Quiz 3 • Graded

Student

Colin Cano

Total Points

8.5 / 10 pts

Question 1

Question 1 4.5 / 6 pts

- 0 pts Correct: (a) 3, (b) 1, (c) 3, (d) 3, (e) Doesn't exist, because one-sided limits are not equal, (f) 2.
- 1 pt Part (a) is not 3.
- 1 pt Part (b) is not 1.
- 1 pt Part (c) is not 3.
- ✓ 1 pt Part (d) is not 3.
- ✓ 0.5 pts Part (e) is 'doesn't exist' but with no/wrong reasoning.
 - 1 pt Part (e) is not 'doesn't exist'.
 - 1 pt Part (f) is not 2.

Question 2

Question 2(a) 2 / 2 pts

- ✓ 0 pts Correct: -5
 - **0.5 pts** Had $\frac{(x+3)(x-2)}{x+3}=x-2$ but final answer is not -5.
 - **1 pt** Factored correctly as $\frac{(x+3)(x-2)}{x+3}$ but made mistakes in cancellation.
 - **1.5 pts** Tried to factor but made mistakes in getting $\frac{(x+3)(x-2)}{x+3}$.
 - 2 pts Didn't attempt to factor the problem.

Question 3

Question 2(b) 2 / 2 pts

- ✓ **0 pts** Correct: $\frac{25}{16}$.
 - **0.5 pts** Had $(\frac{-5}{4})^2$ correctly but final answer is wrong as $-\frac{25}{16}$, $\frac{25}{not\ 16}$, or $\frac{not\ 25}{16}$.
 - **1 pt** Had $(\frac{-5}{4})^2$ correctly but final answer is wrong and not among the cases listed above.
 - **1.5 pts** Substitution is correct but made arithmetic mistakes in getting $(\frac{-5}{4})^2$.
 - 2 pts No correct steps.

Name: Colin Canu

Student ID: ___

1. Use the given graph of f(x) to state the value of each quantity, if it exists. If it doesn't exist, explain why.

(d) f(3) = Does not axis+

(b) $\lim_{x\to 0} f(x) = \frac{1}{x}$

(e) $\lim_{x \to 3} f(x)$ Does not assume (f) $\lim_{x \to 1^+} f(x)$

(c) $\lim_{x \to 1^{-}} f(x) = \frac{3}{1 + \frac{3}{2}}$

2. Find the following limits if they exist.

(a)
$$\lim_{x \to -3} \frac{x^2 + x - 6}{x + 3} = \lim_{x \to -3} \frac{(x + 3)(x - 3)}{x + 3} = \lim_{x \to -3} \frac{(x - 3)(x - 3)}{x + 3} = \lim_{x \to -3} \frac{(x - 3)(x - 3)}{x + 3} = \lim_{x \to -3} \frac{(x - 3)(x - 3)}{x + 3} = \lim_{x \to -3} \frac{(x - 3)(x - 3)}{$$

(b)
$$\lim_{x \to -2} \left(\frac{2x-1}{3x^2+x^3} \right)^2 = \frac{\left(\frac{2(-2)-1}{3(-1)^2+(-2)^3} \right)^2 - \left(\frac{-4-1}{(2-8)^2} \right)^2 - \left(\frac{-5}{4} \right)^2 - \left(\frac{25}{16} \right)^2 + \left(\frac{25}{16} \right)^$$

$$\frac{(2x-1)(2x-1)}{(3x^2+x^3)(3x^2+x^3)} = \frac{-5\cdot -5}{4\cdot 4} = \frac{25}{16}$$