Pokročilé metody rozpoznávání řeči

Přednáška 2 Kepstrum a kepstrální příznaky

Parametrizace signálu

Cíl: reprezentovat signál redukovaným počtem dat vhodných pro rozpoznávání

Historický vývoj příznaků

- ~ 1960 energie, počet průchodů nulou (minimální výpoč. nároky)
- ~ 1970 spektrum a spektrální příznaky (možné díky FFT)
- ~ 1980 lineárně prediktivní koeficienty (LPC)
- ~ 1990 kepstrum a kepstrální příznaky (MFCC), delta příznaky
- ~ 2000 různé modifikace kepstrálních příznaků (PLP, RASTA), transformace příznakových vektorů
- ~ 2010 návrat ke spektr. příznakům (v souvislosti s DNN)
- ~ 2015 rozvoj DNN umožnil experimentovat přímo se vzorky (bez nutnosti příznaků)

Kepstrální příznaky patří dodnes k nejpoužívanějším v praxi.

Modely tvorby řeči

Řečové orgány

Mechanický model

Systémový model: zdroj - filtr

Systémový model

V modelu je řeč konvolucí zdrojového signálu a imp. odezvy systému

Co je důležitější pro rozpoznávání OBSAHU řeči?

- charakter zdroje závisí na výšce hlasu, na intonaci, ...
- nastavení systému (filtru) se mění v závislosti na hláskách

Jak odělit informaci o systému od informace o zdroji?

Je třeba provést dekonvoluci.

Kepstrum a jeho princip

Konvoluce v časové oblasti

x(t) = s(t) * h(t)

se ve spektru změní na součin

 $X(f) = S(f) \cdot H(f)$

po zlogaritmování na součet

 $\log X(f) = \log S(f) + \log H(f)$

po inverzní FFT

$$x'(t) = s'(t) + h'(t)$$

Prostor, ve kterém jsou definovány signály x'(t), s'(t) a h'(t) se nazývá

KEPSTRUM angl. Cepstrum

Názvosloví vzniklo přesmyčkami (1963)

Spectrum -> Cepstrum

Frequency -> Quefrency

Filter -> Lifter

Praktický význam kepstra

Konvoluce v časové oblasti

$$x(t) = s(t) * h(t)$$

se převede na součet v kepstru x'(t) = s'(t) + h'(t)

$$x'(t) = s'(t) + h'(t)$$

a pokud se obě složky s'(t) a h'(t) nacházejí v různých oblastech na kefrenční ose, dají se od sebe separovat.

U řeči toto platí, protože

periodické (hlasivkové) buzení se transformuje do oblasti vyšších kefrencí, zatímco informace o filtru se soustředí na nízkých kefrencích

a lze je tedy oddělit vhodným výřezem (oknem)

Ilustrace kepstra (1)

Ilustrace kepstra (2)

Reálné kepstrum

Při zjednodušeném výkladu jsme se nezabývali tím, že spektrum je definováno v <u>komplexní rovině,</u> logaritmus by tudíž také musel být <u>komplexní</u>, a komplexní by tudíž bylo i <u>kepstrum</u>.

Pro praxi je dobře použitelné **reálné výkonové kepstrum.**

Kroky při jeho výpočtu:

- 1. Signál v daném framu
- 2. Vynásobení hammingovým oknem
- 3. FFT
- 4. Modul FFT a kvadrát (výkon)
- 5. Logaritmus
- 6. IFFT
- 7. Vyříznutí nízkých kefrencí vynásobení vhodným oknem

Dvě metody výpočtu kepstra

1. LPC kepstrum

Přes výpočet lineárně predikčních koeficientů (LPC)

- je rychlejší na výpočet,
- snáze implementovatelné,
- využíváno zejména v 90. letech
- 2. MF kepstrum (MFCC, Mel-Frequency Cepstral Coefficients) Výpočet podle definice přes FFT, log a IFFT.
 - používá křivku lidského vnímání frekvencí (mel stupnici)
 - dává poněkud lepší výsledky při rozpoznávání,
 - implementace na dnešních procesorech již není problém

Melová stupnice frekvencí

Frekvence se standardně měří v jednotkách Hz.

Lidské ucho však vnímá zvukové frekvence poněkud odlišně

u vyšších frekvencí již není schopno tolik rozlišovat rozdíl.

Experimentálně stanovena křivka a převodní vztah:

$$m = 2595 \log_{10}(\frac{f}{700} + 1) = 1127 \log_e(\frac{f}{700} + 1)$$

Vznikla myšlenka, že i pro rozpoznávací systémy by bylo vhodné skutečné frekvence transformovat podle této křivky.

Výsledky ukázaly, že to funguje.

Podrobný popis výpočtu MFCC (1)

Uveden popis, který se standardně používá v mnoha ASR systémech (včetně našich na TUL), a který je standardně k dispozici v HTK.

Níže budou uvedeny parametry a nastavení pro řeč vzorkovanou na 16 kHz.

1. Krok – Vyříznutí jednoho framu signálu

Délka framu 25 ms – 400 vzorků

Posun framu 10 ms – 160 vzorků

2. Krok – aplikace preemfázového filtru

Signál ve framu projde HP filtrem y(n) = x(n) - 0.97 x(n-1)Přínosy:

- a) posíleny vyšší frekvence (jsou zeslabeny cestou k mikrofonu)
- b) dynamicky potlačena ss složka vznikající na zvukových kartách

Podrobný popis výpočtu MFCC (2)

3. Krok – Aplikace Hammingova okna

Na frame se 400 vzorky je aplikováno H. okno o stejné délce

4. Krok – Výpočet FFT

400 vzorků se doplní nulami na 512 a je proveden klasický výpočet 512-bodové FFT

5. Krok – Výpočet spektrálního výkonu

Pro prvních 256 hodnot diskrétního spektra se určí vždy nejprve modul (absolutní hodnota) a pak její kvadrát (výkon).

Podrobný popis výpočtu MFCC (3)

6. Krok – Rozdělení spektrálního výkonu do pásem

Zde se využije melová stupnice a na ní se pomocí trojúhelníkových oken definují (částečně se překrývající) pásma.

Výkony jednotlivých složek FFT se vždy vynásobí příslušným koeficientem okna a uvnitř okna se sečtou. Tak dostaneme výkony v jednotlivých pásmech.

Standardní počet pásem: 24

Podrobný popis výpočtu MFCC (4)

7. Krok – Logaritmus

V každém pásmu se spočítá logaritmus výkonu v daném pásmu.

8. Krok – IFFT

Zpětná Fourierova transformace se v praxi provede pomocí takzvané DCT (Diskrétní kosinová transformace). Jejím výsledkem jsou už kepstrální koefficienty – nejčastěji se používá prvních 13 koeficientů.

9. Krok - Liftrace

Výsledné koeficienty se vynásobí okénkovou funkcí uvedenou níže. Vyrovnají se rozdíly v hodnotách rozptylech mezi koeficienty.

$$c'_{n} = \left(1 + \frac{L}{2} \sin \frac{\pi n}{L}\right) c_{n}$$

Podrobný popis výpočtu MFCC (5)

10. Výpočet Delta a Delta-delta koeficientů

Ke statickým MFCC koeficientům se dopočtou dynamické (1. a 2. derivace). Používaný vzorec pracuje většinou s okolím 2 framy na obě strany.

$$d_t = \frac{\sum_{\theta=1}^{\Theta} \theta(c_{t+\theta} - c_{t-\theta})}{2\sum_{\theta=1}^{\Theta} \theta^2}$$

11. Volitelný krok – Normalizace MFCC

Pokud se pracuje s nahrávkami z různého prostředí a získanými různými nahrávacími kanály, je vhodné provést operaci zvanou CMS nebo CMN (Cepstral Mean Subtraction/Normalization). Spočívá ve výpočtu středních hodnot všech koeficientů přes celou nahrávku a odečtení této hodnoty od koeficientů ve všech framech.

Tuto operaci nelze provádět on-line

(resp. pouze se zpožděním a tzv. plovoucím oknem zahrnujícím cca 1s předchozího signálu)

Parametrizace v HTK (1)

V HTK jsou uvedené kroky prováděny programy **HCopy**, **HWave**, **Hparm** s nastavením, které je buď implicitní nebo nastaveno v konfiguračním souboru.

Použití programu HCopy

HCopy -C Param.cfg src.wav tgt.mfc

Parametrizace v HTK (2)

Konfig. soubor pro parametrizaci – vytvoří příznaky typu MFCC_0_D_A

Param.cfg

TARGETFORMAT = HTK

TARGETKIND = MFCC_0_D_A

SOURCEFORMAT = WAVE

SOURCEKIND = WAVEFORM

ENORMALISE = F

WINDOWSIZE = 250000

TARGETRATE = 100000

PREEMCOEF = 0.97

USEHAMMING = T

NUMCEPS = 12

NUMCHANS = 24

CEPLIFTER = 22

DELTAWINDOW = 2

ACCWINDOW = 2

EXTENDFILENAMES = T

SAVEWITHCRC = F

USEPOWER = F

ADDDITHER = -0.0000306

NATURALREADORDER = T

NATURALWRITEORDER = T

NONUMESCAPES = T

Úkoly do příště

- 1. Nahrát si trénovací data (100 vět)
- 2. Vytvořit jejich fonetické přepisy (pomocí G2P z minula a ručního doladění).
- 3. Zparametrizovat všechny nahrávky

Příprava trénovacích dat pro fonémový akustický model

Požadavky:

- záznamy řeči v prostředí podobném cílové aplikaci
- nahrávky musí obsahovat všechny fonémy (nejlépe s odpovídající frekvencí)
- nahrávky musí pocházet od co největšího počtu osob
- nahrávky musí být textově a akusticky různorodé
- nahrávky by měly být foneticky jednoznačné (např. bez přeřeků)
- každá nahrávka musí být foneticky správně a přesně přepsána

Ke každé nahrávce musí existovat 4 soubory (jména bez diakritiky!)

1. zaznam001.wav (nahrávka)

- 2. zaznam001.txt (textový přepis) K obědu si dám pizzu a džůs.
- 3. zaznam001.phn (fonetický přepis) k objedu si dám picu a Čús -
- 4. zaznam001.lab (fonetický přepis ve formátu pro HTK)

Jak zvolit a nahrávat trénovací věty

- 1. Vytvořit seznam 100 vět.
- 2. Věty by měly být snadno vyslovitelné, nejlépe najednou (bez pauzy).
- 3. Ideální věty obsahují 10-15 slov, číslovky jsou rozepsány.
- 4. Věty lze brát z tisku či z jiných zdrojů (vyvarovat se cizích slov).
- 5. Ve větách by se měly objevit všechny fonémy, ty nejméně časté alespoň 3 x.
- 6. Texty převést do formátu CP1250!!! (ne UTF8, kvůli kompatibilitě)
- 7. K nahrávání použít vhodný software (Audacity), dobrý mikrofon.
- 8. Nastavit si 16 kHz a 16 bit, mono!!!
- 9. Vypnout případnou funkci typu Speech denoising (enhancement)
- 10. Větu si přečíst a pak v klidu nahrát. Zajistit, aby před řečí bylo cca 0,5 sekundy ticha, totéž za větou.
- 11. Uložit pod správným jménem *.wav a *.txt.
- 12. Vytvořit ke každé větě fonetický přepis pomocí vašeho G2P nebo ručně (pozor na "y", "ě", "ďi", "X")
- 13. Pozor též na spodobu "muž je" -> "muš je" ale "muž byl" -> "muž bil"

Přepis trénovacích dat (1)

Postup:

- 1. Máme <u>nahrávku</u> v souboru *.wav a k ní <u>textový přepis</u> v souboru *.txt
- 2. Pomocí přepisovacích pravidel (nejlépe s využitím programu G2P) vytvoříme nový soubor *.phn obsahující fonetický přepis nahrávky (včetně případného ticha na začátku, konci, případně uprostřed). Společnost Diamo byla založena devatenáctého listopadu -společnost_dïamo_bila_založena_devatenáctého_listopadu-(symbol "_" je použit pro usnadnění čtení)
- 3. Poslechem zkontrolujeme automaticky vytvořený přepis a opravíme případné chyby (u cizích slov, vliv spodoby na švu slov, apod.) či doplníme ticho a šumy -společnozd_dijamo_bila_založena_devatenáctého_listopadu-

Přepis trénovacích dat (2)

4. Ze souboru *.phn automaticky vytvoříme soubor *.lab (jedna hláska na jednom řádku) (trénovací program nedovoluje diakritiku, nutno použít angl. symboly – viz soubor alphabet48-CZ.abc)

0 0 si

0.0s

00p

0 0 o

001

00e

0 0 ch

0 0 n

0 0 o

00z

0 0 d

Převodní soubor alphabet48-CZ.abc

Obsahuje celou fonetickou abecedu (48 symbolů fonémů, ticha a hluků) v různém kódování.

Na každém řádku je: index hlásky, symbol v kódu CP1250, anglický symbol

0 a a

1 á aa

2 b b

3 c ts

4 C dz

5 č ch

6 Č dg

7 d d

8 ď dj

. . . .

40 - si

41 E swa

42 1 n1

43 2 n2

44 3 n3

45 4 n4

46 5 n5

47 0 n0

Symboly pro neřečové zvuky

Pokud pracujeme s nahrávkami, kde se vyskytuje nejen řeč a ticho, ale i další neřečové zvuky a ruchy, používáme k jejich anotaci tyto symboly:

Symbol	Typ hluku	Příklad, poznámka	HTK symbol
-	ticho		si
0	ráz	EU [0é0ú]	n0
1	klik	krátký zvuk	n1
2	ruch	delší slabší zvuk	n2
3	nádech		n3
4	hluk	delší silný zvuk, hudba,	n4
5	ehm	váhací zvuk	n5