The Effects of Adding Reachability Predicates in Propositional Separation Logic

A. Mansutti¹ S. Demri¹ E. Lozes ²

 1 LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, Cachan, France 2 I3S, Université Côte d'Azur, Nice, France

Motivations

- Many tools support Separation Logic as an assertion language;
- Growing demand to consider more powerful extensions:
 - inductive predicates;
 - magic wand operator →*;
 - closure under boolean connectives.

Our work

We study the satisfiability problem of SL(*, -*, 1s): Propositional Separation Logic enriched with the list segment predicate 1s.

Memory states with one record field

Separation Logic is interpreted over **memory states** (s, h) where:

- $lue{s}$: VAR ightarrow LOC is called store;
- $h : LOC \rightarrow_{fin} LOC$ is called heap.

where $VAR = \{x, y, z, ...\}$ set of (program) variables; LOC set of locations (typically LOC $\cong \mathbb{N} \cong VAR$).

Propositional Separation Logic SL(*, -*)

Semantics

- standard for ∧ and ¬;
- $\bullet (s,h) \models x = y \iff s(x) = s(y)$
- $\bullet (s,h) \models \texttt{emp} \iff \texttt{dom}(h) = \emptyset$
- $\bullet (s,h) \models \mathtt{x} \hookrightarrow \mathtt{y} \iff h(s(\mathtt{x})) = s(\mathtt{y})$

Separating conjunction (*)

$$(s,h) \models \varphi_1 * \varphi_2$$
 if and only if

There is a way to split the heap into two so that, together with the store, one part satisfies φ_1 and the other satisfies φ_2 .

Separating implication (-*)

$$(s,h) \models \varphi_1 \twoheadrightarrow \varphi_2$$
 if and only if

Whenever a (disjoint) heap that, together with the store, satisfies φ_1 is added, the resulting memory state satisfies φ_2 .

$$SL(*, -*)$$
 + list segment predicate (1s)

$$(s,h)\models \mathtt{ls}(\mathtt{x},\mathtt{y})$$
 if and only if
$$s(\mathtt{x}) \xrightarrow{} \bullet \longrightarrow \bullet \longrightarrow s(\mathtt{y})$$

s(x) reaches s(y) and all elements in dom(h) are necessary for this to hold.

Expressible properties in SL(*, -*, 1s)

Decidable status of related logics

First-order SL(*)

TOWER-C.

First-order
$$\mathrm{SL}(\cdot \hookrightarrow (\cdot, \cdot))$$

First-order $\mathrm{SL}(-\!\!\!*)$

undecidable decidable

Symbolic Heaps PTIME

Prop. $SL(*, \rightarrow *)$

PSPACE-C.

Main results

- The satisfiability problem for SL(*, -*, 1s) is undecidable.
- Several variants of SL(*, →*, 1s) are also concluded undecidable.
- The satisfiability problem for SL(*, ls) (i.e. SL(*, →*, ls) without →*) is PSPACE-complete.
- The satisfiability problem for Boolean combinations of formulae in SL(*,1s) USL(*,-*) is PSPACE-complete.

Decidability status of SL(*, -*, 1s)

First-order SL(*) Prop. SL(*, -*) Prop. SL(*, -*) PSPACE-C.

Symbolic Heaps

Symbolic Heaps PTIME

Reduction of First-order SL(-*) to SL(*, -*, 1s)

■ We consider the first-order extension of SL(¬*)

$$(s,h)\models \forall \mathtt{x}.\varphi \iff \text{for all } \ell \in \mathtt{LOC}, (s[\mathtt{x} \leftarrow \ell],h)\models \varphi$$

- The satisfiability problem for First-order SL(→) is undecidable. [IC, 2012].
- Idea for the translation: use the heap to mimic the store.

Heaps simulate stores

- Given V \subseteq_{fin} VAR, take $s|_{V} + h : \text{VAR} + \text{LOC} \rightarrow_{\text{fin}} \text{LOC}$ and translate it inside the heap domain [LOC \rightarrow_{fin} LOC];
- A finite set of locations is used to simulate a finite portion of the store, effectively splitting the domain LOC.

Expressive power of SL(*,-*,ls)

■ size
$$\geq \beta$$
 \iff dom(h) has at least β locations

■ alloc(x)
$$\iff$$
 $s(x) \longrightarrow \bullet$

■ alloc⁻¹(x)
$$\iff$$
 $s(x)$

Some bits of the translation

- translation_V(x = y) $\stackrel{\text{def}}{=} n(x) = n(y);$ translation_V(x \hookrightarrow y) $\stackrel{\text{def}}{=} n(x) \hookrightarrow n(y).$

Universal quantifier – $\forall x. \varphi$

$$(\mathtt{alloc}(\mathtt{x}) \land \mathtt{size} = 1) \twoheadrightarrow (\mathtt{safe}(\mathtt{V}) \implies \mathtt{translation}_{\mathtt{V}}(\varphi))$$

Where safe(V) states the sanity conditions to encode the store.

Some bits of the translation

- translation_V(x = y) $\stackrel{\text{def}}{=} n(x) = n(y);$ translation_V(x \hookrightarrow y) $\stackrel{\text{def}}{=} n(x) \hookrightarrow n(y).$

Universal quantifier – $\forall x. \varphi$

$$(\texttt{alloc}(\texttt{x}) \land \texttt{size} = 1) \twoheadrightarrow (\texttt{safe}(\texttt{V}) \implies \texttt{translation}_{\texttt{V}}(\varphi))$$

Where safe(V) states the sanity conditions to encode the store.

Equisatisfiability

The translation of $\varphi \twoheadrightarrow \psi$ requires the introduction of a copy \overline{x} for every variable x occurring in the formula.

Theorem

Let φ be a closed formula with variables in $\{x_1, \ldots, x_q\}$ and let $V = \{x_1, \ldots, x_q, \overline{x_1}, \ldots, \overline{x_q}\}.$

 φ is satisfiable

 $\neg \texttt{alloc}(V) \land \texttt{safe}(V) \land \texttt{translation}_V(\varphi)$ is satisfiable.

Undecidability results

The following fragments have undecidable satisfiability problem:

- $SL(*, -*) + n(x) = n(y), n(x) \hookrightarrow n(y) \text{ and alloc}^{-1}(x);$
- SL(*, -*) + reach(x, y) = 2 and reach(x, y) = 3;
- SL(*, -*, ls).

Complexity of SL(*, 1s)

First-order
$$SL(\cdot \hookrightarrow (\cdot, \cdot))$$

First-order $SL(-*)$

undecidable

Prop. $SL(*, 1s)$

PSPACE-C.

First-order $SL(*)$

TOWER-C.

 $SL(*, -*)$

PSPACE-C.

Symbolic Heaps
PTIME

Deciding SL(*,1s) thanks to the test formulae approach

- Study basic properties that can be expressed in SL(*,1s);
- Define (test) formulae for these properties;
- * elimination: show that each formula of SL(*,1s) is captured by a boolean combination of test formulae;
- Show a small-model property for the logic of test formulae.

Deciding SL(*,1s) thanks to the test formulae approach

- Study basic properties that can be expressed in SL(*,1s);
- D For SL(*, →*): each formula is equivalent to a boolean combinations of formulae of the form
- $x=y, ext{ alloc}(x), x\hookrightarrow y, ext{ size} \geq \beta.$

Show a small-model property for the logic of test formulae.

captured

SL(*,1s): Searching for Test Formulae

For example, we can show that

can be distinguished in the logic.

Meet-points

To capture this and other properties, we introduce meet-points.

Interpretation

 $[m(x,y)]_{s,h}$ is the first location reachable from s(x) that is also reachable from s(y).

Test formulae

Given $\{x_1, \ldots, x_q\} \subseteq VAR$ and $\alpha \in \mathbb{N}^+$, we define $Test(q, \alpha)$ as the set of following test formulae:

$$v = v'$$
 $v \hookrightarrow v'$ alloc (v) sees $_q(v, v') \ge \beta + 1$ size $\mathbb{R}_q \ge \beta$, where $\beta \in [1, \alpha]$ and v, v' are variables \mathbf{x}_i or meet-points $m(\mathbf{x}_i, \mathbf{x}_j)$, with $i, j \in [1, q]$.

Indistinguishability Relation

 $(s,h) \approx_{\alpha}^{q} (s',h')$ whenever (s,h) and (s',h') satisfy the same test formulae of Test (q,α) .

Test formulae: sees_q

$$(s,h) \models \operatorname{sees}_q(v,v') \ge \beta + 1$$

if and only if there is a path path from $[\![v]\!]_{s,h}$ to $[\![v']\!]_{s,h}$

- of length at least $\beta + 1$
- that does not traverse labelled locations

$$\llbracket v \rrbracket_{s,h} \longrightarrow \bigoplus \llbracket v' \rrbracket_{s,h}$$
not labelled

where $\llbracket \mathbf{x} \rrbracket_{s,h} = s(\mathbf{x})$.

Test formulae: sizeR_q

$$(s,h) \models \mathtt{sizeR}_q \geq \beta$$

if and only if the number of locations in dom(h) that

- are not corresponding to variables
- are not in the path between two variables

is greater or equal than eta

Expressive power characterisation

Let φ with variables x_1, \ldots, x_q and let $\alpha \geq |\varphi|$.

- If $(s,h) \approx_{\alpha}^{q} (s',h')$ then we have $(s,h) \models \varphi$ iff $(s',h') \models \varphi$.
- φ is logically equivalent to a Boolean combination of test formulae from Test (q, α) .

Small model property

Let φ be a satisfiable SL(*,1s) formula built over x_1,\ldots,x_q . There is (s,h) such that $(s,h) \models \varphi$ and

$$\operatorname{card}(\operatorname{dom}(h)) \leq \operatorname{card}(\operatorname{\mathsf{Test}}(q,|\varphi|))$$

Complexity upper bound

The satisfiability problem for SL(*,1s) is PSPACE-complete.

Recap

- SL(*, -*, 1s) admits an undecidable satisfiability problem, but
- if 1s is not in the scope of → then the problem is decidable
- \blacksquare and it is PSPACE-complete if \multimap is removed.

Ongoing work

- SL(*, -*, 1s) where 1s does not occur on the right side of -* (PSPACE-complete)
- SL(\rightarrow) + n(x) = n(y), $n(x) \hookrightarrow n(y)$ and alloc⁻¹(x) (undecidable)

Future Work

- Decidable fragments with 1s in the scope of ¬∗;
- Generalisation of the test formulae approach.