

TUTORIAL 3 LOGIC GATES

PDS0101: INTRODUCTION TO DIGITAL SYSTEMS TRI 2, 2022-2023

Draw the LOGIC SYMBOL and construct the TRUTH TABLES and TIMING DIAGRAM for the following gates showing all possible input combinations

LOGIC SYMBOL
1-input inverter
$$2^n = 2^i = 2^i$$

INPUT	OUTPUT			
A	Ā	A'		
0	1			
1	0			

TIMING DIAGRAM

inverter NoT	
AND OR NAND NOR	

only ONE input

XOR

XNOR

hegative AND negative OR

at least two input

Input output

Draw the LOGIC SYMBOL and construct the TRUTH TABLES and TIMING DIAGRAM for the following gates showing all possible input combinations

LOGIC SYMBOL 4-input (quad input)AND gate

Example: 0010, 1101,0001

	INF	OUTPUT		
A	В	C	D	X = ABCD
0	0	0	Ò	0
O	0	0	1	0
0	0	J	0	0
0	٥	1	1	O
0	1	0	0	0
0	1	O	1	0
0	1	1	0	٥
0	1	1	1	O
1	0	ð	0	0
J	0	0	1	0
1	O	1	0	0
1	0		-	0
1	1	O	0	0
1	1	0	1	0
1	1	1	٥	0
	1			1

4-input (quad input)AND gate

TIMING DIAGRAM

6 input AND gate

Input

Output

III III \longrightarrow O

OIIIIII \longrightarrow O

7 input AND gate
input output

111 1111 -> 1

Draw the LOGIC SYMBOL and construct the TRUTH TABLES and TIMING DIAGRAM for the following gates showing all possible input combinations

TRUTH TAE	BLES IN	OUTPUT		
A	В	С	D	X = A+B+C+D
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

4-input OR gate

TIMING DIAGRAM

Draw the LOGIC SYMBOL and construct the TRUTH TABLES and TIMING DIAGRAM for the following gates showing all possible input combinations

$$2^n = 2^4 = 16$$
 possible input combination

TRUTH TAE	BLES IN	PUT		OUTPUT	4-input NAND gate		
A	B	С	D	X = (ABCD)'	i ilipor to tro gare		
0	0	0	0	1			
0	0	0	1	1	A 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1		
0	0	1	0	1			
0	0	1	1	1	B 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1		
0	1	0	0	1			
0	1	0	1	1	C 0 0 1 1 0 0 1 1 0 0 1 1		
0	1	1	0	1	D 0 1 0 1 0 1 0 1 0 1 0 1 0 1		
0	1	1	1	1			
1	0	0	0	1			
1	0	0	1	1	X 1 1 1 1 1 1 1 1 1 1 1 0		
1	0	1	0	1			
1	0	1	1	1	TIMING DIAGRAM AND		
1	1	0	0	1	If All input ONE, output ONE		
1	1	0	1	1	invert (and)		
1	1	1	0	1	If All input ONE, output ZERO		
1	1	1	1	0			

Draw the LOGIC SYMBOL and construct the TRUTH TABLES and TIMING DIAGRAM for the following gates showing all possible input combinations

TRUTH TAE	BLES IN	OUTPUT		
A	В	C	D	$X = \overline{A+B+C+D}$
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

4-input NOR gate

TIMING DIAGRAM

Draw the LOGIC SYMBOL and construct the TRUTH TABLES for the following gates showing all possible input combinations

LOGIC SYMBOL 3-input XOR gate

INPUT			OUTPUT
A	B	U	$W = A \oplus B \oplus C$
0	0	0	0
0	0		
0		0	
0			O
	O	0	
	0		0
		0	O
			l

total number of input high (ONE) is opp number, then output = one

e) [] 2 input high 0 f) [] [] [] 5 input high 0	Example input (1) (1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	total number or of input high 3 input high 1 input high 2 input high 1 input high 2 input high 2 input high		,
--	---	---	--	---

TIMING DIAGRAM A input В C XOR X Invert the ouput XNOR X

Draw the LOGIC SYMBOL and construct the TRUTH TABLES for the following gates showing all possible input combinations

LOGIC SYMBOL 3-input XNOR gate

$$W = A \oplus B \oplus C$$

$$\overline{A \oplus B \oplus C}$$

$$2^{h} = 2^{3} = 8$$
 possible input combination

	INPUT			UTPUT XNOR
A	<u> </u>	C	$W \models A \oplus B \oplus C$	$\widehat{W} = (A \oplus B \oplus C)'$
0	0	0	0	
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	
1	1	0	0	1
1	1	1	1	0

Draw the LOGIC SYMBOL and construct the TRUTH TABLES for the following gates showing all possible input combinations

TRUTH TABLES ABC

		OUTPUT						
A	В	C	A'	B'	C'	A'B'C'		
0	0	0		+	-	1		
0	0		1	-	0	O		
0	1	0	1	0	1	0		
0	1	1	1	0	0	0		
1	0	0	0	1		0		
	0		0	1	0	0		
		0	D	0	1	0		
1	1		0	0	7 0	0		
inve	invert invert							

negative AND gate \neq NOT AND gate \Rightarrow ABC

regartive \Rightarrow not \Rightarrow not

DeMorgan

negative AND gate = NOR gate (NOT OR)

 $\overline{AB} \subset \overline{D}$ = A+B+C+D

3-input negative-AND gate equivalent with 3-input NOR gate

3-input negative-AND gate

TRUTH TABLES

 $\overline{ABC} = A+B+C$

(NOT OR)

3-input NOR gate

INPUT			OUTPUT			
A	В	С	A٬	B'	C'	A'B'C'
0	0	0	1	1	1	1
0	0	1	1	1	0	0
0	1	0	1	0	1	0
0	1	1	1	0	0	0
1	0	0	0	1	1	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	0

INPUT			OR OUTPUT NOR		
A	<u> </u>	U	A+B+C	(A+B+C)'	
0	0	0	0		
0	0	1	-	0	
0	1	0	1	0	
0	1	1	(0	
1	0	0	1	0	
1	0	1	1	6	
1	1	0	1	0	
1	1	1	1	0	

Draw the LOGIC SYMBOL and construct the TRUTH TABLES for the following gates showing all possible input combinations

		OUTPUT				
A	<u> </u>	C	A'	B	Ĉ	A'+B'+C'
0	0	0			1	1
0	0	1			0)
0	1	0		0	1	1
0	1	1		0	0	1
1	0	0	0		1	1
1	0	1	0	(0	1
1	1	0	Ō	0		
1	1	1	9	0	G-	0

3-input negative-OR gate equivalent with 3-input NAND gate

3-input negative-OR gate

TRUTH TABLES

 $A+B+\bar{c}$ =

ABC

3-input NAND gate

	NPU	T	OUTPUT						
A	В	С	A'	В'	C'	A'+B'+C'			
0	0	0	1	1	1	1			
0	0	1	1	1	0	1			
0	1	0	1	0	1	1			
0	1	1	1	0	0	1			
1	0	0	0	1	1	1			
1	0	1	0	1	0	1			
1	1	0	0	0	1	1			
1	1	1	0	0	0	0			

(ABC)
~ ~
1
1
1
1
1
1
0

negative OR gate = NOT AND (NAND) gake $\overline{A+B+C+D}$ = \overline{ABCD}

APPLIED KNOWLEDGE QUESTIONS 1

A series of cascaded inverters is shown in the figure below. Determine the logic level outputs at B, C, D and F if the Vin signal at A is given as shown.

APPLIED KNOWLEDGE QUESTIONS 2 (i)

Determine the individual outputs of X to the tri-input gates below based on the timing diagrams shown for inputs A, B and C

APPLIED KNOWLEDGE QUESTIONS 2 (ii)

Determine the individual outputs of X to the tri-input gates below based on the timing diagrams shown for inputs A, B and C

APPLIED KNOWLEDGE QUESTIONS 2 (iii)

Determine the individual outputs of X to the tri-input gates below based on the timing diagrams shown for inputs A, B and C

QUESTION 3 (i and ii)

Determine the individual outputs of X / Y to the quadinput gates below based on the timing diagrams shown for inputs A, B, C and D

A	D	1	J			0	O	0	٥
В	0	0	1	1)	I	0	0	Ō
С	0	D	0	1)	1	1	0	0
D	0	0	0	0		Ţ)	1	0
X					`				
V									
Ĭ									

	IN	PUT		OUTPUT				
A	B	U	D	X = ABCD	Y = X'			
0	0	0	0	0	1			
}	0	0	0	0	1			
J)	0	0	0				
1			0	0	J			
			1	1	0			
0	1			0				
0	0	1		0	١			
0	0	0		0	1			
Q	O	O	Ŏ	O	1			

QUESTION 3 (iii)

Determine the individual outputs of X / Y to the quadinput gates below based on the timing diagrams shown for inputs A, B, C and D

A										
В										
С										
D										
X	1	0	1	0		Ò	[O	١	

	IN	PUT		XOR OUTP	UT XNOR
A	<u> </u>	O	D	$Y = A \oplus B \oplus C \oplus D$	X = Y'
0	0	0	0	0	1
	0	0	0	1	0
		0	0	٥	1
			0	1	0
			(<u> </u>	0	1
0			1		0
0	0			0	l
0	0	0		1	0
0	0	0	0	D	

Complete the timing diagram for the two gates below based on the inputs A and B shown. What conclusions can you derive from the output of the gates?

OUTPUT

					9 333 33									3333		3 3	
								. 1					1	Α	В	X=(AB)'	X=A'
	0	1		0	0	1	 	0	0	1	: 1	0	0	0	0	J	Ţ
Α				<u> </u>							!	<u> </u>		1	0)	
				1			 	1			<u> </u>	1	,	1	J	0	0
	0	0		; {	0	0			0	0		! [0	D		J	1
В				l I		}	'	! !		\	1	! !					
											_						
				· 				-			i	<u> </u>					
Y			0				0			1	D						
	,	'		1		,		1				1	•				

Conclusion:

input
$$< \frac{A}{D}$$

input
$$\langle B \rangle$$
 $\lambda^n = \lambda^2 = 4$ possible input combination

NAND gate negative OR									
A	В	AB	AB	Ā	B	ĀtĒ			
0	D	0	1	1	1		//2		
1	0	0	1	0	T	1	1/,		
			0	0	0	0			
0		0	1		0		1//1		
	•	1	Ã	[B] =		ĀtB			

The headlights of a car only turn on (light up) when the car's ignition is turned ON with the key and the headlight switch is turned ON. Assuming that the headlight requires a LOW signal to turn it ON, what gate would be suitable to fit in the blank below to complete the circuit? Explain your answer.

Both inputs need to be **high (ON)** to activate its output. (**AND gate**) The headlight is activated upon a **LOW signal**, inverse of the output.

Hence the NAND gate is used. (optional negative-OR)

END DISCUSSIONS

ANY QUESTIONS ??

