entrega_4_scipy

July 23, 2018

1 Programación para la Bioinformática

1.1 Módulo 4: Librerías científicas en Python - Scipy - Ejercicios

1.2 Ejercicios

A continuación tenéis el único ejercicio a resolver en esta parte del módulo. Dada la especificidad de los algoritmos que se implementan en la librería Scipy, hemos seleccionado un problema más simple que los mostrados como ejemplo.

1.2.1 Ejercicio 1: Calculando los átomos en la interfaz de unión de dos proteínas

Dos proteínas A y B se unen para formar un complejo proteico. Se define la interfaz de unión entre A y B como los átomos de A que están a una distancia de 4Å (Angstroms) o menos de cualquier átomo de B. En la siguiente figura, la proteína A está representada en azul y la proteína B en naranja. Los átomos de B que están en contacto con algún átomo de A se han coloreado en verde:

A continuación, tenéis el código que tendréis que completar. Tenéis que calcular el número de átomos de A y de B que están en contacto con átomos de B y de A respectivamente y el número total de átomos en la interfaz. **Pista**: podéis utilizar la función *scipy.spatial.distance.cdist* (http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html#scipy.spatial.distance.cy y la función *numpy.where*.

```
In [1]: import numpy as np
    import os
    import scipy.spatial

def lee_coordenadas_atomo(linea):
    """Interpreta las coordenadas de una línea de un fichero PDB que empiece por
    ATOM (es un átomo)"""
    if linea.startswith('ATOM '):
        x = float(linea[30:38])
        y = float(linea[38:46])
        z = float(linea[46:54])
        return [x, y, z]

def obtiene_coordenadas(estructura):
```

```
"""Lee una estructura (fichero PDB) y obtiene las coordenadas de los
            átomos que contiene"""
            coordenadas = []
            with open(estructura) as input:
                lineas = [linea.rstrip(os.linesep) for linea in input.readlines()]
                for linea in lineas:
                    atomo = lee_coordenadas_atomo(linea)
                    if atomo:
                        coordenadas.append(atomo)
            return np.array(coordenadas)
        # Coordenadas 1 tiene las coordenadas de la proteína A en formato numpy
        coordenadas_1 = obtiene_coordenadas('data/1PPE_rec.pdb')
        # Coordenadas_2 tiene las coordenadas de la proteína B en formato numpy
        coordenadas_2 = obtiene_coordenadas('data/1PPE_lig.pdb')
        # Código a completar:
        atomos_A_B = 0
        print("Número de átomos de A en contacto con B: ", atomos A B)
        atomos_B_A = 0
        print("Número de átomos de B en contacto con A: ", atomos_B_A)
        # Finalmente, el número de átomos total será la suma de ambos:
       print("Número total de átomos en contacto: ", atomos_A_B + atomos_B_A)
Número de átomos de A en contacto con B: 0
Número de átomos de B en contacto con A: 0
Número total de átomos en contacto: 0
```