THUẬT TOÁN

Phương pháp Guass Seidel giải hệ phương trình Ax = b

Input: Ma trận mở rộng [A|B], sai số epsi

Output: Nghiệm x

Bước 1: Nhập dữ liệu đầu vào

Bước 2: Kiểm tra tính chéo trội của ma trận A

- + Dùng gói row_diagonal() để kiểm tra tính chéo trội hàng
- + Nếu thoả mãn thì tiếp tục thuật toán ở bước 3
- + Nếu không thoả mãn thì dùng gói col_diagonal() kiểm tra tính chéo trội cột
 - Nếu ma trận A chéo trội cột thì tiếp tục thuật toán ở bước 3
 - Nếu không thoả mãn thì kết luận ma trận A không chéo trội và dừng thuật toán

Bước 3: Biến đổi Ax = b về dạng x = Cx + d

- + Xác đinh ma trân C
 - Dùng gói C_row_matrix() nếu A chéo trội hàng
 - Dùng gói C_col_matrix() nếu A chéo trội cột
- + Xác định vecto d
 - Nếu chéo trội hàng thì

for
$$i = 0$$
 to n: $d[i] = b[i] / a[i][i]$

• Nếu chéo trội cột thì

for
$$i = 0$$
 to n: $d[i] = b[i]$

Bước 4: Xác định hệ số co

- + Nếu chéo trội hàng thì dùng gói lamda_cal() để tìm hệ số co lamda
- + Nếu chéo trội cột thì dùng gói zeta_cal() để tìm hệ số co zeta
- + Trong trường hợp chéo trội cột thì cần dùng gói s cal() để tìm thêm hệ số s

Bước 5: Tìm nghiệm:

- + Dùng gói row_solve() để tìm nghiệm khi chéo trội hàng
- + Dùng gói col solve() để tìm nghiệm khi chéo trội cột

Bước 6: In nghiệm ra ngoài màn hình

Gói kiểm tra tính chéo trội hàng row_diagonal()

Input: Ma trận A

Output: row_diagonal() = 1 (néu true) hay 0 (néu false)

Bước 1: Tính:

$$temp = \sum_{j=0}^{n} |a[i][j]|$$

 $Bw\acute{o}c$ 2: Kiểm tra điều kiện: for i = 0 to n-1:

Nếu $2 * |a_{ii}| > temp$ thì return true ngược lại return false

Gói kiểm tra tính chéo trội cột col_diagonal()

Input: Ma trận A

Output: col_diagonal() = 1 (néu true) hay 0 (néu false)

Bước 1: Tính:

$$temp = \sum_{i=0}^{n} |a[i][j]|$$

Bước 2: Kiểm tra điều kiện: for j = 0 to n-1:

Nếu 2 * |a[j][j]| > temp thì return true ngược lại return false

Gói xác định ma trận C khi chéo trội hàng C_row_matrix()

Input: Ma trận A

Output: Ma trận C

Bước: Dùng vòng lặp for để tìm c[i][j]

for i = 0 to n-1:

for
$$j = 0$$
 to n-1:

Nếu
$$i == j$$
 thì $c[i][j] = 0$

Ngược lại thì c[i][j] = -a[i][j] / a[i][i]

Gói xác định ma trận C khi chéo trội cột C_col_matrix()

Input: Ma trận A

Output: Ma trận C

Bước: Dùng vòng lặp for để tìm c[i][j]

for i = 0 to n-1:

for
$$j = 0$$
 to n-1:

Nếu
$$i == j$$
 thì $c[i][j] = 0$

Ngược lại thì c[i][j] = -a[i][j] / a[j][j]

Gói tính hệ số co lamda khi chéo trội hàng lamda_cal()

Input: Ma trận C

Output: lamda

Bước 1: for i =0 to n-1: tính

$$beta = \sum_{j=0}^{i} |c[i][j]|$$

$$gamma = \sum_{i=i}^{n} |c[i][j]|$$

Bước 2: Tìm lamda: Với i = 0 to n-1:

$$lamda = \max \frac{gamma}{1 - beta}$$

Gói tính hệ số co zeta khi chéo trội cột zeta_cal()

Input: Ma trận C

Output: zeta

Bước 1: for j =0 to n-1: tính

$$beta = \sum_{i=0}^{j} |c[i][j]|$$

$$gamma = \sum_{i=j}^{n} |c[i][j]|$$

Buóc 2: Tìm lamda: Với j = 0 to n-1:

$$zeta = \max \frac{beta}{1 - gamma}$$

Gói tính hệ số s khi chéo trội cột

Input: ma trận C

Output: s

Buóc 1: for j = 0 to n-1:

$$temp = \sum_{i=0}^{j} |c[i][j]|$$

Buóc 2: Với j = 0 to n-1: $s = \max temp$

Gói tìm nghiệm khi chéo trội hàng row_solve()

Input: ma trận A, C, lamda, epsi

Output: x

Bước 1: Khởi tạo vector x[i] = 0 với i = 0 to n-1

Bước 2: for i = 0 to n-1: đặt z[i] = x[i]

Bước 3: Tính x[i] với i=0 to n-1 và j khác i

$$x[i] = b[i] / a[i][i] + \sum_{i=0}^{n-1} c[i][j] * x[j]$$

Bước 4: Kiểm tra điều kiện dừng

Nếu $\|z-x\| < epsi* (1-lamda) / lamda$ thì đưa nghiệm x[i] ra màn hình Ngược lại thì quay lại bước 2

Gói tìm nghiệm khi chéo trội cột col_solve()

Input: ma trận A, C, zeta, s, epsi

Output: x

Bước 1: Khởi tạo vector x[i] = 0 với i = 0 to n-1

Bước 2: for i = 0 to n-1: đặt y[i] = x[i] * a[i][i]

Buóc 3: for i = 0 to n-1: đặt z[i] = y[i]

Bước 4: Tính y[i] với i=0 to n-1 và j khác i

$$y[i] = b[i] + \sum_{j=0}^{n-1} c[i][j] * y[j]$$

B wớc 5: Tính x[i] = y[i]/a[i][i] với i=0 to n-1

Bước 6: Kiểm tra điều kiện dừng

Nếu || z-y || < epsi*(1-s)*(1-zeta) / zeta thì kết luận nghiệm là x[i]

Ngược lại thì quay lại bước 3