Лекции по дифференциальным уравнениям (читает Звягинцева Т. Е.)

Данный документ неидеальный, прошу сообщать о найденных недочетах в вк

Содержание

1.		дение
	1.1.	Литература
		Введение
	1.3.	Применение
2.	Дис	фферинциальные уравнения первого порядка
	2.1.	Введение
	2.1. 2.2.	фферинциальные уравнения первого порядка Введение Метод изоклин Теорема Пеано

1. Введение

1.1. Литература.

Учебник Бибиков "Обыкновенные дифферинциальные уравнения" Филиппов - задачи

"Методы интегрирования"

Каддинктон Ливенгсон "Обыкновенные дифференциальные уравнения" Яругии

1.2. Введение.

$$F(x,y,y',y'',...,y^{(n)})=0$$

 x - неизвестная переменная $y=y(x)$ - неизвестная функция лалалалалалала

Опр. Порядок уравнения - порядок старшей производной

Кроме того,
$$x = \frac{dx}{dt}$$
, $x^{(k)} = \frac{d^kx}{dt^k}$

1.3. Применение.

- 1) механика
- 2) электротехника
- 3) физика: $\dot{Q} = kQ$, $Q = Q_0 e^{kt}$
- 4) упр. движением
- 5) биология, экология

Пример из биологии:

х - хищник

у - жертва

$$\begin{cases} \dot{x} = -ax + cxy \\ \dot{y} = by - dxy \end{cases}$$

$$a, b, c, d > 0, \ x, y > 0$$

2. Дифферинциальные уравнения первого порядка

2.1. Введение.

$$(1) \ \dot{x} = X(t, x)$$

$$X(t,x) \in C(G)$$
, G - обл, $G \subset \mathbb{R}^2$

Но чаще будем $\in C(D)$ $D \subset \mathbb{R}^2$

<u>Опр.</u> Решение (1) - функция $x=\varphi(t),\,t\in < a,b>:\;\dot{\varphi}(t)\equiv X(t,\varphi(t))$ на <a,b>

- 1) $\forall t \in \langle a, b \rangle (t, \varphi(t)) \in D$
- 2) $\varphi(t)$ дифф на < a, b >
- 3) $\varphi(t)$ непр. дифф. (X- непр на D)

Опр. (2) Задача Коши - задача нахождения решения (1) $x = \varphi(t)$: $\varphi(t_0) = x_0$ $\overline{((t_0, x_0) \in D)}$

Геометрический смысл уравнения первого порядка - уравнение 1 задаёт поле направлений на множестве G

Опр. График решения называется интегральной кривой

В каждой точке задано направление, которое совпадает с касательной в этой точке к интегральной кривой

$$\dot{\varphi}(t)|_{t=t_0} = X(t_0, x_0)$$

2.2. Метод изоклин.

Опр. Изоклина - это кривая, на которой поле направлений постоянно

Уравнение изоклин X(t,x) = c, где c = const

Пример.

2.3. Теорема Пеано.

(1)
$$\dot{x} = X(t, x), X \in C(D)$$

 $D = \{(t, x) : |t - t_0| \leq ... \leq |x - x_0| \leq b\}$
(2) (t_0, x_0)

По теореме Вейерштрасса $\exists M: \ |X(t,x)| \leqslant M \ \forall (t,x) \in D \ h = min(a,\frac{b}{M})$

Теорема (Пеано).

 \exists реш. задачи К. (1), (2) $x=\varphi(t)$ опр-е на $[t_0-h,\ t_0+h]$ - отрезок Пеано

Οπр. $\{\varphi_k(t)\}_{k=1}^{\infty}, t \in [c, d]$

- 1) $\varphi_k(t)$ равномерно ограничена на [c,d], если $\exists N: |\varphi_k(t)| \leqslant N \ \forall k \in \mathbb{N}, \ \forall t \in [c,d]$
- 2) $\varphi_k(t)$ равностепенно непр на [c,d], если $\forall \mathcal{E} > 0 \; \exists \delta > 0 : \forall t_1, t_2 \in [c,d]$ $|t_1 t_2| < \delta \Rightarrow |\varphi_k(t_1) \varphi_k(t_2)| < \mathcal{E} \; \forall k \in \mathbb{N}$

Лемма (Арцелло - Асколи).

 $\varphi_k(t),\,k\in\mathbb{N},$ равномерно огр. и равностепенно непр на $[c,d]\Rightarrow\exists$ подпосл $\varphi_{kj}(t):$ $\varphi_{kj}(t) \overset{[c,d]}{\underset{j\Rightarrow +\infty}{\Rightarrow +\infty}} \varphi(t)$