

BAŞKENT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM-202 DEVRE TEORÍSÍ-2 LABORATUVARI

DENEY-3 SİNÜSOİDAL DEVRELERDE GÜÇ ANALİZİ ve MAKSİMUM GÜÇ TRANSFERİ

AMAÇ: Bu deneyde amaç; sinüsoidal devrelerde elemanlarının güç değerlerini hesaplamak ve bir yüke maksimum gücün transfer edilebilmesi için gerekli koşulu incelemektir.

KURAMSAL BİLGİ: Güç; voltaj ve akımın çarpımıdır. Sinüsoidal devrelerde güç; sinüsoidal bir akımla, sinüsoidal bir gerilimin (muhtemelen aralarında faz farkı olacaktır) çarpımıdır. Burada karşımıza iki farklı güç ifadesi çıkar: 1- Aktif (ortalama, gerçel) güç: P ve 2- Reaktif güç: Q (aşağıda verilmiştir).

Bobin ve kapasitörün empedanslarının kaynağın frekansıyla değiştiğini biliyorsunuz. Örnek olarak Şekil-1' deki devrede frekansla Z_L ' nin empedansının arttığını varsayalım. Bu durumda Z_L üzerindeki voltaj artarken, devreden geçen akım azalacaktır. Aynı DC devrelerde olduğu gibi empedansın bir değerinde elemanın gücü maksimum olur ve kaynaktan yüke maksimum ortalama güç aktarımı gerçekleşir.

Şekil-1

Güç; akım ve gerilimin hem maksimum (tepe), hem de rms (etkin) değerleri cinsinden ifade edilebilir.

$$\begin{split} P &= \ ^{1}\!\!/_{2} \ V_{m} \ I_{m} \cos \left(\theta_{v} - \theta_{I}\right) \ = \ V_{eff} \ I_{eff} \cos \left(\theta_{v} - \theta_{I}\right) \\ Q &= \ ^{1}\!\!/_{2} \ V_{m} \ I_{m} \sin \left(\theta_{v} - \theta_{I}\right) \ = \ V_{eff} \ I_{eff} \sin \left(\theta_{v} - \theta_{I}\right) \end{split}$$

ÖN ÇALIŞMA:

- 1. Aktif güç nedir? Neden bu ismi almıştır?
- 2. P ve Q güç değerlerini *empedans cinsinden* veren eşitlikleri yazınız. İdeal, kayıpsız kapasitör ve bobin için P ortalama gücün değeri nedir?
- 3. Şekil-3'teki devrede, Z_L'ye maksimum güç aktarılması için R_L ve C_L' nin alması gereken değerler ne olmalıdır? Hesaplayınız.
- 4. Evinizdeki cihazların (buzdolabı, çamaşır makinesi, televizyon, bilgisayar gibi) güç tüketim değerini ve bir saatte harcayacakları enerjiyi bulun.

DENEY:

1. Güç Ölçümü

Şekil-2 ile verilen devreyi kurun.

R ve C' den oluşan Za' nın ortalama gücünü Tablo-1' deki değerleri ölçerek hesaplayın.

$$L = 4.7 \text{ uH}$$
 / $C = 1 \text{ uF}$ / $R = 1 \text{ k}$ $Vs = 3 \text{ Vp}$

Şekil-2

Frekans	V_{Za}	$\mathbf{I}_{\mathbf{Za}}$	θ_{V} - θ_{I} (Derece)	P
150 Hz				
400 Hz				
1 kHz				

Tablo-1

2. Maksimum Güç Transferi

Şekil-3

$\mathbf{R}_{\mathbf{L}}$	$\mathbf{C}_{\mathbf{L}}$	$V_{L}(p)$	$I_L(mA)$	$\Theta_{ m V}$ - $\Theta_{ m I}$	P (mW)
91	1 nF				
91	3.2 nF				
91	4.7 nF				
150	3.2 nF				

Tablo-2

SONUÇLAR ve YORUM:

1. 2. Bölümde hangi direnç ve kapasitör değeri için ortalama güç maksimum çıktı? Neden? Yorumlayın.