Introduction to Robotics E106/206 Midterm1 - Fall 2016

SID:		
Name:		

Please show all working. Marks are awarded for method.

A cheat sheet is provided. No other notes or calculators are allowed.

Problem 1	/8
Problem 2	/6
Problem 3	/2
Problem 4	/4
Problem 5	/10
Problem 6	/19
Problem 7	/21
Total	/70

x) VV 110C	the rotation matrix F	\mathbf{R}_{AB} for these two coordinate frames.	
o) Write	the rotation matrix \boldsymbol{I}	\mathbf{R}_{BA} for these two coordinate frames.	
e) How w	$\mathbf{vould} \ \mathbf{a} \ \mathbf{vector} \ \boldsymbol{n}_A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ written in the A coordinate frame be w	ritten
	B coordinate frame?		1100011
1) II	11 / F	1 1 1 T	•••
	Fould a vector $\mathbf{p}_B = [A]$. A coordinate frame?	$\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ written in the B coordinate frame be w	ritten

ı			

	iven the notation matrices D D D white an expression for D
) [Eiven the rotation matrices R_{AB} , R_{AD} , R_{CD} , write an expression for R_{BC} .
	l: Valid Rotations
	transformation matrix T shown below a valid rotation matrix? If so, prove it, if y why. $T = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
	[-1 0]

	Write the rigid body transform $g_{WA}(\theta_1)$ in homogeneous form.
b)	Write the rigid body transform $\mathbf{g}_{BT}\left(\theta_{3},\theta_{4}\right)$ in homogeneous form.
ر م	
C)	Write the rigid body transform g_{WT} in terms of relative rigid body frames (such as
<i>(</i>)	Write the rigid body transform g_{WT} in terms of relative rigid body frames (such as g_{WA})
C)	Write the rigid body transform g_{WT} in terms of relative rigid body frames (such as g_{WA})
c)	
C)	
C)	
c)	
~)	
	g_{WA}) How would you alter your expression for g_{WT} if we added a frame C between the B
	g_{WA}) How would you alter your expression for g_{WT} if we added a frame C between the B and T frames, where C is fixed to frame B . Explain your answer and any additional
	g_{WA}) How would you alter your expression for g_{WT} if we added a frame C between the B
	g_{WA}) How would you alter your expression for g_{WT} if we added a frame C between the B and T frames, where C is fixed to frame B . Explain your answer and any additional
	g_{WA}) How would you alter your expression for g_{WT} if we added a frame C between the B and T frames, where C is fixed to frame B . Explain your answer and any additional
	g_{WA}) How would you alter your expression for g_{WT} if we added a frame C between the B and T frames, where C is fixed to frame B . Explain your answer and any additional
	g_{WA}) How would you alter your expression for g_{WT} if we added a frame C between the B and T frames, where C is fixed to frame B . Explain your answer and any additional

Compute $\hat{\boldsymbol{\xi}}$ for joints 1, 2, and 4:						

nential terms such tics map with the	$\mathbf{r}(0)$ write an expres	sion for

) You are give	en a desired configuration of t	the tool (T) frame: \boldsymbol{a}_{JWT} .	The matrix \boldsymbol{a}_1
can be write	ten as:		<i>9</i> 1
	$oldsymbol{g}_1 = e^{\hat{oldsymbol{\xi}}_1 heta_1}e^{\hat{oldsymbol{\xi}}}$	$\hat{f g}_2 heta_2e^{\hat{f \xi}_3 heta_3}e^{\hat{f \xi}_4 heta_4}$	
Write \boldsymbol{g}_1 in	terms of known configurations	\mathbf{S}	
) In words, de	escribe how each joint affects	the configuration of the m	anipulator.
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			1 1
	he invariant point(s) in this system, and state what joints they		es in the initial
comigaratio	, and state what Johns they	Circ ilivariani vo.	

Suppose a	$d_{d,t} = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$	$[P]^T$ Formul	ate an inve	se kinematio	rs problem :	and solve for
θ_4 in term	$ \frac{d}{dt} = \begin{bmatrix} 1 & 1 & 2 \\ s & of known \end{bmatrix} $	$n_{\rm l}$. Formula engths (ie. l	a_0, l_1, l_2).	se killelliaut	s problem a	and solve for

Appendix 1: 4 DoF Manipulator

Consider the four degree of freedom robotic manipulator shown in Figures 1, 2, and 3. The manipulator has three revolute joints and one prismatic joint.

Figure 1: Joints 1, 2, and 3 are revolute joints. Joint 4 is a prismatic joint.

Figure 2: The zero configuration with initial manipulator lengths.

Figure 3: Schematic of a 4DoF Manipulator in its zero configuration. Frame naming conventions are shown, with the world and tool frame labelled as W and T respectively. Frames A and B refer to the local frame for joints 1 and 2 respectively. In the initial configuration (shown) the W and A frames are aligned.

Appendix: Cheat Sheet

0.1 Trigonometry

$$\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

Pythagoras's theorem $h^2 = x^2 + y^2$ for a right angled triangle where h is the hypotenuse and x and y are the lengths of the two remaining sides.

Sine, Cosine Relation $(\cos(\theta))^2 + (\sin(\theta))^2 = 1$

Law of Cosines $c^2 = a^2 + b^2 - 2ab\cos(\theta_C)$ where a, b, c are the lengths of the triangle and θ_A , θ_B and θ_C are the angles of their opposing corner.

0.2 Linear Algebra

For orthogonal matrices $A^{-1} = A^T$

Orthogonality A matrix $[\boldsymbol{v}_1,...,\boldsymbol{v}_n]$ is said to be orthogonal if:

$$\mathbf{v}_i^T \mathbf{v}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

0.3 Special Operators

Hat

$$\hat{\boldsymbol{\omega}} = \begin{bmatrix} \hat{\omega}_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

Wedge

$$\hat{\boldsymbol{\xi}} = \widehat{egin{bmatrix} \widehat{oldsymbol{v}} \\ oldsymbol{\omega} \end{bmatrix}} = egin{bmatrix} \widehat{oldsymbol{\omega}} & oldsymbol{v} \\ oldsymbol{0} & 0 \end{bmatrix}$$

0.4 Rotations

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} = e^{\hat{x}\theta}$$

$$R_{y}(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix} = e^{\hat{y}\theta}$$

$$R_{z}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix} = e^{\hat{z}\theta}$$

0.5 Rodrigues' Formula

$$R(\boldsymbol{\omega}, \boldsymbol{\theta}) = e^{\hat{\boldsymbol{w}}\boldsymbol{\theta}} = \mathbb{I}_3 + \frac{\hat{\boldsymbol{\omega}}}{\|\boldsymbol{\omega}\|} \sin(\boldsymbol{\theta}) + \frac{\hat{\boldsymbol{\omega}}^2}{\|\boldsymbol{\omega}\|^2} (1 - \cos(\boldsymbol{\theta}))$$

0.6 Rigid Body Motion

$$oldsymbol{g}_{AB} = egin{bmatrix} oldsymbol{R}_{AB} & oldsymbol{p}_{AB} \ oldsymbol{0} & 1 \end{bmatrix} \qquad oldsymbol{g}_{AB}^{-1} = egin{bmatrix} oldsymbol{R}_{AB}^{-1} & -oldsymbol{R}_{AB}^{-1} oldsymbol{p}_{AB} \ oldsymbol{0} & 1 \end{bmatrix}$$

0.7 Exponential Notation

$$\mathbf{R}_{AB}(\theta_{1}) = e^{\hat{\omega}_{1}\theta_{1}}$$
$$\mathbf{g}_{AB}(\theta_{1}) = e^{\hat{\xi}_{1}\theta_{1}}\mathbf{g}_{AB}(0)$$
$$\mathbf{g}_{ST}(\theta_{1}, \dots, \theta_{n}) = e^{\hat{\xi}_{1}\theta_{1}} \dots e^{\hat{\xi}_{n}\theta_{n}}\mathbf{g}_{ST}(0)$$

0.7.1 Special Cases

Pure Rotation

$$oldsymbol{\xi} = egin{bmatrix} -oldsymbol{\omega} imes oldsymbol{q} \ oldsymbol{\omega} \end{bmatrix}$$

Pure Translation

$$oldsymbol{\xi} = egin{bmatrix} oldsymbol{v} \ oldsymbol{0} \end{bmatrix}$$

Pure Rotations, Screws (Rotation and Translation)

$$e^{\hat{\boldsymbol{\xi}}\boldsymbol{\theta}} = \begin{bmatrix} e^{\hat{\boldsymbol{\omega}}\boldsymbol{\theta}} & \left(\mathbb{I}_3 - e^{\hat{\boldsymbol{\omega}}\boldsymbol{\theta}}\right) \left(\boldsymbol{\omega} \times \boldsymbol{v}\right) + \boldsymbol{\omega}\boldsymbol{\omega}^T \boldsymbol{v}\boldsymbol{\theta} \\ \mathbf{0} & 1 \end{bmatrix}$$

Pure Translation

$$e^{\hat{\boldsymbol{\xi}}\boldsymbol{\theta}} = \begin{bmatrix} \mathbb{I}_3 & \boldsymbol{v}\boldsymbol{\theta} \\ \mathbf{0} & 1 \end{bmatrix}$$

0.8 Paden-Kahan

Subproblem 1: Rotation about a single axis

$$e^{\widehat{\xi}\theta}p = q$$

Subproblem 2: Rotation about two subsequent axes

$$e^{\hat{\xi}_1\theta_1}e^{\hat{\xi}_2\theta_2}p = q$$

Subproblem 3: Rotation to a distance

$$\left\| e^{\widehat{\xi}\theta} p - q \right\| = \delta$$