Sampling and Inference for Beta Neutral-to-the-Left Models of Sparse Networks

Benjamin Bloem-Reddy, Adam Foster, Emile Mathieu, Yee Whye Teh Department of Statistics, University of Oxford

Random graphs

- \blacktriangleright Ends of edges $\mathbf{Z}_n = Z_1, ..., Z_n$
- \blacktriangleright Number of vertices K_n
- ightharpoonup Arrival time of jth vertex $T_i := \inf\{n : Z_n = j\}$
- ightharpoonup Degree of jth vertex $d_{i,n}$
- ▶ Degree counts $m_n(d) := |\{j : d_{j,n} = d\}|$

Sparsity means $K_n = O(n^{1/(1+\sigma)})$ for $0 \le \sigma < 1$.

The asymptotic degree distribution has power law tail with exponent $\eta > 1$ if

$$\frac{m_n(d)}{K_n} \xrightarrow[n \to \infty]{p} L(d)d^{-\eta} , \qquad (1)$$

for slowly varying function L(d).

For sparse graphs, $\sigma = 0 \leftrightarrow \eta > 2$ and $\sigma > 0 \leftrightarrow \eta \in (1,2)$.

Empirical properties of temporal networks

SNAP [1] includes real-world temporal networks. Ask Ubuntu dataset has 159,316 and 964,437 edges. Empirically $K_n = O(n)$ and $\hat{\eta} \approx 2.14$ (estimated using [2]).

Figure 1: Ask Ubuntu arrival process (left) and node degree distribution (right)

Models

Edge exchangeable models [3] [4] include **Exchangeable Gibbs** partitions and Pitman-Yor process (PYP).

Preferential attachment (PA) models include Yule-Simon (YS) model.

A Beta Neutral-to-the-left model (BNTL) [5] is parameterized by $\alpha \in (-\infty, 1)$ and arrival distribution Λ_{ϕ} on \mathbb{N}^{∞} . Distribution on \mathbf{Z} is

$$(T_1, T_2, ...) \sim \Lambda_{\phi}$$
 (2)
 $Z_{n+1} | \mathbf{Z}_n, \mathbf{T} = \begin{cases} K_{n+1} \text{ w.p. } 1 \\ & \end{cases}$ if $n+1 = T_{K_{n+1}}$ (3)

Network properties

	Growth rate	Degree exponent, η
Ask Ubuntu	Linear.	$\hat{\eta} = 2.14$
All SNAP datasets	Linear and sublinear.	$\hat{\eta} \in (1.5, 3)$
Edge exchangeable models	Sublinear. $K_n = o(n)$	$\eta \in (1,2)$
Yule–Simon model	Linear. $\Delta_j \overset{\text{i.i.d.}}{\sim} \text{Geom}(\beta)$	$\eta \in (2, \infty)$
BNTL models	$f T$ has law Λ_ϕ	$\eta \in (1, \infty)$

Inference [6]

BNTL models have tractable inference due to the factorisations

$$\mathbb{P}_{\alpha,\phi}(\mathbf{Z}_n) = \mathbb{P}_{\alpha}(\mathbf{Z}_n|\mathbf{T}_{K_n})\Lambda_{\phi}(\mathbf{T}_{K_n})$$
, (4)

$$\mathbb{P}_{\alpha}[G(\mathbf{Z}_n)|\mathbf{T}_{K_n}] = \frac{\Gamma(d_{1,n} - \alpha)}{\Gamma(n - K_n \alpha)} \prod_{j=2}^{K_n} \frac{\Gamma(T_j - j\alpha)\Gamma(d_{j,n} - \alpha)}{\Gamma(T_j - 1 - (j-1)\alpha)\Gamma(1 - \alpha)}, \quad (5)$$

in particular the degree sequence $\mathbf{d}_n := (d_{1,n}, \dots, d_{K_n,n})$ is a sufficient statistic for α conditional on \mathbf{T}_{K_n} .

Observation	Unobserved variables
End of edge sequence \mathbf{Z}_n	α, ϕ, Ψ_{K_n}
Vertex arrival-ordered graph	$lpha,\phi,\mathbf{\Psi}_{K_n},\mathbf{T}_{K_n}$
Unlabeled graph	$lpha,\phi,\mathbf{\Psi}_{K_n},\mathbf{T}_{K_n}$, $\sigma[K_n]$

Variable Gibbs sampling scheme

α	Slice sampling
ϕ	Depends on family Λ_ϕ
	Conjugate updates possible e.g. $\Delta_j \sim Geom(\beta)$
$\mathbf{\Psi}_{K_n}$	$ \Psi_j \mathbf{Z}_n, \mathbf{\Psi}_{\backslash j} \sim Beta(d_{n,j}-\alpha, \bar{d}_{n,j-1}-(j-1)\alpha)$
	where $ar{d}_{n,j} = \sum_{i=1}^j d_{j,n}$, marginalise if \mathbf{Z}_n not observed
\mathbf{T}_{K_n}	Assume Markov structure
	Simple update for T_j – can't move past neighbours
$\sigma[K_n]$	Swap proposal probability is cheap

For massive graphs with \mathbf{Z}_n observed, maximum a posterior (or maximum likelihood) estimates for α, ϕ computable from (4).

Experiments

Gibbs sampler accuracy on synthetic data (500 edges)

Gen. arrival distn.	Inference model	$ \hat{\alpha} - \alpha^* $	$ \mathbf{\hat{S}} - \mathbf{S}^* $	Pred. log-lik.
$\mathcal{PYP}(1.0, 0.75)$	$\overline{(au, \mathcal{PYP}(heta, au))}$	$\textbf{0.046}\pm\textbf{0.002}$	$\textbf{28.5}\pm\textbf{0.7}$	-2637.0 ± 0.1
$\mathcal{PYP}(1.0, 0.75)$	$(\alpha,Geom(\beta))$	0.049 ± 0.004	66.8 ± 1.2	-2660.5 ± 0.7
Geom(0.25)	$(au, \mathcal{PYP}(heta, au))$	0.086 ± 0.002	56.6 ± 1.3	-2386.8 ± 0.1
Geom(0.25)	$(\alpha,Geom(\beta))$	$\textbf{0.043}\pm\textbf{0.003}$	$\textbf{24.8}\pm\textbf{0.8}$	-2382.6 ± 0.2

Scalability of Gibbs sampler (Geom(0.25) arrivals)

where $\mathbf{S} := \frac{1}{K_n - 1} \sum_{j > 1} (\bar{d}_{j-1} - T_j)$

	n = 200	n = 20000
$ \hat{\alpha} - \alpha^* $	0.12 ± 0.01	0.01 ± 0.00
$ \hat{eta} - eta^* $	0.02 ± 0.00	0.00 ± 0.00
ESS	0.90 ± 0.04	0.75 ± 0.08
Runtime (s)	21 ± 0	2267 ± 2

Maximum likelihood parameter estimation for Ask Ubuntu

Coupled $\mathcal{PYP}(\theta, \alpha)$			Uncoup	Uncoupled $\mathcal{PYP}(\theta, \tau)$			Geom(eta)					
	$(\hat{ heta},\hat{lpha})$	$\hat{\eta}$	Pre	d. I-I.	\hat{lpha}	$\overline{(\hat{ heta},\hat{ au})}$		Pred. I-I.	\hat{eta}	$\hat{\eta}$	Pred.	I-I.
	(18080	0.25) 1	25 -3 7	707e6	-2	54 (-0.99	0 99)	-3 678e6	0.083	2 32	-3.67	'8e6

Future work

- Scale MCMC inference to larger networks
- Variational inference

Acknowledgements

YWT, BBR, EM's research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) ERC grant agreement no. 617071. EM and YWT gratefully acknowledge Microsoft Research and EPSRC for partially funding EM's studentship. AF gratefully acknowledges funding from EPSRC grant no. EP/N509711/1.

References

- [1] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
- [2] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. *SIAM* Review, 51(4):661-703, 2009.
- [3] Harry Crane and Walter Dempsey. Edge exchangeable models for interaction networks. Journal of the American Statistical Association, (just-accepted), 2017.
- [4] Diana Cai, Trevor Campbell, and Tamara Broderick. Edge-exchangeable graphs and sparsity. In Advances in Neural Information Processing Systems, pages 4249–4257, 2016.
- [5] Benjamin Bloem-Reddy and Peter Orbanz. Preferential attachment and vertex arrival times. arXiv preprint arXiv:1710.02159, 2017.
- [6] Benjamin Bloem-Reddy, Adam Foster, Emile Mathieu, and Yee Whye Teh. Sampling and inference for beta neutral-to-the-left models of sparse networks. In UAI (to appear), 2018.