Functions and Spaces

Alberto Ruiz-Biestro

2024-Jul-18

Contents

1	Introduction	2
2	Functions	2
	2.1 Dirac delta function	-

1 Introduction

Vector spaces and function spaces are essential to all of mathematical physics. Fortunately, most of undergrad work does not require rigorous

This is by no means a rigorous guide. There is a slight but important difference between mathematical physics and physical mathematics¹.

2 Functions

Note 2.1 Best approximations

The reason one uses an orthonormal basis is because adding an extra term, i.e. g_{N+1} , to the set of expansion coefficients, is independent of any previous terms. In a **non-orthogonal** basis, having g_{N+1} requires tweaking all N terms (again). However, both are able to give a *best* approximation.

Def 2.1 L^2 convergence

A sequence $\{f_n\} \in L^2$ of periodic functions is said to *converge in* L^2 **to a function** if the sequence $\int_0^1 dx \, |f_n(x) - f(x)|^2$ converges to 0.

Def 2.2 Parceval's theorem

A sequence $\{f_n\} \in L^2$ of periodic functions is said to *converge* in L^2 to a function if the sequence $\int_0^1 dx \, |f_n(x) - f(x)|^2$ converges to 0.

Def 2.3 Complete orthonormal set

- If $\{U_i\}$ spans a dense subset of the entire Hilbert space V, then it is a **complete** orthonormal set.
- This gives an **arbitrarily close** approximation to $f(x) \in V$.
- Leads to

$$||f||^2 = \sum_{n=1}^{\infty} |a_n|^2 \iff L^2$$
 convergence

and 2.

¹Better told in Spanish, matemáticas físicas vs. física matemática

2.1 Dirac delta function

The the *Dirac delta function* is not a function, and it was introduced (although not in its current form) by Fourier and later by Cauchy (as an infinitesimal form of a Cauchy distribution). However, it was Dirac who gave it its analogous meaning to *Kronecker's delta*, and its proper introduction to quantum mechanics. Field's medalist Laurent Schwartz gave the δ -distribution its meaning and rigour.

Consider the approximation to δ , which we name δ_{ϵ} .

This issue of convergence leads to an issue with the δ_{ϵ} function. Since the L^2 norm $\|\delta_{\epsilon}\| \to \infty$ as $\epsilon \to 0$, it cannot be in L^2 .

Note 2.2

Since elements of L^2 are in reality equivalence classes of functions, f(0) is undefined, and thus the paring $(\delta, f) = f(0)$ is doomed to fail for an arbitrary $f \in L^2$.