LE CERCLE DE FUHRMANN

UNE PREUVE PUREMENT SYNTHÉTIQUE 1

†

Jean - Louis AYME

Résumé.

Nous présentons une preuve originale et synthétique du cercle de Fuhrmann datant de 1890 en le considérant comme un cercle de Mannheim. Cette preuve est suivie d'un résultat supplémentaire.

Sommaire	
A. Présentation	2
Le cercle de Fuhrmann	
2. Le résultat de Fuhrmann	
3. Une courte biographie de Wilhelm Fuhrmann	
B. La preuve	3
1. Le point de Nagel	
2. Le résultat de Boubals	
3. La preuve	
C. Trois autres points sur 0'	9
1. Une parallèle à (MI)	
2. Un lemme aux "deux dents de scie"	
3. Une parallèle à (A"I)	
4. Un alignement remarquable	
5. Le résultat supplémentaire	
D. Annexe	15
Tiers-point et milieu dans un triangle	
2. Tiers-point et milieu dans un triangle	

St.-Denis, Île de la Réunion (France).

A. PRÉSENTATION

1. Le cercle de Fuhrmann

C'est en 1890 qu'apparaît, pour la première fois, à la page 107 du traité de Géométrie intitulé Synthetische Beweise Planimetrischer Sätze écrit par le géomètre allemand Wilhelm Furhmann (1833-1904) alors professeur au Gymnasium de Königsberg, le cercle qui aujourd'hui porte le nom de son auteur.

Finition: ABC un triangle,

et 0' le triangle de Fuhrmann de ABC ² le cercle circonscrit à X'Y'Z'.

Définition : 0' est le cercle de Fuhrmann de ABC.

2. Le résultat de Fuhrmann

Traits: ABC un triangle,

H l'orthocentre de ABC, Na le point de Nagel ³ de ABC, X'Y'Z' le triangle de Fuhrmann de ABC, 0' le cercle de Fuhrmann de ABC.

Donné : [HNa] est un diamètre de 0'. 4

et

Note historique: une traduction du papier de Wilhelm Fuhrmann paru en 1890 dans la revue belge

Ayme J.-L., L'orthocentre du triangle de Fuhrmann, G.G.G. vol. 1 (2007); http://perso.orange.fr/jl.ayme.

Ayme J.-L., Cinq théorèmes de Christian Heinrich von Nagel, G.G.G. vol. 3, p. 8; http://perso.orange.fr/jl.ayme.

Fuhrmann W., Sur un nouveau cercle associé à un triangle, *Mathesis*, **10** (1890) 105–111.

Mathesis est proposé comme article en 20011 dans Forum Geometricorum⁵.

3. Une courte biographie de Fuhrmann

Wilhelm Fuhrman est né le 28 février 1833 à Burg près de Magdebourg (Saxe, Allemagne). Après avoir été élève au Gymnasium de Königsberg en 1853, il étudie les mathématiques et la physique à l'université de cette même ville jusqu'en 1860. Depuis cette date, il enseigne à l'Oberrealschule de cette ville. Il décède le 11 juin 1904 à Königsberg.

B. LA PREUVE

1. Le point de Nagel 6

Traits: ABC un triangle,

1', 2', 3' les A, B, C-excercles de ABC

et P', Q', R' les points de contact de 1', 2', 3' resp. avec (BC), (CA), (AB).

Donné: (AP'), (BQ') et (CR') sont concourantes⁷.

Scolie : ce point de concours, noté Na, est "le point de Nagel de ABC"

et est répertorié sous X₈ chez ETC

Énoncé traditionnel : les nageliennes d'un triangle sont concourantes.

2. Le résultat de Boubals

Vonk J. and Fisher J. C., Translation of Fuhrmann's "Sur un nouveau cercle associé à un triangle",

Forum Geometricorum 11 (2011) 13-26; http://forumgeom.fau.edu/FG2011volume11/FG201103.pdf.

Nagel (von) C. H., Le développement de la géométrie moderne du triangle (1836);

Nagel (von) C. H., Annales de Gergonne 19 (1860); http://www.numdam.org/numdam-bin/feuilleter?j=AMPA.

Ayme J.-L., Cinq théorèmes de Christian Heinrich von Nagel, G.G.G. vol. 3; http://perso.orange.fr/jl.ayme.

VISION

Figure:

Traits: ABC un triangle,

Na le point de Nagel de ABC A'B'C' le triangle antimédian de ABC. et

Na est le centre du cercle inscrit à A'B'C' 8 Donné:

VISUALISATION

 Notons Gle point médian de ABC le centre de ABC. et

Boubals J. G., Journal de Mathématiques Élémentaires (1886) $n^{\circ}186$; solution de Vigarié E., Journal de Mathématiques Élémentaires (1887) p.68. • Scolie: ABC et A'B'C' sont homothétiques, de centre G et de rapport 1: 2; en conséquence, G partage [AA'] à partir de A dans le rapport 1: 2.

• D'après "Cinq théorèmes de Nagel", G partage [INa] à partir de I dans le rapport 1: 2.

• D'après Thalès, (AI) // (A'Na).

• (AI) étant la A-bissectrice de ABC, (A'Na) est la A'-bissectrice intérieure de A'B'C'.

Mutatis mutandis, nous montrerions que
 (B'Na) est la B'-bissectrice intérieure de A'B'C'
 (C'Na) est la C'-bissectrice intérieure de A'B'C'.

• Conclusion : les bissectrices intérieure d'un triangles étant concourantes, Na est le centre de A'B'C'.

Énoncé traditionnel : le point de Nagel d'un triangle, est le centre de son triangle antimédian.

Note historique : ce résultat de J. G. Boubals est aussi attribué par Nathan Altshiller-Court à

Gaston Gohierre de Longchamps¹⁰.

3. La preuve

et

Notons
 0 le cercle circonscrit à ABC,
 X, Y, Z les milieux resp. des arcs BC, CA, AB ne contenant pas resp. A, B, C,
 1, 2, 3 les A, B, C-cercles de Carnot de ABC (Cf. Annexe 1)

A', B', C' les antipôles de H resp. à 1, 2, 3.

• Scolies: (1) X' est le symétrique de X par rapport à (BC)

Ayme J.-L., Cinq théorèmes de Christian Heinrich von Nagel, G.G.G. vol. 3, p. 12; http://perso.orange.fr/jl.ayme.

Longchamps (de), Journal de Mathématiques Élémentaires (1885) p. 92, Question 94.

Y' est le symétrique de Y par rapport à (CA) Z' est le symétrique de Z par rapport à (AB).

- 1 passe par H et X', et X' est le milieu de l'arc BC ne contenant pas A'
 2 passe par H et Y', et Y' est le milieu de l'arc CA ne contenant pas B'
 3 passe par H et Z', et Z' est le milieu de l'arc AB ne contenant pas C'.
- (3) (A'X') est la A-bissectrice intérieure du triangle A'CB (B'Y') est la B-bissectrice intérieure du triangle B'AC (C'Z') est la C-bissectrice intérieure du triangle C'BA.
- D'après Thalès "Triangle inscriptible dans un demi cercle", par hypothèse, (AH) ⊥ (BC);
 d'après l'axiome IVa des perpendiculaires, (AB') // (BC).
- Mutatis mutandis, nous montrerions que par transitivité de la relation //, d'après le postulat d'Euclide, en conséquence,
 Mutatis mutandis, nous montrerions que (AC') // (BC) i.e. (BC) // (AC');
 (AB') // (AC');
 (AB') = (AC');
 (B'AC) // (BC).
- Mutatis mutandis, nous montrerions que
 (C'BA) // (CA)
 (A'CB) // (AB).
- Conclusion partielle : A'B'C' est le triangle antimédian de ABC.

- (A'X'), (B'Y'), (C'Z') étant les A', B', C'-bissectrices intérieures de A'B'C', sont concourantes.
- Conclusion partielle : d'après B. 2. Le résultat de Boubals, ce point de concours est Na.

- Conclusion partielle : d'après "Le cercle de Mannheim" appliqué à A'B'C', à 1, 2, 3, et à Na, X', Y', Z', H et Na sont cocycliques.
- Notons 0' ce cercle.

- D'après Thalès "Triangle inscriptible dans un demi cercle", (A'NaX') ⊥ (X'H).
- Conclusion : [HNa] est un diamètre de 0'.

Ayme J.-L., Les cercles de Morley, Euler, Mannheim et Miquel, G.G.G. vol. 2, p. 5; http://perso.orange.fr/jl.ayme.

Scolies: (1) G, O, H, N, Na sont resp. répertoriés sous X₂, X₃, X₄, X₅, X₈ chez ETC.

(2) Position du centre du cercle de Fuhrmann

- Notons O le centre de 0,
 - N le point d'intersection de (OGH) et (IFu),
 - Fu le centre du cercle de Fuhrmann
 - et U le point d'intersection de (IGNa) et (OFu).
- Nous savons que G est le premier tiers-point de [INa] à partir de I.
- D'après "Tiers point et milieu" (Cf. Annexe 1) appliqué au triangle IFuNa et à la ménélienne (NHG), N est le milieu de [IFu].
- D'après "Tiers point et milieu" (Cf. Annexe 2) appliqué au triangle GHNa et à la ménélienne (NFuI),
 N est le premier tiers-point de [GH] à partir de G;
 en conséquence,
 N est le centre du cercle d'Euler de ABC.
- Conclusion : Fu est le symétrique de I par rapport à N.
 - (3) Fu est répertorié sous X_{355} chez ETC.

C. TROIS AUTRES POINTS SUR θ'

1. Une parallèle à la droite (MI)

VISION

Figure:

Traits: ABC un triangle,

M le milieu de [BC],

1 le cercle inscrit de ABC,

I le centre de 1,

Na le point de Nagel de ABC,

D le point de contact de 1 avec (BC),

A" le pied de la A-hauteur de ABC

et X" le pied de la perpendiculaire à (AA") issue de Na.

Donné : (DX") est parallèle à (MI).

VISUALISATION

- Notons D' le point d'intersection "le plus proche de A" de (ANa) avec 1.
- Scolie: (1) D, I et D' sont alignés (2) (AX") // (DID').

- Notons U le point d'intersection de la parallèle (BC) passant par A et de la parallèle à (AA") passant par Na.
- D'après B. 2. Le résultat de Boubals, en conséquence, le quadrilatère AX"DD' ayant deux côtés parallèles et égaux est un parallélogramme ; il s'en suit que (DX") // (AD'Na).

- Notons S le point d'intersection de (ANa) et (BC).
- Nous savons que M est le milieu de [DS].
- D'après Thalès "La droite des milieux" appliqué au triangle DSD', par transitivité de la relation //, (DX") // (MI);
- Conclusion: (DX") est parallèle à (MI).

2. Le lemme aux "deux dents de scie" 12

VISION

Figure:

12

Traits:

[AB] un segment,

C un point de [AB],

D le conjugué harmonique de C par rapport à A et B,

U, V deux points situé dans le même demi plan de frontière (AB) tels que les triangles UAC et VCB soient homothétiques

le milieu de [CD]. et

Donné: U, V et I sont alignés.

VISUALISATION

- le point d'intersection de (UV) et (BC). Notons X
- $\frac{XC}{XB} = \frac{XU}{XV}$ et $\frac{XU}{XV} = \frac{XA}{XC}$. • D'après Thalès "Rapports de...",
- $\frac{XC}{XB} = \frac{XA}{XC} \; ;$ • Par transitivité de la relation =,

en conséquence, cette relation de Newton exprime que il s'en suit que

 $XC^2 = XA \cdot XB$; X est le milieu de [CD]; X et I sont confondus.

- Conclusion : U, V et I sont alignés.
- 3. Une parallèle à la droite (A''I)

VISION

Figure:

Traits: ABC un triangle,

et

A"

I

le pied de la A-hauteur de ABC, le centre de ABC, le pied de la perpendiculaire à (BC) issue de I, D

0

le cercle circonscrit à ABC, le second point d'intersection de (AI) avec 0 le symétrique de X par rapport à (BC). X X'

Donné: (DX') est parallèle à (A"I).

VISUALISATION

- Notons
 E le pied de la perpendiculaire à (AA") issue de I
 F le point d'intersection de (AX) et (BC),
 et Ia le centre du A-excercle de ABC.
- Scolies: (1) la quaterne (A, F, I, Ia) est harmonique (2) X est le milieu de [IIa].
- Conclusion partielle : d'après C. 2. Le lemme aux "deux dents de scie" appliqué aux triangles AEI et IDF, D, E et X sont alignés.

- Notons J le point d'intersection de (DX') et (AI).
- Le quadrilatère IEA"D étant un rectangle, ses diagonales se coupent en leur milieu.
- La quaterne (J, X, F, I) étant harmonique, le pinceau (D; J, X, F, I) est harmonique.
- Conclusion: le rayon (DX) coupant [A"I] en son milieu,
 - (DX') est parallèle à (A"I).

4. Un alignement remarquable

VISION

Figure

Traits:

aux hypothèses et notations précédentes de la situation de Fuhrmann, nous ajoutons

X" le second point d'intersection de (AH) avec 0'.

Donné : (X'X") passe par I.

VISUALISATION

• D'après "Le petit théorème de Pappus" appliqué à l'hexagone A"IMX'DX"A", I, X' et X" sont alignés.

• Conclusion: (X'X") passe par I.

5. Le résultat supplémentaire

VISION

Figure:

Traits: aux hypothèses et notations précédentes de la situation de Fuhrmann, nous ajoutons

Y" le second point d'intersection de (BH) avec θ'

et Z'' le second point d'intersection de (CH) avec 0'.

Donné : [X'X"], [Y'Y"] et [Z'Z"] concourent en I.

D. ANNEXE

1. Tiers-point et milieu dans un triangle

Traits: ABC un triangle,

F le premier tiers-point de [AB] à partir de B,

et E, D deux points resp. de (CA), (BC) tels que D, E et F soient alignés.

Donné : E est le milieu de [CA] si, et seulement si, C est le milieu de [BD].

2. Tiers-point et milieu dans un triangle

Traits: ABC un triangle,

et

F le milieu de [AB],

E, D deux points resp. de (CA), (BC) tels que D, E et F soient alignés.

F le premier tiers-point de [AB] à partir de B,

Donné: E est le premier tiers-point de [CA] à partir de C

si, et seulement si,

C est le premier tiers-point de [DB] à partir de D.