Analgesics: An Overview & Introduction to Non-Opioid Analgesics

A Companion to the Required Textbook Chapter:

"Non-opioid Analgesics"

CONTEMPORARY DENTAL PHARMACOLOGY

Evidence-Based Considerations

(A.H. Jeske, Ed., 2019)

PHC 721

Winter 2022

Agnieszka Z. Balkowiec

ANESTHESIA

Loss of sensation (Latin *Aesthesis* – "Sensation")

ANALGESIA

Insensibility to pain without loss of consciousness (Greek Algos – "Pain")

Pain perception: ancient and current concepts

Neuroscience Background

Nerve Fiber Types, Nociceptors

Neuronal Fiber Classification:

- Aα/Aγ Heavy Myelination/Large Diameter/Fast/High Frequency Somatic Motor Neurons
- Aβ Heavy Myelination/Large Diameter/Fast/High Frequency Tactile and Proprioceptors
- Aδ Light Myelination/Smaller Diameter/Slower /Lower Frequency Pain, Thermal, Pressure
- B Light Myelination Autonomic Preganglionic (Sympathetic & Parasympathetic)
- C Unmyelinated/Smallest Diameter/Slow Pain, Thermal, Postganglionic Sympathetic

Nociceptors (Latin: *Nocere*, 'to hurt'): Endings that initiate the sensation of pain **Nociception**: the perception of pain

Three Classes of Somatic Nociceptors:

- **<u>Aδ Mechanosensitive</u>** & <u>**Aδ MechanoThermal</u> Nociceptors** First Pain (sharper, shorter lasting)</u>
- <u>C Polymodal</u> Nociceptors

- Second Pain (duller/burning, longer lasting)

TRPV1:

<u>Transient Receptor Potential (TRP) family</u>
<u>Voltage-sensitive</u>, permeable to Na⁺ & Ca²⁺, ligand-gated: capsaicin (hot peppers), acid, anandamide (cannabinoid); 45°C

Trigeminal Pain Pathway

Targets of Non-Opioid Analgesics

Prostaglandins – Mediators of Inflammation

Prostacyclin

(PGI₂)

Vasodilation *↓* Platelet Aggregation **Smooth Muscle**

Vasodilation **TVascular Permeability EDEMA**

Thromboxane A₂ (TXA_2)

Vasoconstriction **↑Platelet Aggregation**

Inflammatory Response: A Friend & A Foe

Tissue Injury (trauma, surgery) \Rightarrow **A Friend** \Rightarrow Normal Repair - Neutropenia (e.g. cancer chemotherapy) \Rightarrow Fulminant Infection

Autoimmune Diseases \Rightarrow **A Foe** \Rightarrow Destruction of Normal Tissues - Gout, Rheumatoid Arthritis \Rightarrow Progressive Destruction of Joints

Infection ⇒ **A Friend** ⇒ Production of Cytokines, Antibodies, etc. - Acute Dental Infections, Flu Vaccine, COVID-19 Vaccine, etc.

Tumor -Edema (Histamine $\Rightarrow \uparrow$ Vascular Permeability $\Rightarrow \uparrow$ Interstitial Fluid)

Rubor - **Redness** (Histamine \Rightarrow Vasodilation \Rightarrow \uparrow Blood Flow)

Calor - **Heat** (Histamine \Rightarrow Vasodilation \Rightarrow \uparrow Blood Flow & Heat Dissipation)

Fever - (Pyrogens, e.g., microbial, IL-1 \Rightarrow Hypothalamus \Rightarrow \uparrow Thermal Set Point \Rightarrow \uparrow Migration & Activity of Immune Cells in mild-moderate fevers)

Dolor - Pain (\uparrow Vascular Permeability \Rightarrow Neuroinflammation \Rightarrow Sensitization)

Diminished Quality of Life for 4-6 days

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

Salicylates:

Aspirin (Acetylsalicylic Acid)*

Diflunisal

Propionic Acid Derivatives:

Ibuprofen (Advil®, Motrin®)*

Naproxen (Aleve®)*

Ketoprofen

Fenoprofen

Flurbiprofen

Pyrrole Derivatives:

Ketorolac

Indole and Indene Derivatives:

Etodolac

Indomethacin

Phenylacetic Acid Derivatives:

Diclofenac

Selective COX-2 Inhibitor:

Celecoxib (Celebrex®)

* FDA-approved for over-the-counter (OTC) use:

 \leq 10 days for pain; \leq 3 days for fever; Max. single/daily doses < Prescription

NSAIDs: Pharmacodynamics

Mechanism of Action and Therapeutic Effects:

Irreversible (acetylation; Aspirin) or Reversible Competitive (NSAIDs) Inhibition of Cyclooxygenase (COX), resulting in Inhibition of Prostaglandin (PG) synthesis and the following effects associated with \downarrow PGs:

- **Anti-Inflammatory** (\downarrow PG $\Rightarrow \downarrow$ vasodilation, \downarrow vascular permeability and \downarrow action of other mediators)
- **Anti-Pyretic** (\downarrow PG \Rightarrow \downarrow the thermal set point of the body in the Hypothalamus)
- **Analgesic** (\downarrow PG $\Rightarrow \downarrow$ neuroinflammation/sensitization of nociceptive endings and central terminals)
- Anti-Platelet (\downarrow PG $\Rightarrow \downarrow$ TXA₂ $\Rightarrow \downarrow$ Platelet Aggregation)

Dental Indications:

- Acute Pain associated with dental pathology (pulpitis, dentoalveolar abscesses, post-impaction, etc.)
- Mild to Moderate Post-procedural Pain
- TMJ Disorders (Naproxen; Celecoxib in long-term, i.e., weeks, treatment ⇒ minimize GI side effects)

Adverse Effects – Side Effects / Contraindications:

- **GI:** Gastrointestinal bleeding, ulceration \rightarrow perforation, dyspepsia, nausea / *Peptic Ulcer Disease*
- **Kidney:** \downarrow RBF-GFR (acute failure), H₂O/Na²⁺ retention, analgesic-associated nephropathy (chronic use)/ Hypertension, Tx: Diuretics, RAA Inhibitors, Beta-blockers (\downarrow Efficacy), Lithium (\downarrow Clearance \Rightarrow Li⁺ toxicity)
- **Dental:** Slower tooth movement / Orthodontic treatment
- Cardiovascular: Thrombotic events, e.g. myocardial Infarction, stroke [Celecoxib] / Cardiovascular Disease
- Blood: ↓ Platelet aggregation [Aspirin] / Thrombocytopenia, Tx: Anticoagulants (e.g., Warfarin, Heparin)
- Respiratory: Bronchoconstriction [Aspirin/Salicylates] / Asthma
- **Endocrine:** Hyper- or Hypoglycemia with Insulin and oral hypoglycemic drugs **[Aspirin]** / *Diabetes*Salicylate toxicity (damage to gastric mucosa) on steroid withdrawal **[Aspirin]** / *Steroid therapy*
- Reye's Syndrome in Children [Aspirin/Salicylates] / Viral infections in children or teenagers
- Increase in Plasma Urate [Low Doses of Aspirin/Salicylates] / Gout

All NSAIDs share a common mechanism of action \Rightarrow qualitatively **similar therapeutic and adverse effects.**

Acetaminophen: Pharmacodynamics

Mechanism of Action and Therapeutic Effects:

The exact **mechanism** or sites of action are **unknown**.

Proposed mechanisms: i) COX inhibition (COX-3, CNS neuronal COX?); ii) peripheral analgesic action, but inhibited by peroxides from leukocytes?;

iii) activation of spinal 5-HT pathways; iv) inhibition of nitric oxide synthase...

Compared with Aspirin:

- Anti-Pyretic EQUIVALENT POTENCY and EFFICACY
- Analgesic EQUIVALENT POTENCY and EFFICACY
- Anti-Inflammatory VERY WEAK
- Anti-Platelet NO EFFECT

CHEMICAL NAME:

N-acetyl-p-aminophenol

BRAND NAME:

Indications:

PARACETAMOL = ACETAMINOPHEN

- The antipyretic analgesic of choice when NSAIDs cannot be used due to contraindications
 - It does not reduce inflammation, but can be effective in treating pain resulting from it;
 - Aspirin and other NSAIDs are far superior for inflammatory conditions, e.g., pericoronitis.
- Post-operative dental pain (up to 3 g/day)
 - Aspirin and Acetaminophen are similarly effective in relieving pain after 3rd molar extraction
 - Most often used in combination with an opioid analgesic
- First-line therapy for osteoarthritis despite NSAIDs being more efficacious.
- The anti-pyretic of choice in children and teenagers (not associated with Reye's syndrome)

Adverse Effects - Toxic Effects (doses over 4 g/day):

High therapeutic index \Rightarrow rare side effects (neutropenia, thrombocytopenia). Allergy is rare (skin eruptions). **Overdose:** Liver damage (nausea, jaundice- days later), acute RENAL toxicity, analgesic nephropathy (chronic). **Alcohol:** CYP2E1 induction by alcohol $\Rightarrow \uparrow$ Phase 1 toxic metabolite; and glutathione depleted in alcoholics. Protective effect of simultaneous alcohol (CYP2E1 occupied by alcohol $\Rightarrow \downarrow$ toxic metabolite production); Greatest risk of hepatotoxicity after acute alcohol consumption (CYP2E1 induced and unoccupied by alcohol).