MP*: Calcul différentiel

Coralie RENAULT

25 mars 2015

Exercice

a) Soit $f: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ définie par $f(M) = M^2$.

Justifier que f est différentiable et déterminer la différentielle de f en tout $M \in \mathcal{M}_n(\mathbb{R})$.

b) Soit $f: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ définie par $f(M) = \operatorname{tr}(M^3)$.

Justifier que f est différentiable et calculer la différentielle de f en tout $M \in \mathcal{M}_n(\mathbb{R})$.

Exercice

Déterminer la différentielle en I_n puis en $M \in \mathrm{GL}_n(\mathbb{R})$ de $M \mapsto M^{-1}$.

Exercice

Soient E un espace euclidien et u un endomorphisme symétrique de E.

- a) Montrer que l'application $f: x \in E \mapsto (u(x) \mid x)$ est différentiable sur E et calculer sa différentielle en tout point.
- b) Montrer que l'application

$$F: x \in E \setminus \{0_E\} \mapsto \frac{(u(x) \mid x)}{(x \mid x)}$$

est différentiable sur $E \setminus \{0_E\}$ et que sa différentielle vérifie

$$dF(a) = \tilde{0} \Leftrightarrow a$$
 est vecteur propre de u

Exercice

Soit $f: \mathbb{R} \to \mathbb{R}$ telle que $f(x+2\pi) - f(x) \in 2\pi\mathbb{Z}$, $\forall x \in \mathbb{R}$. Soit $F: \mathbb{R}^2 \to \mathbb{R}^2$ vérifiant F(rcos(t), rsin(t)) = (rcos(t), rsin(t)), $\forall (r,t) \in \mathbb{R}_+ \times \mathbb{R}$. A quelle condition F est-elle différentiable en (0,0)?

Exercice

Soit $f:\mathbb{R}^2 \to \mathbb{R}$ une fonction différentiable et $g:\mathbb{R}^2 \to \mathbb{R}$ définie par

$$g(u,v) = f(u^2 + v^2, uv)$$

- a) Justifier que g est différentiable.
- b) Exprimer $\frac{\partial g}{\partial u}$ et $\frac{\partial g}{\partial v}$ en fonction des dérivées partielles de la fonction f notées $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$.

Exercice

Soient U un ouvert convexe et $f:U\to\mathbb{R}$ une fonction convexe et différentiable. Montrer que tout point critique est un minimum global.

Exercice

Trouver les extrema sur \mathbb{R}^2 de

$$f(x,y) = x^4 + y^4 - 2(x-y)^2$$

Exercice

Soient u un endomorphisme symétrique d'un espace euclidien E et x_0 un vecteur de E. On étudie la fonction $f: E \to \mathbb{R}$ définie par

$$f(x) = \frac{1}{2} (u(x) \mid x) + (x_0 \mid x)$$

- a) Montrer que f est différentiable et exprimer sa différentielle.
- b) Calculer le gradient de f en tout point de E.

Exercice

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction différentiable homogène de degré $n \in \mathbb{N}$ c'est-à-dire vérifiant

$$\forall t \in \mathbb{R}, \ \forall (x,y) \in \mathbb{R}^2, \ f(tx,ty) = t^n f(x,y)$$

a) Montrer que

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf$$

b) On suppose $n \ge 1$. Montrer que les dérivées partielles de f sont elles aussi homogènes, préciser leur degré.

Exercice

Trouver les extrema sur \mathbb{R}^2 de

$$f(x,y) = x^4 + y^4 - 4xy$$

Exercice

Soient $\alpha \in \mathbb{R}$ et $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 tels que

$$\forall (x,y) \in \mathbb{R}^2, x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \alpha f(x,y)$$

Exprimer

$$\varphi: r \in [0, +\infty[\mapsto \int_0^{2\pi} f(r\cos t, r\sin t) \, \mathrm{d}t$$