Models

Onur Sahil Cerit

Supervised Learning

Regression Analysis

Bağımlı Değişken	Bağımsız Değişken	
 Bu değişken tahmin etmeye çalıştığımız değişkendir 	 Bu değişken tahmin etmek için kullandığımız giriş değişkenidir 	
"y" olarak ifade edilir	"X" olarak ifade edilir	

^{**} Bir regresyon probleminde sürekli aralıkta olan sonuçları tahmin etmeye çalışırız.

Classification Analysis

Binary classification:

Multi-class classification:

Linear Regression

Tek-değişkenli lineer regresyon modeli

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i = h(x_i) + \varepsilon_i \Rightarrow \varepsilon_i = y_i - h(x_i)$$

- y^i => 'i' numaralı gözlem için bağımlı değişken (ev fiyatı)
- x^i => 'i' numaralı gözlem için bağımsız değişken (ev özellikleri)
- ϵ^i => 'i' numaralı gözlem için hata değeri
- eta_0 => 'i' numaralı gözlem için sabit katsayı değeri
- $eta_1 \quad$ => 'i' numaralı gözlem için bağımsız değişkenin katsayı değeri

Linear Regression

Multiple Linear Regression

k-değişkenli çoklu lineer regresyon modeli

$$y^{i} = \beta_{0} + \beta_{1}x_{1}^{i} + \beta_{2}x_{2}^{i} + \ldots + \beta_{k}x_{k}^{i} + \epsilon^{i}$$

 y^i => 'i' numaralı gözlem için bağımlı değişken (ev fiyatı)

 $x_i^i \Rightarrow$ 'i' numaralı gözlem için j numaralı bağımsız değişken

 ϵ^i => 'i' numaralı gözlem için hata değeri

 $eta_0 =>$ 'i' numaralı gözlem için sabit katsayı değeri

 β_j => 'j' numaralı bağımsız değişken için regresyon katsayısı

Polinomial Regression

$$y_i = eta_0 + eta_1 x_i + eta_2 x_i^2 + \dots + eta_m x_i^m + arepsilon_i \ (i=1,2,\dots,n)$$

Logistic Regression

k-Nearest Neighbor

k-Nearest Neighbor

Steps:

- 1. Uzaklığı Hesapla
- 2. Yakın Komşuları Bul
- 3. Etiket/Sınıf için Oy Ver

k-Nearest Neighbor

k-Nearest Neighbor - Euclidean Distance

$$A = (x_1, x_2, ..., x_m)$$
 $B = (y_1, y_2, ..., y_m)$

$$dist(A, B) = \sqrt{\frac{\sum_{i=1}^{m} (x_i - y_i)^2}{m}}$$

Support Vector Machines

Support Vector Machines

Support Vector Machines - Kernels

Support Vector Machines - Kernels

SAMPLES

Name of the Kernel	Mathematical Formula		
Linear	$k(x,y) = x^T.y$		
Polynomial	$k(x,y) = (x^T, y)^P or k(x, y)$		
	$= (x^T.y+1)^p$		
7	where p is the polynomial degree		
RBF(Gaussian)	$\phi(x) = \exp(-\frac{x^2}{2\sigma^2}), \sigma > 0$		

Support Vector Machines - Regression

Support Vector Machines - Regression

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0.0
1	4.9	3.0	1.4	0.2	0.0
2	4.7	3.2	1.3	0.2	0.0
3	4.6	3.1	1.5	0.2	0.0
4	5.0	3.6	1.4	0.2	0.0

array(['setosa', 'versicolor', 'virginica']

Gini Impurity

*Impurity: Bir training set verisine etiket verirken o etiketin yanlış olma olma şansı (Hiç hata => Impurity = 0)

Gini Impurity, verilen bir değerin impurity(yanlış olma oranı) değerini bulur.

$$I_G(n) = 1 - \sum_{i=1}^{J} (p_i)^2$$

Gini Impurity

$$I_G(n) = 1 - \sum_{i=1}^{J} (p_i)^2$$

Derinlik-2 Sol Nod:

 $1 - (0/54)^2 - (49/54)^2 - (5/54)^2 \sim 0.168$

Entropy (Information Gain: sorulacak en iyi soruyu bulmakta fayda sağlar)

*Entropy: Makine öğrenmesinde entropy bir verinin sadece tek class değeri almasıyla 0 değerini alır.

$$I_H = -\sum_{j=1}^c p_j log_2(p_j)$$

Entropy

$$I_H = -\sum_{j=1}^c p_j log_2(p_j)$$

Derinlik-2 Sol Nod:

 $-(49/54)\log(49/54) - 5/54\log(5/54) \sim = 0.44$

Decision Trees - CART

Classification and Regression Tree - CART

CART Cost Function for Classification

$$J(k, t_k) = \frac{m_{\text{left}}}{m}G_{\text{left}} + \frac{m_{\text{right}}}{m}G_{\text{right}}$$

Decision Trees - Regression

Random Forest

Random Forest

Random Forest

Bagging and Pasting

