Question 1a

$$F(ABCD) = AC'D + A'C + ABC + AB'C + A'C'D'$$

AB\CD	C'D'	C'D	CD	CD'
A'B'	1		1	1
A'B	1		1	1
AB	1		1	1
AB'	1		1	1

Question 1b

$$F(ABC) = (A' + C' + D')(A' + C')(C' + D')$$

$$F' = [(A' + C' + D')(A' + C')(C' + D')]'$$

$$F' = (A' + C' + D')' + (A' + C')' + (C' + D')'$$

$$F' = ACD + AC + CD$$

A\CD	C'D'	C'D	CD	CD'
A'	1	1	0	1
Α	1	1	0	0

F = C' + A'D'

Question 2. Build half adders (HA) using NOR gate; construct 4-bit adders using built HA.

Step 1. Build carry and sum circuits with NOR gates base on the following truth table.

X	Υ	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$C(x,y) = xy$$

x\y	у	y'
x'	<mark>0</mark>	<mark>0</mark>
x	0	1

Collect
$$0s = C' = x' + y'$$

 $(C')' = (x' + y')' = xy = (xy)'' = (x' + y')'$

Figure 1 Diagram of carry circuit

$$S(x,y) = x'y + xy'$$

x\y	у	y'
x'	0	<mark>0</mark>
х	0	1

Collect
$$0s = S' = x'y' + xy$$

$$(S')' = (x + y)(x' + y')$$

$$= ((x + y)(x' + y'))'' \text{ apply double negation}$$

$$= ((x + y)' + (x' + y')')'$$

Figure 2 Diagram for **sum** circuit

Step 2. Next construct half adder using C and S.

Figure 3 Diagram of half adder

Step 3. Construct full adder (FA) using on C and S and NOR gates were applicable. Design taken from lecture notes and modified to NOR gate only.

Step 4. Use FA as component and repeat 4 times to build a 4-bit adder.

Figure 4 diagram of 4bit adder

Note: logicism randomly refuse to give an output and rebuilding the exact same circuitry or restarting the program fixes the program. So I've included samples below.

Figure 5 demo of 1001+101

Figure 6 demo of 1+1011

Q3 Build 4-bit binary to gray code converter from 0 to 9 using NAND gates only.

	$Binary(i_3, i_2, i_1, i_0)$	O_3	O_2	O_1	O_0
0	0000	0	0	0	0
1	0001	0	0	0	1
2	0010	0	0	1	1
3	0011	0	0	1	0
4	0100	0	1	1	0
5	0101	0	1	1	1
6	0110	0	1	0	1
7	0111	0	1	0	0
8	1000	1	1	0	0
9	1001	1	1	0	1
10	1010	X	X	X	X
11	1011	X	X	X	X
12	1100	X	X	X	X
13	1101	X	X	X	X
14	1110	X	X	X	X
15	1111	X	X	X	X

$$\begin{aligned} O_3(i_3,i_2,i_1,i_0) &= wx'y'z' + wx'y'z \\ O_2(i_3,i_2,i_1,i_0) &= w'xy'z' + w'xyz' + w'xyz' + w'xyz + wx'y'z' + wx'y'z \\ O_1(i_3,i_2,i_1,i_0) &= w'x'yz' + w'x'yz + w'xy'z' + w'xy'z \\ O_0(i_3,i_2,i_1,i_0) &= w'x'y'z + w'x'yz' + w'xy'z + w'xyz' + wx'y'z \end{aligned}$$

wx\yz			\	/	
	0	0	0	0	
	0	0	0	0	х

w	Х	Х	Х	Х	
	1	1	х	х	
			Z		

Figure 7 k-map for i_3

$$O_3 = w$$

wx\yz			Y	/	
	0	0	0	0	
	<mark>1</mark>	<mark>1</mark>	<mark>1</mark>	<mark>1</mark>	V
	×	×	×	X	×
W	1	1	х	х	
		Z			

Figure 8 k-map for i_2

$$O_2 = w + x$$

wx\yz			У		
	0	0	1	1	
	1	1	0	0	V
	х	х	х	Х	Х
W	0	0	х	х	
		Z			

Figure 9 k-map for i_1

$$O_1 = xy' + x'y$$

wx\yz			у		
	0	1	0	1	
	0	1	0	1	v
	х	х	х	X	Х
W	0	1	Х	Х	
		Z			

Figure 10 k-map for i_0

 $O_0 = y'z + yz' \leftarrow \text{Boolean logic same as } O_1\text{, therefore will be reusing circuitry.}$

Figure 11 4bit to gray converter

Figure 12 gray converter demo 1

Figure 13 gray converter demo 2