

#### Visualisation des métadonnées

Formation FRB/CESAB sur les cartes et revues systématiques Mardi 4 octobre, Montpellier

Romain Sordello



#### L'étape de la visualisation

Lorsque la base de données (carte systématique) est finalisée, énormément de possibilités de représentations existent

#### Il va falloir:

- ⇒ Faire des choix sur les données les plus pertinentes (vue d'ensemble du corpus, données particulières à mettre en avant)
- ⇒ Faire des choix sur les formes de visualisation les plus adaptées pour représenter les données sélectionnées

#### **CEE Guidelines**

https://environmentalevidence.org/information-for-authors/9-data-synthesis-page/

#### 9.2.2 Mapping and data visualization

The process of mapping and presentation of data can take **many forms** and (see James et al 2016 for a detailed discussion of methodologies for the production of Systematic Mathis guidance does not wish to be overly prescriptive in what is a fast moving field ps).

Presentation of maps can range from a simple spreadsheet format to innovative forms of data visualisation that make the evidence base easier to interrogate and extract information of interest to the user. Good examples of data visualisation are McKinnon et al. (2016) and Haddaway et al. (2014).

Recording of **key characteristics of each study** included in a narrative synthesis is vital if the Systematic Map is to be useful in summarising the evidence base. **Key characteristics stated in the Protocol** must be fully presented in at least tabular form.

Below is a minimum list of characteristics that will normally be enhanced through data coding of other variables of interest.

- Subject population
- •Intervention/exposure variable
- Setting/context
- Outcome measures
- •Methodological design

#### **EEJ Guidelines**

https://environmentalevidencejournal.biomedcentral.com/submission-guidelines/preparing-your-manuscript/systematic-map

#### Mapping the quantity of studies relevant to the question

Present here **a figure or a database**, showing how the relevant literature is organised (categories, coding...) according to transparent, replicable criteria. This map should be **readily updatable**.

#### Mapping the quality of studies relevant to the question

The map should provide some preliminary **estimate of the quality** of the available evidence. This may involve providing a **description of the design** of each study (or of a representative sample of studies).

This section should include an explanation of how the map can be used to find appropriate studies and observations on the **distribution of articles and relative quantity and quality of available evidence** with respect to the broad question and how the question might be broken down to enable full systematic review(s) to be conducted in future.

Describe **knowledge gaps** (unrepresented or underrepresented subtopics that warrant further primary research) and **knowledge clusters** (well-represented subtopics that are amenable to full synthesis via systematic review)

#### Quelles données représenter?

- Des données incontournables :
  - Données bibliométriques de base : chronologie des publications, localisation des études, types de documents, types de contenus
  - Population
  - Exposition
  - Outcomes
- Des données liés aux design des études (observationnelles/expérimentales, types de protocoles expérimentaux, *in situlex situ*, etc.)
- Des données spécifiques qui mettent en avant des résultats forts

#### Quelle représentation choisir?

• Une grande liberté laissée par la CEE, à vous d'innover.....

Des graphiques lisibles, propres, « sexy »

Adaptée aux données à représenter

• Une diversité de graphiques sur l'ensemble du manuscrit

# Camemberts Zeus Aghrecke Agollen Arès Athèna Hacèles Autres

Mappemondes



| cohort       | first_period | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16 | 17 |
|--------------|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|
| Apr 28, 2014 | 79           | 22% | 19% | 13% | 19% | 16% | 23% | 19% | 20% | 11% | 14% | 16% | 10% | 10% | 10% | 9%  | 6% | 6% |
| May 5, 2014  | 168          | 23% | 21% | 21% | 24% | 24% | 29% | 24% | 18% | 22% | 14% | 14% | 12% | 13% | 10% | 10% | 7% |    |
| May 12, 2014 | 188          | 19% | 19% | 13% | 21% | 19% | 20% | 24% | 21% | 16% | 14% | 13% | 10% | 9%  | 9%  | 7%  |    |    |
| May 19, 2014 | 191          | 23% | 21% | 22% | 22% | 26% | 27% | 29% | 26% | 21% | 21% | 17% | 15% | 10% | 6%  |     |    |    |
| May 26, 2014 | 191          | 21% | 16% | 20% | 24% | 27% | 23% | 20% | 19% | 15% | 15% | 12% | 12% | 6%  |     |     |    |    |
| Jun 2, 2014  | 184          | 24% | 24% | 24% | 24% | 21% | 21% | 18% | 20% | 16% | 15% | 18% | 7%  |     |     |     |    |    |
| Jun 9, 2014  | 182          | 19% | 16% | 25% | 19% | 23% | 28% | 22% | 18% | 13% | 10% | 5%  |     |     |     |     |    |    |
| Jun 16, 2014 | 209          | 24% | 20% | 24% | 22% | 23% | 17% | 18% | 15% | 13% | 7%  |     |     |     |     |     |    |    |
| Jun 23, 2014 | 217          | 22% | 19% | 19% | 20% | 20% | 17% | 19% | 18% | 12% |     |     |     |     |     |     |    |    |
| Jun 30, 2014 | 221          | 18% | 18% | 24% | 24% | 23% | 19% | 20% | 8%  |     |     |     |     |     |     |     |    |    |
| Jul 7, 2014  | 203          | 24% | 23% | 18% | 16% | 24% | 22% | 16% |     |     |     |     |     |     |     |     |    |    |

#### HeatMaps

Jul 14, 2014

#### Histogrammes



#### TreeMaps



#### Données bibliométriques de base : distribution chronologique



Sordello et al., 2020









#### Données bibliométriques de base : distribution spatiale des études



Données bibliométriques de base : distribution spatiale des études



Langridge et al., 2021

Capture sites (white stars) and release sites (red points) from available information plotted against Köppen-Geiger climate classification zones. N.B., The release site coordinates are not a comprehensive illustration because not all publications gave geographic coordinates and/or sufficiently described release locations. Köppen-Geiger climate zones are detailed here in [67, 68]: https://doi.org/10.1127/0941-2948/2006/0130 or https://doi.org/10.1038/sdata.2018.214

# Données bibliométriques de base : distribution spatiale des études



Fig. 12 Tree-map representation of the countries where at least 10 studies were included in the map. Values: USA: 441; CAN (Canada): 121; GBR (Great Britain): 84; NLD (Netherlands): 70; AUS (Australia): 69; DEU (Germany): 41; NOR (Norway): 37; FRA (France): 27; ITA (Italia): 27; BRA (Brazil): 26; ESP (Spain): 24; CHN (China): 22; DNK (Denmark): 20; SWE (Sweden): 17; NZL (New-Zealand): 15; MEX (Mexico): 14; POL (Poland): 11; RUS (Russia): 10

# Données bibliométriques de base : types de documents et contenus



Langridge et al., 2021



Sordello et al., 2020



Share of articles judged as having a low, medium or high risk of bias by (a) type of study (controlled or field environments) and (b) type of publication

#### Visualisation de la population



#### Visualisation des outcomes



### Données plus ciblées sur les études de la carte





### Table 4 Total number of studies, experimental studies, and observational studies for the 20 most studied taxa and the group "reef-building corals" (Coral)

From: Evidence on the impacts of chemicals arising from human activity on tropical reef-building corals; a systematic map

| Taxa                   | Total |        | Experimental |         | Observational |         |
|------------------------|-------|--------|--------------|---------|---------------|---------|
| Pocillopora damicornis | 719   | (9.1%) | 546          | (14.2%) | 173           | (4.2%)  |
| Stylophora pistillata  | 603   | (7.6%) | 537          | (14%)   | 66            | (1.6%)  |
| Coral                  | 555   | (7%)   | 33           | (0.9%)  | 522           | (12.8%) |
| Porites                | 255   | (3.2%) | 18           | (0.5%)  | 237           | (5.8%)  |
| Scleractinia           | 218   | (2.7%) | 20           | (0.5%)  | 198           | (4.8%)  |
| Acropora tenuis        | 207   | (2.6%) | 148          | (3.8%)  | 59            | (1.4%)  |
| Acropora muricata      | 199   | (2.5%) | 154          | (4%)    | 45            | (1.1%)  |
| Porites astreoides     | 197   | (2.5%) | 109          | (2.8%)  | 88            | (2.2%)  |
| Porites lutea          | 190   | (2.4%) | 32           | (0.8%)  | 158           | (3.9%)  |
| Acropora               | 184   | (2.3%) | 58           | (1.5%)  | 126           | (3.1%)  |
| Orbicella annularis    | 169   | (2.1%) | 101          | (2.6%)  | 68            | (1.7%)  |
| Acropora cervicornis   | 152   | (1.9%) | 146          | (3.8%)  | 6             | (0.1%)  |
| Acropora millepora     | 149   | (1.9%) | 140          | (3.6%)  | 9             | (0.2%)  |
| Siderastrea siderea    | 125   | (1.6%) | 64           | (1.7%)  | 61            | (1.5%)  |
| Pocillopora verrucosa  | 122   | (1.5%) | 59           | (1.5%)  | 63            | (1.5%)  |
| Porites porites        | 110   | (1.4%) | 89           | (2.3%)  | 21            | (0.5%)  |
| Porites lobata         | 105   | (1.3%) | 34           | (0.9%)  | 71            | (1.7%)  |
| Turbinaria reniformis  | 101   | (1.3%) | 100          | (2.6%)  | 1             | (0%)    |
| Acropora valida        | 100   | (1.3%) | 34           | (0.9%)  | 66            | (1.6%)  |
| Orbicella faveolata    | 99    | (1.2%) | 49           | (1.3%)  | 50            | (1.2%)  |





# Représentations plus complexes



Radial bubble plot of the systems, components and factors affected across the included studies. Systems are depicted by the bubble colour. Bubble size indicates the number of articles. An interactive version is available at the project website; <a href="https://3mkproject.github.io/research.html">https://3mkproject.github.io/research.html</a>

# Représentations plus complexes

Fig. 8



The difference in taxonomic resolution and taxonomic scope of retrieved threat mapping literature among plant taxonomic groups. Taxonomic resolution is the lowest taxonomic level that was mapped as an independent population unit, thus indicative of how taxonomically detailed the threat mapping application was. Whereas, taxonomic scope is the lowest taxonomic level that includes all species for which threats were mapped within the article. The width of the flows represents the number of articles

#### Représenter les synthèses existantes

#### Table 8 Comparing other evidence syntheses to our current map. N.B

From: Existing evidence on the outcomes of wildlife translocations in protected areas: a systematic map

| Citation                                                                                                                                                                                                        | Scope of review                                                                                                                     | Nature of synthesis | Search databases                                  | No. of other literature sources                           | Publication data<br>range of included<br>articles | No. of included publications |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|------------------------------|
| Our map (translocation synthesis)                                                                                                                                                                               | P: all biodiversity worldwide<br>I: reintroductions,<br>introductions,<br>Supplementations<br>C: protected areas                    | Systematic<br>map   | 2 databases: WOS,<br>SCOPUS                       | 12 (+2 grey<br>literature calls)                          | 1969 to 2020                                      | 498                          |
| Fischer J, Lindenmayer DB. An assessment of the published results of animal relocations. <i>Biological Conservation</i> . 2000; 96: 1–11                                                                        | P: animals worldwide<br>I: reintroductions,<br>supplementations,<br>introductions                                                   | Map-like            | 0 databases                                       | A search for articles<br>across 12 major<br>journals only | 1979 to 1998                                      | 124                          |
| Hale SL, Koprowski JL. Ecosystem-level effects of keystone species reintroduction: a literature review. <i>Restoration Ecology</i> . 2018; 26: 439–45                                                           | P: key-stone species I: reintroductions only                                                                                        | Map-like            | 1 database: WOS                                   | 0                                                         | 1995 to 2016                                      | 69                           |
| Tetzlaff SJ, Sperry JH, DeGregorio BA. Effects of antipredator training, environmental enrichment, and soft release on wildlife translocations: a review and meta-analysis. <i>Biol Cons.</i> 2019; 236: 324–31 | P: all biodiversity <sup>a</sup> I: translocations <sup>a</sup> C: antipredator training, soft release, or environmental Enrichment | Meta-<br>analysis   | 0 databases<br>(Search in google<br>scholar only) | 0                                                         | 1981 to 2018                                      | 41                           |
| Resende, P., Viana-Junior, A., Young, R., Azevedo, C., 2020. A global review of animal translocation programs. <i>Anim. Biodivers</i> . Conserv. 221–232. https://doi.org/10.32800/abc.2020.43.0221             | P: animals<br>I: introduction,<br>reintroduction,<br>translocations <sup>a</sup>                                                    | Map-like            | 2 databases: WOS,<br>SCOPUS                       | 1                                                         | 1986 to 2017                                      | 145                          |

P population, I interventions, C context

<sup>a</sup>Methods unclear and exclusion criteria difficult to ascertain. The first line in italics corresponds to this map

#### Représenter les synthèses existantes



# Identifier les knowledge gaps et les knowledge clusters

La carte a pour objectif d'identifier :

• les **manques** de connaissances en vue de prioriser de futures études primaires (appels à projet par exemple)

• les **amas** de connaissances en vue de prochaines revues systématiques

# Identification des knowledge gaps et les knowledge clusters

- Plusieurs façons de faire :
- se baser sur les volumes P, E, O
- utiliser un découpage fonctionnel (types de design, etc.)

- ...

• Cela peut aller (c'est même recommandé) jusqu'à identifier clairement des questions traitables en revues

#### Croisements 2 à 2 Population-Exposition-Outcome

Sordello et al., 2020

|                     | Abstract | Industrial | Transportation | Military | Urban | Recreation | Other |
|---------------------|----------|------------|----------------|----------|-------|------------|-------|
| Mammals             | 181      | 145        | 145            | 73       | 12    | 27         | 11    |
| Fishes              | 86       | 104        | 97             | 14       | 2     | 11         | 5     |
| Birds               | 74       | 60         | 142            | 25       | 109   | 20         | 3     |
| Amphibians          | 23       | 4          | 31             | 0        | 5     | 2          | 0     |
| Insects             | 19       | 2          | 10             | 0        | 2     | 2          | 1     |
| Crustaceans         | 9        | 18         | 8              | 1        | 0     | 0          | 2     |
| Mollusks            | 9        | 9          | 6              | 1        | 0     | 0          | 0     |
| Other invertebrates | 2        | 3          | 5              | 0        | 0     | 0          | 0     |
| Reptiles            | 1        | 7          | 7              | 3        | 0     | 1          | 0     |
| Other vertebrates   | 1        | 1          | 2              | 0        | 0     | 2          | 0     |
| Arachnids           | 1        | 1          | 1              | 0        | 1     | 0          | 0     |

Langridge et al., 2021

| Taxonomic kingdom X Programme motivation         | Intervention ty | rpe          |               |                |                 |         |       |
|--------------------------------------------------|-----------------|--------------|---------------|----------------|-----------------|---------|-------|
|                                                  | Intro+suppl     | Introduction | Reintro+suppl | Reintroduction | Supplementation | Unknown | Total |
| Animalia                                         | 6               | 6            | 176           | 158            | 158             | 182     | 686   |
| Conservation (improving status of focal species) | 6               | 4            | 158           | 123            | 110             | 88      | 489   |
| Experimental or trial translocations             |                 | 1            | 4             | 12             | 13              | 16      | 46    |
| Human-wildlife conflict                          |                 |              |               | 5              | 11              | 17      | 33    |
| Rewilding (restoring natural functions)          |                 |              | 3             | 3              |                 | 2       | 8     |
| Unknown                                          |                 | 1            | 9             | 11             | 9               | 33      | 63    |
| Wildlife rescue operation                        |                 |              | 2             | 4              | 15              | 26      | 47    |
| Fungi                                            |                 |              |               | 4              | 3               |         | 7     |
| Wildlife rescue operation                        |                 |              |               | 4              | 3               |         | 7     |
| Plantae                                          |                 | 4            | 10            | 11             | 41              | 82      | 148   |
| Conservation (improving status of focal species) |                 | 3            | 10            | 9              | 39              | 72      | 133   |
| Experimental or trial translocations             |                 | 1            |               | 2              | 2               | 5       | 10    |
| Unknown                                          |                 |              |               |                |                 | 1       | 1     |
| Wildlife rescue operation                        |                 |              |               |                |                 | 4       | 4     |
| Total                                            | 6               | 10           | 186           | 173            | 202             | 264     | 841   |

#### Croisements 2 à 2 Population-Exposition-Outcome

Cook et al., 2017

Stanton, et al., 2022







Fig. 8



Heatmap showing the distribution and frequency of experimental studies into exposure and outcomes categories. The size of the circles is function of the number of studies, and the proportion of studies in each exposure and outcome categories is indicated in parenthesis



Ouédraogo et al., 2020

#### Identification des knowledge clusters

Exemple : sélection des 4 clusters les plus élevés de chacun de 3 croisements P-E-O

 $\Rightarrow$  12 clusters en tout

From: Evidence of the impact of noise pollution on biodiversity: a systematic map

| Cluster                                      | Number of studies | Combinations |   |   |
|----------------------------------------------|-------------------|--------------|---|---|
|                                              |                   | Р            | E | 0 |
| Behavioural impacts of noise on mammals      | 355               | x            |   | х |
| Impacts of transportation noise on behaviour | 216               |              | x | х |
| Impacts of abstract noises on biophysiology  | 208               |              | x | х |
| Impacts of abstract noise on behaviour       | 202               |              | х | х |
| Impacts of industrial noises on behaviour    | 187               |              | x | х |
| Impacts of abstract noise on mammals         | 181               | х            | х |   |
| Biophysiological impacts of noise on mammals | 181               | х            |   | х |
| Behavioural impacts of noise on fishes       | 159               | x            |   | х |
| Biophysiological impacts of noise on fishes  | 149               | х            |   | х |
| Impacts of industrial noise on mammals       | 145               | x            | x |   |
| Impacts of transportation noise on mammals   | 145               | x            | x |   |
| Impacts of transportation noise on birds     | 142               | х            | x |   |

# Identification des knowledge clusters



Summary of the four well-represented subtopics that may be amenable to relevant full syntheses via systematic reviews (square size is function of the number of studies, "exp" and "obs" stand for experimental and observational studies, respectively). Studies reporting exposure to nutrient in combination with other chemical categories were both counted in clusters 2 and 4

#### Quelques outils/logiciels

• Excel : graphiques simples (camemberts, bâtons, points) et heat maps (mise en forme conditionnelle)

• EviAtlas : mappemonde, graphiques simples, heat maps

r : possibilités très larges (ex: package tree maps)

Nombreux outils en ligne gratuits ou payants (tree maps notamment)

#### Excel: Tableaux croisés dynamiques



#### **Excel: Heatmaps**

- 1/ Utiliser la Fonction NB.SI.ENS
- ⇒ Permet de compter le nombre de cellules répondant à plusieurs conditions (ex: telle Population et telle Exposition) Exemple : =NB.SI.ENS(Database!\$K:\$K;"study";Database!\$S:\$S;"yes";Database!AF:AF;"yes")
- 2/ Utiliser la mise en forme conditionnelle « nuances de couleurs » pour colorier automatiquement la heatmap



Haddaway et al. Environ Evid (2019) 8:23 https://doi.org/10.1186/s13750-019-0167-1

#### **Environmental Evidence**

METHODOLOGY

**Open Access** 

#### *EviAtlas*: a tool for visualising evidence synthesis databases



Neal R. Haddaway<sup>1,2\*</sup>, Andrew Feierman<sup>1</sup>, Matthew J. Grainger<sup>3,4</sup>, Charles T. Gray<sup>5</sup>, Ezgi Tanriver-Ayder<sup>6</sup>, Sanita Dhaubanjar<sup>7</sup> and Martin J. Westgate<sup>8</sup>

#### Abstract

Systematic mapping assesses the nature of an evidence base, answering how much evidence exists on a particular topic. Perhaps the most useful outputs of a systematic map are an interactive database of studies and their meta-data, along with visualisations of this database. Despite the rapid increase in systematic mapping as an evidence synthesis method, there is currently a lack of Open Source software for producing interactive visualisations of systematic map databases. In April 2018, as attendees at and coordinators of the first ever Evidence Synthesis Hackathon in Stockholm, we decided to address this issue by developing an R-based tool called *EviAtlas*, an Open Access (i.e. free to use) and Open Source (i.e. software code is freely accessible and reproducible) tool for producing interactive, attractive tables and figures that summarise the evidence base. Here, we present our tool which includes the ability to generate vital visualisations for systematic maps and reviews as follows: a complete data table; a spatially explicit geographical information system (Evidence Atlas); Heat Maps that cross-tabulate two or more variables and display the number of studies belonging to multiple categories; and standard descriptive plots showing the nature of the evidence base, for example the number of studies published per year or number of studies per country. We believe that *EviAtlas* will provide a stimulus for the development of other exciting tools to facilitate evidence synthesis.

Keywords: Evidence synthesis technology, Software, Tools, Systematic mapping, Data viz



#### Charger la base de données



#### Visualiser la base de données en ligne

| EviAtlas                      | =                 |         |                    |                                  |                                                     |                                       |                                          |                                      |            |                      |                     |                 |                         |                    |
|-------------------------------|-------------------|---------|--------------------|----------------------------------|-----------------------------------------------------|---------------------------------------|------------------------------------------|--------------------------------------|------------|----------------------|---------------------|-----------------|-------------------------|--------------------|
| ? About EviAtlas              | Show 10 v entries |         |                    |                                  |                                                     |                                       |                                          |                                      |            |                      |                     | Search:         |                         |                    |
| <b>№</b> Evidence Atlas       | m                 | ap_id�� | biblio_internal_id | biblio_permanent_id              | biblio_authors 🖟                                    | biblio_container.                     | biblio_title_                            | biblio_abstract []                   | biblio_yea | ar 📫 biblio_language | † biblio_doctype [] | biblio_content. | population_prokaryotes. | population_inverte |
| 😂 Map Database                |                   | A       | All                | All                              | All                                                 | All                                   | All                                      | All                                  | All        | All                  | All                 | All             | All                     | All                |
| ♠ Descriptive Plots ♦ Heatmap | 1                 | 1       |                    | 6 10.1002/(SICI)1098-2361(1999)1 | Carlstead, K.,<br>Fraser, J., Ben                   | ZOO BIOLOGY                           | Black<br>rhinoceros<br>(Diceros<br>bico  | The captive population of blac       | i          | 1999 en              | journal article     | study           | no                      | no                 |
| <b>:</b> ≣ Resources          | 2                 | 2       |                    | 9 10.1002/15-0783                | Friedlaender, AS.,<br>Hazen, EL.,                   | ECOLOGICAL<br>APPLICATIONS            | Prey-<br>mediated<br>behavioral<br>respo | Behavioral<br>response studies<br>pr | 2          | 2016 en              | journal article     | study           | no                      | no                 |
|                               | 3                 | 3       |                    | 34 10.1002/aqc.1189              | Cubero-Pardo, P.,<br>Herron, P.,                    | AQUATIC<br>CONSERVATION-<br>MARINE AN | Shark<br>reactions to<br>scuba diver     | 1. Worldwide,<br>there are concer    | :          | 2011 en              | journal article     | study           | no                      | no                 |
|                               | 4                 | 4       |                    | 35 10.1002/aqc.1190              | Jung, CA., and<br>Swearer, SE.                      | AQUATIC<br>CONSERVATION-<br>MARINE AN | Reactions of<br>temperate<br>reef fi     | 1. Anthropogenic sound as a st       | 2          | 2011 en              | journal article     | study           | no                      | no                 |
|                               | 5                 | 5       |                    | 37 10.1002/aqc.2355              | La Manna, G.,<br>Manghi, M.,<br>Pava                | AQUATIC<br>CONSERVATION-<br>MARINE AN | Behavioural<br>strategy of<br>common     | Owing to the increase of boat        | 2          | 2013 en              | journal article     | study           | no                      | no                 |
|                               | 6                 | 6       |                    | 42 10.1002/aqc.2668              | Osterrieder, SK.,<br>Kent, CS., and<br>Robinson, RW | AQUATIC<br>CONSERVATION-<br>MARINE AN | Responses of<br>Australian sea<br>li     | 1. Tourist- based activities,        | 2          | 2017 en              | journal article     | study           | no                      | no                 |
|                               | 7                 | 7       |                    | 43 10.1002/aqc.2693              | Jain-Schlaepfer,<br>SMR., Blouin                    | AQUATIC<br>CONSERVATION-<br>MARINE AN | Do boating<br>and basking<br>mix? Th     | 1. Basking is the primary mech       | :          | 2017 en              | journal article     | study           | no                      | no                 |
|                               | 8                 | 8       |                    | 47 10.1002/aqc.2915              | Maxwell, RJ.,<br>Zolderdo, AJ., d                   | AQUATIC<br>CONSERVATION-<br>MARINE AN | Does motor<br>noise from<br>recreati     | 1. Recreational boating activi       | 1          | 2018 en              | journal article     | study           | no                      | no                 |
|                               | 9                 | 9       |                    | 50 10.1002/aqc.941               | Graham, AL., and<br>Cooke, SJ                       | AQUATIC<br>CONSERVATION-<br>MARINE AN | The effects of noise disturban           | 1. Recreational boating contin       | 2          | 2008 en              | journal article     | study           | no                      | no                 |
|                               | 10                | 10      |                    | 74 10.1002/eap.1437              | Kleist, NJ.,                                        | ECOLOGICAL<br>ARRIVICATIONS           | Sound                                    | Birds breeding in                    | 2          | 2017 en              | journal article     | study           | no                      | no                 |

#### Atlas des études => Nécessité de disposer des coordonnées lat/lont pour chaque étude



From: Evidence of the impacts of metal mining and the effectiveness of mining mitigation measures on social—ecological systems in Arctic and boreal regions: a systematic map



Screenshot of the interactive evidence atlas showing the location of all study systems in the 585 included studies across 902 total outcome measures. The popup contains descriptive meta-data and a link to the paper on Google Scholar. The interactive evidence atlas is available here: <a href="https://gmkproject.github.io">https://gmkproject.github.io</a> /research.html

#### **Edition de heatmaps**



#### Free tree maps online

#### https://online.visual-paradigm.com/



#### A vous de jouer!

