k-nomial theorem and Pascal's Triangle

CMSC 250

Video #1

The binomial theorem and some computational challenges.

The binomial theorem

Recall the following identities from highschool:

•
$$(x + y)^2 = x^2 + 2xy + y^2$$

•
$$(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

•
$$(x + y)^4 = x^4 + 4x^3y^1 + 6x^2y^2 + 4x^1y^3 + y^4$$

The binomial theorem

Recall the following identities from highschool:

•
$$(x + y)^2 = 1x^2 + 2xy + 1y^2$$

•
$$(x + y)^3 = 1x^3 + 3x^2y + 3xy^2 + 1y^3$$

•
$$(x + y)^4 = 1x^4 + 4x^2y^2 + 6x^2y^2 + 4x^2y^2 + 1y^4$$

• Is there a pattern here? Can we easily generate the coefficients?

The binomial theorem

Recall the following identities from highschool:

•
$$(x + y)^2 = 1x^2 + 2xy + 1y^2$$

•
$$(x + y)^3 = 1x^3 + 3x^2y + 3xy^2 + 1y^3$$

$$(x+y)^4 = 1x^4 + 4x^3y^1 + 6x^2y^2 + 4x^1y^3 + 1y^4$$

- Is there a pattern here? Can we easily generate the coefficients?
 - (Some of you might already know how, but we doubt that you know why)

$$(x+y)^5$$

•
$$(x + y)^5 = (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y)$$

• What is the coefficient of x^2y^3 ?

$$(x+y)^5$$

•
$$(x + y)^5 = (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y)$$

- What is the coefficient of x^2y^3 ?
- There are $2^5 = 32$ terms total (many combine, eg xxyyy, xyxyy are both of form x^2y^3).
- How many of those terms have 2 'x's and 3 'y's?

$$(x+y)^5$$

•
$$(x + y)^5 = (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y)$$

```
xxyyy, xyxyy, xyyxy, xyyxy, xyyyx, yxxyy, yxyxy, yxyxx, yyxxxy, yyxxx, yyyxx
```

$$(x+y)^5$$

•
$$(x + y)^5 = (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y)$$

xxyyy, xyxyy, xyyxy, xyyyx, yxxyy, yxyxy, yxyyx, yyxxy, yyxyx, yyyxx

All terms of form x^2y^3

$$(x+y)^5$$

•
$$(x + y)^5 = (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y)$$

All terms of form x^2y^3

- This is just choosing 2 slots out of 5 to put the 'x's in.
- There are $\binom{5}{2} = 10$ ways of doing this.

You do this **now**

• What is the coefficient of x^3y^4 in $(x + y)^7$?

You do this **now**

• What is the coefficient of x^3y^4 in $(x + y)^7$?

$$\frac{7!}{3! \cdot 4!} = \binom{7}{3}$$

$$(x+y)^n$$

We now generalize the previous results:

•
$$(x + y)^n = (x + y) \cdot (x + y) \cdot ... \cdot (x + y)$$

• Co-efficient of $x^r y^{n-r} = \#$ of ways to select r 'x's from n slots = $\binom{n}{r}$

$$(x+y)^n$$

We now generalize the previous results:

•
$$(x + y)^n = (x + y) \cdot (x + y) \cdot ... \cdot (x + y)$$

• Co-efficient of $x^r y^{n-r} = \#$ of ways to select r 'x's from n slots = $\binom{n}{r}$

Binomial Theorem:

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r}$$

- Approach #1: Compute directly via formula $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
- Problem: Large intermediary numbers, even if n, r and $\binom{n}{r}$ are relatively small!
 - Example: $\binom{20}{10} = \frac{20!}{10! \cdot 10!} = \frac{1 \times 2 \times \dots \times 10 \times 11 \times 12 \times \dots \times 20}{(1 \times 2 \times \dots \times 10) \cdot (1 \times 2 \times \dots \times 10)}$

- Approach #1: Compute directly via formula $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
- Problem: Large intermediary numbers, even if n, r and $\binom{n}{r}$ are relatively small!

• Example:
$$\binom{20}{10} = \frac{20!}{10! \cdot 10!} = \frac{(1 \times 2 \times \dots \times 10) \times 11 \times 12 \times \dots \times 20}{(1 \times 2 \times \dots \times 10) \cdot (1 \times 2 \times \dots \times 10)} = 184756$$
Not too large!

- Is our computer **smart enough** to cancel out the stuff in green?
 - Not every computer is!

- Approach #1: Compute directly via formula $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
- Problem: Large intermediary numbers, even if n, r and $\binom{n}{r}$ are relatively small!

• Example:
$$\binom{20}{10} = \frac{20!}{10! \cdot 10!} = \frac{(1 \times 2 \times \dots \times 10) \times 11 \times 12 \times \dots \times 20}{(1 \times 2 \times \dots \times 10) \cdot (1 \times 2 \times \dots \times 10)} = 184756$$
Not too large!

- Is our computer **smart enough** to cancel out the stuff in green?
 - Not every computer is!
 - But assuming that ours is, we still have to compute $11 \times 12 \times \cdots \times 20$, which is quite large, even though the final result is small!

- Approach #1: Compute directly via formula $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
- Problem: Large intermediary numbers, even if n, r and $\binom{n}{r}$ are relatively small!

• Example:
$$\binom{20}{10} = \frac{20!}{10! \cdot 10!} = \frac{(1 \times 2 \times \dots \times 10) \times 11 \times 12 \times \dots \times 20}{(1 \times 2 \times \dots \times 10) \cdot (1 \times 2 \times \dots \times 10)} = 184756$$
Not too large!

- Is our computer **smart enough** to cancel out the stuff in green?
 - Not every computer is!
 - But assuming that ours is, we still have to compute $11 \times 12 \times \cdots \times 20$, which is quite large.
- Can we do better?

- Approach #1: Compute **directly** via formula $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
- Problem: Large intermediary numbers, even if n, r and $\binom{n}{r}$ are relatively small!
 - Example: $\binom{20}{10} = \frac{20!}{10! \cdot 10!} = \frac{(1 \times 2 \times \dots \times 10) \times 11 \times 12 \times \dots \times 20}{(1 \times 2 \times \dots \times 10) \cdot (1 \times 2 \times \dots \times 10)} = 184756$ Not too large!
 - Is our computer **smart enough** to cancel out the stuff in green?
 - Not every computer is!
 - But assuming that ours is, we still have to compute $11 \times 12 \times \cdots \times 20$, which is quite large.
- Can we do better?
 - Yes, through Pascal's triangle!

ENDOF VIDEO#1

Video #2

- Using Pascal's identity and triangle to calculate any $\binom{n}{r}$ <u>fast</u>.
- Expanding binomial theorem to trinomial, quadrinomial,, k-nomial

An easy combinatorial identity

We will prove that

$$(\forall n, r \in \mathbb{N})[(r \le n) \Rightarrow \binom{n}{r} = \binom{n}{n-r}]$$

in two different ways!

Another combinatorial identity

$$(\forall n, r \in \mathbb{N}^{\geq 1}) \left[(r \leq n) \Rightarrow \binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r} \right]$$

Another combinatorial identity

$$(\forall n, r \in \mathbb{N}^{\geq 1}) \left[(r \leq n) \Rightarrow \binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r} \right]$$

- 1. Algebraic proof
- 2. Combinatorial proof!

A combinatorial proof of
$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

- LHS: #ways to pick r people from a set of n people.
- RHS: Focus on one person, call him *Jason*.
 - If we pick Jason, then we are left with n-1 people to decide if we want to pick or not, from which we now have to pick r-1 people (first term of RHS)
 - OR, if we don't pick Jason, we are left with n-1 people to decide if we want to pick or not, yet still r people that we need to pick (second term of RHS).

A combinatorial proof of
$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

- LHS: #ways to pick r people from a set of n people.
- RHS: Focus on one person, call him *Jason*.
 - If we pick Jason, then we are left with n-1 people to decide if we want to pick or not, from which we now have to pick r-1 people (first term of RHS)
 - OR, if we don't pick Jason, we are left with n-1 people to decide if we want to pick or not, yet still r people that we need to pick (second term of RHS).

A combinatorial proof of
$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

- LHS: #ways to pick r people from a set of n people.
- RHS: Focus on one person, call him *Jason*.
 - If we pick Jason, then we are left with n-1 people to decide if we want to pick or not, from which we now have to pick r-1 people (first term of RHS)
 - OR, if we don't pick Jason, we are left with n-1 people to decide if we want to pick or not, yet still r people that we need to pick (second term of RHS).
- This is a combinatorial proof!
- A combinatorial proof is a type of proof where we show two quantities are equal because they solve the same problem.

Pascal's Triangle

Pascal's Triangle

Upshot

Use combinatorial identity

Efficiency of Pascal's triangle

- We avoid the intermediary large numbers problem
- i^{th} level of triangle gives us all coefficients $\binom{i}{0}$, $\binom{i}{1}$, ..., $\binom{i}{i}$
- Compute the value of every node as the sum of its two parents
 - Note that the diagonal "edges" of the triangle always 1.

- $(x + y)^n$ has terms of form $x^a y^b$.
- As discussed, many simplify

- $(x + y)^n$ has terms of form $x^a y^b$.
- As discussed, many simplify
- Treat $x^a y^b$ as a string for a minute.
- How many permutations of $x^a y^b$ are there?

$$\frac{(a+b)!}{a! \cdot b!}$$

- $(x + y)^n$ has terms of form $x^a y^b$.
- As discussed, many simplify
- Treat $x^a y^b$ as a string for a minute.
- How many permutations of $x^a y^b$ are there?

$$\frac{(a+b)!}{a! \cdot b!} = \frac{n!}{a! \cdot (n-a)!}$$

- $(x + y)^n$ has terms of form $x^a y^b$.
- As discussed, many simplify
- Treat $x^a y^b$ as a string for a minute.
- How many permutations of $x^a y^b$ are there?

$$\frac{(a+b)!}{a! \cdot b!} = \frac{n!}{a! \cdot (n-a)!} = \binom{n}{a}$$

An exercise for you to do now

• Expand $(x + y + z)^2$

An exercise for you to do now

• Expand $(x + y + z)^2$

$$x^2 + y^2 + z^2 + 2xy + 2xz + 2yz$$

•
$$(x + y + z)^5 = (x + y + z) \cdot (x + y + z)$$

The expansion will have terms of form

$$x^a y^b z^c$$
, where $a + b + c = 5$

What should the coefficients be?

$$x^a y^b z^c$$
, where $a + b + c = 5$

- Once again, let's view $x^a y^b z^c$ as a string.
- #permutations of this string =

$$\frac{(a+b+c)!}{a! \cdot b! \cdot c!}$$

$$x^a y^b z^c$$
, where $a + b + c = 5$

- Once again, let's view $x^a y^b z^c$ as a string.
- #permutations of this string =

$$\frac{(a+b+c)!}{a! \cdot b! \cdot c!} = \frac{5!}{a! \cdot b! \cdot c!}$$

$$(x + y + z)^{n} = \sum_{\substack{a+b+c=n\\0 \le a,b,c \le n}} \frac{n!}{a! \, b! \, c!} x^{a} y^{b} z^{c}$$

k-nomial theorem

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{\substack{a_1 + a_2 + \dots + a_k = n \\ 0 \le a_1, a_2, \dots, a_k \le n}} \frac{n!}{a_1! \, a_2! \dots a_k!} x_1^{a_1} x_2^{a_2} \dots x_k^{a_k}$$

k-nomial theorem

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{\substack{a_1 + a_2 + \dots + a_k = n \\ 0 \le a_1, a_2, \dots, a_k \le n}} \frac{n!}{a_1! a_2! \dots a_k!} x_1^{a_1} x_2^{a_2} \dots x_k^{a_k}$$

$$\iff \left(\sum_{i=1}^{k} x_{i}\right)^{n} = \sum_{\substack{a_{1} + a_{2} + \dots + a_{k} = n \\ 0 \le a_{1}, a_{2}, \dots, a_{k} \le n}} \frac{n!}{\prod_{i=1}^{k} a_{i}!} \prod_{i=1}^{k} x_{i}^{a_{i}}$$

ENDOF VIDEO#2