Numerical solutions of differential equations

Patrick Henning

pathe@kth.se

Division of Numerical Analysis, KTH, Stockholm

Course SF2521, 7.5 ECTS, VT18

Lecture 5

Hyperbolic Equations of first order - Part 2

Recap: Characteristics
Example 2: Linear systems
Linear Riemann problems

Linear Riemann problems VM for Conservation Laws

Characteristics: Example 2, Linear advective systems

Example 2: Linear systems

Preliminary

For $\mathbf{u} = \mathbf{u}(x,t) : \mathbb{R} \times [0,\infty) \to \mathbb{R}^m$ we denote

$$\partial_t \mathbf{u}(x,t) := \begin{pmatrix} \partial_t \mathbf{u}_1(x,t) \\ \vdots \\ \partial_t \mathbf{u}_m(x,t) \end{pmatrix}$$
 and $\partial_x \mathbf{u}(x,t) := \begin{pmatrix} \partial_x \mathbf{u}_1(x,t) \\ \vdots \\ \partial_x \mathbf{u}_m(x,t) \end{pmatrix}$.

$$\partial_{\mathbf{x}}\mathbf{u}(\mathbf{x},t) := \begin{pmatrix} \partial_{\mathbf{x}}\mathbf{u}_{1}(\mathbf{x},t) \\ \vdots \\ \partial_{\mathbf{x}}\mathbf{u}_{m}(\mathbf{x},t) \end{pmatrix}$$

Characteristics: Linear advective systems

We consider a linear system of hyperbolic equations.

Find
$$\mathbf{u} = \mathbf{u}(x,t) : \mathbb{R} \times [\mathbf{o},\infty) \to \mathbb{R}^m$$
 with $\partial_t \mathbf{u} + \mathbf{A} \, \partial_x \mathbf{u} = \mathbf{o}$ and $\mathbf{u}(x,\mathbf{o}) = \mathbf{v}(x)$.

If the system is hyperbolic we have

- $\mathbf{v} = \mathbf{v}(x) : \mathbb{R} \to \mathbb{R}^m$;
- ▶ $\mathbf{A} \in \mathbb{R}^{m \times m}$ is diagonalizable with real <u>non-zero</u> eigenvalues $\lambda_1 < \ldots < \lambda_m$;
- corresponding diagonal matrix:

$$\Lambda := \operatorname{diag}(\lambda_1, \cdots, \lambda_m);$$

- ▶ eigenvectors: $\mathbf{r}_1, \dots, \mathbf{r}_m \in \mathbb{R}^m$; i.e. $\mathbf{Ar}_p = \lambda_p \mathbf{r}_p$ for $1 \le p \le m$.
- ightharpoonup matrix with eigenvectors as columns $\mathbf{R} := [\mathbf{r}_1, \dots, \mathbf{r}_m]$.
- $ightharpoonup A = R \Lambda R^{-1}$.

Characteristics: Linear advective systems

Multiplying the equation with R^{-1} we obtain

$$\begin{array}{lll} \mathbf{0} & = & \mathbf{R}^{-1}\partial_t\mathbf{u} + \mathbf{R}^{-1}\mathbf{A}\,\partial_x\mathbf{u} \\ & \stackrel{\mathbf{A}=\mathbf{R}\wedge\mathbf{R}^{-1}}{=} & \mathbf{R}^{-1}\partial_t\mathbf{u} + \mathbf{R}^{-1}\mathbf{R}\wedge\mathbf{R}^{-1}\,\partial_x\mathbf{u} \\ & = & \mathbf{R}^{-1}\partial_t\mathbf{u} + \Lambda\mathbf{R}^{-1}\,\partial_x\mathbf{u} \\ & \stackrel{\mathbf{z}=\mathbf{R}^{-1}\mathbf{u}}{=} & \partial_t\mathbf{z} + \Lambda\,\partial_x\mathbf{z}. \end{array}$$

Hence for $p = 1, \dots, m$

$$\partial_t \mathbf{Z}_p + \lambda_p \, \partial_x \mathbf{Z}_p = \mathbf{0}$$
 and $\mathbf{Z}_p(\mathbf{0}) = (\mathbf{R}^{-1} \mathbf{v})_p$.

The corresponding characteristic for $x_0 \in \mathbb{R}$ is given by

$$\gamma_p(t) = \lambda_p t + x_0.$$

We call γ_p the *p*-characteristic of the system.

Example 2: Linear systems

Characteristics: Linear advective systems

 $\partial_t \mathbf{Z}_p + \lambda_p \, \partial_x \mathbf{Z}_p = \mathbf{0}$ and $\mathbf{Z}_p(\mathbf{0}) = (\mathbf{R}^{-1}\mathbf{v})_p$ and since γ_n is the characteristic for $x_0 \in \mathbb{R}$ with

$$\gamma_p(t) = \lambda_p t + x_0,$$

 \mathbf{z}_p is constant along $(\gamma_p(t), t)$ and hence with $x = \lambda_p t + x_0$

$$\mathbf{z}_p(x,t) = \mathbf{z}_p(x_0,0) = (\mathbf{R}^{-1}\mathbf{v}(x_0))_p = (\mathbf{R}^{-1}\mathbf{v}(x-\lambda_p t))_p =: \mathbf{z}_p^0(x-\lambda_p t).$$

and

$$\mathbf{u} = \mathbf{R}\mathbf{z} = \sum_{p=1}^{m} \mathbf{z}_{p}(x, t) \mathbf{r}_{p} = \sum_{p=1}^{m} \mathbf{z}_{p}^{0}(x - \lambda_{p} t) \mathbf{r}_{p}$$

Hence

- \triangleright solution **u** is given as linear combination (superposition) of **z**_n;
- superposition of waves propagating with speed λ_p .

Characteristics: Linear systems. Example: m = 3

$$\gamma_p(t) = \lambda_p t + x_0.$$
Range of influence of x_0 :
All points along $\gamma_p(t) = \lambda_p t + x_0$
for $p = 1, 2, 3$.

"Information" in x_0 spreads along the red lines.

Domain of dependence of x^* at time T: Set of points

$$D(x^*, T) := \{x^* - \lambda_p T | p = 1, 2, 3\}.$$

Solution in (x^*, T) is given as linear combination of \mathbf{z}_p^0 in $x^* - \lambda_p T$.

Characteristics: Linear systems

Explicit example:

Find $\mathbf{u} = \mathbf{u}(x,t) : \mathbb{R} \times [0,\infty) \to \mathbb{R}^2$ with

$$\partial_t \mathbf{u} + \mathbf{A} \, \partial_x \mathbf{u} = \mathbf{o}$$
 and $\mathbf{u}(x, \mathbf{o}) = \mathbf{v}(x)$.

Here, for c > 0

$$\mathbf{u} = \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix}$$
 and $\mathbf{v}(x) = \begin{pmatrix} 0 \\ \mathbf{v}_0(x) \end{pmatrix}$ and $\mathbf{A} = \begin{pmatrix} 0 & -c^2 \\ -1 & 0 \end{pmatrix}$

For the eigenvalues we have $\lambda_1 = -c$ and $\lambda_2 = c$

$$\begin{pmatrix} 0 & -c^2 \\ -1 & 0 \end{pmatrix} \underbrace{\begin{pmatrix} 1 \\ c^{-1} \end{pmatrix}}_{=\mathbf{r}_1} = \lambda_1 \begin{pmatrix} 1 \\ c^{-1} \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & -c^2 \\ -1 & 0 \end{pmatrix} \underbrace{\begin{pmatrix} 1 \\ -c^{-1} \end{pmatrix}}_{=\mathbf{r}_2} = \lambda_2 \begin{pmatrix} 1 \\ -c^{-1} \end{pmatrix}$$

SF2521

Characteristics: Linear systems

We have

$$\label{eq:lambda} \pmb{\Lambda} := \begin{pmatrix} -c & \mathbf{0} \\ \mathbf{0} & c \end{pmatrix}, \qquad \pmb{\mathsf{R}} := \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \frac{1}{c} & -\frac{1}{c} \end{pmatrix}, \qquad \pmb{\mathsf{R}}^{-1} := \frac{1}{2} \begin{pmatrix} \mathbf{1} & c \\ \mathbf{1} & -c \end{pmatrix}.$$

From $\partial_t \mathbf{u} + \mathbf{A} \partial_x \mathbf{u} = \mathbf{o}$ and using the transformation $\mathbf{u} = \mathbf{Rz}$ we have

$$\partial_t \mathbf{z} + \mathbf{\Lambda} \, \partial_x \mathbf{z} = \mathbf{0}$$

and

$$\mathbf{z}(0,x) = \mathbf{R}^{-1}\mathbf{v}(x) = \frac{1}{2} \begin{pmatrix} 1 & c \\ 1 & -c \end{pmatrix} \begin{pmatrix} 0 \\ \mathbf{v}_0(x) \end{pmatrix} = \frac{c}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \mathbf{v}_0(x)$$

The *p*-characteristics are given by

$$\gamma_1(t) = -c t + x_0$$
 and $\gamma_2(t) = c t + x_0$.

Characteristics: Linear systems

From

$$\partial_t \mathbf{Z} + \mathbf{\Lambda} \, \partial_x \mathbf{Z} = \mathbf{0}; \qquad \mathbf{Z}(x, \mathbf{0}) = \frac{c}{2} \begin{pmatrix} \mathbf{1} \\ -\mathbf{1} \end{pmatrix} \mathbf{v}_{\mathbf{0}}(x)$$

and the *p*-characteristics

$$\gamma_1(t) = -c t + x_0$$
 and $\gamma_2(t) = c t + x_0$,

we conclude that

$$\mathbf{z}(x,t) = \begin{pmatrix} \mathbf{z}(x+ct,0) \\ \mathbf{z}(x-ct,0) \end{pmatrix} = \frac{c}{2} \begin{pmatrix} \mathbf{v_0}(x+ct) \\ -\mathbf{v_0}(x-ct) \end{pmatrix}$$

and hence

$$\mathbf{u}(x,t) = \mathbf{Rz}(x,t) = \frac{c}{2} \begin{pmatrix} 1 & 1 \\ \frac{1}{c} & -\frac{1}{c} \end{pmatrix} \begin{pmatrix} \mathbf{v_0}(x+ct) \\ -\mathbf{v_0}(x-ct) \end{pmatrix} = \frac{1}{2} \begin{pmatrix} c\mathbf{v_0}(x+ct) - c\mathbf{v_0}(x-ct) \\ \mathbf{v_0}(x+ct) + \mathbf{v_0}(x-ct) \end{pmatrix}.$$

SF2521

Example 2: Linear systems

Characteristics: Linear systems

$$\begin{pmatrix} \mathbf{u_1} \\ \mathbf{u_2} \end{pmatrix}_t + \begin{pmatrix} \mathbf{0} & -c^2 \\ -1 & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u_1} \\ \mathbf{u_2} \end{pmatrix}_{\!\!\!\chi} = \mathbf{0} \qquad \text{and} \qquad \begin{pmatrix} \mathbf{u_1}(x,\mathbf{0}) \\ \mathbf{u_2}(x,\mathbf{0}) \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{v_0}(x) \end{pmatrix}.$$

$$\mathbf{u_1}(x,t) = \frac{c}{2} \left(\mathbf{v_0}(x+ct) - \mathbf{v_0}(x-ct) \right) \qquad \text{and} \qquad \mathbf{u_2}(x,t) = \frac{1}{2} \left(\mathbf{v_0}(x+ct) + \mathbf{v_0}(x-ct) \right).$$

If $v_0(x) = 2\sin(2\pi x)$ we have $u_2(x,t) = \sin(2\pi(x+ct)) + \sin(2\pi(x-ct))$. At T=1 and for c=1 we have $\mathbf{u}_2(0,T)=\sin(2\pi)+\sin(-2\pi)=0$.

Recap: Characteristics
Example 2: Linear systems
Linear Riemann problems
FVM for Conservation Laws

Characteristics: Linear systems Boundary conditions

