Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Intra-AS Routing

- also known as interior gateway protocols (IGP)
- most common intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

RIP (Routing Information Protocol)

- included in BSD-UNIX distribution in 1982
- distance vector algorithm
 - single distance metric: # hops (max = 15 hops), each link has cost I
 - DVs exchanged with neighbors every 30 sec in response message (aka advertisement)
 - each advertisement: list of up to 25 destination subnets (in IP addressing sense)

from router A to destination subnets:

<u>subnet</u>	<u>hops</u>
U	1
V	2
W	2
X	3
У	3
Z	2

RIP: example

routing table in router D

destination subnet	next router	# hops to dest
W	Α	2
у	В	2
Z	В	7
X		1

RIP: example

routing table in router D

destination subnet	next router	# hops to dest
W	Α	2
У	В	2 _ 5
Z	BA	7
X		1
		••••

RIP: link failure, recovery

if no advertisement heard after 180 sec --> neighbor/ link declared dead

- routes via neighbor invalidated
- new advertisements sent to neighbors
 - neighbors in turn send out new advertisements (if tables changed)
- link failure info quickly (?) propagates to entire net
- poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

RIP table processing

- * RIP routing tables managed by application-level process called route-d (daemon)
- advertisements sent in UDP packets, periodically repeated

OSPF (Open Shortest Path First)

- "open": publicly available
- uses link state algorithm
 - LS packet dissemination
 - topology map at each node
 - link costs set by administrator: used to affect routing
 - route computation using Dijkstra's algorithm
- OSPF advertisement carries one entry per neighbor
- advertisements flooded to entire AS
 - carried in OSPF messages directly over IP (rather than TCP or UDP
 - sent upon change, periodically (every 30min)
 - HELLO messages used to check link
- * IS-IS routing protocol: nearly identical to OSPF

OSPF "advanced" features (not in RIP)

- security: all OSPF messages authenticated
 - (to prevent malicious intrusion)
- multiple same-cost paths allowed
 - (only one path in RIP)
- for each link, multiple cost metrics for different TOS
 - e.g., satellite link cost set "low" for best effort ToS; high for real time ToS
- integrated unicast and multicast support:
 - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- hierarchical OSPF in large domains.

Hierarchical OSPF

Hierarchical OSPF

- * two-level hierarchy: local area, backbone.
 - link-state advertisements only in area
 - each node has detailed area topology; only knows direction (shortest path) to nets in other areas.
- * area border routers: "summarize" distances to nets in own area, advertise to other Area Border routers.
- backbone routers: run OSPF routing limited to backbone.
- * boundary routers: connect to other AS's.

Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): the de facto inter-domain routing protocol
 - "glue that holds the Internet together"
- BGP provides each AS a means to:
 - eBGP: obtain subnet reachability information from neighboring ASs.
 - iBGP: propagate reachability information to all ASinternal routers.
 - determine "good" routes to other networks based on reachability information and policy.
- allows subnet to advertise its existence to rest of Internet: "I am here"

BGP basics

- BGP session: two BGP routers ("peers") exchange BGP messages:
 - advertising paths to different destination network prefixes ("path vector" protocol)
 - exchanged over semi-permanent TCP connections
- when AS3 advertises a prefix to AS1:
 - AS3 promises it will forward datagrams towards that prefix
 - AS3 can aggregate prefixes in its advertisement

BGP basics: distributing path information

- using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - Ic can then use iBGP to distribute new prefix info to all routers in ASI
 - Ib can then re-advertise new reachability info to AS2 over 1b-to-2a
 eBGP session
- when a router (e.g. Id) learns of new prefix, it creates entry for prefix in its forwarding table
 - E.g. by looking up NEXT-HOP: 3a interface towards ASI
 - E.g. Id's entry for AS3 stores the subnetwork between 3a and Ic.

Path attributes and BGP routes

- advertised prefix includes BGP attributes
 - prefix + attributes = "route"
- two important attributes:
 - AS-PATH: contains ASs through which prefix advertisement has passed: e.g., AS 67, AS 17
 - NEXT-HOP: indicates specific internal-AS router interface to next-hop AS.
 - The internal router interface to next hop AS (begins the AS path)
 - Link between inter-AS and intra-AS routing
 - E.g. NEXT-HOP for AS3 (advertised to Ia) is 3a interface towards ASI
- gateway router receiving route advertisement uses import policy to accept/decline
 - e.g., never route through AS x
 - policy-based routing

BGP route selection

- router may learn about more than I route to destination AS, selects route based on the following rules (applied sequentially):
 - I. local preference value attribute: policy decision
 - 2. shortest AS-PATH
 - 3. closest NEXT-HOP router: hot potato routing
 - 4. additional criteria

[BGP messages]

- BGP messages exchanged between peers over TCP connection
- BGP messages:
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg; also used to close connection

Putting it Altogether: How Does an Entry Get Into a Router's Forwarding Table?

- ❖ Ties together hierarchical routing (Section 4.5.3) with BGP (4.6.3) and OSPF (4.6.2).
- Provides review/overview of BGP!

How does entry get in forwarding table?

How does entry get in forwarding table?

High-level overview

- Router becomes aware of prefix
- 2. Router determines output port for prefix
- 3. Router enters prefix-port in forwarding table

Router becomes aware of prefix

- BGP message contains "routes"
- "route" is a prefix and attributes: AS-PATH, NEXT-HOP,
- Example: route:
 - Prefix:138.16.64/22; AS-PATH: AS3 AS131;
 NEXT-HOP: 201.44.13.125

Router may receive multiple routes

- * Router may receive multiple routes for <u>same</u> prefix
- Has to select one route

Select best BGP route to prefix

Router selects route based on shortest AS-PATH

Example:

select

- *AS2 AS17 to 138.16.64/22
- * AS3 AS131 AS201 to 138.16.64/22
- What if there is a tie? We'll come back to that!

Find best intra-route to BGP route

- Use selected route's NEXT-HOP attribute
 - Route's NEXT-HOP attribute is the IP address of the router interface that begins the AS PATH.
- Example:
 - * AS-PATH: AS2 AS17; NEXT-HOP: 111.99.86.55
- Router uses OSPF to find shortest path from 1c to 111.99.86.55

Router identifies port for route

- Identifies port along the OSPF shortest path
- * Adds prefix-port entry to its forwarding table:
 - (138.16.64/22, port 4)

Hot Potato Routing

- Suppose there are two or more best inter-routes.
- Then choose route with closest NEXT-HOP
 - Use OSPF to determine which gateway is closest
 - Q: From Ic, chose AS3 AS131 or AS2 AS17?
 - A: route AS3 AS131 since it is closer

How does entry get in forwarding table?

Summary

- 1. Router becomes aware of prefix
 - via BGP route advertisements from other routers
- 2. Determine router output port for prefix
 - Use BGP route selection to find best inter-AS route
 - Use OSPF to find best intra-AS route leading to best inter-AS route (looking up NEXT-HOP of best route)
 - Router identifies router port for that best route
- 3. Enter prefix-port entry in forwarding table

BGP routing policy (I)

- * A,B,C are provider networks
- * X,W,Y are customer (of provider networks) or "stub networks"
- * X is dual-homed: attached to two networks
 - X does not want to become "transit" network, e.g. route from B via X to C
 - .. so X will not advertise to B a route to C

BGP routing policy (2)

- * A advertises path AW to B
- B advertises path BAW to X
- Should B advertise path BAW to C?
 - Probably not! B gets no "revenue" for routing CBAW since neither W nor C are B's customers
 - B wants to force C to route to w via A
 - B wants to route only to/from its customers!

Why different Intra-, Inter-AS routing?

policy:

- inter-AS: admin wants control over how its traffic routed, who routes through its net.
- intra-AS: single admin, so no policy decisions needed scale:
- hierarchical routing saves table size, reduced update traffic

performance:

- intra-AS: can focus on performance
- inter-AS: policy may dominate over performance

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing