621.5 y-838

198881

И.П. УСЮНИН

УСТАНОВКИ. МАШИНЫ И АППАРАТЫ КРИОГЕННОЙ ТЕХНИКИ

Часть 1

Допущено Министерством высшего и среднего специального образования РСФСР в качестве учебного пособия для студентов высших учебных заведений

M R T Y RE N. S. SAYMARN BUSANOTEKA

> ВЫДАЧА НА ДОМ

МОСНВА ПИЩЕВАЯ ПРОМЫШЛЕННОСТЬ 1976

ОГЛАВЛЕНИЕ

Предисловие <u>.</u>	3
C.	
Глава І	
Состояние и перспективы развития криогенной техники	5
Производство и использование продуктов разделения воздуха (кислорода, азота и редких газов)	5
Получение газообразного водорода или азото-водородной смеси	9
Производство этилена, пропилена и других углеводородов	9 11
Ожижение природного rasa Производство и использование жидкого водорода, дейтерия и тяжелой воды Производство и применение жидкого и rasooбразного гелия	12 13
Глава II	
Термодинамические и теплофизические свойства веществ	16
Термодинамическая характеристика реальных газов	16 25
Глава III	
7	44
Промышленные установки для разделения воздуха	44
Технологические схемы установок жидкого кислорода и жидкого азота Технологические схемы установок технологического, технического кислорода	54
и чистого азота	71
Глава IV	
Воздухоразделительные аппараты	106
Основные принципы термолинамики разледения воздуха	106 112
Типы ректификационных аппаратов и дефлегматоров	113
Конструкции дефлегматоров	116
Основы расчета процессов массообмена	118
Основы гидравлического расчета ректификационных колони с ситчатыми тарел-	124
Примеры расчета воздухоразделительных аппаратов	129
Глава V	
Теплообменные аппараты	138
Классификация теплообменных аппаратов и требования к иим	138
Основы расчета теплообменных аппаратов	139
Трубчатые теплообменники	145 152
Пластинчато-ребристые теплообменники	i66
Основы расчета пластинчато-ребристых теплообменников	170
Сетчатые теплообменники	182 184
Теплообменные аппараты для переключающихся потоков	191
Touteness he neurhanous postly phendesus capitar leagues .	

Глава VI

Установки для разделения смесей углеводородных и редких газов и ожижения	
природного газа	
Технологические схемы установок для получения этилена	216
Технологические схемы установок для получения азото-водородной смеси	224
Технологические схемы установок для получения водорода	231
Технологические схемы установок для получения редких газов: аргона, крип-	
тона, ксенона, неона и гелия	236
Технологические схемы установок для ожижения природного газа	248
Глава VII	
Установки для ожижения водорода и получения дейтерия и тяжелой воды. Гелие-	
вые ожижительные и рефрижераторные установки	267
Технологические схемы установок для ожижения водорода	267
Технологические схемы установок для получения дейтерия и тяжелой воды из	
жидкого водорода	275
Технологические схемы гелиевых ожижительных и рефрижераторных установок	280
Приложения	
Список использованной литературы	332
Предметный указатель	339

синтеза аммиака. Техническая характеристика установки зависит от производительности установок синтеза аммиака и содержания гелия в используемом природном газе.

П

И

Ci Oi

и

В.

ΠĮ

Ч

п

KC

тe

ЖI

И

жı pa

В ИС

да

OT.

пр

деі

ВЫ

CTE

TeJ

Baj

Mel

Hei

пре

исп

Hei

ЖД

при

ТЕХНОЛОГИЧЕСКИЕ СХЕМЫ УСТАНОВОК ДЛЯ ОЖИЖЕНИЯ ПРИРОДНОГО ГАЗА

Эти установки предназначены для ожижения больших количеств приодного газа.

Холод, необходимый для ожижения природного газа, получают в холодильных циклах: внешнем (классическом) каскадном, внутреннем каскадном и азотном каскадном.

Эксплуатация установок с классическим каскадным циклом выявила его недостатки: большое количество компрессоров и трудность регулирования рабочего процесса; значительные площади поверхности теплообмена конденсаторов-испарителей и теплообменников; необходимость поддержания высокой чистоты холодильных агентов.

Однако, несмотря на указанные недостатки, этот способ применяется в промышленности. Если классический каскадный цикл сжижения тазов и производства холода, предложенный Пикте много лет назад как наиболее экономичный, не применялся ввиду своей сложности, то именно в установках сжижения природного газа при значительной производительности установок он впервые получил реализацию. Оригинальный эффективный цикл, предложенный А. П. Клименко, позволяет использовать всего один компрессор, что заметно облегчает обслуживание установки.

Установка с внешним каскадным циклом

Схема установки (вариант А) изображена на листе 176.

Природный газ, свободный от бензиновых фракций, при давлении 4 МПа охлаждается в теплообменниках 1, 2 и 3 с помощью пропанового холодильного цикла, принцип работы которого сводится к следующему. Пропан, сжатый до 1,5 МПа в компрессоре 25, охлаждается водой в холодильнике 20, где конденсируется при 300 К и затем собирается в отделителе 13. После отделителя 13 дросселируется до 0,55 МПа, поступает в отделитель 10 и затем испаряется в теплообменнике 1 при 280 К, охлаждая природный газ до 285 К. Испарившийся пропан сжимается в третьей стунени компрессора 25. Остаток жидкости из отделителя 10 дросселируется до давления 0,3 МПа в отделитель 14, из которого часть жидкости и пары направляются на охлаждение природного газа до 265 К в теплообменник 2 и далее в теплообменник /. В последнем пропан нагревается и сжимается далее во второй ступени компрессора 25. Оставшаяся жидкость из отделителя 14 дросселируется в отделитель 21 до давления 0,13 МПа, после чего часть жидкости подается в теплообменник 3, где испаряется, охлаждая природный газ до 241 К, другая часть испаряется в испарителе 24, где ожижается этилен. Испарившийся в теплообменнике 3 пропан подогревается в теплообменниках 2 и 1 и сжимается в первой ступени компрессора 25, куда также поступает на всасывание пропан, испарившийся в испарителе 24. Таким образом замыкается пропановый колодильный цикл с тремя температурами испарителя: 280 К, 260 К, 236 К.

Далее природный газ охлаждается в теплообменниках 4, 5, 6 холодильного цикла этилена. Этилен сжимается в компрессоре 27 до давления 2 МПа, ожижается в испарителе пропана 24 и поступает в отделитель 15. Из этого отделителя этилен дросселируется до давления 0,55 МПа при температуре 201 К и подается в отделитель 11, откуда часть жидкости направляется для охлаждения природного газа в теплообменник 4, после которого газообразный этилен сжимается в третьей ступени компрессора 27. Другая часть жидкого этилена из отделителя 11 дросселируется в отделитель 16 до давления 0,2 МПа при 182 К и частично поступает на охлажде-

ние природного газа в теплообменник 5, в котором испаряется и затем сжи-

мается во второй ступени компрессора 27.

Жидкий этилен из отделителя 16 дросселируется до давления 0,15 МПа при 176 К в отделитель 22, из которого одна часть этилена поступает на охлаждение природного газа в теплообменник 6 и другая часть — в испаритель-конденсатор 26, в котором конденсируется метан, поступающий из компрессора 28. Испарившийся в теплообменнике 6 этилен нагревается в теплообменниках 5 и 4, смешивается с этиленом из испарителя-конденсатора 26 и поступает на сжатие в первую ступень компрессора 27. Таким образом замыкается этиленовый холодильный цикл при температурах испарения: 201 К, 182 К, 176 К.

Последующее охлаждение и ожижение природного газа осуществляется в теплообменниках 7, 8 и 9 с помощью метанового холодильного

цикла.

Сжатый в компрессоре 28 до давления 4 МПа метан конденсируется при 187 К и поступает в отделитель 17, из которого он дросселируется до давления 1,5 МПа и при температуре 159 К направляется в отделитель 12. Часть метана из отделителя 12 нагревается в теплообменнике 7, охлаждая

природный газ до температуры 164 К.

Испарившийся в теплообменнике 7 метан сжимается во второй ступени компрессора 28, а жидкость из отделителя 12 дросселируется в отделитель 18 до давления 0,6 МПа и температуры 139 К. Из отделителя 18 часть жидкости поступает на охлаждение природного газа в теплообменники 8 и 7, после которых сжимается во второй ступени компрессора 28. Остаток жидкости из отделителя 18 дросселируется до давления 0,2 МПа и температуры 120 К в отделитель 23, после которого испаряется и нагревается в теплообменниках 9, 8 и 7, замыкая метановый цикл при температурах испарения: 159 К, 139 К и 120 К.

Сжиженный природный газ из теплообменника 9 дросселируется до давления, близкого к атмосферному, в хранилище жидкого метана 19, откуда испарившаяся часть поступает на сжигание, а жидкость — к потребителю. Таким образом с помощью классического каскадного цикла природный газ, сжатый до давления 4 МПа, превращается в жидкость.

Как видно, при этом используется достаточно сложное оборудование: девять многосекционных темлообменников, три многоступенчатых поршневых компрессора или турбокомпрессора и двенадцать отделителей. Естественно, что регулировать столь громоздкую систему весьма затрудни-

тельно.

Каскадный цикл (вариант *Б*) представлен на листе 177. В этом варианте принципиальная часть схемы ожижения природного газа не изменена и повторяет предыдущую. Многосекционные теплообменники заменены на односекционные. В верхней части теплообменников 8, 9 испаряется пропан и конденсируется этилен. В средней части теплообменников 11—15 испаряются пропан и этилен, охлаждается и конденсируется метан. В нижней части соответственно испаряются пропан, этилен, метан, а охлаждается и конденсируется продукционный природный газ.

Ниже приведен пример расчета схемы по варианту А (лист 176).

Расчет ведем на один килограмм сжижаемого природного газа, который условно принят за чистый метан.

Условные обозначения:

 $q_n,\ q_n'$ — тепловые нагрузки в соответствующих теплообменниках, кДж/кг (n — номер позиции на схеме, лист 176, рис. 140, 142, 144);

г. — теплота парообразования кладагентов при соответствующих давлениях испарения, кДж/кг;

 x_n — паросодержание кладагента после дросселирования в отделитель; y_n — количество жидкого кладагента, поступающего в соответствующий

 z_n — количество жидкого хладагента, поступающего на дросселирование

в соответствующий отделитель, кг/кг;

 δ_n — количество пара, образующегося после дросселирования, кг/кг;

кодичество хладагента, поступающего в соответствующий теплообмен-HHK, Kr/Kr;

давление конденсации и кипения хладагентов в соответствующих теплообменниках, МПа;

Т_п — температуры конденсации и испарения кладагентов соответственно давлениям p_n , K;

 $T_n^{\rm BX}$, $T_n^{\rm BMX}$ — температуры входа и выхода потока природного газа в соответствующих теплообменниках, К;

 і — энтальнии потоков в соответствующих точках циклов схемы (рис. 141, 143, 145, 147), кДж/кг;

 $L_{\rm I,\; II,\; III}$ — работа в данной ступени компрессора, к Π ж/кг. Расчет метанового цикла (рис. 140, 141). Исходные данные: давление ожижаемого природного газа (задано) $p_{\mathrm{n.\,r}}^{\mathrm{nav}}=4$ МПа; давление конденсации кладагента

в испарителе-конденсаторе 26 (принимаем) $p_{36} = 4$ МПа; температура конденсация хладагента в испарителе-конденсаторе 26 (из диаграммы $i - \lg p$ при $p_{26} = 4$ МПа, $T_{24} = 187$ К); давление кипения хладагента в теплообменнике 9 (подбираем из условия равномерного распределения по теплообменникам общего перепада температур) $p_{\theta} =$ 0,2 МПа; температура кипения хладагента в теплообменнике $9\ T_0=120\ {
m K};$ давление кипения хладагента в теплообменинке δ (так же, как и p_s) $p_s = 0.6$ МПа; температура кипения кладагента в теплообменπo

Рис. 140. Схема метанового цинла (каскадный Рис. 141. Изображение метанового процесс сжижения природного газа). цикла в координатах $i - \lg p$.

инке 8 T_8 =139 K; давление кипения хладагента в теплообменнике 7 (так же, как и ρ_8) ρ_7 = 1,5 MHa; температура кипения хладагента в теплообменнике 7 T_7 = 159 K. Принимаем температурную недорекунерацию в теплообменниках 5 K. Температура природного газа на выходе из теплообменника 9

$$T_9^{\rm BMX} = T_9 + 5 = 125$$
 K.

Температура природного газа на входе в теплообменник 9 и на выходе из теплообменинка 🖇

$$T_9^{\text{BX}} = T_8^{\text{BMX}} = T_8 + 5 = 144 \text{ K}.$$

Температура природного газа на входе в теплообменник 8 и на выходе из теплообменинка 7

$$T_8^{\text{BX}} = T_7^{\text{BMX}} = T_7 + 5 = 164 \text{ K}.$$

Температура природного газа на входе в теплообменник 7 и на выходе из теплообменника б

$$T_7^{\rm ex} = T_6^{\rm BMX} = T_6 + 5 = 181$$
 K.

(Та получаем из расчета этиленового цикла, см. ниже).

250

Энтальнии потоков хладагента (метана) для соответствующих точек цикла (см. рис. 141) получаем из i-lg p-диаграммы по заданным давлениям:

> $i_1 = 527,5$ кДж/кг; $i_2 = 548,4$ кДж/кг; $i_3 = 556,8$ кДж/кг; $i_4 = 519 \text{ k/J} \text{ k/kr}; \quad i_5 = 327.6 \text{ k/J} \text{ k/kr}; \quad i_6 = 176.7 \text{ k/J} \text{ k/kr};$

 $i_2 = 100.9 \text{ k/J/m/kg}; \quad i_3 = 32.4 \text{ k/J/m/kg};$

 $t_1' = 565$ кДж/кг (температура в точке 1' равна T_8 (принимаем); давление ρ_9);

 $i_1^{\prime\prime}=615,4$ кДж/кг $(T_7,~\rho_9);~~i_2^{\prime}=594,5$ кДж/кг $(T_7,~\rho_8);~~i_4^{\prime}=732,6$ кДж/кг.

Тепловые нагрузки на теплообменники 7, 8, 9 (по природному газу):

 $=i_{\theta}^{\text{BX}}-i_{\theta}^{\text{BMX}}=67,8$ вДж/кг (T_{θ}^{BX} , T_{θ}^{BMX} , p=4,0 МПа — давление природного газа);

$$q_8 \neq l_8^{BK} - l_8^{BKK} = 75.8 \text{ k/Jm/kg};$$

$$q_7 = i_7^{\text{BX}} - i_7^{\text{BMX}} = 84,6 \text{ кДж/кг.}$$

Теплоты парообразования хладагента:

$$t_9 = i_1 - i_8 = 527, 5 - 32, 4 = 495, 1 \text{ кДж/кг};$$

$$r_8 = t_9 - t_7 = 548.4 - 100.9 = 447.5 кДж/кг;$$

$$t_7 = i_8 - i_6 = 556.8 - 176.7 = 380.1 \text{ k/J} \text{m/kr}.$$

Количество жидкого хладагента, поступающего в теплообменник 9,

$$y_0 = \frac{q_0}{r_0} = \frac{67.8}{495.1} = 0.137 \text{ kg/kg}.$$

Паросодержание в потоке хладагента после дросселирования в отделитель 23:

$$x_{33} = \frac{l_7 - l_8}{l_9} = \frac{100.9 - 32.4}{495.1} = 0.138.$$

Количество жидкого хладагента, поступающего на дросселирование в отделитель 23

$$z_{ss} = \frac{y_s}{1 - x_{ss}} = \frac{0.137}{1 - 0.138} = 0.159 \text{ kg/kg}.$$

Количество пара, образующегося после дросселирования в отделителе 23,

 $\delta_{33} = z_{33}x_{33} = 0.159 \cdot 0.138 = 0.022 \text{ kg/kg}.$

Теплота нагрева обратного потока кладагента в теплообменнике δ (при давлении ρ_{θ})

$$q_8' = (i_1' - i_1) z_{23} = (565 - 527, 5) \cdot 0,159 = 5,986 \text{ k/Jm/kg}.$$

Количество жидкого хладагента, поступающего в теплообменник 8,

$$y_8 = \frac{q_8 - q_8'}{r_8} = \frac{75.8 - 5.986}{447.5} = 0.167 \text{ KeV/KeV}.$$

Паросодержание в погоке хладагента после дросселирования в отделитель 18
$$x_{18}=\frac{i_4-i_7}{r_8}=\frac{176,7-100,9}{447,5}=0,17.$$

Количество жидкого хладагента, поступающего на дросселирование в отделитель 18,

$$z_{10} = \frac{y_0 + z_{23}}{1 - x_{10}} = \frac{0.167 + 0.159}{1 - 0.17} = 0.393 \text{ kg/kg}.$$

Количество пара, образующегося после дросселирования в отделителе 18,

$$\delta_{18} = z_{18}x_{18} = 0.393 \cdot 0.17 = 0.0666 \text{ kg/kg}.$$

Теплота нагрева обратных потоков хладагента в теплообменнике 7 (при давлениях р_в н р_в)

$$q_1' = (i_2' - i_2)(y_8 + \delta_{18}) + (i_1'' - i_1')z_{23} = (594.5 - 548.4)(0.167 + 0.9666) + (615.4 - 565)(0.159 = 18.67 \text{ kJ}\text{m/kg}.$$

Количество жидкого хладагента, поступающего в теплообменник 7,

$$y_7 = \frac{q_7 - q_7'}{r_7} = \frac{84.6 - 18.67}{380.1} = 0.173 \text{ kg/kg}.$$

Паросодержание в потоке хладагента после дросселирования в отделитель 12

$$x_{12} = \frac{i_5 - i_6}{r_7} = \frac{327, 6 - 176, 7}{380, 1} = 0.39.$$

Количество жидкого хладагента, поступающего на дросселирование в отделитель 12,

$$z_{12} = \frac{y_7 + z_{18}}{1 - x_{12}} = \frac{0.173 + 0.393}{1 - 0.39} = 0.94 \text{ kg/kg}.$$

Количество пара, образующегося после дросселирования.

$$\delta_{12} = z_{12}x_{13} = 0.94 \cdot 0.39 = 0.373 \text{ kg/kg}.$$

Таким образом, 1 кг природного газа, охлаждаемого в теплообменниках 7, 8, 9 от температуры 181 К до температуры 125 К, в нижней ступени каскада (метановый цикл)

должен соответствовать 0,94 кг циркулирующего хладагента (СНд).

Вычисляем работу сжатия в компрессоре 28. Процесс сжатия считаем адиабатическим (S = const). Энтальция в точке 2" (см. рис. 141) конца сжатия в первой ступени (от ρ_0 до ρ_8)

$$i_2'' = 711,7 \text{ кДж/кг.}$$

Считаем, что на стороне всасывания газа во второй ступени компрессора смешиваются два потока с разными энтальпиями. Результирующая энтальпия газа (точка 2°, см. рис. 141).

$$i_{2}'' = \frac{i_{2}'(\delta_{18} + y_{8}) + i_{2}''(\delta_{23} + y_{9})}{\delta_{18} + y_{8} + \delta_{22} + y_{9}} = \frac{594.5(0,0666 + 0,167) + 711.7(0,022 + 0,137)}{0,0666 + 0,167 + 0,022 + 0,137} = 640.5 \text{ k/J} \text{m/kr}.$$

Аналогично энтальпия в точке *3*

$$i_3' = 734,7 \text{ кДж/кг};$$

энтальпия в точке 3"

$$i_3^{''} = \frac{i_3 \left(y_7 + \delta_{12}\right) + i_3^{'} z_{18}}{z_{12}} = \frac{556.8 \left(0.173 + 0.373\right) + 734.7 \cdot 0.393}{0.94} = 632 \text{ kBm/kr;}$$

энтальпия в точке 4

$$i_4' = 732,6$$
 кДж/кг.

Работа сжатия в первой ступени метанового компрессора

$$L_1 = (i_2^* - i_1^*) z_{23} = (711.7 - 615.4) 0.159 = 15.3 \text{ kHz/kr}.$$

Аналогично:

во второй ступени метанового компрессора

$$L_{11} = (i'_3 - i''_2) z_{18} = (734,7 - 640,5) 0,393 = 37$$
 кДж/кг;

в третьей ступени метанового компрессора

$$L_{\rm HI} = (i'_4 - i''_3) z_{12} = (732.6 - 632) 0.94 = 94.5 \text{ km/kr}.$$

Суммарная работа сжатия в компрессоре метанового цикла

$$L_{\text{CH}_4} = L_1 + L_{\text{H}} + L_{\text{H}1} = 15,3 + 37 + 94,5 = 146,8$$
 кДж/кг.

Расчет этиленового цикла (рис. 142, 143). Исходиме данные (принцип разделения этиленового цикла на ступени тот же, что и для метанового): $\rho_{24}=2$ МПа; $\rho_4=0.55$ МПа; $\rho_5=0.2$ МПа; $\rho_6=0.15$ МПа; $T_{24}=244$ K; $T_4=201$ K; $T_5=182$ K; $T_6 = 176 \text{ K}.$

Значения температур потока природного газа в точках входа в теплообменники 4, 5, 6 и выхода из них получаем, приняв ΔT равной 5 К.
Значения энтальпии в точках цикла (см. рис. 143) получаем по заданным параметрам из *i*—ig p-диаграммы для этилена. Расчет тепловых нагрузок и материальных потоков аналогичен тому же для метанового цикла.

Теплота парообразования этилена: $r_6 = 475,14$ кДж/кг; $r_5 = 462,59$ кДж/кг; $r_4 = 412,34$ кДж/кг; $r_{24} = 297,2$ кДж/кг. В теплообменнике 6 в отличие от других конденсируется природный газ с последующим переохлаждением жидкости. Поэтому тепловую нагрузку в нем определяем повыражению

$$q_{\rm A} = r_{\rm H, C} + \Delta i = 244,69$$
 кДж/кг,

єде $r_{\text{H-}\Gamma}=190;48$ кДж/кг— теплота парообразования природного газа при p=4 МПа; $\Delta i=54,2$ кДж/кг— тепло, выделяющееся при переохлаждении 1 кг природного газа с T=187 К до T=181 К при p=4 МПа;

$$q_5 = 100,47$$
 кДж/кг при $T_5^{\rm BX} = 206$ К и $T_5^{\rm BMX} = 187$ К; $q_4 = 108,84$ кДж/кг при $T_4^{\rm BX} = 241$ К и $T_4^{\rm BMX} = 206$ К.

Принимаем, что понижение температуры газа после компрессора 28 (см. рис. 140) происходит в конденсаторе-испарителе 26, поэтому следует учесть тепло охлаждения:

Рис. 142. Схема этиленового цикла.

$$q_{26}' = i_{4\text{CH}_4}' - i_{4\text{CH}_4} = 213,5$$
 кДж/кг, где $i_{4\text{CH}_4}'$ и $i_{4\text{CH}_4}'$ — значения энтальний в точках метанового цикла (рис. 141). Тепловая нагрузка на конденсатор-испаратия 26

$$q_{26} = (q'_{26} + r_{26}^{\text{CH}_4}) z_{12} = 380,9 \text{ кДж/кг,}$$

где $r_{26}^{\mathrm{CH_4}}$ — теплота конденсации метана при давлении $p_{26}.$

Рис. 143. Изображение этиленового цикла в координатах i— $\lg p$.

Определяем количество хладагента (этилена), циркулирующего в каскаде при охлаждении 1 кг природного газа:

$$y_6 = \frac{q_6}{r_6} = 0.514 \text{ kg/kg};$$

$$\sigma_{26} = \frac{q_{26}}{r_6} = 0.8 \text{ kg/kg};$$

$$x_{22} = \frac{i_7 - i_8}{r_6} = 0.035;$$

$$z_{22} = \frac{y_6 + \sigma_{26}}{1 - x_{22}} = 1.36 \text{ kg/kg};$$

$$\delta_{22} = z_{22}x_{23} = 0.0475 \text{ kg/kg}.$$

Теплота нагрева обратного потока хладагента в теплообменнике 5 (при давленни $\rho_{\bf e}$)

$$q_5' = (i_1' - i_1) (\delta_{22} + y_6) = 4,7$$
 кДж/кг.

Рассчитываем материальные потоки в соответствующих точках цикла:

$$y_6 = \frac{q_5 - q_5'}{r_8} = 0,207 \text{ kg/kg};$$

$$x_{16} = \frac{i_6' - i_7}{i_3 - i_7} = 0,145;$$

$$z_{16} = \frac{z_{22} + y_6}{1 - x_{16}} = 1,835 \text{ kg/kg};$$

$$\delta_{16} = z_{16}x_{16} = 0,266 \text{ kg/kg}.$$

Теплота нагрева обратного потока хладагента в теплообменнике 4 (при давлениях

 $q_4' = (i_1' - i_1') (y_6 + b_{22}) + (i_2' - i_2) (y_5 + b_{16}) = 24.87$ кДж/кг.

Рассчитываем материальные потоки в соответствующих точках цикла:

$$y_4 = \frac{q_4 - q_4'}{r_4} = 0,22 \text{ kg/kg};$$

$$x_{11} = \frac{i_6 - i_6}{r_4} = 0,31;$$

$$-z_{11} = \frac{y_4 + z_{16}}{1 - x_{11}} = 2,97 \text{ kg/kg};$$

$$\delta_{11} = z_{11}x_{11} = 0,92 \text{ kg/kg}.$$

Таким образом, 1 кг природного газа, охлаждаемого в теплообменниках 4, 5, 6 от температуры 241 К до температуры 181 К во второй ступени каскада (этиленовый цикл), должен соответствовать 2,97 кг циркулирующего хладагента (С2Н4).

Подсчитываем работу сжатия в компрессоре 27. Энтальпия в точке I" (см. рис. 143);

$$i_1'' = \frac{i_1''(y_4 + \delta_{22}) + i_1\sigma_{24}}{z_{22}} = 506,54 \text{ k/Lm/kr}.$$

При смешении потоков газа на всасывании во второй ступени компрессора энтальпия практически не изменяется, т. е. энтальпия точки 3"

$$t_3'' = \frac{t_3(y_4 + \delta_{11}) + i_3'z_{16}}{z_{11}} = 560,95 \text{ r.D.m/er.}$$

Работа сжатия в первой ступени этиленового компрессора

$$L_1 = (i'_2 - i''_1) z_{22} = 23,2$$
 кДж/кг.

Аналогично во второй ступени компрессора

$$L_{11} = (i'_3 - i'_2) z_{16} = 123$$
 кДж/кг;

в третьей ступени компрессора

$$L_{\rm HI} = (i_4' - i_3'') z_{11} = 284,7$$
 кДж/кг.

Суммарная работа

$$L_{C_0H_4} = L_{\rm I} + L_{\rm II} + L_{\rm III} = 430,87$$
 кДж/кг.

Расчет пропанового цикла (рис. 144; 145). Исходные данные: $p_3=0.13$ МПа; $p_2=0.3$ МПа; $p_1=0.55$ МПа; $p_{20}=1.5$ МПа; $T_3=236$ K; $T_2=260$ K; $T_1=280$ K; $T_{20}=317$ K.

Значение энтальпий в точках цикла (см. рис. 145) находим по заданным параметрам

из i-lg p-днаграммы для пропана.

Расчет тепловых и материальных потоков аналогичен тому же для предыдущих

паросоразования: $r_3 = 418,63$ кДж/кг; $r_2 = 381,15$ Теплота

Тепловые нагрузки на теплообменники l, 2, 3 и конденсатор-испаритель 24 (см. рис. 144): $q_3 = 67.0$ кДж/кг; $q_2 = 50.26$ кДж/кг; $q_1 = 46.04$ кДж/кг. Для определения тепловой нагрузки на конденсатор-испаритель 24 берем данные

из этиленового цикла

$$q_{24} = \left[r_{24} + \left(i'_4 + i_4\right)\right] z_{11} = 1264,26 \text{ kHe/kg}.$$

Рассчитываем материальные потоки в соответствующих точках цикла:

$$y_3 = \frac{g_3}{r_3} = 0.16 \text{ kg/kg};$$

$$\sigma_{24} = \frac{g_{24}}{r_3} = 3.02 \text{ kg/kg};$$

$$x_{31} = \frac{i_1 - i_8}{i_1 - i_8} = 0.12 \text{ kg/kg};$$

$$z_{21} = \frac{g_3 + \sigma_{24}}{1 - x_{21}} = 3.62 \text{ kg/kg};$$

$$\delta_{21} = x_{31}z_{31} = 0.434 \text{ kg/kg}.$$

Теплота нагрева обратиого потока хладагента в теплообменнике 2 (при давлении ρ_0) $q_2'=(i_1'-i_1)\,(y_3+\delta_{21})=22,396$ кДж/кг.

Рассчитываем материальные потоки:

$$y_2 = \frac{q_2 - q_2'}{r_1} = 0.075 \text{ KF/KF};$$

$$x_{14} = \frac{i_6 - i_7}{i_2 - i_7} = 0.118;$$

$$x_{14} = \frac{y_2 + z_{21}}{1 - x_{14}} = 4.17 \text{ KF/KF};$$

$$\delta_{14} = z_{14}x_{14} = 0.492 \text{ KF/KF}.$$

Теплота нагрева обратного потожа жладагента в теплообменнике I (при давлении p_3 и p_2)

 $q_{1}^{'} = \left(i_{1}^{''} - i_{1}^{'}\right)\left(y_{3} + \delta_{21}\right) + \left(i_{2}^{'} - i_{2}\right)\left(y_{2} + \delta_{14}\right) = 21,55 \text{ kMpk/kg}.$

Рис. 144. Схема пропанового цикла.

Рис. 145. Изображение проланового цикла в координатах i—ig p.

Работа сжатия в первой ступени пропанового компрессора

$$L_1 = \left(i_2' - i_1''\right) \mathbf{z}_{21} = 141,08 \text{ кДж/кг.}$$

Аналогично 🗈

$$L_{11} = (i_3' - i_2') z_{14} = 113,87 \text{ kH/kr};$$

$$L_{\rm HI} = \left(l_4' - l_3''\right) z_{10} = 278,4$$
 кДж/кг.

Суммарная работа сжатия в компрессоре

$$L_{C_2H_0} = L_1 + L_{11} + L_{111} = 533,35$$
 кДж/кг.

Количество работы, затраченной на охлаждение природного газа, по данной схеме с $T=303\,$ K до $T=125\,$ K при $\rho=4\,$ МПа

$$L = L_{\text{CH}_4} + L_{\text{C}_3 \text{H}_4} + L_{\text{C}_3 \text{H}_6} = 1111,12$$
 кДж/кг.

После дросселирования ожиженного природного газа (рис. 146) в сборнике 19 (см. лист 176) получаем:

Рис. 146. Изображение процесса дросселирования ожиженного природного газа в координатах i— lg o

$$ho_{\Pi, \Gamma}^{Haq} = 4,0$$
 МПа; $T_{\Pi, \Gamma}^{Haq} = 125$ K; $ho_{\Pi, \Gamma}^{KoH} = 0,1$ МПа; $T_{\Pi, \Gamma}^{KoH} = 117,6$ K; $i_2 = 0;$ $i_2 = 54,4$ кДж/кг; $i_4 = 509$ кДж/кг.

Количество жидкого природного газа после дросселирования

$$y = \frac{l_4 - l_9}{l_4 - l_2} = 0.89 \text{ kg/kg}.$$

Удельный расход энергии на «I кг ожиженного природного газа

$$l = \frac{L}{y\eta_{\rm RS} \cdot 3600} = 0.52 \text{ kB}_{\rm T} \cdot \text{y}$$

вля на 1 м⁸

$$t = 0.37 \text{ kBr·ч},$$

где $\eta_{\rm H3} = 0.65 - {\rm k.~n.}$ д. компрессора.

Установка с внутренним каскадным циклом

Схема установки показана на листе 178. Способ действия установки с внутренним каскадным циклом, разработанным советским ученым А. П. Клименко, сводится к следующему.

В качестве хладагента используется циркулирующий газ, представляющий собой смесь азота, метана, этилена, пропана. Смесь сжимается в турбокомпрессоре 1 до давления 3,0—3,5 МПа и охлаждается водой в холодильнике 2. В результате охлаждения конденсируется часть смеси. Образовавшаяся жидкость, содержащая в основном пропан, отделяется от газа в отделителе 3, охлаждается в теплообменнике 4, дросселируется, испаряется в межтрубцом пространстве и вместе с обратным потоком газа охлаждает газ прямого потока, который направляется по змеевику из отделителя 3, и природный газ, поступающий на ожижение. Испарившаяся жидкость и обратный поток газа после нагрева снова сжимаются в турбокомпрессоре 1. Из циркулирующей смеси, охлажденной в змеевике теплообменника 4, частично конденсируются этан и пропан и поступают в отделитель 5, в котором от газа отделяется жидкость.

Жидкость из этиленового отделителя 5 переохлаждается в этиленовом теплообменнике 6, дросселируется и испаряется в межтрубном пространстве, где вместе с обратным потоком газа охлаждает циркулирующий иприродный газы.

После этиленового холодильника из циркулирующего газа конденсируется этилен и частично метан, которые отделяются в отделителе 7. Жидкость из отделителя 7 переохлаждается в метановом теплообменнике 8, дросселируется и испаряется в межтрубном пространстве. Благодаря испарению жидкости в межтрубном пространстве метанового теплообменника 8 и обратного потока газа из циркулирующего потока конденсируются метан и остаток этилена. Образовавшаяся жидкость охлаждается в азотометановом теплообменнике 9, после выхода из которого дросселируется, поступает в межтрубное пространство азото-метанового теплообменника и охлаждает циркулирующий и природный газы.

Затем смесь поступает в межтрубное пространство метанового теплообменника 8. Далее циркулирующий газ смешивается с газообразным этиленом из теплообменника 6, с пропаном из теплообменника 4 и засасы

вается компрессором; при этом замыкается циркуляционный колодильный цикл. Природный газ, последовательно охлажденный в теплообменниках 4, 6, 8 и 9, дросселируется до атмосферного давления и накапливается в сборнике жидкого природного газа 10; газ из сборника направляется на сжигание, а жидкость — к потребителю.

Таким образом, внутренний каскадный цикл ожижения природного газа при меньшем количестве компрессоров и теплообменников может заменить классический каскадный. Однако в этом цикле расход энергии будет несколько выше, чем в классическом, вследствие затраты работы на разделение газовой смеси в циркулирующем газе холодильного цикла.

Ниже приведен пример расчета схемы ожижения природного газа

с внутренним каскадным циклом (см. лист 178).

I. Температура смеси (кладагента) при входе в теплообменники ориентировочно принята равной температуре кипения чистого компонента при атмосферном давлении, преобладающего в смеся для данного теплообменника.

Состав исходной смеси, используемой для охлаждения природного газа, определяется

следующим образом:

1. Находим тепловую нагрузку при охлаждения природного газа в данном теплообменнике по параметрам соответствующих точек (величина недорекуперации

2. Определяем количество і-го компонента в исходной смеси, равное частному от деленвя тепловой нагрузки при охлаждении природного газа на теплоту паросбразования компонента, преобладающего в смеси для данного теплообменныка.

III. Расчет состава отдельных фракции при конденсации многокомпонентной смеси (хладатента). Метод расчета основан на применении констант равновесия:

1. Условные обозначения:

 $m_l^{\rm II},\ m_l^{\rm IV},\ m_l^{\rm VI},\ m_l^{\rm VII}$ — количество l-го компонента в смеси, поступающей в соот-

ветствующий теплообменник, моль; $n_l^{\rm II},\ n_l^{\rm VI},\ n_l^{\rm VI},\ n_l^{\rm VIII}$ — комичество i-го компонента в жидкости соответствующего

теплообменника, моль; $N^{\rm II}$, $N^{\rm VI}$, $N^{\rm VIII}$ — количество жидкости при температуре T в соответствующем теплообменнике, моль:

 $B^{11},\ B^{1V},\ B^{V1},\ B^{V111}$ — количество смеси, поступающей в соответствующий теплообменник, моль;

Кі — константа фазового равновесня і-го компонента;

кі — концентрация і-го компонента в жидкости, моль/моль;

 y_i — концентрация *i-го* компонента в паре, моль/моль;

 $G_{\mathbf{x}_i}$ — ма**ч**совое количество i-го компонента в жидкости, кг;

Gn. — массовое количество i-го компонента в паре, кг.

2. Общее уравнение материального баланса

$$\sum_{i=1}^n m_i = B.$$

3. Количество конденсата (представляет собой сумму количеств сконденсировавшихся компонентов)

$$\sum_{i=1}^{N} n_i = N.$$

4. Количество і го компонента в конденсате

$$\mathbf{n}_i = \frac{m_i}{1 + K_i \cdot \frac{B - N}{N}}.$$

5. Решаем систему двух последних уравнений методом подбора.

Задавиясь N несколько превышающим 0, вычисляем значение n_1 и добиваемся усло-

вия $\sum n_i = N$. Значения констант равновесия K_i берем из соответствующих диаграмм или таблии.

В данном примере расчет производится из условия поступления в холодильник 2 количества смеси $B^{II} = 1$ моль.

$$\hat{m}_i^{\mathrm{IV}} = m_i^{\mathrm{II}} - n_i^{\mathrm{II}};$$

$$B^{IV} = \sum_{i=1}^{n} m_i^{IV}.$$

7. Концентрации отдельных компонентов в газовой фазе после конденсации

$$y_i = \frac{m_i - n_i}{B - N}.$$

8. Концентрация компонентов в жидкой фазе

$$x_i = \frac{n_i}{N}.$$

9. Масса і-го компонента в паровой и жидкой фазах, соответственно

$$G_{\Pi_i} = m_i M_i;$$

$$G_{XK_i} = n_i M_i$$

где M_i — молекулярная масса i-го компонента.

Результаты расчета даны в табл. 38 и 39.

IV. Определение количества ожижаемого природного газа (условно принят за чистый метан) из тепловых балансов теплообменников в расчете на 1 моль исходной холо-

1. Теплообменник 4:

а) Тепловая нагрузка при охлаждении природного газа

$$q_{\mathrm{CH}_{\star}} = i_{28} - i_{14} = 873.5 - 708.17 = 165.36$$
 кДж/кг.

б) Тепловая нагрузка при охлаждении жидкой смеси состава точки 18

$$q_{\mathbf{x}} = \sum_{i=1}^{3} c_{p_i} \Delta T G_{i_{10}};$$

 $q_{\mathbf{x}} = 3,3362 \cdot 0,497 + 2,6 \cdot 62 \cdot 0,742 + 2,2 \cdot 62 \cdot 12,33 = 1915,14$ кДж/кг,

теплоемкость i-го компонента, кДж/(кг·К);

 $\Delta ilde{T}$ — разность температур на входе в выходе жидкой смеси из теплообменника, К;

$$\Delta T = T_{18} - T_{16},$$

G_i — масса компонейта в жидкой смеси, кг.
 в) Тепловая нагрузка при конденсации газовой смеси состава точки

$$q_{\rm K} = \sum_{i=1}^4 G_{i_1i} i_{i_2i_2} - \sum_{i=1}^4 (G_{i_1i} i_{i_1i} + G_{i_2i} i_{i_2i});$$

 $q_{\rm K} = (5,26.891,5+2,62.665,87+9,67.820,5+0,56.455,6)$

- (1,896·762 + 3,37·736,9 + 1,81·568,5 + 0,8·572,7 + 9,25·334,4 +
$$+$$
 0,424·756 + 0,56·384,56) = 5579,154 k Π x/k Γ .

г) Тепловая нагрузка при кипенни смеси состава точки 16

$$q_0 = \sum_{i=1}^{3} G_{i_{20}} i_{i_{21}} - \sum_{i=1}^{n} G_{i_{10}} i_{i_{10}};$$

$$q_0 = (0.497 \cdot 898.7 + 0.742 \cdot 660.4 + 12.33 \cdot 851) - (0.497 \cdot 772.9 + 0.742 \cdot 572.7 + 12.33 \cdot 334.4) = 6497.9 кДж/кг.$$

д) Тепловая нагрузка по обратному потоку

$$q_{\rm o,\,n} = \sum_{i}^{4} \, c_{p_{i}} \, (T_{21} - T_{22}) \, G_{l_{22}}; \label{eq:qondon}$$

 $q_{0, \Pi} = 2,10.62.5,26+1,34.62.2,62+1,63.62.9,67+1,08.62.0,56=1935,8$ кДж/кг

е) Баланс по холоду

$$Q_0 = (q_0 + q_{0, \pi}) - (q_{xx} + q_{x})$$

$$Q_0 = (6497.9 + 1935.8) - (1915.14 + 5579.154) = 939.4 \text{ kHz}.$$

Номер расчетнов

17*	ÇT.	4	22	-	Номер расчетной точки цикла (см. лист 178)	Табл	w _z ttt UUU		M [™] COC		MX TTT		™strt CCC		Компо- нент (Taga
	`s##₹	СН,	≥£££	£,	Компоненты	и да 39	0,0392 0,0007 0,0198 0,0598	1	0,2106 0,0287 0,0096 0,0198 0,2688		0,3289 0,0935 0,2197 0,02 0,6622		-8000		- m	нца 38
•	120	28	8	<u>1</u> 8	Температура <i>Т</i> , К		88 98		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		25. 97 55. 	n.	0,36 0,12 0,5 0,02			, 3
	3,0	4,0	3,0	4,0	Общее давление р, МПа		0,75	1 e	11 30.0	T	2.6 0.65 1 0.067	Te	0.15 0.46 4.66	×	<i>X</i> ,	
· .	1 -	36,0	5. j 1. 5.	-252	Энтальния природ- ного газа /, кДж/кг		0.059874	# 0 0	0,20898	еплоо	0,393346	1 J O O	0,3378	дово	N,	
	1111		1111	1.	Концентрация в па- ровой фазе и. моль/моль	-		O. M. C	<u> </u>	Q M		Q X e		# 21 5		
	0,656 0,012 0,33	•	0,656 0,012 0,33	-	Концентрация в жидкой фазе х;, коль/моль	· : : !	0,0393 0,0007 0,0199 0,0599	жинн	0,1712 0,0280 0,0096 0,2089	нина	0,1185 0,0645 0,2102 0 0,3933	H H H K	0,0311 0,0265 0,2802 0,3378	XHH	n _t	
					mortal mortal		0,6556 0,0120 0,3323 1,0000	8, 7	0,8195 0,1341 0,0463 0	ж б,	0,3013 0,1644 0,5344 0	4, 7	0,091985 0,078443 0,829627 0	2, T	**	
	0,98		1,968 0,036 0,099	1	Парциальное давле- ине р ₁ , МПа		88 88	H	63 = 9	T =	8 44 5] #	8 88 198 27 28 198	= 303		
	0,63 0,02 0,56	+	0,63	<u>. </u>	Весовое количество компонента в жид-		10000	20 K	0,6556 0,0121 0 0,3323 1,0000	178 K	0,7834 0,1068 0,0358 0,0358 0,0739 1,0000	238 K	0,4967 0,1419 0,3318 0,00302 1,0000	*	<- <i>₩</i> }	
	δ 23 ————————————————————————————————————		5 NO	-	кой фазе С _{ж.} , кг				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1. 0.9 1.2				a	
	1111	· ·		1	Весовое колячество компонента в паро- вой фазе О _{пі} , кг		0,628 0,020 - 0,557 1,205		2.74 0,785 0,426 0 3,951		1,89 1,81 9,2498 0 12,956		0,497 0,749 12,33 13,57		3. 3K	
259	32,4 104,2 	- !	-32.4 -152.8 50.2		Эктальпия (при парднальном давле- ния) і _і , кДж/кг		10000		0,628 0,020 0 0,557 1,2053		3,369 0,804 0,424 0,556 5,154		5,262 2,618 9,669 0,56	1 [1] # [1 (g. 10 kg)	$q_{n_{\mathcal{L}_{\frac{n_{\mathcal{H}}}{2}}}}$	

8	18	18	Ξ	=	23	83	Q	6	ဖ	\$	Номер расчетной точки цикла (см. лист 178)
se Ee	s tit	rees	z£££	H	×£££	*EEE	×£££	≭EEE	£	z£££	Компоненты :
238	233	238	178	238	178	173	178	190	178	115	Температура 📆 - К
3.0	1,1	3,0	3,0	4,0	3,0	e .	3,0	3,0	4,0	0,14	Общее давлежно <i>р</i> , МПа
	l	1		709,2	· I ·		ļ	1	263,7	1	Энтальния природ- ного газа (, кДж/кі
0.783 0.107 0.036 0.074	0,497 0,141 0,332 0,03	1111	1111	1	0,636 0,012 0,33	0,783 0,107 0,036 0,074		J _.	l	0,656 0,012 0,33	Концентрация в па ровой фазе у _ℓ , моль/моль
	3111	0.3 0.164 0.53	0.50 55.50 55.50 55.50	ı		[][]	0,82 0,134 0,046	0,82 0,134 0,046	ı	1111	Концентрация в жидкой фаве х _і , моль/моль
2,388 0,309 0,193	0,0547 0,0155 0,0365 0,0033	0,9 0,492 1.59	1 6.9 1 6.85	1	0,98 0,086 0,086 0,086	0,094 0,013 0,0043 0,009	2,49 0,401 0,138	24.9 0,402 0,138	,	0,092 0,0017 0,046	Парциальное давле ние р _į . МПа
1114	: 1 () 1	9,25 9,25	# = 100 # = 100	1	1111		2,74 0.785 0,43	2,74 0,785 0,43		1111	Весовое количество компонента и жид- кой фазе Сж., иг
3,37 0,8 0,42 0,56	5,26 2,62 9,67 0,56	1.11	1111		0,00 0,00 0,00 0,00	3,37 0,8 0,42 0,56				0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	Весевое количество компонента и паро вой фазе $G_{\Pi_{\ell}}$, кг
738 573 8 757,3	770,4 570,0 751,4 380,9	763.0 570.0 334.9	683,7 19,0 198,6		316,0	642.6 495.7 185,9 234,4	576 20,5 196,8	1 1 2 3 8 8		518,4 —126,7 251,0	Энтальния (при парциальном давле нии) /4, вДж/кг

ğ

22	28	23	-	16	28	Номер расчетной точки цикла (см. лист, 178)
*FFE	* FFF	*FFB	× FFF	* LTT	£	Компоненты
295	295	306	300	238	300	Тампература <i>Т</i> . К
7,0	3 ,0	3,0	3,0	3,0	1.0	Общее давление <i>р</i> , МПа
. 1	0,5	0,497	: 1	1	874,8	Энтальпия природ- ного газа і, кДж/кг
2000 2000 2000 2000	0,5 0,0 0,5 0,0 0,0 0,0 0,0 0,0	0.497 0.141 0.332 0.03	<i>J</i>		1	Концентрация в па- ровой фазе у ₁ , моль/моль
			0,092 0,078 0,83	0,092 0,078 0,83		Концентрация в жидкой фазе х _і , моль/моль
0,036 0,012 0,05 0,002	10.8 0.36 1.5 0.06	1,491 0,423 0,996 0,99	0,276 0,234 2,49	0,276 0,234 2,49	ļ	Парциальное давление p_i , МПа
			0,497 0,742 12,33	0,497 0,7 42 12,33		Весовое количество компонента в жид-кой фазе $G_{\mathbf{g}_i}$, кг
5,76 3,36 0,56	0.56 0.56	5,26 2,62 9,67 8,5 6	1111		<u> </u>	Весовое количество компонента в паровой фазе $G_{\Pi_{\hat{I}}}$, кг
900.0 661.4 452.3	885,6 659,3 476,0 452,0	892,9 666,9 821,8	910,8 665,6 486,9	774,0 573,8 334,9	1	Эктальняя (при парциальном давления) і, кДж/кг

a w e. Значению энтальний веяты ве f—le руднатрами, помещенных

ж) Количество ожижаемого природного, газа.

$$G_{\text{CH}_{\bullet}} = \frac{Q_{\bullet}}{q_{\text{CH}_{\bullet}}} = \frac{269.4}{165.36} = 5.68 \text{ kg}.$$

2. Теплообненник 6: а) Тепловая нагрузка при охлаждении природного газа

$$q_{\text{CH}_4} = i_{14} - i_9 = 709,24 - 263,7 = 445,5 \text{ k/J}\text{m}.$$

б) Тепловая нагрузка при охлаждении жидкой смеси состава точки 13

$$q_{\infty} = \sum_{i=1}^{n} c_{P_i} (T_{13} - T_{11}) G_{123} = 3.3 \cdot 60 \cdot 1,896 + 2,6 \cdot 60 \cdot 1,81 + 2,2 \cdot 60 \cdot 9,25 = 1890,8 \text{ K.Hx.}$$

в) Тепловая нагрузка при конденсации газовой смеси состава точки 26 $q_{\kappa} = \sum_{i=1}^4 G_{i,*} i_{i,*} - \sum_{i=1}^4 (G_{i,*} i_{i,*} + G_{i,*} i_{i,*}) =$

$$a_{i_{k}} = \sum_{i=1}^{k} a_{i_{k}} a_{i_{k}} - \sum_{i=1}^{k} (a_{i_{k}} b_{i_{k}} + a_{i_{k}} b_{i_{k}}) = 0$$

= (3,37·738 + 0,8·573,5 + 0,42·757,3 + 0,56·386) ··· (2,74·576 + 0,63·594 + +0,385,20,5 +0,02.455 +0,42:190,4 +0,56-316) = 1240,5 x Llm.

г) Тепловая нагрузка при кипении смеси состава точки 11

$$\begin{split} q_0 &= \sum_{i=1}^4 G_{i_{11}} i_{i_{12}} - \sum_{i=1}^4 G_{i_{11}} i_{i_{11}} = (1.896 \cdot 770.3 + 1.81 \cdot 570 + 9.25 \cdot 751.4) - \\ &- (1.896 \cdot 623.7 + 1.81 \cdot 19 + 9.25 \cdot 198.4) = 6390.68 \text{ m.J.m.}. \end{split}$$

д) Тепловая нагрузка по обратному потоку

$$q_{0. \pi} = \sum_{1}^{l=4} c_{p_{l}} (T_{33} - T_{33}) G_{l_{33}} = 2,16.60.3,37 + 1,14.60.0,8 + 1.63.60.0.42 + 1,09.60.0.56 = 578.8 \text{ K.H.w.}.$$

е) Баланс по холоду

$$Q_0 = (q_0 + q_{0. \text{ H}}) - (q_{xx} + q_{yx}) = 6969,5 - 3131,5 = 3838 \text{ KJ}x.$$

Количество ожижаемого природного газа
$$G_{\mathrm{CH_4}} = \frac{Q_{\theta}}{q_{\mathrm{CH_4}}} = \frac{3838}{445.5} = 8.6 \ \mathrm{kr.}$$

- 3. Теплообменник 8:
- а) Тепловая нагрузка по природному газу

$$q_{\mathrm{CH_4}} = i_{\$} - i_{4} = 263,7 - 36 = 227,7$$
 кДж/кг.

б) Тепловая нагрузка по жидкой смеси состава точки 8

$$q_{\mathbf{x}} = \sum_{i=1}^{4} c_{p_i} (T_{\mathbf{s}} - T_{\mathbf{s}}) G_{i_{\mathbf{s}}} = 3.3 \cdot 58 \cdot 2.74 + 2.6 \cdot 58 \cdot 0.785 + 2.2 \cdot 0.426 \cdot 58 = 699.47 \text{ к/Лж}.$$

в) Тепловая нагрузка при конденсации газовой смеси состава точки 25

$$q_{\rm K} = \sum_{i=1}^{3} G_{i_{34}} l_{i_{44}} - \sum_{i=1}^{3} G_{i_{5}} l_{i_{4}} =$$

=
$$(0.628 \cdot 594 + 0.02 \cdot 498 + 0.56 \cdot 316) - (0.628 \cdot 32.4 - 0.02 \cdot 104 + 0.56 \cdot 244.3) =$$

= $404.2 \text{ kJ/k}.$

г) Тепловая нагрузка при кипении смеси состава точки 6;

- = (2.74.642.6 + 0.785.495 + 0.42.184) (2.74.33 + 0.785.104.2) = 2211 kJ/k
- д) Тепловая нагрузка по обратному потоку

$$q_{0. \text{ II}} = \sum_{i=1}^{4} c_{p_i} (T_{23} - T_{24}) G_{i_{24}} =$$

Γź

Лέ

H

3

Лh

B (

СЖ

ЦИ

эт

= $2.16 \cdot 53 \cdot 0.628 + 1.34 \cdot 53 \cdot 0.02 + 1.09 \cdot 53 \cdot 0.56 = 105.6 \text{ кДж.}$

е) Баланс по холоду

$$Q_0 = (q_0 + q_{0, n}) - (q_m + q_n) = 2316,57 - 1103,67 = 1212,9 \text{ кДж.}$$

ж) Количество ожижаемого природного газа

$$G_{{
m CH_4}} = rac{Q_{ullet}}{q_{{
m CH_4}}} = 5{,}326$$
 kg.

- 4. Теплообменник 9:
- а) Тепловая нагрузка по природному газу

$$q_{\mathrm{CH_4}} = i_4 - i_1 = 36 + 25,2 = 61,2$$
 кДж/кг.

б) Тепловая нагрузка во жидкости состава точки 5

$$q_{K} = \sum_{i=1}^{3} c_{P_{i}} (T_{5} - T_{2}) G_{i_{5}} =$$

= 6,3\20+6,628 + 2,6·20-0,02 + 2,4·20·0,56 = 69,6 жДж.

в) Тепловая нагрузка по квпению

$$\begin{split} q_0 &= \sum_{l=1}^3 G_{l_2} i_{t_{14}} - \sum_{i=1}^3 G_{l_2} i_{t_3} = \\ &= (0.628 \cdot 518.4 - 0.02 \cdot 126.7 + 0.56 \cdot 251) - \\ &- (0.628 \cdot 32.4 - 0.02 \cdot 152.7 + 0.56 \cdot 75.4) = 444.9 \text{ кДж.} \end{split}$$

г) Баланс по холоду

$$Q_0 = q_0 - q_{\rm ac} = 444.9 - 69.6 = 375.0$$
 кДж.

д) Количество ожижаемого природного газа

$$G_{\text{CH}_4} = \frac{Q_6}{q_{\text{CH}_4}} = 6,13 \text{ Kr.}$$

Поскольку очевидно, что количество ожижаемого природного газа, проходящего через всю установку, одно и то же, то добиваемся близких значений всех четырех G_{CH_4} , подбирая новый: остав исходной смеси, и повторяем расчет. Для дальневшего расчета определяем среднеарифметическое значение

$$G_{\text{CH}_4}^{\text{cp}} = \frac{5,68 + 8,6 + 5,326 + 6,133}{4} = 6,435 \text{ kg}.$$

V. Определение удельного расхода энергии.

1. Количество холодильной смеси, сжимаемой в компрессоре, на 1 кг ожижаемого природного газа

$$W = \frac{\sum_{i=1}^{4} M_i y_i}{G_{\text{CH}_i}^{\text{cp}}} = 4.9 \text{ gr}_*$$

где $\sum M_i y_i$ — молекулярная масса исходной смеси.

$$l = \frac{2,303R_{\rm CM}T \lg \rho_2/pW}{427.860\eta_{\rm BS}} = 0,57 \text{ kBt·q/kr},$$

тде $\eta_{n3} = 0,65$ — изотермический к. п. д. компрессора;

 $\rho_1 = 3.0 \text{ M}\Pi a;$ T = 300 K;

ρ₁ = 0,1 МПа. Расход энергии на 1 м³ ожижаемого природного газа 0,405 кВт·ч.

Установка с внутренним каскадным циклом и очисткой от азота

В природном газе некоторых месторождений содержание азота достигает 10-15%. Поэтому вместе с ожижением такого природного газа необходимо освободить его от негорючих составляющих. Этому условию удовлетворяет схема установки фирмы «Мессер Грисхейм» (ФРГ), представленная на листе 179.

Природный газ из магистрального трубопровода с давлением около З МПа очищается в адсорберах 1 от водяного пара и двуокиси углерода и сжимается в компрессоре 2 до давления 4 МПа. Сжатый природный и циркулирующий газы охлаждаются в первом (по ходу газа) теплообменнике 3-1 в результате нагрева циркулирующего газа, азота и испарения тяжелых углеводородов. После охлаждения жидкая фракция С_зН_в отделяется от газа в первом (по ходу газа) отделителе 4, дросселируется до давления в магистральном газопроводе, испаряется в теплообменнике 3-1 и снова сжимается в компрессоре 2.

Газ из верхнего сепаратора охлаждается циркулирующими фракциями и азотом в теплообменнике 3-2, в результате чего конденсируется этилен, который отделяется от газа во втором сверху отделителе 4 и затем переохлаждается в теплообменниках 3-3 и 3-4 и дросселируется до давления, близкого к атмосферному, испаряется и нагревается в теплообменниках 3 и снова сжимается в компрессоре 1. Газ из второго сверху отделителя 4 охлаждается в третьем сверху теплообменнике 3-3, в результате конденсируется метан, который переохлаждается в теплообменнике 3-4 и змеевике азотно-метановой колонны 5. Жидкий метан дросселируется до давления, близкого атмосферному, и орошает колонну 5.

Газообразная смесь метана и азота из нижнего отделителя 4 конденсируется в змеевике колонны 5, переохлаждается в азотном переохладителе 6, дросселируется и орошает колонну. В результате сверху из колонны выходит азот, который нагревается в теплообменниках 3, очищает насадку адсорберов 1 и отводится в атмосферу. Снизу из колонны 5 жидкий метан частично выводится в циркуляционный холодильный цикл, а большая часть после дросселирования направляется в хранилище 13. Из хранилища газообразный метан, сжатый компрессором 7, возвращается в цикл.

В предыдущей схеме метан сжижается в отдельных секциях теплообменников; в данной схеме метан, поступающий на ожижение, смешивается с циркулирующими газами холодильного цикла, а именно: с метаном, этиленом и пропаном, что еще более упрощает схему сжижения природного газа.

Установка, работающая по циклу с многоступенчатым расширением азота в турбодетандерах

Схема установки, разработанная в МИХМе, приведена на рис. 147.

Природный газ, свободный от бензиновых фракций, при давлении 4 МПа поступает в компрессор 7, сжимается до давления 10—15 МПа и охлаждается в теплообменниках 1, 2, 3 с помощью азотного холодильного цикла, принцип работы которого сводится к следующему. Азот, сжатый в ком-

прессоре δ до 0,6 МПа, делится на два потока. Поток ($\delta+e+\delta$) поступает последовательно в теплообменники 4, 5, поток (a+e), расширяется в детаидере 9. После детандера азот с давлением p=0,11 МПа, и температурой T=201 К делится на две части. Поток α охлаждает азот высокого давления, а поток e охлаждает природный газ в теплообменнике 1.

После охлаждения потока азота с давлением 0,6 МПа в теплообменниках 4 и 5 часть азота в количестве (6+6) распиряется в детандере 10 до p=0,12 МПа и при этом охлаждается до T=143 К. Поток в направляется в теплообменник 6 для охлаждения прямого потока, а поток 6-для охлаждения природного газа в теплообменник 2.

Оставлийся взот высокого давления (поток ∂), охлажденный до $T=148~\mathrm{K}$, расширяется в детандере 11 до 0,13 МПа и $T=100~\mathrm{K}$ и подается

ПО СМ В

B '

ко в т о х и м

ші

(см

приј выби полу — 0 личе тепл Тогд ного мето:

При прин точен чениз межд котор грамы

устаі

газа; стый і мы по азота ведені

б =

Табл

Точка

1

- 34.00

в теплообменник 3 природного газа. Потоки а, в, охлаждающие азот, и потоки δ , δ и e, охлаждающие природный газ в теплообменниках 1, 2 и 3, смешиваются в точке 9, проходят теплообменник 4 и поступают на сжатие в компрессор 8.

Природный газ, охлажденный до $T=105\,\mathrm{K}$, дроссевируется с p=

= 15 МПа до атмосферного давления в сборник 12.

Пример расчета схемы **кин жижо** природного газа на основе азотного холодильного цикла с многоступенчатым расширением в детандерах (см. рис. 147).

Минимальная температура охлаждения природного газа высокого давления 15 МПа выбирается равной $T_{11}=105~{\rm K}$ из условия получения после дросселирования $\rho=0.1~{\rm MHz}$ чистой жидкости. Принимаем величниу недорекуперации на холодном конце теплообменников 3, 4, 5, 6 равной $\Delta T = 5$ К. Тогда $T_6 = 100$ К. Параметры точек азотного холодильного цикиз определяем тем же методом, что и для воздухоразделительных установок с таким циклом (см. главу III). При этом адиабатический к. п. д. детандеров принимаем равным $\eta_b = 0.85$. Температуры точек 10' и 10" определяем из условия обеспечения положительной разности температур между потоками в теплообменниках 1, 2, 3, которая выявляется при построении давграммы энтальпия — температура (рис. 148).

Расчет схемы ведем на 1 кг природного газа; природный газ условно принят за чистый метан. Параметры потоков в точках схемы получены с помощью Т.—S-дивгранны для взота и I—Ig р-диагранны для метана и при-

ведены в табл. 40.

Рис. 148. Диаграмма энтальпия-температура для теплообменников 1, 32 и 3 (к расчету цвила є многоступенчатым расширением язота в детандерах).

Материальные потоки определяем из тепловых балансов теплообменников. Теплосоменник 3:

$$\partial = \frac{i_{10}^{\prime\prime} - i_{11}}{i_5 - i_6} = \frac{146.5 - 9}{147 - 102.6} = 3.08 \text{ kg/kg}.$$

Теплообмениик 2:

Теплообменник 2:
$$\delta_{\underline{l}} = \frac{(i_{10}' - i_{10}'') - \partial (i_4 - i_5)}{i_4 - i_5} = \frac{(364 - 146.5) - 3.08(206.4 - 147)}{206.4 - 147} = 0.59 \text{ кг/кг}.$$

Теплообменинк 1:

$$e = \frac{(i_{10} - i_{10}) - (6 + \partial)(i_{0} - i_{4})}{i_{0} - i_{4}} = \frac{(778.6 - 364) - (3.08 + 0.59) \times (299.3 - 206.4)}{(299.3 - 206.4)} = 0.79 \text{ kg/kg}.$$

Таблица 40

Точка	7 _K	р, МПа	4, кДж/ нг	Точка	T _K	р, МПа	<i>l</i> , кДж/кг
l 1' 2 3 4	306 203 205,6 148 201	0,6 0,6 0,6 0,6 0,1	319,7 303,5 211,0 148,3 206,4	7 8 9 10 10'	295 201 288 303 206	0,1 0,1 0,1 15,0	306,7 206,4 299,3 778,6 364,0
5 6	143 100	0,12 0,13	147,0 102,6	10" 11	148 105	15,0 15,0	146,5 9,0

Теплообменник 6:

$$\theta = \frac{\partial (i_2 - i_3)}{i_8 - i_5} = \frac{3.08(211 - 148.3)}{206.4 - 147} = 3.2 \text{ kg/kg}.$$

Теплообменник 5:

$$a = \frac{(6 + e + \partial)(i_1 - i_2) - e(i_2 - i_3)}{i_2 - i_4} =$$

$$= \frac{(0.59 + 3.20 + 3.08)(303.5 - 211) - 3.20(299.3 - 206.4)}{299.3 - 206.4} = 3.64 \text{ kg/kg}.$$

Теплообменник 4:

$$i_{7} = \frac{(\delta + s + \partial)(i_{1} - i_{1}) + (a + s + \delta + e + \partial)i_{3}}{a + s + \delta + e + \partial} =$$

=
$$\frac{(0,59+3,2+3,08)(310,7-303,5)+(3,64+3,2+0,59+0,79+3,08)299,3}{3,64+3,2+0,59+0,79+3,08} = = 306,7 kДж/kr.T3 = 295 K$$

Суммарное количество азота, поступающего на сжатие:

$$G_{N_a} = a + 6 + e + \partial + e = 3,64 + 0,59 + 3,26 + 0,79 + 3,08 = 11,36 \text{ kg/kg}.$$

2. Работа изотермического сжатия азота

$$L_{\rm H3} = \frac{2,303 \cdot RT \cdot G_{\rm N_2} \lg p_2/p_1}{360000\eta_{\rm H3}} = 0,72 \text{ kBt·y/kr,}$$

R — удельная газовая постоянная, Дж/(кг·К); T — температура конца сжатия; T=300 K; rae

 ρ_1 — начальное давление; $\rho_1 = 0,1$ МПа; ho_2 — конечное давление сжатия; $ho_2 = 0.6$ МПа;

$$L_{\rm B3} = \frac{2,308 \cdot 8,31 \cdot 10^3 \cdot 300 \cdot 11,36 \cdot 0,778}{28 \cdot 360 \cdot 000 \cdot 0,7} = 0,72 \text{ kBt·y/kg}.$$

3. Работа, затрачиваемая на дожатие сетевого природного газа с давления 4 МПа до давления 15 МПа •

$$L_{\text{MOM}} = \frac{2,303 \cdot 8,31 \cdot 10^8 \cdot 303 \cdot 0,574}{16 \cdot 360 \cdot 000 \cdot 0,7} = 0,082 \text{ kBt·ч/kr.}$$

4. Работа адиабатического расширения в детандерах

$$L_{\rm ag} = \frac{(a+e)\,(i_1-i_4) + (e+6)\,(i_2-i_5) + \partial\,(i_3-i_6)}{860} =$$

$$= \frac{(3,64+0,79)(310,7-206,4)+(3,2+0,59)(211-147)+3,08(148,3-102,6)}{860} =$$

$$= 0.2359 \text{ kBt-q/kr.}$$

5. Удельный расход энергии на ожижение природного газа

$$L=L_{\rm H3}+L_{\rm дож}-L_{\rm AA};$$
 $L=0.72+0.082-0.2359=0.566$ кВт-ч/кг, или 0.4 кВт-ч/м³.

В настоящее время, помимо изложенных, разработаны новые способы ожижения природного газа, которые позволяют сократить расход энергин в 1,3-1,4 раза и сделать менее сложным действующее оборудование.

ВОД -Mac COCT

МОД няе; соле вает

Фазе зато Орто тепл

тепл

начи МОДИ

туры

ставл

			T :
Поонция —	Наименование	Позиция	Наименование
:			
1	Теплообменник	17	Отделитель
2	Теплообменник	18	Отделитель
3	Теплообменинк	19	Хранияние жидкого
4	Теплообиенцик		метана
5	Теплообменник	20	Холодильник
6	Теплообмениик -	21	Отделитель
. 7	Теплообменин	22	Отделитель
8 .	Теплопоменник	23	Отделитель
9 1	Теплообиенник	24	испавитель-конденса-
LO I	Отделитель	, F	TOP
- 11 - 1	Отделитель	25	Компрессор
12	Отделитель	26	Испаритель-конденса-
13	Отделитель		TOD
14 1	Отделитель	27	Конпрессор этимсковый
15	Отделитель	28	Компрессор метановый
16	Отделитель	"	

Схема установки для ожижения природного газа с внешним каскадным циклом (вариант А)

Лист 🔥

Позиция	Наименование	Поэнция	Наименование;
	Конденсатор	11	Исваритель
2	Отделитель	12	Испаритель
3	Компрессоры пропано	13	Испаритель
	вые	. 14	Испаритель
	Конденсатор	15.	Испаритель
	Компрессоры этилена-	16	Испаритель
	In the second se	. 17	Непаритель
	aws	18	Испаритель
2 1	Копденсатор	. (9	Испаротель
- 1	Компрессоры метано-	20	Испаризель
	FM¢	21	
. 8	Испаритель-кондекса-		Испаритель
* * *	70p 1	22	Отделитель
9 [Испаритель-конденса-	23	Испаритель
	тор	24	Испарктель
10	Отделитель	25	Отделитель

Схема установки для ожижения природного газа с внешним каскадным циклом (вариант Б)

Лист 177

Позици	Нанисионайне		Познция	Наименование
1 2 3 4 5	Турбокомпрессов Коловильные воденой Оуделитель Теплообмения Оуделитель	7	8	Теплообиский Отделитель Теплообиений Холодильний Сборина жидкого природлого газа

Число при точке обозначает номер расчетной точки цикла.

Схема установки для ожижения природного газа с внутренним каскадным миклом

Лист 178

TEXHNUECKAS KAPAKTEPHCTHKA

пидер	Наименование '	Позиция	Канменование
1 2 3 4 5	Адсорберы Компрессор Теляообменники Отделители Коменна авото-метановая Переожладитель азотный Компрессор	8 9 10 11 12 13	Нагметатель горичего газа Газовый фанкл выпаривания Нагметятель воды Труба дынован Нагметатель роздуха Хранилице жидкого газа
		. Sugar	

Схема установки фирмы "Мессер Грисхейм" (ФРГ) для ожижения вриродного газа с внутренним каскадным циклом и очисткой от азота

Лист 179