

PROJET 7

Implémentez un modèle de scoring

- Présentation du projet
- Analyse exploratoire des données
- o Pré-traitement des données
- Approche de modélisation
- Présentation du dashboard
- Conclusion

Présentation du projet

o L'entreprise « Prêt à dépenser » propose des crédits à la consommation pour des personnes ayant peu ou pas du tout d'historique de prêt.

Objectifs:

- Développer un modèle de scoring de la probabilité de défaut de paiement du client
- Développer un dashboard interactif

8 jeux de données contenant des informations concernant 307 511 clients : âge, situation familiale, lieu de résidence, emploi...

O si le prêt est remboursé à temps
 TARGET
 1 si le prêt n'est pas remboursé à temps

La distribution de la variable cible montre que le nombre de prêts classés « remboursés à temps » est nettement supérieur à ceux qui ne le sont pas. Il faudra remédier à ce déséquilibre des classes.

Distributions des variables catégorielles

Nous avons 16 variables catégorielles dont :

- Le type d'emploi;
- Le statut familial;
- Le niveau d'étude

Distributions des variables numériques

Léagrandure table de la contra la co

La variable « Days_employment » présentait 55 374 données égales à 365 243 jours, ce qui représentent environ 1 000 ans. Nous avons remplacé ces valeurs aberrantes par des valeurs manquantes.

Les variables « EXT_SOURCE » et « DAYS_BIRTH » sont les variables les plus fortement anticorrélées avec notre variable cible.

La variable « DAYS_EMPLOYED » est la variable la plus fortement corrélée avec notre variable cible.

Variables anti-corrélées avec la variable cible.

Variable corrélée avec la variable cible.

Pré-traitement des données Séparation du jeu de données

Jeu de données contenant 307 511 individus

Proportion des classes 0 et 1 conservées

Pré-traitement des données

Pipeline

12

ColumnTransformer

Variables catégorielles

SimpleImputer()

OneHotEncoder()

Variables numériques

SimpleImputer()

Normalisation: StandardScaler();
MinMaxScaler();
MaxAbsScaler().

Pipeline

13

ColumnTransformer

Variables catégorielles

SimpleImputer()

OneHotEncoder()

Variables numériques

SimpleImputer()

Normalisation: StandardScaler(); MinMaxScaler();

MaxAbsScaler().

Sampling:

RandomOverSampling; RandomUnderSampling; SMOTE

Feature selection : SelectKBest()

Modèle

Approche de modélisation Pipeline

14

RandomUnderSampling

RandomOverSampling

SMOTE

Choix de la métrique

Matrice de confusion

			Prédiction		
			0 (sans défaut)	1 (en défaut)	
	Réalité	0 (sans défaut)	Vrais négatifs	Faux positifs	•
		1 (en défaut)	Faux négatifs	Vrais positifs	

Pertes réelles pour la banque puisque le crédit client est accepté mais ne sera pas remboursé à temps.

Nous souhaitons minimiser les taux de faux négatifs et de faux positifs.

Pertes d'opportunités puisque le crédit client est refusé alors qu'il aurait été en mesure d'être remboursé.

Choix de la métrique

La courbe ROC (Receiver Operating Characteristic)

On cherche à maximiser le score AUROC (Area Under the Curve) qui correspond à l'aire sous la courbe ROC.

 $1 - Sp\acute{e}cificit\acute{e} = \frac{FP}{FP + VN}$ c'est le taux de faux positifs

Sensibilité = $\frac{VP}{VP+FN}$ c'est le taux de vrais positifs (positifs bien identifiés),

Seuil fixé à 0, tous les prêts seront classés pégitifisf (maboennés») utaés illahycalumby auuran aégantificositifs.

Approche de modélisation

Choix du modèle

	model	mean_score_train	mean_score_test	mean_time_train	mean_time_test
0	gridlogistic	0.752420	0.739591	0.972953	0.067023
1	gridsvc	0.751906	0.740065	2.017171	0.068047
2	gridlgbm	0.992485	0.721089	3.116567	0.087681
3	gridrandomforest	1.000000	0.722695	3.993857	0.131265
4	gridknn	0.739448	0.650790	0.536391	0.167575
5	gridxgb	0.848218	0.733768	3.041840	0.074816

Nous choisissons le modèle **Logistic Regression Classifier.**

Optimisation de Logistic Regression Classifier

Grille de paramètres:

Approche de modélisation

Optimisation de Logistic Regression Classifier

Choix des valeurs pour k (nombre de features pour SelectKBest) et C (Logistic Regression Classifier):

Grille de paramètres présentant le meilleur résultat:

```
{'logisticregression__C': 0.03,
  'logisticregression__penalty': '12',
  'logisticregression__solver': 'newton-cg',
  'preprocess__pipeline-1__scaler': MaxAbsScaler(),
  'sampler': RandomOverSampler(random_state=0),
  'selector__k': 46}
```

Nous obtenons un score AUROC d'environ 0.741 sur le jeu de validation.

Choix du seuil

Nous choisirons un seuil égal à 0.27.

Approche de modélisation

Impact sur la matrice de confusion

Sans la métrique personnalisée, seuil à 0.5.

Avec la métrique personnalisée, seuil à 0.27. Il y a beaucoup moins de faux négatifs.

Interprétabilité du modèle

Variables les plus importantes pour les prédictions de notre modèle :

Présentation du dashboard

<u>Lien vers le dashboard :</u>
https://home-credit-sei.herokuapp.com/

- Utiliser davantage de données
- Compréhension des features
- Amélioration du dashboard