# Capstone Project Report – Dynamic Pricing for Urban Parking Lots

#### 1. Introduction

This report documents the implementation of a dynamic pricing engine for urban parking lots, developed for the Summer Analytics 2025 Capstone Project. The aim is to simulate a smart, data-driven pricing mechanism that adjusts parking lot rates in real-time using multiple factors. This project strictly follows the guidelines provided, using only NumPy, Pandas, and Pathway in Google Colab.

## 2. Project Objective

To design and implement a pricing model that:

- Starts from a base price of \$10
- Adjusts in real time based on occupancy, queue length, traffic, special days, and vehicle type
- Incorporates location-aware competitive pricing logic
- Ensures smooth and bounded price variations
- Uses Pathway for real-time streaming and Bokeh for visualization

#### 3. Dataset Overview

The dataset contains time-series data for 14 parking lots over a span of 73 days, sampled at 30-minute intervals from 8:00 AM to 4:30 PM each day. It includes:

- Lot ID, Latitude, Longitude
- Capacity, Occupancy, Queue Length
- Vehicle Type (car, bike, truck)
- Traffic Conditions (low, medium, high)
- Special Day Indicator

#### 4. Models Used

#### 4.1 Model 1 – Linear Pricing

The linear model increases price proportionally with occupancy. It uses the formula:

$$Price(t+1) = Price(t) + \alpha \times (Occupancy / Capacity)$$

where  $\alpha$  is a sensitivity constant. This serves as the baseline for comparison.

#### 4.2 Model 2 – Demand-Based Pricing

This model creates a weighted demand function from:

- Occupancy rate
- Queue length
- Traffic congestion
- Special day indicator
- Vehicle type weight

The raw demand is normalized and used to scale price smoothly:

```
Price = Base \times (1 + \lambda \times NormalizedDemand)
```

Price is clipped between \$5 and \$20 to ensure stability.

### 4.3 Model 3 – Competitive Pricing

This model includes geospatial logic. It computes the distance between lots using latitude and longitude to detect nearby competitors (within 1 km). If the current lot is overloaded and a nearby lot is cheaper, price is reduced and rerouting may be suggested.

## 5. Demand Function and Assumptions

Demand Function Formula:

```
Demand = \alpha 1*(Occupancy/Capacity) + \alpha 2*QueueLength - \alpha 3*TrafficScore + <math>\alpha 4*SpecialDay + \alpha 5*VehicleTypeWeight
```

Weights are manually tuned for realism. TrafficScore is mapped as low=0.3, medium=0.6, high=1.0.

#### Assumptions:

- Base price starts at \$10
- Price bounds: [5, 20]
- Distance threshold for competition: 1 km
- Vehicle type weights: car=1.0, bike=0.7, truck=1.5

## 6. Visualizations

Bokeh is used for real-time line plots for each model. Prices for all parking lots over time are visualized in separate graphs, making it easy to compare pricing strategies and observe behavior.





# 7. Block Diagram



## 8. Conclusion

This project successfully delivers a robust real-time dynamic pricing system using multiple pricing strategies. By incorporating real-world parameters and spatial intelligence, the models simulate an efficient, explainable pricing mechanism aligned with smart city goals.