$\alpha++$ Nerd 22. Februar 2016

Probleklausur Beweis Teil

Aufgabe 1

Die Funktion $f:(a,b)\to\mathbb{R}$ sei streng monoton und stetig. Beweisen sie, dass für $f'(x_0)\neq 0$ gilt:

 $f'(x_0) = \frac{1}{f'^{-1}(f(x_0))}$

Hinweis: Beweisen Sie hierfür zunächst die Kettenregel.

Aufgabe 2

Was sind die Ableitungen folgender Funktionen $f_i : \mathbb{R} \to \mathbb{R}/ \{0\}$? Beweisen sie ihre Aussagen.

a) $f_1(x) : a^x$

b) $f_2(x) : ln(x)$

c) $f_3(x): x^{\alpha}, \quad \alpha \in \mathbb{R}$

Aufgabe 3

Sei $f:[0,b]\to\mathbb{R}$ stetig und $a\in[0,b]$. Zeigen Sie, dass für das Riemann-Integral gilt: integr(f(x))dx (a, b)=integr(f(x))dx (b, 0)-integr(f(x))dx (a, 0)

Aufgabe 4

Beweisen sie die Partielle Integration für die differenzierbaren Funktionen $f,g \mathbb{R} \to \mathbb{R}$. Hinweis: Beweisen sie hierfür zunächst die Produktregel.

Aufgabe 5

Die positive Zahl g, welche $g = 1 + \frac{1}{g}$ erfüllt heisst goldener Schnitt.

a) Bestimmen sie die positve Zahl g.

- b) Es sei x_n mit $n \ge 0$, die Folge $x_0 = 1$ und $x_{n+1} = 1 + \frac{1}{x_n}$. Zeigen Sie, dass $|x_n g| \le \frac{1}{q^{n+1}}$ gilt.
- c) Zeigen Sie, dass x_n gegen g konvergiert.

 $\alpha++$ Nerd 22. Februar 2016

Aufgabe 6

a) Sei $f: \mathbb{R} \to \mathbb{R}$ und $x_0 \in \mathbb{R}$ Definieren Sie präzise, was es bedeutet, dass f im Punkt x_0 stetig ist.

b) Beweisen sie, dass die ϵ - δ - Definition der Stetigkeit die Folgenstetigkeit impliziert.

Hinweis: Folgenstetigkeit bedeutet, dass für alle Folgen y_n mit Grenzwert x_0 für $\epsilon>0,\ \epsilon\in\mathbb{R}$ ein N existiert sodass: $\forall n>N: |y_n-x_0|<\epsilon.$

Aufgabe 7

Sei $f:[a,b]\to\mathbb{R}$ stetig. Beweisen sie, dass zu jedem y_0 zwischen f(a) und f(b) ein $x_0\in[a,b]$ existiert mit $f(x_0)=y_0$.

Hinweis: Betrachten sie zunächst den Fall, dass $y_0 = 0$