```
In [4]: import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import nltk
        import re
        import string
        from nltk.corpus import stopwords
        from nltk.stem import WordNetLemmatizer
        file_path = r"C:\Users\AkshS\OneDrive\Desktop\data_news.xlsx"
        df_news = pd.read_excel(file_path)
        print("Columns:")
        print(df_news.columns)
        # View data
        print(df_news.head())
        # Check for nulls
        print(df_news.isnull().sum())
        # Drop rows with missing short descriptions
        df_news.dropna(subset=['short_description'], inplace=True)
        # Text Length
        df_news['text_length'] = df_news['short_description'].apply(lambda x: len(str(x))
        print("\nText Length Stats:")
        print(df_news['text_length'].describe())
        # Category distribution
        print(df_news['category'].value_counts())
        # Plot
        sns.countplot(data=df_news, y='category', order=df_news['category'].value_counts
        plt.title("Article Category Distribution")
        plt.show()
        # Text cleaning
        stop_words = set(stopwords.words('english'))
        lemmatizer = WordNetLemmatizer()
        def clean_text(text):
            text = str(text).lower()
            text = re.sub(r'<.*?>', '', text)
            text = text.translate(str.maketrans('', '', string.punctuation))
            text = re.sub(r'\d+', '', text)
            words = text.split()
            words = [lemmatizer.lemmatize(word) for word in words if word not in stop wo
            return ' '.join(words)
        df_news['clean_text'] = df_news['short_description'].apply(clean_text)
        print(df_news[['short_description', 'clean_text']].head())
```

```
Columns:
Index(['category', 'headline', 'links', 'short_description', 'keywords'], dtype
='object')
   category
                                                       headline \
0 WELLNESS
                         143 Miles in 35 Days: Lessons Learned
1 WELLNESS
                  Talking to Yourself: Crazy or Crazy Helpful?
2 WELLNESS Crenezumab: Trial Will Gauge Whether Alzheimer...
3 WELLNESS
                                Oh, What a Difference She Made
4 WELLNESS
                                              Green Superfoods
                                               links \
0 https://www.huffingtonpost.com/entry/running-l...
1 https://www.huffingtonpost.com/entry/talking-t...
2 https://www.huffingtonpost.com/entry/crenezuma...
3 https://www.huffingtonpost.com/entry/meaningfu...
4 https://www.huffingtonpost.com/entry/green-sup...
                                   short_description \
0 Resting is part of training. I've confirmed wh...
1 Think of talking to yourself as a tool to coac...
2 The clock is ticking for the United States to ...
3 If you want to be busy, keep trying to be perf...
4 First, the bad news: Soda bread, corned beef a...
                             keywords
0
                      running-lessons
1
            talking-to-yourself-crazy
2 crenezumab-alzheimers-disease-drug
3
                      meaningful-life
4
                     green-superfoods
                        0
category
headline
                        0
                        0
links
short_description
                        6
keywords
                     2706
dtype: int64
Text Length Stats:
count
         49994.000000
mean
            22.984538
std
            13.589016
min
             1.000000
25%
            14.000000
50%
            21.000000
75%
            29.000000
           222.000000
max
Name: text_length, dtype: float64
category
POLITICS
                  5000
ENTERTAINMENT
                  5000
                  5000
PARENTING
FOOD & DRINK
                  5000
WORLD NEWS
                  5000
BUSINESS
                  5000
SPORTS
                  5000
                  4999
WELLNESS
STYLE & BEAUTY
                  4999
TRAVEL
                  4996
Name: count, dtype: int64
```



```
short_description \
```

- 0 Resting is part of training. I've confirmed wh...
- 1 Think of talking to yourself as a tool to coac...
- 2 The clock is ticking for the United States to ...
- 3 If you want to be busy, keep trying to be perf...
- 4 First, the bad news: Soda bread, corned beef a...

clean_text

- 0 resting part training ive confirmed sort alrea...
- 1 think talking tool coach challenge narrate $\exp\ldots$
- 2 clock ticking united state find cure team work...
- 3 want busy keep trying perfect want happy focus...
- 4 first bad news soda bread corned beef beer hig...

```
In [6]: from sklearn.feature_extraction.text import TfidfVectorizer
    vectorizer_news = TfidfVectorizer(max_features=5000)
    X_news = vectorizer_news.fit_transform(df_news['clean_text'])
    print("TF-IDF Matrix Shape:", X_news.shape)

# Additional features
df_news['char_count'] = df_news['short_description'].apply(lambda x: len(str(x)))
df_news['avg_word_length'] = df_news['char_count'] / df_news['text_length']
    print(df_news[['text_length', 'char_count', 'avg_word_length']].head())
```

```
TF-IDF Matrix Shape: (49994, 5000)
   text_length char_count avg_word_length
a
            49
                        280
                                    5.714286
1
            39
                        216
                                    5.538462
2
            24
                        120
                                    5.000000
3
            22
                        106
                                    4.818182
4
            24
                        125
                                    5.208333
```

```
In [8]: from sklearn.model selection import train test split
        from sklearn.naive_bayes import MultinomialNB
        from sklearn.linear_model import LogisticRegression
        from sklearn.svm import LinearSVC
        # Target labels
        y_news = df_news['category']
        # Train-test split
        X_train_news, X_test_news, y_train_news, y_test_news = train_test_split(X_news,
        # Logistic Regression
        lr_news = LogisticRegression(max_iter=1000)
        lr_news.fit(X_train_news, y_train_news)
        # Naive Bayes
        nb_news = MultinomialNB()
        nb_news.fit(X_train_news, y_train_news)
        # SVM
        svm news = LinearSVC()
        svm_news.fit(X_train_news, y_train_news)
Out[8]:
             LinearSVC
```

LinearSVC()

```
In [10]: from sklearn.metrics import classification_report, accuracy_score, confusion_mat
         def evaluate_model_news(model, name):
             print(f"\n{name} Evaluation:")
             y_pred = model.predict(X_test_news)
             print(classification_report(y_test_news, y_pred))
             print("Accuracy:", accuracy_score(y_test_news, y_pred))
             cm = confusion_matrix(y_test_news, y_pred)
             plt.figure(figsize=(8,6))
             sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
             plt.title(f'{name} Confusion Matrix')
             plt.xlabel('Predicted')
             plt.ylabel('Actual')
             plt.show()
         # Evaluate all models
         evaluate_model_news(lr_news, "Logistic Regression")
         evaluate_model_news(nb_news, "Naive Bayes")
         evaluate_model_news(svm_news, "SVM")
```

Logistic Regression Evaluation:

	precision	recall	f1-score	support
BUSINESS	0.63	0.67	0.65	947
ENTERTAINMENT	0.54	0.59	0.56	972
FOOD & DRINK	0.70	0.73	0.72	1013
PARENTING	0.65	0.62	0.64	998
POLITICS	0.66	0.57	0.61	1032
SPORTS	0.69	0.72	0.70	1006
STYLE & BEAUTY	0.71	0.67	0.69	993
TRAVEL	0.70	0.65	0.68	1027
WELLNESS	0.59	0.65	0.62	1007
WORLD NEWS	0.69	0.68	0.68	1004
accuracy			0.65	9999
macro avg	0.66	0.65	0.65	9999
weighted avg	0.66	0.65	0.65	9999

Accuracy: 0.654665466546

Logistic Regression Confusion Matrix

Naive Bayes Eva	luation:			
	precision	recall	f1-score	support
BUSINESS	0.60	0.63	0.61	947
ENTERTAINMENT	0.58	0.52	0.55	972
FOOD & DRINK	0.68	0.73	0.70	1013
PARENTING	0.52	0.62	0.57	998
POLITICS	0.67	0.56	0.61	1032
SPORTS	0.74	0.64	0.68	1006
STYLE & BEAUTY	0.70	0.66	0.68	993
TRAVEL	0.67	0.66	0.66	1027
WELLNESS	0.56	0.66	0.61	1007

0.69

0.64

0.64

0.69

0.64

0.64

0.64

0.68

0.64

0.64

Accuracy: 0.6362636263626362

WORLD NEWS

accuracy

macro avg

weighted avg

Naive Bayes Confusion Matrix - 500 Actual - 400 - 300 9 -- 200 - 100 <u>'</u> Predicted

SVM Evaluation:

	precision	recall	f1-score	support
BUSINESS	0.63	0.69	0.65	947
ENTERTAINMENT	0.54	0.55	0.54	972
FOOD & DRINK	0.69	0.72	0.71	1013
PARENTING	0.63	0.61	0.62	998
POLITICS	0.64	0.54	0.58	1032
SPORTS	0.69	0.76	0.72	1006
STYLE & BEAUTY	0.70	0.68	0.69	993
TRAVEL	0.68	0.64	0.66	1027
WELLNESS	0.60	0.63	0.62	1007
WORLD NEWS	0.67	0.67	0.67	1004
accuracy			0.65	9999
macro avg	0.65	0.65	0.65	9999
weighted avg	0.65	0.65	0.65	9999

Accuracy: 0.6478647864786479

