

Personal Details

Mail shao_xc@163.com / xuecheng.shao@rutgers.edu

Address Department of Physics, Rutgers University, 101 Warren Street, Newark, NJ 07102, USA

Research Interests

- Development of electronic structure methods and software for large-scale ab-initio materials simulations.
- Development of complex crystal structure prediction methods and software.
- Materials simulation based on density functional theory.
- Investigating the physical and chemical properties of materials.
- Pushing the limits of Python for scientific programming.

Education

9/2013–6/2019	Ph.D. in Condensed Matter Physics, State Key Lab of Superhard Materials, Jilin University, Changchun, China
9/2009-7/2013	B.S. in Physics, Department of Physics, Jilin University, Changchun, China

Research Experience

9/2019–present Postdoc Advisor: Professor Michele Pavanello

- Density embedding (methods and software). Developed Python software eDFTpy for density embedding simulations.
- Orbital-free DFT (methods and software). Developed Python software DFTpy for orbital-free DFT simulations.
- Scientific programming with Python and MPI.

9/2013–7/2019 Graduate Advisor: Professor Yanming Ma

- Development of crystal structure prediction methods and software packages CALYPSO.
- Development of new methods and software packages ATLAS for promoting the extensive use of OF-DFT for large-scale simulations.
- Scientific programming with Fortran, OpenMP and MPI.

Scientific Activities

• 03/2023	Chair	APS March Meeting 2023, "Density Functional Theory in Chemical Physics III"
• 03/2023	Talk	APS March Meeting 2023, "Ab-initio Adaptive Density Embedding for Mesoscale Systems"
• 03/2022	Talk	APS March Meeting 2022, "DFT Embedding in Python for Realistically-sized Systems"
• 03/2021	Talk	APS March Meeting 2021, "An Efficient DFT Solver for Nanoscale Simulations and Beyond"

• 08/2020	Talk	ACS Fall 2020 VIRTUAL Meeting & Expo, "DFTpy: An efficient and object-oriented platform for orbital-free DFT simulations"
• 10/2018	Talk	6th CALYPSO workshop, Xi'an, China, "ATLAS: A real-space finite-difference implementation of orbital-free density functional theory"
• 10/2017	Talk	5th CALYPSO workshop, Changchun, China, "The advanced mode of CALYPSO for structure prediction"
• 10/2016	Talk	4th CALYPSO workshop, Nanjing, China, "The advanced mode of CALYPSO for structure prediction"
• 06/2016	Poster	9th International Conference on Computational Nanoscience and New Energy Materials, Shanghai, China, "ATLAS: A real-space finite-difference implementation of orbital-free density functional theory"

Awards

• 2	023	Postdoctoral Excellence Award, Physics Department Rutgers University-Newark
• 2	020	MolSSI Software Fellow
• 2	020	Wiley Computers in Chemistry Outstanding Postdoc Award
• 2	016	Excellent Young Poster Award, the 9th International Conference on Computational Nanoscience and New Energy Materials
• 2	014	National Scholarship, Ministry of Education, China

Publications

^{*} indicates equal contributions

[†] indicates corresponding author(s)

¹ **X.** Shao[†], L. Paetow, M. E. Tuckerman[†], and M. Pavanello[†], "Machine Learning Electronic Structure Methods Based On The One-Electron Reduced Density Matrix", Nature Communications **14**, 6281 (2023).

² **X.** Shao[†], A. C. Lopez, M. R. Khan Musa, M. R. Nouri, and M. Pavanello[†], "Adaptive Subsystem Density Functional Theory", Journal of Chemical Theory and Computation **18**, 6646–6655 (2022).

³ **X.** Shao[†], W. Mi[†], and M. Pavanello[†], "Density Embedding Method for Nanoscale Molecule–Metal Interfaces", The Journal of Physical Chemistry Letters **13**, 7147–7154 (2022).

⁴ X. Shao*, J. Lv*, P. Liu, S. Shao, P. Gao, H. Liu, Y. Wang, and Y. Ma, "A symmetry-orientated divide-and-conquer method for crystal structure prediction", The Journal of Chemical Physics 156, 014105 (2022).

⁵ X. Shao[†], A. Umerbekova, K. Jiang, and M. Pavanello[†], "Many-body van der Waals interactions in wet MoS2 surfaces", Electronic Structure **4**, 024001 (2022).

⁶ X. Shao, W. Mi, and M. Pavanello, "Revised Huang-Carter nonlocal kinetic energy functional for semiconductors and their surfaces", Physical Review B **104**, 045118 (2021).

⁷ **X. Shao**, W. Mi, and M. Pavanello, "GGA-Level Subsystem DFT Achieves Sub-kcal/mol Accuracy Intermolecular Interactions by Mimicking Nonlocal Functionals", Journal of Chemical Theory and Computation **17**, 3455–3461 (2021).

⁸ **X. Shao**, W. Mi, and M. Pavanello, "Efficient DFT Solver for Nanoscale Simulations and Beyond", The Journal of Physical Chemistry Letters **12**, 4134–4139 (2021).

⁹ X. Shao, K. Jiang, W. Mi, A. Genova, and M. Pavanello, "DFTpy: An efficient and object-oriented platform for orbital-free DFT simulations", Wiley Interdisciplinary Reviews: Computational Molecular Science 11, e1482 (2021).

¹⁰ **X. Shao**, X. Qu, S. Liu, L. Yang, J. Yang, X. Liu, X. Zhong, S. Sun, G. Vaitheeswaran, and J. Lv, "Structure evolution of chromium-doped boron clusters: toward the formation of endohedral boron cages", RSC Advances **9**, 2870–2876 (2019).

- ¹¹ **X. Shao**, Q. Xu, S. Wang, J. Lv, Y. Wang, and Y. Ma, "Large-scale ab initio simulations for periodic system", Computer Physics Communications **233**, 78–83 (2018).
- ¹² X. Shao*, W. Mi*, Q. Xu, Y. Wang, and Y. Ma, "O(NlogN) scaling method to evaluate the ion–electron potential of crystalline solids", The Journal of Chemical Physics 145, 184110 (2016).
- ¹³ Z. A. Moldabekov[†], X. Shao[†], M. Pavanello[†], J. Vorberger, F. Graziani, and T. Dornheim, "Imposing correct jellium response is key to predict the density response by orbital-free DFT", Physical Review B 108, 235168 (2023).
- ¹⁴ J. A. Martinez B, L. Paetow, J. Tölle, **X. Shao**[†], P. Ramos, J. Neugebauer[†], and M. Pavanello[†], "Which Physical Phenomena Determine the Ionization Potential of Liquid Water?", The Journal of Physical Chemistry. B **127**, 5470–5480 (2023).
- ¹⁵ L. Fiedler[†], Z. A. Moldabekov[†], **X. Shao**[†], K. Jiang[†], T. Dornheim[†], M. Pavanello[†], and A. Cangi[†], "Accelerating equilibration in first-principles molecular dynamics with orbital-free density functional theory", Physical Review Research **4**, 043033 (2022).
- ¹⁶ K. Jiang[†], **X. Shao**[†], and M. Pavanello[†], "Efficient time-dependent orbital-free density functional theory: Semilocal adiabatic response", Physical Review B **106**, 115153 (2022).
- ¹⁷ K. Jiang[†], **X. Shao**[†], and M. Pavanello[†], "Nonlocal and nonadiabatic Pauli potential for time-dependent orbital-free density functional theory", Physical Review B **104**, 235110 (2021).
- ¹⁸ W. Mi[†], **X. Shao**[†], A. Genova[†], D. Ceresoli[†], and M. Pavanello[†], "eQE 2.0: Subsystem DFT Beyond GGA Functionals", Computer Physics Communications **269**, 108122 (2021).
- ¹⁹ W. Mi*, **X. Shao***, C. Su, Y. Zhou, S. Zhang, Q. Li, H. Wang, L. Zhang, M. Miao, Y. Wang, et al., "ATLAS: A real-space finite-difference implementation of orbital-free density functional theory", Computer Physics Communications **200**, 87–95 (2016).
- ²⁰ J. A. Martinez B, **X. Shao**, K. Jiang, and M. Pavanello, "Entropy is a good approximation to the electronic (static) correlation energy", The Journal of Chemical Physics **159**, 191102 (2023).
- ²¹ Z. Moldabekov, S. Schwalbe, M. P. Böhme, J. Vorberger, X. Shao, M. Pavanello, F. R. Graziani, and T. Dornheim, "Bound-State Breaking and the Importance of Thermal Exchange-Correlation Effects in Warm Dense Hydrogen", Journal of Chemical Theory and Computation 20, 68–78 (2024).
- W. Gong, R. Xu, X. Shao, Q. Li, and C. Chen, "Stability and mechanical properties of $W_{1-x}Mo_xB_{4.2}$ (x = 0.0 1.0) from first principles", Physical Review Materials 5, 123606 (2021).
- ²³ Y. Wang, M. Xu, L. Yang, B. Yan, Q. Qin, **X. Shao**, Y. Zhang, D. Huang, X. Lin, J. Lv, et al., "Pressure-stabilized divalent ozonide CaO3 and its impact on Earth's oxygen cycles", Nature Communications **11**, 4702 (2020).
- ²⁴ Z. Wang, D. Wang, Z. Zou, T. Song, D. Ni, Z. Li, X. Shao, W. Yin, Y. Wang, W. Luo, et al., "Efficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy density", National Science Review 7, 1768–1775 (2020).
- ²⁵ K. Yin, P. Gao, X. Shao, B. Gao, H. Liu, J. Lv, S. T. John, Y. Wang, and Y. Ma, "An automated predictor for identifying transition states in solids", npj Computational Materials **6**, 16 (2020).
- ²⁶ Q. Xu, S. Wang, L. Xue, X. Shao, P. Gao, J. Lv, Y. Wang, and Y. Ma, "Ab initio electronic structure calculations using a real-space Chebyshev-filtered subspace iteration method", Journal of Physics: Condensed Matter 31, 455901 (2019).
- ²⁷ S. Deng, X. Song, X. Shao, Q. Li, Y. Xie, C. Chen, and Y. Ma, "First-principles study of high-pressure phase stability and superconductivity of Bi₄I₄", Physical Review B 100, 224108 (2019).
- ²⁸ P. Jiang, Z. Lei, L. Chen, **X. Shao**, X. Liang, J. Zhang, Y. Wang, J. Zhang, Z. Liu, and J. Feng, "Polyethylene Glycol–Na+ Interface of Vanadium Hexacyanoferrate Cathode for Highly Stable Rechargeable Aqueous Sodium-Ion Battery", ACS Applied Materials & Interfaces **11**, 28762–28768 (2019).
- ²⁹ J. Wang, X. Song, **X. Shao**, B. Gao, Q. Li, and Y. Ma, "High-Pressure Evolution of Unexpected Chemical Bonding and Promising Superconducting Properties of YB6", The Journal of Physical Chemistry C **122**, 27820–27828 (2018).
- ³⁰ J. Lv, M. Xu, S. Lin, **X. Shao**, X. Zhang, Y. Liu, Y. Wang, Z. Chen, and Y. Ma, "Direct-gap semiconducting tri-layer silicene with 29% photovoltaic efficiency", Nano Energy **51**, 489–495 (2018).
- ³¹ Y. Zhang, X. Shao, Y. Zheng, L. Yan, P. Zhu, Y. Li, and H. Xu, "Pressure-induced structural transitions and electronic topological transition of Cu2Se", Journal of Alloys and Compounds 732, 280–285 (2018).

³² Y. Zhang, L. Song, **X. Shao**, Y. Li, P. Zhu, H. Xu, and J. Yang, "Pressure-induced electronic topological transitions in the charge-density-wave material In4Se3", Journal of Alloys and Compounds **715**, 237–241 (2017).

³³ B. Gao, **X. Shao**, J. Lv, Y. Wang, and Y. Ma, "Structure prediction of atoms adsorbed on two-dimensional layer materials: method and applications", The Journal of Physical Chemistry C **119**, 20111–20118 (2015).

³⁴ Y. Zhang, Y. Li, Y. Ma, Y. Li, G. Li, **X. Shao**, H. Wang, T. Cui, X. Wang, and P. Zhu, "Electronic Topological Transition in Ag2Te at High-pressure", Scientific Reports **5**, 14681 (2015).