Brojni sistemi (II deo)

Pretvaranje zapisa

Iz dekadskog brojnog sistema u brojni sistem sa osnovom b

Pretvaranje razlomljenog dela broja

- Vrši se uzastopno množenje dekadske vrednosti razlomljenog dela broja, sa osnovicom b, brojnog sistema u koji se pretvara broj B
- Celobrojni delovi rezultata množenja, predstavljaju dekadsku vrednost cifre broja u brojnom sistemu sa osnovom *b*
- Dobijeni celobrojni deo se, u svakom koraku pretvaranja, pretvara u cifru brojnog sistema sa osnovom *b*
- U narednom koraku, sa *b* se množi samo razlomljeni deo broja, dobijenog u prethodnom koraku
- Postupak se završava kada je rezultat množenja jednak nuli, ili kada se dobije broj cifara m, koji garantuje da za grešku G, pri pretvaranju, važi da je: $G < b^{-m}$
- Broj, u brojnom sistemu sa osnovom *b*, dobija se kao niz cifara koje predstavljaju celobrojne delove brojeva dobijenih uzastopnim množenjem, pri čemu niz počinje od prve dobijene cifre, a završava se poslednjom dobijenom cifrom

Primer 1.

Prevođenje iz dekadnog u binarni brojni sistem $(0,203125)_{10}=(?)_2$

 $(0,203125)_{10} = (0,001101)_2$

Primer 2.

Odrediti binarni zapis broja $x = (0.84375)_{10}$

0,	84375
1,	6875
1,	375
0,	75
1,	5
1,	0

$$(0,84375)_{10} = (0,11011)_2$$

Dobijeni prevod je tačan broj.

Primer 3.

Broj (37,625)₁₀ konvertovati u binarni brojni sistem.

Celobrojni deo broja

37	:2	
18	1	
9	0	
4	1	
2	0	
1	0	
0	1	

Razlomljeni deo broja

625	
25	
5	
0	
	25

Rešenje:

 $(37,625)_{10} = (100101,101)_2$

Primeri:

- Broj (35,50)₁₀ konvertovati u binarni brojni sistem
- Broj (101,625)₁₀ konvertovati u binarni brojni sistem
- Broj (84,825)₁₀ konvertovati u binarni brojni sistem (aproks. na 4 decimale)
- Broj (0,5133)₁₀ konvertovati u binarni brojni sistem (aproksimacija)

Primeri:

- Broj $(35,50)_{10} = (100011,1)_2$
- Broj $(101,625)_{10} = (1100101,101)_2$
- Broj $(84,825)_{10} = (1010100,1101 | 001...)_2$
- Broj $(0,5133)_{10} = (0,1000001...)_2$

Pretvaranje zapisa (aproksimacija)

- ☐ Decimalnom broju sa konačnim brojem cifara iza decimalne tačke može da odgovara binarni broj sa beskonačno mnogo binarnih cifara u razlomljenom broju.
- U takvim slučajevima množenje sa dva se produžava sve dok se ne dobije rezultat množenja jednak nuli ili se ne postigne željena tačnost.
- ☐ Uticaj na tačnost ima trenutak zaustavljanja procesa konverzije.

Pretvaranje zapisa Primer 4.

Ako stanemo nakon četvrtog koraka, tada usvajamo da je 0,0011 aproksimativno jednak 0,20315, dok je zapravo taj broj jednak 0,1875

0,	203125
0,	40625
0,	8125
1,	625
1,	25
0,	5
1,	0

$$(0,0011)_{2} = 0*2^{0} + 0*2^{-1} + 0*2^{-2} + 1*2^{-3} + 1*2^{-4}$$

$$= 0*2^{0} + 0*2^{-1} + 0*2^{-2} + \frac{1}{8} + \frac{1}{16}$$

$$= (0,1875)_{10}$$

$$G=0,20315-0,1875=0,01565<2^{-4}=0,0625$$

Primer 5.

Odrediti binarni zapis broja $x = (0,17)_{10}$ na 4 decimale.

0,	17
0,	34
0,	68
1,	36
0,	72

$$(0,17)_{10} = (0,0010)_2$$
, G<2-4

$$0^{20}+0^{2-1}+0^{2-2}+1^{2-3}+0^{2-4}=\frac{1}{8}=0,125$$

Primer 6.

Izvršiti konverziju $(0,27)_{10} = (?)_4$ sa greškom manjom od 4^{-5} .

0,	27
1,	08
0,	32
1,	28
1,	12
0,	48

$$(0,27)_{10} = (0,10110)_4$$

$$(0,10110)_4 = 0*4^0 + 1*4^{-1} + 0*4^{-2} + 1*4^{-3} + 1*4^{-4} + 0*4^{-5} = (0,269531)_{10}$$

 $G = (0,27)_{10} - (0,269531)_{10} = (0,00046)_{10} < 4^{-5} = 0,000976$

- ☐ Međusobno kompatibilni sistemi sa osnovama b_1 i b_2 su oni kod kojih je $b_1^n = b_2$
 - $2^2=4$
 - $2^3 = 8$
 - **2**⁴=16
 - $2^5=32$
 - $2^6 = 64$
- □ Vrednost broja x u sistemu sa osnovom b₁ zapisana u sistemu sa osnovom b₂ je identična zapisu koji se dobija kodiranjem cifara broja x u sistemu sa osnovom b₂. Prevođenje mešovitih brojeva se vrši tako što se posebno prevedu celobrojni i razlomljeni deo i od dobijenih prevoda formira željeni prevod.

Binarni zapisi oktalnih cifara 23=8

Oktalna cifra	Binarni zapis
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Pretvaranje oktalnog u binarni broj vrši se jednostavnom zamenom odgovarajuća tri bita iz tabele za svaku oktalnu cifru u broju.

 $(147)_8 = (001100111)_2$

Primer 1.

Prevesti broj 67 iz oktalnog u binarni sistem.

$$(67)_8 = 110|111 = (110111)_2$$

Primer 2.

Prevesti broj 54,12 iz oktalnog u binarni sistem.

$$(54,12)_8 = 101|100,001|010$$

= $(101100,001010)_2$

Direktno prevođenje iz binarnog u oktalni sistem

- □ Binarne cifre se grupišu u grupe od po 3 cifre, počev od bitova najmanje težine. Ako ukupan broj bitova nije deljiv sa tri, onda se dopisuje potreban broj vodećih nula.

Primer 3.

Odredite oktalni zapis sledećeg binarnog broja $(11010100100)_2$.

```
(11010100100)_2 = (011\ 010\ 100\ 100)_2
= (3244)_8
```

Binarni	Heksadecimalni	Binarni	Heksadecimalni
0000	0	1000	8
0001	1	1001	9
0010	2	1010	А
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	Е
0111	7	1111	F

U prikazanoj tabeli date su sve informacije koje su potrebne da bi pretvorili bilo koji heksadecimalni u binarni broj i obrnuto. 2⁴=16

Pretvaranje heksadecimalnog u binarni broj vrši se jednostavnom zamenom odgovarajuća četiri bita iz tabele za svaku heksadecimalnu cifru u broju.

0	Α	В	С	D	heksadecimalno
0000	1010	1011	1100	1101	binarno

Primer 4.

Prevesti broj 67 iz heksadecimalnog u binarni sistem.

$$67 = (0110 \ 0111)_2$$

Primer 5.

Prevesti broj $(A3)_{16}$ iz heksadecimalnog u binarni sistem.

$$(A3)_{16} = (1010\ 0011)_2$$

Primer 6.

Odredite heksadekadni zapis sledećeg binarnog broja (1001111000111000)_{2.}

```
(1001111000111000)_2 = (?)_{16}
= (1001 1110 0011 1000)_2
= (9E38)_{16}
```


- Ako je neophodno vršiti konverziju broja iz heksadecimalne u oktalnu brojnu prezentaciju, ili obratno, lakše je koristiti binarnu decimalnu prezentaciju kao međukorak.
- $\Box (1A8E)_{16} = (?)_{8}$ $= (0001 1010 1000 1110)_{2}$ $= (001 101 010 001 110)_{2}$ $= (1 5 2 1 6)_{8}$

Brojni sistemi (II deo)