法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号:小象
 - 新浪微博: ChinaHadoop

神经序列模型 III

主讲人: 史兴 07/12/2017

有关提问

- □ 关于debug的问题
 - 欢迎在小象学堂上提问
 - 稀疏性
 - □ 能得到正确的回答往往是碰运气
 - □ 自己问的问题,自己最后把答案写上,减小稀疏性
 - □ stackoverflow 一般能查到这种问题

超参数搜索

- □ 排名
 - http://collabedit.com/qvpc6
 - 第一名(13人参加): xinfeng 1007
 - 神秘大奖: 联系我领取
 - 比赛继续:
 - □ 我们下周开课前再看一下排行榜

提纲

□ RNNLM代码讲解

- □ Github地址
 - https://github.com/shixing/xing_nlp/tree/master/LM/RNNLM
 - 任务: RNNLM

- □ 目录概况:
 - /data 存放数据
 - /model 存放训练好的模型
 - /py 所有的tensorflow的代码
 - /sh 调用我们的代码的bash script
 - /readme.md "项目的遗书"

- □ 目录概况:
 - /data 存放数据
 - □ /ptb (Penn-Tree bank)
 - train
 - valid
 - test
 - □ /small (随机生成的一些小数据)
 - train
 - valid
 - test

- □ 数据概览
 - 多少句(行)?
 - □ we train
 - 多少个单词(token)?
 - □ we train
 - 多少种单词(type)?
 - □ cat train|tr ''\n'|sort|uniq|wc
 - 最长(短)的句子有多少单词?
 - □ awk '{print NF}'|sort -n|uniq|head
 - 句子长度与数量的关系?
 - □ awk '{print NF}'|sort -n|uniq -c

- □ 目录概况:
 - /py 存放所有tensorflow相关的代码
 - □ best_buckets.py 计算最佳buckets配置
 - □ data_util.py 数据预处理
 - □ data_iterator.py 数据迭代器
 - □ run.py 训练、预测等入口
 - □ seqModel.py RNNLM模型的定义
 - □ generate_jobs.py 超参数grid search

- □ 数据预处理 data_util.py
 - 创建vocab
 - □ 添加特殊词汇
 - _PAD 填充词汇
 - _GO 句子开始
 - _EOS 句子结束
 - _UNK 未知词
 - □ xinfeng is number 1
 - ☐ GO UNK is number 1 EOS
 - 将单词替换成数字
 - □ 1 3 102 3424 2

- □ 目录概况:
 - /data 存放数据
 - □ /ptb
 - train test valid
 - /model 存放训练好的模型
 - □ /model_ptb
 - /data_cache 预处理过的数据
 - train.id dev.id vocab
 - /saved_model
 - **/**py
 - /sh
 - /readme.md

- ☐ data_util.py
 - def prepare_data(cache_dir, train_path, dev_path, vocabulary_size)
 - □ create_vocabulary(vocab_path, [train_path, dev_path], vocabulary_size)
 - line 142-144 根据频率选取vocab
 - □ data_to_token_ids(train_path, train_ids_path, vocab_path)
 - line 180 按空格分词 + _GO/_EOS + 替换_UNK
 - data_to_token_ids(dev_path, dev_ids_path, vocab_path)

- □ run.py
 - def main(_)
 - □ parsing_flags() 读取flags, 构建目录
 - □ def train() 训练
 - □ def force_decode() 预测
 - 输入:句子s
 - 输出: 句子的概率 log P(s)

- □ Mini-batch Gradient Descent Mini-batch梯度下降 法
 - 1. 初始化参数
 - \square $\Theta = uniform(d)$
 - 2. 随机抽取m个数据点 $T_m = \{(x_i, y_i) | i = k_1, ..., k_m\}$,计算偏导数

$$\square \nabla \Theta = \frac{\partial \text{Obj}(\Theta, T_m)}{\partial \Theta} = \frac{\partial}{\partial \Theta} \sum_{i=k_1}^{k_m} Obj(\Theta, x_i, y_i)$$

3. 更新参数

$$\square$$
 $\Theta = \Theta - \eta \nabla \Theta$

4. 适当的条件更新learning rate η , 返回2, 直到收敛

- □ Mini-batch Gradient Descent Mini-batch梯度 下降法
 - 适当的条件更新learning rate η, 返回2, 直到收敛
 - □ 适当的条件:
 - 每处理了一半的训练数据,就去验证集计算perplexity
 - 如果perplexity比上次下降了,保持learning rate不变, 记录下现在最好的参数
 - 否则, learning rate *= 0.5 缩小一半
 - 如果连续10次learning rate没有变,就停止训练
 - 蓝色的都是超参数

- □ Mini-batch Gradient Descent Mini-batch梯度 下降法
 - 适当的条件更新learning rate η, 返回2, 直到收敛
 - □ 适当的条件:
 - 每处理了一半的训练数据,就去验证集计算perplexity
 - 如果perplexity比上次下降了,保持learning rate不变, 记录下现在最好的参数
 - 否则, learning rate *= 0.5 缩小一半
 - 如果连续10次learning rate没有变,就停止训练
 - 蓝色的都是超参数

- □ Mini-batch Gradient Descent Mini-batch梯度 下降法
 - 适当的条件更新learning rate η ...

Epoch

- □ run.py
 - def train()
 - □ 读取训练数据 train和验证数据dev
 - □ 建立模型; patience = 0
 - □ while
 - 从数据中随机取m个句子进行训练
 - 到达半个epoch, 计算ppx(dev)
 - 比之前降低:更新best parameters
 - 比之前升高: learning rate 减半, patience +=1
 - if (patience>10): break

mini-batch = 1loss cross-entropy h5 b:0 softmax h4 output embedding h3 Tanh h2 linear transform h1 input embedding a:0

```
h3
  [ 0.07982977  0.7530659 ]
  h2
  [0.08 \ 0.98]
linear_w
                      linear_b
[[1.2 \ 0.2]]
                      [0. 0.5]
[-0.4 \ 0.4]]
           h1
           [0.4 1.]
           input_embed
           [[0.4 1.]
           [0.2 \ 0.4]
           [-0.3 2.]]
```

mini-batch = 1

loss

cross-entropy

h5 b:0

softmax

h4

output embedding

h3

Tanh

h2

linear transform

h1

input embedding

a:0

ce

0.810028205586

h5

[0.351601 0.444846 0.203553]

h4

[0.673236 0.908465 0.12666425]

output_embed

[[-1. 1.]

 $[0.4 \ 0.5]$

 $[-0.3 \ 0.2]]$

output_embed_b [0. 0.5 0.]

```
mini-batch = 2
                            h3
        loss
                            [[ 0.07982977  0.7530659 ]
                            [0.07982977 0.60436778]]
   cross-entropy
                            h2
                b:1
         h5
                            [[ 0.08 0.98]
                c:2
      softmax
                            [0.08 0.7]]
         h4
                            linear w
                                                    linear_b
 output embedding
                            [[1.2 \ 0.2]]
                                                    [0. 0.5]
         h3
                             [-0.4 \ 0.4]]
        Tanh
                                        h1
                                        [[0.4 1.]
         h2
                                         [ 0.2 4. ]]
  linear transform
                                       input_embed
         h1
                                       [[0.4 1.]
                                        [0.2 \ 0.4]
  input embedding
                                        [-0.3 2.]]
        a:0
        b:0
```


mini-batch = 2

loss

cross-entropy

h5 b:0

softmax

h4

output embedding

h3

Tanh

h2

linear transform

h1

input embedding

a:0

```
ce 0.810028 + 1.53118 = 2.3412
```

h5 [[0.351601 0.444846 0.203553]

[0.331685 0.452036 0.216279]]

h4

[[0.673236 0.908465 0.12666425]

[0.524538 0.83412 0.096925]]

```
output_embed
```

[[-1. 1.]

[0.4 0.5]

 $[-0.3 \ 0.2]]$

- □ mini-batch的优点:
 - 参数更新速度比Batch GD快速
 - 比SGD稳定
 - Matrix*Vector → Matrix*Matrix
 - □ 对于GPU来说,加速幅度会很大
 - GPU喜欢比较大规模的计算

- □ mini-batch在RNN上问题
 - 句子的长度不一样

数量	句子长度
1101	10
1226	11
2	80
1	81
1	82

- □ mini-batch在RNN上问题
 - 句子的长度不一样: 增加padding

- □ mini-batch在RNN上问题
 - loss 增大了!

 $logP(I) + logP(like) + logP(it) + logP(.) + logP(_EOS) = Loss + logP(YES) + logP(_EOS) + logP(_PAD) + logP(_PAD) + logP(_PAD)$

- □ mini-batch在RNN上问题
 - loss 增大了! 乘以一个0/1 mask

- □ mini-batch在RNN上问题
 - 增加Padding
 - loss 需要乘以mask
 - 效率降低了:
 - □ 所有句子补齐到82个字
 - 实际计算了(1101++1226+1+1)*82 = 190978 步
 - 有效的步数: 1101*10+1226*11+1*81+1*82=24659
 - 利用率: 12.9% 浪费!

数量	句子长度
1101	10
1226	11
1	81
1	82

- □ mini-batch在RNN上问题
 - 效率降低了:
 - □ 所有句子补齐到82个字
 - 实际计算了(1101++1226+1+1)*82 = 190978 步
 - 有效的步数: 1101*10+1226*11+1*81+1*82=24659

数量

1101

1226

1

- 利用率: 12.9% 浪费!
- □ 提升效率
 - 将句子分成两组, 一组补齐到11, 一组补齐到82
 - (1101+1226) * 11 + (1+1)*82 = 25761
 - 利用率: 24659/25761 = 95.7%

句子长度

10

11

81

82

- □ best_buckets.py
 - 增加Padding
 - loss 需要乘以mask
 - 将句子分组
 - □ 如何分组?
 - □ 如何达到最优的分组?
 - □ best_buckets.py

- □ bucket.py
 - def calculate_buckets(length_array, max_length, max_buckets)
 - 算法: 贪心, 二分类
 - \square length_array = [1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4]
 - \square max_buckets = 3
 - \square max_length = 4
 - \square running_sum = [(1,5),(2,15),(3,18),(4,20)]

- □ bucket.py
 - 算法: 贪心, 二分类
 - \square running_sum = [(1,5),(2,15),(3,18),(4,20)]
 - □ 灰色面积是有效计算步数 running_sum

- □ bucket.py
 - 算法: 贪心, 二分类
 - □ 如果buckets = [2,4];

- □ bucket.py
 - 算法: 贪心, 二分类
 - □ 如果buckets = [3,4]

running_sum

- □ bucket.py
 - 算法: 贪心, 二分类
 - □ 如果buckets = [1,4]

running_sum

- □ bucket.py
 - 算法: 贪心, 二分类
 - \square buckets = [2,4,3]

running_sum

- □ bucket.py
 - 算法: 贪心, 二分类
 - □ buckets = [2,4,1]; 最好的buckets = [1,2,4]

□ buckets对数据的影响

- line 177: train_data_bucket, dev_data_bucket, _buckets,
 vocab_path = read_train_dev(FLAGS.data_cache_dir,
 FLAGS.train_path, FLAGS.dev_path,
 FLAGS.vocab_size, FLAGS.L, FLAGS.n_bucket)
- **L** _buckets = [1,2,4]
- train_data_buckets =
 [[1,1,1,1,1], [2,2,2,2,2,2,2,2,2,2], [3,3,3,4,4]]

- □ buckets对数据的影响
 - train_data_buckets =
 [[s1,s1,s1,s1,s1], [s2,s2,s2,s2,s2,s2,s2,s2,s2],
 [s3,s3,s3,s4,s4]]
 - 如何随机选择m个数据? (data_iterator.py)
 - ☐ def next_random(self)
 - inputs, outputs, weights, _ = self.model.get_batch(self.data_set, bucket_id)
 - 先随机一个buckets | 第三个bucket
 - 再随机取m个数据 | m = 2, [s3, s4]
 - 将m个数据变成一个矩阵,加上padding

- □ buckets对数据的影响
 - 如何随机选择m个数据? (data_iterator.py)
 - ☐ def next_random(self)
 - inputs, outputs, weights, _ = self.model.get_batch(self.data_set, bucket_id)
 - 先随机一个buckets | 第三个bucket
 - 再随机取m个数据 | m = 2, [s3, s4]
 - 将m个数据变成一个矩阵,加上padding
 - $\mathbf{s}3 = [1,232,2], \ \mathbf{s}4 = [1,233,93,2]$
 - inputs = [[1,232,0,0], [1,233,93,0]]
 - outputs = [[232,2,0,0], [233,93,2,0]]
 - weights = [[1,1,0,0],[1,1,1,0]]

- □ run.py 过一遍代码
 - def train()
 - □ 读取训练数据 train和验证数据dev
 - □ 建立模型; patience = 0
 - □ while
 - 从数据中随机取m个句子进行训练
 - 到达半个epoch, 计算ppx(dev)
 - 比之前降低: 更新best parameters
 - 比之前升高: learning rate 减半, patience +=1
 - if (patience>10): break

- □ seqModel.py
 - def __init__() 建立模型
 - def get_batch(self, data_set, bucket_id, start_id =
 None)
 - □ 给定bucket_id, 生成相应的inputs, outputs, weights.
 - def step(self,session, inputs, targets, target_weights, bucket_id, forward_only = False, dump_lstm = False)
 - ☐ forward + backward + weights_updates;

- □ def __init__() 建立模型
 - Input Layer

self.inputs_embed = [[0.4,0.3],[1,0.3],[0.4,-0.3],[1.3,0.3],[0,0.3],]self.inputs = [1 43 34 23 0]

- □ def __init__() 建立模型
 - LSTM (line 103 111)

single_cell =

- □ def __init__() 建立模型
 - Output Layer

```
self.target\_weights = \begin{bmatrix} 1 & 1 & 1 & 1 \\ self.targets = \begin{bmatrix} 43 & 34 & 23 & 2 & 0 \end{bmatrix}
```


- □ buckets对模型的影响
 - self.model_with_buckets(...)
 - buckets = [1,2,4]

self.losses =

- □ def __init__() 建立模型
 - #Train
 - gradients = tf.gradients(self.losses[b], params, colocate_gradients_with_ops=True)
 - self.updates 更新参数的operation

- □ 快速过一遍:
 - def get_batch()
 - def step()

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 大数据分析挖掘

- 新浪微博: ChinaHadoop

