

MSc projects 2024 UCL LASP

By Dr. Laura Toni

Presenter: Keyue Jiang

Introduction

Our Research - Graph

- A powerful and ubiquitous representation of complex data in many network systems
- O A graph $G = \{V, \mathcal{E}\}$ consists of a set of nodes $V = \{v_i\}_{i \in [N]}$, a set of edges $\mathcal{E} = \{e_{ij}\}$

Graph-structured Data are Pervasive

Traffic Networks

Brain

congestion in road junctions

activities in brain regions

preferences of individuals

properties of atoms

Molecules

Social Networks

Graph Machine Learning

Machine Learning on Graphs

- Graph-level tasks: predict a label $y_{\mathcal{G}}$, given Graph \mathcal{G} and Node Features $\{X_i\}_{i\in[N]}$
- Node-level tasks: predict a label y_i for node v_i , given graph \mathcal{G} and $\{X_i\}_{i\in[N]}$

graph-level classification (supervised)

node-level classification (semi-supervised)

The models for GML - Graph Neural Networks

The Model

Graph Neural Networks (GNNs)

- o a. Transformation
- o b. Propagation
- o c. Aggregation
- o d. Prediction

Projects

Understanding Dropout in GNNs from a Bayesian Approach

- Analogous to dropout in Neural networks [1], randomly deactivating nodes/edges in the training graph can improve the generalization ability of GNNs.
- Complex structure of graphs gives different variants of dropping, such as dropout on nodes [2,3,4], edges [5], message [6], but most of them are empirical studies.
- The project wishes to answer:
 - What is the statistical framework unifying those variants?
 - How will model behavior be influenced by these methods? (e.g. generalizability)

Projects

Graph Neural Networks with Adaptive Architecture

- The requirement of Feature Transformations (T) and Message Propagation (P)
 depends both on the tasks and data properties of graphs [7],
- We do not have prior information about data properties, and in large-scale graphs,
 different subgraphs could even exhibit different data patterns [8].
- o GNN models with fixed T-P architecture cannot achieve satisfactory performance
- This project aims at making GNN adaptive by:
 - Utilizing the prompt learning and in-context learning in large language models.

Reinforcement Learning

- Direction 1: Autocurricula and intrinsic rewards
- Goals of the project:
 - Investigating the effect of different intrinsic rewards in MiniMax Baseline (Unsupervised environment design)
 - Understanding if behavioural diversity can help exploration in Amaze navigation benchmark

- Direction 2: Learning diverse skills
- Goals of the project:
 - Maximizing the diversity of skills by using
 F-divergence between skills instead of a discriminator
 - Investigating whether incorporating LLMs into an intrinsic reward can help distinguish various skills

Multi-target conditional molecule generation

- Drugs that are active on **multiple target** genes have the potential to **treat complex diseases**.
- Many single-target generative models have been presented.
- A gap remains in the domain of multi-target generation.

Goals of the project:

- Explore the literature of multi-target conditioning
- Construct a graph-based molecule generative model that can produce molecules active on two or more targets.

References

- [1] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1 (2014), 1929–1958.
- [2] Chen, J., Ma, T., and Xiao, C. Fastgcn: Fast learning with graph convolutional networks via importance sampling. In ICLR (Poster) (2018),
- [3] Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive representation learning on large graphs. In Advances in Neural Information Processing Systems (2017)
- [4] Huang, W., Zhang, T., Rong, Y., and Huang, J. Adaptive sampling towards fast graph representation learning. In Advances in Neural Information Processing Systems (NeurIPS 2018), pp. 4563–4572.
- [5] Papp, P. A., Martinkus, K., Faber, L., and Wattenhofer, R. Dropgnn: Random dropouts increase the expressiveness of graph neural networks. In In Advances in Neural Information Processing Systems (NeurIPS 2021), pp. 21997–22009.
- [6] Fang, T., Xiao, Z., 0001, C. W., Xu, J., Yang, X., and 0009, Y. Y. Dropmessage: Unifying random dropping for graph neural networks. In Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023.
- [7] Mao, H., Chen, Z., Jin, W., Han, H., Ma, Y., Zhao, T., Shah, N., and Tang, J. Demystifying structural disparity in graph neural networks: Can one size fit all? In Advances in Neural Information Processing Systems (NeurIPS 2023).
- [8] Mao, H., Li, J., Shomer, H., Li, B., Fan, W., Ma, Y., Zhao, T., Shah, N., and Tang, J. Revisiting link prediction: A data perspective. CoRR abs/2310.00793 (2023).

Interested?

- We also have other projects related to reinforcement learning (in the pdf)
- You are welcome to bring your own ideas.
- Contact
 - Dr. Laura Toni (<u>I.toni@ucl.ac.uk</u>), Keyue Jiang (<u>keyue.jiang.18@ucl.ac.uk</u>)

Other projects

Reinforcement Learning

- The impact of different intrinsic rewards on the exploration behavior in MiniMax baseline for AutoCurricula:
- Maximizing the divergence between skills in RL
- The impact of time: lifetime as governing reward In RL
- NAVIX: Accelerated minigrid environments with JAX

Drug Discovery

Multi-target conditional molecule generation