Gruppe 4 - Final

Daten einlesen

Bereitgestellte Daten einlesen (im Hintergrund)

Feiertagsdaten aus dem Netz holen (im Hintergrund)

Daten zusammenfügen

```
## # A tibble: 10,899 x 11
##
      Datum
                Warengruppe Umsatz Wochentag KielerWoche Bewoelkung Temperatur
##
      <date>
                <fct>
                             <dbl> <fct>
                                                    <dbl>
                                                               <dbl>
                             149. Montag
   1 2013-07-01 Brot
                                                                            17.8
##
                                                       NΑ
                                                                   6
   2 2013-07-02 Brot
                             160. Dienstag
                                                       NA
                                                                   3
                                                                            17.3
                                                                   7
   3 2013-07-03 Brot
                             112. Mittwoch
                                                       NA
                                                                            21.1
                                   Donnerstag
##
   4 2013-07-04 Brot
                             169.
                                                       NA
                                                                            18.8
##
   5 2013-07-05 Brot
                             171.
                                   Freitag
                                                       NA
                                                                            20.0
    6 2013-07-06 Brot
                                                                   0
##
                             175. Samstag
                                                       NΑ
                                                                           19.0
   7 2013-07-07 Brot
                             92.6 Sonntag
                                                       NA
                                                                           21.4
                             136. Montag
                                                                   0
                                                                           22.7
   8 2013-07-08 Brot
                                                       NΑ
   9 2013-07-09 Brot
                             136. Dienstag
                                                       NA
                                                                   0
                                                                            23.3
## 10 2013-07-10 Brot
                             135. Mittwoch
                                                       NA
                                                                           19.7
## # ... with 10,889 more rows, and 4 more variables: Windgeschwindigkeit <dbl>,
      Wettercode <dbl>, Feiertage <chr>, istFeiertag <dbl>
```

Datenaufbereitung

Datenstruktur untersuchen

Data summary

Name	dataset
Number of rows	10899
Number of columns	11
Column type frequency:	
character	1
Date	1
factor	2
numeric	7

Group variables None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
Feiertage	10784	0.01	11	25	0	5	0

Variable type: Date

skim_variable	n_missing	complete_rate min	max	median	n_unique
Datum	0	1 2013-07-01	2019-06-06	2016-06-17	2121

Variable type: factor

skim_variable	n_missing	complete_rate ordered	n_unique top_counts
Warengruppe	0	1 FALSE	6 Bro: 2121, Bro: 2121, Cro: 2121, Kuc: 2121
Wochentag	0	1 FALSE	7 Son: 1570, Don: 1568, Sam: 1564, Die: 1562

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
Umsatz	0	1.00	206.66	142.81	7.05	97.53	163.30	280.81	1879.46	
KielerWoche	10676	0.02	1.00	0.00	1.00	1.00	1.00	1.00	1.00	
Bewoelkung	135	0.99	4.73	2.65	0.00	3.00	6.00	7.00	8.00	
Temperatur	81	0.99	11.82	7.15	-8.47	6.11	11.26	17.62	32.67	
Windgeschwindigkeit	81	0.99	11.00	4.14	3.00	8.00	10.00	13.00	35.00	
Wettercode	2602	0.76	36.16	27.04	0.00	10.00	22.00	61.00	95.00	
istFeiertag	10784	0.01	1.00	0.00	1.00	1.00	1.00	1.00	1.00	

Analyse der Ausreißer in den metrischen Variablen

• Temperatur: keine

Bewoelkung: keine

· Windgeschwindigkeit: Ausreißer

Umsatz: Ausreißer

• Umsatz nach Warengruppen: Ausreißer

Warning: Removed 81 rows containing non-finite values (stat boxplot).

Warning: Removed 135 rows containing non-finite values (stat_boxplot).

Warning: Removed 81 rows containing non-finite values (stat_boxplot).

Croissant

 Test auf Unterschiede der Mittelwerte im Umsatz per Warengruppen, um ggf. Warengruppen zusammenzufassen: nicht zu empfehlen, alle Unterschiede sig. von 0 verschieden

as.factor(Warengruppe)

Konditorei

. Kuchen Saisonbrote

```
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
##
   Fit: aov(formula = Umsatz ~ Warengruppe, data = dataset)
##
##
   $Warengruppe
##
                                 diff
                                             lwr
                                                         upr
                                                                 p adj
   Broetchen-Brot
                            274.47832
                                       267.03128
                                                   281.92535 0.0000000
   Croissant-Brot
                             40.11876
                                        32.67173
                                                    47.56580 0.0000000
   Konditorei-Brot
                            -36.80747
                                       -44.30298
                                                  -29.31196 0.0000000
   Kuchen-Brot
                            153.79543
                                       146.34840
                                                   161.24246 0.0000000
                                                  -43.08790 0.0000000
##
   Saisonbrote-Brot
                            -57.11407
                                       -71.14025
   Croissant-Broetchen
                           -234.35955 -241.80659 -226.91252 0.0000000
                           -311.28579 -318.78130 -303.79028 0.0000000
   Konditorei-Broetchen
   Kuchen-Broetchen
                           -120.68289 -128.12992 -113.23586 0.0000000
                           -331.59239 -345.61856 -317.56622 0.0000000
   Saisonbrote-Broetchen
   Konditorei-Croissant
                                       -84.42175
                                                  -69.43072 0.0000000
                            -76.92624
   Kuchen-Croissant
                            113.67666
                                       106.22963
                                                  121.12370 0.0000000
   Saisonbrote-Croissant
                            -97.23284 -111.25901
                                                  -83.20667 0.0000000
   Kuchen-Konditorei
                            190.60290
                                       183.10739
                                                  198.09841 0.0000000
  Saisonbrote-Konditorei
                           -20.30660
                                      -34.35858
                                                   -6.25463 0.0005478
## Saisonbrote-Kuchen
                           -210.90950 -224.93568 -196.88333 0.0000000
```

Broetchen

0

Brot

Datenaufbereitung: Fehlende Werte imputieren

- KielerWoche und istFeiertage dichotom (0 wenn nicht zutreffend)
- Bewoelkung, Temperatur und Windgeschwindigkeit mittlere Werte imputieren

Data summary

Name	dataset
Number of rows	10899
Number of columns	11
Column type frequency:	
character	1
Date	1
factor	2
numeric	7
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
Feiertage	0	1	1	25	0	6	0

Variable type: Date

skim_variable	n_missing	complete_rate min	max	median	n_unique
Datum	0	1 2013-07-01	2019-06-06	2016-06-17	2121

Variable type: factor

skim_variable	n_missing	complete_rate ordered	n_unique top_counts
Warengruppe	0	1 FALSE	6 Bro: 2121, Bro: 2121, Cro: 2121, Kuc: 2121
Wochentag	0	1 FALSE	7 Son: 1570, Don: 1568, Sam: 1564, Die: 1562

Variable type: numeric

skim_variable	n_missing comple	te_rate	mean	sd	p0	p25	p50	p75	p100	hist
Umsatz	0	1.00	206.66	142.81	7.05	97.53	163.30	280.81	1879.46	
KielerWoche	0	1.00	0.02	0.14	0.00	0.00	0.00	0.00	1.00	
Bewoelkung	0	1.00	4.73	2.63	0.00	3.00	6.00	7.00	8.00	

Temperatur	0	1.00	11.82	7.13	-8.47	6.12	11.38	17.62	32.67
Windgeschwindigkeit	0	1.00	11.00	4.12	3.00	8.00	10.00	13.00	35.00
Wettercode	2602	0.76	36.16	27.04	0.00	10.00	22.00	61.00	95.00
istFeiertag	0	1.00	0.01	0.10	0.00	0.00	0.00	0.00	1.00 ■

Datenaufbereitung: Ausreißer bereinigen

```
#Ausreißer deckeln auf 3x Standardabweichung (Umsatz und Windgeschwindigkeit sind betroffen.)
#Bei 2x Standardabweichung werden 5% der Daten beeinflusst, das halte ich für zu viel. NUN 30
.05.2021
\#Standardabweichung berechnen (sd(x))
sd Umsatz<-sd(dataset$Umsatz, na.rm=TRUE)</pre>
sd_Windgeschwindigkeit<-sd(dataset$Windgeschwindigkeit, na.rm=TRUE)
#Gefundene Werte auf 3x Standardabweichung setzen
dataset$Windgeschwindigkeit[dataset$Windgeschwindigkeit > (mean(dataset$Windgeschwindigkeit)
+ sd_Windgeschwindigkeit*3)]<- (mean(dataset$Windgeschwindigkeit) + sd_Windgeschwindigkeit*3)
dataset$Windgeschwindigkeit[dataset$Windgeschwindigkeit < (mean(dataset$Windgeschwindigkeit)</pre>
- sd_Windgeschwindigkeit*3)]<- (mean(dataset$Windgeschwindigkeit) - sd_Windgeschwindigkeit*3)
dataset$Umsatz[dataset$Umsatz > (mean(dataset$Umsatz) + sd_Umsatz*3)]<- (mean(dataset$Umsatz)</pre>
+ sd Umsatz*3)
dataset$Umsatz[dataset$Umsatz < (mean(dataset$Umsatz) - sd Umsatz*3)]<- (mean(dataset$Umsatz)</pre>
- sd Umsatz*3)
ggplot(dataset) + geom_boxplot(aes(y=Windgeschwindigkeit),outlier.colour="red")+ coord_cartes
ian(ylim = c(min(dataset$Windgeschwindigkeit), max(dataset$Windgeschwindigkeit)))+ggtitle("Wi
ndgeschwindigkeit um Ausreißer (diff>3SD) bereinigt")
```

Windgeschwindigkeit um Ausreißer (diff>3SD) bereinigt

ggplot(dataset) + geom_boxplot(aes(y=Umsatz),outlier.colour="red")+ coord_cartesian(ylim = c(
min(dataset\$Umsatz), max(dataset\$Umsatz)))+ggtitle("Umsatz um Ausreißer (diff>3SD) bereinigt"
)

Umsatz um Ausreißer (diff>3SD) bereinigt

ggplot(dataset) +
geom_boxplot(aes(x=as.factor(Warengruppe), y=Umsatz),outlier.colour="red")+ coord_cartesian(y
lim = c(min(dataset\$Umsatz), max(dataset\$Umsatz)))+ggtitle("Umsatz nach Warengruppen um Ausre
ißer (diff>3SD) bereinigt")

Umsatz nach Warengruppen um Ausreißer (diff>3SD) bereinigt

rm(sd_Umsatz, sd_Windgeschwindigkeit)

Datensets für Modellierungen bereitstellen

Trainingsdatensätze erstellen

- data1 : Faktoren bei Warengruppe und Wochentag bleiben erhalten, Variablen Wettercode und (Bezeichnung der) Feiertage raus
- data2: Wie data1, aber alle Variablen numerisch

```
str(data1)
```

```
##
   tibble [10,899 × 9] (S3: tbl_df/tbl/data.frame)
                         : Date[1:10899], format: "2013-07-01" "2013-07-02" ...
                         : Factor w/ 6 levels "Brot", "Broetchen", ...: 1 1 1 1 1 1 1 1 1 1 ...
    $ Warengruppe
                         : num [1:10899] 149 160 112 169 171 ...
    $ Umsatz
##
##
    $ Wochentag
                         : Factor w/ 7 levels "Montag", "Dienstag", ...: 1 2 3 4 5 6 7 1 2 3 ...
    $ KielerWoche
                         : num [1:10899] 0 0 0 0 0 0 0 0 0 ...
##
    $ Bewoelkung
                         : num [1:10899] 6 3 7 7 5 0 0 0 0 2 ...
                         : num [1:10899] 17.8 17.3 21.1 18.9 20 ...
    $ Temperatur
##
    $ Windgeschwindigkeit: num [1:10899] 15 10 6 7 12 8 9 10 8 13 ...
    $ istFeiertag
                         : num [1:10899] 0 0 0 0 0 0 0 0 0 ...
```

```
str(data2)
```

```
## tibble [10,899 \times 9] (S3: tbl_df/tbl/data.frame)
                       : Date[1:10899], format: "2013-07-01" "2013-07-02" ...
##
   $ Datum
                        : num [1:10899] 1 1 1 1 1 1 1 1 1 1 ...
##
   $ Warengruppe
##
   $ Umsatz
                        : num [1:10899] 149 160 112 169 171 ...
##
   $ Wochentag
                       : num [1:10899] 1 2 3 4 5 6 7 1 2 3 ...
                       : num [1:10899] 0 0 0 0 0 0 0 0 0 ...
##
   $ KielerWoche
    $ Bewoelkung
                        : num [1:10899] 6 3 7 7 5 0 0 0 0 2 ...
##
                        : num [1:10899] 17.8 17.3 21.1 18.9 20 ...
##
   $ Temperatur
##
   $ Windgeschwindigkeit: num [1:10899] 15 10 6 7 12 8 9 10 8 13 ...
                         : num [1:10899] 0 0 0 0 0 0 0 0 0 ...
   $ istFeiertag
```

Vorhersagedatensatz mit gleicher Struktur erzeugen

Prädiktion wird vorbereitet für Umsätze 7.6.2019 (Freitag, erster Tag nach Ende der Umsatzdaten) und 09.6.2019 (Sonntag darauf) und zum Kontrast ein stürmischer kalter Mittwoch im Januar 09.01.2019

- pred_data1: Passend zu data1 mit Faktorenstrukturen
- pred_data2: Passend zu data2 mit nur numerischen Variablen

```
str(pred_data1)
```

```
'data.frame':
                    18 obs. of 8 variables:
                        : Factor w/ 6 levels "Brot", "Broetchen", ...: 1 1 1 2 2 2 3 3 3 4 ...
##
   $ Warengruppe
   $ Datum
                        : Date, format: "2019-06-07" "2019-06-09" ...
                        : Factor w/ 7 levels "Montag", "Dienstag", ..: 5 7 3 5 7 3 5 7 3 5 ...
##
   $ Wochentag
##
   $ KielerWoche
                        : num 0 0 0 0 0 0 0 0 0 ...
                        : num 1 5 7 1 5 7 1 5 7 1 ...
##
   $ Bewoelkung
##
   $ Temperatur
                        : num 17.45 18.65 3.14 17.45 18.65 ...
##
    $ Windgeschwindigkeit: num 10 10 22 10 10 22 10 10 22 10 ...
   $ istFeiertag
                         : num 0 0 0 0 0 0 0 0 0 0 ...
```

```
str(pred_data2)
```

```
18 obs. of 8 variables:
##
   'data.frame':
##
   $ Warengruppe
                        : num 1 1 1 2 2 2 3 3 3 4 ...
                         : Date, format: "2019-06-07" "2019-06-09" ...
##
   $ Datum
                         : num 5 7 3 5 7 3 5 7 3 5 ...
##
   $ Wochentag
##
   $ KielerWoche
                               0 0 0 0 0 0 0 0 0 0 ...
                         : num
##
                         : num 1 5 7 1 5 7 1 5 7 1 ...
   $ Bewoelkung
##
   $ Temperatur
                         : num 17.45 18.65 3.14 17.45 18.65 ...
   $ Windgeschwindigkeit: num 10 10 22 10 10 22 10 10 22 10 ...
##
    $ istFeiertag
                         : num 0 0 0 0 0 0 0 0 0 0 ...
```

Balken-Diagramme für selbsterstellte Variablen mit Angaben zur Streuung (Umsätze je Wochentag)

```
# Calculates mean, sd, se and IC für Umsatzdaten pro Wochentag
datal_sum <- datal %>%
  group_by(Wochentag) %>%
summarise(
    n=n(),
    mean=mean(Umsatz),
    sd=sd(Umsatz)
) %>%
  mutate( se=sd/sqrt(n)) %>%
  mutate( ic=se * qt((1-0.05)/2 + .5, n-1))

ggplot(datal_sum) +
  geom_bar( aes(x=Wochentag, y=mean), stat="identity") +
  geom_errorbar( aes(x=Wochentag, ymin=mean-sd, ymax=mean+sd), width=0.4, colour="orange", al
pha=0.9, size=1.5) + scale_x_discrete(limits = ordentlicheWoche) +
  ggtitle("Balkendiagramm Umsatz mit Fehlerbalken (Standardabweichung) ")
```

Balkendiagramm Umsatz mit Fehlerbalken (Standardabweichung)


```
ggplot(datal_sum) +
  geom_bar( aes(x=Wochentag, y=mean), stat="identity") +
  geom_errorbar( aes(x=Wochentag, ymin=mean-se, ymax=mean+se), width=0.4, colour="orange", al
  pha=0.9, size=1.5) + scale_x_discrete(limits = ordentlicheWoche) +
  ggtitle("Balkendiagramm Umsatz mit Fehlerbalken (Standardfehler) ")
```

Balkendiagramm Umsatz mit Fehlerbalken (Standardfehler)


```
ggplot(datal_sum) +
  geom_bar( aes(x=Wochentag, y=mean), stat="identity") +
  geom_errorbar( aes(x=Wochentag, ymin=mean-ic, ymax=mean+ic), width=0.4, colour="orange", al
  pha=0.9, size=1.5) + scale_x_discrete(limits = ordentlicheWoche) +
  ggtitle("Balkendiagramm Umsatz mit Fehlerbalken (Konfidenzintervall) ")
```

Balkendiagramm Umsatz mit Fehlerbalken (Konfidenzintervall)

Lineare Modelle/Supervised Learning

Optimierung des Modells mit schrittweiser Aufnahme von Variablen

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
(Intercept)	124.32 ***	111.30 ***	108.97 ***	62.59 ***	62.78 ***	58.70 ***	60.18 ***
	(1.62)	(2.28)	(2.28)	(2.34)	(2.34)	(2.90)	(3.29)
WarengruppeBroetchen	269.66 ***	269.66 ***	269.66 ***	269.66 ***	269.66 ***	269.66 ***	269.66 ***
	(2.30)	(2.18)	(2.18)	(2.00)	(2.00)	(2.00)	(2.00)
WarengruppeCroissant	40.12 ***	40.12 ***	40.12 ***	40.12 ***	40.12 ***	40.12 ***	40.12 ***
	(2.30)	(2.18)	(2.18)	(2.00)	(2.00)	(2.00)	(2.00)
WarengruppeKonditorei	-36.81 ***	-36.97 ***	-36.99 ***	-36.83 ***	-36.83 ***	-36.82 ***	-36.82 ***
	(2.31)	(2.20)	(2.19)	(2.01)	(2.01)	(2.01)	(2.01)
WarengruppeKuchen	150.73 ***	150.73 ***	150.73 ***	150.73 ***	150.73 ***	150.73 ***	150.73 ***

	(2.30)	(2.18)	(2.18)	(2.00)	(2.00)	(2.00)	(2.00)
WarengruppeSaisonbrote	-57.11 ***	-57.06 ***	-56.34 ***	-35.48 ***	-35.37 ***	-35.08 ***	-35.00 ***
	(4.32)	(4.11)	(4.10)	(3.80)	(3.80)	(3.80)	(3.80)
WochentagDienstag		-5.43 *	-3.33	-4.06	-4.04	-4.05	-4.01
		(2.55)	(2.55)	(2.34)	(2.34)	(2.34)	(2.34)
WochentagMittwoch		-6.71 **	-4.61	-5.78 *	-5.76 *	-5.79 *	-5.78 *
		(2.56)	(2.55)	(2.35)	(2.35)	(2.35)	(2.35)
WochentagDonnerstag		1.29	2.14	1.14	1.15	1.23	1.29
		(2.55)	(2.54)	(2.34)	(2.33)	(2.33)	(2.33)
WochentagFreitag		4.01	6.11 *	4.79 *	4.82 *	4.89 *	4.93 *
		(2.56)	(2.56)	(2.35)	(2.35)	(2.35)	(2.35)
WochentagSamstag		45.60 ***	47.71 ***	47.78 ***	47.57 ***	47.67 ***	47.71 ***
		(2.55)	(2.55)	(2.34)	(2.34)	(2.34)	(2.34)
WochentagSonntag		51.95 ***	54.05 ***	53.31 ***	53.09 ***	53.09 ***	53.08 ***
		(2.55)	(2.55)	(2.34)	(2.34)	(2.34)	(2.34)
istFeiertag			65.21 ***	58.20 ***	58.54 ***	58.18 ***	57.94 ***
			(6.69)	(6.16)	(6.15)	(6.15)	(6.16)
Temperatur				3.93 ***	3.89 ***	3.89 ***	3.86 ***
				(0.09)	(0.09)	(0.09)	(0.10)
KielerWoche					14.46 **	14.25 **	14.54 **
					(4.45)	(4.45)	(4.46)
Windgeschwindigkeit						0.37 *	0.38 *
						(0.16)	(0.16)
Bewoelkung							-0.25
							(0.26)
N	10899	10899	10899	10899	10899	10899	10899
R2	0.69	0.72	0.73	0.77	0.77	0.77	0.77

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

```
## Analysis of Variance Table
##
## Model 1: Umsatz ~ Warengruppe
## Model 2: Umsatz ~ Warengruppe + Wochentag
## Model 3: Umsatz ~ Warengruppe + Wochentag + istFeiertag
## Model 4: Umsatz ~ Warengruppe + Wochentag + istFeiertag + Temperatur
## Model 5: Umsatz ~ Warengruppe + Wochentag + istFeiertag + Temperatur +
##
      KielerWoche
## Model 6: Umsatz ~ Warengruppe + Wochentag + istFeiertag + Temperatur +
##
       KielerWoche + Windgeschwindigkeit
## Model 7: Umsatz ~ Warengruppe + Wochentag + istFeiertag + Temperatur +
##
      KielerWoche + Windgeschwindigkeit + Bewoelkung
##
    Res.Df
                RSS Df Sum of Sq
## 1
     10893 60872235
## 2 10887 55094668 6
                        5777567 227.0783 < 2.2e-16 ***
## 3
     10886 54617735 1
                         476933 112.4707 < 2.2e-16 ***
## 4
     10885 46217848 1
                         8399887 1980.8675 < 2.2e-16 ***
## 5
     10884 46173133 1
                           44716
                                   10.5449 0.001169 **
     10883 46149114 1
                            24019
                                    5.6642 0.017332 *
## 7 10882 46145221 1
                                    0.9179 0.338053
                            3892
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Entscheidung für das Modell 6 Umsatz ~ Warengruppe + Wochentag + istFeiertag + Temperatur + KielerWoche + Windgeschwindigkeit mit 0,715 Varianzaufklärung

```
## MODEL INFO:
## Observations: 10899
## Dependent Variable: Umsatz
## Type: OLS linear regression
##
## MODEL FIT:
  F(15,10883) = 2410.29, p = 0.00
##
## R^2 = 0.77
## Adj. R^2 = 0.77
  Standard errors: OLS
##
                                 Est. S.E. t val.
##
## (Intercept)
                                58.70 2.90
                                               20.21
## WarengruppeBroetchen
                              269.66 2.00 134.85 0.00
                               40.12 2.00
## WarengruppeCroissant
                                               20.06
                                                       0.00
## WarengruppeKonditorei
                              -36.82 2.01
                                               -18.29
                                                       0.00
                                                       0.00
## WarengruppeKuchen
                              150.73 2.00
                                               75.38
## WarengruppeSaisonbrote
                                      3.80
                                               -9.24
                                                       0.00
                               -35.08
## WochentagDienstag
                                -4.05
                                       2.34
                                               -1.73
                                                       0.08
## WochentagMittwoch
                               -5.79
                                      2.35
                                               -2.46
                                                       0.01
## WochentagDonnerstag
                                 1.23
                                        2.33
                                                0.53
                                                       0.60
                                                2.08
## WochentagFreitag
                                 4.89
                                        2.35
                                                       0.04
## WochentagSamstag
                               47.67
                                      2.34
                                               20.34
                                                       0.00
## WochentagSonntag
                               53.09 2.34
                                               22.68
                                                       0.00
## istFeiertag
                                58.18
                                      6.15
                                                9.45
                                                       0.00
## Temperatur
                                 3.89 0.09
                                               43.69
                                                       0.00
## KielerWoche
                                                       0.00
                                14.25
                                        4.45
                                                3.20
## Windgeschwindigkeit
                                 0.37
                                        0.16
                                                 2.38
                                                       0.02
```

Prädiktion 1 (Lineare Modelle/Supervised Learning)

aka: Ich nehme ein lineares Modell, das auf einen Datensatz gefittet wurde und sage mit den dort geschätzten Koeffizienten die Zielvariable auf Basis von einem neuen Datensatz vorher

```
#Vorhersage berechnen
pred_lm <- predict(object=LMfinal, newdata = pred_datal, type = "response", interval = "confi
dence", na.action = na.exclude)

#print(pred_lm)
#class(pred_lm)#is ne doofe Matrix--> für Nutzung von dplyr-Routinen as.data.frame()

pred_lm <- dplyr::bind_cols(pred_datal, as.data.frame(pred_lm)) #in dieser Datei sind "fit" d
ie Umsatz-Prädiktionen für die jeweiligen Datenpunkte, lwr und upr sind die Grenzen der Konfi
denzintervalle

pred_lm<- rename(pred_lm,Prediction_Umsatz_LM = fit,UntereGrenzeKonfInt=lwr,ObereGrenzeKonfIn
t=upr)

anzeige <-dplyr::filter(pred_lm,Datum==ymd(20190607))
anzeige <-dplyr::select(anzeige, c("Warengruppe","Prediction_Umsatz_LM","UntereGrenzeKonfInt",
"ObereGrenzeKonfInt"))
pred_lm</pre>
```

##		Warengruppe	Datum	Wochentag	KielerWoche	Bewoelkund	Temperatur	
##	1		2019-06-07	Freitag	0	1	=	
##	2	Brot	2019-06-09	Sonntag	0	5	18.6500	
##	3	Brot	2019-01-09	_	0	7	3.1375	
##		Broetchen	2019-06-07	Freitag	0	1	17.4500	
##		Broetchen	2019-06-09	Sonntag	0	5		
##		Broetchen	2019-01-09	_	0	7	3.1375	
##	7	Croissant	2019-06-07	Freitag	0	1	17.4500	
##	8	Croissant	2019-06-09	Sonntag	0	5	18.6500	
##	9	Croissant	2019-01-09	Mittwoch	0	7	3.1375	
##	10	Konditorei	2019-06-07	Freitag	0	1	17.4500	
##	11	Konditorei	2019-06-09	Sonntag	0	5	18.6500	
##	12	Konditorei	2019-01-09	Mittwoch	0	7	3.1375	
##	13	Kuchen	2019-06-07	Freitag	0	1	17.4500	
##	14	Kuchen	2019-06-09	Sonntag	0	5	18.6500	
#	15	Kuchen	2019-01-09	Mittwoch	0	7	3.1375	
#	16	Saisonbrote	2019-06-07	Freitag	0	1	17.4500	
#	17	Saisonbrote	2019-06-09	Sonntag	0	5	18.6500	
#	18	Saisonbrote	2019-01-09	Mittwoch	0	7	3.1375	
#		Windgeschwir	ndigkeit ist	Feiertag I	Prediction_Um	nsatz_LM Un	tereGrenzeKo	nfInt
#	1		10	0	13	35.20687	130.	98910
#	2		10	0	18	88.08222	183.	81511
#	3		22	0	7	3.24846	67.	77004
	4		10	0	40	4.86622	400.	64845
#	5		10	0	45	7.74157	453.	47446
#			22	0	34	2.90781	337.	42939
##			10	0	17	5.32563	171.	10787
#			10	0	22	28.20098	223.	93387
##	9		22	0	11	3.36722	107.	88880
#	10		10	0	g	8.38697	94.	14281
#	11		10	0	15	1.26232	146.	97850
##	12		22	0	3	86.42856	30.	92545
##	13		10	0	28	35.93224	281.	71447
	14		10	0	33	88.80759	334.	54048
#	15		22	0	22	23.97383	218.	49541

##	16	10	0	100.12620	92.42066	
##	17	10	0	153.00155	145.24894	
##	18	22	0	38.16779	29.86332	
##	ObereGr	renzeKonfInt				
##	1	139.42464				
##	2	192.34933				
##	3	78.72688				
##	4	409.08399				
##	5	462.00868				
##	6	348.38623				
##	7	179.54340				
##	8	232.46809				
##	9	118.84564				
##	10	102.63113				
##	11	155.54615				
##	12	41.93167				
##	13	290.15001				
##	14	343.07470				
##	15	229.45225				
##	16	107.83173				
##	17	160.75415				
##	18	46.47225				

Die Vorhersage für den ersten Tag (2019-06-07) nach Ende der Datenreihe ist:

#	Warengruppe	Prediction_Umsatz_LM	${\tt UntereGrenzeKonfInt}$	${\tt ObereGrenzeKonfInt}$
1	Brot	135.20687	130.98910	139.4246
≠ 4	Broetchen	404.86622	400.64845	409.0840
# 7	Croissant	175.32563	171.10787	179.5434
10	Konditorei	98.38697	94.14281	102.6311
13	Kuchen	285.93224	281.71447	290.1500
± 16	Saisonbrote	100.12620	92.42066	107.8317

Support Vector Maschinen

Trainings- und Testdatensätze erstellen

Achtung: Im Moment auf 10% Trainingsdaten, wegen Performanz! Am Ende wieder anpassen

```
data<-data2

# Zufallszähler setzen (um die zufällige Partitionierung bei jedem Durchlauf gleich zu halten
)
set.seed(1)

#Datensatzzeilen shuffeln
new_row_order<-sample(nrow(data))
data<-data[new_row_order,]

# Zufällige Ziehung von Indizes für die Zeilen des Datensatzes, die dem Traininsdatensatz zug
eordnet werden, Umfang: 80% (im Moment 10%)
indices_train <- sample(seq_len(nrow(data)), size = floor(0.10 * nrow(data)))

# Definition des Trainings- und Testdatensatz durch Selektion bzw. Deselektion der entspreche
nden Datenzeilen
train_data <- data[indices_train, ]
test_data <- data[-indices_train, ]</pre>
```

SVM Trainieren (ohne Tuning)

```
model_svm <- svm(Umsatz ~ Warengruppe+Wochentag, train_data)
summary(model_svm)</pre>
```

```
##
## Call:
##
   svm(formula = Umsatz ~ Warengruppe + Wochentag, data = train data)
##
##
  Parameters:
##
      SVM-Type: eps-regression
                 radial
##
    SVM-Kernel:
##
          cost:
##
         gamma:
                 0.5
##
       epsilon:
                 0.1
##
##
## Number of Support Vectors: 806
```

Kreuzvalidierung

```
test_data_svm <-predict(model_svm,test_data,na.action = na.pass)
mape(test_data$Umsatz,test_data_svm) #Mean Absolute Percent Error,</pre>
```

```
## [1] 0.2774538
```

```
#rse: sum(error^2)/sum(actual-mean(actual))
#r^2=1-rse #laut Steffen Brandt

r_squared_svm<-1-rse(test_data$Umsatz,test_data_svm)
r_squared_svm</pre>
```

```
## [1] 0.7266911
```

##Prädiktion 2 (SVM ohne Tuning)

```
pred_svm <- predict(model_svm, pred_data2, na.action = na.pass)# Daten Vorhersagen

pred_svm <- dplyr::bind_cols(pred_data2, as.data.frame(pred_svm )) #zusammenfügen

pred_svm<- rename(pred_svm,Prediction_Umsatz_SVM = pred_svm)#Variablenbenennung anpassen

#Faktoren wieder schick machen

pred_svm$Wochentag <- factor(weekdays(pred_svm$Datum),
levels=ordentlicheWoche)

pred_svm$Warengruppe <- factor(pred_svm$Warengruppe,
levels = c(1,2,3,4,5,6),
labels = c("Brot", "Broetchen", "Croissant", "Konditorei", "Kuchen", "Saisonbrote"))

anzeige <-dplyr::filter(pred_svm,Datum==ymd(20190607))
anzeige <-dplyr::select(anzeige, c("Warengruppe", "Prediction_Umsatz_SVM"))

pred_svm</pre>
```

##		Warengruppe		Wochentag	KielerWoche	Bewoelkung	Temperatur
##		Brot	2019-06-07	Freitag	0	1	17.4500
##		Brot	2019-06-09	Sonntag	0	5	18.6500
##		Brot	2019-01-09	Mittwoch	0	7	3.1375
##	4	Broetchen	2019-06-07	Freitag	0	1	17.4500
##	5	Broetchen	2019-06-09	Sonntag	0	5	18.6500
##	6	Broetchen	2019-01-09	Mittwoch	0	7	3.1375
##	7	Croissant	2019-06-07	Freitag	0	1	17.4500
##	8	Croissant	2019-06-09	Sonntag	0	5	18.6500
##	9	Croissant	2019-01-09	Mittwoch	0	7	3.1375
##	10	Konditorei	2019-06-07	Freitag	0	1	17.4500
##	11	Konditorei	2019-06-09	Sonntag	0	5	18.6500
##	12	Konditorei	2019-01-09	Mittwoch	0	7	3.1375
##	13	Kuchen	2019-06-07	Freitag	0	1	17.4500
##	14	Kuchen	2019-06-09	Sonntag	0	5	18.6500
##	15	Kuchen	2019-01-09	Mittwoch	0	7	3.1375
##	16	Saisonbrote	2019-06-07	Freitag	0	1	17.4500
##	17	Saisonbrote	2019-06-09	Sonntag	0	5	18.6500
##	18	Saisonbrote	2019-01-09	Mittwoch	0	7	3.1375
##		Windgeschwin	ndigkeit ist	tFeiertag I	Prediction_U	msatz_SVM	
##	1		10	0		139.29890	
##	2		10	0		102.46227	
##	3		22	0		119.77695	
##	4		10	0		373.23100	
##	5		10	0		444.58441	
##	6		22	0		323.16086	
##	7		10	0		146.96562	
##	8		10	0		246.05492	
##	9		22	0		124.89878	
##	10		10	0		76.52544	
##	11		10	0		124.46991	
##	12		22	0		75.97449	
##	13		10	0		261.45276	
##	14		10	0		276.18899	
##	15		22	0		253.99799	
##	16		10	0		93.58963	
##	17		10	0		157.11996	
##	18		22	0		76.49333	

Die Vorhersage für den ersten Tag (2019-06-07) nach Ende der Datenreihe ist:

```
##
     Warengruppe Prediction_Umsatz_SVM
## 1
            Brot
                             139.29890
## 4
       Broetchen
                              373.23100
## 7
       Croissant
                             146.96562
## 10 Konditorei
                              76.52544
## 13
          Kuchen
                              261.45276
## 16 Saisonbrote
                               93.58963
```

SVM Trainieren (mit Tuning)

```
svm_tune <- tune(svm, Umsatz ~ Warengruppe + Wochentag, data=train_data,ranges = list(epsilon
= seq(0.2,1,0.1), cost = 2^(2:3)))
summary(svm_tune)</pre>
```

```
##
##
  Parameter tuning of 'svm':
##
##
   - sampling method: 10-fold cross validation
##
##
   - best parameters:
##
    epsilon cost
##
        0.3
##
##
   - best performance: 4550.13
##
##
  - Detailed performance results:
##
      epsilon cost
                       error dispersion
## 1
          0.2
                  4 4625.116
                               1500.636
                  4 4600.966
## 2
          0.3
                               1469,471
## 3
          0.4
                 4 4705.820
                               1487.649
## 4
          0.5
                  4 4841.237
                               1458.590
## 5
          0.6
                  4 5066.137
                               1361.817
## 6
          0.7
                 4 5449.668
                               1276.171
                 4 5889.816
## 7
          0.8
                               1202.699
## 8
          0.9
                  4 6674.801
                               1209.729
                  4 7622.299
## 9
          1.0
                               1107.956
## 10
          0.2
                 8 4563.291
                               1489.614
## 11
          0.3
                 8 4550.130
                               1467.544
          0.4
                 8 4629.443
## 12
                               1470,618
## 13
          0.5
                 8 4757.600
                               1440.336
## 14
          0.6
                 8 4943.481
                               1335.859
## 15
          0.7
                 8 5346.577
                               1231.085
## 16
          0.8
                 8 5803.544
                               1170.991
## 17
          0.9
                 8 6370.311
                               1115.436
## 18
          1.0
                  8 7304.838
                               1077.447
```

Kreuzvalidierung

```
test_data_svm<-predict(svm_tune$best.model,test_data,na.action = na.pass)
mape(test_data$Umsatz,test_data_svm) #Mean Absolute Percent Error</pre>
```

```
## [1] 0.2770731
```

```
r_squared_svmtune<-1-rse(test_data$Umsatz,test_data_svm)
r_squared_svmtune
```

```
## [1] 0.7448893
```

Prädiktion 3 (SVM mit Tuning)

```
pred_svmtune <- predict(svm_tune$best.model, pred_data2, na.action = na.pass)# Daten Vorhersa
gen

pred_svmtune <- dplyr::bind_cols(pred_data2, as.data.frame(pred_svmtune)) #zusammenfügen

pred_svmtune<- rename(pred_svmtune,Prediction_Umsatz_SVMtune = pred_svmtune)#Variablenbenennu
ng anpassen

#Faktoren wieder schick machen
pred_svmtune$Wochentag <- factor(weekdays(pred_svmtune$Datum),
levels=ordentlicheWoche)
pred_svmtune$Warengruppe <- factor(pred_svmtune$Warengruppe,
levels = c(1,2,3,4,5,6),
labels = c("Brot", "Broetchen", "Croissant", "Konditorei", "Kuchen", "Saisonbrote"))

anzeige <-dplyr::filter(pred_svmtune,Datum==ymd(20190607))
anzeige <-dplyr::select(anzeige, c("Warengruppe","Prediction_Umsatz_SVMtune"))

pred_svmtune</pre>
```

##		Warengruppe	Datum	Wochentag	KielerWoche	Bewoelkung	Temperatur
##	1	Brot	2019-06-07	Freitag	0	1	17.4500
##	2	Brot	2019-06-09	Sonntag	0	5	18.6500
##	3	Brot	2019-01-09	Mittwoch	0	7	3.1375
##	4	Broetchen	2019-06-07	Freitag	0	1	17.4500
##	5	Broetchen	2019-06-09	Sonntag	0	5	18.6500
##	6	Broetchen	2019-01-09	Mittwoch	0	7	3.1375
##	7	Croissant	2019-06-07	Freitag	0	1	17.4500
##	8	Croissant	2019-06-09	Sonntag	0	5	18.6500
##	9	Croissant	2019-01-09	Mittwoch	0	7	3.1375
##	10	Konditorei	2019-06-07	Freitag	0	1	17.4500
##	11	Konditorei	2019-06-09	Sonntag	0	5	18.6500
##	12	Konditorei	2019-01-09	Mittwoch	0	7	3.1375
##	13	Kuchen	2019-06-07	Freitag	0	1	17.4500
##	14	Kuchen	2019-06-09	Sonntag	0	5	18.6500
##	15	Kuchen	2019-01-09	Mittwoch	0	7	3.1375
##	16	Saisonbrote	2019-06-07	Freitag	0	1	17.4500
##	17	Saisonbrote	2019-06-09	Sonntag	0	5	18.6500
##	18	Saisonbrote	2019-01-09	Mittwoch	0	7	3.1375
##		Windgeschwin	ndigkeit is	tFeiertag I	Prediction_U	msatz_SVMtu	ne
##	1		10	0		143.1749	91
##	2		10	0		100.036	11
##	3		22	0		121.1378	38
##	4		10	0		376.9868	39
##	5		10	0		488.990	56
##	6		22	0		344.507	52
##	7		10	0		143.6120	08
##	8		10	0		217.8249	95
##	9		22	0		139.2602	23
##	10		10	0		84.676	16
##	11		10	0		121.6490	06
##	12		22	0		83.535	56
##	13		10	0		270.144	18
##	14		10	0		303.9040	08
##	15		22	0		260.7030	06
##	16		10	0		89.0848	34
##	17		10	0		107.449	11
##	18		22	0		70.829	03

Die Vorhersage für den ersten Tag (2019-06-07) nach Ende der Datenreihe ist:

```
##
      Warengruppe Prediction_Umsatz_SVMtune
## 1
             Brot
                                   143.17491
## 4
        Broetchen
                                   376.98689
        Croissant
## 7
                                   143.61208
## 10 Konditorei
                                    84.67616
## 13
           Kuchen
                                   270.14418
## 16 Saisonbrote
                                    89.08484
```

```
## Warning in rm(anzeige, indices_train, new_row_order, test_data_svm): Objekt
## 'indices_train' nicht gefunden
```

```
## Warning in rm(anzeige, indices_train, new_row_order, test_data_svm): Objekt
## 'new_row_order' nicht gefunden
```

Neuronale Netze

Vorbereitung

Installation von Python und TensorFlow (nur einmalig nötig, im Hintergrund)

Benötigte Pakete laden (im Hintergrund)

Daten aufbereiten (im Hintergrund)

Training des Neuronalen Netzes

Definition des Neuronalen Netzes

```
# Import needed Python libraries and functions
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Dropout
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers.experimental import preprocessing
# Create a Normalization layer and use the means and variances of the training features for t
he normalization
normalizer = preprocessing.Normalization()
normalizer.adapt(r.training_features.values)
# The argument "shape" for the definition of the input layer must include the number of varia
bles (features) used for the model. To automatically calculate this number, we use the "r.tra
ining_features.keys()", which returns the list of variable names of the dataframe "training_f
eatures". Further, the function len() returns the length of this list of variable names (i.e.
the number of variables in the input).
inputs = tf.keras.Input(shape=[len(r.training features.keys())])
# Normalization layer
x = normalizer(inputs)
# 1st hidden layer
x = Dense(10, activation='relu')(x)
x = Dropout(.2)(x)
# 2nd hidden layer
x = Dense(4, activation='relu')(x)
# Output layer
output = tf.keras.layers.Dense(1)(x)
# Model definition
model = tf.keras.Model(inputs, output)
# Ausgabe einer Zusammenfassung zur Form des Modells, das geschaetzt wird (nicht notwendig)
model.summary()
```

```
## Model: "model"
##
  Layer (type)
                        Output Shape
                                            Param #
  ______
  input 1 (InputLayer)
                        [(None, 15)]
##
##
  normalization (Normalization (None, 15)
##
## dense (Dense)
                        (None, 10)
                                            160
##
## dropout (Dropout)
                        (None, 10)
##
## dense_1 (Dense)
                                            44
                        (None, 4)
##
## dense 2 (Dense)
                        (None, 1)
## Total params: 240
## Trainable params: 209
## Non-trainable params: 31
```

Schätzung des neuronalen Netzes

Auswertung der Modelloptimierung

Loss Function Values During Optimization

(Ggf.) Laden eines gespeicherten Neuronalen Netzes

model = tf.keras.models.load model("python model.h5")

Auswertung der Schätzergebnisse

```
# Schätzung der (normierten) Preise für die Trainings- und Testdaten
training_predictions <- py$model$predict(training_features)
validation_predictions <- py$model$predict(validation_features)
validation_true_predictions <- py$model$predict(pred_data_features)
# Vergleich der Gütekriterien für die Trainings- und Testdaten
cat(paste0("MAPE on the Training Data:\t", format(mape(training_labels[[1]], as.numeric(training_predictions))*100, digits=3, nsmall=2)))</pre>
```

```
## MAPE on the Training Data: 22.75
```

cat(paste0("\nMAPE on the Validation Data:\t", format(mape(validation_labels[[1]], validation
_predictions)*100, digits=3, nsmall=2)))

```
##
## MAPE on the Validation Data: 22.82
```

```
## Grafischer vergleich der vorhergesagten und der tatsächlichen Preise für die Trainings- un
d Testdaten
# Zusammenstellung der Daten für die Plots
data_train <- data.frame(prediction = training_predictions, actual = training_labels[[1]])
data_test <- data.frame(prediction = validation_predictions, actual = validation_labels[[1]])
data_pred <- data.frame(prediction = validation_true_predictions)
# Plot der Ergebnisse der Trainingsdaten
ggplot(data_train[1:100,]) +
   geom_line( aes(x=1:length(prediction), y=prediction, colour = "Predicted Values" )) +
   geom_line( aes(x=1:length(actual), y=actual, colour = "Actual Values" )) +
   scale_colour_manual( values = c("Predicted Values"="blue", "Actual Values"="red") ) +
   labs(title="Predicted and Actual Values for the Training Data") +
   xlab("Case Number") +
   ylab("Sales in EUR")</pre>
```

Predicted and Actual Values for the Training Data


```
# Plot der Ergebnisse der Validierungsdaten
ggplot(data_test[1:100,]) +
  geom_line( aes(x=1:length(prediction), y=prediction, colour = "Predicted Values" )) +
  geom_line( aes(x=1:length(actual), y=actual, colour = "Actual Values" )) +
  scale_colour_manual( values = c("Predicted Values"="blue", "Actual Values"="red") ) +
  labs(title="Predicted and Actual Values for the Test Data") +
  xlab("Case Number") +
  ylab("Sales in EUR")
```

Predicted and Actual Values for the Test Data

Prädiktion 4 (Neuronales Netz)

```
pred_nn <- dplyr::bind_cols(pred_data2, as.data.frame(data_pred)) #zusammenfügen

pred_nn<- rename(pred_nn,Prediction_Umsatz_nn = prediction)#Variablenbenennung anpassen

#Faktoren wieder schick machen

pred_nn$Wochentag <- factor(weekdays(pred_nn$Datum),
levels=ordentlicheWoche)

pred_nn$Warengruppe <- factor(pred_nn$Warengruppe,
levels = c(1,2,3,4,5,6),
labels = Warengruppen)

anzeige <-dplyr::filter(pred_nn,Datum==ymd(20190607))
anzeige <-dplyr::select(anzeige, c("Warengruppe","Prediction_Umsatz_nn"))

pred_nn</pre>
```

##		Warangruppa	Datum	Woghontag	KielerWoche	Portool kung	Tomporatur
##	1	Warengruppe	2019-06-07	Freitag	0	bewoerkung 1	_
##			2019-06-09	Sonntag	0	5	18.6500
##			2019-00-09	Mittwoch	0	7	3.1375
##			2019-06-07	Freitag	0	1	
##			2019-06-09	Sonntag	0	5	18.6500
##			2019-01-09	Mittwoch	0	7	3.1375
##			2019-06-07	Freitag	0	1	17.4500
##			2019-06-09	Sonntag	0	5	18.6500
##			2019-01-09	Mittwoch	0	7	3.1375
##		Konditorei	2019-06-07	Freitag	0	1	17.4500
##	11	Konditorei	2019-06-09	Sonntag	0	5	18.6500
##	12	Konditorei	2019-01-09	Mittwoch	0	7	3.1375
##	13	Kuchen	2019-06-07	Freitag	0	1	17.4500
##	14	Kuchen	2019-06-09	Sonntag	0	5	18.6500
##	15	Kuchen	2019-01-09	Mittwoch	0	7	3.1375
##	16	Saisonbrote	2019-06-07	Freitag	0	1	17.4500
##	17	Saisonbrote	2019-06-09	Sonntag	0	5	18.6500
##	18	${\tt Saisonbrote}$	2019-01-09	Mittwoch	0	7	3.1375
##		Windgeschwir	ndigkeit ist	Feiertag I	Prediction_U	msatz_nn	
##	1		10	0	13	38.47377	
##	2		10	0	1	15.90719	
##			22	0	10	01.70894	
##			10	0	4 (03.77881	
##			10	0	52	25.39404	
##			22	0	2	94.73840	
##			10	0	10	64.17165	
##			10	0		72.51883	
##			22	0		04.86682	
##			10	0	:	83.66629	
##			10	0		20.83968	
##			22	0		78.30128	
##			10	0		73.58771	
##			10	0		38.00912	
##			22	0		19.27246	
##			10	0		75.03831	
##			10	0		06.38608	
##	18		22	0		75.03831	

Die Vorhersage für den ersten Tag (2019-06-07) nach Ende der Datenreihe ist:

```
##
    Warengruppe Prediction_Umsatz_nn
## 1
           Brot
                           138.47377
## 2
      Broetchen
                           403.77881
      Croissant
## 3
                           164.17165
## 4 Konditorei
                            83.66629
## 5
         Kuchen
                           273.58771
## 6 Saisonbrote
                            75.03831
```

Grafischer Vergleich der Vorhersagen

```
## Warengruppe Datum Wochentag KielerWoche Bewoelkung Temperatur
## 1 Brot 2019-06-07 Freitag 0 1 17.4500
## 2 Brot 2019-06-09 Sonntag 0 5 18.6500
```

## 3 Brot 2019-01-09	Mittwoch	0	7	3.1375
## 4 Broetchen 2019-06-07	Freitag	0	1	17.4500
## 5 Broetchen 2019-06-09	Sonntag	0	5	18.6500
	Mittwoch	0	7	3.1375
## 7 Croissant 2019-06-07	Freitag	0	1	17.4500
## 8 Croissant 2019-06-09	Sonntag	0	5	18.6500
	Mittwoch	0	7	3.1375
## 10 Konditorei 2019-06-07	Freitag	0	1	17.4500
## 11 Konditorei 2019-06-09	Sonntag	0	5	18.6500
	Mittwoch	0	7	3.1375
## 13 Kuchen 2019-06-07	Freitag	0	1	17.4500
## 14 Kuchen 2019-06-09	Sonntag	0	5	18.6500
	Mittwoch	0	7	3.1375
## 16 Saisonbrote 2019-06-07	Freitag	0	1	17.4500
## 17 Saisonbrote 2019-06-09	Sonntag	0	5	18.6500
	Mittwoch	0	7	3.1375
## Windgeschwindigkeit istF				
## 1 10	0	135.20687		139.29890
## 2	0	188.08222		102.46227
## 3 22	0	73.24846		119.77695
## 4 10	0	404.86622		373.23100
## 5	0	457.74157		444.58441
## 6 22	0	342.90781		323.16086
## 7	0	175.32563		146.96562
## 8 10	0	228.20098		246.05492
## 9 22	0	113.36722		124.89878
## 10 10	0	98.38697		76.52544
## 11 10	0	151.26232		124.46991
## 12 22	0	36.42856		75.97449
## 13	0	285.93224		261.45276
## 14 10	0	338.80759		276.18899
## 15 22	0	223.97383		253.99799
## 16 10	0	100.12620		93.58963
## 17 10	0	153.00155		157.11996
## 18 22	0	38.16779		76.49333
## Prediction_Umsatz_SVMtun	e Prediction			
## 1 143.1749	1	138.47377		
## 2 100.0361	1	115.90719		
## 3 121.1378		101.70894		
## 4 376.9868		403.77881		
## 5 488.9905	6	525.39404		
## 6 344.5075	2	294.73840		
## 7 143.6120	8	164.17165		
## 8 217.8249	5	272.51883		
## 9 139.2602	3	104.86682		
## 10 84.6761	6	83.66629		
## 11 121.6490	6	120.83968		
## 12 83.5355	6	78.30128		
## 13 270.1441	8	273.58771		
## 14 303.9040	8	338.00912		
## 15 260.7030	6	219.27246		
## 16 89.0848	4	75.03831		
## 17 107.4491	1	106.38608		
## 18 70.8290	3	75.03831		

