高等线性代数 Advanced Linear Algebra

Advanced Linear Algebra PHYS6653P 2021 学年第一学期 等 陈稼霖 github.com/Chen-Jialin 2021 年 9 月 -

目录

1	代数学基础				
	1.1	常用符号			
	1.2				
	1.3	映射			
		等价关系和等价类			
	1.5	群			
	1.6	环	14		
	1.7	域	17		
2	向量	空间	19		
3 线	线性	线性变换			
	3.1	线性变换	26		
	2.2	表示	20		

Chapter 1

代数学基础

1.1 常用符号

- ∀: 对所有 (for all).
- ∃: 存在 (there exists).
- \exists !: 存在且唯一 (there exists exactly one).
- s.t.: 使得 (such that).
- №: 自然数.
- ℤ: 整数.
- Q: 有理数.
- ℝ: 实数.
- ℂ: 复数.

1.2 集合

定义 1.1 集合(Set):

元素与集合之间的关系: 对元素 a 和集合 S,

- $a \in S$ 或
- $a \notin S$.

集合中元素之间的关系: $\forall a, b \in S$,

- a = b 或
- $a \neq b$.

集合与集合之间的关系: 对集合 A, B 和全集 I,

1. 代数学基础 1.2. 集合

- (1) **交集**: $A \cap B = \{a \mid a \in A \perp B \mid a \in B\}$.
- (2) **并集**: $A \cup B = \{a \mid a \in A \ 或 \ a \in B\}$.
- (3) **差**: $B A = \{a \mid a \in B \perp a \notin A\}.$
- (4) 补集: $A' = I A = \{a \mid a \in I \perp \exists a \notin A\}.$
- (5) **包含**: $A \subseteq B$, 称 A 包含于 B, 或称 B 包含 A, 或称 B 是 A 的子集 $\iff A \cup B = A \iff A \cup B = B$.

 $\mathbf{i}\overline{\mathbf{L}} \colon A \subseteq B \Longrightarrow A \cap B = A \colon \because A \subseteq B, \ \therefore \ \forall a \in A, \ a \in B \Longrightarrow A \subseteq A \cap B.$

 $\forall a \in A \cup B$, 由交集定义, $a \in A \Longrightarrow A \cap B \subseteq A$.

故 $A \cap B = A$.

 $A \subseteq B \iff A \cap B = A$: $A \cap B = A$, $A \cap B =$

 $A\subseteq B\Longrightarrow A\cup B=B\colon \because A\subseteq B,\ \forall a\in A,\ a\in B,\ \therefore \forall a\in A\cup B,\ a\in B\Longrightarrow A\cup B\subseteq B.$

 $:: A \subseteq B, \forall a \in A,$ 由并集定义, $a \in A \cup B \Longrightarrow B \subseteq A \cup B.$

故 $A \cup B = B$.

 $A \subseteq B \iff A \cup B = B$: $\forall a \in A$, 由并集定义, $a \in A \cup B$, 又 $\therefore A \cup B = B$, $\therefore a \in B \implies A \subseteq B$.

综上, 得证.

常用公式:

 $(1) A \cap (\cup_i B_i) = \cup_i (A \cap B_i).$

 $\mathbf{\overline{u}} : \forall a \in A(\cup_i B_i) \iff a \in A \perp \exists a \in \cup_i B_i$

- $\iff a \in A \perp \exists k, \text{ s.t. } a \in B_k$
- $\iff \exists k, \text{ s.t. } a \in A \cap B_k \subseteq \cup_i (A \cap B_i)$
- $\iff a \in \cup_i (A \cap B_i), \text{ if } A \cap (\cup_i B_i) \subseteq \cup_i (A \cap B_i).$

 $\forall a \in \bigcup_i (A \cap B_i) \iff \exists k, \text{ s.t. } a \in A \cap B_k$

- $\iff \exists k, \text{ s.t. } a \in A \perp \exists a \in B_k$
- $\iff a \in A \perp \exists k, \text{ s.t. } a \in B_k$
- $\iff a \in A \perp \exists a \in \cup_i B_i$
- $\iff a \in A \cap (\cup_i B_i), \ \ \ \ \ \ \cup_i (A \cap B_i) \subseteq A \cap (\cup_i B_i).$

综上, 得证.

 $(2) A \cup (\cap_i B_i) = \cap_i (A \cup B_i).$

 $\mathbf{\overline{u}}$: $\forall a \in A \cup (\cap_i B_i) \iff a \in A \ \ \mathbf{y} \ \ a \in \cap_i B_i$

- $\iff a \in A \ \vec{\boxtimes} \ \forall i, \text{ s.t. } a \in B_i$
- $\iff \forall i, a \in A \ \vec{\boxtimes} \ a \in B_k$
- $\iff \forall i, \ a \in A \cup B_k$
- $\iff \cap_i (A \cup B_i), \text{ if } A \cup (\cap_i B_i) \subseteq \cap_i (A \cup B_i).$

 $\forall a \in \cap_i (A \cup B_i) \iff \forall i, a \in A \cup B_i$

- $\iff \forall i, a \in A \ \vec{\boxtimes} \ a \in B_i$
- $\iff a \in A \ \vec{\boxtimes} \ \forall i, \ a \in B_i$

 $\iff a \in A$ 或 $a \in \cup_i B_i$ $\iff a \in A \cap (\cup_i B_i)$, 故 $\cap_i (A \cup B_i) \subseteq A \cap (\cup_i B_i)$. 综上, 得证.

 $(3) (\cup_i A_i)' = \cap_i A_i'.$

证: $\forall a \in (\cup_i A_i)' \iff a \in I \perp a \notin \cup_i A_i$

 $\iff a \in I \perp \exists \forall i, a \notin A_i$

 $\iff \forall i, a \in I \perp a \notin A_i$

 $\iff \forall i, a \in A'_i$

 $\iff a \in \cap_i A_i', \text{ id } (\cup_i A_i)' \subseteq \cap_i A_i'.$

 $\forall a \in \cap_i A_i' \iff \forall i, \ a \in I \perp a \notin A_i$

 $\iff a \in I \perp \exists \forall i, a \notin A_i$

 $\iff a \in I \perp a \notin \bigcup_i A_i'$

综上, 得证.

 $(4) (\cap_i A_i)' = \cup_i A_i'.$

 $\mathbf{i}\mathbf{E} : \forall a \in (\cap_i A_i)' \iff a \in I \perp a \notin \cap_i A_i$

 $\iff a \in I \perp \exists k, \text{ s.t. } a \notin A_k$

 $\iff \exists k, \text{ s.t. } a \in I \perp \exists a \notin A_k$

 $\iff \exists k, \text{ s.t. } a \in A'_k$

 $\iff a \in \cup_i A_i', \text{ id } (\cap_i A_i)' \subseteq \cup_i A_i'.$

 $\forall a \in \bigcup_i A_i' \iff \exists k, \text{ s.t. } a \in A_k'$

 $\iff \exists k, \text{ s.t. } a \in I \perp a \notin A_k$

 $\iff a \in I \perp \exists k, \text{ s.t. } a \notin A_k$

 $\iff a \in I \perp a \notin \cap_i A_i$

综上, 得证.

1.3 映射

定义 1.2 <u>映射</u>: $\forall a \in S_1, \exists ! b \in S_2, \text{ s.t. } b = f(a), 记作 <math>f: S_1 \to S_2, a \mapsto b, \text{ 其中称 } S_1 \text{ 为定义域}, S_2 \text{ 为值域}, b$ 为 a 的像, a 为 b 的原像.

例 1.1 恒等映射: $1_S: S \to S, a \mapsto 1_S(a) = a$.

定义 1.3 映射相等: 映射 $f: S_1 \to S_2, g: S_1 \to S_3, \forall a \in S_1, f(a) = g(a), 则称 f 与 g 相等, 记作 <math>f = g$.

 $\forall a \in S_1, \{f(a)\} \subseteq S_2 \perp |\{f(a)\}| = 1.$

定义 **1.4** 原像集: $f^{-1}(b) \equiv \{a \in S_1 \mid f(a) = b\}$.

 $f^{-1}(b) \subseteq S_1, f^{-1}(b)$ 可能 $= \emptyset.$

定义 1.5 像集: $\operatorname{Im} f = f(S_1) \equiv \{b \in S_2 \mid b = f(a) \forall a \in S_1\}.$

 $\operatorname{Im} f \subseteq S_2$.

基本性质:

(1) $A \subseteq S_1 \Longrightarrow A \subseteq f^{-1}(f(A))$.

i.E. $\forall a \in A, :: A \subseteq S_1, :: a \in S_1.$

$$X : f(a) \in f(A), : a \in f^{-1}(f(A)), \text{ if } A \subseteq f^{-1}(f(A)).$$

若 $\exists a \in S_1 - A$, s.t. $f(a) \in f(A)$, 则 $A \subseteq f^{-1}(f(A))$.

(2) $B \subseteq S_2 \Longrightarrow B \supseteq f(f^{-1}(B))$.

$$\mathbf{i}\mathbf{E} : :: f^{-1}(B) = \{ a \in S_1 \mid f(a) \in B \}, :: \forall a \in f^{-1}(B), f(a) \in B \Longrightarrow f(f^{-1}(B)) \subseteq B.$$

若 $\exists b \in B$, s.t. $\forall a \in S_1$, $f(a) \neq b$ (即 B 中有元素在 S_1 中无原像), 则 $B \supseteq f(f^{-1}(B))$.

若 $\forall b \in B, \exists a \in A, \text{ s.t. } f(a) = b, \text{ 则 } B = f(f^{-1}(B)).$

(3) $f^{-1}(\cup_i B_i) = \cup_i f^{-1}(B_i)$.

iE: $\forall a \in f^{-1}(\cup_i B_i), \exists k, \text{ s.t. } f(a) \in B_k$

$$\iff \exists k, \text{ s.t. } a \in f^{-1}(B_k)$$

$$\iff a \in \cup_i f^{-1}(B_i), \text{ if } f^{-1}(\cup_i B_i) \subseteq \cup_i f^{-1}(B_i).$$

$$\forall a \in \bigcup_i f^{-1}(B_i), \exists k, \text{ s.t. } a \in f^{-1}(B_k)$$

$$\iff \exists k, \text{ s.t. } f(a) \in B_k$$

$$\iff f(a) \in \cup_i B_i$$

综上, 得证.

(4)
$$f^{-1}(\cap_i B_i) = \cap_i f^{-1}(B_i)$$
.

iE: $\forall a \in f^{-1}(\cap_i B_i), \exists k, \text{ s.t. } f(a) \in B_k$

$$\iff \exists k, \text{ s.t. } a \in f^{-1}(B_k)$$

$$\iff a \in \bigcup_i f^{-1}(B_k), \text{ if } f^{-1}(\cap_i B_i) \subseteq \cap_i f^{-1}(B_i).$$

$$\forall a \in \cap_i f^{-1}(B_i), \forall i, \text{ s.t. } a \in f^{-1}(B_i)$$

$$\iff \forall i, \text{ s.t. } f(a) \in B_i$$

$$\iff f(a) \in \cap_i B_i$$

综上, 得证.

定义 1.6 <u>映射的复合</u>: 映射 $f: S_1 \to S_2$, $g: S_2 \to S_3$, 则称映射 $g \circ f: S_1 \to S_2$, $a \mapsto g \circ f(a) \equiv g(f(a))$ 为 f 和 g 的复合.

定理 **1.1** 映射复合的结合律: $h \circ (g \circ f) = (h \circ g) \circ f$.

故连续复合 $f_1 \circ f_2 \circ \cdots \circ f_n$ 无需括号.

定义 1.7 交换图: $f: S_1 \to S_1, h: S_2 \to S_3, g: S_1 \to S_3, 若 g = f \circ h$, 则称该图交换.

 $f: S_1 \to S_2, g: S_2 \to S_4, h: S_1 \to S_3, l: S_3 \to S_4, 若 g \circ f = l \circ h$, 则称该图交换.

定义 1.8 <u>单射(Injective 或One-to-one)</u>: 映射 $f: S_1 \to S_2, \forall a, b \in S_1, \$ 若 $f(a) = f(b) \Longrightarrow a = b, \$ 则称 f 单射.

单射的性质:

- (2) f 单射 \iff $A = f^{-1}(f(A))$.

定义 1.9 <u>满射(Surjective)</u>: 映射 $f: S_1 \to S_2$, 若 $\forall b \in S_2$, $\exists a \in S_1$, s.t. f(a) = b (即 Im $f = S_2$), 则称 f 满射.

满射的性质:

- (1) f 满射 $\iff \forall B \subseteq S_2, f^{-1}(B) \neq \emptyset$.
- (2) f 满射 $\iff \forall B \subseteq S_2, B = f(f^{-1}(B)).$

定义 1.10 双射: 映射 f 单射且满射 \iff f 双射.

例 1.2: 恒等映射是双射的.

常用结论:

(1) f, g 单射 $\Longrightarrow g \circ f$ 单射.

证:
$$\forall a, b \in S_1$$
, 若 $g \circ f(a) = g \circ f(b)$, $\therefore g$ 单射, $\therefore f(a) = f(b)$, 又 $\therefore f$ 单射, $\therefore a = b$, 故 $g \circ f$ 单射.

(2) $g \circ f$ 单射 $\Longrightarrow f$ 单射.

证:
$$\forall a, b \in S_1$$
, 若 $f(a) = f(b)$, 则 $g \circ f(a) = g \circ f(b)$, 又 : $g \circ f$ 单射、: $a = b$, 故 f 单射.

例 1.3 $g \circ f$ 单射, 而g 非单射的例子: 集合 $S_1 = \{0\}, S_2 = \{0,1\}, S_3 = \{0\},$

映射
$$f: S_1 \to S_2$$
, $f(a) = 0 \forall a \in S_1$, 单射,

$$g: S_2 \to S_3, g(b) = 0 \forall S_2, \text{ #} \text{ #} \text{ #} \text{ #} \text{ } f: S_1 \to S_3, g(a) = 0, \text{ #} \text{ #} \text{ } \text{ } f.$$

(3) f, g 满射 $\Longrightarrow g \circ f$ 满射.

(4) $g \circ f$ 满射 $\Longrightarrow g$ 满射.

证:
$$g \circ f$$
 满射, $d \circ g \in S_3$, $\exists a \in S_1$, s.t. $g \circ f(a) = c$ $\Rightarrow \exists b = f(a) \in S_2$, s.t. $g(b) = c$, 故 g 满射.

例 1.4 $g \circ f$ 满射, 而 f 非满射的例子: 集合 $S_1 = \{0\}, S_2 = \{0,1\}, S_3 = \{0\},$

映射 $f: S_1 \to S_2$, $f(a) = 0 \forall a \in S_1$, 非满射,

$$g: S_2 \to S_3, \ g(b) = 0 \forall S_2, \ \text{initial}, \ g \circ f: S_1 \to S_3, \ g(a) = 0, \ \text{initial}.$$

定理 1.2: 映射 $f: S_1 \to S_2$ 单射 \iff \exists 映射 $g: S_2 \to S_1$, s.t. $g \circ f = 1_{S_1}$, 这样的 g 称为 f 的左逆.

由于当 $f^{-1}(b) = \emptyset$ 时, g(b) 的取值具有任意性, 故若左逆存在, 则不唯一.

定理 1.3: 映射 $f: S_1 \to S_2$ 满射 $\iff \exists$ 映射 $h: S_2 \to S_1$, s.t. $f \circ h = 1_{S_2}$, 这样的 h 称为 f 的右逆.

证: "⇒": ∵ f 满射, ∴ $\forall b \in S_2$, $\exists a \in S_1$, s.t. f(a) = b, 故可构造 $h(b) = a \in f^{-1}(b)$, 从而 $f \circ h(b) = b \Longrightarrow f \circ h = 1_{S_2}$.

"
$$=$$
": $\forall b \in S_2, \exists a = h(b) \in S_1, \text{ s.t. } f \circ h(b) = 1_{S_2}(b) = b,$ 故 f 满射.

由于 $|f^{-1}(b)| \ge 1$, h(b) 的取值可能具有任意性, 故若右逆存在, 则不唯一.

定理 1.4: 若映射 f 同时存在左逆和右逆,则其左逆 = 右逆,此时称 f 可逆,且此时 f 双射.

П

证: 因为 f 同时存在左逆和右逆, 由定理 1.2 和 1.3 得 f 双射.

设左逆 $g: S_2 \to S_1$, s.t. $g \circ f = 1_{S_1}$, 右逆 $h: S_2 \to S_1$, s.t. $f \circ h = 1_{S_2}$.

假设 $g \neq h$, 则 $\exists b \in S_2$, s.t. $g(b) \neq h(b)$,

又 :: f 单射, :: $b = 1_{S_2}(b) = f \circ g(b) \neq f \circ h(b)$.

 $\therefore f$ 满射, $\therefore \exists a \in S_1$, s.t. $b = f(a) \Longrightarrow f(a) = b \neq f \circ g \circ f(a) = 1_{S_2}(f(a)) = f(a)$, 这显然是荒谬的, 故假设错误, g = h.

1.4 等价关系和等价类

定义 1.11 <u>卡氏积</u>: 集合 S_1 和 S_2 的卡氏积 $S_1 \times S_2 \equiv \{(a,b) \mid a \in S_1, b \in S_2\}$. 集合 S 的卡氏积 $S \times S \equiv \{(a,b) \mid a,b \in S\}$.

注意, 一般 $(a,b) \neq (b,a)$.

定义 1.12 关系: 卡氏积的子集. $\mathcal{R} \in S \times S$, 称为 S 上的关系.

例 1.5: 自然数集 \mathbb{N} 的卡氏积 $\mathbb{N} \times \mathbb{N} = \{(n, m) \mid n, m \in \mathbb{N}\}.$

小于关系: $\mathcal{R}_1 = \{(n,m) \mid n-m<0\}.$ $(1,2) \in \mathcal{R}_1$, 记作 $1\mathcal{R}_12$.

等于关系: $\mathcal{R}_2 = \{(n,m) \mid n-m=0\}.$ $(1,1) \in \mathcal{R}_2$, 记作 $1\mathcal{R}_21$.

定义 1.13 图: 对映射 $f: S_1 \to S_2$, 有关系 $G_f = \{(a, f(a)) \mid a \in S_1\} \subseteq S_1 \times S_2$, 称 G_f 为 f 的图.

(第一个坐标在此关系中仅出现一次, 不会重复.)

映射与图一一对应.

定义 1.14 等价关系: 关系 $\mathcal{R} \in S \times S$, 若满足

反身性: $\forall a \in S, (a, a) \in \mathcal{R}$ (即 $a \sim a \forall a \in S$)

- (2) 对称性: 若 $(a,b) \in \mathcal{R}$, 则 $(b,a) \in \mathcal{R}$ (即 $a \sim b \iff b \sim a$)
- (3) 传递性: 若 $(a,b) \in \mathcal{R}$, $(b,c) \in \mathcal{R}$, 则 $(a,c) \in \mathcal{R}$ (即 $a \sim b, b \sim c \iff a \sim c$)

则称 \mathcal{R} 为 S 上的等价关系. 若元素 a,b 具有等价关系, 记为 $a \sim b$.

定义 1.15 <u>等价类</u>: 由具有等价关系的元素组成的集合. $\forall a \in S, [a] \equiv \{b \in S \mid b \sim a\} \subseteq$ 称为 a 的等价类, a 称为该等价类的代表元.

 $\therefore a \in [a], \therefore [a]$ 非空.

 $c \in S$, 则有且仅有以下两种情况:

- $(1) \ c \in [a] \Longleftrightarrow c \sim a \Longleftrightarrow a \sim c \Longleftrightarrow a \in [c] \Longleftrightarrow [a] = [c].$
- (2) $c \notin [a] \iff [a] \cap [c] = \emptyset$.

证: 假设 $[a] \cap [b] \neq \emptyset$, 则 $\exists c \in [a] \cap [b]$

 $\iff c \in [a] \perp c \in [b], \mid c \sim a \mid c \sim b$

 $\implies a \sim b \implies [a] = [b],$ 得证.

等价类的性质

- (1) $a \in [b] \iff b \in [a] \iff [a] = [b]$.
- (2) $a \notin [b] \iff [a] \cap [b] = \emptyset$.
- (3) $\forall a, b \in S$, 要么 [a] = [b], 要么 $[a] \cap [b] = \emptyset$. (以上三条证明见前文.)
- (4) $S = \bigcup_{i \in K, a_i \in S} [a_i]$, 其中 $[a_i] \cap [a_j] = \emptyset \forall i \neq j$.

证: $S = \bigcup_a \{a\}$, 合并各等价类, 即得证.

等价类这一概念可用于将大问题分解为小问题加以解决.

定义 1.16 <u>剖分</u>: 集合 $S \neq \emptyset$, 若 $S = \bigcup_{i \in K, S_i \subseteq S} S_i$ 且 $S_i \cap S_j = \emptyset \forall i \neq j$, 则称 $\{S_i \subseteq S \mid i \in K\}$ 为 S 的一个剖分.

可由集合的等价类得到它的一个剖分.

定义 1.17 商类: 所有等价类的集合. $\frac{S}{a} \equiv \{[a] \mid a \in S\}$. $\pi: S \to \frac{S}{a}, a \mapsto [a]$ 称为自然映射.

自然映射满射, 但未必单射.

定义 1.18 运算: 映射 $*: S \times S \to S$ 称为 S 上的一个运算, 记为 (S,*).

 $\forall a, b \in S, \ a * b \in S.$

1.5 群

定义 1.19 群: 若 (G,*) 满足

结合律: (a*b)*c = a*(b*c)(故 $a_1*a_2*\cdots*a_n$ 无需括号, 可写为 $\prod_{i=1}^n a_i$.)

- (2) 有单位元 e: s.t. e * a = a * e = a
- (3) 有逆元: $\forall a \in G, \exists b, \text{ s.t. } a * b = b * a = e,$ 则称 b 为 a 的逆, 记为 $b = a^{-1}$

则称 (G,*) 为一个群.

定理 1.5: 单位元是唯一的.

证: 假设 e_1, e_2 均为单位元, 则 $e_1 * e_2 = e_1 * e_2$, 得证.

定理 1.6: 每个元素的逆元是唯一的.

证: 假设 b_1 和 b_2 均为 a 的逆元, 则 $b_1a = b_2a = e \Longrightarrow b_1 = b_2$, 得证.

例 1.6: (Z,×) 非群, 因 0 无逆元.

特殊的群:

(1)

例 1.7 循环群: $G = \{a^i \mid i \in \mathbb{Z}\}.$

(2)

例 1.8 交换群(Abel 群): $\forall a, b \in G, a * b = b * a.$

群的性质:

- (1) $c * c = c \iff c = e$.
- (2) $(a^{-1})^{-1} = a$.
- (3) $(a*b)^{-1} = b^{-1}*a^{-1}$.
- (4) 左消去律: $a * b = a * c \iff b = c$, 右消去律: $b * a = c * a \iff b = c$.

定义 1.20 群的阶: $|G| \equiv$ 群中元素的个数.

定义 1.21 有限群: 若 $|G| < \infty$, 则称 G 为有限群.

定义 1.22 <u>群元素的阶:</u> $g \in G$, $0 \neq n \in \mathbb{N}$, 若 $g^n = e$, 则称最小的这样的 n 为 g 的阶, 记为 |g|, 若 n 不存在, 则称 g 无穷阶.

若 $|G| < \infty$, 则 $\forall g \in G$, $|g| < \infty$.

 $i \mathbb{E}: g \in G, g^2 \in G, \dots, g^n \in G \Longrightarrow \{g, g^2, \dots, g^n\} \in G$

 $|G| < \infty, |g| < \infty, |g| < \infty$

当 n > |G|, $\{g, g^2, \dots, g^n\}$ 中必有元素重复, 故 $\exists n_1 < n_2$, s.t. $g^{n_1} = g^{n_2} \Longrightarrow e = g^{n_1} g^{-n_1} = g^{n_2} g^{-n_1} = g^{n_2-n_1}$. 最小的这样的 $n_2 - n_1$ 即为 |g|, 故 $|g| < \infty$.

定义 1.23 <u>子群</u>: 对群 (G,*), H 为 G 的非空子集, 若 (H,*) 亦为群, 则称 (H,*) 为 (G,*) 的子群, 记为 (H,*) < (G,*).

例 1.9: (\mathbb{Q} , +) 为群, ($\mathbb{Q}^* \equiv \mathbb{Q} - \{0\}$, ×) 亦为群, 虽然 $\mathbb{Q}^* \subseteq \mathbb{Q}$, 但由于两者运算不同, 故 (\mathbb{Q}^* , ×) 并非 (\mathbb{Q} , +) 的子 群.

定理 1.7: $(H,*) < (G,*) \iff H \subseteq G, \forall a,b \in H, a*b \in H 且 a^{-1} \in H \iff H \subseteq G, \forall a,b \in H, a*b^{-1} = H.$

证: $(H,*) < (G,*) \Longleftrightarrow H \subseteq G, \forall a,b \in H, a*b \in H 且 a^{-1} \in H$: 由子群和群的定义即得证.

 $(H,*)<(G,*) \Longleftrightarrow H\subseteq G, \forall a,b\in H,\ a*b^{-1}\in H$: 由子群和群的定义即得证.

 $\underline{(H,*)<(G,*)} \Longleftarrow H \subseteq G, \, \forall a,b \in H, \, \underline{a}*b^{-1} \in H \colon \, \mathbb{R} \, \, b = a, \, \, \exists \, a*a^{-1} = e \in H \Longrightarrow H \, \, \exists \, \text{单位元}.$

取 a = e, 得 $\forall b \in H$, $\exists e * b^{-1} = b^{-1} \in H \Longrightarrow H$ 有逆元.

H 中的运算 * 的结合律继承自 G 中的 * 的结合律.

综上, H 为群. 又 $:: H \subseteq G, :: H < G$.

定义 1.24 平凡子群: (G,*) 和 $(\{e\},*)$ 为 (G,*) 的平凡子群.

定义 1.25 真子群(非平凡子群): 除平凡子群以外的子群.

定义 1.26 单群: 无真子群的群.

定理 1.8 任意多个子群的交为子群: (G,*) 为群, $(H_i,*) < (G,*) \forall i, 则 (\cap_{i \in K} H_i,*) < (G,*)$.

iE: $\forall a, b \in \cap_{i \in K} H_i \Longrightarrow \forall i \in K, a, b \in H_i$,

$$\therefore (H_i, *) < (G, *), \therefore a * b^{-1} \in H_i \subseteq \cap_{i \in K} H_i \Longrightarrow a * b^{-1} \in \cap_{i \in K} H_i.$$

定理 1.9: (H,*) < (G,*),则 H 的单位元即为 G 的单位元.

证: 设 G 的单位元为 e.

 $\forall a \in H, : H \in G, : a \in G, e * a = a * e = a \Longrightarrow e 为 (H,*)$ 的单位元,

又:(H,*)的单位元是唯一的,故得证.

例 1.10: $(\mathbb{Z},+)$ 为群, $(\mathbb{E}=\langle 2\rangle =\equiv \{vp\},+)$, $(\langle 3\rangle \equiv \{3n\mid n\in\mathbb{Z}\},+)<(\mathbb{Z},+)$.

定义 1.27 陪集(Coset): 真子群 $H < G, \forall g \in G,$ 左陪集 $gH \equiv \{g*h \mid \forall h \in H\},$ 右陪集 $Hg \equiv \{h*g \mid \forall h \in H\}.$

简便起见, 以下讨论针对左陪集, 右陪集同理.

例 1.11: \mathbb{E} 在 \mathbb{Z} 中的陪集: $\forall g, n\mathbb{E} = \{n + m \mid m \in \mathbb{E}\} = \{D, m, b, m\}$ 故 \mathbb{E} 在 \mathbb{Z} 中仅有两个 陪集: \mathbb{E} 和 \mathbb{O} , \mathbb{E} \mathbb{C} \mathbb{O} \mathbb{C} \mathbb{C}

陪集的性质: 真子群 $H < G, \forall g_1, g_2 \in G$,

 $(1) g_1H \cap g_2H = \emptyset \ \ \mathfrak{g}_1H = g_2H.$

证: 假设 $g_1H \cap g_2H \neq \emptyset$, 则 $\exists c \in g_1H \cap g_2H$

 $\iff c \in g_1H \perp c \in g_2H$

 $\iff \exists h_1, h_2, \text{ s.t. } c = g_1 * h_1 = g_2 * h_2$

 $\implies g_2^{-1}g_1 = h_2 * h_1^{-1}$

 $X : h_2 * h_1^{-1} \in H, : g_2^{-1} * g_1 \in H$

 $\Longrightarrow (g_2^{-1} * g_1) * H = H$

 $\implies g_1H = g_2H.$

(2) |gH| = |H|.

证: 要证 |gH| = |H|, 只需证 $H \to gH$ 双射.

若 ga = gb, 则 a = b, 故 $g \rightarrow gH$ 单射.

 $\forall c \in gH, \exists a = g^{-1}c \in H \perp ga = b, \text{ in } H \to gH \text{ in } h.$

综上, $H \rightarrow gH$ 双射, 故得证.

(3) $G = H \cup g_1 H \cup g_2 H \cup \cdots \cup g_\alpha H$, 其中 $g_i H \cap g_j H = \emptyset \forall i, j, \alpha$ 仅为一指标.

证: $G = \bigcup_{g \in G} gH$, 去除这些并集中的重复集合, 即得证.

(4) $g_1 H = g_2 H \iff g_1^{-1} * g_2 \in H$.

 $\mathbf{i}\mathbf{E}$: " \Longrightarrow ": $g_1H = g_2H \Longrightarrow \forall g_1 * h_1 \in g_1H, g_1 * h_1 \in g_2H$

 $\implies \exists h_2 \in H, \text{ s.t. } g_1 * h_1 = g_2 * h_2$

 $\iff g_1^{-1}g_2 = h_1 * h_2^{-1}$

 $X :: h_1 * h_2^{-1} \in H, :: g_1^{-1} * g_2 \in H.$

" \Leftarrow ": $g_1^{-1} * g_2 \in H \Longrightarrow g_1^{-1} * g_2 H = H$

 $\implies g_1 H = g_2 H.$

(5)

定理 1.10 拉格朗日(Lagrange) 定理: $|G| < \infty$, 真子集 H < G, $|H| \mid |G|$ a.

^aa | b 表示 b 可被 a 整除.

故若 |G| 为质数, 其子群仅有 $\{e\}$ 和 G 两个, 此时 $\forall g \in G, G = \{g, g^2, \cdots, g^{|G|}\}$, 即 G 为有限阶循环交换群. 最小的有限非交换群为 6 阶.

根据 (3), 由陪集可得剖分, 由剖分可得等价关系, 由此我们引入:

(6) $q_1 \sim q_2 \iff q_1^{-1} * q_2 \in H$.

例 1.12: 群 $(\mathbb{Z}, -)$,可分为两个子群: $(\mathbb{E}, -)$ 和 $(\mathbb{O}, -)$,其中 $\mathbb{E} \cap \mathbb{O} = \emptyset$,故由这两个子群可得 \mathbb{Z} 的一个剖分,这两个子群中的元素各存在等价关系: $n \sim m \iff n - m \in \mathbb{E}$.

定义 1.28 商群: H 为 G 的正规子群, $\frac{G}{H} = \{[g] \equiv gH \mid g \in G\}$.

问题 1.1: $\frac{G}{H}$ 与 G 和 H 是否或在何种条件下具有相同的代数结构?

答: $\frac{G}{H}$ 与 G 和 H 具有相同的代数结构, 即 $\forall [g_1], [g_2] \in \frac{G}{H}, [g_1] * [g_2] = [g_1 * g_2] \in \frac{G}{H},$

即存在映射 $\frac{G}{H} * \frac{G}{H} \to \frac{G}{H}, ([g_1], [g_2]) \mapsto [g_1, g_2]),$

即若 $g_1 \sim g_1', g_2 \sim g_2', 则 g_1 * g_2 \sim g_1' * g_2',$

即若 $g_1H = g_1'H$, $g_2H = g_2'H$, 则 $(g_1 * g_2)H = (g_1' * g_2')H$.

 $g_1H = g_1'H, \quad \exists h_1, h_1' \in H, \text{ s.t. } g_1h_1 = g_1'h_1' \iff g_1 = g_1' * h_1' * h_1^{-1},$

 $g_2H = g_2'H$, $\exists h_2, h_2' \in H$, s.t. $g_2h_2 = g_2'h_2' \iff g_2 = g_2' * h_1' * h_2^{-1}$,

从而 $g_1 * g_2 = g_1' * h_1' * h_1^{-1} * g_2' * h_2' * h_2^{-1}$,

若 $\exists h' \in H$, s.t. $(h'_1 * h_1^{-1}) * g'_2 = g'_2 * h'$, 则 $g_1 * g_2 = g'_1 * g'_2 * h' * h'_2 * h_2^{-1} \equiv g'_1 * g'_2 * h$,

 $\implies (g_1 * g_2)H = (g_1' * g_2' * h)H = (g_1' * g_2')H.$

故当 gH = Hg 时, $\frac{G}{H}$ 与 G 和 H 具有相同的代数结构.

定理 1.11 <u>正规子群</u>: 若 gH = Hg, 则 $\frac{G}{H}$ 与 G 和 H 具有相同的代数结构, 此时称 H 为 G 的正规子群.

定理 1.12: 交换群的任意一个子群为正规子群.

例 1.13: $(\mathbb{Z},+)$ 的子群均为循环群, $\langle m \rangle \equiv \{mn \mid n \in \mathbb{Z}\}, \mathbb{Z}_n \equiv \frac{\mathbb{Z}}{\langle n \rangle}, \mathbb{Z}_m$ 有 m 个等价类: $\mathbb{Z}_m = \bigcap_{i=0}^{m-1} [i].$

定义 1.29 群同态: 对群 $(G_1,*)$ 和 (G_2,\circ) , 若映射 $f:G_1\to G_2$ 满足 $f(a*b)=f(a)\circ f(b)$ (即映射后保持代数结构), 则称 f 为 G_1 到 G_2 的群同态.

(类似于集合间的映射)

定义 1.30 单同态: 单射的群同态.

定义 1.31 满同态:满射的群同态.

定义 1.32 同构: 双射的群同态.

定理 1.13: f 为 G_1 到 G_2 的群同态, e_1 和 e_2 分别是 G_1 和 G_2 的单位元, 则 $f(e_1) = e_2$.

证:
$$f(e_1) = f(e_1 * e_1) = f(e_1) \circ f(e_1) \Longrightarrow f(e_1) = e_2$$
.

定理 **1.14:** f 为 G_1 到 G_2 的群同态, $f(a^{-1}) = [f(a)]^{-1}$.

$$i : e_2 = f(e_1) = f(a * a^{-1}) = f(a) \circ f(a^{-1}) \Longrightarrow f(a^{-1}) = [f(a)]^{-1}.$$

定义 1.33 群同态的核(Kernel): 单位元的原像. f 为 G_1 到 G_2 的群同态, e_1 和 e_2 分别是 G_1 和 G_2 的单位元, 则称 $\operatorname{Ker} f \equiv f^{-1}(e_2) = \{a \in G_1 \mid f(a) = e_2\}$ 为 f 的核.

 $\therefore e_1 \in \operatorname{Ker} f, \therefore \operatorname{Ker} f \neq \emptyset.$

 $\operatorname{Ker} f \subseteq G_1$.

证: $\forall a, b \in \text{Ker } f, f(a*b^{-1}) = f(a) \circ f(b) = f(a) \circ [f(b)]^{-1} = e_2 * e_2^{-1} = e_2 \Longrightarrow a*b^{-1} \in \text{Ker } f,$ 故 Ker $f \subseteq G_1$.

定义 1.34 群同态的像: f 为 G_1 到 G_2 的群同态, 则称 $\text{Im } f \equiv f(G_1) = \{f(a) \mid a \in G_1\}$ 为 f 的像.

 $\operatorname{Im} f \in G_2$.

П

1. 代数学基础 1.6. 环

定理 **1.15**: f 单同态 \iff Ker $f = \{e_1\}$.

 $\mathbf{i}\mathbf{E}$: "⇒": $\forall a, b \in \operatorname{Ker} f, f(a) = f(b) = e_2,$

又: f 单同态, : a = b = e.

"⇒": 若
$$f(a) = f(b)$$
, 则 $f(a) \circ [f(b)]^{-1} = e_2$

- $\implies f(a) \circ f(b^{-1}) = e_2$
- $\implies f(a*b^{-1}) = e_2$
- $\implies a * b^{-1} \in \operatorname{Ker} f = \{e_1\}$
- $\implies a = b = e_1$, 故 f 单同态.

1.6 环

定义 1.35 环: 若 (R,+,·) 满足

(R,+) 为交换群 (单位元记作 0)

- (2) 结合律: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- (3) 左分配律: $a \cdot (b+c) = a \cdot b + a \cdot c$, 右分配律: $(a+b) \cdot c = a \cdot c + b \cdot c$

则称 $(R,+,\cdot)$ 为环.

例 1.14: $(\mathbb{Z}, +, \times)$ 为环.

常用结论:

(1) $0 \cdot a = a \cdot 0 = 0$.

i.e.
$$a \cdot 0 = 0 \cdot a = (0+0) \cdot a = 0 * a + 0 * a = 0 * a + a * 0 \Longrightarrow 0 \times a = a \cdot 0 = 0.$$

(2) $(-a) \cdot b = -(a \cdot b) = a \cdot (-b)$.

$$\mathbf{iII:} \ (-a) \cdot b + a \cdot b = [a + (-a)] \cdot b = 0 \cdot b = 0 \Longrightarrow (-a) \cdot b = -(a \cdot b).$$

$$a \cdot (-b) + a \cdot b = a \cdot [b + (-b)] = a \cdot 0 = 0 \Longrightarrow a \cdot (-b) = -(a \cdot b).$$

(3) $\left(\sum_{i} a_{i}\right) \cdot \left(\sum_{j} b_{j}\right) = \sum_{i,j} a_{i} \cdot b_{j}.$

证: 由左右分配律即得证.

特殊的环:

(1)

定义 1.36 交换环: 若 $\forall a, b \in R, a \cdot b = b \cdot a$, 则称 R 为交换环.

(2)

定义 1.37 <u>有单位元的环:</u> 若 $\exists 1$, s.t. $\forall a \in R$, $1 \cdot a = a \cdot 1 = a$, 则称 R 为有单位元的环, 称 1 为 R 的单位元.

例 1.15: (Z, +, ·) 交换且有单位元.

例 1.16: $(M_{n\times n}, +, \times)^{-1}$ 非交换, 有单位元 $I_{n\times n}$.

例 1.17: (E, +, ×) 交换, 无单位元.

定义 1.38 零因子: $0 \neq a \in R$, 若 $\exists 0 \neq b \in R$, s.t. $a \cdot b = 0$ 或 $b \cdot a = 0$, 则称 a 为 R 的零因子.

定义 1.39 整环: 有单位元,交换,无零因子的环.

定义 1.40 子环: 非空真子集 $\emptyset \neq R_1 \subseteq R$, 若 $(R_1, +, \cdot)$ 亦为环, 则称 R_1 为 R 的子环.

 $:: (R_1, +)$ 为交换群, $:: (R_1, +) < (R, +)$.

定理 1.16 子环的判定: R_1 为 R 的子环 $\iff \forall a,b \in R_1, a-b \in R_1, a \cdot b \in R_1$.

定理 1.17: R 为有单位元的交换环, 则 R 为整环 $\iff \forall 0 \neq r \in R, a, b \in R, 若 <math>r \cdot a = r \cdot b$, 则必有 a = b.

 $\mathbf{i}\mathbf{I}$: " \Longrightarrow ": $r \cdot a = r \cdot b \iff r \cdot (a - b) = r \cdot a - r \cdot b = r \cdot b - r \cdot b = 0$,

 $: r \neq 0$ 且 R 为整环 (无零因子), $: a - b = 0 \Longrightarrow a = b$.

"←": 假设 R 有零因子, $r_0 \cdot a_0 = 0$, 则令 $r = r_0$, $\forall a, b \in R$, 若 $r \cdot a = r \cdot b = 0$, 则 a - b = 0 或 $a - b = a_0$ 或 $a - b = a_0 + a_0, \dots$, 矛盾, 故假设错误, R 无零因子.

又:R 为有单位元的交换环,R 为整环.

定义 1.41 理想: 非空子集 $I \subseteq R$, 若 $\forall a, b \in I$, $r \in R$, $a - b \in I$, $r \cdot a \in I$, $a \cdot r \in I$, 则称 I 为 R 的理想.

定义 1.42 平凡理想: $(\{0\}, +, \cdot)$ 和 $(R, +, \cdot)$ 为 $(R, +, \cdot)$ 的平凡理想.

定义 1.43 单环: 只有平凡理想的环.

定理 1.18: 任意多个理想的交为理想.

证: $:: 0 \in \cap_{i \in K} I_i, \cap_{i \in K} I_i = \emptyset.$

 $\because \forall a, b \in \cap_{i \in K} I_i, \therefore \forall a, b, \forall k \in K, \ a, b \in I_k,$

 $\mathbb{X} : \forall k \in K, (I_k, +) < (R, +), : \forall k \in K, a - b \in I_k \Longrightarrow a - b \in \cap_{i \in K} I_i.$

综上, $\bigcap_{i \in K} I_k$ 为 R 的理想.

 $^{{}^{1}}M_{n\times m} \equiv \{(a_{i,j})_{m\times n} \mid a_{i,j} \in \mathbb{R}\}.$

1. 代数学基础 1.6. 环

定理 1.19: 若 $I_1 \subseteq I_2 \subseteq \cdots$ 是 R 中理想的升链, 则 $\cup_i I_i$ 是 R 的理想.

定义 1.44 <u>生成理想:</u> R 为交换环, 非空子集 $\emptyset \neq S \in R$, 由 S 生成的理想是 R 中包含 S 的最小理想, 即 R 中包含 S 的所有理想的交, 记作 $\langle S \rangle$.

证: 假设 I_0 是 R 中包含 S 的最小理想, $J = \{I_k \mid k \in K\}$ 是 R 中包含 S 的所有理想的集合. 显然 $I_0 \in J$, 故 $\bigcap_k I_k \subseteq I_0$.

 $:: \cap_{i \in K} I_k$ 为理想, 又 $:: I_0$ 为最小的理想, $:: |I_0| \le |\cap_k I_k|$. 综上, 必有 $I_0 = \cap_k I_k$.

- 由某个元素 a 生成的理想: $\langle a \rangle = \{r \cdot a \mid r \in R\}$.
- 由多个元素 $\{a_1, \dots, a_n\}$ 生成的理想: $\langle a_1, \dots, a_n \rangle = \{\sum_{i=1}^n r_i a_i \mid r_i \in R\}$.
- 由集合 S 生成的理想: $\langle S \rangle = \{ \sum_{i=1}^{m} | r_i \in R, a_i \in S, m \in \mathbb{Z}^+ \}.$

可用理想得等价关系: I 是 R 的理想, 则 $r_1 \sim r_2 \iff r_1 - r_2 \in \mathbb{I}$, 从而得到等价关系: $[a] = a + I = \{a + r \mid r \in I\}$.

定义 1.45 商环: $\frac{R}{2} \equiv \{[a] \mid a \in R\}.$

 $([a],[b]) \mapsto [a+b]$ 和 $([a],[b]) \mapsto [a\cdot b]$ 都是运算.

证: 要证 $([a],[b]) \mapsto [a+b]$ 和 $([a],[b]) \mapsto [a\cdot b]$ 都是运算, 即证这些映射与代表元无关,

即证 $a \sim a', b \sim b', [a'] + [b'] = [a+b], [a'] \cdot [b'] = [a \cdot b].$

 $\therefore a \sim a', b \sim b', \therefore a - a' \in I, b - b' \in I \Longrightarrow a + b - (a' + b') = (a - a') + (b - b') \in I$

- $\implies a+b \sim a'+b',$ 故 $([a,b]) \mapsto [a+b]$ 与代表无关, 是运算.
 - $\therefore a \sim a', b \sim b', \therefore a a' \in I, b b' \in I,$

设 $a - a' \equiv h_1 \in I$, $b - b' \equiv h_2 \in I$, 则 $a' \cdot b' = (a + h_1) \cdot (b + h_2) = a' \cdot b' + a' \cdot h_2 + h_1 \cdot b' + h_1 \cdot h_2$,

其中: $h_1, h_2 \in I \Longrightarrow h_1 \cdot h_2 \in I$,而由理想的定义, $a' \cdot h \in I$, $h_1 \cdot b' \in I$,

 $\implies a' \cdot b' = a \cdot b - a' \cdot h_1 - h_2 \cdot b \in I, \text{ in } [a'] \cdot [b'] = [a' \cdot b'] = [a \cdot b].$

定义 1.46 环同态: $(R_1, +, *)$ 和 $(R_2, +, \cdot)$ 为环, 映射 $f: R_1 \to R_2$ 满足

- (1) f(a+b) = f(a) + f(b)
- (2) $f(a \cdot b) = f(a) \cdot f(b)$

则称 f 为 R_1 到 R_2 的同态.

由环同态的定义, f 必为 $(R_1, +)$ 到 $(R_2, +)$ 的群同态, 故 f(0) = 0, $f(a^{-1}) = [f(a)]^{-1}$.

定义 1.47 核: Ker $f \equiv \{a \in R_1 \mid f(a) = 0\}$.

1. 代数学基础 1.7. 域

定义 1.48 像: Im $f \equiv \{f(a) \mid a \in R_1\}$.

 $\operatorname{Im} f \subseteq R_2$.

定理 1.20: Ker f 为理想.

证: $\forall a, b \in \text{Ker } f, r \in R_1, f(a-b) = f(a+(-b)) = f(a) + f(-b) = f(a) - f(b) = 0 - 0 = 0 \Longrightarrow a - b \in \text{Ker } f.$ $f(r \cdot a) = f(r) \cdot f(a) = f(r) \cdot 0 = 0 \Longrightarrow r \cdot a \in I,$ 同理 $a \cdot r \in I$.

综上, Ker f 为 R_1 的理想.

定义 1.49 单同态: 单射的环同态.

单同态 \iff Ker $f = \{0\}$.

定义 1.50 满同态:满射的环同态.

满同态 \iff Im $f = R_2$.

定义 1.51 同构: 双射的环同态.

定义 1.52 <u>典范同态</u>: I 为 R 的理想, $\pi: R \to \frac{R}{I}$, $a \mapsto [a]$ 称为典范同态.

典范同态是满同态.

例 1.18: $(\mathbb{Z}, +, \cdot)$ 为环.

- $\langle 2 \rangle = \mathbb{O} \equiv \{ 2n \mid n \in \mathbb{Z} \}.$
- $\langle 3 \rangle \equiv \{3n \mid n \in \mathbb{Z}\}.$
- $\langle 2, 3 \rangle \equiv \{2n + 3m \mid n, m \in Z\} = \mathbb{Z}. \ \langle 1 \rangle \equiv \mathbb{Z}.$

 \mathbb{Z} 的任何理想均由一个数生成. 更准确地说, 若 I 为 \mathbb{Z} 的理想, 则 $I = \langle n \rangle$, 其中 n 为 I 中最小的正整数.

(此处其实用到了这样一个定理:任何一个由自然数组成的集合均存在最小正整数.)

证: 若 $p \in \mathbb{Z}$, $p \in \langle n \rangle$, 我们无妨假设 p > n, 设 p = kn + r, 其中 $0 \le r < n$.

若 $r \neq 0$, 则 $r = p - kn \in I$, 但 $0 \leq r < n$ 而 n 为 $\langle n \rangle$ 中最小的正整数矛盾, 故 r = 0, p = kn.

定义 1.53 <u>剩余类环</u>: $\mathbb{Z}_n \equiv \frac{\mathbb{Z}}{\langle n \rangle} = \{[0], [1], \cdots, [n-1]\}.$

例 1.19: $\mathbb{Z}_6 = \{[0], [1], [2], [3], [4], [5]\}, [2] \cdot [3] = [6] = [0], 故 \mathbb{Z}_6$ 有零因子.

1.7 域

1. 代数学基础 1.7. 域

定义 1.54 域: 若 $(F, +, \cdot)$ 满足

(F,+) 为交换群 (单位元记作 0)

- (2) (F^*, \cdot) 为交换群 (单位元记作 1), 其中 $F^* = F \{0\}$
- (3) 左分配律: $a \cdot (b+c) = a \cdot b + a \cdot c$, 右分配律: $(a+b) \cdot c = a \cdot c + b \cdot c$

则称 $(F,+,\cdot)$ 为域.

由于有 0 和 1 这两个元素, $|F| \ge 2$. 当 |F| = 2 时, $F = \{0,1\} \cong \mathbb{Z}_2 = \frac{\mathbb{Z}}{\langle 2 \rangle}$.

例 1.20: \mathbb{Z}_2 是最小的有限域. \mathbb{Q} 为最小的无限域.

定义 1.55 <u>有理数</u>: $\mathbb{Q} = \left\{ \frac{m}{n} \mid n \neq 0, n, m \in \mathbb{Z} \right\}$, 即 $\forall q \in \mathbb{Q}$, $\exists m, n \in \mathbb{Z}$, $n \neq 0$, $q = \frac{m}{n}$.

定义 1.56 域的特征: $\operatorname{char} F \equiv$ 使得 $n \cdot 1 = \underbrace{1 + 1 + \dots + 1}^{n \wedge 1 \text{ HJm}} = 0$ 的最小正整数.

例 1.21: $\operatorname{char} \mathbb{Z}_2 = 2$, $\operatorname{char} \mathbb{Q} = 0$.

 $p = \operatorname{char} F$ 必为质数, 否则 $\exists m, n < p, \text{ s.t. } 0 = p \cdot 1 = (n \cdot m) \cdot 1 = (m \cdot 1) \cdot (n \cdot 1) \Longrightarrow n \cdot 1 = 0$ 或 $m \cdot 1 = 0$ 与 域的特征的定义矛盾.

当 p 为质数且 $\operatorname{char} \mathbb{Z}_p = p$ 时, \mathbb{Z}_p 为域.

定义 1.57 域同态: $(F_1, +, \cdot)$ 和 $(F_2, +, \cdot)$ 为域, 映射 $f: F_1 \to F_2$ 满足

- (1) f(a+b) = f(a) + f(b)
- (2) $f(a \cdot b) = f(a) \cdot f(b)$

则称 f 为 F_1 到 F_2 的同态.

域同态的性质:

- (1) f(0) = 0.
- (2) $f(1) = 1 \ \vec{x} \ 0$.

证: $f(1) = f(1 \cdot 1) = f(1) \cdot f(1) \Longrightarrow f(1) - f(1) \cdot f(1) = 0 \Longrightarrow f(1) = 0$ 或 1.

- (3) <math><math>f(1) = 0, <math><math><math>f(r) = f(r \cdot 1) = f(r) \cdot f(1) = f(r) \cdot 0 = 0.
- (4) 若 f(1) = 1, 则 Ker $f = \{0\}$, 此时 f 单射.

证: $\forall r \in F^*, r^{-1} \in F^*, 1 = f(1) = f(r \cdot r^{-1}) = f(r) \cdot f(r^{-1}) \Longrightarrow f(r) \neq 0, f(r^{-1}) \neq 0, \text{ 故 } \forall r \neq 0, f(r) \neq 0, \text{ Ker } f = \{0\}.$

Chapter 2

向量空间

定义 2.1 <u>向量空间</u>: 交换群 (V,+) 和域 F, 数乘映射 $\alpha: F \times V \to V$, 若满足

$$\alpha(r, u + v) = \alpha(r, u) + \alpha(r, v)$$
 (可简写为 $r(u + v) = ru + rv$)

(2)
$$\alpha(r+t,u) = \alpha(r,u) + \alpha(t,u)$$
 (可简写为 $(r+t)u = ru + tu$)

(3)
$$\alpha(r \cdot t, u) = \alpha(r, \alpha(t, u))$$
 (可简写为 $(r \cdot t) \cdot u = r(tu)$)

(4) **有单位元**:
$$\exists 1 \in F$$
, s.t. $\alpha(1, u) = u$ (可简写为 $1u = u$)

则称 V 是 F 上的向量空间.

例 2.1 直角坐标系: $(\mathbb{R}, +, \cdot)$ 为域, $(\mathbb{R}^2 \equiv \{(x, y) \mid x, y \in \mathbb{R}\}, +)$ 为交换群, 满足

$$(1) \ \ r((x_1,y_1)+(x_2,y_2)) = r(x_1+x_2,y_1+y_2) = (rx_1+rx_2,ry_1+ry_2) = (rx_1,ry_1)+(rx_2,ry_2) = r(x_1,y_1)+r(x_2,y_2)$$

$$(2) (r+t)(x,y) = ((r+t)x,(r+t)y) = (rx+tx,ry+ty) = (rx,ry) + (tx,ty) = r(x,y) + t(x,y)$$

(3)
$$(r \cdot t)(x, y) = (rtx, rty) = r(tx, ty) = r(t(x, y))$$

(4) 1(x,y) = (x,y)

故 \mathbb{R}^2 为 \mathbb{R} 上的向量空间.

0v = 0. (注意两个 0 的区别, 等号左边的 0 为域 F 中的零元, 等号右边的 0 为 V 中的零向量.)

$$i\mathbf{E}: 0v = (0+0)v = 0v + 0v \Longrightarrow 0v = 0.$$

 $r \in F$, $0 \in V$, 则 r0 = 0.

-1v = -v.

$$i E: -1v = -(1v) = -v.$$

例 2.2: \mathbb{R}^2 为 \mathbb{R} 上的向量空间.

 \mathbb{R}^2 为 \mathbb{Q} 上的向量空间.

 \therefore 对 $c \in \mathbb{C}$, $v \in \mathbb{R}^2$, $cv \notin \mathbb{R}^2$, $\therefore \mathbb{R}^2$ 不是 \mathbb{C} 上的向量空间.

例 2.3: $F^n \equiv \{(r_1, \dots, r_n) \mid r_i \in F\}$, 满足 $(r_1, \dots, r_n) + (l_1, \dots, l_n) = (r_1 + l_1, \dots, r_n + l_n)$, $r(r_1, \dots, r_n) = (r_1, \dots, r_n)$. F^n 为 F 上的向量空间.

证: $r((r_1, \dots, r_n) + (l_1, \dots, l_n)) = r(r_1 + l_1, \dots, r_n + l_n) = (rr_1 + rl_1, \dots, rr_n + rl_n) = (rr_1, \dots, rr_n) + (rl_1, \dots, rl_n) = r(r_1, \dots, r_n) + r(l_1, \dots, l_n),$

 $\exists (r+t)(r_1, \dots, r_n) = ((r+t)r_1, \dots, (r+t)r_n) = (rr_1 + tr_1, \dots, rr_n + tr_n) = (rr_1, \dots, rr_n) + (tr_1, \dots, tr_n) = (rr_1, \dots, r_n) + t(r_1, \dots, r_n),$

 $\mathbb{E} 1(r_1, \dots, r_n) = (r_1, \dots, r_n),$

 $\therefore F^n$ 为 F 上的向量空间.

定义 2.2 <u>子空间</u>: $\emptyset \neq S \subseteq V$, 若 S 为 V 的子群, 且在相同的数乘下构成 F 上的向量空间, 则称 S 是 V 的子空间.

定理 2.1 <u>子空间的判定(课本定理1.1)</u>: S 为 V 的子空间 $\iff \forall a,b \in S, r,t \in F, ra+tb \in S$ (即线性运算封闭).

证: " \Longrightarrow ": $ra \in S$, $-tb \in S$, 又 $:: S \to V$ 的子群, $ra - (-tb) \in S$.

" \Longrightarrow ": \diamondsuit r = 1, t = -1, $\neq a - b \in S \Longrightarrow S < V$.

综上, 得证.

子空间的交是子空间.

证: 设 S_1, \dots, S_n 为 V 的子空间, 则 S_1, \dots, S_n 为 V 的子群 $\Longrightarrow \bigcap_{i=1}^n S_i$ 为 V 的子群.

 $\forall u, v \in \cap_{i=1}^n S_i, \forall k, u, v \in S_k \Longrightarrow u, v$ 满足与 F 中向量相同的数乘映射.

综上, 得证.

S,T 是 V 的子空间, $S+V \equiv \{u+v \mid u \in S, v \in T\}$ 为 V 的子空间.

证: $\forall w_1, w_2 \in S + T, r, t \in F$,

 $w_1 \in S + T \Longrightarrow w_1 = u_1 + v_1, u_1 \in S, v_1 \in T,$

 $w_2 \in S + T \Longrightarrow w_2 = u_2 + v_2, u_2 \in S, v_2 \in T.$

 $rw_1 + tw_2 = r(u_1 + v_1) + t(u_2 + v_2) = (ru_1 + tu_2) + (rv_1 + tv_2),$ 其中 $ru_1 + tu_2 \in S, rv_1 + tv_2 \in T \Longrightarrow rw_1 + tw_2 \in S + T,$ 故 S + T 为 V 的子空间.

定义 2.3 <u>生成子空间</u>: $\emptyset \neq S \subseteq V$, $\langle S \rangle \equiv$ 包含 S 的最小子空间 = $\{\sum_{i=1}^n r_i u_i \mid r_i \in F, u_i \in S, n \in \mathbb{N}\}$, 其中称 S 为生成集.

例 2.4: 向量空间 \mathbb{R}^2 ,

 $S_x = \langle \{(1,0)\} \rangle = \{(x,0) \mid x \in \mathbb{R}\} = x \, \, \mathfrak{A},$

 $S_y = \langle \{(0,1)\} \rangle = \{(0,y) \mid y \in \mathbb{R}\} = y \text{ in},$

 $\langle \{(1,0),(0,1)\} \rangle = \langle \{(1,1),(1,-1)\} \rangle = \mathbb{R}^2$,故对同一生成子空间,生成集不唯一.

2. 向量空间

定义 2.4 <u>线性无关</u>: 非零元 u_1, \dots, u_m , 若 $r_1u_1 + \dots + r_mu_m = 0 \Longrightarrow r_1 = \dots = r_m = 0$, 则称 u_1, \dots, u_m 线性无关. 若 S 中任意有限个元素线性无关, 则称 S 线性无关.

例 2.5: (1,0) 与 (0,1) 线性无关.

i.E.: $r_1(1,0) + r_2(0,1) = (r_1, r_2) = 0 = (0,0) \Longrightarrow r_1 = 0, r_2 = 0.$

例 2.6: \mathbb{R}^2 上线性无关, 即两非零元夹角非零.

单个非零元 v 线性无关.

证: rv = 0 且 $v \neq 0 \Longrightarrow r = 0$, 故 v 线性无关.

定义 2.5 <u>线性相关</u>: u_1, \dots, u_m , 若 \exists 不全为零的 r_1, \dots, r_m , s.t. $r_1u_1 + \dots + r_mu_m = 0$, 则称 u_1, \dots, u_m 线性相关.

若 u,v 线性相关,则两者共线.

证: $\exists r, t$ 不全为零, s.t. ru + tv = 0, 无妨设 $0 \neq r \in F$, 则 $ru = -tv \Longrightarrow r^{-1}ru = -r^{-1}tv \Longrightarrow u = -\frac{u}{r}v$

定义 2.6 <u>线性表示</u>: v 可由 u_1, \dots, u_n 线性表示 $\iff \exists r_1, \dots, r_n \in F$, s.t. $v = \sum_{i=1}^n r_i u_i$.

定理 2.2 (课本定理1.6): S 线性无关 \iff $\langle S \rangle$ 中的每个向量可由 S 中元素唯一地线性表示 \iff S 中任一向量不能由 S 中其余向量线性表示.

证: 设 $S = \{u_1, \dots, u_m\}.$

第一个 "⇒": $v \in \langle S \rangle$,则 v 可由 S 中的元素线性表示,即 $\exists r_1, \cdots, r_m$,s.t. $v = r_1 u_1 + \cdots + r_m u_m$. 要证这种线性表示是唯一的,假设 v 的另一种线性表示为 $v = r'_1 u_1 + \cdots + r'_m u_m$. $v - v = (r_1 - r'_1)u_1 + \cdots + (r_m - r'_m)u_m = 0$,又 :: S 线性无关,即 u_1, \cdots, u_m 线性无关, $:: r'_1 = r_1, r'_m = r_m$,故两种线性表示相同.

第一个 " \iff ": $0 \in \langle S \rangle$, 由于 $0u_1 + \cdots + 0u_m =$ 是且是 0 唯一的线性表示, 故 S 线性无关.

第二个 " \Longrightarrow ": 不妨假设 u_1 可由 u_2, \dots, u_m 线性表示, 即 $u_1 = t_2 u_2 + \dots + t_m u_m$.

若 $r_1u_1+\cdots+r_mu_m=0$, 则 $r_1=\cdots=r_m=0$ 或 $r_1\neq 0$, $r_2=-r_1t_2,\cdots,r_m=-r_mt_m$, 从而 S 线性相关, 故假设错误, u_1 不可由 u_2,\cdots,u_m 线性表示.

第二个 "←": 假设 S 线性相关,则 \exists 非零 r_1, \dots, r_m , s.t. $r_1u_1 + \dots + r_mu_m = 0$, 不妨设 r_1 非零,则 $u_1 = -\frac{r_2}{r_1}u_2 - \dots - \frac{r_m}{r_1}u_m$,即 u_1 可由 S 中其余向量线性表示,矛盾,故假设错误,S 线性无关.

定理 **2.3** (课本定理**1.7**): $\emptyset \neq S \subseteq V$, 下列等价:

- (1) S 线性无关, 且 $V = \langle S \rangle$
- (2) ∀ $v \in V$, 可用 S 中元素唯一地线性表示
- (3) $S \in V$ 的极小生成集 (即 S 去除任意元素都无法生成 V, 或 S 的任意真子集都无法生成 V)

 \Box

2. 向量空间

(4) $S \in V$ 的极大线性无关集 (即 S 增加任意元素都线性相关, $\forall u \in V \perp u \notin S$, $S \cup \{u\}$ 线性相关)

证: 由定理 2.2 证得 (1)(2) 等价.

设 $S = \{u_1, \cdots, u_m\}.$

- $(1)\Longrightarrow(3)$: 假设 $\exists S'\subsetneq S$, s.t. $V=\langle S'\rangle$, 则 $\forall v\in S-S'\subseteq V$, $v=\sum_{i=1}^m r_iu_i$, 其中 $r_i\in F$, $u_i\in S'$, $m\in\mathbb{N}$, 即 v 可由 S 中的部分向量线性表示, 与 S 线性无关矛盾, 故假设错误, S 是 V 的极小生成集.
 - $(3)\Longrightarrow (1)$: S 为 V 的生成集, 即 $V=\langle S\rangle$.

假设 S 线性相关,即 $\exists r_1, \dots, r_m$ 不全为零,s.t. $\sum_{i=1}^m r_i u_i = 0$,不妨设 $r_1 \neq 0$,则 $u_1 = -\frac{r_2}{r_1} u_2 + \dots + \frac{r_m}{r_1} u_m$,则 $S - \{u_1\}$ 仍可以生成 V,矛盾,故假设错误,S 线性无关.

- $(1)\Longrightarrow(4)$: 假设 S 不是极大线性无关集, 则 $\exists v\in V-S$, s.t. $S\cup\{v\}$ 线性无关.
- 又 :: $V = \langle S \rangle$, :: $v = \sum_{i=1}^{m} r_i u_i$, 其中 $r_i \in F$, $u_i \in S$, $m \in \mathbb{N}$, 即线性无关集 $S \cup \{v\}$ 中的向量 v 可由其中的部分向量线性表示, 与 $S \supseteq$ 线性无关矛盾, 故假设错误, S 是极大线性无关集.
 - $(4) \Longrightarrow (1): :: S 是 V$ 的极大线性无关集, :: S 线性无关.

假设 $V \neq \langle S \rangle$, $\exists v \in V - S$, s.t. v 无法由 S 中的元素线性表示 $\Longrightarrow S \cup \{v\}$ 为线性无关集, 与 S 为最大线性无关集矛盾, 故假设错误, $V = \langle S \rangle$.

综上, 得证.

定义 2.7 基: 任何生成向量空间 V 的线性无关集. 基的阶数称为 V 的维数, 记作 $\dim V$.

定理 2.4 (课本定理1.12): 向量空间的任何基都有相同的阶, 即 $\dim V$ 不依赖于基的选取.

例 2.7:
$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)$$
 为 F^n 的一组基.

证: $r_1e_1 + \cdots + r_ne_n = (r_1, \cdots, r_n) = 0 \Longrightarrow r_1 = \cdots = r_n = 0$, 故 e_1, \cdots, e_n 线性无关.

又
$$\langle \{e_1, \dots, e_n\} \rangle = \{r_1e_1 + \dots + r_ne_n = (r_1, \dots, r_n) \mid r_i \in F, \ \forall i = 1, \dots, n\} = F,$$
 故得证.

找基的方法:

- (1) 若 $0 \neq u_1 \in V$, 则 $\{u_1\}$ 线性无关.
- (2) 若 $u_2 \in V \langle u_1 \rangle$ 且 u_2 与 u_1 线性无关,则 $\{u_1, u_2\}$ 线性无关.
- (3) 重复以上操作, 直至无法找到新的线性无关元素, 即得到极大线性无关集, 此即向量空间的基.

定理 2.5 (课本定理1.9): 线性无关集 $I \subseteq V$, $S \subseteq V$ 是 V 的生成集, 且 $I \subseteq S$, 则 $\exists V$ 的基 \mathcal{B} , s.t. $I \subseteq \mathcal{B} \subseteq S$.

定义 2.8 直和: (1) 外直和: 若 V_1, \dots, V_n 是 F 上的向量空间, $V_1 \oplus \dots \oplus V_n \equiv \{(v_1, \dots, v_n) \mid v_i \in V_i\}$, 满足

$$-(v_1, \dots, v_n) + (u_1, \dots, u_n) = (v_1 + u_1, \dots, v_n + u_n)$$

$$- r(v_1, \cdots, v_n) = (rv_1, \cdots, rv_n)$$

则 $V_1 \oplus \cdots \oplus V_n$ 为 F 的向量空间, $V_1 \oplus \cdots \oplus V_n$ 为 V_1, \cdots, V_n 的外直和.

(2) **内直和**: $V \in F$ 上的向量空间, $V_1, \dots, V_n \in V$ 的子空间, 若 $V = \sum_{i=1}^n V_i$, 其中 $v_i \in V_i$ 且 $V_i \cap (\bigcup_{j \neq i} V_j) =$

 $\{0\}$, 则称 V 为 V_1, \dots, V_m 的内直和, 记作 $V = \bigoplus_{i=1}^n V_i$, 称 V_i 为直和项.

内/外直和的关系: $V = V_1 \oplus \cdots \oplus V_n$, $V_1' = \{(v_1, 0, \cdots, 0) \mid v_i \in V_i\}$, \cdots , $V_m' = \{(0, 0, \cdots, v_m) \mid v_m \in V_m\}$ 是 V 的子空间, 则 $V = \bigoplus_{i=1}^n V_i$ 且 $V_i' \cap (\bigcup_{j \neq i} V_j) = \{0\} \Longrightarrow V_i = \bigoplus_{i=1}^m V_i'$, 故内/外直和是等价的, 以下我们不明确区分内/外直和, 均用内直和.

例 2.8: $\mathbb{R}^2 = S_x \oplus S_y$.

定理 2.6 (课本定理1.5): $\{v_i \mid i \in J\}$ 是 V 的子空间集合, $V = \sum_{i \in J} V_i$, 则下列等价:

- (1) $V = \bigoplus_{i \in J} V_i$
- (2) $V_i \cap (\sum_{j \neq i} V_j) \neq \{0\}$
- (3) $0 = 0 + \cdots + 0$ 是 0 的唯一分解式
- (4) V 中任一向量 v 具有唯一分解式 $v=v_1+\cdots+v_n$,分解式中的有限个非零元 $v_i\in V_i$ 组成的集合成为支集

证: (1) ←→(2): 由直积的定义即得证.

(2)⇒(3): 假设 $0 = s_{i1} + \dots + s_{in}$ 且 s_{ij} 不全为零, 不妨设 $s_{i1} \neq 0$, 则 $V_{i1} \ni s_{i1} = -s_{i2} - \dots - s_{ij} \in \sum_{j=2}^{n} V_{ij}$ ⇒ $s_{i_1} \in V_{i_1} \cap (\bigcup_{i=2}^{n} V_{i_i})$, $s_{i_1} \neq 0$ 与 $V_{i_1} \cap (\bigcup_{j=2}^{n} V_{i_j}) = \{0\}$ 矛盾, 故假设错误, $0 = 0 + \dots + 0$ 是 0 的唯一分解式.

 $(3)\Longrightarrow (4): \forall v\in V, v=u_1+\cdots+u_n, \not \exists r u_i\in V_i.$

假设 $v = w_1 + \cdots + w_m$, 其中 $w_i \in V_i$.

 $0 = v - v = u_1 + \dots + u_n - w_1 - \dots - w_n$,将属于相同子空间的元素合并到一起,得 $0 = (u_{t_1} - w_{t_1}) + \dots + (u_{t_k} - w_{t_k}) + u_{t_{k+1}} + \dots + u_{t_n} - w_{t_{k+1}} - w_{t_m}$,由 (2) 知 k = n = m 且 $v_{t_i} = u_{t_i}$,故 v 具有唯一分解式 $v = v_1 + \dots + v_n$.

(4) \Longrightarrow (2): 假设 $V_i \cap (\sum_{i \neq i} V_j) \neq \{0\}$, 则 $V_i \cap (\sum_{i \neq i} V_j) \supseteq \{0\}$, 即 $\exists 0 \neq u \in V_i \cap (\cup_{j \neq i} V_j)$,

不妨设 $u \in V_1$ 且 $u \in V_2$, 则 $v = v_1 + \dots + v_n = (v_1 + u) + (v_2 - u) + \dots + v_n$, 其中 $v_i \in V_i$ 且 $v_1 + u \in V_1, v_2 - u \in V_2$, v 的分解式不唯一,矛盾,故假设错误, $V_i \cap (\sum_{j \neq i} V_j) = \{0\}$.

综上, 得证.

定理 2.7 (课本定理1.8): $\mathcal{B} = \{v_1, \dots, v_n\}$ 是向量空间 V 的基 $\iff V = \langle v_1 \rangle \oplus \dots \oplus \langle v_n \rangle$.

证: " \Longrightarrow ": $:: \mathcal{B}$ 为 V 的基, $:: V = \langle \mathcal{B} \rangle = \langle v_1, \cdots, v_n \rangle = \{ \sum_{i=1}^n r_i v_i \mid r_i \in F \} = \langle v_1 \rangle + \cdots + \langle v_n \rangle.$

 $:: \mathcal{B} \to V$ 的基, $:: v_1, \cdots, v_n$ 线性无关 $\Longrightarrow \forall 0 \neq u \in \langle v_i \rangle, \ u = r_i v_i$ 且无法由 $\{v_j \mid j \neq i\}$ 线性表示 $\Longrightarrow u \notin V_i \cap (\cup_{j \neq i} V_j)$,

 $0 = 0v_i \in \langle v_i \rangle \ \ \exists \ \ 0 = \sum_{j \neq i} 0v_j \Longrightarrow 0 \in V_i \cap (\cup_{j \neq i} V_j)$

 $\Longrightarrow V_i \cap (\cup_{i \neq i} V_i) = \{0\}.$

故 $V = \langle v_1 \rangle \oplus \cdots \oplus \langle v_n \rangle$.

"=": 一方面, $V = \langle v_1 \rangle + \cdots + \langle v_n \rangle = \langle \mathcal{B} \rangle$;

另一方面, (线性无关的证明存疑), $\Longrightarrow v_1, \cdots, v_n$ 线性无关.

故 $\mathcal{B} = \{v_1, \cdots, v_n\}$ 是 V 的基.

定理 2.8 (课本定理1.4): $S \to V$ 的子空间, 则 $\exists V$ 的子空间 S^c , s.t. $V = S \oplus S^c$, 称 $S^c \to S$ 的补空间.

证: \mathcal{B}_1 为 S 的基, 则 \mathcal{B}_1 为 V 中的线性无关集,

 \mathcal{B}_1 总可以扩张为 (即添加一些元素) 成 V 的基, 即 $\exists \mathcal{B}_2$, s.t. $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, $\mathcal{B}_1 \cup \mathcal{B}_2$ 线性无关且 $V = \langle \mathcal{B}_1 \rangle + \langle \mathcal{B}_2 \rangle \Longrightarrow V = \langle \mathcal{B}_1 \rangle \oplus \langle \mathcal{B}_2 \rangle$, 故 $S^c = \langle \mathcal{B} \rangle$.

例 2.9: $\mathbb{R}^2 = S_x \oplus S_y = S_l \oplus S_{l'}$, 其中 S_l 和 $S_{l'}$ 分别为过原点直线 l 和 l' 对应的子空间, l 与 l' 不共线.

补空间总存在, 但不唯一.

定理 2.9 (课本定理1.13): (1) \mathcal{B} 是 V 的基, 若 $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ 且 $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, 则 $V = \langle \mathcal{B}_1 \rangle \oplus \langle \mathcal{B}_2 \rangle$.

- (2) $V = S \oplus T$, 若 \mathcal{B}_1 是 S 的基, \mathcal{B}_2 是 T 的基, 则 $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, $\mathcal{B}_1 \cup \mathcal{B}_2$ 是 V 的基.
- 证: (1) :: \mathcal{B} 是 V 的基, :: $\forall u \in V$, $u = \sum_{i=1}^{k} r_i v_i$, 其中 $r_i \in F$, $v_i \in \mathcal{B}$, $k \in \mathbb{N}$.

 $\langle \mathcal{B}_1 \rangle = \{ \sum_{i=1}^n r_i v_i \mid r_i \in F, v_i \in \mathcal{B}_1, n \in \mathbb{N} \}, \ \langle \mathcal{B}_2 \rangle = \{ \sum_{i=1}^n r_i v_i \mid r_i \in F, v_i \in \mathcal{B}_2, n \in \mathbb{N} \}.$ $u = \sum_{i=1}^t r_i v_i + \sum_i i = t + 1^k r_i v_i, \ \not\exists \ \forall v_1, \dots, v_k \in \mathcal{B}_1, \ v_{k+1}, \dots, v_k \in \mathcal{B}_2 \Longrightarrow V = \langle \mathcal{B}_1 \rangle + \langle \mathcal{B}_2 \rangle.$

 $\forall u \in \langle \mathcal{B}_1 \rangle \cap \langle \mathcal{B}_2 \rangle, u \in \langle \mathcal{B}_1 \rangle \Longrightarrow u = \sum_{i=1}^n r_i v_i, \not \exists r_i \in F, v_i \in \mathcal{B}_1,$

且 $u \in \langle \mathcal{B}_2 \rangle \Longrightarrow u = \sum_{i=1}^n l_i w_i$, 其中 $l_i \in F$, $w_i \in \mathcal{B}_2$

 $\implies 0 = u - u = \sum r_i v_i - \sum l_i w_i,$

又 $:: \mathcal{B}$ 为基, $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ 且 $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, $:: r_i, w_i$ 线性无关 $\Longrightarrow r_i = l_i = 0$, $\forall i$

 $\implies u = 0.$

综上, $V = \langle \mathcal{B}_1 \rangle \oplus \langle \mathcal{B}_2 \rangle$.

(2) $V = S \oplus T \iff V = S + T \perp S \cap T = \{0\}.$

假设 $v \in \mathcal{B}_1 \cap \mathcal{B}_2$, 则 $v \neq 0$, $\langle v \rangle = S \cap T$, 与 $S \cap T = \{0\}$ 矛盾, 故假设错误, $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$.

 $\therefore V = S + T, \therefore \forall u \in V, u = u_1 + u_2, \not \exists r \mid u_1 \in S, u_2 \in T,$

 $\therefore \mathcal{B}_1$ 是 S 的基, \mathcal{B}_2 是 T 的基, $\therefore u_1 = \sum_{i=1}^k r_i v_i$, $u_2 = \sum_{i=k+1}^n$, 其中 $r_i \in F$, 对 $i = 1, \dots, k, v_i \in \mathcal{B}_1$, 对 $i = k+1, \dots, n, v_i \in \mathcal{B}_2$

 $\Longrightarrow u = \sum_{i=1}^m r_i v_i, \ \mbox{\sharp} \ \mbox{\downarrow} = r_i \in F, \ v_i \in \mathcal{B}_1 \cap \mathcal{B}_2, \ \mbox{\sharp} \ \ V = \langle \mathcal{B}_1 \cup \mathcal{B}_2 \rangle.$

假设 $\mathcal{B}_1 \cup \mathcal{B}_2$ 线性相关,则 $\exists r_i \in F$ 不全为零, $\sum_{i=1}^n r_i v_i = \sum_{i=1}^k r_i v_i + \sum_{i=k+1}^n r_i v_i = 0$,其中 $r_i \in F$,对 $i = 1, \dots, k, v_i \in \mathcal{B}_1$,对 $i = k+1, \dots, n, v_i \in \mathcal{B}_2$,

 $:: \mathcal{B}_1$ 和 \mathcal{B}_2 为基, $:: \mathcal{B}_1$ 和 \mathcal{B}_2 线性无关 $\Longrightarrow \sum_{i=1}^k r_i v_i \neq 0$, $\sum_{i=k+1}^n r_i v_i \neq 0$, 与 $0 = 0 + \cdots + 0$ 是 0 的唯一分解式矛盾, 故假设错误, $\mathcal{B}_1 \cup \mathcal{B}_2$ 线性无关 $\Longrightarrow \mathcal{B}_1 \cup \mathcal{B}_2$ 是 V 的基.

定理 2.10 (课本定理1.14): S,T 是 V 的子空间, $\dim S + \dim T = \dim(S \cap T) + \dim(S + T)$. 特别地, 若 T 是 S 的补空间, 则 $\dim S + \dim T = \dim(S \oplus T)$.

证: 设 $S \cap T$ 的基为 A,

- $:: S \cap T \to S$ 的子空间, :: 可将 A 扩张成 S 的基 $A \cup B$,
- $:: S \cap T$ 为 T 的子空间, :: 可将 A 扩张成 T 的基 $A \cup C$.

接下来需要用到这样一个事实: $\mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$ 是 S + T 的基. 所以先来证明它:

证: $\forall w \in S + T, \ w = u + v, \ \mbox{其中} \ u \in S, \ v \in T \Longrightarrow u \in \langle \mathcal{A} \cup \mathcal{B} \rangle, \ v \in \langle \mathcal{A} + \mathcal{C} \rangle, \ \mbox{故} \ \langle \mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \rangle = S + T.$

不妨设 $\sum_{i=1}^{n} r_i v_i = 0$, 其中 $v_i \in \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$.

设 $v_1, \dots, v_k \in \mathcal{A}$, 则 $\sum_{i=1}^k r_i v_i + \sum_{i=k+1}^n r_i v_i = 0$,

24 / 33

2. 向量空间

令 $x = \sum_{i=1}^k r_i v_i$, 则 $x = \sum_{i=1}^k r_i v_i \in \langle \mathcal{A} \rangle$ 且 $x = -\sum_{i=k+1}^n r_i v_i \in \langle \mathcal{B} \cup \mathcal{C} \rangle \Longrightarrow x \in \langle \mathcal{A} \rangle \cap \langle \mathcal{B} \cup \mathcal{C} \rangle = (S - T) \cap T = \emptyset$. $\therefore x \in \langle \mathcal{B} \rangle$, $\therefore x \in \mathcal{S}$, 又 $\therefore x \in \langle \mathcal{B} \cup \mathcal{C} \rangle$, $\therefore x \in T \Longrightarrow x \in S \cap T = \langle \mathcal{B} \rangle$. $\Longrightarrow x \in \langle \mathcal{A} \rangle \cap \langle \mathcal{B} \rangle \Longrightarrow x = 0$. 又 $\therefore \mathcal{A}$ 和 $\mathcal{B} \cup \mathcal{C}$ 线性独立, 故 $\forall i$, $r_i = 0 \Longrightarrow \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$ 线性无关.

综上,
$$A \cup B \cup C$$
 是 $S + T$ 的基.

故

$$\dim S + \dim T = |\mathcal{A} \cup \mathcal{B}| + |\mathcal{B} \cup \mathcal{C}| = |\mathcal{A}| + |\mathcal{B}| + |\mathcal{B}| + |\mathcal{C}| = |\mathcal{A}| + |\mathcal{B}| + |\mathcal{C}| + \dim(S \cap T) = \dim(S + T) + \dim(S \cap T).$$

25 / 33

Chapter 3

线性变换

3.1 线性变换

定义 3.1 <u>线性变换</u>: 向量空间之间的映射. F 为域, V,W 为 F 上的向量空间, 映射 $\tau:V\to W$, 若 $\tau(ru+tv)=r\tau(u)+t\tau(v)$, $r,t\in F$, $u,v\in V$, 则称 τ 为 V 到 W 的线性变换.

(类似于同态)

取 r = 1, t = 1, 则 $\tau(u + v) = \tau(u) + \tau(v)$, 故 $\tau \in V$ 到 W 的群同态, 从而 $\tau(0) = 0$, $\tau(-v) = -\tau(v)$. $\mathcal{L}(V, W) \equiv \{V \in W \in \mathcal{L}(V, V) = \mathcal{L}(V, V) = \{V \in \mathcal{L}(V, V) \in \mathcal{L}(V, V) = \{V \in \mathcal{L}(V, V) \in \mathcal{L}(V, V) \in \mathcal{L}(V, V) = \{V \in \mathcal{L}(V, V) \in \mathcal{L}(V, V) \in \mathcal{L}(V, V) \in \mathcal{L}(V, V) = \mathcal{L}(V, V) \in \mathcal{L}(V, V) = \mathcal{L}(V, V) = \mathcal{L}(V, V) \in \mathcal{L}(V, V) = \mathcal{L}(V$

定义 3.2 单线性变换: 单射的线性变换.

定义 3.3 满线性变换: 满射的线性变换.

定义 3.4 同构: 双射的线性变换.

取 $\tau, \sigma \in \mathcal{L}(V, W), v \stackrel{\tau}{\mapsto} \tau(v), v \stackrel{\sigma}{\mapsto} \sigma(v) \Longrightarrow v \stackrel{\tau+\sigma}{\mapsto} \tau(v) + \sigma(v)$ 也是线性变换, 且 $\tau + \sigma \in \mathcal{L}(V, W)$.

证: 由映射的像的唯一性, $\because v \xrightarrow{\tau} \tau(v)$ 是唯一的, $v \xrightarrow{\sigma} \sigma(v)$ 是唯一的, $\therefore v \xrightarrow{\tau + \sigma} \tau(v) + \sigma(v)$ 是唯一的, 故 $\tau + \sigma$ 是映射.

 $(\tau + \sigma)(ru + tv) = \tau(ru + tv) + \sigma(ru + tv) = r\tau(u) + t\tau(v) + r\sigma(u) + t\sigma(v) = r[\tau(u) + \sigma(u)] + t[\tau(v) + \sigma(v)] = r[(\tau + \sigma)(u)] + t[(\tau + \sigma)(v)],$ 故 $\tau + \sigma$ 为 V 到 W 的线性变换.

由此定义了线性变换之间的加法.

 $(\mathcal{L}(V,W),+)$ 为交换群.

证: (*L*(*V*, *W*), +) 满足

- (1) 结合律: $\forall v \in V$, $[(\tau + \sigma) + \delta](v) = (\tau + \sigma)(v) + \delta(v) = \tau(v) + \sigma(v) + \delta(v) = \tau(v) + (\sigma(v) + \delta(v)) = \tau(v) + (\sigma + \delta)(v) = [\tau + (\sigma + \delta)](v) \Longrightarrow [(\tau + \sigma) + \delta] = [\tau + (\sigma + \delta)].$
- (2) 有单位元 0: 零映射 0(v) = 0, $\forall \tau \in \mathcal{L}(V, W)$, $(0 + \tau)(v) = 0(v) + \tau(v) = 0 + \tau(v) = \tau(v) + 0 = \tau(v) + 0(v) = (\tau + 0)(v)$.

3. 线性变换 3.1. 线性变换

(3) 有逆元: $\forall \tau \in \mathcal{L}(V, W), \exists -\tau, \text{ s.t. } (-\tau)(v) = -\tau(v) \Longrightarrow [\tau + (-\tau)](v) = \tau(v) - \tau(v) = 0 = 0(v).$

(4) 交換律: $\forall v \in V$, $(\tau + \sigma)(v) = \tau(v) + \sigma(v) = \sigma(v) + \tau(v) = [\sigma + \tau](v)$.

故 $\mathcal{L}(V,W)$ 为交换群.

 $\forall r \in F, v \in \mathcal{L}(V, W), v \stackrel{\tau}{\mapsto} \tau(v) \Longrightarrow v \stackrel{r\tau}{\mapsto} r\tau(v)$ 是线性变换, 且 $r\tau \in \mathcal{L}(V, W)$.

证: 由映射的像的唯一性, $\because v \stackrel{\tau}{\rightarrow} \tau(v)$ 是唯一的, $\therefore v \stackrel{\tau}{\rightarrow} r\tau(v)$ 是唯一的, 故 $r\tau$ 是映射.

$$(r\tau)(v)=r\tau(v)=r[\tau(v)],$$
故 $r\tau$ 为 V 到 W 的线性变换.

 $\mathcal{L}(V,W)$ 是 F 上的向量空间.

证: 前面已证, $(\mathcal{L}(V,W),+)$ 为交换群, 且其满足

(1)
$$\forall v \in V$$
, $[(r+t)\tau](v) = (r+t)\tau(v) = r\tau(v) + t\tau(v) = (r\tau + t\tau)(v) \Longrightarrow (r+t)\tau = r\tau + t\tau$

- (2) $\forall v \in V$, $[(rt)\tau](v) = (rt)\tau(v) = r[t\tau(v)] = [r(t\tau)](v) \Longrightarrow (rt)\tau = r(t\tau)$
- $(3) \ \forall v \in V, \ [r(\tau + \sigma)](v) = r(\tau + \sigma)(v) = r[\tau(v) + \sigma(v)] = r\tau(v) + r\sigma(v) = (r\tau + r\sigma)(v) \Longrightarrow r(\tau + \sigma) = r\tau + r\sigma(v) = r\tau(v) + r\sigma(v) = r\tau(v)$
- (4) 恒等映射 $1: \mathcal{L}(V,W) \to \mathcal{L}(V,W), \tau \stackrel{1}{\mapsto}, \forall v \in V, (1\tau)(v) = 1[\tau(v)] = \tau(v) \Longrightarrow 1\tau = \tau$

故得证. □

定理 3.1 (课本定理2.1): (1) $\mathcal{L}(V,W)$ 是 F 上的向量空间.

- (2) $t \in \mathcal{L}(V, W), \ \sigma \in \mathcal{L}(W, U), \ \bigcup \ \sigma \circ \tau \in \mathcal{L}(V, U).$
- (3) τ 是 V 到 W 的同构, 则 $\tau^{-1} \in \mathcal{L}(W, V)$.
- (4) $\mathcal{L}(V)$ 既是向量空间, 也是环, 且两者的加法运算是一样的, 故 $\mathcal{L}(V)$ 是**代数**.

 $\mathcal{L}(V)$ 是环.

证: 前面已证, $(\mathcal{L}(V), +)$ 为交换群, 且满足

- (1) **结合律**: :: 映射的复合有结合律, $\therefore \mathcal{L}(V)$ 中元素的复合有结合律
- (2) 左右分配律: $\forall v \in V$, $[(\sigma + \tau)\delta](v) = (\sigma + \tau)[\delta(v)] = \sigma[\delta(v)] + \tau[\delta(v)] = (\sigma\delta)(v) + (\tau\delta)(v) \Longrightarrow (\sigma + \tau)\delta = \sigma\delta + \tau\delta$ $[\sigma(\tau + \delta)](v) = \sigma[(\tau + \delta)(v)] = \sigma[\tau(v) + \delta(v)] = \sigma[\tau(v)] + \sigma[\delta(v)] = \sigma\tau(v) + \sigma\delta(v) \Longrightarrow \sigma(\tau + \delta) = \sigma\tau + \sigma\delta$

故得证.

定义 3.5 核空间: $\operatorname{Ker} \tau \equiv \{v \mid \tau(v) = 0\} \subseteq V$.

定义 3.6 像空间: $\operatorname{Im} \tau \equiv \{ \tau(v) \mid v \in V \}.$

3. 线性变换 3.1. 线性变换

定理 3.2 (课本定理2.3): (1) τ 满线性变换 \iff Im $\tau = W$.

(2) τ 单线性变换 \iff Ker $\tau = \{0\}$.

定理 3.3 (课本定理2.2): \mathcal{B} 是 V 的基, $\tau \in \mathcal{L}(V, W)$, 则 τ 可由 τ 在 \mathcal{B} 上的像唯一确定.

证: 若已知 $\tau(b_i) \forall b_i \in \mathcal{B}$, 则 $\forall v \in V$, $v = \sum_{i=1}^n r_i b_i$, $r_i \in F$, $b_i \in \mathcal{B}$, $n \in \mathbb{Z}^+$ $\Rightarrow \tau(v) = \tau(\sum_{i=1}^n r_i b_i) = \sum_{i=1}^n r_i \tau(b_i)$.

同构的向量空间有很多性质可以相互传递,下面我们就来讨论这件事.

定理 3.4 (课本定理2.4): $\tau \in \mathcal{L}(V, W)$ 同构, $S \in V$ 真子集, 则

- (1) $V = \langle S \rangle \iff W = \langle \tau(S) \rangle$.
- (2) S 线性无关 $\iff \tau(S)$ 线性无关.
- (3) $S \neq V$ 的基 $\iff \tau(S) \neq V$ 的基.
- **证:** (1) "⇒": $V = \langle S \rangle$, $\forall v \in V$, $v = \sum_{i} r_{i} s_{i}$,

又 :: τ 同构, :: $\forall w \in W$, $\exists v \in V$, s.t. $w = \tau(v) \Longrightarrow \tau(v) = \tau(\sum_i r_i s_i) = \sum_i r_i \tau(s_i)$.

" \Leftarrow ": $: W = \langle \tau(S) \rangle, : \forall w \in W, w = \sum_{i} r_i \tau(s_i),$

又 :: τ 同构, :: $\forall v \in W$, $\exists w \in W$, s.t. $v = \tau^{-1}(w) = \tau^{-1}(\sum_i r_i \tau(s_i)) = \sum_i r_i \tau^{-1}(\tau(s_i)) = \sum_i r_i \tau(s_i)$.

综上, (1) 得证.

- (2) "⇒": 假设 $\sum_{i} r_i \tau(s_i) = 0$, 则 $\tau(\sum_{i} r_i s_i) = 0$,
 - $\mathbb{Z} : \tau \$ 同构, $\therefore \ \text{Ker} \ \tau = \{0\} \Longrightarrow \sum_i r_i s_i = 0,$

又: S 线性无关, $: r_i = 0 \forall i \Longrightarrow \tau(S)$ 线性无关.

"一":假设 $\sum_i r_i s_i = 0$,则 $\tau(\sum_i r_i s_i) = \sum_i r_i \tau(s_i) = 0$,

 \mathbb{Z} :: $\tau(S)$ 线性无关, :: $r_i = 0 \forall i \Longrightarrow S$ 线性无关.

综上, (2) 得证.

 $(3) (1), (2) \Longrightarrow (3).$

定理 3.5 (课本定理2.6): $V \approx W \iff \dim V = \dim W$.

定理 3.6 (课本定理2.7): 若 dim V = n, 则 $V \approx F^n$.

定理 3.7 (课本定理2.8): $\tau \in (L)(V, W)$,

(1) $(\operatorname{Ker} \tau)^c \approx \operatorname{Im} \tau$.

3. 线性变换 3.2. 表示

(2) $\dim V = \dim \operatorname{Ker} \tau + \dim \operatorname{Im} \tau \equiv \operatorname{null} \tau + \operatorname{rk} \tau$, 其中称 $\operatorname{null} \tau \equiv \dim \operatorname{Ker} \tau$ 为 τ 的零度, $\operatorname{rk} \tau \equiv \dim \operatorname{Im} \tau$ 为 τ 的秩.

证: (1) 设映射 τ^c : Ker $(\tau)^c \to \operatorname{Im} \tau$, $u \mapsto \tau(u)$.

先证 τ^c 是单射: $\operatorname{Ker}(\tau^c) = \operatorname{Ker}(\tau) \cap \operatorname{Ker}(\tau)^c$ (即 $\operatorname{Ker}(\tau^c)$ 中的元素同时满足 $\operatorname{Ker}(\tau)$ 的条件, 且在定义域 $\operatorname{Ker}(\tau)^c$ 中),

又 :: $V = \operatorname{Ker}(\tau) \oplus \operatorname{Ker}(\tau)^c$, :: $\operatorname{Ker}(\tau) \cap \operatorname{Ker}(\tau)^c = \{0\} \Longrightarrow \operatorname{Ker}(\tau^c) = \{0\}$, 故 τ^c 单射.

再证 τ^c 是满射: 一方面, $\operatorname{Im}(\tau^c) \subseteq \operatorname{Im}(\tau)$;

另一方面, $\forall \tau(v), v = u + w$, 其中 $u \in \text{Ker}(\tau), w \in \text{Ker}(\tau)^c \Longrightarrow \tau(v) = \tau(u + w) = \tau(u) + \tau(w) = 0 + \tau(w) = \tau(w) \in \text{Im}(\tau^c) \Longrightarrow \text{Im}(\tau) \subseteq \text{Im}(\tau^c).$

故 $\operatorname{Im}(\tau^c) = \operatorname{Im}(\tau)$, 即 τ^c 满射.

综上, (1) 得证.

(2) $\dim V = \dim \operatorname{Ker}(\tau) + \dim \operatorname{Ker}(\tau)^c = \dim \operatorname{Ker}(\tau) + \dim \operatorname{Im}(\tau)$.

x 为 n 维向量, dim $\{x \mid Ax = 0\} = n - \operatorname{rk} A$, 故 dim $\{x \mid Ax = 0\} = \operatorname{null} A$.

3.2 表示

"表示"其实就是用已知的东西展现未知的东西,在这里,我们用已知的矩阵乘法展现未知的线性变换,这就是线性变换的表示.

F 为域, $F^n = \{(r_1, \cdots, r_n) \mid r_i \in F\}$, 满足 $(r_1, \cdots, r_n) + (l_1, \cdots, l_n) = (r_1 + l_1, \cdots, r_n + l_n)$ 及 $r(r_1, \cdots, r_n) = (rr_1, \cdots, rr_n)$, dim $F^n = n$, F^n 的标准基为 $\{e_1 = (1, 0, \cdots, 0), e_2 = (0, 1, \cdots, 0), \cdots, e_n = (0, 0, \cdots, 1)\}$; $F^m = \{(r_1, \cdots, r_m) \mid r_i \in F\}$, dim F = m, 标准基为 $\{f_1 = (1, 0, \cdots, 0), f_2 = (0, 1, \cdots, 0), \cdots, f_m = (0, 0, \cdots, 1)\}$. 如何确定/展现 F^n 到 F^m 的线性变换?

根据定理 3.4, 我们只需确定一组基在线性变换下的表现, 就可以确定这一线性变换.

证: $\{b_1, \dots, b_n\}$ 为 V 的基,线性变换 $\tau \in \mathcal{L}(V, W)$,若已知 $\tau(b_i) \forall i$,则 $\forall v \in V$, $v = \sum_{i=1}^n r_i b_i \Longrightarrow \tau(v) = \tau(\sum_{i=1}^n r_i b_i) = \sum_{i=1}^n r_i \tau(b_i)$ 可以确定,由此 τ 可以确定.

因此, $\forall \tau \in \mathcal{L}(F^n, F^m)$, 若 $\tau(e_i) = (a_{1i}, \dots, a_{mi}) = \sum_{j=1}^m a_{ji} f_j$. $\forall (r_1, \dots, r_n) \in F^n$,

$$\tau((r_{1}, \cdots, r_{n})) = \tau\left(\sum_{i=1}^{n} r_{i}e_{i}\right) = \sum_{i=1}^{n} r_{i}\tau(e_{i}) = \sum_{i=1}^{n} r_{i}\left(\sum_{j=1}^{m} a_{ji}f_{j}\right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} r_{i}a_{ji}\right)f_{j} = \left(\sum_{i=1}^{n} r_{i}a_{1i}, \cdots, \sum_{i=1}^{n} r_{i}a_{mi}\right)$$

$$= \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{n} \end{pmatrix} = \left(\tau(e_{1}) & \tau(e_{2}) & \cdots & \tau(e_{n})\right) \begin{pmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{n} \end{pmatrix} = M_{\tau} \begin{pmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{n} \end{pmatrix},$$

其中 $M_{\tau} = \begin{pmatrix} \tau(e_1) & \tau(e_2) & \cdots & \tau(e_n) \end{pmatrix}$. 故 $\forall \vec{r} \in F^n, \ \tau(\vec{r}) = M_{\tau}\vec{r}$.

综上:

$$\mathcal{L}(F^n, F^m) \approx M_{m \times n}(F), \quad \tau \mapsto M_{\tau} = \begin{pmatrix} \tau(e_1) & \cdots & \tau(e_2) \end{pmatrix}$$

29 / 33

 $f: \mathcal{L}(F^n, F^m) \to M_{m \times n}(F), \tau \mapsto M_{\tau}$ 是线性变换.

证: 由上述的 M_{τ} 构造过程知, $f(\tau) = M_{\tau}$ 是唯一的, 故 f 是映射.

$$f(r\tau + t\sigma) = M_{r\tau + t\sigma} = \left((r\tau + t\sigma)(e_1) \quad \cdots \quad (r\tau + t\sigma)(e_n) \right) = \left(r\tau(e_1) + t\sigma(e_n) \quad \cdots \quad r\tau + t\sigma(e_n) \right)$$
$$= r\left(\tau(e_1) \quad \cdots \quad \tau(e_n) \right) + t\left(\sigma(e_1) \quad \cdots \quad \sigma(e_n) \right) = rM_{\tau} + tM_{\sigma} = rf(\tau) + tf(\sigma).$$

故 f 是线性的.

综上,
$$f: \mathcal{L}(F^n) \to M_{m \times n}(F)$$
, $\tau \mapsto M_{\tau}$ 是线性变换.
$$\Box$$
 f 单射.

i. Ker $f \equiv \{ \tau \mid f(\tau) = 0 \} = \{ \tau \mid M_{\tau} = 0 \}.$

 $\forall \tau \in \text{Ker } f, \ \forall \vec{r} \in F^n, \ \tau(\vec{r}) = M_\tau \vec{r} = \vec{0} \Longrightarrow M_\tau = 0_{m \times n} \Longrightarrow \tau = 0.$

故 Ker $f = \{0\}$ (这里的"0"代表的是零变换) $\iff f$ 单射.

f 满射.

取 V 的基 $\mathcal{B} = \{b_1, \dots, b_n\}, \forall v \in V, v = \sum_i r_i b_i.$

当
$$\mathcal{B}$$
 定序, $\phi_{\mathcal{B}}: V \to F^n, v \mapsto \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} \equiv [v]_{\mathcal{B}}$ 是一个映射.

证: 由于 \mathcal{B} 是 V 的基, 展开式 $v = \sum_i r_i b_i$ 唯一确定, 又 $: \mathcal{B}$ 定序, 从而映射 $v \mapsto \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix}$ 唯一确定, 故 $\phi_{\mathcal{B}}$ 为映射.

 $\forall u, v \in V, \ u = \sum_{i=1}^{n} w_i b_i, \ v = \sum_{i=1}^{n} r_i b_i,$

$$\phi_{\mathcal{B}}(r\vec{u}+t\vec{v}) = \phi_{\mathcal{B}}\left(r\left(\sum_{i=1}^{n} w_{i}b_{i}\right) + t\left(\sum_{i=1}^{n} r_{i}b_{i}\right)\right) = \phi_{\mathcal{B}}\left(\sum_{i=1}^{n} (rw_{i} + tr_{i})b_{i}\right) = \begin{pmatrix} rw_{1} + tr_{1} \\ \vdots \\ rw_{n} + tr_{n} \end{pmatrix}$$

$$= r\begin{pmatrix} w_{1} \\ \vdots \\ w_{n} \end{pmatrix} + t\begin{pmatrix} r_{1} \\ \vdots \\ r_{n} \end{pmatrix} = r\phi_{\mathcal{B}}(u) + t\phi_{\mathcal{B}}(v),$$

故 ϕ_B 为 V 到 F^n 的线性变换.

 $\phi_{\mathcal{B}}$ 单射.

$$\mathbf{i}\mathbf{E} \colon \operatorname{Ker} \phi_{\mathcal{B}} = \{ v \mid \phi_{\mathcal{B}}(v) = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \}.$$

$$\phi_{\mathcal{B}}(v) = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \Longrightarrow v = \sum_{i=1}^{n} 0b_i = 0.$$

故 Ker $\phi_{\mathcal{B}} = \{0\} \iff \phi_{\mathcal{B}}$ 单射.

3. 线性变换 3.2. 表示

 $\phi_{\mathcal{B}}$ 满射.

证:
$$\forall \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} \in F^n, \exists v \in V, \text{ s.t. } \sum_{i=1}^n r_i b_i \in V, \text{ 故 } \phi_{\mathcal{B}} \text{ 满射.}$$

综上, $\phi_{\mathcal{B}}$ 同构.

取 V 的一组定序基 $\mathcal{B} = \{b_1, \cdots, b_n\}$,另一组定序基 $\mathcal{C} = \{c_1, \cdots, c_n\}$,v 在 \mathcal{B} 下的表象为 $[v]_{\mathcal{B}}$,在 \mathcal{C} 下的表象为 $[v]_{\mathcal{C}}$,映射关系见如下的交换图. 如何联系 v 在不同基下的表象, $[v]_{\mathcal{B}}$ 和 $[v]_{\mathcal{C}}$,从而得到 τ ?

$$[v]_{\mathcal{C}} = \tau([v]_{\mathcal{B}}) = M_{\tau}[v]_{\mathcal{B}}, \ \, \sharp \, \mapsto M_{\tau} = \Big(\tau(e_1) \quad \cdots \quad \tau(e_n)\Big).$$

$$\tau : F^n \to F^n, \quad e_i \mapsto \tau(e_i) = \phi_{\mathcal{C}}(\phi_{\mathcal{B}}^{-1}(e_i)) = \phi_{\mathcal{C}}(b_i),$$

$$M_{\tau} = \Big([b_1]_{\mathcal{C}} \quad \cdots \quad [b_n]_{\mathcal{C}}\Big) \equiv M_{\mathcal{BC}}.$$

定理 3.8 (课本定理2.12):

$$[v]_{\mathcal{C}} = M_{\mathcal{B}\mathcal{C}}[v]_{\mathcal{B}}$$

其中 $[v]_{\mathcal{B}}$ 和 $[v]_{\mathcal{C}}$ 分别是向量 v 在基 \mathcal{B} 和 \mathcal{C} 表象下的坐标表示, $M_{\mathcal{BC}}$ 是在两种坐标表示之间线性变换对应的矩阵.

$$\begin{split} M_{\tau_A} &= \Big(\tau_A(e_1) \quad \cdots \quad \tau(e_n)\Big) = \Big(\phi_{\mathcal{C}} \circ \tau \circ \phi_{\mathcal{B}}^{-1}(e_1) \quad \cdots \quad \phi_{\mathcal{C}} \circ \tau \circ \phi_{\mathcal{B}}^{-1}(e_n)\Big) = \Big(\phi_{\mathcal{C}} \circ \tau(b_1) \quad \cdots \quad \phi_{\mathcal{C}} \circ \tau(b_n)\Big) \\ &= \Big([\tau(b_1)]_{\mathcal{C}} \quad \cdots \quad [\tau(b_n)]_{\mathcal{C}}\Big) \equiv [\tau]_{\mathcal{BC}}. \end{split}$$

定理 3.9 (课本定理2.14):

$$\boxed{[\tau(v)]_{\mathcal{C}} = [\tau(v)]_{\mathcal{B}\mathcal{C}}[v]_{\mathcal{B}}}$$

其中 $[\tau(v)]_{\mathcal{C}}$ 是 $\tau(v)$ 在基 \mathcal{C} 的表象下的坐标表示, $[\tau(v)]_{\mathcal{B}\mathcal{C}}$ 是从基 \mathcal{B} 的表象到基 \mathcal{C} 的表象的线性变换的矩阵表示, $[v]_{\mathcal{B}}$ 是 v 在基 \mathcal{B} 的表象下的坐标表示.

定理 3.10 (课本定理2.15): $\mathcal{L}(V,W) \to \mathcal{L}(F^n,F^m) \approx M_{m \times n}(F), \ \tau \mapsto \tau_A \mapsto [\tau]_{\mathcal{BC}}.$

若我们改变 V 和 W 的基, 那么映射所联系的向量的坐标会如何?

 $\tau_A' = \phi_{\mathcal{C}}' \phi_{\mathcal{C}}^{-1} \tau_A \phi_{\mathcal{B}} \phi_{\mathcal{B}}'^{-1}.$

3. 线性变换 3.2. 表示

定理 3.11 (课本定理2.16):

$$|[\tau]_{\mathcal{B}'\mathcal{C}'} = M_{CC'}[\tau]_{\mathcal{B}\mathcal{C}} M_{\mathcal{B}'\mathcal{B}}$$

其中 $[\tau]_{\mathcal{B}\mathcal{C}}$ 和 $[\tau]_{\mathcal{B}'\mathcal{C}'}$ 分别是线性变换 τ 在基 $(\mathcal{B},\mathcal{C})$ 和 $(\mathcal{B}',\mathcal{C}')$ 下的表示, 矩阵 $M_{\mathcal{B}'\mathcal{B}}$ 和 $M_{\mathcal{C}\mathcal{C}'}$ 分别对应了从基 \mathcal{B} 到基 \mathcal{B}' 和从基 \mathcal{C} 到基 \mathcal{C}' 的变换矩阵.

 $M_{\mathcal{BB}'}$ 可逆.

证: 设
$$\phi_{\mathcal{B}}: V \to F^n, \ v = \sum_{i=1}^n r_i b_i \mapsto [v]_{\mathcal{B}} = \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix}, \ \phi_{\mathcal{B}'}: V \to F^n, \ v = \sum_{i=1}^n r_i' b_i' \mapsto [v]_{\mathcal{B}'} \begin{pmatrix} r_1' \\ \vdots \\ r_n' \end{pmatrix}, \ \mathbb{D}$$

 $M_{\mathcal{B}\mathcal{B}'} = M_{\tau} = ([b_1]_{\mathcal{B}'} \cdots [b_n]_{\mathcal{B}'}), \text{ s.t. } [v]_{\mathcal{B}'} = M_{\mathcal{B}\mathcal{B}'}[v]_{\mathcal{B}}.$

同理可以构造 $M_{\mathcal{B}\mathcal{B}'} = ([b'_1]_{\mathcal{B}} \cdots [b'_n]_{\mathcal{B}})$, s.t. $[v]_{\mathcal{B}} = M_{\mathcal{B}'\mathcal{B}}[v]_{\mathcal{B}'}$.

 $\forall [v]_{\mathcal{B}} \in F^n, M_{\mathcal{B}\mathcal{B}'}M_{\mathcal{B}'\mathcal{B}}[v]_{\mathcal{B}} = M_{\mathcal{B}\mathcal{B}'}[v]_{\mathcal{B}'} \stackrel{'}{=} [v]_{\mathcal{B}} \Longrightarrow M_{\mathcal{B}\mathcal{B}'}M_{\mathcal{B}'\mathcal{B}} = n \times n$ 维的单位矩阵, 即 $M_{\mathcal{B}'\mathcal{B}}$ 是 $M_{\mathcal{B}\mathcal{B}'}$ 的逆, 故 $M_{\mathcal{B}\mathcal{B}'}$ 可逆.

定理 3.12 (课本定理2.18): B = PAQ, 其中 P 和 Q 可逆, 则 B 与 A 等价.

(因为 B 和 A 是同一线性变换在两组不同的基下的表示.)

定理 3.13 (课本定理2.19): $B = PAP^{-1}$, 其中 P 可逆, 则 B 与 A 相似.

(因为 B 和 A 是同一线性算子在两组不同的基下的表示.)