NAME: Solutions

A#: _____

Problem 1. Section 2.3g (10 points) Find a general solution for the following directly integrable differential equation. (Use an indefinite integral in this case.

$$x = (x^2 - 9) \, \frac{dy}{dx}$$

Solution:

Now integrate

$$y(x) = \int \frac{x}{x'-9} dx$$

50,

Problem 2. Section 2.4a (10 points) Solve the following initial problem (using the indefinite integral). Also state the largest interval over which the solution is valid (i.e, the maximum possible integral of interest.

$$\frac{dy}{dx} = 4 \ x + 10e^{2x}$$

with y(0) = 4.

Solution:

In this case we can integrate

$$\int \frac{dy}{dx} dx = \int (4x + 10e^{2x}) dx$$

=
$$y(x) = 4 \int x dx + 10 \int e^{x} dx$$
 combines all 3 integration
= $4(\frac{1}{2}x^2) + 10(\frac{1}{2}e^{2x}) + C$ constants
= $2x^2 + 5e^{2x} + C$