<u>Help</u>

sandipan_dey >

<u>Calendar</u> **Discussion Notes** <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Unit 3: Optimization / Lecture 9: Second derivative test

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

25:57:13

Explore

Worked example setup

0:00 / 0:00

▶ 2.0x

Start of transcript. Skip to the end.

PROFESSOR: So let's do an example, let's say I look at f of (x,y) equals x plus y plus 1 over xy,

where x and y are positive.

So I'm looking on there for first point.

I'm doing this because I don't want this denominator

to become 0, so I'm just looking at that situation.

So let's look first for--

Video

Download video file

Transcripts

X

Download SubRip (.srt) file Download Text (.txt) file

"

CC

Example 10.1 What are the global maximum and global minimum of the function below?

$$f\left(x,y
ight) =x+y+rac{1}{xy},\qquad x,y>0$$

(Note we restrict our attention to the domain x,y>0 to avoid the regions where the function is not defined.)

The first step is to find the critical points.

$$f_x(x,y) = 1 - \frac{1}{x^2 y} = 0$$
 (4.87)

$$f_y(x,y) = 1 - \frac{1}{xy^2} = 0$$
 (4.88)

This tells us that

$$x^2y = 1 (4.89)$$

$$xy^2 = 1 (4.90)$$

$$\frac{x}{y} = 1 \quad \text{(dividing)} \tag{4.91}$$

$$y^3 = 1 \quad \text{(substituting)} \tag{4.93}$$

$$\longrightarrow y = 1 \tag{4.94}$$

$$\longrightarrow x = 1 \tag{4.95}$$

Thus there is one critical point at (1,1).

POLL

What type of critical point is (1,1)?

RESULTS

Local minimum	6	1%

Local maximum 8%

Saddle 12%

Inconclusive 12%

I do not know how to think about this yet 7%

Submit

Results gathered from 441 respondents.

FEEDBACK

Your response has been recorded

Worked example conclusion

0:00 / 0:00 ▶ 2.0x X 66 CC

Start of transcript. Skip to the end.

PROFESSOR: So let's see.

To figure out what type of point it is, we should compute the second partial derivatives.

What do we get when we take the derivative of this

with respect to x?

Video

Download video file

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

Continuing the example above, we must compute the second derivatives to determine the type of critical point. **⊞** Calculator

$$f_{xx}(x,y) = \frac{2}{x^3y} \qquad A = f_{xx}(1,1) = 2$$
 (4.96)

$$f_{xy}(x,y) = \frac{1}{x^2y^2} \quad B = f_{xy}(1,1) = 1$$
 (4.97)

$$f_{yy}(x,y) = \frac{2}{xy^3} \quad C = f_{yy}(1,1) = 2$$
 (4.98)

Thus $AC-B^2=4-1=3>0$, so we either have a local maximum or local minimum. Since A>0, we have a local minimum. You can check that this is in fact a global minimum, by plotting for example.

The maximum is not attained as f tends to ∞ if $x \to \infty$, $y \to \infty$, $x \to 0$, or $y \to 0$.

10. Worked example **Hide Discussion** Topic: Unit 3: Optimization / 10. Worked example **Add a Post** by recent activity > Show all posts the only local an global minimum 11 Previous Next >

© All Rights Reserved

edX

<u>About</u>

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code **Privacy Policy**

Accessibility Policy Trademark Policy <u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>