Homework 1 - End-to-end Speech Recognition

學號:r08922067系級:資工所碩二 姓名:鄭淵仁

(我忘記 kaggle deadline 比 report deadline 早,所以來不及傳 kaggle QQ,所以就沒有 reproduce 了)

1. (2%) Train a seq2seq attention-based ASR model. Paste the learning curve and alignment plot from tensorboard. Report the CER/WER of dev set and kaggle score of testing set.

• learning curve:

alignment plot:

CER/WER of dev set

Error Rate (%)	Mean
Character	3.1984
Word	10.5168

Kaggle score

Submission and Description	Private Score	Public Score
answer.csv 26 minutes ago by YJC	2.17600	2.09600

2. (2%) Repeat 1. by training a joint CTC-attention ASR model (decoding with seq2seq decoder). Which model converges faster? Explain why.

Which converges faster?

As the following loss curve shows, joint CTC-attention ASR converges faster.

(Red line: CTC-attention ASR / blue line: only attention ASR model)

Why?

相較於 encoder 要先接到 decoder 再 output 的第 1 題,第 2 題的 encoder 必須要同時能直接 output 出來做為 CTC 的訓練目標,因此 encoder 會收斂得比較穩定。而當 encoder 比較穩定, decoder 也會因此收斂得比較好、快。

3. (2%) Use the model in 2. to decode only in CTC (ctc_weight=1.0). Report the CER/WER of dev set and kaggle score of testing set. Which model performs better in 1. 2. 3.? Explain why.

• Which performs better?

As the following table shows, **Model 2** performs the best in Model 1., 2., 3.

	Dev		Kaggle	
Model	char error rate	word error rate	public	private
1	3.1984	10.5168	2.17600	2.09600
2	2.1770	7.3222	1.29800	1.28200
3	2.8411	9.7304	1.58400	1.53400

Why?

首先,Model 2×3 裡面的 encoder 必須同時能直接 output 出來做為 CTC 的訓練目標,所以 encoder 收斂得比較穩定,也因此 decoder 也會收斂得比較穩定,所以 performance 很容易會比 Model 1 好。

其次,Model 2 比 Model 3 多了一個 decoder,模型複雜度比較高,所以比較可以去 fit 一些比較複雜的 pattern,所以 Model 2 會表現得比 Model 3 好。

- 4. (2%) Train an external language model. Use it to help the model in 1. to decode. Report the CER/WER of dev set and kaggle score of testing set.
- CER/WER of dev set

Error Rate (%)	Mean
Character	2.8485
Word	9.2125

Kaggle score

Submission and Description	Private Score	Public Score
Im_2.csv	2.04199	2.02999
a minute ago by YJC		

5. (2%) Try decoding the model in 4. with different beam size (e.g. 2, 5, 10, 20). Which beam size is the best?

As the following table shows:

- In development sets, beam size = 10 is the best.
- In Kaggle, beam size = 10 and 20 is the best in public leaderboard;
- In Kaggle, beam size = 20 is the best in private leaderboard.

Beam	De	V	Kaggle	
Size	char error rate	word error rate	public	private
2	2.8485	9.2125	2.04199	2.02999
5	2.7660	9.0170	1.92800	1.84200
10	2.7631	8.9973	1.90800	1.84200
20	2.7642	9.0019	1.90800	1.84000

Bonus: (1%) Nothing.