

Tài liệu tham khảo

- [1] GS.TS. Nguyễn Hữu Anh, Toán rời rạc, Nhà xuất bản giáo dục.
- [2] TS.Trần Ngọc Hội, Toán rời rạc

12/2008

Đại Số Bool
Một đại số Bool (A,∧,∨) là một tập hợp A ≠ Ø với hai phép toán ∧, ∨, tức là hai ánh xạ:
∧: A×A → A
(x,y) →x∧y
và ∨: A×A → A
(x,y) →x∨y
thỏa 5 tính chất sau:

Đại Số Bool

- Tính giao hoán: $\forall x,y \in A$
 - $x \wedge y = y \wedge x;$
- $x \lor y = y \lor x;$ Tính kết hợp: $\forall x,y,z \in A$

 $(x \wedge y) \wedge z = x \wedge (y \wedge z);$

 $(x \lor y) \lor z = x \lor (y \lor z).$

■ Tính phân bố: $\forall x,y,z \in A$

 $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z);$ $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z).$

2/12/2008

Đại Số Bool

$$x \wedge 1 = 1 \wedge x = x;$$

$$x \lor 0 = 0 \lor x = x$$
.

■ Mọi phần tử đều có phần tử bù: $\forall x \in A$, $\exists \overline{\mathbf{X}} \in A$,

$$x \wedge \overline{\mathbf{x}} = \overline{\mathbf{x}} \wedge x = 0;$$

$$x \vee \overline{X} = \overline{X} \vee x = 1.$$

2/12/2008

Đại Số Bool

Ví dụ:

Xét F là tập hợp tất cả các dạng mệnh đề theo n biến $p_1,\ p_2,\ldots,p_n$ với hai phép toán nối liền $\wedge,$ phép toán nối rời $\vee,$ trong đó ta đồng nhất các dạng mệnh đề tương đương. Khi đó F là một đại số Bool với phần tử 1 là hằng đúng 1, phần tử 0 là hằng sai 0, phần tử bù của dạng mệnh đề E là dạng mệnh đề bù \overline{E}

2/12/2008

Đại Số Bool

Xét tập hợp $B = \{0, 1\}$. Trên B ta định nghĩa hai phép toán \land, \lor như sau:

Λ	0	1		V	0	
0	0	0		0	0	
1	Δ.	1	ĺ	1	-1	

Khi đó, B trở thành một đại số Bool

2/12/2008

Đại Số Bool

Cho đại số Bool (A, \land, \lor) . Khi đó với mọi $x,y \in A$, ta có:

- 1. $x \wedge x = x$; $x \vee x = x$.
- 2. $x \land 0 = 0 \land x = 0$; $x \lor 1 = 1 \lor x = 1$.
- 3. Phần tử bù của x là duy nhất $và \ \overline{\overline{x}} = x; \quad \overline{1} = 0; \quad \overline{0} = 1.$
- 4) Công thức De Morgan:

$$\frac{\overline{x \wedge y} = \overline{x} \vee \overline{y};}{\overline{x \vee y} = \overline{x} \wedge \overline{y}.}$$

5. Tính hấp thụ: $x \land (x \lor y) = x$; $x \lor (x \land y) = x$.

2/12/2008

Định nghĩa hàm Bool

Môt hàm Bool n biến là một ánh xa

$$f: B^n \to B$$
, trong đó $B = \{0, 1\}$.

Một hàm Bool n biến là một hàm số có dạng:

 $\mathbf{f} = \mathbf{f}(\mathbf{x_1, x_2, ..., x_n})$, trong đó mỗi biến trong $\mathbf{x_1}, \mathbf{x_2, ..., x_n}$ chỉ nhận hai giá trị 0, 1 và f nhận giá trị trong $\mathbf{B} = \{0, 1\}$.

Ký hiệu $\mathbf{F_n}$ để chỉ tập các hàm Bool biến.

Ví dụ: Dạng mệnh đề $E=E(p_1,p_2,\ldots,p_n)$ theo n biến $p_1,\,p_2,\ldots,p_n$ là một hàm Bool n biến.

10

Bảng chân trị

Xét hàm Bool n biến $f(x_1,x_2,...,x_n)$

Vì mỗi biến x_i chỉ nhận hai giá trị 0, 1 nên chỉ có 2^n trường hợp của bộ biến (x_1,x_2,\ldots,x_n) .

Do đó, để mô tả f, ta có thể lập bảng gồm 2ⁿ hàng ghi tất cả các giá trị của f tùy theo 2ⁿ trường hợp của biến. **Ta gọi đây là bảng chân trị của f**

2/12/2008

11

Ví dụ

Xét kết qủa f trong việc thông qua một quyết định dựa vào 3 phiếu bầu x, y, z

- Mỗi phiếu chỉ lấy một trong hai giá trị: 1 (tán thành) hoặc 0 (bác bỏ).
- Kết qủa f là 1 (thông qua quyết định) nếu được đa số phiếu tán thành, là 0 (không thông qua quyết định) nếu đa số phiếu bác bỏ.

Khi đó f
 là hàm Bool theo 3 biến x, y, z có bảng chân trị như sau:

2/12/2008

12

Các phép toán trên hàm Bool

$$\forall x = (x_1, x_2, ..., x_n) \in B^n,$$

 $(f \land g)(x) = f(x)g(x)$

Dễ thấy:

$$f \wedge g \in F_n \ va \ (f \wedge g)(x) = \ min\{f(x), \, g(x)\}$$

Ta thường viết fg thay cho $f \wedge g$

2/12/2008

7

Các phép toán trên hàm Bool

3) Phép lấy hàm bù:

Với $f \in F_n$ ta định nghĩa hàm bù của f như sau:

$$\overline{f} = 1 - f$$

2/12/2008

Dạng nối rời chính tắc của Hàm Bool

Xét tập hợp các hàm Bool của n biến Fn theo n biến x_1 , $x_2,...,x_n$

- Mỗi hàm bool x_i hay X̄_i được gọi là từ đơn.
- Đơn thức là tích khác không của một số hữu hạn từ đơn.
- Từ tối tiểu là tích khác không của đúng n từ đơn.
- Công thức đa thức là công thức biểu diễn hàm Bool thành tổng của các đơn thức.
- Dạng nối rời chính tắc là công thức biểu diễn hàm Bool thành tổng của các từ tối tiểu.

2/12/2008

19

Công thức đa thức tối tiểu

■ Đơn giản hơn

Cho hai công thức đa thức của một hàm Bool:

 $f = m_1 \lor m_2 \lor \lor m_k (F)$

 $f = M_1 \vee M_2 \vee ... \vee M_1$ (G)

Ta nói rằngcông thức F đơn giản hơn công thức G nếu tốn tại đơn ánh h: $\{1,2,...,k\} \rightarrow \{\ 1,2,...,l\}$ sao cho với mọi $i\in \{1,2,...,k\}$ thì số từ đơn của m_i không nhiều hơn số từ đơn của $M_{h(i)}$

2/12/2008

20

Công thức đa thức tối tiểu

■ Đơn giản như nhau

Nếu F đơn giản hơn G và G đơn giản hơn F thì ta nói F và G đơn giản như nhau

** Công thức đa thức tối tiểu:

Công thức F của hàm Bool f được gọi là tối tiểu nếu với bất kỳ công thức G của f mà đơn giản hơn F thì F và G đơn giản như nhau

2/12/2008

21

Phương pháp biểu đồ Karnaugh.

Xét f là một hàm Bool theo n biến $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$ với n = 3 hoặc 4.

Trường hợp n = 3:

f là hàm Bool theo 3 biến x,y,z. Khi đó bảng chân trị của f gồm 8 hàng. Thay cho bảng chân trị của f ta vẽ một bảng chữ nhật gồm 8 ô, tương ứng với 8 hàng của bảng chân trị, được đánh dấu như sau:

	X	X	$\overline{\mathbf{X}}$	$\overline{\mathbf{X}}$	
z	101	111	011	001	
$\overline{\mathbf{Z}}$	100	110	010	000	
	\overline{y}	v	y	y	_

Với qui ước:

- 1. Khi một ô nằm trong dãy được đánh dấu bởi x thì tại đó x =1, bởi \overline{x} thì tại đó x =0, tương tự cho y, z.
- 2.Các ô tại đó f bằng 1 sẽ được đánh dấu (tô đậm hoặc gạch chéo). Tập các ô được đánh dấu được gọi là biểu đồ Karnaugh của f, ký hiệu là kar(f).

Trường hợp n = 4:

f là hàm Bool theo 4 biến x, y, z, t. Khi đó bảng chân trị của f gồm 16 hàng. Thay cho bảng chân trị của f ta vẽ một bảng chữ nhật gồm 16 ô, tương ứng với 16 hàng của bảng chân trị, được đánh dấu như sau:

	X	x	$\overline{\mathbf{x}}$	$\overline{\mathbf{x}}$	
z	1010	1110	0110	0010	ī
z	1011	1111	0111	0011	t
$\overline{\mathbf{z}}$	1001	1101	0101	0001	t
$\overline{\mathbf{Z}}$	1000	1100	0100	0000	ī
	y	у	у	y	

Với qui ước:

- 1. Khi một ô nằm trong dãy được đánh dấu bởi x thì tại đó x =1, bởi $\overline{\chi}$ thì tại đó x =0, tương tự cho y, z, t.
- Các ô tại đó f bằng 1 sẽ được đánh dấu (tô đậm hoặc gạch chéo). Tập các ô được đánh dấu được gọi là biểu đồ karnaugh của f, ký hiệu là kar(f).
- 3. Trong cả hai trường hợp, hai ô được gọi là kề nhau (theo nghĩa rộng), nếu chúng là hai ô liền nhau hoặc chúng là ô đầu, ô cuối của cùng một hàng (cột) nào đó. Nhận xét rằng, do cách đánh dấu như trên, hai ô kề nhau chỉ lệch nhau ở một biến duy nhất.

Định lý

Cho f, g là các hàm Bool theo n biến $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$. Khi đó:

- a) $kar(fg) = kar(f) \cap kar(g)$.
- $b)kar(f \lor g) = kar(f) \cup kar(g).$
- c)kar(f) gồm đúng một ô khi và chỉ khi f là một từ tối tiểu

Tế bào

Tế bào là hình chữ nhật (theo nghĩa rộng) gồm 2^{n-k} ô

Nếu T là một tế bào thì T là biểu đồ karnaugh của một đơn thức duy nhất m, cách xác định m như sau: lần lượt chiếu T lên các cạnh, nếu toàn bộ hình chiếu nằm trọn trong một từ đơn nào thì từ đơn đó mới xuất hiện trong m

<u>Ví du 1:</u>

Xét các hàm Bool theo 4 biến x, y, z, t.

Biểu đồ karnaugh của đơn thức $x\overline{y}z\overline{t}$ là

<u>Ví du 2:</u>

Xét các hàm Bool theo 4 biến x, y, z, t.

Biểu đồ karnaugh của đơn thức $\ \overline{\mathbf{y}}\mathbf{z}\overline{\mathbf{t}}$ là

 $\label{eq:continuous} \begin{array}{c} \underline{\text{V\'i du 3:}} \\ \text{X\'et c\'ac h\`am Bool theo 4 bi\'en x, y, z, t.} \end{array}$

Biểu đồ karnaugh của đơn thức $\ \overline{y}\overline{t}$ là

<u>Ví du 4:</u>

Xét các hàm Bool theo 4 biến x, y, z, t.

Biểu đồ karnaugh của đơn thức $\ \overline{t}$ là

<u>Ví du 5:</u>

Xét các hàm Bool theo 4 biến x, y, z, t.

Tế bào sau:

Là biểu đồ Karnaugh của đơn thức nào?

là biểu đồ karnaugh của đơn thức $y\overline{t}$.

Tế bào lớn.

Cho hàm Bool f. Ta nói T là một tế bào lớn của kar(f) nếu T thoả hai tính chất sau:

- a) T là một tế bào và $T \subseteq kar(f).$
- b) Không tồn tại tế bào T' nào thỏa T' \neq T và

 $T\subseteq T'\subseteq kar(f).$

Kar(f) có 6 tế bào lớn như sau:

Thuật toán.

Bước 1: Vẽ biểu đồ karnaugh của f.

Bước 2: Xác định tất cả các tế bào lớn của kar(f).

Bước 3: Xác định các tế bào lớn mà nhất thiết phải chon.

Ta nhất thiết phải chọn tế bào lớn T khi tồn tại một ô của kar(f) mà ô này chỉ nằm trong tế bào lớn T và không nằm trong bất kỳ tế bào lớn nào khác.

Thuật toán.

Bước 4: Xác định các phủ tối tiểu gồm các tế bào lớn.

Nếu các tế bào lớn chọn được ở bước 3 đã phủ được kar(f) thì ta có duy nhất một phủ tối tiểu gồm các tế bào lớn của kar(f).

Nếu các tế bào lớn chọn được ở bước 3 chưa phủ được kar(f) thì xét một ô chưa bị phủ, sẽ có ít nhất hai tế bào lớn chứa ô này, ta chọn một trong các tế bào lớn này. Cứ tiếp tục như thế ta sẽ tìm được tất cả các phủ gồm các tế bào lớn của kar(f). Loại bỏ các phủ không tối tiểu, ta tìm được tất cả các phủ tối tiểu gồm các tế bào lớn của kar(f).

Thuật toán.

Bước 5: Xác định các công thức đa thức tối tiểu của f.

Từ các phủ tối tiểu gồm các tế bào lớn của kar(f) tìm được ở bước 4 ta xác định được các công thức đa thức tương ứng của f. So sánh các công thức trên . Loại bỏ các công thức đa thức mà có một công thức đa thức nào đó thực sự đơn giản hơn chúng. Các công thức đa thức còn lại chính là các công thức đa thức tối tiểu của f.

Một số ví dụ

Ví dụ 1:

Tìm tất cả các công thức đa thức tối tiểu của hàm Bool:

$$f(x, y, z, t) = xyzt \lor x\bar{y} \lor x\bar{z} \lor yz \lor xy(\bar{z} \lor \bar{t})$$

Giải

Ta có

 $f = xyzt \lor x\overline{y} \lor x\overline{z} \lor yz \lor xy\overline{z} \lor xy\overline{t}$

Bước 1: Vẽ kar(f)

Bước 2: Kar(f) có các tế bào lớn như sau:

Bước 3: Xác định các tế bào lớn nhất thiết phải chọn.

- Ô 1 nằm trong một tế bào lớn duy nhất x. Ta chọn x.
- Ô 3 nằm trong một tế bào lớn duy nhất yz. Ta chọn yz.

 ${\bf B}{\bf u}\acute{\bf o}{\bf c}$ 4: Xác định các phủ tối tiểu gồm các tế bào lớn.

Các ô được $\,$ các tế bào lớn đã chọn ở bước 3 phủ như sau:

	x	X	$\overline{\boldsymbol{x}}$	$\overline{\mathbf{X}}$	
z	1	2	3		ī
z	4	5	6		t
$\overline{\mathbf{Z}}$	7	8			t
$\overline{\mathbf{z}}$	9	10			ī

Ta được duy nhất một phủ tối tiểu gồm các tế bào lớn của kar(f): x; yz. **Bước 5:** Xác định các công thức đa thức tối tiểu của f.

Ứng với phủ tối tiểu gồm các tế bào lớn tìm được ở bước 4 ta tìm được duy nhất một công thức đa thức tối tiểu của f:

$$f = x \vee yz$$

 ${\bf Bu\acute{o}c}$ 3: Xác định các tế bào lớn nhất thiết phải chọn

- 1. Ô 1 nằm trong một tế bào lớn duy nhất $\overline{x}\overline{t}$ Ta chọn $\overline{x}\overline{t}$
- 2. Ô 4 nằm trong một tế bào lớn duy nhất ${\bf xzt}$ Ta chon ${\bf xzt}$
- 3. Ô 6 nằm trong một tế bào lớn duy nhất $\,\overline{z}\overline{t}\,$ Ta chọn $\,\overline{z}\overline{t}\,$

Bước 4: Xác định các phủ tối tiểu gồm các tế bào lớn

Các ô được $\,$ các tế bào lớn đã chọn ở bước 3 phủ như sau:

Còn lại ô 5 chưa bị phủ. Ô 5 nằm trong 2 tế bào lớn: $\overline{x}\,\overline{y}z$ và $\overline{y}zt$. Để phủ ô 5 ta có hai cách chọn: $\overline{x}\,\overline{y}z$ hoặc $\overline{y}zt$. Ta được hai phủ tối tiểu gồm các tế bào lớn của kar(f):

 $\overline{x}\overline{t}$; xzt; $\overline{z}\overline{t}$; \overline{x} $\overline{y}z$ $\overline{x}\overline{t}$; xzt; $\overline{z}\overline{t}$; $\overline{y}zt$

Bước 5: Xác định các công thức đa thức tối tiểu của f. Ứng với hai phủ tối tiểu gồm các tế bào lớn tìm được ở bước 4 ta tìm được hai công thức đa thức của f:

$$f = \overline{x}\overline{t} \vee xzt \vee \overline{z}\overline{t} \vee \overline{x}\overline{y}z \qquad (F_1)$$

$$f = \overline{x}\overline{t} \lor xzt \lor \overline{z}\overline{t} \lor \overline{y}zt \qquad (F_2)$$

Ta thấy hai công thức trên đơn giản như nhau. Do đó, chúng đều là hai công thức đa thức tối tiểu của f.

Vídụ 3(BÀI 7Đề2007)

 Hãy xác định các công thức đa thức tối tiểu của hàm Bool:

$$f = xz(\bar{y} \vee \bar{t}) \vee \bar{x}\bar{z}\bar{t} \vee z(yt \vee \bar{x}\bar{y})$$

- Các tế bào lớn: (0,5đ) $xz, \bar{y}z, zt, \bar{x}\bar{z}\bar{t}, \bar{x}\bar{y}\bar{t}$
- Các tế bào lớn bắt buộc phải chọn là $xz, zt, \overline{x} \, \overline{z} \, \overline{t}$
- Còn lại ô (1,4) có thể nằm trong 2 tế bào lớn

$$\overline{y}z, \overline{x} \overline{y} \overline{t}$$

Do đó có 2 công thức đa thức tương ứng với phủ tối tiểu: (0, 5đ)

$$f = xz \lor zt \lor \overline{x} \ \overline{z} \ \overline{t} \lor \overline{x} \ \overline{y} \ \overline{t}$$

$$f = xz \lor zt \lor \overline{x} \ \overline{z} \ \overline{t} \lor \overline{y} z$$

Trong đó chỉ có công thức thứ hai là tối tiểu (0,25đ)

Mạng logic (Mạng các cổng)

Định nghĩa

Một mạng logic hay một mạng các cổng là một hệ thống có dạng:

trong đó: - Input: $\mathbf{x_1},\,\mathbf{x_2},\!...,\,\mathbf{x_n}$ là các biến Bool.

- Output f(x₁, x₂,..., x_n) là hàm Bool.

Ta nói mạng logic trên tổng hợp hay biểu diễn hàm Bool f. Một mạng logic bất kỳ luôn luôn được cấu tạo từ một số mạng sơ cấp mà ta gọi là các cổng.

Example of Circuits

Example. Design a circuit to simulate the voting of a committee of three persons based on the majority

Solution. The voting of three persons are represented by three Boolean variables x, y, z: 1 for YES and 0 for NO

Example of Circuits

Example. Design a circuit for a light controlled by two switches

Solution. The switches are represented by two Boolean variables *x*, *y* : 1 for CLOSED and 0 for OPEN

Let F(x, y) = 1 when the light is ON and 0 when it is OFF Assume that F(1, 1) = 1 when both switches are closed

Then the Boolean function F(x, y) is determined by the truth table

x	У	F(x, y)
1	1	1
1	0	0
0	1	0
0	0	1

The corresponding circuit

Example. Design a circuit for a light controlled by three switches

Solution. The switches are represented by three Boolean variables *x*, *y*, *z* : 1 for CLOSED and 0 for OPEN

Let F(x,y,z) = 1 when the light is ON and 0 when it is OFF

Assume that F(1, 1, 1) = 1 when three switches are closed

Then the Boolean function F(x, y, z) is determined by the truth table

X	У	Z	F(x, y)
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	0

 \blacksquare This formula contains only three literals. It allows us to design a circuit to represent f with only one OR gate with three inputs

Đề thi

- a) Tìm dạng nối rời chính tắc của f
- b) Xác định các công thức đa thức tối tiểu của f
- c) Vẽ mạng các cổng tổng hợp f

2000: $f = \overline{x}z(y \vee \overline{t}) \vee xt(\overline{y} \vee z) \vee x(y\overline{z} \vee \overline{y} \overline{t})$

2001: $f = (\overline{x} \ \overline{y} \lor xy)(\overline{z} \lor t) \lor z(xt \lor \overline{y} \ \overline{t})$

2002: $f = (\overline{y} \overline{z} \vee yz)(x \vee \overline{t}) \vee t(xy \vee \overline{x} \overline{z})$

2003: $f = (\overline{x} \ \overline{y} \lor xy)(\overline{z} \lor t) \lor z(xt \lor \overline{y} \ \overline{t}) \lor y\overline{z} \ \overline{t}$

2004: $f = (x \lor y)t \lor \overline{x}(y \lor \overline{t}) \lor \overline{y} \, \overline{z}(x \lor \overline{t})$

2005: $f = \overline{x}z(\overline{y} \vee \overline{t}) \vee x\overline{y} \overline{z} \vee \overline{x}(yt \vee \overline{z} \overline{t})$