Lecture 03: Functions, interpolation, integration, differentiation

Sergei V. Kalinin

Reminder

- All homeworks, midterms, and finals will be Colabs
- You will have a week for each
- Late submissions are generally not a problem, but avoid accumulation
- Semester deadlines are final
- Don't hesitate to ask for help and additional explanations!

This and that

- Any comments re first homework?
- Final project parameters:
 - Can be alternative to the final
 - Should meaningfully use optimization, Gaussian processes, or causal methods
 - o Be connected to your own research
 - Ideally will become publication
- Some possibilities:
 - o Explore molecular space towards candidates with specific functionality
 - o Building workflow for materials optimization in automated synthesis
 - Causal analysis of the perovskite data base
 - 0

Functions and spaces

- Our biggest strength and weakness is the intuition developed for the 3D Euclidean spaces
- Mathematicians has created large set of alternative spaces based on possible functional relationships and properties of objects
 - o All real number
 - All integral numbers
 - All functions over unit interval
 - o ... and many more
- In physical sciences, only a small subset of these is practically useful
- ... but these general principles are important to know!

What is space?

A space is a set with some added structure. It consists of selected mathematical objects that are treated as points, and selected relationships between these points.

The nature of the points can vary:

- elements of a set,
- functions on another space, or
- subspaces of another space.

The relationships between objects define the nature of the space.

Isomorphic spaces are considered identical, where an isomorphism between two spaces is a one-to-one correspondence between their points that preserves the relationships.

https://en.wikipedia.org/wiki/Space (mathematics)

https://en.wikipedia.org/wiki/Calabi%E2%80%93Yau manifold

What is function?

In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function, and the set Y is called the codomain of the function.

We can define function by:

- Listing values
- Algebraic formulae
- Specified algorithm.
- ... and so on

Some function definitions:

- f is injective (or one-to-one) if $f(a) \neq f(b)$ for any two different elements a and b of X
- f is surjective if its range X equals its codomain Y, i.e. for each element y of the codomain, there exists some element x of the domain such that f(x)=y
- f is bijective (or a one-to-one correspondence) if it is both injective and surjective. That is, f is bijective if, for any $y \in Y$, the preimage f¹(y) contains exactly one element.

https://en.wikipedia.org/wiki/Function (mathematics)

What should we look at practically?

These are important:

- Dimensionality
- Metrics (Distance Function)
- Continuity and Differentiability

These may be important:

- Symmetry
- Topological Properties
- Inner Product (Hilbert Spaces)
- Manifold Structure

Phase diagrams

- What is the dimensionality of the parameter space?
- Is it differentiable?
- What is the function?
- Is it continuous?
- Is it differentiable

13.2: Phase Diagrams- Binary Systems - Chemistry LibreTexts

https://www.tf.uni-kiel.de/matwis/amat/td kin ii/kap 1/backbone/r se17.html

Processing

Processing

- Making steel can be complicated and took a lot of time optimize
- Battery charging fairly simple now, but obvious economic impact
- Annealing hybrid perovskite thin films
- Poling ferroelectric materials
- ... and so on

- What is the dimensionality of the parameter space?
- Is it differentiable?
- What is the function?
- Is it continuous?
- Is it differentiable

Molecular spaces

Geometric space

Chemical space

- What is the dimensionality of the parameter space?
- Is it differentiable?
- What is the function?
- Is it continuous?
- Is it differentiable

Structure-property relationships

- What is the dimensionality of the parameter space?
- Is it differentiable?
- What is the function?
- Is it continuous?
- Is it differentiable

Hint: activity cliffs in quantitative structure-activity relations (QSAR)

https://www.researchgate.net/publication/342718908 Artificial Intelligence and Machine Learning in Computational Nanotoxicology Unlocking and Empowering Nanomedicine/figures?lo=1

Structure-property relationships

- What is the dimensionality of the parameter space?
- Is it differentiable?
- What is the function?
- Is it continuous?
- Is it differentiable

For each of these scenarios

- Can we interpolate?
- Can we differentiate?
- Can we integrate?
 - o Phase diagram
 - Process trajectories
 - o QASR
 - Hysteresis loops

Off to Colab!