# Dynamic multipoles of the EPU36 elliptically polarizing undulator of APPLE II type

Erik Wallén

Tue 18 Feb 2020



#### Contents

- 1 Parameters of the EPU36
- 2 Modes of operation
- 3 Dynamic multipoles in the horizontal polarization mode
- 4 Dynamic multipoles in the circular polarization mode
- 5 Dynamic multipoles in the +45° inclined mode
- 6 Dynamic multipoles in the  $-45^{\circ}$  inclined mode
- 7 Dynamic multipoles in the vertical polarization mode
- 8 Horizontal kick from the EPU36
- 9 Vertical kick from the EPU36



EPU36 Modes HP CP IPN IPN VP Hkick Vkick 
□ □ □ □ □ □ □

#### Parameters of EPU36

| Main parameters      |      |             |  |  |  |
|----------------------|------|-------------|--|--|--|
| Period Length        | 36   | mm          |  |  |  |
| Gap                  | 7.5  | mm          |  |  |  |
| Length               | 3976 | mm          |  |  |  |
| Number of full poles | 219  |             |  |  |  |
| Beam Energy          | 2.0  | ${\sf GeV}$ |  |  |  |
|                      |      |             |  |  |  |

| Geometry             |       |    |  |  |  |  |
|----------------------|-------|----|--|--|--|--|
| Width of magnets     | 25    | mm |  |  |  |  |
| Height of magnets    | 25    | mm |  |  |  |  |
| Thickness of magnets | 8.85  | mm |  |  |  |  |
| Coating thickness    | 0.010 | mm |  |  |  |  |
| Gap between rows     | 1     | mm |  |  |  |  |

|                                        | Magnet Material |                |
|----------------------------------------|-----------------|----------------|
| Type                                   | Horizontal      | Vertical       |
| Make                                   | VACODYM 776 TP  | VACODYM 764 TP |
| Remanence typical                      | 1.32 T          | 1.37 T         |
| Remanence minimum                      | 1.28 T          | 1.33 T         |
| $\chi_{\parallel}$ Susceptibility      | 0.06            | 0.06           |
| $\chi_{\perp}^{"}$ Susceptibility      | 0.17            | 0.17           |
| $H_{\mathrm{cJ}}$ Intrinsic Coercivity | 21 kOe          | 16 kOe         |



#### Model of the undulator

Radia [O. Chubar, P. Elleaume and J. Chavanne, "A 3D Magnetostatics Computer Code for Insertion devices". Journal of Synchrotron Radiation, 5:481-484, 1998.] has been used for the calculations. The model of the undulator, using the minimum remanence, is 303.6 mm long and contains 15 full size poles and the end sections.



The dynamic multiples are calculated by the method described in [P. Elleaume, "A New Approach to the Electron Beam Dynamics in Undulators and Wigglers", Proc. of European Particle Accelerator Conference 1992, EPAG 1992, The Berlin, Germany, pp 661-663.].

Modes of operation

#### Modes of operation of the EPU36 (Period = 36 mm, Gap = 7.5 mm)



Circular polarization in the helical mode: Symmetric phase = 10.151 mm

# Inclined mode



 $45^{\circ}$  polarization in the inclined mode: Asymmetric phase = 9.577 mm

Planar mode, horizontal polarization: phase = 0 mm Vertical mode, vertical polarization: phase = 18 mm



Modes of operation

#### Effective fields, K-values, fundamental photon energies, and radiated power

| Mode     | Phase  | Effective | Effective  | K-value | Photon | Radiated |
|----------|--------|-----------|------------|---------|--------|----------|
|          | [mm]   | vertical  | horizontal |         | energy | power    |
|          |        | field [T] | field [T]  |         | [eV]   | [kW]     |
| Planar   | 0      | 1.032     | 0          | 3.47    | 150.3  | 5.34     |
| Circular | 10.151 | 0.651     | 0.651      | 3.10    | 182.1  | 4.25     |
| Vertical | 18     | 0         | 0.843      | 2.83    | 210.6  | 3.56     |
| 45° Incl | 9.577  | 0.463     | 0.463      | 2.20    | 308.3  | 2.15     |

The upper limit for the photon energy range for the fundamental harmonic is 977.4 eV assuming a minimum K-value of 0.4.

The beam energy is 2.0 GeV and the beam current is 0.5 A.



Dynamic multipoles in the horizontal polarization mode (HP)

#### Focusing potential in the HP mode





Dynamic multipoles in the horizontal polarization mode (HP)

# Kick map for the HP mode used for tracking [T<sup>2</sup>m<sup>2</sup>]





Dynamic multipoles in the horizontal polarization mode (HP)

#### Kick map in the HP mode $[\mu rad]$



Dynamic multipoles in the horizontal polarization mode (HP)

#### Integrated quadrupole strength map in the HP mode [T]







Dynamic multipoles in the circular polarization mode (CP)

#### Focusing potential in the CP mode





Dynamic multipoles in the circular polarization mode (CP)  $\,$ 

# Kick map for the CP mode used for tracking [T<sup>2</sup>m<sup>2</sup>]





Dynamic multipoles in the circular polarization mode (CP)

#### Kick map in the CP mode $[\mu rad]$



Dynamic multipoles in the circular polarization mode (CP)

#### Integrated quadrupole strength map in the CP mode [T]





Dynamic multipoles in the  $+45^{\circ}$  inclined mode (IP)

#### Focusing potential in the IP mode





Dynamic multipoles in the  $+45\,^{\circ}$  inclined mode (IP)

# Kick map for the IP mode used for tracking $[T^2m^2]$





Dynamic multipoles in the +45° inclined mode (IP)

#### Kick map in the IP mode $[\mu rad]$



Dynamic multipoles in the +45° inclined mode (IP)

#### Integrated quadrupole strength map in the IP mode [T]





Dynamic multipoles in the  $-45^{\circ}$  inclined mode (IPN)

#### Focusing potential in the IPN mode





Dynamic multipoles in the  $-45^{\circ}$  inclined mode (IPN)

## Kick map for the IPN mode used for tracking [T<sup>2</sup>m<sup>2</sup>]





Dynamic multipoles in the  $-45^{\circ}$  inclined mode (IPN)

## Kick map in the IPN mode $[\mu rad]$



Dynamic multipoles in the  $-45^{\circ}$  inclined mode (IPN)

#### Integrated quadrupole strength map in the IPN mode [T]





Dynamic multipoles in the vertical polarization mode (VP)

#### Focusing potential in the VP mode





Dynamic multipoles in the vertical polarization mode (VP)

#### Kick map for the VP mode used for tracking [T<sup>2</sup>m<sup>2</sup>]





Dynamic multipoles in the vertical polarization mode (VP)

#### Kick map in the VP mode $[\mu rad]$



Dynamic multipoles in the vertical polarization mode (VP)

#### Integrated quadrupole strength map in the VP mode [T]





#### Horizontal kick from the EPU36





#### Vertical kick from the EPU36



