- 1. For each of the following statements, produce a counterexample to show that the statement is **false**.
 - (a) If A and B are square matrices, AB = BA.
 - (b) If $AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then A and B are 2×2 matrices.
 - (c) If AB = I then BA = I.
 - (d) If $A^2 = 0$, then A = 0.
- 2. Let $R = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$.
 - (a) Find all solutions to the matrix equation $R\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}$.
 - (b) Prove that the set $X = \{\vec{x} \in \mathbb{R}^3 : R\vec{x} = \vec{0}\}$ is a subspace.
 - (c) Prove that the set $Y = \{\vec{y} \in \mathbb{R}^3 : \vec{y} = R\vec{x} \text{ for some } \vec{x} \in \mathbb{R}^3\}$ is a subspace.
- 3. Suppose E is a 4×3 matrix with columns $\vec{c}_1, \vec{c}_2, \vec{c}_3$ and rows $\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_4$. Let $\vec{v} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$.
 - (a) Express $E\vec{v}$ as a linear combination of $\vec{c}_1, \vec{c}_2, \vec{c}_3$.
 - (b) Supposing $\vec{r}_1 \cdot \vec{v} = 1$, $\vec{r}_2 \cdot \vec{v} = 6$, $(\vec{r}_3 + \vec{r}_4) \cdot \vec{v} = 2$, and $(\vec{r}_3 \vec{r}_4) \cdot \vec{v} = -2$, compute $E\vec{v}$.
- 4. Suppose that \vec{u} , \vec{v} , and \vec{w} are vectors in \mathbb{R}^2 that are related by the following diagram.

Let $A = [\vec{u}|\vec{v}|\vec{w}]$ be the matrix with columns \vec{u} , \vec{v} , and \vec{w} .

- (a) What is the rank of A?
- (b) Find all solutions to the equation $A\vec{x} = \vec{0}$.
- (c) Find a basis for the subspace $V = {\vec{x} \in \mathbb{R}^3 : A\vec{x} = \vec{0}}$.
- 5. LINEAR TRANSFORMATIONS WERE HERE THE WHOLE TIME! For each transformation, determine whether or not it is a linear transformation. If it is a linear transformation, give its null space.
 - (a) Let $V = \text{span}\{1, x, x^2\}$ where $1, x, x^2$ are (as usual) polynomials. Let $D: V \to V$ be differentiation. (Use the limit definition of the derivative. However, you can do limits like you did in Calc I; you don't have to do $\varepsilon \delta$ proofs).
 - (b) Let $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R}\}$ and let $D^s : \mathcal{F} \to \mathcal{F}$ be left-translation by s. That is, $D^s f(t) = f(t+s)$.
 - (c) Let $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R}\}$ and let $D^s : \mathcal{F} \to \mathcal{F}$ be vertical-translation by s. That is, $D^s f(t) = f(t) + s$.

- (d) Let $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R}\}$ and let $D^s : \mathcal{F} \to \mathcal{F}$ be horizontal-stretching by s. That is, $D^s f(t) = f(t/s)$.
- (e) Let $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R}\}$ and let $D^s : \mathcal{F} \to \mathcal{F}$ be vertical-stretching by s. That is, $D^s f(t) = s f(t)$.
- (f) Let $\mathcal{I} = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is increasing}\}$ and let $D : \mathcal{I} \to \mathcal{I}$ be so that $D(f) = f^{-1}$ takes a function to its inverse.
- (g) Let $\mathcal{L} = \{f : \mathbb{R} \to \mathbb{R} \mid f(x) = mx + b \text{ for some } m, b \in \mathbb{R} \}$ be the set of all functions whose graphs are non-vertical lines and let $D : \mathcal{L} \to \mathbb{R}$ be evaluation at the point x = 1. That is, D(f) = f(1).
- 6. Once upon a time we were doing vector calculus!
 - (a) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \cos(x) + \sin(y)$. Let $D^f: \mathbb{R}^2 \to \mathbb{R}$ be such that $D^f(\vec{v})$ is the directional derivative of f in at the point (0,0) in the direction \vec{v} . Show, using the definition of directional derivative, that D^f is linear.
 - (b) Let $\mathcal{F} = \{\text{functions from } \mathbb{R}^2 \text{ to } \mathbb{R}\}$ and let $\vec{v} \in \mathbb{R}^2$. Define $D^{\vec{v}} : \mathcal{F} \to \mathbb{R}$ to be the function such that $D^{\vec{v}}(h)$ is the directional derivative of h at the point (0,0) in the direction \vec{v} . Show that $D^{\vec{v}}$ is a linear transformation.
 - (c) Let $D_{\vec{x}}: \mathcal{F} \times \mathbb{R}^2 \to \mathbb{R}$ be so that $D_{\vec{x}}(h, \vec{v})$ is the directional derivative of h at the point \vec{x} in the direction \vec{v} . Take a moment to appreciate that $D_{\vec{x}}$ is bilinear. That is, it is linear in both its first and second arguments. Let $\vec{f}: \mathbb{R}^2 \to \mathbb{R}^2$ be a vector field. Notice that $D_{\vec{x}}(h, \vec{f}(\vec{x}))$ is still a linear function of h. The function $d_{\vec{x},\vec{f}}(h) = D_{\vec{x}}(h, \vec{f}(\vec{x}))$ is called a derivation. Much of what we did in multi-variable calculus can be rephrased in terms of derivations. Bilinearity of $D_{\vec{x}}$ ensures that for a fixed \vec{x} , the set of all derivations is itself a vector space. This vector space is called the tangent space at \vec{x} , and it is equivalent to the notion of tangent planes we developed first term.
 - Think about the functions defined in the previous paragraph until their definitions make sense. Then, contemplate whether a differential geometry course (where these ideas are studied in depth) would interest you. You do not need to write anything for this part.
 - (d) In Math 281-1, homework 3, problem 5, we considered the function $f(x,y) = \frac{x^2y}{x^2+y^2}$ if $(x,y) \neq (0,0)$ and f(0,0) = 0. Let $D^f : \mathbb{R}^2 \to \mathbb{R}$ be so that $D^f(\vec{v})$ is the directional derivative of f at the point (0,0) in the direction \vec{v} . Is D^f linear? Make a conjecture about the relationship between linearity of the directional derivative operator and differentiability of a function.