Отчёт по лабораторной работе №4

НКАбд-03-25

Кулаженкова Яна Сергеевна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы 4.1 Программа Hello world!	9
5	Задания для самостоятельной работы	11
6	Выводы	13

Список иллюстраций

4.1	Начало работы с файлом hello.asm	9
4.2	Подготовка файла hello.asm	10
4.3	Передача файла компоновщику	10
4.4	Запуск исполняемого файла	10
5.1	Замена файла hello.asm на файл lab4.asm	11
5.2	Запуск файла lab4	12
5.3	Загрузка файлов на Github	12

Список таблиц

3.1	Примеры регистров.	{#register}	7

1 Цель работы

Освоение процедуры компиляции и сборки программ, написанных на языке ассемблера NASM, включая этапы трансляции, компоновки и запуска исполняемого файла.

2 Задание

Лабораторная работа направлена на освоение полного цикла создания программ на языке ассемблера NASM, начиная с изучения теоретических основ архитектуры ЭВМ и системы регистров процессора, практического написания простейшей программы «Hello world!» с использованием системных вызовов Linux, и заканчивая процессами трансляции исходного кода в объектный файл с помощью компилятора NASM, компоновки исполняемого файла линкером LD и его последующего запуска.

3 Теоретическое введение

Язык ассемблера — это машинно-ориентированный язык низкого уровня, максимально приближенный к архитектуре ЭВМ и предоставляющий программисту прямой доступ к аппаратным возможностям, таким как регистры процессора. Например, в [register] приведены примеры основных регистров общего назначения. Программы на ассемблере транслируются в машинный код (последовательности нулей и единиц) с помощью специальной программы-транслятора — ассемблера. В рамках данной работы используется ассемблер NASM (Netwide Assembler), который поддерживает Intel-синтаксис и инструкции х86-64. Типичная команда NASM имеет формат: [метка:] мнемокод [операнд] [; комментарий]. Помимо инструкций процессора, программы могут содержать директивы — инструкции для управления работой транслятора, например, для определения данных.

Процесс создания исполняемой программы на ассемблере включает несколько этапов: написание исходного кода и сохранение его в файл с расширением .asm; трансляция исходного текста в объектный код (файл с расширением .o) с помощью ассемблера NASM; компоновка (линковка) объектных файлов в исполняемый файл с помощью компоновщика LD; запуск и, при необходимости, отладка полученной программы.

Таблица 3.1: Примеры регистров. {#register}

Размер	Регистры
 64 бита	RAX, RCX, RDX, RBX, RSI, RDI

Размер	Регистры
32 бита	EAX, ECX, EDX, EBX, ESI, EDI
16 бит	AX, CX, DX, BX, SI, DI
8 бит	AH, AL, CH, CL, DH, DL, BH, BL

4 Выполнение лабораторной работы

4.1 Программа Hello world!

Создадим директорию для работы с программами на ассемблере и перейдём в неё. Далее создадим файл hello.asm и напишем в нём свою первую программу на ассемблере (рис. 4.1).

```
yskulazhenkova@dkSn18:-$ cd /home/yskulazhenkova_dkSn18/work/study/2025-2026/Apxuтектура\ компьютера/study_2025-2026_arh-pc/labs/lab04
yskulazhenkova@dkSn18:-/work/study/2025-2026/Apxuтектура компьютера/study_2025-2026_arh-pc/labs/lab04$ cat hello.asm
SECTION .dea
hello: db "Hello, world!",0xa
hello: equ $ - hello
SECTION .text
global_start
__start:
__start:
__start:
__start:
__mov_exx, 4
__mov_exx, 4
__mov_exx, hello
__mov_exx, hello
__mov_exx, hello
__int 0x80
__mov_exx, 1
__mov_exx, 1
__int 0x80
__mov_exx, 2
__int 0x80
__start=__int 0x
```

Рисунок 4.1: Начало работы с файлом hello.asm

Скомпилируем программу с помощью NASM. Затем создадим исполняемый файл с помощью компоновщика (рис. 4.2).

```
| viskularhemkova@dksni8:-/work/study/2015-2026/Apxarextypa kommantepa/study_2015-2026_anh-pc/labs/labd4% nasm -f elf hello.asm | yakularhemkova@dksni8:-/work/study/2015-2026/Apxarextypa kommantepa/study_2015-2026_anh-pc/labs/labd4% ls -la total 24 | dnurr.xr.x | yskularhemkova dksni8 yskularhemkova dksni8 4096 Oct | 48:32 | ... | dnurr.xr.x | yskularhemkova dksni8 yskularhemkova dksni8 4096 Oct | 48:32 | ... | dnurr.xr.x | yskularhemkova dksni8 yskularhemkova dksni8 380 Oct | 24 88:32 | hello.sm | -nurrur.r | yskularhemkova dksni8 yskularhemkova dksni8 | 380 Oct | 44 88:32 | hello.sm | -nurrur.r | yskularhemkova dksni8 yskularhemkova dksni8 | 380 Oct | 48:32 | hello.sm | yskularhemkova dksni8 | yskularhemkova dksni8
```

Рисунок 4.2: Подготовка файла hello.asm

Перед запуском исполняемого файла объектный файл необходимо передать на обработку компоновщику (рис. 4.3).

```
yskulazhenkova@dk5n18:-/work/study/2025-2026/Apxnrexrypa xommwrepa/study_2025-2026_arh-pc/labs/lab64$ ld -m elf_1386 hello.o -o hello
yskulazhenkova@dk5n18:-/work/study/2025-2026/Apxnrexrypa xommwrepa/study_2025-2026_arh-pc/labs/lab64$ ls -la
total 44
tot
```

Рисунок 4.3: Передача файла компоновщику

Запустим свою первую программу на ассемблере (рис. 4.4).

```
yskulazhenkova@dkSn18:~/work/study/2025-2026/Архитектура компьютера/study_2025-2026_arh-pc/labs/lab04$ ./hello
Hello, world!
yskulazhenkova@dkSn18:~/work/study/2025-2026/Архитектура компьютера/study_2025-2026_arh-pc/labs/lab04$ _
```

Рисунок 4.4: Запуск исполняемого файла

5 Задания для самостоятельной работы

Создадим модифицированную версию файла с кодом. Для этого получим копию файла hello.asm с именем lab4.asm. Затем заменим в файле lab4.asm строку «Hello world!» на свои фамилию и имя (рис. 5.1).

Рисунок 5.1: Замена файла hello.asm на файл lab4.asm

Теперь мы можем скомпилировать и запустить данный файл (рис. 5.2).

Рисунок 5.2: Запуск файла lab4

Перед завершением работы скопируем все исходные файлы в репозиторий и загрузим на GitHub для сохранения результатов (рис. 5.3).

Рисунок 5.3: Загрузка файлов на Github

6 Выводы

Мы освоили работу с компилятором NASM для преобразования исходного кода в объектные файлы и с линкером LD для создания исполняемых программ. На практике мы убедились, как текст программы на ассемблере превращается в работающее приложение. Все этапы - от написания кода до запуска программы - были успешно выполнены. Таким образом, мы достигли цели работы и освоили процесс сборки программ на NASM.