Sequence models & Attention mechanism

10/10 points (100%)

Quiz, 10 questions

Congratulations! You passed!

Next Item

1/1 points

1.

Consider using this encoder-decoder model for machine translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence \boldsymbol{x} .

Correct

1/1 points

2.

In beam search, if you increase the beam width $\it B$, which of the following would you expect to be true? Check all that apply.

Beam search will run more slowly.

Correct

Sequence models & Afterhtwill use the charms mary.

10/10 points (100%)

Quiz, 10 questions

Correct

Beam search will generally find better solutions (i.e. do a better job maximizing $P(y\mid x)$)

Correct

Beam search will converge after fewer steps.

Un-selected is correct

1/1 points

3.

In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

Correct

False

1/1 points

4.

Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your

Sequence magnish substantian mass hamism value of y that maximizes 10/10 points (100%)

Quiz, 10 questions

 $P(y \mid x)$.

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(y^* \mid x) = 7.21 * 10^- 8$$

Would you expect increasing the beam width B to help correct this example?

No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.

Correct

- No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

points

5.

Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^*\mid x)>P(\hat{y}\mid x).$ This suggest you should focus your attention on improving the search algorithm.

True.

Correct

False

Sequence models & Attention mechanism

10/10 points (100%)

Quiz, 10 questions

6.

Consider the attention model for machine translation.

Further, here is the formula for $\alpha^{< t, t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_{x}} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t, t'>}$ are true? Check all that apply.

We expect $\alpha^{< t,t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)

Correct

We expect $\alpha^{< t,t'>}$ to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)

Un-selected is correct

 $\sum_t lpha^{< t, t'>} = 1$ (Note the summation is over t.)

Sequence models & Attention mechanism Un-selected is correct

10/10 points (100%)

Quiz, 10 questions

Correct

1/1 points

7.

The network learns where to "pay attention" by learning the values $e^{< t,t'>}$, which are computed using a small neural network:

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on $e^{< t,t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.

True

Correct

False

1/1 points

8.

Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:

0

The input sequence length T_x is large.

Correct

The input sequence length T_x is small.

1/1

Sequence models & Attention mechanism

10/10 points (100%)

Quiz, 10 questions

9.

Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?

_c_oo_o_kkb_oooooookkk	
	cokbok
0	cookbook
Correct	
	cook book
	coookkbooooookkk
~	1 / 1 points
LO. n trigg	ger word detection, $x^{< t>}$ is:
0	Features of the audio (such as spectrogram features) at time $t. $
Correct	
	The \emph{t} -th input word, represented as either a one-hot vector or a word embedding.

Whether the trigger word is being said at time t.

Whether someone has just finished saying the trigger word at

time t.

Sequence models & Attention mechanism

10/10 points (100%)

Quiz, 10 questions