523414:

Artificial Neural Networks (ANN) trimester 1/2561

Lecture 03:
Widrow-Hoff Learning
(ADALINE, Linear Network)

Institute of Engineering School of Computer Engineering Suranaree University of Technology

Linear Neuron Model (ADALINE): Single Neuron

Fig. Ref. NN Toolbox User's Guide Version 6

Multi-Neuron Linear Network

Fig. Ref. NN Toolbox User's Guide Version 6

Linear Network

Like the perceptron, the linear network has a *decision boundary* that is determined by the input vectors for which the net input n is zero. For n = 0 the equation $\mathbf{Wp} + \mathbf{b} = 0$ specifies such a decision boundary, as shown below

Fig. Ref. NN Toolbox User's Guide Version 6

Widrow-Hoff (ADALINE) Learning Rule

เป็นกฎของเดลตา (delta rule) ที่ใช้อัลกอริทึม LMS (Least Mean Square) ในการฝึกสอนเครือข่าย ADALINE โดยการฝึกสอนเป็นแบบมีผู้ฝึกสอน

$$\{\mathbf{p}_1, \mathbf{t}_1\}, \{\mathbf{p}_2, \mathbf{t}_2\}, ..., \{\mathbf{p}_Q, \mathbf{t}_Q\}$$

$$mse = \frac{1}{Q} \sum_{k=1}^{Q} e(k)^{2} = \frac{1}{Q} \sum_{k=1}^{Q} (t(k) - a(k))^{2}$$

$$\mathbf{W}(k+1) = \mathbf{W}(k) + 2\alpha \mathbf{e}(k)\mathbf{p}^{T}(k)$$
$$\mathbf{b}(k+1) = \mathbf{b}(k) + 2\alpha \mathbf{e}(k)$$

$$\mathbf{b}(k+1) = \mathbf{b}(k) + 2\alpha \mathbf{e}(k)$$

Least Mean Square Error

The LMS algorithm, or Widrow-Hoff learning algorithm, is based on an approximate steepest descent procedure. Here again, linear networks are trained on examples of correct behavior.

Fig. Ref. ปัญญาเชิงคำนวณ, ผศ.ดร. อาทิตย์ ศรีแก้ว

LMS Algorithm Modifications (α -LMS)

$$\mathbf{W}^{new} = \mathbf{W}^{old} + \frac{\alpha \mathbf{e} \mathbf{p}^T}{\parallel \mathbf{p} \parallel_2^2}$$

$$\Delta \mathbf{e} = \mathbf{e}^{new} - \mathbf{e}^{old}$$

$$= [\mathbf{t} - \mathbf{W}^{new} \mathbf{p}] - \mathbf{e}^{old}$$

$$= \left\{ \mathbf{t} - [\mathbf{W}^{old} + \frac{\alpha \mathbf{e} \mathbf{p}^T}{\|\mathbf{p}\|_2^2}] \mathbf{p} \right\} - \mathbf{e}^{old}$$

$$= \left[\mathbf{e}^{old} - \frac{\alpha \mathbf{e} \mathbf{p}^T \mathbf{p}}{\|\mathbf{p}\|_2^2} \right] - \mathbf{e}^{old}$$

$$= -\alpha \mathbf{e}$$

Learning rate $0.1 < \alpha < 1.0$

MADALINE I (Multiple ADALINE I)

l Fig. Ref. ปัญญาเชิงคำนวณ, ผศ.ดร. อาทิตย์ ศรีแก้ว

MADALINE II

Fig. Ref. ปัญญาเชิงคำนวณ, ผศ.ดร. อาทิตย์ ศรีแก้ว

MADALINE I --- For XOR

Fig. Ref. ปัญญาเชิงคำนวณ, ผศ.ดร. อาทิตย์ ศรีแก้ว

Example of ADALINE

> Follow Example 11.1 on student sheet reference

523414: ANN, CPE, SUT Perceptron: 11