M110C Week 2

Goals:

Recap, warm-up.

Equations of Lines in Space.

Cross Product revisited.

Matrix Determinants

Properties

Equations of Planes in Space.

Distance Between Point and Plane.

Distance Between Point and Line.

Distance Between Two Skew Lines.

Practice Problems (OpenStax Sec 2.5; Stewart, Sec 12.5).

Recap and Warm Up.

What did we see last week?

Vectors: Magnitude, Direction; Arithmetic.

Dot Product.

$$< v_1, v_2, v_3 > \cdot < u_1, u_2, u_3 >$$

= $v_1 u_1 + v_2 u_2 + v_3 u_3$

What's this good for?

Angles between vectors!

Projections!
$$proj_{u}(v) = \frac{u \cdot v}{u \cdot u}u$$

$$\mathbf{proj_uv} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}|^2} \mathbf{u} = \left(\frac{\mathbf{u}}{|\mathbf{u}|} \cdot \mathbf{v}\right) \frac{\mathbf{u}}{|\mathbf{u}|} = (\hat{\mathbf{u}} \cdot \mathbf{v})\hat{\mathbf{u}}$$

Cross Product.

$$\mathbf{u} \times \mathbf{v} = \langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle$$

What's this good for?

The cross product gives a vector that is perpendicular to both of the factors.

Here
$$A(-4,5,1)$$

 $B(-3, -3,3), C(3,2,5)$

$$\overrightarrow{AC} = \mathbf{c} - \mathbf{a} = \langle 3,2,5 \rangle - \langle -4,5,1 \rangle = \langle 7, -3,4 \rangle$$

 $\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \langle -3, -3,3 \rangle - \langle -4,5,1 \rangle = \langle 1, -8,2 \rangle$

1. Compute projections $\overrightarrow{proj}_{\overrightarrow{AC}}(\overrightarrow{AB})$, $\overrightarrow{proj}_{\overrightarrow{AB}}(\overrightarrow{AC})$

2. Find a vector $\overrightarrow{\mathbf{w}}$ perpendicular to both \overrightarrow{AB} and \overrightarrow{AC} .

Warm Up, pg 2. A(-4,5,1), B(-3,-3,3), C(3,2,5)

THE THE PROPERTY AND THE PROPERTY OF THE PARTY OF THE PAR

Link: Projections

$$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \langle 1, -8, 2 \rangle$$

$$\overrightarrow{AC} = \mathbf{c} - \mathbf{a} = <7, -3,4>$$

$$\mathbf{proj}_{\overrightarrow{AC}}(\overrightarrow{AB}) = \left(\frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\overrightarrow{AC} \cdot \overrightarrow{AC}}\right) \overrightarrow{AC}$$
$$= \frac{39}{74} < 7, -3,4 >$$
$$\approx < 3.69, -1.58, 2.11 >$$

1. Compute projections $\overrightarrow{proj}_{\overrightarrow{AC}}(\overrightarrow{AB})$, $\overrightarrow{proj}_{\overrightarrow{AB}}(\overrightarrow{AC})$

2. Find a vector \mathbf{w} perpendicular to both \overrightarrow{AB} and \overrightarrow{AC} .

$$\mathbf{proj}_{\overrightarrow{AB}}(\overrightarrow{AC}) = \left(\frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\overrightarrow{AB} \cdot \overrightarrow{AB}}\right) \overrightarrow{AB}$$

$$=\frac{39}{69}<1,-8,2>$$

$$\approx$$
 < 0.57, -4.52, 1.13 >

2. A vector perpendicular to both $\mathbf{u} = \overrightarrow{AB}$ and $\mathbf{v} = \overrightarrow{AC}$ is

$$\mathbf{w} = \mathbf{u} \times \mathbf{v} = \langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle$$

$$= < -8 \cdot 4 - 2 \cdot (-3), 2 \cdot 7 - 1 \cdot 4, 1 \cdot (-3) - (-8) \cdot 7 >$$

$$=$$
 < $-26,10,53$ >

check perpendicularity using the dot product.

(the dot products of w with u and v should be 0.)

$$\mathbf{w} \cdot \mathbf{u} = \langle -26,10,53 \rangle \cdot \langle 1,-8,2 \rangle$$

$$= -26 - 80 + 106 = 0$$
 check!

$$\mathbf{w} \cdot \mathbf{v} = \langle -26, 10, 53 \rangle \cdot \langle 7, -3, 4 \rangle$$

$$= -182 - 30 + 212 = 0$$
 check!

Equations of Lines in Space, pg 1: 3D addition.

The geometry of arithmetic that we saw in 2D also works in 3D.

Link: <u>3DVectorArithmetic</u>

$$\mathbf{u} = \langle 3,3,3 \rangle$$
 $\mathbf{v} = \langle -3, -1,1 \rangle$
 $\mathbf{u} + \mathbf{v} = \langle 0,2,4 \rangle$
 $\mathbf{u} - \mathbf{v} = \langle 6,4,2 \rangle$

Notes: 1. Thinking of vectors as displacement...

 $\mathbf{u} + \mathbf{v}$ is the net displacement of \mathbf{u} and \mathbf{v} .

 $\mathbf{u} - \mathbf{v}$ is the vector from the terminal point of \mathbf{v} to the terminal point of \mathbf{u} ;

 $\boldsymbol{u}-\boldsymbol{v}$ is the displacement needed to get from the terminal point of \boldsymbol{v} to the terminal point of \boldsymbol{u}

2. Scalar multiplication, $k\mathbf{u}$, stretches \mathbf{u} if k > 1, shrinks \mathbf{u} if 0 < k < 1, and flips \mathbf{u} if k < 0.

3. The x,y and z axes are oriented by the right hand rule.

Link: wikimediacommons

Equations of Lines in Space, pg 2: Making a Line.

We can get a line by adding all multiples of one vector to another.

Example. $\mathbf{u} = < 3,3,3 >$, $\mathbf{v} = < -3, -1,1 >$

Equations of Lines in Space, pg 3.

We can describe a line in space algebraically like this:

$$\mathbf{L}(t) = \mathbf{v} + t\mathbf{u}$$

With the initial point of \mathbf{v} at the origin, $\mathbf{L}(t)$ is the line that goes through the terminal point of \mathbf{v} , and that goes parallel to \mathbf{u} .

In our example,
$$\mathbf{u} = < 3,3,3 >$$
, $\mathbf{v} = < -3,-1,1 >$

$$\mathbf{L}(t) = \langle -3, -1, 1 \rangle + t \langle 3, 3, 3 \rangle$$

$$= \langle -3, -1, 1 \rangle + \langle 3t, 3t, 3t \rangle$$

$$= \langle -3 + 3t, -1 + 3t, 1 + 3t \rangle$$

You can express this with some scalar equations:

$$x(t) = -3 + 3t$$
$$y(t) = -1 + 3t$$
$$z(t) = 1 + 3t$$

You can also express this with *symmetric equations*, by expressing t in terms of x, y and z.

$$t = \frac{x+3}{3} = \frac{y+1}{3} = \frac{z-1}{3}$$

Note that the same line can be described with many different vectors **u**

For example, the line through the point (-3, -1,1) which is parallel to the vector $\mathbf{w} = \langle 1,1,1 \rangle$ has the exact same points on it as our line $\mathbf{L}(t)$

...but its algebraic description is different:

$$\mathbf{K}(t) = \langle -3, -1, 1 \rangle + t \langle 1, 1, 1 \rangle$$
$$= \langle -3 + t, -1 + t, 1 + t \rangle$$

 $\mathbf{K}(t)$ achieves the exact same points at $\mathbf{L}(t)$ does, but at different times!

e.g.
$$< 0.2.4 >= L(1) = K(3)$$

Also, the same line could be described with a different starting point.

$$\mathbf{Q}(t) = \langle 0,2,4 \rangle + t \langle 1,1,1 \rangle$$

 ${f Q}$ describes the same line as ${f L}$ and ${f K}$.

Equations of Lines in Space, pg 4.

Try these. Find the equation of the line which ...

- 1. (S12.5 #2) ... goes through the point (6,5, -2) and is parallel to the vector $1\mathbf{i} + 3\mathbf{j} 2/3\mathbf{k} = <1,3, -2/3>$. (recall $\mathbf{i} = <1,0,0>$, $\mathbf{j} = <0,1,0>$, $\mathbf{k} = <0,0,1>$)
- 2. (S12.5 #4) ... goes through the point (0,14,-10) and parallel to the line given by x=-1+2t, y=6-3t, z=3+9t.
- 3. (OX2.5 #246)
- ... goes through the points (7, -2, 6) and (-3, 0, 6).
- 1. $\mathbf{L}(t) = \mathbf{v} + t\mathbf{u}$

$$L(t) = \langle 6,5, -2 \rangle + t \langle 1,3, -2/3 \rangle$$

$$= \langle 6+t,5+3t, -2-2t/3 \rangle$$

$$x = 6+t$$

$$y = 5+3t$$

$$z = -2-2t/3$$

$$t = x-6 = \frac{y-5}{3} = \frac{-3(z+2)}{2}$$

2.
$$L(t) = \langle 0,14, -10 \rangle + t \langle 2, -3,9 \rangle$$

$$= \langle 2t, 14 - 3t, -10 + 9t \rangle$$

$$x = 2t$$

$$y = 14 - 3t$$

$$z = -10 + 9t$$

$$t = \frac{x}{2} = \frac{14 - y}{3} = \frac{z + 10}{9}$$

3.
$$\mathbf{v} = \langle 7, -2, 6 \rangle$$

 $\mathbf{u} = \langle -3, 0, 6 \rangle - \langle 7, -2, 6 \rangle$
 $= \langle -10, 2, 0 \rangle$
 $\mathbf{L}(t) = \langle 7, -2, 6 \rangle + t \langle -10, 2, 0 \rangle$
 $x = 7 - 10t$
 $y = -2 + 2t$
 $z = 6$
 $t = \frac{x - 7}{-10} = \frac{y + 2}{2}$; $z = 6$

Matrices, pg 1.

Here's a 2x2 matrix:

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

where $a_{ij} \in \mathbf{R}$

The determinant of a 2x2 matrix is

$$\det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Example.

$$\det\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} = (1)(1) - (2)(1) = -1$$

Here's a 3x3 matrix:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \text{ where } a_{ij} \in \mathbf{R}$$

The determinant of a 3x3 matrix is $\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \dots$

$$\dots = a_{11} \det \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} - a_{12} \det \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} + a_{13} \det \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$$

Example.

$$\det \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \dots$$

$$= 1 \det \begin{pmatrix} 5 & 6 \\ 8 & 9 \end{pmatrix} - 2 \det \begin{pmatrix} 4 & 6 \\ 7 & 9 \end{pmatrix} + 3 \det \begin{pmatrix} 4 & 5 \\ 7 & 8 \end{pmatrix}$$
$$= 1(-3) - 2(-6) + 3(-3) = 0$$

Regarding Notation. You may also see this for a determinant:

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Matrices, pg 2. Cross Product.

We can use the 3x3 determinant concept to compute cross products of vectors.

$$\mathbf{u} = \langle u_1, u_2, u_3 \rangle$$

 $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$

$$\dots = \mathbf{i} \det \begin{pmatrix} u_2 & u_3 \\ v_2 & v_3 \end{pmatrix} - \mathbf{j} \det \begin{pmatrix} u_1 & u_3 \\ v_1 & v_3 \end{pmatrix} + \mathbf{k} \det \begin{pmatrix} u_1 & u_2 \\ v_1 & v_2 \end{pmatrix}$$

$$= \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix} \quad \begin{array}{l} \leftarrow \text{Concise} \\ \text{formula} \\ \text{for } \mathbf{u} \times \mathbf{v} \end{array}$$

Last week we computed a cross product like this:

$$\mathbf{u} \times \mathbf{v} = \langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle$$

$$= (u_2 v_3 - u_3 v_2) \langle 1, 0, 0 \rangle$$

$$-(u_1 v_3 - u_3 v_1) \langle 0, 1, 0 \rangle$$

$$+(u_1 v_2 - u_2 v_1) \langle 0, 0, 1 \rangle$$

$$= (u_2 v_3 - u_3 v_2) \mathbf{i}$$

$$-(u_1 v_3 - u_3 v_1) \mathbf{j}$$

$$+(u_1 v_2 - u_2 v_1) \mathbf{k}$$

(Each of these components can be expressed as a 2x2 determinant....)

Example 1.
$$\mathbf{u} = < 1,1,2 >$$
 $\mathbf{v} = < -1,1,1 >$

$$\mathbf{u} \times \mathbf{v} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix}$$

$$= \mathbf{i} \det \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} - \mathbf{j} \det \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} + \mathbf{k} \det \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

=
$$\mathbf{i}(-1) - \mathbf{j}(3) + \mathbf{k}(2)$$

= $< -1, -3, 2 >$

= $\mathbf{i}(-1) - \mathbf{j}(3) + \mathbf{k}(2)$ remember the cross product should be perpendicular to both of the factors u, v.

check:
$$< -1, -3,2 > \cdot \mathbf{u} = 0$$
 check! $< -1, -3,2 > \cdot \mathbf{v} = 0$ check!

Matrices, pg 3. Cross Product Examples.

Example2.

$$\mathbf{u} = \langle -1, 2, -3 \rangle,$$
 $\mathbf{v} = \langle 1, 4, 1 \rangle$

$$\mathbf{u} \times \mathbf{v} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & -3 \\ 1 & 4 & 1 \end{pmatrix}$$

$$= \mathbf{i}(14) - \mathbf{j}(2) + \mathbf{k}(-6)$$

$$\mathbf{c} = \langle 1, -1, 1 \rangle$$

$$4. \quad \mathbf{a} \times (\mathbf{b} + \mathbf{c}) = ?$$

$$1. \quad \mathbf{a} \times \mathbf{b} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 2 & 1 & 0 \end{pmatrix}$$

$$2. \quad (2\mathbf{a}) \times \mathbf{b} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 4 & 6 \\ 2 & 1 & 0 \end{pmatrix}$$

= < 14, -2, -6 >

Example 3.

$$\mathbf{u} = \langle 2, 1, -3 \rangle,$$

$$\mathbf{v} = \langle -4, -2, 6 \rangle$$

$$\mathbf{u} \times \mathbf{v} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & -3 \\ -4 & -2 & 6 \end{pmatrix}$$

$$\mathbf{a} \times \mathbf{c} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 1 & -1 & 1 \end{pmatrix}$$

$$\mathbf{a} \times \mathbf{c} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 3 & 0 & 1 \end{pmatrix}$$

$$\mathbf{a} \times \mathbf{c} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 1 & -1 & 1 \end{pmatrix}$$

$$\mathbf{a} \times \mathbf{c} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 1 & -1 & 1 \end{pmatrix}$$

$$\mathbf{c} \times \mathbf{c} = \mathbf{c} \times \mathbf{c} \times \mathbf{c} \times \mathbf{c}$$

$$\mathbf{c} \times \mathbf{c} = \mathbf{c} \times \mathbf{c} \times \mathbf{c} \times \mathbf{c} \times \mathbf{c} \times \mathbf{c} \times \mathbf{c}$$

= < 0.0.0 >

Compute some Cross Product.

$$\mathbf{a} = \langle 1,2,3 \rangle$$
 $\mathbf{b} = \langle 2,1,0 \rangle$
 $\mathbf{c} = \langle 1,-1,1 \rangle$

1.
$$\mathbf{a} \times \mathbf{b} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 2 & 1 & 0 \end{pmatrix}$$

$$= < -3,6, -3 >$$

= $-3 < 1, -2,1 >$

3.
$$\mathbf{a} \times \mathbf{c} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 1 & -1 & 1 \end{pmatrix}$$

$$= \langle 5, 2, -3 \rangle$$

1.
$$\mathbf{a} \times \mathbf{b} = ?$$
2. $(2\mathbf{a}) \times \mathbf{b} = ?$
3. $\mathbf{a} \times \mathbf{c} = ?$

$$(2\mathbf{a}) \times \mathbf{b} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 4 & 6 \\ 2 & 1 & 0 \end{pmatrix}$$
$$= \langle -6, 12, -6 \rangle$$
$$= -6 \langle 1, -2, 1 \rangle$$
$$= 2(\mathbf{a} \times \mathbf{b})$$

4.
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 3 & 0 & 1 \end{pmatrix}$$

$$= \langle 2, 8, -6 \rangle$$

$$= 2 \langle 1, 4, -3 \rangle$$

$$= \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

Properties of Cross Product, pg1.

$$\mathbf{u} \times \mathbf{v} = \langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle$$

$$\mathbf{u} \times \mathbf{v} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$$

1.
$$\mathbf{v} \times \mathbf{u} = -\mathbf{u} \times \mathbf{v}$$

2.
$$k\mathbf{u} \times \mathbf{v} = k(\mathbf{u} \times \mathbf{v}) = \mathbf{u} \times k\mathbf{v}$$
 for all $k \in \mathbf{R}$

$$3. \mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$$

$$4. \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$$

5.
$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$$

6.
$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin(\theta)$$
 where

 θ is the angle between \mathbf{u} and \mathbf{v} .

6.5
$$\mathbf{u} \times \mathbf{v} = 0$$
 exactly when $\mathbf{v} = k\mathbf{u}$ for some $k \in \mathbf{R}$, i.e. when \mathbf{u} and \mathbf{v} are parallel.

Regarding property 6:

$$|\mathbf{u}|^{2}|\mathbf{v}|^{2}\sin^{2}(\theta) =$$

$$|\mathbf{u}|^{2}|\mathbf{v}|^{2}(1-\cos^{2}(\theta)) =$$

$$|\mathbf{u}|^{2}|\mathbf{v}|^{2} - (\mathbf{u} \cdot \mathbf{v})^{2} =$$

$$(u_{1}^{2} + u_{2}^{2} + u_{3}^{2}) \cdot (v_{1}^{2} + v_{2}^{2} + v_{3}^{2}) - (u_{1}v_{1} + u_{2}v_{2} + u_{3}v_{3})^{2} =$$

$$u_{1}^{2}v_{1}^{2} + u_{1}^{2}v_{2}^{2} + u_{1}^{2}v_{3}^{2} +$$

$$u_{2}^{2}v_{1}^{2} + u_{2}^{2}v_{2}^{2} + u_{2}^{2}v_{3}^{2} +$$

$$u_{3}^{2}v_{1}^{2} + u_{3}^{2}v_{2}^{2} + u_{3}^{2}v_{3}^{2} +$$

$$-(u_{1}^{2}v_{1}^{2} + u_{2}^{2}v_{2}^{2} + u_{3}^{2}v_{3}^{2} +$$

$$-(u_{1}^{2}v_{1}^{2} + u_{2}^{2}v_{2}^{2} + u_{3}^{2}v_{3}^{2} +$$

$$-(u_{1}^{2}v_{1}^{2} + u_{2}^{2}v_{2}^{2} + u_{3}^{2}v_{3}^{2} +$$

$$u_{2}^{2}v_{3}^{2} - 2u_{1}u_{3}v_{1}v_{3} + 2u_{1}u_{2}v_{1}v_{2}) =$$

$$u_{2}^{2}v_{3}^{2} - 2u_{1}u_{3}v_{1}v_{3} + u_{1}^{2}v_{3}^{2} +$$

$$u_{3}^{2}v_{1}^{2} - 2u_{1}u_{3}v_{1}v_{3} + u_{1}^{2}v_{3}^{2} +$$

$$u_{1}^{2}v_{2}^{2} - 2u_{1}u_{2}v_{1}v_{2} + u_{2}^{2}v_{1}^{2}$$

$$= (u_{2}v_{3} - u_{3}v_{2})^{2} + (u_{3}v_{1} - u_{1}v_{3})^{2} + (u_{1}v_{2} - u_{2}v_{1})^{2}$$

$$= |\mathbf{u} \times \mathbf{v}|^{2}$$

Properties of Cross Product, pg2.

6. $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin(\theta)$ where θ is the angle between \mathbf{u} and \mathbf{v} .

There's some geometry here...

 $\|\mathbf{u}\|\|\mathbf{v}\|\sin(\theta)$ is the area of the parallelogram determined by \mathbf{u} and \mathbf{v}

7. $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ is a scalar triple product.

Its magnitude is $|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}| = |\mathbf{u} \times \mathbf{v}| |\mathbf{w}| |\cos(\theta)|$ θ is the angle between $\mathbf{u} \times \mathbf{v}$ and \mathbf{w} $|\mathbf{w}| |\cos(\theta)| = |\mathbf{proj}_{\mathbf{u} \times \mathbf{v}}(\mathbf{w})|$ is the height of the

parallelepiped determined by u, v and w.

 $|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}| = |\mathbf{u} \times \mathbf{v}| |\mathbf{w}| |\cos(\theta)|$ is the volume of this parallelepiped.

Properties of Cross Product, parallelepiped.

the volume of the parallelepiped determined by \mathbf{u} , \mathbf{v} and \mathbf{w} is

$$|\mathbf{u} \times \mathbf{v}| |\mathbf{w}| |\cos(\theta)| = |(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|$$

$$= |w_1(u_2v_3 - u_3v_2) + w_2(u_3v_1 - u_1v_3) + w_3(u_1v_2 - u_2v_1)|$$

$$= |w_1(u_2v_3 - u_3v_2) - w_2(u_1v_3 - u_3v_1) + w_3(u_1v_2 - u_2v_1)|$$

$$= \left| \det \begin{pmatrix} w_1 & w_2 & w_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix} \right|$$

Examples.

$$\det\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \dots = 0$$

Remark: Of course it's zero, because $\mathbf{w} = 2\mathbf{u} - \mathbf{v}$ lies in the same plane as \mathbf{u} and \mathbf{v} .

The volume of the parallelepiped determined by the vector $\mathbf{w} = \langle 1,2,3 \rangle$, $\mathbf{u} = \langle 4,5,6 \rangle$, $\mathbf{v} = \langle 7,8,9 \rangle$ is 0.

Equations of Planes, pg 1.

Note 1: **n** is called the *normal vector* to the plane.

Suppose we know a vector $\mathbf{n} = \langle a, b, c \rangle$ that is perpendicular to a plane at the point $P(x_0, y_0, z_0)$.

Is there a condition for a point Q(x, y, z) to lie on the plane? Yep!

Since **n** is perpendicular to the plane, it will be perpendicular to any vector that lies in the plane.

So ${\bf n}$ is perpendicular to the vector \overrightarrow{PQ} with initial point P and terminal point Q,

$$0 = \mathbf{n} \cdot \overrightarrow{PQ} = \langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle$$

$$= a(x - x_0) + b(y - y_0) + c(z - z_0)$$

$$= ax + by + cz - d$$

The equation of the plane is ax + by + cz = d where $d = ax_0 + by_0 + cz_0$

Note 2: Some textbooks write ax + by + cz + d = 0 with $d = -ax_0 - by_0 - cz_0$.

Equations of Planes, pg 2.

1. ... is perpendicular to $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and goes through the point P(4,5,6)The perpendicular

vector is <1,2,3>.

The equation is...

$$1(x-4) + 2(y-5) + 3(z-6) = 0$$

x + 2y + 3z = 32

15

intercepts:

Find the equation of the plane which ...

2. ... goes through the points P(0,1,1), Q(1,0,1), R(1,1,0).

we get two vectors
$$\overrightarrow{PR} = \langle 1,0,-1 \rangle$$
 that lie on the plane: $\overrightarrow{PQ} = \langle 1,-1,0 \rangle$

(This means that if their initial point is placed on the plane, then their terminal points are also on the plane.)

So a vector perpendicular to the plane is

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \mathbf{i} + \mathbf{j} + \mathbf{k} = \langle 1, 1, 1 \rangle$$

The equation is

$$1(x-0) + 1(y-1) + 1(z-1) = 0$$
$$x + y + z = 2$$

Equations of Planes, pg 3. Examples.

If they intersect, then for some value of t, the terminal point of $\mathbf{L}(t)$ will lie on the plane.

When (if ever), does the point (-3 + 3t, -1 + 3t, 1 + 3t) lie on the plane?

$$2 = x + y + z = -3 + 3t + -1 + 3t + 1 + 3t = -3 + 9t \dots t = \frac{5}{9}$$

The line and plane intersect at the point $L\left(\frac{5}{9}\right) = \left(-\frac{4}{3}, \frac{2}{3}, \frac{8}{3}\right)$

2. Find the equation of the line where the planes x + y + z = 2 and x + 2y + 3z = 32 intersect.

The vector to determine the line's direction lies in both planes.

This vector is perpendicular to both < 1,1,1> and < 1,2,3> < 1,1,1> × < 1,2,3> = i - 2j + k = < 1, -2,1>

A point on both planes is (-28,30,0) (you can find this by setting z=0.)

$$\mathbf{L}(t) = \langle -28,30,0 \rangle + t \langle 1,-2,1 \rangle = \langle -28+t,+30-2t,t \rangle$$

1. Find the point where the line

$$L(t) = \langle -3, -1, 1 \rangle + t \langle 3, 3, 3 \rangle$$

intersects the plane $x + y + z = 2$

Plane Practice.

- 1. (OX 2.5#281)Find the equation of the plane through the points P(1,1,1), Q(2,4,3), R(-1,-2,-1).
- 2. (S12.5 #39) Find the equation of the plane that goes through (1,5,1) and is perpendicular to both 2x + y 2z = 2 and x + 3z = 4.
- 3. (S12.5 #65) Find the equation of the line that goes through (0,1,2), is parallel to the plane x+y+z=2, and perpendicular to the line x=1+t, y=1-t, z=2t.

1.
$$\overrightarrow{PQ} = \langle 1,3,2 \rangle$$

 $\overrightarrow{PR} = \langle -2, -3, -2 \rangle$

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \langle 0, -2, 3 \rangle$$

$$0(x-1) - 2(y-1) + 3(z-1) = 0$$

$$-2y + 3z = 1$$

2. Both < 2,1, -2 > and < 1,0,3 > lie in the plane,

$$\mathbf{n} = \langle 2, 1, -2 \rangle \times \langle 1, 0, 3 \rangle = \langle 3, -8, -1 \rangle$$
$$3(x-1) - 8(y-5) - 1(z-1) = 0$$

#2
$$3x - 8y - z = -38$$
 #3 $L(t) = <3t, 1 - t, 2 - 2t >$

3.
$$\mathbf{L}(t) = \mathbf{v} + t\mathbf{u}$$

 ${f u}$ is perpendicular to both

$$<1,1,1>$$
 and $<1,-1,2>$

$$\mathbf{u} = \langle 1, 1, 1 \rangle \times \langle 1, -1, 2 \rangle$$

= $\langle 3, -1, -2 \rangle$

$$\mathbf{L}(t) = \langle 0, 1, 2 \rangle + t \langle 3, -1, -2 \rangle$$

$$= < 3t, 1 - t, 2 - 2t >$$

Point-Plane Distance.

How far is a point from a plane?

Say the plane has equation ax + by + cz + d = 0.

Then the perpendicular vector is $\mathbf{n} = \langle a, b, c \rangle$

We're given a point $P(x_0, y_0, z_0)$. We can describe the line through this point parallel to \mathbf{n} , like this

$$\mathbf{L}(t) = \mathbf{P} + t\mathbf{n}$$

= $\langle x_0 + at, y_0 + bt, z_0 + ct \rangle$

The line intersects the plane at a point $Q = (x_1, y_1, z_1)$

The line, parallel to **n**, is perpendicular to the plane

The distance we're looking for is $|\overrightarrow{PQ}|$.

Q happens when the terminal point of \mathbf{L} , $(x_0 + at, y_0 + bt, z_0 + ct)$, lies on the plane.

$$0 = a(x_0 + at) + b(y_0 + bt) + c(z_0 + ct) + d$$

$$0 = d + ax_0 + by_0 + cz_0 + t(a^2 + b^2 + c^2)$$

$$t = \frac{-d - (ax_0 + by_0 + cz_0)}{a^2 + b^2 + c^2} =: t_Q$$

$$\overrightarrow{PQ} = \mathbf{L}(t_Q) - \mathbf{L}(\mathbf{0})$$

$$= \langle x_0 + at_Q, y_0 + bt_Q, z_0 + ct_Q \rangle - \langle x_0, y_0, z_0 \rangle$$

$$|\overrightarrow{PQ}| = |t_Q|| < a, b, c > |=|t_Q|\sqrt{a^2 + b^2 + c^2}$$

$$= \frac{|d + (ax_0 + by_0 + cz_0)|}{\sqrt{a^2 + b^2 + c^2}}$$

 $= \langle at_O, bt_O, ct_O \rangle = t_O \langle a, b, c \rangle$

Point-Plane Distance, pg 2. A second derivation. $|proj_n(\overrightarrow{AP})| = \left| \left(\frac{\mathbf{n} \cdot \overrightarrow{AP}}{\mathbf{n} \cdot \mathbf{n}} \right) \mathbf{n} \right|$

We're given $\mathbf{n} = \langle a, b, c \rangle$ and $P(x_0, y_0, z_0)$ as before.

Say $A(x_1, y_1, z_1)$ is some point on the plane.

So
$$ax_1 + by_1 + cz_1 + d = 0$$

i.e. $d = -ax_1 - by_1 - cz_1$

Project the vector

$$\overrightarrow{AP} = \langle x_0 - x_1, y_0 - y_1, z_0 - z_1 \rangle$$
 onto the vector **n**.

The distance from the plane to P is $|\mathbf{proj_n}(\overrightarrow{AP})|$

$$= \frac{|\mathbf{n} \cdot \mathbf{n}|}{|\mathbf{n} \cdot \mathbf{n}|} |\mathbf{n}|$$

$$= \frac{|\mathbf{n} \cdot \overrightarrow{AP}|}{|\mathbf{n} \cdot \overrightarrow{AP}|}$$

$$= \frac{|\mathbf{n} \cdot \overrightarrow{AP}|}{|\mathbf{n}|}$$

$$= \frac{|a(x_0 - x_1) + b(y_0 - y_1) + c(z_0 - z_1)|}{\sqrt{a^2 + b^2 + c^2}}$$

$$= \frac{|ax_0 + by_0 + cz_0 - ax_1 - by_1 - cz_1|}{\sqrt{a^2 + b^2 + c^2}}$$

$$= \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$
 (as before)

Distances: Plane-Plane; Point-Line.

Example (Point-Plane Distance).

P(1,2,3)

$$x + y + z = 2$$
$$x + y + z - 2 = 0$$

$$D = \frac{|1(1) + 1(2) + 1(3) - 2|}{\sqrt{1^2 + 1^2 + 1^2}} = \frac{4}{\sqrt{3}} \approx 2.31 \text{ units}$$

(or, take a point on the plane, like A(2,0,0))

$$D = \frac{|\mathbf{n} \cdot \overrightarrow{AP}|}{|\mathbf{n}|} = \frac{|\langle 1, 1, 1 \rangle \cdot \langle -1, 2, 3 \rangle|}{\sqrt{3}} = \frac{4}{\sqrt{3}}$$

Link: ParallelPlanes'Distance

Link: Point Distance Line

More Formulae!

Distance between two parallel planes:

$$ax + by + cz = d_1$$

$$ax + by + cz = d_2$$

$$D = \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}$$

Distance from a point, A, to a line:

$$\mathbf{L}(t) = \mathbf{v} + t\mathbf{u}$$

V is any point on the line.

$$D = |\overrightarrow{VA}|\sin(\theta)$$

$$= |\mathbf{u}| |\overrightarrow{VA}| \sin(\theta) / |\mathbf{u}|$$

$$=\frac{|VA\times \mathbf{u}|}{|\mathbf{u}|}$$

Distances: Plane-Plane; Point-Line, pg 2.

$$x - y + 4z = 2$$
$$x - y + 4z = 11$$

Distance:

$$D = \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}$$

$$= \frac{|2 - 11|}{1^2 + (-1)^2 + 4^2}$$

$$\approx 2.12$$

Note: Here's another way to approach the distance from a point to a line.

Given L(t) = v + tu and A

Pick a point V on L.

Compute \overrightarrow{VA}

Project \overrightarrow{VA} onto \mathbf{u} to get \overrightarrow{VB}

Compute $\overrightarrow{BA} = \overrightarrow{VA} - \overrightarrow{VB}$

It should be that $\overrightarrow{BA} \perp \mathbf{L}$

$$L(t) = \langle 2, -2, 2 \rangle + t \langle -1, -2, 1 \rangle$$

$$V = (2, -2, 2), \mathbf{u} = < -1, -2, 1 >$$

$$A = (-5, -5, 2)$$
 $\overrightarrow{VA} = < -7, -3, 0 >$

$$D = \frac{|\overrightarrow{VA} \times \mathbf{u}|}{|\mathbf{u}|} = \frac{|\langle -3,7,11 \rangle|}{|\langle -1,-2,1 \rangle|} \approx 5.46$$

i.e., B is the point on L that is closest to the given point A.

The desired distance is $\mid BA \mid$

xc: Use this approach to get a second derivation of the formula we used (on the left).

More Distance Formulae. You try.

- 1. (OX2.5 #290) Find the distance from (1, -2,3) to the plane (x 3) + 2(y + 1) 4z = 0.
- 2. (S12.5 #73) Find the distance between the parallel planes 2x 3y + z = 4 and 4x 6y + 2z = 3

2.
$$D = \frac{\left|4 - \frac{3}{2}\right|}{\sqrt{4 + 9 + 1}} = \frac{2.5}{\sqrt{14}} \approx 0.67$$

Planes' angles; Skew Lines' Distance.

The angle between two planes is the same as the angle between the planes' normal vectors.

$$\cos(\theta) = \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1| |\mathbf{n}_2|} \quad \text{This angle is acute} \leq 90^\circ$$

with appropriate choices of n_1 and n_2 .

Lines in 3D might not intersect, even if they're not parallel. Such lines are skew.

Example. (S12.5 #78)

Find the distance between the lines

$$L(t) = \langle 1 + t, 1 + 6t, 2t \rangle$$

 $K(s) = \langle 1 + 2s, 5 + 15s, -2 + 6s \rangle$

Skew Lines' Distance, pg2.

$$L(t) = \langle 1 + t, 1 + 6t, 2t \rangle$$

$$\mathbf{K}(s) = \langle 1 + 2s, 5 + 15s, -2 + 6s \rangle$$

Warm-up1: Find the distance between

the initial points (1,1,0) and (1,5,-2).

$$\sqrt{(1-1)^2 + (1-5)^2 + (0-2)^2}$$

$$= \sqrt{20} \approx 4.47 \text{ units}$$

Warm-up2: Find the distance between the point (1,1,0) and the line \mathbf{K} .

$$D = \frac{|\overrightarrow{VA} \times \mathbf{u}|}{|\mathbf{u}|}$$

$$u = < 2,15,6 >$$

$$\overrightarrow{VA} = \langle 1,1,0 \rangle - \langle 1,5,-2 \rangle$$

= $\langle 0,-4,2 \rangle$

$$\overrightarrow{VA} \times \mathbf{u} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & -4 & 2 \\ 2 & 15 & 6 \end{pmatrix}$$
$$= < -54,4,8 >$$

$$\frac{|\overrightarrow{VA} \times \mathbf{u}|}{|\mathbf{u}|} = \frac{\sqrt{2996}}{\sqrt{265}} \approx 3.36 \text{ units}$$

but what about the distance between lines themselves?

Method 1.

Find the distance between the point (1+t, 1+6t, 2t) on **L** and the line **K**, then minimize the resulting function of t.

$$\overrightarrow{VL(t)} = \langle 1 + t, 1 + 6t, 2t \rangle - \langle 1, 5, -2 \rangle$$

= $\langle t, -4 + 6t, 2 + 2t \rangle$

Skew Lines' Distance, pg3.

$$\overrightarrow{VL(t)} = \langle 1 + t, 1 + 6t, 2t \rangle - \langle 1, 5, -2 \rangle$$

= $\langle t, -4 + 6t, 2 + 2t \rangle$

$$\overrightarrow{VL(t)} \times \mathbf{u} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ t & -4 + 6t & 2 + 2t \\ 2 & 15 & 6 \end{pmatrix}$$

$$\frac{|\overrightarrow{VL}(t) \times \mathbf{u}|}{|\mathbf{u}|} = \frac{\sqrt{49t^2 - 616t + 2996}}{\sqrt{265}} = D(t)$$

= < -54 + 6t, 4 - 2t, 8 + 3t >

This function is minimized when...

$$=\frac{-b}{2a}=\frac{616}{98}=\frac{44}{7}$$

the minimum distance is $D\left(\frac{44}{7}\right) = 2$

Method 2. Find the closest possible pair of points on each line.

The optimal pair of points happens when

$$\overrightarrow{AB} \perp \mathbf{L}, \quad \overrightarrow{AB} \perp \mathbf{K}$$

$$A(1+t,1+6t,2t)$$

$$B(1+2s,5+15s,-2+6s)$$

$$\overrightarrow{AB} = \langle 2s - t, 15s - 6t + 4, 6s - 2t - 2 \rangle$$

 $\overrightarrow{AB} \perp \mathbf{L}$ means

$$1(2s - t) + 6(15s - 6t + 4) + 2(6s - 2t - 2) = 0$$

 $\overrightarrow{AB} \perp \mathbf{K}$ means

$$2(2s - t) + 15(15s - 6t + 4) + 6(6s - 2t - 2) = 0$$

$$\begin{cases} 1(2s-t) + 6(15s-6t+4) + 2(6s-2t-2) = 0 \\ 2(2s-t) + 15(15s-6t+4) + 6(6s-2t-2) = 0 \end{cases}$$

...solve this for s and t!

Skew Lines' Distance, pg 4.

$$\begin{cases} 1(2s-t) + 6(15s-6t+4) + 2(6s-2t-2) = 0 \\ 2(2s-t) + 15(15s-6t+4) + 6(6s-2t-2) = 0 \end{cases}$$

work, work, work....

$$s = \frac{16}{7}, \quad t = \frac{44}{7}$$

The distance between the optimal points is:

$$|\overrightarrow{AB}| = |<2s - t,15s - 6t + 4,6s - 2t - 2>|$$

$$= 2$$

Method 3: Project onto a mutually perpendicular vector, w.

We get such a w with a cross product of the direction vectors of each line.

Then project a random vector ${\it CD}$, between points on each line onto ${\bf w}$. The magnitude of this projection is the distance we want.

$$\mathbf{L}(t) = \langle 1 + t, 1 + 6t, 2t \rangle$$

$$\mathbf{K}(s) = \langle 1 + 2s, 5 + 15s, -2 + 6s \rangle$$

$$\mathbf{w} = \langle 2, 15, 6 \rangle$$

$$\mathbf{w} = \mathbf{u} \times \mathbf{v} = \langle -6, 2, -3 \rangle$$

$$\mathbf{r} = \langle 1, 5, -2 \rangle - \langle 1, 1, 0 \rangle$$

$$\mathbf{v} = \langle 0, 4, -2 \rangle$$

$$\mathbf{r} = \langle 0, 4, -2 \rangle$$

$$\mathbf{r} = \langle 1, 4/\sqrt{49} \rangle$$

Skew Lines' Distance, pg 5. Practice.

- 1. (OX2.5 #295) Show that the lines with equations $\mathbf{L}(t) = \langle t, 1+t, 2+t \rangle$ and $\frac{x}{2} = \frac{y-1}{3} = z-3$ are skew. Find the distance between these two lines.
- 1. The second line given has vector equation $K(s) = \langle 2s, 1 + 3s, 3 + s \rangle$

Is there a point that's on both lines L and K?

there's no solution here, since the
$$1+t=1+3s$$
 first two equations require $s=t=0$. but then the third equation says 2=3!

We can find the distance between the lines by projecting a vector $\overrightarrow{L(0)}\overrightarrow{K(0)}$ onto $\mathbf{w} = \mathbf{u} \times \mathbf{v}$.

$$\overline{L(0)K(0)} = \langle 0,1,3 \rangle - \langle 0,1,2 \rangle = \langle 0,0,1 \rangle$$

$$\mathbf{w} = \langle 1,1,1 \rangle \times \langle 2,3,1 \rangle = \langle -2,1,1 \rangle$$

$$|\mathbf{proj_w}(\overline{L(0)K(0)})| = \frac{\langle 0,0,1 \rangle \cdot \langle -2,1,1 \rangle}{|\langle -2,1,1 \rangle|} = \frac{1}{\sqrt{6}} \approx 0.41$$

2. (S12.5 #79) Find the distance between the line that goes through (0,0,0), (2,0,-1) and the line that goes through (1,-1,1) and (4,1,3).

$$\mathbf{L}_{1}(t) = \overrightarrow{P}_{1} + t \cdot \overrightarrow{P}_{1} \overrightarrow{Q}_{1} = \langle 2t, 0, -t \rangle$$

$$\mathbf{L}_{2}(t) = \overrightarrow{P}_{2} + t \cdot \overrightarrow{P}_{2} \overrightarrow{Q}_{2} = \langle 1 + 3t, -1 + 2t, 1 + 2t \rangle$$

$$\mathbf{w} = \langle 2, 0, -1 \rangle \times \langle 3, 2, 2 \rangle = \langle 2, -7, 4 \rangle$$

 $\overrightarrow{\mathbf{L}(0)}\overrightarrow{\mathbf{K}(0)} = \overrightarrow{P_1P_2} = \langle 1, -1, 1 \rangle$

$$D = \frac{|\overrightarrow{\mathbf{L}(0)}\overrightarrow{\mathbf{K}(0)} \cdot \mathbf{w}|}{|\mathbf{w}|} = \frac{13}{\sqrt{69}} \approx 1.57$$

Practice Problems from OpenStax 2.5 and Stewart Section 12.5

- 1. (OX2.5 #291). Two planes are given by x + y + z = 0, 2x y + z 7 = 0. Are these planes parallel? Perpendicular? What is the angle between them?
- 2. (OX2.5 #297) You have a point C(-3,2,4) and a plane 2x + 4y 3z = 8.
- a) What's the radius of the sphere centered at C, tangent to the plane?
- b) What is the point of tangency?
- 3. (OX2.5 #296)
- Show that the lines with equations $\mathbf{L}(t) = < -1 + t, -2 + t, 3t >$ and $\mathbf{K}(s) = < 5 + s, -8 + 2s, 7s >$ are skew. Find the distance between these lines.
- 4. (S12.5#80) P_1 is the plane x-y+2z+1=0. P_2 is the plane through the points A(3,2,-1), B(0,0,1), C(1,2,1). L_1 is the line through the points P(1,2,6) and Q(2,4,8). L_2 is the line of intersection of P_1 and P_2 . Find the distance between L_1 and L_2 .
- 5. (S12.5 #82) Give a geometric description of each family of planes for $c \in R$ and $\theta \in [0,2\pi)$

a)
$$x + y + z = c$$
 b) $x + y + cz = 1$ c) $\cos(\theta)y + \sin(\theta)z = 1$

Solutions to Practice Problems, pg 1.

1. (OX2.5 #291). Two planes are given by x + y + z = 0, 2x - y + z - 7 = 0. Are these planes parallel? Perpendicular? What is the angle between them?

The first plane has a normal vector of $\mathbf{n}_1 = <1,1,1>$

The second plane's normal vector is $\mathbf{n}_2 = <2, -1, 1>$

These normal vectors aren't parallel because one is not a multiple of the other.

(For example a vector parallel to \mathbf{n}_1 would look like < j, j, j > = j < 1, 1, 1 >)

Since the normal vectors aren't parallel, the planes are not parallel Similarly, the planes aren't perpendicular because their normal vectors aren't, which you can see with a dot product: $\mathbf{n}_1 \cdot \mathbf{n}_2 \neq 0$

The angle between the planes is the angle between their normal vectors:

$$\theta = \cos^{-1}\left(\frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1||\mathbf{n}_2|}\right)$$
$$= \cos^{-1}\left(\frac{2}{\sqrt{3}\sqrt{6}}\right) \approx 1.08 \text{ rad} \approx 61.87^{\circ}$$

Solutions to Practice Problems, pg 2. (b)... L(t) = < -3,2,4 > + t < 2,4,-3 >

- 2. (OX2.5 #297) You have a point C(-3,2,4) and a plane 2x + 4y 3z = 8.
- a) What's the radius of the sphere centered at C, tangent to the plane?
- b) What is the point of tangency?
- a) This is a fancy way of asking how far the point C is from the given plane. We know how to compute this:

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}} = \frac{|2(-3) + 4(2) - 3(4) - 8|}{\sqrt{2^2 + 4^2 + (-3)^2}} = \frac{18}{\sqrt{29}} \approx 3.34$$

Or, you can compute the magnitude of the projection of \overrightarrow{AC} onto $\mathbf{n}=<2,4,-3>$, for any point A on the plane.

e.g.
$$A = (4,0,0)$$
 $\overrightarrow{AC} = < -3,2,4 > - < 4,0,0 > = < -7,2,4 >$

$$D = \frac{|\mathbf{n} \cdot \overrightarrow{AC}|}{|\mathbf{n}|} = \frac{|<2,4,-3>\cdot<-7,2,4>|}{\sqrt{29}} = \frac{18}{\sqrt{29}}$$

b) Find a point that is on the plane and on the line, parallel to **n**, that goes through C....

$$\mathbf{L}(t) = \langle -3,2,4 \rangle + t \langle 2,4,-3 \rangle$$

$$= \langle -3+2t, 2+4t, 4-3t \rangle$$

$$2(-3+2t) + 4(2+4t) - 3(4-3t) = 8$$

$$\dots t_B = 18/29$$

$$\mathbf{L}(t_B) = \frac{1}{29} \langle -51,130,62 \rangle$$

$$\approx \langle -1.76, 4.48, 2.14 \rangle$$

the point of tangency is $\sim B(-1.76, 4.48, 2.14)$

Solutions to Practice Problems, pg 3.

3. (OX2.5 #296) Show that the lines with equations $\mathbf{L}(t) = < -1 + t, -2 + t, 3t >$ and $\mathbf{K}(s) = < 5 + s, -8 + 2s, 7s >$ are skew. Find the distance between these lines.

$$\mathbf{L}(t) = < -1 + t, -2 + t, 3t >$$

$$\mathbf{K}(s) = \langle 5 + s, -8 + 2s, 7s \rangle$$

The lines would intersect if for some value of *s* and t all components were equal

$$\begin{cases} -1 + t = 5 + s \\ -2 + t = -8 + 2s \end{cases} \rightarrow \begin{cases} t = 6 + s \\ t = -6 + 2s \\ t = 7s/3 \end{cases}$$

No solution!

Hence the lines don't intersect.

Also, the lines aren't parallel, since their direction vectors < 1,1,3 > and < 1,2,7 > aren't.

So the lines are skew.

L starts at L(0) = (-1, -2, 0) and is parallel to $\mathbf{u} = < 1, 1, 3 > .$

K starts at K(0) = (5, -8, 0) and is parallel to $\mathbf{v} = < 1, 2, 7 > .$

A vector perpendicular to both lines is

$$w = u \times v = <1, -4, 1 >$$

$$|\operatorname{\mathbf{proj}}_{\mathbf{w}}(\overline{L(0)K(0)})|$$

$$= \frac{|<6, -6,0> \cdot <1, -4, 1>|}{|<1, -4, 1>|}$$

$$=\frac{30}{\sqrt{18}}\approx 7.07$$

Solutions to Practice Problems, pg 4.

4. (S12.5 #80) P_1 is the plane x-y+2z+1=0. P_2 is the plane through the points A(3,2,-1), B(0,0,1), C(1,2,1). L_1 is the line through the points P(1,2,6) and Q(2,4,8). L_2 is the line of intersection of P_1 and P_2 . Find the distance between L_1 and L_2 .

Finding
$$P_2$$
: $\overrightarrow{BA} = \langle 3, 2, -2 \rangle$, $\overrightarrow{BC} = \langle 1, 2, 0 \rangle$ $\mathbf{n} = \overrightarrow{BA} \times \overrightarrow{BC} = \langle 4, -2, 4 \rangle$
 $4(x-0) - 2(y-0) + 4(z-1) = 0$, $4x - 2y + 4z = 4$, $2x - y + 2z = 2$

Finding
$$L_1$$
: $\mathbf{u} = \overrightarrow{PQ} = \langle 1,2,2 \rangle$ $L_1(t) = \langle 1,2,6 \rangle + t \langle 1,2,2 \rangle = \langle 1+t,2+2t,6+2t \rangle$

Finding
$$L_2$$
: $\mathbf{n_1} = <4, -2, 4>$, $\mathbf{n_2} = <1, -1, 2>$ $\mathbf{u} = \mathbf{n_1} \times \mathbf{n_2} = <0, -4, -2>$

A point on both planes happens when z = 0, $\begin{cases} 4x - 2y = 4 \\ x - y = -1 \end{cases}$ (x, y, z) = (3,4,0)

$$\mathbf{L_2}(t) = \langle 3,4,0 \rangle + t \langle 0,-4,-2 \rangle = \langle 3,4-4t,-2t \rangle$$

Distance between the lines: $\mathbf{w} = <0, -4, -2 > \times <1, 2, 2 > = <-4, -2, 4 >$

$$\frac{C(1,2,6), D(3,4,0)}{\overrightarrow{CD}} = \langle 2,2,-6 \rangle$$

$$|\mathbf{proj_w}(\overrightarrow{CD})| = \frac{|\overrightarrow{CD} \cdot \mathbf{w}|}{|\mathbf{w} \cdot \mathbf{w}|} |\mathbf{w}| = \frac{|\overrightarrow{CD} \cdot \mathbf{w}|}{|\mathbf{w}|} = \frac{36}{\sqrt{36}} = 6$$

Solutions to Practice Problems, pg 5.

5. (S12.5 #82) Give a geometric description of each family of planes for $c \in R$ and $\theta \in [0,2\pi)$

(a)
$$x + y + z = c$$

a)
$$x + y + z = c$$
 b) $x + y + cz = 1$ c) (next page)

a) Look at the intercepts for different values of c.

С	x-int	y-int	z-int
1	(1,0,0)	(0,1,0)	(0,0,1)
2	(2,0,0)	(0,2,0)	(0,0,2)
3	(3,0,0)	(0,3,0)	(0,0,3)

In general, the plane x + y + z = cgoes through the points (c,0,0), (0,c,0), (0,0,c).

- a) You could also say x + y + z = c is the set of planes that perpendicularly intersect $L(t) = \langle t, t, t \rangle$ over all values of t.
- b) The z intercept varies with c: In general it's (0,0,1/c). But The x-intercepts and y-intercepts are always (1,0,0)and (0,1,0). i.e. every one of these planes contains the line $L(t) = \langle 1,0,0 \rangle + t \langle 1,-1,0 \rangle$. x + y + cz = 1 is the set of all planes, except the xy plane, which contain the line L.

Solutions to Practice Problems, pg 6.

5. (S12.5 #82) Give a geometric description of each family of planes for $c \in R$ and $\theta \in [0,2\pi)$

$$a) x + y + z = c$$

b)
$$x + y + cz = 1$$

a)
$$x + y + z = c$$
 b) $x + y + cz = 1$ c) $\cos(\theta)y + \sin(\theta)z = 1$

c) This set of planes contains y = 1 (when $\theta = 0$),

z=1 (when $\theta=\frac{\pi}{2}$), also the planes y=-1 and z=-1.

Every one of these planes is parallel to the x axis.

Every of the planes is a distance of 1 away

from the origin, using
$$\frac{|ax_0+by_0+cz_0+d|}{\sqrt{a^2+b^2+c^2}}$$

Conversely, if you had a plane which was parallel to the x axis, and was one unit from (0,0,0), must it be one of the planes $cos(\theta)y + sin(\theta)z = 1$? Yes! Can you argue why?

