Problem

In $\triangle ABC$, angle C is a right angle. AC and BC are each equal to 1. D is the midpoint of AC.BD is drawn, and a line perpendicular to BD at P is drawn from C. Find the distance from P to the intersection of the medians of $\triangle ABC$.

Solution

(D). Method 1:

Let H be the foot of the perpendicular from E to DC. Since CD = AB = 5, FG = 2, and $\triangle FEG$ is similar to $\triangle AEB$, we have $\frac{EH}{EH+3} = \frac{2}{5}$, so 5EH = 2EH+6, and EH = 2. Hence Area $(\triangle AEB) = \frac{1}{2}(2+3) \cdot 5 = \frac{25}{2}$.

Method 2:

Let I be the foot of the perpendicular from E to AB. Since $\triangle EIA$ is similar to $\triangle ADF$ and $\triangle EIB$ is similar to $\triangle BCG$, we have AI/EI=1/3 and (5-AI)/EI=2/3.

Adding gives 5/EI = 1, so EI = 5. The area of the triangle is $(1/2) \cdot 5 \cdot 5 = 25/2$.

