

Октябрь 2019г. Версия 1.0. ООО «Разумный дом». Борисов Алексей г. Тула.

Модули измерительные: MSU44R Сервисная инструкция по настройке модулей

Содержание.

- 1. Общие сведения.
- 2. Настройки интерфейса.
- 3. Контроль и управление модулем.
- 4. Управление выходами модуля.
- 5. Чтение входов.
- 6. Настройка дисплея.
- 7. Информационные регистры.
- 8. Установка параметров конфигурации.
- 9. Сценарии.

1. Общие сведения

- 1.1 Протокол физического стыка <u>EIA/TIA-485-A (RS-485)</u>, двухпроводный, полудуплексный без гальванической развязки.
- 1.2 Количество бит данных 8.
- 1.3 Количество стоповых бит умолчанию 2.
- 1.4 Бит чётности умолчанию отсутствует.
- 1.5 Скорость передачи данных умолчанию 9600 бит/сек.
- 1.6 Протокол логического обмена «Modbus RTU».
- 1.7 Поддержка функций и команд обеспечивается в полном соответствии с синтаксисом запроса и ответа определенным в документе «MODBUS Application Protocol Specification v1.1b». Полное описание протокола находится на официальном сайте: ModBus.org.
- 1.8 Режим функционирования модуля «Slave» (подчинённый).
- 1.9 Режим передачи информации «RTU» (бинарный режим).
- 1.10 Используемые функции (команды) обмена информацией:

код функции	Область памяти	Название	Диапазон адресов
01	20001 - 29999	Read Coils	0 - 65535
02	10001 - 19999	Read Discrete Inputs (DI)	0 - 65535
03	40001 - 49999	Read Holding Registers (HR)	0 - 65535
04	30001 - 39999	Read Input registers (IR)	0 - 65535
05	20001 - 29999	Write Single Coil	0 - 65535
06	40001 - 49999	Write Single Register (HR)	0 - 65535
15	20001 - 29999	Write Multiple Coil	0 - 65535
16	40001 - 49999	Write Multiple registers (HR)	0 - 65535

- **Discrete Inputs** дискретные входы устройства, доступны только для чтения. Сокращенно DI. Диапазон адресов регистров: с 10001 по 19999. Имеют функцию «02» чтение группы регистров.
- **Coils** дискретные выходы устройства, или внутренние значения. Доступны для чтения и записи. Диапазон адресов регистров: с 20001 по 29999. Имеет функции: «01» чтения группы регистров, «05» запись одного регистра, «15» запись группы регистров.
- **Input Registers** 16-битные входы устройства. Сокращенно IR. Доступны только для чтения. Диапазон адресов регистров: с 30001 по 39999. Имеют функцию: «04» чтение группы регистров.
- Holding Registers 16-битные выходы устройства, либо внутренние значения. Сокращенно НR. Доступны для чтения и записи. Диапазон адресов регистров: с 40001 по 49999. Имеет функции: «03», «06», «16».
- 1.11 Адрес модуля согласно протоколу MODBUS. По умолчанию все модули имеют адрес «1». Для протокола MODBUS адрес можно поменять только записью в регистр 0 другого адреса. Если адрес не известен, то запись нужно производить широковещательной командой по адресу модуля 0 в регистр 0, но при этом на шине должен быть только один модуль. Адрес устройства изменится только при перезапуске устройства.
- 1.12. Перевод значения регистра в единицы измерения указаны в каждой ячейке таблицы.
- 1.13 Тип, номер регистра и назначение регистра указаны в каждой ячейке таблицы.
- 1.14. Все неиспользуемые регистры возвращают фиксированные значения и не записываются.
- 1.15 Для групп информационных сигналов обмена выделены следующие группы данных:
 - группа регистров управления;
 - группа регистров настройки интерфейса;
 - группа регистров конфигурации;
 - группа команд внутренней логики сценариев.

2. Настройки интерфейса.

03 Read Holding Registers (HR), 06 Write Single Register, 16 Write Multiple registers.

Эти регистры доступны для чтения и записи.

Регистр	Адрес	Описание регистра	Диапазон	По умолчанию
HR0	40001	Адрес устройства на шине ModBus RTU	1247	1
HR1	40002	Modbus RTU port settings [8 bit - options, 8 bit - baudrate]	00x55	0

2.1. Установка адреса.

Адрес можно поменять только записью в регистр HRO другого адреса. Если адрес не известен, то запись нужно производить широковещательной командой по адресу модуля 0 в регистр HRO, но при этом на шине должен быть только один модуль.

2.2. Настройки порта Modbus RTU

Параметры можно поменять в регистре HR1. После изменения адреса, модуль нужно отключить и снова включить. Адрес устройства изменится только после перезапуска устройства.

Optio	ons:	Baudrates:	
2STOPS	0x0000	9600	0x0000
1STOPS	0x0100	19200	0x0001
PARITY_EVEN	0x0200	38400	0x0002
PARITY_ODD	0x0400	57600	0x0003
PARITY_NO	0x0000	115200	0x0004

Старшие 8 bit – options + младшие 8 bit – baudrate.

Например, 0х0104 = четность нет, 1 стоп бит и 115200

2.3. Параметры по умолчанию:

Адрес и параметры можно сбросить по умолчанию, запустив модуль с нажатой кнопку. Через секунду после включения кнопку можно отпустить. Кнопка находится на плате под лицевой панелью модуля. Кнопку можно использовать во время работы и задействовать её в алгоритмах работы. Состояние кнопки можно прочитать в регистре IR9019.

Параметры по умолчанию:

Адрес модуля:	1 (меняется в регистре HR0)	
Скорость:	9600 бит/сек (меняется в регистре HR1)	
Бит данных:	8 бит (не меняется)	
Чётность:	Нет (без необходимости не менять)	
Стоповых бит:	2 (без необходимости не менять)	

Конфигурация и сценарии работают в ОЗУ, но сохраняются во flash памяти. При включении загружаются из flash в ОЗУ. Для сохранения из ОЗУ во flash нужно записать любое значение в регистр HR92 или запись произойдет самостоятельно раз минуту, при условии изменения сохраняемых параметров.

Регистр	Адрес	Описание регистра	Запись	Чтение
HR 92	40093	Сохранение из ОЗУ во flash	Любое значение	Счетчик записей

3. Контроль и управление модулем.

Протокол обмена данными Modbus подразумевает наличие в сети мастера, которым является контроллер и 247 подчиненных. Данные модули является подчиненным и могут только отвечать на запросы мастера.

Данные для управления делятся на входные, полученные со входов модуля. И на выходные данные, воздействующие на выходы модуля.

Управление модулем по протоколу ModBus осуществляется чтением и записью в регистры: Coils (Co), Discrete Input (DI), Holding Registers (HR), Input Registers (IR). Далее будут использоваться сокращенные названия регистров Co, DI, HR, IR. Адреса любых регистров начинаются с 0 и заканчиваются 65535. Перечень и описание регистров указано ниже.

Данных любых регистров передаются двумя байтами. В зависимости от типов данных их максимальные значения могут быть следующие:

- Signed знаковое целое. Максимальные значения: -32768 ... +32767;
- Unsigned беззнаковое целое. Максимальные значения: 0 ... +65535;
- Hex шестнадцатеричное. Максимальные значения: 0x0000 ... 0xFFFF;
- Bool бинарное. Максимальные значения: 0 ... 1;
- значения с запятой. Значения передаются в тысячных долях. Интерфейс передает только целые значения. Значению с запятой 1.000 соответствует 1000 в Modbus. Значению с запятой 0.001 соответствует 1 в Modbus. В контроллере это число нужно разделить на 1000. В результате получится число с тысячными долями. Значения с плавающей запятой модули не поддерживают.

4. Управление выходами модулей.

У модуля есть 4 дискретных выхода. Они выведены на контакты служебного разъёма и используются в некоторых модификациях. Возможно подключение этих выходов ко входам модуля DDC420. Используется 4 регистра Coil.

Регистр	Адрес	Диапазон данных	Назначение
Coil 1	20002	01	Дискретный выход 1
Coil 2	20003	01	Дискретный выход 2
Coil 3	20004	01	Дискретный выход 3
Coil 4	20005	01	Дискретный выход 4

При чтении неиспользуемых регистров Coils 5 ... Coils 65535 модуль вернет ошибку "Illegal Data Adress".

5. Чтение входов.

К клеммам 1, 2, 3, 4 подключаются дискретные или аналоговые датчики относительно G. Выход +5В используется для питания датчиков, например, датчика влажности. Максимальный ток выхода «+5В» - 20мА.

Каждый вход внутри модуля подтянут резистором сопротивлением 4.7 кОм к напряжению +5В. Поэтому контактные датчики и кнопки необходимо подключать относительно G.

К каждому из четырех контактов клемм 1, 2, 3, 4 подключены: дискретный вход микроконтроллера, аналоговый вход с внутренним 12 битным АЦП микроконтроллера и аналоговый вход с внешним 18 битным дифференциальным АЦП микросхемы МСР3424 (модификация с индексом A).

Входное аналоговое напряжение для внутреннего 12 битного АЦП может быть в диапазоне 0 — 3,3 В. Для внешнего 18 битного АЦП в диапазоне 0...2В или 0.5В...4.5В. При подключении другого напряжения, например, 0 - 10В, необходимо использовать резисторный делитель из двух резисторов, сопротивлением 1 - 10 кОм. Или запросить конфигурацию у производителя.

На плате модуля может быть установлен датчик влажности (HDC) в модификации с индексом H.

На плате модуля может быть установлен датчик атмосферного давления (MPL) в модификации с индексом M.

На плате модуля может быть установлен OLED дисплей в модификации с индексом D.

02 (0x02) Read Discrete Inputs.

Входы доступны для всех модификаций. Регистры Discrete Input (DI) хранят состояние дискретных входов. Эти регистры можно только читать командами Modbus. Из этого регистра можно читать состояние дискретных входов. Состояние дискретного входа определяется из логического уровня. Скорость реакции на логические уровни гораздо больше, чем на аналоговые входы.

Регистр	Адрес	Диапазон данных	Назначение
DI 1	10002	01	Дискретный вход 1
DI 2	10003	01	Дискретный вход 2
DI 3	10004	01	Дискретный вход 3
DI 4	10005	01	Дискретный вход 4
DI 5	10006	01	Внутренний вход 1
DI 6	10007	01	Внутренний вход 2
DI 7	10008	01	Внутренний вход 3
DI 8	10009	01	Внутренний вход 4

04 Input registers (IR).

Регистры Input registers (IR) хранят состояние аналоговых входов. Эти регистры можно только читать командами Modbus.

Рег	Адрес	Диапазон	назначение	Модификации
10.0	20004	данных	(0.45)	
IR 0	30001	0 270	Напряжение питания модуля (0.1В)	BCE
IR 1 IR 2	30002 30003	0 4096 0 4096	АЦП 126 канал 1	Bce
IR 3			АЦП 126 канал 2	все
IR 4	30004 30005	0 4096 0 4096	АЦП 126 канал 3	все
			АЦП 126 канал 4	BCE
IR 5	30006	-3276832767	АЦП 186 канал 1	ADC
IR 6	30007	-3276832767	АЦП 186 канал 2	ADC
IR 7	30008	-3276832767	АЦП 186 канал 3	ADC
IR 8	30009	-3276832767	АЦП 186 канал 4	ADC
IR 9	30010	065535	АЦП НОС температура	HDC
IR 10	30011	065535	АЦП НDС влажность	HDC
IR 11	30012	0 4096	АЦП 126 канал 1 (*К/N+В)	Bce
IR 12	30013	0 4096	АЦП 126 канал 2 (*К/N+В)	Bce
IR 13	30014	0 4096	АЦП 126 канал 3 (*K/N+B)	Bce
IR 14	30015	0 4096	АЦП 126 канал 4 (*К/N+В)	Bce
IR 15	30016	-3276832767	АЦП 186 канал 1 (*К/N+В)	ADC
IR 16	30017	-3276832767	АЦП 186 канал 2 (*К/N+В)	ADC
IR 17	30018	-3276832767	АЦП 186 канал 3 (*K/N+B)	ADC
IR 18	30019	-3276832767	АЦП 186 канал 4 (*К/N+В)	ADC
IR 19	30020	065535	АЦП НОС температура (*К/N+В)	HDC
IR 20	30021	065535	АЦП HDС влажность (*K/N+B)	HDC
IR 21	30022	01	Дискретный вх 1 (порог 1000)	Bce
IR 22	30023	01	Дискретный вх 2 (порог 1000)	Bce
IR 23	30024	01	Дискретный вх 3 (порог 1000)	Bce
IR 24	30025	01	Дискретный вх 4 (порог 1000)	Bce
IR 25	30026	03	АЦП 186 канал 1, два младших бита	ADC
IR 26	30027	03	АЦП 186 канал 2, два младших бита	ADC
IR 27	30028	03	АЦП 186 канал 3, два младших бита	ADC
IR 28	30029	03	АЦП 186 канал 4, два младших бита	ADC
IR 29	30030	0	резервный	LIDC IIIII
IR 30	30031	-40100	НDC, НІН, Температура. (Целая часть), °С	HDC, HIH
IR 31	30032	09	НDC, НІН, Температура. (Десятая часть), 0.1°C	HDC, HIH
IR 32	30033	099	НОС, НІН, Влажность. (Целая часть), %	HDC, HIH
IR 33	30034	09	НDC, НІН, Влажность. (Десятая часть), 0.1%	HDC, HIH
IR 34	30035	-40100	MPL Температура. (Целая часть), °C	MPL
IR 35	30036	09	MPL Температура. (Десятая часть), 0.1°С	MPL
IR 36	30037	0190	МРL Давление. (Полад наст.), Ra	MPL
IR 37	30038	0999	МРL Давление. (Целая часть), Ра	MPL
IR 38	30039	09	МРІ Давление. (Десятая часть), 0.1Pa	MPL
IR 39	30040	0900	МРІ Высота на уровнем моря, метры	MPL
IR 40	30041		МРІ Парлачию расцетное, мм ртутного столба	MPL
IR 41	30042	0999	МРL Давление расчетное, мм ртутного столба	MPL
IR 42	30043	065535	ОРТ освещенность, Факториал	OPT
IR 43	30044	065535	ОРТ освещенность, Экспонента	OPT
IR 44	30045	035000	ОРТ освещенность, Люкс	OPT

IR 45	30046	065535	Ускорение по X	LIS
IR 46	30047	065535	Ускорение по Ү	LIS
IR 47	30048	065535	Ускорение по Z	LIS

Из регистра IR21, IR22, IR23, IR24 можно читать состояние дискретных входов. Состояние дискретного входа определяется из аналогового входа АЦП. Порог переключения 1000. Если значение АЦП меньше 1000, то возвращает 0, если значение больше 1000, то возвращает 1. Скорость переключения ниже, чем у DI1, DI2, DI3, DI4. При разных уровнях на входе значения DI1 и IR21 могут не совпадать.

АЦП и входные цепи могут шуметь и выходные данные будут постоянно меняться. Для увеличения точности показаний можно использовать усреднение. Усреднение используется только для внутреннего 12 битного АЦП. Коэффициент усреднения задается в регистре HR75. И рассчитывается по формуле:

АЦП cp =
$$\frac{\text{АЦП1+}\cdots\text{+}\text{АЦП}n}{n}$$
;

Складывается указанное количество измерений АЦП и делится на их количество.

При этом повышается точность, уменьшается колебание значений, но увеличивается время измерения значения. Так же увеличивается время реагирования на дискретные входы в регистре IR21, IR22, IR23, IR24.

03 Read Holding Registers (HR), 06 Write Single Register, 16 Write Multiple registers.

Регистр	Адрес	Диапазон	Описание регистра
HR 75	40076	1255	Коэффициент усреднения АЦП

Максимальная частота изменения входного сигнала 50 Гц. При отключенных входах, на них будет присутствовать +5 В (входы подтянуты резистором 4.7 кОм к напряжению +5В) и дискретные входы будут показывать 1. При замыкании датчика на общий G, на входах будет 0 и дискретные входы будут показывать 0. Таким образом, если на вход подключена кнопка, то при нажатой кнопке вход покажет состояние 0.

Коэффициенты аналоговых входов.

Каждый аналоговый вход выводит значение АЦП в регистры IR1, IR2, IR3, IR4, IR5, IR6, IR7, IR8, IR9, IR10. Затем эти значения пересчитываются в физические величины по формуле уравнения прямой:

03 Read Holding Registers (HR), 06 Write Single Register, 16 Write Multiple registers.

Регистр	Адрес	Диапазон	Описание регистра
HR 40	40041	-3276832767	Канал №1, Коэффициент К
HR 41	40042	-3276832767	Канал №1, Коэффициент N
HR 42	40043	-3276832767	Канал №1, Коэффициент В
HR 43	40044	-3276832767	Канал №2, Коэффициент К
HR 44	40045	-3276832767	Канал №2, Коэффициент N
HR 45	40046	-3276832767	Канал №2, Коэффициент В
HR 46	40047	-3276832767	Канал №3, Коэффициент К
HR 47	40048	-3276832767	Канал №3, Коэффициент N
HR 48	40049	-3276832767	Канал №3, Коэффициент В
HR 49	40050	-3276832767	Канал №4, Коэффициент К
HR 50	40051	-3276832767	Канал №4, Коэффициент N
HR 51	40052	-3276832767	Канал №4, Коэффициент В
HR 52	40053	-3276832767	Канал №1, (18б) Коэффициент К
HR 53	40054	-3276832767	Канал №1, (18б) Коэффициент N
HR 54	40055	-3276832767	Канал №1, (18б) Коэффициент В
HR 55	40056	-3276832767	Канал №2, (18б) Коэффициент К
HR 56	40057	-3276832767	Канал №2, (18б) Коэффициент N

0059	-3276832767 -3276832767	Канал №2, (186) Коэффициент В
	-32768 32767	
	3270032707	Канал №3, (18б) Коэффициент К
0060	-3276832767	Канал №3, (18б) Коэффициент N
0061	-3276832767	Канал №3, (18б) Коэффициент В
0062	-3276832767	Канал №4, (18б) Коэффициент К
0063	-3276832767	Канал №4, (18б) Коэффициент N
0064	-3276832767	Канал №4, (18б) Коэффициент В
0065	-3276832767	Канал HDC Темп, Коэффициент К
0066	-3276832767	Канал HDC Темп, Коэффициент N
0067	-3276832767	Канал HDC Темп, Коэффициент В
0068	-3276832767	Канал HDC Влажн, Коэффициент К
0069	-3276832767	Канал HDC Влажн, Коэффициент N
0070	-3276832767	Канал HDC Влажн, Коэффициент В
	061 062 063 064 065 066 067 068	061 -3276832767 062 -3276832767 063 -3276832767 064 -3276832767 065 -3276832767 066 -3276832767 067 -3276832767 068 -3276832767 069 -3276832767

Полученные значения АЦП можно преобразовать по формуле: Значение $=\frac{ADC*K}{N}+B$; Результат расчета помещается в регистры IR11 – IR20. Коэффициенты хранятся в регистрах HR40 – HR69. Для расчета этих коэффициентов формулы уравнения прямой необходимо использовать две точки.

Точки измерения могут быть любые. Наклон линии может быть любой: вниз, вверх, в плюс или в минус. Значение АЦП и входного напряжения так же может быть любое как в плюс, так и в минус.

Коэффициенты рассчитываются по формуле.

K = Temneparypa2 - Temneparypa1;

N = ADC2 - ADC1;

B = (ADC1 * Температура2 - ADC2 * Температура1)/(ADC1 - ADC2);

В блоках добавлен калькулятор для автоматического расчета этих коэффициентов. В регистрах HR70 – HR74.

03 Read Holding Registers (HR), 06 Write Single Register.

Регистр	Адрес	Диапазон	Описание регистра	
HR 70	40071	110	номер канала	
HR 71	40072	-3276832767	Параметр 1	
HR 72	40073	-3276832767	Параметр 2 (запись в этот регистр запускает расчет и	
			сохранение коэффициентов в указанный HR70 канал)	
HR 73	40074	-3276832767	результат АЦП 1 (только чтение)	
HR 74	40075	-3276832767	результат АЦП 2 (только чтение)	

Последовательность действий следующая.

- 1) подключить датчик.
- 2) в регистр HR70 записать номер канала (1 ... 10), к которому подключен датчик.
- 3) установить датчик в калибровочную камеру.
- 4) после стабилизации значений вписать значение первого параметра в регистр HR71 и нажать ввод. Вместе с записью значения запишется текущее значение АЦП для первого параметра в регистр HR73.

- 5) изменить величину климатического параметра.
- 6) после стабилизации значений вписать значение второго параметра в регистр HR72 и нажать ввод. Вместе с записью значения запишется текущее значение АЦП для второго параметра в регистр HR74. Затем модуль рассчитает коэффициенты и перепишет эти параметры в регистры коэффициентов номера канала, указанного в HR70. После этого в регистрах IR11 ... IR20 будут выводиться значения в заданных физических величинах.

Для повышения точности показаний нужно, чтобы диапазон изменения физической величины был в максимальном диапазоне АЦП от 0 до 4095 или 32767. Для разных типов датчиков на входах модуля могут быть запаяны разные элементы с разными номиналами. Вход может быть настроен для измерения напряжения, сопротивления или тока. По умолчанию блок настроен на измерение напряжения.

Предварительно записанные коэффициенты для различных типов датчиков можно заполнить, указав в регистре HR 70 номер канала и в регистре HR80 тип датчика с предварительными значениями.

Регистр	Адрес	Диапазон	Описание регистра
HR 80	40081	15	номер типа входа

Значение регистра.

_ '	-		
Значение	Описание и коэффициенты K, N, B		
1	1:1;1, 1, 0		
2	HDC Temp; 33, 13107, -40		
3	HDC Humd; 20, 13107, 0		
4	LM235(16,18) x10 (22k,22k) ; 45, 710, -165		
5	LM235(16,18) x1 (22k,22k) ; 45, 7100, -16		

Для микросхемы внешнего 18 битного АЦП добавлены настройки: разрядности и коэффициент усиления встроенного усилителя PGA.

03 Read Holding Registers (HR), 06 Write Single Register.

Регистр	Адрес	Диапазон	Описание регистра
HR 76	40077	115	Настройки АЦП канала 1
HR 77	40078	115	Настройки АЦП канала 2
HR 78	40079	115	Настройки АЦП канала 3
HR 79	40080	115	Настройки АЦП канала 4

Значение регистра настроек АЦП могут выбираться из таблицы:

Значение	Разрядность	Усиление PGA	
0 12 бит		x1	
1	12 бит	x2	
2	12 бит	x4	
3	12 бит	x8	
4	14 бит	x1	
5	14 бит	x2	
6	14 бит	x4	
7	14 бит	x8	
8	16 бит	x1	
9	16 бит	x2	
10	16 бит	x4	
11	16 бит	x8	
12	18 бит	x1	
13	18 бит	x2	
14	18 бит	x4	
15 18 бит		x8	

Относительное напряжение измерения (Uref) = 2.048В в плюс и в минус. При усилении х8 максимальное напряжение измерения -0,256В +0,256В. При увеличении разрядности количество бит увеличивается, скорость уменьшается. АЦП имеет дифференциальный вход. Положительный вход выведен на клеммы. Отрицательный вход выведен на резисторный делитель на плате между 0В и 5В. Этим делителем возможна установка смещения для относительного измерения. Например, 2.5В. Тогда измеренные значения будут выводиться в плюс и минус в диапазоне -32768...32767.

В режиме 12 бит значения выводятся: -2048 ... +2047. В режиме 14 бит значения выводятся: -8192 ... +8191. В режиме 16 бит значения выводятся: -32768 ... +32767. В режиме 18 бит значения выводятся: -32768 ... +32767 и младшие 2 бита будут выводиться в регистрах IR25 – IR28.

6. Настройка дисплея.

В модуле модификации с индексом D установлен OLED дисплей. Дисплей монохромный графический, разрешением 128 x 64 точки. На дисплей может выводиться информация об измеренных или расчетных значениях. Дисплей можно настроить так, чтобы он выводил только необходимую информацию.

6.1. Настройка времени отключения дисплея.

После заданного времени бездействия дисплей можно потушить. Значение устанавливается в секундах. При нулевом значении дисплей тухнуть не будет.

Регистр	Адрес	Диапазон	Описание регистра
HR 3	40004	0250	Время свечения в секундах

После нажатия на кнопку или изменения режима дисплея в регистре HR5 дисплей включится и через установленное время снова выключится.

6.2. Режим работы дисплея.

При включении питания дисплей будет показывать в течении 7 секунд стартовую информацию. Название MSU44R, адрес Modbus, четность 8N2, скорость 9600, подключенные сенсоры, производитель www.razumdom.ru.

MSU44R Addr:1;Option:8N2 Baudrate:9600 ADC:+;HDC:+;MPL:www.razumdom.ru

Затем переключится на заданную страницу.

Дисплей может выводить 7 различных страниц. Страница зависит от предпочтения пользователя.

Регистр	Адрес	Диапазон	Описание регистра
HR 5	40006	07	Номер страницы

Страницы можно переключить, установив значение регистра или нажав кнопку на плате.

Страница	Описание	
Стартовая	Информация: название, адрес, четность, скорость, подключенные сенсоры, производитель	MSU44R Addr:1:Option:8N2 Baudrate:9600 ADC:+;HDC:+;MPL:- www.razumdom.ru
0	Одно значение	Temperature 23.8'C
1	Одно значение и строка с графиком	Temperature 24.9'C
2	2 значения	T25.3'C H62 %
3	3 значения	T:23.7'C H:59 % U:12.3 V
4	4 значения	Temperature T:23.7'C H:59 % U:12.3 V L:2320L×

5	Часы и дата	Tuesday 10:36:17 15.10.2019
6	Если установлен сенсор HDC, то температура и влажность	T: 23.8 C H: 59.5%
7	Если установлен сенсор MPL, то температура, давление и высота	Pressure SensMPL not installed

6.3. Настройка выводимой информации.

Перед значением выводится один символ, записанный в HR6, затем значение, затем два символа суффикса, записанные в HR8, HR9.

Регистр	Адрес	Диапазон	Описание регистра	
HR 6	40007	32126	Тип - Символ в коде ASCII. Строка 1	
HR 7	40008	0999	Регистр со значением IR. Строка 1	
HR 8	40009	32126	Суффикс - Символ в коде ASCII. Строка 1	
HR 9	40010	32126	Суффикс - Символ в коде ASCII. Строка 1	
HR 10	40011	32126	Тип - Символ в коде ASCII. Строка 2	
HR 11	40012	0999	Регистр со значением IR. Строка 2	
HR 12	40013	32126	Суффикс - Символ в коде ASCII. Строка 2	
HR 13	40014	32126	Суффикс - Символ в коде ASCII. Строка 2	
HR 14	40015	32126	Тип - Символ в коде ASCII. Строка 3	
HR 15	40016	0999	Регистр со значением IR. Строка 3	
HR 16	40017	32126	Суффикс - Символ в коде ASCII. Строка 3	
HR 17	40018	32126	Суффикс - Символ в коде ASCII. Строка 3	
HR 18	40019	32126	Тип - Символ в коде ASCII. Строка 4	
HR 19	40020	0999	Регистр со значением IR. Строка 4	
HR 20	40021	32126	Суффикс - Символ в коде ASCII. Строка 4	
HR 21	40022	32126	Суффикс - Символ в коде ASCII. Строка 4	

6.4. Настройка разрядности.

Значение в регистрах Modbus храниться всегда целочисленное. Для вывода десятичных значений необходимо сделать пересчет в 10, 100, 1000 раз больше. Затем это значение вывести на дисплей с указанием десятичной точки, которая визуально разделит значение на 10, 100, 1000.

Регистр	Адрес	Диапазон	Описание регистра	
HR 22	40023	03	Количество цифр после запятой для строки 1	
HR 23	40024	03	Количество цифр после запятой для строки 2	
HR 24	40025	03	Количество цифр после запятой для строки 3	
HR 25	40026	03	Количество цифр после запятой для строки 4	

6.5. Настройка заголовка страницы.

Строку с текстом посимвольно можно записать в регистры:

Регистр	Адрес	Диапазон	Описание регистра	После сброса
HR 26	40027	32126	Символ в коде ASCII	84
HR 27	40028	32126	Символ в коде ASCII	101
HR 28	40029	32126	Символ в коде ASCII	109
HR 29	40030	32126	Символ в коде ASCII	112
HR 30	40031	32126	Символ в коде ASCII	101
HR 31	40032	32126	Символ в коде ASCII	114

HR 32	40033	32126	Символ в коде ASCII	97
HR 33	40034	32126	Символ в коде ASCII	116
HR 34	40035	32126	Символ в коде ASCII	117
HR 35	40036	32126	Символ в коде ASCII	114
HR 36	40037	32126	Символ в коде ASCII	101
HR 37	40038	32126	Символ в коде ASCII	0
HR 37	40039	32126	Символ в коде ASCII	0
HR 39	40040	32126	Символ в коде ASCII	0

6.6. Настройка трендов и графика.

На странице номер 1 можно выводить Тренды, т.е. график изменения значения. Массив данных сохраняется в регистрах IR60 ... IR91.

Рег	Адрес	Диапазон данных	назначение
IR 60	30061	0 40	Значение 0
IR 91	30092	0 40	Значение 31

6.7. Тип графика устанавливается в регистре:

Регистр	Адрес	Диапазон	Описание регистра
HR 81	40082	02	Тип графика

Варианты графиков:

6.8. Коэффициенты значений графика.

Регистр	Адрес	Диапазон	Описание регистра
HR 82	40083	0255	Делитель
HR 83	40084	-3276732767	Смещение

Измеренное значение без учета десятичной точки, т.е. всегда целое делится на делитель (HR82) и к результату прибавляется смещение (HR83). Для сдвига графика вниз смещение должно быть отрицательное. Значения сохраняются в массиве и выводятся в регистрах IR60 ... IR91.

6.9. Время измерения значения.

Через указанное количество секунд происходит считывание значения, запись его в массив и вывод графика на дисплей. Промежуточные значения игнорируются, среднее значение не вычисляется. Для вычисления значений используются сценарии.

Регистр	Адрес	Диапазон	Описание регистра
HR 84	40085	0255	Время измерения

Для вывода текста и символов используются коды символов ASCII.

6.10. Таблица кодов символов ASCII

DEC	HEX	Symbol
32	0x20	Пробел
33	0x21	!
34	0x22	11
35	0x23	#
36	0x24	\$
37	0x25	%
38	0x26	&
39	0x27	ı
40	0x28	(
41	0x29)
42	0x2A	*
43	0x2B	+
44	0x2C	,
45	0x2D	-
46	0x2E	•
47	0x2F	/
48	0x30	0
49	0x31	1
50	0x32	2
51	0x33	3
52	0x34	4
53	0x35	5
54	0x36	6

55	0x37	7
56	0x38	8
57	0x39	9
58	0x3A	:
59	0x3B	;
60	0x3C	<
61	0x3D	=
62	0x3E	>
63	0x3F	?
64	0x40	@
65	0x41	Α
66	0x42	В
67	0x43	С
68	0x44	D
69	0x45	E
70	0x46	F
71	0x47	G
72	0x48	Н
73	0x49	I
74	0x4A	J
75	0x4B	K
76	0x4C	L
77	0x4D	М
78	0x4E	N

79	0x4F	0
80	0x50	Р
81	0x51	Q
82	0x52	R
83	0x53	S
84	0x54	Т
85	0x55	U
86	0x56	V
87	0x57	W
88	0x58	Х
89	0x59	Υ
90	0x5A	Z
91	0x5B	[
92	0x5C	\
93	0x5D]
94	0x5E	۸
95	0x5F	ı
96	0x60	`
97	0x61	а
98	0x62	b
99	0x63	С
100	0x64	d
101	0x65	е
102	0x66	f

103	0x67	g
104	0x68	h
105	0x69	i
106	0x6A	j
107	0x6B	k
108	0x6C	I
109	0x6D	m
110	0x6E	n
111	0x6F	0
112	0x70	р
113	0x71	q
114	0x72	r
115	0x73	S
116	0x74	t
117	0x75	u
118	0x76	V
119	0x77	W
120	0x78	х
121	0x79	у
122	0x7A	Z
123	0x7B	{
124	0x7C	-
125	0x7D	}
126	0x7E	~

7. Информационные регистры.

04 Input registers (IR).

Регистры *Input registers (IR)* хранят информацию о модуле. Эти регистры можно только читать командами Modbus.

Информационные регистры служат для идентификации модуля и контроля внутреннего состояния.

Регистр	Адрес	Диапазон данных	Назначение
IR 9000	39001	065535	номер версии ПО
IR 9001	39002	065535	номер версии ПО
IR 9002	39003	01	Тип ПО
IR 9003	39004	0255	Тип устройства: 10 (MSU44R)
IR 9004	39005	131	Дата: день месяца
IR 9005	39006	17	Дата: неделя
IR 9006	39007	112	Дата: месяц
IR 9007	39008	099	Дата: год
IR 9008	39009	023	Время: часы
IR 9009	39010	059	Время: минуты
IR 9010	39011	059	Время: секунды
IR 9011	39012	065535	Серийный номер
IR 9012	39013	065535	Серийный номер
IR 9013	39014	065535	Серийный номер
IR 9014	39015	065535	Серийный номер
IR 9015	39016	065535	Серийный номер
IR 9016	39017	065535	Серийный номер
IR 9017	39018	512	Размер файла конфигурации
IR 9018	39019	01	Флаг сохранения
IR 9019	39020	01	Состояние кнопки
IR 9020	39021	065535	Случайное число
IR 9021	39022	065535	Счетчик наработки часов
IR 9022	39023	06	Код ошибки I2С
IR 9023	39024	0255	Конфигурация I2С
IR 9024	39025	065535	ID сенсора HDC
IR 9025	39026	065535	ID сенсора HDC
IR 9026	39027	065535	ID сенсора HDC
IR 9027	39028	21577	ID сенсора HDC
IR 9028	39029	4176	ID сенсора HDC
IR 9029	39030	21577	ID сенсора OPT
IR 9030	39031	12289	ID сенсора OPT

В регистрах дата и время хранится текущее состояние часов. Регистры часов можно использовать как для контроля, так и для сценариев.

8. Установка параметров конфигурации.

Параметры устанавливаются в: 03 Read Holding Registers (HR), 06 Write Single Register, 16 Write Multiple registers. Эти регистры доступны для чтения и записи.

8.1. Установка даты и времени.

Регистр	Адрес	Диапазон	Описание регистра
HR 93	40094	131	Установка даты - День месяца
HR 94	40095	17	Установка даты - День недели
HR 95	40096	112	Установка даты - Месяц
HR 96	40097	20182118	Установка даты - Год, 2019 или 19
HR 97	40098	023	Установка времени - Часы
HR 98	40099	059	Установка времени - Минуты
HR 99	40100	059	Установка времени - Секунды

В регистры HR94 – HR99 можно установить новое значение даты и времени. Для установки даты и времени необходимо записать в регистр HR99 новое значение. Т.к. в модулях нет батарейки, то при отключении питания часы сбросятся. Для постоянной работы часов необходимо впаять батарейку или использовать внешний ИБП.

Прочитать текущее время и дату можно из регистров: IR9004 – IR9010.

8.2. Коррекция часов.

Регистр	Диапазон	Описание регистра
HR 4	-1270127	Коррекция работы часов

Часы за синхронизированы от внутреннего RC генератора, поэтому точность не высокая. Часы можно немного замедлить или ускорить, записав в HR4 значение с минусом или плюсом.

8.3. Перезагрузка.

Регистр	Диапазон	Описание регистра
HR 5678	-	Перезагрузка модуля

Запись любого числа в регистр HR5678 произведет перезагрузку модуля.

8.4. Сохранение конфигурации.

Сохранение конфигурации производится из ОЗУ во Flash память микроконтроллера. При включении питания данные из Flash записываются в ОЗУ. Запись во Flash производится один раз в минуту или принудительно командой записи в регистр HR92 любого значения. При чтении регистра HR92 модуль будет отдавать количество циклов записи во Flash.

Регистр	Диапазон	функция	Описание регистра
HR 92	-	Запись	Запись во Flash
HR 92	0-65535	чтение	Количество циклов записи

Количество циклов записи во Flash ограничено значением 100000. Поэтому запись нужно производить после завершения редактирования всех сценариев.

9. Сценарии для внутренней логики.

Для автономной работы блока без контроллера можно использовать встроенные сценарии. Самостоятельно посылать команды в сеть модули не могут. Поэтому описанные ниже сценарии могут работать только внутри самого модуля, используя собственные входы, выходы, таймеры, часы реального времени и регистры хранения.

С регистра HR100 записываются данные для сценариев. В модуле зарезервировано место для 78 сценариев. Для каждого сценария используется по 13 регистров R0 – R12. Шаг записи сценариев 20.

Для хранения промежуточных данных используются регистры переменных. Значения регистров находятся в области регистров Input registers (IR) из сценариев можно как читать, так и записывать. По протоколу Modbus эти регистры можно только читать. Для чтения и записи доступно 1000 регистров с адресами от IRO до IR999. Эти данные представляют собой массив ОЗУ и не сохраняются во FLASH.

Для чтения и записи сценариев используются регистры Holding Registers (HR). Эти регистры доступны для чтения и записи. Часть регистров зафиксированы под определенные параметры. С адреса 100 до адреса 1660 Зарезервировано место для записи сценариев с 0 по 77. Все указанные в таблице значения сохраняются во FLASH. Все неиспользуемые адреса не записываются и не сохраняются.

Сценарии внутри блока выполняются последовательно от 0 до 77. Затем циклично повторяется с нулевого сценария. При большом количестве сценариев может ощущаться задержка. Если сценариев используется мало, то последним сценарием можно использовать переход в начало GOTO 0. Или пропустить пустые сценарии этой же командой.

03 (0x03) Read Holding Registers (HR), 06 (0x06) Write Single Register, 16 (0x10) Write Multiple registers.

Adnos						· · · · · · · · · · · · · · · · · · ·	
	Адрес						Описание регистра
R0	R1	R2	R3	R4		R12	
HR100	HR101	HR102	HR103	HR104		HR112	Сценарий № 0 и его параметры
HR120	HR121	HR122	HR123	HR124		HR132	Сценарий № 1 и его параметры
HR140	HR141	HR142	HR143	HR144	:	HR152	Сценарий № 2 и его параметры
HR160	HR161	HR162	HR163	HR164		HR172	Сценарий № 3 и его параметры
HR180	HR181	HR182	HR183	HR184		HR192	Сценарий № 4 и его параметры
HR1600	HR1601	HR1602	HR1603	HR1604		HR1612	Сценарий № 75 и его параметры
HR1620	HR1621	HR1622	HR1623	HR1624		HR1632	Сценарий № 76 и его параметры
HR1640	HR1641	HR1642	HR1643	HR1644		HR1652	Сценарий № 77 и его параметры

Источники данных.

Сценарии могут работать с входными и выходными источниками данных. Источник данных может быть разного типа и записывается он в ячейку «Тип регистра».

Значение	Тип данных	диапазон	Тип данных	Чтение запись
0	Const – константа, фиксированное число.	(-32768	Int (-32768	Только чтение.
		+32767)	+32767)	
1	Coils (Co) – 01 регистр Реле.	(0 4)	Bool (01)	Чтение и
				запись.
2	Discrete Input (DI) – 02 регистр дискретных	(0 8)	Bool (01)	Только чтение.
	входов.			
3	Holding Reg (HR) – 03 регистр параметров.	(0 2660)	Int (-32768	Чтение и
			+32767)	запись.
4	Input Reg (IR) – 04 регистр аналоговых	(09030)	Int (-32768	Чтение и
	входов.		+32767)	запись.

5	Timer – регистр таймера обратного отсчета.	(015)	Int (-32768	Чтение и
	Доступ через регистры HR 2980 HR 2995.		+32767)	запись.
6	РС счетчик команд для перехода на другой	(0 77)	Int (-32768	Только запись.
	сценарий.		+32767)	

Типы данных.

Большинство данных использует тип int16 это двухбайтовое 16 битное число со знаком. Диапазон значений -32768 ... +32767. При работе с логикой или дискретными входами, выходами реле используется значение bool-false (0) или true (1). При переводе из типа int значение 0 будет переводится в false (0), любое другое значение, отличное от 0 будет переводится в true (1). Другие типы данных, например, символьные значения или значения с плавающей запятой модули не используют.

Пользовательские данные.

Большинство команд используют входные данные и результат помещают в выходные данные. Эти данные могут быть как физические входы или выходы блока, так и пользовательские данные. Пользовательские данные могут использоваться как переменные для промежуточных расчетов.

Эти данные делятся на два типа и располагаются в двух областях:

- 1) Регистры Input registers (IR). Для чтения и записи доступно 1000 регистров с адресами от IR0 до IR999. Эти данные представляют собой массив ОЗУ и не сохраняются во FLASH. При отключении питания сбрасываются в 0. В эти регистры можно записывать массивы статистических данных.
- 2) Для чтения и записи настроек используются регистры Holding Registers (HR). Используется диапазон данных сценариев. В области сценариев нулевой регистр должен быть 0, а остальные 12 регистров могут быть любые. В эту область R1 R12 можно записывать значения настроек. Эти регистры доступны для чтения и записи. Эти регистры записываются во FLASH и при повторном включении питания восстанавливаются.

Значение	Тип данных	Размещение	Тип данных	Чтение запись
IR0	пользовательские данные	ОЗУ	Int16	Чтение и запись.
IR999	Доступ через регистры HR	не сохраняются	(-32768 +32767)	
	3000 HR 3999.			
HR100	Данные сценариев	FLASH	Int16	Чтение и запись.
HR2000		сохраняются	(-32768 +32767)	

Таймеры.

Timer — регистр таймера обратного отсчета. В этом регистре каждую 0,1 секунду значение уменьшается на 1. После того, как таймер доходит до 0 счет останавливается. Доступно 16 таймеров (0 ... 15). Доступно чтение и запись. Разрядность таймера 16 бит, значение таймера от 0 до 65535.

Номер	Таймер
0	Таймер 0
1	Таймер 1
2	Таймер 2
3	Таймер 3
4	Таймер 4
5	Таймер 5
6	Таймер 6
7	Таймер 7

Номер	Таймер
8	Таймер 8
9	Таймер 9
10	Таймер 10
11	Таймер 11
12	Таймер 12
13	Таймер 13
14	Таймер 14
15	Таймер 15

Доступ к таймерам возможен через регистры Modbus. Регистры HR 2980 ... HR 2995 дают доступ к таймерам TIMER0 ... TIMER15. Можно как контролировать, так и менять значение налету.

Сценарии.

Доступны сценарии №0 ... №77. В каждом сценарии в адресе от 100 до 112 записываются тип и параметры сценария. Далее адрес будет обозначаться R0 – тип, записанный в регистр 100 (для сценария 0), R1 – параметр 1, записанный в регистр 101, R2 – параметр 2, записанный в регистр 102 и так далее.

Регистр R0 – Тип сценария

Значение	Обозначение	Регистр R0 — Тип сценария Описание
0	NOP	Пустая команда. Не производит никаких действий.
1		
1	MATH	Целочисленные арифметические и битовые операции: 0 — "=" — равно;
		0 — — равно, 1 - "~" — инверсия;
		2 - "++" – инкремент;
		3 - "—" – декремент;
		4 - "+" — сложение;
		5 - "-" — вычитание;
		6 - "*" – умножение;
		7 - "/" — деление;
		8 - "%" – остаток от деления;
		9 - "+=" – сложение с предыдущим;
		10 - "-=" – вычитание из предыдущего;
		11 - "&" – бинарная И;
		12 - " " – бинарная ИЛИ;
		13 - "^" – бинарная ИСКЛЮЧАЮЩЕЕ ИЛИ;
		14 - "<<" – побитовый сдвиг влево;
		15 - ">>" — побитовый сдвиг вправо;
		16 - "~=" — бинарная инверсия;
		17 - "POW" — X в степени Y;
		18 - "SQRT" – квадратный корень;
		19 - "MIN" – выбор минимального значения;
		20 - "МЕD" — расчет среднего значения;
		21 - "МАХ" – выбор максимального значения;
		22 - "LIMIT" – ограничение в указанном диапазоне;
		23 - "ABS" – абсолютное значение.
2	FLOAT	Математические операции с дробными значениями:
		1 — SIN — Синус;
		2 - COS — Косинус;
		3 - TAN — Тангенс;
		4 - ASIN — Арксинус;
		5 - ACOS — Арккосинус;
		6 - ATAN — Арктангенс;
		7 - SINH - Синус гиперболический;
		8 - COSH - Косинус гиперболический;
		9 - TANH - Тангенс гиперболический;
		10 - ЕХР — Экспонента;
		11 - LN - Логарифм натуральный;
		12 - LOG - Логарифм десятичный;
		13 - POW - Y в степени X;
		14 - SQRT - Корень квадратный.
3	PTRW	Указатель для записи массивов переменных.
4	PTRR	Указатель для чтения массивов переменных.

5	FOR	Создание циклов.
6	SEL	Бинарный выбор, мультиплексор. Возвращает К-е значение из входных
		переменных.
7	IF	Логические операции IF (R2 условие R5) с функцией присвоения и
		переходом:
		0 – "==" – если равно;
		1 – "!=" – если не равно;
		2 – ">" – если больше;
		3 – "<" – если меньше;
		4 – ">=" – если больше или равно;
		5 — "<=" — если меньше или равно;
		6 – "!" – если не верно, false;
		7 – "&&" – если true оба операнда;
		8 - " " - если true один из операндов.
8	IFAND	Логические операции ІГ двойная с И
	1171110	if((R1.2 R3 Const R4)&&(R5.6 R7 Const R8)) then R9.10 = R11.12
		0 – "==" – если равно;
		1 – "!=" – если не равно;
		2 – ">" – если не равно,
		3 – "<" – если меньше;
		4 – ">=" – если больше или равно;
		5 – "<=" – если меньше или равно;
		6 – "!" – если не верно, false;
		7 – "&&" – если не верно, таке, 7 – "&&" – если true оба операнда;
		7 — && — если true оба операнда, 8 — " " — если true один из операндов.
9	IFOR	Логические операции IF двойная с ИЛИ
9	IFOR	if((R1.2 R3 Const R4) (R5.6 R7 Const R8)) then R9.10 = R11.12
		П(K1.2 K3 CONSt K4) (K3.0 K7 CONSt K8)) then K3.10 – K11.12 0 – "==" – если равно;
		1 – "!=" – если равно;
		2 – ">" – если не равно,
		3 – "<" – если обльше,
		3 – < – если меньше, 4 – ">=" – если больше или равно;
		4 - 2 - если оольше или равно, 5 - "<=" – если меньше или равно;
		6 – "!" – если меньше или равно, 6 – "!" – если не верно, false;
		7 – "&&" – если true оба операнда;
		7 — && — если true оба операнда, 8 — " " — если true один из операндов.
10	GOTO	1 11
	1	Переход.
11	CALL	Переход в подпрограмму.
12	RETURN	Выход из подпрограммы.
13	THRS	Пороговое реле.
14	TRG	Триггер.
15	KEY_DO	Кнопка двойная без переключения.
16	KEY_DB	Кнопка двойная с переключением.
17	TIMER	Таймер.
18	RTC	Часы и дата.
19	JAL	Управление Жалюзи.
20	PID	ПИД регулятор.
21 - 65535	NOP	Пустая команда. Не производит никаких действий.

МАТН - Арифметические операции R2 = R4 (операция) R7:

Сценарий производит арифметические действия над двумя входными операндами и присваивает к выходному результату.

Регистр	R0	R1	R2	R3	R4	R5	R6	R7
Параметр	1 MATH	Тип	Рег результата	Тип	операнд 1	Операция	Тип	операнд 2
Диапазон	1	1, 3,	02660	0 - 5	-32768	0 - 23	0 - 5	-32768
		4, 5			+32767			+32767

Входные данные: R3, R4, R6, R7; Выходные данные: R1, R2; Операция: R5; Логика работы сценария «арифметическая операция» следующая: R1.2 = R3.4 (операция) R6.7; Регистр R5 - Операция:

значение	Операция	Действия
0	"=" — равно	R1.2 = R3.4
1	"~" – инверсия	R1.2 = ~R3.4
2	"++" – инкремент	R1.2 = R1.2 + 1
3	"—" – декремент	R1.2 = R1.2 - 1
4	"+" – сложение	R1.2 = R3.4 + R6.7
5	"-" – вычитание	R1.2 = R3.4 - R6.7
6	"*" – умножение	R1.2 = R3.4 * R6.7
7	"/" – деление	R1.2 = R3.4 / R6.7 целое число
8	"%" – остаток от деления	R1.2 = R3.4 % R6.7 остаток
9	"+=" – сложение с предыдущим	R1.2 = R1.2 + R3.4
10	"-=" – вычитание из предыдущего	R1.2 = R1.2 - R3.4
11	"&" – бинарная И	R1.2 = R3.4 & R6.7
12	" " – бинарная ИЛИ	R1.2 = R3.4 R6.7
13	"^" – бинарная ИСКЛЮЧАЮЩЕЕ ИЛИ	R1.2 = R3.4 ^ R6.7
14	"<<" – побитовый сдвиг влево	R1.2 = R3.4 << R6.7(количество бит)
15	">>" – побитовый сдвиг вправо	R1.2 = R3.4 >> R6.7(количество бит)
16	"~=" – бинарная инверсия	R1.2 = R3.4 = (0xFFFF-R6.7+2)
17	"POW" – X в степени Y	R1.2 = R3.4 в степени R6.7
18	"SQRT" – квадратный корень	R1.2 = квадратный корень из R3.4
19	"MIN" – выбор минимального значения	R1.2 = (R3.4 > R6.7) ? R6.7 : R3.4
20	"MED" – расчет среднего значения	R1.2 = (R3.4 + R6.7) / 2
21	"МАХ" – выбор максимального значения	R1.2 = (R3.4 > R6.7) ? R3.4 : R6.7
22	"LIMIT" – ограничение в диапазоне	R1.2 = R3.4 [R1.2] R6.7
23	"ABS" – абсолютное значение	R1.2 =abs(R3.4), например, abs(-2)=2

Сохранение результата в константу и Discrete Inputs невозможно.

Формат записи: MATH (R1) (R2) = (R3) (R4) (R5) (R6) (R7)

Пример записи: **MATH HR 20 = IR 10 + HR 30**

FLOAT - Математические операции с дробными значениями

Сценарий производит математические операции с дробными значениями над двумя входными операндами и присваивает к выходному результату.

Регистр	R0	R1	R2	R3	R4	R5	R6	R7
Параметр	1 MATH	Тип	Рег результата	Тип	операнд 1	Операция	Тип	операнд 2
Диапазон	1	1, 3,	02660	0 - 5	-32768	0 - 14	0 - 5	-32768
		4, 5			+32767			+32767

Входные данные: R3, R4, R6, R7; Выходные данные: R1, R2; Операция: R5;

Сценарий рассчитывает тригонометрическую функцию угла в радианах. Сценарий работает со значениями меньше единицы. Поскольку интерфейс передает только целочисленные значения, то передаваемые значения делятся на 1000.

Для значения 1.0 необходимо ввести 1000. Результат так же увеличен на 1000. Значения вводятся в Радианах. Например, для 90 градусов будет 1,5708 радиан. SIN (1.571 радиан) = 1.000. В регистр R4 необходимо ввести 1571. В регистре R2 будет значение 1000

Pi*1 радиан = 3,14*1 радиан. Поскольку 1 радиан = 57°17'44,8" (57 градусав 17 минут 44,8 секунд) , это означает 3,14*57°17'44,8" = 180°

Логика работы сценария «арифметическая операция» следующая: R1.2 = SIN (R3.4);

Регистр R5 - Операция:

значение	Операция	Действия
0	<i>"="</i>	R1.2 = R6.7
1	SIN — Синус	R1.2 = SIN (R3.4)
2	COS – Косинус	R1.2 = COS (R3.4)
3	TAN – Тангенс	R1.2 = TAN (R3.4)
4	ASIN – Арксинус	R1.2 = ASIN (R3.4)
5	ACOS – Арккосинус	R1.2 = ACOS (R3.4)
6	ATAN – Арктангенс	R1.2 = ATAN (R3.4)
7	SINH - Синус гиперболический	R1.2 = SINH (R3.4)
8	COSH - Косинус гиперболический	R1.2 = COSH (R3.4)
9	TANH - Тангенс гиперболический	R1.2 = TANH (R3.4)
10	ЕХР — Экспонента	R1.2 = EXP (R3.4)
11	LN - Логарифм натуральный	R1.2 = LN (R3.4)
12	LOG - Логарифм десятичный	R1.2 = LOG (R3.4)
13	POW - Y в степени X	R1.2 = R3.4 в степени R6.7
14	SQRT - Корень квадратный	R1.2 = квадратный корень из R3.4

Формат записи: FLOAT (R1) (R2) = (R3) (R4) (R5) (R6) (R7)

Пример записи: FLOAT HR 20 = SIN IR 10

PTRW – указатель для записи массивов переменных

Сценарий позволяет записывать данные в массив данных.

регистр	Описание
R0	(TypeR1)[(TypeR2)R3] = (TypeR4)R5
R1	Тип вых регистра: 1-Coils, 3-HR, 4-IR, 5-Timer
R2	Тип регистра указателя: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R3	Номер регистр
R4	Тип входного регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R5	Входной операнд

Входные данные: R4, R5; Выходные данные: R1, R2, R3;

Указатель используется для создания массивов. Можно записывать в регистр с номером, указанным в другом регистре. Например, IR[IR23]=IR86, в регистре IR23 указывается номер регистра в массиве.

Формат записи: PTR (R1) [(R2.3)] = (R4.5) Пример записи: 00: PTR IR [HR 7] = HR 15

Сценарий	R0	R1	R2	R3	R4	R5
параметр	PTRW	Тип вых регистра	Тип указателя	регистр	Тип вх регистра	Вх регистр
Значение	3	1, 3, 4, 5	0 - 5	-32768	0 - 5	-32768
				+32767		+32767

PTRR – указатель для чтения массивов переменных

Сценарий позволяет читать данные из массива данных.

регистр	параметр
R0	4 – (TypeR4)R5 = (TypeR1)[(TypeR2)R3]
R1	Тип входного регистра: 1-Coils, 3-HR, 4-IR, 5-Timer
R2	Тип регистра указателя: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R3	Номер регистр
R4	Тип выходного регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R5	Выходной операнд

Выходные данные: R4, R5; Входные данные: R1, R2, R3;

Указатель используется для создания массивов. Можно читать их регистра с номером, указанным в другом регистре. Например, IR86 = IR[IR23], в регистре IR23 указывается номер регистра в массиве.

Формат записи: PTRS (R4.5) = (R1) [(R2.3)] Пример записи: 00: **PTRS HR 15 = IR [HR 7]**

Сценарий	R0	R1	R2	R3	R4	R5
параметр	PTRR	Тип вх рег	Тип указателя	Вх регистр	Тип	Вых регистр
Значение	4	1-Coils	0-Const	Число:	0-Const	Число:
		3-HR	1-Coils	-32768	1-Coils	-32768
		4-IR	2-DI	+32767	2-DI	+32767
		5-Tim	3-HR		3-HR	
			4-IR		4-IR	
			5-Tim		5-Tim	
Указатель		Тип	Тип	Вх регистр	Тип	Вых регистр

FOR - циклы

Сценарий позволяет создать циклы.

регистр	Параметр
R0	5 – FOR (IR1=R3; IR1<=R4; IR1++) GOTO R5
R1	Регистр цикла (всегда IR)
R2	Тип регистра значений начала и конца цикла: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R3	Регистр начала цикла
R4	Регистр конца цикла
R5	Адрес выхода из цикла

Входные данные: R1, R2, R3, R4;

Выходные данные: R5;

RO 5 - FOR (IR1=R3; IR1<=R4; IR1++) GOTO R5

Сценарий позволяет зациклить часть сценариев в указанном диапазоне изменения переменной. Регистр R1 будет прибавляться на единицу (инкрементироваться) в диапазоне от указанного в R3 до указанного в R4. Пока значение R1 внутри диапазона, то будут выполняться следующие за этим сценарием команды. В конце сценариев необходимо добавить команду перехода GOTO в начало цикла. Например,

01: FOR (IR35=3; IR35<=7; IR35++) GOTO 05; цикл от 3 до 7

02: MATH IR55 = IR55+25; операции внутри цикла, прибавление значения

03: PTRW IR[IR35] = IR55; операции внутри цикла, заполнение массива

04: GOTO 01; переход в начало цикла

05: IR29=IR28; следующая команда после окончания выполнения цикла

Формат записи: FOR (IR (R1) = (R2.3) TO (R2.4)) GOTO (R6) Пример записи: 00: FOR (IR 20 = HR 30 TO HR 40) GOTO 98

Сценарий	R0	R1	R2	R3	R4	R5
		Тип IR	выбор	Тип в пар 2	Тип в пар 2	выбор
5 – FOR		Число:	0-Const	Число:	Число:	Число:
		02660	1-Coils	-32768	-32768	-32768
			2-DI	+32767	+32767	+32767
			3-HR			
			4-IR			
			5-Tim			
Цикл		Регистр цикла	Тип	начало	конец	Адр
						выхода

SEL – Бинарный выбор. Мультиплексор. Тернарный оператор.

Сценарий присваивает к выходному регистру один из двух, трех или четырех входных регистров по указанному номеру.

7	ny nomepy.
Регистр	Параметр
R0	6 SEL - Бинарный выбор.
R1	Тип выходного регистра: 3-Holding Reg, 4-Input Reg
R2	Выходной регистр
R3	Тип регистра выбора: 1-Coils, 2-Discrete Input, 3-Holding Reg, 4-Input Reg
R4	Регистр выбора: 0 или 1 или 2 или 3
R5	Тип входного регистра: 0-Const, 1-Coils, 2-Discrete Input, 3-Holding Reg, 4-Input Reg, 5-Timer
R6	Входной регистр при 0
R7	Тип входного регистра: 0-Const, 1-Coils, 2-Discrete Input, 3-Holding Reg, 4-Input Reg, 5-Timer
R8	Входной регистр при 1
R9	Тип входного регистра: 0-Const, 1-Coils, 2-Discrete Input, 3-Holding Reg, 4-Input Reg, 5-Timer
R10	Входной регистр при 2
R11	Тип входного регистра: 0-Const, 1-Coils, 2-Discrete Input, 3-Holding Reg, 4-Input Reg, 5-Timer
R12	Входной регистр при 3

Выходные данные: R1, R2;

Условие: R3, R4;

Входные данные: R5, R6, R7, R8, R9, R10, R11, R12;

Сценарий присваивает к выходному регистру R2 значение одного их четырех входных регистров R6, R8, R10 или R12 по указанному номеру R4.

Если R4 = 0, тогда R2 = R6. Если R4 = 1, тогда R2 = R8. Если R4 = 2, тогда R2 = R10. Если R4 = 3, тогда R2 = R12.

Формат записи: R1.2 = (R3.4)? R5.6: R7.8: R9.10: R11.12

Пример записи: IR 10 = SEL (DI 1)? HR 22: HR 23: HR 24: HR 25

IF - Логическая операция

Сценарий выполняет логическое условие ЕСЛИ (IF).

регистр	параметр
RO	7 - IF (R2 условие R5) тогда R6=R8 иначе R6=R9
R1	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R2	Входной операнд 1
R3	Функция: 0- «==», 1- «!=», 2- «>», 3- «<», 4- «>=», 5- «<=», 6- «!», 7- «&&», 8- « »
R4	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R5	Входной операнд 2
R6	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer, 6-PC
R7	Выходной регистр
R8	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R9	Входной операнд если верно

Входные данные: R1, R2, R4, R5; Выходные данные: R6, R7, R8, R9;

Функция: R3;

Логика работы сценария «Логические операции» следующая:

IF (R2 условие R5) тогда R7=R9. Действие выполняется однократно и не будет постоянно присваивать значение при верном условии. Присвоение выполнится снова только когда условие станет неверно и снова верно.

значение	функция
0	«==» если равно
1	«!=» если не равно
2	«>» если больше
3	«<» если меньше
4	«>=» если больше или равно
5	«<=» если меньше или равно
6	«!» логическая операция НЕ
7	«&&»логическая операция И
8	« »логическая операция ИЛИ

Формат записи: IF ((R1.2) (R3) (R4.5)) THEN (R6.7) = (R8.9) Пример записи: 00: IFE (IR3 > HR5) THEN IR 25 = HR 125

Сценарий	R1	R2	R3	R4	R5	R6	R7	R8	R9
7 - IFE	0-Const	Число:	0- «==»,	0-Const	Число:	0-Const	Число:	0-Const	Число:
	1-Coils	02660	1- «!=»,	1-Coils	-32768	1-Coils	-32768	1-Coils	-32768
	2-DI		2- «>»,	2-DI	+32767	2-DI		2-DI	
	3-HR		3- «<»,	3-HR		3-HR	+32767	3-HR	+32767
	4-IR		4- «>=»,	4-IR		4-IR		4-IR	
	5-Tim		5- «<=»,	5-Tim		5-Tim		5-Tim	
			6- «!»,						
			7- «&&»,						
			8- « »						
Логическая	Тип	Вх опе-	функция	Тип	Вх опе-	Тип	Вых	Тип	Bx
операция		ранд 1			ранд 2		регистр		регистр

IFAND - Логическая операция двойная с И

Сценарий выполняет логическое условие: ЕСЛИ (условие) И ЕСЛИ (условие) ТОГДА равно.

if((R1.2 R3 Const R4)&&(R5.6 R7 Const R8))then R9.10 = R11.12:

регистр	параметр
R0	8 - IFAND
R1	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R2	Входной операнд 1
R3	Функция: 0- «==», 1- «!=», 2- «>», 3- «<», 4- «>=», 5- «<=», 6- «!», 7- «&&», 8- « »
R4	Входной операнд 2
R5	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R6	Входной операнд 3
R7	Функция: 0- «==», 1- «!=», 2- «>», 3- «<», 4- «>=», 5- «<=», 6- «!», 7- «&&», 8- « »
R8	Входной операнд 4
R9	Тип регистра: 1-Coils, 3- HR, 4-IR, 5-Timer, 6-PC
R10	Выходной регистр
R11	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R12	Входной операнд если верно

Входные данные: R1, R2, R4, R5, R6, R8, R11, R12;

Выходные данные: R9, R10;

Функция: R3, R7;

Логика работы сценария «Логические операции» следующая:

IF ((R1.2 R3 Const R4)&&(R5.6 R7 Const R8)) тогда R9.10=R11.12. Действие выполняется однократно и не будет постоянно присваивать значение при верном условии. Присвоение выполнится снова только когда условие станет неверно и снова верно.

значение	функция
0	«==» если равно
1	«!=» если не равно
2	«>» если больше
3	«<» если меньше
4	«>=» если больше или равно
5	«<=» если меньше или равно
6	«!» логическая операция HE
7	«&&»логическая операция И
8	« »логическая операция ИЛИ

Формат записи: IFAND ((R1.2 R3 Const R4)&&(R5.6 R7 Const R8)) THEN R9.10=R11.12

Пример записи: 00: IFAND (IR3 > HR5) && (IR7 > HR8) THEN IR 25 = HR 125

IFOR - Логическая операция двойная с ИЛИ

Сценарий выполняет логическое условие: ЕСЛИ (условие) ИЛИ ЕСЛИ (условие) ТОГДА равно.

if((R1.2 R3 Const R4)||(R5.6 R7 Const R8)) then R9.10 = R11.12:

регистр	параметр
R0	9 - IFOR
R1	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R2	Входной операнд 1
R3	Функция: 0- «==», 1- «!=», 2- «>», 3- «<», 4- «>=», 5- «<=», 6- «!», 7- «&&», 8- « »
R4	Входной операнд 2
R5	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R6	Входной операнд 3
R7	Функция: 0- «==», 1- «!=», 2- «>», 3- «<», 4- «>=», 5- «<=», 6- «!», 7- «&&», 8- « »
R8	Входной операнд 4
R9	Тип регистра: 1-Coils, 3- HR, 4-IR, 5-Timer, 6-PC
R10	Выходной регистр
R11	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R12	Входной операнд если верно

Входные данные: R1, R2, R4, R5, R6, R8, R11, R12;

Выходные данные: R9, R10;

Функция: R3, R7;

Логика работы сценария «Логические операции» следующая:

ЕСЛИ ((R1.2 R3 Const R4)||(R5.6 R7 Const R8)) ТОГДА R9.10=R11.12. Действие выполняется однократно и не будет постоянно присваивать значение при верном условии. Присвоение выполнится снова только когда условие станет неверно и снова верно.

значение	функция
эпачение	функции
0	«==» если равно
1	«!=» если не равно
2	«>» если больше
3	«<» если меньше
4	«>=» если больше или равно
5	«<=» если меньше или равно
6	«!» логическая операция HE
7	«&&»логическая операция И
8	« »логическая операция ИЛИ

Формат записи: IFAND ((R1.2 R3 Const R4)||(R5.6 R7 Const R8)) THEN R9.10=R11.12

Пример записи: 00: IFAND (IR3 > HR5) | | (IR7 > HR8) THEN IR 25 = HR 125

GOTO - Переход:

Сценарий выполняет переход на другую команду.

регистр	параметр
R0	10 - GOTO
R1	Переход (возможные значения 0-77)

Входные данные: нет; Выходные данные: R1;

Команда GOTO переход позволяет перепрыгнуть несколько сценариев. Сценарии выполняются последовательно от 0 до 77 и снова повторяются. Команда GOTO может выполняться совместно с условием IF. Если номер сценария указан больше 77, то будет переход на номер 0.

Например:

2: If (IR2 > 30) переход на 5, иначе выполнится следующая операция

3: MATH R7 = R4 * R7

4: GOTO 6

5: MATH R7 = R4 - R7 6: BITS R12 = R4 & R7

Формат записи: GOTO (R1) Пример записи: 00: **GOTO 125**

Сценарий	R1
10 - GOTO	Число:
	077
Переход	Номер счетчика команд

CALL – Переход в подпрограмму:

Сценарий выполняет переход на подпрограмму.

регистр	Параметр
R0	11 – CALL
R1	Переход (возможные значения 0-77)

Входные данные: нет; Выходные данные: R1;

Функция: нет;

Логика работы сценария «Переход» следующая: CALL номер сценария.

Эта команда работает так же, как и GOTO, но запоминает номер своего сценария. Команда позволяет перейти на подпрограмму. В конце подпрограммы используется команда RETURN. Может выполняться совместно с условием. Если номер сценария указан больше 77, то будет переход на номер 0.

Формат записи: CALL (R1) Пример записи: 00: **CALL 121**

Сценарий	R1
11 - CALL	Число:
	077
Вызов подпрограммы	Номер счетчика команд

RETURN – Выход из подпрограммы:

Сценарий выполняет выход из подпрограммы.

регистр	Параметр
R0	12 – RETURN

Логика работы сценария «Переход» следующая: RETURN.

Команда ставится в конце сценария подпрограммы и делает переход на следующий шаг, откуда был сделан вызов CALL. Например:

2: If (IR2 > 30) переход на 100, иначе выполнится следующая операция

3: MATH IR28 = IR38 * IR7

4: MATH IR7 = DI4 - IR7

5: BITS R12 = R4 & R7

6: MOV Coil3=R12

99: GOTO 0; переход в начало алгоритма

100: MOV IR7 = 25

101: MATH IR38 = DI4 * IR7

102: RETURN; возврат из подпрограммы

Формат записи: RETURN Пример записи: 00: **RETURN**

Сценарий
12 - RETURN
Выход из подпрограммы

THRS - Пороговое реле:

Сценарий позволяет получить дискретное значение из аналогового значения. Является аналогом триггера Шмидта. Переключение происходит при установленном пороге. Разница в порогах включения и выключения устанавливается в регистре гистерезис.

регистр	параметр
R0	13 - Пороговое реле
R1	Тип выходного регистра: 1-Coils, 3-HR, 4-IR, 5-Timer
R2	Выходной регистр
R3	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R4	Входной регистр
R5	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R6	Регистр с пороговым значением
R7	Гистерезис, (Константа)
R8	инверсия (0-нет, 1-инверсия)

Входные данные: R3, R4; Выходные данные: R1, R2; Коэффициенты: R5, R6, R7, R8.

Логика выполняет однократное действие, т.е. событие и не держит выход в одном состоянии. Поэтому после включения реле его можно выключить записью в регистр Coils.

Логика работы сценария «Пороговое реле» следующая.

If((R3.4>R5.6) && (flag=0)) flag=1; R1.2=1

Если значение больше заданного, то включает реле.

if((R3.4<(R5.6-R7)) && (flag=1)) flag=0; R1.2=0;

Если значение меньше заданного, то выключает реле.

Входное значение может быть значение АЦП, пересчитанные значения, дискретные значения или пользовательские данные.

Формат записи: THRS (R1.2) = 0 or 1, In (R3.4) th (R5.6) \pm (R7) inv R8

Например, THRS IR 5 = 0 or 1, In IR 1 th HR 110 ± 2 inv 0

TRG - Tpurrep:

Сценарий позволяет сделать переключение выхода с выключенного состояния на включенное и обратно при кратковременном нажатии кнопки.

регистр	параметр
R0	14 = Триггер
R1	Тип выходного регистра: 1-Coils, 3-HR, 4-IR, 5-Timer
R2	Выходной регистр
R3	Тип входного регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R4	Входной регистр
R5	Пороговое значение, константа

Входные данные: R3, R4; Выходные данные: R1, R2;

Параметры: R5.

// 0= тип=14, 1= Тип, 2= вых регистр, 3= тип, 4= вх регистр, 5= порог

Логика работы сценария «Триггер» следующая:

При четном нажатии в регистры записываются значения 1. При нечетном нажатии в регистры записываются значения 0. Пороговое значение — это уровень, при котором происходит переключение. Для дискретного входа записать значение 1. Логика выполняет однократное действие, т.е. событие и не держит выход в одном состоянии. Поэтому после включения реле его можно выключить записью в регистр Coils.

Формат записи: TRG (R1.2) =0 or 1, In (R3.4) th (R5)

Например, **TRG IR 5 = 0 or 1, In HR 110 th 2**

KDO – кнопка с удержанием.

Сценарий позволяет переключить один канал реле кратковременным нажатием кнопки и выключить несколько каналов реле, долгим нажатием кнопки.

Регистр	параметр					
R0	15 — кнопка с удержанием					
R1	Тип регистра: 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer					
R2	Номер входного регистра					
R3	Номер реле Coil при кратковременном нажатии					
R4	Тип регистра: 1-Coils, 3-HR, 13-HR, 23-HR, 4-IR, 5-Timer					
R5	Номер выходного регистра при удержании кнопки					
R6	Значение					
R7	Время удержания кнопки (в 0.1 сек)					

Входные данные: R1, R2;

Выходные данные: R3, R4, R5, R6;

Параметры: R7

Сценарий позволяет переключить с выключенного состояния на включенное и обратно канал реле, указанный в R3 при кратковременном нажатии кнопки.

Позволяет изменить значение выхода, указанного в R4 при удержании кнопки больше времени в R5.

Для реле DRM88R можно в регистр HR5 записать число, меняющее сразу состояние всех 8 каналов.

Если в R4 указан 3 (HR), то сценарий запишет в R5 значение R6. Изменит все каналы.

Если 13 (HR), то сценарий только выключит указанные каналы, не меняя другие каналы (R5 &= \sim R6). При R6=15 (0b00001111) выключит только 1, 2, 3, 4 каналы, остальные оставит неизменными.

Если в R4 указан 23 (HR), то сценарий только включит указанные каналы, не меняя другие каналы (R5 |= R6). При R6=51 (0b00110011) включит только 1, 2, 5, 6 каналы, остальные оставит неизменными.

Формат записи: KDB (R1.2) = (R7) dsec -> (Coil R3) -> (R4.5)=(R6)

Пример записи: 00: KDO DI 2 = 10dsec -> Co 2 -> Co 3

Сценарий	R1	R2	R3	R4	R5	R6	R7
15 - KDB	0-Const	Число:	Число:	1-Coils	Число:	Число:	Число:
	1-Coils	0 999	0 23	3-HR	0 23	0 255	0 255
	2-DI			13-HR			
	3-HR			23-HR			
	4-IR			4-IR			
	5-Tim			5-Tim			
Кнопка	Тип	вход	Реле 1	Тип	Реле 2	Значение	Время
							0,1S

KDB - кнопка с удержанием.

Сценарий позволяет переключить один канал реле кратковременным нажатием кнопки и переключить другой канал реле, долгим нажатием кнопки.

<u>, , </u>	1 /11
регистр	параметр
R0	16 – кнопка с удержанием
R1	Тип регистра: 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R2	Номер входного регистра
R3	Номер реле Coil при кратковременном нажатии
R4	Номер реле Coil при удержании кнопки
R5	Время удержания кнопки (в 0.1 сек)

Входные данные: R1, R2; Выходные данные: R3, R4;

Параметры: R5

Сценарий позволяет переключить с выключенного состояния на включенное и обратно канал реле, указанный в R3 при кратковременном нажатии кнопки. И переключить с выключенного состояния на включенное и обратно канал реле, указанный в R4 при удержании кнопки больше времени в R5.

Формат записи: KDB (R1.2) = (R5) dsec -> (Coil R3) -> (Coil R4)

Пример записи: 00: **KDB DI 2 = 10dsec -> Co 2 -> Co 3**

Сценарий	R1	R2	R3	R4	R5
16 - KDB	0-Const	Число:	Число:	Число:	Число:
	1-Coils	0 999	0 23	0 23	0 255
	2-DI				
	3-HR				
	4-IR				
	5-Tim				
Кнопка	Тип	вход	Реле 1	Реле 2	Время 0,1Ѕ

TIMER - Таймер.

Сценарий позволяет выполнять события по таймеру.

регистр	параметр
R0	17 - Таймер
R1	Номер таймера
R2	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R3	Максимальное значение таймера
R4	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer, 6-PC
R5	Выходной регистр или переход на другой сценарий
R6	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R7	Входной сценарий

Входные данные: R6, R7; Выходные данные: R4, R5; Параметры: R1, R2, R3.

Логика работы сценария «Таймер» следующая:

Сценарий опрашивает переменную Timer с указанным номером. Доступно 16 таймеров от 0 до 15. Эта переменная уменьшается на 1 каждые 0.1 сек. Когда переменная доходит до 0, то в переменную Timer записывается новое значение таймера из регистра R3 и выполняет команду. После этого переменная таймера снова начинает обратный отсчет. Максимальное значение таймера можно взять из любого регистра, включая значение самого таймера, это может привезти к зацикливанию.

Если в регистре R5 указан тип 6, то произойдет переход на сценарий с адресом, указанным в R6. Если в регистре R5 указан тип от 0 до 5, то выполнится команда присвоения: R5 = R7.

Формат записи, если (R4<6): TIME (R1) = (R2.3) TO (R4.5) = (R6.7)

Формат записи, если (R4==6): TIMG (R1) = (R2.3) TO (R4.5)

Например, **TIM 2 = HR 50 TO Coil 4 = HR 25**

Сценарий	R1	R2	R3	R4	R5	R6	R7
17 - TIM	Число	0-Const	Число	0-Const	Число	0-Const	Число
	Тип - Timer	1-Coils	Тип в R2	1-Coils	Тип в R4	1-Coils	Тип в R6
		2-DI		2-DI		2-DI	
		3-HR		3-HR		3-HR	
		4-IR		4-IR		4-IR	
		5-Tim		5-Tim		5-Tim	
				6-PC			
Таймер	Номер	тип	Значение	тип	Вых	тип	Входной
	таймера		таймера		регистр		сценарий
	TIMER						

RTC – часы и дата

Сценарий позволяет выполнить действия при наступлении заданного времени

регистр	параметр
R0	18 – RTC
R1	тип: 0 – нет; 1 – Ежемесячно; 2 – Еженедельно; 3 – Ежедневно; 4 - Каждый час; 5 - Каждую
	минуту
R2	День – для «ежемесячно» или маска недели – для «еженедельно»;
R3	часы (0-23),
R4	минуты (0-59),
R5	секунды (0-59),
R6	Тип регистра: 1, 3, 4, 5, 6
R7	Выходной регистр
R8	Тип регистра: 05
R9	Входной операнд

Входные данные: R8, R9; Выходные данные: R6, R7;

Параметры: R1 – R5.

Сценарий позволяет выполнить сценарий присвоения или переход CALL при наступлении указанного времени и даты.

- 1 Ежемесячно: выполняет действия каждый месяц в указанный день, час, минуту и секунду.
- 2 Еженедельно: выполняет действия каждую неделю в указанные дни недели, час, минуту и секунду.
- 3 Ежедневно: выполняет действия каждый день в указанный час, минуту и секунду.
- 4 Каждый час: выполняет действия каждый час в указанную минуту и секунду.
- 5 Каждую минуту: выполняет действия каждую минуту в указанную секунду.

Например, для типа: 2 – Еженедельно нужно записать следующие значения:

- R0 = 9;
- R1 = 2 тип;
- R2 = 1 маска недели;
- R3 = 10 час;
- R4 = 11 минута;
- R5 = 12 секунда;
- R6 = тип 6 переход;
- R7 = 25 адрес перехода

Например, для типа: 4 – каждый час необходимо указать:

- R0 = 9;
- R1 = 4 тип;
- R2 = 0;
- R3 = 20 yac;
- R4 = 21 минута;
- R5 = 0 секунда;
- R6 = 1 тип Coils;
- R7 = 1 номер реле;
- R8 = 0 константа;
- R9 = 1 включение реле.

Формат записи: RTC (R1), D=(R2), H=(R3) : (R4) : (R5) TO (R6) (R7) = (R8) Пример записи: RTC Ежемесячно, D=2, H=3 : 40 : 50 TO IR 7 = 28

Сценарий	R1	R2	R3	R4	R5	R6	R7	R8
18 - RTC	0 – нет;	131	023	059	059	0-Const	Число:	Число:
	1 –					1-Coils	02660	-32768
	Ежемесячно;					2-DI		+32767
	2 –					3-HR		
	Еженедельно;					4-IR		
	3 –					5-Tim		
	Ежедневно;					6-PC		
	4 - Каждый							
	час;							
	5 - Каждую							
	минуту							
Часы	Тип таймера	День	часы	минуты	секунды	Тип	Выходной	Значение,
		или				регистра:	регистр	записываемое
		неделя						в регистр

Маска дней недели (для таймера типа - Еженедельно):

Значение
ПН
BT
СР
ЧΤ
ПТ
СБ
ВС

JAL - Управление Жалюзи.

Сценарий позволяет организовать процесс управления приводом, в частности жалюзи.

регистр	Параметр
R0	19 JAL
R1	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R2	Входной регистр источника данных (тип указан выше)
R3	Пороговое значение
R4	Канал реле для открытия
R5	Канал реле для закрытия
R6	Время срабатывания (0.1 сек)

Входные данные: R1, R2; Выходные данные: R4, R5;

Параметры: R3, R6.

При изменении входного регистра больше 0 происходит включение канала реле открытия, выдержка заданного времени и выключение этого реле. При изменении входного регистра равном 0 происходит включение канала реле закрытия, выдержка заданного времени и выключение этого реле.

Формат записи: JAL IN (R1.2) threshold (R3) Coil Open (R4), Coil Close (R5), t=(R6) sec

Пример записи: JAL In IR 20 Thr 30 Coil Open 4, Coil Close 5, t=30 sec

Сценарий	R1	R2	R3	R4	R5	R6
19 - JAL	0-Const	Число	Число:	Число	Число	Число:
	1-Coils	Тип в R1	Тип - Const	Тип - Coils	Тип - Coils	Тип - Const
	2-DI		065535			0255
	3-HR					
	4-IR					
	5-Tim					
Управление	тип	Входной	Пороговое	Канал реле	Канал реле	Время
приводом		регистр	значение	для	для	срабатывания
				открытия	закрытия	

PID - ПИД регулятор.

Сценарий позволяет организовать пропорционально интегрирующее дифференцирующее регулирование нагревательным элементом.

регистр	Параметр
R0	20 PID
R1	Выходной регистр – канал реле
R2	Входной регистр – измеренное значение (IR)
R3	Тип регистра: 0- Const, 1-Coils, 2-DI, 3- HR, 4-IR, 5-Timer
R4	Входной регистр – заданное значение (уставка)
R5	КР - Коэффициент пропорциональной составляющей (константа)
R6	KI – Коэффициент интегрирующей составляющей (константа)
R7	KD - Коэффициент дифференцирующей составляющей (константа)
R8	CycleTime – время, сек (константа)
R9	Р - Пропорциональная составляющая (IR)
R10	I - Интегрирующая составляющая (IR)
R11	D - дифференцирующая составляющая (IR)
R12	MV – Результат - выделяемой мощности нагревателем (IR)

Входные данные: R2, R3, R4;

Выходные данные: R1;

Результат: R12;

Параметры: R5, R6, R7, R8.

DE = SP - PV; Разность между измеренным и заданным значением;

P = Kp*DE; Пропорциональная составляющая;

I = I + Ki*DE*CycleTime; Интегрирующая составляющая;

D = Kd*(DE - DE_last)/CycleTime; дифференцирующая составляющая;

DE last = DE; предыдущее значение разности значений;

MV = P + I + D; Результат выделяемой мощности нагревателем.

Формат записи: PID Coil (R1), Meas IR (R2), Set (R3) (R4) (KP=(R5), KI=(R6), KD=(R7))

Пример записи: PID Coil 2, Meas IR 2, Set IR 3 (KP=1, KI=2, KD=3)

Параметры 9,10,11,12 это промежуточные данные поэтому не используются.

Сценарий	R1	R2	R3	R4
20 - PID	Число	Число	0-Const	Число
	Тип - Coils	Тип - IR	1-Coils	Тип в R3
			2-DI	
			3-HR	
			4-IR	
			5-Tim	
пид	Канал реле	Изм	тип	Заданное
регулятор		значение		значение

R5	R6	R7	R8	R9	R10	R11	R12
Число:	Число:	Число:	Число:	Число:	Число:	Число:	Число:
Тип -	Тип -	Тип -	Тип 0 -	-32768	-32768	-32768	-32768
Const	Const	Const	Const	+32767	+32767	+32767	+32767
KP	KI	KD	Time	Р		D	MV

10. ПО для управления и настройки модулей.

Управлять модулями, настроить модули и написать сценарии можно записью в регистры Modbus необходимых значений с помощью различных программ:

10.1. программа ModbusPoll

Программа позволяет читать и записывать в регистры любые значения. Программа универсальная, поэтому её придется настраивать самостоятельно и специфические данные она не расшифровывает.

