LatticePower @ CSP-1919

Product Describe:

CSP 1919 is a High-Power 4W LED of LatticePower.Through the latest Chip manufacturing technology, it contains many features as high luminous efficiency, resistance to high current and low thermal resistance etc.

Applications:

Automobile, Indoor and Outdoor lighting

Features

• According to the ANSI standard colour gamut

• Compatible wiht SMT

• Size: 1.90mm×1.90 mmx0.29mm

• Typical Color Temperature and Luminous Flux: 5700K 295 lm@700ml 25 °C/Ra70

• Viewing Angle: 120°

• Chip: Sapphire Flip Chip

http://www.latticepower.com/

Contents

Application Fields	
Product Size2	2
Electro Characteristics	2
Luminous Flux Characteristics	3
Product Code	3
Bins Region	1
The Photoelectric Characteristics Graph.	3
Reflow Soldering Characteristics	11
PCB Pad Dimensions	
Tape and Reel	
Lot Numbering Code	
Reliability	15
Cautions	16

Applications:

Indoor and Outdoor lighting

Auotmotive lighting

Flash-lighting

Note: LatticeBright is provided with intellectual property rights and related patents, you need to have the patent permission to use the silicon substrate technoloy.

Copyright @2015-2016 latticebright.The information in this document is subject to change without notice.

Jiangxi LatticePower Corporation

Product Size

Note: Please strictly refer to the positive and negative of the product

Unit: mm.

Electro Characteristics (T solder pad =25 $^{\circ}$ C)

Parameter	Symbol	Min.	Typ.	Max.	Unit	conditions
Luminous Flux	Φ	270	295	330	lm	
Forward Voltage	VF	2.9	3.0	3.2	V	
Forward Current	IF		700	1200	mA	
Reverse Voltage	VR			5	V	
Colour TEMP	CCT		5700		K	
CRI	Ra		70			IF=700mA & 25 ℃
Viewing Angle	2θ1/2		120		0	25 C
Thermal Resistance			0.7		℃/W	
Human Body Model	ESD		2000		V	
Juntion TEMP	Tj			135	°C	

Note: LatticeBright is provided with intellectual property rights and related patents, you need to have the patent permission to use the silicon substrate technoloy.

Copyright @2015-2016 latticebright. The information in this document is subject to change without notice.

Jiangxi LatticePower Corporation

2

Luminous Flux Characteristics (T solder pad = 25 $^{\circ}$ C)

	CCT			Luminous Flux@25 °C					
Color	lor		Color 350mA		700	700mA		1000mA	
TEMP	Min.	Max.	Flux	Efficiency	Flux	Efficiency	Flux	Efficiency	
Cold White	5000K	8000K	162	158	295	138	384	124	

Note: ① It maintains a tolerance of $\pm 7\%$ on luminous flux measurements.

② Flux and Effiency's unit is Lm and Lm/W.

Product Code

http://www.latticepower.com/

Note: LatticeBright is provided with intellectual property rights and related patents, you need to have the patent permission to use the silicon substrate technoloy.

Copyright @2015-2016 latticebright. The information in this document is subject to change without notice.

Jiangxi LatticePower Corporation

Bins Regin

1.Color Bins

Note: LatticeBright is provided with intellectual property rights and related patents, you need to have the patent permission to use the silicon substrate technoloy.

Color Bins for 2200K, 3000K, 4000K

The Chromaticity And Color Temperature Table(K)					
Typical Color Temperature Chromaticity Areas					
2200	AA、AB、AC、AD、AA、AB4、AC1、AD2				
2500	9A、9B、9C、9D				
2700	8A、8B、8C、8D				
3000	7A0、7B0、7C0、7D0、7A3、7B4、7C1、7D2				
3500	6A、6B、6C、6D				
4000	5A0、5B0、5C0、5D0、5A3、5B4、5C1、5D2				
4500	4A、4B、4C、4D、4R、4S、4T、4U				
5000 [~] 5700	2C、2D、2T、2U、3A、3B、3R、3S				
5700 [~] 6500	1C、1D、1T、1U、2A、2B、2R、2S				
6500 [~] 8000	OA、OB、OC、OD、OR、OS、OU、OT、1A、1B、1R、1S				

2.Luminance Bins

Bin	Min.	Max.	Condition
MB	250	270	
NB	270	290	T solder pad =
PB	290	310	T solder pad = 25° C
QB	310	330	IF=700 mA
RB	330	350	

Note: It maintains a tolerance of $\pm 7\%$ on luminous flux measurements.

3.CRI Bins

BIN	Range
60	60~100
70	70~100

Note: It maintains a tolerance of ± 2 on CRI measurements.

4. Voltage Bins

BIN	Range
B2	2.8-3.0
В3	3.0-3.2
B4	3.2-3.4
B5	3.4-3.6

Note: It maintains a tolerance of ± 0.05 on VF measurements.

Note: LatticeBright is provided with intellectual property rights and related patents, you need to have the patent permission to use the silicon substrate technoloy.

Copyright @2015-2016 latticebright. The information in this document is subject to change without notice

Jiangxi LatticePower Corporation

http://www.latticepower.com/

The Photoelectric Characteristics Graph (Tj= 25 °C,6000K)

Safe use advised within the scope of photoelectric curve

Note: LatticeBright is provided with intellectual property rights and related patents, you need to have the patent permission to use the silicon substrate technoloy.

Note: LatticeBright is provided with intellectual property rights and related patents, you need to have the patent permission to use the silicon substrate technoloy.

All characteristics shown are for reference only and not guaranteed.

> The graphs above the characteristics for Ra70 LEDs of this product

Reflow Soldering Temperature Graph

Profile Feature	Lead-Free Solder
Average Ramp-Up Rate (Tsmax to	3 °C/sec max.
Preheat:Temperature Min (Tsmin)	150
Preheat:Temperature Max	200
Preheat:Time (tsmin to tsmax)	60-120 secs
Time Maintained	217 ° C
Time Maintained Above:Time (tL)	60-150 secs
Peak/Classification	260°C
Time Within 5°C of Actual Peak	5 secs
Ramp-Down Rate	6°C/sec max.
Time 25 °C to Peak Temperature	8 minutes Max.

PCB Pad Dimensions

Soldering Pad Design

Meter Solder Stencil Aperture

Unit: mm.

Note: LatticeBright is provided with intellectual property rights and related patents, you need to have the patent permission to use the silicon substrate technoloy.

Package Type
Unit: mm

- Reelsize:6000pcs.
- ➤ The tape packing method complies with IJSC0806(Packing of Electronic Components on Continuous Tapes.
- ➤ When the tape is rewound due to work interruptions, no more than 10N should be applied to the embossed carrier tape. The LEDs may stick to the cover tape.

Note: LatticeBright is provided with intellectual property rights and related patents, you need to have the patent permission to use the silicon substrate technoloy.

Damp-Proof Packing

Label Explanation

Note: LatticeBright is provided with intellectual property rights and related patents, you need to have the patent permission to use the silicon substrate technoloy.

Reliability

(1)Tests and Results

Test	Reference Standard	Test Conditions	Test Duration	Failure Criteria#	Units Failed/Tested
Resistance to Soldering Heat(Reflow Soldering)	JEITAED=470 1 300 301	T_{sld} =260 °C, 10sec,2reflows,Precondition :30 °C,70%RH,4weeks.		#1	0/22
Solderability(Reflow Soldering)	JEITA ED=4701 303 303A	T_{sld} =245±5°C,5sec,Lead-free Solder(Sn-3.0Ag-0.5Cu)		#2	0/22
Temperature Cycle	JEITA ED=4701 100 105	-40°C (30min)~25°C (5min)~100°C (30min)~25°C (5min)	100cycles	#1	0/22
Moisture Resistance(Cyclic)	JEITA ED=4701 200 203	25°C~65°C~-10°C, 90%RH, 24hr per cycle	10cycles	#1	0/22
High Temperature Storage	JEITA ED=4701 200 201	T _A =100°C	1000 cycles	#1	0/22
Temperature Humidity	JEITA FD=4701 100	$T_A=60$ °C, RH=90%	1000cycles	#1	0/22
Low Temperature Storage	JEITA ED=4701 200 202	T_A =-40 $^{\circ}$ C	1000 cycles	#1	0/22
Room Temperature Operating Life		T_A =25 °C, I_F =1200mA Test board:See NOTES below	1000 cycles	#1	0/22
High Temperature Operating Life		T_A =100 °C, I_F =1200mA Test board: See NOTES below	1000 cycles	#1	0/22
Temperature Humidity Operating Life		60°C, RH=90%, I _F =1200mA Test board: See NOTES	500cycles	#1	0/22
		below			
Low Temperature Operating Life		T_A =-40°C, I_F =1200mA Test board: See NOTES below	1000 cycles	#1	0/22
Vibration	JEITA ED=4701 400 403	200m/s ² ,100~20000~100Hz, 4cycles,4min,each X,Y,Z	48cycles	#1	0/22
Free Fall		3drops from a height of		#1	0/22

NOTES:

Test board:FR4 board thickness=1.6mm,copper layer thickness=35um,R0JA \approx 30 °C/W

Measurement are perfromed after allowing the LEDs to return to room temperature.

Note: LatticeBright is provided with intellectual property rights and related patents, you need to have the patent permission to use the silicon substrate technoloy.

(2) Failure Criteria

Criteria #	Items	Conditions	Failure Criteria
	Forward Voltage (V _F)	I _F =700mA	> Initial value×1.1
#1	Luminous Flux ($\Phi_{\rm v}$)	I _F =700mA	> Initial value ×0.7
	Reverse Current (I _R)	$V_R=5V$	> Initial value ×2.0
#2	Solderability	-	Less than 95% solder

Cautions

> Storage

Conditions		Temperature	Humidity	Time
Storago	Before Opening Aluminum Bag	≤ 300		With in 1 Year for
Storage	After Opening Aluminum Bag	≦30°C	≦70%RH	≤4weeks

- \triangleright Do not place the chips in damp places, Storage temperature between -40 °C and 100 °C, Relative humidity under 85%.
- ➤ Don't touch any unknown liquid, In particular, acetone.
- ➤ Prevent electrostatic killed, Manual operation is required to wear rubber gloves and wear electrostatic ring.

Note: LatticeBright is provided with intellectual property rights and related patents, you need to have the patent permission to use the silicon substrate technoloy.

➤ Prevent all mechanical force, Using tweezers clip to clip side gently, not picking up electrode surface and fluorescent surface.

➤ In the process of welding, don't put any external pressure on the chips, otherwise the LED internal cracks may appear, this will cause quality problems.

Note: LatticeBright is provided with intellectual property rights and related patents, you need to have the patent permission to use the silicon substrate technoloy.

Copyright @2015-2016 latticebright.The information in this document is subject to change without notice.

Jiangxi LatticePower Corporation