Let $X = UDV^T$. Then

(A) Columns of U are eigenvectors of X^TX
(B) [Ans] Columns of V are eigenvectors of X^TX

(B) [Ans] Columns of V are eigenvectors of X'X
(C) Rows of U are eigenvectors of X^TX

(D) Rows of V are eigenvectors of X^TX

(E) None of these

Let $X = UDV^T$. Then

(A) [Ans] Columns of U are eigenvectors of XX^T

(B) Columns of V are eigenvectors of XX^T

(C) Rows of U are eigenvectors of XX^T

(C) Rows of U are eigenvectors of XX

(D) Rows of V are eigenvectors of XX^T

(E) None of these

Consider X to be a square matrix of size $n \times n$ and $X = UDV^T$.

- (A) [Ans] Both X^TX and XX^T have the same eigenvalues
- (B) Both X^TX and XX^T have the same eigenvectors
- (C) X, XX^TX and XX^T have the same eigenvalues
- (D) [Ans] \mathcal{D}^2 contains the eigenvalues of $\mathcal{X}^T\mathcal{X}$ on its diagonal
- (E) D contains the eigenvalues of X^TX on its diagonal
- (F) None of these

Consider X to be a square matrix of size $n \times n$ and $X = UDV^T$.

- (A) **[Ans]** If rank(X) = n, D has all non-zero entries in diagonal.
- (B) If rank(X) = k, D has k zeros in diagonal
- (C) [Ans] If rank(X) = k, D has n k zeros in diagonal
- (D) **[Ans]** if $\operatorname{rank}(X) = n$ but |A| is a very small number then, D takes the form $D = \operatorname{diag}(d_1, d_2, ..., \epsilon)$ where ϵ is a very small number
- (E) None of these

Suppose you want to apply PCA to your data X which is in 2D and you decompose X as UDV^T . Then,

- (A) PCA can be useful if all elements of D are equal
- (B) [Ans] PCA can be useful if all elements of D are not equal
- (C) [Ans] D is not full-rank if all points in X lie on a straight line
- (D) V is not full-rank if all points in X lie on a straight line
- (E) D is not full rank if all points in X lie on a circle
- (E) D is not full-rank if all points in X lie on a circle
- (F) None of these