

Consider the following algorithm.

ALGORITHM Mystery(n)

//Input: A nonnegative integer n $S \leftarrow 0$ for $i \leftarrow 1$ to n do - $S \leftarrow S + i * i \rightarrow basic operation$ return S

- a. What does this algorithm compute? Algori nilai dari penjumlahaan kuadrat dari i
- b. What is its basic operation? < ← S+1*x1
- c. How many times is the basic operation executed? \cap
- **d.** What is the efficiency class of this algorithm?
- e. Suggest an improvement, or a better algorithm altogether, and indicate its efficiency class. If you cannot do it, try to prove that, in fact, it cannot be done.

Jawab: c). code for i < 1 to n bisa dirubah menjadi & Jadi, karena basic operation ada didalam operasi for maka.

Jumlah eksekusi = $\sum_{i=1}^{n} 1 = n$ d) (n) E O (n) -> linear

No 2

Consider the following algorithm.

```
ALGORITHM Secret(A[0..n-1])
2
         //Input: An array A[0..n-1] of n real numbers
3
         minval \leftarrow A[0]; maxval \leftarrow A[0]
4
         for i \leftarrow 1 to n-1 do
             if A[i] < minval  basic operation
                 minval - A[i] - basic operation
             if A[i] > maxval
                 maxval \leftarrow A[i]
         return maxval - minval
```

a) Algoritma tersebut menghihing selisih dari nilai maksimum dari A dan nilai minimum dari

b) basic operation: minual - Alis atam 4 A [i] Kminval

Answer questions (a)–(e) of Problem 4 about this algorithm.

C.) Jumlah basic operation dieksekusi: \(\sum_{1} = n-1-1+1 = n-1\)

d) efficiency class dari (n-1) adalah linear

a). Algoritma tersebut dapat diperbaiki dg mengganti code 4" pada baris ke 7 dg perintah "else"

Consider the following algorithm.

ALGORITHM
$$Enigma(A[0..n-1, 0..n-1])$$

//Input: A matrix $A[0..n-1, 0..n-1]$ of real numbers

for $i \leftarrow 0$ to $n-2$ do

for $j \leftarrow i+1$ to $n-1$ do

if $A[i, j] \neq A[j, i]$

return false

return true

Answer questions (a)–(e) of Problem 4 about this algorithm.

- Algoritma tersebut untuk mengecek apakah si kolom ke Asij[j]

 pada matix A sama dengan isi kolom ke [j] sij

 basic operation if $A[i,j] \neq A[j,j]$ O Jum lah pacic operation Sieksekusi $\sum_{i=0}^{n-2} \sum_{j=i+1}^{n-i} 1 = \sum_{i=0}^{n-2} (n-i)-(i+i)+1$ $= \sum_{i=0}^{n-1} n-i-i-1+1 = \sum_{i=0}^{n-i} n-i+1 \approx n^2$

No 4

. Consider the following version of an important algorithm that we will study later in the book.

ALGORITHM GE(A[0..n-1, 0..n])//Input: An $n \times (n+1)$ matrix A[0..n-1, 0..n] of real numbers for $i \leftarrow 0$ to n-2 do for $j \leftarrow i + 1$ to n - 1 do for $k \leftarrow i$ to n do $A[j,k] \leftarrow A[j,k] - A[i,k] * A[j,i] / A[i,i] \longrightarrow basic operation$

- a. Find the time efficiency class of this algorithm. -> top perulangan rangkap 3,
- b. What glaring inefficiency does this pseudocode contain and how can it be eliminated to speed the algorithm up?

maka cara mudahnya time efficiency mendekati n3

No 5

For each of the following pairs of functions, indicate whether the first function of each of the following pairs has a lower, same, or higher order of growth (to b. $100n^2$ and $0.01n^3$ b) $100 n^2 \rightarrow \text{kuadrafit}$ 100 $n^2 \rightarrow \text{$ within a constant multiple) than the second function.

a. n(n+1) and $2000n^2$

kelas

- **c.** $\log_2 n$ and $\ln n$
- **d.** $\log_2^2 n$ and $\log_2 n^2$

- **e.** 2^{n-1} and 2^n
- **1.** $\log_2 n$ and $\log_2 n^2$ **1.** $\log_2 n$ and $\log_2 n$ **1.** $\log_2 n$ **1.**

9. n (n+1) -> quadratik y mempunyai order of growth yang sang

log2n - log n In n:logen - log n

@ 2 n-1 < 2n _ order of growth dr 2nd lebih kecil

No 6

Tentukan apakah pernyataan berikut benar atau salah

a.
$$n(n+1)/2 \in O(n^3)$$
 becar **b.** $n(n+1)/2 \in O(n^2)$ salah

c.
$$n(n+1)/2 \in \Theta(n^3)$$
 salah d. $n(n+1)/2 \in \Omega(n)$ be now

a) n(n+1)/2 < n3kuadrahk kubik d) n(n+1)/2 h

n (n+1)/2 $EO(n^3)$ benar kuadrahk linear

c) benarnya seperti a

d)
$$n(n+1)/2$$
 > n

kuadratik linear

 $n(n+1)/2 \in Q(n)$