

Introduzione al sistema operativo

Laboratorio Software 2008-2009

C. Brandolese

Che cos'è un sistema operativo

Alcuni anni fa un sistema operativo era definito come:

"Il software necessario a controllare l'hardware di un calcolatore"

Da allora...

- Il panorama informatico è cambiato significativamente
 - Potenza di calcolo
 - Complessità dei sistemi
 - Complessità delle applicazioni
- Una nuova definizione si rende necessaria
 - Più ampia e completa

Che cos'è un sistema operativo

Un sistema operativo

- Separa le applicazioni dall'hardware che queste utilizzano
 - Si tratta di uno strato di software
- Offre un supporto per ottenere i risultati voluti mediante
 - Gestione dell'hardware
 - Gestione del software

Principalmente un sistema operativo è un gestore di risorse

- Hardware
 - Processori
 - Memorie
 - Dispositivi di Input/output
 - Dispostivi di Comunicazione
- Software
 - Applicazioni

Anni '40

□ I primi calcolatori non disponevano di sistema operativo

Anni '50

- Eseguivano una applicazione (job) alla volta
- Semplificavano il passaggio da un job all'altro
- □ Sistemi batch per l'esecuzione di un singolo flusso
- Programmi e dati su nastro

Primi anni '60

- Ancora sistemi batch
 - Più job contemporaneamente: multiprogrammazione
 - Un job utilizza il processore, un'altro i dispositivi di I/O
- □ Primi sistemi multi-utente

- Si consolida il concetto di timesharing
 - Sviluppato per supportare più utenti simultaneamente
 - Il turnaround time passa da minuti a secondi
- Sistemi real-time
 - Forniscono una risposta entro un tempo prefissato
- □ La memoria virtuale
 - Possibilità di indirizzare più memoria di quella disponibile
- □ Alcuni sistemi
 - TSS
 - Multics
 - CP/CMS

- Sistemi multimodali in timesharing
 - Supporo per elaborazione batch, timesharing e applicazioni real-time
- □ Stanno nascendo i primi personal computer
 - Sotto la spinta della nuova tecnologia del microprocessore
- Il Dipartimento della Difesa americano sviluppa TCP/IP
 - Protocollo di comunicazione standard
 - Inizialmente molto utilizzato nelle università ed in ambito militare
- □ Primi problemi di sicurezza
 - Molte informazioni passano su canali vulnerabili

- □ Vedono lo sviluppo di
 - Personal computer
 - Workstation
- L'elaborazione viene delocalizzata ove rischiesto
- User friendly
 - Più semplici da utilizzare
 - Nascono le prime interfacce grafiche
- Comunicazione
 - La trasmissione di dati tra computer remoti diviene più semplice ed economica
- Nasce il modello client/server
 - I client richiedono vari servizi
 - I server eseguono le operazioni richieste

- □ Le prestazioni dei calcolatori crescono esponenzialmente
 - Potenza di calcolo e capacità di memoria a basso costo
 - Personal computer in grado di eseguire programmi molto complessi
 - Grande sviluppo delle interfacce grafiche
- ☐ Ci si sposta verso il calcolo distribuito
 - Calcolatori economici per applicazioni database e job processing
- I mainframes iniziano a divenire obsoleti
 - Più computer concorrono allo svolgimento di un singolo task
 - Il supporto alle applicazioni distribuite diviene lo standard
- Microsoft e Windows divengono dominanti
 - Mutua molti concetti dai primi sistemi operativi Macintosh
 - Semplifica l'uso di più applicazioni concorrenti

Anni '90 - continua

- □ Il paradigma ad oggetti diviene dominante
 - Molte applicazioni sono sviluppat con linguaggi object-oriented
 - C++ or Java
- Object-oriented operating systems (OOOS)
 - Gli oggetti rappresentano i compoennti del sistema operativo
- □ Si sviluppano i concetti di interfaccia ed ereditarietà
 - Utilizzati per sviluppare sistemi operativi più modulari
 - Semplificano la manutenzione e l'aggiornamento
- □ Inizia a formarsi l'idea di open-source
 - Programmi e sistemi operativi distribuiti sotto forma di codice sorgente
 - Permette ai singoli programmatori di esaminare e modificare il codice
- Esempi
 - Linux
 - Apache Web server

Anni '90 - continua

- Richard Stallman lancia il progetto GNU
 - Ricreare e estendere i tool per il sistema UNIX di AT&T
- Nasce Open Source Initiative (OSI)
 - Estendere il concetto e la diffusione dell'open-source
 - Facilità il miglioramento del software
 - Aumenta la probabilità di individuare errori molto rari e nascosti
- □ I sistemi operativi diventano sempre più user friendly
 - Migliorano le interfaccie, sotto la spinta di Apple
- Nasce il concetto di "Plug-and-play"
 - Gli utenti possono aggiungere, togliere o sostituire componenti hardware senza dover riconfigurare manualmente il sistema operativo

Anni 2000

- Middleware
 - Collega due applicazioni distinte
 - Spesso attraverso una rete e su macchine incompatibili
 - Semplifica la comunicazione tra più architetture
 - Particularmente importante per i Web services
- Web services
 - Servizi standard che permettono a due macchine di interagire
 - Si tratta di porzioni di software disponibili su Internet
- E molto altro...

Ambiti applicativi

Server, server farm

- Particolari requisiti
 - Struttura scalabile, numero elevatissimo di processi
- Supporto hardware
 - Multiprocessore, memoria centrale molto grande, hardware dedicato

Embedded systems

- Altamente vincolato
 - Tempo di esecuzione, memoria richiesta, dissipazione di potenza
- Dispositivi molto specifici
 - Difficilmente portabile

Real-time systems

 Un task deve essere completato entro un periodo di tempo fissato, spesso breve

Ambiti applicativi

Macchine virtuali

- □ Astrazione software di un computer fisico
- Il sistema operativo
 - In esecuzione come processo di un sistema operativo nativo
 - Gestisce le risorse della macchina virtuale
- Applicazioni
 - Più istanze di un sistema operativo in esecuzione
 - Emulazione
 - Portabilità

Componenti di un sistema operativo

I principali componenti di ogni sistema operativo sono

- Lo scheduler
 - Processi e thread
- Il gestore della memoria
 - Memoria virtuale, paginazione e segmentazione
- Il gestore dell'I/O
 - Comunicazione con i dispositivi, mutua esclusione
- Il gestore dell'IPC (Inter-Process Communication)
 - Comunicazione tra processi
- □ Il gestore del file system
 - Accesso uniforme e strutturato ai dati
- □ Una shell
 - Interazioen con l'utente

Architetture

I moderni sistemi operativi sono molto complessi

- □ Forniscono moltissimi servizi
- Supportano una enorme varietà
 - Di componenti hardware
 - Di applicazioni

La definizione di una architettura del sistema operativo

- □ Facilita l'organizzazione delle varie componenti del sistema
- □ Definisce i privilegi con cui le diverse componenti devono essere eseguite

Quattro architetture principali

- Monolitica
- □ A livelli
- Microkernel
- Distribuita

Architettura monolitica

Tutti I componenti sono contenuti nel kernel

- Ogni componente può comunicare direttamente con ogni altro
 - Molto efficiente
- Non vi è una marcata separazione tra i componenti
 - Potenzialmente più critico
 - Difficile individuare l'origine di eventuali malfunzionamenti

Architettura a livelli o strati

Miglioramento rispetto alla soluzione monolitica

- Raggrouppa componenti con funzioni simili in un livello
- Ogni livello comunica solamente con i livelli immediatamente superiore e inferiore
 - Una richiesta può attraversare diversi livelli prima di essere soddisfatta
 - Le prestazioni tendono ad essere peggiori della soluzione monolotoca

Architettura a microkernel

Fornisce solo un insieme molto ristretto di servizi

- ☐ Si vuole mantenere il kernel molto piccolo scalabile
 - Elevata estendibilità, portabilità, scalabilità
- □ Richiede maggiore comunicazione tra i moduli
 - Peggioramento delle prestazioni

