

Can You Hear the Shape of a Drug?

Rachael Pirie

4th Year PhD Student, Cole Group r.pirie2@newcastle.ac.uk / @rachaelpirie203 RDKit UGM 2022

Similar Property Principle

Alternative: Ligand-based Virtual Screening

Similar molecules are likely to display similar properties, including biological activity – *Johnson and Maggiora*, 1990

Molecular Shape Similarity

A Overlap of Volumes e.g. ROCS

B
Distribution of Atomic Distances
e.g. USR/USRCAT

Molecular Surfaces
e.g. Spherical Harmonics

Hearing the Shape of a Drum

The frequencies of vibration (in the form of the eigenvalues of the Laplacian) of a drum determine its shape (Kac 1966)

$$\Delta \varphi = \lambda \varphi$$

Can we hear the shape of a drug?

Approach 1: Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Approach 1: Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Pros:

- Rotation and Translation Invariant
- Alignment Free
- Quick to Calculate
- Insensitive to small deformations of the surface

Cons:

- Dependent on the initial choice of starting atom
- For long chain molecules: introduces numerical error
- Cannot describe Macrocycles

Approach 2: Kähler Quantisation for Molecular Surface Approximation (KQMolSA)

e.g. Sildenafil

Start with CPK Model

Construct using RDKit

Rings → Spheres

Pick Base Sphere

$$F(z) = \begin{cases} \frac{2r_B^2}{(1+|z|^2)^2} & \text{if } z \in \mathcal{C} \\ \frac{C_1}{(|z-A_1|^2+B_1)^2} & \text{if } z \in \mathcal{D}(a_1,R_1) \\ \vdots & \vdots \\ \frac{C_{N-1}}{(|z-A_{N-1}|^2+B_{N-1})^2} & \text{if } z \in \mathcal{D}(a_{N-1},R_{N-1}) \end{cases}$$

Riemannian Metric (Antisymmetric Form)

Map into Complex Plane

Calculate Surface Area

$$\mathbb{M}_{ij} = \iint_{\mathbb{C}} z^{i} \bar{z}^{j} e^{-k\varphi} F(z) \sqrt{-1} dz \wedge d\bar{z} \longrightarrow$$

$$\mathbb{I} = \begin{bmatrix}
2.159 + 0j & -2.435 + 0.855j & 2.407 - 1.928 \\
-2.435 - 0.855j & 3.085 + 0j & -3.479 + 1.22 \\
2.407 + 1.928j & -3.4786 - 1.221j & 4.407 + 0j
\end{bmatrix}$$

$$\mathbb{M}_{ij} = \iint_{\mathbb{C}} z^{i} \bar{z}^{j} e^{-k\varphi} F(z) \sqrt{-1} dz \wedge d\bar{z} \implies \mathbb{M} = \begin{bmatrix} 2.159 + 0j & -2.435 + 0.855j & 2.407 - 1.928j \\ -2.435 - 0.855j & 3.085 + 0j & -3.479 + 1.221j \\ 2.407 + 1.928j & -3.4786 - 1.221j & 4.407 + 0j \end{bmatrix} \implies S(\mathbb{M}_{1}, \mathbb{M}_{2}) = 0.3 \frac{A_{min}}{A_{max}} + 0.7 \frac{1}{1 + d(\mathbb{M}_{1}, \mathbb{M}_{2})}$$
Construct Hermitian Matrix
$$3x3 \text{ Matrix Descriptor}$$
Similarity Score

Approach 2: Kähler Quantisation for Molecular Surface Approximation (KQMolSA)

Pros:

- Alignment Free
- Quick to Calculate
- Insensitive to small deformations of the surface
- Less dependent on choice of starting atom

Cons:

- Small dependence on initial position
- Slow to calculate distance between molecules
- Numerically Instable > k=2

Case Study: PDE5 Inhibitors

Case Study: Comparison to Other Methods

	RGMoISA	KQMoISA (k=1)	KQMolS (k=2)	USRCAT	Shape-It	MolSG
Sildenafil - Vardenafil	0.955	0.907	0.652	0.384	0.388	0.704
Sildenafil - Tadalafil	0.886	0.449	0.482	0.269	0.278	0.746
Vardenafil - Tadalafil	0.844	0.432	0.47	0.291	0.353	0.887

Scores: 0 (completely different) and 1 (identical); typical threshold >= 0.7 to be "similar"

Case Study: Consideration of Conformers

Sildenafil 10 Random Conformers

Sildenafil 10 Low Energy Conformers

Case Study: Consideration of Conformers

Case Study: Other PDE5 Inhibitors

PubChem AID 446781 13

Case Study: Other PDE5 Inhibitors

PubChem AID 446781 14

Future Work

Full Validation and Benchmarking

Application to Real Drug Discovery Projects

Consideration of Pharmacophoric Features

FEGrow

	MW	нва	HBD	LogP	Pass_Ro5	has_pains	has_unwanted_subs	has_prob_fgs	synthetic_accessibility
0	413.093104	5	0	5.10018	True	False	False	True	7.223150
0	427.108754	5	1	4.62638	True	False	False	True	7.501563
0	423.113840	4	0	5.96898	True	False	False	True	7.482970
0	477.135638	6	0	5.53078	True	False	False	True	7.719800
0	477.135638	6	0	5.53078	True	False	False	True	7.716155
0	494.187339	5	0	6.11838	True	False	False	True	7.685201
0	452.140389	5	0	5.29728	True	False	False	True	7.757132
0	463.119988	6	0	5.33638	True	False	False	True	7.523968

FEGrow: Case Study - SARS-CoV-2 Main Protease

Summary

Molecular Shape Similarity is a useful tool in the hit-identification stage of a drug discovery campaign.

The mathematical theory of Riemannian geometry can be applied to approximate the shape of molecules using either a 9-element vector (**RGMolSA**) or a 3x3 matrix (**KQMolSA**) of eigenvalues.

Both descriptors are quick to calculate and easy to compare. Initial case study shows promise compared to existing shape similarity approaches, in considering conformers and for virtual screening.

Code for all approaches discussed available on GitHub.

Acknowledgements

Supervisors

Dr Daniel Cole

Dr Stuart Hall

Dr Matthew Forshaw

Collaborators

Dr Thomas Murphy (CS Fullerton)

Funding

Engineering and Physical Sciences Research Council (grant: EP/R51309X/1)

Thank You For Listening!

Contact and Publications