Section 9.3: Infinite Series

Warm-Up:

Problem 1 Given a sequence $\{a_k\}_{k\geq 1}$, explain how the sequence $\{s_k\}_{k\geq 1}$ of partial sums can be used to determine if the series $\sum_{k=1}^{\infty} a_k$ converges or diverges.

Hint: Recall that by definition $s_n = \sum_{k=1}^n a_k$

Group work:

Problem 2 Determine if the following series converge or diverge. If they converge, find the sum.

(a)
$$e + 1 + e^{-1} + e^{-2} + e^{-3} + \dots$$

(b)
$$\sum_{k=0}^{99} 2^k + \sum_{k=100}^{\infty} \frac{1}{2^k}$$

(c)
$$\sum_{k=0}^{\infty} (\cos(1))^k$$

(d)
$$\sum_{k=4}^{\infty} \frac{5 \cdot 4^{k+3}}{7^{k-2}}$$

(e)
$$\sum_{k=0}^{\infty} e^{5-2k}$$

(f)
$$\sum_{i=1}^{\infty} \left(\frac{2}{i^2+2i}\right)$$
 Hint: $\frac{2}{i^2+2i} = \frac{1}{i} - \frac{1}{i+2}$ by partial fractions

Learning outcomes: