Materi Kuliah – [14]: SISTEM PENDUKUNG KEPUTUSAN KLINIS

Uji Kredibilitas SPK Klinis

Dwi Kurnia Wibowo, M.Kom.

Program Studi Informatika

Fakultas Teknik

Universitas Jenderal Soedirman

Sasaran

Mahasiswa mengerti dan memahami beberapa cara untuk menguji kredibilitas SPK Klinis.

Referensi Utama

- Bemmel, J.H.; dan Musen, M.S. 1997. Handbook of Medical Informatics. Netherlands: Bohn Srafleu Van Loghum.
 - Kusumadewi, Sri, dkk. 2009. *Informatika Kesehatan*. Yogyakarta: Graha Ilmu

Kredibilitas SPK Klinis

- Setelah SPK klinis dibangun, langkah akhir yang perlu dilakukan adalah menguji kredibilitas & validitas sistem.
- Uji tersebut dilakukan dalam rangka mengevaluasi sejauh mana kinerja sistem yang dibuat.

Kredibilitas Sistem

- Metode-metode pengujian kredibilitas sistem:
 - · One Feature: Single Decision Threshold;
 - Performance of Decision Models (Kinerja Model Keputusan);
 - Multiple Diseases;

Apabila ingin dibedakan antara pasien-pasien yang terkena penyakit X, dengan pasien yang tidak terkena penyakit X, melalui 1 fitur, maka dapat digunakan decision threshold (nilai ambang keputusan).

- Secara umum, ada 4 kemungkinan keputusan dan 2 tipe kesalahan yang mungkin terjadi, yaitu:
 - True Positive (TP), yaitu presentase orang-orang yang menderita penyakit X (teridentifikasi positif terserang penyakit), dan model keputusan juga memutuskan orang-orang tersebut terserang penyakit X.
 - True Negative (TN), yaitu presentase orang-orang yang tidak menderita penyakit X, dan model keputusan juga tidak memutuskan orang-orang tersebut terserang penyakit X.

- False Positive (FP), yaitu presentase orang-orang yang tidak menderita penyakit X (tidak teridentifikasi positif terserang penyakit), namun model keputusan memutuskan orang-orang tersebut terserang penyakit X.
- False Negative (FN), yaitu presentase orang-orang yang tidak menderita penyakit X (teridentifikasi positif terserang penyakit), namun model keputusan tidak memutuskan orang-orang tersebut terserang penyakit X.

- Jumlah prosentase: TP + FN = 100%; demikian pula FP + TN = 100%.
- Dalam bentuk pecahan: TP + FN = 1; demikian pula FP + TN = 1.
- Tujuan dari sistem ini adalah meminimasikan prosentase error (FP dan FN).
- Pemilihan nilai threshold juga mempengaruhi pengambilan keputusan.

• Contoh (1):

- Suatu model keputusan dibangun untuk melakukan diagnosis terhadap penderita ischemic stroke.
- Satu gejala digunakan untuk acuan diagnosis, yaitu "permulaan serangan stroke".
- Threshold ditetapkan sebesar 1 menit, yang berarti bahwa apabila pasien mengalami permulaan serangan stroke > 1 menit, maka pasien akan terdiagnosis ischemic stroke.
- Sistem tersebut kemudian diujikan pada 200 sampel.

- Hasil pengujian menunjukkan bahwa:
 - 125 orang dinyatakan positif terserang ischemic stroke, baik secara nyata maupun hasil uji sistem (TP);
 - 30 orang dinyatakan negatif terserang ischemic stroke, baik secara nyata maupun hasil uji sistem (TN);
 - 25 orang sebenarnya positif terserang ischemic stroke, namun hasil uji sistem menyatakan negatif (FN);
 - 20 orang sebenarnya negatif terserang *ischemic stroke*, namun hasil uji sistem menyatakan positif (FP);

Kemudian dapat dihitung:

- True Positive Value:
- False Negative Value :
- False Positive Value :
- True Negative Value :

$$TP = \frac{125}{125 + 25} \times 100\% = 83,33\%$$

$$FN = \frac{25}{125 + 25} \times 100\% = 16,67\%$$

$$FP = \frac{20}{20 + 30} \times 100\% = 40\%$$

$$TN = \frac{30}{20 + 30} \times 100\% = 60\%$$

- Biasanya, hanya ada 2 parameter FP dan FN (atau komplemennya: TN dan TP), untuk 2 model kelompok keputusan (misal: penyakit A & B, atau sehat & abnormal).
- Suatu cara yang biasa digunakan untuk mengekspresikan kinerja ini adalah dengan menggunakan matriks berukuran 2 x 2, atau secara umum berukuran n x n, atau n x m.

Model keputusan

Kinerja metode keputusan:

• Sensitivitas:
$$TPV = \frac{a}{a+b}$$

• Kekhususan:
$$TNV = \frac{d}{c+d}$$

• Terprediksi benar:
$$\frac{a}{a+c}$$

• Terprediksi salah:
$$\frac{d}{b+d}$$

• Prevalensi :
$$\frac{a+b}{a+b+c+d}$$

Total kinerja (T) metode pendukung keputusan untuk diagnosis merupakan total keputusan yang bernilai benar dibagi dengan total nilai keputusan:

 $T = \frac{a+d}{a+b+c+d}$

Total kinerja (T) juga dapat diekspresikan dengan menggunakan mean dari TP dan TN:

$$T = \frac{TP + TN}{2}$$

nilai ini terletak antara 0 sampai 1. Total kinerja (T) yang lain juga dapat diekspresikan dengan: T = TP + TN - 1

nilai ini terletak antara -1 sampai 1

Contoh:

- Suatu model keputusan dibangun untuk melakukan diagnosis terhadap penderita ischemic stroke.
- Satu gejala digunakan untuk acuan diagnosis, yaitu "permulaan serangan stroke".
- Threshold ditetapkan sebesar 1 menit, yang berarti bahwa apabila pasien mengalami permulaan serangan stroke > 1 menit, maka pasien akan terdiagnosis ischemic stroke.
- Sistem tersebut kemudian diujikan pada 200 sampel.

- Hasil pengujian menunjukkan bahwa:
 - 125 orang dinyatakan positif terserang ischemic stroke, baik secara nyata maupun hasil uji sistem (TP);
 - 30 orang dinyatakan negatif terserang *ischemic stroke*, baik secara nyata maupun hasil uji sistem (TN);
 - 25 orang sebenarnya positif terserang ischemic stroke, namun hasil uji sistem menyatakan negatif (FN);
 - 20 orang sebenarnya negatif terserang ischemic stroke, namun hasil uji sistem menyatakan positif (FP);

- Pada contoh, akan diperoleh:
 - \circ Sensitivitas = 125/(125+25) = 0.83
 - Kekhususan = 30/(20+30) = 0.6
 - Terprediksi benar = 125/(125+20) = 0.86
 - Terprediksi salah = 30/(25+30) = 0.55
 - Prevalensi penyakit = (125+25)/200 = 0,75
 - \circ T: Total kinerja = (125+30)/200 = 0.78
 - \circ T: Mean = (0.83+0.6)/2 = 0.72
 - \circ T: 0,83 + 0,6 1 = 0,43

Multiple Diseases

- Apabila diagnosa dilakukan untuk 2 penyakit atau lebih, maka dapat digunakan metode statistik untuk meranking penyakit sesuai dengan probabilitas kejadiannya pada pasien.
- Outcome dari hasil pengujian dapat disajikan dengan menggunakan matriks yang berukuran K x L, dengan K adalah banyaknya penyakit dan L adalah banyaknya penyakit yang benar terjadi.

Multiple Diseases

Contoh, ada K=8 jenis penyakit yang akan dibedakan, dan L = 9 kondisi pasien yang benar-benar terjadi; yaitu:

N : Jumlah pasien

NL : Normal

LVH : Left Ventricular Hypertrophy

RVH : Right Ventricular Hypertrophy

BVH : Biventricular Hypertrophy

AMI : Anterior Myocardial Infarction

IMI : Interior Myocardial Infarction

MIX : kombinasi AMI & IMI

OTH : kategori diagnosis yang lain

VH+MI: kombinasi antara Verticular Hypertropy & Myocardial

Infraction.

Multiple Diseases

CDSS	N	NL	LVH	RVH	BVH	AMI	IMI	MIX	ОТН	VH+ MI
NL	328	95,5	0,9	0,4	0,0	1,4	1,6	0,0	0,1	0,0
LVH	183	19,0	69,0	0,5	0,0	4,3	6,9	0,2	0,0	0,0
RVH	55	40,6	6,7	45,8	2,7	1,2	2,1	0,0	0,9	0,0
BVH	53	22,0	54,7	14,5	1,6	5,3	1,9	0,0	0,0	0,0
AMI	170	14,3	2,6	0,6	0,0	80,0	1,8	0,7	0,0	0,0
IMI	273	19,8	2,6	0,2	0,0	0,7	76,7	0,1	0,0	0,0
MIX	73	2,5	4,1	1,6	0,0	51,6	37,4	2,7	0,0	0,0
VH+MI	31	22,6	0,0	0,0	0,0	0,0	0,0	0,0	16,1	61,3