Groups

Lecture 13
Discrete Mathematical
Structures

Groups

- Part I: Groups
 - ☐ Basic properties of groups
 - ☐ Group of symmetries
 - ☐ Isomorphism and homomorphism
- Part II: Fundamental Homomorphism Theorem
 - □ Quotient group
 - □ Subgroup and cosets
 - □ Fundamental homomorphism theorem for group
 - ☐ Algebra systems with more than one operation

Group

- Group axioms
 - Association
 - ☐ Identity
 - ☐ Inverse property
- Example
 - \square Addition group on integers (Z,+)
 - □ All one-to-one functions on $\{1,2,3\}$, plus composition of function: S_3

Inverse

(Inverse can be discussed for those system with identity.)

- For a given element x in the system S, if there is some element x' in the system, satisfying that x' $x=1_S$, then x' is called a left inverse of x.
- Similarly, if there is some x' in the system, such that x $x''=1_S$, then x' is called a right inverse of x.
- For a given element x in the system S, if there is some element x^* , satisfying that: x $x^*=x^*$ $x=1_S$, then x^* is called an inverse of x, denotes as x^{-1} .

An Example about Inverse

*	a	b	c	d
a	a	b	c	d
b	b	c	d	a
c	c	a	c	a
d	d	b	c	d

Note:

- (1) b has different left and right inverses
- (2) c has 2 right inverses, but no left inverse
- (3) d has left inverse, but no right inverse

Uniqueness of Inverse

If a system (S,) is *associate*:

- For a given x, if x has a left inverse, and a right inverse as well, then they must be equal, and it is the unique inverse of x.
 - \square Assuming left inverse is x', and right inverse is x':

$$x'=x'$$
 $1_S=x'$ $(x x'')=(x' x) x''=1_S x''=x''$

- \blacksquare If every element of *S* has a left inverse, then the left inverse is also its right inverse, and the inverse is unique.
 - \square For any a in S, let b is a left inverse of a, and c is a left inverse of b, then:

$$a b = (1_S a) b = ((c b) a) b = (c (b a)) b$$

= $(c 1_S) b = c b = 1_S$

Inverse Property of a System

■ For any element in a system, there may or may not be its inverse.

■ However, "for any element *x* in *S*, *x* has its inverse" is a property of the system as a whole.

■ For a system for which the inverse property holds, each element has its particular inverse.

Semigroup and Group

- A group is a semigroup
 - Association
- A group is a monoid
 - □ Identity
- Negative exponential
 - \square Denotation of inverse of element *a*: a^{-1}
 - \square Expansion of exponential: $a^{-k} = (a^{-1})^k$ (k is positive integer)
- Abelian group: commutative group

An Example of Abelian Group

- Let G be the set of all nonzero real numbers, let a*b=ab/2, then (G,*) is an Abelian group.
- Verifying that all requirements as described as definition are satisfied:
 - \square "*" is a closed binary operation on G.
 - \square Associativity: (a*b)*c=a*(b*c)=(abc)/4
 - \square Identity: a*2=2*a for all a in G
 - □ Inverse: examine the equation a*x=2, it is easy to see that for all a in G, $a^{-1}=4/a$
 - \square Commutativity: obviously, a*b=b*a

Product of groups

■ Given two groups (S,), (T,*), define operation "⊗" on the Cartesian product $S \times T$ as follows:

$$\langle s_1, t_1 \rangle \otimes \langle s_2, t_2 \rangle = \langle s_1 \quad s_2, t_1 * t_2 \rangle$$

- \blacksquare ($S \times T$, \otimes) is a group:
 - □ Association: $\langle (r_1 \ s_1) \ t_1, (r_2 * s_2) * t_2 \rangle$ = $\langle r_1 \ (s_1 \ t_1), r_2 * (s_2 * t_2) \rangle$
 - \square Identity: $\langle 1_S, 1_T \rangle$
 - \square Inverse property: the inverse of $\langle s, t \rangle$ is $\langle s^{-1}, t^{-1} \rangle$
 - (where $s, s^{-1} \in S, t, t^{-1} \in T$)

An Example of non-Abelian Group

■ Six one-to-one functions can be defined on the set {1,2,3} altogether:

$$f_{1} = \begin{pmatrix} 123 \\ 123 \end{pmatrix} \qquad f_{2} = \begin{pmatrix} 123 \\ 231 \end{pmatrix} \qquad f_{3} = \begin{pmatrix} 123 \\ 312 \end{pmatrix}$$
$$g_{1} = \begin{pmatrix} 123 \\ 132 \end{pmatrix} \qquad g_{2} = \begin{pmatrix} 123 \\ 321 \end{pmatrix} \qquad g_{3} = \begin{pmatrix} 123 \\ 213 \end{pmatrix}$$

• $\{\{e,\alpha,\beta,\gamma,\delta,\epsilon\},\}$) is a group, here, " " is composition of function. One-to-one function on finite set is called a permutation, so, this is a permutation group, denoted as S_3 .

Geometric Interpretation of S_3

Each one-to-one correspondence on the set of points is a symmetry of the triangle.

3 reflectings: g_1 -by l_1 , g_2 -by l_2 , g_3 -by l_3

Cancellation Properties

- Cancellation property holds for group:
 - Let (G,) be a group, for any $a,b,c \in G$ If a b=a c, then b=cIf b a=c a, then b=c
- The algebraic system (Z^+, \cdot) , where Z^+ is the set of positive integers, and "·" is arithematic multiplication, satisfies association and cancellation, but it is *not* a group.

Group Equation and Its Solution

- Group equations:
 - $\Box a$ x=b and y a=b, where a, b are constants
- Solutions of the group equations:
 - $\square a \quad x=b \rightarrow a \quad (a^{-1} \quad b)=b$
 - $\Box y \quad a=b \rightarrow (b \quad a^{-1}) \quad a=b$
- The group equation has unique solution:
 - □ Assuming that a $x_1=b=a$ x_2 , multiply the two sides of the equation from the left with a^{-1} , $x_1=a^{-1}$ $b=x_2$,

Second Definition of Group

- (G,) is an algebraic system, if association holds for it, and the two group equation a x=b and y a=b have unique solutions each, then (G,) is a group.
 - □ Sketch of proof:
 - (1) Let b is any element in G, y b=b has a unique solution e, then it is easy to prove that e is a left identity in (G,).

```
For any a \in G, b x=a has a unique solution c, then e a=e b c=b c=a
```

- (2) For any $a \in G$, y a=e has a unique solution a' ("left inverse candidate")
- (3) then a' is also "right inverse candidate" of a:

```
y \quad a'=e has a unique solution a'', then a \quad a'=e ( a \quad a')
= (a'' \quad a') \quad (a \quad a')=e
```

- (4) e is also right identity: for any $a \in G$, a e = a (a' a) = a
- Combining (1)-(4), e is the identity of (G,), and for any element a, a has a as its inverse.

Finite Group and Cancellation

- Let G be a finite set, if the algebraic system (G,) satisfies association and cancellation properties, then (G,) is a group.
 - ☐ Sketch of proof:

```
Assuming that G = \{a_1, a_2, a_3, \dots, a_n\}, for any given a_i in G, considering the set a_iG = \{a_i \ a_1, a_i \ a_2, a_i \ a_3, \dots, a_i \ a_n\}. Note that a_iG is a subset of G (closeness of G), but it must has the same number of element with G (cancellation), so, a_iG = G, which means that the equation a \ x = b has a unique solution. (Why?)
```

Similarly, the equation y a=b has also a unique solution.

```
So, (G, ) is a group.
```

Operation Table of Group

- There is no identical elements in any row or any column.
 - Let $G = \{a_1, a_2, ..., a_n\}$ If there are two identical elements in *i*th row, at locations *k*, *l*, then the equation $a_i * x = a_i$ has two different solution,

contradiction.

- □ Same for column.
- ☐ For a group with 3 elements

	1	2	3
1	1	2	3
2	2	3	1
3	3	1	2

Isomorphism

- Group (G_1, \dots) and $(G_2, *)$ are isomorphic $(G_1 \cong G_2)$ if and only if: There exist a one-to-one correspondence $f: G_1 \rightarrow G_2$, such that: (f is called an isomorphism)
 - For any $x,y \in G_1$, f(x = y) = f(x) * f(y)
- Isomorphism is an equivalence relation.
 - □ Reflexibility: the identity function is a one-to-one correspondence.
 - ☐ Symmetry: inverse of a one-to-one correspondence is also a one-to-one correspondence.
 - ☐ Transitivity: the composition of two one-to-one correspondence is also a one-to-one correspondence.

Homomorphism

- Group $(G_1,)$ and $(G_2, *)$ are homomorphic, denoted as $(G_1 \sim G_2)$ is and only if:
 - There exists a function $f: G_1 \rightarrow G_2$ such that:
 - for any $x,y \in G_1$, f(x y) = f(x) * f(y)
- If f is also onto, then G_2 is a homomorphic image of G_1 .
- Note: isomorphism is a special case of homomorphism
- Example: integer addition group (Z,+) and mod-3 addition group $(Z_3,+_3)$
 - \square homomorphism: $f: \mathbb{Z} \to \mathbb{Z}_3$, f(3k+r)=r

Homomorphic Image and System Properties

Association

Assuming that $f: G_1 \rightarrow G_2$ is a homomorphism, and G_2 is a homomorphic image of G_1 , then, if G_1 is associative, so is G_2 , i.e. for any $x,y,z \in G_2$, $(x \ y) \ z=x \ (y \ z)$

Proof:

for any
$$x',y',z' \in G_2$$
, since f is onto, there must be $x,y,z \in G_1$, such that $f(x)=x', f(y)=y', f(z)=z'$. So, $(x'*y')*z'=(f(x)*f(y))*f(z)=f(x-y)*f(z)=f((x-y)-z)=f(x-(y-z))=f(x-(y$

Same discussion applies for commutation.

Homomorphic Image and System Properties

Identity

Assuming that $f: G_1 \rightarrow G_2$ is a homomorphism, and G_2 is a homomorphic image of G_1 , then, if G_1 has an identity e, so does G_2 , i.e. there exists e in G_2 , such that for any $x \in G_2$, $(x^*e)=(e^*x)=x$

Proof:

for any $\mathbf{x'} \in \mathbf{G}_2$, since f is onto, there must be $\mathbf{x} \in \mathbf{G}_1$, such that $f(\mathbf{x}) = \mathbf{x'}$. Let f(e) = e', then, $(\mathbf{x'} * f(e)) = (f(\mathbf{x}) * f(e)) = f(\mathbf{x} e) = f(\mathbf{x}) = \mathbf{x'}$. (f(e) * x) = x can be proved similarly.

Note that f(e) is in G_2 , so, it is the identity of G_2 .

Subgroup

- Let *H* be a nonempty subset of a group *G* such that:
 - \square The identity *e* of *G* belongs to *H*
 - \square If a and b belong to H, then $ab \in H$
 - \square If $a \in H$, then $a^{-1} \in H$
- \blacksquare Then *H* is called a subgroup of *G*.
- Note: subgroup is itself a group, and the properties above are not independent
- Example: cyclic subgroup: $H=\{a^i|i\in Z\}$, where a is a randomly specified element of G.

Homomorphism and Subsystem

■ Let f be a homomorphism from a group (S,) to a group (T,*). If S' is a subgroup of (S,), then $f(S')=\{t\in T|t=f(s) \text{ for some } s\in S'\}$ the image of S' under f, is a subgroup of (T,*)

- Proof
 - \square Closedness of f(S')
 - \square Associativity hold on f(S')

Groups with Three or Four Elements

If isomorphic groups are considered as the same, then:

	1	2	3
1	1	2	3
2	2	3	1
3	3	1	2

There is only one group with 3 elements.

	1	2	3	4		1	2	3	4
1	1	2	3	4		1			
2	2	3	4	1	2	2	1	4	3
3	3	4	1	2	3	3	4	1	2
4	4	1	2	3	4	4	3	2	1

There is only **two** groups with 3 elements.

Product of Cyclic Group

- \blacksquare (Z_n,+_n) is a finite cyclic group for each *n*.
- $\mathbb{Z}_2 \times \mathbb{Z}_2 \cong \mathbb{Z}_4$
- If GCD(m,n)=1, we need only to prove that $Z_m \times Z_n$ is cyclic. In turn, it can be achieved by proving there is an element of x of order mn in $Z_m \times Z_n$.
 - $(1,1)^{mn} = (1,1)$
 - If $(1,1)^k = (1,1)$, then k must be one of the common multiplier of m,n. If k<mn, then GCD(m,n)>1, but m,n are relatively prime.
 - So, $|(1,1)| = mn_{\circ}$
 - □ If $C_m \times C_n \cong C_{mn}$ $C_m \times C_n$ is cyclic, the generator is unique, that is (1,1).

Quotient Group

- Let R is a congruence relation on the group (S,*). S/R is the quotient set, i.e. the set of all equivalence classed.
- Define an operation \otimes from $S/R \times S/R$ to S/R as $[a] \otimes [b] = [a*b]$. Note the operation is well-defined because R is a congruence relation.
 - □ Suppose ([a],[b])=([a'],[b']), then aRa', bRb', by the definition of congruence relation, a*b=a**b*, so \otimes is a well-defined function from $S/R \times S/R$ to S/R
- $(S/R, \otimes)$ is a group, called **quotient group**, for any [a], the corresponding inverse is $[a^{-1}]$

Coset – Left or Right

■ H is a subgroup of group G, for any a in G, we can define a set ,aH, of G as following:

$$aH = \{a \circ h | h \in H\}$$

- aH is called a left coset of H.
 - □ Closeness of G implies that aH is a subset of G.
 - $\square \forall h \in H$, $ah \in H$ if and only if $a \in H$, (Why?)
- Similarly, we can define right coset of H.

Normal Subgroup

- Definition: a subgroup H of G is normal means that, for any $a \in G$, $Ha=aH_{\circ}$ ($H \triangleleft G$)
- Ha=aH if and only if For any $h_i \in H$, $a \in G$, there must be some $h_j \in H$, such that $h_i a = a h_j$.

 (Not that for any $h_i \in H$, $a \in G$, $h_i a = a h_i$.)
- Let N is a subgroup of G, N is normal if and only if : for any $g \in G$, $n \in N$, $gng^{-1} \in N$.
 - $□ \Rightarrow \text{ for any } g ∈ G, n ∈ N, \text{ there is a } n_1 ∈ N, \text{ such that } gn = n_1 g,$ so, $gng^{-1} = n_1 ∈ N;$
 - $\square \Leftarrow \text{prove that } gN \subseteq Ng : \text{for any } gn \in gN \text{, we know that } gng^{-1} \in N \text{, let } gng^{-1} = n_1, \text{ then } gn = n_1g \in Ng; \text{ Similarly for } Ng \subseteq gN_{\circ}$

M

Right Coset Relation

■ H is a subgroup of a group G. Define a relation R on G as following:

for any $a,b \in G$, aRb iff. $ab^{-1} \in H$

- ☐ In fact, aRb means that a,b belong to the same right coset.
 - $aRb \Rightarrow ab^{-1} \in H \Rightarrow ab^{-1} = h_i, h_i \in H \Rightarrow a \in Hb$
- ☐ The relation is an equivalence.

Congruence Relation

- A familiar example:
 - \square a=b (mod 3) iff. |a-b|/3 is an integer
 - Equivalence classes: $\pi_1 = \{...-3,0,3,6,9,...\}$ $\pi_2 = \{...-2,1,4,7,10,...\}$ $\pi_3 = \{...-1,2,5,8,11,...\}$
- Characteristics of the operation on classes:
 - $\square aRb, cRd \Rightarrow ac R bd$
- Congruence relation in general

Coset Relation about Normal Subgroup

■ If N is a normal subgroup of a group G, then:

If
$$ap^{-1} \in \mathbb{N}$$
, $bq^{-1} \in \mathbb{N}$, then $(ab)(pq)^{-1} \in \mathbb{N}$

 \Box Let ap⁻¹= n_1 , bq⁻¹= n_2 (n_1 , $n_2 \in N$)

then
$$(ab)(pq)^{-1} = abq^{-1}p^{-1} = an_2p^{-1}$$

Notice that N is normal, so, $an_2=n_3a$ $(n_3 \in N)$

So,
$$(ab)(pq)^{-1} = n_3ap^{-1} = n_3n_1 \in N$$

Operation on Coset

- Given a normal subgroup of a group G,
- Define an operation on right coset of H as following:
 - \Box Ha*Hb = H(ab), ab is the operation of G.
- * is a well-defined operation: the result of the operation "*" doesn't depend on the selection of the representative element.
 - ☐ It is guaranteed by normal subgroup.

Quotient Group

- If N is a normal subgroup of a group G, then (G/N, *) is also a group.
 - □ Closedness;
 - ☐ Associativity;
 - ☐ Identity: N itself;
 - ☐ Inverse: the inverse of Na is Na⁻¹
- (G/N, *) is called a quotient group of G.

Homomorphism Kernel

■ G_1 , G_2 are groups, $f: G_1 \rightarrow G_2$ is a homomorphism, define a set $\ker f = \{x | x \in G_1, f(x) = e_2\}$, where e_2 is the identity of G_2 , $\ker f$ is called the homomorphism kernel.

Kernel is a normal subgroup

- \blacksquare ker f is a normal subgroup of G_1
 - \square Nonemptiness: the identity of G_1 belongs to ker f;
 - □ Subgroup: for any $a,b \in \ker f$, we have $f(a)=f(b)=e_2$; So, $f(ab^{-1}) = f(a)*[f(b)]^{-1} = e_2$
 - □ Normal: for any $a \in \ker f$, $x \in G_1$, we have $f(a) = e_2$; so, $f(xax^{-1}) = f(x) * f(a) * [f(x)]^{-1} = e_2$

Natural Homomorphism

- Any group G is onto homomorphic to its quotient G, called "Natural homomorphism"
 - □ Define $g:G\to G/N$, for any $a\in G$, g(a)=Na. Obviously, g is onto function.
 - □ G is a homomorphism
 - For any $a,b \in G$: g(ab)=N(ab)=Na*Nb=g(a)*g(b)
 - \square ker g is \mathbb{N} :
 - Nis the identity of the quotient group. $g(x)=N \Leftrightarrow x \in N$

A Congruence Relation Determined by a Homomorphism

R defined on G

It is easy to prove that *R* is an equivalence.

R is a congruence relation:

$$f(a \quad b) = f(a) * f(b)$$

$$f(a_1 \ b_1) = f(a_1) * f(b_1)$$

However: $f(a)*f(b) = f(a_1)*f(b_1)$

Which means:

$$f(a \quad b) = f(a_1 \quad b_1)$$

That is: $(a \ b)R(a_1*b_1)$

Fundamental Homomorphism Theorem

Homomorphism

group

Define $g: S/R \rightarrow G'$ as following:

g([a])=f(a) for any $[a] \in S/G$

- 1. g is a function: that is for any other element a' in [a], g[a']=f[a]
- 2. g is one-to-one: all element a having the same value of f(a) are in one equivalence class.
- 3. g is onto: for any $b \in T$, there is some $a \in S$, such that f(a) = b, then g[a] = b.
- 4. g is an isomorphism:

$$g([a]\otimes[b])=g([a \quad b])=f(a \quad b)=f(a)*f(b)$$

= $g([a])*g([b])$

System with 2 Operations - Ring

A nonempty set R is a ring if it has two closed binary operations, addition and multiplication, satisfying the following conditions.

- 1. a+b=b+a for $a,b\in R$.
- 2. (a+b)+c=a+(b+c) for $a,b,c \in R$.
- 3. There is an element 0 in R such that a + 0 = a for all $a \in R$.
- 4. For every element $a \in R$, there exists an element -a in R such that a + (-a) = 0.
- 5. (ab)c = a(bc) for $a, b, c \in R$.
- 6. For $a, b, c \in R$,

$$a(b+c) = ab + ac$$
$$(a+b)c = ac + bc.$$

Some Properties of Ring

Let R be a ring with $a, b \in R$. Then

- 1. a0 = 0a = 0;
- 2. a(-b) = (-a)b = -ab;
- 3. (-a)(-b) = ab.

Proof. To prove (1), observe that

$$a0 = a(0+0) = a0 + a0;$$

hence, a0 = 0. Similarly, 0a = 0. For (2), we have ab + a(-b) = a(b - b) = a0 = 0; consequently, -ab = a(-b). Similarly, -ab = (-a)b. Part (3) follows directly from (2) since (-a)(-b) = -(a(-b)) = -(-ab) = ab.

Zero Divisor

- We are taught to reasoning as following
 - \square If xy=0, then, x=0 or y=0
- But, it is not true in some systems:
 - \square For example: (Z_6, \oplus, \otimes) , $2\otimes 3=0$
 - $\square \text{In } 2 \times 2 \text{ matrix ring:}
 \begin{bmatrix}
 1 & -1 \\
 -1 & 1
 \end{bmatrix} = \begin{bmatrix}
 0 & 0 \\
 0 & 0
 \end{bmatrix}$
- If x,y are nonzero, but xy=0, then x,y are (left/right) zero divisors

v

Systems with 2 Operations - Field

- Field (F,+,*)
 - \Box (F,+,*) is a ring;
 - □ * is commutative;
 - □ there is a unique element 1 in F, satisfying: for any x in F, 1x=x1=x;
 - □ Every nonzero element x in F has a multiplicative inverse
- \blacksquare Z_n is a field when n is a prime.

м

Home Assignments

To be checked

□pp.371: 6, 8, 12, 18, 19, 21, 24, 26, 28-39

□pp.376: 1-3, 6, 12, 18, 22, 26-35, 37

□pp.381: 7, 8, 26-29