

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики Кафедра прикладной математики и экономико-математических методов

ОТЧЁТ

по дисциплине:

«Методы оптимизации»

на тему:

«Задание 19. Метод внешней точки»

Направление: 01.03.02

Обучающийся: Бронников Егор Игоревич

Группа: ПМ-1901

Санкт-Петербург 2021

Дано:

Функция:

$$f = 2x_1^2 + 3x_2^2 + 4x_3^2 + 2x_1x_2 + 2x_1x_3 - x_2x_3 - 3x_1 - 5x_2 - 55x_3$$

Ограничения:

$$2x_1 - x_2 + x_3 = -2$$
$$x_1 - 2x_2 + 3x_3 = -7$$

Условие:

Найти стационарную точку методом внешней точки.

Для начала сведём наши ограничения-равенства к неравенствам:

$$2x_1 - x_2 + x_3 < -2 + \epsilon$$

$$2x_1 - x_2 + x_3 > -2 - \epsilon$$

$$x_1 - 2x_2 + 3x_3 < -7 + \epsilon$$

$$x_1 - 2x_2 + 3x_3 > -7 - \epsilon$$

Рассмотрим следующую внешнюю штрафную функцию:

$$\Phi_4(X, C) = C \sum_{j=1}^{M} (\max\{\psi_j(X), 0\})^2$$

Далее составим модифицированную целевую функцию:

$$F(X,\tau) = f(X) + \tau \Phi_4(X)$$

$$F(X,\tau) = 2x_1^2 + 3x_2^2 + 4x_3^2 + 2x_1x_2 + 2x_1x_3 - x_2x_3 - 3x_1 - 5x_2 - 55x_3 + \tau((\max\{2x_1 - x_2 + x_3 + 2 - \epsilon, 0\})^2 + (\max\{-2x_1 + x_2 - x_3 - 2 - \epsilon, 0\})^2 + (\max\{x_1 - 2x_2 + 3x_3 + 7 - \epsilon, 0\})^2 + (\max\{-x_1 + 2x_2 - 3x_3 - 7 - \epsilon, 0\})^2)$$

Возьмём $X^0=(10,100,10),$ которая лежит за пределами множества допустимых решений, а $\epsilon=0.0001.$

При $\tau = 10$. Для нахождения следующего приближения воспользуемся методом Ньютона-Рафсона. Таким образом, мы получили точку $X^1 = (-0.0841069, 5.32312, 1.9196)$.

При $\tau=100$. Воспользуемся методом Ньютона-Рафсона. Таким образом, мы получили точку $X^2=(1.17182,5.25464,0.818046)$.

При $\tau=1000$. Воспользуемся методом Ньютона-Рафсона. Таким образом, мы получили точку $X^3=(1.24205,5.25048,0.756915)$.

При $\tau=10000$. Воспользуемся методом Ньютона-Рафсона. Таким образом, мы получили точку $X^4=(1.24913,5.25005,0.75075)$.

τ	X ₁	X ₂	X ₃	f
10	-0.0841069	5.32312	1.9196	-43.6176
100	1.17182	5.25464	0.818046	23.4094
1000	1.24205	5.25048	0.756915	27.4195
10 000	1.24913	5.25005	0.75075	27.8256

Точный ответ: $X^* = (1.25, 5.25, 0.75), f = 27.875$