Projekt 2

FACHBERICHT

Team 1

10.06.2015

Auftraggeber: Peter Niklaus

Betreuer: Pascal Buchschacher, Anita Gertiser

EXPERTEN: PETER NIKLAUS, RICHARD GUT

TEAM: ALEXANDER STOCKER

CLAUDIUS JÖRG DENIS STAMPFLI MARTIN MOSER RETO FREIVOGEL YOHANNES MEASHO

STUDIENGANG: ELEKTRO- UND INFORMATIONSTECHNIK

Inhaltsverzeichnis

1	Ein	Einleitung		
2	The	eoretische Grundlagen	4	
	2.1	Streckenanalyse	5	
	2.2	Phasengangmethode	6	
		2.2.1 Grundlagen	6	
		2.2.2 Ablauf der Phasengangmethode	9	
	2.3	Übertragungsfunktion der Regler	9	
	2.4	Dimensionierung mit Faustformeln	10	
	2.5	Schrittantwort der Regelung	11	
	2.6	Optimierungsmöglichkeiten	11	
3	Java	a Software	12	
	3.1	Klassendiagramm	12	
	3.2	Beschreibung der Software	12	
	3.3	Benutzerschnittstelle	12	
	3.4	Klassen	12	
		3.4.1 GUI Klassen	12	
		3.4.2 Model Klassen	12	
		3.4.3 View Klassen	12	
		3.4.4 Controller Klassen	12	
4	Sch	$\operatorname{lusswort}$	13	
5	Lite	eraturvezeichnis	11	

1 Einleitung

2 Theoretische Grundlagen

Eine Regelung besteht, wie in Abbildung 1 zu sehen ist, aus einem Regler und einer Regelstrecke. Beispiele einer Regelung sind Raumheizungen, Lötkolben oder Geschwindigkeitsregelungen.

Abbildung 1: Regelung bestehend aus Regler und Regelstrecke [1]

Quelle richtig einfügen (URL...)

Ist eine Regelstrecke gegeben, im Falle eines Lötkolbens wäre dies die Distanz vom Heizelement bis zur Lötspitze, so muss ein dazu passender Regler dimensioniert werden. Reglerdimensionierungen können über das Auswerten der Schrittantwort der Regelstrecke durchgeführt werden. Um die Schrittantwort zu erhalten wird das Verhalten der Strecke aufgrund eines Schrittes der Eingangsgrösse gemessen. Für die Berechnungen werden die aus der Schrittantwort der Strecke ausgelesenen Kenngrössen Verzugszeit (T_u) , Anstiegszeit (T_g) und Streckenbeiwert (K_s) verwendet. Zur Dimensionierung eines passenden Reglers existieren verschiedenste Methoden. Im Folgenden werden nun zwei Möglichkeiten genauer erläutert, wobei das Hauptaugenmerk auf der ersten Methode, der Phasengangmethode, liegt und die zweite, die Dimensionierung mittels gängigen Faustformeln, lediglich zum Vergleich durchgeführt wird.

Die Kurve in Abbildung 2 stellt die Schrittantwort einer Regelstrecke dar. Daran angelegt ist die Wendetangente, die benötigt wird, um die Verzugs- und die Anstiegszeit messen zu können.

Abbildung 2: Schrittantwort einer Regelstrecke [2]

Ziel ist es, PI- sowie PID-Regler zu dimensionieren, das heisst deren Kennwerte zu berechnen. Der PI-Regler hat die Kennwerte Nachstellzeit (T_n) und Reglerverstärkung (K_R) , beim PID-Regler kommt noch die Vorhaltezeit (T_v) hinzu.

Quellenang falsch (Grossund Kleinschreibung!!)

2.1 Streckenanalyse

Aus den gegebenen Kennwerten der Schrittantwort soll nun die Übertragungsfunktion der Strecke berechnet werden, das heisst die Strecke muss identifiziert werden. Die Streckenidentifikation, wird mittels der Sani-Methode durchgeführt. Aus dem Verhältnis von T_u und T_g werden die Ordnung der Strecke (n) und die dazugehörigen Zeitkonstanten $(T_1, T_2, ..., T_n)$ berechnet, die benötigt werden, um die Übertragungsfunktion der Regelstrecke darzustellen. Die Übertragungsfunktion der Strecke ist gemäss Formel 1 definiert: [2]

$$G_S(s) = \frac{K_S}{(1 + sT_1)(1 + sT_2)...(1 + sT_n)}$$
(1)

2.2 Phasengangmethode

Bei der Phasengangmethode handelt es sich eigentlich um eine grafische Dimensionierungsmethode, welche früher noch von Hand mit logarithmischem Papier durchgeführt wurde. Anstelle der grafischen Dimensionierung wird die Methode in diesem Fall komplett rechnerisch gelöst. Um die Methode zu verstehen wird ein theoretisches Grundwissen benötigt, welches in folgenden Unterkapiteln erklärt wird.

2.2.1 Grundlagen

Durch Ersetzen von s durch $j\omega$ in der Übertragungsfunktion der Strecke erhält man den Frequenzgang. Damit die Phasengangmethode angewendet werden kann, wird der Amplitudensowie der Phasengang der Strecke benötigt (Formeln 2, 3 und 4).

$$A_S(\omega) = abs(G_S(j\omega)) \tag{2}$$

$$\varphi_S(\omega) = arg(G_S(j\omega)) \tag{3}$$

$$\varphi_S(\omega) = -\arctan(\omega T_1) - \arctan(\omega T_2) \dots - \arctan(\omega T_n) \tag{4}$$

Die Zeitkonstanten des zu dimensionierenden Reglers stehen in direktem Zusammenhang mit dessen Amplitudengang. In den Abbildungen 3 und 4 sind die Amplitudengange eines PI- und eines PID-Reglers dargestellt, wobei die x-Achsen logarithmisch skaliert sind. Wie die Kreisfrequenzen an den Knickstellen mit den Reglerparametern zusammenhängen sollen, ist in Tabelle 1 ersichtlich.

Abbildung 3: Amplitudengang PI-Regler $\mathrm{Amp}(\omega)$ (log. Darstellung) [3]

Quelle einfügen

Abbildung 4: Amplitudengang PID-Regler Amp (ω) (log. Darstellung) [3]

PI-Regler	PID-Regler		
$\omega_{PI} = \frac{1}{T_n}$	$\omega_{nk} = \frac{1}{T_{nk}} = \beta * \omega_{PID}$	$\omega_{vk} = \frac{1}{T_{vk}} = \frac{\omega_{PID}}{\beta}$	

Tabelle 1: Amplitudengänge Regler und Zusammenhänge mit Knickkreisfrequenzen

Diese Knickkreisfrequenzen (ω_{PI} in Abb. 3 und ω_{PID} ind Abb. 4) werden mithilfe des Phasengangs der Strecke berechnet. Je nachdem welcher Reglertyp dimensioniert werden soll, müssen andere Punkte im Phasengang gesucht werden (Tabelle 2).

Regler	${f gler}$ Phasengang der Strecke $arphi_s$ Knickkreisfreque	
PI	$-\frac{\pi}{2} = -90^{\circ}$	$\omega_{PI} = \frac{1}{T_n}$
PID	$-\frac{3\pi}{4} = -135^{\circ}$	$\omega_{PID} = \frac{1}{\sqrt{T_{nk}T_{vk}}}$

Tabelle 2: Gesuchte Punkte im Phasengang je nach Regler

Der PI-Regler kann anhand dieser Dimensionierungskriterien bereits dimensioniert werden. Beim PID-Regler muss allerdings noch ein Parameter mehr bestimmt werden. Es handelt sich um den Faktor β welcher benötigt wird um die Knickkreisfrequenzen des PID-Reglers berechnen zu können. Dieser Faktor β hängt mit der Tangentensteigung des Phasengangs der offenen Regelung im Punkt -135° zusammen.

Ein Dimensionierungskriterium der Phasengangmethode lautet, dass die Steigung des Phasengangs der gesamten, offenen Regelung bei der Knickkreisfrequenz $\frac{-0.5}{\omega_{PID}}$ betragen soll. Dies hat damit zu tun, dass eine Steigung von -20dB/Dekade angestrebt wird. Die genaue Herleitung von β befindet sich im Anhang. Es gilt die folgende Beziehung:

$$\frac{2\beta}{1+\beta^2} + \omega_{PID} \frac{d\varphi_{Strecke(\omega_{PID})}}{d\omega} = -0.5 \tag{5}$$

Da der Phasengang der Strecke und somit dessen Ableitung gegeben ist, kann durch Auflösen nach β nun auch dieser Parameter ermittelt werden. Ergibt sich ein Wert grösser als eins oder imaginär, so wird β als eins angenommen.

Die Verstärkung des Reglers wird mit Hilfe des Phasenrands bestimmt. Der Phasenrand ist die Differenz der Streckenphase zu -180° . Bei unterschiedlichem Phasenrand ergeben sich unterschiedliche Verstärkungsfaktoren, was auch auf das Überschwingen des Reglers Einfluss hat. Tabelle 3 zeigt den Zusammenhang zwischen dem gewählten Phasenrand und dem daraus resultierenden Überschwingen der Regelung.

Phasenrand φ_R	Streckenphase φ_S	Überschwingen	
45°	-135°	23%	
51.8°	-128.5°	16.3%	
65.5°	-114.6°	4.6%	
76.3°	-103.7°	0%	

Tabelle 3: Zusammenhang Phasenrand und Überschwingen

Zur Berechnung der Verstärkung werden nun die Amplitudengänge der Strecke, sowie des Reglers benötigt. Dazu wird im Phasengang der offenen Regelung φ_S der Phasenrand abgetragen. Dies liefert die Kreisfrequenz ω_D . Die beiden Amplituden bei der Kreisfrequenz ω_D , werden miteinander multipliziert. Gemäss Phasengangmethode soll die Verstärkung an dieser Stelle eins sein. Dies führt zur Formel 6. $Go(\omega_D)$ entspricht dem Amplitudengang der offenen Regelung an der Stelle ω_D .

$$K_R = \frac{1}{|Go(\omega_D)|} \tag{6}$$

2.2.2 Ablauf der Phasengangmethode

Die Phasengangmethode der Strecke φ_S wird nach dem folgenden Ablauf durchgeführt. Die Punkte 2. und 3. werden nur für PID-Regler benötigt. Eine numerische Beispielrechnung für einen PI-Regler ist im Anhang angefügt.

- 1. Im Phasengang der Strecke φ_S werden die Kreisfrequenzen in bestimmten Punkten gesucht.
- 2. Der Faktor β wird bestimmt.
- 3. Mithilfe von β werden die Zeiten T_{nk} und T_{vk} ermittelt.
- 4. Der Phasengang der offenen Regelung φ_{go} wird berechnet (Phasengang Strecke + Phasengang Regler)
- 5. Die Kreisfrequenz ω_D beim gewählten Phasenrand wird berechnet.
- 6. Die Amplitudengänge der Strecke sowie des Reglers bei ω_D werden miteinander multipliziert. Damit wird die Reglerverstärkung K_R festgelegt.

Besondere Vorsicht ist bei den erhaltenen Kenngrössen des dimensionierten Reglers geboten. Es wird zwischen Regler- und Bodekonform unterschieden. Bodekonform bedeutet, dass die Parameter kaskadiert sind und die logarithmische Rechnung somit vereinfacht wird. Standardmässig wird in der Fachliteratur meist reglerkonform gerechnet. Die Parameter des PI-Reglers sind reglerkonform und können somit direkt weiterverwendet werden. Die Parameter des PID-Reglers, welche wir bei der Dimensionierung mittels Phasengangmethode erhalten, sind bodekonform. Sie können jedoch in die reglerkonforme Darstellung umgerechnet werden. Für die Umrechnung wurden die Formeln 7, 8 und 9 für PID-Regler hergeleitet (siehe Anhang): [3]

Quelle einfügen

$$K_R = K_{rk} \left(1 + \frac{T_{vk}}{T_{nk}} - \frac{T_p}{T_{nk}} \right) \tag{7}$$

$$T_n = T_{nk} + T_{vk} - T_p \tag{8}$$

$$T_v = \frac{T_{nk}T_{vk}}{T_{nk} + T_{vk} - T_p} - T_p \tag{9}$$

Tp steht für die parasitäre Zeitkonstante. Diese wird benötigt, da ein idealer PID-Regler in der Praxis nicht umsetzbar ist. Der Index k in der bodekonformen Darstellung steht für Kaskadierung.

2.3 Übertragungsfunktion der Regler

Um schlussendlich die Schrittantwort der geschlossenen Regelung berechnen zu können, wird die Übertragungsfunktion des dimensionierten Reglers benötigt. Diese lässt sich mit den aus der Phasengangmethode erhaltenen Parametern aufstellen (Tabelle 4).

Beschreibung	Darstellung
PI-Regler bodekonform	$G_R(s) = K_R \frac{(1+sT_n)}{sT_n}$
PI-Regler reglerkonform	$G_R(s) = K_R \left(1 + \frac{1}{sT_n} \right)$
PID-Regler bodekonform	$G_R(s) = K_{rk} \frac{(1+sT_{nk})(1+sT_{vk})}{sT_{nk}(1+sT_p)}$
PID-Regler reglerkonform	$G_R(s) = K_R \left(1 + \frac{1}{sT_n} + \frac{sT_v}{1 + sT_p} \right)$

Tabelle 4: Übertragungsfunktionen Regler [4]

2.4 Dimensionierung mit Faustformeln

Die Dimensionierung mittels Faustformeln wird durchgeführt, um die Dimensionierungsresultate der Phasengangmethode am Schluss zu vergleichen und auszuwerten. Es gibt etliche verschiedene Faustformeln von unterschiedlichen Personen. Die bekanntesten und gängigsten Dimensionierungsformeln sind in den folgenden Tabellen aufgelistet und werden im Programm implementiert.

Formeltyp	Regler	K_R	T_n	T_v
	P	$\frac{T_g}{K_s T_u}$		
Ziegler/Nichols	PI	$\frac{0.9*T_g}{K_sT_u}$	$3.3 * T_u$	
	PID	$\frac{0.9*T_g}{K_sT_u}$	$2*T_u$	$0.42*T_t$
	P	$\frac{T_g}{K_s T_u}$		
Oppelt	PI	$\frac{0.8*T_g}{K_sT_u}$	$3*T_u$	
	PID	$\frac{1.2*T_g}{K_sT_u}$	$2*T_u$	$0.42*T_t$
	P	$\frac{T_g}{K_s T_u}$		
Rosenberg	PI	$\frac{0.91*T_g}{K_sT_u}$	$3.3*T_u$	
	PID	$\frac{1.2*T_g}{K_sT_u}$	$2*T_u$	$0.44 * T_t$

Tabelle 5: Fausformeln Ziegler/Nichols, Oppelt und Rosenberg [5]

Quellen einfügen

	aperiodischer		Einschwingvorgang mit	
Reglertyp	Einschwingvorgang		20% Überschwingen	
	Führung	Störung	Führung	Störung
P	$K_R = \frac{0.3*T_g}{K_s T_u}$	$K_R = \frac{0.3*T_g}{K_s T_u}$	$K_R = \frac{0.7 * T_g}{K_s T_u}$	$K_R = \frac{0.7*T_g}{K_s T_u}$
ΡΙ	$K_R = \frac{0.35 * T_g}{K_s T_u}$	$K_R = \frac{0.6 * T_g}{K_s T_u}$	$K_R = \frac{0.6 * T_g}{K_s T_u}$	$K_R = \frac{0.7 * T_g}{K_s T_u}$
	$T_n = 1.2 * T_g$	$T_n = 4 * T_u$	$T_n = T_g$	$T_n = 2.3 * T_u$
	$K_R = \frac{0.6 * T_g}{K_s T_u}$	$K_R = \frac{0.95 * T_g}{K_s T_u}$	$K_R = \frac{0.95 * T_g}{K_s T_u}$	$K_R = \frac{1.2*T_g}{K_s T_u}$
PID	$T_n = T_g$	$T_n = 2.4 * T_u$	$T_n = 1.35 * T_g$	$T_n = 2.3 * T_u$
	$T_v = 0.5 * T_u$	$T_v = 0.42 * T_u$	$T_v = 0.47 * T_u$	$T_v = 0.42 * T_u$

Tabelle 6: Chien/Hrones und Reswick [5]

2.5 Schrittantwort der Regelung

- Übertragungsfunktion Regelung (Berechnung aus üfunk regler und üfunk regelung)
- Berechnung durch Residuen

Kapitel schreiben

Um die Schrittantwort der geschlossenen Regelung berechnen zu können, wird die Übertragungsfunktion der Regelung benötigt. Diese wird aus den Übertragungsfunktionen des Reglers und der Strecke gemässe Formel 10 berechnet.

$$G(s) = \frac{G_R(s)G_S(s)}{1 + G_R(s)G_S(s)}$$
(10)

2.6 Optimierungsmöglichkeiten

- $\underline{{}$ über maximum der schrittantwort und phasenrand kann überschwingen genau berechnet werden
- mit gesuchtem punkt im phasengang geschindigkeit der schrittantwort optimieren

gesamtes Kapitel schreiben

3 Java Software

- 3.1 Klassendiagramm
- 3.2 Beschreibung der Software
- 3.3 Benutzerschnittstelle
- 3.4 Klassen
- 3.4.1 GUI Klassen
- 3.4.2 Model Klassen
- 3.4.3 View Klassen
- 3.4.4 Controller Klassen

4 Schlusswort

14 LITERATUR

5 Literaturvezeichnis

Literatur

[1] RN-Wissen. Regelungstechnik. http://rn-wissen.de/wiki/index.php/Datei:Regelkreis4.png (08.05.2015).

- [2] D. Solenicki and Y. Bürgi, "Mathematisches Labor mlab Systemidentifikation mit Hilfe der Schrittantwort," November 2013, FHNW.
- [3] J. Zellweger, "Phasengang-Methode," FHNW.
- [4] —, "Regelkreise und Regelungen," FHNW.
- [5] B. Bate, "Spezialgebiete der Steuer- und Regelungstechnik," 2009.