made before all the data points are seen.

Chapter 7

We can obtain a sequential learning algorithm by applying the technique of stochastic gradient descent, also known as sequential gradient descent, as follows. If the error function comprises a sum over data points $E = \sum_n E_n$, then after presentation of data point n, the stochastic gradient descent algorithm updates the parameter vector \mathbf{w} using

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n \tag{4.21}$$

where τ denotes the iteration number, and η is a suitably chosen learning rate parameter. The value of \mathbf{w} is initialized to some starting vector $\mathbf{w}^{(0)}$. For the sum-of-squares error function (4.11), this gives

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \boldsymbol{\phi}_n) \boldsymbol{\phi}_n \tag{4.22}$$

where $\phi_n = \phi(\mathbf{x}_n)$. This is known as the *least-mean-squares* or the *LMS algorithm*.

4.1.6 Regularized least squares

Section 1.2

We have previously introduced the idea of adding a regularization term to an error function to control over-fitting, so that the total error function to be minimized takes the form

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$
 (4.23)

where λ is the regularization coefficient that controls the relative importance of the data-dependent error $E_D(\mathbf{w})$ and the regularization term $E_W(\mathbf{w})$. One of the simplest forms of regularizer is given by the sum of the squares of the weight vector elements:

$$E_W(\mathbf{w}) = \frac{1}{2} \sum_{i} w_j^2 = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}.$$
 (4.24)

If we also consider the sum-of-squares error function given by

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2, \tag{4.25}$$

then the total error function becomes

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}.$$
 (4.26)

In statistics, this regularizer provides an example of a *parameter shrinkage* method because it shrinks parameter values towards zero. It has the advantage that the error function remains a quadratic function of w, and so its exact minimizer can be found in closed form. Specifically, setting the gradient of (4.26) with respect to w to zero and solving for w as before, we obtain

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}. \tag{4.27}$$

This represents a simple extension of the least-squares solution (4.14).

Exercise 4.6