MH3510-Assignment 2

....

		<i>y</i>	· · · · · · · · · · · · · · · · · · ·			8 8 B				
1(1)	Yijk = fij + Eijk , i=1,2,3 ; j=1,2 ; k=1,2,,5									
	Where Dij is the treatment mean of ith parel of factor A & ith level of factor B.									
	Eijk is the error at the ith level of factor A & ith level of factor B at the Kth jel.									
	on each make of disk drives.									
	Assumption : Ei			o , var (€ijk)	$)=0^2$ and	Eijk are nama	ly distiluted			
	⇒ E	jk 20 116,	σ¹)							
(4.)	I=3, J=2, <=5									
(/	Anoua Table									
	(Missoul conse)) df	22	ms	F	p-value				
	Fautor A	I-1=2	261.267	130-6335	2.5259	0-1010				
	Fautor B	J-1=1	1-633	(.633	0.031576	and the same				
	Interaction	(I-1)(J-1)=Z	768-867	384.4335	7.43345					
	Emor	13(r-1)=24		51.7167						
	Total	1 29	2272.967			·				
harling:	IJ(r-1)=3(2)(I-1)									
	= 24									
	SSE = 2272.967 - 261.267 - 1.633 - 768.867									
	$1241. 2$ $100 = \frac{1241. 2}{460} = \frac{201.67}{2} = 130.6335$			(30.63)	35					
	$MS_A = \frac{331}{df_A} = \frac{2}{2} = 130.6335$			$F_{A} = \frac{58.63.57}{51.863} = 2.5259$						
	MSB = 358 = 1.033 = 1.033			FB = 1.763 = 0.031576						
	$MS_{B} = \frac{SS_{B}}{4C_{B}} = \frac{1.633}{1.633} = 1.633$ $MS_{AB} = \frac{SS_{AB}}{4C_{AB}} = \frac{768.867}{2} = 384.4335$ $MSE = SSE/4C_{E} = \frac{1241.2}{2} = 51.7167$			FAB = 334.753 = 7.43345						
	MSE = SSE/HE :	2 =	51.7167			MAL TO THE REAL PROPERTY.				
いばご)	Hn: (WB); = 0	4. (do m	+ ONT : TIM	evaltiba)	25					
	Trans F-table Food = 3.40									
	Ho: $(\alpha\beta)_{ij} = 0$ $\forall i_{j}$; (do not extens to the nation) From F-table, $F_{3,24} = 3.40$ Since $F_{AB} = 7.43345 > F_{2,24} = 3.40 \Rightarrow$ we reject H_0 .									
	=) .: There exists interaction between 2 factors.									
		•								
(Uv)	From 1 (Tii), we can see that there exists agraficant interaction between 2 factors (and hence,									
	no need perform individual texts for factor A & factor B).									
	=) Hence, the researcher is wrong.									
N/- N	u. A . 1	*								
2(;)	y; j = θi + €ij i=1,, 6; j = 1,, 5									
	Where Or is the ith treatment mean response									
	Eight the error at ith level at the jth job on each make of disk dinner.									
	Assumption: E_{ij} are iid, $E(E_{ij})=0$, $Var(E_{ij})=0^2$ and E_{ij} are normally distributed									
	$\Rightarrow \in_{i}$ $\sim N(0,0^2)$									

	Anova Table Source	46	22	ms	F					
	Treatment (Between groups)	5	1031.767	206.3534	3.99					
	Evor (within groups)	24	1241.2	51.717						
	Total	29	2272.967							
horking:	dt7 = 6-1=5									
J	dfe = 29-5 = 29									
	43F.1801 = F38. 33F + 863.1 + F36.136 = T22									
	SSE = 1291.2 (from 1(ii))									
	$MST = \frac{(031.767)}{5} = \frac{1341.2}{5}$	206.3534	(F = 3	206.3534 = 3-	99					
	MJE = 1241.2 =	51.717	Y 1 -	51.717						
2(171)										
	Fitted treatment mean = $\hat{\theta}_i = \frac{1}{5} \stackrel{?}{\underset{\sim}{\stackrel{\sim}{\stackrel{\sim}{\stackrel{\sim}{\stackrel{\sim}{\stackrel{\sim}{\stackrel{\sim}{\sim$									
	let la and lb be any 2 fitted treatment means.									
	Let be and be be any 2 fitted treatment means. -: Da - Ob = = = 5 ; Yaj - 5 ; Ybj									
	> Var (Ba - Ob) = Var (= E yoi - = E yoi)									
	= 1/25 1/25 1/25 1/25 1/25 1/25 1/25 Var(4bj) = (Since yai, you, you,, you are independent									
	= 1/25 Var (yaj) + 1/25 Var (yaj)									
	= = = = = = = = = = = = = = = = = = = =									
	$=\frac{2}{5}\sigma^2=0.4\sigma^2$ (shown)									
	<u></u>	SSE								
(iv)	From Anova table => s	= dfe	= 51.417							
	1.1.0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
) (v)	let Doy and Doz be drik drive 1 & 2 respectively.									
	=> L= OM - ODZ & L= OM - ODZ									
	The second of		1-1-6							
	50 (C1) ~ t	14 1								
	<u>L-L</u> <u>se(f-L)</u> ~ t	n-k	y -: se(2-1)	~ 124						
	se(2-1) ~ t n-k = 29-5 = 29	n-k	S.e(2-L)	, ~ 124						
	N-K = 19 - 1 = 29			, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						
	S-e(L-L) = 1	var (PDI-1	902)·s2	, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						
	S-e(L-L) = 1	var (PDI-1	902)·s2	, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						
	s-e(L-L) = J = 4.	var (PDI-1 (0.4)(51.	902)·s2	, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						
	$S - e(\hat{L} - L) = \int_{-\infty}^{\infty} \frac{1}{2} dx$ $= \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$	var (PDI-1 (0.4)(51. 5483 -12.8	9 <u>02)</u> · s² 3(3)		1 20					
	Since expected service in	var (PD-1 (0.4)(51. 5483 -12.8	9 <u>02)</u> · s² 3(3)		of L.					
	$S-e(\hat{L}-L) = \int_{-\infty}^{\infty} S \cdot e(\hat{L}-L) = \int_{-\infty}^{\infty} \frac{1}{2} dx$ $= 4.$ $\hat{L} = 48.4 - 61.2 = 0.2$ Since expected service + on i.e \hat{L} = \hat{1}-12.8 = 0.2	var (PD1-1 (0.4)(51. 5483 -12.8 .e is pesitiv	9 <u>02)</u> . s² 717) e, we will tal		of L.					
	$S = (\hat{L} - \hat{L}) = 1$ $S = (\hat{L} - \hat{L}) = 1$ = 4 $\hat{L} = 48.4 - 61.2 = 1$ Since expected service -ton $i = \hat{L} = 1 - 12.8 = 1$ $from t-table = t_{74}$	var (PDI-1 (0.4)(SI. 5483 -12.8 Le IJ PESITIV 12.8	$\frac{902) \cdot s^2}{313}$ Te, we will take	ke absolute value						
	$S = (\hat{L} - \hat{L}) = 1$ $S = (\hat{L} - \hat{L}) = 1$ = 4 $\hat{L} = 48.4 - 61.2 = 1$ Since expected service -ton $i = \hat{L} = 1 - 12.8 = 1$ $from t-table = t_{74}$	var (PD1-1 (0.4)(51. 5483 -12.8 Le is pesitiv 12.8 = 2.06 (-1) = 1	$\frac{902) \cdot s^2}{313}$ $\frac{902}{313}$ $\frac{902}{$	ke absolute value (4-5483) = C	3.4123,22.188]					