Contents

```
Acknowledgements ---- v
Preface — vii
Chapter 1 – Introduction — 1
   Terminology — 4
   Short History of EFI — 5
   EFI Becomes UEFI—The UEFI Forum — 6
   PIWG and USWG — 8
   Platform Trust/Security — 11
   Embedded Systems: The New Challenge —— 12
       How the Boot Process Differs between a Normal Boot and an
           Optimized/Embedded Boot — 13
   Summary — 14
Chapter 2 - Basic UEFI Architecture --- 15
   Objects Managed by UEFI-based Firmware — 15
   UEFI System Table — 16
   Handle Database — 16
   Protocols — 18
       Working with Protocols --- 21
       Multiple Protocol Instances — 21
       Tag GUID — 21
   UEFI Images — 22
       Applications --- 25
       OS Loader --- 25
       Drivers — 26
   Events and Task Priority Levels — 27
   Summary — 30
Chapter 3 - UEFI Driver Model - 31
   Why a Driver Model Prior to OS Booting? — 31
   Driver Initialization - 32
   Host Bus Controllers — 33
   Device Drivers — 35
   Bus Drivers --- 36
   Platform Components — 38
   Hot Plug Events — 38
       Pseudo Code — 41
       Device Driver ---- 41
```

```
Bus Driver that Creates All of Its Child Handles on the First Call to
           Start() — 42
       Bus Driver that Is Able to Create All or One of Its Child Handles on Each Call
           to Start(): --- 43
   Additional Innovations — 47
       Security — 47
       Manageability — 48
       Networking — 49
   Summary — 52
Chapter 4 - Protocols You Should Know ---- 53
   EFI OS Loaders — 55
   Device Path and Image Information of the OS Loader — 56
   Accessing Files in the Device Path of the OS Loader — 57
   Finding the OS Partition — 58
   Getting the Current System Configuration — 60
   Getting the Current Memory Map — 61
   Getting Environment Variables --- 62
   Transitioning to an OS Kernel — 63
   Summary — 63
Chapter 5 - UEFI Runtime ---- 65
   Isn't There Only One Kind of Memory? — 66
   How Are Runtime Services Exposed? — 69
   Time Services — 70
       Why Abstract Time? — 70
       Get Time — 70
       Set Time — 71
       Get Wakeup Time — 72
       Set Wakeup Time — 72
   Virtual Memory Services — 72
       Set Virtual Address Map — 73
       ConvertPointer — 73
   Variable Services — 74
       GetVariable — 74
       GetNextVariableName — 75
       SetVariable — 75
   Miscellaneous Services — 77
       Reset System — 78
       Get Next High Monotonic Count — 79
       UpdateCapsule — 79
       QueryCapsuleCapabilities — 80
```

Chapter 6 - UEFI Console Services ---- 81 Simple Text Input Protocol — 83 Simple Text Input Ex Protocol — 86 Simple Text Output Protocol — 87 Remote Console Support — 89 Console Splitter — 92 Network Consoles — 93 Summary — 95 Chapter 7 - Different Types of Platforms ---- 97 Summary — 110 Chapter 8 - DXE Basics: Core, Dispatching, and Drivers — 111 DXE Core —— 112 Hand-Off Block (HOB) List — 114 DXE Architectural Protocols — 115 EFI System Table —— 117 EFI Boot Services Table — 118 EFI Runtime Services Table —— 119 DXE Services Table — 119 Global Coherency Domain Services --- 120 GCD Memory Resources — 120 GCD I/O Resources — 122 DXE Dispatcher — 123 The a priori File — 125 Dependency Grammar —— 125 DXE Drivers — 126 Boot Device Selection (BDS) Phase — 127 Console Devices — 128 Boot Devices — 129 Boot Services Terminate — 129 Summary —— **130** Chapter 9 - Some Common UEFI and PI Functions — 131 Architectural Protocol Examples — 132 CPU Architectural Protocol — 133 Real Time Clock Architectural Protocol — 135 Timer Architectural Protocol — 135 Reset Architectural Protocol — 136

Boot Device Selection Architectural Protocol — 137

Summary — 80

```
Variable Architectural Protocol — 138
       Watchdog Timer Architectural Protocol — 138
   PCI Protocols — 139
       PCI Host Bridge Resource Allocation Protocol — 139
       PCI Root Bridge I/O — 143
       PCI I/O — 145
   Block I/O --- 147
   Disk I/O — 149
   Simple File System — 150
       EFI File Protocol — 151
   Configuration Infrastructure — 152
   Using the Configuration Infrastructure — 153
   Driver Model Interactions - 154
   Provisioning the Platform — 155
   Summary — 156
Chapter 10 – Platform Security and Trust —— 157
   Trust Overview — 157
   Trusted Platform Module (TPM) and Measured Boot — 160
       What Is a Trusted Building Block (TBB)? — 163
       What Is the Point of Measurements? —— 168
   UEFI Secure Boot --- 169
       UEFI Executable Verification — 170
   UEFI Networking — 173
   UEFI User Identification (UID) — 176
   Hardware Evolution: SRTM-to-DRTM — 177
   Platform Manufacturer — 178
   Vulnerability Classification — 180
   Roots of Trust/Guards — 180
   Summary — 181
Chapter 11 – Boot Device Selection — 183
   Firmware Boot Manager — 185
       Related Definitions — 188
   Globally-Defined Variables - 188
   Default Behavior for Boot Option Variables — 191
   Boot Mechanisms — 191
       Boot via Simple File Protocol — 192
       Boot via LOAD_FILE Protocol —— 193
   Summary —— 194
```

```
Chapter 12 - Boot Flows --- 195
   Defined Boot Modes — 196
   Priority of Boot Paths --- 196
   Reset Boot Paths — 198
       Intel® Itanium® Processor Reset — 198
       Non-Power-On Resets — 199
   Normal Boot Paths — 199
       Basic G0-to-S0 and S0 Variation Boot Paths — 200
       S-State Boot Paths — 200
   Recovery Paths — 201
       Discovery — 201
       General Recovery Architecture — 202
   Special Boot Path Topics — 203
       Special Boot Paths — 203
       Special Intel Itanium® Architecture Boot Paths —— 203
       Intel Itanium® Architecture Access to the Boot Firmware Volume —— 203
   Architectural Boot Mode PPIs - 207
   Recovery — 207
       Discovery — 208
   Summary — 208
Chapter 13 – Pre-EFI Initialization (PEI) —— 209
   Scope — 209
   Rationale — 210
       Overview — 210
   Phase Prerequisites — 212
       Temporary RAM —— 212
       Boot Firmware Volume — 212
       Security Primitives —— 213
   Concepts —— 213
       PEI Foundation — 213
       Pre-EFI Initialization Modules (PEIMs) — 214
       PEI Services — 215
       PEIM-to-PEIM Interfaces (PPIs) — 215
       Simple Heap — 216
       Hand-Off Blocks (HOBs) - 216
   Operation —— 217
       Dependency Expressions — 218
       Verification/Authentication — 219
       PEIM Execution — 219
       Memory Discovery — 219
       Intel® Itanium® Processor MP Considerations — 220
```

Recovery —— 220
S3 Resume —— 221
The "Terse Executable" and Cache-as-RAM —— 222
Example System —— 223
Summary — 226
Chapter 14 – Putting It All Together—Firmware Emulation —— 227
Virtual Platform —— 228
Emulation Firmware Phases —— 230
Hardware Pass-Through —— 235
Summary —— 236
Chapter 15 – Reducing Platform Boot Times —— 237
Proof of Concept —— 240
Marketing Requirements —— 241
What Are the Design Goals? —— 242
Platform Policy —— 242
What Are the Supported OS Targets? — 243
Do We Have to Support Legacy Operating Systems? —— 243
Do We Have to Support Legacy Option ROMs?——243
Are We Required to Display an OEM Splash Screen? —— 244
What Type of Boot Media Is Supported?—— 244
What Is the BIOS Recovery/Update Strategy? —— 245
When Processing Things Early —— 245
Is There a Need for Pre-OS User Interaction? —— 246
Additional Details —— 246
Adjusting the BIOS to Avoid Unnecessary Drivers — 246
What Is the Boot Target? —— 247
Steps Taken in a Normal and Optimized Boot — 247
Loading a Boot Target — 248
Organizing the Flash Effectively — 249
Minimize the Files Needed —— 249
Summary — 250
The Primary Adjustments — 250
Suggested Next Steps —— 251
Chapter 16 – Embedded Boot Solution —— 253
CE Device Landscape —— 253
CE Device Boot Challenges —— 254
In-Vehicle Infotainment —— 256
Other Embedded Platforms —— 257
Generic Requirements —— 258

```
Boot Strategies — 259
   Power Management — 261
   Boot Storage Devices — 261
   Security — 263
   Manageability — 267
   Summary — 268
Chapter 17 - Manageability - 269
   Overall Management Framework — 269
       Dynamic In-Band — 271
       Out-of-Band — 271
       Distributed Management Task Force (DMTF) --- 271
   UEFI Error Format Standardization --- 272
       UEFI Error Format Overview — 276
       Error Record Types — 276
   Windows Hardware Error Architecture and the Role of UEFI — 277
   Technology Intercepts: UEFI, IPMI, Intel® AMT, WS-MAN — 281
       Intelligent Platform Management Interface (IPMI) — 281
       Intel® Active Management Technology (Intel AMT) — 283
       Web Services Management Protocol (WS-MAN) - 285
       Other Industry Initiatives — 285
   The UEFI/IPMI/Intel® AMT/WS-MAN Bridge — 286
       IPMI Error Records to UEFI --- 287
       UEFI Error Records to IPMI — 287
       Intel® AMT and IPMI --- 287
       Future Work — 288
   Configuration Namespace — 288
       Namespace Entries — 292
   Summary — 293
Appendix A – Data Types — 295
Appendix B - Status Codes - 297
Index — 301
```