Feuille d'exercices 26. Calcul différentiel et familles sommables

Calcul différentiel

Exercice 26.1 : (niveau 1)

Pour tout $(x,y) \in \mathbb{R}^2$, on pose $f(x,y) = (x^2 + xy) \sin \frac{1}{x}$ si $x \neq 0$ et f(x,y) = 0 lorsque x = 0.

- 1°) Etudier la continuité de f.
- **2°)** Calculer $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$.
- **3°)** Les applications $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont-elles continues en (0,0)?

Exercice 26.2 : (niveau 1)

Sur $B = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 1\}$, on pose $f(x, y) = \cos^2(x) + sh^2(y)$.

- ${f 1}^{\circ}$) Quels sont les points critiques de la restriction de f à l'intérieur de B? Préciser la nature de ces points critiques.
- $\mathbf{2}^{\circ}$) Calculer $\sup_{(x,y)\in B} f(x,y)$.

Exercice 26.3: (niveau 2)

Soit la fonction $f:(x,y)\mapsto xy(1-x-y)$ définie sur $D=\{x,y\in\mathbb{R}_+/x+y\leq 1\}$: Trouver les maxima de f sur D.

Exercice 26.4 : (niveau 2)

Soit X_0 un élément de \mathbb{R}^3 . Déterminer les applications $\Psi: \mathbb{R}^3 \longrightarrow \mathbb{R}$, de classe C^1 , telles que, pour tout $X \in \mathbb{R}^3$, $\overrightarrow{\operatorname{grad}}(\Psi)(X) = \Psi(X)X_0$.

Exercice 26.5 : (niveau 2)

Notons $f: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}$ $X \longmapsto \sqrt{Tr(I_n + {}^t XX)}$. Calculer les dérivées partielles de f. Montrer que f est de classe C^1 et calculer sa différentielle.

Exercice 26.6: (niveau 2)

Déterminer les points critiques de l'application $M \longmapsto det(M)$, de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} .

Exercice 26.7 : (niveau 3)

- 1°) On pose f(u, v) = uv(1 u v). Justifier que f admet un maximum global sur $[0, 1] \times [0, 1]$. Étudier les extremums de f sur $[0, 1] \times [0, 1]$.
- **2°)** Dans le plan usuel, ABC désigne un triangle rectangle isocèle. Si M est un barycentre des points A, B, C à poids positifs, on note g(M) le produit des distances de M aux 3 côtés du triangle. Déterminer les extremums de g.

Exercice 26.8: (niveau 3)

Déterminer les extrema sur
$$\mathbb{R}^2_+ \setminus \{0\}$$
 de $(x,y) \longmapsto \frac{xy}{(x+1)(y+1)(x+y)}$.

Exercice 26.9 : (niveau 3)

Soient $n \in \mathbb{N}^*$, f une application de classe C^2 de \mathbb{R}^n dans \mathbb{R} et u un automorphisme orthogonal de \mathbb{R}^n . On pose $\tilde{f} = f \circ u$. On rappelle que le laplacien de f est

$$\Delta f = \sum_{k=1}^{n} \frac{\partial^2 f}{\partial x_k^2}$$
. Montrer que $\Delta \tilde{f} = (\Delta f) \circ u$.

Familles sommables

Exercice 26.10: (niveau 1)

Soit $(a,b) \in \mathbb{C}^2$ avec $a \neq b$. Calculer la somme de la famille double $\left(\frac{a^p b^q}{(p+q)!}\right)_{(p,q)\in\mathbb{N}^2}$.

Exercice 26.11 : (niveau 1)

Soit
$$(a,b) \in]1, +\infty[^2$$
. Montrer que la famille $\left(\frac{1}{a^n+b^m}\right)_{(n,m)\in\mathbb{N}^2}$ est sommable.

Exercice 26.12 : (niveau 2)

Pour tout couple $(m, n) \in \mathbb{N}^{*2}$, on pose

$$u_{m,n} = \frac{1}{n+1} \left(\frac{n}{n+1} \right)^m - \frac{1}{n+2} \left(\frac{n+1}{n+2} \right)^m.$$

- 1°) Montrer que pour tout $m \in \mathbb{N}^*$, la série $\sum_{n \geq 1} u_{m,n}$ converge et calculer sa somme notée v_m , puis montrer que la série $\sum_{m \geq 1} v_m$ converge et calculer sa somme.
- 2°) Montrer que pour tout $n \in \mathbb{N}^*$, la série $\sum_{m \geq 1} u_{m,n}$ converge et calculer sa somme notée w_n , puis montrer que la série $\sum_{n \geq 1} w_n$ converge et calculer sa somme.
- 3°) Commenter les résultats précédents.

Exercice 26.13 : (niveau 2)

Soit
$$x \in \mathbb{C}$$
 avec $|x| < 1$. Montrer que $\sum_{n=1}^{+\infty} \frac{x^{2n-1}}{1 - x^{2n-1}} = \sum_{n=1}^{+\infty} \frac{x^n}{1 - x^{2n}}$.

On pourra utiliser la suite double $(x^{2n-1}(x^{2n-1})^k)_{(n,k)\in\mathbb{N}^*\times\mathbb{N}}$.

Exercice 26.14: (niveau 2)

- 1°) A quelle condition sur α peut-on poser $R_n = \sum_{k=n}^{+\infty} \frac{1}{k^{\alpha}}$.
- 2°) Déterminer la nature de la série $\sum R_n$.
- 3°) En cas de convergence, montrer que $\sum_{n=1}^{+\infty} R_n = \sum_{q=1}^{+\infty} \frac{1}{q^{\alpha-1}}$.

Exercice 26.15 : (niveau 2)

Pour
$$\alpha \in \mathbb{R}$$
, la famille $\left(\frac{1}{p^{\alpha} + q^{\alpha}}\right)_{(p,q) \in \mathbb{N}^{*2}}$ est-elle sommable?

Exercice 26.16: (niveau 3)

En admettant que
$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 et que $\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$, calculez $\sum_{\substack{(p,q) \in \mathbb{N}^{*2} \\ p \land q = 1}} \frac{1}{p^2 q^2}$.

Exercice 26.17 : (niveau 3)

Produit eulérien:

On note \mathbb{P} l'ensemble des nombres premiers et on désigne par p_n le nième nombre premier.

Pour tout $n \in \mathbb{N}^*$, on note A_n l'ensemble des entiers non nuls dont la décomposition en facteurs premiers ne fait intervenir que les nombres premiers p_k avec $k \leq n$. Ainsi, pour tout $m \in \mathbb{N}^*$, $m \in A_n \iff [\forall p \in \mathbb{P}, \ p | m \implies p \in \{p_1, \dots, p_n\}]$. On fixe $s \in \mathbb{C}$ tel que Re(s) > 1.

$$\mathbf{1}^{\circ}) \text{ Pour tout } n \in \mathbb{N}^{*}, \text{ montrer que } \prod_{k=1}^{n} \frac{1}{1 - p_{k}^{-s}} = \sum_{q \in A_{n}} q^{-s}.$$

2°) En déduire que
$$\prod_{p\in\mathbb{P}} \frac{1}{1-p^{-s}} = \sum_{q=1}^{+\infty} q^{-s}.$$

Exercice 26.18: (niveau 3)

On note \mathbb{P} l'ensemble des nombres premiers et on désigne par p_n le nième nombre premier.

Pour tout $n \in \mathbb{N}^*$, on note A_n l'ensemble des entiers non nuls dont la décomposition en facteurs premiers ne fait intervenir que les nombres premiers p_k avec $k \leq n$. Ainsi, pour tout $m \in \mathbb{N}^*$, $m \in A_n \iff [\forall p \in \mathbb{P}, \ p | m \implies p \in \{p_1, \dots, p_n\}]$.

- $\mathbf{1}^{\circ}) \ \text{ Pour tout } n \in \mathbb{N}^{*}, \text{ montrer que } \prod_{k=1}^{n} \frac{1}{1 \frac{1}{p_{k}}} = \sum_{q \in A_{n}} \frac{1}{q}.$
- 2°) En déduire que $\prod_{k=1}^n \frac{1}{1-\frac{1}{p_k}} \underset{n \to +\infty}{\longrightarrow} +\infty$
- **3°)** Montrer que $\sum_{k} \frac{1}{p_k}$ diverge.

Exercices supplémentaires

Calcul différentiel

Exercice 26.19: (niveau 1)

Montrer que $f: \mathcal{M}_n(\mathbb{R}) \xrightarrow{f} \mathcal{M}_n(\mathbb{R})$ est une application de classe C^1 et calculer sa différentielle.

Exercice 26.20 : (niveau 2)

Soit f l'application de \mathbb{R}^2 dans \mathbb{R} définie par :

 $\forall (x,y) \in \mathbb{R}^2 \ f(x,y) = (y - x^2)(y - 2x^2).$

Déterminez les points critiques de f.

Montrez que la restriction de f à toute droite passant par l'origine admet un minimum local en l'origine mais que f n'admet pas d'extremum local en l'origine.

Expliquer ce phénomène en étudiant $\{(x,y)/f(x,y)<0\}$.

Exercice 26.21 : (niveau 2)

Soit f l'application de \mathbb{R}^2 dans \mathbb{R} définie par :

$$\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \ f(x,y) = (x+y)\sqrt{x^2+y^2} \sin\left(\frac{1}{\sqrt{x^2+y^2}}\right) \ \text{et} \ f(0,0) = 0.$$

Montrer que f est continue sur \mathbb{R}^2 .

f est-elle de classe C^1 sur \mathbb{R}^2 ?

Exercice 26.22 : (niveau 3)

Soit $(p,n) \in \mathbb{N}^{*2}$. Notons, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, $\varphi(M) = Tr(M^p)$.

Montrer que φ est de classe C^1 et calculer sa différentielle.

Exercice 26.23: (niveau 3)

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application de classe C^2 . On définit $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ par les relations suivantes : Si $x \neq y$, $g(x,y) = \frac{f(x) - f(y)}{x - y}$ et si x = y, g(x,x) = f'(x).

Montrez que g est une application de classe C^1 sur \mathbb{R}^2 .

Exercice 26.24 : (niveau 3)

Soit U un ouvert convexe de \mathbb{R}^n et $f:U\to\mathbb{R}$ une application convexe. On fixe $u\in U$ et on suppose que toutes les dérivées partielles de f existent en u. Montrer que f est différentiable en u.

Familles sommables

Exercice 26.25 : (niveau 1)

On considère la famille $(u_{m,n})_{(m,n)\in\mathbb{N}}$, définie par les relations suivantes : Pour tout $p\in\mathbb{N},\ u_{p,p}=1,\ u_{2p,2p+1}=u_{2p+1,2p}=-1$, les autres éléments de la famille étant nuls.

Montrez que pour tout $m \in \mathbb{N}$ la série $\sum_{n} u_{m,n}$ est convergente et que la série $\sum_{m} \sum_{n=0}^{+\infty} u_{m,n}$ est convergente.

La famille $(u_{m,n})_{(m,n)\in\mathbb{N}}$ est-elle sommable?

Exercice 26.26: (niveau 1)

Etudier la sommabilité des suites doubles $(\frac{1}{p^{\frac{3}{2}}q^{\frac{3}{2}}})_{(p,q)\in\mathbb{N}^{*2}}$ et $(\frac{1}{pq(p+q)})_{(p,q)\in\mathbb{N}^{*2}}$.

Exercice 26.27 : (niveau 2)

Soit $f : \mathbb{R} \longrightarrow \mathbb{R}$ une application continue.

Montrer que la famille $(f(q))_{q\in\mathbb{Q}}$ est sommable si et seulement si f est nulle.

Exercice 26.28 : (niveau 2)

On pose
$$S_n = \sum_{p=1}^n \frac{1}{p}$$
.

1°) Montrer qu'il existe $\gamma \in \mathbb{R}$ tel que $S_n = \ln(n) + \gamma + o(1)$.

2°) Pour
$$(p,q) \in \mathbb{N}^2$$
, On pose $u_{p,q} = \frac{1}{p^2 - q^2}$ si $p \neq q$ et $u_{p,p} = 0$.

Justifier l'existence et calculer $\sum_{q=0}^{+\infty} \sum_{p=0}^{+\infty} u_{p,q}$.

3) Que dire de
$$\sum_{p=0}^{+\infty} \sum_{q=0}^{+\infty} u_{p,q}$$
?

Exercice 26.29 : (niveau 2)

Calculer
$$\sum_{(p,q)\in\mathbb{N}^2} 2^{-3q-p-(p+q)^2}.$$

Exercice 26.30: (niveau 2)

Soit $\alpha \in \mathbb{R}$.

1°) Déterminez la nature de la famille
$$\left(\frac{1}{(p+q)^{\alpha}}\right)_{(p,q)\in\mathbb{N}^2\setminus\{0\}}$$
.

2°) Pour la suite de l'exercice, on fixe $n \in \mathbb{N}^*$.

Soit $r \in \mathbb{N}^*$. On note $S_r = \{(p_1, \dots, p_n) \in \mathbb{N}^n/p_1 + \dots + p_n = r\}$ et E_r l'ensemble des suites strictement croissantes de \mathbb{N}_{n+r-1} contenant exactement n-1 éléments. On considère l'application suivante

$$\varphi: E_r \longrightarrow S_r \\ (a_1, \dots, a_{n-1}) \longmapsto (a_i - a_{i-1} - 1)_{1 \le i \le n},$$

où pour toute suite $(a_1, \ldots, a_{n-1}) \in E_r$ on convient que $a_0 = 0$ et $a_n = n + r$. Montrez que φ est bijective et en déduire le cardinal de S_r .

3°) Déterminez la nature de la famille $\left(\frac{1}{(p_1+\cdots+p_n)^{\alpha}}\right)_{(p_1,\dots,p_n)\in\mathbb{N}^n\setminus\{0\}}$.

Exercice 26.31 : (niveau 2)

On note A l'ensemble des entiers naturels non nuls dont l'écriture décimale ne comporte aucun 9. Montrer que la famille $\left(\frac{1}{a}\right)_{a\in A}$ est sommable.

Exercice 26.32 : (niveau 3)

Soient (a_n) et (u_n) deux suites de complexes.

- 1°) Si $u_n \xrightarrow[n \to +\infty]{} 0$, montrer que $\sup_{k \in \{E(\frac{n}{2}),...,n\}} |u_k| \xrightarrow[n \to +\infty]{} 0$, où E(h) désigne la partie entière de h
- **2**°) Si $u_n \underset{n \to +\infty}{\longrightarrow} 0$ et si $\sum a_n$ est absolument convergente, montrer que le terme général du produit de Cauchy de $\sum a_n$ et de $\sum u_n$ tend vers 0.
- **3°)** Si $\sum u_n$ converge et si $\sum a_n$ est absolument convergente, montrer que $\delta_n \underset{n \to +\infty}{\longrightarrow} 0$,

où
$$\delta_n = \sum_{p=0}^n a_p \sum_{q=0}^n u_q - \sum_{k=0}^n \sum_{q=0}^k a_q u_{k-q}.$$

Qu'a-t-on démontré?

Exercice 26.33 : (niveau 3)

Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite de complexes telle que $\sum_{n\geq 1}a_n^2$ est absolument convergente.

 $\mathbf{1}^{\circ}$) Montrer que, pour tout $n \in \mathbb{N}^*$,

$$\int_{-\pi}^{\pi} x \left(\sum_{k=1}^{n} (-1)^k |a_k| e^{ikx} \right)^2 dx = \frac{2\pi}{i} \sum_{\substack{1 \le k \le n \\ 1 \le n \le n}} \frac{|a_k| |a_p|}{k+p}.$$

2°) Montrer que la famille $\left(\frac{a_p a_q}{p+q}\right)_{p,q \in \mathbb{N}^*}$ est sommable.