

III SEMESTER B.TECH. (CCE/CSE/ICT) END SEMESTER EXAMINATIONS, JANUARY 2022

SUBJECT: ENGINEERING MATHEMATICS III [MAT 2155] REVISED CREDIT SYSTEM

PART B

Time: 1 Hour 15 Minutes Date: 27-01-2022 Max. Marks: 20

Instructions to Candidates:

❖ Answer **ALL** the questions.

Missing data may be suitably assumed.

1.	Let $(A, \lor, \land, \overline{\ })$ be a Boolean algebra, and $b \in L$. Show that if $a_1, a_2,, a_k$ are all those atoms of A such that $a_i \leq b$, $i = 1,, k$, then $b = a_1 \lor a_2 \lor \cdots \lor a_k$.	3
2.	Show that the number of partitions of n into exactly k parts equals the number of partitions of $n - k$ in which no part is larger than k .	3
3.	(i) Prove that in a group, every element has a unique inverse.(ii) If H is a subgroup of a finite group G, show that any two left cosets of H are either identical or disjoint.	3
4.	Show that a connected graph is bipartite if and only if it has no odd cycles.	3
5.	 (i) Demonstrate that r is a valid inference from the premises p → q, q → r, and p. (ii) Show that (∃x)M(x) follows logically from the premises (∀x)[H(x) → M(x)] and (∃x)H(x). 	4
6.	Using Dijkstra's algorithm, find the shortest paths from A to all the other vertices. A B B C D C D C D D D D D D D D	4

MAT-2155 Page 1 of 1