

Objectifs

- Éliminer les comportements anormaux des relations lors des mises à jours ;
- Éliminer les données redondantes ;
- Permet de mieux comprendre les relations sémantiques entre données ;

Les concepts de base

- Domaines
- La relation
- Le schéma d'une relation
- Les clés

Domaines

- Un domaine est un ensemble de valeurs atomiques, on distingue:
 - les domaines prédéfinis :
 - l'ensemble des chaînes de caractères (texte),
 - l'ensemble des nombres entiers (entier),
 - l'ensemble des booléens :
 - booléen = {vrai, faux}
 - l'ensemble des dates
 - **...**
 - les domaines définis :
 - en extension, c.-à-d. en énumérant les valeurs :
 - couleur = {"rouge", "vert", "bleu", "jaune"}
 - en intention, c.-à-d. en spécifiant la formule que doit vérifier chaque valeur :
 - $mois = \{m : entier, 1 \le m \le 12\}$

La relation

- La relation
 - Définition

Ensemble d'attributs permettant de caractériser une relation

Exemple:

Nom de la relation	At	tributs, champs	3
PRODUIT		Produit	
	Num_prod	Nom_prod	Qte_stock
Occurrences,	24	Chaise	63
Tuples, Enregistrements,	141	Table	27
lignes	67	Lit	12

Schéma d'une relation

- Le schéma d'une relation
 - Le schéma de relation représente la structure invariante d'une relation (déclaration des noms d'attributs et de leurs types);
 - Il est constitué du nom de la relation suivi de la liste des attributs et de leurs domaines associés

PRODUIT (N°PRODUIT : entier, NOM : chaîne, QTE EN STOCK : entier>0)

Ou bien de manière simplifiée :

PRODUIT (N°PRODUIT, NOM, QTE EN STOCK)

Les clés

Les Clés

- Clé primaire d'une relation
 - Un attribut ou un ensemble d'attributs permettant d'identifier sans ambiguïté tout enregistrement d'une table;
 - Les valeurs des clés primaires sont uniques (elles n'acceptent pas les doublons).
- Clé étrangère
 - Un attribut ou un ensemble d'attributs à l'intérieur d'une relation qui fait référence à la clé primaire d'une autre table.

Les clés

- Les Clés
 - Les Clés dans le schéma d'une relation

Fournisseur (N°four, nom_four, adr_four,ville_four,cp_four)

produit (n°produit, nom, qte en stock, #N°four)

Clé primaire (souligné)

Clé étrangère (précédée d'un dièse #)

Le schéma d'une BDD

- Le schéma relationnel d'une base de données
 - C'est un ensemble de schémas de relation
 - Il est directement issue du diagramme de classes d'UML¹
 - Exemple: personne(<u>ine</u>, nom, prenom)
 organisme(<u>code org</u>, nom_org, adresse, ville, cp)
 affilier(<u>#ine</u>, #code_org)
 - Notation graphique (appelé Modèle Physique des Données)

Introduction

But

- La normalisation apporte :
 - des requêtes plus simples à écrire, des données plus facilement accessibles;
 - une meilleure intégrité des données ;
 - la diminution des anomalies lors de l'insertion ou de la suppression de nouvelles données.
- Principe
 - Une forme normale est une méthode de classification de relation qui repose sur les dépendances fonctionnelles (DF)

11

La normalisation

Dépendances fonctionnelles

- Dépendances fonctionnelles (DF)
 - Une dépendance fonctionnelle signifie que si l'on connaît la valeur d'un attribut on peut toujours déterminer la valeur d'un autre attribut.
 - La notation utilisée dans la théorie relationnelle
 - A → B s'énonce "A détermine B" (connaissant A on connaît B) ou B est fonctionnellement dépendant de A
 - **Exemple:**

Si l'on a la relation déterminée par le schéma relationnel suivant :

département(codepostal,nom_dept)

il est évident que si deux enregistrements ont le même code postal ils doivent contenir le même nom de département , donc codepostal → nom_dept

(le code postal détermine le département, évident!)

12

La normalisation

Dépendances fonctionnelles

- Dépendances fonctionnelles (DF)
 - Les clés primaires
 - sont des dépendances fonctionnelles, elles déterminent les valeurs de l'ensemble des autres attributs d'une relation
 - Exemple :

personne(<u>ine</u>, nom, prenom)

La clé primaire ine détermine le nom et le prénom d'une personne Cette dépendance fonctionnelle se note :

ine → nom prenom

13

La normalisation

Dépendances fonctionnelles

- Dépendances fonctionnelles (DF)
 - En général :
 - si X et Y sont des ensembles d'attributs, une DF de la forme X→Y impose la contrainte suivante :
 - si deux enregistrements ont les mêmes valeurs pour les attributs dans X alors ils ont les mêmes valeurs pour les attributs dans Y
 - Exemple:
 - Soit le relation suivante avec la DF ab → cd :

	a	b	С	d	е	f
ligne 1	$\left \cdot \right $	<u> </u>	m	$\left(\begin{array}{c} 4 \end{array} \right)$	5	6
ligne 2	$\left\{ -\right\}$	<u> </u>	$\backslash \gamma /$	$\left\langle \frac{1}{4} \right\rangle$	8	0
ligne 3		2	8	6	5	4

La DF *ab* → *cd* impose que le couple de valeurs de a et b détermine le couple de valeur de c et d, la ligne 3 de la relation précédente viole cette a contrainte

La normalisation

Les formes normales

■ Les formes normales(NF¹)

- La normalisation consiste à appliquer des critères faciles à tester pour détecter des anomalies
 - Ces critères sont regroupés sous la dénomination de "Formes normales"¹.
- Les formes normales sous entendent que chaque relation (ou table) possède une clé primaire.
- Chaque forme normale porte un numéro d'ordre (ou un acronyme), exemple 1NF

■ Rôle de la normalisation

- Evite les redondances de données,
- Evite les incohérences au sein des données
- Améliore les performances des traitements sur les tables (ajout, modification et suppression)

La première forme normale (1NF)

- Les formes normales(NF)
 - La première forme normale : 1NF
 - DéfinitionUne table (relation) est en 1NF si :
 - Elle possède une clé primaire et toutes les colonnes sont en dépendance fonctionnelle avec la clé
 - Il n'existe pas de valeur multiple dans une colonne (contient une valeur atomique);
 - Il ne peut exister de champs répétitifs.

La première forme normale (1NF)

- Les formes normales(NF)
 - La première forme normale : 1NF
 - Exemple 1 (problème):
 - Cette table est-elle en 1NF ?

Nom	Adresse	Ville
Jean Durand	21 rue des quarks	Paris, 75
Liliane Faure	45 avenue Pasteur	Créteil, 94
Olivier Sautet	123 bis rue Lavoisier	Versailles, 78

Non car les attributs ne sont pas tous atomiques.

- l'attribut "*Nom*" contient à la fois nom et prénom, il est possible de découper cet attribut sans faire perdre de sens à l'information ;
- l'attribut "ville" intègre le numéro de département, ce qui n'est pas très pratique si on désire sortir, par exemple, la liste de toutes les personnes du Val de Marne.

17

La normalisation

La première forme normale (1NF)

- Les formes normales(NF)
 - La première forme normale : 1NF
 - Exemple 1 (solution) :
 - Modification de la structure de la table pour quelle soit en 1NF

Nom	Adresse	Ville
Jean Durand	21 rue des quarks	Paris, 75
Liliane Faure	45 avenue Pasteur	Créteil, 94
Olivier Sautet	123 bis rue Lavoisier	Versailles, 78

Nom	Prénom	Adresse	Ville	Département
Durand	Jean	21 rue des quarks	Paris	75
Faure	Liliane	45 avenue Pasteur	Créteil	94
Sautet	Olivier	123 bis rue Lavoisier	Versailles	78

Cette table est maintenant en première forme normale

La normalisation

La première forme normale (1NF)

- Les formes normales(NF)
 - La première forme normale : 1NF
 - Exemple 2 (problème) :
 - Voyons un autre exemple (emprunt de 3 livres maxi)

Numéro_Emprunteur	Livre_1	Livre_2	Livre_3
150001	James Bond et Dr No	Mobby Dick	
150002	Alice au pays	Colargol	Tintin et le Lotus bleu
150009	La Relativité		

Cette table (relation) n'est pas en première forme normale (NF)

- Il existe des champs répétitifs (livre_1, livre_2, livre_3) ils sont porteurs de la même information;
 - problème de recherche de livre : il faut balayer tous les champs "livre_i" et toutes les lignes de la relation ;
 - Problème lors d'un changement du nombre de livres que l'on peut emprunter : il faut modifier la structure de la relation (ajouter un colonne)

La première forme normale (1NF)

- Les formes normales(NF)
 - La première forme normale : 1NF
 - Exemple 2 (solution) :
 - Il faut décomposer la relation en deux relations (le numéro_emprunteur est clé primaire)

Chaque table est en 1NF

La première forme normale (1NF)

- Les formes normales(NF)
 - La première forme normale : 1NF
 - Exemple 2 (solution) :
 - Cette décomposition se traduit dans un diagramme de classe (Ce modèle suppose qu'il n'y a qu'un seul exemplaire par livre)

La deuxième forme normale (2NF)

- Les formes normales(NF)
 - La deuxième forme normale : 2NF
 - Définition :
 - Une relation en deuxième forme normale si :
 - Elle est en première forme normale(1NF);
 - Une relation respecte la seconde forme normale lorsque toutes ses propriétés non-clé sont totalement dépendantes fonctionnellement de la totalité de la clé primaire. (Tout attribut n'appartenant pas à une clé ne dépend pas que d'une partie de cette clé)
 - Si X et Y sont des attributs et que X est une clé primaire, alors pour tout Z qui est un sous-ensemble de X, il ne peut y avoir Z → Y.

22

La normalisation

La deuxième forme normale (2NF)

- Les formes normales(NF)
 - La deuxième forme normale : 2NF
 - Exemple (problème) :
 - Considérons la relation suivante
 - la clé primaire est la composition des attributs (NumSalarié, NumProjet)

NumSalarié	Nom	NumProjet	Heures
20036	Durand	1	18,5
20036	Durand	2	6,7
36900	Leroux	2	8,5
45002	Frank	3	23,5
45002	Frank	1	4,8

- Examinons les champs non-clé :
 - L'attribut "Heures" dépend de la totalité de la clé

NumSalarié, NumProjet → Heures

L'attribut "Nom" ne dépend pas de la totalité de la clé primaire, il ne dépend que de "NumSalarié" ; la valeur Durand doit être déterminée par les valeurs de la clé dans sa totalité

NumSalarié → Nom

La normalisation

La deuxième forme normale (2NF)

- Les formes normales(NF)
 - La deuxième forme normale : 2NF
 - Exemple (solution):
 - Il faut décomposer la relation en deux relations

Chaque table est en 2NF

23

La troisième forme normale (3NF)

- Les formes normales(NF)
 - La troisième forme normale : 3NF
 - Définition :

Une relation est en troisième forme normale si :

- Elle est en deuxième forme normale(2NF);
- tout attribut n'appartenant pas à une clé ne dépend pas d'un attribut non clé;
 - si aucun champ non-clé n'est en dépendance transitive avec la clé primaire.
 Ce qu'on peut noter aussi : soit trois colonnes (A, B, C), A étant la clé primaire, si (A → B) et que (B →C) on peut en déduire que (A → C), dans ce cas il existe une relation transitive entre A et C, la table n'est pas en 3NF.
 - En d'autre terme, aucun attribut ne doit pouvoir être identifié par autre chose que la clé primaire

La troisième forme normale (3NF)

- Les formes normales(NF)
 - La troisième forme normale : 3NF
 - Exemple (problème) :
 - Considérons la relation suivante
 - la clé primaire est la l'attribut "NumSalarié"

Nom	NumSalarié	Date Naiss.	Service	NomService	NumChef
Durand	5001	15/01/1948	5	Vente	4580
Martin	5002	12/04/1957	6	Informatique	4120

- Examinons les champs non-clé :
 - Les attributs "Nom" et "Date Naiss" dépendent bien de la clé primaire (NumSalarié)
 - Les attributs *NomService* et *NumChef* dépendent uniquement de l'attribut *Service* (qui n'est pas clé primaire)
- Cette relation n'est pas en 3NF

26

La normalisation

La troisième forme normale (3NF)

- Les formes normales(NF)
 - La troisième forme normale : 3NF
 - Exemple (solution):
 - Il faut décomposer la relation en deux relations

Nom	NumSa	alarié	Date	Naiss.	Service	Nom	Service	NumChef
Durand	5001		15/01/	/1948	5	Vent	e	4580
Martin	5002		12/04/	/1957	6	Infor	matique	4120
NumSalariá	Nom	Date nai	ssance	Sarvica		Service	Nom	NumSalarió
NumSalarié 5001	Nom Durand	Date nai : 01/15/194		Service 5		Service 5	Nom Vente	NumSalarié_ 4580

Chaque table est en 3NF

Les autres formes normales

- Forme normale de Boyce-Codd(BCNF)
- Quatrième forme normale (4NF)
- **■** forme normale Protection-Join (JPNF)
- Forme normale Domain-Key (DKNF)

Nous n'entrerons pas dans les détails de ces formes normales, je vous renvoie à la littérature spécialisée.

