Connecting Suicidal and Help-Seeking Behaviors on Social Media

Milestone 3

KUSHAL GEVARIA

ADVISOR: PROF. CHRISTOPHER HOMAN

Differentiate between

- Individuals who have suicidal thoughts due to depression, anxiety or mental health issues
- Individuals who just exhibit **general issues** but don't have suicidal thoughts

on social media

Problem Statement

Data

Reddit – Provides API to collect data (posts and comments) based on subsections

Subsection related to suicidal thoughts: (SW)

SUICIDEWATCH

Subsections related to general mental/health issues: (GI)

MENTALHEALTH, DEPRESSION, TRAUMA, STOPSELFHARM, SURVIVORSOFABUSE, RAPECOUNSELING, SOCIALANXIETY

Subsection	Total Subscribers in 2015
General Issues (GI)	30,891
Suicide Watch (SW)	4,822

Data Insights

- ☐ General Issues subscribers who later subscribed to Suicide Watch = 2,168
- ☐ To balance the data set I selected all 2,168 GI -> SW subscribers, plus additional 5,000 GI subscribers
- ☐ Total size of the dataset is 7,168 subscribers and their posts

Preprocessing

- **Tokenization** Split the text into sentences and the sentences into words
- Lowercase the words and remove punctuation
- ☐ Remove the words having less than 3 characters
- Remove all the stop words

Example: "I've been feeling depressed on and off for about 2 years, recently there has been more triggers, my anxiety ticks have come back and the depression comes more often (last 2 weeks, everyday). The depression gets worse every time, I've read so many suicide stories, ways to do it etc. but I doubt I would do it but I haven't got that deep yet."

Output: feelings depressed recently anxiety come back depression comes often last everyday depression worse every time read many suicide ways doubt would got deep yet

Preprocessing

- **Lemmatizing** words in third person are changed to first person and verbs in past and future tenses are changed into present
- ☐ Stemming words are reduced to their root form

Example: feelings depressed recently anxiety come back depression comes often last everyday depression worse every time read many suicide ways doubt would got deep yet

Lemmatized output: feeling depressed recently anxiety come back depression come often last everyday depression worse every time read many suicide way doubt will get deep yet

Stemmed output: feel depress recent anxiety come back depress come often last everyday depress worse every time read many suicide way doubt will get deep yet

Feature Extraction

Convert processed posts (documents) into the bag-of-words

Example:

Processed document: [stress, depress, quit, kill, suicide, die]

Doc2Bow output: [(stress, 5312), (depress, 71886),

(quit, 8795), (kill, 9865),

(suicide, 16223), (die, 9327)]

Latent Dirichlet Allocation

LDA or latent Dirichlet allocation is a *generative probabilistic model* of a collection of composites made up of parts. In terms of topic modeling, the composites are documents and the parts are words and/or phrases (n-grams).

	General Issues	Suicidal Thought
	Topic 0	Topic 1
improve	0.271	0.004
kill	0.004	0.565
life	0.360	0.004
progress	0.360	0.004
suicide	0.004	0.425

Table 1: The probability or chance of selecting a particular part when sampling a particular topic

Latent Dirichlet Allocation

Example:

Document 0: [stress, depress, quit, kill, suicide, die]

Document 1: [severe, pain, feel, headache, improve]

Document 2: [kill, suicide, die, pain, quit]

Document 3: [disease, never, worse, bed, sad, medical]

Document 4: [worry, improve, progress, life, therapist]

Document 5: [abuse, social, outcast, fear, unworthy, quit]

	General Issues Topic 0	Suicidal Thought Topic 1
Document 0	0.065	0.935
Document 1	0.924	0.076
Document 2	0.246	0.754
Document 3	0.645	0.355
Document 4	0.924	0.076
Document 5	0.065	0.935

Table 2: The probability or chance of selecting a particular topic when sampling a particular document

Support Vector Machine

Support vector machines are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis.

☐ Feature used by SVM:

Matrix of documents v/s words.

Example:

[4000 X 2111] => 4000 documents with 2111 unique words

Final feature list: [stress, depress, happy, quit, kill, suicide therapy]

Document 0: [1, 1, 0, 1, 1, 1 0]

Support Vector Machine

Document 0: [1, 0, 0, 1, 1, 0 1]

Document 1: [0, 1, 1, 0, 1, 0 0]

Document 2: [1, 0, 0, 0, 1, 0 1]

Document 3: [1, 1, 0, 0, 1, 0 1]

Document 4: [0, 1, 1, 0, 0, 0 0]

Document 5: [1, 0, 0, 0, 1, 0 1]

Actual Predicted	GI->SW (674)	GI (1802)
GI->SW (863)	TP: 470	FP: 393
GI (1613)	FN: 204	TN: 1409

Model accuracy: 75.88%

Using Topic Modeling for SVM

```
Document 0: [1, 0, 0, 1, 1, 0 ..... 1]

Document 1: [0, 1, 1, 0, 1, 0 ..... 0]

Document 2: [1, 0, 0, 0, 1, 0 ..... 1]

Document 3: [1, 1, 0, 0, 1, 0 ..... 1]

Document 4: [0, 1, 1, 0, 0, 0 ..... 0]

Document 5: [1, 0, 0, 0, 1, 0 ..... 1]
```

Feature Reduction:

■ Extract most frequent words from the topics obtained from topic modeling algorithm

Example:

```
Topic 1 (Suicidal Thought) – [kill, depress, suicide, quit .....]

Topic 1 (General Issues) – [gone, therapy, headache, improve, progress ....]
```

Run the SVM model for these selected words instead of all words in the documents

Thank You!

Questions?