M3228.000300 SLAM 101

Lecture 03 Uncertainty Representation

Ayoung Kim

Mobile Robot State Representation

Mobile robots

$$X = [x, y, z, r, p, h]$$

$$T = \left[\begin{array}{cc} R & p \\ 0 & 1 \end{array} \right] \in SE(3)$$

Pose = position and orientation

Poses and Trajectory

- We need a robot trajectory (a set of poses)
 - ▶ Pose in SE(3) and/or vector form

Probabilistic Robotics

▶ Robot pose in Gaussian distribution

Discretized robot trajectory

Pose-graph

$$\mathbf{x}_1 \sim \mathcal{N}(\mu_1, \Sigma_1)$$

$$\mathbf{x}_2 \sim \mathcal{N}(\mu_2, \Sigma_2)$$

Uncertainty propagation

Uncertainty Propagation

- The core of the SLAM
 - Robot pose & map are uncertain
 - Probabilistic robotics

Pose Uncertainty

Robot pose uncertainty representation

- Using Gaussian
 - Univariate
 - Mean & covariance

- Using sample
 - Arbitrary distribution
 - Need N samples

Uncertainty Modeling using Gaussian

Position

$$p = [x, y, z] \quad \begin{bmatrix} r, p, h \end{bmatrix} \\ R \in SO(3)$$

Orientation

- Vector space
 - Position, Euler, quaternion

$$\tilde{p} = p + \epsilon \quad \epsilon \sim \mathcal{N}(0, \Sigma)$$

$$\tilde{r} = r + \epsilon_r \quad \epsilon_r \sim \mathcal{N}(0, \Sigma_r)$$

 $\tilde{p} = p + \epsilon_p \quad \epsilon_p \sim \mathcal{N}(0, \Sigma_p)$

 $\tilde{h} = h + \epsilon_h \quad \epsilon_h \sim \mathcal{N}(0, \Sigma_h)$

Additive "noise" ok ← linear

Manifold

Orientation, SE(3), SO(3)

Additive "noise" to a matrix??

Uncertainty Modeling using Gaussian

Additive noise to SO(3)

$$R_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$R_2 = \left| \begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right|$$

$$\tilde{R} = R + \epsilon \quad \epsilon \sim \mathcal{N}(0, \Sigma)$$

Uncertainty Modeling

Vector space

- Additive noise to a vector
- Position

$$X = [x, y, z, r, p, h]$$

→ Linearized vector representation

Manifold

- Additive noise in a locally linear space
- Rotation (not linear)

$$T = \left[\begin{array}{cc} R & p \\ 0 & 1 \end{array} \right] \in SE(3)$$

→ Nonlinear SE(3) representation

Uncertainty Representation

Vector Space

$$\tilde{p} = p + \epsilon \quad \epsilon \sim \mathcal{N}(0, \Sigma) \quad \tilde{r} = r + \epsilon_r \quad \epsilon_r \sim \mathcal{N}(0, \Sigma_r) \\ \tilde{p} = p + \epsilon_p \quad \epsilon_p \sim \mathcal{N}(0, \Sigma_p) \\ \tilde{h} = h + \epsilon_h \quad \epsilon_h \sim \mathcal{N}(0, \Sigma_h)$$

R. Smith (1990)

- Good start paper for SLAM
- Representation
- Operation

Estimating Uncertain Spatial Relationships in Robotics*

Randall Smith[†] Matthew Self[‡] Peter Cheeseman[§]

SRI International 333 Ravenswood Avenue Menlo Park, California 94025

In this paper, we describe a representation for spatial information, called the *stochastic map*, and associated procedures for building it, reading information from it, and revising it incrementally as new information is obtained. The map contains the estimates of relationships among objects in the map, and their uncertainties, given all the available information. The procedures provide a general solution to the problem of estimating uncertain relative spatial relationships. The estimates are probabilistic in nature, an advance over the previous, very conservative, worst-case approaches to the problem. Finally, the procedures are developed in the context of state-estimation and filtering theory, which provides a solid basis for numerous extensions.

Mobile robot motion & uncertainty

- Motion has uncertainty
- Control action corrupted with Gaussian noise

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t, u_t) + w$$
$$w \sim \mathcal{N}(0, Q)$$

Mobile robot motion

- Two operators: oplus and omius (Smith 1998)
- State = 6 DOF
 - ▶ 6 tuple vector
 - ► Not SE(3)...

Pose (2D case)

$$\mathbf{x} = \left[\begin{array}{c} x \\ y \\ \phi \end{array} \right]$$

Estimate

$$\hat{\mathbf{x}} = \begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{\phi} \end{bmatrix}$$

Covariance

$$\mathbf{C}(\mathbf{x}) = \left[egin{array}{cccc} \sigma_{x}^2 & \sigma_{xy} & \sigma_{x\phi} \ \sigma_{xy} & \sigma_{y}^2 & \sigma_{y\phi} \ \sigma_{x\phi} & \sigma_{y\phi} & \sigma_{\phi}^2 \end{array}
ight]$$

State vector = list of poses

$$\mathbf{x} = \left[egin{array}{c} \mathbf{x}_1 \ \mathbf{x}_2 \ dots \ \mathbf{x}_n \end{array}
ight], \quad \hat{\mathbf{x}} = \left[egin{array}{c} \hat{\mathbf{x}}_1 \ \hat{\mathbf{x}}_2 \ dots \ \hat{\mathbf{x}}_n \end{array}
ight],$$

$$\mathbf{C}(\mathbf{x}) = \begin{bmatrix} \mathbf{C}(\mathbf{x}_1) & \mathbf{C}(\mathbf{x}_1, \mathbf{x}_2) & \cdots & \mathbf{C}(\mathbf{x}_1, \mathbf{x}_n) \\ \mathbf{C}(\mathbf{x}_2, \mathbf{x}_1) & \mathbf{C}(\mathbf{x}_2) & \cdots & \mathbf{C}(\mathbf{x}_2, \mathbf{x}_n) \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{C}(\mathbf{x}_n, \mathbf{x}_1) & \mathbf{C}(\mathbf{x}_n, \mathbf{x}_2) & \cdots & \mathbf{C}(\mathbf{x}_n) \end{bmatrix}$$

$$\mathbf{C}(\mathbf{x}_i, \mathbf{x}_j) \stackrel{\triangle}{=} E(\tilde{\mathbf{x}}_i \tilde{\mathbf{x}}_j^T),$$

$$\mathbf{C}(\mathbf{x}_j, \mathbf{x}_i) = \mathbf{C}(\mathbf{x}_i, \mathbf{x}_j)^T$$

Uncertainty Representation

Lie Group

Uncertainty on a Manifold

Pose representation

Translation: vector

Rotation: SO(3)

$$T = \left[\begin{array}{cc} R & p \\ 0 & 1 \end{array} \right] \in SE(3)$$

Associated uncertainty for a matrix?

Lie algebra!

References

SNUON

Introduction to robotics

Joan Sola's presentation at IROS 2020

- Lie theory for the Roboticist
- IROS'20 Workshop on Bringing Geometric Methods to Robot Learning, Optimization and Control.

Review: Angular Velocity

Angular velocity in space / body coordinate

$$\dot{R} = w_s \times R = [w_s]R$$

$$w = \left[\begin{array}{c} w_1 \\ w_2 \\ w_3 \end{array} \right] \in \Re^3$$

$$[w] = \begin{bmatrix} 0 & -w_3 & w_2 \\ w_3 & 0 & -w_1 \\ -w_2 & w_1 & 0 \end{bmatrix}$$

$$w = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \in \Re^3 \qquad \begin{bmatrix} [w] = \begin{bmatrix} 0 & -w_3 & w_2 \\ w_3 & 0 & -w_1 \\ -w_2 & w_1 & 0 \end{bmatrix} \\ \omega^{\wedge} = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix}^{\wedge} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

$$\mathbf{a}^{\wedge}\mathbf{b} = -\mathbf{b}^{\wedge}\mathbf{a}, \quad \forall \ \mathbf{a}, \mathbf{b} \in \mathbb{R}^3$$

$$[w_s] = w_s^{\wedge} = \dot{R}R^{-1}$$

Space coordinate angular velocity

$$[w_b] = w_b^{\wedge} = R^{-1}\dot{R}$$

Body coordinate angular velocity

Skew-symmetric matrix

Review: Lie Algebra

 Set of skew-symmetric matrices so(3) is Lie Algebra of the Lie Group SO(3)

$$\{A|A^{\top} + A = 0\}$$
 $w^{\wedge} = \begin{bmatrix} 0 & -w_3 & w_2 \\ w_3 & 0 & -w_1 \\ -w_2 & w_1 & 0 \end{bmatrix}$

Tangent space

If $x \in M$ is a point in the manifold, then the space of all possible tangent vectors is called the tangent space and is denoted by T_xM .

Tangent space at identity I is Lie algebra

Review: Lie Algebra Operator

- Lie algebra *hat* operator
 - Vector to skew symmetric matrix

$$\boldsymbol{\omega}^{\wedge} = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix}^{\wedge} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \in \mathfrak{so}(3)$$

- Lie algebra vee operator
 - Skew symmetric matrix to vector

Review: Tangent Space & Lie Algebra

▶ Consider two rotation matrices $I, R \in SO(3)$

Using change of basis

$$\dot{R} = R\xi \qquad \xi = R^{-1}\dot{R}$$

- ► Tangent space is a vector space! → Additive noise!
- ► Tangent space at identity == Lie algebra
- Lie algebra consists of all possible \dot{R} at R=I

Review: Exp/Log

 Exponential and log mapping between Lie Group and Lie Algebra

Uncertainty on a Manifold

- ▶ Log and Exp mapping between SO(3) and so(3)
 - Lie algebra lives in a locally linear space
 - Consider perturbation in Lie algebra

Uncertainty on a Manifold

First-order approximation for Lie Group SO(3)

Consider noise in Lie algebra

First-order approximation

$$\operatorname{Exp}(\phi + \delta \phi) \approx \operatorname{Exp}(\phi) \operatorname{Exp}(J_r(\phi)\delta \phi)$$

$$\text{Log}(\text{Exp}(\phi) \text{Exp}(\delta \phi)) \approx \phi + J_r^{-1}(\phi)\delta \phi$$

Right Jacobian

$$J_r(\phi) = I - \frac{1 - \cos(\|\phi\|)}{\|\phi\|^2} \phi^{\wedge} + \frac{\|\phi\| - \sin(\|\phi\|)}{\|\phi^3\|} (\phi^{\wedge})^2.$$

$$\operatorname{Log}\left(\operatorname{Exp}(\boldsymbol{\phi})\operatorname{Exp}(\delta\boldsymbol{\phi})\right) \approx \boldsymbol{\phi} + \operatorname{J}_r^{-1}(\boldsymbol{\phi})\delta\boldsymbol{\phi}. \quad \operatorname{J}_r^{-1}(\phi) = \operatorname{I} + \frac{1}{2}\phi^{\wedge} + \left(\frac{1}{\|\boldsymbol{\phi}\|^2} + \frac{1 + \cos(\|\boldsymbol{\phi}\|)}{2\|\boldsymbol{\phi}\|\sin(\|\boldsymbol{\phi}\|)}\right)(\phi^{\wedge})^2$$

Distribution in the tangent space, then map it to SO(3) via Exp mapping

$$\tilde{\mathbf{R}} = \mathbf{R} \, \operatorname{Exp}(\epsilon), \qquad \epsilon \sim \mathcal{N}(0, \Sigma)$$

Thank you very much !!

