Ch.3 Transformations

3.1 Linear Transformations

- A function $L: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear transformation if
 - 1. L(ax) = aL(x) for every $x \in \mathbb{R}^n$ and $a \in \mathbb{R}$
 - 2. L(x+y) = L(x) + L(y) for every $x, y \in \Re^n$
- Let $\{e_1, e_2, \dots, e_n\}$ and $\{e'_1, e'_2, \dots, e'_n\}$ be two bases for \Re^n . We call T the transformation matrix from $\{e_1, e_2, \dots, e_n\}$ to $\{e'_1, e'_2, \dots, e'_n\}$.

$$[e_1, e_2, \cdots, e_n] = [e'_1, e'_2, \cdots, e'_n]T$$

• Let y = Ax and y' = Bx'. Therefore, y' = Ty = TAx = Bx' = BTx, and hence TA = BT, or $A = T^{-1}BT$.

3.2 Eigenvalues and Eigenvectors

- A scalar λ (possibly complex) and a nonzero vector v satisfying the equation $Av = \lambda v$ are said to be, respectively, an eigenvalue and eigenvector of A.
- For λ to be an eigenvalue, $det [\lambda I A] = 0$.
- Characteristic polynomial of the matrix A.

$$det [\lambda I - A] = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0 = 0.$$

• Theorem 3.1 Suppose the characteristic equation $det [\lambda I - A] = 0$ has n distinct roots $\lambda_1, \lambda_2, \dots, \lambda_n$. Then, there exist n linearly independent vectors v_1, v_2, \dots, v_n such that

$$Av_i = \lambda_i v_i, \quad i = 1, 2, \dots, n.$$

- Theorem 3.2 All eigenvalues of a symmetric matrix are real.
- Theorem 3.3 Any real symmetric $n \times n$ matrix has a set n eigenvectors that are mutually orthogonal.
- A matrix whose transpose equals to its inverse is said to be an orthogonal matrix.

$$T^T = T^{-1}$$

3.3 Orthogonal Projections

• If ν is a subspace of \Re^n , then the orthogonal complement of ν , denoted ν^{\perp} ,

$$\nu^{\perp} = \{x : v^T x = 0 \text{ for all } v \in \nu\}$$

• Let the range, or image, of A be denoted,

$$R(A) \equiv \{Ax : x \in \Re^n\}$$

• Nullspace, or kernel, of A be denoted,

$$N(A) \equiv \{x \in \Re^n : Ax = 0\}$$

• Theorem 3.4 Let A be a given matrix. Then, $R(A)^{\perp} = N(A^T)$, and $N(A)^{\perp} = R(A^T)$.

3.4 Quadratic Forms

• A quadratic form $f: \Re^n \to \Re$ is a function,

$$f(x) = x^T Q x$$

where Q is an $n \times n$ real matrix. Q is assumed to be symmetric, that is, $Q = Q^T$.

- A quadratic form x^TQx , $Q = Q^T$, is said to be positive definite if $x^TQx > 0$ for all nonzero vectors x.
- It is positive semidefinite if $x^T Q x \ge 0$ for all x.
- The minors of a matrix Q are the determinants of the matrices obtained by successively removing rows and columns from Q.
- The principal minors are det Q itself and the determinants of matrices obtained by successively removing an ith row and an ith column.
- The leading principal minors are det Q and the minors obtained by successively removing the last row and last column.

$$\Delta_1 = q_{11}, \ \Delta_2 = det \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix}, \ \cdots, \Delta_n = det \ Q$$

- Theorem 3.6 Sylvester's Criterion. A quadratic form x^TQx , $Q = Q^T$, is positive definite if and only if the leading principal minors of Q are positive.
- If Q is not symmetric, Sylvester's Criterion cannot be used to check positive definiteness of the quadratic form x^TQx .

For example,

$$Q = \left[\begin{array}{cc} 1 & 0 \\ -4 & 1 \end{array} \right]$$

• The leading principal minors of Q are $\Delta_1 = 1 > 0$ and $\Delta_2 = \det Q = 1 > 0$. However, if $x = [1, 1]^T$, then $x^T Q x = -2 < 0$, \Rightarrow Not positive definite.

$$x^{T}Qx = x^{T} \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} x$$

$$\Rightarrow \frac{1}{2}x^{T} \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -4 \\ 0 & 1 \end{bmatrix} \end{pmatrix} x$$

$$= x^{T} \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix} x = x^{T}Q_{0}x$$

- The leading principal minors of Q_0 are $\Delta_1 = 1 > 0$ and $\Delta_2 = \det Q_0 = -3 < 0$, as expected.
- A necessary condition for a real quadratic form to be

positive semidefinite is that the leading principal minors be nonnegative.

- A symmetric matrix Q is said to be positive definite if the quadratic form x^TQx is positive definite. If Q is positive definite, we write Q > 0.
- Symmetric matrix Q to be positive semidefinite $(Q \ge 0)$, negative definite (Q < 0), and negative semidefinite $(Q \le 0)$.
- Theorem 3.7 A symmetric matrix Q is positive definite (or positive semidefinite) if and only if all eigenvalues of Q are positive (or nonnegative).
- Nonnegativity of leading principal minors is necessary but not a sufficient condition for positive semidefiniteness.

3.5 Matrix Norms

- We define the norm of a matrix A, denoted ||A||, to be any function $||\cdot||$ that satisfies the conditions:
 - 1. ||A|| > 0 if $A \neq O$, and ||O|| = 0, where O is the matrix with all entries equal to zero;
 - 2. ||cA|| = |c|||A||, for any $c \in \Re$;
 - 3. $||A + B|| \le ||A|| + ||B||$
 - 4. $||AB|| \le ||A||||B||$.

• Frobenius norm(=Euclidean norm)

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n (a_{ij})^2\right)^{\frac{1}{2}}$$

• We say that the matrix norm is included by, or is compatible with, the given vector norms if for any matrix $A \in \mathbb{R}^{m \times n}$ and any vector $x \in \mathbb{R}^n$, the following inequality is satisfied:

$$||Ax||_{(m)} \le ||A|| \, ||x||_{(n)}$$

• We can define an induced matrix norm as:

$$||A|| = max_{||x||_{(n)}=1} ||Ax||_{(m)}$$

• Theorem 3.8 Let

$$||x|| = \left(\sum_{k=1}^{n} |x_k|^2\right)^{\frac{1}{2}} = \sqrt{\langle x, x \rangle}$$

The matrix norm induced by this vector norm is,

$$||A|| = \sqrt{\lambda_1}$$

where λ_1 is the largest eigenvalue of the matrix A^TA .

• Example 3.1 Consider the matrix,

$$A = \left(\begin{array}{cc} 2 & 1\\ 1 & 2 \end{array}\right)$$

and let the norm in \Re^2 be given by

$$||x|| = \sqrt{x_1^2 + x_2^2}$$

Then,

$$A^T A = \left[\begin{array}{cc} 5 & 4 \\ 4 & 5 \end{array} \right]$$

and $det [\lambda I_2 - A^T A] = \lambda^2 - 10\lambda + 9 = (\lambda - 1)(\lambda - 9)$. Thus, $||A|| = \sqrt{9} = 3$. The eigenvector of $A^T A$ corresponding to $\lambda_1 = 9$ is

$$x_1 = \frac{1}{\sqrt{2}} \left[\begin{array}{c} 1 \\ 1 \end{array} \right]$$

Note that $||Ax_1|| = ||A||$.

$$||Ax_1|| = \|\frac{1}{2} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \| = 3.$$

Because $A = A^T$ in this example, we also have $||A|| = \max_{1 \le i \le n} |\lambda_i(A)|$.

• In general, $\max_{1 \leq i \leq n} |\lambda_i(A)| \neq ||A||$. Instead, we have $||A|| \geq \max_{1 \leq i \leq n} |\lambda_i(A)|$.

• Example 3.2 Let,

$$A = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$$

then,

$$A^T A = \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right]$$

and

$$det [\lambda I_2 - A^T A] = det \begin{bmatrix} \lambda & 0 \\ 0 & \lambda - 1 \end{bmatrix} = \lambda(\lambda - 1)$$

Note that 0 is the only eigenvalue of A.

$$||A|| = 1 > |\lambda_i(A)| = 0.$$