CS 2601 Linear and Convex Optimization

4. Convex functions (part 2)

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

Fall 2022

Outline

Properties of convex functions

Convexity-preserving operations

Global minima of convex functions

Theorem. Let f be a convex function defined over a convex set S. If $x^* \in S$ is a local minimum of f, then it is also a global minimum of f over S.

Proof. Suppose there exists $y \in S$ and $y \neq x^*$ s.t. $f(y) < f(x^*)$. For $\theta \in (0,1)$, let $x_\theta = \theta y + \bar{\theta} x^*$. Then

$$f(\mathbf{x}_{\theta}) \leq \theta f(\mathbf{y}) + \bar{\theta} f(\mathbf{x}^*) < \theta f(\mathbf{x}^*) + \bar{\theta} f(\mathbf{x}^*) = f(\mathbf{x}^*)$$

But $x_{\theta} \in S$ by convexity of S, and

$$\| \pmb{x}_{ heta} - \pmb{x}^* \| = \theta \| \pmb{x}^* - \pmb{y} \| o 0$$
 as $\theta o 0$

contradicting the assumption that x^* is a local minimum.

Note. This theorem does not assert the existence of a global minimum in general! It assumes the existence of a local minimum to start with.

Example. $f(x) = e^x$ has no global or local minimum over \mathbb{R} .

Global minima of convex functions (cont'd)

Theorem. Let f be a strictly convex function defined over a convex set S. If $x^* \in S$ is a global minimum of f, then it is unique.

Proof. Suppose there exists $y^* \in S$ and $y^* \neq x^*$ s.t. $f(y^*) = f(x^*)$. By strict convexity,

$$f\left(\frac{x^* + y^*}{2}\right) < \frac{1}{2}f(x^*) + \frac{1}{2}f(y^*) = f(x^*)$$

contradicting the global optimality of x^* .

Note. Strict convexity is a sufficient condition for unique global minimum, but it is **not** necessary!

Example. f(x) = |x| has a unique global minimum $x^* = 0$, but it is not strictly convex.

Note. Similar results hold for maxima of concave functions.

Sublevel sets

The α -sublevel set of a function f is

$$C_{\alpha} = \{ \boldsymbol{x} \in \text{dom} f : f(\boldsymbol{x}) \leq \alpha \}$$

Theorem. Sublevel sets of a convex function are convex.

Note. For concave f, superlevel set $\{x \in \text{dom} f : f(x) \ge \alpha\}$ is convex.

是对x而言的

Examples.

- Halfspace $H = \{x : w^T x \leq b\}$
- Norm ball $\bar{B}(x_0, r) = \{x : ||x x_0|| \le r\}$
- Ellipsoid $\mathcal{E} = \{x_0 + Au : ||u||_2 \le 1\}, A \in \mathbb{R}^{n \times n}, A \succ O$.

$$\mathcal{E} = \{ \boldsymbol{x} : f(\boldsymbol{x}) \le 1 \}, \quad f(\boldsymbol{x}) = \| \boldsymbol{A}^{-1}(\boldsymbol{x} - \boldsymbol{x}_0) \|_2^2 = (\boldsymbol{x} - \boldsymbol{x}_0)^T \boldsymbol{A}^{-2}(\boldsymbol{x} - \boldsymbol{x}_0)$$

Sublevel sets (cont'd)

The converse is not true. Nonconvex functions can have convex sublevel sets.

Example. $f(x) = \sqrt{|x|}$ is not convex, but its sublevel sets are all convex,

$$C_{\alpha} = \begin{cases} \emptyset, & \text{if } \alpha < 0 \\ [-\alpha^2, \alpha^2], & \text{if } \alpha \ge 0 \end{cases}$$

Example. $f(x) = -e^x$ is strictly concave. Its sublevel sets are all convex,

$$C_{\alpha} = \begin{cases} \emptyset, & \text{if } \alpha \geq 0 \\ [\log(-\alpha), \infty), & \text{if } \alpha < 0 \end{cases}$$

Question. Is the level set $\{x \in \text{dom} f : f(x) = \alpha\}$ convex?

Epigraph 上境图

Recall the graph of $f:S\subset\mathbb{R}^n\to\mathbb{R}$ is the set

$$\{(\boldsymbol{x},f(\boldsymbol{x}))\in\mathbb{R}^{n+1}:\boldsymbol{x}\in S\}$$

The epigraph¹ of f is

$$epi f = \{(x, y) \in \mathbb{R}^{n+1} : x \in S, y \ge f(x)\}$$

Note. f and its extended-value extension \tilde{f} have the same epigraph.

¹The prefix epi- means "above", "over".

Epigraph (cont'd)

充要条件

Theorem. $f:S\subset\mathbb{R}^n\to\mathbb{R}$ is a convex function iff $\mathrm{epi}f$ is a convex set.

Proof. " \Rightarrow ". Assume f is convex. Let $(x_1, y_1), (x_2, y_2) \in \text{epi} f$, $\theta \in [0, 1]$. Need to show $(\bar{x}, \bar{y}) \triangleq (\theta x_1 + \bar{\theta} x_2, \theta y_1 + \bar{\theta} y_2) \in \text{epi} f$.

- 1. f convex $\implies \bar{x} \in S$ and $f(\bar{x}) \leq \theta f(x_1) + \bar{\theta} f(x_2)$
- 2. $(\mathbf{x}_i, y_i) \in \text{epi} f \implies f(\mathbf{x}_i) \le y_i \implies \theta f(\mathbf{x}_1) + \bar{\theta} f(\mathbf{x}_2) \le \theta y_1 + \bar{\theta} y_2 = \bar{y}$
- 3. By 1 and 2, $\bar{x} \in S$ and $f(\bar{x}) \leq \bar{y} \implies (\bar{x}, \bar{y}) \in epif$

Epigraph (cont'd)

Proof (cont'd). " \Leftarrow ". Assume $\operatorname{epi} f$ is convex. Let $x_1, x_2 \in S$, $\theta \in [0, 1]$. Need to show $\bar{x} \triangleq \theta x_1 + \bar{\theta} x_2 \in S$ and $f(\bar{x}) \leq \theta f(x_1) + \bar{\theta} f(x_2) \triangleq \bar{y}$.

- 1. $f(x_i) \le f(x_i) \implies (x_i, f(x_i)) \in epi f$ by definition
- 2. $\operatorname{epi} f$ convex $\Longrightarrow (\bar{\boldsymbol{x}}, \bar{\boldsymbol{y}}) = \theta(\boldsymbol{x}_1, f(\boldsymbol{x}_1)) + \bar{\theta}(\boldsymbol{x}_2, f(\boldsymbol{x}_2)) \in \operatorname{epi} f$
- 3. $\bar{x} \in S$, $f(\bar{x}) \leq \bar{y} = \theta f(x_1) + \bar{\theta} f(x_2)$ by definition of epif

Note. The same proof shows the following result: the projection $\{x:(x,y)\in C \text{ for some } y\}$ of a convex set C is convex.

Epigraph (cont'd)

The first-order condition

$$f(\mathbf{x}) \ge f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0)$$

implies $y = f(x_0) + \nabla f(x_0)^T (x - x_0)$ is a supporting hyperplane of epif at $(x_0, f(x_0))$, i.e.

$$\begin{bmatrix} \nabla f(\mathbf{x}_0) \\ -1 \end{bmatrix}^T \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \le \begin{bmatrix} \nabla f(\mathbf{x}_0) \\ -1 \end{bmatrix}^T \begin{bmatrix} \mathbf{x}_0 \\ f(\mathbf{x}_0) \end{bmatrix}, \quad \forall (\mathbf{x}, \mathbf{y}) \in \text{epi} f$$

Jensen's inequality

For convex function f, x, $y \in \text{dom} f$, $\theta \in [0, 1]$

$$f(\theta x + \bar{\theta} y) \le \theta f(x) + \bar{\theta} f(y)$$

More generally, for $x_i \in \text{dom} f$, $\theta_i \geq 0$, and $\sum_{i=1}^m \theta_i = 1$,

$$f\left(\sum_{i=1}^{m}\theta_{i}\boldsymbol{x}_{i}\right)\leq\sum_{i=1}^{m}\theta_{i}f(\boldsymbol{x}_{i})$$

Example. $f(x) = x^2$ is convex over \mathbb{R} .

$$\left(\sum_{i=1}^{n} \frac{1}{n} x_{i}\right)^{2} \leq \sum_{i=1}^{n} \frac{1}{n} x_{i}^{2} \implies \frac{1}{n} \sum_{i=1}^{n} x_{i} \leq \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}}$$

Example. $f(x) = \log x$ is concave over $(0, \infty)$. For $x_i > 0$,

$$\log\left(\sum_{i=1}^n \frac{1}{n}x_i\right) \ge \sum_{i=1}^n \frac{1}{n}\log x_i \implies \frac{1}{n}\sum_{i=1}^n x_i \ge \sqrt[n]{\prod_{i=1}^n x_i}$$

Hölder's inequality Dual 对偶

Let $p, q \in (1, \infty)$ be conjugate exponents, i.e. $p^{-1} + q^{-1} = 1$. For $\mathbf{x} = (x_1, \dots, x_n)^T$, $\mathbf{y} = (y_1, \dots, y_n)^T$, Hölder's inequality holds,

$$\sum_{i=1}^{n} |x_i y_i| \le ||x||_p ||y||_q$$

Proof. Assume $x \neq \mathbf{0}, y \neq \mathbf{0}$; otherwise trivial. Let $\tilde{x} = x/\|x\|_p$ and $\tilde{y} = y/\|y\|_q$. The above inequality is equivalent to $\sum_{i=1}^n |\tilde{x}_i \tilde{y}_i| \leq 1$.

- 1. Show $x^{\frac{1}{p}}y^{\frac{1}{q}} \le \frac{1}{p}x + \frac{1}{q}y$ for $x, y \ge 0$.
 - ightharpoonup trivial if xy = 0
 - ▶ if xy > 0, $\log x$ is concave $\implies \log \left(\frac{1}{p}x + \frac{1}{q}y\right) \ge \frac{1}{p}\log x + \frac{1}{q}\log y$
- 2. Let $x = |\tilde{x}_i|^p$ and $y = |\tilde{y}_i|^q$ in the inequality in 1,

$$|\tilde{x}_i| \cdot |\tilde{y}_i| \le p^{-1} |\tilde{x}_i|^p + q^{-1} |\tilde{y}_i|^q$$

3. Sum over i and note $\|\tilde{\mathbf{x}}\|_p = \|\tilde{\mathbf{y}}\|_q = 1$,

$$\sum_{i=1}^{n} |\tilde{x}_{i}\tilde{y}_{i}| \leq \frac{1}{p} ||\tilde{x}||_{p}^{p} + \frac{1}{q} ||\tilde{y}||_{q}^{q} = \frac{1}{p} + \frac{1}{q} = 1$$

Minkowski's inequality

For 1 ,

$$||x + y||_p \le ||x||_p + ||y||_p$$

Proof. Only need to consider case $||x + y||_p > 0$.

- $\|\mathbf{x} + \mathbf{y}\|_p^p = \sum_i |x_i + y_i|^p \le \sum_i |x_i| \cdot |x_i + y_i|^{p-1} + \sum_i |y_i| \cdot |x_i + y_i|^{p-1}$
- Let $\frac{1}{p} + \frac{1}{q} = 1$. Applying Hölder's inequality and (p-1)q = p,

$$\sum_{i} |x_{i}| \cdot |x_{i} + y_{i}|^{p-1} \leq ||\mathbf{x}||_{p} \left(\sum_{i} |x_{i} + y_{i}|^{(p-1)q} \right)^{1/q} = ||\mathbf{x}||_{p} ||\mathbf{x} + \mathbf{y}||_{p}^{p/q}$$

- Interchanging x and y, $\sum_{i} |y_i| \cdot |x_i + y_i|^{p-1} \le ||\mathbf{y}||_p ||\mathbf{x} + \mathbf{y}||_p^{p/q}$
- Combining above inequalities,

$$||x + y||_p^p \le (||x||_p + ||y||_p)||x + y||_p^{p/q}$$

• Cancel $||x+y||_p^{p/q}$ and note p-p/q=1.

Outline

Properties of convex functions

Convexity-preserving operations

Convexity-preserving operations

nonnegative combinations

$$f(\mathbf{x}) = \sum_{i=1}^{m} c_i f_i(\mathbf{x})$$

composition with affine functions

$$f(\boldsymbol{x}) = g(\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b})$$

composition of convex/concave functions

$$f(\mathbf{x}) = \frac{\mathbf{h}}{\mathbf{h}}(g_1(\mathbf{x}), \dots, g_m(\mathbf{x}))$$

pointwise maximum/supremum

$$f(\mathbf{x}) = \sup_{i \in I} f_i(\mathbf{x})$$

partial minimization

$$f(\mathbf{x}) = \inf_{\mathbf{y} \in C} g(\mathbf{x}, \mathbf{y})$$

Nonnegative combinations

Proposition. Let $f_i: \mathbb{R}^n \to (-\infty, \infty]$, $i = 1, \dots, m$, be convex functions. Then for any $c_1, \dots, c_m \geq 0$, the function $f: \mathbb{R}^n \to (-\infty, \infty]$ defined by

$$f(\mathbf{x}) = \sum_{i=1}^{m} c_i f_i(\mathbf{x})$$

is convex, with $dom f = \bigcap_{i=1}^m dom f_i^2$.

Questions. Let f_1, f_2 be convex functions.

- $ls f_1 f_2$ convex?
- Is $f_1 \cdot f_2$ convex?
- Is $\frac{f_1}{f_2}$ convex?

²Often we require $dom f \neq \emptyset$ to preclude the trivial case $f(x) = \infty, \forall x$

Affine composition

Proposition. Let $g: \mathbb{R}^n \to (-\infty, \infty]$ be convex, $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^m$. Then $f: \mathbb{R}^m \to (-\infty, \infty]$ defined by

$$f(\boldsymbol{x}) = g(\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b})$$

is convex, with $dom f = \{x \in \mathbb{R}^m : Ax + b \in dom g\}$.

Example. f(x) = ||Ax - y|| is convex

Example. The following log-sum-exp function is convex

$$f(\mathbf{x}) = \log \left(\sum_{i=1}^{n} e^{\mathbf{w}_{i}^{T} \mathbf{x} + b_{i}} \right).$$

Take $g(\mathbf{y}) = \log(\sum_{i=1}^n e^{y_i})$ and $\mathbf{y} = (\mathbf{w}_1, \dots, \mathbf{w}_n)^T \mathbf{x} + \mathbf{b}$.

Example. $f(x_1, x_2) = (x_1 - 2x_2)^4 + 2e^{3x_1 + 2x_2 - 5}$ is convex. Take $g(y_1, y_2) = y_1^4 + 2e^{y_2}$ and $(y_1, y_2) = (x_1 - 2x_2, 3x_1 + 2x_2 - 5)$.

Scalar composition

Proposition. Consider $g: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R} \to \mathbb{R}$ and f(x) = h(g(x)).

- f is convex if h is convex and increasing, g is convex
- f is convex if h is convex and decreasing, g is concave
- f is concave if h is concave and increasing, g is concave
- f is concave if h is concave and decreasing, g is convex

Note. When h is increasing, f, h, g have the same convexity property. When h is decreasing, f, h, -g have the same convexity property. For n=1 and differentiable g and h, this can be seen from

$$f''(x) = h''(g(x))[g'(x)]^2 + h'(g(x))g''(x)$$

Proof of the first case. Let $x, y \in \mathbb{R}^n$, $\theta \in [0, 1]$.

- 1. $g \text{ convex} \implies g(\theta x + \bar{\theta} y) \le \theta g(x) + \bar{\theta} g(y)$
- 2. h increasing $\implies h \circ g(\theta x + \bar{\theta} y) \le h(\theta g(x) + \bar{\theta} g(y))$
- 3. $h \operatorname{convex} \implies h(\theta g(\mathbf{x}) + \bar{\theta} g(\mathbf{y})) \le \theta h(g(\mathbf{x})) + \bar{\theta} h(g(\mathbf{y}))$
- 4. 2 and 3 $\Longrightarrow f(\theta x + \bar{\theta} y) \leq \theta f(x) + \bar{\theta} f(y)$

Scalar composition (cont'd)

Example. $f(x) = e^{||x||}$ is convex for any norm $||\cdot||$. Take g(x) = ||x||, $h(x) = e^x$.

Example. $f(x) = ||x||^2$ is convex. Take g(x) = ||x||, $h(x) = x^2$ for $x \ge 0$ and h(x) = 0 for x < 0. (Can we take $h(x) = x^2$ here?)

Example. $f(x) = e^{x^T Q x}$ is convex if $Q \succeq O$. Take $g(x) = x^T Q x$, $h(x) = e^x$.

Note. When the domains of g and h are not the entire \mathbb{R}^n or \mathbb{R} , similar results hold for their extended-value extensions.

Note. When the conditions fail, we need case-by-case analysis.

Example. $g(x) = x^2$ is convex, $h(x) = e^{-x}$ is convex and decreasing, $f(x) = e^{-x^2}$ is neither convex nor concave.

Example. $g(x) = 1 + e^x$ and $h(x) = -\log x$ are convex, the extension \tilde{h} is decreasing, $f(x) = h(g(x)) = -\log(1 + e^x)$ is concave.

Vector composition

 $h: \mathbb{R}^m \to \mathbb{R}$ is increasing (decreasing) if

$$x \ge y$$
 (componentwise) $\implies h(x) \ge (\le)h(y)$

Proposition. Let $h:\mathbb{R}^m \to \mathbb{R}$, $g_i:\mathbb{R}^n \to \mathbb{R}$, $i=1,2,\ldots,m$, and define $f:\mathbb{R}^n \to \mathbb{R}$ by $f(\pmb{x}) = h(g_1(\pmb{x}),\ldots,g_m(\pmb{x}))$

- f is convex if h is convex and increasing, g_i are convex
- f is convex if h is convex and decreasing, g_i are concave
- f is concave if h is concave and increasing, g_i are concave
- f is concave if h is concave and decreasing, g_i are convex

Pointwise maximum

Proposition. If $f_i : \mathbb{R}^n \to (-\infty, \infty]$ be convex functions, i = 1, 2, ..., m. Then the pointwise maximum $f : \mathbb{R}^n \to (-\infty, \infty]$ defined by

$$f(\mathbf{x}) = \max_{1 \le i \le m} f_i(\mathbf{x})$$

is convex, with domain $dom f = \bigcap_{i=1}^{m} dom f_i$.

Proof. dom f is convex. Fix $x, y \in \text{dom } f$, $\theta \in [0, 1]$. For each i,

$$f_i(\theta x + \bar{\theta} y) \le \theta f_i(x) + \bar{\theta} f_i(y)$$
 by convexity of f_i
 $\le \theta f(x) + \bar{\theta} f(y)$ by definition of $f, f_i \le f$

Maximizing over i yields $f(\theta x + \bar{\theta} y) \leq \theta f(x) + \bar{\theta} f(y)$.

Pointwise maximum (cont'd)

Example. $f(\mathbf{x}) = \max_{1 \le i \le m} (\mathbf{w}_i^T \mathbf{x} + b_i)$ is convex and piecewise linear.

Special cases.

- Hinge function $(x)^+ = \max\{x, 0\}$
- •

$$f(\mathbf{x}) = \max\{x_1,\ldots,x_n\} = \max_{1 \leq i \leq n} \mathbf{e}_i^T \mathbf{x},$$

where e_i is *i*-th standard basis vector.

Question. Is
$$f(x) = \min_{1 \le i \le m} f_i(x)$$
 convex?

Pointwise supremum

Proposition. Let $f_i : \mathbb{R}^n \to (-\infty, \infty]$, $i \in I$, be convex functions. Then $f : \mathbb{R}^n \to (-\infty, \infty]$ defined by

$$f(\mathbf{x}) = \sup_{i \in I} f_i(\mathbf{x})$$

is convex.

Proof. Recall the intersection of convex sets is convex.

$$\mathrm{epi} f = \left\{ (\boldsymbol{x}, y) : y \ge f(\boldsymbol{x}) = \sup_{i \in I} f_i(\boldsymbol{x}) \right\} = \bigcap_{i \in I} \{ (\boldsymbol{x}, y) : y \ge f_i(\boldsymbol{x}) \} = \bigcap_{i \in I} \mathrm{epi} f_i$$

Example. Given $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^m$,

$$\phi(\boldsymbol{\lambda}) = \sup_{\boldsymbol{x} \in \mathbb{R}^n} \{ f(\boldsymbol{x}) + \boldsymbol{\lambda}^T \boldsymbol{g}(\boldsymbol{x}) \}$$

is convex, since $\phi_x(\lambda) \triangleq f(x) + \lambda^T g(x)$ is affine in λ for fixed $x \in \mathbb{R}^n$.

Partial minimization

Proposition. If $g: \mathbb{R}^n \times \mathbb{R}^m \to (-\infty, \infty]$ is convex, and $\emptyset \neq C \subset \mathbb{R}^m$ is convex, then f defined below is convex provided $f(x) > -\infty$ for all x,

$$f(\mathbf{x}) = \inf_{\mathbf{y} \in C} g(\mathbf{x}, \mathbf{y})$$

Note $\operatorname{dom} f$ is the projection of $\operatorname{dom} g \cap (\mathbb{R}^n \times C)$ onto the x coordinates.

$$\mathrm{dom} f = \{ oldsymbol{x} \in \mathbb{R}^n : g(oldsymbol{x}, oldsymbol{y}) < \infty \text{ for some } oldsymbol{y} \in C \}$$

= $\{ oldsymbol{x} \in \mathbb{R}^n : (oldsymbol{x}, oldsymbol{y}) \in \mathrm{dom} \, g \text{ for some } oldsymbol{y} \in C \}$

Partial minimization (cont'd)

Partial Minimization (cont'd)

Proof of proposition. Let $x_1, x_2 \in \text{dom} f$ and $\theta \in [0, 1]$.

1. By definition of f, for any $\epsilon > 0$, there exists $y_i \in C$ s.t.

$$g(\mathbf{x}_i, \mathbf{y}_i) < f(\mathbf{x}_i) + \epsilon, \quad i = 1, 2$$

2. By convexity of g and C, $\theta y_1 + \bar{\theta} y_2 \in C$, and

$$\begin{split} f(\theta \pmb{x}_1 + \bar{\theta} \pmb{x}_2) &= \inf_{\pmb{y} \in C} g(\theta \pmb{x}_1 + \bar{\theta} \pmb{x}_2, \pmb{y}) \\ &\leq g(\theta \pmb{x}_1 + \bar{\theta} \pmb{x}_2, \theta \pmb{y}_1 + \bar{\theta} \pmb{y}_2) & \theta \pmb{y}_1 + \bar{\theta} \pmb{y}_2 \in C \\ &\leq \theta g(\pmb{x}_1, \pmb{y}_1) + \bar{\theta} g(\pmb{x}_2, \pmb{y}_2) & g \text{ is convex} \\ &< \theta [f(\pmb{x}_1) + \epsilon] + \bar{\theta} [f(\pmb{x}_2) + \epsilon] & \text{by step 1} \\ &= \theta f(\pmb{x}_1) + \bar{\theta} f(\pmb{x}_2) + \epsilon \end{split}$$

3. Since ϵ is arbitrary,

$$f(\theta x_1 + \bar{\theta} x_2) \le \theta f(x_1) + \bar{\theta} f(x_2)$$

so f is convex

Partial minimization (cont'd)

Example. Distance to convex set is convex, $\operatorname{dist}(x,C) = \inf_{y \in C} \|x - y\|$

