Introduction to	Robotics	E106/206
Midterm1 - Fall	l 2016 - S	OLUTIONS

SID:	

Name:	

Please show all working. Marks are awarded for method.

A cheat sheet is provided. No other notes or calculators are allowed.

Problem 1	/8
Problem 2	/6
Problem 3	/2
Problem 4	/4
Problem 5	/12
Problem 6	/19
Problem 7	/23
Total	/74

- - (a) Write the rotation matrix \mathbf{R}_{AB} for these two coordinate frames.

(2)

(2)

Solution:

1 Use correct Rotation matrix.

$$\mathbf{R}_{AB} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

1 Substitute in theta correctly.

$$\boldsymbol{R}_{AB} = \begin{bmatrix} \cos(\frac{\pi}{4}) & 0 & \sin(\frac{\pi}{4}) \\ 0 & 1 & 0 \\ -\sin(\frac{\pi}{4}) & 0 & \cos(\frac{\pi}{4}) \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{bmatrix}$$

(b) Write the rotation matrix \mathbf{R}_{BA} for these two coordinate frames.

Solution: Either, resolve using $\theta = -\frac{\pi}{4}$

1 Use correct Rotation matrix.

$$\mathbf{R}_{BA} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

1 Substitute in theta correctly.

$$\mathbf{R}_{BA} = \begin{bmatrix} \cos(-\frac{\pi}{4}) & 0 & \sin(-\frac{\pi}{4}) \\ 0 & 1 & 0 \\ -\sin(-\frac{\pi}{4}) & 0 & \cos(-\frac{\pi}{4}) \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{bmatrix}$$

or

2 Use $\mathbf{R}_{BA} = \mathbf{R}_{AB}^{-1} = \mathbf{R}_{AB}^{T}$ for full credit.

(c) How would a vector $\mathbf{p}_A = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ written in the A coordinate frame be written in the B coordinate frame?

Solution:

1 Use correct Rotation matrix.

$$oldsymbol{p}_B = oldsymbol{R}_{BA}oldsymbol{p}_A$$

1 Perform calculation correctly.

$$m{p}_B = egin{bmatrix} rac{\sqrt{2}}{2} & 0 & -rac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ rac{\sqrt{2}}{2} & 0 & rac{\sqrt{2}}{2} \end{bmatrix} egin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = egin{bmatrix} 0 \\ 1 \\ \sqrt{2} \end{bmatrix}$$

(d) How would a vector $\mathbf{p}_B = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ written in the B coordinate frame be written in the A coordinate frame? (2)

Solution:

1 Use correct Rotation matrix.

$$oldsymbol{p}_A = oldsymbol{R}_{AB}oldsymbol{p}_B$$

1 Perform calculation correctly.

$$m{p}_A = egin{bmatrix} rac{\sqrt{2}}{2} & 0 & rac{\sqrt{2}}{2} \ 0 & 1 & 0 \ -rac{\sqrt{2}}{2} & 0 & rac{\sqrt{2}}{2} \end{bmatrix} egin{bmatrix} 1 \ 1 \ \end{bmatrix} egin{bmatrix} 1 \ 1 \ \end{bmatrix} = egin{bmatrix} \sqrt{2} \ 1 \ 0 \ \end{bmatrix}$$

Solution:

1 Write Rodrigues' formula

$$\boldsymbol{R}\left(\boldsymbol{\omega},\theta\right) = \mathbb{I}_{3} + \frac{\hat{\boldsymbol{\omega}}}{\|\boldsymbol{\omega}\|}\sin(\theta) + \frac{\hat{\boldsymbol{\omega}}^{2}}{\|\boldsymbol{\omega}\|^{2}}\left(1 - \cos(\theta)\right)$$

1 Correctly write ω :

$$\boldsymbol{\omega} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$$

1 Correctly writing the $\frac{\hat{\omega}}{\|\omega\|}$ term:

$$\frac{\hat{\boldsymbol{\omega}}}{\|\boldsymbol{\omega}\|} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

1 Correctly writing the $\frac{\hat{\omega}^2}{\|\omega\|^2}$ term:

$$\frac{\hat{\boldsymbol{\omega}}^2}{\|\boldsymbol{\omega}^2\|} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

1 Correctly writing the trig components:

$$\frac{\hat{\boldsymbol{\omega}}}{\|\boldsymbol{\omega}\|}\sin(\theta) = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & -\sin(\theta)\\ 0 & \sin(\theta) & 0 \end{bmatrix}$$

$$\frac{\hat{\omega}^2}{\|\omega\|^2} (1 - \cos(\theta)) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & (\cos(\theta) - 1) & 0 \\ 0 & 0 & (\cos(\theta)) - 1 \end{bmatrix}$$

1 Correctly arrive at R_{ν} :

$$\boldsymbol{R}(\boldsymbol{\omega}, \theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\sin(\theta) \\ 0 & \sin(\theta) & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & (\cos(\theta) - 1) & 0 \\ 0 & 0 & (\cos(\theta)) - 1 \end{bmatrix}$$

$$m{R}\left(m{\omega}, heta
ight) = egin{bmatrix} 1 & 0 & 0 \ 0 & \cos(heta) & -\sin(heta) \ 0 & \sin(heta) & (\cos(heta)) \end{bmatrix} = m{R}_x$$

(a) Given the rotation matrices \mathbf{R}_{AB} , \mathbf{R}_{BC} , \mathbf{R}_{CD} , write and expression for \mathbf{R}_{AD} . (1)

Solution:

1 For correct expression: $R_{AD} = R_{AB}R_{BC}R_{CD}$

(b) Given the rotation matrices \mathbf{R}_{AB} , \mathbf{R}_{AD} , \mathbf{R}_{CD} , write and expression for \mathbf{R}_{BC} .

(1)

Solution:

1 For correct expression: $\mathbf{R}_{BC} = \mathbf{R}_{AB}^{-1} \mathbf{R}_{AD} \mathbf{R}_{CD}^{-1}$

 $\boldsymbol{T} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

Solution:

1 Checking for det(T) = 1.

1 For correct calculation det(T) == 0 * 0 - (-1) * 1 = 1.

1 Checking for $TT^T = \mathbb{I}$.

 $\mathbf{1} \ \text{For correct calculation} \ TT^T = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \mathbb{I}.$

or

2 By inspection, this is an element of $\mathcal{SO}(2)$.

or

4 By inspection, this is the 2D rotation matrix about $-\frac{\pi}{2}$.

(a) Write the rigid body transform $\mathbf{g}_{WA}(\theta_1)$ in homogeneous form. (3)

Solution:

1 For writing in homogeneous coordinate form:

$$oldsymbol{g}_{WA} = egin{bmatrix} oldsymbol{R}_{WA} & oldsymbol{p}_{WA} \ oldsymbol{0} & 1 \end{bmatrix}$$

1 For correctly using the R_Z rotation matrix:

$$\boldsymbol{R}_{WA} = \boldsymbol{R}_{Z}(\theta) = \begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) & 0\\ \sin(\theta_1) & \cos(\theta_1) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

1 For correctly finding p_{WA} :

$$oldsymbol{p}_{WA} = egin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(3)

(b) Write the rigid body transform $\boldsymbol{g}_{BT}\left(\theta_{3},\theta_{4}\right)$ in homogeneous form.

Solution:

1 For writing in homogeneous coordinate form:

$$g_{BT} = \begin{bmatrix} R_{BT} & p_{BT} \\ \mathbf{0} & 1 \end{bmatrix}$$

1 For correctly using the R_Y rotation matrix:

$$oldsymbol{R}_{BT} = oldsymbol{R}_Y = egin{bmatrix} \cos(heta_3) & 0 & \sin(heta_3) \\ 0 & 1 & 0 \\ -\sin(heta_3) & 0 & \cos(heta_3) \end{bmatrix}$$

1 For correctly finding p_{BT} :

$$oldsymbol{p}_{BT} = egin{bmatrix} 0 \ l_1 + l_2 + heta_4 \ 0 \end{bmatrix}$$

(c) Write the rigid body transform g_{WT} in terms of relative rigid body frames (such as g_{WA})

(2)

Solution:

2 For writing in homogeneous coordinate form:

$$\boldsymbol{g}_{WT} = \boldsymbol{g}_{WA} \boldsymbol{g}_{AB} \boldsymbol{g}_{BT}$$

(2)

(d) How would you alter your expression for g_{WT} if we added a frame C between the B and T frames, where C is fixed to frame B. Explain your answer and any additional information required.

Solution:

- 1 No change
- 1 C is a reference frame and does not actually induce any motion to the subsequent frames. As we already know g_{BT} we do not need to include the C frame.

(a) Compute $\hat{\boldsymbol{\xi}}$ for joints 1, 2, and 4:

Solution:

3 One point for each correct ω :

$$oldsymbol{\omega}_1 = egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} \qquad oldsymbol{\omega}_2 = egin{bmatrix} -1 \ 0 \ 0 \end{bmatrix} oldsymbol{\omega}_4 = egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}$$

2 For each correct q. '.' represents any number.

$$oldsymbol{q}_1 = egin{bmatrix} 0 \ 0 \ \cdot \end{bmatrix} \qquad oldsymbol{q}_2 = egin{bmatrix} \cdot \ 0 \ l_0 \end{bmatrix}$$

3 Calculating the $\hat{\boldsymbol{\omega}}$ terms:

$$\hat{\boldsymbol{\omega}}_1 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \hat{\boldsymbol{\omega}}_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \qquad \hat{\boldsymbol{\omega}}_4 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

3 Calculating v:

$$egin{aligned} oldsymbol{v}_1 &= -oldsymbol{\omega}_1 imes oldsymbol{q}_1 & oldsymbol{v}_2 &= -oldsymbol{\omega}_2 imes oldsymbol{q}_2 \ oldsymbol{v}_1 &= -egin{bmatrix} 0 & -1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix} egin{bmatrix} \cdot \ 0 \ 0 & 0 & 1 \ 0 & -1 & 0 \end{bmatrix} egin{bmatrix} \cdot \ 0 \ 0 \ 0 \end{bmatrix} \ oldsymbol{v}_1 &= egin{bmatrix} 0 \ 0 \ 0 \ 0 \end{bmatrix} \ oldsymbol{v}_2 &= egin{bmatrix} 0 \ -l_0 \ 0 \ 0 \end{bmatrix} \ oldsymbol{v}_4 &= egin{bmatrix} 0 \ 1 \ 0 \ \end{bmatrix} \end{aligned}$$

3 Calculating the twists $\hat{\boldsymbol{\xi}}$ terms:

$$\hat{\boldsymbol{\xi}}_1 = \begin{bmatrix} \hat{\boldsymbol{\omega}}_1 & \boldsymbol{v}_1 \\ \boldsymbol{0} & 0 \end{bmatrix} \qquad \hat{\boldsymbol{\xi}}_2 = \begin{bmatrix} \hat{\boldsymbol{\omega}}_2 & \boldsymbol{v}_2 \\ \boldsymbol{0} & 0 \end{bmatrix} \qquad \hat{\boldsymbol{\xi}}_4 = \begin{bmatrix} \hat{\boldsymbol{\omega}}_4 & \boldsymbol{v}_4 \\ \boldsymbol{0} & 0 \end{bmatrix}$$

(b) Write an expression for the initial configuration $g_{WT}(0)$ of the manipulator in homogeneous coordinates

(3)

Solution:

1 For writing in homogeneous coordinate form:

$$oldsymbol{g}_{WT} = egin{bmatrix} oldsymbol{R}_{WT} & oldsymbol{p}_{WT} \ oldsymbol{0} & 1 \end{bmatrix}$$

- 1 For correctly setting R_{WT} as the identity matrix.
- 1 For correctly finding p_{WT} :

$$m{p}_{WT} = egin{bmatrix} 0 \ l_1 + l_2 \ l_0 \end{bmatrix}$$

(c) Using matrix exponential terms such as $e^{\hat{\boldsymbol{\xi}}_i \theta_i}$ and $\boldsymbol{g}_{WT}\left(\boldsymbol{0}\right)$ write an expression for (2)the forward kinematics map with the form $q_{WT}(\theta)$.

Solution:

$$\boldsymbol{g}_{WT}\left(\boldsymbol{\theta}\right)=e^{\hat{\boldsymbol{\xi}}_{1} heta_{1}}e^{\hat{\boldsymbol{\xi}}_{2} heta_{2}}e^{\hat{\boldsymbol{\xi}}_{3} heta_{3}}e^{\hat{\boldsymbol{\xi}}_{4} heta_{4}}\boldsymbol{g}_{WT}\left(\mathbf{0}\right)$$

- 1 For the correct exponents in the correct order.
- 1 For correctly putting the initial configuration term at the end.

(a) You are given a desired configuration of the tool (T) frame: $\mathbf{g}_{d,WT}$. The matrix \mathbf{g}_1 (2) can be written as:

 $\mathbf{g}_1 = e^{\hat{\boldsymbol{\xi}}_1 \theta_1} e^{\hat{\boldsymbol{\xi}}_2 \theta_2} e^{\hat{\boldsymbol{\xi}}_3 \theta_3} e^{\hat{\boldsymbol{\xi}}_4 \theta_4}$

Write \mathbf{g}_1 in terms of known configurations

Solution:

1 For writing the expression

$$\boldsymbol{g}_{d,WT} = e^{\hat{\boldsymbol{\xi}}_1\theta_1}e^{\hat{\boldsymbol{\xi}}_2\theta_2}e^{\hat{\boldsymbol{\xi}}_3\theta_3}e^{\hat{\boldsymbol{\xi}}_4\theta_4}\boldsymbol{g}_{WT}\left(\boldsymbol{0}\right)$$

1 For finding g_1 :

$$oldsymbol{g}_1 = oldsymbol{g}_{d,WT} oldsymbol{g}_{WT}^{-1}\left(oldsymbol{0}
ight)$$

or

2 For writing g_1 :

$$oldsymbol{g}_{1}=oldsymbol{g}_{d,WT}oldsymbol{g}_{WT}^{-1}\left(\mathbf{0}
ight)$$

(4)

(b) In words, describe how each joint affects the configuration of the manipulator.

Solution:

- **2** θ_1 , θ_2 determine the angular position of the frame T (end effector).
- 1 θ_3 determines the orientation of the frame T (end effector).
- 1 θ_4 determines the radial position of the frame T (distance from the shoulder to the end effector).
- (c) What are the invariant point(s) in this system. Give their coordinates in the initial configuration, and state what joints they are invariant to.

Solution:

1 $q_s = \begin{bmatrix} 0 & 0 & l_0 \end{bmatrix}^T$ and is invariant to rotations about $\xi_1, \xi_2, (\xi_3, \xi_4)$.

1 $q_t = \begin{bmatrix} 0 & l_1 + l_2 & l_0 \end{bmatrix}^T$ is invariant to rotations about ξ_3

(d) Let $q_{d,t}$ be the W frame coordinates of the origin of the T frame in the desired configuration. Write $q_{d,t}$ in terms of known values. (1)

Solution:

1
$$q_{d,t} = g_1 q_t$$

or

1 Note that $q_{d,t}$ is the translation from the origin of the W frame to the origin of the T frame in the desired configuration matrix:

$$g_{d,WT} = \begin{bmatrix} R_d & q_{d,t} \\ 0 & 1 \end{bmatrix}$$

(e) Suppose $q_{d,t} = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}^T$. Formulate an inverse kinematics problem and solve for θ_4 in terms of known lengths (ie. l_0, l_1, l_2).

Solution:

2
$$\|\boldsymbol{q_s} - \boldsymbol{q_{d,t}}\|_2 = l_1 + l_2 + \theta_4$$

$$\mathbf{1} \ \theta_4 = \left\| \begin{bmatrix} 0 \\ 0 \\ l_0 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \right\|_2 - (l_1 + l_2)$$

or

1
$$\theta_4 = \sqrt{2 + (l_0 - 2)^2}_2 - (l_1 + l_2)$$

(f) Assume θ_4 is known. Formulate the Inverse Kinematics for θ_1 and θ_2 as a Paden-Kahan problem. List which sub-problem and define necessary terms (ie. p, q, r, δ).

Solution:

1 PKII

$$\mathbf{1} \ \boldsymbol{p} = e^{\hat{\boldsymbol{\xi}}_4 \theta_4} \boldsymbol{q}_t = \begin{bmatrix} 0 & l_1 + l_2 & l_0 \end{bmatrix}^T$$

1
$$q = g_1 q_t = q_{d,t}$$

$$\mathbf{1} \ \boldsymbol{r} = \boldsymbol{q}_s = \begin{bmatrix} 0 & 0 & l_0 \end{bmatrix}^T$$

(g) The matrix \mathbf{g}_2 can be written as:

$$\boldsymbol{g}_2 = e^{\hat{\boldsymbol{\xi}}_3 \theta_3}$$

(2)

(4)

Given θ_1 , θ_2 , and θ_4 and $\mathbf{g_1}$ write an expression for $\mathbf{g_2}$:

Solution:

2
$$\mathbf{g}_2 = e^{-\hat{\xi}_2 \theta_2} e^{-\hat{\xi}_1 \theta_1} \mathbf{g}_1 e^{-\hat{\xi}_4 \theta_4}$$

(h) Assume θ_1 , θ_2 , and θ_4 are known. Formulate the Inverse Kinematics for θ_3 as a Paden-Kahan problem. List which sub-subproblem and define necessary terms (ie. p, q, r, δ).

Solution:

1 PKI

$$\mathbf{1} \ \boldsymbol{p} = \boldsymbol{q}_{END} = \begin{bmatrix} l_1 + l_2 & 0 & l_0 + 1 \end{bmatrix}^T$$

$$1 \ \boldsymbol{q} = \boldsymbol{g}_2 \boldsymbol{q}_{END}$$

$$1 r = q_t$$

where q_{END} is any point not on the ξ_3 axis.

1 Appendix: 4 DoF Manipulator

Consider the four degree of freedom robotic manipulator shown in Figures 1, 2, and 3. The manipulator has three revolute joints and one prismatic joint.

Figure 1: Joints 1, 2, and 3 are revolute joints. Joint 4 is a prismatic joint.

Figure 2: The zero configuration with initial manipulator lengths.

Figure 3: Schematic of a 4DoF Manipulator in its zero configuration. Frame naming conventions are shown, with the world and tool frame labelled as W and T respectively. Frames A and B refer to the local frame for joints 1 and 2 respectively. In the initial configuration (shown) the W and A frames are aligned.

2 Appendix: Cheat Sheet

2.1 Trigonometry

$$\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

Pythagoras's theorem $h^2 = x^2 + y^2$ for a right angled triangle where h is the hypotenuse and x and y are the lengths of the two remaining sides.

Sine, Cosine Relation $(\cos(\theta))^2 + (\sin(\theta))^2 = 1$

Law of Cosines $c^2 = a^2 + b^2 - 2ab\cos(\theta_C)$ where a, b, c are the lengths of the triangle and θ_A , θ_B and θ_C are the angles of their opposing corner.

2.2 Linear Algebra

For orthogonal matrices $A^{-1} = A^T$

Orthogonality A matrix $[\boldsymbol{v}_1,...,\boldsymbol{v}_n]$ is said to be orthogonal if:

$$\mathbf{v}_i^T \mathbf{v}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

2.3 Special Operators

Hat

$$\hat{\boldsymbol{\omega}} = \begin{bmatrix} \hat{\omega}_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

Wedge

$$\hat{\boldsymbol{\xi}} = \widehat{\begin{bmatrix} \boldsymbol{v} \\ \boldsymbol{\omega} \end{bmatrix}} = \begin{bmatrix} \hat{\boldsymbol{\omega}} & \boldsymbol{v} \\ \boldsymbol{0} & 0 \end{bmatrix}$$

2.4 Rotations

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} = e^{\hat{x}\theta}$$

$$R_{y}(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix} = e^{\hat{y}\theta}$$

$$R_{z}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix} = e^{\hat{z}\theta}$$

2.5 Rodrigues' Formula

$$R(\boldsymbol{\omega}, \boldsymbol{\theta}) = e^{\hat{\boldsymbol{w}}\boldsymbol{\theta}} = \mathbb{I}_3 + \frac{\hat{\boldsymbol{\omega}}}{\|\boldsymbol{\omega}\|} \sin(\boldsymbol{\theta}) + \frac{\hat{\boldsymbol{\omega}}^2}{\|\boldsymbol{\omega}\|^2} (1 - \cos(\boldsymbol{\theta}))$$

2.6 Rigid Body Motion

$$oldsymbol{g}_{AB} = egin{bmatrix} oldsymbol{R}_{AB} & oldsymbol{p}_{AB} \ oldsymbol{0} & 1 \end{bmatrix} \qquad oldsymbol{g}_{AB}^{-1} = egin{bmatrix} oldsymbol{R}_{AB}^{-1} & -oldsymbol{R}_{AB}^{-1} oldsymbol{p}_{AB} \ oldsymbol{0} & 1 \end{bmatrix}$$

2.7 Exponential Notation

$$\mathbf{R}_{AB}(\theta_{1}) = e^{\hat{\omega}_{1}\theta_{1}}$$
$$\mathbf{g}_{AB}(\theta_{1}) = e^{\hat{\xi}_{1}\theta_{1}}\mathbf{g}_{AB}(0)$$
$$\mathbf{g}_{ST}(\theta_{1}, \dots, \theta_{n}) = e^{\hat{\xi}_{1}\theta_{1}} \dots e^{\hat{\xi}_{n}\theta_{n}}\mathbf{g}_{ST}(0)$$

2.7.1 Special Cases

Pure Rotation

$$oldsymbol{\xi} = egin{bmatrix} -oldsymbol{\omega} imes oldsymbol{q} \ oldsymbol{\omega} \end{bmatrix}$$

Pure Translation

$$oldsymbol{\xi} = egin{bmatrix} oldsymbol{v} \ oldsymbol{0} \end{bmatrix}$$

Pure Rotations, Screws (Rotation and Translation)

$$e^{\hat{\boldsymbol{\xi}}\boldsymbol{\theta}} = \begin{bmatrix} e^{\hat{\boldsymbol{\omega}}\boldsymbol{\theta}} & \left(\mathbb{I}_3 - e^{\hat{\boldsymbol{\omega}}\boldsymbol{\theta}}\right) \left(\boldsymbol{\omega} \times \boldsymbol{v}\right) + \boldsymbol{\omega}\boldsymbol{\omega}^T \boldsymbol{v}\boldsymbol{\theta} \\ \mathbf{0} & 1 \end{bmatrix}$$

Pure Translation

$$e^{\hat{\boldsymbol{\xi}}\boldsymbol{\theta}} = \begin{bmatrix} \mathbb{I}_3 & \boldsymbol{v}\boldsymbol{\theta} \\ \mathbf{0} & 1 \end{bmatrix}$$

2.8 Paden-Kahan

Subproblem 1: Rotation about a single axis

$$e^{\widehat{\xi}\theta}p = q$$

Subproblem 2: Rotation about two subsequent axes

$$e^{\hat{\xi}_1\theta_1}e^{\hat{\xi}_2\theta_2}p = q$$

Subproblem 3: Rotation to a distance

$$\left\| e^{\widehat{\xi}\theta} p - q \right\| = \delta$$