Particle spectrograph

Lagrangian density
$-t_1 \ \omega_{_{I}}^{\alpha_{I}} \ \omega_{_{K}\alpha}^{\kappa} - \frac{1}{3} t_1 \ \omega_{_{I}}^{\kappa\lambda} \ \omega_{_{K}\lambda}^{\prime} + \frac{2}{3} t_2 \ \omega_{_{I}}^{\kappa\lambda} \ \omega_{_{K}\lambda}^{\prime} + \frac{1}{3} t_1 \ \omega_{_{K}\lambda}^{\prime} \ \omega_{_{I}}^{\lambda} + \frac{1}{3} t_2 \ \omega_{_{K}\lambda}^{\prime} \ \omega_{_{I}}^{\lambda} - r_5 \ \partial_{_{I}}\omega_{_{K}\lambda}^{\lambda} \ \partial_{_{I}}^{\lambda} - r_5 \ \partial_{_{\alpha}}\omega_{_{\Lambda}}^{\alpha} - r_5 \ \partial_{_{\alpha}}\omega_{_{\Lambda}}^{\alpha} \partial_{_{K}}\omega_{_{\Lambda}}^{\kappa\lambda} + r_5 \ \partial_{_{\theta}}\omega_{_{\Lambda}}^{\alpha} \partial_{_{K}}\omega_{_{\Lambda}}^{\kappa\lambda} - r_5 \ \partial_{_{\theta}}\omega_{_{\Lambda}}^{\alpha} \partial_{_{\mu}}\omega_{_{\Lambda}}^{\alpha} - r_5 \ \partial_{_{\theta}}\omega_{_{\Lambda}}^{\alpha} \partial_{_{\mu}}\omega_{_{\Lambda}}^{\alpha} \partial_{_{\mu}}\omega_{_{\Lambda}}$
$r_5 \partial_\alpha \omega_{\lambda\theta}^{\alpha} \partial_\kappa \omega^{\kappa\lambda\theta} + 2 r_5 \partial_\theta \omega_{\lambda\alpha}^{\alpha} \partial_\kappa \omega^{\kappa\lambda\theta} - \tfrac{1}{3} t_1 \partial^\alpha f_{\kappa} \partial^\kappa f_{\theta}^{\theta} + \tfrac{1}{6} t_2 \partial^\alpha f_{\kappa} \partial^\kappa f_{\theta}^{\theta} - \tfrac{2}{3} t_1 \partial^\alpha f_{\theta} \partial^\kappa f_{\theta}^{\theta} - \tfrac{1}{3} t_1 \partial^\alpha f_{\theta}^{\theta} \partial^\kappa f_{\theta}^{\theta} - \tfrac{1}{3} t_1 \partial^\alpha f_{\theta}^{\theta} \partial^\kappa f_{\theta}^{\theta} + \tfrac{1}{6} t_2 \partial^\alpha f_{\theta}^{\theta} + \tfrac{1}{6} t_2 \partial^$
$\frac{1}{6} t_2 \partial^\alpha f^\lambda_{\ \kappa} \partial^\kappa f_{\alpha\lambda} + t_1 \omega_{\kappa\alpha}^{\ \alpha} \partial^\kappa f^\prime_{\ \ \ } + t_1 \omega_{\kappa\lambda}^{\ \lambda} \partial^\kappa f^\prime_{\ \ \ } + 2 t_1 \partial^\alpha f_{\kappa\alpha} \partial^\kappa f^\prime_{\ \ \ } - t_1 \partial_\kappa f^\lambda_{\ \lambda} \partial^\kappa f^\prime_{\ \ \ } + \frac{1}{3} t_1 \omega_{\iota\theta\kappa} \partial^\kappa f^{\iota\theta} + \frac{1}{3} t_2 \omega_{\iota\theta\kappa} \partial^\kappa f^{\iota\theta} + \frac{4}{3} t_1 \omega_{\iota\kappa\theta} \partial^\kappa f^{\iota\theta} - \frac{1}{3} t_2 \omega_{\iota\theta\kappa} \partial^\kappa f^{\iota\theta} + \frac{1}{3} t_3 \omega_{\iota\theta\kappa} \partial^\kappa f^{\iota\theta} + \frac{1}{3} t_3 \omega_{\iota\kappa\theta} \partial^\kappa f^{\iota\theta} + \frac{1}{3} t_4 \omega_{\iota\kappa\theta} \partial^\kappa f^{\iota\theta} + \frac{1}{3} \omega_{\iota\kappa\theta} \partial^\kappa f^{\iota\theta} + \frac{1}{3} \omega_{\iota\kappa\theta} \partial^\kappa f^{\iota\theta} + \frac{1}{3} \omega_{\iota\kappa\theta} \partial^\kappa$
$\frac{2}{3}t_2\omega_{_{IK\theta}}\partial^{_{K}}\!f^{^{I\theta}}-\frac{1}{3}t_1\omega_{_{\theta IK}}\partial^{_{K}}\!f^{^{I\theta}}-\frac{1}{3}t_2\omega_{_{\theta IK}}\partial^{_{K}}\!f^{^{I\theta}}+\frac{2}{3}t_1\omega_{_{\theta KI}}\partial^{_{K}}\!f^{^{I\theta}}+\frac{2}{3}t_2\omega_{_{\theta KI}}\partial^{_{K}}\!f^{^{I\theta}}-t_1\omega_{_{I}\alpha}^{}}\partial^{_{K}}\!f^{^{I}}}-t_1\omega_{_{I}\alpha}^{}}\partial^{_{K}}\!f^{^{I}}}+\frac{1}{3}t_1\partial^{_{\alpha}}\!f^{^{\lambda}}}\!\partial^{_{K}}\!f^{^{I}}}$
$\frac{1}{6}t_2\partial^\alpha f^\lambda_{\ \ \kappa}\partial^\kappa f_{\lambda\alpha} + \frac{1}{3}t_1\partial_\kappa f^{\ \ \lambda}_{\ \theta}\partial^\kappa f^{\ \ \theta}_{\lambda} - \frac{1}{6}t_2\partial_\kappa f^{\ \lambda}_{\ \theta}\partial^\kappa f^{\ \ \theta}_{\lambda} + \frac{2}{3}t_1\partial_\kappa f^\lambda_{\ \ \theta}\partial^\kappa f^{\ \ \theta}_{\lambda} + \frac{1}{6}t_2\partial_\kappa f^\lambda_{\ \ \theta}\partial^\kappa f^{\ \ \theta}_{\lambda} - t_1\partial^\alpha f^\lambda_{\ \ \alpha}\partial^\kappa f_{\lambda\kappa} + r_5\partial_\alpha\omega^{\ \alpha}_{\lambda\ \ \theta}\partial^\lambda\omega^{\theta\kappa}_{\ \ \kappa} - r_5\partial_\theta\omega^{\ \alpha}_{\lambda\ \alpha}\partial^\lambda\omega^{\theta\kappa}_{\ \ \kappa}$
Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

Wave operator

	$\omega_0^{\#1}$	$f_{0^{+}}^{\#1}$	$f_{0^{+}}^{\#2}$	$\omega_{0}^{\sharp 1}$										
$\omega_{0^{+}}^{#1}$ †	-t ₁	$i\sqrt{2} kt_1$	0	0										
$f_{0^{+}}^{#1}$ †	$-i\sqrt{2} kt_1$	$-2 k^2 t_1$	0	0										
$f_{0}^{#2}$ †	0	0	0	0										
$\omega_{0}^{\sharp 1}$ †	0	0	0	t_2	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{lphaeta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1-\alpha}^{\sharp 1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$			
_				$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_2 \right)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0			
				$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	\frac{t_1 + t_2}{3}	$\frac{1}{3}ik(t_1+t_2)$	0	0	0	0			
				$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0			
				$\omega_{1}^{\#1}\dagger^{lpha}$	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	Īkt ₁			
				$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0			
				$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0			
				$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	-	0	0	0	$\omega_{2^{+}\alpha\beta}^{\#1}$ f	z#1 2 ⁺ αβ	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
											$\omega_{2^{+}}^{\sharp 1}\dagger^{\alpha\beta}$	<u>t</u> 1 2 -	$-\frac{i k t_1}{\sqrt{2}}$	0
											$f_{2}^{#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
											$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

Saturated propagator

	$\sigma_{0^+}^{\sharp 1}$	$ au_{0}^{\#1}$	$\tau_{0}^{#2}$	$\sigma_{0}^{\#1}$										
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0										
$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	_	0										
$ au_{0}^{\#2} \dagger$	0	0	0	0										
$\sigma_0^{\sharp 1}$ †	0	0	0	$\frac{1}{t_2}$	$\sigma^{\sharp 1}_{1^+ lpha eta}$	$\sigma_{1^+lphaeta}^{ ext{#2}}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1-\alpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1-\alpha}^{\#1}$	$\tau_{1-\alpha}^{\#2}$			
				$\sigma_{1}^{\sharp 1} \dagger^{\alpha \beta}$	$\frac{2(t_1+t_2)}{3t_1t_2+2k^2r_5(t_1+t_2)}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1t_2 + 2k^2r_5 (t_1 + t_2))}$	$\frac{i \sqrt{2} k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$	0	0	0	0			
				$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1+k^2) (3t_1t_2 + 2k^2r_5(t_1 + t_2))}$	$\frac{6 k^2 r_5 + t_1 + 4 t_2}{(1+k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	0	0	0	0			
				$\tau_{1}^{\#1} \dagger^{\alpha\beta}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$	$-\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$\frac{k^2 (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	0	0	0	0			
				$\sigma_1^{\sharp_1} \dagger^{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	$\frac{2ik}{t_1+2k^2t_1}$			
				$\sigma_{1}^{#2} \dagger^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i \sqrt{2} k (2 k^2 r_5 - t_1)}{(t_1 + 2 k^2 t_1)^2}$			
				$\tau_1^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0			
				$\tau_{1}^{#2} + \alpha$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4 k^4 r_5 + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2^- \alpha \beta \chi}^{\# 1}$
											$\sigma_{2}^{\sharp 1} \dagger^{\alpha \beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
											$ au_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
											$\sigma_2^{#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{t_1}$

Source constraints

Source constraints	
SO(3) irreps	#
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	16

Massive spectrum

	Massive particle					
? $J^P = 1^+$	Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+3r_5(t_1^2+2t_2^2)}{r_5(t_1+t_2)(-3t_1t_2+2r_5(t_1+t_2))} > 0$				
2	Polarisations:	3				
$\frac{1}{k^{\mu}}$	Square mass:	$-\frac{3t_1t_2}{2r_5t_1+2r_5t_2} > 0$				
?	Spin:	1				
	Parity:	Even				
1		Even				

Massless spectrum

(No massless particles)

Unitarity conditions

Unitarity conditions
$r_5 > 0 \&\& (t_1 < 0 \&\& (t_2 < 0 t_2 > -t_1)) (t_1 > 0 \&\& -t_1 < t_2 < 0)$