CS231n Lecture 16. Adversarial Examples and Adversarial Training

Tobig's 14기 서아라

Overview

- What are adversarial examples?
- Why do they happen?
- How can they be used to compromise machine learning systems?
- What are the defenses?
- How to use adversarial examples to improve machine learning, even when there is no adversary

Adversarial Examples

Turning Objects into "Airplanes"

Attacking a Linear Model

Adversarial Examples from Excessive Linearity

Modern deep nets are very piecewise linear

Small inter-class distances

All three perturbations have L2 norm 3.96 This is actually small. We typically use 7!

The Fast Gradient Sign Method

$$J(\tilde{\boldsymbol{x}}, \boldsymbol{\theta}) \approx J(\boldsymbol{x}, \boldsymbol{\theta}) + (\tilde{\boldsymbol{x}} - \boldsymbol{x})^{\top} \nabla_{\boldsymbol{x}} J(\boldsymbol{x}).$$

Maximize

$$J(\boldsymbol{x}, \boldsymbol{\theta}) + (\tilde{\boldsymbol{x}} - \boldsymbol{x})^{\top} \nabla_{\boldsymbol{x}} J(\boldsymbol{x})$$

subject to

$$||\tilde{\boldsymbol{x}} - \boldsymbol{x}||_{\infty} \le \epsilon$$

$$\Rightarrow \tilde{\boldsymbol{x}} = \boldsymbol{x} + \epsilon \operatorname{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{x})).$$

Maps of Adversarial and Random Cross-Sections

Maps of Adversarial Cross-Sections

Maps of Random Cross-Sections

Adversarial examples

Estimating the Subspace Dimensionality

Clever Hans

("Clever Hans,
Clever
Algorithms,"
Bob Sturm)

Wrong almost everywhere

Adversarial Examples for RL

(<u>Huang et al.</u>, 2017)

Linear Models of ImageNet

(Andrej Karpathy, "Breaking Linear Classifiers on ImageNet")

High-Dimensional Linear Models

RBFs behave more intuitively

Cross-model, cross-dataset generalization

Cross-technique transferability

(Papernot 2016)

Transferability Attack

Target model with unknown weights, machine learning algorithm, training set; maybe nondifferentiable

Deploy adversarial examples against the

target; transferability

property results in them succeeding

Train your own model

Substitute model

mimicking target

model with known,
differentiable function

Adversarial crafting against substitute

Adversarial examples

(Goodfellow 2016)

Cross-Training Data Transferability

Intermediate Weak Strong

32

37

47

C

34

45

38

37

D

Enhancing Transfer With Ensembles

	RMSD	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
-ResNet-152	17.17	0%	0%	0%	0%	0%
-ResNet-101	17.25	0%	1%	0%	0%	0%
-ResNet-50	17.25	0%	0%	2%	0%	0%
-VGG-16	17.80	0%	0%	0%	6%	0%
-GoogLeNet	17.41	0%	0%	0%	0%	5%

Table 4: Accuracy of non-targeted adversarial images generated using the optimization-based approach. The first column indicates the average RMSD of the generated adversarial images. Cell (i, j) corresponds to the accuracy of the attack generated using four models except model i (row) when evaluated over model j (column). In each row, the minus sign "—" indicates that the model of the row is not used when generating the attacks. Results of top-5 accuracy can be found in the appendix (Table 14).

Adversarial Examples in the Human Brain

These are concentric circles, not intertwined spirals.

Practical Attacks

- Fool real classifiers trained by remotely hosted API (MetaMind, Amazon, Google)
- Fool malware detector networks
- Display adversarial examples in the physical world and fool machine learning systems that perceive them through a camera

Adversarial Examples in the Physical World

Failed defenses

Generative pretraining

Removing perturbation

with an autoencoder

Adding noise

at test time

Ensembles

Confidence-reducing

perturbation at test time

Error correcting codes

Multiple glimpses

Weight decay

Double backprop

Adding noise

Various

non-linear units

Dropout

at train time

Generative Modeling is not Sufficient to Solve the Problem

Universal approximator theorem

Neural nets can represent either function:

Maximum likelihood doesn't cause them to learn the right function. But we can fix that...

Training on Adversarial Examples

Adversarial Training of other Models

- Linear models: SVM / linear regression cannot learn a step function, so adversarial training is less useful, very similar to weight decay
- k-NN: adversarial training is prone to overfitting.
- Takeway: neural nets can actually become more secure than other models. Adversarially trained neural nets have the best empirical success rate on adversarial examples of any machine learning model.

Weaknesses Persist

Adversarial Training

Labeled as bird

Decrease probability of bird class

Virtual Adversarial Training

Unlabeled; model guesses it's probably a bird, maybe a plane

Adversarial perturbation intended to change the guess

New guess should match old guess (probably bird, maybe plane)

Text Classification with VAT

Zoomed in for legibility (Goodfellow 2016)

Universal engineering machine (model-based optimization)

Make new inventions
by finding input

Training data

that maximizes

performance

model's predicted

Extrapolation

Conclusion

- Attacking is easy
- Defending is difficult
- Adversarial training provides regularization and semi-supervised learning
- The out-of-domain input problem is a bottleneck for model-based optimization generally

• 감사합니다◎!