▼ 5.0 - Integrale doppio

▼ 5.1 - Insiemi semplici

Insieme x-semplice

Siano $h_1,h_2:[c,d]\to\mathbb{R}$ continue e tali che $h_1(y)\le h_2(y)$ $\forall~y\in[c,d]$, l'insieme x-semplice definito da h_1 e h_2 è definito nel seguente modo:

$$A = \{(x,y) \in \mathbb{R}^2 \mid y \in [c,d], h_1(y) \leq x \leq h_2(y)\}$$

Insieme y-semplice.

Insieme y-semplice

Siano $g_1,g_2:[a,b]\to\mathbb{R}$ continue e tali che $g_1(x)\leq g_2(x)$ $\forall~x\in[a,b]$, l'insieme y-semplice definito da g_1 e g_2 è definito nel seguente modo:

$$A=\{(x,y)\in\mathbb{R}^2\mid x\in[a,b], g_1(x)\leq y\leq g_2(x)\}$$

Insieme x-semplice.

▼ 5.2 - Integrale doppio

Untitled 1

Definizione di integrale doppio

Sia f una funzione continua e A un insieme semplice, l'**integrale doppio** di f in A viene definito nel seguente modo:

$$\int_A f(x,y) \ dx \ dy$$

Proprietà dell'integrale doppio

• Linearità:

$$\int_A \left(\lambda_1 f_1 + \lambda_2 f_2
ight) \, dx \; dy = \lambda_1 \int_A f_1 \; dx \; dy + \lambda_2 \int_A f_2 \; dx \; dy$$

- A è un insieme degenere $(g_1(x)=g_2(x) \ \ orall \ x$, quindi A è una linea)

$$\implies \int_A f(x,y) \ dx \ dy = 0$$

• $\int_A 1 \ dx \ dy =$ area di A

Idea grafica dell'integrale doppio

Integrale in n=1

Sia $f:[a,b] o [0,+\infty[$ continua, l'integrale $\int_a^b f(x) \ dx$ indica il valore dell'area del sottografico di f:

$$\{(x,y)\in\mathbb{R}^2\mid x\in[a,b], 0\leq y\leq f(x)\}$$

Idea grafica dell'integrale in n=1.

Integrale in n=2

Sia $f:A o\mathbb{R}$ ((x,y) o f(x,y)>0 $\forall~(x,y)\in A)$, dove A è un insieme semplice, l'integrale $\int_A f(x,y)~dx~dy$ indica il valore del volume del sottografico di f:

$$\{(x,y,z)\in\mathbb{R}^3\mid (x,y)\in A, 0\leq z\leq f(x,y)\}$$

Untitled 2

Idea grafica dell'integrale in n=2.

Formula di riduzione

Insiemi y-semplici

Sia $f:A\to\mathbb{R}$ continua, con A un insieme y-semplice del tipo $\{(x,y)\in\mathbb{R}\mid x\in[a,b],g_1(x)\leq y\leq g_2(x)\}$, allora è definito $\int_A f(x,y)\ dx\ dy$ e vale la seguente **formula di riduzione**:

$$\int_A f(x,y) \ dx \ dy = \int_a^b (\int_{q_1(x)}^{g_2(x)} f(x,y) \ dy) \ dx$$

Osservazioni

• Se $f(x,y)=1 \quad orall (x,y) \in A$, allora:

$$\int_A f(x,y) \ dx \ dy = \int_A \ dx \ dy = \int_b^a (g_1(x) - g_2(x)) dx = ext{area di } A$$

Insiemi x-semplici

Sia $f:A\to\mathbb{R}$ continua, con A un insieme x-semplice del tipo $\{(x,y)\in\mathbb{R}\mid y\in[c,d],h_1(y)\leq x\leq h_2(y)\}$, allora è definito $\int_A f(x,y)\ dx\ dy$ e vale la seguente **formula di riduzione**:

$$\int_A f(x,y) \ dx \ dy = \int_c^d (\int_{h_1(y)}^{h_2(y)} f(x,y) \ dx) \ dy$$

Osservazioni

• Se $f(x,y)=1 \quad orall (x,y)\in A$, allora:

$$\int_A f(x,y) \ dx \ dy = \int_A \ dx \ dy = \int_b^a (g_1(x)-g_2(x)) dx = ext{area di } A$$

Untitled 3