L-functions of elliptic curves with complex multiplication

Daniel Miller

March 6, 2017

Let $A_{/\mathbf{Q}}$ be an abelian variety with complex multiplication (over \mathbf{Q} !) by F. That is, if we write $\mathrm{End}^{\circ}(A) = \mathrm{End}_{\mathbf{Q}}(A) \otimes \mathbf{Q}$, then $F \simeq \mathrm{End}^{\circ}(A)$. Let p be a prime at which A is unramified. Then

$$\operatorname{fr}_p \in \operatorname{End}^{\circ}(A_{\mathbf{F}_p}) = \operatorname{End}^{\circ}(A) = F.$$

Moreover, for each prime l, the Galois representation $\rho_{A,l}$ takes values in $F_l^{\times} = (F \otimes \mathbf{Q}_l)^{\times}$. In fact, if we write O for the ring of integers of F, then $\rho_{A,l} \colon G_{\mathbf{Q}} \to O_l^{\times}$. Moreover, for each p, $\operatorname{fr}_p \in F^{\times}$ as a p-Weil number of weight 1, i.e. $|\operatorname{fr}_p| = \sqrt{p}$ under each embedding $F \hookrightarrow \mathbf{C}$.

We will define an algebraic Hecke character associated with E. For every unramified prime p, the Frobenius fr_p lives in F^\times . There is, for each $\sigma\colon F\hookrightarrow \mathbf{C}$, a weight-1 Hecke character $\chi_\sigma\colon \mathbf{A}^\times/\mathbf{Q}^\times\to \mathbf{C}^\times$, such that

$$L^{\mathrm{alg}}(A,s) = \prod_{\sigma \colon F \hookrightarrow \mathbf{C}} L(s,\chi_{\sigma}).$$

Thus

$$L^{\mathrm{an}}(A,s) = L^{\mathrm{alg}}\left(A,s+\frac{1}{2}\right) = \prod_{\sigma} L\left(s+\frac{1}{2},\chi_{\sigma}\right),$$

where $L(s+1/2,\chi_{\sigma})=L(s,\chi_{\sigma}\|\cdot\|^{-1/2})$, for $\|\cdot\|\colon \mathbf{A}^{\times}\to \mathbf{R}^{+}$ the adele norm.

The Sato-Tate group for A is the compact torus $R_{F/\mathbb{Q}} \mathbf{G}_{\mathrm{m}}^{\mathrm{N}=1}(\mathbf{R}) = F_{\infty}^{\times,\mathrm{N}=1}$, which is isomorphic to $\prod_{\sigma \in \Phi} S^1$. The group of characters of $\mathrm{ST}(A)$ is generated by $\{\chi_{\sigma}\}$, so we know that if the Akiyama–Tanigawa conjecture for A is true, then each $L(s,\prod\chi_{\sigma}^{m_{\sigma}})$ satisfies the Riemann Hypothesis. My counterexample shows: the converse does not hold! Even if all the $L(s,\prod\chi_{\sigma}^{m_{\sigma}})$ satisfy the Riemann Hypothesis, it does not follow that Akiyama–Tanigawa holds.

1 Tate's thesis

Consider $\mathbf{A} = \mathbf{A}_{\mathbf{Q}}$. A Hecke character is a continuous homomorphism $\chi \colon \mathbf{A}^{\times}/\mathbf{Q}^{\times} \to \mathbf{C}^{\times}$. First, note that the obvious map $\mathbf{R}^{\times} \times \widehat{\mathbf{Z}}^{\times} \to \mathbf{A}^{\times}/\mathbf{Q}^{\times}$ is an isomorphism. The character χ is algebraic of weight w if $\chi|_{\mathbf{R}^{+}} = (-)^{-m}$; so $\|\cdot\|$, the adele norm, is algebraic of weight -1. Since $G_{\mathbf{Q}}^{\mathrm{ab}} = \widehat{\mathbf{Z}}^{\times}$, a "Hecke character" is just a Dirichlet character + a quasicharacter of \mathbf{R}^{\times} , which is determined by its weight (algebraic or not), and sign.

Let χ be an algebraic Hecke character of weight w, l a rational prime. Then there is a corresponding Galois representation which we'll write $\chi_l: \widehat{\mathbf{Z}}^{\times} \to S^1$, given by

$$\chi_l(x) = x_l^{-w} \chi_f(x)$$

2 The whole story

Let $A_{/\mathbf{Q}}$ be an absolutely simple abelian variety with CM type (F, Φ) defined over \mathbf{Q} , where $F = \operatorname{End}(A)_{\mathbf{Q}}$ and $\operatorname{hom}(F, \mathbf{C}) = \Phi \sqcup \overline{\Phi}$. There is a Galois representation $\rho_{A,l} \colon G_{\mathbf{Q}} \to F_l^{\times} \subset \operatorname{GL}_{2g}(\mathbf{Q}_l)$. We wish first to compute the motivic Galois group G_A . This will contain the Sato-Tate group $\operatorname{ST}(A)$, which is equal to the Mumford-Tate group of A. The main thing we need to do is compute $\operatorname{X}^*(G_A)$, show that it is equal to $\widehat{\operatorname{ST}(A)}$, and demonstrate a "reciprocity law" relating motivic and Hecke L-functions between the two.

Let L be the Galois closure of F; there is a norm map $N_{\Phi^{-1}}: L^{\times} \to L^{\times}$, which sends $x \mapsto \prod_{\sigma \in \Phi} \sigma^{-1}(x)$, keeping in mind that $\Phi \subset \operatorname{Gal}(L/\mathbf{Q})$. Claim: $N_{\Phi^{-1}}: L^{\times} \to F^{\times}$; call this map $\psi \colon R_{L/\mathbf{Q}} \mathbf{G}_{\mathrm{m}} \to R_{F/\mathbf{Q}} \mathbf{G}_{\mathrm{m}}$. On the level of characters, we have

$$N_{\Phi^{-1}}^*: X^*(R_{L/\mathbf{Q}} \mathbf{G}_m) \to X^*(R_{L/\mathbf{Q}} \mathbf{G}_m),$$

and $\ker(\mathcal{N}_{\Phi^{-1}}^*) = \mathcal{X}^*(G_A)$. Another definition is: $\psi = \mathcal{N}_{\Phi_E} \circ \mathcal{N}_{F/E}$, where E is the reflex field of (F, Φ) .

Let
$$G_A = \operatorname{im}(\psi) \subset R_{F/\mathbf{Q}} \mathbf{G}_{\mathrm{m}}$$
.

3 Correct picture

The key fact is: no abelian variety has CM defined over \mathbf{Q} . Let K be a number field (which we may take to contain F and be Galois over \mathbf{Q}) and $A_{/K}$ an absolutely simple abelian variety with CM defined over K, and $F = \operatorname{End}^{\circ}(A)$. Let $\mathfrak{a} = \operatorname{Lie}(A)$; this is a Kvector space with F-action. The determinant gives us a natural map $\det_{\mathfrak{a}} : R_{K/\mathbb{Q}} \mathbf{G}_{\mathrm{m}} \to R_{F/\mathbb{Q}} \mathbf{G}_{\mathrm{m}}$; Serre-Tate refer to this as ψ . The motivic Galois group of A is $G_A = \operatorname{im}(\det_{\mathfrak{a}})$, and the canonical subgroup is $G_A^1 = \operatorname{im}(\det_{\mathfrak{a}})^{\operatorname{N}_{F/Q}=1} \subset \operatorname{SL}(2g)$. The Sato-Tate group of A is the maximal compact subgroup of $G_A^1(\mathbf{C})$; this is a compact torus whose representations coincide with the complex representations of G_A^1 . Now, $X^*(R_{F/\mathbf{Q}}\mathbf{G}_m) \twoheadrightarrow X^*(G_A^1)$, so any representation of G_A^1 is induced by one of $R_{F/\mathbf{Q}} \mathbf{G}_{\mathrm{m}}$. Here, we're on familiar ground. For $r \in X^*(R_{F/\mathbb{Q}} \mathbb{G}_m)$, the function $L(r_*\rho_{A,l}, s)$ is writable in terms of Hecke characters. That is, there is an explicit Hecke character ω_r such that $L(r_*\rho_{A,l},s)=L(s,\omega_r)$, possibly up to twist. Let's do the details!

First, for a prime l, write

$$\rho_l = \rho_{A,l} \colon G_{\mathbf{Q}} \to G_A(\mathbf{Q}_l) \subset (R_{F/\mathbf{Q}} \mathbf{G}_{\mathrm{m}})(\mathbf{Q}_l) = F_l^{\times}$$

for the associated l-adic Galois representation. For $\sigma \colon F \hookrightarrow \mathbf{C}$, there is a Hecke character χ_{σ} such that

$$\chi_{\sigma}(\mathfrak{p}) = \sigma(\rho_l(\mathrm{fr}_{\mathfrak{p}})),$$

from which it follows that $L^{\mathrm{alg}}(\sigma \circ \rho_l, s) = L(s, \chi_{\sigma})$. Now $L(A, s) = L^{\mathrm{alg}}(A, s + 1/2)$, so we set $\omega_{\sigma} = \chi_{\sigma} \| \cdot \|^{-1/2}$. Then

$$L(A,s) = \prod_{\sigma \colon F \hookrightarrow \mathbf{C}} L(s, \omega_{\sigma}),$$

and for any $r = \sum a_{\sigma} \sigma \in X^*(R_{F/\mathbf{Q}} \mathbf{G}_m), \ L(r_*\rho_l, s) = L(s, \omega_r),$ where we put

$$\omega_r = \prod_{\sigma \colon F \hookrightarrow \mathbf{C}} \omega_\sigma^{a_\sigma}.$$

Since each ω_r is a Hecke character, it has analytic continuation past $\Re=1$, so the Sato–Tate conjecture holds for A. However, the "Diophantine Approximation counterexample" shows that even if each $L(r_*\rho_l,s)$ satisfies the Riemann Hypothesis, it does not immediately follow that the Akiyama–Tanigawa conjecture holds for A.