

CanSat 2023 Post Flight Review (PFR) Version 1.0

Team 1032 Yes we CANSAT

Presentation Outline

Page #	Presentation Section	Presenter(s)				
3	Team Organization	Melissa Gonzalez				
4-6	Systems Overview	Daniel Horton, Christian Roque				
7	Concept of Operations	Jovana Markovic				
8	Sequence of Events	Daniel Horton				
9-18	Flight Data Analysis	Max Epstein, Dylan Falzone, Yashas Shivaram				
19-21	Failure Analysis	Melissa Gonzalez				
22-23	Lessons Learned	Melissa Gonzalez				

Team Organization

Systems Overview: Payload (1/2)

- When released from the can, the payload automatically deploys a springloaded aerobraking heatshield.
- At 200 meters, the servo motor arm rotates to release the rubber band holding the parachute in place.
- Our bottom-heavy design allows the payload to passively land upright.

Systems Overview: Payload (2/2)

Major Components:

- Electrical:

- Arduino nano Microcontroller
- Adafruit Ultimate GPS
- Xbee Radio
- BMP280 pressure/temperature sensor
- BNO055 tilt sensor
- Adafruit mini spy camera
- Uxcell 1W speaker
- Energizer 9V battery

— Mechanical:

- 6-armed spring mechanism for the heatshield
- Tie down ring for parachute and attachment to Canister
- Servo Motor
- Mylar heatshield (see on previous slide)

Systems Overview: Container

- The can uses a linear actuator fed through the payload's parachute ring to secure it during initial descent.
- At 500m, the linear actuator retracts, deploying the payload.
- Major Components:
 - Electrical:
 - Energizer 9V Battery
 - BMP280 Pressure Sensor
 - Arduino Nano
 - Mechanical:
 - Linear Actuator
 - Fiberglass eyebolt
 - Shrink Wrap

Concept of Operations

- 2. Power on CanSat
- 3. Place CanSat into rocket
- Rocket is launched
- At 670-725m the CanSat separates and parachute opens
- At 500m a probe will be released from the CanSat, which will deploy an aerobraking heat shield, with a camera facing the ground at all times
- At 200m the probe will deploy a parachute too reduce descent rate
- Probe will land upright
- 9. Probe will deploy a flag 500mm above the base of the probe
- Recovery crew tracks and collects CanSat
- 11. FSW obtains and saves flight data & video recording to thumb drive

4

Presenter: Daniel Horton

Sequence of Events

Planned Sequence	Field Operations
Check-in and weigh CanSat	Successful
Load CanSat into rocket and place on launch stand	Successful
Set up GS and send calibration command to CanSat	Successful
Launch	Successful
CanSat separation from rocket at apogee	Successful
CanSat deploys parachute, slowing descent to 15 +/- 5 m/s	Successful
At 500m, deploy the probe from the canister	Failure
Payload deploys aerobraking heatshield and descends at 20 m/s or less	
At 200m, servo deploys the payload parachute, slowing descent to 5 +/- 1 m/s	Parachute successfully deployed, but Payload never separated from the canister
Payload lands upright	_
Flag is deployed	Failure, Did not attempt.
Buzzer is activated and the CanSat is recovered	Successful
Telemetry is saved to .csv and thumb drive is submitted	Successful
Descent video is recovered from camera microSD	Failure, video files corrupted

ρ

Presenter: Dylan Falzone

Flight Data Analysis (1/10)

- Payload was not released from the can during descent
- The linear actuator holding the payload in place did not retract, keeping the payload inside the can

State Change from Rocket Separation to Payload Deployment

1032	21:53:00	512	F	R	522.15	N	N	N
1032	21:54:00	513	F	R	508.18	N	N	N
1032	21:55:00	514	F	Р	498.4	Р	N	N
1032	21:57:00	515	F	Р	474.53	Р	N	N

Flight Data Analysis (2/10)

- The heat shield was not deployed since the payload was never released from the canister
- Had the payload been released from the can, the spring-loaded heat shield would have deployed automatically

State Change from no Heatshield Deployment to Heatshield Deployment

1032	21:53:00	512	F	R	522.15	N	N	N
1032	21:54:00	513	F	R	508.18	N	N	N
1032	21:55:00	514	F	Р	498.4	Р	N	N
1032	21:57:00	515	F	Р	474.53	Р	N	N

Flight Data Analysis (3/10)

- Parachute deployment system allowed the parachute to release when the altitude reached 200 meters
- The servo motor rotated, releasing the rubber band and deploying the parachute, but the payload remained stuck in the canister.

State Change from no Parachute Deployment to Parachute Deployment

1032	22:17:00	535	F	P	222.51	P	N 🖊	N	
1032	22:18:00	536	F	P	208.31	Р	N	N	
1032	22:19:00	537	F	D	197.1	Р	С	N	
1032	22:22:00	538	F	D	160.85	P	C	N	

Flight Data Analysis (4/10)

Flight Data Analysis (5/10)

Flight Data Analysis (6/10)

Flight Data Analysis (7/10)

Flight Data Analysis (8/10)

Presenter: Yashas Shivaram

Flight Data Analysis (9/10)

Flight Data Analysis (10/10)

- During flight the payload camera was activated as expected, but upon recovery, the video files were corrupted and unviewable.
- The bonus camera objective was not attempted.

Failure Analysis (1/3)

Separation failure:

- Failure: the payload did not separate from the container resulting in the entire CanSat impacting the ground at once.
- Root Cause: The container's altitude value did not exceed 670m, the hardcoded threshold for apogee. As a result, the linear actuator was not retracted, and the payload was not released.
- Corrective Actions: Calibrating the container at the launch pad instead of the tents, lowering the expected apogee below the given value, or not hardcoding a value at all.

Failure Analysis (2/3)

Camera failure:

- Failure: The payload camera was properly activated and deactivated as intended, however, the AVI (video) files it saved to the microSD card became corrupted.
- Root Cause: Unknown, potentially excess heat in soldering, or the force from impact.
- Corrective Actions: Begin component selection earlier to ensure reliability.

Failure Analysis (3/3)

Flag Mechanism failure:

- Failure: The flag mechanism was so heavy that it had to be removed from the payload to ensure it was within required weight.
- Root Cause: The use of a clock spring and a tape measure made it significantly heavy.
- Corrective Actions: Design a lighter mechanism.

Lessons Learned (1/2)

What worked:

- Accurate telemetry data received throughout flight
- Canister parachute slowed descent within accepted range
- Audio beacon activated upon landing
- Payload parachute mechanism would have worked as intended
- Canister, payload, and electronics were all mostly intact upon landing

What didn't:

- Flag mechanism not implemented due to complications and weight constraints
- Video files saved to the microSD were corrupted
- Container and payload failed to separate during flight

Lessons Learned (2/2)

Conclusions:

Presenter: Melissa Gonzalez

- Order parts sooner to protect against supply chain issues.
- Proper time management, especially in the manufacturing process is critical
- Code can be more effective if memory use is managed properly.
- Overall, we think we did well for our first attempt at competition!

