Principle of Mathematical Induction Important Points

If statement P(n) of natural variable $n \in N$ is given, the Principle of Mathematical Induction is useful to verify the validity of the given statement, $\forall n \in N$

The Principle of Mathematical Induction:

Let P(n) be a statement involving natural number n.

The statement P(n) is true $\forall n \in \mathbb{N}$, if

- (1) P(1) is true,
- (2) P(k), $k \in N$ is true => P(k+1), $k \in N$ is true, then P(n), $\forall n \in N$ is true.
- Note:- I.Principle of Mathematical Induction verifies the validity of statements involving natural number variable only.
 - 2. Formula involving natural number variable cannot be derived, but only its validity can be verified.

<u>Use of Principle of Mathematical Induction in some special types of</u> variable:-

(1) Variable type 1:

The statement P(n), $n \in N$ is given. If for positive integer k(), P(ko) is true and for $k \ge k_0$, $k \in N$, P(k) is true => P(k+1) is true, then P(n) is true for all $n \ge k_0$, $k \in N$

(2) Variable type 2:

The statement P(n), n EN is given.

- If (1) P(1) and P(2) are true and
 - (2) for positive integer k, P(k) and P(k+1) are true => P(k+2) is true, then $\forall n \in \mathbb{N}$, P(n) is true.

Question Bank

(a) 25	(b) 26	(c) 1234	(d) 2304	ļ
$(2) \forall n \in N, P(n)$	n): $2.7^n + 3.5^n$	– 5 is divis	ible by	
(a) 64	(b) 676	(c) 17	(d) 2	4
$(3) \forall n \ge 2, n^2($	$(n^4 - 1)$ is divi	sible by		
(a) 60	(b) 50	(c) 40	(d) 70	
$(4) For n \in N,$	$10^{n-2} > 81n,$	if		
(a) $n > 5$	(b) <i>n</i> ≥	≥ 5	(c) $n < 5$	(d) $n > 6$
(5) For each $n \in$	N, the correct	statement is		
(a) $2^n < n$	(b) $n^2 > 2$	ⁿ (c) n	$^{4} < 10^{n}$	(d) $2^{3n} > 7n + 1$
(6) If $a_n = 2^{2^n}$	+ 1, then for	$n>1, n \in N$	last digit of	a_n is
(a) 3	(b) 5	(c) 8	(d) 7	
(7) If $P(n): 4^n$	$/\left(n+1\right) <\left(2\right.$	$(2n)! / (n!)^2$, then P(n) is	s true for
(a) $n \ge 1$	(b) $n > 0$	(c) $n < 0$	(d) $n \geq 2$, $n \geq 2$	$n \in N$
(8) By principle $\forall n \in N \cos$	of mathematic 9 cos 2θ cos 46			
(a) $\sin 2^n$	$\theta / 2^n \sin \theta$	(b) <i>c</i>	os $2^n\theta / 2^n$	$sin \theta$
(c) $\sin 2^n e^{-2\pi i t}$	$\theta / 2^{n-1} \sin \theta$	(d) N	one of these	
	of mathematic $(n+1)(n+2)$		$\forall n \in N, 1$	/(1.2.3) + 1/(2.3.4) +
(a) n(n+1)	/4(n+2)(n+3)	(b) n	(n+3)/4(n+	l)(n+2)
$(c) n\{n+2\}$	/4(n+1)(n+3)	(d) N	one of these	
(10) By principle divisible by		tical induct	ion, $\forall n \in N$	$5^{2n+1} + 3^{n+2} \cdot 2^{n-1}$ is

(1) For all $n \in \mathbb{N} - \{1\}, 7^{2n} - 48n - 1$ is divisible by

(a) 19	(b) 18	(c) 17	(d) 14				
(11) The product of three consecutive natural numbers is divisible by							
(a) 6	(b) 5	(c) 7	(d) 4				
(12) $\forall n \in \mathbb{N}, a^n - b^n$ is always divisible by (a and b are distinct rational							
nos) (a) 2a-	b	(b) a+b	(c) a-b	(d) a-2b			
(13) If $x^{2n-1} + y^{2n-1}$ is divisible by x+y, then n is							
(a) Positive integer (b) only for an even positive integer (c) an odd positive integer (d) $\forall n \in \mathbb{N}, n \geq 2$							
(14) The inequ	ality $n! > 2^{n-1}$	⁻¹ is true for.	••••				
(a) $n > 2$, $n \in \mathbb{N}$ (b) $n < 2$ (c) $n \in \mathbb{N}$ (d) None of these							
(15) The smallest positive integer n for which $n! < \left\{\frac{n+1}{2}\right\}^n$ holds, is							
(a) 1	(b) 2	(c) 3	(d) 4				
(16) The greatest positive integer, which divides $(n+2)(n+3)(n+4)(n+5)(n+6) \forall n \in \mathbb{N}$ is							
(a) 120	(b) 4	(c) 2	240	(d) 24			
(17) $x(x^{n-1} - n\alpha^{n-1}) + \alpha^n(n-1)$ is divisible by $(x - \alpha)^2$ for							
(a) $n > 1$	(a) $n > 1$ (b) $n > 2$ (c) $\forall n \in \mathbb{N}$ (d) None of these						
(18) For each $n \in \mathbb{N}$, $3^{2n} - 1$ is divisible by							
(a) 8	(b) 16	(c) 32	(d) None of the	ese			
(19) For each $n \in \mathbb{N}$, $2^{3n} - 7n - 1$ is divisible by							
(a) 64	(b) 36	(c) 49	(d) 25				
(20) For each $n \in \mathbb{N}$, $10^{2n-1} + 1$ is divisible by							
(a) 11	(b) 13	(c) 9	(d) None of the	ese			
(21) For each $n \in \mathbb{N}$, $2.4^{2n+1} + 3^{n+1}$ is divisible by							
(a) 2	(b) 9	(c) 3	(d) 11				
(22) Let $P(n)$: $n^2 + n + 1$ is and odd integer. If it is assumed that $P(k)$ is true => $P(k+1)$ is true. Therefore, $P(n)$ is true							

(a) for $n >$	1		(b) $\forall n \in \mathbb{N}$		
(c) for $n > 1$	2		(d) None of these		
(23) Let $P(n)$	$):3^n < n!, n \in$	$\equiv N$, then	P(n) is true		
(a) for $n = 1$	≥ 6		(b) for $n \geq 7$, $n \in N$		
(c) for $n \ge 1$	≥ 3		(d) ∀ <i>n</i>		
(24) Let $P(n)$):1+3+5+	\cdots + $(2n$	$(n-1)=n^2, \text{ is}$		
(a) true fo	or n>1		(b) true $\forall n \in N$		
(c) true fo	or no n		(d) None of these		
$(25) \text{If } \forall \boldsymbol{n} \in$	N , P(n) is a st	atement s	such that, if $P(k)$ is true => $P(k+1)$ is true		
for $k \in N$,	then P(n) is tr	ue			
(a) $\forall n >$	1		(b) $\forall n \in \mathbb{N}$		
(c) $\forall n >$	2		(d) Nothing can be said		
(26) Let $P(n)$): 1 + 3 + 5 +	\cdots + $(2^n$	-1) = 3 + n^2 , then which of the following		
is true?					
(a) P(1) is	strue		(b) $P(k)$ is true=> $P(k+1)$ is true		
(c) P(k) is	s true, $P(k+1)$	is not tr	ue (d) both (a) and (b) are true		
(27) If matrix	$x A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} a$	and $I = $	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which one of the following		
holds $\forall n$	$\in N$, (use PMI	(I)			
()	n.A-(n-1)		(b) $A^n = 2^{n-1} \cdot A + (n-1)I$		
(c) $A^n = i$	n.A + (n-1).	I	(d) $A^n = 2^{n-1} \cdot A - (n-1)I$		
(28) $S_n = 2.$	$7^n + 3.5^n - 5$	$i, n \in N$	is divisible by the multiple of		
(a) 5	(b) 7	(c) 24	(d) None of these		
(29) $10^n + 3$	$3(4^{n+2})+5$,	$n \in N$ is	divisible by		
(a) 7	(b) 5	(c) 9	(d) 17		
$(30) \forall \; \boldsymbol{n} \in \boldsymbol{N}$	$J_{1}\left(3+5^{\frac{1}{2}}\right)^{n}+$	$\left(3-5^{\frac{1}{2}}\right)$	<i>n</i> is		
(a) Even	natural num	ber	(b) Odd natural number		
(c) Any na	atural number		(d) Rational number		
(31) The ren	nainder, when	1 5 ⁹⁹ is d	ivided by 13, is		
(a) 6	(b) 8	(c) 9	(d) 10		

2) For all po	sitive integra	al values o	of n, $n^{3n} - 2n + 1$	is divisible by		
(a) 2	(b) 4	(c) 8	(d) 12			
(33) If $n \in N$, then $11^{n+2} + 12^{2^{n}+1}$ is divisible by						
(a) 113	(b) 12	23	(c) 133	(d) None of these		
(34) If $n \in N, P(n): 2^n(n-1)! < n^n$ is true, if						
(a) n<2	(b) n	>2	(c) $n \ge 2$	(d) Never		
3	(a) 2 (a) If $n \in N$, t (a) 113 (b) If $n \in N$, t	(a) 2 (b) 4 (a) If $n \in N$, then 11^{n+2} (a) 113 (b) 12 (b) If $n \in N$, $P(n)$: $2^{n}(n - 1)$	(a) 2 (b) 4 (c) 8 (a) If $n \in N$, then $11^{n+2} + 12^{2^{n}+1}$ is (a) 113 (b) 123 (b) If $n \in N$, $P(n)$: $2^{n}(n-1)! < n^{n}$	(a) If $n \in N$, then $11^{n+2} + 12^{2^{n}+1}$ is divisible by (a) 113 (b) 123 (c) 133 (c) If $n \in N$, $P(n)$: $2^{n}(n-1)! < n^{n}$ is true, if		

Hints

```
(1)
      P(1): 0 = 0×2304 P(2): 2304=1×2304 \therefore P(1) and P(2) are true --(1)
      Let P(k):7^{2k} - 48k - 1 = m \times 2304, m \in N and
      P(k+1): 7^{2k+2} - 48(k+1) - 1 = m' (2304), m' \in N be true. ----- (2)
      Now, P(k+2): 7^{2k+4} - 48(k+2) - 1 = 49 \times 7^{2k+2} - 48(k+1) - 49
                                 =49 \times 7^{2k+2} - 48(k+1) - 49 = 49(7^{2k+2} - 1) - 48(k+1)
                                 =49(2304\text{m}'+48\text{k}+48)-48\text{k}-48
                                                                                                                                           (....(2))
                                 = 49 \times 2304m' + 49 \times 48k +49 \times 48 - 48k - 48k
                                 = 49 \times 2304 \text{m}' + 48 \times 48 \text{k} + 48 \times 48 = 2304(49 \text{m}' + \text{k} + 1)
                                 = 2304 \times m", where m"=49m'+k+1 is positive integer.
                                  :. Ans. (d) 2304
(2)
                \foralln∈N માટે P(n): 2.7^n + 3.5^n - 5
                P(1): 24, P(2):98+75-5=168=7×24
                 Ans. (a) 24
(3)
         For every positive integers n \ge 2, P(n): n^2(n^4 - 1)
        P(2): 4 × 15 = 60, P(3): 9 × 80=60 × 12
         :. From option
                                                                    Ans. (a) 60
(4) For n \in \mathbb{N}, P(n):10^{n-2} > 81n
                 P(1): 0.1 > 81 isn't true, P(2): 1 > 162 isn't true, P(3): 10 > 243
                 isn't true, as the same way P(4) isn't true, but P(5): 1000 > 405 is
                 true and P(6): 10000 > 486 is true :. Ans. (b) n \ge 5
```

Here for
$$n = 1$$
, $2^n < n$ isn't true,
 $n^2 > 2^n$ isn't true,
 $n^4 < 10^n$ is true,
 $n^{3n} > 7n + 1$ isn't true,

Ans. (c) $n^4 < 10^n$

(6)

For
$$n = 2$$
, $a_2 = 2^2 + 1 = 17 = 10 + 7$

Let
$$a_k = 2^{2^k} + 1 = 10m + 7$$
 be true where $k > 1, m \in N ... (1)$

Now,
$$a_{k+1} = 2^{2k+1} + 1 = (2^{2k})^2 + 1 = (10m+6)^2 + 1$$
 (by (1)) $= 10(10m^2 + 12m + 3) + 7$

∴ Digit of one's place of a_n is 7.
∴ Ans. (c) 7

(7)

$$P(n): 4^{n}/(n+1) < (2n)!/(n!)^{2}, n \in N$$

P(1) isn't true and n < 0 isn't possible.

: (a), (b), (c) options are not possible.

 \therefore Ans. (d) $n \ge 2$, $n \in \mathbb{N}$

(8) For n=1, by $P(n):\cos\theta\cos2\theta\cos4\theta...\cos[(2^{n-1})\theta]$: $P(1):\cos\theta$

in option (a) n = 1 we get $\cos\theta$. Ans. (a) $\sin 2^n \theta / 2^n \sin\theta$

For
$$n = 1$$
,
 $1/(1.2.3) = 1/6$

Now, for n = 1, value of only option (b) n(n+3) / 4(n+1)(n+2) is 1/6

: Ans. (b)
$$n(n+3)/4(n+1)(n+2)$$

For
$$n = 1$$
, $P(1):5^{2+1} + 3^{1+2} \cdot 2^{1-1}$
 $= 125 + 27 = 152 = 19 \times 8$
Let $P(k) = 5^{2k+1} + 3^{k+2} \cdot 2^{k-1} = 19 \text{m}, \text{m} \in \mathbb{N}$ ---- (1)
 $P(k+1) = 5^{2k+3} + 3^{k+3} \cdot 2^k = 5^2 \cdot 5^{2k+1} + 3 \cdot 3^{k+2} \cdot 2 \cdot 2^{k-1}$
 $= 25(19 \text{m} - 3^{k+2} \cdot 2^{k-1}) + 6 \cdot 3^{k+2} \cdot 2^{k-1}$ (by (1))
 $= 25.19 \text{m} - 19 \cdot 3^{k+2} \cdot 2^{k-1}$
 $= 19(25 \text{m} - 3^{k+2} \cdot 2^{k-1})$

=19m'

: Ans. (a) 19

(11)

Product of three consecutive natural numbers P(n): n(n+1)(n+2)

P(1)=6 which is divisible by 6.

P(2) = 24 which is divisible by 6.

: Ans. (a) 6

For every
$$n \in N$$
, $P(n) : a^n - b^n$

$$P(1) = a - b$$
 and $P(2) = a^2 - b^2 = (a = b)(a+b)$

(13)

P(n):
$$x^{2n-1} + y^{2n-1} = \lambda(x+y)$$
 where λ is a polynomial.

$$P(1): x + y$$
 is divisible by $x+y$

$$P(2): x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

:. Ans. (a) Positive integer

(14)

$$P(n): n! > 2^{n-1}$$

Now P(1) and P(2) are not true, but P(3) is true.

Let $P(k):k! > 2^{k-1}$, k>2 be true.

$$P(k+1):(k+1)! > 2^k$$

L.H.S of
$$P(k+1) = (k+1)! = k!(k+1)$$

$$> 2^{k-1} (k+1) = 2^k . (k+1)/2$$

$$> 2^k$$

$$\therefore$$
 Ans. (a) n > 2

(15) For smallest positive integer n. $P(n):n! < \{(n+1)/2\}^n$,

P(1):1 < 1 isn't true, P(2):2 < 9/4 is true. P(3):6<8 is true P(4) is true. \therefore Ans. (b) 2

For $\forall n \in \mathbb{N}$, for which greatest positive integer, does

$$P(n)$$
: $(n+2)(n+3)(n+4)(n+5)(n+6)$, $n \in \mathbb{N}$

$$P(1) = 3.4.5.6.7 = 120.21$$

$$P(2) = 4.5.6.7.8 = 120.56$$

$$P(3) = 5.6.7.8.9 = 120.126$$

$$P(4) = 6.7.8.9.10 = 120.252$$

$$P(5) = 7.8.9.10 = 120.42$$

$$P(6) = 8.9.10.11.12 = 120.99.13$$

(17)

$$P(n): x(x^{n-1} - n\alpha^{n-1}) + \alpha^{n}(n-1) = g(x).(x - \alpha)^{2}$$

$$P(1) = 0$$

$$P(k): x(x^{k-1}-k\alpha^{k-1})+\alpha^{k}(k-1)=g(x).(x-\alpha)^{2}$$

$$P(k+1): x(x^{k} - (k+1)\alpha^{k}) + \alpha^{k+1}(k) = g'(x).(x - \alpha)^{2}$$

L.H.S. =
$$x[kx\alpha^{k-1} - (k-1)\alpha^k + g(x).(x - \alpha)^2 - (k+1)\alpha^k] + \alpha^{k+1}k$$

$$=kx^{2}\alpha^{k-1}-2kx\alpha^{k}+g(x).x.(x-\alpha)^{2}+k\alpha^{k+1}$$

=
$$g(x).x.(x - \alpha)^2 + (x^2 - 2x\alpha + \alpha^2)k\alpha^{k-1}$$

$$= (x - \alpha)^{2} [g(x).x + k \alpha^{k-1}]$$

$$=g'(x).(x-\alpha)^2$$

∴ Ans. (c) all n∈N

(18) For each $n \in \mathbb{N}$, $P(n): 3^{2n} - 1$

$$P(1) = 8$$
, $P(2) = 80 = 10.8$: Ans.(a) 8

For each
$$n \in \mathbb{N}$$
, $P(n) : 2^{3n} - 7n - 1$

$$P(1) = 0$$
 $P(2) = 49$ $P(3) = 512 - 21 - 1 = 490 = 49.10$

:. Ans. (c) 49

(20)

For each
$$n \in \mathbb{N}$$
, $P(n) : 10^{2n-1} + 1$

$$P(1) = 11,$$

$$P(2) = 1001 = 11.91$$

:. Ans. (a) 11

(21)

$$\forall n \in \mathbb{N}, \ P(n) : 2.4^{2n+1} + 3^{3n+1}$$

$$P(1) = 209 = 11.19$$

$$P(2) = 11.385$$

:. Ans. (d) 11

(22)
$$P(n) : n^2 + n + 1 = n(n+1) + 1$$

P(1): 3 which is true.

$$P(n): n^2 + n + 1 = n(n+1) + 1$$
 which is always odd number

∴ Ans. (b) ∀n∈N

(23) $P(n):3^n < n!, n \in \mathbb{N}$

$$P(1): 3^1 < 1$$
 is not true. $P(3): 3^3 < 3!$ is not true.

$$P(6): 3^6 < 6!$$
 is not true.

$$P(7): 3^7 < 7!$$
 is true. :. Ans. (b) $n \ge 7$

(24)

$$P(1):1 = 1$$

$$P(k):1+3+5+.....+(2k-1) = k^{2}.$$

$$P(k+1):1+3+5+.....+(2k-1) + (2k+1) = (k+1)^{2}.$$

$$L.H.S. = 1+3+5+.....+(2k-1) + (2k+1)$$

$$= k^{2} + 2k + 1 = (k+1)^{2} = R.H.S.$$

∴ Ans. (b) true for all n∈N

(25)

P(1) validity cannot be checked because statement P(n) is given

:. Ans. (d) nothing can be said

(26)

$$P(1): 1 = 4$$
 is not true.

Let
$$P(k): 1+3+5+...+(2k-1)=3+k^2$$
 be true.

$$P(k+1) = 1+3+5+ ... + (2k-1)+(2k+1)$$

$$= 3 + k^2 + 2k + 1 = (k+1)^2 + 3 = R.H.S.$$

 \therefore Ans.(b) P(k) is true \Rightarrow P(k+1) is true.

(27)

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$P(1):A = A - (1-1) I - A : P(1) is true.$$

$$P(k)$$
 is true $\Rightarrow P(k+1)$ is true, $k \in \mathbb{N}$

.. Ans. (a)
$$A^n = n$$
. A-(n-1) I

$$\forall n \in \mathbb{N}, \ P(n):3^{3n} - 2n + 1$$

$$P(1): 26 = 2 \times 13$$

$$P(2):726 = 2 \times 343$$

$$P(3): 19683 - 6 + 1 = 19678 = 2 \times 9839$$

(33)

$$\forall n \in \mathbb{N}, P(n) = 11^{n+2} + 12^{2n+1}$$

$$P(1): 11^{1+2} + 12^{2+1} = 133 \times 23,$$

$$P(2): 11^{2+2} + 12^{4+1} = 14641 + 248832 = 263473 = 133 \times 1981$$

(34)

For
$$n \in \mathbb{N}$$
, $P(n) = 2^{n} (n-1)! < n^{n}$

$$P(1): 2 \le 1$$
 is not true.

$$P(2): 4 < 4$$
 is not true.

$$P(3): 16 \le 27$$
 is true.

Same as P(4) is true.