

High Voltage Insulator

For a description of this application, including detailed step-by-step instructions showing how to build it, see the book Introduction to AC/DC Module. The modeling instructions for the geometry is given in the appendix.

Application Library path: ACDC_Module/Devices,_Capacitive/ high_voltage_insulator

From the File menu, choose New .
NEW
In the New window, click Model Wizard.
MODEL WIZARD
I In the Model Wizard window, click 2D Axisymmetric.
2 Click Done.
GEOMETRY I
I In the Model Builder window, under Component I (compl) click Geometry I.
2 In the Settings window for Geometry, locate the Units section.
3 From the Length unit list, choose mm.
Use the following instructions to construct the model geometry. First, create the metal fitting at the line end.
Rectangle 1 (r1) I In the Geometry toolbar, click Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Width text field, type 12.
4 In the Height text field, type 100.
5 Click 🖺 Build Selected.
Second, create the core rod.
Rectangle 2 (r2) I In the Geometry toolbar, click Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Width text field, type 6.
4 In the Height text field, type 1050.
5 Locate the Position section. In the z text field, type 50.
6 Click • Build Selected.
Rectangle 3 (r3) I In the Geometry toolbar, click Rectangle.

- 2 In the Settings window for Rectangle, locate the Size and Shape section.
- 3 In the Height text field, type 100.
- 4 In the Width text field, type 12.
- **5** Locate the **Position** section. In the **z** text field, type 1050.

Next, create the weather shed.

Polygon I (poll)

- I In the Geometry toolbar, click / Polygon.
- 2 In the Settings window for Polygon, locate the Object Type section.
- 3 From the Type list, choose Open curve.
- **4** Locate the **Coordinates** section. In the table, enter the following settings:

r (mm)	z (mm)
12	100
12	150
60	150
20	153

Quadratic Bézier I (qbI)

- I In the Geometry toolbar, click * More Primitives and choose Quadratic Bézier.
- 2 In the Settings window for Quadratic Bézier, locate the Control Points section.
- 3 In row 1, set r to 20.
- 4 In row 1, set z to 153.
- 5 In row 2, set **r** to 13.
- 6 In row 2, set z to 154.
- 7 In row 3, set r to 12.
- 8 In row 3, set z to 161.
- **9** Locate the **Weights** section. In the **2** text field, type 1.

Polygon 2 (bol2)

- I In the **Geometry** toolbar, click / Polygon.
- 2 In the Settings window for Polygon, locate the Object Type section.
- 3 From the Type list, choose Open curve.

4 Locate the **Coordinates** section. In the table, enter the following settings:

r (mm)	z (mm)
12	161
12	200
60	200
20	203

Quadratic Bézier 2 (qb2)

- I In the Geometry toolbar, click * More Primitives and choose Quadratic Bézier.
- 2 In the Settings window for Quadratic Bézier, locate the Control Points section.
- 3 In row 1, set **r** to 20.
- 4 In row 1, set z to 203.
- 5 In row 2, set r to 13.
- 6 In row 2, set z to 204.
- 7 In row 3, set r to 12.
- 8 In row 3, set z to 211.
- **9** Locate the **Weights** section. In the **2** text field, type 1.

Polygon 3 (pol3)

- I In the Geometry toolbar, click / Polygon.
- 2 In the Settings window for Polygon, locate the Object Type section.
- **3** From the **Type** list, choose **Open curve**.
- **4** Locate the **Coordinates** section. In the table, enter the following settings:

r (mm)	z (mm)
12	211
12	250
80	250
20	253

Ouadratic Bézier 3 (ab3)

- I In the Geometry toolbar, click More Primitives and choose Quadratic Bézier.
- 2 In the Settings window for Quadratic Bézier, locate the Control Points section.
- 3 In row 1, set r to 20.
- 4 In row 1, set z to 253.

- 5 In row 2, set r to 13.
- 6 In row 2, set z to 254.
- 7 In row 3, set r to 12.
- 8 In row 3, set z to 261.
- **9** Locate the Weights section. In the **2** text field, type 1.
- 10 Click Build Selected.

Polygon I (pol1), Polygon 2 (pol2), Polygon 3 (pol3), Quadratic Bézier I (qb1), Quadratic Bézier 2 (qb2), Quadratic Bézier 3 (qb3)

- In the Model Builder window, under Component I (compl)>Geometry I, Ctrl-click to select Polygon I (poll), Quadratic Bézier I (qbl), Polygon 2 (pol2),
 Quadratic Bézier 2 (qb2), Polygon 3 (pol3), and Quadratic Bézier 3 (qb3).
- 2 Right-click and choose Composite Curves.

Array I (arrI)

- I In the Geometry toolbar, click Transforms and choose Array.
- **2** Select the object **cc1** only.
- 3 In the Settings window for Array, locate the Size section.
- 4 From the Array type list, choose Linear.
- 5 In the Size text field, type 5.
- 6 Locate the Displacement section. In the z text field, type 161.
- 7 Click Pauld Selected.

Composite Curve I (ccl)

In the Model Builder window, right-click Composite Curve I (ccI) and choose Duplicate.

Move I (movI)

- I In the Geometry toolbar, click Transforms and choose Move.
- 2 Select the object cc2 only.
- 3 In the Settings window for Move, locate the Displacement section.
- 4 In the z text field, type 794.
- 5 Click **Build Selected**.

Polygon I (poll)

- I In the Model Builder window, expand the Component I (compl)>Geometry I> Composite Curve 2 (cc2) node, then click Polygon I (poll).
- 2 In the Settings window for Polygon, locate the Coordinates section.

3 In the table, enter the following settings:

r (mm)	z (mm)
12	111

Polygon 3 (bol3)

- I In the Model Builder window, click Polygon 3 (pol3).
- 2 In the Settings window for Polygon, locate the Coordinates section.
- **3** In the table, enter the following settings:

r (mm)	z (mm)
12	256
6	256
6	-694
12	-694

Quadratic Bézier 3 (qb3)

In the Model Builder window, right-click Quadratic Bézier 3 (qb3) and choose Delete.

Move I (movI)

- I In the Model Builder window, under Component I (compl)>Geometry I click Move I (movI).
- 2 In the Settings window for Move, click **Build Selected**.

Convert to Solid I (csoll)

- I In the Geometry toolbar, click to Conversions and choose Convert to Solid.
- 2 Select the objects arr1(1), arr1(2), arr1(3), arr1(4), arr1(5), and mov1 only.
- 3 In the Settings window for Convert to Solid, click **Parallel** Build Selected.

Fillet I (fill)

- I In the Geometry toolbar, click Fillet.
- 2 On the object r1, select Point 2 only.
- 3 On the object **r3**, select Point 3 only.
- 4 In the Settings window for Fillet, locate the Radius section.
- 5 In the Radius text field, type 8.
- 6 Click **Build All Objects**.

Zoom Extents button in the Graphics toolbar. 7 Click the ++

Next, add the computation domain.

Circle I (c1)

- I In the Geometry toolbar, click Circle.
- 2 In the Settings window for Circle, locate the Size and Shape section.
- 3 In the Radius text field, type 2[m].
- 4 Locate the **Position** section. In the **z** text field, type 500.
- 5 Locate the Size and Shape section. In the Sector angle text field, type 180.
- 6 Locate the Rotation Angle section. In the Rotation text field, type -90.
- 7 Click Build All Objects.
- 8 Click the Zoom Extents button in the Graphics toolbar.