Convergence de la méthode de dichotomie

Construction de 3 suites récurrentes

 $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}$ et $(x_n)_{n\in\mathbb{N}}$ sont définies par

$$-a_0 = a, b_0 = b,$$

$$-- \ \forall n \ge 0, \ x_n = \frac{a_n + b_n}{2},$$

— si
$$g(x_n) = 0$$
 alors $a_{n+1} = a_n$ et $b_{n+1} = b_n$,

si
$$g(a_n)g(x_n) < 0$$
 alors $a_{n+1} = a_n$ et $b_{n+1} = x_n$,

si
$$g(a_n)g(x_n) > 0$$
 alors $a_{n+1} = x_n$ et $b_{n+1} = b_n$.

Théorème

Soit $g : [a, b] \to \mathbb{R}$, une fonction continue sur [a, b] (a < b).

Supposons g(a)g(b) < 0.

Alors, la suite $(x_n)_{n\in\mathbb{N}}$ définie par la méthode de dichotomie converge vers un zéro $\alpha\in]a,b[$ de g.

Démonstration

Cas 1: Il existe $n_0 \in \mathbb{N}$ tel que $g(x_{n_0}) = 0$.

Dans ce cas, la suite $(x_n)_{n\in\mathbb{N}}$ est constante à partir du rang n_0 , donc convergente et $\alpha=x_{n_0}$ est bien un zéro de g.

Cas 2: $g(x_n) \neq 0$ pour tout $n \in \mathbb{N}$.

Par construction, $b_{n+1} - a_{n+1} = \frac{1}{2}(b_n - a_n)$ pour tout $n \in \mathbb{N}$. Par conséquent,

$$b_n - a_n = \frac{1}{2^n}(b - a).$$

Par ailleurs,

$$a_{n+1} - a_n = \begin{cases} 0 \text{ ou} \\ \frac{b_n - a_n}{2} > 0 \end{cases} \text{ et } b_{n+1} - b_n = \begin{cases} 0 \text{ ou} \\ \frac{a_n - b_n}{2} < 0. \end{cases}$$

La suite $(a_n)_{n\in\mathbb{N}}$ est donc croissante majorée par b et la suite $(b_n)_{n\in\mathbb{N}}$ décroissante minorée par a. Elles sont donc convergentes et ont la même limite car

$$\lim_{n \to \infty} (b_n - a_n) = 0.$$

Notons α la limite. Comme $x_n = \frac{a_n + b_n}{2}$, on a également $\lim_{n \to \infty} x_n = \alpha$.

Comme g est continue, $\lim_{n\to\infty} g(a_n)g(b_n) = g(\alpha)^2$.

Or, par construction, $g(a_n)g(b_n) < 0$ pour tout $n \in \mathbb{N}$, ce qui implique

$$\lim_{n \to \infty} g(a_n)g(b_n) \le 0.$$

1

D'où $g(\alpha)^2 \le 0$, soit $g(\alpha) = 0$.