MATH1023 Homework, Part 3

Roman Maksimovich, ID: 21098878

Due date: Fri, Sep 27

PLEASE READ

When proving $x_n \to_{n \to \infty} l$ using the formal definition of limit, it is sufficient to show that for every $\varepsilon > 0$ there exists N, such that $|x_n - l| < \varepsilon$ for n > N. It is not required to provide the exact value for N. For example, proving that $\frac{1}{\sqrt{n}} \to 0$ by saying that $\frac{1}{n} < \delta^2$ for sufficiently large n for all $\delta > 0$ (with a formal definition of "sufficiently large") is sound mathematical logic based on the convergence of $\frac{1}{n}$ to 0, and I will appeal if you count this as a mistake. Providing exact values of N is redundant and it runs against the whole intuition of limit — that it doesn't matter how many first terms to exclude, as long as the desired behavior is achieved starting from some point.

We will now give a rigorous definition for "sufficiently large", in order to simplify our proofs.

<u>Definition 1.</u> Let P(n) be a predicate on the set of natural numbers \mathbb{N} , that is, P(n) is either tue or false for all n. We say that P(n) holds for sufficiently large n, if there exists $N \in \mathbb{N}$ such that n > N implies the truth of P(n).

Note 1. We will assume throughout the proofs that for all $a \in \mathbb{R}$, a < n for sufficiently large n, and for all a > 0, $\frac{1}{n} < a$ for sufficiently large n. These two statements are trivial and they follow from the formal convergence of $\frac{1}{n}$ to 0.

Note 2. The definition of limit can be re-formulated as follows:

$$\lim_{n\to\infty}x_n=l \Longleftrightarrow \text{for all } \varepsilon>0, \, |x_n-l|<\varepsilon \text{ for sufficiently large } n.$$

In fact, this definition is perfectly identical to the traditional one, but it is more convenient in proofs.

Lemma 1. If predicates P(n) and Q(n) both hold for sufficiently large n, then their conjunction also holds for sufficiently large n.

Proof: Let N_P be such that $n > N_P$ implies P(n), and N_Q be such that $n > N_Q$ implies Q(n). Take $N = \max\{N_P, N_Q\}$. Now, for n > N we have both $n > N_P$ and $n > N_Q$, and thus the conjunction $P(n) \wedge Q(n)$ holds.

Exercise 1.2.1 (1). Explain $\frac{1}{2}n^2 < n^2 + (-1)^n n - 5 < 2n^2$ for sufficiently large n. *Solution:* The left inequality is equivalent to

$$(-1)^{n+1}n + 5 < \frac{1}{2}n^2.$$

For sufficiently large n, we have 5 < n and 4/n < 1 (since $4/n \to 0$). Thus,

$$(-1)^{n+1}n + 5 \le \left| (-1)^{n+1}n + 5 \right| \le n + 5 < 2n = \frac{2n^2}{n} = \frac{4}{n} \cdot \frac{1}{2}n^2 < \frac{1}{2}n^2.$$

It immediately follows that

$$(-1)^n n - 5 \le \left| (-1)^n n - 5 \right| = \left| (-1)^{n+1} n + 5 \right| < \frac{1}{2} n^2 < n^2,$$

$$n^2 + (-1)^n n - 5 < \frac{1}{2}n^2 < 2n^2,$$

proving the right inequality as well.

Exercise 1.2.2 (3). Rigorously find the limit of

$$\frac{2n^2 - 3n + 2}{3n^2 - 4n + 1}$$

<u>Solution</u>: We claim that the limit is 2/3. To prove this, consider an arbitrarily small $\varepsilon > 0$. For sufficiently large n, we have

$$\left|\frac{2n^2-3n+2}{3n^2-4n+1}-\frac{2}{3}\right|=\frac{\frac{4}{3}n-\frac{1}{3}}{3n^2-4n+1}<\frac{2n}{2n^2}=\frac{1}{n},$$

which is less than ε for sufficiently large n, since $\frac{1}{n} \underset{n \to \infty}{\longrightarrow} 0$. Hence, by Lemma 1 the given sequence indeed tends to $\frac{2}{3}$.

Exercise 1.2.2 (6). Rigorously find the limit of

$$\frac{\sqrt{n}+a}{n+b}.$$

<u>Solution:</u> We claim that the limit is 0. Consider an arbitrary $\delta>0$. For sufficiently large n, we have $0<\sqrt{n}+a<2\sqrt{n},\ n+b>\frac{1}{2}n,\ \text{and}\ 1/n<(\delta/4)^2$. Taking N to be the maximum of the respective thresholds $(N=\max\{N_1,N_2,N_3\})$, we can see that all three properties hold for n>N. Now, for such n we have

$$\left|\frac{\sqrt{n}+a}{n+b}-0\right| = \frac{\sqrt{n}+a}{n+b} < \frac{2\sqrt{n}}{\frac{1}{2}n} = 4\frac{1}{\sqrt{n}} < \delta,$$

and we are done.

Exercise 1.2.4 (3). Rigorously find the limit of

$$\sqrt{n+a} - \sqrt{n+b}$$

<u>Solution</u>: Let $\delta > 0$ be arbitrary. Without loss of generality, assume that a > b. Now, for sufficiently large n we have

$$\left|\sqrt{n+a}-\sqrt{n+b}-0\right| = \frac{\left(\sqrt{n+a}-\sqrt{n+b}\right)\left(\sqrt{n+a}+\sqrt{n+b}\right)}{\sqrt{n+a}+\sqrt{n+b}} = \frac{a-b}{\sqrt{n+a}+\sqrt{n+b}} < \frac{2(a-b)}{\sqrt{n}} < \delta,$$

because

$$\frac{1}{n} < \left(\frac{\delta}{2(a-b)}\right)^2$$

for sufficiently large n. Therefore, $\sqrt{n+a}-\sqrt{n+b}\underset{n\to\infty}{\longrightarrow}0$.

If we have a < b, then we write

$$\sqrt{n+a} - \sqrt{n+b} = -\left(\sqrt{n+b} - \sqrt{n+a}\right) \underset{n \to \infty}{\longrightarrow} -0 = 0,$$

reducing the problem to a case we already considered.

Exercise 1.2.7. Rigorously prove $\lim_{\substack{n \to \infty \\ n!}} \frac{n^{5.4}}{n!} = 0$. Then prove $\lim_{\substack{n \to \infty \\ n \to \infty}} \frac{n^p}{n!} = 0$. Solution: We will first prove that $\lim_{\substack{n \to \infty \\ n \to \infty}} \frac{n^{5.4}}{n!} = 0$, where m is a positive integer. Let $\delta > 0$. We write

$$\begin{split} \frac{n^m}{n!} &= \frac{n}{n} \cdot \frac{n}{n-1} \cdot \ldots \cdot \frac{n}{n-(m-1)} \cdot \frac{1}{(n-m)!} \\ &= \left(1 + \frac{1}{n-1}\right) \left(1 + \frac{1}{n-2}\right) \ldots \left(1 + \frac{1}{n-(m-1)}\right) \cdot \frac{1}{(n-m)!} \\ &\leq m \left(1 + \frac{1}{n-m}\right) \cdot \frac{1}{(n-m)!}. \end{split}$$

For sufficiently large $n, \frac{1}{(n-m)!}$ will be less than $\delta/(2m)$ (since $\frac{1}{(n-m)!} \leq \frac{1}{n-m}$) and $\frac{1}{n-m}$ will be less than 1. Consequently, we have

$$m\bigg(1+\frac{1}{n-m}\bigg)\cdot\frac{1}{(n-m)!} < m\cdot(1+1)\cdot\frac{\delta}{2m} = \delta$$

for sufficiently large n, which proves that $\frac{n^m}{n!}$ approaches 0.

We will now return to the solution. Let $\delta > 0$ be freely chosen. Write

$$\frac{n^{5.4}}{n!} \le \frac{n^6}{n!} < \delta,$$

where the last inequality holds for sufficiently large n since $\frac{n^6}{n!} \to 0$. This proves that $\frac{n^{5.4}}{n!}$ also tends to 0.

As for the general case $p \in \mathbb{R}$, we employ a similar tactic. There is a positive integer m such that p < m. Similarly, we have

$$\frac{n^p}{n!} < \frac{n^m}{n!} < \delta$$

for sufficiently large n, where $\delta > 0$ is arbitrarily chosen in advance. Hence, $\frac{n^p}{n!} \to 0$.

Exercise 1.2.9. Rigorously prove $\lim_{n\to\infty}\frac{n!}{n^n}=0.$ Solution: Let $\varepsilon>0$ be arbitrary. We simply write

$$\frac{n!}{n^n} = \frac{1}{n} \cdot \frac{2}{n} \cdot \ldots \cdot \frac{n-1}{n} \cdot \frac{n}{n} \leq \frac{1}{n} < \varepsilon$$

for sufficiently large n, since $1/n \to 0$. Hence the given limit is also 0.

Exercise 1.2.10. Prove that if $\lim_{n\to\infty}x_n=l$, then $\lim_{n\to\infty}|x_n|=|l|$. Solution: Consider an $\varepsilon>0$. For sufficiently large n, we have $|x_n-l|<\varepsilon$. Additionally, we have the triangle inequalities for x_n and l:

$$\begin{split} |x_n| & \leq |l| + |x_n - l| \Longrightarrow |x_n| - |l| \leq |x_n - l|, \\ |l| & \leq |x_n| + |l - x_n| \Longrightarrow |l| - |x_n| \leq |x_n - l|. \end{split}$$

Combining these two inequalities, we see that $||x_n| - |l|| \leq |x_n - |l||$. Finally, we write

$$||x_n|-|l||\leq |x_n-l|<\varepsilon$$

for sufficiently large n, proving that $|x_n| \underset{n \to \infty}{\to} |l|$.

Exercise 1.2.13. Suppose $\lim_{n\to\infty} x_n = 0$.

- 1. If $x_n \ge 0$, prove that $\lim_{n \to \infty} \sqrt[n]{x_n} = 0$.
- 2. If $x_n \ge 0$ and p > 0, prove that $\lim_{n \to \infty} x_n^p = 0$.
- 3. Prove that $\lim_{n\to\infty} \sqrt[3]{x_n} = 0$.

Solution:

1. Let $\delta > 0$. Starting at some index, we have $x_n < \delta^2$, by the definition of convergence. Then, starting at the same index, we have

$$\sqrt{x_n} < \sqrt{\delta^2} = \delta$$
,

and we are done.

- 2. For sufficiently large n, we have $x_n < \delta^{\frac{1}{p}}$ and $x_n^p < \delta$, where $\delta > 0$ is freely chosen in advance. Therefore, $x_n^p \to 0$.
- 3. For any $\delta > 0$, we have $|x_n| < \delta^3$ starting at some index n = N. Thus, we have $\left|\sqrt[3]{x_n}\right| = \sqrt[3]{|x_n|} < \delta$ starting from the same index N.

Exercise 1.2.16. For a > 0, by taking $x_n = y_n - l$ in Example 1.2.13 and Exercise 1.2.15, and using Exercise 1.2.11, rigorously argue that

$$\lim_{n \to \infty} y_n = l \Longrightarrow \lim_{n \to \infty} a^{y_n} = a^l.$$

<u>Solution:</u> With Example 1.2.13 and Exercise 1.2.15 at hand (Exercise 1.2.15 follows trivially from Example 1.2.13 by cosidering b=1/a and arguing that $\lim_{n\to\infty}a^{x_n}=\lim_{n\to\infty}\left(\frac{1}{b}\right)^{x_n}=1/\left(\lim_{n\to\infty}b^{x_n}\right)=1$), we can conclude that for $x_n\to 0$ and a>0 we have $a^{x_n}\to 1$. Now assume that $y_n\to l$. Defining x_n as y_n-l , we see that $x_n\to 0$ and conclude that $a^{x_n}\to 0$. Finally, by using Exercise 1.2.11, we write

$$a^{y_n} = a^{x_n + l} = a^{x_n} \cdot a^l \to 1 \cdot a^l = a^l$$

and we are done.

Exercise 1.2.19. Prove that if a sequence x_n converges to l, then any subsequence x_{n_k} also converges to l.

<u>Solution:</u> Consider an arbitrary $\varepsilon > 0$. Then, since $x_n \to l$, there exists $N \in \mathbb{N}$ such that $|x_n - l| < \varepsilon$ for all n > N. Take K = N. Now, for all k > K, we have $n_k \ge k > N$, and thus

$$\left|x_{n_k} - l\right| < \varepsilon,$$

q.e.d.

Exercise 1.2.21. Suppose two sequences x_n and y_n satisfy $x_n = y_{n+K}$ for a constant integer K and sufficiently large n. Prove that $\lim_{n \to \infty} \text{ exists}$ iff $\lim_{n \to \infty} y_n$ exists and the two limit values are equal. Solution: Suppose that for all n > M, we have $x_n = y_{n+K}$. Let $l \in \mathbb{R}$ be arbitrary. Assume, for now, that $x_n \xrightarrow[n \to \infty]{} l$. We will prove that y_n approaches l as well. Consider some $\varepsilon > 0$. Then, there is an integer N such that $|x_n - l| < \varepsilon$ for n > N. By taking $N' = \max\{N + K, M + K\}$, we have

$$|y_n - l| = |x_{n-K} - l| < \varepsilon,$$

for n>N', since $n-K>N'-K\geq N$. This proves that y_n approaches l. Conversely, an analogical argument proves that if y_n converges to l, then x_n also converges to l. Therefore, we have

$$x_n \underset{n \to \infty}{\longrightarrow} l \iff y_n \underset{n \to \infty}{\longrightarrow} l,$$

which proves the desired statement. Indeed, if $\lim_{n\to\infty} x_n$ exists and is equal to l, then $\lim_{n\to\infty} y_n$ anso exists and is equal to l, and vice versa.

Exercise 1.2.22 (1). Prove that the following is equivalent to the definition of $\lim_{n\to\infty} x_n = l$:

For any
$$1>\varepsilon>0,$$
 there is $N,$ such that $n>N$ implies $|x_n-l|<\varepsilon.$

<u>Solution:</u> It is clear that the definition of limit implies Condition 1, because the latter is just a restriction of the former. If something holds for all $\varepsilon>0$, it holds for all $1>\varepsilon>0$ as well. Now, let us prove that if the above condition holds, then $x_n \underset{n\to\infty}{\to} l$. Let $\varepsilon>0$ be arbitrary, and define $\delta=\min\left\{\varepsilon,\frac{1}{2}\right\}$. Now, by the condition we assumed, there is a number N such that $|x_n-l|<\delta$ for n>N. Finally, for n>N we have

$$|x_n-l|<\min\left\{\varepsilon,\frac{1}{2}\right\}\leq\varepsilon,$$

and we are done.

Exercise 1.2.23. Which are equivalent to the definition of $\lim_{n\to\infty} x_n = l$?

- 1. For $\varepsilon = 0.001$, we have N = 1000, such that n > N implies $|x_n l| < \varepsilon NO$.
- 2. For any $0.001 > \varepsilon > 0$, there is N, such that n > N implies $|x_n l| < \varepsilon \text{YES}$.
- 3. For any $\varepsilon > 0.001$, there is N, such that n > N implies $|x_n l| < \varepsilon NO$.
- 4. For any $\varepsilon > 0$, there is a natural number N, such that n > N implies $|x_n l| < \frac{1}{2}\varepsilon \text{YES}$.
- 5. For any $\varepsilon > 0$, there is N, such that n > N implies $|x_n l| < 2\varepsilon^2 \text{YES}$.
- 6. For any $\varepsilon > 0$, there is N, such that n > N implies $|x_n l| < \varepsilon + 1 NO$.
- 7. For any $\varepsilon > 0$, we have N = 1000, such that n > N implies $|x_n l| < \varepsilon NO$.
- 8. For any $\varepsilon > 0$, there are infinitely many n, such that $|x_n l| < \varepsilon NO$.
- 9. For infinitely many $\varepsilon > 0$, there is N, such that n > N implies $|x_n l| < \varepsilon NO$.
- 10. For any $\varepsilon > 0$, there is N, such that n > N implies $l 2\varepsilon < x_n < l + \varepsilon \text{YES}$.