Rui Ji (1000340918)

1. Proof:

 \Rightarrow Suppose $f(\vec{x})$ is a *n-ary* computable function. Then there exist some program $\{e\}$ computes f, by KNFT we get,

$$f(\vec{x}) = \{e\}(\vec{x}) = U(\mu y T_n(e, \vec{x}, y))$$

Let $graph(f) = \{(\vec{x}, y) \mid y = f(\vec{x})\}\$, then we can get that,

$$(\vec{x}, y) = (x_1, x_2, ..., x_n, y) \in graph(f) \Leftrightarrow \exists z (T_n(e, \vec{x}, z) \land U(z) = y)$$

Hence, let $R(x_1, x_2, ..., x_n, y, z) = T_n(e, x_1, x_2, ..., x_n, y, z) \wedge U(z) = y$). Clearly R is a recursive relation, then graph(f) is r.e.

 \Leftarrow Before formalizing the argument for 'if' direction, let's first give an informal algorithm for computing f from an enumeration of the tuples in graph(f)

algorithm (for computing $f(\vec{x})$):

suppose $(a_1, a_2....)$ is a enumeration, where a_i is a n + 1 tuple. for $i = 1...\infty$

if $a_i = (x_1, x_2, ..., x_n, y)$ where $(x_1, x_2, ..., x_n) = \vec{x}$ OUTPUT y

end if

end for

Now let's formalize the argument. Suppose $graph(f) = \{(\vec{x}, y) \mid y = f(\vec{x})\}$ is r.e., where f is a n - ary function and we want to show that $f(\vec{x})$ is computable.

Since graph(f) is r.e., then there exist some n + 2-ary recursive relation $R(\vec{x}, z)$ such that,

$$(x_1, x_2, ..., x_n, y) \in graph(f) \Leftrightarrow \exists z \ R(x_1, x_2, ..., x_n, y, z)$$

Then clearly $f(x_1, x_2, ..., x_n) = \mu y(\exists z \ R(x_1, x_2, ..., x_n, y, z))$, by Church-Turing Thesis, $f(x_1, x_2, ..., x_n)$ is computable.

2. Claim: A is neither recursive nor r.e., A^c is r.e but not recursive.

First we show that *A* is not r.e. Notice, it suffices to show that

$$K^c \leq_m A$$

Thus we want a total computable function f(x) such that

$$x \in K^c \Leftrightarrow f(x) \in A$$

i.e we want

$$\{x\}_1(x) = \infty \Leftrightarrow range(\{f(x)\}_1) \subseteq ODD$$

We can define f(x) implicitly using the S-m-n Theorem as follows:

$$\{f(x)\}_1(y) = \begin{cases} 0 \cdot \{x\}_1(x) & \text{if } y \neq 1\\ 1 & \text{if } y = 1 \end{cases}$$

Thus if $\{x\}_1(x)$ is defined, then $range(\{f(x)\}_1) = \{0,1\} \subseteq ODD$.

But if $\{x\}_1(x)$ is undefined then $range(\{f(x)\}_1) = \{1\} \subseteq ODD$.

Hence, *A* is not r.e.

Now we we want to show that A^c is is r.e.

$$A^c = \{x | range(\{x\}_1) \not\subseteq ODD\}$$

Notice that $x \in A^c$ iff there is some input u and some v such that v codes a halting computation of program $\{x\}$ on input u, and U(v) is not a odd. Using the T-predicate, we have,

$$x \in A^c \longleftrightarrow \exists u \ \exists v \ [T(x,u,v) \land EVEN(U(v))]$$

$$EVEN(x) = \exists y \le x \ 2y = x$$

using a pairing function to combine both existential quantifiers into one quantifier,

$$x \in A^c \leftrightarrow \exists z [T(x, K(z), L(z)) \land EVEN(U(L(z)))]$$

We get the form $x \in A^c \leftrightarrow \exists z \ R(x,z)$ where *R* is recursive. Hence A^c is r.e.

It follows that A is not recursive, and hence A^c is not recursive. It also follows that A is not r.e., because then A would be recursive.

3. Solution:

Let R(x,y) be a recursive relation, define $A = \{x | f(x) \text{ is defined}\}$, where $f(x) = \mu y R(x,y)$. Then we have,

$$x \in A \Leftrightarrow f(x) \text{ is defined} \Leftrightarrow \exists y \ R(x,y)$$

Clearly f is computable. Suppose some program $\{e\}$ computes f, then using KNFT we get,

$$f(x) = \{e\}_1(x) = U(\mu z T(e, x, z))$$

Then clearly f(x) is defined $\Leftrightarrow \exists z \ T(e, x, z)$

let S(x,z) = T(e,x,z), clearly S(x,z) is primative recursive and $\exists y \ R(x,y) \Leftrightarrow \exists z \ T(e,x,z)$.

4. Proof:

Now consider the case $\exists \le$, say A is $\exists x \le t \ B(x)$, and this is in **TA**. Since this is a sentence, and by definition of $\exists x \le t$, we know x cannot occur in t, it follows that t is a closed term. Thus by Lemma A, **RA** can prove $t = s_n$ for some n.

Now we do a induction on *n*

Base Case: n=0, then we have $\exists x \le 0 \ B(x)$. By axiom P7 we have x = 0, then $\exists x \le 0 \ B(x)$ is in **TA** means B(0) is true. So by the induction hypothesis B(0) is in $RA_{<}$.

Induction Hypothesis: for some k, $\exists x \le s_k \ B(x)$ is in TA then is also in $RA \le s_k$.

Inductive Step: $\exists x \le s(s_k) \ B(x)$ is in **TA** . By P8 we know that $x \le s(s_k) \supset (x \le s_k \lor x = s(s_k))$. Hence we have,

$$\exists x \le s(s_k) \ B(x) \Leftrightarrow \exists x \le s_k \ B(x) \lor B(s(s_k))$$

Then $\exists x \leq s(s_k) \ B(x)$ is in **TA** means $\exists x \leq s_k \ B(x)$ is in **TA** or $B(S(s_k))$ is in **TA**. By induction hypothesis, we know $\exists x \leq s(s_k) \ B(x)$ is in **RA**<.

Therefore, if $\exists x \le t \ B(x)$ is in **TA** then it is also in **RA**<.

5. Proof: In order to show that $\forall x \forall y \ x+y=y+x$, we first show $\forall x \ 0+x=x$ and $\forall x \forall y \ sx+y=s(x+y)$, then using them to prove $\forall x \forall y \ x+y=y+x$.

First let's show $\forall x \ 0 + x = x$, we call this property A1.

$$f(x) = 0 + x = x$$

We use the induction axiom Ind(f(x)).

Basis: x = 0

$$0 + 0 = 0$$
 P3

Inductive Step: $x \leftarrow sx$

$$0 + sx = s(0 + x)$$
 P4
= sx Inductive Hypothesis

Thus by Ind(f(x)), it follows that

$$\mathbf{PA} \vdash \forall x \ f(x)$$

Then let's show $\forall x \forall y \ sx + y = s(x + y)$ and we call this property A2.

$$g(y) = sx + y = s(x + y)$$

We use the induction axiom Ind(g(y)).

Basis: y = 0

$$sx + 0 = sx P3$$
$$= s(x + 0) P3$$

Inductive Step: $y \leftarrow sy$

$$sx + sy = s(sx + y)$$
 P4
= $s(s(x + y))$ Inductive Hypothesis
= $s(x + sy)$ P4

Thus by Ind(g(y)), it follows that

$$\mathbf{PA} \vdash \forall x \ \forall y \ g(y)$$

Finally let's show $\forall x \forall y \ x + y = y + x$

$$A(y) = x + y = y + x$$

We use the induction axiom Ind(A(y)).

Basis: y = 0

$$x + 0 = x P3$$
$$= 0 + x A1$$

Inductive Step: $y \leftarrow sy$

$$x + sy = s(x + y)$$
 P4
= $s(y + x)$ Inductive Hypothesis
= $sy + x$ A2

Thus by Ind(A(y)), it follows that

PA
$$\vdash \forall x \ \forall y \ A(y)$$