Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A computing system, comprising:

a first approximation apparatus to approximate a term 2^X , wherein X is a real number, the first approximation apparatus eomprises comprising a rounding apparatus to accept an input value, (X), that is a real number represented in floating-point format, and to compute a <u>first</u> rounded value, (X) by rounding the input value, (X), using a <u>floor technique toward minus infinity</u>, wherein the <u>first</u> rounded value, (X) is represented in an integer format;

a memory to store a computer program that utilizes the first approximation apparatus; and

a central processing unit (CPU) to execute the computer program, the CPU is being cooperatively connected to the first approximation apparatus and to the memory.

- 2. (Canceled)
- 3. (Currently Amended) The system of claim 1, wherein the first approximation apparatus includes:

an integer-to-floating-point converter to accept as input a <u>the</u> first rounded value, $(X_{integer})$, being input value (X) that is a real number represented in an integer format,

and to convert the first rounded value, $(\lfloor X \rfloor_{\text{integer}})$, to a second rounded value, $(\lfloor X \rfloor_{\text{floating-point}})$, represented in floating-point format.

4. (Currently Amended) The system of claim 1, wherein the first approximation apparatus includes:

a floating-point subtraction operator to compute the difference between an the input value, (X), and $[X]_{floating-point}$, which is the input value, (X), rounded using the floor technique toward minus infinity and is represented in floating-point format.

- 5. (Currently Amended) The system of claim 1, wherein the first approximation apparatus includes a shift-left logical operator to generate a shifted $\lfloor X \rfloor$ integer value by shifting a <u>the first</u> rounded value, $(\lfloor X \rfloor_{integer})$, being an input value (X) that is a real number to the left by a predetermined number of bit positions.
- 6. (Currently Amended) The system of claim 1, wherein the first approximation apparatus includes:

a second approximation apparatus to accept ΔX as input, to approximate $2^{\Delta X}$, and to return an approximation of $2^{\Delta X}$, wherein $\Delta X = X - \lfloor X \rfloor_{\text{floating-point}}$ and $\lfloor X \rfloor_{\text{floating-point}}$ is the input value, (X), rounded using the floor technique toward minus infinity and is represented in floating-point format.

- 7. (Currently Amended) The system of claim 6, wherein the second approximation apparatus computes the approximation of $2^{\Delta X}$ by applying Horner's method in calculating a sum of a plurality of elements terms of a the Taylor series, in the equation $2^{\Delta X} = \sum_{N=0}^{\infty} \frac{(\Delta X \ln 2)^{\frac{N}{N}}}{N!}$.
- 8. (Currently Amended) The system of claim 1, wherein the first approximation apparatus includes:

an integer addition operator to accept a shifted $[X]_{integer}$ value, being the $[X]_{integer}$ value having undergone an input value (X) that is a real number represented in an integer format and undergoes a bit-wise shift left operation by a predetermined number of bit positions, and an approximation of $2^{\Delta X}$, represented in floating-point format, as input, and to perform an integer addition operation on the shifted $[X]_{integer}$ value and the approximation of $2^{\Delta X}$ to generate an approximation of 2^{X} , wherein $\Delta X = X - [X]_{floating-point}$ and $[X]_{floating-point}$ is the input value, $[X]_{a}$ rounded toward minus infinity using the floor technique and is represented in floating-point format.

9. (Currently Amended) The system of claim 1, further comprising:
a third approximation apparatus to approximate a term C^Z, wherein C is a
constant, and a positive number and Z is a real number,

the third approximation apparatus using a floating-point multiplication operator to compute a product of $\log_2 C \times Z$, and feeding the product, $\log_2 C \times Z$, into the first approximation apparatus to generate an approximation of C^Z .

10. (Currently Amended) A method comprising:

generating a first rounded value, wherein generating the first rounded value comprises rounding an input value (X) using a floor technique and representing it in an integer format; and

generating a second rounded value;

subtracting the second rounded value from an the input value, (X), to generate

generating an approximation of $2^{\Delta X}$ and representing it in floating point format; performing a bit-wise left shift to the first rounded value to generate a shifted value; and

approximating 2^X by performing an integer addition operation to add the shifted value to the approximation of $2^{\Delta X}$.

11. (Canceled)

 ΔX ;

12. (Currently Amended) The method of claim 10, wherein generating the second rounded value comprises:

converting the first rounded value, represented in an integer format, to the second rounded value represented in floating-point format.

13. (Currently Amended) The method of claim 10, wherein generating an approximation of $2^{\Delta X}$ comprises:

applying Horner's method in calculating a sum of a plurality of elements terms of a the Taylor series, in the equation $2^{\Delta X} = \sum_{N=0}^{\infty} \frac{(\Delta X \ln 2)^{\frac{N}{2}}}{N!}$.

14. (Currently Amended) The method of claim 10, wherein performing a bitwise left shift operation to the first rounded value comprises:

shifting the first rounded value to the left by a predetermined number of bit positions so that the first rounded value occupies bit positions reserved for an the exponent of a floating-point value.

15. (Currently Amended) The method of claim 10, wherein approximating 2^x comprises:

performing an integer addition operation to add the shifted value to the approximation of $2^{\Delta X}$, such that the first rounded value, represented in integer format, is added to an the exponent value of the approximation of $2^{\Delta X}$, represented in floating point format-

16. (Currently Amended) A machine-readable medium comprising instructions which, when executed by a machine, cause the machine to perform operations comprising:

Atty. Docket No. 042390.P10416 Examiner Chuong Ngo TC/A.U. 2124

Application No. 09/754,040 Amendment dated July 8, 2004 Response to Office Action of May 6, 2004

a first code segment to perform computations to approximate the term 2^X , wherein X is a real number; and

a second code segment to accept an input value, (X), that is a real number represented in floating-point format, to compute a rounded value, (X) integer, by rounding the input value, (X), using a floor technique, and to return the rounded value, (X) integer, which is represented in an integer format.

17. (Canceled)

- 18. (Currently Amended) The machine-readable medium of claim 19 17, wherein the second third code segment computes the approximation of $2^{\Delta X}$ by applying Horner's method in calculating a sum of a plurality of elements terms of a the Taylor series in the following equation, $2^{\Delta X} = \sum_{N=0}^{\infty} \frac{(\Delta X \ln 2)^{N}}{N!}$.
- 19. (Currently Amended) The machine-readable medium of claim 16, wherein the first code segment includes:

a third code segment to accept ΔX as input and to generate an approximation of $2^{\Delta X}$, wherein $\Delta X = X - \lfloor X \rfloor_{\text{floating-point}}$ and $\lfloor X \rfloor_{\text{floating-point}}$ is the input value (X) rounded using a floor technique and is represented in floating-point format.

20. (Currently Amended) The machine-readable medium of claim 16, wherein the first code segment includes:

Application No. 09/754,040 Atty. Docket No. 042390.P10416 Amendment dated July 8, 2004 Examiner Chuong Ngo Response to Office Action of May 6, 2004

TC/A.U. 2124

a fourth code segment to accept a shifted LX linteger value, being an the input [X]_{integer} value (X) that is a real number represented in an integer format and undergoes having undergone a bit-wise shift left operation by a predetermined number of bit positions, and an approximation of $2^{\Delta X}$ as input, and to generate an approximation 2^{X} by performing an integer addition operation on the shifted \[\L \]_{integer} value, represented in integer format, and the approximation of $2^{\Delta X}$, represented in floating-point format, wherein $\Delta X = X - \lfloor X \rfloor_{\text{floating-point}}$ and $\lfloor X \rfloor_{\text{floating-point}}$ is the input value (X) rounded and is represented in floating-point format.

21. (Currently Amended) The machine-readable medium of claim 16, further includes:

a fifth code segment to approximate a term C^Z, wherein C is a constant, and a positive number and Z is a real number, the fifth code segment computing a product of log₂C x Z and feeding the product, of log₂C x Z, into the first code segment to generate an approximation of C^{Z} .

22. (New) A computing system, comprising:

a first approximation apparatus to approximate a term 2^x, wherein the input value, (X), is a real number represented in floating-point format, the first approximation apparatus including an integer-to-floating-point converter to accept as input a first rounded value, ([X]_{integer}), associated with the input value, (X), and to convert the first

-8-

Atty. Docket No. 042390.P10416 Examiner Chuong Ngo TC/A.U. 2124

Application No. 09/754,040 Amendment dated July 8, 2004 Response to Office Action of May 6, 2004

rounded value, $(\lfloor X \rfloor_{integer})$, to a second rounded value, $(\lfloor X \rfloor_{floating-point})$, represented in floating-point format;

a memory to store a computer program that utilizes the first approximation apparatus; and

a central processing unit (CPU) to execute the computer program, the CPU is cooperatively connected to the first approximation apparatus and the memory.

- 23. (New) The system of claim 22, wherein the first approximation apparatus comprises a rounding apparatus to accept (X) and to compute the first rounded value, $(\lfloor X \rfloor_{integer})$, by rounding (X) using a floor technique, the first rounded value, $(\lfloor X \rfloor_{integer})$, being represented in an integer format.
- 24. (New) The system of claim 22, wherein the first approximation apparatus includes:
- a floating-point subtraction operator to compute the difference between the input value, (X), and the second rounded value, (LX)_{floating-point}).
- 25. (New) The system of claim 22, wherein the first approximation apparatus includes a shift-left logical operator to generate a shifted first rounded value by shifting the first rounded value, ([X]_{integer}), to the left by a predetermined number of bit positions.

-9-

Application No. 09/754,040 Amendment dated July 8, 2004 Response to Office Action of May 6, 2004 Atty. Docket No. 042390.P10416 Examiner Chuong Ngo TC/A.U. 2124

26. (New) The system of claim 22, wherein the first approximation apparatus includes:

a second approximation apparatus to accept ΔX as input, to approximate $2^{\Delta X}$, and to return an approximation of $2^{\Delta X}$, represented in floating-point format, wherein $\Delta X = X$ - $\lfloor X \rfloor_{\text{floating-point}}$.

- 27. (New) The system of claim 26, wherein the second approximation apparatus computes the approximation of $2^{\Delta X}$ by applying Horner's method in calculating a sum of a plurality of terms of the Taylor Series, $2^{\Delta X} = \sum_{N=0}^{\infty} \frac{(\Delta X \ln 2)^{\frac{N}{N}}}{N!}$.
- 28. (New) The system of claim 22, wherein the first approximation apparatus includes:

an integer addition operator to accept a shifted $\lfloor X \rfloor_{integer}$ value, the $\lfloor X \rfloor_{integer}$ value after having undergone a bit-wise left shift operation so that $\lfloor X \rfloor_{integer}$ is located in a position corresponding to the exponent of a floating-point number, and an approximation of $2^{\Delta X}$ as input, and to perform an integer addition operation on the shifted $\lfloor X \rfloor_{integer}$ value, represented in integer format, and the approximation of $2^{\Delta X}$, represented in floating-point format, to generate an approximation of 2^{X} , wherein $\Delta X = X - \lfloor X \rfloor_{floating-point}$ and $\lfloor X \rfloor_{floating-point}$.

29. (New) The system of claim 22, further comprising:

-10-

a third approximation apparatus to approximate a term C^Z , wherein C is a constant and a positive number and Z is a real number, the third approximation apparatus using a floating-point multiplication operator to compute the product of $\log_2 C \times Z$, and feeding the product, $\log_2 C \times Z$, into the first approximation apparatus to generate an approximation of C^Z .

30. (New) A computing system, comprising:

a first approximation apparatus to approximate a term 2^X , wherein the input value, (X), is a real number represented in floating-point format, the first approximation apparatus including a floating-point subtraction operator to compute the difference between (X) and a first rounded value, $\lfloor X \rfloor_{\text{floating-point}}$, wherein $\lfloor X \rfloor_{\text{floating-point}}$ is (X) rounded using a floor technique and represented in floating-point format;

a memory to store a computer program that utilizes the first approximation apparatus; and

a central processing unit (CPU) to execute the computer program, the CPU is cooperatively connected to the first approximation apparatus and the memory.

31. (New) A method comprising:

generating a first rounded value;

generating a second rounded value by converting the first rounded value, represented in an integer format, to floating-point format;

subtracting the second rounded value from an input value, (X), to generate ΔX ; generating an approximation of $2^{\Delta X}$;

Atty. Docket No. 042390.P10416 Examiner Chuong Ngo TC/A.U. 2124

Application No. 09/754,040 Amendment dated July 8, 2004 Response to Office Action of May 6, 2004

performing a bit-wise left shift to the first rounded value to generate a shifted value; and approximating 2^X by performing an integer addition operation to add the shifted value, represented in integer format, to the approximation of $2^{\Delta X}$, represented in floating-point format.