CEE 110

Homework #7 Solution

1. The tables below delineate all 16 possible (x_1, x_2) pairs, their probabilities, the value of x for that pair, and the value of r for that pair. Probabilities are calculated using the independence of X_1 and X_2 .

(x_1, x_2) probability \overline{x}	1,1 .16 1	1,2 .12 1.5	1,3 .08 2	1,4 .04 2.5	2,1 .12 1.5	2,2 .09 2	2,3 .06 2.5	2,4 .03 3
r	0	1	2	3	1	0	1	2
(x_1, x_2)	3,1	3,2	3,3	3,4	4,1	4,2	4,3	4,4
probability \overline{x}	.08 2	.06 2.5	.04	.02 3.5	.04 2.5	.03	.02 3.5	.01 4
r	2	1	0	1	3	2	1	0

a. Collecting the \overline{x} values from the table above yields the pmf table below.

\overline{x}	1	1.5	2	2.5	3	3.5	4
$P(\overline{x})$.16	.24	.25	.20	.10	.04	.01

b.
$$P(\overline{x} \le 2.5) = .16 + .24 + .25 + .20 = .85$$
.

- c. With n = 4, there are numerous ways to get a sample average of at most 1.5, since $\overline{x} \le 1.5$ if the sum of the X_i is at most 6. Listing out all options, $P(\overline{x} \le 1.5) = P(1,1,1,1) + P(2,1,1,1) + \cdots + P(1,1,1,2) + P(1,1,2,2) + \cdots + P(2,2,1,1) + P(3,1,1,1) + \cdots + P(1,1,1,3) = (.4)^4 + 4(.4)^3(.3) + 6(.4)^2(.3)^2 + 4(.4)^2(.2)^2 = .2400$
- d. Collecting the r values from the table above yields the pmf table below.

r	0	1	2	3
p(r)	.30	.40	.22	.08

2. $\mu = 70 \text{ GPa}, \sigma = 1.6 \text{ GPa}$

- a. The sampling distribution of \bar{X} is centered at $E(\bar{X}) = \mu = 70$ GPa, and the standard deviation of the \bar{X} distribution is $\sigma_{\bar{X}} = \frac{\sigma_{\bar{X}}}{\sqrt{n}} = \frac{1.6}{\sqrt{16}} = 0.4$ GPa.
- b. With n = 64, the sampling distribution of \bar{X} is still centered at $E(\bar{X}) = \mu = 70$ GPa, but the standard deviation of the \bar{X} distribution is $\sigma_{\bar{X}} = \frac{\sigma_{\bar{X}}}{\sqrt{n}} = \frac{1.6}{\sqrt{64}} = 0.2$ GPa.
- c. \bar{X} is more likely to be within 1 GPa of the mean (70 GPa) with the second, larger, sample. This is due to the decreased variability of \bar{X} that comes with a larger sample size.
- d. In the previous exercise, we found $E(\bar{X}) = 70$ and $SD(\bar{X}) = 0.4$ when n = 16. If the diameter distribution is normal, then \bar{X} is also normal, so $P(69 \le \bar{X} \le 71) = P\left(\frac{69-70}{0.4} \le Z \le \frac{71-70}{0.4}\right) = P(-2.5 \le Z \le 2.5) = \Phi(2.5) \Phi(-2.5) = .9938 .0062 = .9876$.
- e. With n = 25, $E(\bar{X}) = 70$ but $SD(\bar{X}) = \frac{1.6}{\sqrt{25}} = 0.32$ GPa. So, $P(\bar{X} \ge 71) = P\left(Z > \frac{71 70}{0.32}\right) = 1 \Phi(3.125) = 1 .9991 = .0009$.

3.

a.
$$58.3 \pm \frac{1.96(3)}{\sqrt{25}} = 58.3 \pm 1.18 = (57.1, 59.5).$$

b.
$$58.3 \pm \frac{1.96(3)}{\sqrt{100}} = 58.3 \pm .69 = (57.7, 58.9).$$

c.
$$58.3 \pm \frac{2.58(3)}{\sqrt{100}} = 58.3 \pm .77 = (57.5, 59.1).$$

d.
$$n = \left[\frac{2(2.58)3}{1}\right]^2 = 239.63 \approx 240.$$

4.

- a. From the data provided, $\bar{x} = 107.78$ and s = 1.076. The corresponding 95% CI for μ is $\bar{x} \pm t_{0.025,5-1} \frac{s}{\sqrt{n}} = 107.78 \pm 2.776 \frac{1.076}{\sqrt{5}} = (106.44, 109.12)$.
- b. The CI suggests that while 107 is a plausible value for μ (since it lies in the interval).
- c. The corresponding 95% upper bound for μ is $\mu < \bar{x} + t_{0.05,5-1} \cdot \frac{s}{\sqrt{n}} = 107.78 + 2.132 \frac{1.076}{\sqrt{5}}$. Therefore, $\mu < 108.81$
- d. The CI suggests that 110 is not a plausible value for μ (since it does not lie in the interval).

5.

a.
$$Median = 20.54$$

$$Q1 = (16.03 + 18.45)/2 = 17.24$$

$$Q3 = (22.63+25.05)/2=23.84$$

Given Median, Q1 and Q3, it is normal.

Alternatively, draw the box plot.

$$IQR = 23.84-17.24 = 6.6$$

Min = Q1 - 1.5×IQR = 17.24-1.5×6.6 = 7.34
$$\rightarrow$$
 12.19
Max= O3 + 1.5×IQR = 23.84+1.5×6.6 = 33.74 \rightarrow 28.8

From the boxplot, it seems to be normal.

b.
$$E(X) = \frac{\text{sum}}{n} = \frac{143.8}{7} = 20.54$$

$$s = \sqrt{(\Sigma(x-20.54)^2/(7-1))} = 5.61$$

c. 95% interval $\rightarrow \alpha = 0.05$

two-sided, as population follows normal distribution

n = 7,
$$\overline{X}$$
 = 20.54, s = 5.61; t_{0.025,6} = 2.447 (from t distribution table)
20.54 ± $t_{.025,6} \left(\frac{5.61}{\sqrt{7}}\right)$ = 20.54 ± (2.447) $\left(\frac{5.61}{\sqrt{7}}\right)$ = 20.54 ± 5.19
= (15.35, 25.73)
(or 20.54 ± 5.189, (15.351, 25.729)

99% interval $\rightarrow \alpha = 0.01$

$$n = 7$$
, $\overline{X} = 20.54$, $s = 5.61$; $t_{0.005,6} = 3.707$ (from t distribution table)
 $20.54 \pm t_{.005,6} \left(\frac{5.61}{\sqrt{7}}\right) = 20.54 \pm (3.707) \left(\frac{5.61}{\sqrt{7}}\right) = 20.54 \pm 7.86$
 $= (12.68, 28.4)$

99% confidence level provides wider interval than 95% level.

- 6.
- a. H_0 : $\mu \le 30$ years H_a : $\mu > 30$ years
- b. One sided, α =0.01, n=15 The rejection region for 1% is t_{.0.01, 15-1} = 2.624 Therefore, rejection region \geq 2.624

c.
$$\mu_0 = 30$$

 $n = 15$
 $s = 0.2$
 $\overline{X} = 30.15$
 $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{30.15 - 30}{0.2/\sqrt{15}} = 2.905$

t = 2.905 > 2.624.

Therefore, reject the null hypothesis. The half-life of cesium-137 is greater than 30 years.

d. The p-value is P(X>2.905)From the t curve tail areas table, P(t=2.9 v=14) = 0.005 (or P(t=3.0 v=14) = 0.004)

The p-value, $0.005 < \alpha = 0.01$, (less than 1%), which is consistent with the hypothesis testing. Therefore, this rejects the null hypothesis.

e. 99% interval $\rightarrow \alpha = 0.01$ n = 15, $\overline{X} = 30.15$, s = 0.2; $t_{0.01,15-1} = 2.624$ (from t distribution table) Lower confident bound for μ $30.15 - t_{0.01,14} \left(\frac{0.2}{\sqrt{15}}\right) = 30.15 - (2.624) \left(\frac{0.2}{\sqrt{15}}\right) = 30.15 - 0.14 = 30.01$

Therefore, μ >30.01

 $\mu \le 30$ is not contained within this CI, which is consistent with the hypothesis testing problem having a p-value of 0.004, so that the null hypothesis is rejected at size α =0.01