

Convolutional Neural Networks

Nicoletta Noceti Nicoletta.noceti@unige.it

A refresh

Deep Neural Network Recap

The role of a neuron

$$y = f(\mathbf{x}) = \sigma(\sum_{i} w_i x_i + b)$$

The role of a neuron

- Each neuron is connected to all the others
- Correlations between input are not taken into account
- As the size of the input and the depth of the architecture increase, the number of parameters increases dramatically

$$y = f(\mathbf{x}) = \sigma(\sum_{i} w_i x_i + b)$$

Convolutional Neural Networks

 A specialized kind of neural network for processing data with a known grid-like topology

- Examples:

- Time-series

1D grid

- Images

2D grid

Motivations

- CNNs leverage two important principles that differ from Dense NNs:
 - Sparse interaction
 - Parameter sharing

Sparse interactions

- In traditional DNNs every output unit interacts with every input unit
- In CNNs the "field of view" of each neuron is "limited" ma the weights are re-used in different position of the input
- The pros is that we have to learn fewer parameters, with improvements in
 - Memory requirements
 - Statistical efficiency: statistical strength for more samples per weight, reduced variance when estimating the parameters
 - Computations: from O(m x n) to O(k x n) with k << m

Sparse interaction: intuitions

Focus on the input unit

DNN CNN

Sparse interaction: intuitions

Focus on the output unit

Receptive fields

Parameter sharing

- The same parameter is used by more than one function in the model
 - In traditional DNNs each weight is used exactly ones when computing the output
 - In CNNs each member of a kernel (a weight) is used at every position of the input

The convolution/cross-correlation operation

For 2D input arrays:

$$s(i,j) = (K * I)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n) =$$
$$= \sum_{m} \sum_{n} I(i-m,j-n)K(m,n)$$

$$s(i,j) = (K*I)(i,j) = \sum \sum I(i+m,j+n)K(m,n)$$

Cross-correlation (with an example)

$$s(i,j) = (K * I)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

 Y_{13}

Y₂₃

 Y_{33}

X ₁₁	X ₁₂	X ₁₃	X ₁₄			
X ₂₁	X ₂₂	X ₂₃	X ₂₄		W_{11}	W ₁₂
X ₃₁	X ₃₂	X ₃₃	X ₃₄	*	W ₂₁	W ₂₂
X ₄₁	X ₄₂	X ₄₃	X ₄₄			

$$\begin{split} Y_{11} &= X_{11}W_{11} + X_{12} \ W_{12} + X_{21} \ W_{21} + X_{22} \ W_{22} \\ Y_{12} &= X_{12}W_{11} + X_{13} \ W_{12} + X_{22} \ W_{21} + X_{23} \ W_{22} \\ Y_{13} &= X_{13}W_{11} + X_{14} \ W_{12} + X_{23} \ W_{21} + X_{24} \ W_{22} \\ \dots \dots \end{split}$$

2D convolution

Input tensor Kernel of of size 10x10 size 3x3

A "feature detector" (kernel) slides over the inputs to generate a feature map

$$s(i,j) = (K * I)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

Output tensor of size 8x8

NNs don't scale to images!

- Let us consider a fully connected network with a single unit
 - Tiny color images of size 32 x 32 x 3
 - Size of the input layer: 32 x 32 x 3 = 3072
 - Size of the weights: 3072
 - Small color images of size 200 x 200 x 3
 - Size of input layer and weights: 200 x 200 x 3 = 120000

From shallow to deep models

Shallow models

Deep models

A typical CNN

A typical CNN

$$softmax(y_i) = \frac{e^{y_i}}{\sum_j e^{y_i}}$$

A typical CNN layer

Replaces the output at a certain location with a summary statistic of nearby outputs

Sometimes called the **detector stage**

Produces a set of linear activations

Parameter sharing

- As the kernel slides on the image, it is able to capture the same property in different image regions
- Multiple feature detectors can be used to capture different image properties
- See the demo here: https://cs231n.github.io/convolutional-networks/

An example from the animation

Another animation to clearly understand

Output feature size of conv layers

- Three parameters control the size of the output of a layer
 - **Depth**, the number of filters (kernels) of the layer
 - Stride, the step used to slide the filter on the input
 - When stride > 1 we are down-sampling the input data
 - Tiling refers to the special case where stride = kernel span
 - Padding to enlarge the input and allow for kernels application in each one of the (original) point

Output features size of conv layers

Output features size of conv layers Examples

$$O = \frac{{}^{4}W - {}^{3}K + 2P}{S_{1}} + 1$$

Pooling and invariance

- It is a way to further reduce the dimensionality of the description
- It provides invariance to small shifts of the inputs
- Pooling functions:
 - Average pooling: average activation of the convolutional layer
 - Max pooling: max activation of the convolutional layer

Pooling

2	1	7	1	2	5
5	0	3	4	1	2
1	7	8	3	3	0
0	3	2	0	1	1
3	6	5	3	0	3
3	6	0	2	1	0

Max pooling

8	5
6	3

Average pooling

3.8	2.3
3	1.2

Pooling can help with local invariance although some information is lost

No parameter to be estimated here!

Towards image classification

- Is it possible to learn the most appropriate representation, possibly with a hierarchy, directly from the data?

- From features engineering to features learning

Forward and backpropagation in CNNs

*

X ₁₁	X ₁₂	X ₁₃	X ₁₄	
X ₂₁	X22	X23	X24	
X31	X32	X33	X34	
X41	X42	X43	X44	

Y ₁₁	Y ₁₂	Y ₁₃	Y ₁₄
Y ₂₁	Y22	Y ₂₃	Y ₂₄
Y31	Y ₃₂	Y33	Y ₃₄
Y41	Y42	Y43	Y44

$$\begin{aligned} Y_{11} &= X_{11}W_{11} + X_{12} W_{12} + X_{21} W_{21} + X_{22} W_{22} \\ Y_{12} &= X_{12}W_{11} + X_{13} W_{12} + X_{22} W_{21} + X_{23} W_{22} \\ Y_{13} &= X_{13}W_{11} + X_{14} W_{12} + X_{23} W_{21} + X_{24} W_{22} \\ Y_{14} &= X_{14}W_{11} + X_{24} W_{21} \\ &\dots \end{aligned}$$

Forward and backpropagation in CNNs

 A specific value in the filter has impact on every output values, thus we need to sum up all the contributions as follow

$$\frac{\partial L}{\partial W(a',b')} = \sum_{r=0}^{N_1-1} \sum_{c=0}^{N_2-1} \frac{\partial L}{\partial Y(r,c)} \frac{\partial Y(r,c)}{\partial W(a',b')}$$

This is a convolution!

A nice visualization

https://poloclub.github.io/cnn-explainer/

UniGe

