SOLUTIONS DE L'EXAMEN FINAL

4 janvier 2016 [durée : 3 heures]

Exercice 1 (Question de cours et applications)

a) Démontrer la proposition du cours :

Soient une bijection $\phi: A \xrightarrow{\sim} B$ et une application $f: A \to C$, alors l'image de l'ensemble de niveau $\mathcal{L}_k(f)$ par ϕ est $\mathcal{L}_k(f \circ \phi^{-1})$.

Pour la suite de l'exercice on se place dans \mathbb{R}^2 muni de sa base canonique.

- b) Donner l'expression analytique d'une transformation affine ϕ qui envoie le cercle d'équation $\{x^2 + (y-1)^2 = 2\}$ sur l'ellipse d'équation $\{2x^2 + y^2 = 1\}$.
- c) Existe-t-il une application définie sur \mathbb{R}^2 qui envoie l'ensemble d'équation $\{2x^2 + 2xy + y^2 + x 3y = 0\}$ sur l'ensemble d'équation $\{9x^2 + 12xy + 4y^2 + 1 = 0\}$?

Solution:

- a) $M \in \phi(\mathcal{L}_k(f)) \stackrel{\textcircled{1}}{\Leftrightarrow} \phi^{-1}(M) \in \mathcal{L}_k(f) \stackrel{\textcircled{2}}{\Leftrightarrow} f(\phi^{-1}(M)) = k \stackrel{\textcircled{3}}{\Leftrightarrow} M \in \mathcal{L}_k(f \circ \phi^{-1}).$
 - (1) Car ϕ est une bijection.
 - 2+3 Par la définition de l'ensemble de niveau \mathcal{L}_k .
- **b)** Soit $\phi(x,y) = (\frac{x}{2}, \frac{y-1}{\sqrt{2}})$, alors $\phi^{-1}(x,y) = (2x, y\sqrt{2} + 1)$. Soit $f(x,y) = \frac{1}{2}x^2 + \frac{1}{2}(y-1)^2$, alors $f \circ \phi^{-1}(x,y) = 2x^2 + y^2$, et donc l'image de l'ensemble de niveau $\mathcal{L}_1(f)$ par ϕ est $\mathcal{L}_1(f \circ \phi^{-1})$.
- c) Comme $(0,0) \in \{2x^2 + 2xy + y^2 + x 3y = 0\}$ cet ensemble n'est pas vide. Comme $\{9x^2 + 12xy + 4y^2 + 1 = 0\} = \{(3x + 2y)^2 = -1\}$ cet ensemble est vide. Aucune application ne peut envoyer un ensemble non vide dans un ensemble vide.

Exercice 2 (Géométrie dans \mathbb{R}^3)

On se place dans l'espace affine euclidien \mathbb{R}^3 . On considère le plan \mathcal{P} d'équation $\{2x+y=1\}$ et la droite \mathcal{D} d'équations $\{z=-1,\ x=y\}$.

- a) Donner l'expression analytique de la projection p sur le plan \mathcal{P} suivant la direction \mathcal{D} .
- b) Donner l'expression analytique de la symétrie s par rapport à \mathcal{P} suivant la direction \mathcal{D} .
- c) Donner l'expression analytique de la projection orthogonale π sur le plan \mathcal{P} .
- d) Calculer la distance de A = (1, 0, 1) au plan \mathcal{P} .
- e) Donner l'expression analytique de la symétrie orthogonale σ par rapport à \mathcal{P} .
- f) Soit \mathcal{C} le cône standard d'équation $\{x^2+y^2-z^2=0\}$. Quelle est la nature de l'intersection $\mathcal{P}\cap\mathcal{C}$? Dessiner cette intersection.

Solution:

a) La direction de \mathcal{D} est $\overrightarrow{\mathcal{D}} = \{z = 0, \ x = y\} = \langle (1,1,0) \rangle$. Ainsi la projection recherchée d'un point de coordonnées (x,y,z) est un point de coordonnées $(x+\lambda,y+\lambda,z)$ avec $2(x+\lambda)+(y+\lambda)=1$. On déduit $\lambda=\frac{1}{3}(-2x-y+1)$ et donc

$$p(x, y, z) = (\frac{x - y + 1}{3}, \frac{-2x + 2y + 1}{3}, z).$$

b) Comme $\frac{1}{2}x + \frac{1}{2}s(x, y, z) = p(x, y, z)$ on trouve

$$s(x, y, z) = (\frac{-x - 2y + 2}{3}, \frac{-4x + y + 2}{3}, z).$$

c) D'après l'équation de \mathcal{P} sa direction orthogonale est $\langle (2,1,0) \rangle$. Ainsi la projection recherchée d'un point de coordonnées (x,y,z) est un point de coordonnées $(x+2\lambda,y+\lambda,z)$ avec $2(x+2\lambda)+(y+\lambda)=1$. On déduit $\lambda=\frac{1}{5}(-2x-y+1)$ et donc

$$\pi(x, y, z) = (\frac{x - 2y + 2}{5}, \frac{-2x + 4y + 1}{5}, z).$$

- **d)** Nous avons $\pi(1,0,1) = (\frac{3}{5}, -\frac{1}{5}, 1)$, d'où $d(A, \mathcal{P}) = d(A, \pi(A)) = \|(\frac{2}{5}, \frac{1}{5}, 0)\| = \frac{1}{\sqrt{5}}$.
- e) Comme $\frac{1}{2}x + \frac{1}{2}\sigma(x, y, z) = \pi(x, y, z)$ on trouve

$$\sigma(x, y, z) = (\frac{-3x - 4y + 4}{5}, \frac{-4x + 3y + 2}{5}, z).$$

f) Le plan \mathcal{P} est «vertical» dans le sens que sa direction $\overrightarrow{\mathcal{P}} = \{2x + y = 0\}$ contient la direction $\langle (0,0,1) \rangle$. L'intersection d'un plan «vertical» avec le cône standard est une hyperbole.

On peut voir ça aussi par les équations. Comme $\mathcal{P} \cap \mathcal{C} = \{2x + y = 1, x^2 + y^2 = z^2\}$, en remplaçant y = 1 - 2x dans l'équation du cône on trouve que l'intersection $\mathcal{P} \cap \mathcal{C}$ est l'image par l'isomorphisme $(x, z) \mapsto (x, 1 - 2x, z)$ de \mathbb{R}^2 dans \mathcal{P} de l'hyperbole d'équation $5(x - \frac{2}{5})^2 - z^2 = \frac{1}{5}$.

Exercice 3 (Construction d'une ellipse)

Soient deux droites orthogonales \mathcal{D}_1 et \mathcal{D}_2 qui se coupent en un point O, et deux cercles \mathcal{C}_1 et \mathcal{C}_2 de centre O et de rayons respectifs r et R avec 0 < r < R.

Pour tout point Q sur \mathcal{C}_2 , soit $P = \mathcal{C}_1 \cap [O, Q]$. Soient \mathcal{D}'_1 et \mathcal{D}'_2 les deux droites parallèles à \mathcal{D}_1 et \mathcal{D}_2 et passant par P et Q respectivement.

On considère le point d'intersection de ces deux droites $M = \mathcal{D}'_1 \cap \mathcal{D}'_2$.

Montrer que quand Q parcourt C_2 le point M parcourt une ellipse.

Solution:

On se place dans un repère orthonormé de centre O et d'axes \mathcal{D}_1 et \mathcal{D}_2 . Dans ce repère si $P = (x_P, y_P)$ et $Q = (x_Q, y_Q)$, alors d'une part $(x_P, y_P) = \frac{r}{R}(x_Q, y_Q)$, car P est l'image de Q par l'homothétie de centre O et de rapport $\frac{r}{R}$, et d'autre part $M = (x_Q, y_P)$ par la construction de M, et donc $M = (x_Q, \frac{r}{R}y_Q)$.

Ainsi quand Q parcourt C_2 ayant pour équation $\{x^2 + y^2 = R^2\}$, M parcourt l'image de C_2 par l'affinité $(x,y) \mapsto (x, \frac{r}{R}y)$, qui est l'ellipse dont l'équation dans ce repère orthonormé est

$$\left(\frac{x}{R}\right)^2 + \left(\frac{y}{r}\right)^2 = 1.$$

Exercice 4 (Géométrie dans le plan complexe)

Cet exercice est relié à la construction d'une approximation de la «spirale d'or» représentée sur la figure.

On se place dans le plan euclidien identifié avec \mathbb{C} . Soient A, B et D trois points d'affixes respectivement 0,1 et i. On considère le carré ABCD. On note $\gamma = \frac{1+\sqrt{5}}{2}$ le «nombre d'or». Il peut être utile de savoir que $\gamma = 1 + \frac{1}{\gamma}$.

a) Soient A' = C et $B' \in [BC]$ tel que $\gamma ||A'B'|| = 1$. On considère le carré A'B'C'D' construit à l'extérieur du carré ABCD. Montrer qu'il existe une unique transformation affine S qui envoie ABCD sur A'B'C'D' en respectant les sommets (S(A) = A', S(B) = B', ...).

- b) Soient z l'affixe d'un point M et S(z) l'affixe de son image S(M). Exprimer S(z) en fonction de z et γ .
- c) Quelle est la nature de S? Quelle est la nature de γS ?
- d) Déterminer l'ensemble des points fixes de S.

Ainsi $S(ADD'D'') = A'D'D''B \subset ADD'D''$.

- e) Soit D'' = S(D'). Montrer que ADD'D'' est un rectangle. Puis montrer que pour tout $n \in \mathbb{N}, S^n(ABCD) \subset ADD'D''$.
- f) Montrer que $S^3(D) = B$. Existe-t-il un autre $n \in \mathbb{N}$ pour lequel on a la même relation $S^n(D) = B$?

Solution:

- a) Soient $T_{\overrightarrow{AC}}$ la translation qui envoie A sur A' = C, $R_{A,-\frac{\pi}{2}}$ la rotation de centre A et d'angle $-\frac{\pi}{2}$, et $H_{A,\frac{1}{\gamma}}$ l'homothétie de centre A et de rapport $\frac{1}{\gamma}$. Alors $S = T_{\overrightarrow{AC}} \circ R_{A,-\frac{\pi}{2}} \circ H_{A,\frac{1}{\gamma}}$ envoie ABCD sur A'B'C'D'.
 - Par ailleurs cette transformation est unique car il existe une seule transformation qui envoie le repère (orthonormé) (A, B, D) sur le repère (orthogonal) (A', B', D').
- b) L'affixe de \overrightarrow{AC} est 1+i et donc $T_{\overrightarrow{AC}}(z)=z+1+i$. Et comme $H_{A,\frac{1}{\gamma}}(z)=\frac{1}{\gamma}z$ et $R_{A,-\frac{\pi}{2}}(z)=-iz$, on trouve $S(z)=-\frac{i}{\gamma}z+1+i.$
- c) L'application S est de la forme S(z) = az + b avec $|a| = \frac{1}{\gamma}$, donc c'est une similitude de rapport $\frac{1}{\gamma}$. Nous avons $\gamma S(z) = -iz + \gamma + i\gamma$ et comme |-i| = 1 et $-i \neq 1$ c'est une rotation (d'angle $-\frac{\pi}{2}$).
- d) $S(z) = z \Leftrightarrow -\frac{i}{\gamma}z + 1 + i = z \Leftrightarrow z = \gamma \frac{1+i}{\gamma+i}$. Donc S possède un unique point fixe (le centre de la similitude) d'affixe $\gamma \frac{1+i}{\gamma+i}$.
- e) L'affixe de D' est $\gamma+i$ car $S(i)=-\frac{i}{\gamma}i+1+i=\frac{1}{\gamma}+1+i=\gamma+i$ (on utilise que $\frac{1}{\gamma}+1=\gamma$), et celle de D'' est γ car $S(\gamma+i)=-\frac{i}{\gamma}(\gamma+i)+1+i=\frac{1}{\gamma}+1=\gamma$. Comme les affixes de D et D'' sont la partie imaginaire et réelle respectivement de l'affixe de D', et l'affixe de A et 0, alors ADD'D'' est un rectangle. Vu que $ABCD\subset ADD'D''$, pour montrer que $S^n(ABCD)\subset ADD'D''$ il suffit de montrer que $S^n(ADD'D'')\subset ADD'D''$. Et pour démontrer cette dernière inclusion il suffit de montrer que ADD'D'' est stable par S, c.-à-d. que $S(ADD'D'')\subset ADD'D''$.
- f) Nous avons déjà montré dans la question précédente que $S^3(D) = S^2(D') = S(D'') = B$. Soit $\Omega \neq B$ le point fixe de S, comme $d(\Omega, S^k(B)) = \left(\frac{1}{\gamma}\right)^k d(\Omega, B) \neq d(\Omega, B)$ pour $k \neq 0$ on a $S^n(D) = S^{n-3}(B) \neq B$ pour $n-3 \neq 0$.

Mais S(A) = A', S(D) = D', S(D') = D'' et S(D'') = B car $S(\gamma) = -\frac{i}{\gamma}\gamma + 1 + i = 1$.