Melk @ Crystallographic computing forum 2019-08-17

Glue it all together with Python: Automating electron diffraction data collection

Stef Smeets

Kavli Institute of Nanoscience Delft

Zeolites

Method development

Powder diffraction

Electron diffraction

Crystallography

Structure determination and characterization

Programming

https://github.com/stefsmeets

Electrons as a radiation source

- Accelerating voltage: 100 to 300 keV
- Wavelength: 0.0251 Å @ 200 keV
- Probe electrostatic potential
- Strong interaction (10⁶ stronger than X-rays)
- Require small samples (< 1 μm)
- High vacuum (<10⁻³ mbar)

JEOL JEM-1400-LaB₆ e condenser Condenser aperture 🕽 lenses Goniometer Objective **SAED** Interaperture mediate + projector lenses Detector system (TVIPS F416)

Electron 'diffractometer'

The electron microscope as a giant toy for nanoscience

3D Electron diffraction

e Detector

Continuous rotation method

Nederlof *et al.*, Acta Cryst. D (2013), 69:1223 Nannenga *et al.*, Nat. Methods (2014), 11:927 Gemmi *et al.*, J. Appl. Cryst. (2015), 48:718 Cichocka *et al.*, J. Appl. Cryst. (2018), 51:1652

Rotation speed: 0.5-2.0°/s

<5 minutes

Zeolite mordenite

Rotate: -43.90° to 58.65° @ 0.45°/s (102.55°) Exposure: 0.5 s, oscillation angle: 0.23°

Cichocka et al., J. Appl. Crystallogr. 51 (2018): 1652–61

Refinement

Chemical formula (refined)	Si ₄₈ O ₉₆
Space group	<i>Cmcm</i> (63)
a (Å)	18.110
b (Å)	20.530
c (Å)	7.528
Resolution (Å)	0.80
No. of total reflections	5244
No. of unique reflections (all)	1585
No. of unique reflections $[F_o > 4\sigma(F_o)]$	1140
Refined parameters	96
Restraints	0
$R_{\rm int}$	0.0878
R1 for $F_o > 4\sigma(F_o)$	0.1602
R1 for all data	0.1769
Goodness of fit	1.610

Framework structure

Si—O	1.614 ± 0.012 Å	
Si—O—Si	109.5 ± 1.9°	
0—Si—O	153.3 ± 12.0°	
		Si? Al? Ge? B? □?
109.5° Si	145° 1.61 Å	
CC H ₂ O	template	
Na⁺,	Cu ²⁺ , Cr ²⁺ , K ⁺ ,	R1=0.160 (0.80 Å)

Serial electron diffraction (SSZ-45)

JEOL 1400 LaB₆ @ 120 kV 401 images @ 400 ms/frame

diff\diff 121.tiff

Orientation finding

- Forward projection model using known lattice parameters
- Generate pattern library of all possible orientations (~1.5M in P1)
- Match best orientation and index data

Smeets et al., J. Appl. Cryst., 2018, 51:1262

Structure determination

- Merge hkl-files using rank aggregation
- Combine data from many frames

GeSi-BEC

Zeolite Y (using 99 / 2506 frames)

Zeolite A (using 200 / 1107 frames)

ECR-18

Quantitative phase analysis

With Claes Olsson (Sandvik Materials Technology) Smeets et al., *Steel Res. Int.* 90 (2019), 1800300 3939 particles

Automated crystal tracking

Rotation: -44.0 to 47.4° @ 0.76°/s (91.4°) Exposure: 0.5 s, oscillation angle: 0.39°

Bin Wang (Stockholm University)
Wang *et al.*, *IUCrJ* 6 (2019), doi: 10.1107/S2052252519007681

Find average unit cell (ZSM-5)

a=13.3(5) Å b=19.2(7) Å c=19.8(5) Å $\alpha=90.0(1.7)^{\circ}$ $\beta=89.9(1.2)^{\circ}$ $\gamma=89.16(1.5)^{\circ}$

Orthorhombic *C*-centered

Cluster analysis (intensities)

11

Without Python, large amounts of C/C++ code often have to be written just to provide a flexible enough input mechanism so that scientists can feed the program its data, in all the variations that are required for reasons of experimental setup. Python can be used to write a much more flexible input mechanism in a much shorter time.

Guido van Rossum (1998)

'Python as a glue language'

https://www.python.org/doc/essays/omg-darpa-mcc-position/

Guido van Rossum (1998) 'Python as a glue language' https://www.python.org/doc/essays/omg-darpa-mcc-position/

- Subprocess
- comtypes
- ctypes
 - call C functions from Python
 - Access Windows API
- Sockets
 - Netcat
 - Echo server
- Windows Subsystem for Linux
- Pyautogui

instamatic.camera.Camera

Instamatic main program

instamatic.server.cam_server (socket server)

instamatic.camera.Camera

ASI Cheetah

Through DLL (C++) ctypes

Through EMMENU comtypes

Through DM plugin COM -> DLL (C++) -> ctypes

Simulated

Python

(socket client)

Instamatic main program

instamatic.TEMController.Microscope

Instamatic main program

import

instamatic.server.tem_server (socket server)

(socket client)

Instamatic main program

Simulated

3D electron diffraction (discrete rotation)

```
from instamatic import TEMController
from instamatic.formats import write_tiff
ctrl = TEMController.initialize()
angles = range(-60, 60)
for i, angle in enumerate(angles):
    ctrl.stageposition.a = angle
    img, h = ctrl.getImage(exposure=0.5)
    write_tiff (f"diff_{i:4d}.tiff", img, header=h)
```

3D electron diffraction (continuous rotation)

```
from instamatic import TEMController
from instamatic.formats import write_tiff
ctrl = TEMController.initialize()
start, end = -60, 60
ctrl.stageposition.set(a=start)
ctrl.stageposition.set(a=end, wait=False)
while ctrl.stageposition.a < end:</pre>
    img, h = ctrl.getImage(exposure=0.5)
    write_tiff (f"{i:4d}.tiff", img, header=h)
    print(f"Current angle: {ctrl.stageposition.a:.1f}")
```

Serial electron diffraction

```
from instamatic import TEMController
from instamatic.formats import write_tiff
ctrl = TEMController.initialize()
coords = get_list_of_coordinates()
for i, (x, y) in enumerate(coords):
    ctrl.stageposition.set_xy_with_backlash_correction( =x, y=y)
    img, h = ctrl.getImage(exposure=0.5)
   write_tiff (f"{i:4d}.tiff", img, header=h)
    ctrl.difffocus.defocus(offset=1500)
    img2, h2 = ctrl.getImage()
   write_tiff(f"image_{i:4d}.tiff", img2, header=h2)
    ctrl.difffocus.refocus()
```


Data reduction server (Windows)

DIALS: Socket server > subprocess > cmd > dials_script.bat >>> Python2.7

```
cmd = ["dials_script.bat", "./path/to/data"]
p = sp.Popen(cmd, stdout=sp.PIPE)
for line in p.stdout:
    parse(line)
```

XDS: Socket server > subprocess > WSL > XDS

```
path = "./path/to/data"
p = sp.Popen("bash -ic xds_par 2>&1 >/dev/null", cwd=path)
p.wait()
```

Summary

- Python offers many options to interface other programs/libraries
 - The standard library (ctypes, subprocess, sockets, ...)
 - Libraries (comtypes, pyautogui, ...)
- Define common interface to access hardware
- Simplify and unify interaction through high-level interfaces
- Endless flexibility to design new experiments

Acknowledgements

Stockholm University, SE

- Bin Wang (now Viranova)
- Wei Wan (now Sandvik Coromant)
- Xiaodong Zou

TU Delft, NL

- Wiel Evers
- Arjen Jakobi

