Inhaltsverzeichnis

1	Rie	manns Beweis der Funktionalgleichung	1
	Exk 2.1 2.2 2.3	Absolutbeträge	3 3 5 7
3	Lokalkompakte Gruppen		
	3.1	Das Haar-Maß	10
	3.2	Charaktere	12
	3.3	Abstrakte Fourieranalysis	12
4	Die	lokale Theorie	14
	4.1	Lokale Körper	14
	4.2	Etwas Fourieranalysis	16
	4.3	Die lokale Funktionsgleichung	19
	4.4	Die Berechnungen	21
		4.4.1 Der Fall $p = \infty$	21
		4.4.2 Die Fälle $p < \infty$	23
5	Der	Adele- und Idelering	27
	5.1	Eingeschränktes Direktes Produkt	27
	5.2	Charaktere	28
	5.3	Integration auf dem eingeschränkten Produkt	29
	5.4	Der Adelering	31
	5.5	Der Idelering	31
6	0 0		33
	6.1	Globale Fourieranalysis	33
	6.2	$eq:Adelische Poisson-Summenformel und der Satz von Riemann-Roch \ \ .$	33
	6.3	Die globale Funktionalgleichung	35
	6.4	Anwendungsbeispiel: Die Riemannsche Zeta-Funktion	37
7	Anl	nang	38

1 Riemanns Beweis der Funktionalgleichung

Definition 1.1. Die Riemannsche Zeta-Funktion $\zeta(s)$ ist für Re(s) > 1 definiert als

$$\zeta(s) = \sum_{n \in \mathbb{N}} \frac{1}{n^s} \tag{1}$$

Sie kann meromorph auf ganz $\mathbb C$ fortgesetzt werden und erfüllt die Funktionalgleichung.

Satz 1.2.

$$\Xi(s) = \Xi(1-s) \tag{2}$$

Definition 1.3.

$$\Xi(s) := \Gamma_{\infty}(s)\zeta(s) \tag{3}$$

Definition 1.4.

$$\Gamma_{\infty}(s) := \pi^{-s/2} \Gamma(s/2) \tag{4}$$

Satz 1.5 (Poisson Summenformel). Für \mathbb{Q}_{∞} und $t_{\infty} \in \mathbb{Q}_{\infty}^*$, f_{∞} Schwartzfunktion, $|t_{\infty}|_{\infty} := |t_{\infty}|$ Absolutbetrag und \hat{f}_{∞} Fourier-transformierte von f_{∞} gilt:

$$\sum_{a \in \mathbb{Z}} f_{\infty}(at_{\infty}) = \frac{1}{|t_{\infty}|_{\infty}} \sum_{a \in \mathbb{Z}} \hat{f}_{\infty} \left(\frac{a}{t_{\infty}}\right)$$
 (5)

Definition 1.6 (Fouriertransformation).

$$\hat{f}_{\infty}(\xi_{\infty}) := \int_{\mathbb{R}} e^{2\pi i(-x_{\infty}\xi_{\infty})} f_{\infty}(x_{\infty}) dx_{\infty} \tag{6}$$

Satz 1.7. Die (archimedische) Gaussche Funktion

$$g_{\infty}(x_{\infty}) := e^{-\pi|x_{\infty}|^2} \tag{7}$$

ist ihre eigene Fouriertransformierte.

Beweis. Die Fouriertransformation von $g_{\infty}(x)$ ist definiert als

$$\hat{g}_{\infty}(\xi) = \int_{-\infty}^{\infty} g(x)e^{-2\pi ix\xi}dx$$

Betrachten wir zunächst den Integranden etwas genauer sehen wir, dass wir dank

$$g(x)e^{-2\pi i x \xi} = e^{-\pi(x^2+2i x \xi - \xi^2)}e^{-\pi \xi^2} = e^{-pi(x+i\xi)^2}g(\xi)$$

die Fouriertransformierte $\hat{q}(\xi)$ umschreiben können zu

$$\hat{g}(\xi) = g(\xi) \int_{-\infty}^{\infty} e^{-\pi(x+i\xi)^2} dx$$

Fuer den Beweis reicht es also zu zeigen, dass das verbleibende Integral gleich 1 ist. Wir berechnen zunächst

$$g(x)e^{-2\pi ix\xi} = e^{-\pi(x^2 + 2ix\xi - \xi^2)}e^{-\pi\xi^2} = e^{-pi(x + i\xi)^2}g(\xi)$$

und stellen erfreut fest, dass die Fouriertransformierte von g gerade

$$\hat{g}(\xi) = g(\xi) \int_{-\infty}^{\infty} e^{-\pi(x+i\xi)^2} dx$$

ist. Es reicht also zu zeigen, dass das zweite Integral 1 ist.

Sei zunächst γ eine Kurve entlang des Rechtecks mit den Ecken -R, R, $R+i\eta$ und $-R+i\eta$. Nach dem Cauchy Integralsatz gilt für unsere ganze Funktion g(z)

$$0 = \int_{-R}^{R} g(z)dz + \int_{R}^{R+i\eta} g(z)dz + \int_{R+i\eta}^{-R+i\eta} g(z)dz + \int_{-R+i\eta}^{-R} g(z)dz$$

Weiter gilt $|g(z)| = e^{-\pi(R^2 - y^2)}$ für $z = \pm R + iy$ und $0 \le y \le \eta$ und so verschwinden das zweite und vierte Integral für $R \to \infty$. Nach Umstellen der verbleibenden Integrale und genauen hinsehen stellen wir fest, dass

$$\int_{\mathbb{R}} e^{-\pi(x+i\xi)^2} = \int_{\mathbb{R}} e^{-\pi x^2} = 1$$

2 Exkurs: p-adische Zahlen

2.1 Absolutbeträge

Sei \mathbb{K} ein beliebiger Körper und $\mathbb{R}_+ = \{x \in \mathbb{R} : x \geq 0\}$ die Menge der nicht-negativen reellen Zahlen.

Definition 2.1. Ein Absolutbetrag auf \mathbb{K} ist eine Abbildung

$$|\cdot|:\mathbb{Q}\longrightarrow\mathbb{R}_{+}$$

welche die folgenden Bedingungen erfüllt:

- (i) $|x| = 0 \Leftrightarrow x = 0$ (Definitheit)
- (ii) |xy| = |x||y| für alle $x, y \in \mathbb{K}$ (Multiplikativität)
- (iii) $|x+y| \le |x| + |y|$ für alle $x, y \in \mathbb{K}$ (Dreiecksungleichung)

Wir nennen den Absolutbetrag $|\cdot|$ nicht-archimedisch, wenn er zusätzlich die stärkere Bedingung

(iii)' $|x+y| \leq \max\{|x|,|y|\}$ für alle $x,y \in \mathbb{K}$ (verschärfte Dreiecksungleichung) erfüllt. Anderenfalls sagen wir der Absolutbetrag ist archimedisch.

Wir möchten zunächst ein paar allgeimgültige Eigenschaften von Absolutbeträgen im folgenden Lemma festhalten.

Lemma 2.2. Für beliebige Absolutbeträge $|\cdot|$ auf \mathbb{K} und Elemente $x \in \mathbb{Q}$ gilt:

- (i) |1| = 1
- $(ii) \ |-1| = 1$
- (iii) Falls $|x^n|=1$, dann |x|=1
- (iv) |-x| = |x|

Betrachten wir nun den Körper $\mathbb{Q}=\mathbb{Q}$ der rationalen Zahlen. Sei $x\in\mathbb{Q}^{\times}$ eine beliebige rationale Zahl. Dann existiert eine eindeutige (bis auf Reihenfolge) Primfaktorzerlegung

$$x = \prod_{p} p^{v_p},$$

wobei das Produkt über alle Primzahlen $p \in \mathbb{N}$ geht und $v_p \in \mathbb{Z}$ für fast alle p gleich 0 ist. Legen wir uns auf ein p fest, so ermöglicht sich die

Definition 2.3. Für beliebige $x \in \mathbb{Q}$ sei der *p-adische Absolutbetrag* von x gegeben durch

$$|x|_p = p^{-v_p}$$

für $x \neq 0$ und $v_p \in \mathbb{Z}$ wie oben. Durch $|0|_p := 0$ vervollständigen wir die Definition.

Lemma 2.4. $|\cdot|_p$ ist ein nicht-archimedischer Absolutbetrag auf $\mathbb Q$

Beweis. Die Definitheit folgt sofort aus der Definition. Für die Multiplikativität schreiben wir $x=p^k\frac{m}{n}$ und $y=p^{k'}\frac{m'}{n'}$ mit m,m',n,n' teilerfremd zu p. Dann ist

$$|xy|_p = \left| p^{k+k'} \frac{mm'}{nn'} \right|_p = p^{-(k+k')} = p^{-k} p^{-k'} = |x|_p |y|_p.$$

Zuletzt zur verschärften Dreiecksungleichung. Mit x und y wie eben können wir ohne Einschränkung annehmen, dass $k \leq k'$. Es gilt

$$x + y = p^k \frac{mn' + p^{k'-k}nm'}{nn'}.$$

Für $|x|_p \neq |y|_p$ ist k' > k, also $mn' + p^{k'-k}nm'$ teilerfremd zu p und es folgt $|x+y|_p = p^{-k} = \max(|x|_p, |y|_p)$. Ist dagegen $|x|_p \neq |y|_p$, so kann p ein Teiler des Zählers sein und wir erhalten $|x+y|_p \leq p^{-k} = \max(|x|_p, |y|_p)$

Satz 2.5 (Ostrowski). Jeder nicht-triviale Absolutbetrag auf \mathbb{Q} ist äquivalent zu einem der Absolutbeträge $|\cdot|_p$, wobei p entweder eine Primzahl ist oder $p=\infty$.

Beweis. Sei $|\cdot|$ ein beliebiger nicht-trivialer Absolutbetrag auf \mathbb{Q} . Wir untersuchen die zwei möglichen Fälle.

a) $|\cdot|$ ist archimedisch. Sei dann $n_0 \in \mathbb{N}$ die kleinste natürliche Zahl mit $|n_0| > 1$. Dann gibt es ein $\alpha \in \mathbb{R}^+$ mit $|n_0|^{\alpha} = n_0$. Wir wollen nun zeigen, dass $|n| = |n|_{\infty}^{\alpha}$ für alle $n \in \mathbb{N}$ gilt. Der allgemeine Fall für \mathbb{Q} folgt dann aus den Eigenschaften des Betrags. Dazu bedienen wir uns eines kleinen Tricks: Für $n \in \mathbb{N}$ nehmen wir die Darstellung zur Basis n_0 , d.h.

$$n = \sum_{i=0}^{k} a_i n_0^i$$

mit $a_i \in \{0, 1, ..., n_0 - 1\}$, $a_k \neq 0$ und $n_0^k \leq n < n_0^{k+1}$. Nehmen wir davon den Absolutbetrag und beachten, dass $|a_i| \leq 1$ nach unserer Wahl von n_0 gilt, so erhalten wir

$$|n| \le \sum_{i=0}^k |a_i| n_0^{i\alpha} \le \sum_{i=0}^k n_0^{i\alpha} \le n_0^{k\alpha} \sum_{i=0}^k n_0^{-i\alpha} \le n_0^{k\alpha} \sum_{i=0}^\infty n_0^{-i\alpha} = n_0^{k\alpha} \frac{n_0^\alpha}{n_0^\alpha - 1}.$$

Setzt man nun $C := \frac{n_0^{\alpha}}{n_0^{\alpha} - 1} > 0$, so sehen wir

$$|n| \le C n_0^{k\alpha} \le C n^{\alpha}$$

für beliebige $n \in \mathbb{N}$, also insbesondere auch

$$|n^N| \le C n^{N\alpha}.$$

Ziehen wir nun auf beiden Seiten die N-te Wurzel und lassen N gegen ∞ laufen, so konvergiert $\sqrt[N]{C}$ gegen 0 und wir erhalten

$$|n| < n^{\alpha}$$

Damit wäre die erste Hälfte geschafft. Gehen wir nun züruck zu unserer Basisdarstellung

$$n = \sum_{i=0}^{k} a_i n_0^i.$$

Da $n < n_0^{k+1}$ erhalten wir die Abschätzung

$$n_0^{(k+1)\alpha} = |n_0^{k+1}| = |n + n_0^{k+1} - n| \le |n| + |n_0^{k+1} - n|.$$

mit dem Ergebnis aus der ersten Hälfte des Beweises und $n \geq n_0^k$ sehen wir

$$|n| \ge n_0^{(k+1)\alpha} - |n_0^{k+1} - n| \ge n_0^{(k+1)\alpha} - (n_0^{k+1} - n)^{\alpha}$$

$$\ge n_0^{(k+1)\alpha} - (n_0^{k+1} - n_0^k)^{\alpha} = n_0^{(k+1)\alpha} \left(1 - \left(1 - \frac{1}{n_0}\right)\right)$$

$$> n^{\alpha} \left(1 - \left(1 - \frac{1}{n_0}\right)\right).$$

Setzen wir wieder $C' := \left(1 - \left(1 - \frac{1}{n_0}\right)\right) > 0$ folgt analog zum ersten Teil, dass

$$|n| \ge n^{\alpha}$$

und daher $|n|=n^{\alpha}$. Damit haben wir gezeigt, dass $|\cdot|$ äquivalent zum klassischen Absolutbetrag $|\cdot|_{\infty}$ ist.

b) $|\cdot|$ ist nicht archimedisch. Dann ist $|n_0| \leq 1$ für alle $n \in \mathbb{N}$ und, da $|\cdot|$ nichttrivial ist, muss es eine kleinste Zahl n_0 geben mit $|n_0| < 1$. Insbesondere muss n_0 eine Primzahl sein, denn sei $p \in \mathbb{N}$ ein Primteiler von n_0 , also $n_0 = p \cdot n'$ mit $n' \in \mathbb{N}$ und n' < n, dann gilt nach unserer Wahl von n_0

$$|p| = |p| \cdot |n'| = |p \cdot n'| = |n_0| < 1.$$

Folglich muss schon $p=n_0$ gelten. Ziel wird es jetzt natürlich sein zu zeigen, dass $|\cdot|$ äquivalent zum p-adischen Absolutbetrag ist. Zunächst finden wir ein $\alpha \in \mathbb{R}^+$ mit $|p|=|p|_p^\alpha=\frac{1}{p^\alpha}$. Sei als nächstes $n\in\mathbb{Z}$ mit $p\not\mid n$. Wir schreiben

$$n = rp + s, r \in \mathbb{Z}, 0 < s < p$$

Nach unserer Wahl von $p = n_0$ gilt |s| = 1 und |rp| < 1. Es folgt

$$|n| = \max\{|rp|, |s|\} = 1.$$

Sei nun $n \in \mathbb{Z}$ beliebig. Wir schreiben $n = p^v n'$ mit $p \nmid n'$ und sehen

$$|n| = |p|^v |n'| = |p|^v = (|p|_n^\alpha)^v = |n|_n^\alpha$$

Mit den gleichen Überlegungen aus dem ersten Fall folgt damit die Behauptung.

2.2 Vervollständigungen von Q

Eine Möglichkeit die reellen Zahlen $\mathbb R$ zu definieren war über die *Vervollständigung* der rationalen Zahlen $\mathbb Q$ bezüglich des Absolutbetrags $|\cdot|_{\infty}$. Wir werden diese Konstruktion für unsere p-adischen Beträge $|\cdot|_p$ benutzen und geben daher im folgenden Abschnitt eine kurze Wiederholung der wichtigsten Konzepte.

Ein metrischer Raum ist ein Paar (X, d) bestehen aus einer nichtleeren Menge X und einer Abbildung $d: X \times X \to \mathbb{R}$, die

•
$$d(x,y) = 0 \Leftrightarrow x = y$$

• d(x,y) = d(y,x)

•
$$d(x,y) \le d(x,z) + d(z,y)$$

erfüllt. Eine Folge (x_n) in X heißt konvergent gegen $x \in X$, wenn die reelle Folge $(d(x_n, x))$ eine Nullfolge ist. Eine Cauchy-Folge in dem metrischen Raum X ist eine Folge (x_n) in X, so dass für alle $\epsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, so dass $d(x_n, x_m) < \epsilon$ für alle $n, m \geq n_0$ gilt. Im nicht-archimedischen Fall vereinfacht sich diese Definition etwas.

Lemma 2.6. Eine Folge (x_n) rationaler Zahlen ist genau dann bezüglich eines nichtarchimedischen Absolutbetrags $|\cdot|$ eine Cauchy-Folge, wenn

$$\lim_{n \to \infty} |x_{n+1} - x_n| = 0$$

Beweis. Wenn m > n, so haben wir

$$|x_m - x_n| = \left| \sum_{k=n}^{m-1} x_{k+1} - x_k \right| \le \max\{|x_m - x_{m-1}|, \dots, |x_{n+1} - x_n|\}$$

und das Lemma folgt sofort aus den Definitionen.

Man sieht leicht, dass jede konvergente Folge auch eine Cauchy-Folge ist. Die Umkehrung gilt allerdings im Allgemeinen nicht. Ist jede Cauchy-Folge konvergent, so nennen wir den metrischen Raum (X, d) vollständig.

Die Absolutbeträge $|\cdot|_p$ induzieren durch $d_p(x,y) = |x-y|_p$ eine Metrik auf \mathbb{Q} . Es ist bereits bekannt, dass (\mathbb{Q}, d_{∞}) nicht vollständig ist. Für $p < \infty$ haben wir folgendes

Lemma 2.7. Der metrische Raum (\mathbb{Q}, d_p) ist nicht vollständig.

Beweis. Wir geben einen kurzen Beweis für p > 3 und verweisen auf Gouvea [4] Lemma 3.2.3 für die verbleibenden zwei Fälle.

Betrachten wir die Folge $(x_n) = (a^{p^n})$, wobei 1 < a < p-1 eine natürliche Zahl ist. Es gilt

$$\left| a^{p^{n+1}} - a^{p^n} \right|_p = \left| a^{p^n} (a^{p^n(p-1)} - 1) \right|_p$$

Nach dem kleinen Satz von Fermat wissen wir $a^{p^n(p-1)} - 1 \equiv 0 \pmod{p^n}$, also ist p^n ein Teiler von $a^{p^n(p-1)} - 1$ und es folgt

$$|x_{n+1} - x_n|_p = |a^{p^n}|_p \cdot |(a^{p^n(p-1)} - 1)|_p \le p^{-n} \to 0.$$

Damit ist (x_n) eine Cauchy-Folge. Angenommen (x_n) konvergiert gegen ein $x \in \mathbb{Q}$. Dann haben wir

$$x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} x_{n+1}^p = x^p$$

und folglich x = 1 oder x = -1. Für n genügend groß gilt

$$|x - a|_p = |x - x_n + x_n - a|_p \le \max\{|x - x_n|_p, |x_n - a|_p\}$$
$$= |x_n - a|_p = \underbrace{|a|_p}_{\le 1} \cdot \left| a^{p^n - 1} - 1 \right|_p \le \left| a^{p^n - 1} - 1 \right|_p < 1,$$

am Ende wieder nach dem kleinen Satz von Fermat. Also ist p ein Teiler von x-a. Wegen $x=\pm 1$ und der Wahl von a ist aber 0 < x-a < p. Ein Widerspruch. \square

Satz 2.8. Für jedes $p \leq \infty$ auf \mathbb{Q} gibt es eine Vervollständigung \mathbb{Q}_p und ein Absolutbetrag $|\cdot|_p$ mit folgenden Eigenschaften:

- 1. Es gibt eine Inklusion $\mathbb{Q} \hookrightarrow \mathbb{Q}_p$ und der durch $|\cdot|_p$ auf \mathbb{Q} induzierte Betrag ist der p-adische bzw. reelle Absolutbetrag.
- 2. Das Bild von \mathbb{Q} bezüglich diser Inklusion ist dicht in \mathbb{Q}_p .
- 3. \mathbb{Q}_p ist vollständig bezüglich des Absolutbetrags $|\cdot|_n$.

Der Körper \mathbb{Q}_p mit diesen Eigenschaften ist eindeutig bis auf isometrische Isomorphie.

2.3 Potenzreihen

Wie auch schon im Fall der Vervollständigung von \mathbb{Q} bezüglich $|\cdot|_{\infty}$ ist diese Konstruktion etwas schwieriger zu handhaben. In \mathbb{R} hatten wir die Dezimalbruchentwicklung $x=\pm\sum_{k=-\infty}^n x_k 10^k, \, x_k \in \{0,\ldots,9\}$ oder etwas allgemeiner die b-adische Darstellung $x=\pm\sum_{k=-\infty}^n x_k b^k, \, x_k \in \{0,\ldots,b-1\}$ für eine natürliche Zahl b>1, die zwar nicht unbedingt eindeutig ist $(0,999\cdots=1,000\ldots)$ aber leichter zu handhaben als Äquivalenzklassen von Cauchy-Folgen. Zu unserer Freude werden wir feststellen, dass auch in \mathbb{Q}_p eine ähnliche Darstellung gibt. Diese ist im Gegensatz zu der in \mathbb{R} eindeutig und besitzt nur endlich viele Nachkommastellen, allerdings nicht unbedingt endlich viele Vorkommastellen.

Satz 2.9. Jede Element $x \in \mathbb{Q}_p$ lässt sich eindeutig als eine Potenzreihe

$$x = \sum_{k=N}^{\infty} x_k p^k$$

 $mit \ x_k \in \{0, \dots, p-1\}, \ x_n \neq 0 \ und \ n \in \mathbb{Z} \ darstellen. \ Insbesondere \ gilt \ |x|_p = p^{-n}.$

Beweis. Wir zeigen zunächst das die Folge der Partialsummen $S_n = \sum_{k=N}^n x_k p^k$ in \mathbb{Q}_p konvergiert.

$$|S_n - S_{n-1}|_p = |x_n p^n|_p \le p^{-n} \to 0$$

und damit haben wir schon gezeigt, dass die Partialsummen eine Cauchy-Folge bilden. Da \mathbb{Q}_p vollständig ist konvergiert diese gegen einen Wert für den wir $\sum_{k=N}^{\infty} x_k p^k$ schreiben.

Als nächstes sei $x \in \mathbb{Z}_p$. Wir konstruieren nun eine Folge (x_k) mit $x_k \in \{0, \dots, p-1\}$, so dass die Partialsummen $S_n = \sum_{k=0}^n x_k p^k$ gegen x konvergieren. Da \mathbb{Q} dicht in \mathbb{Q}_p liegt finden wir für jedes $n \in \mathbb{N}_0$ einen vollständig gekürzten Bruch $\frac{a}{b} \in \mathbb{Q}$ der

$$\left| x - \frac{a}{b} \right|_p \le p^{-n} < 1$$

In der Tat finden wir sogar eine ganze Zahl. Denn für $\frac{a}{h}$ wie oben haben wir

$$\left|\frac{a}{b}\right|_p \leq \max\left\{|x|_p, \left|x - \frac{a}{b}\right|_p\right\} \leq 1,$$

was zeigt, dass p kein Teiler von b ist. Wir finden daher eine Bezout-Darstellung $1 = b'b + p'p^n$, also $b'b \equiv 1 \pmod{p^n}$ für $b', p' \in \mathbb{Z}$. Es folgt

$$\left| \frac{a}{b} - ab' \right|_p = \left| \frac{a(1 - bb')}{b} \right|_p = \left| \frac{a(p'p^n)}{b} \right|_p \le p^{-n}$$

und natürlich $ab' \in \mathbb{Z}$. Wir definieren nun $y_n \in \mathbb{Z}$ als die eindeutige Zahl, so dass

$$0 \le y_n \le p^n - 1 \text{ und } y_n \equiv ab' \pmod{p^n}.$$

Wir folgern analog zu eben

$$|x - y_n|_p = \left| x - \frac{a}{b} + \frac{a}{b} - ab' \right|_p \le \max \left\{ \left| x - \frac{a}{b} \right|_p, \left| \frac{a}{b} - y_n \right|_p \right\} = p^{-n}$$

und folglich konvergiert die Folge (y_n) gegen x. Wir zeigen, dass diese Folge eindeutig ist. Sei dazu y_n' eine weiter Zahl mit $0 \le y_n' \le p^n - 1$ und $|x - y_n'|_p \le p^{-n}$. Dann gilt aber wie eben

$$|y_n - y'_n|_p = |y_n - x + x - y'_n|_p \le p^{-n},$$

also ist p^n ein Teiler von $y_n - y_n'$ und folglich $y_n - y_n' = 0$. Aus dieser Eindeutigkeit folgt unter anderem auch, dass $y_n \equiv y_{n-1} \pmod{p^{n-1}}$, denn

$$|y_n - y_{n-1}|_p = |y_n - x + x - y_{n-1}|_p \le \max\{|y_n - x|_p, |x - y_{n-1}|_p\} = p^{-n+1},$$

und folglich p^{n-1} ein Teiler von $y_n - y_{n-1}$. Die eindeutigen p-adischen Entwicklungen dieser y_n sind genau die gesuchten Partialsummen S_n und definieren die x_k daher induktiv.

Für jedes beliebige $x \in \mathbb{Q}_p$ finden wir ein $n \in \mathbb{N}_0$, so dass $p^n x \in \mathbb{Z}_p$ und damit eine Entwicklung $p^n x = \sum_{k=0}^{\infty} x_k p^k$. Also haben wir

$$x = \sum_{k=-n}^{\infty} x_{k+n} p^k$$

3 Lokalkompakte Gruppen

Definition 3.1. Eine topologische Gruppe ist eine Gruppe G zusammen mit einer Topologie, die die folgenden Eigenschaften erfüllt:

(i) Die Gruppenoperation

$$G \times G \to G$$

 $(g,h) \mapsto gh$

stetig auf der Produkttopologie von $G \times G$.

(ii) Die Umkehrabbildung

$$G \to G$$

 $g \mapsto g^{-1}$

ist stetig.

Lemma 3.2. Sei I eine Indexmenge und G_i eine topologische Gruppe für alle $i \in I$. Das direkte Produkt $G = \prod_{i \in I} G_i$ versehen mit der Produkttopologie ist und komponentenweiser Gruppenverknüpfung ist wieder eine topologische Gruppe.

Beweis. Wir erinnern uns daran, dass eine Basis der Produkttopologie gegeben ist durch Rechtecke der Form

$$\prod_{i \in E} U_i \times \prod_{i \in I \setminus E} G_i,$$

wobei E eine endliche Teilmenge von I und jedes U_i offen in G_i ist. Ohne Einschränkung sei also

$$W = \prod_{i \in E} W_i \times \prod_{i \in I \setminus E} G_i$$

eine offene Umgebung von $gh = (g_i h_i)$. Da die G_i topologische Gruppen sind, finden wir für alle $i \in E$ offene Umgebungen U_i und V_i von g_i und h_i , sodass $U_i V_i \subseteq W_i$. Wir behaupten nun, dass

$$(\prod_{i \in E} U_i \times \prod_{i \in I \setminus E} G_i) \times (\prod_{i \in E} V_i \times \prod_{i \in I \setminus E} G_i)$$

eine offene Umgebung von $(g,h) \in G \times G$ ist, deren Bild in W liegt. Der erste Aussage ist klar, da beide Faktoren des Produkts offene Basiselemente der Topologie sind. Das Bild unter Gruppenoperation ist gegeben durch

$$\prod_{i \in E} U_i V_i \times \prod_{i \in I \setminus E} G_i,$$

was nach unseren Überlegungen in W liegt. Der Beweis für die Umkehrabbildung funktioniert analog.

Definition 3.3. Ein topologischer Raum heißt *lokalkompakt*, wenn jeder Punkt des Raumes eine kompakte Umgebung hat. Eine *lokalkompakte Gruppe* ist eine topologische Gruppe, die lokalkompakt und hausdorffsch ist.

Lemma 3.4. Seien G_1 und G_2 zwei lokalkompakte Gruppen. Dann ist $G_1 \times G_2$ wieder lokalkompakt. Insbesondere ist also jedes endliche direkte Produkt lokalkompakter Gruppen lokalkompakt.

Beweis. Sei $(g_1, g_2) \in G_1 \times G_2$. Wegen der Lokalkompaktheit von G_1 und G_2 finden wir kompakte Umgebungen K_1 , K_2 von g_1 bzw. g_2 . Dann ist aber $K_1 \times K_2$ eine kompakte Umgebung von (g_1, g_2) . Weiter ist das direkte Produkt zweier Hausdorff-Räume wieder hausdorffsch, wodurch $G_1 \times G_2$ zu einer lokalkompakten Gruppe wird.

Wie wir in Lemma 5.1 sehen werden, kann diese Aussage nicht ohne Weiteres auf beliebig große direkte Produkte übertragen werden.

3.1 Das Haar-Maß

Nun zu etwas Maßtheorie. Wir beginnen mit einer kleinen Auffrischung der wichtigsten Objekte. Eine σ -Algebra auf einer Menge X ist eine Teilmenge Ω von P(X), so dass

- (i) $X \in \Omega$
- (ii) Wenn $A \in \Omega$, dann $A^c \in \Omega$, wobei hier $A^c := X \setminus A$ das Komplement von A in X notiert.
- (iii) Ω ist abgeschlossen unter abzählbarer Vereinigung, d.h. $\bigcup_{k=0}^{\infty} A_k \in \Omega$, falls $A_k \in \Omega$ für alle k.

Die Elemente in Ω werden messbar genannt. Aus den Axiomen lässt sich leicht folgern, dass die leere Menge und abzählbare Schnitte von messbaren Mengen wiederum messbar sind. Weiter ist der Schnitt $\bigcap_n \Omega_n$ beliebiger Familien $\{\Omega_n\}$ von σ -Algebren auf X selbst wieder eine σ -Algebra.

Eine Menge X zusammen mit einer σ -Algebra Ω bilden den messbaren Raum (X,Ω) . Ist X ein topologischer Raum, so können wir die kleinste σ -Algebra $\mathcal B$ betrachten, die alle offenen Mengen von X enthält. Die Elemente von $\mathcal B$ werden Borelmengen von X genannt.

Nun zum eigentlichen Messen der messbaren Mengen. Ein $Ma\beta$ auf einem beliebigen messbaren Raum (X,Ω) ist eine Funktion $\mu:\Omega\to[0,\infty]$ mit $\mu(\emptyset)=0$ und die σ -additiv ist. Das bedeutet

$$\mu(\bigcup_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \mu(A_n)$$

für beliebige Familien $\{A_n\}_1^{\infty}$ von paarweise disjunkten Mengen in Ω .

Sei nun μ ein Borelmaß auf einem lokalkompakten hausdorffschen Raum X und sei E ein eine beliebige Borelmenge von X. Wir nennen μ von innen regulär auf E, falls

$$\mu(E) = \sup \{ \mu(K) : K \subseteq E, K \text{ kompakt} \}$$

Umgekehrt heißt μ von außen regulär auf E, wenn

$$\mu(E) = \inf{\{\mu(U) : E \subseteq U, U \text{ offen}\}}.$$

Definition 3.5. Ein $Radonma\beta$ auf X ist ein Borelmaß, das endlich auf kompakten Mengen, von innen regulär auf allen offenen Mengen und von außen regulär auf allen Borelmengen ist.

Satz 3.6 (Rieszscher Darstellungssatz). Sei I ein positives lineares Funktional auf dem Raum der stetigen Funktionen mit kompakten Trager $C_c(G)$. Dann gibt es ein eindeutiges Radonmaß μ auf G, so dass $I(f) = \int f d\mu$ für alle $C_c(G)$.

Dieser Satz ist ein wichtiger Grundstein für viele Sätze über Radonmaße. Sind zum Beispiel X und Y zwei lokalkompakte Gruppen mit dazugehörigen Radonmaßen μ und ν so ist im Allgemeinen das Produktmaß $\mu \times \nu$ kein Borel- und daher Radonmaß auf $X \times Y$. Wir definieren daher das Radonprodukt von μ und ν als das Radonmaß welches durch das positive Funktional $I(f) = \int f d(\mu \times \nu)$ nach Rieszschen Darstellungssatz gegeben wird. Dieses Produkt wird in Kapitel 5.1 eine Rolle spielen. Für unsere späteren Berechnungen müssen wir uns allerdings keine Sorgen machen, denn erfüllen X und Y das zweite Abzählbarkeitsaxiom so entspricht das Radonprodukt genau dem Produktmaß. Für eine ausfürhliche Behandlung dieser Konzepte siehe Folland [3] Kapitel 7.

Sei nun G eine topologische Gruppe und μ ein Borelmaß auf G. Wir können untersuchen, wie sich das Maß bezüglich der Translation durch beliebige Gruppenelemente $g \in G$ verhält. Gilt $\mu(gE) = \mu(E)$ für jede Borelmenge, so nennen wir μ linksinvariant. Analog heißt μ rechtsinvariant, falls $\mu(Eg) = \mu(E)$. Diese beiden Begriffe fallen natürlich zusammen, wenn G abelsch ist.

Nun haben wir alle wichtigen Konzepte zusammen für folgende wichtige

Definition 3.7. Sei G eine lokalkompakte Gruppe. Ein *linkes* (beziehungsweise rechtes) $Haar-Ma\beta$ auf G ist ein linksinvariantes (beziehungsweise rechtsinvariantes) Radon-Maß, das auf nichtleeren offenen Mengen positiv ist.

Beispiele 3.8.

- (i) Ist G eine diskrete Gruppe, dann ist das Zählmaß ein Haar-Maß.
- (ii) Für $G = \mathbb{R}^+$ definiert das Lebesgue-Maß dx ein Haarsches Maß.
- (iii) Für $G=\mathbb{R}^{\times}$ wird durch $\mu(E):=\int_{\mathbb{R}^{\times}}\mathbbm{1}_{E}\frac{1}{|x|}dx$ ein Haar-Maß, wie wir in TODO sehen werden.

Satz 3.9 (Existenz und Eindeutigkeit des Haar-Maß). Sei G eine lokalkompakte Gruppe. Dann existiert ein linksinvariantes Haar-Maß auf G. Dieses ist eindeutig bis auf skalares Vielfaches.

Beweis. Einen ausfürhlichen Beweis befindet sich in [2] Kapitel 1. \Box

Lemma 3.10. Sei K eine kompakte Gruppe mit Haar-Maß dx und $\chi: K \to S^1$ ein Charakter. Dann gilt

$$\int_{K} \chi(x) dx = \begin{cases} \operatorname{Vol}(K, dx), & \text{falls } \chi \equiv 1\\ 0, & \text{ansonsten.} \end{cases}$$

Beweis. Der erste Fall ist klar. Im zweiten Fall gibt es ein $x_0 \in K$ mit $\chi(x_0) \neq 1$ und mit Translationsinvarianz daher

$$\int_{K} \chi(x)dx = \int_{K} \chi(x_{0}x)dx = \chi(x_{0}) \int_{K} \chi(x)dx.$$

Umstellen und Division durch $\chi(x_0) - 1 \neq 0$ ergibt $\int_K \chi(x) dx = 0$.

Lemma 3.11. Für jede Abbildung $f \in L^1(G, \mu)$ gilt

(a)
$$\int_C f(xy)d\mu(x) = \int_C f(x)d\mu(x)$$

(b)
$$\int_{G} f(x^{-1}) d\mu(x) = \int_{G} f(x) d\mu(x)$$

Beweis. (a) folgt leicht aus der Definition des Integrals und der Translationsinvarianz des Maßes.

Für (b) überlegen wir uns zunächst, dass $\tilde{\mu}(E) := \mu(E^{-1})$ ein weiteres Haar Maß auf G definiert. Nach der Eindeutigkeit unterscheiden sich beide Maße nur um eine Konstante c>0. Wir wollen zeigen, dass c=1 ist. Sei dazu K eine kompakte Umgebung der 1. Dann gibt es eine offene Umgebung U der 1 mit $G\subseteq K$. Definieren wir nun $S:=KK^{-1}$, so ist S kompakt, $U\subseteq S$ und es gilt $0<\mu(U)\leq\mu(S)<\infty$. Es folgt $c\cdot\mu(S)=\tilde{\mu}(S)=\mu(S^{-1})=\mu(S)$ und damit c=1. Das Haar-Maß ist also invariant unter der Umkehrabbildung. Der Rest folgt dann aus der Definition des Integrals.

3.2 Charaktere

Definition 3.12. Ein *Charakter* einer topologischen Gruppe G ist ein stetiger Gruppenhomomorphismus von G in die multiplikative Gruppe \mathbb{C}^{\times} der komplexen Zahlen. Ein Charakter heißt *unitär*, wenn dessen Bild auf dem Einheitskreis $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ liegt, und *trivial*, wenn er konstant ist.

In der Literatur werden Charaktere auch häufiger *Quasi-Charaktere* genannt. Unitäre Charaktere verlieren ihren Zusatz und werden nur Charakter genannt. Beginnen wir mit ein paar Beispielen.

Beispiele 3.13.

- Für jede topologische Gruppe G ist die Abbildung $g \mapsto 1$ ist ein trivialer (unitärer) Charakter. Er ist sogar der einzige triviale Charakter, denn für jeden Gruppenhomomorphismus χ gilt $\chi(1) = 1$.
- Ein nicht-triviales Beispiel für einen unitären Charakter ist die Abbildung $t \mapsto \exp(it)$ von der additiven Gruppe \mathbb{R}^+ in den Einheitskreis S^1 .
- Die bekannte Abbildung exp : $\mathbb{C}^+ \to \mathbb{C}^\times$ von der additiven Gruppe in die multiplikative Gruppe der komplexen Zahlen ist ein Charakter, jedoch nicht unitär.
- Im p-adischen Fall haben wir mit $x \mapsto |x|_p^s$ einen sogenannten multiplikativen Charakter, d.h. einen Charakter auf der multiplikativen Gruppe \mathbb{Q}_p^{\times} .

3.3 Abstrakte Fourieranalysis

Die unitären Charaktere einer topologischen Gruppe G bilden mit der punktweisen Multiplikation $\chi\psi(x)=\chi(x)\psi(x)$ selbst wieder eine Gruppe, welche als die duale Gruppe \hat{G} bezeichnet wird. Ausgestattet mit der kompakt-offen Topologie wird diese selbst wieder zu einer topologischen Gruppe und man kann sogar zeigen, dass \hat{G} genau dann lokalkompakt ist, wenn G selber lokalkompakt ist.

Definition 3.14 (Fouriertransformation). Sei $f \in L^1(G)$. Wir definieren dann die Fouriertransformation $\hat{f}: \hat{G} \to \mathbb{C}$ von f durch die Formel

$$\hat{f}(\chi) = \int_G f(x)\overline{\chi}(x)dx$$

für alle $\chi \in \hat{G}$.

Diese Formel macht Sinn, denn für alle $x \in G$ hat $\chi(x)$ den Betrag 1. Ist also f integrierbar, so ist es auch das Produkt im Integranden. Da \hat{G} selber wieder lokalkompakt ist, besitzt das Duale ein Haar-Maß und es macht Sinn die Fouriertransformation auf \hat{G} betrachten. Dabei stoßen wir auf folgenden Satz.

Satz 3.15 (Fourier-Umkehrformel für lokalkompakte Gruppen). Es gibt ein Haar-Maß $d\chi$ auf \hat{G} , so dass alle $f \in L^1(G)$ stetig mit $\hat{f} \in L^1(\hat{G})$, die Gleichung

$$f(x) = \int_{\hat{G}} \hat{f}(\chi) \chi(x) d\chi$$

erfüllen. Insbesondere ist also $\hat{f}(x) = f(-x)$.

Beweis. Siehe zum Beispiel [3] Kapitel 4, Satz 4.32 oder [2] Kapitel 3, Satz 3-9. $\hfill\Box$

 ${\bf Satz}$ 3.16 (Pontryagin Dualität). Jede lokalkompakte Gruppe G ist kanonisch isomorph zu ihrem Doppel-Dual $\hat{\hat{G}}$

4 Die lokale Theorie

4.1 Lokale Körper

Wir betrachten im Folgenden alle

Satz 4.1. Für alle Stellen $p \leq \infty$ gilt

- (i) $(\mathbb{Q}_p, +)$ ist eine lokalkompakte Gruppe.
- (ii) $(\mathbb{Q}_{p}^{\times},\cdot)$ ist eine lokalkompakte Gruppe.

Beweis. Zu (i): Die Stetigkeit der Addition und der Negierung sind eigentlich direkte Folgen der Konstruktion der Vervollständigung. Als kleine Auffrischung zeigen wir sie trotzdem. Seien $x_n \to x$ und $y_n \to y$ konvergente Folgen in \mathbb{Q}_p . Es ist zu zeigen, dass $x_n + y_n$ gegen x + y konvergiert. Nach der Dreiecksungleichung gilt

$$|(x_n + y_n) - (x + y)|_p = |(x_n - x) + (y_n - y)|_p \le |(x_n - x)|_p + |(y_n - y)|_p.$$

Die rechte Seite konvergiert gegen 0, also ist die linke eine Nullfolge und die Stetigkeit der Addition folgt. Ähnlich zeigen wir $-x_n \to -x$, denn $|(-x_n) - (-x)|_p = |x_n - x|_p$. Damit ist \mathbb{Q}_p eine topologische Gruppe.

Da die Topologie von einer Metrik induziert wird, ist diese hausdorffsch. Wir müssen folglich nur noch die Lokalkompaktheit zeigen. Wegen der Stetigkeit der Addition reicht es dazu eine kompakte Umgebung der 0 zu finden, denn sei K eine kompakte Nullumgebung, so ist a+K für beliebige $a\in\mathbb{Q}_p$ eine kompakte Umgebung von a. Wir behaupten, dass die Umgebung

$$\mathbb{Z}_p = \{ x \in \mathbb{Q}_p : |x|_p \le 1 \}$$

kompakt ist. Für $p=\infty$ ist $\mathbb{Z}_{\infty}=[-1,1]$ also kompakt. Für $p<\infty$ genügt es zu zeigen, dass \mathbb{Z}_p vollständig und totalbeschränkt ist. Ersteres folgt daraus, dass \mathbb{Z}_p als abgeschlossene Menge des vollständigen Raumes \mathbb{Q}_p selber vollständig ist. Eine Menge heißt totalbeschränkt, wenn wir sie für jedes $\varepsilon>0$ mit endlich vielen ε -Bällen überdecken können. Wir können uns auf ε der Form p^{-k} , $k\geq 0$ beschränken, da unsere Metrik nur den diskreten Wertebereich $p^{\mathbb{Z}}$ hat. Es ist $p^{k+1}\mathbb{Z}_p$ eine Untergruppe von \mathbb{Z}_p und für den Index gilt $[\mathbb{Z}_p:p^{k+1}\mathbb{Z}_p]=p^{k+1}$. Das bedeutet, dass die p^{-k} -Bälle

$$a + p^{k+1}\mathbb{Z}_p = \{y \in \mathbb{Z}_p : |y - a|_p \le p^{-k-1}\} = \{y \in \mathbb{Z}_p : |y - a|_p < p^{-k}\} = B_{p^{-k}}(a)$$

mit $a=0\dots p^{k+1}-1$ die Menge \mathbb{Z}_p überdecken. Als vollständige und totalbeschränkte Menge ist \mathbb{Z}_p somit kompakt.

Zu (ii): $\mathbb{Q}_p^{\times} = \mathbb{Q}_p \setminus \{0\}$ ist ein offener Teilraum von \mathbb{Q}_p und somit selbst wieder hausdorffsch und lokalkompakt. Für die Stetigkeit seien $x_n \to x$ und $y_n \to y$ zwei konvergente Folgen in \mathbb{Q}_p^{\times} . Wir zeigen, dass $x_n y_n$ gegen xy konvergiert. Dies folgt aus der Abschätzung

$$|x_n y_n - xy|_p = |x_n y_n - x_n y + x_n y - xy|_p$$

$$\leq |x_n y_n - x_n y|_p + |x_n y - xy|_p$$

$$= \underbrace{|x_n|_p}_{\text{beschränkt}} \underbrace{|y_n - y|_p}_{\to 0} + \underbrace{|x_n - x|_p}_{\to 0} |y|_p \to 0$$

Weiter zur Invertierung. Wegen

$$\left| \frac{1}{x_n} - \frac{1}{x} \right|_p = \frac{|x_n - x|_p}{|x_n x|_p} \to 0$$

folgt, dass x_n^{-1} gegen x^{-1} konvergiert und die Stetigkeit ist gezeigt.

Satz 4.2. Für jede messbare Menge $A \subset \mathbb{Q}_p$ und jedes $x \in \mathbb{Q}_p$ gilt

$$\mu(xA) = |x|_n \mu(A).$$

Insbesondere folgt für jedes $f \in L^1(\mathbb{Q}_p)$ und $x \neq 0$:

$$\int_{\mathbb{Q}_p} f(x^{-1}y) d\mu(y) = |x|_p \int_{\mathbb{Q}_p} f(y) d\mu(y).$$

Beweis. Sei $x \in \mathbb{Q}_p^{\times}$. Die Funktion μ_x definiert durch

$$\mu_x(A) = \mu(xA)$$

definiert wieder ein Haar-Maß auf \mathbb{Q}_p und unterscheidet sich daher nur durch Skalierung mit einer positiven Konstante c>0 von μ . Ziel wird es nun sein $c=|x|_p$ zu zeigen. Dies ist klar im Fall $p=\infty$. Für $p<\infty$ reicht es dank unserer Normierung $\mu(x\mathbb{Z}_p)=|x|_p$ zu zeigen. Sei dazu $|x|_p=p^{-k}$. Dann ist $x=p^ky$ mit $y\in\mathbb{Z}_p$ und $x\mathbb{Z}_p=p^k\mathbb{Z}_p$. Daher reduziert sich unsere Betrachtung auf $\mu(p^k\mathbb{Z}_p)=p^{-k}$. Beginnen wir mit dem Fall $k\geq 0$. Dann ist $p^k\mathbb{Z}_p$ eine Untergruppe von \mathbb{Z}_p und für den Index gilt $[\mathbb{Z}_p:p^k\mathbb{Z}_p]=p^k$. Wir haben also eine disjunkte Zerlegung $\mathbb{Z}_p=\bigsqcup_{a=0}^{p^k-1}a+p^k\mathbb{Z}_p$. Aus der Translationsinvarianz folgern wir dann

$$1 = \mu(\mathbb{Z}_p) = \sum_{a=0}^{p^k - 1} \mu(a + p^k \mathbb{Z}_p) = \sum_{a=0}^{p^k - 1} \mu(p^k \mathbb{Z}_p) = p^k \mu(p^k \mathbb{Z}_p).$$

Die Behauptung folgt dann durch einfaches Umformen. Im anderen Fall k < 0 ist umgekehrt \mathbb{Z}_p eine Untergruppe von $p^k\mathbb{Z}_p$ mit Index $[p^k\mathbb{Z}_p : \mathbb{Z}_p] = p^{-k}$ und die Behauptung folgt analog.

Satz 4.3. Ist dx ein additives Haar-Ma β auf \mathbb{Q}_p , so definiert $\frac{dx}{|x|_p}$ ein multiplikatives Haar-Ma β $d^{\times}x$ auf \mathbb{Q}_p^{\times} . Insbesondere gilt dann für alle $g \in L^1(\mathbb{Q}_p^{\times})$

$$\int_{\mathbb{Q}_p^{\times}} g(x) d^{\times} x = \int_{\mathbb{Q}_p \setminus \{0\}} g(x) \frac{dx}{|x|_p}$$

Beweis. Wir haben bereits gezeigt, dass \mathbb{Q}_p^{\times} eine lokalkompakte Gruppe ist und folglich ein Haar-Maß besitzt. Wenn wir nun ein positives, lineares Funktional auf $C_c(\mathbb{Q}_p^{\times})$ angeben, erhalten wir nach Rieszschen Darstellungssatz ein Radonmaß, welches diesem Funktional entspricht. Ist nun $g \in C_c(\mathbb{Q}_p^{\times})$, so ist $g|\cdot|_p^{-1} \in C_c(\mathbb{Q}_p \setminus \{0\})$. Dies ist in der Tat eine eins-zu-eins Zuweisung. Wir definieren nun das Funktional

$$\Phi(g) = \int_{\mathbb{Q}_p \setminus \{0\}} g(x) \frac{dx}{|x|_p}.$$

Dieses ist offensichtlich ein positives, nicht-triviales, lineares Funktional auf $C_c(\mathbb{Q}_p^{\times})$. Es ist translationsinvariant, denn

$$\int_{\mathbb{Q}_p \setminus \{0\}} g(y^{-1}x) \frac{dx}{|x|_p} = \int_{\mathbb{Q}_p \setminus \{0\}} g(x) \frac{|y|_p dx}{|yx|_p} = \int_{\mathbb{Q}_p \setminus \{0\}} g(x) \frac{dx}{|x|_p},$$

folglich kommt es von einem Haar-Maß $d^{\times}x$. Der zweite Teil der Behauptung folgt aus der Tatsache, dass die Funktionen in $C_c(\mathbb{Q}_p^{\times})$ dicht in $L^1(\mathbb{Q}_p^{\times})$ liegen. Beim Übergang zum Grenzwert erhalten wir die Gleichung auf Funktionen in L^1 .

4.2 Etwas Fourieranalysis

Für die unendliche Stelle $p=\infty$ definieren wir die Schwartz-Bruhat Funktion als eine komplexwertige, glatte Funktion f, die für alle nicht-negativen ganzen Zahlen n und m die Bedingung

$$\sup_{x \in \mathbb{Q}_{\infty}} \left| x^n \frac{d^m}{dx^m} f(x) \right| < \infty$$

erfüllt.* Für die endlichen Stellen $p < \infty$ definieren wir eine Schwartz-Bruhat Funktion als eine lokal konstante Funktion mit kompakten Tr?ger. Die Menge aller solcher Funktionen bilden einen komplexen Vektorraum, den wir mit $S(\mathbb{Q}_p)$ bezeichnen. Im Fall $p < \infty$ erkennt man leicht, dass $S(\mathbb{Q}_p) \subseteq L^1(\mathbb{Q}_p)$. Für $p = \infty$ gilt nach obiger Bedingung $(|1|+|x^2|)|f(x)| \leq C$, also $|f(x)| \leq C(1+x^2)^{-1}$ und $(1+x^2)^{-1} \in L^1(\mathbb{Q}_\infty)$

Beispiele 4.4.

- (i) Im Fall $p=\infty$ ist die Funktion $f_k=x^ke^{-x^2}$ für jedes $k\in\mathbb{N}_0$ in $S(\mathbb{Q}_\infty)$. Die Ableitungen $\frac{d^m}{dx^m}f_k(x)$ sind von der Form $p(x)e^{-x^2}$, wobei p(x) ein Polynom ist. Aus der Analysis ist dann bekannt, dass $\left|x^np(x)e^{-x^2}\right|$ für jedes $n\in\mathbb{N}_0$ beschränkt ist.
- (ii) Im Fall $p < \infty$ sind offensichtlich die charakteristischen Funktionen kompakter Mengen in $S(\mathbb{Q}_p)$. Beispiele für Kompakta sind Mengen der Form $a + p^k \mathbb{Z}_p$ mit $a \in \mathbb{Q}$ und $k \in \mathbb{Z}$.

Lemma 4.5. Jede Funktion $f \in S(\mathbb{Q}_p)$, $p < \infty$, ist eine endliche Linearkombination von charakteristischen Funktionen der Form $\mathbb{1}_{a+p^k\mathbb{Z}_p}$, wobei $a \in \mathbb{Q}$ und $k \in \mathbb{Z}$

Beweis. Sei $f \in S(\mathbb{Q}_p)$. Da f lokal konstant ist, ist für jedes $z \in \mathbb{C}$ das Urbild $f^{-1}(z)$ offen in \mathbb{Q}_p . Also ist $f^{-1}(0)$ offen, folglich $\mathbb{Q}_p \setminus f^{-1}(0)$ abgeschlossen und daher schon $\operatorname{supp}(f) = \mathbb{Q}_p \setminus f^{-1}(0)$. Per Definition hat die Schwartz-Bruhat Funktion f kompakten Träger, also ist $\mathbb{Q}_p \setminus f^{-1}(0)$ kompakt. Diese Menge wird von den offenen Mengen $f^{-1}(x)$ mit $x \neq 0$ überdeckt, wovon nach Kompaktheit schon endlich viele reichen. f hat somit endliches Bild. Weiter ist jede offene Menge $f^{-1}(x)$ eine disjunkte Vereinigung offener Bällen in \mathbb{Q}_p . Diese haben aber genau die gesuchte Form $a + p^k \mathbb{Z}_p$ wie oben. Aufgrund der Kompaktheit, reichen wieder endliche viele solcher Bälle. Damit folgt auch schon das Lemma.

Bevor wir mit etwas klassischer Fourieranalysis beginnen wollen wir den Kreis zur abstrakten Variante schließen. Dafür definieren wir zünachst für jede Stelle p einen nicht-trivialen, unitären Charakter e_p auf der additiven Gruppe \mathbb{Q}_p^+ und zeigen anschließend, dass wir jeden beliebigen Charakter $\psi \in \mathbb{Q}_p^+$ durch e_p darstellen können.

Definition 4.6. Wir definieren den *Standardcharakter* $e_p : \mathbb{Q}_p^+ \to S^1$ wie folgt:

$$p = \infty$$
: $e_p(x) = \exp(-2\pi i x)$

 $p < \infty$: Hier wird die Definition etwas aufwendiger. Zunächst haben wir eine natürliche Projektion $\mathbb{Q}_p \twoheadrightarrow \mathbb{Q}_p/\mathbb{Z}_p$. Die Äquivalenzklassen von $\mathbb{Q}_p/\mathbb{Z}_p$ werden nach unseren Überlegungen zur Potenzreihendarstellung eindeutig repräsentiert durch Zahlen der Form $\sum_{k=-n}^{-1} a_k p^k$ mit $a_k \in \mathbb{Z}$ und $0 \le a_k \le p-1$. Wir definieren den stetigen Homomorphismus $\mathbb{Q}_p/\mathbb{Z}_p \to \mathbb{Q}/\mathbb{Z}$ indem wir diese Repräsentanten als summen in \mathbb{Q} interpretieren. Zu guter Letzt schicken wir diese Summe in \mathbb{Q}/\mathbb{Z} durch $e: \mathbb{Q}/\mathbb{Z} \to S^1, x \mapsto \exp(2\pi i x)$ in den Einheitskreis. Alle

^{*}Hier ist mit $|\cdot|$ der komplexe Absolutbetrag gemeint.

diese Abbildungen sind stetige Gruppenhomomorphismen, bilden also selber wieder einen stetigen Gruppenhomomorphismus, den wir mit e_p bezeichnen. Interpretieren wir die Potenzreihenentwicklung der p-adischen Zahlen als nicht unbedingt konvergente Summe in \mathbb{Q} , so können wir (etwas unschön) schreiben

$$e_p\left(\sum_{k=-n}^{\infty} a_k p^k\right) = \exp\left(2\pi i \sum_{k=-n}^{\infty} a_k p^k\right) = \exp\left(2\pi i \sum_{k=-n}^{-1} a_k p^k\right)$$

Sei ψ ein unitärer Charakter auf \mathbb{Q}_p^+ , $p < \infty$ und U eine offene Umgebung der $1 \in S^1$, die nur die triviale Untergruppe 1 enthält. Aufgrund der Stetigkeit von ψ gibt es dann eine offene Umgebung V der $0 \in \mathbb{Q}_p^+$ mit $\psi(V) \subseteq U$. Ohne Einschränkung ist V eine Untergruppe der Form $p^k\mathbb{Z}_p$ für ein $k \in \mathbb{Z}$. Dann ist aber $\psi(V)$ eine Untergruppe von S^1 und somit gleich 1. Die kleinste Untegruppe $p^k\mathbb{Z}_p$ nennen wir den Konduktor von ψ .

Lemma 4.7. Jeder unitäre Charakter $\psi : \mathbb{Q}_p \to S^1$ ist von der Form $x \mapsto e_p(ax)$ für ein $a \in \mathbb{Q}_p$.

Beweis. Der Beweis teilt sich auf in die Fälle $p=\infty$ und $p<\infty$. Zuerst zu $p=\infty$: Sei $\psi:\mathbb{Q}_\infty\to S^1$ ein Charakter. Wegen der Stetigkeit von ψ existiert ein $\varepsilon>0$, so dass $\psi((-\varepsilon,\varepsilon))\subset\{z\in S^1:\Re(z)>0\}$. Wählen wir ε noch etwas kleiner können wir sogar $\psi([-\varepsilon,\varepsilon)])\subset\{z\in S^1:\Re(z)>0\}$ garantieren. Wir definieren nun a als das eindeutig bestimmte Element aus $[-\frac{1}{4\varepsilon},\frac{1}{4\varepsilon}]^{\dagger}$, so dass $\psi(\varepsilon)=\exp(2\pi i a \varepsilon)$. Als nächstes behaupten wir, dass auch

$$\psi\left(\frac{\varepsilon}{2}\right) = \exp\left(2\pi i a \frac{\varepsilon}{2}\right)$$

gilt. Wegen $\psi(\frac{\varepsilon}{2})^2 = \psi(\varepsilon) = \exp(2\pi i a \varepsilon)$ ist $\psi(\frac{\varepsilon}{2}) = \pm \exp(2\pi i a \frac{\varepsilon}{2})$. Da aber $\psi(\frac{\varepsilon}{2})$ nach der Wahl von ε positiven Realteil hat, kommt nur $\exp(2\pi i a \frac{\varepsilon}{2})$ in Frage. Durch Iteration des Arguments erhalten wir $\psi(\frac{\varepsilon}{2^n}) = \exp(2\pi i a \frac{\varepsilon}{2^n})$ für $n \in \mathbb{N}_0$.

Setzen wir jetzt $\varepsilon = 2^{-n_0}$ für ein geeignetes $n_0 \in \mathbb{N}$. Dann ist ε^{-1} eine natürliche Zahl und für beliebige $k \in \mathbb{Z}$ haben wir

$$\psi\left(\frac{k}{2^n}\right) = \psi\left(\frac{k\varepsilon}{2^n\varepsilon}\right) = \psi\left(\frac{\varepsilon}{2^n}\right)^{\frac{k}{\varepsilon}}$$
$$= \exp\left(2\pi i a \frac{\varepsilon}{2^n}\right)^{\frac{k}{\varepsilon}} = \exp\left(2\pi i a \frac{k}{2^n}\right)$$

Die Menge aller $\frac{k}{2^n}$ mit $k \in \mathbb{Z}$ und $n \in \mathbb{N}_0$ liegt nun aber dicht in \mathbb{R} und wir können aus der Stetigkeit $\chi(x) = \exp(2\pi i a x)$ schließen. Um die Eindeutigkeit von a zu sehen, reicht es die Ableitung von $x \mapsto \exp(2\pi i a x)$ zu berechnen und an der Stelle x = 0 auszuwerten. Der Wert beträgt gerade $2\pi i a$.

Kommen wir nun zum Fall $p < \infty$. Sei ψ ein unitärer Charakter auf \mathbb{Q}_p^+ und sei $p^k \mathbb{Z}_p$ dessen Konduktor. Für $k \leq 0$ gilt offensichtlich $\psi(\mathbb{Z}_p) = 1$. Ohne Beschränkung der Allgemeinheit betrachten wir nur solche Charaktere, denn im Fall k > 0 können wir auch den Charakter $x \mapsto \psi(p^k x)$ betrachten und die Aussage folgt aus $\psi(p^k x) = \psi(x)^{(p^k)}$.

Wir suchen nun ein geeignetes $a \in \mathbb{Q}_p$. Dabei fällt uns zunächst auf, dass der Charakter bereits eindeutig durch seine Werte fur p^{-k} , $k \in \mathbb{N}$ bestimmt wird. Da $\psi(\mathbb{Z}_p) = 1$ gilt nämlich

$$\psi\left(\sum_{k=-n}^{\infty} x_k p^k\right) = \sum_{k=-n}^{-1} \psi\left(p^k\right)^{x_k}.$$

[†]Also der Logarithmuszweig, dass $-\pi/2 < \varepsilon a < \pi/2$

Es reicht also ein geeignetes a für diese Potenzen zu finden. Schauen wir uns ψp^{-1} genauer an, so erkennen wir, dass dies eine p-te Einheitswurzel sein muss. Damit ist $\psi(p^{-1}) = \exp(2\pi i \frac{a_1}{p})$ für ein eindeutig bestimmtes natürliches $0 \le a_1 \le p - 1$. Analog argumentieren wir auch $\psi(p^{-k}) = \exp(2\pi i \frac{a_k}{p^k})$ mit $0 \le a_k \le p^k - 1$. Zudem gilt

$$\exp\left(2\pi i \frac{a_{k+1}}{p^k}\right) = \exp\left(2\pi i \frac{a_{k+1}}{p^{k+1}}\right)^p = \psi(p^{-k-1})^p = \psi(p^{-k}) = \exp\left(2\pi i \frac{a_k}{p^k}\right).$$

Für unsere Folge heißt das aber gerade $a_k \equiv a_{k+1} \pmod{p^k}$. Nach unseren Überlegunen zu den Potenzreihen definiert eine solche Folge aber gerade eine eindeutig bestimmte p-adische Zahl a mit $a \equiv a_k \pmod{p^k}$ und es gilt

$$e_p\left(\frac{a}{p^k}\right) = \exp\left(2\pi i \frac{a_k}{p^k}\right) = \psi\left(\frac{1}{p^k}\right)$$

Damit sind wir dann aber auch schon fertig.

Lemma 4.8. Sei $f \in S(\mathbb{Q}_p)$.

- (a) Ist $g(x) = f(x)e_p(ax)$ mit $a \in \mathbb{Q}_p$, dann gilt $\hat{g}(x) = \hat{f}(x-a)$.
- (b) Ist g(x) = f(x-a) mit $a \in \mathbb{Q}_p$, dann gilt $\hat{g}(x) = \hat{f}(x-a)e_p(-ax)$.
- (c) Ist $g(x) = f(\lambda x)$ mit $\lambda \in \mathbb{Q}_p^{\times}$, dann gilt $\hat{g}(x) = \frac{1}{|\lambda|_p} \hat{f}(\frac{x}{\lambda})$.

Beweis. (a) und (b) sind einfache Folgerungen aus der Definition mit der Multiplikativität von e_p und der Translationsinvarianz des Haar-Maß. Bei (c) spielt unsere Normeriung des Absolutbetrags eine Rolle, denn mit dem Variablenwechsel $y \mapsto \lambda^{-1} y$ erhalten wir

$$\hat{g}(x) = \int_{\mathbb{Q}_p} f(\lambda y) e_p(-xy) dy = \frac{1}{|\lambda|_p} \int_{\mathbb{Q}_p} f(y) e_p(-x\lambda^{-1}y) dy = \frac{1}{|\lambda|_p} \hat{f}\left(\frac{x}{\lambda}\right)$$

Satz 4.9. Ist $p \leq \infty$ und $f \in S(\mathbb{Q}_p)$, so ist $\hat{f} \in S(\mathbb{Q}_p)$ und es gilt die Umkehrformel

$$\hat{\hat{f}}(x) = f(-x)$$

Beweis. Betrachten wir zuerst den Fall $p < \infty$. Wie wir eben in Lemma 4.5 gesehen haben haben, ist jede Funktion in $S(\mathbb{Q}_p)$ eine Linearkombination von Funktionen der Form $f = \mathbb{1}_{a+p^k\mathbb{Z}_p}$. Es reicht also die Aussage für solche f zu zeigen. Sei dazu $h := \mathbb{1}_{\mathbb{Z}_p}$. Wir zeigen $\hat{h} = h$ durch folgende Rechnung

$$\hat{h}(x) = \int_{\mathbb{Q}_p} h(y)e_p(-xy)dy_p = \int_{\mathbb{Z}_p} e_p(-xy)dy_p.$$

Nun ist $\chi(y) := e_p(-xy)$ ein Charakter auf \mathbb{Z}_p und genau dann trivial, wenn $x \in \mathbb{Z}_p$. Weiter ist \mathbb{Z}_p kompakt. Nach Lemma 3.10 und unserer Normierung von dy_p folgt also

$$\hat{h}(h)(x) = \operatorname{Vol}(\mathbb{Z}_p, dy_p) \mathbb{1}_{\mathbb{Z}_p} = \mathbb{1}_{\mathbb{Z}_p} = h(x)$$

Wir führen nun folgende Operatoren auf $S(\mathbb{Q}_p)$ ein

$$L_a f(x) = f(x-a), M_{\lambda} f(x) = f(\lambda x),$$

18

wobei $a \in \mathbb{Q}_p$ und $\lambda \in \mathbb{Q}_p^{\times}$. Nun können wir f schreiben als $L_a M_{p^{-k}} h$. Es folgt

$$\hat{f} = (L_a M_{p^{-k}} h)^{\hat{}} = \Omega_{-a} p^k M_{p^k} \hat{h} = \Omega_{-a} p^{-k} M_{p^k} h.$$

Also ist $\hat{f}(x) = e_p(-ax)p^k \mathbb{1}_{p^{-k}\mathbb{Z}_p}(x)$. Der Charakter e_p ist lokal konstant, \hat{f} als das Produkt lokal konstanter Funktionen selbst wieder lokal konstant und damit in $S(\mathbb{Q}_p)$. Damit haben wir den ersten Teil der Aussage gezeigt.

Für den zweiten Teil sehen wir

$$\hat{\hat{f}} = (L_a M_{p^{-k}} h)^{\hat{\sim}} = L_{-a} (M_{p^k} h)^{\hat{\sim}} = L_{-a} M_{p^k} \hat{h} = L_{-a} M_{p^k} h,$$

also $\hat{f}(x) = \mathbb{1}_{-a+p^k\mathbb{Z}_p}(x) = \mathbb{1}_{a+p^k\mathbb{Z}_p}(-x) = f(-x)$. Hier haben wir $p^k\mathbb{Z}_p = -p^k\mathbb{Z}_p$ ausgenutzt. Damit haben wir die Umkehrformel für den p-adischen Fall gezeigt. Für $p = \infty$ ist die Formel bereits aus der klassischen Fourieranalysis bekannt.

4.3 Die lokale Funktionsgleichung

Die Einheiten K_p^{\times} der lokalen Körper \mathbb{Q}_p können dargestellt werden als direktes Produkt $\mathcal{O}_p^{\times} \times V(\mathbb{Q}_p)$, wobei \mathcal{O}_p^{\times} die Untergruppe der Elemente von \mathbb{Q}_p^{\times} mit Absolutbetrag 1 und

$$V(\mathbb{Q}_p) := \left| \mathbb{Q}_p^{\times} \right|$$

der Wertebereich des Absolutbetrags auf den Einheiten ist. Wir haben nämlich einen stetigen Homomorphismus $\tilde{\cdot}: x \mapsto \frac{x}{|x|_p}$ von \mathbb{Q}_p^{\times} nach \mathcal{O}_p^{\times} .

Für $p = \infty$ ist $\mathcal{O}_p^{\times} = \{-1, 1\}$ und $V(\mathbb{Q}_p) = \mathbb{R}_+^{\times}$. Jedes $x \in \mathbb{Q}_p$ hat gerade Form $x = \operatorname{sgn}(x)|x|_p$, denn \tilde{x} ist gerade die Signumsabbildung.

Wenn $p < \infty$ ist $\mathcal{O}_p^{\times} = \mathbb{Z}_p^{\times}$, $V(\mathbb{Q}_p) = p^{\mathbb{Z}}$ und wir können jedes Element $x \in \mathbb{Q}_p^{\times}$ schreiben als $x = |x|_p \tilde{x}$. Es wird nun von Interesse sein, wie die multiplikativen Charaktere auf die Untergruppe \mathcal{O}_p^{\times} wirken. Dazu zunächst eine kleine Definition.

Definition 4.10. Ein Charakter $\chi \in \operatorname{Hom_{cont}}(\mathbb{Q}_p^{\times}, \mathbb{C}^{\times})$ ist *unverzweigt*, wenn er trivial auf die Untergruppe \mathcal{O}_p^{\times} wirkt.

Die unverzweigten Charaktere haben eine recht einfache Form, was folgendes Lemma zeigt.

Lemma 4.11. Jeder unverzweigte Charakter χ auf \mathbb{Q}_p^{\times} hat die Form $\chi(x) = |x|_p^s$ mit $s \in \mathbb{C}$.

Beweis. Es ist klar, dass Funktionen dieser Form tatsächlich unverzweigte Quasi-Charaktere sind. Umgekehrt sei χ ein unverzweigter Quasi-Charakter. Dann gilt $\chi(x) = \chi(|x|_p \tilde{x}) = \chi(|x|_p)$. Dadurch induziert χ eine stetige Abbildung auf dem Wertebereich $V(\mathbb{Q}_p)$. Wir zeigen, dass diese Abbildung gerade die Form $t \mapsto t^s$ hat.

Sei zuerst $p = \infty$, also $V(\mathbb{Q}_p) = \mathbb{R}_+^{\times}$. Wir definieren $s := \log(\chi(e))$, also $\chi(e) = e^s$. Induktiv lässt sich nun leicht $\chi(e^n) = e^{ns}$ für ganze Zahlen $n \in \mathbb{Z}$ zeigen. Analog zeigt man

$$\chi(e^{\frac{n}{m}})^m = \chi(e^{m\frac{n}{m}}) = \chi(e^n) = e^{ns},$$

woraus

$$\chi(e^{\frac{n}{m}}) = \left(\chi(e^{\frac{n}{m}})^m\right)^{\frac{1}{m}} = (e^{ns})^{\frac{1}{m}} = e^{\frac{n}{m}s}$$

folgt, so dass wir $\chi(e^q)=e^{qs}$ für alle rationalen Zahlen $q\in\mathbb{Q}$ haben. Wegen Stetigkeit gilt nach Übergang zu Grenzwerten $\chi(e^r)=e^{rs}$ für alle reellen $r\in\mathbb{R}$, also $\chi(t)=t^s$ für alle $t\in\mathbb{R}_+^\times$.

Der Fall $p < \infty$ ist etwas leichter. Wir definieren dieses mal $s := \frac{\log(\chi(p))}{\log(p)}$, so dass $\chi(p) = p^s$. Da der Wertebereich aber gerade $p^{\mathbb{Z}}$ war, folgt die Behauptung sofort. \square

Satz 4.12. Jeder Charakter χ von \mathbb{Q}_p^{\times} hat die Form

$$\chi(x) = \mu(\tilde{x})|x|_p^s,$$

wobei μ ein unitärer Charakter auf \mathcal{O}_p^{\times} , $\tilde{\cdot}$ der stetige Homomorphismus von \mathbb{Q}_p^{\times} nach \mathcal{O}_p^{\times} und $s \in \mathbb{C}$ ist.

Beweis. Es ist wieder klar, dass $\mu(\tilde{\cdot})|\cdot|_p^s$ tatsächlich ein Charakter ist. Betrachten wir nun einen beliebigen Charakter χ und definieren μ als die Einschränkung von χ auf \mathcal{O}_p^{\times} . Da die Untergruppe \mathcal{O}_p^{\times} kompakt und μ eine stetige Abbildung nach \mathbb{C}^{\times} ist, muss $\mu(\mathcal{O}_p^{\times})$ eine kompakte Untergruppe von \mathbb{C}^{\times} sein und ist damit in S^1 enthalten. Folglich ist μ ein unitärter Charakter auf \mathcal{O}_p^{\times} . Damit definiert der stetige Homomorphismus $x \mapsto \chi(x)\mu(\tilde{x})^{-1}$ einen unverzweigten Charakter auf \mathbb{Q}_p^{\times} , hat also nach vorherigem Lemma die Form $\chi(x)\mu(\tilde{x})^{-1} = |x|_p^s$ für ein $s \in \mathbb{C}$. Der Satz folgt sofort.

Aus $\left|\mu(\tilde{x})|x|_p^s\right|=|x|_p^\sigma$ folgt, dass der Realteil $\sigma=\mathrm{Re}(s)$ eindeutig bestimmt ist. Er wird auch *Exponent* des Charakters χ genannt. Wir kommen zum ersten Ergbnis aus Tates Doktorarbeit

Satz 4.13 (Lokale Funktionalgleichung). Sei $f_p \in S(K_p)$ und $\chi = \mu |\cdot|_p^s$. Sei weiter $\sigma = Re(s)$. Dann gelten die folgenden Aussagen:

- (i) $Z(f,\chi) = Z(f,\mu,s)$ ist holomorph und absolut konvergent für $\sigma > 0$
- (ii) Auf dem Streifen $0 < \sigma < 1$ haben wir eine Funktionalgleichung

$$Z(\hat{f}, \check{\chi}) = \gamma(\chi, e_p, dx) Z(f, \chi),$$

wobei $\gamma(\chi, \psi, dx)$ unabhängig von f und meromorph als Funktion in s ist. Damit besitzt $Z(f, \chi)$ eine meromorphe Fortsetzung auf ganz \mathbb{C}

Beweis. (i) Es reicht im Allgemeinen zu zeigen, dass das Integral

$$\int_{\mathbb{Q}_p \setminus \{0\}} |f| \cdot |x|_p^{\sigma - 1} dx$$

endlich ist, denn das Haar-Maß $d^{\times}x$ ist ein konstantes vielfaches von dx.

Sei zunächst $p = \infty$. Wir können $|f_p|$ abschätzen durch ein skalares Vielfaches von $\frac{1}{1+|x|^n}$, wobei $n \in \mathbb{N}$ mit $n > \sigma$. Zusammen haben wir dann

$$\int_{\mathbb{Q}_p \setminus \{0\}} |f| \cdot |x|_p^{\sigma - 1} dx \le C \cdot \int_{\mathbb{Q}_p} \frac{|x|_p^{\sigma - 1}}{1 + |x|_p^n} dx < \infty.$$

Im endlichen Fall

(ii) Wir folgen Tate und beweisen ein kleines Lemma.

Lemma 4.14. Für alle Charaktere χ mit Exponenten $0 < \sigma < 1$ und beliebige Funktionen $f, g \in S(\mathbb{Q}_p)$ gilt:

$$Z(f,\chi)Z(\hat{g},\check{\chi}) = Z(\hat{f},\check{\chi})Z(g,\chi)$$

Beweis. Nach (i) haben wir absolute Konvergenz der Integrale für Exponenten $\sigma > 0$. Zudem ist $\check{\chi} = |x|_p \chi^{-1} = |x|_p^{1-s} \mu^{-1}$, also haben wir in diesem Fall Konvergenz für

 $\sigma < 1$. Damit sind die obigen Zeta-Funktionen wohldefiniert auf dem Streifen den wir betrachten. Wir schreiben das Produkt als Doppelintegral über $\mathbb{Q}_p^{\times} \times \mathbb{Q}_p^{\times}$

$$\begin{split} Z(f,\chi)Z(\hat{g},\check{\chi}) &= \iint\limits_{\mathbb{Q}_p^\times \times \mathbb{Q}_p^\times} f(x)\chi(x)\hat{g}(y)\chi^{-1}(y)|y|_p d^\times(x,y) \\ &= \iint\limits_{\mathbb{Q}_p^\times \times \mathbb{Q}_p^\times} f(x)\hat{g}(y)\chi(xy^{-1})|y|_p d^\times(x,y) \end{split}$$

Das Integral ist invariant unter der Translation $(x,y) \mapsto (x,xy)$ und wir erhalten

$$\iint\limits_{\mathbb{Q}_p^\times \times \mathbb{Q}_p^\times} f(x) \hat{g}(xy) \chi(y^{-1}) |xy|_p d^\times(x,y).$$

Nach Fubini ist das wiederum gleich

$$\int_{\mathbb{Q}_p^{\times}} \left(\int_{\mathbb{Q}_p^{\times}} f(x) \hat{g}(xy) d^{\times} x \right) \chi(y^{-1}) |y|_p d^{\times} y.$$

Wir müssen also nur noch zeigen, dass das innere Integral symmetrisch in f und g ist. Dazu erinnern wir uns, dass $d^{\times}x=c\frac{dx}{|x|_p}$ und nach der Definition der Fouriertransformation daher

$$\int_{\mathbb{Q}_p^{\times}} f(x)\hat{g}(xy)d^{\times}x = c\int_{\mathbb{Q}_p} \int_{\mathbb{Q}_p} f(x)g(z)e_p(-xyz)dzdx = \int_{\mathbb{Q}_p^{\times}} g(z)\hat{f}(zy)d^{\times}z,$$

wobei wieder Fubini das Vertauschen der Reihenfolge bei der Integration erlaubt.

Damit sind wir auch schon fast mit dem eigentlichen Beweis fertig. Wir fixieren eine geeignete Schwartz-Bruhat Funktion $g \in S(\mathbb{Q}_p)$ und setzen

$$\gamma(\chi, e_p, dx) := \frac{Z(\hat{g}, \check{\chi})}{Z(g, \chi)}.$$

Aus dem Lemma folgt, dass dieser Quotient sicherlich unabhängig von der Wahl von g ist, und, dass

$$Z(\hat{f}, \check{\chi}) = \gamma(\chi, e_p, dx) Z(f, \chi).$$

4.4 Die Berechnungen

4.4.1 Der Fall $p = \infty$

Wir betrachten zuerst die Klasse $\chi = |\cdot|_{\infty}^{s}$ und nehmen die Schwartz-Bruhat Funktion

$$f(x) = e^{-\pi x^2}.$$

Wir behaupten, dass f ihre eigene Fouriertransformierte ist. Dazu rechnen wir

$$\hat{f}(\xi) = \int_{\mathbb{Q}_{\infty}} e^{-\pi x^2} e_{\infty}(-x\xi) dx = \int_{\mathbb{Q}_{\infty}} e^{-\pi x^2} e^{-2\pi i x \xi} dx$$
$$= \int_{\mathbb{Q}_{\infty}} e^{-\pi (x^2 + 2i x \xi - \xi^2)} e^{-\pi \xi^2} dx = f(\xi) \int_{\mathbb{Q}_{\infty}} e^{-\pi (x + i \xi)^2} dx.$$

Es genügt also zu zeigen, dass das Integral gleich 1 ist. Dazu nutzen wir das bekannte Integral $\int_{\mathbb{Q}_{\infty}} e^{-\pi x^2} dx = 1$ und etwas Kontourintegration. Sei γ das Rechteck von -r nach r auf der reellen Achse, dann hoch zu $r+i\xi$, horizontal zu $-r+i\xi$ und wieder zuruck zu -r. Da f eine ganze Funktion ist, gilt $\int_{\gamma} f(z)dz = 0$. Die Integrale an der linken und rechten Seite des Rechtecks konvergieren gegen 0 wenn r anwächst, denn für $z = \pm r + iy$ und $0 \le y \le \xi$ gilt

$$|f(z)| = \left| e^{-\pi(\pm r + iy)^2} \right| = e^{-\pi(r^2 - y^2)}$$

und wir haben die Abschätzung

$$\left| \int_{\pm r}^{\pm r + i\xi} f(z) dz \right| = \left| \int_{0}^{\xi} f(\pm r + iy) dy \right| \le e^{-\pi r^2} \int_{0}^{\xi} e^{\pi y^2} dy \xrightarrow{r \to \infty} 0.$$

Folglich muss schon $\int_{\mathbb{Q}_{\infty}} f(x+i\xi)dx = \int_{\mathbb{Q}_{\infty}} f(x)dx = 1$ gelten und wir sind fertig mit der Fouriertransformation.

Nun zu den Zeta-Funktionen:

$$Z(f,\chi) = Z(f,|\cdot|_\infty^s) = \int_{\mathbb{Q}_\infty^\times} f(x)|x|_p^s d^\times x = \int_{\mathbb{R}^\times} e^{-\pi x^2}|x|_\infty^s d^\times x = 2\int_0^\infty e^{-\pi x^2} x^{s-1} dx$$

Wir benutzen den Trafo $u=\pi x^2 \Rightarrow du=2\pi^{1/2}u^{1/2}$ und erhalten

$$\begin{split} Z(f,\chi) &= \int_0^\infty e^{-u} (u\pi^{-1})^{\frac{s-1}{2}} \pi^{-\frac{1}{2}} u^{-\frac{1}{2}} du \\ &= \pi^{-\frac{s}{2}} \int_0^\infty e^{-u} u^{\frac{s}{2}-1} du = \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \end{split}$$

Mit dem gleichen Argumentation rechnen wir auch

$$Z(\hat{f}, \check{\chi}) = Z(f, |\cdot|_{\infty}^{1-s}) = \pi^{-\frac{1-s}{2}} \Gamma\left(\frac{1-s}{2}\right).$$

Jetzt können wir endlich den versprochenen Faktor

$$\gamma(|\cdot|_{\infty}^{s}, e_{\infty}, dx) = \frac{\pi^{-\frac{1-s}{2}} \Gamma\left(\frac{1-s}{2}\right)}{\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)}$$

angeben und sehen, dass dieser auf dem Streifen $0 < \sigma < 1$ als Quotient holomorpher Funktionen meromorph ist.

Nun zur zweiten und auch schon letzten Klasse $\chi = \operatorname{sgn} |\cdot|_{\infty}^{s}$ von multiplikativen Charakteren auf \mathbb{Q}_{∞} . Wir wählen die Funktion

$$f_{\pm}(x) = xe^{-\pi x^2} \in S(\mathbb{Q}_{\infty})$$

und bemerken zunächst die Beziehung $f_{\pm}(x) = (-2\pi)^{-1} f'(x)$. Damit können wir die Fouriertransformation schnell aus einem Ergebnis der klassischen Fourieranalysis gewinnen. Denn wir haben

$$\hat{f}_{\pm}(\xi) = \int_{-\infty}^{\infty} f_{\pm}(x) e_{\infty}(-x\xi) dx = \int_{-\infty}^{\infty} (-2\pi)^{-1} f'(x) e_{\infty}(-x\xi) dx$$

$$= \left[(-2\pi^{-1} f(x) e_{\infty}(-x\xi) \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} -2\pi^{-1} f(x) \cdot (-2\pi i \xi) e_{\infty}(-x\xi) dx$$

$$= 0 - i\xi \hat{f}(\xi) = -i\xi f(\xi) = -if_{\pm}(\xi).$$

Wir berechnen die Zeta-Funktionen

$$Z(f_{\pm},\chi) = Z(f,\operatorname{sgn}|\cdot|_{\infty}^{s}) = \int_{\mathbb{Q}_{\infty}^{\times}} f_{\pm}(x)\operatorname{sgn}(x)|x|_{\infty}^{s} d^{\times}x$$
$$= \int_{\mathbb{Q}_{\infty}^{\times}} x f(x)\operatorname{sgn}(x)|x|_{\infty}^{s} d^{\times}x = \int_{\mathbb{Q}_{\infty}^{\times}} f(x)|x|_{\infty}^{s+1} d^{\times}x$$
$$= Z(f,|\cdot|_{\infty}^{s+1}) = \pi^{-\frac{s+1}{2}}\Gamma\left(\frac{s+1}{2}\right)$$

und mit $\check{\chi} = \operatorname{sgn}^{-1} |\cdot|_{\infty}^{1-s} = \operatorname{sgn} |\cdot|_{\infty}^{1-s}$

$$Z(\hat{f}_{\pm}, \chi) = Z(-if_{\pm}, \operatorname{sgn}|\cdot|_{\infty}^{1-s}) = -i \int_{\mathbb{Q}_{\infty}^{\times}} f_{\pm}(x) \operatorname{sgn}(x) |x|_{\infty}^{1-s} d^{\times} x$$

$$= -i \int_{\mathbb{Q}_{\infty}^{\times}} x f(x) \operatorname{sgn}(x) |x|_{\infty}^{1-s} d^{\times} x = -i \int_{\mathbb{Q}_{\infty}^{\times}} f(x) |x|_{\infty}^{2-s} d^{\times} x$$

$$= -i Z(f, |\cdot|_{\infty}^{2-s}) = -i \pi^{-\frac{2-s}{2}} \Gamma\left(\frac{2-s}{2}\right).$$

Damit haben wir den Faktor

$$\gamma(\operatorname{sgn}|\cdot|_{\infty}^{s}, e_{\infty}, dx) = i \frac{\pi^{-\frac{2-s}{2}} \Gamma\left(\frac{2-s}{2}\right)}{\pi^{-\frac{s+1}{2}} \Gamma\left(\frac{s+1}{2}\right)}$$

der nach der gleichen Begründung wie oben meromorph ist.

4.4.2 Die Fälle $p < \infty$

Wir beginnen wieder mit dem unverzweigten Fall $\chi=|\cdot|_p$ und definieren unsere Schwartz-Bruhat Funktion

$$f_0(x) = \mathbb{1}_{\mathbb{Z}_p}(x).$$

Wie auch schon im archimedischen Fall werden wir feststellen, dass f_0 ihre eigene Fouriertransformierte ist. Wir rechnen

$$\hat{f}_0(\xi) = \int_{\mathbb{Q}_p} f_0(x) e_p(-x\xi) dx = \int_{\mathbb{Z}_p} e_p(-x\xi) dx.$$

Nun wissen wir, dass \mathbb{Z}_p kompakt ist und der Charakter $e_p(-x\xi)$ genau dann trivial auf $x \in \mathbb{Z}_p$ wirkt, wenn auch $\xi \in \mathbb{Z}_p$. In diesem Fall entpricht das Integral nach Lemma 3.10 gerade dem Volumen von \mathbb{Z}_p bezüglich dx. Ansonsten verschwindet es. Mit unserer Normierung des Haar-Maßes folgt dann

$$\hat{f}_0(\xi) = \int_{\mathbb{Z}_p} e_p(-x\xi) dx = \text{Vol}(\mathbb{Z}_p, dx) \mathbb{1}_{\mathbb{Z}_p}(\xi) = \mathbb{1}_{\mathbb{Z}_p}(\xi) = f_0(\xi).$$

Für die Berechnungen der Zeta-Funktionen erinnern wir uns an die Beobachtung $\mathbb{Z}_p \setminus \{0\} = \bigcup_{k=0}^{\infty} p^k \mathbb{Z}_p^{\times}$ als disjunkte Vereinigung.

$$Z(f_0, \chi) = Z(f_0, |\cdot|_p^s) = \int_{\mathbb{Q}_p^\times} f_0(x) |x|_p^s d^\times x = \int_{\mathbb{Z}_p \setminus \{0\}} |x|_p^s d^\times x$$

$$= \sum_{k=0}^\infty \int_{p^k \mathbb{Z}_p^\times} |x|_p^s d^\times x = \sum_{k=0}^\infty \int_{\mathbb{Z}_p^\times} \left| p^k x \right|_p^s d^\times x$$

$$= \sum_{k=0}^\infty \int_{\mathbb{Z}_p^\times} p^{-ks} d^\times x = \sum_{k=0}^\infty p^{-ks} \operatorname{Vol}(\mathbb{Z}_p^\times, d^\times x) = \frac{1}{1 - p^{-s}}$$

und analog

$$Z(\hat{f}_0, \check{\chi}) = Z(f_0, |\cdot|_p^{1-s}) = \frac{1}{1 - p^{s-1}}.$$

Der Faktor hat damit die Form

$$\gamma(|\cdot|_p^s, e_p, dx) = \frac{1 - p^{-s}}{1 - p^{s-1}}$$

und ist insbesondere somit holomorph im betrachteten Streifen.

Nun kommen wir zum verzweigten Fall $\chi = \mu |\cdot|_p^s$. Bevor wir allerdings mit den eigentliche Berechnungen anfangen, schauen wir uns den unitären Charakter $\mu: \mathbb{Z}_p^{\times} \to S^1$ etwas genauer an. Wählen wir eine offene Umgebung U der $1 \in S^1$, die nur die triviale Untergruppe enthält, so finden wir aufgrund der Stetigkeit von μ eine offene Umgebung V der $1 \in \mathbb{Z}_p^{\times}$ mit $\mu(V) \subseteq U$. Diese enthalten aber stets eine Untergruppe der Form $1 + p^n \mathbb{Z}_p$. Da μ aber ein Gruppenhomomorphismus ist, muss diese Untergruppe bereits auf 1 abgebildet werden. Es gibt also für jeden Charakter $\chi = \mu |\cdot|_p^s$ ein kleinstes $n \in \mathbb{N}$ mit $\mu(1 + p^n \mathbb{Z}_p) = 1$. Wir nennen dann p^n den Konduktor von χ . Analog lässt sich auch der Konduktor eines additiven Charakters definieren. Mit Hilfe des Konduktors p^n definieren wir nun die Schwartz-Bruhat Funktion

$$f_n(x) = e_p(x) \mathbb{1}_{p^{-n} \mathbb{Z}_n}(x).$$

Die Berechnung der Fouriertransformation erfolgt ähnlich zum unverzweigten Fall:

$$\hat{f}_n(\xi) = \int_{\mathbb{Q}_p} f_n(x) e_p(-x\xi) dx = \int_{p^{-n}\mathbb{Z}_p} e_p\left(x(1-\xi)\right) dx$$

Der Charakter $\psi(x) = e_p(x(1-\xi))$ wirkt genau dann trivial auf $p^{-n}\mathbb{Z}_p$, wenn $1-\xi \in p^n\mathbb{Z}_p$, oder äquivalent $\xi \in 1 + p^n\mathbb{Z}_p$. Es folgt

$$\hat{f}_n(\xi) = \text{Vol}(p^{-n}\mathbb{Z}_p, dx) \mathbb{1}_{1+p^n\mathbb{Z}_p}(\xi) = p^n \mathbb{1}_{1+p^n\mathbb{Z}_p}(\xi).$$

blablabla zeta funktion

$$Z(f_n, \chi) = Z(f_n, \mu|\cdot|_p^s) = \int_{\mathbb{Q}_p^\times} f_n(x)\mu(\tilde{x})|x|_p^s d^\times x = \int_{p^{-n}\mathbb{Z}_p\setminus\{0\}} e_p(x)\mu(\tilde{x})|x|_p^s d^\times x$$

$$= \sum_{k=-n}^\infty \int_{p^k\mathbb{Z}_p^\times} e_p(x)\mu(\tilde{x})|x|_p^s d^\times x = \sum_{k=-n}^\infty \int_{\mathbb{Z}_p^\times} e_p(p^k x)\mu(\widetilde{p^k x}) \left|p^k x\right|_p^s d^\times x$$

$$= \sum_{k=-n}^\infty p^{-ks} \int_{\mathbb{Z}_p^\times} e_p(p^k x)\mu(x)d^\times x.$$

Ein Integral der Form $g(\omega,\lambda)=\int_{\mathbb{Z}_p^\times}\omega(x)\lambda(x)d^\times x$ mit multiplikativen Charakter $\omega:\mathbb{Z}_p^\times\to S^1$ und additiven Charakter $\lambda:\mathbb{Z}_p\to S^1$ wird $Gau\beta$ -Summe genannt. Mit $e_{p,k}(x)=e_p(p^kx)$ haben wir dann

$$Z(f_n, \chi) = \sum_{k=-n}^{\infty} p^{-ks} g(\mu, e_{p,k}).$$
(8)

Für die weitere Berechnung definieren wir $U_k := 1 + p^k \mathbb{Z}_p$ und beweisen ein kleines Lemma über Gauß-Summen.

Lemma 4.15. Seien γ und λ wie oben. Seien n und r die kleinsten Zahlen mit $\gamma(1+p^n\mathbb{Z}_p)=1$ und $\lambda(p^r\mathbb{Z}_p)=1$, d.h. p^n und p^r sind die Konduktoren von γ bzw. λ . Es gelten folgende Aussagen:

- (i) Wenn n > r, dann $g(\omega, \lambda) = 0$.
- (ii) Wenn n = r, dann $|g(\omega, \lambda)|^2 = c^2 p^{-n}$.
- (iii) Wenn n < r, dann $|g(\omega, \lambda)|^2 = c^2 [p^{-n} p^{-r}]$.

Beweis. Für (i) zerlegen wir \mathbb{Z}_p^{\times} in die Nebenklassen, die von $U_r = 1 + p^r \mathbb{Z}_p$ erzeugt werden. Ein generisches Element aus aU_r hat die Form $a(1+p^rb)$, wobei a ein Repräsentant der Nebenklasse und b aus \mathbb{Z}_p ist. Wir haben $\lambda(a(1+p^rb)) = \lambda(a)\lambda(p^rab) = \lambda(a)$ nach der Definition des Konduktors. Daher

$$g(\omega, \lambda) = \sum_{aU_r} \int_{aU_r} \omega(x) \lambda(x) d^{\times} x = \sum_{aU_r} \omega(a) \lambda(a) \int_{U_r} \omega(x) d^{\times} x.$$

Da aber n > r wirkt ω nicht trivial auf U_r und somit verschwindet das Integral. Weiter zur Aussage (ii) und (iii): Sei also $n \le r$. Wir rechnen

$$|g(\omega,\lambda)|^2 = \int_{\mathbb{Z}_p^{\times}} \omega(x)\lambda(x)d^{\times}x \cdot \overline{\int_{\mathbb{Z}_p^{\times}} \omega(x)\lambda(x)d^{\times}x}$$
$$= \int_{\mathbb{Z}_p^{\times}} \int_{\mathbb{Z}_p^{\times}} \omega(xy^{-1})\lambda(x-y)d^{\times}xd^{\times}y$$
$$= \int_{\mathbb{Z}_p^{\times}} \omega(x)h(x)d^{\times}x$$

wobei wir im letzten Schritt zum einen die Translation $x\mapsto xy$ und zum anderen die Funktion

$$h(x) = \int_{\mathbb{Z}_p^\times} \lambda(xy-y)) d^\times y = c \int_{\mathbb{Z}_p^\times} \lambda(y(x-1)) \frac{dy}{|y|_p} = c \int_{\mathbb{Z}_p^\times} \lambda(y(x-1)) dy$$

eingeführt haben. Wegen $\mathbb{Z}_p^{\times} = \mathbb{Z}_p - p\mathbb{Z}_p$ können wir das Integral weiter aufspalten.

$$h(x) = c \int_{\mathbb{Z}_n - p\mathbb{Z}_n} \lambda(y(x-1)) dy = c \int_{\mathbb{Z}_n} \lambda(y(x-1)) dy - c \int_{p\mathbb{Z}_n} \lambda(y(x-1)) dy.$$

Nun haben wir wieder den Fall von Lemma 3.10. $y \mapsto \lambda(y(x-1))$ ist trivial auf \mathbb{Z}_p genau dann wenn $x-1 \in p^r\mathbb{Z}_p$, d.h. wenn $x \in U_r$. Ähnlich verhält es sich mit $y \mapsto \lambda(y(x-1))$ auf $p\mathbb{Z}_p$, wobei dieser genau dann trivial ist, wenn $x \in U_{r-1}$. Es gilt also

$$h(x) = c\operatorname{Vol}(\mathbb{Z}_p, dx) \mathbb{1}_{U_r} - c\operatorname{Vol}(p\mathbb{Z}_p, dx) \mathbb{1}_{U_{r-1}}$$
$$= c\operatorname{Vol}(\mathbb{Z}_p, dx) \mathbb{1}_{U_r} - cp^{-1}\operatorname{Vol}(\mathbb{Z}_p, dx) \mathbb{1}_{U_{r-1}}$$

Einfügen in $|g(\omega, \lambda)|^2$ ergibt dann

$$|g(\omega,\lambda)|^2 = \int_{\mathbb{Z}_p^{\times}} \omega(x)h(x)d^{\times}x$$
$$= c\operatorname{Vol}(\mathbb{Z}_p, dx) \int_{U_r} \omega(x)d^{\times}x - cp^{-1}\operatorname{Vol}(\mathbb{Z}_p, dx) \int_{U_{r-1}} \omega(x)d^{\times}x.$$

Im Fall (ii) haben wir n = r. Damit ist der erste Integrand trivial, der zweite jedoch nicht. Folglich verschwindet das zweite Integral. Wir haben

$$|g(\omega, \lambda)|^2 = c \text{Vol}(\mathbb{Z}_p, dx) \text{Vol}(U_n, d^{\times}x)$$

und sind somit fertig. Im Fall (iii) ist n < r. Beide Integranden sind trivial und es folgt mit

$$|g(\omega,\lambda)|^2 = c \operatorname{Vol}(\mathbb{Z}_p, dx) \operatorname{Vol}(U_r, d^{\times}x) - cp^{-1} \operatorname{Vol}(\mathbb{Z}_p, dx) \operatorname{Vol}(U_{r-1}, d^{\times}x)$$

die Behauptung. Damit ist das Lemma bewiesen.

Zurück zur Berechnung der Zeta-Funktion. Der multiplikative Charakter μ hat den Konduktor p^n , während die additiven Charaktere $e_{p,k}(x) = e_p(p^k x)$ offensichtlich den Konduktor p^{-k} haben. Nach Lemma (i) (i) verschwinden in 8 fast alle Summanden und wir erhalten

$$Z(f_n, \chi) = \sum_{k=-n}^{\infty} p^{-ks} g(\mu, e_{p,k}) = p^{ns} g(\mu, e_{p,-n})$$

Die verbleibende Gauß-Summe konvergiert dann nach Aussage (ii) des Lemmas.

Für die Berechnung der zweiten Zeta-Funktion bemerken wir zunächst, dass $\mu^{-1} = 1/\mu = \overline{\mu}/(\mu\overline{\mu}) = \overline{\mu}$ den gleichen Konduktor wie μ hat.

$$Z(\hat{f}_n, \check{\chi}) = Z(\hat{f}_n, \overline{\mu}|\cdot|_p^{1-s}) = p^n \int_{1+p^n \mathbb{Z}_p} \overline{\mu}(\tilde{x})|x|_p^{1-s} d^{\times} x$$
$$= p^n \int_{1+p^n \mathbb{Z}_p} d^{\times} x = p^n c \int_{p^n \mathbb{Z}_p} dx = c.$$

Zu guter Letzt der erhalten wir den holomorphen Faktor

$$\gamma(\mu|\cdot|_p^s, e_p, dx) = \frac{c}{p^{ns}g(\mu, e_{p, -n})} = \frac{cp^{-ns}\overline{g(\mu, e_{p, -n})}}{c^2p^{-n}} = c^{-1}p^{n(1-s)}\overline{g(\mu, e_{p, -n})}$$

5 Der Adele- und Idelering

5.1 Eingeschränktes Direktes Produkt

In der vorherigen Sektion haben wir uns die Lokalisierungen \mathbb{Q}_p im einzelnen angeschaut. Jetzt wollen wir einen Schritt weiter gehen und alle \mathbb{Q}_p auf einmal betrachten, indem wir sie in einem neuen Objekt einkapseln. Die erste Idee wäre natürlich das direkte Produkt, allerdings zeigt folgendes Lemma, dass dieser Versuch fehlschlagen wird.

Lemma 5.1. Sei I eine Indexmenge und X_i ein lokalkompakter Hausdorff-Raum für alle $i \in I$. Der Raum $X := \prod_{i \in I} X_i$ ist genau dann lokalkompakt, wenn fast alle X_i kompakt sind.

Wir geben den Beweis aus Deitmar [1]:

Beweis. Zunächst eine Beobachtung: Ist X kompakt, so ist auch jedes X_i kompakt als Bild von X unter der (stetigen) Projektion $\pi_i: X \to X_i$. Sei $E \subset I$ eine endliche Teilmenge und $U_i \in X_i$ eine offene Menge für jedes $i \in E$. Wir betrachten die offenen Rechtecke

$$\prod_{i \in E} U_i \times \prod_{i \in I \setminus E} X_i,$$

welche eine Basis der Produkttopologie bilden. Ist X lokalkompakt, so gibt es ein offenes Rechteck, dessen Abschlußkompakt ist. Folglich sind fast alle X_i kompakt. Die Rückrichtung ist eine Folgerung des Satzes von Tychonov, der besagt, dass das direkte Produkt beliebiger Familien kompakter Mengen wieder kompakt ist, und der Tatsache, dass endliche Produkte lokalkompakter Räume wieder lokalkompakt sind.

Das direkte Produkt lokalkompakter Gruppen liefert uns daher im Allgemeinen keine neue lokalkompakte Gruppe. Wir sehen jetzt aber, was zu tun ist, damit doch noch eine runde Sache daraus wird und geben folgende

Definition 5.2 (Eingeschränkte direkte Produkt). Sei $I = \{v\}$ eine Indexmenge und für jedes $v \in I$ sei G_v eine lokalkompakte Gruppe. Sei weiter $I_{\infty} \subseteq I$ eine endliche Teilmenge von I und für jedes $v \notin I_{\infty}$ sei $H_v \leq G_v$ eine kompakte offene Untergruppe. Das eingeschränkte direkte Produkt der G_v bezüglich H_v ist definiert als

$$G = \prod_{v \in I}' G_v := \{(x_v) : x_v \in G_v \text{ und } x_v \in H_v \text{ für alle bis auf endlich viele } v\}.$$

mit komponentenweiser Verknüpfung. Die Topologie auf G ist gegeben durch die eingeschränkte Produktopologie. Diese wird erzeugt durch die Basis der eingeschränkten offenen Rechtecke

$$\prod_{i \in E} U_i \times \prod_{i \in I \setminus E} H_i,$$

wobei $E \subset I$ eine endliche Teilmenge mit $I_{\infty} \subset E$ und $U_i \in G_i$ offen für alle $i \in E$ ist.

G ist offensichtlich eine Untergruppe des direkten Produkts, die eingeschränkte Produkttopologie ist jedoch nicht die Teilraumtopologie.

Wir führen nun eine nützliche Familie von Untergruppen von G ein. Sei S eine endliche Teilmenge von I mit $I_{\infty} \in S$. Wir definieren die Untergruppe

$$G_S := \prod_{i \in S} G_i \times \prod_{i \in I \setminus S} H_i$$

von G. Diese ist offensichtlich offen. Nach Lemma 3.2 und Lemma 5.1 ist G_S selbst wieder eine lokalkompakte Gruppe bezüglich der Produkttopologie. Man sieht aber leicht, dass diese mit der durch G induzierten Teilraumtopologie übereinstimmt. Da jeder Punkt $x \in G$ in einer Untergruppe dieser Form liegt folgt sofort, dass G wieder eine lokalkompakte Gruppe ist.

Abschließend möchten wir noch einen kleinen Satz festhalten.

Satz 5.3. Eine Teilmenge Y von G hat genau dann kompakten Abschluss, wenn $Y \subseteq \prod K_i$ für eine Familie von kompakten Teilmengen $K_i \subseteq G_i$ mit $K_i = H_i$ für fast alle Indizes i.

Beweis. Die Rückrichtung ist klar, denn jede abgeschlossene Teilmenge eines kompakten Raumes ist wieder kompakt. Für die Hinrichtung sei nun K der Abschluss von Y und kompakt in G. Da die Untergruppen G_S eine offene Überdeckung von G bilden, gibt es eine endliche Familie $\{G_{S_n}\}$, die K überdecken. Wir können sogar noch mehr sagen. Da die die S_k endlich sind, ist $S = \bigcup S_k$ endlich, also wird K sogar von nur einem G_S überdeckt. Sei K_i das Bild von K der natürlichen Einbettung nach G_i . Da die Topologie auf G_S gerade der Produkttopologie entspricht und $K \subseteq G_S$ ist diese Abbildung stetig und K_i damit kompakt als stetiges Bild einer kompakten Menge. Außerdem ist $K_i \subseteq H_i$ für alle $i \notin S$, sodass wir hier K_i durch die kompakten H_i ersetzen können. Dann ist $Y \subseteq K \subseteq \prod K_i$ und wir sind fertig. \square

5.2 Charaktere

Lemma 5.4. Sei χ ein Charakter χ auf G. Dann ist χ trivial auf fast allen H_i . Folglich ist für $g \in G$ $\chi(g_i) = 1$ für fast alle i und es gilt

$$\chi(g) = \prod_{i} \chi_i(g_i).$$

Beweis. Wir überlegen uns zunächst, dass Abbildungen in der angegebenen Form tatsächlich Charaktere auf G sind. χ ist sicherlich wohldefiniert und offensichtlich ein Gruppenhomomorphismus auf \mathbb{C}^{\times} . Es bleibt noch zu zeigen, dass χ stetig ist. Da G und \mathbb{C}^{\times} topologische Gruppen sind, genügt es sich offene Umgebungen der 1 anzuschauen. Sei daher V eine offene Umgebung der $1 \in \mathbb{C}^{\times}$. Sei S die endliche Menge aller Indizes, sodass χ nicht trivial auf H_i ist, und setze n = |S|. Wir finden eine weitere Umgebung W der $1 \in \mathbb{C}^{\times}$, so dass das Produkt von n beliebigen Elementen aus W wieder in V liegt. Da die χ_i stetig sind, finden wir offene Umgebungen U_i der $1 \in G_i$ mit $\chi_i(N_i) \subseteq W$. Für $i \in S$ können wir ohne Probleme $U_i = H_i$ setzen. Dann ist $U = \prod_i U_i$ eine offene Umgebung der $1 \in G$ und für jedes $g \in U$ ist $\chi(g)$ das endliche Produkt von n Faktoren aus W, also $\chi(g) \in V$.

Nun zur Rückrichtung sei χ ein beliebiger Charakter auf G. Für beliebige $g_i \in G_i$ definieren wir $\chi_i(g_i) = \chi \circ \iota(g_i)$). Offensichtlich ist χ_i ein Gruppenhomomorphismus und stetig als Komposition stetiger Funktionen, also ein Charakter. Wir müssen nun noch zeigen, dass fast alle chi_i trivial auf die Untergruppen H_i wirken. Dazu wählen wir uns eine offene Umgebung V der 1 in \mathbb{C}^{\times} , die nur die triviale Untergruppe $\{1\}$ enthält. Aufgrund der Stetigkeit von χ finden wir eine offene Umgebung $U = \prod_i U_i$ der 1 in G mit $U_i = H_i$ für alle i außerhalb einer endlichen Indexmenge S und $\chi(U) \subseteq V$. Dann gilt aber

$$(\prod_{i \in S} 1) \times (\prod_{i \notin S} H_i) \subseteq U$$

und daher

$$\chi((\prod_{i \in S} 1) \times (\prod_{i \notin S} H_i)) \subseteq V$$

Die linke Seite ist aber als Bild einer Gruppe unter einem Gruppenhomomorphismus selbst wieder eine Gruppe. Nach unserer Wahl von V folgt also

$$\chi((\prod_{i \in S} 1) \times (\prod_{i \notin S} H_i)) = \{1\}.$$

Folglich $\chi_i(H_i) = \{1\}$ für alle $i \notin S$. Damit ist aber klar, dass für jedes $g \in G$ das Produkt $\prod_i \chi_i(g_i)$ endlich ist und $\chi(g)$ entspricht.

5.3 Integration auf dem eingeschränkten Produkt

Wie wir gesehen haben ist $G = \prod_{i \in I}' G_i$ eine lokalkompakte Gruppe, besitzt also nach Satz 3.9 ein Haar-Maß. Wir wollen dieses geeignet normalisieren.

Satz 5.5. Sei $G = \prod_{i \in I}' G_i$ das eingeschränkte direkte Produkt einer Familie lokalkompakter Gruppen G_i bezüglich der Untergruppen $H_i \subseteq G_i$. Bezeichne dg_i das Haar-Maß auf G_i mit der Normalisierung

$$\int_{H_i} dg_i = 1$$

für fast alle $i \notin I_{\infty}$. Dann gibt es ein eindeutiges Haar-Ma β dg auf G, so dass für jede endliche Teilmenge $S \supseteq I_{\infty}$ der Indexmenge I die Einschränkung d g_S von dg auf G_S genau das Produktma β ist.

Beweis. Wir vergewissern uns zunächst, dass die Normalisierung der dg_i möglich ist, da per Definiton die Untergruppen H_i offen und kompakt sind und daher positives und endliches Maß haben.

Sei S nun eine beliebige Menge wie im Satz beschrieben und definiere dg_S als das Produktmäß $dg_S := (\prod_{s \in S} dg_i) \times dg^S$, wobei dg^S das Haar-Maß auf der kompakten Gruppe $G^S := \prod_{i \notin S} H_i$ mit $\int_{G^S} dg^S = 1$ ist. Siehe Folland [3] Kapitel 7, Satz 7.28 für eine genauere Beschreibung des Maßes dg^S . Als endliches Produkt von Haar-Maßen ist dg_S selbst wieder Haar-Maß und wir können dg normieren, dass dessen Einschränkung auf G_S mit dg_S übereinstimmt. Unsere Wahl von der Teilmenge war willkürlich, allerdings können wir zeigen, dass die gewählte Normierung unabhängig von S ist. Sei dazu $T \supseteq S$ eine weitere endliche Indexmenge. Per Definition ist G_S eine Untergruppe von G_T . Wir müssen jetzt nur noch zeigen, dass die Einschränkung von dg^T auf G^S mit dg^S übereinstimmt. Man erkennt, dass $G^S = \left(\prod_{i \in T \setminus S} H_i\right) \times G^T$.

Daher bildet $\left(\prod_{i\in T\setminus S}dg_i\right)\times dg^T$. ein Haar-Maß, welches der kompakten Gruppe G_S das oben geforderte Maß 1 zuweist. Aus der Eindeutigkeit des Haar-Maßes auf (lokal)kompakten Gruppen folgt somit die Gleichheit zu dg^S . Sei nun S' eine beliebige weitere Indexmenge, die I_{∞} enthält. Das normierte Maß dg wird auf $G_{S\cup S'}$ eingeschränkt zu einem Maß, welches ein konstantes Vielfaches von $dg_{S\cup S'}$ ist. Da aber $G_S\subseteq G_{S\cup S'}$ muss diese Konstante 1 sein, denn nach obigen Überlegungen ist die Einschränkung von $dg_{S\cup S'}$ auf G_S gerade dg_S . Umgekehrt ist aber $dg_{S'}$ die die Einschränkung von $dg_{S\cup S'}$ auf $G_{S'}$, also ist die Normalisierung unabhängig von der Wahl unserer Indexmenge S.

Satz 5.6. Sei G das eingeschränkte direkte Produkt mit dem induzierten Maß da

(i) Sei $f \in L(G)$ eine integrierbare Funktion auf G. Dann gilt

$$\int_{G} f(g)dg = \lim_{S} \int_{G_{S}} f(g_{S})dg_{S},$$

wobei S über alle endlichen Indexmengen läuft, die I_{∞} enthalten.

(ii) Sei S_0 ein beliebige endliche Indexmenge, die I_{∞} und alle i enthält, für die $Vol(H_i, dg_i) \neq 1$. Für jeden Index i haben wir eine stetige Funktion f_i auf G_i , so dass $f_i|_{H_i} = 1$ für alle $i \notin S_0$. Wir definieren

$$f(g) = \prod_{i} f_i(g_i),$$

für $g = (g_i) \in G$. Dann ist f wohldefiniert und stetig auf G. Sind die f_i sogar integrierbar und ist S eine weitere endliche Indexmenge, die S_0 enthählt, haben wir

$$\int_{G_S} f(g_S) dg_S = \prod_{i \in S} \left(\int_{G_i} f_i(g_i) dg_i \right). \tag{9}$$

Ist das Produkt

$$\prod_{i \in S} \left(\int_{G_i} f_i(g_i) dg_i \right)$$

sogar endlich, dann ist f insbesondere integrierbar und es gilt

$$\int_{G} f(g)dg = \prod_{i \in S} \left(\int_{G_i} f_i(g_i)dg_i \right).$$

Beweis. (i) Aus der Integrationstheorie (z.B. Folland [3] Kapitel 7 Korollar 7.13) ist bekannt, dass

$$\int_{G} f(g) = \lim_{K} \int_{K} f(g) dg,$$

wobei der Limes über immer größer und größere kompakte Mengen K geht. Da aber jedes solches K in einer der Mengen G_S liegt, folgt die Gleichung sofort.

(ii) Aus der Bedingung $f_i|_{H_i}=1$ folgt, dass das Produkt $f(g)=\prod_i f_i(g_i)$ für alle $g\in G$ endlich, und die Funktion damit wohldefiniert ist. Eine Umgebung von g ist gegeben durch ein offenes beschränktes Rechteck. Diese liegen in einem der G_S (versehen mit der Produkttopologie) und wir können ohne Einschränkung S um alle Indizes i mit $f_i|_{H_i}\neq 1$ vergrößern. Lokal betrachtet ist f also ein endliches Produkt stetiger Funktionen auffassen und daher f selber stetig.

Für den anderen Teil der Behauptung sei S nun eine Indexmenge nach den Bedingungen des Satzes. Nach der Definition von G_S und den Annahmen $f_i|_{H_i} = 1$, $Vol(H_i, dg_i) = 1$ für alle i nicht in S, ist es klar, dass Gleichung 9 gilt, denn dg_S war gerade das Produktmaß auf G_S . Nehmen wir nun an, dass das Produkt endlich ist. Dann gilt aber nach (i) und Gleichung 9

$$\prod_{i} \left(\int_{G_i} f_i(g_i) dg_i \right) = \lim_{S} \int_{G_S} f(g_S) dg_S = \int_{G} f(g) dg$$

und wir sind fertig.

5.4 Der Adelering

Satz 5.7.

- (a) \mathbb{Q} liegt diskret in \mathbb{A} .
- (b) \mathbb{A}/\mathbb{Q} ist kompakt.

Beweis. Für (a) betrachten wir die offene Nullumgebung

$$U = \left(-\frac{1}{2}, \frac{1}{2}\right) \times \prod_{p < \infty} \mathbb{Z}_p.$$

Ist nun $r \in \mathbb{Q} \cap U$, so gilt $|r|_p \leq 1$ für alle $p < \infty$, also $r \in \mathbb{Z}$. Nun ist aber $|r|_{\infty} < \frac{1}{2}$ und damit muss schon r = 0 gelten. Für einen beliebigen Punkt $x \in \mathbb{Q}$ erhalten wir mit x + U eine entsprechende offene Umgebung von x.

Für (b) zeigen wir, dass das Bild der Menge $K:=\prod_{p<\infty}\times[0,1]$ unter der Projektion $\rho:\mathbb{A}\to\mathbb{A}/\mathbb{Q}$ schon ganz \mathbb{A}/\mathbb{Q} ist. Dann ist \mathbb{A}/\mathbb{Q} als stetiges Bild des Kompaktums K selber kompakt. Sei $x\in\mathbb{A}$ beliebig und S die endliche Stellenmenge $\{p:x_p\notin\mathbb{Z}_p\}$. Wählen wir ein $p\in S,\,p<\infty$ und schreiben

$$x_p = \sum_{k=-N}^{\infty} a_k p^k.$$

Dann ist

$$x_p - \underbrace{\sum_{k=-N}^{-1} a_k p^k}_{=:r \in \mathbb{Q}} \in \mathbb{Z}_p$$

und für jede weitere endliche Stelle $q \neq p$ gilt

$$|r|_q = \left|\sum_{k=-N}^{-1} a_k p^k\right|_q \le \max\left\{\left|a_k p^k\right|_q\right\} \le 1,$$

also ist $r \in \mathbb{Z}_q$. Ersetzen wir nun x durch x-r, so reduziert sich die Stellenmenge S zu $S \setminus \{p\}$. Dieses Argument setzen wir induktiv bis $S = \{\infty\}$ fort und erhalten damit ein x, welches sich nur um eine Zahl aus \mathbb{Q} von dem ursprünglichen Adel unterscheidet und selbst in $\mathbb{R} \times \prod_{p < \infty} \mathbb{Z}_p$ liegt. Nun können wir aber noch x modulo \mathbb{Z} nach $[0,1] \times \prod_{p < \infty} \mathbb{Z}_p$.

5.5 Der Idelering

Satz 5.8.

- (a) \mathbb{Q}^{\times} liegt diskret in \mathbb{I} .
- (b) $F := \{1\} \times \prod_{p < \infty} \mathbb{Z}_p^{\times}$ ist ein Fundamentalbereich der Gruppenwirkung von \mathbb{Q}^{\times} auf \mathbb{I}^1 . Genauer haben wir einen Isomorphismus topologischer Gruppen $F \cong \mathbb{I}^1/\mathbb{O}^{\times}$.
- (c) $\mathbb{I}^1/\mathbb{Q}^{\times}$ ist kompakt.
- (d) Der adelische Betrag $|\cdot|_{\mathbb{A}}$ induziert einen Isomorphismus topologischer Gruppen $\mathbb{I} \cong \mathbb{I}^1 \times \mathbb{R}_+^{\times}$.

Beweis. Zu (a): Wir wählen ein beliebiges $0 < \epsilon < 1$ und setzen

$$U := (1 - \epsilon, 1 + \epsilon) \times \prod_{p < \infty} \mathbb{Z}_p^{\times}.$$

Dann ist U offensichtlich eine offene Umgebung der 1 in \mathbb{I} . Wir wollen nun zeigen, dass U keine weitere rationale Zahl enthält. Sei dazu $r \in \mathbb{Q}^{\times} \cap \mathbb{I}$. Das bedeutet, dass $r \in \mathbb{Z}_p^{\times}$, also $|r|_p = 1$, für alle Primzahlen $p < \infty$. Dann muss r aber schon eine ganze Zahl sein. Für diese gilt zudem $r \in (1 - \epsilon, 1 + \epsilon)$. Folglich ist r = 1.

Zu (b): Wir definieren die Abbildung

$$\eta: F \to \mathbb{I}^1/\mathbb{Q}^{\times}$$
 $(1, x) \mapsto (1, x)\mathbb{Q}^{\times}$

und behaupten, dass diese Isomorphismus topologischer Gruppen ist. Zunächst sehen wir, dass $\eta=\pi\circ\iota$ als Komposition stetiger Gruppenhomomorphismen wieder ein stetiger Gruppenhomomorphismus ist. Zudem können wir direkt eine Umkehrabbildung angeben durch $x=(x_p)\mapsto (x_\infty^{-1}x_p)$. Wir vergewissern uns, dass diese Abbildung wohldefiniert ist. Zum einen folgt aus $x\in\mathbb{I}^1$ schon, dass $x_\infty\in\mathbb{Q}^\times$, denn $|x_\infty|_\infty=(\prod_{p<\infty}|x_p|_p)^{-1}\in\mathbb{Q}_p^\times$. Also kann uns nur noch die Wahl des Repräsentanten Probleme machen. Wir stellen aber erfreut fest, dass wir $rx=(rx_p)$ abgebildet wird auf $((rx_\infty)^{-1}rx_p)=(x_\infty^{-1}x_p)$ für beliebige $r\in\mathbb{Q}_p^\times$ haben. Des weiteren ist sie stetig, denn sie lässt sich schreiben als $x\mapsto\iota(\pi_\infty(x))^{-1}\cdot x$. Damit ist dann η also ein topologischer Isomorphismus.

Zu (c): Dies ist eine einfache Folgerung aus (b), da F als Produkt kompakter Untergruppen wieder kompakt ist.

Zu (d): Der Isomorphismus von $\mathbb{I}^1 \times \mathbb{R}_+^{\times}$ wird definiert durch die Abbildung $x \mapsto \tilde{x}$, wobei

$$\tilde{x} = (\tilde{x}_p) = \begin{cases} x_p & \text{falls } p < \infty \\ \frac{x_\infty}{|x|_{\mathbb{A}}} & \text{sonst.} \end{cases}$$

Es ist klar, dass dies ein Gruppenhomomorphismus ist. Um die Stetigkeit zu sehen schreiben wir die Abbildung als $x \mapsto \iota_{\infty}(|x|_{\mathbb{A}})^{-1} \cdot x$. Die Umkehrabbildung ist dann gegeben durch $(x,r) \mapsto \iota_{\infty}(r) \cdot x$, welche wiederum stetig ist und wir somit einen Isomorphismus topologischer Gruppen haben.

6 Tates Beweis der Funktionalgleichung

6.1 Globale Fourieranalysis

6.2 Adelische Poisson-Summenformel und der Satz von Riemann-Roch

Lemma 6.1. Jede faktorisierbare adelische Schwartz-Bruhat Funktion f hat die Form

$$f = f_{\infty} \prod_{p < \infty} \mathbb{1}_{a + p^{k_p} \mathbb{Z}_p},$$

wobei $a \in \mathbb{Q}$ und $k_p \in \mathbb{Z}$ für fast alle Stellen p verschwindet.

Beweis. Der wichtige Unterschied zur Definition der faktorisierbaren Schwartz-Bruhat Funktionen liegt in der Tatsache, dass der Faktor a unabhängig von der jeweiligen Stelle ist. Für fast alle p ist $a \in \mathbb{Z}_p$ und $k_p = 0$, also $\mathbb{1}_{a+p_p^k\mathbb{Z}_p} = \mathbb{1}_{\mathbb{Z}_p}$ fast überall. Damit ist klar, dass Funktionen dieser Form in $S(\mathbb{A})$ liegen. Sei nun $f = \prod_{p \leq \infty} f_p \in S(\mathbb{A})$ und S die Menge der Stellen mit $k_p \neq 0$. Für alle $p \in S$ ist der Faktor f_p gleich $\mathbb{1}_{a_p+p_p^k\mathbb{Z}_p}$ für ein $a_p \in \mathbb{Q}$. Sind wir vorerst optimistisch und nehmen an, dass $k_p > 0$ und die a_p bereits ganze Zahlen sind. Ziel ist es jetzt eine ganze Zahl a zu finden, die $a \equiv a_p \pmod{p^{k_p}}$ für alle $p \in S$ erfüllt. Das liefert uns aber gerade der chinesische Restsatz. Damit wäre $a_p + p_p^k\mathbb{Z}_p = a + p_p^k\mathbb{Z}_p$ und wir wären fertig.

Bleiben wir optimistisch und versuchen die Funktionen geeignet umzuformen. Sei dazu N der Hauptnenner der nun wieder rationalen Zahlen a_p und sei $M = \prod_{p \in S} p^{|k_p|+1}$. Dann ist $NM(a_p + p_p^k \mathbb{Z}_p) = a_p' + p^{k_p'} \mathbb{Z}_p$ mit $a_p' \in \mathbb{Z}$ und k' > 0. Folglich finden wir ein $a' \in \mathbb{Z}$ mit $NM(a_p + p^{k_p} \mathbb{Z}_p) = a' + p^{k_p'} \mathbb{Z}_p$. Jetzt setzen wir alles zusammen durch

$$a_p + p^{k_p} \mathbb{Z}_p = (NM)^{-1} NM (a_p + p^{k_p} \mathbb{Z}_p)$$

= $(NM)^{-1} (a' + p^{k'_p} \mathbb{Z}_p) = (NM)^{-1} a' + p^{k_p} \mathbb{Z}_p$

für alle $p \in S$. Setzen wir also $a := (NM)^{-1}a'$ folgt die Behauptung.

Satz 6.2 (Poisson Summenformel). Sei $f \in S(\mathbb{A})$. Dann gilt:

$$\sum_{\gamma \in \mathbb{Q}} f(\gamma) = \sum_{\gamma \in \mathbb{Q}} \hat{f}(\gamma). \tag{10}$$

Wir geben es zu. Der folgende Beweis kann nicht auf den allgemeineren Fall übertragen.

Beweis. Es genügt wieder die Aussage für faktorisierbare Schwartz-Bruhat Funktionen $f \in S(\mathbb{A})$ zu zeigen. Bevor wir damit aber anfangen machen wir uns ein paar Gedanken. Nach vorherigem Lemma haben diese die Form

$$f = f_{\infty} \prod_{p < \infty} \mathbb{1}_{a + p^{k_p} \mathbb{Z}_p}.$$
 (11)

Erinnern wir uns nochmals an die Operatoren aus dem Beweis der lokalen Umkehrformeln in Satz 4.9. Dort haben wir die Notation $L_a f(x) = f(x-a)$ und $M_{\lambda} f(x) = f(\lambda x)$ eingeführt, welche jetzt nochmals nützlich wird. Definieren wir $N = \prod_{p < \infty} p^{k_p}$. Damit können wir Gleichung 11 umschreiben als

$$f = L_a M_{1/N} \left((M_N L_{-a} f_{\infty}) \prod_{p < \infty} \mathbb{1}_{\mathbb{Z}_p} \right).$$

Damit eröffnet sich nun folgende Beweisidee. Wir zeigen zuerst, dass die obige Gleichung (falls sie denn tatsächlich gilt) stabil unter den Operatoren L_a und M_{λ} ist. Anschließend zeigen wir sie für den einfacheren Fall $f = f_{\infty} \prod_{p < \infty} \mathbb{1}_{\mathbb{Z}_p}$. Zusammen mit den obigen Überlegungen folgt dann damit aber der Beweis.

Gelte also $\sum_{\gamma \in \mathbb{Q}} f(\gamma) = \sum_{\gamma \in \mathbb{Q}} \hat{f}(\gamma)$ und sei $a \in \mathbb{Q}$. Dann haben wir

$$\sum_{\gamma \in \mathbb{Q}} L_a f(\gamma) = \sum_{\gamma \in \mathbb{Q}} f(\gamma - a) = \sum_{\gamma \in \mathbb{Q}} f(\gamma).$$

Da unser additiver Charakter e allerdings trivial auf \mathbb{Q} wirkt, ist dies gleich

$$\sum_{\gamma \in \mathbb{Q}} \hat{f}(\gamma) = \sum_{\gamma \in \mathbb{Q}} e(-a\gamma)\hat{f}(\gamma)$$
$$= \sum_{\gamma \in \mathbb{Q}} \Omega_{-a}\hat{f}(\gamma) = \sum_{\gamma \in \mathbb{Q}} (L_a f)^{\hat{}}(\gamma).$$

Nutzen wir aus, dass $|\lambda|_{\mathbb{A}}=1$ für alle $\lambda\in\mathbb{Q}^{\times},$ so erhalten wir

$$\begin{split} \sum_{\gamma \in \mathbb{Q}} M_{\lambda} f(\gamma) &= \sum_{\gamma \in \mathbb{Q}} f(\lambda \gamma) = \sum_{\gamma \in \mathbb{Q}} \hat{f}(\lambda \gamma) \\ &= \sum_{\gamma \in \mathbb{Q}} \frac{1}{|\lambda|_{\mathbb{A}}} \hat{f}(\lambda^{-1} \gamma) = \sum_{\gamma \in \mathbb{Q}} (M_{\lambda} f)^{\hat{}}(\gamma). \end{split}$$

Damit haben wir auch schon den ersten Teil der Beweisidee verwirklicht.

Der zweite Teil ist weniger Arbeit. Für $f = f_{\infty} \prod_{p < \infty} \mathbb{1}_{\mathbb{Z}_p}$ haben wir zum einen, dass $\hat{f} = \hat{f}_{\infty} \prod_{p < \infty} \mathbb{1}_{\mathbb{Z}_p}$. Zum anderen ist

$$\sum_{\gamma \in \mathbb{Q}} f(\gamma) = \sum_{\gamma \in \mathbb{Q}} f_{\infty}(\gamma) \prod_{p < \infty} \mathbb{1}_{\mathbb{Z}_p}(\gamma) = \sum_{\gamma \in \mathbb{Z}} f_{\infty}(\gamma),$$

denn das Produkt über alle verschwindet genau dann nicht, wenn γ eine ganze Zahl ist. Wir müssen also nur $\sum_{\gamma \in \mathbb{Z}} f_{\infty}(\gamma) = \sum_{\gamma \in \mathbb{Z}} \hat{f}_{\infty}(\gamma)$ zeigen. Aber das sagt uns gerade die klassische Poisson-Summenformel.

Ausgerüstet mit der adelischen Summenformel kommen wir zu einem weiteren wichtigen Eckpunkt un Tates Beweis.

Satz 6.3 (Riemann-Roch). Sei $x \in \mathbb{I}$ ein Idel und $f \in S(\mathbb{A})$. Dann

$$\sum_{\gamma \in \mathbb{O}} f(\gamma x) = \frac{1}{|x|_{\mathbb{A}}} \sum_{\gamma \in \mathbb{O}} \hat{f}(\gamma x^{-1})$$

Beweis. Sei $x \in \mathbb{I}$ beliebig aber fest. Für beliebige $y \in \mathbb{A}$ definieren wir eine Funktion h(y) := f(yx). Diese ist dann wieder in $S(\mathbb{A})$ und erfüllt damit die Poisson-Summenformel

$$\sum_{\gamma \in \mathbb{Q}} h(\gamma) = \sum_{\gamma \in \mathbb{Q}} \hat{h}(\gamma).$$

Berechnen wir allerdings die Fouriertransformation von h erhalten wir mit einer Translation um x^{-1}

$$\hat{h}(\gamma) = \int_{\mathbb{A}} h(y) \Psi(\gamma y) dy$$

$$= \int_{\mathbb{A}} f(yx) \Psi(\gamma y) dy$$

$$= \frac{1}{|x|_{\mathbb{A}}} \int_{\mathbb{A}} f(y) \Psi(\gamma y x^{-1}) dy$$

$$= \frac{1}{|x|_{\mathbb{A}}} \hat{f}(\gamma x^{-1}).$$

Damit sind wir auch schon fertig.

6.3 Die globale Funktionalgleichung

Satz 6.4. Sei $\chi = \mu |\cdot|_{\mathbb{A}}^s$ ein unitärer Charakter auf \mathbb{I} , der trivial auf \mathbb{Q}^\times wirkt. Sei $f \in S(\mathbb{A})$. Dann konvergiert die globale Zeta-Funktion $\zeta(f,\mu,s)$ für Re(s) > 1 absolut und gleichmäßig auf kompakten Teilmengen und definiert dort eine holomorphe Funktion, die zu einer meromorphen Funktion auf ganz \mathbb{C} fortgesetzt werden kann. Diese erfüllt die globale Funktionalgleichung

$$\zeta(f,\mu,s) = \zeta(\hat{f}, \frac{1}{\mu}, 1-s)$$

Diese Funktion ist Funktion ist überall holomorph, außer wenn $\mu = |\cdot|^{-i\tau}$, $\tau \in \mathbb{R}$. Dann besitzt sie einen einfachen Pol bei $s = i\tau$ mit Residuum -f(0) und einen einfachen Pol bei $s = 1 + i\tau$ mit Residuum $\hat{f}(0)$.

Beweis. Wir beweisen zunächst die Konvergenz. Dazu genügt es faktorisierbare Schwartz-Bruhat Funktionen f zu betrachten. Wir müssen also zeigen, dass das Integral

$$\int_{\mathbb{I}} |f(x)\chi(x)| d^{\times}x = \int_{\mathbb{I}} |f(x)| \cdot |x|_{\mathbb{A}}^{\sigma} d^{\times}x = \prod_{p \le \infty} \int_{\mathbb{Q}_{p}^{\times}} |f_{p}(x_{p})| \cdot |x_{p}|_{p}^{\sigma} d^{\times}x_{p}$$
 (12)

endlich ist. Dazu teilen wir das Produkt auf. Da f eine faktorisierbare Schwartz-Bruhat Funktion ist, gibt es eine Primzahl p_0 , so dass f_p für alle $p_0 \leq p < \infty$ die charakteristische Funktion $\mathbb{1}_{\mathbb{Z}_p}$ ist. Wir können Gleichung 12 also schreiben als

$$\int_{\mathbb{Q}_{\infty}^{\times}} |f_{\infty}(x_{\infty})| \cdot |x_{\infty}|_{\infty}^{\sigma} d^{\times} x_{\infty} \cdot \prod_{p < p_{0}} \int_{\mathbb{Q}_{p}^{\times}} |f_{p}(x_{p})| \cdot |x_{p}|_{p}^{\sigma} d^{\times} x_{p} \cdot \prod_{p_{0} \leq p < \infty} \int_{\mathbb{Z}_{p} \setminus \{0\}} |x_{p}|_{p}^{\sigma} d^{\times} x_{p}.$$

Der erste Faktor und das Produkt in der Mitte sind endlich nach unseren Überlegungen zu den lokalen Funktionalgleichungen. In der Tat haben wir hier ein endliches Produkt lokaler Zeta-Funktionen $\zeta(|f_p|,|x|_p^\sigma)$. Diese konvergieren für $\sigma>0$, also sicherlich auch für $\sigma>1$. Konvergenz hängt also nur von der Konvergenz des unendlichen Produkts

$$\prod_{p_0 \le p < \infty} \int_{\mathbb{Z}_p \setminus \{0\}} |x_p|_p^{\sigma} d^{\times} x_p$$

ab. Der aufmerksame Leser wird sich hier vielleicht an die genauen Berechnungen der lokalen Funktionalgleichungen erinnern und einen Bezug zur Riemannschen Zeta-Funktion erkennen. Ansonsten wollen wir die Überraschung nicht verderben und werden daher später nochmal auf diese Konvergenz zurückkommen.

Nun zur Funktionalgleichung. Aufgrund absoluter Konvergenz auf der Halbebene $\mathrm{Re}(s)>1$ haben wir

$$\zeta(f,\chi) = \int_{\mathbb{I}} f(x)\chi(x)d^{\times}x$$

$$= \iint_{\mathbb{R}_{+}^{\times} \times \mathbb{I}^{1}} f(t \cdot b)\chi(t \cdot b)(d^{\times}t \times db)$$

$$= \int_{0}^{\infty} \left[\int_{\mathbb{I}^{1}} (f(t \cdot b)\chi(t \cdot b)db \right] \frac{dt}{t}$$

Um uns etwas Schreibarbeit zu sparen definieren wir

$$\zeta_t(f,\chi) := \int_{\mathbb{T}^1} (f(t \cdot b)\chi(t \cdot b)db.$$

. Wie in Riemanns Beweis teilen wir das Integral auf durch

$$\zeta(f,\chi) = \int_0^1 \zeta_t(f,\chi) \frac{dt}{t} + \int_1^\infty \zeta_t(f,\chi) \frac{dt}{t}.$$

Das Integral \int_1^∞ macht uns keine Probleme, denn

$$\int_{1}^{\infty} |\zeta_{t}(f,\chi)| \frac{dt}{t} \leq \int_{1}^{\infty} \int_{F} \left| \sum_{a \in \mathbb{Q}^{\times}} (f(at \cdot b)) \right| db |t|^{s-1} dt$$

Als nächstes erinnern wir uns daran, dass wir \mathbb{I}^1 als disjunkte Vereinigung $\bigsqcup_{a\in\mathbb{Q}^\times}aF$ darstellen konnten, wobei $F=\{1\}\times\prod_{p<\infty}\mathbb{Z}_p$. Kombiniert mit der Translationsinvarianz von db und der Tatsache, dass χ trivial auf \mathbb{Q}^\times wirkt, ergibt sich

$$\zeta_t(f,\chi) = \int_{\mathbb{T}} (f(t \cdot b)\chi(t \cdot b)db = \sum_{a \in \mathbb{Q}^{\times}} \int_{aF} (f(t \cdot b)\chi(t \cdot b)db)$$
$$= \sum_{a \in \mathbb{Q}^{\times}} \int_{F} (f(at \cdot b)\chi(t \cdot b)db) = \int_{F} \left(\sum_{a \in \mathbb{Q}^{\times}} (f(at \cdot b)\chi(t \cdot b)db)\right) \chi(t \cdot b)db$$

Die Summe über a verleitet uns dazu Riemann-Roch anzuwenden, allerdings benötigen wir hierfür eine Summe über K. Das Problem lässt sich jedoch leicht beheben.

Lemma 6.5.

$$\zeta_t(f,\chi) = \zeta_{t-1}(f,\check{\chi}) + \hat{f}(0) \int_F \check{\chi}(x/t)db - f(0) \int_F \chi(tx)db.$$

Beweis. Die Idee ist klar. Wir fügen $f(0) \int_F \chi(tx) db$ zu $\zeta_t(f,\chi)$ hinzu, erhalten

$$\zeta_t(f,\chi) + f(0) \int_F \chi(tb) db = \int_F \left(\sum_{a \in \mathbb{Q}} (f(at \cdot b)) \chi(t \cdot b) db \right)$$

und können jetzt unsere Version von Riemann-Roch anwenden:

$$\begin{split} \int_{F} \left(\sum_{a \in \mathbb{Q}} f(at \cdot b) \right) \chi(t \cdot b) db &= \int_{F} \left(\sum_{a \in \mathbb{Q}} \hat{f}(at^{-1}b^{-1}) \right) \frac{\chi(t \cdot b)}{|tx|_{\mathbb{A}}} db \\ &= \int_{F} \left(\sum_{a \in \mathbb{Q}} \hat{f}(at^{-1}b) \right) \left| t^{-1}b \right|_{\mathbb{A}} \chi(t \cdot b) db \\ &= \int_{F} \left(\sum_{a \in \mathbb{Q}} \hat{f}(at^{-1}b) \right) \check{\chi}(b/t) db + \hat{f}(0) \hat{f}(0) \int_{F} \check{\chi}(x/t) db \\ &= \zeta_{t^{-1}}(f, \check{\chi}) + \hat{f}(0) \int_{F} \check{\chi}(x/t) db \end{split}$$

wobei wir im zweiten Schritt den Variablenwechsel $b \mapsto b^{-1}$ und im dritten Schritt $\chi(x^{-1}) = \chi(x)^{-1}$ ausgenutzt haben.

Wir widmen uns nun dem Integral $\int_0^1.$ Dank Riemann-Roch können wir es umformen zu

$$\int_{0}^{1} \zeta_{t}(f,\chi) \frac{dt}{t} = \int_{0}^{1} \left(\zeta_{t-1}(\hat{f}, \check{\chi}) + \hat{f}(0) \check{\chi}(t^{-1}) \int_{F} \check{\chi}(x) db - f(0) \chi(t) \int_{F} \chi(x) db \right) \frac{dt}{t}$$

Mit einem Variablenwechsel $t\mapsto t^{-1}$ im ersten Summanden ergibt sich

$$\int_0^1 \zeta_{t-1}(\hat{f}, \check{\chi}) \frac{dt}{t} = \int_1^\infty \zeta_t(\hat{f}, \check{\chi}) \frac{dt}{t}$$

was nach dem gleichen Argument wie oben auf ganz $\mathbb C$ konvergiert. Verbleibt noch der Term

$$E(f,\chi) := \int_0^1 \hat{f}(0)\check{\chi}(t^{-1}) \left(\int_F \check{\chi}(x) db \right) \frac{dt}{t} - \int_0^1 f(0)\chi(t) \left(\int_F \chi(x) db \right) \frac{dt}{t}$$

. Ist χ nicht trivial auf \mathbb{I}^1 , so haben wir gesehen, dass χ nicht trivial auf dem Kompaktum F wirkt. Folglich verschwinden beide Integrale und $E(f,\chi)=0$ Ist $\chi=\mu|\cdot|^s$ dagegen trivial auf \mathbb{I}^1 , dann wissen wir, dass $\chi=|\cdot|^{s'}$, wobei $s'=s-i\tau$ für ein $\tau\in\mathbb{R}$. Also,

$$E(f,\chi) = \int_0^1 \hat{f}(0)t^{s'-1} \text{Vol}(F,db) - f(0)t^{s'} \text{Vol}(F,db) \frac{dt}{t}$$
$$= \frac{\hat{f}(0)}{s'-1} - \frac{f(0)}{s'}$$

und wir sehen, dass E in diesem Fall eine rationale Funktion ist. Damit ist

$$\zeta(f,\chi) = \int_{1}^{\infty} \zeta_{t}(\hat{f}, \check{\chi}) \frac{dt}{t} + \int_{1}^{\infty} \zeta_{t}(f, \chi) \frac{dt}{t} + E(f, \chi)$$

Eine meromorphe Erweiterung der Funktion auf ganz \mathbb{C} . Zudem haben wir gezeigt, dass für $\mu \neq |\cdot|^{-i\tau}$ die Funktion ζ sogar ganz ist und im Fall $\mu = |\cdot|^{-i\tau}$ ihre einzigen Pole bei $s = i\tau$ und $s = 1 + i\tau$ liegen mit den Residuen -f(0) bzw. $\hat{f}(0)$. Zum Schluss kommen wir noch zur Funktionalgleichung. Aus

$$\hat{f}(x) = f(-x) \text{ und } \check{\chi} = \chi$$

folgt

$$\zeta(\hat{f}, \check{\chi}) = \int_{1}^{\infty} \zeta_{t}(\hat{f}, \check{\check{\chi}}) \frac{dt}{t} + \int_{1}^{\infty} \zeta_{t}(\hat{f}, \check{\chi}) \frac{dt}{t} + E(\hat{f}, \check{\chi})$$

$$= \int_{1}^{\infty} \int_{\mathbb{T}^{1}} f(-tb)\chi(tb) db \frac{dt}{t} + \int_{1}^{\infty} \int_{\mathbb{T}^{1}} \hat{f}(tb)\check{\chi}(tb) db \frac{dt}{t} + E(f, \chi)$$

$$= \int_{1}^{\infty} \int_{\mathbb{T}^{1}} f(tb)\chi(tb) db \frac{dt}{t} + \int_{1}^{\infty} \int_{\mathbb{T}^{1}} \hat{f}(tb)\check{\chi}(tb) db \frac{dt}{t} + E(f, \chi) = \zeta(f, \chi)$$

wobei wir im letzten Schritt im ersten Integral die Translationsinvarianz der Haar-Maßes db und die Eigenschaft des Idele-Klassencharakters $\chi(-tx)=\chi(tx)$ ausgenutzt haben.

6.4 Anwendungsbeispiel: Die Riemannsche Zeta-Funktion

Hi!

7 Anhang

Satz 7.1 (Poisson Summenformel). Sei $f \in S(\mathbb{A})$. Dann gilt:

$$\sum_{\gamma \in \mathbb{Q}} f(\gamma + x) = \sum_{\gamma \in \mathbb{Q}} \hat{f}(\gamma + x) \tag{13}$$

 $f\ddot{u}r$ alle $x \in \mathbb{A}$.

Beweis. Jede \mathbb{Q} -invariante Funktion ϕ auf \mathbb{A} induziert eine Funktion auf \mathbb{A}/\mathbb{Q} , welche wir wieder ϕ nennen. Wir können dann die Fouriertransformation von $\phi: \mathbb{A}/\mathbb{Q} \to \mathbb{C}$ als Funktion auf \mathbb{Q} betrachten, da \mathbb{Q} gerade die duale Gruppe von \mathbb{A}/\mathbb{Q} ist. Dazu setzen wir

$$\hat{\phi}(x) = \int_{\mathbb{A}/\mathbb{O}} \phi(t) \Psi(tx) \overline{dt}$$

wobei \overline{dt} das Quotientenmaßauf \mathbb{A}/\mathbb{Q} ist, welches von dem Maßdt auf \mathbb{A} induziert wird. Dieses Haarmaßist charakterisiert durch

$$\int_{\mathbb{A}/\mathbb{Q}} \tilde{f}(t) \overline{dt} = \int_{\mathbb{A}/\mathbb{Q}} \sum \gamma \in \mathbb{Q} f(\gamma + t) \overline{dt} = \int_{\mathbb{A}} f(t) dt$$

für alle stetigen Funktionen f auf \mathbb{A} mit geeigneten Konvergenzeigenschaften (z.b. $f \in S(\mathbb{A})$). Für den eigentlichen Beweis benötigen wir zwei

Lemma 7.2. Für jede Funktion $f \in S(\mathbb{A})$ gilt:

$$\hat{f}|_{\mathbb{Q}} = \hat{\tilde{f}}|_{\mathbb{Q}}.$$

Beweis. Sei $x\in\mathbb{Q}$ beliebig aber fest. Wir beobachten zunächst, dass wir wegen $\Psi|_{\mathbb{Q}}=1$

$$\Psi(tx) = \Psi(tx)\Psi(\gamma x) = \Psi((\gamma + t)x)$$

für alle $\gamma \in \mathbb{Q}$ und $t \in \mathbb{A}$ haben. Per Definition der Fouriertransformation

$$\begin{split} \hat{\bar{f}}(x) &= \int_{\mathbb{A}/\mathbb{Q}} \hat{f}(t) \Psi(tx) \overline{dt} = \int_{\mathbb{A}/\mathbb{Q}} \left(\sum_{\gamma \in \mathbb{Q}} f(\gamma + t) \right) \Psi(tx) \overline{dt} = \\ &= \int_{\mathbb{A}/\mathbb{Q}} \left(\sum_{\gamma \in \mathbb{Q}} f(\gamma + t) \Psi((\gamma + t)x) \right) \overline{dt} = \int_{\mathbb{A}} f(t) \Psi(tx) dt = \hat{f}(x) \end{split}$$

wobei wir im vorletzten Schritt die oben besprochene Charakterisierung des Quotientenmaßes \overline{dt} ausgenutzt haben.

Lemma 7.3. Für jede Funktion $f \in S(\mathbb{A})$ und jedes $x \in \mathbb{Q}$ gilt

$$\tilde{f}(x) = \sum_{\gamma \in \mathbb{O}} \hat{\tilde{f}}(\gamma) \overline{\Psi}(\gamma x)$$

Beweis. Wie wir eben bewiesen haben gilt $\hat{f}|_{\mathbb{Q}} = \hat{\hat{f}}|_{\mathbb{Q}}$ und daher

$$\left| \sum_{\gamma \in \mathbb{Q}} \hat{f}(\gamma) \overline{\Psi}(\gamma x) \right| = \left| \sum_{\gamma \in \mathbb{Q}} \hat{f}(\gamma) \overline{\Psi}(\gamma x) \right| \le \sum_{\gamma \in \mathbb{Q}} |\hat{f}(\gamma)|$$

unter Ausnutzen der Tatsache, dass Ψ unitär ist. Die rechte Seite der Gleichung ist also normal konvergent, da $f \in S(\mathbb{A})$. Analog folgt, dass auch $\sum_{\gamma \in \mathbb{Q}} \hat{f}(\gamma)$ normal

konvergiert. Wir erinnern uns, dass das Pontryagin Duale $\widehat{\mathbb{A}/\mathbb{Q}}$ als topologische Gruppe isomorph zu \mathbb{Q}^{\ddagger} ist. Also $\hat{\hat{f}} \in L^1(\mathbb{Q})$ und

$$\sum_{\gamma\in\mathbb{Q}}\hat{\tilde{f}}(\gamma)\overline{\Psi}(\gamma x)$$

ist die Fouriertransformierte
§ von $\hat{\hat{f}}$ ausgewertet am Punkt-x. Nach Fourier
inversionsformel erhalten wir also

$$\tilde{f}(x) = \hat{\tilde{f}}(-x) = \sum_{\gamma \in \mathbb{O}} \hat{\tilde{f}}(\gamma) \overline{\Psi}(\gamma x)$$

und damit das Lemma.

Zurück zum Beweis der Summenformel. Wir erhalten aufgrund des zweiten Lemmas mit x=0 und anschließenden Anwenden des Ersten

$$\tilde{f}(0) = \sum_{\gamma \in \mathbb{Q}} \hat{\tilde{f}}(\gamma) \bar{\Psi}(0) = \sum_{\gamma \in \mathbb{Q}} \hat{f}(\gamma) = \sum_{\gamma \in \mathbb{Q}} \hat{f}$$

Aber per Definition gilt gerade $\tilde{f}(0) = \sum_{\gamma \in \mathbb{Q}} f(\gamma)$, also

$$\sum_{\gamma \in \mathbb{Q}} f(\gamma) = \sum_{\gamma \in \mathbb{Q}} \hat{f}$$

und wir sind fertig.

 $^{^{\}ddagger}$ Achtung: Hier ist Qversehen mit der diskreten Topologie gemeint

[§]Wir erinnern uns, dass in diesem Fall das Zählmaßein Haar-Maßist

Literatur

- [1] Deitmar, Anton: Automorphe Formen. Springer-Lehrbuch Masterclass 0. Springer-Verlag Berlin Heidelberg, 1. Auflage, 2010.
- [2] DINAKAR RAMAKRISHNAN, ROBERT J. VALENZA: Fourier Analysis on Number Fields, Band 186 der Reihe Graduate Texts in Mathematics. Springer, 1. Auflage, 1998.
- [3] FOLLAND, GERALD B.: Real Analysis: Modern Techniques and Their Applications. Pure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs and Tracts. Wiley-Interscience, 2. Auflage, 1999.
- [4] GOUVEA, FERNANDO QUADROS: p-adic numbers: An introduction. Universitext. Springer, 2. Auflage, 1997.