INF587 Exercise sheet 5

Exercise 1. Consider a function

$$f: \{0,1\}^2 \to \{0,1\}$$

for which there exists a unique \mathbf{x}_1 such that $f(\mathbf{x}_1) = 1$. Apply one step of Grover's algorithm (i.e. construct the original state $|\psi\rangle$ and then perform a reflexion over $|\psi_{\rm bad}\rangle$ and then over $|\psi\rangle$). More precisely:

- 1. Write the different states $|\psi_{good}\rangle$, $|\psi_{bad}\rangle$, $|\psi\rangle$ as defined in the lecture in this setting.
- 2. Write $|\psi\rangle = \cos(\theta) |\psi_{\text{bad}}\rangle + \sin(\theta) |\psi_{\text{good}}\rangle$. What is the value of θ ?
- 3. Show the different steps of the computation you don't need to reprove how to perform the reflexions and show the algorithm succeeds with probability 1 after 1 step of Grover's algorithm.

Exercise 2 (Grover's algorithm when the number of solution is unknown). Our aim in this exercise is to give a variation of Grover's algorithm that can find solutions in expected time $\sqrt{\frac{N}{t}}$ even when the number of solutions t is unknown. This exercise describes the idea of the following article https://arxiv.org/pdf/quant-ph/9605034.pdf. Roughly speaking, the idea basically consists in running Grover's algorithm with exponentially increasing guesses for the number of iterations.

Recall that we study the following problem:

- Input: a function $f: \{0,1\}^n \longrightarrow \{0,1\}$,
- Goal: find $\mathbf{x} \in \{0,1\}^n$ be such that $f(\mathbf{x}) = 1$.

and let,

$$t \stackrel{def}{=} \sharp \{ \mathbf{x} \in \{0,1\}^n : f(\mathbf{x}) = 1 \}.$$

1. Let t be the unknown number of solutions and let $\theta \stackrel{\text{def}}{=} \arcsin \sqrt{\frac{t}{2^n}}$. Let j be chosen uniformly at random in [0, m-1]. Show that the probability P_m to measure a solution after j iterations of Grover's algorithm verifies

$$P_m \ge \frac{1}{4} \quad when \ m \ge \frac{1}{\sin 2\theta}$$

Hint: recall that
$$\sin^2 a = \frac{1-\cos 2a}{2}$$
 and $\sin(2a) = 2\cos(a)\sin(a)$

2. Let j be chosen uniformly at random in [0, m-1]. Show that j is expected to be equal to m/2, namely:

$$\mathbb{E}(j) = \frac{m-1}{2}$$

- 3. Let $m_0 \stackrel{def}{=} \frac{1}{\sin 2\theta}$. Let us consider the following algorithm:
 - 1. $u \stackrel{def}{=} 0$, $\lambda \stackrel{def}{=} \frac{6}{5}$ and $m \stackrel{def}{=} \lambda^{\lceil \log_{\lambda} m_0 \rceil}$.
 - 2. Pick j uniformly at random in [0, m-1].
 - 3. Apply j iterations of Grover's algorithm starting from initial state $|\psi\rangle \stackrel{def}{=} \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \{0,1\}^n} |\mathbf{x}\rangle |f(\mathbf{x})\rangle$.
 - 4. Measure, if the last register is one, exit.
 - 5. Otherwise, set m to min $(\sqrt{2^n}, \lambda m)$ and go back to Step 2.

Show that the expected number of iterations of this algorithm before ending (and therefore) finding a solution is a

$$O\left(m_0\right)$$
.

- 4. Suppose that the number t of solution is $\leq \frac{3}{4}2^n$ and t > 0. Give an algorithm that finds a solution in expected time $O\left(\sqrt{\frac{2^n}{t}}\max\left(n, T_f\right)\right)$ where T_f is the classical running time of f.
- 5. How treating the case $t > \frac{3}{4}2^n$ or t = 0? In particular, what is the expected running time of the algorithm when there are no solutions?

Exercise 3. Let,

$$f: \{1, \ldots, n\} \to \{1, \ldots, m\}$$

be a function classically computable in time T_f . Construct a quantum algorithm using Grover's algorithm that finds the minimum of f in time $O(\sqrt{n}\log_2(m)\max(\log n, T_f))$.

Hint: You can consider different thresholds T and use Grover's algorithm without proving it.

Exercise 4 (Grover with probability one). We claimed during the lecture (without proof) that Grover's algorithm can be tweaked to work with probability 1 if we know the number of solutions exactly. The goal of this exercise is to provide such an exact algorithm. Roughly, the idea is to increase the dimension (adding a qubit!) in order to slightly change the angle θ of Grover's algorithm in order to have a "perfect" number of iterations, namely for which it is not necessary to round up.

Let,

 $f: \{0,1\}^n \to \{0,1\}$ such that there exists a unique \mathbf{x}_0 verifying $f(\mathbf{x}_0) = 1$.

Our aim is to recover \mathbf{x}_0 with probability one.

- 1. Give the success probability of the basic version of Grover's algorithm after k iterations.
- 2. Suppose the optimal number of iterations $\widetilde{k} = \frac{\pi}{4\arcsin\left(\frac{1}{\sqrt{2^n}}\right)} \frac{1}{2}$ is not an integer. Show that if we round \widetilde{k} up to the nearest integer, doing $\lceil \widetilde{k} \rceil$ iterations, then the algorithm will have success probability strictly less than 1.
- 3. Define now the following function:

$$g: \mathbf{y} \in \{0,1\}^{n+1} \longmapsto \left\{ egin{array}{ll} f(\mathbf{x}) & \textit{if } \mathbf{y} = (\mathbf{x}|0) \\ 0 & \textit{otherwise.} \end{array} \right.$$

Show how you can implement the following (n+1)-qubit unitary

$$\mathbf{S}_q: |\mathbf{y}\rangle \mapsto (-1)^{g(\mathbf{y})} |\mathbf{y}\rangle$$

using one query to f (of the usual form $\mathbf{U}_f : |\mathbf{x}, b\rangle \mapsto |\mathbf{x}, f(\mathbf{x}) \oplus b\rangle$) and a few elementary gates.

4. Let $\gamma \in [0, 2\pi)$ and let $\mathbf{U}_{\gamma} \stackrel{\text{def}}{=} \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix}$ be the corresponding rotation matrix. Let

$$\mathbf{A} = \mathbf{H}^{\otimes n} \otimes \mathbf{U}_{\gamma}$$

be an (n+1)-qubit unitary. What is the probability (as a function of γ) that measuring the state $\mathbf{A} | 0^{n+1} \rangle$ in the computational basis gives a solution $\mathbf{y} \in \{0,1\}^{n+1}$ such that $g(\mathbf{y}) = 1$?

5. Give a quantum algorithm that finds the unique solution \mathbf{x}_0 with probability one using $O(\sqrt{N})$ queries to f.

Exercise 5. Consider an efficiently computable function (to simplify formulas suppose that $T_f = 1$) $f : \{0, ..., 2^n - 1\} \longrightarrow \{0, 1\}$. We also consider a string $s = s_0, ..., s_{S-1} \in \{0, 1\}^S$. The goal is to find S consecutive values of f(x) that are equal to s. More formally, we want to find $x \in \{0, ..., 2^n - S\}$ st. $f(x) = s_0$, $f(x+1) = s_1, ..., f(x+S-1) = s_{S-1}$. We assume there exists a single x_0 that satisfies this property.

- 1. Find a quantum algorithm that finds x_0 in time $O(S2^{n/2})$.
- 2. Assume now we have an efficiently computable function $g : \{0, ..., S-1\} \longrightarrow \{0, 1\}$ such that $g(i) = s_i$.
 - (a) Assume you have access to a version of Grover's algorithm, that outputs a solution to a search problem for a function $\ell: \mathcal{I} \longrightarrow \{0,1\}$ if there is a solution and \bot if there is no solution. Assume also that this routine works with probability 1 and takes time $O\left(\sqrt{\sharp \mathcal{I}}\right)$. Construct an algorithm \mathcal{A} that for any input x, outputs 1 if $x = x_0$ and 0 otherwise in time $O\left(\sqrt{S}\right)$.
 - (b) Construct a quantum algorithm that finds x_0 in time $O(\sqrt{S}2^{n/2})$.

Comment: this exercise illustrates that amplitude amplification can provide an exponential improvement over Grover's algorithm.

Exercise 6. Let $f: \{0,1\}^n \to \{0,1\}^n$ that we can query in the usual way. We are promised that this function is 2-to-1: for all $\mathbf{x} \in \{0,1\}^n$ there exists a unique $\mathbf{y} \neq \mathbf{x}$ such that $f(\mathbf{x}) = f(\mathbf{y})$.

- 1. Choose S uniformly at random among the sets of size s in $\{0,1\}^n$. What is the expected number of solutions in S?
- 2. Give a classical randomized algorithm that finds a collision with probability $\geq 1/2$ using $O\left(\sqrt{2^n}\right)$ queries to f.
- 3. Give a quantum algorithm that finds a collision with $O(\sqrt{2^n})$ queries to f.

4. Give a quantum algorithm that finds a collision using $O(2^{n/3})$ queries to f. In this question you recover the algorithm given in https://arxiv.org/pdf/quant-ph/9705002.pdf.

Hint: Combine both classical and quantum approaches

Exercise 7 (Approximating Unitary Operators [4.5pts]). Let U and V be two unitaries. Let,

$$E(\mathbf{U}, \mathbf{V}) = \max_{|\psi\rangle : \||\psi\rangle\|=1} \|(\mathbf{U} - \mathbf{V}) |\psi\rangle\|$$

where $\|\cdot\|$ denotes the norm of the considered Hilbert space for quantum states. $E(\mathbf{U}, \mathbf{V})$ is known as the operator norm of $\mathbf{U} - \mathbf{V}$.

The distance between two unitaries A and B is defined as E(A, B).

1. Let M be a POVM element associated with the measurement, and let $P_{\mathbf{U}}$ (or $P_{\mathbf{V}}$) be the probability of obtaining the corresponding measurement outcome if the operation \mathbf{U} (or \mathbf{V}) was performed. Show that

$$|P_{\mathbf{U}} - P_{\mathbf{V}}| \le 2E(\mathbf{U}, \mathbf{V})$$

2. Show that

$$E(\mathbf{U}_m\mathbf{U}_{m-1}\cdots\mathbf{U}_1,\mathbf{V}_m\mathbf{V}_{m-1}\cdots\mathbf{V}_1) \leq \sum_{i=1}^m E(\mathbf{U}_i,\mathbf{V}_i)$$

3. Deduce that if A, U, V are unitaries, then

$$|P_{\mathbf{A}\mathbf{U}} - P_{\mathbf{A}\mathbf{V}}| \le 2E\left(\mathbf{U}, \mathbf{V}\right)$$

- 4. (i) What is the distance between the 2×2 identity matrix and the phase-gate $\begin{pmatrix} 1 & 0 \\ 0 & e^{i\varphi} \end{pmatrix}$?
 - (ii) What is the distance between the 4×4 identity matrix and the controlled version of the phase gate of (i)?
 - (iii) What is the distance between the $2^n \times 2^n$ identity matrix \mathbf{I}_{2^n} and the controlled phase gate of (ii) tensored with $\mathbf{I}_{2^{n-2}}$?

(iv) Give a quantum circuit with $O(n \log n)$ elementary gates that has distance less than C/n (for some constant C) from the Fourier transform $\mathbf{QFT}_{\mathbb{Z}/2^n\mathbb{Z}}$.

Hint: you can use that
$$\cos t \sin t \cos t \cos t = 1$$

Exercise 8 (About characters).

Let G be a finite group.

1. Prove that for any character $\chi \in \widehat{G}$,

$$\sum_{g \in G} \chi(g) = \left\{ \begin{array}{ll} \sharp G & \textit{if } \chi = 1 \\ 0 & \textit{otherwise}. \end{array} \right.$$

2. How do you deduce from that

$$\sum_{g \in G} \chi_x(g) \overline{\chi_y}(g) = \begin{cases} \sharp G & \text{if } \chi_x = \chi_y \\ 0 & \text{otherwise.} \end{cases}$$

3. Consider the function f_x

$$f_g: \widehat{G} \longrightarrow G$$

 $\chi \longmapsto \chi(g), such that$

What can you say about f_g ?

4. How can you deduce from the previous point that we also have

$$\sum_{\chi \in \widehat{G}} \chi(x) \overline{\chi}(y) = \left\{ \begin{array}{ll} \sharp G & \text{if } x = y \\ 0 & \text{otherwise.} \end{array} \right.$$

5. Let H be a subgroup of G. Show that

$$\sum_{h \in H} \chi_g(h) = \left\{ \begin{array}{ll} \sharp H & \text{if } g \in H^{\perp} \\ 0 & \text{otherwise.} \end{array} \right. \quad and \quad \sum_{h^{\perp} \in H^{\perp}} \chi_g(h^{\perp}) = \left\{ \begin{array}{ll} \sharp H^{\perp} & \text{if } g \in H \\ 0 & \text{otherwise.} \end{array} \right.$$

Exercise 9 (Poisson summation formula and application).

1. Let G be a finite group and H be a subgroup. Show the Poisson summation formula, for any function $f: G \longrightarrow \mathbb{C}$,

$$\frac{1}{\sqrt{\sharp H}} \sum_{h \in H} f(h) = \frac{1}{\sqrt{\sharp H^{\perp}}} \sum_{h^{\perp} \in H^{\perp}} \widehat{f}(h)$$

You can admit that $\sharp H^{\perp} \sharp H = \sharp G$.

2. Recall that the characters of $\mathbb{Z}/2^n\mathbb{Z}$ are given by the χ_x 's where $\chi_x(y) \stackrel{\text{def}}{=} e^{-\frac{2i\pi xy}{2^n}}$. Let $i \in [0, n-1]$

$$(2^i) \stackrel{def}{=} \left\{ x 2^i : x \in \mathbb{Z}/2^n \mathbb{Z} \right\}$$

is the subgroup of $\mathbb{Z}/2^n\mathbb{Z}$ generated by 2^i . Determine $(2^i)^{\perp}$.

- 3. Given a function $f: \mathbb{Z}/2^n\mathbb{Z} \to \mathbb{C}$ which is 2^i -periodic. Show that it vanishes on $(2^i)^{\perp}$.
- 4. Suppose that you have \hat{f} for free. Is it easy to find its period (here 2^i)? What do you conclude?

Exercise 10. Is computing the Quantum Fourier Transform in $\mathbb{Z}/2^n\mathbb{Z}$ or \mathbb{F}_2^n helps to compute the classical Fourier transform?