Cálculos para estos componentes

Qué tenemos?

Motor brushless A22-12:

- 1000KV -> Cada voltio girará 1000 rpm
- 22mm width of the stator
- 13mm height of the rotor

ESC (Electrónic Speed Controller):

- 30A

Propeller 10-45:

- Diameter: 10 inches → 25,4 cm

- Pitch 4.5 inches → 11.43

Battery 2 options:

- Batería Lipo 3500mAh 2S 25C, 7.4V
 - 3500mAh
 - 7,4V
 - 2s
 - $25C \rightarrow 3,5A*25(1/h) = 87,5A \text{ (Max Amp output)}$
 - Energia = 3.5 Ah * 7.4V = 25.9 Wh
- Lipo Batería 5200mAh 2S 50C 7.4V
 - 5200mAh
 - 7,4V
 - 2s
 - $50C \rightarrow 5,2A*50(1/h) = 260A \text{ (Max Amp output)}$
 - Energia = 5.2 Ah * 7.4V = 38.48 Wh

Weight: 1kg

¿Volará?

Peso del dron

Componente	Peso
RaspBerry pi 4	10g
Cámara con autofocus 12MP IMX477	5g
Motor brushless * 4	120*4 = 480g
Batería Lipo 3500mAh 2S 25C, 7.4V	215g
Omnibus F4V3S F4 V3 V3S PLUS FC	18g
Carcasa	250g
TOTAL:	978 - aprox 1 kg

Thrust-to-Weight Ratio (T:W)

Thrust:

1. Determine motor rpm:

• KV: Motor KV Rating

• V: Battery voltage

Formula: $KV \cdot V = RPM \rightarrow KV = 1000kv \cdot 7,4V = 7400RPM$

2. Calculate propeller thrust

$$T \approx C_T \cdot \rho \cdot n^2 \cdot D^4$$

Where:

- T: Thrust in Newtons
- C_T : Thrust coefficient (typically ranges from 0.1 to 0.2 for common hobby props)
- ρ: Air density (approx 1.225 kg/m3 at sea level)
- n: Rotational speed in revolutions per second (RPS)
- D: Propeller diameter in meters

RPM to RPSecond = 7400/60 = 123,33

Ct = 0.15

p = 1.225

n = 123

D = 0.25

Convert thrust to kilograms (1Kg = 9.81N)

14,47 / 9,81 = 1,179kg

Total thrust for 4 motors = 1,352kg * 4 = 4.6996kg

Thrust to weight ratio = 4.6kg / 1kg = 4.6kg

Induced Velocity at Hover $(v_{i,h})$

Weight (*m*): 1kg (1000g from our example above)

Propeller Radius (r_{prop}): 0.125 (0.25 diameter from our 10" example above/2)

Air Density (Q): 1.225 kg/m³ (approx at sea level)

Gravitational Force (*g*): 9.81 m/s² (constant)

Number of Rotors (N_r): 4 (4 total motors)

Step-by-step calculation:

Formula: $V_{i,h} = \sqrt{(T_h/2QA_{prop})} = \sqrt{(mg/2Q\pi r^2_{prop}N_r)}$

1. Calculate the Thrust Required to Hover (T_h) :

$$T_h = mg = 1 \cdot 9.81 \approx 9.81 N$$

2. Calculate the Propeller Area (A_{prop}) :

$$A_{prop} = \pi r_{prop}^2 = \pi (0.125)^2 \approx \pi \cdot 0.015625 = 0.049087 \, m^2$$

3. Insert the Values into the Formula:

$$v_{i,h} = \sqrt{9.81/2 \cdot 1.225 \cdot \pi \cdot 0.015625 \cdot 4}$$

Simplify for Induced Velocity at Hover:

$$v_{i,h} = \sqrt{6.867 / 0.48105} \approx \sqrt{16.81} \approx 4.51 \text{ m/s}$$

3. Hover Power (P_h)

What variables do you need:

Weight (m): 1 (1000g from our example above)

Gravitational Force (g): 9.81 m/s² (constant)

Air Density (ϱ): 1.225 kg/m³ (approx at sea level)

Propeller Radius (r_{prop}) : 0.125 (0.13 diameter from our 5" example above/2)

Number of Rotors (N_r) : 4 (4 total motors)

Propeller Efficiency (η_P) : 0.6 (typical assumption for small multicopter propellers)

Thrust Required to Hover (*T_h*): 9,81N (calculated from previous formula)

Induced Velocity at Hover $(v_{i,h})$: 4.51 m/s (calculated from previous formula)

Step-by-step calculation:

Formula: $P_h = T_h V_{i,h} N_r / \eta_P$

1. Insert Values into the Formula:

$$P_h = (9.81 \cdot 4.51 \cdot 4) / 0.6$$

2. Simplify for Hover Power:

$$P_h = 176.97 / 0.6 \approx 294.95 W$$

4. Power at Optimal Endurance (P_e) and Optimal Range (P_r)

Hover power: 294.95W (calculated above)

Power consumption for optimal endurance: 91.4% (constant derived from studies and experiments on multicopter performance)

Power consumption for optimal range: 109.2% (constant derived from studies and experiments on multicopter performance)

Step-by-step calculation:

1. Calculate Power at Optimal Endurance (P_e):

$$P_e = 0.914 \cdot 294.95 \approx 269.58 W$$

2. Calculate Power at Optimal Range (P_r):

$$P_r = 1.092 \cdot 294.95 \approx 322.08 W$$

5. Electric Power Demand ($P_{mot,e}$), ($P_{mot,r}$)

What variables do you need:

Power at Optimal Endurance (P_e): **269.58** W (calculated above)

Power at Optimal Range (P_r): **322.08** W (calculated above)

Motor Efficiency (ηM): 0.75 (assumed, typical value for electric motors)

Step-by-step calculation:

1. Calculate Electric Power Demand at Optimal Endurance ($P_{mot,e}$):

Formula: $(P_{mot,e}) = P_e / \eta M$

Insert values into formula:

$$(P_{mot,e}) = 269.58 / 0.75 \approx 359.44 W$$

2. Calculate Electric Power Demand at Optimal Range ($P_{mot,r}$):

Formula: $(P_{mot,r}) = P_r / \eta M$

Insert values into formula:

 $(P_{mot,r}) = 322.08 / 0.75 \approx 429.44 W$

6. Normalized Power Consumption ($P_{cell,e}$), ($P_{cell,r}$)

What variables do you need:

Power Demand at Optimal Endurance ($P_{mot,e}$): 359.44W (calculated above)

Power Demand at Optimal Range (P_{mot,r}): 429.44 W (calculated above)

Battery Cell Count (N_{cell}): 2 (based on the battery we picked)

Battery Capacity (C_{batt}): 3500 mAh (based on the battery we picked)

Step-by-step calculation:

1. Convert Battery Capacity from mAh to Ah:

 $C_{batt} = 3500 \text{ mAh} / 1000 = 3.5 \text{ Ah}$

2. Calculate Normalized Power Consumption at Optimal Endurance $(P_{cell.e})$:

Formula: $P_{cell,e} = P_{mot,e} / (N_{cell} \cdot C_{batt})$

Insert values into formula:

 $P_{cell.e} = 359.44 / (2 \cdot 3.5) = 359.4 / 7 \approx 51.34 \text{ W} / \text{Ah}$

3 . Calculate Normalized Power Consumption at Optimal Range ($P_{\text{cell,r}}$):

Formula: $P_{cell,r} = P_{mot,r} / (N_{cell} \cdot C_{batt})$

Insert values into formula:

7. Effective Battery Capacity (κ_e), (κ_r)

What variables do you need:

Normalized Power Consumption at Optimal Endurance ($P_{cell,e}$): 51.34 W / Ah (calculated above)

Calculate Normalized Power Consumption at Optimal Range ($P_{cell,r}$): 61.34 W / Ah (calculated above)

Polynomial coefficients for effective capacity (assumed, based on empirical data)

 d_0 : Constant term = 1.0

 d_1 : Linear term coefficient = -0.01

 d_2 : Quadratic term coefficient = 0.0005

 d_3 : Cubic term coefficient = -0.00001

Step-by-step calculation:

1. Calculate Battery Capacity at Optimal Endurance (κ_e) :

Formula: $\kappa_e = d_0 + d_1 P_{cell.e} + d_2 P_{cell.e}^2 + d_3^3 ell.e$

Insert values into formula:

$$\kappa_{\rm e} = 1.0 + (-0.01 \cdot 51.34) + (0.0005 \cdot 51.34^2) + (-0.00001 \cdot 51.34^3)$$

Simplify:

$$\kappa_e = 1 - 0.5134 + 1.3178 - 1.3532 \approx 0.4512$$

2. Calculate Battery Capacity at Optimal Range (κ_r) :

Formula: $\kappa_r = d_0 + d_1 P_{cell,r} + d_2 P_{cell,r}^2 + d_{cell,r}^3$

Insert values into formula:

$$\kappa_r = 1.0 + (-0.01 \cdot 61.34) + (0.0005 \cdot 61.34^2) + (-0.00001 \cdot 61.34^3)$$

Simplify:

$$\kappa_r = 1 - 0.6134 + 1.8813. - 2.3079 \approx -0.04$$

8. Maximum Endurance and Flight Time (t_e) , (t_r)

What variables do you need:

Effective Battery Capacity at Optimal Endurance (κ_e): 0.4512 (calculated above)

Effective Battery Capacity at Optimal Range (κ_r): -004(calculated above)

Electric Power Demand at Optimal Endurance ($P_{mot,e}$): 359.44 W (calculated above)

Electric Power Demand at Optimal Range ($P_{mot,r}$): 429.44 W (calculated above)

Battery Cells (N_{cell}): 2 (based on the battery we picked)

Battery Capacity (C_{batt}): 3500 mAh (based on the battery we picked)

Nominal Cell Voltage: 3.7 V (constant)

Step-by-step calculation:

1. Convert Battery Capacity from mAh to Ah:

 $C_{batt} = 3500 \text{ mAh} / 1000 = 3.5 \text{ Ah}$

2. Calculate Total Effective Battery Capacity in Watt-hours (Wh):

For Endurance:

Formula: $C_{eff,e} = \kappa_e \cdot C_{batt} \cdot N_{cell} \cdot 3.7 \text{ V}$ $C_{eff,e} = 0.4512 \cdot 3.5 \cdot 2 \cdot 3.7 \approx 11.68 \text{ Wh}$

For Range:

Formula:
$$C_{eff,r} = \kappa_r \cdot C_{batt} \cdot N_{cell} \cdot 3.7 \text{ V}$$

 $C_{eff,r} = 0.01 \cdot 1.5 \cdot 4 \cdot 3.7 \approx 14.13 \text{ Wh}$

3. Calculate Maximum Endurance (t_e) :

Formula: t_e = ($C_{eff,e}$ · 3600 seconds in an hour) / $P_{mot,e}$ t_e = 11.68 · 3600 / 359.44≈116.98 seconds ≈ **1.94 minutes**

4. Calculate Flight Time at Maximum Range (t_r) :

Formula: t_r = ($C_{eff,r}$ · 3600 seconds in an hour) / $P_{mot,r}$ t_r = 14.13 · 3600 / 273.40 ≈ 186 seconds ≈ **3.1 minutes**