

PVsyst - Simulation report

Grid-Connected System

Project: rice mill project

Variant: mill simulation

No 3D scene defined, no shadings

System power: 749 kWp

Uzogbon - Nigeria

Variant: mill simulation

PVsyst V7.4.7

VC0, Simulation date: 20/07/25 10:31 with V7.4.7

Project summary

Geographical Site Situation

10 / 180 °

UzogbonLatitude6.73 °NNigeriaLongitude6.45 °E

Altitude 75 m
Time zone UTC+1

Weather data

Uzogbon

Tilt/Azimuth

Meteonorm 8.1, Sat=100% - Synthetic

System summary

Grid-Connected System No 3D scene defined, no shadings

PV Field Orientation Near Shadings

Fixed plane No Shadings Fixed constant load

401 kW Global

3510 MWh/Year

User's needs

Project settings

Albedo

0.20

System information

PV Array Inverters Battery pack
Nb. of modules 1292 units Nb. of units 40 units Storage strate

Nb. of modules 1292 units Nb. of units 40 units Storage strategy: Self-consumption

Pnom total 749 kWp Pnom total 600 kWac Nb. of units 7760 units

Pnom ratio 1.249 Voltage 819 V

Capacity 12028 Ah

Results summary

Produced Energy 1150649 kWh/year Specific production 1536 kWh/kWp/year Perf. Ratio PR 80.95 % Used Energy 3509931 kWh/year Solar Fraction SF 32.78 %

Table of contents

Variant: mill simulation

PVsyst V7.4.7

VC0, Simulation date: 20/07/25 10:31 with V7.4.7

General parameters

Grid-Connected System No 3D scene defined, no shadings

PV Field Orientation

Orientation Sheds configuration Models used

Fixed plane No 3D scene defined Transposition Perez
Tilt/Azimuth 10 / 180 ° Diffuse Perez, Meteonorm

Circumsolar separate

HorizonNear ShadingsUser's needsFree HorizonNo ShadingsFixed constant load

401 kW

401 kW Global

3510 MWh/Year

Storage

Kind Self-consumption

Charging strategyDischarging strategyWhen excess solar power is availableAs soon as power is needed

PV Array Characteristics

PV module		Inverter	
Manufacturer	JA solar	Manufacturer	Huawei Technologies
Model	JAM78-S30-580-MR	Model	SUN2000-15KTL-M2-400V
(Original PVsyst database)		(Original PVsyst database)	

Unit Nom. Power 580 Wp Unit Nom. Power 15.0 kWac Number of PV modules 1292 units Number of inverters 40 units Nominal (STC) 749 kWp Total power 600 kWac Modules 76 string x 17 In series Operating voltage 160-950 V Max. power (=>58°C) 16.5 kWac At operating cond. (50°C)

At operating cond. (50°C)

Max. power (=>58°C)

16.5 kWac

Pmpp

684 kWp

Pnom ratio (DC:AC)

1.25

U mpp 681 V Power sharing within this inverter I mpp 1003 A

Total PV power Total inverter power

Nominal (STC)749 kWpTotal power600 kWacTotal1292 modulesMax. power660 kWacModule area3612 m²Number of inverters40 units

Pnom ratio 1.25

Battery Storage

Batterv

Manufacturer Sony

Model IJ1001M 24Ah

Battery pack Battery Pack Characteristics

 Nb. of units
 16 in series
 Voltage
 819 V

 x 485 in parallel
 Nominal Capacity
 12028 Ah (C10)

Discharging min. SOC 20.0 % Temperature Fixed 20 °C

Stored energy 7585.2 kWh

Battery input charger

ModelGenericMax. charg. power640.0 kWdcMax./Euro effic.97.0/95.0 %

Battery to Grid inverter

ModelGenericMax. disch. power420.0 kWacMax./Euro effic.97.0/95.0 %

Variant: mill simulation

PVsyst V7.4.7

VC0, Simulation date: 20/07/25 10:31 with V7.4.7

Array losses

Array Soiling Losses
Loss Fraction
Thermal Loss factor
Module temperature according to the second se

Module temperature according to irradiance Global array res.

DC wiring losses

11 mΩ 1.5 % at STC

Uc (const) 29.0 W/m²K Loss Fraction

Uv (wind) $0.0 \text{ W/m}^2\text{K/m/s}$

Serie Diode Loss LID - Light Induced Degradation Module Quality Loss

Voltage drop 0.7 V Loss Fraction 2.0 % Loss Fraction -0.8 %

Loss Fraction 0.1 % at STC

Module mismatch losses

Loss Fraction 2.0 % at MPP

IAM loss factor

Incidence effect (IAM): Fresnel smooth glass, n = 1.526

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.998	0.981	0.948	0.862	0.776	0.636	0.403	0.000

Variant: mill simulation

PVsyst V7.4.7

VC0, Simulation date: 20/07/25 10:31 with V7.4.7

Main results

System Production

Produced Energy 1150649 kWh/year Used Energy 3509931 kWh/year

Specific production1536 kWh/kWp/yearPerf. Ratio PR80.95 %Solar Fraction SF32.78 %

Battery aging (State of Wear)

 Cycles SOW
 99.8 %

 Static SOW
 90.0 %

Normalized productions (per installed kWp)

Performance Ratio PR

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_User	E_Solar	E_Grid	EFrGrid
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	kWh	kWh	kWh
January	158.3	87.1	27.10	145.5	135.4	90503	298104	91386	0.000	206718
February	137.5	94.6	27.87	130.9	122.9	81629	269255	78831	0.000	190424
March	168.4	102.6	27.59	164.3	155.1	102637	298104	98617	0.000	199487
April	174.2	92.5	26.50	175.2	165.7	110065	288487	105619	0.000	182868
May	170.8	83.3	26.27	176.6	167.1	110930	298104	106412	0.000	191692
June	157.1	84.0	24.95	163.7	154.8	103950	288487	99949	0.000	188539
July	159.3	79.7	24.93	165.6	156.5	104944	298104	100805	0.000	197299
August	153.2	86.9	24.58	155.6	146.6	98738	298104	95091	0.000	203013
September	155.0	77.5	24.44	153.1	144.1	96666	288487	92832	0.000	195655
October	170.4	81.6	25.49	162.6	152.5	102091	298104	98189	0.000	199915
November	171.3	73.7	26.06	156.7	146.0	97753	288487	94262	0.000	194226
December	161.9	82.7	26.80	147.0	136.6	91483	298104	88657	0.000	209447
Year	1937.4	1026.1	26.04	1896.8	1783.2	1191388	3509931	1150649	0.000	2359281

Legends

GlobHor Global horizontal irradiation

DiffHor Horizontal diffuse irradiation

T_Amb Ambient Temperature

Globlnc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings

EArray Effective energy at the output of the array

E_User Energy supplied to the user
E_Solar Energy from the sun
E_Grid Energy injected into grid
EFrGrid Energy from the grid

PVsyst V7.4.7

VC0, Simulation date: 20/07/25 10:31 with V7.4.7

Variant: mill simulation

PVsyst V7.4.7 VC0, Simulation date: 20/07/25 10:31 with V7.4.7

