Guion IV: Compresión con pérdida conceptos: curva Tasa/Distorsión

Información sobre la entrega de la práctica

Las prácticas se entregarán en un único fichero comprimido Practica04ApellidoNombre.zip. El fichero contendrá:

- Las funciones de Matlab a realizar en ficheros .m con los nombres de las funciones que se indiquen en el guion.
- Los trozos de código a realizar, que se entregarán todos en los pasos correspondientes de un único fichero .m llamado Practica04ApellidoNombre.m . Este fichero lo crearás modificando el fichero .m Practica04MolinaRafael.m en el servidor.
- Las discusiones y respuestas solicitadas en el guion se entregarán en un único fichero pdf. El nombre del fichero será Practica04ApellidoNombre.pdf. Lo construirás editando Practica04MolinaRafael.doc y salvándolo en formato pdf.

Tasa-distorsión

Antes de comenzar, repasa el concepto de distorsión y entiende los conceptos de: error cuadrático medio, relación señal ruido en decibelios (dBs) y pico de la relación señal ruido en dBs que aparecen en el tema "Conceptos para la Compresión con Pérdida".

Un concepto importante al hablar de compresión con pérdida es la tasa-distorsión, donde la tasa se mide, por ejemplo, en número de bits por píxel, y la distorsión en error cuadrático medio.

Al comprimir con pérdida un conjunto de datos (una imagen, por ejemplo) se introduce una distorsión en los datos. Normalmente, a mayor compresión, mayor distorsión. Al comprimir un conjunto de datos se obtiene una pareja (tasa, distorsión). Si el conjunto de datos original se comprime, en diferentes ocasiones, modificando algún parámetro del modelo de compresión (por ejemplo, jpeg con diferentes parámetros de compresión), podemos crear una serie de parejas (tasa, distorsión), que se pueden representar gráficamente para crear una gráfica como la siguiente:

En esta gráfica, podemos ver la evolución de la distorsión con el número de bits. Así vemos que al crecer el número de bits crece el SNR (disminuye la distorsión). También vemos que el crecimiento no es lineal sino que a tasas de bits bajos el crecimiento del SNR es mucho más rápido que a tasas altas. También observamos que la curva parece no ser cóncava para tasas altas.

Estas gráficas también nos permiten comparar diferentes métodos de compresión. Por ejemplo, en la siguiente gráfica, figura 2, vemos la evolución de dos métodos de compresión diferentes sobre el mismo conjunto de datos:

Figura 2

Se puede observar que para tasas bajas el método representado en verde proporciona menor distorsión (mayor SNR) que el método en rojo. Visto desde otro punto de vista, para la misma distorsión, el método en verde necesita menos bits para representar la señal. Sin embargo, para tasas de bits altas (mayores de 3 bits/símbolo) el método en rojo mejora al verde. Además, estas curvas parecen no ser cóncavas.

Es importante que tengas en cuenta que en las dos gráficas anteriores hemos dibujado puntos (Tasa,SNR) y no (Tasa,Distorsión). Fíjate que cuanto mayor sea la SNR menor es la distorsión, la curva Tasa/Distorsión tiene la forma

Paso 1

Al observar las curvas anteriores surge una pregunta, ¿es posible que las líneas roja y verde de la segunda figura y la roja de la primera no sean cóncavas? ¿Si es posible, qué indican? Escribe y justifica tu respuesta en el paso 1 de PracticaO4ApellidoNombre.pdf.

Incluye tu respuesta aquí

Es posible que no sean cóncavas. En concreto, las del ejemplo, dejan de ser cóncavas para tasas altas. Esto quiere decir que necesitan un mayor número de bits para esos valores. A mayor número de bits, la distorsión disminuye, por lo que la SNR aumenta, dando como resultado una gráfica no cóncava.

Paso 2

En el paso 2 de Practica04ApellidoNombre.m escribe código Matlab para:

- leer la imagen sin comprimir bird.pgm,
- salvar la imagen bird.pgm usando JPEG variando el factor de calidad desde 5 a 100 en pasos de 5 (ver manual de imwrite). Llama a las imágenes comprimidas birdx.jpeg con x=5, 10, 15,...,100.
- mostrar en una ventana las 20 imágenes obtenidas.

Incluye en el paso 3 de Practica04ApellidoNombre.pdf la ventana que contiene las 20 imágenes. Examínalas con detenimiento y comenta brevemente su calidad.

Incluye tu respuesta aquí

La calidad de las imágenes va de menor (5) a mayor (100). Para menor calidad se obtiene mayor compresión, por lo que la imagen que menos ocupa es bird5.jpeg y la que más es bird100.jpeg.

Paso 4

En el paso 4 de Practica 04 Apellido Nombre. m escribe código Matlab para:

- calcular el espacio que ocupa en bits cada 8 bits del fichero original para cada fichero comprimido birdx.jpeg con x∈ {5,10,15,...,100}. Es decir, calcula la tasa.
- calcular la distorsión como error cuadrático medio entre las imágenes en bird.pgm y birdx.jpeg, x=5, 10, 15, 20,...,100.
- representar los puntos tasa/distorsión obtenidos.

Te será de utilidad la función dir.

Completa en el paso 5 de Practica04ApellidoNombre.pdf la siguiente tabla e incluye la curva tasa/distorsión que has obtenido en el paso anterior.

Incluye tus respuestas aquí

Imagen	Tasa	Distorsión		
bird5.jpeg	0.1864014	86.13794		
bird10.jpeg	0.2373040	39.99619		
bird15.jpeg	0.2795410	26.46747		
bird20.jpeg	0.3154297	20.49785		
bird25.jpeg	0.3527832	16.68388		
bird30.jpeg	0.3874512	14.41661		
bird35.jpeg	0.4193115	12.69067		
bird40.jpeg	0.4488525	11.60602		
bird45.jpeg	0.4814453	10.51474		
bird50.jpeg	0.5113525	9.637192		
bird55.jpeg	0.5388184	8.899490		
bird60.jpeg	0.5778809	8.169754		
bird65.jpeg	0.6275635	7.352264		
bird70.jpeg	0.6922607	6.519196		
bird75.jpeg	0.7760010	5.724167		
bird80.jpeg	0.9041748	4.823196		
bird85.jpeg	1.091187	3.866379		
bird90.jpeg	1.423218	2.811798		
bird95.jpeg	2.155640	1.596161		
bird100.jpeg	4.215088	0.09368896		

En el paso 6 de Practica04ApellidoNombre.m escribe código Matlab para:

- salvar la imagen bird.pgm usando JPEG2000 variando el factor de compresión 'CompressionRatio' en x∈ {40, 38, 36, 34, ..., 6, 4,2}. Llama a las imágenes comprimidas birdx.jp2 con x∈ {40, 38, 36, 34, ..., 6, 4,2}.
- mostrar en una ventana las 20 imágenes obtenidas.

Paso 7

Incluye en el paso 7 de Practica04ApellidoNombre.pdf la ventana que contiene las 20 imágenes que acabas de obtener. Examínalas con detenimiento y comenta brevemente su calidad.

Incluye tu respuesta aquí

En este caso la diferencia de calidad no es tan acentuada como en el caso de las imágenes de los pasos anteriores (jpeg), pero el tamaño de las imágenes sigue disminuyendo.

En el paso 8 de Practica04ApellidoNombre.m escribe código Matlab para:

- calcular el espacio que ocupa en bits cada 8 bits del fichero original para cada fichero comprimido birdx.jp2 con x∈ {40, 38, 36, 34, ..., 6, 4, 2}. Es decir, calcula la tasa.
- calcular la distorsión como error cuadrático medio entre las imágenes en bird.pgm y birdx.jp2, x∈ {40, 38, 36, 34, ..., 6, 4, 2}.
- representar los puntos tasa/distorsión obtenidos.

Te será de utilidad la función dir.

Paso 9

Completa en el paso 9 de Practica04ApellidoNombre.pdf la siguiente tabla e incluye la curva tasa/distorsión que has obtenido en el paso anterior.

Incluye tus respuestas aquí

Imagen	Tasa	Distorsión
bird40.jp2	0.2102051	16.07787
bird38.jp2	0.2197266	15.25677
bird36.jp2	0.2290039	14.45131
bird34.jp2	0.2440186	13.28276
bird32.jp2	0.2591553	12.21671

bird30.jp2	0.2729492 11.30623			
bird28.jp2	0.2952881	10.21249		
bird26.jp2	0.3043213	9.852234		
bird24.jp2	0.3371582	8.582962		
bird22.jp2	0.3658447	7.539917		
bird20.jp2	0.4091797	6.514191		
bird18.jp2	0.4530029	5.771332		
bird16.jp2	0.4995117	5.106918		
bird14.jp2	0.5347900	4.749557		
bird12.jp2	0.6442871	3.728180		
bird10.jp2	0.7714844	3.137268		
bird8.jp2	0.9365234	2.536942		
bird6.jp2	1.278564	1.770126		
bird4.jp2	1.938965	0.8827820		
bird2.jp2	3.142212	0.2653351		

Paso 10

En el paso 10 de Practica04ApellidoNombre.pdf, representa en un mismo gráfico las dos curvas obtenidas en los pasos 5 y 9 y analízalas. Completa la tabla adjunta

Incluye tus respuestas aquí

Imagen	Tasa	Distorsión	Imagen	Tasa	Distorsión
bird5.jpeg	0.1864014	86.13794	bird40.jp2	0.2102051	16.07787
bird10.jpeg	0.2373040	39.99619	bird38.jp2	0.2197266	15.25677
bird15.jpeg	0.2795410	26.46747	bird36.jp2	0.2290039	14.45131
bird20.jpeg	0.3154297	20.49785	bird34.jp2	0.2440186	13.28276
bird25.jpeg	0.3527832	16.68388	bird32.jp2	0.2591553	12.21671
bird30.jpeg	0.3874512	14.41661	bird30.jp2	0.2729492	11.30623
bird35.jpeg	0.4193115	12.69067	bird28.jp2	0.2952881	10.21249
bird40.jpeg	0.4488525	11.60602	bird26.jp2	0.3043213	9.852234
bird45.jpeg	0.4814453	10.51474	bird24.jp2	0.3371582	8.582962
bird50.jpeg	0.5113525	9.637192	bird22.jp2	0.3658447	7.539917
bird55.jpeg	0.5388184	8.899490	bird20.jp2	0.4091797	6.514191
bird60.jpeg	0.5778809	8.169754	bird18.jp2	0.4530029	5.771332
bird65.jpeg	0.6275635	7.352264	bird16.jp2	0.4995117	5.106918
bird70.jpeg	0.6922607	6.519196	bird14.jp2	0.5347900	4.749557
bird75.jpeg	0.7760010	5.724167	bird12.jp2	0.6442871	3.728180
bird80.jpeg	0.9041748	4.823196	bird10.jp2	0.7714844	3.137268
bird85.jpeg	1.091187	3.866379	bird8.jp2	0.9365234	2.536942
bird90.jpeg	1.423218	2.811798	bird6.jp2	1.278564	1.770126
bird95.jpeg	2.155640	1.596161	bird4.jp2	1.938965	0.8827820
bird100.jpeg	4.215088	0.0936889	bird2.jp2	3.142212	0.2653351

Paso 11

En el paso 11 de PracticaO4ApellidoNombre.pdf:

- muestra las figuras bird10.jpeg y bird34.jp2,
- incluye sus tasas y distorsiones,
- comenta y compara la calidad de ambas imágenes.

Incluye tus respuestas aquí

Tasa de bird10.jpeg: 0.2373047 / Distorsión de bird10.jpeg: 39.99619

Tasa de bird34.jp2: 0.2440186 / Distorsión de bird34.jp2: 13.28276

En este caso se está comparando una imagen comprimida con jpeg con baja calidad y una con jpeg2000 con alto factor de compresión. La imagen comprimida con jpeg tiene una calidad significativamente peor que la comprimida con jpeg2000, la cual es similar a la original (algo más borrosa). Únicamente por la calidad visual es preferible comprimir con jpeg2000 en este caso. Además, el tamaño de las imágenes es similar (1.95K para jpeg2000 y 1.89K para jpeg).

Paso 12

En el paso 12 de Practica04ApellidoNombre.pdf:

- muestra las figuras bird90.jpeg y bird6.jp2,
- incluye sus tasas y distorsiones,
- comenta y compara la calidad de ambas imágenes.

Incluye tus respuestas aquí

Tasa de bird90.jpeg: 1.423218 / Distorsión de bird90.jpeg: 2.811798

Tasa de bird6.jp2: 1.278564 / Distorsión de bird6.jp2: 1.770126

Este caso es opuesto al paso anterior. La imagen con jpeg se ha comprimido utilizando una mayor calidad y el factor de compresión para la imagen comprimida con jpeg2000 es relativamente bajo. Para esta imagen, el factor de compresión apenas varía la calidad de las imágenes resultado mientras que, la imagen comprimida con jpeg y alta calidad, se asemeja bastante a la original. Visualmente son similares. La distorsión es similar en ambos casos y el tamaño parecido (10.2K para jpeg2000 y 11.3K para jpeg) por lo que sigue siendo mejor comprimir con jpeg2000.