

Analysis Report on Kagglers' Job Satisfaction Level and Building a Machine Learning Model

#### **SABANCI UNIVERSITY**

Course-DA514

**Group 7** 

Gizem Güneş, Esra Akarçay, Ayda Gizem Kumkumoğlu

# **CONTENTS**

Statistics About Kagglers

Model Building





Project data set is an imbalanced data set consist of 43.48% Medium, 41.38% High and 15.14% Low labels



Exploratory data analysis findings show that 85% of Kagglers are male and 14% are female. Female Kagglers have low job satisfaction with 16% which is 2 point greater than Male Kagglers' low job satisfaction ratio









Kagglers are mostly located in the USA, Asia and West Europe while the rest is located in other regions





Kagglers who face challenges challenges like company politics, lack of management and financial support for a data science team most of the time in their working environment have the lowest job satisfaction level.



Kagglers who always work remotely have higher job satisfaction.









Kagglers who have claimed that they are perfectly fit to their title are more satisfied (55%) with their jobs than others who claim that they are fine or poorly fit to their title.

Python and R users indicate higher satisfaction levels if they use these tools most of the time or often.







Kagglers mostly have Bachelor Degrees from Computer Science, Mathematics-Statistics and Engineering (Non-computer Focus) majors and their mostly employed in the academic and technology fields

Kagglers specified several current job titles and Data Scientist title is the most frequent one. Also, Kagglers who identified themselves as Data Scientist are dominant in the data set.

### **Model Selection**



#### FEN:

Originally an Arabic Word that means **Art**, but in Turkish it means **Science** Like Machine Learning...

## **Model Building**



#### **Score Table**

| method                                          | TP  | FP | TN  | FN | f1       |  |  |
|-------------------------------------------------|-----|----|-----|----|----------|--|--|
| Baseline LR                                     | 104 | 55 | 460 | 67 | 0.501698 |  |  |
| GB Classifier                                   | 0   | 0  | 380 | 58 | 0.471919 |  |  |
| GB Classifier with new parameters               | 17  | 8  | 420 | 62 | 0.496330 |  |  |
| XGBoost                                         | 15  | 8  | 424 | 61 | 0.505600 |  |  |
| XGBoost with new parameters                     | 29  | 14 | 420 | 61 | 0.508666 |  |  |
| Random Forest                                   | 102 | 50 | 440 | 55 | 0.524855 |  |  |
| RF with DecisionTreeRegressor iterative imputer | 91  | 44 | 426 | 58 | 0.533324 |  |  |
| RF with ExtraTreesRegressor iterative imputer   | 92  | 42 | 442 | 59 | 0.524585 |  |  |
| RF with KNeighborsRegressor iterative imputer   | 98  | 52 | 435 | 62 | 0.530858 |  |  |
| RF with BayesianRidge iterative imputer         | 88  | 44 | 420 | 60 | 0.529858 |  |  |
| Random forest with SMOTENC                      | 69  | 54 | 409 | 64 | 0.502873 |  |  |
|                                                 |     |    |     |    |          |  |  |

- In this part of the project, there have been built **11 models** based on different approaches including **Logistic Regression**, Random Forest, Gradient Boosting Classification and **XGBoost** algorithms.
- As this dataset consists of **imbalanced multiclass labels**, it was expected to have better F1 scores with algorithms including weighted class distribution
  - The best performing model was found as RF with Decision

    Tree Regressor Iterative Imputer with 53.3% F1 score
- F1 score improvement  $50\% \rightarrow 53.3\%$

#### **Model Results**



#### **Learning Curve for RF model with Decision Tree Regressor Iterative Imputer**



It can be observed that there is overfitting with this model since there is a gap between train and test trend. However, we may say that they can con verge closer if more data added.

#### **Classification Report**

|              | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| High         | 0.57      | 0.62   | 0.59     | 687     |
| Low          | 0.41      | 0.36   | 0.39     | 251     |
| Medium       | 0.54      | 0.52   | 0.53     | 721     |
| accuracy     |           |        | 0.54     | 1659    |
| macro avg    | 0.51      | 0.50   | 0.50     | 1659    |
| weighted avg | 0.53      | 0.54   | 0.53     | 1659    |

When the class related F1-score is checked, it was found that Low class has the worst performance meaning that, the model has poorly performed classifying Low class compared to High and Medium classes.

