Christopher David Miller FSMAT 201 Problem 3.1 Version 1

3.1

Let z = a + bi and w = c + di. Prove that $\overline{zw} = \overline{z} \cdot \overline{w}$.

Now we have enough definitions to finish our proof.

Proof. To prove this statement we need to introduce the definition of the conjugate of a complex number. Let q be a complex number, in other words q = c + di where c and d are real numbers and where $i = \sqrt{-1}$. The conjugate of q, denoted by \overline{q} , is defined by

$$\overline{q} = c - di$$
.

Let z = a + bi and w = c + di. In order to show that $\overline{zw} = \overline{z} \cdot \overline{w}$. We need to calculate \overline{zw} and $\overline{z} \cdot \overline{w}$.

$$\overline{zw} = \overline{(a+bi)(c+di)}$$

$$= \overline{ac+adi+bci-bd}$$

$$= \overline{(ac-bd)+i(ad+bc)}$$

$$= (ac-bd)-i(ad+bc)$$

$$\overline{z} \cdot \overline{w} = \overline{(a+bi)} \cdot \overline{(c+di)}$$

$$= (a-bi) \cdot (c-di)$$

$$= ac-adi-bci-bd$$

$$= (ac-bd)-i(ad+bc)$$

We have shown that $\overline{zw} = \overline{z} \cdot \overline{w}$

Christopher David Miller FSMAT 201 Problem 3.2 Version 1

3.2

Let z = a + bi and w = c + di. Prove that $|zw| = |z| \cdot |w|$.

Proof. To prove this statement we need to introduce the definition of the modulus of a complex number. Let q be a complex number, in other words q = c + di where c and d are real numbers. The modulus of q, denoted by |q|, is defined by

$$|q| = \sqrt{c^2 + d^2}$$

Let z = a + bi and w = c + di. In order to show that $|zw| = |z| \cdot |w|$. We need to calculate |zw| and $|z| \cdot |w|$.

$$|z| \cdot |w| = \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2}$$

$$= \sqrt{(a^2 + b^2)(c^2 + d^2)}$$

$$= \sqrt{a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2}$$

$$|zw| = \overline{(a + bi)} \cdot \overline{(c + di)}$$

$$= (a - bi) \cdot (c - di)$$

$$= ac - adi - bci - bd$$

$$= (ac - bd) - i(ad + bc)$$

We have shown that $\overline{zw} = \overline{z} \cdot \overline{w}$

Christopher David Miller FSMAT 201 Problem 3.3 Version 1

3.3

Let z = a + bi. Find the real and imaginary parts of $\frac{1}{z}$.

Solution: In order to find the real and imaginary parts of a complex number we must express $\frac{1}{z}$ of the form c+di where c and d are real numbers. First we have

$$\frac{1}{z} = \frac{1}{a+bi},$$

then we multiply by 1 where $1 = \frac{a-bi}{a-bi}$,

$$= \frac{1}{a+bi} \cdot \frac{a-bi}{a-bi}$$

$$= \frac{a-bi}{a^2+b^2}$$

$$= \frac{a}{a^2+b^2} - \frac{bi}{a^2+b^2}$$

$$= \frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2}$$

. Now our complex number is of the proper form. So our real part is $\frac{a}{a^2+b^2}$ and the imaginary part is $-\frac{b}{a^2+b^2}$.

Christopher David Miller FSMAT 201 Problem 3.4 Version 1

3.4

Let z = a + bi. Prove that z is a real number if and only if $z = \overline{z}$

Proof. To prove this statement we need to introduce the definition of the conjugate of a complex number. Let q be a complex number, in other words q = c + di where c, the real part, and d, the imaginary part, are real numbers and where $i = \sqrt{-1}$. The conjugate of q, denoted by \overline{q} , is defined by

$$\overline{q} = c - di$$
.

Let z=a+bi. Assume z is a real number. Thus z does not have an imaginary part or in other words z=a+0i. Notice from the definition of conjugate that $\overline{z}=a-0i$. Thus $z=\overline{z}$. Now assume that $z=\overline{z}$. We will show that z is a real number. For z to be a real number then the imaginary part of z must be 0. Notice since $z=\overline{z}$. then a+bi=a-bi the only real number b that this is true for is 0. Thus z is a real number.

Christopher David Miller FSMAT 201 Problem 3.5 Version 1

3.5

Prove DeMoivre's Theorem, namely, that for a nonnegative integer n,

$$(\cos\omega + i\sin\omega)^n = \cos n\omega + i\sin n\omega$$

Proof. To prove this statement we need to introduce the definition of the exponetial function. Let q be a complex number, in other words q = c + di where c, the real part, and d, the imaginary part, are real numbers and where $i = \sqrt{-1}$, then we define the exponetial function e^q by

$$e^q = e^c(\cos d + i\sin d).$$

Notice if the real part of q = 0 then $e^q = (\cos d + i \sin d)$

Assume $(\cos \omega + i \sin \omega)^n$, then following from above we have

$$(\cos\omega + i\sin\omega)^n = (e^{i\omega})^n$$

Following from laws of exponets we have

$$(e^{i\omega})^n = (e^{i\omega n}).$$

Then using our defintion from earlier we have,

$$(e^{i\omega n}) = \cos n\omega + i\sin n\omega.$$

The proof for the other way is similar.