TEMA 4- SUBESPACIOS. BASESY DIMENSIÓN

- Espacio vectorial Rⁿ y Subespacios
- Combinación lineal de vectores.
- Independencia lineal.
- Subespacios de una matriz : Fila, Col, Nul.
- Estudiamos los conjuntos importantes de vectores en Rⁿ : subespacios.
- Subespacios de la matriz A que informan sobre Ax = b

Conocemos un vector v por su

REPRESENTACIÓN GEOMÉTRICA

vector → sentido más general como elemento de un conjunto con operaciones determinadas

Conjunto → espacio vectorial Sin representación geométrica

Elementos del conjunto

los vectores los polinomios, las matrices...

Tema 4: Subespacios. Bases y Dimensión

ESPACIO VECTORIAL V

Conjunto de **elementos de V,**que con las operaciones
de **suma y producto por escalar**obtienen **otro** elemento del conjunto.

Ej: La suma de 2 vectores es un vector y no un punto

Si V = M(mxn) las operaciones EV aplicadas a M

obtienen otra M

→ Suma (op. Interna)

u + v

Conmutativa,

Asociativa,

Distributiva,

E. Neutro y opuesto

→ Producto escalar (op. Externa)

αν

Asociativa,

Distributiva,

E. Unidad

Consideramos EV sobre el cuerpo

Rn

Los elementos de un EV se llaman vectores

ESPACIO VECTORIAL V

Un hecho importante de los EV es que sus elementos se pueden sumar y multiplicar por escalares, i.e., se pueden formar **combinaciones lineales** de vectores obteniendo nuevos elementos del EV

$$\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_p \mathbf{u}_p$$

Con esto tenemos que dentro de un EV puede haber conjuntos que a su vez sean EV

SUBESPACIOS VECTORIALES

Subconjuntos cerrados bajo las operaciones del EV

Un **Sub-espacio Vectorial** de Rⁿ es todo subconjunto no vacío S ⊆ Rⁿ :

- a) El vector nulo está en S, 0 ∈ S
- b) Si un vector está en S, tb lo están sus múltiplos $\alpha \mathbf{u} \in \mathbf{S}$, $\forall \mathbf{u} \in \mathbf{S}$, $\alpha \in \mathbf{R}$
- c) Si dos vectores están en S, tb lo está su suma $\mathbf{u} + \mathbf{v} \in \mathbf{S}$, $\forall \mathbf{u}, \mathbf{v} \in \mathbf{S}$

S es subespacio vectorial sii toda combinación lineal de elementos de S es a su vez un elemento de S.

Ejemplo

El plano XY formado por vectores (x,y,0) es subespacio de R³ ya que

- a) Contiene al vector (0,0,0), x = 0, y = 0
- b) Es cerrado para la suma y producto por escalar:
 - Suma: (x,y,0) + (x',y',0) = (x+x', y+y', 0) que es un elemento del plano.
 - Producto por un escalar: λ , $\lambda(x,y,0)=(\lambda x, \lambda y, 0)$ que es un elemento del plano.

>> Cómo generar subespacios vectoriales

del espacio vectorial Rº

Conceptos necesarios:

- >> Combinación Lineal de vectores
 - >> Independencia entre vectores

MATEMÁTICAS I ÁLGEBRA COMBINACIÓN I INFAL DE VECTORES N-DIMENSIONALES

Un vector $\mathbf{v} \in \mathbf{R}^{\mathbf{n}}$ es <u>combinación lineal</u> (CL) de los vectores $\mathbf{u_{1}}, \mathbf{u_{2}}, \dots \mathbf{u_{p}}$ si existen escalares $\alpha_{1}, \alpha_{2}, \dots \alpha_{p}$ /

$$\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_p \mathbf{u}_p$$

Ejemplo

a)
$$(1,2) \in R^2$$
 CL de $(1,0)$ y $(0,1)$ ya que $(1,2) = 1(1,0) + 2(0,1)$

b) $(2,1,1) \in \mathbb{R}^3$ no es CL de los vectores (1,0,0) y (1,1,0) ya que:

$$(2,1,1) \neq a(1,0,0) + b(1,1,0)$$

Falla ecuación: 1 = 0a + 0b

→ Relacionamos CL entre vectores con buscar la solución de un SL.

Para demostrar que un vector $\mathbf{v} \in \mathbb{R}^n$ es \mathbb{CL} de p vectores

$$\mathbf{u_1}, \dots, \mathbf{u_p} / \mathbf{u_i} \in \mathbf{R}^n$$

se construye un SL a partir de la ecuación paramétrica que plantea a "v" como CL de los vectores ui :

$$v = \alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_p u_p$$

$$V = (V_1, \ldots V_n)$$

$$U_1 = (U_{11}, U_{21} ... U_{n1})$$

$$u_2 = (u_{12}, u_{22} ... u_{n2}),$$

...
$$u_p = (u_{1p}, u_{2p} ... u_{np}),$$

$$v_1 = \alpha_1 u_{11} + \alpha_2 u_{12} + ... + \alpha_p u_{1p}$$

$$V_2 = \alpha_1 U_{21} + \alpha_2 U_{22} + ... + \alpha_p U_{2p}$$

$$V_n = \alpha_1 U_{n1} + \alpha_2 U_{n2} + ... + \alpha_p U_{np}$$

$$\begin{aligned} v_1 &= \alpha_1 \ u_{11} + \alpha_2 \ u_{12} + ... + \alpha_p \ u_{1p} \\ v_2 &= \alpha_1 \ u_{21} + \alpha_2 \ u_{22} + ... + \alpha_p \ u_{2p} \\ &\vdots \\ v_n &= \alpha_1 \ u_{n1} + \alpha_2 \ u_{n2} + ... + \alpha_p \ u_{np} \end{aligned}$$

Se resuelve

Au = v

Si el sistema es SCD \rightarrow v es CL de los vectores u_i de forma ÚNICA

Si el sistema es SCI \rightarrow v es CL de los vectores u_i de infinitas formas

Si el sistema es INCOMPATIBLE → v NO es CL de los vectores ui

Para demostrar si el vector u = (4,5,4) es CL de (1,1,1), (1,-2,0), (3,-2,1)

Se construye un SL a partir de la siguiente ecuación paramétrica:

$$(4,5,4) = \alpha_1(1,1,1) + \alpha_2(1,-2,0) + \alpha_3(3,-2,1)$$

rref [A|u] =
$$\begin{vmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 \end{vmatrix}$$
 SCD \Rightarrow u es CL de los vectores $(4,5,4) = 3(1,1,1) - 2(1,-2,0) + 1(3,-2,1)$

$$(4,5,4) = 3(1,1,1) - 2(1,-2,0) + 1(3,-2,1)$$

En la última columna tenemos los valores $\alpha_1 = 3$, $\alpha_2 = -2$, $\alpha_3 = 1$

Se demuestra si u = (25, 22, 8) es CL de $v_1 = (3,4,2)$ y de $v_2 = (5,3,2)$

Sol:

$$(25,22,8) = \alpha_1(3,4,2) + \alpha_2(5,3,2)$$

SL **Incompatible** \rightarrow no hay forma de combinar v_1 y v_2 para obtener u

El vector **u** NO es CL de los vectores **v**₁ y **v**₂

Teorema 4.1:

si, y sólo si,

b es CL de las columnas de A

$$[A|u] = \begin{bmatrix} 1 & 1 & 3 & 4 \\ 1 & -2 & -2 & 5 \\ 1 & 0 & 1 & 4 \end{bmatrix}$$

SCD → la columna b es CL de las otras

$$(4,5,4) = 3(1,1,1) - 2(1,-2,0) + 1(3,-2,1)$$

Sub-espacio generado por un conjunto de vectores

Dado un conjunto de vectores $\mathbf{u_1, ..., u_p} \in \mathbb{R}^n$, el conjunto de

todos los vectores que pueden escribirse como CL de ellos

se llama: Envoltura lineal de dichos vectores.

Se escribe : Env{ u₁,...,u_p }

Los vectores u₁,...,u_p son:

vectores generadores

o conjunto generador del espacio Rⁿ.

La envoltura es un conjunto infinito de vectores.

Se calcula la envoltura o el subespacio que generan los

vectores
$$u_1 = (1,0,0)$$
, $u_2 = (0,1,0)$ en el espacio R^3

Sol:

Se comprueba si un vector genérico: (a, b, c) es CL de u₁, u₂ ->

$$(a, b, c) = \alpha_1 (1,0,0) + \alpha_2 (0,1,0)$$

1º Se plantea SL → vectores en columnas de una matriz
2º Se resuelve SL.

u₁ y u₂ generan el subespacio:

Env
$$\{ (1,0,0), (0,1,0) \} = \{ (a, b, 0) : a, b \in R \}$$

→ Todo espacio vectorial V posee un nº finito de vectores que describen por completo a dicho espacio.

PROCEDIMIENTO

para determinar si los vectores **u**₁,...**u**_k **generan** el Espacio vectorial **V** :

Paso1: Selectionar un vector arbitrario de $v \in V$, v = (a, b, c...)

Paso2: Determinar si v es CL de los vectores u₁,...u_k.

Si es CL $\rightarrow u_1, \ldots, u_k$ generan a V;

Si no es CL \rightarrow u_1, \ldots, u_k no generan a \vee

Ojo: paso 2: determinar si el SL generado es compatible.

Sea V el espacio vectorial R³ y sean $v_1 = (1,2,1), v_2 = (1,0,2), v_3 = (1,1,0)$

Se comprueba si v_1 , v_2 , v_3 generan a V

Sol:

Paso 1. Sea
$$V = (a, b, c) \in \mathbb{R}^{3}$$
, a, b, c $\in \mathbb{R}$

Paso 2. Se comprueba si \vee es CL de \vee_1 , \vee_2 , $\vee_3 \Leftrightarrow$

(a, b, c) =
$$\alpha_1$$
 (1,2,1) + α_2 (1,0,2) + α_3 (1,1,0)

Se **estudia SL**:

$$a = \alpha_1 + \alpha_2 + \alpha_3$$
 $b = 2\alpha_1 + \alpha_3$
 $c = \alpha_1 + 2\alpha_2$
 $\alpha_1 = (-2a + 2b + c)/3$
 $\alpha_2 = (a - b + c)/3$
 $\alpha_3 = (4a - b - 2c)/3$

Como para cada a, b, c existe una solución \rightarrow v_1 , v_2 , v_3 generan a V

2018-19

En algunos casos una CL de vectores

da como resultado el vector nulo (0,...0)

Ej:
$$-(4,5,4) + 3(1,1,1) - 2(1,-2,0) + (3,-2,1) = (0,0,0)$$

Veamos este concepto.....

Def: Los vectores $\mathbf{u_1}...\mathbf{u_p} \in \mathbb{R}^n$ son Linealmente Independientes (LI) si existen escalares $\mathbf{a_1}...\mathbf{a_p}$ todos nulos / $\mathbf{a_1}\mathbf{u_1} + ...\mathbf{a_p}\mathbf{u_p} = \mathbf{0}$

Def: Los vectores $\mathbf{u_1}...\mathbf{u_p} \in \mathbb{R}^n$ son **Linealmente Dependientes** (LD) si existen escalares $\mathbf{a_1},...\mathbf{a_p}$ no todos nulos / $\mathbf{a_1}\mathbf{u_1}+...\mathbf{a_p}\mathbf{u_p}=\mathbf{0}$

>> Un conjunto de vectores es LI
si <u>ninguno</u> de ellos
puede ser expresado
como una **CL de los restantes.**

PROCEDIMIENTO

para establecer si los vectores u_{1/····u_n} son LI /LD

Paso 1.- Plantear la ecuación $a_1u_1+...a_nu_n=0$ que lleva a un SH

Paso 2.- Resolver el SH.

- Si SH tiene sólo solución trivial (SCD) → los vectores son LI
- Si SH tiene solución no trivial (SCI) → los vectores son LD

Se estudia si los vectores $v_1 = (1,1,1)$, $v_2 = (1,0,1)$, $v_3 = (0,1,1)$ son LD o LI

Sol:
$$a_1(1, 1, 1) + a_2(1, 0, 1) + a_3(0, 1, 1) = (0, 0, 0)$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$a1 = a2 = a3 = 0$$
.

Los escalares son todos nulos \rightarrow vectores v_1 , v_2 , v_3 \rightarrow LI

Estudiar si $S = \{(4, 5, 4), (1,1,1), (1,-2, 0), (3,-2, 1)\}$ es LD o LI

Sol:

$$a_1(4, 5, 4) + a_2(1, 1, 1) + a_3(1, -2, 0) + a_4(3, -2, 1) = (0, 0, 0)$$

$$4a_1 + a_2 + a_3 + 3a_4 = 0
5a_1 + a_2 - 2a_3 - 2a_4 = 0
4a_1 + a_2 + a_4 = 0$$

$$\begin{bmatrix}
4 & 1 & 1 & 3 & 0 \\
5 & 1 & -2 & -2 & 0 \\
4 & 1 & 0 & 1 & 0
\end{bmatrix}$$
rref
$$\begin{bmatrix}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -3 & 0 \\
0 & 0 & 1 & 2 & 0
\end{bmatrix}$$

a₄ parámetro → SCI infinitas soluciones

Luego S es LD

$$(3,-2,1)=(1)(4,5,4)+(-3)(1,1,1)+(2)(1,-2,0)$$

Un conjunto de vectores LI en Rⁿ contiene a lo más n vectores.

Los vectores (2,-3,4), (4,7,-6), (18, -11, 4) y (2,-6,3) son LD ya que forman un conjunto de 4 vectores de 3 componentes (R³) ¿cuál de los 3 vectores es CL de los otros ?

$$A = \begin{pmatrix} 2 & 4 & 18 & 2 \\ -3 & 7 & -11 & -6 \\ 4 & -6 & 4 & 3 \end{pmatrix} \qquad \text{rref(A)} = \begin{pmatrix} 1 & 0 & 0 & -0.4 \\ 0 & 1 & 0 & -0.5 \\ 0 & 0 & 1 & 0.2 \end{pmatrix}$$

$$\mathbf{v_1} \quad \mathbf{v_2} \quad \mathbf{v_3} \quad \mathbf{v_4}$$

$$(2,-6,3) = (-0.4) \mathbf{v_1} + (-0.5) \mathbf{v_2} + (0.2) \mathbf{v_3}$$

Se debe calcular el

conjunto mínimo de vectores de un

espacio V que describe completamente a V

Esto nos lleva al concepto de base

BASES DE UN ESPACIO VECTORIAL

Def: Una base B es el menor conjunto

de vectores LI que generan todo el espacio S.

Cualquier vector u se escribe como CL de los elementos de la base B:

$$u = a_1 v_1 + ... + a_n v_n$$

 a_k : escalares; v_k (k = 1, ..., n): elementos de la base B.

Los vectores $\mathbf{v_{1}}...\mathbf{v_{n}}$ del espacio vectorial \mathbf{S} forman una base para \mathbf{S} si

- a) $v_1,...v_n$ generan S
- **b)** $v_1,...v_n$ son LI

Si S admite base finita
$$B = \{v_1, ... v_n\}$$

de n-vectores \rightarrow
 $dim(S) = n$

$$V_1 \neq V_2 \dots \neq V_n$$
No nulos V_k

BASES Y DIMENSIÓN

Sea B base de S, espacio vectorial /dim(S)=n Propiedades.

- Todos los elementos de B pertenecen al espacio S.
- Todas las bases de **S** tienen **n-vectores**.
- Cada vector de S se escribe, de forma única, como CL de los vectores de B
- Los elementos de B forman un sistema de vectores LI.
- Las <u>bases no son únicas</u>. Todo conjunto de n-vectores LI en Rⁿ es una base en Rⁿ
- → Una base tiene el mínimo nº de vectores LI que generan todos los vectores del espacio S.
- → Todas las bases de un espacio vectorial tienen el mismo nº de vectores.

Demuestra que $B = \{(1,0,0), (1,1,0), (0,2,-3)\}$ es base de R^3

Sol: a) B es sistema generador de R^3 , $(a,b,c) \in R^3$ es CL de vectores de B

$$(a,b,c)=a_1(1,0,0)+a_2(1,1,0)+a_3(0,2,-3)$$

Sistema:

$$a_1 + a_2 = a$$

 $a_2 + 2a_3 = b$
 $-3a_3 = c$

SCD solución
$$a_3 = -c/3$$
; $a_2 = b - 2c$; $a_1 = a - b + 2c$

b) Vectores $\sqcup \rightarrow [A|0] \rightarrow SCD$ - solución sólo trivial (columnas que tienen 1p).

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & -3 \end{bmatrix} \xrightarrow{\text{reff}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Estudiar si el conjunto de vectores C de R⁴ es LI /buscar base

$$C = \{(2,1,1,1), (1,1,1,1), (3,1,1,2), (0,1,2,1), (2,-1,1,-1)\}$$

Sol:

 \rightarrow N° de vectores = 5 > 4 es n° de componentes del vector \rightarrow vectores LD

$$A = \begin{bmatrix} 2 & 1 & 3 & 0 & 2 \\ 1 & 1 & 1 & 1 & -1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 & -1 \end{bmatrix} \quad \text{rref}(A) = \begin{bmatrix} 1 & 0 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 & -8 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix} \quad \begin{array}{c} \text{En rref}(A) \\ \text{las columnas} \\ \text{sin 1's} \\ \text{son vectores} \\ \text{dependientes} \end{array}$$

columna 5 \rightarrow vector (2,-1,1,-1) es CL del resto \rightarrow lo quitamos

Base de $R^4 = \{(2,1,1,1), (1,1,1,1), (3,1,1,2), (0,1,2,1)\}$

SUBESPACIOS NOTABLES QUE PROPORCIONA la matriz A=[a_{ii}] mxn

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Subespacio Columna: Col A

Las columnas de

$$A = [a_{:1}, ... a_{:n}]$$
 consideradas como

n-vectores de Rm

Generan un subespacio de R^m

Col A = Env{
$$a_{:1},...a_{:n}$$
 }

Columna 1 de A

La base ColA está formada por los vectores de A que en rref(A) tienen 1's principales

El nº de vectores columnas LI se llama rango.

BASE Y DIMENSIÓN del subespacio Col

Ejercicio 9

Hallar base y dimensión del subespacio Col A /
$$A = \begin{bmatrix} 1 & 1 & 2 & -1 \\ 1 & 0 & 3 & 1 \end{bmatrix}$$

Sol: 4 columnas de A \rightarrow 2 vectores son **LD** (espacio R²) (1,1), (1,0), (2,3), (-1,1)

→ base formada, como mucho, por 2 vect. LI

Averiguamos cuáles son en la reducida de A:

$$rref(A) = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & -1 & -2 \end{bmatrix}$$
 Las Columnas de la reducida de A que tienen 1 principal forman la **base** del subespacio Col(A)

Base(Col A) : { (1,1), (1,0) }

Dim(Col A) = 2

SUBESPACIOS NOTABLES QUE PROPORCIONA la matriz A=[a_{ii}] mxn

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Subespacio Fila: Fil A

Las filas de

$$A = [a_{1:}; a_{2:}; ... a_{m:}]$$

consideradas como

m-vectores de Rn

Generan un subespacio de Rⁿ

Fil A = Env{
$$a_{1:,} a_{2:,...} a_{m:}$$
 }

$$a_{1:} = (a_{11} a_{12...} a_{1n})$$

Fila 1 de A

La base FilA está formada por los vectores de A que en rref(A) tienen 1's principales

Hallar base y dimensión del subespacio Fil A /

$$A = \begin{bmatrix} 1 & 1 & 2 & -1 \\ 1 & 0 & 3 & 1 \end{bmatrix} \qquad \text{rref(A)} = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & -1 & -2 \end{bmatrix}$$

Las dos filas de la reducida de A tienen 1's principales luego

Fil A =
$$Env\{(1,1,2,-1), (1,0,3,1)\}$$

Dim Fil A = 2

SUBESPACIOS NOTABLES QUE PROPORCIONA la matriz A mxn

Subespacio nulo: Nul A

El espacio nulo de una matriz A (mxn), Nul A

es el conjunto de todas las soluciones del SH

$$Ax = 0$$

En notación de conjuntos:

Nul A =
$$\{ x / x \in R^n, Ax = 0 \}$$

El subespacio nulo se llama **núcleo** de la matriz

Hallar base y dimensión del subespacio Nul A / A =
$$\begin{bmatrix} 1 & -3 & 0 & 3 \\ 2 & 1 & -3 & 2 \\ 0 & 7 & -3 & -4 \end{bmatrix}$$

Sol:

Nul A =soluciones de Ax = 0

rref[A|0] =
$$\begin{bmatrix} 1 & 0 & -9/7 & 9/7 & 0 \\ 0 & 1 & -3/7 & -4/7 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 No 1 principales = 2
No vectores \rightarrow vectores LD

Solución general del SH:

$$x_1 - 9/7x_3 + 9/7x_4 = 0;$$

 $x_2 - 3/7x_3 - 4/7x_4 = 0;$
 $0 = 0$

Ecuaciones paramétricas

$$x_{1} = 9/7x_{3} - 9/7x_{4}$$

$$x_{2} = 3/7x_{3} + 4/7x_{4}$$

$$x_{3}$$

$$x_{4}$$

$$(9/7x_3 - 9/7x_4, 3/7x_3 + 4/7x_4, x_3, x_4) = x_3(9/7,3/7,1,0) + x_4(-9/7, 4/7,0,1)$$

BASE Nul A: {(9/7, 3/7, 1, 0), (-9/7, 4/7, 0, 1)}

Hallar base y dimensión del subespacio Nul A /

$$A = \begin{bmatrix} 1 & 1 & 2 & -1 \\ 1 & 0 & 3 & 1 \end{bmatrix} \qquad rref(A) = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & -1 & -2 \end{bmatrix}$$

Nul A = soluciones de Ax=0Sol:

Solución general del SH:

$$x_1 + 3x_3 + x_4 = 0;$$

 $x_2 - x_3 - 2x_4 = 0;$
 $x_1 = -3x_3 - x_4$
 $x_2 = x_3 + 2x_4$
 x_3
 x_4

Ecuaciones paramétricas

$$x_1 = -3x_3 - x_4$$

 $x_2 = x_3 + 2x_4$
 x_3
 x_4

$$(-3x_3 - x_4, x_3 + 2x_4, x_3, x_4) = x_3(-3, 1, 1, 0) + x_4(-1, 2, 0, 1)$$

BASE Nul A: { (-3, 1, 1, 0), (-1, 2, 0, 1) }

Determinar si u pertenece al espacio nulo de A

$$A = [1,-3,-2; -5,9,1]$$

$$u = [5,3,-2]^T$$

Sol:

Para probar que u satisface Au = 0, sólo hay que calcular

$$Au = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

u está en Nul A.

Teorema

Sea Ax = 0, las columnas de A forman un conjunto LD si, y sólo si,

el SH es indeterminado

Sea A matriz cuyas columnas son los vectores u₁...u_n

- Las columnas de A son LI sii, todas ellas son columnas con 1º principales.
 - Las columnas de A son LD sii, alguna columna
 no tiene 1º principales

Las columnas con 1's principales son LI

Resultados:

el <u>espacio nulo</u> de una matriz A mxn es un

subespacio de Rⁿ.

También, el conjunto de todas las <u>soluciones</u>

de un sistema Ax = 0 de m ecuaciones lineales

homogéneas con n incógnitas

es un subespacio de Rn.