

P.E.S. College of Engineering, Mandya

Department of Information Science & Engineering

DESIGN AND ANALYSIS OF ALGORITHMS

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – IV

Course Code:	P21IS403	Credits:	03		
Teaching Hours/Week (L:T:P):	3:0:0	CIE Marks:	50		
Total Number of Teaching Hours:	40	SEE Marks:	50		

Prerequisites: Students should have knowledge of Programming language and Data structures.

Course Learning Objectives: This coursewill enable students to:

- Explain various computational problem-solving techniques.
- Apply appropriate method to solve a given problem.
- Describe various methods of algorithm analysis.

UNIT - I 8 Hours

Introduction: Algorithm, Fundamentals of Algorithmic problem solving, Important Problem Types, Fundamental Data Structures - Graphs, Fundamentals of the **Analysis of Algorithm Efficiency**: Analysis Framework, Asymptotic Notations and Basic Efficiency Classes, Mathematical analysis of Non-Recursive Algorithms with Examples [Max Element, Unique Elements] and Recursive Algorithms with Examples [Factorial, Tower of Hanoi].

Self-study component: Additional Examples of Mathematical analysis of Non-Recursive& Recursive Algorithms.

UNIT - II 8 Hours

Brute Force and Exhaustive Search: Selection Sort, Brute-Force String Matching, Exhaustive Search [Traveling Salesman Problem and Knapsack Problem]. **Decrease and Conquer**: Introduction, Insertion Sort, Depth First Search, Breadth FirstSearch, Topological Sorting, Algorithms for Generating Combinatorial Objects.

Self-study component: Bubble Sort and Sequential Search.

UNIT - III 8 Hours

Divide and Conquer: Merge sort, Quick Sort, Multiplication of Large integers and Strassen' Matrix Multiplication.**Transform and Conquer**: Presorting, Balanced Search Trees, Heaps and Heap sort.

Self-study component: Binary Tree Traversals and Related Properties.

UNIT - IV 8 Hours

Space and Time Tradeoffs: Sorting by counting, Input Enhancement in String Matching, Hashing. **Dynamic Programming**: Three Basic Examples, the Knapsack Problem, Warshall's and Floyd's Algorithms.

Self-study component: B-Trees, Optimal Binary Search Trees.

P.E.S. College of Engineering, Mandya

Department of Information Science & Engineering

UNIT - V	8 Hours
----------	---------

Greedy Technique: Kruskal's Algorithm, Prim's Algorithm, Dijikstra's Algorithm. Limitations of Algorithm Power: P, NP and NP- Complete Problems. Coping with the Limitations of Algorithm Power: Backtracking: n-Queens Problem, Subset-Sum Problem, Branch and Bound: Knapsack Problem.

Course Outcomes: On completion of this course, students are able to:

	1
CO1	.Understand the basic concepts of various algorithmic techniques
CO2	Analyze the asymptotic performance of algorithms
CO3	Design solutions for the given problem using algorithmic technique.

Text Book(s):

1. Introduction to the Design and Analysis of Algorithms, Anany Levitin, 3rd Edition, 2011. Pearson.

Reference Book(s):

- 1. Computer Algorithms/C++, Ellis Horowitz, SatrajSahni and Rajasekaran, 2nd Edition, 2014, Universities Press.
- 2. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI.

Web and Video link(s):

- 1. Algorithms: Design and Analysis, Part 1 (Coursera) | MOOC List (mooc-list.com)
- 2. https://onlinecourses.nptel.ac.in/noc15_cs02/preview

CO-PO Mapping

CO	Statement	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	Understand the basic concepts of various algorithmic techniques	3											
CO2	Analyze the asymptotic performance of algorithms	1	2										
CO3	Design solutions for the given problem using algorithmic technique.	1	2	2									