Assignment 4

Problem 2

Praffullitt Jain - 1 May 2019

Problem 2

<u>Principal Component Analysis, or PCA</u>, is a dimensionality-reduction method that is often used to reduce the dimensionality of large data sets, by transforming a large set of variables into a smaller one that still contains most of the information in the large set.

Reducing the number of variables of a data set naturally comes at the expense of accuracy, but the trick in dimensionality reduction is to trade a little accuracy for simplicity. Because smaller data sets are easier to explore and visualize and make analyzing data much easier and faster for machine learning algorithms without extraneous variables to process.

Step1:

The aim of this step is to understand how the variables of the input data set are varying from the mean with respect to each other, or in other words, to see if there is any relationship between them. Because sometimes, variables are highly correlated in such a way that they contain redundant information. So, in order to identify these correlations, we compute the covariance matrix.

$$\begin{bmatrix}
Cov(x,x) & Cov(x,y) & Cov(x,z) \\
Cov(y,x) & Cov(y,y) & Cov(y,z) \\
Cov(z,x) & Cov(z,y) & Cov(z,z)
\end{bmatrix}$$

Covariance matrix for 3-dimensional data

Step2: Compute the eigenvectors and eigenvalues of the covariance matrix to identify the principal components

Principal components are new variables that are constructed as linear combinations or mixtures of the initial variables. These combinations are done in such a way that the new variables (i.e., principal components) are uncorrelated and most of the information within the initial variables is squeezed or compressed into the first components.

Geometrically speaking, principal components represent the directions of the data that explain a **maximal amount of variance**, that is to say, the lines that capture most information of the data. The relationship between variance and information here, is that, the larger the variance carried by a line, the larger the dispersion of the data points along it, and the larger the dispersion along a line, the more the information it has. To put all this simply, just think of principal components as new axes that provide the best angle to see and evaluate the data, so that the differences between the observations are better visible.

Without further ado, it is eigenvectors and eigenvalues who are behind all the magic explained above, because the eigenvectors of the Covariance matrix are actually the directions of the axes where there is the most variance (most information) and that we call Principal Components. And eigenvalues are simply the coefficients attached to eigenvectors, which give the amount of variance carried in each Principal Component.