Exercise 13.1

- Q.1 Two sides of a triangle measure 10cm and 15 cm which of the following measure is possible for the third side?
- (a) 5cm
- (b) 20 cm
- (c) 25 cm
- (d) 30 cm

Solution

Lengths of two sides are 15 and 10 cm.

So, sum of two lengths of triangle = 10 + 15 = 25 m

$$10 + 15 > 20$$

$$10 + 20 > 15$$

$$15 + 20 > 10$$

:. 20 cm is possible for third side

Or

Sum of length of two sides is always greater than the third sides of a triangle.

Given

Q.2 Point O is interior of ΔABC

Show that

$$m\overline{OA} + m\overline{OB} + m\overline{OC} > \frac{1}{2} (m\overline{AB} + m\overline{BC} + m\overline{CA})$$

Given

Point O is interior of AABC

To prove:

$$\overrightarrow{mOA} + \overrightarrow{mOB} + \overrightarrow{mOC} < \frac{1}{2} (\overrightarrow{mAB} + \overrightarrow{mBC} + \overrightarrow{mAC})$$

Join O with A, B and C.

So that we get three triangle $\triangle OAB$, $\triangle OBC$ and $\triangle OAC$

Statements	Reasons
In $\triangle OAB$ $m\overline{OA} + OB > m\overline{AB} $ (i)	In any triangle the sum of length of two sides is greater then the third sides.
$In \Delta OAC$ $Im \overline{OC} + m\overline{OA} > m\overline{AC}$ (ii) $In \Delta OBC$	As in (i)
$mOB + \overline{OC} > m\overline{BC}$ (iii) Adding equation i, ii and iii	As in (i)
$\overline{OA} + \overline{OC} + \overline{OA} + \overline{OB} + \overline{OB} + \overline{OC} > \overline{AC} + \overline{AB} + \overline{BC}$ $2\overline{OA} + 2\overline{OC} + 2\overline{OB} > \overline{AB} + \overline{BC} + \overline{CA}$	
$2(OA + OC + OB) > \overline{AB} + \overline{BC} + \overline{CA}$ $2(OA + OC + OB) = \overline{AB} + \overline{BC} + \overline{CA}$	Dividing both sides by 2
2 2	Dividing both sides by 2

$$(OA + OC + OB) > \frac{1}{2}(\overline{AB} + \overline{BC} + \overline{CA})$$

Q.3 In the $\triangle ABC$ m $\angle B = 70^{\circ}$ and m $\angle C = 45^{\circ}$ which of the sides of the triangle is longest and which is the shortest.

Solution

Sum of three angle in a triangle is 180°

$$\angle A + \angle B + \angle C = 180$$

$$\angle A + 70 + 45 = 180$$

$$\angle A + 115 = 180$$

$$\angle A = 180 - 115$$

$$\angle A = 65^{\circ}$$

Sides of the triangle depend upon the angles largest angle has

largest opposite side and smallest angle has smallest opposite side here $\angle B$ is largest so, \overline{AC} is largest $\angle C$ is smallest, so \overline{AB} is smallest side.

Q.4 Prove that in a right-angled triangle, the hypotenuse is longer than each of the other two sides.

Solution

Sum of three angles in a triangle is equal to 180°. So in a triangle one angle will be equal to 90° and rest of two angles are acute angle (less than 90°)

And
$$m \angle x + m \angle z = 90$$

So m∠x and m∠z are acute angle

:. Opposite to $m \angle y = 90^{\circ}$ is hypotenuse

It is largest side.

Q.5 In the triangular figure $\overline{AB} > \overline{AC}.\overline{BD}$ and \overline{CD} are the bisectors of $\angle B$ and $\angle C$ respectively prove that $\overline{BD} > \overline{DC}$

Given

In AABC

$$\overline{AB} > \overline{AC}$$

 \overline{BD} and \overline{CD} are the bisectors of $\angle B$ and $\angle C$

To prove

$$\overline{BD} > \overline{CD}$$

Construction

Label the angles $\angle 1, \angle 2, \angle 3$ and $\angle 4$

<i>m∠ABC</i>	
$m \angle 2 \le m \angle 4$	
\overline{CD} is the bisector of $\angle C$	Given
InΔBCD	
$\overline{BD} > \overline{DC}$	Side opposite to greater angle is greater

Theorem 13.1.4

From a point, out side a line, the perpendicular is the shortest distance from the point

the line. to

Given:

A line AB and a point C sur (Not lying on AB) and a point D on AB such that $\overline{CD} \perp \overline{AB}$

To prove

mCD is the shortest distance from the point C to AB

Construction

Take a point E on ΛB Join C and E to form a ΔCDE

Statements	Reasons
In ΔCDE	
m∠CDB > m∠CED	(An exterior angle of a triangle is greater than nor adjacent interior angle)
But m∠CDB = m∠CDE	Supplement of right angle
∴ m∠CDE > m∠CED	880 %
Or m∠CED < m∠CDE	
Or $m\overline{CD} < m\overline{CE}$	Side opposite to greater angle is greater.
But E is any point on AB	544 944 944 E
Hence mCD is the shortest distance from C to AB	

Exercise 13.2

Q.1 In the figure P is any point and AB is a line which of the following is the shortest distance between the point P and the line AB.

(a) mPL

(c) mPN

(d) mPO

As we know that $PN \perp AB$

So PN is the shortest distance

In the figure, P is any point lying away from the line AB. Then mPL will be the Q.2 shortest distance if

(a) $m\angle P \angle A = 80^{\circ}$

(b) $m\angle P\angle B = 100^{\circ}$ (c) $m\angle P\angle A = 90^{\circ}$

Solution:

 $m\angle PLA = 90^{\circ}$ PL L AS

PL is the shortest distance

So ∠PLA or PLS equal to 90°

In the figure, \overline{PL} is perpendicular to the line AB and $\overline{LN} > m\overline{LM}$. Prove that Q.3 $m\overline{PN} > m\overline{PM}$. Given

 $\overline{PL} \perp \overline{AB}$ $m\overline{LN} > m\overline{LM}$

To proved:

 $m\overline{PN} > m\overline{PM}$

Proof

Statements	Reasons
ΔPLM $∠PLM = 90°$ $∴ ∠PMN > ΔPLM$ $∠PMN > 90°$	Exterior angle
In Δ PLN \angle PLN = 90° m \angle PNL < 90°	Acute angle
Δ PMN m∠PMN > m∠PNL ∴ \overline{PN} > \overline{PM}	

