Equivalences

In the following equivalences, α , β , γ are wffs in propositional logic.

E1. $\alpha \wedge \sim \alpha \equiv false$ Law of Contradiction

E2. $\alpha \lor \sim \alpha \equiv true$ Law of Excluded Middle

E3. $\alpha \wedge \alpha \equiv \alpha$

E4. $\alpha \vee \alpha \equiv \alpha$

 $\alpha \wedge true \equiv \alpha$ E5.

 $\alpha \vee false \equiv \alpha$ E6.

E7. $\alpha \wedge false \equiv false$

 $\alpha \lor true \equiv true$ E8.

E9. $\alpha \wedge \beta \equiv \beta \wedge \alpha$

Commutative Law

E10. $\alpha \lor \beta \equiv \beta \lor \alpha$

 $(\alpha \wedge \beta) \wedge \gamma \equiv \alpha \wedge (\beta \wedge \gamma)$ E11.

Associative Law

E12. $(\alpha \vee \beta) \vee \gamma \equiv \alpha \vee (\beta \vee \gamma)$

E13.

 $\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$ $\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$ E14.

 $\sim \sim \alpha \equiv \alpha$ E15.

E16. $\sim (\alpha \land \beta) \equiv (\sim \alpha \lor \sim \beta)$ DeMorgan's Law

 $\sim (\alpha \lor \beta) \equiv (\sim \alpha \land \sim \beta)$ E17.

E18. $\alpha \Rightarrow \beta \equiv \sim \alpha \vee \beta$

E19. $\alpha \Rightarrow \beta \equiv \sim \beta \Rightarrow \sim \alpha$

 $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha) \equiv \alpha \Leftrightarrow \beta$ E20.

Inference Rules

In the following inference rules, p,q,r are wffs in propositional logic.

I1.

addition

I2.

simplification

I3.

 $modus\ ponens$

I4.

 $modus\ tollens$

I5.

hypotheical syllogism

I6.

conjunction

First-order Logic Equivalences

Remark: In the following equivalences, $\alpha(x)$ represents a FOL-wff which may contain a free occurrence of x, and $\alpha(y)$ is the FOL-wff resulting from $\alpha(x)$ after every free occurrence of x in it is replaced by a y. Note that $\alpha(x)$ may contain other free variables.

```
FE1. (\forall x)\alpha(x) \equiv (\forall y)\alpha(y)  (\alpha(x) \text{ does not contain } y)
```

FE2.
$$(\exists x)\alpha(x) \equiv (\exists y)\alpha(y)$$
 $(\alpha(x) \text{ does not contain } y)$

FE3.
$$(\forall x)\alpha(x) \lor \beta \equiv (\forall x)(\alpha(x) \lor \beta)$$
 (\$\beta\$ contains no free occurrence of \$x\$)

FE4.
$$(\exists x)\alpha(x) \lor \beta \equiv (\exists x)(\alpha(x) \lor \beta)$$
 (\$\beta\$ contains no free occurrence of x)

FE5.
$$(\forall x)\alpha(x) \land \beta \equiv (\forall x)(\alpha(x) \land \beta)$$
 (\$\beta\$ contains no free occurrence of x)

FE6.
$$(\exists x)\alpha(x) \land \beta \equiv (\exists x)(\alpha(x) \land \beta)$$
 (\$\beta\$ contains no free occurrence of x)

FE7.
$$\sim (\forall x)\alpha(x) \equiv (\exists x) \sim \alpha(x)$$

FE8.
$$\sim (\exists x)\alpha(x) \equiv (\forall x) \sim \alpha(x)$$

FE9.
$$(\forall x)\alpha(x) \wedge (\forall x)\beta(x) \equiv (\forall x)(\alpha(x) \wedge \beta(x))$$

FE10.
$$(\exists x)\alpha(x) \vee (\exists x)\beta(x) \equiv (\exists x)(\alpha(x) \vee \beta(x))$$

First-order Logic Inference Rules

11 — 16 of Propositional logic with p, q, r being FOL-wffs.

Gen: Generalization

$$\dfrac{lpha(x)}{(orall x)lpha(x)} \qquad x \, is \, a \, variable$$

UI: Universal Instantiation

$$\frac{(\forall x)\alpha(x)}{\alpha(t)}$$
 $\alpha(x)$ is free for t (t is a variable or a constant)

where $\alpha(t)$ results from $\alpha(x)$ after all free occurrences of x in $\alpha(x)$ are replaced by t.

EQ: Existential Quantification

$$\frac{\alpha(t)}{(\exists x)\alpha(x)}$$
 $\alpha(t)$ is free for x (t is a variable or a constant)

where $\alpha(x)$ results from $\alpha(t)$ after *some* (may be all) free occurrences of t in $\alpha(t)$ are replaced by x.

EI: Existential Instantiation

$$rac{(\exists x)lpha(x)}{lpha(c)} \qquad c \ is \ a \ constant$$