Correction du devoir surveillé 8.

Exercice

 1°) Pour tout $n \geq 2$,

$$S_1(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$S_2(n) = \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}.$$

- **2°)** X_1 suit la loi uniforme sur $\{1,\ldots,n\}$. Donc $X_1(\Omega)=\{1,\ldots,n\}$ et, pour tout $i\in\{1,\ldots,n\}$, $P(X_1=i)=\frac{1}{n}$.
 - * $E(X_1) = \sum_{i=1}^n iP(X_1 = i) = \frac{1}{n} \sum_{i=1}^n i = \frac{1}{n} \frac{n(n+1)}{2}.$

Ainsi,
$$E(X_1) = \frac{n+1}{2}$$
.

 $\star V(X_1) = E(X_1^2) - E(X_1)^2.$

$$E(X_1^2) = \sum_{i=1}^n i^2 P(X_1 = i)$$
 par la formule du transfert.

Donc,
$$E(X_1^2) = \frac{1}{n} \sum_{i=1}^n i^2 = \frac{1}{n} \frac{n(n+1)(2n+1)}{6} = \frac{(n+1)(2n+1)}{6}$$
.

$$V(X_1) = \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4} = \frac{(n+1)(2(2n+1) - 3(n+1))}{12} = \frac{(n+1)(n-1)}{12}.$$

Ainsi,
$$V(X_1) = \frac{(n+1)(n-1)}{12}$$

3°)
$$\forall n \geq 2, \ \frac{1}{n^{k+1}} S_k(n) = \frac{1}{n} \sum_{i=1}^n \left(\frac{i}{n}\right)^k.$$

Soit $f: [0,1] \to \mathbb{R}$. f est continue sur le segment [0,1]. $x \mapsto x^k$

La suite $\left(\frac{S_k(n)}{n^{k+1}}\right)_{n\geq 2}$ est une somme de Riemann associée à f.

Donc,
$$\frac{S_k(n)}{n^{k+1}} \xrightarrow[n \to +\infty]{} \int_0^1 x^k dx$$
. Or $\int_0^1 x^k dx = \left[\frac{x^{k+1}}{k+1}\right]_0^1 = \frac{1}{k+1}$.

Ainsi, la suite
$$\left(\frac{S_k(n)}{n^{k+1}}\right)_{n\geq 2}$$
 converge vers $\frac{1}{k+1}$

 $\mathbf{4}^{\circ}$) a) Soit $i \in \mathbb{N}^*$.

On a
$$(X = i) = (X \ge i) \setminus (X \ge i + 1)$$
 et $(X \ge i + 1) \subset (X \ge i)$,

donc
$$P(X = i) = P(X \ge i) - P(X \ge i + 1)$$

b)

$$E(X) = \sum_{i=1}^{n} iP(X = i)$$

$$= \sum_{i=1}^{n} i(P(X \ge i) - P(X \ge i + 1))$$

$$= \sum_{i=1}^{n} iP(X \ge i) - \sum_{i=1}^{n} iP(X \ge i + 1)$$

$$= \sum_{j=1}^{n} jP(X \ge j) - \sum_{j=2}^{n+1} (j - 1)P(X \ge j) \text{ en posant } j = i + 1 \text{ dans la 2e somme}$$

$$= P(X \ge 1) + \sum_{j=2}^{n} (j - (j - 1))P(X \ge j) - nP(X \ge n + 1)$$

$$= P(X \ge 1) + \sum_{j=2}^{n} P(X \ge j) \text{ car } X \le n \text{ donc } P(X \ge n + 1) = 0$$

$$= \sum_{j=1}^{n} P(X \ge j)$$

Ainsi,
$$E(X) = \sum_{i=1}^{n} P(X \ge i)$$
.

5°) **a**) Soit $i \in \{1, ..., n\}$.

$$P(U_k \ge i) = P(\min(X_1, \dots, X_k) \ge i) = P((X_1 \ge i) \cap \dots \cap (X_k \ge i)).$$

Or les variables X_1, \ldots, X_k sont indépendantes donc

$$P((X_1 \ge i) \cap \cdots \cap (X_k \ge i)) = P(X_1 \ge i) \times \cdots \times P(X_k \ge i).$$

Les variables X_1, \ldots, X_k suivent la même loi donc finalement $P(U_k \ge i) = P(X_1 \ge i)^k$.

$$P(X_1 \ge i) = P\left(\bigcup_{j=i}^n (X_1 = j)\right) = \sum_{j=i}^n P(X_1 = j)$$
 car la réunion est disjointe 2 à 2.

Donc,
$$P(X_1 \ge i) = \sum_{i=1}^{n} \frac{1}{n} = \frac{n-i+1}{n}$$
.

Finalement,
$$P(U_k \ge i) = \left(\frac{n-i+1}{n}\right)^k$$
.

b) Par la question 4b, puisque U_k est à valeurs dans $\{1, \ldots, n\}$,

$$E(U_k) = \sum_{i=1}^n P(U_k \ge i)$$

$$= \sum_{i=1}^n \left(\frac{n-i+1}{n}\right)^k$$

$$= \frac{1}{n^k} \sum_{i=1}^n (n-i+1)^k$$

$$= \frac{1}{n^k} \sum_{j=1}^n j^k \text{ en posant } j = n-i+1$$

$$E(U_k) = \frac{S_k(n)}{n^k}$$

c) On sait, par 3, que
$$\frac{S_k(n)}{n^{k+1}} \xrightarrow[n \to +\infty]{} \frac{1}{k+1}$$
.

Donc, comme $\frac{1}{k+1} \neq 0$, $\frac{S_k(n)}{n^{k+1}} \underset{n \to +\infty}{\sim} \frac{1}{k+1}$. Donc $\frac{S_k(n)}{n^k} \underset{n \to +\infty}{\sim} \frac{n}{k+1}$.

Ainsi, $E(U_k) \underset{n \to +\infty}{\sim} \frac{n}{k+1}$.

 6°) a) U_k est à valeurs dans $\{1,\ldots,n\}$ donc, en utilisant l'expression de $E(U_k^2)$ donnée par l'énoncé:

$$E(U_k^2) = \sum_{i=1}^n (2i-1) \left(\frac{n-i+1}{n}\right)^k$$

$$= \sum_{j=1}^n (2(n-j+1)-1) \left(\frac{j}{n}\right)^k \text{ en posant } j = n-i+1 \text{ (donc } i = n-j+1)$$

$$= \sum_{j=1}^n (2n+1-2j) \frac{j^k}{n^k}$$

$$= \frac{2n+1}{n^k} \sum_{j=1}^n j^k - \frac{2}{n^k} \sum_{j=1}^n j^{k+1}$$

$$E(U_k^2) = \frac{2n+1}{n^k} S_k(n) - \frac{2}{n^k} S_{k+1}(n)$$

b) La question revient à montrer que $\frac{V(U_k)}{n^2} \xrightarrow[n \to +\infty]{} \frac{k}{(k+2)(k+1)^2}$

$$V(U_k) = E(U_k^2) - E(U_k)^2$$

$$= \frac{2n+1}{n^k} S_k(n) - \frac{2}{n^k} S_{k+1}(n) - \frac{S_k(n)^2}{n^{2k}}$$

$$\frac{V(U_k)}{n^2} = \frac{2n+1}{n} \frac{S_k(n)}{n^{k+1}} - 2 \frac{S_{k+1}(n)}{n^{k+2}} - \left(\frac{S_k(n)}{n^{k+1}}\right)^2$$

Par 3, $\frac{S_k(n)}{n^{k+1}} \xrightarrow[n \to +\infty]{} \frac{1}{k+1}$ et $\frac{S_{k+1}(n)}{n^{k+2}} \xrightarrow[n \to +\infty]{} \frac{1}{k+2}$.

Donc, par opérations sur les limites, $\frac{V(U_k)}{n^2} \xrightarrow[n \to +\infty]{} \frac{2}{k+1} - \frac{2}{k+2} - \frac{1}{(k+1)^2}$.

$$\frac{2}{k+1} - \frac{2}{k+2} - \frac{1}{(k+1)^2} = \frac{2(k+1)(k+2) - 2(k+1)^2 - (k+2)}{(k+1)^2(k+2)}$$

$$= \frac{2(k^2 + 3k + 2) - 2(k^2 + 2k + 1) - k - 2}{(k+1)^2(k+2)}$$

$$= \frac{k(6-4-1) + 4 - 2 - 2}{(k+1)^2(k+2)}$$

$$= \frac{k}{(k+1)^2(k+2)}$$

Ainsi,
$$\frac{V(U_k)}{n^2} \xrightarrow[n \to +\infty]{} \frac{k}{(k+1)^2(k+2)}$$

Ainsi,
$$\frac{V(U_k)}{n^2} \xrightarrow[n \to +\infty]{} \frac{k}{(k+1)^2(k+2)}$$
.
Ce qui s'écrit : $V(U_k) \underset{n \to +\infty}{\sim} \frac{k}{(k+1)^2(k+2)} n^2$.

Problème

Partie 1

1°) $f(x) \sim \frac{x}{x \to 0} = 1$ donc $f(x) \to \infty$ 1. Comme c'est une limite finie, f est prolongeable par continuité en 0, en posant f(0) = 1.

De plus, par quotient, f est continue sur $\left[0,\frac{\pi}{2}\right]$. Ainsi, f est continue sur $\left[0,\frac{\pi}{2}\right]$.

2°) Par quotient de fonctions dérivables, f est dérivable sur $\left[0, \frac{\pi}{2}\right]$

Pour tout $x \in [0, \frac{\pi}{2}], f'(x) = \frac{1 \times \sin(x) - x \cos(x)}{(\sin(x))^2}$

D'une part, $\sin(x) \underset{x\to 0}{\sim} x$ donc $(\sin(x))^2 \underset{x\to 0}{\sim} x^2$.

D'autre part,

$$\sin(x) - x\cos(x) \underset{x \to 0}{=} x - \frac{x^3}{6} + o(x^3) - x\left(1 - \frac{x^2}{2} + o(x^2)\right)$$

$$\underset{x \to 0}{=} x - \frac{x^3}{6} - x + \frac{x^3}{2} + o(x^3)$$

$$= \underset{x \to 0}{=} \frac{x^3}{3} + o(x^3)$$

$$\sin(x) - x\cos(x) \underset{x \to 0}{\sim} \frac{x^3}{3}$$

On en tire que $f'(x) \sim \frac{\frac{x}{3}}{x^2}$ donc $f'(x) \sim \frac{x}{x \to 0}$

- 3°) On vient de voir que :

 - f est continue sur $\left[0, \frac{\pi}{2}\right]$ f est dérivable sur $\left]0, \frac{\pi}{2}\right]$; et comme $f'(x) \underset{x \to 0}{\sim} \frac{x}{3}$, on a $\lim_{x \to 0} f'(x) = 0$.

D'après le théorème de la limite de la dérivée, $\frac{f(x) - f(0)}{x} \longrightarrow 0$.

Ainsi, f est dérivable en 0 et f'(0) = 0.

L'information $f'(x) \xrightarrow[x \to 0]{} 0$ se réécrit donc $f'(x) \xrightarrow[x \to 0]{} f'(0)$. Ainsi, f' est continue en 0.

Comme, par ailleurs, f' était continue sur $\left[0,\frac{\pi}{2}\right]$ par quotient, f est de classe \mathcal{C}^1 sur $\left[0,\frac{\pi}{2}\right]$.

4°) Soit k un entier tel que $k \geq 2$.

Pour tout $x \in \left[0, \frac{\pi}{2}\right], f_k(x) = x^{k-1}f(x).$

De plus $0^{k-1} = 0$ car $k-1 \ge 1$ donc $f_k(x) = x^{k-1} f(x)$ est valable pour x = 0.

Ainsi, pour tout $x \in \left[0, \frac{\pi}{2}\right]$, $f_k(x) = x^{k-1} f(x)$.

Comme f et $x \mapsto x^{k-1}$ sont de classe \mathcal{C}^1 sur $\left[0, \frac{\pi}{2}\right]$, par produit, f_k est de classe \mathcal{C}^1 sur $\left[0, \frac{\pi}{2}\right]$

 $\mathbf{5}^{\circ}$) Comme P(0) est le coefficient constant du polynôme P, on sait grâce à l'hypothèse P(0)=0qu'il existe un entier $d \in \mathbb{N}^*$ et des réels a_1, \dots, a_d tels que $P = \sum_{k=1}^n a_k X^k$.

Pour tout $x \in]0,1],$

$$\varphi(x) = \frac{\sum_{k=1}^{d} a_k x^k}{\sin\left(\frac{\pi x}{2}\right)} = \sum_{k=1}^{d} a_k \frac{x^k}{\sin\left(\frac{\pi x}{2}\right)} = \sum_{k=1}^{d} a_k \frac{\left(\frac{2}{\pi}\right)^k \left(\frac{\pi x}{2}\right)^k}{\sin\left(\frac{\pi x}{2}\right)}$$
Donc,
$$\varphi(x) = \sum_{k=1}^{d} a_k \frac{2^k}{\pi^k} f_k \left(\frac{\pi x}{2}\right).$$

6°) On pose alors $\varphi(0) = a_1 \frac{2}{\pi}$; comme $f_1(0) = f(0) = 1$ et $f_k(0) = 0$ pour $k \ge 2$, la relation $\varphi(x) = \sum_{k=1}^d a_k \frac{2^k}{\pi^k} f_k\left(\frac{\pi x}{2}\right)$ est encore valable en 0.

La fonction $x \mapsto \frac{\pi x}{2}$ est de classe \mathcal{C}^1 sur [0,1] et à valeurs dans $\left[0,\frac{\pi}{2}\right]$, et les f_1,\ldots,f_d sont de classe \mathcal{C}^1 sur $\left[0,\frac{\pi}{2}\right]$. Donc, par composition et combinaison linéaire, φ est de classe \mathcal{C}^1 sur $\left[0,1\right]$

 7°) Soit $\lambda \in \mathbb{R}_{+}^{*}$.

La fonction g est de classe C^1 sur [0,1], et la fonction $t \mapsto -\frac{1}{\lambda}\cos(\lambda t)$ aussi. Par intégration par parties :

$$\int_0^1 \sin(\lambda t) g(t) dt = \left[-\frac{1}{\lambda} \cos(\lambda t) g(t) \right]_0^1 + \int_0^1 \frac{1}{\lambda} \cos(\lambda t) g'(t) dt$$
$$= -\frac{1}{\lambda} \cos(\lambda) g(1) + \frac{1}{\lambda} g(0) + \int_0^1 \frac{1}{\lambda} \cos(\lambda t) g'(t) dt$$
$$= \frac{1}{\lambda} \left(-\cos(\lambda) g(1) + g(0) + \int_0^1 \cos(\lambda t) g'(t) dt \right)$$

Par l'inégalité triangulaire, et comme $\lambda>0$:

$$\left| \int_0^1 \sin(\lambda t) g(t) \, \mathrm{d}t \right| \le \frac{1}{\lambda} \left(\left| -\cos(\lambda) g(1) \right| + \left| g(0) \right| + \left| \int_0^1 \cos(\lambda t) g'(t) \, \mathrm{d}t \right| \right)$$

$$\le \frac{1}{\lambda} \left(\left| g(1) \right| + \left| g(0) \right| + \left| \int_0^1 \cos(\lambda t) g'(t) \, \mathrm{d}t \right| \right) \quad \text{car } |\cos| \le 1$$

$$\le \frac{1}{\lambda} \left(\left| g(1) \right| + \left| g(0) \right| + \int_0^1 \left| \cos(\lambda t) g'(t) \right| \, \mathrm{d}t \right) \quad \text{par inégalité triangulaire}$$

Pour tout $t \in [0, 1], |\cos(\lambda t)g'(t)| \le |g'(t)|.$

Donc $\int_0^1 |\cos(\lambda t)g'(t)| \le \int_0^1 |g'(t)| dt$ par croissance de l'intégrale.

Ainsi,
$$\left| \int_0^1 \sin(\lambda t) g(t) \, \mathrm{d}t \right| \leq \frac{1}{\lambda} \left(|g(1)| + |g(0)| + \int_0^1 |g'(t)| \, \, \mathrm{d}t \right).$$

Donc, en posant $A = |g(1)| + |g(0)| + \int_0^1 |g'(t)| dt$, on a bien, pour tout $\lambda > 0$:

$$\left| \int_0^1 \sin(\lambda t) g(t) \, \mathrm{d}t \right| \le \frac{A}{\lambda}$$

8°) Pour tout $n \in \mathbb{N}$, $\left(n + \frac{1}{2}\right)\pi > 0$. Comme φ est de classe \mathcal{C}^1 sur [0,1], d'après la question précédente, il existe un réel A tel que, pour tout $n \in \mathbb{N}$:

$$\left| \int_0^1 \sin\left(\left(n + \frac{1}{2} \right) \pi t \right) \varphi(t) \, \mathrm{d}t \right| \le \frac{A}{\left(n + \frac{1}{2} \right) \pi}$$

Comme $\frac{A}{\left(n+\frac{1}{2}\right)\pi} \xrightarrow[n \to +\infty]{} 0$, par théorème de comparaison, on obtient bien que

$$\int_0^1 \sin\left(\left(n + \frac{1}{2}\right)\pi t\right) \varphi(t) dt \underset{n \to +\infty}{\longrightarrow} 0$$

Partie 2

9°) $x \mapsto \int_0^x u(t) dt$ est une primitive de la fonction u sur l'intervalle \mathbb{R} ; plus précisément, c'est l'unique primitive de u sur \mathbb{R} qui s'annule en 0.

10°) Soit $(P_1, P_2) \in E^2$ et $\lambda \in \mathbb{R}$. Pour tout $x \in \mathbb{R}$.

$$h(\lambda P_1 + P_2)(x) = \int_0^x (t - x) (\lambda P_1 + P_2)(t) dt + \frac{x^2}{2} \int_0^1 (\lambda P_1 + P_2)(t) dt$$

$$= \int_0^x (\lambda (t - x) P_1(t) + (t - x) P_2(t)) dt + \frac{x^2}{2} \int_0^1 (\lambda P_1(t) + P_2(t)) dt$$

$$= \lambda \int_0^x (t - x) P_1(t) dt + \int_0^x (t - x) P_2(t) dt + \lambda \frac{x^2}{2} \int_0^1 P_1(t) dt + \frac{x^2}{2} \int_0^1 P_2(t) dt$$
par linéarité de l'intégrale
$$= \lambda \left(\int_0^x (t - x) P_1(t) dt + \frac{x^2}{2} \int_0^1 P_1(t) dt \right) + \int_0^x (t - x) P_2(t) dt + \frac{x^2}{2} \int_0^1 P_2(t) dt$$

$$= \lambda h(P_1)(x) + h(P_2)(x)$$

Ceci pour tout $x \in \mathbb{R}$ donc $h(\lambda P_1 + P_2) = \lambda h(P_1) + h(P_2)$. Ainsi, h est linéaire

11°) a) Pour tout $x \in \mathbb{R}$, en notant $a = \int_0^1 P(t) dt$,

$$Q(x) = \int_0^x (tP(t) - xP(t)) dt + a\frac{x^2}{2} = \int_0^x tP(t) dt - x \int_0^x P(t) dt + a\frac{x^2}{2}$$

D'où, en utilisant la question 9 avec $t \mapsto tP(t)$ et $t \mapsto P(t)$, pour tout $x \in \mathbb{R}$,

$$Q'(x) = xP(x) - \left(xP(x) + \int_0^x P(t) dt\right) + ax = -\int_0^x P(t) dt + x \int_0^1 P(t) dt$$

b) Pour tout $x \in \mathbb{R}$,

$$Q''(x) = -P(x) + \int_0^1 P(t) dt$$

12°) • Soit $P \in \text{Ker}(h)$. Alors Q = h(P) = 0, donc Q'' = 0. À l'aide de la question précédente : pour tout $x \in \mathbb{R}$, $-P(x) + \int_0^1 P(t) dt = 0$ d'où $P(x) = \int_0^1 P(t) dt$: on obtient bien que P est une constante.

• Réciproquement, si $P = \alpha$ avec $\alpha \in \mathbb{R}$, alors, pour tout $x \in \mathbb{R}$,

$$h(P)(x) = \int_0^x (t - x)\alpha \, dt + \frac{x^2}{2} \int_0^1 \alpha \, dt$$
$$= \left[\frac{(t - x)^2}{2} \alpha \right]_0^x + \frac{x^2}{2} \left[\alpha t \right]_0^1$$
$$= 0 - \frac{(-x)^2}{2} \alpha + \frac{x^2}{2} \alpha = 0$$

Donc $P \in \text{Ker}(h)$.

- Ainsi, Ker(h) est bien l'espace des polynômes constants $\mathbb{R}_0[X]$
- 13°) a) Soit $Q \in \text{Im}(h)$. Il existe un polynôme P tel que Q = h(P).

Donc, pour tout
$$x \in \mathbb{R}$$
, $Q(x) = \int_0^x (t-x)P(t) dt + \frac{x^2}{2} \int_0^1 P(t) dt$, donc $Q(0) = 0 + 0 = 0$.
On a vu, à la question 11a que pour tout $x \in \mathbb{R}$, $Q'(x) = -\int_0^x P(t) dt + x \int_0^1 P(t) dt$, donc de même $Q'(0) = 0$, et $Q'(1) = -\int_0^1 P(t) dt + 1 \int_0^1 P(t) dt = 0$.
Ainsi, $Q \in G$. On a bien montré que $[\operatorname{Im}(h) \subset G]$.

b) Pour tout $x \in \mathbb{R}$,

$$h(Q'')(x) = \int_0^x (t - x)Q''(t) dt + \frac{x^2}{2} \int_0^1 Q''(t) dt$$

$$= [(t - x)Q'(t)]_0^x - \int_0^x Q'(t) dt + \frac{x^2}{2} [Q'(t)]_0^1$$
par intégration par parties, car $t \mapsto t - x$ et Q' sont de classe C^1

$$= 0 - (-x)Q'(0) - [Q(t)]_0^x + \frac{x^2}{2} (Q'(1) - Q'(0))$$

$$= -(Q(x) - Q(0)) \quad \text{car } Q'(0) = Q'(1) = 0 \text{ par hypothèse}$$

$$= -Q(x) \quad \text{car } Q(0) = 0 \text{ par hypothèse}$$

Ainsi, h(Q'') = -Q. Comme h est linéaire, on peut écrire Q = h(-Q''), donc $Q \in \text{Im}(h)$. Ainsi, on a montré $G \subset \text{Im}(h)$, et par double inclusion, on conclut que $\overline{\text{Im}(h) = G}$.

Partie 3

14°) Pour tout $x \in \mathbb{R}$,

$$P_2(x) = h(P_1)(x) = \int_0^x (t - x) \left(\frac{t^2}{2} - t\right) dt + \frac{x^2}{2} \int_0^1 \left(\frac{t^2}{2} - t\right) dt$$

$$= \int_0^x \left(\frac{t^3}{2} + t^2 \left(-1 - \frac{x}{2}\right) + tx\right) dt + \frac{x^2}{2} \left[\frac{t^3}{6} - \frac{t^2}{2}\right]_0^1$$

$$= \left[\frac{t^4}{8} - \frac{t^3}{3} \left(1 + \frac{x}{2}\right) + x\frac{t^2}{2}\right]_0^x + \frac{x^2}{2} \left(\frac{1}{6} - \frac{1}{2}\right)$$

$$= \frac{x^4}{8} - \frac{x^3}{3} - \frac{x^4}{6} + \frac{x^3}{2} - \frac{x^2}{6}$$

$$P_2(x) = \frac{-x^4}{24} + \frac{x^3}{6} - \frac{x^2}{6}$$

15°) Soit $n \ge 2$; on a donc $P_n = h(P_{n-1})$, donc $P_n \in \text{Im}(h) = G$, donc $P_n(0) = P'_n(0) = P'_n(1) = 0$.

16°) Soit $n \geq 2$. Comme $P_n = h(P_{n-1})$, en utilisant la question 11b, pour tout $x \in \mathbb{R}$,

$$P_n''(x) = -P_{n-1}(x) + \alpha \qquad \text{en notant } \alpha = \int_0^1 P_{n-1}(t) dt$$

17°) Comme P_n et $t \mapsto \frac{\sin(k\pi t)}{k\pi}$ sont de classe \mathcal{C}^1 , par intégration par parties,

$$\int_0^1 P_n(t) \cos(k\pi t) dt = \left[\frac{\sin(k\pi t)}{k\pi} P_n(t) \right]_0^1 - \int_0^1 P_n'(t) \frac{\sin(k\pi t)}{k\pi} dt = -\frac{1}{k\pi} \int_0^1 P_n'(t) \sin(k\pi t) dt$$

Comme P'_n et $t \mapsto \frac{-\cos(k\pi t)}{k\pi}$ sont de classe \mathcal{C}^1 , par intégration par parties,

$$\int_{0}^{1} P_{n}(t) \cos(k\pi t) dt = -\frac{1}{k\pi} \left(\left[-\frac{\cos(k\pi t)}{k\pi} P'_{n}(t) \right]_{0}^{1} + \int_{0}^{1} P''_{n}(t) \frac{\cos(k\pi t)}{k\pi} dt \right)$$

$$= -\frac{1}{(k\pi)^{2}} \int_{0}^{1} P''_{n}(t) \cos(k\pi t) dt \quad \text{car } P'_{n}(1) = P'_{n}(0) = 0$$

$$= -\frac{1}{(k\pi)^{2}} \int_{0}^{1} (-P_{n-1}(t) + \alpha) \cos(k\pi t) dt \quad \text{d'après la question précédente}$$

$$= \frac{1}{(k\pi)^{2}} \int_{0}^{1} P_{n-1}(t) \cos(k\pi t) dt - \alpha \frac{1}{(k\pi)^{2}} \int_{0}^{1} \cos(k\pi t) dt$$

$$\int_{0}^{1} P_{n}(t) \cos(k\pi t) dt = \frac{1}{(k\pi)^{2}} \int_{0}^{1} P_{n-1}(t) \cos(k\pi t) dt$$

$$\operatorname{car} \int_0^1 \cos(k\pi t) dt = \left[-\frac{1}{k\pi} \sin(k\pi t) \right]_0^1 = 0.$$

Partie 4

18°) Soit
$$N \in \mathbb{N}^*$$
. Soit $t \in]0, 1]$.
$$\sum_{k=1}^{N} \cos(k\pi t) = \operatorname{Re}\left(\sum_{k=1}^{N} e^{ik\pi t}\right).$$

$$\sum_{k=1}^{N} e^{ik\pi t} = \sum_{k=1}^{N} (e^{i\pi t})^k$$

$$= e^{i\pi t} \sum_{k=1}^{N-1} (e^{i\pi t})^{k-1}$$

$$= e^{i\pi t} \sum_{k=1}^{N-1} (e^{i\pi t})^{\ell} \quad \text{en posant } \ell = k-1$$

$$= e^{i\pi t} \frac{1 - (e^{i\pi t})^N}{1 - e^{it}} \quad \text{car } e^{i\pi t} \neq 1$$

$$= e^{i\pi t} \frac{1 - e^{iN\pi t}}{1 - e^{iN\pi t}}$$

$$= e^{i\pi t} \frac{1 - e^{iN\pi t}}{1 - e^{int}}$$

$$= e^{i\pi t} \frac{1 - e^{iN\pi t}}{1 - e^{int}}$$

$$= e^{i\pi t} \frac{1 - e^{iN\pi t}}{1 - e^{int}}$$

$$= e^{i\pi t} \frac{1 - e^{iN\pi t}}{1 - e^{int}}$$

$$= e^{i\frac{N\pi t}{2}} \left(e^{-i\frac{N\pi t}{2}} - e^{i\frac{N\pi t}{2}}\right)$$

$$= e^{i\left(\frac{N\pi t}{2} + \frac{\pi t}{2}\right)} - 2i\sin\left(\frac{N\pi t}{2}\right)$$

$$= e^{i\left(\frac{N\pi t}{2} + \frac{\pi t}{2}\right)} - 2i\sin\left(\frac{N\pi t}{2}\right)$$

$$= e^{i\left(\frac{N\pi t}{2}\right)} \cos\left(\frac{(N+1)\pi t}{2}\right)$$

$$= \frac{\sin\left(\frac{N\pi t}{2}\right)}{\sin\left(\frac{\pi t}{2}\right)} \cos\left(\frac{(N+1)\pi t}{2}\right)$$

$$= \frac{2\sin\left(\frac{N\pi t}{2}\right)\cos\left(\frac{(N+1)\pi t}{2}\right)}{2\sin\left(\frac{\pi t}{2}\right)}.$$

Par ailleurs,

$$\sin\left(\left(N + \frac{1}{2}\right)\pi t\right) = \sin\left(\frac{(2N+1)\pi t}{2}\right)$$

$$= \sin\left(\frac{(N+1)\pi t}{2} + \frac{N\pi t}{2}\right)$$

$$= \sin\left(\frac{(N+1)\pi t}{2}\right)\cos\left(\frac{N\pi t}{2}\right) + \cos\left(\frac{(N+1)\pi t}{2}\right)\sin\left(\frac{N\pi t}{2}\right)$$

et
$$\sin\left(\frac{\pi t}{2}\right) = \sin\left(\frac{(N+1)\pi t}{2} - \frac{N\pi t}{2}\right)$$
$$= \sin\left(\frac{(N+1)\pi t}{2}\right)\cos\left(\frac{N\pi t}{2}\right) - \cos\left(\frac{(N+1)\pi t}{2}\right)\sin\left(\frac{N\pi t}{2}\right)$$

D'où
$$2\sin\left(\frac{N\pi t}{2}\right)\cos\left(\frac{(N+1)\pi t}{2}\right) = \sin\left(\left(N+\frac{1}{2}\right)\pi t\right) - \sin\left(\frac{\pi t}{2}\right)$$
 et

$$\sum_{k=1}^{N} \cos(k\pi t) = \frac{\sin\left(\left(N + \frac{1}{2}\right)\pi t\right)}{2\sin\left(\frac{\pi t}{2}\right)} - \frac{1}{2}.$$

19°) Soit $N \in \mathbb{N}^*$.

On a admis que, pour tout
$$k \in \mathbb{N}^*$$
, $\int_0^1 P_n(t) \cos(k\pi t) dt = \frac{1}{(k\pi)^{2n}}$.

En sommant de
$$k = 1$$
 à $k = N$:
$$\sum_{k=1}^{N} \int_{0}^{1} P_{n}(t) \cos(k\pi t) dt = \sum_{k=1}^{N} \frac{1}{(k\pi)^{2n}}$$

Donc, par linéarité de l'intégrale,
$$S_N = \sum_{k=1}^N \frac{1}{k^{2n}} = \pi^{2n} \int_0^1 \sum_{k=1}^N P_n(t) \cos(k\pi t) dt$$
.

Par la question précédente :
$$\forall t \in]0,1], \sum_{k=1}^{n} P_n(t) \cos(k\pi t) = \frac{1}{2} \left(\frac{\sin\left(\left(N + \frac{1}{2}\right)\pi t\right)}{\sin\left(\frac{\pi t}{2}\right)} P_n(t) - P_n(t) \right).$$

On pose, pour tout
$$t \in]0,1], \varphi_n(t) = \frac{P_n(t)}{\sin\left(\frac{\pi t}{2}\right)}$$
.

Par la question 6, puisque P_n est un polynôme à coefficients réels vérifiant $P_n(0) = 0$, la fonction φ_n se prolonge en une fonction de classe C^1 sur [0,1].

Pour tout
$$t \in]0,1], \sum_{k=1}^{n} \cos(k\pi t) P_n(t) = \frac{1}{2} \left(\varphi_n(t) \sin\left(\left(N + \frac{1}{2}\right)\pi t\right) - P_n(t) \right)$$

Par continuité en 0 de toutes les fonctions impliquées dans l'égalité précédente, on en déduit que l'égalité est encore valable en t=0.

Ainsi,
$$S_N = \frac{\pi^{2n}}{2} \left(\int_0^1 \varphi_n(t) \sin\left(\left(N + \frac{1}{2}\right) \pi t\right) dt - \int_0^1 P_n(t) dt \right)$$

20°) Par 8, comme
$$\varphi_n$$
 est de classe C^1 sur $[0,1]$, $\int_0^1 \varphi_n(t) \sin\left(\left(N + \frac{1}{2}\right)\pi t\right) dt \underset{N \to +\infty}{\longrightarrow} 0$.

On en déduit par opérations sur les limites que (S_N) converge vers $-\frac{\pi^{2n}}{2}\int_0^1 P_n(t) dt$.

21°) • Pour n = 1: $S_N = \sum_{k=1}^N \frac{1}{k^2}$. Par la question précédente, (S_N) converge vers $-\frac{\pi^2}{2} \int_0^1 P_1(t) dt$.

Par hypothèse, pour tout $t \in \mathbb{R}, P_1(t) = \frac{t^2}{2} - t$.

$$\int_0^1 P_1(t) dt = \left[\frac{t^3}{6} - \frac{t^2}{2} \right]_0^1 = \frac{1}{6} - \frac{1}{2} = -\frac{1}{3}.$$

Ainsi, la suite $\left(\sum_{k=1}^{N} \frac{1}{k^2}\right)$ converge vers $\frac{\pi^2}{6}$

• Pour $n=2: S_N = \sum_{k=1}^N \frac{1}{k^4}$.

Par la question précédente, (S_N) converge vers $-\frac{\pi^4}{2} \int_0^1 P_2(t) dt$.

Par la question 14, pour tout $t \in \mathbb{R}, P_2(t) = -\frac{t^4}{24} + \frac{\dot{t}^3}{6} - \frac{t^2}{6}$.

$$\int_0^1 P_2(t) dt = \left[-\frac{t^5}{120} + \frac{t^4}{24} - \frac{t^3}{18} \right]_0^1$$

$$= -\frac{1}{120} + \frac{1}{24} - \frac{1}{18}$$

$$= \frac{-1+5}{120} - \frac{1}{18} = \frac{1}{30} - \frac{1}{18} = \frac{3-5}{90}$$

$$= -\frac{1}{45}$$

Ainsi, la suite $\left(\sum_{k=1}^{N} \frac{1}{k^4}\right)$ converge vers $\frac{\pi^4}{90}$