ЗАДАНИЕ ПО ЛАБОРАТОРНОЙ РАБОТЕ

- 1. Выбрать задачу (используя репозитории машинного обучения).
- 2. Написать программу на основе общей схемы метрических алгоритмов. В каждой программе необходимо реализовать 5 алгоритмов, решающих задачу из п.1.
- 3. Схема сдачи лабораторной работы с демонстрацией соответствующих результатов имеет следующий вид

4. Выбор алгоритмов A_i (i=1,...,5) зависит от выбора задачи. Если задача поставлена на множестве действительных чисел \mathbb{R}^n , то соответствие алгоритмов следующее:

$$A_1 = A_{\rm I.1}$$
 , $A_2 = A_{\rm I.3}$, $A_3 = A_{\rm II.1}$, $A_4 = A_{\rm II.2}$, $A_5 = A_{\rm II.3}$.

В случае, когда задача поставлена в булевом пространстве \mathbb{B}_2^n , то соответствие алгоритмов следующее:

$$A_1 = A_{\rm I.2}$$
 , $A_2 = A_{\rm I.3}$, $A_3 = A_{\rm III.1}$, $A_4 = A_{\rm III.2}$, $A_5 = A_{\rm III.3}$.

5. График сдачи лабораторных работ согласовывается дополнительно.

ОБЩАЯ СХЕМА МЕТРИЧЕСКИХ АЛГОРИТМОВ РАСПОЗНАВАНИЯ

ЗАДАНЫ

- некоторое множество объектов X, разбитое на подмножества (классы) $X_1, ..., X_l$ ($l \in \mathbb{N}$). Причем, классы не пересекаются $X_i \cap X_j = \emptyset \ \forall i \neq j \ (i,j \in \{1,...,l\})$.
- выборка объектов $X^0 \subset X$, которая удовлетворяет условию $X^0 \cap X_i \neq \emptyset$ ($\forall i \in \{1, ..., l\}$). Кроме того, для каждого объекта $x \in X^0$ известна (определена) информация о принадлежности к классам $X_1, ..., X_l$. Эта информация задается в виде **информационного вектора** $P(x) = (P_1(x), ..., P_l(x))$, компоненты которого определяются следующим образом

$$P_i(x) = \begin{cases} 1, \text{ если } x \in X_i, \\ 0, \text{ иначе.} \end{cases}$$

Шаг 0 (предварительный)

Разбиение выборки X^0 на две части

Шаг может повторяться некоторое число раз. Каждый раз выборка X^0 разбивается на две части $X^0_{\text{обуч}}$ и $X^0_{\text{контр}}$ (называются соответственно **обучающей** и **контрольной** выборками). Выборки должны удовлетворять следующим условиям:

Обозначим: $\left|X_{i\,(\mathrm{o})}^{0}\right| = m_{i}, \left|X_{i\,(\mathrm{K})}^{0}\right| = t_{i}, \sum_{i=1}^{l} m_{i} = \left|X_{\mathrm{обуч}}^{0}\right| = m, \sum_{i=1}^{l} t_{i} = \left|X_{\mathrm{контр}}^{0}\right| = t.$

Предположим, что в результате шага 0 получено некоторое конечное число разбиений

$$\{X_{\text{обуч}}^{0}, X_{\text{контр}}^{0}\}^{1}, \{X_{\text{обуч}}^{0}, X_{\text{контр}}^{0}\}^{2}, \dots, \{X_{\text{обуч}}^{0}, X_{\text{контр}}^{0}\}^{k}$$

Ограничение:

Число разбиений, полученных на шаге Одолжно быть не менее трех $(k \ge 3)$. Все выборки $\{X_{\text{обуч}}^0, X_{\text{контр}}^0\}^j$ должны удовлетворять следующему дополнительному условию: $t_i / m_i \ge 0.2$. После построения всех выборок $\{X_{\text{обуч}}^0, X_{\text{контр}}^0\}^j$, они фиксируются для последующего применения на каждой из них всего набора алгоритмов A_i

Далее алгоритм A_i , i = 1,2,3,4,5 реализуется как последовательность шагов 1-3.

Шаг 1. Определение функции попарного сравнения объектов из X:

$$s: X \times X \to \mathbb{R} \tag{1}$$

Каждый объект $x \in X$ можно сравнить с объектами из выборки $X_{\text{обуч}}^0$. В результате объекту x можно сопоставить вектор $(s(x,x_1),...,s(x,x_m))$ m_1 первых компонент являются результатом сравнения x с объектами из $X_{1(0)}^0$, m_2 следующих являются результатом сравнения x с объектами из $X_{2(0)}^0$ и т.д.

Шаг 2. Определение функции сравнения объектов из $x \in X$ с объектами из обучающей выборки $X_{i(0)}^0$:

$$f_i: \mathbb{R}^m \to \mathbb{R}, i \in \{1, \dots, l\}$$
 (2)

С помощью функций (2) каждому вектору $(s(x, x_1), ..., s(x, x_m)) \in \mathbb{R}^m$ можно сопоставить вектор $(f_1(x), \dots, f_l(x)) \in \mathbb{R}^l$.

Шаг 3. Определение решающего правила P^A в виде:

$$P^A: \mathbb{R}^l \to \mathbb{B}_2^l, \, \mathbb{B}_2 = \{0,1\} \tag{3}$$

Вектор $P^{A}(x) = (P_{1}^{A}(x), ..., P_{l}^{A}(x))$ в отличие от вектора P(x) называют классификационным, тк его значения интерпретируются следующим образом. Считается, что объект $x \in X$ заносится (или не заносится) алгоритмом A в класс X_i , если $P_i^A(x) = 1 \ (=0)$.

Шаг 4. Тестирование определенного на шагах 1-3 алгоритма распознавания A_i на фиксированной выборке $\{X_{\text{обуч}}^0, X_{\text{контр}}^0\}^j$, j = 1, 2, ..., k.

Инициализация: полагаем $t^0(X_{\text{контр}}^0)=0$.

Шаг 4.1. Последовательно перебираем все объекты $x \in X^0_{\text{контр}}$ и для каждого из них вычисляем:

- а) вектор $(s(x, x_1), ..., s(x, x_m))$ для всех $x \in X^0_{\text{обуч}}$;
- b) вектор $(f_1(x), ..., f_l(x))$ для всех $i \in \{1, ..., l\}$;
- c) вектор $P^A(x) = (P_1^A(x), ..., P_l^A(x))$ d) если $P^A(x) = P(x)$, то $t^0(X_{\text{контр}}^0) = t^0(X_{\text{контр}}^0) + 1$ и переходим к пункту е). В противном случае $t^0(X_{\text{контр}}^0)$ не меняется и переходим к пункту e).
- е) если не все объекты $x \in X^0_{\text{контр}}$ исчерпаны, то выполняем шаг 4.1 для следующего объекта контрольной выборки. В противном случае переходим к шагу 4.2.

Шаг 4.2. Вычисляем

$$\Phi_A(X_{\text{контр}}^0) = \frac{t^0(X_{\text{контр}}^0)}{t} \tag{4}$$

величину **функционала качества** $\Phi_A(X^0_{\text{контр}}) \in [0,1]$ и заносим ее в таблицу:

Разбиение Алгоритм	$\{X_{\mathrm{обуч}}^{0}, X_{\mathrm{контр}}^{0}\}^{1}$	$\{X_{\mathrm{обуч}}^{0}, X_{\mathrm{контр}}^{0}\}^{2}$	 $\{X_{\mathrm{обуч}}^{0}, X_{\mathrm{контр}}^{0}\}^{k}$
A_1			
A_2			
A_3			
A_4			_
A_5			

Если все выборки $\{X_{\text{обуч}}^0, X_{\text{контр}}^0\}^j$ исчерпаны, то переходим к выбору следующего алгоритма A_i . В противном случае выбираем новую выборку $\{X^0_{\text{обуч}}, X^0_{\text{контр}}\}^j$ и возвращаемся на шаг 4.

ВАРИАНТЫ ВЫБОРА ФУНКЦИЙ ДЛЯ ШАГОВ 1-3 СХЕМЫ МЕТРИЧЕСКИХ АЛГОРИТМОВ

ВАРИАНТ І. Метрическая близость.

Алгоритм І.1 - $A_{\mathbf{I},\mathbf{1}}$. (для пространства $X \subseteq \mathbb{R}^n$)

Выбор функции (1).

метрика Евклида

$$s(x_1, x_2) = \left(\sum_{i=1}^{n} (x_{1i} - x_{2i})^2\right)^{1/2}$$

метрика Минковского ($p \in \mathbb{N}$)

$$s(x_1, x_2) = \left(\sum_{i=1}^{n} (x_{1i} - x_{2i})^p\right)^{1/p}$$

Выбор функции (2).

боор функции (2). среднее (м.б. взвешенное) расстояние до класса
$$X_i$$

$$f_i(x) = (m_i)^{-1} \sum_{x_j \in X_{i(0)}^0} s(x, x_j)$$

к ближайших соседей пусть для класса X_i получен набор $s(X_{i(0)}^0) = \{s(x, x_1), ..., s(x, x_{m_i})\};$ переупорядочим набор $s(X_{i(0)}^0)$ по возрастанию элементов и поставим ему в соответствие новый набор $\bar{X}_{i(0)}^0$, в котором содержится k первых элементов $x_j \in X_{i(0)}^0$ из полученного в результате переупорядочения набора; посчитаем среднее расстояние до класса по новому набору $\bar{X}_{i\,(0)}^0$

$$f_i(x) = (k)^{-1} \sum_{x_j \in \bar{X}_{i(0)}^0} s(x, x_j)$$

по минимальному расстоянию до объектов класса X_i

$$f_i(x) = \min_{x_j \in X_{i(0)}^0} s(x, x_j)$$

Выбор решающего правила (3).

- по минимуму оценки до класса X_i

$$P_i^A(x) = egin{cases} 1, ext{ если } f_i(x) = \min_{i \in \{1,\dots,l\}} \{f_1(x),\dots,f_l(x)\}; \ 0, ext{ в противном случае} \end{cases}$$

Алгоритм І.2 - $A_{1,2}$. (для пространства $X \subseteq \mathbb{B}^n$)

Выбор функции (1).

метрика Хэмминга ()

$$s(x_1, x_2) = \sum_{i=1}^{n} |x_{1i} - x_{2i}|$$

Выбор функции (2).

среднее (м.б. взвешенное) расстояние до класса X_i

$$f_i(x) = (m_i)^{-1} \sum_{\substack{x_j \in X_{i(0)}^0}} s(x, x_j)$$

- *k* ближайших соседей

пусть для класса X_i получен набор $s(X_{i(0)}^0) = \{s(x,x_1),...,s(x,x_{m_i})\};$

переупорядочим набор $s(X_{i(0)}^0)$ по **возрастанию** элементов и поставим ему в соответствие новый набор $\bar{X}_{i(0)}^0$, в котором содержится k первых элементов $x_j \in X_{i(0)}^0$ из полученного в результате переупорядочения набора;

посчитаем среднее расстояние до класса по новому набору $ar{X}_{i\,(0)}^0$

$$f_i(x) = (k)^{-1} \sum_{x_j \in \overline{X}_{i(0)}^0} s(x, x_j)$$

 $-\,\,$ по минимальному расстоянию до объектов класса X_i

$$f_i(x) = \min_{x_j \in X_{i(0)}^0} s(x, x_j)$$

Выбор решающего правила (3).

- по минимуму оценки до класса X_i

$$P_i^A(x) = egin{cases} 1, ext{ если } f_i(x) = \min_{i \in \{1, \dots, l\}} \{f_1(x), \dots, f_l(x)\}; \\ 0, ext{ в противном случае} \end{cases}$$

Алгоритм І.3 - $A_{\mathbf{I.3}}$. метрическое сходство (для пространств $X \subseteq \mathbb{R}^n$ и $X \subseteq \mathbb{B}^n$)

Предварительный шаг. Для каждого подмножества

$$X_i^0 = X^0 \cap X_i \ (|X_i^0| = m_i)$$

и выбранной в результате построения алгоритмов $A_{\mathbf{l}.\mathbf{1}}$ или $A_{\mathbf{l}.\mathbf{2}}$ функции $s(x_1,x_2)$ (для упрощения дальнейшего изложения переобозначим ее через $\bar{s}(x_1,x_2)$) находим диаметр множества X_i^0 по следующей формуле

$$d_i = \max_{(x_u, x_v) \in X_i^0 \times X_i^0} \bar{s}(x_u, x_v)$$

В результате получим следующий набор – $(d_1, d_2, ..., d_l)$, для которого вычисляем величину

$$d = max(d_1, d_2, \dots, d_l)$$

Замечание: величина d никак не зависит от разбиений, т.к. определяется на подмножествах X_i^0 ($i \in \{1, ..., l\}$).

Выбор функции (1).

$$s(x_1, x_2) = \max\{0, 1 - \frac{\bar{s}(x_1, x_2)}{d}\}\$$

Выбор функции (2).

— среднее (м.б. взвешенное) расстояние до класса X_i

$$f_i(x) = (m_i)^{-1} \sum_{x_i \in X_{i(0)}^0} s(x, x_i)$$

-k ближайших соседей пусть для класса X_i получен набор $s(X_{i(0)}^0) = \{s(x,x_1), \dots, s(x,x_{m_i})\};$

переупорядочим набор $s(X_{i(o)}^0)$ по убыванию элементов и поставим ему в соответствие новый набор $\bar{X}_{i(0)}^0$, в котором содержится k первых элементов $x_i \in X_{i(0)}^0$ из полученного в результате переупорядочения набора;

посчитаем среднее расстояние до класса по новому набору $\bar{X}_{i(0)}^0$

$$f_i(x) = (k)^{-1} \sum_{\substack{x_j \in \bar{X}_{i(0)}^0}} s(x, x_j)$$

по максимальному расстоянию до объектов класса X_i

$$f_i(x) = \max_{x_j \in X_{i(0)}^0} s(x, x_j)$$

Выбор решающего правила (3).

по максимуму оценки до класса X_i

$$P_i^A(x) = egin{cases} 1, ext{ если } f_i(x) = \max_{i \in \{1, \dots, l\}} \{f_1(x), \dots, f_l(x)\}; \\ 0, ext{ в противном случае} \end{cases}$$

ВАРИАНТ II. *Метрическое подобие* (для пространства $X \subseteq \mathbb{R}^n_+$, $\mathbb{R}_+ \stackrel{\text{def}}{=} \{x | x \in \mathbb{R}, x > 0\}$).

Алгоритм II.1 - $A_{II.1}$. Метрическое подобие

Выбор функции (1).

аддитивное подобие

$$s(x_1, x_2) = (\sum_{i=1}^n a_i \cdot x_{1i}) \cdot (\sum_{i=1}^n a_i \cdot x_{1i})^{-1}, (a_i \in \mathbb{R}_+, \sum_{i=1}^n a_i = 1)$$

мультипликативное подобие

$$s(x_1, x_2) = ((\prod_{i=1}^n x_{1i}) \cdot (\prod_{i=1}^n x_{2i})^{-1})^{1/n}$$

Выбор функции (2).

среднее геометрическое (м.б. взвешенное) подобие для объектов класса
$$X_i$$

$$f_i(x) = (\prod_{x_j \in X_{i(0)}^0} s\big(x, x_j\big))^{(m_i)^{-1}}$$

Выбор решающего правила (3).

по минимуму оценки до класса

$$P_i^A(x) = egin{cases} 1, \ \mathrm{ec}$$
ли $f_i(x) = \max_{i \in \{1,\dots,l\}} \{ \min\{f_1(x), f_1^{-1}(x)\}, \dots, \min\{f_l(x), f_l^{-1}(x)\} \}; \ 0, \ \mathrm{в} \ \mathrm{противном} \ \mathrm{c}$ лучае

Алгоритм II.2 - $A_{II.2}$. Метрическая близость на основе подобия

Выбор функции (1).

(пусть $\bar{s}(x_1, x_2)$ функция подобия, выбранная при построении алгоритма $A_{\text{II.1}}$

$$s(x_1, x_2) = 1 - \min\{\bar{s}(x_1, x_2), \bar{s}(x_2, x_1)\}$$

Выбор функции (2).

среднее (м.б. взвешенное) расстояние до класса X_i

$$f_i(x) = (m_i)^{-1} \sum_{\substack{x_i \in X_{i(0)}^0 \\ x_j \in X_{i(0)}^0}} s(x, x_j)$$

к ближайших соседей пусть для класса X_i получен набор $s(X_{i,(0)}^0) = \{s(x,x_1), ..., s(x,x_{m_i})\};$ переупорядочим набор $s(X_{i(0)}^0)$ по возрастанию элементов и поставим ему в соответствие новый набор $\bar{X}_{i\,(\mathrm{o})}^{0}$, в котором содержится k первых элементов $x_{j}\in X_{i\,(\mathrm{o})}^{0}$ из полученного в результате переупорядочения набора;

посчитаем среднее расстояние до класса по новому набору $\bar{X}^0_{i(\alpha)}$

$$f_i(x) = (k)^{-1} \sum_{x_j \in \bar{X}_{i(0)}^0} s(x, x_j)$$

по минимальному расстоянию до объектов класса X_i

$$f_i(x) = \min_{x_j \in X_{i(0)}^0} s(x, x_j)$$

Выбор решающего правила (3).

Алгоритм II.3 - $A_{II.3}$. Метрическое сходство на основе подобия

Предварительный шаг. Для каждого подмножества

$$X_i^0 = X^0 \cap X_i (|X_i^0| = m_i)$$

и выбранной в результате построения алгоритма $A_{II.2}$ функции $s(x_1,x_2)$ (для упрощения дальнейшего изложения переобозначим ее через $\bar{s}(x_1,x_2))$ находим диаметр множества X_i^0 по следующей формуле

$$d_i = \max_{(x_u, x_v) \in X_i^0 \times X_i^0} \bar{s}(x_u, x_v)$$

В результате получим следующий набор – $(d_1, d_2, ..., d_l)$, для которого вычисляем величину

$$d = max(d_1, d_2, \dots, d_l)$$

Выбор функции (1).

$$s(x_1, x_2) = \max\{0, 1 - \frac{\bar{s}(x_1, x_2)}{d}\}\$$

Выбор функции (2).

среднее (м.б. взвешенное) расстояние до класса

$$f_i(x) = (m_i)^{-1} \sum_{x_j \in X_{i(0)}^0} s(x, x_j)$$

k ближайших соседей пусть для класса X_i получен набор $s(X_{i(0)}^0) = \{s(x,x_1), ..., s(x,x_{m_i})\};$

переупорядочим набор $s(X_{i(0)}^0)$ по убыванию элементов и поставим ему в соответствие новый набор $\bar{X}^0_{i\,(\mathrm{o})}$, в котором содержится k первых элементов $x_j\in X^0_{i\,(\mathrm{o})}$ из полученного в результате переупорядочения набора;

посчитаем среднее расстояние до класса по новому набору $\bar{X}_{i(0)}^0$

$$f_i(x) = (k)^{-1} \sum_{x_j \in \bar{X}_{i(0)}^0} s(x, x_j)$$

по максимальному расстоянию до объектов класса X_i

$$f_i(x) = \max_{x_j \in X_{i(0)}^0} s(x, x_j)$$

Выбор решающего правила (3).

по максимуму оценки до класса X_i

$$P_i^A(x) = egin{cases} 1, \text{ если } f_i(x) = \max_{i \in \{1,\dots,l\}} \{f_1(x),\dots,f_l(x)\}; \\ 0, \text{ в противном случае} \end{cases}$$

ВАРИАНТ III. *Метрическая прецедентность*. (для пространства $\subseteq \mathbb{B}_2^n$, $\mathbb{B}_2 = \{0,1\}$)

Алгоритм III.1 - $A_{\text{III.1}}$. Метрическая прецедентность

Подготовительный этап: (подсчет параметров алгоритма)

Шаг 1. Фиксируем номер класса $i \in \{1, ..., l\}$ и переходим к шагу 2.

Шаг 2. Для всех признаков $j \in \{1, ..., n\}$ вычисляем:

$$b_{ij} = (m_i)^{-1} (\sum_{x_t \in X_i^{0,06\text{yq}}} x_{tj})$$

 $b_{ij} = (m_i)^{-1}(\sum_{x_t \in X_i^{0,\text{обуч}}} x_{tj})$ где x_{tj} - значение признака j в векторе $x_t \in X_{i \ (0)}^0$ $(t \in \{1,\dots,m_i\})$

Шаг 3. Шаги 1&2 выполняем до тех пор, пока все номера классов и все признаки в каждом классе не будут исчерпаны. Затем переходим к шагу 4.

Шаг 4. Для всех признаков $j \in \{1, ..., n\}$ и классов $i \in \{1, ..., l\}$ вычисляем:

$$b_{j} = (l)^{-1} \left(\sum_{i=1}^{l} b_{ij} \right)$$

$$a_{ij} = |b_{ij} - b_{j}|$$
(5)

Выбор функции (1).

Функция $s(x_1, x_2)$ зависит от параметров (5). При описании этой зависимости в формуле ниже предполагаем, что x_1 - произвольный объект из X , $x_2 \in X^0_{i(0)}$ и для всех таких x_2 вычисляем

$$s(x_1, x_2) = (\sum_{j=1}^n a_{ij})^{-1} \times (\sum_{j=1}^n (-1)^u \times a_{ij}))$$

где

$$u = \begin{cases} 1, \text{ если } x_{1j} \neq x_{2j} \\ 2, \text{ иначе} \end{cases}$$

Выбор функции (2).

Для каждого $i \in \{1, ..., l\}$ вычисляем

$$f_i(x) = \max_{x_t \in X_{i,(0)}^0} \{ s(x, x_t) \}$$

Выбор решающего правила (3).

- по максимуму оценки до класса X_i

$$P_i^A(x) = egin{cases} 1, ext{ если } f_i(x) = \max_{i \in \{1,\dots,l\}} \{f_1(x),\dots,f_l(x)\}; \ 0, ext{ в противном случае} \end{cases}$$

пороговое решающее правило $(c_0, c_1 \in [0,1], c_0 \le c_1)$.

Алгоритм III.2 - $A_{\rm III.2}$. Метрическая близость на основе прецедентности

Выбор функции (1).

пусть $\bar{s}(x_1, x_2)$ функция прецедентности, выбранная при построении алгоритма $A_{III.1}$

$$s(x_1, x_2) = 1 - \bar{s}(x_1, x_2)$$

Выбор функции (2).

среднее (м.б. взвешенное) расстояние до класса Х

$$f_i(x) = (m_i)^{-1} \sum_{x_j \in X_{i(0)}^0} s(x, x_j)$$

к ближайших соседей пусть для класса X_i получен набор $s(X_{i,(0)}^0) = \{s(x,x_1), ..., s(x,x_{m_i})\};$ переупорядочим набор $s(X_{i(0)}^0)$ по возрастанию элементов и поставим ему в соответствие новый набор $\bar{X}_{i(0)}^0$, в котором содержится k первых элементов $x_i \in X_{i(0)}^0$ из полученного в результате переупорядочения набора;

посчитаем среднее расстояние до класса по новому набору $\bar{X}_{i\,(0)}^0$

$$f_i(x) = (k)^{-1} \sum_{x_j \in \bar{X}_{i(0)}^0} s(x, x_j)$$

по минимальному расстоянию до объектов класса X_i $f_i(x) = \min_{x_j \in X_{i(o)}^0} s(x, x_j)$

$$f_i(x) = \min_{x_j \in X_{i(0)}^0} s(x, x_j)$$

Выбор решающего правила (3).

- по минимуму оценки до класса X_i

$$P_i^A(x) = egin{cases} 1, ext{ если } f_i(x) = \min_{i \in \{1,\dots,l\}} \{f_1(x),\dots,f_l(x)\}; \ 0, ext{ в противном случае} \end{cases}$$

Алгоритм III.3 - $A_{\text{III.3}}$. Метрическое сходство на основе прецедентности

Предварительный шаг. Для каждого подмножества

$$X_i^0 = X^0 \cap X_i \; (|X_i^0| = m_i)$$

и выбранной в результате построения алгоритма $A_{III.2}$ функции $s(x_1, x_2)$ (для упрощения дальнейшего изложения переобозначим ее через $\bar{s}(x_1,x_2)$) находим диаметр множества X_i^0 по следующей формуле

$$d_i = \max_{(x_u, x_v) \in X_i^0 \times X_i^0} \bar{s}(x_u, x_v)$$

В результате получим следующий набор – $(d_1, d_2, ..., d_l)$, для которого вычисляем величину $d = max(d_1, d_2, ..., d_l)$

Выбор функции (1).

$$s(x_1, x_2) = max\{0, 1 - \frac{\bar{s}(x_1, x_2)}{d}\}\$$

Выбор функции (2).

— среднее (м.б. взвешенное) расстояние до класса X_i

тояние до класса
$$X_i$$

$$f_i(x) = (m_i)^{-1} \sum_{x_j \in X_{i(0)}^0} s(x, x_j)$$

- k ближайших соседей пусть для класса X_i получен набор $s(X_{i(0)}^0) = \{s(x,x_1),...,s(x,x_{m_i})\};$ переупорядочим набор $s(X_{i(0)}^0)$ по **убыванию** элементов и поставим ему в соответствие новый набор $\bar{X}_{i(0)}^0$, в котором содержится k первых элементов $x_j \in X_{i(0)}^0$ из полученного в результате переупорядочения набора; посчитаем среднее расстояние до класса по новому набору $\bar{X}_{i(0)}^0$

$$f_i(x) = (k)^{-1} \sum_{x_j \in \bar{X}_{i(0)}^0} s(x, x_j)$$

- по максимальному расстоянию до объектов класса X_i

$$f_i(x) = \max_{x_j \in X_{i(0)}^0} s(x, x_j)$$

Выбор решающего правила (3).

- по максимуму оценки до класса X_i

$$P_i^A(x) = egin{cases} 1, ext{ если } f_i(x) = \max_{i \in \{1,\dots,l\}} \{f_1(x),\dots,f_l(x)\}; \ 0, ext{ в противном случае} \end{cases}$$