Professor: Alceu André Badin Disciplina: Amplificadores Operacionais e Semicondutores

Exercícios - Lista I - Circuitos com diodos

1) Para cada circuito abaixo, determinar a forma da onda v_o , sabendo que a tensão v_i é um seno de 1kHz e 5V de pico. Qual é o valor máximo e mínimo de v_o ? Verifique por simulação. (considere os diodos ideiais)

2) Assuma que os diodos são ideias e determine os valores de I e V dos seguintes circuitos:

Res: (a) 2 mA, 0 V; (b) 0 mA, 5 V; (c) 0 mA, 5 V; (d) 2 mA, 0 V; (e) 3 mA, +3 V; (f) 4 mA, +1 V

Professor: Alceu André Badin

Disciplina: Amplificadores Operacionais e Semicondutores

3) Assuma que os diodos são ideias e determine os valores de I e V dos seguintes circuitos. Verifique por simulação.

4) Determine v_o de cada circuito da Figura abaixo, para o sinal v_i de entrada mostrado.

5) Determine v_o do circuito abaixo, para o sinal v_i de entrada mostrado.

Professor: Alceu André Badin

Disciplina: Amplificadores Operacionais e Semicondutores

6) Determine v_o do circuito da Figura abaixo, para o sinal vi de entrada mostrado.

7) Determine vo de cada circuito da Figura abaixo, para o sinal vi de entrada mostrado.

8) Projete um circuito para realizar a função indicada na figura abaixo:

9) Considere o circuito abaixo:

- a) Determine V_L , I_L , I_Z e I_R para R_L = 180 Ω .
- **b)** Repita o item (a), se $R_L = 470 \Omega$.
- c) Determine o valor de Rı que estabelece as condições de máxima potência para o diodo Zener.
- **d)** Determine o valor mínimo de $R\iota$ para garantir que o diodo Zener esteja em condução.
 - 10) Esboce v_o de cada circuito abaixo, para o sinal de entrada mostrado a seguir.

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS CURITIBA DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA

Professor: Alceu André Badin Disciplina: Amplificadores Operacionais e Semicondutores

11) Projete o circuito a seguir, para manter V_L em 12V para uma variação na carga (I_L) de 0 a 200 mA. (Ou seja, determine R_S e V_Z .) Determine $P_{Zm\acute{a}x}$ do diodo Zener.

12) Projete um circuito para realizar a função indicada na figura abaixo:

13) Determine a tensão v_o da figura abaixo, se a tensão no vi for senoidal de 10V (RMS), com enrolamento primário de 100 voltas e enrolamento secundário com 1000 voltas.

