Bonterroui Joint Continue Intervals (1-2) × 100/0 CIS

Start with Joint CIs on B_1, B_2 . Let A = event that CI on B_1 does not cover $B_1, P(A) = \infty$. Let B = event that CI on B_2 does not cover $B_2, P(B) = \infty$. $P(CI \text{ on } B_1 \text{ covers } B_1 \text{ ond CI on } B_2 \text{ covers } B_2) = P(\overline{A} \cap \overline{B})$. However, $P(\overline{A} \cap \overline{B}) = P(\overline{A} \cup \overline{B})$ by $P \in \text{Margan's Law}$. $P(\overline{A} \cup \overline{B}) = 1 - P(\overline{A} \cup \overline{B}) = 1 - [P(A) + P(B) - P(A \cap B)]$

= 1-P(A)-P(B) + P(ANB) = 1-P(A)-P(B)=1-2X

00 Compute (1-%) ×100% CI on B, and (1-%) ×100% CI on Bz.

The confidence associated with both CIs covering their parameters $\geq 1-2(\%)=1-\alpha$

Bontemour Joint CIs one known to be conservative.

This method works for M joint CIs.

Compute (1-x) x100% CIs on each of M parameters.

Family wise/Experimentwise confidence =1-x (m)=1-2

compute
$$\begin{array}{ll}
\hat{B}_1 \pm t \\
4; n-p \\
5(\hat{B}_1)
\end{array}$$

$$\begin{array}{ll}
\hat{B}_2 \pm t \\
4; n-p \\
6; n-p \\
6$$

alpha*=alpha/(2xm)