Transformation of Inertia Tensor

$Xiping\ Hu$

XipingHu@hust.edu.cn
https://github.com/XipingHu

School of Physics Huazhong University of Scienec and Technology

January 2, 2020

Outline

Outline

Introduction to the Inertia Tensor

Diagonalization of symmetric matrix

References

Introduction to the Inertia Tensor

The form of Inertia Tensor

We write the Inertia Tensor as:

$$I = \begin{bmatrix} \sum_{\alpha} m_{\alpha} \left(x_{\alpha,2}^{2} + x_{\alpha,3}^{2} \right) & -\sum_{\alpha} m_{\alpha} x_{\alpha,1} x_{\alpha,2} & \sum_{\alpha} m_{\alpha} x_{\alpha,1} x_{\alpha,3} \\ -\sum_{\alpha} m_{\alpha} x_{\alpha,2} x_{\alpha,3} & \sum_{\alpha} m_{\alpha} \left(x_{\alpha,1}^{2} + x_{\alpha,3}^{2} \right) & \sum_{\alpha} m_{\alpha} x_{\alpha,2} x_{\alpha,3} \\ -\sum_{\alpha} m_{\alpha} x_{\alpha,3} x_{\alpha,1} & -\sum_{\alpha} m_{\alpha} x_{\alpha,3} x_{\alpha,2} & \sum_{\alpha} m_{\alpha} \left(x_{\alpha,1}^{2} + x_{\alpha,2}^{2} \right) \end{bmatrix}$$

$$:= \begin{bmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{21} & I_{22} & I_{23} \end{bmatrix}$$

Which is symmetric since

$$I_{ij} = I_{ji}$$

Introduction to the Inertia Tensor

教华科

The Rotational Kinetic Energy

$$T_{rot} = \sum_{i,j} rac{1}{2} \omega_i I_{ij} \omega_j = rac{1}{2} oldsymbol{\omega}' oldsymbol{I} oldsymbol{\omega}$$

To make life much easier, we may find an axis in which the cross terms vanish.

Some facts on Symmetric Matrices

Theorem: Any symmetric matrix

- has only real eigenvalues
- 2 is always diagonalizable
- 6 has orthogonal eigenvectors

Mar. 21 2018

Find eigenvalue and eigenvectors

Example (p113):

$$\boldsymbol{I} = \begin{bmatrix} \frac{2}{3}\beta & -\frac{1}{4}\beta & -\frac{1}{4}\beta \\ -\frac{1}{4}\beta & \frac{2}{3}\beta & -\frac{1}{4}\beta \\ -\frac{1}{4}\beta & -\frac{1}{4}\beta & \frac{2}{3}\beta \end{bmatrix}$$

Our aim: Find I^* , which is diagonal and similar with I

Solve

$$|\boldsymbol{I} - \lambda \boldsymbol{E} = 0|$$

Whereas E represents the Elementary Matrix

Equation 1 can be simplified as:

$$\left(\frac{11}{12}\beta - \lambda\right) \left(\frac{11}{12}\beta - \lambda\right) \left(\frac{1}{6}\beta - \lambda\right)$$

The eigenvalues of I are

$$\lambda_1 = \lambda_2 = \frac{11}{12}\beta$$
$$\lambda_3 = \frac{1}{6}\beta$$

To find eigenvectors, insert λ_i into $(\mathbf{I} - \lambda_i \mathbf{E}) \boldsymbol{\omega} = 0$

for
$$\lambda_1=\lambda_2=\frac{11}{12}\beta$$

$$\begin{bmatrix} \frac{2}{3}\beta - \frac{11}{12}\beta & -\frac{1}{4}\beta & -\frac{1}{4}\beta \\ -\frac{1}{4}\beta & \frac{2}{3}\beta - \frac{11}{12}\beta & -\frac{1}{4}\beta \\ -\frac{1}{4}\beta & -\frac{1}{4}\beta & \frac{2}{3}\beta - \frac{11}{12}\beta \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} = 0$$
$$\omega_1 + \omega_2 + \omega_3 = 0$$
$$\omega = [1, -1, 0]' \text{ or } \omega = [1, 0, -1]'$$

for
$$\lambda_3 = \frac{1}{6}\beta$$

$$\begin{bmatrix} \frac{2}{3}\beta - \frac{1}{6}\beta & -\frac{1}{4}\beta & -\frac{1}{4}\beta \\ -\frac{1}{4}\beta & \frac{2}{3}\beta - \frac{1}{6}\beta & -\frac{1}{4}\beta \\ -\frac{1}{4}\beta & -\frac{1}{4}\beta & \frac{2}{3}\beta - \frac{1}{6}\beta \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} = 0$$
$$-2\omega_1 + \omega_2 + \omega_3 = 0$$
$$-2\omega_1 + \omega_2 + \omega_3 = 0$$
$$-2\omega_1 + \omega_2 + \omega_3 = 0$$
$$\omega = [1, 1, 1]'$$

Gram-Schmidt process

$$\operatorname{proj}_{\mathbf{u}}(\mathbf{v}) = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}$$

$$\mathbf{u}_{1} = \mathbf{v}_{1}, \qquad \mathbf{e}_{1} = \frac{\mathbf{u}_{1}}{\|\mathbf{u}_{1}\|}$$

$$\mathbf{u}_{2} = \mathbf{v}_{2} - \operatorname{proj}_{\mathbf{u}_{1}}(\mathbf{v}_{2}), \qquad \mathbf{e}_{2} = \frac{\mathbf{u}_{2}}{\|\mathbf{u}_{2}\|}$$

$$\mathbf{u}_{3} = \mathbf{v}_{3} - \operatorname{proj}_{\mathbf{u}_{1}}(\mathbf{v}_{3}) - \operatorname{proj}_{\mathbf{u}_{2}}(\mathbf{v}_{3}), \qquad \mathbf{e}_{3} = \frac{\mathbf{u}_{3}}{\|\mathbf{u}_{3}\|}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\mathbf{u}_{k} = \mathbf{v}_{k} - \sum_{j=1}^{k-1} \operatorname{proj}_{\mathbf{u}_{j}}(\mathbf{v}_{k}), \qquad \mathbf{e}_{k} = \frac{\mathbf{u}_{k}}{\|\mathbf{u}_{k}\|}.$$

for
$$\lambda_3 = \frac{1}{6}\beta$$

$$\omega = \frac{1}{\sqrt{3}} [1, 1, 1]'$$

for
$$\lambda_1 = \lambda_2 = \frac{11}{12}\beta$$

$$\boldsymbol{\omega} = \frac{1}{\sqrt{3}} \left[-\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}, 0 \right]'$$

or

$$\boldsymbol{\omega} = \frac{1}{\sqrt{3}} \left[-\sqrt{\frac{3}{2}}, -\sqrt{\frac{1}{2}}, \sqrt{2} \right]'$$

Xiping Hu

Mar. 21 2018

Transformation of Inertia Tensor

$$\mathbf{\Lambda} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -\sqrt{\frac{3}{2}} & -\sqrt{\frac{1}{2}} \\ 1 & \sqrt{\frac{3}{2}} & -\sqrt{\frac{1}{2}} \\ 1 & 0 & \sqrt{2} \end{bmatrix}$$

$$I^* = \Lambda' I \Lambda = \begin{bmatrix} \frac{1}{6} \beta & 0 & 0 \\ 0 & \frac{11}{12} \beta & 0 \\ 0 & 0 & \frac{11}{12} \beta \end{bmatrix}$$

$$\omega'I\omega=\omega'\Lambda\Lambda'I\Lambda\Lambda'\omega=\left(\Lambda'\omega\right)'\left(\Lambda'I\Lambda\right)\left(\Lambda'\omega\right)=\left(\omega^*\right)'I^*\omega^*$$
 $\omega^*=\Lambda'\omega$

Why Λ' not Λ ?

 ω is the base vector of coordinates.

References

Gao Deng Dai Shu. Weisheng Qiu

Classical MEchanics (Third Edition), Herbert Goldstein

This Document is placed under GFDL 1.3

GNU Free Document License Version 1.3 by Free Software Foundation See also: https://www.gnu.org/licenses/fdl-1.3.en.html

https://github.com/XipingHu/Transformation-of-Inertia-Tensor.git

