MATA54 - Estruturas de Dados e Algoritmos II Árvores B e Árvores B+

Flávio Assis Versão gerada a partir de slides do Prof. George Lima

IC - Instituto de Computação

Salvador, setembro de 2021

Árvores B

Motivações: desempenho e grande volume de dados

Árvore B

Uma árvore k-ária balanceada

- Vários registros e ponteiros por nó
- Cresce das folhas para a raiz
- ▶ Balanceamento é consequência do processo de inserção de chaves
- Balanceamento: os caminhos da raiz às folhas possuem o mesmo comprimento

Usaremos a definição de árvores B apresentada em [Cormen et al. 2009].

Árvore B: Propriedades [Cormen et al. 2009]

Uma árvore B é uma árvore enraizada com as seguintes propriedades:

- 1. Cada nó x tem os seguintes atributos:
 - 1.1 x.n, o número de chaves armazenadas no nó x
 - 1.2 as x.n chaves, $x.key_1$, $x.key_2$, ..., $x.key_n$, armazenadas em ordem não decrescente, de forma que $x.key_1 \le x.key_2 \le \cdots \le x.key_n$
 - 1.3 x.leaf, um valor booleano que é TRUE se x é uma folha e FALSE se x é um nó interno
- 2. Cada nó x contém x.n+1 apontadores $x.c_1, x.c_2, \cdots, x.c_{n+1}$. Se x é nó interno, esses apontadores apontam para seus nós filhos. Se é nó folha, esses atributos c_i são não definidos

$$c_1 \mid k_1 \mid c_2 \mid k_2 \mid \cdots \mid c_{x.n} \mid k_{x.n} \mid c_{x.n+1}$$

Árvore B: Propriedades (cont)

3. As chaves *x.key*_i separam as faixas de chaves armazenadas em cada subárvore: se a chave *k*_i é uma chave armazenada na subárvore com raiz *x.c*_i então

$$k_1 \le x. key_1 \le k_2 \le x. key_2 \le \cdots \le x. key_{x.n} \le k_{x.n+1}$$

- Todas as folhas possuem a mesma profundidade, que é igual à altura h da árvore
- 5. Nós possuem um limite inferior e um limite superior no número de chaves que podem conter. Estes limites são expressos em termos de um número inteiro fixo t ≥ 2, chamado o grau mínimo da árvore B:
 - 5.1 todo nó, com exceção da raiz, tem que ter pelo menos t-1 chaves. Cada nó interno tem que ter então pelo menos t nós filhos. Se a árvore é não vazia a raiz tem que ter pelo menos uma chave.
 - 5.2 Todo nó pode conter no máximo 2t 1 chaves. Por isso, um nó interno pode ter no máximo 2t nós filhos.

Sequência de chaves a serem inseridas em uma árvore B com t = 2:

Número mínimo de chaves por nó (com exceção da raiz): t-1: 1 Número máximo de chaves por nó: 2t-1: 3

Inserção da chave 10 em uma árvore B vazia:

$$\mathsf{raiz} \quad \rightarrow \quad \boxed{\lambda \quad 10 \quad \lambda}$$

Sequência de chaves a serem inseridas em uma árvore B com t = 2:

Número mínimo de chaves por nó (com exceção da raiz): t-1: 1 Número máximo de chaves por nó: 2t-1: 3

Inserção da chave 10 em uma árvore B vazia:

$$\mathsf{raiz} \quad \rightarrow \quad \boxed{\lambda \quad \mathsf{10} \quad \lambda}$$

Inserção das chaves 75 e 62:

Sequência de chaves a serem inseridas em uma árvore B com t = 2:

Número mínimo de chaves por nó (com exceção da raiz): t-1: 1 Número máximo de chaves por nó: 2t-1: 3

Inserção da chave 10 em uma árvore B vazia:

raiz
$$\rightarrow$$
 λ 10 λ

Inserção das chaves 75 e 62:

raiz
$$\rightarrow \begin{bmatrix} \lambda & 10 & \lambda & 62 & \lambda & 75 & \lambda \end{bmatrix}$$

raiz $\rightarrow \begin{bmatrix} \lambda & 10 & \lambda & 62 & \lambda & 75 & \lambda \end{bmatrix}$

Inserção da chave 69:

Inserção da chave 69: Quebra do nó!

Inserção da chave 69: Quebra do nó!

raiz
$$\rightarrow$$
 λ 10 λ 62 λ 75 λ

Inserção da chave 69: Quebra do nó!

Inserção da chave 69 na árvore:

raiz
$$\rightarrow$$
 λ 10 λ 62 λ 75 λ

Inserção da chave 69: Quebra do nó!

Inserção da chave 69 na árvore:

Inserção da chave 80:

Inserção da chave 80:

Inserção da chave 80:

Inserção da chave 90:

Inserção da chave 80:

Inserção da chave 90: Quebra de nó!

Inserção da chave 80:

Inserção da chave 90: Quebra de nó!

Inserção da chave 80:

Inserção da chave 90: Quebra de nó!

Inserção do 90 na árvore:

Inserção da chave 80:

Inserção da chave 90: Quebra de nó!

Inserção do 90 na árvore:

Inserção das chaves 20, 30 e 100:

Inserção das chaves 20, 30 e 100:

Inserção das chaves 20, 30 e 100:

Inserção da chave 25:

Inserção das chaves 20, 30 e 100:

Inserção da chave 25: Quebra de nó!

Inserção das chaves 20, 30 e 100:

Inserção da chave 25: Quebra de nó!

A quebra de nó faz com que uma chave suba na árvore. Como evitar que uma inserção gere quebras sucessivas no caminho de volta para a raiz?

A quebra de nó faz com que uma chave suba na árvore. Como evitar que uma inserção gere quebras sucessivas no caminho de volta para a raiz?

No processo de busca pelo nó onde a chave será inserida, quebra-se sempre um nó que estiver com capacidade máxima!

A quebra de nó faz com que uma chave suba na árvore. Como evitar que uma inserção gere quebras sucessivas no caminho de volta para a raiz?

No processo de busca pelo nó onde a chave será inserida, quebra-se sempre um nó que estiver com capacidade máxima!

Inserção da chave 85:

Nó raiz com capacidade máxima!

A quebra de nó faz com que uma chave suba na árvore. Como evitar que uma inserção gere quebras sucessivas no caminho de volta para a raiz?

No processo de busca pelo nó onde a chave será inserida, quebra-se sempre um nó que estiver com capacidade máxima!

Inserção da chave 85:

Nó raiz com capacidade máxima! Quebra do nó!

A quebra de nó faz com que uma chave suba na árvore. Como evitar que uma inserção gere quebras sucessivas no caminho de volta para a raiz?

No processo de busca pelo nó onde a chave será inserida, quebra-se sempre um nó que estiver com capacidade máxima!

Inserção da chave 85:

Nó raiz com capacidade máxima! Quebra do nó!

Nó folha com capacidade máxima!

Nó folha com capacidade máxima!

Nova quebra de nó!

Nó folha com capacidade máxima!

Nova quebra de nó!

Inserção do 85 na árvore:

Árvore B - Algoritmo de Inserção

Ver descrição em [Cormen et al. 2009]

Árvore B - Algoritmo de Busca

Algorithm 1: Busca em Árvore B

```
entrada: Apontador x para a raiz da árvore (não vazia) e chave k
          : Se x está na árvore, retorna o par (y, i), em que y é um nó
            e i é um índice tal que y.key_i = k. Se não, retorna NULL
1 i \leftarrow 1:
2 while (i \le x.n) \land (k > x.key_i) do
i \leftarrow i + 1
4 if (i \le x.n) \land (k = x.key_i) then
5 return (x, i)
6 else if x.leaf then return NULL;
7 else
      DiskRead(x.c_i);
    return B-TREE-SEARCH(x.c_i, k)
```

Propriedade da Altura de Árvores B

Teorema:

Seja n o número de nós em uma árvore B. Se $n \ge 1$ então para qualquer árvore B de altura h e grau mínimo $t \ge 2$:

$$\log_{2t}(n+1)-1 \le h \le \log_t \frac{n+1}{2}$$

Para o teorema acima, o nível da raiz é zero. Parte do teorema acima aparece como Teorema 18.1 em [Cormen *et al.* 2009].

Propriedade da Altura de Árvores B

Teorema:

Seja n o número de nós em uma árvore B. Se $n \ge 1$ então para qualquer árvore B de altura h e grau mínimo $t \ge 2$:

$$\log_{2t}\left(n+1\right)-1 \leq h \leq \log_{t} \frac{n+1}{2}$$

Para o teorema acima, o nível da raiz é zero. Parte do teorema acima aparece como Teorema 18.1 em [Cormen *et al.* 2009].

Como consequência do teorema acima, as operações de consulta e inserção fazem $\Theta(\log n)$ acessos a nós no pior caso.

Nível	Núm. Máx. Nós	Núm. Máx. Chaves
0		

Nível	Núm. Máx. Nós	Núm. Máx. Chaves
0	1	

Nível	Núm. Máx. Nós	Núm. Máx. Chaves
0	1	2t - 1
1		

Nível	Núm. Máx. Nós	Núm. Máx. Chaves
0	1	2t - 1
1	2t	

Nível	Núm. Máx. Nós	Núm. Máx. Chaves
0	1	2t - 1
1	2t	2t(2t-1)
2		

Nível	Núm. Máx. Nós	Núm. Máx. Chaves
0	1	2t - 1
1	2t	2t(2t-1)
2	$(2t)^2$	

$egin{array}{c cccc} 0 & 1 & 2t-1 \ 1 & 2t & 2t(2t-1) \ \end{array}$	/es	Núm. Máx. Chave	Núm. Máx. Nós	Nível
		2t - 1	1	0
		\ /	2t	1
$(2t)^2$ $(2t)^2(2t-1)$		$(2t)^2(2t-1)$	$(2t)^2$	2

Nível	Núm. Máx. Nós	Núm. Máx. Chaves
0	1	2t - 1
1	2t	2t(2t-1)
2	$(2t)^2$	$(2t)^2(2t-1)$
3	$(2t)^{3}$	$(2t)^3(2t-1)$
:	:	:
•	•	•

Nível	Núm. Máx. Nós	Núm. Máx. Chaves
0	1	2t - 1
1	2t	2t(2t-1)
2	$(2t)^2$	$(2t)^2(2t-1)$
3	$(2t)^3$	$(2t)^3(2t-1)$
•	i:	i:
h	$(2t)^h$	$(2t)^h(2t-1)$

Nível	Núm. Máx. Nós	Núm. Máx. Chaves
0	1	2t - 1
1	2t	2t(2t-1)
2	$(2t)^2$	$(2t)^2(2t-1)$
3	$(2t)^{3}$	$(2t)^3(2t-1)$
	: :	i i
h	$(2t)^h$	$(2t)^h(2t-1)$

Núm. máx. chaves para altura h:

Nível	Núm. Máx. Nós	Núm. Máx. Chaves
0	1	2t - 1
1	2t	2t(2t-1)
2	$(2t)^2$	$(2t)^2(2t-1)$
3	$(2t)^3$	$(2t)^3(2t-1)$
	i:	:
h	$(2t)^h$	$(2t)^h(2t-1)$

Núm. máx. chaves para altura *h*:

$$n = (2t-1) + (2t)(2t-1) + (2t)^{2}(2t-1) + \dots + (2t)^{h}(2t-1)$$

Nível	Núm. Máx. Nós	Núm. Máx. Chaves
0	1	2t - 1
1	2t	2t(2t-1)
2	$(2t)^2$	$(2t)^2(2t-1)$
3	$(2t)^{3}$	$(2t)^3(2t-1)$
	:	i i
h	$(2t)^h$	$(2t)^h(2t-1)$

Núm. máx. chaves para altura h:

$$n = (2t-1) + (2t)(2t-1) + (2t)^{2}(2t-1) + \dots + (2t)^{h}(2t-1)$$

$$n = (2t-1)(1+(2t)+(2t)^{2}+\dots+(2t)^{h})$$

Nível	Núm. Máx. Nós	Núm. Máx. Chaves
0	1	2t - 1
1	2t	2t(2t-1)
2	$(2t)^2$	$(2t)^2(2t-1)$
3	$(2t)^3$	$(2t)^3(2t-1)$
	:	i i
h	$(2t)^h$	$(2t)^h(2t-1)$

Núm. máx. chaves para altura
$$h$$
:
$$n = (2t-1) + (2t)(2t-1) + (2t)^2(2t-1) + \dots + (2t)^h(2t-1)$$

$$n = (2t-1)(1+(2t)+(2t)^2+\dots+(2t)^h)$$

$$n = (2t-1)\frac{(2t)^{h+1}-1}{(2t-1)}$$

Nível	Núm. Máx. Nós	Núm. Máx. Chaves
0	1	2t - 1
1	2t	2t(2t-1)
2	$(2t)^2$	$(2t)^2(2t-1)$
3	$(2t)^3$	$(2t)^3(2t-1)$
	i:	:
h	$(2t)^h$	$(2t)^h(2t-1)$

Núm. máx. chaves para altura
$$h$$
:
$$n = (2t-1) + (2t)(2t-1) + (2t)^2(2t-1) + ... + (2t)^h(2t-1)$$

$$n = (2t-1)(1+(2t)+(2t)^2+...+(2t)^h)$$

$$n = (2t-1)\frac{(2t)^{h+1}-1}{(2t-1)}$$

$$n+1 = (2t)^{h+1}$$

Nível	Núm. Máx. Nós	Núm. Máx. Chaves
0	1	2t - 1
1	2t	2t(2t-1)
2	$(2t)^2$	$(2t)^2(2t-1)$
3	$(2t)^3$	$(2t)^3(2t-1)$
:	:	:
h	$(2t)^h$	$(2t)^h(2t-1)$

Núm. máx. chaves para altura
$$h$$
:
$$n = (2t-1) + (2t)(2t-1) + (2t)^2(2t-1) + \dots + (2t)^h(2t-1)$$

$$n = (2t-1)(1+(2t)+(2t)^2+\dots+(2t)^h)$$

$$n = (2t-1)\frac{(2t)^{h+1}-1}{(2t-1)}$$

$$n+1 = (2t)^{h+1}$$

$$\log_{2t}(n+1) = h+1$$

Nível	Núm. Máx. Nós	Núm. Máx. Chaves
0	1	2t - 1
1	2t	2t(2t-1)
2	$(2t)^2$	$(2t)^2(2t-1)$
3	$(2t)^3$	$(2t)^3(2t-1)$
	:	i i
h	$(2t)^h$	$(2t)^h(2t-1)$

Núm. máx. chaves para altura
$$h$$
:
$$n = (2t-1) + (2t)(2t-1) + (2t)^2(2t-1) + \dots + (2t)^h(2t-1)$$

$$n = (2t-1)(1+(2t)+(2t)^2+\dots+(2t)^h)$$

$$n = (2t-1)\frac{(2t)^{h+1}-1}{(2t-1)}$$

$$n+1 = (2t)^{h+1}$$

$$\log_{2t}(n+1) = h+1$$

$$h = \log_{2t}(n+1) - 1$$

Nível	Núm. Máx. Nós	Núm. Máx. Chaves
0	1	2t - 1
1	2t	2t(2t-1)
2	$(2t)^2$	$(2t)^2(2t-1)$
3	$(2t)^3$	$(2t)^3(2t-1)$
	i:	:
h	$(2t)^h$	$(2t)^h(2t-1)$

$$n = (2t - 1) + (2t)(2t - 1) + (2t)^{2}(2t - 1) + \dots + (2t)^{h}(2t - 1)$$

$$n = (2t - 1)(1 + (2t) + (2t)^{2} + \dots + (2t)^{h})$$

$$n = (2t - 1)\frac{(2t)^{h+1} - 1}{(2t - 1)}$$

$$n+1=(2t)^{h+1}$$

$$\log_{2t}(n+1) = h+1$$

$$h = \log_{2t}(n+1) - 1$$

Como é o número máximo de chaves para a altura h, tem-se que:

$$\log_{2t}(n+1)-1 \leq h$$
, para um dado valor de n

Esquema da Prova - Ilustração

Número máximo de chaves por nó: t = 2:

Por exemplo:

$$h \ge \log_{2t}(n+1) - 1$$
 Para $t = 2$ e $n = 15$: $h \ge 1$ e $\log_4 16 - 1 = 1$
Para $t = 2$ e $n = 63$: $h \ge 2$ e $\log_4 64 - 1 = 2$
Para $t = 2$ e $n = 20$: $h \ge 2$ e $\log_4 21 - 1 = 1.196$

Nível	Núm. Mín. Nós	Núm. Mín. Chaves
0		

Nível	Núm. Mín. Nós	Núm. Mín. Chaves
0	1	

Nível	Núm. Mín. Nós	Núm. Mín. Chaves
0	1	1
1		

Nível	Núm. Mín. Nós	Núm. Mín. Chaves
0	1	1
1	2	

Nível	Núm. Mín. Nós	Núm. Mín. Chaves
0	1	1
1	2	2(t-1)
2		

Nível	Núm. Mín. Nós	Núm. Mín. Chaves
0	1	1
1	2	2(t-1)
2	2t	

Nível	Núm. Mín. Nós	Núm. Mín. Chaves
0	1	1
1	2	2(t-1)
2	2t	2t(t-1)
-		,

Nível	Núm. Mín. Nós	Núm. Mín. Chaves
0	1	1
1	2	2(t-1)
2	2t	2t(t-1)
3	$2t^2$	$2t^2(t-1)$
:	:	:

Nível	Núm. Mín. Nós	Núm. Mín. Chaves
0	1	1
1	2	2(t-1)
2	2t	2t(t-1)
3	$2t^2$	$2t^2(t-1)$
•	:	:
h	$2t^{h-1}$	$2t^{h-1}(t-1)$

Nível	Núm. Mín. Nós	Núm. Mín. Chaves
0	1	1
1	2	2(t-1)
2	2t	2t(t-1)
3	$2t^2$	$2t^2(t-1)$
:	i i	:
h	$2t^{h-1}$	$2t^{h-1}(t-1)$

Núm. mín. chaves para altura h: $n = 1 + 2(t - 1) + 2t(t - 1) + 2t^2(t - 1) + ... + 2t^{h-1}(t - 1)$

Nível	Núm. Mín. Nós	Núm. Mín. Chaves
0	1	1
1	2	2(t-1)
2	2t	2t(t-1)
3	$2t^2$	$2t^2(t-1)$
:	i i	:
h	$2t^{h-1}$	$2t^{h-1}(t-1)$

Núm. mín. chaves para altura
$$h$$
:
$$n = 1 + 2(t-1) + 2t(t-1) + 2t^2(t-1) + \dots + 2t^{h-1}(t-1)$$

$$n = 1 + 2(t-1)(1+t+t^2+\dots+t^{h-1})$$

Nível	Núm. Mín. Nós	Núm. Mín. Chaves
0	1	1
1	2	2(t-1)
2	2t	2t(t-1)
3	$2t^2$	$2t^2(t-1)$
:	i:	:
h	$2t^{h-1}$	$2t^{h-1}(t-1)$

Núm. mín. chaves para altura
$$h$$
:
$$n=1+2(t-1)+2t(t-1)+2t^2(t-1)+...+2t^{h-1}(t-1)$$

$$n=1+2(t-1)(1+t+t^2+...+t^{h-1})$$

$$n=1+2(t-1)\frac{t^h-1}{(t-1)}$$

Nível	Núm. Mín. Nós	Núm. Mín. Chaves
0	1	1
1	2	2(t-1)
2	2t	2t(t-1)
3	$2t^2$	$2t^2(t-1)$
:	:	:
h	$2t^{h-1}$	$2t^{h-1}(t-1)$

Núm. mín. chaves para altura h:

$$n = 1 + 2(t - 1) + 2t(t - 1) + 2t^{2}(t - 1) + \dots + 2t^{h-1}(t - 1)$$

$$n = 1 + 2(t - 1)(1 + t + t^{2} + \dots + t^{h-1})$$

$$n = 1 + 2(t - 1)\frac{t^{h} - 1}{(t - 1)}$$

$$n = 2t^{h} - 1$$

Nível	Núm. Mín. Nós	Núm. Mín. Chaves
0	1	1
1	2	2(t-1)
2	2t	2t(t-1)
3	$2t^2$	$2t^2(t-1)$
:	:	:
h	$2t^{h-1}$	$2t^{h-1}(t-1)$

Núm. mín. chaves para altura
$$h$$
:
$$n=1+2(t-1)+2t(t-1)+2t^2(t-1)+...+2t^{h-1}(t-1)$$

$$n=1+2(t-1)(1+t+t^2+...+t^{h-1})$$

$$n=1+2(t-1)\frac{t^h-1}{(t-1)}$$

$$n=2t^h-1$$

$$\frac{n+1}{2}=t^h$$

Nível	Núm. Mín. Nós	Núm. Mín. Chaves
0	1	1
1	2	2(t-1)
2	2t	2t(t-1)
3	$2t^2$	$2t^2(t-1)$
:	:	:
h	$2t^{h-1}$	$2t^{h-1}(t-1)$

Núm. mín. chaves para altura
$$h$$
:
$$n=1+2(t-1)+2t(t-1)+2t^2(t-1)+...+2t^{h-1}(t-1)$$

$$n=1+2(t-1)(1+t+t^2+...+t^{h-1})$$

$$n=1+2(t-1)\frac{t^h-1}{(t-1)}$$

$$n=2t^h-1$$

$$\frac{n+1}{2}=t^h$$

$$h=\log_t\frac{n+1}{2}$$

Nível	Núm. Mín. Nós	Núm. Mín. Chaves
0	1	1
1	2	2(t-1)
2	2t	2t(t-1)
3	$2t^2$	$2t^2(t-1)$
:	:	:
h	$2t^{h-1}$	$2t^{h-1}(t-1)$

$$n = 1 + 2(t - 1) + 2t(t - 1) + 2t^{2}(t - 1) + \dots + 2t^{h-1}(t - 1)$$

$$n = 1 + 2(t - 1)(1 + t + t^{2} + \dots + t^{h-1})$$

$$n = 1 + 2(t - 1)\frac{t^{h} - 1}{(t - 1)}$$

$$n = 2t^{h} - 1$$

$$\frac{n+1}{2} = t^{h}$$

 $h = \log_t \frac{n+1}{2}$ Como é o número mínimo de chaves para altura h, tem-se que:

 $h \leq \log_t \frac{n+1}{2}$, para um dado valor de n

Esquema da Prova - Ilustração

Número mínimo de chaves por nó: t = 2:

Por exemplo:

$$\begin{array}{ll} h \leq \log_t \frac{n+1}{2} & \text{ Para } t = 2 \text{ e } n = 7 \text{: } h \leq 2 \text{ e } \log_2 \left(\frac{7+1}{2}\right) = 2 \\ & \text{ Para } t = 2 \text{ e } n = 15 \text{: } h \leq 3 \text{ e } \log_2 \left(\frac{15+1}{2}\right) = 3 \\ & \text{ Para } t = 2 \text{ e } n = 10 \text{: } h \leq 2 \text{ e } \log_2 \left(\frac{10+1}{2}\right) = 2.46 \end{array}$$

1. Apresentar o estado final de uma árvore B de grau mínimo t=3 após a inserção da seguinte sequência de chaves:

10, 75, 62, 69, 80, 90, 20, 30, 100, 25, 85, 95

1. Apresentar o estado final de uma árvore B de grau mínimo t=3 após a inserção da seguinte sequência de chaves:

10, 75, 62, 69, 80, 90, 20, 30, 100, 25, 85, 95

Resposta:

Inserção das chaves 10, 75, 62, 69, 80:

1. Apresentar o estado final de uma árvore B de grau mínimo t=3 após a inserção da seguinte sequência de chaves:

Resposta:

Inserção das chaves 10, 75, 62, 69, 80:

10 62 69 75 8

Inserção da chave 90:

Inserção das chaves 20, 30, 100, 25, 85:

Inserção das chaves 20, 30, 100, 25, 85:

Inserção da chave 95:

2. Apresentar o estado final de uma árvore B de grau mínimo t=2 após a inserção da seguinte sequência de chaves:

40, 50, 60, 30, 20, 35, 70, 80, 90, 65

2. Apresentar o estado final de uma árvore B de grau mínimo t=2 após a inserção da seguinte sequência de chaves:

40, 50, 60, 30, 20, 35, 70, 80, 90, 65

Resposta:

Inserção das chaves 40, 50 e 60:

40 50 60

2. Apresentar o estado final de uma árvore B de grau mínimo t=2 após a inserção da seguinte sequência de chaves:

Resposta:

Inserção das chaves 40, 50 e 60:

Inserção da chave 30:

2. Apresentar o estado final de uma árvore B de grau mínimo t=2 após a inserção da seguinte sequência de chaves:

40, 50, 60, 30, 20, 35, 70, 80, 90, 65

Resposta:

Inserção das chaves 40, 50 e 60:

Inserção da chave 30:

Inserção da chave 20:

Inserção da chave 35:

Inserção da chave 35:

Inserção das chaves 70 e 80:

Inserção da chave 35:

Inserção das chaves 70 e 80:

Inserção da chave 90:

Inserção do 65:

Como remover chaves de uma árvore B mantendo-se suas propriedades?

Como remover chaves de uma árvore B mantendo-se suas propriedades?

Deve-se evitar que, ao se descer na estrutura da árvore, a remoção de uma chave faça com que ajustes devam ser feitos nos nós nos níveis de volta à raiz.

Como remover chaves de uma árvore B mantendo-se suas propriedades?

Deve-se evitar que, ao se descer na estrutura da árvore, a remoção de uma chave faça com que ajustes devam ser feitos nos nós nos níveis de volta à raiz.

Ao se visitar um nó, com exceção da raiz, este nó deve ter pelo menos t chaves.

Como remover chaves de uma árvore B mantendo-se suas propriedades?

Deve-se evitar que, ao se descer na estrutura da árvore, a remoção de uma chave faça com que ajustes devam ser feitos nos nós nos níveis de volta à raiz.

Ao se visitar um nó, com exceção da raiz, este nó deve ter pelo menos t chaves.

Há três casos genéricos de remoção. Será usada a árvore abaixo para ilustrá-los:

Grau mínimo t = 3

1. Se a chave k estiver em um nó x folha, remova k do nó

1. Se a chave k estiver em um nó x folha, remova k do nó

Remoção da chave: F

1. Se a chave k estiver em um nó x folha, remova k do nó

Remoção da chave: F

- 2. Se a chave k estiver em um nó x e x for um nó interno, faça o seguinte:
 - 2.1 se o nó filho y que precede k no nó x tiver pelo menos t chaves, então encontre o predecessor k' de k na subárvore com raiz em y. Recursivamente remova k' e substitua k por k' em x
 - 2.2 se y tiver menos do que t chaves, então, simetricamente, examine o nó filho z que segue k no nó x. Se z tiver pelo menos t chaves então encontre o sucessor k' de k na subárvore com raiz em z. Recursivamente remova k' e substitua k por k' em x
 - 2.3 se não, se ambos os filhos y e z tiverem t-1 chaves, armazene z e todas as chaves e apontadores de z em y e remova k e os apontadores y e z de x. O nó y agora conterá 2t-1 chaves. Apague z e recursivamente remova k de y

- 2. Se a chave k estiver em um nó x e x for um nó interno, faça o seguinte:
 - 2.1 se o nó filho y que precede k no nó x tiver pelo menos t chaves, então encontre o predecessor k' de k na subárvore com raiz em y. Recursivamente remova k' e substitua k por k' em x
 - 2.2 se y tiver menos do que t chaves, então, simetricamente, examine o nó filho z que segue k no nó x. Se z tiver pelo menos t chaves então encontre o sucessor k' de k na subárvore com raiz em z. Recursivamente remova k' e substitua k por k' em x
 - 2.3 se não, se ambos os filhos y e z tiverem t-1 chaves, armazene z e todas as chaves e apontadores de z em y e remova k e os apontadores y e z de x. O nó y agora conterá 2t-1 chaves. Apague z e recursivamente remova k de y

Remoção da chave M

- 2. Se a chave k estiver em um nó x e x for um nó interno, faça o seguinte:
 - 2.1 se o nó filho y que precede k no nó x tiver pelo menos t chaves, então encontre o predecessor k' de k na subárvore com raiz em y. Recursivamente remova k' e substitua k por k' em x
 - 2.2 se y tiver menos do que t chaves, então, simetricamente, examine o nó filho z que segue k no nó x. Se z tiver pelo menos t chaves então encontre o sucessor k' de k na subárvore com raiz em z. Recursivamente remova k' e substitua k por k' em x
 - 2.3 se não, se ambos os filhos y e z tiverem t-1 chaves, armazene z e todas as chaves e apontadores de z em y e remova k e os apontadores y e z de x. O nó y agora conterá 2t-1 chaves. Apague z e recursivamente remova k de y

Remoção da chave M (Caso 2.1):

- 2. Se a chave k estiver em um nó x e x for um nó interno, faça o seguinte:
 - 2.1 se o nó filho y que precede k no nó x tiver pelo menos t chaves, então encontre o predecessor k' de k na subárvore com raiz em y. Recursivamente remova k' e substitua k por k' em x
 - 2.2 se y tiver menos do que t chaves, então, simetricamente, examine o nó filho z que segue k no nó x. Se z tiver pelo menos t chaves então encontre o sucessor k' de k na subárvore com raiz em z. Recursivamente remova k' e substitua k por k' em x
 - 2.3 se não, se ambos os filhos y e z tiverem t-1 chaves, armazene z e todas as chaves e apontadores de z em y e remova k e os apontadores y e z de x. O nó y agora conterá 2t-1 chaves. Apague z e recursivamente remova k de y

Remoção da chave M (Caso 2.1):

- 2. Se a chave k estiver em um nó x e x for um nó interno, faça o seguinte:
 - 2.1 se o nó filho y que precede k no nó x tiver pelo menos t chaves, então encontre o predecessor k' de k na subárvore com raiz em y. Recursivamente remova k' e substitua k por k' em x
 - 2.2 se y tiver menos do que t chaves, então, simetricamente, examine o nó filho z que segue k no nó x. Se z tiver pelo menos t chaves então encontre o sucessor k' de k na subárvore com raiz em z. Recursivamente remova k' e substitua k por k' em x
 - 2.3 se não, se ambos os filhos y e z tiverem t-1 chaves, armazene z e todas as chaves e apontadores de z em y e remova k e os apontadores y e z de x. O nó y agora conterá 2t-1 chaves. Apague z e recursivamente remova k de y

- 2. Se a chave k estiver em um nó x e x for um nó interno, faça o seguinte:
 - 2.1 se o nó filho y que precede k no nó x tiver pelo menos t chaves, então encontre o predecessor k' de k na subárvore com raiz em y. Recursivamente remova k' e substitua k por k' em x
 - 2.2 se y tiver menos do que t chaves, então, simetricamente, examine o nó filho z que segue k no nó x. Se z tiver pelo menos t chaves então encontre o sucessor k' de k na subárvore com raiz em z. Recursivamente remova k' e substitua k por k' em x
 - 2.3 se não, se ambos os filhos y e z tiverem t-1 chaves, armazene z e todas as chaves e apontadores de z em y e remova k e os apontadores y e z de x. O nó y agora conterá 2t-1 chaves. Apague z e recursivamente remova k de y

Remoção da chave G

- 2. Se a chave k estiver em um nó x e x for um nó interno, faça o seguinte:
 - 2.1 se o nó filho y que precede k no nó x tiver pelo menos t chaves, então encontre o predecessor k' de k na subárvore com raiz em y. Recursivamente remova k' e substitua k por k' em x
 - 2.2 se y tiver menos do que t chaves, então, simetricamente, examine o nó filho z que segue k no nó x. Se z tiver pelo menos t chaves então encontre o sucessor k' de k na subárvore com raiz em z. Recursivamente remova k' e substitua k por k' em x
 - 2.3 se não, se ambos os filhos y e z tiverem t-1 chaves, armazene z e todas as chaves e apontadores de z em y e remova k e os apontadores y e z de x. O nó y agora conterá 2t-1 chaves. Apague z e recursivamente remova k de y

Remoção da chave G (Caso 2.3):

- 2. Se a chave k estiver em um nó x e x for um nó interno, faça o seguinte:
 - 2.1 se o nó filho y que precede k no nó x tiver pelo menos t chaves, então encontre o predecessor k' de k na subárvore com raiz em y. Recursivamente remova k' e substitua k por k' em x
 - 2.2 se y tiver menos do que t chaves, então, simetricamente, examine o nó filho z que segue k no nó x. Se z tiver pelo menos t chaves então encontre o sucessor k' de k na subárvore com raiz em z. Recursivamente remova k' e substitua k por k' em x
 - 2.3 se não, se ambos os filhos y e z tiverem t-1 chaves, armazene z e todas as chaves e apontadores de z em y e remova k e os apontadores y e z de x. O nó y agora conterá 2t-1 chaves. Apague z e recursivamente remova k de y

Remoção da chave G (Caso 2.3):

- 2. Se a chave k estiver em um nó x e x for um nó interno, faça o seguinte:
 - 2.1 se o nó filho y que precede k no nó x tiver pelo menos t chaves, então encontre o predecessor k' de k na subárvore com raiz em y. Recursivamente remova k' e substitua k por k' em x
 - 2.2 se y tiver menos do que t chaves, então, simetricamente, examine o nó filho z que segue k no nó x. Se z tiver pelo menos t chaves então encontre o sucessor k' de k na subárvore com raiz em z. Recursivamente remova k' e substitua k por k' em x
 - 2.3 se não, se ambos os filhos y e z tiverem t-1 chaves, armazene z e todas as chaves e apontadores de z em y e remova k e os apontadores y e z de x. O nó y agora conterá 2t-1 chaves. Apague z e recursivamente remova k de y

Remoção da chave G (Caso 2.3):

- 3. Se a chave k não estiver no nó interno x, determine a raiz $x.c_i$ da subárvore onde k deve estar (se k estiver na árvore). Se $x.c_i$ tiver somente t-1 chaves, execute passos 3.1 e 3.2 tantas vezes quantas forem necessárias para que o processo continue em um nó com pelo menos t chaves. Então termine seguindo o processo recursivamente no filho apropriado de x.
 - 3.1 Se $x.c_i$ tem somente t-1 chaves mas tiver um nó irmão imediato com pelo menos t chaves, mova uma chave de x a $x.c_i$. Em seguida, mova uma chave do irmão imediato de $x.c_i$ para x e mova o apontador apropriado do nó irmão para $x.c_i$
 - 3.2 Se $x.c_i$ e ambos os irmãos imediatos de $x.c_i$ tiverem t-1 chaves, una $x.c_i$ com um irmão. Para isso, mova também uma chave de x para o novo nó, que se tornará a nova chave mediana desse nó

- 3. Se a chave k não estiver no nó interno x, determine a raiz $x.c_i$ da subárvore onde k deve estar (se k estiver na árvore). Se $x.c_i$ tiver somente t-1 chaves, execute passos 3.1 e 3.2 tantas vezes quantas forem necessárias para que o processo continue em um nó com pelo menos t chaves. Então termine seguindo o processo recursivamente no filho apropriado de x.
 - 3.1 Se $x.c_i$ tem somente t-1 chaves mas tiver um nó irmão imediato com pelo menos t chaves, mova uma chave de x a $x.c_i$. Em seguida, mova uma chave do irmão imediato de $x.c_i$ para x e mova o apontador apropriado do nó irmão para $x.c_i$
 - 3.2 Se $x.c_i$ e ambos os irmãos imediatos de $x.c_i$ tiverem t-1 chaves, una $x.c_i$ com um irmão. Para isso, mova também uma chave de x para o novo nó, que se tornará a nova chave mediana desse nó

Remoção da chave D

- 3. Se a chave k não estiver no nó interno x, determine a raiz $x.c_i$ da subárvore onde k deve estar (se k estiver na árvore). Se $x.c_i$ tiver somente t-1 chaves, execute passos 3.1 e 3.2 tantas vezes quantas forem necessárias para que o processo continue em um nó com pelo menos t chaves. Então termine seguindo o processo recursivamente no filho apropriado de x.
 - 3.1 Se $x.c_i$ tem somente t-1 chaves mas tiver um nó irmão imediato com pelo menos t chaves, mova uma chave de x a $x.c_i$. Em seguida, mova uma chave do irmão imediato de $x.c_i$ para x e mova o apontador apropriado do nó irmão para $x.c_i$
 - 3.2 Se $x.c_i$ e ambos os irmãos imediatos de $x.c_i$ tiverem t-1 chaves, una $x.c_i$ com um irmão. Para isso, mova também uma chave de x para o novo nó, que se tornará a nova chave mediana desse nó

Remoção da chave D (Caso 3.2):

- 3. Se a chave k não estiver no nó interno x, determine a raiz $x.c_i$ da subárvore onde k deve estar (se k estiver na árvore). Se $x.c_i$ tiver somente t-1 chaves, execute passos 3.1 e 3.2 tantas vezes quantas forem necessárias para que o processo continue em um nó com pelo menos t chaves. Então termine seguindo o processo recursivamente no filho apropriado de x.
 - 3.1 Se $x.c_i$ tem somente t-1 chaves mas tiver um nó irmão imediato com pelo menos t chaves, mova uma chave de x a $x.c_i$. Em seguida, mova uma chave do irmão imediato de $x.c_i$ para x e mova o apontador apropriado do nó irmão para $x.c_i$
 - 3.2 Se $x.c_i$ e ambos os irmãos imediatos de $x.c_i$ tiverem t-1 chaves, una $x.c_i$ com um irmão. Para isso, mova também uma chave de x para o novo nó, que se tornará a nova chave mediana desse nó

Remoção da chave D (Caso 3.2):

- 3. Se a chave k não estiver no nó interno x, determine a raiz $x.c_i$ da subárvore onde k deve estar (se k estiver na árvore). Se $x.c_i$ tiver somente t-1 chaves, execute passos 3.1 e 3.2 tantas vezes quantas forem necessárias para que o processo continue em um nó com pelo menos t chaves. Então termine seguindo o processo recursivamente no filho apropriado de x.
 - 3.1 Se $x.c_i$ tem somente t-1 chaves mas tiver um nó irmão imediato com pelo menos t chaves, mova uma chave de x a $x.c_i$. Em seguida, mova uma chave do irmão imediato de $x.c_i$ para x e mova o apontador apropriado do nó irmão para $x.c_i$
 - 3.2 Se $x.c_i$ e ambos os irmãos imediatos de $x.c_i$ tiverem t-1 chaves, una $x.c_i$ com um irmão. Para isso, mova também uma chave de x para o novo nó, que se tornará a nova chave mediana desse nó

Remoção da chave D (Caso 3.2):

- 3. Se a chave k não estiver no nó interno x, determine a raiz $x.c_i$ da subárvore onde k deve estar (se k estiver na árvore). Se $x.c_i$ tiver somente t-1 chaves, execute passos 3.1 e 3.2 tantas vezes quantas forem necessárias para que o processo continue em um nó com pelo menos t chaves. Então termine seguindo o processo recursivamente no filho apropriado de x.
 - 3.1 Se $x.c_i$ tem somente t-1 chaves mas tiver um nó irmão imediato com pelo menos t chaves, mova uma chave de x a $x.c_i$. Em seguida, mova uma chave do irmão imediato de $x.c_i$ para x e mova o apontador apropriado do nó irmão para $x.c_i$
 - 3.2 Se $x.c_i$ e ambos os irmãos imediatos de $x.c_i$ tiverem t-1 chaves, una $x.c_i$ com um irmão. Para isso, mova também uma chave de x para o novo nó, que se tornará a nova chave mediana desse nó

- 3. Se a chave k não estiver no nó interno x, determine a raiz $x.c_i$ da subárvore onde k deve estar (se k estiver na árvore). Se $x.c_i$ tiver somente t-1 chaves, execute passos 3.1 e 3.2 tantas vezes quantas forem necessárias para que o processo continue em um nó com pelo menos t chaves. Então termine seguindo o processo recursivamente no filho apropriado de x.
 - 3.1 Se $x.c_i$ tem somente t-1 chaves mas tiver um nó irmão imediato com pelo menos t chaves, mova uma chave de x a $x.c_i$. Em seguida, mova uma chave do irmão imediato de $x.c_i$ para x e mova o apontador apropriado do nó irmão para $x.c_i$
 - 3.2 Se $x.c_i$ e ambos os irmãos imediatos de $x.c_i$ tiverem t-1 chaves, una $x.c_i$ com um irmão. Para isso, mova também uma chave de x para o novo nó, que se tornará a nova chave mediana desse nó

Remoção da chave B

- 3. Se a chave k não estiver no nó interno x, determine a raiz $x.c_i$ da subárvore onde k deve estar (se k estiver na árvore). Se $x.c_i$ tiver somente t-1 chaves, execute passos 3.1 e 3.2 tantas vezes quantas forem necessárias para que o processo continue em um nó com pelo menos t chaves. Então termine seguindo o processo recursivamente no filho apropriado de x.
 - 3.1 Se $x.c_i$ tem somente t-1 chaves mas tiver um nó irmão imediato com pelo menos t chaves, mova uma chave de x a $x.c_i$. Em seguida, mova uma chave do irmão imediato de $x.c_i$ para x e mova o apontador apropriado do nó irmão para $x.c_i$
 - 3.2 Se $x.c_i$ e ambos os irmãos imediatos de $x.c_i$ tiverem t-1 chaves, una $x.c_i$ com um irmão. Para isso, mova também uma chave de x para o novo nó, que se tornará a nova chave mediana desse nó

Remoção da chave B (Caso 3.1):

- 3. Se a chave k não estiver no nó interno x, determine a raiz $x.c_i$ da subárvore onde k deve estar (se k estiver na árvore). Se $x.c_i$ tiver somente t-1 chaves, execute passos 3.1 e 3.2 tantas vezes quantas forem necessárias para que o processo continue em um nó com pelo menos t chaves. Então termine seguindo o processo recursivamente no filho apropriado de x.
 - 3.1 Se $x.c_i$ tem somente t-1 chaves mas tiver um nó irmão imediato com pelo menos t chaves, mova uma chave de x a $x.c_i$. Em seguida, mova uma chave do irmão imediato de $x.c_i$ para x e mova o apontador apropriado do nó irmão para $x.c_i$
 - 3.2 Se $x.c_i$ e ambos os irmãos imediatos de $x.c_i$ tiverem t-1 chaves, una $x.c_i$ com um irmão. Para isso, mova também uma chave de x para o novo nó, que se tornará a nova chave mediana desse nó

Remoção da chave B (Caso 3.1):

- 3. Se a chave k não estiver no nó interno x, determine a raiz $x.c_i$ da subárvore onde k deve estar (se k estiver na árvore). Se $x.c_i$ tiver somente t-1 chaves, execute passos 3.1 e 3.2 tantas vezes quantas forem necessárias para que o processo continue em um nó com pelo menos t chaves. Então termine seguindo o processo recursivamente no filho apropriado de x.
 - 3.1 Se $x.c_i$ tem somente t-1 chaves mas tiver um nó irmão imediato com pelo menos t chaves, mova uma chave de x a $x.c_i$. Em seguida, mova uma chave do irmão imediato de $x.c_i$ para x e mova o apontador apropriado do nó irmão para $x.c_i$
 - 3.2 Se $x.c_i$ e ambos os irmãos imediatos de $x.c_i$ tiverem t-1 chaves, una $x.c_i$ com um irmão. Para isso, mova também uma chave de x para o novo nó, que se tornará a nova chave mediana desse nó

Remoção da chave B (Caso 3.1):

Remoção - Complexidade

Pelo Teorema apresentado anteriormente, a remoção também possui complexidade $\Theta(\log n)$ no pior caso.

Exercício

Qual seria o estado final da árvore abaixo, após a remoção da seguinte sequência de chaves: N, R, P, U, S, T, J, A

O grau mínimo da árvore, t, é igual a 3.

Remoção do N:

Remoção do N:

Remoção do N:

Remoção do R:

Remoção do N:

Remoção do R:

Remoção do N:

Remoção do R:

Remoção do P:

Remoção do N:

Remoção do R:

Remoção do P:

Remoção do U:

Remoção do U:

Remoção do U:

Remoção do S:

Remoção do U:

Remoção do S:

Remoção do U:

Remoção do S:

Remoção do T:

Remoção do U:

Remoção do S:

Remoção do T:

Remoção do J:

Remoção do J:

Remoção do J:

Remoção do A:

Remoção do J:

Remoção do A:

Árvores B+

Árvores B+

Variação de árvores B:

- estruturada em uma parte de índice e um conjunto sequência
- o índice é estruturado como uma árvore B armazena apenas chaves
- o conjunto sequência é um encadeamento de nós, onde os registros efetivamente ficam armazenados
- o número de chaves armazenadas em cada nó do índice é em geral maior que o número de registros armazenados em cada nó do conjunto sequência

▶ Árvores B+ podem ser apresentadas com pequenas variações

- ▶ Árvores B+ podem ser apresentadas com pequenas variações
- ► Apresentaremos aqui árvores B+ considerando dois parâmetros:
 - : t_I: o grau mínimo para a parte de índice
 - t_{CS}: um valor que indica o número mínimo e máximo de registros que podem ser armazenados nos nós do conjunto sequência

- ▶ Árvores B+ podem ser apresentadas com pequenas variações
- ► Apresentaremos aqui árvores B+ considerando dois parâmetros:
 - : t_I: o grau mínimo para a parte de índice
 - t_{CS}: um valor que indica o número mínimo e máximo de registros que podem ser armazenados nos nós do conjunto sequência
- Nós do índice:
 - número mínimo de chaves: $t_l 1$
 - ightharpoonup número máximo de chaves: $2t_I 1$

- Árvores B+ podem ser apresentadas com pequenas variações
- ► Apresentaremos aqui árvores B+ considerando dois parâmetros:
 - : t₁: o grau mínimo para a parte de índice
 - t_{CS}: um valor que indica o número mínimo e máximo de registros que podem ser armazenados nos nós do conjunto sequência
- Nós do índice:
 - ightharpoonup número mínimo de chaves: $t_l 1$
 - ightharpoonup número máximo de chaves: $2t_l 1$
- Nós do conjunto sequência:
 - número mínimo de registros: $t_{CS}-1$ (com exceção do primeiro nó na árvore: número mínimo = 1)
 - ightharpoonup número máximo de registros: $2t_{CS}-1$

- Árvores B+ podem ser apresentadas com pequenas variações
- ► Apresentaremos aqui árvores B+ considerando dois parâmetros:
 - : t_I: o grau mínimo para a parte de índice
 - t_{CS}: um valor que indica o número mínimo e máximo de registros que podem ser armazenados nos nós do conjunto sequência
- Nós do índice:
 - número mínimo de chaves: $t_I 1$
 - ightharpoonup número máximo de chaves: $2t_I 1$
- Nós do conjunto sequência:
 - número mínimo de registros: $t_{CS}-1$ (com exceção do primeiro nó na árvore: número mínimo = 1)
 - ightharpoonup número máximo de registros: $2t_{CS}-1$
- Os nós do conjunto sequência não armazenam apontadores

- Árvores B+ podem ser apresentadas com pequenas variações
- ► Apresentaremos aqui árvores B+ considerando dois parâmetros:
 - : t_I: o grau mínimo para a parte de índice
 - t_{CS}: um valor que indica o número mínimo e máximo de registros que podem ser armazenados nos nós do conjunto sequência
- Nós do índice:
 - ightharpoonup número mínimo de chaves: $t_l 1$
 - ightharpoonup número máximo de chaves: $2t_l 1$
- Nós do conjunto sequência:
 - número mínimo de registros: $t_{CS}-1$ (com exceção do primeiro nó na árvore: número mínimo = 1)
 - número máximo de registros: $2t_{CS} 1$
- Os nós do conjunto sequência não armazenam apontadores
- O algoritmo de inserção de árvores B se aplica de maneira análoga, considerando os valores t₁ e t_{CS}.

Consideremos que a árvore B do índice tenha grau mínimo $t_l = 3$ e que o conjunto sequência tenha grau mínimo $t_{CS} = 2$.

Nós do índice:

- ▶ número mínimo de chaves: $t_I 1 = 2$
- ▶ número máximo de chaves: $2t_l 1 = 5$

Nós do conjunto sequência:

- ▶ número mínimo de registros: $t_{CS} 1 = 1$
- ▶ número máximo de registros: $2t_{CS} 1 = 3$

Consideremos que a árvore B do índice tenha grau mínimo $t_l = 3$ e que o conjunto sequência tenha grau mínimo $t_{CS} = 2$.

Nós do índice:

- ▶ número mínimo de chaves: $t_I 1 = 2$
- ▶ número máximo de chaves: $2t_I 1 = 5$

Nós do conjunto sequência:

- ▶ número mínimo de registros: $t_{CS} 1 = 1$
- número máximo de registros: $2t_{CS} 1 = 3$

Nos exemplos a seguir, chaves em azul na árvore indicam o armazenamento de todo o registro. Chaves em marrom indicam o armazenamento da chave apenas.

Inserção de um registro com chave 50:

CS: **50**

Inserção de um registro com chave 50:

CS: **50**

Inserção de um registro com chave 30:

Inserção de um registro com chave 50:

CS: **50**

Inserção de um registro com chave 30:

CS: **30 50**

Inserção de um registro com chave 50:

CS: **50**

Inserção de um registro com chave 30:

CS: **30 50**

Inserção de um registro com chave 70:

Inserção de um registro com chave 50:

CS: **50**

Inserção de um registro com chave 30:

CS: **30 50**

Inserção de um registro com chave 70:

CS: **30 50 70**

Inserção de um registro com chave 80:

Inserção de um registro com chave 80:

Quebra do nó!

Inserção de um registro com chave 80:

Quebra do nó! Apenas a chave sobe

Inserção de um registro com chave 80:

Quebra do nó! Apenas a chave sobe

Inserção do registro:

Inserção de um registro com chave 90:

Inserção de um registro com chave 90:

Inserção de um registro com chave 90:

Inserção de um registro com chave 85:

Inserção de um registro com chave 90:

Inserção de um registro com chave 85:

Inserção de um registro com chave 90:

Inserção de um registro com chave 85:

Inserção do registro:

Inserção de um registro com chave 90:

Inserção de um registro com chave 85:

Inserção do registro:

Inserção de um registro com chave 100:

Inserção de um registro com chave 100:

Inserção de um registro com chave 100:

Inserção de um registro com chave 20:

Inserção de um registro com chave 100:

Inserção de um registro com chave 20:

Inserção de um registro com chave 100:

Inserção de um registro com chave 20:

Inserção de um registro com chave 10:

Inserção de um registro com chave 100:

Inserção de um registro com chave 20:

Inserção de um registro com chave 10:

Inserção de um registro com chave 100:

Inserção de um registro com chave 20:

Inserção de um registro com chave 10:

Inserção de um registro com chave 75:

Inserção de um registro com chave 100:

Inserção de um registro com chave 20:

Inserção de um registro com chave 10:

30 50 80

Inserção de um registro com chave 75:

Inserção de um registro com chave **72**:

Inserção de um registro com chave 72:

Inserção de um registro com chave 72:

Inserção de um registro com chave 110:

Inserção de um registro com chave 72:

Inserção de um registro com chave 110:

Inserção de um registro com chave 72:

Inserção de um registro com chave 110:

Inserção de um registro com chave 40:

Inserção de um registro com chave 72:

Inserção de um registro com chave 110:

Inserção de um registro com chave 40:

O índice tende a ter altura menor do que uma árvore B com mesmo conjunto de chaves armazenado na árvore - apenas algumas chaves aparecem no índice!

- O índice tende a ter altura menor do que uma árvore B com mesmo conjunto de chaves armazenado na árvore - apenas algumas chaves aparecem no índice!
- Arvores B+ oferecem ganho de desempenho em relação a árvores B tanto no acesso direto quanto em acesso sequencial

- O índice tende a ter altura menor do que uma árvore B com mesmo conjunto de chaves armazenado na árvore - apenas algumas chaves aparecem no índice!
- ► Árvores B+ oferecem ganho de desempenho em relação a árvores B tanto no acesso direto quanto em acesso sequencial
- O algoritmo de remoção é análogo ao de árvore B
 - A remoção de um registro com uma chave *c* não necessariamente causa a remoção da chave *c* do índice!
 - Ex.: remoção do registro com chave 75 na árvore final do slide anterior

- O índice tende a ter altura menor do que uma árvore B com mesmo conjunto de chaves armazenado na árvore - apenas algumas chaves aparecem no índice!
- ➤ Árvores B+ oferecem ganho de desempenho em relação a árvores B tanto no acesso direto quanto em acesso sequencial
- O algoritmo de remoção é análogo ao de árvore B
 - A remoção de um registro com uma chave *c* não necessariamente causa a remoção da chave *c* do índice!
 - Ex.: remoção do registro com chave 75 na árvore final do slide anterior
- A busca sempre segue até um nó do conjunto sequência, pois a presença de uma chave no índice **não** indica a existência de um registro com aquela chave na árvore

Exercício

Apresente o estado de uma árvore B+ após a inserção de registros com a seguinte sequência de chaves:

6, 7, 9, 11, 14, 16, 10, 20, 21, 8, 30, 40, 50

Exercício

Apresente o estado de uma árvore B+ após a inserção de registros com a seguinte sequência de chaves:

Resposta:

