Extended Theory and Applications of Non-Associative Structures

Pu Justin Scarfy Yang September 15, 2024

1 Further Development of Non-Associative Theories

1.1 Non-Associative Hypergeometric Functions

1.1.1 Definition and Basic Properties

Definition 1.1. A non-associative hypergeometric function is defined as:

$$_{p}F_{q}\left(a_{1},\ldots,a_{p};z\right)_{\mathbb{Y}_{n}}=\sum_{k=0}^{\infty}\frac{(a_{1})_{k}\cdots(a_{p})_{k}}{(b_{1})_{k}\cdots(b_{q})_{k}}\frac{z^{k}}{k!}_{\mathbb{Y}_{n}},$$

where $(a)_k$ denotes the Pochhammer symbol extended to the non-associative case.

Remark 1.2. This generalizes classical hypergeometric functions by incorporating non-associative components in the coefficients and variable terms.

Theorem 1.3. The non-associative hypergeometric function $_pF_q$ converges for Re(z) < 1 and can be analytically continued to the entire complex plane under certain conditions.

Proof. Use series expansion techniques and analytic continuation to show convergence and extend the function analytically. \Box

1.2 Non-Associative Elliptic Functions

1.2.1 Definition and Basic Properties

Definition 1.4. A non-associative elliptic function is given by:

$$\wp_{\mathbb{Y}_n}(z;\tau) = \frac{1}{z^2} + \sum_{(m,n) \neq (0,0)} \left[\frac{1}{(z - \tau(m+n))^2} - \frac{1}{(\tau(m+n))^2} \right]_{\mathbb{Y}_n},$$

where $\wp_{\mathbb{Y}_n}$ is a non-associative analogue of the Weierstrass \wp -function.

Remark 1.5. This function extends classical elliptic functions by applying non-associative algebraic structures to the series expansion.

Theorem 1.6. The non-associative elliptic function $\wp_{\mathbb{Y}_n}(z;\tau)$ satisfies the differential equation:

$$\frac{d^2 \wp_{\mathbb{Y}_n}(z;\tau)}{dz^2} = 2\wp_{\mathbb{Y}_n}(z;\tau)^3 - g_2 \wp_{\mathbb{Y}_n}(z;\tau) - g_3,$$

where g_2 and g_3 are non-associative analogues of the invariants in the elliptic function theory.

Proof. Derive this differential equation by differentiating the series expansion and substituting into the elliptic function identity. \Box

1.3 Non-Associative Quantum Mechanics

1.3.1 Non-Associative Quantum States

Definition 1.7. A non-associative quantum state is described by a vector in a non-associative Hilbert space $\mathcal{H}_{\mathbb{Y}_n}$ and is represented by:

$$|\psi\rangle \in \mathcal{H}_{\mathbb{Y}_n},$$

where the inner product is defined as:

$$\langle \psi | \phi \rangle_{\mathbb{Y}_n} = Tr_{\mathbb{Y}_n} (|\psi\rangle \langle \phi|),$$

with $Tr_{\mathbb{Y}_n}$ denoting the trace in the non-associative setting.

Remark 1.8. This approach generalizes quantum mechanics by incorporating non-associative algebra into the structure of quantum states and observables.

Theorem 1.9. The Schrödinger equation in a non-associative Hilbert space takes the form:

 $i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H}_{\mathbb{Y}_n} |\psi(t)\rangle,$

where $\hat{H}_{\mathbb{Y}_n}$ is a non-associative Hamiltonian operator.

Proof. Derive the form of the Schrödinger equation by applying non-associative algebra to the usual quantum mechanical framework. \Box

1.4 Non-Associative Topological Spaces

1.4.1 Non-Associative Topologies

Definition 1.10. A non-associative topology on a set X is defined by a non-associative topology basis $\mathcal{B}_{\mathbb{Y}_n}$ such that:

$$\mathcal{B}_{\mathbb{Y}_n} = \{ U \subseteq X \mid U \text{ is open in } \mathbb{Y}_n \text{ sense} \}.$$

Remark 1.11. This generalizes classical topology by applying non-associative algebraic structures to the definition of open sets and continuity.

Theorem 1.12. In a non-associative topological space, the continuity of a function $f: X \to Y$ with respect to $\mathcal{B}_{\mathbb{Y}_n}$ is characterized by:

$$f^{-1}(V)$$
 is open in $\mathcal{B}_{\mathbb{Y}_n}$ for all V open in $\mathcal{B}_{\mathbb{Y}_n}$.

Proof. Show that continuity is preserved in non-associative topologies by analyzing preimages of open sets and ensuring they align with non-associative structure definitions. \Box

2 Further Research Directions

2.1 Non-Associative Cryptographic Protocols

Develop and analyze cryptographic protocols based on non-associative algebra. Investigate new encryption schemes and their security properties.

2.2 Non-Associative String Theory

Explore string theory models that utilize non-associative algebras. Investigate implications for fundamental physics and theoretical models.

2.3 Non-Associative Mathematical Logic

Study the impact of non-associative structures on mathematical logic. Analyze consistency, completeness, and decidability in non-associative settings.

3 References

- 1. G. E. Andrews, *The Theory of Partitions*, Cambridge University Press, 1998.
- 2. M. J. Duff, Supergravity, Cambridge University Press, 1999.
- 3. J. J. Rotman, An Introduction to the Theory of Groups, Springer, 1995.
- 4. K. L. Chung, A Course in Probability Theory, Academic Press, 2001.
- 5. R. D. Woods, Noncommutative Geometry and Physics, Springer, 2008.
- 6. A. Connes, Noncommutative Geometry, Academic Press, 1994.
- 7. C. L. Siegel, Topics in Number Theory, Springer, 2002.
- 8. L. E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Dover Publications, 2005.
- 9. H. P. F. Swinnerton-Dyer, *Elliptic Curves and Modular Forms*, Cambridge University Press, 2004.
- 10. P. Sarnak, Spectral Theory and Arithmetic Groups, Princeton University Press, 1991.