Roger Levy (2008)

Expectation-Based Syntactic Comprehension

Anna Finzel Melanie Tosik Johannes Schneider Sebastian Golly

May 13, 2013

Outline

Background

Surprisal Theory

Surprisal Theory in Action

Comparison with Other Processing Theories Surprisal vs. Locality Subject Preference

Shortcomings

Conclusion

Outline

Background

Surprisal Theory

Surprisal Theory in Action

Comparison with Other Processing Theories Surprisal vs. Locality Subject Preference

Shortcomings

Conclusion

- Garden-Path Model
- Good-Enough Processing
- Unrestricted Race Model
- Constraint-Based Models

Resource-limitation vs. resource-allocation

- Resource-limitation
 - Late Closure
 - Minimal Attachment
 - Dependency Locality Theory
 - e.g. King and Just (1991)

- Resource-allocation
 - expectation-based
 - plausibility \Rightarrow (1) competition; (2) reranking
- Sentence comprehension
 - parallel
 - incremental
 - probabilistic

Levy's proposal: **Surprisal Theory** (cf. Hale (2001))

Outline

Background

Surprisal Theory

Surprisal Theory in Action

Comparison with Other Processing Theories Surprisal vs. Locality Subject Preference

Shortcomings

Conclusion

Main Properties of Surprisal Theory

- Expectation-based theory of syntactic comprehension
- Focus on resource-allocation
- The parsing process is
 - parallel
 - incremental
 - probabilistic
- The difficulty of a word is proportional to its surprisal

Preference Distributions

- Comprehending a sentence: Constructing a **preference ranking** over all possible structures \rightarrow parallel
 - allocation
- Preference ranking: probability **distribution** → probabilistic
 - consists of an allocation of resources among the structures
 - \rightarrow resource-allocation
 - is updated constantly \rightarrow incremental
- Processing difficulty is proportional to the **degree of update** in the preference distribution \rightarrow surprisal

resource-

parallel

incremental

probabilistic

surprisal

Surprisal

- Surprisal: determinant of a word's processing difficulty
 - in information theory: negative log-probability of the word
 - is minimized when a word must appear in a given context
 - approaches infinity as a word becomes less and less likely
 - can be interpreted as the difficulty of updating the preference distribution
- Nothing new
 - Term coined by Tribus (1961)
 - Surprisal theory: originally proposed by Hale (2001)

Modeling Surprisal Theory

- Surprisal: $-\log P(w_i|w_1...w_{i-1})$
- Probabilistic word model
 - statistical generative process that determines conditional word probabilities
 - can be used to **predict the next word** in a sequence
 - can be used to estimate surprisal values
- Examples:
 - n-Gram Models
 - Hidden Markov Models
 - Probabilistic Context-Free Grammars (PCFGs)

A Simple PCFG

- .5 $S \rightarrow NP V_{itr}$
- .4 S \rightarrow NP_{NOM} V_{tr} NP_{ACC}
- .1 $S \rightarrow NP_{ACC} V_{tr} NP_{NOM}$
- 1.0 NP \rightarrow Det N

- 1.0 $V_{itr} \rightarrow gackert$
- 1.0 $V_{tr} \rightarrow \text{sieht}$
 - .4 Det \rightarrow die
 - .4 Det \rightarrow der
 - .2 Det \rightarrow den
 - $.2 N \rightarrow Henne$
 - .8 $N \rightarrow Hahn$

How it works

die Henne sieht .5 NP V_{itr} .5 NP V_{itr} 5 NP Vite .4 $NP_{NOM} V_{tr} NP_{ACC}$.4 $NP_{NOM} V_{tr} NP_{ACC}$.8 .4 $NP_{NOM} V_{tr} NP_{ACC}$.1 NPACC V_{tr} NP_{NOM} .1 $NP_{ACC} V_{tr} NP_{NOM}$.2 .1 $NP_{ACC} V_{tr} NP_{NOM}$ $S = -\log P(\text{Henne}|\text{die})$ $S = -\log P(\text{sieht}|\text{die Henne})$ $= - \log 1 = 0$ $= -\log .5 = .3$ der Hahn 8 NPNOM Vtr NPACC 1.0 NPACC V_{tr} NP_{NOM} 1.0 ? NPACC Vtr NPNOM $S = -\log P(\text{der}|\text{die Henne sieht})$ $S = -\log P(\text{Hahn}|\text{die Henne sieht der})$ $= -\log .2 = .7$ $= - \log 1 = 0$

Interim Summary

- Comprehending a sentence: Constructing a preference distribution over all possible structures
- Processing difficulty is proportional to the degree of update in the preference distribution
- Difficulty incurred in processing a word can be quantified by its **surprisal value:** $-\log P(w_i|w_1...w_{i-1})$
- To calculate surprisal, we can use different kinds of probabilistic word models (e. g. PCFGs)

Outline

Surprisal Theory in Action

Comparison with Other Processing Theories Surprisal vs. Locality Subject Preference

Theories to be Compared

- Predictability
- Locality
- Competition and dynamical models
- Tuning
- Pruning and attention shift
- Prediction-based connectionist models

Theory to be Compared

- Locality

- Greater distance between words causes greater processing difficulty
- Preference for more local syntactic relationships directly guides disambiguation

Key Idea of Locality

- Greater distance between words causes greater processing difficulty
 - \rightarrow Dependency Locality Theory (DLT; Gibson, 1998)
- Preference for more local syntactic relationships directly guides disambiguation
 - → Active Filler Hypothesis (AFH; Clifton & Frazier, 1989)

Key Idea of Locality

- Greater distance between words causes greater processing difficulty
 - → Dependency Locality Theory (DLT; Gibson, 1998)
- Preference for more local syntactic relationships directly guides disambiguation
 - → Active Filler Hypothesis (AFH; Clifton & Frazier, 1989)

- (1)a. The reporter who attacked the senator admitted the error.
 - The reporter who the senator attacked admitted the error. (Gibson, 1998)

Common Relative Clauses

Surprisal Dependency Locality Theory (Active Filler Hypothesis)

 \rightarrow Similar predictions: Object RC is more difficult than the Subject RC

Subject-Modifying Relative Clauses

- (2) a. The player [that the coach met at 8 o'clock] bought the house...
 - b. The player [that the coach met by the river at 8 o'clock] bought the house. . .
 - c. The player [that the coach met NEAR THE GYM by the river at 8 o'clock] bought the house...
 (Jaeger et al., 2005)

Table 1 Surprisal and average reading times at matrix verb for (2) $\,$

	Number of PPs intervening between verbs		
	1 PP	2 PP	3 PP
DLT prediction	Easier	Harder	Hardest
Surprisal	13.87	13.54	13.40
Mean reading time (ms) 510 ± 34	410 ± 21	394 ± 16

When Ambiguity Facilitates Comprehension

- (3) a. I read that the **governor** of the province **retiring** after the troubles is very rich.
 - b. I read that the province of the **governor retiring** after the troubles is very rich.
 - c. I read that the *bodyguard* of the *governor* retiring after the troubles is very rich. (van Gompel et al., 2005)

(Yet Another) Interim Summary

Unlike locality, surprisal makes the right predictions for:

- Object over subject relativizations
- English subject-modifying relative clauses of varying lengths
- Local ambiguous sentences

- Case syncretism in languages: "Haus" = acc/nom/(dat)
- With free word order this leads to possible ambiguities
 - Die Henne sieht den Bussard
 - Die Henne sieht der Bussard
- SVO is a "default" word order and read more quickly
- Locality explanation: movement + locality asymmetries (no frequencies)
- Other alternative: different construction-frequencies

Two experiments with wh-questions ("was" and

- "welches")
- No differences in construction frequencies in wh-questions
- Does the subject preference persist in this case?
- How does surprisal explain these results?

- "was"-sentences:
 - (6) Was erforderte den Einbruch in die Nationalbank? [SVO]
 - (7) Was erforderte der Einbruch in die Nationalbank? [OVS]
- Higher reading times in object-initial sentence, but at the PP, not at the NP

- Surprisal in "welches"-sentences:
- all possible structural continuations that can lead to the main verb
 - [Welches System] SUB I V.sg... (8)
 - (9) [Welches System] OB I V.sg...
 - (10) [Welches System]_{OBJ} V.pl...
 - (11) *[Welches System]_{SUB1} V.pl...
- ullet o lower expectation for plural verb

- Surprisal in "was"-questions
- Remember:
- disambiguation at post-verbal NP
- but higher RTs at PP

Difference between object–initial and subject–initial reading times and surprisals of (11)

Fig. 7. Predicted vs. actual reading time differentials for (12).

- Explanation for higher RTs at PP:
- NP_{ACC} + PP much more frequent than NP_{NOM} + PP
- ullet ightarrow higher surprisal in OVS-condition
- Explanation for "normal" RTs at NP:
- more frequent to put subject directly after verb in OVS than vice versa
- this reduces surprisal between conditions

Result

- Surprisal predicts which conditions are harder to process
- In contrast to other theories, it predicts precisly WHEN the difficulty occurs

Outline

Background

Surprisal Theory

Surprisal Theory in Action

Comparison with Other Processing Theories Surprisal vs. Locality Subject Preference

Shortcomings

Conclusion

Difficulties in Relative Clauses

- Object RCs are more difficult than subject RCs
- But WHEN does this difficulty occur?
- DLT (Locality): at the verb here extra integration cost is paid
- Surprisal?

- RC similar to head-final clause:
- verb must occur at some point but comprehender doesn't know when
 - (12) The reporter who sent the photographer to the editor hoped for a good story.
 - (13) The reporter who the photographer sent to the editor hoped for a good story.
- the more material in between, the easier it is for the test person (according to surprisal...)
- ullet ightarrow surprisal predicts that object RCs are read *faster*
- <u>plus</u> reading times should be higher at the embedded subject in object RCs

- But this is not at all the way it is:
- increased RT at the verb in object RCs
- embedded subject is read quickly
- ullet ightarrow surprisal fails in Relative Clauses

Difficulties with "digging-in effect"

- While multiple analyses are possible, the favored analysis becomes stronger even without evidence
- Best example: NP/Z-ambiguities:
 - (14) As the author wrote the book grew.
 - (15) As the author wrote the book describing babylon grew.
- Test persons judge the second sentence ungrammatical more often

Combining Locality and Surprisal?

- Surprisal good at predicting local effects in language processing
- "Which word comes next?"
- Locality is good in non-local environments as RCs with long distance dependencies
- For future research: a combined approach?

Outline

Background

Surprisal Theory

Surprisal Theory in Action

Comparison with Other Processing Theories Surprisal vs. Locality Subject Preference

Shortcomings

Conclusion

Conclusion

- Expectation-based
- Probability is decisive
- Probabilistic word models cause difficulty
- Resource is allocated to input ⇒ difficulty in understanding arises with incorrect allocation

Criticism

- No explanations of why rare structures are produced less frequently
- No predictions about competition effects (cf. e.g. Van Dyke & McElree (2006))
- Surprisal highly dependent on syntax

Any questions?

Discussion!

Questions

- English = locality, German = expectation
 - Not one-universal-theory-fits-all, but dependent on typology of the language?
 - Select the best from both approaches due to their shortcomings?
 - ACT-R?

Bibliography

- Clifton, C., & Frazier, L. (1989). Comprehending sentences with long distance dependencies. In G. Carlson & M. Tanenhaus (Eds.), Linguistic structure in language processing (pp. 273–317). Dordrecht: Kluwer.
- Gibson, E. (1998). Linguistic complexity: Locality of syntactic dependencies. *Cognition*, 68, 1–76.
- Hale, J. (2001). A probabilistic Earley parser as a psycholinguistic model. In: *Proceedings of NAACL*, 2, 159–166.
- Jaeger, F., Fedorenko, E., & Gibson, E. (2005). Dissociation between production and comprehension complexity. In Poster presentation at the 18th CUNY sentence processing conference, University of Arizona.
- King, J., & Just, M. A. (1991). Individual differences in syntactic processing: The role of working memory. *Journal of Memory and Language*, 30(5), 580–602.
- Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106, 1126–1177.
- Tribus, M. (1961). Thermodynamics and Thermostatics: An Introduction to Energy, Information and States of Matter, with Engineering Applications.
- van Dyke, J. A., & McElree, B. (2006). Retrieval Interference in Sentence Comprehension. *Journal of Memory and Language*, 55, 157-166.
- van Gompel, R. P. G., Pickering, M. J., Pearson, J., & Liversedge, S. P. (2005). Evidence against competition during syntactic ambiguity resolution. *Journal of Memory and Language*, 52, 284–307.