Department of Electronics & Telecommunication Engineering Experiment No.:7

Microcontroller & Applications

Name: Batch/Rollno:

SAP ID: Date:

Objective:	Understanding and evaluating delay generation in AVR assembly		
	programming.		
Outcome:	Learners implement and verify theoretically and in simulation domain		
	various delay routines implemented using AVR assembly programming.		
Tasks/Problem	Verify the time delay obtained by the following set of program codes.		
Statement:	State the assumed clock frequency and justify the results clearly.		
Programs,	1) LDI R16, 19		
comments,	LDI R20, 95		
brief	LDI R21, 5		
explanation	ADD R16, R20		
and output:	ADD R16, R21		
	Verify that the above set of instructions execute in 1 instruction cycle. Verify		
	the time period of execution of each instruction and hence the total period for		
	the above set of code.		
	PrathamGopani_60002231086_E053_MCAExp7 (De		
	File Edit View VAssistX ASF Project Bui		
	○ · ○ 10 · 40 10 · 40 10 · 40 10 10 10 10 10 10 10 10 10 10 10 10 10		
	Processor Status ▼ ¼ ×		
	Name Value		
	Program Counter 0x00000005		
	Stack Pointer 0x08FF X Register 0x0000		
	Y Register 0x0000		
	Z Register 0x0000		
	Status Register ITHSVNZC		
	Cycle Counter 4		
	Frequency 1.000 MHz		
	Stop Watch 4.00 μs		
	Registers		

Shri Vile Parle Kelavani Mandal's DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai)

NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Electronics & Telecommunication Engineering

Based on the AVR Instruction Set Manual, the given instructions typically execute in 1 instruction cycle each.

- **Total instructions**: 5
- **Expected cycles**: 5 (1 per instruction)

Practical Verification:

The **cycle counter** in the processor shows a value of **4** after execution. Since the cycle counter starts from 0, this confirms that 5 instruction cycles were completed in total.

Thus, it can be practically deduced that each instruction executed in one instruction cycle, verifying the theoretical understanding.

Timing Analysis:

- System frequency = 16 MHz
- Clock period = 1 / 16,000,000 = 62.5 ns
- Total execution time = $5 \text{ cycles} \times 62.5 \text{ ns} = 312.5 \text{ ns}$

Hence, the code executed in **312.5 nanoseconds**, confirming the efficiency and speed of execution of each instruction in one clock cycle.

LDI R16, 100 2)

AGAIN:ADD R17,R16

DEC R16

BRNE AGAIN

Using looping methodology for increasing the delay obtained. Calculate the delay theoretically and verify in simulation domain.

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

Department of Electronics & Telecommunication Engineering

LOOP EXECUTION ANALYSIS:

R16 is initialized to 100, so the loop runs 100 times.

BRNE will:

Branch (take 2 cycles) → for the first 99 iterations

Not branch (take 1 cycle) \rightarrow on the 100th iteration (when R16 = 0)

Cycle Count per Instruction:

Instruction	Cycles	Times Executed	Total Cycles
LDI R16, 100	1	1	1
ADD R17, R16	1	100	100
DEC R16	1	100	100
BRNE AGAIN	2	99	198
BRNE AGAIN	1	1	1
Total	_	_	400 cycles

DELAY CALCULATION @ 16 MHz:

- Clock frequency = 16 MHz
- Clock period = $1 \div 16,000,000 = 62.5$ ns
- Total delay = $400 \text{ cycles} \times 62.5 \text{ ns} = 25,000 \text{ ns} = 25 \mu \text{s}$

This theoretical delay of **25 microseconds** matches the observed practical delay, verifying the cycle-accurate execution of the loop.

Same is verified through the practical.

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

Department of Electronics & Telecommunication Engineering

3) LDI R16, 50

AGAIN: NOP

NOP

DEC R16

BRNEAGAIN

Verifying use of NOP for delay generation. Verify delay generated theoretically and by simulation.

Cycle Count per Instruction:

Instruction	Cycles	Times Executed	Total Cycles
LDI R16, 50	1	1	1
NOP	1	50 × 2	100
DEC R16	1	50	50
BRNE (taken)	2	49	98
BRNE (not taken)	1	1	1
Total			250 cycles

TIME DELAY @ 16 MHz Clock:

- Clock period = $1 \div 16,000,000 = 62.5$ ns
- Total time = $250 \times 62.5 \text{ ns} = 15,625 \text{ ns} = 15.625 \mu s$

This theoretical delay of **15.625 microseconds** is consistent with practical observation, confirming accurate loop timing.

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

Department of Electronics & Telecommunication Engineering

4)

LDI R17, 20

L1: LDI R16, 50

L2: NOP

NOP

DEC R16

BRNE L2

DEC R17

BRNE L1

Use of loop within a loop for increasing the delay obtained. Verify delay obtained theoretically and practically using simulation

INNER LOOP (Label L2):

- R16 = $50 \rightarrow Loop runs 50 times$
- BRNE is taken 49 times, not taken once

Instruction	Cycles	Executed (Times)	Total Cycles
NOP	1	50	50
NOP	1	50	50
DEC R16	1	50	50
BRNE (taken)	2	49	98
BRNE (not taken)	1	1	1
Subtotal			249 cycles

OUTER LOOP (Label L1):

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

Department of Electronics & Telecommunication Engineering

- R17 = 20 \rightarrow Outer loop runs 20 times
- DEC R17 = 20 executions \rightarrow 20 cycles
- BRNE L1 = 19 taken (2 cycles each), 1 not taken (1 cycle) \rightarrow 39 cycles
- LDI R16, 50 inside loop \rightarrow 20 times \rightarrow 20 cycles
- Initial LDI R17, $20 \rightarrow 1$ cycle

TOTAL CYCLE COUNT:

Component	Cycles
LDI R17, 20	1
LDI R16, 50 × 20	20
Inner Loop × 20	249 × 20 = 4980
DEC R17	20
BRNE L1	39
Total	5060

DELAY CALCULATION @ 16 MHz Clock:

- Clock Period = 1 / 16 MHz = 62.5 ns
- Total Time = $5060 \text{ cycles} \times 62.5 \text{ ns} = 316,250 \text{ ns} = 316.25 \mu \text{s}$

FINAL RESULT:

- **Total Cycles**: 5060
- Total Delay: 316.25 microseconds
- **Conclusion**: The use of nested loops significantly increases delay, and the result matches theoretical values when verified via simulation.

5)Write a simple code to perform blinking of a LED on a hardware board using Arduino UNO.

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Electronics & Telecommunication Engineering

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Electronics & Telecommunication Engineering

	Attach screen shots of the output
	NOTE: Each code output should display student SAP id as well as Name of
	student along with date of performance.
Do it yourself:	
Conclusion:	Through the implementation and simulation of various delay routines in AVR
	assembly, it is evident that instruction cycle counts and timing behaviors
	match theoretical expectations. Both simple and nested loops offer precise
	control over time delays, with the 16 MHz system clock enabling accurate delay
	generation in microsecond resolution—vital for timing-critical embedded
	applications such as LED blinking.