Sprawozdanie z technik cyfrowych laboratorium 3

Przerzutniki i rejestry

Agnieszka Warchoł gr. 17.50 – 19.20 B

a) Asynchroniczny przerzutnik "RS" w oparciu o bramki NAND oraz NOR

Przerzutnik "RS" w oparciu o bramki NAND:

Przerzutnik "RS" w oparciu o bramki NOR:

S	R	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	X

Wnioski: W zależności od tego jakich bramek użyliśmy do budowy przerzutnika "RS", będzie on reagował na inne sygnały wejściowe S, R oraz będą inne sygnały zabronione. Przerzutnik, który jest w programie Multisim działa tak jak ten zbudowany z bramek NOR.

b) Synchroniczny przerzutnik "RS"

Wnioski: Sygnałem zabronionym są dwie jedynki podane na wejście S i R, ale jeśli clock jest w stanie niskim to analizator logiczny nam pozwala, ponieważ reaguje tylko na stan wyskoki. Jak podamy kombinacje 111 na wejście, czyli stan zabroniony to analizator się zatrzyma wykonywanie i nic nie wyświetli dla tego stanu.

c) Synchroniczny przerzutnik "JK" reagujący na opadające zbocze sygnału zegarowego

Tabela prawdy dla przerzutnika "JK":

J	K	Q_{n+1}
0	0	\mathbf{Q}_{n}
0	1	0
1	0	1
1	1	\overline{Q}_n

Wnioski: W układzie jest bramka NOT przed wejściem Clocka, żeby przerzutnik reagował na opadające zbocze sygnału zegarowego, zamiast na rosnące.

d) Przerzutnik typu "D" bazując na asynchronicznym przerzutniku "RS"

D	CLK	S	R
1	1	1	0
1	0	0	0
0	0	0	0
0	1	0	1

Dla R:

D\CLK	0	1
0	0	1
1	0	0

$\overline{D}*CLK$

Dla S:

D\CLK	0	1
0	0	0
1	0	1

D*CLK

$Y = \overline{D} * CLK + D * CLK$

Tabela prawdy dla przerzutnika "D":

rosnący	0	0
rosnący	1	1
*	0	Qn
*	1	Qn

e) Przerzutnik typu "T" bazując na synchronicznym przerzutniku typu "D"

T	Q	Q_{n+1}
1	1	0
1	0	1
0	1	1
0	0	0

T\Q	0	1
0	0	1
1	1	0

$Y = T \overline{Q} + \overline{T} Q = T xor Q$

Tabela prawdy dla przerzutnika "T":

Т	Q_{n+1}
1	$\overline{Q_n}$
0	Qn

Wnioski: Pomimo tego, że układ jest poprawnie skonstruowany według tabel Karnougha, to sygnał wyjściowy nie zawsze jest poprawny. Dzieje się tak, ponieważ występuje propagacja sygnału. Poniżej jest przypadek w którym to występuje:

Można wykluczyć ten błąd dodając na wejście clocka dwie bramki NOT, aby spowolnić sygnał, rozwiązanie pokazane na poniższych rysunkach:

f) Przerzutnik typu "D" bazując na synchronicznym przerzutniku typu "JK"

D	J	K	Q
0	0	1	0
1	1	0	1

Tabela prawdy dla przerzutnika "D":

CLK	D	Q_{n+1}
rosnący	0	0
rosnący	1	1
*	0	Qn
*	1	Qn

g) Przerzutnik typu "T" bazując na synchronicznym przerzutniku "JK"

T	Q	J	K	Q_{n+1}
1	1	1	1	0
1	0	1	1	1
0	1	0	0	1
0	0	0	0	0

Tabela prawdy dla przerzutnika "T":

T	Q_{n+1}
1	$\overline{Q_n}$
0	\mathbf{Q}_{n}

h) Rejestry: SISO, SIPO, PIPO i PISO bazując na synchronicznych przerzutnikach "D"

Rejestr SISO:

Rejestr SIPO:

Rejestr PIPO:

Rejestr PISO:

