EQ2330 – Image and Video Processing

Exercise #6: Wavelets

Unless stated otherwise, the problems are from R. C. Gonzales and R. E. Woods. *Digital Image Processing*, (second ed.), Prentice Hall, Upper Saddle River, New Jersey, 2002.

Problems to be solved in the classroom

1. Problem 7.4

Prove that the following filters from Table 7.1 form perfect reconstruction filter banks:

- (a) Quadrature mirror filter (QMF)
- (b) Orthonormal filter

2. **Problem 7.7**

Draw a two-dimensional four-band filter bank decoder to reconstruct input x(m,n) in Fig. 7.5.

Filter	QMF	CQF	Orthonormal
$H_0(z)$	$H_0^2(z) - H_0^2(-z) = 2$	$H_0(z)H_0(z^{-1}) + H_0^2(-z)H_0(-z^{-1}) = 2$	$G_0(z^{-1})$
$H_1(z)$	$H_0(-z)$	$z^{-1}H_0(-z^{-1})$	$G_1(z^{-1})$
$G_0(z)$	$H_0(z)$	$H_0(z^{-1})$	$G_0(z)G_0(z^{-1}) + G_0(-z)G_0(-z^{-1}) = 2$
$G_1(z)$	$-H_0(-z)$	$zH_0(-z)$	$-z^{-2K+1}G_0(-z^{-1})$

TABLE 7.1Perfect reconstruction filter families.

3. Exam, March 2011: Multiresolution Processing

Consider the following lifting implementation for multiresolution image processing.

Figure 1: Lifting implementation for multiresolution image processing.

- (a) Is the resulting multiresolution representation critically sampled? Explain.
- (b) Determine the transform matrix T for any lifting implementation with parameter a such that

$$\begin{bmatrix} l_n \\ h_n \end{bmatrix} = T \begin{bmatrix} x_{2n} \\ x_{2n+1} \end{bmatrix}. \tag{1}$$

Show that this is an orthonormal wavelet for any a > 0.

(c) Even and odd samples x_{2n} and x_{2n+1} are correlated as given by the covariance matrix

$$C = \frac{1}{5} \begin{bmatrix} 14 & -18 \\ -18 & 41 \end{bmatrix}. \tag{2}$$

- Determine the parameter a > 0 of the lifting implementation such that the even and odd samples are decorrelated by the lifting implementation. Hint: One eigenvalue of the covariance matrix is $\lambda_1 = 1$.
- (d) If we choose a=1 for the lifting implementation, we obtain the well-known Haar wavelet. Can the Haar wavelet achieve a better energy compaction for signals with the covariance matrix C as given in (2)? Explain your answer and start by clarifying the term "energy compaction".
- (e) Construct the synthesis filters in the lifting implementation that allow for perfect reconstruction for any a > 0. Hint: Use the advantage of the lifting implementation.