344.063/163 KV Special Topic:

Natural Language Processing with Deep Learning

N-gram Embeddings with Convolutional Neural Networks

Navid Rekab-Saz

navid.rekabsaz@jku.at

Institute of Computational Perception

Agenda

- N-Gram Embeddings with CNN
- CNN in practice
 - Document classification
 - From characters to word embedding
 - CNN in information retrieval models

Notation – recap

• $a \rightarrow scalar$

- $b \rightarrow \text{vector}$
 - i^{th} element of b is the scalar b_i
- $C \rightarrow \text{matrix}$
 - i^{th} vector of \boldsymbol{c} is \boldsymbol{c}_i
 - j^{th} element of the i^{th} vector of ${\bf C}$ is the scalar $c_{i,j}$
- Tensor: generalization of scalar, vector, matrix to any arbitrary dimension

Linear Algebra – Dot product

- $\mathbf{a} \cdot \mathbf{b}^T = c$
 - dimensions: $1 \times d \cdot d \times 1 = 1$

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = 5$$

- $a \cdot B = c$
 - dimensions: $1 \times d \cdot d \times e = 1 \times e$

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 5 & 2 \end{bmatrix}$$

- $A \cdot B = C$
 - dimensions: $I \times m \cdot m \times n = I \times n$

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 0 & 0 & 5 \\ 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ 3 & 2 \\ 5 & -5 \\ 8 & 13 \end{bmatrix}$$

 Pooling: element-wise operation on input vectors resulting to an output vector

- Pooling: element-wise operation on input vectors resulting to an output vector
- AvgPool: element-wise average of inputs

- Pooling: element-wise operation on input vectors resulting to an output vector
- AvgPool: element-wise average of inputs
- MaxPool: element-wise maximum of inputs

Agenda

N-Gram Embeddings with CNN

- CNN in practice
 - Document classification
 - From characters to word embedding
 - CNN in information retrieval models

N-gram embeddings

N-gram embeddings

Convolutional Neural Networks for NLP

- In many NLP models, we can benefit from the vectors which correspond to every sequence of input with a certain length
 - Like bi-gram, tri-gram, 4-gram embeddings

This lecture

- First part: How to create n-gram embeddings using Convolutional Neural Nets (CNNs)
- Second part: How to use these embeddings in different NLP models

CNNs

- CNNs are widely used to extract features from images
 - CNNs capture position-invariant patterns from the input data, where ...
 - the patterns are captured by a set of kernels
- Kernel (or filter)
 - A kernel is a set of parameters, ...
 - applied to every sequence of input values of a certain length ...
 - to create the output vector in respect to that sequence

CNNs

- CNNs are widely used to extract features from images
 - CNNs capture position-invariant patterns from the input data, where ...
 - the patterns are captured by a set of kernels
- Kernel (or filter)
 - A kernel is a set of parameters, ...
 - applied to every sequence of input values of a certain length ...
 - to create the output vector in respect to that sequence

Example: 2d Image data with Conv2d

Computing convolution

1×1	0×0	8×0	0	1
4×0	2×1	5×1	1	0
3×1	2×1	0×0	0	2
9	3	6	1	4
2	3	4	1	3

$$1 \times 1 + 0 \times 0 + 8 \times 0 + 4 \times 0 + 2 \times 1$$

+ $5 \times 1 + 3 \times 1 + 2 \times 1 + 0 \times 0 = 13$

Output (convolved feature)

```
13 ··· ··· ... ... ...
```

2-dimensional CNN (CONV2D) – 2d image with 1 input channel

$\frac{\text{Kernel size}}{3 \times 3}$

1 0 0 0 1 1 1 1 0

Computing convolution

Output channel

$$|C_{out}| = 1$$

2-dimensional CNN (CONV2D) – 2d image with 1 input channel

Kernel size 3×3

 $+5 \times 1 + 3 \times 1 + 2 \times 1 + 0 \times 0 = 13$

 $0 \times 1 + 8 \times 0 + 0 \times 0 + 2 \times 0 + 5 \times 1$ $+1 \times 1 + 2 \times 1 + 0 \times 1 + 0 \times 0 = 8$

Computing convolution


```
13
                • • •
```

2-dimensional CNN (CONV2D) – 2d image with 1 input channel

Kernel size 3×3

1 0 0 0 1 1 1 1 0

Computing convolution

$\frac{\text{Output channel}}{|C_{out}|} = 1$

```
13 8 ···
··· 11 ···
··· ·· ··
```

Calculate other values!

 $+1 \times 1 + 2 \times 1 + 0 \times 1 + 0 \times 0 = 8$

 $2 \times 1 + 5 \times 0 + 1 \times 0 + 2 \times 0 + 0 \times 1$ + $0 \times 1 + 3 \times 1 + 6 \times 1 + 1 \times 0 = 11$

2-dimensional CNN (CONV2D) - 2d image with 3 input channels

Input			<u>els (</u> =	-	RG	<u>iB)</u>	Kerr 3	nel s 3×3		Col	<u>mputin</u>	g conv	<u>olu</u>	<u>tion</u>			Outp <i>C</i>	ut ch	<u>rel</u>
$C_{in}^{(1)}$	1 4 3 9 2	0 2 2 3 3	8 5 0 6 4	0 1 0 1 1	1 0 2 4 3		1 0 1	0 1 1	0 1 0	1×1 4×0 3×1 9 2	0×0 2×1 2×1 3 3	8×0 5×1 0×0 6 4	!	1 0 2 4 3					
$C_{in}^{(2)}$	1 3 5 0	7 1 0 2 0	4 3 9 6 2	6 2 5 4 3	0 1 4 8 2		0 0 1	0 0 0	0 0 0	$ \begin{bmatrix} 1 \times 0 \\ 3 \times 0 \\ 5 \times 1 \\ 0 \\ 0 $	7×0 1×0 0×0 2 0	4×0 3×0 9×0 6 2	2	0 1 4 8 2	$C_{ou}^{(1)}$) ut	28 		
$C_{in}^{(3)}$	3 4 2 6 4	1 2 1 2 1	0 2 0 0 0	0 0 0 2 3	6 7 1 2 6		0 1 1	1 0 1	1 1 0	3×0 4×1 2×1 6 4	1×1 2×0 1×1 2 1	0×1 2×1 0×0 0	0 2 3	6 7 1 2 6					
										$0 + 8 \times 0 + 8 \times 0 + 4 \times 0$									

 $+ (3\times0 + 1\times1 + 0\times1 + 4\times1 + 2\times0 + 2\times1 + 2\times1 + 1\times1 + 0\times0)$ = 28

Parameters are shown in red

1-dimensional CNN (CONV1D) – towards language processing

$$\frac{\text{Input channels}}{|C_{in}| = 4}$$

$\frac{\text{Input channels}}{|C_{in}| = 4}$

Number of input channels $|C_{in}|$

dimension of word embedding.

Conv1d sees every dimension as a channel

Time / sequence

Embedding dimensions

$$\frac{\text{Input channels}}{|C_{in}| = 4}$$

$$\frac{\text{Kernel size}}{k = 3}$$

Computing convolution

$$\frac{\text{Output channel}}{|C_{out}| = 1}$$

w_i(j)
kernel weights for
jth input channel and
ith output channel

 $\frac{\text{Input channels}}{|C_{in}| = 4}$

 $\frac{\text{Kernel size}}{k = 3}$

w_i^(j)
 kernel weights for
 jth input channel and
 ith output channel

Computing convolution

1×1	0×0	8×0 0	1
1×0	7×0	4×0 6	0
3×0	1×1	0×1 0	6
4×1	2×0	1×1 0	2

 $(1\times1 + 0\times0 + 8\times0) + (1\times0 + 7\times0 + 4\times0) + (3\times0 + 1\times1 + 0\times1) + (4\times1 + 2\times0 + 1\times1) = 7$

$$\frac{\text{Output channel}}{|C_{out}|} = 1$$

$$C_{out}^{(1)}$$
 7 ... output sequence length = 3

$\frac{\text{Input channels}}{|C_{in}| = 4}$

$\frac{\text{Kernel size}}{k = 3}$

w_i(j)
kernel weights for
jth input channel and
ith output channel

Computing convolution

1×1 0×0	0 8×0 0 1
1×0 7×0	0 4×0 6 0
3×0 1×1	1 0×1 0 6
4×1 2×0	0 1×1 0 2

 $(1\times1 + 0\times0 + 8\times0) + (1\times0 + 7\times0 + 4\times0) + (3\times0 + 1\times1 + 0\times1) + (4\times1 + 2\times0 + 1\times1) = 7$

1 0×1 8×0	0×0 1
1 7×0 4×0	6×0 0
3 1×0 0×1	0×1 6
4 2×1 1×0	0×1 2

$$(0 \times 1 + 8 \times 0 + 0 \times 0) + (7 \times 0 + 4 \times 0 + 6 \times 0) + (1 \times 0 + 0 \times 1 + 0 \times 1) + (2 \times 1 + 1 \times 0 + 0 \times 1) = 2$$

$\frac{\text{Output channel}}{|C_{out}| = 1}$

$$C_{out}^{(1)}$$
 7 2 ...

output sequence length = 3

$\frac{\text{Input channels}}{|C_{in}| = 4}$

$$\frac{\text{Kernel size}}{k = 3}$$

w_i(j)
kernel weights for
jth input channel and
ith output channel

Computing convolution

1×1	0×0	8×0 0	1
1×0	7×0	4×0 6	0
[3×0	1×1	0×1 0	6
4×1	2×0	1×1 0	2

 $(1\times1 + 0\times0 + 8\times0) + (1\times0 + 7\times0 + 4\times0) + (3\times0 + 1\times1 + 0\times1) + (4\times1 + 2\times0 + 1\times1) = 7$

 $(0\times1+8\times0+0\times0)+(7\times0+4\times0+6\times0)+$ $(1\times0+0\times1+0\times1)+(2\times1+1\times0+0\times1)=2$

 $(8\times1 + 0\times0 + 1\times0) + (4\times0 + 6\times0 + 0\times0) + (0\times0 + 0\times1 + 6\times1) + (1\times1 + 0\times0 + 2\times1) = 17$

$\frac{\text{Output channel}}{|C_{out}| = 1}$

$$C_{out}^{(1)}$$
 7 2 17
output sequence length = 3

1-dimensional CNN in NLP – 1 output channel

$\frac{\text{Kernel size}}{k = 3}$

Computing convolution

$\frac{\text{Output channel}}{|C_{out}|} = 1$

*W_i*kernel weights forith output channel

Number of output channels $|C_{out}|$ = dimension of n-gram embeddings

1	0	8×1	0×0	1×0
1	7	4×0	6×0	0×0
3	1	0×0	0×1	6×1
4	2	1×1	0×0	2×1

N-gram embeddings

1-dimensional CNN in NLP – 2 output channels

$$\frac{\text{Input channels}}{|C_{in}| = 4}$$

$$\frac{\text{Kernel size}}{k = 3}$$

Output channels $|C_{out}| = 2$

W_i: kernel weights for ith output channel

N-gram embeddings

Other notions

Padding:

- adds zero vectors to the beginning and end of the sequence

Stride:

- The length of the steps over the sequence on which the convolutions are applied
- Default is 1

More notions with graphic:

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

N-gram embeddings

N-gram embeddings

Kernel size k = 3

0

0

0

0

Output channels $|C_{out}| = 2$

Informal formulation of the calculation in Conv1D:

 χ

Position *i*th of the output embedding corresponding to inputs x till x + k

multiplication

Bias term of the ith output channel

CNN – summary

- A model to capture patterns in local proximities, learnt through many (linear) kernels
 - Output embeddings are position-invariant
- In comparison with fully connected multi-layer perceptron, CNNs are highly parameter efficient
- NLP mostly uses Conv1D
 - in_channels is the dimension of input embeddings
 - out_channels is the dimension of output embeddings
 - kernel_size is the length of n-gram

CONV1D

[SOURCE]

Agenda

- N-Gram Embeddings with CNN
- CNN in practice
 - Document classification
 - From characters to word embedding
 - CNN in information retrieval models

- Pooling: element-wise operation on input vectors resulting to an output vector
- MaxPool: element-wise maximum of inputs

Document classification with CNNs

Steps:

- 1. Create unigram, bigram, trigram, etc. embeddings
- Apply pooling to merge embeddings of each n-gram over whole the sequence, resulting in several n-gram features
- Concatenate n-gram features as the final document feature (document embedding)

Another view of the same model

Why unigram embeddings?

What do we create unigram embeddings (k = 1)? ... can't we just use the original word embeddings?

Yes, we can, but ...

- Unigram CNN adds an extra neural network layer with very few additional parameters
- CNN with k = 1 applies the same parameters to all word embeddings (position invariant)
 - Unlike fully connected a feed forward layer which is position variant and adds a lot more parameters

Composing word embeddings from character embeddings

- Instead of predefined word vectors (static word embeddings),
 compose the embedding of a word from the embeddings of its characters
 - Define one vector for every character
 - The embedding matrix will be much smaller in comparison with the ones of word embeddings
 - Use CNNs to create a word embedding from its character embeddings
 - In the same way that we created a document embedding from word embeddings
 - Each CNN results in a character N-gram embedding

Word embeddings from character embeddings

Task: Language modeling

Figure 2: Plot of character n-gram representations via PCA for English. Colors correspond to: prefixes (red), suffixes (blue), hyphenated (orange), and all others (grey). Prefixes refer to character n-grams which start with the start-of-word character. Suffixes likewise refer to character n-grams which end with the end-of-word character.

Kim, Y., Jernite, Y., Sontag, D., & Rush, A. (2016, March). Character-aware neural language models. In *Proceedings of the AAAI conference on artificial intelligence* (Vol. 30, No. 1).

Word embeddings from character embeddings Task: part-of-speech tagging

Dos Santos, C., & Zadrozny, B. (2014, June). Learning character-level representations for part-of-speech tagging. In *International Conference on Machine Learning* (pp. 1818-1826). PMLR.

Kim, Y., Jernite, Y., Sontag, D., & Rush, A. (2016, March). Character-aware neural language models. In *Proceedings of the AAAI conference on artificial intelligence* (Vol. 30, No. 1).

CNN word embeddings from character embeddings

Pros:

- Overall, less parameters in comparison with static word embeddings
- This method resolves the difficulties of handling out-of-vocabularies (OOV)
- Semantic and syntactic regularities are transferred across words, which can benefit some words by providing better generalization

Cons:

- Achieving word embeddings require some computation (feedforward through the CNNs)
- Since every word is composed solely from character embeddings, the quality of some word embeddings might not be as good as static word embeddings

A neural information retrieval model

For details look at Natural Language Processing course - Lecture 6: Information Retrieval with Neural Networks: https://www.jku.at/en/institute-of-computational-perception/teaching/alle-lehrveranstaltungen/natural-language-processing/

Reference: Xiong, C., Dai, Z., Callan, J., Liu, Z., & Power, R. (2017). End-to-end neural ad-hoc ranking with kernel pooling. In *Proceedings of the 40th International ACM SIGIR conference on research and development in information retrieval*

The same model enhanced with n-gram embeddings

Dai, Z., Xiong, C., Callan, J., & Liu, Z. (2018). Convolutional neural networks for soft-matching n-grams in ad-hoc search. In *Proceedings of the eleventh ACM international conference on web search and data mining*