WFA8433-Natural Resource & Conservation Decision Making

Class 5 Introduction to structured decision making in natural resources management; History, rational, and applications of decision making in natural resources

Housekeeping

- Suggested readings:
 - Conroy & Peterson Chapter 1

- Assignment(s): Read McFadden et al.
- Group work: If time allows discuss projects
- Netica Limited version is sufficient

Free Version

o use the free version of Netica, download the regular Application, leave the password dialog box mpty and click on Limited Mode'. The free demo version is full-featured but limited in model siz ontact us for full details.

There is uncertainty surrounding most decisions!

A decision model assimilates:

- Decision
 Alternatives
- Understanding
- Uncertainty
- Utility→Objectives

A more complicated tree, from Class 4...

Which Summer internship offer should I take?

- Decision alternatives
 - -field experience or lab experience
- Uncertainty
 - -How many hours will I get to work
 - -How fun will it be?

ANOTHER APPLIED EXAMPLE

How should I get home? Objective: minimize impact on spouse Utility: min(Time to get home)

How should I get home from work?				
Route	Distance (miles)			
A	7.2	Objective:		
В	7.2	Minimize travel		
С	7.4	time!		
D	11.4			

Decision model

Decision Alternatives

• 4 routes

Uncertainty

• Accounted for uncertainty in travel times

Utility→Objectives

• Minimize travel time

Challenge for you • Can you think of an efficient way to get probabilities for ALL 80 paths?

What is NR management?

- Taking an action to obtain some desired resource outcome
- Requires:
 - A range of alternative actions that can be taken
 - -An objective we're trying to achieve

NR Management means making a decision

Decision definition: "an irrevocable commitment of resources"

- Examples of decisions
 - -Stock a reservoir
 - Set harvest regulations
 - Limit public access
- Examples of not decisions
 - Set up a task force to study a problem
 - Establish a conservation priority list

Example Natural Resource Decision

- Objective: increase habitat availability to increase fish population
- Decision: minimum flows
- · Model:
 - (Good) If I increase flows, then habitat increases
 - (Better) If I increase flows by X cms then habitat availability will increase by Y %
 - (Even better) If I increase flows by X cms, habitat availability will increase by Y % and the population will increase by Z%

Fundamental assumption of this course: <u>All management is based on models!</u>

Problems with Black Box Approaches to Management

- Generally not explicit or transparent
- Many unidentified and unstated assumptions
- Not transferable or repeatable
- No formal learning component
- MANY uncertainties

Sources of uncertainty on NR decision making

- Environmental uncertainty due to environmental and demographic variation
- Statistical uncertainty due to the use of sample data to estimate parameters
- Ecological (system) uncertainty due to incomplete understanding of system dynamics

Elements of SDM & ARM

- · Set of decision alternatives
- Prediction of outcome to each action
- · Decision objective
- Additional elements required for ARM:
 - A sequence of decisions through time
 - Set of predictive models
 - Discrete set or continuous set
 - Measure of relative confidence applied to each model
 - Monitoring program to assess model predictions

Adaptive resource management

- · Is not unfocused trial and error
 - The decision components (objectives, models, weights) provide clear decision direction
- Is not experimentation
 - Learning is valued, but only to the extent that management is measurably improved
- Does not necessarily imply different decisions triggered by changing resource or environmental conditions
 - Adaptation is all about change in the model credibility weights
- Is not a consensus tool for resolving different stakeholder values
 - Competing objectives must be resolved externally of AM

Adaptive resource management

Iterated decision making in the face of structural uncertainty, with a focus on its reduction

B. K. Williams

History

Emergence of SDM/ARM

- 1890: Chamberlin
 - "The method of multiple working hypotheses"
- 1950s-60s: Bellman and others
- Theory of optimal control of uncertain dynamic systems
- 1970s-80s: Walters, Holling, Hilborn
- Theory 8 model development for regulation of fisheries 1980s-90s: Williams, Johnson, Nichols, 8 others
- First widely successful wildlife management application
- Currently:

Applications development in endangered species reintroduction, habitat 8 landscape management, etc.

Why Use SDM/ARM

- Transparency & Stakeholder involvement
- Clarify connection of decisions to objectives
- 3. Retain institutional knowledge
- Integration of Monitoring to Decision

Why involve stakeholders?

- Natural resource decisions
 - trust resources
 - multiple uses and competition
- Increase transparency
- Identify values and concerns among users
- Minimize or resolve conflicts
- Build public support

Public Trust Resources

The North American Model

- -Belong to everyone
- -Can't sell wild deer
- -Allocate by law
- -Kill for legitimate reasons (food, fur, protection)
- "Science based policy"
- -Everyone should have access

Reality check: Decision makers & Stakeholders

- · All decision makers are stakeholders
- Not all stakeholders are decision makers
- Decision makers
 - legal authority/mandate
 - management resources
- · Stakeholder analysis

Question for thought: in collaborative efforts, do decision makers give-up decision making authority to stakeholders? To scientists?

Clarify connection of decisions to objectives

- Many times management actions are implemented that do not meet objectives
- "We will monitor the population"

Integration of Monitoring to Decision

- Surveillance & trend monitoring
- React to problems after they happen
- Poor use of information
 - State dependent decisions?
- Put off decision until more information is available (paralysis by analysis)

"We know now how to make good decisions, while always striving to do better with future decisions"

Remember

A good result may not always result from a specific decision, but if you follow a good process

- 1. Do better in the long run
- 2. Be able to defend process when results are poor

Bringing SDM/AM into DOI agencies

Formally adopted by the USDOI for managing federal resources

- · DOI Guidebook on adaptive management
- Training: Courses on modeling, structured decision making, adaptive management at FWS National Conservation Training Center
- FWS Refuge System
 - Refuge Cooperative Research Program
- Adaptive Management Consultancy
- · Informal efforts
 - Adaptive Management Conference Series
 - ARM for TES workshops

Adaptive resource management?

"<u>Learning by doing</u>, and adapting based on what's learned"

"Management in the face of uncertainty, with a focus on the reduction of that uncertainty"

"Management that recognizes uncertainty in its consequences and seeks to improve understanding," so as to improve decision making."

A special case of SDM

Learning by doing...
...reduction of uncertainty...
...to improve understanding...

Need a <u>recurrent</u> application of management actions over time (or space) to:

- Recurrent decision
- Incorporate structural uncertainty by models
- Reduce <u>structural</u> <u>uncertainty by</u> <u>monitoring</u>

Uncertainty has to be high!

Without uncertainty we cannot learn

HOW DO WE LEARN BY DOING?

We could flip the coin many times and calculate the probability of heads.

We can use each flip to learn... Learning by doing!

Hypotheses

- 1. Fair: probability of head = 50%
- 2. Unfair: probability of heads = 30%

<u>Each</u> flip provides additional information to learn from.

We begin <u>completely uncertain</u>
about each hypothesis.

Hypothesis	Prior Probability
Fair coin	0.5
Unfair coin	0.5

