5.3 Consider the following model that relates the percentage of a household's budget spent on alcohol WALC to total expenditure TOTEXP, age of the household head AGE, and the number of children in

 $WALC = \beta_1 + \beta_2 \ln(TOTEXP) + \beta_3 NK + \beta_4 AGE + e$

This model was estimated using 1200 observations from London. An incomplete version of this output

TABLE 5.6 Output for Exercise 5.3

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	1.4515	2.2019		0.5099
ln(TOTEXP)	2.7648		5.7103	0.0000
NK		0.3695	-3.9376	0.0001
AGE	-0.1503	0.0235	-6.4019	0.0000
R-squared	Mean dependent var			6.1943
S.E. of regression	S.D. dependent var			6.39547
Sum squared resid	46221.62			

- a. Fill in the following blank spaces that appear in this table

 - ii. The standard error for b_2
 - iii. The estimate b_3 .
 iv. R^2 .

- c. Compute a 95% interval estimate for β₄. What does this interval tell you?
 d. Are each of the coefficient estimates significant at a 5% level? Why?
 e. Test the hypothesis that the addition of an extra child decreases the mean budget share of alcohol by 2 percentage points against the alternative that the decrease is not equal to 2 percentage points.

(iv.)
$$b_3 = 0.3695. -3.9376 = -1.4549$$

(iv.) $R = 1 - \frac{\sum_{i=1}^{2} \frac{1}{\sum_{i=1}^{2} \frac{1$

(a). (i) $t = \frac{1.4575}{2.2019} = 0.6592$

(ii) Se: $\frac{2.7648}{5.7103} = 0.4842$

(b) Holding Other anstants: (b) Holding other constants: (v.) $\Delta = \frac{\sum e^2}{1200-4} = 6,2167$. Increase to a Totexp, horeage in 2,7648 in WALC $\Delta = \frac{\sum e^2}{1200-4} = 6,2167$. Increase +1 in N/K, decrease in 1,4549 in WALC

Increase + 1 m AGE, decrease M 0,1503 m WALC.

(c) 95%-Interval: $64^{\frac{1}{2}}1.993 \times 0.0235$: [-0.1971, -1.035]=> 95% of this interval will cover the true parameter.

(d) No, We see that the p-value for B, 13 0.5099 >0.05.

(e) Ho: B3=-0.1239. (6.19434×2%), Ha: B3+-0.1239.

 $\Rightarrow t = \frac{63 - (-0.1239)}{0.3695} = -3.6022 \angle -t_{0.905,\infty} = -1.993$

→ We reject H₀ => β₃ + - υ.1239.

$$|X=Q, Var(b)| = \frac{2}{\sigma} (XX)^{-1}$$

$$= \frac{1}{\sqrt{2}} \sum_{x=1}^{2} \sum_{$$