Tangent Planes & Normal Lines

Vector Calculus (MATH-243)
Instructor: Dr. Naila Amir

Partial Derivatives

Book: Thomas' Calculus Early Transcendentals (14th Edition) By George B. Thomas, Jr., Joel Hass, Christopher Heil, Maurice D. Weir.

Chapter: 14, Section: 14.5, 14.6

Book: Calculus Early Transcendentals (6th Edition) By James Stewart.

Chapter: 14, Section: 14.1, 14.6

Gradients to Level Curves

If z = f(x,y) is surface then f(x,y) = k is called the **level curve** of f(x,y) of level k and is the intersection of the horizontal plane z = k and the surface z = f(x,y). If f(x,y) is a differentiable function of two variables then the level curve f(x,y) = c can be parametrized by $\mathbf{r}(t) = \langle g(t), h(t) \rangle$, i.e.,

$$f(g(t),h(t)) = c.$$

Differentiating both sides of this equation with respect to t leads to the equations:

$$\nabla f \cdot \frac{dr}{dt} = 0 \Longrightarrow \nabla f \cdot \mathbf{r}'(t) = 0. \tag{*}$$

Equation (*) says that ∇f is orthogonal to the tangent vector $\mathbf{r}'(t)$, so it is orthogonal to the tangent line to the curve f(x,y)=c at a point (x_0,y_0) .

The level curve $f(x,y)=f(x_0,y_0)$

 (x_0, y_0)

Thus, the gradient of a differentiable function of two variables at a point (x_0, y_0) is always normal to the function's level curve through that point.

Tangent line & Normal Line to a Level Curve

- At every point (x_0, y_0) in the domain of a differentiable function f(x, y), the gradient of f is normal to the level curve through (x_0, y_0) .
- This observation enables us to find equations for tangent lines to level curves. They are the lines normal to the gradients.
- The line through a point (x_0, y_0) normal to a nonzero vector $\mathbf{N} = \langle A, B \rangle$ has the equation:

$$A(x - x_0) + B(y - y_0) = 0.$$

• If **N** is the gradient $\nabla f(x_0, y_0) = \langle f_x(x_0, y_0), f_y(x_0, y_0) \rangle$ and this gradient is a nonzero vector, then the equation for tangent line to level curve at (x_0, y_0) is given by:

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) = 0$$

$$\Rightarrow f_y(x_0, y_0)(y - y_0) = -f_x(x_0, y_0)(x - x_0),$$

$$\Rightarrow y - y_0 = -f_x(x_0, y_0)/f_y(x_0, y_0)(x - x_0).$$

• Thus, the normal of the level curve at (x_0, y_0) is given as:

$$y - y_0 = f_v(x_0, y_0) / f_x(x_0, y_0) (x - x_0).$$

Tangent line & Normal Line to a Level Curve

• For a differentiable of single variable: y = f(x), the tangent line is given as:

$$y - f(x_0) = f'(x_0)(x - x_0).$$

Actually, this comes from the linear approximation: $f(x) \approx f(x_0) + f'(x_0)(x - x_0)$. The normal vector of this line is $(f'(x_0), -1)$.

- The linear approximation for a differentiable function of two variables z = f(x, y), is: $f(x, y) \approx f(x_0, y_0) + f_x(x_0, y_0)(x x_0) + f_y(x_0, y_0)(y y_0)$.
- When we move on level curve $f(x,y) = f(x_0,y_0)$ we get the tangent line of the level curve at (x_0,y_0) as:

$$f_{x}(x_{0}, y_{0})(x - x_{0}) + f_{y}(x_{0}, y_{0})(y - y_{0}) = 0,$$

$$\Rightarrow f_{y}(x_{0}, y_{0})(y - y_{0}) = -f_{x}(x_{0}, y_{0})(x - x_{0}),$$

$$\Rightarrow y - y_{0} = -\frac{f_{x}(x_{0}, y_{0})}{f_{y}(x_{0}, y_{0})}(x - x_{0}).$$

• Thus, the normal of the level curve at (x_0, y_0) is given as:

$$y - y_0 = \frac{f_y(x_0, y_0)}{f_x(x_0, y_0)} (x - x_0).$$

Find an equation for the tangent to the ellipse:

$$\frac{x^2}{4} + y^2 = 2,$$

at the point (-2, 1).

Solution: The ellipse is a level curve of the function:

$$f(x,y) = \frac{x^2}{4} + y^2.$$

The gradient of f at (-2,1) is:

$$\nabla f(-2,1) = \left\langle \frac{x}{2}, 2y \right\rangle \Big|_{(-2,1)} = \langle -1,2 \rangle.$$

Because this gradient vector is nonzero, the tangent to the ellipse at (-2,1) is the line:

$$(-1)(x+2) + (2)(y-1) = 0 \Rightarrow x - 2y = -4.$$

We can find the tangent to the ellipse $\frac{x^2}{4} + y^2 = 2$ by treating the ellipse as a level curve of the function $f(x,y) = \frac{x^2}{4} + y^2$.

sketch the curve $x^2 + y^2 = 4$, together with ∇f and the tangent line at the point $(\sqrt{2}, \sqrt{2})$. Then write an equation for the tangent line.

Solution: The circle is a level curve of the function:

$$f(x,y) = x^2 + y^2.$$

The gradient of f at $(\sqrt{2}, \sqrt{2})$ is:

$$\nabla f(\sqrt{2}, \sqrt{2}) = \langle 2x, 2y \rangle \Big|_{(\sqrt{2}, \sqrt{2})} = \langle 2\sqrt{2}, 2\sqrt{2} \rangle.$$

 $\nabla f = 2\sqrt{2}\mathbf{i} + 2\sqrt{2}\mathbf{j}$ $(\sqrt{2}, \sqrt{2})$ x $x^2 + y^2 = 4$ $y = -x + 2\sqrt{2}$

Because this gradient vector is nonzero, the tangent to the circle at $(\sqrt{2}, \sqrt{2})$ is the line:

$$y - \sqrt{2} = \left(-\frac{2\sqrt{2}}{2\sqrt{2}}\right)\left(x - \sqrt{2}\right) \Longrightarrow y - \sqrt{2} = \sqrt{2} - x \Longrightarrow x + y = 2\sqrt{2}.$$

Consider the curve $x^2 - xy + y^2 = 7$. Determine ∇f and equation for the tangent line at the point (-1,2).

Solution: The given curve is a level curve of the function:

$$f(x,y) = x^2 - xy + y^2.$$

The gradient of f at (-1,2) is:

$$\nabla f(-1,2) = \langle 2x - y, -x + 2y \rangle \Big|_{(-1,2)} = \langle -4,5 \rangle.$$

Because this gradient vector is nonzero, the tangent to the level curve at (-1,2) is the line:

$$y-2=\left(-\frac{(-4)}{5}\right)(x+1) \Longrightarrow 5(y-2)=4(x+1) \Longrightarrow 4x-5y+14=0.$$

Tangent Planes

- Consider a surface S with equation z = f(x, y), where f has continuous first partial derivatives, and let $P(x_0, y_0, z_0)$ be a point on S.
- Let C_1 and C_2 be the curves obtained by intersecting the vertical planes $y = y_0$ and $x = x_0$ with the surface S.
- The point P lies on both C_1 and C_2 . Let T_1 and T_2 be the tangent lines to the curves C_1 and C_2 at the point P.
- Then the **tangent plane** to the surface S at the point P is defined to be the plane that contains both tangent lines T_1 and T_2 .
- If *C* is any other curve that lies on the surface *S* and passes through *P*, then its tangent line at *P* also lies in the tangent plane.
- Therefore, we can think of the tangent plane to *S* at *P* as consisting of all possible tangent lines at *P* to curves that lie on *S* and pass through *P*.

The tangent plane contains the tangent lines T_1 and T_2 .

Tangent Planes

- The tangent plane at *P* is the plane that most closely approximates the surface *S* near the point *P*.
- We know that any plane passing through the point $P(x_0, y_0, z_0)$ has an equation of the form:

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0.$$

• By dividing this equation by C and letting a = -A/C and b = -B/C, we can write it in the form:

$$z - z_0 = a(x - x_0) + b(y - y_0).$$
 (1)

• If (1) represents the tangent plane at P, then its intersection with the plane $y=y_0$ must be the tangent line T_1 . Setting $y=y_0$ in (1) we get:

$$z - z_0 = a(x - x_0)$$
 where $y = y_0$,

and we recognize this as the equation (in point-slope form) of a line with slope a. But we know that the slope of the tangent T_1 is $f_x(x_0, y_0)$. Therefore, $a = f_x(x_0, y_0)$.

Tangent Planes and Normal line

• Similarly, putting $x = x_0$ in (1), we get:

$$z - z_0 = b(y - y_0),$$

which must represent the tangent line T_2 , so $b = f_v(x_0, y_0)$.

• Suppose that f(x,y) has continuous partial derivatives. An equation of the **tangent** plane to the surface z = f(x,y) at the point $P(x_0, y_0, z_0)$ is given as:

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$
 (2)

 Note the similarity between the equation of a tangent plane and the equation of a tangent line:

$$y - y_0 = f'(x_0)(x - x_0).$$

• The **normal line** to the surface z = f(x,y) at P is the line passing through P and perpendicular to the tangent plane. Its direction is given by the gradient, and its symmetric equations are:

$$\frac{x - x_0}{f_x(x_0, y_0)} = \frac{y - y_0}{f_v(x_0, y_0)} = z - z_0.$$
 (3)

Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (1, 1, 3).

Solution:

Let
$$f(x, y) = 2x^2 + y^2$$
. Then

$$f_{\mathcal{X}}(x,y) = 4x \Longrightarrow f_{\mathcal{X}}(1,1) = 4.$$

$$f_y(x,y) = 2y \Longrightarrow f_y(1,1) = 2.$$

Then (2) gives the equation of the tangent plane at (1, 1, 3) as:

$$z - 3 = 4(x - 1) + 2(y - 1),$$

or

$$z = 4x + 2y - 3.$$

Tangent Planes to Level Surfaces

Suppose S is a surface with equation F(x,y,z)=k, that is, it is a level surface of a function F of three variables, and let $P(x_0,y_0,z_0)$ be a point on S. Let C be any curve that lies on the surface S and passes through the point P. Recall that the curve C is described by a continuous vector function $\mathbf{r}(t)=\langle x(t),y(t),z(t)\rangle$. Let t_0 be the parameter value corresponding to P; that is, $\mathbf{r}(t_0)=\langle x_0,y_0,z_0\rangle$. Since C lies on S, any point (x(t),y(t),z(t)) must satisfy the equation of S, that is,

$$F(x(t), y(t), z(t)) = k. (4)$$

If x, y, and z are differentiable functions of t and F is also differentiable, then we can use the Chain Rule to differentiate both sides of Equation (3) as follows:

$$\frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt} + \frac{\partial F}{\partial z}\frac{dz}{dt} = 0$$

$$\Rightarrow \nabla F \cdot \mathbf{r}'(t) = 0. \tag{5}$$

Tangent Planes to Level Surfaces

In particular, when $t = t_0$ we have:

$$\nabla F(x_0, y_0, z_0) \cdot \mathbf{r}'(t_0) = 0. \tag{6}$$

Equation (6) says that the gradient vector at P, $\nabla F(x_0, y_0, z_0)$, is perpendicular to the tangent vector $\mathbf{r}'(t_0)$ to any curve C on S that passes through P. If $\nabla F(x_0, y_0, z_0) \neq \mathbf{0}$, it is therefore natural to define the **tangent plane to the level surface** F(x, y, z) = k **at** $P(x_0, y_0, z_0)$ as the plane that passes through P and has normal vector $\nabla F(x_0, y_0, z_0)$. Using the standard equation of a plane, we can write the equation of this tangent plane as:

$$F_{\chi}(x_0, y_0, z_0)(x - x_0) + F_{\chi}(x_0, y_0, z_0)(y - y_0) + F_{\chi}(x_0, y_0, z_0)(z - z_0) = 0.$$
 (7)

