

Automated and Connected Driving Challenges

Section 2 – Sensor Data Processing

Semantic Point Cloud Segmentation Boosting Performance

Bastian Lampe

Institute for Automotive Engineering

Data Augmentation

- Large ground truth datasets are expensive
- Use data augmentation to artificially increase the size of the dataset and make it more diversified
- Automatic annotations are only annotated within a FOV of the camera

Data Augmentation

Left-Right Flipping

Data Augmentation

Left-Right Shifting

Class Imbalance

- Dataset usually show class imbalance
- Classes with large surfaces are relatively frequent (e.g. Road, Building, Vegetation)
- Small surface objects are relatively rare (e.g. Person, Two Wheeler, Car)

Focal Loss

- Categorical Cross-Entropy
 - Standard loss function for classification

$$CE = -\sum_{i}^{C} t_{i} \log(p_{i})$$

Focal Loss

- Tackles the problem of class imbalance
- Adds a modulating factor to the Cross-Entropy

$$FL = -\sum_{i}^{C} (1 - p_i)^{\gamma} (\mathsf{t_i} \log(p_i))$$

• with $\gamma \in \mathbb{R}$ a tunable factor that regulates the loss magnitude of instances with low predicted probability

• with t_i as the ground truth label (as one-hot encoding) and p_i as probability/confidence for each class i in C (set of all classes)

Summary

- Data Augmentation
 - Artificially increase the size of the dataset

Accounts for class imbalance during the training

