All distributions N= 2 = (0) 1 P.M.F.: P(x=x) = Px(1-p)1-x -2,17 田 Bernoulli: * 1 trial Enpectation E(N) = P 2007=(20)

*2 2 Possible Outcome

single coin toss.

Lie trow as even and water (counts number of success) (for both) P.M.F.: $\rho(x=x) = \binom{n}{n} \rho^{x} (1-p)^{n-x}$

I Bi Nomial: * n trial *2 two (2) possible outcome

* every trials are independent. # toss a conjustor stines.

1 FIRED TRUSTS Laint= sulps transpill ## *yxindicates number of success

Poisson: * counts number of events

Variance : V(u) = np (1-p) GATTING number of trials are fixed. Variance (Mean

Expectation: E(x) = 2

Variance: V(x) = 7

Expectation: E(x) = np

· O Number of trials are indinite variance = Mean P.M. F. P(X=X) = $\frac{e^{-\lambda} x}{x}$ x=0,1,2,3,.. 2 2th parameter.

that occur in a time interval. *, निर्दिचे यमाच कापाठ प्राप्यामा/

* * , DWA 2 COKIN number of events, Wirs Random variable- 40 trial DOUN

fined state at 1 Dour prisson Dis-

the first success occurs.

thy x indicates number of eventy counts number of events.

西 Greometric: * number of trial is not fined. *2 The experiment will continue until

> \$3 50 success fined = 1. trial werest unknown.

*y nindicates number of trial. X = O. P indecates the probability.

का नवार म या आउवा अठ्ड मा अह वाहि।

型 Negative binomial: * * Extention of geometric distribution.

> the rth success occur. t3 r> 1. & r indicates number of success *4 No. of trial is not fixed

*2 The experiment will continue until

* P indecales the probablity.

 $p.M.F_{\circ}^{\circ}$ $p(x=x) = (1-p)^{(x-1)}p$

Euperbasions $|E(x)=\frac{1}{p}$ variance \circ $V(n) = \frac{1-\rho}{\rho^2}$

P. M. F: | P (ax x = x) = (x = 1) (1-P)(x-r) Eupectation : E(x) = P/P Variance $|V(x)| = \frac{r(1-P)}{2}$

x=r, r+1, r+2, ... ~

unknown value!

quantity.

r>1

P.D.F.: $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ -00 (K(0) 西西 Normal:* a fun' of continuous random vav. -00 KH(0) HERE OF NOTE TO THE CONTINUOUS TOROGOM 05020 Expectation: E(n) = M * 1 " M (MU) - W < M (W) variance: $V(n) = \sigma^2$ *y " " variance (or) of old 由 Standard Normal Distribution: f(2)= 1 2 2 2 2 1 Property of Normal distribution 1) Symmetric. func. ((The gen alo Ivato Page check into 1 Catante Rulus >0.5 2021 Normal Produc Ko.s n Not n 2) Mean (Average Value) = Mode (Manimambalue) = Median (middle point). 3) Unimodal (only one peak point. 1) 4) The total Area (study ander the curve is equid(=) to one (1) (study = 1) 5) The normal curve approaches, but not touches the n-anis. 型 Tran stormation: $f(u) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(u \cdot M)^2}{2\pi\sigma^2}} \int_{-\infty}^{Normal} \frac{1}{distribution}$ $= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{1}{2}\sigma^2} dz$ $= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{1}{2}\sigma^2} dz$ 面 Probability Calculation for Normal Distribution Kiii) P(n)a) (ii) P(x(b) (i) P (a<n<b) =p(a<n(a)) $= P\left(\frac{a-M}{\sigma} \left\langle \frac{n-M}{\sigma} \left\langle \frac{b-M}{\sigma} \right\rangle \right)$ = p(- w< n < b) = P(a-H < x-H < 0-H) = p (-w-H < x-M < b-M) = P (a-4/2 (b-M) =P(a-H < 2 < 00) $= F\left(\frac{b-H}{a}\right) - F\left(\frac{a-H}{a}\right)$ = P(-00 < 2 < b-4) = F(x) - F (a-M) = F(b-4) = 1-F(a-H) F(sth)- এট আন আম্ব page 787-795-45 27(3) ona प्राठ वा गारे(व Lik F(♣-4)=0

follows x~ any distribution & the sample size is large (n≥30), population meanor expected value of no & population variance . A Average value of the random variable, $\overline{X} \sim N(E(N), \frac{V(N)}{N}) \equiv \overline{X} \sim N(E(\overline{X}), V(\overline{X}))$ wis to distribution-2 (27 or x, for in normal distribution tollow solo) if, $\overline{X} \sim N\left(M, \frac{\sigma^2}{N}\right)$ * $\left[E(ch) = cE(h)\right]$ * $\left[V(ch) = c^2V(h)\right]$ Expectation, $E(\vec{x}) = M$ Variance, $V(x) = \frac{\sigma^2}{n}$ $V(x) = \frac{n^2 \sigma^2}{n}$. $\frac{\tilde{\chi} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)}{\sum_{i=1}^{n} \tilde{\chi}_{i} \sim N\left(n\mu, n\sigma^{2}\right)}$

Table I: Cumulative Distribution Function of the Standard Normal Distribution

V.										
x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5339
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9019	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9610	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998