

COM3503/4503/6503: 3D Computer Graphics Lecture 3. Hierarchical structures and scene graphs

Dr. Steve Maddock s.maddock@sheffield.ac.uk

1. Introduction

- Use transformations to:
 - Manipulate individual objects
 - Build scenes
 - Build complex objects from pieces
 - Control relationship between parts in complex hierarchical objects
 - Conversion between coordinate systems

2. Scene graphs

- Multiple ways to represent it
- With or without transformation nodes

3. Complex objects – hierarchical modelling

- Simple objects can be combined to make more complex objects
- A scene graph represents the hierarchy
 - Transformations to compose each piece into the hierarchy
 - Simple visualisation only shows the pieces, not the transformation nodes
- The whole object can be transformed by transforming the root
- Individual pieces can be transformed
 - E.g. rotate propellers

http://viz.aset.psu.edu/jack/java3d/

4. Alternative hierarchies

A stylised tricycle (p.190 from (Foley et al, 1994))

Foley, J.D., A. van Dam, S.K.Feiner, J.F.Hughes, R.L.Philips, "Introduction to Computer Graphics", Addison-Wesley, 1994

4. Alternative hierarchies

- Consider how to animate the parts
 - Relationships across the hierarchy
 - E.g. wheels must all rotate together

Foley, J.D., A. van Dam, S.K.Feiner, J.F.Hughes, R.L.Philips, "Introduction to Computer Graphics", Addison-Wesley, 1994

5. An articulated hierarchical object

- Many objects are composed of multiple pieces that move in relation to each other
- A human arm has an upper arm, a lower arm and a hand
- Parent-child relationship
- If the parent moves, so do its children
 - A child is attached to its parent
- If a child moves, e.g. rotates about the connection point, its parent need not
- We can represent this kind of parent-child relationship with a scene graph

5.1 The scene graph

Courtesy of Mike Meredith

6. Example: A arm-like structure

- Lower and upper branch are each made of an ellipse (i.e. a scaled sphere)
- Lower branch is at origin and rotates about the origin
- Upper branch is connected to lower branch and rotates about the connection point

6.1 The scene graph

 The scene graph represents the hierarchy (upside down)

6.2 Two upper branches

6.3 Drawing a branch: alternatives

Sphere of radius 0.5.
Diameter of 1 is easier to work with.

Sphere of radius 1.0.

Diameter is therefore 2.

Translate up y axis so lowest point is at origin

Scale to required height

Scale in y direction by h and in x and z directions by 2r.

h is the height of the required branch.

Given current radius of 0.5, need to scale x and z by 2r, where r is new radius

Translate by half the height up the y axis

5.4 Drawing the arm-like structure

5.5 Rotate the upper and lower branches together

5.6 Rotate the upper branch only

5.7 Rotate branches of tree-like structure

5.7 Rotate branches of tree-like structure

6. Visualising the transformation frames

- The origin of the object is not necessarily the point which the children rotate about
- Different frames of reference can be considered

Figure 5.4

In this example, the green frame is the object frame $\vec{\mathbf{o}}^t = \vec{\mathbf{w}}^t O$, and the gray frame is the scaled object frame $\vec{\mathbf{o}}^t = \vec{\mathbf{o}}^t O'$. The coordinates of a unit cube drawn in $\vec{\mathbf{o}}^{\prime t}$ forms a rectangular body. The matrix O can be changed to move the entire robot. The cyan frame $\vec{\mathbf{a}}^t = \vec{\mathbf{o}}^t A$ is the right shoulder frame. The rotational factor of A can be changed to rotate the entire right arm. The red frame $\vec{\mathbf{b}}^t = \vec{\mathbf{a}}^t B$ is the right upper arm frame. The light blue frame $\vec{\mathbf{b}}^{\prime t} = \vec{\mathbf{b}}^t B'$ is the scaled right upper arm frame. The coordinates of a unit sphere drawn in $\vec{\mathbf{b}}^{\prime t}$ forms the ellipsoidal right upper arm. $\vec{\mathbf{c}}^t = \vec{\mathbf{b}}^t C$ is the right elbow frame. The rotational factor of C can be changed to rotate the right lower arm. $\vec{\mathbf{d}}^t = \vec{\mathbf{c}}^t D$ and $\vec{\mathbf{d}}^{\prime t} = \vec{\mathbf{d}}^t D'$ are, respectively, the orthonormal and scaled lower arm frames used to draw the lower arm. The frame $\vec{\mathbf{f}}^t = \vec{\mathbf{o}}^t F$ is the left shoulder frame.

S.J. Gortler, "Foundations of 3D Computer Graphics", MIT Press, 2012

6. Visualising the transformation frames

Figure 5.5
To move the entire robot, we update its O matrix.

S.J. Gortler, "Foundations of 3D Computer Graphics", MIT Press, 2012

6. Visualising the transformation frames

Figure 5.6

To bend the arm at the shoulder, we update the A matrix.

Figure 5.7

To bend the elbow robot, we update its C matrix.

S.J. Gortler, "Foundations of 3D Computer Graphics", MIT Press, 2012

7. Example

The Guerrilla CG Project: www.youtube.com/user/GuerrillaCG,
 https://www.youtube.com/watch?v=q54fbMvl3GE

Hierarchies: Building A Robot

GuerrillaCG 7,825 views 3 years ago

Here we take the concept of hierachies to create a rig for this hover robot. Here we see the rig in action in two different scenarios, flying and swinging. Author: And...

8. Skeletons and skins

Previous examples have used rigid pieces to make a complex object

• Instead, use a 'skeleton' (stick figure) represented as a transformation hierarchy

and then add a skin

Based on data at: https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx

8. Skeletons and skins

 To map a vertex, v, in the left hand into the root node, we use

$$v_{w} = Mv$$

$$M = T_{Hips} R_{Hips} T_{Chest} R_{Chest} T_{LeftCollar}$$

$$R_{LeftCollar} T_{LeftShoulder} R_{LeftShoulder}$$

$$T_{LeftElbow} R_{LeftElbow} T_{LeftWrist} R_{LeftWrist}$$

$$M = \prod_{i=1}^{n} M_{i}$$

where $M_i = T_i R_i$, and M_i is the local matrix for a particular node (T = translate, R = Rotate)

 All Ts except T_{Hips} remain constant throughout an animation sequence

9. Summary

- Use transformations to:
 - Manipulate individual objects
 - Build scenes
 - Build complex objects from pieces
 - Control relationship between parts in complex hierarchical objects
 - Conversion between coordinate systems
- A scene graph represents a complex scene or a hierarchical model constructed of pieces
- In commercial systems, a scene graph API can be used
 - Or a matrix stack can be implemented
- Scene graphs have been extended to include other kinds of nodes besides transformations, e.g. switch nodes