Why Should We Care?

- Half of the labor economics
 - maybe more, labor demand is less studied
- Relates to how should we tax

Overview of Literature

- Labor supply elasticity for men
 - A vast finding of small numbers
- Labor supply elasticity for women
 - A different story with higher estimates
 - But more difficult since participation choice kicks in

$$U_t = \frac{C_t^{1+\eta}}{1+\eta} - \beta_t \frac{h_t^{1+\gamma}}{1+\gamma}$$
s.t. $C_t = w_t(1-\tau)h_t + N_t$

- One chooses C_t (consumption) and h_t (hour of work)
- $\eta \leqslant$ 0: parameter (for income effects)
- $\gamma \geqslant$ 0: parameter (for substitution effects)
- β_t : preference for leisure
- w_t : wage, τ : tax rate, N_t : non-labor income

$$U_t = \frac{C_t^{1+\eta}}{1+\eta} - \beta_t \frac{h_t^{1+\gamma}}{1+\gamma}$$
s.t. $C_t = w_t(1-\tau)h_t + N_t$

- This is the famous CRRA form (Constant Relative Risk Averse)
- Not very popular in static models, but provides links to dynamic
- Note how to link back to our Roy model and potential outcome
- Consumption is usually not observed, so replace w/ b.c. empirically

Optimality condition

$$\mathsf{MRS} = \frac{\mathsf{MUL}}{\mathsf{MUC}} = \frac{\beta_t h_t^{\gamma}}{[w_t(1-\tau)h_t + N_t]^{\eta}} = w_t(1-\tau)$$

- You should be familiar with this
- Under this, no closed form for h_t

$$\epsilon_{w} = \frac{\partial \log h_{t}}{\partial \log w_{t}} \Big|_{N_{t}} = \frac{1 + \eta S}{\gamma - \eta S}$$

$$\epsilon_{I} = \frac{\partial \log h_{t}}{\partial \log N_{t}} \Big|_{w_{t}} = \frac{\eta}{\gamma - \eta S} (1 - S)$$

$$S = \frac{w_{t} (1 - \tau) h_{t}}{w_{t} (1 - \tau) h_{t} + N_{t}}$$

- If N_t small, then we have simpler elasticities
- ϵ_w could still be of any sign

$$\log h_t = \frac{1+\eta}{\gamma - \eta} \log w_t (1-\tau) - \frac{1}{\gamma - \eta} \log \beta_t$$

- A special case where we could get the labor supply equation
- Recall the OLS regression we always run, what's the "endogeneity" issue?
- Do we always see w_t ?

Basic Dynamic Model

$$V = U_1 + \rho U_2$$

$$C_1 = w_1(1 - \tau_1)h_1 + N_1 + b$$

$$C_2 = w_2(1 - \tau_2)h_2 + N_2 - b(1 + r)$$

- ullet ρ is the discount rate
- b is net borrowing

Basic Dynamic Model

With FOC $\frac{\partial V}{\partial h_2}$, $\frac{\partial V}{\partial h_2}$, and $\frac{\partial V}{\partial h_2}$, we derive the following:

$$\log \frac{h_2}{h_1} = \frac{1}{\gamma} \{ \log \frac{w_2}{w_1} + \log \frac{1-\tau_2}{1-\tau_1} - \log \rho (1+r) - \log \frac{\beta_2}{\beta_1} \}$$

Frisch elasticity:

the rate at which a worker shifts hours of work from period 1 to period 2 as the relative wage increases in period 2

$$\frac{\partial \log(h_2/h_1)}{\partial \log(w_2/w_1)} = \frac{1}{\gamma}$$

The Elasticities

- Marshallian (Uncompensated): Hold N_t constant
- Hicksian (Compensated): Hold utility constant
- Frisch: Hold marginal utility of wealth constant (Lagrange multiplier)
- Marshallian < Hicksian < Frisch
- Note that there are also intensive/extensive distinction

Overview of Econometric Issues

- Note that all the models could be put in the Roy model framework
- The usual "OLS" or "Reduced Form" estimation can be seen from here
- Generally, think hard about how "endogeneity" can arise from your model

- One obvious: $Cov(\beta_t, w_t)$
- The other: simultaneous equation. Why w_t shifts?
- Back to Roy model, w is the D there.
- All the tools we learned apply.

Empirical Findings

- Various instruments, LATE, ...
- Very different setups

TABLE 6 SUMMARY OF ELASTICITY ESTIMATES FOR MALES Authors of study Year Marshall Hicks Frisch Static models Kosters 1969 -0.090.05 Ashenfelter-Heckman 1973 -0.160.11 Boskin 1973 -0.070.10 Hall 1973 n/a 0.45 Eight British studies* 1976-83 -0.160.13 Eight NIT studies* 1977-84 0.03 0.13 Burtless-Hausman 1978 0.00 0.07-0.13 Wales-Woodland 1979 0.14 0.84 Hausman 1981 0.00 0.74 Blomquist 1983 0.08 0.11 Blomquist-Hansson-Busewitz 1990 0.12 0.13 MaCurdy-Green-Paarsch 1990 0.00 0.07 Triest 1990 0.05 0.05 Van Soest-Woittiez-Kapteyn 1990 0.19 0.28 Ecklof-Sacklen 2000 0.05 0.27 0.09 Blomquist-Ecklof-Newey 2001 0.08 Dunamic models MaCurdy 1981 dan n 0.15 MaCurdy 1983 0.70 1.00 6.25 Browning-Deaton-Irish 1985 0.09 Blundell-Walker 1986 -0.070.02 0.03 0.11 0.17 Altoniic 1986 -0.24Altoniid 1986 0.31 Altug-Miller 1990 0.14 Angrist 1991 0.63 Ziliak-Knigener 1999 0.12 0.13 0.16 Pistaferri 2003 0.51^{b} 0.70 Imai-Keane 2004 0.40° 1.32° $0.30 - 2.75^{\circ}$ Ziliak-Kniesner 2005 -0.470.33 0.54 Aaronson-French 2009 0.16-0.61 0.06 0.31 0.85 Average

Notes: Where ranges are reported, mid-point is used to take means.

*= Average of the studies surveyed by Pencavel (1986).

b = Effect of surprise permanent wage increase.

= Effect of surprise permanent wage increase.

= Using MaCurdy Method #1.

d = Using first difference hours equation.

Sing first difference nours equation.
 Approximation of responses to permanent wage increase based on model simulation.

= Age range.

TABLE 7 SUMMARY OF ELASTICITY ESTIMATES FOR WOMEN

Authors of study	Year	Marshall	Hicks	Frisch	Uncom- pensated (dynamic)	Tax response
Static, life-cycle and life-cyc	le consistent mod	lels				
Cogan	1981	0.89^{a}				
Heckman-MaCurdy	1982			2.35		
Blundell-Walker	1986	-0.20	0.01	0.03		
Blundell-Duncan-Meghir	1998	0.17	0.20			
Kimmel-Kniesner	1998			$3.05^{\rm b}$		
Moffitt	1984				1.25	
Dynamic structural models						
Eckstein-Wolpin	1989				5.0	
Van der Klauuw	1996				3.6	
Francesconi	2002				5.6	
Keane-Wolpin	2010				2.8	
Difference-in-difference met	hods					
Eissa	1995, 1996a					$0.77 - 1.60^{b}$

a = Elasticity conditional on positive work hours.
 b = Sum of elasticities on extensive and intensive margins.

Consensus

- Very small (if positive) labor supply elasticity
- Why?
- Maybe hard to adjust the hours supplied?
- Or behavioral reasons?

Taxi Driver Literature

- Camerer et al.(1997) "Estimated wage elasticities are significantly negative in two out of three samples."
- Farber Henry S., Taxi (JPE 2005, QJE 2015)
- Gerald Oettinger, Stadium Vendors (JPE 1999)
- Fehr and Goette, Messenger (AER 2007)
- Crawford and Meng, NYC Taxi (AER 2011)

Farber

- "I have had informal conversations with cab drivers in New York City and elsewhere when traveling for the past few years.
- My impression from these interviews taken together is that drivers do not consciously behave as though they are target earners.
- The reasoning they articulate is consistent with a standard neoclassical model with small daily income effects."