The Binary

A lecture in 11 parts

Part 0

Logic Gates

Inside a computer there is only ZUUUL

Actually there is only **high voltage** or **low voltage**. Trying to deal with voltages in between just introduces error.

Traditionally **high** voltage is associated with **1** and **True**.

Traditionally **low** voltage is associated with **0** and **False**.

Input	Output
0	1
1	0

Input 1	Input 2	Output
0	0	0
0	1	0
1	0	0
1	1	1

Input 1	Input 2	Output
0	0	0
0	1	1
1	0	1
1	1	1

Input 1	Input 2	Output
0	0	1
0	1	1
1	0	1
1	1	0

Input 1	Input 2	Output
0	0	1
0	1	0
1	0	0
1	1	0

Input 1	Input 2	Output
0	0	0
0	1	1
1	0	1
1	1	0

You can build logic gates out of other logic gates.

Part 1

Numbers

How do computers represent numbers?

low is 0high is 1

How do computers represent numbers?

low is 0 high is 1

Great that's two numbers. What about all the rest of the numbers?

How do humans represent numbers?

0123456789

Further numbers we have to represent by place value

We have **ten** possible digits and so each time you go left by one digit the value of that digit multiplies by **ten**

456 4*10*10 + 5*10 + 6 $4*10^2 + 5*10^1 + 6*10^0$

How do computers represent numbers?

low is 0

high is 1

Great that's two numbers. What about all the rest of the numbers.

Computers represent numbers the same way, except only **two** possible **bits** instead of ten possible digits.

10101

$$1*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 1*2^0$$

21

We just converted binary to decimal

10101 $1*2^{4} + 0*2^{3} + 1*2^{2} + 0*2^{1} + 1*2^{0}$ **21**

Binary is base 2

Decimal is base 10

Convert binary to Convert decimal decimal

to binary

1101	10
1 1 0 1	10

0010 16

1111

0101

Converting binary to hexadecimal

Binary is base 2

Decimal is base 10

Hexadecimal (hex for short) is base 16 When we run out of numbers (0123456789) we use letters. So the possible hex digits are: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Converting binary to hexadecimal

Every group of 4 bits is a hex digit

```
10110110
1011 0110
B 6
```

Converting back to decimal:

11*16 + 6

182

Part 10

Adding up numbers

Adding one-bit numbers

A	В	Twos	Ones
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half adder

Adding one-bit numbers, continued

What if someone carried a number into your column

Adding multi-bit numbers

