Geometria e Algebra - MIS-Z

Terzo appello - Settembre

06/09/2022

Nome e Cognome:		
Corso di laurea:		
Matricola:		

Informazioni

Questo appello contiene 5 esercizi per un totale di 34 punti. Il punteggio ottenuto x sarà convertito in 30esimi nella maniera seguente:

- se $x \leq 30$, allora x sarà il voto in 30esimi;
- se $30 < x \le 34$, allora il voto sarà 30 e Lode.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio
1	
2	
3	
4	
5	

TOTALE

ESERCIZIO 1 [6 punti]. Vero o Falso?

Per ciascun asserto si stabilisca se è vero o falso, motivando in modo conciso ed esauriente la risposta.

(a) I vettori $(-1,0,1),(2,2,1),(0,-3,0) \in \mathbb{R}^3$ sono linearmente indipendenti.

 \square VERO

 \Box FALSO

(b) L'insieme $W=\{(x,y)\in\mathbb{R}^2: -1\leq x\leq 1\}$ è un sottospazio vettoriale di $\mathbb{R}^2.$

 \square VERO

 \Box FALSO

(c) Per ogni $n \geq 1$, se $AB \in \mathcal{M}_n(\mathbb{R})$, allora $A \in \mathcal{M}_n(\mathbb{R})$ e $B \in \mathcal{M}_n(\mathbb{R})$.

 \square VERO

 \Box FALSO

(d) Siano V uno spazio vettoriale, $\mathcal B$ una base di V e $f:V\to V$ un endomorfismo di V. Se 0 è un autovalore di f allora f non è un automorfismo.

 \square VERO

 \Box FALSO

ESERCIZIO 2 [6 punti]. Sistema con parametro.

Al variare di $k \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\begin{cases} kX_1 + X_3 = 3k \\ kX_2 + X_4 = 1 \\ X_1 + kX_3 = 3 \\ X_2 + kX_4 = 1 \end{cases}$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

k	Compatibile?	Numero di soluzioni	Insieme delle soluzioni

ESERCIZIO 3 [7 punti]. Sottospazi vettoriali.

(a) In \mathbb{R}^4 si consideri il sottospazio vettoriale

$$U = Span\{(1,3,2,6), (0,1,-1,2), (1,2,0,3), (-1,1,3,5)\}.$$

Si determini una base e la dimensione di U.

(b) In \mathbb{R}^4 si consideri il sottospazio vettoriale

$$W = \{(x, y, z, w) \in \mathbb{R}^4 : x - 2y + z = 0 \text{ e } -2x + 3y - w = 0\}.$$

Si determini una base e la dimensione di W.

(c) Si determini la dimensione e una base di U+W.

(d) Si determini una base e la dimensione di $U\cap W.$

(e) Si mostri che $U\cap W$ è isomorfo a \mathbb{R}^2 esibendo un isomorfismo $\varphi:U\cap W\to \mathbb{R}^2.$

ESERCIZIO 4	[9 punti]	. Un	endomorfismo	di	\mathbb{R}^3 .

(a) Si enunci il teorema del rango.

(b) Si dimostri l'enunciato seguente:

Sia V uno spazio vettoriale di dimensione finita e sia $f:V\to V$ un endomorfismo. Si mostri che se f è suriettivo, allora f è un automorfismo.

(c) Per $k \in \mathbb{R}$ si consideri l'endomorfismo

$$f_k: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x,y,z) \mapsto (-kx+6z, -4x-y+2kz, -x+z).$

(c1) Si determini(no) il/i valore/i di k per cui f <u>non</u> è un automorfismo e per <u>uno</u> di questi valori si determini una base di $\ker(f_k)$ e una base di $\operatorname{Im}(f_k)$.

(c2) Per k=4, si determini se f_4 è diagonalizzabile e in caso affermativo si trovi una base diagonalizzante.

ESERCIZIO 5 [6 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si scriva un'equazione cartesiana del piano π perpendicolare alla retta

$$r: \left\{ \begin{array}{l} x = t + 2\\ y = 2t - 3\\ z = -3t \end{array} \right.$$

e passante per il punto A(0,2,0).

(b) Al variare di $h \in \mathbb{R}$ si determini la posizione reciproca del piano π e della retta r_h , dove r_h è definita dalle equazioni cartesiane

$$r_h: \left\{ \begin{array}{l} X + hY - 5Z = 0 \\ Y + (h+1)Z - 2 = 0. \end{array} \right.$$

Per i valori di h per cui π e r_h sono incidenti si determini il punto di intersezione.

(c) Si consideri la retta r_0 definita al punto (b) per h=0 e il piano π trovato al punto (a). Si determini la retta s contenuta in π , perpendicolare a r_0 e passante per il punto B(-1,1,-1).