Balanced Search Tree

AVL Tree

Outline

- **□**2-3 tree
- □2-3-4 tree
- □AVL tree
 - [Adelson-Velskii & Landis, 1962]
- □**Red-black** tree
 - [Rudolf Bayer, 1972]... B-tree

AVL Tree

Data Structures

□An AVL tree

- A balanced binary search tree
- Can be searched almost as efficiently as a minimum-height binary search tree
- Maintains the tree height close to the minimum
 - ■Requires far less work than would be necessary to keep the height exactly equal to the minimum

AVL Tree: Main Idea

Data Structures

☐ After each insertion or deletion

- 1. Check whether the tree is still balanced
- 2. If the tree is unbalanced, rotate to restore the balance

AVL Tree: Main Idea

Data Structures

- ☐ After each insertion or deletion
 - 1. Check whether the tree is still balanced
- **□** Balance Factor (BF)

BF(a node) = h(left subtree) - h(right subtree)

- The heights of the left and right subtrees of any node in a binary search tree differ by no more than 1.

AVL Tree: Property

Data Structures

1. Check whether the tree is still balanced

BF(a node) = h(left subtree) - h(right subtree)

- The heights of the left and right subtrees of any node in a binary search tree differ by at most 1.

Rotations

- □ Since an insertion/deletion involves adding/deleting a single node, this can only increase/decrease the height of some subtree by 1
- \square Thus, if the AVL tree property is violated at a node x, it means that the heights of left(x) ad right(x) differ by exactly 2.
- \square Rotations will be applied to x to *restore* the AVL tree property.

AVL Tree: Actions

Data Structures

☐ After each insertion or deletion

- 1. Check whether the tree is still balanced
- 2. If the tree is unbalanced, rotate to restore the balance Rotations to restore the *balance* property
 - Single rotation
 - Double rotation

AVL Tree: Actions

Data Structures

- 1. If the tree is unbalanced, rotate to restore the balance
 - Single rotation
 - Double rotation

Which node to be rotated first?

- 1. Insert the new key as a new leaf just as in a binary search tree
- 2. Trace the path from the new leaf towards the root.
 - For each node x encountered, check if the heights of left(x) and right(x) differ by at most 1.
 - If NOT, restructure by either a single rotation or a double rotation
- 3. Once we perform a rotation at a node x, the insertion is done!
 - We won't need to perform any rotation at any ancestor of x.

AVL Tree: Single Rotations

Data Structures

- Let x be the node at which x->left and x->right differ by more than 1; Assume that the height of x is 3
 - Height of x->left is 2 (i.e. height of x->right is 0)
 - 1. Height of x->left->left: $1 \Rightarrow$ single rotation with the left child (LL)
 - $\blacksquare \quad \mathbf{BF}(\mathbf{x}) = +2$
 - $\blacksquare \quad BF(x->left) = +1 \text{ or } 0$

Tree height: shorter or equal

AVL Tree: Single Rotations

Data Structures

- Let x be the node at which x->left and x->right differ by more than 1; Assume that the height of x is 3
 - Height of x->right is 2 (i.e. height of x->left is 0)
 - 2. Height of x->right->right: $1 \Rightarrow$ single rotation with the right child (RR)
 - $\blacksquare \quad \mathbf{BF}(\mathbf{x}) = -2$
 - $\blacksquare BF(x->right) = -1 or 0$

Tree height: shorter or equal

AVL Tree: Single Rotations

- Let x be the node at which x->left and x->right differ by more than 1; Assume that the height of x is h+3
 - Heights of two subtrees: h+2, h
 - 1. Height of x->left->left: h+1, x->left->right: h or h+1 \Rightarrow single rotation with the left child (LL)
 - BF(x) = +2 BF(x->left) = +1 or 0
 - 2. Height of x->right->right: h+1, x->right->left: h or h+1 \Rightarrow single rotation with the right child (RR)
 - $\blacksquare \quad BF(x) = -2 \qquad \qquad BF(x->right) = -1 \text{ or } 0$

Single Rotations: LL

LL Rotation: Pseudocode

```
// rotate x with its left child
nodeType rotateLL(nodeType x)
  nodeType y = x->left;
  x->left = y->right;
  y->right = x;
  return y;
```


LL Rotation: Example

Single Rotations: RR

RR Rotation: Pseudocode

```
// rotate x with its right child
nodeType rotateRR(nodeType x)
  nodeType y = x->right;
  x->right = y->left;
  y->left = x;
  return y;
```


RR Rotation: Example

Try it!

Data Structures |

P. 20

Try it!

Try it!

Insert *3*, *2*, *1*, *4*, *5*, *6*, <u>7, 16</u>

