1.Hafta: Giriş

BSM 309 İşletim Sistemleri Doç.Dr. Ahmet ZENGİN

İçindekiler

- İşletim sistemi nedir? Ne yapar?
- Bilgisayar sistemi organizasyonu
- Bilgisayar sistemi mimarisi
- İşletim sistemi mimarisi
- İşletim sistemi işlevleri
- Proses yönetimi
- Bellek yönetimi
- Kütük yönetimi
- Koruma ve güvenlik
- Dağıtık sistemler
- Özel amaçlı sistemler
- Hesaplama ortamları

Amaçlar

- İşletim sistemlerinin derinliklerine inmek,
- Temel bir bilgisayar sisteminin çalışma mantığını kavramak

Bir işletim sistemi nedir?

- □ Bir bilgisayarın kullanıcı ve donanımı arasında bir aracı gibi hareket eden bir programdır
- İşletim sistemi hedefleri:
 - Kullanıcı programlarını çalıştırmak,
 - Kullanıcı problemlerini çözmek,
 - Bilgisayar sisteminin rahatlıkla kullanılabilmesini sağlamak.

Bilgisayar sistemi yapısı

- Bir bilgisayar sistemi dört ana bileşene bölünebilir
 - Donanım temel hesap kaynakları
 - MİB, bellek, giriş/çıkış birimleri
 - İşletim sistemi
 - Çeşitli uygulamalar ve kullanıcı arasındaki donanımın kullanımını kontrol ve koordine eder.
 - Uygulama programları sistem kaynaklarının kullanıcının problemlerini çözmek için kullanılmasını tanımlar
 - Kelime işlemciler, derleyiciler, tarayıcılar, veri tabanı sistemleri, oyunlar, vs.
 - Kullanıcılar
 - İnsanlar, makinalar, diğer bilgisayarlar

Bir bilgisayar sisteminin bileşenleri

uyg	ulama p		
derleyici	editör	komut yorumlayici	sistem yazılımları
	işletim		
makina	a dilinde		
	mikropi	donanim	
	don		

BSM 309 İşletim Sistemleri 1.6 Doç.Dr. Ahmet ZENGİN

İşletim sistemi tanımı

- □ İşletim sistemi bir kaynak yöneticisidir.
 - Tüm kaynakları organize eder.
 - Verimli ve açık bir kaynak kullanımı için kaynaklara yapılan taleplerin çakışmaları durumunda karar verir.
- □ İşletim sistemi bir kontrol programıdır
 - Hataları ve bilgisayarın uygun olmayan kullanımını önlemek için programların çalışmasını denetler

İşletim sistemi tanımı

- "Bilgisayarda sürekli çalışan bir program" çekirdek
 - kernel
- Program geliştirme ve çalıştırma ortamı sunar.
- Donanımın kullanımı zor ve anlaşılamaz detaylarını gizler

Bilgisayar açılışı

- Bilgisayarı açarken veya yeniden başlatırken bir önyükleme programı yüklenir
 - Genellikler ROM veya EPROM içinde tutulur ve donanım yazılımı –firmware olarak adlandırılır
 - Sistemin bütün bileşenlerini kurar
 - İşletim sistemi çekirdeğini yükler ve çalıştırır.

Bilgisayar sistemi organizasyonu

- Bilgisayar sistemi çalışması
 - Bir veya daha fazla işlemci, aygıt yöneticileri ortak bir veri yolu üzerinden belleğe bağlanır
 - İşlemcilerin ve aygıtların eş zamanlı çalışması bellek çevrimleri için yarışma sonucunu doğurur.

Bilgisayar sistemi çalışması

- Giriş/çıkış aygıtları ve işlemci eş zamanlı olarak çalışabilir
- Her aygıta ait bir kontrolör bulunur.
- Her aygıt kontrolörü özel bir tampon belleğe sahiptir.
- İşlemci veriyi ana bellekten tampon belleklere veya tersi yönde hareket ettirir.
- Giriş/çıkış aygıt ile kontrolörün tampon bellekleri arasında gerçekleşir.
- Aygıt kontrolörleri işlemlerini tamamladıklarından işlemciyi haberdar ederler ve kesme – interrupt işlemini gerçekleştirir.

Kesme işlemleri

- Kesme kontrolü kesme hizmet rutinine devreder
- □ Tüm servis rutinlerinin adreslerini barındıran kesme vektörü kullanır.
- Kesme mimarisi kesilen komutun adresini saklamalıdır.
- Olumsuz durumları önlemek için bir kesme işleniyorken diğerleri geldiğinde bekletilir.
- İşletim sistemi kesme güdümlüdür.

Kesme yönetimi

- İşletim sistemi kaydediciler ve program sayacı yardımıyla İşlemcinin durumunu saklar
- Ne tür bir kesme meydana geleceğini belirler:
 - seçerek
 - vektörlü kesme sistemi

Kesme zaman çizelgesi

Giriş/çıkış yapısı

- Giriş / çıkış işlemi başladıktan sonra, işlem tamamlanmadan kontrol kullanıcı programına geçmez
 - Bekle komutu bir sonraki kesmeye kadar işlemciyi boşta bekletir
 - Bekleme çevrimi (bellek erişimi yarışı)
 - Herhangi bir anda en fazla bir giriş/çıkış isteği olur, eş zamanlı giriş/çıkış mümkün değildir.
- Giriş / çıkış işlemi başladıktan sonra, işlemin tamamlanmasını beklemeden kontrol kullanıcı programına geçebilir
 - Sistem çağrısı kullanıcının giriş/çıkış işlemini tamamlamasını beklemesini sağlamak için işletim sistemine yapılan bir istek
 - Aygıt –durum tablosu her bir giriş/çıkış aygıtının tipini, adresini ve durumunu gösterir
 - İşletim sistemi aygıt durumunu belirlemek ve değiştirmek için tabloyu indisler.

İki farklı giriş/çıkış yöntemi

Aygıt-durum tablosu

Doğrudan bellek erişimi (DMA) yapısı

- Veriyi bellek hızına yakın bir hızda iletebilmek için yüksek hızlı giriş/çıkış aygıtları tarafından kullanılır
- Aygıt kontrolörü veri bloklarını tampondan doğrudan ana belleğe herhangi bir işlemci kesmesi olmaksızın gönderir.
- Bayt değil de blok başına bir kesme üretilir.

Kütük yapısı

- Ana bellek –işlemcinin doğrudan erişebildiği tek büyük kayıt ortamıdır.
- İkincil bellek- daha büyük sürekli bir kayıt ortamı sağlayan yardımcı bir bellektir.
- Manyetik diskler manyetik kayıt malzemesi ile kaplı katı metal veya cam diskler

Kütük hiyerarşisi

- Kütük sistemleri aşağıdaki kriterlere göre hiyerarşik bir yapıda organize edilirler:
 - HIZ
 - Maliyet
 - Uçuculuk
- Önbellek— bilgiyi daha hızlı bir kayıt ortamına kopyalamak; ana bellek hard disk için son ön bellektir.

Kütük hiyerarşisi

Önbellek

- Çok önemli bir prensip
- Bilgisayarda pek çok alanda kullanılır (donanım, işletim sistemi, yazılım)
- Daha yavaştan daha hızlı kayıt ortamına veri kopyalanırken kullanılır
- Veri kopyalanmaya başlamadan önce daha hızlı kayıt ortamı (önbellek) kontrol edilir
 - Eğer önbellekte kopyalanacak veri bulunuyorsa, doğrudan hızlı bir şekilde oradan kullanılır.
 - Eğer yoksa, veri önbelleğe kopyalanır ve oradan kullanılır.
- Önbellek önbelleğe alınacak veriden daha küçüktür.
 - Önbellek yönetimi önemli bir tasarım problemidir
 - Önbellek boyutu ve maliyet

Çeşitli seviyedeki kayıt ortamlarının performans analizi

Level	1	2	3	4
Name	registers	cache	main memory	disk storage
Typical size	< 1 KB	> 16 MB	> 16 GB	> 100 GB
Implementation technology	custom memory with multiple ports, CMOS	on-chip or off-chip CMOS SRAM	CMOS DRAM	magnetic disk
Access time (ns)	0.25 - 0.5	0.5 – 25	80 – 250	5,000.000
Bandwidth (MB/sec)	20,000 - 100,000	5000 - 10,000	1000 – 5000	20 – 150
Managed by	compiler	hardware	operating system	operating system
Backed by	cache	main memory	disk	CD or tape

BSM 309 İşletim Sistemleri 1.23 Doç.Dr. Ahmet ZENGİN

Bir A tamsayısının haddiskten kaydediciye hareketi

Hangi kayıt birimi olursa olsun çok amaçlı ortamlar kayıt değişkenlerin son değerini tutarken çok dikkatli olmalıdırlar.

- Çok-işlemcili ortam önbellek tutarlılığı sağlamalıdır
- Dağıtık ortamlar daha karmaşıktır

İşletim sistemi yapısı

- Çoklu programlama performans için gereklidir
 - Tek bir kullanıcı İşlemci ve diğer giriş/çıkış aygıtlarını sürekli meşgul edemez.
 - Çoklu programlama işleri (kod ve veri) organize eder ve dolayısıyla işlemci daima bir işe sahiptir.
 - Toplam işlerin bir alt kümesi bellekte tutulur
 - Bir iş seçilir ve çalıştırılır (iş programlama)
 - Eğer iş bekleme zorundaysa işletim sistemi bir başka işi işlemciye gönderir.

İşletim sistemi yapısı

- Zaman paylaşımı işlemci işler arasında sürekli değişir, böylece kullanıcı aynı anda birden fazla program kullanabilir.
 - Tepki zamanı 1 sn den küçükolmalıdır
 - Her kullanıcı bellekte en az bir adet çalışan programa sahiptir-proses
 - Eğer aynı zamanda birden fazla iş çalışmaya hazırsa – İşlemci programlama(scheduling)
 - Eğer prosesler belleğe sığmaz ise, takas işlemi çalışma esnasında bellek içine veya dışına prosesi taşır
 - Sanal bellek belleğe sığmayan proseslerin çalışabilmelerine olanak tanır

Çok programlamalı bir sistemin bellek yerleşimi

İşletim sistemi işlemleri

- Kesme donanım tarafından başlatılır
- □ Yazılım hatası veya isteği **istisna** oluşturur
 - Sıfıra bölme
- Diğer proses problemleri sonsuz döngüleri, birbirini değiştirmeye çalışan prosesler gibi problemleri kapsar.
- □ Çift-modlu işlem işletim sistemine kendisini ve diğer bileşenleri korumasını sağlar
 - Kullanıcı modu ve çekirdek modu
 - Mode biti donanım tarafından sağlanır
 - Sistemin hangi modda çalıştığını belirlemeye yarar
 - İmtiyazlı bazı komutlar sadece çekirdek modunda çalışabilir
 - Sistem çağrısı, modu çekirdeğe çevirir ve sistem çağrısı cevabı kullanıcı moduna çevirir

Kullanıcıdan çekirdek moduna geçme

- Zamanlayıcı sonsuz döngüleri / aç özlü davranan prosesleri engeller
 - Belirli bir zaman periyodundan sonra kesme programlama
 - İşletim sistemi sayacı saydırır
 - Sayaç sıfır olduğunda kesme üretir
 - Proses kontrolü yeniden ele almadan tespit edilir ve tahsis edilmiş zaman aşıldığında sonlandırılır.

Proses yönetimi

- Proses çalışan bir programdır. Sistemde bir iş birimidir. Program pasif bir varlık, proses ise aktif bir varlıktır.
- Proses kendi görevini yerine getirmek için kaynaklara ihtiyaç duyar.
 - İşlemci, bellek, Giriş/Çıkış, dosyalar
 - Kurulum verisi
- Prosesin sonlanması kullanılan kaynakların iadesini gerektirir.
- Tek akışlı proses bir sonraki çalışacak komutunun yerini gösteren bir program sayacına sahiptir.
 - Proses herhangi bir anda sadece tek bir komutu çalıştırır.
- Birden fazla iş akışına sahip prosesler iş akışı başına program sayacına sahiptir
- □ Tipik olarak sistem, bir veya daha fazla işlemci üzerinde aynı anda çalışan birden fazla proses, kullanıcı, işletim sistemine sahiptir.

Proses yönetim aktiviteleri

- İşletim sistemi proses yönetimi yaparken aşağıdaki aktivitelerden sorumludur:
- Kullanıcı ve sistem proseslerini oluşturma ve silme
- Prosesleri askıya alma ve kaldığı yerden başlatma
- Proses senkronizasyon mekanizmaları sağlama
- Proses iletişim mekanizmaları sağlama
- Ölümcül kilitlenme yönetimi mekanizmaları sağlama

Bellek yönetimi

- Proses çalışırken tüm veri ve komutlar bellektedir
- Bellek yönetimi işlemci kullanımını optimize ederken ve kullanıcıya cevap verirken bellekte neyin olması gerektiğini belirler
- Bellek yönetim aktiviteleri
 - Belleğin hangi parçalarının ve kim tarafından kullanılacağını izlemek
 - Hangi prosesler ve veri belleğe taşınacağını veya silineceğini belirlemek
 - İstenildiğinde bellek alanını tahsis etme veya alma

Kütük yönetimi

- İşletim Sistemi bilgi kütüğünün mantıksal bir görünümünü sağlar
 - Fiziksel bileşenleri mantıksal kütük birimi olan dosya ya dönüştürür
 - Her ortam bir sürücü ile kontrol edilir
 - Erişim hızı, kapasite, veri transfer oranı, erişim metodu belirleyici özelliklerdir
- Dosya sistemi yönetimi
 - Dosyala genellikle klasörler halinde sınıflandırılır
 - Erişim kontrolü güvenliği sağlar
 - İşletim sistemi aktiviteleri:
 - Dosya ve klasörleri silmek
 - Dosya ve klasörleri kullanmak
 - Dosyaları yardımcı belleğe taşımak
 - Dosyaları yedeklemek

Yığın bellek yönetimi

- Genellikle diskler ana belleğe sığmayan veya kalıcı olarak tutulması gereken veriyi saklamak için kullanılır
- Sağlam bir veri yönetimi çok önemlidir
- Bilgisayarın hızı disk alt sisteminin hızına ve teknolojisine bağlıdır.
- İşletim sistemi aktiviteleri:
 - Boş alan yönetimi
 - Kütük tayini
 - Disk programlama
- Kütük işlemleri hızlı olmalıdır

Giriş/Çıkış alt sistemi

- İşletim sisteminin temel amaç ve işlevlerinden biri donanım aygıtlarının zorluklarını kullanıcıdan gizlemektir
- □ Giriş / çıkış sistemi
 - Verinin transfer edilirken geçici olarak tutulduğu tampon bellek içeren giriş/çıkış cihazının bellek yönetimi- önbellek, kuyruk
 - Genel aygıt sürücü arabirimi
 - Aygıt sürücülere özgü sürücüler

Koruma ve Güvenlik

- Koruma proseslerin veya kullanıcıların kaynaklara erişimini kontrol etme mekanizması
- □ Güvenlik harici ve dahili düşmanlara karşı sistemi savunma
 - Hizmeti engelleme saldırılarından, virüsler ve veri hırsızlığına kadar geniş bir alan
- Sistemler genellikle kimin ne yapabileceğini belirlemek ve tespit edebilmek için kullanıcıları sınıflandırır
 - Kullanıcı kimlik denetimi kullanıcı ID si isim ve numara içeren bir isimlendirmedir.
 - Kullanıcı ID'si daha sonra ilgili kullanıcının tüm proses ve dosyalarıyla iliştirilir- erişim kontrolü
 - Grup belirleyicisi (grup ID) herhangi bir dosya ve proses için imtiyazlı kullanıcı kümeleri oluşturur
 - İmtiyaz yönetimi kullanıcıların erişim haklarını belirlemeyi olanaklı kılar

Hesaplama ortamları

- Klasik bilgisayar
 - İş ortamı
 - Ağa bağlı bilgisayarlar, anaçatı sistemine bağlı terminaller veya zamanı ve kaynakları paylaşan mini bilgisayarlar
 - Arabirimler ağ ve uzak sistemlerin aynı kaynaklara erişmesini sağlar
 - Ev ağları
 - Tek bir bilgisayar
 - Modemler ile ağ yapısına bağlanır
 - Güvenlik duvarı

Hesaplama ortamları

- Sunucu istemci ortamı
 - Az gelişmiş terminaller akıllı ve gelişmiş bilgisayarlar ile yer değiştiriyor
 - Hizmet birimleri istemcilerden gelen isteklere cevap verir
 - hesaplama hizmeti kullanıcılara bir arabirim sağlar
 - Dosyalama hizmeti dosyaları saklayıp alma altyapısı sağlar

Eşler arası hesaplama

- Bir başka dağıtık sistem modelidir
 - Sunucu ve istemci yoktur
 - Tüm düğümler eş olarak adlandırılır
 - Herbiri hem istemci hemde sunucu olarak çalışabilir
 - Düğümler kendilerini bir tabloya kaydeder
 - Dağıtım protokolüne uygun olarak hizmet sağlar veya verirler
 - Naster, Gnutella, vb.

Web tabanlı hesaplama

- Web her yere yaygınlaşmaktadır
- Kişisel bilgisayarlar en yaygın kullanılan cihaz haline gelmektedir
- Hergün yeni bilgisayarlar ağa bağlanmaktadır
- Sunucular gibi çalışıp ağ trafiğini düzenleyen cihazlar yük dengeleyiciler olarak adlandırılır
- Windows 95 benzeri ilkel işletim sistemleri, sunucu veya istemci gibi de çalışabilen XP, Vista, Linux gibi işletim sistemleri ile yer değiştirmiştir.

1. Bölümün sonu

BSM 309 İşletim Sistemleri Doç.Dr. Ahmet ZENGİN