

Facultad de Ciencias Exactas, Ingeniería y Agrimensura

Departamento de Matemática - Escuela de Ciencias Exactas y Naturales

## ANÁLISIS MATEMÁTICO II

Licenciatura y Profesorado en Física, Licenciatura en Ciencias de la Computación, Licenciatura y Profesorado en Matemática - Año 2020

## **CUESTIONARIO DEL APUNTE 8.**

Decida si las siguientes afirmaciones son verdaderas o falsas. Justifique convenientemente.

- 1. Sea f un polinomio de grado n dado como  $f(x) = \sum_{j=0}^{n} b_j x^j$ . Suponga que f(a) = 0. Entonces si  $P_{n,a}(x) = \sum_{j=0}^{n} a_i (x-a)^i$ , se tiene  $a_i = b_i$  para todo  $i \ge 0$ .
- 2. Sea f una función n veces derivable en un punto a de su dominio. Sea P un polinomio de grado n tal que  $P^{(k)}(a) = f^{(k)}(a)$  para todo  $0 \le k \le n$ . Entonces P es el polinomio de Taylor de f en a.
- 3. Sea f una función n veces derivable en a tal que  $f'(a) = f''(a) = \ldots = f^{(n-1)}(a) = 0$  pero  $f^{(n)}(a) \neq 0$ . Si n es par y  $f^{(n)}(a) > 0$  entonces f es convexa en un entorno alrededor de a.
- 4. Sea f una función n veces derivable en a tal que  $f'(a) = f''(a) = \ldots = f^{(n-1)}(a) = 0$  pero  $f^{(n)}(a) \neq 0$ . Si n es par y  $f^{(n)}(a) < 0$  entonces f es cóncava en un entorno alrededor de a.
- 5. Sea f una función n veces derivable en a tal que  $f'(a) = f''(a) = \ldots = f^{(n-1)}(a) = 0$  pero  $f^{(n)}(a) \neq 0$ . Si n es impar entonces f tiene un punto de inflexión en a.
- 6. Para la forma integral del resto, es condición necesaria que  $f^{(n+1)}$  sea continua.
- 7. Para la forma de Cauchy y de Lagrange del resto, se requiere  $f^{(n+1)}$  acotada sobre [a, x].
- 8. En cualquier expresión del resto de grado n,  $R_{n,a}(x)$  se tiene  $\lim_{x\to a} \frac{R_{n,a}(x)}{(x-a)^k} = 0$  para  $0 \le k \le n$ .
- 9. Sea f una función derivable tantas veces como querramos en a. Siempre es posible aproximar la función f en un intervalo [a-1/2,a+1/2] con un error menor a  $10^{-3}$ .