

Gyro-based Camera-Motion Detection in User-Generated Videos

Sophia Bano, Andrea Cavallaro, Xavier Parra

{s.bano,a.cavallaro}@qmul.ac.uk, xavier.parra@upc.edu

1. Introduction

Camera-Motion Detection (CMD)

- To detect pan, tilt and shake motions in videos
- Applications: summarization, composition and shot detection

Gyroscope

- Measures angular velocities around the device's axes
- Can replace or complement the camera

Challenge

To estimate the delay between gyroscope and visual data

2. Camera-Motion Detection using Gyroscope (CMDG)

 $L_x(t)$: Horizontal displacement

 $R_x(t)$: Cross-correlation of horizontal gyro-visual data $G_x^L(t),\,G_y^L(t)$: LPF gyroscope x and y axes data $G_x^H(t),\,G_y^H(t)$: HPF gyroscope x and y axes data $P(t),\,T(t),\,S(t)$: Pan, tilt and shake detections

 $P_d(t), T_d(t), S_d(t)$: Final pan, tilt and shake detections

Motion detection

Analyze LPF and HPF gyroscope data in polar coordinate

Luminance projection correlation

Gyroscope and visual data

Refinement

Apply morphological operations to remove outliers and connect disconnected segments

Delay estimation

Cross-correlation of gyro-visual data

3. Experimental evaluation

Multimodal (video, inertial sensor) dataset¹

• 24 User-Generated Videos captured using Cellbot Data Logger [1]

Percentage of synchronized data *w.r.t* the absolute delay error. The overlap between the gyroscope and visual data is varied to test the robustness.

Camera-motion detection evaluation. (HB: high brightness recordings; LB: low brightness recordings; P: Precision; R: Recall; F_I : F_1 -score = $2\frac{P \cdot R}{P + R}$)

		= 1 ==								
		Pan			Tilt			Shake		
Method	Туре	P	R	F_{I}	P	R	F_{I}	P	R	F_{1}
CMDG	НВ	0.96	0.93	0.94	0.83	0.81	0.82	0.74	0.97	0.83
VISUAL		0.77	0.74	0.75	0.31	0.53	0.39	0.69	0.67	0.68
ISENSOR		0.77	0.60	0.67	0.23	0.39	0.29	0.67	0.48	0.56
CMDG	LB	0.91	0.95	0.93	0.85	0.84	0.85	0.86	0.86	0.86
VISUAL		0.41	0.25	0.31	0.17	0.20	0.19	0.24	0.74	0.37
ISENSOR		0.52	0.36	0.43	0.49	0.47	0.48	0.62	0.78	0.69

Comparison of the CMDG with

- VISUAL [2,3]: detects pan from horizontal, tilt from vertical and shake from HPF visual displacements
- ISENSOR [4]: detects pan from LPF compass data, tilt from unfiltered accelerometer data and shake from HPF accelerometer data

4. Conclusion

- Aligned multimodal data by estimating the synchronization delay
- Utilized tri-axial gyroscope data for CMD
- Achieved an overall CMD accuracy (F₁-score) of 89%

References

- [1] https://cellbots.googlecode.com/files/CellbotsDataLogger_v1.1.0_full.apk (Last accessed: 19/10/2015).
- [2] M. Campanella, H. Weda, and M. Barbieri. Edit while watching: home video editing made easy. In *SPIE Multimedia Content Access*, 2007.
- [3] F. Cricri, K. Dabov, I. Curcio, S. Mate, and M. Gabbouj. Multimodal extraction of events and of information about the recording activity in user generated videos. *MTA*, 70:119–158, 2012.
- [4] K. Uehara, M. Amano, Y. Ariki, and M. Kumano. Video shooting navigation system by real-time useful shot discrimination based on video grammar. In *IEEE ICME*, 2004.

Acknowledgement

S. Bano was supported by the EACEA Agency of the European Commission under EMJD ICE FPA no 2010-0012. A. Cavallaro acknowledges the support of the UK Engineering and Physical Sciences Research Council (EPSRC), under grant EP/K007491/1.

