Physik

Be schleunigung-Weg

$$F = m \cdot a$$
$$[N = kg \cdot \frac{m}{c^2}]$$

Physik

Beschleunigung – Kraft

$$x = \frac{1}{2} \cdot a \cdot t^2$$
$$[m = \frac{m}{s^2} \cdot s^2]$$

Physik	# 3	Mechanik
	Haftreibung	or S

$$F_H = \mu_H \cdot F_N$$

$$F_H$$
: Haftreibung μ_H : Haftreibungskonstante F_N : Normalkraft

Physik	# 4	Mechanik
	Gleitreibung	g

$$F_{Gl} = \mu_{Gl} \cdot F_N$$

$$F_{Gl}$$
: Gleitreibung
 μ_{Gl} : Gleitreibungskonstante
 F_{N} : Normalkraft

Mechanik

Haftreibung – Schiefe Ebene

Physik

5 Antwort
$$\mu_H = \tan \alpha$$

Physik # 6 Mechanik

Leistung

6 Antwort
$$P = F \cdot v$$

$$\left[W = N \cdot \frac{m}{s} \right]$$

 $= kg \frac{m}{s^2} \cdot \frac{m}{s}$ $= kg \frac{m^2}{s^3}$

1 Hysik	# 1	Medianik

Mochanik

Physik

Wirkungsgrad

$$\eta = \frac{P_{out}}{P_{in}}$$

Physik

 ${\bf Radial be schleunigung}$

8 Antwort
$$a = \frac{v^2}{r}$$

Physik	# 9	Mechanik
	Arbeit	

9 Antwort
$$W = F \cdot s$$

Mechanik

Physik

potentielle Energie

$$E_{pot} = m \cdot g \cdot h$$
$$J = kg \cdot \frac{m}{s^2} \cdot m$$

 $= kg \frac{m^2}{s^2} \bigg]$

kinteische Energie

11 Antwort
$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$

 $\left[J = kg \cdot \frac{m^2}{s^2}\right]$

Mechanik

Physik

Kreisfrequenz

$$\omega = \frac{2\pi}{T}$$
$$\left[s^{-1} = \frac{\text{rad}}{s}\right]$$

Physik	# 13	Mechanik
		_

Kreisfrequenz Hook'sche Feder

13 Antwort

$$\omega = \sqrt{\frac{D}{m}}$$
$$\left[s^{-1} = \sqrt{\frac{\frac{N}{m}}{kg}}\right]$$

Mechanik

Physik

harmonische Schwingung: Beschleunigung

$$a(t) = -\omega^{2} \cdot y_{0} \cdot \sin \omega t = -\omega^{2} \cdot y(t)$$
$$\left[\frac{\mathbf{m}}{\mathbf{s}^{2}} = \mathbf{s}^{-2} \cdot \mathbf{m}\right]$$

Mechanik

Physik

harmonische Schwingung: Geschwindigkeit

$$v(t) = \omega \cdot y_0 \cdot \cos \omega t$$
$$\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{s}^{-1} \cdot \mathbf{m} \right]$$

harmonische Schwingung: Auslenkung

Physik

Mechanik

 $y(t) = y_0 \cdot \sin \omega t$

potentielle Energie Hook'sche Feder

Mechanik

Physik

17 Antwort
$$W = \frac{1}{2} \cdot D \cdot x^2 = E_{pot}$$

$$\int J = \frac{N}{m} m^2$$

 $= \frac{kg\frac{m}{s^2}}{\cdot m^2}$

 $= kg \frac{m^2}{s^2} \bigg]$

Physik	# 18	Mechanik

Kraft Hook'sche Feder

 $\left[N = \frac{N}{m} \cdot m\right]$

Mechanik

Physik

Inelastischer Stoß

$$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

$$v' = \frac{m_1 + m_2}{m_1 + m_2}$$

1 Hy SHC	T 20	WICCHAIII
•		

Mechanik

Physik

Elastischer Stoß

$$v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$$

$$(m_2 - m_1)v_2 + 1m_1v_1$$

$$v_2' = \frac{(m_2 - m_1)v_2 + 1m_1v_1}{m_2 + m_1}$$

Physik # 21 Mechanik

Drehimpuls

$$L=\vartheta\cdot\omega$$

Physik	# 22	Mechanik

Kinetische Energie Drehbewegung

$$E_{kin} = \frac{1}{2} \cdot \vartheta \cdot \omega^2$$

Physik	# 23	Mechanik
	Impuls	

 $p = m \cdot v$

Physik	# 24	Mechanik
		_

Kreisfrequenz Fadenpendel

$$\omega = \sqrt{\frac{g}{l}}$$

Nur bei
$$\alpha < 5^{\circ}$$

Mechanik

Physik

Trägheitsmoment Stab um Schwerpunkt

$$\vartheta = \frac{1}{12} \cdot m \cdot L^2$$

Mechanik

Physik

Trägheitsmoment Vollzylinder

θ	=	1	m	
0		9	,,,	

Physik	# 27	Mechanik

Trägheitsmoment Hohlzylinder

$$\vartheta = m \cdot r^2$$

Mechanik

Physik

Transformation Geschwindigkeit – Winkelgeschwindigkeit

28 Antwort

 $v = r \cdot \omega$

Mechanik

Physik

Trägheitsmoment Kugel

$$\vartheta = \frac{2}{5} \cdot m \cdot r^2$$

Mechanik

Physik

Trägheitsmoment Stab um Stabende

30 Antwort
$$\vartheta = \frac{1}{2} \cdot m \cdot L^2$$

$\vartheta =$	$\frac{1}{3}$		m		1
---------------	---------------	--	---	--	---

Mechanik

Physik

Leistung Translation

Physik # 32

Drehmoment

Mechanik

32 Antwort

 $M = F \cdot r$

# 33	Mechanik
	_
	# 33

Kreisfrequenz Drehschwingung

$$\#$$
 33 Antwort

$$w = \sqrt{\frac{D}{\vartheta}}$$

Mechanik

Physik

Rückstellmoment Drehschwingung

Mechanik

Physik

Präzessionsfrequenz

$$\omega_p = \frac{M}{I} = \frac{F \cdot r \cdot s}{s^q}$$

$$\omega_p = \frac{M}{L} = \frac{F \cdot r \cdot \sin \varphi}{\vartheta \cdot \omega_r}$$

Mechanik

Physik

Satz von Steiner

36 Antwort
$$\vartheta = m \cdot a^2 + \vartheta_{SP}$$

$$\vartheta = m \cdot a^2 + \vartheta_{S}.$$

Mechanik

Physik

Gravitationspotential

Mechanik

Physik

pot. Energie Gravitation

$$E_{pot} = -\frac{\gamma \cdot m_1 \cdot m_2}{r}$$

Mechanik

Physik

Gravitationfeldstärke

Mechanik

Physik

Gravitationskraft

$$F_G = -\gamma \frac{m_1 m_2}{r^1}$$

Mechanik

Physik

Erhaltungssätze der klassischen Physik

41 Antwort • Energien • Impulse

• elektrische Ladungen

• Drehimpulse

	**		

Mechanik

Physik

Corioliskraft

$F_C =$	$m \cdot a_{\ell}$	$\cdot = 2 \cdot$	$m \cdot v$	(

Mechanik

Physik

Keplersche Gesetze

npunkt

• gleiche Zeit - gleiche Fläche

$$\bullet \ \frac{T_{Umlauf}^2}{r_{Bahn}^3} = const.$$

43

Physik # 44 Mechanik

Planeten

 $\frac{r_p^3}{T_p^2} = \gamma \frac{m_s}{4\pi^2} = const.$

Physik # 45 Deformation

45 Antwort =

Physik # 46 Deformation

46 Antwort

Physik # 47 Deformation

47 Antwort =

Hinweise zur Nutzung dieser Karteilernkarten:

Die Karten wurden von allen Beteiligten nach bestem Wissen und Gewissen erstellt, für Fehlerfreiheit und Klausurgelingen kann aber keine Garantie gegeben werden.

Moritz Augsburger (and others, see https://github.com/maugsburger/exph) wrote this file. As long as you retain this notice

you can do whatever you want with this stuff. If we meet some day and you think this stuff

is worth it, you can buy me a beer or a coffee in return.