Mathematik III - Blatt 7

NONAME

December 5, 2015

Aufgabe 1 - 4 Punkte

Sei V der von sin(x), cos(x), x und 1 erzeugt Unterraum des \mathbb{R} -Vektorraums $Abb(\mathbb{R}, \mathbb{R})$ und $\delta : V \to V, f \mapsto f'$ die lineare Abbildung, die eine Funktion V ihre Ableitung zuordnet.

- (a) Zeigen Sie, dass das Bild von δ tatsächlich in V liegt.
- (b) Bestimmen Sie die Darstellungsmatrix von δ bezüglich der Basis (sin(x), cos(x), x, 1), sowie den Rang von δ .
- (c) Bestimmen Sie Bild und Kern von δ und entscheiden Sie, ob δ injektiv, surjektiv oder bijektiv ist.

Aufgabe 2 - 7 Punkte

Die lineare Abbildung $\alpha: \mathbb{R}^3 \to \mathbb{R}^3$ sei durch $(x,y,z)^t \mapsto (3x+5y+z,x-2y,-2x-4z)^t$ definiert. Weiter sei $\mathcal{C} = ((0,0,-1)^t,(3,0,-2)^t,(1,7,1)^t)$. \mathcal{B} bezeichne die kanonische Basis von \mathbb{R}^3 .

- (a) Bestimmen Sie den Kern und das Bild von α
- (b) Entscheiden Sie, ob α injektiv, surjektiv oder bijektiv ist.
- (c) Zeigen Sie, dass \mathbb{C} eine Basis von \mathbb{R}^3 ist.
- (d) Berechnen Sie die Darstellungsmatrizen $A_{\alpha}^{\mathbb{B}}$, $A_{\alpha}^{\mathbb{C}}$ und $A_{\alpha}^{\mathbb{B},\mathbb{C}}$
- (e) Bestimmen Sie $K_{\mathbb{B}}((3,2,1)^t)$ und $K_{\mathbb{C}}((3,2,1)^t)$
- (f) Bestimmen Sie $K_{\mathbb{B}}(\alpha((3,2,1)^t))$ und $K_{\mathbb{C}}(\alpha((3,2,1)^t))$

Aufgabe 3 - 2 Punkte

Sei V ein Vektorraum und $\alpha: V \to V$ linear.

- (a) Angenommen es gibt eine Basis \mathbb{B} von V, so dass die Darstellungsmatrix $A_{\alpha}^{\mathbb{B}}$ die Einheitsmatrix ist. Ist α dann die Identität?
- (b) Wie verhält es sich, wenn für die Basis $\mathbb{C} \neq \mathbb{B}$ die Darstellungsmatrix $A_{\alpha}^{\mathbb{B},\mathbb{C}}$ die Einheitsmatrix ist?

Aufgabe 4 - 3 Punkte

Seen V, W K-Vektorräume und $\text{Hom}(V, W) = \{\alpha : V \to W : \alpha \text{ ist linear } \}.$

- (a) Zeigen Sie, dass $\operatorname{Hom}(V,W)$ bzgl. der Addition von linearen Abbildungen und der Multiplikation von Abbildungen mit Skalaren ein K-Vektorraum ist.
- (b) Sei dim(V) = n und dim(W) = m. Wie groß ist die Dimension von Hom(V, W)?

Aufgabe 5 - 4 Punkte

Sei $\alpha: \mathbb{R}^2 \to \mathbb{R}^2$ eine Drehung um 0 um den Winkel $\frac{\pi}{3}$ (gegen den Uhrzeigersinn) und $\beta: \mathbb{R}^2 \to \mathbb{R}^2$ die Spiegelung an der Geraden, die durch e_2 aufgespannt wird. Sei \mathbb{B} die kanonische Basis von \mathbb{R}^2 von \mathbb{C} die Basis $(e_1 + e_2, e_1 - e_2)$. Bestimmen Sie $A_{\alpha \circ \beta}^{\mathbb{B}}, A_{\beta \circ \alpha}^{\mathbb{C}}$ und $A_{\beta \circ \alpha}^{\mathbb{C}}$