59

Orthogonal Trujectory

is a curry that intersects every curve

of another family at right angle

3 all the curves of a family games intersect orthogonally to all the arms of another family of arms then the two families are called

Orthogonal Trajectories.

To Solve) Differentiate

2) Eliminate const using 90

3) Find dy or rate for given curue.

4) Find dy or ride for family & O.T.s

5) Salue by premious methods occardif i, e separation variables or Homogeneous. or Exact

Find the orthogonal trajectories of each of the following curues one const. 9 の パーソー= C Diff 27-27 dy =0 consteliminated.

x-Y # =0

 $\chi = \gamma d\gamma$ dn

dy = 7 DEq & given dx family

dy = - 7 8 4 9 0 %

Jay = - Jax separaty

lny = -lnx+lnc

lny = ln cx y = C=

xy = c is Required jainly Follogonal trajetris.

Dig 1 = caydy 改一 = 如

2(3) T du const elimiated

dx = In DEq 8 guin

dy = -2x DEG BOTE

Jydy = - 12xdn 一块+0

 $y^{2} = -2x^{2} + 2c$

 $y^2 = -2x^2 + K$

Required family orthogonal trajectories

Exercise 9.7: Page 1 of 10 Available on MathCity.org

3
$$x^2 + y^2 = Cx$$
 one count of $2x + 2y = C$
 $2x + 2y = Cx$
 $2x + 2x = Cx$

 $\sqrt{+x} \frac{dy}{dx} = \frac{2x\sqrt{x}}{x^2 - \sqrt{x}}$

= 2 \\ (1-\forall^2)\times

7 du = 2 V

Available at www.mathcity.org

By Partial Fractions

$$\frac{1-v^2}{v(1+v^2)} = \frac{A}{v} + \frac{Bv+c}{1+v^2}$$
 $1-v^2 = A(iw^2)+(Bv+c)v$

Put $v=0$ $v=A+B$

Company conflicts $v=A+B$
 v

D Y= X-1+Ce - 2 on cont 0 9 4 = e _ one const. 1) dy = 1-0-c2 The cox # = CY $\frac{dy}{dx} = y - y + x - y$ $\frac{1}{y}\frac{dy}{du}=c$ dy = x-y is diff eq of gamen T = 2 diponition to shape lny = ln e th dy = I diggen blainly 80.Ts. lny = x dy. lne 以= Y-X 7 lmy = dy 1, digo og gginngamly dy = Y-X thing Riciprocal dy +x=y LDE in x dy Ji.dy y IF= e = e -x = dy, dig eg 8 family 80.Ts J-xdn= Sylnydy separatjuaniablis. Solis gimenty Jd(xe') = Jye dy +K → Lmy 上一大生如 =-~~+ K => xe = ye-Jiedy +K => lny. + - + (Y=) = - 2 + $\chi e = \gamma e' - e' + K$ -> -= -= +K xe = e(1-1) +k $\chi = \frac{7}{4}(7-1) + \frac{1}{67}$ => 2 ylmy-y = - 1/2 +K x = (1-1)+k.e $= \gamma^{2}(2m\gamma-1) = -x^{i}+K$ is required family & O.T. => y2 (lmy2-1) = 4(-22+K) => $4^{2}(\ln y^{2}-1) = -2x^{2}+4x$ = 2(K-x)where K = 1 14.

Exercise 9.7: Page 3 of 10 : Available on MathCity.org

©
$$xy = C$$

Det $x dy + y = 0$ constrainmental $dy = -\frac{1}{x}$ diff of 8 minds $y = -\frac{1}{x}$ diff of 9 minds $y = -\frac{1}{x}$ diff of 9 minds $y = -\frac{1}{x}$ diff of 8 minds $y = -\frac{1}{x}$ diff of 8 minds $y = -\frac{1}{x}$ diff of 9 minds $y = -\frac{1}{x}$ diff of 8 minds $y = -\frac{1}{x}$

Exercise 9.7: Page 4 of 10 : Available on MathCity.org

63 y = (x-c)dy = 2(x-c) dy = 2(±19) const directed dn = 2(±19) const directed using () D. E. g. givin eq $\frac{dy}{dx} = \frac{-1}{\pm 2\sqrt{7}} \quad D.6980.Ts$: 17 dy = - dre suparationales Jry dy=- J dy $=\frac{3}{3}Y^{1}=-\frac{1}{2}x+K$ 1 = -2+2K = 47 = -x+2K m 16 y = (-x+ K) 167 = 9(-x+K) Regular family Dand Method dy = -224 oth = y242 (y2+x) dy = -2m/dn (y2+x2) dy + 2 my du = 0 $M_y = 2x$ $N_x = 2x$ ·My = Nx : Exact Eq. : Mdn + Items & N free from x) dy = C Janydn + Jy2dy = c 121 + 73 = C $32\frac{1}{2}+4^{3}=C$ 7+3ny = 3C 13+3~ Exercise 9.7: Page 5 of 10

9 y= x2+cx aydy = 2x+C 27 dy -2x = C $y^2 = \chi^2 + (2y \frac{dy}{dn} - 2\chi)\chi$ eliminated using $= \chi^2 + 2\chi \gamma \frac{d\gamma}{d\mu} - 2\chi^2$ 1+x2 = 2xy dy $\frac{dy}{dn} = \frac{y^2 + x^2}{2xy} \quad \text{dig & given } \frac{dy}{dx}.$ $\frac{dy}{dn} = \frac{-2xy}{y^2+x^2} \quad \frac{D \in 30.75}{Homogoness \in 3}.$ So Put Y=VX V+xdv=-2xVx $xdv = -\frac{2\sqrt{x^2}}{(\sqrt{2}+1)2x^2} - \sqrt{\frac{x^2}{(\sqrt{2}+1)2x^2}}$ $x \frac{dv}{dx} = -\frac{(2V + V(V^2 + 1))}{(V^2 + 1)}$ $xdv = -\frac{(3 \vee + \vee^3)}{(3 \vee + \vee^3)}$ $\int \frac{(v^2+1)}{3v+v^3} dv = \int \frac{dn}{2}$ $\frac{1}{3} \int_{\sqrt{3} \pm 3}^{(3\sqrt{3} + 3)} dv = -\frac{1}{2} + \frac{1}{2} + \frac{1$ $\lim_{3} \left(\frac{3}{3} + 3V \right) = -\ln X + \ln C$ $\ln(v^3+3v)^{\frac{1}{3}}=\ln\frac{c}{x}$ Artilog $\left(\frac{y^3}{x^3} + 3\frac{y}{x}\right)^3 = \frac{2}{x}$ Cabing $\left(\frac{y^3+3y^2}{x^3}\right)=\left(\frac{c}{x}\right)^3$ $y^{3} + 3x^{2}y = \frac{3}{2}x^{3}$

$$0 x^{2} + y^{2} = 1 + 2 c y - 0$$

$$2(x + y) = 2 c d x$$

$$2(x + y) = 2 c d x$$

$$2(x + y) = 0$$

$$2(x$$

$$\frac{dy}{dx} = \frac{2xy}{x^2-y^2-1}$$

$$\frac{dy}{dx} = -(\frac{x^2-y^2-1}{2xy})$$

$$\frac{dy}{dx} = \frac{1-x^2}{2xy} + \frac{y}{2xy}$$

$$\frac{dy}{dx} = \frac{1-x^2}{2x} + \frac{y}{2xy}$$

$$\frac{dy}{dx} = \frac{1-x^2}{2x} \cdot y$$

(growbolow)

Solingumber
$$\int d(V+\chi) = \int \frac{1}{2} \frac{1}{2$$

$$y = \frac{2}{2} \frac{1}{x^{2}} + \frac{1}{x^{2}} = -1$$

$$y = \frac{2}{2} \frac{1}{x^{2}} + \frac{1}{x^{2}} = -1$$

$$(x - x)^{2} + y = -1 + x^{2}$$

$$(x - x)^{2} + y = -1 + x^{2}$$

$$(x - x)^{2} + y = -1 + x^{2}$$

$$(x - x)^{2} + y = -1 + x^{2}$$

$$(x - x)^{2} + y = -1 + x^{2}$$

$$(x - x)^{2} + y = -1 + x^{2}$$

$$(x - x)^{2} + y = -1 + x^{2}$$

Egg Required O.Ts.

Available at www.mathcity.org

Mathcity.org

$$\int \frac{dn}{n} = \int \cos \theta \int \cos \theta$$

$$\int \frac{dn}{n} = -\int \operatorname{Secoto} - \int \tan \theta d\theta$$

$$\ln n = -\ln(\operatorname{Seco} + \tan \theta) - (-\ln \cos \theta) + \ln C$$

$$lnr = ln(\frac{c \cos a}{su + tano})$$

$$h = \frac{\text{cos}\alpha}{\frac{1}{\text{cos}\alpha} + \frac{\text{cin}\alpha}{\text{cos}\alpha}}$$

$$n = \frac{C \cos \theta}{1 + C \sin \theta}$$

$$D_{1}^{2} 2 \pi dx = 2 \alpha Cos20$$

$$2 \pi dx = 2 \left(\frac{\pi^{2}}{\sin 20}\right) Cos20$$

$$constellimited$$

$$\frac{\text{Tr}}{d^{9}/d\omega} = \frac{\text{Sin20}}{\cos 20}$$
 Respond

$$\frac{do}{dr} = -\frac{\cos 20}{\sin^2 \theta} \quad \text{Single} \quad \text{(ensend)}$$

$$\frac{dr}{r} = -\frac{\sin^2 \theta}{\cos^2 2\theta} \quad \text{des separativariables}$$

$$\int \frac{dr}{r} = \frac{1}{2} \int \frac{-\sin 20(2) du}{\cos 2u}$$

$$\ln n = \frac{1}{2} \ln(\cos 20) + \ln c$$

$$\vec{n} = (\cos 20) \cdot \vec{e} = \vec{e}$$

13 n = à Cosno --- 10 Dig thing = a Sinno (x) $n^{-1} \frac{dr}{d\theta} = -\left(\frac{n^{-1}}{\cosh \theta}\right) \sin \theta$ count count dimension in do = - Sima Cosno $\frac{1}{n} \frac{dr}{do} = -\nabla anno$ (Ruiprocal). $\frac{1}{n} \frac{dr}{do} = -\cot no$ DEG grunfant ndo = - (-Tanno) Dégljamily gors. do = dr sparaitj variables
Tanna Jak = Jat no die Jan = to Cat no robe ln r = in lusin(no) + luc lugino) + luc lnr = ln C(Sinno) r = c(Sinna) n = c Simno $rSin\theta = \frac{c(Sin\theta)^{2}}{(1-cos\theta)^{2}}$ $\pi \sin \alpha = \frac{C(1-\cos \theta)}{(1-\cos \theta)^2}$ $\pi \sin \theta = \frac{C(1-\cos \theta)(1+\cos \theta)}{(1-\cos \theta)^{2}}$ 7. Sin a = C (1+Coso) A. Exercise 9.7: Page 8 of 10 : Available on MathCity.org

Diff $dr = -\alpha (2+(\cos \theta)(-\sin \theta))$ dr = asina (2+(000)2 $\frac{dr}{d\theta} = \frac{[r(2+\cos\theta)] \sin\theta}{(2+\cos\theta)^2} \frac{\sin\theta}{\sin\theta}$ $\frac{dr}{d\theta} = \frac{r \sin \theta}{2 + \cos \theta}$ $\frac{do}{dr} = \frac{2+\cos 0}{2\sin 0}$ nda = 2+Cosa Daggam nda = -Sino D. Eggfing Jar = (2+cosa de spenti. Jan = Jaconero do - Jestodia lnr =-2 ln(coseco-coto)-lnsino mr = m(conco-cro)+h lnr = ln C (Couco-Coto) $\mathcal{L} = \frac{c}{\sin \phi \left(\frac{1}{\sin \phi} - \frac{\cos \phi}{\sin \phi} \right)}$ $r = \frac{c \sin \theta}{S (1 - \cos \theta)}$. $n \frac{\sin 0}{\sin 0} = \frac{c \sin 0}{(1 - \cos 0)^{2}}$ $rsin^{3}o = \frac{CSin^{3}o}{(1-Coso)^{2}}$

(17) Y= 4cx+4c ---Dig andy = uc 如如二 12 = 4 (4 dy) x+4 (1 dy) using (1) 7 = 2xy 2x + 1(2x) 1 = 2xxx + y(2x) = 3.59 gamyany Put dy = = Type For Dig & painty 30. Ts. $\dot{Y} = 2x(\frac{1}{dy_{dn}}) + 7(\frac{1}{dy_{dn}})$ y = -2x 1 (dyfu) + y (dyfu) 以外 7(炭)=-2x(炭)+7 y(dy) + 2 r(dy) = y samas@ Hence y=4CN + 42 is Selforthogonal Put y'=-1 For D. Eg & family & O.Ts 6 --: -1 (2+xy(-1,)-y'-1))-xy=0 $\frac{\sqrt{x^2-x^2-x^2-y^2-1}-xyy'}{y'}=0$ い ー スマナスソナダナナー スソブ ープイナスタナダダナダースタダーの 24-xy-y-y-y+xyy=0

D16 27 + 24 (d1) = 0 $\frac{2y}{r-1}\frac{dy}{dx} = \frac{-2x}{c^2}$ $\frac{dy}{dn} = -\frac{2x}{c^2} \cdot \frac{(c^{-1})}{xy}$ Y = - × (C-1) = - = (= - =) 7' = -= (1-1-) $\frac{77}{3} = -1 + \frac{1}{62}$ $1+\frac{44}{x}=\frac{1}{c^2}$ $c^2 = \frac{x}{x+yy}$, Put in 0 to elimite count: $\frac{\chi^{2}}{\frac{\chi}{\chi}} + \frac{\chi^{2}}{\chi} = 1$ $\frac{\chi^{2}}{\chi^{2} + \chi^{2}} = 1$ $\frac{\chi^{2}}{\chi^{2}} = 1$ $\frac{x(x+y')}{x} + \left(\frac{y}{x-x-y'}\right) = 1$ $\chi^2 + \chi \gamma \gamma + \gamma \left(\frac{\chi + \gamma \gamma}{-\chi \gamma'} \right) = 1$ xy' + xyy' - xy - yy' = 1元ダナスリダースリーダダ = グ × y + x y y - x y - y y - y = 0 y(x+xyy-y-1)-xy=0.0 y'(x+ xyy-y-1)-my = 0 some Disselforthogonie.