

Part 6: CMOS

CMOS principles

CMOS scaling

Technology issues

Speed and power dissipation

Use of strain

Gate architecture

CMOS devices

CMOS

NMOS

Complementary MOS is the basis of modern microprocessor technology

PMOS

CMOS uses a 'complementary pair of n and p – type enhancement mode FETs in which the doping arrangements are reversed.

These FETs require the application of a gate voltage to turn on. The direction of the gate voltage is however different for the type types.

CMOS

It is important that the two FETs are 'complementary' in characteristics. The most important factor is that the threshold voltages are made nearly equal (and of course opposite sign).

Normal to plot the characteristics together as shown on the right - this is rather ideal and often not achievable in reality

CMOS

During any part of the logic sequence one device will be raised above threshold to make in conduct (on-state) whilst the other is in the off state. Combining two devices together means in principle there is no static power drain at stand-by.

CMOS

The CMOS 'pair' also offers low power for switching as well as low static power dissipation

$$\tau = \frac{C_g \Delta V_{DD}}{I}$$

Switching time is governed by the gate capacitance and supply voltage (typically 2-3x the lowest V_T of the pair)

A further advantage is that CMOS uses a lower transistor count than other approaches (particularly of emitter coupled logic which it replaced)

It is also highly integratable with a geometry which naturally allows a closely spaced pair with surface interconnection

CMOS

NAND logic gate-basis of modern digital logic

If both of the A and B inputs are high, then both the NMOS transistors will conduct whilst neither of the PMOS transistors will conduct, and a conductive path will be established between the output and ground, giving a zero.

If either of the A or B inputs is low, one of the NMOS transistors will not conduct, but one of the PMOS transistors will and a conductive path will be established between the output and $V_{\rm dd}$ (voltage source), bringing the output high

CMOS

The result is a conductive path between the output and V_{dd} ; this gives a '1'.

CMOS has fast low-to-high and high-to-low output transitions. This is because the transistors have low resistance when switched on. Also the output signal swings the full voltage between low and high rails, making for a strong symmetric response.

CMOS

CMOS needs to form an n and p channel MOSFETs on the same substrate. Uses ion implantation doping (compensation doping)

CMOS

MOSFET drain current

$$I_{D} = \frac{Z\mu C_{OX}}{L} \left[(V_{GS} - V_{T})V_{DS} - \frac{V_{DS}^{2}}{2} \right]$$

High performance- would like to have a large I_D for a small V_{GS}

Increase C_{ox} and μ, reduce L

CMOS

So for high speed we need to reduce L, increase μ and increase C_{ox}

However!

Reducing L has an affect on V_T

 C_{OX} depends on the oxide thickness, t_{OX} , which cannot be further reduced without causing excessive gate leakage current

To increase mobility μ , we have to move from simple silicon based devices

Solutions

- Decrease L and control V_T (suppress the short-channel effect)
- Increasing μ via mobility improvement: SiGe, III-V, Graphene
- Reduce gate leakage via using thicker, but higher-k dielectrics

CMOS

Scaling in modern CMOS

Process of systematic shrinking of device size to make transistors smaller and the circuits more dense

Scaling can apply to the device dimensions such as gate length and gate oxide thickness, basic device characteristics such as g_m and f_T and also operating parameters such as V_{DD} and power consumption

All part of the industry philosophy: to get better performance for the same area. Essentially an economic drive: offer better performance, or same performance at less costmake more money

CMOS

Intel® 4004 processor Introduced 1971 Initial clock speed

108 KHz Number of transistors

2,300
Manufacturing technology

10_µ

Intel® Pentium® processor Introduced 1993 Initial clock speed

66 MHz

3,100,000

Manufacturing technology

 0.8μ

Quad-Core Intel® Xeon® processor (Penryn)
Dual-Core Intel® Xeon® processor (Penryn)
Quad-Core Intel® Core™2 Extreme processor (Penryn)
Introduced 2007
Initial clock speed

> 3 GHz

820,000,000

Manufacturing technology

45nm

92K IPS

40 years: 220 times smaller- 1 million times faster

CMOS

Deep Submicron FET Fabrication Sequence

CMOS

Lithography

Optical image transfer from an opaque mask to the semiconductor surface

Uses photoresit- a light sensitive polymer which undergoes chemical changes on exposure. The light exposed regions may then be stabilised by means of a developer. These regions may then be dissolved in solvent.

Any optical system has a minimum resolution (W) due to diffraction. Two waves separated by $\lambda/4$ will destructively interfere.

NA= numerical aperture = n. $Sin\theta$

$$W = \frac{\lambda}{4.NA}$$

CMOS

Many advanced lithography systems operate close to the near-field condition ($\theta \rightarrow 90^{\circ}$). Sin θ more typically ≈ 0.5

Also can make use of an immersion lens where the optical medium is some fluid (water, oil)

Air: n=1, Water: n=1.33, Silicone Oil: n= 1.45

NA typically ~0.5-0.7

The other way to improve the resolution has been to reduce the wavelength of the light

CMOS

436 nm (G-line of mercury arc lamps)

365nm (I-line of mercury arc lamps)

248 nm (krypton-fluoride excimer laser).

193 nm (Argon-fluoride laser)

Yet even with E-UV there is a resolution issue

$$W = \frac{193x10^{-9}}{4.0.7} = 69nm$$

How to make 22nm gates? On option is to move from optical lithography

- e-beam de Broglie wavelength of an electron (at typical acceleration voltages) is in the 100pm range
- x-rays wavelengths in the 10's of pm range

CMOS

E-beam is frequently used in nanolithography, but it is a sequential process in which the beam is made to scan the surface. It is relatively slow for large areas and would be impossibly slow for a whole 12 or 14 inch wafer

X-ray optics are very difficult to construct and as a result x-ray lithography is as yet only a technique for the lab.

For these reasons the industry prefers to use optical lithography, albeit at extreme UV wavelengths. Currently developing 157nm Fluorine excimer laser sources for lithography (but many issues).

It has also found ways to 'live' with the resolution issues.

CMOS

One such 'trick' is double patterning

The sample is exposed once to photoresit and processed in a positive develop, then exposed again and a negative develop is performed. As a result the resolution can be halved. This can be performed again and again (triple, quadruple patterning)

Another is to use a special phaseshift mask. This is now quite common in industry

Si CMOS: Moore's Law

No of transistors per chip doubling every 2 years

We are currently at the 22nm node. Plans are in place for the next 16nm node.

What happens after that?

Microprocessor Transistor Counts 1971-2011 & Moore's Law

CMOS

III-V (InSb channel)

Moore's law continues- more Moore

Use different channel materials (e.g: III-V, or graphene) or different geometries e.g: nanowire

Moore's law ends- more than Moore

CMOS is replaced by other switching technologies

Single electron transistor, where the gate controls the rate of tunnelling through a quantum dot

Spin valve, where the gate controls the spin direction of the electron

CMOS

CMOS scaling

All dimensions scaled down by a factor 1/k (k>1). Also all voltages (constant field)

Scaling the voltage also ensures a constant electric field to avoid breakdown and reduce power dissipation

1) Total gate capacitance

$$C_{OX}^* \propto \frac{1}{d_{ox}}.LZ$$
 Scaling: $C_{OX}^* \rightarrow C_{OX}^*/k$

CMOS

2) Gate capacitance per unit area

$$C_{OX} \rightarrow C_{OX}k$$

3) Threshold voltage

$$V_{T} = -\left|V_{FB}\right| + 2\left|V_{B}\right| + \frac{\left(2q\varepsilon_{S}N_{A}\left|2V_{B}\right|\right)^{\frac{1}{2}}}{C_{OY}}$$

4) Drain current

$$I_D \propto C_{OX} \frac{Z}{L} V^2 \longrightarrow C_{OX} k \frac{Z/k}{L/k} \cdot \frac{V^2}{k^2} \rightarrow \frac{I_D}{k}$$

5) Switch delay

$$\propto L \propto \frac{1}{k}$$
 6) Power dissipation $\propto I_D V \propto \frac{1}{k^2}$

7) Power-delay product (figure of merit) $\propto \frac{1}{L^2} \cdot \frac{1}{L} \propto \frac{1}{L^3}$

$$\propto \frac{1}{k^2} \cdot \frac{1}{k} \propto \frac{1}{k^3}$$

Parameter	Z,L,d_{ox}	V_{DS}, V_T	C^*_{OX}	C_{OX}	I_D	DC power	Switch time	Power-delay product
Scaling	1/k	1/k	1/k	k	1/k	$1/k^2$	1/k	$1/k^3$

CMOS

Scaling Impact on MOSFET Performance Parameters

$$g_{m} = -\frac{Z\mu C_{OX}}{L} \left[V_{GS} - V_{T} \right] \propto C_{OX} \frac{Z}{L} V \rightarrow k C_{OX} \frac{Z/k}{L/k} V/k \rightarrow g_{m}$$

So g_m maintained despite increase in C_{OX} -gate capacitance per unit area due to thinner oxide.

$$f_T = \frac{\mu}{2\pi L^2} \left(V_{GS} - V_T \right) \propto \frac{V}{L^2} \rightarrow \frac{V/k}{L^2/k^2} \rightarrow k f_T$$

so. f_T improved by a factor k

If scaling of V is not maintained (gets more difficult for smaller devices) then f_T will increase at a even faster rate ($k^2 f_T$).

However, the velocity tends to saturate

$$f_T = \frac{v_{sat}}{2\pi L} \to k f_T$$

Reassuringly- same result

CMOS

Power considerations

At low frequency the power dissipation (I_DV_D) scales with 1/k²

Power dissipation is a serious problem in microprocessors so this $1/k^2$ reduction is very useful. However, since the chip area also scales with $1/k^2$, the power density remains constant. Harder to dissipate

heat from a smaller devices: requires good radial heat conduction

CMOS

Power considerations

A well as MOSFET static power dissipation, which comes primarily from gate leakage we also have **dynamic power dissipation** during the switching cycle

$$P_D = \alpha C V_{DD}^2 f$$

 α - switching probability (not all gates working at the same time)

C – total capacitance

 V_{DD} – voltage swing. f – clock frequency (latest processors 3-4GHz)

From the previous arguments the total power should scale as 1/k³ and the power density by 1/k. However, at very small dimensions the voltage stops scaling causing power density to increase.

Also if we increase the operating frequency we increase the power and power density

Potential

CMOS

Limits to Scaling

Reduce all dimensions by 1/k including the oxide thickness

As this thickness reduces below a few nm then electron tunnelling can occur

The tunnelling of electrons from the gate to the channel causes gate leakage which leads to excess power dissipation. This is a quantum mechanical effect due to the small dimensions.

The magnitude of this current depends exponentially on the oxide thickness and has recently become a problem as gate oxide thicknesses are reducing towards just a few atomic layers thick.

CMOS

Approaches to circumvent the tunnel limit

- Accept thicker oxide and continue scaling and design out effects of thicker oxide (e.g dual gate FETs)
- Use an insulator with higher dielectric constant to achieve the same capacitance at a greater distance. Such dielectrics are known as a high-k ($k \equiv \varepsilon_r$ relative dielectric constant)

Figure 14

Measured and simulated $I_{\rm G}$ – $V_{\rm G}$ characteristics under accumulation conditions of p⁺-gate/n-Si MOS devices with oxides ranging from 22.9 to 41.8 Å. The thickness is determined using the QM scheme.

CMOS

High –k dielectrics

Dielectric

From the 45nm node onwards a a thicker layer of high -k hafnium oxide is used to reduce tunnelling. HfO₂ has 5x the ϵ_r of SiO₂

Further ongoing research to find even higher k-materials

	constant (bulk)
Silicon dioxide (SiO ₂)	3.9
Silicon nitride (Si ₃ N ₄)	7
Aluminum oxide (Al ₂ O ₃)	~10
Tantulum pentoxide (Ta2O5)	25
Lanthanum oxide (La ₂ O ₃)	~21
Gadolinium oxide (Gd ₂ O ₃)	~12
Yttrium oxide (Y2O3)	~15
Hafnium oxide (HfO ₂)	~20
Zirconium oxide (ZrO ₂)	~23

Dielectric

CMOS

CMOS device is in the ON state when $V_G > V_T$. We have already said that V_T should scale as 1/k.

In practice, however, the dimensions have reduced much faster than the operating voltage. What is the problem?

Operating Voltage

 $(V_{DD}-V_{T})$ must be large enough to provide sufficient I_{D} for acceptable performance .

- For low 'off-state' currents $V_T \ge 120$ mV hence voltage scaling cannot be maintained
- Logic swing must be ≥ 4kT (100 mV) to maintain 2 distinct logic states, otherwise can get errors due to thermal noise

CMOS

Doping Limits

Doping concentrations need to increase as part of the scaling process: same number but smaller device size

There is however a solubility limit above which no more dopant atoms can be accommodated.

This happens at the source and drain contacts first. Also spreading of the dopants (out-diffusion) occurs during the annealing cycles and this is worse for high doping. Practically we are at those limits now.

Solubility limits for various dopants in silicon

CMOS

Gate Lengths

The technological limit here is the lithography, as discussed before. Further developments may get us down to 10nm resolution, but not without much more work and ever greater cost. Difficult to see optical techniques going beyond that limit.

Gate lengths of < 10 nm will result in the problem of direct tunnelling between the source and drain contacts, so this is probably the limit of the MOSFET approach anyway.

We are not far from that limit (2-3 years)

CMOS

Interconnect Delays

As devices become smaller as the interconnect wires become thinner. This gives rise to more resistance.

Also at high frequencies we the skin effect in which current becomes confined towards the surface of the conductor

Additionally the wires and metal contacts are now closer together and subject to more capacitive coupling.

Calculation showing the increase in resistance due to the skin effect

CMOS

Such capacitances are proportional to the dielectric constant of the insulator. Need low-k materials $(\langle k_{SiO2} | i. e \langle 3.5 \rangle)$ for this application

Film	<i>k</i> range	Deposition method
FSG	3.2-4.1	PECVD
Polyimides	3.1-4.0	Spin-on
HSQ	2.5-3.3	Spin-on
MSQ	2.0-3.0	Spin-on
SiOCH	2.2-3.5	CVD, PECVD
BCBs	2.6-2.8	Spin-on
Fluorinated polyimides	2.5-2.9	Spin-on
Diamond-like carbon	2.7-3.4	PECVD
Spin-on organics	2.0-3.2	Spin-on

A simplistic expression for the interconnect delay is given by:

$$\tau = R_{tr}(C_G + cl) + rl(C_G + cl) = (R_{tr} + rl)(C_G + cl)$$

Where R_{tr} = 'on' resistance of transistor , C_G = transistor gate capacitance and r, c = resistance and capacitance of the interconnects per unit length

Clearly the interconnect delay could increase substantially if r and c increase with reduced dimensions or increased operating speed

CMOS

Early CMOS used Al interconnects for ease of deposition and etch. Cu has a lower resistivity, however Cu is difficult to work with:

Difficult to etch, needed a new process- Damascene.

Also Cu reacts with Si to form CuSi₂ leading to contact resistance and adhesion problems. Needs special interfacial layers.

To reduce k, use a low-k dielectric such fluorosilicate glass

CMOS

Despite these improved technologies interconnect power losses are still a major factor in limiting CMOS performance

Interconnect power losses are predicted to dominate beyond the 22nm node (2013) unless this is specifically addressed.

Hot Electron Effects

These occur at short channel lengths, in which the field is high Electrons accelerate in the high electric field and become 'hot' (energetic)

These hot electrons can surmount the gate dielectric barrier causing increased gate leakage. Process is called *thermionic assisted* tunnelling

CMOS

These electrons can enter and get trapped in the dielectric causing a time dependent increase in the threshold voltage, V_T

Hot electrons can also produce impact ionisation (see later) in which secondary electrons increase the drain current with increased V_D leading to increased output conductance g_D

Secondary holes are also produced by this process, and these drift towards the substrate. These holes can causing noise or cause latch-up problems in CMOS

CMOS

These effects cause the device characteristics to change with time and hence can lead to poor reliability.

Devices are tested under higher than normal operating conditions (voltage and temperature) to assess reliability. Latch-up (a low impedance path) can develop with time and can show up under such testing.

CMOS

Hot carrier effects are less problematic for p-channel MOS because the holes have a lower mobility (less energy) and they have a higher gate oxide barrier to surmount.

Channel mobility and strain

Starting with the 90nm node, strained Si channels have been

introduced to improve the mobility of electrons and holes.

The strain has been introduced by using a SiGe alloy which has a larger lattice constant (crystal spacing) than the Silicon

Silicon channel

CMOS

Compressively strained P MOSFET

Tensile strained N-MOSFETs

minima as valleys

CMOS

Using strain exploits the fact that m* is direction dependent in semiconductor crystals. This is because electrons can move through the crystal more easily in certainly directions

CMOS

The full band structure is very complex.

We refer to the three reciprocal space directions as Γ, X and L

Application of strain can split & raise/lower the bands on orthogonal axes. This can be used to bring a low effective mass band below that of a high effective mass one, increasing the overall mobility

CMOS

Silicon -unstrained $m_e^* = 0.26$

If we strain and bring a lower effective mass band down below energy of the other bands then the lowest band has an $m_e^*=0.19$

Potential ~40% improvement in effective mass, translating to a 40% improvement in I_D

CMOS

Latest generation: more extreme strain!

CMOS

One commonly used performance measure for CMOS is to look at the ratio of the **ON** current divided by the **OFF** current. Usually this needs to be >1000

For NMOS a tensile strained overlayer (TOL) improves the ON current, whilst a compressive strained overlayer reduces it. The effect is opposite for PMOS.

CMOS

A combination of strain techniques is now being used to give performance enhancements.

There is still the possibility to go further using more effective or even new types of stressor.

I _{on} -gain	n-MOSFET	p-MOSFET
eSi:C	(6 %)	-
TOL	12 %	-
SMT	10 %	1
sSOI	(10 %)	1
COL	-	35 %
eSiGe	-	25 %
Total Theory	22 %	60 %
Total Experiment	20 %	72 %

Note the big improvement is for the performance of the pMOS

CMOS

Previous work has discussed FETs on doped substrates (usually ptype). Modern CMOS tends to use silicon-on-insulator (SOI) as a substrate which has a thin oxide layer implanted into the substrate

The oxide creates an insulating layer below the channel. This device then has no major parasitic elements coming from the source and drain interacting with the substrate (no *floor*).

One problem however is that the upper Si layer is degraded by the oxide implantation. Newer technology uses wafer bonding techniques

CMOS

Strained channels (metamorphic)

Increasing the SiGe content of devices gives a major improvement in mobility, particularly for the holes

This SiGe based approach is called Heterostructure MOS (HMOS)

CMOS

Both n-type and p-type devices are improved, but the major benefit is for p-type. This results in a more 'complementary' CMOS device

A major issue with this technology is controlling the dislocations which come from the grading from Si to SiGe

Multi-gates and Fin gates

At small dimensions a multi-channel structure better than a single channel one with a single gate

The spread of the field is reduced leading to increased I_d and reduced V_T

A 3D gate performs even better in this respect (called a Fin gate)

Multi-gates and Fin gates

Better still is to have multigates and Fins.

Traditional Planar Transistor

Traditional 2-D planar transistors form a conducting channel in the silicon region under the gate electrode when in the "on" state

22 nm Tri-Gate Transistor

3-D Tri-Gate transistors form conducting channels on three sides of a vertical fin structure, providing "fully depleted" operation

This approach is known to show a significant increase in drain current for the same gate voltage (higher transconductance)

22 nm Tri-Gate Transistor

Gate transistors can have multiple fins connected together to increase total drive strength for higher performance

Multi-gates and Fin gates

Intel call this the 'Tri-gate' approach and use this on their 22nm node processors

Very little in the way of performance data is available at the momentkeeping many of the details under wraps

CMOS

According to Intel the Tri-gate electrode increases the inversion layer area to allow **a reduced** drive current. Process cost additions are only 2-3%

Gives 'unprecedented' gains in operating speed at low voltage

CMOS Processors

Processor Types

- Full-custom: All circuits/transistor layouts, optimized for a specific application.
- Standard-cell: Arrays of small function blocks (gates, FFs) automatically placed and routed.
- Gate array: Partially prefabricated wafers customized with metal layers.
- Field-programmable gate array (FPGA): Prefabricated chips with field-programmable switches
- Microprocessor (CPU, MCU): Instruction set interpreter customized through software.
- Domain Specific Processor: (DSP, NP, GPU).

CMOS Memory

Semiconductor memory is critically important in modern digital systems. There is a strong drive to increase capacity, reduce cost and reduce access times. There are two types of memory in common usage, both based on the Si MOSFET

• Flash Memory- Computer BIOS, Memory sticks, SD cards etc

• Dynamic random access memory (DRAM)- PCs, embedded systems

Both have the same basic function in that the gate is used to 'write' information and the source-drain is used to 'read'. However the gate structure and source connection differs between the types

CMOS Memory

FLASH

Write a few times, store without power, read infrequently

DRAM

Write/Read frequently, store needs power.

CMOS Memory

Solid state hard drive

	Solid State Memory Storage	Hard Disk Storage
Spin-up time Random access time ^[45]	Instantaneous. About 0.1	Up to few sec. 5–10 ms
Read latency time ^[46]	Very low	High
Defragmentation	Not needed.	Needed, for optimum performance
Acoustic levels	SSDs have no moving parts and make no sound	HDDs have moving parts (heads, spindle motor) and have varying levels of sound depending upon model
Mechanical reliability	A lack of moving parts virtually eliminates mechanical breakdowns	HDDs have many moving parts that are all subject to failure over time
Weight and size ^[52]	The weight of flash memory and the circuit board material are very light compared to HDDs	
Write longevity	Flash memory: limited number of writes over the life of the drive. SSDs based on DRAM do not have a limited number of writes.	Magnetic media do not have a limited number of writes.
Cost	High: \$1.00-2.00 per GB	Low: \$0.01-0.05/GB
Power consumption	1/2 to 1/3 the power of HDDs	2-10 Watts

CMOS Memory

A Flash memory cell has two gates separated by a thick oxide layer

The idea is to place (write) or remove (erase) electrons on the floating gate

The charge on the floating gate alters the threshold voltage of the FET and with appropriate bias can change the magnitude of drain current. A current sensing circuit on the bit line interprets this drain current as either a '1' or a '0'.

CMOS Memory

- (a) Equilibrium- no net charge on the floating gate
- (b) Electrons added to the floating gate- reduction in electron density in the channel

No net charge on the system. Therefore:

$$Q_n + Q_F + Q_G = 0$$

If the floating charge is changed by ΔQ_F then to maintain a given Q_n means that Q_G must change by - ΔQ_F

CMOS Memory

Associated change in the threshold voltage

$$\Delta V_T = \frac{\Delta Q_G}{C_{ox}} = -\Delta Q_F \frac{t_{ox}}{\varepsilon_{ox}}$$

The read voltage is set up so that it is just above V_T when $Q_F = 0$. In this case the transistor turns on and registers a '1'. However if charge is added to Q_F then V_T is raised and the transistor turns off(='0')

Programming of the floating gate occurs by applying a high positive voltage pulse to the control gate. Under these conditions electrons can tunnel through the gate oxide using 'field assistance'

CMOS Memory

To erase the cell, a large negative voltage is applied to the control gate and electrons tunnel out to the gate.

The use of a rapid high voltage pulse to erase gives us the term 'FLASH memory'

(d) Erase

In the store state, the time for electrons to tunnel out of the floating gate is very long-practically almost infinite. In practice there are anomalous leakage mechanisms which increase with stress and with write-erase operations.

Solid state drives have low access times, a low latency, no moving parts- high reliability. But at present limited to about 100K writeerase-cycles

CMOS Memory

In a DRAM the MOSFET acts as a switch between a bit line and a storage capacitor, $C_{\rm ST}$

This is connected to the bit line when the FET is turned on by the gate. The bit line is connected to earth only via a bit line capacitor. Its voltage will change in response to a change in the charge state on CB, which depends on whether the FET is on or off and whether there is charge on C_{ST}

The plate terminal is usually held at $V_{DD}/2$. To **WRITE** a '1', the bit line voltage is pre-set to $V_{DD}+V_{T}$ and when the word line is enabled, the transistor turns on raising the source voltage to V_{DD} and so the voltage across C_{ST} is $V_{DD}/2$

CMOS Memory

In the **READ** operation, the bit line is preset to $V_{DD}/2$ and the transistor is turned on since the voltage on C_{ST} is also $V_{DD}/2$, then there is **no change**. Circuitry interprets no change as a '1'

To **WRITE** a '0' the bit line is set to zero volts and the transistor is turned on. This sets the source voltage to zero and so $V_{ST} \rightarrow -V_{DD}/2$

To **READ** the zero again the bit line is set at $V_{DD}/2$ and the transistor is turned on. Since $V_{ST} = -V_{DD}/2$ the bit voltage falls to zero (or $<< V_{DD}/2$). This change is interpreted as a '0'

However at this point the charge on C_{ST} is depleted and would need to be replenished by writing another zero. Because of this need to replenish after reading a zero, this is called **dynamic** random access memory

CMOS Memory

However this is not the only reason why this needs to be refreshed. Additional mechanisms include:

- Reverse junction leakage from the source to the substrate (1)
- Gate induced drain leakage (2)
- Sub-threshold channel leakage (3)

Typical DRAM refresh rates are in the range of $10-500\mu s$.

CMOS Memory

DRAM is being superseded by Static RAM (SRAM), which uses a bi-stable latch circuit to remove the need for immediate re-write. Improvement in speed comes at the expense of a 6 transistor circuit element!

These days Flash memory and DRAM/SRAM both have access times in the range of a few nsec. However DRAM/SRAM does not need the high voltage pulses needed for write and erase (10's of nsec) and therefore has a much lower latency.

DRAM /SRAM also does not degrade with write/erase operations.

MOS imaging

CMOS image sensors works by combining Si operating as a photodiode with MOS charge storage

There are two types: charge coupled devices (CCDs) and the newer CMOS image sensors

CCD

CCDs make use of a MOS capacitors ability to charge up under illumination. The charge is stored in a potential well

Charge is then moved around the structure by sequentially applying voltages to the gates

Metal Oxide Semiconductor (MOS) Capacitor

CCD Sense Element (Pixel) Structure

CCD

The shutter opens and closes giving an accumulated charge in each well. These charges are then shifted row by row across the parallel register under control of clock signals. Rows of charge packets are transferred in sequence into the serial shift register.

Charge contents of pixels in the serial register are transferred one pixel at a time to an on-chip amplifier, which boosts the electron signal. This signal is then processed to give the image

CMOS Image sensor

CMOS image sensors combine a Si photodiode with CMOS transistors to amplify the photovoltage.

Direct transfer of charge to voltage allows the device to perform a number of processing and control functions on chip, including timing, exposure control, analog-to-digital conversion, white balance and even some initial image processing algorithms.

CMOS image sensors are often described as 'Active pixel' devices

Anatomy of the Active Pixel Sensor Photodiode

Photodiode and Photogate Structural Features

CCD versus **CMOS** image sensor

	CCD	CMOS Image sensor
Pixel size	Limited	Very small: driven by CMOS developments
Frame rate	Limited by the speed of emptying its registers	Inherently fast & can increase speed by only outputting changing levels
Low light	Better signal to noise. All charge gets transferred with very little loss	More sensitive, but suffers from noise when voltage sampling
Electronic shuttering	Charge can only be emptied by reading	Data can be cleared without read out
Complexity	Read-out complexity: 5 or more supply voltages at different clock speeds .Significantly higher power consumption	Lower overall cost due to on-chip processing. Single-voltage power supply.