Medical Compute with Chris on the MOC PowerPC & x86_64 GPU Usage & Benchmarking

Elizabeth Slade | Shineun Yoon | Bowen Jia | Haoyang Wang | Kefan Zhang

What is Chris?

- An open source platform for medical analysis
- The goal is to democratize application development for medical analysis applications

How are we connected to Chris?

- Our project is to develop a ChRIS plugin that tests the performance on different architectures like x86 and PowerPC
- Target Users: ChRIS architects and developers of the platform to test their app

What we've Done

The ChRIS Pipeline

Chris Cookie-Cutter Plug-in

- Cookie-Cutter
- Two types of ChRIS Plugin
 - FS = Feed Synthesis
 - DS = Data Synthesis

Running CUBE

CUBE = ChRIS Ultron BackEnd

```
20: Automatically creating a locked pipeline in CUBE
              (mutable by the owner and not available to other users)
Creating pipeline named 's3retrieve_v0.1.1-simpledsapp_v1.0.6_1'
              21: Automatically creating an unlocked pipeline in CUBE
                       (unmutable and available to all users)
 Creating pipeline named 'simpledsapp_v1.0.6-simpledsapp_v1.0.6-simpledsapp_v1.0.6
                  22: Restarting CUBE's Django development server
                               in interactive mode...
Stopping chris_ultron_backend_chris_dev_1 ... done
Going to remove chris_ultron_backend_chris_dev_1
Removing chris_ultron_backend_chris_dev_1 ... done
Starting chris_ultron_backend_pman_service_1 ... done
Starting chris_ultron_backend_chris_dev_db_1 ... done
Starting chris_ultron_backend_swift_service_1 ... done
Starting chris_ultron_backend_chris_store_db_1 ... done
Starting chris_ultron_backend_pfioh_service_1 ... done
Starting chris_ultron_backend_chrisstore_1 ... done Starting chris_ultron_backend_pfcon_service_1 ... done
Database service ready to accept connections!
  Apply all migrations: admin, auth, authtoken, collectionjson, contenttypes, feeds, pacsfiles, pipelineinstances, pipelines, plugininstances, plugins, sessions, uploadedfiles
 Running migrations:
  No migrations to apply.
Performing system checks...
System check identified no issues (0 silenced).
February 26, 2020 - 01:29:31
Diango version 2.1.4, using settings 'config.settings.local'
Starting development server at http://0.0.0.0:8000/
Quit the server with CONTROL-C.
```

Plugin list

```
declare -a A_CONTAINER=(
    "chris:dev"
    "chris_store"
    "pfcon${TAG}"
    "pfur1${TAG}"
    "pfioh${TAG}"
    "pman${TAG}"
    "swarm"
    "pfdcm${TAG}"
    "docker-swift-onlyone"
```

Plugin Build

- Based on Cookie-cutter
- Successfully built
- Future work:
 - plugin code file
 - Requirements.txt
 - Setup.py
 - Dockerfile
- Test on Titan machine

Autobuild

Build caching

Trigger >

Automated Builds Autobuild triggers a new build with every git push to your source code repository. Learn More, FINNDSC/pl-test-matrixmul | Use my own nodes | Autotests: Off Docker Tag Source Latest Build Status latest master SUCCESS

/^[0-9.]+\$/

version-{sourceref}

Mass Open Cloud ChRIS App Deployment

- RedHat Interactive Learning Portal
 - deployed a world map image with national park data as an overlay

Mass Open Cloud Chris App Deployment

- Created a router, security group, key pair and Ubuntu VM on OpenStack
 - We can ssh into Ubuntu VM

Meeting with Red Hat Contact

- Best to create my own environment on our project instance
 - Deploy pman and pfioh on Openstack to communicate with ChRIS's CUBE

How GPU computing works

One Graphic Card is able to own 2~3 Grids

A Grid could be separated to many blocks.(Multi-processors)

Every blocks has it shared memory (different from GPU memory).

Huge number of thread could run on one block.(multi-cores)

Different between Power8 and X86_64

	Power 8	X86_64
CPU connection to GPU	NvLink Supported	PCI-E 3.0 x16 (typical)
Bandwidth between GPUs	80GB/s	16 GB/s(typical)
Cores	1 Core 8 Threads	1 Core 2 Threads (typical)

Visualizing Results

Visualizing Results

- · Tested on x86 platform
- Collected executing time for GPU vs CPU
- · Next step: Implement on PowerPC

Visualizing Results

NEXT STEP

- Haoyang
 - Implement Object detection program
- Kefan
- Implement matrix on PowerPC
- Explore the possibilities of CNN testing
- Jeff
- Finish building the benchmark program into a runnable docker image.
- Keep working on the interaction with Chris backend(CUBE)
- Shineun
 - Run Matrix Multiplication App on ChRIS
 - Create Cookie-Cutter App for Object Detection
- Elizabeth
 - Deploy pman and pfioh to OpenStack
 - Run benchmarking program on OpenShift VM

BURNDOWN CHART

Our Team Specializations •

- 1. Python Benchmarking Program Haoyang, Kefan
- 2. ChRIS Cookie Cutter Plug-in Shineun
- 3. The "CUBE", ChRIS Ultron Backend Jeff
- 4. Mass Open Cloud ChRIS App Deployment Elizabeth