

Énoncés des exercices

EXERCICE 1 [Indication] [Correction]

Montrer que si la suite de fonctions (f_n) est uniformément convergente, il en est de même de la suite de fonctions $(g_n = \sin f_n)$.

EXERCICE 2 [Indication] [Correction]

Soit f une application continue de [0,1] dans \mathbb{R} , et telle que f(1)=0.

On définit les applications f_n sur [0,1] par $f_n(x) = x^n f(x)$.

Étudier la convergence de la suite (f_n) .

EXERCICE 3 [Indication] [Correction]

On définit une suite de polynômes (P_n) par : $P_0 = 1$ et $\forall n \in \mathbb{N}, P_{n+1} = P_n + \frac{1}{2}(x - P_n^2)$.

- 1. Montrer que $P_{n+1} \sqrt{x} = (P_n \sqrt{x}) \left(1 \frac{P_n + \sqrt{x}}{2}\right)$
- 2. Exprimer de même $P_{n+1} + \sqrt{x}$ en fonction de $P_n + \sqrt{x}$.
- 3. Montrer que, $\forall n \in \mathbb{N}, \forall x \in [0,1] \sqrt{x} \leq P_{n+1}(x) \leq P_n(x) \leq 1$.
- 4. Montrer que la suite (P_n) est simplement convergente, sur [0,1] vers $f:x\to \sqrt{x}$.
- 5. Préciser la monotonie des applications $x \to P_n(x) \sqrt{x}$ et $x \to P_n(x) + \sqrt{x}$.
- 6. Montrer que la convergence de la suite (P_n) est uniforme.

Exercice 4 [Indication] [Correction]

Soit $(P_n)_{n\geq 0}$ une suite de polynômes, tous de degré inférieur ou égal à m.

On suppose que la suite $(P_n)_{n\geq 0}$ est simplement convergente sur un segment [a,b], avec a < b, vers une application f. Montrer que f est aussi un polynôme de degré inférieur ou égal à m, et que la convergence de la suite $(P_n)_{n\geq 0}$ est uniforme.

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Indications ou résultats

INDICATION POUR L'EXERCICE 1 [Retour à l'énoncé]

Justifier et utiliser l'inégalité : $\forall (x,y) \in \mathbb{R}^2$, $|\sin x - \sin y| \le |x-y|$.

Indication pour l'exercice 2 [Retour à l'énoncé]

Se donner $\varepsilon > 0$, et $\alpha \in]0,1[$ tel que $x \in [1-\alpha,1] \Rightarrow |f(x)| \leq \varepsilon$.

Montrer que la suite (f_n) est uniformément convergente vers la fonction nulle.

INDICATION POUR L'EXERCICE 3 [Retour à l'énoncé]

- On trouve $P_{n+1} + \sqrt{x} = P_n + \sqrt{x} \left(1 \frac{P_n \sqrt{x}}{2}\right)$.
- Pour la question 3, procéder par récurrence. Si c'est vrai au rang n, vérifier que $P_{n+1}(x) \le P_n(x) \le 1$ et $\frac{P_n(x) + \sqrt{x}}{2} \le 1$.
- Utiliser un théorème de convergence des suites monotones. Passer à la limite dans la relation de récurrence définissant les P_n .
- Procéder par récurrence.

Montrer que $x \to \varphi_n(x) = P_n(x) + \sqrt{x}$ est croissante.

De même, montrer que $x \to \psi_n(x) = P_n(x) - \sqrt{x}$ est décroissante.

- Utiliser l'encadrement $0 \le P_n(x) - \sqrt{x} \le P_n(0)$.

[Indication pour l'exercice 4] [Retour à l'énoncé]

L'idée est d'utiliser l'interpolation de Lagrange pour m+1 points distincts de [a,b].

Se donner $\lambda_0, \lambda_1, \dots, \lambda_m$ distincts dans [a, b].

Noter L_0, L_1, \dots, L_m les polynômes interpolateurs associés aux λ_k .

Pour tout
$$n$$
 de \mathbb{N} , $P_n(x) = \sum_{k=0}^m P_n(\lambda_k) L_k(x)$.

Faire tendre n vers $+\infty$, à x fixé, et constater que $f=\lim P_n$ est un polynôme de degré $\leq m$.

Justifier l'existence de $M \in \mathbb{R}^+$, tel que : $\forall k \in \{0, \dots, m\}, \forall x \in [a, b], |L_k(x)| \leq M$.

En déduire que sur
$$[a,b]$$
 on a $|f(x) - P_n(x)| \le M \sum_{k=0}^m |f(\lambda_k) - P_n(\lambda_k)|$.

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigés des exercices

Corrigé de l'exercice 1 [Retour à l'énoncé]

Soit f la limite uniforme de la suite (f_n) . On pose $g = \sin f$.

Pour tous réels x et y, on a $|\sin x - \sin y| \le |x - y|$ (théorème des accroissements finis.)

On en déduit $||g_n - g||_{\infty} \le ||f_n - f||_{\infty}$.

Ainsi $\lim_{n\to\infty} \|g_n - g\|_{\infty} = 0$: la suite (g_n) est uniformément convergente vers la fonction g.

CORRIGÉ DE L'EXERCICE 2 [Retour à l'énoncé]

On se donne un réel ε strictement positif.

f est continue sur [0,1] donc bornée : soit $M = \sup_{x \in [0,1]} |f(x)|$.

Il existe $\alpha \in]0,1[$ tel que $x \in [1-\alpha,1] \Rightarrow |f(x)| \leq \varepsilon$ (f continue en 0 et f(0)=0.)

On en déduit que pour tout entier n, et tout x de $[1-\alpha,1], |f_n(x)| \leq x^n \varepsilon \leq \varepsilon$.

D'autre part, pour tout entier n, et tout x de $[0, 1-\alpha]$, on a :

$$|f_n(x)| \le (1-\alpha)^n |f(x)| \le (1-\alpha)^n M$$

Puisque $0 \le 1 - \alpha < 1$, il existe un entier n_0 tel que : $n \ge n_0 \Rightarrow (1 - \alpha)^n M \le \varepsilon$.

On en déduit que pour tout entier $n \ge n_0$ et tout x de $[0,1], |f(x)| \le \varepsilon$.

Ainsi :
$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, n \ge n_0 \Rightarrow \sup_{x \in [0,1]} |f_n(x)| \le \varepsilon.$$

La suite $(f_n)_{n\geq 0}$ est donc uniformément convergente, sur [0,1], vers la fonction nulle.

Corrigé de l'exercice 3 [Retour à l'énoncé]

1. Le fait que les (P_n) sont des polynômes est évident par récurrence.

On a effectivement, en développant le second membre de l'égalité à démontrer :

$$(P_n - \sqrt{x})\left(1 - \frac{P_n + \sqrt{x}}{2}\right) = P_n - \sqrt{x} - \frac{1}{2}(P_n^2 - x) = P_n + \frac{1}{2}(x - P_n^2) - \sqrt{x} = P_{n+1} - \sqrt{x}.$$

2. De la même manière :

$$P_{n+1} + \sqrt{x} = P_n + \frac{1}{2}(x - P_n^2) + \sqrt{x} = P_n + \sqrt{x} - \frac{1}{2}(P_n^2 - x) = (P_n + \sqrt{x})\left(1 - \frac{P_n - \sqrt{x}}{2}\right).$$

3. La double inégalité $\sqrt{x} \le P_n(x) \le 1$ est évidente si n = 0.

Soit n un entier naturel fixé. Supposons $\sqrt{x} \le P_n(x) \le 1$.

La définition de P_{n+1} donne d'abord : $P_{n+1}(x) = P_n(x) + \frac{1}{2}(x - P_n^2(x)) \le P_n(x) \le 1$.

La double inégalité $\sqrt{x} \le P_n(x) \le 1$ donne aussi $\frac{P_n(x) + \sqrt{x}}{2} \le 1$.

La question 1 donne alors $P_{n+1}(x) - \sqrt{x} = (P_n(x) - \sqrt{x}) \left(1 - \frac{P_n(x) + \sqrt{x}}{2}\right) \ge 0.$

Ainsi le résultat $\sqrt{x} \le P_{n+1}(x) \le P_n(x) \le 1$ est vrai pour tout entier n, par récurrence.

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

4. Pour tout x de [0,1], la suite $x \to P_n(x)$ est décroissante, et elle est minorée par \sqrt{x} . Cette suite est convergente. Notons f(x) sa limite.

On passe à la limite dans $P_{n+1} = P_n + \frac{1}{2}(x - P_n^2)$ et on trouve $f(x) = f(x) + \frac{1}{2}(x - f^2(x))$.

Ainsi $f^2(x) = x$. Or les $P_n(x)$ et donc f(x) sont positifs. On en déduit $f(x) = \sqrt{x}$.

Conclusion: la suite (P_n) est simplement convergente, sur [0,1], vers $f: x \to \sqrt{x}$.

5. Montrons que $x \to \varphi_n(x) = P_n(x) + \sqrt{x}$ est croissante et que $x \to \psi_n(x) = P_n(x) - \sqrt{x}$ est décroissante.

Notons tout d'abord que : $\forall n \in \mathbb{N}, \ \forall x \in [0,1], \ 0 \le \varphi_n(x) \le 2 \text{ et } 0 \le \psi_n(x) \le 1.$

La propriété à démontrer est vraie si n=0. Supposons qu'elle soit établie au rang n.

La question 1 donne : $\psi_{n+1} = (1 - \frac{1}{2}\varphi_n)\psi_n$. L'application ψ_{n+1} est donc le produit de deux fonctions positives et décroissantes : elle est donc elle-même décroissante.

La question 2 donne : $\varphi_{n+1} = (1 - \frac{1}{2}\psi_n)\varphi_n$. L'application φ_{n+1} est donc le produit de deux fonctions positives et croissantes : elle est donc elle-même croissante.

On a prouvé par récurrence que les φ_n sont croissantes et que les ψ_n sont décroissantes.

6. Pour tout x de [0,1] et tout n de $\mathbb{N}: 0 \leq P_n(x) - \sqrt{x} \leq P_n(0)$ (décroisssance de ψ_n .) Or $\lim_{n \to \infty} P_n(0) = 0$ (conséquence de la convergence simple).

On en déduit $\lim_{n\to\infty} \sup_{x\in[0,1]} |P_n(x) - \sqrt{x}| = 0$: la suite (P_n) est CVU sur [0,1] vers $x\to\sqrt{x}$.

Remarques:

- L'exemple précédent illustre le théorème de Weierstrass (une application continue sur un segment et approchée uniformément sur ce segment par une suite de polynômes).
- On voit ici une suite de fonctions indéfiniment dérivables qui converge uniformément sur un intervalle vers une application qui n'est pas même dérivable une fois sur cet intervalle.
- On a deg $P_1 = 1$, et la relation entre P_n et P_{n+1} donne : deg $P_{n+1} = 2 \deg P_n$ si $n \ge 1$. On a donc deg $P_n = 2^{n-1}$ si $n \ge 1$. Par exemple, P_{10} est de degré 512...
- Voici les courbes $y = P_n(x)$ (à gauche) et $y = P_n(x) \sqrt{x}$ (à droite), pour $0 \le n \le 5$. Pour tout n, la courbe "au rang n + 1" est située en dessous de la courbe au rang n.

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigé de l'exercice 4 [Retour à l'énoncé]

On se donne une famille $\lambda_0, \lambda_1, \dots, \lambda_m$ de m+1 points distincts de [a, b].

Soit L_0, L_1, \ldots, L_m la famille des polynômes interpolateurs associés aux λ_k .

Pour tout entier k de $\{0,\ldots,m\}$, L_k est l'unique polynôme de degré $\leq m$ tel que $L_k(\lambda_k)=1$ et $L_k(\lambda_j)=0$ si $j\neq k$.

 L_0, L_1, \ldots, L_m forment une base de $\mathbb{R}_m[X]$.

Plus précisément, tout polynôme de degré $\leq m$ s'écrit $P = \sum_{k=0}^{m} P(\lambda_k) L_k$.

En particulier : $\forall n \in \mathbb{N}, \ \forall x_i n[a, b], \ P_n(x) = \sum_{k=0}^m P_n(\lambda_k) L_k(x).$

Si $n \to +\infty$ dans cette égalité, à x fixé, on trouve : $\forall x \in [a,b], f(x) = \sum_{k=0}^{m} f(\lambda_k) L_k(x)$

Ainsi la limite f de la suite (P_n) est elle-même un polynôme de degré $\leq m$.

Il reste à montrer que la convergence de la suite (P_n) vers f est uniforme sur [a,b].

Chaque polynôme L_k est une application continue donc bornée sur [a,b].

Il existe donc un réel positif M tel que : $\forall k \in \{0, \dots, m\}, \forall x \in [a, b], |L_k(x)| \leq M$.

$$\forall n \in \mathbb{N}, \forall x \in [a, b], |f(x) - P_n(x)| = \left| \sum_{k=0}^m (f(\lambda_k) - P_n(\lambda_k)) L_k(x) \right| \le M \sum_{k=0}^m |f(\lambda_k) - P_n(\lambda_k)|.$$

Mais la quantité $\sum_{k=0}^{m} |f(\lambda_k) - P_n(\lambda_k)|$ tend vers 0 quand $n \to \infty$ (convergence simple.)

On en déduit que $\lim_{n\to\infty} \sup_{x\in[a,b]} |f(x) - P_n(x)| = 0.$

La suite (P_n) est donc uniformément convergente vers f sur [a,b].

Page 5 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.