¹H(³⁷Ca,t) **2023La09**

 $J^{\pi}=3/2^{+}$ for ³⁷Ca ground state.

2023La09: A 50-MeV/nucleon 37 Ca secondary beam was produced via the fragmentation of a 95-MeV/nucleon 40 Ca $^{20+}$ primary beam impinging on a 9 Be target, selected by the LISE3 spectrometer at GANIL, and then impinged on a liquid hydrogen cryogenic target (CRYPTA). Beam ions before target were tracked using two low-pressure multiwire proportional chambers (CATS). Heavy residuals after target were detected by a zero-degree detection system consisting of an ionization chamber, a set of two XY drift chambers, and a plastic scintillator. Tritons from 2n-transfer were detected using a set of six MUST2 DSSD-CsI telescopes in coincidence with the heavy residues Ca or Ar. Measured $\sigma(E_t, \theta)$ in inversion kinematics. Deduced levels, J, π , L-transfers from FRESCO-DWBA analysis of measured $\sigma(\theta)$.

First measurement of ³⁵Ca mass excess: 4777 keV 105.

First observation of excited states in ³⁵Ca.

Evidence of the magicity of N=16 close to the proton drip line.

35Ca Levels

E(level)	J^π	L	Comments
0.0	1/2+	2	J^{π} : mirror level: $1/2^{+35}$ P g.s. and shell model calculations.
			L: removal of one neutron from the $2s_{1/2}$ orbital and the other from the $1d_{3/2}$ orbital, leaving a single neutron in the $2s_{1/2}$ orbital.
$2.24 \times 10^3 \ 33$	$(3/2^+)$	0	J^{π} : mirror level: $3/2^{+}$ 35 P first excited state at 2386.9 11 and shell model calculations. L: removal of two neutrons from the $2s_{1/2}$ orbital, leaving a single neutron in the $1d_{3/2}$ orbital.