

UNIVERSIDAD DE GUADALAJARA CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS

Seminario De Problemas De Programación De Sistemas Embebidos.

Proyecto # 1 - Secuencia De 20 LEDs

Alumno: MENESES LÓPEZ ARISAI RICARDO.

Docente: ALVARADO RODRIGUEZ FRANCISCO JAVIER.

16 de octubre de 2019

Índice

1.	Objetivo Del Proyecto	1
2.	Marco Teórico 2.1. PIC16f887 - Datasheet	
3.	Desarrollo3.1. Material Empleado3.2. Simulación Del Circuito3.3. Código En MikroC Pro3.4. Circuito En Físico (Protoboard)	5 6
4.	Resultados	7
5 .	Conclusiones	11
6.	Bibliografía	11

1. Objetivo Del Proyecto

· Diseñar un sistema de LEDs que cumplan con una secuencia o función.

2. Marco Teórico

2.1. PIC16f887 - Datasheet

Figura 1: PIC16F887 - Configuración

2.2. Display Barra LED 10 Segmentos - Datasheet

Figura 2: Display Barra De LEDs De 10 Segmentos - Dimensiones

3. Desarrollo

٠.

	P_7	P_6	P_5	P_4	P_3	P_2	P_1	P_0	
#	7	6	5	4	3	2	1	0	HEX
0	0	0	0	0	0	0	0	0	00
1	0	0	0	0	0	0	0	1	01
3	0	0	0	0	0	0	1	0	02
7	0	0	0	0	0	1	0	0	04
8	0	0	0	0	1	0	0	0	08
16	0	0	0	1	0	0	0	0	10
32	0	0	1	0	0	0	0	0	20
64	0	1	0	0	0	0	0	0	40
128	1	0	0	0	0	0	0	0	80

Tabla 1: Tabla De La Primer Secuencia

	P_7	P_6	P_5	P_4	P_3	P_2	P_1	P_0	
#	7	6	5	4	3	2	1	0	HEX
0	0	0	0	0	0	0	0	0	00
1	0	0	0	0	0	0	0	1	01
3	0	0	0	0	0	0	1	1	03
7	0	0	0	0	0	1	1	1	07
15	0	0	0	0	1	1	1	1	0F
31	0	0	0	1	1	1	1	1	1E
63	0	0	1	1	1	1	1	1	3F
127	0	1	1	1	1	1	1	1	7F
255	1	1	1	1	1	1	1	1	FF

Tabla 2: Tabla De La Segunda Secuencia

P hace referencia al Puerto A, B y C que se utilizaron para cubrir los 20 LEDs. Los valores en la columna HEX son introducidos como elementos del arreglo dentro del código.

3.1. Material Empleado

${\bf Componentes}.$

- \cdot Protoboard.
- \cdot Cable Para Proto.
- · Display Barra LED 10 Segmentos.
- \cdot Pinzas De Corte/Agarre.
- \cdot Resistencias 1k Ω y 220 $\Omega.$
- \cdot Fuente De Voltaje (5 \mathbf{V}).
- · Programador Para PIC Master Prog.

$\mu \mathbf{C}$.

· PIC16F887.

Software.

- \cdot MikroC Pro for PIC.
- · Master Prog+.
- \cdot Proteus Design Suite.

3.2. Simulación Del Circuito

Figura 3: Simulación - Secuencia De 20 LEDs

3.3. Código En MikroC Pro

```
Código
//Nombre: Meneses López Arisai Ricardo
unsigned char cuenta, a, b, c1;
unsigned char Secuencia1[]=0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80;
unsigned char Secuencia2[]=0x01,0x03,0x07,0x0F,0x1F,0x3F,0x7F,0xFF;
void main()
{ TRISC=0x00; TRISB=0x00; TRISA=0x00;
while(1)
{ PORTC=0; PORTA=0; PORTB=0; PORTD=0; a=0;b=0;c1=0;
for(cuenta=0;cuenta!=20;cuenta++)
{ if(cuenta;8)
{ PORTB=Secuencia1[b]; delay_ms(200); b++; //Retraso 1/10 segundo }
{ PORTB=0; PORTA=Secuencia1[a]; delay_ms(200); a++; //Retraso 1/10 segundo }
{ PORTA=0; PORTC=Secuencia1[c1]; delay_ms(200); c1++; //Retraso 1/10 segundo }
PORTC=0; a=0;b=0;c1=0;
for(cuenta=0;cuenta!=20;cuenta++)
{ if(cuenta;8)
{ PORTB=Secuencia2[b]; delay_ms(100); b++; //Retraso 1/10 segundo }
else if(cuenta;16)
{ PORTA=Secuencia2[a]; delay_ms(100); a++; //Retraso 1/10 segundo }
{ PORTC=Secuencia2[c1]; delay_ms(100); c1++; //Retraso 1/10 segundo }
}
a=7;b=7;c1=3;
for(cuenta=0:cuenta!=20:cuenta++)
{ if(cuenta;3)
{ c1-; PORTC=Secuencia2[c1]; delay_ms(100); //Retraso 1/10 segundo }
else if(cuenta;11)
{ PORTC=0; PORTA=Secuencia2[a]; a-; delay_ms(100); //Retraso 1/10 segundo }
else
{ PORTA=0; PORTB=Secuencia2[b]; b-; delay_ms(100); //Retraso 1/10 segundo }
```

Tabla 3: Código - MikroC Pro

En la primera secuencia los LEDs encienden de uno en uno, apagando el anterior, por otro lado, la segunda secuencia mantiene encendidos los LEDs anteriores y no se apagan; creando un efecto de carga o detector de nivel que va en ascenso y descenso.

3.4. Circuito En Físico (Protoboard)

4. Resultados

Figura 4: Protoboard - Primer Secuencia Ascendente

Figura 5: Protoboard - Primer Secuencia Ascendente

Figura 6: Protoboard - Primer Secuencia Descendente

Figura 7: Protoboard - Primer Secuencia Descendente

Figura 8: Protoboard - Segunda Secuencia Ascendente

Figura 9: Protoboard - Segunda Secuencia Ascendente

Figura 10: Protoboard - Segunda Secuencia Descendente

5. Conclusiones

Una secuencia depende mucho de la programación como de la configuración a usar en los puertos del micro-controlador.

6. Bibliografía

[1] - J. M. Morán Loza. Programación de Sistemas Embebidos Con Aplicaciones Para El PIC16F8XX. MEXICO: PEARSON, 2014.