Answer all questions. All questions carry equal points. Please be legible and show proper working and units, otherwise you are liable to lose credit. All parts of a question should be answered together. By taking this test, you agree to and conform to the Student Honor Code.

- 1. Consider an industrial X-ray equipment being used to check the structural integrity of concrete pillars. Compute the effective depth given that f=5MHz, μ_r =1, ϵ_r =150, σ =10⁻⁴ S/m. Also compute the effective depth if a site worker is accidentally exposed to the radiation. Assume average human body μ_r =1, σ =10⁻¹ S/m.
- 2. Consider a subject undergoing EST (Electro Shock Therapy). Assume that there is one electrode which has a diameter of 1cm. The current injected at the electrode-skin interface is 100mA and it varies as $i(x) = 100e^{-x} mA$; where "x" is the depth from the interface. Assuming a trapezoidal conic volume which has a depth of 5cm and a base diameter of 5 cm, compute the net power dissipated in this volume. You may take the resistivity to be uniform at 10Ω -cm.
- 3. Define and briefly explain the following terms:
 - a. Skin Depth.
 - b. Afferent Nerves.
 - c. Efferent Nerves.

Also compute the short circuit current when a human being with a height of 2 m, and an effective radius of 0.2m is subjected to a 10MHz electric field of 11 minute 10V/m. Assume the subject is standing on the ground.

4. A MRI machine scans using the y-z-x schema. If the maximum number of voxels in the volumetric dataset are Y_{max} , Z_{max} & X_{max} respectively, write an algorithm to map a given voxel to its spatial coordinates. Also write the algorithm to map the voxel coordinate to its index.