MA1201 Calculus and Basic Linear Algebra II Area of the region

Problem Set 3

Application of Integration

Problem 1

(a) Find the area of the region bounded by the curve
$$y = 1 + e^{3x}$$
, x -axis, $x = 1$ and $x = 3$.

$$y = 1 + e^{3x}$$

Area = $\int_{-3}^{3} (1 + e^{3x}) dx = x + \frac{1}{3} e^{3x} / 1$

$$= 3 + \frac{1}{3} e^{9} - 1 - \frac{1}{3} e^{3} = 2 + \frac{1}{3} (e^{9} - e^{3})$$

(c) Find the area of the region bounded by $y = 1 + x^2$, $y = e^{-x}$, y-axis and x = 2.

$$y = 1 + x^{2}$$

$$y = 2 + x^{2}$$

$$y = e^{-x}$$

$$x = 2 + \frac{8}{3} + e^{-x} - 0 - 0 - e^{-x} = \frac{11}{3} + e^{-x}$$

Problem 2

In this problem, we would like to find the area of the region bounded by the curves $y = e^{2x} - 3e^x - 1$ and $y = e^x - 4$ for $-2 \le x \le 2$. In order to find the area, it is important to compare the values between $f_1(x) = e^{2x} - 3e^x - 1$ and $f_2(x) = e^x - 4$ for $-2 \le x \le 2$ so that we can determine the "upper curve" and "lower curve". This problem will show you a general technique (which is taught in the lecture) to achieve this goal.

- (a) Find all *critical points* by solving the equation $f_1(x) = f_2(x)$ for $-2 \le x \le 2$. These critical points are the points where the relative magnitude between $f_1(x)$ and $f_2(x)$ changes.
- (b) With the critical points obtained in (a), we divide the interval [-2,2] into several small intervals with the critical points as the "cutoff" points. For each small interval, determine which function $(f_1(x) \text{ or } f_2(x))$ is larger.

(Hint: You may compare the values by simply substituting some value of x within the small interval.)

(c) Using the information obtained in (b), find the area of the region bounded by the curves $y = e^{2x} - 3e^x - 1$ and $y = e^x - 4$ for $-2 \le x \le 2$.

(a).
$$f(x) = f_{2}(x)$$
.

$$e^{2x} - 3e^{x} - 1 = e^{x} - 4e^{x} = 0$$
. let $y = e^{x}$.

$$e^{2x} - 4e^{x} + 3 = 0$$

$$y = 1$$
 or $y =$

$$(y-1)(y-3)=0$$
. $y=1 \text{ or } y=3$. $z = \ln 1=0 \text{ or } x=\ln 3$.

$$X$$
 $-2 \le X \le D$ $0 < X < In 3$ $In 3 \le X \le Z$

$$f_1(x)$$
 vs $f_2(x)$, $f_1(x) > f_2(x)$ $f_1(x) < f_2(x)$, $f_2(x) > f_2(x)$

$$x = -\ln 2 \quad f_{1}(x) = e^{-2\ln 2} - 3e^{-\ln 2} - 1 = -4 + b - 1 = 1.$$

$$f_{2}(x) = e^{-\ln 2} - 4 = -b.$$

$$x = \ln 2 \quad f_{1}(x) = e^{-2\ln 2} - 3e^{-1} - 1 = 4 - b - 1 = -3.$$

$$f_{2}(x) = e^{\ln 2} - 4 = -2.$$

$$x = \ln \Psi$$
 $f(cx) = e^{2\ln \Psi} - 3e^{\ln \Psi} - 1 = 1b - (2 - 1 = 3)$
 $f_2(x) = e^{\ln \Psi} - \Psi = D$

conclusion: $f(x) > f_2(x)$ for $0 < x < |M|^2$

(c). Area = $\int_{-2}^{\infty} (f_1(x) - f_2(x)) dx + \int_{-2}^{1n_3} (f_2(x) - f_2(x)) dx + \int_{1n_3}^{2} (f_2(x) - f_2(x)) dx$ = $\int_{-2}^{\infty} (e^{2x} - \psi e^x + 3) dx + \int_{0}^{1n_3} (-e^{2x} + \psi e^x - 3) dx + \int_{1n_3}^{2n_3} (e^{2x} - \psi e^x + 3) dx$ = $\frac{1}{2} e^{2x} - \psi e^x + 3 \Big|_{-2}^{2} + \Big(-\frac{1}{2} e^{2x} + \psi e^x - 3 \Big) \Big|_{0}^{2n_3} + \frac{1}{2} e^{2x} - \psi e^x + 3 \Big|_{1n_3}^{2n_3}$ = $-\frac{1}{2} e^{-4} + \psi e^{-2} + \frac{1}{2} e^{4} - \psi e^{2} - 6 \ln 3 + 1 \psi$

Volume

Problem 4

(a) Find the volume of the solid generated by rotating the region bounded by $y = \sin 3x$, x-axis for $0 \le x \le \pi$ about the x-axis for one complete revolution.

$$y = \sin 3x. \qquad V = \pi \int_{0}^{\infty} f(x) dx$$

$$V = \pi \int_{0}^{\pi} \sin^{2} 3x dx + \pi \int_{\pi}^{\pi} \sin^{3} 3x dx +$$

- (c) Find the volume of the solid generated by rotating the region bounded by $y = e^{2x}$, x-axis, y-axis and $x = \ln 3$ about
 - the x-axis for 1 complete revolution.
 - the y-axis for 1 complete revolution.
 - (iii) y = -1 for 1 complete revolution.
 - (iv) x = -1 for 1 complete revolution.

(i).
$$V = \int_{0}^{\ln 3} \pi(e^{x})^{2} dx = \pi \int_{0}^{\ln 3} e^{4x} dx$$

= $\frac{\pi}{4} e^{4x} \int_{0}^{\ln 3} = 20\pi$.

$$y = e^{2x}$$

$$V = \int_{0}^{9} \pi (\ln 3)^{2} dy - \int_{1}^{9} \pi (\frac{1}{2} \ln y)^{2} dy$$

$$= 9 \pi (\ln 3)^{2} - \frac{\pi}{4} \int_{1}^{9} (\ln y)^{2} dy$$

$$= 9 \pi (\ln 3)^{2} - \frac{\pi}{4} \int_{1}^{9} (\ln y)^{2} dy$$

$$= 9 \pi (\ln 3)^{2} - \frac{\pi}{4} \int_{1}^{9} (\ln y)^{2} dy$$

$$= 9 \pi (\ln 3)^{2} - \frac{\pi}{4} \left[y (\ln y)^{2} \right]_{1}^{9} - \int_{1}^{9} z \ln y dy$$

$$y = e^{2x}$$

$$= 9 \pi (\ln 3)^{2} - \frac{\pi}{4} \left[y (\ln y)^{2} \right]_{1}^{9} - \int_{1}^{9} z \ln y dy$$

$$= 9 \pi (\ln 3)^{2} - \frac{\pi}{4} \left[y (\ln y)^{2} \right]_{1}^{9} - \int_{1}^{9} z \ln y dy$$

$$x=1/3$$
, $y=9$.
 $y=e^{2x} \ge x=\frac{1}{2}$

$$= 9\pi (\ln 3)^{2} - \frac{\pi}{4} \cdot 9(\ln 9)^{2} + \frac{\pi}{2} \int_{1}^{9} \ln y \, dy$$

$$= 9\pi (\ln 3)^{2} - \frac{9}{4}\pi (\ln 9)^{2} + \frac{\pi}{2} [y \ln y]_{1}^{9} - \int_{1}^{9} 1 \, dy$$

$$= 9\pi (\ln 3)^{2} - \frac{9}{4}\pi (2 \ln 3)^{2} + \frac{\pi}{2} \cdot 9 \cdot 2 \ln 3 - 8 \cdot \frac{\pi}{2}$$

$$= 9\pi (\ln 3 - 4\pi)$$

(iii)
$$V = V_1 - V_2 = \mathcal{N} \int_0^{\ln 3} (e^2 + 1)^2 dx - \mathcal{N} \int_0^{\ln 3} 1^2 dx$$

$$= \mathcal{N} \int_0^{\ln 3} (e^4 + 2e^2 + 1 - 1) dx$$

$$= \mathcal{N} \left[\frac{1}{\Psi} e^{4x} + e^{2x} \right]_0^{\ln 3}$$

$$= 28\pi$$

$$y = e^{2x} \quad \text{(iv)} \quad V = V_1 - V_2 - V_3$$

$$= \int_0^9 \pi (\ln 3 + 1)^2 dy - \int_1^9 \pi (\frac{1}{2} \ln y + 1)^2 dy - \int_0^1 \pi (1)^2 dy$$

$$= \pi (\ln 3 + 1)^9 - \pi - \int_1^9 \pi (\frac{1}{4} (\ln y)^2 + \ln y + 1) dy$$

$$= 9\pi (\ln 3 + 1)^2 - \pi - \frac{\pi}{4} \int_1^9 (\ln y)^2 dy - \pi \int_1^9 \ln y dy - \pi \int_1^9 1 dy$$

$$= 9\pi \ln 3 + \nu \pi.$$

Arc Length

Problem 5

(a) Find the arc length of the curve $y = \ln(\sec x)$ for $0 \le x \le \frac{\pi}{4}$.

are length =
$$\int_{0}^{\frac{\pi}{4}} \sqrt{1 + \left(\frac{d}{dx} \ln(\sec x)\right)^{2}} dx$$

= $\int_{0}^{\frac{\pi}{4}} \sqrt{1 + \left(\frac{1}{\sec x} \sec x \cdot \tan x\right)^{2}} dx$
= $\int_{0}^{\frac{\pi}{4}} \sqrt{1 + \tan^{2}x} dx = \int_{0}^{\frac{\pi}{4}} \sec x dx = \ln|\sec x + \tan x||_{0}^{\frac{\pi}{4}}$
= $\ln|1 + \sqrt{2}|$

(c) Find the arc length of the curve $(y-1)^3 = \frac{9}{4}x^2$ for $0 \le x \le \frac{2}{3}(3)^{\frac{3}{2}}$. $(y-1)^3 = \frac{9}{4}x^2 \implies y = 1 + \sqrt[3]{\frac{9}{4}x^2} \implies y = 1 + \sqrt[3]{\frac{9}{4}} \times x^{\frac{1}{3}}$ $S = \int_0^{\frac{2}{3}(3)^{\frac{3}{2}}} \underbrace{1 + \left(\frac{1}{3}\right)^{\frac{1}{3}}x^{-\frac{1}{3}}} dx$ $= \int_0^{\frac{1}{3}(3)^{\frac{3}{2}}} \underbrace{1 + \left(\frac{1}{3}\right)^{\frac{1}{3}}x^{-\frac{1}{3}}} dx$