Lösungsvorschläge zum Übungsblatt 5

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

Aufgabe 1 (Veronese-Einbettung).

- (a) Wie gewohnt:
 - (i) Zur Wohldefiniertheit: Falls $v \neq 0$, gilt $v^i \neq 0$ für irgend ein $i \in \{0, 1, 2\}$; daher ist $\widetilde{F}(v)^j \neq 0$ für j = 0, 3 oder 5, d.h. $\widetilde{F}(v) \neq 0$. Außerdem gilt $\widetilde{F}(\lambda v) = \lambda^2 \widetilde{F}(v)$, d.h. \widetilde{F} bildet Geraden auf Geraden ab.

Zur Injektivität: $F([v]) = F([w]) \Rightarrow vv^T = \lambda ww^T$ für irgend ein $\lambda \neq 0$. Daher gilt $vv^Tv = \lambda ww^Tv$, oder $|v|^2v = \lambda \cdot (w \cdot v)w$; da $v \neq 0$, gilt $v = \frac{\lambda \cdot (w \cdot v)}{|v|^2}w$, also [v] = [w].

Zur Glattheit: Es sei $[v] \in \mathbb{RP}^2$. Falls $v^0 \neq 0$, gilt $\widetilde{F}^0(v) \neq 0$; daher gilt

$$(\phi_0^{\mathbb{RP}^5} \circ F \circ (\phi_0^{\mathbb{RP}^2})^{-1})(u^1, u^2) = (u^1, u^2, (u^1)^2, u^1 u^2, u^2 u^2)$$
(1)

für $(u^1, u^2) \in \mathbb{R}^2$. Ähnlicherweise gilt $\widetilde{F}^3(v) \neq 0$, falls $v^1 \neq 0$, s.d.

$$(\phi_3^{\mathbb{RP}^5} \circ F \circ (\phi_1^{\mathbb{RP}^2})^{-1})(u^1,u^2) = ((u^1)^2,u^1,u^1u^2,u^2,(u^2)^2)$$

für $(u^1, u^2) \in \mathbb{R}^2$, und $\widetilde{F}^5(v) \neq 0$, falls $v^2 \neq 0$, s.d.

$$(\phi_5^{\mathbb{RP}^5} \circ F \circ (\phi_2^{\mathbb{RP}^2})^{-1})(u^1,u^2) = ((u^1)^2,u^1u^2,u^1,(u^2)^2,u^2)$$

für $(u^1, u^2) \in \mathbb{R}^2$. Daher ist F glatt.

(b) dF_p hat laut (1)

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

als Matrix, da $p = (\phi_0^{\mathbb{RP}^2})^{-1}(0,0)$. Offensichtlich sind die Spalten $(1,0,0,0,0)^T$ und $(0,1,0,0,0)^T$) linear unabhängig, d.h. diese Matrix hat maximalen Rang. Daher ist d F_p injektiv.

(c) Wir berechnen:

$$(F \circ F_A)([v]) = F([Av]) = [\widetilde{F}(Av)] = [Avv^T A^T] = [A\widetilde{F}(v)A^T] = (F_B \circ F)([v]),$$

wobei $F_B: \mathbb{RP}^5 \to \mathbb{RP}^5$ der Diffeomorphismus, welcher der invertierbaren linearen Abbildung $\operatorname{Sym}(3,\mathbb{R}) \to \operatorname{Sym}(3,\mathbb{R}), w \mapsto AwA^T$ entspricht, ist. Daher gilt laut der Kettenregel

$$d(F \circ F_A)_p = d(F_B \circ F)_p \Leftrightarrow dF_{F_A(p)} \circ (dF_A)_p = (dF_B)_{F(p)} \circ dF_p$$

$$\Leftrightarrow dF_{F_A(p)} = (dF_B)_{F(p)} \circ dF_p \circ (dF_{A^{-1}})_{F_A(p)};$$

da es zu allen $q \in \mathbb{RP}^2$ ein $A \in GL(3,\mathbb{R})$ gibt mit $q = F_A(p)$, und die rechte Seite aus injektiven Abbildungen besteht, so ist d F_q injektiv für alle $q \in \mathbb{RP}^2$.

(d) Das Bild von \tilde{F} besteht genau aus den symmetrischen (3×3) -Matrizen vom Rang 1, die positiv semi-definit sind. Eine symmetrische Matrix hat Rang 1 genau dann wenn alle (2×2) -Unterdeterminanten verschwinden. Man erhält die folgenden Gleichungen: $[(y^0, \ldots, y^5)] \in F(\mathbb{RP}^2)$, falls

$$y^0y^3 - (y^1)^2 = 0$$
, $y^0y^5 - (y^2)^2 = 0$, $y^3y^5 - (y^4)^2 = 0$, $y^1y^4 - y^2y^3 = 0$.

Man kann nachrechnen, dass immer drei dieser Gleichungen unabhängig sind.

Aufgabe 2 (Tangentialräume besonderer Lie-Gruppen). (a) Zunächst ist die Dimension von O(n) $n^2 - \frac{1}{2}n(n+1) = \frac{1}{2}n(n-1)$, da O(n) durch die Niveau-Menge $f^{-1}(\{0\})$ beschrieben ist, wobei $f: \mathfrak{gl}(n) \to \operatorname{Sym}(n,\mathbb{R}) \simeq \mathbb{R}^{\frac{1}{2}n(n+1)}$ so definiert ist, daß $f(A) = AA^T - I$, und f ist eine Submersion.

Es sei $\gamma:]-\delta, \delta[\to O(n)$ eine glatte Kurve mit $\gamma(0) = I$ und $\dot{\gamma}(0) = X \in T_IO(n)$. Schreibe $\iota: O(n) \to \mathfrak{gl}(n)$ für die Standard-Einbettung. Da $f(\iota(\gamma(t))) = 0$ für alle t in Betracht, gilt

$$d_I f(d_I \iota)(X)) = 0.$$

Daher ist $d_I \iota(X) \in \ker d_I f$. Da dim $\ker d_I f = \frac{1}{2} n(n-1) = \dim O(n)$, ist $d_I \iota : \mathfrak{o}(n) \to \ker d_I f$ ein Isomorphismus. Wir beschreiben nun $\ker d_I f$ expliziter: Eine kurze Berechnung zeigt, daß

$$d_I f \left(\sum_{i,j=1}^n a^{ij} \left. \frac{\partial}{\partial x^{ij}} \right|_I \right) = \sum_{i \le j} (a^{ij} + a^{ji}) \left. \frac{\partial}{\partial y^{ij}} \right|_0,$$

wobei $\frac{\partial}{\partial x^{ij}}\Big|_{I} = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{0} (I + te_{ij})$ für alle $i, j \in \{1, \dots, n\}$ und $\frac{\partial}{\partial y^{ij}}\Big|_{0} = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{0} \left(\frac{t}{2}(e_{ij} + e_{ji})\right)$ für $1 \leq i \leq j \leq n$. Daher ist $A = \sum_{i,j=1}^{n} a^{ij} \frac{\partial}{\partial x^{ij}}\Big|_{I} \in \ker \mathrm{d}_{I}f$ genau dann, wenn für $i \leq j$ (daher für alle $i, j \in \{1, \dots, n\}$) $a^{ij} + a^{ji} = 0 \Leftrightarrow a^{ij} = -a^{ji}$; dies gilt genau dann, wenn A, als eine Matrix empfunden, schiefsymmetrisch ist. Daher ist

$$\mathfrak{o}(n) \simeq \{\text{schiefsymmetrische } n \times n \text{ Matrizen}\}.$$

(b) Wie bei dem letzten Teil betrachten wir eine Kurve $\gamma:]-\delta, \delta[\to \operatorname{SL}(n,\mathbb{R}) \text{ mit } \gamma(0) = I$ und $\dot{\gamma}(0) = X$. Definiere $f: \mathfrak{gl}(n) \to \mathbb{R}$ durch $f(A) = \det(A)-1$, und schreibe $\iota: \mathfrak{SL}(n,\mathbb{R})$ für die Standardeinbettung. Da $f(\iota(\gamma(t))) = 0$ für alle t in Betracht, gilt

$$d_I f(d_I \iota)(X)) = 0.$$

Da dim $\ker d_I f = n^2 - 1 = \dim \operatorname{SL}(n, \mathbb{R})$, ist $d_I \iota : \mathfrak{sl}(n, \mathbb{R}) \to \ker d_I f$ ein Isomorphismus. Wegen Aufgabe 3a aus Übungsblatt 2 gilt

$$d_I f(\underbrace{\sum_{i,j=1}^n a^{ij} \left. \frac{\partial}{\partial x^{ij}} \right|_I}) = (\operatorname{tr} A) \left. \frac{\partial}{\partial y} \right|_0 = 0 \Leftrightarrow \operatorname{tr} A = 0,$$

wobei $\frac{\partial}{\partial y}\Big|_{0} = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}(t)$. Daher ist

$$\mathfrak{sl}(n,\mathbb{R}) \simeq \{\text{spurfreie } n \times n \text{ Matrizen}\}.$$

Aufgabe 3 (der Graph). (a) Es sei $p \in M$, und (U, ϕ) und (V, ψ) seien Karten um p bzw. F(p). Wir können annehmen, daß $F(U) \subset V$ (Ersetze U durch $U \cap F^{-1}(V)$). Definiere die Abbildung $\Phi: U \times V \to \mathbb{R}^m \times \mathbb{R}^n$ durch

$$(p_1, p_2) \mapsto (\phi(p_1), \psi(p_2) - \psi(F(p_1))).$$

Diese Abbildung ist glatt und bijektiv, was man leicht mittels der Karte

$$\Psi = (U \times V \ni (p_1, p_2) \mapsto (\phi(p_1), \psi(p_2)) \in \phi(U) \times \psi(V))$$

sieht. Außerdem hat ihre Ableitung

$$\begin{pmatrix} I_{m \times m} & 0 \\ D(\psi \circ F \circ \phi^{-1}) & I_{n \times n} \end{pmatrix}$$

als Matrix bezüglich der Karte Ψ , und diese Matrix hat maximalen Rang. Daher ist Φ ein lokaler Diffeomorphismus um (p, F(p)), d.h. es gibt eine offene Umgebung W von (p, F(p)) s.d. $\Phi|_W$ eine Karte ist, und, laut der Definition, ist $\Psi(p_1, p_2) \in \mathbb{R}^m \times \{0\} \Leftrightarrow \psi(p_2) = \psi(F(p_1)) \Leftrightarrow p_2 = F(p_2)$. Daher ist $\Phi(\text{Graph } F \cap W) = \Phi(W) \cap (\mathbb{R}^m \times \{0\})$, d.h. Graph(F) ist eine Untermannigfaltigkeit von $M \times N$.

(b) Die Abbildung $M \xrightarrow{f} M \times N$ $p \mapsto (p, F(p))$ ist eine Immersion, da sie bzgl. der Karten aus dem letzten Aufgabenteil die Jacobi-Matrix

$$\begin{pmatrix} I_{m \times m} \\ D(\psi \circ F \circ \phi^{-1}) \end{pmatrix}$$

hat. Daher reicht es, das Bild von $d_p f$ zu bestimmen. Es sei $\gamma:]-\delta, \delta[\to M$ eine Kurve mit $\gamma(0) = p$ und $\dot{\gamma}(0) = X \in T_p M$. Für $g \in C^{\infty}(M \times N)$ gilt

$$d_p f(X) \cdot g = \frac{d}{dt} \Big|_{t=0} g(\gamma(t), F(\gamma(t))) = \frac{d}{dt} \Big|_{t=0} g(\gamma(t), F(p)) + \frac{d}{dt} \Big|_{t=0} g(p, F(\gamma(t)))$$
$$= \left[d_p \iota_{F(p)}(X) + d_p (j_p \circ F)(X) \right] \cdot g,$$

wo in dem 2. Schritt die "Produktregel" benutzt wurde, und die Abbildungen $i_{F(p)}:M\to M\times N$ und $j_p:N\to M\times N$ die Einbettungen

$$q \mapsto (q, F(p))$$
bzw. $r \mapsto (p, r)$

bezeichnen. Daher gilt

im
$$d_p f = \{ d_p \iota_{F(p)}(v) + d_{F(p)} j_p(d_p F(v)) : v \in T_{(p,F(p))} \}$$

Andererseits ist

Graph
$$d_p F = \{(v, d_p F(v)) \in T_p M \oplus T_{F(p)} N : v \in T_p M\}$$

$$\simeq \{d_p i_{F(p)}(v) + d_{F(p)} j_p (d_p F(v)) : v \in T_p M\};$$

daher ist $T_{(p,F(p))}$ Graph $F = \text{im } d_p f \simeq \text{Graph } d_p F$.

- **Aufgabe 4.** (a) Bemerke, daß $\gamma_q = \pi \circ c_q$, wobei $\pi : \mathbb{R}^2 \to T^2$ die übliche Projektion ist und $c_q : \mathbb{R} \to \mathbb{R}^2$ die glatte Kurve $t \mapsto (t, qt)$ ist. Daher ist γ_q glatt, und auch eine Immersion, da c_q eine Immersion und π ein loker Diffeomorphismus ist.
- (b) Bemerke:

$$\gamma_q(t) = \gamma_q(s) \Leftrightarrow [(t, qt)] = [(s, qs)] \Leftrightarrow \exists n_1, n_2 \in \mathbb{Z} \text{ mit } t - s = n_1 \text{ und } q(t - s) = n_2.$$

Falls $q \in \mathbb{R} \setminus \mathbb{Q}$ gelten diese Gleichungen genau dann, wenn $n_2 = 0$, da $(q\mathbb{Q}) \cap \mathbb{Z} = \{0\}$ für alle irrationale q. Da $q \neq 0$, gilt dann t - s = 0, also t = s, d.h. γ_q ist in diesem Fall injektiv.

Falls $q \in \mathbb{Q}$, kann q als $\frac{m_1}{m_2}$ geschrieben werden mit $m_1 \in \mathbb{Z}$, $m_2 \in \mathbb{N}$. Daher gelten diese Gleichungen für $n_1 = m_2$ und $n_2 = m_1$, d.h. γ_q ist in diesem Fall *nicht* injektiv.

(c) Für $q \in \mathbb{Q}$ ist $\gamma_q(\mathbb{R})$ eine Untermannigfaltigkeit: Schreibe $q = \frac{m_1}{m_2}$ mit $m_1 \in \mathbb{Z}, m_2 \in \mathbb{N}$ teilerfremd. Dann ist $m_2 \in \mathbb{N}$ die kleinste natürliche Zahl mit $\gamma_q(m_2) = \gamma_q(0)$; es gilt daher $\gamma_q(t+m_2) = \gamma_q(t)$ für alle $t \in \mathbb{R}$. Definiere nun

$$\widetilde{\gamma}_q: S^1 = \mathbb{R}/\mathbb{Z} \to T^2$$

$$[x] \mapsto \gamma_q(m_2 x).$$

Diese Abbildung ist wohldefiniert, da $\widetilde{\gamma}_q([x+\widetilde{n}]) = \gamma_q(m_2x+m_2\widetilde{n}) = \gamma_q(m_2x)$. Außerdem ist diese Abbildung eine glatte Immersion, da für alle $v \in \mathbb{R}$ gilt $(\widetilde{\gamma}_q \circ \phi_v^{-1})(u) = \gamma_q \circ (u \mapsto n \cdot u)$. Hier bezeichnet ϕ_v die zu v gehörige Karte von $S^1 = \mathbb{R}/\mathbb{Z}$. Zum Schluß ist $\widetilde{\gamma}_q$ injektiv mit Bild $\gamma_q([0,n]) = \gamma_q(\mathbb{R})$, letzteres folgt aus der Definition, während ersteres gilt, weil

$$\widetilde{\gamma}_q([x]) = \widetilde{\gamma}_q([y]) \Leftrightarrow \gamma_q(nx) = \gamma_q(ny) \Leftrightarrow n(x-y) \in n\mathbb{Z} \Leftrightarrow x-y \in \mathbb{Z} \Leftrightarrow [x] = [y] \in S^1.$$

Daher ist $\widetilde{\gamma}_q: S^1 \to T^2$ wegen der Kompaktheit von S^1 eine Einbettung, d.h. $\gamma_q(\mathbb{R}) = \widetilde{\gamma}_q(S^1)$ ist eine Untermannigfaltigkeit von T^2 .

Alternativ kann man die Abbildung

$$G: T^2 \to \mathbb{R}, \qquad G([(p^1, p^2)]) = e^{2\pi i (m_1 p^1 - m_2 p^2)} - 1$$

betrachten und zeigen, dass G eine Submersion mit $G^{-1}(0)=\gamma_q(\mathbb{R})=\{[(p^1,p^2)]\in T^2\mid p^2=qp^1\}$ ist.

Für $q \in \mathbb{R} \backslash \mathbb{Q}$ ist $\gamma_q(\mathbb{R})$ keine Untermannigfaltigkeit von T^2 : Wir betrachten dazu die Menge

$$\gamma(\mathbb{Z}) = \{ [(k, kq)] \in T^2 \mid k \in \mathbb{Z} \} = \{ [(0, kq - [kq])] \in T^2 \mid k \in \mathbb{Z} \},$$

hier bezeichnet [kq] den ganzzahligen Anteil der (irrationalen) Zahl kq. Da γ_q injektiv ist, sind die Punkte $[(0,kq-[kq])] \in T^2$ paarweise verschieden. Mit $S^1 \cong \{[(0,x)] \mid x \in \mathbb{R}\} \subset T^2$ können wir $\gamma_q(\mathbb{Z})$ als Teilmenge von S^1 auffassen und die Identifikation

$$[(0, kq - [kq])] = e^{2\pi i kq} \in S^1$$

machen. Sei nun $\epsilon>0$ gegeben. Wir wählen $N\in\mathbb{N}$ mit $1/N<\epsilon$ und unterteilen S^1 in N gleichlange Sektoren:

$$S^1 = \bigcup_{n=0}^{N-1} S_n,$$

wobei $S_n = \{e^{2\pi i\theta} \mid \frac{n}{N} \leq \theta < \frac{n+1}{N}\}$. Betrachte nun die ersten N+1 Punkte aus $\gamma_q(\mathbb{Z})$:

$$\{\gamma_q(0), \gamma_q(1), \dots, \gamma_q(N)\}.$$

Diese Menge hat N+1 Elemente, weil γ injektiv ist, daher existieren $n_0 \in \{0, \ldots, N-1\}$ und $k \neq l \in \{0, \ldots, N\}$ mit $\gamma_q(k), \gamma_q(l) \in S_{n_0}$.

Es folgt mit $m=k-l,\ e^{2\pi i m q}\in S_0,\ d.h.\ mq-[mq]<\epsilon.$ Es folgt, dass $[(0,0)]\in T^2$ ein Häufungspunkt von $\gamma_q(\mathbb{Z})$ ist. Betrachtet man außerdem die Elemente $\gamma(Km)$ für $K\in\mathbb{Z},$ so folgt, dass $\gamma_q(\mathbb{Z})$ dicht in $S^1\subset T^2$ liegt.

Damit folgt, dass $\gamma_q(\mathbb{R})$ in T^2 dicht liegt, und außer [(0,0)], keine Punkte der Form $[(q_1,q_2)]$ enthält mit $q_1,q_2\in\mathbb{Q}$. Daher kann $\gamma_q(\mathbb{R})$ keine 2-dimensionale Untermannigfaltigkeit von T^2 sein, weil $\gamma_q(\mathbb{R})$ dann eine offene Teilmenge von T^2 enthalten muß, aber jede offene Teilmenge von T^2 Punkte der Form $[(q_1,q_2)]$ enthält. Es kann auch keine 1-dimensionale Untermannigfaltigkeit sein, weil jeder Durchschnitt $\gamma_q(\mathbb{R})\cap U$ mit $U\subset T^2$ offen unendlich viele disjunkte Geraden enthält; daher kann solch eine Menge nicht zu einem einzigen Geraden Abschnitt homöomorph (oder diffeomorph) sein.