综合题:

- 1、在一单道批处理系统中,一组作业的提交时刻和运行时间如下表所示,试计算以下3种作业调度算法的平均周转时间T和平均带权周转时间W。
- (1) 先来先服务; (2) 短作业优先; (3) 响应比高者优先。

作业	提交时刻	运行时间
1	8.0	1.0
2	8.5	0.5
3	9.0	0.2
4	9.1	0.1

- 2、设系统中有五个进程,这五个进程必须按图的次序运行,试用信号量机制表达五个进程的前趋关系。
- 3、在一个盒子里,混装了数量相等的围棋白子和黑子。现在要用自动分拣系统把白子和黑子分开。设系统有两个进程P1和P2,其中P1拣白子、P2拣黑子。规定每个进程 每次只拣一子。当一进程正在拣子时,不允许另一进程去拣;当一进程拣了一子时,必须让另一进程去拣。试写出这两个并发进程能正确执行的程序。

- 4、进程之间存在两种制约关系,分别是互斥与同步。它们是什么原因引起的?以下活动各属于哪种制约关系?
- (1) 若干学生去图书馆借书。
- (2) 两队进行篮球比赛。
- S5
- (3) 流水线生产的各道工序。
- (4) 商品生产和社会消费。
- 5、同学们在学校餐厅就餐,餐厅共有100个座位,当餐厅中少于100人就餐时,同学们才能进入餐厅就餐,否则只能在外等候就餐。如果把一个就餐的同学看作一个进程,请问:
- (1) 该如何怎样定义信号量解决这个问题。
- (2) 使用wait和signal操作,使用进程同步的方法,写出同学就餐问题的解决过程。
- 6、若系统运行中出现如下表所示的资源分配情况,问:
- (1) 当前该系统是否安全? 如果安全,写出安全序列。
- (2) 如果进程P2此时提出资源申请(1,2,2,2),系统是否将资源分配给它?为什么?

\#10	ALLOC	CATION			NEED				AVAILABLE			
进程	Α	В	С	D	Α	В	С	D	Α	В	С	D
P0	0	0	3	2	0	0	1	2	1	6	2	2
P1	1	0	0	0	1	7	5	0				
P2	1	3	5	4	2	3	5	6				
P3	0	3	3	2	0	6	5	2				
P4	0	0	1	4	0	6	5	6				

7、设系统中3种类型的资源(A,B,C)和5个进程(P0, P1, P2, P3, P4),A资源的数量为17,B资源的数量为5,C资源的数量为20。在T0时刻系统状态如下表 所示:

进程	最大资源需求量			已分配资源数量				
	Α	В	С	Α	В	С		
P0	5	5	9	2	1	2		
P1	5	3	6	4	0	2		
P2	4	0	11	4	0	5		
P3	4	2	5	2	0	4		
P4	4	2	4	3	1	4		
剩余资源数	Α	В	С	·		·		
	2	3	3					

系统采用银行家算法实施死锁避免策略。

- (1) T0时刻是否为安全状态?若是,请给出安全序列。
- (2) 在T0时刻若进程P1请求资源(0,3,4),是否能实施资源分配?为什么?
- (3) 在 (2) 的基础上,若进程P3请求资源(2,0,1),是否能实施资源分配?为什么?
- (4) 在(3)的基础上,若进程PO请求资源(0,2,0),是否能实施资源分配?为什么?

9、在一分页存储管理系统中,逻辑地址长度为16位,页面大小为2048字节,对应的页表如下表所示。现有两逻辑地址为1A5BH和2F7CH,经过地址变换后所对应的物理地址各是多少? 物理地址各是多少?

页号	块号
0	5
1	10
2	4
3	7

- 10、在某个采用页式存储管理的系统中,现有J1、J2和J3共3个作业同驻主存,其中J2有4个页面,被分别装入到主存的第3、4、6、8块中。假定页面和存储块的大小 均为1024字节,主存容量为10KB字节。
- (1) 写出J2的页面映像表;
- (2) 当J2在CUP上运行时,执行到其地址空间第630处遇到一条传送指令:

MOV 1200,3300

请计算MOV指令中两个操作数的物理地址。

11、

在请求分页系统中,某用户的编程空间为8个页面,每页2K,分配的内存空间为8K。假定某时刻该用户的页表如下图所示,试问: (10分)

- (1) 逻辑地址1C5A(H)对应的物理地址是多少? (用十六进制表示)
- (2) 逻辑地址3011(十进制)对应的物理地址是多少? (用十进制表示)
- (3) 当该用户进程欲访问262C(H)单元时,会出现什么现象?

页号	块号
0	7
1	3
2	4
3	5

12、设一段表为:

段号	基地址	段长
0	219	600
1	2300	14
2	90	100
3	1327	580
4	1952	96

- (1) 那么,逻辑地址(2,88)对应的物理地址是多少?
- (2) 逻辑地址(4,100)对应的物理地址是多少?

13、考虑下面的页访问串:

1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6

假定系统为进程分配了4个物理块,应用下面的页面替换算法,计算各会出现多少次缺页中断,并算出缺页率。注意,所给定的页块初始均为空,因此,首次访问一页时就会发生缺页中 **账斤**

- (1) 最近最久未使用算法 (2) 先进先出算法
- 14、假定某磁盘移动方向是向磁道号减少的方向访问,目前正在80号柱面读信息,并且有下述请求序列等待访问磁盘,85、100、55、60、90、125、10、20 、130和25。请写出分别采用最短寻找时间优先和扫描(电梯)调度算法处理上述请求的次序,并求出这两种磁头算法的平均寻道长度。

答案:

1、(1) 先来先服务执行顺序: 1、2、3、4。

序号	作业号(执行顺序)	提交时间	运行时间 (小时)	完成时间	周转时间(小时)
1	JOB1	8.0	1	9.0	1
2	JOB2	8.5	0.5	9.5	1
3	JBO3	9.0	0.2	9.7	0.7
4	JOB4	9.1	0.1	9.8	0.7

平均周转时间T=(1+1+0.7+0.7)/4=0.85小时

平均代权周转时间W=(1/1+1/0.5+0.7/0.2+0.7/0.1)/4=3.375

(2) 最短作业优先执行顺序: 1、3、4、2。

序号	作业号(执行顺序)	提交时间	运行时间 (小时)	完成时间	周转时间(小时)
1	JOB1	8.0	1	9.0	1
2	JOB3	9.0	0.2	9.2	0.2
3	JBO4	9.1	0.1	9.3	0.2
4	JOB2	8.5	0.5	9.8	1.3

平均周转时间T=(1+0.2+0.2+1.3)/4=0.675小时

平均代权周转时间W=(1/1+0.2/0.2+0.2/0.1+1.3/0.5)/4=1.65

(3) 响应比高者优先执行顺序: 1、2、4、3。

序号	作业号(执行顺序)	提交时间	运行时间 (小时)	完成时间	周转时间(小时)
1	JOB1	8.0	1	9.0	1
2	JOB2	8.5	0.5	9.5	1
3	JBO4	9.1	0.1	9.6	0.5
4	JOB3	9.0	0.2	9.8	0.8

平均周转时间T=(1+1+0.5+0.8)/4=0.825小时

平均代权周转时间W=(1/1+1/0.5+0.5/0.1+0.8/0.2)/4=3

2、


```
p1(){S1;signal(a);}
p2(){S2;signal(b);}
p3(){wait(a);wait(b);S3;signal(c);}
p4(){S4;signal(d);}
p5(){wait(c);wait(d);S5;}
main ()
{ semapore a,b,c,d;
 a.value=b.value=c.value=d.value=0;
 cobegin
     p1();p2();p3();p4();p5();
coend;
}
3、一次只允许拣一子,要求交替进行,因此进程间是同步关系。
S1=1,S2=0;
P1: do{
                                                  signal(S2);
  wait(S1);
                                                     }while(True) ;
拣白子;
```

```
P2: do{
                                                        signal(S1);
   wait(S2);
                                                        }while(True) ;
4、互斥: 多进程并发执行,因为共享资源致使进程之间形成相互制约的关系。
同步: 多个进程为完成同一项任务而相互合作的关系。
互斥关系: (1) 若干学生去图书馆借书。
           (2) 两队进行篮球比赛。
同步关系: (3) 流水线生产的各道工序。
           (4) 商品生产和社会消费。
5、(1)第一步:确定进程间的关系,餐厅是各进程共享的公有资源,当餐厅中多于100名就餐同学时,其他同学就只能等待就餐。所以进程间是互斥的关系。
第二步:确定信号量及其值。只有一个公有资源:餐厅,所以设置一个信号量s。餐厅最多容纳100个进程,即可用资源实体数为100,s的初值就设为100。
(2) s=100;
do{
  wait(s);
就餐;
     signal(s);
```

6、(1)此刻该系统是安全的,存在安全序列{P0, P3, P4, P1, p2}。

系统安全情况分析

}while(True) ;

W A D - 4 T	1173 12	0 20	12.1										
PID	Wo	rk			Nee	ed .			All	ocat	tior	1	Work+Allocation
P 0	1	6	2	2	0	0	1	2	0	0	3	2	1654
P 3	1	6	5	4	0	6	5	2	0	3	3	2	1 9 8 6
P 4	1	9	8	6	0	6	5	6	0	0	1	4	1 9 9 10
P1	1	9	9	10	1	7	5	0	1	0	0	0	2 9 9 10
P 2	2	9	9	10	2	3	5	6	1	3	5	4	3 12 14 14

系统安全!

安全序列为:03412

- (2) P2请求不能分配,系统会进入不安全状态。
- 7、(1)T0时刻是安全状态,存在安全序列{p3,p4,p0,p1,p2}。(安全序列不唯一)

系统安全情况分析

PID	Wo	rk		Ne	ed		Allo	cat	ion	Work+Allocation
P 3	2	3	3	2	2	1	2	0	4	4 3 7
P4	4	3	- 7	1	1	0	3	1	4	7 4 11
P O	7	4	11	3	4	- 7	2	1	2	9 5 13
P1	9	5	13	1	3	4	4	0	2	13 5 15
P 2	13	5	15	0	0	6	4	0	5	17 5 20

系统安全!

安全序列为:34012

- (2) 不能分配,p1的请求大于剩余资源。
- (3) 若进程P3请求资源(2,0,1),可以分配,存在安全序列{p3,p4,p0,p1,p2}。(安全序列不唯一)

输入要分配给进程 P3的资源:2 0 1

系统安全情况分析

PID	Work	Need	Allocation	Work+Allocation
P 3	0 3 2	0 2 0	4 0 5	4 3 7
P 4	4 3 7	1 1 0	3 1 4	7 4 11
P O	7 4 11	3 4 7	2 1 2	9 5 13
P1	9 5 13	1 3 4	4 0 2	13 5 15
P 2	13 5 15	0 0 6	4 0 5	17 5 20

系统安全!

安全序列为:3 4 0 1 2 分配成功! 当前资源剩余:0 3 2

- (4) 若进程P0请求资源(0,2,0),不能分配,进入不安全状态。
- 8、(1)逻辑地址空间是16×2048=2⁴×2¹¹=2¹⁵,所以逻辑地址空间应为15位。
 - (2) 物理内存8×2048=2³×2¹¹=2¹⁴=16K。
- 9、 (1) 因为**2048=2¹¹** 所以页内地址占低11位,页号占高5位。页号为3,查页表后对应物理块号为7。

1A5B转换为二进制: (未加下划线部分为页号, 加下划线部分为页内地址)

1 A 5 B

0001 1010 0101 1011 0011 1010 0101 1011

3 A 5 B

1A5B? 3A5B

(2) 2F7C转换为二进制:

2 F 7 C 0010 1111 0111 1100

2F7C的页号为5,已结超过页表长度,越界错误。

10、

(1)

,	
页号	物理块号
0	3
1	4
2	6
3	8

(2) 1200÷1024=1.....176

查页表页号1对应物理块4

4×1024+176=4272

3300÷1024=3.....228

查页表页号3对应物理块8

8×1024+228=8420

11、解答:

$(1)2K=2^{11}$

所以页内地址占低11位,页号占高5位。1C5A转换为二进制: (未加下划线部分为页号,加下划线部分为页内地址)

0001 1100 0101 1010 (1C5AH) 0010 1100 0101 1010 (2C5AH)

1C5AH 2C5AH

(2)3011÷2048=1......963, 所以3011在第1页, 页内地址为963, 查页表可以知道1——

>3, 3×2048+963=7107, 3011的物理地址是7107。(答对得4分)

(3)262C转换为二进制: (未加下划线部分为页号, 加下划线部分为页内地址)

0010 0110 0010 1100 (262CH)

页号为4, 查表不在页表中, 缺页现象, 请求从外存调页。

12、段的逻辑地址(2,88),第2段对应的物理基地址是90,段内地址88<100没有越界,因此对应的物理地址是90+88=178。 段的逻辑地址(4,100),段内地址100>96,超过段长越界错误。

13、(过程略,同学们答题时不能省略过程)

(1) NRU: (10次缺页) 缺页率 f=50%

(2) FIFO: (14次缺页) 缺页率 f=70%

14、答: 最短寻道时间优先: 85、90、100、125、130、60、55、25、20、10

平均寻道长度为:

(85-80+90-85+100-90+125-100+130-125+130-60+60-55+55-25+25-20+20-10)/10=17

扫描调度算法: 60、55、25、20、10、85、90、100、125、130

平均寻道长度为:

(80-60+60-55+55-25+25-20+20-10+85-10+90-85+100-90+125-100+130-125)/10=19