SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA CHEMICKEJ A POTRAVINÁRSKEJ TECHNOLÓGIE

Inverzné kyvadlo

2016 Bc. Peter Bakaráč

Obsah

Ú	vod	d 3						
1	Kor	nštrukcia	4					
	1.1	Systém kyvadla	4					
	1.2	Pohyblivá časť	4					
	1.3	Pohon	4					
	1.4	Elektronika	4					
	1.5	Konštrukčné prvky	5					
	1.6	Parametre	5					
2	Kor	nunikácia s Riadiacim systémom	6					
	2.1	Sériová komunikácia	6					
	2.2	Matlab	6					
	2.3	Python	6					
3	Identifikácia							
	3.1	Proces identifikácie	6					
	3.2	Overenie modelu	6					
4	Ria	diace algoritmy	6					
	4.1	PID	6					
		4.1.1 Aplikácia riadenia v Matlabe	6					
		4.1.2 Aplikácia riadenia v Python-e	6					
	4.2	MPC	6					
		4.2.1 Aplikácia riadenia v Matlabe	6					
Zá	iver		6					
Li	terat	zúra	6					

$\acute{\mathbf{U}}\mathbf{vod}$

Úvod.

Inverzné kyvadlo Peter Bakaráč

1 Konštrukcia

1.1 Systém kyvadla

Systém kyvadla budeme v tomto prípade rozumieť, ako systém, ktorý obsahuje okrem kyvadla samotného aj časti na jeho podporu, teda ložiskové domky a senzor na snímanie uhla otočenia kyvadla.

Kyvadlom môže byť akýkoľvek pevný objekt, ktorý je schopný konať otáčavý pohyb okolo osi otáčania. Tú tvorí skrutka M8, ktorá je upevnená v ložiskových domkoch tak, aby sa mohla otáčať pozdĺž osi otáčania kyvadla.

Snímačom uhla otočenia je optický rotačný enkóder s rozlíšením 2300 pul/ot.

1.2 Pohyblivá časť

Kľúčovým prvkom konštrukcie je pohyblivá časť, nazvime ju vozík. Tento vozík by mal byť schopný pohybu po jednej ose, t.j. doprava a doľava, kolmo na os otáčania kyvadla. Vozík je zložený z lineárnych ložísk, ktoré znižujú trenie medzi vozíkom a vodiacimi tyčami. Ďalej obsahuje platformu na ktorú je možné upevniť rôzne systémy kyvadiel. Na ľavej a pravej strane je o vozík pripevnený ozubený pás.

1.3 Pohon

Pohon tvorí krokový motor, ktorý rotačným pohybom ťahá ozubený pás jedným alebo druhým smerom a ten potom tento pohyb prenáša na vozík. Motor je umiestnený na ľavej strane konštrukcie.

1.4 Elektronika

1.4.1 Mikroovládač

Riadiacou elektronikou inverzného kyvadla je mikroovládač Arduino MEGA 2560. Tento mikroovládač prijíma signály z rotačných enkóderov a limitných spínačov. Tieto signály ďalej spracuje, teda vyhodnotí uhol otočenia kyvadla, pozíciu vozíka a prípadné stlačenie limitných spínačov. Tieto veličiny sú potom pripravené na pre riadiace algoritmy. Tie môžu byť aplikované priamo v tomto mikroovládači alebo posielané sériovou linkou do PC.

Mokroovládač má na starosti taktiež pohyb krokového motora. Riadiace pulzy sú posielané do ovládača krokového motora.

Inverzné kyvadlo Peter Bakaráč

1.4.2 Elektronická schéma zapojenia

1.5 Konštrukčné prvky

Tabuľka 1: Použité konštrukčné prvky

konštrukčný prvok	špecifikácia	počet kusov
Krokový motor	QSH6018-45-28-110	1
Ovládač krokového motora	HY-DIV268N-5A	1
Mikroovládač	Arduino MEGA 2560	1
Rotačný enkóder 1	2330 pul/ot	1
Rotačný enkóder 2	400 pul/ot (zapúzdrený)	1
Limitné spínače		4

1.6 Parametre

Tabuľka 2: Parametre inverzného kyvadla

parameter	hodnota	jednotka
Dlžka kyvadla	X	m
Hmotnosť kyvadla	X	kg
Rozsah pohybu vozíka	0 - x	m
Max. rýchlosť pohybu vozíka	v	$m.s^{-1}$

2 Komunikácia s Riadiacim systémom

- 2.1 Sériová komunikácia
- 2.2 Matlab
- 2.3 Python
- 3 Identifikácia
- 3.1 Proces identifikácie
- 3.2 Overenie modelu
- 4 Riadiace algoritmy
- 4.1 PID
- 4.1.1 Aplikácia riadenia v Matlabe
- 4.1.2 Aplikácia riadenia v Python-e
- 4.2 MPC
- 4.2.1 Aplikácia riadenia v Matlabe

Záver

Literatúra