${f TU}_{f e}$ technische universiteit eindhoven

INPUT-OUTPUT REPRESENTATION **NONLINEAR SYSTEMS** OF.

Henk Nijmeijer H.Nijmeijer@tue.nl DEPARTMENT OF MECHANICAL ENGINEERING

- 1 INTRODUCTION
- 2 WIENER-VOLTERRA SERIES
- 3 CHEN-FLIESS SERIES
- 4 CONCLUSIONS

 $oldsymbol{\mathsf{TU}}/oldsymbol{\mathsf{e}}$ technische universiteit eindhoven

1 INTRODUCTION

INPUT-OUTPUT SYSTEMS

$$(m=1)$$

$$(p=1)$$

STATE: x

$$\dim n$$

STATIC RELATION

$$y = \alpha u$$

$$\alpha$$
: (p,m) - matrix

* What are the dominant components u_i ?

$$y = \alpha(u)$$

$$\alpha : \mathbb{R}^m o \mathbb{R}^p$$

smooth
$$\alpha(0) = 0$$

Taylor series expansion: $\alpha(u) = \alpha_0 u + u^T \alpha_1 u + ...$

DYNAMIC RELATION

$$\begin{cases} \dot{x} = Ax + Bu \\ x(0) = x_0 \\ y = Cx \end{cases}$$
 (linear)

$$y(t) = Ce^{At} x_0 + \int_0^t Ce^{A(t-s)} Bu(s) ds \tag{*}$$

$$W(t) \triangleq Ce^{At}B$$
 Impulse response function
(*) $W(s) = \mathcal{L}(Ce^{At}B)$ Transfer function
 $= C(sI - A)^{-I}B$
 $Y(s) = W(s)U(s)$ $(x_0 = 0)$

Basic question (again):

What are the dominant 'modes' in the input-output description (*)?

2 WIENER-VOLTERRA SERIES

$$\begin{cases} \dot{x} = f(x) + g(x) u \\ x(0) = x_0 \\ y = h(x) \end{cases}$$
 (nonlinear)

ssume: • $\dim u = \dim y = I$

• $f(x_0) = 0$, $h(x_0) = 0$

• f, g, h analytic

$$y(t) = \int_0^t W_I(t,s)u(s)ds + \int_0^t \int_0^{s_I} W_2(t,s_I,s_2)u(s_I)u(s_2)ds_2ds_I +$$

$$\int_0^t \int_0^{s_I} \int_0^{s_I} W_3(t,s_I,s_2,s_3)u(s_I)u(s_2)u(s_3)ds_3ds_2ds_I + \dots$$
 (

- * Infinite Volterra series, k-th kernel $W_k(\cdot,\cdot,\cdot)$
- * Truncation of order r gives error of $o(|u|_{r}^{r})$,

 $\|\cdot\|_I$ standard norm on $L^I([0,T],\mathbb{R})$

* If $f(x_0) \neq 0$ extra kernel $W_o(t)$

viewed as input - output map defined on $(-\infty, T)$ * Alternative, input - output representation (**)

$$\dot{x} = f(x) + g(x) u, \quad y = h(x)$$

Solution $\gamma_u(t,s,x) \stackrel{\triangle}{=} x(t,s,x,u)$ at time t with initial condition $\gamma_u(s, s, x) = x$

Let $p(s) \stackrel{\Delta}{=} \gamma_0(t, s, \gamma_u(s, 0, x_0))$, then

$$h(\gamma_u(t,0,x_0)) = h(\gamma_0(t,0,x_0)) + \int_0^t \frac{d}{ds} h(\rho(s)) ds$$

$$\frac{d}{ds} h(\rho(s)) = u(s) \left[\frac{\partial h(\gamma_0(t,s,x))}{\partial x} g(x) \right]_{x = \gamma}$$

Define $W_0(t) \stackrel{\Delta}{=} h(\gamma_0(t,0,x_0))$

$$\overline{W}_I(t,s,x) \stackrel{\Delta}{=} \frac{\partial h(\gamma_o(t,s,x))}{\partial x} g(x)$$

Thus

$$h(\gamma_u(t,0,x_0)) = W_0(t) + \int_0^t u(s)\overline{W}_I(t,s,\gamma_u(s,0,x_0))ds$$

Repeating this procedure with $h(\cdot)$ replaced by

$$W_I(t,s,\cdot)$$
 yields

$$h(\gamma_u(t,0,x_0)) = W_0(t) + \int_0^t W_I(t,s)u(s)ds + \int_0^t \int_0^s \overline{W}_2(t,s,r,\gamma_u(r,0,x_0))u(s)u(r)drds$$

$$y(t) = W_0(t) + \int_0^t W_I(t, s) u(s) ds +$$

$$\int_0^t \int_0^{s_I} W_2(t, s_I, s_2) u(s_I) u(s_2) ds_2 ds_I +$$

$$\int_0^t \int_0^{s_I} \int_0^{s_I} W_3(t, s_I, s_2, s_3) u(s_I) u(s_2) u(s_3) ds_3 ds_2 ds_I + \dots$$

Volterra series expansion on finite interval [0,T] and with |u(t)| < K, for some K > 0

$$\begin{cases} \dot{x} = Ax + (Bx)u \\ x(0) = x_0 \\ y = Cx \end{cases}$$
 (bilinear)

$$W_{o}(t) = Ce^{At}x_{o}$$

 $W_{I}(t,s) = Ce^{A(t-s)}Be^{As}x_{o}$
 $W_{2}(t,s_{I},s_{2}) = Ce^{A(t-s_{I})}Be^{A(s_{I}-s_{2})}Be^{As_{2}}x_{o}$
:

Remark

In general the kernel W_i can be determined as:

$$W_{0}(t) = h(\varphi(t))$$

$$W_{I}(t, s_{I}) = L_{g}[h(\varphi(t - s_{I}))] \cdot \varphi(s_{I})$$

$$W_{2}(t, s_{I}, s_{2}) = L_{g}[L_{g}[h(\varphi(t - s_{I}))] \cdot \varphi(s_{I} - s_{2})] \cdot \varphi(s_{2})$$

$$\varphi(t)$$
 solution of $\dot{x} = f(x)$, $x(0) = x_0$

Basic question:

In order to 'simplify', is there a way to

truncate the Wiener-Volterra series?

Note: Depends on T, K (size of inputs)

Remark

A truncated Volterra-series does not necessarily have a lower dimensional state space realization

$$\dot{\tilde{x}} = \tilde{f}(\tilde{x}) + \tilde{g}(\tilde{x})u, \quad y = \tilde{h}(\tilde{x})$$

3 CHEN-FLIESS SERIES

* Alternative functional expansion

* Reveals underlying algebraic structure

 $\int \dot{x} = f(x) + g(x) u, \quad x(0) = x_0$ [y = h(x)]Setting:

Wiener-Volterra series $W_i(t, s_1, ..., s_i)$, i = 0, 1, 2, ...

Key idea $(W_i(\cdots) \text{ analytic!})$

Expand $W_i(t, s_1, ..., s_i)$ as Taylor series in

 $t-s_1$, s_1-s_2 , s_2-s_3 , ..., s_i (See bilinear example)

$$W_i(t,s_1,\ldots,s_i) = \sum_{k_0,k_1,\ldots,k_i=0}^{\infty} c_{i,k_0k_1\ldots k_i}. \ (t-s_1)^{k_0} (s_1-s_2)^{k_1} \ldots (s_i)^{k_i} \ k_0! k_1! \ldots k_i!$$

Where the coefficients $c_{i,k_0k_1...k_i}$ depend on x_0

Consider the iterated integrals

$$\int_{0}^{t} \int_{0}^{s_{I}} \dots \int_{s_{I}}^{s_{i}} \frac{(t-s_{I})^{k_{0}}}{k_{0}!} u(s_{I}) \dots u(s_{i}) \frac{(s_{i})^{k_{i}}}{k_{i}!} ds_{I} \dots ds_{I}$$

$$\xi_{o}(t) \triangleq t; \qquad \int_{0}^{t} d\xi_{o} = t$$

$$\xi_{I}(t) \triangleq \int_{0}^{t} u(s)ds; \qquad \int_{0}^{t} d\xi_{I} = \xi_{I}$$

$$\int_{0}^{t} d\xi_{i_{k}} \dots d\xi_{i_{0}} \triangleq \int_{0}^{t} d\xi_{i_{k}}(s) \int_{0}^{s_{I}} d\xi_{i_{k-1}} \dots d\xi_{i_{0}}$$

Set

with
$$i_0, ..., i_k \in \{0, I\}$$

Thus

$$\int_{0}^{t} \int_{0}^{s_{I}} \dots \int_{0}^{s_{I}} \frac{(t-s_{I})^{k_{0}}}{k_{0}!} u(s_{I}) \dots u(s_{i}) \frac{(s_{i})^{k_{i}}}{k_{i}!} ds_{i} \dots ds_{I} =$$

$$\int_{0}^{t} (d\xi_{0})^{k_{0}} d\xi_{I} \dots (d\xi_{0})^{k_{i-I}} d\xi_{I} (d\xi_{0})^{k_{i}}$$

Also

$$c_{i,k_0k_1...k_i}(x_0) = L_f^{k_i} L_g L_f^{k_{i-1}} L_g ... L_f^{k_0} h(x_0)$$

$$y(t) = h(x_0) + \sum_{k=0}^{\infty} \sum_{i_0,...,i_k=0}^{m} L_{g_{i_0}} \dots L_{g_{i_k}} h(x_0) \int_0^t d\xi_{i_k} \dots d\xi_{i_0}$$

(Here $g_0 \triangleq f$)

Chen-Fliess functional expansion

- Non commuting

- Truncation of Chen-Fliess series?

$$\int_0^t d\xi_0 d\xi_0 = \int_0^t d\xi_0(s) \int_0^s d\xi_0 = \int_0^t d\xi_0(s) s$$
$$= \int_0^t s ds = \frac{1}{2} t^2$$

$$\int_0^t d\xi_0 d\xi_1 = \int_0^t d\xi_0(s) \int_0^s d\xi_1 = \int_0^t d\xi_0(s) u(s)$$
$$= \int_0^t u(s) ds$$

$$\int_0^t d\xi_I d\xi_0 = \int_0^t d\xi_I(s) \int_0^s d\xi_0 = \int_0^t s d\xi_I(s)$$

$$= \int_0^t s u_I(s) ds$$

4 CONCLUSIONS

- * Volterra / Fliess series \leftrightarrow multivariable Laplace transform \leftrightarrow multivariable transfer function for certain class of systems
- * Bilinearization / Carleman linearization:

"Natural" approximation technique

- * Truncation of Volterra series + state space realization of the truncated series has no physical interpretation
- Same with respect to bilinearization of some order
- * Other input-output representations: Input-output differential equations
- * Identification