Вариационное исчисление. Неофициальный конспект

Лектор: Роман Владимирович Романов Конспектировал Леонид Данилевич

IV семестр, весна 2024 г.

Оглавление

0.0.1	Необходимые у	/словия											 					3

поиск экстремумов, где переменных бесконечно;

 $f:M\to\mathbb{R}$.

- 1. Необходимое: $(\operatorname{grad} f)(x) = 0$
- 2. Достаточное $(D^2f)(x)$ знакоопределена (>< 0). Будем рассматривать мало.
- 3. Экстремум $f|_{N}$? (метод множителей Лагранжа)

M - 6/м пространство, например, функций. f - функционал.

Пускай X — метрическое пространство, $J: X \to \mathbb{R}$ — функция.

Определение 0.0.1 ($x \in X$ — строгий локальный минимум). $\exists \delta > 0 : \forall y \in U_{\delta}(x) : J[y] > J[x]$. Квадратные скобочки — косметическое.

Аналогично определяются нестрогий минимум и максимумы.

Пример. Пусть
$$X=\{f\in C[0,1]|f(0)=f(1)=1\},$$
 где $\|f\|=\max_{x\in[0,1]}|f(x)|.$

Пусть
$$J[f] = \int_{0}^{1} f^{2}(x) dx$$
. J непрерывен.

Ясно, что $\forall f \in X: J[f] > 0.$ С другой стороны, $\inf_{f \in X} J[f] = 0$ — можно рассматривать такие функции:...

С другой стороны, X замкнут. Получается, теорема Кантора не работает. В чём дело? Нет компактности, замкнутое ограниченное в бесконечномерном случае необязательно компактно.

Пусть
$$L:[a,b]\times\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R},\ J[u]=\int\limits_a^bL(t,u(t),\dot{u}(t))\,\mathrm{d}t.$$
 Здесь выберем $X=C^1[a,b]=C^1([a,b]\to \mathbb{R}^n)$

 \mathbb{R}^n) (далее не будем указывать область значений, ясно из контекста) и его замкнутые подмножества (не подпространства, нет линейной структуры).

Пусть
$$L \in C([a,b] \times \mathbb{R}^n \times \mathbb{R}^n)$$
.

Они называются интегральные функционалы — богатая теория, но часто встречаются в приложениях.

Примеры.

- $X=\left\{u\in C^1[a,b]\big|u(a)=u_a,u(b)=u_b\right\}, J[u]=\int\limits_a^b\sqrt{1+(u')^2}\,\mathrm{d}x$ функционал длин графиков кривых.
- $J = \int\limits_a^b (\frac{\dot{u}^2}{2} V(u)) \, \mathrm{d}x$, где V заданная функция. В механике называется действием.

Сначала убедимся, что они непрерывны

Замечание (О норме). Для $f \in C^1[a,b]$: $||f|| = \max_{x \in [a,b]} |f(x)| + \max_{x \in [a,b]} |f'(x)|$ — очевидно норма. Всегда будем использовать такую норму для C^1 .

Предложение 0.0.1. Пусть $X=C^1[a,b], L\in C([a,b]\times \mathbb{R}^n\times \mathbb{R}^n)$. Тогда J (определена где-то выше) — непрерывна на X.

Доказательство. Пусть
$$u,\widetilde{u}\in X, \|u-\widetilde{u}\|<\delta<1.$$
 $|J[u]-J[\widetilde{u}]|=\left|\int\limits_a^bL(x,\widetilde{u}(x),\dot{\widetilde{u}}(x))-L(x,u(x),\dot{u}(x))\,\mathrm{d}x\right|$

Заметим, что $\|(x,\widetilde{u}(x),\dot{\widetilde{u}}(x))-(x,u(x),\dot{u}(x))\|_{\mathbb{R}^{2n+1}}<\delta$

Рассмотрим $K=[a,b] imes\overline{B_{\|u\|_x+1}} imes\overline{B_{\|u\|_x+1}}$ — компакт в $\mathbb{R}^{2n+1}.$

$$\bigotimes \int_{a}^{b} \omega_{L|_{K}}(\delta) \, \mathrm{d}x = (b-a)\omega_{L|_{K}}(\delta) \underset{\delta \to 0}{\longrightarrow} 0$$

где ω — модуль непрерывности.

Пользовались тем, что $L\big|_K$ непрерывна на компакте.

Пусть X — нормированное пространство (необязательно замкнутое), $J: X \to \mathbb{R}$.

Определение 0.0.2 (Производная функционала J в точке x по направлению $h \in X$). $\delta J[x,h] = \frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0} J[x+th]$. Иначе говоря, вариация J по направлению h.

Вариация однородна: $\delta J[x,ch]=c\cdot\delta J[x,h]$. Неаддитивна: $\exists \delta J[x,h_1],\delta J[x,h_2]$ — не следует существование $J[x,h_1+h_2]$, а если и есть, то необязана быть суммой. Примеры были в анализе, нет б/м специфики.

Свойства.

• Как и в к/м анализе, в критической точке вариация (коли \exists) должна обращаться в нуль.

A именно, $x \in X$ — локальный экстремум J, тогда $\forall h: \exists \delta J[x,h] \Rightarrow \delta J[x,h] = 0.$

Доказательство. Сужение $\alpha(t)=J[x+th]$ тоже имеет локальный экстремум, значит, если производная в t=0 есть, то нуль.

0.0.1 Необходимые условия

Лемма 0.0.1 (Дюбуа-Реймона, что-то такое). Пускай $f \in C[a,b], \omega \in C^1[a,b], \omega(a) = \omega(b) = 0$, известно, что $\int\limits_a^b f\omega' = 0$ для всех таких ω .

Тогда $f \equiv \text{const.}$

Доказательство. Если бы f сама была гладкой, то можно было бы интегрировать по частям. $\int f'\omega = 0 \Rightarrow f' \equiv 0$ — можно взять ω , сосредоточенную там, где f' одного знака.

Надеемся, что
$$f=\overline{f}=rac{1}{b-a}\int\limits_a^bf$$

Проинтегируем $f-\overline{f}.$ $\omega(x)\coloneqq\int\limits_a^x\left(f(x')-\overline{f}\right)\mathrm{d}x'$ — функция из $C^1.$

Дальше $\omega(a) = \omega(b) = 0$.

$$0=\int\limits_a^bf\omega'=\int\limits_a^b(f-\overline{f})\omega'=\int\limits_a^b(f-\overline{f})^2\,\mathrm{d}x$$
, упс, противоречие, интеграл нуль, значит, $f\equiv\overline{f}$.

Опять $X=C^1[a,b]$, функционал того же самого вида $J[u]=\int\limits_a^b L(t,u(t),\dot{u}(t))\,\mathrm{d}t.$

Лемма 0.0.2 (Формула первой вариации). Давайте дифференцировать по всевозможным направлениям. Потребуем для этого $L \in C^1([a,b] \times \mathbb{R}^n \times \mathbb{R}^n)$.

Пусть
$$u,h \in X$$
. $J[u+th]-J[u]=\int\limits_a^b \left[L(t,u(t)+\tau h(t),\dot{u}(t)+\tau \dot{h}(t))-L(t,u(t),\dot{u}(t))\right]\mathrm{d}t.$

Формула Лагранжа.

 $\operatorname{grad}_u L - \operatorname{вектор} \operatorname{us} \mathbb{R}^n$, градиент

$$\tau \int_{a}^{b} \left[\left\langle (\operatorname{grad}_{u} L)(t, u(t) + \tau_{*}h(t), \dot{u}(t) + \tau_{*}\dot{h}(t)), h(t) \right\rangle + \left\langle (\operatorname{grad}_{\dot{u}} L)(\dots), \dot{h}(t) \right\rangle \right] dt \ \partial e \ \tau_{*} = \tau_{*}(t) \in [0, \tau].$$

Значит, $\frac{J[u+\tau h]-J[u]}{ au}=\int\limits_{0}^{b}\ldots$ — вот тот, что выше

$$\int\limits_a^b \left\langle (\operatorname{grad}_u L)(t,u(t)+\tau_*h(t),\dot{u}(t)+\tau_*\dot{h}(t)),h(t)\right\rangle \mathrm{d}t \longrightarrow \int\limits_a^b \left\langle (\operatorname{grad}_u L)(t,u(t),\dot{u}(t)),h(t)\right\rangle \mathrm{d}t$$

Модуль разности аргументов не превосходит $\tau_*\|h\|_X$. Значит, $\|\operatorname{grad}_u L(\dots) - \operatorname{grad}_u L(\dots)\|_{\mathbb{R}^n} \leqslant \omega_{L_{K}}(\tau_*\|h\|_X)$. Здесь $K \coloneqq [a,b] \times \overline{B_{\|u\|+\|h\|}} \times \overline{B_{\|u\|+\|h\|}}$.

Значит, модуль разности интегралов I и II (где один стремится к другому) не превосходит $|(I)-(II)|\leqslant \int\limits_a^b \omega_L\big|_K (\tau_*\|h\|)\,\mathrm{d}t\leqslant (b-a)\omega_L\big|_K (\tau\|h\|)\,\mathrm{d}t \underset{\tau\to 0}{\longrightarrow} 0.$

Разобрались с первым слагаемом под интегралом — естественный предел. Аналогично со вторым слагаемым, значит, $\frac{J[u+\tau h]-J[u]}{\tau} \underset{\tau \to 0}{\longrightarrow} \int_a^b \left[\langle (\operatorname{grad}_u L)(t,u(t),\dot{u}(t)),h(t) \rangle + \left\langle (\operatorname{grad}_{\dot{u}} L)(t,u(t),\dot{u}(t)),\dot{h}(t) \right\rangle \right] \mathrm{d}t.$ Оказалось что производная по любоми направлению \exists и равна томи что справа.

Пусть $u \in X$ — экстремум. Тогда $\forall h \in X : \delta J[u,h] = 0$

Градиент нуль — уравнение на точку. Хотим уравнение на u(t), избавимся от h. Подгоним под лемму Ди-кого?

Введём
$$R(x) = \int_{a}^{x} (\operatorname{grad}_{u} L)(t, u(t), \dot{u}(t)) \, \mathrm{d}t$$
. Тогда $\delta J[x, h] = \int_{a}^{b} \left\langle \dot{R}(t), h(t) \right\rangle + \left\langle (\operatorname{grad}_{\dot{u}} L)(t, u(t), \dot{u}(t)), \dot{h}(t) \right\rangle \, \mathrm{d}t$

Интегируем по частям. Получается (поскольку R(a)=0) $\langle R(b),h(b)\rangle+\int\limits_a^b\Big\langle(\mathrm{grad}_{\dot{u}}\,L)(t,u(t),\dot{u}(t))-R(t),\dot{h}(t)\Big\rangle\,\mathrm{d}t$

И это равно нулю $\forall h \in C^1[a,b]$. Рассмотрим h, обращающийся на концах в ноль: h(a) = h(b) = 0.

Теперь $\int\limits_a^b \left< \xi(t), \dot{h}(t) \right> \mathrm{d}t = 0$, где $\xi(t)$ — то, что стоит в левом слоте скалярного произведения чуть выше в формуле, получившейся после интегрирования по частям. Теперь мы покомпонентно можем применить лемму Д-Р.

 $\langle \operatorname{grad}_{\dot{u}} \rangle$ Дальше я записал в тетрадку кое-что

 $\xi(t)\equiv {
m const.}$ Но теперь $R(t)\in C^1$, значит, ${
m grad}_{\dot u}\,L(t,u(t),\dot u(t))\in C^1$ тоже.

Дифференцируя: $\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{grad}_{\dot{u}}\,L)(t,u(t),\dot{u}(t))-(\mathrm{grad}_u\,L)(t,u(t),\dot{u}(t))=0.$ Ого, уравнение на L. Уравнение Эйлера — Лагранжа, основное уравнение вариационки.

Примечание: в случае общего положения уравнение $\mathfrak{I}-\mathfrak{I}-\mathfrak{I}$ второго порядка ($u\in C^2$), потому что экстремаль как правильно сказать?

$$C \coloneqq \xi$$
. Теперь h опять произвольный $\delta J[u,h] = \langle R(b),h(b) \rangle + \int\limits_a^b \left\langle C,\dot{h}(t) \right\rangle \mathrm{d}t = \langle R(b),h(b) \rangle + \langle C,h(b) \rangle - \langle C,h(a) \rangle.$

Теперь в качестве h возьмём такую функцию, что h(b)=0, h(a)=C. Для него $\delta J[u,h]=-\|C\|^2,$ значит, $\xi=C=0$.

Что это означает? См. определение ξ . R(a) = 0, значит, $(\operatorname{grad}_{i} L)(a, u(a), \dot{u}(a)) = 0$.

Теперь наоборот, h(b) = R(b). Тогда $\delta J[u,h] = \|R(b)\|^2 \Rightarrow R(b) = 0$. Аналогично (рассматривая $\xi(b)$) $(\operatorname{grad}_{\dot{u}} L)(b,u(b),\dot{u}(b)) = 0$.

Два условия (но в разных точках) на уравнение второго порядка, можно надеяться, что хватит (но это совсем не факт).

Подытожим в теорему.

Теорема 0.0.1 (Задача со свободными концами). Пусть $L \in C^1([a,b] \times \mathbb{R}^n \times \mathbb{R}^n)$, пусть $X = C^1[a,b]$, пусть u — локальный экстремум J.

Тогда

- 1. $(\operatorname{grad}_{\dot{u}} L)(t, u(t), \dot{u}(t)) \in C^1[a, b].$
- 2. $\frac{d}{dt} \operatorname{grad}_{\dot{u}} L = \operatorname{grad}_{\dot{u}} L \Im \Im$
- 3. $(\operatorname{grad}_{\dot{u}} L)(a, u(a), \dot{u}(a)) = 0$
- 4. $(\operatorname{grad}_{\dot{u}} L)(b, u(b), \dot{u}(b)) = 0$

Теперь обсудим, что, если концы не свободны.

Рассмотрим $X = \{f \in C^1[a,b] | f(a) = f_a, f(b) = f_b\}$. Это не подпространство (не имеет линейной структуры), нельзя определить производную по направлению.

$$J:X o\mathbb{R}$$
 тот же.

Какая здесь характеризация локальных экстремумов?

Рассмотрим $\widetilde{J}:C^1[a,b] \to \mathbb{R}$ — с той же формулой, что и J. Тогда $\forall u,h:\exists \delta \widetilde{J}[u,h].$

С другой стороны, если $h\in C^1[a,b], h(a)=h(b)=0$, то $\forall u\in X, t\in \mathbb{R}: u+th\in X$ Имеем право рассмотреть J[u+th]. Если u — локальный экстремум, то $\frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0}J[u+th]=0$. Она существует, так как это $\frac{\mathrm{d}}{\mathrm{d}t}\widetilde{J}[u+th]$.

Тем самым, такие функции h прибавлять можно, будем это тоже называть вариацией: $\delta J[u,h]$ задаётся той же формулой. Дальше работает то же самое рассуждение, все действия те же самые, только при интегрировании по частям внеинтегральный член занулится, никаких дополнительных соотношений не возникнет.

Теорема 0.0.2 (с фиксированными концами). $L \in C^1([a,b] \times \mathbb{R}^n \times \mathbb{R}^n), X = \{f \in C^1[a,b] | f(a) = f_a, f(b) = f_b\},$ пусть u — локальный экстремум J. Тогда

- 1. $(\operatorname{grad}_{\dot{u}} L)(t, u(t), \dot{u}(t)) \in C^1[a, b].$
- 2. $\frac{d}{dt} \operatorname{grad}_{\dot{u}} L = \operatorname{grad}_{\dot{u}} L \Im \Im$

Заметим, что у нас по-прежнему два условия (теперь уже данные в самой задаче) и уравнение второго порядка.