This review is neither for credit nor comprehensive; however, you are assumed to know this material for tests.

Name:

1. Fill in the values on the unit circle.

2. Use even/odd properties and reciprocal and quotient identities to simplify.

(a)
$$= \frac{1}{\sin(x)}$$

(e)
$$=\frac{1}{\sec a}$$

(b)
$$= \frac{1}{\cos(-x)}$$

$$= \frac{1}{\csc(-x)}$$

(c)
$$= \frac{1}{\tan x}$$

$$(g) = \frac{1}{\cot(-x)}$$

(d)
$$= \frac{\cot(x)}{\sec(-x)}$$

(h)
$$= \frac{\tan(-x)}{\sin(-x)}$$

3. Use the sum and difference identities to evaluate exactly.

(a)
$$= \sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right)$$

(e)
$$= \cos\left(\frac{\pi}{3} + \frac{\pi}{4}\right)$$

$$= \sin\left(\frac{\pi}{4} - \frac{5\pi}{6}\right)$$

$$=\cos\left(\frac{\pi}{4} - \frac{5\pi}{6}\right)$$

(c)
$$= \sin\left(\frac{5\pi}{12}\right)$$

(g)
$$= \cos\left(\frac{5\pi}{12}\right)$$

(d)
$$= \tan\left(\frac{5\pi}{12}\right)$$

(h)
$$= \tan\left(\frac{7\pi}{12}\right)$$

4. Use the cofunction identities to remove the phase shift.

(a)
$$= \sin\left(\frac{\pi}{2} - x\right)$$

(c)
$$= \sec\left(\frac{\pi}{2} - x\right)$$

$$=\sec\left(\frac{\pi}{2}-x\right)$$
 (e) $=\tan\left(\frac{\pi}{2}-x\right)$

(b)
$$= \cos\left(\frac{\pi}{2} - x\right)$$

(d)
$$= \csc\left(\frac{\pi}{2} - x\right)$$

(f)
$$= \cot\left(\frac{\pi}{2} - x\right)$$

5. Use the half angle identities to evaluate exactly.

(a)
$$= \sin\left(\frac{\pi}{12}\right)$$

(d)
$$=\sin\left(\frac{\pi}{8}\right)$$

(b)
$$= \cos\left(\frac{\pi}{12}\right)$$

(e)
$$=\cos\left(\frac{\pi}{8}\right)$$

(c)
$$= \tan\left(\frac{\pi}{12}\right)$$

(f)
$$= \tan\left(\frac{\pi}{8}\right)$$

6. Use the product-to-sum identities to evaluate exactly.

(a)
$$= \sin\left(\frac{7\pi}{12}\right)\sin\left(\frac{\pi}{12}\right)$$

(d)
$$= \sin\left(\frac{5\pi}{12}\right)\sin\left(\frac{\pi}{12}\right)$$

(b)
$$= \cos\left(\frac{7\pi}{12}\right)\cos\left(\frac{\pi}{12}\right)$$

(e)
$$= \cos\left(\frac{5\pi}{12}\right)\cos\left(\frac{\pi}{12}\right)$$

(c)
$$= \sin\left(\frac{7\pi}{12}\right)\cos\left(\frac{\pi}{12}\right)$$

(f)
$$= \cos\left(\frac{5\pi}{12}\right)\sin\left(\frac{\pi}{12}\right)$$

7. Use the sum-to-product identities to evaluate exactly.

(a)
$$= \sin\left(\frac{7\pi}{12}\right) + \sin\left(\frac{\pi}{12}\right)$$

(c)
$$= \cos\left(\frac{7\pi}{12}\right) + \cos\left(\frac{\pi}{12}\right)$$

(b)
$$= \sin\left(\frac{5\pi}{12}\right) - \sin\left(\frac{\pi}{12}\right)$$

(d)
$$= \cos\left(\frac{5\pi}{12}\right) - \cos\left(\frac{\pi}{12}\right)$$

- 8. Use the log sum identity to simplify.
 - (a) $= \ln(5) + \ln(7)$
- (c) $= \log(x) + \log(y)$
- (b) $= \ln(12) \ln(4)$
- (d) $= \log(a) \log(b)$
- 9. Use the log power identity to simplify.
 - (a) $= \ln(3^5)$

(c) $= \log(16+9)$

(b) $= \ln(625)$

- (d) $= \log(b^a)$
- 10. Use the log change of base formula to simplify.
 - (a) $= \frac{\ln(25)}{\ln(5)}$

(c) $= \log_3(10)\log_{10}(3)$

(b) $= \frac{\ln(17)}{\ln(6)}$

(d) $= \log_b(c) \log_c(b)$

11. Match each graph to its equation.

- (a) $f(x) = \sqrt{x}$
- (c) $f(x) = \frac{1}{x}$
- (e) $f(x) = \sqrt[3]{x}$
- $(g) \qquad f(x) = \frac{1}{x^2}$

- (b) $f(x) = \ln x$
- (f) $f(x) = x^2$
- $(h) \qquad f(x) = x^3$