Класификация на еднаквостите в равнината

Нека е дадена ОКС K= Оху В Ег Една афинна трансформация у е една хвост, ако матрицата й е Ортогонална.

Аналимичномо представяне е:

$$\Psi: \begin{pmatrix} X' \\ Y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\epsilon. \sin \theta \\ \sin \theta & \epsilon. \cos \theta \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \end{pmatrix} + \begin{pmatrix} \alpha \\ \theta \end{pmatrix}$$

 $K = G = M(X,Y) \xrightarrow{\psi} M'(X',Y')$

$$A = \begin{pmatrix} \omega s \vartheta & -\varepsilon \cdot s in \vartheta \\ sin \vartheta & \varepsilon \cdot \omega s \vartheta \end{pmatrix} e optorohanha 2 \times 2$$

ALCO T. O(0,0) -> T. O', TO O'(a, 6)

 $det A = E = \pm 1$

10 np. 1: Npu ε=1 ψ e gbu нение, г. е.

у запазва ориентацията в равнината.

Двинения в равнина та са:

ugenturet, pomaying, Tpancraying

10пр. 2: При E=-1 уе отранение, у променя ориентацията в равнината. Отранения са: осева симетрия и плъзгащо отранение.

npumep: 6g

I ABWHEHUA

1)
$$\Psi = id - ugentutet : id(M) = M 3a + M \in E_2$$

$$id: \begin{pmatrix} X' \\ Y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} X \\ Y \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Om DOMN: $X = z. \omega s \lambda$ $Y = z. sin \lambda$

Om D DM'N'

$$\begin{cases} X' = 2 \cdot \cos(\lambda + \theta) = 7 \cdot [\cos \lambda \cdot \cos \theta - \sin \lambda \cdot \sin \theta] \\ Y' = 2 \cdot \sin(\lambda + \theta) = 2 \cdot [\sin \lambda \cdot \cos \theta + \cos \lambda \cdot \sin \theta] \end{cases}$$

$$\begin{cases} \chi' = \chi \cdot \cos \theta - Y \cdot \sin \theta \\ Y' = \chi \cdot \sin \theta + Y \cdot \cos \theta \end{cases}$$

DIOHYATEAHO: AHAMITUTHO npegcmabsite Ha Sold

$$S_{0}(\theta): \begin{pmatrix} X' \\ Y' \end{pmatrix} = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta \cos \theta \end{pmatrix}: \begin{pmatrix} X \\ Y \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Henogbutthe Torice: T. O

HenogBuithu npabu: 49Ma

Ванно: При $\theta = 180^\circ = T$ $S_0(T)$ е щентрална симетрия с център D. Тогава Всяка права през τ . D е неподвинна,

3. TPAHERAUMUS:
$$y = Tp^{3} - 4 - 4 - 4$$

Hexa $M(x,y) \stackrel{d}{=} M'(x',y')$ $M = -\frac{p^{2}}{N} - \frac{p^{2}}{N}$

Toraba $MM' = p^{2}$

Hexa $MM'(x'-x,y'-y)$, a $p^{2}(a,b) = 2$
 $\Rightarrow \begin{cases} x'-x=a \\ y'-y=b \end{cases} = \begin{cases} x'=x+a \\ y'=y+b \end{cases}$

Oxohuateho:

 $Tp^{2}: \begin{pmatrix} x' \\ y' \end{pmatrix} = E. \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}$

Henogluhhu Touka: Hana
Henogluhhu Touka: Bounku schopeghu Har p^{2} .

* * *

I Dimpahe Hua

1. Doeba cumeting $Y = Tg$

Minimpu:

Awo $g = Dx$, To $M(x,y) \stackrel{Gox}{Sox} M_{4}(x,-y)$
 $Gox: \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$

And $g = Dy$, To $M(x,y) \stackrel{Gox}{Sox} M_{2}(-x,y)$
 $Goy: \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$

Основна задача: Нека g: A.x + B.y+ C=0. ва сег определи аналитичното представяне на Гд. Hexa M*(x*,y*) 5g> M'(x, y') M* M' 11 ng (A, B) 1) 3 anuclaire mopgulante параметрични уравнения на правата M* M' {ZM*(X*, Y*) M^*M' $X = X^* + s.A$ $Y = Y^* + s.B$, SER 2) Hamupame Mo = M*M'ng $|Y=Y^*+S.B| => S_0 = -\frac{A_0 X^*+B_0 Y^*+C}{A^2+B^2}$ $|A_0 X+B_0 Y+C=0|$ $X = X^* + S. A$ Хоординатите на Мо са: $\int X_0 = X^* + So. A$ (Yo = Y* + So . B 3) Точката Мо е средата на отсечката М*М1 \Rightarrow $X_0 = \frac{X^* + X'}{2}$ $X'=2. X_0-X^*$ $Y_0 = \frac{Y^* + Y'}{2} = >$ $Y'=2.Y_0-Y^*$

$$\begin{cases} X' = 2. (X^* + So. A) - X^* \\ Y' = 2. (Y^* + So. B) - Y^* \end{cases} = \begin{cases} X' = X^* + 2So. A \\ Y' = Y^* + 2. So. B \end{cases}$$

$$\begin{cases} X' = x^* - 2.A. & \frac{A_0 x^* + B.y^* + C}{A^2 + B^2} \\ Y' = y^* - 2.B. & \frac{A_0 x^* + B.y^* + C}{A^2 + B^2} \end{cases} = >$$

$$X' = \frac{1}{A^2 + B^2} \cdot \left[(B^2 - A^2) \cdot X^* - 2A \cdot B \cdot Y^* - 2A \cdot C \right]$$

$$Y' = \frac{1}{A^2 + B^2} \left[-2AB.X^* + (A^2 - B^2).Y^* - 2.BC \right]$$

Окончателно:

Henogbuhhu Toyku: 4 T.M Zg Henogbuhhu npabu: g, 4 6 Lg * *

Въпрос: Кога бу има стълб от свободни елементи и кога този стълб е (0)?

Aнамитично представяне:

1) And
$$g \equiv 0 \times ,70 \text{ } \psi : \begin{pmatrix} \chi' \\ \gamma' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} \chi \\ \gamma \end{pmatrix} + \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$$

$$\begin{array}{c} \chi \\ \gamma \\ \end{array}$$

$$\begin{array}{c} \chi \\ \gamma \\ \end{array}$$

9: A.
$$x + B. Y + C = 0$$
,

$$\Rightarrow \vec{p} = \pm \frac{1}{\sqrt{A^2 + B^2}} \cdot (-B, A)$$

$$\Psi: \begin{pmatrix} X' \\ Y' \end{pmatrix} = \frac{1}{A^2 + B^2} \cdot \begin{pmatrix} B^2 - A^2 & -2AB \\ -2AB & A^2 - B^2 \end{pmatrix} \circ \begin{pmatrix} X \\ Y \end{pmatrix} + \frac{1}{A^2 + B^2} \cdot \begin{pmatrix} -2AC \\ -2BC \end{pmatrix} + \frac{oL}{\sqrt{A^2 + B^2}} \cdot \begin{pmatrix} -B \\ A \end{pmatrix}$$
om G_g
om G_g
om G_g

Henogl. Toura: Hama; Henogl. npaBu: 9

Основна задача: Да се докане, че Y= σq1 0 σq2 моне ga ce представи като: 1) $\Psi = id$, and $q_1 = g_2$; 2) $\psi = g_0(\theta)$, waso: $g_1 \cap g_2 = \tau.D$, $\theta = 2.4$ V=4(91,92) 3) $\psi = TP$, and $g_{1}||g_{2}|$, karo P [$P = 2.d(g_{1}, g_{2})$ nocoica or g_{2} KEM g_{1} Doka sateremBo: 2) Herca 91 = Dx, a 92 Z T. O (0,0) Toraba: M(X,Y) 592> M1(X1,Y1) 591> M'(X',Y') $G_{92}: \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix} = \frac{1}{A^2 + B^2} \cdot \begin{pmatrix} B^2 - A^2 & -2AB \\ -2AB & A^2 - B^2 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \end{pmatrix}$ $Gg_1: \begin{pmatrix} X' \\ Y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix}$ $\Psi: \begin{pmatrix} \chi' \\ \gamma' \end{pmatrix} = \frac{1}{A^2 + B^2} \cdot \begin{pmatrix} B^2 - A^2 & -2AB \\ 2AB & B^2 - A^2 \end{pmatrix} \cdot \begin{pmatrix} \chi \\ \gamma \end{pmatrix}$ Monarame $\frac{B^2-A^2}{A^2+B^2} = \cos \theta$ u $\frac{2AB}{A^2+B^2} = \sin \theta$ 3augo e ropermo moba novarane?

Основна задача: Да се докане, че V=TβοGg MOHE ga ce npegemable κατο: 1) y e no 63 raugo ompartie tue coc q u 6-p p, ano glip; 2) y e oceba chmerpha c oc g*, ako glp; 3) y e nr63 raugo omparhence c oc g* n 6-p p²*, ano pHq u pLg. Acrasatence 60: 2) Herca g=0x, p210x=>p(0; P2) M(X,Y) Gg M, (X1, Y1) TP M'(X', Y') $G_{g}: \begin{pmatrix} X_{1} \\ Y_{1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ Y \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \end{pmatrix} + \begin{pmatrix} 0 \\ P_{2} \end{pmatrix}$ $\overline{LP}: \begin{pmatrix} X' \\ Y' \end{pmatrix} = \overline{E} \cdot \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix} + \begin{pmatrix} 0 \\ P_2 \end{pmatrix}$ Onpegenque Buga Ha Y: * det Ay = -1 => y e orpathethue * Topam Henogbuthhu Torkh Ha Y $\begin{vmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \end{pmatrix} + \begin{pmatrix} 0 \\ P_2 \end{pmatrix} = > \begin{vmatrix} X = X \\ Y = -Y + P_2 = > Y = \frac{P_2}{2}$ U360g: 47.MZg*: Y= P2 e Henogburtha =>

ADNONHUMENHU BAGAYU

OKC K = Oxy

a)
$$Q_1: \begin{pmatrix} X' \\ Y' \end{pmatrix} = \frac{1}{5} \cdot \begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \end{pmatrix} - \frac{1}{5} \cdot \begin{pmatrix} 2 \\ -6 \end{pmatrix}$$

- 1) Da ce onpegenn buga na 41;
- 2) Aa ce Hamepu oбразът на правата m: 3x + Y + 4 = 0 nog genembre на 41.

$$\delta) \, \varphi_2 : \begin{pmatrix} \chi' \\ \gamma' \end{pmatrix} = \frac{1}{5} \cdot \begin{pmatrix} 4 - 3 \\ 3 + 4 \end{pmatrix} \cdot \begin{pmatrix} \chi \\ \gamma \end{pmatrix} + \frac{1}{5} \cdot \begin{pmatrix} 2 \\ -6 \end{pmatrix}$$

- 1) Buga Ha 42;
- 2) ?, oбразът на Dx nog genembre на 42.

$$\varphi:\begin{pmatrix}\chi'\\\gamma'\end{pmatrix}=\begin{pmatrix}-1&0\\0&-1\end{pmatrix},\begin{pmatrix}\chi\\\gamma\end{pmatrix}+\begin{pmatrix}10\\6\end{pmatrix}$$

- 1) Buga Ha (;
- 2) ?, oбразът на правата m: X-Y-2=0 nog generbue на φ .

9:
$$X + Y - 5 = 0$$
, $\vec{p}(3,3)$

- 1) Да се намери аналитично представяне на Ч= Тр обд;
- 2) Bapto Mue, 4e Tpo Gg = Ggo Tp??
- 3) Hamepere oбразът на mpabata m: 3x-3y+6=0 nog generbue на ч.

4 3ag.
$$g_1: x+y-5=0$$

 $g_2: x+y=0$

$$5 \text{ 3ag.}$$
 $9: x+y-5=0$
 $9=0y: x=0$