Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики № 3.7.1

Скин-эффект в полом цилиндре

Авторы:

Павел Филиппенко Б01-001 Михаил Овсянников Б01-001

Преподаватель:

Смирнова Ольга Ивановна

Долгопрудный, 2021

f, Гц	I, м A	U, мВ	$\xi_{0c} \cdot 10^{-3}$
10	449,80	86,3	19,19
20	452,47	172,0	19,01
30	449,65	254,2	18,84
40	445,28	331,7	18,62
50	439,86	403,5	18,35
60	433,75	469,3	18,03
70	427,23	528,8	17,68
80	420,61	582,0	17,30
90	413,93	629,4	16,89
100	407,56	671,3	16,47

Таблица 1: Данные в диапазоне низких частот

1 Ход работы

Запишем параметры установки

$$a = 25 \text{ mm} \\ h = 1.5 \text{ mm}$$

1. Сняли зависимость U(f) и I(f) в области низких частот: 10-100 Γ ц для получаения зависимости амплитуды магнитного поля внутри экрана от частоты $\xi_{0c}(f)$. Результаты измерений приведены в таблице

$$\xi_{0c} = \frac{U}{fI} \tag{1}$$

2. Одновременно исследовали зависимоть ξ_{0c} и фазового сдвига $\Delta \psi$ от частоты в диапазоне высоких частот 0.1-35 кГц. Результаты измерений приведены в таблице Замечание: сдвиг фазы $\Delta \varphi$, измеренный по экрану осцилографа, будет отличаться от фазового сдвига между магнитными полями вне и внутри экрана на $\pi/2$.

$$\Delta\psi = \Delta\varphi + \frac{\pi}{2}$$

2 Обработка результатов

В области низких частот построим график $\xi_{0c}(f^2)$.

Экстраполируя прямую к f=0 найдемамплитуду внешнего поля ξ_0 .

$$\boxed{\xi_0 = (0.019 \pm 0.000037)}$$

Изобразим зависимость частоты фазового сдвига $\Delta \psi$ от \sqrt{f} в диапазоне высоких частот. Проведем наилучшую прямую, заметим, что при f=0 значение ординаты $y_0=0.75\approx \pi/4$.

По наклону прямой найдем значение проводимости материала экрана.

$$\Delta \psi = \frac{\pi}{4} + \frac{h\sqrt{2\pi\mu_0\sigma f}}{\sqrt{2}} \tag{2}$$

f, Гц	<i>I</i> , мА	U, мВ	$\xi_{0c} \cdot 10^{-6}$	$\Delta \varphi$	$\Delta \psi$
100	407,56	671,3	16 471,19	-1,00	0,57
500	316,84	966,0	6 097,71	-0,23	1,34
1000	279,48	884,0	3 163,02	0,00	1,57
2000	209,62	662,2	1 579,52	0,20	1,77
3000	159,35	496,8	1 039,22	0,35	1,92
4000	126,14	385,7	764,43	0,49	2,06
5000	103,39	310,4	600,44	0,64	2,21
6000	87,14	253,5	484,85	0,81	2,38
7000	74,99	211,7	403,29	0,90	2,47
8000	65,48	180,4	344,38	0,94	2,51
9000	57,86	153,8	295,35	1,09	2,66
10000	51,56	133,8	259,50	1,22	2,79
12000	41,22	10,1	20,46	1,57	3,14
14000	33,90	80,0	168,55	1,79	3,36
15000	30,82	71,7	155,09	1,89	3,46
16000	28,03	64,6	144,07	1,90	3,47
17000	25,48	58,8	135,73	1,92	3,49
18000	23,14	53,5	128,45	2,04	3,61
19000	20,96	49,1	123,27	2,15	3,72
20000	18,93	45,2	119,36	2,18	3,75
21000	17,03	42,0	117,45	2,24	3,81
22000	15,23	39,1	116,70	2,34	3,91
23000	13,52	36,6	117,67	2,47	4,04
24000	11,90	34,3	120,12	2,52	4,09
25000	10,34	32,4	$125,\!29$	2,60	4,17
26000	8,85	30,6	132,93	2,65	4,22
27000	7,42	29,0	144,70	2,72	4,29
28000	6,10	27,4	160,42	2,77	4,34
29000	4,83	26,0	185,51	2,87	4,44
30000	3,60	24,0	222,22	2,99	4,56
31000	2,76	22,0	257,22	3,14	4,71
32000	2,38	20,8	273,11	3,33	4,90
33000	2,70	18,9	212,51	3,67	5,24
34000	3,51	17,0	142,26	4,04	5,61
35000	4,57	15,0	93,78	4,71	6,28

Таблица 2: Данные в диапазоне высоких частот

Рис. 1: График зависимости ξ_{0c} от f^2

Рис. 2: График зависимости $\Delta \psi$ от \sqrt{f}

Рис. 3: График зависимости $\frac{|H_{0c}|}{|H_0|}$ от $\sqrt(f)$

$$\sigma = (5.178 \cdot 10^7 \pm) \text{ Cm/m}$$

 $\boxed{\sigma = (5.178 \cdot 10^7 \pm) \text{ CM/M}}$ Табличное значение проводимости меди $\sigma_{\text{табл}} = 6.48 \cdot 10^7 \text{ Cm/m}.$

Замечание: обратим внимание на то, что полученное значение проводимости меди меньше табличного. Замечание: обратим внимание, кроме того, на резкий рост значений графика в области частот, начиная с 30-31 кГц.

Импользуя ранее найденное значение амплитуды внешнего поля ξ_0 и результаты измерений ξ_{0c} в области высоких частот, посчитаем коэффициент ослабления магнитного поля в соответствии с формулой.

$$\frac{|H_{0c}|}{|H_0|} = \frac{\xi_{0c}(f)}{\xi_0} = \frac{U}{fI\xi_0} \tag{3}$$

Построим график зависимости $\frac{|H_{0c}|}{|H_0|}$ от $\sqrt(f)$.

Расчитаем аналогичную теоретическую зависимость по формуле

$$H_{0c} = \frac{2H_0}{ak\sinh kh + 2\cosh kh} \tag{4}$$

где

$$\delta = \sqrt{\frac{1}{\pi \mu_0 \mu \sigma f}} \tag{5}$$

глубина проникновения, а

$$k = \frac{1+i}{\delta} \tag{6}$$

Рис. 4: Сравнение экспериментальной зависимости с теоретической

Стоит воспользоваться приближением при низких и высоких частотах. При низких частотах выражение приближается формулой

$$\frac{|H_1|}{|H_0|} = \frac{1}{\sqrt{1 + \frac{1}{4}(2\pi a h \sigma \mu_0 f)^2}}$$
 (7)

При высоких частотах

$$\frac{|H_1|}{|H_0|} = \frac{2\sqrt{2}\delta}{a}e^{-\frac{h}{\delta}} \tag{8}$$

Полученная таким образом теоретическая зависимость достаточно хорошо ложиться на эксперементальные данные.

Воспользовавшись найденным значением σ , вычислим глубину проникновения δ при частотах 50 Γ ц и 10^5 Γ ц.

На частоте 50 Гц глубина проникновения $\delta=(\pm)$ На частоте 10^5 Гц глубина проникновения $\delta=(\pm)$