NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR TELETEKNIKK Signalbehandling

Faglig kontakt under eksamen:

Navn: Tor A. Ramstad

Tlf.: 94314

EKSAMEN I FAG SIE2010 Informasjons- og signalteori

(Norwegian text on even numbered pages. English text on odd numbered pages.)

Dato/Date: 15. mai 2002 Tid/Time: 09.00 - 14.00

Hjelpemidler:

B1 - Typegodkjent kalkulator med tomt minne og Rottmann matematiske tabeller tillatt. Ingen andre trykte eller håndskrevne hjelpemidler tillatt.

Bedømmelse:

Ved bedømmelse vektlegges oppgavene I, II og III likt. (Equal weighting on each of the three problems.)

Sensurfrist: 10. juni

Oppgave I

- a. Definer hva vi mener med linearitet, skiftinvarians og kausalitet.
- b. Finn ut om følgende systemer er lineære, skiftinvariante og/eller kausale. Begrunn svarene.

i.
$$y(n) = \mathcal{H}\{x(n)\} = x^2(n)$$

ii. $y(n) = \mathcal{H}\{x(n)\} = x(n) - ax(n+3)$
iii. $y(n) = \mathcal{H}\{x(n)\} = a\sin(x(n))$
iv. $y(n) = \mathcal{H}\{x(n)\} = a^n x(n)$
v. $y(n) = \mathcal{H}\{x(n)\} = ax(n) + b^n$

- c. Gitt to lineære, skiftinvariante filtre som henholdsvis har enhetspulsresponser $h_1(n)$ og $h_2(n)$. Bevis at kaskadekobling av filtrene gir en total enhetspulsrespons $h(n) = h_1(n) * h_2(n)$, der operatoren '*' svarer til tidsdiskret foldning.
- d. Gitt $h_1(n) = \alpha^n u(n)$ og $h_2(n) = \beta^n u(n)$, og forutsett at $\alpha \neq \beta$. (u(n) er enhetssprangfunksjonen.) Hva blir h(n), dvs. enhetspulsresponsen til kaskadekoplingen av de to filtrene?
- e. Beregn frekvensresponsene til hvert av filtrene og finn derfra frekvensresponsen til det kombinerte filteret.
- f. Definer BIBO-stabilitet og finn betingelsene for at de tre filtrene $h_1(n)$, $h_2(n)$ og h(n) skal være BIBO-stabile. (Husk $\alpha \neq \beta$.)

Problem I

- a. Define the terms linearity, shift invariance, and causality...
- b. Which of the following systems are linear, shift invariant and/or causal? Substantiate your claims.

i.
$$y(n) = \mathcal{H}\{x(n)\} = x^2(n)$$

ii. $y(n) = \mathcal{H}\{x(n)\} = x(n) - ax(n+3)$
iii. $y(n) = \mathcal{H}\{x(n)\} = a\sin(x(n))$
iv. $y(n) = \mathcal{H}\{x(n)\} = a^n x(n)$
v. $y(n) = \mathcal{H}\{x(n)\} = ax(n) + b^n$

- c. Given two linear and shift invariant filters with unit sample responses $h_1(n)$ and $h_2(n)$, respectively. Prove that the unit sample response of the two filters in cascade is given by $h(n) = h_1(n) * h_2(n)$, where the operator '*' indicates time discrete convolution.
- d. Let $h_1(n) = \alpha^n u(n)$ and $h_2(n) = \beta^n u(n)$ be the two unit sample responses, and assume that $\alpha \neq \beta$. (u(n)) is the unit step function.) Calculate h(n), that is the unit sample response of the cascade of the two filters.
- e. Determine the frequency response of each of the filters, and based on these results also find the frequency response of h(n).
- f. Define BIBO-stability and determine the conditions for which the three filters $h_1(n)$, $h_2(n)$, and h(n) are BIBO-stable. (Remember $\alpha \neq \beta$.)

Oppgave II

a. Hva er betingelsen for at vi skal kunne representere et analogt signal eksakt ved hjelp av uniformt fordelte punktprøver i avstand T_s ? Forklar også hvorfor det blir slik.

Formelen for å oppnå analoge signaler fra punktprøver kan generelt skrives som

$$x(t) = \sum_{n=-\infty}^{\infty} x_s(n)h(t - nT_s).$$

b. Hvilken funksjon, h(t), kan alltid rekonstruere x(t) eksakt fra punktprøver $x_s(n) = x(nT_s)$ under forutsetning av at punktprøvingsteoremet gjelder. Begrunn svaret.

Anta at et rekonstruksjonsfilter har impulsrespons som gitt i figuren.

c. Tegn det analoge signalet som filteret produserer fra følgende inngangssignal:

$$x_s(n) = \begin{cases} 0 \text{ for } n \le 0 \text{ og } n \ge 6, \\ 1, 2, 2, 1, 3 \text{ for } n = 1, 2, 3, 4, 5. \end{cases}$$

Anta at et signal med konstant effekt-spektraltetthet opp til $F = 1/2T_s$ og null ellers, blir representert med punktprøver i avstand T_s .

- d. Finn og skisser effekt-spektraltettheten til utgangssignalet når en prøver å rekonstruere det opprinnelige signalet ved hjelp av filteret med impulsrespons h(t) gitt over. Kommenter resultatet.
- e. Hvorfor bruker vi "sample-and-hold (S&H)"-kretser før rekonstruksjonsfilteret i praktiske systemer. Forklar også problemene som oppstår ved bruk av S&H og hvordan disse motvirkes.

Problem II

a. What is the condition for representing an analog signal exactly by means of uniform samples at regular intervals T_s ? Explain why this condition holds.

An analog signal can generally be obtained from a sequence by the following formula:

$$x(t) = \sum_{n=-\infty}^{\infty} x_s(n)h(t - nT_s).$$

b. Which function h(t) can always reconstruct x(t) exactly from its samples $x_s(n) = x(nT_s)$ under the condition that the sampling theorem is satisfied? Justify your answer.

Assume that a reconstruction filter is characterized by the impulse response given in the figure.

c. Draw the analog signal obtained as the output of the filter from the sequence

$$x_s(n) = \begin{cases} 0 \text{ for } n \le 0 \text{ og } n \ge 6, \\ 1, 2, 2, 1, 3 \text{ for } n = 1, 2, 3, 4, 5. \end{cases}$$

A signal with constant power spectral density up to $F = 1/2T_s$ and zero above, is represented by uniformly distributed samples at distances T_s .

- d. Determine the power spectral density of the output signal when reconstructing this signal using the filter h(t) given above. Sketch the spectrum and discuss your result.
- e. Why do we use "sample-and-hold (S&H)" circuits prior to the reconstruction filter in practical systems. Explain also practical problems that arise when introducing S&H, and explain what precautions are taken to counteract these problems.

Oppgave III

Et signal har sannsynlighetstetthetsfunksjon som gitt i figuren.

- a. Finn A og B når signalet har varians lik 1.
- b. Beregn kvantiseringsstøyeffekten ved hjelp av den kjente tilnærmingsformelen, og entropien når vi kvantiserer signalet uniformt med
 - i. 4 nivåer
 - ii. 8 nivåer.
- c. Er den vanlige formelen for kvantiseringsstøy i uniforme kvantiserere eksakt i dette tilfellet? Foreta beregning eller begrunn svaret!

Vi ser videre på signalet som er kvantisert med 4 nivåer. Dette ønsker vi å sende som et 4-nivå-signal over en nyquistkanal der amplitudenivåene er $\pm C$ og $\pm 3C$.

d. Finn minste oppnåelige, gjennomsnittlige symbolenergi uttrykt ved C.

Anta nå at vi har et system som kan oppnå Shannons kanalkapasitet for gaussisk støy.

- e. Hvor stor kanalstøyeffekt (varians), uttrykt ved C, kan da maksimalt tillates for feilfri overføring av det gitte signalet kvantisert med fire nivåer.
- f. Skisser hva som ville skje i praksis hvis vi sendte vårt signal på en kanal med tilsvarende signal-støyforhold. Kommenter avviket fra forrige punkt.

Problem III

A signal is characterized by a probability density function as shown in the figure.

- a. Determine A and B when the signal has unit variance.
- b. When quantizing the signal uniformly, determine the quantization noise power using the well known approximation formula, and find the entropy of the quantized signal for the following two cases:
 - i. 4-level quantization,
 - ii. 8-level quantization.
- c. Is the approximation formula for the quantization noise exact in this case? Justify your answer either by calculations or by logical explanation.

In the following we consider the output from the 4-level quantizer. Assume that we want to transmit this signal using 4-level signaling over a Nyquist channel with pulse amplitudes $\pm C$ and $\pm 3C$.

d. Determine the lowest possible average symbol energy in terms of C.

Assume now that we have a system where we can obtain Shannon's channel capacity for Gaussian noise.

- e. Determine the largest allowable channel noise power (variance) expressed in terms of C for error free transmission of the given quantized 4-level signal.
- f. Discuss what would happen in practice if we transmitted the four-level signal over a channel with the same characteristics. Discuss deviations from the result in the previous problem.

Enclosure: Fourier representations

Analog signals

Fourier transform:

$$X(j\Omega) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

Inverse transform:

$$x(t) = \mathcal{F}^{-1}\{X(j\Omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega)e^{j\Omega t}d\Omega$$

Fourier series of finite length signals ($t \in [0, T_0]$) or periodic signals (Period: T_0):

$$x(t) = \sum_{k=-\infty}^{\infty} \alpha_k e^{j\frac{2\pi}{T_0}kt}$$

Coefficients:

$$\alpha_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j\frac{2\pi}{T_0}kt} dt$$

Time discrete signals

Fourier transform, DTFT:

$$X(e^{j\omega}) = \mathcal{F}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

Inverse DTFT:

$$x(n) = \mathcal{F}^{-1}\{X(e^{j\omega})\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

Transform of finite length signals $(n \in [0, N-1])$, or series expansion of periodic signals (Period N), DFT:

$$X(k) = \mathcal{DFT}\{x(n)\} = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}nk}$$

Inverse DFT:

$$x(n) = \mathcal{IDFT}\{X(k)\} = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}nk}$$

Properties of the Fourier transform of infinite, continuous signals

Given:

$$X_i(j\Omega) = \mathcal{F}\{x_i(t)\} = \int_{-\infty}^{\infty} x_i(t)e^{-j\Omega t}dt$$

Linearity:

$$ax_1(t) + bx_2(t) \iff aX_1(j\Omega) + bX_2(j\Omega)$$

Time shift:

$$x(t-\tau) \iff e^{-j\Omega\tau}X(j\Omega)$$

Frequency shift:

$$x(t)e^{-j\Omega_0t} \iff X(j(\Omega - \Omega_0))$$

Time domain convolution:

$$x_3(t) = x_1(t) * x_2(t) = \int_{-\infty}^{\infty} x_1(\tau) x_2(t-\tau) d\tau \Longleftrightarrow X_3(j\Omega) = X_1(j\Omega) X_2(j\Omega)$$

Multiplication of functions:

$$x_3(t) = x_1(t)x_2(t) \Longleftrightarrow X_3(j\Omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_1(jU)X_2(j(\Omega - U))dU$$

Parseval's theorem:

$$\int_{-\infty}^{\infty} x^2(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\Omega)|^2 d\Omega$$