Измерение риска

Основные понятия

чувствительность как критерий риска, greeks, дюрация, бета, частные подходы к измерению риска: математическое ожидание, максимальный ущерб, дисперсия, полудисперсия, рисковый капитал и его свойства, оценка рискового капитала

Вопросы для самоконтроля

- 1. Объясните, почему дисперсия не подходит для измерения риска, в случае если с помощью меры риска предполагается определять потребность агента в резервном капитале.
- 2. Объясните преимущества и недостатки параметрического и непараметрического подходов к оценке рискового капитала.
- 3. Объясните, как свойства рискового капитала могут интерпретироваться с точки зрения определения потребности агента в резервном капитале.
- 4. Объясните

Литература

- 1. Panjer, H. Operational Risk Management
- 2. McNeil, A. Frey, R. Embrechts, P. Quantitative Risk-Management
- 3. Föllmer, H., Schied, A. Stochastic Finance: An Introduction in Discrete Time
- 4. Crouhy, M. Galay, D., Mark R. The Essentials of Risk Management
- 5. Jorion, P. Financial Risk Manager Handbook
- 6. Шоломицкий, А. Теория риска: Выбор при неопределенности и моделирование риска
- 7. Королев, В. Ю. Математические основы теории риска
- 8. Кудрявцев, А.А. Интегрированный риск-менеджмент

Упражнения

Обязательно сделать требуется только те задания, в начале которых нет символа *

- 1. Вычислите 90% и 95% условный рисковый капитал для убытка, определяемого дискретной случайной величиной, принимающей значения 0, 1, 2, 5, 10, 50 с вероятностями 0.1, 0.2, 0.4, 0.2, 0.07, 0.03.
- 2. Для случайных величин с функциями распределения $F(x) = (1 + e^{-x})^{-1}, x \in R$ и $F(x) = 1 16/x^4, x > 2$ найти положительную полудисперсию, отрицательную полудисперсию, $VaR_{90\%}$.

- 3. Для портфеля из двух нормальных случайных величин с математическими ожиданиями доходности 3 и 5, дисперсиями 4 и 1 и коэффициентом корреляции 0.3 найти 99% рисковый капитал.
- 4. Объяснить, как распределить средства между двумя ценными бумагами из предыдущей задачи, чтобы минимизировать рисковый капитал. Сравните результат минимизации рискового капитала и минимизации дисперсии. Подумайте, можно ли обобщить вывод на другие распределения.
- 5. Проверьте, насколько отличаются $VaR_{99\%}$ и $VaR_{99.5\%}$ для нормальной случайной величины, распределения Стьюдента с 10 степенями свободы, логнормального распределения. Подумайте, что это значит.
- 6. *Докажите строго свойства рискового капитала, перечисленного на лекции.
- 7. Симулируйте выборку объёмом 200 из нормально распределенной случайной величины и оценить $VaR_{90\%}$, $VaR_{95\%}$, $VaR_{99\%}$ непараметрически и в предположении, что выборка получена из нормального распределения. Сравните качество методов. Эмпирически сравните среднеквадратичную ошибку оценки, полученной параметрическим и непараметрическим образом.
- 8. *Симулируйте какой-нибудь ARIMA временной ряд и оцените $VaR_{95\%}$ различными способами, игнорируя при этом временную структуру выборки. Исследуйте свойства оценки. Исследуйте зависимость качества оценки в зависимости от параметров временного ряда.
- 9. *Симулируйте какой-нибудь GARCH временной ряд и оцените $VaR_{95\%}$ различными способами, игнорируя при этом временную структуру выборки. Исследуйте свойства оценки. Исследуйте зависимость качества оценки в зависимости от параметров временного ряда.