Chương 9

Hệ thống IO (Input Output System)

Nội dung

- Tổng quan về hệ thống IO
- Điều khiển IO
- Nối ghép thiết bị ngoại vi
- Các thiết bị ngoại vi thông dụng

- Giới thiệu chung
 - Chức năng của hệ thống IO: Trao đổi thông tin giữa máy tính với thế giới bên ngoài
 - Các thao tác cơ bản:
 - Nhập dữ liệu (Input)
 - Xuất dữ liệu (Output)
 - Các thành phần chính:
 - Các thiết bị ngoại vi
 - Các mô-đun IO (IO module)
 - Tất cả các thiết bị ngoại vi đều chậm hơn CPU và RAM → Cần có các mô-đun IO để nối ghép các thiết bị ngoại vi với CPU và bộ nhớ chính

• Cấu trúc cơ bản của hệ thống IO

- Các thiết bị ngoại vi
 - Chức năng: chuyển đổi dữ liệu giữa bên trong và bên ngoài máy tính
 - Phân loại:
 - Thiết bị ngoại vi giao tiếp người-máy (người đọc): Bàn phím, Màn hình, Máy in,...
 - Thiết bị ngoại vi giao tiếp máy-máy (máy đọc): Đĩa cứng, CDROM, USB,...
 - Thiết bị ngoại vi truyền thông: Modem, Network Interface Card (NIC)

Tốc độ 1 số TBNV

6

- Các thành phần của thiết bị ngoại vi
 - Bộ chuyển đổi tín hiệu: chuyển đổi dữ liệu giữa bên ngoài và bên trong máy tính
 - Bộ đệm dữ liệu: đệm dữ liệu khi truyền giữa mô-đun IO và thiết bị ngoại vi
 - Khối logic điều khiển: điều khiển hoạt động của thiết bị ngoại vi đáp ứng theo yêu cầu từ mô-đun IO

- Chức năng của mô-đun IO:
 - Điều khiển và định thời
 - Trao đổi thông tin với
 CPU hoặc bộ nhớ chính
 - Trao đổi thông tin với thiết bị ngoại vi
 - Đệm giữa bên trong máy tính với thiết bị ngoại vi
 - Phát hiện lỗi của thiết bị ngoại vi

- Không gian địa chỉ của CPU
 - Một số CPU quản lý duy nhất một không gian địa chỉ:
 - Không gian địa chỉ bộ nhớ: 2^M địa chỉ
 - Một số CPU quản lý hai không gian địa chỉ tách biệt:
 - Không gian địa chỉ bộ nhớ: 2^M địa chỉ
 - Không gian địa chỉ IO: 2^I địa chỉ
 - Có tín hiệu điều khiển phân biệt truy nhập không gian địa chỉ
 - Tập lệnh có các lệnh IO chuyên dụng
 - Ví dụ: CPU Intel Pentium 4
 - Không gian địa chỉ bộ nhớ = 2^{36} byte = 64GB
 - Không gian địa chỉ $IO = 2^{16}$ byte = 64KB
 - Lệnh IO chuyên dụng: IN, OUT

- Các phương pháp địa chỉ hoá cổng IO
 - IO riêng biệt (Isolated IO, IO mapped IO)
 - Cổng IO được đánh địa chỉ theo không gian địa chỉ IO
 - CPU trao đổi dữ liệu với cổng IO thông qua các lệnh IO chuyên dụng (IN, OUT)
 - Chỉ có thể thực hiện trên các hệ thống có quản lý không gian địa chỉ IO riêng biệt
 - IO theo bộ nhớ (Memory mapped IO)
 - Cổng IO được đánh địa chỉ theo không gian địa chỉ bộ nhớ
 - IO giống như đọc/ghi bộ nhớ
 - CPU trao đổi dữ liệu với cổng IO thông qua các lệnh truy nhập dữ liệu bộ nhớ
 - Có thể thực hiện trên mọi hệ thống

IT-FIT 2021

10

Ví dụ: So sánh 2 phương pháp IO

ADDRESS 200 202	INSTRUCTION Load AC Store AC Load AC Branch if Sign = 0 Load AC	OPERAND "1" 517 517 202 516	COMMENT Load accumulator Initiate keyboard read Get status byte Loop until ready Load data byte	ADDRESS 200 201	INSTRUCTION Load I/O Test I/O Branch Not Ready In	OPERAND 5 5 201 5	COMMENT Initiate keyboard read Check for completion Loop until complete Load data byte
				(b) Isolated I/O			

- Các phương pháp điều khiển IO
 - IO bằng chương trình (Programmed IO)
 - IO điều khiển bằng ngắt (Interrupt Driven IO)
 - Truy nhập bộ nhớ trực tiếp DMA (Direct Memory Access)

- IO bằng chương trình
 - Nguyên tắc chung: CPU điều khiển trực tiếp IO
 bằng chương trình → cần phải lập trình IO.
 - Với IO riêng biệt: sử dụng các lệnh IO chuyên dụng (IN, OUT).
 - Với IO theo bản đồ bộ nhớ: sử dụng các lệnh trao đổi dữ liệu với bộ nhớ để trao đổi dữ liệu với cổng IO.

- Các tín hiệu điều khiển IO
 - Tín hiệu điều khiển (Control): kích hoạt & khởi động thiết bị ngoại vi
 - Tín hiệu kiểm tra (Test): kiểm tra trạng thái của môđun IO và thiết bị ngoại vi
 - Tín hiệu điều khiển đọc (Read): yêu cầu môđun IO nhận dữ liệu từ thiết bị ngoại vi và đưa vào thanh ghi đệm dữ liệu, rồi CPU nhận dữ liệu đó
 - Tín hiệu điều khiển ghi (Write): yêu cầu môđun IO lấy dữ liệu trên bus dữ liệu đưa đến thanh ghi đệm dữ liệu rồi chuyển ra thiết bị ngoại vi

- Hoạt động của IO bằng chương trình
 - CPU yêu cầu thao tác IO
 - Mô-đun IO thực hiện thao tác
 - Mô-đun IO thiết lập các bit trạng thái
 - CPU kiểm tra các bit trạng thái:
 - Nếu chưa sẵn sàng thì quay lại kiểm tra
 - Nếu sẵn sàng thì chuyển sang trao đổi dữ liệu với mô-đun IO
- Đặc điểm
 - IO do ý muốn của người lập trình
 - CPU trực tiếp điều khiển IO
 - CPU đợi mô-đun IO → tiêu tốn thời gian của CPU

- IO điều khiển bằng ngắt
 - Sau khi gửi yêu cầu IO, CPU không phải đợi trạng thái sẵn sàng của mô-đun IO, CPU thực hiện một chương trình nào đó
 - Khi mô-đun IO sẵn sàng thì nó phát tín hiệu ngắt CPU
 - CPU thực hiện chương trình con IO tương ứng để trao đổi dữ liệu (trình xử lý ngắt)
 - CPU trở lại tiếp tục thực hiện chương trình đang bị ngắt

- Hoạt động nhập dữ liệu: nhìn từ mô-đun IO
 - Mô-đun IO nhận tín hiệu điều khiển đọc từ CPU
 - Mô-đun IO nhận dữ liệu từ thiết bị ngoại vi, trong khi đó CPU làm việc khác
 - Khi đã có dữ liệu → mô-đun IO phát tín hiệu ngắt
 CPU
 - CPU yêu cầu dữ liệu
 - Mô-đun IO chuyển dữ liệu đến CPU

- Hoạt động nhập dữ liệu: nhìn từ CPU
 - Phát tín hiệu điều khiển đọc
 - Làm việc khác
 - Cuối mỗi chu trình lệnh, kiểm tra tín hiệu ngắt
 - Nếu bị ngắt:
 - Cất ngữ cảnh (nội dung các thanh ghi)
 - Thực hiện chương trình con ngắt để nhập dữ liệu
 - Khôi phục ngữ cảnh của chương trình đang thực hiện

- Các vấn đề nảy sinh khi có ngắt:
 - Xác định được mô-đun IO nào phát tín hiệu ngắt?
 - Có nhiều yêu cầu ngắt cùng xảy ra?
- Các phương pháp nối ghép ngắt
 - Sử dụng nhiều đường yêu cầu ngắt
 - Hỏi vòng bằng phần mềm (Software Poll)
 - Hỏi vòng bằng phần cứng (Daisy Chain or Hardware Poll)
 - Sử dụng bộ điều khiển ngắt lập trình được PIC (Programmable Interrupt Controller)

- Nhiều đường yêu cầu ngắt
 - Mỗi mô-đun IO được nối với một đường yêu cầu ngắt
 - CPU phải có nhiều đường tín hiệu yêu cầu ngắt
 - Hạn chế số lượng mô-đun IO
 - Các đường ngắt được qui định mức ưu tiên

- Hỏi vòng bằng phần mềm
 - CPU thực hiện phần mềm hỏi lần lượt từng môđun IO
 - Chậm
 - Thứ tự các mô-đun được hỏi vòng chính là thứ tự ưu tiên

- Hỏi vòng bằng phần cứng
 - CPU phát tín hiệu chấp nhận ngắt (INTA) đến mô-đun IO đầu tiên
 - Nếu mô-đun IO đó không gây ra ngắt thì nó gửi tín hiệu đến mô-đun kế tiếp cho đến khi xác định được mô-đun gây ngắt
 - Thứ tự các mô-đun IO kết nối trong chuỗi xác định thứ tự ưu tiên

- Bộ điều khiển ngắt lập trình được PIC
 - PIC có nhiều đường vào yêu cầu ngắt có qui định mức ưu tiên
 - PIC chọn một yêu cầu ngắt không bị cấm có mức ưu tiên cao nhất gửi tới CPU

- Đặc điểm của IO điều khiển bằng ngắt
 - Có sự kết hợp giữa phần cứng và phần mềm
 - Phần cứng: gây ngắt CPU
 - Phần mềm: trao đổi dữ liệu
 - CPU trực tiếp điều khiển IO
 - CPU không phải đợi mô-đun IO → hiệu quả sử dụng CPU tốt hơn

- Ví dụ: Hệ thống ngắt trên máy PC
 - CPU Intel x86 có 1
 chân tín hiệu ngắt
 - PIC 8259A có 8
 đường ngắt
 - Có thể đấu nối nhiều PIC theo chế độ master/ slaver để tăng số lượng đường ngắt phục vụ cho nhiều thiết bị

- DMA (Direct Memory Access)
 - IO bằng chương trình và bằng ngắt do CPU trực tiếp điều khiển:
 - Chiếm thời gian của CPU
 - Tốc độ truyền bị hạn chế vì phải chuyển dữ liệu qua CPU (thanh ghi có dung lượng nhỏ)
 - Để khắc phục dùng DMA
 - Thêm mô-đun phần cứng trên bus → DMAC (DMA Controller)
 - DMAC điều khiển trao đổi dữ liệu giữa môđun IO với bộ nhớ chính

IT-FIT 2021 27

- Sơ đồ cấu trúc của DMAC
 - Thanh ghi dữ liệu: chứa dữ liệu trao đổi
 - Thanh ghi địa chỉ: chứa địa chỉ ô nhớ dữ liệu
 - Bộ đếm dữ liệu: chứa số từ dữ liệu cần trao đổi
 - Logic điều khiển: điều khiển hoạt động của DMAC

- Hoạt động DMA
 - CPU gửi tín hiệu cho DMAC
 - Vào hay Ra dữ liệu
 - Địa chỉ thiết bị IO (cổng IO tương ứng)
 - Địa chỉ đầu của mảng nhớ chứa dữ liệu → nạp vào thanh ghi địa chỉ
 - Số từ dữ liệu cần truyền → nạp vào bộ đếm dữ liệu
 - CPU làm việc khác
 - DMAC điều khiển trao đổi dữ liệu
 - Sau khi truyền được một từ dữ liệu thì:
 - nội dung thanh ghi địa chỉ tăng
 - nội dung bộ đểm dữ liệu giảm
 - Khi bộ đếm dữ liệu = 0, DMAC gửi tín hiệu ngắt CPU để báo kết thúc DMA

29

- Các kiểu thực hiện DMA
 - DMA truyền theo khối (Block-transfer DMA):
 DMAC sử dụng bus để truyền xong cả khối dữ liệu
 - DMA lấy lén chu kỳ (Cycle Stealing DMA):
 DMAC cưỡng bức CPU treo tạm thời từng chu kỳ bus, DMAC chiếm bus thực hiện truyền một từ dữ liệu.
 - DMA trong suốt (Transparent DMA): DMAC nhận biết những chu kỳ nào CPU không sử dụng bus thì chiếm bus để trao đổi một từ dữ liệu.

- Cấu hình DMA 1: Bus chung, DMA tách biệt
 - Mỗi lần trao đổi một dữ liệu, DMAC sử dụng bus hai lần
 - Giữa mô-đun IO với DMAC
 - Giữa DMAC với bộ nhớ
 - CPU bị treo khỏi bus 2 lần

- Cấu hình DMA 2: Bus chung, DMA tích hợp
 - DMAC điều khiển một hoặc vài mô-đun IO
 - Mỗi lần trao đổi một dữ liệu, DMAC sử dụng bus một lần
 - Giữa DMAC với bộ nhớ
 - CPU bị treo khỏi bus 1 lần

- Cấu hình DMA 3: Bus IO riêng
 - Bus IO tách rời hỗ trợ tất cả các thiết bị cho phép DMA
 - Mỗi lần trao đổi một dữ liệu, DMAC sử dụng bus một lần
 - Giữa DMAC với bộ nhớ
 - CPU bị treo khỏi bus 1 lần

- Đặc điểm của DMA
 - CPU không tham gia trong quá trình trao đổi dữ liệu
 - DMAC điều khiển trao đổi dữ liệu giữa bộ nhớ chính với mô-đun IO (hoàn toàn bằng phần cứng) → tốc độ nhanh
 - Phù hợp với các yêu cầu trao đổi mảng dữ liệu có kích thước lớn (Block devices)
- Phân loại TBNV
 - Character devices
 - Block devices

- Ví dụ: Chip DMA trong máy PC
 - Intel 8237A DMA Controller
 - Giao tiếp với CPU Intel x86 và DRAM
 - Khi DMA cần bus, nó gửi tín hiệu HRQ cho CPU
 - CPU trả lời bằng tín hiệu HLDA
 - DMA bắt đầu sử dụng bus

- Kênh IO (IO channel)
 - Việc điều khiển IO được thực hiện bởi một bộ xử lý IO chuyên dụng
 - Bộ xử lý IO hoạt động theo chương trình của riêng nó
 - Chương trình của bộ xử lý IO có thể nằm trong bộ nhớ chính hoặc nằm trong một bộ nhớ riêng
 - Hoạt động theo kiến trúc đa xử lý
 - CPU gửi yêu cầu IO cho kênh IO
 - Kênh IO tự thực hiện việc truyền dữ liệu

- Các kiểu nối ghép
 - Nối ghép song song (parallel)
 - Nối ghép nối tiếp (serial)
- Nối ghép song song
 - Truyền nhiều bit song song
 - Cần nhiều đường truyền dữ liệu
 - Tốc độ nhanh
 - Dễ bị nhiễu giữa các tín hiệu

- Nối ghép nối tiếp
 - Truyền lần lượt từng bit
 - Cần có bộ chuyển đổi từ dữ liệu song song sang nổi tiếp hoặc/và ngược lại
 - Cần ít đường truyền dữ liệu
 - Tốc độ chậm hơn

- Các cấu hình nối ghép
 - Điểm tới điểm (Point to Point)
 - Mỗi cổng IO nối ghép với một thiết bị ngoại vi
 - Ví dụ:
 - SATA (Serial ATA)
 - SAS (Serial Atache SCSI)
 - Điểm tới đa điểm (Point to Multipoint)
 - Mỗi cổng IO cho phép nối ghép với nhiều thiết bị ngoại vi
 - Ví dụ:
 - SCSI (Small Computer System Interface): 7 hoặc 15 thiết bị
 - USB (Universal Serial Bus): 127 thiết bị
 - IEEE 1394 (FireWire): 63 thiết bị

TT-FIT 2021

39

- Ví dụ: Các cổng nối ghép ngoại vi trên PC
 - PS/2: nối ghép bàn phím và chuột MiniDIN 6 chân
 - RJ45: nối ghép mạng
 - LPT (Line Printer): nối ghép với máy in, là cống song song (Parallel Port) – 25 chân
 - COM (Communication): nối ghép với Modem, là cổng nối tiếp (Serial Port) - 9 hoặc 25 chân
 - USB (Universal Serial Bus): Cổng nối tiếp đa năng, cho phép nối ghép tối đa 127 thiết bị

- Ví dụ: Các cổng nối ghép trên card màn hình
 - VGA: Cổng nối ghép màn hình Analog- 15 chân
 - DVI: Cổng nối ghép màn hình Digital

• Ví dụ: Hệ thống bus ngoại vi trên máy PC

- Hệ thống bus ngoại vi trên máy PC (tiếp)
 - ISA (Industry Standard Architecture): Sử dụng trên máy PC 8086 (8 bit) và AT 80286 (16 bit)
 - MCA (Micro Channel Architecture): Sử dụng trên máy 80386 của IBM (32 bit)
 - EISA (Extended ISA) Sử dụng trên các máy 80386 tương thích (32 bit)
 - VL bus (VESA Local bus): Sử dụng trên các máy 80486 (32 bit)

- Hệ thống bus ngoại vi trên máy PC (tiếp)
 - AGP (Accelerated Graphics Port): Bus dành riêng cho card màn hình trên máy Pentium. Bao gồm các mức tốc độ 1x, 2x, 4x và 8x (1x=266MB/s).
 - PCI (Peripheral Component Interconnect): Sử dụng trên các máy Pentium (32 & 64 bit)
 - PCI-X: Sử dụng tần số xung nhịp cao hơn (66-133 MHz) so với PCI 33 MHz
 - PCI-E (PCI-Express): Cho phép truyền dữ liệu tốc độ cao, được sử dụng trong các máy PC đời mới. Gồm nhiều mức tốc độ: 1x, 2x, ..., 32x (1x: 1 Lane có 4 đường truyền nối tiếp 250 MB/s)

IT-FIT 2021 44

- Các cổng điều khiển đĩa
 - Đĩa mềm : Dùng cáp 34 chân kết nối tối đa 2 ổ mềm
 - Đĩa cứng/CD/DVD/SSD :
 - Chuẩn ST506
 - Chuẩn ESDI
 - Chuẩn IDE/UDMA/PATA
 - Chuẩn SCSI
 - Chuẩn SATA
 - Chuẩn SAS

Các thiết bị ngoại vi thông dụng

- Thiết bị nhập
 - Bàn phím, chuột, scanner, digitizer, micro, đọc vân tay, đọc bar-code, camera, ...
- Thiết bị xuất
 - Màn hình, máy in, máy vẽ, loa, projector, ...
- Thiết bị mạng & truyền thông
 - Modem, Router,...
- Thiết bị lưu trữ
 - Đĩa mềm, đĩa cứng, SSD, CD, DVD, thẻ nhớ, ...

Câu hỏi

IT-FIT 2021 47