Cheatsheet - Propositional & First-order Logic

Fabio Lama – fabio.lama@pm.me

1. Intro

Predicates describe properties of objects.

For example:

odd(3)

odd(3) means 3 is an odd number. odd is a predicate, 3 is an object. Predicates take arguments and become **propositions**. A proposition is a statement that can be either *true* or *false*. It must be one or the other, and it cannot be both.

Connectives can be applied:

$$odd(3) \wedge prime(3)$$

This means that 3 is odd but also prime.

2. Syntax

Propositions are denoted by capital letters, such as P, Q, \dots General statements are denoted by lowercase letters, such as p, q, \dots

3. Connectives

Logical NOT: $\neg p$ is true if and only if p is false (also called *negation*).

Logical OR: $p \lor q$ is true if and only if at least one of p or q is true or if both p and q are true (also called *disjunction*).

Logical AND: $p \land q$ is true if and only if both p and q are true (also called *conjunction*).

Logical IF...THEN: p o q is true if and only if either p is false or q is true (also called *conditional* or *implication*). p is the premise, q is the conclusion.

Logical IF and only IF: $p \leftrightarrow q$ is true if and only if both p and q are true (also called *bi-conditional*).

Exclusive OR: XOR: $p \oplus q$ is true if p or q is true but not both.

3.1. Translation to Connectives

As an example, lets consider the propositions:

- P = I study 20 hours a week
- R = I will pass the exam
- S = I will be happy
- ullet Q = I attend all the lectures

And the following connectives:

$$(P \lor Q) \to (R \land S)$$

which is a translation of: "If I study 20 hours a week or attend all the lectures, then I will pass the exam and I will be happy."

4. Truth Tables

4.1. Negation: ¬

$$true = \neg false$$

$$false = \neg true$$

4.2. Conjunction: ∧

$$true \wedge true = true$$

$$true \land false = false$$

$$false \land true = false$$

$$false \land false = false$$

4.3. Disjunction: V

$$true \lor false = true$$

 $false \lor true = true$

$$false \lor false = false$$

4.4. Implication: \rightarrow

$$true
ightarrow true = true$$
 $true
ightarrow false = false$

$$false \rightarrow true = true$$

$$false
ightarrow false = true$$

NOTE

This can seem weird at first, this answer helps: https://math.stackexchange.com/a/100288

If you start out with a false premise, then, as far as implication is concerned, you are free to conclude anything. (This corresponds to the fact that, when p is false, the implication $p \to q$ is true no matter what q is.)

If you start out with a true premise, then the implication should be true only when the conclusion is also true. (This corresponds to the fact that, when p is true, the truth of the implication is the same as the truth of q.)

Additionally, let p and q be propositions and A the conditional statement:

then:

- ullet p is called the **hypothesis** (or antecedent or premise) and q is called the **conclusion** (or consequence).
- The proposition $q \to p$ is the **converse** of A.
- The proposition $\neg q \rightarrow \neg p$ is the **contrapositive** of A.

4.5. Bi-conditional: \leftrightarrow

$$1\leftrightarrow 1=1$$

$$1 \leftrightarrow 0 = 0$$

$$0\leftrightarrow 1=0$$

$$0 \leftrightarrow 0 = 1$$

4.6. Exclusive or: XOR, ⊕

$$1 \oplus 1 = 0$$

$$1 \oplus 0 = 1$$

$$0\oplus 1=1$$

$$0 \oplus 0 = 0$$

5. Operator Precedence

Operators are applied in the following order (ascending):

- 1. -
- 2. \wedge
- 3. ∨
- $_{4}$ \rightarrow
- $5. \leftrightarrow$

For example:

$$p
ightarrow p \wedge
eg q \vee s \equiv (p
ightarrow ((p \wedge (
eg q)) \vee s))$$

6. Descriptors

A formula that's always true is called a **tautology**. A formula that is true for at least one scenario is **consistent**. A formula that's never true is **inconsistent**. A formula can also result in a **contradiction**.

7. Equivalances

Formulas are equivalanent if they result in the same logical outcomes.

For example (De Morgan's Laws):

$$eg(p \land q) \equiv \neg p \lor \neg q$$
 $eg(p \lor q) \equiv \neg p \land \neg q$

For example:

$$eg(true \land true) \equiv false \lor false \equiv false$$

$$eg true \lor \neg true \equiv \neg (true \land true) = \neg true = false$$

8. Quantifiers

We use the symbol \exists to indicate the existence of something (**existential quantifier**).

$$\exists x \ \mathrm{odd}(x)$$

This means that there exists some x that is odd.

We denote the **universal quantifier** as \forall .

$$\forall x(\text{odd}(x) \vee \text{even}(x))$$

This meant that **for all** x the number is either even or odd.

Other examples, "All Ps are Qs":

$$\forall x (P(x) \rightarrow Q(x))$$

And "No Ps are Qs":

$$\forall x (P(x) \rightarrow \neg Q(x))$$

8.1. Quantifiers to Connectives

 $\exists x, P(x)$ where $x \in \{x_1, x_2, ..., x_n\}$ means that there exists some x for which P(x) is true.

Denoted alternatively:

$$\exists x, P(x) \equiv P(x_1) \lor P(x_2) \lor ... \lor P(x_3)$$

We can also conclude:

$$egin{aligned}
eg &\exists x, P(x) \equiv \eg (P(x_1) \lor P(x_2) \lor ... \lor P(x_3)) \
eg &\exists x, P(x) \equiv \eg P(x_1) \land \eg P(x_2) \land ... \land \eg P(x_3) \
eg &\exists x, P(x) \equiv \ensuremath{\ } \forall x, \eg P(x) \end{aligned}$$

Last updated 2022-11-19 17:21:28 UTC