MINI CURSO DE ARDUINO

Autora: Letícia Fritz Henrique

Pós Junior

leticiafritz@teslajunior.com.br

+55 (21) 99843-6993

Sumário

- 1) Introdução
 - 2 IDE Arduino
 - 3 Projetos com LED
 - 4 Tipos de Variáveis
 - 5 Porta Analógica
 - 6 Display LCD
- 7 Desafio Final

Sumário

- 1 Introdução
 - 2 IDE Arduino
 - 3 Projetos com LED
 - 4) Tipos de Variáveis
 - 5 Porta Analógica
 - 6 Display LCD
- 7 Desafio Final

Introdução

Arduino o quê?

- 1. Placa com micro processador e comunicação serial;
- 2. Sistema embarcado.

Arduino como?

- 1. Série de comandos pré-programados;
- 2. Controle via Ethernet.

Arduino pra quê?

- 1. Controle de componentes eletrônicos;
- 2. Automação Residencial.

Introdução Tipos

Arduino Mega

Arduino Nano

Introdução

	Arduino Uno	Arduino Mega2560	Arduino Leonardo	Arduino Due	Arduino ADK	Arduino Nano	Arduino Pro Mini
					-		
Microcontrolador	ATmega328	ATmega2560	ATmega32u4	AT91SAM3X8E	ATmega2560	ATmega168 (versão 2.x) ou ATmega328 (versão 3.x)	ATmega168
Portas digitais	14	54	20	54	54	14	14
Portas PWM	6	15	7	12	15	6	6
Portas analógicas	6	16	12	12	16	8	8
Memória	32 K (0,5 K usado pelo bootloader)	256 K (8 K usados pelo bootloader)	32 K (4 K usados pelo bootloader)	<mark>512 K d</mark> isponível para aplicações	256 K (8 K usados pelo bootloader)	16 K (ATmega168) ou 32K (ATmega328), 2 K usados pelo bootloader	16 K (2k usados pelo bootloader
Clock	16 Mhz	16 Mhz	16 Mhz	84 Mhz	16 Mhz	16 Mhz	8 Mhz (modelo 3.3v) ou 16 Mhz (modelo 5v)
Conexão	USB	USB	Micro USB	Micro USB	USB	USB Mini-B	Serial / Módulo USB externo
Conector para alimentação externa	Sim	Sim	Sim	Sim	Sim	Não	Não

Introdução Arduino Uno

Introdução Eletrônica do Arduino

- 1. Microcontrolador;
- 2. Conector USB;
- 3. Pinos de Entrada e Saída;
- 4. Pinos de Alimentação;
- 5. Botão de Reset;
- 6. Conversor Serial-USB e LEDs TX/RX;
- 7. Conector de Alimentação;
- 8. LED de Alimentação;
- 9. LED Interno.

Introdução Simulador Arduino

• circuits.io

- 1. Simulador on-line;
- 2. Desenvolvido pela AutoDesk;
- 3. Possibilidade de ver programas de outros usuários.

Fritzing

- 1. Simulador off-line;
- http://fritzing.org/download/.

- 1) Prontoboard
 - 2 Resistor
 - 3 LED
 - 4) Jumper
 - 5) PushButton
- 6 Potenciômetro

- 1 Protoboard
 - 2 Resistor
 - 3) LED
 - 4) Jumper
 - 5) PushButton
- 6 Potenciômetro

1 Prontoboard

- 1 Protoboard
 - 2 Resistor
 - 3) LED
 - 4) Jumper
 - 5) PushButton
- 6 Potenciômetro

2 Resistor

Valor nominal

Cor	Preto	Marrom	Vermelho	Laranja	Amarelo	Verde	Azul	Violeta	Cinza	Branco
Valor	0	1	2	3	4	5	6	7	8	9

Valor da tolerância

Cor	Marrom	Dourado	Prata	Sem cor	
Valor	±1%	±5%	±10%	±20%	

$$331\Omega \pm 5\%$$

- 1 Protoboard
 - 2 Resistor
 - 3 LED
 - 4) Jumper
 - 5) PushButton
- 6 Potenciômetro

3 LED

- 1 Pontoboard
 - 2 Resistor
 - 3) LED
 - 4 Jumper
 - 5) PushButton
- 6 Potenciômetro

4 Jumper

Macho-Fêmea

Fêmea-Fêmea

- 1 Protoboard
 - 2 Resistor
 - 3) LED
 - 4) Jumper
 - 5 PushButton
- 6 Potenciômetro

5 PushButtons

- 1 Protoboard
 - 2 Resistor
 - 3) LED
 - 4) Jumper
 - 5) PushButton
- 6 Potenciômetro

6 Potenciômetro

Sumário

- 1) Introdução
 - 2 IDE Arduino
 - 3 Projetos com LED
 - 4) Tipos de Variáveis
 - 5 Porta Analógica
 - 6 Display LCD
- 7 Desafio Final

IDE Arduino

- Linguagem baseada em C/C++
- www.arduino.cc
 - 1. Baixar a versão mais atual.
- Função:
 - 1. Permitir o desenvolvimento do software;
 - 2. Enviar os comando à placa Arduino;
 - 3. Interagir com a placa Arduino.

IDE Arduino

Monitor Serial

IDE Arduino Configuração

- Ferramentas -> Placa
- Ferramentas -> Porta
 - 1. Escolha a porta referente ao seu arduino.

Sumário

- 1) Introdução
 - 2 IDE Arduino
 - 3 Projetos com LED
 - 4 Tipos de Variáveis
 - 5 Porta Analógica
 - 6 Display LCD
- 7 Desafio Final

Projeto 1 Projeto 1

Pisca LED:

- 1. LED;
- 2. Resistor.

fritzing

Projetos com LED Projeto 1

Pisca LED:

- 1. LED;
- 2. Resistor.

```
Projeto1
int led=13;
void setup() {
 // put your setup code here, to run once:
  pinMode (led, OUTPUT);
void loop() {
 // put your main code here, to run repeatedly:
  digitalWrite(led, HIGH);
  delay(1000);
  digitalWrite(led,LOW);
  delay(1000);
```


Projetos com LED "if-else"

```
If(x==1){
//código em caso afirmativo
}else{
//código em caso negativo
}
```

Operadores de Comparação				
==	Igual			
!=	Diferente			
<	Menor			
>	Maior			
<=	Menor ou Igual			
>=	Maior ou Igual			

Projeto 2 Projeto 2

Leitura de Botão:

- 1. LED;
- 2. Resistor;
- 3. PushButton.

Projetos com LED

Projeto 2

Leitura de Botão:

- 1. LED;
- 2. Resistor;
- 3. PushButton.

```
Projeto2
int led1Pin=12;
int led2Pin=13:
int buttonEstado=0;
void setup() {
 // put your setup code here, to run once:
 pinMode (ledlPin, OUTPUT);
 pinMode (led2Pin, OUTPUT);
 pinMode (buttonPin, INPUT PULLUP);
void loop() {
 // put your main code here, to run repeatedly:
 buttonEstado=digitalRead(buttonPin);
 digitalWrite(ledlPin,buttonEstado);
 digitalWrite(led2Pin,!buttonEstado);
```


Projetos com LED Projeto 3

- 1. LED (2);
- 2. Resistor (3);
- 3. PushButton.

Projetos com LED Projeto 3

- 1. LED (2);
- 2. Resistor (3);
- 3. PushButton.

Projetos com LED Projeto 3

- 1. LED (2);
- 2. Resistor (3);
- 3. PushButton.

Projetos com LED Projeto 3

- 1. LED (2);
- 2. Resistor (3);
- 3. PushButton.

```
Projeto3
int buttonPin=2:
int led1Pin=12:
int led2Pin=13:
int buttonEstado=0:
void setup() {
 // put your setup code here, to run once:
 pinMode (led1Pin, OUTPUT);
 pinMode (led2Pin, OUTPUT);
 pinMode (buttonPin, INPUT PULLUP);
void loop() {
 // put your main code here, to run repeatedly:
 buttonEstado=digitalRead(buttonPin);
 digitalWrite(ledlPin,buttonEstado);
 digitalWrite(led2Pin,!buttonEstado);
```


Projeto 4 Projeto 4

- 1. LED (2);
- 2. Resistor (2);
- 3. PushButton.

Projeto 4

- 1. LED (2);
- 2. Resistor (2);
- 3. PushButton.

```
Projeto4
int ledlPin = 13;
int led2Pin = 12;
int buttonPin = 2;
int faseBotao;
int buttonEstado:
int buttonOldEstado;
int interval;
void setup() {
 // put your setup code here, to run once:
  pinMode (ledlPin, OUTPUT);
 pinMode (led2Pin, OUTPUT);
  pinMode (buttonPin, INPUT);
  faseBotao = 1;
  buttonOldEstado = digitalRead(buttonPin);
 interval=1000;
```


Projeto 4

- 1. LED (2);
- 2. Resistor (2);
- 3. PushButton.

```
void loop() {
 // put your main code here, to run repeatedly:
 buttonEstado = digitalRead(buttonPin);
  if ((buttonEstado == HIGH) && (buttonOldEstado == LOW)) {
   if(faseBotao == 1){
     faseBotao = faseBotao +1;
    }else{
   faseBotao = 1;
 buttonOldEstado = buttonEstado;
 if(faseBotao == 1){
   interval = 1000;
  }else{
   interval = 100;
```


Projeto 4 Projeto 4

- 1. LED (2);
- 2. Resistor (2);
- 3. PushButton.

```
digitalWrite(led1Pin, buttonEstado);
digitalWrite(led2Pin, !buttonEstado);
delay(interval);
digitalWrite(led1Pin, !buttonEstado);
digitalWrite(led2Pin, buttonEstado);
delay(interval);
```


Projeto 5

- 1. LED (5);
- 2. Resistor (6);
- 3. PushButton.

Projeto 5 Projeto 5

- 1. LED (5);
- 2. Resistor (6);
- 3. PushButton.

```
int pinVermelho = 13;
int pinAmarelo = 12;
int pinVerde = 11;
int pinPedestreVermelho = 9;
int pinPedestreVerde = 8;
int pinBotao = 2;
int faseSemaforo;
int estadoBotao;
int estadoAnteriorBotao;
int tempoPisca;
int estadoPisca;
```


Projeto 5 Projeto 5

- 1. LED (5);
- 2. Resistor (6);
- 3. PushButton.

```
Projeto5 §
void setup() {
 // put your setup code here, to run once:
 pinMode(pinVermelho,OUTPUT);
 pinMode (pinAmarelo, OUTPUT);
 pinMode(pinVerde,OUTPUT);
 pinMode (pinBotao, INPUT);
 faseSemaforo = 1;
 estadoAnteriorBotao = digitalRead(pinBotao);
 tempoPisca = 0;
 estadoPisca = HIGH;
```


Projeto 5

- 1. LED (5);
- 2. Resistor (6);
- 3. PushButton.

```
Projeto5 §
void loop() {
 // put your main code here, to run repeatedly:
  estadoBotao = digitalRead(pinBotao);
  if((estadoBotao == HIGH) && (estadoAnteriorBotao == LOW)
    if (faseSemaforo < 4) {
      faseSemaforo = faseSemaforo + 1;
    }else{
      faseSemaforo = 1;
  estadoAnteriorBotao = estadoBotao;
  if (faseSemaforo == 1) {
    digitalWrite(pinVerde, HIGH);
    digitalWrite(pinAmarelo,LOW);
    digitalWrite(pinVermelho, LOW);
    digitalWrite(pinPedestreVermelho, HIGH);
    digitalWrite (pinPedestreVerde, LOW);
```


Projeto 5

- 1. LED (5);
- 2. Resistor (6);
- 3. PushButton.

```
Projeto5 §
if(faseSemaforo == 2){
  digitalWrite (pinVerde, LOW);
  digitalWrite(pinAmarelo, HIGH);
  digitalWrite(pinVermelho, LOW);
  digitalWrite (pinPedestreVermelho, HIGH);
  digitalWrite (pinPedestreVerde, LOW);
if(faseSemaforo == 3){
  digitalWrite (pinVerde, LOW);
  digitalWrite(pinAmarelo,LOW);
  digitalWrite(pinVermelho, HIGH);
  digitalWrite(pinPedestreVermelho,LOW);
  digitalWrite (pinPedestreVerde, HIGH);
```


Projeto 5

- 1. LED (5);
- 2. Resistor (6);
- 3. PushButton.

```
Projeto5 §
if(faseSemaforo == 4){
  digitalWrite(pinVerde, LOW);
  digitalWrite(pinAmarelo,LOW);
  digitalWrite(pinVermelho, HIGH);
  tempoPisca = tempoPisca + 1;
  if (tempoPisca == 400) {
    estadoPisca = !estadoPisca;
    tempoPisca = 0;
  digitalWrite (pinPedestreVermelho, estadoPisca);
  digitalWrite(pinPedestreVerde,LOW);
delay(1);
```


Projetos com LED "For"

```
for(x = condição inicial;
faça enquanto; alteração){
   //código de repetição
}
```

Exemplo: int pinLED[9] = {12,11,10,9,8,7,6,5,4}; void setup() { int x; for(x = 0; x <=8; x = x + 1){ pinMode(pinLED[x],OUTPUT); }</pre>

Projeto 6

Sequência de LEDs:

- 1. LED (9);
- 2. Resistor (9).

Projeto 6

Sequência de LEDs:

- 1. LED (9);
- 2. Resistor (9).

```
Projeto6
int pinLED[9] = {12,11,10,9,8,7,6,5,3};
int numeroLED;
void setup() {
 // put your setup code here, to run once:
  int x;
 for (x = 0; x \le 8; x = x + 1) {
   pinMode(pinLED[x],OUTPUT);
void loop() {
 // put your main code here, to run repeatedly:
  for(numeroLED = 0; numeroLED <= 8; numeroLED = numeroLED + 1) {
   digitalWrite(pinLED[numeroLED], HIGH);
   delay(200);
  for(numeroLED = 8; numeroLED >= 0; numeroLED = numeroLED - 1){
   digitalWrite(pinLED[numeroLED], LOW);
   delay(200);
```


Projetos com LED "While"

```
x = condição inicial;
while(faça enquanto;){
  //código de repetição
  alteração de x;
}
```

Exemplo:

```
int pinLED[9] = \{12,11,10,9,8,7,6,5,4\};
void setup() {
  int x;
  x = 0;
  for(x <= 8){
     pinMode(pinLED[x],OUTPUT);
     x = x + 1;
```


Projeto 7

Sequência de LEDs:

- 1. LED (9);
- 2. Resistor (9).

Projeto 7

Sequência de LEDs:

- 1. LED (9);
- 2. Resistor (9).

```
Projeto7 §
void loop() {
  // put your main code here, to run repeatedly:
  numeroLED = 0;
  while(numeroLED <= 8) {
    digitalWrite(pinLED[numeroLED], HIGH);
    delay(200);
    numeroLED = numeroLED + 1;
  numeroLED = 8;
  while(numeroLED >= 0) {
    digitalWrite(pinLED[numeroLED], LOW);
    delay(200);
    numeroLED = numeroLED - 1;
```


"switch-case"

```
void loop() {
  // put your main code here, to run repeatedly:
  switch(numero) {
    case 0:
      digitalWrite(, HIGH);
      digitalWrite(,LOW);
      break;
    case 1:
      digitalWrite(, HIGH);
      digitalWrite(,LOW);
      break;
    default:
      digitalWrite(, HIGH);
      digitalWrite(,LOW);
      break;
```


Sumário

- 1) Introdução
 - 2 IDE Arduino
 - 3 Projetos com LED
 - 4 Tipos de Variáveis
 - 5 Porta Analógica
 - 6 Display LCD
- 7 Desafio Final

Números Inteiros		
Tipo	Memória	Faixa de Valores
byte	8-bit (1-byte)	0 até 255
int	16-bit (2-byte)	-32.768 até 32.767
unsigned int	16-bit (2-byte)	0 até 65.535
word	16-bit (2-byte)	0 até 65.535
long	32-bit (4-byte)	-2.147.483.648 até 2.147.483.647
unsigned long	32-bit (4-byte)	0 até 4.294.967.295
short	16-bit (2-byte)	-32.768 até 32.767

Números Decimais			
Tipo	Memória	Faixa de Valores	Precisão
float	32-bit (4-byte)	-3,4028235 E+38 até 3,4028235 E+38	6-7 dígitos
double	32-bit (4-byte)	-3,4028235 E+38 até 3,4028235 E+38	6-7 dígitos

Texto		
Tipo	Memória	Faixa de Valores
char	8-bit (1-byte)	-128 até 127
unsigned char	8-bit (1-byte)	0 até 255
String	flexível	flexível

Lógico		
Tipo	Memória	Faixa de Valores
boolean	8-bit (1-byte)	True ou false; high ou low; (1) ou (0)

Porta Serial

Teste de Números

byte X = 10;

byte Y = 20;

byte Z = X + Y;

Serial.print(Z,BIN);

Teste Lógico

```
boolean X = 1;
boolean Y = 0;
boolean Z = (X && Y);
```


Teste de Texto

```
char X = 'João';
char Y = 'Zezinho';
char Z = '+';
```

Variável String deve ser declarada entre aspas duplas!

Projeto 8

- 1. LED (9);
- 2. Resistor (9).

Tipos de Variáveis Projeto 8

- 1. LED (9);
- 2. Resistor (9).

```
Projeto8
int pinLED[9] = {12,11,10,9,8,7,6,5,3};
int numeroLED;
int digitado;
void setup() {
  // put your setup code here, to run once:
  int x;
  for (x = 0; x \le 8; x++) {
    pinMode(pinoLED[x],OUTPUT);
  Serial.begin(9600);
```


Projeto 8

- 1. LED (9);
- 2. Resistor (9).

```
Projeto8
void loop() {
 // put your main code here, to run repeatedly:
 digitado = ' ';
 numeroLED = 0;
 while (digitado != 'P') {
    digitadoWrite(pinLED[numeroLED], LOW);
    numeroLED++
    if(numeroLED > 8) {
      numeroLED = 0;
    digitalWrite(pinLED[numeroLED], HIGH);
    if (Serial.available()) {
      digitado = Serial.read();
    delay(100);
 delay(5000);
```


Operadores Matemáticos

Operadores Matemáticos			
+	Soma	valor1 + valor2	
-	Subtração	valor1 - valor2	
/	Divisão	valor1 / valor2	
*	Multiplicação	valor1 * valor2	
%	Resto	<pre>int(valor1) % int(valor2)</pre>	

```
float valor1;
float valor2;
valor1 = 250;
valor2 = 7.8;
```

```
valor1++;
valor2--;
valor1+=3;
valor2-=3;
valor1*=3;
valor2 = 3;
valor1%=3;
valor2 /= 3;
```


Sumário

- 1) Introdução
 - 2 IDE Arduino
 - 3 Projetos com LED
 - 4 Tipos de Variáveis
 - 5 Porta Analógica
 - 6 Display LCD
- 7 Desafio Final

Porta Analógica Projeto 9

Varia de 0V à 5V

Porta Analógica Projeto 9

Sequência de LEDs com parada pela Porta Serial:

- 1. LED (9);
- 2. Resistor (10)
- 3. LDR.

LDR -> Light Dependent Resistor

Porta Analógica Projeto 9

- 1. LED (9);
- 2. Resistor (10)
- 3. LDR.

```
Projeto9
int pinos[9] = \{12,11,10,9,8,7,6,5,3\};
int pinLED;
int pinLDR = A0;
float minimo = 0;
float maximo = 1023;
float valorLDR;
float luminosidade;
void setup() {
 // put your setup code here, to run once:
 for (pinLED = 0; pinLED <= 8; pinLED++) {
    pinMode (pinos[pinLED], OUTPUT);
 pinMode(pinLDR, INPUT);
```


Porta Analógica

Projeto 9

- 1. LED (9);
- 2. Resistor (10)
- 3. LDR.

```
Projeto9
void loop() {
  // put your main code here, to run repeatedly:
  valorLDR = analogRead(pinLDR);
  luminosidade = ((valorLDR - minimo)/(maximo - minimo))*:
  luminosidade = (luminosidade - 10) * -1;
  for(pinLED = 0; pinLED <= 8; pinLED++) {
    if(pinLED < luminosidade) {</pre>
      digitalWrite(pinos[pinLED], HIGH);
    }else{
      digitalWrite (pinos[pinLED], LOW);
  delay(500);
```


Sumário

- 1) Introdução
 - 2 IDE Arduino
 - 3 Projetos com LED
 - 4) Tipos de Variáveis
 - 5 Porta Analógica
 - 6 Display LCD
- 7 Desafio Final

Display LCD Ligação

	Conexão LCD 16x2 - HD44780		
	Pino LDC	Função	Ligação
Controle	1	Vss	GND
	2	Vdd	Vcc 5V
	3	V0 (Controle de contraste)	Pino central do potenciômetro
	4	RS (Comando de piscar)	Pino 2 Arduino
	5	RW (Comando de Leitura e Escrita no Display)	GND
	6	E (Envio de informação)	Pino 11 Arduino

Display LCD Ligação

Display LCD Biblioteca

Sketch -> Incluir Biblioteca -> LiquidCrystal

#include <LiquidCrystal.h>

Display LCD:

```
#include <LiquidCrystal.h>

LiquidCrystal lcd(3,4,5,6,7,8,9,10,11,12,13);

void setup() {
    // put your setup code here, to run once:
    lcd.begin(16,2);

lcd.print("Eu sou Tesla Jr.");
}
```


Display LCD:

```
Projeto10 §
#include <LiquidCrystal.h>
LiquidCrystal lcd(3,4,5,6,7,8,9,10,11,12,13);
void setup() {
  // put your setup code here, to run once:
  lcd.begin(16,2);
                                        lcd.clear();
  lcd.print("Eu sou Tesla Jr.");
       lcd.setCursor(0,1);
       lcd.write('X');
```


Display LCD com rolagem:

```
#include <LiquidCrystal.h>

LiquidCrystal lcd(3,5,10,11,12,13);

void setup() {
    // put your setup code here, to run once:
    lcd.begin(16,2);
}
```


Display LCD com rolagem:

```
Projeto11
void loop() {
 // put your main code here, to run repeatedly:
 lcd.clear();
  lcd.setCursor(2,0);
 lcd.print("Eu sou mais,");
 lcd.setCursor(2,1);
  lcd.print("sou Tesla Jr");
 delay(2000);
  for(int posicao = 0; posicao < 2; posicao++){</pre>
   lcd.scrollDisplayLeft();
    delay(300);
  for(int posicao = 0; posicao < 4; posicao++){</pre>
    lcd.scrollDisplayRight();
    delay(300);
```


Sumário

- 1) Introdução
 - 2 IDE Arduino
 - 3 Projetos com LED
 - 4) Tipos de Variáveis
 - 5 Porta Analógica
 - 6 Display LCD
- 7 Desafio Final

OBRIGADA!

LETÍCIA FRITZ HENRIQUE

Gerente de Automação e Inovação leticiafritz@teslajunior.com.br +55 (21) 99843-6993

