

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA KONKURS FIZYCZNY DLA KLAS IV-VIII UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP REJONOWY 2020/2021

Maksymalna liczba punktów za ten arkusz jest równa 40.

ZASADY OCENIANIA PRAC KONKURSOWYCH

- Każdy poprawny sposób rozwiązania przez ucznia zadań nie ujęty w modelu odpowiedzi powinien być uznawany za prawidłowy i uczeń otrzymuje maksymalną liczbę punktów.
- Treść i zakres odpowiedzi ucznia powinny wynikać z polecenia i być poprawne pod względem merytorycznym.
- Do zredagowania odpowiedzi uczeń używa poprawnej i powszechnie stosowanej terminologii naukowej.
- Jeżeli w jakiejkolwiek części uczeń przedstawi więcej niż jedno rozwiązanie i chociaż jedno będzie błędne, nie można uznać tej części rozwiązania za prawidłowe.
- Za odpowiedzi w zadaniach przyznaje się wyłącznie punkty całkowite. Nie stosuje się punktów ułamkowych.
- Wykonywanie obliczeń na wielkościach fizycznych powinno odbywać się z zastosowaniem rachunku jednostek.

ODPOWIEDZI I ROZWIĄZANIA ZADAŃ

MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ

Nr zadania	1	2	3	4	5	6	7	8	9	10
Poprawna odpowiedź	С	A	В	В	С	A	D	В	D	С
Liczba pkt.	1	1	1	1	1	1	1	1	1	1

Zadanie 11. (0 - 5 pkt.)

Ad a) 1 pkt – naszkicowanie poniższego wykresu;

Ad b) 1 pkt – zauważenie, że miarą pracy siły F jest pole pod wykresem zależności F(S);

1 pkt – zauważenie, że w tym wypadku jest to pole trójkąta, którego podstawa równa jest przemieszczeniu ciała wynoszącemu 4 m, a wysokość – poszukiwanej maksymalnej wartości siły F_{max} ;

1 pkt – podanie wzoru na pole powierzchni trójkąta, z którego wynika, że $4 J = (F_{max} N \times 4 m)/2;$

1 pkt – obliczenie $F_{max} = 2$ N.

Zadanie 12. (0 - 5 pkt.)

- 1 pkt podanie wzoru na moc P urządzenia o oporze R, pracującego pod napięciem U; $P = U^2/R$;
- 1 pkt obliczenie na podstawie powyższego wzoru niezbędnego oporu drutu nawiniętego na prostopadłościan: $R = U^2/P = (110 \text{ V})^2/1,0 \text{ kW} = 12,1 \Omega$;
- **1** pkt obliczenie długości niezbędnego drutu $L=12,1~\Omega/1,5~\Omega/m\approx 8,1~m;$
- 1 pkt obliczenie obwodu jednej pętli giętkiego drutu nawiniętego ciasno na boczną powierzchnię długiego ceramicznego prostopadłościanu o podstawie kwadratowej $l=4a=4\times0.03~\mathrm{m}=0.12~\mathrm{m};$
- 1 pkt obliczenie liczby zwojów n = L/l = 8.1 m/0.12 m = 67.

Zadanie 13. (0 - 5 pkt.)

1 pkt – zauważenie, że nie cały lód musi się stopić, aby kulka śrutu zaczęła tonąć;

1 pkt – zauważenie, że kulka zacznie tonąć, gdy siła wyporu kulki śrutu i pozostałego na niej lodu stanie się równa ich wspólnemu ciężarowi:

$$(M' + m)g = (M'/d_l + m/d_{Pb}) d_w g$$
 (1),

gdzie M' – masa pozostałego na kulce śrutu lodu, m – masa kulki śrutu, g – przyspieszenie ziemskie, d_l , d_{Pb} i d_w – gęstości odpowiednio lodu, ołowiu i wody;

1 pkt – obliczenie z równości (1) masy pozostałego lodu:

$$M' = m(d_{Pb} - d_w) d_l/[(d_w - d_l) d_{Pb}] = 5.0 \text{ g} \times (11.3 \text{ g/cm}^3 - 1.0 \text{ g/cm}^3) \times 0.90 \text{ g/cm}^3/[(1.0 \text{ g/cm}^3 - 0.90 \text{ g/cm}^3) \times 11.3 \text{ g/cm}^3] = 41 \text{ g};$$

- **1** pkt obliczenie masy roztopionego lodu $\Delta M = M M' = 100 \text{ g} 41 \text{ g} = 59 \text{ g} = 0,059 \text{ kg}$, gdzie M początkowa masa lodu;
- 1 pkt obliczenie minimalnej niezbędnej ilości dostarczonego ciepła, aby kulka śrutu zaczęła tonąć:

$$Q_{min} = \Delta M l = 59 \text{ g} \times 0,33 \text{ MJ/kg} = 19,5 \text{ kJ, gdzie } l - \text{ciepło topnienia lodu.}$$

Zadanie 14. (0 - 5 pkt.)

1 pkt – zauważenie, że w przypadku doganiania pierwszego samochodu przez drugi, poszukiwany czas tej operacji t_1 spełnia warunek $v_1(t_1+\Delta t) = v_2 t_1$ (1), gdzie v_1 i v_2 , odpowiednio prędkości pierwszego i drugiego samochodu;

- 1 pkt przyjęcie długości trasy jako (np.) *L*. Wtedy $v_1 = L/T_1$, $v_2 = L/T_2$ i, po podstawieniu do warunku (1), otrzymanie równania $(t_1 + \Delta t)/T_1 = t_1/T_2$ (2);
- **1** pkt otrzymanie z równania (2) czasu $t_1 = T_2 \Delta t / (T_1 T_2) =$ = 4,5 h × 0,5 h/(5,5 h - 4,5 h) = 2,25 h;
- 1 pkt zapisanie analogicznego warunku dla czasu t_2 ruchu drugiego samochodu jadącego naprzeciw pierwszemu $v_1(t_2 + \Delta t) + v_2 t_2 = L$ i otrzymanie, po identycznych jak poprzednio przekształceniach, że $t_2 = T_2 (T_1 \Delta t) / (T_1 + T_2) = 4.5 \text{ h} \times (5.5 \text{ h} 0.5 \text{ h})/(5.5 \text{ h} + 4.5 \text{ h}) = 2.25 \text{ h};$
- 1 pkt wyciągnięcie wniosku, że czasy obu ruchów są identyczne, więc nie zależą od wybranego kierunku jazdy.

Uwaga! Identyczność czasów ruchu do spotkania w obu kierunkach wynika z takiego, a nie innego doboru danych liczbowych – ponieważ ∆t jest dokładnie połową różnicy pomiędzy czasami objazdu trasy przez oba samochody, to każdy z kierowców do spotkania przejedzie połowę trasy niezależnie od wybranego kierunku. Stąd ten kierunek nie ma znaczenia. Uczeń, który to dostrzeże i przedstawi takie lub podobne (poprawne) rozumowanie z odpowiednim wnioskiem zasługuje na maksymalną liczbę punktów.

Zadanie 15. (0 - 5 pkt.)

- 1 pkt zauważenie, że masa 1 l wody wynosi 1 kg oraz, że do zagotowania wody trzeba ją ogrzać od 20 °C do 100 °C;
- 1 pkt podanie wzoru na energię, w postaci ciepła, Q potrzebną do ogrzania masy m jednorodnej substancji, o cieple właściwym c, o różnicę temperatur Δt (końcowej i początkowej): $Q = c \ m \ \Delta t$;
- 1 pkt obliczenie wartości liczbowej energii potrzebnej do zagotowania wody: $Q = 1 \text{ kg} \times 80 \text{ °C} \times 4.2 \text{ kJ} / (\text{kg} \times \text{ °C}) = 336 \text{ kJ};$
- 1 pkt zauważenie, że moc grzałki, skoro została podłączona do napięcia znamionowego 230 V wynosi P=0.5 kW, ale ze względu na jej 80% sprawność, do dalszych obliczeń należy wziąć $P^{'}=0.80$ P=0.80 × 0.5 kW = 0.4 kW;
- 1 pkt obliczenie czasu potrzebnego do ogrzania wody: $\tau = Q/P' = 336 \text{ kJ}/0,4 \text{ kW} = 840 \text{ s} = 14,0 \text{ min}.$

Zadanie 16. (0 - 5 pkt.)

- Ad a) 1 pkt zauważenie, że autobus jedzie ruchem jednostajnym, więc dla zrównoważenia sił oporów ruchu, siła oddziaływania kół, napędzanych przez silnik, z szosą (a więc siła wywierana na pojazd) musi mieć tę samą wartość 3N i kierunek zgodny z kierunkiem ruchu pojazdu; zwroty tych sił są przeciwne.
 - 1 pkt zapisanie definicji mocy $P = W/\Delta t$ i skorzystanie ze wzoru na pracę W = F d, gdzie d odległość przebyta przez autobus w czasie Δt .

 Stąd $P = (F d)/\Delta t = F(d/\Delta t) = F v$, gdzie v prędkość autobusu;
 - 1 pkt obliczenie, po przekształceniu jednostek prędkości, mocy mechanicznej silnika $P = 15 \text{ m/s} \times 3.0 \text{ kN} = 45 \text{ kW}.$
- Ad b) 1 pkt zauważenie, że moc mechaniczna, jakiej dostarcza elektryczny silnik autobusu, wyraża się zależnością $P=\eta\ U\ I$, gdzie η sprawność silnika, U napięcie na jego uzwojeniu, I natężenie prądu w tym uzwojeniu;
 - 1 pkt zauważenie, że moc mechaniczna silnika została obliczona w Ad. a) i stąd natężenie prądu w uzwojeniu:

$$I = P/(\eta \ U) = 45 \ \text{kW}/(0.75 \times 100 \ \text{V}) = 0.6 \ \text{kA} = 600 \ \text{A}.$$