Правительство Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Высшая школа экономики" Московский институт электроники и математики им. А.Н. Тихонова Департамент прикладной математики

МЕЖДИСЦИПЛИНАРНАЯ КУРСОВАЯ РАБОТА

по теме:

Исследование вопросов оптимизации методов анализа некоторых схем шифрования сохраняющих формат (промежуточный)

Руководитель курсовой работы	Д.Б. Фомин
Академический руководитель	
образовательной программы	А.Б. Лось

СПИСОК ИСПОЛНИТЕЛЕЙ

Выполнил студент	 Щеглова П.Н.

СОДЕРЖАНИЕ

Введение	4
1 Шифрование с сохранением формата	5
1.1 Описание концепции	5
1.2 Действующие стандарты	5
1.2.1 FEA-1	6
2 Линейный метод	8
2.1 Схема и обозначения	8
2.2 Теорема ([5])	9
2.3 Алгоритм метода	9
Список использованных источников	11

ВВЕДЕНИЕ

С ускорением глобальной информатизации все острее встает вопрос о защите информации, в частности персональных данных. Несмотря на то, что существуют законы, регламентирующие порядок хранения и обработки персональных данных, возлагающие ответственность за их сохранность на операторов персональных данных, в большинстве случаев эта информация хранятся в базах в открытом виде, и несанкционированный доступ к ней не требует больших усилий от злоумышленника. В связи с тем, что последствия реализации данного типа угроз могут быть достаточно серьезными, остро встает задача безопасного хранения подобных данных. Для персональной информации наиболее подходящим способ защиты является шифрование с сохранение формата (format-preserving encryption, FPE), так как в отличие от традиционных механизмов шифрования, оно, во-первых, позволяет программам, обрабатывающим данные как переменные заранее заданного типа, так же успешно обрабатывать и зашифрованные данные, и, во-вторых, позволяет скрыть сам факт шифрования. В 2021 году Тим Бейн, аспирант Лёвенсокго католического университета в Бельгии, представил работу [1], в которой продемонстрировал, как можно уменьшить сложность атак на FPE-алгоритмы с настройками с помощью линейного криптографического анализа. В данной курсовой работе демонстрируются: описание линейного метода анализа схем FPE с настройками на основе сети Фейстеля, а именно стандарта FEA-1; применение линейного метода с акцентом на использование статистических критериев с использованием теоретических обоснований, представленных в анализируемой статье; а также результаты эксперимента по нахождению линейного статистического аналога для входных и выходных последовательностей шифропреобразования.

1 Шифрование с сохранением формата

1.1 Описание концепции

Format-preserving encryption (FPE) — это семейство перестановок на произвольном множестве \mathcal{S} , индексируемое ключом K [2]

$$FPE_K: \mathcal{S} \to \mathcal{S}$$
.

Примеры отображений: шифрование 16—значного номера банковской карты 16—значным числом; шифрование одного английского слова другим английским словом. Блочный шифр — частный случай FPE—схемы, для которой $\mathcal{S} = \{0,1\}^n$, где n — длина блока.

Истинно случайная перестановка является идеальным шифром FPE, однако для больших множеств невозможно предварительно сгенерировать и запомнить такую перестановку. Таким образом, проблема FPE состоит в том, чтобы сгенерировать псевдослучайную перестановку из секретного ключа так, чтобы время вычисления для одного значения было небольшим (в идеале постоянным, но, что наиболее важно, меньшим, чем O(n), где n - размер входных данных).

Алгоритм FPE можно реализовать с использованием сети Фейстеля. Например, стандарты FF1 и FF3-1 [3] берут за основу алгоритма сеть Фейстеля, а в качестве раундовой функции шифрования части входных данных F стандартизированный блочный шифр с блоками длины 128 бит (AES).

1.2 Действующие стандарты

Существует множество реализованных алгоритмов типа FPE, к действующим можно отнести разработанные в США FF1 и FF3-1 [3], а также южно-корейские FEA-1 и FEA-2 [4]. Алгоритм FEA, представленный институтом исследований национальной безопасности (NSR), также основан на сети Фейстеля, аналогично стандартам NIST, FF1 и FF3-1.

Разница между FEA-1 и FEA-2 состоит в том, что FEA-1 имеет размер настройки (параметра, подающегося на вход раундовой функции F) 128-n бит (где n - размер входной последовательности), каждый с 12, 14 и 16 раундами при длине двоичного ключа 128, 192 и 256, соответственно. FEA-2 имеет фиксированный размер настройки в 128 бит с 18, 21 и 24 раундами при длинах ключей 128, 192 и 256, соответственно.

1.2.1 FEA-1

Опишем подробнее стандарт, который анализируется в данной работе, а именно FEA-1:

На вход алгоритму подаются последовательности чисел из конечного множества, мощностью от 2^8 до 2^{128} , размер двоичного ключа K может составлять 128, 192 или 256 бит. Алгоритм представляет собой последовательное применение итераций сети Фейстеля, ее общая схема представлена в левой части рисунка 1. Входная последовательность X на каждом раунде делится на две равные части X_a и X_b , X_b передается на вход F-функции, общая схема которой обозначена в правой части рисунка 1: T_a и T_b - левая и правая половины настройки, принцип формирования которой будет описан далее, RK_a и RK_b - левая и правая половины раундового ключа, S - блок подстановки (в данной схеме применяются идентичные S-блоки), \mathcal{M} - блок умножения на заданную матрицу.

Рисунок 1 — Структура итерации FEA, на основе сети Фейстеля

Выбор настройки для каждого раунда происходит по следующему алгоритму: настройка T (битовый вектор длины 128-n) делится на две под-настройки $T_L=T_{[0:64-n_2-1]}$ и $T_R=T_{[64-n_2:128-n-1]}$ длины $64-n_2$ и $64-n_1$, соответственно. Полагаем $T_a^i=0$ для каждой итерации и T_b^i для i-ой итерации, как:

$$T_b^i = \begin{cases} T_L & \frac{i}{2} \in N \\ T_R & \frac{i+1}{2} \in N \end{cases}$$

2 Линейный метод

2.1 Схема и обозначения

Сначала опишем общую схему алгоритма и обозначения для применения линейного метода криптоанализа.

Известно T пар открытых текстов и соответствующих шифртекстов $(a^{(i)}, c^{(i)}), i \in \overline{1,T}$, каждый из которых состоит из N бит: $a_1^{(i)}, ..., a_N^{(i)}$ и $c_1^{(i)}, ..., c_N^{(i)}$. Пусть схема шифропреобразования с ключом K разбита на две последовательные части F_{K_1} и F_{K_2} , как показано на рисунке 2. Нарисовать свой рисунок, заменить обозначения шифртекста и проме-

Рисунок 2—Схема разбиения алгоритма на два блока для проведения линейного криптографического анализа

жуточного шифртекста

В первой из них используется часть исходного ключа K_1 , во второй, соответсвенно, K_2 (при этом K_1 может частично совпадать с K_2). $F_{K_1'}(a^{(i)}) = b^{(i)} = b_1^{(i)}, ..., b_N^{(i)}$ – промежуточный шифртекст, зашифрованный на некотором ключе K_1' . $\alpha = \alpha_1, ..., \alpha_N; \beta = \beta_1, ..., \beta_N$ – битовые маски, которые мы будем накладывать на промежуточный и итоговый шифртексты, соответственно. Наложение маски подразумевает скалярное произведение двух векторов: $(\alpha, b^{(i)}) = (\alpha_1 \cdot b_1^{(i)}) \oplus ... \oplus (\alpha_N \cdot b_N^{(i)})$.

Для отбраковывания ложных ключей линейный метод предполагает проверку выполнения некоторого соотношения с нужной вероятностью.

Для двух масок $\alpha \in \mathbb{F}_2^n$ и $\beta \in \mathbb{F}_2^m$ и функции $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ определим следующую величину:

$$\delta_{\alpha,\beta}^{F} = 2 \cdot P\left(\left(\alpha, x\right) = \left(\beta, F(x)\right), x \in \mathbb{F}_{2}^{n}\right) - 1 = 2 \cdot \left(\frac{\sum_{x \in \mathbb{F}_{2}^{n}} \left(-1\right)^{\left(\alpha, x\right) \oplus \left(\beta, F(x)\right)}}{2 \cdot 2^{n}} + \frac{1}{2}\right) - 1 = \frac{1}{2^{n}} \sum_{x \in \mathbb{F}_{2}^{n}} \left(-1\right)^{\left(\alpha, x\right) \oplus \left(\beta, F(x)\right)}$$

Для равномерно распределенной функции $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ справедлива следующая теорема:

2.2 Теорема ([5])

Пусть определена $\delta_{\alpha,\beta}^F$ для равномерно распределенной функции $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$. Тогда случайная величина $\xi = 2^{n-1}(\delta_{\alpha,\beta}^F + 1)$ (у [5] речь идет о $Imb(\alpha,\beta) = 2^{n-1} \cdot \delta_{\alpha,\beta}^F$) имеет биномиальное распределение $Bi(2^n,\frac{1}{2})$ с математическим ожиданием $M\xi = 2^{n-1}$ и дисперсией $D\xi = 2^{n-2}$. В частности, при $n \to \infty$ распределение $2^{n/2}\delta_{\alpha,\beta}^F$ сходится к стандартному нормальному распределению $\mathcal{N}(0,1)$ (об этом в [5] ничего нет).

Осталось вывести переход к $\delta_{\alpha,\beta}^{F_1,\ldots,F_r}$.

2.3 Алгоритм метода

Перейдем к описанию алгоритма. α и β заданы, вычислено теоритическое значение $\delta^F_{\alpha,\beta}$, вычислен доверительный интервал. Для каждого K_1' :

- а) Полагаем $\overline{P} = 0$;
- б) Для каждого $a^{(i)}, i \in \overline{1,T}$, вычисляем $b^{(i)} = F_{K_1'}(a^{(i)});$
- в) Проверяем выполнено ли равентсво $(\alpha, b^{(i)}) = (\beta, c^{(i)}).$
- г) Если равенство выполнилось, полагаем $\overline{P}=\overline{P}+1$
- д) После перебора материала полагаем $\overline{P}=\frac{\overline{P}}{T};$

- е) Если $\overline{P} \cong P$, считаем, что часть ключа $K_1 = K_1'$, при необходимости продолжаем работу с F_{K_2} по той же схеме.
- ж) Иначе, отбрасываем ключ K_1' как ложный, выбираем новый и повторяем все итерации.

Чем больше при этом T и $|\delta^F_{\alpha,\beta}|$, тем большая доля значений $K_1^{'}$ будет отбракована на каждой итерации, вплоть до однозначного определения $K_1^{'}$.

Для того, чтобы применить вычисляемую оценку для отбраковывания ложных ключей, необходим различитель, который на основе теоритической δ определяет, выполнилось ли соотношение с нужной вероятностью. Чтобы построить различитель, воспользуемся результатами, полученными в [1].

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Beyne Tim. Linear Cryptanalysis of FF3-1 and FEA. 2021. Access mode: https://www.esat.kuleuven.be/cosic/publications/article-3384.pdf (online; accessed: 25.05.2022).
- 2. Алексеев Е.К., Ахметзянова Л.Р., Елистратов А.А., Никифорова Л.О. Шифрование, сохраняющее формат: задачи, подходы, схемы. 2021. Режим доступа: https://www.ruscrypto.ru/resource/archive/rc2021/files/02_alekseyev_akhmetzyanova_elistratov_nikiforova.pdf (дата обращения: 25.05.2022).
- 3. (NIST) Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Methods for Format-Preserving Encryption.—2016.—Access mode: https://csrc.nist.gov/publications/detail/sp/800-38g/final (online; accessed: 25.05.2022).
- 4. Jung-Keun Lee, Bonwook Koo, Dongyoung Roh et al. Format-Preserving Encryption Algorithms Using Families of Tweakable Blockciphers, Ed. by Jooyoung Lee, Jongsung Kim.—Cham: Springer International Publishing, 2015.
- 5. Daemen Joan, Rijmen Vincent. Probability distributions of correlation and differentials in block ciphers // Journal of Mathematical Cryptology. 2007. Vol. 1, no. 3. P. 221–242. Access mode: https://doi.org/10.1515/JMC.2007.011.