

For the rest of the semester

- 11/28: eigenvalue
- 11/30: SVD
- 12/5: SOR (not covered in final)
- 12/7: hw6 due and final review (going over some homework problems)
- 12/12 Final exam 2-4pm (same classroom)
 - Scientific calculator
 - Single A4 page

Today's Agenda

Eigenvalues and eigenvectors

Matrix/eigenvalue properties

 Power method to find the largest eigenvalue in magnitude (not covered in Final)

Overview

- When $Ax = \lambda x$ is valid with $x \neq 0$, we say that λ is an eigenvalue of A and x is an accompanying eigenvector.
- Interpretation: Ax is scalar multiple of x.
- If λ is an eigenvalue of A, the set (subspace) $\{x \in R^n | Ax = \lambda x\}$ is called eigenspace.
- Eigenvalues and eigenvectors can take complex values.

How to find eigenvalues?

- Suppose A is a square matrix of size $n \times n$.
- It follows from $Ax = \lambda x$ that $(A \lambda I)x = 0$.
- Then $A \lambda I$ is singular, i.e., $|A \lambda I| = 0$.
- Define characteristic polynomial of A $p(\lambda) = |A \lambda I|$
- It is a polynomial of degree n and must have n roots (complex zeros and repeated zeros with multiplicity).
- Root finding to find eigenvalues is a direct method.

Matlab

A =

```
1 3 -7
-3 4 1
2 -5 3
```

[V,D]=eig(A);

V =

D =

Properties

Matrix properties

- Symmetric: $A = A^T$
- A complex matrix is Hermitian if $A = A^*$ (conjugate transpose).
- Positive definite if $x^T A x > 0$, $\forall x \neq 0$.

- Two matrices A and B are similar if there exists a nonsingular matrix P such that $B = PAP^{-1}$.
- Similar matrices have the same eigenvalues.

Matrix properties (cont'd)

- Every square real matrix is similar to a triangular matrix.
- Matrices A and B are unitarily similar if there exists a unitary matrix U s.t. $B = U^*AU$.
- Schur's Theorem: Every square matrix is unitarily similar to a triangular matrix.
- Every square Hermitian matrix is unitarily similar to a diagonal matrix.

Eigenvalue properties

Matrix Eigenvalue Properties

The following statements are true for any square matrix A:

- 1. If λ is an eigenvalue of A, then $p(\lambda)$ is an eigenvalue of p(A), for any polynomial p. In particular, λ^k is an eigenvalue of A^k .
- **2.** If A is invertible and λ is an eigenvalue of A, then $p(1/\lambda)$ is an eigenvalue of $p(A^{-1})$, for any polynomial p. In particular, λ^{-1} is an eigenvalue of A^{-1} .
- 3. If A is real and symmetric, then its eigenvalues are real.
- 4. If A is complex and Hermitian, then its eigenvalues are real.
- **5.** If *A* is Hermitian and positive definite, then its eigenvalues are positive.
- **6.** If P is invertible, then A and PAP^{-1} have the same characteristic polynomial (and the same eigenvalues).

Localization of eigenvalues

- Suppose $x_{k+1} = Ax_k$ for $k = 1, 2, \cdots$
- What do eigenvalue tell us?

Gershgorin's Theroem

Gershgorin's Theorem

All eigenvalues of an $n \times n$ matrix $A = (a_{ii})$ are contained in the union of the n discs $C_i = C_i(a_{ii}, r_i)$ in the complex plane with center a_{ii} and radii r_i given by the sum of the magnitudes of the off-diagonal entries in the ith row.

$$A = \begin{bmatrix} \alpha_{00} & \alpha_{01} & \alpha_{02} & \alpha_{03} \\ \alpha_{10} & \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{20} & \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{30} & \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix}$$

$$\rho_0 = |\alpha_{01}| + |\alpha_{02}| + |\alpha_{03}|
\rho_1 = |\alpha_{10}| + |\alpha_{12}| + |\alpha_{13}|
\rho_2 = |\alpha_{20}| + |\alpha_{21}| + |\alpha_{23}|
\rho_3 = |\alpha_{30}| + |\alpha_{31}| + |\alpha_{32}|$$

Proof sketch

- Suppose x is an eigenvector for λ
- Let m be the index of the largest magnitude of χ
- Scale x such that $|\xi_m| = 1$, and $|\xi_i| \le 1$
- x is eigenvector, so $(\lambda a_{mm})\xi_m = -\sum_{j=1}^n a_{mj}\xi_j$,

$$|\lambda - a_{mm}| \le \sum_{\substack{j=1 \ j \ne m}}^n |a_{mj}| |\xi_j| \le \sum_{\substack{j=1 \ j \ne m}}^n |a_{mj}| = \rho_m.$$

Usage of the theorem

• If A is a strictly diagonally dominant matrix, then it is non-singular.

Spectral radius is upper bounded by the matrix inf norm

$$\rho(A) \leq ||A||_{\infty}$$

• Recall GS and GJ converge if and only if $\rho(A) < 1$.

Power method

Not covered in Final

Rationale

- WLOG assume that eigenvalues of $A \in C^{n \times n}$ are ordered by $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$, and eigenpairs are given by (λ_i, x_i) .
- Assume A is diagonalizable for easy analysis
- Initially $q^{(0)} = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$ (assume $a_1 \neq 0$)

• Consider
$$q^{(k)} = Aq^{(k-1)} = A^k q^{(0)}$$

= $a_1 \lambda_1^k x_1 + a_2 \lambda_2^k x_2 + \dots + a_n \lambda_n^k x_n$

As
$$k \to \infty$$
 , one has $\frac{q^{(k)}}{\lambda_1^k} \to a_1 x_1$

But don't know λ_1 Need to normalize q

Power method/iteration

- λ_1 is called dominant eigenvalue if $|\lambda_1| > |\lambda_2|$, thus having a unique eigenvector x_1 .
- Power iteration goes by

Inexpensive Sparse friendly

• Stopping condition: $\frac{||z^{(k)} - \lambda^{(k)}q^{(k)}||_2}{||A||_F} < \epsilon$

Convergence

- Recall that $A^k q^{(0)} = a_1 \lambda_1^k \left(x_1 + \sum_{j=2}^n \frac{a_j}{a_1} \left(\frac{\lambda_j}{\lambda_1} \right)^k x_j \right)$
- As $q^{(k)} \in span(A^k q^{(0)})$, we have

$$\operatorname{dist}\left(\operatorname{span}\{q^{(k)}\},\operatorname{span}\{x_1\}\right) \ = \ O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right) \qquad |\ \lambda_1-\lambda^{(k)}\ | \ = \ O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$$

• The convergence rate depends on $r = \left| \frac{\lambda_2}{\lambda_1} \right|$.

Inverse power method

- Suppose A is non-singular
- Apply the power method to A^{-1}
- Its eigenvalues are λ_j^{-1}
- The inverse power method finds the eigenvector for the smallest eigenvalue (in magnitude).