

Algorytmy i SD

Struktury danych

Grafy

Piotr Ciskowski, Łukasz Jeleń Wrocław, 2023

- para (V,E), gdzie:
 - V jest zbiorem węzłów wierzchołków
 - E jest zbiorem par wierzchołków krawędzi
 - wierzchołki i krawędzie są pozycjami przechowującym elementy
- przykład:
 - wierzchołki reprezentują lotniska przechowują trzyliterowe kody
 - krawędzie reprezentują połączenia lotnicze przechowują odległości

ADT **graf** – typy krawędzi:

- krawędź skierowana
 - skierowana para wierzchołków (u,v)
 - pierwszy jest początkiem
 - drugi jest końcem
 - np. lot
- krawędź nieskierowana
 - nieskierowana para wierzchołków (u,v)
 - kierunek nie ma znaczenia
 - np. mapa połączeń
- graf skierowany wszystkie krawędzie są skierowane
- graf nieskierowany wszystkie krawędzie są nieskierowane

- zastosowania:
 - obwody elektroniczne
 - płytki drukowane
 - sieci transportowe
 - sieć autostrad
 - sieć połączeń lotniczych
 - sieci komputerowe
 - LAN, internet, web
 - bazy danych
 - diagramy związków encji

- wierzchołki końcowe krawędzi
 - U i V są końcami krawędzi a
- krawędzie incydentne do wierzchołków
 - a i b są incydentne do V
- wierzchołki sąsiednie
 - U i V są sąsiadami
- stopień wierzchołka
 - X ma stopień 5
- krawędzie równoległe
 - h i j są równoległe

- pętla
 - i jest pętlą
- gęstość grafu
 - stosunek liczby krawędzi do max. liczby krawędzi

$$\frac{2|E|}{|V|(|V| - 1)}$$

- ścieżka
 - sekwencja kolejnych wierzchołków i krawędzi
 - rozpoczyna się od wierzchołka
 - · kończy się na wierzchołku
 - każdą krawędź poprzedza i następuje jej wierzchołek końcowy
- ścieżka prosta
 - ścieżka, w której wszystkie wierzchołki i krawędzie różnią się od siebie
 - P₁ = (V,b,X,h,Z) jest ścieżką prostą
 - $P_2 = (U,c,W,e,X,g,Y,f,,W,d,V) \text{nie jest}$

- cykl
 - okrężna sekwencja kolejnych wierzchołków i krawędzi
 - każdą krawędź poprzedza i następuje jej wierzchołek końcowy
- cykl prosty
 - cykl, w którym wszystkie wierzchołki i krawędzie różnią się od siebie
 - $C_1 = (V,b,X,g,Y,f,W,c,U,a,V) jest prosty$
 - C2 = (U,c,W,e,X,g,Y,f,W,d,V,a,V) nie jest

ADT **graf** – główne metody:

- wierzchołki i krawędzie
 - są pozycjami
 - przechowują elementy
- metody dostępu:
 - endVertices(e) tablica dwóch końcowych wierzchołków e
 - opposite(v,e) przeciwległy wierzchołek do v względem e
 - areAdjacent(v,w) prawda iff v i w są sąsiednie
 - replace (v,x) zastąp element w wierzchołku v na x
 - replace (e,x) zastąp element na krawędzi e na x

ADT **graf** – główne metody:

- metody uaktualniające:
 - insertVertex(o) dodaj wierzchołek przechowujący element o
 - insertEdge(v,w,o) dodaj krawędź (v,w) przechowującą element o
 - removeVertex(v) usuń wierzchołek v (oraz przylegające krawędzie)
 - removeEdge€ usuń krawędź e
- metody iterujące:
 - incidentEdges(v) krawędzie przylegające do v
 - vertices() wszystkie kwierzhołki w grafie
 - edges() wszystkie krawędzie w grafie

ADT **graf** – lista krawędzi:

- obiekt wierzchołek
 - element
 - referencja do pozycji w liście wierzchołków
- obiekt krawędź
 - element
 - obiekt wierzchołek początkowy
 - obiekt wierzchołek końcowy
 - referencja do pozycji na liście krawędzi
- lista wierzchołków
 - sekwencja obiektów wierzchołka
- lista krawędzi
 - sekwencja obiektów krawędzi

rysunek: Łukasz Jeleń

ADT **graf** – lista sąsiedztwa:

- struktura listy krawędzi
- lista incydencji dla każdego wierzchołka, l(v)
 - sekwencja referencji do obiektów krawędzi incydentnych
- rozszerzone obiekty krawędzi
 - referencje do listy sąsiedztwa wierzchołków końcowych

ADT **graf** – macierz sąsiedztwa:

- struktura listy krawędzi
- rozszerzony obiekt wierzchołka
 - klucz integer key (indeks) powiązany z wierzchołkiem
- tablica 2D sąsiedztwa
 - referencja
 do obiektu krawędzi
 dla sąsiednich
 wierzchołków
 - null dla wierzchołków niesąsiadujących

ADT **graf** – podgrafy:

- podgraf S grafu G jest takim grafem, że wierzchołki S są podzbiorem wierzchołków G
- podgraf rozpinający grafu G jest podgrafem, który zawiera wszystkie wierzchołki G

ADT **graf** – łączność:

- graf jest połączony (spójny)
 jeśli istnieje ścieżka
 między każdą parą wierzchołków
- elementem połączonym grafu G jest maksymalny podgraf połączony grafu G

ADT **graf** – drzewa i lasy:

- drzewo jest grafem nieskierowanym takim, że:
 - jest połączone
 - nie zawiera cykli
- lasem jest graf nieskierowany bez cykli
- komponenty połączone lasu są drzewami

ADT **graf** – drzewa i lasy rozpinające:

- drzewo rozpinające grafu połączonego jest podgrafem połączonym, które jest drzewem
- drzewo rozpinające nie jest unikalne dopóki graf nie jest drzewem
- drzewa rozpinające mają zastosowanie w sieciach komunikacyjnych
- las rozpinający grafu jest podgrafem rozpinającym, który jest lasem

ADT graf ważony:

- w grafie ważonym każda krawędź ma przypisaną wartość liczbową
 wagę krawędzi
- wagi krawędzi mogą reprezentować odległości, czas, koszt, itp.

PROBLEM

- Załóżmy, że chcemy połączyć wszystkie komputery w nowo tworzonym laboratorium/biurze
 - · minimalna ilość kabla koszty
- · Rozwiązanie:
 - Model grafu ważonego (G)
 - · wierzchołki komputery
 - krawędzie wszystkie możliwe pary (u, v) komputerów
 - deg(u, v) = w(u, v) odpowiada długości kabla potrzebnego do połączenia komputera v z komputerem u
 - Moglibyśmy wyznaczyć najkrótszą drogę od wierzchołka v
 - nieoptymalne
 - Znajdziemy drzewo T, które zawiera wszystkie wierzchołki G i posiada najmniejsze łączne wagi ze wszystkich drzew rozpinających.

MINIMALNE DRZEWA ROZPINAJĄCE

Mając dany nieskierowany graf G, chcemy znaleźć drzewo
 T, które zawiera wszystkie wierzchołki i minimalizuje sumę:

$$w(T) = \sum_{((v,u) \subseteq T)} w((v,u))$$

 Problem wyznaczania drzewa rozpinającego o najmniejszej wadze nazywa się problemem minimalnego drzewa rozpinającego (MST).

© 2004 Goodrich, Tamassia

ALGORYTM KRUSKALA

- Buduje minimalne drzewo rozpinające z zastosowaniem klastrów
 - grupowania węzłów
- Początkowo wszystkie węzły stanowią osobne klastry
- Krawędzie przechowywane w kolejce priorytetowej
 - wagi są kluczami
- Dla wszystkich krawędzi:
 - Q.removeMin();
- Jeśli u i v nie należą do tego samego klastra to dodajemy (v, u) do T
- Łączymy klastry zawierające u i v w jeden

```
Algorytm Kruskal(G)

Wejście: Graf ważony G z n
wierzchołkami i m krawędziami

Wyjście: Minimalne drzewo rozpinające
T dla grafu G

for każdy wierzchołek v w G
C(v) ← {k}
Q ← {E} // E - lista krawędzi
T ← Ø

while T.size() < n-1 do
(u, v) ← Q.removeMin()
if C(v) ≠ C(u)
T.Add(v, u)
Merge(C(v), C(u))
return T
```


NAJKRÓTSZA ŚCIEŻKA

- Mając dany graf ważony i dwa wierzchołki u i v chcemy wyznaczy ścieżkę między nimi o najmniejszej całkowitej wadze.
 - · Długość ścieżki jest sumą wag jej krawędzi.
- Przykład:
 - Najkrótsza ścieżka między Providence i Honolulu
- Zastosowania
 - · Przekierowywanie pakietów Internetowych
 - Rezerwacje lotów
 - Wskazówki dla kierowców (np.: GPS)

ALGORYTM DIJKSTRY

- Odległość wierzchołka v od wierzchołka s jest długością najkrótszej ścieżki między s and v
- Algorytm Dijkstra wyznacza odległości wszystkich wierzchołków począwszy od wierzchołka startowego s
- · Założenia:
 - graf jest spójny/połączony
 - •krawędzie są nieskierowane
 - •wagi krawędzi są nieujemne

- Podobnie jak w przypadku algorytmu Prima będziemy tworzyć "chmurę" ze wszystkich wierzchołków (MST) począwszy od s
- Przechowujemy każdy wierzchołek v, etykietę d(v) reprezentującą odległość v od s w podgrafie zawierającym MST wraz z sąsiednimi wierzchołkami
- Przy każdej iteracji
 - •Dodajemy wierzchołek u nieznajdujący się w MST o najmniejszej odległości, d(u)
 - Uaktualniamy etykiety wierzchołków sąsiednich do u

© 2004 Goodrich, Tamassia

ALGORYTM DIJKSTRA

- Kolejka priorytetowa przechowuje wierzchołki nieznajdujące sie w bieżącym MST
 - · Klucz: odległość
 - Element: wierchołek
 - insert(k,e) zwraca lokalizację
 - reptaceKey(l,k) zamienia klucz dla danego elementu
- Przechowujemy dwie etykiety dla każdego wierzchołka:
 - Odległość (d(v))
 - lokalizacje w kolejce priorytetowej

```
Algorithm DijkstraDistances(G, s)
  Q ← nowa kolejka priorytetowa bazujaca
        na kopcu
  for all v \in G.vertices()
     if v = s
        setDistance(v, 0)
     else
        setDistance(v, \infty)
     l \leftarrow O.insert(getDistance(v), v)
  setLocator(v,l)
 while ~Q.isEmpty()
  u \leftarrow O.removeMin()
  for all e \in G.incidentEdges(u)
      {relaksacja krawedzi e }
     z \leftarrow G.opposite(u,e)
     r \leftarrow getDistance(u) + weight(e)
     if r < getDistance(z)
        setDistance(z,r)
        Q.replaceKey(getLocator(z),r)
```

© 2004 Goodrich, Tamassia

