

Housekeeping

Data for end of class (copy when needed):

```
1 library(readr)
2 birthwt <- read.csv("https://raw.githubusercontent.com/midd-stat201-fall2024/midd-stat201-fall2024.gi</pre>
```

- Office hours changed this week:
 - Friday: cancelled, moved to next week before midterm
- Homework 8 due tonight
- Office hours next week:
 - Monday 2:00-4:00pm
 - Tuesday: 11am-12:00pm, 4:00-5:00pm

Simulation-based HT for slope

Recall our hypotheses for the slope: $H_0: \beta_1 = 0$ versus $H_A: \beta_1 \neq 0$

How might we use simulation to test these hypotheses? (i.e. how can we simulate "null world"?)

- Under H_0 , there is no relationship between x and y, so we can shuffle/permute/break up the (x_i, y_i) under H_0
 - i.e. there is no special correspondence between x_i and y_i

Randomization test (demonstration)

Here's how it would look like using cards. Repeat the following B times:

- 1. Write down all x_1, \ldots, x_n values and all y_1, \ldots, y_n values on cards.
- 2. Shuffle the response variable cards to get $y_1^{shuff}, \dots, y_n^{shuff}$
- 3. Deal out the shuffled responses to pair with an explanatory: $(x_1, y_1^{shuff}), \dots, (x_n, y_n^{shuff})$
- 4. Fit linear regression model to these shuffled data and record b_1
- Convince yourself this corresponds to $H_0: \beta_1 = 0!$
- We are *not* sampling with replacement

evals

Let's return to our evals data and model: score = $\beta_0 + \beta_1$ bty_avg + ϵ

First six rows of original data: First six rows of one iteration of *shuffled data*:

score_shuff

4.5

3.9

3.7

3.8

4.7

4.6

course_id	bty_avg	score		course_id	bty_avg	score
1	5	4.7		1	5	4.7
2	5	4.1		2	5	4.1
3	5	3.9		3	5	3.9
4	5	4.8		4	5	4.8
5	3	4.6		5	3	4.6
6	3	4.3	•	6	3	4.3

Your turn!!

score =
$$\beta_0 + \beta_1$$
 bty_avg + ϵ

In groups, obtain the null distribution for this H_0 via simulation and visualize it using ggplot with informative title and axis labels. (You could be expected to do something like this for your midterm...)

- Suggestion: in a relevant place in your code, use the data frame evals to create a new data frame called evals_null
 - evals_null should have a variable called score_shuffle that represents the shuffled scores

evals null distribution

 $H_0: \beta_1 = 0$ (there is no linear relationship between score and bty_avg)

 $H_A: \beta_1 > 0$ (there is a positive linear relationship between score and bty_avg)

1000 iterations

p-value

```
1 score_lm <- lm(score ~ bty_avg, data = evals)
2 tidy(score_lm)</pre>
```

term	estimate	std.error	statistic	p.value
(Intercept)	3.880338	0.0761430	50.961213	0.00e+00
bty_avg	0.066637	0.0162912	4.090382	5.08e-05

• Compare our observed fitted $b_{1,obs} = 0.067$ coefficient to null distribution:

- Recall: $H_A: \beta_1 > 0$
- p-value is calculated as $\frac{\text{number of simulated } b_1 > 0.067}{B} = 0$