

Figure 1

NT1p MGTHAWSFLKDFLAGAVAAASKTAVAPIERVKLLOQVQHASKQISAEKQ 50
NT2p MTDPAVSFAKDFLAGGVAASISKTAVAPIERVKLLOQVQHASKQIADKQ 50
NT3p MTECAISFAKDFLAGGAAISKTAVAPIERVKLLOQVQHASKQIADKQ 50

NT1p YKGLIDCWVRIPKEQGLSWRGNLANVIRYFPTQALNFAFKDKYKCFL 100
NT2p YKGLIDCWVRIPKEQGVLSWRGNLANVIRYFPTQALNFAFKDKYKQFL 100
NT3p YKGLIDCTVRIPKEQGVLSWRGNLANVIRYFPTQALNFAFKDKYKQFL 100

NT1p GGVDREQFWRYFAGNLASGGACATSLCFVYPLDFARTRLAADVGR-A 149
NT2p GGVDKHTQFWEYFAGNLASGGACATSLCFVYPLDFARTRLAADVGKAGA 150
NT3p GGVDKHTQFWRYFAGNLASGGACATSLCFVYPLDFARTRLAADVGSGI 150

ANT1p QREFEGLGCDITKFKSDGERLYQGNVSQGITYRAAFGVYDTAKG 199
ANT2p EREFEGLGCDITKFKSDGERLYQGNVSQGITYRAAFGVYDTAKG 200
ANT3p EREFEGLGCDITKFKSDGERLYQGSVQGITYRAAFGVYDTAKG 200

ANT1p MLPDPKNUMHEVSWMECSVTAVAGIISYPFDTVRRRMMQSGRKGADIM 249
ANT2p MLPDPKNUMHEVSWMEQTVTAVAGIISYPFDTVRRRMMQSGRKGIDIM 250
ANT3p MLPDPKNUMHEVSWMEQTVTAVAGVISYPFDTVRRRMMQSGRKGADIM 250

ANT1p YTGTVDCWRKIAKDEGKAFKGWSNVLRGMGAFVLVLYDEIKKV. 298
ANT2p YTGTIDCWRKIARDEGKAFKGWSNVLRGMGAFVLVLYDEIKKV. 299
ANT3p YTGTVDCWRKIFRDEGKAFKGWSNVLRGMGAFVLVLYDEIKKV. 299

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

bioRxiv preprint doi: <https://doi.org/10.1101/2630>

Figure 18

Figure 19