**∓** 

# III NIFTY50 SMA Crossover Strategy – Project Summary

This notebook provides a concise summary of the NIFTY50 trading strategy project. It covers the entire pipeline from data collection to strategy evaluation using a simple moving average (SMA) crossover approach.



To analyze the performance of a basic SMA crossover trading strategy on NIFTY50 stocks and evaluate its effectiveness using key metrics like return, Sharpe ratio, and drawdown.

#### Project Structure

- 01\_data\_collection.ipynb: Fetches historical stock data for NIFTY50 from Yahoo Finance.
- 02\_feature\_engineering.ipynb: Computes SMA features and prepares the data for strategy signals.
- 03\_strategy\_backtesting.ipynb: Runs backtests and generates performance metrics.
- 04\_strategy\_visualization.ipynb: Visualizes performance of top/bottom stocks.
- 05\_project\_summary.ipynb: (this notebook) summarizes the entire project for review.

All results are saved in results/strategy\_results.csv.

```
import pandas as pd

# Load results
results = pd.read_csv("/content/drive/MyDrive/algo_trading_project/results/strategy_results.csv")
results.sort_values("Total Return", ascending=False).head(10)
```

|    | Ticker        | Final Value | Total Return | Sharpe Ratio | Max Drawdown |
|----|---------------|-------------|--------------|--------------|--------------|
| 1  | SBIN.NS       | 2.777390    | 1.344409     | 0.698511     | -0.594925    |
| 0  | BHARTIARTL.NS | 2.840949    | 1.326869     | 0.734163     | -0.333453    |
| 18 | AXISBANK.NS   | 1.000000    | 0.000000     | NaN          | 0.000000     |
| 19 | MARUTI.NS     | 1.000000    | 0.000000     | NaN          | 0.000000     |
| 3  | HDFCBANK.NS   | 0.926504    | -0.062100    | -0.153160    | -0.146729    |
| 2  | TCS.NS        | 0.876421    | -0.083366    | -0.111546    | -0.287399    |
| 12 | NESTLEIND.NS  | 0.801805    | -0.212540    | -0.689623    | -0.213322    |
| 4  | TITAN.NS      | 0.638969    | -0.299463    | -0.229352    | -0.687201    |
| 5  | HINDUNILVR.NS | 0.594784    | -0.364563    | -0.274958    | -0.593850    |
| 15 | SUNPHARMA.NS  | 0.552959    | -0.545230    | -0.743392    | -0.471757    |

## Top Performing Stocks (by Total Return)

```
import matplotlib.pyplot as plt

top_stocks = results.sort_values("Total Return", ascending=False).head(5)

plt.figure(figsize=(10, 5))
plt.bar(top_stocks["Ticker"], top_stocks["Total Return"], color="green")
plt.title("Top 5 Stocks by Strategy Return")
plt.ylabel("Total Return")
plt.grid(True)
plt.show()
```



### Worst Performing Stocks

```
worst_stocks = results.sort_values("Total Return").head(5)

plt.figure(figsize=(10, 5))
plt.bar(worst_stocks["Ticker"], worst_stocks["Total Return"], color="red")
plt.title("Bottom 5 Stocks by Strategy Return")
plt.ylabel("Total Return")
plt.grid(True)
plt.show()
```



## Strategy Highlights

- Best stock: BHARTIARTL.NS with over 130% return
- X Worst stock: LT.NS with -120% return
- $\land$  Overall, the SMA crossover strategy underperformed on most NIFTY50 stocks
- Suggests potential for improvement with hybrid or ML-based signal generation

### Next Steps & Improvements

- Tune SMA window sizes dynamically per stock
- Add transaction costs and slippage to the backtest
- Try alternative strategies (RSI, Bollinger Bands, MACD)

• Explore ML-based classification for signal prediction



#### ★ Conclusion

This project shows how even a simple rule-based trading strategy can be tested, validated, and iterated over with structured experimentation. Ideal for portfolio inclusion when applying for roles in quant research, trading, or data-driven finance.