TD 2. Tables de vérité, équivalence et conséquence

Exercice 1. Pièges des langues naturelles

Formaliser les énoncés suivants (écrits en langue naturelle) en logique propositionnelle.

- (a) « Elle aime les pizzas à pâte épaisse, et aussi celles avec de la roquette ou des champignons. »
- (b) « Le matin, il boit un café serré avec une tartine, ou parfois un thé. »
- (c) « Si Paris est la capitale de la France, alors la Terre est ronde. »
- (d) « Si Rome est la capitale de la France, alors la Terre est ronde. »
- (e) « Si la Terre n'est pas ronde, je veux bien manger mon chapeau. »

Exercice 2. Table de vérité

Écrire la table de vérité de la formule suivante. Que pouvons-nous observer?

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow ((P \Rightarrow Q) \Rightarrow (P \Rightarrow R))$$

Rappel. Une formule ψ est une conséquence de φ si toute interprétation qui satisfait φ satisfait aussi ψ . On le note $\varphi \models \psi$.

Pour des formules de la logique propositionnelle, $\varphi \vDash \psi$ si pour chaque ligne dans la table de vérité de φ qui contient la valeur 1 dans la colonne φ , la ligne correspondante dans la table pour ψ contient la valeur 1 dans la colonne ψ .

Deux formules φ et ψ sont équivalentes si $\varphi \models \psi$ et $\psi \models \varphi$.

Pour des formules de la logique propositionnelle, cela veut dire que exactement les mêmes lignes contiennent la valeur 1 dans la colonne de φ que dans la colonne de ψ .

Exercice 3. Équivalences et conséquences logiques

Pour chaque couple de formules φ, ψ dans la liste suivante, écrire leur tables de vérité, et dire lequel des énoncés suivants est vrai :

- A. les formules φ et ψ sont équivalentes,
- B. $\varphi \vDash \psi$ et $\psi \not\vDash \varphi$,
- C. $\varphi \not\models \psi$ et $\psi \models \varphi$,
- D. $\varphi \not\models \psi$ et $\psi \not\models \varphi$.
- 1. $P \Rightarrow Q, \neg Q \Rightarrow \neg P$
- 2. $P \wedge (\neg Q \vee R), (P \wedge \neg Q) \vee (P \wedge \neg R)$
- 3. $P \Rightarrow Q, P \Rightarrow (Q \lor R)$
- 4. $(P \land Q) \Rightarrow R, P \Rightarrow (\neg Q \lor R)$

Rappel. Pour montrer un énoncé de la forme : « A si et seulement si B », il faut montrer les deux sens : si on suppose A, alors on peut en déduire B, et si on suppose B, alors on peut en déduire A.

Exercice 4. Conséquence et implication

Soient φ et ψ deux formules propositionnelles. Montrer que ψ est conséquence de φ si et seulement si la formule $\varphi \Rightarrow \psi$ est valide.

Exercice 5. Combinaisons de formules valides et satisfiables

Soient φ et ψ deux formules propositionnelles.

- (a) Montrer que φ et ψ sont valides si et seulement si la formule $\varphi \wedge \psi$ est valide.
- (b) Si $\varphi \lor \psi$ est valide, est-ce qu'on peut en deduire que φ est valide ou ψ est valide? Montrez ou donnez un contre-exemple.
- (c) Si φ et ψ sont satisfiables, que peut-on dire de $\varphi \vee \psi$ et de $\varphi \wedge \psi$?

Rappel. Si I est une interprétation, et τ est une substitution propositionnelle, alors $I\tau$ est l'interprétation qui associe à une lettre P la valeur $[\![\tau(P)]\!]^I$. Le lemme de substitution propositionnelle garantit que pour toute formule ϕ , $[\![\phi\tau]\!]^I = [\![\phi]\!]^{I\tau}$.

Exercice 6. Engendrer des équivalences par substitution

Soient φ et ψ deux formules propositionnelles équivalentes, et soit τ une substitution propositionnelle. Montrer que les formules $\varphi\tau$ et $\psi\tau$ sont équivalentes.

En déduire que si φ et ψ sont deux formules propositionnelles, les formules $\neg(\varphi \lor \psi)$ et $\neg \varphi \land \neg \psi$ sont équivalentes.