S&DS 265 / 565 Introductory Machine Learning

Classification

September 14

Notes

- Assn 1 is posted; due Sept 21 (midnight)
- Please join us at office hours!
- Use Ed Discussion for questions
- Some notes at an appropriate level:
 - Background concepts:

```
http://www.mit.edu/~6.s085/notes/lecture1.pdf
```

Linear regression:

```
http://www.mit.edu/~6.s085/notes/lecture3.pdf
```

2

Outline—Next two classes

- Some important concepts
- Logistic regression
- Generative vs. discriminative
- Gaussian discriminant analysis
- Examples: Supernovae and political blogs
- Regularization
- Algorithms for fitting the models

Working example: Fisher's Iris data

Outline—today

- Some important concepts
- Logistic regression
- Examples in Jupyter: Mushrooms and flowers

 The Coronary Risk-Factor Study (CORIS). Data: 462 males between ages of 15 and 64 from three rural areas in South Africa.

Outcome Y is presence (Y = 1) or absence (Y = 0) of coronary heart disease

9 covariates: systolic blood pressure, cumulative tobacco (kg), ldl (low density lipoprotein cholesterol), adiposity, famhist (family history of heart disease), typea (type-A behavior), obesity, alcohol (current alcohol consumption), and age.

5

 Political Blog Classification. A collection of 403 political blogs were collected during two months before a presidential election. The goal is to predict whether a blog is *liberal* (Y = 0) or conservative (Y = 1) given the content of the blog.

Handwriting Digit Recognition. Here each Y is one of the ten digits from 0 to 9. There are 256 covariates X_1, \ldots, X_{256} corresponding to the intensity values of the pixels in a 16 \times 16 image.

7

A supernova is an exploding star. Type la supernovae are a special class of supernovae that are very useful in astrophysics research. These supernovae have a characteristic *light curve*, which is a plot of the luminosity of the supernova versus time.

8

 Ad click-through prediction. Predict whether or not a user will click on an ad presented. Used for ranking ads and setting prices.

- The Iris Flower study. The data are 50 samples from each of three species of Iris flowers, Iris setosa, Iris virginica and Iris versicolor. The length and width of the sepal and petal are measured for each specimen based on these features.
- App for wildflowers

Iris setosa (Left), Iris versicolor (Middle), and Iris virginica (Right).

Fisher's iris classification

Iris setosa (Left), Iris versicolor (Middle), and Iris virginica (Right).

Important concepts

Binary classifier h: function from \mathcal{X} to $\{0,1\}$.

Linear if exists a function $H(x) = \beta_0 + \beta^T x$ such that h(x) = 1 if H(x) > 0; 0 otherwise.

H(x) also called a *linear discriminant function*. Decision boundary: set $\left\{x \in \mathbb{R}^d : H(x) = 0\right\}$

Important concepts

Classification risk, or error rate, of h:

$$R(h) = \mathbb{P}(Y \neq h(X))$$

and the *empirical classification error* or *training error* is

$$\widehat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} I(h(x_i) \neq y_i).$$

Optimal classification rule

The optimal rule h^* is called the *Bayes rule*.

The risk $R^* = R(h^*)$ of the Bayes rule is called the *Bayes risk*.

The set $\{x \in \mathcal{X} : m(x) = 1/2\}$ is called the *Bayes decision boundary*.

The Bayes decision rule

Recall Bayes' rule (theorem):

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A) \, \mathbb{P}(A)}{\mathbb{P}(B)}$$

The Bayes decision rule

From Bayes' theorem

$$\mathbb{P}(Y = 1 \mid X = x) = \frac{\mathbb{P}(X = x \mid Y = 1) \, \mathbb{P}(Y = 1)}{\mathbb{P}(X = x)}$$

$$= \frac{p(x \mid Y = 1) \mathbb{P}(Y = 1)}{p(x \mid Y = 1) \mathbb{P}(Y = 1) + p(x \mid Y = 0) \mathbb{P}(Y = 0)}$$

$$= \frac{\pi_1 p_1(x)}{\pi_1 p_1(x) + (1 - \pi_1) p_0(x)}$$

where $\pi_1 = \mathbb{P}(Y = 1)$.

The Bayes decision rule

The Bayes decision rule is then

$$\frac{p_1(x)}{p_0(x)} > \frac{1-\pi_1}{\pi_1}.$$

Can be rewritten as

$$h^*(x) = \begin{cases} 1 & \text{if } \frac{p_1(x)}{p_0(x)} > \frac{1-\pi_1}{\pi_1} \\ 0 & \text{otherwise.} \end{cases}$$

Note: These quantities are for the unknown population distribution

Small dataset example

Simulated data-two classes

Simplification—one predictor

Logistic regression (binary case)

Conditional probabilities of the class:

$$\mathbb{P}(Y_i = 1 \mid X = x_i) = p(x_i)$$

$$\mathbb{P}(Y_i = 0 \mid X = x_i) = 1 - p(x_i)$$

Logistic regression (binary case)

Conditional probabilities of the class:

$$\mathbb{P}(Y_i = 1 \mid X = x_i) = p(x_i)$$

$$\mathbb{P}(Y_i = 0 \mid X = x_i) = 1 - p(x_i)$$

We model the relationship between $p(x_i)$ and x_i .

The *logit* transform:

$$logit(p) = \log\left(\frac{p}{1-p}\right)$$

The *logit* transform:

$$logit(p) = \log\left(\frac{p}{1-p}\right)$$

The logit transform

- is monotone
- maps the interval [0,1] to $(-\infty,\infty)$

Logistic regression is a linear regression model of the log odds:

$$logit(\widehat{p}(x)) = \widehat{\beta}_0 + \widehat{\beta}_1 x$$

- p is a probability.
- $\frac{p}{1-p}$ is odds.
- $logit(p) = log(\frac{p}{1-p})$ is (natural) log odds.

Logistic regression is a linear regression model of the log odds:

$$logit(\widehat{p}(x)) = \widehat{\beta}_0 + \widehat{\beta}_1 x$$

- p is a probability.
- $\frac{p}{1-p}$ is odds.
- $logit(p) = log(\frac{p}{1-p})$ is (natural) log odds.

Equivalent formulation:

$$\widehat{\rho}(x) = \frac{e^{\widehat{\beta}_0 + \widehat{\beta}_1 x}}{1 + e^{\widehat{\beta}_0 + \widehat{\beta}_1 x}} = logistic(x^T \widehat{\beta}) \equiv softmax(x^T \widehat{\beta})$$

• When
$$\widehat{\beta}_0 + \widehat{\beta}_1 x = 0$$
, $\frac{\widehat{p}}{1-\widehat{p}} = 1$, so $\widehat{p} = 0.5$.

- When $\widehat{\beta}_0 + \widehat{\beta}_1 x = 0$, $\frac{\widehat{p}}{1-\widehat{p}} = 1$, so $\widehat{p} = 0.5$.
- If our goal is to minimize the overall training error rate, then we use the rule:

$$\widehat{y} = \begin{cases} 1 & \widehat{p} \ge 0.5 \\ 0 & \widehat{p} < 0.5 \end{cases}$$

- When $\widehat{\beta}_0 + \widehat{\beta}_1 x = 0$, $\frac{\widehat{p}}{1-\widehat{p}} = 1$, so $\widehat{p} = 0.5$.
- If our goal is to minimize the overall training error rate, then we use the rule:

$$\widehat{y} = \begin{cases} 1 & \widehat{p} \ge 0.5 \\ 0 & \widehat{p} < 0.5 \end{cases}$$

• Hence, the decision boundary is given by $\{x : x^T \hat{\beta} = 0\}$.

21

- When $\widehat{\beta}_0 + \widehat{\beta}_1 x = 0$, $\frac{\widehat{p}}{1-\widehat{p}} = 1$, so $\widehat{p} = 0.5$.
- If our goal is to minimize the overall training error rate, then we use the rule:

$$\widehat{y} = \begin{cases} 1 & \widehat{p} \ge 0.5 \\ 0 & \widehat{p} < 0.5 \end{cases}$$

• Hence, the decision boundary is given by $\{x : x^T \hat{\beta} = 0\}$.

The decision boundary is linear in x!

Simulated data

Fitting a logistic regression

Traditionally, use maximum likelihood estimation (MLE).

• Likelihood of a single observation (x_i, y_i) :

$$L_i(\beta) = \boldsymbol{p}_i^{y_i} \cdot (1 - \boldsymbol{p}_i)^{1 - y_i} = \left(\frac{\boldsymbol{e}^{\boldsymbol{x}_i^T \beta}}{1 + \boldsymbol{e}^{\boldsymbol{x}_i^T \beta}}\right)^{y_i} \cdot \left(1 - \frac{\boldsymbol{e}^{\boldsymbol{x}_i^T \beta}}{1 + \boldsymbol{e}^{\boldsymbol{x}_i^T \beta}}\right)^{1 - y_i}$$

Fitting a logistic regression

Traditionally, use maximum likelihood estimation (MLE).

• Likelihood of a single observation (x_i, y_i) :

$$L_{i}(\beta) = p_{i}^{y_{i}} \cdot (1 - p_{i})^{1 - y_{i}} = \left(\frac{e^{x_{i}^{T}\beta}}{1 + e^{x_{i}^{T}\beta}}\right)^{y_{i}} \cdot \left(1 - \frac{e^{x_{i}^{T}\beta}}{1 + e^{x_{i}^{T}\beta}}\right)^{1 - y_{i}}$$

Log-likelihood of a single observation:

$$\ell_i(\beta) = y_i \log \left(\frac{e^{x_i^T \beta}}{1 + e^{x_i^T \beta}} \right) + (1 - y_i) \log \left(\frac{1}{1 + e^{x_i^T \beta}} \right)$$
$$= y_i x_i^T \beta - \log(1 + e^{x_i^T \beta})$$

23

Fitting a logistic regression

Traditionally, use maximum likelihood estimation (MLE).

• Likelihood of a single observation (x_i, y_i) :

$$L_{i}(\beta) = p_{i}^{y_{i}} \cdot (1 - p_{i})^{1 - y_{i}} = \left(\frac{e^{x_{i}^{T}\beta}}{1 + e^{x_{i}^{T}\beta}}\right)^{y_{i}} \cdot \left(1 - \frac{e^{x_{i}^{T}\beta}}{1 + e^{x_{i}^{T}\beta}}\right)^{1 - y_{i}}$$

Log-likelihood of a single observation:

$$\ell_i(\beta) = y_i \log \left(\frac{e^{x_i^T \beta}}{1 + e^{x_i^T \beta}} \right) + (1 - y_i) \log \left(\frac{1}{1 + e^{x_i^T \beta}} \right)$$
$$= y_i x_i^T \beta - \log(1 + e^{x_i^T \beta})$$

Sum this over all data points

Extension to more than 2 classes

Multinomial logistic regression extends the logistic regression model to $K \ge 2$ classes.

$$\log \left(\frac{P(Y = k \mid X = x)}{P(Y = 0 \mid X = x)} \right) = x^T \beta_k, \quad k = 1, 2, ..., K - 1$$

Extension to more than 2 classes

Multinomial logistic regression extends the logistic regression model to $K \ge 2$ classes.

$$\log\left(\frac{P(Y=k \mid X=x)}{P(Y=0 \mid X=x)}\right) = x^{T}\beta_{k}, \qquad k = 1, 2, ..., K-1$$

$$P(Y=k \mid X=x) = \frac{\exp(x^{T}\beta_{k})}{1 + \sum_{l=1}^{K-1} \exp(x^{T}\beta_{l})}, \qquad k = 1, 2, ..., K-1$$

Extension to more than 2 classes

Multinomial logistic regression extends the logistic regression model to $K \ge 2$ classes.

$$\log \left(\frac{P(Y = k \mid X = x)}{P(Y = 0 \mid X = x)} \right) = x^{T} \beta_{k}, \qquad k = 1, 2, ..., K - 1$$

$$P(Y = k \mid X = x) = \frac{\exp(x^{T} \beta_{k})}{1 + \sum_{l=1}^{K-1} \exp(x^{T} \beta_{l})}, \qquad k = 1, 2, ..., K - 1$$

$$P(Y = \cdot \mid X = x) = \text{softmax} \left(1, \exp(x^{T} \beta_{1}), ..., \exp(x^{T} \beta_{K-1}) \right)$$

24

Fisher's iris classification

Iris setosa (Left), Iris versicolor (Middle), and Iris virginica (Right).

Pretend we only care for predicting setosas (Y = 1) vs. non-setosas (Y = 0):

Petal length of 2.5 can perfectly separate Y = 1 and Y = 0 groups.

Decision boundary: $\widehat{\beta}_0 + \widehat{\beta}_1 x = 0$.

$$\widehat{\beta}_1 = -\frac{\widehat{\beta}_0}{2.5}$$
 for $\widehat{\beta}_1 < 0$ will yield perfect fits.

Decision boundary: $\widehat{\beta}_0 + \widehat{\beta}_1 x = 0$.

$$\widehat{\beta}_1 = -\frac{\widehat{\beta}_0}{2.5}$$
 for $\widehat{\beta}_1 < 0$ will yield perfect fits.

Decision boundary: $\widehat{\beta}_0 + \widehat{\beta}_1 x = 0$.

$$\widehat{\beta}_1 = -\frac{\widehat{\beta}_0}{2.5}$$
 for $\widehat{\beta}_1 < 0$ will yield perfect fits.

Int	Slope	Likelihood
1.25	-0.5	0.0000000
5.00	-2.0	0.0001696
25.00	-10.0	0.9846004
50.00	-20.0	0.9999415

Decision boundary: $\widehat{\beta}_0 + \widehat{\beta}_1 x = 0$.

$$\widehat{\beta}_1 = -rac{\widehat{eta}_0}{2.5}$$
 for $\widehat{eta}_1 < 0$ will yield perfect fits.

Int	Slope	Likelihood
1.25	-0.5	0.0000000
5.00	-2.0	0.0001696
25.00	-10.0	0.9846004
50.00	-20.0	0.9999415

As $\|\beta\|$ increases, likelihood approaches 1.

This results in overfitting

Examples in Jupyter notebook

Lets work through some examples in a Jupyter notebook. Please open classification-examples.ipynb and run the notebook as we go through it.

Summary

- In classification we predict a class label
- The default model is logistic regression corresponds to linear regression
- The model is fit to maximize the probability of the data
- If the data are linearly separable, this causes numerical problems
- One parameter for each input variable later we will discuss neural nets and other methods to learn good features of the input