HPAM 7660 Data Assignment 4

Rebecca Letsinger

March 5, 2024

```
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

library(knitr)
library(ggplot2)
```

Three essential components of data visualization: 1. Data - this includes the information and variables used and of interest. In figure 2.1, the data includes life expectancy over GDP per capita in 2007 for 147 country. The information collected under each variable represents data. 2. Geom - this describes the style of geometric object being used. This can include lines, points, and bars. In figure 2.1 this is demonstrated by the individual points on the graph, the decision to select a scatterplot, the axis and legends. 3. As - this refers to the aesthetic of the chosen geom. This can include position, shape, color, and size. In figure 2.1 this can be indicated by the different color and size of the dots on the graph.

dbl (22): restatus, cntyocr, popcntyocr, cntyrsd, popcntyresd, educ1989, edu...

i Specify the column types or set 'show_col_types = FALSE' to quiet this message.

i Use 'spec()' to retrieve the full column specification for this data.

##

```
la_mort$cancer_parish <- ifelse(la_mort$cntyrsd %in% c(5, 33, 47, 51, 71, 89, 93, 95, 121), 1, 0)
table(la_mort$cancer_parish)
##
##
       0
## 445138 197558
table(la_mort$cntyrsd[la_mort$cancer_parish == 1])
##
##
      5
           33
                 47
                       51
                             71
                                   89
                                         93
                                              95
                                                   121
## 10217 55300 4761 61822 47752 5963 2946 5844 2953
la_mort$cancer39 <- ifelse(la_mort$ucr39 %in% c(5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15), 1, 0)
table(la mort$cancer39)
##
##
       0
## 504019 138677
la_mort$cancer39 <- ifelse(la_mort$ucr39 %in% c(5:15), 1, 0)</pre>
table(la_mort$ucr39[la_mort$cancer113 == 1 & la_mort$cancer39 == 0])
## Warning: Unknown or uninitialised column: 'cancer113'.
## 
table(la_mort$ucod[la_mort$cancer113 == 1 & la_mort$cancer39 == 0])
## Warning: Unknown or uninitialised column: 'cancer113'.
## 
library(dplyr)
parish_count <- la_mort %>%
  group_by(cntyrsd, cancer_parish, year) %>%
  summarize(cancer39 = sum(cancer39, na.rm = TRUE))
## 'summarise()' has grouped output by 'cntyrsd', 'cancer_parish'. You can
## override using the '.groups' argument.
```

```
summary(parish_count$cancer39)
##
      Min. 1st Qu. Median Mean 3rd Qu.
                                              Max.
##
       3.0
             42.0 74.0 144.5 159.0
                                             992.0
library(readr)
la_pop <-
  read_csv("https://www.dropbox.com/scl/fi/650k1obpczky6bwa19ex6/la_county_pop.csv?rlkey=0aokd9m76q7mxw
## Rows: 24320 Columns: 23
## -- Column specification -----
## Delimiter: ","
## chr (3): stname, ctyname, agegrp
## dbl (20): state, county, year, tot_pop, tot_male, tot_female, wa_male, wa_fe...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
parish_count <- parish_count %>%
rename(county = cntyrsd)
la joined <- parish count %>%
  inner_join(la_pop, by = c("county", "year"))
la_joined_all <- subset(la_joined, agegrp == "all")</pre>
la_joined_all$cancer_rate_total <- (la_joined_all$cancer39) / (la_joined_all$tot_pop)</pre>
summary(la_joined_all$cancer_rate_total)
##
               1st Qu.
                          Median
        Min.
                                      Mean
                                             3rd Qu.
                                                          Max.
## 0.0001157 0.0018691 0.0021703 0.0021985 0.0024863 0.0039361
la_joined_all$cancer_rate_total <- ((la_joined_all$cancer39) / (la_joined_all$tot_pop / 100000))
parish_cancer_2019 <- subset(la_joined_all, year == 2019)</pre>
library(knitr)
kable(parish_cancer_2019[, c("county", "cancer_rate_total")])
```

county	cancer_rate_total
1	225.0551
3	210.9870
5	127.7623
7	250.9010
9	249.1405
11	239.0502
13	264.4703

county	cancer_	_rate_	_total
15		178	3.9962
17		232	2.0832
19		209	.7648
21		251	.3573
23		157	7.5705
25		169	.1511
27		222	2.6746
29		269	.2348
31		236	3.8805
33		167	.8479
35		380	.7292
37		287	.9129
39		233	3.5609
41		255	0.0510
43		201	.3243
45		222	2.5796
47		199	.6989
49		336	5.2731
51		210	.7829
53			.8798
55		167	.0765
57			0.2463
59			3.0349
61			.3508
63			7.5293
65			.6844
67		261	.6853
69			3.1124
71			5.8743
73		224	.9008
75			.6410
77			.6490
79			.8490
81			0.2625
83			3.5407
85			.3934
87			5.5452
89			5.5004
91			3.4268
93			5.3172
95		182	2.1409
97			.1367
99			5.9264
101			.5519
103			5.2739
105			.6794
107			3.6096
109			3.7212
111			0.0127
113			3.0405
115			.9027
117			5.1419
			3

```
        county
        cancer_rate_total

        119
        250.5023

        121
        154.4256

        123
        238.4009

        125
        166.9878

        127
        336.6521
```

```
la_mort <-</pre>
  read_csv("https://www.dropbox.com/scl/fi/fzsnhfd3lq80v2o3sag6c/la_mort.csv?rlkey=h1vyjm2b8ppgejgsg3e8
## Rows: 642696 Columns: 29
## -- Column specification -----
## Delimiter: ","
## chr (7): stocr, strsd, stbrth, brthr, sex, marstat, ucod
## dbl (22): restatus, cntyocr, popcntyocr, cntyrsd, popcntyresd, educ1989, edu...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show col types = FALSE' to quiet this message.
show_col_types = FALSE
la_mort$cancer_parish <- ifelse(la_mort$cntyrsd %in% c(5, 33, 47, 51, 71, 89, 93, 95, 121), 1, 0)
la_mort$cancer39 <- ifelse(la_mort$ucr39 %in% c(5:15), 1, 0)</pre>
library(dplyr)
la_mort_age <- la_mort %>%
  filter(age != 9999)
la_mort_age$age <- ifelse(la_mort_age$age < 2000, la_mort_age$age - 1000, 0)</pre>
age_breaks <- c(0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, Inf)
age_labels <- c("0_4", "5_9", "10_14", "15_19", "20_24", "25_29", "30_34", "35_39",
                "40_44", "45_49", "50_54", "55_59", "60_64", "65_69", "70_74",
                "75_79", "80_84", "85+")
la_mort_age$agegrp <- as.character(cut(la_mort_age$age, breaks = age_breaks, labels = age_labels, right</pre>
parish_count <- la_mort %>%
  group_by(cntyrsd, cancer_parish, year) %>%
  summarize(cancer39 = sum(cancer39, na.rm = TRUE))
## 'summarise()' has grouped output by 'cntyrsd', 'cancer_parish'. You can
## override using the '.groups' argument.
parish_count_age <- la_mort_age %>%
  group_by(cntyrsd, cancer_parish, agegrp, year) %>%
  summarize(cancer39 = sum(cancer39, na.rm = TRUE))
## 'summarise()' has grouped output by 'cntyrsd', 'cancer_parish', 'agegrp'. You
## can override using the '.groups' argument.
```

```
library(readr)
la_pop <-
 read csv("https://www.dropbox.com/scl/fi/650k1obpczky6bwa19ex6/la county pop.csv?rlkey=0aokd9m76q7mxw
## Rows: 24320 Columns: 23
## -- Column specification -------
## Delimiter: ","
## chr (3): stname, ctyname, agegrp
## dbl (20): state, county, year, tot_pop, tot_male, tot_female, wa_male, wa_fe...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
library(dplyr)
la_joined <- parish_count_age %>%
inner_join(la_pop, by = c("cntyrsd" = "county", "year", "agegrp"))
stnrd pop <-
 read_csv("https://www.dropbox.com/scl/fi/xzd2o5lza237so6vamqwb/stnrd_pop.csv?rlkey=zp90au2tuq6eptvi1y
## Rows: 18 Columns: 2
## -- Column specification -------
## Delimiter: ","
## chr (1): agegrp
## dbl (1): stnrd_pop
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
la_joined_stnrd <- la_joined %>%
 inner_join(stnrd_pop, by = "agegrp")
la_joined_stnrd$stnrd_pop_weight <- (la_joined_stnrd$stnrd_pop) / (sum(stnrd_pop$stnrd_pop))</pre>
la_joined_stnrd$cancer_rate_adj <- ((la_joined_stnrd$cancer39) / (la_joined_stnrd$tot_pop / 100000)) *
parish_rates <- la_joined_stnrd %>%
  group_by(cntyrsd, cancer_parish, year) %>%
  summarize(cancer_rate_adj = sum(cancer_rate_adj, na.rm = TRUE), cancer39 = sum(cancer39), tot_pop =
             sum(tot_pop))
## 'summarise()' has grouped output by 'cntyrsd', 'cancer_parish'. You can
## override using the '.groups' argument.
parish_rates$cancer_rate_crude <- (parish_rates$cancer39) / (parish_rates$tot_pop / 100000)</pre>
```

```
parish_rates$pop_weight <- (parish_rates$cancer_rate_adj) * (parish_rates$tot_pop)
cancer_alley_rates <- parish_rates %>%
    group_by(cancer_parish, year) %>%
    summarize(cancer_rate_adj_wt = sum(pop_weight) / sum(tot_pop))

## 'summarise()' has grouped output by 'cancer_parish'. You can override using the
## '.groups' argument.

parish_rates$pop_weight <- (parish_rates$cancer_rate_adj) * (parish_rates$tot_pop)
cancer_alley_rates <- parish_rates %>%
    group_by(cancer_parish, year) %>%
    summarize(cancer_rate_adj_wt = sum(pop_weight) / sum(tot_pop))
```

'summarise()' has grouped output by 'cancer_parish'. You can override using the
'.groups' argument.

kable(cancer_alley_rates)

cancer_	_parish	year	cancer_rate_adj_wt
	0	2005	215.9012
	0	2006	211.1969
	0	2007	199.2163
	0	2008	210.5785
	0	2009	202.7788
	0	2010	198.5223
	0	2011	194.5824
	0	2012	194.9155
	0	2013	191.4183
	0	2014	188.3508
	0	2015	186.8605
	0	2016	178.2077
	0	2017	181.0797
	0	2018	176.0163
	0	2019	174.1137
	1	2005	197.2898
	1	2006	198.7948
	1	2007	199.3910
	1	2008	196.7380
	1	2009	190.6874
	1	2010	191.1738
	1	2011	189.7244
	1	2012	180.9129
	1	2013	181.2483
	1	2014	181.1850
	1	2015	166.3009
	1	2016	157.8499
	1	2017	161.2732
	1	2018	153.9050
	1	2019	153.9429

```
cancer_alley <-
    subset(cancer_alley_rates, cancer_parish == 1, select = c(cancer_rate_adj_wt, year)) %>%
    rename(cancer_alley_rate = cancer_rate_adj_wt)

no_cancer_alley <-
    subset(cancer_alley_rates, cancer_parish == 0, select = c(cancer_rate_adj_wt, year)) %>%
    rename(no_cancer_alley_rate = cancer_rate_adj_wt)

cancer_alley_table <- cancer_alley %>%
    inner_join(no_cancer_alley, by = "year")

cancer_alley_table <- cancer_alley_table[,c("year", "cancer_alley_rate", "no_cancer_alley_rate")]

kable(cancer_alley_table)</pre>
```

year	cancer_alley_rate	no_cancer_alley_rate
2005	197.2898	215.9012
2006	198.7948	211.1969
2007	199.3910	199.2163
2008	196.7380	210.5785
2009	190.6874	202.7788
2010	191.1738	198.5223
2011	189.7244	194.5824
2012	180.9129	194.9155
2013	181.2483	191.4183
2014	181.1850	188.3508
2015	166.3009	186.8605
2016	157.8499	178.2077
2017	161.2732	181.0797
2018	153.9050	176.0163
2019	153.9429	174.1137

```
parish_rates_2019 <- subset(parish_rates, year == 2019)
ggplot(data = parish_rates_2019, aes(x = cntyrsd, y = cancer_rate_adj)) +
    geom_point() +
    labs(x = "County FIPS code", y = "Cancer Mortality Rate (2019)",
        title = "Scatterplot of Cancer Mortality Rates in 2019")</pre>
```

Scatterplot of Cancer Mortality Rates in 2019

theme_minimal()


```
filtered_data <- subset(cancer_alley_rates, year >= 2005 & year <= 2019)

ggplot(data = filtered_data, aes(x = year, y = cancer_rate_adj_wt, color = factor(cancer_parish))) +
    geom_line() +
    labs(x = "Year", y = "Cancer Mortality Rate (Age-adjusted, Population Weighted)",
        color = "Parish Type", title = "Cancer Mortality Rates (2005-2019)") +</pre>
```

scale_color_manual(values = c("blue", "red"), labels = c("Non-Cancer Alley", "Cancer Alley")) +


```
ggplot(data = filtered_data, aes(x = year, y = cancer_rate_adj_wt, color = factor(cancer_parish))) +
  geom_line() +
  labs(x = "Year", y = "Cancer Mortality Rate (Age-adjusted, Population Weighted)",
        color = "Parish Type", title = "Cancer Mortality Rates (2005-2019)") +
  scale_color_manual(values = c("blue", "red"), labels = c("Non-Cancer Alley", "Cancer Alley")) +
  scale_y_continuous(limits = c(0, 300)) + # Adjusting y-axis scale
  theme_minimal()
```



```
ggplot(data = filtered_data, aes(x = year, y = cancer_rate_adj_wt, color = factor(cancer_parish))) +
    geom_line() +
    labs(x = "Year", y = "Cancer Mortality Rate (Age-adjusted, Population Weighted)",
        color = "Parish Type", title = "Cancer Mortality Rates (2005-2019)") +
    scale_color_manual(values = c("blue", "red"), labels = c("Non-Cancer Alley", "Cancer Alley")) +
    scale_y_continuous(limits = c(0, 300)) + # Adjusting y-axis scale
    scale_x_continuous(breaks = seq(2005, 2019, by = 1)) + # Ensuring all year values between 2005 and 20
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotating year labels by 45 degrees
```



```
ggplot(data = filtered_data, aes(x = year, y = cancer_rate_adj_wt, color = factor(cancer_parish), linet
geom_line() +
labs(title = "Cancer Mortality Rate Comparison", y = "Cancer Deaths per 100,000 Residents", x = NULL,
scale_color_manual(values = c("blue", "red"), labels = c("Non-Cancer Alley", "Cancer Alley")) +
scale_linetype_discrete(name = NULL, labels = c("Rest of Louisiana", "Cancer Alley"), guide = guide_l
scale_y_continuous(limits = c(0, 300)) + # Adjusting y-axis scale
scale_x_continuous(breaks = seq(2005, 2019, by = 1)) + # Ensuring all year values between 2005 and 20
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotating year labels by 45 degrees
```

Cancer Mortality Rate Comparison

