ÐS	2.5	00	∙Mar	20	

From last time (included for completeness today):

- - - - - - - - - computing conditional probabilities - via spreadsheet ("computer" method)

-P(ABC|XYZ) = P(ABCXYZ) / P(XYZ)

- compute conditional probabilities with multiple random variables:

WHAT ARE BMES NETS

source: https://sites.pitt.edu/~druzdzel/psfiles/cbmi99a.pdf

Bayes nets allow us to incorporate multiple pieces of evidence into some conditional prob of interest:

given a person has:

- symptom 4
- symptom 11
- risk factor 7

whats the prob of liver disorder?

Bayesian Network (Bayes Net)

(formally):

A directed, acyclic graph which represents conditional distributions / independences between a set of random variables. 1 HAS CYCLE, NOT

each node represents a random variable directed edges represent conditional distributions any node without inward edges has prob specified (its part of "bayes net" too!)

(informally):

a network which describes how random variables influence each other, can be used to compute conditional probabilities of interest

source: https://towardsdatascience.com/introduction-to-bayesian-networks-81031eeed94e

Each random variable is denoted with a capital letter (T for Thief). Each outcome in sample space has its own lowercase letter:

t0 = no thief

t1 = thief

t0, e0 t1, e0 t1, e1

t0

t1

.01

Barking

a0, d0

a0, d1

a1, d0 a1, d1 given a thief in house, but no earthquake, what's prob alarm goes off?
interpretation question:
- is alarm better at detecting thieves or earthquakes?

what's prob of earthquake?

(quick) ICA X:

b1

.8

.5

.01 .99

- which sound bothers the dog more, the alarm or doorbell? In Class Assignment (last time): Estimate / intuite the four probabilities below. Is it greater / lesser / equal to other prob immediately above?

What is the prob of thief?
$$Q(T=1)=1\%$$

Given that alarm is going off, what is prob of thief?

How do we compute conditional probabilities from a Bayes Net?

With a computer:

Step 1: Rewrite conditional probability without conditional

Step 2: In a spreadsheet, compute prob of every possible combination of outputs for all vars Step 3: Compute the needed probabilities from step 1 via marginalization Step 1: write conditional probabilities as ratio of (not conditional) probabilities

$$P(t, a, b_i) =$$

Step 2: In a spreadsheet, compute prob of every possible combination of outputs for all vars

					B: Barking	D: Doorbell	A: Alarm	i: iniei	E. Earting	ua P	(BUALE)		
۰	٠	٠	۰	•	۰	•	b0	d0	a0	tO	e0		0.7524
	۰	•	۰		۰		b0	d0	a0	tO	e1		0.03168
			-				b0	d0	a0	t1	e0		0.00304
6	-11	50	1				b0	d0	a0	t1	e1		8E-05
E	الر [*] الر				CLE	در	b0	d0	a1	tO	e0		0
	۰			31		۰	b0	d0	a1	tO	e1		0.00396
-	C . 5	>		۰	۰	۰	b0	d0	a1	t1	e0		0.00228
۰	•			۰	۰	۰	b0	d0	a1	t1	e1		0.00016
	- •		L	7			b0	d1	a0	tO	e0		0.03762
	V	~					b0	d1	a0	tO	e1		0.001584
۰	۰	۰		•	۰	۰	b0	d1	a0	t1	e0		0.000152
۰	۰	۰	٠	۰	۰	٠	b0	d1	a0	t1	e1		4E-06
۰	٠	٠	۰	•	۰	٠	b0	d1	a1	t0	e0		0
							b0	d1	a1	tO	e1		1.98E-05
							b0	d1	a1	t1	e0		1.14E-05
							b0	d1	a1	t1	e1		8E-07
۰	٠	۰	۰	۰	۰	۰	b1	d0	a0	tO	e0		0 '
۰	۰	۰	٠	٠	۰	٠	b1	d0	a0	tO	e1		0

PROR

In Class Exercise (don't submit):

Build the joint distribution table for the bayes net on the left.

(You needn't submit for credit. You can check your work with the given final answer csv on website)

X Y Z / Pros 10 Yo Zo 14 1 X. 1 Y. 2, 1 Ko Y, Zo X0 1/1 Z1 1 1/18 1 X1 1/0 Z0 1 X, Y. Z, 10 X1 4, Z. O X, Y, Z, 1 14

MUSCINALIZING IN.

COMPUTE P(XOZO)

MARCINALIZING IN. X Y Z / Pros SOINT TABLE QUICK PRACTICE X. . Y. Z. . D CMPUTE P(Y, X,) Ko Y1 Z0 X0 - Y1 Z1 - 1 1 1 8 COMPUTE P(XO) X1 1. 20 3/8 X1 7. Z1 0 X1 4, Z. 10

X1 1, Z1 1 14

Putting it all together:

Step 1: Rewrite conditional probability without conditional

Step 2: In a spreadsheet, compute prob of every possible combination of outputs for all vars Step 3: Compute the needed probabilities from step 1 via marginalization

Example:

Given alarm is going off and dog is barking, what is the probability of a thief?

$$\rho(t,|a,b,)=$$

In Class Exercise 1:

Explicitly compute each of the following

- 1. What is the prob of thief?
- 2. Given that alarm is going off, what is prob of thief?
- 3. Given that alarm is going off & dog is barking, what is prob of thief?
- 4. Given that alarm is going off, dog is barking & earthquake, what is prob of thief?

Answer each question below with one sentence (please avoid algebraic motivations and appeal to our intuition):

- Why is the prob of 2 greater than the prob of 1?
- Why is the prob of 3 equal to the prob of 2?
- Why is the prob of 4 less than the prob of 2?

		۰	۰	۰	۰			۰	۰	۰	۰		
That spreadsheet work sure was cumbersome if only we could make work!	e t	he	CC	m	pu	ter	d .	0 8	all ·	tha	at I	bus	.
		۰	۰	۰	0	٠	0	۰	۰	۰	٠		
In Class Assignment 2:	• •	۰	۰	۰	۰	۰	0	۰	۰	۰	۰		
	• •	۰	٠	٠	۰	•	•	۰	۰	۰	•		,
Design the interface of a Bayes Net "library" which allows the user to	•	٠	٠	•	۰	•	٠	٠	•	٠	•		,
1	• •	۰	۰	۰	۰	٠	0	٠	•	٠	٠		,
1. specify a bayes net on discrete random variables (as shown here)										•			
as well as querying the bayes net for arbitrary:	•												
	•	۰	٠	۰	۰	•	۰	۰	۰	۰	•		•
21 conditional distributions		۰									٠		
3. marginal distributions (i.e. not conditional distributions)			•	۰		•		0	۰	۰	٠		
		۰	٠	٠	۰	•		۰	٠.	۰	•		
This design is intentionally open-ended. You're welcome to write out	not	es	on	ра	ape	er,	th	ιOU	ıgr	٦· y	ou	са	n
write function (or method) docstrings as well if you're ready.	•	۰	۰	۰	۰	٠	۰	۰	۰	۰	۰		Þ