Program construction in C++ for Scientific Computing Teacher: Michael Hanke

Ilian Häggmark mail ilianh@kth.se Andreas Karlsson mail andreas.a.karlsson@ki.se

December 21, 2016

Project 4

Task 1 - Redesign Domain class

The Domain class is given a few new short methods to enable access to variables from the outside.

Task 2 - GFkt class

The GFkt class holds two important objects. A Domain object that describes the grid and a matrix object that contain function values of a functon fp on the grid. Apart from the basic structure with constructor/copy-constructor etc. the GFkt class contains methods to perform basic (point-wise) aritmetic operation on the matrix containing the function values. Finally the class have methods for calculating approximative discrete partial derivatives.

The first partial derivatives in x and y are calculated as.

$$\frac{\partial}{\partial x}u(x_i,y_j) = \frac{u(x_{i+1},y_j) - u(x_{i-1},y_j)}{x_{i+1} - x_{i-1}} \qquad \frac{\partial}{\partial y}u(x_i,y_j) = \frac{u(x_i,y_{j+1}) - u(x_i,y_{j-1})}{y_{j+1} - y_{j-1}}$$

These are central derivatives that yield good accuracy, but they cannot be applied to all borders (first and last column for x and firsts and last row for y). We therefore need one-sided derivatives to estimate the border derivatives.

$$\frac{\partial}{\partial x}u(x_i,y_j) = \frac{u(x_{i+1},y_j) - u(x_i,y_j)}{x_{i+1} - x_i} \qquad \frac{\partial}{\partial y}u(x_i,y_j) = \frac{u(x_i,y_{j+1}) - u(x_i,y_j)}{y_{j+1} - y_j}$$

This would be for the first column and first row respectively. The one-sided derivatives have lower accuracy compared to the central derivatives (see section 3). We therefore derive two a simple expression for a one-sides approximate derivative on a non equidistant grid with Talyor expansion.

$$u(x + h_1) = u(x) + u'(x) \cdot h_1 \frac{1}{2} u''(x) \cdot h_1^2 + \mathcal{O}(h^3)$$
$$u(x + h_2) = u(x) + u'(x) \cdot h_2 \frac{1}{2} u''(x) \cdot h_2^2 + \mathcal{O}(h^3)$$

Multiply first equation with h_2^2 and the second with $-h_1^2$. The sum is then

$$h_2^2 u(x+h_1) - h_1^2 u(x+h_2) = u(x)(h_2^2 - h_1^2) + u'(x)(h_1 h_2^2 - h_2 h_1^2) + \mathcal{O}(h^3)$$

We neglect the higher order terms and solve for u'(x)

$$u'(x) = \frac{-u(x)(h_2^2 - h_1^2) + h_2^2 u(x + h_1) - h_1^2 u(x + h_2)}{h_1 h_2^2 - h_2 h_1^2}$$

This approximation is marginally more complicated but gives much high accuracy.

For the Laplacian, Δ , we can use a similar approach. The laplacian of a function u(x,y) is simply $\frac{\partial^2}{\partial x^2}u(x,y)+\frac{\partial^2}{\partial y^2}u(x,y)$. The two second order derivatives can be calculated separately and then added together. Each second order derivative is calculated with a central difference.

$$\frac{\partial^2}{\partial x^2}u(x_i,y_j) = \frac{u_x(x_{i+1},y_j) - u_x(x_{i-1},y_j)}{x_{i+1} - x_{i-1}} \qquad \frac{\partial^2}{\partial y^2}u(x_i,y_j) = \frac{u_y(x_i,y_{j+1}) - u_y(x_i,y_{j-1})}{y_{j+1} - y_{j-1}}$$

where the only difference from the first order derivatives is that here the first order derivative is the input instead of the function. Also here we get the problem with border values and one-sided derivatives derived with Taylor expansion are used again.

Task 3 - Discrete differential operators

The function u(x,y) and its derivatives are shown below

$$\begin{split} u(x,y) &= \sin\left(\left(\frac{x}{10}\right)^2\right)\cos(x/10) + y \\ \frac{\partial}{\partial x}u(x,y) &= \frac{2}{100}x\cos\left(\left(\frac{x}{10}\right)^2\right)\cos\left(\frac{x}{10}\right) - \frac{1}{10}\sin\left(\left(\frac{x}{10}\right)^2\right)\sin\left(\frac{x}{10}\right) \\ \frac{\partial}{\partial y}u(x,y) &= \frac{\partial}{\partial y}y = 1 \\ \frac{\partial^2}{\partial x^2}u(x,y) &= \frac{2}{100}\cos\left(\left(\frac{x}{10}\right)^2\right)\cos\left(\frac{x}{10}\right) - \left(\frac{2}{100}x\right)^2\sin\left(\left(\frac{x}{10}\right)^2\right)\cos\left(\frac{x}{10}\right) \\ &- \frac{2}{100}\frac{1}{10}x\cos\left(\left(\frac{x}{10}\right)^2\right)\sin\left(\frac{x}{10}\right) - \frac{1}{10}\frac{2}{100}x\cos\left(\left(\frac{x}{10}\right)^2\right)\sin\left(\frac{x}{10}\right) \\ &- \frac{1}{100}\sin\left(\left(\frac{x}{10}\right)^2\right)\cos\left(\frac{x}{10}\right) \\ &- \frac{\partial^2}{\partial y^2}u(x,y) = 0 \\ \Delta u(x,y) &= \frac{\partial^2}{\partial x^2}u(x,y) + \frac{\partial^2}{\partial y^2}u(x,y) = \frac{\partial^2}{\partial x^2}u(x,y) \end{split}$$

The code below plot the algebraic expressions in Matlab. Figure 1 shows the output.

Figure 1: Plot of algebraic expressions: (a) x-component of u(x,y). (b) First partial derivative of u(x,y) in x. (c) Second partial derivative of u(x,y) in x.

With the approximative derivatives implemented in task 2 we can now plot the algebraic derivatives alongside the C++ approximations (Fig 2 and 3). The difference between the curves is shown in blue visualize the error. We not with no surprise that the approximatice derivatives have a good arrarement with the algebratic derivatigues in all places except the borders.

Figure 2: algebraic first order x-derivative (red), approximation (green), and error (blue).

Figure 3: algebraic second order x-derivative (red), approximation (green), and error (blue).