

The E.M. Algorithm

- We'll get back to unsupervised learning soon.
- But now we'll look at an even simpler case with hidden information.
- The EM algorithm
 - An excellent way of doing unsupervised clustering.
 - Many, many other uses, including inference of Hidden Markov Models.

Missing Data

Α	В
1	1
1	1
0	0
0	0
0	0
0	Н
0	1
1	0

- Given two variables, no independence relations
- Some data are missing
- Estimate parameters in joint distribution
- Data must be missing at random

Ignore it

Α	В
1	1
1	1
0	0
0	0
0	0
0	Н
0	1
1	0

Estimated Parameters

	~A	Α
~B	3/7	1/7
В	1/7	2/7

	~A	Α
~B	.429	.143
В	.143	.285

$$logPr(D|M) = log(Pr(D,H = 0 | M) + Pr(D,H = 1 | M))$$

$$= 3log.429 + 2log.143 + 2log.285 + log(.429 + .143)$$

$$= -9.498$$

Fill in With Best Value

Α	В
1	1
1	1
0	0
0	0
0	0
0	0
0	1
1	0

Estimated Parameters

	~A	А
~B	4/8	1/8
В	1/8	2/8

	~A	Α
~B	.5	.125
В	.125	.25

$$\begin{split} \log \Pr(D|M) &= \log(\Pr(D, H = 0 \mid M) + \Pr(D, H = 1 \mid M) \\ &= 3\log.5 + 2\log.125 + 2\log.25 + \log(.5 + .125) \\ &= -9.481 \end{split}$$

Α	В
1	1
1	1
0	0
0	0
0	0
0	Н
0	1
1	0

Guess a distribution over A,B and compute a distribution over H

$\theta_{\scriptscriptstyle 0}$		~A	Α
	~B	.25	.25
	В	.25	.25

Α	В
1	1
1	1
0	0
0	0
0	0
0	Н
0	1
1	0

Guess a distribution over A,B and compute a distribution over H

$$Pr(H|D,\theta_0) = Pr(H \mid D^6, \theta_0)$$

$$= Pr(B \mid \neg A, \theta_0)$$

$$= Pr(\neg A, B \mid \theta_0) / Pr(\neg A \mid \theta_0)$$

$$= .25 / 0.5$$

$$= 0.5$$

Α	В
1	1
1	1
0	0
0	0
0	0
0	0, 0.5 1, 0.5
0	1
1	0

Use distribution over H to compute better distribution over A,B

Maximum likelihood estimation using expected counts

θ₁ ~A A A ~B 3.5/8 1/8 B 1.5/8 2/8

	~A	Α
~B	.4375	.125
В	.1875	.25

Α	В
1	1
1	1
0	0
0	0
0	0
0	
0	1
1	0

Use new distribution over AB to get a better distribution over H

$$\theta_1$$
 ~A A \sim B .4375 .125 B .1875 .25

$$Pr(H|D, \theta_1) = Pr(\neg A, B \mid \theta_1) / Pr(\neg A \mid \theta_1)$$

= .1875/.625
= 0.3

Α	В
1	1
1	1
0	0
0	0
0	0
0	0, 0.7 1, 0.3
0	1
1	0

Use distribution over H to compute better distribution over A,B

 θ_2

	~A	Α
~B	3.7/8	1/8
В	1.3/8	2/8

	~A	Α
~B	.4625	.125
В	.1625	.25

Α	В
1	1
1	1
0	0
0	0
0	0
0	
0	1
1	0

Use new distribution over AB to get a better distribution over H

$$Pr(H|D,\theta_2) = Pr(\neg A, B \mid \theta_2) / Pr(\neg A \mid \theta_2)$$
$$= .1625 / .625$$
$$= 0.26$$

Α	В	
1	1	
1	1	
0	0	
0	0	
0	0	
0	0, 0.74 1, 0.26	
0	1	
1	0	

Use distribution over H to compute better distribution over A,B

 θ_3

	~A	Α
~B	3.74/8	1/8
В	1.26/8	2/8

	~A	Α
~B	.4675	.125
В	.1575	.25

Increasing Log-Likelihood

$$\log \Pr(D \mid \theta_0) = -10.3972$$

$$\theta_1$$
 ~A A \sim B .4375 .125 B .1875 .25

$$\log \Pr(D \mid \theta_1) = -9.4760$$

$$\theta_2$$
 ~A A A ~B .4625 .125 B .1625 .25

$$\log \Pr(D \mid \theta_2) = -9.4524$$

$$\log \Pr(D \mid \theta_3) = -9.4514$$

Increasing Log-Likelihood

$\theta_{\!\scriptscriptstyle 0}$		~A	Α
	~B	.25	.25
	В	.25	.25

 $\theta_{\scriptscriptstyle 1}$

$$\log \Pr(D \mid \theta_0) = -10.3972$$
 ignore: -9.498 best val: -9.481
$$\log \Pr(D \mid \theta_1) = -9.4760$$

$$logPr(D | \theta_2) = -9.4524$$

$$\log \Pr(D \mid \theta_3) = -9.4514$$

Another (Simple) Example

Let events be "grades in a class"

```
w_1 = Gets \ an \ A P(A) = \frac{1}{2}

w_2 = Gets \ a B P(B) = \mu

w_3 = Gets \ a C P(C) = 2\mu

w_4 = Gets \ a D P(D) = \frac{1}{2} - 3\mu

(Note 0 \le \mu \le 1/6)
```

Assume we want to estimate μ from data. In a given class there were

a A's b B's c C's d D's

What's the maximum likelihood estimate of μ given a,b,c,d

Simple Example - contd

Let events be "grades in a class"

```
w_1 = \text{Gets an A} P(A) = \frac{1}{2}

w_2 = \text{Gets a} P(B) = \mu

w_3 = \text{Gets a} P(C) = 2\mu

w_4 = \text{Gets a} P(D) = \frac{1}{2} - 3\mu

P(D) = \frac{1}{2} - 3\mu
```

Assume we want to estimate μ from data. In a given class there were

```
a A's b B's c C's d D's
```

What's the maximum likelihood estimate of μ given a,b,c,d?

Trivial Statistics

P(A) = ½ P(B) =
$$\mu$$
 P(C) = 2μ P(D) = ½- 3μ
P($a,b,c,d \mid \mu$) = K(½) $^a(\mu)^b(2\mu)^c($ ½- 3μ) d
log P($a,b,c,d \mid \mu$) = log K + alog ½ + blog μ + clog 2μ + dlog (½- 3μ)
FOR MAX LIKE μ , SET $\frac{\partial \text{LogP}}{\partial \mu} = 0$
 $\frac{\partial \text{LogP}}{\partial \mu} = \frac{b}{\mu} + \frac{2c}{2\mu} - \frac{3d}{1/2 - 3\mu} = 0$
Gives max like $\mu = \frac{b+c}{6(b+c+d)}$

So if class got

Α	В	С	D
14	6	9	10

Max like
$$\mu = \frac{1}{10}$$

Same Problem with Hidden Information

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's = c

Number of D's = d

What is the max. like estimate of μ now?

REMEMBER

 $P(A) = \frac{1}{2}$

 $P(B) = \mu$

 $P(C) = 2\mu$

 $P(D) = \frac{1}{2} - 3\mu$

Same Problem with Hidden Information

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's

Number of D's = d RFMFMBFR

 $P(A) = \frac{1}{2}$

 $P(B) = \mu$

 $P(C) = 2\mu$

 $P(D) = \frac{1}{2} - 3\mu$

What is the max. like estimate of μ now?

We can answer this question circularly:

EXPECTATION

If we know use value of a and b expected value of a and b $a = \frac{1}{1/2 + \mu} h$ $b = \frac{\mu}{1/2 + \mu} h$ If we know the value of μ we could compute the

Since the ratio a:b should be the same as the ratio ½ : μ

$$t = \frac{\frac{1}{2}}{\frac{1}{2} + \mu} h$$

$$b = \frac{\mu}{\frac{1}{2} + \mu} h$$

If we know the expected values of a and b we could compute the maximum likelihood value of μ

$$\mu = \frac{b+c}{6(b+c+d)}$$

E.M. for our Trivial Problem

We begin with a guess for μ

We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates of μ and a and b.

REMEMBER

$$P(A) = \frac{1}{2}$$

$$P(B) = \mu$$

$$P(C) = 2\mu$$

$$P(D) = \frac{1}{2} - 3\mu$$

Define $\mu(t)$ the estimate of μ on the t'th iteration b(t) the estimate of b on t'th iteration

$$\mu(0) = \text{initial guess}$$

$$b(t) = \frac{\mu(t)h}{\frac{1}{2} + \mu(t)} = \text{E}[b \mid \mu(t)]$$

$$\mu(t+1) = \frac{b(t) + c}{6(b(t) + c + d)}$$

$$= \text{max like est of } \mu \text{ given } b(t)$$

Continue iterating until converged.

Good news: Converging to local optimum is assured.

Bad news: "local" optimum.

E.M. Convergence

- Convergence proof based on fact that Prob(data | μ) must increase or remain same between each iteration [NOT OBVIOUS]
- But it can never exceed 1 [OBVIOUS]

So it must therefore converge [OBVIOUS]

In our example,		t	μ(t)	b(t)
suppose we had		0	0	0
h = 20		1	0.0833	2.857
c = 10		2	0.0937	3.158
d = 10		3	0.0947	3.185
$\mu(0) = 0$		4	0.0948	3.187
Convergence is o	enerally linear: error	5	0.0948	3.187
decreases by a c step.	enerally <u>linear</u> : error onstant factor each time	6	0.0948	3.187

Recap

Maximum Likelihood Estimation

- We have data points $X_1, X_2, \dots X_n$ drawn from some (finite or countable) set \mathcal{X}
- We have a parameter vector Θ
- We have a parameter space Ω
- We have a distribution $P(X \mid \Theta)$ for any $\Theta \in \Omega$, such that

$$\sum_{X \in \mathcal{X}} P(X \mid \Theta) = 1 \text{ and } P(X \mid \Theta) \ge 0 \text{ for all } X$$

• We assume that our data points $X_1, X_2, ... X_n$ are drawn at random (independently, identically distributed) from a distribution $P(X \mid \Theta^*)$ for some $\Theta^* \in \Omega$

Log-Likelihood

- We have data points $X_1, X_2, \dots X_n$ drawn from some (finite or countable) set \mathcal{X}
- We have a parameter vector Θ , and a parameter space Ω
- We have a distribution $P(X \mid \Theta)$ for any $\Theta \in \Omega$
- The likelihood is

$$Likelihood(\Theta) = P(X_1, X_2, \dots X_n \mid \Theta) = \prod_{i=1}^n P(X_i \mid \Theta)$$

• The log-likelihood is

$$L(\Theta) = \log Likelihood(\Theta) = \sum_{i=1}^{n} \log P(X_i \mid \Theta)$$

MLE:
$$\Theta_{ML} = \operatorname{argmax}_{\Theta \in \Omega} L(\Theta) = \operatorname{argmax}_{\Theta \in \Omega} \sum_{i} \log P(X_i \mid \Theta)$$

Models with Hidden Variables: Formalization

- Now say we have two sets \mathcal{X} and \mathcal{Y} , and a joint distribution $P(X,Y\mid\Theta)$
- If we had fully observed data, (X_i, Y_i) pairs, then

$$L(\Theta) = \sum_{i} \log P(X_i, Y_i \mid \Theta)$$

• If we have partially observed data, X_i examples, then

$$L(\Theta) = \sum_{i} \log P(X_i \mid \Theta)$$
$$= \sum_{i} \log \sum_{Y \in \mathcal{V}} P(X_i, Y \mid \Theta)$$

• The EM (Expectation Maximization) algorithm is a method for finding

$$\Theta_{ML} = \operatorname{argmax}_{\Theta} \sum_{i} \log \sum_{Y \in \mathcal{V}} P(X_i, Y \mid \Theta)$$

EM Formalization

- Let X be all observed variable values (over all examples)
- Let Z be all unobserved variable values
- Can't calculate MLE:

$$\theta \leftarrow \arg\max_{\theta} \log P(X, Z|\theta)$$

EM seeks estimate:

$$\theta \leftarrow \arg \max_{\theta} E_{Z|X,\theta}[\log P(X,Z|\theta)]$$

Deriving the EM Algorithm

- Want to find θ to maximize $Pr(D | \theta)$
- Instead, find θ , \tilde{P} to maximize

$$g(\theta, \tilde{P}) = \sum_{H} \tilde{P}(H) \log(\Pr(D, H \mid \theta) / \tilde{P}(H))$$
$$= E_{\tilde{P}} \log \Pr(D, H \mid \theta) - \log \tilde{P}(H)$$

- Alternate between
 - ullet holding heta fixed and optimizing $ilde{P}$
 - ullet holding $ilde{P}$ fixed and optimizing heta
- ullet g has same local and global optima as $\Pr(D \mid heta)$

EM Algorithm

- Pick initial θ_0
- Loop until apparently converged
 - $\tilde{P}_{t+1}(H) = \Pr(H \mid D, \theta_t)$
 - $\theta_{t+1} = \underset{\theta}{\operatorname{arg\,max}} E_{\tilde{P}_{t+1}} \operatorname{logPr}(D, H \mid \theta)$
- Monotonically increasing likelihood
- Convergence is hard to determine due to plateaus
- Problems with local optima

MLE for CPTs

- •Each conditional probability table θ_i part of our parameters
- Given table, have pdf

$$p\left(x\mid\theta
ight)=\prod_{i=1}^{n}p\left(x_{_{i}}\mid\pi_{_{i}},\theta_{_{i}}
ight)$$

Have M variables:

$$X_{_{U}}=\left\{ x_{_{1}},\ldots,x_{_{M}}\right\}$$

•Have N x M dataset:

$$\mathcal{D} = \left\{X_{_{U,1}}, \dots, X_{_{U,N}}\right\}$$

Maximum likelihood:

each θ_i appears independently, can do ML for each CPT alone! efficient storage

efficient learning

 $parents of child i = pa_i = \pi_i$

MLE for CPTs

PATIENT	FLU	FEVER	SINUS	TEMP	SWELL	HEAD
1	Υ	Υ	N	L	Υ	Υ
2	N	N	N	М	N	Υ
3	Υ	N	Υ	Н	Υ	N
4	Υ	N	Υ	М	N	N

$$X_1 = FLU$$
, $X_2 = FEVER$, $X_3 = SINUS$, $X_4 = TEMP$, $X_5 = SWELL$, $X_6 = HEAD$

Let:
$$\theta\left(x_{i}, \pi_{i}\right) = p\left(x_{i} \mid \pi_{i}, \theta_{i}\right)$$

Note:
$$\sum_{x_i} \theta(x_i, \pi_i) = 1$$

MLE:
$$\theta(x_i, \pi_i) = \frac{m(x_i, \pi_i)}{m(\pi_i)}$$

EM for Bayesian Nets

- D: observable variables
- H: values of hidden variables in each case
- Assume structure is known
- Goal: maximum likelihood estimation of CPTs

- Initialize CPTs to anything (with no 0's)
- Fill in the data set with distribution over values for hidden vars
- Estimate CPTs using expected counts

EM for BN Example

D_1	D_2	 D _n	$\Pr(H^m \mid D^m, \theta_t)$
1	1	0	.9
0	1	0	.2
0	0	1	.1
1	0	1	.6
1	1	1	.2
1	1	1	.5
0	1	0	.3
0	0	0	.7
1	1	0	.2

Bayes net inference

$$E\#(H) = \sum_{m} \Pr(H^{m} \mid D^{m}, \theta_{t})$$
$$= 3.7$$

$$E\#(H \land D_2) = \sum_{m} \Pr(H^m \mid D^m, \theta_t) I(D_2^m)$$

= .9 + .2 + .2 + .5 + .3 + .2
= 2.3

$$Pr(D_2|H) \approx 2.3/3.7 = .6216$$

Re-estimate heta

EM for BN: Worked Example

Α	В	#	$\Pr(H^m \mid D^m, \theta_t)$
0	0	6	
0	1	1	
1	0	1	
1	1	4	

$$\theta_1 = \Pr(H)$$

$$\theta_2 = \Pr(A \mid H)$$

$$\theta_3 = \Pr(A \mid \neg H)$$

$$\theta_4 = \Pr(B \mid H)$$

$$\theta_5 = \Pr(B \mid \neg H)$$

EM for BN: Initial Model

Α	В	#	$\Pr(H^m \mid D^m, \theta_t)$
0	0	6	
0	1	1	
1	0	1	
1	1	4	

$$\Pr(H) = 0.4$$

$$\Pr(A|H) = 0.55$$

$$Pr(A | \neg H) = 0.61$$

$$\Pr(B|H) = 0.43$$

$$Pr(B | \neg H) = 0.52$$

Iteration 1: Fill in Data

Α	В	#	$\Pr(H^m \mid D^m, \theta_t)$
0	0	6	.48
0	1	1	.39
1	0	1	.42
1	1	4	.33

$$\Pr(H) = 0.4$$

$$\Pr(A|H) = 0.55$$

$$Pr(A \mid \neg H) = 0.61$$

$$\Pr(B|H) = 0.43$$

$$Pr(B | \neg H) = 0.52$$

Iteration 1: Re-estimate Params

Α	В	#	$\Pr(H^m \mid D^m, \theta_t)$
0	0	6	.48
0	1	1	.39
1	0	1	.42
1	1	4	.33

$$\Pr(H) = 0.42$$

$$\Pr(A|H) = 0.35$$

$$Pr(A \mid \neg H) = 0.46$$

$$\Pr(B|H) = 0.34$$

$$Pr(B | \neg H) = 0.47$$

Iteration 2: Fill in Data

Α	В	#	$\Pr(H^m \mid D^m, \theta_t)$
0	0	6	.52
0	1	1	.39
1	0	1	.39
1	1	4	.28

$$\Pr(H) = 0.42$$

$$\Pr(A|H) = 0.35$$

$$Pr(A \mid \neg H) = 0.46$$

$$\Pr(B|H) = 0.34$$

$$Pr(B | \neg H) = 0.47$$

Iteration 2: Re-estimate Params

Α	В	#	$\Pr(H^m \mid D^m, \theta_t)$
0	0	6	.52
0	1	1	.39
1	0	1	.28
1	1	4	.28

$$\Pr(H) = 0.42$$

$$\Pr(A|H) = 0.31$$

$$Pr(A | \neg H) = 0.50$$

$$\Pr(B|H) = 0.30$$

$$Pr(B | \neg H) = 0.50$$

Iteration 5

Α	В	#	$\Pr(H^m \mid D^m, \theta_t)$
0	0	6	.79
0	1	1	.31
1	0	1	.31
1	1	4	.05

$$\Pr(H) = 0.46$$

$$\Pr(A|H) = 0.09$$

$$Pr(A | \neg H) = 0.69$$

$$\Pr(B|H) = 0.09$$

$$\Pr(B | \neg H) = 0.69$$

Iteration 10

Α	В	#	$\Pr(H^m \mid D^m, \theta_t)$
0	0	6	.971
0	1	1	.183
1	0	1	.183
1	1	4	.001

$$\Pr(H) = 0.52$$

$$\Pr(A|H) = 0.03$$

$$Pr(A | \neg H) = 0.83$$

$$\Pr(B|H) = 0.03$$

$$Pr(B \mid \neg H) = 0.83$$

Increasing Log-Likelihood

