

Discrete Mathematics

Dr. Han Huang

South China University of Technology

Boolean Algebra

Section 1.6

What is Boolean Algebra?

- A minor generalization of propositional logic.
 - In general, an algebra is any mathematical structure satisfying certain standard algebraic axioms.
 - Such as associative/commutative/transitive laws, etc.
 - General theorems that are proved about an algebra then apply to any structure satisfying these axioms.
- Boolean algebra just generalizes the rules of propositional logic to sets other than {T,F}.
 - E.g., to the set $\{0,1\}$ of base-2 digits, or the set $\{V_L, V_H\}$ of low and high voltage levels in a circuit.
- We will see that this algebraic perspective lends itself to the design of digital logic circuits.

Claude Shannon's Master's thesis!

我们可以把一个计算机看作一个代数系统。

设此计算机的字长是 32 位。有定点加、减、乘、除及逻辑加、逻辑乘等多种运算指令,则此代数系统的集合 S 是由 2³² 个二进制数组成。其运算就是上述的运算,而这些运算是封闭的,因此构成一个代数系统。

Boolean Algebra

Sections:

- § 1 Boolean Functions
- § 2 Representing Boolean Functions
- § 3 Logic Gates
- § 4 Minimization of Circuits

Boolean Functions

- Boolean complement, sum, product.
- Boolean expressions and functions.
- Boolean algebra identities.
- Duality.
- Abstract definition of a Boolean algebra.

Complement, Sum, Product

- Correspond to logical NOT, OR, and AND.
- ❖We will denote the two logic values as0:≡F and 1:≡T, instead of False and True.
 - Using numbers encourages algebraic thinking.
- New, more algebraic-looking notation for the most common Boolean operators:

$$\bar{x} :\equiv -x$$
 $x \cdot y :\equiv x \wedge y$ $x + y :\equiv x \vee y$

Precedence order \rightarrow

Boolean Functions

- $Let B = \{0, 1\}$, the set of Boolean values.
- **❖** For all $n \in \mathbb{Z}^+$, any function $f: B^n \to B$ is called a Boolean function of degree n.
- ❖There are 2²ⁿ (wow!) distinct Boolean functions of degree n.
 - B/c \exists 2ⁿ rows in truth table, w. 0 or 1 in each.

<u>Degree</u>	How many	<u>Degree</u>	How many
0	2	4	65,536
1	4	5	4,294,967,296
2	16	6	18,446,744,073,709,551,616.
3	256		

Boolean Expressions

- \diamondsuit Let $x_1, ..., x_n$ be *n* different Boolean variables.
 - n may be as large as desired.
- A Boolean expression (recursive definition) is a string of one of the following forms:
 - Base cases: $0, 1, x_1, ..., \text{ or } x_n$.
 - Recursive cases: E_1 , (E_1E_2) , or (E_1+E_2) , where E_1 and E_2 are Boolean expressions.
- A Boolean expression represents a Boolean function.
 - Furthermore, every Boolean function (of a given degree) can be represented by a Boolean expression.

© The McGraw-Hill Companies, Inc. all rights reserved.

Hypercube Representation

A Boolean function of degree *n* can be represented by an *n*-cube (hypercube) with the corresponding function value at each vertex.

Boolean equivalents, operations on Boolean expressions

- *Two Boolean expressions e_1 and e_2 that represent the exact same function f are called equivalent. We write $e_1 \Leftrightarrow e_2$, or just $e_1 = e_2$.
 - Implicitly, the two expressions have the same value for all values of the free variables appearing in e₁ and e₂.
- ❖ The operators ¯, +, and ⋅ can be extended from operating on expressions to operating on the functions that they represent, in the obvious way.

Some popular Boolean identities

Double complement:

$$X = X$$

Idempotent laws:

$$X + X = X$$
, $X \cdot X = X$

$$X \cdot X = X$$

Identity laws:

$$x + 0 = x$$
, $x \cdot 1 = x$

$$X \cdot \mathbf{1} = X$$

Domination laws:

$$x + 1 = 1,$$
 $x \cdot 0 = 0$

$$x \cdot 0 = 0$$

Commutative laws:

$$x + y = y + x$$
, $x \cdot y = y \cdot x$

Associative laws:

$$X + (y + z) = (X + y) + Z$$

$$X \cdot (y \cdot z) = (x \cdot y) \cdot z$$

Distributive laws:

$$X + y \cdot Z = (X + y) \cdot (X + Z)$$

$$x \cdot (y + z) = x \cdot y + x \cdot z \leftarrow \text{Not true}$$

De Morgan's laws: in ordinary

$$(x \cdot y) = x + y$$
, $(x + y)$ algebras.

Absorption laws:

$$X + X \cdot y = X$$
, $X \cdot (X + y) = X$

also, the Unit Property: x + x = 1 and Zero Property: $x \cdot x = 0$

Duality

- ❖The dual e^d of a Boolean expression e representing function f is obtained by exchanging + with ⋅, and 0 with 1 in e.
 - The function represented by e^d is denoted f^d.
- **Duality principle:** If $e_1 \Leftrightarrow e_2$ then $e_1^d \Leftrightarrow e_2^d$.
 - **Example:** The equivalence x(x+y) = x implies (and is implied by) x + xy = x.

Boolean Algebra, in the abstract

- ❖ A general Boolean algebra is any set B having elements 0, 1, two binary operators ∧, ∨, and a unary operator ¬ that satisfies the following laws:
 - Identity laws: $x \vee 0 = x$, $x \wedge 1 = x$
 - Complement laws: $x \lor \neg x = 1$, $x \land \neg x = 0$
 - Associative laws: $(x \lor y) \lor z = x \lor (y \lor z), (x \land y) \land z = x \land (y \land z)$
 - Commutative laws: $x \lor y = y \lor x$, $x \land y = y \land x$
 - Distributive laws: $x \lor (y \land z) = (x \lor y) \land (x \lor z),$ $x \land (y \lor z) = (x \land y) \lor (x \land z).$

Note that *B* may generally have other elements besides **0**, **1**, and we have not fully defined any of the operators!

More about Boolean algebras

- Any Boolean algebra can be proven to satisfy all the theorems of "ordinary" Boolean algebra!
- An example of another Boolean algebra:
 - For any set U, let $B = 2^U$, $0 = \emptyset$, 1 = U, $\vee = \cup$, $\wedge = \cap$, and $\neg = \overline{}$ (set complement).
 - Then, $(B,0,1,\land,\lor,\lnot)$ is a Boolean algebra!
- Boolean algebras can also be defined in terms of *lattices* (in chapter 7, though we skipped it).
 - A poset where every pair x,y has a lub and a glb.
 - A complemented, distributed lattice is a Boolean alg.

Representing Boolean Functions

- Sum-of-products Expansions
 - A.k.a. Disjunctive Normal Form (DNF)
- Product-of-sums Expansions
 - A.k.a. Conjunctive Normal Form (CNF)
- Functional Completeness
 - Minimal functionally complete sets of operators.

Sum-of-Products Expansions

- Theorem: Any Boolean function can be represented as a sum of products of variables and their complements.
 - **Proof:** By construction from the function's truth table. For each row that is 1, include a term in the sum that is a product representing the condition that the variables have the values given for that row.

Show an example on the board.

Literals, Minterms, DNF

- A literal is a Boolean variable or its complement.
- A minterm of Boolean variables $x_1, ..., x_n$ is a Boolean product of n literals $y_1, ..., y_n$, where y_i is either the literal x_i or its complement x_i .
 - Note that at most one minterm can have the value 1.
- *The disjunctive normal form (DNF) of a degree-n Boolean function f is the unique sum of minterms of the variables x_1, \ldots, x_n that represents f.
 - A.k.a. the sum-of-products expansion of f.

Conjunctive Normal Form

- A maxterm is a sum of literals.
- CNF is a product-of-maxterms representation.
- To find the CNF representation for f,
- \diamond take the DNF representation for complement $\neg f$,

$$\neg f = \sum_{i} \prod_{j} y_{i,j}$$

and then complement both sides & apply DeMorgan's laws to get:

$$f = \prod_{i} \sum_{j} \neg y_{i,j}$$

Can also get CNF more directly, using the 0 rows of the truth table.

Functional Completeness

- ❖ Since every Boolean function can be expressed in terms of ·,+,⁻, we say that the set of operators {·,+,⁻} is functionally complete.
- There are smaller sets of operators that are also functionally complete.
 - We can eliminate either or + using DeMorgan's law.
- ❖NAND | and NOR ↓ are also functionally complete, each by itself (as a singleton set).
 - E.g., $\neg x = x | x$, and xy = (x | y) | (x | y).

Reversible Boolean Logic

- ❖ A reversible Boolean function of degree n is a bijective function $f:B^n \leftrightarrow B^n$.
 - Also corresponds to a permutation of Bⁿ.
- ❖ Reversible unary and binary Boolean operators are bijective operators on B and B², respectively.
 - Unary $f:B \leftrightarrow B$, binary $f:B^2 \leftrightarrow B^2$.
 - It turns out that no set of reversible unary and binary Boolean operators is functionally complete!
 - However, there are many ternary reversible operators that are functionally complete, even as singletons.

A little Quantum Logic

- A quantum Boolean function is a bijective and linear function $f: \mathbb{C}^{2^n} \leftrightarrow \mathbb{C}^{2^n}$.
 - That is, it maps vectors of 2ⁿ complex numbers (one for each n-bit string of Boolean values) reversibly and linearly.
 - Any reversible Boolean function corresponds to a quantum Boolean function where a string in Bⁿ is represented by c=1 for that string, c=0 for all others.
- Any quantum Boolean function can be built out of quantum operators operating on just C and C².
 - Quantization removes the need for ternary gates!

Logic Gates

- Inverter, Or, And gate symbols.
- Multi-input gates.
- Logic circuits and examples.
- ❖Adders, "half," "full," and *n*-bit.

Logic Gate Symbols

- Inverter (logical NOT, Boolean complement).
- AND gate (Boolean product).
- OR gate (Boolean sum).
- XOR gate (exclusive-OR, sum mod 2).

Multi-input AND, OR, XOR

- Can extend these gates to arbitrarily many inputs.
- Two commonly seen drawing styles:
 - Note that the second style keeps the gate icon relatively small.

NAND, NOR, XNOR

- Just like the earlier icons, but with a small circle on the gate's output.
 - Denotes that output is complemented.
- The circles can also be placed on inputs.
 - Means, input is complemented before being used.

Buffer

What about an inverter symbol without a circle?

- This is called a buffer. It is the identity function.
- It serves no logical purpose, but...
- It represents an explicit delay in the circuit.
 - This is sometimes useful for timing purposes.
- All gates, when physically implemented, incur a non-zero delay between when their inputs are seen and when their outputs are ready.

© The McGraw-Hill Companies, Inc. all rights reserved.

© The McGraw-Hill Companies, Inc. all rights reserved.

Combinational Logic Circuits

- Note: The correct word to use here is "combinational," NOT "combinatorial!"
 - Many sloppy authors get this wrong.
- These are circuits composed of Boolean gates whose outputs depend only on their most recent inputs, not on earlier inputs.
 - Thus these circuits have no useful memory.
 - Their state persists while the inputs are constant, but is irreversibly lost when the input signals change.

Combinational Circuit Examples

- Draw a few examples on the board:
 - Majority voting circuit.
 - XOR using OR / AND / NOT.
 - 3-input XOR using OR / AND / NOT.
- Also, show some binary adders:
 - Half adder using OR/AND/NOT.
 - Full adder from half-adders.
 - Ripple-carry adders.

Minimizing Circuits

- Karnaugh Maps
- Don't care conditions
- The Quine-McCluskey Method

Goals of Circuit Minimization

- (1) Minimize the number of primitive Boolean logic gates needed to implement the circuit.
 - Ultimately, this also roughly minimizes the number of transistors, the chip area, and the cost.
 - Also roughly minimizes the energy expenditure
 - among traditional irreversible circuits.
 - This will be our focus.
- (2) It is also often useful to minimize the number of combinational stages or logical depth of the circuit.
 - This roughly minimizes the delay or latency through the circuit, the time between input and output.

Minimizing DNF Expressions

- Using DNF (or CNF) guarantees there is always some circuit that implements any desired Boolean function.
 - However, it may be far larger than needed!
- We would like to find the smallest sum-ofproducts expression that yields a given function.
 - This will yield a fairly small circuit.
 - However, circuits of other forms (not CNF or DNF) might be even smaller for complex functions.

	У	\overline{y}
x	xy	$x\overline{y}$
\bar{x}	$\bar{x}y$	$\bar{x}\bar{y}$

 $\begin{bmatrix} y & \overline{y} \\ 1 & \\ \overline{x} & 1 \end{bmatrix}$ (a)

(c)

	yz	y₹	ӯ̄z̄	-
x	xyz	хӯ	$x\bar{y}\bar{z}$	х у z
\bar{x}	$\bar{x}yz$	$\bar{x}y\bar{z}$	$\bar{x}\bar{y}\bar{z}$	$\bar{x}\bar{y}z$
	-	(a)	,

$$\overline{y}\overline{z} = x\overline{y}\overline{z} + \overline{x}\overline{y}\overline{z}$$
(a)

$$\bar{x}_Z = \bar{x}y_Z + \bar{x}\bar{y}_Z$$

(b)

$$\overline{z} = xy\overline{z} + x\overline{y}\overline{z} + \overline{x}y\overline{z} + \overline{x}\overline{y}\overline{z}$$

(c)

$$\bar{x} = \bar{x}yz + \bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z$$

(d)

$$1 = xyz + xy\overline{z} + x\overline{y}\overline{z} + x\overline{y}z + \overline{x}yz + \overline{x}y\overline{z} + \overline{x}\overline{y}\overline{z} + \overline{x}\overline{y}z$$

(e)

	yz	$y\overline{z}$	$\bar{y}\bar{z}$	$\bar{y}z$
wx	wxyz	wxyz	wxȳz̄	wx y z
$w\bar{x}$	wx̄yz	$w\bar{x}y\bar{z}$	wx̄yz̄	wx̄yz
$\bar{w}\bar{x}$	$\bar{w}\bar{x}yz$	$\bar{w}\bar{x}y\bar{z}$	w̄x̄ȳz̄.	$\bar{w}\bar{x}\bar{y}z$
$\bar{w}x$	w̄xyz.	$\overline{w}xy\overline{z}$	$\bar{w}x\bar{y}\bar{z}$	$\bar{w}x\bar{y}z$

(a)

 $\bar{w}xyz + \bar{w}x\bar{y}z$

(c)

$$\begin{split} \widetilde{w}\widetilde{x} &= \widetilde{w}\widetilde{x}yz + \widetilde{w}\widetilde{x}y\overline{z} + \\ \widetilde{w}\widetilde{x}\widetilde{y}\overline{z} + \widetilde{w}\widetilde{x}\widetilde{y}z \end{split}$$

(b)

$$\begin{split} \overline{z} &= wxy\overline{z} + wx\overline{y}\overline{z} + w\overline{x}y\overline{z} + \\ w\overline{x}\overline{y}\overline{z} + \overline{w}\overline{x}y\overline{z} + \overline{w}x\overline{y}\overline{z} + \overline{w}xy\overline{z} + \overline{w}x\overline{y}\overline{z} \end{split}$$

	yz	ȳz̄	$\bar{y}\bar{z}$	$\bar{y}z$		yz	$y\overline{z}$	$\bar{y}\bar{z}$	$\bar{y}z$		yz	ȳz̄	$\bar{y}\bar{z}$	$\bar{y}z$
wx	1	1	1		wx			1	2	wx		1	1	
wx	1		1	1)	$w\bar{x}$	1	1	1		$w\bar{x}$	1	1	1	
wx	1	1)			$\overline{w}\overline{x}$		1	1		$\overline{w}\overline{x}$		1	1	
ŵχ				1	$\bar{w}x$			1	, -:	$\bar{w}x$	1	1	1	1)
53		(:	a)		an (S		(t)	93	7A. S		(c)	

TABLE 1					
x	y	F(x, y)			
1	1	0			
1	0	1			
0	1	0			
0	0	0			

TABLE 2

х	у	z	хy	\overline{z}	$F(x,y,z)=xy+\overline{z}$
1	1	1	1	0	1
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	1
0	1	1	0	0	0
0	1	0	0	1	1
0	0	1	0	0	0
0	0	0	0	1	1

TABLE 3 The Boolean Functions of Degree Two. F_1 F_3 F_4 F_{10} F_{11} F_{13} F_{14} F_{15} F_8 F_{12} F_2 F_5 F_6 F_7 F_{16} F_9 x y

TABLE 4 The Number of Boolean Functions of Degree *n*.

Degree	Number		
1	4		
2	16		
3	256		
4	65,536		
5	4,294,967,296		
6	18,446,744,073,709,551,616		

TABLE 5 Boolean Identities.

Identity	Nam e
$\overline{\overline{x}} = x$	Law of the double complement
$ \begin{aligned} x + x &= x \\ x \cdot x &= x \end{aligned} $	Idempotent laws
$x + 0 = x$ $x \cdot 1 = x$	Identity laws
$x + 1 = 1$ $x \cdot 0 = 0$	Domination laws
x + y = y + x $xy = yx$	Commutative laws
x + (y + z) = (x + y) + z $x(yz) = (xy)x$	Associative laws
x + yz = (x + y)(x + z) $x(y + z) = xy + xz$	Distributive laws
$ \overline{(xy)} = \overline{x} + \overline{y} \overline{(x+y)} = \overline{x} \overline{y} $	De Morgan slaws
x + xy = x $x(x + y) = x$	Absorption laws
$x + \overline{x} = 1$	Unit property
$x\overline{x} = 0$	Zero property

TABLE 6 Verifying One of the Distributive Laws.

x	y	z	y+z	xy	xz	x(y+z)	xy + xz
1	1	1	1	1	1	1	1
1	1	0	1	1	0	1	1
1	0	1	1	0	1	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

TABLE 1						
x	y	z	F	G		
1	1	1	0	0		
1	1	0	0	1		
1	0	1	1	0		
1	0	0	0	0		
0	1	1	0	0		
0	1	0	0	1		
0	0	1	0	0		
0	0	0	0	0		

	TO		-
TA	ĸ	10	•

x	y	z	x + y	\overline{z}	$(x+y)\overline{z}$
1	1	1	1	0	0
1	1	0	1	1	1
1	0	1	1	0	0
1	0	0	1	1	1
0	1	1	1	0	0
0	1	0	1	1	1
0	0	1	0	0	0
0	0	0	0	1	0

TABLE 1				
x	y	F(x, y)		
1	1	1		
1	0	0		
0	1	0		
0	0	1		

TABLE 2					
x	y	z	F(x, y, z)		
1	1	1	1		
1	1	0	0		
1	0	1	0		
1	0	0	1		
0	1	1	0		
0	1	0	1		
0	0	1	1		
0	0	0	0		

TABLE 3 Input and Outpu tfor the Half Adder.

Inj	put	Output		
x	у	S	c	
1	1	0	1	
1	0	1	0	
0	1	1	0	
0	0	0	0	

Logo

TABLE 4 Input and Outpu tfor the Full Adder.

1	npu	ıt	Output		
x	x y		s	c_{i+1}	
1	1	1	1	1	
1	1	0	0	1	
1	0	1	0	1	
1	0	0	1	0	
0	1	1	0	1	
0	1	0	1	0	
0	0	1	1	0	
0	0	0	0	0	

TABLE 1

Digi t	w	x	y	z	F
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1

Logo

-	-	-	-	-
TA			100	

Minterm	Bit String	Number of 1s
xyz	111	3
$x\overline{y}z$ $\overline{x}yz$	101 011	2 2
$\overline{x} \overline{y}z$	001	1
$\overline{x}\overline{y}\overline{z}$	000	0

TAB	TABLE 3									
				Step 1			Step 2			
	Term	Bit String		Term	String		Term	String		
1	xyz	111	(1,2)	хz	1-1	(1,2,3,4)	z	1		
2	$x\overline{y}z$	101	(1,3)	yz	-11					
3	$\overline{x}yz$	011	(2,4)	$\overline{y}z$	-01					
4	$\overline{x} \overline{y}z$	001	(3,4)	$\overline{x}z$	0-1					
5	$\overline{x} \overline{y} \overline{z}$	000	(4,5)	$\overline{x} \overline{y}$	00 –					

TABLE 4								
	xyz	$x\overline{y}z$	$\overline{x}yz$	$\overline{x}\overline{y}z$	$\overline{x}\overline{y}\overline{z}$			
Z	X	X	X	X				
$\overline{x}\overline{y}$				X	X			

TABLE 5

Term	Bit String	Number of 1s
$wxy\overline{z}$	1110	3
$w\overline{x}yz$	1011	3
$\overline{w}xyz$	0111	3
$w\overline{x}y\overline{z}$	1010	2
$\overline{w}x\overline{y}z$	0101	2
$\overline{w} \overline{x} yz$	0011	2
$\overline{w}\overline{x}\overline{y}z$	0001	1

TAB	TABLE 6									
				Step 1			Step 2			
	Term	Bit String		Term	String		Term	String		
1	$wxy\overline{z}$	1110	(1,4)	wy₹	1–10	(3,5,6,7)	$\overline{w}z$	0 – –1		
2	$w\overline{x}yz$	1011	(2,4)	$w\overline{x}y$	101 -					
3	$\overline{w}xyz$	0111	(2,6)	$\overline{x}yz$	-011					
4	$w\overline{x}y\overline{z}$	1010	(3,5)	$\overline{w}xz$	01-1					
5	$\overline{w}x\overline{y}z$	0101	(3,6)	$\overline{w}yz$	0–11					
6	$\overline{w} \overline{x} yz$	0011	(5,7)	$\overline{w} \overline{y} z$	001					
7	$\overline{w} \overline{x} \overline{y} z$	0001	(6,7)	$\overline{w} \overline{x} z$	00–1					

TABLE 7									
	wxy z	wxyz	<u>w</u> xyz	w x y z	$\overline{w}x\overline{y}z$	$\overline{w} \overline{x} y z$	$\overline{w}\overline{x}\overline{y}z$		
$\overline{w}z$			Х		Х	Х	X		
wy z	Х			Х					
$w\overline{x}y$		х		Х					
$\overline{x}yz$		Х				Х			

End of Section 1.6