数值计算方法 总复习

张晓平

November 21, 2013

目录

- 1 范数、谱半径与条件数
- 2 解线性方程组的直接法
- ③ 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 曲线拟合
- 7 数值积分
- № 8. 常微分方程的数值解法

- 1 范数、谱半径与条件数
- ② 2 解线性方程组的直接法
- ③ 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 7 数值积分
- ⑧ 8. 常微分方程的数值解法

- 1 范数、谱半径与条件数
 - 1.1 向量范数
 - 1.2 矩阵范数
 - 1.3 谱半径
 - 1.4 条件数
- ② 2 解线性方程组的直接法
- ③ 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 数值积分
- 图 8. 常微分方程的数值解法

1.1 向量范数

定义 (p范数)

$$||x||_p = (|x_1|^p + \dots + |x_n|^p)^{\frac{1}{p}}, p \ge 1$$

• 1范数

$$||x||_1 = |x_1| + \cdots + |x_n|$$

• 2范数

$$||x||_2 = (|x_1|^2 + \dots + |x_n|^2)^{\frac{1}{2}} = \sqrt{x^T x}$$

• ∞范数

$$||x||_{\infty} = \max_{i=1,\cdots,n} \{|x_i|\}$$

- 1 范数、谱半径与条件数
 - 1.1 向量范数
 - 1.2 矩阵范数
 - 1.3 谱半径
 - 1.4 条件数
- ② 2 解线性方程组的直接法
- ③ 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 数值积分
- 图 8. 常微分方程的数值解法

1.2 矩阵范数

定理

设 $A = (a_{ij}) \in \mathbf{R}^{n \times n}$,则

• 列范数

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

• 行范数

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

• 谱范数

$$||A||_2 = \sqrt{\lambda_{max}(A^T A)}$$

其中 $\lambda_{max}(A^TA)$ 表示 A^TA 的最大特征值。

1.2 矩阵范数

定义 (Frobenius 范数)

$$||A||_F = \sqrt{\sum_{i,j=1}^n |a_{ij}|^2}$$

它是向量2范数的自然推广。

- 1 范数、谱半径与条件数
 - 1.1 向量范数
 - 1.2 矩阵范数
 - 1.3 谱半径
 - 1.4 条件数
- ② 2 解线性方程组的直接法
- ③ 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 数值积分
- 8. 常微分方程的数值解法

1.3 谱半径

定义(谱半径)

设 $A \in \mathbb{C}^{n \times n}$, 则称

$$\rho(A) = \max\{|\lambda| : \lambda \in \lambda(A)\}\$$

为A的谱半径,其中 $\lambda(A)$ 表示A的特征值的全体。

1.3 谱半径

谱半径与矩阵范数的关系

定理

设 $A \in \mathbb{C}^{n \times n}$, 则

(1) 对 $\mathbb{C}^{n\times n}$ 上的任意矩阵范数 $\|\cdot\|$,有

$$\rho(A) \le ||A||$$

(2) $\forall \epsilon > 0$, 存在 $C^{n \times n}$ 上的矩阵范数 $||\cdot||$ 使得

$$||A|| \le \rho(A) + \epsilon$$

- 1 范数、谱半径与条件数
 - 1.1 向量范数
 - 1.2 矩阵范数
 - 1.3 谱半径
 - 1.4 条件数
- 2 2 解线性方程组的直接法
- ③ 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 数值积分
- 图 8. 常微分方程的数值解法

定义(条件数)

$$\operatorname{cond}(A) = ||A^{-1}|| \cdot ||A||$$

称为线性方程组Ax = b的条件数。

- 若cond(A)很大,则我们就说该线性方程组的求解问题是病态的,或者 说A是病态的;
- 若cond(A)很小,则我们就说该线性方程组的求解问题是良态的,或者说A是良态的。

定义(条件数)

$$\operatorname{cond}(A) = ||A^{-1}|| \cdot ||A||$$

称为线性方程组Ax = b的条件数。

- 若cond(A)很大,则我们就说该线性方程组的求解问题是病态的,或者说A是病态的;
- 若cond(A)很小,则我们就说该线性方程组的求解问题是良态的,或者说A是良态的。

定义(条件数)

$$\operatorname{cond}(A) = ||A^{-1}|| \cdot ||A||$$

称为线性方程组Ax = b的条件数。

- 若cond(A)很大,则我们就说该线性方程组的求解问题是病态的,或者说A是病态的;
- 若cond(A)很小,则我们就说该线性方程组的求解问题是良态的,或者说A是良态的。

定义(条件数)

$$\operatorname{cond}(A) = ||A^{-1}|| \cdot ||A||$$

称为线性方程组Ax = b的条件数。

- 若cond(A)很大,则我们就说该线性方程组的求解问题是病态的,或者说A是病态的;
- 若cond(A)很小,则我们就说该线性方程组的求解问题是良态的,或者 说A是良态的。

条件数与范数有关!

$$cond(A)_{1} = ||A^{-1}||_{1} \cdot ||A||_{1}$$

$$cond(A)_{2} = ||A^{-1}||_{2} \cdot ||A||_{2}$$

$$cond(A)_{\infty} = ||A^{-1}||_{\infty} \cdot ||A||_{\infty}.$$

- □ 1 范数、谱半径与条件数
- 2 解线性方程组的直接法
- ③ 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 7 数值积分
- ⑧ 8. 常微分方程的数值解法

- □ 1 范数、谱半径与条件数
- ② 2 解线性方程组的直接法
 - 2.1 矩阵的三角分解
 - 2.2 平方根法
- ③ 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 5 插值
- 6 6 曲线拟合
- 7 数值积分
- 图 8. 常微分方程的数值解法

定义(矩阵三角分解)

将矩阵A分解为一个下三角阵L和一个上三角阵U的乘积,最自然的做法是通过一系列初等变换,逐步将A约化为上三角阵,并且保证这些初等变换的乘积是一个下三角阵。

方式一: Gauss变换

定义 (Gauss变换(矩阵))

$$L_{k} = \begin{bmatrix} 1 & & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & -l_{k+1,k} & 1 & & & \\ & & \vdots & & \ddots & & \\ & & -l_{n,k} & & & 1 \end{bmatrix} \triangleq L_{k} = I - l_{k}e_{k}^{T}$$

$$l_k = (0, \dots, 0, l_{k+1,k}, \dots, l_{nk})^T \rightarrow Gauss \bowtie \mathbb{R}$$

方式一: Gauss变换

定义 (Gauss变换(矩阵))

$$L_{k} = \begin{bmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & -l_{k+1,k} & 1 & & & \\ & & \vdots & & \ddots & & \\ & & -l_{n,k} & & & 1 \end{bmatrix} \triangleq L_{k} = I - l_{k}e_{k}^{T}$$

$$l_k = (0, \dots, 0, l_{k+1,k}, \dots, l_{nk})^T \rightarrow Gauss \cap \mathbb{F}$$

方式一: Gauss变换

对于
$$x = (x_1, \dots, x_n)^T \in \mathbf{R}^n$$
,

$$L_k x = (x_1, \dots, x_k, x_{k+1} - l_{k+1,k} x_k, \dots, x_n - l_{nk} x_k)^T.$$

取

$$l_{ik}=\frac{x_i}{x_k}, \quad i=k+1, \cdots, n, \quad x_k\neq 0$$

便有

$$L_k x = (x_1, \dots, x_k, 0, \dots, 0)^T.$$

方式一: Gauss变换

性质 $(1 \rightarrow L_k)$

 L_k 的逆为

$$L_k^{-1} = I + l_k e_k^T$$

证明

$$e_k^T l_k = 0,$$

$$\therefore (I + l_k e_k^T)(I - l_k e_k^T) = I - l_k \left| e_k^T l_k \right| e_k^T = I.$$

方式一: Gauss变换

性质 $(1 \rightarrow L_k)$

 L_k 的逆为

$$L_k^{-1} = I + l_k e_k^T$$

证明.

$$e_k^T l_k = 0,$$

$$\therefore (I + l_k e_k^T)(I - l_k e_k^T) = I - l_k e_k^T l_k e_k^T = I.$$

方式一: Gauss变换

性质 $(2 \rightarrow L_k)$

设 $A \in \mathbf{R}^{n \times n}$,有

$$L_k A = (I - l_k e_k^T) A = A - l_k (e_k^T A),$$

注意 $e_k^T A \to A$ 的第k行。

例

$$\begin{bmatrix} 1 & & & \\ -2 & 1 & \\ -3 & & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 4 & 5 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ & -1 & -2 \\ & -2 & -5 \end{bmatrix}$$

方式一: Gauss变换

性质 $(2 \rightarrow L_k)$

设 $A \in \mathbf{R}^{n \times n}$,有

$$L_k A = (I - l_k e_k^T) A = A - l_k (e_k^T A),$$

注意 $e_k^T A 为 A$ 的第k行。

例

$$\begin{bmatrix} 1 \\ -2 & 1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 4 & 5 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ -1 & -2 \\ -2 & -5 \end{bmatrix}$$

方式一: Gauss变换

性质 $(3 \rightarrow L_k)$

若 i < k,则

$$L_j L_k = (I - l_j \boldsymbol{e}_j^T)(I - l_k \boldsymbol{e}_k^T) = I - l_j \boldsymbol{e}_j^T - l_k \boldsymbol{e}_k^T.$$

证明.

因为当
$$j < k$$
时,有 $e_j^T l_k = 0$ 。

例

$$\begin{bmatrix} 1 & & & & \\ -1 & 1 & & & \\ -2 & 1 & & & \\ -3 & & 1 \end{bmatrix} \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & & & & \\ -1 & 1 & & \\ -2 & & 1 & \\ -3 & & 4 & 1 \end{bmatrix}$$

方式一: Gauss变换

性质 $(3 \rightarrow L_k)$

若i < k, 则

$$L_j L_k = (I - l_j e_j^T)(I - l_k e_k^T) = I - l_j e_j^T - l_k e_k^T.$$

证明.

因为当j < k时,有 $e_j^T l_k = 0$ 。

例

$$\begin{bmatrix} 1 & & & & \\ -1 & 1 & & & \\ -2 & 1 & & & \\ -3 & & 1 \end{bmatrix} \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & & & \\ -1 & 1 & & \\ -2 & 1 & \\ -3 & & 4 & 1 \end{bmatrix}$$

方式一: Gauss变换

性质 $(3 \rightarrow L_k)$

若i < k,则

$$L_j L_k = (I - l_j e_j^T)(I - l_k e_k^T) = I - l_j e_j^T - l_k e_k^T.$$

证明.

因为当j < k时,有 $e_j^T l_k = 0$ 。

例

$$\begin{bmatrix} 1 & & & \\ -1 & 1 & & \\ -2 & 1 & & \\ -3 & & 1 \end{bmatrix} \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & & & \\ -1 & 1 & & \\ -2 & 1 & & \\ -3 & & 4 & 1 \end{bmatrix}$$

方式一: Gauss变换

方式一: Gauss变换

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}$$

$$l_1 = (0, 2, 4, 3)^T \rightarrow L_1 = \begin{bmatrix} 1 \\ -2 & 1 \\ -4 & 1 \\ -3 & 1 \end{bmatrix}$$

$$L_1 A = \begin{bmatrix} 1 \\ -2 & 1 \\ -4 & 1 \\ -3 & & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 3 & 5 & 5 \\ 4 & 6 & 8 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}$$

$$l_1 = (0, 2, 4, 3)^T \rightarrow L_1 = \begin{bmatrix} 1 \\ -2 & 1 \\ -4 & 1 \\ -3 & 1 \end{bmatrix}$$

$$L_1 A = \begin{bmatrix} 1 \\ -2 & 1 \\ -4 & & 1 \\ -3 & & & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & 3 & 5 & 5 \\ & 4 & 6 & 8 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}$$

$$l_1 = (0, 2, 4, 3)^T \rightarrow L_1 = \begin{bmatrix} 1 \\ -2 & 1 \\ -4 & 1 \\ -3 & 1 \end{bmatrix}$$

$$L_1 A = \begin{bmatrix} 1 \\ -2 & 1 \\ -4 & & 1 \\ -3 & & & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & 3 & 5 & 5 \\ & 4 & 6 & 8 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}$$

$$l_1 = (0, 2, 4, 3)^T \rightarrow L_1 = \begin{bmatrix} 1 \\ -2 & 1 \\ -4 & 1 \\ -3 & 1 \end{bmatrix}$$

$$L_1 A = \begin{bmatrix} 1 \\ -2 & 1 \\ -4 & 1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 1 \\ 3 & 5 & 5 \\ 4 & 6 & 8 \end{bmatrix}$$

$$L_1 A = \left[\begin{array}{rrr} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & 3 & 5 & 5 \\ & 4 & 6 & 8 \end{array} \right]$$

$$l_2 = (0, 0, 3, 4)^T \rightarrow L_2 = \begin{bmatrix} 1 \\ 1 \\ -3 & 1 \\ -4 & 1 \end{bmatrix}$$

$$L_2L_1A = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & -3 & 1 & \\ & -4 & & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & 3 & 5 & 5 \\ & 4 & 6 & 8 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & & 2 & 2 \\ & & 2 & 4 \end{bmatrix}$$

$$L_1 A = \left[\begin{array}{rrr} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & 3 & 5 & 5 \\ & 4 & 6 & 8 \end{array} \right]$$

$$l_2 = (0, 0, 3, 4)^T \rightarrow L_2 = \begin{bmatrix} 1 & 1 & 1 \\ -3 & 1 & 1 \\ -4 & 1 \end{bmatrix}$$

$$L_2L_1A = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & -3 & 1 & \\ & -4 & & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & 3 & 5 & 5 \\ & 4 & 6 & 8 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & 2 & 2 \\ & & 2 & 4 \end{bmatrix}$$

$$L_1 A = \left[\begin{array}{rrr} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & 3 & 5 & 5 \\ & 4 & 6 & 8 \end{array} \right]$$

$$l_2 = (0, 0, 3, 4)^T \rightarrow L_2 = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & -3 & 1 & \\ & -4 & & 1 \end{bmatrix}$$

$$L_2L_1A = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & -3 & 1 & \\ & -4 & & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & 3 & 5 & 5 \\ & 4 & 6 & 8 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & 2 & 2 \\ & & 2 & 4 \end{bmatrix}$$

$$L_1 A = \left[\begin{array}{rrr} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & 3 & 5 & 5 \\ & 4 & 6 & 8 \end{array} \right]$$

$$l_2 = (0, 0, 3, 4)^T \rightarrow L_2 = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & -3 & 1 & \\ & -4 & & 1 \end{bmatrix}$$

$$L_2L_1A = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & -3 & 1 & \\ & -4 & & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & 3 & 5 & 5 \\ & 4 & 6 & 8 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & & 2 & 2 \\ & & 2 & 4 \end{bmatrix}$$

方式一

$$L_2L_1A = \left[\begin{array}{rrr} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & & 2 & 2 \\ & & 2 & 4 \end{array} \right]$$

$$l_3 = (0, 0, 0, 1)^T \rightarrow L_3 = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & -1 & 1 \end{bmatrix}$$

$$L_3L_2L_1A = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & & 2 & 2 \\ & & 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & & 2 & 2 \\ & & & 2 \end{bmatrix} = U.$$

方式一

$$L_2L_1A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & & 2 & 2 \\ & & 2 & 4 \end{bmatrix}$$

$$l_3 = (0, 0, 0, 1)^T \rightarrow L_3 = \begin{bmatrix} 1 & 1 & 1 \\ & 1 & 1 \\ & & -1 & 1 \end{bmatrix}$$

$$L_3L_2L_1A = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & & 2 & 2 \\ & & 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & & 2 & 2 \\ & & & 2 \end{bmatrix} = U.$$

方式一

$$L_2L_1A = \left[\begin{array}{rrr} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & & 2 & 2 \\ & & 2 & 4 \end{array} \right]$$

$$l_3 = (0, 0, 0, 1)^T \rightarrow L_3 = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & -1 & 1 \end{bmatrix}$$

$$L_3L_2L_1A = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & & 2 & 2 \\ & & 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & & 2 & 2 \\ & & & 2 \end{bmatrix} = U.$$

$$L_2L_1A = \left[\begin{array}{rrr} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & & 2 & 2 \\ & & 2 & 4 \end{array} \right]$$

$$l_3 = (0, 0, 0, 1)^T \rightarrow L_3 = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & -1 & 1 \end{bmatrix}$$

$$L_3L_2L_1A = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & & 2 & 2 \\ & & 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & & 2 & 2 \\ & & & 2 \end{bmatrix} = U.$$

$$L_{1}^{-1} = \begin{bmatrix} 1 & & & \\ 2 & 1 & & \\ 4 & & 1 & \\ 3 & & & 1 \end{bmatrix}, L_{2}^{-1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & 3 & 1 & \\ & 4 & & 1 \end{bmatrix}, L_{3}^{-1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & -1 & 1 \end{bmatrix}$$

$$L_1^{-1}L_2^{-1}L_3^{-1} = \begin{bmatrix} 1 \\ 2 & 1 \\ 4 & 3 & 1 \\ 3 & 4 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 & 1 \\ 4 & 3 & 1 \\ 3 & 4 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \end{bmatrix}$$

$$L_{1}^{-1} = \begin{bmatrix} 1 & & & \\ 2 & 1 & & \\ 4 & & 1 & \\ 3 & & & 1 \end{bmatrix}, \ L_{2}^{-1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & 3 & 1 & \\ & 4 & & 1 \end{bmatrix}, \ L_{3}^{-1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & -1 & 1 \end{bmatrix}$$

$$L_1^{-1}L_2^{-1}L_3^{-1} = \begin{bmatrix} 1 \\ 2 & 1 \\ 4 & 3 & 1 \\ 3 & 4 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} = \begin{bmatrix} 1 & & & & \\ 2 & 1 & & & \\ 4 & 3 & 1 & & \\ 3 & 4 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & & 2 & 2 \\ & & & 2 \end{bmatrix}$$

方式一: Gauss变换

$$L_1^{-1} = \begin{bmatrix} 1 & & & \\ 2 & 1 & & \\ 4 & & 1 & \\ 3 & & & 1 \end{bmatrix}, \ L_2^{-1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & 3 & 1 & \\ & 4 & & 1 \end{bmatrix}, \ L_3^{-1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & -1 & 1 \end{bmatrix}$$

$$L_1^{-1}L_2^{-1}L_3^{-1} = \begin{bmatrix} 1 \\ 2 & 1 \\ 4 & 3 & 1 \\ 3 & 4 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
2 & 1 & 1 & 0 \\
4 & 3 & 3 & 1 \\
8 & 7 & 9 & 5 \\
6 & 7 & 9 & 8
\end{bmatrix} = \begin{bmatrix}
1 \\
2 & 1 \\
4 & 3 & 1 \\
3 & 4 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
2 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
2 & 2 & 2 \\
0 & 2
\end{bmatrix}$$

张晓平 ()

方式二: Doolittle分解

$$A = \begin{pmatrix} 1 & & & \\ l_{21} & 1 & & \\ \vdots & \vdots & \ddots & \\ l_{n1} & l_{n2} & \cdots & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ & u_{22} & \cdots & u_{2n} \\ & & \ddots & \vdots \\ & & & u_{nn} \end{pmatrix}$$

方式二: Doolittle分解

由矩阵乘法

$$a_{ij} = \sum_{k=1}^{n} l_{ik} u_{kj} \ (i, j = 1, 2, \dots, n),$$

注意到 $l_{ii} = 1$, $l_{ij} = 0$ (i < j), $u_{ij} = 0$ (i > j), 可得

先行后列

```
for k = 1:n

for j = k, ..., n % 计算第k行

u_{kj} = a_{kj} - \sum_{r=1}^{k-1} l_{lr} u_{rj}

end

for i = k+1, ..., n % 计算第k列

l_{ik} = (a_{ik} - \sum_{r=1}^{k-1} l_{ir} u_{rk})/u_{kk}

end

end
```

方式二: Doolittle分解

例

利用Doolittle分解求解线性方程组

$$\begin{pmatrix} 1 & 2 & 3 & -4 \\ -3 & -4 & -12 & 13 \\ 2 & 10 & 0 & -3 \\ 4 & 14 & 9 & -13 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -2 \\ 5 \\ 10 \\ 7 \end{pmatrix}$$

$$l_1 = (0, -3, 2, 4)^T \rightarrow L_1 = \begin{bmatrix} 1 \\ 3 & 1 \\ -2 & 1 \\ -4 & 1 \end{bmatrix}$$

$$L_1 A = \begin{bmatrix} 1 \\ 3 & 1 \\ -2 & 1 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & -4 \\ -3 & -4 & -12 & 13 \\ 2 & 10 & 0 & -3 \\ 4 & 14 & 9 & -13 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 6 & -6 & 5 \\ 0 & 6 & -3 & 3 \end{bmatrix}$$

$$l_1 = (0, -3, 2, 4)^T \rightarrow L_1 = \begin{bmatrix} 1 \\ 3 & 1 \\ -2 & 1 \\ -4 & 1 \end{bmatrix}$$

$$L_1 A = \begin{bmatrix} 1 \\ 3 & 1 \\ -2 & 1 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & -4 \\ -3 & -4 & -12 & 13 \\ 2 & 10 & 0 & -3 \\ 4 & 14 & 9 & -13 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 6 & -6 & 5 \\ 0 & 6 & -3 & 3 \end{bmatrix}$$

$$l_1 = (0, -3, 2, 4)^T \rightarrow L_1 = \begin{bmatrix} 1 \\ 3 & 1 \\ -2 & 1 \\ -4 & 1 \end{bmatrix}$$

$$L_1 A = \begin{bmatrix} 1 \\ 3 & 1 \\ -2 & 1 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & -4 \\ -3 & -4 & -12 & 13 \\ 2 & 10 & 0 & -3 \\ 4 & 14 & 9 & -13 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 6 & -6 & 5 \\ 0 & 6 & -3 & 3 \end{bmatrix}$$

$$l_2 = (0, 0, 3, 3)^T \rightarrow L_2 = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & -3 & 1 & \\ & -3 & 1 \end{bmatrix}$$

$$L_2L_1A = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & -3 & 1 & \\ & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 6 & -6 & 5 \\ 0 & 6 & -3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 6 & 0 \end{bmatrix}$$

$$l_2 = (0, 0, 3, 3)^T \rightarrow L_2 = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & -3 & 1 & \\ & -3 & & 1 \end{bmatrix}$$

$$L_2L_1A = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & -3 & 1 & \\ & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 6 & -6 & 5 \\ 0 & 6 & -3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 6 & 0 \end{bmatrix}$$

$$l_2 = (0, 0, 3, 3)^T \rightarrow L_2 = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & -3 & 1 & \\ & -3 & & 1 \end{bmatrix}$$

$$L_2L_1A = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & -3 & 1 & \\ & -3 & 1 & \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 6 & -6 & 5 \\ 0 & 6 & -3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 6 & 0 \end{bmatrix}$$

$$l_3 = (0, 0, 0, 2)^T \rightarrow L_3 = \begin{bmatrix} 1 \\ 1 \\ -2 & 1 \end{bmatrix}$$

$$L_3L_2L_1A = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & \\ & & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 6 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & -4 \end{bmatrix}$$

$$l_3 = (0, 0, 0, 2)^T \rightarrow L_3 = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & -2 & 1 \end{bmatrix}$$

$$L_3L_2L_1A = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & \\ & & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 6 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & -4 \end{bmatrix}$$

$$l_3 = (0, 0, 0, 2)^T \rightarrow L_3 = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & -2 & 1 \end{bmatrix}$$

$$L_3L_2L_1A = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 6 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & -4 \end{bmatrix}$$

$$L_{1}^{-1} = \begin{bmatrix} 1 & & & \\ -3 & 1 & & \\ 2 & & 1 & \\ 4 & & & 1 \end{bmatrix}, L_{2}^{-1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & 3 & 1 & \\ & 3 & & 1 \end{bmatrix}, L_{3}^{-1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & 2 & 1 \end{bmatrix}$$

$$L = L_1^{-1} L_2^{-1} L_3^{-1} = \begin{bmatrix} 1 \\ -3 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & -4 \\ -3 & -4 & -12 & 13 \\ 2 & 10 & 0 & -3 \\ 4 & 14 & 9 & -13 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & -4 \end{bmatrix}$$

$$L_{1}^{-1} = \begin{bmatrix} 1 & & & \\ -3 & 1 & & \\ 2 & & 1 & \\ 4 & & & 1 \end{bmatrix}, L_{2}^{-1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & 3 & 1 & \\ & & 3 & 1 \end{bmatrix}, L_{3}^{-1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & 2 & 1 \end{bmatrix}$$

$$L = L_1^{-1} L_2^{-1} L_3^{-1} = \begin{bmatrix} 1 \\ -3 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & -4 \\ -3 & -4 & -12 & 13 \\ 2 & 10 & 0 & -3 \\ 4 & 14 & 9 & -13 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & -4 \\ 0 & 2 & -3 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & -4 \end{bmatrix}$$

$$L_{1}^{-1} = \begin{bmatrix} 1 & & & \\ -3 & 1 & & \\ 2 & & 1 & \\ 4 & & & 1 \end{bmatrix}, L_{2}^{-1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & 3 & 1 & \\ & & 3 & 1 \end{bmatrix}, L_{3}^{-1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & 2 & 1 \end{bmatrix}$$

$$L = L_1^{-1} L_2^{-1} L_3^{-1} = \begin{bmatrix} 1 \\ -3 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 & -4 \\
-3 & -4 & -12 & 13 \\
2 & 10 & 0 & -3 \\
4 & 14 & 9 & -13
\end{bmatrix} = \begin{bmatrix}
1 \\
-3 & 1 \\
2 & 3 & 1 \\
4 & 3 & 2 & 1
\end{bmatrix} \begin{bmatrix}
1 & 2 & 3 & -4 \\
0 & 2 & -3 & 1 \\
0 & 0 & 3 & 2 \\
0 & 0 & 0 & -4
\end{bmatrix}$$

1 计算U的第一行,L的第一列,得

$$u_{11} = 1$$
, $u_{12} = 2$, $u_{13} = 3$, $u_{14} = -4$,

$$l_{21} = \frac{a_{21}}{u_{11}} = -3$$
, $l_{31} = \frac{a_{31}}{u_{11}} = 2$, $l_{31} = \frac{a_{31}}{u_{11}} = 4$.

2 计算U的第二行, L的第二列, 得

$$u_{22} = a_{22} - l_{21}u_{12} = 2$$
, $u_{23} = a_{23} - l_{21}u_{13} = -3$,

$$u_{24} = a_{24} - l_{21}u_{14} = 1,$$

$$l_{32} = \frac{a_{32} - l_{31}u_{12}}{u_{22}} = 3, \quad l_{42} = \frac{a_{42} - l_{41}u_{12}}{u_{22}} = 3.$$

3 计算U的第三行, L的第三列, 得

$$u_{33} = a_{33} - l_{31}u_{13} - l_{32}u_{23} = 3,$$

$$u_{34} = a_{34} - l_{31}u_{14} - l_{32}u_{24} = 2,$$

$$l_{43} = \frac{a_{43} - l_{41}u_{13} - l_{42}u_{23}}{u_{33}} = 2.$$

4 计算U的第四行,得

$$u_{44} = a_{44} - l_{41}u_{14} - l_{42}u_{24} - l_{43}u_{34} = -4$$

3 计算U的第三行, L的第三列, 得

$$u_{33} = a_{33} - l_{31}u_{13} - l_{32}u_{23} = 3,$$

$$u_{34} = a_{34} - l_{31}u_{14} - l_{32}u_{24} = 2,$$

$$l_{43} = \frac{a_{43} - l_{41}u_{13} - l_{42}u_{23}}{u_{33}} = 2.$$

4 计算U的第四行,得

$$u_{44} = a_{44} - l_{41}u_{14} - l_{42}u_{24} - l_{43}u_{34} = -4,$$

方式二: Doolittle分解

$$\begin{pmatrix} 1 & 2 & 3 & -4 \\ -3 & -4 & -12 & 13 \\ 2 & 10 & 0 & -3 \\ 4 & 14 & 9 & -13 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & -4 \\ 2 & -3 & 1 \\ 3 & 2 \\ -4 \end{pmatrix}$$

方式二: Doolittle分解

$$\begin{pmatrix} 1 & 2 & 3 & -4 \\ -3 & -4 & -12 & 13 \\ 2 & 10 & 0 & -3 \\ 4 & 14 & 9 & -13 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & -4 \\ 2 & -3 & 1 \\ 3 & 2 \\ -4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & & & \\ -3 & 1 & & \\ 2 & 3 & 1 & \\ 4 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} -2 \\ 5 \\ 10 \\ 7 \end{pmatrix}$$

求得

$$Y = (-2, -1, 17, -16)^T$$
.

方式二: Doolittle分解

$$\begin{pmatrix} 1 & 2 & 3 & -4 \\ -3 & -4 & -12 & 13 \\ 2 & 10 & 0 & -3 \\ 4 & 14 & 9 & -13 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & -4 \\ 2 & -3 & 1 \\ 3 & 2 \\ -4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & -4 \\ 2 & -3 & 1 \\ & 3 & 2 \\ & & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 17 \\ -16 \end{pmatrix}$$

求得

$$X = (1, 2, 3, 4)^T$$
.

- 1 范数、谱半径与条件数
- 2 解线性方程组的直接法
 - 2.1 矩阵的三角分解
 - 2.2 平方根法
- 4 非线性方程的数值解法
- 5 插值
- 6 曲线拟合
- 8. 常微分方程的数值解法

定理 (Cholesky分解)

对称矩阵A正定 \Longrightarrow 存在惟一的主对角元皆正的下三角阵L, 使得 $A = LL^T$

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} l_{11} & & & \\ l_{21} & l_{22} & & & \\ \vdots & \vdots & \ddots & & \\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{pmatrix} \begin{pmatrix} l_{11} & l_{21} & \cdots & l_{n1} \\ & l_{22} & \cdots & l_{n2} \\ & & \ddots & \vdots \\ & & & & l_{nn} \end{pmatrix}$$

图: 平方根法运算次序

图: 平方根法运算次序

图: 平方根法运算次序

图: 平方根法运算次序

由矩阵乘法

$$a_{ij} = \sum_{k=1}^{n} l_{ik} u_{kj} = \sum_{k=1}^{n} l_{ik} l_{jk} \quad (i, j = 1, 2, \dots, n),$$

注意到 $l_{ij} = 0(j > i)$, 知计算第j行时

• 当i = j时,

$$a_{jj} = \sum_{k=1}^{j} l_{jk}^2 \implies l_{jj} = \left(a_{jj} - \sum_{k=1}^{j-1} l_{jk} l_{jk}\right)^{1/2}$$

当i>j时,

$$a_{ij} = \sum_{k=1}^{j} l_{ik} l_{jk} \implies l_{ij} l_{jj} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk} \implies l_{ij} = \frac{a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk}}{l_{jj}}$$

◆□▶◆□▶◆□▶◆□▶ □ り<0</p>

由矩阵乘法

$$a_{ij} = \sum_{k=1}^{n} l_{ik} u_{kj} = \sum_{k=1}^{n} l_{ik} l_{jk} \quad (i, j = 1, 2, \dots, n),$$

注意到 $l_{ij} = 0(j > i)$, 知计算第j行时

当 i = j 时,

$$a_{jj} = \sum_{k=1}^{j} l_{jk}^2 \implies l_{jj} = \left(a_{jj} - \sum_{k=1}^{j-1} l_{jk} l_{jk}\right)^{1/2}$$

当i>j时,

$$a_{ij} = \sum_{k=1}^{j} l_{ik} l_{jk} \implies l_{ij} l_{jj} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk} \implies l_{ij} = \frac{a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk}}{l_{jj}}$$

◄□▶◀∰▶◀불▶◀불▶ 불 虳Q♡

由矩阵乘法

$$a_{ij} = \sum_{k=1}^{n} l_{ik} u_{kj} = \sum_{k=1}^{n} l_{ik} l_{jk} \quad (i, j = 1, 2, \dots, n),$$

注意到 $l_{ij} = 0(j > i)$, 知计算第j行时

当 i = j 时,

$$a_{jj} = \sum_{k=1}^{j} l_{jk}^2 \implies l_{jj} = \left(a_{jj} - \sum_{k=1}^{j-1} l_{jk} l_{jk}\right)^{1/2}$$

当i>j时,

$$a_{ij} = \sum_{k=1}^{j} l_{ik} l_{jk} \implies l_{ij} l_{jj} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk} \implies l_{ij} = \frac{a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk}}{l_{jj}}$$

◆□▶◆□▶◆■▶◆■▶ ■ からで

由矩阵乘法

$$a_{ij} = \sum_{k=1}^{n} l_{ik} u_{kj} = \sum_{k=1}^{n} l_{ik} l_{jk} \quad (i, j = 1, 2, \dots, n),$$

注意到 $l_{ii} = 0(i > i)$, 知计算第j行时

当 i = j 时,

$$a_{jj} = \sum_{k=1}^{j} l_{jk}^2 \implies l_{jj} = \left(a_{jj} - \sum_{k=1}^{j-1} l_{jk} l_{jk}\right)^{1/2}$$

当i>j时,

$$a_{ij} = \sum_{k=1}^{j} l_{ik} l_{jk} \implies l_{ij} l_{jj} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk} \implies l_{ij} = \frac{a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk}}{l_{jj}}$$

由矩阵乘法

$$a_{ij} = \sum_{k=1}^{n} l_{ik} u_{kj} = \sum_{k=1}^{n} l_{ik} l_{jk} \quad (i, j = 1, 2, \dots, n),$$

注意到 $l_{ij} = 0(j > i)$, 知计算第j行时

当 i = j时,

$$a_{jj} = \sum_{k=1}^{j} l_{jk}^2 \implies l_{jj} = \left(a_{jj} - \sum_{k=1}^{j-1} l_{jk} l_{jk}\right)^{1/2}$$

当i>j时,

$$a_{ij} = \sum_{k=1}^{j} l_{ik} l_{jk} \implies l_{ij} l_{jj} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk} \implies l_{ij} = \frac{a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk}}{l_{jj}}$$

由矩阵乘法

$$a_{ij} = \sum_{k=1}^{n} l_{ik} u_{kj} = \sum_{k=1}^{n} l_{ik} l_{jk} \quad (i, j = 1, 2, \dots, n),$$

注意到 $l_{ii} = 0 (j > i)$, 知计算第j行时

当i = i时,

$$a_{jj} = \sum_{k=1}^{j} l_{jk}^2 \implies l_{jj} = \left(a_{jj} - \sum_{k=1}^{j-1} l_{jk} l_{jk}\right)^{1/2}$$

当i > j时,

$$a_{ij} = \sum_{k=1}^{j} l_{ik} l_{jk} \implies l_{ij} l_{jj} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk} \implies l_{ij} = \frac{a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk}}{l_{jj}}$$

例

用平方根法求解

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 8 & 4 \\ 1 & 4 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix}$$

例

用平方根法求解

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 8 & 4 \\ 1 & 4 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix}$$

解

验证A的对称正定性:

$$a_{11} = 1 > 0,$$
 $\begin{vmatrix} 1 & 2 \\ 2 & 8 \end{vmatrix} = 8 - 4 > 0,$
 $\begin{vmatrix} 1 & 2 & 1 \\ 2 & 8 & 4 \\ 1 & 4 & 6 \end{vmatrix} = 16 > 0$

例

用平方根法求解

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 8 & 4 \\ 1 & 4 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix}$$

解

$$1$$
 分解 $A = LL^T$. 可算得

$$\begin{array}{l} l_{11}=1,\\ l_{21}=2,\quad l_{22}=2,\\ l_{31}=1,\quad l_{32}=1,\quad l_{33}=2 \end{array} \Rightarrow L=\left(\begin{array}{ccc} 1\\ 2 & 2\\ 1 & 1 & 2 \end{array} \right)$$

例

用平方根法求解

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 8 & 4 \\ 1 & 4 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix}$$

解

2 求解
$$LY = b$$
,得

$$Y = (0, -1, 2)^T$$
.

$$3$$
 求解 $L^TX = Y$,得

$$X = (1, -1, 1)^T$$
.

- □ 1 范数、谱半径与条件数
- ② 2 解线性方程组的直接法
- 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 7 数值积分
- ⑧ 8. 常微分方程的数值解法

- □ 1 范数、谱半径与条件数
- ② 2 解线性方程组的直接法
- ③ 3. 解线性方程组的迭代法
 - 3.1 Jacobi迭代法
 - 3.2 G-S迭代法
 - 3.2 SOR迭代法
 - 3.4 迭代法的收敛性
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 数值积分
- 图 8. 常微分方程的数值解法

3.1 Jacobi 迭代法

$$a_{ii} \neq 0 \quad \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

$$\Rightarrow \begin{cases} x_1 = \frac{1}{a_{11}} (& -a_{12}x_2 - a_{13}x_3 + b_1) \\ x_2 = \frac{1}{a_{22}} (& -a_{21}x_1 & -a_{23}x_3 + b_2) \\ x_3 = \frac{1}{a_{33}} (& -a_{31}x_1 - a_{32}x_2 + b_3) \end{cases}$$

3.1 Jacobi 迭代法

$$a_{ii} \neq 0 \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

$$\Rightarrow \begin{cases} x_1 = \frac{1}{a_{11}}(& -a_{12}x_2 - a_{13}x_3 + b_1) \\ x_2 = \frac{1}{a_{22}}(& -a_{21}x_1 & -a_{23}x_3 + b_2) \\ x_3 = \frac{1}{a_{33}}(& -a_{31}x_1 - a_{32}x_2 + b_3) \end{cases}$$

3.1 Jacobi 迭代法

$$a_{ii} \neq 0 \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

$$\Rightarrow \begin{cases} x_1 = \frac{1}{a_{11}}(-a_{12}x_2 - a_{13}x_3 + b_1) \\ x_2 = \frac{1}{a_{22}}(-a_{21}x_1 - a_{23}x_3 + b_2) \\ x_3 = \frac{1}{a_{33}}(-a_{31}x_1 - a_{32}x_2 + b_3) \end{cases}$$

3.1 Jacobi 迭代法

取
$$x^{(0)} = (x_1^{(0)}, x_2^{(0)}, x_3^{(0)})^T$$
,代入上式右端得
$$\begin{cases} x_1^{(k+1)} = \frac{1}{a_{11}}(& -a_{12}x_2^{(k)} & -a_{13}x_3^{(k)} + b_1) \\ x_2^{(k+1)} = \frac{1}{a_{22}}(& -a_{21}x_1^{(k)} & -a_{23}x_3^{(k)} + b_2) \\ x_3^{(k+1)} = \frac{1}{a_{33}}(& -a_{31}x_1^{(k)} & -a_{32}x_2^{(k)} & +b_3) \end{cases}$$

49 / 152

3.1 Jacobi迭代法

雅克比迭代法的矩阵描述

考察线性方程组

$$Ax = b \tag{1}$$

$$A=D+L+U$$

3.1 Jacobi 迭代法

雅克比迭代法的矩阵描述

考察线性方程组

$$Ax = b \tag{1}$$

今

$$A = D + L + U$$

其中

$$D = \text{diag}(a_{11}, a_{22}, \dots, a_{nn}), \quad a_{ii} \neq 0$$

$$L = \begin{bmatrix} 0 & & & & \\ a_{21} & 0 & & & \\ \vdots & \ddots & \ddots & & \\ a_{n1} & \cdots & a_{n,n-1} & 0 \end{bmatrix}, U = \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ & 0 & \ddots & \vdots \\ & & \ddots & a_{n-1,n} \\ & & & 0 \end{bmatrix}$$

3.1 Jacobi迭代法

雅克比迭代法的矩阵描述

考察线性方程组

$$Ax = b \tag{1}$$

令

$$A = D + L + U$$

方程(2)可写成

$$x = Bx + g$$

其中

$$B = -D^{-1}(L+U),$$

 $g = -D^{-1}b.$

50 / 152

3.1 Jacobi 迭代法

雅克比迭代法的矩阵描述

定义(雅克比迭代格式)

给定初始向量

$$x_0 = (x_1^{(0)}, x_2^{(0)}, \cdots, x_n^{(0)})^T,$$

迭代序列

$$x_k = Bx_{k-1} + g, k = 1, 2, 3, \cdots,$$
 $B = -D^{-1}(L+U) \rightarrow$ 雅克比迭代矩阵,
 $g = -D^{-1}b.$

称为解Ax = b的雅克比迭代法。

3.1 Jacobi迭代法

雅克比迭代的分量形式

任给
$$x_i^{(0)}(i=1,2,\cdots,n)$$
,
$$x_i^{(k+1)} = x_i^{(k)} + \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^n a_{ij} x_j^{(k)} \right)$$
$$i = 1,2,\cdots,n; \ k = 0,1,2,\cdots$$

- 1 范数、谱半径与条件数
- 3. 解线性方程组的迭代法
 - 3.1 Jacobi 迭代法
 - 3.2 G-S迭代法
 - 3.2 SOR迭代法
 - 3.4 迭代法的收敛性
- 4 非线性方程的数值解法
- 5 插值
- 6 曲线拟合
- 8. 常微分方程的数值解法

迭代方法

取 $x^{(0)} = (x_1^{(0)}, x_2^{(0)}, x_3^{(0)})^T$, 代入上式右端得

Jacobi 迭代法
$$\Rightarrow$$

$$\begin{cases} x_1^{(k+1)} = \frac{1}{a_{11}}(& -a_{12}x_2^{(k)} & -a_{13}x_3^{(k)} & +b_1) \\ x_2^{(k+1)} = \frac{1}{a_{22}}(& -a_{21}x_1^{(k)} & -a_{23}x_3^{(k)} & +b_2) \\ x_3^{(k+1)} = \frac{1}{a_{33}}(& -a_{31}x_1^{(k)} & -a_{32}x_2^{(k)} & +b_3) \end{cases}$$

考察线性方程组

$$Ax = b (2)$$

令

$$A = D + L + U$$

其中

$$D = \operatorname{diag}(a_{11}, a_{22}, \dots, a_{nn}), \quad a_{ii} \neq 0$$

$$L = \begin{bmatrix} 0 & & & \\ a_{21} & 0 & & \\ \vdots & \ddots & \ddots & \\ a_{n1} & \cdots & a_{n,n-1} & 0 \end{bmatrix}, \quad U = \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & \ddots & \vdots \\ & \ddots & a_{n-1,n} \\ & & & 0 \end{bmatrix}$$

定义 (G-S迭代)

给定初始向量

$$x^{(0)} = (x_1^{(0)}, x_2^{(0)}, \cdots, x_n^{(0)})^T,$$

迭代公式

$$x_k = Gx_{k-1} + d_1, k = 1, 2, 3, \cdots,$$

$$G = -(D+L)^{-1}U \rightarrow 高斯-赛德尔迭代矩阵,$$

$$d_1 = (D+L)^{-1}b.$$

称为解Ax = b的Gauss-Seidel迭代法。

任给
$$x_i^{(0)}(i=1,2,\cdots,n)$$
,
$$x_i^{(k+1)} = x_i^{(k)} + \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right)$$

$$i = 1, 2, \dots, n; \ k = 0, 1, 2, \dots$$

57 / 152

- 1 范数、谱半径与条件数
- 3. 解线性方程组的迭代法
 - 3.1 Jacobi 迭代法
 - 3.2 G-S迭代法
 - 3.2 SOR迭代法
 - 3.4 迭代法的收敛性
- 4 非线性方程的数值解法
- 5 插值
- 6 曲线拟合
- 8. 常微分方程的数值解法

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i}^{n} a_{ij} x_j^{(k)} \right), \quad i = 1, 2, \dots, n; \quad k = 0, 1, 2, \dots$$

- $\omega = 1$ → Gauss-Seidel迭代法
- 0 < ω < 1 → 低松弛迭代法 (SUR)
- $\omega > 1$ → 超松弛迭代法 (SOR)

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i}^{n} a_{ij} x_j^{(k)} \right), \quad i = 1, 2, \dots, n; \quad k = 0, 1, 2, \dots$$

- $\omega = 1 \rightarrow$ Gauss-Seidel迭代法
- 0 < ω < 1 → 低松弛迭代法 (SUR)
- ω > 1 → 超松弛迭代法 (SOR)

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i}^{n} a_{ij} x_j^{(k)} \right), \quad i = 1, 2, \dots, n; \quad k = 0, 1, 2, \dots$$

- $\omega = 1$ → Gauss-Seidel迭代法
- 0 < ω < 1 → 低松弛迭代法(SUR)
- $\omega > 1$ → 超松弛迭代法 (SOR)

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i}^{n} a_{ij} x_j^{(k)} \right), \quad i = 1, 2, \dots, n; \quad k = 0, 1, 2, \dots$$

- $\omega = 1$ → Gauss-Seidel迭代法
- 0 < ω < 1 → 低松弛迭代法(SUR)
- ω>1 → 超松弛迭代法(SOR)

例

分别用Jacobi迭代法、Gauss-Seidel迭代法和SOR迭代法,求解线性方程组

$$\begin{pmatrix} 5 & 1 & -1 & -2 \\ 2 & 8 & 1 & 3 \\ 1 & -2 & -4 & -1 \\ -1 & 3 & 2 & 7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -2 \\ -6 \\ 6 \\ 12 \end{pmatrix}$$

• 终止条件:

$$\max |\Delta x_i| < \max |x_i^{(k+1)} - x_i^{(k)}| < 10^{-5}$$

• 精确解:

$$x^* = (1, -2, -1, 3)^T$$

3.2 SOR 选代法

解 (Jacobi)

$$\begin{cases} x_1^{(k+1)} &= x_1^{(k)} + \frac{1}{5}(-2 -5x_1^{(k)} -x_2^{(k)} +x_3^{(k)} +2x_4^{(k)}) \\ x_2^{(k+1)} &= x_2^{(k)} + \frac{1}{8}(-6 -2x_1^{(k)} -8x_2^{(k)} -x_3^{(k)} -3x_4^{(k)}) \\ x_3^{(k+1)} &= x_3^{(k)} -\frac{1}{4}(6 -x_1^{(k)} +2x_2^{(k)} +4x_3^{(k)} +x_4^{(k)}) \\ x_4^{(k+1)} &= x_4^{(k)} +\frac{1}{7}(12 +x_1^{(k)} -3x_2^{(k)} -2x_3^{(k)} -7x_4^{(k)}) \end{cases}$$

迭代24次后,近似解为

 $x^{(24)} = (0.99999941, -1.99999950, -1.0000040, 2.99999990)^T$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

解 (Jacobi)

$$\begin{cases} x_1^{(k+1)} &= x_1^{(k)} + \frac{1}{5}(-2 -5x_1^{(k)} -x_2^{(k)} + x_3^{(k)} +2x_4^{(k)}) \\ x_2^{(k+1)} &= x_2^{(k)} + \frac{1}{8}(-6 -2x_1^{(k)} -8x_2^{(k)} -x_3^{(k)} -3x_4^{(k)}) \\ x_3^{(k+1)} &= x_3^{(k)} -\frac{1}{4}(6 -x_1^{(k)} +2x_2^{(k)} +4x_3^{(k)} +x_4^{(k)}) \\ x_4^{(k+1)} &= x_4^{(k)} +\frac{1}{7}(12 +x_1^{(k)} -3x_2^{(k)} -2x_3^{(k)} -7x_4^{(k)}) \end{cases}$$

迭代24次后,近似解为

$$x^{(24)} = (0.9999941, -1.9999950, -1.0000040, 2.9999999)^T$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

3.2 SOR 选代法

解 (GS)

$$\begin{cases} x_1^{(k+1)} &= x_1^{(k)} + \frac{1}{5}(-2 - 5x_1^{(k)} - x_2^{(k)} + x_3^{(k)} + 2x_4^{(k)}) \\ x_2^{(k+1)} &= x_2^{(k)} + \frac{1}{8}(-6 - 2x_1^{(k+1)} - 8x_2^{(k)} - x_3^{(k)} - 3x_4^{(k)}) \\ x_3^{(k+1)} &= x_3^{(k)} - \frac{1}{4}(-6 - x_1^{(k+1)} + 2x_2^{(k+1)} + 4x_3^{(k)} + x_4^{(k)}) \\ x_4^{(k+1)} &= x_4^{(k)} + \frac{1}{7}(-12 - x_1^{(k+1)} - 3x_2^{(k+1)} - 2x_3^{(k+1)} - 7x_4^{(k)}) \end{cases}$$

迭代14次后,近似解为

$$x^{(14)} = (0.9999966, -1.9999970, -1.0000040, 2.9999990)^T$$

解 (GS)

$$\begin{cases} x_1^{(k+1)} &= x_1^{(k)} + \frac{1}{5}(-2 - 5x_1^{(k)} - x_2^{(k)} + x_3^{(k)} + 2x_4^{(k)}) \\ x_2^{(k+1)} &= x_2^{(k)} + \frac{1}{8}(-6 - 2x_1^{(k+1)} - 8x_2^{(k)} - x_3^{(k)} - 3x_4^{(k)}) \\ x_3^{(k+1)} &= x_3^{(k)} - \frac{1}{4}(-6 - x_1^{(k+1)} + 2x_2^{(k+1)} + 4x_3^{(k)} + x_4^{(k)}) \\ x_4^{(k+1)} &= x_4^{(k)} + \frac{1}{7}(-12 - x_1^{(k+1)} - 3x_2^{(k+1)} - 2x_3^{(k+1)} - 7x_4^{(k)}) \end{cases}$$

迭代14次后,近似解为

$$x^{(14)} = (0.9999966, -1.9999970, -1.0000040, 2.99999990)^T$$

4□ > 4□ > 4□ > 4 = > 4 = > = 90

62 / 152

3.2 SOR 选代法

解 (SOR)

$$\begin{cases} x_1^{(k+1)} &= x_1^{(k)} + \frac{\omega}{5}(-2 -5x_1^{(k)} -x_2^{(k)} + x_3^{(k)} +2x_4^{(k)}) \\ x_2^{(k+1)} &= x_2^{(k)} + \frac{\omega}{8}(-6 -2x_1^{(k+1)} -8x_2^{(k)} -x_3^{(k)} -3x_4^{(k)}) \\ x_3^{(k+1)} &= x_3^{(k)} - \frac{\omega}{4}(6 -x_1^{(k+1)} +2x_2^{(k+1)} +4x_3^{(k)} +x_4^{(k)}) \\ x_4^{(k+1)} &= x_4^{(k)} + \frac{\omega}{7}(12 x_1^{(k+1)} -3x_2^{(k+1)} -2x_3^{(k+1)} -7x_4^{(k)}) \end{cases}$$

 $x^{(8)} = (0.9999965, -1.9999970, -1.0000010, 2.9999999)^T$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

解 (SOR)

$$\begin{cases} x_1^{(k+1)} &= x_1^{(k)} + \frac{\omega}{5}(-2 - 5x_1^{(k)} - x_2^{(k)} + x_3^{(k)} + 2x_4^{(k)}) \\ x_2^{(k+1)} &= x_2^{(k)} + \frac{\omega}{8}(-6 - 2x_1^{(k+1)} - 8x_2^{(k)} - x_3^{(k)} - 3x_4^{(k)}) \\ x_3^{(k+1)} &= x_3^{(k)} - \frac{\omega}{4}(-6 - x_1^{(k+1)} + 2x_2^{(k+1)} + 4x_3^{(k)} + x_4^{(k)}) \\ x_4^{(k+1)} &= x_4^{(k)} + \frac{\omega}{7}(-12 - x_1^{(k+1)} - 3x_2^{(k+1)} - 2x_3^{(k+1)} - 7x_4^{(k)}) \end{cases}$$

取ω = 1.15, 迭代8次后, 近似解为

$$x^{(8)} = (0.9999965, -1.9999970, -1.0000010, 2.99999990)^T$$

63 / 152

- □ 1 范数、谱半径与条件数
- ② 2 解线性方程组的直接法
- ③ 3. 解线性方程组的迭代法
 - 3.1 Jacobi迭代法
 - 3.2 G-S迭代法
 - 3.2 SOR选代法
 - 3.4 迭代法的收敛性
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 数值积分
- 图 8. 常微分方程的数值解法

定义

$$Ax = b$$
 转换为等价方程组 $x = Mx + g$ (3)

则可得到迭代格式

$$x^{(k+1)} = Mx^{(k)} + g, \quad k = 0, 1, 2, \cdots$$
 (4)

其中

$$M \in \mathbf{R}^{n \times n} \to$$
 迭代矩阵, $g \in \mathbf{R}^n \to$ 常数项, $x_0 \in \mathbf{R}^n \to$ 初始向量.

定义

$$Ax = b$$
 转换为等价方程组 $x = Mx + g$ (3)

则可得到迭代格式

$$x^{(k+1)} = Mx^{(k)} + g, \quad k = 0, 1, 2, \cdots$$
 (4)

其中

$$M \in \mathbf{R}^{n \times n} \to$$
 迭代矩阵, $g \in \mathbf{R}^n \to$ 常数项, $x_0 \in \mathbf{R}^n \to$ 初始向量.

若对任意初始向量,由(4)产生的迭代序列都有极限,则称该迭代法是收敛的; 否则称为发散的。

定义

$$Ax = b$$
 转换为等价方程组 $x = Mx + g$ (3)

则可得到迭代格式

$$x^{(k+1)} = Mx^{(k)} + g, \quad k = 0, 1, 2, \cdots$$
 (4)

其中

$$M \in \mathbf{R}^{n \times n} \to$$
 迭代矩阵, $g \in \mathbf{R}^n \to$ 常数项, $x_0 \in \mathbf{R}^n \to$ 初始向量.

• 雅克比迭代

$$M = -D^{-1}(L + U), g = D^{-1}b$$

● 高斯-赛德尔迭代

$$M = -(D+L)^{-1}U$$
, $g = (D+L)^{-1}b$

◄□▶◀∰▶◀불▶◀불▶ 불 虳Q♡

定义

$$Ax = b$$
 转换为等价方程组 $x = Mx + g$ (3)

则可得到迭代格式

$$x^{(k+1)} = Mx^{(k)} + g, \quad k = 0, 1, 2, \cdots$$
 (4)

其中

$$M \in \mathbf{R}^{n \times n} \to$$
 迭代矩阵, $g \in \mathbf{R}^n \to$ 常数项, $x_0 \in \mathbf{R}^n \to$ 初始向量.

定理

迭代法(4)收敛的充分必要条件是

$$\rho(M) < 1$$

4 D > 4 A > 4 B > 4 B > B = 4000

一般线性迭代法收敛的充分条件

定理

对于迭代格式

$$x^{(k+1)} = Mx^{(k)} + g, \quad k = 0, 1, \cdots.$$

若||M|| < 1,则该迭代格式收敛.

一般线性迭代法收敛的充分条件

注

- 用||M|| < 1作为收敛性的判别是方便的, 但要注意这只是一个充分条件。
- 判断一种迭代格式不收敛,需要用到谱半径。

例

$$x = Mx + d$$
, $M = \begin{bmatrix} 0.8 & 0 \\ 0.5 & 0.7 \end{bmatrix}$, $d = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$||M||_1 = 1.3, \quad ||M||_2 = 1.09, \quad ||M||_{\infty} = 1.2$$

虽然这些范数都大于I,但M的特征值为 $\lambda_1=0.8,\;\lambda_2=0.7$,即 $\rho(M)=0.8$,于是此方程组的迭代法是收敛的。

◆□▶◆□▶◆臣▶◆臣▶ 臣 め९○

一般线性迭代法收敛的充分条件

注

- 用||M|| < 1作为收敛性的判别是方便的,但要注意这只是一个充分条件。
- 判断一种迭代格式不收敛,需要用到谱半径。

例

$$x = Mx + d$$
, $M = \begin{bmatrix} 0.8 & 0 \\ 0.5 & 0.7 \end{bmatrix}$, $d = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

 $||M||_1 = 1.3, \quad ||M||_2 = 1.09, \quad ||M||_{\infty} = 1.2$

虽然这些范数都大于I,但M的特征值为 $\lambda_1=0.8$, $\lambda_2=0.7$,即 $\rho(M)=0.8$,于是此方程组的迭代法是收敛的。

◆□▶◆□▶◆臣▶◆臣▶ 臣 め९○

一般线性迭代法收敛的充分条件

注

- 用||M|| < 1作为收敛性的判别是方便的,但要注意这只是一个充分条件。
- 判断一种迭代格式不收敛,需要用到谱半径。

例

$$x = Mx + d$$
, $M = \begin{bmatrix} 0.8 & 0 \\ 0.5 & 0.7 \end{bmatrix}$, $d = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$||M||_1 = 1.3$$
, $||M||_2 = 1.09$, $||M||_{\infty} = 1.2$

虽然这些范数都大于I,但M的特征值为 $\lambda_1=0.8$, $\lambda_2=0.7$,即 $\rho(M)=0.8$,于是此方程组的迭代法是收敛的。

◆ロ > ◆回 > ◆ き > ◆き > ・ き ・ り < (や)</p>

一般线性迭代法收敛的充分条件

注

- 用||M|| < 1作为收敛性的判别是方便的,但要注意这只是一个充分条件。
- 判断一种迭代格式不收敛,需要用到谱半径。

例

$$x = Mx + d$$
, $M = \begin{bmatrix} 0.8 & 0 \\ 0.5 & 0.7 \end{bmatrix}$, $d = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$||M||_1 = 1.3$$
, $||M||_2 = 1.09$, $||M||_{\infty} = 1.2$

虽然这些范数都大于I,但M的特征值为 $\lambda_1=0.8$, $\lambda_2=0.7$,即 $\rho(M)=0.8$,于是此方程组的迭代法是收敛的。

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ 釣 Q (*)

定理

对于严格对角占优矩阵,雅克比和高斯-赛德尔迭代法均收敛。

定理

对于对称正定矩阵,高斯-赛德尔迭代法均收敛。

定理

超松弛迭代法收敛 \Longrightarrow $0 < \omega < 2$.

定理

对于对称正定矩阵, 当0 < ω < 2时超松弛迭代法收敛。

- □ 1 范数、谱半径与条件数
- ② 2 解线性方程组的直接法
- ③ 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 7 数值积分
- ⑧ 8. 常微分方程的数值解法

- 1 范数、谱半径与条件数
- 2 解线性方程组的直接法
- 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
 - 4.1 不动点迭代法
 - 4.2 牛顿迭代法
- 5 插值
- 6 曲线拟合
- 8. 常微分方程的数值解法

求

$$f(x) = 0, \qquad (1)$$

在隔根区间[a,b]上的一个近似根。

将(1)改写成等价形式

$$x = \varphi(x). \tag{2}$$

为了求得(1)的根,可由(2)构造迭代序列

$$\begin{cases} x_1 &= \varphi(x_0), \\ x_2 &= \varphi(x_1), \\ \vdots \\ x_{k+1} &= \varphi(x_k), \\ \vdots \end{cases}$$

该方法成为迭代法, $\varphi(x)$ 称为迭代函数

求

$$f(x) = 0, \qquad (1)$$

在隔根区间[a,b]上的一个近似根。

将(1)改写成等价形式

$$x = \varphi(x). \tag{2}$$

为了求得(1)的根,可由(2)构造迭代序列

$$\begin{cases} x_1 &= \varphi(x_0), \\ x_2 &= \varphi(x_1), \\ \vdots \\ x_{k+1} &= \varphi(x_k), \\ \vdots \end{cases}$$

该方法成为迭代法, $\varphi(x)$ 称为迭代函数

求

$$f(x) = 0, \qquad (1)$$

在隔根区间[a,b]上的一个近似根。

将(1)改写成等价形式

$$x = \varphi(x). \tag{2}$$

为了求得(1)的根,可由(2)构造迭代序列

$$\begin{cases} x_1 &= \varphi(x_0), \\ x_2 &= \varphi(x_1), \\ \vdots \\ x_{k+1} &= \varphi(x_k), \\ \vdots \end{cases}$$

求

$$f(x) = 0, \qquad (1)$$

在隔根区间[a,b]上的一个近似根。

将(1)改写成等价形式

$$x = \varphi(x). \tag{2}$$

为了求得(1)的根,可由(2)构造迭代序列

$$\begin{cases} x_1 &= \varphi(x_0), \\ x_2 &= \varphi(x_1), \\ \vdots \\ x_{k+1} &= \varphi(x_k), \\ \vdots \end{cases}$$

该方法成为迭代法, $\varphi(x)$ 称为迭代函数。

若由迭代法产生的序列 $\{x_k\}$ 的极限存在,即

$$\lim_{k\to\infty}x_k=x^{\star},$$

则称迭代法收敛, 否则称迭代法发散。

张晓平 ()

例

已知 $10^{x} - x - 2 = 0$ 在[0.3, 0.4]内有一个根,用两种不同的迭代公式,

(1)
$$x_{k+1} = 10^{x_k} - 2$$

(2)
$$x_{k+1} = \log(x_k + 2)$$

Table: 计算结果

k	迭代格式(1)	迭代格式(2)
()	$x_0 = 0.3$	$x_0 = 0.3$
1	$x_1 = -0.0047$	$x_1 = 0.3617$
2	$x_2 = -1.0108$	$x_2 = 0.3732$
3		$x_3 = 0.3753$
4		$x_4 = 0.3757$

例

已知 $10^{x} - x - 2 = 0$ 在[0.3, 0.4]内有一个根,用两种不同的迭代公式,

(1)
$$x_{k+1} = 10^{x_k} - 2$$

(2)
$$x_{k+1} = \log(x_k + 2)$$

Table: 计算结果

k	迭代格式(1)	迭代格式(2)
0	$x_0 = 0.3$	$x_0 = 0.3$
1	$x_1 = -0.0047$	$x_1 = 0.3617$
2	$x_2 = -1.0108$	$x_2 = 0.3732$
3		$x_3 = 0.3753$
4		$x_4 = 0.3757$

定理

设有方程 $x = \varphi(x)$, 若

- (1) 当 $x \in [a,b]$ 时, $\varphi(x) \in [a,b]$
- (2) $\varphi(x)$ 在[a,b]上可导,且有 $|\varphi'(x)| \le L < 1, x \in [a,b]$
- (1) $x = \varphi(x)$ 存在惟一解 x^*
- (2) 对任意初值 $x_0 \in [a,b]$, 迭代公式

$$x_{k+1} = \varphi(x_k), \quad k = 0, 1, 2, \cdots$$

产生的数列 $\{x_k\}$ 收敛于方程的惟一根 x^* ,即 $\lim_{k\to\infty} x_k = x^*$

(3) 误差估计

$$|x_k - x^*| \le \frac{L^k}{1 - L} |x_1 - x_0|$$

定理

设有方程 $x = \varphi(x)$, 若

- (1) 当 $x \in [a,b]$ 时, $\varphi(x) \in [a,b]$
- (2) $\varphi(x)$ 在[a,b]上可导,且有 $|\varphi'(x)| \le L < 1, x \in [a,b]$ 则
- (1) $x = \varphi(x)$ 存在惟一解 x^*
- (2) 对任意初值 $x_0 \in [a,b]$, 迭代公式

$$x_{k+1} = \varphi(x_k), \quad k = 0, 1, 2, \cdots$$

产生的数列 $\{x_k\}$ 收敛于方程的惟一根 x^* ,即 $\lim_{k\to\infty} x_k = x^*$

(3) 误差估计

$$|x_k - x^{\star}| \leq \frac{L^k}{1 - L} |x_1 - x_0|$$

利用

$$|x_k - x^*| \le \frac{L^k}{1 - L} |x_1 - x_0|,$$

可用于

- 估计迭代k次时的误差
- 估计达到给定精度要求 ϵ 时,所需迭代的次数k

若欲使 $|x_k - x^*| \le \epsilon$, 只要

$$\frac{L^k}{1-L}|x_1-x_0| \le \epsilon \implies k > \frac{\ln\frac{\epsilon(1-L)}{|x_1-x_0|}}{\ln L}$$

利用

$$|x_k - x^*| \le \frac{L^k}{1 - L} |x_1 - x_0|,$$

可用于

- · 估计迭代k次时的误差
- 估计达到给定精度要求 ϵ 时,所需迭代的次数k

若欲使 $|x_k - x^*| \le \epsilon$,只要

$$\frac{L^k}{1-L}|x_1-x_0| \le \epsilon \implies k > \frac{\ln\frac{\epsilon(1-L)}{|x_1-x_0|}}{\ln L}$$

利用

$$|x_k - x^*| \le \frac{L^k}{1 - L} |x_1 - x_0|,$$

可用于

- · 估计迭代k次时的误差
- 估计达到给定精度要求 ϵ 时,所需迭代的次数k

若欲使 $|x_k - x^*| \le \epsilon$, 只要

$$\frac{L^k}{1-L}|x_1-x_0| \le \epsilon \implies k > \frac{\ln\frac{\epsilon(1-L)}{|x_1-x_0|}}{\ln L}$$

局部收敛性

定理 (设 x^* 是方程 $x = \varphi(x)$ 的根)

条件:

- $\varphi'(x)$ 在 x^* 的某一邻域连续
- $\bullet |\varphi'(x^{\star})| < 1$

结论:

• $\exists x^*$ 的一个邻域 $S = \{x: |x - x^*| \le \delta\}, \ \forall x_0 \in S$, 迭代公式

$$x_{k+1} = \varphi(x_k), \quad k = 0, 1, 2, \cdots$$

产生的数列 $\{x_k\}$ 收敛于方程的根 x^* 。

求 $f(x) = 2x - \log x - 7 = 0$ 的最大根,要求精度为 10^{-4} 。

求 $f(x) = 2x - \log x - 7 = 0$ 的最大根,要求精度为 10^{-4} 。

解

(1) 等价方程为

$$2x - 7 = \log x$$

由示意图知方程的最大根在[3.5,4]内。

(2) 建立迭代公式,判别收敛性

将方程等价变形为

$$x = \frac{1}{2}(\log x + 7)$$

迭代公式为

$$x_{k+1} = \frac{1}{2}(\log x_k + 7)$$

因 $\varphi'(x) = \frac{1}{2 \ln 10} \cdot \frac{1}{x}$, 故 $\varphi(x)$ 在[3.5,4]内可导。因 $\varphi(x)$ 在[3.5,4]内为增函数,且

$$\varphi(3.5) \approx 3.77, \quad \varphi(4) \approx 3.80$$

故当 $x \in [3.5, 4]$ 时, $\varphi(x) \in [3.5, 4]$ 。因为

$$L = \max |\varphi'(x)| \approx \varphi'(3.5) \approx 0.06 < 1$$

故迭代法收敛。

(2) 建立迭代公式, 判别收敛性

将方程等价变形为

$$x = \frac{1}{2}(\log x + 7)$$

迭代公式为

$$x_{k+1} = \frac{1}{2}(\log x_k + 7)$$

因 $\varphi'(x) = \frac{1}{2 \ln 10} \cdot \frac{1}{x}$,故 $\varphi(x)$ 在[3.5,4]内可导。因 $\varphi(x)$ 在[3.5,4]内为增函数,且

$$\varphi(3.5) \approx 3.77$$
, $\varphi(4) \approx 3.80$

故当 $x \in [3.5, 4]$ 时, $\varphi(x) \in [3.5, 4]$ 。因为

$$L = \max |\varphi'(x)| \approx \varphi'(3.5) \approx 0.06 < 1$$

故迭代法收敛。

4D > 4B > 4B > 4B > 4D >

(3) 计算

取 $x_0 = 3.5$,有

$$x_1 = \frac{1}{2}(\log x_0 + 7) \approx 3.78989,$$

 $x_2 = \frac{1}{2}(\log x_1 + 7) \approx 3.78931,$
 $x_3 = \frac{1}{2}(\log x_2 + 7) \approx 3.78928.$

因为 $|x_3 - x_2| \le 10^{-4}$,故方程的最大根为

$$x^* \approx x_3 = 3.789.$$

例

用迭代法求 $x^3 - x^2 - 1 = 0$ 在隔根区间[1.4, 1.5]内的根,要求精确到小数点后第4位。

解

(1) 构造迭代公式

方程的等价形式为

$$x = (x^2 + 1)^{1/3} = \varphi(x)$$

迭代公式为

$$x_{k+1} = (x_k^2 + 1)^{1/3}$$

<ロト < 個 > < 重 > < 重 > 、 重 ・ の Q (^)

例

用迭代法求 $x^3 - x^2 - 1 = 0$ 在隔根区间[1.4, 1.5]内的根,要求精确到小数点后第4位。

解

(1) 构造迭代公式

方程的等价形式为

$$x = (x^2 + 1)^{1/3} = \varphi(x)$$

迭代公式为

$$x_{k+1} = (x_k^2 + 1)^{1/3}$$

(ロ) (리) (본) (본) (본) (본) (연)

(2) 判断迭代法的收敛性

$$\varphi'(x) = \frac{2x}{3(x^2+1)^{2/3}}$$

因 $\varphi(x)$ 在区间[1.4, 1.5]内可导,且

$$|\varphi'(x)| \le 0.5 < 1$$

故迭代法收敛

解(续) (3) 计算结果

k	x_k	$ x_{k+1} - x_k \le \frac{1}{2} \times 10^{-4}$
0	$x_0 = 1.5$	
1	$x_1 = 1.4812480$	$ x_1 - x_0 \approx 0.02$
2	$x_2 = 1.4727057$	$ x_2 - x_1 \approx 0.009$
3	$x_3 = 1.4688173$	$ x_2 - x_1 \approx 0.004$
4	$x_4 = 1.4670480$	$ x_2 - x_1 \approx 0.002$
5	$x_5 = 1.4662430$	$ x_2 - x_1 \approx 0.0009$
6	$x_6 = 1.4658786$	$ x_2 - x_1 \approx 0.0004$
7	$x_7 = 1.4657020$	$ x_2 - x_1 \approx 0.0002$
8	$x_8 = 1.4656344$	$ x_2 - x_1 \approx 0.00007$
9	$x_9 = 1.4656000$	$ x_2 - x_1 \le \frac{1}{2} \times 10^{-4}$

- 1 范数、谱半径与条件数
- 2 解线性方程组的直接法
- 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
 - 4.1 不动点迭代法
 - 4.2 牛顿迭代法
- 5 插值
- 6 曲线拟合
- 8. 常微分方程的数值解法

定义(牛顿迭代公式)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \cdots$$
 (5)

定理(局部收敛性定理)

设 x^* 为f(x) = 0的根,若

- 1 f(x)在x*的邻域内有连续的二阶导数
- 2 在x*的邻域内 $f'(x) \neq 0$

则 $\exists S = \{x | |x - x^*| \le \delta\}, s.t. \ \forall x_0 \in S$, 牛顿迭代所产生的数列收敛到 x^* 。

定理

设x*为f(x) = 0在[a,b]内的根,若

- $\forall x \in [a,b]$, f'(x), f''(x)连续且不变号
- 选取 $x_0 \in [a,b]$, 使 $f(x_0)f''(x_0) > 0$

则牛顿迭代所产生的数列收敛到x*。

初值的选取

初值的选取

若在 x_0 处,f(x)满足

$$[f'(x_0)]^2 > \left| \frac{f''(x_0)}{2} \right| \cdot |f(x_0)|$$
 (*)

且 $f'(x_0) \neq 0$,就可用 x_0 作为牛顿法的初值。

例题

例(1)

用牛顿迭代法求解 $x^3 - x^2 - 1 = 0$ 在[1.4, 1.5]内的根

解

$$\diamondsuit f(x) = x^3 - x^2 - 1$$

- (1) 牛顿迭代公式为 $x_{n+1} = \frac{2x_n^3 x_n^2 + 1}{3x_n^2 2x_n}$
- (2) 判断牛顿迭代法的收敛性

$$f(1.4) \approx -0.2$$
, $f(1.5) \approx 0.2$,
 $f'(x) = 3x^2 - 2x > 0$ $(x \in [1.4, 1.5])$,
 $f''(x) = 6x - 2 > 0$ $(x \in [1.4, 1.5])$,

因为f(1.5)f''(1.5) > 0,故可选取初值 $x_0 = 1.5$,此时牛顿迭代法收

例(1)

例题

用牛顿迭代法求解 $x^3 - x^2 - 1 = 0$ 在[1.4, 1.5]内的根

解

$$\Rightarrow f(x) = x^3 - x^2 - 1$$

- (1) 牛顿迭代公式为 $x_{n+1} = \frac{2x_n^3 x_n^2 + 1}{3x_n^2 2x_n}$
- (2) 判断牛顿迭代法的收敛性

$$f(1.4) \approx -0.2$$
, $f(1.5) \approx 0.2$,
 $f'(x) = 3x^2 - 2x > 0$ $(x \in [1.4, 1.5])$,
 $f''(x) = 6x - 2 > 0$ $(x \in [1.4, 1.5])$,

因为f(1.5)f''(1.5) > 0,故可选取初值 $x_0 = 1.5$,此时牛顿迭代法收

例题

Table: 计算结果

\overline{n}	x_n	$ x_{n+1} - x_n \le \frac{1}{2} \times 10^{-4}$
0	$x_0 = 1.5$	
1	$x_1 = 1.466667$	$ x_2 - x_1 \approx 0.04$
2	$x_2 = 1.465572$	$ x_3 - x_2 \approx 0.002$
3	$x_3 = 1.465571$	$ x_4 - x_3 \le \frac{1}{2} \times 10^{-4}$

例题

例 (2)

用牛顿法求方程

$$f(x) = x^{41} + x^3 + 1 = 0$$

(1) 牛顿迭代公式为

$$x_{n+1} = x_n - \frac{x_n^{41} + x_n^3 + 1}{41x_n^{40} + 3x_n^2}$$

(2) 判断收敛性

$$f'(x) = 41x^{40} + 3x^2, \quad \frac{1}{2}f''(x) = 820x^{39} + 3x,$$

$$f(-1) = -1, \quad f'(-1) = 44, \quad \frac{1}{2}f''(-1) = -823,$$

$$[f'(-1)]^2 = 44^2 = 1936 > |\frac{1}{2}f''(-1)| \cdot |f(-1)| = 82$$

故可取 $x_0 = -1$ 为初始值。

(ロ) 4回 + 4 E > 4 E - かへで

例 (2)

例题

用牛顿法求方程

$$f(x) = x^{41} + x^3 + 1 = 0$$

(1) 牛顿迭代公式为

$$x_{n+1} = x_n - \frac{x_n^{41} + x_n^3 + 1}{41x_n^{40} + 3x_n^2}$$

(2) 判断收敛性

$$f'(x) = 41x^{40} + 3x^2, \quad \frac{1}{2}f''(x) = 820x^{39} + 3x,$$

$$f(-1) = -1, \quad f'(-1) = 44, \quad \frac{1}{2}f''(-1) = -823,$$

$$[f'(-1)]^2 = 44^2 = 1936 > |\frac{1}{2}f''(-1)| \cdot |f(-1)| = 823$$

故可取 $x_0 = -1$ 为初始值。

4 □ ト 4 圖 ト 4 圖 ト 4 圖 ト 9 Q @

例题

Table: 计算结果

n	x_n
0	$x_0 = -1$
1	$x_1 = -0.9773$
2	$x_2 = -0.9605$
3	$x_3 = -0.9525$
4	$x_4 = -0.9525$

例(3)

例题

用牛顿法建立计算 $\sqrt{C}(C>0)$ 近似值的迭代公式。

解

$$x = \sqrt{C} \implies f(x) = x^2 - C = 0$$

(1) 牛顿迭代公式为

$$x_{n+1} = x_n - \frac{x_n^2 - C}{2x_n} = \frac{1}{2} \left(x_n + \frac{C}{x_n} \right)$$

(2) 收敛性判别

当x > 0时,f'(x) > 0,f'' = 2 > 0,故任意选取 $x_0 > \sqrt{C}$ 作为初值, 迭代序列必收敛到 \sqrt{C} ,故迭代公式是收敛的。

例 (3)

例题

用牛顿法建立计算 $\sqrt{C}(C>0)$ 近似值的迭代公式。

解

$$x = \sqrt{C} \implies f(x) = x^2 - C = 0$$

(1) 牛顿迭代公式为

$$x_{n+1} = x_n - \frac{x_n^2 - C}{2x_n} = \frac{1}{2} \left(x_n + \frac{C}{x_n} \right)$$

(2) 收敛性判别

当x > 0时,f'(x) > 0,f'' = 2 > 0,故任意选取 $x_0 > \sqrt{C}$ 作为初值, 迭代序列必收敛到 \sqrt{C} ,故迭代公式是收敛的。

例 (3)

例题

用牛顿法建立计算 $\sqrt{C}(C>0)$ 近似值的迭代公式。

解

$$x = \sqrt{C} \implies f(x) = x^2 - C = 0$$

(1) 牛顿迭代公式为

$$x_{n+1} = x_n - \frac{x_n^2 - C}{2x_n} = \frac{1}{2} \left(x_n + \frac{C}{x_n} \right)$$

(2) 收敛性判别

当x > 0时,f'(x) > 0,f'' = 2 > 0, 故任意选取 $x_0 > \sqrt{C}$ 作为初值, 迭代序列必收敛到 \sqrt{C} , 故迭代公式是收敛的。

图: 用牛顿法求√2

图: 用牛顿法求√2 (局部放大)

94 / 152

图: 用牛顿法求√2

图: 用牛顿法求√2 (局部放大)

图: 用牛顿法求√2

图: 用牛顿法求√2 (局部放大)

图: 用牛顿法求√2

图: 用牛顿法求√2 (局部放大)

94 / 152

图: 用牛顿法求√2

图: 用牛顿法求√2 (局部放大)

图: 用牛顿法求√2

图: 用牛顿法求√2 (局部放大)

图:用牛顿法求√2

图: 用牛顿法求√2 (局部放大)

图:用牛顿法求√2

图: 用牛顿法求√2 (局部放大)

图: 用牛顿法求√2

图: 用牛顿法求√2 (局部放大)

迭代法的收敛阶

定义(迭代法的收敛阶)

设数列 $\{x_n\}$ 收敛于 x^* ,令误差 $e_n = x_n - x^*$,若存在某个实数 $p \ge 1$ 及常数C > 0使得

$$\lim_{n\to\infty} \frac{|e_{n+1}|}{|e_n|^p} = C$$

则称数列 $\{x_n\}$ 为p阶收敛,相应的迭代法是p阶方法。

- 线性收敛: p = 1且0 < C < 1
- 平方收敛: p = 2
- 超线性收敛: p>1

p越大,数列收敛越快。故迭代法的收敛阶是对迭代法收敛速度的一种度量。

迭代法的收敛阶

定义(迭代法的收敛阶)

设数列 $\{x_n\}$ 收敛于 x^* ,令误差 $e_n = x_n - x^*$,若存在某个实数 $p \ge 1$ 及常数C > 0使得

$$\lim_{n\to\infty} \frac{|e_{n+1}|}{|e_n|^p} = C$$

则称数列 $\{x_n\}$ 为p阶收敛,相应的迭代法是p阶方法。

- 线性收敛: p = 1且0 < C < 1
- 平方收敛: p = 2
- 超线性收敛: p > 1

p越大,数列收敛越快。故迭代法的收敛阶是对迭代法收敛速度的一种度量。

迭代法的收敛阶

定理

- (1) 若在根 x^* 的某个领域内有 $\varphi'(x) \neq 0$,则不动点迭代法线性收敛
- (2) 若在根x*的某个领域内连续,且有

$$\varphi'(x^{\star}) = \dots = \varphi^{(p-1)}(x^{\star}) = 0$$

而 $\varphi^{(p)}(x^*) \neq 0$,则不动点迭代法p阶收敛

(3) 牛顿迭代法平方收敛

- 1 范数、谱半径与条件数
- ② 2 解线性方程组的直接法
- ③ 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 7 数值积分
- ⑧ 8. 常微分方程的数值解法

- 1 范数、谱半径与条件数

- 4 非线性方程的数值解法
- 5 插值
 - 5.1 Lagrange插值
 - 5.1 牛顿插值公式
- 6 曲线拟合
- 8. 常微分方程的数值解法

设y = f(x)在n + 1个节点 $x_0 < x_1 < \cdots < x_n$ 处的函数值 $f(x_k) = y_k (k = 0, \cdots, n)$ 。

现要作一个n次插值多项式 $L_n(x)$,使其满足插值条件

$$L_n(x_i) = y_i \quad (i = 0, 1, 2, \dots, n).$$

f(x)的n次Lagrange插值多项式

$$L_n(x) = \sum_{k=0}^n y_k l_k(x)$$

其中

$$l_k(x) = \prod_{\substack{i=0 \ i \neq k}}^{n} \frac{(x - x_i)}{(x_k - x_i)}$$

4 D > 4 B > 4 E > 4 E > 9 Q C

定理

条件:

- 1 $f^{(n)}(x)$ 在[x_0, x_n]上连续
- 2 $f^{(n+1)}(x)$ 在 (x_0, x_n) 内存在
- 3 Ln是满足线性插值条件的插值多项式

结论

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x),$$

其中 $\xi \in (x_0, x_n)$, 且依赖于x,而

$$\omega_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n),$$

例

已知 e^{-x} 在x=1,2,3点的值由下表给出。试分别用线性插值与二次插值计算 $e^{-2.1}$ 的近似值,并进行误差估计。

x	1	2	3	
e^{-x}	0.367879441	0.135335283	0.049787068	

例

已知 e^{-x} 在x=1,2,3点的值由下表给出。试分别用线性插值与二次插值计算 $e^{-2.1}$ 的近似值,并进行误差估计。

\overline{x}	1	2	3	
e^{-x}	0.367879441	0.135335283	0.049787068	

解

线性插值: $p_{x_0} = 2, x_1 = 3, x = 2.1, 代入一次插值公式$

$$L_1(2.1) = 0.135335283 \times \frac{2.1 - 3}{2 - 3} + 0.049787068 \times \frac{2.1 - 2}{3 - 2} = 0.12678046$$

例

已知 e^{-x} 在x=1,2,3点的值由下表给出。试分别用线性插值与二次插值计算 $e^{-2.1}$ 的近似值,并进行误差估计。

X	1	2	3	
e^{-x}	0.367879441	0.135335283	0.049787068	

解

二次插值: 取
$$x_0 = 1$$
, $x_1 = 2$, $x_2 = 3$, $x = 2.1$, 代入二次插值公式

$$L_2(2.1) = 0.367879441 \times \frac{(2.1-2)(2.1-3)}{(1-2)(1-3)} + 0.135335283 \times \frac{(2.1-1)(2.1-3)}{(2-1)(2-1)} + 0.049787068 \times \frac{(2.1-1)(2.1-2)}{(3-1)(3-2)} = 0.120165644$$

例

已知 e^{-x} 在x=1,2,3点的值由下表给出。试分别用线性插值与二次插值计算 $e^{-2.1}$ 的近似值,并进行误差估计。

X	1	2	3	
e^{-x}	0.367879441	0.135335283	0.049787068	

解

注意到e-x的递减性,有

$$|R_1(2.1)| \le \frac{e^{-2}}{2!} |(2.1-2)(2.1-3)| \approx 0.00609009$$

 $|R_2(2.1)| \le \frac{e^{-1}}{3!} |(2.1-1)(2.1-2)(2.1-3)| \approx 0.006070091$

- 1 范数、谱半径与条件数
- 2 解线性方程组的直接法
- 4 非线性方程的数值解法
- 5 插值
 - 5.1 Lagrange插值
 - 5.1 牛顿插值公式
- 6 曲线拟合
- 8. 常微分方程的数值解法

5 插值

5.1 牛顿插值公式

Table: 差商表

x_i	$f(x_i)$	一阶差商	二阶差商	三阶差商	四阶差商
x_0	$f(x_0)$				
x_1	$f(x_1)$	$f[x_0,x_1]$			
x_2	$f(x_2)$	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$		
x_3	$f(x_3)$	$f[x_2, x_3]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$	
χ_4	$f(x_4)$	$f[x_3, x_4]$	$f[x_2, x_3, x_4]$	$f[x_1, x_2, x_3, x_4]$	$f[x_0, x_1, x_2, x_3, x_4]$
<u>:</u>	÷	:	:	:	:

定义(牛顿插值公式)

$$f(x) = N_n(x) + \tilde{R}_n(x)$$

其中

$$N_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

$$\tilde{R}_n(x) = f[x, x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_n).$$

5 插值

5.1 牛顿插值公式

例

已知一组观察数据为

试用此组数据构造3次牛顿插值9项式 $N_3(x)$,并计算 $N_3(1.5)$ 的值

5 插值

5.1 牛顿插值公式

解

差商表为

x_i	y _i	一阶差商	二阶差商	三阶差商
1	0			
2	-5	-5		
3	-6	-1	2	
4	3	9	5	1

故

$$N_3(x) = 0 - 5(x - 1) + 2(x - 1)(x - 2) + (x - 1)(x - 2)(x - 3) = x^3 - 4x^2 + 3$$

$$N_3(1.5) = -2.65$$

4□ > 4回 > 4 = > 4 = > = 900

- 1 范数、谱半径与条件数
- ② 2 解线性方程组的直接法
- ③ 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 7 数值积分
- ⑧ 8. 常微分方程的数值解法

练习

通过实验获得数据如下

x_i	1	2	3	4	6	7	8
y_i	2	3	6	7	5	3	2

试用最小二乘法求多项式曲线, 使与此数据相拟合。

练习

通过实验获得数据如下

x_i	1	2	3	4	6	7	8
y_i	2	3	6	7	5	3	2

试用最小二乘法求多项式曲线, 使与此数据相拟合。

解

1 确定近似表达式

$$y = \varphi(x) = a_0 + a_1 x + a_2 x^2$$

2 建立矛盾方程组

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \\ 1 & 6 & 36 \\ 1 & 7 & 49 \\ 1 & 8 & 64 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 6 \\ 7 \\ 5 \\ 3 \\ 2 \end{pmatrix}$$

解

1 确定近似表达式

$$y = \varphi(x) = a_0 + a_1 x + a_2 x^2$$

2 建立矛盾方程组

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \\ 1 & 6 & 36 \\ 1 & 7 & 49 \\ 1 & 8 & 64 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 6 \\ 7 \\ 5 \\ 3 \\ 2 \end{pmatrix}$$

解

3 得到法方程组

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 6 & 7 & 8 \\ 1 & 4 & 9 & 16 & 36 & 49 & 64 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \\ 1 & 6 & 36 \\ 1 & 7 & 49 \\ 1 & 8 & 64 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 6 & 7 & 8 \\ 1 & 4 & 9 & 16 & 36 & 49 & 64 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 6 \\ 7 \\ 5 \\ 3 \\ 2 \end{pmatrix}$$

$$\underbrace{\$ \& \uparrow \# \hat{\tau} \&}_{\text{November 21, 2013}}$$

4 求解法方程组

$$\begin{pmatrix} 7 & 31 & 179 \\ 31 & 179 & 1171 \\ 179 & 1171 & 8147 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 28 \\ 121 \\ 635 \end{pmatrix}$$

得

$$a_0 = -1.3185$$
, $a_1 = 3.4321$, $a_2 = -0.3864$

故所求拟合曲线为

$$y = \varphi(x) = -1.3185 + 3.4321x - 0.3864x^2.$$

4 求解法方程组

$$\begin{pmatrix} 7 & 31 & 179 \\ 31 & 179 & 1171 \\ 179 & 1171 & 8147 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 28 \\ 121 \\ 635 \end{pmatrix}$$

得

$$a_0 = -1.3185$$
, $a_1 = 3.4321$, $a_2 = -0.3864$

故所求拟合曲线为

$$y = \varphi(x) = -1.3185 + 3.4321x - 0.3864x^2.$$

4 求解法方程组

$$\begin{pmatrix} 7 & 31 & 179 \\ 31 & 179 & 1171 \\ 179 & 1171 & 8147 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 28 \\ 121 \\ 635 \end{pmatrix}$$

得

$$a_0 = -1.3185$$
, $a_1 = 3.4321$, $a_2 = -0.3864$

故所求拟合曲线为

$$y = \varphi(x) = -1.3185 + 3.4321x - 0.3864x^2$$
.

图: 曲线拟合

4 D L 4 D L 4 E L 4 E L 5 O O O

图: 曲线拟合

练习

在一物理实验中,电压V与电流I的一组数据如下

\overline{V}	1	2	3	4	5	6	7	8
I	1.53	2.05	2.74	3.66	4.91	6.56	8.78	11.76

试用最小二乘法求最佳拟合函数。

练习

在一物理实验中,电压V与电流I的一组数据如下

\overline{V}	1	2	3	4	5	6	7	8
I	1.53	2.05	2.74	3.66	4.91	6.56	8.78	11.76

试用最小二乘法求最佳拟合函数。

解

1 确定近似表达式

$$I = ae^{bV} \implies \ln I = \ln a + bV$$

\overline{V}	1	2	3	4	5	6	7	8
I	1.53	2.05	2.74	3.66	4.91	6.56	8.78	11.76

\overline{V}	1	2	3	4	5	6		8
ln <i>I</i>	0.43	0.72	1.01	1.30	1.59	1.88	2.17	2.46

解

1 确定近似表达式

$$I = ae^{bV} \implies \ln I = \ln a + bV$$

\overline{V}	1	2	3	4	5	6	7	8
I	1.53	2.05	2.74	3.66	4.91	6.56	8.78	11.76

\overline{V}	1	2	3	4	5	6	7	8
ln I	0.43	0.72	1.01	1.30	1.59	1.88	2.17	2.46

解

2 建立矛盾方程组

$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \\ 1 & 5 \\ 1 & 6 \\ 1 & 7 \\ 1 & 8 \end{pmatrix} \begin{pmatrix} \ln a \\ b \end{pmatrix} = \begin{pmatrix} 0.43 \\ 0.72 \\ 1.01 \\ 1.30 \\ 1.59 \\ 1.88 \\ 2.17 \\ 2.46 \end{pmatrix}$$

解

3 得到法方程组

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 5 & 4 & 6 & 7 & 8 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \\ 1 & 6 \\ 1 & 7 \\ 1 & 8 \end{pmatrix} \begin{pmatrix} \ln a \\ b \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 5 & 4 & 6 & 7 & 8 \end{pmatrix} \begin{pmatrix} 2.7 \\ 3.0 \\ 3.3 \\ 3.6 \\ 3.9 \\ 4.2 \\ 4.5 \\ 4.8 \end{pmatrix}$$

解

4 求解法方程组

$$\begin{pmatrix} 8 & 36 \\ 36 & 204 \end{pmatrix} \begin{pmatrix} \ln a \\ b \end{pmatrix} = \begin{pmatrix} 29.9787 \\ 147.1350 \end{pmatrix}$$

得

$$\ln a = 0.1343 \implies a = 1.14393$$

$$b = 0.2912$$

故所求拟合曲线为

$$I = 1.14393e^{0.2912V}$$

解

4 求解法方程组

$$\begin{pmatrix} 8 & 36 \\ 36 & 204 \end{pmatrix} \begin{pmatrix} \ln a \\ b \end{pmatrix} = \begin{pmatrix} 29.9787 \\ 147.1350 \end{pmatrix}$$

得

$$\ln a = 0.1343 \implies a = 1.14393$$

$$b = 0.2912$$

故所求拟合曲线为

$$I = 1.14393e^{0.2912V}$$

解

4 求解法方程组

$$\begin{pmatrix} 8 & 36 \\ 36 & 204 \end{pmatrix} \begin{pmatrix} \ln a \\ b \end{pmatrix} = \begin{pmatrix} 29.9787 \\ 147.1350 \end{pmatrix}$$

得

$$\ln a = 0.1343 \implies a = 1.14393$$

$$b = 0.2912$$

故所求拟合曲线为

$$I = 1.14393e^{0.2912V}$$

图: 曲线拟合

118 / 152

图: 曲线拟合

- □ 1 范数、谱半径与条件数
- ② 2 解线性方程组的直接法
- ③ 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 数值积分
- ⑧ 8. 常微分方程的数值解法

- 1 范数、谱半径与条件数
- 2 解线性方程组的直接法
- 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 数值积分
 - 7.1 插值型求积公式
 - 7.2 Newton-Cotes公式
 - 7.3 复化求积公式
 - 7.4 代数精度
 - 7.5 高斯求积公式
- 8. 常微分方程的数值解法

7.1 插值型求积公式

设[a,b]上的节点为

$$a = x_0 < x_1 < \cdots < x_n = b,$$

则f(x)的Lagrange插值多项式为

$$L_n(x) = \sum_{i=0}^n l_i(x) f(x_i), \quad l_i(x) = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j}.$$

7.1 插值型求积公式

用 $L_n(x)$ 作为f(x)的近似函数有

$$I = \int_a^b f(x) dx \approx \int_a^b L_n(x) dx$$
$$= \int_a^b \sum_{i=0}^n l_i(x) f(x_i) dx = \sum_{i=0}^n \left(\int_a^b l_i(x) dx \right) f(x_i).$$

记 $A_i = \int_a^b l_i(x) dx$,则有插值型求积公式

$$I = \int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} A_{i} f(x_{i})$$

其中 A_i 只与插值节点 x_i 有关,而与被积函数f(x)无关

◆□▶◆□▶◆■▶◆■▶ ■ からぐ

7.1 插值型求积公式

上述求积公式的截断误差为

$$R_n(f) = \int_a^b [f(x) - L_n(x)] dx$$
$$= \frac{1}{(n+1)!} \int_a^b f^{(n+1)}(\xi) \omega_{n+1}(x) dx$$

其中

$$\omega_{n+1}(x) = \prod_{i=0}^{n} (x - x_i), \quad \xi \in (a, b)$$

- 1 范数、谱半径与条件数
- ② 2 解线性方程组的直接法
- ③ 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 数值积分
 - 7.1 插值型求积公式
 - 7.2 Newton-Cotes公式
 - 7.2 Newton-Cotts公式7.3 复化求积公式
 - 7.4 代数精度
 - 7.5 高斯求积公式
- 8. 常微分方程的数值解法

124 / 152

在插值型求积公式中,取等距节点,即将[a,b]作n等分,记节点为 $x_i=a+ih(i=0,1,\cdots,n),\ h=\dfrac{b-a}{n}$ 。作变量替换x=a+th,则

$$A_{i} = \int_{a}^{b} \prod_{j=0, j\neq i}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx = h \int_{0}^{n} \prod_{j=0, j\neq i}^{n} \frac{t - j}{i - j} dt$$
$$= \frac{b - a}{n} \cdot \frac{(-1)^{n-i}}{i!(n-i)!} \int_{0}^{n} \prod_{j=0, j\neq i}^{n} (t - j) dt$$

在插值型求积公式中,取等距节点,即将[a,b]作n等分,记节点为 $x_i=a+ih(i=0,1,\cdots,n),\ h=\dfrac{b-a}{n}$ 。作变量替换x=a+th,则

$$A_{i} = \int_{a}^{b} \prod_{j=0, j\neq i}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx = h \int_{0}^{n} \prod_{j=0, j\neq i}^{n} \frac{t - j}{i - j} dt$$
$$= \frac{b - a}{n} \cdot \frac{(-1)^{n-i}}{i!(n-i)!} \int_{0}^{n} \prod_{j=0, j\neq i}^{n} (t - j) dt$$

记

$$C_i^{(n)} = \frac{1}{n} \frac{(-1)^{n-i}}{i!(n-i)!} \int_0^n \prod_{j=0, j\neq i}^n (t-j) \, dt \implies A_i = (b-a)C_i^{(n)}$$

于是得到Newton-Cotes求积公式

$$I = \int_{a}^{b} f(x) dx \approx (b - a) \sum_{i=0}^{n} C_{i}^{(n)} f(x_{i})$$

 $C_i^{(n)}$ 成为柯特斯系数。

记

$$C_i^{(n)} = \frac{1}{n} \frac{(-1)^{n-i}}{i!(n-i)!} \int_0^n \prod_{j=0, j \neq i}^n (t-j) \, dt \implies A_i = (b-a)C_i^{(n)}$$

于是得到Newton-Cotes求积公式

$$I = \int_{a}^{b} f(x) dx \approx (b - a) \sum_{i=0}^{n} C_{i}^{(n)} f(x_{i})$$

 $C_i^{(n)}$ 成为柯特斯系数。

性质 (柯特斯系数 $C_i^{(n)}$)

1 对称性:

$$C_i^{(n)} = C_{n-i}^{(n)}$$

2 权性:

$$\sum_{i=1}^{n} C_i^{(n)} = 1$$

• n = 1 (梯形(Trapezoidal)公式)

$$C_0^{(1)} = C_1^{(1)} = \int_0^1 t \, dt = \frac{1}{2}$$

$$I = \int_a^b f(x) \, dx \approx \frac{b-a}{2} [f(a) + f(b)]$$

• n = 1 (梯形(Trapezoidal)公式)

$$C_0^{(1)} = C_1^{(1)} = \int_0^1 t \, dt = \frac{1}{2}$$

$$I = \int_a^b f(x) \, dx \approx \frac{b-a}{2} [f(a) + f(b)]$$

● *n* = 2 (辛普森(Simpson)公式)

$$C_0^{(2)} = C_2^{(2)} = \frac{1}{4} \int_0^2 t(t-1) \, dt = \frac{1}{6}, \quad C_1^{(2)} = \frac{1}{4} \int_0^2 t(t-2) \, dt = \frac{4}{6}$$
$$I = \int_0^b f(x) \, dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

● *n* = 3 (辛普森(Simpson)3/8公式)

$$I = \int_{a}^{b} f(x) dx \approx \frac{b - a}{8} \left[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right]$$

n = 4 (柯特斯(Cotes)公式)

$$I = \int_{a}^{b} f(x) dx \approx \frac{b - a}{90} \left[7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4) \right]$$

定理(截断误差)

1 若 f"(x)在[a,b]上连续,则梯形公式的截断误差为

$$R_1(f) = -\frac{(b-a)^3}{12}f''(\xi), \quad \xi \in [a,b]$$

2 若 $f^{(4)}(x)$ 在[a,b]上连续,则辛普森公式的截断误差为

$$R_2(f) = -\frac{(b-a)^5}{2880}f^{(4)}(\xi) = -\frac{1}{90}\left(\frac{b-a}{2}\right)^5f^{(4)}(\xi), \quad \xi \in [a,b]$$

 $3 若 f^{(6)}(x)$ 在[a,b]上连续,则柯特斯公式的截断误差为

$$R_4(f) = -\frac{(b-a)^7}{1013760} f^{(4)}(\xi) = -\frac{8}{495} \left(\frac{b-a}{4}\right)^7 f^{(6)}(\xi), \quad \xi \in [a,b]$$

130 / 152

 张晓平 ()
 数值计算方法
 November 21, 2013

例

试分别用梯形公式、辛普森公式和柯特斯公式计算 $I=\int_{1/2}^1\sqrt{x}\,dx$,并与精确解进行比较。

解

精确解为
$$I = \frac{2}{3} \sqrt{x^3} \Big|_{0.5}^1 = 0.42096441$$

1 梯形公式:
$$I \approx \frac{0.5}{2} (\sqrt{0.5} + 1) \approx 0.4267767$$

2 辛普森公式:
$$I \approx \frac{0.5}{6} (\sqrt{0.5} + 4\sqrt{0.75} + 1) \approx 0.43093403$$

$$I \approx \frac{0.5}{90} (7\sqrt{0.5} + 32\sqrt{0.625} + 12\sqrt{0.75} + 32\sqrt{0.875} + 7) \approx 0.43096407$$

4 D > 4 B > 4 B > B + 9 Q G

例

试分别用梯形公式、辛普森公式和柯特斯公式计算 $I=\int_{1/2}^1\sqrt{x}\,dx$,并与精确解进行比较。

解

精确解为
$$I = \frac{2}{3} \sqrt{x^3} \Big|_{0.5}^1 = 0.42096441$$

- 1 梯形公式: $I \approx \frac{0.5}{2} (\sqrt{0.5} + 1) \approx 0.4267767$
- 2 辛普森公式: $I \approx \frac{0.5}{6} (\sqrt{0.5} + 4\sqrt{0.75} + 1) \approx 0.43093403$
- 3 柯特斯公式: $I \approx \frac{0.5}{00} (7\sqrt{0.5} + 32\sqrt{0.625} + 12\sqrt{0.75} + 32\sqrt{0.875} + 7) \approx 0.43096407$

数值计算方法

131 / 152

- 1 范数、谱半径与条件数
- 2 解线性方程组的直接法
- 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 数值积分
 - 7.1 插值型求积公式
 - 7.2 Newton-Cotes公式
 - 7.3 复化求积公式
 - 7.4 代数精度
 - 7.5 高斯求积公式
- 8. 常微分方程的数值解法

定义(复化求积公式)

为提高数值积分的精度,将[a,b]等分为n个子区间,在每个区间上用基本求积公式,然后再累加成新的求积公式,这样既可提高结果的精度,又可使算法简便易于实现。这种求积公式成为复化求积公式。

将[a,b]进行n等分,记节点为 $x_i = a + ih(i = 0, 1, \cdots, n)$, $h = \frac{b-a}{n}$ 称为步长,子区间为[x_{i-1}, x_i]($i = 1, 2, \cdots, n$)。

● 复化梯形公式 在每个子区间[x: 1. x:]应用梯形公式,有

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \frac{h}{2} [f(x_{i-1}) + f(x_i)], \quad i = 1, 2, \dots, n$$

累加得复化梯形公式

$$T_n = \frac{h}{2} \left[f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

将[a,b]进行n等分,记节点为 $x_i = a + ih(i = 0, 1, \cdots, n)$, $h = \frac{b-a}{n}$ 称为步长,子区间为[x_{i-1}, x_i]($i = 1, 2, \cdots, n$)。

● 复化梯形公式 在每个子区间[x: 1. x:]应用梯形公式,有

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \frac{h}{2} [f(x_{i-1}) + f(x_i)], \quad i = 1, 2, \dots, n$$

累加得复化梯形公式

$$T_n = \frac{h}{2} \left[f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

(ロ) (団) (目) (目) (目) (O) (O)

将[a,b]进行n等分,记节点为 $x_i = a + ih(i = 0, 1, \cdots, n)$, $h = \frac{b-a}{n}$ 称为步长,子区间为[x_{i-1}, x_i]($i = 1, 2, \cdots, n$)。

● 复化梯形公式 在每个子区间[x: 1. x:]应用梯形公式,有

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \frac{h}{2} [f(x_{i-1}) + f(x_i)], \quad i = 1, 2, \dots, n$$

累加得复化梯形公式

$$T_n = \frac{h}{2} \left[f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

将[a,b]进行n等分,记节点为 $x_i = a + ih(i = 0, 1, \cdots, n)$, $h = \frac{b-a}{n}$ 称为步长,子区间为[x_{i-1}, x_i]($i = 1, 2, \cdots, n$)。

● 复化梯形公式 在每个子区间[x: 1. x:]应用梯形公式,有

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \frac{h}{2} [f(x_{i-1}) + f(x_i)], \quad i = 1, 2, \dots, n$$

累加得复化梯形公式

$$T_n = \frac{h}{2} \left[f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

将[a,b]进行n等分,记节点为 $x_i = a + ih(i = 0, 1, \cdots, n)$, $h = \frac{b-a}{n}$ 称为步长,子区间为[x_{i-1}, x_i]($i = 1, 2, \cdots, n$)。

● 复化梯形公式 在每个子区间[x: 1. x:]应用梯形公式,有

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \frac{h}{2} [f(x_{i-1}) + f(x_i)], \quad i = 1, 2, \dots, n$$

累加得复化梯形公式

$$T_n = \frac{h}{2} \left[f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

▶ 4回 > 4 = > 4 = > = 9 9 0

将[a,b]进行n等分,记节点为 $x_i = a + ih(i = 0, 1, \cdots, n)$, $h = \frac{b-a}{n}$ 称为步长,子区间为[x_{i-1}, x_i]($i = 1, 2, \cdots, n$)。

● 复化梯形公式 在每个子区间[x: 1. x:]应用梯形公式,有

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \frac{h}{2} [f(x_{i-1}) + f(x_i)], \quad i = 1, 2, \dots, n$$

累加得复化梯形公式

$$T_n = \frac{h}{2} \left[f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

将[a,b]进行n等分,记节点为 $x_i = a + ih(i = 0, 1, \cdots, n)$, $h = \frac{b-a}{n}$ 称为步长,子区间为[x_{i-1}, x_i]($i = 1, 2, \cdots, n$)。

● 复化梯形公式 在每个子区间[x: 1. x:]应用梯形公式,有

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \frac{h}{2} [f(x_{i-1}) + f(x_i)], \quad i = 1, 2, \dots, n$$

累加得复化梯形公式

$$T_n = \frac{h}{2} \left[f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

将[a,b]进行n等分,记节点为 $x_i = a + ih(i = 0, 1, \dots, n)$, $h = \frac{b-a}{n}$ 称为步长,子区间为[x_{i-1}, x_i]($i = 1, 2, \dots, n$)。

● 复化梯形公式 在每个子区间[x: 1. x:]应用梯形公式,有

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \frac{h}{2} [f(x_{i-1}) + f(x_i)], \quad i = 1, 2, \dots, n$$

累加得复化梯形公式

$$T_n = \frac{h}{2} \left[f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

将[a,b]进行n等分,记节点为 $x_i = a + ih(i = 0, 1, \cdots, n)$, $h = \frac{b-a}{n}$ 称为步长,子区间为[x_{i-1}, x_i]($i = 1, 2, \cdots, n$)。

● 复化Simpson公式
 在每个子区间[x_{i-1},x_i]应用Simpson公式,有

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \frac{h}{6} [f(x_{i-1}) + 4f(x_{i-\frac{1}{2}}) + f(x_i)], \quad i = 1, 2, \dots, n$$

累加得复化Simpson公式

$$S_n = \frac{h}{6} \left[f(a) + 4 \sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

4 ロ > 4 倒 > 4 重 > 4 重 > 9 の 0 の

将[a,b]进行n等分,记节点为 $x_i = a + ih(i = 0, 1, \cdots, n)$, $h = \frac{b-a}{n}$ 称为步长,子区间为[x_{i-1}, x_i]($i = 1, 2, \cdots, n$)。

● 复化Simpson公式 在每个子区间[x_{i-1},x_i]应用Simpson公式,有

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \frac{h}{6} [f(x_{i-1}) + 4f(x_{i-\frac{1}{2}}) + f(x_i)], \quad i = 1, 2, \dots, n$$

累加得复化Simpson公式

$$S_n = \frac{h}{6} \left[f(a) + 4 \sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

4□▶ 4□▶ 4□▶ 4□▶ 4□ 900

将[a,b]进行n等分,记节点为 $x_i = a + ih(i = 0, 1, \cdots, n)$, $h = \frac{b-a}{n}$ 称为步长,子区间为[x_{i-1}, x_i]($i = 1, 2, \cdots, n$)。

● 复化Simpson公式 在每个子区间[x_{i-1},x_i]应用Simpson公式,有

$$\int_{x_{i-1}}^{x_i} f(x) \, dx \approx \frac{h}{6} [f(x_{i-1}) + 4f(x_{i-\frac{1}{2}}) + f(x_i)], \quad i = 1, 2, \dots, n$$

累加得复化Simpson公式

$$S_n = \frac{h}{6} \left[f(a) + 4 \sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

4 D > 4 D > 4 E > 4 E > E 990

将[a,b]进行n等分,记节点为 $x_i = a + ih(i = 0, 1, \cdots, n)$, $h = \frac{b-a}{n}$ 称为步长,子区间为[x_{i-1}, x_i]($i = 1, 2, \cdots, n$)。

● 复化Simpson公式 在每个子区间[x_{i-1},x_i]应用Simpson公式,有

$$\int_{x_{i-1}}^{x_i} f(x) \, dx \approx \frac{h}{6} [f(x_{i-1}) + 4f(x_{i-\frac{1}{2}}) + f(x_i)], \quad i = 1, 2, \dots, n$$

累加得复化Simpson公式

$$S_n = \frac{h}{6} \left[f(a) + 4 \sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

4 D > 4 D > 4 E > 4 E > E 990

将[a,b]进行n等分,记节点为 $x_i = a + ih(i = 0, 1, \cdots, n)$, $h = \frac{b-a}{n}$ 称为步长,子区间为[x_{i-1}, x_i]($i = 1, 2, \cdots, n$)。

● 复化Simpson公式 在每个子区间[x_{i-1},x_i]应用Simpson公式,有

$$\int_{x_{i-1}}^{x_i} f(x) \, dx \approx \frac{h}{6} [f(x_{i-1}) + 4f(x_{i-\frac{1}{2}}) + f(x_i)], \quad i = 1, 2, \dots, n$$

累加得复化Simpson公式

$$S_n = \frac{h}{6} \left[f(a) + 4 \sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

4□▶ 4□▶ 4□▶ 4□▶ 4□ 900

将[a,b]进行n等分,记节点为 $x_i = a + ih(i = 0, 1, \dots, n)$, $h = \frac{b-a}{n}$ 称为步长,子区间为[x_{i-1}, x_i]($i = 1, 2, \dots, n$)。

● 复化Simpson公式 在每个子区间[x_{i-1},x_i]应用Simpson公式,有

$$\int_{x_{i-1}}^{x_i} f(x) \, dx \approx \frac{h}{6} [f(x_{i-1}) + 4f(x_{i-\frac{1}{2}}) + f(x_i)], \quad i = 1, 2, \dots, n$$

累加得复化Simpson公式

$$S_n = \frac{h}{6} \left[f(a) + 4 \sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

4□▶ 4□▶ 4□▶ 4□▶ 4□ 900

将[a,b]进行n等分,记节点为 $x_i = a + ih(i = 0, 1, \cdots, n)$, $h = \frac{b-a}{n}$ 称为步长,子区间为[x_{i-1}, x_i]($i = 1, 2, \cdots, n$)。

● 复化Simpson公式 在每个子区间[x_{i-1},x_i]应用Simpson公式,有

$$\int_{x_{i-1}}^{x_i} f(x) \, dx \approx \frac{h}{6} [f(x_{i-1}) + 4f(x_{i-\frac{1}{2}}) + f(x_i)], \quad i = 1, 2, \dots, n$$

累加得复化Simpson公式

$$S_n = \frac{h}{6} \left[f(a) + 4 \sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

将[a,b]进行n等分,记节点为 $x_i = a + ih(i = 0, 1, \cdots, n)$, $h = \frac{b-a}{n}$ 称为步长,子区间为[x_{i-1}, x_i] $(i = 1, 2, \cdots, n)$ 。

夏化Simpson公式 在每个子区间[x_{i-1},x_i]应用Simpson公式,有

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \frac{h}{6} [f(x_{i-1}) + 4f(x_{i-\frac{1}{2}}) + f(x_i)], \quad i = 1, 2, \dots, n$$

累加得复化Simpson公式

$$S_n = \frac{h}{6} \left[f(a) + 4 \sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right]$$

定理

设f(x)在[a,b]上有连续的二阶导数,则复化梯形公式的截断误差为

$$R_T(f) = -\frac{b-a}{12}h^2f''(\xi), \quad \xi \in (a,b).$$

$$R_S(f) = -\frac{b-a}{2880}h^4f^{(4)}(\xi), \quad \xi \in (a,b).$$

例

计算 $I = \int_0^1 e^x dx$,若要求误差不超过 $\frac{1}{2} \times 10^{-4}$,分别用复化梯形公式和 复化Simpson公式计算,问至少需要多少个节点?

由
$$f(x) = f''(x) = f^{(4)}(x) = e^x$$
得

$$\max_{x \in [0,1]} |f''(x)| = \max_{x \in [0,1]} |f^{(4)}(x)| = e$$

由复化梯形公式的截断误差知

$$|R_T(f)| \le \frac{e}{12n^2} \le \frac{1}{2} \times 10^{-4} \Rightarrow n > 67.3$$

November 21, 2013

例

计算 $I = \int_0^1 e^x dx$,若要求误差不超过 $\frac{1}{2} \times 10^{-4}$,分别用复化梯形公式和复化Simpson公式计算,问至少需要多少个节点?

解

由
$$f(x) = f''(x) = f^{(4)}(x) = e^x$$
得

$$\max_{x \in [0,1]} |f''(x)| = \max_{x \in [0,1]} |f^{(4)}(x)| = e$$

由复化梯形公式的截断误差知

$$|R_T(f)| \le \frac{e}{12n^2} \le \frac{1}{2} \times 10^{-4} \Rightarrow n > 67.3$$

故用复化梯形公式n至少取68,即需69个节点。

例

计算 $I = \int_0^1 e^x dx$,若要求误差不超过 $\frac{1}{2} \times 10^{-4}$,分别用复化梯形公式和复化Simpson公式计算,问至少需要多少个节点?

解

由
$$f(x) = f''(x) = f^{(4)}(x) = e^x$$
得

$$\max_{x \in [0,1]} |f''(x)| = \max_{x \in [0,1]} |f^{(4)}(x)| = e$$

由复化梯形公式的截断误差知

$$|R_T(f)| \le \frac{e}{12n^2} \le \frac{1}{2} \times 10^{-4} \Rightarrow n > 67.3$$

故用复化梯形公式n至少取68,即需69个节点。

例

计算 $I = \int_0^1 e^x dx$,若要求误差不超过 $\frac{1}{2} \times 10^{-4}$,分别用复化梯形公式和复化Simpson公式计算,问至少需要多少个节点?

解

由
$$f(x) = f''(x) = f^{(4)}(x) = e^x$$
得

$$\max_{x \in [0,1]} |f''(x)| = \max_{x \in [0,1]} |f^{(4)}(x)| = e$$

由复化梯形公式的截断误差知

$$|R_T(f)| \le \frac{e}{12n^2} \le \frac{1}{2} \times 10^{-4} \Rightarrow n > 67.3$$

故用复化梯形公式n至少取68,即需69个节点。

解

由复化Simpson公式的截断误差知

$$|R_S(f)| \le \frac{e}{2880n^4} \le \frac{1}{2} \times 10^{-4} \Rightarrow n > 2.1$$

故用复化Simpson公式n至少取3,即需7个节点。

解

由复化Simpson公式的截断误差知

$$|R_S(f)| \le \frac{e}{2880n^4} \le \frac{1}{2} \times 10^{-4} \Rightarrow n > 2.1$$

故用复化Simpson公式n至少取3,即需7个节点。

- 1 范数、谱半径与条件数
- 2 解线性方程组的直接法
- 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 数值积分
 - 7.1 插值型求积公式
 - 7.2 Newton-Cotes公式
 - 7.3 复化求积公式
 - 7.4 代数精度
 - 7.5 高斯求积公式
- 8. 常微分方程的数值解法

7.4 代数精度

定义

若求积公式

$$\int_a^b f(x) \, dx \approx \sum_{i=0}^n A_k f(x_k)$$

对任意次数不高于m次的代数多项式都准确成立,但对于m+1次多项式不精确成立,则该求积公式具有m次代数精度。

由该定义可看出: 求积公式

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} A_{k} f(x_{k})$$

具有m次代数精度的充要条件是该公式对 $f(x) = 1, x, \cdots, x^m$ 能准确成立,但对 $f(x) = x^{m+1}$ 不能准确成立。

◆□▶◆□▶◆□▶◆□▶ □ り<0</p>

140 / 152

7.4 代数精度

定义

若求积公式

$$\int_a^b f(x) \, dx \approx \sum_{i=0}^n A_k f(x_k)$$

对任意次数不高于m次的代数多项式都准确成立,但对于m+1次多项式不精确成立,则该求积公式具有m次代数精度。

由该定义可看出:求积公式

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} A_{k} f(x_{k})$$

具有m次代数精度的充要条件是该公式对 $f(x)=1,x,\cdots,x^m$ 能准确成立,但对 $f(x)=x^{m+1}$ 不能准确成立。

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩ભ

7.4 代数精度

定理

含n+1个节点 $x_i(i=0,1,\cdots,n)$ 的插值型求积公式的代数精度至少为n

定理

牛顿-科特斯公式的代数精度至少为n。特别地,当n为偶数时,牛顿-科特斯公式的代数精度可以达到n+1。

- 1 范数、谱半径与条件数
- 2 解线性方程组的直接法
- 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 数值积分
 - 7.1 插值型求积公式
 - 7.2 Newton-Cotes公式
 - 7.3 复化求积公式
 - 7.4 代数精度
 - 7.5 高斯求积公式
- 8. 常微分方程的数值解法

7.5 高斯求积公式

例

证明求积公式

$$\int_{-1}^{1} f(x) dx \approx \frac{1}{9} [5f(-\sqrt{0.6}) + 8f(0) + 5f(\sqrt{0.6})]$$

对于不高于5次的多项式准确成立,并计算 $I = \int_0^1 \frac{\sin x}{1+x} dx$ (取5位有效数字)

- □ 1 范数、谱半径与条件数
- ② 2 解线性方程组的直接法
- ③ 3. 解线性方程组的迭代法
- 4 非线性方程的数值解法
- 5 插值
- 6 6 曲线拟合
- 7 数值积分
- ଃ 8. 常微分方程的数值解法

问题

本章讨论一阶常微分方程初值问题

$$\begin{cases} \frac{dy}{dx} = f(x, y) \\ y(x_0) = y_0 \end{cases} \qquad x \ge x_0 \tag{6}$$

的数值解法。

所谓数值解法,就是寻找y(x)在一系列离散节点

$$a \le x_0 < x_1 < \dots < x_n < \dots \le b$$

上的近似值 $y_0, y_1, \dots, y_n, \dots$,其相邻两个节点的距离 $h_n = x_{n+1} - x_n$ 称为步长,我们总假定节点等距,即 $h_n \equiv h$,此时

$$x_n = x_0 + nh, \quad n = 0, 1, 2, \cdots$$

此时节点xn对应的函数值为

$$y(x_n) = y(x_0 + nh), \quad n = 0, 1, 2, \cdots$$

定义(显式欧拉)

$$\begin{cases} y_{n+1} = y_n + hf(x_n, y_n), \\ y_0 = y(x_0) \end{cases} \qquad n = 0, 1, 2, \dots,$$
 (7)

定义(隐式欧拉)

$$\begin{cases} y_{n+1} = y_n + hf(x_{n+1}, y_{n+1}), \\ y_0 = y(x_0) \end{cases} \qquad n = 0, 1, 2, \dots,$$
 (8)

定义(梯形公式)

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})], \quad n = 0, 1, \cdots$$
 (9)

定义(欧拉预估-校正公式)

例

利用欧拉公式和预估 - 校正公式求初值问题

$$\begin{cases} y' = y - \frac{2x}{y} \\ y(0) = 1 \end{cases}$$

在[0,1]上的数值解(取h=0.1),并与精确解 $y=\sqrt{2x+1}$ 进行比较。

解

• 欧拉公式

$$\begin{cases} y_{n+1} = y_n + h \left(y_n - \frac{2x_n}{y_n} \right) \\ y_0 = 1, \ h = 0.1 \end{cases}$$
 $n = 0, 1, 2, \dots, 9$

解

• 预估-校正公式

$$\begin{cases} \bar{y}_{n+1} = y_n + h\left(y_n - \frac{2x_n}{y_n}\right) \\ y_{n+1} = y_n + \frac{h}{2}\left(y_n - \frac{2x_n}{y_n} + \bar{y}_{n+1} - \frac{2x_{n+1}}{y_{n+1}}\right) & n = 0, 1, 2, \dots, 9 \\ y_0 = 1, h = 0.1 \end{cases}$$

Table: 计算结果

\bar{x}_n	欧拉公式yn	预估-校正公式y _n	精确解 $y(x_n) = \sqrt{2x_n + 1}$
0.0	1	1	1
0.1	1.1	1.095909	1.095445
0.2	1.191818	1.184097	1.183216
0.3	1.277438	1.266201	1.264911
0.4	1.358213	1.343360	1.341641
0.5	1.435133	1.416402	1.414214
0.6	1.508966	1.485956	1.483240
0.7	1.580338	1.552514	1.549193
0.8	1.649783	1.616475	1.612452
0.9	1.717779	1.678166	1.673320
1.0	1.784771	1.737867	1.732051

