COMP9444 Neural Networks and Deep Learning Term 3, 2019

Exercises 6: Reinforcement Learning

This page was last updated: 11/18/2019 17:39:38

Consider an environment with two states $S = \{S_1, S_2\}$ and two actions $A = \{a_1, a_2\}$, where the (deterministic) transitions δ and reward R for each state and action are as follows:

$$\delta(S_1, a_1) = S_1, R(S_1, a_1) = +1$$

$$\delta(S_1, a_2) = S_2, R(S_1, a_2) = -2$$

$$\delta(S_2, a_1) = S_1, R(S_2, a_1) = +7$$

$$\delta(S_2, a_2) = S_2, R(S_2, a_2) = +3$$

- 1. Draw a picture of this environment, using circles for the states and arrows for the transitions.
- 2. Assuming a discount factor of y = 0.7, determine:

a. the optimal policy $\pi^* : S \to A$

b. the value function $V^*: S \to R$

c. the "Q" function $Q^* : S \times A \rightarrow R$

Write the Q values in a matrix like this:

Q	a ₁	a ₂
S ₁		
S_2		

Trace through the first few steps of the Q-learning algorithm, with a learning rate of 1 and with all Q values initially set to zero. Explain why it is necessary to force exploration through probabilistic choice of actions, in order to ensure convergence to the true Q values.

3. Now let's consider how the Value function changes as the discount factor γ varies between 0 and 1.

There are four deterministic policies for this environment, which can be written as π_{11} , π_{12} , π_{21} and π_{22} , where $\pi_{ii}(S_1) = a_i$, $\pi_{ii}(S_2) = a_i$

- a. Calculate the value function $V^{\pi}_{(\gamma)}$: $S \to R$ for each of these four policies (keeping γ as a variable)
- b. Determine for which range of values of γ each of the policies $\pi_{11},\,\pi_{12},\,\pi_{21},\,\pi_{22}$ is optimal

lake sure you	try answering	the Exercises	s yourself, b	efore checkir	ng the Sampl	e Solution
·	, •		•			