توری از درختها (Mesh of Trees)

Yd-MOT

- پردازندهی برگ $N \times N$
- درخت سطری (درخت سطر i ام یا (i,*)-tree ستون (درخت ستونی درخت ستون N (*,j)-tree ام یا j
- N(N-1) پردازنده ی غیر برگ (در مجموع N-1) پردازنده ی غیر برگ (در مجموع یردازنده)
 - در کل $N^{\mathsf{T}} \mathsf{T} N$ پردازندهullet
 - درجهی برگها و ریشهها ۲ و درجه گرههای داخلی ۳

- $\mathbf{f} \lg N$ قطر \mathbf{o}
- N پهنای دوبخشی برابر \bullet
- گاهی ریشه ی درخت سطر i و ستون i را در هم ادغام می کنند.
- ساختار بازگشتی. با حذف ریشهها، ۴ MOT هر کدام با $N/T \times N/T$ پردازنده ایجاد می شود.
- ه می توان با یک $N \times N \mod N$ گراف $K_{N \times N}$ را با درجهی کندی $N \times N \mod N$ شبیه سازی کرد.
- O(N) به دلیل پهنای دوبخشی O(N)، مرتبسازی N^{r} عدد در برگ در کم تر از از امکان یذیر نیست.
- مسیریابی هم مثل مرتبسازی است. اما در حالت خاص می توان مسیریابی را در $\log N$ مرحله انجام داد.

مسیریابی در $\log N$ مرحله

• اگر M < N بسته در ریشه ی در ختهای سطری بخواهند به ریشههای در ختهای ستونی بروند.

مرتب سازی N عدد در $\log N$ مرحلهی کلمهای

دو مرحله: محاسبهی مرتبهی عناصر و سپس مسیردهی.

- فرض می کنیم که ریشههای در ختهای سطر i ام و ستون i ام در هم ادغام شدهاند.
 - ریشهی i ام x_i را دارد.
 - به برگها ارسال می شود. $x_i \bullet$
 - در انتها پردازندهی $x_i(i,j)$ و $x_i(i,j)$ دریافت می کند.
 - این پردازنده اگر $x_i \leq x_i$ باشد صفر و گرنه ۱ را ذخیره می کند.
- اعداد ۱ در درختهای ستونی j با هم جمع می شوند و مرتبه ی x_j یا x_j به دست می آید.
 - ه به ریشهی r_i ام مسیردهی می شود. $x_i \bullet$

Ax = y یا $A[N \times N]$ ضرب ما تریس

$$y_i = \sum_{j=1}^{N} a_{ij} x_j$$

- در برگ (i,j) قرار دارد. a_{ij}
- j در ریشهی درخت ستونی $x_j ullet$
- به برگهای درخت (*,j) ارسال می شود. $x_j \bullet$
- در ریشهی سطر i محاسبه می شود. $\Sigma_{j=1}^{N} a_{ij} x_{j}$

Yd-MOT

- (i,j,k) برگ با شمارههای N imes N imes N •
- ((*,j,k) عدد درخت بعد ۱ (با درختهای N^{Υ} •
- ((i,*,k) عدد درخت بعد ۲ (با درختهای N^{Υ} •
- ((i,j,*) عدد درخت بعد ۳ (با درختهای N^{Υ} •
- و در مجموع $N^{\mathsf{T}}(\mathsf{T}N-\mathsf{I})$ پردازنده و $N^{\mathsf{T}}+\mathsf{T}N^{\mathsf{T}}(N-\mathsf{I})$ یال
 - $\exists \lg N$ قطر \bullet
 - $O(N^{\mathsf{T}})$ پهنای دوبخشی •

$\mathsf{C} = AB$ فرب دو ماتریس $\mathsf{C} = AB$

- (i,j,*) در ریشهی درخت a_{ij} در
- (*,j,k) ورودی: b_{jk} در ریشهی درخت \bullet
- برای برگهای درخت (i,j,*) ارسال می شود. a_{ij}
- برای برگهای درخت (*,j,k) ارسال می شود. b_{jk}
 - b_{jk} هم را دریافت می کند و هم (i,j,k) پس
- برروی درخت (i,*,k) محاسبه ی زیر انجام می شود:

$$c_{ik} = \sum_{j=1}^{N} a_{ij} b_{jk}$$

. خروجی c_{ik} در زمان $r \lg N$ در ریشهی درخت c_{ik} به دست می آید.

درخت فراگیر کمینه در ۲d-MOT

- lacktriangleورودی: یک گراف وزندار با N رأس
- ساختار: Td-MOT که ریشههای درختهای سطر i و ستون i در هم ادغام شده باشند (r_i) .
 - w(i,j) وزن آن یال یا (i,j)
 - L(i) یا L(i) یا L(i) را دارد. L(i) است اگر اeader t

كليات الكوريتم

الگوریتم بر اساس کروسکال است:

- هر رأس در یک مجموعه قرار دارد که MST آن نهایی و مشخص شده است. هر میر رأس در یک مجموعه قرار دارد که ابررأس یک رأس العموعه را یک «ابررأس» می گوییم. هر ابررأس یک رأس العماره العماره
 - بار تکرار کن $\lg N$ •
 - ۱) به صورت موازی همهی سبک ترین یالهای بین ابررأسها را پیدا کن.
 - کن. این زوج -ابررأسها را در هم ادغام کن و اطلاعات leader را هم بهروز کن.

مرحلهی ۱: به دست آور دن نزدیک ترین ابر رأس A(i) به هر رأس i و فاصله ی آن.

$$w(i,A(i)) = \min_{1 \le j \le N} \{w(i,j)|L(i) \ne L(j)\}$$

- را به همهی برگهایش می فرستد. L(i) و i r_i (۱
- برگ w(i,j)، برگ i و i i و i برگ u(i,j) برگ و اهد داشت.
- \min گرفته w(i,j) به بالا ارسال و عمل w(i,j) گرفته می شود.
 - در انتها در w(i,A(i)) و $L(A(i),A(i),r_i)$ به دست می آید.
 - این کار در $\log N$ مرحله انجام می شود.

j=L(j) مرحلهی ۲: محاسبهی P(j) برای هر

یعنی P(j) شماره ی leader نزدیک ترین ابررأس به ابررأس P(j) شماره ی L(A(i)) مقدار P(j)

$$W(j) = \min\{w(i, A(i)) | L(i) = L(j) = j\}$$

- را در خت سطر i پایین می فرستیم. w(i,A(i)) و L(A(i)) (۱
- برگ w(j,A(j)) و نیز w(i,A(i)) و نیز w(j,A(j)) و w(i,A(i)) را دریافت می کند.
 - ۳) در درخت ستونی مربوط به leader محاسبهی فوق انجام می شود.

مرحلهی ۳: ادغام ابررأسها

- گرافی بر روی ابررأسها با یالهای (j, P(j)) را در نظر بگیرید.
- این گراف جهت دار و بدون دور است (مگر برای دقیقاً یک دور به طول ۲
- اگر عمل $P(P(j)) \leftarrow P(P(j))$ را $\log N$ بار انجام دهیم، گراف به صورت ستاره در می آید.
 - مرکز ستاره همان leader جدید است.
- با عمل می شود، عمل ادغام کامل د. $L(i) \leftarrow P(L(j))$ که توسط همه ی رأس ها انجام می شود.

$Z(j) \leftarrow X(Y(j))$ نحوهی انجام

- به برگهای درخت سطر i ارسال می شود. X(i) (۱
- ۲) در همان زمان، درخت ستون Y(j) امین برگ را انتخاب می کند.
- ۳) برگ انتخابی X(Y(j)) را به ریشهی درخت ستون j ارسال می شود.

این کار در $\log N$ مرحله

مرحله ی ۳ در $\lg^{\mathsf{T}} N + O(\lg^{\mathsf{T}} N)$ و کل الگوریتم در $\lg^{\mathsf{T}} N + O(\lg^{\mathsf{T}} N)$ انجام می شود.