CSE 331: Automata & Computability Prepared By: KKP Practice Sheet (Regular Expression)

- 1. Extended definition of Regular Language.
- 2. Write the strings that the following Regular Expressions will generate:

1. (0+1)*
2. 0+1
3. (00)*
4. 0*1*
5. (0*1*)*
9. a (0+1) b
10. a (0+1)* b
11. (a (0+1)* b)*
12. ab + 1*01*

- 3. Is $(0+1)^*$ and $(0^*1^*)^*$ the same? Justify your answer.
- 4. Write the shortest string that will be generated by this regular expression -

5. Construct a Regular Expression that generates the language $L = \{ w \in \{0,1\}^* : w \text{ contains "101" as a substring.} \}$

6. Construct a Regular Expression that generates the language $L = \{ w \in \{0,1\}^* : w \text{ starts with "}101".} \}$

7. Construct a Regular Expression that generates the language L = { w ∈ {0,1}*: w ends with "101".}

8.	Construct	a	Regular	Expression	that	generates	the	language	L	=	{
	$w \in \{0,1\}^*$: w doesn't start with "1".										

9.

- a. Construct a Regular Expression that generates the language L1 = $\{ w \in \{0,1\}^* : w \text{ contains "00" or "11".} \}$
- b. Construct a Regular Expression that generates the language $L2 = \{ w \in \{0,1\}^* : w \text{ contains "00" and "11".} \}$
- c. Construct a regular expression for $\overline{L1}$
- d. Construct a regular expression for $\overline{L2}$

10.

- a. Construct a Regular Expression that generates the language $L = \{ w \in \{0,1\}^* : w \text{ contains exactly two 1s.} \}$
- b. For the previous question, your three friends write three different solutions.

```
(0+1)* 1 (0+1)* 1 (0+1)*, (0+1)* 1 0* 1 0* and 0* 1 0* 1 (0+1)*
```

Find the correct solution.

11.Construct a Regular Expression that generates the language $L = \{ w \in \{0,1\}^* : w \text{ contains at least two 1s.} \}$

- a. Construct a Regular Expression that generates the language $L = \{ w \in \{0,1\}^* : w \text{ contains at most two 1s.} \}$
- b. Your friend claims that one of the correct regular expressions for the previous question is 0^* (0+1) 0^* (0+1) 0^* + ϵ . Do you agree or disagree?

13.

- a. Construct a Regular Expression that generates the language $L = \{ w \in \{0,1\}^* : \text{The length of } w \text{ is even or multiple of } 2. \}$
- b. Your friend claims that one of the correct regular expressions for the previous question is $(00)^* + (01)^* + (10)^* + (11)^*$. Do you agree or disagree?

14. Construct a Regular Expression that generates the language $L = \{ w \in \{0,1\}^* : \text{The length of } w \text{ is odd.} \}$

15. Construct a Regular Expression that generates the language $L = \{ w \in \{0,1\}^* : \text{The length of } w \text{ is multiple of } 3. \}$

27. Construct a Regular Expression that generates the language L = $\{ w \in \{0,1\}^* : w \text{ doesn't contain } 00 \text{ and } 11. \} \text{ Or, } Similar to Question:}$

- a) Construct a Regular Expression that generates the language L = $\{ w \in \{0,1\}^* : w \text{ contains 0 in every third position.} \}$
- b) Regular language for \overline{L}

29.

Consider the following languages over $\Sigma = \{0, 1\}$.

```
L_1 = \{w : w \text{ does not contain 11}\}
L_2 = \{w : \text{every 1 in } w \text{ is followed by at least one 0}\}
L_3 = \{w : \text{the number of times 1 appears in } w \text{ is even}\}
```

Now solve the following problems.

- (a) **Give** a regular expression for the language L_1 . (2 points)
- (b) Your friend claims that $L_1 = L_2$. **Prove** her wrong by writing down a five-letter string in $L_1 \setminus L_2$. Recall that $L_1 \setminus L_2$ contains all strings that are in L_1 but not in L_2 . (2 points)
- (c) **Give** a regular expression for the language $L_1 \setminus L_2$. (2 points)
- (d) Give a regular expression for the language L_3 . (2 points)
- (e) **Give** a regular expression for the language $L_2 \setminus L_3$. (2 points)