

Zpracování videa

Video – časová posloupnost snímků

- Video je reprezentováno datovou strukturou, kterou si v nejjednodušší podobě můžeme představit jako datový soubor, kde jsou uloženy jednotlivé snímky v nějakém formátu za sebou s tím, že snímky pořadí snímků odpovídá okamžiku, kdy byly zaznamenány.
- Při dostatečné frekvenci snímání/ukládání, resp. přehrávání (fps frames per second) dostáváme vizuální vjem spojitě probíhající události.

 Vzhledem k tomu, že často potřebujeme ukládat velké množství snímků, prosté uložení snímků za sebou by bylo paměťově náročné a proto využíváme vhodné techniky kódování a komprese.

- Koncepčně nejjednodušší je kódovat a komprimovat jednotlivé obrázky bez kontextu s ostatními (sousedícími) obrázky videa.
- Pro kompresi se využívá nejčastěji standardu JPEG nebo JPEG2000.
- Video, které používá JPEG formát se nazývá Motion JPEG. Není to ale mezinárodní standard. Mohou být problémy s různou implementací JPEG.
- Při použití JPEG2000 je kompatibilita zaručena, kódování je o něco efektivnější, ale implementace JPEG2000 je složitější.

- Prostorové/časové kódování videa (Spatial/temporal video coding)
 - Frame Replenishment Coding
 - Differential Frame Coding
 - Unitary Transform Interframe Coding
 - Motion Compensatioan Interframe Coding
- Uvedené techniky vedou ke standardizovaným formátům MPEG-1 a MPEG-2.

BI-SVZ

- Frame Replenishment Coding
 - Většinou se sousední snímky i při pohybu příliš nemění, takže místo přenášení celého snímku stačí přenášet pouze rozdíl mezi oběma snímky.
 - Předpokládejme, že každý pixel je reprezentován 8 bity.
 - První referenční snímek je uložen celý (frame reference memory)
 - Následující snímky jsou pixel po pixelu porovnávány s referenčním snímkem
 - Pokud existuje významný rozdíl mezi aktuálním a referenčním pixelem, je referenční pixel nahrazen aktuální pixelem a současně je aktuální pixel zařazen do bufferu pro záznam/přenos.
 - Současně je zaznamenána i příslušná pozice změny v rámci zaznamenávaného/přenášeného řádku pixelů.
 - Pro zvýšení efektivity přenosu se nepřenáší jednotlivé pixely, ale shluky pixelů (např. celé řádky změn)

Frame Replenishment Coding

- Differential Frame Coding
 - Předchozí technika Frame Replenishment Coding může být rozšířena o tzv.
 prediktivní kódování, aby se využila redundance mezi snímky.
 - Diferenční pulzní kódová modulace (DPCM) je využita pro predikci hodnoty pixelu v přenášeném řádku na základě z předchozího snímku

- Unitary Transform Interframe Coding
 - V běžném video záznamu je významná korelace mezi časovým a prostorovým rozdílem (posunem) mezi obrázky.
 - Lze proto využít 3D unitární transformaci, která odstraní korelaci mezi snímky a zefektivní kódování.
 - Označme F(j,k,i) třírozměrnou matici (tenzor) JxKxI pixelů extrahovanou z
 posloupnosti I snímků. 3D unitární transformace je pak definována obecným
 vztahem

$$\mathcal{F}(u, v, w) = \sum_{j} \sum_{k} \sum_{i} F(j, k, i) A_{C}(j, u) A_{R}(k, v) A_{T}(i, w)$$

• kde $A_C(j, u)$, $A_R(k, v)$ a $A_T(i, w)$ jsou postupně sloupcové, řádkové a časové transformační jádro (kernel).

- Unitary Transform Interframe Coding
 - Při využití unitární transformace pro kódování rozdílů sousedních snímků je každý koeficient kódován na základě zónového vzorkování, zónového kódování nebo pomocí prahování a to s využitím podobných technik jaké se využívají pro kódování pomocí dvojrozměrné transformace.
 - Inverzní transformací získáme rekonstruované bloky snímků.
 - Nevýhodou této metody je potřeba úschovy velkého množství snímků.

Závislost chyby na velikosti transformovaného bloku pro kosinovou transformaci

- Motion Compensatioan Interframe Coding, 1969
 - Pozorování: I při pomalém pohybu snímaného objektu nebo pohybu kamery dochází k
 poměrně výrazným změnám mezi snímky, což omezuje využití předchozích technik
 založených na rozdílových snímcích.
 - Tento problém může být snížen pomocí tzv. kompenzace pohybu.
 - Myšlenka spočívá v nalezení oblasti T (zvolené v aktuálním snímku, tzv. template) v
 definované oblasti S v referenčním snímku.
 - Nejlepší (nejpodobnější) nalezená oblast je použita pro následný výpočet rozdílového snímku.
 - Nejčastěji je jako míra podobnosti použita křížová korelace (korelace mezi různé posunutými oblastmi).
 - Velikost oblasti S určuje míru předpokládaného posunu objektu/kamery mezi dvěma snímky.

• Motion Compensatioan Interframe Coding, 1969

• MPEG-1

- Formát pro ukládání videí
- Postaven na hierarchické vrstevnaté datové struktuře, která slouží ke kompresi časové posloupnosti snímků.
- Na každé úrovni od sekvence snímků až po malý blok je barevný snímek popsán jasovým polem Y(j, k) a dvěma poli s intenzitami barev (chrominancemi) C_b(j, k) a C_r(j, k).

- MPEG-1
 - Datové struktury
 - Posloupnost snímků (Video Sequence) časová kolekce jedné nebo více skupin snímků
 - Skupina snímků (Group of Pictures) časová kolekce jednoho nebo více snímků. Začíná tzv. I-snímkem nebo B-snímkem.

- MPEG-1
 - MPEG-1 snímky (pictures)
 - I-snímek 3 bloky velikosti 8x8 obsahující jas Y a intenzity barev C_b a C_r. Všechny reprezentují rozdílové snímek, který je kódován pomocí kosinové transformace. I-snímek může být použit pro predikci P-snímků a B-snímků.
 - P-snímek 3 bloky velikosti 8x8 obsahující jas Y a intenzity barev C_b a C_r. Všechny reprezentují kompenzaci pohybu od I- nebo P-snímku. P-snímek může být použit pro predikci P-snímků a B-snímků.
 - **B-snímek** 3 bloky velikosti 8x8 obsahující jas Y a intenzity barev C_b a C_r . Všechny reprezentují referenční snímek a to buď předchozí a/nebo následující snímek pro obousměrnou kompenzaci pohybu. B-snímek nemůže být použit jako referenční snímek pro jiné snímky (slouží je pro kompenzaci pohybu nikoliv jako výchozí snímek vůči kterému by se počítal rozdíl pro jiné snímky).
 - **D-snímek** 3 bloky velikosti 8x8 obsahující jas Y a intenzity barev C_b a C_r . Všechny reprezentují stejnosměrné složky (offset, posun).

• MPEG-1

- MPEG-1 řez (slice) souvislá posloupnost makrobloků v obrázku. Výška řezu je 16 pixelů. Na hraně snímku může řez přesahovat do dalšího řádku makrobloku (wrap around). Účelem řezu je umožnit změny v algoritmu kodéru za běhu. Je také užitečný pro kompenzaci/zotavení se z chyb.
- MPEG-1 makroblok (macroblock) skládá se ze 3 bloků velikosti 16x16, které obsahují jas Y a intenzity barev C_b a C_r. Jas Y je v makrobloku rozložen do 4 polí o velikosti 8x8. Jas Y může být využit pro odhad pohybu.
- MPEG-1 blok (block) blok velikosti 8x8 pixelů, který obsahuje buď jas Y nebo nějakou složku intenzity barev C_b nebo C_r.

• MPEG-1

- Standard MPEG-1 nepředepisuje žádný konkrétní kodér ani dekodér.
- Nicméně kodér musí splňovat určitou syntaxi a sémantiku.
 Podobně dekodér musí být schopen dekódovat zakódované video.
- Na obrázku vpravo je schématicky znázorněn kodér a dekodér.
 - Pokud vynecháme šedé bloky, dostaneme kodér/dekodér pro I-snímky.
 - Pokud ponecháme šedé bloky, dostaneme kodér/dekodér pro P- a B-snímky.

DCT = Discrete Cosine Transform; Q = Quantizer; R = Reconstructor; IDCT = Inverse DCT; ME = Motion Estimate; MC = Motion Compensate; SEC = Symbol and Entropy Coder; SED = Symbol and Entropy Decoder; MV = Motion Vector

- MPEG-1: Kódování I-snímků
 - 4 jasové bloky velikosti 8x8 a 2 bloky velikosti 16x16 s intenzitami barev C_b a C_r makrobloku jsou postupně extrahovány ze vstupního snímku F(n) a přivedeny na vstup bloku diskrétní kosinové transformace (DCT).
 - DCT koeficienty jsou následně kvantovány pomocí kvantizační tabulky níže, tj.
 hodnota každého DCT koeficientu je vydělena hodnotou v tabulce a zaokrouhlena na
 celé číslo.

8	16	19	22	26	27	29	34
16	16	22	24	27	29	34	37
19	22	26	27	29	34	34	38
22	22	26	27	29	34	37	40
22	26	27	29	32	35	40	48
26	27	29	32	35	40	48	58
26	27	29	34	38	46	56	69
27	29	35	38	46	56	69	83

- MPEG-1: Kódování I-snímků
 - Následně jsou kvantované koeficienty vhodně zakódovány v bloku Symbol and Entropy Coder (SEC).
 - Nejprve je odečtena stejnosměrná složka (DC koeficient) aktuálního snímku od stejnosměrné složky předchozího snímku.
 - Tento rozdíl je zakódován v bloku entropického kódování (Entropy Coder), který používá např. metodu Huffmanova kódování – viz slajdy na konci za Literaturou.
 - DC koeficient a zbývajících 63 získaných AC koeficientů z Huffamnova kódování jsou v matici 8x8 cik-cak uspořádány a následně zakódovány pomocí RLE.
 - V následujících tabulkách značí
 - symbol s znaménkový bit, s = 0 pro kladné hodnoty a s = 1 pro záporné hodnoty,
 - EOB (end of block) informuje dekodér, že v matici nejsou další nenulové koeficienty,
 - ESC (escape) indikuje, že run/level pár není v tabulce a následných 16 bitů udává hodnotu páru.

• MPEG-1: Kódování I-snímků

size	coefficient range	Y code	C code
0	0	100	00
1	-1,1	00	01
2	-32,23	01	10
3	-74,47	101	110
4	-158,815	110	1110
5	-3116,1631	1110	1111 0
6	-6332,3263	1111 0	1111 10
7	-12764,64127	1111 10	1111 110
8	-255128,128255	1111 110	1111 1110

Huffmanovy kódy pro DC koeficienty jasu a intenzit barev C_b a C_r .

Huffmanovy kódy pro AC koeficienty.

run/level	code	
0/1	1s (first)	
0/1	11s (next)	
0/2	0100 s	
0/3	0010 1s	
0/4	0000 110s	
0/5	0010 0110 s	
0/6	0010 0001 s	
0/7	0000 0010 10s	
0/8	0000 0001 1101 s	
26/1	0000 0000 1101 1s	
27/1	0000 0000 0001 1111 s	
28/1	0000 0000 0001 1110 s	
29/1	0000 0000 0001 1101 s	
30/1	0000 0000 0001 1100 s	
31/1	0000 0000 0001 1011 s	
EOB	10	
ESC	0000 01	

- MPEG-1: Kódování I-snímků
 - Při zpětné rekonstrukci snímků pomocí dekodéru se nejprve dekódují zakódované bity (RLE) aby se extrahoval DC koeficient a AC koeficienty.
 - Pomocí uvedených tabulek se zpětně rekonstruují jednotlivé symboly, které se následně de-kvantizují, čímž se získají skutečné hodnoty pro inverzní diskrétní kosinovou transformaci (IDCT)
 - Pomocí IDCT se získají makrobloky, z nichž je postupně sestaven výsledný snímek odhad původního snímku F(n).

- MPEG-1: Kódování P- a B-snímků
 - Snímek F(n) je porovnán s předchozím snímkem F(n-1).
 - Porovnávají se jasové makrobloky těchto dvou snímků. Makrobloky se vůči sobě posouvají a hledá se nejlepší shoda. Výsledkem je **vektor pohybu** (Motion Vector, MV).
 - Vektor pohybu se vede do bloku kompenzace pohybu, který vytvoří makroblok predikce P(n), který je odečten od aktuálního snímku F(n), čímž vznikne rozdílový makroblok D(n).
 - Každý jasový kvadrant velikosti 8x8 a jemu odpovídající bloky intenzit barev získaného rozdílového makrobloku D(n) jsou transformovány pomocí DCT transformace.
 - Následně jsou koeficienty DCT transformace kvantovány pomocí tabulky.
 - Kvantované koeficienty jsou následně zakódovány s využitím entropického kódování.
 - Pro P- a B-snímky jsou všechny koeficienty uvažovány jako AC koeficienty Huffmanova kódu.
 - Při dekódování je třeba dekodéru předložit zakódované video spolu s vektorem pohybu (MV).

- MPEG-2
 - Na MPEG-2 může nahlížet jako na nadmnožinu MPEG-1.
 - MPEG-2 je zpětně kompatibilní s MPEG-1. Této žádoucí vlastnosti je dosaženo díky předchozímu obecnému požadavku na kódovací a dekódovací část v MPEG-1 standardu.
 - Schéma kódování a dekódování znázorněné na obrázku pro MPEG-1 je tedy stejné i pro MPEG-2.
 - MPEG-2 poskytuje větší flexibilitu co se týče možnosti ovlivňovat parametry.

• MPEG-2: Hlavní rozdíly oproti MPEG-1

Vlastnost	MPEG-1	MPEG-2
Bit rate coding	max. 1,9 Mbps	max. 100 Mbps
Velikost snímku	288x352 @ 24 or 30 fps	288x352, 576x720, 1152x1440, 1152x1920
Prokládaný mód	jen progresivní	progresivní i prokládaný
Vzorkování intenzit barev	4:2:0	4:2:0, 4:2:2, 4:4:4
Profily a úrovně	-	5 profilů a každý do 4 úrovní

- MPEG-4, 1993, ISO norma v roce 1999
 - Pozn. Standard MPEG-3 neexistuje, protože původně MPEG-3 měl kódovat HDTV, ale ukázalo se, že to MPEG-2 dokáže také.
 - MPEG-4 je skupina standardů pro ukládání video a audio dat.
 - Souběžně s vývojem MPEG-4 vznikal i standard komprese videa H.264.
 - Zastřešující nástroj (kontejner) pro řadu metod komprese video dat
 - Formát MPEG-4 mimo jiné podporuje:
 - Standardní snímky MPEG-1 a MPEG-2
 - Nepohyblivé obrázky JPEG a JPEG2000
 - Textové obrázky
 - Hybridní obrázky, tj. kompozice přirozených a synteticky vytvořených obrázků
 - 2D a 3D drátové objekty
 - Vysoká škálovatelnost jak z hlediska rozlišení tak hloubky

• H.264

- Norma H.264 byla navržena záměrně tak, aby se minimalizovala flexibilita ve prospěch lepšího kódovacího výkonu.
- Rozšířena byla také šíře možných komunikačních kanálů a sítí.

AVC

- Na technologii H.264 byla postavena technologie Advanced Video Coding (AVC), která se v roce 2003 stala standardem ve společném dokumentu H.264 a MPEG-4.
- AVC standard má tři profily (módy)
 - Základní profil videohovory, telekonference
 - Hlavní profil podpora prokládaného videa, TV vysílání, archivace videa
 - Rozšířený profil aplikace vyžadující online streaming
- Uvedené schéma kodéru a dekodéru je použitelné i pro AVC vyjma možnosti přepínat mezi predikcí v rámci snímku a mezi snímky.

- MPEG-4
 - Srovnání MPEG-4 a H.264

Comparison	MPEG-4 Visual	H.264
data types	rectangular fields and frames, video objects, still images, synthetic-natural hybrids, 2D and 3D mesh objects	rectangular fields and frames
profiles	19	3
compression efficiency	medium	high
motion compensation block size	8 x 8	4 x 4
motion vector	half or quarter pixel	quarter pixel
transform	8 x 8 DCT	4 x 4 DCT approximation
deblocking filter	no	yes

- AVI (Audio Video Interleave), Microsoft, 1992
 - Podskupina RIFF (Resource Interchange File Format)
 - Dvě části: metadata a vlastní video data
 - Video data jsou kódována a dekódována pomocí tzv. kodeků (codec = coder/decoder)
 - lze tedy zahrnout zde zmíněné technologie Motion JPEG, MPEG-4.

Omezení:

- Nelze nastavit poměr stran zobrazení (aspect ratio).
- Více soupeřících možností, jak zakódovat časovou osu.
- Nepočítalo se s tím, že by algoritmus komprese využíval následující (budoucí) snímky za současným snímkem.
- Neumožňuje proměnný bit rate.

- VMW (Windows Media Video), Microsoft, (2003) 2006
 - Komprimovaný souborový videoformát pro několik kodeků vyvinutých společností Microsoft.
 - Původní kodek známý jako WMV byl navržen pro internetové streamingové aplikace.
 - WMV video je obvykle zapouzdřeno do kontejneru ASF (Advanced Systems Format) spol. Microsoft, ale může být také vložen do formátu AVI.

Literatura

- Pratt K. W., Introduction to Digital Image Processing, CRC Press, 2014
- Moeslund T. B., Introduction to Video and Image Processing: Building Real Systems and Applications, Springer, 2012
- Bartalmío M., Image Processing for Cinema, CRC Press, 2014
- Acharya T., Ray A. K., Image Processing: Principles and Applications, Wiley, 2005
- Sundararajan D., Digital Image Processing: A Signal Processing and Algorithmic Approach, Springer, 2017
- McAndrew A., Computational Introduction to Digital Image Processing, CRC Press, 2. vydání, 2016

- Statistické rozdělení hodnot intenzit v obrázku není rovnoměrné, některé hodnoty jsou častější než jiné.
- To poukazuje na redundanci v reprezentaci hodnot, která může být definována jako celkový počet bitů aktuální číselné reprezentace mínus teoretický limit optimálního (nejefektivnějšího) kódování.
- Tuto redundanci nazýváme entropie kódovacího procesu.

- Nejjednodušší statistické kódování spočívá v tom, že každé hodnotě intenzity pixelu přiřadíme kód na základě tabulky zvané kódová kniha.
- Pro efektivní kódování (co nejmenší celkový počet bitů reprezentace obrázku) je třeba, aby časté hodnoty měly co nejkratší (bitovou) reprezentaci a naopak.
- Průměrná délka kódu odpovídá entropii jednoho pixelu obrázku.
- Východiskem pro stanovení kódů je statistická analýza hodnot pixlů obrázku
 - pravděpodobnost výskytu dané hodnoty r_i intenzity pixelu v obrázku:

$$p_i = Pr\{F(j, k) = r_i\}$$

• Průměrná délka kódu (average code length) je dána vztahem

$$Lc = \sum_{i=0}^{Q-1} p_i b_i$$

- kde b_i je počet bitů kódu kódujícího danou kvantizační úroveň (hodnotu jasu) a Q je počet kvantizačních úrovní (počet úrovní jasu).
- Entropie jednoho pixelu je dána vztahem

$$H = -\sum_{i=0}^{Q-1} p_i log_2(p_i)$$

- Huffmanovo kódování spočívá v nalezení takových kódů pro dané hodnoty (kódované intenzity pixelů), aby celková bitová délka zakódovaného snímku (skupiny snímků) byla minimální.
- Huffmanovy kódy mají různou délku, což může způsobovat problémy během přenosu (proměnná rychlost přenosu jednotlivých hodnot).
- Pro snímky, které mají jiné statistické rozložení hodnot intenzit pixelů, než odpovídá předpokládanému výskytu, pro který byly kódy stanoveny, lze dostat výrazně neefektivní kódování.
- Pro typické šedotónové snímky se entropie jednoho pixelu pohybuje v rozmezí 5 až 7 bitů na pixel.

• **Příklad**: Uvažujme obrázek, který má pouze 8 úrovní jasu. Statistickou analýzou zjistíme pravděpodobnosti výskytu jednotlivých hodnot intenzit pixelů ve snímku. V tabulce níže je vidět srovnání prostého PCM kódu (pulzní kódové modulace) a Huffmanova kódování.

Amplitude Index	Probability	PCM code	Huffman code
0	0.20	000	00
1	0.20	001	10
2	0.25	010	01
3	0.15	011	011
4	0.10	100	0111
5	0.05	101	01111
6	0.03	110	011111
7	0.02	111	111111

- Sousední pixely v obrázku si jsou velmi podobné (korelované), což odpovídá vysoké redundanci pixelů např. v rámci jednoho řádku.
- Toho lze využít tím, že převedeme hodnoty intenzit pixelů na rozdíly sousedních hodnot (v rámci každého řádku) a kódujeme teprve tyto relativní hodnoty místo původních absolutních hodnot.
- Spíše se budou vyskytovat menší rozdíly v intenzitách sousedních pixelů než velké rozdíly a tedy prudké změny ve snímku.
- Díky tomu krátké kódy budou odpovídat malým rozdílům, kterých je hodně a naopak dlouhé kódy velkým rozdílům, kterých je ale málo.
- Další vylepšení může spočívat v tom, že pro rozdíly větší než definovaný práh zakódujeme přímo skutečnou hodnotu (těch nebude moc), viz obr.

- V uvedené tabulce kódujeme malé rozdíly standardně.
- Hodnoty, které odpovídají velkým rozdílům kódujeme individuálně absolutní hodnotou intenzity pixelu s tím, že této hodnotě předchází rozlišovací prefix 0000.

Difference, D	Code
0	1
+1	0100
-1	0101
+2	0110
-2	0111
+3	00100
-3	00101
+4	00110
-4	00111
D =>5	0000 + 8 bit pixel

- Příklad. Uvažujme snímek, který má Q=8 úrovní jasu.
 - 1. Uvažujme Q úrovní jasu jako listy stromu a seřaďme je do klesající posloupnosti podle pravděpodobnosti jejich výskytu ve snímku.
 - 2. Zkombinujme dva uzly s nejnižšími pravděpodobnosti do nového uzlu, jehož pravděpodobnost je součtem pravděpodobností jeho dvou větví.
 - 3. Předchozí krok opakujeme pro zbývající Q-1 uzly.
 - 4. Předchozí kroky opakujeme tak dlouho dokud nedostaneme jediný uzel kořen stromu.
 - 5. Označme všechny větve všech uzlů tak, že horní větvi přiřadíme 0 a dolní 1 (nebo naopak).
 - 6. Spojíme kódy všech větví na cestě od kořene k listu. Získáme tak kód pro daný symbol.

symbol	probability	code	length
1	0.200	00	2
2	0.200	10	2
3	0.250	01	2
4	0.150	011	3
5	0.100	0111	4
6	0.050	01111	5
7	0.030	011111	6
8	0.020	111111	6