R.4 Rhombus

1. Rhombus diagonal length

In rhombus TIGE, diagonals \overline{TG} and \overline{IE} intersect at R. The perimeter of TIGE is 68, and TG=16.

What is the length of diagonal \overline{IE} ?

(1) 15

(3) 34

(2) 30

- (4) 52
- 2. Rhombus transformations "onto"

The figure below shows a rhombus with noncongruent diagonals.

Which transformation would not carry this rhombus onto itself?

- (1) a reflection over the shorter diagonal
- (2) a reflection over the longer diagonal
- (3) a clockwise rotation of 90° about the intersection of the diagonals
- (4) a counterclockwise rotation of 180° about the intersection of the diagonals
- 3. Rhombus side length

Rhombus STAR has vertices S(-1,2), T(2,3), A(3,0), and R(0,-1). What is the perimeter of rhombus STAR?

(1) √34

(3) $\sqrt{10}$

(2) $4\sqrt{34}$

 $(4) 4\sqrt{10}$

4. Rhombus reflection

A rhombus is graphed on the set of axes below.

Which transformation would carry the rhombus onto itself?

- (1) 180° rotation counterclockwise about the origin
- (2) reflection over the line $y = \frac{1}{2}x + 1$
- (3) reflection over the line y = 0
- (4) reflection over the line x = 0
- $5. \ \ {\rm Rhombus\ properties\ (perpendicular\ diagonals)}$

The diagram below shows parallelogram ABCD with diagonals \overline{AC} and \overline{BD} intersecting at E.

What additional information is sufficient to prove that parallelogram *ABCD* is also a rhombus?

- (1) \overline{BD} bisects \overline{AC} .
- (3) \overline{AC} is congruent to \overline{BD} .
- (2) \overline{AB} is parallel to \overline{CD} .
- (4) \overline{AC} is perpendicular to \overline{BD} .

6. A parallelogram must be a rhombus if its diagonals

- (a) are congruent
- (b) bisect each other
- (c) do not bisect its angles
- (d) are perpendicular to each other

7. Rhombus angle calculation

Rhombus ABCD can be mapped onto rhombus KLMN by a rotation about point P, as shown below.

What is the measure of $\angle KNM$ if the measure of $\angle CAD = 35^{\circ}$?

(1) 35°

(3) 70°

(2) 55°

(4) 110°

8. In rhombus VENU, diagonals \overline{VN} and \overline{EU} intersect at S. If VN=12 and EU=16, what is the perimeter of the rhombus?

9. Rhombus properties

Which set of statements would describe a parallelogram that can always be classified as a rhombus?

- I. Diagonals are perpendicular bisectors of each other.
- II. Diagonals bisect the angles from which they are drawn.
- III. Diagonals form four congruent isosceles right triangles.
- (1) I and II

(3) II and III

(2) I and III

(4) I, II, and III

10. Which statement about parallelograms is always true?

- (a) The diagonals are congruent.
- (b) The diagonals bisect each other.
- (c) The diagonals are perpendicular.
- (d) The diagonals bisect their respective angles.

11. Rhombus properties

If ABCD is a parallelogram, which statement would prove that ABCD is a rhombus?

(1)
$$\angle ABC \cong \angle CDA$$

(3)
$$\overline{AC} \perp \overline{BD}$$

(2)
$$\overline{AC} \cong \overline{BD}$$

(4)
$$\overline{AB} \perp \overline{CD}$$

12. Rhombus area

On the set of axes below, rhombus ABCD has vertices whose coordinates are A(1,2), B(4,6), C(7,2), and D(4,-2).

What is the area of rhombus ABCD?

In the diagram of rhombus PQRS below, the diagonals \overline{PR} and \overline{QS} intersect at point T, PR = 16, and QS = 30. Determine and state the perimeter of PQRS.

13. Angle-angle-side sufficiency situation

In the diagram below, \overline{AKS} , \overline{NKC} , \overline{AN} , and \overline{SC} are drawn such that $\overline{AN} \cong \overline{SC}$.

Which additional statement is sufficient to prove $\triangle KAN \cong \triangle KSC$ by AAS?

- (1) \overline{AS} and \overline{NC} bisect each other.
- (2) K is the midpoint of \overline{NC} .
- (3) $\overline{AS} \perp \overline{CN}$
- (4) $\overline{AN} \parallel \overline{SC}$