

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES, MIHINTALE

B.Sc. General degree in Applied Sciences

Second Year Semester I Examination – April / May 2016 Probability and Statistics II - MAA 2302

Candidates with mid semester marks:

Answer TWO questions from part A and TWO questions from part B including FIRST question.

Time allowed: TWO hours

Candidates without mid semester marks:

1.

Answer THREE questions from part A including FIRST question and ALL questions from part B.

Time allowed: THREE hours

Statistical tables and Calculators will be provided.

Part A

(a) X and Y be jointly continuous random variables with joint PDF

$$f_{X,Y}(x,y) = \begin{cases} 6e^{-(2x+3y)} & ; x,y \ge 0\\ 0 & ; Otherwise \end{cases}$$

- i. Are X and Y independent? Justify your answer.
- ii. Find E(Y|X>2).
- iii. Find P(X > Y).
- (b) Let X be a continuous random variable with PDF given by $f_X(x)=12e^{-|x|}$, for all $x \in \mathbb{R}$.

If $Y = X^2$ find the CDF of Y.

(c) Let $X \sim Uniform(\frac{\pi}{2}, \pi)$ and Y = Sin(X). Find $F_y(y)$.

- 2.
- (a) Let X and Y be two discrete random variables.
 - i. Define joint probability mass function and independence of X and Y.
 - ii. If X and Y have means E[X] and E[Y] respectively, Show that cov(X,Y) = E[XY] E[X]E[Y]
- (b) The number of contracts awarded to firm A (X), and Y, the number of contracts awarded to firm B, is given by the entries in the following table.

Y	X			$P_{Y}(y)$
	0	1	2	
0	1/9	in a l	1/9	4/9
1	2/9	2/9		
2	1/9		0	1/9
$P_X(x)$	4/9	4/9		1

- i. Find the missing values in order to fill the table.
- ii. Are X and Y independent? Why?
- iii. Construct conditional probability distribution of X given $\forall y$.
- iv. Find the covariance between X and Y.
- v. Find the variance of W = 3X + 3Y.
- 3. Let X be a continuous random variable and A an event with probability, where $0 < \theta < 1$. Conditional on A, X has cumulative distribution function $F_1(x)$ and expectation μ_1 while, conditional on A' (the complement of A), X has cumulative distribution function $F_2(x)$ and expectation μ_2 . Justify the expression

 $F(x) = \theta F_1(x) + (1 - \theta)F_2(x)$ for the cumulative distribution function F(X) of X and hence deduce that

$$E(x) = \theta \mu_1 + (1 - \theta)\mu_2$$

Small chocolate biscuits of a certain brand are sold in packets of 6 with a nominal weight of 25 g. The weight (g) of an individual biscuit is a N(4.50.25), random variable, and the weights of different biscuits are independent.

- i. Find the probability that, in total, 6 of these biscuits weigh less than 25 g.
- ii. When 6 biscuits are put together to form a packet, if their total weight is found to be less than 25 g then a seventh biscuit is added to the packet. Find the mean weight of a packet of biscuits.
- iii. If it is simply known that the weight of an individual biscuit is a $N(4.5, \sigma^2)$ random variable, for what values of σ is the probability less than 0.01 that 6 biscuits weigh less than 25 g?

4. A process for refining sugar yields up to 1 ton of pure sugar per day, but the actual amount produced, X is a random variable because of machine breakdowns and other slowdowns. Suppose that X has density function given by,

$$f(x) = \begin{cases} 2x & ; 0 \le x \le 1 \\ 0 & ; 0.w \end{cases}$$

Thus the daily profit, in hundreds of dollars, is Y = 3X - 1. Find the probability density function for Y using

- i. Method of distribution function
- ii. Method of transformation

Part B

- (a) Define **TWO** of the following terms:
 - i. Unbiased Estimator
 - ii. Mean Square Error (MSE)
 - iii. Efficient Estimator
 - (b) Let X_1, \dots, X_n be a random sample from a distribution with mean μ and $var(X) = \sigma^2$. Show that
 - i. \bar{X} is a unbiased estimator for μ .
 - ii. $S^2 = 1/(n-1)\sum_{i=1}^n (X_i \overline{X})^2$; S^2 is a unbiased estimator of σ^2 .
 - (c) Let X_1, \ldots, X_n be a random sample from a from a poisson distribution with prob. $P(x, \mu) = (e^{-\mu}\mu^x)/x!$. If $T_1 = \bar{X}$ and $T_2 = \frac{1}{2}\sum_{i=1}^{n-1}\frac{x_i}{n-1} + \frac{x_n}{2}$ are estimators of μ . Then determine the efficient estimator of μ .
- (a) Define the following terms:

6.

- i. Rao-Blackwell improvement theorem.
- ii. Maximum likelihood estimation
- (b) A random variable x follows a poison distribution with parameter μ and show that the maximum likelihood estimation of μ is \overline{x}
- (c) When $X_i \sim N(\mu, \sigma^2)$: i=1, 2,...,n and μ and σ^2 are unknown determine maximum likelihood estimation of μ and σ^2 .

- 7.
- (a) Let $X_1, X_2, ..., X_n$ be a random sample of size n taken from a normal population with unknown mean μ and unknown variance σ^2 . Construct a $100(1-\alpha)\%$ confident interval for the ratio of two population variances, σ_2^2/σ_1^2 .
- (b) A study was conducted to study the effect of an oral anti-plaque rinse on plaque buildup on teeth. For this study, 14 subjects were divided into 2 groups of 7 subjects each. Both groups were assigned to use oral rinses for a 2-week period. Group 1 used rinse that contained an antiplaque agent, while group 2 received a similar rinse except that it contained no antiplaque agent. A plaque index that measures the plaque buildup was recorded after 2 weeks. The sample mean and sample standard deviation for the 2 groups are shown below:

	Group 1	Group 2
Sample size	7	7
Sample mean	0.78	1.26
Sample standard deviation	0.32	0.31

Construct 95% confidence interval for the ratio of two population variances, σ_2^2/σ_1^2 stating any assumptions you make.