Course Notes
for
MS4111
Discrete Mathematics 1

R. Gaburro

CHAPTER 5 Relations

5.1 Relations

We start by defining the cartesian product of two sets.

Definition 5.1 Let X, Y be two sets. The cartesian product of X and Y is defined by the set of ordered pairs

$$X \times Y = \{(x, y) \mid x \in X \text{ and } y \in Y\}$$

Example 5.1

$$X = \{1, 2, 3\}$$

 $Y = \{1, 5\},$

then

$$X \times Y = \{(1,1), (1,5), (2,1), (2,5), (3,1), (3,5)\}.$$

What is $Y \times X$?

$$Y \times X = \{(1,1), (1,2), (1,3), (5,1), (5,2), (5,3)\}.$$

Note:

$$X \times Y \neq Y \times X$$

Definition 5.2 Let A be a set. We will denote by |A| the number of elements of set A.

Note:

$$|X \times Y| = |X||Y|.$$

In general, if we have n sets

$$X_1, X_2, \ldots, X_n$$

we can define the cartesian product as the set of ordered n-tuples

$$X_1 \times X_2 \times \cdots \times X_n = \{(x_1, x_2, \dots, x_n) | x_i \in X_i, \text{ for } i = 1, \dots, n\}.$$

Definition 5.3 A (binary) relation \mathcal{R} from a set X to a set Y is a subset of the cartesian product $X \times Y$

$$\mathcal{R} \subset X \times Y$$
.

If $(x,y) \in \mathbb{R}$, we write

xRy

and we say that x is related to y.

Note: If X = Y we call \mathcal{R} a (binary) relation on X.

Definition 5.4 If R is a relation from X to Y, the set

$$\{x \in X \mid (x, y) \in \mathcal{R}, \text{ for some } y \in Y\}$$

is called the domain of \mathcal{R} .

The set

$$\{y \in Y \mid (x, y) \in \mathcal{R}, \text{ for some } x \in X\}$$

is called the range of \mathcal{R} .

Note: A relation \mathcal{R} can be given

- 1) by specifying the ordered pairs that belong to \mathcal{R} ;
- 2) by giving a rule for membership in \mathcal{R} .

Example 5.2 Consider the two sets

$$X = \{2, 3, 4, 5\}$$
 ; $Y = \{3, 4, 5, 6\}$

and the relation from X to Y given by the ordered pairs

$$\mathcal{R} = \{(2,4), (2,6), (3,3), (3,6), (4,4)\}.$$

What are the domain and the range of R?

Domain of
$$\mathcal{R} = \{2, 3, 4\}$$

Range of
$$\mathcal{R} = \{3, 4, 6\}.$$

The above relation can be also given by the following characterization:

$$(x,y) \in \mathcal{R}$$
 if x divides y .

Example 5.3 Let $X = \{1, 2, 3, 4\}$ and \mathcal{R} the relation on X defined by

$$(x,y) \in \mathcal{R}$$
 if $x \le y$, $x, y \in X$.

We can list the elements of R

$$\mathcal{R}\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}.$$

$$Domain = \{1, 2, 3, 4\} = X$$

$$Range = \{1, 2, 3, 4\} = X$$

Note: A relation \mathcal{R} on a set X can be represented by the so-called digraph: see examples given in the class or the book for this topic.

5.1.1 Some properties of Relations

Definition 5.5 A relation \mathcal{R} on X is reflexive if

$$(x,x) \in \mathcal{R}$$
, for any $x \in X$.

Example 5.4 Let $X = \{1, 2, 3, 4\}$ and \mathcal{R} the relation on X given by

$$\mathcal{R} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}.$$

 \mathcal{R} is a reflexive relation.

Example 5.5 Let $X = \{a, b, c, d\}$ and \mathcal{R} the relation on X given by

$$\mathcal{R} = \{(a, a), (b, c), (c, b), (d, d)\}.$$

 \mathcal{R} is NOT a reflexive relation since

$$(b,b) \notin \mathcal{R}$$
 and $(c,c) \notin \mathcal{R}$.

Definition 5.6 A relation \mathcal{R} on X is symmetric if for all $x, y \in X$ we have

if
$$(x,y) \in \mathcal{R}$$
, then $(y,x) \in \mathcal{R}$.

Example 5.6 Let $X = \{1, 2, 3, 4\}$ and \mathcal{R} the relation on X given by

$$\mathcal{R} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}.$$

 \mathcal{R} is NOT a symmetric relation because for example

$$(1,3) \in \mathcal{R}$$
 but $(3,1) \notin \mathcal{R}$.

Example 5.7 Let $X = \{a, b, c, d\}$ and \mathcal{R} the relation on X given by

$$\mathcal{R} = \{(a, a), (b, c), (c, b), (d, d)\}.$$

 \mathcal{R} is a symmetric relation since

$$(b,c) \notin \mathcal{R}$$
 and $(c,b) \notin \mathcal{R}$.

Definition 5.7 A relation \mathcal{R} on X is antisymmetric if for all $x, y \in X$ we have

if
$$(x,y) \in \mathcal{R}$$
, and $x \neq y$ then $(y,x) \notin \mathcal{R}$.

Example 5.8 Let $X = \{1, 2, 3, 4\}$ and \mathcal{R} the relation on X given by

$$\mathcal{R} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}.$$

 \mathcal{R} is an antisymmetric relation.

Example 5.9 Let $X = \{a, b, c, d\}$ and \mathcal{R} the relation on X given by

$$\mathcal{R} = \{(a, a), (b, c), (c, b), (d, d)\}.$$

 ${\cal R}$ is NOT an antisymmetric relation since

$$(b,c) \notin \mathcal{R}$$
 and $(c,b) \notin \mathcal{R}$.

Note: If a relation \mathcal{R} on X has no members of the form (x, y), with $x \neq y$, then \mathcal{R} is antisymmetric because the proposition

if
$$(x,y) \in \mathcal{R}$$
, and $x \neq y$ then $(y,x) \notin \mathcal{R}$

is always true since the hypothesis

$$[(x,y) \in \mathcal{R}] \land [x \neq y]$$

is false.

Example 5.10 Let $X = \{a, b, c\}$ and \mathcal{R} the relation on X given by

$$\mathcal{R} = \{(a, a), (b, b), (c, c)\}.$$

 \mathcal{R} is an antisymmetric relation. \mathcal{R} is also reflexive and symmetric.

Note: Antisymmetric does not mean not symmetric. The example above shows us that a relation can be symmetric and antisymmetric at the same time.

Definition 5.8 A relation \mathcal{R} on X is transitive if for all $x, y, z \in X$ we have

if $(x,y) \in \mathcal{R}$, and $(y,z) \in \mathcal{R}$, then $(x,z) \in \mathcal{R}$.

Example 5.11 Let $X = \{1, 2, 3, 4\}$ and \mathcal{R} the relation on X given by

$$\mathcal{R} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}.$$

 \mathcal{R} is transitive relation.

Example 5.12 Let $X = \{a, b, c\}$ and \mathcal{R} the relation on X given by

$$\mathcal{R} = \{(a, a), (b, b), (c, c)\}.$$

 \mathcal{R} is NOT a transitive relation since

$$(b,c) \in \mathcal{R}$$
 and $(c,b) \in \mathcal{R}$, but $(b,b) \notin \mathcal{R}$.

5.1.1.6 Partial and total orders

Definition 5.9 We say that a relation \mathcal{R} on X is a partial order (on X) if it is reflexive, antisymmetric and transitive.

Example 5.13 Let $X = \{1, 2, 3, 4\}$ and \mathcal{R} the relation on X given by

$$\mathcal{R} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}.$$

 \mathcal{R} is a partial order.

Definition 5.10 If \mathcal{R} is a partial order on X, we sometime write

$$x \leq y$$

to denote xRy and we say that x and y are comparable.

Definition 5.11 Let \mathcal{R} is a partial order on X. If $x, y \in X$ and we have

$$x \not\leq y$$
 and $y \not\leq x$,

we say that x and y are incomparable.

Definition 5.12 Let \mathcal{R} be a partial order on X. If every pair of elements in X are comparable, we call \mathcal{R} a total order (on X).

In example 5.13, \mathcal{R} is also a total order.

Example 5.14 Let us consider the set of natural numbers $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ and the relation on \mathbb{N}

$$x\mathcal{R}y$$
 if $x \leq y$.

 \mathcal{R} is a total order because

- 1) if $x, y \in \mathbb{N}$, then either $x \leq y$ or $y \leq x$ i.e. any pair of elements in \mathbb{N} is comparable;
- 2) $x \leq x$, for all $x \in \mathcal{N}$;
- 3) if $x \leq y$ and $x \neq y$, then $y \neq x$ (\mathcal{R} is antisymmetric);
- 4) if $x \leq y$ and $y \leq z$, then $x \leq z$ (\mathcal{R} is transitive).

5.1.1.7 Inverse of a relation

Definition 5.13 Let X and Y be two sets and \mathcal{R} a relation from X to Y. The inverse of \mathcal{R} , denoted by \mathcal{R}^{-1} , is the relation from Y to X defined by

$$\mathcal{R}^{-1} = \{ (y, x) \mid (x, y) \in \mathcal{R} \}.$$

Example 5.15 Let $X = \{2, 3, 4\}$ and $Y = \{3, 4, 5, 6\}$. Let \mathcal{R} be a relation from X to Y defined by

$$(x,y) \in \mathcal{R}$$
 if x divides y .

Let us list the elements of R:

$$\mathcal{R} = \{(2,4), (2,6), (3,3), (3,6), (4,4)\}.$$

The inverse of R is therefore

$$\mathcal{R}^{-1} = \{(4,2), (6,2), (3,3), (6,3), (4,4)\}.$$

5.1.1.8 Composition of two relations

Let X, Y and Z be three sets. Let \mathcal{R}_1 be a relation from X to Y and \mathcal{R}_2 a relation from Y to Z.

Definition 5.14 The composition of \mathcal{R}_2 with \mathcal{R}_1 , denoted by $\mathcal{R}_2 \circ \mathcal{R}_1$, is the relation from X to Z defined by

 $\mathcal{R}_2 \circ \mathcal{R}_1 = \{(x, z) | (x, y) \in \mathcal{R}_1 \text{ and } (y, z) \in \mathcal{R}_2 \text{ for some } y \in Y\}.$

Example 5.16 Let $X = \{1, 2, 3\}$, $Y = \{2, 4, 6, 8\}$ and $Z = \{u, s, t\}$. Let \mathcal{R}_1 a relation from X to Y defined by

$$\mathcal{R}_1 = \{(1,2), (1,6), (2,4), (3,4), (3,6), (3,8)\}$$

and let \mathcal{R}_2 be a relation from Y to Z defined by

$$\mathcal{R}_2 = \{(2, u), (4, s), (4, t), (6, t), (8, u)\}.$$

The composition of \mathcal{R}_2 with \mathcal{R}_1 is the relation given by

$$\mathcal{R}_2 \circ \mathcal{R}_1 = \{(1, u), (1, t), (2, s), (2, t), (3, s), (3, t), (3, u)\}.$$

5.1.2 Equivalence relations

We start by giving the following definition.

Definition 5.15 A relation \mathcal{R} on a set X is an equivalence relation if it is reflexive, symmetric and transitive.

Example 5.17 Let $X = \{1, 2, 3, 4, 5\}$ and consider the relation \mathcal{R} on X given by

$$\mathcal{R} = \{(1,1), (1,3), (1,5), (2,2), (2,4), (3,1), (3,3), (3,5), (4,2), (4,4), (5,1), (5,3), (5,5)\}.$$

1) \mathcal{R} is reflexive:

$$(1,1) \in \mathcal{R}, (2,2) \in \mathcal{R}, (3,3) \in \mathcal{R}, (4,4) \in \mathcal{R}, (5,5) \in \mathcal{R}.$$

2) \mathcal{R} is symmetric:

$$(1,3) \in \mathcal{R}$$
 and $(3,1) \in \mathcal{R}$

$$(1,5) \in \mathcal{R}$$
 and $(5,1) \in \mathcal{R}$

$$(2,4) \in \mathcal{R}$$
 and $(4,2) \in \mathcal{R}$

$$(3,5) \in \mathcal{R}$$
 and $(5,3) \in \mathcal{R}$

3) \mathcal{R} is transitive:

$$(1,1) \in \mathcal{R}$$
, $(1,3) \in \mathcal{R}$ and $(1,3) \in \mathcal{R}$
 $(1,1) \in \mathcal{R}$, $(1,5) \in \mathcal{R}$ and $(1,5) \in \mathcal{R}$
 $(1,3) \in \mathcal{R}$, $(3,1) \in \mathcal{R}$ and $(1,1) \in \mathcal{R}$
 $(1,3) \in \mathcal{R}$, $(3,3) \in \mathcal{R}$ and $(1,3) \in \mathcal{R}$
 $(1,3) \in \mathcal{R}$, $(3,5) \in \mathcal{R}$ and $(1,5) \in \mathcal{R}$

Therefore \mathcal{R} is an equivalence relation.

Example 5.18 Let $X = \{1, 2, 3, 4\}$ and \mathcal{R} the relation on X defined by

 \dots and so on \dots

$$x\mathcal{R}y$$
 if $x \leq y$.

Let us list the element of R

$$\mathcal{R} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}.$$

- 1) \mathcal{R} is obviously reflexive;
- 2) \mathcal{R} is NOT symmetric:

$$(1,2) \in \mathcal{R}$$
 but $(2,1) \notin \mathcal{R}$;

3) \mathcal{R} is transitive. This can be easily checked by using the definition of \mathcal{R} :

if
$$(x, y) \in \mathcal{R}$$
 and $(y, z) \in \mathcal{R}$

then, by definition of R, we have

$$x \le y$$
 and $y \le z$,

therefore

$$x \le z$$
 i.e. $(x, z) \in \mathcal{R}$.

 ${\cal R}$ is NOT and equivalence relation because it is not symmetric.

Example 5.19 Let $X = \{a, b, c, d\}$ and consider the relation \mathcal{R} given by

$$\mathcal{R} = \{(a, a), (b, c), (c, b), (d, d)\}.$$

1) \mathcal{R} is NOT reflexive:

$$(b,b) \notin \mathcal{R};$$

2) \mathcal{R} is symmetric:

$$(b,c) \in \mathcal{R}$$
 and $(c,b) \in \mathcal{R}$;

3) \mathcal{R} is NOT transitive:

$$(b,c) \in \mathcal{R}$$
 and $(c,b) \in \mathcal{R}$, but $(b,b) \notin \mathcal{R}$.

Therefore \mathcal{R} is NOT an equivalence relation.

Example 5.20 Let $X = \{a, b, c\}$ and \mathcal{R} the relation on X defined by

$$\mathcal{R} = \{(a, a), (b, b), (c, c)\}.$$

Check that \mathcal{R} is an equivalence relation.

Example 5.21 Let $X = \{a, b, c\}$ and \mathcal{R} the relation on X given by

$$\mathcal{R} = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}.$$

1) \mathcal{R} is reflexive:

$$(a,a) \in \mathcal{R}, (b,b) \in \mathcal{R}, (c,c) \in \mathcal{R};$$

2) \mathcal{R} is symmetric:

$$(a,b) \in \mathcal{R}$$
 and $(b,a) \in \mathcal{R}$;

3) \mathcal{R} is transitive:

$$(a,b) \in \mathcal{R} ; (b,a) \in \mathcal{R} \text{ and } (a,a) \in \mathcal{R}$$

$$(a,b) \in \mathcal{R} \; ; \; (b,b) \in \mathcal{R} \quad \text{and} \quad (a,b) \in \mathcal{R}$$

$$(b,a) \in \mathcal{R} ; (a,a) \in \mathcal{R} \text{ and } (b,a) \in \mathcal{R}$$

Therefore \mathcal{R} is an equivalence relation.

5.1.2.9 Partitions and equivalence classes

Definition 5.16 If X is a set and \mathcal{R} an equivalence relation on X, for each $a \in X$ we define the equivalence class of a to be the set

$$[a] = \{ x \in X \mid x\mathcal{R}a \}.$$

The idea id that if we consider the set

$$S = \{[a] \mid a \in X\}$$

then the elements of S are subsets of X such that the union of all of them gives X itself and each pair of sets of type [a] is either disjoint or the same set. We therefore say that S is a partition of X.

Example 5.22 In the example where we considered the set $X = \{a, b, c\}$ and the equivalence relation R on X given by

$$\mathcal{R} = \{(a, a), (b, b), (c, c), (a, b), (b, a)\},\$$

the equivalence classes of R are

$$[a] = \{a, b\} = [b]$$

 $[c] = \{c\}$

Example 5.23 Let $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and \mathcal{R} the relation on X defined by

$$x\mathcal{R}y$$
 if 3 divides $x-y$.

It can be shown that \mathcal{R} is an equivalence relation on X (left as an exercise). What are the equivalence classes of \mathcal{R} ?

[1] =
$$\{x \in X \mid 3 \text{ divides } x-1\} = \{1,4,7,10\} = [4] = [7] = [10]$$

[2] =
$$\{x \in X \mid 3 \text{ divides } x-2\} = \{2,5,8\} = [5] = [8]$$

[3] =
$$\{x \in X \mid 3 \text{ divides } x-3\} = \{3,6,9\} = [6] = [9]$$

Therefore there are three equivalence classes i.e. [1], [2], [3].

5.2 Matrix representation of relations

We will explain how to represent a relation with a matrix by giving some examples.

Example 5.24 Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c, d\}$. Let \mathcal{R} be the relation from X to Y given by

$$\mathcal{R} = \{(1,b), (1,d), (2,c), (2,c), (3,c), (3,b), (4,a)\}.$$

The matrix of the relation R relative to the orderings

ordering of X: 1, 2, 3, 4 and ordering of Y: a, b, c, d

is given by

i.e. entry ij (row i and column j) of the matrix is defined to be 1 if $(i,j) \in \mathcal{R}$ and 0 if $(i,j) \notin \mathcal{R}$.

Note: The matrix that represents a relation \mathcal{R} from a set X to a set Y depends on the orderings chosen for X and for Y.

If we change the orderings of the above example in the following way

ordering of X: 2, 3, 4, 1 and ordering of Y: d, b, a, c, we obtain the following matrix

which is different from the previous one.

5.2.1 Matrix of a relation on a set X

Example 5.25 Let $X = \{a, b, c, d\}$ and \mathcal{R} a relation on X given by

$$\mathcal{R} = \{(a, a), (b, b), (c, c), (d, d), (b, c), (c, b)\}.$$

The matrix of R relative to the ordering

ordering of X: a, b, c, d

is

Note: The matrix of a relation on a set X is always a square matrix.

The matrix of a relation from a set X to a set Y depends on the orderings of X and Y; in particular a matrix on a set X depends on the ordering of X. Nevertheless there are some properties of the relation on a set X that can be spotted by looking at the matrix which represents the relation and these properties do not depend on the ordering of X considered. We list these properties in the

following notes.

Note 1: Let \mathcal{R} be a relation on a set X and A a matrix representing \mathcal{R} in some ordering. Then \mathcal{R} is reflexive if and only if A has 1's on the main diagonal.

Note 2: Let \mathcal{R} be a relation on a set X and A a matrix representing \mathcal{R} in some ordering. Then \mathcal{R} is symmetric if and only if

$$[A]_{ij} = [A]_{ji}$$
 for all i, j .

Note 3: Let \mathcal{R} be a relation on a set X and A a matrix representing \mathcal{R} in some ordering. Then \mathcal{R} is antisymmetric if and only if

if
$$[A]_{ij} = 1$$
 for $i \neq j$, then $[A]_{ji} = 0$.

Note 4: There is no simple way to test whether a relation \mathcal{R} on a set X is transitive by examining the matrix A relative to \mathcal{R} in some ordering.

Example 5.26 Let $X = \{a, b, c\}$ and \mathcal{R} the relation on X given by

$$\mathcal{R} = \{(a, a), (b, b), (c, c)\}.$$

The matrix of R relative to the ordering

ordering of X: a, b, c,

By looking at the above matrix we can say that \mathcal{R} is symmetric and antisymmetric.

Example 5.27 Let $X = \{1, 2, 3, 4\}$ and \mathcal{R} the relation on X given by

$$\mathcal{R} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}.$$

The matrix of \mathcal{R} relative to the ordering

ordering of X: 1, 2, 3, 4

is

by looking at the above matrix we can say that \mathcal{R} is antisymmetric but it is no symmetric. The matrix is also reflexive.

5.2.2 Matrix multiplication and composition of relations

Let us consider the following example.

Example 5.28 Consider the following three sets

$$X = \{1, 2, 3\}$$

 $Y = \{a, b\}$
 $Z = \{x, y, z\}.$

Let \mathcal{R}_1 a relation from X to Y given by

$$\mathcal{R}_1 = \{(1, a), (2, b), (3, a), (3, b)\}$$

and \mathcal{R}_2 a relation from Y to Z given by

$$\mathcal{R}_2 = \{(a, x), (a, y), (b, y), (b, z)\}.$$

Let us consider the orderings

ordering of X: 1, 2, 3; ordering of Y: a, b; ordering of Z: x, y, z.

The matrices of \mathcal{R}_1 and \mathcal{R}_2 are therefore respectively

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \quad ; \quad A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

If we multiply A_1 with A_2

$$A_1 A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix}$$

which is almost the matrix of $\mathcal{R}_2 \circ \mathcal{R}_1$.

Note: The ik-entry of A_1A_2 is not zero if and only if $(i,k) \in \mathcal{R}_2 \circ \mathcal{R}_1$.

Therefore the matrix of $\mathcal{R}_2 \circ \mathcal{R}_1$ is

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

We give the following theorem which summarizes what we just saw in the above example.

MS4111

Theorem 5.1 Let X, Y, Z be three sets. Let \mathcal{R}_1 be a relation from X to Y and \mathcal{R}_2 a relation from Y to Z. Choose orderings for X, Y, Z and write the matrices of \mathcal{R}_1 and of \mathcal{R}_2 relative to these orderings, let us denote then by A_1 and A_2 respectively. Then the matrix of $\mathcal{R}_2 \circ \mathcal{R}_1$ is obtained by replacing each non zero term in the matrix A_1A_2 by 1.