Stock Price Analysis-Tesla

```
#import the libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.simplefilter('ignore')
import yfinance as yf
```

Section 1: The data is non stationary and non mean reverting. The variance is also non stationary and trend is upward and there is a steep change at the end. We have decomposed the data into trend, variance and seasonality and found the similar results

	Open	High	Low	Close	Adj Close	Volume
Date						
2020-12-09	653.690002	654.320007	588.000000	604.479980	604.479980	71291200
2020-12-10	574.369995	627.750000	566.340027	627.070007	627.070007	67083200
2020-12-11	615.010010	624.000000	596.799988	609.989990	609.989990	46475000
2020-12-14	619.000000	642.750000	610.200012	639.830017	639.830017	52040600
2020-12-15	643.280029	646.900024	623.799988	633.250000	633.250000	45071500
2020-12-16	628.229980	632.500000	605.000000	622.770020	622.770020	42095800
2020-12-17	628.190002	658.820007	619.500000	655.900024	655.900024	56270100
2020-12-18	668.900024	695.000000	628.539978	695.000000	695.000000	222126200
2020-12-21	666.239990	668.500000	646.070007	649.859985	649.859985	58045300
2020-12-22	648.000000	649.880005	614.229980	640.340027	640.340027	51716000
2020-12-23	632.200012	651.500000	622.570007	645.979980	645.979980	33173000
2020-12-24	642.989990	666.090027	641.000000	661.770020	661.770020	22865600
2020-12-28	674.510010	681.400024	660.799988	663.690002	663.690002	32278600
2020-12-29	661.000000	669.900024	655.000000	665.989990	665.989990	22910800

Out[697...

Open

Date

High

```
2020-12-30 672.000000 696.599976
                                            668.359985
                                                        694.780029
                                                                   694.780029
                                                                                42846000
In [698...
           df=df['Close'].reset_index()
In [699...
           df.head(2)
Out[699...
                   Date
                             Close
             2015-01-02 43.862000
             2015-01-05 42.018002
In [700...
           df['Date'] = pd.to_datetime(df['Date'],infer_datetime_format=True)
           df = df.set index(['Date'])
```

Low

Close

Adj Close

Volume

Plot the Trend of Stock Price over the Years

```
plt.title("Closing Prices of Tesla",fontsize=20)
plt.xlabel('Date')
plt.ylabel('Closing price')
plt.plot(df['Close'])
plt.show()
```


Compare with rolling statistics

```
#Mean Stock price on a window of 365 days
df["rolling_avg"] = df["Close"].rolling(window=365).mean()
```

```
#Standard Deviation of stock price on 365 days wimdow
df["rolling_std"] = df["Close"].rolling(window=365).std()
```

```
In [703... df=df.reset_index()
```

```
plt.figure(figsize=(20,10))
   plt.title('Trend over the years Compared with yearly moving averages',size=20)
   sns.lineplot(data=df, x='Date',y='Close',label='Stock Prize ')
   sns.lineplot(data=df,x='Date',y='rolling_avg',label='Yearly Moving Average stock price'
   sns.lineplot(data=df,x='Date',y='rolling_std',label='Yearly moving Standard Deviation')
```


Augmented Dickey-Fuller Test

Checking for non-stationarity

Null Hypothesis: The data is not stationary.

Alternative Hypothesis: The data is stationary.

Test Statistic

```
p-value 1.000000
#Lags Used 23.000000
Number of Observations Used 1486.000000
Critical Value (1%) -3.434758
Critical Value (5%) -2.863487
Critical Value (10%) -2.567807
dtype: float64
```

Based on such high P values, we fail to reject the Null so the data is not Stationary

Kwiatkowski-Phillips-Schmidt-Shin (KPSS)

Here the null hypothesis is that the series is stationary

Null Hypothesis: The data is stationary

Alternate Hypothesis:: The data is not stationary

Based on a lower p value, we reject the null, the data is non stationary

Box Cox Transformation

For making variance constant

```
In [709... from scipy import stats
In [710... Boxcox=list(stats.boxcox(df['Close'])[0])
In [711... transformed_data, best_lambda = stats.boxcox(df['Close']) best_lambda
Out[711... -1.3625118729824754
In [712... logged=np.log(df['Close'])
```

```
2/5/22, 5:51 PM Priyanshi1

df.insert(len(df.columns), 'logged values',logged)

In [713... df.insert(len(df.columns), 'Boxcox',transformed_data)

In [714... df copy=df.copy()
```

Plot the values after Box Cox Transformation

Augemented Dicky Fuller Test to check if the data is stationary for box-cox transformed values

Null Hypothesis: The data is not stationary.

Alternative Hypothesis: The data is stationary.

```
In [716...
    test= adfuller(df['Boxcox'], autolag='AIC')
    output = pd.Series(test[0:4], index=['Test Statistic','p-value','#Lags Used','Number of
    for key,value in test[4].items():
        output['Critical Value (%s)'%key] = value
    print(output)
```

```
p-value
                                  0.635656
#Lags Used
                                  0.000000
Number of Observations Used
                               1509.000000
Critical Value (1%)
                                 -3.434691
Critical Value (5%)
                                 -2.863457
Critical Value (10%)
                                 -2.567791
dtype: float64
```

Based on the high p values, we Fail to reject the Null, data is not stationary

Autocorrelation

Since the Mean of data is non Stationary, calculating the first difference of data, the 3rd difference and the 6th difference

Calculating values of AutoCorrelation, a measure of how correlated time series data is at a given point in time with past values

First lag autocorrelation

```
In [717...
          autocorrelation lag1=df['Close'].autocorr(lag=30) ## Lag taken for 30 days
          print("1 month Lag:", autocorrelation lag1)
         1 month Lag: 0.9624867552011044
```

Second lag autocorrelation value of Data: 0.9601946480498523

```
In [718...
          autocorrelation lag2=df['Close'].autocorr(lag=60) ## Lag taken for 60 days
          print("2 month Lag:", autocorrelation_lag2)
         2 month Lag: 0.9456946549894001
```

Third lag autocorrelation value of Data: 0.8956753113926396

```
In [719...
          autocorrelation lag3=df['Close'].autocorr(lag=120) ## Lag taken for 120 days
          print(" 3 month lag:", autocorrelation_lag3)
```

3 month lag: 0.8959107176901502

Inference: even after giving lag of 3 months the data is highly correlated

ACF/PACF Plots for closing price value

```
In [720...
          from statsmodels.graphics.tsaplots import plot_acf
          fig1=plt.figure(figsize=(30,10))
          fig1=plot acf(df['Close'])
```



```
from statsmodels.graphics.tsaplots import plot_pacf
fig=plt.figure(figsize=(30,10))
fig=plot_pacf(df['Close'],lags=30)
```

<Figure size 2160x720 with 0 Axes>

From ACF and PACF plots it looks like AR of 2nd order

ACF PACF plot using 1st Lag-(1 month lag approx 30 days)

```
df['lagprice'] = df['Close'].shift(30)
df['1st Differencing']=df['lagprice']-df['Close']
df.dropna(inplace=True)
fig4=plt.figure(figsize=(30,10))
fig4=plot_acf(df['1st Differencing'])
```



```
fig=plt.figure(figsize=(30,10))
fig=plot_pacf(df['1st Differencing'],lags=30)
```

<Figure size 2160x720 with 0 Axes>

ACF PACF plot using 2nd Lag

```
df['lagprice'] = df['Close'].shift(60)
df['1st Differencing']=df['lagprice']-df['Close']
df.dropna(inplace=True)
fig4=plt.figure(figsize=(30,10))
fig4=plot_acf(df['1st Differencing'])
```



```
fig=plt.figure(figsize=(30,10))
fig=plot_pacf(df['1st Differencing'],lags=60)
```

<Figure size 2160x720 with 0 Axes>

ACF PACF plot using 3rd Lag- approx 3 months

```
df['lagprice'] = df['Close'].shift(90)
    df['1st Differencing']=df['lagprice']-df['Close']
    df.dropna(inplace=True)
    fig4=plt.figure(figsize=(30,10))
    fig4=plot_acf(df['1st Differencing'])
```



```
In [727...
```

```
fig=plt.figure(figsize=(30,10))
fig=plot_pacf(df['1st Differencing'],lags=90)
```



```
In [728...
```

```
dftest1 = adfuller(df['1st Differencing'], autolag='AIC')

dfoutput = pd.Series(dftest1[0:4], index=['Test Statistic','p-value','#Lags Used','Numb
for key,value in dftest[4].items():
    dfoutput['Critical Value (%s)'%key] = value

print(dfoutput)
```

Test Statistic	0.235194
p-value	0.974168
#Lags Used	19.000000
Number of Observations Used	976.000000
Critical Value (1%)	-3.434758
Critical Value (5%)	-2.863487
Critical Value (10%)	-2.567807
dtype: float64	

Inference: Even after taking a lag of 3 months, the p value is high and is greater than 0.05 so the data is not stationary

ACF PACF plots for Lagged differencing on BoxCox transformed Values

```
In [729...
           df['lagprice'] = df['Boxcox'].shift(3)
           df['3rd lag Differencing']=df['lagprice']-df['Close']
           df.dropna(inplace=True)
           fig4=plt.figure(figsize=(30,10))
           fig4=plot_acf(df['3rd lag Differencing'])
          <Figure size 2160x720 with 0 Axes>
                                  Autocorrelation
            1.0
            0.8
            0.6
            0.4
            0.2
            0.0
           -0.2
           -0.4
                                       15
                                                               30
In [730...
           fig5=plt.figure(figsize=(30,10))
           fig5=plot_pacf(df['3rd lag Differencing'],lags=30)
          <Figure size 2160x720 with 0 Axes>
                             Partial Autocorrelation
          1.0
          0.8
          0.6
          0.4
          0.2
          0.0
```

from the ACF and PACF plots it looks like AR of 2nd order

20

10

15

Trend Decomposition

```
In [731...
            from statsmodels.tsa.seasonal import seasonal decompose
In [732...
            decompose=seasonal decompose(df['Close'],model='multiplicative',period=365) ## period i
In [733...
            fig3=plt.figure(figsize=(30,20))
            fig3=decompose.plot()
           <Figure size 2160x1440 with 0 Axes>
                                             Close
              500
              250
                                 800
                                             1000
                                                         1200
                     600
                                                                     1400
              200
              100
                     600
                                 800
                                             1000
                                                         1200
                                                                     1400
             1.25
1.00
0.75
                                             1000
                                                                     1400
                                 8Ó0
                                                         1200
                                 800
                                             1000
                     600
                                                         1200
                                                                     1400
```

Inference: Yes, there are seasonal fluctuations in the data as can be seen from the seasonal spikes in the figure above but overall there is no seasonality since there is a high spike at the end

Section 2

Fitting Several Arima Models and the using Auto Arima to obtain the best model

```
import pmdarima
from pmdarima.arima import auto_arima

In [735... from statsmodels.tsa.arima.model import ARIMA
import statsmodels.api as sm

In [736... model1=ARIMA(df_copy['Boxcox'],order=(2,0,1))
model1 = model1.fit()
model1.summary()
print(model1.bic)
```

```
-15497.180506688877

In [737... model2=ARIMA(df_copy['Boxcox'],order=(1,1,1)) model2 = model2.fit() model2.summary() print(model2.bic)

-22753.742733672225

In [738... model3=ARIMA(df_copy['Boxcox'],order=(2,1,3)) model3 = model3.fit() model3.summary() print(model3.bic)

-22731.962556627073
```

Based on the above findings, we select the ARIMA(1,1,1) model as it has the least AIC and BIC

```
In [739...
           model_best=ARIMA(df_copy['Boxcox'],order=(1,1,1))
In [740...
           model_fit_best = model_best.fit()
           residuals_best = pd.DataFrame(model_fit_best.resid)
           residuals_best.plot()
          <AxesSubplot:>
Out[740...
           0.7
           0.6
           0.5
           0.4
           0.3
           0.2
           0.1
           0.0
                      200
                            400
                                   600
                                         800
                                              1000
                                                     1200
                                                           1400
In [741...
           residuals best.describe()
Out[741...
                           0
           count 1510.000000
           mean
                     0.000486
             std
                     0.018778
            min
                    -0.000858
```

```
0
25% -0.000045
50% 0.000002
75% 0.000060
max 0.729689
```

Auto Arima to find the best fit model

```
In [742...
           import pmdarima as pm
In [743...
          model_autoarima = pm.auto_arima(df_copy['Boxcox'], start_p=0, start_q=0,
                                 test='adf',
                                               # use adftest to find optimal 'd'
                                 max_p=5, max_q=5, # maximum p and q
                                                   # frequency of series
                                 d=None,
                                                    # Let model determine 'd'
                                 start P=0,
                                 D=0,
                                 trace=True,
                                 error action='ignore',
                                 suppress_warnings=True,
                                 stepwise=True)
          Performing stepwise search to minimize aic
           ARIMA(0,1,0)(0,0,1)[5] intercept : AIC=-22769.073, Time=1.09 sec
           ARIMA(0,1,0)(0,0,0)[5] intercept
                                               : AIC=-22770.545, Time=0.74 sec
                                               : AIC=-22767.703, Time=1.06 sec
           ARIMA(1,1,0)(1,0,0)[5] intercept
           ARIMA(0,1,1)(0,0,1)[5] intercept
                                               : AIC=-22767.648, Time=1.63 sec
           ARIMA(0,1,0)(0,0,0)[5]
                                               : AIC=-22771.844, Time=0.11 sec
                                               : AIC=-22769.058, Time=0.87 sec
           ARIMA(0,1,0)(1,0,0)[5] intercept
           ARIMA(0,1,0)(1,0,1)[5] intercept
                                               : AIC=-22767.284, Time=1.63 sec
           ARIMA(1,1,0)(0,0,0)[5] intercept
                                               : AIC=-22769.267, Time=0.53 sec
           ARIMA(0,1,1)(0,0,0)[5] intercept
                                               : AIC=-22769.208, Time=1.19 sec
                                               : AIC=-22768.237, Time=2.54 sec
           ARIMA(1,1,1)(0,0,0)[5] intercept
          Best model: ARIMA(0,1,0)(0,0,0)[5]
          Total fit time: 11.412 seconds
In [744...
          model autoarima.summary()
                               SARIMAX Results
Out[744...
            Dep. Variable:
                                     y No. Observations:
                                                             1510
                  Model: SARIMAX(0, 1, 0)
                                           Log Likelihood
                                                         11386.922
                   Date: Sat, 05 Feb 2022
                                                        -22771.844
                                                    AIC
                   Time:
                                17:26:06
                                                    BIC
                                                        -22766.525
                 Sample:
                                     0
                                                  HQIC -22769.863
                                 - 1510
```

Covariance Type: opg

```
      coef
      std err
      z
      P>|z|
      [0.025
      0.975]

      sigma2
      1.633e-08
      2.89e-10
      56.537
      0.000
      1.58e-08
      1.69e-08

      Ljung-Box (L1) (Q): 0.72
      Jarque-Bera (JB): 2738.83

      Prob(Q): 0.40
      Prob(JB): 0.00

      Heteroskedasticity (H): 0.56
```

Prob(H) (two-sided): 0.00 Kurtosis:

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

9.58

Ljung-Box test for residuals

```
In [745...
           # line plot of residuals
           model=ARIMA(df['Boxcox'],order=(0,1,0))
           residuals = pd.DataFrame(model fit best.resid)
            residuals.plot()
            plt.show()
                                                                - 0
           0.7
           0.6
           0.5
           0.4
           0.3
           0.2
           0.1
           0.0
                      200
                            400
                                   600
                                         800
                                               1000
                                                     1200
                                                           1400
```

H0: The residuals are independently distributed.

HA: The residuals are not independently distributed; they exhibit serial correlation.

Inference: We cannot reject null hypothesis which means residuals are independently distributed

```
In [747...
          # line plot of residuals
          model=ARIMA(df copy['Boxcox'],order=(0,1,0))
          residuals = pd.DataFrame(model_fit_best.resid)
           residuals.plot()
          plt.show()
          0.7
          0.6
          0.5
          0.4
          0.3
          0.2
          0.1
          0.0
                                600
                                      800
                                           1000
                    200
                          400
                                                 1200
                                                       1400
In [761...
          from scipy.special import boxcox, inv boxcox
           prediction1=model fit best.predict(start=0, end=1509)
           pred1=inv_boxcox(prediction1,-1.36)
In [762...
          prediction=model fit best.predict(start=0, end=1509)
          from sklearn.metrics import mean_squared_error
          np.sqrt(mean_squared_error(df_copy['Close'],pred1))
          106.5792299366475
Out[762...
In [763...
           from statsmodels.graphics.tsaplots import plot_pacf
           fig=plt.figure(figsize=(30,10))
          fig=plot_pacf(df['Close'],lags=30)
          <Figure size 2160x720 with 0 Axes>
```


ACF PACF plots for residual

In [764...

fig4=plt.figure(figsize=(30,10))
fig4=plot_acf(residuals)

<Figure size 2160x720 with 0 Axes>

In [765...

fig5=plt.figure(figsize=(30,10))
fig5=plot_pacf(residuals,lags=30)

From ACF PACF figures, it can be inferred that there is no autocorrelation in the residuals and it is a white noise process

RMSE value is 106.58

Predicted values for the next 5 periods

```
In [766...
           prediction2=model_fit_best.predict(start=1510, end=1514)
           pred2=inv boxcox(prediction2, -1.362)
In [767...
           pred2
                  261.541310
          1510
Out[767...
          1511
                  261.583308
          1512
                  261.606839
          1513
                  261.620021
          1514
                  261.627405
          Name: predicted_mean, dtype: float64
```

The Predicted values are reasonable and comparable to the original values

```
In [768...
    plt.figure(figsize=(20,10))
    plt.plot(df['Close'],label='actual')
    plt.plot(pred1,label='predicted')
    plt.legend()

Out[768...
<matplotlib.legend.Legend at 0x25148adb100>
```


Yes in sample predicted values follow approximately the same trend as the original data

In []:	
In []:	