CSE 431/531: Algorithm Analysis and Design (Fall 2024) Greedy Algorithms

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

- 1 Toy Example: Box Packing
- Interval Scheduling
 - Interval Partition
- Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
- Data Compression and Huffman Code
- Summary

- Toy Example: Box Packing
- Interval Scheduling
 - Interval Partition
- Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
- Data Compression and Huffman Code
- **5** Summary

- Toy Example: Box Packing
- Interval Scheduling
 - Interval Partition
- Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
- Data Compression and Huffman Code
- Summary

- Toy Example: Box Packing
- 2 Interval Scheduling
 - Interval Partition
- Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
- 4 Data Compression and Huffman Code
- Summary

```
1: for t \leftarrow 1 to T do
2: if \rho_t is in cache then do nothing
3: else if there is an empty page in cache then
4: evict the empty page and load \rho_t in cache
5: else
6: p^* \leftarrow page in cache that is not used furthest in the future
7: evict p^* and load \rho_t in cache
```

- 1: for every $p \leftarrow 1$ to n do
- 2: $times[p] \leftarrow \text{array of times in which } p \text{ is requested, in increasing order} \qquad \qquad \triangleright \text{put } \infty \text{ at the end of array}$
- 3: $pointer[p] \leftarrow 1$
- 4: $Q \leftarrow$ empty priority queue
- 5: **for** every $t \leftarrow 1$ to T **do**6: $pointer[\rho_t] \leftarrow pointer[\rho_t] + 1$
- 7: if $\rho_t \in Q$ then
- 8: $Q.\mathsf{increase-key}(\rho_t, times[\rho_t, pointer[\rho_t]])$, **print** "hit",

continue

- 9: **if** Q.size() < k **then**
- 10: **print** "load ρ_t to an empty page"
- 11: **else**
- 12: $p \leftarrow Q.\text{extract-max}(), \text{ print "evict } p \text{ and load } \rho_t$ "
- 13: $Q.\mathsf{insert}(\rho_t, times[\rho_t, pointer[\rho_t]])
 ightharpoonup \mathsf{add} \ \rho_t \ \mathsf{to} \ Q \ \mathsf{with} \ \mathsf{key}$ value $times[\rho_t, pointer[\rho_t]]$

- Toy Example: Box Packing
- Interval Scheduling
 - Interval Partition
- Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
- 4 Data Compression and Huffman Code
- Summary

• Let V be a ground set of size n.

Def. A priority queue is an abstract data structure that maintains a set $U \subseteq V$ of elements, each with an associated key value, and supports the following operations:

- insert (v, key_value) : insert an element $v \in V \setminus U$, with associated key value key_value .
- \bullet decrease_key(v, new_key_value): decrease the key value of an element $v \in U$ to new_key_value
- ullet extract_min(): return and remove the element in U with the smallest key value
-

data structures	insert	extract_min	decrease_key
array			
sorted array			

data structures	insert	extract_min	decrease_key
array	O(1)	O(n)	O(1)
sorted array			

data structures	insert	extract_min	decrease_key
array	O(1)	O(n)	O(1)
sorted array	O(n)	O(1)	O(n)

data structures	insert	extract_min	decrease_key
array	O(1)	O(n)	O(1)
sorted array	O(n)	O(1)	O(n)
heap	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$

Heap

The elements in a heap is organized using a complete binary tree:

- Nodes are indexed as $\{1, 2, 3, \cdots, s\}$
- Parent of node i: $\lfloor i/2 \rfloor$
- Left child of node i: 2i
- Right child of node i: 2i + 1

Heap

A heap H contains the following fields

- s: size of U (number of elements in the heap)
- $A[i], 1 \le i \le s$: the element at node i of the tree
- ullet $p[v], v \in U$: the index of node containing v
- $key[v], v \in U$: the key value of element v

Heap

The following heap property is satisfied:

• for any two nodes i, j such that i is the parent of j, we have $key[A[i]] \leq key[A[j]]$.

A heap. Numbers in the circles denote key values of elements.

- 1: $s \leftarrow s + 1$
 - 2: $A[s] \leftarrow v$
 - $3: \ p[v] \leftarrow s$
 - 4: $key[v] \leftarrow key_value$
 - 5: $heapify_up(s)$

heapify-up(i)

- 1: **while** i > 1 **do**
 - $j \leftarrow \lfloor i/2 \rfloor$
- 3: if key[A[i]] < key[A[j]] then
- 4: swap A[i] and A[j]
- 5: $p[A[i]] \leftarrow i, p[A[j]] \leftarrow j$
- 6: $i \leftarrow j$
- 7: **else** break


```
extract_min()
```

- 1: $ret \leftarrow A[1]$
- $2: A[1] \leftarrow A[s]$
- $3: \ p[A[1]] \leftarrow 1$
- 4: $s \leftarrow s 1$
- 5: **if** s > 1 **then**
- 6: heapify_down(1)
- 7: **return** ret

$\mathsf{decrease_key}(v, key_val)$

- 1: $key[v] \leftarrow key_value$
- 2: heapify-up(p[v])

heapify-down(i)

- 1: while $2i \leq s$ do
 - 2: **if** 2i = s or
 - $key[A[2i]] \le key[A[2i+1]]$ then 3: $j \leftarrow 2i$
 - $j \leftarrow 2i$ 4: **else**
 - 4: else
 - $5: j \leftarrow 2i + 1$
- 6: if key[A[j]] < key[A[i]] then
- 7: swap A[i] and A[j]
- 8: $p[A[i]] \leftarrow i, p[A[j]] \leftarrow j$
- 9: $i \leftarrow j$
- 10: **else** break

 \bullet Running time of heapify_up and heapify_down: $O(\lg n)$

- Running time of heapify_up and heapify_down: $O(\lg n)$
- \bullet Running time of insert, exact_min and decrease_key: $O(\lg n)$

- ullet Running time of heapify_up and heapify_down: $O(\lg n)$
- \bullet Running time of insert, exact_min and decrease_key: $O(\lg n)$

data structures	insert	extract_min	decrease_key
array	O(1)	O(n)	O(1)
sorted array	O(n)	O(1)	O(n)
heap	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$

Two Definitions Needed to Prove that the Procedures Maintain Heap Property

Def. We say that H is almost a heap except that key[A[i]] is too small if we can increase key[A[i]] to make H a heap.

Def. We say that H is almost a heap except that key[A[i]] is too big if we can decrease key[A[i]] to make H a heap.

- Toy Example: Box Packing
- Interval Scheduling
 - Interval Partition
- Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
- Data Compression and Huffman Code
- Summary

Encoding Letters Using Bits

- 8 letters a, b, c, d, e, f, g, h in a language
- need to encode a message using bits
- idea: use 3 bits per letter

$$deacfg \rightarrow 0111000000101011110$$

Q: Can we have a better encoding scheme?

Seems unlikely: must use 3 bits per letter

Q: What if some letters appear more frequently than the others?

Q: If some letters appear more frequently than the others, can we have a better encoding scheme?

A: Using variable-length encoding scheme might be more efficient.

Idea

• using fewer bits for letters that are more frequently used, and more bits for letters that are less frequently used.

Q: What is the issue with the following encoding scheme?

• a: 0 b: 1 c: 00

Q: What is the issue with the following encoding scheme?

• a: 0 b: 1 c: 00

A: Can not guarantee a unique decoding. For example, 00 can be decoded to aa or c.

Q: What is the issue with the following encoding scheme?

• a: 0 b: 1 c: 00

A: Can not guarantee a unique decoding. For example, 00 can be decoded to aa or c.

Solution

Use prefix codes to guarantee a unique decoding.

Prefix Codes

Def. A prefix code for a set S of letters is a function $\gamma:S\to\{0,1\}^*$ such that for two distinct $x,y\in S$, $\gamma(x)$ is not a prefix of $\gamma(y)$.

Prefix Codes

Def. A prefix code for a set S of letters is a function $\gamma: S \to \{0,1\}^*$ such that for two distinct $x,y \in S$, $\gamma(x)$ is not a prefix of $\gamma(y)$.

a	b	c	d
001	0000	0001	100
\overline{e}	f	g	h
11	1010	1011	01

a	b	c	d
001	0000	0001	100
\overline{e}	f	g	h

• Reason: there is only one way to cut the first code.

a	b	c	d
001	0000	0001	100
\overline{e}	f	g	h

• 0001001100000001011110100001001

a	$\mid b \mid$	c	d
001	0000	0001	100
\overline{e}	f	g	h

- 0001/001100000001011110100001001
- (

a	b	c	d
001	0000	0001	100
	-		
e	f	g	$\mid h \mid$

- 0001/001/10000001011110100001001
- ca

a	$\mid b \mid$	c	d
001	0000	0001	100
\overline{e}	f	g	h

- 0001/001/100/000001011110100001001
- cad

a	b	c	d
001	0000	0001	100
e	f	g	h

- 0001/001/100/0000/01011110100001001
- cadb

a	$\mid b \mid$	c	$\mid d \mid$
001	0000	0001	100
\overline{e}	f	g	h

- 0001/001/100/0000/<mark>01</mark>/011110100001001
- cadbh

a	$\mid b \mid$	c	d
001	0000	0001	100
\overline{e}	f	g	h

- 0001/001/100/0000/01/<mark>01</mark>/1110100001001
- cadbhh

a	b	c	d
001	0000	0001	100
	C		7
e	J J	g	$\mid h \mid$

- 0001/001/100/0000/01/01/11/10100001001
- cadbhhe

a	b	c	d
001	0000	0001	100
\overline{e}	f	q	h

- 0001/001/100/0000/01/01/11/<mark>1010</mark>/0001001
- cadbhhef

a	b	c	d
001	0000	0001	100
	C		7
e	J J	g	$\mid h \mid$

- 0001/001/100/0000/01/01/11/1010/<mark>0001</mark>/001
- cadbhhefc

a	b	c	d
001	0000	0001	100
\overline{e}	f	q	h.
0	J	9	10

- 0001/001/100/0000/01/01/11/1010/0001/<mark>001</mark>/
- cadbhhefca

Rooted binary tree

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some letter

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some letter
- If coding scheme is not wasteful: a non-leaf has exactly two children

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some letter
- If coding scheme is not wasteful: a non-leaf has exactly two children

Best Prefix Codes

Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the

message

example

letters	a	b	c	d	$\mid e \mid$	
frequencies	18	3	4	6	10	

scheme 1

scheme 2

scheme 3