

Arduino Workshop

Day 1

Electrical Concepts

Current

- Flow of electricity through a wire (Amperes/Amps)

Voltage

- Force that pushes electrons through the wire, generating a current
- Water example

Resistance

- Restricts flow of current

https://www.youtube.com/watch?v=BoRlcIML3tE&ab_channel=EatonVideos

Until 3 minute mark

What is Arduino?

- Arduino is an open-source hardware and software company
 - Make boards such as the Arduino Uno, pictured below
- Arduino uses a microprocessor
 - -Mini-Computer
- Arduino collects data from sensors and communicates with other devices

Why use Arduino?

- Arduino is very hands-on, which helps with understanding electronics
- You can build cool projects by controlling different sensors and devices
- Used in robotics!
- Companies use arduino for prototyping and testing devices
 - Apple
 - Amazon
 - Google

Arduino Cube Solver:

https://www.youtube.com/watch?v=awxGJ7aVk4g&ab_channel=MohammadMoaddi

Parts of the Arduino

USB Connector

Transfer Power and data

Power Port

- For additional power

Voltage regulator

 Stabilizes voltage to prevent damage to board

Microcontroller

- Brain of the arduino
- Similar to CPU in a computer

USB Interface chip

Translates usb signals into a form that arduino can understand

Crystal oscillator

- Generates clock at a frequency of 16 Mhz

Digital Pins

Send or receive data and can send power as well

Analog Pins

- Read data from analog devices

Memory

32kB flash and 2kB SRAM

Arduino Safety

Safe Habits Around Electronics:

- No water nearby
- Don't connect electrical components randomly
- Make sure all connections are secure
 - No loose connections
- Don't leave projects unattended
- Disconnect when you are done with a project

First Project: Blink

- Connect the blue power cable from the Arduino to your computer
- Open Arduino IDE
- Go to File -> Examples -> 01.Basics -> Blink
- Make sure you selected your board (Arduino Uno)
- Run the program
- You should see a light blinking on the Arduino

Code Walk Through

```
// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin LED BUILTIN as an output.
 pinMode (LED BUILTIN, OUTPUT);
// the loop function runs over and over again forever
void loop() {
 digitalWrite(LED BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000);
                                     // wait for a second
 digitalWrite(LED BUILTIN, LOW); // turn the LED off by making the voltage LOW
 delay(1000);
                                     // wait for a second
```

Challenge

How would you make it so the light blinks slower? faster?

Arduino Workshop

Breadboards + Wiring

Circuit Basics

- Positive and Negative sides
- Arduino
 - Positive is 5v or 3.3v (We will only be using 5v)
 - 5 Volts
 - Negative is Ground (Usually denoted as GND)
- Wiring
 - Conventional practices
 - Red for +
 - Black for -
 - Types of wires
 - Male to Male
 - Male to Female
 - Female to Female

Breadboards

Help connect multiple wires or devices to one port on the Arduino

LED Light Project

- Follow Along

Multiple Lights?!?!?!


```
// the setup function runs once when you press reset or power the board
void setup() {
  // initialize digital pin LED BUILTIN as an output.
 pinMode (2, OUTPUT);
 pinMode(4, OUTPUT);
 pinMode (6, OUTPUT);
// the loop function runs over and over again forever
void loop() {
  digitalWrite(2, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000);
                                    // wait for a second
 digitalWrite(2, LOW); // turn the LED off by making the voltage LOW
 delay(1000);
  digitalWrite(4, HIGH);
                         // turn the LED on (HIGH is the voltage level)
  delay(1000);
                                     // wait for a second
  digitalWrite(4, LOW);
                          // turn the LED off by making the voltage LOW
  delay(1000);
  digitalWrite(6, HIGH);
                         // turn the LED on (HIGH is the voltage level)
  delay (1000);
                                     // wait for a second
  digitalWrite(6, LOW); // turn the LED off by making the voltage LOW
 delay(1000);
```

Kahoot Game!!!

- Search up Kahoot.it
- Wait for the code to appear on my screen

Arduino Workshop

Intro to Sensors

Sensors

- Sensors pass in some form of input data to the Arduino
- Examples
 - DHT11 Temperature and Humidity Sensor
 - Proximity Sensor
 - Ultrasonic Sensor
 - Air Quality Sensor
- Serial Monitor
 - Helps view data readings
 - Open the Monitor button on the left side

> EDITOR

Libraries

Q⁻ Monitor

Reference

? Help

Preferences

Features usage

DHT 11

Ultrasonic Sensor

Trigger and Echo Pins


```
const int trigPin = 9;
const int echoPin = 10;
//defines variables
long duration;
int distance;
void setup() {
 pinMode (trigPin, OUTPUT); // Sets the trigPin as an Output
 pinMode (echoPin, INPUT); // Sets the echoPin as an Input
 Serial.begin (9600); // Starts the serial communication
void loop() {
 // Clears the trigPin
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);
  // Sets the trigPin on HIGH state for 10 micro seconds
  digitalWrite(trigPin, HIGH);
 delayMicroseconds (10);
  digitalWrite(trigPin, LOW);
  // Reads the echoPin, returns the sound wave travel time in microseconds
  duration = pulseIn (echoPin, HIGH);
  // Calculating the distance
  distance = duration * 0.034 / 2;
  // Prints the distance on the Serial Monitor
  Serial.print("Distance: ");
  Serial.println(distance);
 delay(1000);
```


Arduino Workshop

Final Project

Some Coding Tips

Variables

Help store specific values, either set by the coder or collected from a sensor

If statements

- Let you choose between different conditions
- "If ___ then ___ else ____"

We've already seen variables!

```
const int trigPin = 9; ←
const int echoPin = 10;
//defines variables
long duration;
int distance;
void setup() {
 pinMode (trigPin, OUTPUT); // Sets the trigPin as an Output
 pinMode (echoPin, INPUT); // Sets the echoPin as an Input
 Serial.begin (9600); // Starts the serial communication
void loop() {
 // Clears the trigPin
 digitalWrite (trigPin, LOW);
 delayMicroseconds (2);
 // Sets the trigPin on HIGH state for 10 micro seconds
 digitalWrite(trigPin, HIGH);
 delayMicroseconds (10);
 digitalWrite(trigPin, LOW);
 // Reads the echoPin, returns the sound wave travel time in microseconds
 duration = pulseIn (echoPin, HIGH);
 // Calculating the distance
 distance = duration * 0.034 / 2;
 // Prints the distance on the Serial Monitor
 Serial.print("Distance: ");
 Serial.println(distance);
 delay(1000);
```

These are all variables!

The ones shown here all hold numeric values (int and long)

Some other types of variables can hold words, decimal numbers, or even True False values

Example of an If Statement

```
sketch_feb23a | Arduino 1.8.13
File Edit Sketch Tools Help
 sketch_feb23a
int value1 = 1;
                                                               COM9
                                                                                                                                                    int value2 = 7;
                                                                                                                                                       Send
void setup() {
  // put your setup code here, to run once:
                                                               bigger
  Serial.begin (9600);
                                                               bigger
                                                               bigger
                                                               bigger
void loop() {
  // put your main code here, to run repeatedly:
  if (value2 > value1) {
     Serial.println("bigger");
    delay(1000);
                                                               ✓ Autoscroll Show timestamp
                                                                                                                           Both NL & CR V 9600 baud
                                                                                                                                                    Clear output
```

Final Project

Description:

Let's say you are on a team designing a car and you're a part of the safety department. Your task is to create a early crash detection safety system using an ultrasonic sensor. When an something gets too close to the sensor, a bright red light is supposed to turn on, alerting the driver to brake. Your job is to use what we have learned so far to create this detection system.

Materials: Arduino, Wires, Breadboard, Ultrasonic Sensor, red LED

Work in <u>Groups of 3</u> and make sure to brainstorm ideas with each other. You guys can designate jobs, such as the Design Lead, the Hardware Lead and the Software lead.

Code

```
const int echoPin = 10;
// defines variables
long duration;
int distance;
void setup() {
  pinMode(trigPin, OUTPUT); // Sets the trigPin as an Output
  pinMode (echoPin, INPUT); // Sets the echoPin as an Input
  pinMode (6, OUTPUT); // For the Light
  Serial.begin (9600); // Starts the serial communication
void loop() {
  // Clears the trigPin
  digitalWrite(trigPin, LOW);
  delayMicroseconds(2);
  // Sets the trigPin on HIGH state for 10 micro seconds
  digitalWrite(trigPin, HIGH);
  delayMicroseconds (10);
  digitalWrite(trigPin, LOW);
  // Reads the echoPin, returns the sound wave travel time in microseconds
  duration = pulseIn (echoPin, HIGH);
  // Calculating the distance
  distance = duration * 0.034 / 2;
  // Prints the distance on the Serial Monitor
  delay(1000);
  Serial.println(distance);
  if (distance <= 50) {
    digitalWrite(6, HIGH);
  if (distance> 50) {
    digitalWrite(6, LOW);
```

const int trigPin = 9;

Servo Motor

Code

```
COPY
   #include <Servo.h>
   Servo myservo; // create servo object to control a servo
   // twelve servo objects can be created on most boards
   int pos = 0; // variable to store the servo position
   void setup() {
     myservo.attach(9); // attaches the servo on pin 9 to the servo object
10
11
12
   void loop() {
13
     for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees
     // in steps of 1 degree
14
15
       myservo.write(pos); // tell servo to go to position in varia
16
       delay(15);
                                      // waits 15ms for the servo to reach the
17
     for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
18
19
       myservo.write(pos); // tell servo to go to position in varia
20
       delay(15);
                                   // waits 15ms for the servo to reach the
21
22
```

THANK YOU ALL!!!

Extension

Try adding a motor to the Final Project

Make it so the motor spins until the light turns on

Temperature and Humidity Sensor

DHT 11

DHT11 Code

```
#include <dht.h>
dht DHT;
#define DHT11_PIN 7
void setup(){
  Serial.begin(9600);
void loop(){
  int chk = DHT.read11(DHT11_PIN);
  Serial.print("Temperature = ");
  Serial.println(DHT.temperature);
 Serial.print("Humidity = ");
  Serial.println(DHT.humidity);
  delay(1000);
```

Air Quality Sensor

AQI Code

```
int sensorValue;
int digitalValue;
void setup()
  Serial.begin(9600); // sets the serial port to 9600
  pinMode(13, OUTPUT);
 pinMode(2, INPUT);
void loop()
  sensorValue = analogRead(0); // read analog input pin 0
  digitalValue = digitalRead(2);
  if (sensorValue > 400)
    digitalWrite(13, HIGH);
  else
    digitalWrite(13, LOW);
  Serial.println(sensorValue, DEC); // prints the value read
  Serial.println(digitalValue, DEC);
  delay(1000); // wait 100ms for next reading
```