

DUBLIN INSTITUTE OF TECHNOLOGY

DT228 BSc. (Honours) Degree in Computer Science Year 2

DT282 BSc. (Honours) Degree in Computer Science (International)

Year 2

SUMMER EXAMINATIONS 2016/2017

ALGORITHM DESIGN AND DATA STRUCTURES [CMPU2001]

MR. RICHARD LAWLOR DR. DEIRDRE LILLIS MR. PAUL COLLINS

FRIDAY 12^{TH} MAY 4.00 P.M. - 6.00 P.M.

Two Hours

ATTEMPT THREE OUT OF FOUR QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS. ONE COMPLEMENTARY MARK FOR THE PAPER.

(a) Write a simple Java interface to express the services provided by the <i>Abstract Type (ADT) Queue</i> . You can assume the queue stores <i>int</i> values.						
	marks)					
(b) Provide a Java class which implements the <i>Queue</i> interface based on a linked list implementation but showing only data structure, constructor and no other method (5)						
(c) Give the implementation of the method deQueue() for the class in part (b). Expla you might use or not use a tail reference in your implementation. What is the complexity of deQueue() with and without the use of a tail pointer?	in why					
,	(4)					
(d) Provide a partial circular buffer implementation of ADT <i>Queue</i> . Show the data structure used and the code for <i>deQueue()</i> only.						
(9	marks)					
(e) Write down a simple equation for a Stack in terms of pop() and push() that expresses						
the last-in-first-out (LIFO) behaviour of the Stack.	marks)					
(e	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
(a) Using diagrams, show the detailed workings for the first two iterations of the outer of a bubble sort on the following array. 9 8 5 2 7 3 4 1 0	er loop					
(4	marks)					
(b) Explain what is meant by <i>Tortoises and Hares</i> with reference to bubble sort. Prov	vide a					
simple example to illustrate.						
(4	marks)					
(c) Write an adaptation of bubble sort in pseudocode which helps with the problem of <i>Tortoises and Hares</i> .	of					
	marks)					
(d) Show how your algorithm from part (c) sorts the above array.						
(5	marks)					
(e) Using diagrams, show the array in part (a) can be converted to a heap. (5	marks)					
(f) Using diagrams, show how heap sort works on the heapified array from part (d). (5	marks)					

3. (a) Provide a brief explanation on how Kruskal's MST algorithm works and then write the algorithm in pseudocode.

(8 marks)

(b) What representation of a graph is appropriate for implementing Kruskal's algorithm? What is the complexity of creating this data structure and removing the edges as required from it?

(5 marks)

(c) Explain the *Union-Find* data structure and what it is used for in Kruskal's algorithm. Also, with the aid of diagrams, outline a possible implementation of this data structure and give an example showing how its two significant operations work.

(10 marks)

(d) Illustrate in detail how Kruskal's algorithm computes a MST for the graph below showing the contents of the union-find sets at each stage.

(10 marks)

4. (a) Show how binary search works when searching for 17 in the following array:

1	5	6	9	10	12	14	17	21

(5 marks)

(b) What is a binary search tree (BST)? Mention any specific advantage or possible disadvantage. What is the complexity of searching a BST?

(6 marks)

(c) Write in pseudocode the algorithm for searching a BST.

(6 marks)

(d) Given the following binary search tree, show how it would be modified by inserting 54.

(5 marks)

(e) What is an AVL-tree? Include in your answer the idea of a *rotation*. Show how the tree that results from inserting 54 in part (d) would be rebalanced if it were an AVL-tree.

(11 marks)