Simulating Secure DNN Inference on Fully Homomorphic Encryption

Woosung Song

Seoul National University, Dept. of Computer Science and Engineering

December 10, 2021

Overview

Simulating Secure DNN Inference on FHE

- Simulating DNN inference as if it is on a secure FHE environment.
- Switching HE-incompatible ML components into approximate polynomials.
 - E.g., Conditional branches.
- Optimize and fine-tune the model to reach a higher accuracy.
- Compare the tradeoffs between accuracies and computational costs.

Homomorphic Encryption

Homomorphism Between Plaintexts and Ciphertexts

- Can perform operations on the ciphertexts without decryption
- Homomorphism between plaintext and ciphertext spaces

Let
$$c_1 \in Enc_{pk}(p_1)$$
, $c_2 = Enc_{pk}(p_2)$.
$$\begin{aligned} Dec_{sk}(c_1 \underline{+} c_2) &= p_1 + p_2 \\ Dec_{sk}(c_1 \underline{\times} c_2) &= p_1 \times p_2 \\ Dec_{sk}(\underline{f}(c_1, c_2)) &= f(p_1, p_2) \end{aligned}$$

Fully Homomorphic Encryption

HEaaN (CKKS)

- Fully HE scheme for floating-point approximate arithmetics
- Supports +, ×, rotate operators for vectorized data packets (SIMD)

$$(a_{1}, a_{2}, ..., a_{n}) + (b_{1}, b_{2}, ..., b_{n}) = (a_{1} + b_{1}, a_{2} + b_{2}, ..., a_{n} + b_{n})$$

$$(a_{1}, a_{2}, ..., a_{n}) \times (b_{1}, b_{2}, ..., b_{n}) = (a_{1} \times b_{1}, a_{2} \times b_{2}, ..., a_{n} \times b_{n})$$

$$rotate((a_{1}, a_{2}, ..., a_{n}), r) = (a_{r+1}, ..., a_{n}, a_{1}, ..., a_{r})$$

$$Dec_{sk}(c_{1} + c_{2}) = p_{1} + p_{2}$$

$$Dec_{sk}(c_{1} \times c_{2}) = p_{1} \times p_{2}$$

$$Dec_{sk}(\underline{rotate}(c_{1}, r)) = rotate(p_{1}, r)$$

Noise Level & Bootstrapping

Noise Level

- Ciphertext's noise(error) becomes significantly larger after a multiplication
- Ciphertext lost its information when the level goes 0

Bootstrapping

- Operator in HEaaN that recovers the noise level
- Takes very very long time...
 - ► This is why one should care to reduce the cascaded multiplicative depths
- Enables Fully HE: No need to decrypt ciphertexts with low noise levels

Let C_I be a set of ciphertexts with I noise level.

$$Enc_{pk}(p) \in \mathcal{C}_{init}$$

$$\pm : \mathcal{C}_{l} \times \mathcal{C}_{l'} \to \mathcal{C}_{\min\{l,l'\}}$$

$$\times : \mathcal{C}_{l} \times \mathcal{C}_{l'} \to \mathcal{C}_{\min\{l,l'\}-1}$$

$$\underbrace{rotate}_{l} : \mathcal{C}_{l} \times \mathbb{Z} \to \mathcal{C}_{l}$$

$$\underbrace{bootstrap}_{l} : \mathcal{C}_{low} \to \mathcal{C}_{high}$$

Overview 5

(Initial (large) noise level)

Secure DNN Inference on FHE

DNN Inference using FHE Scheme

- DNN inference from encrypted user data
- Using homormophic operators
 - ► +, ×, <u>rotate</u>
- Popular DNN components on inference stage:
 - Matmul, Conv, Reshape, Sum ...
 - ReLU. MaxPool. Tanh. ...

Figure: Secure DNN inference on FHE scheme

Secure DNN Inference on FHE

No Conditional Instruction in HEaaN?

• Don't know any information from the ciphertext • How can one implement ' $ReLU(x) = if(x \ge 0)$ then x else 0'?

Approximate Polynomials

- Approximate polynomials to implement the absolute function
 - $|x| \approx a_0 + a_1 x + a_2 x^2 + \cdots$
- Maximum degree of the approx polynomial determines noise level drop
 - Tradeoff between multiplicative depth v.s. accuracy

$$ReLU(x) = (x + |x|) \cdot 0.5$$

$$MaxPool(x_1, x_2) = \max(x_1, x_2) = 0.5 \cdot (x_1 + x_2 + |x_1 - x_2|)$$

Chebyshev's Approximation (1st Kind Expansion)

- Known to have low average error (mean(|f p|)).
- Recursively generates polynomials.

$$T_0(x) = 1, \quad T_1(x) = x, \quad T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

$$\sum_{k=1}^n T_i(x_k)T_j(x_k) = \begin{cases} 0 & \text{if } i \neq j \leq n \\ n & \text{if } i = j = 0 \\ n/2 & \text{if } 0 < i = j \leq n \end{cases} \quad \text{where } x_k = -\cos(\frac{k\pi}{n})$$

• Compute approximation coefficients similar to Fourier transformation.

$$f(x) \approx \sum_{i=0}^n c_i T_i(x), \quad c_i = \frac{1}{d_i} \sum_{k=1}^n f(x_k) T_i(x_k), \quad d_i = \left\{ egin{array}{ll} n & \text{if } i=0 \\ n/2 & \text{if } i \neq 0 \end{array}
ight.$$

Remez's Iterative Algorithm

Theorem (Chebyshev's Equioscillation theorem)

Among the approximate polynomial p of f s.t. $\deg(p) \le n$, $||f - p||_{\infty}$ on a domain [a, b] is minimized iff $\exists a \le x_1 < x_2 < \dots < x_{n+2} \le b$ s.t. $f(x_i) - p(x_i) = (-1)^i \cdot ||f - p||_{\infty}$.

- Known to have minimal maximum error $(\max(|f p|))$.
- Iteratively fetches x points and polynomial coefficients.
 - ▶ Randomly sample n + 2 ascending data points $(x_1, x_2, \dots, x_{n+2})$ on [-1, 1].
 - Solve a linear system of n+2 equations, with n+2 unknowns c_0, \ldots, c_n, E :

$$\left(\sum_{i=0}^n c_i x_k^i\right) + (-1)^k E = f(x_k)$$

▶ Update $(x_1, x_2, ..., x_{n+2})$ to have local maximums on ||f(x) - p(x)||, and repeat from the 2nd step.

Approximations of Absolute Function

Figure: Chebyshev's (L), Remez's approximation of absolute function y = |x| (R)

- Chebyshev has low average error, Remez's has low maximum error.
- Higher degree polynomials are more accurate.

Importance of Input Range Issue

Recall that
$$ReLU(x) = (x + |x|) \cdot 0.5$$

Figure: Approximations of ReLU. The function is highly inaccurate out of [-1,1] input range.

Experiment Environments

Target Datasets and Networks

- MNIST handwritten digit classification dataset.
- Simple convolutional classifier neural network.
 - Conv2d, Linear, ReLU and MaxPool2d in pytorch.
- Implemented with PyTorch for secure inference simulation.
 - Use approximation polynomials when inferencing.
 - Not necessary for training phase.

Figure: Classifier Network

Experiments 12

Optimization & Fine-Tuning

ML Components and Losses

• Activation decay; to reduce input norms of approx. polynomials.

$$\textit{Loss}(\theta, \mathsf{x}) = \textit{Loss}_{\textit{orig}}(\theta, \mathsf{x}) + \lambda_{\textit{act}} \cdot \left(\frac{1}{\textit{N}} \cdot \sum_{\mathsf{u} \in \mathsf{inputs of approx.}} ||\mathsf{u}||_{\textit{p}} \right)$$

• Negative slope $(u \in [0,1))$ on ReLU (LeakyReLU)

$$\textit{LeakyReLU}(x) = \left\{ \begin{array}{ll} x & \text{if } x \geq 0 \\ ux & \text{if } x < 0 \end{array} \right. = \left(x + \frac{1-u}{1+u} \cdot |x| \right) \cdot \frac{1+u}{2}$$

Fine-tuning

- Fine-tune with approximates
- Gradient descent training after switching HE-incompatible components into approximates

Experiments 13

Experiment Pipelines

Common Training Pipelines

- Train the network w/ small activation decay ($\lambda_{act,1} = 10^{-4}$) for 20 epochs
 - ▶ Learning rates: $0.1(10 \text{ epochs}) \rightarrow 0.01(15 \text{ epochs}) \rightarrow 0.001(20 \text{ epochs})$
- ② Train the network w/ large activation decay $(\lambda_{act,2}=10^{-2})$ for 10 epochs
 - ▶ Learning rates: $10^{-3} \rightarrow 10^{-4} \rightarrow 10^{-5}$
- **9** Fine-tune the network by replacing HE-incompatible components into approximates for 10 epochs ($\lambda_{act,3} = 10^{-2}$).
 - Learning rates: $10^{-3} \rightarrow 10^{-4} \rightarrow 10^{-5}$

Control Variables

- Approximation methods (Chebyshev v.s. Remez) and degrees
- Using LeakyReLU instead of ReLU
- Using L2 or L1-norm as activation decay
- Final activation decay parameter scale $(\lambda_{act,3})$

Github: https://github.com/lego0901/fhe_secure_inference_simulation

Experiments 14

Results - LeakyReLU on L1 Activation Decay

Figure: Affects of LeakyReLU. ReLU was more stable for L1 activation decay.

Results - LeakyReLU on L2 Activation Decay

Figure: Affects of LeakyReLU. LeakyReLU was generally better for L2 activation decay.

Results - L1 or L2 Activation Decay Norms

Figure: Affects of L1 and L2 activation decay norms. L2 gave impressive performances for some cases, but L1 was more stable.

Results - Activation Decay Strength ($\lambda_{act,3}$)

Figure: Affects of the last activation decay term ($\lambda_{act,3}$). 10^{-3} gave impressive performances for some cases, but 10^{-2} was more stable.

Results - Affects of The Fine-tune Phase

Figure: Affects of the fine-tuning phase. Just replacing ReLU and MaxPool2d into Approximates without fine-tuning gave poor performances.

Results - Affects of The Large Activation Decay Phase

Figure: Affects of the (2nd) large activation decay phase. It provided more stable results for smaller approximation polynomial degrees.

Results - Activation Magnitude Profiles

Figure: Activation magnitude profiles. The absolute value of each activation tensor element was investigated. Fine-tuning phase reduced the activation magnitudes in genernal.

Results - Top Accuracies Configs

Approximates	Act Decay	ReLU Layer	Accuracies
Chebyshev 7	L2, $\lambda_{act,3} = 10^{-2}$	LeakyReLU	98.71
Chebyshev 8	L2, $\lambda_{act,3} = 10^{-2}$	LeakyReLU	98.67
Chebyshev 6	L2, $\lambda_{act,3} = 10^{-2}$	LeakyReLU	98.63
Chebyshev 7	L1, $\lambda_{act,3} = 10^{-3}$	ReLU	98.39
Remez 7	L2, $\lambda_{act,3} = 10^{-2}$	LeakyReLU	98.31
Remez 6	L2, $\lambda_{act,3} = 10^{-2}$	LeakyReLU	98.31
Remez 10	L2, $\lambda_{act,3} = 10^{-2}$	LeakyReLU	98.21
Remez 11	L2, $\lambda_{act,3} = 10^{-2}$	LeakyReLU	98.21
Chebyshev 5	L2, $\lambda_{act,3} = 10^{-2}$	LeakyReLU	98.12
Remez 5	L1, $\lambda_{act,3} = 10^{-3}$	ReLU	98.12
Remez 6	L1, $\lambda_{act,3}=10^{-3}$	ReLU	98.11

Table: Configurations with top accuracies

Results - Activation Magnitude Profiles

Figure: Activation magnitude profiles for remarkable configurations.

Conclusion

Summary

- Can switch HE-incompatible components into approximates.
- The accuracy drops were not critical in MNIST dataset. (98.71% in best)
- Fine-tuning phases were important to obtain better results.
 - With 'large activation decay' and 'fine-tuning' phases.
 - Fine-tuning stages reduced the magnitudes of activations, to fit into valid input ranges for the approximations; [-1,1].
- Low-degree polynomials approximations were enough. (Even better!)
 - ▶ About 6-7 degrees polynomials produced the best performances.
 - Better for all computational complexities. (resources, times, mult-depths)

Follow-up Studies

- Not 'simulating' a secure ML inference in FHE.
 - ▶ Need to implement Matmul, Conv2d, ...
- How to optimize these technique into more complex networks.
- How to make a secure training network? (not only the inference)

Conclusion 24

References I

- [1] Jung Hee Cheon et al. "Bootstrapping for Approximate Homomorphic Encryption". In: Advances in Cryptology EUROCRYPT 2018. Ed. by Jesper Buus Nielsen and Vincent Rijmen. Cham: Springer International Publishing, 2018, pp. 360–384. ISBN: 978-3-319-78381-9.
- [2] Jung Hee Cheon et al. "Homomorphic Encryption for Arithmetic of Approximate Numbers". In: Advances in Cryptology – ASIACRYPT 2017. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Cham: Springer International Publishing, 2017, pp. 409–437. ISBN: 978-3-319-70694-8.
- [3] Jung Hee Cheon et al. "Numerical Method for Comparison on Homomorphically Encrypted Numbers". In: Advances in Cryptology – ASIACRYPT 2019. Ed. by Steven D. Galbraith and Shiho Moriai. Cham: Springer International Publishing, 2019, pp. 415–445. ISBN: 978-3-030-34621-8.
- [4] Thore Graepel, Kristin Lauter, and Michael Naehrig. "ML Confidential: Machine Learning on Encrypted Data". In: *Information Security and Cryptology ICISC 2012*. Ed. by Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1–21. ISBN: 978-3-642-37682-5.
- [5] M.H. Mudde, Alef E. Sterk, and van der Schaft Arjan. "Chebyshev approximation". In: (2017).

References 2