一、 模块管脚图

二、 管脚说明及参考设计

- 1 GND: 图中的 Pin1、3、4、10、12、21 为 GND, 其中 Pin1、3 为天线地, 在模块中与电源地连接在一起,用户可以不用接到设备上;其余 Pin 脚 GND 做为回路,需要用户设备接上;
- 2 VDD3: 图中唯一的一个电源引脚 Pin11,要求供电电压 3.0~3.6v,并且在对地需要并接一个 4.7~10uF 的电容做为滤波作用,供电电源的带载能力,需要满足额定输出电流≥500mA。
- 3 CHIP_EN: 图中的 Pin5 做为模块的 Power ON\OFF 管脚,此管脚在模块内部做了 10K 电阻的上拉,上拉到 VDD3;拉低此管脚可以关闭整个芯片电源。如果设备不需要控制此管脚,可以保持悬空。
 - 如果设备需要控制此管脚,设备 I\0 可直连,设备 I\0 必须保持高电平 2.4v 输出。
- 4 GPIOA 14:图中 Pin6, PWMO 输出管脚; 可配置为普通 IO;
- 5 GPIOA_15:图中 Pin7, PWM1 输出管脚; 可配置为普通 IO;
- 6 GPIOA 0: 图中 Pin8, PWM2 输出管脚; 可配置为普通 IO;
- 7 GPIOA12: 图中 Pin9, PWM3 输出管脚; 可配置为普通 IO;

- 33
- 8 GPIOA_5: 图中 Pin14, PWM4 输出管脚; 低功耗模式唤醒管脚; 可配置为普通 IO;
- 9 GPIOA_18:图中Pin15,UARTO_RXD\SPI1_CLK\SPIO_CLK\I2C1_SCL 复用, 可配置为普通 IO;
- 10 GPIOA_19: 图中 Pin16, UARTO_CTS\SPI1_CS\SPIO_CS\I2CO_SDA、普通 ADC 输入,可配置为普通 IO;
- 11 GPIOA_22:图中Pin17,UARTO_RTS\SPI1_MISO\SPI0_MISO\I2C0_SCL复用,可配置为普通 IO;
- 12 GPIOA_23:图中Pin18,UARTO_TXD\SPI1_MOSI\SPIO_MOSI\I2C1_SDA复用,可配置为普通 IO;
- 13 GPIOA 30: 图中 Pin19, UART2 Log TXD 调试下载接口
- 14 GPIOA_29: 图中 Pin20, UART2_Log_RXD 调试下载接口

三、 外设接口

1 UARTO: 图中的 Pin15、16、17、18,分别为 RX、CTS、RTS、TX; UARTO 作为 AT Command 的通信接口,如下为参考设计:

当打开硬件流控功能时,CTS 作为模组的输入端,当 Device 输出低电平,则允许模块给设备发数据,RTS 作为模组的输出端,当模块输出低电平,则允许设备给模块发数据。

SPI: 图中Pin15、16、17、18,分别为SPIO_CLK、SPIO_CS、SPIO_MISO、 SPIO MOSI, 作为通信接口, 如下为参考设计:

SPI1 (only SPI Master) Wi-Fi module:

SPIO (only SPI Slave)

SPI Serial Format (SCPH = 0)

3 / 4

SPI Serial Format (SCPH = 1)

图中 sclk_out/in 0 代表时钟极性为低,即 CPOL=0; sclk_out/in 1 代表时钟极性为高,即 CPOL=1; SCPH 为时钟相位

4 / 4