[ML' 25] Simple Linear Regression Assignment

❖ In this assignment, you will use linear regression tools in Python to predict the expected daily revenue of a cafe based on an exploration of a number of factors.

Dataset Header:

RevenuePerDay	NCustomersPerDay	AverageOrderValue	WorkingHoursPerDay	NEmployees	MarketingSpendPerDay	LocationFootTraffic
1547.81	152	6.74	14	4	106.62	97
2084.68	485	4.5	12	8	57.83	744
3118.39	398	9.09	6	6	91.76	636
2912.2	320	8.48	17	4	462.63	770
1663.42	156	7.44	17	2	412.52	232
1155.18	121	8.88	6	9	183.49	484
2179.13	238	9	11	4	331.35	156

* Assignment deadline is Friday 7/3/2025 11: 59 PM.

- ❖ Apply simple linear regression to predict the revenue per day of a cafe.
- ❖ Find the best variable (X) that can be used to predict the performance index (Y).
- This variable (X) can be provided by the dataset as is (for example: use NCustomersPerDay as "X" to predict RevenuePerDay "Y") **or** it can be a calculated variable (for example: use a new variable, for example: AverageOrderValue+NEmployees as "X" to predict performance index "Y").

❖ Your code must show at least all six basic trials (for the six columns).

- ❖ Use simple linear regression from scratch as discussed in Lab 2 and try adjusting the learning rate and number of epochs as needed.
- ❖ You must show your learning rate and epochs trials in the code, Otherwise, it will not count.
- ❖ Plot a graph that shows the relation between each learning rate you tried and the mse loss. Plot a similar graph for epochs. Your plots should be included in the code.

❖ You should represent this for each model that you train (i.e., at least 6 models). DO NOT create 6 separate plots for lr/mse and 6 separate plots for epochs/mse. You can either have one plot for lr/mse that has 6 subplots and another for epochs/mse,, or you can have one plot that has 6 lines for lr and another for epochs. If you have more models, you can have more subplots/lines than 6 but do not create 12+ separate plots.

Example:

A single plot that has 6 subplots:

OR
A single plot that has 6 lines with legend:

Either way, we need two plots: one for lr/mse and one for epochs/mse The values of lr and mse in the above plots are a dummy example, and the values are random, you should figure out what values to use for lr.

- ❖ DO NOT manually adjust initializations of 'm' and 'c'. They must be initialized by zeros.
- ❖ Cheating Detection will be applied and it will not be tolerated.
- **❖ You are expected to deliver the assignment using** a google form that will be announced soon **according to the following instructions**:
 - 1- Upload a single "YourStudentID.py" code file containing the code for the six models as well as the trials and prints the MSE for each model.
 - 2- Upload a PDF file (report) containing:
 - Your name, id, department and UMS Level
 - A table that summarizes the mean square error of each model
 - All the plots you generated.
 - Your conclusion the best variable to use for this task.

Take Note that the code file name must be YourStudentID.py (example:20191700123.py) or you will be penalized.

Take Note that the report file name must be YourStudentID.pdf (example: 20191700123.pdf) or you will be penalized.