Ouestion 1

Suppose we have function $f: N \rightarrow N$ where N is the set of natural numbers. Prove that f(n) = n2 is injective where $n \in N$

Suppose f(a) = f(b) for $f: N \longrightarrow N$ Therefore $a^2 = b^2$ Therefore $\sqrt{a^2} = \sqrt{b^2}$ Therefore |a| = |b|Therefore a = bQ.E.D

Ouestion 2

What is a function and how does it differ from a relation?

In both functions and relations, you have a set of inputs that are related to a set of outputs.

The difference however lies in the definition of a function. Each input in a function can have only one output, whereas in a relation each input can have multiple outputs.

In a sense, a function is a subset of relations.

Question 3

Prove that the cardinality of the set of naturals N is the same as the cardinality of the set of rational numbers Q

In order to prove that two sets have the same cardinality we must show that there exists a one-to-one correspondence between the two sets (per George Cantor)

Therefore for all $n \in N$ there is some $q \in Q$, such that f(q) = n

N	1	2	3	4	5	6	7	8	
Q	0	1/1	-1/1	2/1	1/2	-1/2	-2/1	3/1	

We would exclude values like 2/2, 3/3, 2/4, (and so forth) from this table because they are not unique Rationals. These are considered duplicates.

The table above shows a one-to-one correspondence between Naturals ${\bf N}$ and Rationals ${\bf Q}$. Q.E.D

Ouestion 4

Which of these relations are equivalence relations?

An equivalence relation is "a relation between elements of a set that is reflexive, symmetric, and transitive"

Only B has an equivalence relation.

It is reflexive due to the following values: (1,1), (2,2), (3,3), (4,4) — if a It is symmetric due to the following values: (1,2), (2,1) — if (a,b) then (b,a)

It is transitive due to the following values: (1,2),(2,1),(1,1) — if (a,b) and (b,a), then (b,c)

(a)
$$\{(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$$
 —> only reflexive

(b)
$$\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$$
 —> reflexive, symmetric, transitive

(c)
$$\{(2, 4), (4, 2)\}$$
 —> only symmetric

Question 5

Given the possible graphs you can construct from a set of vertices V, with cardinality n = |V|, how many k-cliques can be drawn where k=1...n

	Carlotte Barrier	5
	x:1 -> 2 1	9
	P - I	11
	K=2→ 0	13
	k:3 -> 0	15 —
	K:4 -10	
-	K=1-)2 # 3	
	K= 2 -> 1	
	K=3 → 0	
	K=4 ->0	
	K=1 -> 3 7	
Δ	K=2-13	
	k = 3 -> 1	440
	k =4 -> 0	
	My Sales Sales	2-2-2
X	K=1→4 15	14 124
1	K=2-56	
1111111111111	k = 3 -5 4	4 1774
THE P	K=4-> 1	
	K=576	

2, 4, 8... = 2^n —> this is derived from the patterns drawn above.

Starting at k=1 we see that the number of k-cliques increases by 2^n where n=k.

Therefore the number of k cliques is the sum of