LinAlgDM II. 19-20. gyakorlat: Relációk: ekvivalencia, rendezési

2024. április 25-26.

1 Elméleti összefoglaló

Definition 1. Ekvivalencia reláció

Adott H halmazon értelmezett rendezett párok halmaza (R) ekvivalencia reláció, ha teljesül rá, hogy:

- 1. Reflexív: $(a, a) \in R \quad \forall a \in H$
- 2. Szimmetrikus: $(a,b) \in R \Rightarrow (b,a) \in R \quad \forall a,b \in H$
- 3. Tranzitív: $[(a,b) \in R \land (b,c) \in R] \Rightarrow (a,c) \in R \quad \forall a,b,c \in H$

Definition 2. Rendezési reláció

Adott H halmazon értelmezett rendezett párok halmaza (R) rendezési reláció, ha teljesül rá, hogy:

- 1. Reflexív: $(a, a) \in R \quad \forall a \in H$
- 2. Antiszimmetrikus: $[(a,b) \in R \land (b,a) \in R] \Rightarrow a = b \quad \forall a,b \in H$
- 3. Tranzitív: $[(a,b) \in R \land (b,c) \in R] \Rightarrow (a,c) \in R \quad \forall a,b,c \in H$

Definition 3. Legnagyobb elem

Minden elemmel összehasonlítható, $ln \in H$, minden $h \in H$, $h6 = ln \Rightarrow h \leq ln$.

Definition 4. Legkisebb elem

Minden elemmel összehasonlítható, $lk \in H, \forall h \in H, h6 = lk \Rightarrow lk \leq h$.

Definition 5. Maximális elem

Nem biztos, hogy minden elemmel összehasonlítható, $M \in H$, ha $\neg \exists h \in H, h6 = M | M \le h$.

Definition 6. Minimális elem

Nem biztos, hogy minden elemmel összehasonlítható, $m \in H$, ha $\neg \exists h \in H, h6 = m | h \le m$.

Definition 7. Hasse-diagram

A véges rendezett halmazok ábrázolhatók gráffal, a következőképpen: ha

 $a \leq b$, akkor b-t feljebb rajzoljuk mint a-t, és összekötjük őket. Nem kötjük össze a tranziti- vitásból ill. reflexivitásból adodó párokat.

Definition 8. Felső korlát

A részben rendezett H halmaz valamely H1 részhalmazának felső korlátja f $k \in H$, ha $\forall h1 \in H1 \Rightarrow h1 \leq fk$.

Definition 9. Alsó korlát

A részben rendezett H halmaz valamely H1 részbalmazának alsó korlátja $ak \in H$, ha $\forall h1 \in H1 \Rightarrow ak \leq h1$.

H1 korlátos, ha van alsó és felső korlátja.

$\textbf{Definition 10.} \ \operatorname{Szupr\'emum} \ (\operatorname{supH})$

a legkisebb felső korlát.

Definition 11. infimum (infH)

a legnagyobb alsó korlát.

2 Feladatok

Feladat 1. Milyen relációt határoz meg a rendezett párok R halmaza a $H = \{1, 2, 3\}$ alaphalmazon?

- 1. $R = \{(1,1), (2,2), (3,3), (1,2), (2,1), (3,2), (2,3)\}.$
- 2. $R = \{(1,1), (2,2), (3,3), (1,2), (1,3), (2,3)\}$
- 3. $R = \{(1,1), (2,2), (3,3), (1,2), (2,1), (3,2), (2,3), (1,3), (3,1)\}$
- 4. $R = \{(1,1), (3,3), (1,2), (2,1), (3,2), (2,3), (1,3), (3,1)\}$

Feladat 2. Az egész számok halmazán tekintsük azt a relációt, ahol $(a,b) \in R$ akkor és csak akkor, ha a és b paritása megegyezik. Milyen reláció R?

Feladat 3. A H alaphalmaz elemei legyenek a PPKE ITK első évfolyamos hallgatói, ahol az R relációt úgy határozzuk meg, hogy $(a,b) \in R$ pontosan akkor, ha a egy csoportban van b-vel. Milyen reláció R?

Feladat 4. A H alaphalmaz legyen emberek egy tetszőleges halmaza, amelyen az R relációt úgy határozzuk meg, hogy $(a,b) \in R$ pontosan akkor, ha a beszél közös nyelvet b-vel. Milyen reláció R?

Feladat 5. Az R relációt úgy definiáljuk az \mathbb{R}^3 halmazon, hogy $(\underline{a},\underline{b}) \in R$ pontosan akkor, ha $|\underline{a}| = |\underline{b}|$. Milyen reláció R?

Feladat 6. $H = \mathbb{R}^{4\times4}$ halmazon az R relációt úgy határozzuk, hogy $(A, B) \in R$ pontosan akkor, ha det(A) = det(B). Milyen reláció R?

Feladat 7. Az R relációt úgy definiáljuk a valós számok \mathbb{R} halmazán, hogy $(a,b) \in R$ pontosan akkor teljesül, ha a-b egész szám. Milyen reláció \mathbb{R} ?

Feladat 8. Az R relációt úgy adjuk meg a H halmazon, hogy $A \sim B$, ha det(A) + det(B) páros szám. Milyen reláció R, ha

- 1. $H = \mathbb{R}^{3 \times 3}$?
- 2. $H = \mathbb{Z}^{3 \times 3}$?

Feladat 9. Bizonyítsa be, hogy R akkor és csak akkor ekvivalencia
reláció H-n, ha R reflexív, és $\forall a,b,c \in H$ esetén
 $a \sim b,\ a \sim c \longrightarrow b \sim c$!

Feladat 10. Bontsuk fel az egyetemi tantárgyakat a szabadon választható, illetve a kötelező tárgyakra. Igaz, hogy ezek a csoportok a tárgyak egy partícióját alkotják?

Feladat 11. Osszuk fel a diákokat csoportokra aszerint, hogy melyik hónapban születtek. Igaz, hogy ezek a csoportok a diákok egy partícióját alkotják?

Feladat 12. A $H = \mathbb{R}^{4\times 4}$ halmazon az R relációt úgy határozzuk, hogy $(A, B) \in R$ pontosan akkor, ha $det(A) \leq det(B)$. Milyen reláció R?

Feladat 13. Rendezési relációk a következők?

- 1. $H = \mathbb{R}^{n \times n}$ a négyzetes valós elemű mátrixok halmaza. $(A, B) \in R$, ha $det(A) \leq det(B)$
- 2. $H = \mathbb{R}^+$ a pozitív valós számok halmaza, $(a, b) \in R$, ha $\frac{a}{b} \leq \frac{b}{a}$
- 3. H az $\{1,2,3\}$ halmaz hatványhalmaza. $(A,B) \in R$, ha $A \subseteq B$
- 4. $H = \mathbb{Z}$ az egész számok halmaza, $(a, b) \in R$, ha a < b
- 5. $H = \mathbb{Z}$ ahol $(a, b) \in R$, ha a osztója b-nek. (Tehát létezik $k \in \mathbb{Z}$ amelyre $b = k \cdot a$.)
- 6. $H = \mathbb{N}$ ahol $(a, b) \in R$, ha a osztója b-nek. (Tehát létezik $k \in \mathbb{N}$ amelyre $b = k \cdot a$.)

Feladat 14. Hasse-diagrammal adott a következő rendezési reláció:

- 1. Határozza meg a maximális és a minimális elemeket!
- 2. Határozza meg a legnagyobb és a legkisebb elemeket!
- 3. Ez teljes- vagy részbenrendezés?
- 4. A $\{2,8,16\}$ halmazon teljes- vagy részben
rendezést definiál a megadott rendezési reláció?