Cross Quantilogram Estimator

William Rose

v.1.0, 2024-07-24

This submission to the File Exchange includes code to compute and display the matrix of cross-quantilogram values.

Comparison of crossQmtx to the Systemic Risk package functions

The Systemic Risk package on the File Exchange includes routines **cross_quantilograms_sb()** and **cross_quantilograms_sn()**. These routines estimate the cross quantilogram at probability a, where a=scalar. These routines also estimate a confidence interval for the cross quantilogram. The two functions use different methods to estimate the confidence interval: "_sb" uses a stationary bootstrap method, and "_sn" uses self-normalization.

The functions $cross_quantilograms_s...()$ require probability a to be a scalar and 0.01<=a<=0.1. Function $cross_qmtx()$ allows probability p to be a vector, and 0<p(i)<1, for all i in p.

The functions **cross_quantilograms_s...()** returns a scalar value for the cross quantilogram, cq. Function **crossQmtx()** returns a m-by-m matrix when p is a vector of length m.

The functions **cross_quantilograms_s...()** return a confidence interval for the cross quantilogram estimate. Function **crossQmtx()** does not return confidence interval(s) for the (elements of the) cross quantilogram estimate.

The functions **cross_quantilograms_s...()** compute partial cross quantilograms between columns 1 and 2, when the data matrix has more than two columns. Function **crossQmtx()** returns the regular (not partial) cross quantilogram between columns 1 and 2, even if there are more than two columns. Columns 3 and above are ignored by **crossQmtx()**.

The functions cross_quantilograms_s...() allow lag>=1. Function crossQmtx() allows lag>=0.

Files

crossQmtx.m Function to compute cross quantilogram matrix.

plotcrossQmtx.m Function to plot cross quantilogram matrix.

crossQmtxTest.m Script to test functions above.

aapl_sbux_stockprice5y.xlsx Daily closing stock prices for Apple and Starbucks for 5 years.

CrossQuantilogramEstimator.pdf This document.

Examples

For the examples below, the data matrix is specified by

```
>> data=readmatrix('aapl sbux stockprice5y.xlsx','Range','b2:c1259');
```

When p is a vector, cq=crossQmtx(data,p,lag) returns a matrix. This matrix may be plotted with plotcrossQmtx(cq,p,lag), where lag is an optional argument. If lag is passed, it is used in the plot title, and has no other effect.

Example 1. This is the test script, included.

>> crossQmtxTest

Example 2.

```
>> p=.05:.05:1; lag=0;
>> cq=crossQmtx(data,p,lag);
>> plotcrossQmtx(cq,p)
```

Example 3.

```
>> p=.2:.2:1; lag=10;
>> cq=crossQmtx(data,p,lag);
>> plotcrossQmtx(cq,p,lag)
```

Example 4. When p is a scalar in the range 0.01<=p<=0.10, and lag>=1, then crossQmtx(data,p,lag) and cross_quantilograms_sb(data,p,lag) and cross_quantilograms_sn(data,p,lag) return identical values for the cross quantilogram.

```
>> p=0.05; lag=5;
>> cq=crossQmtx(data,p,lag)
cq = -0.0159
```



```
>> [cq,~]=cross_quantilograms_sb(data,p,lag)
cq = -0.0159
>> [cq,~]=cross_quantilograms_sn(data,p,lag)
cq = -0.0159
```

Acknowledgements

I thank Hamid Muili on Matlab Answers for stimulating this effort. I thank @Umar on Matlab Answers for the algorithm to estimate the elements of the correlation matrix. I have modified the algorithm somewhat.

References

Belluzzo, T. Systemic Risk, v.3.6.0. Matlab File Exchange,

https://www.mathworks.com/matlabcentral/fileexchange/62482-systemic-risk, retrieved 2024-07-27.

Han, H., et al. (2016). "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series" J. Econometrics 193: 251-270.

https://www.sciencedirect.com/science/article/pii/S0304407616300458, retrieved 2024-07-27.

Pedini, L. "The qcorr package: a cross-quantilogram analisys tool in gretl".

https://gretl.sourceforge.net/current_fnfiles/unzipped/qcorr.pdf, retrieved 2024-07-27.