МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Параллельные алгоритмы»

Тема: Параллельное умножение матриц

Студент гр. 9304	Арутюнян В.В.
Преподаватель	Сергеева Е.И.

Санкт-Петербург

2022

Цель работы

Ознакомиться с перемножения матриц в многопоточной среде.

Задание

- 1. Реализовать параллельный алгоритм умножения матриц. Исследовать масштабируемость выполненной реализации.
- 2. Реализовать параллельный алгоритм "быстрого" умножения матриц (Штрассена или его модификации).

Проверить, что результаты вычислений реализаций 1 и 2 совпадают.

Сравнить производительность с реализацией 1 на больших размерностях данных (порядка $10^4 - 10^6$)

Выполнение работы

Умножение матриц происходит в 3 основных этапа:

1. Считывание двух матриц из файла *input.txt* На отдельной строке была задана размерность матрицы (высота, ширина через пробел). Затем представлена матрица, элементы которой разделены пробелами, а строки матрицы выделяются переносами строк. Аналогично представлена вторая матрица в том же файле.

2. Произведение матриц:

- а. [Обычное] Произведение матриц с помощью заданного количества потоков (параллельно). Количество строк левой исходной матрицы делится на общее кол-во потоков с некоторым округлением. Затем каждый поток перемножает получившийся блок левой матрицы на полную правую матрицу. Получившейся блок становится частью результирующей матрицы.
- b. [Штрассен] Произведение матриц производится согласно алгоритму Штрассена. Для малых размерностей матриц (меньше 64 элементов) для оптимизации используется обычное умножение. Для глубины

меньше 5 используется параллельное умножение с помощью алгоритма Штрассена. В остальных случаях происходит обычное умножение с помощью алгоритма Штрассена.

3. Вывод получившейся матрицы в файл *output.txt* в том же виде, как представлена матрица во входном файле.

Исследование масштабируемости обычного умножения матриц

В таблице 1 представлены результаты умножения матриц с различными размерами. Лучший результат достигается при получении в результате меньшей матрицы (4x4).

Таблица 1 – Исследование масштабируемости обычного умножения матриц

Размер левой матрицы	Размер правой матрицы	Затраченное время, сек.
4096x4	4x4096	0.387163
4x4096	4096x4	0.000646

Проверка совпадения результатов вычисления умножения двумя способами

Проверка совпадения вычисленных матриц осуществляется программно. В поток вывода печатается соответствующее сообщение о результате сравнения (рисунок 1).

Исследование производительности

В таблице 2 представлено исследование производительности обычного умножения матриц и умножения по алгоритму Штрассена.

Для обычного умножения используется фиксированное количество потоков (8) потоков для параллельного умножения.

На малых размерах матрицы затрачиваемое время приблизительно одинаково. На размерах матрицы, начиная с 1024х1024, умножение с помощью алгоритма Штрассена оказывается значительно быстрее.

Таблица 2 – Сравнение производительности обычного умножения матриц и умножения по алгоритму Штрассена

	Затраченное время, сек.		
Размер матрицы	Обычное умножение	Умножение по алгоритму Штрассена	
128x128	0.009218	0.009765	
256x256	0.092368	0.094935	
512x512	0.754371	0.718775	
1024x1024	6.599571	5.092937	
2048x2048	83.129109	37.038631	

Выводы

В ходе выполнения лабораторной работы были получены навыки работы с перемножением матриц в многопоточной среде.