SEQUENCE LISTING

<110> Nepveu, Alain

	Watson, Peter Baruch, Amos Bogyo, Matthew Moon, Nam-Sung Goulet, Brigitte							
<120>	Methods for Diagnosing the Presence or Stage of Cancer							
<130>	11957.113							
	US 60/426,293 2002-11-14							
	PCT/US2003/036341 2003-11-13							
<160>	9							
<170>	PatentIn version 3	. 2						
<211> <212>	1 2001 DNA Homo sapiens							
	1 atg tatttatggc aggt	tagtgt atcctggata	. cagtatgtcc	agaaaaggac	60			
	ata aatggtaaat tgaa				120			
	aca agtattttgg gcta				180			
	aag ggagaagcag caag				240			
	cag cactttggga ggcd				300			
	cat agcaagacct cato				360			
aagtctg	cag teccagetae ttge	aaggct gaggtgggag	gattgcttga	gcacaggatt	420			
ttgaatc	agc cagggcaacc tago	aagacc ccatctccac	aaaaaaaat	tttacaagac	480			
cctggga	gca gagagcatgg cctg	ggccct cttacctggc	actgtggggt	cttactctgt	540			
gtcaccc	tca gtgggcatca gggg	jagagat tgtgccaaga	cactgagctg	ggccaggggc	600			
agattct	gcc ttgcaggcag gacc	tcagcc cgaagccaca	tcttcctcca	ggacagtttc	660			
tatctgc	aga aattaggaaa tggt	ctaagt ctttatccca	gacatcccag	aactggaatc	720			
cagcctc	ttt tatcaggttt tatg	ggctgt tatcagaggc	cagagggatc	actcaccaac	780			
agagccc	agc tggcatttcc cact	gggcac ccacggcgac	cccaacaagg	cagaggagag	840			
tgtagac	tet ggettgteca caco	agccca gtcacttctg	ctgttggtta	cagcatggct	900			
tatacca	gca aagagetegg tttt	cagaag caggcagaac	cagcaagtcc	caaggttgga	960			

ggtagaactc	taaaatggaa	gagctgggga	aacagggtgc	tcctcctctc	cttgcctctc	1020
tccatcttcc	cctagagttg	ggtgctgtgg	agttctctgc	tcttcacaac	aaaaaacag	1080
ctgggcatgg	tggtgtgcac	ctgtggtcca	ggaggagccg	tgattgcacc	actgcactcc	1140
agcctgggcc	accgagcaag	accccatctc	taaaaacata	aaagtaaaaa	taaaccaacc	1200
taggtcctga	gacccagtgc	tggaggacca	gaagctatag	ccttatgttt	ccgcagttgt	1260
tgttttttt	cttttttgag	atggagtctc	actctcactc	tgtcacccag	gctggagtgc	1320
agtggcacaa	tcttggctca	ctgcaacctc	cacctcctgg	gtgcaagtga	ttctcctgcc	1380
tcagcctcct	gagtagctgg	gattacaggc	gtgagccacc	atgcctggct	gatttttgta	1440
tttttagtag	agatggagtt	tcaccacgtt	ggccaggctg	gtctcgaact	cctgacctta	1500
gatgatccac	tcgcccagcc	acatttcctc	ctaagggtct	tcctaactgt	ggtgactacg	1560
tattgtgggc	agccctcatt	taaaacaatc	tgtctatgct	ttttgttctg	gaaaatatgg	1620
acaacataac	tacacaagtt	atgatctagc	caaagtgctt	ctgaattacc	aaattatggg	1680
gtttcattag	aagaaatgac	agcgataaca	tgattaatag	gagtttttt	agcagaatgc	1740
cctcatgtta	agccttccga	agcctttctt	ttaaacccct	agtttttctc	gcaatgatgt	1800
tatttttgtt	ttttaatatg	gaagactaga	ggttactctc	agtcaaaaaa	atatgaaaca	1860
gttcactaag	acccacagaa	aaccctaccg	tctgcttctc	ctacagagcg	tttaattagt	1920
atttcctaga	taaggaacgt	agatggtcgt	ggtaaaagac	agctattttc	aggcacggtt	1980
tctcgtgtgc	tttaattaca	g				2001

<210> 2

<211> 7 <212> DNA

<213> Homo sapiens

<400> 2 ccgaugg

7

23

<210> 3 <211> 23 <212> DNA <213> Artificial

<220>

<223> Synthetic construct

gctattttca ggcacggttt ctc

<210> 4 <211> 21 <212> DNA

<213>	Artificial				
<220>					
<223>	Synthetic construct				
<400>	4 ttgt tggggtegtt e	21			
cccaca	tigi tggggteget e	21			
<210>	5				
<211>	21				
<212>					
<213>	Artificial				
<220>					
<223>	Synthetic construct				
<400>	5				
agaaag	gccg agaaccette a	21			
<210>	6				
<211>					
<212>	DNA				
<213>	Artificial				
<220>					
<223>	Synthetic construct				
	6				
cgacgg	tece ettetggaat gg	22			
<210>					
<211>					
<212>	Artificial				
<220>	Synthetic construct				
<400>	7 ctga gtccc	15			
5-5		13			
<210>	8				
<211>	38				
<212>					
<213>	Artificial				
<220>					
<223>	Synthetic construct				
<400> 8					
actgetegag eggeegettt tageagaatg eecteatg 38					
<210>	9				
<211>	21				
<212>	DNA				
<213>	Artificial				

<220>
<223> Synthetic construct

<400> 9
gtttttggtg acgggtatgg c

21

.