Oscillateur harmonique quantique 1D

1

Generated by Doxygen 1.9.1

1 Hierarchical Index	1
1.1 Class Hierarchy	1
2 Class Index	3
2.1 Class List	3
2.1 Glass List	3
3 File Index	5
3.1 File List	5
4 Class Documentation	7
4.1 psiSolution Class Reference	7
4.1.1 Member Function Documentation	7
4.1.1.1 calculeSolution()	7
4.1.1.2 derivee_seconde()	8
4.1.1.3 energyMat()	8
4.1.1.4 orthoMat()	9
4.2 TestHermiteSuite Class Reference	9
4.2.1 Member Function Documentation	10
4.2.1.1 testHermite1()	10
4.2.1.2 testHermite2()	10
4.3 TestProprietes Class Reference	11
4.3.1 Member Function Documentation	11
4.3.1.1 testOrthonormalite()	12
5 File Documentation	13
5.1 headers/constantes.h File Reference	13
5.1.1 Detailed Description	13
5.1.2 Variable Documentation	13
5.1.2.1 wi	14
5.1.2.2 zi	14
5.2 headers/hermite.h File Reference	14
5.2.1 Detailed Description	15
5.2.2 Function Documentation	15
5.2.2.1 hermiteMat()	16
5.3 src/hermite.cpp File Reference	16
5.3.1 Detailed Description	17
5.3.2 Function Documentation	17
5.3.2.1 hermiteMat()	17
Index	19

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

psiSolution	
CxxTest::TestSuite	
TestHermiteSuite	 9
TestProprietes	11

2 Hierarchical Index

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

psiSolution				 										 									7
TestHermiteS	Suite	Э		 										 									ç
TestPropriete	20																						11

4 Class Index

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

headers/constantes.h	
Ce fichier contient les constantes utiles pour le projet	13
headers/dataExporter.h	??
headers/hermite.h	
Interface qui donne toutes les fonctions nécessaires pour calculer des polynomes d'Hermites en	
des points donnés	14
headers/psiSolution.h	??
src/hermite.cpp	
Implémentation d'hermite.h	16
tests/test_hermite.h	??
tests/test_proprietes.h	??

6 File Index

Class Documentation

4.1 psiSolution Class Reference

Public Member Functions

- psiSolution (int)
- arma::mat calculeSolution (const arma::vec &)

Calcule les psi-solutions.

arma::mat orthoMat ()

Vérifie l'orthonormalité des psi-solutions.

• arma::vec derivee_seconde (const arma::vec &)

Calcule la dérivée seconde de la solution en des points du vecteur. On peut utiliser l'approximation discrète : https://fr.wikipedia.org/wiki/D%C3%A9riv%C3%A9e_seconde_discr%C3%A8te.

arma::vec energyMat ()

Calcule les niveaux d'énergie pour les solutions psi de l'équation à l'aide de l'équation 1D.

Public Attributes

• int n_max

Jusqu'à quel niveau d'énergie max seront calculés les solutions de l'équation.

4.1.1 Member Function Documentation

4.1.1.1 calculeSolution()

Calcule les psi-solutions.

retourne une matrice à 2 dimensions, contenant les valeurs de psi_i(z) ; La ième colonne correspond aux valeurs de psi_i évalué à une valeur de z différente à chaque ligne; Les valeurs de z sont données par le vecteur [vecteurZ] placé en argument

Returns

arma::mat

8 Class Documentation

Parameters

vecteurZ

est le vecteur de rééls pour lesquels on possède les valeurs d'évaluation du polynome d'Hermite

Returns

arma::mat Retourne une matrice de la forme suivante : exemple n_max=2

$$\begin{bmatrix} psi_0(z_0) & psi_1(z_0) & psi_2(z_0) \\ psi_0(z_1) & psi_1(z_1) & psi_2(z_1) \\ psi_0(z_2) & psi_1(z_2) & psi_2(z_2) \end{bmatrix}$$

4.1.1.2 derivee_seconde()

Calcule la dérivée seconde de la solution en des points du vecteur. On peut utiliser l'approximation discrète : https://fr.wikipedia.org/wiki/D%C3%A9riv%C3%A9e_seconde_discr%C3%A8te.

Returns

arma::vec Les résultats de la dérivée seconde en ces points.

Parameters

Z Les points où seront calculés la dérivée seconde

Returns

arma::vec Les résultats de la dérivée seconde

4.1.1.3 energyMat()

```
arma::vec psiSolution::energyMat ( )
```

Calcule les niveaux d'énergie pour les solutions psi de l'équation à l'aide de l'équation 1D.

Returns

arma::vec les niveaux d'énergies sous forme d'un vecteur colonne

$$Z = \begin{bmatrix} E_0 \\ E_1 \\ \dots \\ E_{n_{max}} \end{bmatrix}$$

4.1.1.4 orthoMat()

```
arma::mat psiSolution::orthoMat ( )
```

Vérifie l'orthonormalité des psi-solutions.

Verifie l'orthonormalité des psi-solutions. On vérifie pour tous les couples $n,m \le n_m$ ax. On retourne les résultats dans une matrice dont les numéros de lignes et les colonnes correspondent aux valeurs de n et m.

Returns

arma::mat une matrice avec les résultats des différents produits scalaires des solutions arma::mat Retourne une matrice de la forme suivante : exemple n_max=1

$$\begin{bmatrix} \int \psi_0^*(z)\psi_0(z)dz & \int \psi_0^*(z)\psi_1(z)dz \\ \int \psi_1^*(z)\psi_0(z)dz & \int \psi_1^*(z)\psi_1(z)dz \end{bmatrix}$$

The documentation for this class was generated from the following files:

- · headers/psiSolution.h
- · src/psiSolution.cpp

4.2 TestHermiteSuite Class Reference

Inheritance diagram for TestHermiteSuite:

Collaboration diagram for TestHermiteSuite:

10 Class Documentation

Public Member Functions

void testHermite1 (void)

Test du calcul de la matrice Hermite avec n_max=5 et.

void testHermite2 (void)

Test du calcul de la matrice Hermite avec n_max=1 et.

4.2.1 Member Function Documentation

4.2.1.1 testHermite1()

Test du calcul de la matrice Hermite avec n_max=5 et.

$$Z = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

Ce calcul normalement donne le résultat suivant :

$$\begin{bmatrix} 1 & 2 & 2 & -4 & -20 \\ 1 & 10 & 98 & 940 & 8812 \end{bmatrix}$$

4.2.1.2 testHermite2()

Test du calcul de la matrice Hermite avec n_max=1 et.

$$Z = \begin{bmatrix} 1 \\ 5 \\ 2 \\ 8 \end{bmatrix}$$

Ce calcul normalement donne le résultat suivant :

$$\begin{bmatrix} 1 & 2 \\ 1 & 10 \\ 1 & 4 \\ 1 & 16 \end{bmatrix}$$

The documentation for this class was generated from the following file:

tests/test_hermite.h

4.3 TestProprietes Class Reference

Inheritance diagram for TestProprietes:

Collaboration diagram for TestProprietes:

Public Member Functions

- void testOrthonormalite (void)
 - Test de l'orthonormalité des solutions de l'équation.
- void testEnergies (void)

Test des énergies déduits des solutions de l'équation.

4.3.1 Member Function Documentation

12 Class Documentation

4.3.1.1 testOrthonormalite()

Test de l'orthonormalité des solutions de l'équation.

On génère la matrice des produits scalaires des différentes solutions et on compare avec la matrice identitée.

The documentation for this class was generated from the following file:

• tests/test_proprietes.h

File Documentation

5.1 headers/constantes.h File Reference

Ce fichier contient les constantes utiles pour le projet.

Variables

```
• double pas_der =1e-7
```

Constante utilisée comme pas pour la dérivée seconde.

double hbar = 1.0

Constante hbar.

• double omega = 1.0

Constante omega.

• double **m** = 1.0

Constante m.

• double pi = 3.141592653589793

Contante pi.

• int degQuadrature = 50

Degré utilisé pour la quadrature.

arma::vec zi

Vecteur contenant les valeurs des z_i pour un degré de 50 Contient 50 valeurs zi[i] = z_i.

arma::vec wi

Vecteur contenant la valeurs des w_i pour un degré de 50 Contient 50 valeurs wi[i] = w_i.

5.1.1 Detailed Description

Ce fichier contient les constantes utiles pour le projet.

5.1.2 Variable Documentation

14 File Documentation

5.1.2.1 wi

```
arma::vec wi
```

Initial value:

```
= {1.83379405e-37, 1.67380167e-32, 1.21524412e-28, 2.13765831e-25, 1.41709360e-22, 4.47098437e-20, 7.74238296e-18, 8.09426189e-16, 5.46594403e-14, 2.50665552e-12, 8.11187736e-11, 1.90904054e-09, 3.34679340e-08, 4.45702997e-07, 4.58168271e-06, 3.68401905e-05, 2.34269892e-04, 1.18901178e-03, 4.85326383e-03, 1.60319411e-02, 4.30791592e-02, 9.45489355e-02, 1.70032456e-01, 2.51130856e-01, 3.05085129e-01, 3.05085129e-01, 2.51130856e-01, 1.70032456e-01, 9.45489355e-02, 4.30791592e-02, 1.60319411e-02, 4.85326383e-03, 1.18901178e-03, 2.34269892e-04, 3.68401905e-05, 4.58168271e-06, 4.45702997e-07, 3.34679340e-08, 1.90904054e-09, 8.11187736e-11, 2.50665552e-12, 5.46594403e-14, 8.09426189e-16, 7.74238296e-18, 4.47098437e-20, 1.41709360e-22, 2.13765831e-25, 1.21524412e-28, 1.67380167e-32, 1.83379405e-37
```

Vecteur contenant la valeurs des w_i pour un degré de 50 Contient 50 valeurs wi[i] = w_i.

Pour obtenir ces valeurs, on a utilisé la bibliothèque numpy de Python via la fonction : numpy.polynomial.hermite. ← hermgauss (50)

5.1.2.2 zi

```
arma::vec zi
```

Initial value:

```
= {-9.18240696, -8.52277103, -7.97562237, -7.48640943, -7.03432351, -6.60864797, -6.20295252, -5.81299468, -5.43578609, -5.06911758, -4.71129367, -4.36097316, -4.01706817, -3.67867706, -3.34503831, -3.01549777, -2.6894847, -2.3664939, -2.04607197, -1.72780655, -1.41131775, -1.09625113, -0.78227173, -0.46905906, -0.15630255, 0.15630255, 0.46905906, 0.78227173, 1.09625113, 1.41131775, 1.72780655, 2.04607197, 2.3664939, 2.6894847, 3.01549777, 3.34503831, 3.67867706, 4.01706817, 4.36097316, 4.71129367, 5.06911758, 5.43578609, 5.81299468, 6.20295252, 6.60864797, 7.03432351, 7.48640943, 7.97562237, 8.52277103, 9.18240696
```

Vecteur contenant les valeurs des z i pour un degré de 50 Contient 50 valeurs zi[i] = z i.

Pour obtenir ces valeurs, on a utilisé la bibliothèque numpy de Python via la fonction : numpy.polynomial.hermite. ← hermqauss(50)

5.2 headers/hermite.h File Reference

Interface qui donne toutes les fonctions nécessaires pour calculer des polynomes d'Hermites en des points donnés.

```
#include <iostream>
#include <math.h>
```

#include <armadillo>

Include dependency graph for hermite.h:

This graph shows which files directly or indirectly include this file:

Functions

• arma::mat hermiteMat (int, arma::vec)

Renvoie les résultats du polynome d'Hermite d'indice i=0 à un entier donné n_m appliqué à un vecteur colonne Z, sous forme d'une matrice.

5.2.1 Detailed Description

Interface qui donne toutes les fonctions nécessaires pour calculer des polynomes d'Hermites en des points donnés.

5.2.2 Function Documentation

16 File Documentation

5.2.2.1 hermiteMat()

Renvoie les résultats du polynome d'Hermite d'indice i=0 à un entier donné n_max appliqué à un vecteur colonne Z, sous forme d'une matrice.

Returns

arma::mat La matrice avec les résultats du polynome d'Hermite

Parameters

n_max	Indice max des polynomes d'Hermites utilisés dans la matrice
Z	Vecteur colonne contenant les points à appliquer aux polynomes d'Hermite

Returns

arma::mat Retourne une matrice de la forme suivante : exemple $n_{max}=2$ et $Z=\begin{bmatrix} z_0 & \dots & z_m \end{bmatrix}$

$$\begin{bmatrix} H_0(z_0) & \dots & H_{n_{max}}(z_0) \\ \dots & \dots & \dots \\ H_0(z_m) & \dots & H_{n_{max}}(z_m) \end{bmatrix}$$

5.3 src/hermite.cpp File Reference

Implémentation d'hermite.h.

```
#include <iostream>
#include <math.h>
#include <armadillo>
```

Include dependency graph for hermite.cpp:

Functions

arma::mat hermiteMat (int n_max, arma::vec Z)

Renvoie les résultats du polynome d'Hermite d'indice i=0 à un entier donné n_m ax appliqué à un vecteur colonne Z, sous forme d'une matrice.

5.3.1 Detailed Description

Implémentation d'hermite.h.

5.3.2 Function Documentation

5.3.2.1 hermiteMat()

Renvoie les résultats du polynome d'Hermite d'indice i=0 à un entier donné n_max appliqué à un vecteur colonne Z, sous forme d'une matrice.

Parameters

n_max	Indice max des polynomes d'Hermites utilisés dans la matrice
Z	Vecteur colonne contenant les points à appliquer aux polynomes d'Hermite

Returns

arma::mat Retourne une matrice de la forme suivante : exemple $n_{max}=2$ et $Z=\begin{bmatrix}z_0&\dots&z_m\end{bmatrix}$

$$\begin{bmatrix} H_0(z_0) & \dots & H_{n_{max}}(z_0) \\ \dots & \dots & \dots \\ H_0(z_m) & \dots & H_{n_{max}}(z_m) \end{bmatrix}$$

18 File Documentation

Index

```
calculeSolution
    psiSolution, 7
constantes.h
    wi, 13
    zi, 14
derivee_seconde
    psiSolution, 8
energyMat
    psiSolution, 8
headers/constantes.h, 13
headers/hermite.h, 14
hermite.cpp
    hermiteMat, 17
hermite.h
    hermiteMat, 15
hermiteMat
    hermite.cpp, 17
    hermite.h, 15
orthoMat
    psiSolution, 8
psiSolution, 7
    calculeSolution, 7
    derivee_seconde, 8
    energyMat, 8
    orthoMat, 8
src/hermite.cpp, 16
testHermite1
    TestHermiteSuite, 10
testHermite2
     TestHermiteSuite, 10
TestHermiteSuite, 9
    testHermite1, 10
    testHermite2, 10
testOrthonormalite
     TestProprietes, 11
TestProprietes, 11
    testOrthonormalite, 11
wi
    constantes.h, 13
zi
```

constantes.h, 14