

Advanced Algorithms & Data Structures

Complex

Hands-on Technology

Department of CSE

ADVANCED ALGORITHMS AND DATA STRUCTURES 23CS03HF

Topic:

Dynamic Programming – 0/1 Knapsack Problem

Case Studies Brainstorming **Groups Evaluations** Peer Review

Triad Groups

Informal Groups

Large Group Discussion

Think-Pair-Share

Writing (Minute Paper)

Self-assessment

Pause for reflection

AIM OF THE SESSION

To familiarize students with the concept of Knapsack problem.

INSTRUCTIONAL OBJECTIVES

This Session is designed to:

- 1. Demonstrate :- Knapsack problem.
- 2. Describe :- Bounding function.

LEARNING OUTCOMES

At the end of this session, you should be able to:

- 1. Define :- Knapsack problem.
- 2. Describe :- Bounding function.
- 3. Summarize:- Backtracking solution to the 0/1 knapsack problemming.

Knapsack Problem

You are given the following-

- A knapsack with limited weight capacity.
- items having some weight and value.

The problem states-

Which items should be placed into the knapsack such that-

- The value or profit obtained by putting the items into the knapsack is maximum.
- And the weight limit of the knapsack does not exceed.

Variants:

- 0/1 Knapsack.

➤ not allowed to break items.
We either take the whole item or don't take it.

Fractional Knapsack

can break items for maximizing the total value of knapsack

0/1 Knapsack Problem

In 0/1 Knapsack Problem,

- As the name suggests, items are indivisible here.
- We can not take the fraction of any item.
- We have to either take an item completely or leave it completely.

Example:

Consider the knapsack instance n = 3, $(w_1, w_2, w_3) = (2, 3, 4)$, $(p_{1}, p_{2}, p_{3}) = (1, 2, 5)$ and m = 6.

Probability of Chosen Items $(x_i) = [\{0, 0, 0\}, \{0, 0, 1\},, \{1, 1, 1\}]$

No. of Possible Solutions $(2^n) = 2^3 = 8$.

The problem is to find the Best Optimal Solution among the 8 for the 0/1 Knapsack.

0/1 Knapsack Problem-solution: Set Method

Initially
$$S^0 = \{(0,0)\}$$

$$S_1^i = \{ (P,W) / (P-p_{i+1},W-w_{i+1}) \in S^i \}$$

$$S^{i+1} \text{ can be computed by merging from } S^i \text{ and } S_1^i$$

- **Purging or dominance rule:** if S^{i+1} contains two pairs (p_j, w_j) and (p_k, w_k) with the property that $p_i \le p_k$ and $w_i \ge w_k$ then the pair (p_i, w_i) can be discarded.
- When generating S^i , we can also purge all pairs (p, w) with w > m as these pairs determine the value of $f_n(x)$ only for x > m.
- \succ The optimal solution $f_n(m)$ is given by the highest profit pair.


```
Example 1: Consider the knapsack instance n = 3,
                 (w_1, w_2, w_3) = (2,3,4), (p_1, p_2, p_3) = (1,2,5), and m = 6.
Initially
S^0 = \{(0,0)\}
Include 1<sup>st</sup> object
S_1^0 = \{ (0+1,0+2) \} = \{ (1,2) \}
Next Stage can be obtained S<sup>0+1</sup> (S<sup>1</sup>) can be computed by merging from S<sup>0</sup> and S<sub>1</sub><sup>0</sup>
S^1 = \{(0,0)(1,2)\}
Include 2<sup>nd</sup> object
S_1^1 = \{ (0+2,0+3) (1+2,2+3) \} = \{ (2,3) (3,5) \}
Next Stage can be obtained S<sup>1+1</sup> (S<sup>2</sup>) can be computed by merging from S<sup>1</sup> and S<sub>1</sub><sup>1</sup>
S^2 = \{(0,0)(1,2)(2,3)(3,5)\}
Include 3<sup>rd</sup> object
S_1^2 = \{ (0+5,0+4) (1+5, 2+4)(2+5,3+4) (3+5,5+4) \}
    = \{(5,4)(6,6)(7,7)(8,9)\}_{\text{ANKED 27}}
```


Next Stage can be obtained S^{2+1} (S^3) can be computed by merging from S^2 and S_1^2 $S^3 = \{(0,0)(1,2)(2,3)(3,5)(5,4)(6,6)(7,7)(8,9)\}$

Apply Purging rule Pairs(3,5) (7,7)(8,9) will be discarded

Therefore,

$$S^3 = \{(0,0)(1,2)(2,3)(5,4)(6,6)\}$$

To find the included items:

(6,6) is in
$$S^3$$
 So $x_3 = 1$

$$P-p_3 = 6-5 = 1 \& W - W_3 = 6-4=2$$

(1,2) is in
$$S^1$$
 So $x_1=1$

0/1 Knapsack Algorithm

```
Algorithm DKP(p,w,n,m)
         S^0 := \{(0,0)\};
         for i := 1 to n-1 do
                   S^{i-1} = \{(P,W) | (P-p_i,W-w_i) \in S^{i-1} \text{ and } W \le m\};
         S^{i} = MergePurge(S^{i-1}, S_{1}^{i-1});
         (P_x,W_x) = last pair in S^{n-1};
         (P_v,W_v)=(P^1+p_n,W^1+w_n) where W^1 is the largest W in any pair in S^{n-1} such that
         W+ w_n \le m;
```



```
// Trace back for x_n, x_{n-1},...., x_1.

if (P_X > P_Y) then
x_n = 0;
else x_n = 1;
TraceBackFor(x_{n-1},....,x_1);
```

Complexity Analysis:

The complexity of the algorithm is O(nW) where, n is the number of items and W is the capacity of knapsack.

Example 2 Solve Knapsack instance M = 8, and n = 4. Let P_i and W_i are as shown below.

i	Pi	W _i
1	1	2
2	2	3
3	5	4
4	6	5

Solution: Let us build the sequence of decision S^0 , S^1 , S^2 .

$$S^0 = \{(0, 0)\} \text{ initially }$$

 $S_1^0 = \{(1, 2)\}$

That means while building S_1^0 we select the next ith pair. For S_1^0 we have selected first (P, W) pair which is (1, 2).

Now

$$S^1 = \{Merge S^0 \text{ and } S_0^1\}$$

= $\{(0,0), (1,2)\}$
 $S_1^1 = \{ Select next (P, W) pair and add it with $S^1 \}$
= $\{ (2,3), (2+0, 3+0), (2+1, 3+2) \}$$

$$S_1^1 = \{(2, 3), (3, 5)\}$$
 \therefore Repetition of $(2, 3)$ is avoided.
 $S^2 = \{\text{Merge candidates from } S^1 \text{ and } S_1^1\}$
 $= \{(0, 0), (1, 2), (2, 3), (3, 5)\}$
 \therefore $S_1^2 = \{\text{Select next } (P, W) \text{ pair and add it with } S^2\}$
 $= \{(5, 4), (6, 6), (7, 7), (8, 9)\}$
Now $S^3 = \{\text{Merge candidates from } S^2 \text{ and } S_1^2\}$
 $S^3 = \{(0, 0), (1, 2), (2, 3), (5, 4), (6, 6), (7, 7), (8, 9)\}$

Note that the pair (3, 5) is purged from S^3 . This is because, let us assume $(P_j, W_j) = (3, 5)$ and $(P_k, W_k) = (5, 4)$. Here $P_j \le P_k$ and $W_j > W_k$ is true hence we will eliminate pair (P_i, W_i) i.e. (3, 5) from S^3 .

$$S_1^3 = \{(6, 5), (7, 7), (8, 8), (11, 9), (12, 11), (13, 12), (14, 14)\}$$

 $S_1^4 = \{(0, 0), (1, 2), (2, 3), (5, 4), (6, 6), (7, 7), (8, 9), (6, 5), (8, 8), (11, 9), (12, 11), (13, 12), (14, 14)\}$

Now we are interested in M = 8. We get pair (8, 8) in S^4 . Hence we will set $x_4 = 1$. Now to select next object $(P - P_4)$ and $(W - W_4)$.

i.e
$$(8-6)$$
 and $(8-5)$.

i.e. (2, 3)

Pair $(2, 3) \in S^2$. Hence set $x_2 = 1$. So we get the final solution as (0, 1, 0, 1).

Example 3:

Consider the knapsack instance n = 3, m=50, $(w_1, w_2, w_3) = (10,20,30) & (p_{1}, p_{2}, p_3) = (60, 100, 120).$

SUMMARY

The 0/1 Knapsack problem can be defined as follows: We have (N) items, each with a weight ((w_i)) and a value ((v_i)). We also have a bag with a capacity (W). The goal is to select items to place in the bag such that the total value is maximized, without exceeding the bag's capacity.

SELF-ASSESSMENT QUESTIONS

- 1. What is the main objective of the 01 Knapsack problem?
 - A. To maximize the total weight of items in the knapsack
 - B. To minimize the total value of items in the knapsack
 - C. To maximize the total value of items in the knapsack without exceeding the weight capacity
 - D. To minimize the total weight of items in the knapsack

In the 0/1 Knapsack problem, if (n) is the number of items and (W) is the maximum weight capacity, what is the time complexity of the dynamic programming solution?

A. (O(n + W))

B. (O(nW))

C. (O(n^2))

D. (O(n^3))

TERMINAL QUESTIONS

- 1. What is the dynamic 0/1 knapsack problem?
- 2. Can we solve knapsack problem using dynamic programming?
- 3. What is the formula for the 0/1 knapsack problem?

REFERENCES FOR FURTHER LEARNING OF THE SESSION

Reference Books:

- 1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein., 3rd, 2009, The MIT Press.
- 2 Algorithm Design Manual, Steven S. Skiena., 2nd, 2008, Springer.
- 3 Data Structures and Algorithms in Python, Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser., 2nd, 2013, Wiley.
- 4 The Art of Computer Programming, Donald E. Knuth, 3rd, 1997, Addison-Wesley Professiona.

MOOCS:

- 1. https://www.coursera.org/specializations/algorithms?=
- 2.https://www.coursera.org/learn/dynamic-programming-greedy-algorithms#modules

THANK YOU

