Részleges 1. kérdés 8.57 / 12 pont

 $Adott\ az\ M=<\{0,1,2,3,igen,nem\},\ \{a,b\},\{a,b,c,d,\ddot{u}\},0,igen,nem>\ Turing\ gép.$

δ	а	b	С	d	ü
0	1 c→	1 c →	nem	igen	igen
1	1 a →	1 b →	nem	2 d ←	2 ü ←
2	3 d ←	3 d ←	igen	nem	nem
3	3 a ←	3 b ←	0 c→	nem	nem

Elemezze az **ab** szót! Írja be a hiányzó konfigurációkat!

0ab ⊢	c1b		H	cb1ü	F	c2b	H
3cd		⊢	c0d		⊢ igen		

Minden szót elfogad-e az M (igen, nem) ?

Ha 5 hosszú szót elemez a gép, akkor megálláskor mi marad a szalagon?

cccdd

10.29 / 12 pont

Adott az M=<{0,1,2,3,igen,nem}, {a,b},{a,b,x,ü},0,igen,nem> *nemdeterminisztikus* Turing gép.

	a	b	×	ü
0	0 a → 1 x →		nem	igen
1	1 a →	1 b →	1 x → nem	2 ü ←
2	3 a → 3 ü ←	3 b → 3 ü ←		nem
3	3 a ←	3 b ←	0 x→	nem

Elemezze az **aba** szót! Írja be a hiányzó konfigurációkat!

0aba ⊢	Daba ⊢ x1ba		⊢ xb1a]	xba1ü	H
xb2a		H	xba3ü		-nem			

 $\label{eq:minden} \mbox{Minden esetben v\'egig olvassa az M az } \mbox{\em aba sz\'ot? (igen, nem)}$

nem

Igaz-e, hogy az **aba** szó nem eleme L(M)-nek? (igen,nem)

nem

9 / 12 pont Részleges 3. kérdés

> Inputként adott egy irányítatlan gráf és keressük egy olyan bejárását, amikor minden élt pontosan egyszer érintünk (Euler-kör). A gráf csúcspontjait 1-től n-ig számozzuk.

A konkrét kiszámítási feladatban az inputot a következőképpen kódoljuk. Megadjuk a csúcspontok számát majd egy # után a csúcsmátrixát sorfolytonosan kódolva. Az outputban vesszővel elválasztva felsoroljuk a csúcspontokat. A felsorolás, akkor helyes, ha egy Euler-körnek felel meg. A leírásban szereplő számokat 2-es számrendszerben kódoljuk.

Eldöntési problémának felfogva a feladatot az inputot az outputtól is a # jellel választjuk

u:=100#0111101011011010#1,10,11,100,1,11

Kérdések:

- 1. Hány elemű az az ábécé, ami felett értelmezzük a szavakat? 4
- 2. Jó szó-e a fenti u szó (igen, nem)? igen

3. Egy gráfnak egy Euler köre a következő: 3,4,1,3,2,1. Adja meg ennek az irányítatlan gráfnak a csúcsmátrixát sorfolytonosan!

011110101101101

4. Ha egy G gráfnak 8 csúcsa és 12 éle van, és van benne Euler kör, akkor hány darab 0-tól és 1-től különböző jel van egy jó szóban? 15

Részleges	4. kérdés 4 / 12 pont						
	Legyen M az a Turing gép, melynek szalagszimbólumai rendre az a, b, ü, állapotai pedig ${\bf q}_0,{\bf q}_1,{\bf q}_i$ és ${\bf q}_n.$						
	A gép átmeneti függvényét pedig az alábbi bitsorozat kódolja (a kódolás a fenti felsorolásoknak megfelelően történt, és feltesszük, hogy a fej irányai az L,S,R sorrendben vannak kódolva.						
	M =010101001000 11 01001001001000 11 01000100						
	Jelölje meg, hogy mely állítások igazak a fenti TG-pel kapcsolatban!						
	Vannak olyan szavak, amelyre ez a gép nem terminál.						
	A gép által felismert szavak nem végződhetnek a-ra.						
	■ Ha a w =n, ahol n>0 és w jó szó, akkor f(w)=b ⁿ lesz.						
	☐ A felismert szavakban páros sok b van.						
	A gép időkorlátja O(n).						
	☐ A jó szavak nem kezdődhetnek <i>a-</i> val.						

5. kérdés

Még nincs értékelve / 12 pont

Készítsen akár több szalagos Turing gépet, amely az L= $\{ucv \mid u,v \in \{a,b\}^* \text{ és } |u|=|v|\}$ nyelvet ismeri fel, azaz a jó szavak közepén egy c betű van.

Írja le szövegesen a gép működési elvét, majd adja meg formálisan is (táblázattal vagy gráffal)!

Töltse fel a megoldását tartalamzó képet vagy pdf fájlt.