Cosmos College of Management and Technology

Department of Science and Humanities

Algebra and Geometry

Assignment II

Submission Date: 2080-05-03

Infinite Series

- 1. Find the center and radius of convergence and interval of convergence of the power series
 - (a) $\sum_{n=0}^{\infty} \frac{(x-5)^n}{n5^n}$
 - (b) $\sum_{n=1}^{\infty} \frac{2^{n}(x+4)^{n}}{n}$ (c) $\sum_{n=0}^{\infty} \frac{(x)^{2n+1}}{n!}$

 - (d) $\sum_{n=1}^{\infty} \frac{(-1)^n (2x-1)^n}{n6^n}$
 - (e) $\sum_{n=0}^{\infty} \frac{(10)^{n+1}}{2^{2n}} x^n$
 - (f) $(x-2)+\frac{(x-2)^2}{4}+\frac{(x-2)^3}{9}+\frac{(x-2)^4}{16}+\dots$
- 2. Test the convergence or divergence of the following series
 - (a) $\frac{2}{3^2} + \frac{3}{4^2} + \frac{4}{5^2} + \dots$
 - (b) $\sum \frac{n+1}{2n+3}$
 - (c) $\sum_{n=0}^{\infty} [\sqrt{n^2 + 1} n]$
 - (d) $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \cdots$
 - (e) $\frac{2}{9} + \frac{3}{16} + \frac{4}{25} + \cdots$
 - (f) $1 + \frac{2}{9} + \frac{3}{16} + \frac{4}{25} + \cdots$
 - (g) $1 \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} \frac{1}{4\sqrt{4}} + \cdots$
 - (h) $\sum [\sqrt{n^3 + 1} \sqrt{n^3 1}]$

3. Prove the necessary condition for the convergence of an infinite series $\sum u_n$ is $\lim_{n\to\infty}u_n$ = 0. Also show that this is not sufficient condition.

Vector Space

- 1. Define eigen values and vectors of a square matrix with its characteristic equation. Find Eigen value and Eigen vector of $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.
- 2. State Cayley Hamilton Theorem and use it to find the inverse of $\begin{pmatrix} 1 & 3 & 7 \end{pmatrix}$

$$\begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$$
.

- 3. Define eigen value and eigen vectors of the square matrix. Find eigen value and vectors of the square matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{pmatrix}$.
- 4. Define basis of a vector space over the field F. Check the vectors (1,1,1), (1,3,2), (-1,0,1) form a basis of \mathbb{R}^3 or not.
- 5. Define Linear transformation. Check the following transformation is linear or not?
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x + 2, y).
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}$ defined by T(x, y) = |x + y|.
- 6. Check the linearly dependence and independence of the vectors {(1,1,1), (1,2,1), (2,3,3)}.
- 7. Define subspace of a vector space V. Show that $W = \{(x,y): 2x+y=0\}$ is a subspace of \mathbb{R}^2 .

Matrix and System of Linear Equations

- 1. Maximize the following linear programming problem by using simplex method. $Z=300x_1+500x_2$ subject to $x_1+4x_2\leq 30, x_1+x_2\leq 5, 2x_1+x_2\leq 30$
- 2. Minimize $Z = 8x_1 + 9x_2$ subject to $x_1 + x_2 \ge 5, 3x_1 + x_2 \ge 21, x_1 \ge 0, x_2 \ge 0$ and solve it by dual method.

- 3. Apply simplex method to solve, maximize: $Z = 15x_1 + 10x_2$ subjected to $2x_1 + 2x_2 \le 10$; $2x_1 + 3x_2 \le 10$; $x_1, x_2 \ge 0$
- 4. Maximize $Z=-3x_1+7x_2$ subject to the constraints $2x_1+3x_2 \le 5$, $5x_1+2x_2 \ge 3$, $x_2 \le 1$, x_1 , $x_2 \ge 0$ by Big M method.

Vector Algebra

- 1. Define vector triple product. Show that $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} (\vec{a} \cdot \vec{b})\vec{c}$.
- 2. Show that $\vec{a} \times (\vec{b} \times \vec{c})$, $\vec{b} \times (\vec{c} \times \vec{a})$, $\vec{c} \times (\vec{a} \times \vec{b})$ are coplanar.
- 3. Define scalar triple product. Prove that the scalar triple product of three vectors represent a volume of a parallelepiped. What conclusion can be drawn if $\vec{a} \times (\vec{b} \times \vec{c}) = 0$?
- 4. Show that the position of dot and cross can be interchanged in scalar triple product, without changing its value. Also derive the formula for scalar triple product in determinant form.
- 5. Define scalar triple product. Show that $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ if and only if the vectors \vec{a} and \vec{c} are collinear.
- 6. Define reciprocal system of vectors. Find the reciprocal vectors of $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} \mathbf{k}$, $\mathbf{b} = \mathbf{i} \mathbf{j} 2\mathbf{k}$ and $\mathbf{c} = -\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$.