ECE 5730 Memory Systems Spring 2009

Disk Drive Performance Issues and Design Tradeoffs

Announcements

- Quiz 12
 - Average = 8.5
- Quiz 13 (last one!) on Tuesday
- Exam II
 - May 7, 7:00-10:00pm, Hollister 314
 - Covers material from 3/10-4/28 but excluding 4/22 (Lectures 14-21, 23-24)
 - Let me know immediately if you require a make-up

Project Report Due May 1st

Zoned-Bit Recording (78R)

- To get max density, use max bpi for all tracks
 - Different recording rates for 100's of 1000's of tracks
- Simplification: Zones with same sectors/track

Quantization Effect

 Integer number of sectors per concentric track causes lost bytes in every track

```
a could store non-integer # of sectors, but can't address it
```

- Example: 512KB/track, 600 bytes/sector
 - 416 lost bytes/track
 - 300,000 tracks, 120MB wasted
- ZBR causes additional wasted space due to bpi inefficiency

CLV and **CAV**

- Constant Linear Velocity
 - Variable rotational speed, constant data rate
 - No wasted space, good sequential performance
 - Audio CDs, Blu-Ray movies
- Constant Angular Velocity
 - Constant rotational speed, variable data rate
 - Good random access performance
 - Hard drives, computer CDs & DVDs
- ZBR can be used in both CLV and CAV

SAS and **SATA** Compatibility

- SAS supports SATA drives through the Serial ATA Tunneling Protocol
- Interfaces are pin compatible but voltage levels and protocols are different
- SAS controller recognizes type of drive and uses appropriate voltages and commands

Disk Drive Performance

Desire fast response time and high throughput

Time components of an I/O read operation

[19.1] Lecture 22: 7

Pre-command overhead

- Receive, decode, buffer command
- Disk cache lookup (to see if it's in ther)
- Start up the operation (aduly start dony stuff)

[19.1] Lecture 22: 8

Seek time

- Move head from current cylinder to target cylinder
- One of the largest time overheads (~5-10ms)
- Travel time + settle time
- Lower travel time with reduction in disk diameter

[19.1,16.3] Lecture 22: 9

- Rotational latency (how long it takes for the date you want to
 Time to bring start of target sector to the head

Avg RL = 1/2 time to do complete revolution

year when particular rpm and RL were introduced [19.1,19.2]

Lecture 22: 10

heavily drive dependent

Media data transfer

- Time to transfer data from media (disk)
- Calculated as sustained data rate (SDR)
- Depends on
 - Rotational speed (60/rpm)
 - Track density, measured as sectors per track (SPT)
 - Number of heads (N)
 - Cylinder skew: time to switch between cylinders (T_{cs})
 - Head switch time: time to switch between tracks (T_{HS})

Lecture 22: 11

Spindle

Spindle

Disk

Disk

Lecture 22: 12

For serpentine formatting

$$SDR = \frac{SPT \times 512}{60/rpm + T_{CS}}$$
 cylinder switch time

$$50R = \frac{1000 \times 512}{60/7200 + 2} \approx 50 \text{ mBls}$$

[18.5, 18.3]

For cylinder formatting

- Interface data transfer
 - Time to transfer data over the interface
 - Faster than media data rate for SATA, SAS, USB 3.0
 - Transfer of all but last sector can be overlapped with media data transfer
 - Each sector is buffered in its entirety, and then ECC checked

[19.1] Lecture 22: 13

- Post-command overhead
 - Signal completion back to the host

[19.1] Lecture 22: 14

Random Read Time

 Time to perform one random read overhead + avg seek time + 1/2 RL + media xfr + IF xfr

Assume

- 4KB transfer amount of date we want
- tency

 seagate 10K rpm drive ⇒ 1/2 RL = 3ms

 cheetah Average seek time = 4.5ms
 - 50MB/s media xfr \Rightarrow 0.08ms to transfer 4KB
 - 100MB/s interface xfr \Rightarrow 0.005 to transfer last sector
 - Overhead = 0.3ms

I description in the book

0.3ms + 4.5ms + 3ms + 0.08ms + 0.005 = 7.885ms

Local Read Time

 Access to user data located in a small area of the disk may have 1/3 the average seek time

0.3 ms + 1.5 ms + 3 ms + 0.08 ms + 0.005 = 4.885 ms

Overhead of various read time components

[19.3]

Lecture 22: 16

Sequential Read Time

- Address of next read immediately follows that of the prior read
 - seek + rotational latency = 0
 - -0.3ms +0.08ms +0.005 = 0.385ms
 - Media data rate has larger impact

overheer is now a really big contributor

- Near sequential: Two otherwise sequential cmds are separated by a few other cmds
- Skip sequential: Two cmds are separated by a few sectors (in the positive rotational direction)

Performance Impact of Disk Parameters

- Track capacity (bpi)
- Track density (tpi)
- Cylinder capacity
- Number of heads

Track Capacity (bpi)

• ↑ SPT, ↑ in media data rate -> more data / (neh, same linear

$$SDR_{Serp} = \frac{SPT \times 512}{60/rpm + T_{CS}}$$

$$SDR_{Serp} = \frac{SPT \times 512}{60/rpm + T_{CS}}$$

$$SDR_{Cyl} = \frac{N \times SPT \times 512}{(N \times 60)/rpm + (N-1) \times T_{HS} + T_{CS}}$$

. ↑ SPT, I track switching overhead > more nate, less likely

number of requested sectors $T_{S_{Serp}} = \left(\frac{K-1}{SPT}\right) \times T_{CS} \qquad T_{S_{Cyl}} = \left(\frac{K-1}{SPT}\right) \times \left(\frac{(N-1) \times T_{HS} + T_{CS}}{N}\right)$ probability of

crossing a track boundary

cylinder switch time (~2ms)

number of heads head switch time (~1ms)

Track Density (tpi)

- ↑ tpi, ↓ seek travel time
 - Seek distance = (number of cylinders of seek)/tpi
 - Actuator accelerates to max speed, coasts for a while, and then decelerates

travel time = max speed/acceleration + seek distance/max speed

[19.5] Lecture 22: 20

Track Density (tpi)

- ↑ tpi, ↑ seek settle time
- Actuator overshoots target track and wobbles back and forth (settles)
- Write settling more stringent than read settling
- More densely packed tracks, higher settle time
 - Settle time goes up logarithmically with tpi
- For short seeks, ↑ tpi, ↑ seek time

Cylinder Capacity

- ↑ sectors per cylinder, ↓ seek time
 - For cylinder mode (also helps banded serpentine)
- Assuming 64MB user file, probability that two different sectors are located on same cylinder?
 - 4 heads/cylinder, 300KB/track \Rightarrow 4×300K/64M = 1.9%
 - 8 heads/cylinder, 500KB/track \Rightarrow 8×500K/64M = 6.2%
 - Also, 67% fewer head switches with 8 heads, 500KB

Cylinder Capacity

- Simulation results
 - 900 sectors/track, cylinder mode
 - 10 PC applications with ~15K reads and 30K writes

[19.4] Lecture 22: 23

Number of Heads (Cylinder Format)

- An increase in areal density permits fewer platters and heads (\(\psi \) cost) for the same capacity
- tpi improvement impact on data rate
 - Fewer head switches and more cylinder switches
 - Since $K = T_{CS}/T_{HS} > 1$, lower sustained data rate

[19.7]

Lecture 22: 24

Next Time

Command Scheduling Data Relocation