Resonanter Drucksensor

 $p_1 < p_2$

Tab.1: Materialeigenschaften mikromechanischer Werkstoffe

Bezugstemperatur: T = 300 K

	ę [kg/m³]	S ^E ₁₁ /S ^E ₁₂ [10 ⁻¹² Pa ⁻¹]	V	d ₃₁ [10 ⁻¹² C/N]	d ₃₃ [10 ⁻¹² C/N]	$\epsilon^{T}_{11}/\epsilon_{0}$	$\epsilon^{T}_{33}/\epsilon_{0}$	a _{th} [10 ⁻⁸ K ⁻¹]	<i>λ</i> [W/ mK]	K _p ^{mat}
Si	2329	7,68 -2,14	0,28			?	?	2,3 - 2,6	156	
Quarz	2650	12,78 -1,81	0,14	$d_{11} = 2,30$	$d_{14} = -0.67$	4,51	4,63	7,48 ∥ z 13,7 ⊥ z	12	(0,1)
AIN	3260	3,53 -1,01	0,29	-2,00	5,53	9,04	11,4	4,15 ∥ z 5,27 ⊥ z	?	0,18
ZnO	5470	7,91 -3,30	0,42	-5,12	12,0	9,26	8,2	2,92 ∥ z 4,75 ⊥ z	54	0,40
PZT	7600	15,4 -5,70	0,37	-160	355	1600	1600	≈ 7 ,0	1,2	0,61

$$k_p^{mat} = \sqrt{\frac{2}{1-v}} \cdot k_{31} \approx 1,6..1,9 \cdot k_{31}$$
 $k_{31}^2 = \frac{d_{31}^2}{S_{11}^E \cdot \varepsilon_{33}^T}$

ANSYS 4.4A1 SEP 29 1992 12:01:38 PLOT NO. 1 POST1 ELEMENTS TYPE NUM

XU =-1 YU =0.3 ZU =1 DIST=0.006205 XF =0.004979 YF =0.004979 ZF =0.273E-03 FACE HIDDEN FACE HIDDEN

ANSYS 4.4A1 SEP 29 1992 12:01:38 PLOT NO. 1 POST1 ELEMENTS TYPE NUM

XU =-1 YU =0.3 ZU =1 DIST=0.006205 XF =0.004979 YF =0.004979 ZF =0.273E-03 FACE HIDDEN

ANSYS 4.4A1 SEP 29 1992 12:03:02 PLOT NO. & POST1 ELEMENTS TYPE NUM

XV =-1 YV =0.3 ZV =1 DIST=0.006205 XF =0.004979 YF =0.004979 ZF =0.273E-03 PRECISE HIDDEN

Tab. 2: Parametereinflüsse beim Membran-Modell

Elementvernetzung, Anzahl der dynamischen Hauptfreiheitsgrade (MDOF) Variation:

FE-Modell: Plattenmodell mit unendlich steifer Einspannung,

3D-Membran mit (111)-Einspannung, Viertelmodell, variable Elementunterteilung

Si/ZnO-Bimorphmembran: Abm.: 9,2 x 9,2 mm², $t_{si} = t_{ZnO} = 20 \, \mu \text{m}$ f_s : Serienresonanzfrequenz, f_p : Parallelresonanzfrequenz, k_{eff} : effektiver Kopplungsfaktor (Grundschwingungsmode)

FEM- Modell:	Elemente / Knoten	MDOFs	Seiten- teilung	Aspekt- verhält.	f _s [kHz]	f _p [kHz]	k _{eff}	Bemerkungen:	
Nr. P1	200/363	300	10	23	4,016	4,143	0,2476	nur <u>untere</u> Knoten- lage eingespannt	
Nr. P2	200/363	300	10	23	5,196	5,298	0,1962	Si-Membran ganz eingespannt	
Nr. P3	200/363	300	10	23	5,281	5,378	0,1899	Si-Membran <u>und</u> ZnO eingespannt	
Nr. P8	3200/5043	300	40	ca. 6	4,907	5,012	0,2047	Si: eingespannt ZnO-Schicht frei	
Nr. M5	450/795	100	13	ca. 18	5,015	5,117	0,2005	Sockel <u>und</u> Seiten- teile fixiert	
Nr. M6	450/795	100	13	ca. 18	4,836	4,931	0,1970	nur Sockel fixiert Breite: 1 mm	
Nr. M7	578/999	100	13	ca. 18	4,871	4,967	0,1974	nur Sockel fixiert Breite: 5 mm	
Nr. M8	1058/1767	300	19	ca. 12	4,745	4,842	0,2004	_ ** _	

Tab. 3: FE-Modelleinfluß (Modalanalyse)

Resonanzfrequenz in Abhängigkeit der Membrandicke

Vergleich: analytische Rechnung --- FEM

Hahn-Schickard-Institut für Mikro- und Informationstechnik

<u>Tab. 4:</u> Resonanzfrequenzen-Vergleich: Analytische Rechnung ⇔ FEM ↔ Messung

Resonanzfrequenzvielfaches c_i : $f_i = c_i \cdot f_0$

- analytisch: ideal homogene, quadratische Silizium-Platte (steife Einspannung)

- FE-Modelle: Si-Membran, Abm.: 9,2 x 9,2 mm², $t_{Si} = 100 \mu m$

- Messungen: Si/ZnO-Bimorphmembran, Abm.: 9,2 x 9,2 mm², t_{Si} = 50 μ m, t_{ZnO} = 15 μ m (k_{eff} : effektiver elektromechanischer Kopplungsfaktor)

Schwingungs- mode		analytisch		FEM		opt. Messung		elektr. Messung	
		isotrop [Pon91]	aniso. [Pon91]	2D isotrop	3D an- isotrop	C _i	f _i [kHz]	Ci	k _{eff}
\odot	M ₁₁	1,00	1,00	1,00	1,00	1,00	7,24	1,00	0,10
① ①	M ₁₂	2,04	2,00	2,04	2,11	2,10	15,22		
⊕⊝ ⊝⊕	M ₂₂	3,01	2,90	3,00	3,03	2,86	20,71		
	M ₃₁	3,66	3,62	3,65	3,75				
(+) (+) (+)	M ₁₃	3,68	3,63	3,67	3,77	3,94	28,57	3,92	0,08
+ - + - + - + - +	M ₃₃	6,12	5,87	6,11	6,02	6,35	46,0	6,34	0,07

Laservibrometer-Messung

Amplitudenspektrum einer Si-Membran: (1.5mm vom Membranrand)

Membran: M7-2/3 9.2 x 9.2 mm² $t_{Si} = 50 \mu m$

Hahn-Schickard-Institut für Mikro- und Informationstechnik

Modalanalyse einer Siliziummembran Amplitudenspektrum A(f,x)

Membran:

M7-2/3

9.2 x 9.2 mm²

 $t_{Si} = 50 \mu m$

 $t_{Zn0} = 15 \mu m$

Radiale Modenverläufe einer Si-Membran

Hahn-Schickard-Institut für Mikro- und Informationstechnik

Frequenzverschiebung bei Druckbeaufschlagung

Membran: $9.5 \times 9.5 \text{ mm}^2$ $t_{Si} = 148 \mu \text{m}$ $t_{ZnO} = 15 \mu \text{m}$

Kopplungsfaktor in Abhängigkeit des Schichtdickenverhältnisses

Membran: 9.2 x 9.2 mm² $t_{Si} = 20 \mu m$

Hahn-Schickard-Institut für Mikro- und Informationstechnik