

MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA KONKURS CHEMICZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP REJONOWY 2022/2023

Uczeń maksymalnie może zdobyć 40 punktów.

OGÓLNE UWAGI DOTYCZĄCE OCENIANIA:

1)Model odpowiedzi uwzględnia jej zakres merytoryczny, ale nie jest ścisłym wzorcem.

Każdy poprawny sposób rozwiązania zadań przez ucznia powinien być uznawany.

- 2)Treść i zakres odpowiedzi ucznia powinny wynikać z polecenia i być poprawne pod względem merytorycznym i wyczerpujące.
- 3)Do zredagowania odpowiedzi uczeń używa poprawnej i powszechnie stosowanej terminologii naukowej. Nie punktuje się odpowiedzi niejednoznacznych.
- 4) Jeżeli w jakiejkolwiek części rozwiązania zadania uczeń przedstawia więcej niż jedną metodę i zawiera ona błąd, nie uznaje się wówczas rozwiązania zadania w tej części.
- 5)Za odpowiedzi w zadaniach przyznaje się wyłącznie punkty całkowite. Nie stosuje się punktów ułamkowych.
- 6)Jeśli w odpowiedzi do zadania znajdują się dwie odpowiedzi: poprawna i niepoprawna, to uczeń nie otrzymuje punktu za to zadanie.
- 7) Wykonywanie obliczeń na wielkościach fizycznych powinno odbywać się z zastosowaniem rachunku jednostek.

ODPOWIEDZI I ROZWIĄZANIA ZADAŃ

Zadania 1.- 11. (0-13)

1.	2.1.	2.2	3.	4.	5.	6.	7.	8.1.	8.2.	9.	10.	11.
A	В	D	В	C	C	C	C	A	C	A	В	C

Za każdą poprawną odpowiedź – 1 pkt

Zadanie 12.1. (0-2)

- 1. Cu
- 2. Na
- 3. Au
- 4. Mg
- 5. Fe

Za poprawne zidentyfikowanie pięciu metali – 2 pkt

Za poprawne zidentyfikowanie czterech lub trzech metali $-1~\mathrm{pkt}$

Za odpowiedź niespełniającą powyższych kryteriów – 0 pkt

Zadanie 12.2. (0-1)

Au, Cu, Fe, Mg, Na

Za poprawne uszeregowanie metali – 1 pkt Za odpowiedź niespełniającą powyższego kryterium – 0 pkt

Zadanie 12.3. (0-1)

Przebieg reakcji jest możliwy, ponieważ żelazo jest aktywniejsze od miedzi, (więc wyprze ją z roztworu jej soli)

(należy uznać za poprawne każde wyjaśnienie niezawierające błędu merytorycznego, w tym oparte o znajomość wartości potencjałów redukcji i utleniania)

Za poprawne rozstrzygnięcie i uzasadnienie – 1 pkt Za odpowiedź niespełniającą powyższych kryteriów – 0 pkt

Zadanie 13.1. (0-2)

Obliczenie objętości pokoju: $5 \text{ m} \cdot 4 \text{ m} \cdot 3 \text{ m} = 60 \text{ m}^3$

Obliczenie masy tlenku siarki(IV): 60 m³ · 4,0 $\frac{g}{m^3}$ = 240 g

Obliczenie masy siarki: 32 g siarki — 64 g tlenku siarki(IV)

x — 240 g tlenku siarki

x = 120 g

Za zastosowanie poprawnej metody i podanie poprawnej odpowiedzi – 2 pkt Za zastosowanie poprawnej metody, ale

- popełnienie błędów rachunkowych prowadzących do błędnego wyniku lub
- -podanie wyniku bez jednostki lub z błędną jednostką 1 pkt

Za odpowiedź niespełniającą powyższych kryteriów lub brak odpowiedzi – 0 pkt

Zadanie 13.2. (0-1)

$$Na_2SO_3 + H_2SO_4 \rightarrow Na_2SO_4 + SO_2 + H_2O$$

lub

$$Na_2SO_3 + 2H_2SO_4 \rightarrow 2NaHSO_4 + SO_2 + H_2O$$

Za podanie poprawnego, zbilansowanego równania reakcji – 1 pkt Za odpowiedź niespełniającą powyższego kryterium – 0 pkt

Zadanie 13.3. (0-1)

$$NO_2$$
 lub N_2O_4 lub NO lub CO_2 lub SO_2 lub SO_3 lub $HC1$ lub H_2S lub N_2O_5 lub N_2O_3

Za podanie poprawnego wzoru związku – 1 pkt Za odpowiedź niespełniającą powyższego kryterium – 0 pkt

Zadanie 14. (0-2)

metoda I:

obliczenie sumarycznej objętości wodoru i azotu, które weszły w reakcję: $15.6 - 2.8 = 12.8 \text{ dm}^3$

$$3H2 + N2 \rightarrow 2NH3$$

$$3 \cdot 22,4 \text{ dm}^{3} - 22,4 \text{ dm}^{3} - 2 \cdot 17 \text{ g}$$

$$89,6 \text{ dm}^{3} - 34 \text{ g}$$

$$12,8 \text{ dm}^{3} - x \qquad x = 4,857 \text{ g} \approx 4,9 \text{ g}$$

metoda II:

obliczenie sumarycznej objętości wodoru i azotu, które weszły w reakcję: $15.6 - 2.8 = 12.8 \text{ dm}^3$

$$n_{\text{substraty}} = \frac{V}{V_{\text{M}}} = \frac{12.8 \text{ dm}^3}{22.4 \frac{\text{dm}^3}{\text{mol}}} = 0,57 \text{ mol}$$

$$n_{\text{NH}_3} = n_{\text{substraty}} \cdot \frac{1}{2} = 0,57 \text{ mol} \cdot \frac{1}{2} = 0,285 \text{ mol}$$

$$m_{\text{NH}_3} = n_{\text{NH}_3} \cdot M_{\text{NH}_3} = 0,285 \text{ mol} \cdot 17 \frac{\text{g}}{\text{mol}} = 4,845 \text{ g} \approx 4.9 \text{ g}$$

metoda III:

x = 9.6

			$3H_2$	N_2	\rightarrow	$2NH_3$	
		V^0	х	у		0	
		ΔV	- <i>x</i>	$-\frac{1}{3}x$		$+\frac{2}{3}x$	
		$V^{\mathbf{k}}$	0	$y-\frac{1}{3}x$		$\frac{2}{3}x$	
$\begin{cases} x + y = 15,6 \\ y - \frac{1}{3}x = 2,8 \end{cases}$							
$ (y - \frac{1}{3}x = 2.8) $ $ dm^{3}, \text{stad } n_{\text{NH}_{3}} = \frac{\frac{2}{3} \cdot 9.6 \text{ dm}^{3}}{22.4 \frac{\text{dm}^{3}}{\text{mol}}} = 0.286 \text{ mol} $							

$$m_{\text{NH}_3} = n_{\text{NH}_3} \cdot M_{\text{NH}_3} = 0.286 \text{ mol} \cdot 17 \frac{\text{g}}{\text{mol}} = 4.862 \text{ g} \approx 4.9 \text{ g}$$

Za zastosowanie poprawnej metody i podanie poprawnej odpowiedzi – 2 pkt Za zastosowanie poprawnej metody, ale

- popełnienie błędów rachunkowych prowadzących do błędnego wyniku
 lub
- podanie wyniku bez jednostki lub z błędną jednostką lub
- podanie wyniku ze złą dokładnością 1 pkt

Za odpowiedź niespełniającą powyższych kryteriów – 0 pkt

Za poprawne narysowanie krzywej rozpuszczalności bromku amonu <u>w zakresie temperatur 0 °C – 80 °C</u> – 1 pkt

Za odpowiedź niespełniającą powyższego kryterium – 0 pkt

Zadanie 16.1. (0-3)

Rozpuszczalność NH ₄ Br w wodzie w temperaturze 25 °C, $\frac{g}{100 \text{ g H}_2\text{C}}$	<u>-</u>)
72 ± 1	

Za poprawne odczytanie rozpuszczalności bromku amonu– 1 pkt Za odpowiedź niespełniającą powyższego kryterium – 0 pkt masa wody: 200 g, masa bromku amonu: 144 g

$$c_{\rm p} = \frac{m_{\rm substancji}}{m_{\rm roztworu}} \cdot 100\% = \frac{144 \text{ g}}{200 \text{ g} + 144 \text{ g}} = 42\%$$

Za zastosowanie poprawnej metody i podanie poprawnej odpowiedzi – 2 pkt Za zastosowanie poprawnej metody, ale

- popełnienie błędów rachunkowych prowadzących do błędnego wyniku lub
- podanie wyniku bez jednostki lub z błędną jednostką
 lub
- podanie wyniku ze złą dokładnością 1 pkt

Za odpowiedź niespełniającą powyższych kryteriów lub brak odpowiedzi – 0 pkt

Zadanie 16.2. (0-3)

$$V_{\text{roztw\'or}} = \frac{m_{\text{roztw\'or}}}{d_{\text{roztw\'or}}} = \frac{344 \text{ g}}{1,27 \frac{\text{g}}{\text{cm}^3}} = 271 \text{ cm}^3 = 0,271 \text{ dm}^3$$

$$n_{\text{NH}_4\text{Br}} = \frac{m_{\text{NH}_4\text{Br}}}{M_{\text{NH}_4\text{Br}}} = \frac{144 \text{ g}}{97.9 \frac{\text{g}}{\text{mol}}} = 1.47 \text{ mol}$$

$$c_{\rm m} = \frac{n_{\rm NH_4Br}}{V_{\rm roztw\acute{o}r}} = \frac{1,47 \text{ mol}}{0,271 \text{ dm}^3} = 5,4 \frac{\text{mol}}{\text{dm}^3}$$

Za zastosowanie poprawnej metody i podanie poprawnej odpowiedzi – 3 pkt Za zastosowanie poprawnej metody, ale

- popełnienie błędów rachunkowych prowadzących do błędnego wyniku lub
- podanie wyniku bez jednostki lub z błędną jednostką lub
- podanie wyniku ze złą dokładnością 2 pkt

Za brak obliczenia stężenia molowego roztworu, ale

- obliczenie objętości roztworu lub
- obliczenie ilości bromku amonu − 1 pkt

Za odpowiedź niespełniającą powyższych kryteriów lub brak odpowiedzi – 0 pkt

Uwaga: Rozwiązanie, w którym uczeń poprawnie skorzystał z wzoru przeliczeniowego stężenia procentowego na stężenie molowe lub przyjął do obliczeń inną masę wody/roztworu należy uznać za poprawne (stężenie molowe jest wielkością intensywną i nie zależy od masy/objętości roztworu)

Wartość stężenia molowego obliczona dla błędnej wartości rozpuszczalności równej $76 \frac{g}{100 \, g \, H_2O}$ wynosi 5,6 $\frac{mol}{dm^3}$.

Zadanie 17. (0-2)

Metoda I:

$$m_{\text{Hg}} = 473 \text{ g} \cdot 85,0\% = 402 \text{ g},$$
 $n_{\text{Hg}} = \frac{m_{\text{Hg}}}{M_{\text{Hg}}} = \frac{402 \text{ g}}{200,6 \frac{\text{g}}{\text{mol}}} = 2 \text{ mol}$
 $m_{\text{Cl}} = 473 \text{ g} \cdot 15,0\% = 71 \text{ g},$ $n_{\text{Cl}} = \frac{m_{\text{Cl}}}{M_{\text{Cl}}} = \frac{71 \text{ g}}{35,5 \frac{\text{g}}{\text{mol}}} = 2 \text{ mol}$

Wzór rzeczywisty: Hg₂Cl₂, wzór empiryczny: HgCl

Metoda II:

Zakładamy 100 g związku

$$m_{\text{Hg}} = 100 \text{ g} \cdot 85,0\% = 85 \text{ g},$$
 $n_{\text{Hg}} = \frac{m_{\text{Hg}}}{M_{\text{Hg}}} = \frac{85 \text{ g}}{200,6 \frac{\text{g}}{\text{mol}}} = 0,42 \text{ mol}$
 $m_{\text{Cl}} = 100 \text{ g} \cdot 15,0\% = 15 \text{ g},$ $n_{\text{Cl}} = \frac{m_{\text{Cl}}}{M_{\text{Cl}}} = \frac{15 \text{ g}}{35,5 \frac{\text{g}}{\text{mol}}} = 0,42 \text{ mol}$

Stosunek molowy rtęci do chloru wynosi 1:1, stąd wzór empiryczny: HgCl

$$M_{(\text{HgCl})_x} = 473 \frac{\text{g}}{\text{mol}}$$
 $M_{\text{HgCl}} = 200,6 + 35,5 = 241,5 \frac{\text{g}}{\text{mol}}$
 $x = \frac{M_{(\text{HgCl})_x}}{M_{\text{HgCl}}} = \frac{473 \frac{\text{g}}{\text{mol}}}{241,5 \frac{\text{g}}{\text{mol}}} = 2, \text{ stad wzór rzeczywisty: Hg}_2\text{Cl}_2$

Za zastosowanie poprawnej metody i podanie poprawnych odpowiedzi – 2 pkt Za zastosowanie poprawnej metody, ale

- popełnienie błędów rachunkowych prowadzących do błędnego wyniku lub
- pomylenie wzoru rzeczywistego z empirycznym 1 pkt

Za odpowiedź niespełniającą powyższych kryteriów lub brak odpowiedzi -0 pkt

Zadanie 18.1. (0-1)

Objętość kwasu solnego zużyta w trakcie miareczkowania próbki roztworu wodorotlenku baru o objętości 50,0 cm ³					
w kolbie 1.	w kolbie 2.	w kolbie 2.			
16,2 cm ³	16,7 cm ³	16,3 cm ³			

Średnia					
$16,4 \text{ cm}^3$					

Za podanie poprawnych odpowiedzi – 1 pkt Za odpowiedź niespełniającą powyższego kryterium – 0 pkt

Zadanie 18.2. (0-2)

$$n_{\text{HCl}} = c_{\text{HCl}} \cdot \overline{V}_{\text{HCl}} = 0,100 \frac{\text{mol}}{\text{dm}^3} \cdot 0,0164 \text{ dm}^3 = 0,00164 \text{ mol}$$

$$n_{\text{Ba(OH)}_2} = \frac{1}{2} \cdot n_{\text{HCl}} = \frac{0,00164 \text{ mol}}{2} = 0,00082 \text{ mol}$$

$$c_{\text{Ba(OH)}_2} = \frac{n_{\text{Ba(OH)}_2}}{V_{\text{Ba(OH)}_2}} = \frac{0,00082 \text{ mol}}{0,0500 \text{ dm}^3} = \mathbf{0,0164} \frac{\text{mol}}{\text{dm}^3}$$

Za zastosowanie poprawnej metody i podanie poprawnej odpowiedzi – 2 pkt

Za zastosowanie poprawnej metody, ale

- popełnienie błędów rachunkowych prowadzących do błędnego wyniku lub
- podanie wyniku bez jednostki lub z błędną jednostką lub
- podanie wyniku ze złą dokładnością 1 pkt

Za odpowiedź niespełniającą powyższych kryteriów lub brak odpowiedzi – 0 pkt

Zadanie 18.3. (0-1)

Nazwa wskaźnika	Barwa roztworu w kolbie w trakcie miareczkowania	Barwa roztworu w kolbie na koniec miareczkowania					
fenoloftaleina	malinowa	bezbarwna					
lub							
oranż metylowy	żółta/pomarańczowa	czerwona					
lub							
wskaźnik uniwersalny	niebieska/zielona	czerwona					

albo każdy inny wskaźnik wykazujący inne barwy w roztworze zasadowym i kwasowym

Za podanie popranych odpowiedzi – 1 pkt

Za odpowiedzi niespełniające powyższego kryterium – 0 pkt

Zadanie 18.4. (0-1)

odparowanie

Za zaznaczenie poprawnej odpowiedzi – 1 pkt Za odpowiedź niespełniającą powyższego kryterium – 0 pkt

Zadanie 19. (0-3)

- 1. P
- 2. F
- 3. P
- 4. F
- 5. F
- 6. F

Za poprawną ocenę sześciu zdań – 3 pkt

Za poprawną ocenę pięciu lub czterech zdań – 2 pkt

Za poprawną ocenę trzech lub dwóch zdań – 1 pkt

Za odpowiedź niespełniającą powyższych kryteriów – 0 pkt