Приложение Б. Инструкция по использованию ПО для участников

А. Состав программного обеспечения

В виртуальной машине установлены

- 1. OS Linux Ubuntu 16.04
- 2. docker container с необходимым для решения задач ПО
 - a. CoppeliaSim 4

Путь /opt/csim/

b. ROS kinetic

Путь /opt/ros/kinetic/

с. Библиотека для работы линейной алгеброй (С++)

/usr/include/eigen3

d. VISP

/usr/include/x86 64-linux-gnu/visp

e. Библиотеки для python2

numpy, scipy, cv2

- f. Прочие удобные утилиты
 - і. Файловый менеджер в терминале
 - ii. Текстовые редакторы gedit, nano, vim
- 3. Папки с "заготовками" исходного кода, для решения задач

Папка /home/human/ из Ubuntu "проброшена" в docker /home/root/

a. B Ubuntu

Бакалавриат /home/human/catkin_ws/src/bac_task Marucтpatypa /home/human/catkin_ws/src/mag_task

h Bidocker

Бакалавриат /home/root/catkin_ws/src/bac_task Marucтpatypa /home/root/catkin_ws/src/mag_task

- 4. Структура "заготовок" исходного кода
 - а. Бакалавриат (ROS-package со стандартной структурой) (все файлы, кроме main_solve.py (.cpp), запрещены к редактированию)
 - i. scenes/bac_scene.ttt Сцена в симуляторе CoppeliaSim, включающая наземного робота Robotino и квадрокоптер.
 - ii. src/robotino_model.py Нода, реализующая кинематическую модель наземного робота Robotino
 - iii. src/robotino_trajectory_generator.py Нода, реализующая генерацию траектории с заданными параметрами
 - iv. src/trajectory_drawer.py Нода, реализующая визуализацию траектории и систем координат сцены (работает совместно с rviz)
 - v. src/marker_detector_node.cpp Нода, реализующая поиск April кода, и извлечение из изображения признаков (features)
 - vi. main_solve.py (.cpp) Нода, содежрит "заготовку" исходного кода для решения задачи
 - b. Магистратура

(файлы і и іі запрещены к редактированию)

- i. scenes/mag_scene.ttt Сцена в симуляторе CoppeliaSim, включающая манипулятор, столы, цилиндры и проч.
- ii. ur_aux.py Модуль содержит функции, необходымые для решения задачи
- iii. ur_main.py Модуль содержит "заготовку" исходного кода для решения задачи

Б. Формирование оценочного балла

Таблица 1. Критерии оценки решения задачи для бакалавриата

Основной критерий, 50 б.	Расстояние, пройденное БПЛА, в лучшей из тестовых попыток. При условии соблюдения правил и ограничений спецификации задания. Максимальное время тестовой попытки 10 минут. Количество попыток не более 10.	
Вспомогательный критерий, 50 б.	20 б.	 сложность алгоритма учет динамики фильтрация измерений учет ограничений и подобные.
	20 б.	Рецензирование кода (Code review)
	10 б.	Оригинальность решения

Таблица 2. Критерии оценки решения задачи для магистратуры/специалитета

Основной критерий, 50 б.	Число успешно вставленных цилиндров в отверстия. При условии соблюдения правил и ограничений спецификации задания. Максимальное время тестовой попытки 10 минут. Количество попыток не более 10.	
Вспомогательный критерий, 50 б.	20 6.	 сложность алгоритма учет динамики фильтрация измерений учет ограничений и подобные.
	20 б.	Рецензирование кода (Code review)
	10 б.	Оригинальность решения

В. Некоторые замечания по работе с Ubuntu + docker

1. Сведения о пользователе Linux Ubuntu

User: human Password: 1 Host: host

2. Важные папки

- a. /home/human папка, доступная из docker контейнера
- b. /home/human/catkin_ws/src/bac_task ROS-пакет с заданием для бакалавриата
 - i. ./src/main_solve.py файл, в котором нужно написать код в указанных местах, решающий задачу.

- іі. Редактирование остальных файлов в пакете ЗАПРЕЩЕНО.
- c. /home/human/catkin_ws/src/mag_task файлы для решения задачи магистратуры
 - i. ./ur_main.py файл, в который нужно написать код, решающий задачу.
 - іі. Редактирование остальных файлов в пакете ЗАПРЕЩЕНО.
- d. /home/human/Desktop рабочий стол. Содержит два файла для работы с docker контейнером
 - i. ./run_docker.bash запускает docker контейнер и открывает терминал внутри него
 - ii. ./exec_docker.bash запускает дополнительный терминал в docker контейнере. Можно вызывать столько раз, сколько нужно дополнительный терминалов внутри УЖЕ ЗАПУЩЕННОГО docker контейнера

3. Работа с ПО в процессе решения задачи (БАКАЛАВРИАТ)

- а. Открыть терминал (Ctrl+Alt+T)
- b. Открыть файл для решения gedit /home/human/catkin_ws/src/bac_task/main_solve.py
- с. Вписать свое решение. Сохранить
- d. Запустить docker контейнер sudo ./Desktop/run_docker.bash Ввести пароль "1"
- e. Скомпилировать catkin_ws roscd && cd .. && catkin build
- f. Запустить симулятор
 - ~/catkin ws/src/bac task/start scene.bash
- g. Запустить roslaunch файл для инициализации сцены и необходимых нод roslaunch bac task init scene.launch
- h. Запустить симуляцию (Кнопка "Play")
- i. Запустить дополнительный терминал в docker контейнере sudo ./Desktop/exec_docker.bash
- Запустить ваше решение (ВНИМАНИЕ! Запускается не тот файл, в котором решение)
 - python /home/human/catkin_ws/src/bac_task/main_solve_wrapper.py
- k. Запустить дополнительный терминал в docker контейнере sudo ./Desktop/exec_docker.bash
- I. Вызвать rosservice, который запустит роботов rosservice call /start_robots "data: true"
- т. Оценить работоспособность роботов в соответствии со спецификацией задания
- n. Остановить симуляцию. (Кнопка "Stop")
- о. Завершить работу вашего решения (Ctrl+C)
- р. Внести правки в код /home/human/catkin_ws/src/bac_task/main_solve.py
- q. Повторять (пп. 3.g 3.p) до тех пор, пока задача не будет решена наилучшим образом
- r. *Для более точной отладки регуляторов, возможен запуск ПО без запуска графической части симулятора. Для этого необходимо в пункте 3.f запускать другой roslaunch файл
 - roslaunch bac_task start_scene_headless.bash
 - А для отладки пользоваться утилитой построения графиков rqt_plot
- s. ** Для запуска тестирования (вывод пройденного расстояния) rosrun bac_task judge
- 4. Работа с ПО в процессе решения задачи (МАГИСТРАТУРА)

- а. Открыть терминал (Ctrl+Alt+T)
- b. Открыть файл для решения gedit /home/human/catkin_ws/src/mag_task/ur_main.py
- с. Используя заготовленные функции из файла ur_aux.py решить задачу и вписать свое решение. Сохранить
- d. Запустить docker контейнер sudo ./Desktop/run_docker.bash Ввести пароль "1"
- e. Запустить симулятор /opt/csim/coppeliaSim.sh
- f. Запустить симуляцию (Кнопка "Play")
- g. Запустить решение python /home/human/catkin_ws/src/mag_task/ur_main.py
- h. Оценить работоспособность решения
- i. Остановить симуляцию (Кнопка "Stop")
- ј. Завершить работу вашего решения (Ctrl+C)
- k. Внести правки в код /home/human/catkin_ws/src/mag_task/ur_main.py
- I. Повторять (пп. 4.g 4.k) до тех пор, пока задача не будет решена наилучшим образом

5. Рисунки, поясняющие расположение систем координат в сценах

Рисунок 1. Задача для бакалавриата

Рисунок 2. Задача для магистратуры