Homework2

Coding Howework (submmite the pdf file to Canvas)

Let X be a $Possion(\lambda)$ random variable. We have seen in class that

$$\mathbb{E}(X) = \operatorname{Var}(X) = \lambda.$$

Suppose that we do not know the true value of λ and want to estimate it from observed data $\{x_1, x_2, \dots, x_n\}$. There are two possible ways to do estimate λ :

- use the sample mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- use the sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2$

Please note that in sample variance, the denominator is n-1 instead of n.

In this assignment, you will compare the two estimators. In the following questions, we assume that $\lambda = 10$.

1. Generate n=10 independent $\operatorname{Poisson}(\lambda)$ random variables, calculate the sample mean (you can use $\operatorname{rpois}(n=,\operatorname{lambda}=)$ function in R, where n is the total number of random variables generated and lambda is the parameter λ). Do the above 1000 times, then you have 1000 observations of the sample mean (each of them is calculated from n=10 independent Poisson (λ) random variables.) Generate the boxplot and histogram of the 1000 observation of sample means.

```
# input your r code here
x1 <- c()
for (i in 1:1000){
   x1[i] = mean(rpois(n = 10, lambda = 10))
}
hist(x1,
   main = "Histogram of Estimation using Sample Mean",
   xlab = "Lambda Value")</pre>
```

Histogram of Estimation using Sample Mean


```
boxplot(x1,
    main = "Boxplot of Estimation using Sample Mean",
    ylab = "Lamda Value" )
```

Boxplot of Estimation using Sample Mean

2. For n = 10, repeat Part 1 with the sample variance.

```
# input your r code here
x2 <- c()
for (i in 1:1000){
   x2[i] = var(rpois(n = 10, lambda = 10))
}
hist(x2,
   main = "Histogram of Estimation using Sample Variance",
   xlab = "Lambda Value")</pre>
```

Histogram of Estimation using Sample Variance


```
boxplot(x2,
    main = "Boxplot of Estimation using Sample Variance",
    ylab = "Lamda Value")
```

Boxplot of Estimation using Sample Variance

3. Compare the boxplot and histogram you obtained from Part 1 and 2. Comment on the difference between them. (Hint: measure of dispersion)

```
## Sample Mean as the Estimator
## Median : 10
## Range : 6.3
```

```
## Standard Deviation : 1.01463
## Quartile (Q1) : 9.3
## Quartile (Q3) : 10.7
```

```
cat("Sample Variance as the Estimator", '\n',
    "Median \t \t: ", med2, '\n',
    "Range \t \t: ", ran2, '\n',
    "Standard Deviation \t: ", std2, '\n',
    "Quartile (Q1)\t \t: ", qrt2[2],'\n',
    "Quartile (Q3)\t \t: ", qrt2[4])
```

```
## Sample Variance as the Estimator
```

Median : 9.155556 ## Range : 30.94444

Standard Deviation : 4.844849 ## Quartile (Q1) : 6.233333 ## Quartile (Q3) : 12.66667

Write down your comments here From the histogram of (1) estimation using 'sample mean'and (2) estimation using 'sample variance', we can compare respectively that:

- The shape of the first histogram almost show a perfectly simmetrical distribution, but the second histogram is positively skewed.
- It also can be seen that the first Standard Deviation of the first histogram is a lot smaller than the second histogram.

Meanwhile, from the boxpot of (1) estimation using 'sample mean' and (2) estimation using 'sample variance' we can analyze the 5-Number Summary:

- The Median of the first boxplot shows the same or almost the same value as the real value which is $\lambda=10$, while the median of the second boxplot is more inaccurate compare to the first one.
- The first boxplot have a lot smaller range (max value min value) compare to the second.
- The first and third quartile on the first boxplot also have a closer value to the real value compare to the second boxplot.

In conclusion, estimating the value of λ using sample mean is more accurate compare to using sample variance.