❖ Nonvolatile memory (ROM):

- -Program memory (the code on it).
- -Access time in rom is greater than in ram.
- -Rom based on FGM (floating gate mosfet).

The floating gate has two states:

1-programing state: means there is a negative charge (make the bit equal 0).

2-erasing state: means there is no charge (positive charge) (make the bit equal 1).

Note:

- -The charge in the floating gate is stuck until we apply high voltage on the drain.
- -Rom is read only memory for microprocessor.

Types of rom:

a-mask programable rom:

- -Once you apply a code you can't modify it if there is bug in runtime.
- -the factory already applies the code in it.
- -OTP>>one time program.

Ex: bios chip.

b-PROM (programable ROM)

-OTP, consists of fuses, the user apply the code in it.

c-EPROM (erasable programable rom):

-erasable by ultraviolet.

Adv: erasable, nonvolatile

Dis: affected by noise and radiation(corruption).

* Hybrid memory:

-Take the adv of RAM (read and write) and the adv of ROM (nonvolatile).

Types:

a-EEPROM (electrical erasable programable rom):

- -erase by electricity.
- -Endurance (can write and erase up to):100000
- -Byte access.
- -high cost per bit.

Types

- 1-internal (inside the MCU).
- 2-external (connected through communication protocols).

b-flash:

- -block access (sector by sector) number of bytes
- Endurance (can write and erase up to):10000
- -low cost per bit.

c-NVRAM:

(SRAM +battery) or (SRAM +EEROM +battery).

❖ Cache memory (SRAM):

CPU<< >> cache << >> RAM.

- -The cache has levels.
- -every cache has a controller in it.

Cache coherence: if any of the cache change variable in ram it will tell the other caches.

Register files >>> cache memory >>> RAM >>> HDD.

Hit ratio:

Number of hits divided by the total (hit + miss).

FPU (floating point unit):

Can be inside the microprocessor or outside.

MPU (memory protection unit):

- -put between cache and ram.
- -Divide the RAM to ranges based on the operating system.

MMU (memory management unit)

Architecture:

1-VON-NEUMEN:

- -One memory system.
- -We can't talk to ROM and RAM at the same time.

2-harvard:

- -We can talk to ROM and RAM at the same time.
- -But how do we know if we talk to RAM, or we talk to ROM??

By software for RAM (load/store), ROM(R/W)

I/O on Harvard:

1- the I/O are connected with RAM or ROM by memory mapped.

2-the I/O are connected with MPU by port mapped.

Note:

- -VON-NEUMEN is used in PC, but Harvard used it in MC.
- -VON-NEUMEN can't support pipelining, but Harvard does.
- -CISC can't support pipelining, but RISC does.

MIPS: million instructions (assembly INST) per second.

* Clock systems:

1-electrical:

RC-OSCILLATER.

2-mechanical:

-Material has electrical power as an input and output square wave.

Has two types: a-ceramic resonator. b-crystal oscillator.

RC	ceramic resonator		crystal oscillator
low	medium 		high
low high	medium medium		high low
low	hiøh		high
low	high		high
high	low		low
	low low high low low	low medium low medium high medium low high low high	low medium low medium high medium low high low high