Collaborators

Collaborators
Ben Nelson, Corbin Baldwin and I collaborated for this assignment.
Question 1: Balls and bins
(a) [4] What is the expected number of empty bins?
(b) [2] Show that the probability that 80% of the bins are empty is $\leq 1/2$.
(c) [2] Let X_i be the random variable that is 1 if bin i is empty and is 0 otherwise. Are X_1 and X independent? Give an intuitive reasoning.
(d) [4] Let Z be the random variable defined by $Z = \sum_i X_i$ (i.e., the number of empty bins). Suppose you are told that the variance of Z is $\leq n$. Use this to prove that the probability that 80% of the bins are empty is $< 8/n$. [Note that this is a much better bound than the one in part (b) when is large.]
(a)
(b)
(c)
(d)
Question 2: Median/order finding
1. pick a uniformly random index $i \in \{1, 2,, n\}$
2. divide the array $A[]$ into two sub-arrays $-B[]$ and $C[]$, where the elements of $B[]$ are all $\leq A[i]$ are the elements of $C[]$ are $>A[i]$.
3. if length(B) $\leq k$, we recursively find the kth smallest element in B[]; else we find the k -length(B)'t smallest element in C[].
(a) [2] Prove that the running time on the array A of length n can be bounded as
$T(n) \leq \max\{T(\operatorname{length}(B)), T(\operatorname{length}(C))\} + O(n).$
(b) [3] Give an input A, k , and an unlucky choice of indices i that leads to a running time larger that $n^2/4$.
(c) [5] Let $f(n)$ denote the <i>expected running time</i> on an input array of length n . Derive a "probabilistic recurrence" analogous to the one we saw in class for quicksort, and show that $f(n) = O(n)$. [Hintuse part (a).]
Question 3: Quicksort revisited
(a) [2] Using a basic implementation (base easy being a singletan) find the constant in the O() notation

- (a) [2] Using a basic implementation (base case being a singleton), find the *constant* in the O() notation for the algorithm above. (You may do this by picking any array, repeatedly running the procedure above, and averaging the values of running time divided by $n \log n$.)
- (b) [2] Now, consider the following procedure: for k = 1, 2, 3, first pick (2k + 1) random indices, and choose their *median* as the pivot. Now report the constant in the O() notation.
- (c) [2] Explain your observations intuitively.

The best known algorithms here are messy and take time $O(n^{2.36...})$. However, the point of this exercise is to prove a simpler statement. Suppose someone gives a matrix C and claims that C = AB, can we quickly verify if the claim is true?

- (a) [4] First prove a warm-up statement: suppose a and b are any two 0/1 vectors of length n, and suppose that $a \neq b$. Then, for a random binary vector $x \in \{0,1\}^n$ (one in which each coordinate is chosen uniformly at random), prove that $\Pr[\langle a, x \rangle = \langle b, x \rangle \pmod{2}] = 1/2$.
- (b) [6] Now, design an $O(n^2)$ time algorithm that tests if C = AB and has a success probability $\geq 1/2$. (You need to prove the probability bound.)
- (c) [2] Show how to improve the success probability to 7/8 while still having running time $O(n^2)$.

Coloring is known to be a very hard problem. Suppose we are OK with something weaker: suppose that we consider an assignment of colors acceptable if $c(u) \neq c(v)$ holds for $\geq 90\%$ of the edges.

- (a) [7] Suppose that we randomly assign a color in the range $\{1, 2, ..., 20\}$ to the vertices. Prove that we obtain an acceptable assignment with probability $\geq 1/2$. (Note that the algorithm is quite remarkable it doesn't even look at the edges of the graph!)
- (b) [3] What happens above when we randomly assign colors in the range $\{1, 2, ..., 11\}$? Can we still obtain an algorithm that succeeds with probability $\geq 1/2$?

References

[1] "24. Single-Source Shortest Paths." *Introduction to Algorithms*, by Thomas H. Cormen et al., MIT Press, 2009, pp. 648-662.