Round 5 Trigonometry

Trigonometric Equations

MEET 2 – NOVEMBER 1998

ROUND 5 – Trig. Equations

1.	
	The second secon

CALCULATORS ARE NOT ALLOWED ON THIS ROUND

1. Given $0^{\circ} \le \theta < 360^{\circ}$, solve the following equation for θ : $\tan \theta \cdot \sin \theta + \cos \theta = \sec \theta$

2. Given $\cos 2x = \tan^2 x$, find all values for $\cos x$ in simplified radical form.

3. Given $0^{\circ} \le \theta \le 180^{\circ}$, solve the following equation for θ : $\sin \theta + \cos \theta = \frac{\sqrt{6}}{2}$

MEET 2 – NOVEMBER 1999

ROUND 5 – Trig. Equations

4		
1.		
I.		

CALCULATORS ARE NOT ALLOWED ON THIS ROUND

1. Given $0^{\circ} \le x < 360^{\circ}$ and $\sin x + \tan 60^{\circ} \cos x = 0$, find all solutions for x.

2. Given $0^{\circ} \le x < 360^{\circ}$ and $\cos 2x + \sin 2x = \sin 270^{\circ}$, find all solutions for x.

3. Given $0^{\circ} \le x < 360^{\circ}$ and $2 + 2\cos x = \frac{\sin x}{1 - \cos x}$, find all solutions for x.

MEET 2 - NOVEMBER 2000

ROUND 5 – Trig. Equations

1	
1.	

CALCULATORS ARE NOT ALLOWED ON THIS ROUND

1. Given $0^{\circ} \le x < 360^{\circ}$ and $\cos^2 x + \cos x \cdot \sin x = 0$, find all solutions for x.

2. Given $0^{\circ} < x < 45^{\circ}$ and $\sin x + \cos x = \frac{4}{3}$, compute $\cos 2x$ in simplest radical form.

3. Given $0^{\circ} \le x < 360^{\circ}$ and $3\sec^4 x - 3\tan^4 x = 5$, find all solutions for x.

MEET 2 – NOVEMBER 2001

ROUND 5 – Trig. Equations

1.	

CALCULATORS ARE NOT ALLOWED ON THIS ROUND

1. If $\tan x = 5$, find the possible value(s) of $\frac{2\sin x + 3\cos x}{5\sin x + \cos x}$.

2. Given $0^{\circ} \le x < 360^{\circ}$ and $\tan x + \sec x = \cos x$, find all solutions for x.

3. Given $0^{\circ} \le x < 360^{\circ}$ and $\tan^3 x + \sec^2 x = 3\tan x + 4$, find the sum of all solutions for x.

GREATER BOSTON MATHEMATICS LEAGUE MEET 2 – NOVEMBER 2006

ROUND 5 - Trig Equations

1.	
2.	_
3.	c

CALCULATORS ARE NOT ALLOWED ON THIS ROUND. Answers must be expressed in simplified rationalized form.

- 1. Given: sin(2A) = cos(A) and $0 \le A < 360^{\circ}$ Determine all possible numeric values of tan(A).
- 2. Find all values of x, $0 \le x < 360^{\circ}$, for which

$$\sec^2(x) + \cos^2(180^\circ) = \cos(0^\circ) - 2\sec(x)$$

3. Find all values of x, $0 \le x < 360^{\circ}$, for which

$$8\sin^2(x) + \csc^2(x) - 6 = 0$$
 and $\sin(x)\cos(x) = \cos^2(x)$

MEET 2 – NOVEMBER 2007

ROUND 5 – Trig Equations

1.	C
2	C
4.	

CALCULATORS ARE NOT ALLOWED ON THIS ROUND.

1. Determine all values(s) of x, $0^{\circ} \le x < 360^{\circ}$ that satisfy $\frac{4\sin^2 x - 3}{2\cos x - 1} = 0$.

2. Find all values of x such that $0^{\circ} \le x < 360^{\circ}$ that satisfy: $\cos 2x + \sin 2x = \tan 675^{\circ}$

3. Find all values of A such that $0^{\circ} \le A < 360^{\circ}$ that satisfy: $\cos(270^{\circ} - A) \cdot \sec(-A) = \cos(144^{\circ}) \cdot \csc(324^{\circ})$

MEET 2 – NOVEMBER 2008

ROUND 5 – Trig Equations

Apress	ed in deg	31 ccs.	

CALCULATORS ARE NOT ALLOWED ON THIS ROUND.

1. Solve for x over $0 \le x < 360^\circ$: $\sin(x+36^\circ) = \cos 48^\circ$

$$\sin\left(x+36^{\circ}\right)=\cos 48^{\circ}$$

2. Solve for x over $0 \le x < 360^\circ$: $2 \sin x \tan x + \sin x \sec x = \sec x$

3. Solve for x over $0 \le x < 360^\circ$: $\sin 42^\circ \cos 48^\circ = \sin(2x - 48^\circ) - \cos 138^\circ \sin 228^\circ$

MEET 2 – NOVEMBER 2009

ROUND 5 – Trig Equations

1.	
2.	
3.	

CALCULATORS ARE NOT ALLOWED ON THIS ROUND.

The degree symbol is not required in any answer.

1. Find all values of x, $0^{\circ} \le x < 360^{\circ}$, which satisfy the following system of equations

$$2\sin^2 x - \sin x - 1 = 0$$
 and $4\sin^2 x = 1$

2. How many solutions, $-360^{\circ} < \theta < 360^{\circ}$, are possible when $\cos \theta + \tan \theta + \sec \theta = 0$.

3. Find all values of θ , $0^{\circ} \le \theta < 360^{\circ}$, such that $4\sin^2\theta - 1 + \cos\theta \csc\theta - 4\sin\theta \cos\theta = 0$.

MEET 2 – NOVEMBER 2010

ROUND 5 – Trig Equations

1.		
2		

CALCULATORS ARE NOT ALLOWED ON THIS ROUND.

1. Given: $\sec^2 x = 4$ and $\sin x = -\frac{\sqrt{3}}{2}$, where $0^\circ \le x < 360^\circ$. Compute the <u>sum</u> of all values of x (in degrees) for which this is true.

2. Given:
$$\begin{cases} \sin x = -\frac{2}{3}, & \cos x < 0 \\ \tan y = -\frac{\sqrt{20}}{4}, & \sin y < 0 \end{cases}$$

If
$$(\tan x)(\sin y) = \cos z$$
, $180^{\circ} < z < 360^{\circ}$, compute $\tan z$.

3. Given: $\cos 2x + 5\sin^2 x = 4\sin x + 5$ and $180^{\circ} < x < 360^{\circ}$ Compute $\cos x$.

MASSACHUSETTS MATHEMATICS LEAGUE FEBRUARY 2004

ROUND 3: TRIG. IDENTITIES OR INVERSES

ANSWERS

1	١.					
- 6	Z)	l .				
Į.	Z 1	,				

A) Simplify
$$\frac{(\cot \theta - \cos \theta)(1 + \sin \theta)}{\cos^3 \theta}$$
 to the form $T(\theta)$ where T is one of the six trig functions.

B) For
$$0^0 \le \theta < 360^0$$
, solve $\frac{2 \tan \theta}{1 + \tan^2 \theta} = \frac{\sqrt{3}}{2}$.

C) Using principle values, express
$$\cos(\sec^{-1}\frac{3}{2}-\cos^{-1}\frac{1}{5})$$
 in simple radical form.

MASSACHUSETTS MATHEMATICS LEAGUE FEBRUARY 2005

ROUND 3 TRIG: IDENTITIES & INVERSE FUNCTIONS ANSWERS

B)_____

C)_____

A) If $sec^2(x) + tan(x) = 1$ and tan(x) + csc(x) = y find all exact real values for y.

B) Given $Sin(Sin^{-1}(2x+1)) = \frac{5}{27x+3}$ find exact values for all possible x.

C) Given $Cos^{-1}(Cos(2x+1)) = \frac{5}{x+2}$ find all possible <u>rational</u> values for x.

MASSACHUSETTS MATHEMATICS LEAGUE FEBRUARY 2006 ROUND 3 TRIG: IDENTITIES & INVERSE FUNCTIO

ROUND 3 TRIG: IDENTITIES & INVERSE FUNCTIONS ANSWERS

A) Suppose Arctan(
$$\sqrt{x}$$
) = d, where $0^{\circ} < d < 90^{\circ}$. If $d = \text{Arcsec}(Y)$, express Y in terms of x.

B) Simplify
$$\frac{\sin \theta}{2(1+\cos \theta)} + \frac{1+\cos \theta}{2\sin \theta}$$
 to obtain a single trigonometric function of θ .

C) If $\sin(4\theta)$ is written in the form $A\sin\theta\cos\theta(B+C\sin^2\theta)$ for integers A, B and C, find A^2+BC .

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 – FEBRUARY 2007 ROUND 3 TRIG: IDENTITIES AND/OR INVERSE FUNCTIONS

ANSWERS

A) _____

B)

C) _____

A) Given $A = Sin^{-1}(\frac{35}{37})$, $B = Cos^{-1}(-\frac{15}{17})$ Find sin(A + B) as a simplified fraction.

C) Let $\theta = Arc \cos(\frac{1}{2x+1})$, where x > 0. Express the fraction $\frac{x^2 + x}{2x+1}$ as a single simplified fraction in terms of $\cos(\theta)$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 – FEBRUARY 2008 ROUND 3 TRIG: IDENTITIES AND/OR INVERSE FUNCTIONS

ANSWERS

A)	W-70-200-VIII	
B)	The second secon	
~\ <u>`</u>		

A) Solve for θ , where $0^{\circ} \le \theta < 360^{\circ}$, if $\csc(2\theta) + \cot(2\theta) = 1$

B) Given: $cos(40^\circ) = k$ and $sin(x) = 1 - 2k^2$ What are the possible values of x between 0° and 360° exclusive?

C) Determine the positive integer n for which

$$\sin\left(Arc\cos\left(-\frac{n}{11}\right) + Arc\tan\left(-\frac{1}{2\sqrt{6}}\right)\right) = \frac{53}{55}$$

GRML 98

 $\frac{\sin^2\theta}{\cos\theta} + \frac{\cos\theta}{\cos\theta}, \cos\theta \neq 0 \Rightarrow \frac{\sin^2\theta + \cos^2\theta}{\cos\theta} = \frac{1}{\cos\theta}, \text{ which is an identity} \Rightarrow \frac{\sin^2\theta}{\cos\theta} + \frac{1}{\cos\theta}, \text{ which is an identity} \Rightarrow \frac{\sin^2\theta}{\cos\theta} + \frac{1}{\cos\theta}, \text{ which is an identity} \Rightarrow \frac{\sin^2\theta}{\cos\theta} + \frac{1}{\cos\theta}, \text{ which is an identity} \Rightarrow \frac{\sin^2\theta}{\cos\theta} + \frac{1}{\cos\theta}, \text{ which is an identity} \Rightarrow \frac{\sin^2\theta}{\cos\theta} + \frac{1}{\cos\theta}, \text{ which is an identity} \Rightarrow \frac{\sin^2\theta}{\cos\theta} + \frac{1}{\cos\theta}, \text{ which is an identity} \Rightarrow \frac{\sin^2\theta}{\cos\theta} + \frac{1}{\cos\theta}, \text{ which is an identity} \Rightarrow \frac{\sin^2\theta}{\cos\theta} + \frac{1}{\cos\theta}, \text{ which is an identity} \Rightarrow \frac{\sin^2\theta}{\cos\theta} + \frac{1}{\cos\theta}, \text{ which is an identity} \Rightarrow \frac{\sin^2\theta}{\cos\theta} + \frac{1}{\cos\theta}, \text{ which is an identity} \Rightarrow \frac{\sin^2\theta}{\cos\theta} + \frac{1}{\cos\theta}, \text{ which is an identity} \Rightarrow \frac{\sin^2\theta}{\cos\theta} + \frac{1}{\cos\theta}, \text{ which is an identity} \Rightarrow \frac{1}{\cos\theta} + \frac{1}{\cos\theta}$ The equation is always true unless $\cos\theta = 0 \Rightarrow \theta \neq 90^{\circ}$ and $\theta \neq 270^{\circ}$

- $\cos 2x = \tan^2 x \implies 2\cos^2 x 1 = \sec^2 x 1 \implies 2\cos^4 x = 1 \implies \cos x = \pm \frac{1}{\sqrt[4]{2}} = \pm \frac{\sqrt[4]{8}}{2}$
- $\sin \theta + \cos \theta = \frac{\sqrt{6}}{2} \Rightarrow \left(\sin \theta + \cos \theta \right)^2 = \left(\frac{\sqrt{6}}{2} \right)^2 \Rightarrow \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cdot \cos \theta = \frac{3}{2}$ \Rightarrow 2sin $\theta \cdot \cos \theta = \frac{1}{2} \Rightarrow \sin 2\theta = \frac{1}{2}$; Since $0^{\circ} \le \theta \le 180^{\circ}$, then $0^{\circ} \le 2\theta \le 360^{\circ} \Rightarrow$ $2\theta = 30^{\circ}$ or $150^{\circ} \Rightarrow \theta = 15^{\circ}$ or 75° (which both check into the original equation)
- こんかり
- $\sin x + \tan 60^{\circ} \cos x = 0 \Rightarrow \sin x = -\sqrt{3} \cos x \Rightarrow \tan x = -\sqrt{3} \Rightarrow x = 120^{\circ}, 300^{\circ}$

- $\cos 2x + \sin 2x = \sin 270^{\circ} \Rightarrow 2\cos^2 x 1 + 2\sin x \cos x = -1 \Rightarrow 2\cos x (\cos x + \sin x) = 0$ $\Rightarrow \cos x = 0 \text{ or } \tan x = -1 \Rightarrow x = 90^{\circ},135^{\circ},270^{\circ},315^{\circ}$
- $x = 0^{\circ}, 180^{\circ}, 30^{\circ}, 150^{\circ}$, but $x = 0^{\circ}$ is extraneous since $1 \cos 0^{\circ} = 0 \Rightarrow x = 30^{\circ}, 150^{\circ}, 180^{\circ}$ $2 + 2\cos x = \frac{\sin x}{1 - \cos x} \Rightarrow 2(1 + \cos x)(1 - \cos x) = \sin x \Rightarrow 2(1 - \cos^2 x) = \sin^2 x \Rightarrow 2(1 - \cos^2 x) = \cos^2 x \Rightarrow 2(1 - \cos^2 x) \Rightarrow 2(1 - \cos^2 x) \Rightarrow 2(1 - \cos^2 x) \Rightarrow 2(1 - \cos^2$ $2\sin^2 x - \sin x = 0 \Rightarrow \sin x (2\sin x - 1) = 0 \Rightarrow \sin x = 0 \text{ or } \sin x = \frac{1}{2} \Rightarrow$

 $\cos^2 x + \cos x \cdot \sin x = 0 \to \cos x (\cos x + \sin x) = 0 \to \cos x = 0 \text{ or } \sin x = -\cos x \to \cos x = 0 \text{ or } \tan x = -1 \to x = 90^{\circ}, 135^{\circ}, 270^{\circ}, 315^{\circ}$

- $\sin x + \cos x = \frac{4}{3} \to (\sin x + \cos x)^2 = \frac{16}{9} \to \sin^2 x + 2\sin x \cos x + \cos^2 x = \frac{16}{9} \to 1 + \sin 2x = \frac{16}{9} \to \sin 2x = \frac{16}{9} \to \sin 2x = \frac{1}{9} \to \sin 2x = \frac{1}{9$
- $3\sec^4 x 3\tan^4 x = 5 \rightarrow 3(\sec^4 x \tan^4 x) = 5 \rightarrow 3(\sec^2 x \tan^2 x)(\sec^2 x + \tan^2 x) = 5$ ⇒ 3(1+2tan²x) = 5 ⇒ 3+6tan²x = 5 → tan²x = $\frac{1}{3}$ → tan x = $\pm \frac{1}{\sqrt{3}}$ → $x = 30^{\circ}.150^{\circ}.210^{\circ}.330^{\circ}$

- $\frac{2\sin x + 3\cos x}{5\sin x + \cos x} = \frac{2\tan x + 3}{5\tan x + 1} = \frac{2(5) + 3}{5(5) + 1} = \frac{13}{26} = \frac{1}{2}$
- $\sin x + 1 = 1 \sin^2 x \Rightarrow \sin^2 x + \sin x = 0 \Rightarrow \sin x (\sin x + 1) = 0 \Rightarrow \sin x = 0, -1 \Rightarrow x = 0^\circ, 180^\circ$ $\tan x + \sec x = \cos x \Rightarrow \frac{\sin x}{\cos x} + \frac{1}{\cos x} = \cos x \Rightarrow \sin x + 1 = \cos^2 x, (\text{and } \cos x \neq 0) \Rightarrow$ since $\sin x = -1 \Rightarrow x = 270^{\circ} \Rightarrow \cos x = 0$
 - $\tan^2 x 3$ $(\tan x + 1) = 0 \implies \tan x = \pm \sqrt{3}, -1 \implies x = 60^\circ, 120^\circ, 240^\circ, 300^\circ, 135^\circ, 315^\circ,$ $\tan^3 x + \tan^2 x - 3\tan x - 3 = 0 \Rightarrow \tan^2 x (\tan x + 1) - 3 (\tan x + 1) = 0 \Rightarrow$ $\tan^3 x + \sec^2 x = 3\tan x + 4 \Rightarrow \tan^3 x + \tan^2 x + 1 = 3\tan x + 4 \Rightarrow$ he sum of all values for $x = 1170^{\circ}$.

- $(A \ h) \ f \ (O \ b)$ 1. $\sin(2A) = 2\sin A \cos A = \cos A \Rightarrow \cos A (2\sin A 1) = 0 \Rightarrow A = 90^{\circ}, 270^{\circ}, 30^{\circ}, 150^{\circ}$ $\tan(30^{\circ}) = \left| + \frac{\sqrt{3}}{3} \right| \text{ and } \tan(150^{\circ}) = \left| \frac{\sqrt{3}}{3} \right| \text{ (At 90^{\circ} \text{ and } 270^{\circ} \tan(A) \text{ is undefined.)}}$
 - $\sec^2(x) + 1 = 1 2\sec(x) \rightarrow \sec(x) + 2\sec(x) = \sec(x)(\sec(x) + 2) = 0$ Since the value of $\sec(x)$ is never zero, the only roots occur when $\sec(x) = -2$ [or $\cos(x) = -1/2$] $\rightarrow 60^\circ$ family in quadrants 2 and $3 \rightarrow \underline{120^\circ}, \underline{240^\circ}$
- The 2^{nd} equation $\sin(x)\cos(x) = \cos^2(x) \Rightarrow \cos x(\cos x \sin x) = 0 \Rightarrow 90, 270, 45, 225$ 3. Noting that $\csc^2(x)$ is equivalent to $\frac{1}{\sin^2 x}$, in the 1^{st} equation, multiplying by $\sin^2 x$ $\Rightarrow \sin x = \pm \frac{1}{2}$ (30, 150, 210, 330) or $\pm \frac{\sqrt{2}}{2}$ (45, 135, 225, 315) $\Rightarrow 8\sin^4 x - 6\sin^2 x + 1 = (4\sin^2 x - 1)(2\sin^2 x - 1) = 0$ Taking the intersection (overlap), we have 45°, 225°.

- ROUND 5
- 1. The numerator must be zero (and the denominator must not!).

$$4\sin^2(x) = 3 \implies \sin(x) = \pm \frac{\sqrt{3}}{2} \implies 60^\circ$$
 in all 4 quadrants

However,
$$\cos(x) \neq \frac{1}{2} \Rightarrow x \neq 60^\circ, 300^\circ$$

Thus, $x = 120^{\circ}$, 240° only.

- which would produce 8 answers over the interval $0^{\circ} \le x < 360^{\circ}$. However, half of these answers are extraneous, since the left side of the equation evaluates to +1. Specifically, $x = 0^{\circ}$, 45°, 180°, 225° are extraneous, leaving 90°, 135°, 270° and 315°. $\cos^2(2x) + 2\cos(2x)\sin(2x) + \sin^2(2x) = \tan^2(675 - 360) \rightarrow 1 + 2\cos(2x)\sin(2x) = \tan^2(315)$ $\Rightarrow 1 + \sin(4x) = (-1)^2 = 1 \Rightarrow \sin(4x) = 0 \Rightarrow 4x = 0 + 180n \text{ or } x = 0 + 45n$ Square both sides and beware of introducing extraneous answers!
- $\longleftrightarrow -\sin A \cdot \frac{1}{\cos A} = \frac{\cos 144^{\circ}}{\sin 324^{\circ}} = \frac{-\cos 36^{\circ}}{-\sin 36^{\circ}} = \cot 36^{\circ} = \tan 54^{\circ}$ $\cos(270^{\circ} - A) \cdot \sec(-A) = \cos(144^{\circ}) \cdot \csc(324^{\circ})$

-tan
$$A = \tan(-A) = \tan(54) \Rightarrow -A = 54 + 180n \Rightarrow A = -54, -234$$

Adding 360° to produce results in the specified range $\Rightarrow A = 126^\circ$. 306°

90 JMBP

1. $\cos 48^{\circ} = \sin 42^{\circ} \text{ or } \sin 138^{\circ} \rightarrow x + 36 = 42 \text{ or } 138 \rightarrow x = \underline{6} \text{ or } \underline{102}$

$$\frac{2\sin^2 x}{\cos x} + \frac{\sin x}{\cos x} = \frac{1}{\cos x} \to 2\sin^2 x + \sin x - 1 = 0 \ (x \neq 90, 270) \to (2\sin x - 1)(\sin x + 1) = 0$$

$$\sin x = \frac{1}{2}$$
, $\sin x = -1 - x = 30, 150, 270$, but 270 is rejected. Answer: $\frac{30^{\circ}, 150^{\circ}}{\sin 2x - 48^{\circ}}$, $\sin 42^{\circ} \cos 48^{\circ} + \cos 138^{\circ} \sin 228^{\circ} = \sin(2x - 48^{\circ}) \rightarrow$

4.
$$\sin 42 \cos 48' + (-\cos 42')(-\sin 48') = \sin(2x - 48') \rightarrow \sin 42' \cos 48' + \cos 42' \sin 48' = \sin(2x - 48') \rightarrow \sin(42' + 48') = \sin 90' = 1 = \sin(2x - 48') \rightarrow \sin 90' = 1 = \sin(2x - 48') \rightarrow 90', 450'$$

D.M.C.

1.
$$2\sin^2 x - \sin x - 1 = 0 \Rightarrow (2\sin x + 1)(\sin x - 1) = 0 \Rightarrow \sin x = -\frac{1}{2}, +1$$

 $4\sin^2 x = 1 \Rightarrow \sin x = \pm \frac{1}{2}$ Thus, the only common solution is $\sin x = -\frac{1}{2} \Rightarrow 210,330$

2.
$$\cos \theta + \tan \theta + \sec \theta = 0$$
 $\Rightarrow \cos \theta + \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} = 0$ $\Rightarrow \frac{\cos \theta}{1} = \frac{-(\sin \theta + 1)}{\cos \theta}$
Cross multiplying, $-\sin \theta - 1 = \cos^2 \theta = 1 - \sin^2 \theta$
 $\Rightarrow \sin^2 \theta - \sin \theta - 2 = (\sin \theta - 2)(\sin \theta + 1) = 0$ $\Rightarrow \sin \theta = -1$ $\Rightarrow \theta = 270$
But $\theta = 270 \Rightarrow \cos \theta = 0 \Rightarrow \sec \theta$ is undefined
Therefore, there are $\underline{0}$ solutions.

3.
$$4\sin^2\theta - 1 + \cos\theta \csc\theta - 4\sin\theta \cos\theta = 0$$
 \Rightarrow

$$(4\sin^2\theta - 1) + \cos\theta \left(\frac{1}{\sin\theta} - 4\sin\theta \right) = (4\sin^2\theta - 1) + \cos\theta \left(\frac{1 - 4\sin^2\theta}{\sin\theta} \right)$$

$$= (4\sin^2\theta - 1) - \frac{\cos\theta}{\sin\theta} (4\sin^2\theta - 1) = (4\sin^2\theta - 1)(1 - \cot\theta) = 0$$

 $\begin{aligned} & \xi + x \operatorname{nis} \beta = x^{5} \operatorname{nis} \xi + \left(x^{5} \operatorname{nis} \xi - 1\right) \\ & + x \operatorname{nis} \xi\right) = \beta - x \operatorname{nis} \beta - x \zeta \operatorname{nis} \xi \end{aligned}$

⇒ $\sin \theta = \pm \frac{1}{2}$, $\cot \theta = 1$ ⇒ $\frac{30,45,150,210,225,330}{1}$

GBML10

1. Over
$$0^{\circ} \le x < 360^{\circ}$$
, $\sec x = \pm 2 \implies x = 60^{\circ}$, $120^{\circ}, \underline{240^{\circ}}, \underline{300^{\circ}}$ and $\sin x = -\frac{\sqrt{3}}{2} \implies x = \underline{240^{\circ}}, \underline{300^{\circ}}$. Summing, the total is $\underline{540^{\circ}}$.

2.
$$(\tan x)(\sin y) = \left(+\frac{2}{\sqrt{5}}\right)\left(-\frac{\sqrt{5}}{3}\right) = -\frac{2}{3}$$

If $\cos z = -\frac{2}{3}$ and $180^{\circ} < z < 360^{\circ}$, then z lies in quadrant 3, $(x, y, r) = \left(-2, -\sqrt{5}, 3\right)$ and $\tan z = \frac{\sqrt{5}}{2}$.

$$\frac{x: III}{(-\sqrt{5}, -2)}$$

$$(4, -\sqrt{20})$$

MASSACHUSETTS MATHEMATICS LEAGUE FEBRUARY 2004 ROUND 3: TRIG. IDENTITIES OR INVERSES ANSWERS

A) Simplify $\frac{(\cot \theta - \cos \theta)(1 + \sin \theta)}{\cos^3 \theta}$ to the form T(θ) where T is one of the six trig functions.

and 180° < x < 360° \Rightarrow (x, y, r) = (±,2-,2,4) \Rightarrow cos x < 360° \Rightarrow cos x = ±

B) For
$$0^{\circ} \le \theta < 360^{\circ}$$
, solve $\frac{2 \tan \theta}{1 + \tan^2 \theta} = \frac{\sqrt{3}}{2}$.

٤.

C) Using principle values, express
$$\cos(\sec^{-1}\frac{3}{2}-\cos^{-1}\frac{1}{5})$$
 in simple radical form.

MML 2005

Round Three:

A. $(\tan^2 x) + 1) + \tan(x) = 1 \Rightarrow \tan(x) = 0$ (but then $\csc(x)$ undefined) OR $\tan(x) = -1$ so $\csc(x) = \pm \sqrt{2}$

B.
$$2x+1 = \frac{5}{27x+3}$$
 so $54x^2 + 33x - 2 = 0$ so $x = -2/3$ or $1/18$. Since $2x + 1$ must be in the domain of the Sin⁻¹ function, only $-2/3$ is valid.

C.
$$\frac{5}{x+2} = \pm (2x+1) + 2n\pi$$
 but x must be rational so n=0. $\frac{5}{x+2} = -(2x+1)$ yields no real solutions. $\frac{5}{x+2} = 2x+1$ gives $5 = 2x^2 + 5x + 2$ so $x = 1$ or -3 making $\frac{5}{x+2} = 2$ or -5. Only the first is in the range of Cos⁻¹ so the only solution is $\frac{1}{2}$

MM 2606

Round Three:

Right triangle has opposite side \sqrt{x} , adjacent 1, hypotenuse $\sqrt{1+x}$

$$\frac{\sin^2 \theta + (1 + \cos \theta)^2}{2\sin \theta (1 + \cos \theta)} = \frac{\sin^2 \theta + \cos^2 \theta + 1 + 2\cos \theta}{2\sin \theta (1 + \cos \theta)} = \frac{2(1 + \cos \theta)}{2\sin \theta (1 + \cos \theta)} = \frac{1}{\sin \theta}$$

C.
$$\sin(2 \cdot 2\theta) = 2\sin(2\theta)\cos(2\theta) = 2(2\sin\theta\cos\theta)(1-2\sin^2\theta) = 4\sin\theta\cos\theta(1+-2\sin^2\theta)$$
, so $A = 4$, $B = 1$, $C = -2$.

Kound 3

A) $\sin(A+B) = \sin A \cos B + \cos A \sin B = \frac{35}{37} \frac{-15}{17} + \frac{12}{47} \frac{8}{17}$

 $= \frac{-525 + 96}{629} = \frac{429}{629}$

B) $tan(\theta) = \frac{1}{\sqrt{2}}$ for an <u>acute</u> angle $\theta \to (\cos(\theta), \sin(\theta)) =$

$$(\frac{\sqrt{2}}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$

$$\cos(\theta + 45^{\circ}) = \cos(\theta)\cos(45^{\circ}) - \sin(\theta)\sin(45^{\circ}) = \frac{\sqrt{2}}{\sqrt{3}} \cdot \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{2}} = \frac{\sqrt{2} - 2}{\sqrt{6}}$$

$$BC = AB\cos(\theta + 45^{\circ}) = \frac{(\sqrt{2} + 1)(\sqrt{2} - 1)}{\sqrt{6}} = \frac{1}{\sqrt{6}} = \frac{\sqrt{6}}{\sqrt{6}}$$

O

$$c = 2x + b$$

$$b = 2\sqrt{x^2 + x}$$

Then
$$\frac{x^2 + x}{2x + 1} = \frac{b^2/4}{c} = \frac{1}{4} \cdot \frac{b}{1} \cdot \frac{b}{c} = \frac{1}{4} \tan \theta \sin \theta = \frac{1}{4} \frac{\sin^2 \theta}{\cos \theta} = \frac{1 \cos^2 \theta}{4 \cos \theta}$$

Round 3 MMC 8000

A)
$$\frac{1}{\sin 2\theta} + \frac{\cos 2\theta}{\sin 2\theta} = \frac{1 + \cos 2\theta}{\sin 2\theta} = \frac{1 + 2\cos^2 \theta - 1}{2\sin \theta \cos \theta} = \frac{\cos \theta}{\sin \theta} = \cot(\theta) = 1$$

$$\Rightarrow \theta = 45^{\circ}. 23^{\circ}$$

B) Using the double angle formula, $\sin(x) = 1 - 2\cos^2 40^\circ = -(2\cos^2 40^\circ - 1) = -\cos(80^\circ) = -\sin(10^\circ)$ The related values of 10° in quadrants II, III and IV are 170°, 190° and 350°. Since $\sin(x)$ is negative only in quadrants III and IV, $x = \underline{190^\circ}$ or 350°.

C) Let
$$A = Arccos(-n/11)$$
 and $B = Arc tan(-1/(2\sqrt{6}))$.

Then $\pi/2 < A < \pi$ (quadrant 2) and $-\pi/2 < B < 0$ (quadrant 4)

and
$$\sin(A + B) = \sin A \cos B + \sin B \cos A = \frac{\sqrt{121 - n^2}}{11} \cdot \frac{2\sqrt{6}}{5} \cdot \frac{-1}{11} = \frac{2\sqrt{6\sqrt{121 - n^2} + n}}{55}$$

Additionally, since m/11 is a cosine value, the only possible integer values of n are $1\dots 11$. Only $n=\underline{S}$ satisfies both conditions $(2\sqrt{6}\sqrt{96}+5=2\cdot 6\cdot 4+5=53)$. Thus, $2\sqrt{6}\sqrt{121-n^2} + n = 53$ and the radicand $121 - n^2$ must be 6 times a perfect square