機器學習期末報告

組員: S07240013 簡睿德

S07240044 高祺烜

S07240047 陳昱廷

動機

由於前陣子疫情嚴重,在車站、校園、百貨公司等人流眾多處, 大多需要人力監測有無戴口罩。透過相機偵測民眾是否戴口罩, 可減少人力需求及人與人之間的接觸。

報告流程

製作流程

- 1. 利用yolov3模型來訓練678張圖片
- 2. 辨識圖片中的人物是否有戴口罩
- 3. 框住偵測物件區域並顯示辨識結果 None, bad, good
- 4. 使用攝像頭即時偵測物件

(678張圖片訓練庫)

影像、數據檔:https://drive.google.com/file/d/1rf-ggLJ1igZaW7yMbApr2ys0enF0ucJ3/view

YOU ONLY LOOK ONCE

YOLOv3是關於物件偵測 (object detection)的 類神經網路演算法。已 發布的模型可識別圖像 和視頻中不同的物件, 但最重要的是它速度超快。

D A R K N E T

- DarkNet-53 是一個深度為 53 層的捲積神經網絡。您可以從 ImageNet 數據庫加載對超過一百萬張圖像進行訓練的網絡的 預訓練版本。
- •v2 的 darknet-19 變成了 v3 的 darknet-53是為了需要上取樣(up-sampling),讓圖片改變尺寸,可以讓卷積層更多,雖然速度相對會比較慢,但是圖片分割得更細。

架構

多尺度檢測

- v3最突出的特點是它可以在三種不同的 尺度(13*13、26*26、52*52)上進行檢 測,最終對於小目標的檢測效果提昇明 顯。
- 利用捲積神經網路的滑動視窗演算法, 將圖片分成SxS個網格(grid cell)來 偵測物件所在,如果某個物件的中心點 落在此網格內,則這網格負責預測這個 物件。

https://even1018.pixnet.net/blog/post/355001102-yolo-v3-bounding-boxes%E5%9B%9E%E6%AD%B8%E5%8E%9F%E7%90%86%E5%AD%B8%E7%BF%92

Prediction Feature Maps at different Scales

13 x 13

26 x 26

52 x 52

nel/Ganlleman ()

YOLO是如何運作的

- 將單個神經網絡應用於完整圖像。該網絡將圖像劃分為多個區域並預測每個區域的邊界框和機率。這些邊界框由預測機率加權。
- 它與基於分類器的系統相比,此模型有以下幾個優點
 - 1. 它在測試時查看整個圖像,因此它的預測是根據圖像中的全局上下文提供的。
 - 2. 它還可以通過單個網絡評估進行預測,這與R-CNN等系統不同,R-CNN 需要數千張圖像才能獲得。這使它非常快

預測物件特徵

- 其每個網格內容存放的資訊是預測資訊(邊界框的坐標、類別標籤等)
- 每個尺度的 feature map 會預測出3
 個 Anchor prior, 而 Anchor prior的大小則採用K-means進行聚類分析(YOLOv3 延續了 YOLOv2 的作法)。

tx	ty	tw	th	P0	P1 \ p2 \ p3
預測中	預測中	預測框	預測框	信心度	類別對應
心點X	心點y	寬度	高度		到的機率

程式碼-擷取物件位置

```
class ids = []
confidences = []
boxes = []
for out in outs:
    for detection in out:
        tx, ty, tw, th, confidence = detection[0:5]
        scores = detection[5:]
        class id = np.argmax(scores)
        if confidence > 0.3:
            center x = int(tx * width)
            center_y = int(ty * height)
            w = int(tw * width)
            h = int(th * height)
            # 取得箱子方框座標
            x = int(center_x - w / 2)
            y = int(center_y - h / 2)
            boxes.append([x, y, w, h])
            confidences.append(float(confidence))
            class ids.append(class id)
print(len(boxes))
#non-maxima suppression
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.3, 0.4)
```

程式碼-偵測物件區域的框框

```
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
    if i in indexes:
        x, y, w, h = boxes[i]
        label = str(classes[class_ids[i]])
        color = colors[class_ids[i]]
        cv2.rectangle(img2, (x, y), (x + w, y + h), color, 2)
        cv2.putText(img2, label, (x, y - 5), font, 2, color, 3)
#print(img2.shape)
#%pylab inline
from matplotlib import pyplot as plt
plt.rcParams['figure.figsize'] = [15, 10]
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img_rgb)
```

程式碼-DARKNET訓練模型

```
layer
         filters
                   size
                                    input
                                                       output
             16 3 x 3 / 1
   0 conv
                             416 x 416 x 3
                                                  416 x 416 x 16 0.150 BFLOPs
                                             ->
   1 max
                 2 x 2 / 2
                            416 x 416 x
                                        16
                                                  208 x 208 x 16
                                             ->
                                                  208 x 208 x 32 0.399 BFLOPs
             32 3 x 3 / 1
                            208 x 208 x
   2 conv
                                        16
                                             ->
   3 max
                 2 x 2 / 2
                             208 x 208 x
                                                  104 x 104 x 32
                                             ->
                                                  104 x 104 x 64 0.399 BFLOPs
             64 3 x 3 / 1
                            104 x 104 x
   4 conv
                                             ->
   5 max
                 2 x 2 / 2
                            104 x 104 x
                                                   52 x 52 x 64
                                             ->
             128 3 x 3 / 1
                             52 x 52 x 64 ->
                                                   52 x 52 x 128 0.399 BFLOPs
   6 conv
                 2 x 2 / 2
   7 max
                            52 x 52 x 128
                                             ->
                                                 26 x 26 x 128
                                                   26 x 26 x 256 0.399 BFLOPs
             256 3 x 3 / 1
                             26 x 26 x 128
   8 conv
                 2 x 2 / 2
                            26 x 26 x 256
                                                  13 x 13 x 256
   9 max
                                             ->
                                                  13 x 13 x 512 0.399 BFLOPs
             512 3 x 3 / 1
                             13 x 13 x 256 ->
  10 conv
                 2 x 2 / 1
                             13 x 13 x 512 ->
                                                 13 x 13 x 512
   11 max
            1024 3 x 3 / 1
                             13 x 13 x 512 ->
                                                 13 x 13 x1024 1.595 BFLOPs
   12 conv
             256 1 x 1 / 1
                            13 x 13 x1024
                                                 13 x 13 x 256 0.089 BFLOPs
   13 conv
                                             ->
             512 3 x 3 / 1
   14 conv
                             13 x 13 x 256
                                                 13 x 13 x 512 0.399 BFLOPs
                                             ->
  15 conv
             24 1 x 1 / 1
                                                   13 x 13 x 24 0.004 BFLOPs
                             13 x 13 x 512
                                            ->
  16 yolo
  17 route 13
                                                  13 x 13 x 128 0.011 BFLOPs
   18 conv
             128 1 x 1 / 1
                             13 x 13 x 256
                                             ->
                                                   26 x 26 x 128
  19 upsample
                             13 x 13 x 128
                        2x
                                             ->
  20 route 19 8
  21 conv
             256 3 x 3 / 1
                             26 x 26 x 384
                                                   26 x 26 x 256 1.196 BFLOPs
                                             ->
             24 1 x 1 / 1
                             26 x 26 x 256
                                                   26 x 26 x 24 0.008 BFLOPs
   22 conv
                                            ->
   23 yolo
```

Loading weights from /content/cfg_mask/yolov3-tiny_250000.weights...Done! /content/yolo/703.jpg: Predicted in 0.003472 seconds.

good: 96% good: 94% good: 83% none: 93%

YOLOV3 V2比較

V3優於V2、V1的地方

YOLOv3 在 YOLOv2 的基礎上,改良了網路 backbone、利用多尺度特徵 圖 (feature map) 進行檢測、改用多個獨立的 Logistic regression 分類器取代softmax 來預測類別分類

	YOLOv3	YOLOv2
grid size	13x13, 26x26, 52x52	13x13
Anchor Box 個數	3x3	5
loss function	confidence score 跟 class的loss	都使用 MSE
	function使用 binary cross-entropy	(Mean Squared Error)

YOLOv1 vs YOLOv2 vs YOLOv3 輸出

YOLOv1	YOLOv2	YOLOv3
feature map (7x7) 的每一個 grid 中預測出 2個 bndBox 及分類機率值,每個 bndBox 預測出5個值	feature map (13x13) 的每 一個 grid 中預測出 5個 bndBox (對應5個 Anchor Box),每個 bndBox 預測出 5個值及分類機率值	3個 feature map的每一個 grid 中預測出 3個 bndBox (對應3個 Anchor prior), 每個 bndBox 預測出5個值 及分類機率值
總輸出: 7x7x(5x2+n) - 读 n為分類的數量	總輸出: 13x13x5x(5+n)	總輸出: 13x13x3x(5+n) + 26x26x3x(5+n) + 52x52x3x(5+n)

YOLOV2 VS YOLOV3

成果

即時偵測演示

参考資料

https://github.com/ywchiu/largitdata/blob/master/code/Course_127.ipynb

https://github.com/ywchiu/largitdata/blob/master/code/Course_128.ipynb

https://www.youtube.com/watch?v=vGhIhitQHBE&t=37s

https://www.youtube.com/watch?v=C00td6_jGmE&t=1106s

https://www.youtube.com/watch?v=T_zFMRFCFfk