ユニタリ行列は一般に.

$$U = e^{i\Lambda/2} \begin{pmatrix} e^{i\Psi/2} & 0 \\ 0 & e^{-i\Psi/2} \end{pmatrix} \begin{pmatrix} \cos(\Theta/2) & \sin(\Theta/2) \\ -\sin(\Theta/2) & \cos(\Theta/2) \end{pmatrix} \begin{pmatrix} e^{i\Phi/2} & 0 \\ 0 & e^{-i\Phi/2} \end{pmatrix}$$
(0.0.1)

と分解できる. 具体的にUを計算すると,

$$U = e^{i\Lambda/2} \begin{pmatrix} e^{i\Psi/2} & 0 \\ 0 & e^{-i\Psi/2} \end{pmatrix} \begin{pmatrix} \cos(\Theta/2) & \sin(\Theta/2) \\ -\sin(\Theta/2) & \cos(\Theta/2) \end{pmatrix} \begin{pmatrix} e^{i\Phi/2} & 0 \\ 0 & e^{-i\Phi/2} \end{pmatrix}$$
(0.0.2)
$$= e^{i\Lambda/2} \begin{pmatrix} e^{i\Psi/2} \cos(\Theta/2) & e^{i\Psi/2} \sin(\Theta/2) \\ -e^{-i\Psi/2} \sin(\Theta/2) & e^{-i\Psi/2} \cos(\Theta/2) \end{pmatrix} \begin{pmatrix} e^{i\Phi/2} & 0 \\ 0 & e^{-i\Phi/2} \end{pmatrix}$$
(0.0.3)
$$= e^{i\Lambda/2} \begin{pmatrix} e^{i(\Psi+\Phi)/2} \cos(\Theta/2) & e^{i(\Psi-\Phi)/2} \sin(\Theta/2) \\ -e^{-i(\Psi-\Phi)/2} \sin(\Theta/2) & e^{-i(\Psi+\Phi)/2} \cos(\Theta/2) \end{pmatrix}$$
(0.0.4)

$$= e^{i\Lambda/2} \begin{pmatrix} e^{i\Psi/2} \cos(\Theta/2) & e^{i\Psi/2} \sin(\Theta/2) \\ -e^{-i\Psi/2} \sin(\Theta/2) & e^{-i\Psi/2} \cos(\Theta/2) \end{pmatrix} \begin{pmatrix} e^{i\Phi/2} & 0 \\ 0 & e^{-i\Phi/2} \end{pmatrix}$$
(0.0.3)

$$= e^{i\Lambda/2} \begin{pmatrix} e^{i(\Psi+\Phi)/2} \cos(\Theta/2) & e^{i(\Psi-\Phi)/2} \sin(\Theta/2) \\ -e^{-i(\Psi-\Phi)/2} \sin(\Theta/2) & e^{-i(\Psi+\Phi)/2} \cos(\Theta/2) \end{pmatrix}$$
(0.0.4)

であり、 $\alpha = \Psi + \Phi$ 、 $\beta = \Psi - \Phi$ とすると、

$$U = e^{i\Lambda/2} \begin{pmatrix} e^{i\alpha/2} \cos(\Theta/2) & e^{i\beta/2} \sin(\Theta/2) \\ -e^{-i\beta/2} \sin(\Theta/2) & e^{-i\alpha/2} \cos(\Theta/2) \end{pmatrix}$$
(0.0.5)

$$= \begin{pmatrix} e^{i(\Lambda+\alpha)/2}\cos(\Theta/2) & e^{i(\Lambda+\beta)/2}\sin(\Theta/2) \\ -e^{i(\Lambda-\beta)/2}\sin(\Theta/2) & e^{i(\Lambda-\alpha)/2}\cos(\Theta/2) \end{pmatrix}$$
(0.0.6)

と書ける.

Proof. 任意 2×2 の行列は, 実数 r_{ij} と θ_{ij} を用いて,

$$M = \begin{pmatrix} r_{11}e^{i\theta_{11}} & r_{12}e^{i\theta_{12}} \\ r_{21}e^{i\theta_{21}} & r_{22}e^{i\theta_{22}} \end{pmatrix}$$
(0.0.7)

と書けて.

$$M^{\dagger}M = \begin{pmatrix} r_{11}e^{-i\theta_{11}} & r_{21}e^{-i\theta_{21}} \\ r_{12}e^{-i\theta_{12}} & r_{22}e^{-i\theta_{22}} \end{pmatrix} \begin{pmatrix} r_{11}e^{i\theta_{11}} & r_{12}e^{i\theta_{12}} \\ r_{21}e^{i\theta_{21}} & r_{22}e^{i\theta_{22}} \end{pmatrix}$$
(0.0.8)

$$= \begin{pmatrix} r_{11}^2 + r_{21}^2 & r_{11}r_{12}e^{-i(\theta_{11}-\theta_{12})} + r_{21}r_{22}e^{-i(\theta_{21}-\theta_{22})} \\ r_{11}r_{12}e^{i(\theta_{11}-\theta_{12})} + r_{21}r_{22}e^{i(\theta_{21}-\theta_{22})} & r_{12}^2 + r_{22}^2 \end{pmatrix}$$
(0.0.9)

$$= \begin{pmatrix} r_{11}^2 + r_{21}^2 & r_{11}r_{12}e^{-i(\theta_{11}-\theta_{12})} + r_{21}r_{22}e^{-i(\theta_{21}-\theta_{22})} \\ r_{11}r_{12}e^{i(\theta_{11}-\theta_{12})} + r_{21}r_{22}e^{i(\theta_{21}-\theta_{22})} & r_{12}^2 + r_{22}^2 \end{pmatrix}$$

$$MM^{\dagger} = \begin{pmatrix} r_{11}e^{i\theta_{11}} & r_{12}e^{i\theta_{12}} \\ r_{21}e^{i\theta_{21}} & r_{22}e^{i\theta_{22}} \end{pmatrix} \begin{pmatrix} r_{11}e^{-i\theta_{11}} & r_{21}e^{-i\theta_{21}} \\ r_{12}e^{-i\theta_{12}} & r_{22}e^{-i\theta_{22}} \end{pmatrix}$$

$$(0.0.10)$$

となる. M がユニタリ行列であることの必要十分条件は、

$$r_{11}^2 + r_{21}^2 = 1 (0.0.12)$$

$$r_{12}^2 + r_{22}^2 = 1 (0.0.13)$$

$$r_{11}^2 + r_{12}^2 = 1 (0.0.14)$$

$$r_{21}^2 + r_{22}^2 = 1 (0.0.15)$$

$$r_{11}r_{12}e^{i(\theta_{11}-\theta_{12})} + r_{21}r_{22}e^{i(\theta_{21}-\theta_{22})} = 0 (0.0.16)$$

$$r_{11}r_{21}e^{i(\theta_{11}-\theta_{21})} + r_{11}r_{22}e^{i(\theta_{12}-\theta_{22})} = 0 (0.0.17)$$

である. $M^{\dagger}M$ や MM^{\dagger} の非対角成分は複素共役になっていることに注意する. 式 (0.0.12) から式 (0.0.15) を満たす ような r_{ii} の組は,実数 Θ を用いて,

$$r_{11} = r_{22} = \cos(\Theta/2) \tag{0.0.18}$$

$$r_{12} = -r_{21} = \sin(\Theta/2) \tag{0.0.19}$$

なるものである. また, これらの r_{ij} の値を式 (0.0.16) と式 (0.0.17) に代入すると,

$$e^{i(\theta_{11} - \theta_{12})} - e^{i(\theta_{21} - \theta_{22})} = 0 (0.0.20)$$

$$-e^{i(\theta_{11}-\theta_{21})} + e^{i(\theta_{12}-\theta_{22})} = 0 (0.0.21)$$

が成立する.

$$\Phi = \theta_{11} - \theta_{12} = \theta_{21} - \theta_{22} \tag{0.0.22}$$

$$\Psi = \theta_{11} - \theta_{21} = \theta_{12} - \theta_{22} \tag{0.0.23}$$

(0.0.24)

とすると,

$$\theta_{11} = \frac{\Lambda + \Psi + \Phi}{2} \tag{0.0.25}$$

$$\theta_{12} = \frac{\Lambda + \Psi - \Phi}{2} \tag{0.0.26}$$

$$\theta_{21} = \frac{\Lambda - \stackrel{2}{\Psi} + \Phi}{2} \tag{0.0.27}$$

$$\theta_{22} = \frac{\Lambda - \overline{\Psi} - \Phi}{2} \tag{0.0.28}$$

となり、式(0.0.4) を得る. つまり、任意のユニタリ行列は式(0.0.4) で書けることが示された.

実際に式 (0.0.4) がユニタリ行列であることを確かめる.

$$U^{\dagger}U = e^{-i\Lambda/2} \begin{pmatrix} e^{-i\alpha/2}\cos(\Theta/2) & -e^{i\beta/2}\sin(\Theta/2) \\ e^{-i\beta/2}\sin(\Theta/2) & e^{i\alpha/2}\cos(\Theta/2) \end{pmatrix} e^{i\Lambda/2} \begin{pmatrix} e^{i\alpha/2}\cos(\Theta/2) & e^{i\beta/2}\sin(\Theta/2) \\ -e^{-i\beta/2}\sin(\Theta/2) & e^{-i\alpha/2}\cos(\Theta/2) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (0.0.29)$$

$$U^{\dagger}U = e^{-i\Lambda/2} \begin{pmatrix} e^{-i\alpha/2}\cos(\Theta/2) & -e^{i\beta/2}\sin(\Theta/2) \\ e^{-i\beta/2}\sin(\Theta/2) & e^{i\alpha/2}\cos(\Theta/2) \end{pmatrix} e^{i\Lambda/2} \begin{pmatrix} e^{i\alpha/2}\cos(\Theta/2) & e^{i\beta/2}\sin(\Theta/2) \\ -e^{-i\beta/2}\sin(\Theta/2) & e^{-i\alpha/2}\cos(\Theta/2) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad (0.0.29)$$

$$UU^{\dagger} = e^{i\Lambda/2} \begin{pmatrix} e^{i\alpha/2}\cos(\Theta/2) & e^{i\beta/2}\sin(\Theta/2) \\ -e^{-i\beta/2}\sin(\Theta/2) & e^{-i\alpha/2}\cos(\Theta/2) \end{pmatrix} e^{-i\Lambda/2} \begin{pmatrix} e^{-i\alpha/2}\cos(\Theta/2) & -e^{i\beta/2}\sin(\Theta/2) \\ e^{-i\beta/2}\sin(\Theta/2) & e^{i\alpha/2}\cos(\Theta/2) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad (0.0.30)$$

となり、U はユニタリ行列であることが分かる.