Zhengdong Zhang Homework - Week 4 Email: zhengz@uoregon.edu ID: 952091294 Course: MATH 649 - Abstract Algebra Term: Spring 2025 Instructor: Professor

Sasha Polishchuk Due Date: 30^{th} April , 2025

Problem 12.16

Let char $k \neq 2$ and $f \in \mathbb{k}[x]$ be a cubic whose discriminant has a square root in \mathbb{k} , then f is either irreducible or splits in \mathbb{k} .

Solution:

Problem 12.4.9

Let \mathbb{K}/\mathbb{k} be a finite Galois extension and $\alpha \in \mathbb{K}$. Consider the \mathbb{k} -linear operator $A_{\alpha} : x \mapsto \alpha x$ on the \mathbb{k} -vector space \mathbb{K} . Then det $A_{\alpha} = N_{\mathbb{K}/\mathbb{k}}(\alpha)$ and tr $A_{\alpha} = T_{\mathbb{K}/\mathbb{k}}(\alpha)$.

Solution:

Problem 12.4.11

Let $a, b \in \mathbb{Q}$.

- (a) $a^2 + b^2 = 1$ is equivalent to $N_{\mathbb{Q}(i)/\mathbb{Q}}(a+ib) = 1$.
- (b) Use Hilbert's Theorem 90 to prove that the rational solutions of $a^2 + b^2 = 1$ are of the form $a = (s^2 t^2)/(s^2 + t^2)$ and $b = 2st/(s^2 + t^2)$ for $s, t \in \mathbb{Q}$.

Solution:

Problem 13.2.9

True or false? Let \mathbb{K}/\mathbb{F}_q be a finite extension, and \mathbb{L} , \mathbb{M} be two intermediate subfields. Then either $\mathbb{L} \subseteq \mathbb{M}$ or $\mathbb{M} \subseteq \mathbb{L}$.

Solution:

Problem 13.2.12

Let p be a prime. Then there are exactly $(q^p - q)/p$ monic irreducible polynomials of degree p in $\mathbb{F}_q[x]$ (q is not necessarily a power of p).

Solution:

Problem 13.2.13 What is $\sum_A A^{100}$, where the sum is over all 17×17 matrices A over \mathbb{F}_{17} ?

Solution: