Number Theory

October 16, 2019

1 Euclid's Algorithm

Theorem 1.1 (Division Algorithm). Given $a, b \in \mathbb{Z}, b > 0$, we can determine $\exists q, r \in \mathbb{Z} \ s.t. \ a = qb + r \ with \ 0 \le r < b$.

Proof. Let $S = \{a - nb : n \in \mathbb{Z}\}$. S contains some non-negative integer. Let r be the least such integer, say a - qb. Then a = qb + r, so STP r < b.

Suppose
$$b \le r$$
. Then $0 < r - b = a - (q+1)b \in S$, and $r - b < r$. $\mbox{$\rlap/$$}\mbox{(choice of r)}$

If r = 0, i.e. if a = qb for some $q \in \mathbb{Z}$, then we write b|a and say "b divides a" or "b is a divisor of a". If $r \neq 0$, then we instead write $b \nmid a$ and say "b does **not** divide a".

Given $a_1, \ldots, a_n \in \mathbb{Z}$ not all 0, let $I = \{\lambda_1 a_1 + \ldots + \lambda_n a_n : \lambda_i \in \mathbb{Z}\}$. Observe if $a, b \in I, \ell, m \in \mathbb{Z}$, then $\ell a + mb \in I$.

Theorem 1.2. $I = d\mathbb{Z} = \{dm : m \in \mathbb{Z}\} \text{ for some } d > 0$

Proof. I contains some positive integer. Let d>0 be the least such. Then clearly $I\supseteq d\mathbb{Z}$.

Conversely, let $a \in I$ and apply **1.1** to obtain a = qd + r for some $q, r \in \mathbb{Z}, 0 \le r < d$. Then $r = a - qd \in I \implies r = 0$, so $d\mathbb{Z} \supseteq I$

$$I = d\mathbb{Z}$$

Note that $a_i \in I \forall i$, so $d|a_i \forall i$. Conversely, if $c|a_i \forall i$ then c divides every element of I, so in particular c|d.

We write $d = \gcd(a_1, \ldots, a_n) = (a_1, \ldots, a_n)$, and say d is the **greatest common divisor** of the a_i .

Corollary 1.3 (Bézout). Let $a, b \in \mathbb{Z}$, a, b not both 0. Then $\exists x, y \in \mathbb{Z}$ s.t. $ax + by = c \iff (a, b)|c$.

The division algorithm gives an efficient method for computing (a, b).

Theorem 1.4 (Euclid's Algorithm). Suppose a > b > 0. Then:

$$a = q_1b + r_1 \qquad 0 \le r_1 < b$$

$$b = q_2r_1 + r_2 \qquad 0 \le r_2 < r_1$$

$$r_1 = q_3r_2 + r_3 \qquad 0 \le r_3 < r_2$$

$$\vdots$$

$$r_{k-2} = q_kr_{k-1} + r_k \qquad r_k \ne 0$$

$$r_{k-1} = q_{k+1}r_k(+0)$$

and $r_k = (a, b)$

Proof. We have $r_k|r_{k-1} \implies \ldots \implies r_k|a,r_k|b \implies r_k|(a,b)$, so $r_k \le (a,b)$. Note also that any m s.t. m|a and m|b also divides r_k . In particular, $(a,b)|r_k$, and thus $(a,b) \le r_k$, hence $r_k = (a,b)$.

Additionally, by working back up the algorithm, we can obtain a representation $(a, b) = \lambda a + \mu b$ where $\lambda, \mu \in \mathbb{Z}$

An integer n > 1 is **prime** if its only positive divisors are 1 and n. Otherwise, we say n is **composite**.

Lemma 1.5. Let p be a prime, $a, b \in \mathbb{Z}$. Then $p|ab \iff p|a$ or p|b

Proof. It is clear that if p|a or p|b, then p|ab. Conversely, suppose p|ab but $p \nmid a$. Them $(a,p) \neq p$. By definition, $(a,p)|p \implies (a,p) \in \{1,p\}$, so (a,p) = 1. Now by **1.3** we can find $x,y \in \mathbb{Z}$ s.t. $1 = ax + by \implies b = b(ax + py) = x(ab) + (by)p$, so p|b.

Theorem 1.6 (The Fundamental Theorem of Arithmetic). Every integer n > 1 can be written as a product of primes uniquely up to reordering

Proof. We have existence by strong induction.

For uniqueness, n is the least integer with two distinct such representations, say $= n = p_1 \dots p_s = q_1 \dots q_r$ for p_i, q_j primes.

Then $p_1|q_1 \dots q_r \implies p_1|q_j$ for some j. WLOG j=1. Since $p_1>1$ as 1 is non-primes, $n/p_1 < n$, and $n/p_1 = p_2 \dots p_s = q_2 \dots q_r$ can be written in two distinct ways as a product of primes. ξ (choice of n)

If $m = \prod_{i=1}^k p_i^{\alpha_i}$, $n = \prod_{i=1}^k p_i^{\beta_i}$ where p_i are distinct primes, $\alpha_i, \beta_i \geq 0$, then $(m, n) = \prod_{i=1}^k p_i^{\gamma_i}$ with $\gamma_i = \min\{\alpha_i, \beta_i\}$. However, if m, n are large, it is much more "efficient" to compute the gcd via Euclid's algorithm.

An algorithm with input N > 0 is said to run in **polynomial time** if it takes at most $c(\log N)^k$ elementary operations to complete, where c, k > 0 are constants independent of N. If the algorithm takes inputs N_1, N_2, \ldots, N_s , the polynomial time means $c(\max \log N_i)^k$.

Examples of polynomial time algorithms:

- Adding and multiplying integers
- The gcd of two numbers via Euclid's algorithm

• Testing of primality

On the other hand, factoring a number into prime factors does not have a polynomial time algorithm, and it is conjectured that one does not exist. For instance, if $N=p\cdot q$ with p,q primes of ~ 50 digits each, to do trial division up to \sqrt{N} at a rate of 2^9 divisions per second, it would take approximately $\sqrt{10^{100}}/2^9$ seconds, or about 6×10^39 years. However, we can compute the gcd in milliseconds using Euclid's algorithm.

Theorem 1.7. There are infinitely many primes. i.e. $\pi(x) \to \infty$ as $x \to \infty$

Proof. Fix N > 1, let p be the largest prime $\leq N$. Let q be a prime factor of $M = (2 \times 3 \times 5 \times \ldots \times p) + 1$. Then q > N since $q \notin \{2, 3, \ldots, p\}$, but N was arbitrary. \square

2 Congruences

Let $n \geq 1$ be an integer. We write $a \equiv b \mod n$ if n|a-b. This defines an equivalence relation on \mathbb{Z} , and we will write $\mathbb{Z}/n\mathbb{Z}$ for the equivalence classes induced by this relation, which are $a+n\mathbb{Z}$ for $0 \leq a < n$. It is easy to check that $(a+n\mathbb{Z})+(b+n\mathbb{Z})=(a+b+n\mathbb{Z})$ and that $(a+n\mathbb{Z})\times(b+n\mathbb{Z})=(ab+n\mathbb{Z})$ are well defined operations, i.e $n\mathbb{Z}$ is an ideal, and $\mathbb{Z}/n\mathbb{Z}$ is the quotient ring.

Lemma 2.1. Let $a \in \mathbb{Z}$. Then the following are equivalent:

- 1. (a, n) = 1
- 2. $\exists b \in \mathbb{Z} \ s.t. \ ab \equiv b \mod n$
- 3. The equivalence class of a generates the group $(\mathbb{Z}/n\mathbb{Z}, +)$

Proof.

- (1) \Longrightarrow (2): $(a,n)=1 \Longrightarrow \exists b,c \in \mathbb{Z} \text{ s.t. } ab+cn=1 \text{ by } \mathbf{1.3}, \text{ and hence } ab\equiv 1 \mod n.$
- (2) \Longrightarrow (1): $ab \equiv 1 \mod n \iff ab-1=kn$ for some $k \in \mathbb{Z}$, and so by **1.3** (a,n)=1.

• (2) \iff (3): $ab \equiv 1 \mod n \iff 1 \in \langle a \rangle \leq \mathbb{Z}/n\mathbb{Z} \iff \langle a \rangle = \mathbb{Z}/n\mathbb{Z}$

We write $(\mathbb{Z}/n\mathbb{Z})^{\times}$ for the set of **units** (the elements with a multiplicative inverse) of $\mathbb{Z}/n\mathbb{Z}$. By **2.1**, $(\mathbb{Z}/n\mathbb{Z})^{\times}$ contains precisely those classes $a + n\mathbb{Z}$ such that (a, n) = 1. Note that if n > 1 then $\mathbb{Z}/n\mathbb{Z}$ is a field precisely when n is prime.

Let **Euler's** φ **function** be $\varphi(n) := |(\mathbb{Z}/n\mathbb{Z})^{\times}|$ for n > 1, and let $\varphi(1) = 1$. Observe that $\varphi(p) = p - 1$ for p prime. Moreover, φ is a multiplicative function: $(m, n) = 1 \implies \varphi(mn) = \varphi(m)\varphi(n)$.

Corollary 2.2. Let G be a cyclic group of order $n \ge 1$. Then $\varphi(n) = |\{g \in G : \operatorname{ord}(g) = n\}|$, the number of generators of G.

Theorem 2.3 (Euler-Fermat). IF (a, n) = 1, $a, n \in \mathbb{Z}$, then $a^{\varphi(n)} \equiv 1 \mod n$

Proof. By Lagrange's Theorem, the order of a in the group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ divides the order of $(\mathbb{Z}/n\mathbb{Z})^{\times}$, which is $\varphi(n)$

Theorem 2.4 (Fermat's Little Theorem). If $a, p \in \mathbb{Z}$ and p is prime, then $a^p \equiv a \mod p$.

Proof. If p|a, then this holds trivially. If $p \nmid a, (a,p) = 1$ and so by **2.3** we have $a^{\varphi(p)} \equiv a^{p-1} \equiv 1$ mod p

Multiple Congruences

Can we find all $x \in \mathbb{Z}$ s.t. $x \equiv 4 \mod 7$ and $x \equiv 5 \mod 12$?

Suppose we can find $u, v \in \mathbb{Z}$ s.t. $\begin{cases} u \equiv 1 \mod 7; & u \equiv 0 \mod 12 \\ v \equiv 0 \mod 7; & v \equiv 1 \mod 12 \end{cases}$ Then we can write down

that x=4u+5v. Since (7,12)=1, by **1.3** there are some $m,n\in\mathbb{Z}$ with 7m+12n=1, and from Euclid's algorithm we can determine these to be m=-5, n=3. Then we can find u=12n=1-7m; v=7m=1-12n, and substitution gives u=36, v=-35, and so a solution to the original problem is $4\times36-5\times35=-31$. Now the lowest common multiple of 7 and 12 is 84, and so our solution set is: $\{x\in\mathbb{Z}:x\equiv-31\mod84\}$.

We can in fact generalise this process:

Theorem 2.5 (Chinese Remainder Theorem). Let m_1, \ldots, m_k be pairwise coprime positive integers, and let $M = \prod_{i=1}^k m_i$. Then given any integers a_1, \ldots, a_k there is a solution x to the the system of congruences:

$$x \equiv a_1 \mod m_1$$

 $x \equiv a_2 \mod m_2$
 \vdots
 $x \equiv a_k \mod m_k$

Moreover, this solution is unique modulo M.

Note that if x satisfies this system of equations, then so does x + tM for any $t \in \mathbb{Z}$, and so the complete set of solutions is $x + M\mathbb{Z}$.

Proof.

<u>Uniqueness:</u> If x, y satisfy the system, then $m_i|x-y$ for all $i=1,\ldots,k$. Since no prime divides any tow the $m_i, M|x-y$ and hence $x \equiv y \mod M$.

Existence: Write $M_i = \frac{M}{m_i} = \prod_{j \neq i} m_j$ for each i = 1, 2, ..., k. Since $(m_i, m_j) = 1 \forall i \neq j$, $(m_i, M_i) = 1$ for all i = 1, 2, ..., k. Therefore, for each i = 1, 2, ..., k we can find $b_i \in \mathbb{Z}$ such that $M_i b_i \equiv 1 \mod m_i$ and $M_i b_i \equiv 0 \mod m_j$ for $j \neq i$. Then $x = \sum_{i=1}^k a_i b_i M_i$ solves the system of congruences.

If m_1, \ldots, m_k are pairwise coprime, and $M = \prod m_i$, then map $\theta : \mathbb{Z}/M\mathbb{Z} \to \mathbb{Z}/m_1\mathbb{Z} \times \ldots \times \mathbb{Z}/m_k\mathbb{Z}$, taking $x \mod M \mapsto (x \mod m_1, \ldots, x \mod m_k)$ is an isomorphism of rings. To see this, note that if $m_i|M$ then $x \mod m_i$ is determined by $x \mod M$ which implies that θ is well-defined. It is a homomorphism by the properties of $+, \times$ in $\mathbb{Z}/n\mathbb{Z}$, and **2.5** implies that θ is a bijection. In particular, if $n = p_1^{\alpha_1} \ldots p_k^{\alpha_k}$ for distinct primes p_i , then $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \ldots \times \mathbb{Z}/p_k^{\alpha_k}\mathbb{Z}$.

Corollary 2.6. If m_1, \ldots, m_k are pairwise coprime and $M = \prod_{i=1}^k m_i$ and $a_1, \ldots, a_k \in \mathbb{Z}$ are such that $(a_i, m_i) = 1$ for each $i = 1, 2, \ldots, k$, then there is a solution to the system of congruences in **2.5**, and any such solution is in fact coprime to M.

Proof. **2.5** gives us a solution, say $x \in \mathbb{Z}$. Suppose (x, M) > 1. Then there is a prime p such that p|x and p|M simultaneously. p prime, so WLOG suppose that p divides m_1 . Since $x \equiv a_1 \mod m_1$, we must have $p|a_1$, and so $p|(a_1, m_1) \notin$.

Corollary 2.7. If m_1, \ldots, m_k are pairwise coprime with $M = \prod_{i=1}^k m_i$, then $\varphi(M) = \varphi(m_1) \cdot \ldots \cdot \varphi(m_k)$

A multiplicative function is a function $f: \mathbb{N} \to \mathbb{C}$ such that, for all $m, n \in \mathbb{N}$ coprime, f(mn) = f(m)f(n). A function $f: \mathbb{N} \to \mathbb{C}$ is said to be **totally multiplicative** if for all $m, n \in \mathbb{N}$, f(m, n) = f(m)f(n).

Some multiplicative functions are:

- $\varphi(m)$
- $\tau(n)$ = the number of positive divisors of n
- $\sigma(n)$ = the sum of the positive divisors of n
- $\sigma_k(n) = \sum_{d|n} d^k$, so that $\sigma_0(n) = \tau(n), \sigma_1(n) = \sigma(n)$.

None of these are totally multiplicative however.

Lemma 2.8. Let f be a multiplicative function. Then so is g, where $g(n) = \sum_{d|n} f(d)$.

Proof. Let $m, n \in \mathbb{N}$, (m, n) = 1. Then the divisors of mn are precisely the integers of the form d_1d_2 where $d_1|m, d_2|n$ and $(d_1, d_2) = 1$. This means that we can write down

$$g(mn) = \sum_{d|mn} f(d)$$

$$= \sum_{d_1|m} \sum_{d_2|n} f(d_1d_2)$$

$$= \sum_{d_1|m} \sum_{d_2|n} f(d_1)f(d_2)$$

$$= \sum_{d_1|m} f(d_1) \sum_{d_2|n} f(d_2)$$

$$= g(m)g(n)$$

Then if we let $f(n) = n^k$ for some $k \in \mathbb{N}$. Then $g(n) = \sum_{d|n} d^k = \sigma_k(n)$. Later on, we shall see that we can recover f from g via Möbius inversion.

Theorem 2.9.

1. If p is a prime and $m \in \mathbb{N}$ then $\varphi(p^m) = p^{m-1}(p-1) = p^m \left(1 - \frac{1}{p}\right)$

2. $\forall n \in \mathbb{N}, \varphi(n) = n \cdot \prod_{p|n} \left(1 - \frac{1}{p}\right)$

3. $\sum_{d|n} \varphi(d) = n$

Proof.

1.

$$\begin{split} \varphi(p^m) &= |\{1 \le a \le p^m : (a, p^m) = 1\}| \\ &= p^m - p^{m-1} \\ &= p^m \left(1 - \frac{1}{p}\right) \end{split}$$

2. Let $n = \prod_{i=1}^k p_i^{\alpha_i}$ for p_i distinct primes, $\alpha_1 \ge 1$. Then:

$$varphi(n) = \prod_{i=1}^{k} \varphi(p_i^{\alpha_i})$$

$$= \prod_{i=1}^{k} p_i^{\alpha_i} \left(1 - \frac{1}{p_i} \right)$$

$$= n \cdot \prod_{p|n} \left(1 - \frac{1}{p} \right)$$

3. φ is multiplicative and so is $n \mapsto n$, so it suffices to check that both sides agree when n is a prime power. Let p be a prime $m \in \mathbb{N}$. Then:

$$\sum_{d|p^m} \varphi(d) = \varphi(1) + \varphi(p) + \dots + \varphi(p^m)$$

$$= 1 + (p-1) + (p^2 - p) + \dots + (p^m - p^{m-1})$$

$$= p^m$$