

主讲人: 李全龙

# 本讲主题

## 报文完整性

### 报文完整性?

- ❖报文/消息完整性(message integrity), 也称 为报文/消息认证(或报文鉴别),目标:
  - 证明报文确实来自声称的发送方
  - 验证报文在传输过程中没有被篡改
  - 预防报文的时间、顺序被篡改
  - 预防报文持有期被修改
  - 预防抵赖
    - 发送方否认
    - 接收方否认



### 密码散列函数

#### 密码散列函数(Cryptographic Hash Function): H(m)

- 散列算法公开
- H(m)能够快速计算
- 对任意长度报文进行多对一映射,均产生定长输出
- 对于任意报文无法预知其散列值
- 不同报文不能产生相同的散列值
- 单向性: 无法根据散列值倒推出报文
  - 对于给定散列值h,无法计算找到满足h = H(m)的报文m
- 抗弱碰撞性(Weak Collision Resistence-WCR)
  - 对于给定报文x, 计算上不可能找到y且y≠x, 使得H(x)=H(y)
- 抗强碰撞性(Strong Collision Resistence-SCR)
  - 在计算上,不可能找到任意两个不同报文x和y(x≠y),使得 H(x)=H(y)



#### Internet校验和是优秀的密码散列函数吗?

Internet校验和(checksum)具备散列函数的某些属性:

- ✓ 多对一映射
- ✓ 对于任意报文,产生固定长度的散列值(16-bit校验和)

但是,对于给定的报文及其散列值,很容易找到另一个具 有相同散列值的不同报文!

| <u>message</u> | <b>ASCII format</b>      | message        | <b>ASCII format</b> |
|----------------|--------------------------|----------------|---------------------|
| I O U 1        | 49 4F 55 31              | I O U <u>9</u> | 49 4F 55 <u>39</u>  |
| 00.9           | 30 30 2E <mark>39</mark> | 00.1           | 30 30 2E <u>31</u>  |
| 9 B O B        | 39 42 D2 42              | 9 B O B        | 39 42 D2 42         |
|                | B2 C1 D2 AC              | 不同报文却得到完全相同的   | B2 C1 D2 AC         |

散列值!





## 散列函数算法

- ❖ MD5: 被广泛应用的散列函数(RFC 1321)
  - 通过4个步骤,对任意长度的报文输入,计算输出128 位的散列值
  - MD5不是足够安全
    - 1996年,Dobbertin找到了两个不同的512-bit块,在MD5计算 下产生了相同的散列值
- ❖SHA-1(Secure Hash Algorithm): 另一个正在使 用的散列算法
  - US标准 [NIST, FIPS PUB 180-1]
  - SHA-1要求输入消息长度<2<sup>64</sup>
  - SHA-1的散列值为160位
  - 速度慢于MD5,安全性优于MD5





# 报文摘要(Message digests)

对报文m应用散列函数H,得到一个固定长度的散列码,称为报文摘要(message digest),记为H(m)

✓可以作为报文m的数字指纹(fingerprint)。



## 报文认证

简单方案: 报文+报文摘要→扩展报文(m, H(m))





### 报文认证

#### 报文认证码MAC(Message Authentication Code):

报文m+认证密钥s+密码散列函数H→扩展报文(m, H(m+s))



