

Máster en Inteligencia Artificial, Reconocimiento de Formas e Imagen Digital Universitat Politècnica de València

Reconocimiento de Género

Visión por Computador

Autor: Juan Antonio López Ramírez

Curso 2019-2020

Introducción

En esta memoria se va a explicar el procedimiento seguido para la correcta realización del ejercicio de reconocimiento de género a partir de un dataset de imágenes mediante técnicas de Redes Neuronales Convolucionales.

Para ello, se han implementado diferentes Residual Networks para alcanzar los objetivos propuestos, que son:

- Superar el 95 % de precisión en el conjunto de test.
- Superar el 90 % de precisión en el conjunto de test utilizando menos de 100K parámetros.

El dataset empleado es *LFW*, que contiene 13233 imágenes de caras (cada una de 100x100 píxeles en formato RGB). Usaremos 10585 imágenes para entrenamiento y 2648 para test.

Figura 1: Labeled Faces in the Wild Home, dataset empleado para el reconocimiento de género.

Implementación del modelo para 95 % de precisión

Para empezar, hemos partido del modelo de *ResNet* que hemos visto en las clases de teoría de la asignatura.

En nuestro caso, el modelo está formado por cuatro bloques convolucionales y un *deep fully connected*.

Cada bloque tiene la mitad de convoluciones que el siguiente, componiendo la red unidades convolucionales de 1, 2, 4 y 8.

Cada uno de estos cuenta con una capa de Max Pooling de 2x2, un operador de 32 filtros, una capa de ruido Gaussiano del 30 % y otra de *Batch Normalization*.

Los bloques de 2, 4 y 8 unidades tiene, en adición a lo anterior, otro operador convolucional, también de 32 filtros; una función de activación ReLu y un operador de adición entre el filtro anterior y el final de la unidad básica.

Finalmente, la *fully connected* cuenta con 512 neuronas, a la que le aplicamos, igual que las convolucionales, un *Batch Normalization* y una capa de ruido Gaussiano del 30 %. Por último, le añadimos la función de activación *softmax*.

El *Data Augmentation* aplicado ha consisitido en modificar las muestras en un 20 % de altura y anchura, además de añadirle un rango de rotación de 20 grados y un zoom del 20 %.

Implementación del modelo con menos de 100K parámetros

Para este modelo, hemos partido del anterior y se ha reducido a la mitad el número de bloques convolucionales (hemos pasado de tener 4 *conv blocks* a solo 2), junto con los filtros aplicados en los operadores de esas convoluciones, que han pasado de 32 a 8.

De esta manera conseguimos un modelo muy similar al anterior pero que es más liviano debido a sus 89090 parámetros (véase la figura 2), pero que sigue siendo capaz de realizar la tarea de reconocimiento de género.

Total params: 89,090 Trainable params: 88,930 Non-trainable params: 160

Figura 2: Se ha hecho un *summary* al modelo y se puede apreciar que el número de parámetros es inferior a 100K.

Resultados

Cuando ya tenemos nuestros modelos de *ResNet*, se ha ido modificando el tamaño del *batch* y las *epochs* del training. Los resultados obtenidos han sido los siguientes:

Tamaño del batch	Epochs	Resultados gender95 (%)	Resultados gender90-100K (%)
100	100	95.85	92.82
100	200	95.96	94.15
100	300	95.81	94.11
150	100	94.22	92.90
150	200	95.54	91.92
150	300	94.41	93.09

Por un lado, en los experimentos de *gender95*, salvo en el cuarto y sexto, superamos la precisión que se pedía en el enunciado del problema, siendo el mejor resultado un **95.96**%, obtenido con un tamaño de *batch* de 100 y 200 *epochs*.

Por otro lado, en *gender90-100K*, con la misma configuración que el anterior modelo, obtenemos como mejor resultado un **94.15** %, superando la barrera del 90 %.