

螺旋桨终结设计 计算报告

学生姓名: ____吕德淞____

学生学号: __520021910366___

任课教师: _____王建华_____

编写日期: _____2022.12.15

目 录

1.	设计输入	1
2.	最大航速计算	3
3.	空泡校核	7
4.	强度校核	9
5.	螺距修正	.11
6.	重量及惯性矩计算	.12
7.	设计桨的敞水性征曲线	.12
8.	系柱特性计算	.13
9.	航行特性计算	.14
10.	设计要素总结	.15

1. 设计输入

大线长L _{WL} [m] 垂线间长L _{BP} [m]	325.5 320
兵线间长I [m]	320
世纪[印] CLBP[III]	320
型宽 B [m]	58
乞水 draft[m]	15.8
非水体积 Vol[m³]	312622
方形系数C _B	0.8098
主机参	数
注机功率P _s [kW]	19125
E机转速N[RPM]	68
轴系参	◇数
曲系传递效率 $η_{\mathbf{s}}$	0.97
目对旋转效率 η_R	1
名轴距基线高度h _z	5.8
名轴沉深 h 。	10
奖 参	数
名系列	AU/MAU
	单桨
才料	Cu3镍铝青铜
材料系数K	1.38
才料密度G[g/cm³]	7.6
十数 Z	4
	右
名转速n[RPM]	68
设径d _h [m]	1.8
系列标准毂径比	0.18
累距比P/D	不随位置变化
从倾 ε[°]	10
推进因	
半流分数ω	0.36
能力减额分数t	0.21
目对旋转效率 η_R	1
环境参	
温度 T[℃]	15
争态气压p ₀ [Pa]	101234
包和蒸气压p _v [Pa]	1705.2
每水密度ρ[kg/m³]	1025
重力加速度 g[m/s²]	9.8

表 1 设计输入1

	三种工况下	不同航速对应的有效功率	
6台2市 87 []1		有效功率 $P_{E}[kW]$	
航速V _s [kn]	压载	满载(设计工况)	超满载
10	2938	3860	4654
11	3814	4780	5787
12	5101	6301	7454
13	6384	7918	9114
14	8077	9801	11305
15	10039	12054	13843
16	12292	14787	16759
17	14854	17921	20074

图表 1 设计输入 2

2. 最大航速计算

	数 值				
桨收到功率	18551				
船身效率η	$_{\rm H}$ = (1-t) / (1- ω)		1.2	34	
航速Vs[kn]		13	14	15	16
进速V _A [kn]=(1-ω)Vs	8.32	8.96	9.60	10.24
$Bp^{0.5} = (1.1)$	$166 \text{nP}_{\text{D0}}^{0.5} / \text{V}_{\text{A}}^{2.5})^{0.5}$	7.354	6.704	6.150	5.673
	δ	82	77	72	67
	P/D	0.60	0.62	0.64	0.67
MAU4-40	η_0	0.525	0.550	0.58	0.595
	$\mathbf{P}_{\mathbf{TE}}[\mathbf{kW}] = \mathbf{P}_{\mathbf{D}} \mathbf{\eta}_{\mathbf{H}} \mathbf{\eta}_{0}$	12022	12595	13167	13625
	δ	81	76	71	66
	P/D	0.66	0.68	0.70	0.73
MAU4-55	η_0	0.508	0.535	0.555	0.580
	$\mathbf{P}_{\mathbf{TE}}[\mathbf{kW}] = \mathbf{P}_{\mathbf{D}} \mathbf{\eta}_{\mathbf{H}} \mathbf{\eta}_{0}$	11633	12251	12709	13282
	δ	79	74	69	64
	P/D	0.68	0.70	0.72	0.75
MAU4-70	η_0	0.495	0.517	0.540	0.560
	$\mathbf{P}_{\mathbf{TE}}[\mathbf{kW}] = \mathbf{P}_{\mathbf{D}}\mathbf{\eta}_{\mathbf{H}}\mathbf{\eta}_{0}$	11335	11839	12366	12824

表 2 最大航速计算流程

P.S.表中关于 δ , P/D, η_0 的读取:

先画出 MAU4-40 关于 $\sqrt{B_{\mathbf{p}}}$ 的最大效率线,再据 $\sqrt{B_{\mathbf{p}}}$ 找到对应的 $\delta, P/D, \eta_0$ 。 MAU4-55、MAU4-70 同理,辅助线略。

图 1 最大航速点及对应参数的读取

盘面比	0.4	0.55	0.7
V _{max} [kn]	15.51	15.33	15.16
P _E [kW]	13398	12930	12507
δ	69.35	69.24	68.24
D[m]	10.12	9.99	9.74
P/D	0.657	0.711	0.726
η_0	0.564	0.535	0.509

表 3 最大航速点及对应的有效功率、桨径、螺距比和敞水效率

P.S.表中桨径的求取: $\delta = ND/V_A \Rightarrow D = \delta V_A/N$

至此,已求得三种不同盘面比的 MAU 系列桨的初步设计要素。

3. 空泡校核

项 目	数值		
盘面比	0.4	0.55	0.7
V _{max} [kn]	15.51	15.33	15.16
$V_{A}[m/s]=0.5144V_{max}(1-\omega)$	5.106	5.047	4.991
$V_{0.7R}^2[(m/s)^2] = V_A^2 + (0.7\pi ND/60)^2$	662.68	645.41	613.79
$\sigma = (p_0 - p_v)/(0.5 \rho V_{0.7R}^2)$	0.589	0.605	0.636
$\tau_{\rm c}$	0.20	0.20	0.21
$T[N]=P_E/(\eta_HV_A)$	2125691	2075527	2030140
$Ap[m^2] = T/(0.5\rho V_{0.7R}^2 \tau_c)$	31.68	31.22	31.05
$A_E[m^2] = A_p/(1.067 - 0.229P/D)$	34.57	34.52	34.47
$A_E/A_0 = A_E/(\pi D^2/4)$	0.43	0.44	0.46

表 4 空泡校核流程

P.S.表中 τ _c的读取:

图 2 空泡界限图

图 3 不发生空泡的最小盘面比及对应的设计参数的读取

A_E/A_0	P _E [kW]	D[m]	P/D	η_0	V[kn]
0.43	13300	10.1	0.67	0.558	15.47

表 5 空泡校核结果汇总

4. 强度校核

项目	数值		
位置	0.25R	0.6R	
t _{1.0R} [mm]=0.0035D	35	.35	
$\mathbf{b_{0.66R}[m]} = 0.226 DA_E / A_O / (0.12)$	2.4	154	
b[m]	1.770	2.432	
K1	634	207	
K2	250	151	
K3	1410	635	
K4	4	34	
$A1=D/P(K1-K2D/P_{0.7R})+K3D/P_{0.7R}-K4$	2489.8294	886.33861	
$Y=1.36A_1Pe/(Zbn)$	93561.513	24236.257	
K5	82	23	
K6	34	12	
K7	41	65	
K8	380	330	
A2 =D/P(k5+K6ε)-K7ε+K8	1419.85	1193.43	
$X = A_2 G A_d n^2 D^3 / (10^{10} Zb)$	0.3123	0.1910	
$t[mm] = (Y/(K-X))^{0.5}$	296.02	142.77	
标准桨叶厚度[mm]	407.03	220.18	
校核结果	满足	满足	
实取桨叶厚度[mm]	407.03	220.18	

表 6 强度校核流程

P.S. 弦长 b 和标准桨叶厚度从表 7 中插值求取。

r/R	0.2	0.3	0.4	0.5	0.6	0.66	0.7	0.8	0.9	0.95	1
r/mm	743.00	1114.50	1486.00	1857.50	2229.00	2451.90	2600.50	2972.00	3343.50	3529.25	3715.00
母线到叶片 随边距离(%)	27.96	33.45	38.76	43.54	47.96	49.74	51.33	52.39	48.49	42.07	17.29
母线到叶片	710.18	849.63	984.50	1105.92	1218.18	1263.40	1303.78	1330.71	1231.65	1068.58	439.17
随边距离 (mm)	111111111111111111111111111111111111111			100000				2000	78.2.7.71		
母线到叶片 导边距离(%)	38.58	44.25	48.32	50.80	51.15	50.26	48.31	40.53	25.13	13.55	
母线到叶片 导边距离 (mm)	979.93	1123.95	1227.33	1290.32	1299.21	1276.60	1227.07	1029.46	638.30	344.17	
叶片宽度(%)	66.54	77.70	87.08	94.34	99.11	100.00	99.64	92.92	73.62	55.62	
叶片宽度 (mm)	1690.12	1973.58	2211.83	2396.24	2517.39	2540.00	2530.86	2360.17	1869.95	1412.75	
叶片厚度(%)	4.06	3.59	3.12	2.65	2.18	1.90	1.71	1.24	0.77	0.54	0.30

表 7AU 螺旋桨桨叶轮廓尺寸表

r/R	叶片厚度[mm]
1	35.35
0.25	407.03

图 4 插值公式的求取

实际桨叶厚度分布按照叶梢与 0.25R 处进行厚度线性插值进,得到各半径处的厚度(经验证, 0.66R 处厚度亦满足强度校核要求):

r/R	叶片厚度[mm]
0.2	431.81
0.3	382.25
0.4	332.69
0.5	283.14
0.6	233.58
0.7	184.02
8.0	134.46
0.9	84.91
1	35.35

图 5 强度校核结果

5. 螺距修正

针对毂径比差异进行修正	
修正量△ Ph/D =0.1× (dh/D-标准毂径比)	-1.78E-04
修正后的螺距比 P/D' =P/D+△P _h /D	0.6698
针对厚度差异进行修正	
滑脱比 1-s=VA/(nP)	0.6641
设(t/b) _{0.7R}	0.0571
标(t/b) _{0.7R}	0.0584
△ (t/b) _{0.7R} =0.75/0.755×(设(t/b) 0.7R-标(t/b) 0.7R×0.650/0.755)	3.99E-03
\triangle (Ph/D) _t =-2(P/D')(1-s) \triangle (t/b) _{0.7R}	-3.55E-03
最终确定的螺距比P/D _{end}	0.6663

表 8 螺距修正流程

6. 重量及惯性矩计算

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
r/R	面积系数Ka	弦长×最大厚度b×t/m²	切面面积S/m²(S=Kabt)	辛氏系数SM	(4)×(5)	(6)r	(6)r ²
0.2	0.674	0.7050	0.4752	1	0.4752	0.4799	0.485
0.3	0.674	0.7289	0.4912	4	1.9650	2.9770	4.51
0.4	0.674	0.7109	0.4792	2	0.9584	1.9359	3.91
0.5	0.6745	0.1213	0.0818	4	0.3272	0.8261	2.086
0.6	0.6745	0.5681	0.3832	2	0.7664	2.3221	7.036
0.7	0.677	0.4500	0.3046	4	1.2185	4.3074	15.23
0.8	0.683	0.3066	0.2094	2	0.4188	1.6921	6.836
0.9	0.695	0.1534	0.1066	4	0.4264	1.9382	8.809
1	0.7 0.0482 0.0338 1			1	0.0338	0.1706	0.861
求和			6.5896	16.6492	49.76		
$d_0[m]$	=0.045+0.12	$(P_D/n)^{1/3}$	0.823				
每叶	片质量[kg]=($R/30sum(6)+0.166\times0.0$	8558				
叶片	总质量[kg]		34231				
桨毂	质量[kg]=(0.8	38-0.6d ₀ /d _h)d _h ³ G	26841				
桨总	质量[kg]		61072				
质量	惯性矩[kg·m²	[]=0.0948GZb _{max} (0.5t _{0.2} +	3275156				

表 9 质量惯性矩计算步骤及结果

7. 设计桨的敞水性征曲线

			MAU4-	40(螺距比=0.	670) 敞水特性	Ė			7	•
J	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7		
K _T	0.27	0.24	0.23	0.19	0.16	0.12	0.07	0.03		
10K _Q	0.27	0.26	0.24	0.22	0.19	0.16	0.12	0.07		
ηο	0.00	0.17	0.31	0.43	0.54	0.63	0.65	0.51		
	MAU4-55(螺距比=0.670)敞水特性									
J	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7		
K _T	0.29	0.26	0.23	0.19	0.16	0.11	0.07	0.01		
10K _Q	0.30	0.28	0.25	0.22	0.19	0.15	0.11	0.06		
ηο	0.00	0.16	0.29	0.42	0.53	0.61	0.61	0.43		
			MAU4-	70 (螺距比=0.	670) 敞水特性	Ė				
J	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70		
K _T	0.29	0.26	0.23	0.19	0.15	0.11	0.06	0.00		
10K _Q	0.30	0.27	0.25	0.22	0.19	0.15	0.10	0.05		
η ₀	0.00	0.16	0.29	0.40	0.51	0.58	0.55	0.30		
多项式插值,求得MAU4-43(螺距比=0.666)敞水特性								右端額	页外点	
J	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.75	8.0
K _T	0.28	0.25	0.23	0.19	0.16	0.12	0.07	0.03	0	
10K _Q	0.28	0.26	0.24	0.22	0.19	0.16	0.12	0.07	0.04	0
η ₀	0.00	0.17	0.31	0.43	0.54	0.62	0.64	0.50	0	

表 10 敞水特性的数据插值获取

图 6 敞水特性曲线

8. 系柱特性计算

项目	数值
$T[kN]=K_TQ/(K_QD)$	2546.0
$\mathbf{Q}[\mathbf{k}\mathbf{N}\cdot\mathbf{m}]=P_{\mathrm{D}}/(2\pi\mathbf{n})$	2605.2
N[RPM] = $60(T/(\rho D^4K_T))^{0.5}$	55.644
$\mathbf{t_0}$	0.04
$\mathbf{F}[\mathbf{k}\mathbf{N}] = \mathbf{T}(1-\mathbf{t}_0)$	2444.2

表 11 系柱特性计算流程

9. 航行特性计算

ta Sla	数 值											
名 称	N=68RPM			N=63RPM				N=58RPM				
V[kn]	14	15	16	17	14	15	16	17	14	15	16	17
$V_A[m/s] = 0.5144(1-w)V$	4.61	4.94	5.27	5.60	4.61	4.94	5.27	5.60	4.61	4.94	5.27	5.60
J=V _A /(ND)	0.403	0.431	0.460	0.489	0.435	0.466	0.497	0.528	0.472	0.506	0.540	0.573
\mathbf{K}_{T}	0.1568	0.1457	0.1343	0.1225	0.1445	0.1321	0.1193	0.1061	0.1294	0.1154	0.1009	0.0860
K _Q	0.0189	0.0180	0.0171	0.0161	0.0179	0.0169	0.0158	0.0147	0.0167	0.0155	0.0142	0.0128
$\mathbf{P}_{\text{TE}}[\mathbf{kW}] = K_{\text{T}} \rho N^2 D^4 (1-t) \times 0.5144 V$	13224	13170	12962	12594	10666	10467	10119	9616	8340	8013	7542	6921
$\mathbf{P_{QS}[kW]} = K_{Q} 2\pi \rho N^{3} D^{5} / (\eta s \cdot \eta_{R})$	19225	18318	17360	16347	14484	13655	12774	11839	10516	9758	8949	8083

表 12 航行特性计算流程

图 7 航行特性

工况	V[kn]	Ps[kW]
设计	15.47	19125
压载	16.25	17092
满载	15.44	18950
超满载	14.77	19326

表 13 设计转速下的数据汇总

由上表可见,满载时的各项计算结果与最初设计要求基本一致。

10. 设计要素总结

螺旋桨直径 D[m]	10. 1	设计航速V _{max} [kn]	15. 47
螺距比P/D	0.6663	载径比d _h /D	0. 1782
类型与叶数	AU4叶桨	旋向	右
盘面比A _E /A _o	0. 43	材料	Cu3镍铝青铜
纵倾角 ε[°]	10	质量 m[kg]	61072
桨敞水效率η0	0. 558	质量惯性矩 I[kg·m²]	3275156

表 14 设计要素总结

至此,已完成螺旋桨的全部设计计算,为后续船模自航试验、实船性能预估、机-桨匹配及实船-船模分析奠定基础。