

Visions to Products

What is Artificial intelligence, Machine Learning and Deep Learning?

Marcus Rüb

Hahn-Schickard Villingen-Schwenningen Marcus.rueb@hahn-schickard.de

This Session:

- Introduction
- What is Machine Learning?
- Examples
- How Machine Learning works?
- Machine Learning concepts

The Connection Between Fields

The Connection Between Fields

Artificial Intelligence (AI):

orig. subfield of computer science, solving tasks humans are good at (natural language, speech, image recognition, ...)

Artificial General Intelligence (AGI):

multi-purpose Al mimicking human intelligence across tasks

Narrow Al:

solving "a" task (playing a game, driving a car, ...)

What's Machine Learning?

• The science (and art) of programming computers so that they can learn from data [Aurélien Géron, 2017]

- "The field of study that gives computers the ability to learn without being explicitly programmed" [Artur Samuel, 1959]
- "A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E" [Tom Mitchell, 1997]

How is Machine Learning different from programming

Only for some tasks

Let's see some examples

Spam Filter

Recommendation Engine

Real Estate

Predict at which price a property will be sold

Advertising

Predict which ads you are more likely to click on

Image Classification

Self-driving cars

Speech Recognition & Synthesis

Language Translation

Playing Games

Considerations on using Machine Learning

- There must be a pattern in the input output relationship (lottery winning numbers cannot be predicted with ML)
- There must be enough data to discover this pattern
- It's difficult to formulate a mathematical expression (otherwise we will just use this formula instead)

How Machine Learning Learns?

- Different Machine Learning techniques for different kinds of tasks
- Learning is finding which model's parameters represent best the input – output mapping

How Machine Learning Learns?

Linear Regression example:

- Model: f(x) = mx + b
- Model's parameters: m, b
- Parameter values: m=1, b=0
- Learning is finding which values of 'm' and 'b' fit the data best (e.g. minimizes the prediction error)

- Supervised
 - Supervision: we can tell for every case what the correct answer was
 - Example: predict the thermal power consumption

FocusPredict the future

- Unsupervised
 - Supervision: there is no right answer, we are looking for insights
 - Example: market basket analysis for supermarkets

FocusUnderstand the past

- Semi-supervised
 - Supervision: we can tell the correct output for a limited number of cases
 - Example: characterize what a particle impact looks like in TM

Focus

Understand the past

Sentinel-1A: particle impact on August 23th 2016

- Reinforcement Learning
 - Supervision: we only know the final outcome, but not intermediate steps
 - Example: playing Go

Focus

Find which is the next action most likely to lead to the desired outcome

The type of learning with most industrial applications is

Supervised Learning

(Predictive Analytics)

- Depending of what kind of data is predicted we can talk about:
 - Regression
 - Classification

Regression

Predict real numbers

Regression

Artificial Intelligence

$$\hat{y} = \boldsymbol{w}^{\top} \boldsymbol{x} + b$$

Classification

Predict which option out of a limited set of possibilities

Spam Filter

What's in the picture

Classification

Binary classification example with two *features* ("independent" variables, predictors)

Unsupervised Learning: Clustering

Assigning group memberships to unlabelled examples (instances, data points)

Problem Understanding If I had an hour
to solve a problem, I'd spend 55
minutes thinking about the problem
and five minutes thinking
about solutions!

- How will we measure how good the model is performing?
- Do we know already at what point it would be enough?

- How the current approach is performing against the evaluation criteria? Define a simple baseline if there is none (e.g. mean value)
- This will allow us to quantify how much Machine Learning helps and if it is worthwhile compared to simpler solutions

- "Enough" data in the sense that it's representative of the behaviour the model needs to learn
- Features: data transformations that encode your knowledge

 Use data / features to tune the parameters that optimize the evaluation criteria (e.g. minimise error)

Understand what the model is doing: where is it right / wrong

- When we are happy with the error, we can use the trained model: new data → features computation → model → results
- We now have a better baseline

Production

Trained Model

Ready to use

Questions:

What is Artificial intelligence, Machine learning and deep learning.

Where do we use Al already?

Explain: Supervised, Unsupervised, Semi-supervised, Reinforcement Learning

Explain: Regression, Classification

