

Pinto, Grech Maria Almeida, Paulina Diana Domingues, Marco

Tratamento de dados experimentais

a)

Densidade da água:

* Fórmula utilizada:

$$\rho = \frac{m}{v}$$

$$m_{\acute{a}gua} = 496,00\pm0,02g \qquad V_{\acute{a}gua} = 500,00\pm2,5cm$$

$$\rho_{\acute{a}gua} = 0,992\pm0,005g/cm^3 = 992,0\pm5,0Kg/m^3$$

$$T = 20,00\pm0,005^{\circ}C$$

À temperatura a que a água se encontrava nas condições da atividade prática, $20^{\circ}C$, o valor indicado na Wikipédia para a densidade da água é de 998, $2071Kg/m^3$ Ora, comparando o valor obtido através das medições da massa e do volume da água, podemos concluir que obtivemos um valor para a densidade de 992, $0Kg/m^3$, consideravelmente semelhante ao valor real.

Temp. (°C)	Density (kg/m ³)				
0	999.8395				
4	999.9720				
10	999.7026				
15	999.1026				
20	998.2071				
22	997.7735				
25	997.0479				
30	995.6502				
40	992.2				
60	983.2				
80	971.8				
100	958.4				

b)

Registo de resultados:

* Fórmula utilizadas:

$$u_{
ho_{agua}} =
ho_{agua} \sqrt{\left(\frac{u_{m_{agua}}}{m_{agua}}\right)^2 + \left(\frac{u_{v_{agua}}}{v_{agua}}\right)^2}$$

$$u_{\langle Y \rangle} = \frac{u_Y}{\sqrt{N}}$$

$$u_{\rho_{amostra}} = \rho_{amostra} \sqrt{\left(\frac{u_{Y_0}}{Y_0 - Y_1}\right)^2 + \left(\frac{u_{Y_1}}{Y_2 - Y_1} - \frac{u_{Y_1}}{Y_0 - Y_1}\right)^2 + \left(\frac{u_{Y_2}}{Y_2 - Y_1}\right)^2 + \left(\frac{u_{\rho_{liquido}}}{\rho_{liquido}}\right)^2}$$

$$F_1 = k \left(Y_0 - Y_1\right)$$

$$F_2 = k \left(Y_0 - Y_2\right) \Rightarrow \frac{Y_0 - Y_1}{Y_2 - Y_1} = \frac{\rho_{sol}}{\rho_{liq}}$$

* Folha de registos de resultados:

$$u_{m_{agua}} = 0,02g$$
 $u_{v_{agua}} = 2,5cm^3$ $u_{\rho_{agua}} = 0,005g/cm^3$

	Amostra A		Amostra B		Amostra C		$Y_0 \pm 0.05(cm)$
Aluno	$< Y_1 > (cm)$	$< Y_2 > (cm)$	$< Y_1 > (cm)$	$< Y_2 > (cm)$	$< Y_1 > (cm)$	$< Y_2 > (cm)$	
А	30.8 ±0,2	36.3 ±0,2	10.3 ±0,2	18.6 ±0.1	11.5 ±0,2	21.8 ±0,2	81.60
В	30.0 ±0,6	37.0 ±0,1	11.0 ±1,0	20.8 ±0,5	12.0 ±0,7	24.0 ±0,2	81.60
С	31.0 ±0,8	37.1 ±0,4	11.5 ±0,1	19.3 ±0,1	12.5 ±0,1	22.8 ±0,1	81.60
А	31.0 ±0,4	36.2 ±0,1	9.3 ±0,8	18.4 ±0,1	11.7 ±0,2	22.2 ±0,2	
В	30.0 ±0,6	36.9 ±0,1	9.3 ±0,6	20.1 ±0,2	11.0 ±0,3	23.5 ±0,3	
С	29.5 ±0,7	36.8 ±0,1	11.3 ±0,1	19.6 ±0,2	12.2 ±0,2	22.9 ±0,8	
А	30.1 ±0,5	36.2 ±0,1	10.8 ±0,7	18.4 ±0,1	11.6 ±0,1	21.9 ±0,1	
В	30.0 ±0,6	37.0 ±0,1	9.3 ±0,6	20.0 ±0,3	10.9 ±0,4	23.9 ±0,1	
С	30.0 ±0,2	36.9 ±0,2	11.4 ±0,1	19.2 ±0,2	12.4 ±0,1	22.7 ±0,1	
< Y > (cm)	30.3	36.7	10.5	19.4	11.8	22.8	81.60
$u_y(cm)$	0.5	0.4	0.9	0.8	0.6	0.8	0.00
$U_{\leq Y>}(cm)$	0.2	0.1	0.3	0.3	0.2	0.3	0.00
$\frac{Y_0 - Y_1}{Y_2 - Y_1}$	7,96		7,98		6,29		
$\rho_{amostra}$	7,90		7,92		6,24		
Uamostra	0,70		1,70		0,80		

c)

Comparação do valor da densidade do material:

c) Comparação do valor da densidade do material

$$\rho_{amostra\ A\ obtida} = 7,90g/cm^3 \qquad \rho_{amostra\ A} = 8,96g/cm^3$$

$$\rho_{amostra\ B\ obtida} = 7,92g/cm^30,2 \qquad \rho_{amostra\ B} = 7,80g/cm^3$$

$$\rho_{amostra\ C\ obtida} = 6,24g/cm^3 \qquad \rho_{amostra\ C} = 7,87g/cm^3$$

$$E_r = \frac{|x - \bar{x}|}{\bar{x}} \cdot 100$$

Para a amostra **A** obtivemos um erro relativo percentual de 11,8%.

Para a amostra **B** obtivemos um erro relativo percentual de 1,5%.

Para a amostra \boldsymbol{C} obtivemos um erro relativo percentual de 20,7%.

Contudo, apesar de obtermos valores para os erros relativos percentuais não muito elevados, o que indica uma maior exatidão, as condições da experiência não foram as ideias. Isto é, notamos a presença de vários erros sistemáticos: a certa altura a mola caiu do suporte, modificando a sua elasticidade.

- * Observações:
- Afastamento da régua na medição Y_2 à mola.
- Queda da régua.