

REMARKS

Favorable reconsideration of this application is requested. Applicants appreciate the courtesy shown by Examiners Bertagna and Wilder in discussing this case with Applicants' representatives on June 25, 2008. The discussions of the interview are reflected in the following remarks.

Claims 1 and 9 have been amended. The limitation in claims 1 and 9 concerning $(X-Y)/X$ and $\{X-(Y-Y')\}/X$ being in a range of -1.00 to 1.00 is supported by for example page 14, line 16 to page 15, line 1 and page 19, line 27 to page 20, line 18 of the specification. The limitation in claims 1 and 9 concerning $(X+Y)$ being 30 or more is supported for example by page 14, lines 23-24 of the specification. The limitation in claims 1 and 9 concerning $(X+Y+Y')$ being 30 or more is supported for example by page 14, lines 33-35 of the specification. Claims 22 and 23 are new, and are supported for example by page 15, lines 6-7 of the specification.

As indicated during the interview, the "providing" steps in previous claims 1 and 9 have been deleted, and the relevant features thereof are included in the annealing steps. Claims 2, 3, 6, 10, 11, 12 and 15 have been amended accordingly.

Claims 18-21 are canceled. No new matter has been added. Claims 1-17 and 22-23 are pending.

Claim rejections - 35 U.S.C. § 103

Claims 1-7 and 9-16 are rejected under 35 U.S.C. 103(a) as being unpatentable over Rabbani et al. (EP 0971039) in view of Notomi et al. (Nucleic Acids Research 2000; 28(12): e63). Applicants respectfully traverse the rejection.

Claim 1 requires a method using a primer that has, in the absence of an intervening sequence between the sequence (Ac') on the 3'-end portion of the primer and the sequence (B') on the 5'-side of the sequence (Ac') of the primer, a $(X-Y)/X$ value in the range of -1.00 to 1.00, and a $(X+Y)$ value of 30 or more where X denotes the number of bases in the sequence (Ac') and Y denotes the number of bases in the region flanked by the sequences (A) and (B) on the target nucleic acid sequence. Claim 1 further requires a method using a primer that has, in the presence of an intervening sequence between the sequence (Ac') and (B'), a $\{X-(Y-Y')\}/X$ value in the range of -1.00 to 1.00, and a $(X+Y+Y')$ value of 30 or more where X and Y have the same meaning as above, and Y' denotes the number of bases in the intervening sequence. Claim 9 similarly requires a method using a primer that has, in the absence of an intervening sequence

between the sequence (Ac') on the 3'-end portion of the first primer and the sequence (B') on the 5'-side of the sequence (Ac') of the first primer, a (X-Y)/X value in the range of -1.00 to 1.00, and a (X+Y) value of 30 or more, and in the presence of an intervening sequence between the sequences (Ac') and (B'), a {X-(Y-Y')}/X value in the range of -1.00 to 1.00 and a (X+Y+Y') value of 30 or more. Claim 9 further requires a method using a primer that has, in the absence of an intervening sequence between the sequence (Cc') on the 3'-end portion of the second primer and the sequence (D') on the 5'-side of the sequence (Cc') of the second primer, a (X-Y)/X value in the range of -1.00 to 1.00 and a (X+Y) value of 30 or more, and in the presence of an intervening sequence between the sequences (Cc') and (D'), a {X-(Y-Y')}/X value in the range of -1.00 to 1.00 and a (X+Y+Y') value of 30 or more, where X denotes the number of bases in the sequence (Cc'), Y denotes the number of bases in the region flanked by the sequence (C) and (D) on the target nucleic acid sequence, and Y' denotes the number of bases in the intervening sequence.

As indicated during the interview, the primer sequences required by claims 1 and 9 provide highly specific amplification in a short period of time. Our discussion is summarized as follows.

The experimental results of Examples 1, 2 and 3 of the present specification are compiled in the following table, which also includes the calculated X-Y/X and X+Y values for each of the primer numbers 1-40. Note that the results for Example 2, primers 23-26 and primer sets 12 and 13, only are presented for the sake of completeness and do not provide a comparison showing the advantages of the invention of claims 1 and 9.

Target	Primer No.	X	Y	X-Y/X	X+Y	Amplification time (min)	Primer set No.
SY153	1	20	-	-	-	Non specific	1
	2	20	-	-	-		
	3	20	0	1	20	60	2
	4	20	0	1	20		
	5	20	5	0.75	25	60	3
	6	20	5	0.75	25		
	7	20	10	0.5	30	40	4
	8	20	10	0.5	30		
	9	20	15	0.25	35	20	5
	10	20	15	0.25	35		
	11	20	20	0	40	40	6
	12	20	20	0	40		
	13	20	20	0	40	40	7
	14	20	20	0	40		
	15	20	20	0	40	40	8
	16	20	20	0	40		
	17	20	20	0	40	40	9
	18	20	20	0	40		
	19	20	20	0	40	40	10
	20	20	20	0	40		
	21	20	20	0	40	40	11
	22	20	20	0	40		
SY160	23	20	26	-0.3	46	90	12
	24	20	20	0	40		
	25	20	26	-0.3	46		
	26	20	20	0	40		
M13	27	24	50	-1.08	74	Non specific	14
	28	22	53	-1.41	75		
	29	24	0	1	24	90	15
	30	22	0	1	22		
	31	24	6	0.75	30	60	16
	32	22	6	0.73	28		
	33	24	12	0.55	36	60	17
	34	22	12	0.45	34		
	35	24	18	0.25	42	40	18
	36	22	18	0.18	40		
	37	24	22	0.08	46	60	19
	38	22	22	0	44		
	39	24	22	0.08	46	60	20
	40	22	22	0	44		

Referring to the above table as well as Figures 5 and 9 of the specification, primer sets 2 and 3, which do not satisfy X+Y of 30 or more, showed very little amplification of the targeted product of 160 base pairs after 60 minutes (see lanes 8 and 12 of Figure 5). In contrast, primer set 5, which satisfies X+Y of 30 or more, showed a significant amount of amplification product (as indicated by the strong signal at the targeted 160 base pair band) in as little as 20 minutes (see lane 19 of Figure 5). Moreover, primer set 14, which satisfies X+Y of 30 or more but not (X-Y)/X of -1 or more and 1 or less, showed a smear after 60 minutes of amplification, thereby indicating non-specific amplification. In addition, primer set 15, which does not satisfy X+Y of 30 or more, showed very little amplification of the targeted product of 240 base pairs after 90 minutes. In contrast, primer set 18, which satisfies X+Y of 30 or more, gave targeted amplification products in as little as 40 minutes, and a distinct signal at the targeted 240 base pair band after 60 minutes (see lane 20 of Figure 9).

Rabbani teaches isothermal amplification using the following primers:

FC (49 nt)

5'-CATAGCAGCA GGATGAAGAG GAATATGATA GGATGTGTCT GCGGCCTT-3'

RC (50 nt)

5'-TCCTCTAATT GCAGGATCAA CAACAACCAG AGGTTTGCA TGGTCCCGTA-3'.

The 19 and 20 bases at the 3' end of the FC and RC primers, respectively, are first segments that are capable of extension using HBV target DNA as a template. The 30 bases at the 5' ends of the FJ and RJ primers are second segments that are complementary to the first 30 bases synthesized by extension of the primers using HBV DNA as a template.

Applicants note that in paragraph [0118], Rabbani refers to the first segments on the 3' end of the FC and RC primers as being 29 and 30 bases, respectively, and the 30 bases on the 5' end of the FC and RC primers as being second segments that are complementary to the first 30 bases synthesized by extension of the primers. However, it is clear from the HBV genomic sequence (attached herewith) that the primer annealing sequence of the FC and RC primers is 19 and 20 base pairs in length, respectively. Also, in paragraph [0120], Rabbani refers to the 19 base sequence of LFC (LFC = 5'-GGATGTGTCT GCGGCCTT-3') and the 20 base sequence of the LRC (LRC = 5'- AGGTTTGCA TGGTCCCGTA-3') as corresponding to the first

segments of FC and RC primers, respectively. Thus, it can be clearly understood from this description as well as the HBV genomic sequence that in paragraph [0118], Rabbani erroneously refers to the first segments of the 3' ends of the FC and RC primers as being 29 and 30 bases, respectively, and in fact the lengths of the first segments should be 19 and 20 bases as indicated above.

As such, Rabbani's FC and RC primers give (X+Y) values of 19 (19+0=19) and 20 (20+0=20), respectively. On the other hand, claims 1 and 9 require the (X+Y) value to be 30 or more in the absence of an intervening sequence. Nothing in the reference teaches or suggests limiting the range of (X+Y) or (X+Y+Y') to be 30 or more as required by claims 1 and 9, nor any reason to limit the range of the {X-(Y-Y')}/X or the (X-Y)/X value and the (X+Y) or (X+Y+Y') value depending on the absence or presence of an intervening sequence within the primer so as to achieve efficient amplification. Accordingly, claims 1 and 9 and the dependent claims therefrom are patentable over Rabbani.

The rejection relies on Notomi for suggesting a modification to Rabbani that allegedly would bring Rabbani within the scope of the (X-Y)/X range of -1 to 0.5 in previous claims 1 and 9. This issue is moot in view of the revisions to claims 1 and 9, which restore the original range for (X-Y)/X and add the minimum requirement for X+Y. In any event, nothing in Notomi teaches or suggests limiting the range of the {X-(Y-Y')}/X or the (X-Y)/X value and the (X+Y) or (X+Y+Y') value depending on the absence or presence of an intervening sequence within the primer, nor any reason to expect that the superior amplification shown in the present specification can be achieved by limiting the primers as required by claims 1 and 9. Accordingly, claims 1 and 9 and the dependent claims therefrom are patentable over Rabbani and Notomi, taken alone or together.

Claims 8 and 17 are rejected under 35 USC 103(a) as being unpatentable over Rabbani et al. in view of Notomi et al. and further in view of Kool, E.T. (*Current Opinions in Chemical Biology* (2000) 4: 602-608). Applicants respectfully traverse the rejection.

Rabbani and Notomi have been distinguished above. Kool does not remedy the deficiencies of Rabbani and Notomi. Therefore, claims 8 and 17 are patentable over the references taken alone or together. Applicants do not concede the correctness of the rejection.

Favorable reconsideration and withdrawal of the rejection are respectfully requested.

In view of the foregoing, favorable reconsideration in the form of a notice of allowance is requested. Any questions or concerns regarding this communication can be directed to the attorney-of-record, Douglas P. Mueller, Reg. No. 30,300, at (612) 455.3804.

52835

PATENT TRADEMARK OFFICE

Respectfully submitted,

HAMRE, SCHUMANN, MUELLER &
LARSON, P.C.
P.O. Box 2902
Minneapolis, MN 55402-0902
(612) 455.3800

By:
Douglas P. Mueller
Reg. No. 30,300

Dated: July 21, 2008

Enclosure: HBV genomic sequence

LOCUS EU747320 3221 bp DNA circular VRL 09-JUN-2008
DEFINITION Hepatitis B virus isolate V51, complete genome.
ACCESSION EU747320

1 ttccactgcc ttcccccaag ctctgcagg tcccgagtc aggggttat atcttctgc
 61 ttgttgtcgg agttccggaa cagaatccc ttctgcgtt acatccatc acatctgc
 121 aatcccccgg aggactgggg accctgtac gaaatctgg aacatcacat caggatct
 181 aggaccctg ctcgttac aggggggtt ttctgttg acaagaatcc tcaataacc
 241 gtagatctt gactctgtt ggaattctt caatcttca gggggatcc cctgtgtt
 301 tgccaaaat tcgtcccaaa caactccaa tcaactccaa acctctgtc tcctcaattt
 361 tcctgttat cggtggatgt gtctggggg ttttatcata ttcccttca tcctgtget
 421 atgcctcata ttcttatttgc ttcttgcggaa ttatccaaatgttgcggcc ttgttctct
 481 aatcccggtt tcaaaacaa ccagtccggg accatccaa atccgcaca tcctgtc
 541 aggcaactt atgtttccct catgtgtcg tacaacaaactt acggatggaa attgcaccc
 601 tattccatc cccatcgccct gggttccgaa aaaaatcttca tggggatgggg cctgc
 661 ttcttcgttgc tcaggatccatc tgccatcatc tggttgcggg ttcttcgggg
 721 tggttggctt tcagctatataat ggtatgtgt gtattgggg ccaagctgt acagatcg
 781 gaggccccctt atacccgtgt taccatctt ctgttgcggg tgggtatataat tttaaacc
 841 aaaaaacaaa aaagatgggg tatttccca aacttcgttgc tgatcaat tggaaatgg
 901 ggaacttgc cacaggatca tatttacaa aagatcaaactt actgttttag aaaacttcc
 961 gttaaacaggc ctatggatg gaaatggatg caaatggat tgggggtttt gggttgc
 1021 gtcctttaa caaacatgg atactccgc ttaatgcgtt tgatgcgat tatacaag
 1081 aacaggctt tcaacttcc gccaacttac aaggcttcc taatggaaactt gtatcatgaa
 1141 cttaaccggc ttgtccggaa acggccgtgt ctgttgcggg tgggtgtca cggaccc
 1201 atgcgttgcggg fgttgcggatc aggacatcg cctggcggtt gaccccttgc
 1261 ccgatccata ctggggactt cttggcggtt tggttgcgtt gcaaggcggtt
 1321 ctatccggaa ctggggatcc ttttttttttgcggat ttttttttttgcggat
 1381 cttaggtgtt ccgtccaaatgcgttgc gatcttgcggg gggaggatctt tggttgcgt
 1441 ctgaatcccg cggacgaccc ctctggggc cgttgggac tctctcgcc ctttcgg
 1501 ctggcgttcc agggccggacc gggggccacc tcttttttgcggatccccc
 1561 ttcataatgc cggccgtgt gacttgcgt tccatctgc acgttgcgt
 1621 tgaacgcca tcaatgcgtt ccaaggatctt tacataaagg gactttggg
 1681 tgtaacaggc cggatcttgc gcttacttca aagatgtgt tgtaaaggc
 1741 tggggggagg gattaatgtt atgtatcttgc tattttgggg
 1801 gcgcacccgg accatggaaat ttttttgcgtt ctgcgttgc
 1861 tggttgcggcc tcaatgcgtt gcttttttttgcggatcc
 1921 aagtttggg gttacttgcg atttttttgcgtt
 1981 cagaatatcc tcaatgcgtt ctttttttgcgtt
 2041 ttgttgcacctt caccatctgc ctttttttgcgtt
 2101 ttctgttgc ttttttttgcgtt
 2161 ttatgtttaat actaaatgtt gtttttttgcgtt
 2221 ctttttttgcgtt
 2281 ctttttttgcgtt
 2341 tggttgcgtt
 2401 acggcgttcc caatccggcc
 2461 ttctgttgc
 2521 ttatcccttgc
 2581 atatgttgc
 2641 ttatgttgc
 2701 aacccatcc
 2761 ttctgttgc
 2821 ggccatcc
 2881 aaaggatgg
 2941 ttggccatcc
 3001 gggccatcc
 3061 ccacacggcc
 3121 aacccatcc
 3181 ccacccatcc
 3241 aacccatcc
 3301 aacccatcc
 3361 aacccatcc
 3421 aacccatcc
 3481 aacccatcc
 3541 aacccatcc
 3601 aacccatcc
 3661 aacccatcc
 3721 aacccatcc
 3781 aacccatcc
 3841 aacccatcc
 3901 aacccatcc
 3961 aacccatcc
 4021 aacccatcc
 4081 aacccatcc
 4141 aacccatcc
 4201 aacccatcc
 4261 aacccatcc
 4321 aacccatcc
 4381 aacccatcc
 4441 aacccatcc
 4501 aacccatcc
 4561 aacccatcc
 4621 aacccatcc
 4681 aacccatcc
 4741 aacccatcc
 4801 aacccatcc
 4861 aacccatcc
 4921 aacccatcc
 4981 aacccatcc
 5041 aacccatcc
 5101 aacccatcc
 5161 aacccatcc
 5221 aacccatcc
 5281 aacccatcc
 5341 aacccatcc
 5401 aacccatcc
 5461 aacccatcc
 5521 aacccatcc
 5581 aacccatcc
 5641 aacccatcc
 5701 aacccatcc
 5761 aacccatcc
 5821 aacccatcc
 5881 aacccatcc
 5941 aacccatcc
 6001 aacccatcc
 6061 aacccatcc
 6121 aacccatcc
 6181 aacccatcc
 6241 aacccatcc
 6301 aacccatcc
 6361 aacccatcc
 6421 aacccatcc
 6481 aacccatcc
 6541 aacccatcc
 6601 aacccatcc
 6661 aacccatcc
 6721 aacccatcc
 6781 aacccatcc
 6841 aacccatcc
 6901 aacccatcc
 6961 aacccatcc
 7021 aacccatcc
 7081 aacccatcc
 7141 aacccatcc
 7201 aacccatcc
 7261 aacccatcc
 7321 aacccatcc
 7381 aacccatcc
 7441 aacccatcc
 7501 aacccatcc
 7561 aacccatcc
 7621 aacccatcc
 7681 aacccatcc
 7741 aacccatcc
 7801 aacccatcc
 7861 aacccatcc
 7921 aacccatcc
 7981 aacccatcc
 8041 aacccatcc
 8101 aacccatcc
 8161 aacccatcc
 8221 aacccatcc
 8281 aacccatcc
 8341 aacccatcc
 8401 aacccatcc
 8461 aacccatcc
 8521 aacccatcc
 8581 aacccatcc
 8641 aacccatcc
 8701 aacccatcc
 8761 aacccatcc
 8821 aacccatcc
 8881 aacccatcc
 8941 aacccatcc
 9001 aacccatcc
 9061 aacccatcc
 9121 aacccatcc
 9181 aacccatcc
 9241 aacccatcc
 9301 aacccatcc
 9361 aacccatcc
 9421 aacccatcc
 9481 aacccatcc
 9541 aacccatcc
 9601 aacccatcc
 9661 aacccatcc
 9721 aacccatcc
 9781 aacccatcc
 9841 aacccatcc
 9901 aacccatcc
 9961 aacccatcc
 10021 aacccatcc
 10081 aacccatcc
 10141 aacccatcc
 10201 aacccatcc
 10261 aacccatcc
 10321 aacccatcc
 10381 aacccatcc
 10441 aacccatcc
 10501 aacccatcc
 10561 aacccatcc
 10621 aacccatcc
 10681 aacccatcc
 10741 aacccatcc
 10801 aacccatcc
 10861 aacccatcc
 10921 aacccatcc
 10981 aacccatcc
 11041 aacccatcc
 11101 aacccatcc
 11161 aacccatcc
 11221 aacccatcc
 11281 aacccatcc
 11341 aacccatcc
 11401 aacccatcc
 11461 aacccatcc
 11521 aacccatcc
 11581 aacccatcc
 11641 aacccatcc
 11701 aacccatcc
 11761 aacccatcc
 11821 aacccatcc
 11881 aacccatcc
 11941 aacccatcc
 12001 aacccatcc
 12061 aacccatcc
 12121 aacccatcc
 12181 aacccatcc
 12241 aacccatcc
 12301 aacccatcc
 12361 aacccatcc
 12421 aacccatcc
 12481 aacccatcc
 12541 aacccatcc
 12601 aacccatcc
 12661 aacccatcc
 12721 aacccatcc
 12781 aacccatcc
 12841 aacccatcc
 12901 aacccatcc
 12961 aacccatcc
 13021 aacccatcc
 13081 aacccatcc
 13141 aacccatcc
 13201 aacccatcc
 13261 aacccatcc
 13321 aacccatcc
 13381 aacccatcc
 13441 aacccatcc
 13501 aacccatcc
 13561 aacccatcc
 13621 aacccatcc
 13681 aacccatcc
 13741 aacccatcc
 13801 aacccatcc
 13861 aacccatcc
 13921 aacccatcc
 13981 aacccatcc
 14041 aacccatcc
 14101 aacccatcc
 14161 aacccatcc
 14221 aacccatcc
 14281 aacccatcc
 14341 aacccatcc
 14401 aacccatcc
 14461 aacccatcc
 14521 aacccatcc
 14581 aacccatcc
 14641 aacccatcc
 14701 aacccatcc
 14761 aacccatcc
 14821 aacccatcc
 14881 aacccatcc
 14941 aacccatcc
 15001 aacccatcc
 15061 aacccatcc
 15121 aacccatcc
 15181 aacccatcc
 15241 aacccatcc
 15301 aacccatcc
 15361 aacccatcc
 15421 aacccatcc
 15481 aacccatcc
 15541 aacccatcc
 15601 aacccatcc
 15661 aacccatcc
 15721 aacccatcc
 15781 aacccatcc
 15841 aacccatcc
 15901 aacccatcc
 15961 aacccatcc
 16021 aacccatcc
 16081 aacccatcc
 16141 aacccatcc
 16201 aacccatcc
 16261 aacccatcc
 16321 aacccatcc
 16381 aacccatcc
 16441 aacccatcc
 16501 aacccatcc
 16561 aacccatcc
 16621 aacccatcc
 16681 aacccatcc
 16741 aacccatcc
 16801 aacccatcc
 16861 aacccatcc
 16921 aacccatcc
 16981 aacccatcc
 17041 aacccatcc
 17101 aacccatcc
 17161 aacccatcc
 17221 aacccatcc
 17281 aacccatcc
 17341 aacccatcc
 17401 aacccatcc
 17461 aacccatcc
 17521 aacccatcc
 17581 aacccatcc
 17641 aacccatcc
 17701 aacccatcc
 17761 aacccatcc
 17821 aacccatcc
 17881 aacccatcc
 17941 aacccatcc
 18001 aacccatcc
 18061 aacccatcc
 18121 aacccatcc
 18181 aacccatcc
 18241 aacccatcc
 18301 aacccatcc
 18361 aacccatcc
 18421 aacccatcc
 18481 aacccatcc
 18541 aacccatcc
 18601 aacccatcc
 18661 aacccatcc
 18721 aacccatcc
 18781 aacccatcc
 18841 aacccatcc
 18901 aacccatcc
 18961 aacccatcc
 19021 aacccatcc
 19081 aacccatcc
 19141 aacccatcc
 19201 aacccatcc
 19261 aacccatcc
 19321 aacccatcc
 19381 aacccatcc
 19441 aacccatcc
 19501 aacccatcc
 19561 aacccatcc
 19621 aacccatcc
 19681 aacccatcc
 19741 aacccatcc
 19801 aacccatcc
 19861 aacccatcc
 19921 aacccatcc
 19981 aacccatcc
 20041 aacccatcc
 20101 aacccatcc
 20161 aacccatcc
 20221 aacccatcc
 20281 aacccatcc
 20341 aacccatcc
 20401 aacccatcc
 20461 aacccatcc
 20521 aacccatcc
 20581 aacccatcc
 20641 aacccatcc
 20701 aacccatcc
 20761 aacccatcc
 20821 aacccatcc
 20881 aacccatcc
 20941 aacccatcc
 21001 aacccatcc
 21061 aacccatcc
 21121 aacccatcc
 21181 aacccatcc
 21241 aacccatcc
 21301 aacccatcc
 21361 aacccatcc
 21421 aacccatcc
 21481 aacccatcc
 21541 aacccatcc
 21601 aacccatcc
 21661 aacccatcc
 21721 aacccatcc
 21781 aacccatcc
 21841 aacccatcc
 21901 aacccatcc
 21961 aacccatcc
 22021 aacccatcc
 22081 aacccatcc
 22141 aacccatcc
 22201 aacccatcc
 22261 aacccatcc
 22321 aacccatcc
 22381 aacccatcc
 22441 aacccatcc
 22501 aacccatcc
 22561 aacccatcc
 22621 aacccatcc
 22681 aacccatcc
 22741 aacccatcc
 22801 aacccatcc
 22861 aacccatcc
 22921 aacccatcc
 22981 aacccatcc
 23041 aacccatcc
 23101 aacccatcc
 23161 aacccatcc
 23221 aacccatcc
 23281 aacccatcc
 23341 aacccatcc
 23401 aacccatcc
 23461 aacccatcc
 23521 aacccatcc
 23581 aacccatcc
 23641 aacccatcc
 23701 aacccatcc
 23761 aacccatcc
 23821 aacccatcc
 23881 aacccatcc
 23941 aacccatcc
 24001 aacccatcc
 24061 aacccatcc
 24121 aacccatcc
 24181 aacccatcc
 24241 aacccatcc
 24301 aacccatcc
 24361 aacccatcc
 24421 aacccatcc
 24481 aacccatcc
 24541 aacccatcc
 24601 aacccatcc
 24661 aacccatcc
 24721 aacccatcc
 24781 aacccatcc
 24841 aacccatcc
 24901 aacccatcc
 24961 aacccatcc
 25021 aacccatcc
 25081 aacccatcc
 25141 aacccatcc
 25201 aacccatcc
 25261 aacccatcc
 25321 aacccatcc
 25381 aacccatcc
 25441 aacccatcc
 25501 aacccatcc
 25561 aacccatcc
 25621 aacccatcc
 25681 aacccatcc
 25741 aacccatcc
 25801 aacccatcc
 25861 aacccatcc
 25921 aacccatcc
 25981 aacccatcc
 26041 aacccatcc
 26101 aacccatcc
 26161 aacccatcc
 26221 aacccatcc
 26281 aacccatcc
 26341 aacccatcc
 26401 aacccatcc
 26461 aacccatcc
 26521 aacccatcc
 26581 aacccatcc
 26641 aacccatcc
 26701 aacccatcc
 26761 aacccatcc
 26821 aacccatcc
 26881 aacccatcc
 26941 aacccatcc
 27001 aacccatcc
 27061 aacccatcc
 27121 aacccatcc
 27181 aacccatcc
 27241 aacccatcc
 27301 aacccatcc
 27361 aacccatcc
 27421 aacccatcc
 27481 aacccatcc
 27541 aacccatcc
 27601 aacccatcc
 27661 aacccatcc
 27721 aacccatcc
 27781 aacccatcc
 27841 aacccatcc
 27901 aacccatcc
 27961 aacccatcc
 28021 aacccatcc
 28081 aacccatcc
 28141 aacccatcc
 28201 aacccatcc
 28261 aacccatcc
 28321 aacccatcc
 28381 aacccatcc
 28441 aacccatcc
 28501 aacccatcc
 28561 aacccatcc
 28621 aacccatcc
 28681 aacccatcc
 28741 aacccatcc
 28801 aacccatcc
 28861 aacccatcc
 28921 aacccatcc
 28981 aacccatcc
 29041 aacccatcc
 29101 aacccatcc
 29161 aacccatcc
 29221 aacccatcc
 29281 aacccatcc
 29341 aacccatcc
 29401 aacccatcc
 29461 aacccatcc
 29521 aacccatcc
 29581 aacccatcc
 29641 aacccatcc
 29701 aacccatcc
 29761 aacccatcc
 29821 aacccatcc
 29881 aacccatcc
 29941 aacccatcc
 30001 aacccatcc
 30061 aacccatcc
 30121 aacccatcc
 30181 aacccatcc
 30241 aacccatcc
 30301 aacccatcc
 30361 aacccatcc
 30421 aacccatcc
 30481 aacccatcc
 30541 aacccatcc
 30601 aacccatcc
 30661 aacccatcc
 30721 aacccatcc
 30781 aacccatcc
 30841 aacccatcc
 30901 aacccatcc
 30961 aacccatcc
 31021 aacccatcc
 31081 aacccatcc
 31141 aacccatcc
 31201 aacccatcc
 31261 aacccatcc
 31321 aacccatcc
 31381 aacccatcc
 31441 aacccatcc
 31501 aacccatcc
 31561 aacccatcc
 31621 aacccatcc
 31681 aacccatcc
 31741 aacccatcc
 31801 aacccatcc
 31861 aacccatcc
 31921 aacccatcc
 31981 aacccatcc
 32041 aacccatcc
 32101 aacccatcc
 32161 aacccatcc
 32221 aacccatcc
 32281 aacccatcc
 32341 aacccatcc
 32401 aacccatcc
 32461 aacccatcc
 32521 aacccatcc
 32581 aacccatcc
 32641 aacccatcc
 32701 aacccatcc
 32761 aacccatcc
 32821 aacccatcc
 32881 aacccatcc
 32941 aacccatcc
 33001 aacccatcc
 33061 aacccatcc
 33121 aacccatcc
 33181 aacccatcc
 33241 aacccatcc
 33301 aacccatcc
 33361 aacccatcc
 33421 aacccatcc
 33481 aacccatcc
 33541 aacccatcc
 33601 aacccatcc
 33661 aacccatcc
 33721 aacccatcc
 33781 aacccatcc
 33841 aacccatcc
 33901 aacccatcc
 33961 aacccatcc
 34021 aacccatcc
 34081 aacccatcc
 34141 aacccatcc
 34201 aacccatcc
 34261 aacccatcc
 34321 aacccatcc
 34381 aacccatcc
 34441 aacccatcc
 34501 aacccatcc
 34561 aacccatcc
 34621 aacccatcc
 34681 aacccatcc
 34741 aacccatcc
 34801 aacccatcc
 34861 aacccatcc
 34921 aacccatcc
 34981 aacccatcc
 35041 aacccatcc
 35101 aacccatcc
 35161 aacccatcc
 35221 aacccatcc
 35281 aacccatcc
 35341 aacccatcc
 35401 aacccatcc
 35461 aacccatcc
 35521 aacccatcc
 35581 aacccatcc
 35641 aacccatcc
 35701 aacccatcc
 35761 aacccatcc
 35821 aacccatcc
 35881 aacccatcc
 35941 aacccatcc
 36001 aacccatcc
 36061 aacccatcc
 36121 aacccatcc
 36181 aacccatcc
 36241 aacccatcc
 36301 aacccatcc
 36361 aacccatcc
 36421 aacccatcc
 36481 aacccatcc
 36541 aacccatcc
 36601 aacccatcc
 36661 aacccatcc
 36721 aacccatcc
 36781 aacccatcc
 36841 aacccatcc
 36901 aacccatcc
 36961 aacccatcc
 37021 aacccatcc
 37081 aacccatcc
 37141 aacccatcc
 37201 aacccatcc
 37261 aacccatcc
 37321 aacccatcc
 37381 aacccatcc
 37441 aacccatcc
 37501 aacccatcc
 37561 aacccatcc
 37621 aacccatcc
 37681 aacccatcc
 37741 aacccatcc
 37801 aacccatcc
 37861 aacccatcc
 37921 aacccatcc
 37981 aacccatcc
 38041 aacccatcc
 38101 aacccatcc
 38161 aacccatcc
 38221 aacccatcc
 38281 aacccatcc
 38341 aacccatcc
 38401 aacccatcc
 38461 aacccatcc
 38521 aacccatcc
 38581 aacccatcc
 38641 aacccatcc
 38701 aacccatcc
 38761 aacccatcc
 38821 aacccatcc
 38881 aacccatcc
 38941 aacccatcc
 39001 aacccatcc
 39061 aacccatcc
 39121 aacccatcc
 39181 aacccatcc
 39241 aacccatcc
 39301 aacccatcc
 39361 aacccatcc
 39421 aacccatcc
 39481 aacccatcc
 39541 aacccatcc
 39601 aacccatcc
 39661 aacccatcc
 39721 aacccatcc
 39781 aacccatcc
 39841 aacccatcc
 39901 aacccatcc
 39961 aacccatcc
 40021 aacccatcc
 40081 aacccatcc
 40141 aacccatcc
 40201 aacccatcc
 40261 aacccatcc
 40321 aacccatcc
 40381 aacccatcc
 40441 aacccatcc
 40501 aacccatcc
 40561 aacccatcc
 40621 aacccatcc
 40681 aacccatcc
 40741 aacccatcc
 40801 aacccatcc
 40861 aacccatcc
 40921 aacccatcc
 40981 aacccatcc
 41041 aacccatcc
 41101 aacccatcc
 41161 aacccatcc
 41221 aacccatcc
 41281 aacccatcc
 41341 aacccatcc
 41401 aacccatcc
 41461 aacccatcc
 41521 aacccatcc
 41581 aacccatcc
 41641 aacccatcc
 41701 aacccatcc
 41761 aacccatcc
 41821 aacccatcc
 41881 aacccatcc
 41941 aacccatcc
 42001 aacccatcc
 42061 aacccatcc
 42121 aacccatcc
 42181 aacccatcc
 42241 aacccatcc
 42301 aacccatcc
 42361 aacccatcc
 42421 aacccatcc
 42481 aacccatcc
 42541 aacccatcc
 42601 aacccatcc
 42661 aacccatcc
 42721 aacccatcc
 42781 aacccatcc
 42841 aacccatcc
 42901 aacccatcc
 42961 aacccatcc
 43021 aacccatcc
 43081 aacccatcc
 43141 aacccatcc
 43201 aacccatcc
 43261 aacccatcc
 43321 aacccatcc
 43381 aacccatcc
 43441 aacccatcc
 43501 aacccatcc
 43561 aacccatcc
 43621 aacccatcc
 43681 aacccatcc
 43741 aacccatcc
 43801 aacccatcc
 43861 aacccatcc
 43921 aacccatcc
 43981 aacccatcc
 44041 aacccatcc
 44101 aacccatcc
 44161 aacccatcc
 44221 aacccatcc
 44281 aacccatcc
 44341 aacccatcc
 44401 aacccatcc
 44461 aacccatcc
 44521 aacccatcc
 44581 aacccatcc
 44641 aacccatcc
 44701 aacccatcc
 44761 aacccatcc
 44821 aacccatcc
 44881 aacccatcc
 44941 aacccatcc
 45001 aacccatcc
 45061 aacccatcc
 45121 aacccatcc
 45181 aacccatcc
 45241 aacccatcc
 45301 aacccatcc
 45361 aacccatcc
 45421 aacccatcc
 45481 aacccatcc
 45541 aacccatcc
 45601 aacccatcc
 45661 aacccatcc
 45721 aacccatcc
 45781 aacccatcc
 45841 aacccatcc
 45901 aacccatcc
 45961 aacccatcc
 46021 aacccatcc
 46081 aacccatcc
 46141 aacccatcc
 46201 aacccatcc
 46261 aacccatcc
 46321 aacccatcc
 46381 aacccatcc
 46441 aacccatcc
 46501 aacccatcc
 46561 aacccatcc
 46621 aacccatcc
 46681 aacccatcc
 46741 aacccatcc
 46801 aacccatcc
 46861 aacccatcc
 46921 aacccatcc
 46981 aacccatcc
 47041 aacccatcc
 47101 aacccatcc
 47161 aacccatcc
 47221 aacccatcc
 47281 aacccatcc
 47341 aacccatcc
 47401 aacccatcc
 47461 aacccatcc
 47521 aacccatcc
 47581 aacccatcc
 47641 aacccatcc
 47701 aacccatcc
 47761 aacccatcc
 47821 aacccatcc
 47881 aacccatcc
 47941 aacccatcc
 48001 aacccatcc
 48061 aacccatcc
 48121 aacccatcc
 48181 aacccatcc
 48241 aacccatcc
 48301 aacccatcc
 48361 aacccatcc
 48421 aacccatcc
 48481 aacccatcc
 48541 aacccatcc
 48601 aacccatcc
 48661 aacccatcc
 48721 aacccatcc
 48781 aacccatcc
 48841 aacccatcc
 48901 aacccatcc
 48961 aacccatcc
 49021 aacccatcc
 49081 aacccatcc
 49141 aacccatcc
 49201 aacccatcc
 49261 aacccatcc
 49321 aacccatcc
 49381 aacccatcc
 49441 aacccatcc
 49501 aacccatcc
 49561 aacccatcc
 49621 aacccatcc
 49681 aacccatcc
 49741 aacccatcc
 49801 aacccatcc
 49861 aacccatcc
 49921 aacccatcc
 49981 aacccatcc
 50041 aacccatcc
 50101 aacccatcc
 50161 aacccatcc
 50221 aacccat