ID:	Name:	

DISCRETE MATHEMATICS

Midterm Exam T3 2014

Instruction

- Write your name
- Read the questions carefully.
- You have 4 hours to finish the exam.
- There are 6 problems. Each problem worths 100 points. 600 points in total. You only need to get 540 points to get full score.
- Attempt all problems, state your reasons *clearly* and *legibly*, because partial credits will be given.
- 2 A4 formula sheet is allowed.

Question	Full Score	Your Score
1	100	
2	100	
3	100	
4	100	
5	100	
6	100	
Bonus	30	

Total:		/540
--------	--	------

Useful Formula and Definitions

Asymptotics

Definiton	Definition			Intuition
Asym. Equal	$f \sim g$	iff	$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$	$f \underset{x \to \infty}{=} g$
Big Oh	$f \in O(g)$	iff	$\lim_{x \to \infty} \frac{f(x)}{g(x)} < \infty$	$\int \underbrace{\leq}_{x \to \infty} g$
Little Oh	$f \in o(g)$	iff	$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$	$\int \underbrace{<}_{x \to \infty} g$
Little Omega	$f \in \omega(g)$	iff	$\lim_{x \to \infty} \frac{f(x)}{g(x)} \to \infty$	$\int \underbrace{>}_{x \to \infty} g$
Big Omega	$f\in\Omega(g)$	iff	$\lim_{x \to \infty} \frac{f(x)}{g(x)} > 0$	$\int \underbrace{\geq}_{x \to \infty} g$
Theta	$f \in \Theta(g)$	iff	$\lim_{x \to \infty} \frac{f(x)}{g(x)} = c, c \neq 0$	$f \underbrace{=}_{x \to \infty} g$

Sum

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

 ${\bf Integral}$

$$\int x^n dx = \frac{1}{n+1}x^{n+1}$$
 if $n \neq -1$
$$\int \frac{1}{x} dx = \ln(x)$$

Quadratic

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 1. Easy stuff(100 points. 20 each.)
 - (a) Draw the truth table for $P \wedge (\neg Q \vee P)$

(b) Which of these asymptotic symbols $(\{\sim, o, O, \omega, \Omega, \Theta\})$ are applicable for

$$f(x) = \underline{\hspace{1cm}} (g(x))$$

i.
$$f(x) = 2x^2 + 3x + 1, g(x) = x^2$$

ii.
$$f(x) = 2^x, g(x) = 3^x$$

(c) Find the closed form formula for the following sum/product:

i.
$$\sum_{i=1}^{n} \sum_{j=1}^{m} (i+j)^2$$

ii.
$$\prod_{i=1}^{n} \sum_{j=1}^{m} ij$$

ID: Name:	
-----------	--

(d) Prove or Disprove the following proposition.

Sum of $\mathbf{any}\ 5$ consecutive integers is divisible by 3.

(e) Use integral bound to find the *upperbound* for the following sum.

$$\sum_{x=1}^{n} x^5$$

ID:	Name:	

2. (100 points)Consider an equilateral triangle whose all sides are of length 1. Suppose that we pick 5 points within the triangle, there is at least a pair of point such that distance between the two less than or equal to 1/2.

Hint: Connect the dots. You may use the fact that all sides of the triangle are of the same length if an only if the three angles are all 60° .

Hint: You may also use the fact that the angle at the base of isoceles triangle(triangle whose two side are equal) are equal.

ID:	Name:	

3. (100 points)Pick one. Indicate the one you pick. If you don't I'll pick the one you got less score. Doing two won't give you more score.

(a) Let F_n be nth fibbonacci number defined by.

$$F_1 = 1, F_2 = 1, F_{n+1} = F_n + F_{n-1}$$

Show that

$$F_1F_2 + F_2F_3 + \dots + F_{2n-1}F_{2n} = F_{2n}^2$$

(b) Suppose that MUIC decides to open a new class called group programming. The class will involve splitting students into multiple group of 9 people or 4 people.

For example, If we have 17 students, the students can be splitted in to 1 9-people group and 2 4-people group with no one left behind.

What is the minimum number of student(p) such that class of n people $\forall n \geq p$ can be splitted into 9-people group and 4-people group with no one left behind? (Assume no one drops in the middle of the term.) Prove it too.

ID:	Name:	

Blank page for problem 3

ID:	Name:	

- 4. Pick one. Indicate the one you pick. If you don't I'll pick the one you got less score. Doing two won't give you more score.
 - (a) Use induction to show that $n^3 \leq 3^n$ for all $n \geq 0$. You may want to start your induction at n = 3. Then fill in the rest explicitly.
 - (b) A convex polygon is a polygon whose all of the angles inside is less than 180 degree(individually).

Show that the sum of all internal angle for n-sided $(n \ge 3)$ convex polygon is

$$(n-2) \times 180^{\circ}$$
.

For example, sum of all internal angle of a triangle (3-sided convex polygon) is $180^{\circ} = (3-2) \times 180^{\circ}$. (You may use this as a fact.) Sum of all internal angle of a rectangle (4-sided convex polygon) is $(4-2) \times 180^{\circ} = 360^{\circ}$

Below is an example of 5 sided and 10 sided convex polygon. It has 5 sides and none of the angle is greater than 180°

Hint: Try draw a straight line connecting two corner of the polygon.

ID:	Name:	

ID:	Name:	

5. (100 points) The fact that there are 3 AC and 1 remote in our class always bothers me.

Suppose that when we enter the room, all the three AC are all at $23^{\circ}C$ while the LCD on the remote reads $24^{\circ}C$.

Suppose that there are only 2 buttons on the remote: Up and Down. Since the remote is super short range we can select exactly one AC and press a button. Once the button is pressed *both* the selected AC and the remote will go up/down by $1^{\circ}C$

Show that we cannot make all the three AC and the remote agree. (Ex: 3 AC at $32^{\circ}C$ temperature and the remote at $32^{\circ}C$) Be sure to state the invariant.

Hint: Add them up and play the game.

ID:			
ID:			

Name:

6. (100 points)Solve the following recurrence. Just find the solution. No need to verify it using induction.:

(a)
$$(30 \text{ points})T(n) = T(n-1) + 2n^2; T(1) = 1$$

(b) $(30 \text{ points})T(n) = 2T\left(\frac{n}{2}\right) + 3; T(1) = 1$

ID: Name:	
-----------	--

(c) (40 points)T(n) = 8T(n-1) - 15T(n-2); T(0) = 1, T(1) = 1

ID:	Name:	
		

7. Bonus.(30 points) No partial credit for this one. Don't bother attempting this if you aren't done with the others. You need to be a bit creative for this one.

If we place 9 rugs(of any shape) each of which has area 1 in a room of area 5(of any shape). Prove that there are two rugs which the area overlap by at least 1/9.