** Simple Pendulum **

** Differential Equation of Motion and Numerical Approach. **

** BONNET Rémi **

Le pendule simple est un système mécanique constitué d'une masse m suspendue à une tige de longueur L, sans frottement. L'angle que forme la tige avec la verticale est représenté par θ (en radians). Pour trouver l'équation différentielle du mouvement du pendule simple, nous appliquons la seconde loi de Newton. La somme des forces agissant sur la masse est égale à sa masse multipliée par l'accélération :

$$\Sigma \vec{F} = m\vec{a} \implies \vec{T} + \vec{P} = m\vec{a}$$

Les seules forces agissant sur la masse sont le poids P et la tension du fil T. Nous nous placerons dans un repère cartésien bien que celui-ci ne soit pas le plus adapté. On peut ainsi définir deux équations selon l'axe Ox et Oy:

$$Ox: mg - T_x \cos(\theta) = m\ddot{x}$$

$$\underline{\text{Oy}}: -\overline{\text{T}}\sin(\theta) = m\ddot{y}$$

par ailleurs on sait que

$$\begin{cases} \vec{OM}_x = \cos(\theta) \cdot l \cdot \vec{u}_x \\ \vec{OM}_y = \cos(\theta) \cdot l \cdot \vec{u}_y \end{cases} \implies \begin{cases} \frac{d\vec{OM}_x}{dt} = -\dot{\theta} \cdot \sin(\theta) \cdot l \cdot \vec{u}_x \\ \frac{d\vec{OM}_y}{dt} = \dot{\theta} \cdot \cos(\theta) \cdot l \cdot \vec{u}_y \end{cases}$$

$$\implies \begin{cases} \frac{d^2 \vec{OM}_x}{dt^2} = -l \left(\ddot{\theta} \sin(\theta) + (\dot{\theta})^2 \cos(\theta) \right) \vec{u}_x \\ \frac{d^2 \vec{OM}_y}{dt^2} = l \left(\ddot{\theta} \cos(\theta) - (\dot{\theta})^2 \sin(\theta) \right) \vec{u}_y \end{cases}$$

En multipliant la première équation par $\sin(\theta)$ et la seconde par $\cos(\theta)$ on obtient le sytème suivant:

$$\begin{cases} -T\cos(\theta)\sin(\theta) + mg\sin(\theta) = -ml\ddot{\theta}\sin^2(\theta) - ml(\dot{\theta})^2\cos(\theta)\sin(\theta) \\ -T\cos(\theta)\sin(\theta) = ml\ddot{\theta}\cos^2(\theta) - ml(\dot{\theta})^2\sin(\theta)\cos(\theta) \end{cases}$$

Et en soustrayant (1) - (2) on peut trouver notre equation différentielle :

$$mg\sin(\theta) = -ml\ddot{\theta} \implies \ddot{\theta} + \frac{g}{l}\sin(\theta) = 0$$

Passons à présent à l'approche numérique. Sachant que l'accélération est une variation de la vitesse par rapport au temps, on obtient l'égalité qui suit :

$$v_{\theta}(t + \delta t) = \frac{d\theta}{dt}(t + \delta t) \approx v_{\theta}(t) + a_{\theta}(t) \times \delta t$$

avec
$$a_{\theta}(t) = \ddot{\theta} = -\frac{g}{l}\sin(\theta)$$

ainsi
$$\theta(t + \delta t) \approx \theta(t) + v_{\theta}(t + \delta t) \times \delta t$$

Dans l'approche numérique, (δt) représente un petit intervalle de temps utilisé pour effectuer les calculs itératifs. Cela nous permet d'approximer les dérivées temporelles en utilisant des pas de temps finis.

On peut à présent à chaque itération calculer $v_{\theta}(t + \delta t)$ qui nous donnera par la suite $\theta(t + \delta t)$.