Teilchen-Zerfall

$$BW(E) = \frac{\Gamma/2}{(E_0-E)-i\Gamma/2}$$

Atomkerne

→ Tal der Stabilität

- nur Kerne mit einem bestimmten Neutron/Proton-Verhälnis sind stabil: N/Z = 1 1.5
- z.B. Kerne mit zu vielen Neutronen und nur wenig Protonen: β^- -Zerfall
- Pauli-Blocking: Bereits besetzte p- (n-) Niveaus blockieren den n- (p-) Zerfall im Kern ⇔ Nur aus diesem Grund gibt es überhaupt Kerne

→ Nuklidkarte

- verschiedene Zerfälle in verschiedenen N-Z-Bereichen

Stabile Kerne,
$$eta^-$$
 - Zerfall, $(n o pe^- ar{
u}_e)$, eta^+ - Zerfall, $(p o ne^+
u_e)$, Elektronen-Einfang, $lpha$ Zerfall

72

Radioaktives Zerfallsgesetz

(Wiederholung)

Rutherford (Beob.):

Die von einer radioaktiven Substanz emittierte Strahlung nimmt pro Zeit-Einheit exponentiell ab.

Zahl der Kern, die während dt zerfallen:

$$dN(t) = -\lambda \cdot N(t)dt$$

 λ : Zerfallskonstante

$$N(t) = N_0 \cdot e^{-\lambda t}$$

Zerfallsgesetz

Aktivität (Zerfallsrate):

$$A = -\frac{dN}{dt} = \lambda N(t)$$

= $\lambda N_0 \cdot e^{-\lambda t}$

1 Bq = [Becquerel] = 1 Zerfall/s

Mittlere Lebensdauer:

$$\frac{N(\tau)}{N_0} = e^{-1}$$

Halbwertzeit:

$$\frac{N(t_{1/2})}{N_0} = \frac{1}{2}$$

.... Tafel

- 1) Bindungsenergie von Kernen
 - Deuteron
 - Kerne im allg.
- 2) Massenbestimmung Massenspektroskopie

Massen-Spektrograph

74

Massen-Spektrometer

Spektrum durch Veränderung der Felder

Bindungsenergien - gemessen

• $E_B/A \sim 7\text{-}8~\mathrm{MeV} \sim \mathrm{const}$ für die meisten Kerne

$$\Leftrightarrow E_B \sim A$$

76

E_B/A , Experimentelle Beobachtungen

- ullet $E_B/A\sim$ 7 8 MeV \sim const für die meisten Kerne
 - \Rightarrow Sättigung: $E_B \sim A$ und nicht $\sim A(A-1) \approx A^2$ (Wechselwirkung mit den nächsten Nachbarn)
 - ⇒ Kurzreichweitige starke Wechselwirkung
- ullet E_B/A : Maxima bei bestimmten "Magischen Zahlen" in N,Z
 - \rightarrow besonders stabile Kerne (z.B. 4_2 He (α))
- Tal der Stabilität
 N/Z: 1 1,5

⇒ Weizsäcker-Massenformel (1935)

 \rightarrow Tafel

78

Ladungsdichteverteilung ho(r) für verschiedene Kerne

⇔ Information aus e⁻Kern-Streuexperimenten

= elastische Streuung

...etwas später in der Vorlesung