

#### 基于字信息学习词汇分布的实体上位关系识别

CCKS2016-全国知识图谱与语义计算大会

刘燊,姜天文,秦兵,刘挺



#### 目录

- 1. 引言
- 2. 基于字信息的词向量学习模型
- 3. 实验结果与结论分析
- 4. 结束语





# **哈爾濱之孝大學** 社会计算与信息检索研究中心



引言



- ✓ 传统领域命名实体
- ✓ 开放域命名实体
- ✓ 上位词
- ✓ 词汇分布表示



- ✓ 传统领域命名实体
  - □ 主要分为三种: 人名、地名、机构名
  - □应用于自然语言处理,无法满足实际需求





- ✓ 开放域命名实体
  - □ 类型更多、更细,具有层次化
  - □难通过人工定义类别体系
  - □ 使用实体的上位词作为实体的类别



#### ✓ 上位词

- □一个语言学概念,它指语义范畴相对较广的词语
  - 如 "美洲豹"是一种"动物",则"动物"就被称为"美洲豹"的上位词
- □抽取上下位关系
  - ▶ 基于模式匹配的方法抽取上下位关系,但人工构建的模式仅能处理小部分语言现象,且费时费力
  - ▶ 同时Snow等人自动抽取模式的方法对句法分析和语料质量的要求 很高,不容易应用到互联网等开放域语料中。
  - ▶ 随着深度学习的发展,大量研究基于词汇分布表示开始进行





- ✓ 词汇分布表示
  - □ 将词语表示成稠密且低维的实数向量,从而使得词语之间可以进行数学运算
  - □可以保留语言的规律性,用于计算词语之间的关系
  - □基于词信息学习词向量表示
  - □未登录词
  - □基于字信息学习词向量表示









- ✓ C2W (character to word) 模型
  - □ Wang等人提出
  - ■基于双向LSTM学习词向量
  - □通过学习字之间的信息来组合成词向量的表示











基于字信息学习词向量



使用C2W模型来学习 字信息



基于字信息重组词向量





- ✓ 上位关系向量表示
- ✓ 上位关系识别





- ✓ 上位关系向量表示
  - □ v(king)-v(queen)≈v(man)-v(women)
  - □ 两个向量之间的向量差值可以表达出词对之间 一定的语义信息
  - □ 上位关系之间是否也具有类似的现象?





✓ 上位关系向量表示

□ 上位关系之间是否也具有类似的现象?

| 序号 | 实例                      |
|----|-------------------------|
| 1  | v(虾)-v(对虾)≈v(鱼)-v(金鱼)   |
| 2  | v(工人)-v(木匠)≈v(演员)-v(小丑) |
| 3  | v(工人)-v(木匠)≉v(鱼)-v(金鱼)  |





- ✓ 上位关系向量表示
  - □ 上位关系之间是否也具有类似的现象?
  - □ 上下位关系更加复杂,无法简单地使用一个上下位关系向量来表达









✓ 上位关系向量表示

- □ 给定一个词的词向量表示x和它的上位词向量y
- □ 存在一个矩阵 $\Phi$ ,使得 $\mathbf{y} = \Phi \mathbf{x}$
- □ 最小化均方误差求解下位词到上位词的映射矩阵:



- ✓ 上位关系向量表示
  - □ 一个具体的下位词往往有多个上位词,因此无 法使用单一的映射矩阵来刻画上位关系
  - 需要对每一个上位关系向量簇学习一个矩阵映射:

$$\blacktriangleright \Phi_k^* = \underset{\Phi_k}{\operatorname{arg\,min}} \frac{1}{N_k} \sum_{(\mathbf{x}, \mathbf{y}) \in C_k} ||\Phi_k \mathbf{x} - \mathbf{y}||^2$$



- ✓ 上位关系识别
  - □上下位关系进行聚类
  - $\Box$  每一个上下位关系簇 $C_k$ 学习一个向量矩阵 $\Phi_k$
  - $\square$  找出距离y-x向量最近的上下位关系簇 $\Phi_k$
  - □上位关系显然是存在传递性的





#### ✓ 上位关系识别



每一个上下位关系簇 $C_k$ 学习一个向量矩阵 $\Phi_k$ 



找出距离y-x向 量最近的上下 位关系簇 $\Phi_k$ 

上下位关系进行聚类







✓ 词汇分布训练

- □ 百度百科中文语料: 100多万百科词条, 共约 3000万句, 文件大小4GB左右
- □ 分别使用word2vec和C2W模型获得词向量, 词向量维度设置为300





✓ 使用C2W模型训练所得的词向量,其中部分词的词向量 最近5个词结果如下表所示:

| 词语 | 相似度    | 词语 | 相似度    | 词语      | 相似度    |
|----|--------|----|--------|---------|--------|
| 中国 | 1.0000 | 北京 | 1.0000 | 清华大学出版社 | -      |
| 德国 | 0.8379 | 南京 | 0.9569 | 出版社     | 0.7924 |
| 美国 | 0.8144 | 东京 | 0.9371 | 高等学校    | 0.7742 |
| 泰国 | 0.8134 | 南北 | 0.7959 | 清华大学    | 0.7664 |
| 大国 | 0.7935 | 东北 | 0.7832 | 师范学院    | 0.7626 |
| 爱国 | 0.7886 | 南海 | 0.7830 | 理工大学    | 0.7564 |





✓ 上下位关系簇聚类使用《同义词词林》抽取所得的上下位关系词对数据进行:

| 关系类型        | 训练集    | 开发集   | 总计     |
|-------------|--------|-------|--------|
| 上位-下位关系对词对数 | 13,718 | 1,524 | 15,242 |





#### ✓ 上位关系识别的两个测试数据集:

| 关系类型       | 《同义词词林》数据集 | 《大词林》数据集 |
|------------|------------|----------|
| 上位-下位关系词对数 | 2,158      | 752      |
| 无关系词对数     | 3,250      | 1,864    |
| 总计词对数      | 5,408      | 2,590    |





✓ 使用word2vec在《大词林》数据集进行上位关系识别 实验结果:

| 数据     | 词向量处理方式 | 未登录词比例 | Р      | R      | F1     |
|--------|---------|--------|--------|--------|--------|
| 实体与类别词 | 无       | 77.39% | 1.0000 | 0.1607 | 0.2769 |
|        | Avg     | 33.51% | 0.8909 | 0.3952 | 0.5475 |
|        | Min     |        | 0.9787 | 0.3710 | 0.5380 |
|        | Max     |        | 0.9778 | 0.3548 | 0.5207 |
| 类别词之间  | 无       | 15.83% | 0.9683 | 0.3836 | 0.5496 |
|        | Avg     | 11.15% | 0.8289 | 0.3851 | 0.5250 |
|        | Min     |        | 0.9688 | 0.3780 | 0.5439 |
|        | Max     |        | 0.9683 | 0.3720 | 0.5374 |





- ✓ 使用word2vec在《大词林》数据集进行上位关系识别结果分析:
  - 未登录词所占比例较大,特别是开放域命名实体与类别词上下位关系部分;
  - □ 对于原始词语进行分词处理后也还是存在一定量的未登录词;
  - □ 对于原始词语进行分词处理前后的上位关系识别准确率都较高,基本大于80%,对于部分结果甚至高于95%;
  - □ 上位关系识别的召回率普遍较低。





✓ 使用C2W模型学习所得词向量作为获得上位关系向量的来源,聚类数目K对结果产生的影响:







#### ✓聚类数目为31时,对距离阈值 $\delta$ 进行了调整:







#### ✓ C2W VS word2vec:

| 测试数据集          | 词向量来源    | 方法                           | Р      | R      | F1     |
|----------------|----------|------------------------------|--------|--------|--------|
|                | word2vec | $M_{Emb}$                    | 0.8054 | 0.6799 | 0.7374 |
|                |          | $M_{Emb+CilinE}$             | 0.8059 | 0.7242 | 0.7629 |
| 《同义词词林》<br>数据集 |          | M <sub>Emb+CilinE+Wiki</sub> | 0.7978 | 0.8081 | 0.8029 |
|                | C2W      | $M_{Emb}$                    | 0.7882 | 0.6282 | 0.6992 |
|                |          | $M_{Emb+CilinE}$             | 0.8015 | 0.6891 | 0.7411 |
|                |          | M <sub>Emb+CilinE+Wiki</sub> | 0.7839 | 0.7565 | 0.7700 |
|                | word2vec | $M_{Emb}$                    | 0.7609 | 0.2369 | 0.3613 |
| 《大词林》<br>数据集   |          | $M_{Emb+CilinE}$             | 0.7500 | 0.4772 | 0.5832 |
|                |          | M <sub>Emb+CilinE+Wiki</sub> | 0.7717 | 0.4805 | 0.5923 |
|                | C2W      | $M_{Emb}$                    | 0.9449 | 0.3191 | 0.4771 |
|                |          | $M_{Emb+CilinE}$             | 0.7927 | 0.5798 | 0.6697 |
|                |          | M <sub>Emb+CilinE+Wiki</sub> | 0.7935 | 0.5824 | 0.6718 |









结束语



### 4.结束语

□针对词向量应用中的未登录词问题,本文使用C2W基于字信息的词向量学习模型。

□ C2W模型在《同义词词林》所得数据中,上位关系识别结果与word2vec所得效果相当,略低于word2vec。





### 4.结束语

□ C2W模型在《大词林》所得数据中,上位关系识别结果 优于使用word2vec所得结果,很大程度上缓解了未登 录词的词向量学习问题。

□ 未来可以将word2vec与C2W相结合,既缓解未登录词的问题,在词向量的学习上也能够更好地学习词语的语义信息。





### 参考文献

- □ 付瑞吉. 开放域命名实体识别及其层次化类别获取[D]. 哈尔滨工业大学, 2014.
- ☐ Suchanek F M, Kasneci G, Weikum G. Yago: A large ontology from wikipedia and wordnet[J]. Web Semantics: Science, Services and Agents on the World Wide Web, 2008, 6(3): 203-217.
- Miller G A. WordNet: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41.
- Hearst M A. Automatic acquisition of hyponyms from large text corpora[C]





### 参考文献

- ☐ Snow R, Jurafsky D, Ng A Y. Learning syntactic patterns for automatic hypernym discovery[J]. Advances in Neural Information Processing Systems 17, 2004.
- ☐ Mikolov T, Yih W, Zweig G. Linguistic Regularities in Continuous Space Word Representations[C]//HLT-NAACL. 2013: 746-751.
- Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[C]. In Proceedings of Workshop at ICLR, 2013.
- ☐ Fu R, Guo J, Qin B, et al. Learning Semantic Hierarchies via Word Embeddings[C]//ACL (1). 2014: 1199-1209.





### 参考文献

- □ Ling W, Luís T, Marujo L, et al. Finding function in form: Compositional character models for open vocabulary word representation[C]. EMNLP, 2015.
- ☐ Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18(5): 602-610.
- □ Che W, Li Z, Liu T. Ltp: A chinese language technology platform[C]//Proceedings of the 23rd International Conference on Computational Linguistics: Demonstrations. Association for Computational Linguistics, 2010: 13-16.





# 谢谢各位聆听!