

300mW, NPN Small Signal Transistor

FEATURES

- Epitaxial planar die construction
- Surface device type mounting
- Moisture sensitivity level 1
- Matte Tin (Sn) lead finish with Nickel (Ni) underplate
- Pb free version and RoHS compliant
- Packing code with suffix "G" means green compound (halogen-free)

MECHANICAL DATA

- Case: SOT- 23, molded plastic
- Terminal: Matte tin plated, lead free, solderable per MIL-STD-202, Method 208 guaranteed
- High temperature soldering guaranteed: 260°C/10s
- Weight: 8 mg (approximately)
- Marking Code: 1E.

1 Base 2 Emitter

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS (T _A =25°C unless otherwise noted)				
PARAMETER	SYMBOL	VALUE	UNIT	
Power Dissipation	P_D	300	mW	
Collector-Base Voltage	V _{CBO}	60	V	
Collector-Emitter Voltage	V _{CEO}	40	V	
Emitter-Base Voltage	V_{EBO}	6	V	
Collector Current	I _C	200	mA	
Junction and Storage Temperature Range	T_J,T_STG	-55 to +150	°C	

Notes: Valid provided that electrodes are kept at ambient temperature

PARAMETER			SYMBOL	MIN	MAX	UNIT	
Collector-Base Breakdow	n Voltage	I _C = 10 μA	I _E = 0	V _{(BR)CBO}	60	-	V
Collector-Emitter Breakdown Voltage		$I_C = 1 \text{ mA}$	I _B = 0	V _{(BR)CEO}	40	-	V
Emitter-Base Breakdown Voltage		I _E = 10 μA	I _C = 0	$V_{(BR)EBO}$	6	-	V
Collector Cut-off Current		V _{CB} = 60 V	I _E = 0	I _{CBO}	-	0.1	μA
Collector Cut-off Current		V _{CE} = 30 V	$V_{BE(OFF)} = 3 V$	I _{CEO}	-	50	nA
Emitter Cut-off Current		V _{EB} = 5 V	I _C = 0	I _{EBO}	-	0.1	μA
		V _{CE} = 1 V	I _C = 10 mA		100	400	
DC Current Gain		$V_{CE} = 1 V$	$I_C = 50 \text{ mA}$	h _{FE}	60	-	
		$V_{CE} = 1 V$	$I_{\rm C}$ = 100 mA		30	-	
Collector-Emitter Saturation Voltage		$I_C = 50 \text{ mA}$	I _B = 5 mA	$V_{CE(sat)}$	-	0.3	V
Base-Emitter Saturation \	Voltage	$I_C = 50 \text{ mA}$	I _B = 5 mA	$V_{BE(sat)}$	-	0.95	V
Transition frequency	V _{CE} = 20 V	$I_C = 10 \text{ mA}$	f= 100MHz	f _T	250	-	MHz
Delay time	V _{CC} = 3 V	V _{BE} = 0.5 V	I _C = 10 mA	t _d	-	35	ns
Rise time			$I_{B1} = 1.0 \text{ mA}$	t _r	-	35	ns
Storage time		$V_{CC} = 3 V$	I _C = 10 mA	t _s	-	200	ns
Fall time		$I_{B1} = I_{B2} = 1.0$	mA	t _f	-	50	ns

RATINGS AND CHARACTERISTICS CURVES

(T_A=25°C unless otherwise noted)

Fig. 2 Collector-Emitter Saturation Voltage vs. Collector Current

Fig. 3 Base-Emitter Saturation Voltage vs. Collector Current

Fig. 4 Base-Emitter On Voltage vs. Collector Current

Fig. 5 Collector-Cutoff Current vs. Ambient Temperature

Fig. 6 Capacitance vs. Reverse Bias Voltage

Document Number: DS_S1501029

ORDER INFORMATION (EXAMPLE)

PACKAGE OUTLINE DIMENSIONS

DIM.	Unit(mm)		Unit(inch)		
DIN.	Min	Max	Min	Max	
Α	2.70	3.10	0.106	0.122	
В	1.10	1.50	0.043	0.059	
С	0.30	0.51	0.012	0.020	
D	1.78	2.04	0.070	0.080	
Е	2.10	2.64	0.083	0.104	
F	0.89	1.30	0.035	0.051	
G	0.55	REF	0.022	REF	
Н	0.10	REF	0.004	REF	

SUGGEST PAD LAYOUT

DIM	Unit (mm)	Unit (inch)	
DIIVI	TYP	TYP	
Z	2.90	0.114	
Χ	0.80	0.031	
Υ	0.90	0.035	
С	2.00	0.079	
F	1.35	0.053	

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

Document Number: DS_S1501029 Version: A15