Sécurité des systèmes d'information Exercise sheet 4 : Asymmetric Cryptography

30 Octobre 2019

Non-mandatory exercise sheet. Please upload your answers on Moodle before Monday 4/11/2019 17h15.

All answers should be carefully justified.

Exercise 1: Math Warmups

- Let p be a prime number. Compute $\phi(p^k)$ by counting all numbers $a \leq p^k$ such that $\gcd(a, p^k) > 1$.
- Using the Chinese Remainder theorem, explain why $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$ whenever $\gcd(a,b) = 1$.
- By using the prime factorization of any number n, explain the general formula for $\phi(n)$ using preceding steps.

Exercice 1: RSA

- Let p = 11, q = 17. Create a set of keys for RSA
- Let (n=247, e=17) be the public key. Use it to encode the message "28". Find then two prime numbers p,q and compute the encryption exponent d (use extended euclidean algorithm). Finally, decode the encoded message to check your computations.

Exercice 2: Rabin

On recall Rabin cryptographic algorithm:

• Keys generation: A chooses two big prime numbers p and q, that he keeps secret. He chooses them such that $p \equiv q \equiv 3 \mod 4$ (to make decryption easier). A then computes $n = p \cdot q$.

- Keys Distribution: A sends n, his public key to B. (p and q are secrets and are never shared).
- Encryption: B encrypts his message m by calculating $c = m^2 \mod n$. B then sends his cipher c to A.
- Decryption: A computes $m = \sqrt{c} \mod n$ by following the steps:
 - 1. A computes $m_p = \sqrt{c} = c^{\frac{p+1}{4}} \mod p$ and m_q similarly (note how $p \equiv q \equiv 3 \mod 4$ simplifies this step).
 - 2. A solves the system of two equations

```
m = m_p \mod pm = m_q \mod q
```

he obtains four solutions among which he finds the original message m.

Writing $p_1 = p^{-1} \mod q$ and $q_1 = q^{-1} \mod p$, we have

```
\begin{array}{lcl} m_1 & = & \left(m_p \cdot q \cdot q_1 + m_q \cdot p \cdot p_1\right) \mod n \\ m_2 & = & \left(m_p \cdot q \cdot q_1 - m_q \cdot p \cdot p_1\right) \mod n \\ m_3 & = & \left(-m_p \cdot q \cdot q_1 + m_q \cdot p \cdot p_1\right) \mod n \\ m_4 & = & \left(-m_p \cdot q \cdot q_1 - m_q \cdot p \cdot p_1\right) \mod n \end{array}
```

You are B, And you receive A's public key which is 253:

- Compute the Cipher of the message 134.
- Find the prime factors p et q of n.
- Uncipher the message by computing m_p and m_q , then compute all 4 possible messages m_1 , m_2 , m_3 and m_4 (You should find 134 among these results).

Exercice 3: ElGamal

We recall ElGamal Cipher:

- Keys Generation : Each entity generates his own couple of keys, a private and a public key.
 - A generates a big prime number p, and a generator α from the multiplicative group \mathbb{Z}_p^* . A then generates a random number a < p-1, and computes $\alpha^a \mod p$.

The public key of A is $(p, \alpha, \alpha^a \mod p)$, his private key is a.

• Encryption: B encrypts the message m (m < p) by generating a random number $k . B computes <math>\lambda = \alpha^k \mod p$ and $\sigma = m \cdot (\alpha^a)^k \mod p$. Finally, B send his cipher $c = (\lambda, \sigma)$ to A.

• Decryption: A computes $x=\lambda^{p-1-a}\equiv \lambda^{-a}\equiv \alpha^{-ak}\mod p$. A then unciphers the sent message by computing $m'=x\cdot \sigma\mod p$ (we indeed have that $m'=\alpha^{-ak}\cdot m\cdot \alpha^{ak}=m$).

You are B, and you receive the following public key from A (17,3,12):

- \bullet Encrypt the message "2" by choosing some random number k.
- Using α and $\alpha^a \mod p$, find a.
- Apply the decryption algorithm to find the original message m.