P. 03

1

2 a fluid obtained from an earth formation, comprising: 3 (a) conveying said fluid into a nuclear magnetic resonance (NMR) sensor in a 4 borehole in said earth formation; 5 (b) enhancing a polarization of a nuclear spin of a nucleus occurring in said 6 fluid to a hyperpolarized state beyond that attainable for any atomic 7 nucleus at thermal equilibrium in the applied magnetic field; and 8 (c) using said NMR sensor for obtaining NMR signals from said fluid. 9 1 2. (original)The method of claim 1 wherein enhancing said polarization of said nuclear 2 spin is based at least in part on the Overhauser effect (OE). 3 1 3. (original)The method of claim 1 wherein enhancing said polarization of said nuclear 2 spin is based at least in part on the Nuclear Overhauser Effect (NOE). 3

1. (currently amended) A method of obtaining nuclear magnetic resonance signals from

2 3

1

2

3

1

5. (original) The method of claim 1 wherein enhancing said polarization of said nuclear spin is based at least in part on a Spin Induced Nuclear Overhauser Effect (SPINOE).

4. (original) The method of claim 1 wherein enhancing said polarization of said nuclear

10/696,995

spin is based at least in part on optical pumping.

1	
1	6. (original) The method of claim 1 wherein enhancing said nuclear spin polarization
2	further comprises:
3	(i) introducing a polarizing agent into said fluid; and
4	(ii) polarizing a spin of said polarizing agent, and
5	(iii) transferring a polarization of said polarized agent to said nuclear spin.
6	
1	7. (original) The method of claim 1, further comprising conveying said sensor downhole
2、	on a wireline device.
3	
1	8. (original) The method of claim 1, further comprising conveying said sensor downhole
2	on a measurement-while-drilling tool.
3	
1	9. (original) The method of claim 6, wherein said polarizing agent further comprises a
2	noble gas.
3	
1	10. (original) The method of claim 9, wherein said polarizing agent further
2	comprises xenon.
3	
1	11. (original) The method of claim 1, wherein said nucleus occurring in said fluid further
2	comprises a carbon-13 nucleus present in at least one of: i) an aliphatic
3	hydrocarbon, ii) an aromatic hydrocarbon,, iii) a connate formation fluid, and,
4	(iv) a mud filtrate
	10/696 995

I	
1	12. (original)The method of claim 6, wherein said polarizing said spin of said polarizing
2	agent further comprises a spin exchange with an intermediate material.
3	
1	13. (original) The method of claim 12 wherein said intermediate material comprises
2	rubidium.
3	
1	14. (original) The method of claim 12 further comprising irradiating said intermediate
2	material with a laser to move electrons of said intermediate material to a higher
3	quantum state
4	
1	15. (currently amended) The method of claim 1, wherein obtaining said nuclear magnetic
2	resonance signal further comprises:
3	i) conveying said fluid within a chamber of said sensor;
4	ii) providing a substantially homogeneous static magnetic field in said
5	chamber;
6	iii) applying a radio frequency pulse sequence to said fluid with at least one
7	transmitter; and
8	iv) iii) obtaining NMR signals from said fluid in response to said radio frequency
9	pulse sequence at at least one receiver antenna.
10	
1	16. (original) The method of claim 1 wherein obtaining said NMR signals further
2	comprises obtaining spin echo signals.
	10/606 005

_		
1	17. (original)	The method of claim 16 further comprising:
2	(i)	summing amplitudes of said spin echo measurements
3	(ii)	spectrally analyzing said summed amplitudes;
4	(iii)	determining whether aromatic hydrocarbons are present in said fluid
5		sample by measuring an amplitude of said spectrally analyzed summed
6		amplitudes at about 130 parts per million shift from a ¹³ C resonant
7		frequency and determining whether aliphatic hydrocarbons are present in
8		said fluid sample by measuring an amplitude of said spectrally analyzed
9		summed amplitudes at about 30 parts per million frequency shift from said
10		¹³ C resonant frequency.
11		
1	18. (original)	The method of claim 1 wherein said NMR signals comprise a free induction
2	decay.	
3		, ,
1	19. (currently	amended) The method of claim 1 wherein said NMR signals are CW
2	contin	uous wave NMR signals to obtain frequency spectra from which chemical
3	shift ir	nformation is obtained to analyze the chemical composition of the sample
4	under	test.
5		
1	20. (original)	The method of claim 18 where the free induction decay is transformed into
2	a frequ	nency spectrum for analyzing chemical composition from the chemical shift
3	inform	ation.
	10/696 995	5

Fax:7132668510

4	
I	21. (original) The method of claim 1 wherein said NMR signals are associated with a
2	nuclear spin of ¹³ C.
3	
1	22. (original) The method of claim 15 wherein said NMR signals are associated with a
2	nuclear spin of ¹³ C.
3	
1	23. (original) The method of claim 22 wherein providing said substantially
2	homogeneous static magnetic field further comprises using additional NMR
3	signals associated with ¹ H.
4	
1	24. (original) The method of claim 15 wherein providing said substantially
2	homogeneous static magnetic field further comprises using additional NMR
3	signals associated with ¹ H.
4	
1	25. (currently amended) The method of claim 2 further comprising radiating RF into an
2	Electron Spin Resonance (ESR)-active agent at an ESR frequency of said agent
3	and thereby enhancing the spin polarization of atomic nuclei.
4	
1	26. (original) The method of claim 3 further comprising changing a nuclear spin
2	polarization of carbon-13 nuclei in said fluid by radiating RF at a NMR
3	frequency of hydrogen nuclei.
4	

1	27.	(withdrawn) A method of obtaining a parameter of interest of an earth formation,			
2		compi	comprising:		
3		(a)	using a magnet on a nuclear magnetic resonance (NMR) sensor of a		
4			downhole logging tool for aligning spins of nuclei in a region of interest		
5			of said earth formation;		
6		(b)	polarizing nuclear spins of a polarizing agent carried in a chamber on said		
7			logging tool;		
8		(c)	introducing said polarizing agent into said earth formation and enhancing		
9			alignment of spins of said nuclei in said region of interest;		
10		(d)	applying a radio frequency (RF) pulse sequence to said earth formation		
11			with at least one transmitter on said NMR sensor; and		
12		(e)	obtaining NMR signals from said region of interest in response to said		
13			radio frequency pulse sequence at at least one receiver antenna.		
14					
1	28.	(with	drawn) The method of claim 27 wherein said obtained NMR signals		
2		comp	rise a free induction decay.		
3					
1	29.	(with	drawn) The method of claim 27 wherein said obtained NMR signals		
2		comp	rise spin echo signals.		
3					
1	30.	(with	drawn) The method of claim 29 wherein said RF pulse sequence comprises		
2		an ex	citation pulse and a plurality of refocusing pulses.		
3					

1	31.	(withdrawn) The method of claim 30 wherein said excitation pulse has a tip angle
2		of substantially equal to 90°.
3		
1	32.	(withdrawn) The method of claim 30 wherein said plurality of refocusing pulses
2		have tip angles substantially equal to 180°.
3		
1	33.	(withdrawn) The method of claim 30 wherein said plurality of refocusing pulses
2		have tip angles between 90° and 180°.
3		
1	34.	(withdrawn) The method of claim 29 further comprising using a processor
2		associated with said logging tool for obtaining a longitudinal relaxation time
3		(T ₁) distribution of said earth formation.
4		
1	35.	(withdrawn) The method of claim 29 further comprising using a processor
2		associated with said logging tool for obtaining a transverse relaxation time (T ₂)
3		distribution of said earth formation
4		
I	36.	(withdrawn) The method of claim 29 wherein said parameter of interest is at least
2		one of (i) porosity, (ii) clay bound water, (iii) bound volume irreducible, and, (iv)
3		permeability.
4		
1	37.	(withdrawn) The method of claim 27 wherein said polarizing agent comprises a
2		noble res

3			
1	38.	(withd	rawn) The method of claim 27 wherein said noble gas comprises Xenon.
2			
1.	39.	(withd	rawn) The method of claim 27 wherein polarizing said nuclear spins of said
2		polariz	zing agent further comprises a spin exchange with an intermediate material.
3			
1	40.	(withd	rawn) The method of claim 39 wherein said intermediate material
2		compr	ises rubidium.
3			
1	41.	(withd	rawn) The method of claim 39 further comprising irradiating said
2		interm	ediate material with a laser to move electrons of said intermediate material
3		to a hi	gher quantum state.
4			
1	42. (cı	ırrently	amended) An apparatus for use in a borehole in an earth formation for
2		obtain	ing nuclear magnetic resonance signals from a fluid obtained from said
3		format	tion, comprising:
4		(a)	a nuclear magnetic resonance sensor;
5		(b)	a device which enhances a polarization of a nuclear spin of a nucleus
6			occurring in said fluid to a hyperpolarized state beyond that attainable for
7			any atomic nucleus at thermal equilibrium in the applied magnetic field;
8			and
9		(c)	a processor which analyzes NMR signals obtained by said NMR sensor
10			from said fluid.

11	
1	43. (original) The apparatus of claim 42 wherein said device for enhancing said
2	polarization of said nuclear spin uses the Overhauser effect (OE).
3	
ì	44. (original) The apparatus of claim 42 wherein said device for enhancing said
2	polarization of said nuclear spin uses the Nuclear Overhauser Effect (NOE).
3	
1	45. (original) The apparatus of claim 42 wherein said device for enhancing said
2	polarization of said nuclear spin uses optical pumping.
3	
1	46. (original) The apparatus of claim 42 wherein said device for enhancing said
2	polarization of said nuclear spin uses a Spin Induced Nuclear Overhauser Effect
3	(SPINOE).
4	
1	47. (original) The apparatus of claim 42 wherein said device for enhancing said nuclear
2	spin further comprises:
3	(i) an arrangement for introducing a polarizing agent into said fluid; and
4	(ii) an arrangement for polarizing a spin of said polarizing agent,
5	
1	48. (original) The apparatus of claim 47, wherein said polarizing agent further comprises
2	a noble gas
3	

1	49. (Original) The apparatus of claim 48, wherein said polarizing agent further comprises
2	xenon.
3	
I	50. (original) The apparatus of claim 42, wherein said nucleus occurring in said fluid
2	further comprises a carbon-13 nucleus present in at least one of: i) an aliphatic
3	hydrocarbon, ii) an aromatic hydrocarbon, iii) a connate formation fluid, and,
4	(iv) a mud filtrate.
5	
1	51. (original) The apparatus of claim 47, wherein said polarizing said spin of said
2	polarizing agent further comprises a spin exchange with an intermediate material
3	
1	52. (original) The apparatus of claim 51 wherein said intermediate material
2	comprises rubidium.
3	
1	53. (previously presented) The apparatus of claim 51 further comprising a laser which
2	moves electrons from the S to the P quantum state of said intermediate
3	material.
4	
1	54. (previously presented) The apparatus of claim 42, further comprising:
2	i) a fluid chamber;
3	ii) a magnet arrangement which provides a substantially homogeneous station
4	magnetic field in said chamber;
5	iii) a transmitter which applies a radio frequency magnetic field to said fluid

P.13

6	iv) a receiver which obtains NMR signals from said fluid in response to said
7	radio frequency magnetic field.
8	
1	55. (original) The apparatus of claim 42 wherein said NMR signals further comprise
2	obtaining spin echo signals.
3	
1	56. (previously presented) The apparatus of claim 55 further comprising:
2	a processor which:
3	(i) sums amplitudes of said spin echo measurements;
4	(ii) spectrally analyzes said summed amplitudes; and
5	(iii) determines whether aromatic hydrocarbons are present in said fluid
6	sample by measuring an amplitude of said spectrally analyzed summed
7	amplitudes at a first frequency shift from a 13C resonant frequency and
8	determining whether aliphatic hydrocarbons are present in said fluid
9	sample by measuring an amplitude of said spectrally analyzed summed
10	amplitudes at a second frequency shift from said ¹³ C resonant frequency.
11	
1	57. (original) The apparatus of claim 42 wherein said NMR signals comprise a free
2	induction decay.
3	
I	58. (original)The apparatus of claim 57 where said processor transforms the free
2	induction decay into a frequency spectrum for analyzing chemical composition
3	from the chemical shift information.

Fax:7132668510

Ì		
1	59. (currently	amended) The apparatus of claim 42 where said NMR signals comprise a
2	CW fr	equency spectrum for .
3		
4	60. (original)	The apparatus of claim 42 wherein said NMR signals are associated with a
2	nuclea	r spin of ¹³ C.
3		
1	61. (original)	The apparatus of claim 53 wherein said NMR signals are associated with a
2	nuclea	r spin of ¹³ C.
3		
1	62. (original)	The apparatus of claim 43 wherein said NMR sensor includes a transmitter
2	that ap	plies an RF magnetic field to said fluid at an electron spin resonance
3	(ESR)	frequency of an ESR-active agent
4		
1	63. (original)	The apparatus of claim 44 wherein said NMR sensor includes a
2	transm	itter that applies an RF magnetic field to said fluid at nuclear resonance
3	freque	ncy of hydrogen nuclei in said fluid.
4		
1	64. (withd	rawn) An apparatus for obtaining a parameter of interest of an earth
2	format	tion, comprising:
3	(a)	a magnet on a nuclear magnetic resonance (NMR) sensor of a
4		downhole logging tool for aligning spins of nuclei in a region of interest
5		of said earth formation;

Fax:7132668510

6		(b)	a chamber on said logging tool containing a polarizating agent;
7		(c)	a device for polarizing spins of said polarizing agent and conveying said
8			polarizing agent into said earth formation thereby enhancing alignment of
9			spins of said nuclei in said region of interest;
10		(d)	a transmitter for applying a radio frequency (RF) pulse sequence to said
11			earth formation;
12		(e)	a receiver for obtaining NMR signals from said region of interest in
13			response to said radio frequency pulse; and
14		(f)	a processor for determining from said NMR signals a parameter of interest
15			of said earth formation.
16			
1	65.	(with	drawn) The apparatus of claim 64 wherein said obtained NMR signals
2		comp	orise a free induction decay.
3			
l	66.	(with	ndrawn) The apparatus of claim 65 wherein said obtained NMR signals
2		com	orise spin echo signals
3			
1	67.	(with	ndrawn) The apparatus of claim 66 wherein said RF pulse sequence
2		com	prises an excitation pulse and a plurality of refocusing pulses.
3			

P. 16

3

1	08.	(Withdrawn) the apparatus of claim 67 wherein said excitation pulse has a up
2		angle of substantially equal to 90°.
3		
1	69.	(withdrawn) The apparatus of claim 64 wherein said processor obtains a
2		longitudinal relaxation time (T1) distribution time of said earth formation.
3		
1	7 0.	(withdrawn) The apparatus of claim 64 wherein said parameter of interest is at
2		least one of (i) porosity, (ii) clay bound water, (iii) bound volume irreducible, and,
3		(iv) permeability.
4		
1	71.	(withdrawn) The apparatus of claim 64 wherein said polarizing agent comprises a
2		noble gas.
3		
1	72.	(withdrawn) The apparatus of claim 71 wherein said noble gas comprises xenon.
2		
1	73.	(withdrawn) The apparatus of claim 64 wherein polarizing said nuclear spins of
2		said polarizing agent further comprises a spin exchange with an intermediate
3		material.
4		
ì	74.	(withdrawn) The apparatus of claim 73 wherein said intermediate material
2		comprises rubidium.

1	75.	(withdrawn) The apparatus of claim 73 further comprising a laser for tradiating				
2		said intermediate material to cause transitions from the S to the P quantum state o				
3		electro	ons of said intermediate material.			
4						
1	76. (c	urrently	amended) A system for obtaining nuclear magnetic resonance signals from			
2		a fluid	l obtained from an earth formation, comprising:			
3		(a)	a logging tool including a nuclear magnetic resonance (NMR) sensor;			
4		(b)	a first conveyance device which conveys said fluid into a chamber of said			
5			(NMR) sensor;			
6		(c)	an arrangement which enhances a polarization of a nuclear spin of a			
7			nucleus occurring in said fluid to a hyperpolarized state beyond that			
8			attainable for any atomic nucleus at thermal equilibrium in the applied			
9		٠	magnetic field;			
10		(d)	a processor which determines from signals obtained by said NMR sensor			
11			property of said fluid; and			
12		(e)	a second conveyance device which conveys said logging tool into said			
13			earth formation.			
14						
i	77. (urrently	y amended) The system of claim 76 wherein said second conveyance device			
2		in (c)	is selected from the group consisting of (i) a wireline, and, (ii) a drilling			
3		tubul	ar, and, (iii) coiled tubing.			
4						

1	78. (original) The system of claim 76 wherein said arrangement in (c) uses at least one of						
2		(i) the	e Overhauser Effect (OE), (ii) the Nuclear Overhauser Effect (NOE), (iii)				
3		optica	l pumping or (iv) Spin Polarization Induced Nuclear Overhauser Effect				
4		(SPIN	OE).				
5							
1	79. (or	. (original) The system of claim 76 wherein said arrangement in (c) uses at least one of					
2		(i) a n	oble gas, (ii) xenon, (iii) an alkaline metal, and, (iv) rubidium.				
3							
1	80. (previously presented) The system of claim 76 further comprising a laser optically						
2		pump	s at least one of (i) a noble gas, and, (ii) xenon.				
3							
1	81.	(with	drawn) A method of using a logging tool for analyzing a fluid of an earth				
2			formation, the method comprising:				
3		(a)	dissolving a polarizing agent into said fluid;				
4		(b)	using an NMR sensor on said logging tool for obtaining NMR signals				
5			from said dissolved polarizing agent.				
6							
1	82.	(with	drawn) The method of claim 81 wherein said dissolving of said polarizing				
2		agent	is done in the earth formation.				
3							
1	83.	(with	drawn) The method of claim 81 wherein said dissolving of said polarizing				
2		agent	is done in a fluid sample chamber on said logging tool, the method further				

)		comprising recovering said formation field from said earth formation using a fitt
4		sampling device on said logging tool.
5		
1	84.	(withdrawn) The method of claim 81 wherein said NMR signals correspond to
2		free induction decay of a nucleus of said polarizing agent.
3		
1	85.	(withdrawn) The method of claim 84 further comprising chemical shift NMR
2		analysis of said NMR signals.
3		
1	86.	(withdrawn) The method of claim 81 where said NMR signals comprise of a CW
2		frequency spectrum to obtain chemical shift information.
3		