Physics 464: Problem Set 9

- 1. Use Clebsch-Gordan coefficients to block diagonalize (decompose) the 4-dimensional $2 \otimes 2$ individual-basis operators \vec{J}^2 , J_x , J_y , and J_z to their 4-dimensional block diagonal composite-basis form. Find the matrix which performs this block-diagonalization. Hints:
 - You may have to reorder your states in order to see the block-diagonal form.
 - $J_{+} = S_{1+} + S_{2+}$, etc., where S are the spin-1/2 operators.
 - Find the operators by taking matrix elements, using for example, $\vec{J}^2 = \vec{S}_1^2 + \vec{S}_2^2 + 2S_{1z}S_{2z} + S_{1+}S_{2-} + S_{1-}S_{2+}$.
 - $\langle m_1 m_2 | J_i | m_1' m_2' \rangle = \sum_{lm} \sum_{l'm'} \langle m_1 m_2 | lm \rangle \langle lm | J_i | l'm' \rangle \langle l'm' | m_1' m_2' \rangle$.
 - You are to find the matrix U such that $\mathcal{O}_{\text{(individual basis)}} = U\mathcal{O}_{\text{(combined basis)}}U^{\dagger}$, where \mathcal{O} is any of the four operators above, and the same U works for all of them.
- 2. "Adding" l=1 with s=1/2: Use raising and lowering operators as well as orthogonality to express the combined basis states in terms of the individual basis states $|l=1, m_l, s=1/2, m_s\rangle$.
- 3. A spin-3/2 particle that exists in nature is the Δ^{++} particle, which is a bound state of three up-type quarks. The ++ designation indicates that it is charge +2, but that is not going to matter for us.
 - (a) Find the operators \hat{J}_z , \hat{J}_x , \hat{J}_y for the Δ^{++} .
 - (b) If the Δ^{++} exists in the state $|j,m_z\rangle=|\frac{3}{2},-\frac{1}{2}\rangle$, and a measurement of the particle's spin projection onto the \hat{x} axis is made, what results are found and with what probatilities?
 - (c) Each of the up quarks of which Δ^{++} is made is a spin-1/2 object. Express the state $|j, m_z\rangle = |\frac{3}{2}, -\frac{1}{2}\rangle$ in terms of the individual basis states for the three quarks:

$$\begin{split} |s_1,m_{1z}\rangle &= |\frac{1}{2},\frac{1}{2}\rangle_1 \ \text{ or } \ |\frac{1}{2},-\frac{1}{2}\rangle_1 \\ |s_2,m_{2z}\rangle &= |\frac{1}{2},\frac{1}{2}\rangle_2 \ \text{ or } \ |\frac{1}{2},-\frac{1}{2}\rangle_2 \\ |s_3,m_{3z}\rangle &= |\frac{1}{2},\frac{1}{2}\rangle_3 \ \text{ or } \ |\frac{1}{2},-\frac{1}{2}\rangle_3 \end{split}$$

That is, find the Clebsh-Gordan coefficients that relate the $|s_1, m_{1z}, s_2, m_{2z}, s_3, m_{3z}\rangle$ basis to the $|j, m_j s_1, s_2, s_3\rangle$ basis that are needed for the state given.

- 4. Predict the rotational spectrum of HCl.
- 5. Evaluate
 - (a) $exp[-i\hat{\vec{P}}\cdot\vec{a}/\hbar]|\vec{x}\rangle$, where $\hat{\vec{P}}$ is the three dimensional momentum operator, \vec{a} is a real vector with units of length, and $|\vec{x}\rangle$ is a position state basis ket. Explain why this operator acts as a translation operator in position space.
 - (b) $exp[-i\hat{\vec{X}}\cdot\vec{b}]|\vec{p}\rangle$, where $\hat{\vec{X}}$ is the three dimensional position operator, \vec{b} is a real vector with units of inverse length, and $|p\rangle$ is a momentum state basis ket. Explain why this operator acts as a translation operator in momentum space.
- 6. Evaluate
 - (a) $exp[-iS_x\theta/\hbar] \mid +\rangle$, where $S_x=\frac{\hbar}{2}\sigma_x$, where σ_x is the Pauli matrix, θ is a constant and $\mid +\rangle$ is the spin-up ket along the \hat{z} axis. What happens when $\theta=2\pi$? What do you think of that?
 - (b) $exp[-iL_x\alpha/\hbar] |1\rangle$, where L_x is the 3x3 \hat{x} direction operator for l=1 and $|1\rangle$ is the $l=1, m_l=1\rangle$ ket with projection m=1 along the \hat{z} axis. What happens when $\alpha=2\pi$? Compare this result to the one obtained in question (6a) above.