Gradient Descent

Gradient Descent: Part I

Consider loss function L(w) with one parameter w:

$$w^* = arg \min_{w} L(w)$$

Gradient Descent: Part II

 $w^* = arg \min_{w} L(w)$

Consider loss function L(w) with one parameter w:

Gradient Descent: Part III

Consider loss function L(w) with one parameter w:

$$w^* = arg \min_{w} L(w)$$

Gradient Descent: Part IV

 $\left[rac{\partial L}{\partial w}
ight]_{ ext{gradient}}$

How about two parameters?

$$w^*, b^* = arg \min_{w,b} L(w, b)$$

- (Randomly) Pick an initial value w⁰, b⁰
- \triangleright Compute $\frac{\partial L}{\partial w}|_{w=w^0,b=b^0}$, $\frac{\partial L}{\partial b}|_{w=w^0,b=b^0}$

$$w^{1} \leftarrow w^{0} - \eta \frac{\partial L}{\partial w}|_{w=w^{0},b=b^{0}} \qquad b^{1} \leftarrow b^{0} - \eta \frac{\partial L}{\partial b}|_{w=w^{0},b=b^{0}}$$

 \triangleright Compute $\frac{\partial L}{\partial w}|_{w=w^1,b=b^1}$, $\frac{\partial L}{\partial b}|_{w=w^1,b=b^1}$

$$w^2 \leftarrow w^1 - \eta \frac{\partial L}{\partial w}|_{w=w^1,b=b^1} \qquad b^2 \leftarrow b^1 - \eta \frac{\partial L}{\partial b}|_{w=w^1,b=b^1}$$

Gradient Descent: Part V

Formulation of $\partial L/\partial w$ and $\partial L/\partial b$

$$L(w,b) = \sum_{n=1}^{m} \left(\hat{y}^n - \left(b + w \cdot x_{cp}^n \right) \right)^2$$

$$\frac{\partial L}{\partial w} = ? \sum_{n=1}^{m} 2\left(\hat{y}^n - \left(b + w \cdot x_{cp}^n\right)\right)$$

$$\frac{\partial L}{\partial b} = ?$$

Gradient Descent: Part VI

Formulation of $\partial L/\partial w$ and $\partial L/\partial b$

$$L(w,b) = \sum_{n=1}^{m} \left(\hat{y}^n - \left(b + w \cdot x_{cp}^n \right) \right)^2$$

$$\frac{\partial L}{\partial w} = ? \sum_{m=1}^{m} 2\left(\hat{y}^{m} - \left(b + w \cdot x_{cp}^{n}\right)\right)\left(-x_{cp}^{n}\right)$$

$$\frac{\partial L}{\partial b} = ? \sum_{n=1}^{m} 2\left(\hat{y}^n - \left(b + w \cdot x_{cp}^n\right)\right)$$

Gradient Descent: Part VII

Gradient Descent: Part VIII

Gradient Descent: Part IX

Gradient Descent for Linear Regression: Part I

Gradient Descent for Linear Regression: Part II

Gradient Descent for Linear Regression: Part III

Gradient Descent for Linear Regression: Part IV

Gradient Descent for Linear Regression: Part V

Gradient Descent for Linear Regression: Part VI

Gradient Descent for Linear Regression: Part VII

Gradient Descent for Linear Regression: Part VIII

Gradient Descent for Linear Regression: Part IX

Gradient Descent for Linear Regression: Part X

Review: Gradient Descent

Optimization problem:

$$\theta^* = \arg\min_{\theta} L(\theta)$$
 L: loss function θ : parameters

Suppose that θ has two variables $\{\theta_1, \theta_2\}$

Randomly start at
$$\theta^0 = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix}$$

$$\nabla L(\theta) = \begin{bmatrix} \frac{\partial L(\theta_1)}{\partial \theta_1} \\ \frac{\partial L(\theta_2)}{\partial \theta_2} \end{bmatrix}$$

$$\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

Review: Gradient Descent, Continued

- 1. Start at position θ^0
- 2. Compute gradient at θ^0
- 3. Move to $\theta^1 = \theta^0 \eta \nabla L(\theta^0)$
- 4. Compute gradient at θ^1
- 5. Move to $\theta^2 = \theta^1 \eta \nabla L(\theta^1)$

