Exerting the general
$$30.7$$

 10^{-1} 10^{-

' - 13y' + 6y = 0.

4. $y^{iv} - 13y'' + 36y = 0$.

and the general
$$y' = 0$$
.

1. $y'' - 2y'' - 3y' + 2y = 0$.

3. $3y''' - 2y'' + 7y'' + 3y' - 2y = 0$.

5. $4y'' - 12y''' + 7y'' + 6y' - y = 0$.

3. 3)
5.
$$4y^{1v} - 12y''' + 7y'' + 6y' - y = 0$$

7. $8y^{1v} - 6y''' + y' = 0$

7.
$$8y'' - 0y'' + y' = 0$$
.
9. $y''' - 2y'' + 4y' + 8y = 0$.
11. $y''' - 2y'' - 4y' + 35y'' - 25y' = 0$

11.
$$y''' - 2y'' - 4y' + 6y'' - 25y' = 0$$
.
13. $y''' - 11y''' + 35y'' - 25y' + y = 0$.
13. $4y''' + 4y''' - 3y'' - 2y' + y = 0$.

 $9y^{iv} - 66y''' + 157y'' - 132y' + 36y = 0.$

16.

y''' - 2y'' + 4y' - 8y = 0.

18.

27y''' - 27y'' + 9y' - y = 0.

14. $y^{iv} - 3y''' + 3y'' - y' = 0$.

10. y''' + 4y'' + 5y' + 2y = 0.

6. $y^{iv} + y''' - 4y'' - 4y' = 0$.

8. $144y^{iv} - 25y'' + y = 0$.

17.
$$y''' + y' = 0$$
.
19. $y''' + 5y'' + 8y' + 6y = 0$.

19.
$$y'' + 3y'' - 9y = 0$$
.
21. $y'' + 8y'' - 9y = 0$.

21.
$$y'' + \delta y$$

23. $4y'' + 101y'' + 25y = 0$.

23.
$$4y$$
 + 50y" + 625y = 0.

20.
$$y''' - 7y'' + 19y' - 13y = 0$$
.
22. $y^{iv} + y''' + 14y'' + 16y' - 32y = 0$.

26.
$$y^{iv} + 2y'' + y = 0$$
.

24. $y^{iv} + 2y''' - 9y'' - 10y' + 50y \ne 0$.

Find a homogeneous following particular solution. 27.
$$5 + e^x + 2e^{3x}$$
.

29.
$$xe^{-x} + e^{2x}$$
.

29.
$$xe^{-x} + e^{-x}$$
.
31. $x^2e^{2x} + 2e^{-2x}$.

32. $3\cos 2x + 5\sinh 3x$.

30. $1 + x + e^x - 3e^{3x}$.

We the following initial value production by
$$y'(0) = 0$$
, $y'(0) = 0$, $y''(0) = 1$. As $y''' - 2y'' - 5y' + 6y = 0$, $y(0) = 0$, $y'(0) = 0$, $y''(0) = 0$.

33.
$$\sqrt{y'''} - 2y'' - 5y' + 6y = 0$$
, $y(0) = 1$, $y'(0) = 0$, $y''(0) = 0$.

$$3x''' - 5y'' + 7y' - 3y = 0, y(0) = 1, y'(0) = 0, y(0) = 3,$$

34.
$$4y''' - 4y'' - 9y' + 9y = 0$$
, $y(0) = 1$, $y'(0) = 0$, $y''(0) = -5$.
35. $y''' - 5y'' + 7y' - 3y = 0$, $y(0) = 1$, $y'(0) = 3$, $y''(0) = 3$, $y''(0) = 3$, $y''(0) = 3$, $y''(0) = -1$.
36. $y^{3y} - 2y''' - 3y'' + 4y' + 4y = 0$, $y(0) = 3$, $y'(0) = -1$, $y'''(0) = -1$, $y'''(0) = -1$, $y''(0) = -1$,

36,
$$y'' - 2y''' - 3y'' + 4y' + 4y = 0$$
, $y(0) - 5$, $y'''(0) = -1$, $y'''(0) = -1$, $y'''(0) = -1$, $y''(0) = 1$, $y'(0) = 2$, $y''(0) = 2$, $y''(0) = -5$.

37.
$$y'' + y'' = 0$$
, $y(0) = 1$, $y'(0) = 2$, $y'(0) = 3$, $y'''(0) = -5$. $y''' - y'' + 4y' - 4y = 0$, $y(0) = 0$, $y'(0) = 3$, $y'''(0) = -3$.

39.
$$y'' + y'' - 2y = 0$$
, $y(0) = 2$, $y'(0) = 2$, $y''(0) = -3$.

39.
$$y''' + y'' - 2y = 0$$
, $y(0) = 2$, $y'(0) = 2$, $y'''(0) = 15$, $y'''(0) = 2\pi$
40. $y^{iy} - 3y''' = 0$, $y(0) = 2$, $y'(0) = 5$, $y''(0) = 15$, $y'''(0) = 15$, $y'''(0) = 2\pi$
and the solution of the following differential equations satisfying the given conditions.

41,
$$y''' + \pi^2 y' = 0$$
, $y(0) = 0$, $y(1) = 0$, $y'(0) + y'(1) = 0$.
42. $y''' - 36y' = 0$, $y(0) = 2$, $y'(0) = 12$, $y'(1) = 6 \sinh(6) + 12 \cosh(6)$.
43. $y'' + 12$...
43. $y'' + 12$...

$$\lambda_{x} y'' - 36y' = 0, y(0) = 2, y'(0) = 12, y'(1) = 0$$

42.
$$y''' - 36y' = 0$$
, $y(0) = 0$, $y(1) = 0$; $y'(1) = 6 \sinh (6) + 12$
43. $y''' - 36y' = 0$, $y(0) = 2$, $y'(0) = 12$, $y'(1) = 6 \sinh (6) + 12$
44. $y'' - \omega^4 y = 0$, $\omega \neq 0$, $y(0) = 0$, $y''(0) = 0$, $y(\pi/2) = -1$, $y'(\pi/2) = -53$
45. $y'' + 13y'' + 36y = 0$, $y(0) = 0$, $y''(0) = 0$, $y(\pi/2) = 5$, $y''(\pi/2) = -53$

4.
$$y'' - \omega^4 y = 0$$
, $\omega(0) = 0$, $y''(0) = 0$, $y''(\pi) = 0$, $y''(\pi) = 0$, $y''(\pi/2) = -53$.
4. $y'' - \omega^4 y = 0$, $\omega \neq 0$, $y(0) = 0$, $y''(0) = 0$, $y'(\pi/2) = 5$, $y''(\pi/2) = -53$.
43. $y'' + 10y'' + 9y = 0$, $y'(0) = 0$, $y''(0) = 0$, $y'(\pi/2) = 5$, $y''(\pi/2) = -53$.

Scanned with OKEN Scanner

$$\lim_{x \to \infty} \left\{ -\frac{1}{65} \left[(\cos 2x - 8 \sin 2x) + i (\sin 2x + 8 \cos 2x) \right] \left[\left(x - \frac{28}{65} \right) + \frac{36}{65} i \right] \right\}$$

$$= -\frac{1}{4225} \left[65x(8 \cos 2x + \sin 2x) - 28(8 \cos 2x + \sin 2x) + 36(\cos 2x - 316 \sin 2x) + 36(\cos 2x - 8 \sin 2x) \right]$$

$$= -\frac{1}{4225} \left[65x(8 \cos 2x + \sin 2x) - 188 \cos 2x - 316 \sin 2x \right].$$
The general solution is
$$= -\frac{1}{4225} \left[65x(8 \cos 2x + \sin 2x) - \frac{1}{4225} \left[65x($$

The general solution is

$$\sin 2x].$$

$$\sin 2x]$$

$$y(x) = Ae^{-x} + Be^{-3x} - \frac{1}{4225} \left[65x(8\cos 2x + \sin 2x) - 188\cos 2x - 316\sin 2x \right].$$
The characteristic equation of the homogeneous.

Find the general solution of the equation $y^{iv} + 3y'' = 108x^2$ The characteristic equation of the homogeneous equation is

characteristic equation of the homogeneous equation is
$$m^4 + 3m^2 = 0, \quad \text{or} \quad m^2(m^2 + 3) = 0. \text{ Its roots are } m = 0, 0, \pm \sqrt{3}i.$$
Intary function is $y_c(x) = A + Bx + (C\cos\sqrt{3}x + 5)$

The complementary function is $y_c(x) = A + Bx + (C\cos\sqrt{3}x + D\sin\sqrt{3}x)$.

The complementary function is $y_c(x) = A + Bx + (C\cos\sqrt{3}x + D\sin\sqrt{3}x)$.

The particular integral is $\sqrt{3}x$. The complements $3D^2 = D^2(D^2 + 3)$. The particular integral is given by

$$y_p(x) = 108[D^2(D^2 + 3)]^{-1}(x^2) = 108[D^{-2}] \frac{1}{3} \left[1 + \frac{D^2}{3} \right]^{-1}(x^2)$$

$$= 36[D^{-2}] \left[1 - \frac{D^2}{3} + \frac{D^4}{9} - \dots \right] (x^2) = 36D^{-2} \left[x^2 - \frac{2}{3} \right]$$

$$= 36 \left[\frac{x^4}{12} - \frac{x^2}{3} \right] = 3x^4 - 12x^2.$$

The general solution is $y(x) = A + Bx + (C \cos \sqrt{3}x + D \sin \sqrt{3}x) + 3x^4 - 12x^2$.

Exercise 5.7

and the general solution of the following differential equations. $1. (D^2 + 5D + 4)y = 18e^{2x}.$

3.
$$(D^2 - 3D + 4)y = 18e^{2x}$$
.

3.
$$(D^2 + 5D + 4)y = 18e^{2x}$$

5. $(D^2 - 3D - 4)y = e^x + 6e^{5x}$
7. $(9D^2 - 6D) = 7e^x$

$$\frac{1. (9D^2 - 6D^2 + 3)y}{6D^2 - 6D^2} = 7e^x.$$

7.
$$(9D^2 - 6D + 1)y = 7e^x$$
.
9. $(0)^2 - 6D + 1)y = 4e^{-x}$.
11. $(0)^2 + D - 6)y = e^{2x}$.

$$h_{1}(0^{2}-1) = e^{2x}$$

$$\begin{array}{ll}
3, & (9D^2 - 1)y = 6xe^x \\
15, & (D^3 + 2D^2 - 5D - 6) \\
17, & (D^3 + 2D^2 - 5D - 6)
\end{array}$$

$$\frac{15 \cdot (D^{3} + 6D + 1)y}{17 \cdot (D^{3} + 2D^{2} - 5D - 6)y} = e^{-x/3}.$$

$$-2D^{2} - D + 2)y = e^{3x}.$$

$$2. (D^2 - 1)y = 8e^{3x}.$$

4.
$$(D^2 + D + 2)y = e^{x/2}$$
.

6.
$$(D^2 - 2D + 1)y = 5e^{4x} + 4e^{2x}$$

8.
$$(D^2 - 6D + 9)y = 14e^{3x}$$

10.
$$(2D^2 - 3D - 2)y = xe^{-x/2}$$
.

12.
$$(4D^2 + 9D + 2)y = xe^{-2x}$$

$$14. (2D^2 + 7D - 4)y = xe^{-4x}.$$

16.
$$(2D^3 + 3D^2 - 3D - 2)y = 10e^{2x}$$
.

18.
$$(D^3 - 6D^2 + 12D - 8)y = 18e^{2x}$$
.