(For Group 4)

1. (**Hint**: see solution of 1.4(b) pg 83) Construct the minimized DFA and give the regular expression for the following language ($\Sigma = \{0,1\}$)

 $\{w \mid every \ odd \ position \ of \ w \ is \ a \ 1\}$

2. (**Hint**: see solution of 1.5(b) pg 84) Construct the minimized DFA and give the regular expression for the following language ($\Sigma = \{a, b\}$)

 $\{w \mid w \text{ has even length and an odd number of } a's\}$

3. (**Hint**: see solution of 1.5(b) pg 84) Construct the minimized DFA and give the regular expression for the following language ($\Sigma = \{a, b\}$)

 $\{w \mid w \text{ is any string not in } a^*b^*\}$

4. (**Hint**: see solution of 1.40 (a) pg. 113) A string x is a prefix of a string y if a string z exists where xz = y, and that x is a proper prefix of y if in addition $x \neq y$. Let, A be a regular language and we define a new language B as follows

 $B=\{\ w\mid w\in A\ \ but\ w\ is\ not\ a\ proper\ prefix\ of\ any\ string\ in\ A\ \}$ If $M=(Q,\Sigma,\delta,q_0,F)$ is the DFA recognizing A, construct the DFA M' that will recognize B.

5. (Hint: First find a 4-state NFA for the complement of F) Let,

D =

 $\{w \mid w \text{ does not contain a pair of } 1'\text{s that are separated by an odd number of symbols}\}$

($\Sigma = \{0,1\}$). Give a DFA with <u>five states</u> that recognizes D and a regular expression that generates D.

6. Use pumping lemma to show that the following language is not regular $\{0^m1^n \mid m \neq n, m, n \geq 0\}$