
Mawat							0	1.249E-05	9.605E-05	0.0008192
Mycal								0	1.249E-05	1.249E-05
Stlil									0	1
Tabra										0
Lalal	F=113	g = 9	p= 5.818F-61			-				
Lalal	F=113 Arhir	gl= 9 Ariam	p= 5.818E-61 Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra
Lalal Arhir		gl= 9 Arjam 1		Detol 1.249E-05	Lacin 1	Lablo 1.249E-05	Mawat 1.249E-05	Mycal 1.249E-05	Stlil 1.249E-05	Tabra 1.249E-05
	Arhir	Arjam	Chsal							
Arhir	Arhir	Arjam 1	Chsal 1.255E-05	1.249E-05	1	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05
Arhir Arjam	Arhir	Arjam 1	Chsal 1.255E-05 1.251E-05	1.249E-05 1.249E-05	1	1.249E-05 1.249E-05 6.544E-05	1.249E-05 1.249E-05	1.249E-05 1.249E-05	1.249E-05 1.249E-05	1.249E-05 1.249E-05
Arhir Arjam Chsal	Arhir	Arjam 1	Chsal 1.255E-05 1.251E-05	1.249E-05 1.249E-05 1.254E-05	1 1 1.249E-05	1.249E-05 1.249E-05 6.544E-05	1.249E-05 1.249E-05 0.9981	1.249E-05 1.249E-05 1.249E-05	1.249E-05 1.249E-05 1.249E-05	1.249E-05 1.249E-05 1.561E-05
Arhir Arjam Chsal Detol	Arhir	Arjam 1	Chsal 1.255E-05 1.251E-05	1.249E-05 1.249E-05 1.254E-05	1 1 1.249E-05 1.249E-05	1.249E-05 1.249E-05 6.544E-05 0.9748	1.249E-05 1.249E-05 0.9981 2.055E-05	1.249E-05 1.249E-05 1.249E-05 1.249E-05	1.249E-05 1.249E-05 1.249E-05	1.249E-05 1.249E-05 1.561E-05 0.9997
Arhir Arjam Chsal Detol Lacin	Arhir	Arjam 1	Chsal 1.255E-05 1.251E-05	1.249E-05 1.249E-05 1.254E-05	1 1 1.249E-05 1.249E-05	1.249E-05 1.249E-05 6.544E-05 0.9748 1.249E-05	1.249E-05 1.249E-05 0.9981 2.055E-05 1.249E-05	1.249E-05 1.249E-05 1.249E-05 1.249E-05 1.249E-05	1.249E-05 1.249E-05 1.249E-05 1 1.249E-05	1.249E-05 1.249E-05 1.561E-05 0.9997 1.249E-05

Stlil									0	0.9859
Tabra										0
AalaD	F= 180.8	gl= 9	p= 3.513E-74							
	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra
Arhir	0	0.0708	0.03743	1.249E-05	1.249E-05	1.249E-05	1.466E-05	1.249E-05	1.249E-05	1.249E-05
Arjam		0	1.25E-05	1.249E-05						
Chsal			0	1.289E-05	1.249E-05	1.249E-05	0.4777	1.249E-05	1.249E-05	1.249E-05
Detol				0	0.5999	1.252E-05	0.01466	1.249E-05	0.9996	1.249E-05
Lacin					0	0.001701	1.362E-05	1.249E-05	0.9488	1.249E-05
Lablo						0	1.249E-05	1.249E-05	1.472E-05	1.272E-05
Mawat							0	1.249E-05	0.001053	1.249E-05
Mycal								0	1.249E-05	0.8548
Stlil									0	1.249E-05
Tabra										0
Aalal	F= 193.5	gl= 9	p= 3.902E-76							
	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra

Arhir

Arjam

Chsal

Detol

0

0.1535 0.005406

0

0

1.249E-05

1.249E-05	1.249E-05	1.249E-05	2.763E-05	1.249E-05	1.249E-05	1.249E-05	
1.249E-05							
1.312E-05	1.249E-05	1.249E-05	0.96	1.249E-05	1.249E-05	1.249E-05	
0	0.2897	1.249E-05	0.0005666	1.249E-05	0.9914	1.249E-05	

1.291E-05 1.249E-05 0.359 1.249E-05 0
0.359 1.249E-05
1.249E-05
0
Tabra
1.249E-05
1.249E-05
1.249E-05
0.9593
1.249E-05
0.6513
1.249E-05
1.249E-05
0.8443
0
Tabra

Arhir	0	0.7715	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05
Arjam		0	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05
Chsal			0	1.249E-05	1	1.249E-05	0.1224	1.249E-05	1.249E-05	1.249E-05
Detol				0	1.249E-05	0.2788	0.001787	1.249E-05	0.9969	1.249E-05
Lacin					0	1.249E-05	0.08172	1.249E-05	1.249E-05	1.249E-05
Lablo						0	1.249E-05	1.249E-05	0.8505	0.0001269
Mawat							0	1.249E-05	3.954E-05	1.249E-05
Mycal								0	1.249E-05	0.000201
Stlil									0	1.25E-05
Tabra										0
Tabra SawD	F= 142.5	gl= 9	p= 2.067E-67							0
	F= 142.5 Arhir	gl= 9 Arjam	p= 2.067E-67 Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	0 Tabra
				Detol 1.249E-05	Lacin 1.249E-05	Lablo 1.249E-05	Mawat 1.249E-05	Mycal 1.249E-05	Stlil 1.249E-05	
SawD	Arhir	Arjam	Chsal					•		Tabra
SawD Arhir	Arhir	Arjam 0.8552	Chsal 1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	Tabra 1.249E-05
SawD Arhir Arjam	Arhir	Arjam 0.8552	Chsal 1.249E-05 1.249E-05	1.249E-05 1.249E-05	1.249E-05 1.249E-05	1.249E-05 1.249E-05	1.249E-05 1.249E-05	1.249E-05 1.249E-05	1.249E-05 1.249E-05	Tabra 1.249E-05 1.249E-05
SawD Arhir Arjam Chsal	Arhir	Arjam 0.8552	Chsal 1.249E-05 1.249E-05	1.249E-05 1.249E-05 1.751E-05	1.249E-05 1.249E-05 0.983	1.249E-05 1.249E-05 1.249E-05	1.249E-05 1.249E-05 0.9673	1.249E-05 1.249E-05 1.249E-05	1.249E-05 1.249E-05 1.249E-05	Tabra 1.249E-05 1.249E-05 1.249E-05
SawD Arhir Arjam Chsal Detol	Arhir	Arjam 0.8552	Chsal 1.249E-05 1.249E-05	1.249E-05 1.249E-05 1.751E-05	1.249E-05 1.249E-05 0.983 1.249E-05	1.249E-05 1.249E-05 1.249E-05 0.9689	1.249E-05 1.249E-05 0.9673 0.002097	1.249E-05 1.249E-05 1.249E-05 1.249E-05	1.249E-05 1.249E-05 1.249E-05 0.8559	Tabra 1.249E-05 1.249E-05 1.249E-05 1.264E-05

Mycal								0	1.249E-05	0.001611
Stlil									0	0.0008102
Tabra										0
Sawl	F= 104.1	gl= 9	p= 9.978E-59							-
_	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra
Arhir	0	0.6318	1.253E-05	1.249E-05	0.0335	1.249E-05	1.251E-05	1.249E-05	1.249E-05	1.249E-05
Arjam		0	1.249E-05	1.249E-05	1.862E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05
Chsal			0	0.0002134	0.148	1.261E-05	1	1.249E-05	1.251E-05	1.249E-05
Detol				0	1.249E-05	0.9473	0.0003587	1.249E-05	0.8637	0.0003206
Lacin					0	1.249E-05	0.1105	1.249E-05	1.249E-05	1.249E-05
Lablo						0	1.273E-05	1.249E-05	1	0.0514
Mawat							0	1.249E-05	1.254E-05	1.249E-05
Mycal								0	1.249E-05	0.00137
Stlil									0	0.1013
Tabra										0
ShwD	F= 160.2	gl= 9	p= 1.018E-70					***		•
	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra
Arhir	0	0.916	0.0008393	1.249E-05						
Arjam		0	1.289E-05	1.249E-05						
Chsal			0	1.25E-05	1.249E-05	1.249E-05	0.001949	1.249E-05	1.265E-05	1.249E-05

Detol				0	0.8702	1.249E-05	0.3971	1.249E-05	1	1.249E-05
Lacin					0	1.25E-05	0.004813	1.249E-05	0.5609	1.249E-05
Lablo						0	1.249E-05	0.0007749	1.249E-05	0.9955
Mawat							0	1.249E-05	0.7433	1.249E-05
Mycal								0	1.249E-05	0.02709
Stlil									0	1.249E-05
Tabra										0
Shwl	F= 142.5	gl= 9	p= 2.153E-67							
	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra
Arhir	0	0.7864	0.01481	1.249E-05						
Arjam		0	1.839E-05	1.249E-05						
Chsal			0	1.296E-05	1.249E-05	1.249E-05	0.116	1.249E-05	1.308E-05	1.249E-05
Detol				0	0.3204	1.249E-05	0.1302	1.249E-05	1	1.249E-05
Lacin					0	5.386E-05	1.934E-05	1.249E-05	0.2991	1.25E-05
Lablo						0	1.249E-05	9.634E-05	1.249E-05	0.8979
Mawat							0	1.249E-05	0.1425	1.249E-05
Mycal								0	1.249E-05	0.03645
Stlil									0	1.249E-05
Tabra										0

LawD	_F= 110	gl= 9	p= 3.244E-60							
	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra
Arhir	0	0.9998	1.249E-05	1.249E-05	0.8907	1.249E-05	0.03172	1,249E-05	1.249E-05	1.249E-05
Arjam		0	1.249E-05	1.249E-05	0.9973	1.249E-05	0.003229	1.249E-05	1.249E-05	1.249E-05
Chsal			0	1.317E-05	1.249E-05	0.8094	1.311E-05	1.249E-05	1.499E-05	1
Detol				0	1.249E-05	0.003182	1.249E-05	0.0004211	1	1.488E-0
Lacin					0	1.249E-05	7.387E-05	1.249E-05	1.249E-05	1,249E-0
ablo						0	1.249E-05	1.249E-05	0.007401	0.9059
Mawat							0	1.249E-05	1.249E-05	1.266E-0
Mycal								0	0.0001494	1.249E-0
Stlil									0	2.075E-0
Tabra										0
Lawi	F= 86.8	gl= 9	p= 7.099E-54				·			
	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra
Arhir	0	1	1.249E-05	1.249E-05	0.001769	1.249E-05	0.9886	1.249E-05	1.249E-05	1.249E-0
Arjam		0	1.249E-05	1.249E-05	0.009394	1.249E-05	0.8985	1.249E-05	1.249E-05	1.249E-0
						0.0063	1.249E-05	1.249E-05	9.099E-05	0.0003
Chsal			0	0.00149	1.249E-05	0.9962	1.2456-03	1.2456-03	3.0336-03	0.9993
			0	0.00149 0	1.249E-05 1.249E-05	0.9962	1.249E-05	0.002423	0.9998	6.011E-0
Chsal Detol Lacin			0							

Mawat							0	1.249E-05	1.249E-05	1.292E-05
Mycal								0	0.02513	1.249E-05
Stlil									0	1.393E-05
Tabra										0
LhwD	F= 143.3	gl= 9	p= 1.438E.67							
	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra
Arhir	0	1	0.0002222	1.249E-05	0.002757	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05
Arjam		0	0.0003046	1.249E-05	0.003647	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05
Chsal			0	1.249E-05	0.9999	1.249E-05	1.25E-05	1.249E-05	1.264E-05	1.249E-05
Detol				0	1.249E-05	0.092	0.9692	1.249E-05	0.8544	0.008171
Lacin					0	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05
Lablo						0	0.001267	1.249E-05	0.0002496	0.9992
Mawat							0	1.249E-05	1	4.782E-05
Mycal								0	1.249E-05	1.249E-05
Stlil									0	1.731E-05
Tabra										0
Lhwl	F= 92.56	gl= 9	p= 1.417E-55							
	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra
Arhir	0	0.9999	0.2778	1.249E-05	0.03796	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05
Arjam		0	0.07564	1.249E-05	0.005799	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05

Chsol			0	1.312E-05	0.999	1.249E-05	0.001564	1.249E-05	1.312E-05	1.249E-05
Detol				0	6.025E-05	0.4703	0.8872	1.249E-05	1	0.01517
Lacin					0	1.249E-05	0.02781	1.249E-05	6.029E-05	1.249E-05
Lablo						0	0.008395	1.249E-05	0.4702	0.942
Mawat							0	1.249E-05	0.8873	3.117E-05
Mycal								0	1.249E-05	1.249E-05
Stlil									0	0.01517
Tabra										0
TID	F= 9.307	gl= 9	p= 4.408E-11							
	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra
Arhir	0	1	1	1	0.08132	0.002744	1.746E-05	1	0.7154	1
Arjam		0	1	1	0.03868	0.0009738	3.23E-05	1	0.8583	1
Chsal										
			0	1	0.0303	0.0007052	4.223E-05	1	0.8915	1
Detol			0	1 0	0.0303 0.1242	0.0007052 0.005131	4.223E-05 1.448E-05	1 0.9997	0.8915 0.6061	1 0.9999
			0							
Detol			0		0.1242	0.005131	1.448E-05	0.9997	0.6061	0.9999
Detol Lacin			0		0.1242	0.005131 0.993	1.448E-05 1.249E-05	0.9997 0.0168	0.6061 7.021E-05	0.9999 0.02213
Detol Lacin Lablo			0		0.1242	0.005131 0.993	1.448E-05 1.249E-05 1.249E-05	0.9997 0.0168 0.0003137	0.6061 7.021E-05 1.269E-05	0.9999 0.02213 0.0004726

TII	F= 10.64	gl= 9	p= 1.434E-12							
	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra
Arhir	0	1	0.9995	0.9999	0.002199	0.0006462	6.47E-05	1	0.9205	0.9962
Arjam		0	1	1	0.009492	0.003076	1.944E-05	0.9977	0.7353	0.9999
Chsal			0	1	0.03009	0.01098	1.349E-05	0.9744	0.5026	1
Detol				0	0.02132	0.007485	1.435E-05	0.9864	0.5774	1
Lacin					0	1	1.249E-05	0.0002795	1.428E-05	0.05587
Lablo						0	1.249E-05	7.605E-05	1.279E-05	0.02203
Mawat							0	0.0005493	0.02181	1.278E-05
Mycal								0	0.9949	0.9315
Stlil									0	0.3665
Tabra										0
AR	F= 55.09	gl= 9	p= 2.094E-42							
	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra
Arhir	0	0.2712	0.2058	0.0133	1.25E-05	0.9288	0.2766	0.6545	0.8212	1.249E-05
Arjam		0	1	0.9873	1.249E-05	0.003965	1	0.9999	0.9979	1.249E-05
Chsal			0	0.9951	1.249E-05	0.002357	1	0.9995	0.9938	1.249E-05
Detol				0	1.249E-05	4.1E-05	0.9864	0.8254	0.66	1.249E-05
Lacin					0	4.758E-05	1.249E-05	1.249E-05	1.249E-05	0.08754

Lablo						0	0.004124	0.03096	0.06978	1.249E-05
Mawat							0	0.9999	0.9981	1.249E-05
Mycal								0	1	1.249E-05
Stlil									0	1.249E-05
Tabra										0
WŁ	F= 36.4	gl= 9	p= 5.557E-33							
	Arhir	Arjam	Chsal	Detol	Lacin	Lablo	Mawat	Mycal	Stlil	Tabra
Arhir	0	1	0.009912	5.713E-05	0.003344	1.249E-05	1.249E-05	1.249E-05	0.6255	1.268E-05
Arjam		0	0.0385	0.0003292	0.01496	1.249E-05	1.249E-05	1.249E-05	0.8661	1.463E-05
Chsal			0	0.968	1	1.251E-05	2.408E-05	1.249E-05	0.8037	0.4695
Detol				0	0.995	4.347E-05	0.003777	1.249E-05	0.1014	0.9946
Lacin					0	1.262E-05	6.476E-05	1.249E-05	0.6195	0.6716
Lablo						0	0.9895	0.2482	1.249E-05	0.002625
Mawat							0	0.0126	1.249E-05	0.09224
Mycal								0	1.249E-05	1.249E-05
Stlil									0	0.004338

Tabra

Anexo 6. Correlación de las variables morfológicas con la velocidad de vuelo por especie.

	Arhir	Arjam	Chsal	Detol	Lablo	Mawat	Mycal	Stlil	Glsor	Lacin	Laxan	Nyfem	Tabra
	V	V	٧	٧	ν	ν	V	V	V	V	v	V	٧
Masa	0.288	1.000	0.367	0.164	0.000	0.564	0.499	-0.0235	No se				
	0.491	0.0833	0.257	0.660	1.000	0.350	0.109	0.921	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
ABD	0.000	0.600	-0.0866	-0.0357	1.000	0.700	0.364	-0.301	No se				
	0.968	0.417	0.776	0.905	0.333	0.233	0.257	0.234	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
ABI	0.786	0.600	-0.301	-0.321	1.000	0.500	0.391	0.00245	No se				
	0.0251	0.417	0.353	0.438	0.333	0.450	0.221	0.989	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
LalaD	-0.143	0.600	0.364	-0.429	0.500	0.900	0.427	-0.225	No se				
	0.720	0.417	0.257	0.297	1.000	0.0833	0.178	0.377	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
Lalai	0.643	-0.800	0.000	-0.393	0.500	0.700	0.427	0.225	No se				
	0.0956	0.333	0.989	0.341	1.000	0.233	0.178	0.377	probo	probo	bropo	probo	probo
	7	4	11	7	3	5	11	17					
AalaD	0.000	0.600	0.255	-0.571	0.500	0.300	0.718	0.260	No se				
	0.968	0.417	0.433	0.150	1.000	0.683	0.0110	0.307	probo	probo	probo	probo	ргоро
	7	4	11	7	3	5	11	17					
Aala1	0.143	0.600	0.0592	-0.429	0.500	0.300	0.955	0.108	No se				
	0.720	0.417	0.839	0.297	1.000	0.683	0.0000002	0.673	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
В	0.286	0.600	0.150	-0.143	0.500	0.800	0.482	0.201	No se				
	0.491	0.417	0.633	0.720	1.000	0.133	0.124	0.431	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
SawD	0.214	0.000	0.269	-0.143	-1.000	0.700	0.391	0.123	No se				
	0.602	1.000	0.400	0.720	0.333	0.233	0.221	0.632	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
ShwD	0.000	0.600	-0.0364	-0.536	1.000	0.1000	0.545	0.304	No se				
	0.968	0.417	0.903	0.181	0.333	0.950	0.0762	0.230	probo	probo	probo	probo	propo
	7	4	11	7	3	5	11	17	-	•		-	•
Sawl	0.571	-0.800	-0.173	-0.179	-1.000	0.1000	0.255	0.338	No se				

	0.150	0.333	0.595	0.660	0.333	0.950	0.433	0.179	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
Shwl	0.500	0.800	-0.118	-0.679	-0.500	0.1000	0.882	0.238	No se				
	0.217	0.333	0.714	0.0735	1.000	0.950	0.0000002	0.351	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
LawD	0.0332	0.000	-0.164	-0.0357	1.000	0.900	0.518	-0.0956	No se				
	0.907	1.000	0.614	0.905	0.333	0.0833	0.0948	0.708	probo	probo	probo	probo	ргоро
	7	4	11	7	3	5	11	17					
LhwD	0.373	0.600	0.0501	-0.393	0.500	0.600	0.573	0.159	No se				
	0.261	0.417	0.860	0.341	1.000	0.350	0.0602	0.534	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
Lawl	0.571	-0.800	-0.150	0.536	0.500	0.500	0.391	0.453	No se				
	0.150	0.333	0.633	0.181	1.000	0.450	0.221	0.0657	probo	probo	probo	probo	probo
7	7	4	11	7	3	5	11	17					
Lhwi	0.571	0.600	-0.100	-0.643	0.500	0.400	0.709	0.233	No se				
Lhwl TiD TsD	0.150	0.417	0.755	0.0956	1.000	0.517	0.0127	0.361	probo	probo	probo	probo	probo
•	7	4	11	7	3	5	11	17					
TiD	-0.750	1.000	0.237	-0.571	0.500	-0.700	0.109	0.216	No se				
	0.0384	0.0833	0.467	0.150	1.000	0.233	0.734	0.398	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
TsD	-0.107	0.800	-0.401	-0.464	1.000	-0.300	0.427	0.184	No se				
	0.781	0.333	0.210	0.255	0.333	0.683	0.178	0.472	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
Til	0.250	0.600	0.164	-0.679	-0.500	0.1000	0.218	-0.0931	No se				
	0.545	0.417	0.614	0.0735	1.000	0.950	0.502	0.715	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
Tsl	-0.429	0.800	0.0228	-0.786	0.500	0.1000	0.582	-0.142	No se				
	0.297	0.333	0.924	0.0251	1.000	0.950	0.0555	0.579	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
TID	-0.107	0.800	-0.237	-0.107	1.000	0.500	0.600	0.0441	No se				
	0.781	0.333	0.467	0.781	0.333	0.450	0.0467	0.861	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
TH	-0.714	0.400	-0.0319	0.250	0.500	0.600	0.236	-0.0049	No se				
	0.0545	0.750	0.903	0.545	1.000	0.350	0.467	0.981	probo	probo	probo	ριοδο	probo
	7	4	11	7	3	5	11	17					

Atot	0.500	0.600	-0.0228	-0.357	-0.500	0.200	0.764	0.304	No se				
	0.217	0.417	0.924	0.388	1.000	0.783	0.00461	0.230	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
AR	-0.0714	-0.600	0.191	-0.143	0.500	0.400	-0.382	-0.473	No se				
	0.843	0.417	0.557	0.720	1.000	0.517	0.233	0.0537	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					
WL	-0.321	0.800	0.747	-0.179	0.500	0.400	0.300	-0.167	No se				
	0.438	0.333	0.00680	0.660	1.000	0.517	0.353	0.515	probo	probo	probo	probo	probo
	7	4	11	7	3	5	11	17					

