EE538 Neural Networks

Homework 1

Due: 11:59 pm, March 19th, 2021

Let's assume N_1 samples are randomly distributed with a probability density $p_1(x, y)$, N_2 samples with $p_2(x, y)$, and N_3 samples with $p_3(x, y)$ in a (x, y) 2-dimensional space.

- 1. For the case of $p_1(x,y) = 1/\pi$ for $x^2 + y^2 < 1$, $p_2(x,y) = 1/\pi$ for $(x-2)^2 + y^2 < 1$, and $p_3(x,y) = 1/\pi$ for $x^2 + (y-2)^2 < 1$ and also $N_1 = N_2 = N_3 = 100$,
 - (a) Generate the data and make scatter plots (one dot for each sample on a 2-dimensional space) of all samples. (5 points) Hint: For $p_1(x, y)$, you may generate samples (x,y) with uniform distribution for -1 < x < 1 and -1 < y < 1, and accept samples with $x^2 + y^2 < 1$ only.
 - (b) Develop a computer code for the clustering with Competitive learning and try to cluster into 3 clusters. You may use any programming language with simple mathematical and vector-matrix operations, but NOT allowed to use high-level packages. Show the learning curve, i.e., error values as a function of the learning epoch (5 points), and the final clustered results (5 points) [Hint: You may use different color for each cluster in the 2-dimensional scatter plot.]
 - (c) Repeat (b) with 2 clusters. (5 points)
 - (d) Repeat (b) with 4 clusters. (5 points)
- 2. Repeat Problem 1 for the case of $p_1(x,y) = 1/\pi$ for $x^2 + y^2 < 1$, $p_2(x,y) = 1/4\pi$ for $(x-3)^2 + y^2 < 4$, and $p_3(x,y) = 4/\pi$ for $x^2 + (y-1.5)^2 < 0.25$. (25 points)
- 3. Repeat Problem 1 with $N_1 = N_3 = 100$ and $N_2 = 200$. (25 points)
- 4. Repeat Problem 2 with $N_1 = N_3 = 100$ and $N_2 = 200$. (25 points)