AMPLITUDE MODULATION

振幅変調のシミュレーション

概要

信号源 \$ v_{s}(t) \$

$$v_s(t) = A_s \cos(\omega_s t)$$

搬送波 \$v_{c}(t) \$

$$v_c(t) = A_c \cos(\omega_c t)$$

このときの変調波 \$ v_{AM}(t) \$ は以下のようになる。

$$v_{AM}(t) = (A_c + A_s \cos(\omega_s t)) \cos(\omega_c t)$$

ここで変調度 \$ m \$ を定義すると

$$m=rac{A_s}{A_c}$$

$$v_{AM}(t) = A_c(1 + m\cos(\omega_s t))\cos(\omega_c t)$$

• \$0 < m < 1 \$ のとき

$$m = 0.5$$

README.md 2024-10-18

m = 1

• \$m>1\$のとき

m = 2

変調波 $v_{AM}(t)$ の包絡線が信号源 $v_{s}(t)$ である。まず半端清流回路を用いて $v_{AM}(t) > 0$ の範囲を取り出す。コンデンサを並列に接続して包絡線を検波する。