NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON

Faglig kontakt under eksamen:

Navn: John Torjus Flåm

Tlf.: 95760211

EKSAMEN I EMNE TTT4110 INFORMASJONS- OG SIGNALTEORI

Dato: lørdag 20. august 2011

Tid: kl. 9:00 - 13:00

Hjelpemidler: D–Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

INFORMASJON

- Eksamen består av 4 oppgaver. Maksimalt antall poeng for hver deloppgave er angitt i parentes. Totalt antall poeng er 45.
- Noen viktige formler finnes i vedlegget.
- Faglærer vil gå rundt to ganger, første gang ca. kl. 10 og andre gang ca. kl. 12.
- Sensurfrist er 3 uker etter eksamensdato.

Lykke til!

Oppgave 1 (2+4+3+3+3=15)

Et kausalt tidsdiskret system er gitt med differensligning

$$2y[n] - y[n-1] = x[n].$$

- 1a) Tegn opp et blokkdiagram som beskriver dette systemet.
- 1b) Vis at frekvensresponsen til systemet er gitt ved

$$H(\hat{\omega}) = \frac{1}{2 - e^{-j\hat{\omega}}}.$$

Hvilken type filter er dette (LP, HP, BP eller BS)? Begrunn svaret.

- 1c) Finn enhetspulsresponsen til systemet?Er dette et FIR- eller IIR-system? Begrunn svaret.
- 1d) Finn utgangssignalet y[n] når inngangssignalet er gitt ved

$$x[n] = 5 + 2\cos\left(\frac{\pi}{3}\,n\right).$$

1e) Finn utgangssignalet y[n] når inngangssignalet er gitt ved sitt spektrum

$$X(\hat{\omega}) = \frac{1}{1 + \frac{1}{2}e^{-j\hat{\omega}}}.$$

Oppgave 2 (3+2+2+2=9)

Et analogt periodisk signal x(t) er gitt i figuren under.

2a) Vis at Fourierrekkekoeffisientene til signalet x(t) er gitt ved

$$c_k = \begin{cases} 0 & k = 0\\ \frac{j(-1)^k}{k\pi} & \text{ellers.} \end{cases}$$

Vi ønsker nå å punktprøve signalet x(t) med punktprøvingsfrekvens $f_s = 2,5$ Hz. For å unngå aliasing bruker vi et antialiasingfilter som vist i følgende figur.

- **2b)** Skisser amplituderesponsen til filteret $|H_a(\omega)|$ slik at aliasing unngås helt, samtidig som mest mulig av signaleffekten bevares.
- **2c)** Finn spekteret til signalet x'(t) på utgangen av filteret. Skisser amplitudespekteret som funksjon av vinkelfrekvens ω .
- **2d)** Skisser amplitudespekteret til det samplede signalet $x_s[n]$ som funksjon av fysisk vinkelfrekvens $\omega \in [-5\pi, 5\pi]$.

Oppgave 3 (2+5+3+2+3=15)

Figur 1 viser sannsynlighetstetthetsfunksjonen til et tidsdiskret signal x[n] med uavhengige punktprøver. Signalet skal kvantiseres med en uniform kvantiserer med 6 nivåer slik at overstyringsstøy ikke oppstår.

Figur 1: Sannsynlighetstetthetsfunksjonen til x[n]

- **3a)** Finn desisjonsgrensene $\{d_i\}$ og representasjonsverdiene $\{r_i\}$ til kvantisereren.
- **3b)** Uttrykk kvantiseringsstøyeffekten P_q som funksjon av $\{d_i\}$, $\{r_i\}$ og $f_X(x)$. Regn ut eksakt verdi til P_q . Finn også signal-til-kvantiseringsstøy-forholdet (SQNR) for kvantisereren.
- **3c)** Finn entropien til det kvantiserte signalet.

Vi ønsker å representere det kvantiserte signalet med en binær kode ved å tilordne et kode ord til hver representasjonsverdi.

- **3d)** Hva er den minste kodeordlengden vi må bruke hvis alle kodeordene skal være like lange. Foreslå en slik kode.
- **3e)** Forklar prinsippet for design av en entydig dekodbar kode som har gjennomsnittlig kodeordlengde mindre enn i forrige deloppgave.

Foreslå en slik kode og beregn gjennomsnittlig kodeordlengde.

Oppgave 4 (3+3=6)

En modell av en digital overføringskanal er vist i figur 2, der

$$x(t) = \sum_{k} x_k h_s(t - kT),$$

T er avstanden mellom sendte kanalsymboler x_k , Δt er den totale forsinkelsen på kanalen (inkludert sender- og mottakerfilter), og w(t) er Gaussisk hvit støy på kanalen.

Figur 2: Modell for en digital overføringskanal

Den totale impulsresponsen til overføringskanalen $g(t) = h_s(t) \cdot h(t) \cdot h_m(t)$ er vist i figur 3.

Figur 3: Den totale impulsresponsen til overføringskanalen

4a) Er overføring over denne kanalen uten intersymbolinterferens (ISI) er mulig? Begrunn svaret.

Hvis det er mulig, finn den maksimale signaleringshastigheten, dvs. maksimalt antall kanalsymboler per sekund, for ISI-fri transmisjon.

4b) Anta at signal-til-støy-forholdet (SNR) på mottakeren er 50dB. Vi ønsker å overføre det kvantiserte signalet fra oppgave 3 over kanalen. Anta at signalet ble generert ved å punktprøve et kontinuerlig signal med punktprøvingsfrekvens $f_s = 2$ kHz.

Er feilfri overføring teoretisk mulig? Begrunn svaret.