- 1. Completeness of QND
- 1.1 Semantic vs. Syntactic Consistency
- 1.2 Proof Sketch
- 1.3 Stage 0: \exists -Completeness and QL'
- 1.4 Stage 1: Constructing Γ*
- 1.5 Stage 2: Γ^* is M-QND-C & ∃-complete
- 1.6 Stage 3: Model Construction
 - The Membership Lemma
 - Model Construction
 - Induction on QL' (we be clubbin')
 - Stage 4? Salvation

- ▶ QND is Complete: For any set Γ of QL-sentences and any QL-sentence \mathcal{P} , if Γ semantically entails \mathcal{P} , then there exists a derivation of \mathcal{P} from Γ in our natural deduction system QND
 - In symbols: If $\Gamma \vDash \Theta$, then $\Gamma \vdash_{QND} \Theta$
 - Note that Γ can be countably infinite
- ► Completeness guarantees that for any valid QL-argument, there is at least one corresponding deduction in QND.
- ➤ So we need not reason about arbitrary models to determine if a QL-argument is valid; reasoning in QND suffices! WOW COOL

"⊨": our Semantic Double Turnstile

- ► " $\Gamma \vDash \mathcal{P}$ " means that Γ logically entails \mathcal{P} In any QL-model \mathfrak{M} where the premises in Γ are true, the conclusion \mathcal{P} is true
- ▶ Equivalently: there is no QL-model \mathfrak{M} such that Γ is satisfied while \mathcal{P} is false
- ▶ Equivalently, this means that $\Gamma \cup \{\sim P\}$ is unsatisfiable: no QL-model makes-true the premises and negated conclusion
- ► We'll use this last fact A LOT in our proof that QND is complete!

Consistency

a. Semantic vs. Syntactic

Semantic vs. Syntactic Consistency

- ► As with SND, we appeal to two distinct notions of consistency
- One is semantic: there is a QL-model that satisfies every sentence in the set
- We introduce a new syntactic notion of consistency relative to QND:
 - a set of QL sentences is **QND-consistent** provided that you can't derive contradictory sentences from it in QND
- Core proof idea: we'll show that if a set of sentences is QND-consistent, then it is also semantically consistent (i.e. satisfiable). So by the contrapositive: if a set is unsatisfiable, then it is inconsistent-in-QND.

Semantic: Satisfiable (quantificationally consistent)

► Recall: a set of QL sentences is **satisfiable** provided there is at least one QL-model \mathfrak{M} that makes all of them true

► This is a semantic notion of consistency (aka "quantificational consistency")

► Contrast this with the syntactic notion of **consistency in QND**:

Syntactic: (In)consistent-in-QND (derivationally consistent)

- \blacktriangleright Let Γ be a (possibly infinite) set of QL sentences
- ▶ Inconsistent-in-QND: from premises in Γ , we can derive contradictory formulas R and $\sim R$ in the scope of the main scope line (i.e. in the scope of these premises)
- Consistent-in-QND: Γ is not QND-inconsistent, i.e. there is no derivation from premises in Γ resulting in contradictory formulas within the main scope
- ► Other words we might use for these concepts: QND-inconsistent, derivationally-inconsistent, QND-consistent, etc.
- ▶ Just remember: this syntactic notion has nothing to do with models or interpretations!

b. Proof Sketch

Proof Sketch: Just like what we did for SL!

- ▶ Goal: prove the completeness of QL: for every QL sentence \mathcal{P} and every set Γ of QL sentences, if $\Gamma \vDash \mathcal{P}$ then $\Gamma \vdash_{QND} \mathcal{P}$
- ▶ So assume that $\Gamma \models \mathcal{P}$.
- ► This means that $\Gamma \cup \{\sim P\}$ is **unsatisfiable**: no QL-model satisfies the premises and negated conclusion (i.e. $\Gamma \cup \{\sim P\}$ is *semantically* inconsistent)
- ▶ We now appeal to a Consistency lemma that remains the heart of the enterprise: any QND-consistent set of QL sentences is satisfiable (i.e. semantically consistent)

Proof Sketch: Using the consistency lemma

- ► Consistency lemma (CL): any QND-consistent set of QL sentences is satisfiable, i.e. true in some QL-model M
- ► Contrapositive of CL: any set of QL sentences that is Unsatisfiable is QND-Inconsistent
- ► From $\Gamma \models \mathcal{P}$ we know that $\Gamma \cup \{\sim \mathcal{P}\}$ is unsatisfiable
- ▶ So by the contrapositive of CL, we see that $\Gamma \cup \{\sim P\}$ is QND-inconsistent
- ▶ This means that we can derive a pair of contradictory sentences R and $\sim R$ from $\Gamma \cup \{\sim P\}$! So using the power of negation elimination, we can derive P from Γ , i.e. $\Gamma \vdash_{QND} P$. So we are 'done'!

Negation Elimination Refresher (book's Exercise 11.4.2)

- ▶ Claim: if $\Gamma \cup \{\sim P\}$ is QND-inconsistent, then $\Gamma \vdash_{QND} P$
- ▶ Proof: starting with (finitely-many) premises Δ from Γ , introduce $\sim P$ as a subproof assumption for negation elimination
- ► Since $\Gamma \cup \{\sim P\}$ is QND-inconsistent, we can derive a contradictory pair R and $\sim R$ within the scope of sentences in $\Delta \cup \{\sim P\}$
- ▶ Then discharge this assumption $\sim P$ by negation elimination, writing P, now in the scope of Δ . So $\Delta \vdash_{QND} P$
- ▶ Since $\Delta \subseteq \Gamma$, we have $\Gamma \vdash_{QND} \mathcal{P}$

Core subgoal: Prove consistency lemma (book's 11.4.2)

- ➤ So all we have to do is prove the **consistency lemma**: any QND-consistent set of QL sentences is satisfiable
- ► As with SL, we'll prove this lemma in several 'stages':
- ► The first two are straightforward: given a QND-consistent set Γ , we construct a **superset** Γ^* that is *maximally QND-consistent* and *existentially complete* (\exists -complete)
- ▶ In the third stage, we show that any \exists -complete, maximally QND-consistent set is satisfiable: we use maximal consistency and \exists -completeness to construct a model that satisfies every sentence in Γ^* . Wrinkle: we work in an extended language QL'!
- ▶ Since by construction $\Gamma \subseteq \Gamma^*$, this QL'-model satisfies Γ (in QL')
- ightharpoonup From our QL'-model, we generate a QL-model that satisfies Γ

c. Stage 0: ∃-Completeness and QL′

Maximally QND-consistent (no longer enough!)

- ► A set Γ^* of QL or QL' sentences is maximally QND-consistent provided that:
 - 1.) Γ^* is QND-consistent (i.e. can't derive contradictory sentences)
 - 2.) adding any additional sentence to Γ^* would result in an QND-inconsistent set
- ▶ i.e. for any $P \notin \Gamma^*$, $\{P\} \cup \Gamma^*$ is QND-inconsistent
- Unlike with SL, maximal derivational consistency is no longer enough to ensure satisfiability
- ▶ Recall that our purely syntactic membership lemma is motivated by the truth-conditions for QL sentences: sentences belong to Γ^* iff the relevant "truth-condition pieces" belong to Γ^* as well
- ► To extend our membership lemma to quantified sentences, we require that every existential sentence in Γ^* has a substitution instance also in Γ^* . So we introduce a new property:

13.c.1

Existential-completeness: definition and motivation

- ▶ \exists -completeness: a set Γ of QL or QL' sentences is existentially-complete just in case for every sentence in Γ of the form $(\exists \chi)\mathcal{P}$, at least one substitution instance $\mathcal{P}[c/\chi]$ is in Γ
- ▶ Motivation: $(\exists \chi)\mathcal{P}$ is true in a model iff some object $r \in D$ is a \mathcal{P}
- ► To construct an \exists -complete set Γ^* , we need recourse to a countable infinity of unused constants.
- ► Otherwise, new substitution instances that we add could "contradict" sentences already in Γ, spoiling QND-consistency
- ► Problem: our starting Γ might be infinite and so already use infinitely-many constants from QL. What are we to do?

It's a bird! It's a plane! It's ... Language QL'????

- QL' is exactly like QL except that we allow subscripted constants to have primed-indices
- \blacktriangleright e.g. $c_{11'}$, $b_{234'}$, $g_{2'}$ ('i'-symbol always at the end)
- ightharpoonup Unsubscripted constants remain the same: a thru v
- ► So QL' just adds one new symbol 'r', allowed to occur only at the end of indices for constants
- ► The recursive structure of truth-in-QL' is defined exactly the same as for QL (using our good friend, satisfaction semantics!)
- ▶ Note that we do NOT allow primed indices on Predicates
- Moral: reach for the stars, not drugs

d. Stage 1: Constructing ^{↑*}

Stage 1(i): first enumerate the sentences of QL'!

- ightharpoonup Let Γ be a QND-consistent set of QL sentences (possibly infinite)
- ▶ To construct Γ^* , we first **enumerate** the QL' sentences, so that every QL' sentence is associated with a unique positive integer $\{1, 2, 3, ...\}$
- ► As with SL, stipulate an 'alphabetical order' for QL' symbols
- ▶ \sim , \vee , &, \supset , \equiv , (,), 0, 1, ..., 9, A, B, ..., Z, a, ..., v, w, x, y, z, \forall , \exists , '
- ► Assign each symbol an **index** between '10' and '84' (skip 17-19)
- ► Then each QL' sentence corresponds to a unique positive integer, constructed by replacing each symbol in the sentence with its index, from left to right.
- ▶ So with our ordering, 'A' is the first sentence; 'B' the second ... up to Z, and then we hit $\sim A$ (\mapsto 1030), then $\sim B$ (\mapsto 1031), etc.

Recall what we did in SL to form Γ^* Max.-SND-Consist.

- ▶ We considered the first sentence 'A' in our enumeration. If A could be added to Γ without the resulting set being SND-inconsistent, then we let $\Gamma_1 := \Gamma \cup \{A\}$.
- ▶ Otherwise, let $\Gamma_1 := \Gamma$ (so that Γ_1 stays SND-consistent)
- ▶ We proceeded to the 2nd sentence in our enumeration. If it could be added to Γ_1 without the new set being SND-inconsistent, let Γ_2 be the result. Otherwise, let $\Gamma_2 := \Gamma_1$
- ightharpoonup T* was the result of 'doing' this procedure for every SL sentence
- Now we need to complicate matters a bit, to handle sentences of the form $(\exists \chi)\mathcal{P}$ and ensure we add a suitable substitution instance whenever we can add $(\exists \chi)\mathcal{P}$ while preserving QND-consistency

Building up 「*

- ▶ Given a QND-consistent set of QL sentences Γ , let $\Gamma_0 := \Gamma$
- ► Consider the k-th sentence P_k in our enumeration of QL'
- ▶ Define Γ_{k+1} as follows:
 - i.) Γ_k if the set $\Gamma_k \cup \{P_k\}$ is QND-INconsistent
 - ii.) $\Gamma_k \cup \{P_k\}$ if P_k does NOT have the form $(\exists \chi) \mathcal{Q}$, and $\Gamma_k \cup \{P_k\}$ is QND-consistent
 - iii.) $\Gamma_k \cup \{P_k, P_k^{\dagger}\}\$ if $\Gamma_k \cup \{P_k\}\$ is QND-consistent AND P_k DOES have the form $(\exists \chi) \mathcal{Q}$, where P_k^{\dagger} is a substitution instance $\mathcal{Q}[c/\chi]$, and c is the alphabetically earliest constant not in P_k or any sentence in Γ_k
 - Such a $\it c$ is guaranteed to exist because Γ_0 belongs to QL.
 - So the countable-infinity of primed subscripted constants from QL^\prime are available at each stage if needed.
- ▶ Then $\Gamma^* := \bigcup_{k=0}^{\infty} \Gamma_k$

e. Stage 2: Г* is M-QND-C &

∃-complete

Stage 2: Γ^* is maximally QND-consistent & \exists -complete

- ► This requires proving three claims (from the definitions):
 - 1.) Γ^* is consistent in QND
 - 2.) Adding any additional sentence to Γ^* would result in a **QND-inconsistent** set
 - 3.) For every QL' sentence of the form $(\exists \chi) \mathcal{Q}$ in Γ^* , at least one substitution instance $\mathcal{Q}[c/\chi]$ belongs to Γ^*

► We prove these in turn

Stage 2 (i): Γ^* is QND-consistent

- ightharpoonup Assume for *reductio* that Γ^* is inconsistent in QND
- ► Then there would be a QND derivation with finite premise set $\Delta \subset \Gamma^*$ that derives a contradictory pair R and $\sim R$
- ▶ Since Δ is finite, there exists some $k+1 \in \mathbb{N}$ s.t. $\Delta \subset \Gamma_{k+1}$. So then this Γ_{k+1} would be QND-inconsistent.
- ▶ Yet, each Γ_{k+1} is necessarily QND-consistent:
 - If P_k is not existential, it joins Γ_{k+1} only if $\Gamma_k \cup \{P_k\}$ is QND-consistent—by condition (ii)
 - If P_k is of the form $(\exists \chi)Q$, it joins only if $\Gamma_k \cup \{P_k\}$ is QND-consistent.
 - It remains to show that $\Gamma_k \cup \{(\exists \chi) \mathcal{Q}, \mathcal{Q}[c/\chi]\}$ is QND-consistent
 - **Lemma**: if c does not occur in a QND-C set $\Gamma_k \cup \{(\exists \chi) Q\}$, then $\Gamma_k \cup \{(\exists \chi) Q, Q[c/\chi]\}$ is QND-consistent
- ▶ Hence, Γ^* must be QND-consistent, on pain of *reductio*

Stage 2 (ii): Γ^* is maximally QND-consistent

- ightharpoonup Assume for *reductio* that Γ^* weren't maximally QND-consistent, despite being QND-consistent
- ▶ i.e. assume it is not the case that for all other sentences, adding it to Γ^* would result in a QND-inconsistent set
 - \Rightarrow there exists a sentence $\mathcal Q$ that we could add to Γ^* while preserving QND-consistency (i.e. there is some sentence we neglected that could make Γ^* a 'bigger' QND-consistent set)
- ▶ Yet, \mathcal{Q} would appear in our enumeration as some sentence P_k , 'considered' at the k-th stage of our construction of Γ^* .
- ► So if Q isn't in Γ^* , then this is because adding it 'would have' made $\Gamma_k \subset \Gamma^*$ QND-inconsistent.
 - So $\{Q\} \cup \Gamma^*$ must be QND-inconsistent (*reductio*!)
- lacktriangle So we can't add any $\mathcal Q$ to Γ^* while preserving QND-consistency $_{13.e.3}$

Stage 2 (iii): Γ^* is \exists -complete

- ▶ We simply need to show that for each sentence of the form $(\exists \chi) \mathcal{Q} \in \Gamma^*$, a substitution instance $\mathcal{Q}[c/\chi]$ also belongs to Γ^*
- Note that this is true by construction: each sentence of the form $(\exists \chi) \mathcal{Q}$ occurs in our QL'-enumeration:
- ▶ If we could have "added" $(\exists \chi)Q$ at the k-th stage while preserving QND-consistency, then we also added a substitution instance.
- ► This is so even if $(\exists \chi) \mathcal{Q}$ is already in $\Gamma_{\emptyset} := \Gamma$, since by condition (iii) $\Gamma_{k+1} := \Gamma_k \cup \{(\exists \chi) \mathcal{Q}, \mathcal{Q}[c/\chi]\}$ which in this case would equal $\Gamma_k \cup \{\mathcal{Q}[c/\chi]\}$ (since in this case, $(\exists \chi) \mathcal{Q} \in \Gamma_k$)

f. Stage 3: Model Construction

Stage 3: The Maximal Consistency Lemma (\approx book's 11.4.7)

- ► ∃-C Maximal Consistency Lemma: every QL' set that is maximally-QND-consistent and ∃-complete is satisfiable
- ▶ (there exists a QL'-model that makes-true every sentence in Γ^*) We construct this model, calling it " \mathfrak{M}^* " (\approx book's " \mathbf{I}^* ")
- ▶ Proof idea: since Γ^* is M-QND-C, for any sentence \mathcal{P} , either $\mathcal{P} \in \Gamma^*$ or $\sim \mathcal{P} \in \Gamma^*$ (you're either in the club or your 'nemesis' is!) This holds in particular for each QL'-atomic sentence
- ► Construct a QL'-model \mathfrak{M}^* such that for each atomic QL'-sentence \mathcal{A} , $\mathfrak{M}^* \models \mathcal{A}$ iff $\mathcal{A} \in \Gamma^*$
- ▶ Then by the recursive structure of QL' sentences, $\mathfrak{M}^* \models \mathcal{P}$ iff $\mathcal{P} \in \Gamma^*$

Stage 3 (i): the Membership Lemma (book's 11.4.6)

- ightharpoonup To induct on QL', we first constrain Γ^* membership
- Basically, Γ* is THE club with the MOST ANGELIC bouncer you've eva seen, who enforces maximal consistency. Before this *angel* lets a sentence into Γ*, he checks who else is GOOD. You hear?
- ▶ Membership Lemma for club: if \mathcal{P} and \mathcal{Q} are QL' sentences, then:
 - a.) $\sim \mathcal{P} \in \Gamma^*$ if and only if $\mathcal{P} \notin \Gamma^*$
 - b.) $\mathcal{P} \& \mathcal{Q} \in \Gamma^*$ if and only if both $\mathcal{P} \in \Gamma^*$ and $\mathcal{Q} \in \Gamma^*$
 - c.) $P \lor Q \in \Gamma^*$ if and only if either $P \in \Gamma^*$ or $Q \in \Gamma^*$
 - d.) $\mathcal{P} \supset \mathcal{Q} \in \Gamma^*$ if and only if either $\mathcal{P} \notin \Gamma^*$ or $\mathcal{Q} \in \Gamma^*$
 - e.) $\mathcal{P} \equiv \mathcal{Q} \in \Gamma^*$ iff either (i) $\mathcal{P} \in \Gamma^*$ and $\mathcal{Q} \in \Gamma^*$ or (ii) $\mathcal{P} \notin \Gamma^*$ and $\mathcal{Q} \notin \Gamma^*$
 - f.) $(\forall \chi) \mathcal{P} \in \Gamma^*$ iff for each constant $c, \mathcal{P}[c/\chi] \in \Gamma^*$
 - g.) $(\exists \chi) \mathcal{P} \in \Gamma^*$ iff for at least one constant c, $\mathcal{P}[c/\chi] \in \Gamma^*$

Stage 3 (i): The Stairway to heaven (book's 11.4.5)

- ► To prove the membership lemma's cases (a)-(g), we'll use another lemma (NB: and she's buying, a lemma, to heavennnnnnnn!):
- ► The Stairway: if $\Gamma \vdash P$, and Γ^* is a maximally QND-consistent superset of Γ , then $P \in \Gamma^*$ (mnemonic: " $\Gamma \vdash P$ " pushes P up to QL'-heaven!)
- ▶ Proof: first, assume that $\Gamma \vdash P$ (we'll use this fact below)
 - Next, assume for *reductio* that $P \notin \Gamma^*$. Then since Γ^* is maximally QND-consistent, $\Gamma^* \cup \{P\}$ must be inconsistent in QND.
 - Hence, by negation introduction, $\Gamma^* \vdash \sim P$
 - By assumption, $\Gamma \vdash P$, so also $\Gamma^* \vdash P$, since $\Gamma \subseteq \Gamma^*$
 - So Γ^* derives both P and $\sim P$. Reductio! (since Γ^* is M-QND-C)
 - Hence, if $\Gamma \vdash P$ and $\Gamma \subseteq \Gamma^*$, then P must belong to Γ^*

Membership Lemma: Cases (a)-(e)

- ► I have a feeling that...
- ► WE'VE SEEN THIS incredible content BEFORE! (for SL)
- ► see the next slide for a refresher
- ► Long story short: There's a feeling I get

When I look to the west

And my spirit is crying for leaving

Membership Lemma: Case (a)

- ► Case (a): $\sim P \in \Gamma^*$ if and only if $P \notin \Gamma^*$
- ► Two directions to prove:
 - \Rightarrow : Assume $\sim P \in \Gamma^*$. Then if P were in Γ^* , we could derive contradictory sentences.

So since Γ^* is QND-consistent, we must have $\mathcal{P} \notin \Gamma^*$

 \Leftarrow : Assume $\mathcal{P} \notin \Gamma^*$. Then adding \mathcal{P} to Γ^* results in an QND-inconsistent set. Hence, there is some finite subset $\Delta \subset \Gamma^*$ s.t. $\Delta \cup \{\mathcal{P}\}$ is QND-inconsistent (i.e. derives contradictory sentence pair).

- ▶ So by negation introduction, $\Delta \vdash \sim \mathcal{P}$
- ► So by The Stairway, $\sim P \in \Gamma^*$

Membership Lemma: Case (f) (something Universally new)

- ▶ Case (f): $(\forall \chi)\mathcal{P} \in \Gamma^*$ iff for each constant $c, \mathcal{P}[c/\chi] \in \Gamma^*$
- ► Two directions to prove:
 - \Rightarrow : Assume $(\forall \chi)\mathcal{P} \in \Gamma^*$
 - Then for any substitution instance $\mathcal{P}[\mathit{c}/\chi]$, we note that
 - $(\forall \chi) \mathcal{P} \vdash_{QND} \mathcal{P}[c/\chi]$ by $\forall E$. So by the Stairway, $\mathcal{P}[c/\chi] \in \Gamma^*$
 - \Leftarrow : Assume $(\forall \chi) \mathcal{P} \notin \Gamma^*$. Show that for some constant c, $\mathcal{P}[c/\chi] \notin \Gamma^*$
 - Then $\sim (\forall \chi) \mathcal{P} \in \Gamma^*$ by membership clause (a)
 - Then the derivation on p. 573 or—if I have no life—the derivation on the next slide, shows by the Stairway that $(\exists \chi) \sim \mathcal{P} \in \Gamma^*$, i.e. $\sim (\forall \chi) \mathcal{P} \vdash_{QND} (\exists \chi) \sim \mathcal{P}$
 - Then since Γ^* is \exists -complete, there is at least one substitution instance $\sim \mathcal{P}[b/\chi] \in \Gamma^*$. So by (a), $\mathcal{P}[b/\chi] \notin \Gamma^*$, which is what we needed to show.

13 f 6

Membership Lemma: Case (g) (it's getting existential)

- ▶ Case (g): $(\exists \chi)\mathcal{P} \in \Gamma^*$ iff for at least one constant c, $\mathcal{P}[c/\chi] \in \Gamma^*$
- ▶ ⇒: Assume $(\exists \chi)\mathcal{P} \in \Gamma^*$ Then since Γ^* is \exists -complete, there is at least one substitution instance $\mathcal{P}[c/\chi] \in \Gamma^*$
- \Leftarrow : assume that $\mathcal{P}[c/\chi] \in \Gamma^*$. Note that $\mathcal{P}[c/\chi] \vdash_{QND} (\exists \chi) \mathcal{P}$ by Existential introduction So by the Stairway, $(\exists \chi) \mathcal{P} \in \Gamma^*$
- This completes the Membership Lemma, so we proceed to construct a model that satisfies Γ* (in virtue of being maximally-QND-consistent and ∃-complete)!

Stage 3 (ii): Model construction (smart choices = lazy choices)

- ► A model's domain can be *any* set of objects. Note that, conveniently, symbols *are* objects ("words are labels on boxes")
- ightharpoonup We define $\mathfrak{M}^* := (D, I^*)$ as follows:
 - 1. Let D = the set of constant symbols in QL', which includes all QL-constants (e.g. unprimed subscripted constants like j_{22})
 - 2. For the 0-th place predicates, i.e. the sentence letters B, $I^*(B) = true$ iff $B \in \Gamma^*$
 - 3. For each QL'-constant c, define $I^*(c) = c$ (each names itself)
 - 4. For each k-place predicate P, $I^*(P) := Ext(P)$ includes all and only those k-tuples $\langle c_1, \ldots, c_k \rangle$ such that $Pc_1 \ldots c_k \in \Gamma^*$

Some important properties of our Model \mathfrak{M}^*

- ▶ By condition 3, each individual constant refers to a *unique* member of the domain, namely 'itself' (now 'objectified' in *D*!)
- ► For each atomic sentence \mathcal{A} of QL', $\mathfrak{M}^* \models \mathcal{A}$ iff $\mathcal{A} \in \Gamma^*$ (follows from conditions 2-4)
- By condition 3, every member of the domain is named by a constant, namely itself
- We will occasionally rely on these properties in our induction

Stage 3 (iii): Induction on QL' (i.e. we still be clubbin')

- ▶ Goal: construct a QL'-model \mathfrak{M}^* that satisfies the \exists -C M-QND-C set Γ^* , i.e. that makes true everything in Γ^* ($\mathfrak{M}^* \models \Gamma^*$)
 - Suffices to construct \mathfrak{M}^* s.t. $\mathfrak{M}^* \vDash \mathcal{P}$ iff $\mathcal{P} \in \Gamma^*$
 - Say that a sentence is "clubbin'" whenever it meets this property
- ▶ We induct on the number of logical operators in a QL' sentence: i.e. the five connectives and two quantifiers ("conquans")
- ▶ Base case: show that each QL'-sentence with zero logical operators is clubbin' (i.e. the QL'-atomics be clubbin')
- ► (Strong) **Induction hypothesis**: assume every QL' sentence with 1 to k-many operators is clubbin'
- ► Induction step: show that an arbitrary QL' sentence with k+1-many operators is clubbin'

Base Case (true by construction)

- ► Consider an arbitrary QL'-sentence A that has zero logical operators. (Two directions to show! "iff")
- ▶ Then A is either an atomic sentence letter B or of the form $Pc_1 \ldots c_n$ for n-place predicate P.
- ▶ If a sentence letter, then by part 2 of our definition of \mathfrak{M}^* , $I^*(B) = true$ iff $B \in \Gamma^*$ (i.e. $\mathfrak{M}^* \models B$ iff $B \in \Gamma^*$)
- ▶ If \mathcal{A} is of form $Pc_1 \ldots c_n$, then by definition $\mathfrak{M}^* \models Pc_1 \ldots c_n$ iff $\langle c_1^D, \ldots, c_n^D \rangle \in Ext(P)$. By part $4, \langle c_1^D, \ldots, c_n^D \rangle = \langle c_1, \ldots, c_n \rangle \in Ext(P)$ iff $Pc_1 \ldots c_n \in \Gamma^*$
- ▶ We proceed to do induction using our QL' induction schema: an arbitrary sentence \mathcal{P} with k+1-many connectives has one of seven forms, coming from our seven operators

Induction on QL': Cases 1-5

- ► Cases 1-5 are just like what did to prove the completeness of SND
- ► See the next slide for a refresher (*mutatis mutandis*)!
- ▶ Need to show: \mathcal{P} be clubbin', i.e. \mathcal{P} is true on \mathfrak{M}^* iff $\mathcal{P} \in \Gamma^*$, where \mathcal{P} is arbitrary QL' sentence with k+1-many operators
- ► Induction hypothesis: assume every QL sentence with 1 to k-many operators is clubbin'
- ▶ Case 1: \mathcal{P} has the form $\sim \mathcal{Q}$
- ▶ Case 2: \mathcal{P} has the form $\mathcal{Q} \& \mathcal{R}$
- ▶ Case 3: \mathcal{P} has the form $\mathcal{Q} \vee \mathcal{R}$
- ► Case 4: \mathcal{P} has the form $\mathcal{Q} \supset \mathcal{R}$
- ► Case 5: \mathcal{P} has the form $\mathcal{Q} \equiv \mathcal{R}$

Induction on QL': Case 1

- ▶ Case 1: \mathcal{P} has the form $\sim \mathcal{Q}$, where since \mathcal{Q} has k-operators, it is clubbin by the IH (i.e. $\mathfrak{M}^* \models \mathcal{Q}$ if and only if $\mathcal{Q} \in \Gamma^*$)
- NTS: (i) (the \Rightarrow direction) if $\mathfrak{M}^* \models \mathcal{P}$ then $\mathcal{P} \in \Gamma^*$ and (ii) (the \Leftarrow direction) if $\mathcal{P} \in \Gamma^*$, then $\mathfrak{M}^* \models \mathcal{P}$ (*Alternative (ii)*: show contrapositive: if $\mathfrak{M}^* \nvDash \mathcal{P}$, then $\mathcal{P} \notin \Gamma^*$)
- \Rightarrow if $\mathfrak{M}^* \models \mathcal{P}$, then $\mathfrak{M}^* \nvDash \mathcal{Q}$. Since \mathcal{Q} is clubbin', we have $\mathcal{Q} \notin \Gamma^*$ By Membership lemma (a), $\sim \mathcal{Q} \in \Gamma^*$, so $\mathcal{P} \in \Gamma^*$
- \Leftarrow if $\mathcal{P} \in \Gamma^*$, then $\sim \mathcal{Q} \in \Gamma^*$. So by Membership lemma (a), $\mathcal{Q} \notin \Gamma^*$. Since \mathcal{Q} is clubbin', we have $\mathfrak{M}^* \nvDash \mathcal{Q}$. (i.e. \mathcal{Q} is false in \mathfrak{M}^*) So by the truth conditions for negation, \mathcal{P} is true in \mathfrak{M}^* , i.e. $\mathfrak{M}^* \vDash \mathcal{P}$

Induction on QL': Case 7 (existential quantifier)

- ► Case 7: \mathcal{P} has the form $(\exists \chi) \mathcal{Q}$ (warning: " \mathcal{Q} " is not a sentence, so sadly it can't be clubbin')
- ▶ We will use Membership Lemma Case (g): $(\exists \chi)Q \in \Gamma^*$ iff for at least one constant c, $Q[c/\chi] \in \Gamma^*$
- \Rightarrow Assume $\mathfrak{M}^* \vDash (\exists \chi) \mathcal{Q}$. (need to show that $(\exists \chi) \mathcal{Q} \in \Gamma^*$)
 - Then by the truth–conditions for existential, there is some object $r \in D$ that satisfies Q.
 - 'r' names object r, so substitution instance $\mathcal{Q}[r/\chi]$ is true in \mathfrak{M}^*
 - This substitution instance has less than k+1-operators, so it is clubbin'. Hence, by the IH, $\mathcal{Q}[r/\chi] \in \Gamma^*$ (since $\mathfrak{M}^* \models \mathcal{Q}[r/\chi]$)
 - So by membership case (g), $(\exists \chi) \mathcal{Q} \in \Gamma^*$

Induction on QL': Case 7 backwards direction

- ► Case 7: \mathcal{P} has the form $(\exists \chi)\mathcal{Q}$
- ▶ Use Membership Lemma Case (g): $(\exists \chi) Q \in \Gamma^*$ iff for at least one constant c, $Q[c/\chi] \in \Gamma^*$
- \Leftarrow Assume $(\exists \chi) \mathcal{Q} \in \Gamma^*$. Show that $\mathfrak{M}^* \vDash (\exists \chi) \mathcal{Q}$
 - Then by membership case (g), there is at least one substitution instance $\mathcal{Q}[c/\chi]\in\Gamma^*$, for some constant c
 - Since $\mathcal{Q}[c/\chi]$ has fewer than k+1-operators, it is clubbin'.
 - So by the Induction Hypothesis, $\mathfrak{M}^* \vDash \mathcal{Q}[c/\chi]$.
 - Since 'c' names object c, we see that c satisfies $\mathcal Q$ in $\mathfrak M^*$
 - So by the truth–conditions for existentials, $(\exists \chi) \mathcal{Q}$ is true in \mathfrak{M}^*

Induction on QL': Case 6 (universal quantifier)

- ► Case 6: \mathcal{P} has the form $(\forall \chi)\mathcal{Q}$ (warning: " \mathcal{Q} " is not a sentence, so it can't be clubbin')
- ▶ We will use Membership Lemma Case (f): $(\forall \chi) Q \in \Gamma^*$ iff for each constant c, $Q[c/\chi] \in \Gamma^*$
- \Rightarrow Assume $\mathfrak{M}^* \vDash (\forall \chi) \mathcal{Q}$. Show that $(\forall \chi) \mathcal{Q} \in \Gamma^*$
 - Then every object satisfies \mathcal{Q} , so every substitution instance for every constant is true in \mathfrak{M}^* (since each object is named by itself)
 - These $\mathcal{Q}[c/\chi]$ are clubbin' by the IH, so they all belong to Γ^* . So then by Membership Lemma case (f), $(\forall \chi)\mathcal{Q} \in \Gamma^*$
- \Leftarrow Assume $(\forall \chi) \mathcal{Q} \in \Gamma^*$. Show that $\mathfrak{M}^* \vDash (\forall \chi) \mathcal{Q}$
 - Practice this yourself!

Upshots of our Induction

- ► Having handled every case (in spirit), we conclude that every sentence of QL' is clubbin':
- ► For all QL'-sentences \mathcal{P} , $\mathfrak{M}^* \vDash \mathcal{P}$ iff $\mathcal{P} \in \Gamma^*$
- ▶ Hence, the QL'-model \mathfrak{M}^* makes-true every sentence in Γ^* , showing that this set is satisfiable
- ► Hence, we have proven the ∃-C Maximal Consistency Lemma: every QL' set that is maximally-QND-consistent and ∃-complete is satisfiable in QL'
- ► It remains to prove the Consistency Lemma, i.e. that any QND-consistent QL-set (like our O.G. Γ) is satisfiable in QL!

From satisfiability of Γ^* to satisfiability of Γ

- We have shown that the maximally-QND-consistent and existentially complete \(\Gamma^*\) is satisfiable in \(\Q\L'\)
- ▶ It remains to show that QND-consistent Γ is satisfiable in QL ▶ i.e. we need a QL-model \mathfrak{M} s.t. $\mathfrak{M} \models \Gamma$
- ► I.e. we need a QL-model \mathfrak{M} s.t. $\mathfrak{M} \models \Gamma$ ► Hopes and dreams: by construction $\Gamma \subset \Gamma^*$, so $\mathfrak{M}^* \models \Gamma$ in QL'.
- But how are we to get a QL-model for Γ from this??????
- ► Salvation: note that the model \mathfrak{M}^* we constructed is *not only* a QL' model for Γ^* BUT ALSO a QL-model for Γ !
- ▶ Since the language of QL is contained in QL', $\mathfrak{M}^* := (D, I^*)$ maps all symbols of QL to objects in D ▶ If you like you can define a QL model $\mathfrak{M} := (D, I)$ s. t. List the
- ▶ If you like, you can define a QL-model $\mathfrak{M} := (D, I)$ s.t. I is the restriction of I^* to unprimed constants in QL. Then $\mathfrak{M} \models \Gamma$.

13 f 18

restriction of *I** to unprimed constants in QL. Then *M* ∈ I.

■ Q.E.D. MOST BLESSED STUDENTS!!! (i.e. quod erat demonstrandum)

Did we need to manually enforce ∃-completeness?

- ▶ In our condition (iii) for building up Γ^* , we manually enforced adding a substitution instance to our growing Γ_{k+1} whenever we add an existential sentence.
- ▶ Some have wondered: shouldn't condition (ii) take care of this? Substitution instances are QL' sentences, so they arise at some k in our enumeration as well
- ▶ Really the issue is the following: are there maximally QND-consistent sets that are NOT existentially-complete? If so, then our condition (iii) is not idle
- ► So to show the necessity of our condition (iii) (or something like it), it suffices to construct a maximally QND-consistent set that has an existential sentence but no substitution instances for it.

A maximally QND-consistent but existentially INCOMPLETE set

- ► Let Γ_0 be the set $\{(\exists x) \sim Fx\}$
 - ▶ Its substitution instances have the form $\sim F[c/x]$, e.g. $\sim Fc$.
 - Notice that the 'enemies' of these substitution instances always occur earlier in our enumeration, e.g. Fc occurs before $\sim Fc$, Fj'_{22} occurs before $\sim Fj'_{22}$ (the enemies always have one less symbol, so their index has two fewer digits)
 - So imagine that we dropped condition (iii) and built up \(\Gamma^*\) using only conditions (i) and (ii).
 then \(\Gamma^*\) would contain (\(\exists x\)) ~ Fx and every instance of an 'enemy'
 - substitution instance: Fc for all constants c Arr * would NOT contain a single substitution instance of $(\exists x) \sim Fx$ hereause every time we hit a $\circ Fc$ at its stage. Fc would already
 - because every time we hit a $\sim Fc$ at its stage, Γ_k would already contain its enemy Fc, so that adding $\sim Fc$ would result in a OND-inconsistent set.

Some remaining concerns about this construction

- ▶ Intuitively, you might think that a set containing $(\exists x) \sim Fx$ and all these enemies Fc would be QND-inconsistent.
- ▶ But it is not! Note that from existential elimination, we cannot start our subproof with a constant occuring in a premise, and these 'enemies' would be premises. So there is no way to derive a contradiction
- ▶ Similarly, we can NOT go from an enemy to a contradictory universal $(\forall x)Fx$ because the constant can't occur in a premise
- Notice as well that the membership lemma would fail. We would have every instance of Fc but Γ^* would NOT contain $(\forall x)Fx$ because this sentence is QND-inconsistent with $(\exists x) \sim Fx$ (as an 8-line deduction shows)