MATH 20800: Honors Analysis in Rn II Problem Set 4

Hung Le Tran

14 Feb 2024

Problem 4.1 (done)

(a) (Hölder's inequality) Suppose that $n \in \mathbb{N}$, and let $a_k, b_k \in \mathbb{N}, 1 \le k \le n$. Prove that if 1 and <math>1/p + 1/q = 1 then

$$\sum_{k=1}^{n} |a_k b_k| \le \left[\sum_{k=1}^{n} |a_k|^p \right]^{1/p} \left[\sum_{k=1}^{n} |b_k|^q \right]^{1/q}$$

Hint: Prove that if A, B > 0 and $t \in (0, 1)$ then $A^t B^{1-t} \le tA + (1-t)B$ by showing the function

$$f(x) := tx + (1-t)B - x^t B^{1-t}, \quad x > 0$$

has a minimum at x = B.

(b) (Minkowski's inequality) Suppose that $n \in \mathbb{N}$, and let $a_k, b_k \in \mathbb{R}, 1 \leq k \leq n$. Prove that if $1 \leq p \leq \infty$ then

$$\left[\sum_{k=1}^{n} |a_k + b_k|^p\right]^{1/p} \leq \left[\sum_{k=1}^{n} |a_k|^p\right]^{1/p} + \left[\sum_{k=1}^{n} |b_k|^p\right]^{1/p}$$

Hint: By the triangle inequality

$$\sum_{k=1}^{n} |a_k + b_k|^p \le \sum_{k=1}^{n} |a_k| |a_k + b_k|^{p-1} + \sum_{k=1}^{n} |b_k| |a_k + b_k|^{p-1}$$

Now apply Hölder's inequality.

Solution

(a) We first prove that for A, B > 0 and $t \in (0, 1)$, we have

$$A^t B^{1-t} \le tA + (1-t)B$$

Indeed, if we define $f(x) := tx + (1-t)B - x^tB^{1-t}$ on $(0,\infty)$ then we find the critical point x_0 :

$$f'(x_0) = t - tx_0^{t-1}B^{1-t}$$
$$\Rightarrow x_0 = B$$

and it is a minimum point since

$$f''(x_0) = -t(t-1)B^{t-2}B^{1-t} > 0$$

Therefore for any A > 0, we have that $f(A) \ge f(B) = 0 \Rightarrow A^t B^{1-t} \le tA + (1-t)B$.

To prove Holder's inequality, take divide both sides by the RHS, then we have:

$$\sum_{k=1}^{n} \left[\frac{|a_k|^p}{\sum_{k=1}^{n} |a_k|^p} \right]^{1/p} \left[\frac{|b_k|^q}{\sum_{k=1}^{n} |b_k|^q} \right]^{1/q} \le \sum_{k=1}^{n} \frac{1}{p} \left[\frac{|a_k|^p}{\sum_{k=1}^{n} |a_k|^p} \right] + \frac{1}{q} \left[\frac{|b_k|^q}{\sum_{k=1}^{n} |b_k|^q} \right]$$

$$= \frac{1}{p} \sum_{k=1}^{n} \left[\frac{|a_k|^p}{\sum_{k=1}^{n} |a_k|^p} \right] + \frac{1}{q} \sum_{k=1}^{n} \left[\frac{|b_k|^q}{\sum_{k=1}^{n} |b_k|^q} \right]$$

$$= 1$$

hence LHS \leq RHS as required.

(b) Set
$$q = \frac{p}{p-1}$$
 then $1/p + 1/q = 1$.

We have, first by triangle inequality then Holder's on $\frac{1}{n} + \frac{1}{n} = 1$ then

$$\begin{split} \sum_{k=1}^{n} |a_k + b_k|^p &\leq \sum_{k=1}^{n} |a_k| |a_k + b_k|^{p-1} + \sum_{k=1}^{n} |b_k| |a_k + b_k|^{p-1} \\ &\leq \left(\left[\sum_{k=1}^{n} |a_k|^p \right]^{1/p} + \left[\sum_{k=1}^{n} |b_k|^p \right]^{1/p} \right) \left[\sum_{k=1}^{n} |a_k + b_k|^{(p-1)q} \right]^{1/q} \\ &\leq \left(\left[\sum_{k=1}^{n} |a_k|^p \right]^{1/p} + \left[\sum_{k=1}^{n} |b_k|^p \right]^{1/p} \right) \left[\sum_{k=1}^{n} |a_k + b_k|^p \right]^{1-1/p} \\ \Rightarrow \left[\sum_{k=1}^{n} |a_k + b_k|^p \right]^{1/p} &\leq \left[\sum_{k=1}^{n} |a_k|^p \right]^{1/p} + \left[\sum_{k=1}^{n} |b_k|^p \right]^{1/p} \end{split}$$

as required.

Problem 4.2 (done)

Prove that if $1 \leq p < \infty$, then ℓ^p is a Banach space (you must show it is a normed space and it is complete)

Solution

Let us first have the definition of the ℓ^p space:

$$\ell^p = \left\{ a = (a_1, a_2, \dots) \mid a_k \in \mathbb{C}, \left(\sum_{k=1}^{\infty} |a_k|^p \right)^{1/p} < \infty \right\}$$

Define the norm $||a|| = ||a||_p = (\sum_{k=1}^{\infty} |a_k|^p)^{1/p}$.

To show that ℓ^p is a normed space, we have to show that it is first a vector space (over \mathbb{C}), and the norm $\|\cdot\|$ as above is indeed a norm.

- On this space, define addition and scalar multiplication as pointwise addition and pointwise scalar multiplication. Then $(0) = (0, \dots) \in \ell^p$ is trivially the identity.
- If $a, b \in \ell^p$; $\lambda \in \mathbb{C}$ then $a + \lambda b = (a_1 + \lambda b_1, \cdots)$ has:

$$\left[\sum_{k=1}^{\infty} |a_k + \lambda b_k|^p \right]^{1/p} \le \left[\sum_{k=1}^{\infty} |a_k|^p \right]^{1/p} + \left[\sum_{k=1}^{\infty} |\lambda b_k|^p \right]^{1/p} < \infty$$

by Minkowski's (apply for n, then $n \to \infty$ implies LHS converges and is thus well-defined) hence $a + \lambda b \in \ell^p$ too.

• $|a_k| \ge 0 \ \forall \ k \Rightarrow ||a|| \ge 0 \ \forall \ a$

- $||a|| = 0 \Rightarrow \sum_{k=1}^{\infty} |a_k|^p = 0 \Rightarrow a_k = 0 \ \forall \ k \Rightarrow a = 0$
- Triangle inequality: Minkowski's tells us that

$$\left[\sum_{k=1}^{n}|a_k+b_k|^p\right]^{1/p} \leq \left[\sum_{k=1}^{n}|a_k|^p\right]^{1/p} + \left[\sum_{k=1}^{n}|b_k|^p\right]^{1/p} \leq \left[\sum_{k=1}^{\infty}|a_k|^p\right]^{1/p} + \left[\sum_{k=1}^{\infty}|b_k|^p\right]^{1/p} = \|a\| + \|b\| < \infty$$

The series on the LHS then is monotonic increasing in n and bounded above and so converges, so ||a+b||. When taken to the limit, the inequality still holds, so $||a+b|| \le ||a|| + ||b||$.

It remains to show that that ℓ^p is complete (with respect to norm $\|\cdot\|$).

Take a Cauchy sequence $\{a^{(i)}\}_{i\in\mathbb{N}}\subset\ell^p$. Fix $\varepsilon>0$, then there exists $N=N_\varepsilon\in\mathbb{N}$ such that $i,j\geq N$ implies

$$||a^{(i)} - a^{(j)}|| < \varepsilon$$

Write out $a^{(i)} - a^{(j)} = (a_1^{(i)} - a_1^{(j)}, a_2^{(i)} - a_2^{(j)}, \ldots)$ then it follows that for all $i, j \ge N; k \in \mathbb{N}$, we have

$$|a_k^{(i)} - a_k^{(j)}| \le ||a^{(i)} - a^{(j)}|| < \varepsilon$$

so for each $k \in \mathbb{N}$, the sequence $\{a_k^{(i)}\}_{i \in \mathbb{N}} \subset \mathbb{C}$ is Cauchy. \mathbb{C} is complete, so $a_k^{(i)} \xrightarrow{i \to \infty} b_k \in \mathbb{C}$. Define $b = (b_k)_{k \in \mathbb{N}}$. Then WTS $b \in \ell^p$ and $a^{(i)} \xrightarrow{i \to \infty} b$.

We first show that $||a^{(i)} - b||_p \xrightarrow{i \to \infty} 0$. A priori, this "norm" might not exist, but by showing that it gets arbitrarily small, we in the process also show that it is well-defined.

We know that $\{a^{(i)}\}_{i\in\mathbb{N}}$ in Cauchy wrt $\|\|_p$, so for any $n\in\mathbb{N}$, we have that for all $i,j\geq N$,

$$\sum_{k=1}^{n} |a_k^{(i)} - a_k^{(j)}|^p < \varepsilon^p$$

Let $j \to \infty$, then

$$\sum_{k=1}^{n} |a_k^{(i)} - b_k|^p \le \varepsilon^p$$

This holds for all $n \in \mathbb{N}$, so it follows that

$$\sum_{k=1}^{\infty} |a_k^{(i)} - b_k|^p \le \varepsilon^p$$

since the sequence of partial sums is increasing and bounded. It follows that for all $i \geq N$,

$$||a^{(i)} - b||_p \xrightarrow{i \to \infty} 0$$

It remains to show that $b \in \ell^p$. The triangle inequality then implies that

$$||b||_p \le ||a^{(i)}||_p + ||a^{(i)} - b||_p < \infty$$

for i sufficiently large $(\geq N)$, so $b \in \ell^p$.

Hence $a^{(i)} \xrightarrow{i \to \infty} b \in \ell^p$, so ℓ^p is indeed a complete normed vector space, i.e., a Banach space.

Problem 4.3 (done)

The set of all bounded sequences, ℓ^{∞} , can be identified with $C_{\infty}(\mathbb{N})$, the set of all bounded continuous functions on the metric space (\mathbb{N}, d_{disc}) where d_{disc} is the discrete metric. Thus, ℓ^{∞} is a Banach space. Prove that

$$c_0 := \{\{a_k\}_k \in \ell^{\infty} \mid \lim_{k \to \infty} a_k = 0\}$$

is a closed subspace of ℓ^{∞} (and is thus, a Banach space).

Solution

Take sequence $\{a^{(i)}\}_{i\in\mathbb{N}}\subset c_0$ such that $a^{(i)}\xrightarrow{i\to\infty}b\in\ell^\infty$. WTS $b\in c_0$.

To show that $b \in c_0$, we show that

$$\lim_{k \to \infty} b_k = 0$$

Fix $\varepsilon > 0$. Since $a^{(i)} \xrightarrow{i \to \infty} b$, there exists $N = N_{\varepsilon} \in \mathbb{N}$ such that $i \geq N$ implies

$$||a^{(i)} - b||_{\infty} < \varepsilon/2$$

In particular, we have that

$$||a^{(N)} - b||_{\infty} < \varepsilon/2$$

Since $a^{(N)} \in c_0$, there exists $K = K_{N,\varepsilon} = K_{\varepsilon}$ such that

$$k \ge K \Rightarrow |a_k^{(N)}| < \varepsilon/2$$

It then follows that for $k \geq K$, we have

$$|b_k| \le |b_k - a_k^{(N)}| + |a_k^{(N)}| \le ||a^{(N)} - b||_{\infty} + |a_k^{(N)}| < \varepsilon$$

hence $\lim_{k\to\infty} b_k = 0$ as required.

It follows that c_0 is closed.

Problem 4.4 (done)

Let $1 \le p \le \infty$ and

$$S := \{ a = \{ a_k \}_k \in \ell^p \mid ||a||_p = 1 \}$$

- (a) Prove that S is a closed subset of ℓ^p .
- (b) Prove that S is not compact. Hint: Let $e_n := \{\delta_{kn}\}_k \in S$ where δ_{kn} is the Kronecker delta. Show that $\{e_n\}_n$ does not have a convergent subsequence in S.

Solution

(a) Note that the norm as a function from a normed vector space to \mathbb{R} is always continuous, since it is 1-Lipschitz.

In this case, $\|\cdot\|_p:\ell^p\to\mathbb{R}$ is therefore continuous. It follows that

$$S = \|\cdot\|_{n}^{-1}(\{1\})$$

is closed in ℓ^p since $\{1\}$ is closed in \mathbb{R} .

(b) To show that S is not compact, we demonstrate a sequence in S that has does not have a convergent subsequence in S.

For each $n \in \mathbb{N}$, let $e_n = \{\delta_{kn}\}_{k \in \mathbb{N}}$, i.e., e_n is the sequence of all zeros except for 1 at its nth index. Clearly, $e_n \in S \ \forall \ n \in \mathbb{N}$.

Suppose that $\{e_n\}_{n\in\mathbb{N}}$ has a convergent subsequence $\{e_{n_j}\}_{j\in\mathbb{N}}$ that converges to some $a=\{a_k\}_{k\in\mathbb{N}}\in S$.

For $p = \infty$, then the limit is the pointwise limit, so, $a_k = \lim_{j \to \infty} e_{n_j}[k] = 0$. But then $||a|| = 0 \neq 1, \Rightarrow \Leftarrow$.

We then now consider only $1 \le p < \infty$. Then for $\varepsilon = 0.1$, there exists some N such that $j \ge J$ implies

$$||e_{n_i} - a||_p < \varepsilon$$

Then for all $j \geq J$,

$$\varepsilon^{p} > LHS^{p} = \sum_{k=1}^{\infty} |a_{k} - \delta_{kn_{j}}|^{p}$$

$$= ||a||_{p}^{p} + (|a_{n_{j}} - 1|^{p} - |a_{n_{j}}|^{p})$$

$$= 1 + |a_{n_{j}} - 1|^{p} - |a_{n_{j}}|^{p}$$

It follows that

$$|a_{n_i}|^p - |a_{n_i} - 1|^p > 1 - \varepsilon^p > 0 \Rightarrow |a_{n_i}| > |a_{n_i} - 1| \ge 1 - |a_{n_i}|$$

therefore

$$|a_{n_i}| \ge 1/2$$

This is true for all $j \geq J$, so

$$1 = ||a||_p^p \ge \sum_{i=J}^{J+\lceil 3^p \rceil} |a_{n_j}|^p \ge 3^p \frac{1}{2^p} > 1, \Rightarrow \Leftarrow$$

Therefore, for both cases of $p=\infty$ and $1 \le p < \infty$, there exists a sequence in S that does not have a convergent subsequence. So S is not compact.

Problem 4.5 (done)

Let $1 \le p < \infty$ and 1/p + 1/q = 1.

(a) Prove that if $a = \{a_k\}_k \in \ell^p$ and $b = \{b_k\}_k \in \ell^q$ then

$$\sum_{k=1}^{\infty} |a_k b_k| \le ||a||_p ||b||_q$$

(b) Let $b \in \ell^q$. Prove that $F_b : \ell^p \to \mathbb{C}$ defined via

$$F_b(a) := \sum_{k=1}^{\infty} a_k b_k, \quad a \in \ell^p,$$

is an element of $(\ell^p)^*$, the dual space of ℓ^p , and $||F_b|| = ||b||_{\ell^q}$.

(c) Prove that $F: \ell^q \to (\ell^p)^*, b \mapsto F_b$ is a bijective bounded linear operator.

Solution

(a) From Holder's, we know that

$$\sum_{k=1}^{n} |a_k b_k| \le \left[\sum_{k=1}^{n} |a_k|^p \right]^{1/p} \left[\sum_{k=1}^{n} |b_k|^q \right]^{1/q} \le ||a||_p ||b||_q$$

The partial sums are monotonically increasing and bounded above, so they converge and the limit is bounded by the same upper bound, hence

$$\sum_{k=1}^{\infty} |a_k b_k| \le ||a||_p ||b||_q$$

as required.

(b) We have $F_b: \ell^p \to \mathbb{C}$ with definition

$$F_b(a) := \sum_{k=1}^{\infty} a_k b_k$$

To show that $F_b \in (\ell^p)^*$, we have to show that it is a bounded linear functional on ℓ^p .

To show linearity, take any $\alpha, \beta \in \ell^p, \lambda \in \mathbb{C}$ then

$$F_b(\alpha + \lambda \beta) = \sum_{k=1}^{\infty} ((\alpha + \lambda \beta)_k b_k)$$
$$= \sum_{k=1}^{\infty} (\alpha_k + \lambda \beta_k) b_k$$
$$= F_b(\alpha) + \lambda F_b(\beta)$$

so it is indeed linear. It is also bounded, since

$$|F_b(a)| \le \sum_{k=1}^{\infty} |a_k b_k| \le ||a||_p ||b||_q$$

so $||F_b|| \le ||b||_q < \infty$. It follows that $F_b \in (\ell^p)^*$.

We've shown that $||F_b|| \le ||b||_q$. To show equality, we exhibit a particular a such that $|F_b(a)| = ||a||_p ||b||_q$. The crux lies in that we construct a such that the equality in Holder's inequality holds:

$$\forall\;k\in\mathbb{N},\frac{|a_k|^p}{\|a\|_p^p}=\frac{|b_k|^q}{\|b\|_q^q}$$

so that

$$\sum_{k=1}^{\infty} |a_k b_k| = ||a||_p ||b||_q$$

We also want $|F_b(a)| = |\sum_{k=1}^{\infty} a_k b_k| = \sum_{k=1}^{\infty} |a_k b_k|$, so we choose $a_k = c_k \overline{b_k}$ where $\overline{b_k}$ is the complex conjugate of b_k , and c_k real, nonnegative. It would then follow that

$$|F_b(a)| = \left|\sum_{k=1}^{\infty} c_k |b_k|^2\right| = \sum_{k=1}^{\infty} c_k |b_k|^2 = \sum_{k=1}^{\infty} |a_k b_k|$$

so that $|F_b(a)| = ||a||_p ||b||_q$, forcing $||F_b|| = ||b||_q$.

It remains for us to show a choice of $\{c_k\}$ so that $a \in \ell^p$ and satisfies the equal conditions of Holder's inequality so that all statements (especially those regarding convergence) are valid. Indeed, if

$$c_k := |b_k|^{(q-p)/p} \ge 0$$

then

$$||a||_{p}^{p} = \sum_{k=1}^{\infty} \left(|b_{k}|^{(q-p)} |\overline{b_{k}}|^{p} \right)$$
$$= \sum_{k=1}^{\infty} |b_{k}|^{q} = ||b||_{q}^{q}$$

so $a \in \ell^p$ and for all $k \in \mathbb{N}$:

$$\frac{|a_k|^p}{\|a\|_p^p} = \frac{|b_k|^{q-p}|\overline{b_k}|^p}{\|b\|_q^q} = \frac{|b_k|^q}{\|b\|_q^q}$$

as required, and we're done.

(c) Consider $F: \ell^q \to (\ell^p)^*, b \mapsto F(b) = F_b$.

We proved from above that $F_b \in (\ell^p)^*$ for all b. If $b_1 \neq b_2$ then with a that is all zeros except for 1 at the coordinate they differ, $F_{b_1}(a) \neq F_{b_2}(a) \Rightarrow F_{b_1} \neq F_{b_2}$, so F is injective.

To show that F is surjective, take $f \in (\ell^p)^*$ then we construct b by

$$b_k := f((0, \cdots, 0, 1, 0 \cdots))$$

i.e., the value when f is applied to the sequence of all zeros except for 1 at the kth index.

It is then clear that $F(b)(a) = \sum_{k=1}^{\infty} a_k b_k = f(a)$ for all $a \in \ell^p$ since f is linear, so F(b) = f, but this is only valid if $b \in \ell^q$. It remains for us to prove so.

Since $f \in (\ell^p)^*$, $||f|| < \infty$.

For $a = (a_1, \ldots, a_n, 0, \ldots) \in \ell^p$ such that $||a||_p \le 1$ then

$$||f|| \ge f(a) = \sum_{k=1}^{n} a_k b_k$$

But Holder's gives us that

$$\sum_{k=1}^{n} a_k b_k \le \sum_{k=1}^{n} |a_k b_k| \le \left[\sum_{k=1}^{n} |a_k|^p \right]^{1/p} \left[\sum_{k=1}^{n} |b_k|^q \right]^{1/q} = \left[\sum_{k=1}^{n} |b_k|^q \right]^{1/q}$$

with equality achievable, but $||f|| \ge f(a)$ for all qualifying a, so it follows that

$$||f|| \ge \left[\sum_{k=1}^n |b_k|^q\right]^{1/q}$$

This is true for all n, so it follows that

$$||b||_q \le ||f|| < \infty$$

so indeed $b \in \ell^q$ as required.

It is linear, since for all $\alpha, \beta \in \ell^q$; $\lambda \in \mathbb{C}$ and $a \in \ell^p$, we have

$$F(\alpha + \lambda \beta)(a) = \sum_{k=1}^{\infty} a_k (\alpha + \lambda \beta)_k$$
$$= \sum_{k=1}^{\infty} a_k \alpha_k + \sum_{k=1}^{\infty} \lambda a_k \beta_k$$
$$= F(\alpha)(a) + \lambda F(\beta)(a)$$

so $F(\alpha + \lambda \beta) = F(\alpha) + \lambda F(\beta)$ (expanding series of sum as sum of series makes sense, since we know a priori that each component series converges).

It remains to show that F is bounded.

From (b), we saw that $||F_b|| = ||b||_q$, i.e., ||F(b)|| = ||b||. Therefore, $||F|| \le 1$, so it is a bounded linear operator as required.