

Security+ Guide to Network Security Fundamentals, Fourth Edition

Chapter 2
Malware and Social Engineering Attacks

Objectives

- Describe the differences between a virus and a worm
- List the types of malware that conceals its appearance
- Identify different kinds of malware that is designed for profit
- Describe the types of social engineering psychological attacks
- Explain physical social engineering attacks

Attacks Using Malware

- Malicious software (malware)
 - Enters a computer system:
 - Without the owner's knowledge or consent
 - Refers to a wide variety of damaging or annoying software
- Primary objectives of malware
 - Infecting systems
 - Concealing its purpose
 - Making profit

Malware That Spreads

- Viruses
 - Malicious computer code that reproduces itself on the same computer
- Virus infection methods
 - Appender infection
 - Virus appends itself to end of a file
 - Moves first three bytes of original file to virus code
 - Replaces them with a jump instruction pointing to the virus code

- Virus infection methods (cont'd.)
 - Swiss cheese infection
 - Viruses inject themselves into executable code
 - Original code transferred and stored inside virus code
 - Host code executes properly after the infection
 - Split infection
 - Virus splits into several parts
 - Parts placed at random positions in host program
 - Head of virus code starts at beginning of file
 - Gives control to next piece of virus code

- When infected program is launched:
 - Virus replicates itself by spreading to another file on same computer
 - Virus activates its malicious payload
- Viruses may display an annoying message:
 - Or be much more harmful
- Examples of virus actions
 - Cause a computer to repeatedly crash
 - Erase files from or reformat hard drive
 - Turn off computer's security settings

Figure 2-4 Annoying virus message © Cengage Learning 2012

- Virus cannot automatically spread to another computer
 - Relies on user action to spread
- Viruses are attached to files
- Viruses are spread by transferring infected files

- Types of computer viruses
 - Program
 - Infects executable files
 - Macro
 - Executes a script
 - Resident
 - · Virus infects files opened by user or operating system

- Types of computer viruses (cont'd.)
 - Boot virus
 - Infects the Master Boot Record
 - Companion virus
 - Adds malicious copycat program to operating system

- Worm
 - Malicious program
 - Exploits application or operating system vulnerability
 - Sends copies of itself to other network devices
- Worms may:
 - Consume resources or
 - Leave behind a payload to harm infected systems
- Examples of worm actions
 - Deleting computer files
 - Allowing remote control of a computer by an attacker

Action	Virus	Worm
How does it spread to other computers?	Because viruses are attached to files, it is spread by a user transferring those files to other devices	Worms use a network to travel from one computer to another
How does it infect?	Viruses insert their code into a file	Worms exploit vulnerabilities in an application or operating system
Does there need to be user action?	Yes	No
Can it be remote controlled?	No	Yes

Table 2-1 Difference between viruses and worms

Malware That Conceals

Trojans

- Program that does something other than advertised
- Typically executable programs
 - Contain hidden code that launches an attack
- Sometimes made to appear as data file
- Example
 - User downloads "free calendar program"
 - Program scans system for credit card numbers and passwords
 - Transmits information to attacker through network

Rootkits

- Software tools used by an attacker to hide actions or presence of other types of malicious software
- Hide or remove traces of log-in records, log entries
- May alter or replace operating system files with modified versions:
 - Specifically designed to ignore malicious activity

- Rootkits can be detected using programs that compare file contents with original files
- Rootkits that operate at operating system's lower levels:
 - May be difficult to detect
- Removal of a rootkit can be difficult
 - Rootkit must be erased
 - Original operating system files must be restored
 - Reformat hard drive and reinstall operating system

- Logic bomb
 - Computer code that lies dormant
 - Triggered by a specific logical event
 - Then performs malicious activities
 - Difficult to detect before it is triggered
- Backdoor
 - Software code that circumvents normal security to give program access
 - Common practice by developers
 - Intent is to remove backdoors in final application

Description	Reason for attack	Results
A logic bomb was planted in a financial services computer network that caused 1,000 computers to delete critical data	A disgruntled employee had counted on this to cause the company's stock price to drop; the employee would earn money from the price drop	The logic bomb detonated, yet the employee was caught and sentenced to 8 years in prison and ordered to pay \$3.1 million in restitution ⁵
A logic bomb at a defense contractor was designed to delete important rocket project data	The employee's plan was to be hired as a highly paid consultant to fix the problem	The logic bomb was discovered and disabled before it triggered; the employee was charged with computer tampering and attempted fraud and was fined \$5,000 ⁶
A logic bomb at a health services firm was set to go off on the employee's birthday	The employee was angered that he might be laid off (although he was not)	The employee was sentenced to 30 months in a federal prison and paid \$81,200 in restitution to the company ⁷

Table 2-2 Famous logic bombs

Malware That Profits

- Types of malware designed to profit attackers
 - Botnets
 - Spyware
 - Adware
 - Keyloggers

- Botnets
 - Computer is infected with program that allows it to be remotely controlled by attacker
 - Often payload of Trojans, worms, and viruses
 - Infected computer called a zombie
 - Groups of zombie computers together called botnet
- Early botnet attackers used Internet Relay Chat to remotely control zombies
 - HTTP is often used today

- Botnets' advantages for attackers
 - Operate in the background:
 - Often with no visible evidence of existence
 - Provide means for concealing actions of attacker
 - Can remain active for years
 - Large percentage of zombies are accessible at a given time
 - Due to growth of always-on Internet services

Type of attack	Description
Spamming	A botnet consisting of thousands of zombies enables an attacker to send massive amounts of spam; some botnets can also harvest e-mail addresses
Spreading malware	Botnets can be used to spread malware and create new zombies and botnets; zombies have the ability to download and execute a file sent by the attacker
Attacking IRC networks	Botnets are often used for attacks against IRC network; the bot herder orders each botnet to connect a large number of zombies to the IRC network, which is flooded by service requests and then cannot function
Manipulating online polls	Because each zombie has a unique Internet Protocol (IP) address, each "vote" by a zombie will have the same credibility as a vote cast by a real person; online games can be manipulated in a similar way
Denying services	Botnets can flood a Web server with thousands of requests and overwhelm it to the point that it cannot respond to legitimate requests

Table 2-3 Uses of botnets

- Spyware
 - Software that gathers information without user consent
 - Usually used for:
 - Advertising
 - Collecting personal information
 - Changing computer configurations

- Spyware's negative effects
 - Slows computer performance
 - Causes system instability
 - May install new browser menus or toolbars
 - May place new shortcuts
 - May hijack home page
 - Causes increased pop-ups

Technology	Description	Impact
Automatic download software	Used to download and install software without the user's interaction	May be used to install unauthorized applications
Passive tracking technologies	Used to gather information about user activities without installing any software	May collect private information such as Web sites a user has visited
System-modifying software	Modifies or changes user configurations, such as the Web browser home page or search page, default media player, or lower-level system functions	Changes configurations to settings that the user did not approve
Tracking software	Used to monitor user behavior or gather information about the user, sometimes including personally identifiable or other sensitive information	May collect personal information that can be shared widely or stolen, resulting in fraud or identity theft

Table 2-4 Technologies used by spyware

Adware

- Program that delivers advertising content:
 - In manner unexpected and unwanted by the user
- Typically displays advertising banners and pop-up ads
- May open new browser windows randomly
- Can also perform tracking of online activities

- Downsides of adware for users
 - May display objectionable content
 - Frequent pop-up ads cause lost productivity
 - Pop-up ads slow computer or cause crashes
 - Unwanted ads can be a nuisance

- Keyloggers
 - Program that captures user's keystrokes
 - Information later retrieved by attacker
 - Attacker searches for useful information
 - Passwords
 - Credit card numbers
 - Personal information

- Keyloggers (cont'd.)
 - Can be a small hardware device
 - Inserted between computer keyboard and connector
 - Unlikely to be detected
 - Attacker physically removes device to collect information

Figure 2-6 Hardware keylogger © Cengage Learning 2012

Figure 2-7 Information captured by a software keylogger © Cengage Learning 2012

Social Engineering Attacks

- Directly gathering information from individuals
 - Relies on trusting nature of individuals
- Psychological approaches
 - Goal: persuade the victim to provide information or take action
 - Flattery or flirtation
 - Conformity
 - Friendliness

- Attacker will ask for only small amounts of information
 - Often from several different victims
- Request needs to be believable
- Attacker "pushes the envelope" to get information:
 - Before victim suspects anything
- Attacker may smile and ask for help

Social Engineering Attacks

- True example of social engineering attack
 - One attacker called human resources office
 - Asked for and got names of key employees
 - Small group of attackers approached door to building
 - Pretended to have lost key code
 - Let in by friendly employee
 - Entered another secured area in the same way
 - Group had learned CFO was out of town
 - Because of his voicemail greeting message

Social Engineering Attacks

- True example of social engineering attack (cont'd.)
 - Group entered CFO's office
 - Gathered information from unprotected computer
 - Dug through trash to retrieve useful documents
 - One member called help desk from CFO's office
 - Pretended to be CFO
 - Asked for password urgently
 - Help desk gave password
 - Group left building with complete network access

- Impersonation
 - Attacker pretends to be someone else
 - Help desk support technician
 - Repairperson
 - Trusted third party
 - Individuals in roles of authority

- Phishing
 - Sending an email claiming to be from legitimate source
 - May contain legitimate logos and wording
 - Tries to trick user into giving private information
- Variations of phishing
 - Pharming
 - Automatically redirects user to fraudulent Web site

- Variations of phishing (cont'd.)
 - Spear phishing
 - Email messages target specific users
 - Whaling
 - · Going after the "big fish"
 - Targeting wealthy individuals
 - Vishing (voice phishing)
 - Attacker calls victim with recorded "bank" message with callback number
 - Victim calls attacker's number and enters private information

Figure 2-8 Phishing message © Cengage Learning 2012

- Ways to recognize phishing messages
 - Deceptive Web links
 - @ sign in middle of address
 - Variations of legitimate addresses
 - Presence of vendor logos that look legitimate
 - Fake sender's address
 - Urgent request

- Spam
 - Unsolicited e-mail
 - Primary vehicles for distribution of malware
 - Sending spam is a lucrative business
- Spim: targets instant messaging users
- Image spam
 - Uses graphical images of text
 - Circumvents text-based filters
 - Often contains nonsense text

- Spammer techniques
 - GIF layering
 - Image spam divided into multiple images
 - Layers make up one complete legible message
 - Word splitting
 - Horizontally separating words
 - Can still be read by human eye
 - Geometric variance
 - Uses speckling and different colors so no two emails appear to be the same

Figure 2-10 Image spam © Cengage Learning 2012

- Hoaxes
 - False warning or claim
 - May be first step in an attack
- Physical procedures
 - Dumpster diving
 - Digging through trash to find useful information
 - Tailgating
 - Following behind an authorized individual through an access door

Item retrieved	Why useful
Calendars	A calendar can reveal which employees are out of town at a particular time
Inexpensive computer hardware, such as USB flash drives or portal hard drives	These devices are often improperly disposed of and may contain valuable information
Memos	Seemingly unimportant memos can often provide small bits of useful information for an attacker who is building an impersonation
Organizational charts	These identify individuals within the organization who are in positions of authority
Phone directories	A phone directory can provide the names and telephone numbers of individuals in the organization to target or impersonate
Policy manuals	These may reveal the true level of security within the organization
System manuals	A system manual can tell an attacker the type of computer system that is being used so that other research can be conducted to pinpoint vulnerabilities

Table 2-5 Dumpster diving items and their usefulness

- Methods of tailgating
 - Tailgater calls "please hold the door"
 - Waits outside door and enters when authorized employee leaves
 - Employee conspires with unauthorized person to walk together through open door
- Shoulder surfing
 - Casually observing user entering keypad code

Summary

- Malware is software that enters a computer system without the owner's knowledge or consent
- Malware that spreads include computer viruses and worms
- Malware that conceals include Trojans, rootkits, logic bombs, and backdoors
- Malware with a profit motive includes botnets, spyware, adware, and keyloggers

Summary (cont'd.)

- Social engineering is a means of gathering information for an attack from individuals
- Types of social engineering approaches include phishing, impersonation, dumpster diving, and tailgating