

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

MATEMÁTICAS II

EJERCICIO

Nº Páginas: 2

INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo desarrollar los cuatro ejercicios de la misma en el orden que desee.

2.-CALCULADORA: Se permitirá el uso de **calculadoras no programables** (que no admitan memoria para texto ni representaciones gráficas).

CRITERIOS GENERALES DE EVALUACIÓN: Cada ejercicio se puntuará sobre un máximo de 2,5 puntos. Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

OPCIÓN A

E1.- Sea
$$f(t) = \frac{1}{1 + e^t}$$
.

a) Calcular $\int f(t)dt$. (1,5 puntos)

b) Sea $g(x) = \int_0^x f(t)dt$. Calcular $\lim_{x \to 0} \frac{g(x)}{x}$. (1 punto)

E2.- Dada la función $f(x) = \frac{ae^{2x}}{1+x}$, se pide:

a) Hallar a para que la pendiente de la recta tangente a la función en x = 0 valga 2.

(0,5 puntos)

- b) Para a = 1, estudiar el crecimiento, decrecimiento y extremos relativos. (1 punto)
- c) Para a = 1, hallar sus asíntotas. (1 punto)
- E3.- Se considera el sistema de ecuaciones $\begin{cases} ax + y + z = (a-1)(a+2) \\ x + ay + z = (a-1)^2(a+2) \\ x + y + az = (a-1)^3(a+2) \end{cases}$
 - a) Discutir el sistema según los valores del parámetro a. (1,5 puntos)
 - b) Resolver el sistema para a = 1. (0,5 puntos)
 - c) Resolver el sistema para a = -2. (0,5 puntos)

E4.- Se consideran las rectas: $r = \frac{x}{1} = \frac{y-1}{-2} = \frac{z-3}{2}$; $s = \frac{x-2}{3} = \frac{y}{1} = \frac{z+1}{-1}$.

- a) Justificar razonadamente que ambas rectas se cruzan. (1 punto)
- b) Hallar la perpendicular común y que corta a las dos rectas. (1,5 puntos)

OPCIÓN B

E1.- a) Calcular
$$\int \frac{1}{x^2 + 2x + 3} dx$$
. (1,5 puntos)

- b) Calcular los valores del parámetro a para que las tangentes a la gráfica de la función $f(x) = ax^3 + 2x^2 + 3$ en los puntos de abscisas x = 1 y x = -1 sean perpendiculares. (1 punto)
- **E2.-** Se considera la función $f(x) = e^x + \ln(x)$, $x \in (0, \infty)$ donde ln denota el logaritmo neperiano.
 - a) Estudiar la monotonía y las asíntotas de f(x). (1 punto)
 - b) Demostrar que la ecuación $x^2e^x 1 = 0$ tiene una única solución c en el intervalo [0,1]. (0,75 puntos)
 - c) Deducir que f presenta un punto de inflexión en c. Esbozar la gráfica de f. (0,75 puntos)
- **E3.-** Sea M una matriz cuadrada que cumple la ecuación $M^2 2M = 3I$, donde I denota la matriz identidad.
 - a) Estudiar si existe la matriz inversa de M. En caso afirmativo expresar M^{-1} en términos de M e I . (1,25 puntos)
 - b) Hallar todas las matrices M de la forma $\begin{pmatrix} a & b \\ b & a \end{pmatrix}$ que cumplen la ecuación $M^2 2M = 3I$. (1,25 puntos)
- **E4.-** Un cuadrado tiene dos vértices consecutivos en los puntos P(2,1,3) y Q(1,3,1); los otros dos sobre una recta r que pasa por el punto R(-4,7,-6).
 - a) Calcular la ecuación de la recta r. (0,5 puntos)
 - b) Calcular la ecuación del plano que contiene al cuadrado. (1 punto)
 - c) Hallar las coordenadas de uno de los otros vértices. (1 punto)