线性代数 (工科类) 期中考试

2019年11月2日

题 1. $(5\, \beta)$ 把矩阵 A 的第一行的 2 倍加到第二行,之后互换第一列和第二列,得到的矩阵 是 $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 。那么,矩阵 A 是什么?

解答 1. 倒回去
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} = A.$$

题 2. $(5 \, \beta)$ 试给出一个 2 阶上三角矩阵 U,使得 U 不是对角阵,且 $U^{-1} = U$ 。

解答 2.
$$U=\begin{bmatrix}1&1\\0&-1\end{bmatrix}$$
. 注: 满足这样条件的 U 只可能是 $\begin{bmatrix}1&a\\0&-1\end{bmatrix}$ 或 $\begin{bmatrix}-1&a\\0&1\end{bmatrix}$ $(a\neq 0)$.

题 3. (5 分) 假设 A_1, A_2, \ldots, A_4 是同阶可逆方阵, $C = A_1 A_2 A_3 A_4$ 是它们的乘积,试用 C^{-1} 和 A_1, A_2, A_4 表示 A_2^{-1} .

解答 3.
$$C^{-1} = A_4^{-1} A_3^{-1} A_2^{-1} A_1^{-1}$$
, 故 $A_3^{-1} = A_4 C^{-1} A_1 A_2$.

题 4. $(8 \, \mathcal{G})$ 试写下两个非零的 $2 \, \text{阶方阵} \, A, B$ 使得 $A^2 = B^2 = 0$. 所有满足 $A^2 = 0$ 的 $2 \, \text{阶方阵的全体是否是} \, M_2(\mathbb{R})$ 的线性子空间?若是请证明,若不是请说明原因。

解答 4.
$$A=\begin{bmatrix}0&1\\0&0\end{bmatrix},\ B=\begin{bmatrix}0&0\\1&0\end{bmatrix}$$
. 记 $Nil=\{A\in M_2(\mathbb{R}):A^2=0\}$. 因为 $A,B\in Nil$ 而 $A+B=\begin{bmatrix}0&1\\1&0\end{bmatrix}$ 是一个 2 阶置换阵 P ,其平方是 I_2 ,所以 $P\notin Nil$,由此可见, Nil 在加法运

算下不封闭,故它不是 $M_2(\mathbb{R})$ 的子空间。**注:** 满足 $A^2=0$ 的 2 阶方阵都形如 $\begin{bmatrix} a & b \\ c & -a \end{bmatrix}$,其中 $a^2+bc=0$.

题 5. $(8\, \beta)$ 设 $A \in M_2(\mathbb{R})$, $\mathbf{b} \in \mathbb{R}^2$, 且线性方程组 $A\mathbf{x} = \mathbf{b}$ 有三组解 $\mathbf{x_1} = \begin{bmatrix} 2 \\ 7 \end{bmatrix}$, $\mathbf{x_2} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, $\mathbf{x_3} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$, 试证明 $\mathbf{x_4} = \begin{bmatrix} 5 \\ 26 \end{bmatrix}$ 也是该方程组的解。

解答 5. 因为 $\mathbf{x_1}$, $\mathbf{x_2}$, $\mathbf{x_3}$ 都是 $A\mathbf{x} = \mathbf{b}$ 的解,所以 $\mathbf{x_2} - \mathbf{x_1} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ 和 $\mathbf{x_3} - \mathbf{x_2} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ 是齐次线性方程组 $A\mathbf{x} = 0$ 的解。方程组 $A\mathbf{x} = 0$ 的解集 N(A) 是 \mathbb{R}^2 的线性子空间。既然 N(A) 包含 $\mathbf{x_2} - \mathbf{x_1}$ 和 $\mathbf{x_3} - \mathbf{x_2}$, 那么 N(A) 必然包含这两个向量的所有线性组合。又因 $\begin{bmatrix} 1 \\ -3 \end{bmatrix}$ 与 $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ 不共线,故它们的所有线性组合是 \mathbb{R}^2 ,也就是说 $N(A) = \mathbb{R}^2$. 所以 $A\mathbf{x} = \mathbf{b}$ 的解集是 $\mathbf{x_1} + N(A) = \mathbf{x_1} + \mathbb{R}^2 = \mathbb{R}^2$,特别的 $\mathbf{x_4}$ 是该方程组的解。

其他方法:设 $A=(a_{ij})$, $\mathbf{b}=(b_1,b_2)$, 则线性方程组 $A\mathbf{x}=\mathbf{b}$ 等价于 $a_{11}x+a_{12}y=b_1$ 且 $a_{21}x+a_{22}y=b_2$. 这两个方程都是平面中的直线方程,除非系数 $(a_{11},a_{12})=(0,0)$ 或 $(a_{21},a_{22})=(0,0)$. 因为 $3=\frac{2+4}{2}$, 而 $4\neq\frac{7+8}{2}$, 所以题设中给出的三点不共线,也就是说没有一条直线会同时包含这三点。这说明 $a_{11}=a_{12}=a_{21}=a_{22}=0$, 即 A=0; 原方程组 $A\mathbf{x}=\mathbf{b}$ 又有解,所以必有 $\mathbf{b}=0$,所以任意向量都是 $0\mathbf{x}=\mathbf{0}$ 的解。

题 6. (8 分) 设 A 是 3×4 阶矩阵,A 的零空间 N(A) 是 $\{c_1 \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 0 \\ 4 \\ 1 \end{bmatrix} : c_1, c_2 \in \mathbb{R}\}.$ 求 rref(A).

解答 6. 记 $R = rref(A) = \begin{bmatrix} \gamma_1 & \gamma_2 & \gamma_3 & \gamma_4 \end{bmatrix}$, 其中 $\gamma_1, \gamma_2, \gamma_3, \gamma_4 \in \mathbb{R}^3$. 从 N(A) = N(R) 的表达形式可以看出, γ_2, γ_4 是 R 的自由列, γ_1, γ_3 是 R 的主元列,并且 $3\gamma_1 + \gamma_2 = 0$, $\gamma_1 + 4\gamma_3 + \gamma_4 = 0$. 所以 $\gamma_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\gamma_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\gamma_2 = -3\gamma_1 = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}$, $\gamma_4 = -\gamma_1 - 4\gamma_3 = \begin{bmatrix} -1 \\ -4 \\ 0 \end{bmatrix}$. 合起来有 $R = \begin{bmatrix} 1 & -3 & 0 & -1 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

题 7. (10分) 求下面线性方程组的通解

$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 1\\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 &= 0\\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 &= 2 \end{cases}$$

解答 7. 对增广矩阵作初等变换
$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & | & 1 \\ 3 & 2 & 1 & 1 & -3 & | & 0 \\ 5 & 4 & 3 & 3 & -1 & | & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & | & 1 \\ 0 & -1 & -2 & -2 & -3 & | & -3 \\ 0 & -1 & -2 & -2 & -1 & | & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & | & 1 \\ 0 & -1 & -2 & -2 & -1 & | & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & | & 1 \\ 0 & 1 & 2 & 2 & 3 & | & 3 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & | & 1 \\ 0 & 1 & 2 & 2 & 0 & | & 3 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & | & -2 \\ 0 & 1 & 2 & 2 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}, 从行简化后的增广矩阵可以算出方程组的通解是$$

$$\begin{bmatrix} -2 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$$

題 8.
$$(20 \, 3)$$
 设 $A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix}$.

- 1. (6分)证明: A 可逆的充分必要条件是 a,b,c 两两不同。
- 2.(6分) 当 A 可逆时, 求 A 的 LU 分解。
- 3. (8 分) 当 a = 1, b = 2, c = 3 时, 求 A^{-1} .

解答 8. 1. 对 A 作两次行倍加变换得到 $\begin{bmatrix} 1 & 1 & 1 \\ 0 & b-a & c-a \\ 0 & b^2-a^2 & c^2-a^2 \end{bmatrix}$, 再作一次行倍加变换得到

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & b-a & c-a \\ 0 & 0 & (c-a)(c-b) \end{bmatrix},$$

其中右下角的元素通过计算 $c^2-a^2-(c-a)(b+a)=(c-a)(c+a)-(c-a)(b+a)=(c-a)(c-b)$ 得来。因为初等行变换不影响矩阵是否可逆,所以 A 可逆当且仅当 U 可逆,而上三角阵 U可逆当且仅当它的对角线元素 b-a, (c-a)(c-b) 都非零,也就是 a, b, c 两两不同。

U 如上。

 $3. \, \, \exists \, (a,b,c) = (1,2,3) \,$ 时,可以用 Gauss-Jordan 方法计算 A 的逆矩阵如下

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 1 & 4 & 9 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 & 1 & 0 \\ 0 & 3 & 8 & -1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 & 1 & 0 \\ 0 & 0 & 2 & 2 & -3 & 1 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 & \frac{3}{2} & -\frac{1}{2} \\ 0 & 1 & 0 & -3 & 4 & -1 \\ 0 & 0 & 2 & 2 & -3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 3 & -\frac{5}{2} & \frac{1}{2} \\ 0 & 1 & 0 & -3 & 4 & -1 \\ 0 & 0 & 1 & 1 & -\frac{3}{2} & \frac{1}{2} \end{bmatrix},$$

所以
$$A^{-1} = \begin{bmatrix} 3 & -\frac{5}{2} & \frac{1}{2} \\ -3 & 4 & -1 \\ 1 & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$$
.

題 9.
$$(6 \, \hat{\gamma})$$
 设 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \\ 3 & 6 & 12 \end{bmatrix}$.

- 1. (2 分) 把 A 写成 $\alpha\beta^T$ 的形式, 其中 α, β 均是列向量。
- 2. (4分) 计算 A²⁰¹⁹.

題 10.
$$(8 \, \beta)$$
 设 $A = \begin{bmatrix} 1 & 1 \\ & 1 \\ & 1 \end{bmatrix}$. 求所有与 A 可交换的矩阵。

解答 10. A 可以写成 I_3+N 的形式,其中 $N=\begin{bmatrix} 1 \\ B(I_3+N)$,也就是 NB=BN. 不妨设 $B=(b_{ij})$,那么

$$NB = \begin{bmatrix} b_{31} & b_{32} & b_{33} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad BN = \begin{bmatrix} 0 & 0 & b_{11} \\ 0 & 0 & b_{21} \\ 0 & 0 & b_{31} \end{bmatrix},$$

所以
$$NB = BN$$
 当且仅当 $b_{31} = b_{32} = b_{21} = 0$ 且 $b_{11} = b_{33}$. 这样的矩阵形如
$$\begin{bmatrix} b_{11} & b_{12} & b_{13} \\ 0 & b_{22} & b_{23} \\ 0 & 0 & b_{11} \end{bmatrix}.$$

题 11. (12 分) 设 $A \in M_{m \times n}(\mathbb{R})$. 证明:

- 1. (3 分) A^TA 是对称矩阵;
- 2. (6 分) 设 $x \in \mathbb{R}^n$ 是非零向量,且 $c \in \mathbb{R}$ 满足 $A^TAx = cx$. 证明 $c \ge 0$;
- 3. (3分) 证明 A^TA 的对角线元素都不小于零.

解答 11. 1. $(A^TA)^T = A^T(A^T)^T = A^TA$.

- 2. 因为 $A^TAx = cx$, 所以 $x^TA^TAx = x^Tcx$. 等式的左边是 $(Ax)^T(Ax)$, 这是 m 维实向量 Ax 的范数平方,故是一个 ≥ 0 的数。等式的右边是 cx^Tx ,其中 x^Tx 是 n 维非零向量 x 的范数平方,故是一个正实数。综上有 $cx^Tx \geq 0$,所以 $c \geq 0$.
- 3. 由矩阵乘法的定义知 A^TA 的 (i,i)-元素是 A^T 的第 i 行与 A 的第 i 列的点积,而 A^T 的第 i 行就是 A 的第 i 列(在不计转置意义下),所以 A^TA 的 (i,i)-元素是 A 的第 i 列与自身的内积,也就是它的范数平方,这总是一个非负的实数。
- **题 12.** (5 分) 设 $A, B \in M_n(\mathbb{R})$, 且 $A^k = 0$, 其中 k 是一个正整数。
 - 1. (2分)证明 $I_n A$ 可逆,
 - 2. (3分) 若 AB + BA = B, 证明 B = 0.

解答 12. 1. 验证 $(I_n - A)(I_n + A + A^2 + \dots + A^{k-1}) = I_n + A + A^2 + \dots + A^{k-1} - (A + A^2 + \dots + A^{k-1} + A^k) = I_n - A^k = I_n$,所以 $I_n - A$ 可逆,且 $(I_n - A)^{-1} = I_n + A + \dots + A^{k-1}$. 2. 把 AB + BA = B 重新写成 $AB = B(I_n - A)$,左乘 A 得到

$$A^{2}B = A(AB) = AB(I_{n} - A) = B(I_{n} - A)^{2},$$

再乘一次 A 得到

$$A^{3}B = AA^{2}B = AB(I_{n} - A)^{2} = B(I_{n} - A)^{3},$$

以此类推,不难看出对任意的正整数m,

$$A^m B = B(I_n - A)^m$$

成立。特别的,等式对 m=k 成立。当 m=k 时,等式的左边是 $A^kB=0B=0$,等式的右边是 $B(I_n-A)^k$,故 $0=B(I_n-A)^k$. 又由 1 知 I_n-A 可逆,所以它的 k 次幂也可逆,右乘 $(I_n-A)^{-k}$ 即得 B=0.