Нормальные расслоения и сдутие кривых

18 марта 2024 года

ПРЕДЛОЖЕНИЕ: Пусть A-k-алгебра, и $X=\operatorname{Spec} A$. Тогда $X\times X=\operatorname{Spec} A\otimes_k A$. **Диагональное вложение** $X\to X\times X$, $x\mapsto (x,x)$ определяется гомоморфизмом $\mu\colon A\otimes_k A\to A$: $\mu(f\otimes g)=fg$.

ПРЕДЛОЖЕНИЕ: Пусть A-k-алгебра, и $X=\operatorname{Spec} A$. Тогда $X\times X=\operatorname{Spec} A\otimes_k A$. **Диагональное вложение** $X\to X\times X$, $x\mapsto (x,x)$ определяется гомоморфизмом $\mu\colon A\otimes_k A\to A$: $\mu(f\otimes g)=fg$.

ЗАМЕЧАНИЕ: (Лагранж) Пусть $f \in k[t]$ — функция на A^1 . Определим на A^2 функцию \tilde{f} как $\tilde{f}(x,y) = f(x) - f(y)$. Она зануляется на диагонали, и по теореме Гильберта о нулях делится на x-y: $\tilde{f}(x,y) = (x-y)g(x,y)$. Тогда g(x,x) = f'(x).

ПРЕДЛОЖЕНИЕ: Пусть A-k-алгебра, и $X=\operatorname{Spec} A$. Тогда $X\times X=\operatorname{Spec} A\otimes_k A$. **Диагональное вложение** $X\to X\times X$, $x\mapsto (x,x)$ определяется гомоморфизмом $\mu\colon A\otimes_k A\to A$: $\mu(f\otimes g)=fg$.

ЗАМЕЧАНИЕ: (Лагранж) Пусть $f \in k[t]$ — функция на A^1 . Определим на A^2 функцию \widetilde{f} как $\widetilde{f}(x,y) = f(x) - f(y)$. Она зануляется на диагонали, и по теореме Гильберта о нулях делится на x-y: $\widetilde{f}(x,y) = (x-y)g(x,y)$. Тогда g(x,x) = f'(x).

ОПРЕДЕЛЕНИЕ: Пусть $I=\ker\mu\subset A\otimes A$. Модулем кэлеровых дифференциалов Ω^1_A называется фактор I/I^2 . Пишут: $dg=1\otimes g-g\otimes 1$.

ПРЕДЛОЖЕНИЕ: Пусть A-k-алгебра, и $X=\operatorname{Spec} A$. Тогда $X\times X=\operatorname{Spec} A\otimes_k A$. **Диагональное вложение** $X\to X\times X$, $x\mapsto (x,x)$ определяется гомоморфизмом $\mu\colon A\otimes_k A\to A$: $\mu(f\otimes g)=fg$.

ЗАМЕЧАНИЕ: (Лагранж) Пусть $f \in k[t]$ — функция на A^1 . Определим на A^2 функцию \widetilde{f} как $\widetilde{f}(x,y) = f(x) - f(y)$. Она зануляется на диагонали, и по теореме Гильберта о нулях делится на x-y: $\widetilde{f}(x,y) = (x-y)g(x,y)$. Тогда g(x,x) = f'(x).

ОПРЕДЕЛЕНИЕ: Пусть $I=\ker\mu\subset A\otimes A$. Модулем кэлеровых дифференциалов Ω^1_A называется фактор I/I^2 . Пишут: $dg=1\otimes g-g\otimes 1$.

ПРЕДЛОЖЕНИЕ: $d(fg) = fdg + df \cdot g$ и $fdg = dg \cdot f$. ДОКАЗАТЕЛЬСТВО: $d(fg) = 1 \otimes fg - fg \otimes 1 = 1 \otimes fg - f \otimes g + f \otimes g - fg \otimes 1 = (1 \otimes f - f \otimes 1)g + f(1 \otimes g - g \otimes 1) = df \cdot g + fdg$.

$$dg \cdot f - f dg = 1 \otimes g f - g \otimes f - f \otimes g + f g \otimes 1 = (1 \otimes f - f \otimes 1)(1 \otimes g - g \otimes 1) \in I^2. \blacksquare$$

ОПРЕДЕЛЕНИЕ: Пусть A — кольцо, и M — A-модуль. Дифференцированием A в M называется отображение $\partial \colon A \to M$ такое, что $\partial (ab) = \partial (a)b + a\partial (b)$.

ОПРЕДЕЛЕНИЕ: Пусть A — кольцо, и M — A-модуль. Дифференцированием A в M называется отображение $\partial: A \to M$ такое, что $\partial(ab) = \partial(a)b + a\partial(b)$.

ПРИМЕР: Отображение $d \colon A \to \Omega^1_A$ есть дифференцирование.

ОПРЕДЕЛЕНИЕ: Пусть A — кольцо, и M — A-модуль. Дифференцированием A в M называется отображение $\partial \colon A \to M$ такое, что $\partial (ab) = \partial (a)b + a\partial (b)$.

ПРИМЕР: Отображение $d\colon A\to\Omega^1_A$ есть дифференцирование.

ПРЕДЛОЖЕНИЕ: Всякое дифференцирование в M есть как композиция дифференцирования $d\colon A\to\Omega^1_A$ и гомоморфизма $\Omega^1_A\to M$.

ОПРЕДЕЛЕНИЕ: Пусть A — кольцо, и M — A-модуль. Дифференцированием A в M называется отображение $\partial: A \to M$ такое, что $\partial(ab) = \partial(a)b + a\partial(b)$.

ПРИМЕР: Отображение $d \colon A \to \Omega^1_A$ есть дифференцирование.

ПРЕДЛОЖЕНИЕ: Всякое дифференцирование в M есть как композиция дифференцирования $d\colon A \to \Omega^1_A$ и гомоморфизма $\Omega^1_A \to M$.

СЛЕДСТВИЕ: Модуль $Der(A) = Hom(\Omega_A^1, A)$ дифференцирований из A в себя двойствен модулю Ω_A^1 .

ОПРЕДЕЛЕНИЕ: Пусть A — кольцо, и M — A-модуль. Дифференцированием A в M называется отображение $\partial: A \to M$ такое, что $\partial(ab) = \partial(a)b + a\partial(b)$.

ПРИМЕР: Отображение $d \colon A \to \Omega^1_A$ есть дифференцирование.

ПРЕДЛОЖЕНИЕ: Всякое дифференцирование в M есть как композиция дифференцирования $d\colon A\to \Omega^1_A$ и гомоморфизма $\Omega^1_A\to M$.

СЛЕДСТВИЕ: Модуль $Der(A) = Hom(\Omega_A^1, A)$ дифференцирований из A в себя двойствен модулю Ω_A^1 .

ОПРЕДЕЛЕНИЕ: Пусть A — кольцо функций гладкого аффинного многообразия X. Его касательным расслоением TX называется расслоение, связанное с модулем Der(A). Его кокасательным расслоением T^*X называется расслоение, связанное с модулем Ω^1_A .

ЗАМЕЧАНИЕ: Пусть $I\subset A$ — идеал. Тогда I^k/I^{k+1} — A/I-модули. Из них можно составить две A/I-алгебры: $\bigoplus_{i=0}^{+\infty} I^i/I^{i+1}$ и $\operatorname{Sym}_{A/I} I/I^2$.

ЗАМЕЧАНИЕ: Пусть $I\subset A$ — идеал. Тогда I^k/I^{k+1} — A/I-модули. Из них можно составить две A/I-алгебры: $\bigoplus_{i=0}^{+\infty} I^i/I^{i+1}$ и $\operatorname{Sym}_{A/I} I/I^2$.

ПРЕДЛОЖЕНИЕ: Пусть I=(x,y) — идеал точки на плоскости. Тогда обе этих алгебры суть k[x,y].

ПРЕДЛОЖЕНИЕ: Пусть I = (x,y) — идеал особенности кривой $y^2 = x^3 + x^2$. Тогда $I^k/I^{k+1} = \langle x^k, x^{k-1}y \rangle$, и их сумма изоморфна $k[x+y] \oplus k[x-y]$.

ЗАМЕЧАНИЕ: Пусть $I\subset A$ — идеал. Тогда I^k/I^{k+1} — A/I-модули. Из них можно составить две A/I-алгебры: $\bigoplus_{i=0}^{+\infty} I^i/I^{i+1}$ и $\operatorname{Sym}_{A/I} I/I^2$.

ПРЕДЛОЖЕНИЕ: Пусть I=(x,y) — идеал точки на плоскости. Тогда обе этих алгебры суть k[x,y].

ПРЕДЛОЖЕНИЕ: Пусть I=(x,y) — идеал особенности кривой $y^2=x^3+x^2$. Тогда $I^k/I^{k+1}=\langle x^k,x^{k-1}y\rangle$, и их сумма изоморфна $k[x+y]\oplus k[x-y]$.

ОПРЕДЕЛЕНИЕ: Спектр алгебры $\bigoplus_{i=0}^{+\infty} I^i/I^{i+1}$ называется нормальным конусом. Спектр $\operatorname{Sym}_{A/I}(I/I^2)$ называется нормальным расслоением. Вложение называется регулярным, если они совпадают.

ПРИМЕР: Нормальное расслоение точки — касательное пространство. Касательное расслоение — нормальное расслоение к диагонали.

ЗАМЕЧАНИЕ: Пусть $I\subset A$ — идеал. Тогда I^k/I^{k+1} — A/I-модули. Из них можно составить две A/I-алгебры: $\bigoplus_{i=0}^{+\infty} I^i/I^{i+1}$ и $\operatorname{Sym}_{A/I} I/I^2$.

ПРЕДЛОЖЕНИЕ: Пусть I=(x,y) — идеал точки на плоскости. Тогда обе этих алгебры суть k[x,y].

ПРЕДЛОЖЕНИЕ: Пусть I = (x,y) — идеал особенности кривой $y^2 = x^3 + x^2$. Тогда $I^k/I^{k+1} = \langle x^k, x^{k-1}y \rangle$, и их сумма изоморфна $k[x+y] \oplus k[x-y]$.

ОПРЕДЕЛЕНИЕ: Спектр алгебры $\bigoplus_{i=0}^{+\infty} I^i/I^{i+1}$ называется нормальным конусом. Спектр $\operatorname{Sym}_{A/I}(I/I^2)$ называется нормальным расслоением. Вложение называется регулярным, если они совпадают.

ПРИМЕР: Нормальное расслоение точки — касательное пространство. Касательное расслоение — нормальное расслоение к диагонали.

ПРЕДЛОЖЕНИЕ: Пусть $s \in \Gamma(L,X)$ — сечение. Тогда $N_{(s)/X} \cong L|_{(s)}$.

ЗАМЕЧАНИЕ: Пусть $I\subset A$ — идеал. Тогда I^k/I^{k+1} — A/I-модули. Из них можно составить две A/I-алгебры: $\bigoplus_{i=0}^{+\infty} I^i/I^{i+1}$ и $\operatorname{Sym}_{A/I} I/I^2$.

ПРЕДЛОЖЕНИЕ: Пусть I = (x, y) — идеал точки на плоскости. Тогда обе этих алгебры суть k[x, y].

ПРЕДЛОЖЕНИЕ: Пусть I=(x,y) — идеал особенности кривой $y^2=x^3+x^2$. Тогда $I^k/I^{k+1}=\langle x^k,x^{k-1}y\rangle$, и их сумма изоморфна $k[x+y]\oplus k[x-y]$.

ОПРЕДЕЛЕНИЕ: Спектр алгебры $\bigoplus_{i=0}^{+\infty} I^i/I^{i+1}$ называется нормальным конусом. Спектр $\operatorname{Sym}_{A/I}(I/I^2)$ называется нормальным расслоением. Вложение называется регулярным, если они совпадают.

ПРИМЕР: Нормальное расслоение точки — касательное пространство. Касательное расслоение — нормальное расслоение к диагонали.

ПРЕДЛОЖЕНИЕ: Пусть $s \in \Gamma(L,X)$ — сечение. Тогда $N_{(s)/X} \cong L|_{(s)}$.

ПРЕДЛОЖЕНИЕ: Пусть $C \subset S$ — кривая на поверхности, $x \in C$, а $\tilde{C} \subset \operatorname{Bl}_x S$ — строгий прообраз. Тогда $N_{\tilde{C}/\operatorname{Bl}_x S} \cong N_{C/S} \otimes \mathcal{O}_C(-x)$.

Самопересечение

ОПРЕДЕЛЕНИЕ: Пусть $C \subset S$ — кривая. Ее **самопересечением** называется степень ее нормального расслоения.

ЗАМЕЧАНИЕ: Если кривая движется в семействе, то ее самопересечение — это действительно индекс пересечения ее с другим членом. Однако это определение имеет смысл для кривых, которые не деформируются.

Самопересечение

ОПРЕДЕЛЕНИЕ: Пусть $C \subset S$ — кривая. Ее **самопересечением** называется степень ее нормального расслоения.

ЗАМЕЧАНИЕ: Если кривая движется в семействе, то ее самопересечение — это действительно индекс пересечения ее с другим членом. Однако это определение имеет смысл для кривых, которые не деформируются.

ПРИМЕР: Пусть $E_x \subset \mathsf{Bl}_x S$ — кривая, добавленная при раздутии гладкой точки. Ее самопересечение равняется -1.

ПРИМЕР: Самопересечение $\tilde{C} \subset \mathsf{Bl}_x \, S$ на единицу меньше, чем у $C \subset S$.

Самопересечение

ОПРЕДЕЛЕНИЕ: Пусть $C \subset S$ — кривая. Ее **самопересечением** называется степень ее нормального расслоения.

ЗАМЕЧАНИЕ: Если кривая движется в семействе, то ее самопересечение — это действительно индекс пересечения ее с другим членом. Однако это определение имеет смысл для кривых, которые не деформируются.

ПРИМЕР: Пусть $E_x \subset \mathsf{Bl}_x S$ — кривая, добавленная при раздутии гладкой точки. Ее самопересечение равняется -1.

ПРИМЕР: Самопересечение $\tilde{C} \subset \mathsf{Bl}_x S$ на единицу меньше, чем у $C \subset S$.

ТЕОРЕМА: (критерий Кастельнуово) Рациональная кривая на поверхности может быть стянута в гладкую точку тогда и только тогда, когда ее самопересечение равняется -1.