DS UNIT 6 NOTES

4. What might be a drawback of evaluation measures based on squared error? How might we avoid this?

ANS:

- One of the drawbacks of the above evaluation measures is influence of outliers.
- This is because the above measures are based on the squared error, which is much larger for outliers than for the bulk of the data.
- Thus, the analyst may prefer to use the Mean Absolute Error (MAE).
- The MAE is defined as follows:

Mean Absolute Error (MAE) = $(summation | Yi - Yi^{})/n$

- To calculate MAE analyst may perform following steps:
 - 1. Calculate the estimated target values, Yi^.
 - 2. Find the absolute value between each estimated value, and its associated actual target value Yi, giving you |Yi Yi^|.
 - 3. Find the mean of absolute values from step 2. This is MAE.
- 4. Explain model evaluation techniques for the estimation and prediction tasks.

ANS:

- For estimation and prediction models, we are provided with both the estimated value y and the actual value y.
- Therefore, a natural measure to assess model adequacy is to examine the estimation error, or residual, (y y).
- Usual measure used to evaluate estimation or prediction models is the Mean Square Error (MSE):

$$\text{MSE} = \frac{\sum_{i} (y_i - \hat{y}_i)^2}{n - p - 1}$$

where p represents the number of model variables

• Models that minimize MSE are preferred.

- Square root of MSE can be regarded as an estimate of typical error.
- This is known as standard error of estimate and denoted by s = sqrt of MSE.
- Trade-off between model complexity and prediction error.
- An evaluation measure that was related to MSE is Sum of Squared Errors (SSE)

$$SSE = \sum_{\text{Records Output nodes}} (\text{actual output})^2$$

• Another measure of the goodness of a regression model that is the coefficient of determination

$$R^2 = \frac{\text{SSR}}{\text{SST}}$$

where SST(Sum of Squares Total) is given by

$$SST = \sum_{i=1}^{n} (y - \overline{y})^2$$

SSR (Sum of Squares Regression)
$$SSR = \sum_{i=1}^{n} (\hat{y} - \overline{y})^{2}$$

6. Explain model evaluation measures for the classification task.

ANS:

In context of C5.0 model for classifying income, we examine following evaluative concepts:

- Model accuracy
- Overall error rate
- Sensitivity and specificity
- False-positive rate and false-negative rate
- Proportions of true positives and true negatives
- Proportions of false positives and false negatives
- Misclassification costs and overall model cost
- Cost-benefit table
- Lift charts

- Gains charts
- Applied a C5.0 model for classifying whether a person's income was low(≤\$50,000) or high (>\$50,000)
- Predictor variables which included capital gain, capital loss, marital status, and so on.
- Let us evaluate the performance of that decision tree classification model using the notions of error rate, false positives, and false negatives.
- Let TN, FN, FP, and TP represent the numbers of true negatives, false negatives, false positives, and true positives, respectively.
- > Also, let
 - TAN = Total actually negative = TN + FP
 - TAP = Total actually positive = FN + TP
 - TPN = Total predicted negative = TN + FN
 - TPP = Total predicted positive = FP + TP
- Further, let N = TN + FN + FP + TP represent the grand total of the counts in the four cells.
- 7. Explain classification evaluation measures accuracy, overall error rate, sensitivity and specificity.

ANS:

accuracy is given by,

Accuracy =
$$\frac{TN + TP}{TN + FN + FP + TP} = \frac{TN + TP}{N}$$

overall error rate is given by,

Overall error rate =
$$1 - Accuracy = \frac{FN + FP}{TN + FN + FP + TP} = \frac{FN + FP}{N}$$

- Accuracy represents an overall measure of proportion of correct classifications
- overall error rate measures proportion of incorrect classifications

Sensitivity =
$$\frac{\text{Number of true positives}}{\text{Total actually positive}} = \frac{\text{TP}}{\text{TAP}} = \frac{\text{TP}}{\text{TP + FN}}$$

Specificity = $\frac{\text{Number of true negatives}}{\text{Total actually negative}} = \frac{\text{TN}}{\text{TAN}} = \frac{\text{TN}}{\text{FP + TN}}$

- Sensitivity measures the ability of the model to classify a record positively
- While specificity measures the ability to classify a record negatively.
- 8. What is the difference between the total predicted negative and the total actually negative?

ANS:

General form of the contingency	table of correct an	d incorrect classification
Predicted	Category	
_		

		Predicted Category			
		0	1	Total	
Actual category	0	Truenegatives: Predicted 0 Actually 0	Falsepositives: Predicted 1 Actually 0	Totalactuallynegative	
	1	Falsenegatives: Predicted 0 Actually 1	Truepositives: Predicted1 Actually1	Totalactuallypositive	
	Total	Total Predictednegative	Total Predictedpositive	Grandtotal	

Let TN, FN, FP, and TP represent the numbers of true negatives, false negatives, false positives, and true positives, respectively.

TPN = Total predicted negative = TN + FN

TPP = Total predicted positive = FP + TP

9. What is the relationship between accuracy and overall error rate?

General form of the contingency table of correct and incorrect classifications

		Predicted Category		
		0	1	Total
Actual category	0	Truenegatives: Predicted 0 Actually 0	Falsepositives: Predicted 1 Actually 0	Totalactuallynegative
	1	Falsenegatives: Predicted 0 Actually 1	Truepositives: Predicted1 Actually1	Totalactuallypositive
	Total	Total Predictednegative	Total Predictedpositive	Grandtotal

Let TN, FN, FP, and TP represent the numbers of true negatives, false negatives, false positives, and true positives, respectively.

accuracy is given by,

Accuracy =
$$\frac{TN + TP}{TN + FN + FP + TP} = \frac{TN + TP}{N}$$

> overall error rate is given by,

Overall error rate =
$$1 - Accuracy = \frac{FN + FP}{TN + FN + FP + TP} = \frac{FN + FP}{N}$$

- Accuracy represents an overall measure of proportion of correct classifications
- overall error rate measures proportion of incorrect classifications
- 10. Explain classification evaluation measures false-positive rate and falsenegative rate, proportions of true positives, true negatives, false positives, and false negatives.

False positive rate =
$$1 - \text{specificity} = \frac{\text{FP}}{\text{TAN}} = \frac{\text{FP}}{\text{FP} + \text{TN}}$$

False negative rate = $1 - \text{sensitivity} = \frac{\text{FN}}{\text{TAP}} = \frac{\text{FN}}{\text{TP} + \text{FN}}$

Proportion of true positives = PTP =
$$\frac{TP}{TPP}$$
 = $\frac{TP}{FP + TP}$

Proportion of true negatives = PTN = $\frac{TN}{TPN}$ = $\frac{TN}{FN + TN}$

Proportion of false positives = 1 - PTP = $\frac{FP}{TPP}$ = $\frac{FP}{FP + TP}$

Proportion of false negatives = 1 - PTN = $\frac{FN}{TPN}$ = $\frac{FN}{FN + TN}$

- Using these classification model evaluation measures, analyst may compare accuracy of various models
- For example, a C5.0 decision tree model may be compared against a classification and regression tree (CART) decision tree model or a neural network model.
- Model choice decisions can then be rendered based on the relative model performance based on these evaluation measures.
- A false positive would be considered a type I error in this setting, incorrectly rejecting null hypothesis
- A false negative would be considered a type II error, incorrectly accepting null hypothesis.
- 12. With suitable example explain decision cost/benefit analysis.

- Company managers may require that model comparisons be made in terms of cost/benefit analysis.
- For example, in comparing the original C5.0 model before cost adjustment (model 1) against C5.0 model using cost adjustment (model 2)
- Managers may prefer to have respective error rates, false negatives and false positives, translated into dollars and cents.
- Analysts can provide model comparison in terms of anticipated profit or loss by associating a cost or benefit with each of the four possible combinations of correct and incorrect classifications.

Cost/benefit table for each combination of correct/incorrect decision

Outcome	Classification	Actual Value	Cost	Rationale
True negative True positive	≤50,000 >50,000	≤50,000 >50,000	\$0 -\$300	No money gained or lost Anticipated average interest revenue from loans
False negative	≤50,000	>50,000	\$0	No money gained or lost
False positive	>50,000	≤50,000	\$500	Cost of loan default averaged over all loans to ≤50,000 group

- Cost of model 1 (false positive cost not doubled):
 18, 197(\$0) + 3423(-\$300) + 2561(\$0) + 819(\$500) = -\$275, 100
- Cost of model 2 (false positive cost doubled):
 18, 711(\$0) + 2677(-\$300) + 3307(\$0) + 305(\$500) = -\$382, 900
- Negative costs represent profits.
- Thus, the estimated cost savings from deploying model 2
 -\$275, 100 (-\$382, 900) = \$107, 800 (increases company's profit)
- 13. Explain use of lift charts and gains charts to compare model performance.

- For classification models, lift is a concept, which seeks to compare response rates with and without using classification model
- Lift charts and gains charts are graphical evaluative methods for assessing and comparing the usefulness of classification models.
- Suppose financial firm is interested in identifying high-income persons for targeted marketing campaign.
- Build a model to predict which contacts have high income, and restrict canvassing to these contacts.

- A good classification model should identify in its positive classifications, a group that has a higher proportion of positive "hits" than database as a whole.
- The concept of lift quantifies this.
- Define lift as proportion of true positives, divided by the proportion of positive hits in the data set overall.
- When calculating lift, software will first sort records by probability of being classified positive.
- The lift is then calculated for every sample size from n=1 to n=the size of the data set.

- Lift charts are often presented in their cumulative form, where they are denoted as cumulative lift charts, or gains charts.
- Number of cumulative actual events in each percentile of data set

 Lift charts and gains charts can also be used to compare model performance. 	