

ALGERIAN OLYMPIAD IN INFORMATICS & EUREKA NHSM CLUB

The first AOI College Cup December 14^{th} , 2024

Task 5 - Scales This task is worth 100 points

Task 5 - Scales

Time limit per test : 1 seconds Memory limit per test : 256 megabytes

A beaver had a brilliant idea to earn some extra money: he will make and sell wooden scales. He bought a large plank that he can cut into pieces, from which he can make a bunch of scales, but something went wrong!

The plank does not have the same density everywhere, making some points heavier. Specifically, the weight at position i is a_i . As a result, the scale is not in balance.

But the beaver is not easily discouraged and has a solution: If he cuts the plank cleverly into pieces, he can ensure that each piece is still in balance.

A piece $(x_1, x_2, ..., x_n)$ is in balance if the sum of the weight multiplied by the distance to the center is 0, that is:

$$\sum_{i=1}^{n} (i-m) \cdot x_i = 0,$$

where m is the center of the piece. As you would expect, the center of a piece, starting at i and ending at j, is $m = \frac{1}{2}(i+j)$.

For example, the following planks are in balance:

How many ways can he cut the plank into pieces so that each piece is in balance? Give the answer modulo $10^9 + 7$.

Input

The input consists of:

- One line with an integer n ($2 \le n \le 5000$).
- One line with a_1, a_2, \ldots, a_n , where a_i is the weight at position i $(1 \le a_i \le 10^9)$.

Output

Output the number of ways to cut the plank into balanced pieces, modulo $10^9 + 7$.

Subtasks Your program will be tested against several test cases grouped in subtasks. In order to obtain the score of a subtask, your program needs to correctly solve all of its test cases

- 1. For 10 points: the weight is the same everywhere $(a_1 = a_2 = \ldots = a_n)$.
- 2. For 10 points: $n \leq 10$.
- 3. For 25 points: $n \leq 500$.
- 4. For 55 points: no extra restrictions.

Examples

	Input	Output	Input	Output
ſ	4	9	6	C
	$1\ 2\ 2\ 1$	9	1 2 2 5 1 1	0

Example 1:

The possible ways to cut the plank are:

1	2	2	1
1	2	2	1
1	2	2	1

Example 2:

The possible ways to cut the plank are:

1	2	2	5	1	1
1	2	2	5	1	1
1	2	2	5	1	1
1	2	2	5	1	1
1	2	2	5	1	1
1	2	2	5	1	1