Modèle 3 degré de liberté du bateau

Objectif

Le but est de reconstruire les signaux manquants du bateau qui sont l'angle de cap ψ et la composante latérale de vitesse dans le repère du bateau v.

Signaux à dispostion

Les différents signaux qui sont mesurés, et qui sont à notre disposition pour retrouver les signaux manquants, cont les suivants:

- La position et la vitesse dans le repère fixe obtenue grâce au capteur GPS: x, y, v_x, v_y
- La vitesse longitudinale dans le repère du bateau mesurée par le loch: u
- Les accélérations dans le repère du bateau obtenues grâce à la centrale inertielle: a_x, a_y
- La vitesse angulaire de lacet mesurée par la centrale inertielle: r

Relations existante entre les signaux

Une relation simple entre un certain nombre de signaux est donné par une équation de chagement de base:

$$\begin{bmatrix} u = v_x \cos(\psi) + v_y \sin(\psi) \\ v = -v_x \sin(\psi) + v_y \cos(\psi) \end{bmatrix}$$

Inversions de modèle

Première version

$$v = -\sqrt{v_x^2 + v_y^2 - u^2}$$

$$\psi = \tan\left(\frac{v_y}{v_x}\right) - \tan\left(\frac{v}{u}\right)$$

Dans cette version, on utilise la norme de la vitesse pour retrouver v. Ensuite, on l'utilise pour reconstruire ψ .

La difficulté avec ces équations réside dans le fait de déterminer le signe de v. (semble dépendre de r)

Les siganux sont bien reconstruits, maintenant on ajoute du bruit de mesure:

On constate une grande influence du bruit de mesure sur ce modèle.

Deuxième version

$$\psi = r$$

$$v = -v_x \sin(\psi) + v_y \cos(\psi)$$

Dans cette version, on viens intégrer la vitesse angulaire de lacet r qui est aussi la dérivée de l'angle ψ . Ensuite, on l'utiliste pour reconstruire ν à l'aide de ν_x et ν_y .

Les siganux sont bien reconstruits, maintenant on ajoute du bruit de mesure:

On remarque que les bruits de mersure affectent peu la reconstruction de l'angle ψ . Ce modèle est moins dépend du bruits de mesure que le précedent.

Conclusion

Les deux modèles ne sont pas linéaires, une tentaive de linéarisation a été faite afin d'utiliser nos connaissances dans le domaine mais sans résultats probants.