1Introduction

This is the solution of HW3 of Network Data, which consists of 4 parts. First, for node g, manually validate its degree centrality (3) ,closeness centrality (0.6) and betweenness centrality (19.5). Then, for the network, manually identify all 2-cores and 3-cores. After that, we need to apply R-function modularity() to this network and report the calculation result. Final, we need to apply R-function cluster_walktrap() to this network and draw the result with R-function plot().

for node g,			-	Veneza
I degree contacting.				
(c.f.h) is drawly connected with notleg => degree(g)=3				
Il dosenous centrality:				
$(ccg) = \frac{10-1}{2+2+172+2+1712+2} = \frac{9}{15} = \frac{3}{5}$				
The Engenness centrality:				
a-f	6	95)	<u>6(9)</u>	
ah	ī	1	±,	
a-i	1	1	-1	
		1	1	
5-f b-h	1	ı		
bi	1	1	1	
b-j	1			
Cf Ch	2	1	1	
Ci.				
d-hiji	13	1.3	3	
	1-3	(-)	3	
f-hiji	13	[-3	3	
be-101= x3+3+3+3+7+23 = 18+3= 19-2				
2 I roxs	· 2		3_3	
0	3 /2	-K	-> \$ -3	
	de stan		e t	
I }- cove	3:		-> :\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	a not exist
	2	* T	be	
			ARCHARIT	

3 After applying R-function modularity() to this network, the calculation result is 0.2951389. 4 After applying R-function cluster_walktrap() to this network, I draw the result with R-function plot() as below:

5 Appendix

```
> library(network)
> library(igraph)
> library(intergraph)
> netmat <- rbind(
+ c('a','b'),c('a','c'),c('b','c'),
+ c('c','d'),c('c','e'),c('c','g'),
+ c('d','e'),c('e','f'),c('f','g'),
+ c('g','h'),c('h','i'),c('h','j')
+)
> net = network(netmat, matrix.type = 'edgelist')
> netmat2 <- as.matrix(net,matrix.type = 'adjacency')
> net2 <-network(netmat2,matrix.type = 'adjacency')
> inet <- aslgraph(net2)
> cw <- cluster_walktrap(inet)
> modularity(cw)
> plot(cw,inet)
```