

Verbale esterno 2 22 Gennaio 2020

Three Way Milkshake - Progetto "PORTACS"

threewaymilkshake@gmail.com

Versione | 0.1.0

Stato | Approvato

Uso Esterno

Approvazione

Redazione | Greggio Nicolò

Verifica

Destinatari Three Way Milkshake Prof. Vardanega Tullio Prof. Cardin Riccardo

Descrizione

Verbale del meeting del 2021-01-22 del gruppo Three Way Milkshake con il proponente Sanmarco Informatica.

Registro delle modifiche

Vers.	Descrizione	Redazione	Data red.	Verifica	Data ver.
0.1.0	Stesura del verbale	Greggio Nicolò	2021-01-22	-	-

Indice

Info	ormazi	ioni generali					
1.1	Detta	gli sull'incontro					
		de del giorno					
Ver	erbale della riunione						
2.1	Senso	ri ed unità					
2.2	Tecno	logie e formazione					
	2.2.1	Java					
	2.2.2	Node.js					
	2.2.3	Frontend					
	2.2.4	Design pattern					
	2.2.5	Salvataggio dati					
	2.2.6	Approccio al multithreading					
	2.2.7	Simulazione muletti					
	2.2.8	Controllo diagrammi attività server					
	2.2.9	Possibili requisiti qualitativi					
	2.2.10	Strategie di progettazione					

1 Informazioni generali

1.1 Dettagli sull'incontro

- Luogo: Incontro telematico tramite piattaforma Google Meet;
- **Data**: 2021-01-22;
- Ora di inizio: 16:00;
- Ora di fine: 16:45;
- Partecipanti interni: (6/6)
 - Chiarello Sofia;
 - Crivellari Alberto;
 - De Renzis Simone;
 - Greggio Nicolò;
 - Tessari Andrea;
 - Zuccolo Giada.
- Partecipanti esterni: (1)
 - Beggiato Alex (Sanmarco Informatica).

1.2 Ordine del giorno

La riunione prevede la discussione con il proponente dei seguenti punti:

- sensori per unità;
- tecnologie possibili e fonti di formazione;
- salvataggio di dati;
- approccio al multithreading;
- simulazione muletti;
- controllo diagrammi attività algoritmo server;
- possibili requisiti qualitativi;
- strategie di progettazione.

2 Verbale della riunione

2.1 Sensori ed unità

- Nel contesto reale si rende naturalmente necessaria una parte di sensoristica
 - per gli scopi di questo progetto si può tralasciare;
- il sistema ha tutte le informazioni di cui ha bisogno
 - il server centrale si occupa di tutto;
- non è necessario simulare i sensori.

2.2 Tecnologie e formazione

Sono state confermate le tecnologie discusse in confronti precedenti con il proponente, sono emerse diverse fonti da sfruttare.

2.2.1 Java

- Corso html.it;
- si possono approfondire alcune novità delle versioni > 11
 - tuttavia versione 8 va bene.

2.2.2 Node.js

- Documentazione ufficiale;
- corsi su html.it.

2.2.3 Frontend

- Angular o angular js
- guide e documentazioni ufficiali su corrispondenti siti;
- typescript vs javascript
 - dipende dal tempo che ci vogliamo dedicare.

2.2.4 Design pattern

- Nessun vincolo su design pattern;
- potrebbe essere comodo il concetto di factory
 - eventualmente bypassato da librerie;
 - ma in generale come pattern più pulito è più pratico;
 - adatto per sistemi composti da tanti piccoli componenti.

2.2.5 Salvataggio dati

- Non è per forza necessaria una base di dati;
- la configurazione iniziale può essere ricevuta da un file di testo;
- consigliate strutture noSQL comunque;
- semplici JSON possono essere sufficienti;
- non è richiesto il tracciamento delle operazioni.

2.2.6 Approccio al multithreading

- L'introduzione di framework in questo ambito può portare ad una elevata complessità;
- preferire come approccio l'uso di thread puri
 - timer task, runnable...;
- solo in caso di difficoltà valutare e discutere l'introduzione di un framework per il multithreading;
- limitare l'uso in generale di librerie di terze parti.

2.2.7 Simulazione muletti

- Carta bianca, si può usare tutto ciò che può dare una mano:
- in questo contesto anche diverse librerie, anche se ne sfruttiamo solo una piccola percentuale.

2.2.8 Controllo diagrammi attività server

- Bene in generale;
- quando si introdurrà il concetto di tempo e timer task utilizzare apposita icona start con orologio.

2.2.9 Possibili requisiti qualitativi

- In genere 2 famiglie:
 - bontà software
 - * indicatori comuni sul sw;
 - * non serve stare dentro certi limiti, basta misurarli;
 - * editor moderni fanno quasi tutto da soli;
 - applicativi
 - * requisito sensato può essere: $\frac{\text{tempo risposta}}{\text{numero dispositivi}};$
 - * e.g.: entro 1 sec fino a 50, entro 2 fino a 100...;
 - * sistema qualità basato su tempi di risposta e numero di fail, questi ultimi in ogni caso non devono mai bloccare l'applicativo (input received, no output producecd);

- decisioni spettano al gruppo
 - i muletti vanno ad una certa velocità;
 - considerando tempi di reazione e velocità conseguirà uno spazio di spostamento;
 - stabilire in quanto spazio massimo si vuole l'arresto;
 - ricavare tempi di risposta che si dovranno attendere dal sistema;
 - discorso analogo per il numero di fail.

2.2.10 Strategie di progettazione

- inizialmente si consiglia di procedere in parallelo:
 - 3 progettazione;
 - 3 studio tecnologie ed approccio codice;
- questo da vantaggi;
- valutando eventuali scostamenti, riequilibrare le partizioni.

3 Tracciamento temi affrontati

Codice	Domanda	Risposta	
VE_2.1	Simulazione sensori	Non serve	
VE_2.2	Fonti per studio tecnologie	Principalmente siti e documentazioni ufficiali e html.it	
$VE_2.3$	Design pattern	Nessuna richiesta particolare, factory può essere utile	
VE_2.4	Salvataggio dati	Non serve una base di dati, basta un file JSON con le configurazioni necessarie	
$VE_2.5$	Approccio multithreading	Thread e costrutti puri di java	
VE_2.6	Simulazione muletti	Carta bianca	
VE_2.7	Requisiti qualitativi	Bontà software e applicativi, decisioni specifiche spettano al gruppo	