• TEST ANOVA:

Soient A un facteur à p modalités A_1, \dots, A_p et X un caractère quantitatif, avec $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, on suppose que $\sigma_1^2 = \dots = \sigma_p^2 = \sigma^2$. On observe la valeur de X_i pour chaque n_i individus d'un échantillon indépendants.

$$\mathcal{H}_0: "\forall i \; ; \; \mu_i = \mu " \; \; \mathrm{VS} \; \; \mathcal{H}_1: "\exists i \; ; \; \mu_i \neq \mu "$$

	sce (SS)	ddl (DF)	cm (MS)	$f_{obs}\left(\mathbf{F}\right)$
Total	$\sum_{i=1}^{p} \sum_{j=1}^{n_i} x_{i,j}^2 - n\bar{x}^2 = sce_F + sce_R$	n-1		
Factoriel	$\sum_{i=1}^{p} n_i \overline{x_i}^2 - n \overline{x}^2$	p-1	$\frac{sce_F}{ddl_F}$	$\frac{cm_F}{cm_R}$
Résiduel	$\sum_{i=1}^{p} \sum_{j=1}^{n_i} x_{i,j}^2 - \sum_{i=1}^{p} n_i \overline{x_i}^2$	n-p	$\frac{sce_R}{ddl_R}$	

On calcule f_{α} tq $\mathbb{P}(F \geq f_{\alpha}) = \alpha$, où $F \sim$ $\mathcal{F}(p-1,n-p)$. On a $\mathcal{R}_{\alpha}=[f_{\alpha};\infty[$.

Ou si p – value = $\mathbb{P}(F \ge f_{obs}) \le \alpha$, alors on rejette \mathcal{H}_0 .

• TEST ANOVA (égalité des variances): $s_i^2 = \frac{1}{n_i-1} \sum_{j=1}^{n_i} (x_{i,j} - \overline{x_i})^2 = \frac{1}{n_i-1} (\sum_{j=1}^{n_i} x_{i,j}^2 - n_i \overline{x_i}^2)$ et $s^2 = \frac{1}{n-p} \sum_{i=1}^{p} (n_i - 1) s_i^2$

				n_i
$\mathcal{H}_{-}: "\forall i$	$\sigma^{2} = \sigma^{2}$	VS H .: "	$\exists i \cdot \sigma^2$	$\pm \sigma^{2}$ "

Tests	Statistique de test	Quantile	Zone rejet \mathcal{R}_{α}
Bartlett (si min $(n_1,, n_p) \ge 4$)	$K = \frac{(n-p)\ln(s^2) - \sum_{i=1}^{p} (n_i - 1)\ln(s_i^2)}{1 + \frac{1}{3(p-1)} \left(\sum_{i=1}^{p} \frac{1}{n_i - 1} - \frac{1}{n-p}\right)}$	$k_{\alpha} \operatorname{tq} \mathbb{P}(K \ge k_{\alpha}) = \alpha,$ où $K \sim \chi^{2}(p-1)$	$[k_{\alpha};+\infty[$
Cochran (si $n_1 = \cdots = n_p$)	$C_{obs} = \frac{max(s_i^2)}{\sum_{i=1}^{p} s_i^2}$	c(m,p) (voir table)	$[c(m,p);+\infty[$

• TEST ANOVA (comparaison 2 moyennes μ_k et μ_ℓ): $s_R = \sqrt{cm_R}$

\mathcal{H}_{\circ}	: "Ա	$=\mu_{\ell}$ "	VS	\mathcal{H}_1	: "ս	≠ <i>μ₀</i> "
,,,	· \(\mu_{k}\)	$-\mu_{\ell}$	* 5	$J\iota_1$	· \(\mu_k\)	$\tau \mu_{\ell}$

Test	Statistique de test	Quantile	Zone rejet \mathcal{R}_{lpha}
Bonferroni	$T = \frac{\overline{x_k} - \overline{x_\ell}}{s_R \sqrt{\frac{1}{n_k} + \frac{1}{n_\ell}}}$	$t_{\alpha}^{**} \operatorname{tq} \mathbb{P}(T \ge t_{\alpha}^{**}) = \frac{2\alpha}{p(p-1)},$ où $T \sim \operatorname{Stu}(n-p)$	$]-\infty$; $-t_{\alpha}^{**}] \cup [t_{\alpha}^{**}; +\infty[$

LOI GRANDS NOMBRES: Si on répète N fois une expérience avec une proba p d'apparition d'un événement A, la fréquence de cet événement tend vers p quand $N \to \infty$.

Si p-val $\geq \alpha \Rightarrow$ non-rejet \mathcal{H}_0 Si p-val $\leq \alpha \Rightarrow$ rejet \mathcal{H}_0

Equation d'analyse de la variance

Cas unilatéral gauche : $p - val = \mathbb{P}(X \le x_{obs})$ Cas unilatéral droit : $p - val = 1 - \mathbb{P}(X \le x_{obs})$ Cas bilatéral : $p - val = 2(1 - \mathbb{P}(X \le x_{obs}))$

	U(1/n)	Ber(p)	$\mathcal{B}(n,p)$	$\mathcal{P}(\lambda)$	$\mathcal{U}([a,b])$	$\chi^2(n)$	Stu(n)
E	(n+1)/2	p	np	λ	(b + a)/2	n	$\begin{cases} 0, \text{si n} > 1 \\ \text{FI sinon} \end{cases}$
V	$(n^2-1)/12$	p(1-p)	np(1-p)	λ	$(b-a)^2/12$	2n	$\begin{cases} \frac{n}{n-2}, \sin n > 2\\ +\infty, \sin 1 < n \le 2\\ \text{FI sinon} \end{cases}$

Soit $X \sim \mathcal{B}(n, p)$. Si $n \geq 30$ et $np \leq 10$, alors $X \sim \mathcal{P}(\lambda)$, avec $\lambda = np$.

Soit $X \sim \mathcal{B}(n, p)$. Si $np \ge 10$ et $n(1-p) \ge 10$, alors $X \sim \mathcal{N}(np, \sqrt{np(1-p)})$.

résiduelle SCR

résiduelle

Propriété : Un estimateur sans biais de la variance de l'erreur du <u>Vérification de la normalité des résidus</u>

Soit $X \sim \mathcal{P}(\lambda)$. Si $\lambda \geq 10$, alors $X \sim \mathcal{N}(\lambda, \sqrt{\lambda})$.

Variable qualitative → nominale = plusieurs modalités non mesurables s'excluant mutuellement / ordinale = degrés d'un état Variable quantitative → résultat d'une mesure ou d'un comptage

 $Y = \hat{a}X + \hat{b} \leftrightarrow \hat{a} = \frac{\text{cov}(x,y)}{s_{\text{ech}}^2(x)} = r \frac{s_{\text{ech}}(y)}{s_{\text{ech}}(x)} \text{ et } \hat{b} = \bar{y} - \hat{a}\bar{x} \ / \ X = \hat{a}Y + \hat{b} \leftrightarrow \hat{a} = \frac{\text{cov}(x,y)}{s_{\text{ech}}^2(y)} = r \frac{s_{\text{ech}}(x)}{s_{\text{ech}}(y)} \text{ et } \hat{b} = \bar{y} - \hat{a}\bar{x} \Rightarrow \text{droites MCO} \xrightarrow{\text{Etude des résidus of the proposition}} \text{On appelle valeur}$

angle + ouvert entre 2 MCOS ⇒ liaison moins fortes

Si nouvelle valeur x^* de X, on prédit $\widehat{y^*} = \widehat{a}x^* + \widehat{b}$

expliquée

0.231 0.308

 e_i
 -5.75
 -4.27
 -2.76
 -2.75
 -0.29
 -0.25

 u_i
 -1.43
 -1.02
 -0.74
 -0.50
 -0.29
 -0.10

 $\underline{\text{Ex}}: P(Z \le u_i) = P(\epsilon \le e_i) = \frac{7}{13} = 0.538 \Rightarrow u_i = 0.0954$

Démarche Prévision avec la droite des MCO

- calcul de la droite des MCO
- validation du modèle ⇒ étude des résidus et détection des valeurs aberrantes et influentes
- qualité de l'ajustement ⇒ décomposition de la variance, coefficient de détermination et test significativité globale
- qualité de prédiction (PRESS) et prédiction

On appelle valeur ajustée de la ième observation de la variable Y l'approximation

 $\hat{y}_i = \hat{a}x_i + \hat{b}$

On appelle résidu e;, l'erreur observée que l'on commet en approchant y_i par $\hat{y_i}$: $e_i = y_i - \hat{y_i}$

- vérifier la normalité des résidus
- vérifier que les résidus ne contiennent pas d'information structurée
- vérifier que les résidus ne sont pas auto-corrélés entre eux

Coefficient de détermination

histogramme ⇒ la distribution doit être unimodale et

• tests (Kolmogorov-Smirnov, Shapiro Wilks, ...)

Part de la variance de y expliquée par la relation $\hat{y} = \hat{a}x + \hat{b}$

$$R^2 = \frac{\mathsf{Var}(\hat{y})}{\mathsf{Var}(y)}$$

Dans le cas d'un ajustement linéaire, on peut montrer que $R^2=r^2(x,y)$ (où r est le coefficient de corrélation linéaire)

• $R^2 \in [0,1]$

symétrique autour de 0.

ullet Plus R est proche de 1, plus le modèle explique correctement la variabilité de Y.

Croisement de deux variables quantitatives

Représentation graphique (nuage de points)

Coefficient de corrélation

- · Calcul de l'indicateur statistique
- Test de nullité du coefficient de corrélation

Régression linéaire

- Estimation des coefficients
- Validité du modèle (Etude des résidus et des observations influentes)
- Qualité d'ajustement (R², significativité globale)
- Prédiction

Vérification de l'homoscédasticité des résidus

Les résidus sont homoscédastiques si leur répartition est homogène et ne dépend pas des valeurs de la variable explicative (et donc pas non plus des valeurs prédites). On vérifie que les résidus n'ont pas de structure particulière en

Levier grand ⇒ observation atypique. Remarque : Même si l'hypothèse d'homoscédasticité est vérifiée, les résidus n'ont pas la même varia $E(e_i) = 0$ et $Var(e_i) = \sigma^2(1 - h_i)$

Validité du modèle

modèle est

· vérifier la normalité des résidus

totale

0.154

Droite de Henry : $P(\epsilon \le e_i) \mid 0.077$

- · vérifier que les résidus ne contiennent pas d'information
- vérifier que les résidus ne sont pas auto-corrélés entre eux

Modalités	Effectif	Fréquence
<i>x</i> ₁	n_1	$f_1 = n_1/n$
i	1	:
x_p	n_p	$f_p = n_p/n$
Total	n	1

On définit l'angle α_i de la modalité x_i par $\alpha_i = 360 \times f_i$.

	T	Somme
Р	$\begin{array}{ccc} n_{11}\cdots n_{1j}\cdots n_{1t}\\ \vdots & \vdots & \vdots\\ n_{i1}\cdots n_{ij}\cdots n_{it}\\ \vdots & \vdots & \vdots\\ n_{p1}\cdots n_{pj}\cdots n_{pt} \end{array}$	$\begin{array}{c} n_{1\star} \\ \vdots \\ \vdots \\ \vdots \\ n_{p\star} \end{array}$
Somme	$n_{\star 1} \cdots \cdots n_{\star t}$	n

Variables qu	alitativ	e non	ninale
Biais : $B(\widehat{\theta_n})$	$=\mathbb{E}$	$(\widehat{\theta_{\mathrm{n}}}$ -	θ)

	Tabled	u de distribu	tion des effectifs et	fréquences cum	ulés
Valeur des modalité	Effectif n_i	Fréquence f_i	Effectif cumulé N_i	Fréquence cumulée F_i	Fréquence cumulée G_i
x_1	n_1	f_1	n_1	f_1	1
:	1	:	:		1
x_i	n_i	f_i	$n_1 + \cdots + n_i$	$f_1 + \cdots + f_i$	$f_p + \cdots + f_{p-i}$
1	1	i i	:		:
x_p	n_p	f_p	n	1	f_p

Variables qualitative ordinale et quantitative discrète

	Tableau de distribution des effectifs et fréquences cumulés								
Classes	Effectif	Fréquence		Effectif	Fréquence	Fréquence			
classes $n_{\rm i}$		f_i	Densité	cumulé N_i	<u>cumulée</u> F _i	cumulée G_i			
$]a_1, b_1]$	n_1	f_1	$d_1 = f_1/(b_1 - a_1)$	n_1	f_1	1			
:	:			:		:			
$]a_i,b_i]$	n_i	f_i	$d_i = f_i/(b_i - a_i)$	$n_1 + \cdots + n_i$	$f_1 + \cdots + f_i$	$f_p + \cdots + f_{p-i}$			
:	1	:	:	:		:			
$]a_p,b_p]$	n_p	f_p	$d_p = f_p/(b_p - a_p)$	n	1	f_p			

Variables quantitatives continue

Intervalle confiance moyenne si σ inconnue : $\left[\bar{x} - t_{1-\alpha/2}^{n-1} \frac{\hat{\sigma}}{\sqrt{n}}; \bar{x} + t_{1-\alpha/2}^{n-1} \frac{\hat{\sigma}}{\sqrt{n}}\right]$ / si σ connue : $\left[\bar{x} - u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}; \bar{x} + u_{1$ Conditions: Si $n \le 30$: il faut que $X \sim \mathcal{N} / \text{Si } n > 30$: pas de condition sur la loi de X.

Intervalle confiance proportion : on pose $\hat{\pi} = p$, si $n\hat{\pi} \ge 10$ et $n(1-\hat{\pi}) \ge 10$: $\left[\hat{\pi} - u_{1-\alpha/2}\sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}; \hat{\pi} + u_{1-\alpha/2}\sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}};$

2 variables qualitatives ⇒ test χ² | 2 variables quantitatives ⇒ test coeff corrélation | 1 quali & 1 quanti ⇒ t-test ou ANOVA

Test comparaison proportion à π_0 connue (1 échantillon) : $U = \sqrt{n} \frac{p - \pi_0}{\sqrt{\pi_0 (1 - \pi_0)}} \sim \mathcal{N}(0, 1) / n_1, n_2 \ge 30 \text{ et } n\pi_0 \ge 5 \text{ et } n(1 - \pi_0) \ge 5.$ Test comparaison proportions (2 échantillons) : $U = \frac{p_1 - p_2}{\sqrt{\frac{p(1 - p)}{n_1} + p(1 - p)}} \sim \mathcal{N}(0, 1)$, où $p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2} / n_1, n_2 \ge 30 \text{ et } \min_{i=1,2} (n_i p_i; n_i (1 - p)) \ge 5$

Test comparaison moyenne à μ_0 connue (1 échantillon) : $T = \sqrt{n} \frac{\bar{x} - \mu_0}{\hat{\sigma}} \sim \mathcal{S}tu(n-1) / n \geq 30$ ou $X \sim \mathcal{N}(\mu, \sigma)$

Test Fisher (comparaison 2 variances observées s_1^2, s_2^2): $F = \frac{\widehat{\sigma_1}^2}{\widehat{\sigma_2}^2} \sim \mathcal{F}(n_1 - 1; n_2 - 1) / n_1, n_2 \ge 30$ ou $X_{1,2} \sim \mathcal{N}(\mu_{1,2}, \sigma_{1,2})$

 $t\text{-test comparaison movennes (2 \'echantillons ind\'ependants)}: T = \frac{\frac{\vec{x}_1 - \vec{x}_2}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim \mathcal{S}tu(n_1 + n_2 - 2), \text{où } S = \sqrt{\frac{(n_1 - 1)\vec{\sigma_1}^2 + (n_2 - 1)\vec{\sigma_2}^2}{n_1 + n_2 - 2}} \text{ si } \sigma_1^2 = \sigma_2^2 / n_1, n_2 \geq 30 \text{ ou } X_{1,2} \sim \mathcal{N}\left(\mu_{1,2}, \sigma_{1,2}\right)$ $T = \frac{\vec{x}_1 - \vec{x}_2}{\sqrt{\frac{\vec{x}_1^2}{n_1} + \frac{\vec{x}_2^2}{n_2}}} \sim \mathcal{S}tu(\nu), \text{ si } \sigma_1^2 \neq \sigma_2^2 \qquad \text{(Si NON conditions} \Rightarrow \text{ test Mann \& Whitney)}$

$$T = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\bar{\sigma}_1^2}{n_1} + \frac{\bar{\sigma}_2^2}{n_2}}} \sim \mathcal{S}tu(\nu), \text{ si } \sigma_1^2 \neq \sigma_2^2$$

	Sujets	1	2	 n
t-test séries appariées :	X_A	X_1^A	X_2^A	 X_n^A
11	X_B	X_1^B	X_2^B	 X_n^B
	$D = X_A - X_B$	$D_1 = X_1^A - X_1^B$	$D_2 = X_2^A - X_2^B$	 $D_n = X_n^A - X$

$$T = \sqrt{n} \frac{\bar{d}}{\hat{\sigma_D}^2} \sim \mathcal{S}tu(n-1) / n \ge 30 \text{ ou } D \sim \mathcal{N}(\mu_D, \sigma_D)$$
(Si NON conditions \Rightarrow Test Wilcoxon)

Test χ^2 ajustement (1 quali / 1 échantillon)

lodalités	1	2	 С
O_i	O_1	O_2	 O_c
π_i	π_1	π_2	 π_c
T.	n V π	$n \vee \pi$	n V π

$$K = \sum_{i=1}^{c} \frac{o_i^2}{T_i} - n \sim \chi^2(c-1) \, / \, \forall i \; ; \; T_i \geq 5$$

(Si NON conditions \Rightarrow regrouper des T_i si possible)

Test χ^2 indépendance (2 qualis / 1 échantillon)

		Y				C
		1	2		С	Somme
X	1	011	012		O_{1c}	n_1
	2	021	O_{22}		O_{2c}	n_2
	:	:	:	٠.	:	:
	l	O_{l1}	O_{l2}	•••	O_{lc}	n_l
Som	me	m_1	m_2		m_c	n

Test χ^2 homogénéité (1 quali / l > 2 échantillons)

		X			C = m = m = =	
		1	2		С	Somme
Echantillon	1	011	012		O_{1c}	n_1
	2	O_{21}	O_{22}		O_{2c}	n_2
	:	:	:	٠.	:	:
	l	O_{l1}	O_{l2}		O_{lc}	n_l
Somme		m_1	m_2		m_c	n

Test de Mann & Whitney:

- \succ Etape 0 : \mathcal{H}_0 : " $M_{ech1} = M_{ech2}$ " VS \mathcal{H}_1 : " $M_{ech1} \neq M_{ech2}$ "
- Etape 1 : Ranger par ordre croissant l'ensemble des 2 échantillons
- > Etape 1bis : Déterminer les rangs. Si doublon, faire rang moyen
- ightharpoonup Etape 2 : Calcul de $T_1 = \sum \operatorname{rang}_{ech1}$ et $T_2 = \sum \operatorname{rang}_{ech2}$
- $> \ \, {\rm Etape} \ \, {\rm 3:Calcul} \ \, {\rm de} \ \, U_{12} = {\rm T_2} \frac{{\rm n_2(n_2+1)}}{2} \, {\rm et} \ \, U_{21} = T_1 \frac{n_1(n_1+1)}{2} \, \, \,$
- \triangleright Etape 4 : Statistique de test $U = \min(U_{12}; U_{21})$
- > Etape 5 : Recherche de la zone de rejet sur la table

Si
$$n_1,n_2\geq 20$$
, on pose $Z=\frac{U-\mu}{\sigma}\sim \mathcal{N}(0,1)$ avec $\mu=\frac{n_1n_2}{2}$ et $\sigma=\sqrt{\frac{n_1n_2(n_1+n_2+1)}{12}}$ Réécriture de la zone de rejet avec Z .

Test de Wilcoxon

Sujets	1	2	 n
X_A	X_1^A	X_2^A	 X_n^A
X_B	X_1^B	X_2^B	 X_n^B
$D = X_A - X_B$	$D_1 = X_1^A - X_1^B$	$D_2 = X_2^A - X_2^B$	 $D_n = X_n^A - X_n^B$

- ightharpoonup Etape $0:\mathcal{H}_0:"M_D=0"$ VS $\mathcal{H}_1:"M_D\neq 0"$ (ou " $M_D>0"$ ou " $M_D<0"$)
- Etape 1 : Eliminer les $D_i = 0$

➤ Tableau

- Etape 2 : Ranger par ordre croissant l'ensemble des $|D_i|$
- Etape 2bis : Déterminer les rangs. Si doublon, faire ran hoyen.
- \succ Etape 3 : Calcul de $P=\sum \mathrm{rang}_{D_i>0}$ et $M=\sum \mathrm{rang}_{D_i<0}$
- Figure 2: Statistique de test : $T = \min(M; P)$
- Figure 5 : Zone de rejet $\mathcal{R}_{\alpha} = \{T \leq t\}$

Si $n_1,n_2\geq 20$, on pose $Z=rac{T-\mu}{\sigma}\sim \mathcal{N}(0,1)$ avec $\mu=rac{n(n+1)}{4}$ et $\sigma=\sqrt{rac{n(n+1)(2n+1)}{24}}$

Test coefficient corrélation : $T = \frac{r(X,Y)\sqrt{n-2}}{\sqrt{1-r(X,Y)^2}} \sim Stu(n-2) / X, Y \sim \mathcal{N}\left(\mu_{X,Y}, \sigma_{X,Y}\right) / \mathcal{R}_{\alpha} = \left] -\infty; -t_{1-\alpha/2}^{n-2} \stackrel{\text{ddl}}{\longrightarrow} \right] \cup \left[t_{1-\alpha/2}^{n-2} \stackrel{\text{ddl}}{\longrightarrow} \right]$ Test