

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-183535

(43)公開日 平成11年(1999)7月9日

(51) Int.Cl.⁸

識別記号

G01R 27/28

FΙ

G01R 27/28

Z

審査請求 未請求 請求項の数2 OL (全 5 頁)

(21)出願番号

特願平9-355175

(22)出顧日

平成9年(1997)12月24日

(71)出願人 390005175

株式会社アドバンテスト

東京都練馬区旭町1丁目32番1号

(72)発明者 藤崎 裕規

東京都練馬区旭町1丁目32番1号 株式会

社アドバンテスト内

(72)発明者 安彦 典秀

東京都練馬区旭町1丁目32番1号 株式会

社アドバンテスト内

(72)発明者 斉藤 千恵蔵

東京都練馬区旭町1丁目32番1号 株式会

社アドバンテスト内

最終頁に続く

(54) 【発明の名称】 4ポートテストセット

(57)【要約】

【課題】 本発明は、ネットワークアナライザで4ポートデバイスのSパラメータ測定をする場合に、ケーブル接続変更することなく測定できる4ポートテストセットを提供する。

【解決手段】 被測定デバイスのSパラメータが測定ができる2ポートのネットワークアナライザと、該2ポートの一方のポートの信号を、2つのポートに切り換えて選択接続できる第1のスイッチと、該2ポートの他方のポートの信号を、2つのポートに切り換えて選択接続できる第2のスイッチと、前記ネットワークアナライザの制御信号を受けて、前記第1のスイッチと、第2のスイッチとを切り換え制御する制御部とを具備して4ポートデバイスを測定する解決手段。

l

【特許請求の範囲】

【請求項1】 被測定デバイスのSパラメータ測定ができる2ポートのネットワークアナライザと、

該2ポートの一方のポートの信号を、2つのポートに切り換えて選択接続できる第1のスイッチと、

該 2ポートの他方のポートの信号を、 2 つのポートに切り換えて選択接続できる第 2 のスイッチと、

前記ネットワークアナライザの制御信号を受けて、前記 第1のスイッチと、第2のスイッチとを切り換え制御す る制御部と、

を具備して4ポートデバイスを測定できる4ポートテストセット。

【請求項2】 ネットワークアナライザは、測定結果を 4 画面表示として8種類のSパラメータが同時表示でき る請求項1記載の4ポートテストセット。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ネットワークアナライザを用いて4ポートデバイスを測定できる4ポートテストセットに関する。

[0002]

【従来の技術】従来技術の例について、図6~図11を 参照して説明する。最初に、2ポートのネットワークア ナライザについて概要を説明する。図7に示すように、 2ポートのネットワークアナライザ10は、測定部11 と、方向性結合器D1、D2、D3と、スイッチSW4 とで構成している。

【0003】測定部11は、信号出力Pと、基準信号入力チャンネルRと、2つの入力チャンネルAとBとがある。

【0004】方向性結合器D1は、信号出力pを分配して基準信号入力をチャンネルRへ与えている。また、方向性結合器D2は、ポートP1に接続された被測定デバイスからの反射信号・伝送信号をチャンネルAに与えている。そして、方向性結合器D3は、ポートP2に接続された被測定デバイスからの反射信号・伝送信号をチャンネルBに与えている。そして、2ポートデバイス40のSパラメータを測定している。

【0005】ここで、ポートP1側にケーブル接続された被測定デバイスのポートを1とし、ポートP2側にケ 40 ーブル接続された被測定デバイスのポートを2とする。また、SパラメータのSijは、i は被測定デバイスから信号の出てくるポート番号を表し、j は被測定デバイス に信号の入っていくポート番号を表している。

【0006】例えば、スイッチSW4をa側にしたとき、2ポートデバイス40のSパラメータ測定は下記のようになる。

S11=チャンネルAへの信号/チャンネルRへの信号 S21=チャンネルBへの信号/チャンネルRへの信号 【0007】また、スイッチSW4をb側にしたとき、 2ポートデバイス40のSパラメータ測定は下記のようになる。

S12=チャンネルAへの信号/チャンネルRへの信号 S22=チャンネルBへの信号/チャンネルRへの信号 よって、2ポートデバイス40のSパラメータは、ケー ブル接続を変更しないでも測定できる。

【0008】次に、4ポートデバイスを測定する場合について説明する。例えば、図6に示す4ポートデバイス30の一例は、スイッチSW5と、送信信号用のバンドパスフィルタ31と、受信信号用のバンドパスフィルタ32とで構成されている。

【0009】そして、端子Tx は送信周波数 f 1の送信 アンプに接続され、端子Rx は受信周波数 f 2の受信アンプに接続されて、アンテナA 1 またはアンテナA 2 が 切り換えスイッチ SW 3 で選択して接続される。一般 に、送信周波数 f 1 と受信周波数 f 2 とは異なる周波数 を設定している。

【0010】この4ポートデバイス30を測定する場合は、図8~図9に示すようにスイッチスイッチSW3は切り換えられる。図8は、A1-Tx間の、図9は、A1-Rx間の、図10は、A2-Tx間の、図11は、A1-Rx間の測定をするケーブル接続図である。

【0011】そして、A1-Tx間、A1-Rx間はスイッチSW3をa側にして、A2-Tx間、A1-Rx間はスイッチSW3をb側にして、SパラメータS11、S12、S21、S22をそれぞれ測定する。従って、4ポートデバイスを測定する場合、ケーブル接続を4回変更する必要がある。

[0012]

[0013]

30

【発明が解決しようとする課題】上記説明のように、従来の2ポートのネットワークアナライザで4ポートデバイスのSパラメータを測定する場合、ケーブル接続を4回変更する必要があり、そのため測定のスループットが向上できない実用上の不便があった。そこで、本発明は、こうした問題に鑑みなされたもので、その目的は、ネットワークアナライザで4ポートデバイスのSパラメータ測定をする場合に、ケーブル接続の変更なしに測定できる4ポートテストセットを提供することにある。

【課題を解決するための手段】即ち、上記目的を達成するためになされた本発明の第1は、被測定デバイスのSパラメータ測定ができる2ポートのネットワークアナライザと、該2ポートの一方のポートの信号を、2つのポートに切り換えて選択接続できる第1のスイッチと、該2ポートの他方のポートの信号を、2つのポートに切り換えて選択接続できる第2のスイッチと、前記ネットワークアナライザの制御信号を受けて、前記第1のスイッチと、第2のスイッチとを切り換え制御する制御部と、を具備して4ポートデバイスを測定できる4ポートテス

50 トセットを要旨としている。

【0014】また、上記目的を達成するためになされた 本発明の第2は、ネットワークアナライザは、測定結果 を4画面表示として8種類のSパラメータが同時表示で きる本発明第1記載の4ポートテストセットを要旨とし ている。

【発明の実施の形態】本発明の実施の形態は、下記の実 施例において説明する。

[0015]

【実施例】本発明の実施例について、図1~図6を参照 して説明する。4ポートデバイス30を測定する本発明 10 は、図1に示すように、従来のネットワークアナライザ 10に、4ポートテストセット20を追加した構成とな っている。

【0016】ネットワークアナライザ10と、4ポート デバイス30との構成については、従来技術において説 明したので省略する。

【0017】4ポートテストセット20は、スイッチS W1、SW2と、制御部21とで構成している。スイッ チSW1、SW2は、例えば半導体スイッチを使用す る。制御部21は、ネットワークアナライザ10からの 20 制御信号を受けてスイッチSW1、SW2をそれぞれ切 り換える制御をする。

【0018】ネットワークアナライザ10のポートP1 からの信号は、スイッチSW1でポートP4またはP5 に切り換えられ、またポートP2からの信号は、スイッ チSW2でポートP3またはP6に切り換えられる。

【0019】そして、例えば図1に示すように、4ポー トテストセットの各ポートP3、P4、P5、P6と、 4ポートデバイスの測定端子Rx、A1、A2、Tx間 をそれぞれ全てケーブル接続する。なお、図1~図4に 30 おいて点線でしめすケーブルは実際の測定に関係しない が、接続したままの状態でも測定に影響しない。

【0020】図1に示すように、4ポートテストセット のスイッチSW1はa側、SW2はb側にし、4ポート デバイス30のSW5をa側としてA1-Tx間のSパ ラメータ測定をおこなう。

【0021】図2に示すように、4ポートテストセット のスイッチSW1はa側、SW2はa側にし、4ポート デバイス30のSW5をa側としてA1-Rx間のSパ ラメータ測定をおこなう。

【0022】図3に示すように、4ポートテストセット のスイッチSW1はb側、SW2はb側にし、4ポート デバイス30のSW5をb側としてA2-Tx間のSパ ラメータ測定をおこなう。

【0023】図4に示すように、4ポートテストセット のスイッチSW1はb側、SW2はa側にし、4ポート デバイス30のSW5をb側としてA2-Rx間のSパ ラメータ測定をおこなう。

【0024】以上のように、4ポートデバイス30のS パラメータが測定途中でケーブル接続を変えることなく 50 20 4ポートテストセット

できるので測定のスループットを向上させることができ

【0025】また、図5に示すように、ネットワークア ナライザ10は、測定結果を4画面表示として8種類の Sパラメータを同時表示させる。

【0026】例えば、4ポートデバイス30の測定結果 のデータは、A1-TxのS11とS21、A1-TxのS $22 \ge S12$, $A2 - R \times OS11 \ge S21$, $A2 - R \times OS22$ とS12を表示させる。

【0027】4ポートデバイス30において、各Sパラ メータの特性は独立して変化しないで相互に関連しあっ ている。つまり、4ポートデバイス30のどれかの特性 をよくすると他方の特性が劣化することがある。よっ て、8種類のSパラメータを4画面で同時に表示するこ とで相互の特性比較が容易になり、4ポートデバイスの 試験が有効におこなえる。

[0028]

【発明の効果】本発明は、以上説明したような形態で実 施され、以下に記載されるような効果を奏する。即ち、 4ポートデバイスのSパラメータの測定が、ケーブル接 続を測定途中で変えることなくできるので測定のスルー プットを向上させることができる。また、8種類のSパ ラメータを4画面で同時に表示することで相互の特件比 較が容易になり、4ポートデバイスの試験が有効におこ なえる効果もある。

【図面の簡単な説明】

【図1】本発明の4ポートテストセットと4ポートデバ イスA1-Tx測定の構成図である。

【図2】本発明の4ポートテストセットと4ポートデバ イスA1-Rx測定の構成図である。

【図3】本発明の4ポートテストセットと4ポートデバ イスA2-Tx測定の構成図である。

【図4】本発明の4ポートテストセットと4ポートデバ イスA2-Rx測定の構成図である。

【図5】本発明の4ポートテストセットの測定結果の表 示画面である。

【図6】4ポートデバイスのブロック図例である。

【図7】ネットワークアナライザの内部接続図である。

【図8】従来の4ポートテストセットと4ポートデバイ スA1-Tx測定の構成図である。

【図9】従来の4ポートテストセットと4ポートデバイ スA1-Rx測定の構成図である。

【図10】従来の4ポートテストセットと4ポートデバ イスA2-Tx測定の構成図である。

【図11】従来の4ポートテストセットと4ポートデバ イスA2-Rx測定の構成図である。

【符号の説明】

- 10 ネットワークアナライザ
- 11 測定部

30 4ポートデバイス

* 40 2ポートデバイス

【図1】

【図2】

【図3】

フロントページの続き

(72)発明者 生方 敬一

東京都練馬区旭町1丁目32番1号 株式会 社アドバンテスト内 (72) 発明者 木村 直也

東京都練馬区旭町1丁目32番1号 株式会 社アドバンテスト内