Durée: 1 heure 30 minutes

Contrôle d'algèbre linéaire N°4

NOM:	_	
	Groupe	
PRENOM:	 _	

Barème sur 15 points

1. Soit f un endomorphisme de \mathbb{R}^3 dont la matrice par rapport à la base canonique est :

$$M_f = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ a & 1 & 0 \end{pmatrix}, \quad a \in \mathbb{R}.$$

- a) Déterminer $a \in \mathbb{R}$ sachant que M_f possède une valeur propre double.
- b) On pose a=1 . M_f est-elle diagonalisable ? Justifiez rigoureusement votre réponse .

3.5 pts

2. Dans le plan muni de la base canonique $B = (\vec{e_1}, \vec{e_2})$, on donne deux vecteurs $\vec{u} = 5 \vec{e_1} - \vec{e_2}$ et $\vec{v} = \vec{e_1} - \vec{e_2}$.

Soit la projection p du plan définie de la manière suivante :

- Im p est la droite (O, \vec{v})
- Ker p est la droite (O, \vec{u}) .

On considère les deux endomorphismes du plan suivants :

- f est une affinité d'axe (O, \vec{u}) , de direction \vec{v} et de rapport k = -2,
- g est une affinité d'axe $\operatorname{Im} p$, de direction $\operatorname{Ker} p$ et vérifiant : $\forall \vec{x} \in \operatorname{Ker} p$, $(g 2Id)(\vec{x}) = \vec{0}$.

Soit l'endomorphisme du plan $l = f \circ g$.

a) Déterminer la matrice M_l dans la base canonique.

Soit h une homothétie de centre O et de rapport $\alpha \in \mathbb{R}^*$.

b) Déterminer la valeur de α telle que l'endomorphisme $j = l + p \circ h$ possède une projection dans sa décomposition. Indication: travailler dans une base propre à préciser.

3,5 pts

3. Soient f un endomorphisme de \mathbb{R}^3 dont la matrice relativement à la base canonique est

$$M_f = \begin{pmatrix} 1 & 1 & 1-m \\ m+1 & -1 & 2 \\ 2 & -m & 3 \end{pmatrix}$$
, et le vecteur $\vec{c} = \begin{pmatrix} m+2 \\ 0 \\ m+2 \end{pmatrix}$,

m étant un paramètre réel.

- a) Déterminer $m \geq 0$ pour que $f^{-1}(\{\vec{c}\})$ soit une droite de \mathbb{R}^3 .
- b) On pose m = 0.

Déterminer les équations paramétriques de $f^{-1}(\{\vec{c}\})$.

4.5 pts

4. Soient \vec{u} et \vec{v} deux vecteurs de \mathbb{R}^3 tels que $\vec{u} \cdot \vec{v} = -2$.

On considère l'endomorphisme f défini par

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$\vec{x} \longmapsto 2\vec{x} + (\vec{x} \cdot \vec{u}) \vec{v}.$$

- a) A l'aide d'une base propre de f, donner une interprétation géométrique de f.
- b) On note α le plan passant par O et de vecteur normal \vec{u} et on considère les deux endomorphismes de \mathbb{R}^3 suivants
 - s est une symétrie oblique d'axe la droite (O, \vec{v}) et de direction parallèle au plan α
 - h est une homothétie de centre O et rapport k=2.

Déterminer une base propre commune à f et s. Dans cette base propre, déterminer la matrice de $g = f + h \circ s$ et en déduire, avec précision, la nature géométrique de g.

3.5 pts