Rajalakshmi Engineering College

Name: suriya SM

Email: 241801284@rajalakshmi.edu.in

Roll no: 241801284 Phone: 8110855156

Branch: REC

Department: I AI & DS FD

Batch: 2028

Degree: B.E - AI & DS

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 4

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John, a computer science student, is learning about binary search trees (BST) and their properties. He decides to write a program to create a BST, display it in post-order traversal, and find the minimum value present in the tree.

Help him by implementing the program.

Input Format

The first line of input consists of an integer N, representing the number of elements to insert into the BST.

The second line consists of N space-separated integers data, which is the data to be inserted into the BST.

The first line of output prints the space-separated elements of the BST in post-order traversal. order traversal.

The second line prints the minimum value found in the BST.

Refer to the sample output for formatting specifications.

```
Sample Test Case
```

```
Input: 3
   5 10 15
   Output: 15 10 5
The minimum value in the BST is: 5
   Answer
   #include <stdio.h>
   #include <stdlib.h>
   struct Node {
      int data:
      struct Node* left;
      struct Node* right;
  struct Node* createNode(int data) {
      struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
      newNode->data = data;
      newNode->left = newNode->right = NULL;
      return newNode;
   }
   // You are using GCC
   #include <stdio.h>
   #include <stdlib.h>
   typedef struct Node {
      int data;
   struct Node* left;
      struct Node* right;
```

```
Node* newNode = (Node*)malloc(sizeof(Node));
newNode->data = data;
newNode->left = newNode*
return new 1
    } Node;
  Node* createNode(int data) {
      return newNode:
    }
    Node* insert(Node* root, int data) {
      if (root == NULL) return createNode(data);
      if (data < root->data) root->left = insert(root->left, data);
      else root->right = insert(root->right, data);
      return root;
    void postOrder(Node* root) {
      if (root == NULL) return;
      postOrder(root->left);
      postOrder(root->right);
      printf("%d ", root->data);
    }
    int findMin(Node* root) {
      while (root->left != NULL) root = root->left;
      return root->data;
int main() {
      int N;
      scanf("%d", &N);
      Node* root = NULL;
      for (int i = 0; i < N; i++) {
         int data;
         scanf("%d", &data);
         root = insert(root, data);
      postOrder(root);
      printf("\nThe minimum value in the BST is: %d\n", findMin(root));
      return 0;
    int main() {
```

241801284

241801284

```
struct Node* root = NULL;
int n, data;
scanf("%d", &n);

for (int i = 0; i < n; i++) {
    scanf("%d", &data);
    root = insert(root, data);
}

displayTreePostOrder(root);
printf("\n");
int minValue = findMinValue(root);
printf("The minimum value in the BST is: %d", minValue);

return 0;
}</pre>
```

24,80,784

Status: Correct

041801284

241801284

24,180,1284

Marks: 10/10

24,80,1284

241801284

24,180,1284

24,80,1284